COMP 4901Q: High Performance Computing (HPC)

Lecture 10: Collective Communication Algorithms in MPI

Instructor: Shaohuai SHI (shaohuais@cse.ust.hk)

Teaching assistants: Mingkai TANG (mtangag@connect.ust.hk)

Yazhou XING (yxingag@connect.ust.hk)

Course website: https://course.cse.ust.hk/comp4901q/

Outline

- Blocking vs. Nonblocking Communications
- MPI Derived Datatypes
- Collective Communications
 - Basic collective communications
 - Advanced collective algorithms
- A Case Study

Blocking Message Passing

- A blocking message passing operation means that it won't return until the desired operation has been finished.
 - It can guarantee the correctness of semantic.
 - Its performance may not be good, because while data is being transmitted, the sender/receiver can do nothing (i.e., being blocked!).
- MPI_Send and MPI_Recv are blocking operations.
- Case I: blocking non-buffered Send/Receive
 - The send operation doesn't return until the matching receive has been encountered at the receiving process.
 - Once the receive operation is encountered, the message is sent and the send operation returns upon completion of the communication operation.

Blocking Non-Buffered Send/Receive

- Two issues of blocking non-buffered operations
 - Idling overhead
 - Since the send operation and receive operation may be executed at different time, either the sender or receiver will be idling for a period, waiting for the other side.

Deadlocks

The below example shows a deadlock scenario, in which two processes try to exchange two values, a and b.

Process 0	Process 1
Send(&a, 1, 1);	Send(&a, 1, 0);
Receive(&b, 1, 1);	Receive(&b, 1, 0);

Question: how to correct the above code?

Blocking Non-Buffered Send/Receive

Source: Fig. 6.1 of Ref. [1].

Blocking Message Passing

- Case 2: blocking buffered Send/Receive
 - The "idling overheads" and "deadlocks" issues of Case I can be alleviated by introducing "buffers".
- Example: The communication hardware has buffers at send and receive ends.
 - For the send operation, the sender copies the data into a buffer, and returns immediately after the copy operation.
 - The sender can continue with other jobs.
 - The actual communication can be accomplished in many ways, depending on the hardware resources.

Source: Fig. 6.2 (a) of Ref. [1].

Non-blocking Message Passing

Non-blocking send/receive operations return immediately, even if the communication is not finished.

lt can avoid most deadlocks.

It can achieve better performance by overlapping communication with computation.

It requires a complicated program design.

Non-blocking Message Passing

Non-blocking non-buffered send and receive operations

Source: Fig. 6.4 of Ref. [1].

Non-blocking Message Passing

- Problem: how does a process know that the data communication task is finished?
- Answer: the programmer needs to check the status of the previous non-blocking operation
 - If the data communication is finished, you can start to process the data;
 - If the data communication is not finished, you can either sleep or do some other safe computing tasks.

Non-blocking Message Passing in MPI

 MPI provides a pair of functions for non-blocking send and receive operations: MPI_Isend and MPI_Irecv

- dest specifies the rank of the process that should receive the message
- tag (a nonnegative integer) is used to distinguish messages
- comm specifies the process group
- Request is a pointer to a request object, which is used by MPI_Test and MPI_Wait functions to identify the operation whose status we want to query or to wait for its completion.

Non-blocking Message Passing in MPI

```
int MPI_Irecv(void* buf,
int maxsize,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI_Request* request);
```

- Solution of the state of the message of the mess
- source specifies the rank of the process from which the message should be received
- tag should match the "tag" specified by the sender
- comm specifies the process group
- Request is a pointer to a request object, which is used by MPI_Test and MPI_Wait functions to identify the operation whose status we want to query or to wait for its completion.
- Remark: there is no status_p argument. The status information associated with the receive operation is returned by MPI_Test and MPI_Wait functions.

MPI_Test

- MPI_Test tests whether or not a non-blocking send or receive operation has finished.
 - ▶ The send or receive operation is identified by a request object with type MPI_Request
- int MPI_Test(MPI_Request *request, int *flag, MPI Status *status);
 - **request** identifies the non-blocking operation. If the operation has finished, the request object will be deallocated.
 - flag is set to true (non-zero in C/C++) if the non-blocking operation has finished, or false (0 in C/C++) otherwise.
 - **status** is set to contain information about the operation if the non-blocking operation has finished.

MPI_Wait

MPI_Wait blocks until the non-blocking operation (identified by an argument) completes.

- int MPI_Wait(MPI_Request *request, MPI Status *status);
 - request identifies the non-blocking operation.
 - > status is set to contain information about the operation.

