

SHELL PETROLEUM DEVELOPMENT COMPANY OF NIGERIA LIMITED

DIEBU CREEK 1L RE-PERFORATION AND SCON PROPOSAL (FLOWLINE REPLACEMENT REQUIRED)

Document number:	SPDC-2019-05-00000276	Prepared By:	David Olayinka/Imorame Imonitie – PP Unukogbon Obaro – PG Nwosu Obiora – PT Sa'ad, Abdul-Wahab – RE Esther Briggs – WRFM Jimba, Olugbenga – Asset Engineering
Document Owner:	UPO/G/UVC	Version:	1.0
Issue Date:	August 2019	Review Date:	August 2019
Record Type	Proposal	Record Series Code:	
Name:		Record Series Code:	
Security	Restricted	ECCN classification:	Not Subject to EAR - No US Content
Classification:			

This document is the property of Shell Petroleum Development Company (Nigeria) Ltd., and the copyright therein is vested in Shell Petroleum Development Company (Nigeria) Ltd. All rights reserved. Neither the whole nor part of this document may be disclosed to others or reproduced, stored in a retrieval system, or transmitted in any form by any means (electronic, mechanical, reprographic recording or otherwise) without prior written consent of the copyright owner

Copyright © 2019 SPDC Nigeria Ltd.

I. TABLE OF AUTHORISATION

REVIEWED/ ASSURED BY:

Name Position	
Abiodun Laoye	Petrophysics TA2
Onyedikachi Okereke	Reservoir Engineering TA2
Suleiman Ahmed	Production Geoscience TA2 (Delegate)
Gbenga Komolafe	Production Technology TA2

AGREED BY:

Name Position		Signature
Olumide Ayeni	FMT Coordinator, Nun River Node	Ayeni Olumide Date: 2019.08.22 14:43:30 +0100'
Gbenga Komolafe	WRFM Delivery Coordinator Central & Swamp East	Gbenga Digitally signed by Gbenga Komolafe Date: 2019.08.23 11:29:15 +01'00'
Ricky lyengumwena	Well Intervention Lead, WRFM	
Offor, Kenneth	Project Lead, Central East Hub	Kenneth Digitally signed by KennethOffor Date: 2019.08.22 10:58:59 +01100'

APPROVED BY:

Name Position		Signature
Ime Uyouko	Asset Development Lead, Central East Asset	Ime Uyouko Digitally signed by Ime Uyouko Date: 2019.08.23 15:25:57+01'00'

II. TABLE OF CONTENT

I. T	TABLE OF AUTHORISATION	ii
II.	TABLE OF CONTENT	iii
1.	OBJECTIVE	4
2.	WELL HISTORY/ PRESENT STATUS	4
3.	PROPOSED ACTION AND JUSTIFICATION	4
4.	PROPOSAL SUMMARY	5
5.	SCON RECIPE	5
6.	POTENTIAL ESTIMATION	6
7.	RESOURCE ESTIMATION	6
8.	WELL & RESERVOIR DATA SHEET	7
9.	RECENT WELL TEST DATA	8
10	. COST ESTIMATE	8
11	. HSSE/ SPECIAL WELL/LOCATION CONDITION	9
12	. RISKS AND MITIGATION	10
13	. LIST OF APPENDICES	12
,	Appendix 1 - HSE Critical Activities	13
,	Appendix 2: Diebu Creek 001L Well Status Diagram (Current Status)	17
,	Appendix 3: Diebu Creek 001L Well Status Diagram (Proposed Status)	18
,	Appendix 4: Diebu Creek 001L Well Performance Plot	19
,	Appendix 5: Diebu Creek 001 Petrophysical Data Layout	20
,	Appendix 6: Diebu Creek E9500N Hydrocarbon Distribution Plot	20
,	Appendix 7: Diebu Creek 001L Inflow/outflow Plot	21
,	Appendix 8: Diebu Creek 001L Well forecast plots	22
,	Appendix 9: Diebu Creek E9500N Top Structure Map	23
,	Appendix 10: Geological Cross Section through E9500N Reservoir	24
,	Appendix 11: Correlation Panel through E9500 Reservoir	25
,	Appendix 12: Pore Pressure Prediction for Diebu Creek 001L on E9500N	26
,	Appendix 13: H2S Prediction for Diebu Creek 001L on E9500N Reservoir	28

1. OBJECTIVE:

WELL:	DIEBU CREEK – 001L
TYPE:	Re-Perforation, SCON and FLRR Proposal
OBJECTIVE:	To restore production on Diebu Creek 001L on the E9500N sand by carrying out reperforation, chemical sand consolidation and flowline replacement. This activity is expected to unlock a potential of 450 bopd and safeguard resource volume of 0.87 MMStb.

