Package 'ROCSI'

October 12, 2022

Type Package

Title Receiver Operating Characteristic Based Signature Identification
Version 0.1.0
Description Optimal linear combination predictive signatures for maximizing the area between two Receiver Operating Characteristic (ROC) curves (treatment vs. control).
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.1
Imports glmnet, MASS
NeedsCompilation no
Author Xin Huang [aut, cre, cph]
Maintainer Xin Huang <xin.huang@abbvie.com></xin.huang@abbvie.com>
Repository CRAN
Date/Publication 2022-08-24 09:12:36 UTC
Date/1 abilitation 2022 00 24 07.12.30 010
R topics documented:
AUC
beta2theta
C.index
cvfolds0
data.gen
grad.sub
gradsqr
hessAUC
hessAUC.sub
HIC
MClogit

2 beta2theta

Index 15

AUC AUC

Description

Empirical AUC estimate

Usage

```
AUC(outcome, predict)
```

Arguments

outcome binary outcome (1: desired outcome; 0: otherwise)

predict prediction score

Details

Function for AUC when input is X and Y.

Value

a numeric value of empirical estimation of area under the ROC curves

Examples

no run

beta2theta beta2theta

Description

Function to translate beta into theta, the n-sphere constrain

Usage

beta2theta(beta)

Arguments

beta estimates of coefficient beta

Details

Function to translate beta into theta, the n-sphere constrain

C.index 3

Value

a numeric vector for theta (dimension-1)

Examples

no run

C.index

C.index

Description

Empirical c-index estimate

Usage

```
C.index(yvar, score, censorvar, data)
```

Arguments

yvar column name for observed time score column name for marker value

censorvar column name for censor (1 is event, 0 is censored)

data input data matrix

Details

Function for c-index when input is X and Y.

Value

a numeric value of empirical estimation of c-index

Examples

no run

data.gen

cvfolds0

cv folds 0

Description

internal function for generating CV fold index

Usage

```
cvfolds0(X, Y, idx, nfolds = 5)
```

Arguments

X marker matrix for non-responders

Y marker matrix for responders

idx m*n by 2 matrix for row index of marker matrix, first column is row index in X;

second column is for Y

nfolds the cross-validation folds

Details

Function for generate CV fold index

Value

a vector containing CV fold index for each row in Z

Examples

no run

data.gen

data.gen

Description

Function for simulated data generation

data.gen 5

Usage

```
data.gen(
    n,
    k,
    prevalence = sqrt(0.5),
    prog.eff = 1,
    sig2,
    y.sig2,
    rho,
    rhos.bt.real,
    a.constent
)
```

Arguments

n	Total sample size
k	Number of markers
prevalence	prevalence of predictive biomarkers with values above the cutoff
prog.eff	effect size beta for prognostic biomarker
sig2	standard deviation of each marker
y.sig2	Standard Deviation of the error term in the linear component
rho	rho*sig2 is the entries for covariance matrix between pairs of different k markers
rhos.bt.real	correlation between each prognostic and predictive markers
a.constent	a constant is set such that there is no overall treatment effect

Details

Function for simulated data generation

Value

A list of simulated clinical trial data with heterogeneous prognostic and predictive biomarkers

Examples

```
\begin{array}{l} n <-500 \\ k <-10 \\ prevalence <- \ sqrt(0.5) \\ rho<-0.2 \\ sig2 <- 2 \\ rhos.bt.real <- c(0, \ rep(0.1, \ (k-3)))*sig2 \\ y.sig2 <- 1 \\ prog.eff <- 0.5 \\ effect.size <- 1 \\ a.constent <- \ effect.size/(2*(1-prevalence)) \\ ObsData <- \ data.gen(n=n, \ k=k, \ prevalence=prevalence, \ prog.eff=prog.eff, \\ sig2=sig2, \ y.sig2=y.sig2, \ rho=rho, \\ rhos.bt.real=rhos.bt.real, \ a.constent=a.constent) \\ \end{array}
```

