A PROJECT REPORT ON

AI-Powered Nutrition Analyzer For Fitness Enthusiasts

DOMAIN: ARTIFICIAL INTELLIGENCE

DONE BY TEAM ID: PNT2022TMID43802

TERM MEMBERS:

TEAM LEADER: ADARSH

TEAM MEMBER: ARUN BINU

TEAM MEMBER: AKASH P R

TEAM MEMBER: VYSHNAV DEV T

1.ABSTRACT

Artificial intelligence (AI) as a branch of computer science, the purpose of which is to imitate thought processes, learning abilities and knowledge management, finds more and more applications in experimental and clinical medicine. In recent decades, there has been an expansion of AI applications in biomedical sciences. The possibilities of artificial intelligence in the field of medical diagnostics, risk prediction and support of therapeutic techniques are growing rapidly. The aim of the article is to analyze the current use of AI in nutrition science research. The literature review was conducted in PubMed. A total of 399 records published between 1987 and 2020 were obtained, of which, after analyzing the titles and abstracts, 261 were rejected. In the next stages, the remaining records were analyzed using the full-text versions and, finally, 55 papers were selected. These papers were divided into three areas: AI in biomedical nutrients research (20 studies), AI in clinical research (22 studies) and AI in nutritional nutrients epidemiology (13 studies). It was found that the artificial neural network (ANN) methodology was dominant in the group of research on food composition study and production of nutrients. However, machine learning (ML) algorithms were widely used in studies on the influence of nutrients on the functioning of the human body in health and disease and in studies on the gut microbiota. Deep learning (DL) algorithms prevailed in a group of research works on clinical nutrients intake. The development of dietary systems using AI technology may lead to the creation of a global network that will be able to both actively support and monitor the personalized supply of nutrients.

TABLE OF CONTENTS

SL NO.	TITLLE	PAGE NO.	
1	ABSTRACT	2	
	INTRODUCTION	5	
	2.1 PROJECT DESCRIPTION	5	
2	2.2 Purposes	5	
	LITERATURE SURVEY	5	
3	3.1 Existing problem	5	
	3.2 References	7	
	3.3 Problem Statement	8	
4	IDEATION & PROPOSED SOLUTION	9	
	4.1 Empathy Map Canvas	9	
	4.2 Ideation & Brainstorming	10	
	4.3 Proposed Solution	11	
	4.4 Problem Solution Fit	12	

5	REQUIREMENT ANALYSIS	13
	5.1 Functional requirement	13
	5.2 Non-functional Requirements	13
6	PROJECT DESIGN	14
	6.1 Data Flow Diagram	14
	6.2 Solution Architecture	14
	6.3 Customer Journey Map	14
	PROJECT PLANNING &	15
7	SCHEDULING	
,	7.1 Sprint Planning & Estimation	15
8	MODEL CODE	17
	8.1 TEST CASES	21
	8.2 Output	22
9	CONCLUSION	24
10	FUTURE SCOPE	24
11	APPENDIX	25
	11.1 LINKS	25
	11.1.1 Github	25
	11.1.2 Youtube	25

2. INTRODUCTION

2.1 PROJECT DESCRIPTION

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintaining a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food. The main aim of the project is to build a model which is used for classifying the fruit depending on the different characteristics like color, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent to the trained model. The model analyzes the image and detects the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

2.2 Purposes

The AI model can be used as a reference for nutrition surveys and personal nutrition analysis. Nutritional intake is the basis for human growth and health, and the intake of different types of nutrients and micronutrients can affect health. Most diseases are inextricably linked to diet.

3. LITERATURE SURVEY

3.1 Existing problem

Neutrino delivers nutrition-based data services and analytics to its users and wants to turn into a leading source of the nutrition-related platform .The platform employs NLP and mathematical models from the optimization theory as well as predictive analysis to enable individualized data compilation.

The application relies on Artificial Intelligence to produce custom data related to smart calorie counter powered by AI. Their artificial intelligence learns an individual's tastes, preferences, and body type. All of this is packaged in a comprehensive nutrition and activity tracker.

1.Artificial intelligence in food science and nutrition Information Technologies Institute(ITI) Kosmas Dimitropou los April 2019 Published by Oxford University Press on behalf of the International Life Sciences Institute.

