UNIT III

Number System and Logic Gates

1. A binary digit is called a	d. Logic 0 voltage level is lower than logic 1	
a. Bit	voltage level.	
b. Byte		
c. Number	Ans: d	
d. Character		
	6. The Boolean expression Y=(AB. ' is logically	
Ans: a	equivalent to what single gate?	
	a. NAND	
2. A byte corresponds to.	b. NOR	
a. 4 bits	c. AND	
b. 8 bits	d. OR	
c. 16 bits		
d. 32 bits	Ans: a	
Ans: b	7. The NAND gate output will be low if the two	
	inputs are	
3. The 5 V level of a digital signal is called a	a. 00	
logical 1 or HIGH	b. 01	
a. True	c. 10	
b. False	d. 11	
Ans: a	Ans: d	
4. The +12V level of a digital signal is also called	8. The output of a logic gate is 1 when all its	
a logical	inputs are at logic 0. The gate is either	
a. 0 or LOW	a. a NAND or an EX-OR	
b. 0 or HIGH	b. an OR or an EX-NOR	
c. 1 or LOW	c. an AND or an EX-OR	
d. 1 or HIGH	d. a NOR or an EX-NOR	
Ans: d	Ans: d	
5. Positive logic in logic circuit is one in which	9. The NOR gate output will be high if the two	
a. Logic 0 and 1 are represented by 0 and	inputs are	
positive voltages respectively.	a. 00	
b. Logic 0 and 1 are represented by negative	b. 01	
and positive voltages respectively.	c. 10	
c. Logic 0 voltage level is higher than logic 1	d. 11	
voltage level.		

c. NOR gate Ans: a d. NOT gate 10. When an input signal A=11001 is applied to Ans: a a NOT gate serially, its output signal is a. 00111 15. Exclusive-OR (XOR. logic gate can be b. 00110 constructed from what logic gates? c. 10101 a. OR gates only d. 11001 b. AND gates and NOT gates c. AND gates, OR gates, and NOT gates Ans: b d. OR gates and NOT gates 11. How many NAND circuits are contained in a 7400 NAND IC? Ans: c a. 1 16. A NAND gate has: b. 2 a. LOW inputs and a LOW output c. 4 b. HIGH inputs and a HIGH output d. 8 c. LOW inputs and a HIGH output d. None of the these Ans: c Ans: c 12. The AND gates give high output when both inputs are? 17. The basic logic gate whose output is the a. high, high complement of the input is the: b. high, low a. OR gate c. low, high b. AND gate d. low,low c. INVERTER gate d. Comparator Ans: a Ans: c 13. The OR gates give low output when both inputs are? 18. What input values will cause an AND logic a. high, high gate to produce a HIGH output? b. high, low a. At least one input is HIGH. c. low, low b. At least one input is LOW. d. low, high c. All inputs are HIGH. Ans: c d. All inputs are LOW. 14. The logic gate that will have HIGH or "1" at Ans: c its output when any one of its inputs is HIGH is an: 19. The NAND gates give low output when both a. OR gate

inputs are?

b. AND gate

a. low, high b. high, low 24. An NOR gate has two inputs A and B, output c. high, high is 1 if d. low,low a. A = 0, B = 0b. A = 1, B = 0c. A = 0, B = 0Ans: c d. A = 1, B = 120. A XOR gate has inputs A and B and output Y. Then the output equation is Ans: a a. Y = A + Bb. Y = AB + A'B25. The total number of input states for 4 input c. AB + AB'OR gate is d. AB' + A'B a. 20 b. 16 c. 12 Ans: d d. 8 21. In a 3 input NAND gate, the number of Ans: b states in which output is 1 equals a. 1 b. 2 26. The gate whose output is LOW if and only if c. 3 all inputs are HIGH, is d. 4 a. NAND b. NOR Ans: a c. OR d. AND 22. In a 3 input NOR gate, the number of states in which output is 1 equals Ans: a a. 1 b. 2 27. A waveform that has just two distinct voltages, such as 0 V and 12 V, is called as -----c. 3 signal. d. 4 a. AM b. Analog Ans: a c. FM 23. An AND gate has three inputs A,B,C out of d. Digital total 8 input states, output is 1 in a. 1 states Ans: d b. 2 states c. 3 states 28. The positive logic circuit is one in which a. Logic 0 and 1 are represented by 0 and d. 4 states

