

Γ. Αραμπατζής

Διαγώνισμα Ιουνίου

06.06.2025

Ερώτηση 1: Νομίσματα

Σε ένα κουτί υπάρχουν n+1 νομίσματα. Το νόμισμα i φέρνει κορώνα με πιθανότητα $\frac{i}{n}$, $i=0,\ldots,n$. Διαλέγετε ένα νόμισμα στην τύχη και το στρίβετε.

Έστω A_i το ενδεχόμενο να διαλέξω το κέρμα i και K το ενδεχόμενο να έρθει κορώνα. Είναι δεδομένο ότι $\mathbb{P}(K | A_i) = \frac{i}{n}$ $\mathbb{P}(A_i) = \frac{1}{n+1}$.

α΄) [10] Να δείξετε ότι η πιθανότητα να έρθει κορώνα είναι $\frac{1}{2}$.

Εφόσον τα A_i είναι ξένα και η ένωση τους μας δίνει το δειγματικό χώρο, από το θεώρημα της ολικής πιθανότητας ισχύει ότι,

$$\mathbb{P}(K) = \sum_{i=0}^{n} \mathbb{P}(K \mid A_i) \mathbb{P}(A_i) = \sum_{i=0}^{n} \frac{i}{n} \frac{1}{n+1} = \frac{1}{n(n+1)} \frac{n(n+1)}{2} = \frac{1}{2}.$$
 (1)

β') [10] Με δεδομένο ότι ήρθε χορώνα, να υπολογίσετε την πιθανότητα να διαλέξατε το χέρμα i.

Από το θεώρημα του Bayes,

$$\mathbb{P}(A_i \mid K) = \frac{\mathbb{P}(K \mid A_i) \, \mathbb{P}(A_i)}{\mathbb{P}(K)} = \frac{\frac{i}{n} \, \frac{1}{n+1}}{\frac{1}{2}} = \frac{2i}{n(n+1)}. \tag{2}$$

 $(20 \pi oi \nu \tau \varsigma)$

Ερώτηση 2: Ομοιόμορφη κατανομή [20]

Έστω X_1, X_2, X_3 ανεξάρτητες τυχαίες μεταβλητές που ακολουθούν την ομοιόμορφη κατανομή στο διάστημα [0,1]. Η συνάρτηση πυκνότητας πιθανότητας της ομοιόμορφης κατανομής είναι ίση με 1 για τιμές της X στο [0,1] και 0 αλλού. Να υπολογίσετε την πιθανότητα η μεγαλύτερη από τις τρεις να ειναι μικρότερη από το άθροισμα των άλλων δύο.

Το ενδεχόμενο του οποίου την πιθανότητα θέλουμε να υπολογίσουμε γράφεται ως,

$$A = \{X_1 < X_2 + X_3, \ X_1 > X_2, \ X_1 > X_3\} \cup \{X_2 < X_1 + X_3, \ X_2 > X_1, \ X_2 > X_3\} \cup \{X_3 < X_1 + X_2, \ X_3 > X_1, \ X_3 > X_2\}$$

$$= A_1 \cup A_2 \cup A_3.$$
(3)

Επειδή τα σύνολα είναι ξένα μεταξύ τους, ισχύει ότι

$$\mathbb{P}(A) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) = 3\mathbb{P}(A_1), \tag{4}$$

όπου η τελευταία ισότητα ισχύει λόγω συμμετρίας του προβλήματος. Θα υπολογίσουμε την πιθανότητα του ενδεχομένο Νυ A_1 .

Για κάθε μία από τις τ.μ. έχουμε ότι η μεγαλύτερη από όλες, η X_1 εδώ, μπορεί να ανήκει οπουδήποτε στο [0,1]. Η X_2 είναι σίγουρα μικρότερη από την X_1 και μεγαλύτερη από το 0, άρα ανήκει στο διάστημα $[0,X_1]$. Για την X_3 έχουμε ότι $X_3>X_1-X_2$ και $X_3<X_1$, άρα ανήκει στο διάστημα $[X_1-X_2,X_1]$. Επομένως,

$$\mathbb{P}(X_1 < X_2 + X_3) = \int_0^1 \int_0^{x_1} \int_{x_1 - x_2}^{x_1} 1 \, \mathrm{d}x_3 \, \mathrm{d}x_2 \, \mathrm{d}x_1 = \dots = \frac{1}{6}.$$
 (5)

Επομένως, $\mathbb{P}(A) = \frac{1}{2}$.

Πληροφορίες

- Δίνονται συνολικά 40 μονάδες. Το μέγιστο σκορ είναι 40.
- Η διάρχεια του διαγωνίσματος είναι 150 λεπτά.
- Αιτιολογήστε καθαρά τις απαντήσεις σας. Απαντήσεις χωρίς αιτιολόγηση δεν θεωρούνται σωστές.
- Λύστε τα θέματα στο πρόχειρο και παρουσιάστε τις τελικές λύσεις καθαρογραμμένες. Απαντήσεις με μουντζούρες δεν θα βαθμολογούνται.
- Δώστε συγκεντρωμένες απαντήσεις για κάθε άσκηση. Αν προχωρήσετε στην επόμενη χωρίς να έχετε ολοκληρώσει την προηγούμενη, αφήστε επαρκή κενό χώρο σε περίπτωση που θέλετε να επιστρέψετε.