# DEFINITIONS AND FORMULAE WITH STATISTICAL TABLES FOR ELEMENTARY STATISTICS AND QUANTITATIVE METHODS COURSES



Department of Statistics University of Oxford

October 2015

# Contents

| T         | Laws of Probability                                                                  | 1  |
|-----------|--------------------------------------------------------------------------------------|----|
| 2         | Theoretical mean and variance for discrete distributions                             | 1  |
| 3         | Mean and variance for sums of Normal random variables                                | 1  |
| 4         | Estimates from samples                                                               | 1  |
| 5         | Two common discrete distributions                                                    | 1  |
| 6         | Standard errors                                                                      | 2  |
| 7         | 95% confidence limits for population parameters                                      | 2  |
| 8         | z-tests                                                                              | 3  |
| 9         | t-tests                                                                              | 3  |
| 10        | The $\chi^2$ -test                                                                   | 3  |
| 11        | Correlation and regression                                                           | 4  |
| <b>12</b> | Analysis of variance                                                                 | 4  |
| 13        | Median test for two independent samples                                              | 5  |
| 14        | Rank sum test or Mann-Whitney test                                                   | 5  |
| 15        | Sign test for matched pairs                                                          | 5  |
| 16        | Wilcoxon test for matched pairs                                                      | 5  |
| <b>17</b> | Kolmogorov-Smirnov test                                                              | 5  |
| 18        | Kruskal-Wallis test for several independent samples                                  | 6  |
| 19        | Spearman's Rank Correlation Coefficient                                              | 6  |
| 20        | TABLE 1: The Normal Integral                                                         | 7  |
| <b>21</b> | <b>TABLE 2</b> : Table of $t$ <b>TABLE 3</b> : Table of $\chi^2$                     | 8  |
| 22        | <b>TABLE 4:</b> Table of $F$ for $P = 0.05$                                          | 9  |
| 23        | <b>TABLE 5</b> : Critical values of $R$ for the Mann-Whitney rank-sum test           | 9  |
| 24        | TABLE 6:  Critical values for \$T\$ in the Wilcoxon Matched-Pairs Signed-Rank test . | 10 |

#### 1 Laws of Probability

$$P(A \text{ and } B) = P(A)P(B|A) = P(B)P(A|B)$$
  
 
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$A_{1} \xrightarrow{B_{1}} B_{2}$$

$$A_{2} \xrightarrow{B_{1}} B_{R}$$

$$P(B_1) = P(B_1|A_1)P(A_1) + P(B_1|A_2)P(A_2)$$

$$P(A_1|B_1) = \frac{P(B_1|A_1)P(A_1)}{P(B_1)}$$

#### 2 Theoretical mean and variance for discrete distributions

$$\mu = \sum x p(x)$$

$$\sigma^2 = \Sigma (x - \mu)^2 p(x)$$

#### 3 Mean and variance for sums of Normal random variables

If 
$$X_i \sim N(\mu_i, \sigma_i^2)$$
,  $i = 1, ..., n$  and let  $Y = \sum_{i=1}^n a_i X_i$  then

$$\mu_Y = \sum_{i=1}^n a_i \mu_i \qquad \qquad \sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$$

#### 4 Estimates from samples

Ungrouped data:

sample mean 
$$\bar{x} = \frac{\sum x_i}{n}$$

sample variance 
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

Grouped data: 
$$\bar{x} = \frac{\sum fx}{\sum f}$$

$$s^2 = \frac{\sum f(x - \bar{x})^2}{\sum f - 1}$$

for x in a sample of size n, sample proportion  $\hat{p} = \frac{x}{n}$ Counted events:

#### 5 Two common discrete distributions

$$p(x) = {}^{n}C_{x} p^{x} q^{n-x}, x = 0, 1, ..., n$$
  $p(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, ..., \infty$ 

