Vector Tutorial 1

Tutorial 1 (Vectors: Vector Algebra)

- Find the magnitude of the following vectors:
 - (a) 4i 3j
- (b) -7 i + 24 j
- (c) i-2j+k
- (d) -4i 4j + 4k
- 2 Find a vector of magnitude:
 - (a) 4 units in the direction to i + 2j.
 - (b) 6 units in the opposite direction to -6i + 4j
 - (c) 6 units in the direction to i + 2j 2k
 - (d) 3 units in the opposite direction to -2i 4j + 2k
- 3 If P is the point (-2, 4, 1) find
 - (a) a unit vector parallel to *OP*
 - (b) the angle that the vector *OP* makes with the positive *X*-axis.
- 4 Given the point Q(1, -2, 3), find
 - (a) a unit vector parallel to OQ
 - (b) the angle that the vector *OQ* makes with the positive *Y*-axis.
- 5 Given the point R(-3, 5, -2), find
 - (a) a unit vector parallel to OR,
 - (b) the angle that the vector *OR* makes with the positive *Z*-axis.
- Given the two points C(2,-1,5) and D(-3,4,2) find
 - (a) the vector from D to C
 - (b) the distance between the points C and D,
 - (c) a unit vector parallel to CD,
 - (d) the angle that the line *CD* makes with the positive *Y*-axis.
- If a = 2i + 3j k and b = -3i + j + 2k, then find the vectors
 - (a) $\boldsymbol{a} + \boldsymbol{b}$
- (b) a-b
- (c) 2a+b
- 8 If p = 3i + 2j 5k and q = 2i + j 2k, then find the vectors
 - (a) p+q
- (b) p-q
- (c) 2p 3q
- 9 If $\mathbf{u} = 2\mathbf{i} \mathbf{j} + 4\mathbf{k}$ and $\mathbf{v} = -\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ find the value of $\mathbf{v} \cdot \mathbf{u}$.
- If a = i + j 3k and b = 2i + j find the value of a.b.
- Given the vectors $\mathbf{a} = 2\mathbf{i} 4\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} \mathbf{j} 4\mathbf{k}$ find:
 - (a) a unit vector parallel to \boldsymbol{b} ,
 - (b) the scalar resolute of a in the direction of b,
 - (c) the vector resolute of \mathbf{a} in the direction of \mathbf{b} ,
 - (d) the vector resolute of \mathbf{a} in the perpendicular of \mathbf{b} ,
 - (e) the angle between the vectors \mathbf{a} and \mathbf{b} .

Vector Tutorial 1 2

- 12 If p = 3i + 2j 5k and q = 2i + j 2k find:
 - (a) a unit in the direction q,
 - (b) the scalar resolute of p in the direction of q,
 - (c) the vector resolute of p in the direction of q,
 - (d) the vector resolute of p perpendicular to q,
 - (e) the angle between the vectors \mathbf{p} and \mathbf{q} .
- If p = 2i j tk and q = -6i + 3j + 5k find the value of the scalar t so that p and q are:
 - (a) parallel (b) perpendicular.
- If p = 6i + yj 9k and q = -4i + 2j + 6k find the values of the scalars y so that p and q are:
 - (a) parallel, (b) perpendicular
- If A, B, C and D are four points in space with coordinates A(2,3,2), B(4,p,0), C(-1,-1,0), D(-2,2,1)
 - (a) find the value of the scalar p if AB is parallel to DC,
 - (b) find the value of the scalar p if AB is perpendicular to DC,
 - (c) find in terms of p that angle that AB makes with the Z-axis.
- If A, B, C are three points in space with coordinates A(3, -2, 5), B(-1, 0, 4), C(2, -1, 3) and θ is the origin (0, 0, 0) find:
 - (a) a unit vector in the direction \overline{BC} ,
 - (b) the scalar resolute of \overline{AB} in the direction of \overline{BC} ,
 - (c) the vector resolute of AB in the direction of \overline{BC} ,
 - (d) the vector resolute of \overline{AB} perpendicular to \overline{BC} ,
 - (e) the angle between the vectors \overline{AB} and \overline{BC} ,
 - (f) the area of the triangle ABC.
- Given the vectors $\mathbf{p} = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{q} = 2\mathbf{i} + \mathbf{k}$, find:
 - (a) a unit vector parallel to q,
 - (b) the scalar resolute of p in the direction of q,
 - (c) the vector resolute of p in the direction of q,
 - (d) the vector resolute of p in the perpendicular of q,
 - (e) the angle between the vectors p and q,
 - (f) a unit vector which is perpendicular to both p and q.
- 18 If a = 2i 3j k and b = i + 4j 2k find:
 - (a) $\underline{a} \times \underline{b}$ (b) $(\underline{a} + \underline{b}) \times (\underline{a} \underline{b})$ (c) $\underline{a} \cdot \underline{b}$
- Find a unit vector perpendicular to the plane containing $\underline{a} = 2\underline{i} 6\underline{j} 3\underline{k}$ and $\underline{b} = 4\underline{i} + 3\underline{j} \underline{k}$
- If $\underline{a} = 2\underline{i} + y\underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} 2\underline{j} + 2\underline{k}$ find the value of y if,
 - (a) \underline{a} is perpendicular to \underline{b}
 - (b) \underline{a} is parallel to \underline{b}

