

Hidden Markov Models

and related topics

Part 2

Machine Learning 2019

Michael Wand, Jürgen Schmidhuber, Cesare Alippi

TAs: Robert Csordas, Krsto Prorokovic, Xingdong Zou, Francesco Faccio, Louis Kirsch

Overview

- Quick Recap of last time: Gaussian Mixtures, Latent Variables, Markov Models
- The HMM formalism
- Example: Speech Recognition

Recap: Gaussian Mixtures

- Idea: model arbitrary data with mixtures of Gaussians
 - much more flexible than single Gaussians
 - straightforward probability density formula

$$p(x) = \sum_{k} \pi_{k} \mathcal{N}(x|\mu_{k}, \sigma_{k})$$

- ML estimation of parameters: *Expectation Maximization* algorithm
- Image source (left): Bishop, PRML, fig. 2.21, modified
- closed-form estimation is impossible because both class assignments and parameters must be optimized
- class assignments as hidden variables which are probabilistically modeled

Recap: Markov Systems

 Sequential processes: system transits probabilistically between states

• probabilities for next states depend *only on current state* (equivalently: on the last few states, but always with fixed horizon)

• "memory-less" process

Recap: Markov Systems

- Sequential processes: system transits probabilistically between states
 - probabilities for next states depend *only on current state* (equivalently: on the last few states, but always with fixed horizon)
 - "memory-less" process
- Question: What is $P(q_t=s)$ (the probability of being in state s at time t?
 - Need to sum over a huge number of possible paths
 - Efficient solution: dynamic programming (DP)

Just fill in this table in this order:

Hidden Markov Models (HMMs)

(this part is based on a lecture By Prof. Andrew Moore, Carnegie Mellon University)

Introducing the HMM

- So far, we assumed that we can observe the state evolution of the Markov model directly
 - remember the robot example
 - state = combination of robot position and human position
- But what if we cannot?
 - Assume the robot has sensors, but cannot see arbitrarily far
 - maybe it does not see the human because she is somewhere else
 - and neither does it know its own absolute position

Example: Robot with Proximity Sensors

• example: *proximity sensors* – the robot can observe the contents of the adjacent 8 squares

Example: Robot with Proximity Sensors

• Example: *noisy* proximity sensors

What the robot sees: Observation *O_t*

Modeling observations

A Markov model

- Has *n* states, called s_1 , s_2 , ... s_N .
- state evolution follows the Markov property

A Hidden Markov model

- Has *n* states, called $s_1, s_2, ... s_N$, whose evolution follows the Markov property
- At each timestep, has an observation O_t which depends probabilistically on the current state (but not on the history)
- O_t is a continuous or discrete random variable which depends only on current state:

$$P(O_t = x | q_t = s_i) = P(O_t = x | q_t = s_i$$
, any earlier history)

- The observations are frequently modeled with Gaussian mixtures.
- Other rules are the same as for the standard Markov model.

HMM questions

- The robot with noisy sensors is a good example for HMM modeling
- Question 1: Probability estimation
 - What is $P(O_0, O_1, ..., O_t)$?
- Question 2: Most probable path
 - What is the most probable path, given an observation $O_0, O_1, ..., O_t$?
 - l.e.

$$\operatorname{argmax}_{q_0,q_1,\dots,q_t} P(q_0,q_1,\dots,q_t|O_0,O_1,\dots,O_t)$$

- Question 3: How to optimize the HMM?
 - by maximum likelihood criterion, given a series of observations

HMM questions

- The robot with noisy sensors is a good example for HMM modeling
- Question 1: Probability estimation
 - What is $P(O_0, O_1, ..., O_t)$?

Solved by variants of Dynamic programming, just as last time

- Question 2: Most probable path
 - What is the most probable path, given an observation $O_0, O_1, ..., O_t$?
 - l.e.

$$\operatorname{argmax}_{q_0,q_1,\dots,q_t} P(q_0,q_1,\dots,q_t|O_0,O_1,\dots,O_t)$$

- Question 3: How to optimize the HMM?
 - by maximum likelihood criterion, given a series of observations

Solved by the EM algorithm!

HMM Formalization

- States: *s*₁, ..., *s*_N.
- For now, assume discrete possible observations $v_1, ..., v_M$.
- For a particular trial (i.e. sequence of observations)
 - T is the number of observations / states passed through
 - $O = O_0, O_1, ..., O_T$ is the sequence of observations
 - $Q = q_{0}, q_{1}, ..., q_{T}$ is a path, which we wish to model probabilistically

HMM Formalization

- An HMM (with discrete observations) is a 5-tuple consisting of:
 - States: *s*₁, ..., *s*_N.
 - Observations: $v_1, ..., v_M$.
 - $\{\pi_1, ..., \pi_N\}$: Starting state probabilities
 - State transition probabilities a_{ij} : $a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$, $1 \le i,j \le N$
 - Observation probabilities $b_i(m) = P(O_t = v_m \mid q_t = s_i)$, $1 \le i \le N$, $1 \le j \le M$
- The latter two are conveniently arranged in matrices

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix}, \qquad B = \begin{pmatrix} b_1(1) & \cdots & b_1(M) \\ \vdots & \ddots & \vdots \\ b_N(1) & \cdots & b_N(M) \end{pmatrix}$$

*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.