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \qquad x = 0, 1, \dots, \infty$$

$$\mu=np, \ \sigma^2=npq, \ \sigma=\sqrt{npq}$$

$$\mu = \lambda, \quad \sigma^2 = \lambda, \quad \sigma = \sqrt{\lambda}$$

$${}^{n}C_{x} = \frac{n!}{x!(n-x)!}$$

### 6 Standard errors

Single sample of size n

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}$$
 or, if  $\sigma$  unknown,  $\frac{s}{\sqrt{n}}$ 

$$SE(\hat{p}) = \sqrt{\frac{pq}{n}}$$
 with  $q = 1 - p$ , or, if  $p$  unknown,  $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

Sampling without replacement

When n individuals are sampled from a population of N without replacement, the standard error is reduced. The standard error for no replacement  $SE_{NR}$  is related to the standard error with replacement  $SE_{WR}$  by the formula

$$SE_{NR} = SE_{WR}\sqrt{\left(1 - \frac{n-1}{N-1}\right)} = \frac{\sigma}{\sqrt{n}}\sqrt{\left(1 - \frac{n-1}{N-1}\right)},$$

where  $\sigma$  is the known standard deviation of the whole population.

Two independent samples of sizes,  $n_1$  and  $n_2$ 

$$SE(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 or, if  $\sigma_1$  and  $\sigma_2$  unknown and different,  $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ 

For common but unknown  $\sigma$ ,  $SE(\bar{x}_1 - \bar{x}_2) = s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$  with  $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ 

$$SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}, \quad \text{or},$$

if  $p_1$  and  $p_2$  unknown and unequal,  $\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$ 

For common but unknown p,  $SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\hat{p}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}$  where  $\hat{p}$  is a pooled estimate of p defined as  $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$  and  $\hat{q} = 1 - \hat{p}$ .

# 7 95% confidence limits for population parameters

Mean: when  $\sigma$  known use  $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ 

when  $\sigma$  unknown use  $\bar{x} \pm t \frac{s}{\sqrt{n}}$ 

where t is the tabulated two-sided 5% level value with degrees of freedom, d.f. = n-1Proportion:  $\hat{p} \pm 1.96 \sqrt{\hat{p}\hat{q}/n}$ 

2

#### 8 z-tests

Single sample test for population mean 
$$\mu$$
 (known  $\sigma$ ):  $z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$ 

Single sample test for population proportion 
$$p$$
: 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Two sample test for difference between two means (known 
$$\sigma_1$$
 and  $\sigma_2$ ):  $z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ 

Two sample test for difference between two proportions : 
$$z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 where  $\hat{p}$  is a pooled estimate of  $p$  defined as  $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$  and  $\hat{q} = 1 - \hat{p}$ 

#### 9 t-tests

Population variance 
$$\sigma^2$$
 unknown and estimated by  $s^2$   
Single sample test for population mean  $\mu$   $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$  with d.f.=  $n-1$   
Paired samples: test for zero mean difference, using  $n$  pairs  $(x,y)$ ,  $d=x-y$   $t = \frac{\bar{d}}{s_d/\sqrt{n}}$  with d.f.=  $n-1$ , where  $\bar{d}$  and  $s_d$  are the mean and standard deviation of  $d$ .

Independent samples test for difference between population means  $\mu_x$  and  $\mu_y$  using  $n_x$  x's

and 
$$n_y$$
 y's. Provided that  $s_x^2$  and  $s_y^2$  are similar values, use the pooled variance estimate, 
$$s^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}, \quad \text{and } t = \frac{\bar{x} - \bar{y}}{s\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \text{ with d.f} = n_x + n_y - 2$$

#### 10 The $\chi^2$ -test

(Note that the two tests in this section are nonparametric tests. There are  $\chi^2$  tests of variances, not included here, that are *parametric*.)

 $\chi^2$  Goodness-of-fit tests using k groups have d.f.=(k-1)-p where p is the number of independent parameters estimated and used to obtain the (fitted) expected values.