A Simple Example

```
3 int main(int argc, char *argv[])
 4 {
       int myid, numprocs, tag;
       int buffer;
       MPI_Status status;
 8
       MPI_Request request;
10
       MPI_Init(&argc,&argv);
11
       MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
12
       MPI_Comm_rank(MPI_COMM_WORLD,&myid);
13
       tag=1234;
14
       if(myid == 0){
15
           buffer = \overline{5678};
16
           MPI_Isend(&buffer, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &request);
17
18
       if(myid == 1){
19
           MPI_Irecv(&buffer, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &request);
20
21
       MPI_Wait(&request, &status);
       if(myid == 0)
22
23
           printf("Process %d sent %d\n", myid, buffer);
24
25
       if(myid == 1){
26
           printf("Process %d got %d\n", myid, buffer);
27
       MPI_Finalize();
28
29 }
```

Process 0 sends an integer to process 1.

Both processes use non-blocking message passing.

Blocking and Non-Blocking

A non-blocking communication operation can be matched with a corresponding blocking operation.

For example, a process sends a message using a non-blocking send operation, and the message can be received by the other process using a blocking receive operation.

Derived Datatypes

Previously, MPI programs only exchange data which are stored as a continuous array and all data elements in a message must have the same type.

Motivations

- I. In today's distributed memory systems, communication is much more expensive than local computation.
- 2. The cost of sending a fixed amount of data in multiple messages is much greater than the cost of sending a single message with the same amount of data
- In MPI, derived datatype is an approach to consolidating multiple data into a single message, even if they are not stored continuously in memory.
 - Once you created a derived datatype, you can use it just like other basic MPI datatypes.

Derived Datatypes

- A derived datatype is used to represent a collection of data items in memory by storing both the types of the items and their relative locations in memory.
 - Idea: if a function that sends data knows the information about a collection of data items, it can collect the items from memory before they are sent.
 - Similarly, a function that receives data can distribute the items into their correct destinations in memory when they're received.

Example of Derived Datatypes

- Assume a process wants to broadcast the following three variables
 - double a, b;
 - int n.
- ▶ A simple solution: call MPI_Bcast three times.
- Or, we can create a new datatype that can consolidate a, b, n into a single message, and then call a single MPI_Bcast.
 - Remember that data types in MPI have the type MPI_Datatype. So we are trying to create a variable with type MPI_Datatype.
- Formally, the derived datatype consists of a sequence of basic MPI data types together with a displacement for each of the data types.
 - Each data type is called a block, which can have multiple data elements.

Variable	Address	(
a	24	
b	40	
n	48	

displacement
0
16
24

In the left example, the derived datatype consists of three blocks, each with a single data element.

MPI_Type_create_struct

MPI_Type_create_struct() builds a derived datatype that consists of individual elements that have different basic types.

```
int MPI_Type_create_struct(
    int count, /* in */
    int array_of_blocklengths[], /* in */
    MPI_Aint array_of_displacements[], /* in */
    MPI_Datatype array_of_types[], /* in */
    MPI_Datatype* new_type_p /* out */)
```

- count is the number of blocks in the new datatype
- array_of_blocklengths[] stores the number of data elements in each block
- array_of_displacement[] stores the displacements (in bytes) of each block
- array_of_types[] stores the MPI datatypes of elements in each block
- new_type_p is a pointer to the MPI derived datatype

MPI_Get_address

- How to find out the displacements?
 - Get the addresses of the memory location of each element by MPI_Get_address();
 - Calculate the displacements by subtractions
- ▶ A special MPI type MPI_Aint is used to store memory address
- - location_p is the pointer to the target variable
 - address_p is the variable used to store the memory address of the target variable

MPI_Type_commit and MPI_Type_free

- ▶ A derived datatype must be committed by MPI_Type_commit() before it can be used.
 - MPI_Type_commit() allows the MPI implementation to optimize its internal representation of the datatype for use in communication functions.
- int MPI_Type_commit(MPI_Datatype* new_type_p);
- After using the new datatype, we can free its additional storage with MPI_Type_free()
- int MPI_Type_free(MPI_Datatype* old_type_p);

Derived Datatype: Example

```
1 #include "mpi.h"
 2 #include <stdio.h>
3 struct mystruct {
                       C/C++ structure for a single data element.
       char x;
                       We will convert it into an MPI derived datatype.
       double y[6];
       int z[4];
7 };
 8
 9 int main(int argc, char *argv[]) {
       struct mystruct mydata[1000];
10
11
       int i, j, myid;
12
       MPI_Status status;
13
       MPI_Datatype mytype;
14
       MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_INT};
15
       int blocklen[3] = \{1, 6, 4\};
16
       MPI_Aint disp[3];
17
       MPI_Init(&argc, &argv);
       disp[0] = &mydata[0].x - &mydata[0];
18
       disp[1] = &mydata[0].y - &mydata[0];
19
20
       disp[2] = &mydata[0].z - &mydata[0];
       MPI_Type_create_struct(3, blocklen, disp, type, &mytype);
21
22
       MPI_Type_commit(&mytype);
       MPI_Comm_rank(MPI_COMM_WORLD, &myid);
```

Derived Datatype: Example

```
24
       if (myid == 0) {
25
           /* the code of initializing mydata[] should be put here */
26
           MPI_Send(mydata, 1000, mytype, 1, 0, MPI_COMM_WORLD);
27
       } else if (myid == 1){
28
           MPI_Recv(mydata, 1000, mytype, 0, 0, MPI_COMM_WORLD, &status);
29
30
       MPI_Type_free (mytype);
31
       MPI_Finalize();
32
       return 0;
33 }
```

Collective Communication

- Point-to-point communication happens between two processes.
- Collective communication is a method of communication which involves participation of all processes in a communicator.
 - Example I: process 0 needs to broadcast a vector to all other processes
 - Example 2: process 0 needs to receive data from all other processes and then perform a calculation

Motivation

- Consider the following example: how to sum up 8 numbers owned by 8 different processes?
 - Solution 1:

```
for( i = 1; i < 8; i++)
Process i sends its number to process 0;
```

Process 0 adds the received 7 numbers with its own number.

- Analysis:
 - Solution I involves 7 network transmissions, all with Process 0 as the destination. In a typical cluster, these 7 network transmissions take place sequentially (assuming the host of process 0 has a single network interface).

Motivation (Cont.)

- Solution 2 (a better one)
 - (I.a) Process I sends to 0, 3 sends to 2, 5 sends to 4, and 7 sends to 6.
 - ▶ (1.b) Processes 0, 2, 4, and 6 add in the received values.
 - ▶ (2.a) Processes 2 and 6 send their new values to processes 0 and 4, respectively.
 - ▶ (2.b) Processes 0 and 4 add the received values into their new values.
 - ▶ (3.a) Process 4 sends its newest value to process 0.
 - ▶ (3.b) Process 0 adds the received value to its newest value.

Solution 2: A Tree-Structured Global Sum

Analysis of Solution 2

- By using a network switch, multiple data communications can happen simultaneously if there is no common source/destination
- Solution 2 also needs a total of 7 data communications
- ▶ But, these 7 communications can happen in just 3 steps
 - Because some communications can take place in parallel
- It's easy to see that, summing up n numbers takes log₂n steps only. Solution I takes n-I steps.

An Alternative Tree-Structured Global Sum

Data Reduction in MPI

- The previous example is a typical pattern called "reduction", i.e., to reduce a set of messages into a single message within a process group.
 - Good solutions are much better than a simple solution.
 - ▶ There are different ways to implement a good solution.
 - A message can include multiple data elements. The reduction operation is applied element-wise on each data element.

MPI_Reduce

MPI provides an optimized library function MPI_Reduce for reduction operation. The reduced results will be stored in a "destination process".

- <sendbuf, count, datatype> specify the "message"
- <recvbuf, root> specify where to store the reduced result (i.e., recvbuf at process root)
- operator specify the reduction operation (see next slide)
- comm specifies the process group

MPI_Reduce

- The reduction operations are performed element-wise.
- Can recybuf be the same as sendbuf at process 0?
 - Answer: NO!

MPI Reduction Operators

▶ The following operators are supported by MPI:

Operation Value	Meaning
MPI_MAX	Maximum
MPI_MIN	Minimum
MPI_SUM	Sum
MPI_PROD	Product
MPI_LAND	Logical and
MPI_BAND	Bitwise and
MPI_LOR	Logical or
MPI_BOR	Bitwise or
MPI_LXOR	Logical exclusive or
MPI_BXOR	Bitwise exclusive or
MPI_MAXLOC	Maximum and location of maximum
MPI_MINLOC	Minimum and location of minimum

Collective vs. Point-to-Point Communications

- ▶ All processes in the communicator must call the same collective function.
- For example, a program that attempts to match a call to MPI_Reduce on one process with a call to MPI_Recv on another process is erroneous, and, in all likelihood, the program will hang or crash.

Collective vs. Point-to-Point Communications

- The arguments passed by each process to an MPI collective communication must be "compatible".
- For example, if one process passes in 0 as the root and another passes in 1, then the outcome of a call to MPI_Reduce is erroneous, and, once again, the program is likely to hang or crash.

Collective vs. Point-to-Point Communications

- ▶ The recybuf argument is only used on dest_process.
- However, all of the processes still need to pass in an actual argument corresponding to recybuf, even if it's just NULL.

Collective vs. Point-to-Point Communications

- Point-to-point communications are matched on the basis of tags and communicators.
- ▶ Collective communications don't use tags.
- They're matched solely on the basis of the communicator and the order in which they're called.

Test Yourself

- Suppose that each process calls MPI_Reduce with operator MPI_SUM, and destination process 0.
 - At the end, what will be the value of b and d at process 0, respectively?

Time	Process 0	Process 1	Process 2
0	a = 1; c = 2	a = 1; c = 2	a = 1; c = 2
1	MPI_Reduce(&a, &b,)	MPI_Reduce(&c, &d,)	MPI_Reduce(&a, &b,)
2	MPI_Reduce(&c, &d,)	MPI_Reduce(&a, &b,)	MPI_Reduce(&c, &d,)

Some Major Collective Communications

- MPI_Reduce
- MPI_Bcast
- MPI_Scatter
- MPI_Gather
- MPI_Allgather
- MPI Allreduce
- MPI Alltoall
- MPI_Reduce_scatter

MPI_Barrier

MPI_Bcast

Data belonging to a single process is sent to all of the processes in the process group.

