Biological interactions beyond the lab bench:

TAIR, PMN, piles of data, diverse plants, and you!

Kate Dreher

TAIR, PMN
Carnegie Institution for Science

Piles of biological data about diverse plants . . .

- □ Plant nucleotide sequences in GenBank: **25,170,404** +
- □ Plant genome sequencing projects: ~310
- Articles published in plant journals (2007): 2400 +

Piles of biological data about diverse plants . . .

- □ Plant nucleotide sequences in GenBank: 25,170,404 +
- □ Plant genome sequencing projects: ~310
- □ Articles published in plant journals (2007): **2400** +
- How can this information be organized and utilized?

Biological databases try to help...

- TAIR The Arabidopsis Information Resource
 - Comprehensive database providing access to genomic, proteomic, and metabolomic resources
 - www.arabidopsis.org

AraCyc – **Ara**bidopsis Metabolic En**Cyc**lopedia

- Database of metabolic pathways found in Arabidopsis
 - www.arabidopsis.org/biocyc/

- PMN Plant Metabolic Network (Coming soon!!)
- Collection of databases describing metabolic pathways in numerous plant species

Databases promote "biological interactions"

Databases promote "biological interactions"

- Connecting scientists to data:
 - Genomes
 - Transcripts
 - Proteins
 - Metabolism
 - Other organisms
- Connecting scientists to resources and tools:
 - DNA stocks / germplasm
 - Analysis and viewing applications, etc.
- Connecting scientists to each other
- Connecting scientists to everything at once . . .

Connecting scientists to everything . . .

Connecting scientists to everything at once . . . to solve important biological problems

- Food prices are rising, hunger is increasing . . .
- We need more stress-tolerant crops!
 - You have an Arabidopsis mutant with reduced cold tolerance
 - You've mapped it to an interval on chromosome 4
 - You want to study the basic biology of cold tolerance
 - You want to help develop more cold-tolerant rice

Narrowing the mapping interval

Search for additional markers in the region using the <u>Marker search</u> page

Search for additional markers in the region

Use <u>Marker search</u> page

Search for additional markers in the region

Use <u>Marker search</u> page

Narrow the mapping interval

Find BACs for complementation using <u>Seqviewer</u>

Finding the mutation (Seqviewer)

Finding the mutation (Seqviewer)

Obtaining DNA and seed stocks

- Register with TAIR as an individual
- Affiliate with a lab
- Before ordering . . .
 - Wait for a curator to manually validate your registration

Membership has its privileges . . .

- Connect to the community via the People / Labs search page
 - It's not quite Facebook, but, all the cool plant biologists are there . . .

Search	Browse	Tools	Stocks	Portals	Download	Submit	News		
Search Ove	erview	formation	Posourco			Breaking Nev	NS		
DNA/Clones	S	IOIIIIatioii	Resource			Dicaking Nev			
Ecotypes		Resource (TAIR)	maintains a data	base of genetic ar	nd molecular	TAIR8 Release			
Genes			•	ta available from		The Arabidopsis Resource is plea			
GO Annotat	tions			e product informa maps, genetic an		announce the rel			
Keywords		ormation about th	ne Arabidopsis re	search communi	ty. Gene	latest version of t			
Locus History			ad every two weeks from the latest published research literature jons. Gene structures are updated 1-2 times per year using				Arabidopsis genome annotation (TAIR8) at TAIR and		
Markers Microarray Element		ethods as well as	s community sub	NCBI.					
		ensive linkouts fr	om our data pag						
Microarray	Experiment					TAIR Survey Now Open!			
Microarray	Expression			University collects		Please click on th			
People/Labs			d and DNA resources of <i>Arabidopsis thaliana</i> and related d prdering for the ABRC are fully integrated into TAIR.				of the page to		
Polymorphi	isms/Alleles		-	give us your comments and feedback on how well TAIR is					
Proteins Protocols Publication		_	Institution for Sci the National Scie	serving your needs and what additional tools and data you would like to see. The survey will be open for only a short time, please act now to be sure your input is included.					
		and funded by	uie Mauoriai SCIE						
Seed/Germplasm									
Sequences						,			

