

PhD. Jhon Jairo Padilla Aguilar UPB Bucaramanga

El problema

- En redes LAN y MAN todas las estaciones están conectadas a un mismo medio de transmisión
- La transmisión de una estación es escuchada por las demás estaciones
- Colisión: Dos estaciones transmiten simultáneamente dañándose las tramas de ambas estaciones

Solución: Protocolo MAC

- Método para evitar o resolver las colisiones
- Este método debe evitar que una estación se apodere del medio demasiado tiempo

Tipos de protocolos MAC

- Centralizados
 - Existe un controlador que permite el acceso a la red
 - Una estación espera a que se le conceda permiso para transmitir
- Distribuidos
 - Las estaciones interactúan entre sí para determinar dinámicamente el orden en que transmiten

Tipos de protocolos MAC (II)

Síncronos

- Se asigna en forma fija una parte de los recursos del medio a cada estación
- Son métodos de multiplexación: TDM, FDM, CDM,OFDM
- Útil cuando hay un uso continuo de los recursos

Asíncronos

- Los recursos se asignan dinámicamente en respuesta a las necesidades inmediatas de las estaciones
- Tipos: Rotación circular, reserva, competición (contienda)

MAC de Rotación circular

- Cada estación tiene oportunidad de transmitir en su turno
- La transmisión tiene límite de tiempo o cantidad de información
- Los turnos suceden en forma de una rotación circular formada mediante lógica
- Puede ser centralizada (Ej: polling) o distribuida (Ej: paso de testigo)
- Adecuado para tráfico contínuo de las estaciones (no para ráfagas)

MAC con Reservas

- El tiempo se divide en ranuras
- Una estación puede reservar ranuras por una gran cantidad de tiempo
- El control de reservas puede hacerse centralizado o distribuido

MAC de Competición (Contención)

- Todas las estaciones compiten por tomar el control del medio cuando desean transmitir (acceso aleatorio)
- Naturaleza distribuida
- Las prestaciones tienden a deteriorarse para condiciones de alta carga

Comparación IEEE y OSI

Ubicación de los protocolos LAN en la arquitectura TCP/IP

BUS: Transmisión de tramas

Formato de trama MAC de IEEE 802.3

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

Formato de trama típico

I/G = Individual/Group C/R = Command/Response

Métodos para topologías BUS/Estrella e inalámbricas

- Aloha Pura
- Aloha Ranurada
- CSMA
- CSMA/CD

Aloha Pura

- La estación transmite
- Luego escucha el medio durante un tiempo: t_{ida}+t_{vuelta}+t_{proc}
- 3. Si recibe una confirmación, asume que fue bien recibida la trama
- 4. Si no recibe confirmación, retransmite la trama y va al paso 2.
- 5. Si el número de intentos supera un límite, desiste.

Aloha Pura

- Pueden darse colisiones
- Utilización del canal pobre en períodos de sobrecarga (throughput: 18%)

Aloha Ranurada

- El tiempo del canal se divide en ranuras de duración igual al tiempo de transmisión de la trama.
- Se requiere un método de sincronización de las estaciones
- Una estación sólo puede transmitir al inicio de una ranura de tiempo
- Las tramas que colisionan lo harán completamente
- Throughput: 36%

Aloha ranurada

- Una estación debe escuchar el medio antes de transmitir
- 2. Si el medio está ocupado, debe esperar un tiempo aleatorio y volver al paso I
- 3. Si el medio está libre, puede transmitir
- 4. La estación transmisora debe esperar una confirmación, si no la recibe, retransmitirá

Debido al retardo de propagación, una estación puede no escuchar una transmisión que acaba de empezar y se producirá una colisión

CSMA

Eficiencia de utilización (throughput): 83%

CSMA persistente

- CSMA se conoce también como CSMA no persistente
- En CSMA no persistente el medio permanece libre justo después de terminar una transmisión de una estación
- En CSMA persistente, una estación que detecta ocupado el canal, se queda escuchando hasta que detecte que queda libre, momento en el cual inicia a transmitir

CSMA persistente

- En CSMA persistente, las estaciones son más egoístas que en CSMA no persistente.
- Aumenta la probabilidad de colisión (dos estaciones podrían estar esperando para transmitir)
- Solución: CSMA p-persistente
 - Si el medio se encuentra libre, se transmite con una probabilidad p, o se espera una unidad de tiempo con una probabilidad (1-p)

Througput de los Protocolos MAC

Througput: Porcentaje de tiempo en que se transmite exitosamente (sin colisiones); G: Tráfico normalizado

