Corrigé de la feuille 6 : espaces vectoriels

Exercice 1.

(a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ contient (0, 0, 0) puisque 0 + 0 = 0. Pour tous $\lambda \in \mathbb{R}, (x, y, z) \in A$ et $(x', y', z') \in A$, on a

$$(\lambda x + x') + (\lambda y + y') = \lambda(x + y) + (x' + y') = 0 + 0 = 0.$$

Donc $\lambda(x, y, z) + (x', y', z')$ est dans A. Ceci prouve que A est un sous-espace vectoriel du \mathbb{R}^3 , donc un \mathbb{R} -espace vectoriel.

(b) Soit B l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que P'(7) = 0. Le polynôme nul est dans B, puisque ses dérivées sont nulles. Pour tous $\lambda \in \mathbb{R}$, $P \in B$ et $Q \in B$, $\lambda P + Q$ est un polynôme réel et

$$(\lambda P + Q)'(7) = \lambda P'(7) + Q'(7) = 0 + 0 = 0.$$

Donc B est un sous-espace vectoriel de $\mathbb{R}[X]$ donc un \mathbb{R} -espace vectoriel.

(c) Soit C l'ensemble des fonctions en escalier sur [0,1]. C'est une partie non vide (contenant la fonction nulle) du \mathbb{R} -espace vectoriel $\mathbb{R}^{[0,1]}$ des fonctions de [0,1] dans \mathbb{R} . Soient $\lambda \in \mathbb{R}$, $f \in C$ et $g \in C$. Choisissons une subdivision $\{0 = x_0 < \cdots < x_n = 1\}$ adaptée à f et g, de sorte que f et g sont constantes sur chaque intervalle $]x_{i-1}, x_i[$, $1 \le i \le n$. Alors $\lambda f + g$ est aussi constante sur chacun de ces intervalles, donc c'est une fonction en escalier, c'est-à-dire un élément de C. On en déduit que C est un sous-espace vectoriel de $\mathbb{R}^{[0,1]}$ donc un \mathbb{R} -espace vectoriel.

Exercice 2.

- (a) La suite nulle est convergente. Si (u_n) et (v_n) sont deux suites complexes convergentes, leur somme est aussi convergente; et, pour tout $\lambda \in \mathbb{C}$, (λu_n) est aussi convergente. Donc l'ensemble des suites convergentes est un sous-espace de $\mathbb{C}^{\mathbb{N}}$.
- (b) L'ensemble des suites divergentes ne contient pas la suite nulle, donc ce n'est pas un sous-espace de $\mathbb{C}^{\mathbb{N}}$.
- (c) La suite nulle est bornée. Soient $\lambda \in \mathbb{C}$, (u_n) et (v_n) deux suites bornées respectivement par M et N. Alors la suite $(\lambda u_n + v_n)$ est bornée par $|\lambda|M + N$. Donc l'ensemble des suites bornées est un sous-espace de $\mathbb{C}^{\mathbb{N}}$.
- (d) La suite (u_n) constante à 1 est une suite réelle et $i(u_n)$ est constante à i donc n'est pas réelle. Cela prouve que l'ensemble des suites réelles n'est pas un sous-espace du \mathbb{C} -espace vectoriel $\mathbb{C}^{\mathbb{N}}$.
- (e) On considère l'ensemble des suites (u_n) telles que (nu_n) tend vers 1, qui ne contient pas la suite nulle : ce n'est pas un sous-espace de $\mathbb{C}^{\mathbb{N}}$.
- (f) On considère l'ensemble des suites (u_n) telles que (nu_n) tend vers 0. Il contient la suite nulle. Pour tout $\lambda \in \mathbb{C}$, si (nu_n) et (nv_n) tendent vers 0, $(n(\lambda u_n + v_n))$ tend aussi vers 0. Donc l'ensemble des suites (u_n) telles que $u_n = o(1/n)$ est un sous-espace de $\mathbb{C}^{\mathbb{N}}$.

1

(g) On considère l'ensemble des suites (u_n) telles que (nu_n) est bornée. Il contient la suite nulle. Pour tout $\lambda \in \mathbb{C}$, si (nu_n) et (nv_n) sont bornées respectivement par M et N, alors la suite $(n(\lambda u_n + v_n))$ est bornée par $|\lambda|M + N$. Donc l'ensemble des suites (u_n) telles que $u_n = O(1/n)$ est un sous-espace de $\mathbb{C}^{\mathbb{N}}$.

