Podsumowanie metod przybliżania zadanej funkcji

Jakub Kędra

Informacje techniczne

System operacyjny	Windows 10 Home (64bit, kompilacja 19045)
Procesor	i7 9750h
Język programowania	Python
Kompilator	Python 3.8.10

Przybliżana funkcja

Funkcja:

$$F(x) = e^{-\sin(2x)} + \sin(2x) - 1$$

W przedziale:

$$x \in [0, 3\pi]$$

Z miejscami zerowymi dla:

$$x = \left\{ \pi n, \pi n + \frac{\pi}{2} \right\}, n \in \mathbb{Z}$$

Interpolacja w zagadnieniu Lagrange'a: węzły równoodległe

Wykres 9. Lagrange - równomierny - n=9

Wykres 10. Lagrange - równomierny - n=10

Wykres 11. Lagrange - równomierny - n=15

Wykres 12. Lagrange - równomierny - n=20

zera wielomianow Czebyszewa

Wykres 14. Lagrange - wielomiany Czebyszewa - n=9

Wykres 15. Lagrange - wielomiany Czebyszewa - n=10

zera wielomianow Czebyszewa cd.

Wykres 16. Lagrange - wielomiany Czebyszewa - n=15

Wykres 17. Lagrange - wielomiany Czebyszewa - n=20

zera wielomianow Czebyszewa cd.

Wykres 18. Lagrange - wielomiany Czebyszewa - n=100

węzły równoodległe

Wykres 23. Newton - równomierny - n=9

Wykres 24. Newton - równomierny - n=10

zera wielomianów Czebyszewa

zera wielomianów Czebyszewa cd.

zera wielomianów Czebyszewa cd.

węzły równoodległe

Wykres 9. Hermit - równomierny - n=9

Wykres 10. Hermit - równomierny - n=10

Interpolacja w zagadnieniu Hermite'a: węzły równoodległe cd.

Wykres 11. Hermit - równomierny - n=15

Wykres 12. Hermit - równomierny - n=20

zera wielomianów Czebyszewa

zera wielomianów Czebyszewa cd.

zera wielomianów Czebyszewa cd.

Interpolacja sześcienna

Z wykorzystaniem funkcji sklejanych 3-go stopnia

Interpolacja sześcienna:

węzły równoodległe

Wykres 3.Spline sześcienny – "free boundary" – n=10

Wykres 4. Spline sześcienny – ilorazy różnicowe – n=10

Interpolacja sześcienna:

Wykres 5. Spline sześcienny – "free boundary" – n=20

Wykres 6. Spline sześcienny – ilorazy różnicowe – n=20

Interpolacja sześcienna:

Wykres 7. Spline sześcienny – "free boundary" – n=30

Wykres 8. Spline sześcienny - ilorazy różnicowe - n=30

Interpolacja kwadratowa

Z wykorzystaniem funkcji sklejanych 2-go stopnia

Interpolacja kwadratowa:

węzły równoodległe

Wykres 11.Spline kwadratowy – "free boundary" – n=10

Wykres 12. Spline kwadratowy – "clamped boundary" – n=10

Interpolacja kwadratowa:

Wykres 13. Spline kwadratowy – "free boundary" – n=20

Wykres 14. Spline kwadratowy – "clamped boundary" – n=20

Interpolacja kwadratowa:

Wykres 15. Spline kwadratowy – "free boundary" – n=30

Wykres 16. Spline kwadratowy – "clamped boundary" – n=30

Aproksymacja średniokwadratowa

Z wykorzystaniem wielomianów algebraicznych

Aproksymacja średniokwadratowa w. alg.:

węzły równoodległe

Wykres 1. Aproksymacja wielomianami algebraicznymi dla n=8, m=5

Wykres 2. Aproksymacja wielomianami algebraicznymi dla n=14, m=8

Aproksymacja średniokwadratowa w. alg.:

Wykres 3. Aproksymacja wielomianami algebraicznymi dla n = 40, m = 10

Wykres 4. Aproksymacja wielomianami algebraicznymi dla n = 65, m = 10

Aproksymacja średniokwadratowa w. alg.:

Wykres 5. Aproksymacja wielomianami algebraicznymi dla n = 100, m = 10

Wykres 6, Aproksymacja wielomianami algebraicznymi dla n = 100, m = 15

Aproksymacja średniokwadratowa trygonometryczna

Aproksymacja średniokwadratowa tryg.:

węzły równoodległe

Aproksymacja średniokwadratowa tryg.:

węzły równoodległe

Aproksymacja średniokwadratowa tryg.: węzły równoodległe cd.

Koniec

Dziękuję za uwagę!