

Université de Lorraine - Faculté de Sciences et Technologies – Département de Géosciences Master Sciences et Technologies - Mention Sciences de la Terre et des Planètes Environnement

UE 702 Outils d'observation et d'analyse en Géosciences

Introduction à la diffraction des rayons X

Pr Massimo Nespolo

Laboratoire de Cristallographie, Résonance Magnétique et Modélisations UMR CNRS 7036 - entrée 3B 4ème étage bureau 405 - 03.72.74.56.46 massimo.nespolo@univ-lorraine.fr

www.crystallography.fr http://arche.univ-lorraine.fr/course/view.php?id=55

Une onde électromagnétique est une onde transversale

Une onde électromagnétique se propage de façon sinusoïdale

phase φ amplitude a

$$\varphi(t_0) = \varphi_0$$

$$\varphi(t_0) = \varphi_0$$
$$\varphi(t_0 + \tau) = \varphi_0 + \omega \tau$$

 $y(O) = a\sin(2\pi/T)t = a\sin(2\pi v)t = a\sin\omega t$

$$t' = t_0 + \tau = t_0 + x_A/V$$
 $t_0 = t' - x_A/V$
 $y(x_A, t') = y(x_O, t_0) = y(x_O, t' - x_A/V)$

$$y(A) = a\sin(2\pi/T)(t \pm x_A/V) = a\sin(2\pi v)(t \pm x_A/V) = a\sin\omega(t \pm x_A/V)$$

Composition de deux ondes

A (norme du vecteur) : amplitude maximale des vibrations Φ (état de rotation du vecteur) : phase

Composition de deux ondes

A (norme du vecteur) : amplitude maximale des vibrations Φ (état de rotation du vecteur) : phase

$$y = a\sin(2\pi/T)(t \pm x/V) \qquad y' = a\sin(2\pi/T)(t \pm x'/V)$$

$$y = y' \Rightarrow (2\pi/T)(t \pm x/V) - (2\pi/T)(t \pm x'/V) = 2n\pi$$

$$(t \pm x/V) - (t \pm x'/V) = nT$$

$$|x-x'| = nTV$$

$$TV = \text{longueur d'onde } \lambda$$

$$\lambda = c/v$$

$$E = hv = hc/\lambda$$

 $\lambda = 0.551 \text{ Å (Ag)}, 0.709 \text{ Å (Mo)}, 1.541 \text{ Å (Cu)}, \text{ etc.}$

$$a+ib = A(cos\Phi+isin\Phi) = Ae^{i\Phi}$$
 (Euler)

Somme de vecteurs (composition d'ondes) : $\sum_{n} A_{n} cos\Phi_{n} + i\sum_{n} A_{n} sin\Phi_{n} = \sum_{n} A_{n} e^{i\Phi_{n}}$ = $\sum_{n} A_{n} e^{2\pi i v(t+\tau_{n})} = \sum_{n} A_{n} e^{2\pi (t+\tau_{n})/T}$

Intensité I (résultat de l'expérience) $\propto A^2$: flux d'énergie qui traverse chaque seconde une surface d'aire unitaire placée perpendiculairement au faisceau

Diffusion Thompson (cohérente) et facteur de polarisation

$$\mathbf{E}_d = \frac{1}{r} \mathbf{E}_0 \frac{e^2}{m_e c^2} \sin \varphi$$

$$\mathbf{I} = \mathbf{I}_0 \frac{e^4}{r^2 m_e^2 c^4} \sin^2 \varphi$$

$$\mathbf{I} = \mathbf{I}_0 \frac{e^4}{r^2 m_a^2 c^4}$$

$$\mathbf{I} = \frac{1}{2} \mathbf{I}_0 \frac{e^4}{r^2 m_e^2 c^4} (1 + \sin^2 \varphi) = \frac{1}{2} \mathbf{I}_0 \frac{e^4}{r^2 m_e^2 c^4} (1 + \cos^2 2\vartheta) = \mathbf{I}_0 \frac{A}{r^2} \frac{(1 + \cos^2 2\vartheta)}{2}$$