Looking for candidate genes

Identify genes in the region using <u>Seqviewer</u>

Finding the mutation (Seqviewer)

- Search for cold-tolerance-related genes in the interval
 - Use Gene search page and limit by features

Finding the mutation (Gene search page)

Finding the mutation (Gene search page)

	Locus ②	Description ②	Gene Model(s)	Other Names ②	Keywords 🛭
1	AT4G35790	Encodes a protein with phospholipase D activity. Involved in phospolipase metabolism. Mutants are affected in hydrogen peroxi	AT4G35790.1	F4B14.60 F4B14_60 ARABIDOPSIS THALIANA PHOSPHOLIPASE D DELTA	plasma membrane, phospholipase D activity, response to cold
			ATPLDDELTA AT4G35790.3	PLDDELTA PHOSPHOLIPASE D	microtubule cytoskeleton, plasma membrane, phospholipase D activity, response to cold, programmed cell death, phosphatidic acid metabolic process, lateral root elongation zone, primary root elongation zone, cotyledon vascular system, leaf vascular system phospholipase D activity
			AT4G35790.2		phospholipase D activity
2		Encodes a cold shock domain protein. Involved in cold acclimation by blocking the secondary structure of mRNA which in turn f	AT4G36020.1	T19K4.150 T19K4_150 COLD SHOCK DOMAIN PROTEIN 1 CSDP1	cellular component unknown, RNA binding, double-stranded DNA binding, nucleic acid binding, single-stranded DNA binding, response to <mark>cold</mark> , DNA duplex unwinding, RNA secondary structure unwinding

- Scan information on the Locus page
 - Read description

Locus: AT4G	35790
Date last modified	2003-05-02
TAIR Accession	Locus:2125314
Representative Gene Model @	AT4G35790.1
Other names:	ARABIDOPSIS THALIANA PHOSPHOLIPASE D DELTA, ATPLDDELTA, F4B14.60, F4B14_60, PLDDELTA
Description 0	Encodes a protein with phospholipase D activity. Involved in phospolipase metabolism. Mutants are affected in hydrogen peroxide mediated cell death.

- Scan information on the <u>Locus page</u>
 - Look at GO and PO annotations and Annotation detail evidence codes

Annotations 0	Category	Relationship Type 0	Keyword ②
	GO Biological Process	involved in	response to cold, programmed cell death, phosphatidic acid metabolic process
	GO Cellular Component	colocalizes with	microtubule cytoskeleton, plasma membrane
		located in	plasma membrane
	GO Molecular Function	has	phospholipase D activity
	Plant structure	expressed in	lateral root elongation zone, primary root elongation zone, cotyledon vascular system, leaf vascular system Annotation Detail

- Scan information on the Locus page
 - Look at GO and PO annotations and <u>Annotation detail</u> evidence codes

Keyword Category	Relationship Type	Keyword	Gene	Evidence Code 0 : Evidence Description 0 : Evidence With: Reference 0	Annotated By/ Date Last Modified
biological process	involved in	programmed cell death	ATPLDDELT/	inferred from mutant phenotype: analysis of physiological response: none: Zhang, et al. (2003)	The Arabidopsis Information Resource/ 2004-11-24
biological process	involved in	response to cold	AT4G35790.1	Interred trom expression pattern: Protein levels (e.g. Western blots): none: Kawamura, et al. (2003)	Daniel MacLean/ 2006-06-18
cellular component	located in	plasma membrane	AT4G35790.1	inferred from direct assay: co-fractionation: none: Dunkley, et al. (2006)	Donghui Li/ 2007-08-09
molecular function	has	phospholipase D activity	ATPLDDELT/	inferred from sequence or structural similarity: Sequence similarity (homologue of/most closely related to): none: Elias M, et al. (2002)	The Arabidopsis Information Resource/ 2003-03-29

- Take advantage of links on the <u>Locus page</u>
 - Connect to the <u>AraCyc</u> metabolic database (and the <u>PMN</u> in the future)

Connect to the <u>AraCyc</u> metabolic database (and the <u>PMN</u> in the future)

