$1_{\rm NT}$ – dealing with interference

Krystyna Gasińska, Bartek Słupik

March 1, 2024

1NT - (2 - ?)

2♣ = ♣

• \times = Stayman

SYSTEM ON

 $1NT - (2^{A}) - ?$

2 = 5/4

- $\times = 8+$
- $2 \stackrel{\bullet}{\bullet}$, $2 \stackrel{\blacktriangledown}{\bullet}$, $2 \stackrel{\bullet}{\bullet}$, $3 \stackrel{\bullet}{\bullet}$ = to play
- 2NT = minors

 $1NT - (2^{\bullet}) - ?$

 $2 \blacklozenge = \blacklozenge$

- \times = negative
- $2 \checkmark$, $2 \spadesuit$ = to play
- 2NT = Lebensohl
- $3 = 5 + \forall$, INV^+
- $3 \bullet = 1 \bullet$, \mathbf{INV}^+
- 3 = 5 + 4, INV^+
- 3 = 5 + 4, INV^+
- 3NT = no stopper

• $4 \blacklozenge$, $4 \blacktriangledown = \text{Texas}$

$$1$$
NT $-(2^{\spadesuit A})$ $-?$

$$2 > 6 +$$

- $\times = 8+$
- $2 \checkmark$, $2 \spadesuit$ = to play
- 2NT = Lebensohl
- $3 = 5 + , INV^+$
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}$, INV^+
- 3 = 5 + 4, INV^+
- $3 \triangleq 5/5 \implies$
- 3NT = to play
- $4 \bullet$, $4 \heartsuit = \text{Texas}$

$1NT - (2 \checkmark) - ?$

- \times = negative
- 2 = to play
- 2NT = Lebensohl
- $3 = 5 + •, INV^+$
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\bullet}{\bullet}$, INV^+
- $3 = 1 V, INV^+$
- 3 = 55 , GF
- 3NT = no stopper
- 4 = Texas

1NT - (2 - ?)

- \times = negative
- 2nt = Lebensohl
- 3 = 5 + •, INV^+

- $3 = 5 + \forall$, INV^+
- 3♥ = 55♣, **GF**
- $3 = 1 1 \cdot 100$
- 3NT = no ♠ stopper
- $4 \rightarrow = \text{Texas}$

 $1NT - (2NT^{A}) - ?$

2NT = \clubsuit

- $\times = 10+$
- 3♣ = Stayman
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}$, INV^+
- 3 = 5 + 4, INV^+

1NT - (3.) - ?

- \times = negative
- $3 \blacklozenge = 5 + \blacktriangledown$, \mathbf{INV}^+
- 3 = 5 + 4, INV^+
- $3 \spadesuit = 5 + \blacklozenge$, INV^+
- 3NT = to play

1NT - (3) - ?

- \times = negative
- 3 = 5 + 4, INV^+
- 3♠ = 5+♥, **GF**
- 3NT = to play

 $1NT - (\times^{A}) - ?$

 \times artificial

SYSTEM ON

$1NT - (\times) - ?$

- \times = penalty
 - PASS = forces $\times \times$
 - $\times \times = \text{forces } 2 \clubsuit$
 - $2\mathbf{x} = \text{forces } \mathbf{x+1}$

$$\begin{aligned} &1NT-(\textcolor{red}{\times})-P^{\textcolor{red}{A}}-(P)\\ &\times\times-(P)-? \end{aligned}$$

- PASS = penalty
- 2 = 4 + 4x or 4333 or any other edge case
- $2 \blacklozenge = 4 \blacklozenge + 4 \clubsuit$
- $2 \checkmark = 4 \checkmark + 4 \spadesuit$