Network Flow

Thomas Cohn

10/4/18

Defn: A <u>vertex cover</u> in G is a collection of vertices such that every edges is incident to at least one vertex.

Defn: A edge cover in G is a collection of edges so that every vertex is incident to at least one edge.

Defn: An edge cover F is <u>minimal</u> if |F| is minimal.

Defn: An independent set $I \subset V$ is a collection of vertices with no edges among them.

Defn: An independent set is a maximum independent set if |I| is max.

Thm: (König) If G is bipartite with no isolated vertices, then the size of the maximum independent set equals the size of the minimal edge cover.

Lemma: In any graph G (not necessarily bipartite) with n vertexes, we have |I| = n - |X|, where I is a minimum independent set and X is a minimum vertex cover.

Proof: If $S \subset V$ is an independent set, then $V \setminus S$ is a vertex cover, and vice-versa. \square

Lemma: (Gallai) If G has no isolated vertices, then |E'| = n - |M|, where E' is a minimum edge cover set and M is a maximal matching.

Proof:

 $|E'|+|M|\leq n$: Take a maximal matching. No vertexes are isolated, so we can add one edge per vertex. And if the max matching has size k, and there are ℓ remaining vertexes (that is, $2k+\ell=n$), we can pick an edge cover of size $k+\ell$. $(k+\ell)+k=2k+\ell=n$. So $|E'|\leq n-|M|$

 $|E'|+|M|\geq n$: Observe that if $F\subset E$ is a minimum edge cover, and $xy\in F$, then either x or y is incident to no other edges in F. If F is a minimum edge cover, then F is a disjoint union of "stars". Assume that F is a minimum edge cover with ℓ stars. Then pick 1 edge from each star. This gives us a matching of size ℓ . So $\ell+(k_1+\cdots+k_\ell)=(k_1+1)+\cdots+(k_\ell+1)=n$. And therefore, $|E'|+|M|\geq n$.

Therefore, |E'| = n - |M|. \square

Network Flow

Defn: A network $\vec{N} = (V, E)$ is a directed graph with 2 special vertices:

- "source" s, which has only outgoing edges
- "sink" t, which has only incoming edges

and a capacity function $c: E \to \mathbb{R}_+$.

Defn: A flow f through \vec{N} is a function $f: E \to \mathbb{R}_+$ s.t.

• $f(e) \le c(e), \forall e \in E$

•
$$\forall v \in V \text{ with } v \neq s, v \neq t, \text{ we have } f^+(v) = \sum_{e \in \text{In}(v)} f(e) = f^-(v) = \sum_{e \in \text{Out}(v)} f(e)$$

Observe: If f is a flow on \vec{N} , then $f^-(s) = f^+(t)$.

Proof:
$$0 = \sum_{e \in E} (f^+(e) - f^-(e)) = \sum_{v \in V} \left(\underbrace{\sum_{e \in \text{In}(v)} f(e)}_{f^+(v)} - \underbrace{\sum_{e \in \text{Out}(v)} f(e)}_{f^-(v)} \right) = -f^-(s) + f^+(t). \square$$

Defn: If f is a flow through \vec{N} , then the strength of f is $|f| = f^+(t) = f^-(s)$.

Question: Given \vec{N} , can we find a flow f with maximum |f|? Yeah probably. Consider an arbitrary network \vec{N} with flow f.

Observe: If there is a directed path $s = x_0 \to x_1 \to \cdots \to x_k = t$ with f(e) < c(e), $\forall e$ in the path, then we can increase the flow.

Observe: If there is a path $s = x_0 \stackrel{?}{-} x_1 \stackrel{?}{-} x_2 \stackrel{?}{-} \cdots \stackrel{?}{-} x_k = t$ and f(e) < c(e), $\forall e$ in the path which are "forward", and f(e) > 0, $\forall e$ in the path which are "backward", then we can increase f.

Proof: For e in the path, define $\mathcal{K}(e) = \begin{cases} c(e) - f(e) & e \text{ is "forward"} \\ f(e) & e \text{ is "backward"} \end{cases}$ Note that $\mathcal{K}(e) > 0$ for every e is "backward".

Note that $\mathcal{K}(e) > 0$ for every ein the path.

The path. Define $\varepsilon = \min_{e \in \text{path}} \mathcal{K}(e)$, and define a new flow $f'(e) = \begin{cases} f(e) + \varepsilon & e \text{ is "forward"} \\ f(e) - \varepsilon & e \text{ is "backward"} \\ f(e) & e \text{ not in the path} \end{cases}$

Then $|f'| = |f| + \varepsilon$, and f' still satisfies conservation of flow.