Exercice 3. Sens réciproque. Si $F_1 \subset F_2$, $F_1 \cup F_2 = F_2$ est un sous-espace vectoriel par hypothèse. C'est pareil si $F_2 \subset F_1$.

Sens direct. On cherche à prouver la contraposée. On suppose donc que F_1 n'est pas inclus dans F_2 et que F_2 n'est pas inclus dans F_1 . Cela donne $x_1 \in F_1$ tel que $x_1 \notin F_2$ et $x_2 \in F_2$ tel que $x_2 \notin F_1$. Si $x_1 + x_2$ est dans F_1 , $x_2 = (x_1 + x_2) - x_1$ devrait être dans F_1 comme différence d'éléments de F_1 ; mais, par hypothèse, ce n'est pas le cas, donc $x_1 + x_2$ n'est pas dans F_1 . Le même argument montre que $x_1 + x_2$ n'est pas dans $F_2 : x_1 + x_2 \notin F_1 \cup F_2$. cela prouve que $F_1 \cup F_2$ n'est pas stable par somme donc n'est pas un sous-espace vectoriel. D'où l'implication directe.

Exercice 4.

- (a) L'expression $\sqrt{2} \in \text{Vect}(1)$ signifie ici qu'il existe $\lambda \in \mathbb{Q}$ tel que $\sqrt{2} = \lambda \cdot 1 = \lambda$. Comme $\sqrt{2}$ est un irrationnel, ceci est faux (on l'a vu dans la première feuille de TD).
- (b) De même, si $\sqrt{3} \in \text{Vect}(1, \sqrt{2})$, il existe $\lambda, \mu \in \mathbb{Q}$ tel que $\sqrt{3} = \lambda + \mu \sqrt{2}$. On élève au carré :

$$3 = \lambda^2 + 2\lambda\mu\sqrt{2} + 2\mu^2.$$

Si λ et μ ne sont pas nuls, on peut alors exprimer $\sqrt{2}$ comme quotient de rationnels, donc comme un rationnel, ce qui n'est pas possible. Si $\mu=0$, on trouve $\sqrt{3}=\lambda\in\mathbb{Q}$, ce qui n'est pas vrai (même argument que pour $\sqrt{2}$). Et si $\lambda=0$, on trouve que $\sqrt{3/2}$ est rationnel, ce qui est encore faux, pour la même raison, que nous détaillons un peu. Si c'était le cas, on aurait des entiers p et q tels que $3q^2=2p^2$, avec p ou q impair. Comme le membre de droite est pair, le membre de gauche aussi et cela force q à être pair (un produit d'impairs est impair) : q=2a pour un entier a. Mais alors $p^2=6a^2$ et p doit être pair : contradiction. Ceci prouve finalement : $\sqrt{3} \notin \mathrm{Vect}(1,\sqrt{2})$.

Exercice 5. Soient $\lambda_1, \ldots, \lambda_n$ des réels tels que $\sum_{i=1}^n \lambda_i f_{a_i} = 0$. Alors :

$$\forall x \in \mathbb{R}, \qquad \lambda_1 e^{a_1 x} + \dots + \lambda_{n-1} e^{a_{n-1} x} + \lambda_n e^{a_n x} = 0,$$

soit

$$\forall x \in \mathbb{R}, \qquad \lambda_1 e^{(a_1 - a_n)x} + \dots + \lambda_{n-1} e^{(a_{n-1} - a_n)x} + \lambda_n = 0.$$

Pour $i=1,\ldots,n-1,$ $a_i-a_n<0,$ donc $e^{(a_i-a_n)x}$ tend vers 0 quand x tend vers $+\infty$. On obtient donc en passant à la limite : $\lambda_n=0$. Donc :

$$\forall x \in \mathbb{R}, \qquad \lambda_1 e^{a_1 x} + \dots + \lambda_{n-1} e^{a_{n-1} x} = 0.$$

En répétant cet argument, on prouve successivement que tous les coefficients λ_i sont nuls. Donc la famille est libre.

Exercice 6.

