රසායනික බන්ධන

(01) සියලුම පරමාණුවල සංයුජතා ඉලෙක්ටෝන දක්වමින්, ${
m N_2O_4}$ සහ ${
m O_3}$ යන අණුවල තිත් සහ කතිර රූප සටහන් පහත දැක්වෙන අදාල කොටු තුළ අඳින්න.

(2001)

(02) පහත දැක්වෙන ${\rm E_4}$, ${\rm GF_4}$ සහ ${\rm J_3}$ යන අණුවල වනුහයන්හි ${\rm E}$, ${\rm G}$ සහ ${\rm J}$ යන මූලදවන හඳුන්වා දෙන්න.

 $E \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1c$ (2002) (03) (i) N_3^{-} (ඒසයිඩ්) අයනයෙහි සම්පුයුක්ත වෘදුත ලියන්න.

(ii) අණුවල තිබිය හැකි විකර්ශන වීකකවල (බන්ධන සහ චකසර යුගළවල) සැකසුම් දැක්වීම සඳහා පාවිච්චි කළ හැකි දළ සටහන් තුනක් පහත දී ඇත.

සුදුසු දළ සටහන තෝරා ගනිමින්,

 ${
m SiF}_4$, ${
m XeF}_4$ සහ ${
m SF}_4$ යන අණුවල මධ සපරමාණුව වටා විකර්ශන ඒකකයන් හි සැකැස්ම දක්වන්න. මේ සඳහා එක් එක් කවය තුළ මධ සපරමාණුව ද, බන්ධන ඝන රේඛා (-) මගින් ද, එකසර යුගළ රමගින් ද දක්වන්න.

(2006)

(04) පහත දැක්වෙන වගුවෙහි ඇති එක් එක් දුවෳයෙහි, බන්ධනයක් ඇත්නම් එහි ආකාරය ද අන්තර්-අණුක බලයක් ඇත්නම් එහි ආකාරය ද, වගුවෙහි දී ඇති ඒවායින් තෝරා ලියන්න.

ළවසය	බන්ධනයෙහි ආකාරය (අයනික, ධුැවීය සහ සංයුජ, නිර්ධුැවීය සහ සංයුජ)	අන්තර් අණුක බලයෙනි ආකාරය (ද්විධුැව-ද්විධුැව, හයිඩ්රජන් බන්ධන, ලන්ඩන් බල)		
(i) අයඩීන් (ඝන)				
(ii) කාබන් ටෙට්රාක්ලෝරයිඩ් (දුව)				
(iii)ආගන් (දුව)				
(iv)සෝඩියම් හයිඩ්රයිඩ් (ඝන)				
(v) සල්ෆර් ඩයොක්සයිඩ් (වායු)				

(2010)

(05) (a) පහත දී ඇති (i)-(vi) කොටස් බයිකාබනේට් අයනය, ${
m HCO}_3$ ි මත පදනම් වේ. ${
m HCO}_3$ ි හි සැකිල්ල පහත දී ඇත.

- (i) මෙම අයනය සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් වනුහය අඳින්න.
- (ii) මෙම අයනයෙහි සම්පුයුක්ත වසුත ඇඳ, චීවායේ සාපේකෂ ස්ථායිතාව පිළිබඳ අදහස් දක්වන්න.

(iii) VSEPR වාදය භාවිත කරමින් පහත දී ඇති පරමාණු වටා හැඩ අපෝහනය කරන්න. I. C

II. H ට සම්බන්ධිත O

- (iv) පහත දී ඇති පරමාණු වටා ඇති ඉලෙක්ටෝන ජනාමිතිය (ඉලෙක්ටෝන යුගල් සැකසුම) දෙන්න.
 - I. C
 - II. H ට සම්බන්ධිත O
- (v) පහත දී ඇති පරමාණුවල මුහුම්කරණ දක්වන්න.
 - I. C
 - II. H ට සම්බන්ධිත O
- (vi) ඉහත (i) හි අඳින ලද ලුවිස් වුහුහයෙහි අඩංගු පහත දී ඇති σ බන්ධන සෑදීම සඳහා සහභාගිවන පරමාණුක කාක්ෂික / මුහුම් කාක්ෂික හඳුනාගන්න.
 - I. H ට සම්බන්ධිත C හා O අතර
 - II. O හා H අතර

