

MIXED SIGNAL MICROCONTROLLER

FEATURES

- Low Supply-Voltage Range:
 3.6 V Down to 1.8 V
- Ultra-Low Power Consumption
 - Active Mode (AM)
 All System Clocks Active
 - 195 μA/MHz at 8 MHz, 3 V, Flash Program Execution (Typical)
 - 115 μA/MHz at 8 MHz, 3 V, RAM Program Execution (Typical)
 - Standby Mode (LPM3)
 - Real-Time Clock With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake-Up:
 - 1.9 µA at 2.2 V, 2.1 µA at 3 V (Typical)
 - Low-Power Oscillator (VLO), General-Purpose Counter, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake-Up:
 1.4 μA at 3 V (Typical)
 - Off Mode (LPM4)
 Full RAM Retention, Supply Supervisor
 Operational, Fast Wake-Up:
 1.1 μA at 3 V (Typical)
 - Shutdown Mode (LPM4.5)
 0.18 μA at 3 V (Typical)
- Wake-Up From Standby Mode in Less Than 5 μs
- 16-Bit RISC Architecture, Extended Memory, Up to 25-MHz System Clock
- Flexible Power Management System
 - Fully Integrated LDO With Programmable Regulated Core Supply Voltage
 - Supply Voltage Supervision, Monitoring, and Brownout
- Unified Clock System
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)

- Low-Frequency Trimmed Internal Reference Source (REFO)
- 32-kHz Watch Crystals (XT1)
- High-Frequency Crystals up to 32 MHz (XT2)
- 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers
- 16-Bit Timer TA1, Timer_A With Three Capture/Compare Registers
- 16-Bit Timer TA2, Timer_A With Three Capture/Compare Registers
- 16-Bit Timer TB0, Timer_B With Seven Capture/Compare Shadow Registers
- Two Universal Serial Communication Interfaces
 - USCI_A0 and USCI_A1 Each Support:
 - Enhanced UART With Auto-Baudrate Detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI_B0 and USCI_B1 Each Support:
 - I^2C^{TM}
 - Synchronous SPI
- Integrated 3.3-V Power System
- 10-Bit Analog-to-Digital (A/D) Converter With Window Comparator
- Comparator
- Hardware Multiplier Supporting 32-Bit Operations
- Serial Onboard Programming, No External Programming Voltage Needed
- Three Channel Internal DMA
- Basic Timer With Real-Time Clock Feature
- Family Members are summarized in
- For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MSP430 is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

DESCRIPTION

The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 5 µs.

The MSP430F5310, MSP430F5309, and MSP430F5308 devices are microcontroller configurations with 3.3-V LDO, four 16-bit timers, a high-performance 10-bit analog-to-digital converter (ADC), two universal serial communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with alarm capabilities and 31 or 47 I/O pins.

The MSP430F5304 device is a configuration 3.3-V LDO, four 16-bit timers, a high-performance 10-bit analog-todigital converter (ADC), two universal serial communication interfaces (USCI), hardware multiplier, DMA, realtime clock module with alarm capabilities, and 31 I/O pins.

Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, and hand-held meters.

Table 1. Family Members

	PROGRAM				US	CI									
DEVICE	MEMORY (KB)	SRAM (KB)	Timer_A ⁽¹⁾	Timer_B ⁽²⁾	CHANNEL A: UART, LIN, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC10_A (CH)	Comp_B (CH)	I/O	PACKAGE TYPE					
MSP430F5310	32	6	5, 3, 3	7	2	2	10 ext, 2 int	8	47	64 RGC, 80 ZQE					
M3F430F3310	32	O	5, 3, 3	5, 3, 3	,	1	1	6 ext, 2 int	4	31	48 PT, 48 RGZ				
MSP430F5309	24	6	E 2 2	7	2	2	10 ext, 2 int	8	47	64 RGC, 80 ZQE					
M3F430F3309	24		0	0	5, 3, 3	5, 5, 5	3, 3, 3	5, 3, 3	,	1	1	6 ext, 2 int	4	31	48 PT, 48 RGZ,
MSP430F5308	16	6	E 2 2	7	2	2	10 ext, 2 int	8	47	64 RGC, 80 ZQE					
W3F43UF3306	16	5, 3, 3	5, 3, 3	5, 3, 3	5, 3, 3	5, 3, 3	5, 3, 3	5, 3, 3	,	1	1	6 ext, 2 int	4	31	48 PT, 48 RGZ,
MSP430F5304	8	6	5, 3, 3	7	1	1	6 ext, 2 int	-	31	48 PT, 48 RGZ					

⁽¹⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.

Table 2. Ordering Information (1)

	PACKAGED DEVICES (2)								
T _A	PLASTIC 64-PIN VQFN (RGC)	PLASTIC 80-BALL BGA (ZQE)	PLASTIC 48-PIN VQFN (RGZ)	PLASTIC 48-PIN LQFP (PT)					
	MSP430F5310IRGC	MSP430F5310IZQE	MSP430F5310IRGZ	MSP430F5310IPT					
40°C +- 05°C	MSP430F5309IRGC	MSP430F5309IZQE	MSP430F5309IRGZ	MSP430F5309IPT					
–40°C to 85°C	MSP430F5308IRGC	MSP430F5308IZQE	MSP430F5308IRGZ	MSP430F5308IPT					
			MSP430F5304IRGZ	MSP430F5304IPT					

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

Functional Block Diagram – MSP430F5310IRGC, MSP430F5309IRGC, MSP430F5308IRG, MSP430F5310IZQE, MSP430F5309IZQE, MSP430F5308IZQE

PU.0, PU.1

Pin Designation - MSP430F5310IRGC, MSP430F5309IRGC, MSP430F5308IRGC

NOTE: Connection of exposed thermal pad to V_{SS} is recommended.

Pin Designation - MSP430F5310IZQE, MSP430F5309IZQE, MSP430F5308IZQE

ZQE PACKAGE (TOP VIEW)

Functional Block Diagram – MSP430F5310IRGZ, MSP430F5309IRGZ, MSP430F5308IRGZ, MSP430F5310IPT, MSP430F5309IPT, MSP430F5308IPT

PU.0, PU.1

Pin Designation – MSP430F5310IRGZ, MSP430F5309IRGZ, MSP430F5308IRGZ, MSP430F5310IPT, MSP430F5309IPT, MSP430F5308IPT

NOTE: For RGZ package, connection of exposed thermal pad to V_{SS} is recommended.

Functional Block Diagram - MSP430F5304IRGZ, MSP430F5304IPT

Pin Designation – MSP430F5304IRGZ, MSP430F5304IPT

NOTE: For RGZ package, connection of exposed thermal pad to V_{SS} is recommended.

Table 3. Terminal Functions

TERMINA	.I		-	Table 3. Terminal Functions			
NO.							
NAME	RGC	RGZ,	ZQE	I/O ⁽¹⁾	DESCRIPTION		
P6.4/CB4/A4	5	N/A	C1	I/O	General-purpose digital I/O Comparator_B input CB4 (not available on RGZ or PT package devices) Analog input A4 – ADC (not available on RGZ or PT package devices)		
P6.5/CB5/A5	6	N/A	D2	I/O	General-purpose digital I/O Comparator_B input CB5 (not available on RGZ or PT package devices) Analog input A5 – ADC (not available on RGZ or PT package devices)		
P6.6/CB6/A6	7	N/A	D1	I/O	General-purpose digital I/O Comparator_B input CB6 (not available on RGZ or PT package devices) Analog input A6 – ADC (not available on RGZ or PT package devices)		
P6.7/CB7/A7	8	N/A	D3	I/O	General-purpose digital I/O Comparator_B input CB7 (not available on RGZ or PT package devices) Analog input A7 – ADC (not available on RGZ or PT package devices)		
P5.0/A8/VeREF+	9	5	E1	I/O	General-purpose digital I/O Analog input A8 – ADC Input for an external reference voltage to the ADC		
P5.1/A9/VeREF-	10	6	E2	I/O	General-purpose digital I/O Analog input A9 – ADC Negative terminal for an externally provided ADC reference		
AVCC1	11	7	F2		Analog power supply		
P5.4/XIN	12	8	F1	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT1		
P5.5/XOUT	13	9	G1	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT1		
AVSS1	14	10	G2		Analog ground supply		
DVCC1	15	11	H1		Digital power supply		
DVSS1	16	12	J1		Digital ground supply		
VCORE (2)	17	13	J2		Regulated core power supply output (internal use only, no external current loading)		
P1.0/TA0CLK/ACLK	18	14	H2	I/O	General-purpose digital I/O with port interrupt TA0 clock signal TA0CLK input ACLK output (divided by 1, 2, 4, 8, 16, or 32)		
P1.1/TA0.0	19	15	НЗ	I/O	General-purpose digital I/O with port interrupt TA0 CCR0 capture: CCl0A input, compare: Out0 output BSL transmit output		
P1.2/TA0.1	20	16	J3	I/O	General-purpose digital I/O with port interrupt TA0 CCR1 capture: CCl1A input, compare: Out1 output BSL receive input		
P1.3/TA0.2	21	17	G4	I/O	General-purpose digital I/O with port interrupt TA0 CCR2 capture: CCl2A input, compare: Out2 output		
P1.4/TA0.3	22	18	H4	I/O	General-purpose digital I/O with port interrupt TA0 CCR3 capture: CCl3A input compare: Out3 output		
P1.5/TA0.4	23	19	J4	I/O	General-purpose digital I/O with port interrupt TA0 CCR4 capture: CCl4A input, compare: Out4 output		
P1.6/TA1CLK/CBOUT	24	20	G5	I/O	General-purpose digital I/O with port interrupt TA1 clock signal TA1CLK input Comparator_B output		
P1.7/TA1.0	25	21	H5	I/O	General-purpose digital I/O with port interrupt TA1 CCR0 capture: CCl0A input, compare: Out0 output		
P2.0/TA1.1	26	22	J5	I/O	General-purpose digital I/O with port interrupt TA1 CCR1 capture: CCI1A input, compare: Out1 output		

⁽¹⁾ I = input, O = output, N/A = not available

⁽²⁾ VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

Table 3. Terminal Functions (continued)

TERMINAL					
	NO.		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGC	RGZ, PT	ZQE		
P2.1/TA1.2	27	N/A	G6	I/O	General-purpose digital I/O with port interrupt TA1 CCR2 capture: CCl2A input, compare: Out2 output
P2.2/TA2CLK/SMCLK	28	N/A	J6	I/O	General-purpose digital I/O with port interrupt TA2 clock signal TA2CLK input; SMCLK output
P2.3/TA2.0	29	N/A	H6	I/O	General-purpose digital I/O with port interrupt TA2 CCR0 capture: CCl0A input, compare: Out0 output
P2.4/TA2.1	30	N/A	J7	I/O	General-purpose digital I/O with port interrupt TA2 CCR1 capture: CCl1A input, compare: Out1 output
P2.5/TA2.2	31	N/A	J8	I/O	General-purpose digital I/O with port interrupt TA2 CCR2 capture: CCl2A input, compare: Out2 output
P2.6/RTCCLK/DMAE0	32	N/A	J9	I/O	General-purpose digital I/O with port interrupt RTC clock output for calibration DMA external trigger input
P2.7/UCB0STE/UCA0CLK	33	N/A	H7	I/O	General-purpose digital I/O Slave transmit enable – USCI_B0 SPI mode Clock signal input – USCI_A0 SPI slave mode Clock signal output – USCI_A0 SPI master mode
P3.0/UCB0SIMO/UCB0SDA	34	N/A	H8	I/O	General-purpose digital I/O Slave in, master out – USCI_B0 SPI mode I2C data – USCI_B0 I2C mode
P3.1/UCB0SOMI/UCB0SCL	35	N/A	H9	I/O	General-purpose digital I/O Slave out, master in – USCI_B0 SPI mode I2C clock – USCI_B0 I2C mode
P3.2/UCB0CLK/UCA0STE	36	N/A	G8	I/O	General-purpose digital I/O Clock signal input – USCI_B0 SPI slave mode Clock signal output – USCI_B0 SPI master mode Slave transmit enable – USCI_A0 SPI mode
P3.3/UCA0TXD/UCA0SIMO	37	N/A	G9	I/O	General-purpose digital I/O Transmit data – USCI_A0 UART mode Slave in, master out – USCI_A0 SPI mode
P3.4/UCA0RXD/UCA0SOMI	38	N/A	G7	I/O	General-purpose digital I/O Receive data – USCI_A0 UART mode Slave out, master in – USCI_A0 SPI mode
P4.0/PM_UCB1STE/ PM_UCA1CLK	41	29	E8	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave transmit enable – USCI_B1 SPI mode Default mapping: Clock signal input – USCI_A1 SPI slave mode Default mapping: Clock signal output – USCI_A1 SPI master mode
P4.1/PM_UCB1SIMO/ PM_UCB1SDA	42	30	E7	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave in, master out – USCI_B1 SPI mode Default mapping: I2C data – USCI_B1 I2C mode
P4.2/PM_UCB1SOMI/ PM_UCB1SCL	43	31	D9	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave out, master in – USCI_B1 SPI mode Default mapping: I2C clock – USCI_B1 I2C mode
P4.3/PM_UCB1CLK/ PM_UCA1STE	44	32	D8	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Clock signal input – USCI_B1 SPI slave mode Default mapping: Clock signal output – USCI_B1 SPI master mode Default mapping: Slave transmit enable – USCI_A1 SPI mode
DVSS2	39	27	F9		Digital ground supply
DVCC2	40	28	E9		Digital power supply
P4.4/PM_UCA1TXD/ PM_UCA1SIMO	45	33	D7	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Transmit data – USCI_A1 UART mode Default mapping: Slave in, master out – USCI_A1 SPI mode

Table 3. Terminal Functions (continued)

TERMINAL						
	NO.			I/O ⁽¹⁾	DECORIDATION	
NAME	RGC	RGZ, PT	ZQE	I/O(1)	DESCRIPTION	
P4.5/PM_UCA1RXD/ PM_UCA1SOMI	46	34	C9	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Receive data – USCI_A1 UART mode Default mapping: Slave out, master in – USCI_A1 SPI mode	
P4.6/PM_NONE	47	35	C8	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: no secondary function.	
P4.7/PM_NONE	48	36	C7	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: no secondary function.	
VSSU	49	37	B8, B9		PU ground supply	
PU.0	50	38	A9	I/O	General-purpose digital I/O - controlled by PU control register	
NC	51	39	B7	I/O	No connect.	
PU.1	52	40	A8	I/O	General-purpose digital I/O - controlled by PU control register	
LDOI	53	41	A7		LDO input	
LDOO	54	42	A6		LDO output	
NC	55	43	В6		No connect.	
AVSS2	56	44	A5		Analog ground supply	
P5.2/XT2IN	57	45	B5	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT2	
P5.3/XT2OUT	58	46	B4	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT2	
TEST/SBWTCK	59	47	A4	I	Test mode pin – select digital I/O on JTAG pins Spy-bi-wire input clock	
PJ.0/TDO	60	23	C5	I/O	General-purpose digital I/O Test data output port	
PJ.1/TDI/TCLK	61	24	C4	I/O	General-purpose digital I/O Test data input or test clock input	
PJ.2/TMS	62	25	АЗ	I/O	General-purpose digital I/O Test mode select	
PJ.3/TCK	63	26	В3	I/O	General-purpose digital I/O Test clock	
RST/NMI/SBWTDIO	64	48	A2	I/O	Reset input active low Non-maskable interrupt input Spy-bi-wire data input/output	
P6.0/CB0/A0	1	1	A1	I/O	General-purpose digital I/O Comparator_B input CB0 (not available on F5304 device) Analog input A0 – ADC	
P6.1/CB1/A1	2	2	B2	I/O	General-purpose digital I/O Comparator_B input CB1 (not available on F5304 device) Analog input A1 – ADC	
P6.2/CB2/A2	3	3	B1	I/O	General-purpose digital I/O Comparator_B input CB2 (not available on F5304 device) Analog input A2 – ADC	
P6.3/CB3/A3	4	4	C2	I/O	General-purpose digital I/O Comparator_B input CB3 (not available on F5304 device) Analog input A3 – ADC	
Reserved	N/A	N/A	(3)			
Thermal Pad	Pad	Pad	N/A		Exposed thermal pad on QFN packages. Connection to V _{SS} is recommended (not available on PT package devices).	

⁽³⁾ C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.

SHORT-FORM DESCRIPTION

CPU (Link to User's Guide)

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Operating Modes

The MSP430 has one active mode and six software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following seven operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and FLL loop control and DCOCLK are disabled
 - DCO's dc-generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wakeup from RST/NMI, P1, and P2.

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 4. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM WORD INTERRUPT ADDRESS		PRIORITY
System Reset Power-Up External Reset Watchdog Timeout, Password Violation Flash Memory Password Violation	WDTIFG, KEYV (SYSRSTIV) ^{(1) (2)}	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)	(Non)maskable	0FFFAh	61
Comp_B	Comparator B interrupt flags (CBIV) (1) (3)	Maskable	0FFF8h	60
TB0	TB0CCR0 CCIFG0 (3)	Maskable	0FFF6h	59
TB0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TB0IV) (1) (3)	Maskable	0FFF4h	58
Watchdog Timer_A Interval Timer Mode	WDTIFG	Maskable	0FFF2h	57
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3)	Maskable	0FFF0h	56
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG (UCAB0IV) (1) (3)	Maskable	0FFEEh	55
ADC10_A	ADC10IFG0 (1) (3) (4)	Maskable	0FFECh	54
TA0	TA0CCR0 CCIFG0 (3)	Maskable	0FFEAh	53
TAO	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) (1) (3)	Maskable	0FFE8h	52
LDO-PWR	LDOOFFIG, LDOONIFG, LDOOVLIFG	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3)	Maskable	0FFE4h	50
TA1	TA1CCR0 CCIFG0 (3)	Maskable	0FFE2h	49
TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) (1) (3)	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) (1) (3)	Maskable	0FFDEh	47
USCI_A1 Receive or Transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (3)	Maskable	0FFDCh	46
USCI_B1 Receive or Transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV) (1) (3)	Maskable	0FFDAh	45
TA2	TA2CCR0 CCIFG0 (3)	Maskable	0FFD8h	44
TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾ ⁽³⁾	Maskable	0FFD6h	43
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) (1) (3)	Maskable	0FFD4h	42
RTC_A	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (3)	Maskable	0FFD2h	41
			0FFD0h	40
Reserved	Reserved (5)		÷	:
			0FF80h	0, lowest

Multiple source flags

²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.

⁽Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽³⁾ Interrupt flags are located in the module.

⁴⁾ Only on devices with ADC, otherwise reserved.

⁽⁵⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations.

Memory Organization

Table 5. Memory Organization⁽¹⁾

		MSP430F5304	MSP430F5308	MSP430F5309	MSP430F5310
Memory (flash) Main: interrupt vector Main: code memory	Total Size	8 KB 00FFFFh-00FF80h 00FFFFh-00E000h	16 KB 00FFFFh-00FF80h 00FFFFh-00C000h	24 KB 00FFFFh-00FF80h 00FFFFh-00A000h	32 KB 00FFFFh-00FF80h 00FFFFh-008000h
	Sector 1	2 KB 0033FFh-002C00h	2 KB 0033FFh-002C00h	2 KB 0033FFh-002C00h	2 KB 0033FFh-002C00h
RAM	Sector 0	2 KB 002BFFh–002400h	2 KB 002BFFh-002400h	2 KB 002BFFh-002400h	2 KB 002BFFh-002400h
	Sector 7	2 KB 0023FFh-001C00h	2 KB 0023FFh-001C00h	2 KB 0023FFh-001C00h	2 KB 0023FFh-001C00h
	Info A	128 B 0019FFh–001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information memory	Info B	128 B 00197Fh–001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h
(flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h
Bootstrap loader (BSL)	BSL 2	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h
memory (flash)	BSL 1	512 B 0013FFh–001200h	512 B 0013FFh–001200h	512 B 0013FFh–001200h	512 B 0013FFh–001200h
	BSL 0	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h
Peripherals	Size	4 KB 000FFFh–0h	4 KB 000FFFh-0h	4 KB 000FFFh-0h	4 KB 000FFFh–0h

⁽¹⁾ N/A = Not available

Bootstrap Loader (BSL)

The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the device memory via the BSL is protected by user-defined password. Use of the UART BSL requires external access to the six pins shown in Table 6. For complete description of the features of the BSL and its implementation, see MSP430 Programming Via the Bootstrap Loader (SLAU319).

Table 6. BSL Functions

DEVICE SIGNAL	BSL FUNCTION		
RST/NMI/SBWTDIO	Entry sequence signal		
TEST/SBWTCK	Entry sequence signal		
P1.1	Data transmit		
P1.2	Data receive		
VCC	Power supply		
VSS	Ground supply		

JTAG Operation

JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 7. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 7. JTAG Pin Requirements and Functions

DIRECTION	FUNCTION
IN	JTAG clock input
IN	JTAG state control
IN	JTAG data input, TCLK input
OUT	JTAG data output
IN	Enable JTAG pins
IN	External reset
	Power supply
	Ground supply
	IN IN IN OUT IN

Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 8. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 8. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input/output
VCC		Power supply
VSS		Ground supply

Flash Memory (Link to User's Guide)

The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- · Segment A can be locked separately.

RAM Memory (Link to User's Guide)

The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage, however all data is lost. Features of the RAM memory include:

- RAM memory has n sectors. The size of a sector can be found in the Memory Organization section.
- Each sector 0 to n can be completely disabled, however data retention is lost.
- Each sector 0 to n automatically enters low power retention mode when possible.

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Digital I/O (Link to User's Guide)

There are up to six 8-bit I/O ports implemented: For 64 pin options, P1, P2, P4, and P6 are complete, P5 is reduced to 6-bit I/O, and P3 is reduced to 5-bit I/O. For 48 pin options, P6 is reduced to 4-bit I/O, P2 is reduced to 1-bit I/O, and P3 is completely removed. Port PJ contains four individual I/O ports, common to all devices.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Pullup or pulldown on all ports is programmable.
- · Drive strength on all ports is programmable.
- Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P6) or word-wise in pairs (PA through PC).

Port Mapping Controller (Link to User's Guide)

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4.

Table 9. Port Mapping, Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
0	PM_NONE	None	DVSS
4	PM_CBOUT0	-	Comparator_B output
1	PM_TB0CLK	TB0 clock input	
2	PM_ADC10CLK	-	ADC10CLK
2	PM_DMAE0	DMAE0 input	
3	PM_SVMOUT	-	SVM output
3	PM_TB0OUTH	TB0 high impedance input TB0OUTH	
4	PM_TB0CCR0A	TB0 CCR0 capture input CCI0A	TB0 CCR0 compare output Out0
5	PM_TB0CCR1A	TB0 CCR1 capture input CCI1A	TB0 CCR1 compare output Out1
6	PM_TB0CCR2A	TB0 CCR2 capture input CCI2A	TB0 CCR2 compare output Out2
7	PM_TB0CCR3A	TB0 CCR3 capture input CCI3A	TB0 CCR3 compare output Out3

Table 9. Port Mapping, Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
8	PM_TB0CCR4A	TB0 CCR4 capture input CCI4A	TB0 CCR4 compare output Out4
9	PM_TB0CCR5A	TB0 CCR5 capture input CCI5A	TB0 CCR5 compare output Out5
10	PM_TB0CCR6A	TB0 CCR6 capture input CCI6A	TB0 CCR6 compare output Out6
44	PM_UCA1RXD	USCI_A1 UART RXD (Directi	ion controlled by USCI - input)
11	PM_UCA1SOMI	USCI_A1 SPI slave out master	in (direction controlled by USCI)
40	PM_UCA1TXD	USCI_A1 UART TXD (Direction	on controlled by USCI - output)
12	PM_UCA1SIMO	USCI_A1 SPI slave in master o	out (direction controlled by USCI)
40	PM_UCA1CLK	USCI_A1 clock input/output	(direction controlled by USCI)
13	PM_UCB1STE	USCI_B1 SPI slave transmit ena	ble (direction controlled by USCI)
	PM_UCB1SOMI	USCI_B1 SPI slave out master	in (direction controlled by USCI)
14	PM_UCB1SCL	USCI_B1 I2C clock (open drain	and direction controlled by USCI)
45	PM_UCB1SIMO	USCI_B1 SPI slave in master o	out (direction controlled by USCI)
15	PM_UCB1SDA	USCI_B1 I2C data (open drain a	and direction controlled by USCI)
40	PM_UCB1CLK	USCI_B1 clock input/output	(direction controlled by USCI)
16	PM_UCA1STE	USCI_A1 SPI slave transmit ena	ble (direction controlled by USCI)
17	PM_CBOUT1	None	Comparator_B output
18	PM_MCLK	None	MCLK
19	PM_RTCCLK	None	RTCCLK output
00	PM_UCA0RXD	USCI_A0 UART RXD (Directi	ion controlled by USCI - input)
20	PM_UCA0SOMI	USCI_A0 SPI slave out master	in (direction controlled by USCI)
0.4	PM_UCA0TXD	USCI_A0 UART TXD (Direction	on controlled by USCI - output)
21	PM_UCA0SIMO	USCI_A0 SPI slave in master o	out (direction controlled by USCI)
00	PM_UCA0CLK	USCI_A0 clock input/output	(direction controlled by USCI)
22	PM_UCB0STE	USCI_B0 SPI slave transmit ena	ble (direction controlled by USCI)
00	PM_UCB0SOMI	USCI_B0 SPI slave out master	in (direction controlled by USCI)
23	PM_UCB0SCL	USCI_B0 I2C clock (open drain	and direction controlled by USCI)
0.4	PM_UCB0SIMO	USCI_B0 SPI slave in master o	out (direction controlled by USCI)
24	PM_UCB0SDA	USCI_B0 I2C data (open drain a	and direction controlled by USCI)
0.5	PM_UCB0CLK	USCI_B0 clock input/output	(direction controlled by USCI)
25	PM_UCA0STE	USCI_A0 SPI slave transmit ena	ble (direction controlled by USCI)
26 - 30	Reserved	None	DVSS
31 (0FFh) ⁽¹⁾	PM_ANALOG		s the input Schmitt-trigger to prevent en applying analog signals.

⁽¹⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored resulting in a read out value of 31.