 $\chi^2$  Contingency table tests on two-way tables with r rows and c columns have d.f. = (r-1)(c-1)

For both tests,  $\chi^2 = \sum_{E} \frac{(O-E)^2}{E}$  where O is an observed frequency and E is the corresponding

3

#### 11 Correlation and regression

For n pairs  $(x_i, y_i)$ , with sample variances  $s_x^2$  and  $s_y^2$  as in section 3, define sample covariance,  $s_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)}.$  May be computed as  $s_{xy} = \frac{1}{n-1} \sum x_i y_i - \frac{n}{n-1} \bar{x} \bar{y}$ . Computed from the sample variances  $s_{x+y}^2$  of x+y and  $s_{x-y}^2$  of x-y as  $s_{xy} = \frac{1}{4}(s_{x+y}^2 - s_{x-y}^2)$ .

Sample product-moment correlation coefficient,  $r = \frac{s_{xy}}{s_x s_y}$ Test the significance of the correlation coefficient,  $\rho = 0$ , or equivalently, of the regression  $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$  with d.f.= n-2slope  $\beta = 0$ :

Linear Regression of y on x. Equation  $y = \alpha + \beta x$  with  $\alpha$  and  $\beta$  estimated by a and b.

 $b = \frac{s_{xy}}{s_{\pi}^2}$   $a = \bar{y} - b\bar{x}$ . Estimates:

Root-mean-square error of regression prediction given by  $s_y \sqrt{1-r^2}$ .

Test significance of regression as above or  $t = \frac{b}{SE(b)}$  with d.f. = n-2 where  $SE(b) = \frac{b\sqrt{1-r^2}}{r\sqrt{n-2}}$ 

95% confidence limits for the slope  $\beta$  are:  $b \pm t.SE(b)$ , where t is the tabulated two-sided 5% level value with d.f.= n-2

#### 12 Analysis of variance

Single factor or One-way analysis for a completely randomized design.

The test statistic F is calculated as a ratio of two mean squares. If the numbers in the k groups are  $n_1, n_2, \ldots, n_k$  then the total sample size is  $\sum n_i = n$ . Calculate the "total sum of squares",  $TSS = (n-1)s_T^2$ , where  $s_T^2$  is variance of all n observations. Calculate the sample means and sample variances of the k groups by  $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k$  and  $s_1^2, s_2^2, \dots, s_k^2$  and then the "within groups sum of squares" (also known as the "error sum of squares"),  $ESS = \Sigma(n_i - 1)s_i^2$ . The "between groups sum of squares" may be computed in two different ways:  $BSS = \sum n_i (\bar{x}_i - \bar{x}_T)^2$ , where  $\bar{x}_T$  is the mean of all *n* observations; or BSS = TSS - ESS.

These together with their degrees of freedom are entered into the ANOVA table:

| Source of variation | Degrees<br>of freedom | Sum of squares | $Mean \\ square$        | F                 |
|---------------------|-----------------------|----------------|-------------------------|-------------------|
| Between samples     | k-1                   | BSS            | $BMS = \frac{BSS}{k-1}$ | $\frac{BMS}{EMS}$ |
| Within samples      | n-k                   | ESS            | $EMS = \frac{ESS}{n-k}$ |                   |
| Total               | n-1                   | TSS            |                         |                   |

## 13 Median test for two independent samples

For two independent samples, sizes  $n_1$  and  $n_2$ , the median of the whole sample of  $n = n_1 + n_2$  observations is found. The number in each sample above this median is counted and expressed as a proportion of that sample size. The two proportions are compared using the Z-test as in §8.

### 14 Rank sum test or Mann-Whitney test

For two independent samples, sizes  $n_1$  and  $n_2$ , ranked without regard to sample, call the sum of the ranks in the smaller sample R. If  $n_1 \le n_2 \le 10$  refer to Table 5, otherwise use a Z

test with 
$$z = (R - \mu)/\sigma$$
 where  $\mu = \frac{1}{2}n_1(n_1 + n_2 + 1)$  and  $\sigma = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}$ , assuming  $n_1 \le n_2$ . In case of ties, ranks are averaged.

## 15 Sign test for matched pairs

The number of positive differences from the n pairs is counted. This number is binomially distributed with  $p=\frac{1}{2}$ , assuming a population zero median difference. So apply the Z test for a binomial proportion with  $p=\frac{1}{2}$ .