Vector Tutorial 1

- 21 If $\underline{a} = 2\underline{i} - 3j - \underline{k}$ and $\underline{b} = \underline{i} + 4j - 2\underline{k}$ find,
 - (a) the length of the vector a
 - the length of the vector b (b)
 - (c) *a* . *b*
 - the angle between the vectors a and b(d)
- Find the area of a triangle with vertices (1,1,2) (2,3,5) and (1,5,5). 22
- If $\underline{\alpha} = \underline{i} + 2\underline{j} + \underline{k}$ $\underline{b} = -\underline{i} + \underline{j} + 3\underline{k}$ and $\underline{c} = 3\underline{i} + \underline{j} \underline{k}$ find 23
- $\underline{a} \cdot \underline{b} \times \underline{c}$ b) $\underline{a} \times (\underline{b} \times \underline{c})$
 - c) verify that $a \times (b \times c) = (a \cdot c) b (a \cdot b) c$

Answers

- (a) 5 (b) 25 (c) $\sqrt{6}$ (d) $4\sqrt{3}$ 1
- 2 (a) $\frac{4}{\sqrt{5}}$ (**i** + 2**j**)

(b) $\frac{6}{\sqrt{13}} (3i - 2j)$

(c) 2(i+2j-2k)

(d) $\frac{3}{\sqrt{6}} (i + 2j - k)$

3 (a) $\frac{1}{\sqrt{21}} (-2i + 4j + k)$

(b) 115⁰53'

4 (a) $\frac{1}{\sqrt{14}} (i - 2j + 3k)$

(b) 122⁰19'

5 (a) $\frac{1}{\sqrt{38}} \left(-3i + 5j - 2k \right)$

(b) 108⁰56'

6 (a) 5i - 5j + 3k

(b) $\sqrt{59}$

- (c) $\frac{1}{\sqrt{50}} (-5i + 5j 3k)$
- (d) $49^{0}23$
- (a) -i + 4j + k (b) 5i + 2j 3k (c) i + 7j7
- (a) 5i + 3j 7k (b) i + j 3k (c) j 4k

9 -16

10 3

11 (a) $\frac{1}{\sqrt{26}} (3i - j - 4k)$

(b) $\frac{6}{\sqrt{26}}$

Vector Tutorial 1 4

(c)
$$\frac{3}{13} (3i - j - 4k)$$

(d)
$$\frac{1}{13} (17i - 49j + 25k)$$

(e)
$$75^{0}7$$

12 (a)
$$\frac{1}{3}(2i+j-2k)$$

(b) 6

(c)
$$2(2i + j - 2k)$$

(d) -i-k

(e)
$$13^016$$

13 (a)
$$\frac{5}{3}$$

(b) -3

(b) 39

15 (a) -3 (b)
$$\frac{13}{3}$$
 (c) $\cos^{-1}\left(\frac{-2}{\sqrt{p^2-6p+17}}\right)$

16 (a)
$$\frac{1}{\sqrt{11}} (3i - j - k)$$

(b) $-\frac{13}{\sqrt{11}}$

(c)
$$-\frac{13}{11}(3i-j-k)$$

(d) $\frac{1}{11} \left(-5i + 9j - 24k \right)$

(f) 3.937 units²

17 (a)
$$\frac{1}{\sqrt{5}} (2i + k)$$

(b) $\frac{8}{\sqrt{5}}$

(c)
$$\frac{8}{5} (2i + k)$$

(d) $\frac{3}{5} (-2i - 5j + 4k)$

(e)
$$48^{0}22$$

(f) $\pm \frac{1}{3} \left(-i + 2j + 2k \right)$

18 (a)
$$10\underline{i} + 3\underline{j} + 11\underline{k}$$
 (b) $-20\underline{i} - 6\underline{j} - 22\underline{k}$ (c) -8

$$19 \qquad \pm \frac{1}{7} \left(3i - 2j + 6k \right)$$

21 (a)
$$\sqrt{14}$$

(b)
$$\sqrt{2}$$

(a) 5 (b)
$$-1$$
 (a) $\sqrt{14}$ (b) $\sqrt{21}$ (c) -8 (d) $117^{0}48^{1}$ 23 a) 8

(c)
$$\frac{1}{2}\sqrt{61}$$

23 a) 8 b)
$$-16i + 16k$$