Ans: a

positive voltages respectively

b. Logic 0 and 1 are represented by negative	33. A 14 pin AND gate IC has AND gates
and positive voltages respectively	a. 8
c. Logic 0 voltage level is higher than logic 1	b. 6
voltage level	c. 4
d. Logic 0 voltage level is lower than logic 1	d. 2
voltage level	
-	Ans: c
Ans: d	
	34. A 14 pin NOT gate IC has NOT gates
29. IC s are	a. 8
a. analog	b. 6
b. digital	c. 4
c. both analog and digital	d. 2
d. mostly analog	
,	Ans: b
Ans: c	
	35. Logically, the output of a NOR gate would
30. A NOT gate has	have the same Boolean expression as an:
a. Two inputs and one output	a. NAND gate immediately followed by an
b. One input and one output	INVERTER
c. One input and two outputs	b. OR gate immediately followed by an
d. none of above	INVERTER
	c. AND gate immediately followed by an
Ans: b	INVERTER
	d. NOR gate immediately followed by an
31. In a 4 input OR gate, the total number of	INVERTER
High outputs for the 16 input states are	
a. 16	Ans: b
b. 15	
c. 13	36. Which of following are known as universal
d. none of above	gates?
	a. NAND & NOR
Ans: b	b. AND & OR
	c. XOR & OR
32. The 74LS08 chip contains gates.	d. none
a. 4	
b. 5	Ans: a
c. 6	
d. 8	37. The number of bits in a nibble is.
	a. 16
Ans: a	b. 5
	c. 4

d. 8

Ans: c

- 38. Which of the following binary numbers is equivalent to decimal 10.
- a. 1000
- b. 1100
- c. 1010
- d. 1001

Ans: c

- 39. Numbers are stored and transmitted inside a computer in.
- a. binary form
- b. ASCII code form
- c. decimal form
- d. alphanumeric form

Ans: a

- 40. Logic gates are the examples of .
- a. LSI
- b. MSI
- c. SSI
- d. any other

Ans: c

- 41. MUX is an example of_____.
- a. LSI
- b. MSI
- c. SSI
- d. any other

Ans: b

- 42. The term VLSI generally refers to a digital IC having
- a. more than 1000 gates
- b. more than 100 gates

- c. more than 1000 but less than 9999 gates
- d. more than 100 but less than 999 gates

Ans: a

- 43. The observation that a bubbled input OR gate is interchangeable with a bubbled output AND gate is referred to as:
- a. a Karnaugh map
- b. DeMorgan's second theorem
- c. the commutative law of addition
- d. the associative law of multiplication

Ans: b

44. What value of A, B, C, and D satisfy the following simultaneous Boolean equations?

A+AB=0,

AB = AC,

AB +AC +CD =CD.

- a. A = 0, B = 0, C = 0, D = 1
- b. A = 1, B = 1, C = 0, D = 0
- c. A = 1, B = 0 C = 1, D = 1
- d. A = 1, B = 0, C = 0, D = 0

Ans: a

- 45. AB+AB'=
- a. B
- b. A
- c. 1
- d. 0

Ans: b

- 46. Boolean Algebra obeys
- a. commutative law
- b. associative law
- c. distributive law
- d. all of the above

Ans: d

47. The first contribution to logic was made by

a. George Boole

b. Copernicus

c. Aristotle

d. Shannon

Ans: a

48. One of DeMorgan's theorems states that A'+B'=(A.B. '. Simply stated, this means that logically there is no difference between:

a. a NAND gate and an AND gate with a bubbled output

b. a NOR gate and an AND gate with a bubbled output

c. a NOR gate and a NAND gate with a bubbled output

d. a NAND gate and an OR gate with a bubbled input

Ans: d

49. According to commutative law of addition:

a. AB = BA

b. A = A + B

c. A + B = B + A

d. A + (B + C. = (A + B. + C

Ans: c

50. Which of the examples below expresses the commutative law of multiplication?

a. A + B = B • A

b. A • B = B + A

c. A • (B • C. = (A • B. • C

d. $A \bullet B = B \bullet A$

Ans: d

51. From following which Boolean Expression is not valid:

a. A.0 = A

b. A.1 = A

c. $A \cdot 0 = 0$

d. A. A = A

Ans: a

52. Which of the following Boolean algebra rules is correct?

a. A.A' = 1

b. A + AB = A + B

c. A + A'B = A + B

d. A.(A + B. = B

Ans: c

53. Which of the examples below expresses the distributive law of Boolean algebra?

a. $A \bullet (B \bullet C) = (A \bullet B) + C$

b. $A + (B + C) = (A \bullet B. + (A \bullet C.$

c. $A \bullet (B + C) = (A \bullet B) + (A \bullet C)$

d. (A + B) + C = A + (B + C)

