

# **Solutions**

# Expressing Concentration of Solutions

- 1. In one molal solution that contains 0.5 mole of a solute, there is (2022)
  - a. 1000 g of solvent
- b. 500 mL of solvent
- c. 500 g of solvent
- d. 100 mL of solvent
- 2. Which of the following is dependent on temperature? (2017-Delhi)
  - a. Weight percentage
- b. Molality
- c. Molarity
- d. Mole fraction
- **3.** What is the mole fraction of the solute in a 1.00 m aqueous solution? (2015 Re)
  - a. 0.0177
- b. 0.177
- c. 1.770
- d. 0.0354
- **4.** How many grams of concentrated nitric acid solution should be used to prepare 250 mL of 2.0 M HNO<sub>3</sub>? The concentrated acid is 70% HNO<sub>3</sub>. (2013)
  - a. 70.0 g conc. HNO<sub>2</sub>
  - b. 54.0 g conc. HNO,
  - c. 45.0 g conc. HNO.
  - d. 90.0 g conc. HNO,

# Vapour Pressure of Liquid Solutions

- **5.** Which one is not correct mathematical equation for Dalton's Law of partial pressure? Here p = total pressure of gaseous mixture (2022)
  - a.  $p_i = x_i p_i^o$ , where  $x_i =$  mole fraction of  $i^{th}$  gas in gaseous mixture

 $p_i^o$  = pressure of  $i^{th}$  gas in pure state

b.  $p = p_1 + p_2 + p_3$ 

c. 
$$p = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$$

d.  $p_i = x_i p$ , where  $p_i =$  partial pressure of  $i^{th}$  gas  $x_i =$  mole fraction of  $i^{th}$  gas in gaseous mixture

**6.** The correct option for the value of vapour pressure of a solution at 45°C with benzene to octane in molar ratio 3:2

[At 45°C vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg. Assume Ideal gas]

- a. 168 mm of Hg
- b. 336 mm of Hg
- c. 350 mm of Hg
- d. 160 mm of Hg
- 7. Which of the following statements about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume that the temperature is at 25°C.

(Given, vapour pressure data at 25°C, benzene = 12.8 kPa, toluene = 3.85 kPa) (2016-I)

- a. The vapour will contain equal amounts of benzene and toluene
- b. Not enough information is given to make a prediction
- c. The vapour will contain a higher percentage of benzene
- d. The vapour will contain a higher percentage of toluene

#### Ideal and Non-Ideal Solutions

- **8.** The mixture which shows positive deviation from Raoult's law is: (2020)
  - a. Benzene + Toluene
  - b. Acetone + Chloroform
  - c. Chloroethane + Bromoethane
  - d. Ethanol + Acetone
- **9.** For an ideal solution, the correct option is: (2019)
  - a.  $\Delta_{mix}$  S = 0 at constant T and P
  - b.  $\Delta_{\scriptscriptstyle mix} \; V \neq 0$  at constant T and P
  - c.  $\Delta_{mix} H = 0$  at constant T and P
  - d.  $\Delta_{\scriptscriptstyle mix} \; G = 0$  at constant T and P
- **10.** The mixture that forms maximum boiling azeotrope is: (2019)
  - a. Water + Nitric acid
  - b. Ethanol + Water
  - c. Acetone + Carbon disulphide
  - d. Heptane + Octane



- 11. Which one of the following is incorrect for ideal solution?
  - a.  $\Delta P = P_{obs} P_{calculated by Raoult's law} = 0$
  - b.  $\Delta G_{mix} = 0$
  - c.  $\Delta H_{mix} = 0$
  - d.  $\Delta U_{mix} = 0$
- **12.** Which one is not equal to zero for an ideal solution? (2015)

- b.  $\Delta V_{mix}$
- c.  $\Delta P = P_{observed} P_{Raoult}$
- d.  $\Delta H_{mix}$

### **Colligative Properties and Determination of Molar Mass**

- 13. The following solutions were prepared by dissolving 10 g of glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) in 250 ml of water (P<sub>1</sub>), 10 g of urea (CH<sub>4</sub>N<sub>2</sub>O) in 250 ml of water (P<sub>2</sub>) and 10 g of sucrose (C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>) in 250 ml of water (P<sub>2</sub>). The right option for the decreasing order of osmotic pressure of these solutions is: (2021)

- $\begin{aligned} &\text{a. } &\text{$P_1$} > \text{$P_2$} > \text{$P_3$} \\ &\text{c. } &\text{$P_3$} > \text{$P_1$} > \text{$P_2$} \\ &\text{d. } &\text{$P_2$} > \text{$P_1$} > \text{$P_3$} \end{aligned}$
- 14. If 8 g of a non-electrolyte solute is dissolved in 114 g of n-octane to reduce its vapour pressure to 80%, the molar mass (in g mol-1) of the solute is

[Given that molar mass of n-octane is 114 g mol<sup>-1</sup>] (2020-Covid)

a. 60

b. 80

c. 20

- d. 40
- 15. Isotonic solutions have same
- (2020-Covid)

- a. Freezing temperature
- b. Osmotic pressure
- c. Boiling temperature
- d. Vapour pressure
- 16. If molality of the dilute solution is doubled, the value of (2017-Delhi) molal depression constant (K<sub>s</sub>) will be:
  - a. Unchanged
- b. Doubled
- c. Halved
- d. Tripled

- 17. At 100°C, the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm. If  $K_b = 0.52$ , the boiling point of this solution will be: (2016 - I)
  - a. 103° C
- b. 101° C
- c. 100° C
- d. 102° C

#### **Abnormal Molar Mass**

- 18. The freezing point depression constant (K) of benzene is 5.12 K kg mol<sup>-1</sup>. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off upto two decimal places):
  - a. 0.80 K
- b. 0.40 K
- c. 0.60 K
- d. 0.20 K
- 19. The van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is: (2016 - II)
  - a. 2

b. 3

c. 0

- d. 1
- 20. Which one of the following electrolytes has the same value of van't Hoff's factor (i) as that of Al<sub>2</sub>(SO<sub>4</sub>), (if all are 100% ionised)? (2015)
  - a. K<sub>3</sub>[Fe(CN)<sub>6</sub>]
- b. Al(NO<sub>3</sub>)<sub>3</sub>
- c.  $K_4[Fe(CN)_6]$
- d. K,SO<sub>4</sub>
- 21. The boiling point of 0.2 mol kg<sup>-1</sup> solution of X in water is greater than equimolal solution of Y in water. Which one of the following statements is true in this case? (2015)
  - a. Molecular mass of X is greater than the molecular mass of Y
  - b. Molecular mass of X is less than the molecular mass of Y
  - c. Y is undergoing dissociation in water while X undergoes no change
  - d. X is undergoing dissociation in water
- 22. Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression? (2014)
  - a. C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>
- b. Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
- c. K,SO<sub>4</sub>
- d. KCl

## **Answer Key**

| 1  | . 2 | 2 | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|----|-----|---|----|----|----|---|---|---|---|----|----|----|----|----|----|----|----|
| c  | : ( | С | a  | c  | a  | b | c | d | c | a  | b  | a  | d  | d  | b  | a  | b  |
| 13 | 8 1 | 9 | 20 | 21 | 22 |   |   |   |   |    |    |    |    |    |    |    |    |
| b  | ) l | b | c  | d  | b  |   |   |   |   |    |    |    |    |    |    |    |    |