Différence de marche: 0

Différence de marche : CB-AD

 $Sin \theta/\lambda$

Différence de marche :
$$\overline{OQ} - \overline{PR} = \mathbf{a} \cdot \mathbf{S} - \mathbf{a} \cdot \mathbf{S}_0 = \mathbf{a} \cdot (\mathbf{S} - \mathbf{S}_0) = a(\cos \delta - \cos \iota)$$

$$\cos\delta = \cos t + m\lambda/a$$

Équation de Laue pour le cas monodimensionnel

Diffraction d'un plan (bidimensionnel)

$$\mathbf{a} \cdot (\mathbf{S} - \mathbf{S}_0) = m\lambda$$
$$\mathbf{b} \cdot (\mathbf{S} - \mathbf{S}_0) = n\lambda$$

$$\mathbf{b} \cdot (\mathbf{S} - \mathbf{S}_0) = n\lambda$$

$$\cos\delta_a = \cos\epsilon_a + m\lambda/a$$

$$\cos\delta_{b} = \cos\iota_{b} + n\lambda/b$$

Équations de Laue pour le cas bidimensionnel

Généralisation au cas tridimensionnel

$$\mathbf{a} \cdot (\mathbf{S} - \mathbf{S}_0) = m\lambda \qquad \cos \delta_a = \cos \epsilon_a + m\lambda/a$$

$$\mathbf{b} \cdot (\mathbf{S} - \mathbf{S}_0) = n\lambda \qquad \cos \delta_b = \cos \epsilon_b + n\lambda/b$$

$$\mathbf{c} \cdot (\mathbf{S} - \mathbf{S}_0) = p\lambda \qquad \cos \delta_c = \cos \epsilon_c + p\lambda/c$$

Équations de Laue

La « réflexion » des rayons X

La loi de Bragg

Différence de marche entre les deux ondes : FGH

Condition pour avoir interférence constructive :

FG = GOsin9

$$rac{FGH = n\lambda}{A}$$

FG = GOsin9

 $rac{\pi}{2}$ -9

 rac

 $n\lambda = 2d\sin\theta$ Loi de Bragg

Rappels sur les indices de Miller

Les plans qui passent par des nœuds de réseau sont appelés « plans réticulaires »

Équation paramétrique du plan :

$$x'/pa + y'/qb + z'/rc = 1$$

On définit :
$$x = x'/a$$
; $y = y'/b$; $z = z'/c$

Équation paramétrique du plan :

$$x/p + y/q + z/r = 1$$

$$(qr)x + (pr)y + (pq)z = pqr$$

$$hx + ky + lz = m$$

Si on fait varier m, on obtient une famille de plans réticulaires (hkl), où h, k et l sont dits indices de Miller.

Le premier plan de la famille (hkl)

corresponde à
$$m = 1$$

$$hx + ky + lz = 1$$

Interceptes du premier plan de la famille (*hkl*) sur les axes :

$$p = pqr/qr = m/h = 1/h$$

$$q = pqr/pr = m/k = 1/k$$

$$r = pqr/pq = m/l = 1/l$$

Pourquoi les *réciproques* de l'intercepte (1/p) au lieu de l'intercepte (p) elle-même?

Considérons un plan parallèle à un axe - par exemple c

Quelle l'intercepte de ce plan avec l'axe c?

 ∞

Quel est l'indice de Miller *l* de ce plan?

