Boolean Methods for Multi-level Logic Synthesis

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objectives
 - **▲** What are Boolean methods
 - **▲** How to compute *don't care* conditions
 - **▼** Controllability
 - **▼** Observability
 - **▲** Boolean transformations

Boolean methods

- Exploit Boolean properties of logic functions
- Use don't care conditions
- More complex algorithms
 - **▲** Potentially better solutions
 - **▲** Harder to reverse the transformations
- Used within most synthesis tools

External don't care conditions

- Controllability don't care set CDC_{in}
 - ▲Input patterns never produced by the environment at the network's input
- Observability don't care set ODCout
 - ▲Input patterns representing conditions when an output is not observed by the environment
 - **▲**Relative to each output
 - **▲** Vector notation

- Inputs driven by a de-multiplexer.
- $\bullet \ CDC_{in} = x_1'x_2'x_3'x_4' + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4.$
- ullet Outputs observed when $\left[egin{array}{c} x_1 \\ x_4 \end{array} \right] = {f 1}$

$$\mathsf{ODC}_{out} \ = \left[egin{array}{c} x_1' \\ x_1' \\ x_4' \\ x_4' \end{array}
ight]$$

Overall external don't care set

Sum the controllability don't cares to each entry of the observability don't care set vector

$$\mathbf{DC}_{ext} = \mathbf{CDC}_{in} + \mathbf{ODC}_{out} = \begin{bmatrix} x_1' + x_2 + x_3 + x_4 \\ x_1' + x_2 + x_3 + x_4 \\ x_4' + x_2 + x_3 + x_1 \\ x_4' + x_2 + x_3 + x_1 \end{bmatrix}$$

Internal *don't care* conditions

Internal don't care conditions

- Induced by the network structure
- Controllability don't care conditions:
 - **▲** Patterns never produced at the inputs of a sub-network
- Observability don't care conditions
 - ▲ Patterns such that the outputs of a sub-network are not observed

Example of optimization with *don't cares*

- CDC of y includes ab'x + a'x'
- Minimize f_y to obtain: $g_y = ax + a'c$

Satisfiability don't care conditions

Invariant of the network:

$$x = f_x \rightarrow x \neq f_x \subseteq SDC$$

♦
$$SDC = \sum_{all internal nodes} x \oplus f_x$$

Useful to compute controllability don't cares

CDC Computation

- Method 1: Network traversal algorithm
 - **▲**Consider initial CDC = CDC_{in} at the primary inputs
 - **▲**Consider different cutsets moving through the network from inputs to outputs
 - As the cutset moves forward
 - **▼**Consider **SDC** contribution of the newly considered block
 - **▼**Remove unneeded variables by consensus

- ◆ Assume CDC_{in} = x₁'x₄'
- Select vertex v_a
 - ▲ Contribution of v_a to CDC_{cut}= $a \oplus (x_2 \oplus x_3)$
 - ▲ Updated CDC_{cut}= $x'_1 x'_4 + a \oplus (x_2 \oplus x_3)$
 - **▲** Drop variables D = $\{x_2, x_3\}$ by consensus:
 - \triangle CDC_{cut} = $\chi_1'\chi_4'$
- Select vertex v_b
 - ▲ Contribution to CDC_{cut}: $b \oplus (x_1 + a)$.
 - **▼** Updated CDC_{cut} = $x_1'x_4' + b \oplus (x_1 + a)$
 - **▲** Drop variables **x**₁ by consensus:

$$\nabla$$
 CDC_{cut} = b'x₄' + b'a

- CDC_{out} = e' = z₂'

CDC Computation

```
CONTROLLABILITY(G_n(V,E), CDC_{in}) {
     C = V';
     CDC_{cut} = CDC_{in};
     for each vertex v_x \in V in topological order {
         C = C \cup v_x;
         CDC_{cut} = CDC_{cut} + f_x \oplus x;
         D = \{v \in C \text{ s.t. all direct successors of } v \text{ are in } C\}
         foreach vertex v_v \in D
                 CDC_{cut} = C_{v}(CDC_{cut});
         C = C - D;
     CDC_{out} = CDC_{cut};
```