Recommended reading

Here's an HMM

- Start randomly in state s_1 or s_2
- Choose one out of two output symbols $v_1=X$, $v_2=Y$, $v_3=Z$ in each state with equal probability

Here's an HMM

- Start randomly in state s_1 or s_2
- Choose one out of two output symbols $v_1=X$, $v_2=Y$, $v_3=Z$ in each state with equal probability

$$\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}, \pi_3 = 0,$$
 $A = \begin{pmatrix} 0 & 1/3 & 2/3 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix},$ $B = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}$

$$B = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$q_0 =$	O ₀ =	
q ₁ =	O ₁ =	
$q_2=$	O ₂ =	

$q_0 =$	S ₁	O ₀ =	
q ₁ =		O ₁ =	
$q_2 =$		O ₂ =	

O₁=

O₂=

 $q_0 =$

 $q_1 =$

 $q_2 =$

$q_0 =$	S ₁	O ₀ =	X
q ₁ =	S ₃	O ₁ =	
q ₂ =		O ₂ =	

$q_0 =$	S ₁	O ₀ =	Χ
q ₁ =	S ₃	O ₁ =	X
$q_2 =$	S ₃	O ₂ =	

$q_0 =$	S ₁	O ₀ =	X
q ₁ =	S ₃	O ₁ =	X
$q_2 =$	S ₃	O ₂ =	Z

But the states are hidden!

This is what we work with:

$q_0 =$?	O ₀ =	X
q ₁ =	?	O ₁ =	X
$q_2 =$?	O ₂ =	Z

HMM Standard Algorithms

• First question: What is $P(O) = P(O_0, O_1, ..., O_T)$ for a given observation?

HMM Standard Algorithms

- First question: What is $P(O) = P(O_0, O_1, ..., O_T)$ for a given observation?
- Clearly,

$$P(O) = \sum_{Q \in \text{paths of length T}} P(O \land Q) = \sum_{Q \in \text{paths of length T}} P(O|Q) \cdot P(Q)$$

• How do we compute P(Q) and P(O|Q), for given observation and path?

HMM Standard Algorithms

- First question: What is $P(O) = P(O_0, O_1, ..., O_T)$ for a given observation?
- Clearly,

$$P(O) = \sum_{Q \in \text{paths of length T}} P(O \land Q) = \sum_{Q \in \text{paths of length T}} P(O|Q) \cdot P(Q)$$

- How do we compute P(Q) and P(O|Q), for given observation and path?
- Example with three states/observations (as before):
 - $P(Q) = P(q_0, q_1, q_2) = P(q_0) \cdot P(q_1|q_0) \cdot P(q_2|q_1) = \pi_0 \cdot a_{q_0q_1} \cdot a_{q_0q_1}$ (Markov)
 - $P(O|Q) = P(O_0|q_0) \cdot P(O_1|q_1) \cdot P(O_2|q_2) = b_{q_0}(O_0) \cdot b_{q_1}(O_1) \cdot b_{q_2}(O_2)$
- but performing such computations for many paths is infeasible!

- Let us do the computation in DP-style, just like last time
- Define $\alpha_t(i) = P(O_0, ..., O_t \land q_t = s_i)$ for t = 0, ..., T
 - this is the probability to have seen the first t observations and then being in state s_i

- Let us do the computation in DP-style, just like last time
- Define $\alpha_t(i) = P(O_0, ..., O_t \land q_t = s_i)$ for t = 0, ..., T
 - this is the probability to have seen the first t observations and then being in state s_i
- Just like last time, we can define the α_t recurrently:
 - $\alpha_{t+1}(j) = \sum_i \alpha_t(i) \cdot a_{ij} \cdot b_j(O_{t+1})$ with $\alpha_0(i) = \pi_i \cdot b_i(O_0)$
 - in other words, we get the next α_t by summing over
 - the previous α_t
 - multiplied by the relevant state transition probability and the observation probability

- Let us do the computation in DP-style, just like last time
- Define $\alpha_t(i) = P(O_0, ..., O_t \land q_t = s_i)$ for t = 0, ..., T
 - this is the probability to have seen the first t observations and then being in state s_i
- Just like last time, we can define the α_t recurrently:
 - $\alpha_{t+1}(j) = \sum_i \alpha_t(i) \cdot a_{ij} \cdot b_j(O_{t+1})$ with $\alpha_0(i) = \pi_i \cdot b_i(O_0)$
 - in other words, we get the next α_t by summing over
 - the previous α_t
 - multiplied by the relevant state transition probability and the observation probability

