Matemáticas Básicas - Deberes 3

Victoria Eugenia Torroja Rubio

Ejercicio 1. Sean $f y g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por $f(x) = x^2 y g(x) = x^2 - 1$. Hallar las funciones $f \circ f$, $f \circ g$, $g \circ f y g \circ g y$ determinar el conjunto

$$\left\{x \in \mathbb{R} : \left(f \circ g\right)(x) = \left(g \circ f\right)(x)\right\}.$$

Solución 1. Calculamos las funciones compuestas que nos pide el enunciado:

$$\begin{split} f\left(f\left(x\right)\right) &= \left(x^{2}\right)^{2} = x^{4}, \qquad f\left(g\left(x\right)\right) = \left(x^{2} - 1\right)^{2} \\ g\left(f\left(x\right)\right) &= \left(x^{2}\right)^{2} - 1 = x^{4} - 1, \qquad g\left(g\left(x\right)\right) = \left(x^{2} - 1\right)^{2} - 1 = x^{4} - 2x^{2} = x^{2}\left(x^{2} - 2\right). \end{split}$$

A continuación, resolvemos el siguiente apartado. Si $(f \circ g)(x) = (g \circ f)(x)$, entonces tenemos que

$$(x^{2} - 1)^{2} = x^{4} - 1$$

$$\Rightarrow x^{4} - 2x^{2} + 1 = x^{4} - 1$$

$$\Rightarrow 2x^{2} = 2$$

$$\Rightarrow x = \pm 1.$$

Por tanto,

$$\{x \in \mathbb{R} : (f \circ g)(x) = (g \circ f)(x)\} = \{1, -1\}.$$

Ejercicio 2. Se define en \mathbb{R}^2 la relación $(x,y) \mathcal{R}(a,b)$ si y solo si $y-b=x^2-a^2$. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)], [(0,2)] y [(1,1)]. Describe la clase de un punto cualquiera $(a,b) \in \mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .

Solución 2. En primer lugar, demostramos que la relación $\mathcal{R} \subset \mathbb{R}^2$ es una relación de equivalencia:

(i) Tenemos que es reflexiva, pues $\forall (x,y) \in \mathbb{R}^2$, $(x,y) \mathcal{R}(x,y)$:

$$\forall x, y \in \mathbb{R}, \quad y - y = x^2 - x^2 \quad \Rightarrow \quad 0 = 0.$$

(ii) Si $(x, y) \mathcal{R}(w, z)$,

$$y-z=x^2-w^2$$
, multiplicamos ambos lados por -1 , $z-y=w^2-x^2$.

Por tanto, $(x, y) \mathcal{R}(w, z) \Rightarrow (w, z) \mathcal{R}(x, y)$ y \mathcal{R} es simétrica.

(iii) Si $(a, b) \mathcal{R}(c, d)$ y $(c, d) \mathcal{R}(e, f)$, entonces

$$b - d = a^2 - c^2$$
$$d - f = c^2 - e^2$$
$$\therefore b - f = a^2 - e^2.$$

Por tanto, \mathcal{R} es transitiva.

En conclusión, \mathcal{R} es una relación de equivalencia.

A continuación, encontramos las clases de equivalencia que nos pide el enunciado. Para ello, sustituimos los puntos que nos dan ((0,0), (0,2) y (1,1)) y encontramos los puntos (x,y) que satisfacen dicha condición. Mostramos como ejemplo el caso de [(1,1)]:

$$1 - y = 1 - x^2 \quad \Rightarrow y = x^2.$$

Por lo que los pares (x,y) que componen la clase de equivalencia de [(1,1)] son (x,x^2) con $x \in \mathbb{R}$.

Las otras clases de equivalencia se obtienen de la misma manera.

$$[(0,0)] = \{(x,y) \in \mathbb{R}^2 : (0,0) \mathcal{R}(x,y)\} = \{(x,x^2) : x \in \mathbb{R}\}$$

$$[(1,1)] = \{(x,y) \in \mathbb{R}^2 : (1,1) \mathcal{R}(x,y)\} = \{(x,x^2) : x \in \mathbb{R}\}$$

$$[(0,2)] = \{(x,y) \in \mathbb{R}^2 : (0,2) \mathcal{R}(x,y)\} = \{(x,x^2+2) : x \in \mathbb{R}\}.$$

En general, la clase de un punto $(a,b) \in \mathbb{R}^2$ será el conjunto de puntos $(x,y) \in \mathbb{R}^2$ tales que $(a,b) \mathcal{R}(x,y)$:

$$b - y = a^2 - x^2 \implies y = x^2 - (a^2 - b)$$
.

Es decir,

$$[(a,b)] = \{(x,x^2 - (a^2 - b)) : x \in \mathbb{R}\} = [(0,b-a^2)].$$

Por tanto, todas las clases de equivalencia de los puntos (a,b) con $a \neq 0$ se pueden expresar como la clase de equivalencia de (0,k) con $k \in \mathbb{R}$. Consecuentemente, el conjunto cociente \mathbb{R}^2/\mathcal{R} será el conjunto de todas las parábolas de la forma $y = x^2 + c$ con $c \in \mathbb{R}$.

$$\mathbb{R}^2/\mathcal{R} = \{ [(0, a)] : a \in \mathbb{R} \}.$$