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

- <buf, count, datatype> specify the "message"
- root specifies the rank of the source process
- comm specifies the process group

MPI_Scatter

- MPI_Scatter evenly divides a vector of data owned by a root process into a number of pieces, and sends each piece to each of the other processes.
 - # of pieces equals # of processes in the process group
 - Assumption: the # of data items can be evenly divided by the # of processes
- int MPI_Scatter(void *sendbuf, int sendcount,

MPI_Datatype senddatatype,

void *recvbuf, int recvcount,

MPI_Datatype recvdatatype,

int root, MPI_Comm comm)

- <sendbuf, sendcount, senddatatype> specify the "source message", where
 sendcount is the amount of data sent to each process, NOT the total amount
 of data in the sendbuf
- > <recvbuf, recvcount, recvdatatype> specify the "received message", where recvcount is the amount of data received by each process
- root specifies the rank of the source process
- comm specifies the process group

MPI_Gather

- MPI_Gather collects data from all processes in a process group onto a single process.
 - Remark: each process has to contribute the same amount of data items
- int MPI_Gather(void *sendbuf,

int sendcount,

MPI_Datatype senddatatype,

void *recvbuf,

int recvcount,

MPI_Datatype recvdatatype,

int root,

MPI Comm comm)

- <sendbuf, sendcount, senddatatype> specify the "source message", where sendcount is the amount of data sent out by each process
- <recvbuf, recvcount, recvdatatype> specify the "received message", where recvcount is the amount of data received from each process
- root specifies the rank of the destination process
- comm specifies the process group

MPI_Scatter and MPI_Gather

Example of MPI_Scatter: Distribute an Array

```
int n, local_n, my_rank, comm_sz;
       MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
       MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
       if (my_rank == 0) {
           scanf("%d", &n);
           MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
       } else {
           MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
12
13
       local_n = n / comm_sz;
       local_a = malloc(local_n * sizeof(double));
15
       if (my_rank == 0) {
           a = malloc(n * sizeof(double));
           for (i = 0; i < n; i++)
18
               scanf("%lf", &a[i]);
19
           MPI_Scatter(a, local_n, MPI_DOUBLE, local_a, local_n, MPI_DOUBLE, 0, MPI_COMM_WORLD);
20
       } else {
21
           MPI_Scatter(a, local_n, MPI_DOUBLE, local_a, local_n, MPI_DOUBLE, 0, MPI_COMM_WORLD);
```

MPI_Allgather

MPI_Allgather concatenates the data of each process and stores the concatenated data in each process.

int MPI_Allgather(void *sendbuf,

int sendcount,

MPI_Datatype senddatatype,

void *recvbuf,

int recvcount,

MPI_Datatype recvdatatype,

MPI Comm comm)

- <sendbuf, sendcount, senddatatype> specify the "source message", where sendcount is the amount of data sent out by each process
- > <recvbuf, recvcount, recvdatatype> specify the "received message", where recvcount is the amount of data received from each process
- comm specifies the process group

MPI_Allreduce

int MPI_Allreduce(void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op operator,

MPI_Comm comm)

Similar to MPI_Reduce, but the reduced results are stored in ALL processes

MPI_Allreduce: Algorithm 1

► A 2log₂n solution to MPI_Allreduce:

MPI_Allreduce: Algorithm 2

- ► A log₂n solution to MPI_Allreduce: butterfly-structure
- It exploits the fact that today's network interface card and network switch support simultaneous send and receive operations.

MPI_Allreduce: Algorithm 3

A bandwidth friendly solution to MPI_Allreduce: ring-based $2(n-1)\alpha + 2(n-1)\beta m/n$

Allreduce: Algorithm 4

▶ A solution to balance the latency and bandwidth: hierarchical Allreduce [1]

MPI_Alltoall

int MPI_Alltoall (void *sendbuf,

- Like a transpose
- ▶ Can be seen as a collection of simultaneous scatters or simultaneous gathers

MPI_Alltoall Example

Suppose there are four processes including the root, each with arrays u and v. After the all-to-all operation

MPI_Alltoall(u, 2, MPI_INT, v, 2, MPI_INT, MPI_COMM_WORLD);

array u	Rank	array v
10 11 12 13 14 15 16 17	0	10 11 20 21 30 31 40 41
20 21 22 23 24 25 26 27	1	12 13 22 23 32 33 42 43
30 31 32 33 34 35 36 37	2	14 15 24 25 34 35 44 45
40 41 42 43 44 45 46 47	3	16 17 26 27 36 37 46 47

MPI_Reduce_scatter

int MPI_Reduce_scatter(void *sendbuf, void *recvbuf, const int recvcounts[], MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

- sendbuf: Starting address of send buffer.
- recvbuf: Starting address of receive buffer (choice)
- recvcounts: Integer array specifying the number of elements in result distributed to each process. Array must be identical on all calling processes.

