FINAL REPORT

REAL-TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

SUBMITTED BY

TEAM ID : PNT2022TMID47348

NAME	REG. NO
KAMALESH S	830119104014
SELVARAJ M	830119104041
SRIDHAR V	830119104046
MAGENDRAN P	830119104302
NIMAL SOLAI RAJHA SP	830119104303

Industry Mentor(s) Name: Divya

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- **4.2 Non-Functional requirements**

5. PROJECT DESIGN

- **5.1 Data Flow Diagrams**
- **5.2 Solution & Technical Architecture**
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- **6.2 Sprint Delivery Schedule**
- **6.3 Reports from JIRA**

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- **7.1 Feature 1**
- 7.2 Feature 2

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

- **9.1 Performance Metrics**
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

1.2 Purpose

The main purpose of this research is to enhance the communication of the disabled community. The authors of this chapter propose an enhanced interpersonal-human interaction for people with special needs, especially those with physical and communication disabilities. The proposed model comprises of automated real time behaviour monitoring, designed and implemented with the ubiquitous and affordable concept in mind to suit the underprivileged. In this chapter, the authors present the prototype which encapsulates an automated facial expression recognition system for monitoring the disabled, equipped with a feature to send Short Messaging System (SMS) for notification purposes. The authors adapted the Viola-Jones face detection algorithm at the face detection stage and implemented template matching technique for the expression classification and recognition stage. They tested their model with a

few users and achieved satisfactory results.

2. LITERATURE SURVEY

2.1 Existing problem

This system consists mainly of two modules, the first module is Indian Sign Language (ISL) gestures from real-time video and mapping it with human-Understandable speech. Accordingly, the second module is the natural language as Input and card with equivalent Indian Sign Language animated gestures.

This paper presents design and implementation of real-time sign language recognition system, to 26 gestures from the Indian sign language .

In this system edge detection algorithm is used to recognize the input character image gray scale and recognition of the edges of the hand gesture. The system is able to handle the different input records images of alphabets, words, sentences, and translates them in text and vice versa. The system is designed to translate the Marathi sign language to text

2.2 References

- 1. Aditi Kalsh, N.S. Garewal , "Sign Language Recognition for Deaf & Dumb", International Journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 9, September 2013.
- 2.Beifang Yi, Frederick C. Harris Jr., Ling Wang, and Yusong Yan, "Real-Time Natural Hand Gestures," IEEE journal on Computing in Science and Engineering, 2005
- 3. A. Chaudhary, J.L. Raheja, K. Das, S. Raheja, "A Survey on Hand Gesture Recognition in context of Soft Computing", Published as Book Chapter in "Advanced Computing" CCIS, Springer Berlin Heidelberg, Vol. 133, 2011, pp. 46-55
- 4. Ibrahim, P., and Srinivasa, R. "Automated speech recognition approach to continuous cue symbols generation", International journal of power control signal and computation, Vol. 18, No. 8,pp. 434- 520,2007
- 5. J.L. Raheja, A. Chaudhary, S. Maheshwari, "Automatic Gesture Pointing Location Detection", Optik: International Journal for Light and Electron Optics, Elsevier, Vol. 125, Issue 3, 2014, pp. 993-996.
- 6. Yuan Yao, and Yun Fu, "Contour Model based Hand-Gesture Recognition Using Kinect Sensor," IEEE Transactions on Circuits and Systems for Video Technology, 2013

2.3 Problem Statement Definition

Communication is the only medium by which we can share our thoughts or convey the message but for a person with disability (deaf and dumb) faces difficulty in communication with normal person. Generally dumb people use sign language for communication but they find difficulty in communicating with others who don't understand sign language

3. IDEATION & PROPOSED SOLUTION

Figure.3.1: Empathy map for normal user

Figure 3.2: Empathy map for abled person

3.2 Ideation & Brainstorming

Figure 3.3 : Brainstroming

3.3 Proposed Solution

S.No	Parameter	Description
1	Problem Statement (Problem to be solved)	Deaf and dumb people couldn't able to communicate with the normal people easily.
2	Idea/Solution description	A real time ML based system is built for the real time sign language detection with a Tensor Flow object detection.
3	Novelty/Uniqueness	This model using SSD ML algorithm recognizing the signs as words instead of old traditional translators, that are very slow and take too much since every alphabet as to be recognized to form the whole statement in old methods.
4	Social Impact/Customer satisfaction	It drastically reduce communication difference gap between normal people and specially abled people with the help of AI. So they can live their life independently.
5	Business Model (Revenue Model)	We use freemium business revenue model for making revenue. In our device, we give most of the basic features for free of charge but they have to pay if they need more advanced features.
6	Scalability of the Solution	The model which is TensorFlow model that has been used can be replaced with another model as well. The same system can be implemented for different sign languages by substituting the dataset.

