音楽再生と時間の関係

藤賀雄太

2012年12月1日

1 イントロダクション

1.1 あらまし

iPod などのモバイルプレイヤーの登場により音楽視聴はいつでも可能なものになった。本研究では時刻によって、音楽の聴き方がどのように変化するのかを調べた。この研究が音楽の自動選曲システムの向上に貢献できればと考える。研究の結果、時間情報は foobar でした。

1.2 **キーワード**

iTunes, iPod, 時間情報, レコメンドサービス, ライフログ

2 分析手順

- 1. 被験者 10 名 (iTunes をいつも利用して音楽を聴いている大学生) から履歴ファイル (xml ファイル) をメール添付でもらう。
- 2. 被験者に自分の生活を曜日毎にアンケートシートに書いてもらう。

被験者に渡したのは、0 時から 24 時までを 30 分刻みで目盛りを付けたもので、普段の生活と、普段の音楽聴取を記入してもらうもので、月曜日から日曜日までの合計 7 枚のものである。不規則な生活、気まぐれな音楽再生など、毎週規則正しく定期的に書けない部分も備考として記入してもらう。なお、iTunes をシャッフルで聴いたかどうかは、iTunes に記録されていないため、備考に書いてもらう。

- 3. python を用いて、履歴ファイルから、以下の情報だけを読み取って、テキストファイルに書き出す。
 - 楽曲のジャンル
 - 最後に聴いた日付・時間
 - 再生回数
- 4. R を用いて、2でつくったテキストファイルを読み込んで、一度以上再生された楽曲について、曜日毎に分類し、さらに、0 時から 24 時まで 1 時間刻みのヒストグラムをつくる。そして、ヒストグラムのデータを csv ファイルとして保存する。なお、ヒストグラムを画像ファイル (png データ) として書き出す。
- 5. openFrameworks を用いて、csv ファイルから、0 時から 24 時まで 30 分刻みのヒストグラムを月曜 から日曜までの累積棒グラフの形式でつくる。棒グラフの棒の数は、24(1 時間刻み)*7(月曜から日曜)=168 本になる。総合再生回数がベスト 5 のものだけをカラーにして、それ以外をその他としてグレーで描画した。

- 6. ヒストグラムの見た目から、聴いている音楽と、時間に相関があるかを調べる。
- 7. 被験者のアンケートシートで得た情報と、xml ファイルから読み取ったものとの比較を行う。
- 8. 質問があったらインタビューを行う。

3 結果

ヒストグラムはこうなりました。寝ている時間が推測できる。必ず聴いていない時間が存在することがあり、その時間は定期的な会議などがあることが多かった。金曜の夜だけ多く聴いているというような、曜日による偏りが見られた。

4 分析

iTunes の仕様により、再生履歴は最後に聞いた時間の情報しか残っていない。すなわち、10 回聞いたの楽曲がある場合も、いつ聞いたのかという情報は最後の10回目しか記録されておらず、1回目から9回目の情報は上書きによって失われている。そのため、今回の研究では、アンケートにおいて、シャッフルで再生しているかどうかを聞き出すことにした。 もし、月曜日に特に音楽を聞いているという場合、なぜ月曜にそうなるのかという理由は聴いてみないとわからないため、アンケートで得られた、普段の生活を参照した。また、この時間あなたは授業などで音楽を聴けない状況ではないですか?というようにインタビューによって利用者の音楽試聴状況を推測することができた。これは、今後、自動選曲システムにおいて、設定をすべてユーザーに任せるのではなく、もしかして、金曜の夜はあまりロックは聴かないですね?というような、質問形式で数問回答させることにより、ユーザーの音楽試聴状況に沿った選曲ができる(沿うことがよいリコメンドかどうかは別として)可能性を示唆する。ランダムに再生している人と、時間と音楽再生に偏り(相関がある)人にどう分かれるのかを調べる。

5 考察

アンケートに書かれていることと、xml ファイルから得られた音楽再生の状況が異なる場合、一致する場合 それぞれについて、なぜそうなるのかを考察する。生活のコンテキスト、特に時間情報が音楽再生に影響力を もっているかどうかを考察し、音楽リコメンドサービスについての発展を考える。

6 備考

研究資料および、プログラムの一部は、(個人情報は含まない) yutatoga.com/thesis からダウンロードできる。