(b) පහත දී ඇති වගුව, ${
m Mg}$, ${
m CO}_2$, ${
m SiO}_2$, ${
m NaCl}$ සහ ${
m MgO}$ යන දුවස පහෙහි දුවාංකවල ආසන්න අගයයන් සහ විදසුත් සන්නයනතා (විශිෂ්ටයි, හොඳයි, දුර්වලයි, ඉතා දුර්වලයි හෝ නැත යන සාපේකෂ පදවලින්) දක්වයි. ''දුවසය'' ලෙස නම් කර ඇති තීරුවෙහි උචිත දුවසයේ සූතුය ලිවීමෙන් වගුව සම්පූර්ණ කරන්න.

	දුවායය	දුවාංකය / K	ඝන අවස්ථාවේදී විදාුුුත් සන්නයනතාව	විලීන/දුව අවස්ථාවේදී විදයුත් සන්නයනතාව	
(1)		3200	ඩිලල්ප්දු	හොඳයි	
(2)		1100	සිලවේදු	හොඳයි	
(3)		920	විශිෂ්ටයි	විශිෂ්ටයි	
(4)		200	ඉතා දුර්වලයි / නැත	ඉතා දුර්වලයි / නැත	
(5)		1900	ඉතා දුර්වලයි / නැත	ඉතා දුර්වලයි / නැත	

(2011)

(06) (a) ආම්ලීකෘත ජලීය නයිට්රයිට දාවණ H_2O_2 භාවිතයෙන් නයිට්රේට බවට ඔක්සිකරණය කිරීමේදී අතරමැදි ඵලයක් ලෙස පෙරොක්සොනයිට්රස් අම්ලය (HOONO) සෑදේ. පෙරොක්සොනයිට්රයිට අයනය $[OONO]^{\mathsf{T}}$ සම්බන්ධයෙන් (i) සිට (vii) තෙක් කොටස් සඳහා පිළිතුරු සපයන්න. එහි සැකිල්ල පහත දී ඇත.

O-O-N-O

(i) මෙම අයනය සඳහා වඩාත් ම පිළිගත හැකි ලුව්ස් වුහුය අඳින්න.

(ii) මෙම අයනය සඳහා සම්පුයුක්ත වනුහ අඳින්න. හේතු දක්වමින් චීවායේ සාපේඤ ස්ථායිතා පිළිබඳව අදහස් දක්වන්න.

- (iii) VSEPR වාදය භාවිතකරමින් පහත පරමාණු වටා ඇති හැඩ වසුත්පන්න කරන්න.
 - I. N

II. N සහ O යන දෙකටම බැඳුණු O

					_	_
١	(iv	۱ ،	ജമാ	æ	2072	වගවෙහි
	IIV I		יטיטי	\sim	CEGOO	

- I. පරමාණු වටා ඉලෙක්ටෝන යුගල් ජනමිතිය (ඉලෙක්ටෝන යුගල්වල සැකසුම)
- II. පරමාණුවල මුහුම්කරණය

සඳහන් කරන්න.

	N	N සහ O යන දෙකටම බැඳුණු O
I. ඉලෙක්ටෝන යුගල ජනාමිතිය		
II. මුහුම්කරණය		

- (v) ආසන්න බන්ධන කෝණ දක්වමින් ඉහත (i) කොටසෙහි අඳින ලද ලුවිස් වනුහයේ හැඩය දළ සටහන් කරන්න.
- (vi) ඉහත (i) කොටසෙහි අඳින ලද ලුවිස් වනුහයෙහි පහත දක්වා ඇති බන්ධන සෑදීම සඳහා සහභාගී වන පරමාණු / මුහුම් කාක්ෂික හඳුනාගන්න. පහත දැක්වෙන පරිදි ඔක්සිජන් පරමාණු 1,2 සහ 3 ලෙස නම් කර ඇත.