3.4 Problem Solution fit

Problem-Solution fit canvas 2.0

Purpose / Vision

27/25%	blem-Solution in Carivas 2.0		
Define CS, fit into	CS SEGMENT(S) Who is your customer? People who lost their speech or hearing ability by birth or due to some other factors. CS CS CS CS CS CS CS CS CS C	CUSTOMER What constraints prevent your customers from taking action or limit their choices of solutions? it. spending power, budge, no cash, network connection, available devices. Difficult accessibility, not user friendly, need more technical knowledge to handle, cost,etc There are so many choice of solutions available but due to these some constraints, choice of solutions were limited.	5. AVAILABLE SOLUTIONS Which solutions are available to the customers when they face the problem or need to get the pip dener What have they sted in the part? What pros a conside these solutions there't Lep entail opens in a internative to digital nontensiving. The first ever approach to sign language it has only 6 sign gestures detection. Using colored hands for hand position recognition. But our model is trained to detect different sign languages without any colour gloves, using bare hands only.
ocus on J&P, tap into BE,understand RRC	2. JOBS-TO-BE-DONE / PROBLEMS When jobsto-be-done (or poolem) do you doubser for your outcomen? These could be made than one, expote different sides. Deaf and dumb people couldn't able to convey their messages to the normal people easily. Deaf people cannot hear the words as others speaks and dumb people cannot express their feelings by words.	9. PROBLEM ROOT CAUSE What is the read reason that this problem exists? What is the the read to do this job? Le. customers have to do it because of the change in regulations. In Previously developed solution, they have to use coloured hand gloves for hand position recognition. Also, the old method uses traditional translators which take too much of time to process.	7. BEHAVIOUR What does your customer do to address the problem and get the lob done? Le, directly related. find the right solar paret installer, calculate usage and benefits; indirectly associated. Customers send from time on volunteering work it. Circumceased In our device, there's an option called problem detection display in which our customer can able to see the type of problem occurs & solution will be displayed.
Identify strong IR & EM	3. TRIGGERS What triggies outsioners to act? Le seeing their neighbour installing solar panels, reading about a more efficient solaron in the news. By comparing normal people. Specially Abled people should depend on others and want to live their life independently like other people 4. EMOTIONS: BEFORE / AFTER Live do customers feel when they face a problem or a pb and afferwards? Le tool instructs considerable increasing with the convey the message to normal people. AFTER: They overcome their refuctance to have communication with normal people.	If you are working on an existing business, write down your current solution first, fill in the canvax, and check how much fifter stally. If you are working on a new business proposition, then keep it black until you fill in the canvax and check how much fifter stally. Using SSD ML algorithm recognizing the signs as words instead of old traditional translators, that are very slow and take too much since every alphabet as to be recognized to form the whole statement in old methods.	8. CHANNELS of BEHAVIOUR a.1 OMLINE What kind of actions do customers take online? Extract online channels from #7 Advertise on online with influencers to test the product and promote it also on blog channels a.2 OFFLINE What kind of actions do customers take offline? Extract offline channels from #7 and use from the customers take offline? Extract offline channels from #7 and use from the customers take offline? Extract offline channels from #7 and use from the customer development. On offline, we have our product experience stores where our customer can experience the product in real

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

REQUIREMENTS	FUNCTIONAL REQUIREMENTS		
Objective	Most people communicate efficiently without any issues, but many cannot due to disability.		
Focus	The hand gesture recognition system consists of three major parts: palm detection, hand tracking, and trajectory recognition		

	In Ideation phase
Documentation	
	This aimed at evaluating and comparing the
End case	methods used in the sign recognition
	systems, classification methods used and
	identifies the most promising approach for
	this project.
	Web camera is essential for capturing
Essentially	image.
	Artificial intelligence that was being
	developed can identify errors on hand
Origin type	gesture matches and will stop as a default.
	It will generate corresponding gestures that
	allow every user to read and be able to
	understand what the gesture means

	Feature extraction depends on the
	application. On D-talk, finger status, skin
Testing	color, alignments of the finger, and the palm
	position are taken into consideration. After
	features extracted, they sent to training and
	testing classification algorithms to reach
	the output.

