

Atividade: Independência e complementariedade

Habilidades

а

Para o professor

Objetivos específicos

OE1 Aplicar o conceito de independência entre dois eventos para entender que o respectivos eventos complementares herdam essa a condição de eventos independentes.

Observações e recomendações

Essa atividade é um exercício teórico de dedução muito simples que revela uma propriedade importante entre eventos independentes: dada uma coleção de eventos independentes, se para alguns eventos (ou todos) considerarmos os seus complementares em vez do próprio, a coleção continua independente. Com fins de simplificação e não tornar o processo complicado, consideraremos nesta atividade apenas o caso para dois eventos independentes. Mas, de fato, o resultado vale para quaisquer coleções de eventos independentes.

Atividade

Sejam A e B dois eventos independentes. Mostre que os pares de eventos a seguir também são independentes:

- a) $\overline{A} \in \overline{B}$:
- b) $A \in \overline{B}$; e
- c) $\overline{A} \in B$.

Solução:

a) Por hipótese temos que $P(A \cap B) = P(A) \cdot P(B)$, pois $A \in B$ são independentes. Queremos provar que $\overline{A} \in \overline{B}$ também são independentes, ou equivalentemente, que $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \cdot P(\overline{B})$. Pelas Leis de De Morgan trabalhadas em atividade anterior, sabemos que $\overline{A} \cap \overline{B} = (\overline{A \cup B})$. Portanto, usando a propriedade do evento complementar, podemos escrever $P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B)$.

Mas,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A) \cdot P(B)$$

Patrocínio:

ela independência entre A e B. Assim,

$$\begin{split} P(\overline{A} \cap \overline{B}) &= 1 - P(A) - P(B) + P(A) \cdot P(B) \\ &= 1 - P(A) - P(B) \cdot (1 - P(A)) \\ &= (1 - P(A)) \cdot (1 - P(B)) \\ &= P(\overline{A}) \cdot P(\overline{B}) \end{split}$$

- . Portanto, se A e B são independentes, então \overline{A} e \overline{B} também são independentes.
- b) Por hipótese temos que $P(A \cap B) = P(A) \cdot P(B)$, pois $A \in B$ são independentes. Queremos provar que $A \in \overline{B}$ também são independentes, ou equivalentemente, que $P(A \cap \overline{B}) = P(A) \cdot P(\overline{B})$. Observe que podemos escrever $A = (A \cap B) \cup (A \cap \overline{B})$ com os dois eventos do lado direito sendo disjuntos. Assim, $P(A) = P(A \cap B) + P(A \cap \overline{B})$ implicando que $P(A \cap \overline{B}) = P(A) P(A \cap B) = P(A) P(A) \cdot P(B)$ pela independedência de $A \in B$. Logo, $P(A \cap \overline{B}) = P(A) \cdot (1 P(B)) = P(A) \cdot P(\overline{B})$ e, portanto, se $A \in B$ são independentes, então $A \in \overline{B}$ também são.
- c) Idem ao item anterior, bastando trocar de posição as letras $A \in B$.

OLIMPÍADA BRASILEIRA
O DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Itaú Social

Patrocínio: