

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2°. MECÁNICOS Final de Febrero. Curso 2021/2022.

NOMBRE	FIRMA	

TITULACIÓN: Mecánico Diseño I. GRUPO: A B C D

INSTRUCCIONES: Ponga su nombre y firme esta hoja; seleccione su titulación (dobles grados marque dos) y grupo. Sobre la mesa en lugar visible ponga su DNI o documento identificativo. La puntuación de cada cuestión aparece en el enunciado. Está prohibido el uso de calculadoras programables. Está prohibido el uso de teléfonos móviles y la toma de imágenes durante toda la prueba.

P1 (1,5p) El circuito de la figura está en régimen estacionario de corriente continua. Se pide plantear la ecuación matricial y ecuaciones adicionales necesarias para resolver por nudos.

Ec. Adicionales

P2 (1,75p) En el circuito de la figura la fuente de tensión continua vale E=20V y la fuente de tensión alterna tiene un valor $v(t) = 10\sqrt{2}\cos(2t + 45^\circ)$. Calcular la intensidad i(t) en t=2 segundos.

P3 (1,75p) En el sistema trifásico de la figura, la fuente suministra 21.2 kW, la carga consume 20 kW y el vatímetro marca 8,66kW. Se pide:

- a) Intensidad de línea
- b) Potencia reactiva de la carga
- c) Tensión de fase en la carga
- d) Impedancia compleja de la carga
- e) Tensión de línea en el Generador.

$a) I_L =$	
$b) Q_C =$	
$c) V_{FC} =$	

$$d) \, \mathcal{Z}_c =$$

$$e) \, V_{LG} =$$

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2°. MECÁNICOS Final de Febrero. Curso 2021/2022.

NOMBRE				FIRMA	
TITULACIÓN:	Mecánico	Diseño I.	GRUPO: A B C D		

INSTRUCCIONES: Ponga su nombre y firme esta hoja; seleccione su titulación (dobles grados marque dos) y grupo. Sobre la mesa en lugar visible ponga su DNI o documento identificativo. La puntuación de cada cuestión aparece en el enunciado. Está prohibido el uso de calculadoras programables. Está prohibido el uso de teléfonos móviles y la toma de imágenes durante toda la prueba.

P4. (1,5 puntos). Para el circuito de corriente continua de la figura, calcula la resistencia que conectada entre A y B consumiría la máxima potencia, así como la potencia máxima que dicha resistencia consumiría.

P5. (1,75 puntos). Sabiendo que A1=A3=10A, L=15mH, $v_g(t)=300\sqrt{2}cos(2000t)$, determina A2, R, C y W.

A2 =	[A]	R =	$[\Omega]$
C =	$[\mu { m F}]$	W =	[W]

P6. (1,75 puntos). Para el circuito trifásico equilibrado de secuencia inversa de la figura, la CTE2 consume 5000W con un factor de potencia 0.6 (cap). Si V=200V, Z_1 =20+10j, calcula A1, A2, A3, W1 y W2.

A1 =	[A]	A2 =	[A]
A3 =	[A]	W1 =	[W]
W2 =	[W]		