FAIR CAUSAL INFERENCE FOR FUNCTIONAL DATA

Computational Statistics Conference; Bologna, 2022

Tim Mensinger & Dominik Liebl

University of Bonn

Who Am I?

- Tim
- PhD Candidate in Economics, University of Bonn
- Focus:
 - Econometrics & Statistics
 - Causal Inference
 - Programming

Motivation

- Foot striking patterns:
 - forefoot vs heel

Motivation

- Foot striking patterns:
 - forefoot vs heel
- Consider one metric: Force on ankle joints

Motivation

- Foot striking patterns:
 - forefoot vs heel
- Consider one metric: Force on ankle joints
- What's the (causal) effect of forefoot running on ankle joint loading?

Data

Outcomes	Controls	Treatment
$Y_i \in C^1[0,1]$	$X_i \in \mathbb{R}^p$	$W_i \in \{0,1\}$

Outcomes	Controls	Treatment
$Y_i \in C^1[0,1]$	$X_i \in \mathbb{R}^p$	$W_i \in \{0,1\}$

- Potential Outcomes:
 - $\circ \; Y_i(1), Y_i(0) \in C^1[0,1]$

Outcomes	Controls	Treatment
$Y_i \in C^1[0,1]$	$X_i \in \mathbb{R}^p$	$W_i \in \{0,1\}$

Potential Outcomes:

$$egin{array}{c} \circ \ Y_i(1), Y_i(0) \in C^1[0,1] \end{array}$$

$$\circ \; Y_i = W_i Y_i(1) + (1-W_i) Y_i(0)$$

Outcomes	Controls	Treatment
$Y_i \in C^1[0,1]$	$X_i \in \mathbb{R}^p$	$W_i \in \{0,1\}$

Potential Outcomes:

$$egin{array}{c} \circ \ Y_i(1), Y_i(0) \in C^1[0,1] \end{array}$$

$$\circ \; Y_i = W_i Y_i(1) + (1-W_i) Y_i(0)$$

$$\circ$$
 SUTVA: $Y_i = Y_i(W_i)$

Object of Interest

• Average treatment effect function:

$$au(t) = \mathbb{E}[Y_i(1)(t) - Y_i(0)(t)]$$

for
$$t \in [0,1]$$

Object of Interest

Average treatment effect function:

$$au(t) = \mathbb{E}[Y_i(1)(t) - Y_i(0)(t)]$$

for
$$t \in [0,1]$$

• Identification under unconfoundness (and overlap):

$$\circ \; (Y_i(1),Y_i(0)) \perp \!\!\! \perp W_i|X_i|$$

Object of Interest

Average treatment effect function:

$$au(t) = \mathbb{E}[Y_i(1)(t) - Y_i(0)(t)]$$

for
$$t \in [0,1]$$

• Identification under unconfoundness (and overlap):

$$\circ \ (Y_i(1),Y_i(0)) \perp \!\!\! \perp W_i|X_i|$$

$$0.009 \circ \eta < \mathbb{P}[W_i = 1|X_i] < 1-\eta_i$$

Plan

1. Find relevant control variables

Utilize causal graphs from causal inference literature

2. Choose a suitable estimator

Utilize methods from econometrics literature

3. Construct confidence bands

Utilize results from functional data literature

Find relevant control variables

Directed Acyclical Graph

- ullet For $t\in [0,1]$
- Structure may change with t
- Set of variables used for prediction of outcome and treatment may differ

Choose a suitable estimator

Augmented Inverse Propensity Score Weighting

$$\begin{split} \hat{\tau}(t) &= \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbb{E}}[Y_{i}(t)|X_{i}, W_{i} = 1] - \hat{\mathbb{E}}[Y_{i}(t)|X_{i}, W_{i} = 0] \\ &+ \frac{1}{n} \sum_{i=1}^{n} W_{i} \frac{Y_{i}(t) - \hat{\mathbb{E}}[Y_{i}(t)|X_{i}, W_{i} = 1]}{\hat{\mathbb{P}}[W_{i} = 1|X_{i}]} - (1 - W_{i}) \frac{Y_{i}(t) - \hat{\mathbb{E}}[Y_{i}(t)|X_{i}, W_{i} = 0]}{1 - \hat{\mathbb{P}}[W_{i} = 1|X_{i}]} \end{split}$$

