Neural Networks

Data Mining

Prof. Sujee Lee

Department of Systems Management Engineering

Sungkyunkwan University

Neural Networks

Neural Networks

Neural Networks

- a.k.a. artificial neural networks
- inspired by interconnected neurons in biological systems
 - simple processing units
 - each unit receives a number of real-valued inputs
 - each unit produces a single real-valued output

Logistic Regression

(Recap.) Logistic Regression

- Logistic Regression extends the ideas of linear regression for classification problem
 - i.e., the labels are binary y = 0 or 1
- we will use linear model $\mathbf{w}^T \mathbf{x} + b$, but $f(\mathbf{x})$ to be a probability

$$\hat{y} = f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x} - b)}$$

$$\mathbf{x} = (\mathbf{x} - \mathbf{x}) \in \mathbb{R}^d \quad \text{as } \mathbf{x} \in \mathbb{R}$$

$$x = (x_1, \dots, x_d) \in \mathbb{R}^d, \quad y \in \mathbb{B}, \quad 0 \le \hat{y} \le 1$$

Logistic Regression (cont.)

- Two steps for evaluation
 - Linear combination of inputs:

$$s = \mathbf{w}^{\top} \mathbf{x} = \sum_{i=0}^{d} w_i x_i$$
$$y = f(s) = \frac{1}{1 + \exp(-s)}$$

Nonlinear transform of s:

$$y = f(s) = \frac{1}{1 + \exp(-s)}$$

Graphical representation (Single perceptron / Single neuron)

Multi-layer Perceptron

Let us cascade many perceptrons

input layer

hidden layer

output layer

6

Multi-layer Perceptron

Structure of multi-layer perceptron

Input Layer

- Simply pass the input values to the next layer.
- Number of inputs (features) = Number of input nodes

Hidden Layer(s)

- Each hidden unit represents an intermediate processing step.
- There can be several hidden layers.
- There can be several hidden nodes at each hidden layer.

Output Layer

- The output unit represents the prediction of the target label.
- Number of outputs = Number of output nodes

One Perceptron

- Simple <u>logistic regression classifier</u>
 - If greater than 0.5, predict class 1
 - Otherwise, predict class 0

Can solve linearly separable problems

decision boundary is linear

Some linearly separable functions

<u>AND</u>

XOR is not linearly separable

	$x_1 x_2$	\mathcal{Y}
а	0 0	0
b	0 1	1
С	1 0	1
d	1 1	0

a multilayer perceptron can represent XOR

Solving XOR problem using MLP

Solving XOR problem using MLP

$$w_{11} = 1.0, \ w_{21} = 1.0,$$

 $w_{01} = -1.5$

X ₁	X ₂	Σ	h ₁
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

$$w_{12} = 1.0, \ w_{22} = 1.0, w_{02} = -0.5$$

X ₁	X ₂	Σ	h ₂
0	0	-0.5	0
0	1	0.5	1
1	0	0.5	1
1	1	1.5	1

$$w_{12} = 1.0, \ w_{22} = 1.0,$$
 $v_{11} = -1.0, \ v_{21} = 1.0,$ $v_{01} = -0.5$

	h ₁	h ₂	Σ	У
	0	0	-0.5	0
I	0	1	0.5	1
I	0	1	0.5	1
	1	1	-0.5	0

Capacity of neural network

Structure of multi-layer perceptron

- Hidden Layers: Exploiting non-linearity to capture complex patterns
 - A hidden layer transforms inputs using weights, biases, and an activation function, allowing the network to learn complex patterns
 - Other examples of nonlinear activation functions
 - rectifying nonlinear unit (relu) g(z) = max(0, z)
 : cuts off values below zero,
 - hyperbolic tangent (tanh) $g(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$

: saturates to -1 for low input values and +1 for high input values.

Structure of multi-layer perceptron

- Output Layer: Making predictions for the target task
 - The output of the last hidden layer **h** becomes the input for the output layer $\hat{y} = f^{(l)}(\mathbf{h})$
 - Linear Units (for regression, $y \in \mathbb{R}$): $\hat{y} = \mathbf{w}^T \mathbf{h} + b$
 - **Sigmoid Units** (for binary classification, $y \in \{0,1\}$):

$$\hat{y} = P(y = 1|\mathbf{x}) = \sigma(z) = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

• Softmax Units (for multi-class classification, $y \in \{1, 2, ..., c\}$)

$$\hat{y} = (\hat{y}_1, ..., \hat{y}_c)$$
, where $\hat{y}_k = p(y = k | x)$
 $\mathbf{z} = (z_1, ..., z_c) = \mathbf{W}^T \mathbf{h} + \mathbf{b}$

$$\hat{y}_k = \operatorname{softmax}(\mathbf{z})_k = \frac{\exp(z_k)}{\sum_j \exp(z_j)}$$
 so that $\sum_k \hat{y}_k = 1$

Learning a Neural Network

Learning a Multi-layer Perceptron

- Find the optimal parameters $oldsymbol{ heta}^*$ (which include all weights and biases)
 - Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ such that $x_i = (x_{i1}, \dots, x_{id}) \in \mathbb{R}^d$ is the i-th input vector of d features and y_i is the corresponding target label.
 - The model: $\hat{y} = f(x; \theta)$
 - The cost function (to be minimized, usually non-convex)

$$L(\boldsymbol{\theta}) = \sum_{(x_i, y_i) \in D} L_i(y_i, \hat{y}_i)$$

- For training, any gradient-based optimization algorithms can be used (backpropagation).
 - e.g., simple gradient descent $\theta \coloneqq \theta \alpha \nabla_{\theta} L(\theta)$

Learning a Multi-layer Perceptron

- Typical choice of the loss function $L_i(y_i, \hat{y}_i)$
 - For **regression** $(y_i \in \mathbb{R})$, use squared error

$$L_i(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$$

For **binary classification** $(y_i \in \{0,1\})$, use binary cross-entropy

$$L_i(y_i, \hat{y}_i) = [-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)]$$

For multi-class classification $(y_i \in \{1,2,\ldots,c\}, y_i = \text{one_hot}(y_i) = (y_{i1},\ldots,y_{ic}))$, use categorical cross-entropy

$$L_i(\mathbf{y}_i, \widehat{\mathbf{y}}_i) = -\sum_{k=1}^{c} y_{ik} \log \widehat{y}_{ik}$$

Design Issues for MLP

- Issues in Designing Architecture
 - Number of units in input layer
 - · One input unit per binary/continuous attribute
 - k units for each categorical attribute with k values
 - Number of units in output layer
 - One output unit for 2-class problem
 - c output units for c-class problem
 - Number of hidden layers (depth)
 - Number of units per hidden layer (width)

Characteristics of MLP

Advantages

- Multi-layer neural networks are universal approximators
- Well-suited for continuous-valued inputs and outputs
- Can handle redundant and irrelevant attributes because weights are automatically learnt for all attributes

Disadvantages

- Can suffer from overfitting if the network is too large. (regularization needed)
- Training is computationally intensive and may converge to local minimum
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network
 - Techniques have recently been developed for the extraction of rules from trained neural networks