Ans: c

54. When simplified with Boolean Algebra (x +

y. (x + z) simplifies to

a. x

b. x + xy + z

c. x + yz

d. x + yz

Ans: d

55. A + A.B =

a. B

b. A.B

c. A

d. A or B

Ans: c

56. A.0 =

- a. 1
- b. A
- c. 0
- d. A or 1

Ans: c

- 57. (A + B.C. =
- a. A.B + C
- b. A.B + A.C
- c. A
- d. (A+B. (A+C.

Ans: d

- 58. Which is correct?
- a. A.A = 0
- b. A + 1 = A
- c. A + A' = 1
- d. A'.A' = 0

Ans: c

- 59. The logical expression Y = C + C'B is equivalent to
- a. Y = C + B
- b. Y = CB
- c. Y = C' + B
- d. Y = C + B'

Ans: a

- 60. The logical expression Y = A + AB is equivalent to
- a. Y = A + B
- b. Y = A
- c. Y = A' + B
- d. Y = A + B'

Ans: b

- 61. Boolean expressions for the output of Ex-NOR logic gate with inputs A and B
- a. AB' + A'B
- b. (AB. ' + AB
- c. (A' + B. (A + B'.
- d. (A' + B'. (A + B.

Ans: c

- 62. The minimum number of OR gates required to implement Y = A + AB' + AB'C is equal to
- a. 2
- b. 1
- c. 4
- d. 7

Ans: a

- 63. Given logical function of four variables F(A,
- B, C, D. = (A + BC. (B + CD. . The function as sum of product will be
- a. AB + BC + ACD + BCD
- b. AB + AB + AC'D + BCD
- c. (AB + AB. ' + ACD + BC'D
- d. AB' + A'B +A'CD + BCD

Ans: a

64. How many AND gates are required to realize

Y = CD + EF + G?

- a. 4
- b. 5
- c. 3
- d. 2

Ans: d

- 65. The expression Y = AC + BD + EF is
- a. POS
- b. SOP

c. hybrid	
d. none of above	Ans: c
Ans: b	
	71. In which function, is each term known as
66. The expression Y = ? m(0,1,3,4. is	max term?
a. POS	a. POS
b. none of these	b. SOP
c. hybrid	c. hybrid
d. SOP	d. none of above
Ans: d	Ans: a
67. In which function, is each term known as	72. What are the two types of basic adder
min term?	circuits?
a. POS	a. half adder and full adder
b. SOP	b. half adder and parallel adder
c. hybrid	c. asynchronous and synchronous
d. none of above	d. one's complement and two's complement
Ans: b	Ans: a
68. In the expression A + BC, the total number	73. The result of binary addition 1+1 is
of min terms will be	a. 1
a. 2	b. 0
b. 3	c. 10
c. 4	d. 4
d. 5	
	Ans: c
Ans: a	
69. The expression $Y = pM(0,1,3,4)$ is	74. How many inputs does a Half-adder have?
a. POS	a. 1
b. SOP	b. 2
c. hybrid	c. 3
d. none of above	d. 4
Ans: a	Ans: b
70. Which of the following is true?	75. How many outputs does a half adder have?
a. SOP is a two level logic	a. 1
b. POS is a two level logic	b. 2
c. both SOP and POS are two level logic	c. 3
d. Hybrid function is two level logic	d. 4