 $1/\infty = 0$

Exemple: famille (112) dans une maille primitive

Interceptes du premier plan de la famille:

sur **a**: 1/1

sur **b**: 1/1

sur *c*: 1/2

Interceptes du deuxième plan de la famille:

sur *a*: 2/1

sur **b**: 2/1

sur *c*: 2/2

Exemple: famille (326) dans une maille primitive

Les indices de Miller dans une maille primitive sont de entiers primes entre eux

Le premier plan réticulaire de cette famille a interceptes :

sur *a*: 1/1

sur **b**: 1/1

sur *c*: 1/1

Pour une maille primitive, les indices de Miller d'une famille de plans réticulaires sont primes entre eux : (111)

Indices de Miller dans des mailles différentes : (h00) dans oP et oC (projection sur ab)

En morphologie on ne voit pas le réseau et par conséquent les indices de Miller d'une face sont toujours primes entre eux

Modifications des indices de Miller en fonction du choix de la maille

Le réseau polaire de Bravais (1848) Un réseau dual du réseau direct basé sur les normales aux faces

Auguste Bravais (1811-1863)

$$\mathbf{V} = \mathbf{c} \cdot \mathbf{a} \times \mathbf{b} = S(001) d_{(001)} = S(hkl) d_{(hkl)}$$

$$\|\mathbf{r}^{\mathbf{p}}_{hkl}\| = S(hkl)/V^{1/3} = [V/d_{(hkl)}]/V^{1/3} = V^{2/3}/d_{(hkl)}$$
 (Å)

La métrique de l'espace où se trouve le réseau polaire est toujours en Å

$$\mathbf{a}^{p} = \frac{S(100)}{V^{1/3}} = \frac{\mathbf{b} \times \mathbf{c}}{V^{1/3}}; \quad \mathbf{b}^{p} = \frac{S(010)}{V^{1/3}} = \frac{\mathbf{c} \times \mathbf{a}}{V^{1/3}}; \quad \mathbf{c}^{p} = \frac{S(001)}{V^{1/3}} = \frac{\mathbf{a} \times \mathbf{b}}{V^{1/3}}$$

$$\mathbf{v}_{i} \cdot \mathbf{v}_{j}^{p} = m\delta_{ij}$$
 $m = \mathbf{v}_{i} \cdot \mathbf{v}_{i}^{p} = \mathbf{v}_{i} \cdot \frac{\mathbf{v}_{j} \times \mathbf{v}_{k}}{\mathbf{V}^{1/3}} = \frac{\mathbf{V}}{\mathbf{V}^{1/3}} = \mathbf{V}^{2/3}$

Wilhelm Conrad Röntgen (1845-1923)

1895 : découverte des rayons X

Max von Laue (1879-1960)

-Laue effect for a zinc-blende plate parallel to a cubic surface

Clichés de diffraction X obtenus par Friedrich, Knipping et Laue

Les diffractions forment un réseau que l'on peut indexer par rapport à des axes convenablement choisis

1913 : le réseau réciproque

Paul Peter Ewald (1888-1985)

$$a^* = (b \times c)/V$$
, $b^* = (c \times a)/V$, $c^* = (a \times b)/V$ Å-1! Le réseau réciproque

La métrique du réseau réciproque est en Å-1

Paramètres linéaires du réseau réciproque

$$\mathbf{a}^* = (\mathbf{b} \times \mathbf{c})/V, \ \mathbf{b}^* = (\mathbf{c} \times \mathbf{a})/V, \ \mathbf{c}^* = (\mathbf{a} \times \mathbf{b})/V$$

$$a^* = bc\sin\alpha/V, \ b^* = ca\sin\beta/V, \ c^* = ab\sin\gamma/V$$

$$\mathbf{a} \cdot \mathbf{a}^* = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})/V = 1 \ ; \ \mathbf{b} \cdot \mathbf{b}^* = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})/V = 1 \ ; \ \mathbf{c} \cdot \mathbf{c}^* = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})/V = 1$$

$$\mathbf{v}_i \cdot \mathbf{v}_i^* = \delta_{ij}$$

$$V^* = \mathbf{a}^* \cdot \mathbf{b}^* \times \mathbf{c}^* = (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) / V^3 = (\mathbf{b} \times \mathbf{c}) \cdot [(\mathbf{c} \cdot \mathbf{a} \times \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a} \times \mathbf{a}) \mathbf{b}] / V^3 = (\mathbf{b} \times \mathbf{c}) \cdot [V\mathbf{a} - 0\mathbf{b}] / V^3 = V^2 / V^3 = 1 / V$$

$$\mathbf{a} = (\mathbf{b}^* \times \mathbf{c}^*)/V^* \; ; \; \mathbf{b} = (\mathbf{c}^* \times \mathbf{a}^*)/V^* \; ; \; \mathbf{c} = (\mathbf{a}^* \times \mathbf{b}^*)/V^*$$

