Lista de Exercícios Extra Fundamentos de Astronomia - AGA0215 Material de estudo - Não deve ser entregue

Fotometria e mecanismos de radiação

- 1) A magnitude absoluta de uma estrela é M=-2 e a magnitude aparente m=8. Qual é a distância até estrela?
- 2) A luminosidade da estrela A é 3 vezes maior do que a luminosidade da estrela B, mas o fluxo da estrela B na Terra é 15 vezes o fluxo da estrela A.
 - a) Qual a razão entre as distâncias das estrelas A e B?
- b) Se a paralaxe da estrela B for 0,005'', quais seriam as distâncias das estrelas A e B?
- c) Qual a diferença entre as magnitudes aparentes na Terra? E qual a diferença entre as magnitudes absolutas?.
- 3) Um sistema binário é observado, e como a distância entre as estrelas é muito menor que a sua distância até o observador, foi considerado que ambas estão a mesma distância da Terra. A magnitude absoluta de uma das estrelas foi medida e seu valor é -0,5; enquanto que sua magnitude aparente é 3,5. Quanto à segunda estrela, sua magnitude aparente é 4,5. Sabendo disso:
 - a) Qual a distância do sistema até a Terra?
 - b) Qual a magnitude absoluta da segunda estrela do sistema?
 - 4) Uma estrela tem magnitude aparente m=1.
- a) Quantas vezes mais fraca ela ficaria se estivesse ao triplo de sua distância?
- b) Quantas magnitudes mais fraca ela apareceria?
- 5) Duas estrelas de tamanhos iguais estão à mesma distância da Terra. Uma tem temperatura de 5800K e a outra tem temperatura de 2900K.
- a) Qual é a mais vermelha? Qual a mais azul?
- b) Em que comprimento de onda cada uma emite o máximo de radiação?
- c) Qual é a mais brilhante, e quantas vezes mais brilhante?

- 6) A que distância que o Sol tem que estar de nós para que ele tenha a mesma magnitude aparente de uma lâmpada de 100W a 100m? Escreva sua resposta em anos-luz.
- 7) A magnitude absoluta de uma estrela na Galáxia de Andrômeda (distância 690kpc) é M = 5. Sua explosão como uma supernova poderia torná-la um bilhão (10^9) vezes mais brilhante. Qual é a sua magnitude aparente?

Mecânica Celeste

- 8) Qual a velocidade de escape da Lua para uma partícula na sua superfície? E para uma partícula a 1000 km de sua superfície?
- 9) Considere um cometa com uma distância no afélio de $5\times10^4\mathrm{UA}$ e uma excentricidade orbital de 0,995.
- a) Qual é a distância do cometa ao sol no periélio?
- b) Qual é o seu período orbital?
- c) Quais suas velocidades no perihélio e no afélio?
- d) Quanto vale o momentum angular orbital do cometa
- 10) Abaixo transcrevemos uma tabela dando detalhes sobre as órbitas dos planetas. Note que Vênus, Netuno (e a Terra também) têm órbitas aproximadamente circulares. Uma unidade astronômica de comprimento (U.A.) é definida como a metade da soma das distâncias máxima e mínima da Terra ao Sol.

	Semi-eixo maior (a)	Período (T)	Excentricidade (e)	Massa
	(U.A.)	(anos)	, ,	(kg)
Mercúrio	0,3871	0,2408	0,2056	3,30 x 10 ²³
Vênus	0,7233	0,6152	0,0068	4,87 x 10 ²⁴
Terra	1,000	1,000	0,0167	5,97 x 10 ²⁴
Marte	1,5237	1,8809	0,0934	6,42 x 10 ²³
Ceres	2,766	4,60	0,07976	9,46 x 10 ²⁰
Júpiter	5,2102	11,862	0,0485	1,90 x 10 ²⁷
Saturno	9,538	29,46	0,0555	5,68 x 10 ²⁶
Urano	19,1833	84,07	0,04630	8,68 x 10 ²⁵
Netuno	30,0551	164,18	0,00890	1,02 x 10 ²⁶
Plutão	39,5376	248,09	0,24881	1,305 x 10 ²²
Eris	67,6681	557	0,44177	1,66 x 10 ²²

a) Verifique a terceira lei de Kepler, escolhendo um par qualquer de planetas:

 $T^2 = ka^3$.

- b) Num papel log-log faça um gráfico de T x a com os dados acima e calcule o expoente n da lei $T = Ka^n$.
- c) Pode-se calcular a massa de Júpiter observando um de seus satélites que completa uma rotação em torno dele em $1,528 \times 105s$; sua órbita pode ser considerada uma circunferência de raio $4,22 \times 108m$. Verifique.
- d) Qual é a massa do Sol?
- 11) Deimos, o menor dos 2 satélites de Marte, tem período sideral de 1,262 dias e uma distância média ao centro de Marte de 23.500km. Qual a massa de Marte em massas terrestres? $D_{Terra,Lua}=384.400km$ e 1 mês sideral = 27,33 dias.
- 12) Se alguém pesa 56 kgf na Terra, quantos kgf pesará em Marte? considere a massa de Marte calculada na questão anterior e que o raio de Marte é aproximadamente metade do raio da Terra.
- 13) O cometa Halley tem um período orbital de 76 anos, e seu afélio é de 35,3 UA. Quanto o cometa chegará próximo ao Sol? Como isso se compara à distância da Terra ao Sol? Qual é a sua excentricidade orbital?
- 14) Um planeta tipo Júpiter quente orbita uma estrela de meia massa solar com um período de 4 dias. Qual a sua distância até a estrela, em UA?