$$I.$$
 $\overset{1}{O}$ සහ $\overset{2}{O}$

- (vii) පෙරොක්සිනයිට්රස් අම්ලයෙහි සමාවයවිකයක් දෙන්න.
- (b) (i) පහත දී ඇති ලැයිස්තුවෙන් ධුැවීය විශේෂ දෙකක් දෙන්න. ${\rm H_2CO}~({\rm cori} {\rm exc} {\rm de} {\rm d$
 - (ii) පහත දැක්වෙන එක් එක් යුගලයේ අණු අතර පවතින අන්තර් අණුක බල වර්ගය/වර්ග සඳහන් කරන්න.

$$I.~~HBr_{(g)}$$
 සහ $H_2S_{(g)}$

II.
$$\operatorname{Cl}_{2(g)}$$
සහ $\operatorname{CCl}_{4(g)}$

$${
m III.}\ {
m CH_3OH_{(l)}}$$
 සහ ${
m H_2O_{(l)}}$

(2012)

(07)	(a) නයිටුමයිඩ් $(H_2N$ - NO_2) දුබල අම්ලයකි. භෂ්මයක් හමුවේදී එය N_2O සහ H_2O බවට වියෝජනය වේ
	නයිටුමයිඩ් මත පදනම් වී ඇති (i) සිට (v) කොටස්වලට පිළිතුරු සපයන්න. එහි සැකිල්ල පහත දී ඇත

- (i) මෙම අණුව සඳහා වඩාත්ම පිළිගත හැකි ලුව්ස් වුනුගය අඳින්න.
- (ii) මෙම අණුව සඳහා සම්පුයුක්ත වනුහ අඳින්න. හේතු දක්වමින් චීවායේ ස්ථායිතා පිළිබඳ අදහස් දක්වන්න.

- (iii) පහත දී ඇති වගුවෙහි දක්වා ඇති
 - I. පරමාණු වටා ඇති ඉලෙක්ටෝන යුගල ජනම්තිය (ඉලෙක්ටෝන යුගලවල සැකසුම)
 - II. පරමාණු වටා ඇති හැඩය
 - III. පරමාණුවල මුහුම්කරණය සඳහන් කරන්න.

	H පරමාණු දෙකකට බැඳුණු N	O පරමාණු දෙකකට බැඳුණු N
I. ඉලෙක්ටුෝන යුගල ජනමිතිය		
II. හැඩය		
III. මුහුම්කරණය		

- (iv) මෙම අණුව ධුැවීයද නැතහොත් නිර්ධුැවීයද?
- (v) ඉහත (i) කොටසෙහි අඳින ලද ලුවිස් වනුහයෙහි පහත දක්වා ඇති බන්ධන සෑදීම සඳහා සහභාගී වන පරමාණුක/මුහුම් කාක්ෂික හඳුනා ගන්න. පහත දැක්වෙන පරිදි N පරමාණු 1 සහ 2 ලෙස නම් කර ඇත.

$$\begin{array}{ccc}
H & O \\
\downarrow & \downarrow \\
H - N - N - O
\end{array}$$

I.	N^1 සහ N^2	
	1	

- (b) ${
 m Xe}$, ${
 m CH_3Cl}$, ${
 m HF}$ ඉහත දක්වා ඇති දුවසය අතුරින්, කුමන එක / ඒවාට පහත දක්වා ඇති බල තිබේද?
 - (i) ද්විධුැව-ද්විධුැව බල
 - (ii) තයිඩුජන් බන්ධන බල

(iii) ලන්ඩන් අපකිරණ බල

(2013)

(08) (a) 2- සයනෝගුවනිඩින් ($C_2H_4N_4$) කෘෂිකර්මයේ දී බනුලව භාවිතා කෙරෙන රසායනික දුවසයකි. පහත දී ඇති (i) සිට (v) පුශ්න 2- සයනෝගුවනිඩින් මත පදනම් වී ඇත. එහි සැකිල්ල පහත දී ඇත.

(i) මෙම අණුව සඳහා **වඩාත් ම පිළිගත හැකි** ලූවිස් වූඅහය අඳින්න.

(ii) මෙම අණුව සඳහා (ඉහත (i) හි අඳින ලද වනුහ හැර) සම්පුයුක්ත වනුහ **හතරක්** අඳින්න.

