Topological construction in the language of categories

James Kennington

Department of Mathematics

December 3, 2013

ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**

- ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**
- ullet Each arrow f in ${f Arr}$ has a source object and target object in ${f Obj}$

- ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**
- ullet Each arrow f in ${f Arr}$ has a source object and target object in ${f Obj}$
- For each object a, there is an identity arrow Id_a that connects a to itself and does not have to be a function

- ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**
- ullet Each arrow f in $oldsymbol{Arr}$ has a source object and target object in $oldsymbol{Obj}$
- For each object a, there is an identity arrow Id_a that connects a to itself and does not have to be a function
- Composition of arrows is defined when compatible, the source object of one is the target object of the other

- ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**
- ullet Each arrow f in ${f Arr}$ has a source object and target object in ${f Obj}$
- For each object a, there is an identity arrow Id_a that connects a to itself and does not have to be a function
- Composition of arrows is defined when compatible, the source object of one is the target object of the other
- Composition of arrows is associative

- ullet A category $\mathscr C$ consists of two collections **Obj** and **Arr**
- ullet Each arrow f in ${f Arr}$ has a source object and target object in ${f Obj}$
- For each object a, there is an identity arrow Id_a that connects a to itself and does not have to be a function
- Composition of arrows is defined when compatible, the source object of one is the target object of the other
- Composition of arrows is associative
- If f is any arrow with source a and target b, then $\mathrm{Id}_b \circ f = f = f \circ \mathrm{Id}_a$

 \bullet We say that an object i is an $\it initial$ object if for any other object a there is a unique arrow $i \xrightarrow{f} a$

- We say that an object i is an *initial* object if for any other object a there is a unique arrow $i \xrightarrow{f} a$
- Similarly, we say that an object t is a *terminal* object if for any other object a there is a unique arrow $a \xrightarrow{g} t$

- We say that an object i is an *initial* object if for any other object a there is a unique arrow $i \xrightarrow{f} a$
- Similarly, we say that an object t is a *terminal* object if for any other object a there is a unique arrow $a \xrightarrow{g} t$
- Initial and terminal objects are unique up to unique isomorphism

- We say that an object i is an *initial* object if for any other object a there is a unique arrow $i \xrightarrow{f} a$
- Similarly, we say that an object t is a *terminal* object if for any other object a there is a unique arrow $a \xrightarrow{g} t$
- Initial and terminal objects are unique up to unique isomorphism
- Not all categories have initial or terminal objects

• Let (X, τ) be a fixed topological space and let S be a given subset of X, still with no assigned topology.

- Let (X, τ) be a fixed topological space and let S be a given subset of X, still with no assigned topology.
- ullet We define a category $\mathscr C$ with objects the continuous inclusions of the form

$$(S, \tau') \hookrightarrow (X, \tau),$$

for any topology τ' that makes this inclusion continuous.

- Let (X, τ) be a fixed topological space and let S be a given subset of X, still with no assigned topology.
- ullet We define a category ${\mathscr C}$ with objects the continuous inclusions of the form

$$(S, \tau') \hookrightarrow (X, \tau),$$

for any topology τ' that makes this inclusion continuous.

ullet The arrows in $\mathscr C$ are commutative triangles of the form

- Let (X, τ) be a fixed topological space and let S be a given subset of X, still with no assigned topology.
- ullet We define a category ${\mathscr C}$ with objects the continuous inclusions of the form

$$(S, \tau') \hookrightarrow (X, \tau),$$

for any topology τ' that makes this inclusion continuous.

ullet The arrows in $\mathscr C$ are commutative triangles of the form

whenever the identity map $(S, \tau_1) \stackrel{\text{Id}}{\rightarrow} (S, \tau_2)$ is continuous.

ullet Composition of arrows in $\mathscr C$ looks like the diagram

ullet Composition of arrows in $\mathscr C$ looks like the diagram

Topological construction in the language of categories

ullet Composition of arrows in $\mathscr C$ looks like the diagram

• Then we have the result: S with the subspace topology τ is a terminal object in $\mathscr C$:

Topological construction in the language of categories

ullet Composition of arrows in $\mathscr C$ looks like the diagram

• Then we have the result: S with the subspace topology τ is a terminal object in \mathscr{C} :

ullet Let X,Y be two fixed topological spaces.

- Let *X*, *Y* be two fixed topological spaces.
- We define a category $\mathscr{C}_{X,Y}$ with objects triples of the form (Z,f,g), where Z is any topological space and $f:Z\to X$, $g:Z\to Y$ are continuous maps.