MPI_Barrier

- Barrier is a commonly used synchronization method for a group of processes or threads.
 - Each member needs to wait at the barrier, until all members in the group have arrived at the barrier.
- ▶ MPI_Barrier implements the barrier synchronization operation.
 - The call to MPI_Barrier returns only after all the processes in the group have called this function.
- int MPI_Barrier(MPI_Comm comm)

Matrix-Vector Multiplication: Scatter and Gather

```
4 int main(int argc, char** argv)
 5 {
       int m = 0, n = 0, myid, numprocs, i;
       int srow = 0;
       double *A, *x, *y, *local_A, *local_y;
       double start, end;
10
11
       MPI_Init(&argc, &argv);
12
       MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
13
       MPI_Comm_rank(MPI_COMM_WORLD, &myid);
14
15
       if(myid == 0) {
16
           while ( m <= 0 || n <= 0 || m%numprocs != 0) {</pre>
17
               printf("Please input positive integers m and n: ");
18
               scanf("%d %d", &m, &n);
19
                                                                             Prepare the data at Process 0
20
           A = (double*) malloc( m * n * sizeof(double) );
21
           x = (double*) malloc(n * sizeof(double) );
22
           y = (double*) malloc(m * sizeof(double) );
23
           init_array(A, m * n);
24
           init_array(x, n);
```

Matrix-Vector Multiplication: Scatter and Gather

```
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
                                                          Broadcast m and n
       MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
28
29
30
       srow = m / numprocs;
31
32
       local_A = (double*) malloc( srow * n * sizeof(double) );
                                                                      Memory allocation
33
       local_y = (double*) malloc( srow * sizeof(double) );
34
       if(myid != 0) x = (double*) malloc(n * sizeof(double));
35
36
       MPI_Bcast(x, n, MPI_DOUBLE, 0, MPI_COMM_WORLD);
37
                                                                                                Scatter
       MPI_Scatter(A, srow * n, MPI_DOUBLE, local_A, srow * n, MPI_DOUBLE, ∅, MPI_COMM_WORLD);
38
                                                                                                matrix A
39
40
       Mat_vect_mul(local_A, x, local_y, srow, n);
                                                                                            Gather
41
42
       MPI_Gather(local_y, srow, MPI_DOUBLE, y, srow, MPI_DOUBLE, 0, MPI_COMM_WORLD);
                                                                                            vector y
43
       if (myid == 0) { free(A); free(y); }
44
       free(local_A); free(x); free(local_y);
45
       MPI_Finalize();
46
       return 0;
47 }
```

A Case Study

Solving A System of Linear Equations by Gaussian Elimination

$$A x = b$$

- It was used to evaluate the TOP500 supercomputers.
 - http://www.top500.org/project/linpack/

Linear Equations

Consider the problem of solving the following linear equations:

This is written as $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $n \times n$ matrix with $\mathbf{A}[i,j] = a_{i,j}$, \mathbf{b} is an $n \times 1$ vector $[b_0, b_1, \dots, b_{n-1}]^T$, and \mathbf{x} is the solution.

Solution: Gaussian Elimination

- ▶ Two steps: (I) reduction \triangle to upper triangular form, and (2) back-substitution.
- ▶ The upper triangular form is as:

- We write this as: Ux = y. Notice that we choose a unit upper-triangular matrix for U, whose diagonal entries are all equal to one.
- A commonly used method for transforming a given matrix into an uppertriangular matrix is Gaussian Elimination.

$$4x_0 +6x_1 +2x_2 -2x_3 = 8$$

$$2x_0 +5x_2 -2x_3 = 4$$

$$-4x_0 -3x_1 -5x_2 +4x_3 = 1$$

$$8x_0 +18x_1 -2x_2 +3x_3 = 40$$

$$2x_0 +1.5x_1 +0.5x_2 -0.5x_3 = 2$$

$$2x_0 +5x_2 -2x_3 = 4$$

$$-4x_0 -3x_1 -5x_2 +4x_3 = 1$$

$$8x_0 + 18x_1 - 2x_2 + 3x_3 = 40$$

$$x_0 +1.5x_1 +0.5x_2 -0.5x_3 = 2$$

$$-3x_1 +4x_2 -1x_3 = 0$$

$$+3x_1 -3x_2 +2x_3 = 9$$

$$+6x_1 -6x_2 +7x_3 = 24$$

$$x_0$$
 +1.5 x_1 +0.5 x_2 -0.5 x_3 = 2

$$x_1 - 4/3x_2 + 1/3x_3 = 0$$

$$+3x_1 - 3x_2 + 2x_3 = 9$$

$$+6x_1 - 6x_2 + 7x_3 = 24$$

$$x_0$$
 +1.5 x_1 +0.5 x_2 -0.5 x_3 = 2

 x_1 -4/3 x_2 +1/3 x_3 = 0

 $1x_2$ +1 x_3 = 9

 $2x_2$ +5 x_3 = 24

$$x_0 +1.5x_1 +0.5x_2 -0.5x_3 = 2$$

$$x_1 -4/3x_2 +1/3x_3 = 0$$

$$x_2 +x_3 = 9$$

 $3x_3 =$

$$x_0$$
 +1.5 x_1 +0.5 x_2 -0.5 x_3 = 2
$$x_1$$
 -4/3 x_2 +1/3 x_3 = 0
$$x_2$$
 + x_3 = 9
$$x_3$$
 = 2