CDC Computation

- Method 2: range or image computation
- Consider the function f expressing the behavior of the cutset variables in terms of primary inputs
- ◆ CDC_{cut} is the complement of the range of f when CDC_{in} = 0
- ◆ CDC_{cut} is the complement of the image of (CDC_{in})' under f
- The range and image can be computed recursively
 - **▲**Terminal case: scalar function
 - ▲ The range of y = f(x) is y + y' (any value) unless f(or f') is a tautology and the range is y(or y')

- $range(f) = d range((b+c)|_{d=bc=1}) + d' range((b+c)|_{d=bc=0})$
- ♦ When d = 1, then $bc = 1 \rightarrow b + c = 1$ is TAUTOLOGY
- If I choose 1 as top entry in output vector:
 - **▲** the bottom entry is also 1.

- **♦** When d = 0, then bc = 0 → $b+c = \{0,1\}$
- If I choose 0 as top entry in output vector:
 - **▲** The bottom entry can be either 0 or 1.
- range(f) = de + d'(e + e') = de + d' = d' + e

$$f = \begin{bmatrix} f^1 \\ f^2 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \end{bmatrix}$$

range(f) = d range(f²|(x₁x₄ + a)=1) + d' range(f²|(x₁x₄ + a)=0)
= d range(x₁ + x₄ + a|(x₁x₄ + a)=1) + d' range(x₁ + x₄ + a|(x₁x₄ + a)=0)
= d range(1) + d' range(a'(x₁
$$\oplus$$
 x₄))
= de + d'(e + e')
= e + d'

• CDC_{out} = $(e + d')' = de' = z_1z_2'$

$$CDC_{in} = x'_1 x'_4$$

$$f = \begin{bmatrix} f^1 \\ f^2 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \end{bmatrix}$$

image(f) = d image(
$$f^2|_{(x_1x_4+a)=1}$$
) + d' image($f^2|_{(x_1x_4+a)=0}$)
= d image($x_1 + x_4 + a|_{(x_1x_4+a)=1}$) + d' image($x_1 + x_4 + a|_{(x_1x_4+a)=0}$)
= d image(1) + d' image(1)
= de + d'e

•
$$CDC_{out} = e' = z_2'$$

20

= e

Observability analysis

- Complementary to controllability
 - **▲** Analyze network from outputs to inputs
- More complex because network has several outputs and observability depends on output
- Observability may be understood in terms of perturbations
 - ▲ If you flip the polarity of a signal at net *x*, and there is no change in the outputs, then *x* is not observable

Observability don't care conditions

- Conditions under which a change in polarity of a signal x is not perceived at the output
- If there is an explicit representation of the function, the ODC is the complement of the Boolean difference ODC = $(\partial f / \partial x)$ '
- Often, the terminal behavior is described implicitly
 - ▲ Applying chain rule to Boolean difference is computationally hard

Tree-network traversal

- Consider network from outputs to input
- At root
 - **▲ODC**_{out} is given
 - ▲It may be empty
- At internal nodes:
 - \triangle Local function $y = f_v(x)$
 - $\triangle ODC_x = (\partial f_y / \partial x)' + ODC_y$
- Observability don't care set has two components:
 - **△** Observability of the local function and observability of the network beyond the local block

$$e = b + c$$

$$b = x_1 + a_1$$

$$c = x_4 + a_2$$

- ◆ Assume ODC_{out} = ODC_e = 0
- $\bullet ODC_b = (\partial f_e / \partial b)' = (b + c)|_{b=1} \oplus (b + c)|_{b=0} = c$
- ◆ ODC_c = $(\partial f_e/\partial c)' = b$
- ◆ ODC_{x1} = ODC_b + $(\partial f_b/\partial x_1)' = c + a_1$

Non-tree network traversal

- ◆General networks have forks and fanout reconvergence
- ◆For each fork point, the contribution to the ODC depends on both paths
- Network traversal cannot be applied in a straightforward way
- More elaborate analysis is needed

Two-way fork

- Compute ODC sets associated with edges
- Recombine ODCs at fork point
- **Theorem:**
 - \triangle ODC_x = ODC_{x,y|x=x'} \oplus ODC_{x,z}
 - \triangle ODC_x = ODC_{x,z|x=x'} \oplus ODC_{x,v}
- Multi-way forks can be reduced to a sequence of two-way forks

