CHAPITRE

53

TOPOLOGIE SUR LES ESPACES VECTORIELS NORMÉS

53.1 NORMES ET ESPACES VECTORIELS NORMÉS

§1 Normes

Définition 1

Soit E un \mathbb{K} -espace vectoriel (où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Une **norme** sur E est une application $N: E \to \mathbb{R}_+, x \mapsto \|x\|$ telle que

- Pour tout $x \in E$, on a l'implication $||x|| = 0 \implies x = 0$.
- Pour tout $\lambda \in \mathbb{K}$, pour tout $x \in E$, $||\lambda x|| = |\lambda| \cdot ||x||$.
- Pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Muni d'une norme, E est appelé un \mathbb{K} -espace vectoriel **normé**.

On a immédiatement les résultats suivants

Proposition 2

- ||0|| = 0 et 0 est le seul élément de norme nulle.
- Pour tout $(x, y) \in E^2$, $|||x|| ||y|| \le ||x y||$.
- Pour tout $(x, y) \in E^2$, l'application de \mathbb{R} dans \mathbb{R} , $t \mapsto ||x + ty||$ est convexe.

Définition 3

Soit N une norme sur E. Un vecteur est dit **unitaire** lorsqu'il est de norme 1.

Tout vecteur non nul s'écrit de façon unique x = ku où k est un réel > 0 et u est un vecteur unitaire:

$$k = N(x)$$
 et $u = \frac{x}{N(x)}$.

§2 Des normes sur \mathbb{K}^n

Soit $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$, on distingue trois normes dites *normes usuelles*:

$$\begin{split} N_{\infty}(X) &= \|X\|_{\infty} = \sup_{1 \leq k \leq n} \left| x_k \right| \\ N_1(X) &= \|X\|_1 = \sum_{1 \leq k \leq n} \left| x_k \right| \\ N_2(X) &= \|X\|_2 = \sqrt{\sum_{1 \leq k \leq n} \left| x_k \right|^2}. \end{split}$$

La dernière est la norme euclidienne (ou hermitienne) associée au produit scalaire canonique sur \mathbb{K}^n .

Plus généralement, si $p \ge 1$, on peut définir la norme

$$N_p(X) = ||X||_p = \left(\sum_{1 \le k \le n} |x_k|^p\right)^{1/p}.$$

§3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$

Norme de la convergence uniforme

Soit [a, b] un segment réel ; on note $E = \mathcal{B}([a, b], \mathbb{K})$ l'espace vectoriel des fonctions bornées sur [a, b] à valeurs dans \mathbb{K} dans \mathbb{K} . Pour tout $f \in E$, posons

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

On définit ainsi la **norme de la convergence uniforme uniforme** sur [a, b].

Norme de la convergence en moyenne

On note $\mathscr{C}([a,b],\mathbb{K})$ l'espace vectoriel des fonctions continues de [a,b] dans \mathbb{K} . C'est un sous-espace vectoriel de $\mathcal{B}([a,b],\mathbb{K})$. On pose

$$||f||_1 = \int_a^b |f(t)| dt.$$

On définit ainsi la norme de la convergence en moyenne.

Test 4 Montrer que l'on a bien défini une norme sur $\mathscr{C}([a,b],\mathbb{R})$.

Norme de la convergence en moyenne quadratique

Sur le même \mathbb{K} -espace vectoriel $\mathscr{C}([a,b],\mathbb{K})$, on définit la **norme de la convergence en moyenne quadratique**:

$$||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt}.$$

§4 Des normes sur $\mathbb{K}[X]$

Sur l'espace des polynômes $\mathbb{K}[X]$, ou, ce qui revient au même , sur l'espace des suites de support fini $\mathbb{K}^{(\mathbb{N})}$, on peut aussi définir trois normes usuelle, profitant du fait qu'il n'y a qu'un nombre fini de coefficients en jeu. Soit $P = \sum_{n \geq 0} a_n X^n$, un polynôme, on prend

$$\begin{split} N_{\infty}(P) &= \|P\|_{\infty} = \sup_{n \geq 0} \left| a_n \right| \\ N_1(P) &= \|P\|_1 = \sum_{n \geq 0} \left| a_n \right| \\ N_2(P) &= \|P\|_2 = \sqrt{\sum_{n \geq 0} \left| a_n \right|^2}. \end{split}$$

Test 5 Vérifier qu'il s'agit de normes.