• (Non-)parametric estimators of nuisance functions:

$$\hat{\mathbb{E}}[Y_i(t)|X_i,W_i=w]$$

$$\hat{\mathbb{P}}[W_i=1|X_i]$$

Properties and Requirements

Properties of $\hat{\tau}(t)$:

- Consistent for au(t)
- Doubly robust
- Semiparametric efficient

Requirements:

- Cross-fitting
- Nuisance functions are estimated at $o_P(n^{-1/4})$ rates

Construct Confidence Bands

Simultaneous Confidence Bands

• To Show:

- \circ Asymptotically Gaussian estimator of au
- \circ Uniformly consistent estimator of its covariance kernel c (and its 1st and 2nd partial derivatives)
- Liebl and Reimherr (2022):
 - Get: Simultaneous and fair confidence bands
 - \circ *Fairness:* Control balance of false-positive rate over [0,1]

Theorem

Under *regularity conditions* on the continuity and differentiability of functions and distributions of the functional errors

$$\sqrt{n}(\hat{ au}- au)\stackrel{d}{\longrightarrow} \mathcal{GP}(0,c).$$

And, we can construct an estimator of c and its partial derivatives that is uniformly consistent.

ullet Define oracle estimator $\hat{ au}^*$ that uses true nuisance functions $\mathbb{E}[Y_i(t)|X_i,W_i=w]$ and $\mathbb{P}[W_i=1|X_i]$

- ullet Define oracle estimator $\hat{ au}^*$ that uses true nuisance functions $\mathbb{E}[Y_i(t)|X_i,W_i=w]$ and $\mathbb{P}[W_i=1|X_i]$
- Show that $\hat{ au}^*$ is asymptotically Gaussian with kernel c
 - \circ Structure of c can be derived from the structure of $\hat{\tau}^*$

- ullet Define oracle estimator $\hat{ au}^*$ that uses true nuisance functions $\mathbb{E}[Y_i(t)|X_i,W_i=w]$ and $\mathbb{P}[W_i=1|X_i]$
- Show that $\hat{ au}^*$ is asymptotically Gaussian with kernel c
 - \circ Structure of c can be derived from the structure of $\hat{\tau}^*$
- ullet Show that $\sqrt{n}||\hat{ au}-\hat{ au}^*||_\infty o_p 0$

- ullet Define oracle estimator $\hat{ au}^*$ that uses true nuisance functions $\mathbb{E}[Y_i(t)|X_i,W_i=w]$ and $\mathbb{P}[W_i=1|X_i]$
- Show that $\hat{ au}^*$ is asymptotically Gaussian with kernel c
 - \circ Structure of c can be derived from the structure of $\hat{\tau}^*$
- ullet Show that $\sqrt{n}||\hat{ au}-\hat{ au}^*||_\infty o_p 0$
- ullet Construct sample analogue estimator \hat{c} of c

- ullet Define oracle estimator $\hat{ au}^*$ that uses true nuisance functions $\mathbb{E}[Y_i(t)|X_i,W_i=w]$ and $\mathbb{P}[W_i=1|X_i]$
- Show that $\hat{ au}^*$ is asymptotically Gaussian with kernel c
 - \circ Structure of c can be derived from the structure of $\hat{\tau}^*$
- ullet Show that $\sqrt{n}||\hat{ au}-\hat{ au}^*||_\infty o_p 0$
- ullet Construct sample analogue estimator \hat{c} of c
- ullet Show that \hat{c} and its derivatives converge uniformly

Application

Result

Contact

- Email: tmensinger@uni-bonn.de
- GitHub: timmens/compstat
- Website: <u>tmensinger.com</u>