- Let *X*, *Y* be two fixed topological spaces.
- We define a category $\mathscr{C}_{X,Y}$ with objects triples of the form (Z,f,g), where Z is any topological space and $f:Z\to X$, $g:Z\to Y$ are continuous maps.
- An arrow in $\mathscr{C}_{X,Y}$ from (Z,f,g) to (W,h,k) is a continuous map $\varphi:Z\to W$ yielding a commutative diagram of the form:

- Let *X*, *Y* be two fixed topological spaces.
- We define a category $\mathscr{C}_{X,Y}$ with objects triples of the form (Z,f,g), where Z is any topological space and $f:Z\to X$, $g:Z\to Y$ are continuous maps.
- An arrow in $\mathscr{C}_{X,Y}$ from (Z,f,g) to (W,h,k) is a continuous map $\varphi:Z\to W$ yielding a commutative diagram of the form:

• Then the space $X \times Y$ with the product topology is nothing but a terminal object in $\mathscr{C}_{X,Y}$ with the obvious projection maps π_1, π_2 :

• Then the space $X \times Y$ with the product topology is nothing but a terminal object in $\mathscr{C}_{X,Y}$ with the obvious projection maps π_1, π_2 :

• Then the space $X \times Y$ with the product topology is nothing but a terminal object in $\mathscr{C}_{X,Y}$ with the obvious projection maps π_1, π_2 :

• The definition of $\mathscr{C}_{X,Y}$ can be slightly altered to obtain infinite product of spaces with no effort.

• Let $\mathscr{C} = \mathbf{Top}$ and let $\Delta : \mathbf{Top} \to \mathbf{Top} \times \mathbf{Top}$ be the diagonal functor with $\Delta X = (X,X)$. Another way to state the previous result is that the pair of projections (π_1,π_2) is a *universal arrow* from the diagonal functor Δ to the object (X,Y).

- Let $\mathscr{C} = \mathbf{Top}$ and let $\Delta : \mathbf{Top} \to \mathbf{Top} \times \mathbf{Top}$ be the diagonal functor with $\Delta X = (X,X)$. Another way to state the previous result is that the pair of projections (π_1,π_2) is a *universal arrow* from the diagonal functor Δ to the object (X,Y).
- If we let $\mathscr{C} = \mathsf{Grp}$, Ab , Rng , $\mathsf{Mod}\text{-}R$, Set , Cat , ... we obtain the product of groups, abelian groups, rings, R-modules, sets, categories, etc as terminal objects in the corresponding category.

• For the same fixed topological spaces X,Y, let $\mathscr{C}_{X,Y}^{\mathsf{op}}$ be the category defined previously, with arrows reversed. Then the disjoint union $X \sqcup Y$ along with the obvious inclusions $i_1: X \to X \sqcup Y$, $i_1: Y \to X \sqcup Y$ is an initial object in $\mathscr{C}_{X,Y}^{\mathsf{op}}$:

Topological construction in the language of categories

• For the same fixed topological spaces X,Y, let $\mathscr{C}_{X,Y}^{\mathsf{op}}$ be the category defined previously, with arrows reversed. Then the disjoint union $X \sqcup Y$ along with the obvious inclusions $i_1: X \to X \sqcup Y$, $i_1: Y \to X \sqcup Y$ is an initial object in $\mathscr{C}_{X,Y}^{\mathsf{op}}$:

• For the same fixed topological spaces X,Y, let $\mathscr{C}_{X,Y}^{\mathsf{op}}$ be the category defined previously, with arrows reversed. Then the disjoint union $X \sqcup Y$ along with the obvious inclusions $i_1: X \to X \sqcup Y$, $i_1: Y \to X \sqcup Y$ is an initial object in $\mathscr{C}_{X,Y}^{\mathsf{op}}$:

• Notice that we only inverted all the arrows in the previous product diagram. We say that this is the *dual* of the product, or *coproduct*.

• For the same fixed topological spaces X,Y, let $\mathscr{C}_{X,Y}^{\mathsf{op}}$ be the category defined previously, with arrows reversed. Then the disjoint union $X \sqcup Y$ along with the obvious inclusions $i_1: X \to X \sqcup Y$, $i_1: Y \to X \sqcup Y$ is an initial object in $\mathscr{C}_{X,Y}^{\mathsf{op}}$:

- Notice that we only inverted all the arrows in the previous product diagram. We say that this is the dual of the product, or coproduct.
- All categorical statements about products hold for coproducts by reversing the arrows. This is called *duality*.

