SUITES ARITHMETICO-GÉOMÉTRIQUES

I- Activité 1:

On considère une suite (U_n) définie par: $\begin{cases} U_0 = 5000 \\ U_{n+1} = 1,03U_n + 300 \end{cases}$

- 1) La suite (U_n) est-elle une suite arithmétique?
- 2) La suite (U_n) est-elle une suite géométrique ?
- 3) On donne la suite (V_n) définie par $V_n = U_n + 10000$ Démontrer que la suite (V_n) est une suite géométrique.
- 4) Exprimer $oldsymbol{V}_n$, puis $oldsymbol{U}_n$ en fonction de $oldsymbol{n}$.

II- Activité 2:

On considère une suite (U_n) définie par: $\begin{cases} U_0 = 65 \\ U_{n+1} = 0.8 U_n + 18 \end{cases}$

- 1) Calculer $oldsymbol{U_1}$, $oldsymbol{U_2}$ et $oldsymbol{U_3}$
- 2) La suite (U_n) est-elle une suite arithmétique?
- 3) La suite (U_n) est-elle une suite géométrique ?
- 4) Pour tout entier naturel n, on pose $V_n = U_n 90$ Démontrer que la suite (V_n) est une suite géométrique.
- 5) Exprimer V_n en fonction de n.
- 6) En déduire U_n en fonction de n .

III-Activité 3:

On considère une suite (Y_n) définie par : $\begin{cases} Y_0 = 8 \\ Y_{n+1} = 2Y_n - 17 \end{cases}$.

On pose une suite auxiliaire (Z_n) telle que $Z_n = Y_n + k$ avec $k \in \mathbb{R}$

- 1) Calculer k pour que la suite (Z_n) soit une suite géométrique.
- 2) Exprimer $\boldsymbol{Z_n}$, puis $\boldsymbol{Y_n}$ en fonction de \boldsymbol{n} .

IV-Forme usuelle d'une suite arithmético-géométriques

Une suite arithmético-géométriques est habituellement de la forme $U_{n+1} = aU_n + b$ avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et on donne une suite suite auxiliaire qui elle est géométrique (comme les activités 1 et 2).