Paramètres angulaires du réseau réciproque

$$a^* = bc\sin\alpha/V$$
, $b^* = ca\sin\beta/V$, $c^* = ab\sin\gamma/V$

$$a = b*c*\sin\alpha*/V*$$
; $b* = a*c*\sin\beta*/V*$; $c* = a*b*\sin\gamma*/V*$ (V* = 1/V)

$$\sin \alpha^* = \frac{a V^*}{b^* c^*} = \frac{\frac{a}{V}}{\frac{ac \sin \beta}{V} \frac{ab \sin \gamma}{V}} = \frac{V}{abc \sin \beta \sin \gamma}$$

$$\sin \beta^* = \frac{b \, V^*}{a^* c^*} = \frac{\frac{b}{V}}{\frac{bc \sin \alpha}{V} \frac{ab \sin \gamma}{V}} = \frac{V}{abc \sin \alpha \sin \gamma}$$

$$\sin \gamma^* = \frac{c \, V^*}{a^* b^*} = \frac{\frac{c}{V}}{\frac{bc \sin \alpha}{V} \frac{ac \sin \beta}{V}} = \frac{V}{abc \sin \alpha \sin \beta}$$

$$\mathbf{e}_{hkl}^{*} = \mathbf{r}_{hkl}^{*} / \|\mathbf{r}_{hkl}^{*}\|$$

$$d_{(hkl)} = \mathbf{e}_{hkl}^* \cdot \mathbf{a}/h$$

$$d_{(hkl)} = \mathbf{e}_{hkl}^* \cdot \mathbf{b}/k$$

$$d_{(hkl)} = \mathbf{e}_{hkl}^* \cdot \mathbf{c}/l$$

$$d(hkl) = \frac{\mathbf{a}}{h} \cdot \frac{h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*}{\|\mathbf{r}_{hkl}^*\|} = \frac{h1 + k0 + l0}{h\|\mathbf{r}_{hkl}^*\|} = \frac{1}{\|\mathbf{r}_{hkl}^*\|}$$

$$d(hkl) = \frac{\mathbf{b}}{k} \cdot \frac{h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*}{\|\mathbf{r}_{hkl}^*\|} = \frac{h0 + k1 + l0}{k\|\mathbf{r}_{hkl}^*\|} = \frac{1}{\|\mathbf{r}_{hkl}^*\|}$$

$$d(hkl) = \frac{\mathbf{c}}{l} \cdot \frac{h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*}{\|\mathbf{r}_{hkl}^*\|} = \frac{h0 + k0 + l1}{l\|\mathbf{r}_{hkl}^*\|} = \frac{1}{\|\mathbf{r}_{hkl}^*\|}$$

Faisceau incident divergent

Faisceau incident polychromatique

Extinction primaire

Conditions de réflexion (« absences systématiques »)

Conditions de réflexion

00l: l = 4n

Espace direct

Périodicité réduite à 1/4 sur la direction c pour la projection sur long l'axe c

Espace réciproque

Périodicité quadruplée sur la direction c^* sur la direction $[00l]^*$

Conditions de réflexion

0kl: k = 2n

Espace direct

Périodicité réduite de moitié sur la direction *b* pour la projection le long de *a*

Espace réciproque

Périodicité double sur la direction b^* sur le plan $(0kl)^*$

Espace direct

Changement de repère $\mathbf{a}^*_{C} = (\mathbf{a}^*_{P} - \mathbf{b}^*_{P})/2 \ \mathbf{a}^*_{P} = \mathbf{a}^*_{C} + \mathbf{b}^*_{C}$ $\mathbf{b}^*_{C} = (\mathbf{a}^*_{P} + \mathbf{b}^*_{P})/2 \ \mathbf{a}^*_{P} = -\mathbf{a}^*_{C} + \mathbf{b}^*_{C}$