Back Substitution

$$x_3$$
 = 2
 x_2 = 9- x_3 = 7
 x_1 = 4/3 x_2 -1/3 x_3 = 26/3
 x_0 = 2 -1.5 x_1 -0.5 x_2 +0.5 x_3 = -27/2

Serial Gaussian Elimination

 \blacktriangleright A serial Gaussian Elimination algorithm that converts $\mathbf{A}\mathbf{x}=\mathbf{b}$ to $\mathbf{U}\mathbf{x}=\mathbf{y}$

```
procedure GAUSSIAN_ELIMINATION (A, b, y)
                                      begin
                                                                          /* Outer loop */
                                 3.
                                          for k := 0 to n - 1 do
                                          begin
Input: A, b
                                             for j := k + 1 to n - 1 do
                                                A[k, j] := A[k, j]/A[k, k]; /* Division step */
Output: U, y
                                             y[k] := b[k]/A[k, k];
                                             A[k, k] := 1;
U is stored in the upper-
                                             for i := k + 1 to n - 1 do
triangular locations of A.
                                 10.
                                             begin
                                                for j := k + 1 to n - 1 do
                                 11.
                                 12.
                                                    A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
                                 13.
                                                b[i] := b[i] - A[i, k] \times y[k];
                                 14.
                                                A[i, k] := 0;
                                             endfor:
                                                          /* Line 9 */
                                 15.
                                 16.
                                          endfor; /* Line 3 */
                                      end GAUSSIAN_ELIMINATION
```

Source: Algorithm 8.4 of Ref. [1]

A Typical Computation in Gaussian Elimination

- The computation has three nested loops.
 - In the kth iteration of the outer loop, the algorithm performs $(n-k)^2$ computations.
 - Summing from k = 1...n, we have roughly $n^3/3$ multiplications-subtractions, or $2n^3/3$ operations.

Source: Figure 8.5 of Ref. [1]

Back-Substitution

- Sequential back-substitution algorithm for solving an upper-triangular system of equations Ux=y
 - **U** is a unit upper-triangular matrix (i.e., U[k,k] = I)
 - It takes $n^2/2$ multiplications and subtractions

```
1. procedure BACK_SUBSTITUTION (U, x, y)

2. begin

3. for k := n - 1 downto 0 do /* Main loop */

4. begin

5. x[k] := y[k];

6. for i := k - 1 downto 0 do

7. y[i] := y[i] - x[k] \times U[i, k];

8. endfor;

9. end BACK_SUBSTITUTION
```

Source: Algorithm 8.5 of Ref. [1]

A Small Test

- ▶ Tianhe-2 is one of the fastest supercomputers in the world (rank 6th as of 2020)
 - http://www.top500.org/system/177999
- Its Linkpack performance (i.e., R_{max}) is 33,862.7 TFlop/s, measured by solving a linear system with 9,960,000 (i.e., N_{max}) linear equations.
- Can you estimate how long does Tianhe-2 take to solve the linear system with N_{max} equations?

Partial Pivoting

- In the previous algorithm, we implicitly assume that A[k,k] is not zero or close to zero.
 - Why?
- Partial pivoting (by column exchange)
 - At the beginning of the outer loop in the kth iteration, select a column i such that A[k, i] is the largest in magnitude among all A[k, j], $k \le j < n$. We call column i the **pivot column**.
 - Exchange the kth and the ith columns before starting the iteration.
- Partial pivoting (by row exchange)

Parallel Gaussian Elimination: 1-D Partitioning

- ▶ We can apply rowwise I-D partitioning on the coefficient matrix A.
- Assume each row is assigned to a process
 - An $n \times n$ matrix requires n processes.
 - ▶ Process $i(P_i)$ initially stores data $A[i,j], 0 \le j < n$
- ▶ How to parallelize Algorithm 8.4 shown in Page 68?

Parallel Gaussian Elimination: 1-D Partitioning

- In the outer loop (line 3), each iteration has a dependency on the previous iterations (in the general sense)
 - We cannot easily parallelize at this level

- In the inner level (lines 9-15), the elimination step for each row is independent from each other
 - These computations can be done in parallel by different processes

An Example: n = 8, k = 3

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

Lines 5-8:

```
for j := k+1 to n-1 do

A[k,j] := A[k,j] / A[k,k];

y[k] := b[k] / A[k,k];

A[k,k] := 1;
```

The above codes are executed by Process P_3 only.

