# Operating Systems Spring 2020

National University of Computer and Emerging Sciences

### Acknowledgment

- Acknowledgements to
  - Marina Papatriantafilou (Chalmers)
  - Maarten van Steen (Vrije Amsterdam)
  - Boris Koldehofe (TU Darmstadt)
- A lot of the course material is based on their lecture notes.
- Many Slides and Figures are also based on instructor material of various books
  - William Stallings (Operating systems)
  - Abraham Silberschatz (Operating System Concepts)
  - Andrew Tanenbaum (Modern Operating System Concepts)

#### **Outline**

- Basic Information
  - Motivation
  - Brief history of operating systems
  - Course overview
  - Course information

## Components of a Computer System



## Components of a Computer System

#### Computer system can be divided into four components

- Hardware
  - Provides basic computing resources
  - CPU, memory, I/O devices
- Operating system
  - Controls & coordinates use of hardware among various applications and users
- Application programs
  - Define the ways in which the system resources are used to solve the computing problems of the users
  - For example, word processors, compilers, web browsers, database systems, video games
- Users
  - People, machines, other computers

### **Operating System**

- Provides a set of services to system users
  - Intermediary between user and hardware
- Shield between the user and the hardware
- Resource manager
  - CPU(s), memory, I/O devices
- Objectives
  - Convenience (to use)
  - Efficiency (utilization of hardware)
  - Ability to evolve

Applications

Interfaces

Operating System (Set of Services)

Hardware specific Interface

Hardware

### **Operating System Viewpoints**

#### Use view

- Users want convenience, ease of use
- Don't care about resource utilization

#### System view

- Resource allocator
  - Manages all resources
  - Decides between conflicting requests for efficient and fair resource use
- Control program
  - Controls execution of programs to prevent errors and improper use of the computer

### Services Provided by the Operating System

- Program execution
  - CPU scheduling, resource (memory) allocation and management, synchronization
- Access to I/O devices
  - Uniform interfaces, hide details, optimize resources (disk scheduling)
- Controlled access to files
  - Structure of data
- System/resource access
  - Allocation, authorization, protection,
- Utilities, e.g., for program development
  - Compilers, debuggers
- Error detection and response, when, e.g.,
  - Hardware, software errors
  - Operating system cannot grant request of application
- Monitoring, accounting

### Some History: Evolution of Operating Systems

- Hardware upgrades, new types of hardware, enabled features
- New services, new needs
- Development
  - Serial processing (1948 1955)
  - Batch systems (1955 for IBM)
  - Multiprogramming
  - Time shared systems (1966: Compatible Time Sharing System (CTSS) by MIT)
- Before 1948?

# Konrad Zuse (1910-1995) / Z3 (1941)



## OS History: Serial Processing (Before the Stone Age)

- No operating system
- System model
  - Simple console: display lights and toggle switches
  - Input device (card reader)
  - Execution monitoring
    - > Output on a printer (job went well)
    - > Control lights for error detection (check status of registers)
- Job scheduling
  - Manual (reservations on a piece of paper)
    - > Overestimation of execution time
    - > Low utilization of CPU

## OS History: Early Batch System



- a) Programmer bring cards to 1401
- b) 1401 reads batch of jobs onto tape
- c) Operator caries input tape to 7094
- d) 7094 does computing
- e) Operator carries output tape to 1401
- f) 1401 prints output

## OS History: First "Tools" Appear

#### Simple Batch Systems

- Goal
  - Improve machine utilization
- Monitors
  - Software that controls the running programs
  - Batch jobs together
  - Program returns control to monitor when finished
  - Resident monitor is in main memory and available for execution
- Job Control Language (JCL)
  - Provides instruction to the monitor
  - What compiler to use, (Fortran, ...)
  - What data to use



## OS History: Hardware Features...

#### ... which made the first tools possible

- Memory protection
  - Do not allow the memory area containing the monitor to be altered
  - On attempt processor hardware should detect an error
  - Concepts of mode operation
    - User mode: certain areas of memory are protected / some instructions not allowed
    - Kernel mode: allows access to protected memory / execution of special instructions
- Privileged instructions
  - Only for monitor, e.g., for interface with I/O devices
- Interrupts
  - Mechanisms for the OS to relinquish control and regain it
- Timer
  - After timeout job return to the monitor
  - Prevents a job from monopolizing the system

