Math 591 Lecture 30

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

11/11/20

Tensors

Defn: Let V be a finite-dimensional vector space. A <u>tensor</u> on V is an element of

$$\underbrace{V^* \otimes \cdots \otimes V^*}_{\ell} \otimes \underbrace{V \otimes \cdots \otimes V}_{m}$$

(where \otimes is the tensor product).

Observe: This space is isomorphic to the space of multilinear maps $\underbrace{V \times \cdots \times V}_{\ell} \times \underbrace{V^* \times \cdots \times V^*}_{m} \to \mathbb{R}$, because $(V^*)^* \cong V$.

Last time, we defined the set of alternating multilinear functions $\bigwedge^k V^* \hookrightarrow \underbrace{V^* \otimes \cdots \otimes V^*}_{}$.

Reminder: A basis for $\bigwedge^k V^*$: choose $\{\mathcal{E}^i\}_{1 \leq i \leq n}$ an ordered basis of V^* . For each $I = \{i_1 < \dots < i_k\} \subseteq \{1, \dots, n\}$, let $\mathcal{E}^I(v_1, \dots, v_k) = \det(\mathcal{E}^{i_j}(v_\ell))_{(j,\ell)}$.

Prop: $\{\mathcal{E}^I : I = \{i_1 < \dots < i_k\} \subseteq \{1, \dots, n\}, \#I = k\}$ is a basis of $\bigwedge^k V^*$.

In fact, $\forall \alpha \in \bigwedge^k V^*$, $\alpha = \sum_I \alpha(e_{i_1}, \dots, e_{i_k}) \mathcal{E}^I$, where $\{e_j\}$ is the basis of V dual to $\{\mathcal{E}^j\}$ (i.e., $\mathcal{E}^i(e_j) = \delta_{ij}$).

Note: the notation $\sum_{k=1}^{\infty} I_{k}$ means sum over increasing $I = \{i_{1} < \dots < i_{k}\}$.

Also, dim $\bigwedge^k V^* = \binom{n}{k}$.

Defn: By convention, $\bigwedge^0 V^* = \mathbb{R}$.

Defn: If $\alpha \in \bigwedge^k V^*$, $\beta \in \bigwedge^\ell V^*$, we define the wedge product $\alpha \wedge \beta \in \bigwedge^{k+\ell} V^*$ by

$$(\alpha \wedge \beta)(v_1, \dots, v_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} (-1)^{\sigma} \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

Note: We can define $(\alpha \otimes \beta)(v_1, \dots, v_{k+\ell}) = \alpha(v_1, \dots, v_k)\beta(v_{k+1}, \dots, v_{k+\ell})$, but this may not be alternating (in fact, it almost certainly isn't). But this can be skew symmetrized by forming the above sum (with appropriate normalization).

Note: An equivalent formula for the wedge product is

$$(\alpha \wedge \beta)(v_1, \dots, v_{k+\ell}) = \sum_{\sigma \in Sh(k,\ell)} (-1)^{\sigma} \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

This is a much smaller sum, as it removes redundancies.

Recall: $\sigma \in \operatorname{Sh}(k, \ell)$ iff $\sigma \in S_{k+\ell}$, $\sigma(1) < \cdots < \sigma(k)$, $\sigma(k+1) < \cdots < \sigma(k+\ell)$. Note: $\#\operatorname{Sh}(k, \ell) = \binom{k+\ell}{k} = \binom{k+\ell}{\ell}$. **Ex:** Say $\alpha \in \bigwedge^2 V^*$, $\beta \in \bigwedge^2 V^*$. Then the elements of Sh(2,2) are:

1	2	3	4	sgn
1	2	3	4	+
1	3	2	4	_
1	4	2	3	_
2	3	1	4	+
2	4	1	3	+
3	4	1	2	+

So

$$(\alpha \wedge \beta)(v_1, v_2, v_3, v_4) = \alpha(v_1, v_2)\beta(v_3, v_4) - \alpha(v_1, v_3)\beta(v_2, v_4) - \alpha(v_1, v_4)\beta(v_2, v_3) + \alpha(v_2, v_3)\beta(v_1, v_4) + \alpha(v_2, v_4)\beta(v_1, v_3) + \alpha(v_3, v_4)\beta(v_1, v_2)$$

