第四章 关系规范化理论

- 4.1 问题的提出
- 4.2 函数依赖和范式
- 4.3 数据依赖的公理系统
- 4.4 关系模式的分解方法

问题

- 1. 分解的函数依赖保持性的方法。
- 2. 满足3NF的函数依赖保持分解算法。
- 3. 满足3NF的函数依赖保持和无损连接的分解算法。

1. 分解的函数依赖保持性的方法

定义4.23 若关系R(U,F)的一个分解

$$\rho = \{R_1(U_1, F_1), \dots, R_k(U_k, F_k)\}$$
的所有函数依赖的并集

k (UF_i) 逻辑蕴涵了F中所有函数依赖,即(UF_i) + =F+,则称 i=1

分解p具有函数依赖保持性。

难点? F

保持函数依赖的判定算法

1 第一步: 检验任意一个函数依赖 $X \rightarrow Y \in F$ 是否可以由G推导出来, $Y \subseteq X_c$ 2 第二步: 检验任意一个函数依赖 $X \rightarrow Y \in G$ 是否可以由F推导出来, $Y \subseteq X_F$ 3 第三步: 若 $Y \subseteq X_G^+$ 和 $Y \subseteq X_F^+$ 同时成 立,则有 $(\stackrel{k}{\bigcup_{i=1}^{k}}\mathbf{F_{i}})^{+}=\mathbf{F}^{+}$

$$\rho_1 = \{R_1(T\#), R_2(TD), R_3(DH)\}$$

$$\rho_2 = \{R_1(T\#, TD), R_2(T\#, DH)\}$$

$$\rho_3 = \{R_1 (T#, TD), R_2 (TD, DH)\}$$

$$\rho_2$$
:F1={ T# \rightarrow TD } F2={ T# \rightarrow DH }

$$\rho_3$$
: F1={ T# \rightarrow TD } F2={ TD \rightarrow DH }

$\{ T\# \rightarrow TD, TD \rightarrow DH \}$

关系模式R(U, F) , 其中U={A, B, C, D}, F={A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A}, 分解 ρ ={R1(A, B), R2(B, C), R3(C, D)}是否具有函数依赖保持性?

解:

$$F1 = \{A \rightarrow B\}$$

$$F2 = \{B \rightarrow C\}$$

$$F3 = \{C \rightarrow D\}$$

 $F1 \cup F2 \cup F3 =$

$$\{A \rightarrow B,$$

$$B \rightarrow C$$
,

$$C \rightarrow D$$

$$F=\{A\rightarrow B, B\rightarrow C, C\rightarrow D, D\rightarrow A\}$$

(F1∪F2∪F3)+与F+不等价 ρ不具有函数依赖保持性。

关系模式R(U, F) , 其中U={A, B, C, D}, F={A→B, B→C, C→D, D→A}, 分解 ρ ={R1(A, B), R2(B, C), R3(C, D)}是否具有函数依赖保持性?

解:

F1 = {
$$A \rightarrow B$$
, $B \rightarrow A$ }
F2 = { $B \rightarrow C$, $C \rightarrow B$ }
F3 = { $C \rightarrow D$, $D \rightarrow C$ }

$$F1 \cup F2 \cup F3 =$$

$$\{A \rightarrow B, B \rightarrow A,$$

$$B \rightarrow C$$
, $C \rightarrow B$,

$$C \rightarrow D, D \rightarrow C$$

$$F=\{A\rightarrow B, B\rightarrow C, C\rightarrow D, D\rightarrow A\}$$

(F1 U F2 U F3) +=F+ ρ具有函数依赖保持性。

判断对关系模式的一个分解是否与原关系模式等价的标准

- •分解具有无损连接性
- •分解要保持函数依赖
- •分解既要保持函数依赖, 又要具有无损连接性
- •如果一个分解具有无损连接性,则它能够保证不丢失信息。
- •如果一个分解保持了函数依赖,则它可以减轻或解决各种异常情况。
- •分解具有无损连接性和分解保持函数依赖是两个互相独立的标准。具有无损连接性的分解不一定能够保持函数依赖。同样,保持函数依赖的分解也不一定具有无损连接性。

$$\rho_1 = \{R_1 (T\#), R_2 (TD), R_3 (DH)\}$$

$$\rho_2 = \{R_1 (T\#, TD), R_2 (T\#, DH)\}$$

$$\rho_3 = \{R_1 (T\#, TD), R_2 (TD, DH)\}$$

第一种分解方法既不具有无损连接性,也未保持函数依赖,它不是原关系模式的一个等价分解。

第二种分解方法具有无损连接性,但未保持函数依赖。

第三种分解方法既具有无损连接性, 又保持了函数依赖。

关系模式R (U, F), 其中U={A, B, C, D, E}, F={A \rightarrow D, E \rightarrow D, D \rightarrow B, BC \rightarrow D, DC \rightarrow A}, 判断分解{AB, AE, CE, BCD, AC}是否具有函数依赖保持性?