ODC formula derivation

$$\begin{array}{lll}
\mathbf{ODC}_{x} &=& \mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0) \\
&=& \mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0) \\
&\overline{\oplus} & (\mathbf{f}^{x_{1},x_{2}}(0,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,1)) \\
&=& (\mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,1)) \\
&\overline{\oplus} & (\mathbf{f}^{x_{1},x_{2}}(0,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0)) \\
&=& \mathbf{ODC}_{x,y}|_{\delta_{2}=1} & \overline{\oplus} & \mathbf{ODC}_{x,z}|_{\delta_{1}=0} \\
&=& \mathbf{ODC}_{x,y}|_{x_{2}=x'} & \overline{\oplus} & \mathbf{ODC}_{x,z}|_{x_{1}=x} \\
&=& \mathbf{ODC}_{x,y}|_{x_{2}=x'} & \overline{\oplus} & \mathbf{ODC}_{x,z}|_{x_{1}=x}
\end{array}$$

• Because $x = x_1 = x_2$.

$$ODC_{d} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \quad ODC_{e} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$ODC_c = \binom{b'}{b}; ODC_b = \binom{c'}{c};$$

ODC_{a,b} =
$$\begin{pmatrix} c' + X_1 \\ c + X_1 \end{pmatrix}$$
 = $\begin{pmatrix} a'X_4' + X_1 \\ a + X_4 + X_1 \end{pmatrix}$

ODC_{a,c} =
$$\binom{b' + x_4}{b + x_4}$$
 = $\binom{a'x_1' + x_4}{a + x_1 + x_4}$

$$ODC_{a} = ODC_{a,b}|_{a=a'} \overline{\bigoplus} ODC_{a,c} = \begin{pmatrix} a \ X_{4}' + X_{1} \\ a' + X_{4} + X_{1} \end{pmatrix} \overline{\bigoplus} \begin{pmatrix} a' X_{1}' + X_{4} \\ a + X_{1} + X_{4} \end{pmatrix} = \begin{pmatrix} X_{1} X_{4} \\ X_{1} + X_{4} \end{pmatrix}$$

Don't care computation summary

- Controllability don't cares are derived by image computation
 - ▲ Recursive algorithms and data structure are applied
- Observability don't cares are derived by backward traversal
 - **▲** Exact and approximate computation
 - **▲** Approximate methods compute *don't care* subsets

Transformations with don't cares

- Boolean simplification
 - **▲** Generate local DC set for local functions
 - **▲**Use heuristic minimizer (e.g., Espresso)
 - **▲** Minimize the number of literals
- Boolean substitution:
 - ▲ Simplify a function by adding one (ore more) inputs
 - **▲** Equivalent to simplification with global *don't care* sets

Example – Boolean substitution

- ◆ Substitute q = a + cd into f_h = a + bcd + e
 - \triangle Obtain $f_h = a + bq + e$
- Method
 - **△** Compute SDC including $q \oplus (a+cd) = q'a + q'cd + qa'(cd)'$
 - ▲ Simplify $f_h = a + bcd + e$ with DC = q'a + q'cd + qa' (cd)'
 - \triangle Obtain $f_h = a + bq + e$
- Result
 - ▲ Simplified function has one fewer literal by changing the support of f_h

Simplification operator

- Cycle over the network blocks
 - **▲** Compute local don't care conditions
 - **▲** Minimize
- Issues:
 - **▲** Don't care sets change as blocks are being simplified
 - ▲ Iteration may not have a fixed point
 - **▲**It would be efficient to parallelize some simplifications

Optimization and perturbation

- Minimizing a function at a block x is the replacement of a local function f_x with a new function g_x
- This is equivalent to perturbing the network locally by
 - \blacktriangle $\delta_x = f_x \oplus g_x$
- Conditions for a feasible replacement
 - **▲** Perturbation bounded by local don't care sets
 - \triangle δ_x included in DC_{ext} + ODC + CDC
- Smaller, approximate don't care sets can be used
 - **▲** But have smaller degrees of freedom

