Abstracting the Computational Principles That Give Rise to Sensory Experience

Joshua Bowren

Where does experience come from

• The brain?

- Specific location?
- Everywhere?

Is experience equivalent to consciousness?

- Some thought the soul resides in the heart
- But "heart" has several meanings
- Starts to get philosophical

 Studying conscious experience directly is hard

- Perhaps we can study the processes that lead to sensory experience
 - Study sensory tissue in the brain

Approaches

Neuroanatomy

- Studying morphology

Neurobiology

- Recording neuron spiking activity
- Noninvasive methods (e.g. fMRI, EEG)

Psychophysics

- Measuring human cognitive abilities

Computational modeling

- Programs that implement mathematical models

What do we mean by sensory experience

- Vision
- Audition (Hearing)
- Somatosensation (Touch)
- Olfaction (Smell)
- Gustation (Taste)

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Ne uron.svg/1280px-Neuron.svg.png

https://2.bp.blogspot.com/mGTtnGanaP0/Txy_ShfDfgI/AAAAAAAAAASg/kUegSPnKJ _k/s1600/action_potential.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neuron.svg/1280px-Neuron.svg.png

Internal (inner) ear

Vestibulocochlear nerve Auricle Semicircular (pinna) canals Oval window Cochlea Vestibule **Round window** Pharyngotympanic (auditory) tube **Tympanic** membrane Hammer Anvil Stirrup (eardrum) (malleus) (incus) (stapes) External acoustic meatus **Auditory ossicles** (auditory canal)

Middle ear

External (outer) ear

https://online.science.psu.edu/sites/default/files/bisc004/content/ https://online.science.psu.edu/sites/default/files/bisc004/content/ https://daydreamanatomy.com/wp-

content/uploads/2017/12/diagram-of-inner-ear-unlabeled-diagram-of-human-inner-ear-ear-anatomy-diagram-blank.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neuron.svg/1280px-Neuron.svg.png

http://www.scholarpedia.org/w/images/4/4b/Receptive field figure2.jpg

https://classconnection.s3.amazonaws.com/764/flashcards/151764/png/receptive_field_for_color_cells1352764540211.png

Andersen & Van Essen (1995)

http://www.ophthalmologytraining.com/images/Stills/Visual%20Pathway.jpg

http://toritris.weebly.com/uploads/1/4/1/3/ 14134854/7597815_orig.jpg

http://www.cse.yorku.ca/~billk/images/Vis Hierarchy.gif

https://www.gla.ac.uk/schools/humanities/research/philosophyresearch/cspe/illusions/#/figuresforproducingafter-images

https://www.gla.ac.uk/schools/humanities/research/philosophyresearch/cspe/illusions/#/figuresforproducingafter-images

http://nivea.psycho.univparis5.fr/ASSChtml/kayakflick.gif

http://nivea.psycho.univparis5.fr/ASSChtml/kayakflick.gif

https://petapixel.com/assets/uploads/201 5/02/los1eOY.jpg

https://petapixel.com/assets/uploads/201 5/02/los1eOY.jpg

https://www.gla.ac.uk/schools/humanities/research/philosophyresearch/cspe/illusions/#/change-blindness,colourcontrasteffects

Models of Neural Systems

Artificial neural networks

 Computational models based on theories of neural computation

Artificial neural networks

Artificial neural networks

Artificial neural networks

Krizhevsky, Sutskever, & Hinton (2012)

Neural Network Fooling

Nguyen, Yosinski, & Clune (2015)

Szegedy et al. (2014)

Computation and Theory Approaches

Efficient coding - Barlow (1961)

- Redundancy reduction and whitening
 - Atick, Li, & Redlich (1992)

The retina as a low pass whitening filter

- Spatial frequency
 - Low spatial frequencies are important

Low SF https://blogs.scientifica merican.com/illusionchasers/files/2014/06/Li ncoln.jpg

High SF
https://zuriest.files.word
press.com/2011/11/whit
e-noise2.jpg

Fitting in the light of the optic nerve bottleneck

Simoncelli and Olshausen (2001)

In the cortex

Sparse coding (Olshausen & Field, 1996)

- Model of V1

$$\begin{split} I &= \sum_{n}^{N} a_{n} \Phi_{n} = \Phi \, a \\ \\ a &\sim Laplace \, (\lambda) \\ I &\sim N \, (\Phi \, a \,, \sigma^{2}) \end{split} \qquad \begin{aligned} a_{ML} &= arg \, max_{a} P \, (a \, | \, I) \\ \Phi_{ML} &= arg \, max_{\Phi} P \, (I \, | \, a) \end{aligned}$$

Sparse coding

V1 simple cells as Gabor filters

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 10-35

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neuron.svg/1280px-Neuron.svg.png

https://info.adimec.com/hs-fs/hub/20421/file-39331860-png/images/1-ccd-and-bayer-color.png?t=1515527438180

Image compression

Based on an illustration from Brian Wandell's book Foundations of Vision

- JPEG
 - Discrete Cosine Transform

Brain Machine Interfaces (BMIs)
 https://youtu.be/YJMckMlaPrY?t=159

Takeaways

 Abstracting neural computation for understanding the brain is promising

 Need to understand models to address potential problems

 If we never understand the brain in its entirety, the understanding we gather will still have valuable lessons

Pls in the field

Bruno Olshausen

Redwood Center for Theoretical Neuroscience (UC Berkeley)

Eero Simoncelli

Center for Neural Science (New York University)

Zhaoping Li

Gatsby Computational Neuroscience Unit (University College London)

Jonathan Pillow

Princeton Neuroscience Institute (Princeton University)

Christopher Rozell

Georgia Institute of Technology

Odelia Schwartz

- University of Miami