## 16 Wilcoxon test for matched pairs

Ignoring zero differences, the differences between the values in each pair are ranked without regard to sign and the sums of the positive ranks,  $R_+$  and of the negative ranks,  $R_-$ , are calculated. (Check  $R_+ + R_- = \frac{1}{2}n(n+1)$ , where n is the number of nonzero differences). The smaller of  $R_+$  and  $R_-$  is called T and may be compared with the critical values in Table 6 for a two-tailed test. (For one-tailed tests, use  $R_-$  and  $R_+$  with the same table, remembering to halve P.) In case of ties, ranks are averaged.

# 17 Kolmogorov-Smirnov test

Two samples of sizes  $n_1$  and  $n_2$  are each ordered along a scale. At each point on the scale the empirical cumulative distribution function is calculated for each sample and the difference between the pairs are recorded as  $D_i$ . The largest absolute value of the  $D_i$  is called  $D_{max}$  and this value is compared with the 5% one-tailed value

$$D_{crit} = 1.36\sqrt{\frac{n_1 + n_2}{n_1 n_2}}.$$

Single sample version, compares sample with theoretical distribution,

$$D_{crit} = 1.36\sqrt{\frac{1}{n}}.$$

Should only be used with no ties, but it commonly is used otherwise. With ties, the value of  $D_{max}$  tends to be too small, so that the p-value is an overestimate.

# 18 Kruskal-Wallis test for several independent samples

(Analysis of variance for a single factor). For k samples of sizes  $n_1, n_2, ...n_k$ , comprising a total of n observations, all values are ranked without regard to sample, from 1 to n. The rank sums for the samples are calculated as  $R_1, R_2, ..., R_k$ . (Check  $\Sigma R_i = \frac{1}{2}n(n+1)$ ). The test statistic is

$$H = \left[\frac{12}{n(n+1)} \sum_{i=1}^{n} \frac{R_i^2}{n_i}\right] -3(n+1),$$

which is compared to  $\chi^2$  table with d.f. = k-1

## 19 Spearman's Rank Correlation Coefficient

If x and y are ranked variables the Spearman Rank Correlation Coefficient is just the sample product moment correlation coefficient between the pairs of ranks,  $r_s$ , which may also be computed by

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

where d is the difference x - y, and n is the number of pairs (x, y).

Test 
$$r_s$$
 using  $t = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}}$  with d.f.=  $n-2$ 

Tabled value is P





Probability P of lying outside  $\pm t$ 



Probability P of a value of  $\chi^2$  greater than:

|           | ı      |          |             |             |          | - 1 |                      |              |
|-----------|--------|----------|-------------|-------------|----------|-----|----------------------|--------------|
| d.f.      | P=0.10 | P = 0.05 | P = 0.02    | P=0.01      |          | .f  | P=0.05               | P=0.01       |
| 1         | 6.31   | 12.71    | 31.82       | 63.7        |          | L   | 3.84                 | 6.63         |
| <b>2</b>  | 2.92   | 4.30     | 6.96        | 9.93        |          | 2   | <b>5.99</b>          | 9.21         |
| 3         | 2.35   | 3.18     | <b>4.54</b> | <b>5.84</b> |          | 3   | 7.81                 | 11.34        |
| 4         | 2.13   | 2.78     | 3.75        | 4.60        |          | 1   | 9.49                 | 13.28        |
| 5         | 2.02   | 2.57     | 3.36        | 4.03        |          | 5   | 11.07                | 15.09        |
| 6         | 1.94   | 2.45     | 3.14        | 3.71        |          | 3   | 12.59                | 16.81        |
| 7         | 1.90   | 2.37     | 3.00        | 3.50        | 7        | 7   | 14.07                | 18.48        |
| 8         | 1.86   | 2.31     | 2.90        | 3.36        | 8        | 3   | 15.51                | 20.09        |
| 9         | 1.83   | 2.26     | 2.82        | 3.25        | (        | 9   | 16.92                | 21.67        |
| 10        | 1.81   | 2.23     | 2.76        | 3.17        | 1        | 0   | 18.31                | 23.21        |
| 11        | 1.80   | 2.20     | 2.72        | 3.11        | 1        | 1   | 19.68                | 24.73        |
| 12        | 1.78   | 2.18     | 2.68        | 3.06        | 1        | 2   | 21.03                | 26.22        |
| 13        | 1.77   | 2.16     | <b>2.65</b> | 3.01        | 1        | 3   | 22.36                | 27.69        |
| 14        | 1.76   | 2.15     | <b>2.62</b> | <b>2.98</b> | 1        | 4   | 23.68                | 29.14        |
| <b>15</b> | 1.75   | 2.13     | 2.60        | 2.95        | 1        | 5   | 25.00                | 30.58        |
| 16        | 1.75   | 2.12     | 2.58        | 2.92        | 1        | 6   | 26.30                | 32.0         |
| <b>17</b> | 1.74   | 2.11     | 2.57        | 2.90        | 1        | 7   | 27.59                | 33.41        |
| 18        | 1.73   | 2.10     | <b>2.55</b> | 2.88        | 1        | 8   | 28.87                | 34.81        |
| 19        | 1.73   | 2.09     | <b>2.54</b> | 2.86        | 1        | 9   | 30.14                | 36.19        |
| 20        | 1.73   | 2.09     | 2.53        | <b>2.85</b> | <b>2</b> | 0   | 31.41                | 37.57        |
| 21        | 1.72   | 2.08     | 2.52        | 2.83        | <b>2</b> | 1   | 32.67                | 38.93        |
| 22        | 1.72   | 2.07     | 2.51        | 2.82        | <b>2</b> | 2   | 33.92                | 40.29        |
| <b>23</b> | 1.71   | 2.07     | 2.50        | 2.81        | <b>2</b> | 3   | 35.17                | 41.64        |
| <b>24</b> | 1.71   | 2.06     | 2.49        | 2.80        | <b>2</b> | 4   | 36.42                | 42.98        |
| 25        | 1.71   | 2.06     | 2.49        | 2.79        | <b>2</b> | 5   | 37.65                | 44.31        |
| 26        | 1.71   | 2.06     | 2.48        | 2.78        | <b>2</b> | 6   | 38.89                | <b>45.64</b> |
| <b>27</b> | 1.70   | 2.05     | 2.47        | 2.77        | <b>2</b> | 7   | 40.11                | 46.96        |
| 28        | 1.70   | 2.05     | 2.47        | 2.76        | <b>2</b> | 8   | 41.34                | 48.28        |
| <b>29</b> | 1.70   | 2.05     | 2.46        | 2.76        | <b>2</b> | 9   | $\boldsymbol{42.56}$ | 49.59        |
| 30        | 1.70   | 2.04     | 2.46        | 2.75        | 3        | 0   | 43.77                | 50.90        |
| 40        | 1.68   | 2.02     | 2.42        | 2.70        |          | 0   | <b>55.76</b>         | 63.69        |
| 60        | 1.67   | 2.00     | 2.39        | 2.66        | 6        | 0   | 79.08                | 88.38        |
| $\infty$  | 1.65   | 1.96     | 2.33        | 2.58        |          | 1   |                      |              |
|           | I .    |          |             |             |          |     |                      |              |



Variance ratio  $F = s_1^2/s_2^2$  with  $\nu_1$  and  $\nu_2$  degrees of freedom respectively.

|           | $\nu_1$ | 1    | 2    | 3    | 4    | 5    | 6    | 8    | <b>12</b> | 24   | $\infty$    |          |
|-----------|---------|------|------|------|------|------|------|------|-----------|------|-------------|----------|
| $\nu_2$   |         |      |      |      |      |      |      |      |           |      |             | $\nu_2$  |
| 6         |         | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.15 | 4.00      | 3.84 | 3.67        | 6        |
| 8         |         | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.44 | 3.28      | 3.12 | 2.93        | 8        |
| 10        |         | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.07 | 2.91      | 2.74 | <b>2.54</b> | 10       |
| 12        |         | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.85 | 2.69      | 2.51 | 2.30        | 12       |
| <b>14</b> |         | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.70 | 2.53      | 2.35 | 2.13        | 14       |
| 16        |         | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.59 | 2.42      | 2.24 | 2.01        | 16       |
| 18        |         | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.51 | 2.34      | 2.15 | 1.92        | 18       |
| 20        |         | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.45 | 2.28      | 2.08 | 1.84        | 20       |
| 30        |         | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.27 | 2.09      | 1.89 | 1.62        | 30       |
| 40        |         | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.18 | 2.00      | 1.79 | 1.51        | 40       |
| 60        |         | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.10 | 1.92      | 1.70 | 1.39        | 60       |
| $\infty$  |         | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 1.94 | 1.75      | 1.52 | 1.00        | $\infty$ |

