EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

01283455

PUBLICATION DATE

15-11-89

APPLICATION DATE

06-05-88

APPLICATION NUMBER

63109198

APPLICANT:

DIESEL KIKI CO LTD;

INVENTOR

KURONUMA ATSUYA;

INT.CL.

F16H 9/18 F16H 11/06

TITLE

CONTINUOUSLY VARIABLE

TRANSMISSION

ABSTRACT:

PURPOSE: To enable the application of a simple, compact and lightweight mechanism by giving a driving function to a pulley at the side of an auxiliary machine, constituting the entire internal area of the movable pulley of the aforesaid pulley with a pressure chamber and introducing and discharging a high pressure fluid to and from the pressure chamber via the selection of passages with an electromagnetic valve for actuating the movable pulley.

CONSTITUTION: When a magnet coil 17 is not energized, the first and second main passage holes 12a and 12b are continuous to the passage 16a of a valve body 16 and a high pressure fluid is fed to a pressure chamber 10 through a route shown by an arrow, thereby keeping a movable pulley 6 in a close condition. When the coil 17 is energized, the valve body 16 slides along a shaft 4 against the force of a spring 19 and the second main passage 12b is isolated from the passage 16a and made continuous to the passage 16b, thereby interrupting the supply of the high pressure fluid. In addition, the high pressure fluid within the pressure chamber 10 flows to a sub-passage hole 13 via the second main passage hole 12b, the passage 16b and a branch passage 13a, thereby moving the movable pulley to an open side. According to the aforesaid construction, a control unit 21 is used to control the timing and frequency of the supply and interruption of a power to and from the coil 17, thereby changing the gear ratio of an auxiliary machine.

COPYRIGHT: (C)1989,JPO&Japio

① 特許出願公開

平1-283455 ⑫公開特許公報(A)

®Int. Cl. 4

識別記号 庁内整理番号 @公開 平成1年(1989)11月15日

9/18 11/06 F 16 H

B-8513-3 J A-8513-3 J

審査請求 未請求 請求項の数 1 (全7頁)

❷発明の名称	無段変速装置		
	6010	33-109198 33(1988) 5月 6日	
⑩発 明 者	青木 八郎	埼玉県東松山市箭弓町 3 丁目13番26号 会社東松山工場内	
⑫尧 明 者	菊 地 英 弥	埼玉県東松山市箭弓町3丁目13番26号 会社東松山工場内	
⑫発 明 者	小 林 忠 志	埼玉県東松山市箭弓町3丁目13番26号 会社東松山工場内	ヂーゼル機器株式
⑫発 明 者	黒 沼 淳 哉	埼玉県東松山市箭弓町3丁目13番26号 会社東松山工場内	ヂーゼル侵器株式
勿出 願 人	ヂーゼル機器株式会社 弁理士 黒 田 泰 弘	東京都渋谷区渋谷3丁目6番7号	
600代 理 人	弁理士 黒田 泰弘		

明月

- 1. 発明の名称
- 2. 特許請求の範囲

記動軸に取付けた従助機能型プーリと、エンジ ンプロックまたは補機用油圧供給源のハウジング に設けられた駆動機能型プーリと、前記両プーリ 間に接着された変速ペルトを備え、

前記駆動機能型プーリが、エンジンブロックま たはハウジングに固定されたシャフトと、シャフ トの外周を回転自在な固定プーリと、前記固定プ ーリと対向する位置のシャフトの外周を回転自在「 なガイドホルダと、内径側を固定プーリで、外径 倒をガイドホルダでそれぞれガイドされ、ガイド ホルダとの間に容量可変の油圧室を構成する可動 プーリと、前記油圧室に先端が通じるようにシャ フトに穿設された通路と、該通路の髙圧油の流れ を制御する切換弁とを備えていることを特徴とす る無政変速装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は無段変速装置とりわけ油圧作助式の無 段変速装置に関するものである。

【従来の技術】

自動車においては、エンジンの駆動力をファン やエアコン用コンプレッサ等で代表される捕機の **麗動に利用している。この場合、補機觀動損失を** 波少させるため、補機側はエンジンが低速回転時 に高めの所定回転数に設定され、エンジンが高速 回転したときに、これに比例せずに所定回転数に 保たれる関係に変速制御されることが望まれる。

