Template-Based Representations

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Variable-based vs Template-based
- Temporal Models
 - Basic Assumptions
 - Dynamic Bayesian Networks
 - Hidden Markov Models
 - Linear Dynamical Systems
- Template Variables

Introduction

- A PGM specifies a joint distribution over a fixed set χ of variables
- A network for medical diagnosis can be applied to multiple patients, each with different symptoms and diseases
- Such networks are variable-based
- Sometimes need a much more complex space than a fixed set of variables

Temporal Setting

- Distributions of systems whose states change with time
- Ex: monitoring patient in ICU
 - Obtain sensor readings at regular intervals
 - Heart rate, blood pressure, EKG
 - Need to track over time
- Ex: Robot location tracking
 - As it moves around and gathers observations
 - Need a single model to apply to trajectories
 - Possibly of infinite length

ICU Monitoring using a DBN

- Transition model for true-HR is linear Gaussian: at time 0, μ =80 with σ = 30
- Sensor models for ECG-HR and pleth-HR: Gaussians centered at true-HR
- Sensor model for SpO2 is a Gaussian
- Transition models for ECG-detached, pleth-detached, and patient-movement assign a high probability to persisting in the current state.

Template

- Single compact model
- Provides a template for entire class of distributions
 - From the same type of trajectories
 - Temporal modeling using Dynamic Bayesian Networks
 - Or different pedigrees

Temporal Models

- State of the world evolves over time
- System State
 - Value at time t is a snapshot of the relevant attributes (hidden or observed)
 - Assignment of values to a set of random variables χ
- Use $X_i^{(t)}$ to represent instantiation of the variable X_i at time t
- X_i is no longer a variable that takes a value;
 rather it is a template variable

Template Variable Notation

- Template is instantiated at different points of time t
- Each $X_i^{(t)}$ takes a value in $Val(X_i)$
- For a set of variables $X \subseteq \chi$

we use $X^{(t1:t2)}(t_1 < t_2)$

to denote the set of variables

$${X^{(t)}: t \in [t_1, t_2]}$$

Assignment of values to each variable $X_i^{(t)}$ for each relevant time t is a trajectory

Trajectory

- An assignment to each variable $X_i^{(t)}$
- Goal is to represent probability distributions over such trajectories
- Representing such a distribution is difficult
- Need to make some simplifying assumptions

Vehicle Localization Task

Track current location using faulty sensors

- System state encoded using
 - X_1 : Location (car's current location)
 - X₂: Velocity (car's current velocity)
 - X_3 : Weather (current weather)
 - X_4 : Failure (failure status of sensor)
 - *X*₅: *Obs* (*current observation*)

(a) $\mathcal{B}_{\rightarrow}$

- One such set of variables for every point t
- Queries
 - Where is it now (t')?
 - Where is it likely to be in ten minutes?
 - Did it stop at the red light?

Basic Assumptions

- Discretize timeline into time slices
 - Time granularity
 - Set of random variables $\chi^{(0:T)} = \{ \chi^{(0)}, \chi^{(1)}, ..., \chi^{(T)} \}$
- Using chain rule P(A,B,C)=P(A)P(B/A)P(C/A,B),

$$P(\chi^{(0:T)}) = P(\chi^{(0)}) \prod_{t=0}^{T-1} P(\chi^{(t+1)} \mid \chi^{(0:t)})$$

- Note dependence on all of time 0:t
- Distribution over trajectory is the product of conditional distributions
- Need to simplify this formulation

Markovian System

- Future is conditionally independent of the past given the present
- A dynamic system over template variables
 χ satisfies the Markov assumption if

$$\chi^{(t+1)} \perp \chi^{(t-1)} \mid \chi^{(t)}$$

 Helps define a more compact representation of the distribution

$$P(\chi^{(0:T)}) = P(\chi^{(0)}) \prod_{t=0}^{T-1} P(\chi^{(t+1)} \mid \chi^{(t)})$$

Stationary Markovian System

- A Markovian dynamic system is stationary if $P(\chi^{(t+1)}|\chi^{(t)})$ is the same for all t.
- In this case we can represent the process using a transition model $P(\chi/\chi')$ so that for any $t \ge 0$

$$P(\chi^{(t+1)} = \xi' | \chi^{(t)} = \xi) = P(\chi' = \xi' | \chi = \xi)$$

- Non-stationarity: if the conditional distribution changes with t
 - E.g., variables in biological systems
 - Change more in early years than in later years