CSMA/CD

- Utilizado para estándares Ethernet y similares
- Acceso múltiple por detección de portadora con detección de colisiones
- Problema de CSMA: transmite toda la trama aunque haya una colisión
- Se continúa escuchando el medio durante la transmisión para detectar colisiones
- Throughput: 90%

CSMA/CD

*El tiempo de espera es mayor con cada intento

CSMA/CD: Operación

TIME t_0	
A's transmission	を対する
C's transmission	
Signal on bus	
TIME t_1	
A's transmission	
C's transmission	
Signal on bus	
TIME t_2	
A's transmission	
C's transmission	
Signal on bus	
TIME t_3	
A's transmission	<u> </u>
C's transmission	
Signal on bus	

CSMA/CD

- A mayor carga de la red, los dispositivos disminuyen la utilización del medio
- Cuando la carga disminuye, las estaciones vuelven a utilizar el medio con mayor frecuencia
- La capacidad desaprovechada se reduce al tiempo que se tarda en detectar la colisión
- Sirve para LAN en BUS pero no para redes inalámbricas (no se puede escuchar el eco)
- La trama debe ser lo suficientemente larga como para detectar la colisión antes de finalizar la transmisión (longitud mínima)

Protocolos MAC en WLAN

- Norma IEEE 802.11
- Configuración básica (BSS, Basic Services Set):
 - Es equivalente a una celda
 - Varias estaciones compitiendo por acceder al medio
 - Puede ser una red aislada
 - Puede estar conectada con una red fija mediante un Punto de Acceso como Puente
 - Protocolo MAC: Centralizado (en el punto de acceso) o Distribuido.

Arquitectura IEEE 802.11

ESS (Extended Services Set)

Tipos de estaciones según movilidad

- Sin transición: Movimientos dentro de un BSS
- Transición BSS: Movimiento de un BSS a otro dentro del mismo ESS. Capacidad de direccionamiento especial
- Transición ESS: Movimiento desde un BSS en un ESS a otro BSS en otro ESS. No se garantiza la continuidad del servicio

Tipos de capas físicas

- Infrarrojos:
 - Velocidad: I-2Mbps
- DSSS (Direct Sequence Spread Spectrum):
 - Banda ISM de 2.4 Ghz
 - 7 canales de I o 2 Mhz
 - Se obtienen hasta 11 Mbps
- FHSS (Frequency Hopping Spread Spectrum)
 - Banda ISM de 2.4 Ghz
- Velocidad: I o 2 Mbps

Protocolo MAC

- DFWMAC (Distributed Foundation Wireless MAC)
 - MAC distribuido (DCF, Distributed Coordination Function)
 - MAC centralizado opcional (PCF, Point Coordination Function)

Arquitectura de protocolos IEEE 802. I I

DCF: Función de coordinación distribuida

- Usa CSMA/CA
- No usa detección de colisiones (no es práctico en WLAN)
- Maneja un esquema de prioridades mediante diferentes retardos
- IFS: Espacio inter-tramas (retardo)

Operación básica de DCF (CSMA/CA)

- Supongamos un solo IFS
- 1. Una estación a transmitir escucha el medio
- 2. Si el medio está libre, espera un tiempo IFS y si continúa libre, transmite.
- 3. Si el medio se ocupa en este tiempo, la estación espera una nueva oportunidad de transmisión
- 4. (2ª escucha) Si el medio está libre, espera un IFS más un tiempo adicional (ventana de backoff). Si entonces está libre el medio, se transmite.
- 5. Si el medio no está libre, los pasos 3 y 4 se repiten y en cada intento se espera un tiempo adicional que es el doble del anterior (se duplica la ventana de backoff).

CSMA/CA

Manejo de prioridades

- Las prioridades se manejan mediante tres tiempos IFS:
 - SIFS (Short IFS): Es el IFS más corto. Provoca transmisiones inmediatas. Usado para ACKs, RTS y CTS
 - PIFS: (PCF IFS) Duración intermedia. Usado por PCF.
 - DIFS:(DCF IFS) Es el IFS más largo. Prioridad más baja (tráfico asíncrono).

CSMA/CA con prioridades

CSMA/CA con ACK

CSMA/CA con RTS/CTS

RTS: (Ready to Send) Solicitud de inicio de comunicación.

CTS: (Clear to Send) Confirmación del inicio de la comunicación.

ACK: Confirmación de recepción de los datos.

PCF: Función de coordinación Puntual

- El coordinador puntual realiza un sondeo (usa PIFS para ello) con rotación circular.
- La estación sondeada contesta usando SIFS
- El coordinador puntual puede tomar el medio y bloquear el tráfico asíncrono mientras sondea y le responden.

Supertrama

- Evita que PCF se apodere del medio
- Es un intervalo de tiempo dividido en dos partes:
 - Primero, un sondeo PCF a todas las estaciones (opcional)
 - El resto del tiempo se usa para DCF
- PCF debe competir con el tráfico DCF al principio de la supertrama.
- Si el medio está ocupado al inicio de la supertrama, DCF espera a que se desocupe para transmitir (la supertrama se acorta).

Supertrama en DFWMAC

(b) PCF Superframe Construction

Métodos de Acceso al medio para redes en Anillo

- Los dos más usados son:
 - Token Ring (IEEE 802.5)
 - FDDI

Token Ring

- El testigo (Token) es una trama pequeña que circula cuando no hay estaciones transmitiendo
- Para transmitir, una estación debe esperar que llegue un Token
- La estación toma el Token y en lugar de él transmite su trama
- El resto de tramas no transmiten pues no tienen Token
- Cuando la trama transmitida da la vuelta completa al anillo, es re-absorbida por la estación origen

Token (5) (6) (7) (8) (9)

Token Ring: Operación

Token Ring

- Características:
 - En baja carga: ineficiente el uso del medio
 - En alta carga: eficiente el uso del medio, similar a una rotación circular
- Problemas:
 - Pérdida del testigo
 - Duplicidad del testigo
 - Solución: Estación monitora que asegure que siempre hay un testigo

IEEE 802.5:Tramas MAC

Octets

SDstarting delimiter

access control AC.

ECframe control.

destination address DA.

SA source address

ECS. frame check sequence EDending delimiter

FSframe status

(a) General Frame Format

(b) Token Frame Format

PPP priority bits = monitor bit \mathbf{T} token bit. RRR reservation bits

(c) Access Control Field

ZZZZZZ = control bitsFF = frame-type bits

J

J. K = non-data bits.

K

E = error-detected bit

I = intermediate frame bit.

(e) Ending Delimiter Field

K

A = Address recognized bit

 $\mathbf{rr} = \text{reserved}$

C = Frame copied bit

(e) Frame Status Field

(d) Frame Control Field

IEEE 802.5

- Tres tipos de tramas:
 - Token(T=0 en el Campo AC)
 - Abort Token: Abortar una tx previa
 - Token and Data

IEEE 802.5: Con única prioridad

- Estación espera el testigo
- Recibe testigo y transmite una o más tramas hasta que termine la transmisión o que termine un temporizador de posesión de testigo
- Cuando recibe de nuevo su trama, re-inserta el testigo
- Toda estación puede indicar un error en las tramas que escucha (bit E=I)
- Confirmación de recepción (bit A=I)
- Trama copiada (bit C=I)

IEEE 802.5 con prioridades

- Admite 8 niveles de prioridad (bits PPP y RRR del campo AC)
- Hay prioridades para:
 - Servicio (bits PPP)
 - Reservas (bits RRR)
- Cada estación tiene asignada una prioridad
- Una estación que tiene mayor prioridad que la que txte actualmente puede reservar el siguiente testigo colocándo su nivel de prioridad en RRR

IEEE 802.5 con Prioridades

- Cuando se emite un nuevo testigo, este toma el nivel de prioridad (PPP) que tenía reservado (RRR)
- Cualquier estación con prioridad mayor o igual que la del testigo puede tomarlo
- La estación que emitió el testigo debe recordar su prioridad anterior y si lo vuelve a recibir con una prioridad mayor, lo regresa a su prioridad anterior (evita que el testigo se se quede en la máxima prioridad)

Esquema de prioridades

FDDI

- Fiber Distributed Data Interface
- Usado para LAN y MAN
- Velocidad: 100 Mbps
- Usa paso de testigo
- No funciona con prioridades
- Hay dos modos de funcionamiento:
 - Con reserva de capacidad
 - Sin reserva de capacidad

FDDI: Formato de trama

Bits 64 8 8 16 or 48 16 or 48 - 0 32 **FCS** SD FC SA FS Preamble DA Info ED

(a) General Frame Format

Preamble SD	FC	ED
-------------	----	----

(b) Token Frame Format

SD = starting delimiter SA = source address ED = ending delimiter

C = frame control FCS = frame check sequence FS = frame status

DA = destination address

FDDI: Operación

Reserva de Capacidad

- FDDI define dos tipos de tráfico:
 - Síncrono: Tramas transmitidas durante un tiempo previamente reservado
 - Asíncrono: Tramas adicionales no transmitidas en el tiempo reservado