一般に、駆助軸と従動軸との回転数制御手段と して、プーリのピッチ円径を遊航的に変化する方 式の無段変速機が知られており、特別昭60-2 6845号公報に、油圧サーボ機構を用いてプー りの片側を構成する可動円錐車の位置を制御する ようにしたものが提案されている。

この先行技術においては、可助円錐車の軸線方 向に協定シリンダを設け、この固定シリンダのピ ストンロッドを可助円錐車の軸端に当接させ、ピストンロッドには後端がシリンダ室に通じ先端がピストンロッド 何端に関孔するダクトを形成し、このダクトを、駆動軸のフライウエイトーばねーアームないしロッドを介してスリーブで開閉させるようになっていた。

[発明が解決しようとする課題]

トの外周を回転自在な固定プーリと、前記固定で 一りと対向する位置のシャフトの外周を回転自在 なガイドホルダと、内径側を固定プーリで、外径 側をガイドホルダでそれぞれガイドされ、ガイド ホルダとの間に容量可変の油圧室を構成する可助 プーリと、前記油圧室に先端が通じるようにシャ フトに穿設された通路と、該通路の高圧油の流れ を制御する切換弁とを備えたことにある。

〔実 施 例〕

以下本発明の実施例を添付図面に基いて説明する。

第1図と第2図は本発明による無段変速設置の 実施例(第1実施例)を示すもので、第1図は補機 側プーリ径が最大時の状態を、第2図は補機側プーリ径が最小時の状態をそれぞれ示している。

1 は駆動軸(クランク軸)であり、この駆動軸 1 のエンジンブロック 1 0 0 から突出する 輪部に ドリブン機能のプーリ 2 が設けられている。 すな わち、固定プーリ 2 a と、スプリング 2 c により 固定プーリ 個に押圧される可動プーリ 2 b が設け た.

本発明は前記のような問題点を解決するために 創案されたもので、その目的とするところは、良 好な変速特性を簡単、小型、軽量な機構で実現で きる油圧作動式のVベルト型無段変速装置を提供 することにある。

〔課題を解決するための手段〕

この目的を達成するため本発明は、補機側プーリにドライブ側機能を持たせ、しかもその補機側プーリの可動プーリ内部全域を圧力室に構成し、その圧力室内に電磁弁により通路を切換えて高圧油を導入、導出させることで可動プーリを動かすようにしたものである。

すなわち本発明の特徴とするところは、駆動軸に取付けた従動機能型プーリと、エンジンプロックまたは補機用油圧供給源のハウジングに設けられた駆動機能型プーリと、前記両プーリ間に装着された変速ベルトを備え、

前記駆動機能型プーリが、エンジンブロックま たはハウジングに固定されたシャフトと、シャフ

られている。3は本発明で特徴とする駆動機能型プーリであり、エンジンブロックやパワステアリング装置で代表される補機の圧力流体供給源(たとえばポンプなど)のハウジング101に設けられている。

前記配助機能型プーリ3は、フランジ4aにより前記ハウジング101に固定されるシャフト4と、このシャフト4の周りで回転自在な固定プーリ5と、この固定プーリ5と根をなす可助プーリ6と、可助プーリ6をガイドするとともに隔壁を構成するガイドホルダ8を備え、両プーリ5,6と前記従動機能側のプーリ2間に変速ベルト7が所定の張力で張られている。

前記シャフト4には軸受9a、9bが所定の間隔を隔でて固定され、一方の軸受9aの外レースに固定プーリ5が、他方の軸受9bにガイドホルダ8が固定され、固定プーリ5の簡部5aとガイドホルダ8の質部8aがそれぞれシャフト4に回転自由に嵌められている。

ガイドホルダ8には筒部8aの付け根から半径

方向にフランジ部8bが一体に設けられており、可動プーリ6は、前記園定プーリ5に内設したガイド面5bにシールリング24を介して摺接する内筒部6aと、前記ガイドホルダ8のフランジ外面にシール材25を介して接する外筒部6bを有し、これら可動プーリ6とガイドホルダフランジ部8b間に可変容量の圧力室10が形成されている。

さらに、前記ガイドホルダ8の背後にはカバー11が配置されており、このカバー11は、外径部に可動プーリ6の外筒部6bと油密に接しつつー体回転する嵌合部11aを外径側に有し、内径側にはボス11bが形成され、これに取付けたオイルシール26によりシャフト4またはこれに固定した筒状ガイド4bに摺接するようになるのでは割圧力室10~が形成されている。

