

Directives

AREA cetigs, DATA/QDE

ENTRY END

etig EQU n

etig DCS/DCW/DCP/DCQ n

etig SPACE < num. bytes?

ALIGN 27

LOR RJ, = etig (nodo imediato)

Modos de direccionamiento

Lection / Exceltura

lor 1str Rd, < mado 2> dorh/strh Rd, < modo 3> b = byte

lorb/strb Rd, < modo 2> dorsh Rd, < modo 3> = word (4 bytes) (adirent on @ mul. deh)

lorsh Rd, < modo 3> = extensión de signo (caz)

Proceso de datos Aritméticas instr[scond =][s] Ru, Rn, Eshifter_op> s' actualize U,7,C,V add Rd = Rn + Eshilter-og> add Rd = Rn + Eshilter-og> + C s Ub Rd = Rn - Eshifter- ox > sbc Rd = Rn - Eshifter-ox > - (4-c) rsc Rd = 4shifter-op> - Rn - (1-c) TS 6 Rd = Eshifter-op> - Rn instr [Kond>] [s] Rd, Rn, Eshifter ops 15' actual/24 N,7, C Lógicas and Rd = AUD (RA, Eshitter-of) | EOT RJ = XOR (RA, Eshitter-ops) ort Rd = OR (Rn, ashilter-ops) bic Rd = AND (Rn, NoT (ashilter-ops)) | instr [cound >] (3) Rn, eshifter op> | Siemprz actualiza flags Comparación emp sub sin resultado 1+st AUN sin regultando can add sin resultado teg XOR (in resultado instr [Econd >] [5] Rd, eshifter_op > | s. Hobodiza N,7 | C sejun sedich 135 Hovinierto | mun | Rd = AVOT < shifter-or > mov |Rd = Kshifter-op> Multiplicator HW | Rd + Rn 7 pc and Rd, Ra, Rs | Rd=Rn. Rs | muld Rdlo, RdHi, Ra, Rs | RdHi/Lo=Rm. Rs (and 6hbits) mla Ru, Rm, Rs, Rn | Rd = Rm. Rs + Rn | relat Rultio, Rulti, Rm, Rs | Rultill = An Rs + Rd Hills

	6	dia	'one	3				R Slave			
	Flags										
İ	24	7 =	1	1	V=1	CS	C= 1	LVS	V=1		
1	ne	7 =	0	pd	W=0	a	C=1	OVC	V=0		
1	燃	1N 1N									
1	Bhi C=1 2=0 2 10 C=0 > L. C=1 =15 C=0,7=0										
	>	> 10=1 Els c=0,7=1							=1		
	7										
	>	Ext	12 =	0,	ロニハ	4		1 + V	1 / 1		
	2	35	110-	V		-	le i	2=4,1	v + v		

Registros de controlador	Sincronitación per encuesta
RDAT De datos	1. Comprobar si el periférico puede nombre/recibir nueva información (REST=1-5Dig) 2. Realizar transferencia de información (ROAT (datos en @/regs.)
REST De estado	2. Realizar transferencia de información (ROAT (datos en @/regs.)
RCTR De cartral	3. Si es recesario, pavier señales de control (strobe: RCTR > 1, RCTR > 0)
" Mapeados en @ memoria	E E E E E E E E E E E E E E E E E E E

Sinormitación por interrupción Rutina de servicio (RII) Programa principal 1. Guardar en renoria/pila estado inicial 4 - Corregie le (sub le, de, #4) y apiler (DSHAlle del vector de interrupciones (VICVed Addrn) 2. Cargar polabra de estado del pagrama interrumpido 2. Cençur en el vector de interrupciones direccions (MTS TA, SpSi) y apilar (PUSH ITA) de las RSI stilizadas 3. Cargar ruevo oper activado nodo IRD e inhibiendo 3. Habilitar en mascara VICIA Enable las IRR interrupciones si feeix necessorio (mor opor_c #2_0140.400.40 que preder interrumple 4. Apilar registros etilizados 1. Prog. principal -> Interrupción -> RSI 6. Transferencia de información 6. Sérales de control (si necesario), bujan priorielad (si necesario) 5. Deshabilitar neclionte mascara VICIntEncli 7. Pesapilar CPSP arterior (POP Ital) (
recuperardo de Descritiva interrupciones (
recuperardo de información (si conveniente)

7. Teartemiento de información (si conveniente) les IRQ utilizedes 6. Recuperar estado inicial del vector de interrupcions 8. Describer registros villisados y CPSh arterior (POP Irn1) y temperando (mst. spst - (sxc, rn) h. Edininer ERI de VICVestAddr (ldr rn = VICVect Addi ; str in [[n]) 10. Pesupilor Ordorno (pop Apch)

