UNICAMP - IMECC

Pós-Graduação em Matemática – 1º semestre de 2009

Questão 1 (2,5)

- 1. Sejam $A = \{0\} \cup [1,2] \cup \{3\}$ e $B = [0,1] \cup \{2\} \cup \{3\}$ subespaços da reta real \mathbb{R} . Mostre que A e B são homeomorfos enquanto subespaços, mas que não existe homeomorfismo de \mathbb{R} sobre \mathbb{R} levando A sobre B.
- 2. Seja $p:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ a projeção na primeira coordenada e $q:A\to\mathbb{R}$ a restrição de p no subespaço

 $A = \{(x \ge 0, y = 2)\} \cup [(x < 0, y = -2)\}$. Verifique se q é uma aplicação quociente, se é aberta e se é fechada.

Questão 2 (2,5) Seja X um espaço de Hausdorff. Considere $\{X_n\}$ sequência de subespaços fechados, com $X_0 \subset X_1 \subset \cdots \subset X_{n-1} \subset X_n \subset \cdots \subset X$ e $X = \bigcup_{n=0}^{\infty} X_n$, satisfazendo

A é fechado em $X \Leftrightarrow A \cap X_n$ é fechado para cada n.

Seja C subconjunto compacto de X. Tome um ponto $t_n \in C \cap (X_n - X_{n-1})$ para todo n para o qual esta intersecção é não-vazia e denote por T o conjunto de todos os pontos t_n .

- 1. Mostre que T é fechado e que qualquer subespaço de T é fechado. O que se pode afirmar sobre a topologia de T?
- 2. Prove que T é finito.
- 3. Conclua que C está contido em \mathbb{Z}_N para algum N.

Questão 3 (2,5) Recorde que \mathbb{R}^{ω} denota o conjunto de todas as seqüências de números reais $x: \mathbb{Z}_+ \to \mathbb{R}$ e uma seguencia é dita eventualmente nula se, existe $N \in \mathbb{Z}_+$ tal que x_n minime = 0 para todo $n \geq N$. Considere \mathbb{R}^{ω} munido da topologia da caixa. Mostre que x e y pertencem a mesma componente conexa de \mathbb{R}^{ω} se, e somente se, a seqüência x-y é eventualmente nula.

Questão 4 (2,5) Exibir o grupo fundamental de:

- 1. S^2
- 2. RP2
- 3. Cilindro circular reto.
- 4. Faixa de Möbius
- 5. O toro de dimensão 2

MM719 - 1S 2009 - Exame de Qualificação

NOME:_____RA:____

Nesta prova \mathbb{R} e \mathbb{C} denotarão, respectivamente, o corpo dos reais e dos complexos e $\mathbb{M}_n(K)$ denotará o conjunto das matrizes $n \times n$ com entradas no corpo K

Escolher questões cujo total de pontos possíveis seja 100. Bom trabalho!

- 1. Seja V um \mathbb{C} -espaço vetorial de dimensão finita.
- a) (05pts) Defina produto hermitiano em V
- **b)**(05pts) Defina operador normal de V.
- c) (05pts) Enuncie o teorema Espectral para operadores de V.
- **2.** Sejam $T: \mathbb{R}^n \to \mathbb{R}^m$ e $U: \mathbb{R}^m \to \mathbb{R}^n$ duas transformações lineares com n > m.
- a) (10pts) Mostre que $U \circ T : \mathbb{R}^n \to \mathbb{R}^n$ não é isomorfismo linear.
- b) (10pts) Para cada par n > m encontre condições necessárias e suficientes sobre T e U para que $T \circ U : \mathbb{R}^m \to \mathbb{R}^m$ seja um isomorfismo.
- **3.** Sejam $T: \mathbb{R}^n \to \mathbb{R}^n$ um operador linear, \mathcal{C} a base canônica, $f_T(X)$ o polinômio característico e $p_T(X)$ o polinômio mínimo de T. Encontre a forma de Jordan de T sabendo que:
- **a)**(10pts) Neste caso n = 6, $f_T(X) = (X 2)^4 (X 1)^2$, $p_T(X) = (X 2)^2 (X 1)^2$ e dim N(T 2I) = 2 (N(T 2I) é o núcleo de T 2I).
- **b**)(10pts) Neste caso n = 4 e a matriz de T na base canônica é:

$$M = \begin{bmatrix} 3 & -1 & 1 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- **c)**(10pts) Neste caso $W = Im(T) = \text{imagem de } T, \quad n = 2k+1, W \subseteq N(T) \quad \text{e } dimN(T) dimW = 1.$
- **4.** (15pts) Seja $f = 3x^2 + 3y^2 + 3z^2 + 4\sqrt{2}xy + 4\sqrt{2}xz$ uma forma quadrática em \mathbb{R}^3 . Encontrar um novo sistema de coordenadas \overline{x} \overline{y} \overline{z} de tal forma que neste novo sistema f fique na forma de soma de múltiplos de quadrados e escreva explicitamente o novo sistema \overline{x} \overline{y} \overline{z} em termos do sistema xyz (ie, escreva \overline{x} em termos de xyz, \overline{y} em termos de xyz e \overline{z} em termos de xyz).
- **5.** (10pts) Sejam $V = \mathbb{R}^n$, <,> o produto interno canônico de V e $T: V \to V$ um operador linear auto-adjunto com auto-valores $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Considere $\varphi_T: S^{n-1} \to \mathbb{R}$ a aplicação definida por $\varphi_T(v) = \langle T(v), v \rangle$, onde $S^{n-1} = \{v \in V; ||v|| = 1\}$. Mostre que: $\forall v \in S^{n-1}, \ \lambda_1 \leq \varphi_T(v) \leq \lambda_n$ e mais ainda $\lambda_1 = \min\{\varphi_T(v), \ v \in S^{n-1}\}$ e $\lambda_n = \max\{\varphi_T(v), \ v \in S^{n-1}\}$.
- **6.**(10pts) Enuncie a propriedade universal que caracteriza o produto tensorial entre dois espaços vetoriais e mostre que: Se V é um \mathbb{R} -espaço vetorial de dimensão finita n e $T=V\otimes V^*$ então existe um único $\alpha\in T^*$ tal que $\alpha(v\otimes f)=f(v)$ para quaisquer $v\in V$ e $f\in V^*$.
- 7. Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respostas (respostas sem justificativas não serão consideradas).
- a) (05pts) Todo operador linear $T: \mathbb{R}^5 \to \mathbb{R}^5$ possui um autovetor.
- b) (05pts) Existe uma matriz real e simétrica, $A_{3\times 3}$, tal que $A\neq I$ e $A^3=I$.
- c)(5pts) Seja V um \mathbb{C} -espaço vetorial de dimensão finita n. Se $f,g \in V^*$ com $f \neq 0$ e N(f) = N(g) (N(-)=núcleo do funcional linear)) então existe $\alpha \in \mathbb{C}$ tal que $g = \alpha f$.
- d)(5pts) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é operador linear então $V = Im(T) \oplus N(T)$, onde Im(T) é imagem de T e N(T) é o núcleo de T.

BOA PROVA

Análise no \mathbb{R}^n ps2009

- (1) Enuncie e demonstre o método dos multiplicadores de Lagrange.
- (2) Sejam α e β duas 1-formas no \mathbb{R}^3 tais que $\alpha \wedge \beta \neq 0$ em todos pontos de um aberto $U \subset \mathbb{R}^3$. Considere uma 2-forma ω com a propriedade de que $\omega \wedge \alpha = \omega \wedge \beta = 0$ em todos pontos de U ... mostre que $\omega = f \cdot \alpha \wedge \beta$ onde $f: U \to \mathbb{R}$.
- (3) Seja ω uma 1-forma num aberto U de \mathbb{R}^3 . Mostre que se ω anula-se sobre todos vetores tangentes a uma superfície contida em U o mesmo ocorre com $d\omega$...isto é, $d\omega(v,w)=0$ para qualquer par de vetores (v,w) tangentes à tal superfície.
- (4) Apresente uma 3-forma fechada mas não exata em \mathbb{R}^4- origem. Dica: sabe-se que

$$\omega = \frac{-ydx + xdy}{x^2 + y^2}$$

é fechada e não exata em \mathbb{R}^2- origem . . . e que

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

é fechada e não exata em \mathbb{R}^3 — origem. Justifique.

(5) Seja $M \subset \mathbb{R}^5$ o tronco do hipertoro

$$x^{2} + y^{2} + z^{2} = 1$$
,
 $w^{2} + t^{2} = 1$,
 $t \ge 0$,

encontre um 3-simplexo no \mathbb{R}^5 ,

$$m:[a,b]\times[c,d]\times[e,f]\to\mathbb{R}^5$$

tal que sua imagem coincide com M e calcule a 2-cadeia ∂m .

Calcule então

$$\iiint_{m} \beta$$

onde β é uma 3-forma no \mathbb{R}^5 dada por

$$\beta \ = \ 3 \ w \ dx \ \wedge \ dy \ \wedge \ dz \ + \ dw \ \wedge \ (x \ dy \ \wedge \ dz \ - \ y \ dx \ \wedge \ dz \ + \ z \ dx \ \wedge \ dy) \ .$$

Sugestão: encontre α tal que $\beta = d\alpha$ e use Stokes.