定理4.2: 设F为属性集U上的一组函数 依赖关系, $X,Y \subseteq U$, $X \rightarrow Y$ 能由F根据Armstrong公理导出的充分必要条件是 $Y \subseteq X_F^{\dagger}$ 。

关系模式R (U, F), 其中U={A, B, C, D, E}, F={A \rightarrow D, E \rightarrow D, D \rightarrow B, BC \rightarrow D, DC \rightarrow A}, 判断分解{AB, AE, CE, BCD, AC} 是否具有函数依赖保持性?

求出相关属性集闭包:

 $A^{+}=ABD$

 $B_{+}=B$

 $C_{+}=C$

 $D_{+}=DB$

 $E_{+}=EDB$

BC+=BCDA

CD⁺=DCAB

 $BD^{+} = BD$

求出各个函数依赖:

F1 =

F2=

F3=

F4=

F5=

分解不具有函数依赖保持性

设有关系模式R(U,F),U=(A,B,C,D,E,G),F={D→G,C→A,CD→E,A→B},判断分解{CDE,AC,DG,BCD}是否具有函数依赖保持?

求出相关属性集闭包:

 $A^{+}=AB$

 $B_{+}=B$

 $C^+=CAB$

 $D^+=DG$

 $E_{+}=E$

 $G^+=G$

CD⁺=CDEGAB

CE⁺=CEAB

DE⁺=DEG

 $BC^{+}=BCA$

BD⁺=BDG

CD⁺=CDEGAB

求出各个函数依赖:

 $F1 = \{CD \rightarrow E\}$

 $F2 = \{C \rightarrow A\}$

 $F3 = \{D \rightarrow G\}$

 $F4 = \{C \rightarrow B, CD \rightarrow B\}$

F1 U F2 U F3 U F4 与 F+不等价

所以不具有函数依赖保持

具有无损连接性?

设有关系模式R(U, F), U= (A, B, C, D, E, G), F={D \rightarrow G, C \rightarrow A, CD \rightarrow E, A \rightarrow B}, 判断分解{CDE, AC, DG, BCD}是否具有无损连接性?

第一步: 建T

第二步: 修改T

A	В	С	D	Е	G
a_1	a_2	a_3	a_4	a_5	a_6
\mathbf{a}_1	a_2	a_3	b ₂₄	b_{25}	b_{26}
b ₃₁	b_{32}	b_{33}	a_4	b_{35}	a_6
a_1	a_2	a_3	a_4	a ₅	a_6

第三步: 判断

具有无损连接性

练习

设有R(U,F),其中,U={A,B,C,D,F}, F={A \rightarrow C,B \rightarrow C,C \rightarrow D,DF \rightarrow C,CF \rightarrow A},R的一个分解为:R1=AB,R2=AD,R3=AF,R4=BF,R5=CDF,判断该分解是否具有函数依赖保持性。

$$F1 = \phi$$
 $F2 = \{A \rightarrow D\}$ $F3 = \phi$ $F4 = \phi$ $F5 = \{C \rightarrow D, DF \rightarrow C\}$

 $G= F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5$

 $= \{A \rightarrow D, C \rightarrow D, DF \rightarrow C\}$

因为 $G \subseteq F^+$ 成立, $F \subset G^+$ 不成立

所以该分解不具有函数依赖保持性

2. 满足3NF的函数依赖保持分解算法

输入: 关系模式 R 和函数依赖集 F

输出: 结果为 3NF 的一个依赖保持分解

步骤:

- (1) 如果R中有某些属性与F的最小覆盖Fm中的每个依赖的左边和 右边都无关,原则上可由这些属性构成一个关系模式,并从R中将 它们消除:否则.
- (2) 如果Fm中有一个依赖涉及到R的所有属性,则输出R;否则,
- (3) 输出一个分解 ρ ,它由模式 XA 组成,其中 $X \to A \in Fm$ 。但 当 $X \to A_1$, $X \to A_2$, …, $X \to A_n$ 均属于Fm时,则用模式 XA_1 A_2 … A_n 代替 XA_i (i=1, i=1, i=1)。

关系模式 R (U, F), U= {A, B, C, D, E, F, G}

给定的函数依赖集 $F=\{BCD\rightarrow A, BC\rightarrow E, A\rightarrow F, F\rightarrow G, C\rightarrow D, A\rightarrow G\}$ 求R的一个满足3NF的函数依赖保持分解。

解:

第一步: 求F的最小覆盖

 $Fm = \{BC \rightarrow A, BC \rightarrow E, A \rightarrow F, F \rightarrow G, C \rightarrow D\}$

