

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Figure 7

Fiber	GeO ₂	Other	Draw temp.	Draw tens.	O2/Cl2	GeCl ₄	2- propano	Не	η	Growth type	15' δημορ
	(area	(area	(C)	(g)	300/50 sccm	50-280 sccm		300 sccm			
	avg., wt%)	avg., wt%)			SCCIII	SCCIII		SCCIII		:	
IV-20	16.2		2035	90	•	50			0.86	Mono	1.26 10-4
IV-27	25.3		2035	90	•	100			0.91	Mono	1.44 10-4
IV-30	17.04		2035	90	•	100			0.91	Mono	1.42 10-4
IV-46			2035	90	•	75			0.82	Mono	*3.8 10 ⁻⁵
IV-50	36.5		2035	90	•	280			0.87	Mono	3.6-4.1 10-4
IV-58	28.4		2035	90	•	280			0.87	Mono	4.3-4.9 10-4
IV-68	8.40	3.7 P ₂ O ₅	2035	90	•	50			0.59	Mono	1.71 10-4
IV-131	22.40		2035	30	(1,2)	80 (1,2)		(3)	0.77	mono	4.35 10-4
IV=131	22.40		2035	90	(1,2)	80 (1,2)		(3)	0.77	mono	4.36 10-4
IV-131	22.40		2035	200	(1,2)	80 (1,2)		(3)	0.77	mono	5.46 10-4
IV-135	13.67		2035	30	•	•			0.76	mono	3.72 10-4
IV-135	13.67		2035	30	•	•			0.76	mono	3.59 10-4
IV-135	13.67		2035	90	•	•			0.76	mono	3.45 10-4
IV-135	13.67		2035	200	•	•			0.76	mono	4.22 10-4
IV-136	15.35		2035	30	•	•	• RT		0.84	mono	3.24 10-4
IV-136	15.35		2035	90	•	•	• RT		0.84	mono	3.39 10-4
IV-136	15.35		2035	200	•	•	• RT		0.84	mono	4.07 10-4
IV-137	24.40		2035	10	(1)	(1)80	(2,3)50 C	(2,3)	0.79	mono	5.48 10-4
IV=137	24.40		2035	175	(1)	(1)80	(2,3)50 C	(2,3)	0.79	mono	7.08 10-4
IV-151	18.96		1985	200				•	0.76	mono	9.85 10-4
IV-151	18.96		2035	200				•	0.76	mono	8.60 10-4
IV-153	28.60		1985	200	•		• 67 C		0.81	mono	5.72 10-4
IV-153	28.60		2035	200	•		• 67 C		0.81	mono	4.62 10-4
IV-171	27.80		2035	90	•		• 60 C		0.81	mono	4.26 10-4
IV-172	19.30		2035	90			• 75 C		0.79	slow IIA	7.34 10-4

Fiber parameters for the GeO₂ doped MCVD fibers tested. Dopant concentrations are area weight averages. Core overlap integrals are calculated based on an estimated step index profile. Ranges indicate that more than one measurement was carried out on samples of the same fiber. *DC index, modulated index too weak to measure.

Figure 8

Fiber	GeO ₂	Other	Draw	Draw	O ₂ /Cl ₂	GeCl ₄	2-	Не	η	Growth	15'
			temp.	tens.			propanol			type	δимор
	(area	(area	(C)	(g)	300/50	50-280		300			
	avg.,	avg.,			sccm	sccm		sccm			
	wt%)	wt%)									
IV-60	13	3.4	2035	90	•	280			0.91	mono	4.93 10-4
IV-69	16.1	8.8	2035	90	•	150			0.91	mono	4.7-5.1
											10-4
IV-76	18.1	8.1	2035	90	•	•			0.80	mono	5.76 10 ⁻⁴
IV-81	12.8	10.8	2035	90	•	•			0.59	mono	7.09 10-4
IV-82	13	10	2035	90	•	•			0.74	mono	5.59 10-4
IV-83	11.9	11.4	2035	90	•	90			0.43	mono	9.24 10-4
IV-106	20.5	12.7	2035	90	•	90		:	0.80	mono	2.7-4.4
											10-4
IV-108	23.7	14.8	2035	90	•	80	ļ		0.75	IIA	5.7-6.6
									ļ		10-4
I <u>V</u> -118	21.78	16.31	2035	?	•	81			0.87	IIA	3.9-4.1
											10-4
I ▼-118	21.78	16.31	2035	30	•	81			0.87	IIA	5.38 10-4
I V-118	21.78	16.31	2035	90	•	81			0.87	IIA	6.07 10-4
I¥-118	21.78	16.31	2035	200	•	81			0.87	IIA	7.35 10-4
I <u>V</u> -125	24.60	18.10	2035	10	•	280			0.88	IIA	4.81 10-4
IV-125	24.60	18.10	2035	150	•	280			0.88	IIA	6.20 10-4
I <u>¥</u> -163	17.60	17.40	2035	90	•	280		•	0.83	IIA	3.68 10-4
IV-164	18.00	19.20	2035	90			• 60 C	•	0.81	IIA	4.66 10 ⁻⁴
CMS fibe	ers										
IV-122	21.40	4.0	0 2035	90	•	•			1.00	mono	3.04 10-4
()=clad	(4.58) (21.43									
IV —168	21.50	1	1	90	•	•			1.00	slow	6.86 10-4
0=clad	(10.59)) (26.54	1)							IIA	
-ţek	_										

Fiber parameters for the GeO₂-B₂O₃-doped MCVD fibers tested. Dopant concentrations are area weight averages. Core overlap integrals are calculated based on an estimated step index profile. Ranges indicate more than one measurement on samples from the same fiber.