(a) A est l'ensemble des $(x, y, z) \in \mathbb{R}^3$ tels que y = -x, c'est-à-dire l'ensemble des vecteurs (x, -x, z) où x et z décrivent l'ensemble des réels. Notons v = (1, -1, 0) et w = (0, 0, 1). On vient de voir que

$$A = \{xv + zw \mid x, z \in \mathbb{R}\} = \text{Vect}(v, w).$$

Comme (v, w) est visiblement libre (si $\lambda v + \mu w = 0$, $(\lambda, -\lambda, \mu) = (0, 0, 0)$, donc $\lambda = \mu = 0$), c'est donc une base de A. Et A est donc de dimension 2.

(b) B est l'ensemble des $(x, y, z, t) \in \mathbb{R}^4$ tels que

$$\begin{cases} 4t + z + 3y + 2x = 0 \\ z + y + x = 0 \end{cases}$$

soit, en soustrayant la seconde ligne à la première :

$$\begin{cases} 4t + 2y + x &= 0 \\ z + y + x &= 0 \end{cases}$$

B est donc l'ensemble des vecteurs de la forme $\left(x,y,-x-y,-\frac{x}{4}-\frac{y}{2}\right)$, où x et y sont des réels. Si on pose v=(1,0,-1,-1/4) et w=(0,1,-1,-1/2), cela revient à dire que $B=\mathrm{Vect}(v,w)$. Et cette famille est libre (si $\lambda v+\mu w=0$, $(\lambda,\mu,\dots)=(0,0,0,0)$, donc $\lambda=\mu=0$), donc c'est une base de B et dim B=2.

Exercice 7. On observe qu'une matrice A est dans S_n si et seulement si ses coefficients a_{ij} vérifient la relation $a_{ij} = a_{ji}$ pour tous les indices i et j.

Ainsi, la matrice nulle est dans S_n . Si λ est un réel et A, B des matrices de S_n , les coefficients de $\lambda A + B$ s'écrivent

$$\lambda a_{ij} + b_{ij} = \lambda a_{ji} + b_{ji},$$

donc $\lambda A + B$ est dans S_n . Ceci prouve que S_n est un sous-espace vectoriel de $M_n(\mathbb{R})$.

Pour calculer la dimension de S_2 , on peut remarquer qu'une matrice symétrique de taille 2 s'écrit $\begin{pmatrix} a & b \\ b & c \end{pmatrix} = b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Les trois matrices $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ forment donc une famille génératrice. On vérifie vite que c'est une famille libre, donc une base. La dimension de S_2 est donc trois. Passons au cas général, qui est similaire.

Soit $A = (a_{ij}) \in S_n$. En utilisant les matrices $E_{k,l} \in M_n(\mathbb{R})$ du cours (avec un 1 en position (k,l) et des 0 ailleurs), on peut écrire :

$$A = \sum_{k,l} a_{kl} E_{k,l} = \sum_{1 \le k < l \le n} a_{kl} E_{k,l} + \sum_{k=1}^{n} a_{kk} E_{k,k} + \sum_{1 \le l < k \le n} a_{kl} E_{k,l}$$

(où l'on a cassé la première somme en trois morceaux selon la position relative des indices k et l: <, = ou >). On peut échanger les rôles des indices (muets) k et l dans la troisième somme :

$$A = \sum_{1 \le k < l \le n} a_{kl} E_{k,l} + \sum_{k=1}^{n} a_{kk} E_{k,k} + \sum_{1 \le k < l \le n} a_{lk} E_{l,k}.$$

Par symétrie de A, on en tire :

$$A = \sum_{1 \le k < l \le n} a_{kl} \underbrace{(E_{k,l} + E_{l,k})}_{F_{k,l}} + \sum_{k=1}^{n} a_{kk} \underbrace{E_{k,k}}_{F_{k,k}}.$$

Ceci montre que la famille $(F_{k,l})_{1 \le k \le l \le n}$ est génératrice de S_n . (En fait, F_{kl} est la matrice avec des coefficients 1 en position (k,l) et (l,k) et des 0 partout ailleurs).

Pour vérifier que cette famille est libre, on suppose que des réels λ_{kl} vérifient

$$\sum_{1 \le k \le l \le n} \lambda_{kl} F_{kl} = 0.$$

Cela signifie:

$$\sum_{1 \leq k < l \leq n} \lambda_{kl} \left(E_{k,l} + E_{l,k} \right) + \sum_{k=1}^{n} \lambda_{kk} E_{k,k} = 0.$$

Pour tout $k \leq l$, si on regarde le coefficient en position (k, l) dans cette égalité matricielle, on trouve exactement $\lambda_{kl} = 0$. Cela prouve que la famille est aussi libre. Et donc la famille $(F_{k,l})_{1 \leq k \leq l \leq n}$ est une base de S_n .

