Econ 330: Urban Economics

Lecture 6

John Morehouse 30 January, 2020

Lecture 6: Land-Use Patterns

Schedule

Today

- 1. Hand in HW and Admin
- 2. Von Thunen Rings
- 3. Monocentric City

Upcoming

• **Reading** (Chapter IV *ToTC*)

Admin

- I will post the ToTC book report instructions on Canvas after class. Due
 end of week 9
 - I will give you another reminder around week 6
 - Feel free to turn it in earlier
- 1000 words (roughly 2 to 2.5 pages single spaced)
- This must be your own work. You can discuss ideas with your friends but the writing must be your own
 - A Plagiarism will be dealt with harshly 4.

Admin

1. The next 3 weeks or so of this class are probably the most algebra intensive of the term 1.

- For many of you, this means the difficulty of the course will ramp up a bit
- If you have anxiety about math, come see me. I am happy to help 😃

Checklist

- 2) Turn in HW & Admin 🗸
- 2) Von Thunen Model
- 3) Manufacturing Bid Rent

Rents

- Last time: we looked at rents across cities and the consumer bid rent curve.
 - Consumer bid rent: Informs how prices for urban rental/housing units change with distance to center
- Today:
 - Von Thunen Model: (urban rural interface)
 - Manufacturing bid rent (different assumptions)
- Next Class
 - A small note on Office rents and neighborhood choice part 1

Von Thunen Rings

1826: Johann Heinrich von Thunen writes The Isolated State

- Foundational model of Human Geography
- Model describes interaction between cities and landscapes
- Uses basic economic principles to predict changes in land-use

What we will do: use the model to inform agricultural rents and predict physical size of cities

Von Thunen Model

Why do we care about a model developed in 1826?

- Current theories usually aim to explain the world as it is, or will be in the future
- The question of city location can be better understood via economics, history, and geography
 - Factors that influence the urban rural interface still largely relevant today

Von Thunen Model

Assumptions

- 1) City is located in the center of a wilderness area
- 2) Farm land is equally productive throughout the city
- 3) Farmers behave rationally to maximize profit
- 4) Farmers transport their goods to a central location in the city

Von Thunen: Rings

- Black Dot: the city
- White circle: Dairy Products
- Forest for fuel
- Grain and crops
- Ranching

What do you notice?

• The rings go out from the center in order of transit cost. **Dairy**: spoils quickly and heavy. **Trees**: heavy. **Grain**, easier to transport, but still heavy. **Ranching**: land intensive

Von Thunen Model: Math

Von - Thunen (rural) rents are derived from the **zero profit condition**. We will work with a simple version, for now, where there is only one "ring" (we can call this agriculture)

$$\pi = TR - TC$$

- TR = P * Q
- TC(x) = F(x) + C + R(x)

- R(X): Land rents
- Q, P: price and quantity
- C: product expense per unit of commodity

Von Thunen Model: Math

Von - Thunen (rural) rents are derived from the **zero profit condition**. We will work with a simple version, for now, where there is only one "ring" (we can call this agriculture)

$$\pi = TR - TC$$

In the Von Thunen Model,

- TR = P * Q
- TC(x) = (F(x) + C) + R(x)

- R(x): Land rents
- Q, P: price and quantity
- C: product expense per unit of commodity
- F(x) transit cost x mi from center

Von Thunen Equation

Profit equation is given by:

$$\pi = P * Q - F(x) - C - R(x)$$

Zero profits imply:

$$P*Q - F(x) - C - R(x) = 0$$

Solving for R(x):

$$R(x) = (P * Q - F(x) - C)$$

Von Thunen Equation

So the **agriculturual bid rent** or **von thunen bid rent** curve is summarised by:

$$R(x) = (P * -F(x) - C)$$

In words, what does this equation say? Discuss

- Higher Revenue (P * Q) \Longrightarrow higher rents (why?)
- Higher Freight cost (F(x)) \Longrightarrow lower rents
- Higher Intermediate goods cost (\$C\$) \Longrightarrow lower rents

Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B st x

- ullet That is, find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B st x

- ullet That is, Find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

$$0 = (P * Q - C - B * x)$$
$$C - P * Q = -B * x$$

Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B st x

- ullet That is, Find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

$$0 = (P * Q - C - B * x)$$

$$C - P * Q = -B * x$$

$$\frac{P * Q - C}{B} = x$$

Interpretation

What does the equation $\frac{P*Q-C}{B}=x$ tell us?