Soit $E = \mathbb{K}[X]$ et I = [a, b] un segment véritable. L'application qui à un polynôme P associe la fonction polynomiale $\tilde{P} : [a, b] \to \mathbb{K}, x \mapsto P(x)$, est linéaire injective à valeurs dans $\mathscr{C}([a, b], \mathbb{K})$. Une norme quelconque sur ce dernier espace fournit donc une norme sur E. Ainsi

$$\begin{split} N_{\infty,[a,b]}(P) &= \sup_{x \in [a,b]} |P(x)| \\ N_{1,[a,b]}(P) &= \int_a^b |P(t)| \, \mathrm{d}t \\ N_{2,[a,b]}(P) &= \sqrt{\int_a^b P(t)^2 \, \mathrm{d}t} \end{split}$$

sont des normes sur $\mathbb{K}[X]$.

§5 Normes euclidiennes

Définition 6 Une norme est dite **euclidienne** s'il existe un produit scalaire $\langle \cdot, \cdot \rangle$ tel que $||x||^2 = \langle x, x \rangle$.

Pour une telle norme, on obtient l'égalité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Test 7 1. Montrer que la norme N_1 n'est pas euclidienne sur \mathbb{R}^2 .

2. Même question pour la norme de la moyenne sur $\mathscr{C}([0,1],\mathbb{R})$.

3. Même question pour la norme de la convergence uniforme $\mathscr{C}([0,1],\mathbb{R})$.

§6 Distance associée à une norme

Définition 8

Soit E un \mathbb{K} -espace vectoriel et N une norme sur E. La **distance associée à la norme** est l'application

$$d: E \times E \to \mathbb{R}$$

$$(x, y) \mapsto N(x - y)$$

Le réel d(x, y) est appelé **distance entre** x et y.

Proposition 9

Pour tout triplet $(x, y, z) \in E^3$,

1.
$$d(x, y) = 0$$
 si $x = y$ et $d(x, y) > 0$ si $x \neq y$;

2.
$$d(y, x) = d(x, y)$$
;

3.
$$d(x, z) \le d(x, y) + d(y, z)$$
.

§7 Comparaison des normes

Définition 10

Soit E un \mathbb{K} -espace vectoriel et N_1 et N_2 deux normes sur E.

Les normes N_1 et N_2 sont dites **équivalentes** s'il existe deux réels strictement positifs α et β tels que

$$\forall x \in E, \alpha N_1(x) \leq N_2(x) \leq \beta N_1(x).$$

Exemple 11

Dans \mathbb{K}^n , les normes N_1 , N_2 et N_{∞} sont équivalentes. Pour tout $x \in \mathbb{K}^n$,

$$\begin{split} N_{\infty}(x) & \leq N_1(x) \leq n N_{\infty}(x), \\ N_{\infty}(x) & \leq N_2(x) \leq \sqrt{n} N_{\infty}(x), \\ \frac{1}{n} N_1(x) & \leq N_2(x) \leq \sqrt{n} N_1(x). \end{split}$$

Exemple 12

Dans $\mathscr{C}([0,1],\mathbb{R})$, il existe des normes qui ne sont pas équivalentes.

$$\forall f \in \mathscr{C}([0,1], \mathbb{R}), \|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t \le \sup_{[0,1]} |f| = \|f\|_{\infty}.$$

Cependant, pour $f_n(t) = t^n$,

$$||f_n||_1 = \frac{1}{n+1}$$
 et $||f_n||_{\infty} = 1$.

Le quotient $\frac{\|f_n\|_{\infty}}{\|f_n\|_1}$ n'est donc pas majoré : les deux normes ne sont pas équivalentes.

53.2 SUITES D'ÉLÉMENTS D'UN ESPACE VECTORIEL NORMÉ

Dans cette partie, E désigne un espace vectoriel et $N: x \mapsto ||x||$ une norme sur E.

§1 Suites convergentes

Définition 13

On dit que la suite $u = (u_n)_{n \in \mathbb{N}}$ d'éléments de E converge vers $L \in E$ pour la norme $\|*\|$ si, et seulement si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \|u_n - L\| \leq \varepsilon,$$

ou encore

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \mathrm{d}(u_n, L) \leq \varepsilon,$$

ce qui équivalent à l'énoncé

$$\lim_{n\to+\infty} \left\| u_n - L \right\| = 0.$$

§2 Première propriétés

Théorème 14

Si une suite converge pour la norme N, c'est vers un unique L.

On peut alors noter $L = \lim_{n \to +\infty} u_n$.

Théorème 15

Soit (E, N) un espace vectoriel normé. Soient (u_n) et (v_n) deux suites de points de E et $\lambda \in \mathbb{K}$.

1.
$$Si \lim_{n \to +\infty} u_n = a \ et \lim_{n \to +\infty} v_n = b, \ alors$$

$$\lim_{n\to +\infty} u_n + v_n = a+b.$$

2.
$$Si \lim_{n \to +\infty} u_n = a$$
, alors

$$\lim_{n\to+\infty}\lambda u_n=\lambda a.$$

Théorème 16

Soit E un espace préhilbertien et N la norme associée.

$$Si \lim_{n \to +\infty} u_n = a \ et \lim v_n = b, \ alors$$

$$\lim_{n \to +\infty} \langle u_n, v_n \rangle = \langle a, b \rangle \quad et \quad \lim_{n \to +\infty} \|u_n\| = \|a\|.$$

Théorème 17

Soient N_1 et N_2 deux normes sur un espace vectoriel E. Si N_1 et N_2 sont équivalentes, la notion de convergence et la valeur de la limite sont les mêmes pour les deux normes.

§3 Suites dans un espace de dimension finie

Théorème 18

Soit E un espace vectoriel de dimension finie, toutes les normes sur E sont équivalentes.

Théorème 19

Soit E un espace vectoriel de dimension finie p et $\mathcal{B}=(e_1,\ldots,e_p)$ une base de E. Soit $(u_n)\in E^\mathbb{N}$ et $L\in E$. On note

$$\forall n \in \mathbb{N}, u_n = \sum_{j=1}^p u_n^{(j)} e_j \quad \text{et} \quad L = \sum_{j=1}^p L_j e_j.$$

Alors

$$\lim_{n \to +\infty} u_n = L \iff \forall j \in [[1, p]], \lim_{n \to +\infty} u_n^{(j)} = L_j.$$

Autrement dit, la suite (u_n) converge vers L si, et seulement si la limite de la suite des j-ème coordonnées est la j-ème coordonnée de la limite de la suite.

Exemple 20

On retrouve le cas d'une suite complexe. Si $z_n = x_n + iy_n$ $(x_n, y_n \in \mathbb{R})$, on a

$$(z_n) \rightarrow a + ib \iff (x_n) \rightarrow a \text{ et } (y_n) \rightarrow b.$$

Exemple 21

Pour une suite de *p*-uplets, la convergence équivaut à celle des composantes du *p*-upllet.

Exemple 22

Pour une suite de matrices, la convergence équivaut à celle de toutes les suites des coefficients.

§4 Rappels et compléments sur les suites de fonctions

Dans la suite, X désigne une partie de \mathbb{R} . On considère (f_n) une suite d'application bornées de X dans \mathbb{K} .

Convergence simple

Définition 23

Soit $(f_n : X \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications. La suite d'application $(f_n : X \to \mathbb{R})$ **converge simplement** vers une application $f : X \to E$ si, pour tout $x \in X$,

$$f(x) = \lim_{n \to +\infty} f_n(x).$$

On dit que f est **limite simple** de la suite (f_n) , ou que la suite (f_n) **converge simplement** vers f.

Convergence uniforme

Définition 24

Soit $(f_n:X\to\mathbb{R})_{n\in\mathbb{N}}$ une suite d'applications bornées sur X. On dit que la suite d'application $(f_n:X\to\mathbb{K})_{n\in\mathbb{N}}$ converge uniformément vers une application $f:X\to E$ si

$$\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0.$$

ce qui équivalent à l'énoncé

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge N \implies \forall x \in X, |f_n(x) - f(x)| \le \varepsilon.$$

On dit alors aussi que f est **limite uniforme** de la suite (f_n) .

Remarque

L'énoncé avec quantificateurs est la définition du chaptire ??. Elle s'étend aux suites de fonctions qui ne sont pas nécessairement bornées.

Théorème 25

Si (f_n) converge uniformément, si f est la limite, alors la suite (f_n) converge simplement vers f.

La réciproque est fausse. Par exemple, avec I = [0, 1] et $f_n(x) = x^n$, on a

$$\forall n \in \mathbb{N}, \|f_n - f\|_{\infty} = \sup \{ |x|^n \mid x \in [0, 1[\} = 1,$$

ce n'est pas là le terme d'une suite qui tend vers 0.

Théorème 26

Soit $(f_n : X \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications convergeant uniformément vers $f : X \to \mathbb{K}$.

- Si chaque f_n est continue en un point $a \in X$, alors f est continue en a.
- Si chaque f_n est continue sur X, alors f est continue sur X.

Convergence en moyenne

Définition 27

Soit $(f_n : [a, b] \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b].

On dit que la suite d'application $(f_n : [a, b] \to \mathbb{K})_{n \in \mathbb{N}}$ converge en moyenne vers une application $f : [a, b] \to E$ si

$$\lim_{n \to +\infty} ||f_n - f||_1 = 0.$$

ce qui équivalent à l'énoncé

$$\lim_{n \to +\infty} \int_{a}^{b} \left| f_{n}(t) - f(t) \right| dt = 0.$$

Théorème 28

Soit $(f_n : [a,b] \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a,b]. On suppose que la suite (f_n) converge uniformément vers f sur [a,b]. Alors

- 1. La suite (f_n) converge vers f dans $(\mathscr{C}([a,b]), \|\cdot\|_1)$.
- **2.** La suite de terme général $\int_a^b f_n$ a une limite, c'est $\int_a^b f$. Autrement dit,

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n} = \int_{a}^{b} \lim_{n \to +\infty} f_{n}.$$

Convergence en moyenne quadratique

Définition 29

Soit $(f_n : [a, b] \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b].

On dit que la suite d'application $(f_n:[a,b]\to\mathbb{K})_{n\in\mathbb{N}}$ converge en moyenne quadratique vers une application $f:[a,b]\to E$ si

$$\lim_{n \to +\infty} ||f_n - f||_2 = 0.$$

ce qui équivalent à l'énoncé

$$\lim_{n \to +\infty} \int_{a}^{b} \left| f_n(t) - f(t) \right|^2 \mathrm{d}t = 0.$$

Théorème 30

Soit $(f_n : [a, b] \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b].

- 1. Si (f_n) converge uniformément vers f sur [a,b], alors f est continue et (f_n) tend vers f en moyenne quadratique.
- **2.** Si (f_n) converge vers f en moyenne quadratique et si f est continue, alors (f_n) tend vers f en moyenne.

53.3 TOPOLOGIE D'UN ESPACE NORMÉ

Dans cette partie, E désigne un espace vectoriel et $N: x \mapsto ||x||$ une norme sur E.

§1 Boules

Définition 31

Soit $a \in E$ et r > 0.

• La **boule ouverte** de centre *a* et de rayon *r* est l'ensemble

$$B(a,r) = B_o(a,r) = \{ x \in E \mid d(a,x) < r \}.$$

• La **boule fermé** de centre *a* et de rayon *r* est l'ensemble

$$B_f(a,r) = \{ x \in E \mid d(a,x) \le r \}.$$

• La **sphère** de centre *a* et de rayon *r* est l'ensemble

$$S(a,r) = \{ x \in E \mid d(a,x) = r \}$$

On constate facilement

$$\{\ a\ \}\subset B_o(a,r)\subset B_f(a,r).$$

Exemple 32

Dans \mathbb{R} ,

- les boules ouvertes sont les intervalles]u, v[avec u < v.
- les boules fermées sont les intervalles [u, v] avec u < v.

Test 33

Représenter par une figure les boules de centre O associées aux distances usuelles dans \mathbb{R}^2 , c'est-à-dire aux distances associées aux normes $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ et $\|\cdot\|_2$.

Définition 34

On dit que A est une partie **bornée** si A est inclue dans une boule, ou de manière équivalente si il existe $r \in \mathbb{R}_+$ tel que

$$\forall x \in A, ||x|| \le r.$$

§2 Parties ouvertes, voisinages

Définition 35

Une partie A de E est un ouvert ou est une partie ouverte lorsque

$$\forall x \in A, \exists r > 0, B(x, r) \subset A.$$

L'ensemble des parties ouvertes de E s'appelle **topologie** de E.

Proposition 36

- 1. Ø et E sont des parties ouvertes de E
- 2. Une union quelconque d'ouverts est un ouvert.
- 3. Une intersection finie d'ouverts est un ouvert.

Exemple 37

Une boule ouverte est un ouvert.

Définition 38

Soit $x \in E$. On appelle **voisinage** de x toute partie $V \subset E$ contenant un ouvert contenant x, ou de manière équivalente

$$\exists r > 0, B(x, r) \subset V.$$

Notation

L'ensemble des voisinage de x sera noté $\mathcal{V}(x)$.

Remarque

Une partie A de E ouverte si, et seulement si elle est un voisinage de chacun de ses points.

Proposition 39

Soit $x \in E$.

- 1. Une union quelconque de voisinages de x est un voisinage de x.
- 2. Une intersection finie de voisinages de x est un voisinage de x.

§3 Parties fermées

Définition 40

Une partie A de E est un **fermé** ou est une partie **fermée** lorsque son complémentaire $E \setminus A$ est ouvert.

Proposition 41

- 1. Ø et E sont des parties fermées de E
- 2. Une intersection quelconque de fermés est fermée.
- 3. Une union finie de fermés est fermée.

Exemple 42

Une boule fermée, une sphère, sont fermées.

§4 Point intérieur et point adhérent

Définition 43

Soit A une partie de E et $x \in E$.

• Nous dirons que x est un point **intérieur** à A lorsque

$$\exists r > 0, B(x, r) \subset A.$$

Ce qui revient à dire que A est un **voisinage** de x.

• Nous dirons que x est un point adhérent à A lorsque

$$\forall r > 0, B(x,r) \cap A \neq \emptyset$$

c'est-à-dire

$$\forall r > 0, \exists y \in A, ||x - y|| \le r.$$

Proposition 44

- 1. Une partie A de E est ouverte si, et seulement si tous ses points lui sont intérieur.
- 2. Une partie A de E est fermée si, et seulement si tous ses points lui sont adhérents.

Remarque

Ces notion ne sont pas au programme, mais peuvent être utile

• Nous dirons que x est un point **extérieur** à A lorsque

$$\exists r > 0, B(x, r) \cap A = \emptyset.$$

Ce qui revient à dire que x est un point intérieur à $E \setminus A$.

• Nous dirons que x est un **point isolé** de A lorsque

$$\exists r>0, B(x,r)\cap A=\left\{\,a\,\right\}.$$

• Nous dirons que x est **point d'accumulation** de A si x est adhérent à $A \setminus \{a\}$, c'est-à-dire

$$\forall r > 0, B(x,r) \cap A \neq \emptyset \text{ et } B(x,r) \cap A \neq \{a\}.$$

Si x est un point d'accumulation de A, alors x est adhérent à A et pour tout r > 0, B(x, r) contient une infinité de points de A.

