ЛЕКЦИЯ № 5.

СООБЩЕНИЯ, СИГНАЛЫ И ПОМЕХИ КАК СЛУЧАЙНЫЕ ПРОЦЕССЫ.

Случайная функция — семейство случайных величин $\zeta(t)$, зависящих от действительного параметра t. Если t - текущее время, то $\zeta(t)$ - случайный процесс (СП). СП характеризуется множеством функций времени:

$$\zeta(t) = \{x^{(k)}(t), t \in T_0\}$$

и вероятностной мерой, заданной на этом множестве, где k - номер реализации, T_0 - область определения СП. Множество χ , которому принадлежат возможные значения $\zeta(t)$ - пространство значений процесса.

Совокупность значений случайного процесса в моменты времени t_i образуют векторную случайную величину $\zeta = (\zeta_1 \ \zeta_2 \ \cdots \ \zeta_n), \zeta_i = \zeta(t_i)$.

Функции распределения и плотности вероятности СП.

Фиксируем последовательно i = 1, 2, 3,, n. Тогда одномерная функция распределения СП $\zeta(t)$ определяется следующим образом $F_1(x_i, t_i) = P\{\zeta(t_i) \le x_i\}$,

двумерная - $F_2(x_i, x_j, t_i, t_j) = P\{\zeta(t_i) \le x_i, \zeta(t_j) \le x_j\}$, где x_i - пороги и т.д. В общем случае n - мерная функция распределения задается выражением:

$$F_n(x_1, ..., x_n, t_1, ..., t_n) = P\{\zeta(t_1) \le x_1, ..., \zeta(t_n) \le x_n\},$$
(5.1)

где x_i - пороги, t_i - параметры, $P\{\bullet\}$ - совместная вероятность того, что значения СП $\zeta(t_i)$ не превысят порогов x_i . Функция распределения должна удовлетворять условиям **симметрии**: $F_n(x_1,...x_n,t_1,...t_n) = F_n(x_{k_1},...x_{k_n},t_{k_1},...t_{k_n})$, где

 $k_1,...k_n$ - целые числа от 1 до n , расположенные в произвольном порядке, и условию **согласованности**: $\lim_{\substack{x_j \to \infty \\ j = k+1,....n}} F_n(x_1,...x_n,t_1,...t_n) = F_k(x_1,...x_k,t_1,....t_k)$.

Одномерная плотность распределения вероятности СП $\zeta(t) - w_1(x,t) = \frac{dF_1(x,t)}{dx}$,

двумерная - $w_2(x_i, x_j, t_i, t_j) = \frac{\partial^2 F_2(x_i, x_j, t_i, t_j)}{\partial x_i \partial x_j}$ и т.д. Тогда n - мерная плотность распределения СП имеет вид:

$$w_{n}(x_{1},...x_{n},t_{1},...t_{n}) = \frac{\partial^{n} F_{n}(x_{1},...x_{n},t_{1},...t_{n})}{\partial x_{1}....\partial x_{n}} .$$
 (5.2)

Условие **симметрии**: $w_n(x_1...x_n,t_1,...t_n)=w_n(x_{k_1},...x_{k_n},t_{k_1},...,t_{k_n})$, условие **согласованности**: $w_k(x_1,...x_k,t_1,...t_k)=\int\limits_{-\infty}^{\infty}...\int\limits_{-\infty}^{\infty}w_n(x_1,...x_k,x_{k+1},...x_n,t_1,...t_k,t_{k+1},...t_n)dx_{k+1}...dx_n$.

Моментные функции случайного процесса.

1) Среднее значение СП:

$$M\{\zeta(t)\} = \int_{-\infty}^{\infty} x w_1(x, t) dx = m_x(t).$$
 (5.3)

2) Дисперсия СП:

$$M\{\zeta t\} - m_x(t)\}^2 = \int_{-\infty}^{\infty} (x - m_x(t))^2 w_1(x, t) dx = \sigma_x^2(t).$$
 (5.4)

 $\pm \sigma_{x}(t)$ - наиболее вероятное максимальное отклонение значений СП от среднего значения $m_{x}(t)$ в момент времени t .