- 1. If the freight rate B, increases, will the agricultural area surrounding the city get smaller or larger?
 - \circ Smaller, $\frac{1}{10} < \frac{1}{5}$
- Interpret this

As it becomes more expensive to ship goods, the oppurtunity cost of living further from the city center (where the exchange occurs) increases. Thus, the urban-rural area shrinks in radius

Von Thunen: Multiple Sectors

Now consider a version of the model in which we have 2 sectors and **no transit costs**. Profit in each sector is given by

$$\pi_1 = P_1 * Q_1 - R_1(x) \ \pi_2 = P_2 * Q_2 - R_2(x)$$

Assume the following:

- $P_1 * Q_1 > P_2 * Q_2$ (rev in sector one is greater than sector 2)
- R(x) = 20 x

task: Show that industry 2 is further away from the center and they pay lower rents. Hint: use the *radius of arable land* idea from above

Von Thunen Example

$$\pi_1 = P_1 * Q_1 - 20 + x_1 = 0 \ \pi_2 = P_2 * Q_2 - 20 + x_2 = 0$$

Solving for x_1 and x_2 yields:

•
$$x_1 = 20 - P_1 * Q_1$$

•
$$x_2 = 20 - P_2 * Q_2$$

Since $P_1 st Q_1 > P_2 st Q_2$ it follows that $x_1 < x_2$

Von Thunen Model: So What?

The model is a bit dated, but still useful

- Transportation costs have, and have always had heavy influence on land prices
- These constraints were larger in the past; still might be useful in explaining urban form of certain cities
 - Radius of arable land can give predictions on urban-rural size
 - City and agricultural area are intimately linked (Read Cronon's Natures Metropolis!)

Thoughts on the model? What assumptions do you like? What do you not like? **Discuss**

Checklist

- 1) Turn in HW & Admin 🗸
- 2) Von Thunen Model 🗸
 - Von Thunen Rents
 - The radius of arable land
- 3) Manufacturing Bid Rent

Manufacturing Bid Rent

WTP for land from manufacturing firms is a function of the land's accessibility (similar to consumers)

- Fact: Urban manufacturing employment is largely decentralized and disperesed
 - Most firms locate close to the highway. Why? This has not always been the case
- Firms are balancing freight and labor costs
 - Further from labor

 higher wage (to compensate for increased commuting cost)
 - ∘ Further from shipping center ⇒ higher freight cost

Manufacturing Bid Rent

Let's start with a simple model[™]. **Assumptions**

- 1) Input & Output prices & quantities are fixed
 - Firm only decides location
- 2) Firms import intermediate goods and export output to other cities via a **central terminal** (train)
- 3) Wage paid is to compensate workers for commuting. Workforce is suburban so wage is highest at center
- 4) Firms use horse carts to transport inputs and output to the **central terminal**
 - We will relax this one soon

Firm's Bid Rent

What do we use to get the firm's bid - rent equation?

Axiom 5: Competition generates zero economic profit

Recall the profit equation:

$$\pi = TR - TC$$

In this model:

- TR = P * Q (fixed, exogenous)
- TC is a function of freight cost, labor cost, and intermediate goods cost:

$$TC(x) = \text{Freight Cost}(x) + \text{Labor Cost}(x) + \text{Land Cost}(x) +$$

$$\text{Intermediate Input Cost}$$

Firm Bid Rent

From here on out, let's call ${f Intermediate\ Input\ Cost}=ar{I}$

• Invoking zero economic profit, from the last slide we can write:

$$TR - (\operatorname{Freight} \operatorname{Cost}(x) + \operatorname{Labor} \operatorname{Cost}(x) + \operatorname{Land} \operatorname{Cost}(x) + \bar{I}) = 0$$

• **In words**: The most a firm would be willing to pay for land then is revenue net of non land cost. Rearranging:

$$\operatorname{Land} \operatorname{Cost}(x) = TR - \operatorname{Freight} \operatorname{Cost}(x) - \operatorname{Labor} \operatorname{Cost}(x) - \bar{I}$$