§5 Sous-ensembles remarquables

Définition 45

Soit A une partie de E.

- L'adhérence de A, notée \overline{A} est l'ensemble des points adhérents à A
- L'intérieur de A, noté À est l'ensemble des points intérieurs à A
- La **frontière** de A, notée ∂A ou Fr(A) est l'ensemble $\overline{A} \setminus A$.
- La partie A est dite **dense** dans E lorsque $\overline{A} = E$.

Proposition 46

Soit A une partie de E.

1. On a toujours

$$\overset{\circ}{A} \subset A \subset \overline{A}$$
.

- 2. L'ensemble A est un ouvert.
- 3. L'ensemble \overline{A} est un fermé.

4.

$$\overbrace{E \setminus A}^{\circ} = E \setminus \overline{A} \quad et \quad \overline{E \setminus A} = E \setminus \stackrel{\circ}{A}.$$

Proposition 47

- 1. L'ensemble \overline{A} est le plus petit ensemble fermé contenant A.
- **2.** Une partie A est fermée si, et seulement si $A = \overline{A}$.
- 3. L'ensemble A est le plus grand ensemble ouvert contenu dans A.
- **4.** Une partie A est ouverte si, et seulement si A = A.

53.4 CARACTÉRISATIONS SÉQUENTIELLES

§1 Caractérisation des points adhérents, des fermés

Proposition 48

1. Un point $x \in E$ est adhérent à $A \subset E$ si, et seulement si il existe une suite $(a_n) \in A^{\mathbb{N}}$ de limite x:

$$\exists (a_n) \in A^{\mathbb{N}}, \lim_{n \to +\infty} a_n = x.$$

Autrement dit : les points adhérents à A sont les limites de suites de points de A.

2. Une partie A est un fermé de E si, et seulement si

$$\forall (a_n) \in A^{\mathbb{N}}, \lim_{n \to +\infty} a_n = x \implies x \in A.$$

§2 Caractérisation séquentielle de la densité

Théorème 49

Caractérisation séquentielle de la densité

Une partie A de E est dense dans E si, et seulement si pour tout $x \in E$, il existe une suite de points de A tendant vers x.

Théorème 50

- 1. L'ensemble \mathbb{D} des nombres décimaux est dense dans \mathbb{R} .
- **2.** L'ensemble \mathbb{Q} des nombres rationnels est dense dans \mathbb{R} .
- *3.* L'ensemble $\mathbb{R} \setminus \mathbb{Q}$ des nombres irrationnels est dense dans \mathbb{R} .

Corollaire 51

Les ensemble $(\mathbb{D})^p$, \mathbb{Q}^p ou $(\mathbb{R} \setminus \mathbb{Q})^p$ sont denses dans \mathbb{R}^p .

Rappel

Une partie A de \mathbb{R} est dense dans \mathbb{R} si, et seulement si tout intervalle ouvert non vide de \mathbb{R} contient au moins un point de cette partie, ou encore si, et seulement si

$$\forall (u, v) \in \mathbb{R}^2, u < v \implies \exists z \in A, u < z < v.$$

§3 Caractérisation des points intérieurs, des ouverts

Théorème 52

Caractérisation séquentielle des ouverts

Soit A une partie de E.

- 1. Un point x de E est intérieur à A si, et seulement si pour toute suite (u_n) de limite x, il y a un rang à partir duquel tous les termes sont dans A.
- 2. Ainsi, A est ouvert si, et seulement si toute suite convergeant vers un de ses points y prend ses valeurs à partir d'un certain rang.

53.5 PARTIES COMPACTES D'UN ESPACE VECTORIEL NORMÉ

Définition 53

Soit A une partie de E. On dit de A qu'elle est **compacte** lorsque pour toute suite de points de A, on peut en extraire une sous-suite convergente dans A (propriété dite de Bolzano-Weierstraß).

Proposition 54

Si A est une partie compacte de E, alors A est fermée et bornée.

Théorème 55

Soit E un espace vectoriel normé de dimension finie. Un partie A de E est compacte si, et seulement si A est fermée et bornée.