Dynamic Bayesian Networks

- Stationarity allows representing probability distributions over infinite trajectories
- Transition model P(χ'/χ) can be represented as a conditional Bayesian network

DBN for monitoring a vehicle

- Represents system dynamics
- X₅: Observation depends on car's location (and map not modeled) and error status of sensor (failure) (X₄)
- X_1 : Bad weather makes sensor likely to fail (X_4)
- X_3 : Location depends on previous position and velocity (X_2)

(a) $\mathcal{B}_{\rightarrow}$

Interface Variables

- All variables are interface variables except for Obs
 - since we assume that the sensor observation is generated at each point independently given other variables

2-Time slice Bayesian Network (2-TBN)

• A 2-Time slice BN for a process over χ is a conditional Bayesian Network over χ ' given $\chi_{\rm I}$, where $\chi_{\rm I} \subseteq \chi$ is a set of interface variables

χ={Weather, Velocity, Location, Failure, Obs**}**

 $\chi'=\{Weather', Velocity', Location', Failure', Obs'\}$

Interface Variables: χ_{\parallel} ={*Weather, Velocity, Location, Failure*}

$$P(\chi' | \chi_I)$$

Conditional Bayesian Network

 In a conditional Bayesian network only variables in χ ' have parents or CPDs

y'={Weather', Velocity', Location', Failure', Obs'}

- Interface variables χ_{I} are those variables whose values at time t have a direct effect on variables at time t+1 $\chi_{l}=\{Weather, Velocity, Location, Failure\}$
 - Thus only variables in $\chi_{\rm I}$ can be parents of variables in χ '
- 2-TBN represents the conditional distribution

$$P(\chi' \mid \chi) = P(\chi' \mid \chi_I) = \prod_{i=1}^n P(\chi_i' \mid Pa_{\chi_i'})$$

Example 2-TBN

Simplest nontrivial DBN is a HMM

Single state variable S and single observation variable O

(a) The 2-TBN for a generic HMM, (b) the unrolled DBN for four time slices

$$\chi = \{S, O\}$$
 $\chi' = \{S', O'\}$ $\chi_{\parallel} = \{S\}$

$$\begin{vmatrix} B_{\rightarrow} : P(\chi ' \mid \chi_{_{I}}) = P(S ' \mid S) \\ B_{_{0}} : P(S)P(O \mid S) \end{vmatrix}$$

$$B_0: P(S)P(O \mid S)$$

Definition of DBN

- A dynamic Bayesian network is a pair $(\mathcal{B}_o, \mathcal{B}_{\rightarrow})$
- $\cdot \mathcal{B}_o$ is a Bayesian Network over $\chi^{(0)}$ representing the initial distribution over states
- $\cdot \mathcal{B}_{\rightarrow}$ Is a 2-TBN for the process
- For any desired time span $T \ge 0$ the distribution over $\chi^{(0:T)}$ is defined as a unrolled Bayesian network where for any i=1,...,n:
 - The structure and CPDs of $X_i^{(0)}$ are the same as those for X_i in \mathcal{B}_o
 - The structure and CPD of $X_i^{(t)}$ for $t \ge 0$ are the same as those for X_i , in $\mathcal{B}_{\rightarrow}$

DBN for monitoring a vehicle

- (a) The 2-TBN
- (b) the time 0 network
- (c) resulting unrolled DBN over three time slices

DBN as a compact representation

- A DBN can be viewed as a compact representation from which we can generate an infinite number of Bayesian networks
 - One for every T > 0

Classes of DBNs from HMMs

(a) A factorial HMM

- 2-TBN has the structure of chains $X_i \rightarrow X_i$, (i=1,..n)
- With a single observed variable Y'
- Ex: several sources of sound through a microphone
- (b) A coupled HMM
 - Also a set of chains X_i
 - Each chain is an HMM with a private observation Y_i
 - Ex: monitoring temperature in a building for fire alarms

