

EXHIBIT D

Exhibit B (Supplemental)

U.S. Pat. No. 8,407,273

Claim 53

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>As demonstrated below, the Accused Products include multiple components that, separately and independently, meet all the requirements of the claimed “device.”:</p> <div style="border: 1px solid black; padding: 10px;"> <p>When you request one “Cloud TPU v2” on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing Unit) and a 128x128 MXU (Matrix multiply Unit). This “Cloud TPU” is then usually connected through the network to the VM that requested it. So the full picture looks like this:</p> <p>The diagram illustrates the architecture of a Cloud TPU. It shows a Host VM with CPUs connected via a Network to a Cloud TPU. The Cloud TPU is a VM with a PCI-attached TPU board containing 8 TPU cores. The TPU board has four dual-core TPU chips, each with a VPU and a 128x128 MXU. The diagram shows two configurations: TPU v2 (4 chips, 2 cores per chip) and TPU v3 (4 chips, 2 cores per chip).</p> <p>https://codelabs.developers.google.com/codelabs/keras-flowers-convnets/#2</p> <p>https://cloud.google.com/tpu/docs/system-architecture</p> </div>

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>As demonstrated below, the Accused Products include multiple components that, separately and independently, meet all the requirements of the claimed “device.” For example, a “TPU Chip” satisfies these requirements:</p> <div style="border: 1px solid black; padding: 10px;"> <p>When you request one “Cloud TPU v2” on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-attached TPU board. The TPU board has four dual-core <u>TPU chips</u>. Each TPU core features a VPU (Vector Processing Unit) and a 128x128 MXU (Matrix multiply Unit). This “Cloud TPU” is then usually connected through the network to the VM that requested it. So the full picture looks like this:</p> <p>Illustration: your VM with a network-attached “Cloud TPU” accelerator. The Cloud TPU itself is made of a VM with a PCI-attached TPU board with four dual-core <u>TPU chips</u> on it.</p> <p>https://codelabs.developers.google.com/codelabs/keras-flowers-convnets/#2</p> <p>https://cloud.google.com/tpu/docs/system-architecture</p> <p>See also generally Norrie et al., “Google’s Training Chips Revealed: TPUs v2 and TPUs v3” (Presented at HotChips Conference, Aug. 2020)</p> </div>

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>As demonstrated below, the Accused Products include multiple components that, separately and independently, meet all the requirements of the claimed “device.” For example, a “TPU Core” satisfies these requirements:</p> <p>When you request one “Cloud TPU v2” on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing Unit) and a 128x128 MXU (Matrix multiply Unit). This “Cloud TPU” is then usually connected through the network to the VM that requested it. So the full picture looks like this:</p> <p>Illustration: your VM with a network-attached “Cloud TPU” accelerator. “The Cloud TPU” itself is made of a VM with a PCI-attached TPU board with four dual-core TPU chips on it.</p> <p>https://codelabs.developers.google.com/codelabs/keras-flowers-convnets/#2</p> <p>https://cloud.google.com/tpu/docs/system-architecture</p>

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>It has two TensorCores Node fabric data and NF controller move on-chip data.</p> <p>Figure 3. TPUv2 chip floor plan.</p> <p>https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks</p> <p>Figure 2. Block diagram of a TensorCore (our internal development name for a TPU core, and not related to the Tensor Cores of NVIDIA GPUs).</p> <p><i>Id.</i></p> <p>See also GOOG-SING-SC-000001-454.</p>

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE																
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value, wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input; wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute power in a TPU chip. Each MXU is capable of performing 16K multiply accumulate operations in each cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better training and model accuracy than the IEEE half-precision representation.</p> <p>https://cloud.google.com/tpu/docs/system-architecture</p> <table border="1" data-bbox="777 845 1924 1171"> <thead> <tr> <th></th> <th>sign</th> <th>exponent</th> <th>fraction</th> </tr> </thead> <tbody> <tr> <td>bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>E E E E E E E</td> <td>M M M M M M M</td> </tr> <tr> <td>float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>E E E E E E E</td> <td>M M M M M M M ~ M M M M M</td> </tr> <tr> <td>float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$</td> <td>S</td> <td>E E E E E</td> <td>M M M M M M M M M M</td> </tr> </tbody> </table> <p>https://cloud.google.com/tpu/docs/bfloat16</p>		sign	exponent	fraction	bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E E E E E E E	M M M M M M M	float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E E E E E E E	M M M M M M M ~ M M M M M	float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	E E E E E	M M M M M M M M M M
	sign	exponent	fraction														
bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E E E E E E E	M M M M M M M														
float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E E E E E E E	M M M M M M M ~ M M M M M														
float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	E E E E E	M M M M M M M M M M														