	c. 4
Ans: b	d. 5
7.11.5. 5	
76. A full adder logic circuit will have	Ans: b
a. Two inputs and one output	
b. Three inputs and three outputs	82. How many select lines will a 16 to 1
c. Two inputs and two outputs	multiplexer will have?
d. Three inputs and two outputs	a. 4
	b. 3
Ans: d	c. 5
	d. 1
77. A combinational circuit that performs the	
addition of two input bits and a carry from the	Ans: a
previous lower significant position is called	
a. Full-adder	83. How many outputs will require for a 1:4
b. Half-adder	demultiplexer?
c. Full-subtractor	a. 4
d. Half-subtractor	b. 8
	c. 2
Ans: a	d. 1
78. How many inputs will require for a 2:1	Ans: a
multiplexer?	
a. 5	84. The number of control lines i.e. select lines
b. 8	for 1 to 4 demultiplexer is
c. 2	a. 2
d. 1	b. 4
	c. 3
Ans: c	d. 5
79. The number of control lines for 2 to 1	
multiplexer is	Ans: a
a. 2	
b. 1	85. The number of control lines for 16 to 1
c. 3	demultiplexer is
d. 5	a. 2
	b. 4
Ans: b	c. 3
	d. 5
81. The number of control lines for a $8-to-1$	
multiplexer is	Ans: b
a. 2	
b. 3	

86.	The number of control lines for 32 to 1	-
mu	tiplexer is	

- a. 4
- b. 5
- c. 16
- d. 6

Ans: b

- 87. One application of a digital multiplexer is to facilitate:
- a. code conversion
- b. parity checking
- c. parallel-to-serial data conversion
- d. data generation

Ans: c

- 88. What is applicable for demultiplexers?
- a. decimal to hexadecimal
- b. single input, multiple outputs
- c. ac to dc
- d. odd parity to even parity

Ans: b

- 89. Output of combinational circuit depends upon
- a. Future input
- b. Present input
- c. Past and present
- d. None of these

Ans: b

Ans: a

- 90. Multiplexer is
- a. Combinational circuits
- b. sequential circuits
- c. either sequential or combinational circuits
- d. none of above

91. Which of the following circuits come under the class of combinational logic

circuits? 1. Full adder 2. Full subtractor 3. Half adder 4. J-K flip-flop 5. Counter

Select the correct answer from the codes given below:

- a. 1 only
- b. 3 and 4
- c. 4 and 5
- d. 1, 2 and 3

Ans: d

92. Which of the following circuits come under the class of sequential logic

circuits? 1. Full adder 2. Full subtractor 3. Half adder 4. J-K flip-flop 5. Counter

Select the correct answer from the codes given below:

- a. 1 and 2
- b. 2 and 3
- c. 3 and 4
- d. 4 and 5

Ans: d

- 93. Clock is a---- signal.
- a. rectangular
- b. triangular
- c. pulse
- d. Any other

Ans: a

- 94. A flip flop is a
- a. combinational circuit
- b. memory element
- c. arithmetic element
- d. memory or arithmetic

Ans: b

	100. The basic shift register operations are
95. The basic storage element in a digital	a. serial in serial out
system is	b. serial in parallel out
a. flip flop	c. parallel in serial out
b. counter	d. all of above
c. multiplexer	
d. encoder	Ans: d
Ans: a	101. SIPO stands for
	a. serial in parallal out
96FF is used to provide delay in ciruit.	b. serial in serial out
a. SR	c. serial
b. D	d. Any other
c. JK	
d. any other	Ans: a
Ans: b	102. A universal shift register can shift
7413. 5	a. from right to left
97. In a D latch	b. from left to right
a. a high D sets the latch and low D resets it	c. both from right to left and left to right
b. a low D sets the latch and high D resets it	d. none of above
c. race can occur	
d. none of above	Ans: c
Ans: a	103. An 8 bit binary number is to be entered
	into an 8 bit serial shift register. The
98is basically group of FFs	number of clock pulses required is
a. counter	a. 1
b. register	b. 2
c. latch	c. 4
d. Any other	d. 8
Ans: b	Ans: d
99. The simplest register is	104. An 8 bit binary number is to be entered
a. buffer register	into an 8 bit parallel-in shift register.
b. shift register	The number of clock pulses required is
c. controlled buffer register	a. 1
d. bidirectional register	b. 2
	c. 4
Ans: a	d. 8