• Let Δ be the diagonal functor in **Top** as before. We say that the pair of inclusions (i_1, i_2) is a universal arrow from the object (X, Y) to Δ .

- Let Δ be the diagonal functor in **Top** as before. We say that the pair of inclusions (i_1, i_2) is a universal arrow from the object (X, Y) to Δ .
- In **Set**, the coproduct gives disjoint union of sets; in **Top*** we get the wedge product, in **Ab** or *R*-**Mod** we get direct sums and in **CRng** we get tensor products.

• In topology, we learned that a continuous map $q:X\to Y$ between topological spaces is a quotient map if it is surjective and Y has the quotient topology induced by q, i.e. U is open in Y iff $q^{-1}(U)$ is open in X.

- In topology, we learned that a continuous map $q: X \to Y$ between topological spaces is a quotient map if it is surjective and Y has the quotient topology induced by q, i.e. U is open in Y iff $q^{-1}(U)$ is open in X.
- We can define an equivalence relation in X by declaring that $x \sim x'$ iff q(x) = q(x'). Since q is surjective, we can regard Y as X/\sim .

- In topology, we learned that a continuous map $q: X \to Y$ between topological spaces is a quotient map if it is surjective and Y has the quotient topology induced by q, i.e. U is open in Y iff $q^{-1}(U)$ is open in X.
- We can define an equivalence relation in X by declaring that $x \sim x'$ iff q(x) = q(x'). Since q is surjective, we can regard Y as X/\sim .
- Define a category $\mathscr C$ with objects (Z,f), where Z is a topological space and $f:X\to Z$ is a continuous map such that $x\sim x'\Rightarrow f(x)=f(x')$.

- In topology, we learned that a continuous map $q: X \to Y$ between topological spaces is a quotient map if it is surjective and Y has the quotient topology induced by q, i.e. U is open in Y iff $q^{-1}(U)$ is open in X.
- We can define an equivalence relation in X by declaring that $x \sim x'$ iff q(x) = q(x'). Since q is surjective, we can regard Y as X/\sim .
- Define a category $\mathscr C$ with objects (Z,f), where Z is a topological space and $f:X\to Z$ is a continuous map such that $x\sim x'\Rightarrow f(x)=f(x')$.
- ullet Arrows in $\mathscr C$ are commutative diagrams of the form

- In topology, we learned that a continuous map $q: X \to Y$ between topological spaces is a quotient map if it is surjective and Y has the quotient topology induced by q, i.e. U is open in Y iff $q^{-1}(U)$ is open in X.
- We can define an equivalence relation in X by declaring that $x \sim x'$ iff q(x) = q(x'). Since q is surjective, we can regard Y as X/\sim .
- Define a category $\mathscr C$ with objects (Z,f), where Z is a topological space and $f:X\to Z$ is a continuous map such that $x\sim x'\Rightarrow f(x)=f(x')$.
- ullet Arrows in $\mathscr C$ are commutative diagrams of the form

• Then the characteristic property of quotient spaces is that if $f: X \to Z$ is a continuous map such that $x \sim x' \Rightarrow f(x) = f(x')$, then f "descends" to the quotient giving a unique continuous map $f': X/\sim \to Z$:

Topological construction in the language of categories

• Then the characteristic property of quotient spaces is that if $f: X \to Z$ is a continuous map such that $x \sim x' \Rightarrow f(x) = f(x')$, then f "descends" to the quotient giving a unique continuous map $f': X/\sim \to Z$:

• Then the characteristic property of quotient spaces is that if $f: X \to Z$ is a continuous map such that $x \sim x' \Rightarrow f(x) = f(x')$, then f "descends" to the quotient giving a unique continuous map $f': X/\sim \to Z$:

• In other words, $(X/\sim,q)$ is an initial object in \mathscr{C} .

• Then the characteristic property of quotient spaces is that if $f: X \to Z$ is a continuous map such that $x \sim x' \Rightarrow f(x) = f(x')$, then f "descends" to the quotient giving a unique continuous map $f': X/\sim \to Z$:

- In other words, $(X/\sim,q)$ is an initial object in \mathscr{C} .
- The same construction can be used to describe quotients of groups by normal groups, quotients of rings by two-sided ideals, etc. The universality property can even derive the isomorphism theorems in Group theory with no reference to cosets!