Advantage:

Tells exactly what to eat according to the body type. All of this is packaged in a comprehensive nutrition and activity tracker

Disadvantage:

The AI system may not always make the right decisions, but it will eventually learn from the errors and adjust its decision making processes to improve over time.

2. Artificial Intelligence in Nutrients Science BALAKRISH NA .Y JUNE2022

Advantage:

Creation of a global network that will be able to both actively support and monitor the personalized supply of nutrients.

Disadvantage:

The AI System May Be Buggy At First it can take time to work correctly This is normal.

3.AI-Based Dietician Professor, Department of Computer Science, Dayananda Sagar Academy of Technology April 2022.

Advantage:

Helps the user to interact better with the system, Provide information to the system as input and take the recommended diet plan as output.

Disadvantage:

Doesn't have acknowledgeable dietician Don't value customer time Worst service.

3.2 References

- 1.McCarthy J., Minsky M., Rochester N., Shannon C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. [(accessed on 6 November 2020)].
- 2.Demirci F., Akan P., Kume T., Sisman A.R., Erbayraktar Z., Sevinc S. Artificial neural network approach in laboratory test reporting:Learningalgorithms.Am. J. Clin. Pathol. 2016;146:227237. doi: 10.1093/ajcp/aqw104. [PubMed] [CrossRef].
- 3.Buisson J.-C. Nutri-Educ, a nutrition software application for balancing meals, using fuzzy arithmetic and heuristic search algorithms. Artif.Intell.med.2008:42:213-2227. doi:10.1016/j.artme d. 2007.12.001. [PubMed] [CrossRef].
- 4.Yu D.-J., Hu J., Yan H., Yang X., Yang J.-Y., Shen H.-B. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. BMC Bioinform. 2014;15:297. doi: 10.1186/1471-2105-15-297. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
- 5.Gedrich K., Hensel A., Binder I., Karg G. How optimal are computer-calculated.optimal.diets? Eur.J.Clin. Nutr. 1999;53:309 318.doi: 10.1038/sj.ejcn.1600727. [PubMed] [CrossRef] [Google Scholar]
- 6. Lo F.P.-W., Sun Y., Qiu J., Lo B. Food volume estimation based on deep learning view synthesis from a single depth map. Nutrients. 2018;10:2005. doi: 10.3390/nu10122005. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
- 7.Fang S., Shao Z., Kerr D.A., Boushey C.J., Zhu F. An end-to-end image-based automatic food energy estimation technique based on learned.energy.distribution.images:Protocol.and.methodology. Nutrients. 2019;11:877.doi: 10.3390/nu11040877. [PMC article] [PubMed] [CrossRef] [Google Scholar].
- 8. Ji Y., Plourde H., Bouzo V., Kilgour R.D., Cohen T.R. Validity and usability of a smartphone image-based dietary assessment app compared to 3-day food diaries in assessing dietary intake among canadian adults: Randomized controlled trial. JMIR Mhealth Uhealth. 2020;8:e16953.doi: 10.2196/16953. [PMC article] [PubMed] [CrossRef] [Google Scholar]

- 9.Tragomalou A., Moschonis G., Manios Y., Kassari P., loakimidis I., Diou C., Stefanopoulos L., Lekka E., Maglaveras N., Delopoulos A., et al. Novel e-health applications for the management of cardiometabolic risk factors in children and adolescents in Greece. Nutrients. 2020;12:1380.doi: 10.3390/nu12051380. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
- 10. Naushad S.M., Janaki Ramaiah M., Pavithrakumari M., Jayapriya J., Hussain T., Alrokayan S.A., Gottumukkala S.R., Digumarti R., Kutala V.K. Artificial neural network-based exploration of gene-nutrient interactions in folate and xeno-biotic metabolic pathways that modulate susceptibility to breast cancer. Gene.2016;580:159FF168.doi:10.1016/j.gene.2016.01.023. [CrossRef] [Google Scholar]

3.3 Problem Statement

4. IDEATION & PROPOSED SOLUTION

4.1 Empathy Map Canvas

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to help teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Problem Statement	I am (Customer)	I'm trying	But	Because	Which makes
(PS)		to			me feel
PS-1	Fitness freak	build the muscle	I don't know how many calories i want to eat	Lack of knowledge	angry and feel bad
PS-2	Patient	eat balanced diet	I am not able to eat	I don't know nutrition content proper nutrition food	helpless