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>Systolic array</p> <p>The MXU implements matrix multiplications in hardware using a so-called "systolic array" architecture in which data elements flow through an array of hardware computation units. (In medicine, "systolic" refers to heart contractions and blood flow, here to the flow of data.)</p> <p>The basic element of a matrix multiplication is a dot product between a line from one matrix and a column from the other matrix (see illustration at the top of this section). For a matrix multiplication $Y = X \cdot W$, one element of the result would be:</p> $Y[2,0] = X[2,0] \cdot W[0,0] + X[2,1] \cdot W[1,0] + X[2,2] \cdot W[2,0] + \dots + X[2,n] \cdot W[n,0]$ <p>Illustration: the MXU systolic array. The compute elements are multiply-accumulators. The values of one matrix are loaded into the array (red dots). Values of the other matrix flow through the array (grey dots). Vertical lines propagate the values up. Horizontal lines propagate partial sums. It is left as an exercise to the user to verify that as the data flows through the array, you get the result of the matrix multiplication coming out of the right side.</p> <p>https://codelabs.developers.google.com/codelabs/keras-flowers-convnets/#2</p> <p>See also GOOG-SING-SC-000001-10, 13-30, 33-61, 228-292, 315-373, 396-444, 449-454.</p>

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE													
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<ul style="list-style-type: none"> “Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better training and model accuracy than the IEEE half-precision representation.” https://cloud.google.com/tpu/docs/system-architecture “The following figure shows three floating-point[] formats <ul style="list-style-type: none"> fp32 - IEEE single-precision floating-point fp16 - IEEE half-precision floating point bfloat16 - 16-bit <i>brain floating point</i>” <p>https://cloud.google.com/tpu/docs/bfloat16</p> <table border="1"> <thead> <tr> <th></th> <th>sign</th> <th>exponent</th> <th>fraction</th> </tr> </thead> <tbody> <tr> <td>bfloat16 range: ~1e⁻³⁸ to ~3e³⁸</td> <td>8 bits</td> <td>7 bits</td> </tr> <tr> <td>float32 range: ~1e⁻³⁸ to ~3e³⁸</td> <td>8 bits</td> <td>23 bits</td> </tr> <tr> <td>float16 range: ~5.9e⁻⁸ to 6.5e⁴</td> <td>5 bits</td> <td>10 bits</td> </tr> </tbody> </table> <p><i>Id.</i></p> <p><i>See also GOOG-SING-SC-45-61, 435-444, 449-454.</i></p>		sign	exponent	fraction	bfloat16 range: ~1e ⁻³⁸ to ~3e ³⁸	8 bits	7 bits	float32 range: ~1e ⁻³⁸ to ~3e ³⁸	8 bits	23 bits	float16 range: ~5.9e ⁻⁸ to 6.5e ⁴	5 bits	10 bits
	sign	exponent	fraction											
bfloat16 range: ~1e ⁻³⁸ to ~3e ³⁸	8 bits	7 bits												
float32 range: ~1e ⁻³⁸ to ~3e ³⁸	8 bits	23 bits												
float16 range: ~5.9e ⁻⁸ to 6.5e ⁴	5 bits	10 bits												

