GROUP THEORY - A VISUAL INTRODUC-

MATHEMATICS & COMPUTER SCIENCE

IAN & NEELU @ADA

- Our toolkit Python in a jupyter notebook
- Objects, actions, and structure What maths is really about
- Using Python to visualise structure How computer science helps
- What is a group structure and why does it matter?
- Looking for groups computationally

USING THE JUPYTER NOTEBOOK

Go to https://hub.adacollege.org.uk

Username ri##

Password ri##, where ## is your two digit number

Open 0 welcome.ipynb and follow the instructions

OBJECTS, ACTIONS, AND STRUCTURE _____

- Find some mathematical objects, or invent them
- Combine them somehow
- Look for patterns

OBJECTS

Numbers, obviously

- Different kinds of numbers! Integers, rational numbers, real numbers, imaginary numbers, infinite numbers ...
- Symmetries. Transformations
- Functions
- Vectors. Matrices

ACTIONS _____

- Take two numbers and do the usual $+ \times \div$
- Take two transformations and do one followed by the other
- Take two functions and find the composite function
- Add two vectors

STRUCTURE _____

EXAMPLE

- **Objects** The numbers 0, 1, 2
- **Action** Addition *modulo* 3

Remember *modulo* 3 means "find the remainder when you divide by 3"

So

 $4 = 1 \mod 3$

And

 $15 = 0 \mod 3$

In Python it's written %3

EXAMPLE

- **Objects** Rotations of an equilateral triangle
- Action Composition (one followed by another)

Followed by	Rot 0°	$Rot120^\circ$	$\mathrm{Rot}240^\circ$
Rot 0°			
Rot 120°			
Rot 240°			

+	0	1	2	Followed by	Rot 0°	Rot 120°	Rot 240°
0	0	1	2	Rot 0°	Rot 0°	$Rot 120^{\circ}$	Rot 240°
1	1	2	0	Rot 120°	Rot 120°	$Rot240^\circ$	$Rot 0^\circ$
2	2	0	1	Rot 240°	Rot 240°	$Rot0^\circ$	$\mathrm{Rot}120^\circ$

What do you notice about the two tables?

"Addition mod 3" has the same *structure* as "Rotations of an equilateral triangle"

(Technically we'd say they're **isomorphic**)

EXAMPLE

- **Objects** The numbers 0,1,2,3
- Action Multiplication modulo 4

EXAMPLE

- **Objects** The symmetries of a rectangle
- I =identity (do nothing)
- $R = \text{rotate (through } 180^\circ)$
- *H* =horizontal reflection
- *V* =vertical reflection
- **Action** Composition (one followed by another)

0	$\mid I \mid$	R	Н	[]	V					
Ι										
R										
Н										
V										
	'									
×		1				0	I			
	0	0	0	0	-	I R H V	Ι	R	V	\overline{V}
1	0	1	2	3		R	R	I	V	Н
2 3	0	2	0	2		H	Η	V	I	R
	1								_	-
3	0	3	2	1		V	$\mid V \mid$	Н	R	1

What do you notice about the tables?

- They're not the same structure
- They both have an **identity** object
- Some objects have inverses
- What's going on with 2 × 2?

Filling out these tables by hand gets tedious, so let's use Python to speed things up.

Make a new cell at the bottom of your notebook and follow along.

```
objects = [0,1,2,3,4,5]

def action(a, b):
    return (a * b)%5

for a in objects:
    print([action(a, b) for b in objects])
```

GROUPS

If a structure meets certain requirements, we call it a **group**

- **Closure** The action shouldn't produce objects we haven't seen before
- Identity There should be an object that doesn't do anything

- **Inverses** Every object should have an inverse. An object and its inverse should produce the identity
- Associativity eg (a+b)+c=a+(b+c)

Look at the tables so far. Can you tell from the tables which ones are groups?

Now open 1_exploring_structure.ipynb and follow the instructions