4.2 Non-Functional requirements

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	The user will have access to all the resources present in that website.
NFR-2	Security	User information is protected.

NFR-3	Reliability	It offers accurate results.
NFR-4	Performance	The web application makes use of light weight model hence the result will be accurate and fas
NFR-5	Availability	The web application can be accessed 24/7 from anywhere when connected to the internet
NFR-6	Scalability	The trained ML model can provide accurate results whenever the size of the dataset and the number of users is extended

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

Sprint	Functional	User Story	User Story /	Acceptance	Priority	Release
	Requireme	Number	Task	criteria		
	nt (Epic)					
Customer	Uploading	USN-1	The user	They can	High	Sprint 1
	the real time		will be	access the		
	data.		presented	portal		
			with two			
			options. 1.			
			Speech to			
			sign			
			language			
			conversion.			

		2 Cian			1
		2. Sign			
		language to			
		speech .			
		conversion		_	
	USN-2	Language	They can	Low	Sprint-1
		selection	access the		
			portal		
	USN-3	The deaf-	Video	High	Sprint 2
		mute	processing		
		person will			
		choose the			
		speech to			
		sign			
		language			
		conversion			
		which would			
		take them			
		into a portal			
		that collects			
		the real time			
		data (sign			
		language			
		recognition)			
		and			
		converts it			
		into speech			
		simultaneou			
		sly.			
	USN-4	Emotion	Video	Medium	Sprint-1
		detection	processing		
		-			
	USN-5	Normal	Video and	High	Sprint-1
		person	audio		
		would	processing		
		choose			
		speech to			
		sign			
		language			
		which would			
		take them			
		into a portal			
		a portar			

where their		
speech is		
converted		
into sign		
language		
simultaneou		
sly.		

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	Medium	Magendran, Sridhar
Sprint-1	Login	USN-2	As a user, I can log into the application by entering email & password	1	High	Magendran, Sridhar
Sprint-1	Data Collection	USN-3	Gathering the information from variousreso urces	1	Medium	Nimal solai raja,Kamles h,Selvaraj
Sprint-1	Data Preprocessi ng	USN-4	To Convert and clean the raw data	2	High	Kamalesh, Magendran, Nimal solai raja, Selvaraj, Sridhar
Sprint-2	Model Building	USN-5	Using cleaned dataset,	2	High	Kamalesh, Magendran, Nimal solai

			Model can			raja,
			be build			Selvaraj,
			using ML			Sridhar
			Algorithm			
Sprint-2		USN-6	Training the	1	High	Magendran,
			classificati			Selvaraj
			on mode			
Sprint-3	Application	USN-7	Building	1	Medium	Kamalesh,
	Building		Python code			Magendran,
			and run the			Nimal solai
			application			raja,
						Selvaraj,
						Sridhar
Sprint-3		USN-8	Predicted	1	Medium	Kamalesh,
			Result			Magendran,
						Nimal solai
						raja,
						Selvaraj,
						Sridhar
Sprint-4	Implementa	USN-9	Deployed on	2	High	Kamalesh,
	tion of the		IBM Cloud			Magendran,
	application					Nimal solai
	and					raja,
	deployment					Selvaraj, 6.2
	on cloud					Sprint
						Delivery
						ScheduleSri
						dhar

6.2 Sprint Delivery Schedule

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint
	Points		Date	Date	Completed	Release
				(Planned)	(as on	Date
					Planned	(Actual)
					End)	
Sprint 1	20	6 Days	30 Oct 2022	05 Nov	20	05 Oct 2022
				2022		

Sprint 1	20	6 Days	06 Nov	12 Nov	20	12 Nov
			2022	2022		2022
Sprint-3	20	5 Days	12 Nov	17 Nov	20	17 Nov
			2022	2022		2022
Sprint-4	20	2 Days	17 Nov	19 Nov	20	19 Nov
			2022	2022		2022

Velocity:

We have 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day).

