Graphical Solutions of Systems of Linear Inequalities in Two Variables

Jonathan R. Bacolod

Sauyo High School

How to Solve Systems of Linear Inequalities by Graphical Method?

How to Solve Systems of Linear Inequalities by Graphical Method?

1. Draw the graphs of both inequalities on the same Cartesian plane.

How to Solve Systems of Linear Inequalities by Graphical Method?

- 1. Draw the graphs of both inequalities on the same Cartesian plane.
- 2. Determine the solution of the system by labeling the intersection region of all the solutions in the system.

Example 1

Show the graph of the solution of the following system of linear inequalities:

$$\begin{cases} y \le 2x + 1 \\ x + y > -1 \end{cases}$$

$$y \le 2x + 1$$

$$y \le 2x + 1$$

Change \leq to =

$$y \leq 2x + 1$$

Change
$$\leq$$
 to $=$

$$y = 2x + 1$$

First inequality
$$y \le 2x + 1$$

Change \le to $= y = 2x + 1$
 $m = 2$

First inequality	$y \leq 2x + 1$
$Change \leq to =$	y = 2x + 1
m = 2	b = 1

Second inequality
$$x + y > -1$$

Second inequality
$$x + y > -1$$

Second inequality
$$x + y > -1$$

Change > to = $x + y = -1$

Second inequality
$$x + y > -1$$

Change
$$>$$
 to $=$ $x + y = -1$

Second inequality
$$x + y > -1$$

$$x+y>-1$$

$$x + y = -1$$

Let
$$y = 0$$

$$x+y>-1$$

$$x + y = -1$$

Let
$$y = 0$$

$$x + 0 = -1$$

$$x + y > -1$$

$$x + y = -1$$

Find the x-intercept:

Let
$$y = 0$$

$$x + 0 = -1$$

Simplify

Second inequality

$$x + y > -1$$

Change > to =

$$x + y = -1$$

Let
$$y = 0$$

$$x + 0 = -1$$

$$x = -1$$

Second inequality

$$x + y > -1$$

$$x + y = -1$$

Find the x-intercept:

Let
$$y = 0$$

$$x + 0 = -1$$

$$x = -1$$

Coordinates

Change
$$>$$
 to $=$ $x + y = -1$

Let
$$y = 0$$
 $x + 0 = -1$

Simplify
$$x = -1$$

Coordinates
$$(-1,0)$$

Second inequality
$$x + y > -1$$

Change > to = $x + y = -1$

Second inequality
$$x + y > -1$$

Change
$$>$$
 to $=$ $x + y = -1$

$$x + y > -$$

$$x + y = -1$$

Let
$$x = 0$$

$$\mathbf{x} + \mathbf{y} > -1$$

$$x + y = -1$$

Let
$$x = 0$$

$$0 + y = -1$$

$$\mathbf{x} + \mathbf{y} > -1$$

$$x + y = -1$$

Find the y-intercept:

Let
$$x = 0$$

$$0 + y = -1$$

Simplify

Second inequality

$$x + y > -1$$

$$x + y = -1$$

Let
$$x = 0$$

$$0 + y = -1$$

$$y = -1$$

$$x + y > -1$$

$$x + y = -1$$

Find the y-intercept:

Let
$$x = 0$$

$$0 + y = -1$$

$$y = -1$$

Coordinates

Change
$$>$$
 to $=$ $x + y = -1$

Let
$$x = 0$$
 $0 + y = -1$

Simplify
$$y = -1$$

Coordinates
$$(0,-1)$$

$$ightharpoonup m = rac{\mathsf{rise}}{\mathsf{run}} = 2 \text{ and } b = 1 \text{ for } y \leq 2x + 1$$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

$$(0,-1)$$
 and $(-1,0)$ for $x+y>-$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-$

$$y \le 2x + 1$$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-$

$$y \le 2x + 1$$

0 \le 2(0) + 1

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$y \le 2x + 1$$

 $0 \le 2(0) + 1$
 $0 < 0 + 1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$y \le 2x + 1$$

 $0 \le 2(0) + 1$
 $0 \le 0 + 1$
 $0 < 1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$y \le 2x + 1$$

 $0 \le 2(0) + 1$
 $0 \le 0 + 1$
 $0 < 1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$y \le 2x + 1$$

 $0 \le 2(0) + 1$
 $0 \le 0 + 1$
 $0 < 1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$y \le 2x + 1$$

 $0 \le 2(0) + 1$
 $0 \le 0 + 1$
 $0 \le 1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

• (0,-1) and (-1,0) for x+y>-1

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

• (0,-1) and (-1,0) for x+y>-1

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

Step 1: Draw the graphs of both inequalities on the same Cartesian plane.