## From Uniprogramming ...

- Processor must wait for I/O instruction to complete before proceeding
- One job prevents others from making progress



## ... To Multiprogramming

- Increases processor utilization
- When one job needs to wait for I/O, the processor can switch to the other job



### **Obvious Disadvantages**

- Certainly not suitable for modern applications
  - Word processing
- Even if computation only matters
  - Long response for a developer until feedback is received
  - Time until job is dispatched typically long
- Need for interactivity with a computer system

## OS History: Multiprogramming, Time Sharing

- Time sharing systems use multiprogramming to handle multiple interactive jobs
- Processor's time is shared among multiple users
- Multiple users simultaneously access the system through terminals

|                                          | Batch Multiprogramming                              | Time Sharing                     |
|------------------------------------------|-----------------------------------------------------|----------------------------------|
| Principal objective                      | Maximize processor use                              | Minimize response time           |
| Source of directives to operating system | Job control language commands provided with the job | Commands entered at the terminal |

#### What to Learn in This Course?

#### Understand concepts of modern operating systems

- Design principles
  - Data structures, kernel organization, ...
- Fundamental concepts
  - Processes, Threads, Virtual Memory, File and I/O, ...
- Basic algorithms
  - Scheduling, Paging, Resource Allocation, ...
- Characteristics/performance of a system
  - Thrashing, Throughput, Real-time, ...
- Concurrent programming concepts
  - Synchronization, Mutual exclusion, Deadlock avoidance, ...
- BUT: No focus on a specific operating system

#### **Course Outline**

- Introduction
- Processes management
  - Multithreaded programming
  - Process scheduling
- Process Coordination
  - Synchronization
  - Deadlock
- Memory Management
  - Virtual memory
- Storage Management
  - File system
  - I/O system

## Pre-Requisites

- Must have passed data structures (CS-201)
- Familiar with programming C/C++

#### **Tentative Evaluation Breakdown**

| <b>Evaluation Name</b> | Weightage                |
|------------------------|--------------------------|
| Assignment*            | 10                       |
| Quiz                   | 10 (Best 5)              |
| Lab                    | 10 (5 lab task + 5 exam) |
| Project                | 10                       |
| Mid Term               | 20                       |
| Final                  | 40                       |

- Same grading for both theory and lab
- The evaluation breakdown and course outline for all sections will be same
- Grading will be combined so don't rely on your class position look for the batch position

#### Some Rules

- Class participation is important and encouraged
  - Wait for others to complete
- Never ever miss a class.
  - You might miss quiz
- Never use mobile phone in the class
- Above all, whatever you do, please do not disturb others

#### Retake Policy

- No retake for assignments and quizzes
- No retake of mid term exam
  - Marks will be awarded based on the performance in the final exam
- Retake of project demos will be evaluated on individual basis
- Retake of final exam will be decided by the university policy

## Dishonesty and Plagiarism

- Any kind of cheating will be considered serious offense
- All parties involve in cheating will get zero marks
  - Quizzes, assignments and project
- Habitual cases will be referred to DC

#### **Attendance Policy**

- A student is either "present" or "absent"
  - Late arrivals will be treated as absent
  - Student arriving 10 minutes late will be marked absent
- Students are not allowed to switch sections for any reason

#### Course Material (1)

#### Course book

 Avi Silberschatz, Peter Baer, and Galvin Greg Gagne: Operating System Concepts, 8/E, John Wiley & Sons.

#### Research books

- William Stallings: Operating Systems: Internals & Design Principles,
   6/E, Prentice Hall.
- Andrew S. Tanenbaum: Modern Operating Systems, 3/E, Prentice Hall.
- Andrew S Tanenbaum and Albert S Woodhull: OS Design and Implementation, 3/E, Prentice Hall.

## Course Material (2)

- Lecture slides and announcements for all sections
  - Google Classroom: Operating Systems Spring 2020
  - Class Code: 3wtc47r

## Any Question So Far?



0-Preliminaries