Comptons le nombre d'éléments de $T_n=\{(k,l)\in\mathbb{N}^2\mid 1\leq k\leq l\leq n\}$: l'entier l varie de 1 à n et, à l fixé, il y a l possibilités pour l'entier k (puisque $1\leq k\leq l$); le

cardinal de T_n est donc $\sum_{l=1}^n l = \frac{n(n+1)}{2}$. (On peut le voir en dessinant n^2 points

en carré et en comptant ceux qui sont d'un côté d'une diagonale.)

Donc S_n est de dimension n(n+1)/2.

Exercice 8. Soit $E = \mathbb{R}^{[0,2]}$. Soit F l'ensemble des fonctions en escalier associées à σ . C'est une partie de l'espace vectoriel E.

Si $0 \le a < b \le 2$, on définit $f_{a,b} \in E$ par $f_{a,b}(x) = 1$ si a < x < b et $f_{a,b}(x) = 0$ sinon.

Pour $a \in [0, 2]$, on définit aussi $f_a \in E$ par $f_a(a) = 1$ et f(x) = 0 si $x \neq a$.

Un élément de F est alors exactement une combinaison linéaire des fonctions $f_{0,1}$, $f_{1,2}$, f_0 , f_1 et f_2 (ne pas oublier que la fonction prend des valeurs quelconques aux points de la subdivision).

Autrement dit, $F = \text{Vect}(f_{0,1}, f_{1,2}, f_0, f_1, f_2)$. C'est en particulier un sous-espace de E et on dispose d'une famille génératrice.

Vérifions que cette famille de cinq fonctions est libre. Soient des réels a,b,c,d,e tels que $af_{0,1}+bf_{1,2}+cf_0+df_1+ef_2=0$. Le membre de gauche est une fonction. En l'évaluant aux points 1/2, 3/2, 0, 1 et 2, on trouve successivement a=0, b=0, c=0, d=0, e=0. Donc la famille est libre . C'est donc une base de F et la dimension de F est 5.

Exercice 9.

(a) Comme $\mathbb{R}_n[X]$ est de dimension n+1, il suffit de montrer que la famille à n+1 éléments qu'on considère est libre. Soient donc des réels $\lambda_0,\ldots,\lambda_n$ tels que $\sum_{k=0}^n \lambda_k P_k = 0$. Comme le polynôme P_n est de degré n, il s'écrit $c_n X^n$ plus des termes de plus petit degré ; ici, c_n est le coefficient dominant de P_n , un

nombre réel non nul. Les autres polynômes P_k sont de degré au plus n-1. Donc en dérivant l'équation n fois, on obtient $\lambda_n c_n n! = 0$ et donc $\lambda_n = 0$.

On est ramené à l'équation $\sum_{k=0}^{n-1} \lambda_k P_k = 0$ qu'on peut dériver n-1 fois pour

voir que $\lambda_{n-1} = 0$. En répétant cette opération, on vérifie successivement que $\lambda_n = \lambda_{n-1} = \cdots = \lambda_0 = 0$. Donc (P_0, \ldots, P_n) est libre. Et c'est ainsi une base de $\mathbb{R}_n[X]$.

(b) La famille considérée compte 3 éléments et $\mathbb{R}_2[X]$ est de dimension 3. Pour voir que c'est une base, il suffit de vérifier qu'elle est libre. Soient trois réels a, b et c tels que $a(X+1)+b(X-1)+c(X^2+2X)=0$. Les coefficients devant chaque puissance de X doivent être nuls : c=0, a+b+2c=0 et a-b=0. On en déduit b=a puis a=b=c=0. Donc la famille est libre et c'est finalement une base.

Les coordonnées α, β, γ de X^2 dans la base $(X+1, X-1, X^2+2X)$ sont les nombres réels tels que $X^2=\alpha(X+1)+\beta(X-1)+\gamma(X^2+2X)$. Par identification des coefficients, cela revient à : $1=\gamma, 0=\alpha+\beta+2\gamma, 0=\alpha-\beta$. Les valeurs $\alpha=\beta=-1$ et $\gamma=1$ conviennent.