2. WELL HISTORY/ PRESENT STATUS:

DBUC 001L (E9500N): [11856 - 11860 ftah, 11791 - 11795 ftss] TT SCON

DBUC-001 was drilled and suspended in December 1966. The interval came onstream on the E9500N reservoir with an initial offtake of 320 bopd and attained peak production of 1150 bopd in October 1973 (GOR 1505 scf/day, BSW 32.6%, sand cut 3pptb).

Water production started at initial well start-up (suspected to be completion brine) and later receded. In March 1975 the interval was reported to have quit production and there is no documented reason on why the interval quit production. Last Rate: 508 bopd, 20% BSW, GOR 1086 scf/bbl. During closed-in wells review, it was recommended that this interval be re-perforated, SCONED and opened to production.

Latest well head pressures from Preventive maintenance in February 2019 show CITHP of 200psi and CHP of Opsi.

3. PROPOSED ACTION AND JUSTIFICATION:

DBUC001L is the only completion on the E9500N reservoir block that encountered hydrocarbon thus, there is no other existing well penetration that can develop the remaining volumes in the E9500N. Historical production showed that the interval produced sparingly for ca. 19 months before experiencing a sharp decline in the Tubing Head Pressure (THP), causing the well to quit production. The Interval has produced about 9% of STOIIP, and there is some remaining 0.87 MMbbl of contingent resource to be developed through this interval.

The E9500N reservoir has a base case STOIIP of 4.4 MMstb. The top structure map (Reference Appendix 9) indicates that the size of the hydrocarbon accumulation is small relative to the size of the aquifer. The reservoir pressure acquired indicates ca.18psig (0.4%) decline with minimal liquid withdrawal (Cumulative production of 0.36MMbbl).

The MBAL model energy plot in Appendix 8, shows the dominant drive mechanism to be aquifer. Although the reservoir pressure decline at the early stages of production suggests a delayed aquifer response, the aquifer responded with a re-pressurization as seen in the acquired bottom hole pressure data. An increased perforation extent will benefit the well in terms of better inflow.

It is proposed to carry out re-perforation across the interval from 11844 – 11850 ftah and 11854 – 11860 ftah to increase the inflow area and improve the productivity on the zone (Reference Appendix 5). Current perforation interval is 11856 – 11860ftah. Flow line re-placement (FLLR) will also be carried out as the flowlines have been stolen. DBUC001L was initially completed with SCON. Historically, the sand cut averaged at 5 pptb which is considered below the Shell cut-off of 10pptb. To forestall future sand production from the new perforations, the interval will be treated with SCON as remedial sand control.

4. PROPOSAL SUMMARY

- 1. Re-perforate the 4ft. existing interval on the E9500N sand and add extra 8ftah above the current perforations (Total perforation interval of 12ft; 11844 11850 ftah & 11854 11860ftah).
- 2. Deploy SCON across the entire perforations and allow to cure.
- 3. Open well to flow.
- 4. Hand back well to Production.

5. SCON RECIPE

Analysis of Diebu Creek wells historical performance suggests that sand control is required to maintain the sand below the acceptable limit of 10pptb to safeguard the well equipment and facilities. Although the depth of the target sand is >10,000 ft-tvd, Chemical Sand Consolidation (SCON) will still be deployed as a sand exclusion mechanism to sufficiently retain the formation sand post perforation extension

Chemical Sand Consolidation Fluid Schedule and Perforation Details:

NB: Preliminary Sand Trap 225 Schedule - E9500N Interval

Fluid Schedule –	Rate	E9500N – 12 ft perforation
Preflush 1 – 100 gal/ft.: 7% KCl + 0.5% ES 5	1.0 bpm	28.57 bbl.
Preflush 2 – 100 gal/ft.: Musol	1.0 bpm	28.57 bbl.
Main Treatment – 150 gal/ft.: Sand Trap 225 resin	1.0 bpm	42.86 bbl.
Spacer – 100 gal: Diesel	1.0 bpm	2.4 bbl.
After flush – 150 gal/ft.: 7% KCl + 0.5% ES 5	1.0 bpm	42.86 bbl.
Displacement	1.0 bpm	CT Volume

Perforation:

The perforation depths were selected based on evaluation of open hole petrophysical logs, to increase the area available for well inflow. (Reference Appendix 5).

