Software College Northeastern University

Chapter 1 Software Quality and Testing
Overview

Contents

Software Testing Introduction

Chapter 1

- 1.1 About Software Quality
- 1.2 About Software Testing
- 1.3 Software Testing Rules

- What is Quality?
 - The totality of features and characteristics of a product or service that bears on its ability to satisfy given needs.

- What is Quality?
 - —Quality from the
 - Customer's viewpoint fitness for use, or other customer needs
 - Producer's viewpoint meeting requirements

- In the software world, a metric definition of the term "quality" has been projected as follows:
 - Quality: the degree to which software conforms to quality criteria.
 - Quality criteria include but are not limited to:

Integrity
Documantation
Understandability
Flexibility
Interoperablity
Modularity

Correctness
Reliability
Modifiability
Validity
Generality
Testability
Reusability

Resilience
Usability
Clarity
Maintainability
Portability
Efficiency

1.1 About Software Quality

Quality-Prevention and Detection

Prevention is better than cure . . .

... but not everything can be prevented!

1.1 About Software Quality

- Software quality includes activities related to
 - Process
 - Product
- Quality assurance is about the work process
- Quality control is about the product

Software Quality

1.满足用户需求; 2.建立合理的进度、成本与功能的 关系; 3.具备扩展性和灵活性; 4.能有效的处理例 外情况; 5.保持成本和性能的平衡

Software Quality Assurance

为了确保软件开发过程和结果符合预期的要求,而 建立的一系列规程,以及依照规程和计划采取的一 系列活动,以及结果评价。

Quality Control

为了达到产品的品质要求所采取的作业技术和活动。

QA and QC Broad Difference

QC
Control
Product
Detective
Testing

1.1 About Software Quality

It's all about the End-user

Does this software product work as advertised?

Functionality, Performance, System & User Acceptance ...

Testing

Will the users be able to do their jobs using this product?

Installability, Compatibility, Load/Stress ... Testing

Can they bet their business on this software product? Reliability, Security, Scalability ... testing

Software is everywhere

- · 编程大师说:"任何一个程序,于\它多一小,总存在
- ・初学者不相信大性がプログラス
- "这样的程序世间》是"个"
- · 但初学 没有。 不失效,那么
- · "没有人好好,我们就,"但如果这样的操作系统存足的话,是件最后将失效,产生一个错误。"
- · 初学者仍不满足,再问: "如果硬件不失效,那么会怎样?"
- · 大师长叹一声道: "没有不失效的硬件。但如果这样的 硬件存在的话,用户就会想让那个程序做一件不同的事, 这件事也是一个错误。"

- Qualified rate of products
 - -Qualified rate of airplane manufacturing industry
 - "Aerobus747-400" are made up of **1000,000** parts
 - Qualified rate of every part: 99.9999%
 - Do you know the qualified rate? $(99.9999\%)^{1000000} = 36.79\%$

$$(99.9999\%)$$
 $^{1000000} = 36.79\%$

- Qualified rate of products
 - Qualified rate of software
 - Coding line: 99%
 - Write 10,000 lines code
 - Do you know the qualified rate?

$$(99\%)^{10000} = 2.25 \times 10^{-44}$$

What is the next?

Northeast Blackout (2003)

508 generating units and 256 power plants shut down

Ariane 5 (1996)

The rocket self-destructed 37 seconds after launch.

Mars Polar Lander(1999)

Sensor signal falsely indicated that the craft had touched down when it was 130-feet above the surface.

- Why do we test?
 - Most security vulnerabilities are due to faulty software.
 - World-wide monetary loss due to poor software is staggering.
 - Stronger testing could solve most of these problems.

3 (S) W

- Why do we test?
 - -We want our programs to be reliable.

- What is software defect (缺陷)?
- The history of software testing

- 3 S
- Error (错误): occurs in the process of writing a program.
- Fault (故障) is to of one or more errors. Defect
- Failure (失效)
 is executed leading of incorrect state that propagates (传播) to the program's output.
- Incident (事故): no message is displayed when failure occurs.

 Software defect (缺陷) definition from IEEE 1983 of IEEE Standard 729

软件产品中所存在的问题,最终表现为用户所需要的功能没有完全实现,没有满足用户的要求。

- 3 G
- Software defect (缺陷) definition
 - Out of accord with user expectancy (期望)
 - Software function can be executed incorrectly
 - All kinds of software problems
 - E.g. Inconsistency, user interface fault
 - Defect of Software=Bug

- Defect examples:
 - Shortcoming: running slowly.
 - Inconsistency: Ctrl+S can't save all applications.
 - User interface design defect: an button should show 5 words on it ,but only 3 words could be seen.

- The source of defects
 - Requirements definition
 - Design
 - Implementation
 - -Support systems
 - Inadequate testing of software
 - -Evolution

- When does defect occur?
 - The software does not do something that the specification says it should do.
 - The software does something that the specification says it should not do.
 - The software does something that the specification does not mention.
 - The software does not do something that the product specification does not mention but should.
 - The software is difficult to understand, hard to use, slow ...

Correct program

- No syntax error
- No obvious errors during running
- No improper statements
- -Valid input correct output
- –Invalid input correct output
- –Any possible input correct output

The History of Software Testing

• At the beginning of the Software Development

• The 20th Century 1950-1960s • After The 20th Century 1970s

- Software testing definition
- Verification(验证) & Validation(确认)
- Test & debug
- Purpose of software testing
- Types of testing

- Software testing definition
 - Software testing is the essential step which is planned and systematic.
 - It is an empirical investigation conducted to provide stakeholders with information about the quality of the product or service under test.
 - We can know whether the users expectations are realized.
 - Software testing is the key step of software quality assurance.