Ans: a	d. 4N
	Ans: b
105. The digital circuit used for counting pulse is	110. A 3 bit up-down counter can count from
known as	a. 000 to 111
a. counter	b. 111 to 000
b. FF	c. 000 to 111 and also from 111 to 000
c. register	d. none of above
d. any other	
J. C., C., C., C., C., C., C., C., C., C.	Ans: c
Ans: a	
	111. A 4 bit down counter can count from
106. A counter is a	a. 0000 to 1111
a. Sequential ckt	b. 1111 to 0000
b. Combinational ckt	c. 000 to 111
c. both combinational and sequential ckt	d. 111 to 000
d. none of above	
	Ans: b
Ans: a	
	112. A mod 4 counter will count
107. IC counters are	a. from 0 to 4
a. synchronous only	b. from 0 to 3
b. asynchronous only	c. from any number n to n+4
c. both synchronous and asynchronous	d. none of above
d. none of above	
	Ans: b
Ans: c	
	113. A counter has modulus of 10. The number
108. A counter has 4 flip flops. The total number	of flip flops is
of states are	a. 10
a. 8	b. 5
b. 10	c. 4
c. 16	d. 3
d. 15	
	Ans: c
Ans: c	
	114. The number of flip flops needed for Mod 7
109. A counter has N flip flops. The total	counter are
number of states is	a. 7
a. N	b. 5
b. 2N	c. 3
c. N2	d. 1

	119 is used to identify particular		
Ans: c	location in main memory where		
	data is store.		
115. A three-bit up-down binary counter is in	a. Data Bus		
the down mode and in the 000 state.	b. Control Bus		
After 3 clock pulses, to what state does the	c. Address Bus		
counter go?	d. Any other		
a. 101			
b. 011	Ans: c		
c. 111			
d. 110	120. Each box in memory has		
u. 110	address.		
Ans: a	a. unique		
Alls. d	b. alterable		
446 Albandella ada albanda adalah	c. two		
116. A three-bit up-down binary counter is in	d. double		
the up mode and in the 110 state.	u. double		
After 3 clock pulses, to what state does the	A-201-2		
counter go?	Ans: a		
a. 010			
b. 011	121. Accumulator's main purpose is		
c. 001	a. temporary data storage		
d. 110	 keeping track of the next instruction to be executed 		
Ans: c	c. selecting which peripheral should be		
	addressed		
117. A decade counter skips	d. storing instructions		
a. binary states 1000 to 1111			
b. binary states 0000 to 0011	Ans: a		
c. binary states 1010 to 1111			
d. binary states 1111 and higher	122. Microprocessor communicates with the		
an amary states 1111 and maner	outside world through the		
Ans: c	a. memory		
Alls. C	b. I/O devices		
119 Which parts of the computer perform	c. ALU		
118. Which parts of the computer perform arithmetic calculations?	d. NONE OF THE ABOVE		
	d. None of Menbove		
a. ALU	Ans: b		
b. Registers	Alis. D		
c. Logic bus	132 register gives the address of the		
d. none of above	123 register gives the address of the memory location from where the next		
	•		
Ans: a	instruction is to be fetched.		
	a. Accumulator		

b. SPc. PCd. any of the aboveAns: c		
 124. Stack memory is used to a. provide additional memory to the base memory b. save return addresses of a subroutine c. save the status of the microprocessor d. none of these 		
Ans: b		
 125 includes microprocessor, memory and I/O on a single chip. a. microprocessor b. microcomputer c. microcontroller d. none of the above 		
Ans: c		
126 holds the opcode of the instruction. a. IR b. SP c. PC d. all of the above		
Ans: a		
127holds the address of the top of stack. a. IR b. SP c. PC d. all of the above		
Ans: b		

((MARKS)) (1/2/3)	2
((QUESTION))	The decimal number equivalent of (4057.06)8 is
((OPTION_A))	2095.75
((OPTION_B))	2095.075
((OPTION_C))	2095.937
((OPTION_D))	2095.0937
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	What is the binary equivalent of the decimal number
((OPTION_A))	101110000
((OPTION_B))	110110000
((OPTION_C))	111010000
((OPTION_D))	111100000
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Determine the values of A, B, C, and D that make the sum term equal to zero.
((OPTION_A))	A = 1, B = 0, C = 0, D = 0
((OPTION_B))	A = 1, B = 0, C = 1, D = 0
((OPTION_C))	A = 0, B = 1, C = 0, D = 0
((OPTION_D))	A = 1, B = 0, C = 1, D = 1
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert 59.7210 to BCD
((OPTION_A))	111011
((OPTION_B))	01011001.01110010
((OPTION_C))	1110.11
((OPTION_D))	0101100101110010
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Convert (8B3F) ₁₆ to binary.
((OPTION_A))	35647
((OPTION_B))	011010
((OPTION_C))	1011001111100011
((OPTION_D))	1000101100111111
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Which is typically the longest: bit, byte, nibble, word?
((OPTION_A))	Bit
((OPTION_B))	Byte
((OPTION_C))	Nibble
((OPTION_D))	Word
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert decimal 64 to binary.
((OPTION_A))	01010010
((OPTION_B))	01000000
((OPTION_C))	00110110
((OPTION_D))	01001000
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert the following octal number to decimal. (17) ₈
((OPTION_A))	51
((OPTION_B))	82
((OPTION_C))	57
((OPTION_D))	15
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The sum of 11101 + 10111 equals