- ◆ No external don't care set.
- Replace AND by wire: $g_x = a$
- Analysis:

$$\blacktriangle \delta = f_x \oplus g_x = ab \oplus a = ab'$$

$$\triangle$$
 ODC_x = y' = b' + c'

$$\blacktriangle \delta = ab' \subseteq DC_x = b' + c' \implies feasible!$$

Parallel simplification

- Parallel minimization of logic blocks is always possible when blocks are logically independent
 - ▲ Partitioned network
- Within a connect network, logic blocks affect each other
- Doing parallel minimization is like introducing multiple perturbations
 - **▲**But it is attractive for efficiency reasons
- Perturbation analysis shows that degrees of freedom cannot be represented by just an upper bound on the perturbation
 - Boolean relation model

(c) Giovanni De Micheli

- ◆Perturbations at x and y are related because of the reconvergent fanout at z
- Cannot change simultaneously
 - ▲ ab into a
 - ▲ cb into c

(a)

Boolean relation model

a	b	c	x, y
0	0	0	{ 00, 01, 10 }
0	0	1	{ 00, 01, 10 }
0	1	0	{ 00, 01, 10 }
0	1	1	{ 00, 01, 10 }
1	0	0	{ 00, 01, 10 }
1	0	1	{ 00, 01, 10 }
1	1	0	{ 00, 01, 10 }
1	1	1	{ 11 }

a	b	c	x, y
1	*	*	10
*	1	1	01

Boolean relation model

- Boolean relation minimization is the correct approach to handle Boolean optimization at multiple vertices
- Necessary steps
 - **▲** Derive equivalence classes for Boolean relation
 - **▲**Use relation minimizer
- Practical considerations
 - **▲** High computational requirement to use Boolean relations
 - **▲**Use approximations instead

Parallel Boolean optimization compatible don't care sets

- Determine a subset of don't care sets which is safe to use in a parallel minimization
 - ▲ Remove those degrees of freedom that can lead to transformations incompatible with others effected in parallel
- Using compatible don't care sets, only upper bounds on the perturbation need to be satisfied
- Faster and efficient method

Example

- Parallel optimization at two vertices
- First vertex x
 - **▲**CODC equal to ODC set
 - \triangle CODC_x = ODC_x
- Second vertex y
 - **▲**CODC is smaller than its ODC to be safe enough to allow for transformations permitted by the first ODC
 - $\triangle CODC_y = C_x (ODC_y) + ODC_y ODC'_x$
- Order dependence

Example

- \bullet CODC_y = ODC_y = x' = b' + a'
- \bullet ODC_x = y' = b' + c'
- $\bullet CODC_x = C_y(ODC_x) + ODC_x(ODC_y)'$ $= C_y(y') + y'x = y'x$

$$= (b' + c')ab = abc'$$

Example (2)

Allowed perturbation:

$$\blacktriangle f_y = bc \rightarrow g_y = c$$

$$\triangle \delta_{v} = bc \oplus c = b'c \subseteq CODC_{v} = b' + a'$$

Disallowed perturbation:

$$\blacktriangle f_x = ab \rightarrow g_x = a.$$

$$\blacktriangle$$
δ_x = ab ⊕ a = ab' \not CODC_x = abc'

Boolean methods Summary

- Boolean methods are powerful means to restructure networks
 - **▲** Computationally intensive
- Boolean methods rely heavily on don't care computation
 - **▲** Efficient methods
 - **▲**Possibility to subset the *don't care* sets
- Boolean method often change the network substantially, and it is hard to undo Boolean transformations

Module 2

- Objectives
 - **▲**Testability
 - **▲** Relations between testability and Boolean methods

(c) Giovanni De Micheli

Testability

- Generic term to mean easing the testing of a circuit
- Testability in logic synthesis context
 - **▲** Assume combinational circuit
 - **▲** Assume single/multiple stuck-at fault
- Testability is referred to as the possibility of generating test sets for all faults
 - **▲**Property of the circuit
 - ▲ Related to fault coverage