3) Корреляционная функция СП:

$$M\{\zeta(t_i)\zeta(t_j)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_i x_j w_2(x_i, x_j, t_i, t_j) dx_i dx_j = R_x(t_i, t_j).$$
 (5.5)

4) Ковариационная функция СП:

$$M\{(\zeta(t_i) - m_x(t_i))(\zeta(t_j) - m_x(t_j))\} = \int_{-\infty-\infty}^{\infty} (x_i - m_x(t_i))(x_j - m_x(t_j))w_2(x_i, x_j, t_i, t_j)dx_i dx_j = B_x(t_i, t_j)$$
 (5.6)

Здесь $M\{\bullet\}$ - оператор математического ожидания. Корреляционная и ковариационная функция показывают статистическую связь, между значениями процесса $\zeta(t_i)$ и $\zeta(t_i)$.

Совокупность случайных процессов.

Рассмотрим два СП $\zeta(t)$ и $\eta(t)$: $\zeta = (\zeta_1 \cdots \zeta_n), \eta = (\eta_1 \cdots \eta_m), \Gamma \text{де } \zeta_i = \zeta(t_i),$

 $\eta_j = \eta(t_j)$, i = 1,2,...,n; j = 1,2,...m. Тогда **совместная** функция распределения определяется следующим образом:

$$F_{n+m}(\vec{x}_n, \vec{y}_m, \vec{t}_n, \vec{t}_m) = P\{\zeta \le \vec{x}_n, \eta \le \vec{y}_m\},$$
 (5.7)

где
$$\vec{x}_n = (x_1 \quad \cdots \quad x_n), \vec{y}_m = (y_1 \quad \cdots \quad y_m), \vec{t}_n = (t_1 \quad \cdots \quad t_n), \vec{t}_m = (t_1 \quad \cdots \quad t_m).$$

Совместная плотность распределения вероятности двух процессов имеет вид:

$$W_{n+m}(\vec{x}_{n}, \vec{y}_{m}, \vec{t}_{n}, \vec{t}_{m}) = \frac{\partial^{n+m} F_{n+m}(\vec{x}_{n}, \vec{y}_{m}, \vec{t}_{n}, \vec{t}_{m})}{\partial \vec{x}_{n} \partial \vec{y}_{m}}.$$
(5.8)

Два случайных процесса называются **независимыми**, если для любого n и m выполняются равенства

$$F_{n+m}(\vec{x}_n, \vec{y}_m, \vec{t}_n, \vec{t}_m) = F_{nx}(\vec{x}_n, \vec{t}_n) \cdot F_{my}(\vec{y}_m, \vec{t}_m),$$

$$W_{n+m}(\vec{x}_n, \vec{y}_m, \vec{t}_n, \vec{t}_m) = W_{nx}(\vec{x}_n, \vec{t}_n) \cdot W_{my}(\vec{y}_m, \vec{t}_m)$$
(5.9)

Т.е. процессы независимы, если их совместная функция распределения (5.7) или совместная плотность распределения вероятности (5.8) факторизуется.

Определим взаимную корреляционную и ковариационную функцию двух СП

$$M\{\zeta(t_{i})\eta(t_{j})\} = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} xyw_{2}(x, y, t_{i}, t_{j})dxdy = R_{xy}(t_{i}, t_{j}),$$

$$M\{(\zeta(t_{i}) - m_{x}(t_{i}))(\eta(t_{j}) - m_{y}(t_{j}))\} = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} (x - m_{x}(t_{i}))(y - m_{y}(t_{j}))w_{2}(x, y, t_{i}, t_{j})dxdy = B_{xy}(t_{i}, t_{j})$$
(5.10)

причем, $R_{xy}(t_i, t_j) = R_{xy}(t_j, t_i)$, $B_{xy}(t_i, t_j) = B_{xy}(t_j, t_i)$.