	Existing Perforation (To be re-perforated)		Proposed Perforation		
Reservoir	ftah ftvdss		ftah	ftvdss	
E9500N	11,856 – 11,860	11,791 – 11,795	11,844 – 11,850	11,779 – 11,785	
L/30011	11,000 - 11,000	11,771 - 11,773	11,854 – 11,856	11,789 – 11,791	

Note:

The proposed intervals will be perforated overbalance using a deep penetrating gun, 60 deg. phasing, 6 shots per foot.

6. POTENTIAL ESTIMATION

The well performance evaluation software, PROSPER, was used to determine the potential for DBUC-001L on the E9500N reservoir. The model was matched/calibrated to the last production performance of the well in March 1975 and based on historical performance, a specific PI was derived and applied to the proposed 12 ft perforations. Water cut of ca. 20% was assumed considering the expected breakthrough of water post intervention. Sensitivity on different choke sizes was made (16/64" to 20/64") while noting the impact on the drawdown applied to the reservoir. Bean 16/64" potential was used for the economic and technical evaluation of this activity resulting to a net oil potential of ca. 660 bopd.

A risk factor of 70% was applied to the net potential based on OP18 premise for NFA (WO) technical risks assumptions on historical success rate for Perforation Extension and Chemical Sand Consolidation (SCON) and the risk of high gas production was also considered resulting to a risked potential of 450 bopd.

7. RESOURCE ESTIMATION

Interval	Reservoir	Planned DUR (for the interval)- MMstb	Np (for the interval) MMstb	Contingent Resources/Reserves to Developed by activity- MMstb		
				Low	Best	High
DBUC 001L	E9500N	1.23	0.36	0.51	0.87	0.97

⁻ The existing interval (4ft) will be re-perforated and 8ft of new perforations will be added across the E9500N during the STOG activity.

⁻ Perforation is a safety critical operation and must be conducted in line with all required safety precautions during gun arming, running in hole and pulling out of hole.

8. WELL & RESERVOIR DATA SHEET

S/N	WELL/ SAND:	UNIT	Disc.	DBUC001L (E9500N)
1	a) Existing Perforated interval	ftah	PP	11,856 – 11,860
	b) Existing Perforated interval	ftss		11,791 – 11,795
	c) Proposed Perforation interval	ftah		11,844 – 11,850; 11854-
	d) Proposed perforation interval	ftss		11860
	a, rrepessa perioraner interval	1100		11,779 – 11,785; 11789 –
				11795
2	a) Maximum Deviation Angle and Depth	° @ fi	PG	5.7° @ 6251
	b) Derrick Floor Elevation	ft		50.6
	c) Vertical Correction to mid-Perforation + DFE	fttvd		11843.6
3	a) Last Production Rate	bopd	PT	508 bopd @ March. 1975
4	a) Reference Depth for Reservoir Pressures	ftss	RE	11 <i>7</i> 80
	b) Original Reservoir Pressure *	psig		5115
	c) Present Reservoir Pressure	psig		5082
	d) Present Gradient	psi/ft		0.431
	e) Bubble Point Pressure	psig		5115
	f) Specific Gravity of Oil 60/60	sg		0.85
	g) Oil Viscosity at Reservoir Condition	cР		0.33
	h) Solution Gas-Rsi (initial condition)	scf/stb		1546
	i) Formation Volume Factor (initial condition)	-		1.695
	j) Static Reservoir Temperature	° F		204
5	a) Other Wells Producing from the same Block	-	RE/PT	1
	b) Last production from Block (@ Mar. 1975)	bopd		508
	c) Ultimate Recovery (@ Dec. 2018)	MMstb		1.23
	d) Cumulative Production from Block (@ 1.1.2019)	MMstb		0.36
	e) Cumulative Production from Well (@ 1.1.2019)	MMstb		0.36
	f) Remaining/Dev Reserve from Well	MMstb		0.87
6	a) Porosity	%	PP	0.24
	b) HC Saturation	%		0.54
	c) Permeability	mD		1620
	d) Sand Thickness as per PDL	ftvd		45
	e) Net Oil Sand	ftvd		38
	f) Net/Gross Ratio	ftss		0.84
	g) Original estimated GOC in Well (or Reservoir)	ftss		N/A (OUT @ 11762ftss)
	h) Present estimated PGOC in Well (or Reservoir)	ftss		N/A
	i) Change in GOC from original GOC	ft		N/A
	j) Distance Between Highest Perforation and PGOC	"ft		N/A
	y Prisiding between riighest retreatment and rece			1471
7	a) Original Estimated OWC in Well (or Reservoir)	Ftss	PP	11804 (ODT)
	b) Present Estimated OWC in Well (or Reservoir)	Ftss		NA
	c) Change in OWC From Original OWC	ft		N/A
	d) Distance Between Lowest Perforation and POWC	ft tvd		9 (ODT)
8	a) Tubing Size/Weight	in/ibs/ft	PT	$3^{-1}/_{2}''/9.3$
	b) Casing Size/Weight	in/ibs/ft		9- ⁵ / ₈ "/ 4 7
	c) Liner Size/Weight	in/ibs/ft		7"/32
9	a) Average Hole Size across Completion Interval	in	PP	8.5
10	a) Is there a barrier between top of completion Interval		PG	Yes
	and the present estimated GOC.			
	b) Is there a barrier between lowest completion Interval			N/A
	and the present estimated OWC			