Maille conventionnelle P

Maille conventionnelle C

Plan
$$(240)_{C} = (310)_{P}$$

Changement de repère

$$\mathbf{a}_C = \mathbf{a}_P - \mathbf{b}_P \ \mathbf{a}_P = (\mathbf{a}_C + \mathbf{b}_C)/2$$

$$\mathbf{b}_C = \mathbf{a}_P + \mathbf{b}_P \mathbf{b}_P = (-\mathbf{a}_C + \mathbf{b}_C)/2$$

Conditions de réflexion

$$hkl: h+k=2n$$

Espace réciproque

Exercice 1: paramètres de maille a,b,c; $\alpha = \beta = \gamma = 90^{\circ}$

Symbole d'extinction : *A--a*

Types de groupe d'espace possibles : Am2a, $A2_1ma$, Amma

Exercice 2: paramètres de maille a=b, c; $\alpha=\beta=\gamma=90^{\circ}$

Pas de condition de réflexion intégrale

**P

Non-indépendante

Symbol d'extinction : *Pn-c*

Type de groupe d'espace: $P4_2/nmc$

Exercice 3: paramètres de maille a=b=c; $\alpha=\beta=\gamma=90^\circ$

Exercice 3: paramètres de maille a=b=c; $\alpha=\beta=\gamma=90^\circ$

Réseau direct : (a+b+c)/4 Réseau réciproque: h+k+l=4n $(110) \Rightarrow h=k$ h+h+l=4n

 $hhl:2h+l=4n \qquad \mathbf{d}_{[1\overline{10}]}$

Exercice 3: paramètres de maille a=b=c; $\alpha=\beta=\gamma=90^\circ$

Symbole d'extinction : *Ia-d*

Type de groupe d'espace : $Ia\overline{3}d$

Calcul des amplitudes et intensités

Vecteur reliant l'*m*-ième atome à l'origine par rapport à la base cristallographique Oabc :

$$\mathbf{r} = x_m \mathbf{a} + y_m \mathbf{b} + z_m \mathbf{c} = \langle \mathbf{abc} | x_m y_m z_m \rangle$$

$$\Phi = \sum_{m} \phi_{m} = \sum_{m} f_{m} e^{\frac{2\pi i}{T}(t+\tau_{m})} = \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda}(t+\tau_{m})}$$
onde diffuse par le *m*-ième atome

onde diffuse par le contenu de la maille

 $\tau_{\rm m}$ = retard de phase entre l'onde diffusée par l'*m*-ième atome et celle diffusée par l'atome à l'origine (si pas d'atome à l'origine un facteur constant s'ajoute).

$$\Phi = \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda}(t+\tau_{m})}$$

t ne dépend pas de l'indice m sur les atomes

$$\Phi = e^{2\pi i \frac{c}{\lambda}t} \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda}\tau_{m}} = F e^{2\pi i \frac{c}{\lambda}t}$$

$$F = \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda} \tau_{m}}$$

$$\tau_m (\text{sec}) = D(m)/c (m \cdot \text{sec}^{-1}) = \mathbf{r} \cdot \mathbf{S}/c = (x_m \mathbf{a} + y_m \mathbf{b} + z_m \mathbf{c}) \cdot \mathbf{S}/c$$

$$F = \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda} \tau_{m}} = \sum_{m} f_{m} e^{2\pi i \frac{c}{\lambda} \frac{\mathbf{r} \cdot \mathbf{S}}{c}} = \sum_{m} f_{m} e^{\frac{2\pi i}{\lambda} \mathbf{r} \cdot \mathbf{S}}$$