Два случайных процесса называются некоррелированными, если

$$B_{xy}(t_i, t_j) = R_{xy}(t_i, t_j) - m_x(t_i) m_y(t_j) = 0.$$
 (5.11)

Из независимости СП следует их некоррелированность. Обратное в общем случае неверно.

Стационарные случайные процессы.

Случайные процесс $\zeta(t)$ называется **стационарным в узком смысле**, если для произвольной последовательности $t_1,....t_n$, для любого момента t_0 и целого числа $n \ge 1$ функция распределения вероятности (5.1) инвариантна относительно сдвига переменной t:

$$F_n(x_1, ..., x_n, t_1, ..., t_n) = F_n(x_1, ..., x_n, t_1 + t_0, ..., t_n + t_0).$$
(5.12)

Необходимые условия стационарности в узком смысле.

1) Необходимо, чтобы одномерная функция распределения не зависела от времени, т.е. $F_1(x,t) = F_1(x)$. Тогда не зависят от времени также $w_1(x,t) = w(x)$,

$$m_x(t) = m_x$$
, $\sigma_x^2(t) = \sigma_x^2$

2) Необходимо, чтобы двумерная функция распределения зависела не от двух моментов времени, а только от разности между ними $\tau = t_i - t_j$, т.е.

 $F_2(x_i, x_j, t_i, t_j) = F_2(x_i, x_j, \tau)$. Тогда зависят только от этой разности и

$$W_2(x_i, x_j, t_i, t_j) = W_2(x_i, x_j, \tau),$$

$$R_x(t_i, t_j) = R_x(\tau) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} x_i x_j w_2(x_i, x_j, \tau) dx_i dx_j, \qquad (5.13)$$

$$B_{x}(t_{i},t_{j}) = B_{x}(\tau) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} (x_{i} - m_{x})(x_{j} - m_{x})w_{2}(x_{i},x_{j},\tau)dx_{i}dx_{j}.$$

Случайный процесс называется **стационарным в широком смысле**, если его среднее значение и дисперсия не зависит от времени $m_x(t) = m_x$, $\sigma_x^2(t) = \sigma_x^2$, а его корреляционная и ковариационная функция зависят только от разности τ между двумя моментами времени $R_x(t_i,t_i) = R_x(\tau)$, $B_x(t_i,t_i) = B_x(\tau)$.

Необходимые условия стационарности в узком смысле являются достаточными условиями стационарности в широком смысле.

Эргодические случайные процессы.

Стационарный СП называется **эргодическим**, если при нахождении любых вероятностных характеристик, усреднение по множеству реализаций может быть заменено усреднением по времени:

$$m_{x} = \lim_{T_{H} \to \infty} \frac{1}{T_{H}} \int_{0}^{T_{H}} x^{(k)}(t)dt,$$

$$\sigma_{x}^{2} = \lim_{T_{H}} \frac{1}{T_{H}} \int_{0}^{T_{H}} (x^{(k)}(t) - m_{x})^{2} dt,$$

$$m_{2x} = \lim_{T_{H}} \frac{1}{T_{H}} \int_{0}^{T_{H}} (x^{(k)}(t))^{2} dt,$$

$$R_{x}(\tau) = \lim_{T_{H} \to \infty} \frac{1}{T_{H}} \int_{0}^{T_{H}} x^{(k)}(t)x^{(k)}(t + \tau)dt,$$
(5.14)

где $x^{(k)}(t)$ - k - ая реализация случайного процесса $\zeta(t)$, T_H - ее длительность. Здесь m_x можно рассматривать как постоянную составляющую реализации $x^{(k)}(t)$, а m_{2x} как среднюю мощность сигнала.