3.1	Definition of Limit
	"the limit of [an] is L" == " an is a good approximation to L, when n is large"
	- The number L is the limit of the sequence fand if, given €>0, an ₹ L for n>1
	The number L is the limit of the sequence $\{a_n\}$ if, given $\epsilon > 0$, $a_n \approx L$ for $n \gg 1$ $\{a_n\} = L$ Divergent: $\lim_{n \to \infty} \{a_n\} = L$ Divergent: $\lim_{n \to \infty} \{a_n\} = \infty$
	the approximation can be made as close as desired, provided we go far enough out in the sequence—the smaller
	E is, the farther out we must go, in general."
	Note that N depends on E ; the smaller E is, the bigger N is the further out you must go for the approximation
	to be valid within ϵ
3.2	The Uniqueness of Limits. The K-& Principle
	Theorem: Uniqueness Theorem for Limits
	- A sequence an has at most one limit; $a_n \rightarrow L$ and $a_n \rightarrow L' = > L = L'$
	Theorem :
	- $\{a_n\}$ increasing, $L = \lim_{n \to \infty} a_n \Rightarrow a_n \leq L$ for all n
	- [an] decreasing, $L = \underset{n \to \infty}{\longleftarrow} a_n \Rightarrow a_n \geq L$ for all n
	The K-E principle
	- It often happens in analysis that arguments turn out to involve not just e but a constant multiple of it. This
	may occur for instance when the limit involves a sum or several arithmetic processes
	- If you come out in the end with 2ε , or 22ε , that's just as good as coming out with ε
>	- Suppose that [an] is a given sequence, and you can prove that, given any $\epsilon>0$, $\alpha \approx L$ for $n\gg L$
	where $K>0$ is a fixed constant. Then $\frac{1}{N>\infty} a_N = L$
3.3	Infinite Limits
	- We say the sequence $\{a_n\}$ tends to infinity if, given any $M>0$, $a_n>M$ for $n\gg 1$
	$== \int_{n\to\infty} dn = \infty$
3.4	An Important Limit
	An Important limit The limit of a^n : $a^n = \begin{cases} 0 & \text{if } a > 1 \\ 1 & \text{if } a = 1 \\ 0 & \text{if } a < 1 \end{cases}$
	U , 17 1 ^m 1 ~ 1

3,5	Writing Limit Proofs Some Limits Involving Integrals Another Limit Involving
3.6	Some Limits Involving Integrals
3,7	Another Limit Involving