((OPTION_A))	110011
((OPTION_B))	100001
((OPTION_C))	110100
((OPTION_D))	100100
((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Hexadecimal letters A through F are used for decimal equivalent values from:
((OPTION_A))	1 through 6
((OPTION_B))	9 through 14
((OPTION_C))	10 through 15
((OPTION_D))	11 through 17
((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert the following decimal number to hexadecimal. (125)
((OPTION_A))	7D16
((OPTION_B))	D716

((OPTION_C))	7C16
((OPTION_D))	C716
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The binary number 11101011000111010 can be written
	·
((OPTION_A))	DD63A16
((OPTION_B))	1D63A16
((OPTION_C))	1D33A16
((OPTION_D))	1D63116
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The decimal number equivalent of (4057.06)8 is
((OPTION_A))	2095.75
((OPTION_B))	2095.075
((OPTION_C))	2095.937
((OPTION_D))	2095.0937

((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	What is the binary equivalent of the decimal number
((OPTION_A))	101110000
((OPTION_B))	110110000
((OPTION_C))	111010000
((OPTION_D))	111100000
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Determine the values of A, B, C, and D that make the
((OPTION_A))	A = 1, B = 0, C = 0, D = 0
((OPTION_B))	A = 1, B = 0, C = 1, D = 0
((OPTION_C))	A = 0, B = 1, C = 0, D = 0
((OPTION_D))	A = 1, B = 0, C = 1, D = 1
((CORRECT_C HOICE))	В

(A/B/C/D)	
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The output of a logic gate is 1 when all its inputs are at logic 0. The gate is either
((OPTION_A))	a NOR or an EX-NOR
((OPTION_B))	an AND or an EX-OR
((OPTION_C))	an OR or an EX-NOR
((OPTION_D))	an NOR or an Ex-OR
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	
((QUESTION))	Derive the Boolean expression for the logic circuit
	A D
((OPTION_A))	C(A+B)DE
((OPTION_B))	C(A+B)D+(-E)
((OPTION_C))	((C(A+B)D))(-E)

((OPTION_D))	ABCDE
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	
((MARKS)) (1/2/3)	
((QUESTION))	From the truth table below, determine the standard SOP
	Inputs Output
((OPTION_A))	X=ĀBC+ABC+ABC
((OPTION_B))	X=ABC+ABC+ABC
((OPTION_C))	X=ABC+ABC
((OPTION_D))	X=ĀBC+ĀBC+ABC
((CORRECT_C HOICE)) (A/B/C/D)	D

((MARKS)) (1/2/3)	2
((QUESTION))	For the SOP expression ABC+ABC, how many 1s are

((EXPLANATI

(OPTIONAL)

ON))

	in the truth table's output column?
((OPTION_A))	1
((OPTION_B))	2
((OPTION_C))	3
((OPTION_D))	5
((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The 2's complement of the number 1101101 is
((OPTION_A))	0010011
((OPTION_B))	0101110
((OPTION_C))	1101110
((OPTION_D))	1101110
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	A SOP expression is equal to
((OPTION_A))	All the variables in domain of expression are present
((OPTION_B))	At least one variable in domain of expression is present.