No communication is required.

Source: Figure 8.6 (a) of Ref. [1]

An Example: n = 8, k = 3

P_0	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_1	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P ₂	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P ₃	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
P ₄	0	0	0	$(4,3)$ $\forall (4,4)$ $\forall (4,5)$ $\forall (4,6)$ $\forall (4,7)$
P ₅	0	0	0	$(5,3)$ $\forall (5,4)$ $\forall (5,5)$ $\forall (5,6)$ $\forall (5,7)$
P ₆	0	0	0	$(6,3)$ $\forall (6,4)$ $\forall (6,5)$ $\forall (6,6)$ $\forall (6,7)$
P ₇	0	0	0	$(7,3)$ $\forall (7,4)$ $\forall (7,5)$ $\forall (7,6)$ $\forall (7,7)$

Source: Figure 8.6 (b) of Ref. [1]

After the calculations of lines 5-8, data A[k, j], k < j < n, need to be broadcast to processes $P_4 - P_7$.

We call these data "active data".

An Example: n = 8, k = 3

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

Source: Figure 8.6 (c) of Ref. [1]

```
Lines 9-15:

for i := k+1 to n-1 do
  begin
  for j := k+1 to n-1 do
      A[i,j] -= A[i,k] * A[k,j];
  b[i] -= A[i,k] * y[k];
  A[i,k] := 0;
end
```

The above codes are executed by Processes P_4 - P_7 in parallel.

No communication is required.

Analysis for the Case of n Processors

- The first step of the algorithm normalizes the row. This is a serial operation and takes time (n-k-1) in the k-th iteration.
- In the second step, the active data in the normalized row are broadcast to (n-k-I) processors. This takes time

$$(t_s + t_w(n-k-1)) \log n$$

- Each processor can independently eliminate this row from its own. This requires (n-k-1) multiplications and subtractions.
- ▶ To summarize, the k-th iteration takes 3(n-k-1) calculations and

$$(t_s + t_w(n-k-1)) \log n$$

communications.

Analysis for the Case of n Processors

The total parallel run time can be computed by summing from $k = 0 \dots n-1$ as

$$T_P = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2}t_w n(n-1) \log n.$$

The cost of the parallel solution is nT_{D} , which is

$$\Theta(n^3 \log n)$$

So this solution is not cost-optimal!

Two Inefficiencies

- Communications overhead
 - For each iteration k, each process performs $\Theta(n-k)$ calculations in parallel. But the communication time for each iteration is $\Theta(n-k)\log_2 n!$

- Load imbalance
 - Process P_i will become totally idle after the (i+1)-th iteration
 - Process P_o has the lightest workload of $\Theta(n)$, while P_{n-1} has the heaviest workload of $\Theta(n^2)$.

How to Improve?

- In the previous method, the (k+1)-th iteration starts only after all the computation and communication for the k-th iteration is complete.
 - Is it a must?
- \blacktriangleright Inside each iteration of k, the calculations happen after the data communications.
 - ▶ Is it a must?
- To answer the above questions, we need to have an in-depth analysis of serial Algorithm 8.4.

In-depth Analysis of Algorithm 8.4

- In iteration k, Process P_k broadcasts its active data to Processes $P_{k+1}, ..., P_{n-1}$.
 - This can be done by a sequential forwarding: $P_k \rightarrow P_{k+1}, P_{k+1} \rightarrow P_{k+2}, ..., P_{n-2} \rightarrow P_{n-1}$.
- For process P_{k+1} , after forwarding the active data to P_{k+2} , it need not wait for all processes to receive the active data. Instead, it can start to perform the elimination step (Line 12)!
 - We can overlap communications with computations!
- After P_{k+1} performs its elimination step in the k-th iteration, it can start to perform the division step (Line 6) for the (k+1)-th iteration. Then it can start to send its active data to process P_{k+2} .
 - We can overlap iteration K+1 with iteration k! It can further overlap communications with computations, and also simultaneous communications!
- Next, we will show a "pipelined" parallel solution by a 5x5 example.

An Example of 5x5 Matrix

- (a) P_0 performs the division on row 0.
- (b) P_0 forwards its active data to P_1 .
- (c) P_1 forwards its active data to P_2 .
- (d) P_1 performs elimination. Meanwhile, P_2 forwards its active data to P_3 .

(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$	(2,0) (2,1) (2,2) (2,3) (2,4)
(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)
(0,0) (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4

Source: Figure 8.7 (a-d) of Ref. [1]

An Example of 5x5 Matrix

(e) P_2 performs the elimination. Meanwhile, P_3 forwards its active data to P_4 . Furthermore, P_1 performs the division on row I – iteration k=1 starts while iteration k=0 has not finished yet!

(f-p) Go through them by yourselves.

