

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Escuela de Ciencias Exactas

Departamento de Matemática

Álgebra y Geometría analítica I - 2020

Ejercicios resueltos

- 17. Dados dos conjuntos A y B cualesquiera, demostrar que las siguientes proposiciones son equivalentes:
 - a) $A \subseteq B$
 - b) $A \cup B = B$
 - c) $A \cap B = A$

Tenemos que probar que las proposiciones (a), (b) y (c) son equivalentes, i.e.,(a) \Leftrightarrow (b) \Leftrightarrow (c). Para esto es suficiente con probar la siguiente cadena de implicaciones (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) (¿por qué?).

$$(a) \Rightarrow (b)$$

Notemos que la inclusión $B \subseteq A \cup B$ se verifica trivialmente. Luego, para mostrar que $A \cup B = B$ será suficiente con probar que $A \cup B \subseteq B$. Para esto consideremos $x \in A \cup B$ y veamos que $x \in B$.

$$x \in A \cup B \Rightarrow x \in A \vee x \in B \underset{A \subseteq B}{\Rightarrow} x \in B \vee x \in B \Rightarrow x \in B.$$

Como x es arbitrario, tenemos que $A \cup B \subseteq B$ y, en consecuencia, $A \cup B = B$.

(b)⇒(c)

Consideremos $x \in A$ y veamos que $x \in A \cap B$.

$$x \in A \underset{A \subset A \cup B}{\Rightarrow} x \in A \land x \in A \cup B \underset{A \cup B = B}{\Rightarrow} x \in A \land x \in B \Rightarrow x \in A \cap B.$$

Esto muestra que $A \subseteq A \cap B$ y, como $A \cap B \subseteq A$, tenemos que $A = A \cap B$.

 $(c) \Rightarrow (a)$

Para ver que $A \subseteq B$, consideremos $x \in A$ y veamos que $x \in B$.

$$x \in A \underset{A = A \cap B}{\Rightarrow} x \in A \cap B \underset{A \cap B \subseteq B}{\Rightarrow} x \in B.$$

Esto completa la prueba.

19. Determinar qué relación existe entre $P(A \cup B)$ con $P(A) \cup P(B)$ y entre $P(A \cap B)$ con $P(A) \cap P(B)$.

Primero, recordemos que si A es un conjunto, P(A) denota al conjunto de todos los subconjuntos de A, i.e.,

$$P(A) = \{X : X \subseteq A\}.$$

El problema que nos planteamos es el siguiente: si A y B son dos conjuntos, ¿cuál es la relación entre $P(A \cup B)$ y $P(A) \cup P(B)$?,¿vale la igualdad $P(A \cup B) = P(A) \cup P(B)$?,¿vale alguna de las contenciones $P(A \cup B) \subseteq P(A) \cup P(B)$ y $P(A) \cup P(B) \subseteq P(A \cup B)$?, análogamente, ¿cuál es la relación entre $P(A \cap B)$ y $P(A) \cap P(B)$?

Consideremos los conjuntos $P(A \cup B)$ y $P(A) \cup P(B)$ y veamos que la igualdad $P(A \cup B) = P(A) \cup P(B)$ no es cierta en general. Por ejemplo, si $A = \{a,b\}$ y $B = \{c,d\}$, entonces tenemos que el conjunto $C = \{a,c\} \subseteq A \cup B$, y en consecuencia, $C \in P(A \cup B)$, mientras que $C \notin P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{c,d\}\}\}$. Este ejemplo muestra que la contención $P(A \cup B) \subseteq P(A) \cup P(B)$ no es cierta en general. De hecho, no es difícil de probar que $P(A \cup B) \subseteq P(A) \cup P(B)$ si y sólo si $A \subseteq B$ o $B \subseteq A^1$. Sin embargo, la contención $P(A) \cup P(B) \subseteq P(A \cup B)$ vale siempre. En efecto, cualesquiera sean los conjuntos A y B, tenemos que

$$X \in P(A) \cup P(B) \Rightarrow X \in P(A) \lor X \in P(B)$$
$$\Rightarrow X \subseteq A \lor X \subseteq (B)$$
$$\Rightarrow X \subseteq A \cup B$$
$$\Rightarrow X \in P(A \cup B).$$

Para el caso de la intersección, el siguiente argumento muestra que vale la igualdad $P(A \cap B) = P(A) \cap P(B)$.