Connect to the <u>AraCyc</u> metabolic database (and the <u>PMN</u> in the future)

Superclasses: Biosynthesis -> Fatty Acids and Lipids -> Choline Biosynthesis

Summary:

General information: Choline is a fundamental metabolite in plants because of its contribution to the synthesis of the membrane phospholipid phosphatidylcholine, which accounts for 40 to 60% of lipids in non-plastid plant membranes [Mou02]. Choline is also a precursor for the formation of glycine betaine (glycine betaine biosynthesis III (plants) in certain plants such as spinach, where this osmoprotectant is accumulated and confers also tolerance to salinity, drought, and other environmental stresses. In addition choline has been recognized as an essential nutrient for humans [McNeil01].

The choline biosynthetic pathway enables plants to decouple choline synthesis from lipid metabolism (Kennedy pathway - triacylglycerol biosynthesis) and provides them with the metabolic flexibility to adapt to environmental conditions where large and variable amounts of choline are beneficial for survival [Rontein01].

Pathway information: The first step in choline biosynthesis is the direct decarboxylation of serine to ethanolamine [Rontein01], which is catalyzed by a serine decarboxylase unique to plants [Rontein03]. Ethanolamine is widely recognized as the entrance compound to choline biosynthesis.

The pathway variant displayed (nucleotide pathway) represents the biosynthetic route as found in diverse plant families. The synthesis of choline from ethanolamine may take place at three parallel pathways, where three consecutive N-methylation steps are carried out either on free-bases [Prudhomme92], phospho-bases [Nuccio00], phosphatidyl-bases [McNeil01] or a mixture of the latter [Datko88a] [Datko88] [Hitz81].

The synthesis of intermediates on both the phospho-base and phosphatidyl-base level includes the nucleotide pathway via CDP-phosphoaminoalcohol and the methylation pathway. However, it has been pointed out that the synthesis of phosphatidylethanolamine and phosphatidylcholine is characterized by a high degree of interaction and furcation on the various levels of arising intermediates. Consequently, it has been assumed that the reactions embedded in the nucleotide and methylation pathways may be two characteristics of one overall phosphoaminoalcohol pathway for the formation of phosphatidylcholine in plants [Kinney93].

The release of choline from the different pathway levels is also species-specific. Phosphocholine can either be directly dephosphorylated to release choline as observed in spinach [Summers93] or incorporated into phosphatidylcholine with the subsequent release of choline, as in tobacco [McNeil00]. The latter reaction has been shown to be specifically catalyzed by phospholipase D (phospholipases) in castor bean [Wang94]. Although a well-defined physiological role of phospholipase D (PLD) still await further research, progress has been made to assign some members of the heterogeneous family of PLD's to distinct cellular functions [Kirk99]. The remaining enzymes involved in this pathway, phosphoaminoalcohol cytidylyltransferase and CDP-aminoalcohol phosphotransferase, cover a broader spectrum of substrates. This may be beneficial to process the heterogeneous mixture of possible substrates but it also indicates that the pathway flux is probably controlled more upstream [Kinney93].

Superpathways: superpathway of choline biosynthesis

Variants: choline biosynthesis II , choline biosynthesis I

Unification Links: MetaCyc:PWY-3561

Legend for Pathway Diagram

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

References

Datko88: Datko AH, Mudd SH, (1988) "Enzymes of phosphatidylcholine synthesis in Lemna, soybean, and carrot," Plant Physiol. (1988), 88, 1338-1348.

Datko88a: Datko AH, Mudd SH, (1988) "Phosphatidylcholine synthesis. Differing patterns in soybean and carrot." Plant Physiol. (1988), 88, 854-861.

