Analysis of the base case

Annual Adaptive comfort – 32%

Cloud Coverage

Global Horizontal Radiation

Outdoor temperature

1. "Sensitive" analysis of glazing ratio

	Glazing%	Adaptive Comfort $\%$	
	10	49.14	
	30	39.18	
_	50	32.14	_
	70	27.67	
	80	25.13	

However 10% shows better comfort percentage it create more cold hours. 70% was selected because it provide more overheated hours which then could be eliminated by shading and ventilation

2. Window-based natural ventilation.

Percent of Comf.Hours 73.78 % Overheated Hours 12.58% Cold Hours 13.69%

Natural Ventilation Energy

Adaptive Comfort

3. Adding horizontal shading

4 horizontal bars, tilted to reflect sunrays when the global horizontal radiation is bigger than 900 kW/h

4. Adaptive Comfort for final design (Shading + Natural ventilation)

Percent of Comf. Hours 74.94 % Overheated Hours 11.67% Cold Hours 13.37%

Adaptive Comfort for TEST_ROOM (-1 = Cold, 0 = Comfortable, 1 = Hot) - Hourly Philadelphia International Ap PA USA TMY3

1 JAN 1:00 - 31 DEC 24:00

5. Daylight

Daylight autonomy [%] sDL 82%