前記シャフト4には後端から主通路孔12が穿設されており、該主通路孔12の上流側は図示しない油圧供給源(たとえばポンプ)にフイルタ27

え時のいずれにあっても左右の馴通路孔13を導通させ得るような大きさに作られている。そして、 弁体16には、一端が通路16bに闘ロし他端が 前記主通路孔12を結ぶ通路16aより先の弁穴 15に闘ロするL字状のバイパス通路16cが形成され、この闘ロ位置と、主通路孔12を結ぶ通路160,160 路16aの両側にはシールリング160,161 が取付けられている。

弁体16はマグネツトコイル17内に仰びるアーマチュア部16dを有し、該アーマチュア部16dを有し、該アーマチュア部16dはマグネツトコイル17に通電されないときに第1回のような弁位度(通路16aが主通路孔12を速通させている)にあるように、ケーシング18に配したスプリング19で付勢され、弁穴15には位置決め用のスナップリング20が取付けられている。

向記マグネントコイル17は、コントロールユニット21のドライバに接続されており、コントロールユニット21にはセンサ22a, 22b, 22c, 22dからのエンジン回転数信号、負荷

を介して接続され、下流個には前記固定プーリ5の簡部5aとガイドホルダ 8の簡部8aの間隙に関ロするポート120を有し、このポート120によりを圧力室10に通じており、ポート120の両側にはリングシール28.28が取付けられている。また、シャフト4には前記主通路孔12と位相をずらせて関通路孔13が穿設されており、この副通路孔13は低圧ドレーン少なくとも則圧力室13に通じるポート130を有している。

14は電磁操作型切換えバルブであり、この実施例では、前記主通路孔12およびと関通路孔13と直交するようにシャフト4に形成した弁穴15と、この弁穴15に指動自在に配された弁体16と、シャフト4の外間に固定されたマグネットコイル17と、これを囲むケーシング18とを有している。

弁体16は、弁穴15により左右に分断された 主通路孔12を結ぶ通路16aと、同じく左右の 副通路孔13を結ぶ通路16bを有しており、後 者の通路16bは、弁体16が切換え時・非切換

信号、アクセル位置信号、油・水温信号が入力され、それらの演算処理して得られた制御信号によりマグネントコイル17がオン・オフされるようになっている。

その他図面において、23は圧力室内に配された流体圧補助用の補助スプリング、29はガイドホルダ8から可動プーリ6へのトルク伝達手段である。

第3図と第4図は本発明の他の実施例(第2実施例)を示している。この実施例は、固定プーリ5、可助プーリ、ガイドホルダ8、カバー11などの基本構造は第1実施例と同じであるが、主通路孔12、副通路孔13および電磁操作型切換弁14の構成が第1実施例と異なっている。

すなわち、この実施例では、主通路孔12が一直線状でなく、シャフト後端部付近で屈曲しシャフト外間に開口する第1通路孔12 a と第2通路孔12 b からなつており、副通路孔13には第2通路孔12 b と平行状の分岐通路13 a が形成されている。

また、電磁操作型切換弁14のマグネットコイル17はケーシング18を介してシャフト4ののサンジ4aに固弁されており、弁体16は続きれており、シャフト4の外間に摺動自在に外球され、フランジ4aと弁体15間に配したスプリング18で軸線方向に付勢されている。そして、弁体16の外周にはマグネットコイル17に吸引されるフランジ状のアーマチュア16dを備えている。

井体16の内径側には、仕切り116 eを挟んで2つのリング滞状の通路16 a、16 b は、マグネットコイル17に通電されない時に、通路16 aにより第1と第2の通路孔12 a、12 b が遮通し、通路16 b が分岐通路13 a と 通じ、マグネットコイル17の通電による弁体16の移動時に、第2の通路孔12 b が分岐通路13 a とともに通路16 b に通じる関係に構成されている。