AV = 20/6 = 3.33

6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Libraries to be installed

1.pip install open-cv

2.pip install flask

3.pip install tensorflow

4.pip install keras

5.pip install gTTS

6.pip install scikit-image

7.pip install numpy

8.pip install pyttsx3

7.2 Real time sign to speech

Sign language is generally used by the people who are unable to speak, for communication. Most people will not be able to understand the Universal Sign Language (unless they have learnt it) and due to this lack of knowledge about the language, it is very difficult for them to communicate with mute people. A device that helps to bridge a gap between mute persons and other people forms the crux of this project. Our system makes use of a model build using CNN that is capable of detection sign languages real time.

7.3 Facial Emotion Detection

Our system makes use of the FER model. Facial Emotion Recognition (commonly known as FER) is one of the most researched fields of computer vision till date and is still in continuous evaluation and improvement. The model is a convolutional neural network with weights saved to HDF5 file in the data folder relative to the module's path. It can be overridden by injecting it into the FER() constructor during instantiation with the emotion_model parameter.

7.4 Language Customization

Google Translate is a free multilingual machine translation service. It can translate the Website's text content from one language to another. It offers a huge list of languages to translate and has an efficient, reliable and easy way to translate the webpage in whatever language the user wants. It supports over 100 languages. Use this website translator to convert webpages into your choice of language.

7.5 Real time speech to text

With the Web Speech API, we can recognize speech using JavaScript. It is super easy to recognize speech in a browser using JavaScript and then getting the text from the speech to use as user input. We use the SpeechRecognition object to convert the speech into text and then display the text on the screen. Our system is capable of doing this over real time. It is capable of recognizing any languages in which the user is trying to communicate. But the support for this API is limited to the Chrome browser only. So if you are viewing this example in some other browser, the live example below might not work.

8. TESTING

8.1 Test Cases

- Verify if user can see the options when user clicks the URL
- Verify if the UI elements are getting displayed properly
- Verify if the user can choose any languages
- Verify if the user is getting redirected to the sign to speech page
- Verify if the application can convert the sign to speech
- Verify if the user can exit the sign to speech page
- Verify if the user is getting redirected to the speech to sign page
- Verify if the UI elements are being displayed
- Verify if the application can convert speech to text on clicking voice to text button.

8.2 User Acceptance Testing

1. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Desig	11	7	4	2	24
Duplicate	1	0	2	0	3
External	2	3	2	1	8
Fixed	10	5	3	14	32
Not Reproduced	0	0	0	1	1
Skipped	0	0	1	1	2
Won't Fix	1	0	0	0	1
Totals	25	15	13	18	71

2. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	15	0	0	15

Security	2	0	0	2
Outsource Shipping	2	0	0	2
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Contro	2	0	0	2