Table 10. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION		
P4.0/P4MAP0	PM_UCB1STE/PM_UCA1CLK	USCI_B1 SPI slave transmit enable (direction controlled by USCI) USCI_A1 clock input/output (direction controlled by USCI)			
P4.1/P4MAP1	PM_UCB1SIMO/PM_UCB1SDA	USCI_B1 SPI slave in master out (direction controlled by USCI) USCI_B1 I2C data (open drain and direction controlled by USCI)			
P4.2/P4MAP2	PM_UCB1SOMI/PM_UCB1SCL	USCI_B1 SPI slave out master in (direction controlled by USCI) USCI_B1 I2C clock (open drain and direction controlled by USCI)			
P4.3/P4MAP3	PM_UCB1CLK/PM_UCA1STE	USCI_A1 SPI slave transmit enable (direction controlled by USCI) USCI_B1 clock input/output (direction controlled by USCI)			
P4.4/P4MAP4	PM_UCA1TXD/PM_UCA1SIMO	USCI_A1 UART TXD (Direction controlled by USCI - output) USCI_A1 SPI slave in master out (direction controlled by USCI)			
P4.5/P4MAP5	PM_UCA1RXD/PM_UCA1SOMI	USCI_A1 UART RXD (Direction controlled by USCI - input) USCI_A1 SPI slave out master in (direction controlled by USCI)			
P4.6/P4MAP6	PM_NONE	None	DVSS		
P4.7/P4MAP7	PM_NONE	None	DVSS		

Oscillator and System Clock (Link to User's Guide)

The clock system in the MSP430F530x family of devices is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode; XT1 HF mode not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32 kHz watch crystal (XT1), a high-frequency crystal (XT2), the
 internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally
 controlled oscillator (DCO).
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

Power Management Module (PMM) (Link to User's Guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

Hardware Multiplier (Link to User's Guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations.

Real-Time Clock (RTC A) (Link to User's Guide)

The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC A also supports flexible alarm functions and offset-calibration hardware.

Watchdog Timer (WDT_A) (Link to User's Guide)

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

System Module (SYS) (Link to User's Guide)

The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, as well as configuration management (device descriptors). It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.

Table 11. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
SYSRSTIV, System Reset	SYSRSTIV, System Reset 019Eh No interrupt pending		00h	
		Brownout (BOR)	02h	Highest
		RST/NMI (POR)	04h	
		PMMSWBOR (BOR)	06h	
		Wakeup from LPMx.5	08h	
		Security violation (BOR)	0Ah	
		SVSL (POR)	0Ch	
		SVSH (POR)	0Eh	
		SVML_OVP (POR)	10h	
		SVMH_OVP (POR)	12h	
		PMMSWPOR (POR)	14h	
		WDT timeout (PUC)	16h	
		WDT password violation (PUC)	18h	
		KEYV flash password violation (PUC)	1Ah	
		Reserved	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMM password violation (PUC)	20h	
		Reserved	22h to 3Eh	Lowest
SYSSNIV, System NMI	019Ch	No interrupt pending	00h	
		SVMLIFG	02h	Highest
		SVMHIFG	04h	
		SVSMLDLYIFG	06h	
		SVSMHDLYIFG	08h	
		VMAIFG	0Ah	
		JMBINIFG	0Ch	
		JMBOUTIFG	0Eh	
		SVMLVLRIFG	10h	
		SVMHVLRIFG	12h	
		Reserved	14h to 1Eh	Lowest
SYSUNIV, User NMI 019Ah No interrupt pending		No interrupt pending	00h	
		NMIFG	02h	Highest
		OFIFG	04h	
		ACCVIFG	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

DMA Controller (Link to User's Guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion register to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

Table 12. DMA Trigger Assignments (1)

TRICCER		CHANNEL	
TRIGGER	0	1	2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	TA2CCR0 CCIFG	TA2CCR0 CCIFG	TA2CCR0 CCIFG
6	TA2CCR2 CCIFG	TA2CCR2 CCIFG	TA2CCR2 CCIFG
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
9	Reserved	Reserved	Reserved
10	Reserved	Reserved	Reserved
11	Reserved	Reserved	Reserved
12	Reserved	Reserved	Reserved
13	Reserved	Reserved	Reserved
14	Reserved	Reserved	Reserved
15	Reserved	Reserved	Reserved
16	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
17	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
18	UCB0RXIFG	UCB0RXIFG	UCB0RXIFG
19	UCB0TXIFG	UCB0TXIFG	UCB0TXIFG
20	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
21	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
22	UCB1RXIFG	UCB1RXIFG	UCB1RXIFG
23	UCB1TXIFG	UCB1TXIFG	UCB1TXIFG
24	ADC10IFG0 (2)	ADC10IFG0 (2)	ADC10IFG0 (2)
25	Reserved	Reserved	Reserved
26	Reserved	Reserved	Reserved
27	reserved	reserved	reserved
28	reserved	reserved	reserved
29	MPY ready	MPY ready	MPY ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

⁽¹⁾ If a reserved trigger source is selected, no Trigger1 is generated.

⁽²⁾ Only on devices with ADC. Reserved on devices without ADC.

Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, I2C Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I^2C , and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.

The MSP430F53xx series includes one or two complete USCI modules.

TA0 (Link to User's Guide)

TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 13. TA0 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER
RGC, ZQE	RGZ, PT	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RGC, ZQE	RGZ, PT
18, H2-P1.0	14-P1.0	TA0CLK	TACLK					
		ACLK (internal)	ACLK	Times	NA	NA		
		SMCLK (internal)	SMCLK	Timer	INA	INA		
18, H2-P1.0	14-P1.0	TA0CLK	TACLK					
19, H3-P1.1	15-P1.1	TA0.0	CCI0A				19, H3-P1.1	15-P1.1
		DV _{SS}	CCI0B	CCDO	TA0	TAO 0		
		DV_SS	GND	CCR0	TA0	TA0.0		
		DV _{CC}	V _{CC}					
20, J3-P1.2	16-P1.2	TA0.1	CCI1A				20, J3-P1.2	16-P1.2
		CBOUT	00115	CCR1 TA1			ADC10 (internal)	ADC10 (internal)
		(internal)	CCI1B		CCR1	TA0.1	ADC10SHSx = {1}	ADC10SHSx = {1}
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
21, G4-P1.3	17-P1.3	TA0.2	CCI2A				21, G4-P1.3	17-P1.3
		ACLK (internal)	CCI2B	CCR2	TA2	TA0.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
22, H4-P1.4	18-P1.4	TA0.3	CCI3A				22, H4-P1.4	18-P1.4
		DV _{SS}	CCI3B	CCD2	TA 2	TAO 2		
		DV _{SS}	GND	CCR3	TA3	TA0.3		
		DV_CC	V _{CC}					
23, J4-P1.5	19-P1.5	TA0.4	CCI4A		T0.4		23, J4-P1.5	19-P1.5
		DV _{SS}	CCI4B	CCR4		TAO 4		
		DV _{SS}	GND	CCK4	TA4	TA0.4		
		DV_CC	V _{CC}					

⁽¹⁾ Only on devices with ADC.

TA1 (Link to User's Guide)

TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 14. TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PII	N NUMBER			
RGC, ZQE	RGZ, PT	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RGC, ZQE	RGZ, PT			
24, G5-P1.6	20-P1.6	TA1CLK	TACLK								
		ACLK (internal)	ACLK	Timer	NIA	NIA					
		SMCLK (internal)	SMCLK	Timer	NA	NA					
24, G5-P1.6	20-P1.6	TA1CLK	TACLK								
25, H5-P1.7	21-P1.7	TA1.0	CCI0A				25, H5-P1.7	21-P1.7			
		DV _{SS}	CCI0B	CCDO	TA0	TA1.0					
		DV _{SS}	GND	CCR0	TA0						
		DV _{CC}	V _{CC}								
26, J5-P2.0	22-P2.0	TA1.1	CCI1A				26, J5-P2.0	22-P2.0			
		CBOUT (internal)	CCI1B	CCR1 TA1	CCR1 T	CCR1	TA1	TA1	TA1.1		
		DV _{SS}	GND								
		DV _{CC}	V _{CC}								
27, G6-P2.1		TA1.2	CCI2A				27, G6-P2.1				
		ACLK (internal)	CCI2B	CCR2	TA2	TA1.2					
		DV _{SS}	GND					·			
		DV _{CC}	V _{CC}								

TA2 (Link to User's Guide)

TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 15. TA2 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER	
RGC, ZQE	RGZ, PT	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RGC, ZQE	RGZ, PT	
28, J6-P2.2		TA2CLK	TACLK						
		ACLK (internal)	ACLK	Timor	NIA	NIA			
		SMCLK (internal)	SMCLK	Timer	Timer	NA	NA		
28, J6-P2.2		TA2CLK	TACLK						
29, H6-P2.3		TA2.0	CCI0A				29, H6-P2.3		
		DV _{SS}	CCI0B	CCDO	TA0	T400			
		DV _{SS}	GND	CCR0	TA0	TA2.0			
		DV _{CC}	V _{CC}						
30, J7-P2.4		TA2.1	CCI1A				30, J7-P2.4		
		CBOUT (internal)	CCI1B	CCR1	TA1	TA2.1			
		DV _{SS}	GND						
		DV _{CC}	V _{CC}						
31, J8-P2.5		TA2.2	CCI2A				31, J8-P2.5		
		ACLK (internal)	CCI2B	CCR2	CR2 TA2	TA2.2			
		DV _{SS}	GND						
		DV _{CC}	V _{CC}						

TB0 (Link to User's Guide)

TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 16. TB0 Signal Connections

INPUT PIN NUMBER		DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER			
RGC, ZQE ⁽¹⁾	RGZ, PT ⁽¹⁾	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RGC, ZQE ⁽¹⁾	RGZ, PT ⁽¹⁾		
		TB0CLK	TBCLK							
		ACLK (internal)	ACLK	Times	NIA	NΙΔ				
		SMCLK (internal)	SMCLK	Timer	NA	NA	NA			
		TB0CLK	TBCLK							
		TB0.0	CCI0A	CORO	TDO	TDOO	ADC10 (internal) ⁽²⁾ ADC10SHSx = {2}	ADC10 (internal) ⁽²⁾ ADC10SHSx = {2}		
		TB0.0	CCI0B	CCR0	TB0	TB0.0				
		DV _{SS}	GND							
		DV _{CC}	V _{CC}							
		TB0.1	CCI1A				ADC10 (internal) ADC10SHSx = {3}	ADC10 (internal) ADC10SHSx = {3}		
		CBOUT (internal)	CCI1B	CCR1	TB1 TB0.1	TB0.1				
		DV _{SS}	GND							
		DV _{CC}	V _{CC}							
		TB0.2	CCI2A							
		TB0.2	CCI2B	CCR2	TB2	TB0.2				
		DV _{SS}	GND	CONZ	102					
		DV _{CC}	V _{CC}							
		TB0.3	CCI3A							
		TB0.3	CCI3B	CCR3	TB3	TB0.3				
		DV _{SS}	GND	CONS	100	100.0				
		DV _{CC}	V _{CC}							
		TB0.4	CCI4A							
		TB0.4	CCI4B	CCR4	TB4	TB0.4				
		DV _{SS}	GND	COIC	154	150.4				
		DV _{CC}	V _{CC}							
		TB0.5	CCI5A							
		TB0.5	CCI5B	CCR5	TB5	TB0.5				
		DV _{SS}	GND	-	120	. 20.0				
		DV _{CC}	V _{CC}							
		TB0.6	CCI6A							
		ACLK (internal)	CCI6B	CCR6	TB6	TB0.6				
		DV _{SS}	GND	1						
		DV _{CC}	V _{CC}							

⁽¹⁾ Timer functions selectable via the port mapping controller.

⁽²⁾ Only on devices with ADC.

Comparator_B (Link to User's Guide)

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

ADC10 A (Link to User's Guide)

The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and a conversion result buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags.

CRC16 (Link to User's Guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

REF Voltage Reference (Link to User's Guide)

The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

LDO and Port U

The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system. Alternatively, the power system can supply power only to other components within the system, or it can be unused altogether. The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied externally.

