LAST NAME:	FIRST NAME:	CIRCLE:	Dahal 4pm	Li 1pm	
		Li 5:30pm	Zweck 11:30am	Zweck 1pm	

MATH 2415 [Fall 2019] Exam II, Nov 1st

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points. **Your points for each problem will be recorded on the top of the second page.**

- (1) [12 pts]
- (a) Suppose that w = f(x, y, z), where x = x(t), y = y(t) and z = z(t). Use a tree diagram to write out a formula for $\frac{dw}{dt}$. Use this formula to find $\frac{dw}{dt}$ when $f(x, y, z) = \ln(x^2 + y^2 + z)$, $x = t^3$, $y = \sin t$ and z = 3t.

⁽b) Find the equation of the tangent plane to the graph of $z = f(x, y) = y^2 e^x$ at (0, 1). Use this tangent plane to approximate f(0.2, 1.1).

1	/10	9	/10	2	/10	4	/15	E	/19	6	/19	T	/75
1	/12		/ 12	9	/ 12	4	/13	Э	/12	U	/ 12	1	/ 73

- (2) [12 pts] Let $f(x,y) = ye^{2x}$.
- (a) Find the gradient of f at the point (0,1).

(b) Find the directional derivative of f at the point (0,1) in the direction of the vector $\mathbf{v} = \mathbf{i} + \mathbf{j}$.

(c) Find the direction of the minimum rate of change in f at (0,1). Also find the minimum rate of change.

(d) Sketch the level curve f(x,y) = 1. Add the vector $\nabla f(0,1)$ to your sketch.

(3) [12 pts] Calculate $\iint_D \cos(x^3 + 1) dA$ where D is the domain in the plane bounded by y = 0, x = 1, and $y = x^2$.

(4) [15pts] Find and classify all critical points of the function $f(x,y)=2x^3-3x^2y+3y^2+12x^2$.

(6) [12 pts] Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = (u \cos v, u \sin v, u^2),$$
 for $0 \le u \le 3$ and $0 \le v \le 2\pi$.

(a) Show that S is part of a paraboloid. Hint: Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Sketch the surface S, together with the grid curves where (i) u=2 and (ii) $v=\frac{\pi}{4}$. (Label these curves!)

(c) Calculate the tangent vector to the grid curve where $v = \frac{\pi}{4}$ at the point $\mathbf{r}(2, \frac{\pi}{4})$.