4.2 Ideation & Brainstorming

4.3 Proposed Solution

1	Problem Statement	The primary aim of the project is to construct a model	
	(Problem to be solved)	which is used for figuring out the fruit relies upon on the exclusive traits like coloration, form, texture and so forth. The usage of photo processing. Here the person	
		the exclusive traits like coloration, form, texture and so	
		forth. The usage of photo processing. Here the person	
		can capture the pics might be analysed with the trained	
		model. The version analyses the photograph and lists	
		out of vitamins present in the fruit like sugar, vitamins,	
		minerals, protein and many others.	
2	Idea / Solution	The concept of this assignment is that person can seize	
	description	the photos of different fruits and vegetables and then	
		the picture may be sent to the skilled version. The	
		version analyses the picture and detects the nutrients	
		based totally at the end result like sugar, Fibre, Protein,	
		Calorie intake, and so on. The above concept is carried	
		out through the usage of the CNN (Convolution Neural	
		community). It's far used to choose the raw pixels	
		present within the photograph. Fruit Recognition the	
		usage of coloration and texture functions.	
3	Novelty / Uniqueness	The project has numerous unique capabilities. The primary feature is that the consumer want not have to go to or consult a Nutritionist (or) a Dietician to follow a in shape and wholesome weight loss plan. This mission has the feature of analysing the complete nutritional contents of fruits and greens by way of genuinely scanning them. It affords for a customised nutritional requirement for individuals who have Confined choices while selecting food.	

4	Social Impact /	This mission will collect understanding and offer	
	Customer Satisfaction	records approximately nutrition. Now a days, no person	
		follows the healthy diet weight reduction plan.	
		Supplying this statistics, they arrive to know about the	
		nutrition found in every meals item. It is used to agenda	
		a diet regime by means of taking the image of a food	
		item and if we send it, we will get statistics about each	
		meals nutrition like carbohydrates, fats, proteins,	
		vitamins, minerals ,and sugar. This could assist others	
		to enhance their fitness and health.	
5	Business Model	Internet (or) Social media is the best way to spread the	
	(Revenue Model)	word about our project and with the help of influencers	
		we can attract normal people. Clustering and targeting	
		the fitness people with the help of local gyms and	
		grounds. Allowing 3rd party vendors to sell their	
		products through our application via advertisements is	
		way to generate money. If the products sold through	
		advertisements, then it is even good.	
6	Scalability of the	Artificial Intelligence (AI) can be used to predict	
	Solution	investment outcomes quickly and effectively, as well as	
		to devise strategies or establish long term-goals.	
		Scalable AI pertains to how data models, infrastructure,	
		and algorithms can increase or decrease their	
		complexity, speed, or size at scale in order to best	
		handle requirement of the situation at hand. As	
		improvements continue with data storage capacities as	
		well as computing resource, AI models can be created	
		with millions of parameters. Scaling up nutrition is a	
		global push for action and investment to improve	
		maternal, child nutrition and various health problems.	

4.4 Problem Solution Fit

5. REQUIREMENT ANALYSIS

5.1 Functional requirement

Nfr.no	Non-Functional Requirement	Description
Nfr-1	Usability	Datasets of all the food items is used to detecting the nutrition that present in the food
Nfr-2	Security	The Information belongs to the user and Nutrition are secured highly
Nfr-3	Reliability	The Image Quality of food is important for predicting the Nutrition in the food
Nfr-4	Performance	The performance is based on the Image Quality of food used for nutrition prediction

5.2 Non-functional Requirements:

Fr.no	Functional Requirement	Sub Requirement(Story/subtask)
Fr-1	User Registration	Registration through Form Registration through Gmail
Fr-2	User Confirmation	Confirmation via OTP Confirmation via Gmail
Fr-3	Capturing Image	Capture the image of the food And check the parameter captured image
Fr-4	Image Processing	Upload the image for the prediction of the nutrition in the food
Fr-5	Food Identification	Identify the food and predict the nutrition in the food