Embedded Emulation Module (EEM) (S Version) (Link to User's Guide)

The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features:

- Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- One cycle counter
- · Clock control on module level

Peripheral File Map

Table 17. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 18)	0100h	000h-01Fh
PMM (see Table 19)	0120h	000h-01Fh
Flash Control (see Table 20)	0140h	000h-00Fh
CRC16 (see Table 21)	0150h	000h-007h
RAM Control (see Table 22)	0158h	000h-001h
Watchdog (see Table 23)	015Ch	000h-001h
UCS (see Table 24)	0160h	000h-01Fh
SYS (see Table 25)	0180h	000h-01Fh
Shared Reference (see Table 26)	01B0h	000h-001h
Port Mapping Control (see Table 27)	01C0h	000h-002h
Port Mapping Port P4 (see Table 27)	01E0h	000h-007h
Port P1/P2 (see Table 28)	0200h	000h-01Fh
Port P3/P4 (see Table 29)	0220h	000h-00Bh
Port P5/P6 (see Table 30)	0240h	000h-00Bh
Port PJ (see Table 31)	0320h	000h-01Fh
TA0 (see Table 32)	0340h	000h-02Eh
TA1 (see Table 33)	0380h	000h-02Eh
TB0 (see Table 34)	03C0h	000h-02Eh
TA2 (see Table 35)	0400h	000h-02Eh
Real-Time Clock (RTC_A) (see Table 36)	04A0h	000h-01Bh
32-bit Hardware Multiplier (see Table 37)	04C0h	000h-02Fh
DMA General Control (see Table 38)	0500h	000h-00Fh
DMA Channel 0 (see Table 38)	0510h	000h-00Ah
DMA Channel 1 (see Table 38)	0520h	000h-00Ah
DMA Channel 2 (see Table 38)	0530h	000h-00Ah
USCI_A0 (see Table 39)	05C0h	000h-01Fh
USCI_B0 (see Table 40)	05E0h	000h-01Fh
USCI_A1 (see Table 41)	0600h	000h-01Fh
USCI_B1 (see Table 42)	0620h	000h-01Fh
ADC10_A (see Table 43)	0740h	000h-01Fh
Comparator_B (see Table 44)	08C0h	000h-00Fh
LDO-PWR and Port U configuration (see Table 45)	0900h	000h-014h

Table 18. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 19. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high side control	SVSMHCTL	04h
SVS low side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM Power mode 5 control	PMM5CTL	10h

Table 20. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 21. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 22. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

Table 23. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 24. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

Table 25. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootstrap loader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 26. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 27. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping password register	PMAPPWD	00h
Port mapping control register	PMAPCTL	02h
Port P4.0 mapping register	P4MAP0	00h
Port P4.1 mapping register	P4MAP1	01h
Port P4.2 mapping register	P4MAP2	02h
Port P4.3 mapping register	P4MAP3	03h
Port P4.4 mapping register	P4MAP4	04h
Port P4.5 mapping register	P4MAP5	05h
Port P4.6 mapping register	P4MAP6	06h
Port P4.7 mapping register	P4MAP7	07h

Table 28. Port P1/P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 29. Port P3/P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh

Table 30. Port P5/P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 pullup/pulldown enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

Table 31. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 32. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter register	TA0R	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
Capture/compare register 3	TA0CCR3	18h
Capture/compare register 4	TA0CCR4	1Ah
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 33. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 34. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
Capture/compare register 3	TB0CCR3	18h
Capture/compare register 4	TB0CCR4	1Ah
Capture/compare register 5	TB0CCR5	1Ch
Capture/compare register 6	TB0CCR6	1Eh
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 35. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter register	TA2R	10h
Capture/compare register 0	TA2CCR0	12h
Capture/compare register 1	TA2CCR1	14h
Capture/compare register 2	TA2CCR2	16h
TA2 expansion register 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

SLAS677D - SEPTEMBER 2010-REVISED FEBRUARY 2013

Table 36. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds/counter register 1	RTCSEC/RTCNT1	10h
RTC minutes/counter register 2	RTCMIN/RTCNT2	11h
RTC hours/counter register 3	RTCHOUR/RTCNT3	12h
RTC day of week/counter register 4	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh

Table 37. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 × 16 result low word	RESLO	0Ah
16 × 16 result high word	RESHI	0Ch
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 × 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 38. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Ah

Table 39. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA0CTL1	00h
USCI control 1	UCA0CTL0	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 40. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB0CTL1	00h
USCI synchronous control 1	UCB0CTL0	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 41. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA1CTL1	00h
USCI control 1	UCA1CTL0	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 42. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB1CTL1	00h
USCI synchronous control 1	UCB1CTL0	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 43. ADC10_A Registers (Base Address: 0740h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC10_A Control register 0	ADC10CTL0	00h
ADC10_A Control register 1	ADC10CTL1	02h
ADC10_A Control register 2	ADC10CTL2	04h
ADC10_A Window Comparator Low Threshold	ADC10LO	06h
ADC10_A Window Comparator High Threshold	ADC10HI	08h
ADC10_A Memory Control Register 0	ADC10MCTL0	0Ah
ADC10_A Conversion Memory Register	ADC10MEM0	12h
ADC10_A Interrupt Enable	ADC10IE	1Ah
ADC10_A Interrupt Flags	ADC10IGH	1Ch
ADC10_A Interrupt Vector Word	ADC10IV	1Eh

Table 44. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control register 0	CBCTL0	00h
Comp_B control register 1	CBCTL1	02h
Comp_B control register 2	CBCTL2	04h
Comp_B control register 3	CBCTL3	06h
Comp_B interrupt register	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

Table 45. LDO and Port U Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
LDO key/ID register	LDOKEYPID	00h
PU port control	PUCTL	04h
LDO power control	LDOPWRCTL	08h

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

Voltage applied at V_{CC} to V_{SS}	−0.3 V to 4.1 V
Voltage applied to any pin (excluding VCORE, LDOI) (2)	-0.3 V to V _{CC} + 0.3 V
Diode current at any device pin	±2 mA
Storage temperature range, T _{stg} ⁽³⁾	-55°C to 150°C
Maximum junction temperature, T _J	95°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
- (3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

Thermal Packaging Characteristics (1)

	PARAMETER					
		VQFN (RGC)	30			
0	Junction-to-ambient thermal resistance, still air (2)	VQFN (RGZ)	28.6	°C/W		
θ_{JA}	Junction-to-ambient thermal resistance, still air 1-7	LQFP (PT)	62.8	30/00		
		BGA (ZQE)	55.5			
$\theta_{\text{JC(TOP)}}$		VQFN (RGC)	15.6			
	Junction-to-case (top) thermal resistance (3)	VQFN (RGZ)	14.4	°C/W		
		LQFP (PT)	18.2			
		BGA (ZQE)	21.2			
	(4)	VQFN (RGC)	1.6			
0		VQFN (RGZ)	1.6	°C/W		
$\theta_{\text{JC(BOTTOM)}}$	Junction-to-case (bottom) thermal resistance (4)	LQFP (PT)	N/A	30/00		
		BGA (ZQE)	N/A			
		VQFN (RGC)	8.9			
0	Junction-to-board thermal resistance (5)	VQFN (RGZ)	5.5	°C/W		
θ_{JB}	Junction-to-poard thermal resistance (**)	LQFP (PT)	28.3			
		BGA (ZQE)	19.3			

- (1) N/A = not applicable
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (5) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

Recommended Operating Conditions

Typical values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

			MIN	NOM	MAX	UNIT
		PMMCOREVx = 0	1.8		3.6	V
V	Supply voltage during program execution and flash	PMMCOREVx = 0, 1	2.0		3.6	V
V_{CC}	programming(AV _{CC} = DV _{CC1/2} = DV _{CC}) ⁽¹⁾⁽²⁾	PMMCOREVx = 0, 1, 2	2.2		3.6	V
		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	V
V _{SS}	Supply voltage (AV _{SS} = DV _{SS1/2} = DV _{SS})			0		V
T _A	Operating free-air temperature	I version	-40		85	°C
TJ	Operating junction temperature	I version	-40		85	°C
C _{VCORE}	Capacitor at VCORE			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			
		PMMCOREVx = 0, 1.8 V \leq V _{CC} \leq 3.6 V (default condition)	0		8.0	
	Processor frequency (maximum MCLK frequency) (3) (see	PMMCOREVx = 1, 2.0 V \leq V _{CC} \leq 3.6 V	0		12.0	MHz
	rigule i)	PMMCOREVx = 2, 2.2 V \leq V _{CC} \leq 3.6 V	0		20.0	1
		PMMCOREVx = 3, 2.4 $V \le V_{CC} \le 3.6 V$	0		25.0	l

It is recommended to power AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽³⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

The numbers within the fields denote the supported PMMCOREVx settings.

Figure 1. Maximum System Frequency

⁽²⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold parameters for the exact values and further details.

Electrical Characteristics

Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)

				FREQUENCY ($f_{DCO} = f_{MCLK} = f_{SMCLK}$)										
PARAMETER	MEMORY	V _{CC}	PMMCOREV x	1 N	1Hz	8 N	lHz	12 I	ИНz	20 I	VIHz	25 I	VIHz	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.25	0.27	1.55	1.68							
		2.1/	1	0.28		1.74		2.58	2.78					^
I _{AM} , Flash	Flash	3 V	2	0.30		1.91		2.84		4.68	5.06			- mA
			3	0.32		2.09		3.10		5.13		6.0	6.5	5.5
			0	0.17	0.19	0.91	1.00							
I _{AM, RAM} RAM	2.1/	1	0.19		1.03		1.54	1.67					^	
	KAIVI	3 V	2	0.20		1.16		1.73		2.84	3.11			mA
			3	0.21		1.24		1.87		3.1		3.9	4.3	

All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.

Characterized with program executing typical data processing. LDO disabled (LDOEN = 0). $f_{ACLK} = 32786$ Hz, $f_{DCO} = f_{MCLK} = f_{SMCLK}$ at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current

	DADAMETED	.,	DMMCODEV.	-40	°C	25	°C	60	°C	85	Ç	UNIT
	PARAMETER	V _{CC}	PMMCOREVx	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
	Low-power mode 0 (3) (4)	2.2 V	0	73		77	85	80		80	97	
LPM0,1MHz	Low-power mode o	3 V	3	79		83	92	88		95	105	μA
	J	2.2 V	0	6.5		6.5	8	7.5		8	11	
I _{LPM2}	Low-power mode 2 (5) (4)	3 V	3	7.0		7.0	9	7.9		8.9	13	μA
			0	1.60		1.90		2.6		3.4		
		2.2 V	1	1.65		2.00		2.7		3.6		
			2	1.75		2.15		2.9		3.8	\$	
Low-power mode 3, crystal mode (6) (4)		0	1.8		2.1	2.6	2.8		3.6	6.0	μΑ	
	oryotal mode	3 V	1	1.9		2.3		2.9		3.8		
			2	2.0		2.4		3.0		4.0		
			3	2.0		2.5	3.0	3.1		4.0	6.5	
			0	1.1		1.3	1.8	1.9		2.7	5.0	
	Low-power mode 3,	2.1/	1	1.1		1.4		2.0		2.8		
I _{LPM3,VLO}	Low-power mode 3, VLO mode ⁽⁷⁾⁽⁴⁾	3 V	2	1.2		1.5		2.1		2.9		μA
			3	1.3		1.5	2.0	2.2		3.0	5.5	
			0	0.9		1.1	1.5	1.8		2.5	4.8	
	Low-power mode 4 ⁽⁸⁾⁽⁴⁾	2.1/	1	1.1		1.2		2.0		2.6		
I _{LPM4} Low-բ	Low-power mode 419709	3 V	2	1.2		1.2		2.1		2.7		μΑ
			3	1.3		1.3	1.6	2.2		2.8	5.0	
I _{LPM4.5}	Low-power mode 4.5 ⁽⁹⁾	3 V		0.15		0.18	0.35	0.26		0.45	0.8	μΑ

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- (3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz LDO disabled (LDOEN = 0).
- (4) Current for brownout, high side supervisor (SVS_H) normal mode included. Low side supervisor and monitors disabled (SVS_L, SVM_L). High side monitor disabled (SVM_H). RAM retention enabled.
- (5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. LDO disabled (LDOEN = 0)
- (6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz LDO disabled (LDOEN = 0)
- (7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); f_{ACLK} = f_{VLO}, f_{MCLK} = f_{DCO} = 0 MHz LDO disabled (LDOEN = 0)
- (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz LDO disabled (LDOEN = 0)
- (9) Internal regulator disabled. No data retention.

 CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5); f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

Schmitt-Trigger Inputs – General Purpose I/O(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
W	Positive-going input threshold voltage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input tilleshold voltage		3 V	1.50		2.10	V
V	Negative going input threshold voltage		1.8 V	0.45		1.00	\
V _{IT}	Negative-going input threshold voltage		3 V	0.75		1.65	V
W	Input valtage hystoresis (V V V		1.8 V	0.3		0.85	V
V_{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup/pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C_{I}	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

⁽¹⁾ Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

Inputs – Ports P1 and P2(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
t ₍	(int) External interrupt timing (2)	Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag	2.2 V, 3 V	20		ns

Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

Leakage Current - General Purpose I/O

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	(1) (2)	1.8 V, 3 V	±50	nA

Outputs - General Purpose I/O (Full Drive Strength)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
	V High lovel output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
\/		$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.0 V	V _{CC} - 0.60	V_{CC}	V
VOH		$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	2.1/	V _{CC} - 0.25	V_{CC}	
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V _{CC}	
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	1.8 V	V_{SS}	V _{SS} + 0.25	
		I _(OLmax) = 10 mA ⁽²⁾	1.0 V	V _{SS}	V _{SS} + 0.60	V
OL	, o	I _(OLmax) = 5 mA ⁽¹⁾	2.1/	V _{SS}	V _{SS} + 0.25	
		I _(OLmax) = 15 mA ⁽²⁾	3 V	V _{SS}	V _{SS} + 0.60	

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop

An external signal sets the interrupt flag every time the minimum interrupt pulse width t_(int) is met. It may be set by trigger signals shorter

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

The maximum total current, I_(OLmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

Outputs - General Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
W	V _{OH} High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	V _{CC} - 0.60	V_{CC}	V
VOH		$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.25	V _{CC}	V
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$	3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	1.8 V	V_{SS}	$V_{SS} + 0.25$	
V		$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.6 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	Vol. Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 6 \text{ mA}^{(3)}$	3 V	V _{SS}	$V_{SS} + 0.60$	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

Output Frequency – General Purpose I/O

	PARAMETER	TEST CONDITION	NS	MIN	MAX	UNIT
	Port output frequency		$^{(1)(2)}V_{CC} = 1.8 \text{ V}$ PMMCOREVx = 0		16	MHz
f _{Px.y} (with load)	$V_{CC} = 3 V$ PMMCOREVx = 3			25	IVIMZ	
	Clock output froguency	ACLK SMCLK	$V_{CC} = 1.8 \text{ V}$ PMMCOREVx = 0		16	MU
†Port_CLK	Clock output frequency	MCLK $C_L = 20 \text{ pF}^{(2)}$	$V_{CC} = 3 V$ PMMCOREVx = 3		25	MHz

⁽¹⁾ A resistive divider with 2 x R1 between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω . For reduced drive strength, R1 = 1.6 k Ω . C_L = 20 pF is connected to the output to V_{SS} .