((OPTION_C))	When one or more product terms in the expression are equal to 0.
((OPTION_D))	When one or more product terms in the expression are equal to 1.
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The expression is an example of tion.
((OPTION_A))	AB+C = A+BC
((OPTION_B))	A(B+C) = B(A+C)
((OPTION_C))	AB=BA
((OPTION_D))	A+B=B+A
((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The maximum number that can be represented using unsigned octal system is
((OPTION_A))	1
((OPTION_B))	7

((OPTION_C))	9
((OPTION_D))	16
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	2's complement of any binary number can be calculated
((OPTION_A))	adding 1 to 1's complement
((OPTION_B))	adding 1's complement twice
((OPTION_C))	Subtracting 1 from 1's complement.
((OPTION_D))	calculating 1's complement and inverting Most significant bit
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The binary value "1010110" is equivalent to decimal
((OPTION_A))	86
((OPTION_B))	87

((OPTION_C))	88
((OPTION_D))	89
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	
((QUESTION))	A standard POS form has terms that have all the variables in the domain of the expression.
((OPTION_A))	Sum
((OPTION_B))	Product
((OPTION_C))	Min
((OPTION_D))	Composite
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The AND Gate performs a logicalfunction
((OPTION_A))	Addition
((OPTION_B))	Subtraction
((OPTION_C))	Multiplication
((OPTION_D))	Division

((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	NOR gate is formed by connecting
((OPTION_A))	OR Gate and then NOT Gate
((OPTION_B))	NOT Gate and then OR Gate
((OPTION_C))	AND Gate and then OR Gate
((OPTION_D))	OR Gate and then AND Gate
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Which of the number is not a representative of
((OPTION_A))	1234
((OPTION_B))	ABCD
((OPTION_C))	1001
((OPTION_D))	DEFH
((CORRECT_C HOICE)) (A/B/C/D)	D

((EXPLANATI	
ON))	
(OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The decimal equivalent of the binary number "10011" is
((OPTION_A))	39
((OPTION_B))	99
((OPTION_C))	29
((OPTION_D))	None of given options
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The output of an AND gate is one when
((OPTION_A))	All of the inputs are one
((OPTION_B))	Any of the input is one
((OPTION_C))	Any of the input is zero
((OPTION_D))	All the inputs are zero
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The 2s compliment form (Use 6 bit word) of the number 1010 is
((OPTION_A))	111100
((OPTION_B))	110110
((OPTION_C))	110111
((OPTION_D))	1011
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Which of the following expressions is in the sum-of-products (SOP) form?
((OPTION_A))	(A+B)(C+D)
((OPTION_B))	(A)B(CD)
((OPTION_C))	AB(CD)
((OPTION_D))	AB + CD
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2	
(1/2/3)		

((QUESTION))	One of De Morgan's theorems states that. Simply stated, this means that logically there is no difference between:
((OPTION_A))	a NOR and an AND gate with inverted inputs
((OPTION_B))	a NAND and an OR gate with inverted inputs
((OPTION_C))	an AND and a NOR gate with inverted inputs
((OPTION_D))	a NOR and a NAND gate with inverted inputs
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The systematic reduction of logic circuits is
((OPTION_A))	using Boolean algebra
((OPTION_B))	symbolic reduction
((OPTION_C))	TTL logic
((OPTION_D))	using a truth table
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The NAND gate output will be low if the two inputs are

((OPTION_A))	00
((OPTION_B))	01
((OPTION_C))	10
((OPTION_D))	11
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The decimal equivalent of hex number 1A53 is
((OPTION_A))	6793
((OPTION_B))	6739
((OPTION_C))	6973
((OPTION_D))	6379
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	$(734)_8 = (?)_{16}$
((OPTION_A))	1DC
((OPTION_B))	1CD

((OPTION_C))	DC1
((OPTION_D))	DCC
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The decimal equivalent of octal number 314 is
((OPTION_A))	210
((OPTION_B))	212
((OPTION_C))	209
((OPTION_D))	204
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	Find out value of X from (211)x=(152) ₈
((OPTION_A))	10
((OPTION_B))	7
((OPTION_C))	7.5
((OPTION_D))	16

((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Perform octal subtraction (161) ₈ -(243) ₈
((OPTION_A))	-(61) ₈
((OPTION_B))	+(61) ₈
((OPTION_C))	$+(62)_8$
((OPTION_D))	-(62) ₈
((CORRECT_C HOICE)) (A/B/C/D)	C
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Perform Binary Division (1110101)/(1001)
((OPTION_A))	$(1101)_2$
((OPTION_B))	$(1011)_2$
((OPTION_C))	$(1110)_2$
((OPTION_D))	$(0101)_2$
((CORRECT_C HOICE)) (A/B/C/D)	C