Hitz81: Hitz WD, Rhodes D, Hanson AD, (1981) "Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves." Plant Physiol. (1981), 68-814-822

- Generate primers to sequence the region
 - Get sequence information from <u>Locus page</u>

- Generate primers to sequence the region
 - Use Portal pages or Google the site to look for primer design resources

- Generate primers to sequence the region
 - Check primer sequence and orientation using <u>Seqviewer</u>

- Get seed for additional lines with mutations in the candidate loci
 - Identify Germplasm resources at the <u>Locus page</u>

Locus: AT4G35790

Germplasm Showing 9 of 9 entries	Name/Image SAIL_1261_E04 Phenotypes © None available	Polymorphisms SAIL_1261_E04.v1	Background	Stock Name CS846680	Select
	SALK_023247 Phenotypes None available	SALK_023247.40.80.x		SALK_023247	

- Get seed for additional lines with mutations in the candidate loci
 - Get a snapshot of insertion sites using <u>GBrowse</u>

- Get seed for additional lines with mutations in the candidate loci
 - View sequencing trace from insertion using <u>Seqviewer</u>

- Obtain additional polymorphic lines
 - Find natural variations using SALK SNP viewer from <u>Locus page</u>

Use <u>Ecotype search page</u> to access appropriate seed

- Generate constructs for complementation
 - Check for alternative gene models at the <u>Locus page</u>

Locus: AT4G35790				
Date last modified	2003-05-02			
TAIR Accession	Locus:2125314			
Representative Gene Model 2	AT4G35790.1			
Other names:	ARABIDOPSIS THALIANA PHOSPHOLIPASE D DELTA, ATPLDDELTA, F4B14.60, F4B14_60, PLDDELTA			
Description @	Encodes a protein with phospholipase D activity. Involved in phospolipase metabolism. Mutants are affected in hydrogen peroxide mediated cell death.			
Other Gene Models	ATPLDDELTA AT4G35790.3 AT4G35790.2 (splice variant)			

- And then examine them using <u>GBrowse</u>
- <u>NOTE</u>: The xxxxx.1, xxxxx.2, etc. splice variants are numbered sequentially based on when they are identified; the last digit is not associated with confidence in any way
- NOTE: The "Representative Gene Model" does not provide any indication of confidence; the longest coding region is designated at the "Representative" to allow the maximum number of domain predictions, etc.

- Generate constructs for complementation
 - Decide on appropriate gene model in <u>GBrowse</u>

- Generate constructs for complementation
 - Check other gene prediction programs

- Generate constructs for complementation
 - Check other gene prediction programs

- Generate constructs for complementation
 - Look at cDNA and EST support

ESTs

- Generate constructs for complementation
 - Look at Brassica EST support

- Generate constructs for complementation
 - Check translation frames and alternate amino acid sequences

- Generate constructs for complementation
 - Browse ABRC catalog for expression vectors

- Take advantage of links on the <u>Locus page</u>
 - View expression data

- Take advantage of links on the <u>Locus page</u>
 - Look for interacting proteins using link to IntAct

Visit the <u>Protein page</u>

See predicted domains

Protein: AT4G35790.1					
Date last modified @	2008-04-22	!			
TAIR Accession @	AASequend	e:1009124182			
External IDs 0	UniProtKB Q9C5Y0	GenPept 18419668	Similar Proteins in G NCBI BLink	enbank	
Properties	Calculated Calculated Length (aa	PI 7.1735			
Domains @	Database	Structural Class Type ②	Accession	Interpro	Position
	superfam	Alpha and beta proteins (a+b)	56024		436-469
	superfam	Alpha and beta proteins (a+b)	56024		844-856
	superfam	All beta proteins	49562		76-178
	smart		SM00239	C2 calcium-dependent membrane targeting	15-153
	pfam		PF00168	C2 calcium-dependent membrane targeting	16-138
	smart		SM00155	Phospholipase D/Transphosphatidylase;Molecular Fun	368-403
	pfam		PF00614	Phospholipase D/Transphosphatidylase;Molecular Fun	713-740
	pfam		PF00614	Phospholipase D/Transphosphatidylase;Molecular Fun	368-403
	prosite		PS50004	C2 calcium-dependent membrane targeting	30-138

