Trends:

Introduction to Trends in Time Series

Week III: Video 7

STAT 485/685, Fall 2020, SFU

Sonja Isberg

Our Roadmap

- Key Ideas:
 - Intro and fundamental concepts (Ch. 1-2): Means, autocovariances and autocorrelations of time series, and the concept of stationarity.
 - Estimating trends (Ch. 3): Temporarily ignoring the rest of the variability in the series, how do we just estimate the mean trend? Can a regression be useful here?
 - Models for stationary time series (Ch. 4)
 - Models for non-stationary time series (Ch. 5)
- **Building a Model:** Model specification (Ch. 6), Parameter estimation (Ch. 7), Model diagnostics (Ch. 8)
- 3 Forecasting (Ch. 9)
- 4 Other topics, as time permits.

Video 7 Learning Objectives

By the end of this video, we should be able to:

- Define the trend of a time series
- Identify several different types of time series trends
- Estimate a constant trend term, using a given time series dataset

Trends in Time Series

Suppose our process of interest, $\{Y_t\}$, has some mean function μ_t (which may or may not be a function of t).

We can separate out the mean from the rest of the process by writing:

$$Y_t = \mu_t + X_t$$

where $\{X_t\}$ is the "de-trended" version of the process, i.e. $E(X_t)=0$.

Trends in Time Series

Suppose our process of interest, $\{Y_t\}$, has some mean function μ_t (which may or may not be a function of t).

We can separate out the mean from the rest of the process by writing:

$$Y_t = \mu_t + X_t$$

where $\{X_t\}$ is the "de-trended" version of the process, i.e. $E(X_t)=0$.

Some examples of how μ_t may look:

• Constant trend: $\mu_t = \mu$ for all t

Trends in Time Series (cont'd)

• Linear trend: $\mu_t = \beta_0 + \beta_1 t$

• Quadratic trend: $\mu_t = \beta_0 + \beta_1 t + \beta_2 t^2$

Trends in Time Series (cont'd)

• Cyclical/seasonal trend: e.g., $\mu_t = \mu_{t-12}$ for all t

Average monthly temperatures in Dubuque, Iowa

Constant Mean

Suppose:

$$Y_t = \mu + X_t$$

In other words, the mean μ is constant over time.

Example:

Estimating the Constant Mean

Suppose we are trying to estimate the constant mean μ , using our observed time series Y_1, Y_2, \ldots, Y_n .

The most common estimate of a constant trend is:

$$\hat{\mu} = \bar{Y}$$
, where $\bar{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$

Estimating the Constant Mean

Suppose we are trying to estimate the constant mean μ , using our observed time series Y_1, Y_2, \ldots, Y_n .

The most common estimate of a constant trend is:

$$\hat{\mu} = \bar{Y}, \quad \text{where} \quad \bar{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$$

Example: In the dataset below, taking the average of the time series values would give us an estimate of the underlying constant mean:

 \bar{Y} is an unbiased estimate of μ , i.e. $E(\bar{Y}) = \mu$.

 \bar{Y} is an unbiased estimate of μ , i.e. $E(\bar{Y}) = \mu$.

It can be shown that, if $\{X_t\}$ is a white noise process, that $\mathit{Var}(\bar{Y}) = \gamma_0/n$.

 \bar{Y} is an unbiased estimate of μ , i.e. $E(\bar{Y}) = \mu$.

It can be shown that, if $\{X_t\}$ is a white noise process, that $Var(\bar{Y}) = \gamma_0/n$.

In general, if $\{X_t\}$ is any *stationary* process, with autocorrelation function ρ_k :

$$Var(\bar{Y}) = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

Some special cases:

• If $\rho_1 < 0$ and $\rho_k = 0$ for all k > 1 (i.e. time series oscillates a lot back and forth over the mean): $Var(\bar{Y}) < \gamma_0/n$.

 \bar{Y} is an unbiased estimate of μ , i.e. $E(\bar{Y}) = \mu$.

It can be shown that, if $\{X_t\}$ is a white noise process, that $Var(\bar{Y}) = \gamma_0/n$.

In general, if $\{X_t\}$ is any *stationary* process, with autocorrelation function ρ_k :

$$Var(\bar{Y}) = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

Some special cases:

- If $\rho_1 < 0$ and $\rho_k = 0$ for all k > 1 (i.e. time series oscillates a lot back and forth over the mean): $Var(\bar{Y}) < \gamma_0/n$.
- If $\rho_k \geq 0$ for all $k \geq 1$: $Var(\bar{Y}) \geq \gamma_0/n$.

 \bar{Y} is an unbiased estimate of μ , i.e. $E(\bar{Y}) = \mu$.

It can be shown that, if $\{X_t\}$ is a white noise process, that $Var(\bar{Y}) = \gamma_0/n$.

In general, if $\{X_t\}$ is any *stationary* process, with autocorrelation function ρ_k :

$$Var(\bar{Y}) = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

Some special cases:

- If $\rho_1 < 0$ and $\rho_k = 0$ for all k > 1 (i.e. time series oscillates a lot back and forth over the mean): $Var(\bar{Y}) < \gamma_0/n$.
- If $\rho_k \geq 0$ for all $k \geq 1$: $Var(\bar{Y}) \geq \gamma_0/n$.

For non-stationary processes, determining $Var(\bar{Y})$ can be a bit more difficult.

R Example

R Code:

```
data(larain)
model.const <- lm(larain~1)
summary(model.const)</pre>
```

Output:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.8884    0.6416    23.2    <2e-16 ***
```

R Example (cont'd)

Plotting:

Los Angeles Annual Rainfall

Final Comments

That's all for now!

In this video, we've learned what we mean when we talk about "trends" in time series analysis, and we've seen how to estimate a constant trend term using a time series dataset.

Coming Up Next: Linear trends, and regression methods.

References

- Cryer, J. D., & Chan, K. S. (2008). Time series analysis: with applications in R. Springer Science and Business Media.
- [2] Chan, K. S., & Ripley, B. (2020). TSA: Time Series Analysis. R package version 1.2.1.