Note: Land Cost = $P(x) * L_m$, where:

- P(x) is the price of land at x miles away from the center
- L_m is the amount of land the manufacturer uses in production (fixed input at L_m)

Firm Bid Rent: Equation

We can replace land cost with $P(x) st L_m$ to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - \text{Freight Cost}(x) - \text{Labor Cost}(x) - \bar{I}$$

Firm Bid Rent: Equation

We can replace land cost with $P(x) st L_m$ to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I} \ P(x) = rac{TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I}}{L_m}$$

In words, this equation says:

- Higher revenues \implies higher land prices for every distance x
- ullet An increase in freight costs, labor costs, or intermediate input costs will **decrease** the price for every distance x

Note: If Freight Cost(x) and Labor Cost(x) are linear, then the firm bid rent curve is also linear. **Proof**:

- Let Freight $Cost(x) = a_1 + b_1 * x$
 - \circ Fixed freight cost is a_1 , variable freight cost is $b_1 * x$
- Labor Cost $(x) = a_2 b_2 * x$
 - \circ Fixed labor cost is a_2 , variable labor cost is b_2*x

Let's plug these into our P(x) equation

Plugging in yields

$$P(x) = rac{TR - a_1 - b_1 * x - a_2 + b_2 * x - ar{I}}{L_m}$$

Plugging in yields

$$P(x) = rac{TR - a_1 - b_1 * x - a_2 + b_2 * x - ar{I}}{L_m} \ P(x) = rac{TR - a_1 - a_2 - ar{I}}{L_m} + rac{-b_1 * x + b_2 * x}{L_m}$$

Plugging in yields

$$P(x) = rac{TR - a_1 - b_1 * x - a_2 + b_2 * x - ar{I}}{L_m} \ P(x) = rac{TR - a_1 - a_2 - ar{I}}{L_m} + rac{-b_1 * x + b_2 * x}{L_m} \ P(x) = rac{TR - a_1 - a_2 - ar{I}}{L_m} + rac{\left(rac{b_2 - b_1}{L_m}
ight)}{L_m} * x$$

- So we have proved that when freight and variable costs are linear, the bid rent curve for manufacturers is also linear
- ullet Slope is given by m in the above equation
- Think about how the model's parameters (everything not x and P) impact slope and intercept + intuition (next homework)

So note: the slope of the manufacturing bid rent curve depends on the value of b_2 relative to b_1 .

- ullet What if $b_1=10$ and $b_2=2$
 - \circ Then $rac{\Delta P(x)}{\Delta x} < 0$
 - Freight cost is high relative to labor rate
 - \circ This is true for any $b_1>b_2$
- ullet Manufacturing firms bid most @ center of city when: x=0

Manufacturing Graph

Back to Reality

How can a model like this help us understand the industrial revolution?

• What happened to freight costs? **They fell** A few innovations:

Transportation Innovations:

- Omnibus (1827)
- Cable Cars (1873)
- Electric Trolley (1886)
- Subways (1895)

In our model, what do these innovations do? $b_1>b_2$

More History

- The *intracity* truck (1910): twice as fast and half as costly as the horse-drawn wagon[†]
- Truck decreased the cost of moving output relative to the cost of moving workers
- Manufacturing Firms moved closer to low-wage suburbs

The *intercity* truck (1930): alternative to ships and rail^{††}

- Highways: orientation shifted from ports and railroad terminals to roads
- Modern cities: manufacturers oriented toward highways and beltways $b_2>b_1$

Wrapping Up

So we had two models, the Von Thunen Model (rural bid rent) and the manufacturing bid rent

- Both derived bid rent curves from zero economic profit
- Bid rent curves are different because costs faced by agriculture and manufacturing firms are different
- But the story and derivation behind them is pretty similar

Checklist

- 1) Turn in HW & Admin 🗸
- 2) Von Thunen Model 🗸
 - Von Thunen Rents
 - The radius of arable land
- 3) Manufacturing Bid Rent 🗸
 - Deriving the manufacturing bid rent curve
 - Graphing