 X_i is hidden temp of room, Y_i is sensor reading Adjacent room temps interact

State observation models

- Alternative way of thinking about a temporal process
- State evolves naturally on its own
- Our observation of it is a separate process
- Separates out system dynamics from observation model

State observation model

- Separates out dynamics of system from our ability to sense it
- Two independence assumptions
 - 1. State variables evolve in a Markovian way $(X^{(t+1)} \perp X^{(0:t-1)} \mid X^{(t)})$
 - 2. Observation at time t are conditionally independent given entire sequence $(O^{(t)} \perp X^{(0:t-1)}, X^{(t+1:Inf)} \mid X^{(t)})$
- View model as having two components:
 - 1. transition model P(X'|X) and
 - 2. observation model P(O|X)

Converting 2-TBN to State-observation

- Any 2-Time slice Bayesian Network can be converted to a state observation representation
 - For any observed variable Y (that does not already satisfy structural restrictions) introduce new variable Y' whose only parent is Y.
 - View Y as being hidden and interpret observations of Y as observations on Y'
 - In effect Y' is a perfectly reliable sensor of Y
- While the transformed network is probabilistically equivalent it obscures independence properties

Applications of State Observation Models

- Hidden Markov Models
- Linear Dynamical Systems

HMMs

- Transition model P(S'IS) is assumed to be sparse with many possible transitions having zero probability
- Different graphical notation, generally cyclic
- Use representation in which nodes represent different states of the system

HMM transition graphs are very different from PGMs

	s1	s2	<i>s3</i>	s4
s1	0.3	0.7	0	0
<i>s</i> 2	0	0	0.4	0.6
<i>s3</i>	0.5	0	0	0.5
s4	0	0.9	0	0.1

- Nodes are states or possible values of the state variables
- Edges represent transitions between states, or entries in the CPDs

HMMs for Speech Recognition

Three distinct layers

1. Language Model:

 generates sentences as sequences of words

2. Word Model:

described as a sequence of phonemes /p//u//sh/

3. Acoustic model:

shows progression of the acoustic signal through a phoneme

Language Model

- Probability distribution over sequences of words Bigram model
 - Markov model defined via distributions $P(W_i | W_{i-1})$ for the i^{th} word in sequence
 - Does not take into account position in sentence
 - $P(W_i/W_{i-1})$ is the same for all i
- Trigram model
 - Model distributions as $P(W_i \mid W_{i-1}, W_{i-2})$
- Although naiive this model works well
 - Due to large amounts of training data without manual labeling

Phoneme Model

A phoneme-level HMM for a complex phoneme

- Basic phonetic units corresponding to distinct sounds
 - -Pvs.B
 - Sound is breathy, aspirated, nasalized, and more
 - International phonetic Alphabet has 100 phonemes

Acoustic Level

- Signal segmented into short time frames (around 10-25ms).
- A phoneme lasts over a sequence of these partitions
- Different acoustics for beginning, middle and end of a phoneme
 - Thus a HMM at the phoneme level
 - Observation represents features extracted from acoustic signal
 - Features discretized into bins or a GMM

Combining models with hierarchical HMM

- Three models (language, phoneme and acoustic) combined in a huge hierarchical HMM
 - Defines a joint probability distribution over words, phonemes and basic acoustic units
- In bigram model, states have the form (w,i,j)
 - -w =current word, i is a phoneme within that word and j is an acoustic position within that phoneme
- Word HMM has a start state and an end state
 - Each sequence is a trajectory through acoustic
 HMMs of individual phonemes

Hierarchical HMM to DBN

- DBN framework is much more flexible to introduce extensions to the model
- Variables represent different states of different levels of hierarchy (word, phoneme, and intraphone state) along with auxiliary variables (to capture control architecture of hierarchical HMM)

Linear Dynamical Systems

- One or more real-valued variables that evolve linearly over time with some Gaussian noise
- Also called Kalman filters
 - After the algorithm used to perform tracking
- A linear dynamical system can be viewed as a DBN where the variables are all continuous and all the dependencies are linear Gaussian

Another template model: Genetics example

- Family tree (pedigree)
 - individuals all with own properties
- PGM encodes joint distribution over properties of all individuals
- Cannot have a single variable-based model
 - Each family has different family tree
 - Yet mechanism to transmit genes are identical

G: Genotype

B: Blood Type