(c) A contient le polynôme nul. Si P et Q sont des combinaisons linéaires de X^{2k+1} , $k \in \mathbb{N}$, il en de même pour $\lambda P + Q$, pour tout nombre complexe λ . Donc A est un sous-espace vectoriel de $\mathbb{C}[X]$. B contient $0 = X \, 0$, il est stable par somme et homothétie parce que A l'est : c'est aussi un sous-espace vectoriel de $\mathbb{C}[X]$.

Par définition A + B est l'ensemble des polynômes P s'écrivant

$$P = \sum_{i=0}^{m} a_i X^{2i+1} + X \sum_{j=0}^{n} b_j X^{2j+1} = \sum_{i=0}^{m} a_i X^{2i+1} + \sum_{j=0}^{n} b_j X^{2j+2}$$

où m et n sont des entiers naturels et les coefficients a_i et b_j sont complexes. Cette expression recouvre tout polynôme dont le terme constant est nul, donc $A+B=\{XQ\mid Q\in\mathbb{C}[X]\}$. C'est l'ensemble des polynômes complexes s'annulant en 0.

Exercice 10.

(a) Soient des réels λ et μ tels que $\lambda \sin + \mu \cos = 0$, i.e.

$$\forall x \in \mathbb{R}, \qquad \lambda \sin(x) + \mu \cos(x) = 0.$$

En faisant $x = \pi/2$ puis x = 0, on trouve $\lambda = 0$ puis $\mu = 0$. Donc (sin, cos) est une famille libre.

(b) Soit F l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe des réels A et ϕ pour lesquels on peut écrire

$$\forall x \in \mathbb{R}, \quad f(x) = A\sin(x + \phi).$$

Pour tous $A, \phi, x \in \mathbb{R}$, on peut écrire

$$A\sin(x+\phi) = A\cos(\phi)\sin(x) + A\sin(\phi)\cos(x).$$

Ceci donne l'inclusion $F \subset \text{Vect}(\sin, \cos)$.

Réciproquement, soit $f: \mathbb{R} \to \mathbb{R}$ donnée par $f(x) = a \sin(x) + b \cos(x)$, pour des constantes réelles a et b. Le vecteur (a, b) de \mathbb{R}^2 s'écrit en coordonnées

polaires $(r\cos\phi, r\sin\phi)$, avec $r \geq 0$ et $\phi \in \mathbb{R}$ (dit autrement, le nombre complexe a+ib s'écrit $a+ib=re^{i\phi}=r\cos\phi+ir\sin\phi$).

Donc pour tout $x \in \mathbb{R}$,

$$f(x) = r(\cos(\phi)\sin(x) + \sin(\phi)\cos(x)) = r\sin(x + \phi).$$

Donc Vect(sin, cos) est inclus dans F et il y a finalement égalité entre ces deux ensembles. Au passage, cela prouve que F est un sous-espace vectoriel, ce qui n'est pas évident a priori.

Exercice 11. $H_1 \cap H_2$ est un sous-espace de dimension finie comme intersection de deux sous-espaces de dimension finie. On dispose de la formule

$$\dim(H_1 \cap H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 + H_2) = 2n - 2 - \dim(H_1 + H_2).$$

La somme H_1+H_2 est un sous-espace de E contenant H_1 . En particulier, sa dimension est comprise entre celle de H_1 et celle de E: c'est n-1 ou n. Supposons que $\dim(H_1+H_2)=n-1$. Avec $H_1\subset H_1+H_2$ et $\dim(H_1)=n-1$, on en déduit que $H_1=H_1+H_2$. Mais alors $H_2\subset H_1+H_2=H_1$ et, par égalité des dimensions, $H_2=H_1$, ce qui contredit les hypothèses. Donc $\dim(H_1+H_2)=n$, i.e. $H_1+H_2=E$. Finalement:

$$\dim(H_1 \cap H_2) = 2n - 2 - n = n - 2.$$

Exercice 12.

(a) F_1 et F_2 sont deux parties de E contenant la fonction nulle. Soient $\lambda \in \mathbb{R}$, $f, g \in E$. Si f et g sont constantes, $\lambda f + g$ est aussi constante. Si f et g sont d'intégrale nulle, alors

$$\int_0^1 (\lambda f + g) = \lambda \int_0^1 f + \int_0^1 g = 0 + 0 = 0.$$

Ainsi, F_1 et F_2 sont deux sous-espaces vectoriels de E.

