EEE336 Signal Processing and Digital Filtering

Lecture 1 Introduction

1_1 Basic Information

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Module Information

• Module Code: EEE336

• Module Title: Signal Processing and Digital

Filtering

• Module Credit: 5 credits

Module Leader: Zhao Wang

- My office: EE322

- Office hour: 13:00 - 15:00 p.m. everyday

Teaching Assistant: Zhenzhen Jiang

Module Information

- Time tabling:
 - The first 6 weeks:
 - Video watching: 3-4 hours / week
 - Practicing: about 2 hours / week
 - Weeks 7-16:
 - Video watching: 0-4 hours / week
 - Practicing: about 2 hours / week
 - In-class teaching: 4 hours
 - Formal Lab (3 hours, 15%):
 - Extra time to complete the programming and lab report: about 10-20 hours.

Learning Process

- What's new about this module: flipped classroom!
 - Most teaching content will be presented as short video clips on ICE
 - Watch them beforehand, and answer the quizzes after each video;
 - Practices
 - Typical problems;
 - Programming practices;
 - If you find something not clear:
 - Watch the video again;
 - Read the complementary documents / reference materials;
 - Inform the lecturer (by email or face to face) about your confusion.
 - In-class lecture
 - Quick test, summary and review, discussion, tutorial.

Resources

• On ICE:

Video clips on theoretical contents and programming demo,
 quizzes and problems, discussion topics in forum, ...

Reference books

- 1. S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th., McGraw-Hill, 2006.
- 2. S. J. Orfanidis, Introduction to Signal Processing, Prentice Hall, 2003.
- 3. A.V.Oppenheim, Discrete Time Signal Processing, Prentice Hall, 1999.
- 4. J.G.Proakis, Digital Signal Processing, Principles, Algorithms and Applications, 3rd., Prentice Hall, 1996.

More resources

• Online courses:

- "Digital Signal Processing" on Coursera
 - Provided by École Polytechnique Fédérale de Lausanne
 - https://www.coursera.org/learn/dsp/home/info
- "Digital Signal Processing" on OCW
 - Provided by MIT
 - https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/index.htm

Softwares

- Matlab (vR2016a)
 - Signal Processing Toolbox, DSP System Toolbox, Audio System Toolbox, ...
- Audacity, Sonic Visualiser, etc.

More resources

- CD content of Ref.1, "Digital Signal Processing: A Computer-Based Approach, 4th." by Sanjit K. Mitra
 - http://www.cems.uvm.edu/~gmirchan/classes/EE275/Mitra_4/
- "Introduction to Digital Filters with Audio Applications" by Julius O. Smith III
 - https://ccrma.stanford.edu/~jos/filters/
- "Digital Signal Processors" by TI (Texas Instrument)
 - http://www.ti.com/processors/digital-signalprocessors/overview.html
- "科学计算 使用Matlab" by 张智星
 - https://www.camdemy.com/media/3308#cmt1

EEE336 Digital Signal Processing

Lecture 1 Introduction 1_2 What is SIGNAL?

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

What's this module about?

Digital Signal Processing

+

Digital Filtering

=

Signal Processing and Digital Filtering

Digital Signal Processing

- What is "Signal"?
- What is "Signal Processing"?
- What is "Digital Signal Processing"?
- Why do we want Digital Signal Processing?
- Where is Digital Signal Processing used?

Section 1 2

Section 1_3

Section 1_4

Section 1_4

Section 1_5

Digital Signal Processing

- Signal physical quantity that is represented as a function of *independent variables*.
 - Some examples:
 - Temperature
 - Sound
 - Photograph
 - Video

Digital Signal Processing

• Every signal carries information.

Digital Signal Processing

- Signal Processing
 - Analyze understanding the information carried by the signal
 - Synthesize creating a signal to contain the given information

- System: "something" that can manipulate, change, record, or transmit input signals.
 - Example: CD/DVD player, digital thermalmeter, etc.

Classification of Signals

- Continuity in time:
 - Continuous time signals vs. discrete time signals
- Continuity in value:
 - Continuous valued signals vs. digital signals
- Value of the signals:
 - Real valued signals vs. complex valued signals
- Number of channels:
 - Single channel signals vs. multichannel signals
- Certainty:
 - Deterministic vs. random signal
- Number of dimensions:
 - One-dimensional vs. two dimensional vs. multidimensional signals

Characterization of Signals

Example of Typical Signals (1/5)

- Speech and music signals Represent air pressure as a
 function of time at a point in
 space
 - "I like digital signal processing":

- Which one sounds better?
- What has been done to it?

