Laboratory Report

Experiment 8: IIOT, Node-Red, MQTT & Mobile App

Programme: Mechatronics Engineering

Mechatronics Control and Automation Lab (MCTA 3104)

Section 2

Semester 1 2024/2025

Lecturer: Dr. Muhammad Afif Bin Husman

Prepared By: Syeda Samia (2123536) & Nur Ayu Naziera Binti Rosli (2119202) & Shareen

Arawie Bin Hisham (2116943)

Date of Experiments: Monday, 16th December 2024 Date of Submission: 29th December 2024

Table of Contents

Objectives	3
Equipment and Components	3
Process Flow	3
Part A: Make PLC Diagram in TIA PORTAL	3
Task 1:	4
Task 2:	4
Part B: Open Node-Red	4
Part C: IIOT (Controlling PLC through Node-Red)	5
Task 3	5
Part D: Controlling Node-Red through mobile phone (Task 4)	5
Results	6
Task 1	6
Task 2	6
Task 3	7
Task 4	7
Summary	8
References	9
Annendices	Q

Objectives

- To explore Node-RED as a programming tool for connecting hardware devices, APIs and online services.
- To investigate the integration of IIoT (Industrial Internet of Things) into systems through Node-REDCAND plc (Programmable Logic Controller).

Equipment and Components

1. IIOT Simulator 2070, IOT Sata Sdn Bhd

— It mimics the operation of industrial automation systems, demonstrating how PLCs interact with these systems in practical scenarios. Additionally, it integrates with Node-RED to enable visualization of data from simulated processes, design control interfaces, and build automation logic.

2. Computer with Node-RED

— Node-RED is an open-source development platform based on JavaScript, designed for IoT system development. It features a visual interface for building data flows and streamlining integration with advanced systems such as SQL servers and cloud platforms. Its Dashboard provides tools for real-time data visualization and supports rapid prototyping using protocols like MQTT and database interactions. Paired with the IIOT Simulator 2070, Node-RED effectively connects with PLCs, enabling real-time monitoring, control, and automation. This integration enhances PLC functionality and adaptability without requiring complex programming.

Process Flow

Part A: Make PLC Diagram in TIA PORTAL

- 1. Connection between TIA portal and PLC hardware (SIMATIC IOT2000 PLC) is set up.
- 2. Click on PLC → Properties →General → Ethernet addresses → IP protocol. Select "Set IP address in the project", and then insert the IP address of the PLC hardware.
- 3. Click on PLC → Properties →General → protection → Connection mechanisms → Tick "permit access with PUT/GET...".
- 4. In project tree, \rightarrow Under program blocks \rightarrow add new block \rightarrow choose Function block \rightarrow 'OK'
- 5. Click on Block_1[FB1] →properties → Under general →Attributes → Uncheck "Optimizes block access"
- 6. Create a simple LAD Program in FB1

- 7. Open "Main [OB1]" → Drag "Block_1[FB1]" into network "Main [OB1]" → popup "call options" appear, just click "OK"
- 8. Save & upload the complete program (Hardware & Software) to CPU

Task 1: Built this following circuit in PLC and see the whether IIOT Simulator will be activated when the button is pressed.

Task 2: Built this circuit and see the timing of the data send.

```
##25
##25
##26.0

*$0.0

*$1ARIT'

Time

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.0

*$10.
```

Part B: Open Node-Red

- 1. Install Node.js from the official Node.js website
- 2. Check if the installation is done by typing the following to the command prompt(cmd): "node --version && npm -version"
- 3. Install Node-red by typing the following to the cmd: "npm install -g --unsafe-perm node-red"
- 4. Run Node-red by typing the following to the cmd: "node-red"
- 5. Access Node-RED in Browser by entering ethernet or Wi-Fi IP address of IOT2000 (Default ethernet IP address of IOT2000 is http://192.168.200.1:1880)

Part C: IIOT (Controlling PLC through Node-Red)

1. Create the following flow in Node-Red:

- 2. Configure each of the nodes respectively.
- 3. Deploy the flow.

Task 3: Built this following circuit and see the whether PLC will be activated when Node-red is pressed.

```
%0.0
"Tag_1" "Tag_2"
"%M0.0
"Tag_8"
```

Part D: Controlling Node-Red through mobile phone (Task 4)

1. Build this ladder diagram in PLC: Set and Reset ladder diagram

```
Network 1:

"40.0

"Tag_1"

"40.0

"Tag_11"

"MMO.0

"Tag_11"

"MO.1

"Tag_9"

"Tag_12"

"MMO.1

"Tag_12"
```

2. Create this following in Node-Red:

- 3. Install an IIOT MQTT Panel app in a mobile phone.
- 4. In the app, make sure the IP Address matches the IIOT Simulator used.
- 5. Pick a toggle swich in the app, set the payload to 2 so that it will have two options whether 'true' or 'false'.
- 6. Select 1 LED as and output.
- 7. Lastly, make sure all the setting in the app matches the setting in the Node-Red.

Results

Task 1: when pressing either the I0.0 or I0.1, the O0.0 will lit up.

Task 2: When we put 100 milli second delay, there is a delay for the O0.0 to lit up.

Task 3: We manage to activate and connect the PLC with Node-Red. We are able to see the output in the PLC and also in Node-Red.

Task 4: We are able to control the Node-Red through our mobile phone.

Summary

In this report, we successfully explored how the Industrial Internet of Things (IIoT) can be integrated with Programmable Logic Controllers (PLCs) using Node-RED. The experiments demonstrated practical applications of IIoT in automation. In Task 1, pressing a button activated the IIoT simulator, confirming the functionality of the PLC circuit. Task 2 showed that introducing a 100-millisecond delay resulted in a matching output delay, verifying accurate timing in data transmission. In Task 3, Node-RED was seamlessly connected to the PLC, enabling real-time monitoring and control. Finally, Task 4 demonstrated remote control of Node-RED through a mobile app, highlighting the system's flexibility and ease of use.

Overall, combining Node-RED, PLCs, and the IIoT simulator provided an effective way to design and control automated systems. These tools simplify automation processes, making them more efficient and adaptable to various applications.

References

- Siemens TIA Portal Manual. Guided the setup of the PLC hardware and software
- MQTT Protocol Documentation. Used for setting up communication between Node-RED and the mobile app.

Appendices

The IIoT Simulator IP Adress