8.3 Performance Testing

S.NO	Parameters	Values	Screenshot
1	Model Summary	Total params: 1,103,721 Trainable params: 1,103,721 Non-trainable params: 0	3.0614257 , 0.07474514, 0.02797827, 0.02379269, 0.02409033, 3.0159238 , 0.01078949, 0.00967334, 0.01642607, 0.02100231, 3.02280676, 0.02273235, 0.02810849, 0.03212665, 0.0433812 , 3.04475779, 0.04790163, 0.0440695 , 0.04648783, 0.04745517, 3.04873875, 0.03936305, 0.04137213, 0.04034898, 0.047845517, 3.04873875, 0.03936305, 0.04137213, 0.04034898, 0.04784582, 3.04325699, 0.04356723, 0.04286033, 0.04602277, 0.05398467, 3.05738894, 0.05714711, 0.05569611, 0.04421832, 0.04514845, 3.04605997, 0.04412531, 0.03675869, 0.04880941, 0.05065481, 3.05214302, 0.05612397, 0.05818885, 0.06540665, 0.06882953, 3.07243843, 0.07993526, 0.07846566, 0.08034452, 0.08497656, 3.08627874, 0.08471612, 0.07454052, 0.07883771, 0.07238262, 3.06663442, 0.06315574, 0.06782499, 0.06823424, 0.07601012]), 3.07474514, 0.02797827, 0.02379269, 0.02409033, 0.0159238, 3.01078949, 0.00967334, 0.01642607, 0.02100231, 0.02280676, 3.02273235, 0.02810849, 0.03212665, 0.0433812, 0.044757779, 3.04790163, 0.0440605, 0.04602277, 0.05398467, 0.05738894, 3.05714711, 0.05569611, 0.04421832, 0.04518485, 0.04325099, 3.04356723, 0.04286033, 0.04602277, 0.05398467, 0.05738894, 3.05714711, 0.05569611, 0.04421832, 0.04518485, 0.04605997, 3.04412531, 0.03675869, 0.04486941, 0.05065481, 0.05214302, 3.05712471, 0.05569611, 0.04421832, 0.04518485, 0.04605997, 3.04412531, 0.0578889, 0.04786541, 0.05214302, 3.05712471, 0.05569611, 0.04421832, 0.04518485, 0.04605997, 3.04412531, 0.03675869, 0.04486941, 0.05065481, 0.05214302, 3.05712471, 0.05569611, 0.04421832, 0.04518485, 0.04605974, 3.05712471, 0.05569611, 0.04421832, 0.04518485, 0.04605997, 3.04412531, 0.07454052, 0.0663442, 0.0663442, 0.07845656, 0.08834752, 0.088497656, 0.08627874, 3.08471612, 0.07454052, 0.06634452, 0.086497656, 0.08627874, 3.08471612, 0.07454052, 0.06634452, 0.0663472, 0.0663442,
2	Accuracy	Training Accuracy - 0.9998 Validation Accuracy -0.9976	Epoch 1/5 52/52 [

9. Results

Performance Metrics

The following images can be studied to understand the performance metrics of our system

Source: Eugopie Zuccarolli

10. Advantages and Disadvantages

Advantages:

- Real time sign to speech detection.
- Model provides good accuracy
- Real time facial emotion detection.
- Language Customization.
- Real time speech to text conversion.
- Data privacy

Disadvantages:

- At times the website may lag.
- Model is not tested on a wide set of data set, having all the signs.
- Sign language customization feature is not available.
- User cannot take notes while using the app.
- User cannot make calls using the app.
- Speech recognition works only on google chrome.

11. CONCLUSION

Communication is crucial for self-expression. Additionally, it meets one's necessities. Effective communication is necessary for career advancement. Effective communication skills can make your personal life easier and improve your interactions with others by facilitating mutual understanding. A system that translates speech into acceptable sign language for the deaf and dumb has been developed as part of our project. It also translates sign language into a human hearing voice to communicate with average people. A convolution neural network has been used to build a model that is trained on various hand motions. Utilizing this concept, an app is created. Through the use of signs that are translated into speech and human-understandable English, this software aids deaf and dumb individuals to communicate easily.

12. Future Scope

The following are the features that can be added in our application:

- The accuracy of the model shall be increased.
- Customization of languages shall be added.
- Users shall be allowed to write notes while on call
- Customization of signs can also be added as a feature
- A communication app can be built with the same set of features. The user can choose
 the appropriate mode (speech to sign or sign to speech) and accordingly the real time
 detection would take place on both the end users' application