Facteur de structure

Intensité intégrée :
$$I(hkl) = kI_0LPTE|F(hkl)|^2$$

Le problème de la phase (1)

$$F(hkl) = |F(hkl)| e^{i\phi(hkl)}$$

$$F(hkl) = \sum_{m} f_{m} e^{2\pi i \langle hkl | x_{m} y_{m} z_{m} \rangle} = \sum_{m} f_{m} \cos 2\pi \langle hkl | x_{m} y_{m} z_{m} \rangle + i \sum_{m} f_{m} \sin 2\pi \langle hkl | x_{m} y_{m} z_{m} \rangle = A(hkl) + iB(hkl)$$

$$\phi(hkl) = \tan^{-1}[B(hkl)/A(hkl)]$$

$$I \propto |F(hkl)|^2 = F(hkl)F^*(hkl) = [A(hkl) + iB(hkl)][A(hkl) - iB(hkl)] =$$

= $A^2(hkl) + B^2(hkl)$

SI la structure est centrosymétrique et SI l'origine du référentiel est choisie sur un centre d'inversion alors pour chaque atome ayant coordonnées xyz il y a un atome lui équivalent avec coordonnées xyz.

Le problème de la phase (2)

$$F(hkl) = \sum_{m'} f_{m'} \cos 2\pi \langle hkl | x_{m'} y_{m'} z_{m'} \rangle + i \sum_{m'} f_{m'} \sin 2\pi \langle hkl | x_{m'} y_{m'} z_n \rangle_{m'} + \sum_{m'} f_{m'} \cos 2\pi \langle hkl | -x_{m'} - y_{m'} - z_{m'} \rangle + i \sum_{m'} f_{m'} \sin 2\pi \langle hkl | -x_{m'} - y_{m'} - z_{m'} \rangle = 2 \sum_{lm'} f_{m'} \cos 2\pi \langle hkl | x_{m'} y_{m'} z_{m'} \rangle = 2A'(hkl)$$

$$B(hkl) = 0, \, \phi(hkl) = \tan^{-1}(0) = n\pi, \, n \in \mathbb{Z}$$

La loi de Friedel

$$F(hkl) = A(hkl) + iB(hkl)$$

$$F(\overline{hkl}) = A(\overline{hkl}) + iB(\overline{hkl}) = A(hkl) - iB(hkl)$$

$$\varphi(hkl) = -\varphi(\overline{hkl})$$

$$I(hkl) = F(hkl)F^*(hkl) = [A(hkl)-iB(hkl)][A(hkl)+iB(hkl)] = I(hkl)$$

Si l'échantillon contient un ou plusieurs éléments dont le seuil d'absorption des rayons X se situe près de la longueur d'onde employée dans l'expérience, la loi de Friedel n'est plus valable et les intensités de diffraction d'un cristal non-centrosymétrique ne sont plus centrosymétriques : **diffusion résonnante** ou « **anomale** ».

La synthèse de Fourier

$$\rho(\mathbf{r}) = \int_{S^*} F(\mathbf{r}^*) \exp(-2\pi i \mathbf{r}^* \cdot \mathbf{r}) d\mathbf{r}^* =$$

$$\frac{1}{V} \sum_{h,k,l=-\infty}^{\infty} F_{hkl} \exp\left[-2\pi i \left(hx + ky + lz\right)\right]$$

$$\mathbf{H} = hkl$$
 $\mathbf{r} = xyz$

$$F_{H} \exp(-2\pi i \langle \mathbf{H} | \mathbf{r} \rangle) + F_{-H} \exp(2\pi i \langle \mathbf{H} | \mathbf{r} \rangle) =$$

$$(A_{H} + iB_{H}) \exp(-2\pi i \langle \mathbf{H} | \mathbf{r} \rangle) + (A_{H} - iB_{H}) \exp(2\pi i \langle \mathbf{H} | \mathbf{r} \rangle) =$$

$$= A_{H} (\cos 2\pi \langle \mathbf{H} | \mathbf{r} \rangle - i \sin 2\pi \langle \mathbf{H} | \mathbf{r} \rangle) + iB_{H} (\cos 2\pi \langle \mathbf{H} | \mathbf{r} \rangle - i \sin 2\pi \langle \mathbf{H} | \mathbf{r} \rangle) +$$