1	(0,1)	(0,2)	(0,3)	(0,4)
	(1,1)			
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)

1	(0,1)	(0,2)	(0,3)	(0,4)
0	1	(1,2)	(1,3)	(1,4)
0	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)

1	(0,1)	(0,2)	(0,3)	(0,4)
0	(1,1)	(1,2)	(1,3)	(1,4)
0	(2,1)	(2,2)	(2,3)	(2,4)
0	(3,1)	(3,2)	(3,3)	(3,4)
(4,0) (4,1)	(4,2)	(4,3)	(4,4)

(e) Iteration k = 1 starts

(f)

(g) Iteration k = 0 ends

(h)

Source: Figure 8.7 (e-h) of Ref. [1]

An Example of 5x5 Matrix

1 (0,1) (0,2) (0,3) (0,4)
0 1 (1,2) (1,3) (1,4)
0 0 1 (2,3) (2,4)
0 0 (3,2)
$$\sqrt{(3,3)} \sqrt{(3,4)}$$

0 (4,1) (4,2) (4,3) (4,4)

1	(0,1)	(0,2)	(0,3)	(0,4)
0	1	(1,2)	(1,3)	(1,4)
0	0	1	(2,3)	(2,4)
0	0	(3,2)	(3,3)	(3,4)
0	0	(4,2)	(4,3)	(4,4)

(i) Iteration
$$k = 2$$
 starts

(j) Iteration
$$k = 1$$
 ends

(m) Iteration k = 3 starts

(n)

(o) Iteration k = 3 ends

(p) Iteration k = 4

Source: Figure 8.7 (i-p) of Ref. [1]

Pipelined Parallel Solution

In the pipelined version, each process P_i performs the followings:

```
step = 0;
while (step < i) {
   Receive the "active data" from P<sub>i-1</sub>;
   Send the "active data" to P<sub>i+1</sub>;
   Perform the elimination;
   step++;
}
perform the division;
send the active data to P<sub>i+1</sub>;
```

Analysis of Pipelined Solution

Remark: We simply assume div, recv, send, elim take the same time.

Analysis of Pipelined Solution

- From the previous pipeline diagram, it is obvious that the time interval between two iterations is $\Theta(n)$.
- There is a total of *n* iterations. So the last iteration starts from $\Theta(n^2)$.
- The last iteration takes $\Theta(1)$ only.
- So the parallel run time is $\Theta(n^2)$, which is cost optimal.

Back to Reality: p < n

- Previously, we assume the number of processes (or processors) p = n
- In most scenarios, the number of processors p is much smaller than n
- ▶ Block I-D rowwise partition: each process is assigned *n/p* contiguous rows of the matrix

Example of Block 1-D Partitioning

	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_0	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P ₁	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
Б	0	0	0	(4,3) (4,4) (4,5) (4,6) (4,7)
P ₂	0	0	0	(5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0	(6,3) (6,4) (6,5) (6,6) (6,7)
P_3	0	0	0	(7,3) (7,4) (7,5) (7,6) (7,7)

In the k=3 iteration, the active data on P_1 need to be sent to P_2 and P_3 .

As compared with the case of p = n, the communication cost is reduced by a factor of n/p.

When n >> p, computations dominate communications.

Source: Figure 8.8 of Ref. [1]

Load Balancing Issue

_	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_0	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
<u> </u>	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_1	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
D.	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
,	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P_3	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

The cost of the block I-D partitioning is n^3 , while the cost of the serial algorithm is $2n^3/3$.

This is caused by the uneven load distribution among *p* processes.

In the left example, P_0 is completely idle, P_1 is partially loaded, P_2 and P_3 are fully loaded.

(a) Block 1-D mapping

Source: Figure 8.9 (a) of Ref. [1]

Cyclic 1-D Mapping

- **Cyclic mapping** can be used to improve load balancing.
- In each iteration, the computations are distributed to all processes.

_								
	(0,7)	(0,6)	(0,5)	(0,4)	(0,3)	(0,2)	(0,1)	1
P_0	(4,7)	(4,6)	(4,5)	(4,4)	(4,3)	0	0	0
P_1	(1,7)	(1,6)	(1,5)	(1,4)	(1,3)	(1,2)	1	0
	(5,7)	(5,6)	(5,5)	(5,4)	(5,3)	0	0	0
	(2,7)	(2,6)	(2,5)	(2,4)	(2,3)	1	0	0
P_2	(6,7)	(6,6)	(6,5)	(6,4)	(6,3)	0	0	0
	(3,7)	(3,6)	(3,5)	(3,4)	(3,3)	0	0	0
P_3	(7,7)	(7,6)	(7,5)	(7,4)	(7,3)	0	0	0

(b) Cyclic 1-D mapping

Source: Figure 8.9 (a) of Ref. [1]

References

- 1. Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta, Introduction to Parallel Computing, 2nd Edition, Addison Wesley, 2003.
- 2. Peter S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2010.
- 3. William Gropp, Ewing Lush, Anthony Skjellum, Using MPI, 2nd Edition, The MIT Press, 1999.
- 4. C. Renggli et al., SparCML: High-Performance Sparse Communication for Machine Learning, SC, 2019