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

Crystal Oscillator, XT1, Low-Frequency Mode (1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 1, \\ &T_A = 25^{\circ}\text{C} \end{aligned} $			0.075		
$\Delta I_{DVCC.LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$ \begin{aligned} & f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ & \text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 2, \\ & T_A = 25^{\circ}\text{C} \end{aligned} $	3 V		0.170		μA
		$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0,\\ &\text{XT1BYPASS} = 0, \text{ XT1DRIVEx} = 3,\\ &T_A = 25^{\circ}\text{C} \end{aligned}$			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 (2) (3)		10 3	32.768	50	kHz
OALF	Oscillation allowance for	$\begin{aligned} &XTS = 0,\\ &XT1BYPASS = 0, XT1DRIVEx = 0,\\ &f_{XT1,LF} = 32768Hz, C_{L,eff} = 6pF \end{aligned}$			210		kΩ
OALF	LF crystals ⁽⁴⁾	$\begin{split} XTS &= 0, \\ XT1BYPASS &= 0, XT1DRIVEx = 1, \\ f_{XT1,LF} &= 32768 \text{ Hz, } C_{L,eff} = 12 \text{ pF} \end{split}$			300		1132
		XTS = 0, XCAPx = 0 (6)			2		
C	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
$C_{L,eff}$	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		ρı
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	$XTS = 0$, Measured at ACLK, $f_{XT1,LF} = 32768 \text{ Hz}$		30		70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	XTS = 0 ⁽⁸⁾		10		10000	Hz
	Startup time I F made	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &T_A = 25^{\circ}C, \\ &C_{L,eff} = 6 \text{ pF} \end{aligned} $	- 3 V		1000		
t _{START,LF}	Startup time, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 3, \\ &T_A = 25^{\circ}C, \\ &C_{L,eff} = 12 \text{ pF} \end{aligned} $	3 V	500			ms

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - (a) Keep the trace between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
 - (a) For XT1DRIVEx = 0, $C_{L,eff} \le 6$ pF.

 - (b) For XT1DRIVEx = 1, 6 pF \leq C_{L,eff} \leq 9 pF. (c) For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF.
- (d) For XT1DRIVEx = 3, C_{L,eff} ≥ 6 pF.
 (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		f _{OSC} = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, T _A = 25°C			200		
	XT2 oscillator crystal current	f_{OSC} = 12 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 1, T_A = 25°C	3 V		260		μA
I _{DVCC.XT2}	consumption	f_{OSC} = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, T_A = 25°C	3 V		325		μА
		f_{OSC} = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, T_A = 25°C			450		
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, XT2BYPASS = 0 (3)		4		8	MHz
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 (3)		8		16	MHz
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 (3)		16		24	MHz
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 (3)		24		32	MHz
f _{XT2,HF,SW}	XT2 oscillator logic-level square-wave input frequency, bypass mode	XT2BYPASS = 1 (4) (3)		0.7		32	MHz
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450		
04	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		Ω
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		Ω
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200		
	Startus time	$ \begin{aligned} f_{OSC} &= 6 \text{ MHz}, \\ \text{XT2BYPASS} &= 0, \text{XT2DRIVEx} = 0, \\ T_{A} &= 25^{\circ}\text{C}, \text{C}_{L,\text{eff}} = 15 \text{ pF} \end{aligned} $	3 V		0.5		ma
t _{START,} HF	Startup time	f_{OSC} = 20 MHz XT2BYPASS = 0, XT2DRIVEx = 2, T_A = 25°C, $C_{L,eff}$ = 15 pF	3 V		0.3		ms
$C_{L,eff}$	Integrated effective load capacitance, HF mode ⁽⁶⁾ (1)				1		pF
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40	50	60	%
f _{Fault,HF}	Oscillator fault frequency (7)	XT2BYPASS = 1 (8)		30		300	kHz

- (1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- (2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - (a) Keep the traces between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
- (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-Trigger Inputs section of this datasheet.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- 8) Measured with logic-level input frequency but also applies to operation with crystals.

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40	50	60	%

Calculated using the box method: (MAX(-40 to 85° C) – MIN(-40 to 85° C)) / MIN(-40 to 85° C) / (85° C – (-40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)

Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V		3		μΑ
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V		32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V			±3.5	0/
	REFO absolute tolerance calibrated	T _A = 25°C	3 V			±1.5	%
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40	50	60	%
t _{START}	REFO startup time	40%/60% duty cycle	1.8 V to 3.6 V		25		μs

Calculated using the box method: (MAX(-40 to 85° C) – MIN(-40 to 85° C)) / MIN(-40 to 85° C) / (85° C – (-40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)

DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0) ⁽¹⁾	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31) ⁽¹⁾	DCORSELx = 0, DCOx = 31, MODx = 0	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0) ⁽¹⁾	DCORSELx = 1, DCOx = 0, MODx = 0	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31) ⁽¹⁾	DCORSELx = 1, DCOx = 31, MODx = 0	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0) ⁽¹⁾	DCORSELx = 2, DCOx = 0, MODx = 0	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31) ⁽¹⁾	DCORSELx = 2, DCOx = 31, MODx = 0	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0) ⁽¹⁾	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31) ⁽¹⁾	DCORSELx = 3, DCOx = 31, MODx = 0	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0) ⁽¹⁾	DCORSELx = 4, DCOx = 0, MODx = 0	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31) ⁽¹⁾	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0) ⁽¹⁾	DCORSELx = 5, DCOx = 0, MODx = 0	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31) ⁽¹⁾	DCORSELx = 5, DCOx = 31, MODx = 0	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0) ⁽¹⁾	DCORSELx = 6, DCOx = 0, MODx = 0	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31) ⁽¹⁾	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		88.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0) ⁽¹⁾	DCORSELx = 7, DCOx = 0, MODx = 0	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31) ⁽¹⁾	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40	50	60	%
df _{DCO} /dT	DCO frequency temperature drift ⁽²⁾	f _{DCO} = 1 MHz,		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift ⁽³⁾	f _{DCO} = 1 MHz		1.9		%/V

- (1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, f_{DCO} , should be set to reside within the range of $f_{DCO(n, 0),MAX} \le f_{DCO} \le f_{DCO(n, 31),MIN}$, where $f_{DCO(n, 0),MAX}$ represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and $f_{DCO(n, 31),MIN}$ represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f_{DCO} frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting.
- Calculated using the box method: (MAX(-40 to 85° C) MIN(-40 to 85° C)) / MIN(-40 to 85° C) / (85° C (-40° C)) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)

Figure 6. Typical DCO frequency

PMM, Brown-Out Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	0 117 0 1	• • • • • • • • • • • • • • • • • • • •		,		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(DV _{CC} _BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V(DV _{CC} _BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.50	٧
V(DV _{CC} _BOR_hys)	BOR _H hysteresis		60		250	mV
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V		1.90		V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V		1.80		V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V		1.60		V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V		1.40		V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V		1.94		V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V		1.84		V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V		1.64		V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V		1.44		V

PMM, SVS High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV _{CC} = 3.6 V		0		~ Λ
I _(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		1.5		μΑ
		SVSHE = 1, SVSHRVL = 0	1.57	1.68	1.78	
V	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 1	1.79	1.88	1.98	V
$V_{(SVSH_IT-)}$	SVS _H on voltage level ¹⁷	SVSHE = 1, SVSHRVL = 2	1.98	2.08	2.21	\ \ \
		SVSHE = 1, SVSHRVL = 3	2.10	2.18	2.31	
		SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.85	- V
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.07	
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.28	
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	
V _(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	
		SVSHE = 1, SVSMHRRL = 5	2.52	2.70	2.88	
		SVSHE = 1, SVSMHRRL = 6	2.90	3.10	3.23	
		SVSHE = 1, SVSMHRRL = 7	2.90	3.10	3.23	
	0) (0)	SVSHE = 1, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVSHFP = 1		2.5		
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs
t _(SVSH)	SVS _H on or off delay time	SVSHE = 0 → 1 SVSHFP = 1		12.5		
		SVSHE = $0 \rightarrow 1$ SVSHFP = 0		100		μs
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

⁽¹⁾ The SVS_H settings that are available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) for recommended settings and use.

PMM, SVM High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DV _{CC} = 3.6 V		0		^
I _(SVMH)	SVM _H current consumption	SVMHE= 1, DV _{CC} = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 1		1.5		μA
		SVMHE = 1, SVSMHRRL = 0	1.62	1.74	1.85	
	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 1	1.88	1.94	2.07	V
		SVMHE = 1, SVSMHRRL = 2	2.07	2.14	2.28	
		SVMHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	
V _(SVMH)		SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	
		SVMHE = 1, SVSMHRRL = 5	2.52	2.70	2.88	
		SVMHE = 1, SVSMHRRL = 6	2.90	3.10	3.23	
		SVMHE = 1, SVSMHRRL = 7	2.90	3.10	3.23	
		SVMHE = 1, SVMHOVPE = 1		3.75		
	OVA and and the delete	SVMHE = 1, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVMHFP = 1		2.5		
^t pd(SVMH)	SVM _H propagation delay	SVMHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		20		μs
	SVM _H on or off delay time	SVMHE = $0 \rightarrow 1$ SVMHFP = 1		12.5		
t _(SVMH)		SVMHE = $0 \rightarrow 1$ SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use.

PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP M	AX UNIT
		SVSLE = 0, PMMCOREV = 2	0	nA
I _(SVSL)	SVS _L current consumption	SVSLE = 1, PMMCOREV = 2, SVSLFP = 0	200	IIA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1	2.0	μA
t _{pd(SVSL)}	0)/0	SVSLE = 1, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, SVSLFP = 1	2.5	
	SVS _L propagation delay	SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0	20	μs
	CVC on or off delay time	SVSLE = 0 → 1 SVSLFP = 1	12.5	
	SVS_L on or off delay time	SVSLE = $0 \rightarrow 1$ SVSLFP = 0	100	μs

PMM, SVM Low Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		SVMLE = 0, PMMCOREV = 2		0		^	
I _(SVML)	SVM _L current consumption	SVMLE= 1, PMMCOREV = 2, SVMLFP = 0		200		nA	
, ,		SVMLE= 1, PMMCOREV = 2, SVMLFP = 1		1.5		μA	
	CVM propagation dolor	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5			
t _{pd(SVML)}	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs	
t _(SVML)	CVM on on off delegations	SVMLE = $0 \rightarrow 1$, SVMLFP = 1		12.5		2	
	SVM _L on or off delay time	SVMLE = $0 \rightarrow 1$, SVMLFP = 0		100		μs	

Wake-Up from Low Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4.0 MHz			5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	f _{MCLK} < 4.0 MHz			6	μs
t _{WAKE-UP-SLOW}	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
t _{WAKE-UP-LPM5}	Wake-up time from LPM4.5 to active mode (3)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (3)				2	3	ms

- (1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVS_L) and low side monitor (SVM_L). Fastest wakeup times are possible with SVS_L and SVM_L in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx* and *MSP430x6xx Family User's Guide* (SLAU208).
- (2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVS_L) and low side monitor (SVM_L). In this case, the SVS_L and SVM_L are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208).
- (3) This value represents the time from the wakeup event to the reset vector execution.

Timer A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10%	1.8 V, 3 V			25	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs. Minimum pulse width required for capture.	1.8 V, 3 V	20			ns

Timer_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10%	1.8 V, 3 V			25	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs. Minimum pulse width required for capture.	1.8 V, 3 V	20			ns

USCI (UART Mode) Recommended Operating Conditions

	PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK, External: UCLK, Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)					1	MHz

USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
t _T	LIADT receive deglitch time (1)		2.2 V	50	600	
	UART receive deglitch time (1)		3 V	50	600	ns

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

USCI (SPI Master Mode) Recommended Operating Conditions

	PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{usci}	USCI input clock frequency	Internal: SMCLK, ACLK Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz

USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note (1), Figure 7 and Figure 8)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
		DMMCODEV 0	1.8 V	55			20
	COMI input data actum tima	PMMCOREV = 0	3 V	38			ns
t _{SU,MI}	SOMI input data setup time	DMMACOREV 2	2.4 V	30			
		PMMCOREV = 3	3 V	25			ns
		DMMOODEV 0	1.8 V	0			
	SOMI input data hold time	PMMCOREV = 0	3 V	0			ns
t _{HD,MI}		DMMACOREV 2	2.4 V	0			
		PMMCOREV = 3	3 V	0			ns
		UCLK edge to SIMO valid,	1.8 V			20	
	01110	$C_L = 20 \text{ pF}, PMMCOREV = 0$	3 V			18	ns
t _{VALID,MO}	SIMO output data valid time (2)	UCLK edge to SIMO valid,	2.4 V			16	
		$C_L = 20 \text{ pF}, PMMCOREV = 3$	3 V			15	ns
		0 00 5 514400551/ 0	1.8 V	-10			
	(3)	$C_L = 20 \text{ pF}, \text{PMMCOREV} = 0$	3 V	-8			ns
t _{HD,MO}	SIMO output data hold time (3)	0 00 5 514100551/ 0	2.4 V	-10			
		$C_L = 20 \text{ pF}, \text{PMMCOREV} = 3$	3 V	-8			ns

 $f_{UCXCLK} = 1/2 t_{LO/HI} \text{ with } t_{LO/HI} \geq max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)}).$ For the slave's parameters $t_{SU,SI(Slave)}$ and $t_{VALID,SO(Slave)}$ see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 7 and Figure 8.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 7 and Figure 8.