13. Appendix

Source Code

Model Building

```
1 import cv2 import
2 os os.environ['TF CPP MIN LOG LEVEL'] = '2'
3 import numpy as np
4 from keras.models
5 import Sequential
6 import matplotlib.pyplot as plt
7 from keras.layers import Dense, Dropout, Activation, Flatten
8 from keras.layers
9 import Conv2D, MaxPool2D
10 from keras_preprocessing.image
11 import ImageDataGenerator
12
13 test_path = 'Dataset/test_set'
14 train_path='Dataset/training_set'
  train=ImageDataGenerator(rescale=1./255,zoom_range=0.2,shear_
  range=0.2,horizontal_flip=True)
15 test=ImageDataGenerator(rescale=1./255)
16 train_batches=train.flow_from_directory(directory=train_path,
  target_size=(64,64),class_mode=
17 'categorical',
  batch_size=300,shuffle=True,color_mode="grayscale")
18
19 test_batches = test.flow_from_directory(directory=test_path,
                                       class_mode='categorical',
  target_size=(64,64),
  batch_size=300, shuffle=True,color_mode="grayscale")
```

```
20 model = Sequential()
21 model.add(Conv2D(32,kernel_size=(3,3),activation='relu',input
  _{\text{shape}}=(64,64,1)) model.add(MaxPool2D(pool_size=(2,2)))
22 model.add(Conv2D(512, (3, 3), padding="valid"))
23 model.add(MaxPool2D(pool_size=(2,2)))
24 model.add(Conv2D(32, (3, 3), padding="same"))
25 model.add(MaxPool2D(pool_size=(2,2)))
26 model.add(Flatten())
1 model.add(Dense(512,activation ="relu"))
2 model.add(Dense(9,activation ="softmax"))
3 model.compile(optimizer='adam',
  loss='categorical_crossentropy', metrics=['accuracy'])
4 history
                                          model.fit(train batches,
  batch_size=32, validation_data=test_batches, epochs=25)
  model.save('model.h5')
5
6 Model Testing
7 import keras.models immport load_model
8 import cv2
9 import numpu as np
10 import os
11 as.environ[TF-CP_MIN_LOG_LEVEL']='2'
12 val=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
13 model=load_,odel('aslpng.h5')
14 from skimage.transform import resize
15 def detect(frame):
        img= resize(frame, (64,64,1))
16
17
        img= np.expand_dims(img,axis=0))
18 if(np.max(img)>1);
19
        img=img/255.0
20
        predict_x=model.predict(img)
21
       print(predict_x)
       predtict=np.argmax(predict_x,axis=1)
22
23
       x=predict[0]
       print(val[x])
25 frame=cv2.imread(r"c/C:\Users\GCE\Desktop\ibm\Realtime_Communicati
  on_System_For_Specially_Abled\Dataset\test_set\B\1.png
26 data=detect(frame)
```

```
27
28
29 Flask App Building
30 import numpy as np
31 import os
32 import math
33 import cv2
34 from fer import FER
35 import pyttsx3
36 from keras.models
37 import model from json os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
38 from keras.models import load_model
39 from flask import Flask, render_template, Response, request
40 import tensorflow as tf
41 from cvzone. HandTrackingModule import HandDetector
42 from skimage.transform import resize
43 facecascade=cv2.CascadeClassifier("haarcascade_frontalface_default
   .xml") graph=tf.compat.v1.get_default_graph()
44 writer=None
45 model=load_model('model.h5')
46 font = cv2.FONT_HERSHEY_SIMPLEX
47 vals=['A','B','C','D','E','F','G','H','I']
48 emotion_detector = FER(mtcnn=True)
49 app=Flask( name ,template_folder="template")
50 print("Accessing video stream")
51 app.static_folder = 'static'
52 vs=cv2.VideoCapture(0)
53 detector=HandDetector(maxHands=1)
54 pred="" def SpeakText(command):
55 engine = pyttsx3.init()
56 engine.say(command)
57 engine.runAndWait()
58 def generate_frames():
            while (vs.isOpened()):
59
60
                     success, frame = vs.read() hands,
61
                     frame=detector.findHands(frame)
62
                                    dominant_emotion, emotion_score =
  emotion_detector.top_emotion(frame)
63 if not success:
```

```
64
                break:
65
    else:
       if hands :
66
67
           hand=hands[0]
68
69 x,y,w,h=hand['bbox']
70 imgCrop=frame[y-20:y+h+20,x-20:x+w+20]
71 black=np.ones((300,300,3), np.uint8)*0
72 ishape=imgCrop.shape
73 if h/w>1:
74 k=300/h
75 wcal=math.ceil(k*w)
76 imgresize=cv2.resize(imgCrop,(wcal,300))
