Informed Search Algorithms

Chapter 3, Sections 5–6

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics
- ♦ Hill-climbing

Review: General search

```
 \begin{aligned} & \textbf{function General-Search}(\textit{problem}, \text{Queuing-Fn}) \; \textbf{returns} \; \text{a solution, or failure} \\ & \textit{nodes} \leftarrow \text{Make-Queue}(\text{Make-Node}(\text{Initial-State}[\textit{problem}])) \\ & \textbf{loop do} \\ & \quad \textbf{if } \textit{nodes} \; \text{is empty then return failure} \\ & \quad \textit{node} \leftarrow \text{Remove-Front}(\textit{nodes}) \\ & \quad \textbf{if } \text{Goal-Test}[\textit{problem}] \; \text{applied to State}(\textit{node}) \; \text{succeeds then return } \textit{node} \\ & \quad \textit{nodes} \leftarrow \text{Queuing-Fn}(\textit{nodes}, \text{Expand}(\textit{node}, \text{Operators}[\textit{problem}])) \\ & \quad \textbf{end} \end{aligned}
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an *evaluation function* for each node – estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

QueueingFn = insert successors in decreasing order of desirability

Special cases:

 $\begin{array}{l} \text{greedy search} \\ A^* \text{ search} \end{array}$

Romania with step costs in km

Straight-line distando O Bucharest	ce
Arad	366
Bucharest	(
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
[asi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Гimisoara	329
U rziceni	80
Vaslui	199
Zerind	374

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to goal

E.g., $h_{\mathrm{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Properties of greedy search

Complete??

Time??

Space??

Optimal??

Properties of greedy search

Complete?? No – can get stuck in loops, e.g., lasi to Fagaras lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

<u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n (path cost)

 $h(n) = {\it estimated cost to goal from} \ n$

f(n) =estimated total cost of path through n to goal

 A^* search uses an admissible heuristic

i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

<u>Theorem</u>: A* search is optimal

A^* search example

A^* search example

A* search example

A* search example

A^* search example

A^* search example

Optimality of A^* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Optimality of A* (more useful)

<u>Lemma</u>: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A^*

 $\underline{\text{Complete}} \ref{Complete} \textbf{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total } \underline{\mathsf{Manhattan}} \ \mathsf{distance}$

(i.e., no. of squares from desired location of each tile)

$$\underbrace{\frac{h_1(S) = ??}{h_2(S) = }??}$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$ $h_2(n) = \text{total } \underline{\text{Manhattan}} \text{ distance}$ (i.e., no. of squares from desired location of each tile)

$$\frac{h_1(S) = ?? 7}{h_2(S) = ?? 2+3+3+2+4+2+0+2 = 18}$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS $=$ 3,473,941 nodes
$${\sf A}^*(h_1)=539 \ {\sf nodes}$$

$${\sf A}^*(h_2)=113 \ {\sf nodes}$$

$$d=24 \ {\sf IDS}={\sf too many nodes}$$

$${\sf A}^*(h_1)=39,135 \ {\sf nodes}$$

$${\sf A}^*(h_2)=1,641 \ {\sf nodes}$$

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to $any\ adjacent\ square$, then $h_2(n)$ gives the shortest solution

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find optimal configuration, e.g., Travelling Salesperson Problem or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use $iterative \ improvement$ algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Relaxed problem: let path be any structure that connects all cities \implies use minimum spanning tree as heuristic for the TSP

Example: n-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

Summary

Heurstics help reduce search cost, however, finding an optimal solution is still difficult.

Greedy best-first search is not optimal, but can be efficient.

A* search is complete and optimal, but is prohibitive in memory.

Hill-climbing methods operate on complete-state formulations, require less memory, but are not optimal.

Examples of skills expected:

- \Diamond Demonstrate operation of search algorithms
- \Diamond Discuss and evaluate the properties of search algorithms
- \Diamond Derive and compare heuristics for a problem