6 gradsqr

grad.sub

grad.sub

Description

Internal function of grad_square in the GCV

Usage

```
grad.sub(z, beta)
```

Arguments

z (m x n) x p data matrix as prepared for ROCSI

beta estimates of coefficient beta

Details

Internal function of grad_square in the GCV

Value

```
grad_square in the GCV
```

Examples

no run

gradsqr

gradsqr

Description

Internal function for HIC calculation

Usage

```
gradsqr(beta, Z0, index, w = 1)
```

Arguments

beta estimates of coefficient beta

Z0 (m x n) x p Z matrix as prepared for ROCSI

index m*n by 2 matrix for the subindex for the pair difference in Z

w a vector of weights Z (can be used for inverse probability weighting for missing

data, default is 1)

hessAUC 7

Details

Internal function for HIC calculation

Value

gradient square for the GCV.

Examples

no run

hessAUC

hessAUC

Description

function for Hessian matrix of AUC

Usage

```
hessAUC(beta, Z, w = 1)
```

Arguments

beta estimates of coefficient beta

Z (m x n) x p data matrix as prepared for ROCSI

w a vector of weights Z (can be used for inverse probability weighting for missing

data, default is 1)

Details

function for Hessian matrix of AUC

Value

Hessian matrix of AUC.

Examples

no run

8 HIC

hessAUC.sub

hessAUC.sub

Description

Internal function for hessAUC

Usage

```
hessAUC.sub(z, beta)
```

Arguments

z (m x n) x p data matrix as prepared for ROCSI

beta estimates of coefficient beta

Details

Internal function for hessAUC

Value

Hessian matrix components.

Examples

no run

HIC

HIC

Description

function for HIC calculation

Usage

```
HIC(beta, Z, index, w = 1)
```

Arguments

beta	estimates of coefficient beta
Z	matrix prepared for ROCSI

index m*n by 2 matrix for the subindex for the pair difference in Z

w a vector of weights Z (can be used for inverse probability weighting for missing

data, default is 1)

MClogit 9

Details

Function for HIC calculation

Value

A numeric value with corresponding HIC

Examples

```
# no run
```

MClogit

MClogit

Description

function for modified covariate methods based on glmnet

Usage

```
MClogit(
  dataset,
  yvar,
  xvars,
  trtvar,
  cvar = NULL,
  nfolds = 5,
  type = "binary",
  newx = NULL,
  bestsub = "lambda.1se",
  type.measure = "auc"
)
```

Arguments

dataset	data matrix for training dataset
yvar	column name for outcome
xvars	a string vector of column names for input markers
trtvar	column name for treatment (the column should contain binary code with 1 being treatment and 0 being control)
cvar	column name for censor (the column should contain binary code with 1 being event and 0 being censored)
nfolds	n fold CV used for cv.glmnet
type	outcome type ("binary" for binary outcome and "survival" for time-to-event outcome)

10 MClogit

newx data matrix for testing dataset X

bestsub criteria for best lambda, used by glmnet

type.measure type of measure used by glmnet

Details

function for ROCSI

Value

A list with ROCSI output

x.logit final beta estimated from MClogit

predScore a data.frame of testing data and its predictive signature scores (based on beta.aABC) for each subjects

abc ABC in testing dataset based on optimal beta

fit.cv the fitted glmnet object

Examples

```
n <- 100
k <- 5
prevalence <- sqrt(0.5)
rho<-0.2
sig2 <- 2
rhos.bt.real <- c(0, rep(0.1, (k-3)))*sig2
y.sig2 <- 1
yvar="y.binary"
xvars=paste("x", c(1:k), sep="")
trtvar="treatment"
prog.eff <- 0.5
effect.size <- 1
a.constent <- effect.size/(2*(1-prevalence))</pre>
ObsData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
                    sig2=sig2, y.sig2=y.sig2, rho=rho,
                    rhos.bt.real=rhos.bt.real, a.constent=a.constent)
TestData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
                     sig2=sig2, y.sig2=y.sig2, rho=rho,
                     rhos.bt.real=rhos.bt.real, a.constent=a.constent)
bst.mod <- MClogit(dataset=ObsData$data, yvar=yvar, xvars=xvars,</pre>
trtvar=trtvar, nfolds = 5, newx=TestData$data,
type="binary", bestsub="lambda.1se")
bst.mod$abc
bst.mod$x.logit[-1,1]
```

pair.diff 11

pair.diff

pair.diff

Description

internal function for generating Z matrix (binary endpoint)

