

Which national population will grow faster?

China (2000)

China (predicted 2050)

$$\begin{bmatrix} R_1 & R_2 & R_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & S_3 \end{bmatrix}$$

Three age classes:

- First Year (FY)
- Second Year (SY)
- Adult

Contributions from FY N_t ... $\begin{bmatrix} R_1 & R_2 & R_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & S_3 \end{bmatrix}$ Contributions from Adult Nt... Contributions from FY N_t ...

Contributions from SY N_t ...

Contributions from Adult N_t ...

Contributions from R_2

Example A: FY population size in N_{t+1} is the sum of FY, SY, and Adult reproduction in N_t

Example B: SY population size in N_{t+1} is equal to FY survival (S_1) times the number of FY individuals in N_t

What would it look like if the first age class wasn't reproductive?

What would it look like if the first age class wasn't reproductive?

Basics of matrix multiplication

$$\begin{bmatrix} R_1 & R_2 & R_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & S_3 \end{bmatrix} \times \begin{bmatrix} N_{t (FY)} \\ N_{t (SY)} \\ N_{t (Adult)} \end{bmatrix} =$$

Basics of matrix multiplication

$$\begin{bmatrix} R_1 & R_2 & R_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & S_3 \end{bmatrix} \times \begin{bmatrix} N_{t (FY)} \\ N_{t (SY)} \\ N_{t (Adult)} \end{bmatrix} =$$

$$\begin{bmatrix} R_1 * N_{t (FY)} & R_2 * N_{t (SY)} & R_3 * N_{t (Adult)} \\ S_1 * N_{t (FY)} & 0 & 0 \\ 0 & S_2 * N_{t (SY)} & S_3 * N_{t (Adult)} \end{bmatrix}$$

What goes into the R term?

- R: reproductive contribution from a given age class to the initial age class (which, in our case, is FY)
- To join the FY age class, individuals must do two things:
 - Be born/hatched
 - Survive until the time of the survey
- These two metrics are represented by the symbols F, representing fecundity, and S_0 , representing initial survival
 - $R_1 = F_1 * S_0$

Final notes

- This lab can be done on Mac computers (doesn't require MARK)
- Extra credit is available for this lab
 - Translate Part 3 from Excel to R