NA – Not Available, N/A - Not Applicable

9. RECENT WELL TEST DATA

Well	Date	Choke	BS&W	Gross	Net	GOR	Sand	FTHP	СНР
DBUC001L	September 1974	16	0	759	758	2039	1.3	2262	0
DBUC001L	October 1974	16	0	775	775	2168	0.8	2262	0
DBUC001L	November 1974	16	0	773	771	1764	1.5	2227	0
DBUC001L	December 1974	16	0	774	772	1347	1.9	2002	0
DBUC001L	January 1975	16	3.7	848	816	1067	1.6	1782	0
DBUC001L	February 1975	16	4	849	815	1058	0.8	1764	0
DBUC001L	March 1975	16	20	635	508	1086	1.3	1400	0

10. COST ESTIMATE

The total cost of the 0.7 KM flowline replacement is \$365,932.31 while the total cost of the Perforation Extension and SCON is \$1,703,300.81

S/N	DBUC 1L, PERF, SCON, N2 LIFT	\$
1	Mobilization	255,442.48
2	WHM package	29,100.00
3	Slickline package	29,250.00
4	Coiled Tubing Package	213,504.61
5	Swamp Logistics	545,685.00
6	Sand Trap (12ft interval)	158,400.00
7	QA/QC Engineer	11,964.00
8	Perforation	105,000.00
9	Chemicals (salts)	83,087.00
10	Liquid Nitrogen (2 tanks)	32,000.00
11	Demobilization	63,860.62
12	FTO/Security	75,707.10
13	AGO	20,800.00
14	Crew Flight	24,000.00
15	OH personnel	10,500.00
16	CCU Actuator / Control Panel	45,000.00
17	Total	1,703,300.81

11. HSSE/ SPECIAL WELL/LOCATION CONDITION

CONDITION OF WELLHEAD	Ok
ANNULUS PRESSURE MEASUREMENT/DATE	CHP A = Opsi.; CHP B = Opsi. (03/02/2019)
MAASP / MAWOP	80 bar / 60 bar (A-annulus), 13 bar / 10 bar (B-annulus)
WELL INTEGRITY SUMMARY	Well has no integrity issue.
CONDITION OF PRODUCTION STRINGS	Both Strings are ok
ANY PROBLEM DURING PRIMARY CEMENTATION OR LAST RE-ENTRY	No
SPECIAL FISHING TOOL REQUIRED	No
LOCATIONCONDITION	Ok
COMMONCELLAR	No
SEASONALLYFLOODED	Yes
SIZELIMITATION	No