Usage

```
pair.diff(X, Y, A)
```

Arguments

X marker matrix for non-responders
Y marker matrix for responders

A Treatment arm indicator (1 is treatment, 0 is control)

Details

Function for generate Z matrix for binary endpoint

Value

A list of prepared data input for ROCSI

Examples

no run

pair.diff.surv

pair.diff.surv

Description

internal function for generating Z matrix (time-to-event endpoint)

Usage

```
pair.diff.surv(X, Y, A, C)
```

Arguments

X marker matrix

Y a vector for observed time

A a vector for Treatment arm indicator (1 is treatment, 0 is control)

C a vector for censor (1 is event, 0 is censored)

12 ROCSI

Details

Function for generate Z matrix for time-to-event endpoint

Value

A list of prepared data input for ROCSI

Examples

```
# no run
```

ROCSI

ROCSI

Description

function for ROCSI

Usage

```
ROCSI(
   Dtrain,
   Dtest = NULL,
   yvar,
   xvars,
   trtvar,
   cvar = NULL,
   nfolds = 5,
   type = "binary"
)
```

Arguments

data matrix for training dataset Dtrain Dtest optional data matrix for testing dataset yvar column name for outcome xvars a string vector of column names for input markers trtvar column name for treatment (the column should contain binary code with 1 being treatment and 0 being control) column name for censor (the column should contain binary code with 1 being cvar event and 0 being censored) nfolds n fold CV used for cv.glmnet outcome type ("binary" for binary outcome and "survival" for time-to-event outtype come)

ROCSI 13

Details

function for ROCSI

Value

A list with ROCSI output

beta.aABC final beta estimated from ROCSI based on $ABC^{(acv)}$

beta.1se final beta estimated from lambda.1se based on nfold CV

lambda.aABC optimal lambda selected by optimizing $ABC^{(acv)}$

fit.cv fitted cv.glmnet model

log log matrix of all lambdas and ABCs

abc.test ABC in testing dataset based on optimal beta

abc.test1se ABC in testing dataset based on 1se beta

predScore a data.frame of testing data and its predictive signature scores (based on beta.aABC)
 for each subjects

predScore.1se a data.frame of testing data and its predictive signature scores (based on beta.1se)
for each subjects

Examples

```
n <- 100
k <- 5
prevalence <- sqrt(0.5)</pre>
rho<-0.2
sig2 <- 2
rhos.bt.real <- c(0, rep(0.1, (k-3)))*sig2
y.sig2 <- 1
yvar="y.binary"
xvars=paste("x", c(1:k), sep="")
trtvar="treatment"
prog.eff <- 0.5
effect.size <- 1
a.constent <- effect.size/(2*(1-prevalence))</pre>
ObsData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
                     sig2=sig2, y.sig2=y.sig2, rho=rho,
                     rhos.bt.real=rhos.bt.real, a.constent=a.constent)
TestData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,</pre>
                      sig2=sig2, y.sig2=y.sig2, rho=rho,
                      rhos.bt.real=rhos.bt.real, a.constent=a.constent)
bst.aabc <- ROCSI(Dtrain=ObsData$data, Dtest = TestData$data, yvar=yvar,</pre>
xvars=xvars, trtvar=trtvar, cvar=NULL, nfolds=5, type="binary")
bst.aabc$beta.aABC
bst.aabc$log
bst.aabc$abc.test
bst.aabc$beta.1se
bst.aabc$abc.test1se
```

14 theta2beta

theta2beta

theta2beta

Description

Function to translate theta into beta

Usage

```
theta2beta(theta)
```

Arguments

theta

n-sphere coordination

Details

Function to translate beta into theta, the n-sphere constrain

Value

```
a numeric vector for beta (dimension+1)
```

Examples

no run

Index

```
AUC, 2
beta2theta, 2
C.index, 3
cvfolds0, 4
data.gen, 4
grad.sub, 6
gradsqr, 6
hessAUC, 7
hessAUC.sub, 8
HIC, 8
MClogit, 9
pair.diff, 11
pair.diff.surv, 11
ROCSI, 12
theta2beta, 14
```