Visit the <u>Protein page</u>

Use the link to SUBA for subcellular localization predictions

Organelle Targeting Predictions

Predictor	Prediction	Data
iPSORT (Reference) (Web Service)	other	
LOCtree (Reference) (Web Service)	Chloroplast	Confidence: 5
MitoPred (Reference) (Web Service)		Confidence:
Mitoprot 2 (Reference) (Web Service)	other	Raw Score (Mit): 0.13 Raw Score (Cpt): 0.18 Cleaved Sequence:
MultiLoc (Reference) (Web Service)	other	Confidence: 0.96
PeroxP	perox	
Predotar (Reference) (OSC Service)		Raw Score (Mit): 0.01 Raw Score (Cpt): 0.01 Raw Score (Ret): Raw Score (None): 0.99
SubLoc (Reference) (Web Service)	cyto	Confidence: 2
TargetP (Reference) (Web Service)	other	Confidence: 3 Raw Score (Cpt): 0.17 Raw Score (Mit): 0.13 Raw Score (Sec): 0.17 Raw Score (Other): 0.74
WoLFPSORT (Reference) (Web Service)	Cytosol	Confidence: 8

Read the publications associated with the locus

Publication @	title	source	associated gene models	date
	A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana.	THE PLANT JOURNAL	AT4G35790.1 AT4G35790.3 AT4G35790.2	2007
	Early PLD(alpha)-mediated events in response to progressive drought stress in Arabidopsis; a transcriptome analysis.	JOURNAL OF EXPERIMENTAL BOTANY	ATPLDDELTA	2007
	Mapping the Arabidopsis organelle proteome.	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA	AT4G35790.1	2006
	Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.	THE PLANT JOURNAL	AT4G35790.1	2003
	Rice phospholipase d isoforms show differential cellular location and gene induction.	PLANT AND CELL PHYSIOLOGY	ATPLDDELTA	2003
	The Oleate-Stimulated Phospholipase D, PLD{delta}, and Phosphatidic Acid Decrease H 202-Induced Cell Death in Arabidopsis.	THE PLANT CELL	ATPLDDELTA	2003
	Kinetic analysis of Arabidopsis phospholipase Ddelta: Substrate preference and mechanism of activation by Ca2+ and phosphatidylinositol 4, 5-bisphosphate.	JOURNAL OF BIOLOGICAL CHEMISTRY	ATPLDDELTA	2002
	Molecular diversity of phospholipase D in angiosperms.	BMC GENOMICS	ATPLDDELTA	2002
	A novel phospholipase d of Arabidopsis that is activated by oleic Acid and associated with the plasma membrane.	PLANT PHYSIOLOGY	ATPLDDELTA	2001
	Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling.	THE PLANT JOURNAL	ATPLDDELTA	2001
	View Complete List (10 of 11 displayed)			

Test predicted molecular function

 Order cDNA and vector for enzyme assay in *E.coli* using the <u>DNA/clones search page</u>

- Examine metabolomic and transcript profile of mutant plants
 - Use <u>OMICs viewer</u> in AraCyc to examine the results

- Identify and analyze related genes / proteins in Arabidopsis
 - Perform <u>BLAST</u> to find homologs in Arabidopsis

- Identify and analyze related genes / proteins in Arabidopsis
 - Use <u>AraCyc Advanced Query page</u> to generate a list of similar enzymes

- Obtain nucleotide and amino acid sequences for family members
 - Use <u>BULK Data Retrieval tool</u>

- Obtain nucleotide and amino acid sequences for family members
 - Use <u>BULK Data Retrieval tool</u>

- Search for common upstream regulatory elements
 - Use <u>Motif Analysis</u> to identify over-represented 6-mers in promoters

View orthologs using VISTA tracks in <u>GBrowse</u>

View orthologs using VISTA tracks in <u>GBrowse</u>

Location on Arabidopsis	Location on Poplar	Alignment
chr4:16,955,522-16,959,857 (-) =/ੑੑੑੑੑੑੑ/ੑੑੑੑੑ/ੑ\/\/\/\/\/\/\/\/\/\/\/\	scaffold_57:67,032-73,442 (+) Sequence (softmasked) length: 6411bp VISTA Browser View in: Select Browser	rankVISTA Alignment: Arabidopsis-Poplar MFA: Arabidopsis-Poplar CNS: Arabidopsis-Poplar rVISTA: Arabidopsis-Poplar PDF: Arabidopsis-Poplar
chr4:16,955,522-16,959,872 (+) Sequence (softmasked) length: 4351bp Overlap=4351bp	LG_II:920,536-926,812 (+) Sequence (softmasked) length: 6277bp VISTA Browser View in: Select Browser	rankVISTA Alignment: Arabidopsis-Poplar MFA: Arabidopsis-Poplar CNS: Arabidopsis-Poplar rVISTA: Arabidopsis-Poplar PDF: Arabidopsis-Poplar