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE																																																																																
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<ul style="list-style-type: none"> “Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better training and model accuracy than the IEEE half-precision representation.” https://cloud.google.com/tpu/docs/system-architecture “The following figure shows three floating-point[] formats <ul style="list-style-type: none"> fp32 - IEEE single-precision floating-point fp16 - IEEE half-precision floating point bfloat16 - 16-bit <i>brain floating point</i>” <p>https://cloud.google.com/tpu/docs/bfloat16</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align: center;">sign</th> <th colspan="8" style="text-align: center;">exponent</th> <th colspan="7" style="text-align: center;">fraction</th> </tr> <tr> <td></td> <td colspan="8" style="text-align: center;">8 bits</td> <td colspan="7" style="text-align: center;">7 bits</td> </tr> </thead> <tbody> <tr> <td>bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> </tr> <tr> <td>float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> </tr> <tr> <td>float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$</td> <td>S</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>M</td> </tr> </tbody> </table> <p><i>Id.</i></p> <ul style="list-style-type: none"> “Because general-purpose processors such as CPUs and GPUs must provide good performance across a wide range of applications, they have evolved myriad sophisticated, performance-oriented mechanisms. As a side effect, the behavior of those processors can be difficult to predict, which makes it hard to guarantee a certain latency limit on neural network inference. In contrast, TPU design is strictly minimal and deterministic as it has to run only one task at a time: neural network prediction. You can see its simplicity in the floor plan of the TPU die.” https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu (<i>emphasis in orig.</i>) “In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state.” https://en.wikipedia.org/wiki/Deterministic_system For each of the possible valid inputs to the multiplication operation performed by the multipliers within the MXU, Singular has computed the result and compared it to the result of an exact mathematical calculation performed on the same inputs. The results of this test showed that for more than 10% of the possible valid inputs, the numerical value represented by the output signal of each MXU multiplier differs by more than 0.2% from the result of an exact mathematical calculation performed on the same inputs. See also GOOG-SING-SC-000001-10, 13-30, 33-61, 228-292, 315-373, 396-444, 449-454. 	sign	exponent								fraction								8 bits								7 bits							bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E	E	E	E	E	E	E	M	M	M	M	M	M	M	float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E	E	E	E	E	E	E	M	M	M	M	M	M	M	float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	E	E	E	E	M	M	M	M	M	M	M	M	M	M
sign	exponent								fraction																																																																								
	8 bits								7 bits																																																																								
bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E	E	E	E	E	E	E	M	M	M	M	M	M	M																																																																		
float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	E	E	E	E	E	E	E	M	M	M	M	M	M	M																																																																		
float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	E	E	E	E	M	M	M	M	M	M	M	M	M	M																																																																		