Figure 7. SPI Master Mode, CKPH = 0

Figure 8. SPI Master Mode, CKPH = 1

USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note (1), Figure 9 and Figure 10)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DIMINOCPELL O	1.8 V	11			
		PMMCOREV = 0	3 V	8			ns
t _{STE,LEAD}	STE lead time, STE low to clock	D. # 100D E1/	2.4 V	7			
		PMMCOREV = 3	3 V	6			ns
		DI II I CODEI / C	1.8 V	3			
		PMMCOREV = 0	3 V	3			ns
t _{STE,LAG}	STE lag time, Last clock to STE high	DI II I CODEI I	2.4 V	3			
		PMMCOREV = 3	3 V	3			ns
		DI II I CODEI / C	1.8 V			66	
	0.75	PMMCOREV = 0	3 V			50	ns
t _{STE,ACC}	STE access time, STE low to SOMI data out	D. # 100D E1/	2.4 V			36	
		PMMCOREV = 3	3 V			30	ns
		DI II I CODEI / C	1.8 V			30	
	STE disable time, STE high to SOMI high	PMMCOREV = 0	3 V			23	ns
^t STE,DIS	impedance	DMMCODEV 2	2.4 V			16	
		PMMCOREV = 3	3 V			13	ns
		D. # 100D E1/	1.8 V	5			
		PMMCOREV = 0	3 V	5			ns
t _{SU,SI}	SIMO input data setup time	D. # 100D E1/	2.4 V	2			
		PMMCOREV = 3	3 V	2			ns
		D. # 100D E1/	1.8 V	5			
		PMMCOREV = 0	3 V	5			ns
t _{HD,SI}	SIMO input data hold time	DI II I CODEI I	2.4 V	5			
		PMMCOREV = 3	3 V	5			ns
		UCLK edge to SOMI valid,	1.8 V			76	
•	SOMI output data valid time (2)	$C_L = 20 \text{ pF}$ PMMCOREV = 0	3 V			60	ns
t _{VALID,} SO	Solvii output data valid time V	UCLK edge to SOMI valid,	2.4 V			44	
		$C_L = 20 \text{ pF}$ PMMCOREV = 3	3 V			40	ns
		C _L = 20 pF	1.8 V	18			200
	SOMI output data hold time (3)	PMMCOREV = 0	3 V	12			ns
t _{HD,SO}	Solvii output data noid time 💎	C _L = 20 pF PMMCOREV = 3	2.4 V	10			nc
			3 V	8			ns

⁽¹⁾

in Figure 7 and Figure 8.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 7 and Figure 8.

Figure 9. SPI Slave Mode, CKPH = 0

Figure 10. SPI Slave Mode, CKPH = 1

USCI (I2C Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
	Light time (repeated) CTART	f _{SCL} ≤ 100 kHz	227/27	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Coting times for a reposted CTART	f _{SCL} ≤ 100 kHz	227/27/	4.7		
t _{SU,STA}	Setup time for a repeated START	$f_{SCL} > 100 \text{ kHz}$	2.2 V, 3 V	0.6		μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
	Cotion times for CTOD	f _{SCL} ≤ 100 kHz	227/27/	4.0		
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Pulse duration of spikes suppressed by input		2.2 V	50	600	
t _{SP}	filter		3 V	50	600	ns

Figure 11. I2C Mode Timing

10-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT		
AV _{CC}	Analog supply voltage	AV _{CC} and DV _{CC} are connected together, AV _{SS} and DV _{SS} are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		1.8		3.6	V		
$V_{(Ax)}$	Analog input voltage range (2)	All ADC10_A pins: P1.0 to P1.5 and P3.6 and P3.7 terminals		0		AV_{CC}	V		
	Operating supply current into	f _{ADC10CLK} = 5 MHz, ADC10ON = 1, REFON =	2.2 V		60	100			
I _{ADC10_} A	AVCC terminal. REF module and reference buffer off.	0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00	3 V		75	110	μΑ		
	Operating supply current into AVCC terminal. REF module on, reference buffer on.	f _{ADC10CLK} = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01	3 V		113	150	μΑ		
	Operating supply current into AVCC terminal. REF module off, reference buffer on.	f _{ADC10CLK} = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V	3 V		105	140	μΑ		
	Operating supply current into AVCC terminal. REF module off, reference buffer off.	f _{ADC10CLK} = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V	3 V		70	110	μΑ		
C _I	Input capacitance	Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad.	2.2 V		3.5		pF		
Rı	Input MUX ON resistance	$AV_{CC} > 2.0 \text{ V}, 0 \text{ V} \le V_{Ax} \le AV_{CC}$			36			36	kΩ
ΙΝΙ	input MOV ON resistance	$1.8 \text{ V} < \text{AV}_{CC} < 2.0 \text{ V}, 0 \text{ V} \le \text{V}_{Ax} \le \text{AV}_{CC}$				96	K12		

10-Bit ADC, Timing Parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{ADC10CLK}		For specified performance of ADC10_A linearity parameters	2.2 V, 3 V	0.45	5	5.5	MHz
f _{ADC10OSC}	Internal ADC10_A oscillator (1)	ADC10DIV = 0, f _{ADC10CLK} = f _{ADC10OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
tCONVERT	Conversion time	REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode f _{ADC10OSC} = 4 MHz to 5 MHz	2.2 V, 3 V	2.4		3.0	μs
		External $f_{ADC10CLK}$ from ACLK, MCLK or SMCLK, ADC10SSEL $\neq 0$			(2)		
t _{ADC10ON}	Turn on settling time of the ADC	See ⁽³⁾				100	ns
	Committee time	$R_S = 1000 \ \Omega, \ R_I = 96 \ k\Omega, \ C_I = 3.5 \ pF^{-(4)}$	1.8 V	3			μs
t _{Sample}	Sampling time	$R_S = 1000~\Omega,~R_I = 36~k\Omega,~C_I = 3.5~pF^{-(4)}$	3 V	1			μs

The ADC10OSC is sourced directly from MODOSC inside the UCS.

The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. The external reference voltage requires decoupling capacitors. See $^{()}$.

^{12 ×} ADC10DIV × 1/f_{ADC10CLK}

The condition is that the error in a conversion started after t_{ADC100N} is less than ±0.5 LSB. The reference and input signal are already

Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB

10-Bit ADC, Linearity Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN T	P MAX	UNIT
_	Integral	1.4 V ≤ (V _{eREF+} − V _{eREF−})min ≤ 1.6 V	2.2 V. 3 V		±1.0	LSB
Eı	linearity error	$1.6 \text{ V} < (\text{V}_{\text{eREF+}} - \text{V}_{\text{eREF-}}) \text{min} \le \text{V}_{\text{AVCC}}$	2.2 V, 3 V		±1.0	
E _D	Differential linearity error	$(V_{eREF+} - V_{eREF-})min \le (V_{eREF+} - V_{eREF-}),$ $C_{VREF+} = 20 pF$	2.2 V, 3 V		±1.0	LSB
E _O	Offset error	$(V_{eREF+} - V_{eREF-})$ min $\leq (V_{eREF+} - V_{eREF-})$, Internal impedance of source $R_S < 100 \ \Omega$, $C_{VeREF+} = 20 \ pF$	2.2 V, 3 V		±1.0	LSB
E _G	Gain error	$(V_{eREF+} - V_{eREF-})min \le (V_{eREF+} - V_{eREF-}),$ $C_{VREF+} = 20 \text{ pF}$	2.2 V, 3 V		±1.0	LSB
E _T	Total unadjusted error	$(V_{eREF+} - V_{eREF-})min \le (V_{eREF+} - V_{eREF-}),$ $C_{VREF+} = 20 pF$	2.2 V, 3 V	±1	.0 ±2.0	LSB

REF, External Reference

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
V _{eREF+}	Positive external reference voltage input	$V_{eREF+} > V_{eREF-}^{(2)}$		1.4		AV_{CC}	V	
V _{eREF}	Negative external reference voltage input	V _{eREF+} > V _{eREF-} ⁽³⁾		0		1.2	V	
(V _{eREF+} - V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{eREF} ⁽⁴⁾		1.4		AV_{CC}	V	
I _{VeREF+}	Ctatia input augrent	$1.4~V \le V_{eREF+} \le V_{AVCC}, V_{eREF-} = 0~V, f_{ADC10CLK} = 5~MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps$	227.27		±8.5	±26		
I _{VeREF}	Static input current	$1.4~V \le V_{eREF+} \le V_{AVCC}, V_{eREF-} = 0~V, f_{ADC10CLK} = 5~MHZ, ADC10SHTX = 0x1000, Conversion rate 20~ksps$	2.2 V, 3 V	- 2.2 V, 3 V			±1	μΑ
C _{VREF+/-}	Capacitance at VeREF+ or VeREF- terminal	(5)		10			μF	

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

REF, Built-In Reference

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = 1	3 V		2.51	±1.5%	
V_{REF+}	Positive built-in reference voltage	REFVSEL = {1} for 2.0 V, REFON = 1	3 V		1.99	±1.5%	V
		REFVSEL = {0} for 1.5 V, REFON = 1	2.2 V, 3 V		1.5	±1.5%	
	AVCC minimum voltage,	REFVSEL = {0} for 1.5 V		2.2			
$AV_{CC(min)}$	Positive built-in reference	REFVSEL = {1} for 2.0 V		2.2			V
1	active	REFVSEL = {2} for 2.5 V		2.7			
		f _{ADC10CLK} = 5.0 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V	3 V		18	24	μA
I _{REF+}	Operating supply current into AVCC terminal (2)	f _{ADC10CLK} = 5.0 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V	3 V		15.5	21	μA
		$ \begin{aligned} &f_{ADC10CLK} = 5.0 \text{ MHz,} \\ &REFON = 1, REFBURST = 0, \\ &REFVSEL = \{0\} \text{ for } 1.5V \end{aligned} $	3 V		13.5	21	μA
TC _{REF+}	Temperature coefficient of built-in reference (3)	I _{VREF+} = 0 A, REFVSEL = (0, 1, 2}, REFON = 1			30	50	ppm/ °C
	Operating supply current	REFON = 0, INCH = 0Ah,	2.2 V		20	22	μA
ISENSOR	into AVCC terminal (4)	$ADC10ON = N A, T_A = 30$ °C	3 V		20	22	μΑ
V _{SENSOR}	See ⁽⁵⁾	ADC10ON = 1, INCH = 0Ah,	2.2 V		770		mV
VSENSOR	366 **	$T_A = 30$ °C	3 V		770		1110
V_{MID}	AVCC divider at channel 11	ADC10ON = 1, INCH = 0Bh,	2.2 V	1.06	1.1	1.14	V
▼ MID	717 GG GIVIGOT AT OHATITIOT TT	V_{MID} is approximately 0.5 x V_{AVCC}	3 V	1.46	1.5	1.54	•
t _{SENSOR(sample)}	Sample time required if channel 10 is selected ⁽⁶⁾	ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB		30			μs
t _{VMID(sample)}	Sample time required if channel 11 is selected (7)	ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB		1			μs
PSRR_DC	Power supply rejection ratio (dc)	$\begin{aligned} & \text{AV}_{\text{CC}} = \text{AV}_{\text{CC (min)}} \text{ - AV}_{\text{CC(max)}}, \\ & \text{T}_{\text{A}} = 25^{\circ}\text{C}, \\ & \text{REFVSEL} = \{0, 1, 2\}, \text{ REFON} = 1 \end{aligned}$			120		μV/V
PSRR_AC	Power supply rejection ratio (ac)	$\begin{aligned} & \text{AV}_{\text{CC}} = \text{AV}_{\text{CC (min)}} \text{ - AV}_{\text{CC(max)}}, \\ & \text{T}_{\text{A}} = 25 \text{ °C, f} = 1 \text{ kHz, } \Delta \text{Vpp} = 100 \text{ mV}, \\ & \text{REFVSEL} = \{0, 1, 2\}, \text{ REFON} = 1 \end{aligned}$			6.4		mV/V
t _{SETTLE}	Settling time of reference voltage ⁽⁸⁾	$AV_{CC} = AV_{CC \text{ (min)}} - AV_{CC \text{(max)}},$ $REFVSEL = \{0, 1, 2\}, REFON = 0 \rightarrow 1$			75		μs

- The leakage current is defined in the leakage current table with P6.x/Ax parameter.
- The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
- Calculated using the box method: $(MAX(-40 \text{ to } 85^{\circ}C) MIN(-40 \text{ to } 85^{\circ}C)) / MIN(-40 \text{ to } 85^{\circ}C) / (85^{\circ}C (-40^{\circ}C))$. The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is 1)
- high). When REFON = 1, I_{SENSOR} is already included in I_{REF+} . The temperature sensor offset can be as much as $\pm 20^{\circ}$ C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor.
- The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.
- The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.