77 irshape=imgresize.shape
78 wgap=math.ceil((300-wcal)/2)
    black[:,wgap:wcal+wgap]=imgresiz
2 else:
  k=300/w
3
4 hcal=math.ceil(k*h)
5 imgresize=cv2.resize(imgCrop,(300,hcal))
6 irshape=imgresize.shape hgap=math.ceil((300-hcal)/2)
7 black[hgap:hcal+hgap,:]=imgresize
8 img=resize(black, (64,64,1))
9 img=np.expand_dims(img,axis=0)
10 if(np.max(img)>1):
11 \text{ img} = \text{img}/255.0
12 predict_x=model.predict(img)
13 classes_x=np.argmax(predict_x,axis=1)
14 x=classes_x[0]
15 SpeakText(vals[x])
16 dominant_emotion=str(dominant_emotion)
17 if(dominant_emotion!=""):
        value=vals[x] +" "+ dominant_emotion
18
19 else:
20
                                                           value=vals[x]
  cv2.putText(frame, value, (x+20, y+20), cv2.FONT_HERSHEY_SIMPLEX,
  1,(255, 255, 150),2,cv2.LINE_AA)
21 ret, buffer = cv2.imencode('.jpg', frame)
22 frame = buffer.tobytes()
23 yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame
```

```
+ b'\r\n')
24 @app.route('/')
25 def index():
       return render_template('index.html');
26
27
       @app.route('/sign_to_speech')
28
       def sign_to_speech();
             return render_template('sign_to_speech.html')
29
30
       @app.route('speech_to_sign')
31
            def speech_to_sign():
32
                return render_template('speech_to_sign.html')
33 @app.route('/video',methods=['GET', 'POST'])
34 def video():
35 return Response(generate_frames(),
1 mimetype='multipart/x-mixed-replace; boundary=frame')
2 if ( name == " main "):
3 app.run(debug=True)
4
5
6
7
  HTML Files
8
9 index.html
10
11 <html>
12 <head>
13 <meta charset="utf-8">
14 <meta http-equiv="X-UA-Compatible" content="ie=edge">
           name="viewport" content="width=device-width,
15 <meta
                                                               initial-
  scale=1">
16 <script
17 src="http://translate.google.com/translate_a/element.js?cb=loadGoo
  gleTranslate"
18 ></script>
19 <script>
20 function loadGoogleTranslate()
21 {
22 new google.translate.TranslateElement("google_element")
23 }
24 </script>
25 <script
26 src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min
```

```
.js"></script>
27 <script
28 src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.
  min.js"></scri</pre>
29 pt>
30 rel="stylesheet"
31 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstra
  p.min.css">
32 <style>
33 .row {
34 display: flex;
35 }
36 .col {
37 flex: 50%;
38 }
39 *,*:after,*:before{
40 -webkit-box-sizing: border-box;
41 -moz-box-sizing: border-box;
42 -ms-box-sizing: border-box;
43 box-sizing: border-box;
44 }
45 body{
46 font-family: arial;
47 font-size: 16px;
48 margin: 0;
49 color: #000;
50 display: flex;
51 min-height: 100vh;
53 .voice_to_text{
54 width: 600px;
55 text-align: center;
56 }
57 h1{
58 color: #000000;
59 font-size: 50px;
60 }
61 #convert_text{
62 width: 100%;
63 height: 200px;
```

```
64 border-radius: 10px;
65 resize: none;
66 padding: 10px;
67 font-size: 20px;
68 margin-bottom: 10px;
69 }
70 button{
71 align-items: center;
72 justify-content: center;
73
74 padding: 12px 20px;
75 background: #0ea4da;
76 border: 0;
77 color: #fff;
78 font-size: 18px;
79 cursor: pointer;
80 border-radius: 5px;
2 </style>
3 </head>
4 <body>
5 <div class="container">
6 <div class="row">
7 <div class="col">
8 <img
              src="https://img.freepik.com/free-vector/sign-language-
  alphabet-hand\drawn-style_23-2147872270.jpg?w=2000"
  style="width:50%;"/>
9 </div>
10 <div class="col">
11 <div class="voice_to_text">
12 <div class="text_center" id="google_element">
13 </div>
14 <h1>Voice to text converter</h1>
15 <textarea name="" id="convert_text"></textarea>
16 <button
              id="click_to_record" class="btn-primary">Voice
                                                                     to
  Text</button><br/>
17 <a href="/">
18 <button class="btn btn-danger btn-lg">Exit</button>
19 </a>
20 </div>
```

```
21 </div>
22 </div>
23 </div>
24 <script
                         type="text/javascript"
                                                                 src="{{