'273 PATENT	SUPPLEMENTAL INFRINGEMENT EVIDENCE																																																																																					
<p>53. A device:</p> <p>comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,</p> <p>wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;</p> <p>wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.</p>	<p>The Accused Products independently meet this claim limitation for each “device” identified above:</p> <div style="border: 1px solid black; padding: 10px;"> <p>We cannot reveal technology details of our chip partner. Although it is in a larger, older technology, the TPUv2 die size is less than 3/4s of the GPU. TPUv3 is 6% larger in that same technology. TDP stands for Thermal Design Power. The Volta has 80 symmetric multiprocessors.</p> <table border="1" style="width: 100%; border-collapse: collapse; text-align: center;"> <thead> <tr> <th>Feature</th> <th>TPUv1</th> <th>TPUv2</th> <th>TPUv3</th> <th>Volta</th> </tr> </thead> <tbody> <tr> <td>Peak TeraFLOPS/Chip</td> <td>92 (8b int)</td> <td>46 (16b) 3 (32b)</td> <td>123 (16b) 4 (32b)</td> <td>125 (16b) 16 (32b)</td> </tr> <tr> <td>Network links x Gbits/s/Chip</td> <td>--</td> <td>4 x 496</td> <td>4 x 656</td> <td>6 x 200</td> </tr> <tr> <td>Max chips/supercomputer</td> <td>--</td> <td>256</td> <td>1024</td> <td>Varies</td> </tr> <tr> <td>Peak PetaFLOPS/supercomputer</td> <td>--</td> <td>11.8</td> <td>12.6</td> <td>Varies</td> </tr> <tr> <td>Bisection Terabits/supercomputer</td> <td>--</td> <td>15.9</td> <td>42.0</td> <td>Varies</td> </tr> <tr> <td>Clock Rate (MHz)</td> <td>700</td> <td>700</td> <td>940</td> <td>1530</td> </tr> <tr> <td>TDP (Watts)/Chip</td> <td>75</td> <td>280</td> <td>450</td> <td>450</td> </tr> <tr> <td>TDP (Kwatts)/supercomputer</td> <td>--</td> <td>124</td> <td>594</td> <td>Varies</td> </tr> <tr> <td>Die Size (mm²)</td> <td><331</td> <td><611</td> <td>>648</td> <td>815</td> </tr> <tr> <td>Chip Technology</td> <td>28nm</td> <td>>12nm</td> <td>>12nm</td> <td>12nm</td> </tr> <tr> <td>Memory size (on-/off-chip)</td> <td>28MIB/8GIB</td> <td>32MIB/16GIB</td> <td>32MIB/32GIB</td> <td>36MIB/32GIB</td> </tr> <tr> <td>Memory GB/s/Chip</td> <td>34</td> <td>700</td> <td>900</td> <td>900</td> </tr> <tr> <td><u>MXU/Cores</u></td> <td>1</td> <td>1 128x128</td> <td>2 128x128</td> <td>8 4x4</td> </tr> <tr> <td><u>MXU Size</u></td> <td>256x256</td> <td></td> <td></td> <td></td> </tr> <tr> <td><u>Cores/Chip</u></td> <td>1</td> <td>2</td> <td>2</td> <td>80</td> </tr> <tr> <td><u>Chips/CPU Host</u></td> <td>4</td> <td>4</td> <td>8</td> <td>8 or 16</td> </tr> </tbody> </table> </div> <p>Table 3. Key processor features.</p> <p>https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext</p> <p>Norrie et al., “Google’s Training Chips Revealed: TPUv2 and TPUv3” (Presented at HotChips Conference, Aug. 2020)</p> <p>See also GOOG-SING-SC-000001-454.</p>	Feature	TPUv1	TPUv2	TPUv3	Volta	Peak TeraFLOPS/Chip	92 (8b int)	46 (16b) 3 (32b)	123 (16b) 4 (32b)	125 (16b) 16 (32b)	Network links x Gbits/s/Chip	--	4 x 496	4 x 656	6 x 200	Max chips/supercomputer	--	256	1024	Varies	Peak PetaFLOPS/supercomputer	--	11.8	12.6	Varies	Bisection Terabits/supercomputer	--	15.9	42.0	Varies	Clock Rate (MHz)	700	700	940	1530	TDP (Watts)/Chip	75	280	450	450	TDP (Kwatts)/supercomputer	--	124	594	Varies	Die Size (mm ²)	<331	<611	>648	815	Chip Technology	28nm	>12nm	>12nm	12nm	Memory size (on-/off-chip)	28MIB/8GIB	32MIB/16GIB	32MIB/32GIB	36MIB/32GIB	Memory GB/s/Chip	34	700	900	900	<u>MXU/Cores</u>	1	1 128x128	2 128x128	8 4x4	<u>MXU Size</u>	256x256				<u>Cores/Chip</u>	1	2	2	80	<u>Chips/CPU Host</u>	4	4	8	8 or 16
Feature	TPUv1	TPUv2	TPUv3	Volta																																																																																		
Peak TeraFLOPS/Chip	92 (8b int)	46 (16b) 3 (32b)	123 (16b) 4 (32b)	125 (16b) 16 (32b)																																																																																		
Network links x Gbits/s/Chip	--	4 x 496	4 x 656	6 x 200																																																																																		
Max chips/supercomputer	--	256	1024	Varies																																																																																		
Peak PetaFLOPS/supercomputer	--	11.8	12.6	Varies																																																																																		
Bisection Terabits/supercomputer	--	15.9	42.0	Varies																																																																																		
Clock Rate (MHz)	700	700	940	1530																																																																																		
TDP (Watts)/Chip	75	280	450	450																																																																																		
TDP (Kwatts)/supercomputer	--	124	594	Varies																																																																																		
Die Size (mm ²)	<331	<611	>648	815																																																																																		
Chip Technology	28nm	>12nm	>12nm	12nm																																																																																		
Memory size (on-/off-chip)	28MIB/8GIB	32MIB/16GIB	32MIB/32GIB	36MIB/32GIB																																																																																		
Memory GB/s/Chip	34	700	900	900																																																																																		
<u>MXU/Cores</u>	1	1 128x128	2 128x128	8 4x4																																																																																		
<u>MXU Size</u>	256x256																																																																																					
<u>Cores/Chip</u>	1	2	2	80																																																																																		
<u>Chips/CPU Host</u>	4	4	8	8 or 16																																																																																		