6 PROJECT DESIGN

6.1 Data Flow Diagram

6.2 Solution Architecture

6.3 Customer Journey Map

7. PROJECT PLANNING & SCHEDULING

7.1 Sprint Planning & Estimation

Sprint	Functional Requirement	User Story / Task	Priority	Team Members
	(Epic)			
Sprint-1	Registration	As a user, I can register for the application by entering my email, password, and confirming my password.	High	Team Leader, Team Member-1 Team Member-2 Team Member-3
Sprint-1		As a user, I will receive confirmation email once I have registered for the application	High	Team Leader, Team Member-1 Team Member-2 Team Member-3
Sprint-1		As a user, I can register for the application through Facebook	Low	Team Member-1, Team Member-2
		As a user, I can register for the application through Gmail	Medium	Team Leader, Team Member-1 Team Member-2 Team Member-3
	Login	As a user, I can log into the application by entering email & password	High	Team Leader, Team Member-1 Team Member-2 Team Member-3
	Dashboard	As a user, I can view my profile and update my details	Low	Team Leader Team Member-1,
		As a user, I can change my password	High	Team Leader Team Member-1
Sprint-2		As a user, I can view my personal calorie calendar	High	Team Leader Team Member-3, Team Member-2
Sprint-2	Data Collections	Download Food Nutrition Dataset & data collections	High	Team Leader, Team Member-1 Team Member-2 Team Member-3
	Data Preprocessing	Importing The Dataset into Workspace & image preprocessing	High	Team Leader, Team Member-1 Team Member-2 Team Member-3

	Model Building	Initializing The Model and training and testing model	High	Team Leader, Team Member-1
		Model Evaluation, save model	Medium	Team Leader, Team Member-3
Sprint-3	Data Storage	In the application, the calorie value of different food items are stored using a database	High	Team Leader, Team Member-1 Team Member-2 Team Member-3
	Application Building	Create an HTML File Create an CSS File, Create an JavaScript File	High	Team Leader, Team Member-1
		Build Python Code	High	Team Leader, Team Member-3
		Showcasing Prediction On UI	Medium	Team Leader, Team Member-2, Team Member-1
	Nutrition Analyzer	Provide diet plans and exercise	Medium	Team Leader, Team Member-2, Team Member-1
Sprint-4	Diet Plan Specification	As a user, I can specify my target based on which I receive personalized diet plans	High	Team Leader, Team Member-1
	Train The Model On IBM	Register For IBM Cloud And train The ML Model On IBM	Medium	Team Leader, Team Member-2
		Integrate Flask with Scoring End Point	Medium	Team Leader, Team Member-3
		Create User acceptance testing and performance testing	High	Team Leader, Team Member-2
	Feedback Forms	reviews and ratings	Low	Team Leader, Team Member-1, Team Member-3

8. MODEL CODE

Import Required Packages

```
in [1]: import numpy as np
import pundes as pd
from heres, preprocessing, image import ImageDataGenerator
```

Loading The Data

```
teals_directory = 'Detect/TRAIN_SET'
test_directory = 'Detect/TRAIN_SET'
```

Data Agumentation

[4] trais_datages = langeOutsGenerator(rescalest./255,sheer_range = 0.2,toos_range=0.2,horizontal_flipsTrue) test_datages = langeOutsGenerator(rescalest./255)

Performing the Data Generation

```
In [5]: ### data agreentation to training data x_train_strain_strain_flow_ton_flow_train_directory, train_directory, train_directory, train_directory, train_directory, train_directory, train_directory, train_strain_strain_strain_directory, train_directory, train_directory train_directory, train
```

```
# cal.css • # ibm.css
        C: > Users > NOTHING > OneDrive > Desktop > Al-powered Nutrition Analyzer for Fitness Enthusiasts > # cal.css > ...
                      margin: 0;
                      padding: 0;
font-family: sans-serif;
                      height: 100vh;
                      background-image: linear-gradient( \Box rgba(0,0,0,0.75), \Box rgba(0,0,0,0.75)), url(\underline{background.jpg});
                      background-size: cover;
background-position: center;
width: 85%;
                      margin: auto;
                     padding: 35px 0;
display: flex;
align-items: center;
                      cursor: pointer;
                     list-style: none;
display: inline-block;
margin: 0 20px;
                      position: relative;
⊗0∆0
                                                                                                                                                                              Ln 62, Col 1 Spaces: 4 UTF-8 CRLF CSS 戸 Q
```

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | Upload.html | Visual Studio Code | Image: | Ima
```