Test for stuck-ats

- Net y stuck-at 0
 - **▲**Input pattern that sets y to TRUE
 - **▲**Observe output
 - **△**Output of faulty circuit differs from correct circuit
- Net y stuck-at 1
 - **▲**Input pattern that sets y to FALSE
 - **▲**Observe output
 - **△**Output of faulty circuit differs from correct circuit
- Testing is based on controllability and observability

Test sets – *don't care* interpretation

- Stuck-at 0 on net y
 - ▲{ Input vector t such that y(t) ODC'y (t) = 1 }
- Stuck-at 1 on net y
 - ▲{ Input vector t such that y'(t) ODC'y (t) = 0 }

Using testing methods for synthesis

- Redundancy removal
 - **▲**Use ATPG to search for untestable fault
- If stuck-at 0 on net y is untestable:
 - ▲ Set y = 0
 - **▲**Propagate constant
- If stuck-at 1 on net y is untestable
 - \triangle Set y = 1
 - **▲**Propagate constant
- Iterate for each untestable fault

Example

(c) Giovanni De Micheli

Redundancy removal and perturbation analysis

- Stuck-at 0 on y
 - ightharpoonup set to 0. Namely $g_x = f_x|_{y=0}$

$$\frac{z}{y}$$

▲Perturbation:

$$\nabla \delta = f_x \oplus f_x|_{y=0} = y \cdot \partial f_x/\partial y$$

- ◆ Perturbation is feasible ⇔ fault is untestable
 - ▲No input vector t can make y(t) · ODC, '(t) true
 - ▲ No input vector t can make y(t) · ODC_x'(t) · $\partial f_x/\partial y$ true
 - ▼Because ODC_y = ODC_x + $(\partial f_x/\partial y)$ '

Redundancy removal and perturbation analysis

- Assume untestable stuck-at 0 fault.
- \bullet y · ODC_x · · $\partial f_x/\partial y \subseteq SDC$
- Local don't care set:

$$\triangle DC_x \supseteq ODC_x + y \cdot ODC_x' \cdot \partial f_x/\partial y$$

$$\triangle DC_x \supseteq ODC_x + y \cdot \partial f_x/\partial y$$

- ◆ Perturbation $δ = y · ∂f_x/∂y$
 - **▲**Included in the local don't care set

Rewiring

- Extension to redundancy removal
 - ▲ Add connection in a circuit
 - **▲** Create other redundant connections
 - Remove redundant connections
- Iterate procedure to reduce network
 - ▲ A connection corresponds to a wire
 - **▲** Rewiring modifies gates and wiring structure
 - **▲**Wires may have specific costs due to distance

Example

(c) Giovanni De Micheli

Synthesis for testability

- Synthesize fully testable circuits
 - ▲ For single or multiple stuck-at faults
- Realizations
 - **▲**Two-level forms
 - ▲ Multi-level networks
- Since synthesis can modify the network properties, testability can be addressed during synthesis

Two-level forms

- Full testability for single stuck-at faults:
 - **▲**Prime and irredundant covers
- Full testability for multiple stuck-at faults
 - **▲**Prime and irredundant cover when
 - **▼**Single output function
 - **▼**No product-term sharing
 - **▼**Each component is prime and irredundant

Example f = a'b' + b'c + ac + ab

Multiple-level networks

- Consider logic networks with local functions in sop form
- Prime and irredundant network
 - **▲**No literal and no implicant of any local function can be dropped
 - **▲**The AND-OR implementation is fully testable for single *stuck-at* faults
- Simultaneous prime and irredundant network
 - ▲ No subsets of literals and no subsets of implicants can be dropped
 - **▲**The AND-OR implementation is fully testable for multiple *stuck-ats*

Synthesis for testability

- Heuristic logic minimization (e.g., Espresso) is sufficient to insure testability of two-level forms
- To achieve fully testable networks, simplification has to be applied to all logic blocks with full don't care sets
- In practice, don't care sets change as neighboring blocks are optimized
- Redundancy removal is a practical way of achieving testability properties

Summary – Synthesis for testability

- There is synergy between synthesis and testing
 - **▲** Don't care conditions play a major role in both fields
- Testable network correlate to a small area implementation
- Testable network do not require to slow-down the circuit
- Algebraic transformations preserve multi-fault testability,
 and are preferable under this aspect

(c) Giovanni De Micheli