12. RISKS AND MITIGATION

RISKS	TECOP	LIKELIHOOD/ IMPACT	IMPACT	MITIGATION/MANAGEMENT
Loss of well control during intervention.	Operational	M/H	Well kickSpills into the environmentFire/blowoutCompany reputation	 Use of appropriately rated PCE (Wireline BOP/ lubricator) Robust pore pressure and fracture gradient predictions has been made to indicate expected reservoir pressure.
Well unable to flow due to insufficient lift post intervention activity.	Technical/ Operational	L/H	 Delay in OSD & cash flow deficit post intervention activity. Rig-less intervention cost escalation. 	 Ensure adequate planning with robust contingency for N2 lift post intervention. Lift entire tubing capacity plus volume of fluid pumped into the wellbore.
Well unable to sustain flow for an extended period due to reservoir pressure depletion. In addition there might be early ingress of water, as seen in early production history (although suspected to be completion brine) and this has been considered in the risking of the potential.	Technical	L/M	Potential impact on recovering of resources.	Ensure that the withdrawal is managed to allow the aquifer to kick in.
High associated gas production after Perforation activity	Technical	н/н	 Potential impact on well rates if GOR creaming is required. Cost implication resulting from increase in Gas flaring penalty. 	 Optimal bean control/ GOR creaming will be used to mitigate excessive AG production. Well offtakes will be managed to produce well at acceptable Rsi limit (3*Rsi).
Potential for drop objects during Well Intervention operations	Technical/ Operational	Н/Н	 Potential for Near misses and/or injury to personnel. Inability to continue the workover operation based on the severity of the above impact. 	 Ensure DROP zones are identified prior to operations and proper barriers are in place. Ensure strict adherence to JHA and PTW processes during operation.
Possible HUD inside Tubing	Technical/ Operational	M/H	 Inability to access sand face to stimulate interval. Impact on intervention cost from excessive time spent on removing restriction. 	 Drift tubing and tag XN prior to job execution. Run LIB if HUD is encountered to confirm nature of HUD. Contact PTW/O/NG or UPO/G/UVC Mobilize necessary fishing/ jetting tool to manage hole restriction/ HUD during operation.
Contamination risk from SCON chemicals.	Technical	L/H	 Tubing restriction if SCON chemical congeals during deployment impacting well promise and cost. HSSE impact from exposure to SCON chemicals. 	 Proper chemical compatibility test and appropriate field supervision during SCON deployment. SCON chemicals should be properly bulked in the contractor's base and transported to the field locations

RISKS	TECOP	LIKELIHOOD/	IMPACT	MITIGATION/MANAGEMENT
		IMPACT		 Ensure all connections are pressure tested and leak tight before pumping SCON chemicals STOP work authority to be in place to avoid any HSE exposure during SCON treatment. Unused chemicals should be returned to contractor base for proper disposal.
Tubing burst during pressure test.	Technical/ Operation	L/M	Prolonged well operation and increased cost.	Clearly define maximum allowable burst load and maximum allowable surface test pressure for the tubing.
Exposure to NORM	Technical/Or ganizational	L/H	Health hazard to staff. Environmental and reputational impact and additional cost for cleanup.	 Safety measures as stipulated in the HSSE and SP Control Framework (Ionizing Radiation Manual) should be followed. A radiation protection officer should be appointed for the operation. Ensure exposure control and adequate dosimetry. Appropriate PPE should be worn by staff handling tubulars and other well accessories.
Community Issues	Political	M/H	Delays in well execution/ increased cost.	 Early engagement as per SCD / MoU. Ensure FTO is secured prior to commencement of operations.
Security	Political	M/H	Delays in well execution/ increased cost.	 Security surveillance and intelligence evaluation should be conducted prior to equipment mobilization to site. Follow Journey Management Plan for all inter/ intra state commuting – crew change, supplies delivery, mobilization/de-mobilization. Maintain visible JTF presence within and around location as a deterrent to invasion or kidnapping.

13. LIST OF APPENDICES

Appendix 1: HSE Critical Activities

Appendix 2: Diebu Creek 001L Well Status Diagram (Current Status)

Appendix 3: Diebu Creek 001L Well Status Diagram (Proposed Status)

Appendix 4: Diebu Creek 001L Well Performance Plot

Appendix 5: Diebu Creek 001 Petrophysical Data layout

Appendix 6: Diebu Creek E9500N Hydrocarbon Distribution Plot

Appendix 7: Diebu Creek 001L Inflow/outflow Plot

Appendix 8: Diebu Creek 001L Well forecast plots.

Appendix 9: Diebu Creek E9500N Top Structure Map

Appendix 10: Geological Cross Section through E9500N Reservoir

Appendix 11: Correlation Panel with existing completions

Appendix 12: Pore Pressure Prediction for Diebu Creek 001L on E9500N Reservoir

Appendix 13: H2S Prediction for Diebu Creek 001L on E9500N Reservoir

Appendix 1 - HSE Critical Activities

Table of Authorization

HSSE Critical Activities (Rig-less Activities -Wells) Sign-Off:

Position	ActivityNumber(s) Reviewed	Name	Ref Ind.	Signature
Production Geosciences Discipline Principal	4a,24	Arochukwu, Elias	UPO/G/UVW	
Petrophysics Discipline Principal	5b, 7a, 7b, 7c,7d,7e,17a, 18.	Laoye, Biodun	UPO/G/UVN	Laoye bigitally signed by Laoye Abiodun Abiod bate: 2019.08.26 un 12:16:13 +01'00'
Reservoir Engineering Discipline Principal	5c	Okereke, Onyedikachi	UPO/G/UVC	Onyedik Digitally signed by Onyedikachi Okereke Date: 2019.08.24 Okereke 09:46:53 +01'00'
Production Technology Discipline Principal	10, 11, 12, 13a, 13b, 14, 15,16, 17b	Komolafe, Gbenga	UPO/G/UDR	Gbenga by Gbenga Komola Date: 2019.08.23 fe 11:30:24 +01'00'
Well Intervention Lead, WRFM	26	Ricky lyengumwena	PTW/O/NG	

	HSE Critic	cal Task	Discipline	Close Out of HSSE Critical Task
Activi	ty	Potential HSE Impact	-	
4a	Predict H2S presence. DEP 25.80.10.18	Loss of life and material integrity.	PT/PG*	The consequence of presence of H2S is loss of life and material integrity. However, available PVT data in Diebu Creek & nearby fields do not indicate H2S presence. The H2S prediction chart in Appendix 13, shows negligible H2S risk in the target Reservoir (E9500N). Also, focused evaluation of the reservoir using the SPDC souring potential chart highlighted that the souring tendency of the reservoir is minimal.
5b	Predict pore and fracture pressure in an undeveloped reservoir DEP 25.80.10.10	Loss of Well Control and Integrity	PP	Not Applicable. Target reservoir is developed.
5c	Predict pore and fracture pressure in an already developed reservoir DEP 25.80.10.10	Loss Well Control and Integrity.	RE	Pore pressure/fracture gradient prediction for developed reservoir has been done and endorsed by technical authority (ref. appendix 12).
7a	Plan logging – Wireline and LWD operations DEP 25.80.10.15	Well control, human exposure	PP	Not Applicable. No logging activity is planned during the STOG execution.
7b	Plan logging – radioactive sources DEP 25.80.10.15	Environmental impact, surface handling risks to people, loss of sources in the hole	PP	Not Applicable.
7c	Plan logging – explosives DEP 25.80.10.15	Potential for loss of life. HSSE management of surface and downhole operations	PP	 Personnel should follow the required guidelines on explosive tool handling as applicable. The explosives should be kept secure in a dedicated location with perimeter protection and CAUTION sign, before and after operation. Explosives should be handled by trained and certified personnel ONLY; Lead engineer is responsible for handling the tool during operations transfer.
7d	Plan logging - Pressurised formation fluid samples. DEP 25.80.10.15	surface handling: potential for loss of life.	PP	Not applicable.
7e	Plan logging - TZ and VSP survey operations DEP 25.80.10.15	Explosives, Airguns – Potential loss of life.	PP*/GP/WE	Not applicable.
10	Interpret cement bond integrity and casing wear log.	Zonal isolation and potential casing integrity.	PT*/PP	No cement bond log sighted. However, based on production history of this conduit, zonal isolation is not an issue and casing integrity is intact since no casing head pressures till date

11	Plan perforation and guns retrieval. (Integrated as part of DEP 25.80.10.21)	Hazards to life and facilities (misfired or unfired charges to surface).	PT*/WE	Radio silence will be observed while running in and running out of hole with the gun.
12	Predict sand production. DEP 25.80.10.19	Facility / flow-line integrity and loss of containment (LOC)	PT	Sand production is anticipated during well life and it is proposed to carry out Chemical sand consolidation to mitigate sand influx into wellbore.
13a	Predict produced fluid composition, especially contaminants like CO2, H2S, and mercury and potential formation water composition.	Corrosion and material integrity.	PT	No PVT samples taken directly from E9500N. However, PVT data from shallower reservoirs and well head gas analysis from NUNR-005 was used as analogue and it indicates no H2S is present. The souring tendency of the reservoir is also analysed to be minimal. Fluid sample analysis also show insignificant amount of CO2 in the reservoir as observed from applicable Diebu Creek PVT reports. Hence CO2 and H2S corrosion is highly unlikely.
13b	Predict and manage scaling + reservoir souring impact from water flooding /water injection	Corrosion and material integrity including hazard to life	PT	Not Applicable. Water flooding / water injection is not planned for the target reservoir.
14	Predict well-head and produced fluid temperature.	Well head growth, surface flowlines limitation and stress integrity.	PT	The predicted / expected wellhead fluid temperature of between 80 - 95degF falls within the range seen in Wells in the nearby fields and are not expected to pose a threat during this operation and indeed in the life of the well. Also, the surface casing is cemented in place and no wellhead movement have been seen when this well was producing
15	Plan (and execute) stimulation. DEP 25.80.10.21	Unsafe handling of chemicals (SHOC), equipment failure due to acid corrosion.	PT*/WE	Chemical treatment is planned in the scope of this intervention. Hence, SHOC card procedures are available for these chemicals. Appropriate PPE will be used by personnel on this job. Tool box talk and job hazard analysis will be conduction. Also, CWI have local experience handling these chemicals as these chemicals are deployed regularly in SPDC operation.
16	Establish safe operating boundaries (MAASP, closed in pressure, erosion and corrosion limits, etc.) for well integrity management.	Loss of well integrity.	PT	MAASP for the well and indeed well integrity boundary parameters are actively managed in e-WIMS. Presently, Diebu Creek 001L has action code 0 (May 2019) and no record of annulus pressure. Preventive maintenance/well integrity assurance activities are routinely carried out.
17a	Top-seal integrity assessment for primary recovery, waterflood, EOR and CO2 storage DEP 25.80.10.22	Human exposure, environmental and asset damage	PP	The risk of top-seal leakage due to primary recovery is considered low based on observations in the field and regional experience (Fields within the NUNR/ DBUC axis have produced for above 30 years with no recorded incidents).