□ Find other related proteins in different species using <u>BLAST</u>

Arabidopsis thaliana WU-BLAST2 Search

Make connections to proteins in other species using <u>GO terms</u> on the <u>Locus page</u>

Annotations 0	Category	Relationship Type 0	Keyword 2
	GO Biological Process	involved in	response to cold, programmed cell death, phosphatidic acid metabolic process
	GO Cellular Component	colocalizes with	microtubule cytoskeleton, plasma membrane
		located in	plasma membrane
	GO Molecular Function	has	phospholipase D activity
	Plant structure	expressed in	lateral root elongation zone, primary root elongation zone, cotyledon vascular system, leaf vascular system
			Annotation Detail

Make connections to proteins in other species using <u>PlantCyc</u>

- Leverage the known information about plant metabolism to predict the metabolic complement (pathways and enzymes) of agronomically and societally important crops as genome sequencing efforts advance.
 - a.k.a. Predict PoplarCyc, WheatCyc, GrapeCyc, MaizeCyc
 - Import predictions into PlantCyc
- Continually improve and refine databases as experimental support increases

Create initial data sets

- Develop a "gold standard" set of plant metabolic enzymes
 - Primarily use experimentally verified enzymes
 - Initial set largely from Arabidopsis
- Develop a "pipeline": reciprocal BLAST- based protocol for predictively annotating enzymes in newly sequenced genomes
 - Try to determine appropriate E-value cut-offs for different classes of enzymes
- Develop an extensive set of curated <u>primary</u> and <u>secondary</u> <u>metabolic</u>
 pathways from a diverse set of plants in PlantCyc

- Predict new metabolic pathway databases
 - Use Pathologic program (SRI International) to predict new databases using:
 - Newly annotated enzyme set
 - PlantCyc metabolic pathway set
 - Use existing literature to "validate" pathways
 - Try to assess whether pathway is biologically feasible
 - Provide researchers with experimental hypotheses to test

- Continually improve metabolic pathway databases
- Iterative Process
 - 1. Create PlantCyc: high quality multi-species enzyme / pathway data set
 - 2a. Generate new nnnnCycs using PlantCyc, new genomes, and Pathologic software
 - 2b. Repredict and refine existing "Cycs" (e.g. AraCyc) using PlantCyc, updated genomes, and Pathologic software
 - 3. Obtain experimental support for predicted pathways and enter newly described pathways (from literature)
 - 4. Update PlantCyc high quality enzyme and pathway data set

- Continually improve metabolic pathway databases
- Iterative Process
 - 1. Create PlantCyc: <u>higher</u> quality enzyme and pathway data set
 - 2a. Generate new nnnnCycs using PlantCyc, new genomes, and Pathologic software
 - 2b. Repredict and refine existing "Cycs" (e.g. AraCyc) using PlantCyc, updated genomes, and Pathologic software
 - 3. Obtain experimental support for predicted pathways and enter newly described pathways (from literature)
 - 4. Update PlantCyc high quality enzyme and pathway data set

Generating more "candidates" at the PMN

- RiceCyc
 - Generated at and managed by Gramene curators
 - Member of the Plant Metabolic Network
 - Beneficiary of the database growth and refinement efforts

Generating more "candidates" at the PMN

Characterizing the successful candidate

Iterative Process

- Obtain information from TAIR, AraCyc and the PMN about:
 - Gene sequences
 - Expression patterns
 - Protein functions
 - Metabolic processes
 - Relationships between evolutionarily and functionally "related" proteins within and across species
- Use tools to further analyze data and make predictions
- Make testable hypotheses
- Get exciting experimental results
- Transfer them to new organisms and share them with others

Transferring your knowledge to rice

Transferring your knowledge to rice

Gain access to rice resources through MODs portal page

Sharing your knowledge with everyone . . .

