PROBLEM SOLVING

WILLIAM CHUANG

Prove that

$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}.$$

Proof.

 $n=1 \Rightarrow 1 < 2$ which is true.

Suppose for n = k we have

$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} < 2\sqrt{k}.$$

Then for n = k + 1 we have

$$1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} < 2\sqrt{k} + \frac{1}{\sqrt{k+1}}$$

Need to show:

$$2\sqrt{k} + \frac{1}{\sqrt{k+1}} < 2\sqrt{k+1}$$

If we multiply $\sqrt{k+1}$ for the both sides, and simplify the formula, we can show that the left-hand-side is $k^2 + k$, and right-hand-side is $k^2 + k + \frac{1}{4}$. This completes the proof.

Prove that

$$(0.1) 2!4!...(2n)! \ge ((n+1)!)^n$$

Proof. $n = 1 \Rightarrow 2! \geq (1+1)!$ which is true.

Suppose $n = k, k \in \mathbb{Z}$ is true.

Need to show:

$$2!4!...(2k)!(2k+2)! \ge ((k+1)!)^k(2k+2)!$$

l.h.s. of (0.1) as n = k + 1 is:

$$((k+1)!)^k \dot{2}(2k+2)!$$

r.h.s. of (0.1) as n = k + 1 is:

$$((k+2)!)^{k+1} = (k+2)!\dot{(}(k+2)!)^k = (k+2)!\dot{(}k+2)^k\dot{(}(k+1)!)^k$$

Thus, after canceling the common term, we only need to show $(2k+2)! > (k+2)!(k+2)^k$.

Since we can write the (2k+2)! into k-term of a product times a factorial (k+2)!, and replace the k-term product with a lower bound $(k+2)^k$ as follows

$$(2k+2)! = (2k+2)(2k+1)...(k+3)(k+2)! > (k+2)^k(k+2)! = \text{ r.h.s. of what we need to show}.$$

Enumerate the number of ways that we can tile a $2 \times n$ grid with 2×1 dominoes.

Date: October 1, 2018.

Proof. We can denote the number of ways to tile a $2 \times n$ grid with 2×1 dominoes as f_n . Then suppose we fill a 2×1 domino on its left end, then to tile the remaining $2 \times (n-1)$ grid, we have f_{n-1} ways. Secondly, if we tile a 2×2 grid of the $2 \times n$ grid on its left end, then there are f_{n-2} ways to tile the remaining grids. Thus, $f_n = f_{n-1} + f_{n-2}$. We also have the base cases: $f_1 = 1$, and $f_2 = 2$. It follows that it's a Fibonacci sequence, and it's general form is

$$f_n = \frac{\phi^n + \psi^n}{\sqrt{5}}$$
 where
$$\phi = \frac{1+\sqrt{5}}{2}$$
 and
$$\psi = \frac{1-\sqrt{5}}{2} = 1-\phi.$$