				Geomechanical screening risk assessment carried out in Diebu Creek does not indicate risk of Top seal integrity issues.
1 <i>7</i> b	Prepare Abandonment Design option and program	Human exposure, environmental and asset damage.	PT	Not applicable.
18	Predict and monitor reservoir compaction and subsidence. DEP 25.80.10.16	Loss of wells, facility/platform integrity.	PP	The risk of compaction and subsidence is considered low based on the field and regional experience (Fields within the NUNR/DBUC axis have produced for above 30 years with no recorded incidents).
				Geomechanical screening risk assessment carried out in Diebu Creek field does not indicate any risk of reservoir subsidence and compaction.
24	Prepare and maintain data to support emergency response. DEP 25.80.10.12	Lack of data or wrong data during emergency response may aggravate the emergency.	PT/PG*	All relevant well data and latest well information required for emergency response have been loaded in the SIRUS CATALOG and Sharepoint (see links below): SIRUS CATALOG Share point
26	Identify Hazards (HAZID) and prepare Hazard Register	Integral part of HSSE Case development. To confirm selected concept/process can be developed into a safe and operable plant.	WE	This intervention is planned on existing well. Hence, well design is not applicable. HSSE risks and mitigation for this Intervention will be built into the execution program

^{*}Accountable Discipline, as per Published DEP

Appendix 2: Diebu Creek 001L Well Status Diagram (Current Status)

Appendix 3: Diebu Creek 001L Well Status Diagram (Proposed Status)

Appendix 4: Diebu Creek 001L Well Performance Plot

Appendix 5: Diebu Creek 001 Petrophysical Data Layout

Existing Perforation (11856ftah – 11860ftah)

Proposed Perforation (11844ftah – 11850ftah ; 11854ftah – 11860ftah)

