TEAM F

BIG DATA SYSTEMS FOR MODEL DEVELOPMENT

AGENDA

- Model Development Approach
- 1 Automated Data Cleaning
- 2 Human Assisted Data Cleaning
- 3 Automated Method Comparison and Choosing
- 4 Human Assisted Method Picking
- 5 Automated Dummy Creation and Transformation

MODEL DEVELOPMENT APPROACH

- PYTHON
- 3 TRAINING DATASETS

DEV AND OOTO

USED FOR FRAUD DETECTION
DEV: CSV 82 VARIABLES INCLUDING TARGET, 865 OBS
OOTO: CSV 81 VARIABLES, 2968 OBS
INCLUDES NULL VALUES
BINARY, CATEGORICAL, NUMERIC

MBD_FA2

USED FOR VARIABLE AND RATIO CREATION CSV WITH 47 VARIABLES INCLUDING TARGET 5951 OBSERVATIONS INCLUDES NULL VALUES BINARY, CATEGORICAL AND NUMERIC DATA

AUTOMATED DATA CLEANING

NAN (NOT A NUMBER)

ID	NUM1	NUM2	NUM3
1	3.56	0.55	
2	2.30	1.60	0.44
3		4.05	3.00
4	0.34	7.00	1.22

SUBSTITUTE NAN FOR 0

ID	NUM1	NUM2	NUM3
1	3.56	0.55	0.00
2	2.30	1.60	0.44
3	0.00	4.05	3.00
4	0.34	7.00	1.22

MISSING VALUES

ID	TOWN
1	MAD
2	BCN
3	NYC
4	BCN
5	
6	NYC
7	BCN

SUBSTITUTE NONE FOR
THE HIGHEST FREQUENCY VALUE

ID	TOWN
1	MAD
2	BCN
3	NYC
4	BCN
5	BCN
6	NYC
7	BCN

OUTLIER DETECTION

ANYTHING OUTSIDE MEAN +/- 3 * STANDARD DEVIATION WILL BE CONSIDERED AN OUTLIER.

WE CONVERT DATA VALUES TO STANDARD DEVIATIONS FROM THE MEAN:

def deviations(x, mean, stddev):

return math.abs(x - mean) / stddev

ABSOLUTE VALUES WHICH ARE HIGHER THAN 3 WILL BE CONSIDERED OUTLIERS

HANDLING OUTLIERS

- IF THE NEXT NON-OUTLIER VALUES IS CLOSE:

TRANSFORM OUTLIERS TO THE NEXT HIGHEST/LOWEST VALUE

- IF THE NEXT NON-OUTLIER VALUE IS FAR:

DROP THE OUTLIERS AND INFORM ABOUT IT

HOW TO DETERMINE WHAT IS FAR?

IF THE OUTLIER IS HIGHER THAN 2 * (MEAN + 3 STDEV)

UNRELIABLE VALUES

Threshold 5%

HUMAN ASSISTED DATA CLEANING

AUTOMATED METHOD COMPARISON AND CHOOSING

MODEL COMPARISON

SUPPORT VECTOR MACHINE (SVM)

RANDOM FOREST

▶ GENERALISED LINEAR MODELS (GLM) - LINEAR REGRESSION

SUPPORT VECTOR MACHINE (SVM)

Non-probabilistic binary linear classifier

Combines aspects of both nearest neighbour classifier and linear regression modeling

RANDOM FOREST

Bagging with random feature selection to add additional diversity to the decision tree models

As the ensemble uses only a small, random portion of the full feature set, random forests can handle extremely large datasets

GENERALISED LINEAR MODELS (GLM) LINEAR REGRESSION

Dependent (Y) and independent variables (X1,X2....XN)

The relationship between the independent and dependent variables follows a straight line

MODEL SELECTION CRITERIA: HIGHEST GINI

Gini = 2*AUC-1

Area Under the ROC Curve

ROC: plot True Positive Rate against False Positive Rate

HUMAN ASSISTED METHOD PICKING

AUTOMATED DUMMY CREATION AND TRANSFORMATION

DUMMY CREATION

CATEGORICAL VARIABLE

ID	ANIMAL
1	DOG
2	CAT
3	DOG
4	ELEPHANT
5	CAT
6	DOG

DUMMY VARIABLE

BINNING

CONTINUOUS VARIABLE

ID	AGE
1	20
2	32
3	68
4	33
5	52
6	35

GROUPING

CATEGORICAL VARIABLE

BINNING

CONTINUOUS VARIABLE

CUT POINT?

CATEGORICAL VARIABLE

ID	AGE
1	20
2	32
3	68
4	33
5	52
6	35

ID	AGE RANGE
1	STUDENT
2	MATURE
3	SENIOR
4	MATURE
5	MATURE
6	MATURE

ENTROPY BASED BINNING

Supervised binning

Calculates a value that describes how consistently a potential split will match up with a classifier (Target variable FRAUD)

Refer to the target information when selecting discretisation cut points

Finding the split with the maximal information gain

QUESTIONS?