CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

990

1/38

This lecture will be recorded

CSci 127 (Hunter) Lecture 6 9 March 2021

From email.

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

I still don't get indices and the brackets. Could you spend more time on that?

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

- I still don't get indices and the brackets. Could you spend more time on that?
 Yes, we will, since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).

9 March 2021

2 / 38

CSci 127 (Hunter) Lecture 6

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

- I still don't get indices and the brackets. Could you spend more time on that?
 Yes, we will, since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).
- I still don't get what is meant by input?

9 March 2021

2 / 38

CSci 127 (Hunter) Lecture 6

From email

 Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

- I still don't get indices and the brackets. Could you spend more time on that? Yes. we will. since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).
- I still don't get what is meant by input? Input is data provided to a program each time it runs, it may change at each run. In this course we have used the input() function.

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

- I still don't get indices and the brackets. Could you spend more time on that?
 Yes, we will, since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).
- I still don't get what is meant by input?

 Input is data provided to a program each time it runs, it may change at each run.

 In this course we have used the input() function.
- Can we have more time for the Lab quiz?

CSci 127 (Hunter)

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

- I still don't get indices and the brackets. Could you spend more time on that?
 Yes, we will, since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).
- I still don't get what is meant by input?

 Input is data provided to a program each time it runs, it may change at each run.

 In this course we have used the input() function.
- Can we have more time for the Lab quiz?

 Yes! After a few of you have mentioned feeling too rushed for the lab quiz, I have increased the time to 20 minutes.

From email.

• Could you spend more time on circuits/logical expressions/truth tables/decisions?

Yes, we will start with that today.

increased the time to 20 minutes

- I still don't get indices and the brackets. Could you spend more time on that?
 Yes, we will, since
 - 1) it's fundamental, and
 - 2) the same ideas are used for accessing formatted data (today's topic).
- I still don't get what is meant by input?

 Input is data provided to a program each time it runs, it may change at each run.

 In this course we have used the input() function.
- Can we have more time for the Lab quiz?

 Yes! After a few of you have mentioned feeling too rushed for the lab quiz, I have
 - Keep in mind that the final exam will be in the same format and it is also timed. You will have 2 hours for the final exam.

Today's Topics

- Recap: Logical Expressions & Circuits
- Design: Cropping Images
- Accessing Formatted Data

Today's Topics

- Recap: Logical Expressions & Circuits
- Design: Cropping Images
- Accessing Formatted Data

Recap: Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

Recap: Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Recap: Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True
		or	

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

Logical Operators & Circuits

 Each logical operator (and, or, & not) can be used to join together expressions.

Logical Operators & Circuits

 Each logical operator (and, or, & not) can be used to join together expressions.

Example: in1 and in2

Logical Operators & Circuits

 Each logical operator (and, or, & not) can be used to join together expressions.

Example: in1 and in2

 Each logical operator (and, or, & not) has a corresponding logical circuit that can be used to join together inputs.

Examples: Logical Circuit

CSci 127 (Hunter) Lecture 6

Examples: Logical Circuit

(in1 and in2) and in3

More Circuit Examples

Examples from last lecture:

Draw a circuit that corresponds to each logical expression:

- o not(in1 or in2)
- (in1 or in2) and (in1 or in3)
- (not(in1 and not in2)) or (in1 and (in2 and in3))

Challenge:

Predict what the code will do:

```
x = 6
   y = x \% 4
   w = y**3
   z = w // 2
   print(x,y,w,z)
   x,y = y,w
   print(x,y,w,z)
   x = v / 2
print(x,y,w,z)
   sports = ["Field Hockey", "Swimming", "Water Polo"]
   mess = "Qoauxca BrletRce crcx qvBnqa ocUxk"
   result =
   for i in range(len(mess)):
       if i % 3 == 0:
           print(mess[i])
           result = result + mess[i]
  print(sports[1], result)
```

Python Tutor

```
x = 6
y = x % 4
w = y**3
z = w // 2
print(x,y,w,z)
x,y = y,w
print(x,y,w,z)
x = y / 2
print(x,y,w,z)
(Demo with pythonTutor)
```

Today's Topics

- Recap: Logical Expressions & Circuits
- Design: Cropping Images
- Accessing Formatted Data
- CS Survey: Astrophysics and astropy

Challenge: Design Question

From Final Exam, Fall 2017, V4, #6.

Design an algorithm that reads in an image and displays the lower left corner of the image.

Challenge: Design Question

From Final Exam, Fall 2017, V4, #6.

Design an algorithm that reads in an image and displays the lower left corner of the image.

Input:

Output:

Process: (Brainstorm for a "To Do" list to accomplish this.)

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

• Create a "To Do" list of what your program has to accomplish.

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.
 - 2 Ask user for an image name.

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.
 - 2 Ask user for an image name.
 - 3 Read in image.

CSci 127 (Hunter) Lecture 6

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.
 - 2 Ask user for an image name.
 - 3 Read in image.
 - 4 Figure out size of image.

CSci 127 (Hunter)

Design Question

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.
 - Ask user for an image name.
 - Read in image.
 - Figure out size of image.
 - Make a new image that's half the height and half the width.