Example of Typical Signals (2/5)

• Electrocardiography (ECG) Signal - Represents the electrical activity of heart

One period of the waveform

Example of Typical Signals (3/5)

• Black-and-white picture - Represents light intensity as a function of two spatial coordinates

Example of Typical Signals (4/5)

• Color Image – Consists of Red, Green, and Blue (RGB) components

Example of Typical Signals (5/5)

• **Video signals** - Consists of a sequence of images, called frames, and is a function of 3 variables: 2 spatial coordinates and time

Frame 3

Frame 5

1_2 Wrap up

- What is "Signal"?
- Classification of signals
- Example of typical signals
 - Audio: speech and music
 - ECG and EEG
 - Pictures: black and white, color
 - Video

EEE336 Digital Signal Processing

Lecture 1 Introduction 1_3 What is Signal Processing?

Zhao Wang
Zhao.wang@xjtlu.edu.cn

Room EE322

Signal Processing

- > A signal carries information.
- > The objective of signal processing is to extract the information carried by the signal
- Signal processing is concerned with the mathematical representation of the signal and the algorithmic operation carried out to extract the information.
 - DSP: signal processing in the digital domain

Typical Signal Processing Operations

- Most signal processing operations of analog signals are carried out in the *time-domain*;
- In the case of discrete-time signals, both *time-domain* or *frequency-domain* operations are usually employed.
- Examples of typical signal processing operations:
 - Time domain operations
 - Elementary operations: scaling, delay, arithmetic operations
 - Frequency domain operations
 - Filtering
 - Modulation (Amplitude modulation)
 - Multiplexing and demultiplexing

Elementary Time-domain Operations (1/3)

- *Scaling* the multiplication of a signal by a positive or negative constant.
- If x(t) is an analog signal that is scaled by a constant α , then the scaling operation generates:

$$y(t) = \alpha x(t)$$

- If $|\alpha| > 1$, the operation is called *amplification*;
 - Where the constant α is called "gain".
- If $|\alpha|$ <1, the operation is called *attenuation*.

Elementary Time-domain Operations (2/3)

- **Delay** the delay operation generates a delayed replica of the original signal.
- For an analog signal x(t),

$$y(t) = x(t - t_0)$$

is the signal obtained by delaying x(t) by the amount of time t_0 , which is assumed to be a positive value.

– If t_0 is negative, then it is an *advance* operation.

Elementary Time-domain Operations (3/3)

- Most applications require operations involving two or more signals to generate a new signal
- Addition

$$y(t) = x_1(t) + x_2(t)$$

• Production

$$y(t) = x_1(t) \cdot x_2(t)$$

Subtraction

$$y(t) = x_1(t) - x_2(t)$$

• Division

$$y(t) = x_1(t)/x_2(t)$$

• Most complex operations are implemented by combining two or more elementary operations.

Filtering (1/4)

- Filtering deliberately changing the frequency content of the signal.
- An ideal filter passes certain frequency components without distortion and blocks other frequency components.

Ideal Lowpass Filter

Practical Lowpass Filter

Filtering (2/4)

- Typical types of filters
 - Lowpass (LPF) removes high freqs, and retains low freqs
 - Highpass (HPF) removes low freqs, and retains high freqs
 - Bandpass (BPF) retains an interval of freqs within a band, removes others
 - Bandstop(BSF) removes an interval of freqs within a band, retains others
 - Notch filter removes a specific frequency
 - Comb filter removes a series of frequencies (integral multiples of a low frequency)

1.2.2 Filtering (3/4)

$$y(t) = x_1(t) + x_2(t) + x_3(t)$$

Filtering (4/4)

Modulation and Demodulation (1/2)

• In Amplitude Modulation:

- Carrier signal $c(t) = A \cos(\Omega_0 t)$
- Modulating signal $x(t) = \cos(\Omega_0 t)$
- Modulated signal $y(t) = c(t) \cdot x(t)$

$$y(t) = \frac{A}{2}\cos((\Omega_0 + \Omega_1)t) + \frac{A}{2}\cos((\Omega_0 - \Omega_1)t)$$

$$Y(j\Omega) = \frac{A}{2}X(j(\Omega_0 + \Omega_1)) + \frac{A}{2}X(j(\Omega_0 - \Omega_1))$$

Modulation and Demodulation (2/2)

- Demodulation is carried out in two stages:
 - Multiply the modulated signal y(t) with a sinusoidal signal of the same frequency as the carrier:

$$r(t) = y(t)\cos(\Omega_0 t) = Ax(t)\cos^2(\Omega_0 t)$$
$$= \frac{A}{2}x(t) + \frac{A}{2}x(t)\cos(2\Omega_0 t)$$

– Use a lowpass filter to recover the original modulated signal. The cut-off frequency of this lowpass filter should be Ω_0

Multiplexing and Demultiplexing

• Multiplexing - to efficiently utilize a wideband transmission channel, many narrowband low-frequency signals are combined for a composite wideband signal that is transmitted as a single signal.

1_3 Wrap up

- What is "Signal Processing"?
- Typical Signal Processing Operations
 - Time domain operations
 - Elementary operations: scaling, delay, arithmetic operations
 - Frequency domain operations
 - Filtering
 - Modulation (Amplitude modulation)
 - Multiplexing and demultiplexing

EEE336 Digital Signal Processing

Lecture 1 Introduction 1_4 What is DSP?

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

Analogue Signal Processing

- Most real-world signals are analogue
 - They are continuous in time and amplitude
- Analogue circuits process these signals using
 - Resistors, Capacitors, Inductors, Amplifiers,...
- Limitations of Analogue Signal Processing
 - Low anti-interference;
 - Unstable;
 - Unsecure;
 - Complexity;
 - Inflexibility.

Anti-interference and high precision

Analogue signal is jammed by the external noise.

Digital signal is jammed by the external noise.

Stability

Old picture

Tape recorder quality

Digital picture

CD quality

Security

Easy processing

Flexibility

$$H_1(z) = \frac{(0.0943 - 0.2828z^{-2} + 0.2828z^{-4} - 0.0943z^{-6}) \times 10^{-3}}{1 - 5.5242z^{-1} + 12.9897z^{-2} - 16.6206z^{-3} + 12.2014z^{-4} - 4.8741z^{-5} + 0.8288z^{-6}}$$

$$H_2(z) = \frac{0.8588 - 4.8975z^{-1} + 11.8861z^{-2} - 15.6940z^{-3} + 11.8861z^{-4} - 4.8975z^{-5} + 0.8588z^{-6}}{1 - 5.4139z^{-1} + 12.4787z^{-2} - 15.6561z^{-3} + 11.2736z^{-4} - 4.4190z^{-5} + 0.7375z^{-6}}$$

Original scale signal

Bandstop

Bandpass

- Limited Frequency Range of Operation
 - Frequency range technologically limited to values corresponding to maximum computing capacities (e.g., A/D converter) that can be developed and exploited
- Digital systems are active devices, thereby consuming more power and being less reliable
- Additional Complexity in the Processing of Analog Signals
 - A/D and D/A converters must be introduced adding complexity to overall system
- Inaccuracy due to finite precision arithmetic
 - Quantization and round-off errors

What is Digital Signal Processing?

- 1. Represent signals by a sequence of numbers
 - Sampling and analog-to-digital conversions
- 2. Perform processing on these numbers with a digital processor
 - Digital signal processing
- 3. Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

Output of A/D Converter (quantized binary)

Output of Digital Processor (binary)

Output of D/A Converter (analog)

Output of LPF - Analog Signal

Digital Signal Processor

- A DSP (Digital Signal <u>Processor</u>) is a highly specialized microprocessor that is specifically designed and optimized for DSP (Digital Signal <u>Processing</u>) operations.
- The first successful dedicated DSP chip was the Texas Instruments, TMS 32010 (1983).
 - Separate data and instruction memory
 - Special instruction set for load / multiply / accumulate
 - 16 bits. 390ns for a single multiply-add operation
- TI then built many variations of this chip, with the C2000, C5000, C6000 and DaVinci series. TI is the largest producers of DSP chips today.

1_4 Wrap up

- Why do we use DSP?
 - Analog Signal Processing limitations
 - Advantages of DSP
 - Anti-interference, stability, security, easy processing, flexibility
 - Disadvantages
- What is DSP?
 - Digital Signal Processing
 - DSP System
 - Digital Signal Processor
 - TI (Texas Instrument)

EEE336 Signal Processing and Digital Filtering

Lecture 1 Introduction

1_5 Applications

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

• Digitalized daily living equipments:

• Digitalized living environment

• Digitalized living environment

Digital Home

• Digitalized living environment

膳食科

医疗管理

耳球点中不够多 超過可能子标签

Digital Hospital

Digital Agriculture

临床数据和报告

语音、扫描仪、 数码相机

药房药库

Digitalized living style

Transportation

Shopping

Reading

Teaching

• Digitalized daily techniques

Identity recognition

Music sharing

Digital modelling

1_5 Wrap up

DSP is Everywhere

- Signal analysis, noise reduction /removal :
 - biological signals, physical signals, financial data, etc.
 - Audio signal processing, echo cancellation, ...
- Communications
 - analog communications
 - digital and wireless transmission
- Data encryption, watermarking, fingerprint analysis, speech recognition
- Image processing and reconstruction, MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), CT (Computerized Tomogrphay) scans
- Signal generation, electronic music synthesis

Chapter 1 Wrap up

- Chapter 1 Introduction
 - Module information
 - What is signal?
 - What is signal Processing?
 - What is DSP (Digital Signal Processing)?
 - Why DSP is so popular?
 - Applications of DSP
- Next:
 - Mathematics revision
 - Introduction to Matlab