```
♦ ibm nutrition analyser.html • ♦ about.html × • upload.html
      C: > Users > NOTHING > OneDrive > Desktop > Al-powered Nutrition Analyzer for Fitness Enthusiasts > 💠 about.html > 🔗 html
                      <title>about</title>
                     k rel="stylesheet" href="about.css" >
                      <div class="banner">
                          <div class="navbar">
\langle P \rangle Food is critical for human lifestyles and has been the priority of many healthcare
                                  Conventions. In recent times new nutritional assessment and vitamins evaluation gear allow
                                  Extra opportunities to help people recognize their every day ingesting behavior, exploring
                                  Nutrition patterns and keep a wholesome weight-reduction plan.
                                  \label{lem:lem:nutritional analysis} \ \ \text{is the system of determining the nutritional content of meals.}
                                  It's miles a essential part of analytical chemistry that gives statistics about the chemical
                                  Composition, processing, great manipulate and infection of food.
                                  It guarantees compliance with alternate and food legal guidelines.</P>
                                                                                                                                                 Activate Windows
                                                                                                                                            Ln 1, Col 1 Spaces: 4 UTF-8 CRLF HTML R 口
⊗0 10 0
```

```
# cal.css • # ibm.css X
      C: > Users > NOTHING > OneDrive > Desktop > Al-powered Nutrition Analyzer for Fitness Enthusiasts > # ibm.css > 4s span
                 margin: 0;
                 padding: 0;
                 font-family: sans-serif;
             .banner{
                 width: 100%;
                 background-image: linear-gradient(\squarergba(0,0,0,0.75),\squarergba(0,0,0,0.75)),url(background.jpg);
                 background-size: cover;
background-position: center;
             .navbar{
                 width: 85%;
                 margin: auto;
                 padding: 35px 0;
                 display: flex;
                 align-items: center;
                 justify-content: space-between;
                 width: 120px;
                 cursor: pointer;
                                                                                                                                              Activate Windows
⊗ 0 ∆ 0
                                                                                                                                        Ln 104, Col 16 Spaces: 4 UTF-8 CRLF CSS 🔊 🚨
```

8.1 TEST CASES

8.2 Output

9.CONCLUSION

During this project, we had the option to investigate some portion of the profound learning algorithms and find qualities and shortcomings. We picked up information on deep learning, and we got a product that can perceive fruits from pictures. A new methodfor classifying fruitsusing convolutional neural network algorithm is proposed. The above listed results were obtained using 7 test samples taken out from the actual number of 2626 and 1050 images used for training and testing. The above algorithm was coded and tested using anaconda software. Different fruits varieties that had different backgrounds were taken for training and testing. The proposed algorithm gave 98% accuracy rate. This project explores a fruits classification based on CNN algorithm. The accuracy and loss curves were generated by using various combinations of hidden layers for five cases using fruits. CNN gave better performance to attain better fruit classification. We trust that the outcomes and strategies introduced in this projectcan be additionally extended to a greater task. From our perspective, one of the principal goals is to improve the precision of the neural system. This includes further exploring different avenues regarding the structure of the system.

10. FUTURE SCOPE

Hopefully, in the future, this project can be extended with a larger dataset having more categories of fruits & vegetables. We will also have the plan to implement some other CNN based models to compare the accuracy on the same dataset, can also work on some more features for grading and classification, which can identify type of disease and/or texture structure of fruits. All these are future direction.

11. APPENDIX

In the Dietary Reference Intake (DRI) nutrient reports, the Adequate Intake (AI) has been estimated in a number of different ways. Because of this, the exact meanings and interpretations of the AIs differ. Some AIs have been based on the observed mean intake of groups or subpopulations that are maintaining health and nutritional status consistent with meeting the criteria for adequacy. However, where reliable information about these intakes was not available, or where there were conflicting data, other approaches were used. As a result, the definition of an AI is broad and includes experimentally estimated desirable intakes. These varying methods of setting an AI make using the AI for assessing intakes of groups difficult. When the AI is based directly on intakes of apparently healthy populations, it is correct to assume that other populations (with similar distributions of intakes) have a low prevalence of inadequate intakes if the mean intake is at or above the AI. For nutrients for which the AI was not based on intakes of apparently healthy populations, a group mean intake at or above the AI would still indicate a low prevalence of inadequate intakes for that group but there is less confidence in this assessment

11.1 LINKS

11.1.1 Github

link: https://github.com/IBM-EPBL/IBM-Project-51713-1660982057

11.1.2 Youtube

link: https://youtu.be/aDDxR81UIXw