  url_for('static',filename='javascript/script.js') }}">
25 </script>
26 </body>
27 </html> Sign_to_speech.html
28 <html>
29 <head>
30 <style>
31 img{
32 display: block;
33 margin-left: auto;
34 margin-right: auto;
35 }
36 </style>
37 <script>
38 function loadGoogleTranslate()
39 {
40 new google.translate.TranslateElement("google_element")
41 }
42 </script>
43 <script
  src="http://translate.google.com/translate_a/element.js?cb=loadGoo
   gleTranslate"
44 ></script>
45 <script
  src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min
   .js"></script>
46 <script
   src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.
  min.js"></scri pt>
47 <link
                                                       rel="stylesheet"
  href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstra
  p.min.css"/>
48 </head>
49 <body>
50 <h1>Sign to speech</h1>
51 <div>
```

```
52 <div class="text-center" id="google_element"></div>
53 <img src="{{ url_for('video') }}" width="50%" height="50%"/>
54 <br/>
55 <div class="text-center">
56 <a href="/">
57 <button class="btn btn-danger btn-lg" >Exit</button>
58 </a></div>
59 </div>
60 </body>
61 </html>
62 CSS Files
63 Index.css
64 @import
   url("https://fonts.googleapis.com/css2?family=0xygen:wght@400;700&
   family= Roboto:wght@300;900&display=swap");
65 * {
66 box-sizing: border-box;
67 padding: 0;
68 margin: 0;
69 }
70 :root {
71 --black: #000;
72 --white: #fff;
73 --hover: #000;
74 }
75 .main {
76 position: relative;
77 height: 100vh; width: 100%;
78 display: flex;
79 align-items: center;
1 justify-content: center;
2 }
3 .inside {
4 position: relative;
5 height: 60%;
6 width: 50%;
7 background: rgba(255,255,255,0.9);
8 border-radius: 30px;
9 /* border: 5px solid var(--black); */
10 display: flex;
```

```
11 align-items: center;
12 justify-content: space-evenly;
13 -webkit-box-shadow: 12px 12px 17px 1px rgba(0, 0, 0, 0.59);
14 -moz-box-shadow: 12px 12px 17px 1px rgba(0, 0, 0, 0.59);
15 box-shadow: 12px 12px 17px 1px rgba(0, 0, 0, 0.59);
17 .wrapper { position: relative;
18 height: 75%;
19 width: 30%;
20 display: flex;
21 align-items: center;
22 justify-content: space-evenly;
23 flex-direction: column;
24 }
25 .Head {
26 position: relative;
27 font-size: 3rem;
28 text-transform: uppercase;
29 font-family: "Roboto", sans-serif;
30 font-weight: 900;
31 display: flex;
32 align-items: center;
33 justify-content: center;
34 flex-direction: column;
35 height: 30%;
36 }
37 .Head h1 {
1 font-size: 3rem;
3 .Head span { position: relative;
4 height: 5px;
5 width: 60%;
6 background: var(--black);
8 .box {
9 position: relative;
10 font-family: "Oxygen", sans-serif;
11 font-weight: 700;
12 border: 2px solid var(--black);
13 border-radius: 1.5rem;
```

```
14 text-decoration: none;
15 overflow: hidden;
16 cursor: pointer;
17 z-index: 1;
18 }
19 .box1 {
20 padding: 0.8rem 2rem;
21 }
22 .box2 {
23 padding: 0.8rem 1.5rem;
24 }
25 .box:hover {
26 color: var(--white);
27 background: var(--hover);
28 }
29 Javascript Files
30 Script.js
31 click_to_record.addEventListener('click', function(){
32 var speech = true;
33 const
            SpeechRecognition
                                        window.speechRecognition
                                                                     Ш
  window.webkitSpeechRecognition;
34 const
                 recognition
                                     =new
                                                  SpeechRecognition();
  recognition.interimResults
                                                                  true;
   recognition.addEventListener('result', e => {
35 const transcript = Array.from(e.results)
36 .map(result => result[0])
37 .map(result => result.transcript)
38 .join('')
39 document.getElementById("convert_text").innerHTML = transcript;
  console.log(transcript);
40 });
41 if (speech == true) {
42 recognition.start();
43 }
44 })
```

Output

13.2 Github and Demo Link:

https://github.com/IBM-EPBL/IBM-Project-37034-1660299814

Demo video

https://drive.google.com/file/d/1yZWcMwuyT91wNDCUb6NYuQYSwOsbOHQH/view?usp=sharing