# 23 TABLE 5: Critical values of R for the Mann-Whitney rank-sum test

The pairs of values below are approximate critical values of R for two-tailed tests at levels P=0.10 (upper pair) and P=0.05 (lower pair). (Use relevant P=0.10 entry for one-tailed test at level 0.05).

|                | $\mathbf{larger\ sample\ size},\ n_2$ |           |           |           |           |           |            |            |
|----------------|---------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
|                |                                       | 4         | 5         | 6         | 7         | 8         | 9          | 10         |
| smaller sample | 4                                     | 12,24     | $13,\!27$ | 14,30     | $15,\!33$ | 16,36     | 17,39      | 18,42      |
| size $n_1$     |                                       | $11,\!25$ | $12,\!28$ | $12,\!32$ | $13,\!35$ | $14,\!38$ | $15,\!41$  | $16,\!44$  |
|                | 5                                     |           | 19,36     | 20,40     | 22,43     | 23,47     | 25,50      | 26,54      |
|                |                                       |           | $18,\!37$ | $19,\!41$ | $20,\!45$ | $21,\!49$ | $22,\!53$  | $24,\!56$  |
|                | 6                                     |           |           | 28,50     | 30,54     | 32,58     | 33,63      | $35,\!67$  |
|                |                                       |           |           | $26,\!52$ | $28,\!56$ | $29,\!61$ | $31,\!65$  | $33,\!69$  |
|                | 7                                     |           |           |           | 39,66     | 41,71     | 43,76      | 46,80      |
|                |                                       |           |           |           | $37,\!68$ | $39,\!73$ | $41,\!78$  | $43,\!83$  |
|                | 8                                     |           |           |           |           | 52,84     | 54,90      | 57,95      |
|                |                                       |           |           |           |           | $49,\!87$ | $51,\!93$  | $54,\!98$  |
|                | 9                                     |           |           |           |           |           | 66,105     | 69,111     |
|                |                                       |           |           |           |           |           | $63,\!108$ | $66,\!114$ |
|                | 10                                    |           |           |           |           |           |            | 83,127     |
|                |                                       |           |           |           |           |           |            | $79,\!131$ |

# TABLE 6: Critical values for T in the Wilcoxon Matched-Pairs Signed-Rank test.

The values below are the approximate critical values of T for two-tailed tests at level P. For a significant result, the calculated T must be **less than or equal to** the tabulated value. (Values of P are halved for one-tailed tests using  $R_-$  and  $R_+$ .)

| $\mathbf{n}$ | P = 0.10   | P = 0.05   |
|--------------|------------|------------|
| 5            | 2          | -          |
| 6            | 2          | 0          |
| 7            | 3          | <b>2</b>   |
| 8            | 5          | 3          |
| 9            | 8          | 5          |
| 10           | 10         | 8          |
| 11           | 14         | 10         |
| <b>12</b>    | 17         | 13         |
| 13           | 21         | 17         |
| 14           | 26         | 21         |
| 15           | 30         | 25         |
| 16           | 36         | 29         |
| <b>17</b>    | 41         | 34         |
| 18           | 47         | 40         |
| 19           | 53         | 46         |
| <b>20</b>    | 60         | $\bf 52$   |
| 21           | 67         | 58         |
| 22           | <b>7</b> 5 | 65         |
| 23           | 83         | <b>7</b> 3 |
| 24           | 91         | 81         |
| <b>25</b>    | 100        | 89         |