Appendix 6: Diebu Creek E9500N Hydrocarbon Distribution Plot

Appendix 7: Diebu Creek 001L Inflow/outflow Plot

Appendix 8: Diebu Creek 001L Well forecast plots

Appendix 9: Diebu Creek E9500N Top Structure Map

Appendix 10: Geological Cross Section through E9500N Reservoir

Appendix 11: Correlation Panel through E9500 Reservoir

Appendix 12: Pore Pressure Prediction for Diebu Creek 001L on E9500N

RELD:	Diebu Creek																		
VELL NAME:	DBUC-00H																		
PLATFORM/RIG:	PARED BY / Sa'ad Abdul-Wahati'																		
PREPARED BY/ CHECKED BY:																			
SSUED DATE :	16 May 2019																		
REVISION NO:	v1.0																		
RE ENTRY DATE:	20 November 2	019																	
EXPIRY DATE:	15 May 2020			l.															
ore Pressure Predict	tion at Top Reserve	oir for well DBUC	-001	Formatio	n Poro Prosure	Prediction at T	op of Proposed	Perforation	Pore Pressu	no Gradient Pre-	diction at Top	of Proposed Per	rioration along	Fracture Gr	radiont Prediction	n at Top of Pro	oposed Perforati	on along Well	
Formation	TV-Depth of Pressure Prediction and	Fluid Type Prognosis at Top of Sand	osis at is Reservoir	10111111	ali	ong Well Trajer	actory				Well Trajector			Fracture Gradient Prediction at Top of Proposed Perforation along Well Trajectory			1		
	Reference Depth	along Well Trajectory	Developed?	Minimum (psia)	Reasonable Low (psia)	Reference Case (pski)	Reasonable High (psk)	Maximum (psia)	Minimum (psi/tt)	Reasonable Low (ps/ff)	Reference Case (ps/ff)	Reasonable High (ps/tt)	Maximum (psi/ft)	Minimum (psi/ft)	Reasonable Low (ps/ft)	Reference Case (ps/ff)	Reasonable High (ps/ff)	Max Imum (psi/tt)	Remarks
E9500N	11775	OII	Yes	4574	4834	5090	5103	5114	0.388	0.411	0.431	0.433	0.434	0.630	0.709	0.792	0.965	0.917	Formation pore pressure estimated at the top of proposed perforation. Reservoir witnessed ca. 1% pressure depietion
Prepared By:			Sa'ad Abd			_		OC-UPO/G/U		_		lay 2019 Date	_						
			140	142			Onyedikachi		post by Corporibated		,	Julio							
E Check/Approve	ad Bv	Okereke Onyedikachi Name					Okoroke		017 1966 - CTW										
L oncomappion							-	Signature		-									
P Check/Approve	ed By:		N/A			_				_									
			Nan	ne			0	Signature											
			1481	RCT .				oifilamie											

Appendix 13: H2S Prediction for Diebu Creek 001L on E9500N Reservoir

DIEBU CREEK 001L H₂S PREDICTION FOR E9500N RESERVOIR

Diebu Creek 001 is completed as a TSD oil producer on the E1000X & E9500N sands. Diebu Creek-001L
is proposed for a thru-Tubing perforation extension activity on the E9500N reservoir.

PVT Report and Production History

- There is no PVT Report for the E9500N reservoir but there is for the E1000X & E2000 reservoirs. The PVT
 report does not confirm the presence or absence of H2S in the E1000X reservoir, however it confirms the
 absence of H2S in the E2000 reservoir.
- There is no documentation of H2S produced from E9500N reservoir while on production.
- Gas samples from Diebu Creek separators obtained in 2002 indicates absence of H2S.
- Well head gas samples from the adjoining Nun River field about 16.5km to the north, obtained in December 2018 from NUNR-005 on NUNR G4000 reservoir indicates absence of H2S. NUNR-005 encounters G4000 at 12415ftss whereas DBUC-001 encounters E9500N at 11759ftss. With the structural depth difference between the two reservoirs at 656 ft (<1000 ft), Nun River G4000 is a suitable analogue for Diebu Creek E9500N.
- See snapshot of PVT reports and gas sample analysis on the next slides.

Souring Potential

- The consequence of H₂S is loss of life and material integrity. However, available PVT data in Nun River & nearby fields do not indicate H₂S presence.
 - The maximum reservoir temperature for the target sand (E9500N) is 95.5 °C (below 110 °C)
 - No water injection in Diebu Creek & nearby fields that can lead to reservoir souring.
 - No secondary or Tertiary recovery processes are being practiced in the field.
- Also, due to these reasons the souring tendency of the reservoirs is minimal (refer to the souring potential chart in attachment);
- The fresh-saline water interface in DBUC 001 is 4852 ftss, which is about 5191 ftss & 6907 ftss away from the E1000X and E9500N reservoir. The possibility of fresh water migration into this reservoir (E9500N) is low.

External Risks

 There is a risk of the Equipment (e.g. CT, Tanks) to be used in this operation, introducing some H₂S based on residue from their previous operations reacting with the acid to be used now.

Mitigations

- Check and Confirm that previous use of the equipment would not intentionally give rise to H₂S after contacting HCL.
- H₂S Gas monitors is mandatory during Well Intervention execution to alert the crew of any latent threats.
- Appropriate PPE's including self-contained breathing respirator must be worn as mitigation.

Prepared by	Unukogbon Obaro (PG)	Nwosu Obiora (PT)	30/ April / 2019
Checked by	Ahmed Suleiman (PG TA2)	Suleiman Ahmed	Digitally signed by Suleiman Ahmed Date: 2019.05.06 08:30:14 +01'00'
Approved by	Biambo Tamunotonye (PT TA2)	Tammy Biambo	Digitally signed by Tammy Blambo Date: 2019.05.07.09:02.26 +01:00*
Approved by	Arochukwu Elias (PG TA2)	Elias Arochukwu	Digitally signed by Elias Arochukwu Date: 2019.05.06 10:45:59 +01'00'

RESTRICTED

April 2019

2