CSci 127 (Hunter)

Design Question

Design a program that asks the user for an image and then display the upper left quarter of the image. (First, design the pseudocode, and if time, expand to a Python program.)

How to approach this:

- Create a "To Do" list of what your program has to accomplish.
- Read through the problem, and break it into "To Do" items.
- Don't worry if you don't know how to do all the items you write down.
- Example:
 - Import libraries.
 - 2 Ask user for an image name.
 - 3 Read in image.
 - Figure out size of image.
 - Make a new image that's half the height and half the width.
 - 6 Display the new image.

CSci 127 (Hunter) Lecture 6 9 March 2021

Import libraries.

Import libraries.

import matplotlib.pyplot as plt
import numpy as np

- Import libraries. import matplotlib.pyplot as plt import numpy as np
- 2 Ask user for an image name.

Import libraries. import matplotlib.pyplot as plt import numpy as np

② Ask user for an image name.
inF = input('Enter file name: ')

Import libraries. import matplotlib.pyplot as plt import numpy as np

2 Ask user for an image name. inF = input('Enter file name: ')

3 Read in image.

- Import libraries.
 - import matplotlib.pyplot as plt import numpy as np
- Ask user for an image name.
 - inF = input('Enter file name:
- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF

14 / 38

CSci 127 (Hunter) Lecture 6

- Import libraries.
 - import matplotlib.pyplot as plt
 import numpy as np
- ② Ask user for an image name.
 - inF = input('Enter file name: '
- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF
- 4 Figure out size of image.

14 / 38

CSci 127 (Hunter) Lecture 6 9 March 2021

- Import libraries.
 - import matplotlib.pyplot as plt
 import numpy as np
- ② Ask user for an image name.

```
inF = input('Enter file name: ')
```

- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF
- 4 Figure out size of image.

```
height = img.shape[0] #Get height
width = img.shape[1] #Get width
```


- Import libraries.
 - import matplotlib.pyplot as plt
 import numpy as np
- ② Ask user for an image name.

```
inF = input('Enter file name: '
```

- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF
- 4 Figure out size of image.

```
height = img.shape[0] #Get height
width = img.shape[1] #Get width
```

Make a new image that's half the height and half the width.

- Import libraries.
 - import matplotlib.pyplot as plt
 import numpy as np
- ② Ask user for an image name.

```
inF = input('Enter file name: ')
```

- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF
- 4 Figure out size of image.

```
height = img.shape[0] #Get height
width = img.shape[1] #Get width
```

Make a new image that's half the height and half the width. img2 = img[height//2:, :width//2] #Crop to lower left corner

- Import libraries.
 - import matplotlib.pyplot as plt
 import numpy as np
- ② Ask user for an image name.

```
inF = input('Enter file name: ')
```

- 3 Read in image.
 - img = plt.imread(inF) #Read in image from inF
- 4 Figure out size of image.

```
height = img.shape[0] #Get height
width = img.shape[1] #Get width
```

- Make a new image that's half the height and half the width. img2 = img[height//2:, :width//2] #Crop to lower left corner
- 6 Display the new image.

plt.imshow(img2) #Load our new image into pyplot plt.show() #Show the image (waits until closed to continue)

Today's Topics

- Recap: Logical Expressions & Circuits
- Design: Cropping Images
- Accessing Formatted Data
- CS Survey: Astrophysics and astropy

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

• Common to have data structured in a spread sheet.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

- Common to have data structured in a spread sheet.
- In the example above, we have the first line that says "Undergraduate".

Undergraduate		
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	Full-time Part-time 11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- Common to have data structured in a spread sheet.
- In the example above, we have the first line that says "Undergraduate".
- Next line has the titles for the columns.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

- Common to have data structured in a spread sheet.
- In the example above, we have the first line that says "Undergraduate".
- Next line has the titles for the columns.
- Subsequent lines have a college and attributes about the college.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

- Common to have data structured in a spread sheet.
- In the example above, we have the first line that says "Undergraduate".
- Next line has the titles for the columns.
- Subsequent lines have a college and attributes about the college.
- Python has several ways to read in such data.

Undergraduate		
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	Full-time Part-time 11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- Common to have data structured in a spread sheet.
- In the example above, we have the first line that says "Undergraduate".
- Next line has the titles for the columns.
- Subsequent lines have a college and attributes about the college.
- Python has several ways to read in such data.
- We will use the popular Python Data Analysis Library (Pandas).

We will use the popular Python Data Analysis Library (Pandas).

(ロト 4 個 ト 4 重 ト 4 重 ト) 見) りへの

- We will use the popular Python Data Analysis Library (Pandas).
- Open source and freely available (part of anaconda distribution).

- We will use the popular Python Data Analysis Library (Pandas).
- Open source and freely available (part of anaconda distribution).
- See Lab 1 for directions on downloading it to your home machine.

- We will use the popular Python Data Analysis Library (Pandas).
- Open source and freely available (part of anaconda distribution).
- See Lab 1 for directions on downloading it to your home machine.
- If you can't install on your computer, it is supported in https://repl.it/

- We will use the popular Python Data Analysis Library (Pandas).
- Open source and freely available (part of anaconda distribution).
- See Lab 1 for directions on downloading it to your home machine.
- If you can't install on your computer, it is supported in https://repl.it/
- To use, add to the top of your program:

import pandas as pd

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

• Excel .xls files have much extra formatting.

I	Undergraduate	
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- Excel .xls files have much extra formatting.
- The text file version is called **CSV** for comma separated values.

Undergraduate		
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	Full-time Part-time 11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- Excel .xls files have much extra formatting.
- The text file version is called **CSV** for comma separated values.
- Each row is a line in the file.

		Undergraduate		
College	Full-time	Part-time	Total	
Baruch	11,288	3,922	15,210	
Brooklyn	10,198	4,208	14,406	
City	10,067	3,250	13,317	
Hunter	12,223	4,500	16,723	
John Jay	9,831	2,843	12,674	
Lehman	6,600	4,720	11,320	
Medgar Evers	4,760	2,059	6,819	
NYCCT	10,912	6,370	17,282	
Queens	11,693	4,633	16,326	
Staten Island	9,584	2,948	12,532	
York	5,066	3,192	8,258	

- Excel .xls files have much extra formatting.
- The text file version is called **CSV** for comma separated values.
- Each row is a line in the file.
- Columns are separated by commas on each line.

18 / 38

```
Source: https://en.wikipedia.org/wiki/Demographics of New York City.....
All population figures are consistent with present-day boundaries.,,,,,,
First census after the consolidation of the five boroughs .....
,,,,,,
Year, Manhattan, Brooklyn, Oueens, Bronx, Staten Island, Total
1698.4937.2017...727.7681
1771.21863.3623...2847.28423
1790.33131.4549.6159.1781.3827.49447
1800,60515,5740,6642,1755,4563,79215
1810.96373.8303.7444.2267.5347.119734
1820, 123706, 11187, 8246, 2782, 6135, 152056
1830.202589.20535.9049.3023.7082.242278
1840.312710.47613.14480.5346.10965.391114
1850.515547.138882.18593.8032.15061.696115
1860.813669.279122.32903.23593.25492.1174779
1870.942292.419921.45468.37393.33029.1478103
1880, 1164673, 599495, 56559, 51980, 38991, 1911698
1890,1441216,838547,87050,88908,51693,2507414
1900, 1850093, 1166582, 152999, 200507, 67021, 3437202
1910,2331542,1634351,284041,430980,85969,4766883
1920, 2284103, 2018356, 469042, 732016, 116531, 5620048
1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446
1940, 1889924, 2698285, 1297634, 1394711, 174441, 7454995
1950, 1960101, 2738175, 1550849, 1451277, 191555, 7891957
1960, 1698281, 2627319, 1809578, 1424815, 221991, 7781984
1970, 1539233, 2602012, 1986473, 1471701, 295443, 7894862
1980,1428285,2230936,1891325,1168972,352121,7071639
1990, 1487536, 2300664, 1951598, 1203789, 378977, 7322564
2000, 1537195, 2465326, 2229379, 1332650, 443728, 8008278
2010, 1585873, 2504700, 2230722, 1385108, 468730, 8175133
2015,1644518,2636735,2339150,1455444,474558,8550405
```

nycHistPop.csv

4 D > 4 A > 4 E > 4 E > E 9 Q C

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

To read in a CSV file: myVar = pd.read_csv("myFile.csv")

4□ > 4□ > 4 = > 4 = > = 90

Undergraduate		
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	Full-time Part-time 11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- o To read in a CSV file: myVar = pd.read_csv("myFile.csv")
- Pandas has its own type, **DataFrame**, that is perfect for holding a sheet of data.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

- To read in a CSV file: myVar = pd.read_csv("myFile.csv")
- Pandas has its own type, **DataFrame**, that is perfect for holding a sheet of data.
- Often abbreviated: df.

CSci 127 (Hunter)

Undergraduate		
Full-time	Part-time	Total
11,288	3,922	15,210
10,198	4,208	14,406
10,067	3,250	13,317
12,223	4,500	16,723
9,831	2,843	12,674
6,600	4,720	11,320
4,760	2,059	6,819
10,912	6,370	17,282
11,693	4,633	16,326
9,584	2,948	12,532
5,066	3,192	8,258
	Full-time 11,288 10,198 10,067 12,223 9,831 6,600 4,760 10,912 11,693 9,584	Full-time Part-time 11,288 3,922 10,198 4,208 10,067 3,250 12,223 4,500 9,831 2,843 6,600 4,720 4,760 2,059 10,912 6,370 11,693 4,633 9,584 2,948

- To read in a CSV file: myVar = pd.read_csv("myFile.csv")
- Pandas has its own type, DataFrame, that is perfect for holding a sheet of data.
- Often abbreviated: df.
- It also has **Series**, that is perfect for holding a row or column of data.

Example: Reading in CSV Files

Source: https://em.wikipedia.org/wiki/Demographicm_of_Mew_York_Gity,,,,,
All population figures are consistent with present-day boundaries.,,,,
Pirst census after the consolidation of the five boroughs,,,,,

```
1698,4937,2017,...727,7681
1771,21863,3623,,,2847,28423
1790,33131,4549,6159,1781,3827,49447
1800,60515,5740,6642,1755,4563,79215
1810,96373,8303,7444,2267,5347,119734
1820, 123706, 11187, 8246, 2782, 6135, 152056
1830,202589,20535,9049,3023,7082,242278
1840,312710,47613,14480,5346,10965,391114
1850.515547.138882.18593.8032.15061.696115
1860,813669,279122,32903,23593,25492,1174779
1870,942292,419921,45468,37393,33029,1478103
1880,1164673,599495,56559,51980,38991,1911698
1890,1441216,838547,87050,88908,51693,2507414
1900,1850093,1166582,152999,200507,67021,3437202
1910,2331542,1634351,284041,430980,85969,4766883
1920,2284103,2018356,469042,732016,116531,5620048
1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446
1940,1889924,2698285,1297634,1394711,174441,7454995
1950,1960101,2738175,1550849,1451277,191555,7891957
1960,1698281,2627319,1809578,1424815,221991,7781984
1970,1539233,2602012,1986473,1471701,295443,7894862
1980,1428285,2230936,1891325,1168972,352121,7071639
1990,1487536,2300664,1951598,1203789,378977,7322564
2000,1537195,2465326,2229379,1332650,443728,8008278
2010,1585873,2504700,2230722,1385108,468730,8175133
2015,1644518,2636735,2339150,1455444,474558,8550405
```

Year, Manhattan, Brooklyn, Queens, Bronx, Staten Island, Total

nycHistPop.csv

In Lab 6

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

Source: https://en.wikipedia.org/wiki/Demographics_of_New_York_City,,,,,
All population figures are consistent with present-day boundaries.,,,,,
First ceasus after the consolidation of the fire boroughs,,,,,

```
Year, Manhattan, Brooklyn, Queens, Bronx, Staten Island, Total
1698,4937,2017,...727,7681
1771,21863,3623,,,2847,28423
1790,33131,4549,6159,1781,3827,49447
1800,60515,5740,6642,1755,4563,79215
1810,96373,8303,7444,2267,5347,119734
1820, 123706, 11187, 8246, 2782, 6135, 152056
1830,202589,20535,9049,3023,7082,242278
1840,312710,47613,14480,5346,10965,391114
1850.515547.138882.18593.8032.15061.696115
1860,813669,279122,32903,23593,25492,1174779
1870,942292,419921,45468,37393,33029,1478103
1880, 1164673, 599495, 56559, 51980, 38991, 1911698
1890,1441216,838547,87050,88908,51693,2507414
1900,1850093,1166582,152999,200507,67021,343720
1910,2331542,1634351,284041,430980,85969,4766883
1920,2284103,2018356,469042,732016,116531,5620048
1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446
1940,1889924,2698285,1297634,1394711,174441,7454995
1950,1960101,2738175,1550849,1451277,191555,7891957
1960,1698281,2627319,1809578,1424815,221991,7781984
1970,1539233,2602012,1986473,1471701,295443,7894862
1980,1428285,2230936,1891325,1168972,352121,7071639
1990,1487536,2300664,1951598,1203789,378977,7322564
2000,1537195,2465326,2229379,1332650,443728,8008278
2010,1585873,2504700,2230722,1385108,468730,8175133
2015,1644518,2636735,2339150,1455444,474558,8550405
```

nycHistPop.csv

In Lab 6

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read_csv('nycHistPop.csv',skiprows=5)

Source: https://en.wikipedia.org/wiki/Demographics_of_New_York_City,...,
All population figures are consistent with present-day boundaries....,
First census after the consolidation of the five boroughs,...,

```
Year, Manhattan, Brooklyn, Queens, Bronx, Staten Island, Total
1698,4937,2017,...727,7681
1771,21863,3623,,,2847,28423
1790,33131,4549,6159,1781,3827,49447
1800,60515,5740,6642,1755,4563,79215
1810,96373,8303,7444,2267,5347,119734
1820, 123706, 11187, 8246, 2782, 6135, 152056
1830,202589,20535,9049,3023,7082,242278
1840,312710,47613,14480,5346,10965,391114
1850.515547.138882.18593.8032.15061.696115
1860,813669,279122,32903,23593,25492,1174779
1870,942292,419921,45468,37393,33029,1478103
1880, 1164673, 599495, 56559, 51980, 38991, 1911698
1890,1441216,838547,87050,88908,51693,2507414
1900,1850093,1166582,152999,200507,67021,343720
1910,2331542,1634351,284041,430980,85969,4766883
1920,2284103,2018356,469042,732016,116531,5620048
1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446
```

nycHistPop.csv

In Lab 6

21/38

CSci 127 (Hunter) Lecture 6 9 March 2021

Example: Reading in CSV Files

```
import matplotlib.pyplot as plt
import pandas as pd
```

pop.plot(x="Year")

plt.show()

pop = pd.read_csv('nycHistPop.csv',skiprows=5)

```
Sources | Natura / Com. volkspordin. accept volks / Com. prop. (Jun. 2014; C. 127)

**Trick storms of Arts to concellation for the Tire between the Arts storage of the Tire between the Tire storage of the Tire storage
```

1850,515547,138882,18593,8032,15061,696115 1860,813669,279122,32903,23593,25492,1174779 1870,942292,419921,45468,37393,33029,1478103 1880, 1164673, 599495, 56559, 51980, 38991, 1911698 1890,1441216,838547,87050,88908,51693,2507414 1900,1850093,1166582,152999,200507,67021,343720 1910,2331542,1634351,284041,430980,85969,4766883 1920,2284103,2018356,469042,732016,116531,5620046 1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446 1940,1889924,2698285,1297634,1394711,174441,7454995 1950,1960101,2738175,1550849,1451277,191555,7891957 1960,1698281,2627319,1809578,1424815,221991,7781984 1970,1539233,2602012,1986473,1471701,295443,7894862 1980,1428285,2230936,1891325,1168972,352121,7071639 1990,1487536,2300664,1951598,1203789,378977,7322564 2000, 1537195, 2465326, 2229379, 1332650, 443728, 8008278 2010,1585873,2504700,2230722,1385108,468730,8175133

2015,1644518,2636735,2339150,1455444,474558,8550405

nycHistPop.csv

In Lab 6

9 March 2021

21/38

CSci 127 (Hunter) Lecture 6

Example: Reading in CSV Files

import matplotlib.pyplot as plt import pandas as pd

pop = pd.read_csv('nycHistPop.csv',skiprows=5)

```
Source: https://en.wikipedia.org/wiki/Demographics of New York City.....
All population figures are consistent with present-day boundaries.,,,,,,
First census after the consolidation of the five boroughs,,,,,
Year, Manhattan, Brooklyn, Queens, Bronx, Staten Island, Total
1698,4937,2017,...727,7681
1771,21863,3623,,,2847,28423
1790,33131,4549,6159,1781,3827,49447
1800,60515,5740,6642,1755,4563,79215
1810,96373,8303,7444,2267,5347,119734
1820.123706.11187.8246.2782.6135.152056
1830,202589,20535,9049,3023,7082,242278
1840,312710,47613,14480,5346,10965,391114
1850,515547,138882,18593,8032,15061,696115
1860,813669,279122,32903,23593,25492,1174779
1870,942292,419921,45468,37393,33029,1478103
1880, 1164673, 599495, 56559, 51980, 38991, 1911698
1890,1441216,838547,87050,88908,51693,2507414
1900,1850093,1166582,152999,200507,67021,343720
1910,2331542,1634351,284041,430980,85969,4766883
1920,2284103,2018356,469042,732016,116531,5620048
1930, 1867312, 2560401, 1079129, 1265258, 158346, 6930446
1940,1889924,2698285,1297634,1394711,174441,7454995
1950,1960101,2738175,1550849,1451277,191555,7891957
1960,1698281,2627319,1809578,1424815,221991,7781984
1970,1539233,2602012,1986473,1471701,295443,7894862
1980,1428285,2230936,1891325,1168972,352121,7071639
```

nycHistPop.csv

1990,1487536,2300664,1951598,1203789,378977,7322564 2000, 1537195, 2465326, 2229379, 1332650, 443728, 8008278

2010,1585873,2504700,2230722,1385108,468730,8175133 2015,1644518,2636735,2339150,1455444,474558,8550405

In Lab 6

pop.plot(x="Year")

plt.show()

Series in Pandas

• Series can store a column or row of a DataFrame.

CSci 127 (Hunter) Lecture 6 9 March 2021 22 / 38

Series in Pandas

- Series can store a column or row of a DataFrame.
- Example: pop["Manhattan"] is the Series corresponding to the column of Manhattan data.

4 D > 4 B > 4 E > 4 E > E 9 Q C

22 / 38

Series in Pandas

- Series can store a column or row of a DataFrame.
- Example: pop["Manhattan"] is the Series corresponding to the column of Manhattan data.
- Example:
 print("The largest number living in the Bronx is",
 pop["Bronx"].max())

Predict what the following will do:

print("Queens:", pop["Queens"].min())

CSci 127 (Hunter) Lecture 6 9 March 2021 23 / 38

Predict what the following will do:

- print("Queens:", pop["Queens"].min())
- print("S I:", pop["Staten Island"].mean())

CSci 127 (Hunter) Lecture 6 9 March 2021 23 / 38

- print("Queens:", pop["Queens"].min())
- print("S I:", pop["Staten Island"].mean())
- print("S I:", pop["Staten Island"].std())

Predict what the following will do:

- print("Queens:", pop["Queens"].min())
- print("S I:", pop["Staten Island"].mean())
- print("S I:", pop["Staten Island"].std())
- pop.plot.bar(x="Year")

CSci 127 (Hunter)

- print("Queens:", pop["Queens"].min())
- print("S I:", pop["Staten Island"].mean())
- print("S I:", pop["Staten Island"].std())
- pop.plot.bar(x="Year")
- pop.plot.scatter(x="Brooklyn", y= "Total")

- print("Queens:", pop["Queens"].min())
- print("S I:", pop["Staten Island"].mean())
- print("S I:", pop["Staten Island"].std())
- pop.plot.bar(x="Year")
- pop.plot.scatter(x="Brooklyn", y= "Total")
- pop["Fraction"] = pop["Bronx"]/pop["Total"]

Predict what the following will do:

print("Queens:", pop["Queens"].min())

24 / 38

Predict what the following will do:

print("Queens:", pop["Queens"].min())
Minimum value in the column with label "Queens".

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())

Predict what the following will do:

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten
 Island"

CSci 127 (Hunter) Lecture 6 9 March 2021 24 / 38

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten
 Island".
- pop.plot.bar(x="Year")

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten
 Island".
- pop.plot.bar(x="Year")
 Bar chart with x-axis "Year".

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten
 Island".
- pop.plot.bar(x="Year")
 Bar chart with x-axis "Year".
- pop.plot.scatter(x="Brooklyn", y= "Total")

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten
 Island".
- pop.plot.bar(x="Year")
 Bar chart with x-axis "Year".
- pop.plot.scatter(x="Brooklyn", y= "Total")
 Scatter plot of Brooklyn versus Total values.

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten Island".
- pop.plot.bar(x="Year")
 Bar chart with x-axis "Year".
- pop.plot.scatter(x="Brooklyn", y= "Total")
 Scatter plot of Brooklyn versus Total values.
- pop["Fraction"] = pop["Bronx"]/pop["Total"]

- print("Queens:", pop["Queens"].min())
 Minimum value in the column with label "Queens".
- print("S I:", pop["Staten Island"].mean())
 Average of values in the column "Staten Island".
- print("S I :", pop["Staten Island"].std())
 Standard deviation of values in the column "Staten Island".
- pop.plot.bar(x="Year")
 Bar chart with x-axis "Year".
- pop.plot.scatter(x="Brooklyn", y= "Total")
 Scatter plot of Brooklyn versus Total values.
- pop["Fraction"] = pop["Bronx"]/pop["Total"]
 New column with the fraction of population that
 lives in the Bronx.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,087	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,530
York	5.066	3,192	8.258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,530
York	5,066	3,192	8.258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,087	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5.088	3,192	8.258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

Solution:

Include pandas & pyplot libraries.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,087	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries.
- 2 Read in the CSV file.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries.
- 2 Read in the CSV file.
- Set up a scatter plot.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,087	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,088	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries.
- 2 Read in the CSV file.
- 3 Set up a scatter plot.
- 4 Display plot.

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Solution:

Include pandas & pyplot libraries.

26 / 38

 Cottoge
 Full first
 Pectors
 Total

 Boarch
 11,38
 3,322
 13,512

 Browley
 10,18
 3,202
 13,512

 City
 10,06
 2,003
 14,06

 Hatter
 12,22
 4,500
 11,27

 John July
 8,811
 2,801
 12,72

 Lefters
 6,800
 2,707
 11,202

 Modified Fest
 4,901
 2,902
 12,92

 MOCCT
 11,900
 4,907
 11,92
 4,907
 11,92

cunyF2016.csv

8.258

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

Solution:

Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd

	Undergraduate			
College	Full-time	Part-time	Total	
Baruch	11,288	3,922	15,210	
Brooklyn	10,198	4,208	14,406	
City	10,067	3,250	13,317	
Hunter	12,223	4,500	16,723	
John Jay	9,831	2,843	12,674	
Lehman	6,600	4,720	11,320	
Medgar Evers	4,760	2,059	6,819	
NYCCT	10,912	6,370	17,282	
Queens	11,693	4,633	16,326	
Staten Island	9,584	2,948	12,532	
York	5,066	3,192	8,258	

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- 2 Read in the CSV file.

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- ② Read in the CSV file.
 pop=pd.read_csv('cunyF2016.csv',skiprows=1)

	Undergraduate		
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- ② Read in the CSV file.
 pop=pd.read_csv('cunyF2016.csv',skiprows=1)
- 3 Set up a scatter plot.

Challenge:

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5.066	3.192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

Solution:

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- Read in the CSV file. pop=pd.read_csv('cunyF2016.csv',skiprows=1)
- Set up a scatter plot. pop.plot.scatter(x="Full-time",y="Part-time")

Challenge:

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

Solution:

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- @ Read in the CSV file.
 pop=pd.read_csv('cunyF2016.csv',skiprows=1)
- 3 Set up a scatter plot.
 pop.plot.scatter(x="Full-time",y="Part-time")
- 4 Display plot.

Challenge:

		Undergraduate	
College	Full-time	Part-time	Total
Baruch	11,288	3,922	15,210
Brooklyn	10,198	4,208	14,406
City	10,067	3,250	13,317
Hunter	12,223	4,500	16,723
John Jay	9,831	2,843	12,674
Lehman	6,600	4,720	11,320
Medgar Evers	4,760	2,059	6,819
NYCCT	10,912	6,370	17,282
Queens	11,693	4,633	16,326
Staten Island	9,584	2,948	12,532
York	5,066	3,192	8,258

cunyF2016.csv

Write a complete Python program that reads in the file, cunyF2016.csv, and produces a scatter plot of full-time versus part-time enrollment.

Solution:

- Include pandas & pyplot libraries. import matplotlib.pyplot as plt import pandas as pd
- 2 Read in the CSV file.
 pop=pd.read_csv('cunyF2016.csv',skiprows=1)
- 3 Set up a scatter plot.
 pop.plot.scatter(x="Full-time",y="Part-time")
- 4 Display plot.
 plt.show()

Lecture Quiz

- Log-in to Gradescope
- Find LECTURE 6 Quiz
- Take the quiz
- You have 3 minutes

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

Rain in Australia							
Date	Location	MinTemp	MaxTemp	Rainfall			
12/1/08	Albury	13.4	22.9	0.6			
5/22/15	BadgerysCree	11	15.6	1.6			
3/17/11	BadgerysCree	18.1	25.8	16.6			
7/27/10	Cobar	5.3	17.2	0			
9/5/10	Moree	12.1	19.8	23.4			
1/23/12	CoffsHarbour	20	24.4	28			
7/15/11	Moree	2.8	19	0			
1/28/10	Newcastle	22.2	28	0			
12/2/15	Moree	20.1	32	4.8			

AustraliaRain.csv

AustraliaRain.csv

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

AustraliaRain.csv

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

For example, to find the average rainfall at each location:

Import libraries. import pandas as pd

Date	Location	MinTemp	MaxTemp	Rainfall
12/1/08	Albury	13.4	22.9	0.6
5/22/15	BadgerysCree	11	15.6	1.6
3/17/11	BadgerysCree	18.1	25.8	16.6
7/27/10	Cobar	5.3	17.2	(
9/5/10	Moree	12.1	19.8	23.4
1/23/12	CoffsHarbour	20	24.4	28
7/15/11	Moree	2.8	19	(
1/28/10	Newcastle	22.2	28	(
12/2/15	Moree	20.1	32	4.8

AustraliaRain.csv

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

- Import libraries. import pandas as pd
- ② Read in the CSV file.
 rain =
 pd.read_csv('AustraliaRain.csv', skiprows=1)

Date	Location	MinTemp	MaxTemp	Rainfall
12/1/08	Albury	13.4	22.9	0.6
5/22/15	BadgerysCree	11	15.6	1.6
3/17/11	BadgerysCree	18.1	25.8	16.0
7/27/10	Cobar	5.3	17.2	
9/5/10	Moree	12.1	19.8	23.4
1/23/12	CoffsHarbour	20	24.4	28
7/15/11	Moree	2.8	19	
1/28/10	Newcastle	22.2	28	- 1
12/2/15	Moree	20.1	32	4.8

AustraliaRain.csv

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

- Import libraries. import pandas as pd
- 2 Read in the CSV file.
 rain =
 pd.read_csv('AustraliaRain.csv', skiprows=1)
- 3 Group the data by location.
 groupAvg = rain.groupby('Location')

Date	Location	MinTemp	MaxTemp	Rainfall
12/1/08	Albury	13.4	22.9	0.6
5/22/15	BadgerysCree	11	15.6	1.0
3/17/11	BadgerysCree	18.1	25.8	16.0
7/27/10	Cobar	5.3	17.2	
9/5/10	Moree	12.1	19.8	23.4
1/23/12	CoffsHarbour	20	24.4	2
7/15/11	Moree	2.8	19	
1/28/10	Newcastle	22.2	28	
12/2/15	Moree	20.1	32	4.

AustraliaRain.csv

Sometimes you have **recurring values** in a column and you want to examine the data for a particular value.

- Import libraries. import pandas as pd
- 2 Read in the CSV file.
 rain =
 pd.read_csv('AustraliaRain.csv', skiprows=1)
- Group the data by location.
 groupAvg = rain.groupby('Location')
- 4 Print the average rainfall at each
 location.
 print(groupAvg['Rainfall'].mean())

Date	Location	MinTemp	MaxTemp	Rainfall
12/1/08	Albury	13.4	22.9	0.6
5/22/15	BadgerysCree	11	15.6	1.€
3/17/11	BadgerysCree	18.1	25.8	16.€
7/27/10	Cobar	5.3	17.2	
9/5/10	Moree	12.1	19.8	23.4
1/23/12	CoffsHarbour	20	24.4	28
7/15/11	Moree	2.8	19	0
1/28/10	Newcastle	22.2	28	
12/2/15	Moree	20.1	32	4.8

AustraliaBain csv

Adelaide	1.572185
Albany	2.255073
Albury	1.925710
AliceSprings	0.869355
BadgerysCreek	2.207925
Ballarat	1.688830
Bendigo	1.621452
Brisbane	3.160536
Cairns	5.765317
Canberra	1.735038
Cobar	1.129262
CoffsHarbour	5.054592

Sometimes you have recurring values in a column and you want to examine the data for a particular value.

- Import libraries. import pandas as pd
- Read in the CSV file. rain = pd.read_csv('AustraliaRain.csv',skiprows=1)
- 3 Group the data by location. groupAvg = rain.groupby('Location')
- Print the average rainfall at each location. print(groupAvg['Rainfall'].mean())

Sometimes you have **recurring values in a column** and you want to examine the data for a particular value.

For example, to find the average rainfall at one location, e.g. Albury:

AustraliaRain.csv

Sometimes you have recurring values in a column and you want to examine the data for a particular value.

For example, to find the average rainfall at one location, e.g. Albury:

- Import libraries. import pandas as pd
- Read in the CSV file. rain = pd.read_csv('AustraliaRain.csv',skiprows=1)
- Group the data by location get data for group Albury.

```
AlburyAvg =
rain.groupby(['Location']).get_group('Albury')
```

AustraliaBain csv

Sometimes you have **recurring values in a column** and you want to examine the data for a particular value.

For example, to find the average rainfall at one location, e.g. Albury:

- Import libraries. import pandas as pd
- ② Read in the CSV file.
 rain =
 pd.read_csv('AustraliaRain.csv', skiprows=1)
- 3 Group the data by location get data for group Albury.
 AlburyAvg =
 - rain.groupby(['Location']).get_group('Albury')
- Print the average rainfall in Albury.
 print(AlburyAvg['Rainfall'].mean())

```
| Rain in Australia | Date | Losation | WisTeep Marters | Polificial | 12/104 Australia |
```

AustraliaRain.csv

AustraliaRain.csv

1.9257104647275156

Sometimes you have **recurring values in a column** and you want to examine the data for a particular value.

For example, to find the average rainfall at one location, e.g. Albury:

- 1 Import libraries. import pandas as pd
 - Pread in the CSV file.
 rain =
 pd.read_csv('AustraliaRain.csv',skiprows=1)
 - 3 Group the data by location get data for group
 Albury.
 AlburyAvg =
 rain.groupby(['Location']).get_group('Albury')
- Print the average rainfall in Albury.
 print(AlburyAvg['Rainfall'].mean())

Design Challenge

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	M
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	М

- Design an algorithm that:
 - ▶ Prints the luminosity of the brightest star.
 - ▶ Prints the temperature of the coldest star.
 - ▶ Prints the average radius of a Hypergiant.

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	М
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	М
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

• Libraries: pandas

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	М
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	М
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

• Libraries: pandas

Process:

▶ Print max of 'Luminosity' column

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	M
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

- Libraries: pandas
- Process:
 - ► Print max of 'Luminosity' column
 - ▶ Print min of 'Temperature' column

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	М
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

- Libraries: pandas
- Process:
 - ▶ Print max of 'Luminosity' column
 - ▶ Print min of 'Temperature' column
 - groupby 'Star Type' and take averages, then print max of 'Radius' column

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	M
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

- Libraries: pandas
- Process:
 - ▶ Print max of 'Luminosity' column
 - ▶ Print min of 'Temperature' column
 - groupby 'Star Type' and take averages, then print max of 'Radius' column
 - ► OR groupby 'Star Type' and get group 'Hypergiant' to print average 'Radius'

• Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

• Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

- Process:
 - Print max of 'Luminosity' column print(stars['Luminosity(L/Lo)'].max())

Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

- Process:
 - Print max of 'Luminosity' column print(stars['Luminosity(L/Lo)'].max())
 - ▶ Prints min of 'Temperature' column and store it in temp variable print(stars['Temperature (K)'].min())

9 March 2021

Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

Process:

- Print max of 'Luminosity' column print(stars['Luminosity(L/Lo)'].max())
- Prints min of 'Temperature' column and store it in temp variable print(stars['Temperature (K)'].min())
- groupby 'Star Type' and take averages, then print max of 'Radius' column

```
print(stars.groupby(['Star type'])\
.mean()['Radius(R/Ro)'].max())
```

• Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

- Process:
 - Print max of 'Luminosity' column print(stars['Luminosity(L/Lo)'].max())
 - Prints min of 'Temperature' column and store it in temp variable print(stars['Temperature (K)'].min())
 - ► OR groupby 'Star Type' and get group 'Hypergiant' to print average 'Radius'

```
print(stars.groupby(['Star type'])\
   .get_group('Hypergiant').mean()['Radius(R/Ro)'])
```

• Recap: Logical Expressions & Circuits

- Accessing Formatted Data:
 - Pandas library has elegant solutions for accessing & analyzing structured data.

- Recap: Logical Expressions & Circuits
- Accessing Formatted Data:
 - Pandas library has elegant solutions for accessing & analyzing structured data.
 - ► Can manipulate individual columns or rows ('Series').

- Recap: Logical Expressions & Circuits
- Accessing Formatted Data:
 - Pandas library has elegant solutions for accessing & analyzing structured data.
 - Can manipulate individual columns or rows ('Series').
 - ► Has useful functions for the entire sheet ('DataFrame') such as plotting.

Practice Quiz & Final Questions

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).
- We're starting with Spring 2018, Version 1.

CSci 127 (Hunter) Lecture 6

Before next lecture, don't forget to:

Work on this week's Online Lab

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Optional attend live Lab Review on Wednesday 1-2:30pm

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Optional attend live Lab Review on Wednesday 1-2:30pm
- Take the Lab Quiz on Gradescope by 6pm on Wednesday

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Optional attend live Lab Review on Wednesday 1-2:30pm
- Take the Lab Quiz on Gradescope by 6pm on Wednesday
- Submit this week's 5 programming assignments (programs 26-30)

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Optional attend live Lab Review on Wednesday 1-2:30pm
- Take the Lab Quiz on Gradescope by 6pm on Wednesday
- Submit this week's 5 programming assignments (programs 26-30)
- At any point, visit our Drop-In Tutoring if you need help!!!