Introduction to Computer Graphics 2022

Lighting and Shading

Introduction to Computer Graphics Yu-Ting Wu

1

Introduction to Computer Graphics 2022

Recap.

- From week 2 to week 4, we introduced how a 3D shape shows up on the screen
- In the last week, we had a quick glance at the GPU graphics pipeline
- Next, we will talk about how to determine the fragment color
 - Lighting and shading
 - Texture mapping
 - Alpha blending for transparency objects

2

Introduction to Computer Graphics 2022

Shading: Materials and Lighting (cont.)

Introduction to Computer Graphics 2022

Shading

- Shading refers to the process of altering the color of an object/surface/polygon in the 3D scene
- In physically-based rendering, shading tries to approximate the local behavior of lights on the object's surface, based on things like
 - Surface orientation (normal) N
 - Lighting direction vL (and θ_i)
 - Viewing direction vE (and Θ_0)
 - Material properties
 - · Participating media
 - etc.

Introduction to Computer Graphics 2022

Lights

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

Lambertian Cosine Law

- Illumination on an oblique surface is less than on a normal one
- Generally, illumination falls off as $cos\theta$

$$E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}$$

6

Lights in Computer Graphics

- Point light –
- Spot light local lights
- Area light
- Directional light
- distant lights Environment light

Local Light

- The distance between a light and a surface is **not** long enough compared to the scene scale
- The position of light needs to be considered during shading
 - Lighting direction $vL = |P_1 P|$

• Lighting attenuation is proportional to the square of the distance between the light and the point

Introduction to Computer Graphics 2022

9

Point Light (cont.) A scene illuminated by a point light

Point Light

• An isotropic point light source that emits the same amount of light in all directions

• Described by

• Light position (P_L, xyz)

• Light intensity (I, rgb)

10

11

Area Light

 Defined by one or more shapes that emit light from their surface, with some directional distribution of energy at each point on the surface

• Require **integration** of lighting contribution across the light surface

• In offline rendering, usually estimated by sampling

 $\bullet \ \ \text{Expensive for real-time rendering}$

- Heitz et al., SIGGRAPH 2016
- Dupuy et al., SIGGRAPH 2017

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

14

14

Distant Light

- The distance between a light and a surface is long enough compared to the scene scale and can be ignored
 - Lighting direction is fixed
 - No lighting attenuation
- Directional light (sun) is the most common distant light

16

Directional Light • Describes an emitter that deposits illumination from the same direction at every point in space • Described by • Light direction (D, xyz) • Light radiance (L, rgb)

Environment Light
 Use a texture (cube map or longitude-latitude image) to represent a spherical energy distribution

 Each texel maps to a spherical direction, considered as a directional light
 The whole map illuminates the scene from a virtual sphere at an infinite distance

 Also called image-based lighting (IBL)

Introduction to Computer Graphics 2022

Environment Light (cont.)

17

• Widely used in digital visual effects and film production

Environment Light (cont.)

Introduction to Computer Graphics 2022

19 20

Local, Direct, and Global Illumination (cont.)

Direct Lighting Only

Direct + Indirect Lighting

Comparison of direct and global illumination

21

Introduction to Computer Graphics 2022

Materials

Materials

Materials

23

22

Materials (cont.)

• Highly related to surface types

• The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light

diffuse glossy specular

26

Introduction to Computer Graphics 2022

Ambient Shading

 Add constant color to account for disregarded illumination and fill black shadows

28

7

Introduction to Computer Graphics 2022 **Ambient Shading (cont.)** · Add constant color to account for disregarded illumination and fill black shadows the intensity of ambient light $L_a = k_a \cdot I_a$ ambient coefficient reflected ambient light

Diffuse Shading (cont.)

- Assume light reflects equally in all directions
 - The surface is rough with lots of tiny microfacets
- Therefore, the surface looks the same color from all views (view independent)

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022 Diffuse Shading (cont.) • Applies to diffuse or matte surface illumination from source $L_d = k_d \cdot I \cdot \max(0, N \cdot vL)$ diffuse coefficient diffusely reflected light

Diffuse Shading

- Assume light reflects equally in all directions
 - The surface is rough with lots of tiny microfacets
- Therefore, the surface looks the same color from all views (view independent)

Introduction to Computer Graphics 2022

30

31

29

Introduction to Computer Graphics 2022 Diffuse Shading (cont.) · For color objects, apply the formula for each color channel separately · Light can also be non-white Example: white light: (0.9, 0.9, 0.9) yellow light: (0.8, 0.8, 0.2) $I \cdot \max(0, N \cdot vL)$ Example: green ball: (0.2, 0.7, 0.2) blue ball: (0.2, 0.2, 0.7) 34

Introduction to Computer Graphics 2022

Specular Shading

- · Some surfaces have highlights, mirror-like reflection
- View direction dependent
- · Especially obvious for smooth shiny surfaces

35

36

Specular Shading (cont.) • Phong specular model [1975] $vR = vL + 2((N \cdot vL)N - vL)$ $= 2(N \cdot vL)N - vL$ perfectly reflected direction (you can find the proof here)

Introduction to Computer Graphics 2022

Phong specular Variant: Blinn-Phong

- Rather than computing reflection directly, just compare to normal bisection property
- One can prove $\cos^n(\sigma) = \cos^{4n}(\alpha)$

$$vH = \operatorname{bisector}(vL, vE)$$
$$= \frac{(vL + vE)}{\|vL + vE\|}$$

Introduction to Computer Graphics 2022

$$L_s = k_s \cdot I \cdot \max(0, \cos \sigma)^n$$

= $k_s \cdot I \cdot \max(0, N \cdot vH)^n$

38

Introduction to Computer Graphics 2022

Specular Shading (cont.)

Specular Shading (cont.) k_s 0.1

0.25 n=3.0 n=5.0Introduction to Computer Graphics 2022

40

38

Introduction to Computer Graphics 2022

Complete Phong Lighting Model

• Compute the contribution from a light to a point by including ambient, diffuse, and specular components

$$L = L_a + L_d + L_s$$

= $k_a \cdot I_a + I(k_d \cdot \max(0, N \cdot vL) + k_s \cdot \max(0, N \cdot vH)^n)$

- If there are ${\bf s}$ lights, just sum over all the lights because the lighting is ${\bf linear}$

$$L = k_a \cdot I_a + \sum_{i} \left(I_i (k_d \cdot \max(0, N \cdot vL_i) + k_s \cdot \max(0, N \cdot vH_i)^n) \right)$$

41

41

43

Introduction to Computer Graphics 2022

Material File Format

43

42

44

45

Introduction to Computer Graphics 2022

Material Template Library (cont.)

- The material template library (*.mtl) used by a Wavefront OBJ (*.obj) file describes material properties using
 - Phong lighting model (Ka, Kd, Ks, Ns)
 - Texture maps (mapKa, mapKd, mapKs, mapNs ...)
 - Transparency (d, Tr, Ni)
 - ... etc

 You can refer to the wiki page for more information https://en.wikipedia.org/wiki/Wavefront_.obj_file

46

46

Any Questions?

47