Boa Sorte.

Nome: _____ RA: _____ 14/12/2009 Escolher questões cujo total de pontos possíveis seja 100. Bom trabalho!

1. Dados um corpo K, dois K-espaços vetoriais V e V' e L uma transformação linear de V em V' chame de N(L) o núcleo de L, Im(L) a imagem de L e $p(L) = \dim_K Im(L) = o$ posto de L. Agora considere $T, S: V \to V'$ duas transformações lineares entre espaços de dimensão finita e mostre que:

- a)(10pts) Se p(T) = p(S) = 1, então: $p(T+S) \le 1 \iff N(T) = N(S)$ ou Im(S) = Im(T)
- **b)**(5pts) Se p(T) = p(S) = 1, N(S) = N(T) e Im(S) = Im(T) então T e S são linearmente dependentes (LD)
- **2.** Considere a função $q: \mathbb{R}^3 \to \mathbb{R}$ dada por $q(x, y, z) = 2x^2 + 6xy 2xz z^2$.
- a)(02pts) Encontre uma forma bilinear simétrica f tal que q(v) = f(v, v) para todo $v \in \mathbb{R}^3$.
- **b**)(05pts) Encontre uma base do subespaço $W = \{(0,0,1)\}^{\perp}$. (aqui ortogonalidade é com relação a f)
- c)(03pts) Seja $\beta = \{v_1, v_2\}$ a base encontrada no item anterior e g a restrição de f a $W \times W$. Calcule $[g]_{\beta}$.
- $\mathbf{d})(03\mathrm{pts})$ Encontre uma base ortogonal de W com relação a g.
- e)(02pts) Calcule o índice e o posto de f.
- 3. a)(05pts) Enuncie o teorema da decomposição primária.
- **b**)(10pts) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}.$$

Encontre bases para cada subespaço de \mathbb{R}^3 que aparece no Teorema da Decomposição Primária para o operador T.

- **4.** Sejam V um espaço vetorial complexo de dimensão $n<\infty$, com produto interno (hermitiano) <,> e $T:V\to V$ um operador linear. Dizemos que T é anti-hermitiano se para quaisquer $u,v\in V$ tem-se que < Tu,v>= -< u,T(v)>. Assuma que T é anti-hermitiano e mostre que:
- a)(6pts) Os autovalores de T são do tipo $i\alpha$, $\alpha \in \mathbb{R}$. Mais ainda se $\lambda, \xi \in \mathbb{C}$ são auto valores distintos de T e $u, v \in V \setminus \{0\}$ são tais que $T(u) = \lambda u$ e $T(v) = \xi v$ então $\langle u, v \rangle = 0$.
- **b)**(9pts) Existe uma base ortonormal de V formada por autovetores de T.
- **5.**(10pts) Considere a matriz $A = \begin{bmatrix} 0 & 0 & 3+4i \\ 0 & 5 & 0 \\ 3-4i & 0 & 0 \end{bmatrix} \in \mathbb{M}_3(\mathbb{C})$. Encontre uma matriz unitária P e uma matriz diagonal D tal que $D = P^{-1}AP$ e calcule P^{-1} .
- **6.**(15pts) Considere as transformações lineares $T: \mathbb{R}^2 \to \mathbb{R}^2$ e $S: \mathbb{R}^3 \to \mathbb{R}^3$ dadas por T(x,y) = (x+2y,2x+y) e S(x,y,z) = (x,x+y,x+y-z). Encontre a forma canônica de Jordan de $T \otimes S$.
- 7. Responda se cada uma das afirmações abaixo é verdadeira ou falsa justificando suas respostas.
- a)(5pts) Se V é espaço vetorial com produto interno e de dimensão finita e v é um autovetor de um transformação linear $T:V\to V$, então v também é autovetor de T^* , onde T^* é a adjunta de T.
- b) (05pts) Se $\varphi: V \times V \to W$ é uma função bilinear, a imagem de φ é um subespaço de W.
- c)(05pts) Se $p \in \mathbb{N}$ é um número primo impar e V é um K-espaço vetorial de dimensão finita p, então V é isomorfo a uma 2-potência simétrica de um K-espaço vetorial W se e somente se p = 3.
- 8. Sejam $\mathbb{M}_n(\mathbb{C})$ o conjunto das matrizes $n \times n$ com entradas complexas e $A \in \mathbb{M}_n(\mathbb{C})$.
- a)(10pts) Se $A = J(\lambda) \in \mathbb{M}_n(\mathbb{C})$ é um bloco de Jordan encontrar a forma de Jordan de A^t .
- b)(10pts) Mostre que: Se $m \in \mathbb{N}$ e $B \in \mathbb{M}_m(\mathbb{C})$ então existe $P \in \mathbb{M}_m(\mathbb{C})$ invertível tal que $PBP^{-1} = B^t$.

