Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

Repaso de Probabilidad

- Definiciones Básicas:
 - Variables aleatorias y sus distribuciones
 - Caracterización de las distribuciones
- Distribuciones Conjuntas:
 - Distribución marginal vs. condicional
 - Independencia
 - Covarianza

Definiciones Básicas

- □ Variables Aleatorias (VA):
 - Variable estadística cuyos valores se obtienen a partir del resultado de algún tipo de experimento.
 - Pueden ser discretas o continuas.
 - Las VA discretas se describen estadísticamente por su distribución de probabilidad.
 - Listado de todos los valores posibles que puede tomar una VA y la probabilidad de ocurrencia de cada valor.
 - La suma es igual a 1.
 - Las VA continuas se describen por medio de su función de densidad de probabilidad.

Descripción Estadística de VAD

Cuadros o Tablas:

Hijos	Probabilidad
0	27.60
1	29.77
2	25.83
3	12.47
4	3.31
5	0.85
6	0.12
7	0.03
8	0.02
Total	100.00

Descripción Estadística de VAD

■ Método Gráfico:

Descripción Estadística de VAD

Distribución de Probabilidad Acumulada:

Hijos	Prob. Acumulada
0	27.6
1	57.37
2	83.2
3	95.67
4	98.98
5	99.83
6	99.95
7	99.98
8	100

Descripción Estadística de VAC

□ Función de Densidad de Probabilidad:

Pr(-2 ≤ X ≤ 1)
está
representada
por el área
debajo de la
curva!

Descripción Estadística de VAC

□ Distribución de Probabilidad Acumulada:

Caracterización

- Medidas de Tendencia Central
 - Valores numéricos que tienden a localizar la parte central de un conjunto de datos.
 - Media Aritmética
 - Mediana
 - Moda
- Medidas de Variabilidad o Dispersión
 - Indican la mayor o menor concentración de los datos con respecto a las medidas de centralización.
 - Varianza
 - Desvío Estándar

Distribuciones Conjuntas

- En muchos casos, resulta interesante estudiar conjuntamente el comportamiento de las variables.
- En dichos caso, se construye lo que se denomina distribución conjunta.
- Su objetivo consiste en determinar cómo la variación de una variable se relaciona con la de otra.
- Conceptos importantes:
 - Distribución Conjunta, Marginal, y Condicional
 - Independencia
 - Covarianza y Correlación

INGRESO (Y)	GASTO EN VESTIMENTA (V)	FRECUENCIA
21.25	450	4
21.25	1225	2
21.25	2000	2
21.25	3200	0
21.25	4950	2
21.25	7750	0
27	450	9
27	1225	7
27	2000	6
27	3200	5
27	4950	4
27	7750	0
34	450	1
34	1225	8
34	2000	13
34	3200	16
34	4950	20
34	7750	2

Distribución Conjunta

INGRESO	GASTO EN VESTIMENTA (V)					
(Y)	450	1225	2000	3200	4950	7750
21.25	4	2	2	0	2	0
27	9	7	6	5	4	0
34	1	8	13	16	20	2
	14	17	21	21	26	2

Distribución Marginal del Gasto en Vestimenta

Distribución Marginal

 La distribución marginal del gasto en vestimenta equivale a su distribución unidimensional.

Gasto en Vestimenta	Personas
450	14
1225	17
2000	21
3200	21
4950	26
7750	2
TOTAL	101

Desvío estándar = 1739

INGRESO	GASTO EN VESTIMENTA (V)					
(Y)	450	1225	2000	3200	4950	7750
21.25	4	2	2	0	2	0
27	9	7	6	5	4	0
34	1	8	13	16	20	2

Distribución Condicional del Gasto en Vestimenta

INGRESO	GASTO EN VESTIMENTA (V)					
(Y=21.25)	450	1225	2000	3200	4950	7750
21.25	4	2	2	0	2	0

Media Condicional = 1815

INGRESO	GASTO EN VESTIMENTA (V)					
(Y=27)	450	1225	2000	3200	4950	7750
27	9	7	6	5	4	0

Media Condicional = 1949.2

INGRESO	GASTO EN VESTIMENTA (V)					
(Y=34)	450	1225	2000	3200	4950	7750
34	1	8	13	16	20	2

Media Condicional = 3365.8

Media vs. Media Condicional

INGRESO (Y)	GASTO EN VESTIMENTA (MEDIA)	GASTO EN VESTIMENTA (MEDIA COND.)
21.25	2777.5	1815
27	2777.5	1949.2
34	2777.5	3365.8

 Ventaja: aprovechar la información contenida en la variable ingreso.

Ley de Esperanzas Iteradas

- Establece que la media de una variable Y es igual al promedio ponderado de las medias condicionales de Y dado X, donde las ponderaciones corresponden a la distribución de probabilidad de X.
- Es decir,

$$E(Y) = \sum_{i=1}^{l} E(Y|X = x_i) * Pr(X = x_i)$$

Alternativamente,

$$E(Y) = E[E(Y|X)]$$

Independencia

- Decimos que X e Y son independientes si conocer el valor de una de las variables no aporta información sobre la otra.
- En otras palabras, si la distribución condicional de Y dado X es igual a la distribución marginal de Y.
- Formalmente,

$$\Pr(Y = y | X = x) = \Pr(Y = y)$$

Implicancia:

$$Pr(X = x, Y = y) = Pr(X = x) * Pr(Y = y)$$

Covarianza

- Medida de dependencia lineal entre dos variables.
- Formalmente,

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)] = \sigma_{xy}$$

Interpretación:

- Si X tiende a ser mayor que su media cuando Y está por encima de su media y viceversa, entonces la covarianza entre X e Y es positiva.
- Por el contrario, si se mueven en direcciones opuestas, la covarianza es negativa.
- □ Si X e Y son independientes, entonces la covarianza es cero.

Correlación

- La covarianza es difícil de interpretar debido al "problema de las unidades de medida".
- La correlación es una medida alternativa que resuelve este problema.
- Formalmente:

$$corr(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}} = \frac{\sigma_{xy}}{\sigma_{x}\sigma_{y}}$$

donde

$$-1 \leq corr(X,Y) \leq 1$$