Comparator_B

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
		CBPWRMD = 00, CBON = 1, CBRSx = 00	2.2 V		30	50	
	Comparator operating supply current into AVCC.		3 V		40	65	
I _{AVCC_COMP}	Excludes reference resistor ladder.	CBPWRMD = 01, CBON = 1, CBRSx = 00	2.2 V, 3 V		10	17	μA
		CBPWRMD = 10, CBON = 1, CBRSx = 00	2.2 V, 3 V		0.1	0.5	
1	Quiescent current of resistor ladder into AVCC.	CBREFACC = 0, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0	2.2 V, 3 V		10	17	μA
I _{AVCC_REF}	Including REF module current.	CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0	2.2 V, 3 V			22	μA
V _{IC}	Common mode input range			0		V _{CC} -1	V
V	land effect value	CBPWRMD = 00				±20	mV
V _{OFFSET}	Input offset voltage	CBPWRMD = 01, 10				±10	mV
C _{IN}	Input capacitance				5		pF
D	Corios input registance	ON - switch closed			3	4	kΩ
R _{SIN}	Series input resistance	OFF - switch opened		50			ΜΩ
		CBPWRMD = 00, CBF = 0				450	ns
t _{PD}	Propagation delay, response time	CBPWRMD = 01, CBF = 0				600	ns
	reopense ume	CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.0	μs
	Propagation delay with	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	μs
t _{PD,filter}	filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	μs
		CBON = 0 to CBON = 1 CBPWRMD = 00, 01			1	2	μs
t _{EN_CMP}	Comparator enable time	CBON = 0 to CBON = 1 CBPWRMD = 10				1.5	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			1	1.5	μs
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n+0.5) /32	VIN x (n+1) /32	VIN x (n+1.5) /32	V

Ports PU.0 and PU.1

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	V_{LDOO} = 3.3 V ± 10%, I_{OH} = -25 mA. See Figure 13 for typical characteristics.		2.4			٧
V _{OL}	Low-level output voltage	$V_{LDOO} = 3.3 \text{ V} \pm 10\%$, $I_{OL} = 25 \text{ mA}$. See Figure 12 for typical characteristics.				0.4	V
V _{IH}	High-level input voltage	V _{LDOO} = 3.3 V ± 10% See Figure 14 for typical characteristics.		2.0			V
V _{IL}	Low-level input voltage	V _{LDOO} = 3.3 V ± 10% See Figure 14 for typical characteristics.				0.8	V

Figure 12. Ports PU.0, PU.1 Typical Low-Level Output Characteristics

Figure 13. Ports PU.0, PU.1 Typical High-Level Output Characteristics

Figure 14. Ports PU.0, PU.1 Typical Input Threshold Characteristics

LDO-PWR (LDO Power System)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{LAUNCH}	LDO input detection threshold					3.75	V
V_{LDOI}	LDO input voltage			3.76		5.5	V
V_{LDO}	LDO output voltage				3.3	±9%	V
V _{LDO_EXT}	LDOO terminal input voltage with LDO disabled	LDO disabled		1.8		3.6	V
I _{LDOO}	Maximum external current from LDOO terminal	LDO is on				20	mA
I _{DET}	LDO current overload detection			60		100	mA
C _{LDOI}	LDOI terminal recommended capacitance				4.7		μF
C _{LDOO}	LDOO terminal recommended capacitance				220		nF
t _{ENABLE}	Settling time V _{LDO}	Within 2%, recommended capacitances				2	ms

⁽¹⁾ A current overload will be detected when the total current supplied from the LDO exceeds this value.

Flash Memory

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program or erase supply voltage		1.8		3.6	٧
t _{READMARGIN}	Read access time during margin mode				200	ns
I _{PGM}	Supply current from DVCC during program			3	5	mA
I _{ERASE}	Supply current from DVCC during erase			2	6.5	mA
I _{MERASE} , I _{BANK}	Supply current from DVCC during mass erase or bank erase			2	6.5	mA
t _{CPT}	Cumulative program time	See (1)			16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C	100			years
t _{Word}	Word or byte program time	See (2)	64		85	μs
t _{Block, 0}	Block program time for first byte or word	See (2)	49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word	See (2)	37		49	μs
t _{Block, N}	Block program time for last byte or word	See (2)	55		73	μs
t _{Erase}	Erase time for segment, mass erase, and bank erase when available.	See (2)	23		32	ms

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

⁽²⁾ These values are hardwired into the flash controller's state machine.

JTAG and Spy-Bi-Wire Interface

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse length	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) $^{(1)}$	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
f _{TCK}	TOK in a francisco Audio ITAC(2)	2.2 V	0		5	MHz
	TCK input frequency - 4-wire JTAG (2)	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface need to wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

INPUT/OUTPUT SCHEMATICS

Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger

Table 46. Port P1 (P1.0 to P1.7) Pin Functions

DINI NIAME (C.)		FUNCTION	CONTROL BITS	CONTROL BITS AND SIGNALS		
PIN NAME (P1.x)	х		P1DIR.x	P1SEL.x		
P1.0/TA0CLK/ACLK	0	P1.0 (I/O)	I: 0; O: 1	0		
		TAOCLK	0	1		
		ACLK	1	1		
P1.1/TA0.0	1	P1.1 (I/O)	l: 0; O: 1	0		
		TA0.CCI0A	0	1		
		TA0.0	1	1		
P1.2/TA0.1	2	P1.2 (I/O)	l: 0; O: 1	0		
		TA0.CCI1A	0	1		
		TA0.1	1	1		
P1.3/TA0.2	3	P1.3 (I/O)	l: 0; O: 1	0		
		TA0.CCI2A	0	1		
		TA0.2	1	1		
P1.4/TA0.3	4	P1.4 (I/O)	l: 0; O: 1	0		
		TA0.CCI3A	0	1		
		TA0.3	1	1		
P1.5/TA0.4	5	P1.5 (I/O)	l: 0; O: 1	0		
		TA0.CCI4A	0	1		
		TA0.4	1	1		
P1.6/TA1CLK/CBOUT	6	P1.6 (I/O)	l: 0; O: 1	0		
		TA1CLK	0	1		
		CBOUT comparator B	1	1		
P1.7/TA1.0	7	P1.7 (I/O)	I: 0; O: 1	0		
		TA1.CCI0A	0	1		
		TA1.0	1	1		

Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger

Table 47. Port P2 (P2.0 to P2.7) Pin Functions

PIN NAME (P2.x)	х	FUNCTION	CONTROL SIGN	CONTROL BITS AND SIGNALS ⁽¹⁾		
` ,			P2DIR.x	P2SEL.x		
P2.0/TA1.1	0	P2.0 (I/O)	I: 0; O: 1	0		
		TA1.CCI1A	0	1		
		TA1.1	1	1		
P2.1/TA1.2	1	P2.1 (I/O)	I: 0; O: 1	0		
		TA1.CCI2A	0	1		
		TA1.2	1	1		
P2.2/TA2CLK/SMCLK	2	P2.2 (I/O)	I: 0; O: 1	0		
		TA2CLK	0	1		
		SMCLK	1	1		
P2.3/TA2.0	3	P2.3 (I/O)	I: 0; O: 1	0		
		TA2.CCI0A	0	1		
		TA2.0	1	1		
P2.4/TA2.1	4	P2.4 (I/O)	I: 0; O: 1	0		
		TA2.CCI1A	0	1		
		TA2.1	1	1		
P2.5/TA2.2	5	P2.5 (I/O)	I: 0; O: 1	0		
		TA2.CCI2A	0	1		
		TA2.2	1	1		
P2.6/RTCCLK/DMAE0	6	P2.6 (I/O)	I: 0; O: 1	0		
		DMAE0	0	1		
		RTCCLK	1	1		
P2.7/UCB0STE/UCA0CLK	7	P2.7 (I/O)	I: 0; O: 1	0		
		UCB0STE/UCA0CLK(2) (3)	Х	1		

X = Don't care

The pin direction is controlled by the USCI module.

UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

Port P3, P3.0 to P3.4, Input/Output With Schmitt Trigger

Table 48. Port P3 (P3.0 to P3.7) Pin Functions

PIN NAME (P3.x)	x	FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾		
,			P3DIR.x	P3SEL.x	
P3.0/UCB0SIMO/UCB0SDA	0	P3.0 (I/O)	I: 0; O: 1	0	
		UCB0SIMO/UCB0SDA ⁽²⁾ (3)	Х	1	
P3.1/UCB0SOMI/UCB0SCL	1	P3.1 (I/O)	I: 0; O: 1	0	
		UCB0SOMI/UCB0SCL ⁽²⁾ (3)	Х	1	
P3.2/UCB0CLK/UCA0STE	2	P3.2 (I/O)	I: 0; O: 1	0	
		UCB0CLK/UCA0STE ⁽²⁾ (4)	Х	1	
P3.3/UCA0TXD/UCA0SIMO	3	P3.3 (I/O)	I: 0; O: 1	0	
		UCA0TXD/UCA0SIMO ⁽²⁾	Х	1	
P3.4/UCA0RXD/UCA0SOMI	4	P3.4 (I/O)	I: 0; O: 1	0	
		UCA0RXD/UCA0SOMI(2)	Х	1	

X = Don't care

The pin direction is controlled by the USCI module. If the I2C functionality is selected, the output drives only the logical 0 to V_{SS} level.

UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI A0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger

Table 49. Port P4 (P4.0 to P4.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTRO	CONTROL BITS AND SIGNALS					
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x ⁽¹⁾	P4SEL.x	P4MAPx				
P4.0/P4MAP0	0	P4.0 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	Х	1	≤ 30				
P4.1/P4MAP1	1	P4.1 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.2/P4MAP2	2	P4.2 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.3/P4MAP3	3	P4.3 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.4/P4MAP4	4	P4.4 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.5/P4MAP5	5	P4.5 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.6/P4MAP6	6	P4.6 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	X	1	≤ 30				
P4.7/P4MAP7	7	P4.7 (I/O)	I: 0; O: 1	0	Х				
		Mapped secondary digital function	Х	1	≤ 30				

⁽¹⁾ The direction of some mapped secondary functions are controlled directly by the module. See Table 9 for specific direction control information of mapped secondary functions.

Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger

Table 50. Port P5 (P5.0 and P5.1) Pin Functions

DINI NAME (DE v.)		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P5.x)		FUNCTION	P5DIR.x	P5SEL.x		
P5.0/A8/VeREF+ ⁽²⁾	0	P5.0 (I/O) ⁽³⁾	I: 0; O: 1	0		
		A8/VeREF+ ⁽⁴⁾	Х	1		
P5.1/A9/VeREF- ⁽⁵⁾	1	P5.1 (I/O) ⁽³⁾	I: 0; O: 1	0		
		A9/VeREF-(6)	Х	1		

- (1) X = Don't care
- (2) VeREF+ available on devices with ADC10_A.
- (3) Default condition
- (4) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A when available.
- (5) VeREF- available on devices with ADC10_A.
- (6) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A when available.

Port P5, P5.2, Input/Output With Schmitt Trigger

Port P5, P5.3, Input/Output With Schmitt Trigger

Table 51. Port P5 (P5.2, P5.3) Pin Functions

DINI NIAME (DE)		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾						
PIN NAME (P5.x)	х	FUNCTION	P5DIR.x	P5SEL.2	P5SEL.3	XT2BYPASS			
P5.2/XT2IN		P5.2 (I/O)	I: 0; O: 1	0	Х	Х			
		XT2IN crystal mode (2)	Х	1	Х	0			
		XT2IN bypass mode ⁽²⁾	Х	1	Х	1			
P5.3/XT2OUT	3	P5.3 (I/O)	I: 0; O: 1	0	Х	Х			
		XT2OUT crystal mode ⁽³⁾	Х	1	Х	0			
		P5.3 (I/O) ⁽³⁾	Х	1	Х	1			

⁽¹⁾ X = Don't care

⁽²⁾ Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as general-purpose I/O.

Port P5, P5.4 and P5.5 Input/Output With Schmitt Trigger

Table 52. Port P5 (P5.4 and P5.5) Pin Functions

DIN MAME (DZ)		FUNCTION	CONTROL BITS AND SIGNALS ⁽¹⁾						
PIN NAME (P7.x)	X	FUNCTION	P5DIR.x	P5SEL.4	P5SEL.5	XT1BYPASS			
P5.4/XIN	4	P5.4 (I/O)	I: 0; O: 1	0	X	Х			
		XIN crystal mode ⁽²⁾	X	1	X	0			
		XIN bypass mode ⁽²⁾	X	1	X	1			
P5.5/XOUT	5	P5.5 (I/O)	I: 0; O: 1	0	X	Х			
		XOUT crystal mode (3)	X	1	X	0			
		P5.5 (I/O) ⁽³⁾	X	1	X	1			

⁽¹⁾ X = Don't care

⁽²⁾ Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as general-purpose I/O.

Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger

Table 53. Port P6 (P6.0 to P6.7) Pin Functions

DINI NIAME (DO)		FUNCTION	CONTR	CONTROL BITS AND SIGNALS				
PIN NAME (P6.x)	х	FUNCTION	P6DIR.x	P6SEL.x	CBPD			
P6.0/CB0/(A0)	0	P6.0 (I/O)	I: 0; O: 1	0	0			
		A0 (only on devices with ADC)	X	1	Х			
		CB0 ⁽¹⁾	X	X	1			
P6.1/CB1/(A1)	1	P6.1 (I/O)	I: 0; O: 1	0	0			
		A1 (only on devices with ADC)	X	1	Х			
		CB1 ⁽¹⁾	X	X	1			
P6.2/CB2/(A2)	2	P6.2 (I/O)	I: 0; O: 1	0	0			
		A2 (only on devices with ADC)	X	1	Х			
		CB2 ⁽¹⁾	X	X	1			
P6.3/CB3/(A3)	3/CB3/(A3) 3 P6.3	P6.3 (I/O)	I: 0; O: 1	0	0			
		A3 (only on devices with ADC)	Х	1	Х			
		CB3 ⁽¹⁾	X	X	1			
P6.4/CB4/(A4)	4	P6.4 (I/O)	I: 0; O: 1	0	0			
		A4 (only on devices with ADC)	X	1	Х			
		CB4 ⁽¹⁾	X	X	1			
P6.5/CB5/(A5)	5	P6.5 (I/O)	I: 0; O: 1	0	0			
		A5 (only on devices with ADC)	X	1	Χ			
		CB5 ⁽¹⁾	X	X	1			
P6.6/CB6/(A6)	6	P6.6 (I/O)	I: 0; O: 1	0	0			
		A6 (only on devices with ADC)	X	1	Х			
		CB6 ⁽¹⁾	X	X	1			
P6.7/CB7/(A7)	7	P6.7 (I/O)	I: 0; O: 1	0	0			
		A7 (only on devices with ADC)	X	1	Х			
		CB7 ⁽¹⁾	Х	Х	1			

⁽¹⁾ Setting the CBPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CBPD.x bit.