Sharing your resources and tools . . .

ABRC Submission

- Seed stocks
- DNA stocks

Sharing your data . . .

- Data submission forms
 - Gene Family Data
 - Gene Functional Annotations
 - Gene Structure Annotations
 - Locus Identifier Request
 - Marker and Polymorphism Data
 - Metabolic Pathway Data
 - Phenotypes
 - Protocols
 - 2010 Functional Genomics Gene List

Sharing your data . . .

- Opportunities at the PMN
 - Help create new "Cycs"
 - Help validate new and existing "Cycs"
 - Literature-based support
 - New experimental support
 - *Please contact me if you're interested

Publishing your results . . .

- Please help each other (and the curators)
 - List the AGI locus identifier for each gene in the publication
 - Provide a unique identifier, e.g. SAIL T-DNA number, ABRC or NASC stock number, etc. for each germplasm used in the publication
 - Check the gene registry and register your gene symbols
 - Be careful when assigning allele numbers
 - Textpresso to the rescue . . . (www.textpresso.org/arabidopsis/)
 - Submit any new sequence data to GenBank (e.g. new cDNA or EST sequence) even other sequences already exist

Publishing your results . . .

- TAIR-Journal collaboration
 - Authors submit functional annotations at time of paper acceptance
 - Plant Physiology requires participation as of March 2008
 - Other journals may join in the future

Sharing your expertise . . .

- Community Annotation (present)
 - Add Comments
 - Locus page
 - Gene model page
 - Protein page
 - Marker page
 - Polymorphism page
 - Germplasm page
 - Clone page
 - Etc.
 - Only 372 comments since 2002

Sharing your expertise . . .

- Community Annotation (future?)
 - Voluntary "gene expert" editors?
 - Meetings with curators at conferences or on campuses?
 - Wiki-style annotation?

Sharing your expertise . . .

- Community Annotation (future?)
 - Wiki-style annotation?
 - Pros
 - Allows rapid sharing of information
 - Gives scientists a direct route to enter data
 - Errors can be quickly corrected
 - Cons
 - Information entered in a Wiki page is not part of a database
 - Information entered in a Wiki page is not amenable to structured searches and advanced queries
 - Computational analyses cannot be performed easily on Wiki content
 - Inaccurate information may be posted
 - Wiki pages provided by other databases have not been popular
 - Existing "Add Comment" option provides some of the beneficial features of Wiki-style annotation

Biologists, biocurators, and biological databases: building a bright future of synergistic interactions

You provide the data.

You provide the tools.

You provide the resources.

Biologists, biocurators, and biological databases: building a bright future of synergistic interactions

- You provide the data.
- You provide the tools.
- You provide the resources.
- TAIR and the PMN strive to help you <u>easily share your work</u> to promote scientific progress around the world
- We continue to need your advice to make that a reality!

Acknowledgements

TAIR, AraCyc, and the PMN

Eva Huala (Director and Co-PI) Sue Rhee (PI and Co-PI)

Current Curators:

- Peifen Zhang (Director and lead curator- metabolism)
- Tanya Berardini (lead curator functional annotation)
- David Swarbreck (*lead curator structural annotation*)
- Debbie Alexander (curator)
- A. S. Karthikeyan (curator)
- Philippe Lamesch (curator)
- Donghui Li (curator)

Recent Past Contributors:

- Christophe Tissier (*curator*)
- Hartmut Foerster (curator)

Tech Team Members:

- Bob Muller (*Manager*)
- Larry Ploetz (Sys. Administrator)
- Raymond Chetty
- Anjo Chi
- Vanessa Kirkup
- Cynthia Lee
- Tom Meyer
- Shanker Singh
- Chris Wilks

Metabolic Pathway Software:

- Peter Karp and SRI group

Thank you . . .

www.arabidopsis.org

curator@arabidopsis.org

www.arabidopsis.org/biocyc

curator@arabidopsis.org

coming SOON!

kadreher@tairgroup.org