なお、電磁操作型切換弁14は弁体16が直級 移動式でなく回転型のものでもよいことは勿論で ある。また、実施例と逆に、マグネットコイル1

れる。このため、可動プーリ6は閉じ側に保持され、補機プーリ径は最大となり、たとえば1:〇。 5のような変速比で補機は駆動される。

この状態から、コントロールユニツト21より 信号が送られ、マグネットコイル17が通程され ると、第2図のように弁体16は上昇し、これに より通路16aは左右の主通路孔12と遮断され、 圧力室10への高圧油の供給が停止される。この ときパイパス通路16cは下端開口が主通路孔1 2に通じるため、ベルト張力により可動プーリ 6 が押圧されることにより圧力室10内の高圧油は 主通路孔12、パイパス通路16cを経て通路1 6 b に到り、これにより可動プーリ 6 は左方に移 動する。一方、通路16bは副通路孔13と連通 しているため、排出された高圧油は副通路孔13 を経て容積の拡大した背部の圧力室10.に吸引 され、この圧力室10′を満たすことにより可動 プーリ 6 の急激な移動を阻止してから副通路孔 1 3を経てドレーンされる。これにより補機プーリ 径は最小となり、たとえば1:1の変速比に制御

7 の通館時に圧力室 1 0 へ高圧油が送り込まれる 関係としてもよい。

〔実施例の作用〕

次に実施例の動作と作用を説明する。

第1 実施例においては、駆動軸1 が回転すれば、 ドリブン機能のプーリ 2 が回転し、この回転が変 速ベルト7を介して駆動機能型プーリ 3 に伝えられ、固定プーリ 5 とガイドホルダ 8 が軸受 9 a , 9 b を介してシャフト 4 の周りを回転し、またト ルク伝選手段 2 9 を介して可動プーリ 6 も周期回 転する・

このとき電磁操作型の切換え弁14が非作動すなわちマグネットコイル17に通電されないとと お体16は下降位置にあり、通路16aにより左右の主通路孔12が通じている。そのため、高圧 油が主通路孔12からポート120を通って圧力 窒10を満たし、補助スプリング23の押圧力と 協断して可動プーリ6を右方に押圧する。一方、 副圧力室10,の低圧な油圧はポート130から 副通路孔13および通路16bを経てドレーン

される.

第2実施例においては、マグネットコイル17 が通電されないと、第1と第2の主通路孔12 a。 12bは弁体16の通路16 aに通じており、高 圧油は矢印のようなルートで圧力室10に供給され、可動プーリ6は閉じ状態におかれる。

マグネットコイル17に通電されると、弁体16がスプリング19に抗してシャフト4上を摺動し、第2の主通路孔12 b が通路16 a と遮断され通路16 b に 通じるため、 高圧油の供給が断たれる。そして、圧力室10内の高圧油は第2の主通路孔12 b 、 通路16 b 、 分岐通路13 a を経て削通路孔13 に流れ、可動プーリ6は開き側に動かされる。

従って、本務明によれば、マグネントコイル1 7への通電・非通電により圧力室10への高圧油 の流れが切り換えられ、可動プーリ6の開度が制 御され、車級のコントロールユニット21で通電・ 非通電のタイミングと回数を制御することでダイ レクトに補機側の変速比を変化することができる。

(発明の効果)

以上説明した本発明によるときには、ドライブ 便優能を有するプーリを補機側すなわちエンジング プロツクやパワステアリングポンプのハウジング に設けているため、補機の選正変速比を補機側で ダイレクトに制御することができ、また、エンジ ンオイル以外の低温のオイルを使用できるため、 変速用ペルトに対する熟的影響を小さくすることができ、長期間安定した変速特性を得ることができる。

しかも、可動プーリの内部を圧力室とするだけでなく、フライウエイトやこれの移動用トラック類などの可動部品が少なくて済むため、 構造が簡単でコンパクト、軽量なものにすることができ、 車載性も良好であるなどの優れた効果が得られる。4. 図面の簡単な説明

第1回は本発明による無段変速装置の第1実施 例を最大プーリ径の状態で示す断面図、第2回は 同じく最小プーリ径の状態で示す部分的断面図、 第3回は本発明の第2実施例を最大プーリ径の状 個で示す断面図、第4図は同じく最小プーリ径の 状態で示す部分的断面図である。

1 … 配動軸、2 … 姓動機能型プーリ、3 … 駆動機能型プーリ、4 … シャフト、5 … 固定プーリ、6 … 可動プーリ、7 … 変速ベルト、8 … ガイドホルダ、10 … 圧力室、12 … 主通路孔、13 … 耐通路孔、14 … 能磁操作型切換弁、16 … 弁体、16 a, 16 b … 通路

第 2 図

第3四

第 4 図