(b) Soit $f \in F_1 \cap F_2$. Alors f est constante à une valeur $c \in \mathbb{R}$ et d'intégrale nulle, donc

$$0 = \int_0^1 f = \int_0^1 c = c,$$

de sorte que f est nulle. Donc le sous-espace $F_1 \cap F_2$ est réduit à $\{0\}$.

(c) Par définition, $F_1 + F_2$ est inclus dans E. Il s'agit de voir l'inclusion inverse.

Soit
$$f \in E$$
. Notons $c = \int_0^1 f$. Alors

$$\int_0^1 (f - c) = \int_0^1 f - \int_0^1 c = c - c = 0.$$

Donc f=(f-c)+c est la somme de $f-c\in F_1$ et $c\in F_2$. Cela prouve l'inclusion $E\subset F_1+F_2$. Avec (b), cela prouve : $F_1\oplus F_2=E$.

(d) Une intégration par parties donne :

$$\int_0^1 x e^x dx = [xe^x]_0^1 - \int_0^1 e^x dx = e - 0 - (e - 1) = 1.$$

Ainsi, comme ci-dessus, f est la somme de $f-1 \in F_1$ et de $1 \in F_2$.

Exercice 13.

- (a) On suit la technique vue en cours, en considérant le trinôme associé : $X^2 3X + 2$. Ses racines sont 1 et 2. Une base de S est donc (v, w), où $v = (v_n)$ est la suite constante à 1 et $w = (w_n) = (2^n)$.
- (b) Tout élément (u_n) de S s'écrit $(u_n) = a(v_n) + b(w_n) = (a + b2^n)$, pour des nombres complexes a et b. Les conditions initiales $u_0 = 1$ et $u_1 = 3$ se traduisent par : a + b = 1 et a + 2b = 3, soit b = 2 et a = -1. L'unique solution est donc $(u_n) = (-1 + 2^{n+1})$.
- (c) Puisque v et w sont réelles, pour tous $a,b \in \mathbb{R}$, av + bw est une suite réelle de \mathcal{S} . Réciproquement, pour tout $a,b \in \mathbb{C}$, si $u = av + bw \in \mathcal{S}$ est réelle, en prenant la partie imaginaire, on trouve $\operatorname{Im}(a)v + \operatorname{Im}(b)w = 0$. Par liberté de (v,w), $\operatorname{Im}(a) = \operatorname{Im}(b) = 0$, donc a et b sont des réels. Cela prouve que les suites réelles de \mathcal{S} sont exactement les suites $(a+b2^n)$, avec $a,b \in \mathbb{R}$.

Exercice 14.

(a) Le trinôme associé est $X^2 - 2X + 2$, son discriminant est -4 et ses racines sont $1 \pm i = \sqrt{2}e^{\pm \frac{i\pi}{4}}$. Donc il existe des complexes a et b tels que

$$\forall n \in \mathbb{N}, \quad u_n = \sqrt{2}^n \left(ae^{\frac{in\pi}{4}} + be^{-\frac{in\pi}{4}} \right).$$

Avec les formules d'Euler, cela revient à l'existence de $\alpha, \beta \in \mathbb{C}$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \sqrt{2}^n \left(\alpha \cos(n\pi/4) + \beta \sin(n\pi/4)\right).$$

Les conditions initiales $u_0 = u_1 = 1$ signifient :

$$\alpha = 1$$
 et $\sqrt{2} \left(\alpha \cos(\pi/4) + \beta \sin(\pi/4) \right) = 1$,

d'où l'on tire $\beta = 0$. Ainsi, l'unique solution est $(u_n) = (\sqrt{2}^n \cos(n\pi/4))$.

(b) Le trinôme associé est $X^2 - (2+2i)X + 2i$, son discriminant est nul et sa racine double est $1+i=\sqrt{2}e^{\frac{i\pi}{4}}$. Donc il existe des complexes a et b tels que

$$\forall n \in \mathbb{N}, \quad u_n = \sqrt{2}^n (a + bn) e^{\frac{in\pi}{4}}.$$

Les conditions initiales $u_0 = 1$ et $u_1 = 0$ signifient :

$$a = 1$$
 et $\sqrt{2}(a+b)e^{\frac{i\pi}{4}} = 0$,

d'où l'on tire b = -1. Ainsi, l'unique solution est $(u_n) = (\sqrt{2}^n (1-n)e^{\frac{in\pi}{4}})$.