- (iii) පහත වගුවෙහි දක්වා ඇති C හා N පරමාණුවල :
 - I. පරාණුව වටා ඇති ඉලෙක්ටෝන යුගල ජනම්තිය (ඉලෙක්ටෝන යුගල සැකසුම)
 - II. පරමාණුව වටා ඇති හැඩය
 - III. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

2-සයනෝගුවනිඩීන්වල කාබන් සහ නයිටුජන් පරමාණු පහත දක්වා ඇති ආකාරයට ලේබල් කර ඇත.

$$N^{1} - C^{2} - N^{3} - C^{4} - N^{5}$$

		C^2	N^3	C^4	N^5 හෝ N^6
I.	ඉලෙක්ටුෝන යුගල ජනාමිතිය				
II.	හැඩය				
III.	මුහුම්කරණය				

		(v)	ඉ හ	ාත (i) කොටසෙහි	අඳින ලද ලුවිස් ව ූ ත	යෙහි පහත දක්	ත්වා ඇති	හි σ - බන්ධෑ	න සෑදීම සඳප	තා සහභාගි
		(-)	_	.,	කාක්ෂික හඳුනාගන්	_	·			
				$N^1 - C^2$	N ¹					,
			II.	C^2 - N^3	C ²		N^3			
			III	N^3 - C^4	N ³		, C ⁴			
	(b)	СН	I CI (a	නපාංකය 249 K) :	සහ CH ₃ I (තාපාංස	තය 316 K) යෑ	ත රසාය	ෘතික උවස (දෙක සලකන්	'න.
	(2)	(i)	0		සූර්ණය ඇත්තේ කු®			g=		.
		()			ω					
		(ii)	i) වඩා පුබල ලන්ඩන් අපකිරණ බල ඇත්තේ කුමන දුවෳයට ද?							
	()									
		(iii)) වඩි)ා පුබල මුළු අන්ත	ර් අණුක ආකර්ෂණ	බල ඇත්තේ අ	කුමන දු	දීද රිකඅල්		
		(iv)) මේ	ම දුවන දෙක සැස	ළීමේ දී වඩා පුමුඛ ව	 වන අන්තර් අණු	ණුක බල) වර්ගය කු	 ාමක් ද?	
			(වි	දුපුත් සෘණතාවය :	H=2.1, C=2.5,	I=2.5, Cl=3.	.0)			(2014)
(09)	(a)		පහත	සඳහන් රසායනික	විශේෂ සලකන්න.					
			XeF_2	, NO ₃ , SF ₅ , N	$[a_2SO_4, SO_3, HF]$					
			ඉහත ව	විශේෂවලින් කුමක්	/කුමක,					
			(i)	අයනික බන්ධන ප	තා සහබන්ධන යන ම	දෙකම අඩංගු (වේ ද?			
			(ii)	BF_3 හා සමඉලෙන	ක්ටෝනික වේ ද?					
			(iii)	සමචතුරසුාකාර දි	පිරමිඩීය හැඩයක් ග	නී ද?				
			(iv)	එහි වඩාත් ම ස්ථ	ායි වසුහයේ, බන්ධන	ා ඉලෙක්ටුෝන	සංඛනාදි	Ð		
				හා බන්ධන නොව	න ඉලෙක්ටෝන සංද	බනව සමාන ෙ	ව් ද?			
			(v)	1s පරමාණුක කා	ක්ෂිකයක් හා 2p පං	රමාණුක කාක්§ි	ෂිකයක්			
				අතිච්ඡාදනය වීම	හේතුවෙන් සෑදෙන σ	-බන්ධනයක් ති	බේ ද?			
			(vi)	180^0 බන්ධන කෙ	ා්ණයක් අඩංගු වේ ද	5 9				

(iv) වන්ධන කෝණවල ආසන්න අගයයන් දක්වමින් ඉතත (i) කොටසෙහි අඳින ලද ලුවිස් වනුහයේ

කෝණ පෙන්වන්න).

හැඩයේ දළ සටහනක් අඳින්න. (N-H බන්ධන හා සම්බන්ධ කෝණ හැර අනිකුත් සියලු ම බන්ධන