Properties of the Wedge Product

- The wedge product is bilinear: $(\alpha_1 + \lambda \alpha_2) \wedge \beta = \alpha_1 \wedge \beta + \lambda(\alpha_2 \wedge \beta)$.
- The wedge product is associative: $\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma = \alpha \wedge \beta \wedge \gamma$. The wedge product is anticommutative: for $\alpha \in \bigwedge^k, \beta \in \bigwedge^\ell, \alpha \wedge \beta = (-1)^{k\ell}\beta \wedge \alpha$. This implies that even forms commute with any other form.
- If $\alpha^1, \ldots, \alpha^k \in V^*$, then $(\alpha^1 \wedge \cdots \wedge \alpha^k)(v_1, \ldots, v_k) = \det (\alpha^i(v_j))_{(i,j)}$. In particular, $\mathcal{E}^I = \mathcal{E}^{i_1} \wedge \cdots \wedge \mathcal{E}^{i_k}$.

Ex: Say $\alpha^1, \alpha^2 \in V^*$. Then $(\alpha^1 \wedge \alpha^2)(v_1, v_2) = \alpha^1(v_1)\alpha^2(v_2) - \alpha^1(v_2)\alpha^2(v_1)$.

Defn: $\left(\bigoplus_{k=1}^{n} \bigwedge^{k} V^{*}, \wedge\right)$ is the <u>exterior algebra</u> or <u>Grassmann algebra</u> of V.

Now, back to manifolds...

Defn: Let M be a smooth manifold. A <u>k</u>-differential form (or <u>k</u>-form) on M is an assignment $\forall p \in M, p \mapsto \alpha_p \in \bigwedge^k(T_p^*M)$.

Note: When k=1, α is a 1-form as before. When k=0, α is just an \mathbb{R} -valued function.

Local Expression

Let $(U, (x^1, \ldots, x^n))$ be a coordinate chart. Then $\forall p \in U$, we get $\{dx^i|_p\}_{i=1,\ldots,n}$ a basis of T_p^*M , with corresponding dual basis $\left\{ \left. \frac{\partial}{\partial x^i} \right|_p \right\}$ of $T_p M.$ If α is a k-form, then $\forall p \in U,$

$$\alpha_p = \sum_{I}' a_I (dx^I)_p \qquad a_I(p) = \alpha_p \left(\frac{\partial}{\partial x^{i_1}} \Big|_p, \dots, \frac{\partial}{\partial x^{i_k}} \Big|_p \right)$$

This defines functions $a_I: U \to \mathbb{R}$ for each $I = \{i_1 < \dots < i_k\} \subseteq \{1, \dots, n\}$.

Defn: A k-form α is smooth iff there exists a C^{∞} atlas of M such that in each chart, each a_I is smooth.

Lemma: α is smooth iff for every chart in the smooth structure, each function a_I is smooth.

Proof: \Leftarrow is trivial. For \Rightarrow , let $(y^1, \ldots, y^n) : V \to \mathbb{R}$ be an arbitrary coordinate chart. Let $p \in V$. By our assumption, there's a chart $(x^1, \ldots, x^n) : U \to \mathbb{R}$ near p such that $\alpha = \sum_I a_I dx^I$, with $a_I \in C^\infty(U)$. Also, $\alpha = \sum_J b_J dy^J$. We need to show $b_J \in C^\infty(U \cap V)$, but how? Well,

$$b_{J} = \alpha \left(\frac{\partial}{\partial y^{j_{1}}}, \dots, \frac{\partial}{\partial y^{j_{k}}} \right) = \sum_{I}' a_{I} \underbrace{dx^{I} \left(\frac{\partial}{\partial y^{j_{1}}}, \dots, \frac{\partial}{\partial y^{j_{k}}} \right)}_{= \det \left(dx^{i_{r}} \left(\frac{\partial}{\partial y^{j_{s}}} \right) \right)_{(r,s)}}_{(r,s)}$$

The $\frac{\partial x^{i_r}}{\partial y^{j_s}}$ are smooth, so the whole determinant is smooth, so b_J is the sum of smooth functions. Thus, it's smooth. \Box

From the bundle point-of-view, we can define $\bigwedge^k T^*M = \bigsqcup_{p \in M} \bigwedge^k (T_p^*M)$.

Prop: One can make $\bigwedge^k T^*M$ into a vector bundle, with trivializations given by the moving frames $\{dx^I\}$ associated to coordinates. Then C^{∞} k-forms are C^{∞} sections of this bundle.