R_1 is a bond, H, O, O^+ , O^{N_2} , O^{N_2} , O^* wherein X is a halogen and Y is an alkyl group and wherein O indicates bonding to R_2 at any position and indicates bonding to R_2 and the substituent at any position; and

 $R_2 \text{ is a bond, } -(CY'_2)_n^-, -(CY'_2-CY'=CY')_n^-, -(CY'_2-$

 R_3 is -Y", -OH, -NH₂, -N⁺(Y")₃, -COOH, -COO⁻, -SO₃H, -SO₃⁻, -C-PO₃H₂ or -C-PO₃H⁻, wherein Y" is an alkyl group.

In Fig. 1B

each R_1 ' is independently a bond, C_2° , C_2° ,

 $C(r^n)_3$, wherein Y" is an alkyl group, and wherein indicates bonding to R_2 ' at any position and indicates bonding to R_2 ' and the R_1 ' phenyl substituent at any position;

each R_2 ' is independently a bond, or $-(CH_2)_n$ wherein n is 1-4,

each R₃' is independently -Y", -Y'", -H, -OH, -OY", -NO₂, -CN, -NH₂, -COOH, -COY", -COO⁻, or a heterocyclic group, wherein Y" is as defined above and Y'" is a primary, secondary, tertiary or quaternary amine.

In Fig. 1C

R₁ through R₈ are, independently, -H, alkyl, 2-hydroxyalkyl, methoxyalkyl, halogen, nitro, cyano, trialkylammonium, formyl, amide of carboxylic acid, alkyl ester of carboxylic acid, carboxylic acid, glucuronyl or glyceryl ester of carboxylic acid, 1,2-dihydroxyalkyl, acetyl, vinyl, glycosyl or, taurate, and

 β , γ and δ are, independently, -H, acetyl, glycyl, benzoate, phenylsulfonate, 2-, or 3-, or 4-N-alkyl-pyridyl, nitrophenyl, halophenyl, methoxyalkyl, halogen, nitro, cyano, trialkylammonium, formyl, amide of carboxylic acid.

With reference to Fig. 1C, mimetics of the invention can be of Formula I or Formula II, or dimeric forms thereof., an example of a dimeric form being shown in Fig. 1D. In Fig. 1E

R_1 and R_3 are the same and are:

R2 and R4 are the same and are:

Y is halogen or $-\text{CO}_2X$, each X is the same or different and is an alkyl and each R_5 is the same or different (preferably the same) and is H or alkyl.

In Fig. 1F

```
R_1 and R_3 are, independently:
-CO_2C_{1-4} alkyl; or
-CO<sub>2</sub>(CH<sub>2</sub>)<sub>n</sub>CX<sub>3</sub>, wherein X is halogen and n = 1 to 3;
R<sub>2</sub> is:
-H
-C<sub>1-4</sub>alkyl
 -COOH
 -CO_2C_{1-4} alkyl,
 -CO<sub>2</sub>(CH<sub>2</sub>)<sub>n</sub>CX<sub>3</sub>, wherein X is halogen and n = 1 to 3,
 -CON(CH<sub>3</sub>)<sub>2</sub>, or
-CX3, wherein X is halogen; and
R<sub>4</sub> is:
 -H,
 -C<sub>1-4</sub>alkyl
 -COOH,
 -CO_2C_{1-4} alkyl,
 -CO_2(CH_2)_nCX_3, wherein X is halogen and n = 1 to 3,
 -CON(CH<sub>3</sub>)<sub>2</sub>, or
```

-CX₃, wherein X is halogen.

CRAPO et al., Serial No. 10/051,367

In Fig. 1G each R is, independently, a C₁-C₈ alkyl group, and each P is, independently, an electron withdrawing group or hydrogen.

With reference to Fig. 1H, the SOD activities of certain of the depicted compounds are shown in Table 1 (as measured by the cytochrome C method):

Table 1.

Compound	SOD activity
	(U/mg)
10110	225
10113	10,648
10123	17,061
10143	14,038
10150	14,789
10153	23,467
10158	14,342
CuZn-SOD	2,200