Port PU.0, PU.1 Ports

Table 54. Port PU.0, PU.1 Output Functions⁽¹⁾

·									
	CONTROL BITS		PIN NAME						
PUOPE	PUOUT1	PUOUT0	PU.1/DM	PU.0/DP					
0	X	X	Output disabled	Output disabled					
1	0	0	Output low	Output low					
1	0	1	Output low	Output high					
1	1	0	Output high	Output low					
1	1	1	Output high	Output high					

(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.

Table 55. Port PU.0, PU.1 Input Functions⁽¹⁾

CONTROL BITS	PIN NAME						
PUIPE	PU.1/DM	PU.0/DP					
0	Input disabled	Input disabled					
1	Input enabled	Input enabled					

(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.

Port J, J.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

Port J, J.1 to J.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Table 56. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	x	FUNCTION	CONTROL BITS/ SIGNALS ⁽¹⁾
, ,			PJDIR.x
PJ.0/TDO	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
		TDO ⁽³⁾	X
PJ.1/TDI/TCLK	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
		TDI/TCLK ⁽³⁾ (4)	X
PJ.2/TMS	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
		TMS ⁽³⁾ (4)	X
PJ.3/TCK	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
		TCK ⁽³⁾ (4)	X

X = Don't care

Default condition

The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.

DEVICE DESCRIPTORS

Table 57 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 57. Device Descriptor Table (1)

	DESCRIPTION	ADDRESS	SIZE (butos)	'F5304	'F5308 RGC	'F5308 RGZ	'F5309 RGC	'F5309 RGZ	'F5310 RGC	'F5310 RGZ
			(bytes)	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE
Info Block	Info length	01A00h	1	06h	06h	06h	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h	06h	06h	06h
	CRC value	01A02h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	Device ID	01A04h	1	12h	13h	13h	14h	14h	15h	15h
	Device ID	01A05h	1	81h	81h	81h	81h	81h	81h	81h
	Hardware revision	01A06h	1	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	Firmware revision	01A07h	1	per unit	per unit	per unit	per unit	per unit	per unit	per unit
Die Record	Die Record Tag	01A08h	1	08h	08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	1	0Ah	0Ah	0Ah	0Ah	0Ah	0Ah	0Ah
	Lot/Wafer ID	01A0Ah	4	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	Die X position	01A0Eh	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	Die Y position	01A10h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	Test results	01A12h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
ADC10 Calibration	ADC10 Calibration Tag	01A14h	1	13h	13h	13h	13h	13h	13h	13h
	ADC10 Calibration length	01A15h	1	10h	10h	10h	10h	10h	10h	10h
	ADC Gain Factor	01A16h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC Offset	01A18h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 1.5-V Reference Temp. Sensor 30°C	01A1Ah	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 1.5-V Reference Temp. Sensor 85°C	01A1Ch	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 2.0-V Reference Temp. Sensor 30°C	01A1Eh	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 2.0-V Reference Temp. Sensor 85°C	01A20h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 2.5-V Reference Temp. Sensor 30°C	01A22h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	ADC 2.5-V Reference Temp. Sensor 85°C	01A24h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
REF Calibration	REF Calibration Tag	01A26h	1	12h	12h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	1	06h	06h	06h	06h	06h	06h	06h
	REF 1.5-V Reference Factor	01A28h	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	REF 2.0-V Reference Factor	01A2Ah	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
	REF 2.5-V Reference Factor	01A2Ch	2	per unit	per unit	per unit	per unit	per unit	per unit	per unit
Peripheral Descriptor	Peripheral Descriptor Tag	01A2Eh	1	02h	02h	02h	02h	02h	02h	02h
	Peripheral Descriptor Length	01A2Fh	1	5Ch	60h	60h	61h	61h	60h	60h
	Memory 1		2	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah
	Memory 2		2	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h
	Memory 3		2	0Eh 2Dh	0Eh 2Dh	0Eh 2Dh	0Eh 2Dh	0Eh 2Dh	0Eh 2Dh	0Eh 2Dh
	Memory 4		2	2Ah 70h	2Ah 60h	2Ah 60h	2Ah 50h	2Ah 50h	2Ah 40h	2Ah 40h

Table 57. Device Descriptor Table (1) (continued)

	<u> </u>		· ·	I	`	1		1	T
DESCRIPTION	ADDRESS	SIZE (bytes)	'F5304	'F5308 RGC	'F5308 RGZ	'F5309 RGC	'F5309 RGZ	'F5310 RGC	'F5310 RGZ
		(bytes)	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE
Memory 5		2/1	8Eh	90h	90h	91h 8Eh	91h 8Eh	92h	92h
delimiter		1	00h	00h	00h	00h	00h	00h	00h
Peripheral count		1	1Eh	20h	20h	20h	20h	20h	20h
MSP430CPUXV2		2	00h 23h	00h 23h	00h 23h	00h 23h	00h 23h	00h 23h	00h 23h
JTAG		2	00h 09h	00h 09h	00h 09h	00h 09h	00h 09h	00h 09h	00h 09h
SBW		2	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh
EEM-S		2	00h 03h	00h 03h	00h 03h	00h 03h	00h 03h	00h 03h	00h 03h
TI BSL		2	00h FCh	00h FCh	00h FCh	00h FCh	00h FCh	00h FCh	00h FCh
SFR		2	10h 41h	10h 41h	10h 41h	10h 41h	10h 41h	10h 41h	10h 41h
PMM		2	02h 30h	02h 30h	02h 30h	02h 30h	02h 30h	02h 30h	02h 30h
FCTL		2	02h 38h	02h 38h	02h 38h	02h 38h	02h 38h	02h 38h	02h 38h
CRC16		2	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch
CRC16_RB		2	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh
RAMCTL		2	00h 44h	00h 44h	00h 44h	00h 44h	00h 44h	00h 44h	00h 44h
WDT_A		2	00h 40h	00h 40h	00h 40h	00h 40h	00h 40h	00h 40h	00h 40h
ucs		2	01h 48h	01h 48h	01h 48h	01h 48h	01h 48h	01h 48h	01h 48h
SYS		2	02h 42h	02h 42h	02h 42h	02h 42h	02h 42h	02h 42h	02h 42h
REF		2	03h A0h	03h A0h	03h A0h	03h A0h	03h A0h	03h A0h	03h A0h
Port Mapping		2	01h 10h	01h 10h	01h 10h	01h 10h	01h 10h	01h 10h	01h 10h
Port 1/2		2	04h 51h	04h 51h	04h 51h	04h 51h	04h 51h	04h 51h	04h 51h
Port 3/4		2	02h 52h	02h 52h	02h 52h	02h 52h	02h 52h	02h 52h	02h 52h
Port 5/6		2	02h 53h	02h 53h	02h 53h	02h 53h	02h 53h	02h 53h	02h 53h
JTAG		2	0Eh 5Fh	0Eh 5Fh	0Eh 5Fh	0Eh 5Fh	0Eh 5Fh	0Eh 5Fh	0Eh 5Fh
TA0		2	02h 62h	02h 62h	02h 62h	02h 62h	02h 62h	02h 62h	02h 62h
TA1		2	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h
ТВ0		2	04h 67h	04h 67h	04h 67h	04h 67h	04h 67h	04h 67h	04h 67h
TA2		2	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h
RTC		2	0Ah 68h	0Ah 68h	0Ah 68h	0Ah 68h	0Ah 68h	0Ah 68h	0Ah 68h
MPY32		2	02h 85h	02h 85h	02h 85h	02h 85h	02h 85h	02h 85h	02h 85h
DMA-3		2	04h 47h	04h 47h	04h 47h	04h 47h	04h 47h	04h 47h	04h 47h
USCI_A/B		2	10h 90h	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h
 		1	1	1	1	1	1	1	1

Table 57. Device Descriptor Table (1) (continued)

	DESCRIPTION	ADDRESS	SIZE (bytes)	'F5304	'F5308 RGC	'F5308 RGZ	'F5309 RGC	'F5309 RGZ	'F5310 RGC	'F5310 RGZ
			(bytes)	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE
	USCI_A/B		2	N/A	04h 90h	04h 90h	04h 90h	04h 90h	04h 90h	04h 90h
	ADC10_A		2	14h D3h	14h D3h	14h D3h	14h D3h	14h D3h	14h D3h	14h D3h
	COMP_B		2	N/A	18h A8h	18h A8h	18h A8h	18h A8h	18h A8h	18h A8h
	LDO		2	1Ch 5Ch	04h 5Ch	04h 5Ch	04h 5Ch	04h 5Ch	04h 5Ch	04h 5Ch
Interrupts	COMP_B		1	01h	A8h	A8h	A8h	A8h	A8h	A8h
	TB0.CCIFG0		1	64h	64h	64h	64h	64h	64h	64h
	TB0.CCIFG16		1	65h	65h	65h	65h	65h	65h	65h
	WDTIFG		1	40h	40h	40h	40h	40h	40h	40h
	USCI_A0		1	01h	90h	90h	90h	90h	90h	90h
	USCI_B0		1	01h	91h	91h	91h	91h	91h	91h
	ADC10_A		1	D0h	D0h	D0h	D0h	D0h	D0h	D0h
	TA0.CCIFG0		1	60h	60h	60h	60h	60h	60h	60h
	TA0.CCIFG14		1	61h	61h	61h	61h	61h	61h	61h
	LDO-PWR		1	5Ch	5Ch	5Ch	5Ch	5Ch	5Ch	5Ch
	DMA		1	46h	46h	46h	46h	46h	46h	46h
	TA1.CCIFG0		1	62h	62h	62h	62h	62h	62h	62h
	TA1.CCIFG12		1	63h	63h	63h	63h	63h	63h	63h
	P1		1	50h	50h	50h	50h	50h	50h	50h
	USCI_A1		1	92h	92h	92h	92h	92h	92h	92h
	USCI_B1		1	93h	93h	93h	93h	93h	93h	93h
	TA1.CCIFG0		1	66h	66h	66h	66h	66h	66h	66h
	TA1.CCIFG12		1	67h	67h	67h	67h	67h	67h	67h
	P2		1	51h	51h	51h	51h	51h	51h	51h
	RTC_A		1	68h	68h	68h	68h	68h	68h	68h
	delimiter		1	00h	00h	00h	00h	00h	00h	00h

REVISION HISTORY

REVISION	COMMENTS
SLAS677	Product Preview release
SLAS677A	Production Data release
SLAS677B	Released BGA package. Corrected V _{CB_REF} min and max values by swapping them as they were backward. Added I _{USB_LDO} and I _{VBUS_DETECT} to USB-PWR table. Added QFN thermal pad connection to pinout drawing and terminal function table. Added LDO and Port U description. Updated pin diagrams to show A8 and A9 muxed with P5.0/VeREF+ and P5.1/VeREF- pins, respectively. Updated t _{EN_REF} typ value; changed from 0.3 to 1.
SLAS677C	Table 1 and Functional Block Diagrams, Corrected number of USCI modules for PT and RGZ packages. Table 3, Changed ACLK description (added dividers up to 32). Short-Form Description, Added links to family user's guide chapters to section titles. Table 11, Changed SYSRSTIV interrupt event at 1Ch to Reserved. Recommended Operating Conditions, Added note regarding interaction between minimum VCC and SVS. Table 47, Table 48, Corrected notes regarding USCI CLK functions taking precedence over USCI STE functions.
SLAS677D	Recommended Operating Conditions, Added test conditions for typical characteristics. DCO Frequency, Added note (1). REF, External Reference, Changed note (1). Flash Memory, Changed values for I _{ERASE} and I _{MERASE} .

15-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
MSP430F5304IPT	ACTIVE	LQFP	PT	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5304	Samples
MSP430F5304IPTR	ACTIVE	LQFP	PT	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5304	Samples
MSP430F5304IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5304	Samples
MSP430F5304IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5304	Samples
MSP430F5308IPT	ACTIVE	LQFP	PT	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5308IPTR	ACTIVE	LQFP	PT	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5308IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5308IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5308IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5308	Samples
MSP430F5308IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5308	Samples
MSP430F5308IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5308IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5308	Samples
MSP430F5309IPT	ACTIVE	LQFP	PT	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples
MSP430F5309IPTR	ACTIVE	LQFP	PT	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples
MSP430F5309IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples
MSP430F5309IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples

15-May-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
MSP430F5309IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5309	Samples
MSP430F5309IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5309	Samples
MSP430F5309IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples
MSP430F5309IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5309	Samples
MSP430F5310IPT	ACTIVE	LQFP	PT	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5310	Samples
MSP430F5310IPTR	ACTIVE	LQFP	PT	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5310	Samples
MSP430F5310IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5310	Sample
MSP430F5310IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5310	Sample
MSP430F5310IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5310	Sample
MSP430F5310IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430 F5310	Sample
MSP430F5310IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5310	Samples
MSP430F5310IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5310	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

15-May-2013

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

ZQE (S-PBGA-N80)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

PT (S-PQFP-G48)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026
- D. This may also be a thermally enhanced plastic package with leads conected to the die pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>