$$X \in P(A \cap B) \Leftrightarrow X \subseteq A \cap B$$
$$\Leftrightarrow X \subseteq A \wedge X \subseteq B$$
$$\Leftrightarrow X \in P(A) \wedge X \in P(B)$$
$$\Leftrightarrow X \in P(A) \cap P(B).$$

21. Demostrar las siguientes proposiciones, justificando en cada paso la propiedad de la teoría de conjuntos aplicada.

$$a)$$
 $(A-B)-C\subseteq A-(B-C)$

Notemos que cualesquiera sean los conjuntos X e Y, tenemos que

$$X - Y = \{x : x \in X \land x \notin Y\} = X \cap \overline{Y}.$$

Luego,

$$A - (B - C) = A \cap (\overline{B - C})$$

$$= A \cap (\overline{B} \cap \overline{C})$$

$$= A \cap (\overline{B} \cup \overline{C}) \qquad (Ley \ de \ De \ Morgan)$$

$$= A \cap (\overline{B} \cup C) \qquad (Ley \ del \ doble \ complemento)$$

$$= (A \cap \overline{B}) \cup (A \cap C) \qquad (Propiedad \ distributiva)$$

$$P\left(A\cup B\right)\subseteq P\left(A\right)\cup P\left(B\right)\Rightarrow A\subseteq B\vee B\subseteq A,$$

se sugiere lo siguiente: si $A \nsubseteq B$ y $B \nsubseteq A$ entonces $A - B \neq \emptyset$ y $B - A \neq \emptyset$. Luego, si $C = \{x, z\}$, donde $x \in A - B$ y $z \in B - A$, se tiene que $C \in P(A \cup B)$ pero $C \notin P(A) \cup P(B)$.

 $^{^1\}mathrm{Si}$ quiere intentar probar esta afirmación, para probar que

Ahora,

$$(A - B) - C = (A \cap \overline{B}) \cap \overline{C}$$

$$\subseteq A \cap \overline{B}$$

$$\subseteq (A \cap \overline{B}) \cup (A \cap C)$$

$$= A - (B - C).$$

b) $\overline{(A \cup B) \cap C} \cup \overline{B} = B \cap C$

$$\overline{(A \cup B) \cap C} \cup \overline{B} = \overline{(A \cup B) \cap C} \cap \overline{B} \qquad (Ley de De Morgan)$$

$$= (A \cup B) \cap C \cap B \qquad (Ley del doble complemento)$$

$$= (A \cup B) \cap (C \cap B) \qquad (Propiedad asociativa)$$

$$= (A \cap (C \cap B)) \cup (B \cap (C \cap B)) \qquad (Propiedad distributiva)$$

$$= (A \cap C \cap B) \cup (C \cap B) \qquad (Propiedad asociativa)$$

$$= C \cap B \qquad (A \cap C \cap B \subseteq C \cap B)$$

c) $\overline{A\Delta B} = A\Delta \overline{B}$

Notemos que $A\Delta B=(A\cup B)\cap\overline{(A\cap B)}=B\Delta A.$ Luego, tenemos que

$$\overline{A\Delta B} = \overline{(A \cup B) \cap \overline{(A \cap B)}}$$

$$= \overline{(A \cup B) \cup \overline{(A \cap B)}} \qquad (Ley \ de \ De \ Morgan)$$

$$= \overline{(A \cap \overline{B}) \cup \overline{(A \cap B)}} \qquad (Ley \ de \ De \ Morgan)$$

$$= \overline{(A \cap \overline{B}) \cup (A \cap B)} \qquad (Ley \ de \ doble \ complemento)$$

$$= \overline{(A \cup \overline{A}) \cap (\overline{B} \cup A) \cap (\overline{A} \cup B) \cap (B \cup \overline{B})} \qquad (Propiedad \ distributiva)$$

$$= \overline{U \cap (\overline{B} \cup A) \cap (\overline{A} \cup B)} \qquad (Propiedad \ del \ inverso)$$

$$= \overline{(B \cup A) \cap (\overline{A} \cup B)} \qquad (Propiedad \ del \ neutro)$$

$$= \overline{(B \cup A) \cap (\overline{A \cap B})} \qquad (Ley \ de \ De \ Morgan)$$

$$= \overline{A\Delta B}.$$