- Let us do the computation in DP-style, just like last time
- Define $\alpha_t(i) = P(O_0, ..., O_t \land q_t = s_i)$ for t = 0, ..., T
 - this is the probability to have seen the first t observations and then being in state s_i
- Just like last time, we can define the α_t recurrently:

•
$$\alpha_{t+1}(j) = \sum_i \alpha_t(i) \cdot a_{ij} \cdot b_j(O_{t+1})$$
 with $\alpha_0(i) = \pi_i \cdot b_i(O_0)$

- in other words, we get the next α_t by summing over
 - the previous α_t
 - multiplied by the relevant state transition probability and the observation probability
- Finally, $P(O) = \sum_i \alpha_T(i)$.

State estimation

- How do we compute $P(q_T = s_i \mid O_0, ..., O_T)$?
 - That's simple now!

$$P(q_T = s_i | O) = \frac{P(q_T = s_i \land O)}{P(O)} = \frac{\alpha_T(i)}{\sum_j \alpha_T(j)}$$

- We have done the first step towards solving a fundamental HMM
 "problem": Out of observations, we can now compute the state we are in!
 - Does this remind you of classification problems?

Most probable path

- Second HMM questions:
- What is the most probable path given an observation? Determine

$$\operatorname{argmax}_{q_0,q_1,\dots,q_T} P(q_0,q_1,\dots,q_T|O_0,O_1,\dots,O_T)$$

• In principle,

$$\operatorname{argmax}_{Q} P(Q|O) = \frac{\operatorname{argmax}_{Q} P(O|Q) \cdot P(Q)}{P(O)} = \operatorname{argmax}_{Q} P(O|Q) \cdot P(Q)$$

Most probable path

- We can also compute that with DP!
- Define

$$\delta_t(i) = \max_{q_0, \dots, q_{t-1}} P(q_0, \dots, q_{t-1}, q_t = s_i, O_0, \dots, O_t)$$

- that is the probability of the path of length t with the maximum chance of:
 - occuring
 - ending up in state s_i
 - producing the output O_0 , ..., O_t

Most probable path

- Just as before, find a recursive definition of the $\delta_t(i)$:
 - $\delta_0(i) = \pi_i \cdot b_i(O_0)$
 - $\delta_{t+1}(j) = \max_i (\delta_t(i) \cdot a_{ij} \cdot b_j(O_{t+1}))$, that is, we maximize over a set of possible transitions in the last step
- How to determine the best path?
 - So far we have the probability of the best path
 - During the recursive computation, required to save a "backpointer" to the predecessor state which yielded the maximum probability
 - When the entire observation has been processed (say, at time step T), just maximize over all $\delta_T(i)$ and step back through time to derive the most probable path

HMM Training

- We have done a lot of computations of the form $P(O_0, ..., O_t \mid \lambda)$, where λ stands for the parameters of the HMM (so far, the a_{ij} and b_i).
- Now assume we have some observations, and want to expect the HMM from them
 - we assume the number of states is fixed
- As usual, use maximum likelihood criterion:

$$\hat{\lambda} = \operatorname{argmax}_{\lambda} P(O_0, ..., O_T | \lambda)$$

- no closed-form solution available, but we do as for the Gaussian mixtures:
 - assume that the path $Q = (q_0, ..., q_t)$ is a hidden variable
 - alternatingly reestimate maximum-likelihood paths and HMM state parameters
 - Expectation Maximization

HMM Training

- We define
 - $\gamma_t(i) = P(q_t = s_i | O_0, ..., O_T, \lambda)$ (probability that state i is reached)
 - $\xi_t(i,j) = P(q_t = s_i \land q_{t+1} = s_j | O_0, ..., O_T, \lambda)$ (probability of transitions i -> j)
 - (note the difference between variable t and observation length T in these definitions we always consider the *entire* observation sequence)
- Given fixed HMM parameters, these values can be computed by a DP algorithm (for details see Rabiner's paper)

HMM Training

- With
 - $\gamma_t(i) = P(q_t = s_i | O_0, ..., O_T, \lambda)$
 - $\xi_t(i,j) = P(q_t = s_i \land q_{t+1} = s_j | O_0, \dots, O_T, \lambda)$
- the HMM parameters are reestimated as follows:

$$\hat{a}_{ij} = \gamma_0(i)$$

$$\hat{a}_{ij} = \frac{\sum_{t=0}^{T} \xi_t(i,j)}{\sum_{t=0}^{T-1} \gamma_t(i,j)}$$

$$\hat{b}_j(k) = \frac{\sum_{t:O_t = v_k} \gamma_t(j)}{\sum_t \gamma_t(j)}$$

- The two steps of path reestimation (E-step) and parameter reestimation are (M-step) repeated until a convergence criterion is satisfied.
- For HMMs, this is known as the Baum-Welch Algorithm.