第二步:对于Fm,根据算法逐一判断,条件(1)(2)均不满足,因此根据

条件(3) 输出分解 $\rho = \{BCAE, AF, FG, CD\}$ 。

即 ρ 是R的一个满足3NF的函数依赖保持的分解。

3. 满足3NF的函数依赖保持和无损连接的分解算法

设δ={R1, R2, ···, Rk}是由算法(满足3NF的函数依赖保持分解算法)得到的, X为R的一个候选码, 则 τ={R1, R2, ···, Rk, X}是R的一个分解, 且 τ 中的所有关系模式均满足3NF, 同时, τ 既具有连接不失真性, 又具有依赖保持性。设 τ 为该算法的一个分解, τ 的求解步骤为:

- (1) 求得满足3NF的函数依赖保持的分解;
- (2) 若 δ 包含了原关系模式R的一个候选码,则 $\tau = \delta$,算法终止;
 - (3) 若 δ 不包含原关系模式R的一个候选码,则 $\tau = \{R1, R2, \dots, Rk, X\}$,算法终止。

关系模式R(U, F), U= {A, B, C, D, E, F, G}

给定的函数依赖集F= {BCD→A, BC→E, A→F, F→G, C→D, A→G}

解:

第一步: $Fm = \{BC \rightarrow A, BC \rightarrow E, A \rightarrow F, F \rightarrow G, C \rightarrow D\}$ $\rho = \{BCAE, AF, FG, CD\}$

第二步:求R得候选码。(BC)+=ABCDEFG

第三步: 判断ρ中是否包含BC

∵BC ⊴BCAE

 $\therefore \delta = \{BCAE, AF, FG, CD\}$

即δ是R的一个满足3NF的函数依赖保持和无损连接的分解。

关系模式 $R\langle U, F \rangle$,其中: $U=\{C, T, H, R, S, G\}$, $F=\{CS \rightarrow G, C \rightarrow T, TH \rightarrow R, HR \rightarrow C, HS \rightarrow R\}$ 分解成3NF并保持无损连接和函数依赖。

解: (1) 求满足3NF并保持函数依赖的分解如下:

Fm = {CS
$$\rightarrow$$
G, C \rightarrow T, TH \rightarrow R, HR \rightarrow C, HS \rightarrow R}
 σ = { R1 (CSG), R2 (CT), R3 (THR), R4 (HRC), R5 (HSR) }

(2) 求候选码: **HS**

 $\tau = \{R1 (CSG), R2 (CT), R3 (THR), R4 (HRC), R5 (HSR) | R6 (HS) \}$.

由于HS是模式HSR的一个子集,所以消去HS后的分解 {R1(CSG),R2(CT),R3(THR),R4(HRC),R5(HSR)}就是具有无损连接性 和保持函数依赖性的分解,且其中每一个模式均为3NF。

学习通04-5

设有关系模式R(A,B,C,D,E,P),R的函数依赖集为:

 $F = \{C \rightarrow B, E \rightarrow D, D \rightarrow B, B \rightarrow D, BC \rightarrow D, DC \rightarrow A\},\$

求R的一个满足3NF的无损连接和函数依赖保持的分解。

(直接写分解,按照字母顺序排列,中间用逗号分开)

$$\textbf{F=\{C}{\rightarrow}\textbf{B},\textbf{E}{\rightarrow}\textbf{D},\textbf{D}{\rightarrow}\textbf{B},\textbf{B}\rightarrow\textbf{D},\textbf{BC}\rightarrow\textbf{D},\textbf{DC}\rightarrow\textbf{A}\}$$

第一步: 求最小函数依赖集Fm

$$Fm=\{C \rightarrow B, E \rightarrow D, D \rightarrow B, B \rightarrow D, C \rightarrow A\}$$

第二步: 求基于3NF的函数依赖保持的分解ρ

$$\rho = \{CAB, ED, DB, P\}$$

第三步: 求候选码X

第四步:求基于3NF的函数依赖保持和连接不失真的分解ρ'

$$\rho'=\{ABC, BD, CEP,DE\}$$

模式分解的几个重要事实

- 1) 若要求无损连接,分解一定可达到BCNF。
- 2) 若要求依赖保持,则分解可达到3NF,但 不一定能达到BCNF。
- 3)若同时要求无损连接和依赖保持,则 分解可达到3NF,但不一定能达到BCNF。

为什么要规范化→非形式化判定准则(操作异常和数据冗余)

→形式化判定 (规范化理论)

 \downarrow

1NF, 2NF, 3NF, BCNF

↓ (候选码,非主属性,低向高)

模式分解(等价性的判定:无损连接性、依赖保持性)

- ¥
- ① 无损连接性的判定 (两种方法)
- ② 函数依赖集等价F⁺=G⁺((^b_{i=1}F_i)⁺ =F⁺)(主要是证明F被(^b_{i=1}F_i)⁺ 所逻辑蕴含)

分解算法

- ① 函数依赖保持的3NF分解
- ②连接不失真和函数依赖保持的3NF分解

- ①求最小覆盖Fm
- ②求候选码

属性集闭包X_F+