Nome:	RA:
1011101	2012.

Q1	Q2	Q3	Q4	Q5	Total

Q1. (2,0 pontos) Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é chamada homogênea de grau 1 se para todo $x \in \mathbb{R}^n$, $\lambda > 0$ tivermos $f(\lambda x) = \lambda f(x)$. Seja f uma função contínua em \mathbb{R}^n , homogênea de grau 1.

(a) Seja $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$ e suponha que f é diferenciável em x_0 . Mostre que para qualquer $\lambda > 0$, f é diferenciável em λx_0 e que $\nabla f(\lambda x_0) = \lambda \nabla f(x_0)$.

(b) Mostre que se f é diferenciável em 0 então f é linear.

Q2. (2,0 pontos) Sejam f e g aplicações de \mathbb{R}^2 em \mathbb{R}^2 , de classe C^1 e suponha que f(0) = 0 e que Df(0) é inversível. Para cada $r \in \mathbb{R}$ defina $h_r = h_r(x) \equiv f(x) + rg(x)$. Mostre que existe $\epsilon > 0$ tal que, se $|r| < \epsilon$, h_r se anula em um ponto x_r , e que $\lim_{r\to 0} x_r = 0$. Sugestão: forma local das submersões.

Q3. (2,0 pontos) Seja Ω um aberto convexo em \mathbb{R}^n e $F:\Omega\to\mathbb{R}$ uma função de classe C^2 , estritamente convexa em Ω , isto é, uma função cujo Hessiano é positivo definido em todo ponto de Ω . Mostre que $\nabla F:\Omega\to\mathbb{R}^n$ é injetivo.

Q4. (2,0 pontos) Seja $F = (F_1, F_2)$ um campo vetorial de classe C^1 em \mathbb{R}^2 e de suporte compacto, e seja $\Omega_{\epsilon} \equiv \{(x, y) \in \mathbb{R}^2 : -\epsilon < y < \epsilon\}$. Mostre que:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\Omega_{\epsilon}} \ \mathrm{div} F \ dx dy = 2 \int_{-\infty}^{\infty} \frac{\partial F_2}{\partial y}(x,0) dx.$$

Q5. (2,0 pontos) Considere as formas diferenciais $\omega_1 = 2xy\,dx + (x^2 - 2y^2)\,dy$ e $\omega_2 = \cos y\,dx + x\sin y\,dy$. Determine quais destas formas são fechadas e ache uma 0-forma α tal que aquelas que forem fechadas sejam $d\alpha$.

Boa Prova!

Exame de Qualificação de Mestrado Topologia Geral

Dezembro de 2009

Questão 1 (2 pontos)

Seja \mathbb{R}_f o conjunto dos números reais munido da topologia dos complementos finitos, ou seja, um conjunto é aberto se e somente se for vazio ou se o seu complemento for finito. Seja \mathbb{R}_s o conjunto dos números reais munido da topologia usual. Mostre que a aplicação identidade $\mathbf{1}: \mathbb{R}_s \to \mathbb{R}_f$ é contínua, mas a sua inversa não é. Mostre ainda que:

- (a) \mathbb{R}_f satisfaz o axioma T_1 , mas não é Hausdorff;
- (b) todo subconjunto de \mathbb{R}_f é compacto.

Questão 2 (2 pontos)

Sejam X e Y dois espaços topológicos e seja $p: X \to Y$ uma aplicação quociente. Mostre que se Y é conexo, e se para todo $y \in Y$ a fibra $p^{-1}(y)$ também é conexo, então X é conexo.

Questão 3 (2 pontos)

Seja X um espaço topológico e $D^2 := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ o disco unitário munido da topologia usual. Mostre que uma aplicação contínua $f: S^1 \to X$ é homotópica a uma aplicação constante se e somente se f possui uma extensão contínua $\tilde{f}: D^2 \to X$.

Questão 4 (2 pontos)

Seja $p: E \to B$ um espaço de recobrimento tal que $p^{-1}(b_0)$ possui exatamente k pontos. Mostre que $p^{-1}(b)$ possui exatamente k pontos para todo $b \in B$. Mostre ainda que se B é compacto, então E também é compacto.

Questão 5 (1 ponto cada item)

Demonstre as seguintes afirmações:

- (a) $\pi_1(\mathbb{RP}^2) = \mathbb{Z}_2$.
- (b) Dados dois espaços topológicos X e Y, e pontos $x_0 \in X$ e $y_0 \in Y$, então $\pi_1(X \times Y, (x_0, y_0)) = \pi_1(X, x_0) \times \pi_1(Y, y_0)$.