((EXPLANATI	
ON))	
(OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Perform octal multiplication $(14)_8*(7)_8$
((OPTION_A))	$(124)_8$
((OPTION_B))	$(123)_8$
((OPTION_C))	$(134)_8$
((OPTION_D))	$(213)_8$
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Solve (105.65825) ₁₀ = (?) ₂
((OPTION_A))	1101001.10101
((OPTION_B))	1101101.10101
((OPTION_C))	1101100.1101
((OPTION_D))	1011000.0011
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert (247) ₁₀ =(?) ₈
((OPTION_A))	366.56
((OPTION_B))	367.54
((OPTION_C))	366.50
((OPTION_D))	366.512
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert (32F) ₁₆ =(?) ₁₀
((OPTION_A))	57.1836
((OPTION_B))	58.1836
((OPTION_C))	57.19
((OPTION_D))	58.177
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
(=, =, =)	

((QUESTION))	Convert (5826) ₁₆ =(?) ₁₀
((OPTION_A))	22566
((OPTION_B))	21566
((OPTION_C))	22654
((OPTION_D))	21577
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert (A72E) ₁₆ =(?) ₈
((OPTION_A))	123356
((OPTION_B))	123456
((OPTION_C))	213456
((OPTION_D))	123465
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Convert (4C12E) ₁₆ =(?) ₈
((OPTION_A))	2312.0456

((OPTION_B))	2313.456
((OPTION_C))	2112.4456
((OPTION_D))	2212.0456
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The output of a logic gate is 1 when all its inputs are at
((OPTION_A))	an NOR or an EX-NOR
((OPTION_B))	an AND or an EX-OR
((OPTION_C))	an OR or an EX-NOR
((OPTION_D))	an NOR or an Ex-OR
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The 2's complement of the number 1101101 is
((OPTION_A))	0010011
((OPTION_B))	0101110
((OPTION_C))	1101110

((OPTION_D))	1101110
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	A SOP expression is equal to
((OPTION_A))	All the variables in domain of expression are present
((OPTION_B))	At least one variable in domain of expression is present.
((OPTION_C))	When one or more product terms in the expression are equal to 0.
((OPTION_D))	When one or more product terms in the expression are equal to 1.
((CORRECT_C HOICE)) (A/B/C/D)	D
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	The expression is an example of Commutative Law for Multiplication.
((OPTION_A))	AB+C = A+BC
((OPTION_B))	A(B+C) = B(A+C)
((OPTION_C))	AB=BA
((OPTION_D))	A+B=B+A

((CORRECT_C HOICE)) (A/B/C/D)	С
((EXPLANATI ON)) (OPTIONAL)	
	,
((MARKS)) (1/2/3)	2
((QUESTION))	A group of symbols is known as
((OPTION_A))	Boolean expression
((OPTION_B))	Code
((OPTION_C))	Logic expression
((OPTION_D))	Number system
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	
((MARKS)) (1/2/3)	1
((QUESTION))	In BCD each decimal digit is represented bybit
((OPTION_A))	2
((OPTION_B))	4
((OPTION_C))	6
((OPTION_D))	8
((CORRECT_C HOICE)) (A/B/C/D)	В

((EXPLANATI ON)) (OPTIONAL)			
-----------------------------------	--	--	--

((MARKS)) (1/2/3)	1
((QUESTION))	(1000)Bin is for BCD
((OPTION_A))	7
((OPTION_B))	8
((OPTION_C))	9
((OPTION_D))	10
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	From the following which number are valid BCD
((OPTION_A))	1111
((OPTION_B))	1000
((OPTION_C))	1101
((OPTION_D))	All of these
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	1
((QUESTION))	The largest single digit BCD number is
((OPTION_A))	1001
((OPTION_B))	1010
((OPTION_C))	1111
((OPTION_D))	0011
((CORRECT_C HOICE)) (A/B/C/D)	A
((EXPLANATI ON)) (OPTIONAL)	

((MARKS)) (1/2/3)	2
((QUESTION))	Addition and subtraction of BCD have rules than
((OPTION_A))	Same
((OPTION_B))	Different
((OPTION_C))	
((OPTION_D))	
((CORRECT_C HOICE)) (A/B/C/D)	В
((EXPLANATI ON)) (OPTIONAL)	