$$A_{H} (\cos 2\pi \langle \mathbf{H} | \mathbf{r} \rangle + i \sin 2\pi \langle \mathbf{H} | \mathbf{r} \rangle) - iB_{H} (\cos 2\pi \langle \mathbf{H} | \mathbf{r} \rangle + i \sin 2\pi \langle \mathbf{H} | \mathbf{r} \rangle)$$

$$= 2 \left[A_{H} \cos 2\pi \langle \mathbf{H} | \mathbf{r} \rangle + B_{H} \sin 2\pi \langle \mathbf{H} | \mathbf{r} \rangle \right]$$

$$\rho(\mathbf{r}) = \frac{2}{V} \sum_{h=0}^{+\infty} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \left[A_{hkl} \cos 2\pi (hx + ky + lz) + B_{hkl} \sin 2\pi (hx + ky + lz) \right]$$

Le facteur de déplacement atomique (« thermique »)

 $p(\mathbf{r}_1)$: probabilité que le centre de l'atome se trouve en la position \mathbf{r}_1

 $\rho_a(\mathbf{r})$: la densité électronique de l'atome en équilibre en \mathbf{r}

 $\rho_{a^{v}}(\mathbf{r})$: densité électronique de l'atome en vibration

$$\rho_a^{\nu}(\mathbf{r}) = \int \rho_a(\mathbf{r} - \mathbf{r}_1) p(\mathbf{r}_1) d\mathbf{r}_1 = \rho_a(\mathbf{r}_1) * p(\mathbf{r}_1)$$
« convolution »

Convolution

Une convolution f(t)*g(t) est un intégral qui exprime la superposition d'une fonction g lorsque celle-ci est translatée sur une autre fonction f. La convolution est définie comme l'intégral du produit de deux fonctions, dont l'une est inversée et translatée.

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

- l'origine de la fonction *f* est placée à chaque position de la fonction *g*
- la valeur de f à chaque position est multipliée par la valeur de g à cette même position
- on somme le résultat sur toutes les positions possibles

Le facteur de déplacement atomique (« thermique »)

$$f_a^{\nu}(\mathbf{r}^*) = T^{-1} \left[\rho_a^{\nu}(\mathbf{r}) \right] = T^{-1} \left[\rho_a(\mathbf{r}_1)^* p(\mathbf{r}_1) \right] = T^{-1} \left[\rho_a(\mathbf{r}_1) \right] \cdot T^{-1} \left[p(\mathbf{r}_1) \right]$$
$$f_a^{\nu}(\mathbf{r}^*) = f_a(\mathbf{r}^*) \cdot q(\mathbf{r}^*)$$

T⁻¹: la transformée de Fourier inverse

 $f_{a}^{v}(\mathbf{r}^{*})$: facteur de diffusion de l'atome en vibration

 $f_a(\mathbf{r}^*)$: facteur de diffusion de l'atome à l'équilibre

 $q(\mathbf{r}^*)$: facteur de température ou facteur de Debye-Waller

$$q(\mathbf{r}^*) = \exp(-\langle \mathbf{r}^* | \mathbf{B} | \mathbf{r}^* \rangle)$$

Si la vibration est isotrope:

$$q(\mathbf{r}^*) = \exp(-B\langle \mathbf{r}^*|\mathbf{r}^*\rangle) = \exp(-B|\mathbf{r}^*|^2) = \exp(-B\frac{1}{d_{hkl}^2})^{\lambda = 2d_{hkl}\sin\theta} \exp(-B\frac{\sin^2\theta}{\lambda^2})$$

Résolution

$$(\sin \theta/\lambda)_{\text{max}} = 1/2d_{\text{min}}$$
.

 d_{\min} mesure la **résolution** : diffractions à hautes valeurs de $\sin \theta/\lambda$ donnent les détails fins de la structure

Erreurs de terminaison de série

$$F'(\mathbf{r}^*) = F(\mathbf{r}^*)\Phi(\mathbf{r}^*)$$
Facteur de forme