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

0 + 0 > -1

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

 $0 + 0 > -1$
 $0 > -1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

 $0 + 0 > -1$
 $0 > -1$

►
$$m = \frac{\text{rise}}{\text{run}} = 2$$
 and $b = 1$ for $y \le 2x + 1$
► $(0, -1)$ and $(-1, 0)$ for $x + y > -1$

$$\blacktriangleright$$
 $(0,-1)$ and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

 $0 + 0 > -1$
 $0 > -1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

$$x + y > -1$$

 $0 + 0 > -1$
 $0 > -1$

$$m = \frac{\text{rise}}{\text{run}} = 2 \text{ and } b = 1 \text{ for } y \le 2x + 1$$

 $(0, -1) \text{ and } (-1, 0) \text{ for } x + y > -1$

•
$$(0,-1)$$
 and $(-1,0)$ for $x+y>-1$

Example 2

Show the graph of the solution of the following system of linear inequalities:

$$\begin{cases} y > \frac{4}{5}x - 2\\ y \le -2x + 3 \end{cases}$$

$$y>\frac{4}{5}x-2$$

$$y>\frac{4}{5}x-2$$

First inequality
$$y > \frac{4}{5}x - 2$$

Change > to = $y = \frac{4}{5}x - 2$

First inequality $y > \frac{4}{5}x - 2$ Change > to = $y = \frac{4}{5}x - 2$ $m = \frac{4}{5}$

First inequality
$$y > \frac{4}{5}x - 2$$

Change > to = $y = \frac{4}{5}x - 2$
 $m = \frac{4}{5}$ $b = -2$

$$y \le -2x + 3$$

$$y < -2x + 3$$

Change
$$\leq$$
 to $=$

$$y \leq -2x + 3$$

Change
$$\leq$$
 to $=$

$$y = -2x + 3$$

Second inequality

$$y\leq -2x+3$$

Change
$$\leq$$
 to $=$

$$y = -2x + 3$$

$$m = -2$$

Second inequality

Change
$$\leq$$
 to $=$

$$m = -2$$

$$y < -2x + 3$$

$$y = -2x + 3$$

$$b = 3$$

•
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

Step 1: Draw the graphs of both inequalities on the same Cartesian plane.

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$
$$0 > \frac{4}{5}(0) - 2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

$$0 > \frac{4}{5}(0) - 2$$

$$0 > 0 - 2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

$$0 > \frac{4}{5}(0) - 2$$

$$0 > 0 - 2$$

$$0 > -2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

$$0 > \frac{4}{5}(0) - 2$$

$$0 > 0 - 2$$

$$0 > -2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

$$0 > \frac{4}{5}(0) - 2$$

$$0 > 0 - 2$$

$$0 > -2$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y > \frac{4}{5}x - 2$$

$$0 > \frac{4}{5}(0) - 2$$

$$0 > 0 - 2$$

$$0 > -2$$

$$0 > -2\sqrt{}$$

Step 1: Draw the graphs of both inequalities on the same Cartesian plane.

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

Step 1: Draw the graphs of both inequalities on the same Cartesian plane.

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

0 \le -2(0) + 3

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

 $0 \le -2(0) + 3$
 $0 \le 0 + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

 $0 \le -2(0) + 3$
 $0 \le 0 + 3$
 $0 \le 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

 $0 \le -2(0) + 3$
 $0 \le 0 + 3$
 $0 \le 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

$$y \le -2x + 3$$

 $0 \le -2(0) + 3$
 $0 \le 0 + 3$
 $0 < 3\checkmark$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

►
$$m = \frac{\text{rise}}{\text{run}} = \frac{4}{5}$$
 and $b = -2$ for $y > \frac{4}{5}x - 2$
► $m = -2$ and $b = 3$ for $y \le -2x + 3$

Example 3

Show the graph of the solution of the following system of linear inequalities:

$$\begin{cases} x - 2y < -2 \\ y \le -4x - 1 \end{cases}$$

$$x - 2y < -2$$

$$x - 2y < -2$$

$$x-2y<-2$$

$$x-2y=-2$$

$$x - 2y < -2$$

$$x - 2y = -2$$

$$x-2y<-2$$

$$x - 2y = -2$$

Let
$$y = 0$$

$$x-2y<-2$$

$$x - 2y = -2$$

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x-2y<-2$$

$$x - 2y = -2$$

Find the x-intercept:

Let
$$y = 0$$

$$x - 2(0) = -2$$

Simplify

$$x-2y<-2$$

$$x - 2y = -2$$

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x - 0 = -2$$

$$x-2y<-2$$

$$x - 2y = -2$$

Find the x-intercept:

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x - 0 = -2$$

Simplify

$$x-2y<-2$$

$$x - 2y = -2$$

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x - 0 = -2$$

$$x = -2$$

$$x-2y<-2$$

$$x - 2y = -2$$

Find the x-intercept:

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x - 0 = -2$$

$$X = -2$$

Coordinates

$$x-2y<-2$$

$$x - 2y = -2$$

Let
$$y = 0$$

$$x - 2(0) = -2$$

$$x - 0 = -2$$

$$x = -2$$

$$(-2,0)$$

$$x-2y<-2$$

$$x - 2y = -2$$

$$x - 2y < -2$$

$$x - 2y = -2$$

$$x - 2y < -2$$

$$x - 2y = -2$$

Let
$$x = 0$$

$$x - 2y < -2$$

$$x - 2y = -2$$

Let
$$x = 0$$

$$0-2y=-2$$

$$x - 2y < -2$$

$$x - 2y = -2$$

Find the y-intercept:

Let
$$x = 0$$

$$0 - 2y = -2$$

Simplify

$$x - 2y < -2$$

$$x - 2y = -2$$

Let
$$x = 0$$

$$0 - 2y = -2$$

$$-2y = -2$$

$$x - 2y < -2$$

$$x-2y=-2$$

Find the y-intercept:

Let
$$x = 0$$

$$0 - 2y = -2$$

$$-2y = -2$$

Use Division Prop.

$$x - 2y < -2$$

$$x-2y=-2$$

Let
$$x = 0$$

$$0-2y=-2$$

$$-2y = -2$$

$$\frac{-2y}{-2} = \frac{-2}{-2}$$

$$x - 2y < -2$$

$$x - 2y = -2$$

Find the y-intercept:

Let
$$x = 0$$

$$0 - 2y = -2$$

$$-2y = -2$$

$$\frac{-2y}{-2} = \frac{-2}{-2}$$

Simplify

$$x - 2y < -2$$

$$x - 2y = -2$$

Let
$$x = 0$$

$$0-2y=-2$$

$$-2y = -2$$

$$\frac{-2y}{-2} = \frac{-2}{-2}$$

$$y = 1$$

$$x - 2y < -2$$

$$x - 2y = -2$$

Find the y-intercept:

Let
$$x = 0$$

$$0-2y=-2$$

$$-2y = -2$$

$$\frac{-2y}{-2} = \frac{-2}{-2}$$

$$y = 1$$

Coordinates

$$x - 2y < -2$$

$$x - 2y = -2$$

Let
$$x = 0$$

$$0-2y=-2$$

$$-2y = -2$$

$$\frac{-2y}{-2} = \frac{-2}{-2}$$

$$y = 1$$

$$y \leq -4x - 1$$

$$y < -4x - 1$$

$$Change \leq to =$$

$$y \leq -4x - 1$$

Change
$$\leq$$
 to $=$

$$y = -4x - 1$$

Second inequality

$$y \leq -4x - 1$$

Change
$$\leq$$
 to $=$

$$y = -4x - 1$$

$$m = -4$$

Second inequality

Change
$$\leq$$
 to $=$

$$m = -4$$

$$y < -4x - 1$$

$$y = -4x - 1$$

$$b = -1$$

▶ (0,1) and (-2,0) for x-2y<-2

- ▶ (0,1) and (-2,0) for x-2y<-2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- \blacktriangleright (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- \blacktriangleright (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x - 2y < -2$$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x-2y<-2$$

0-2(0)<-2

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x - 2y < -2$$

 $0 - 2(0) < -2$
 $0 - 0 < -2$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x-2y < -2$$

 $0-2(0) < -2$
 $0-0 < -2$
 $0 < -2$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x-2y < -2$$

 $0-2(0) < -2$
 $0-0 < -2$
 $0 < -2$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$x-2y < -2$$

 $0-2(0) < -2$
 $0-0 < -2$
 $0 < -2$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- \blacktriangleright (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ▶ (0,1) and (-2,0) for x-2y<-2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \leq -4x - 1$$

- \blacktriangleright (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \le -4x - 1$$

0 \le -4(0) - 1

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \le -4x - 1$$

 $0 \le -4(0) - 1$
 $0 < 0 - 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \le -4x - 1$$

 $0 \le -4(0) - 1$
 $0 \le 0 - 1$
 $0 \le -1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \le -4x - 1$$

 $0 \le -4(0) - 1$
 $0 \le 0 - 1$
 $0 < -1x$

- ▶ (0,1) and (-2,0) for x-2y<-2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

$$y \le -4x - 1$$

 $0 \le -4(0) - 1$
 $0 \le 0 - 1$
 $0 \le -1x$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

- ightharpoonup (0, 1) and (-2,0) for x 2y < -2
- ▶ m = -4 and b = -1 for $y \le -4x 1$

Thank you for watching.