- Software testing definition
 - The process of exercising or evaluating a system or system components by manual or automated means to verify that is satisfies specified requirements or to identify differences between expected and actual results.

Attention:

- -The essential function of software testing is verification(验证) and validation(确认).
 - Verification (验证): The software should conform to its specification (Are we building the product right?)
 - Validation (确认): The software should do what the user really requires (Are we building the right product?)

Attention:

- Verification: The process of determining whether or not the products of a given phase of the software development cycle fulfill the requirements established during the previous phase.
- Validation: The process of evaluating software at the end of the software development process to ensure compliance with software requirements.

- Attention:
 - -Test & debug
 - Automated test vs. manual operate
 - Don't know details are OK vs. must know details
 - Correctness proof and how to do with failure vs. correctness proof only
 - Checking vs. reasoning
 - Plan, under control vs. out of control

- Purpose of software testing, according to the view of G.J.Myers.
 - Find errors of software
 - Decrease the risk of software doesn't
 work

- Types of testing
 - –C1:Source of test generation
 - C2:Life cycle phase in which testing takes place
 - C3:Goal of a specific testing activity
 - C4:Characteristics of the artifact under test
 - C5:Test process models

C1:Source of test generation

Artifact	Technique
Requirements (informal)	Black-box testing
Code	White-box testing
Requirements and code	Black-box testing and white-box testing
Formal model: graphical or mathematical specification	Model-based specification
Component's interface	Interface testing

C2:Life cycle phase

Phase	Technique
Coding	Unit testing
Integration	Integration testing
System integration	System testing
Maintenance	Regression testing
Post system, pre-release	Beta-testing

1.2

Goal Tachnique

• C3:

Goal	lechnique
Advertised features	Functional
Security	Security
Invalid inputs	Robustness
Vulnerabilities	Vulnerability
Errors in GUI	GUI
Operational correctness	Operational
Reliability assessment	Reliability
Resistance to penetration	Penetration
System performance	Performance
Customer acceptability	Acceptance
Business compatibility	Compatibility
Peripherals compatibility	Configuration
Foreign language compatibility	Foreign language

C4:Artifact under test

Characteristic	Technique
Application component	Component testing
Batch processing	Equivalence partitioning, finite-state model-based testing,
Client and server	Client-server testing
Compiler	Compiler testing
Design	Design testing
Code	Code testing

C4:Artifact under test

Characteristic	Technique
Database system	Transaction-flow testing
OO software	OO-testing
Operating system	OS testing
Real-time software	Real-time testing
Requirements	Requirement testing
Software	Software testing
Web service	Web-service testing

9

- C5:Test process models
 - -Testing in waterfall model
 - Testing in V-model
 - Spiral testing
 - Agile testing
 - Test-driven development (TDD)
 - Requirements specified as tests

Maintenance

delivery

Spiral testing

- Agile testing promotes the following ideas
 - Include testing-related activities throughout a development project starting from the requirements phase
 - Work collaboratively with the customer who specifies requirements in terms of tests
 - Testers and developers must collaborate with each other rather than serve as adversaries
 - Test often and in small chunks

Example

- Consider a Web service W to be tested. When executed, W converts a given value of temperature from one scale to another, for example from Fahrenheit scale to the Celsius scale.
 - Regardless of the technique used for test generation, we can refer to the testing of W as Web-services testing(C4).
- Let's examine various types of test-generation techniques that could be used for testing W.

- Supposing tester A tests W by supplying sample inputs and checking the outputs.
 No specific method is used to generate the inputs.
 - –C1 : black-box testing
 - -C2: unit testing
 - –C3: GUI testing (If W has a GUI to interface with a user)

- Supposing tester B writes a set of formal specifications for W using the Z notation.
 The tester generates, and uses, tests from the specification.
 - –C1: black-box testing

- Supposing tester C generates tests using the formal specifications for W. C then tests W and evaluates the code coverage using one of the several code-coverage criteria. C finds that the code coverage is not 100%
 - –C1: black-box testing and white-box testing

- Supposing tester D tests W as a component of a larger application. Tester D does not have access to the code for W and hence uses only its interface, and interface mutation, to generate tests.
 - –C1: black-box testing.

3 S W

• IBM研究结果表明: 缺陷存在放大的趋势

 Defects can be imported from any phrase during software development, and they will be amplified.

The V model of software testing

Infinite test is impossible

Suppose a program *P* has inputs(*X* and *Y*) and output (*Z*). It run at a computer with 32 bits. if *X* and *Y* are integer, how many time is needed?(1 group data/ms)

 $2^{32} \times 2^{32} / 365 \times 24 \times 60 \times 60 \times 1000 = 5$ 亿年

Curved line: testing and cost

- Good-enough
- 80-20

- Test early and test often.
- Integrate the application development and testing life cycles.
- Formalize a testing methodology.
- Develop a comprehensive test plan.
- Use both static and dynamic testing.

Static testing

Dynamic testing

- Define your expected results.
- Understand the business reason behind the application.
- Use multiple levels and types of testing.
- Review and inspect the work, it will lower costs.
- Don't let your programmers check their own work.

Test passing rules

- -Whether all test cases are executed.
- Whether function design is finished.
- -Whether we get enough bugs.

- What is test case?
 - -Inputs to test the system and the predicted outputs from these inputs if the system operates according to its specification.

- Test case design rules
 - –Avoid vague test case.
 - -Similar functions should be abstracted and classified.
 - Avoid complicated test case.

- Capability for Software Tester
 - Technique ability
 - Communication ability
 - -Suspicion
 - -Confidence
 - Patience
 - Analysis ability
 - Cooperation

Keystone

- Definition of Software Quality
- Concept of QA & QC
- Definition of Software Defect
- Software Testing Definition
- Types of Testing
- The Roles of Software Testing in Software Development
- Testing Rules

Thank you!