Continuous-observation HMMs

- So far, we have considered HMMs whose outputs are discrete
- It is easy to extend the formulation to HMMs with continuous outputs, which are modeled by GMMs

Continuous-observation HMMs

 For applying the HMM, we can directly use the formulas as described before. As an example, consider the observation probability computation

$$P(O) = \sum_{Q \in \text{paths of length T}} P(O|Q) \cdot P(Q)$$

for which we used the forward algorithm, defining:

$$\alpha_{t+1}(j) = \sum_{i} \alpha_t(i) \cdot a_{ij} \cdot b_j(O_{t+1})$$
 with $\alpha_0(i) = \pi_i \cdot b_i(O_0)$

In the continuous case, simply define $P(O_t|q_t=s_i)\coloneqq p_i(O_t)$ with $p_i(O)=\sum_k w_k \mathcal{N}(O|\mu_k,\sigma_k)$, then:

$$\alpha_{t+1}(j) = \sum_{i} \alpha_t(i) \cdot a_{ij} \cdot p_j(O_{t+1})$$
 with $\alpha_0(i) = \pi_i \cdot p_i(O_0)$

 $(w_k$ are the mixture weights – I have renamed them because the π is already used for the HMM initial probabilities)

Continuous-observation HMMs

- Reestimating the HMM parameters now includes reestimating the means, covariance matrices, and weights of the Gaussians attached to each HMM state.
- Example: The mean of the k-th Gaussian of state s_j can be reestimated by the formula

$$\hat{\mu}_{jk} = \frac{\sum_{t} \gamma_{t}(j, k) \cdot O_{t}}{\sum_{t} \gamma_{t}(j, k)}$$

where $\gamma_t(j,k)$ is the probability of being in state j at time t, with Gaussian k accounting for the observation.

For details, see Rabiner's paper

HMMs as Classifiers

• How do we use HMMs for classification?

HMMs as Classifiers

- How do we use HMMs for classification?
- We assume that the hidden sequence of states is what we are interested in!
- We estimate it from the observation sequence, using the Viterbi algorithm
- Thus we have a sequence-to-sequence classifier:

HMMs as Classifiers

- How do we use HMMs for classification?
- We assume that the hidden sequence of states is what we are interested in!
- We estimate it from the observation sequence, using the Viterbi algorithm
- Thus we have a sequence-to-sequence classifier:

- Note that this gives a new meaning to the states as hidden variables.
- Also note that using a probabilistic *generative* model for *classification* comes with a set of issues which need to be carefully considered.

Speech Recognition with HMMs

in 5 minutes

- HMM speech recognition setup:
 - The observations are usually spectral representations of speech
 - Example: *spectrogram* of the sentence "Cottage cheese with chives is delicious" (from the TIMIT corpus)
 - horizontal axis: time
 - vertical axis: frequency
 - colors: intensity
 - one *frame* every 10 ms

- HMM speech recognition setup:
 - The hidden states, in the most simple case, correspond to phones (speech sounds)

...]

- HMM speech recognition setup:
 - The hidden states, in the most simple case, correspond to phones (speech sounds)

- Left-to-right topology, with self loops, states can repeat, GMM observation models
- One state every 10 ms

- HMM speech recognition setup:
 - The hidden states, in the most simple case, correspond to phones (speech sounds)

- Left-to-right topology, with self loops, states can repeat, GMM observation models
- One state every 10 ms
- Usually,
 - one splits each phone into three *subphones* (begin, middle, end) better modeling
 - states depend on context
 - only the observation probabilities are trained, sequence structure injected by dictionary, language model, etc.

- Training the HMM model:
 - have a somewhat large speech corpus (hundreds of hours) with many observation sequences, requires frame-level annotations
 - perform EM for several epochs (maybe 10)
 - GMMs are often pretrained for speed
- Evaluating the trained model
 - search for the best state sequence given observations
 - the HMM grows to a tree/graph structure (for example, prefix tree)
 - this has to do with the fact that we have additional constraints (dictionary, language model)
 - time-synchronous beam search (prune low-prob. hypotheses)

Conclusion / Outlook

- We have covered Hidden Markov models (HMMs)
 - the formalism
 - three fundamental questions
 - DP algorithms over and over again
 - EM training
 - usage for classification
- ... and their application in speech recognition
 - requires several changes to the original formalism (in particular during search, where additional knowledge sources are integrated)
 - nonetheless highly successful algorithm, used for many years
 - more recently: integration of neural networks and HMMs, or complete substitution of HMMs by RNNs