

Reinforcement Learning in Gene Regulatory Network Control

Zhaocheng Yang, CSCI 1470 (Deep Learning), Brown University

Introduction

- Living cells behave like vast switching circuits: each gene is either ON (1) or OFF (0), and the pattern evolves stochastically over time. In medicine and biology, controlling such a gene-regulatory network (GRN) means we want to shift these networks from undesirable states (e.g., cancer-like) to healthy target states by finding the minimal set of gene flips.
- This project frames GRN control as a model-free reinforcement learning (RL) problem: an agent learns to intervene on selected genes to maximize long-term rewards, without knowing the full system dynamics. We study this using probabilistic Boolean networks with up to 100 genes (~2100 states), where traditional methods fail due to a combinatorial explosion during the matrix transition.
- Our goal: design a double-DQN with prioritized replay (DDQN-PER) agent that can steer these massive networks toward desired attractors through learned, efficient, and interpretable policies.
- <u>Paper:</u> Deep Reinforcement Learning for Stabilization of Large-Scale Probabilistic Boolean Networks

Dataset & Preprocessing

- Single-cell RNA-seq (GSE132188)
 - o 11122 mouse cells × 27998 genes
- Preprocessing pipeline
 - Gene Selection: Select the top 100 most variable genes
 - o Booleanization: Threshold counts \rightarrow 0/1 "off / on" states for each gene.
 - Train/Test Split: We sample 8,897 binary cell states for training and 2,225 for evaluation.

n_cells	11122
n_genes_total	27998
selected_genes	100
Train	(8897, 100)
Test	(2225, 100)

SOURCES:

Paper: https://ieeexplore.ieee.org/document/9999487

Dataset: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132188

Methodology

- <u>Model Overview:</u> We use Double Deep Q-Networks (DDQN) with Prioritized Experience Replay (PER) to learn gene intervention policies in large-scale Probabilistic Boolean Networks (PBNs with N=100).
- RL Formulation:
 - a. State: Binary gene expression vector (length 100)
- b. Action: Flip a single gene or take no action (101 choices)
- c. Reward:
 - i. +5 for reaching target attractor
 - ii. -1 per intervention
 - iii. -2 if reaching wrong attractor
- d. Policy: Learned Q-network selects actions to maximize expected return.

Double Deep Q-Network

- Q-learning & Double DQN: Q-learning learns the action-value function Q(s,a). Double DQN reduces overestimation by separating action selection and value evaluation.
- Network Architecture:
- Input: 100-dim binary vector
- Hidden layers: $64 \rightarrow 64$ (ReLU)
- Output: Q-values for 101 actions
- Optimizer: Adam (1e-4 learning rate)
- <u>Prioritized Experience Replay:</u> Samples important transitions more often using TD-error. Improves sample efficiency and speeds convergence.
- Training Parameters (some):
 - Buffer size = 200k
 - Batch size = 128
 - \circ ε-greedy policy with ε decay from $1.0 \rightarrow 0.05$

Results

Our results: (5000 evaluation runs)

Metric	Meaning	Value
Success Rate	% of episodes where agent reached the target attractor	100%
Mean Interventions	Avg. number of non-null gene flips before reaching the goal	3.5584
Episode Return	Accumulated reward (goal = +5, intervention cost = -1 per flip)	Avg = 8.5584 Std = 1.5813

Other's results:

Controller	Success rate	Mean # flips	Comment / reference
Dynamic-programming controller (Pal et al., 2006)	100 %	11–100+	Requires solving Bellman equations; scales only to N ≤ 10
Pinning-control heuristics (Lin et al., 2022)	50 – 80 %	10 – 30	Needs pre-selected control nodes; exponential in largest in-degree d

- <u>Success ≠ optimality</u>: Even though the agent always succeeds, it doesn't always minimize interventions.
- <u>Interpretability gap:</u> High-performing policy, but hard to biologically interpret why certain flips are made.

Discussion

<u>Limitations:</u>

- Fixed intervention cost: The reward function penalizes each gene flip equally, but biological interventions vary in cost, feasibility, and side effects. Our current model does not account for these real-world constraints.
- Onetworks lack interpretability—we don't know why certain genes are flipped, or whether the learned policy aligns with known biology.
- Future Directions:
 - Biologically grounded reward shaping: Incorporate domain knowledge into the reward structure—e.g., penalize harmful state transitions or prioritize minimal interventions on specific genes of interest.
 - Hybrid symbolic-RL models: Explore neuro-symbolic systems that combine learned policies with graph-based regulatory logic or probabilistic model checking for safety-critical control.