امتحانات الشهادة الثانوية العامة فرع الاجتماع والاقتصاد

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: اربع
، و مسم. الرقم:	المدة: ساعتان	

ملاحظة : يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I– (4points)

Un employé dépose dans une banque une somme de 10 000 000 LL à un taux d'intérêt annuel de 9,6 % avec capitalisation **mensuelle**.

A la fin de chaque mois, il ajoute à son compte 200 000 LL.

On désigne par S_0 le compte initial que possède cet employé ($S_0 = 10\,000\,000$) et par S_n son compte à la fin du nième mois.

- 1) Vérifier que $S_1 = 10 280 000$.
- 2) Etablir que $S_{n+1} = 1,008 S_n + 200 000$.
- 3) On considère la suite (U_n) définie par $U_n = S_n + 25\,000\,000$.
 - a-Démontrer que la suite (U_n) est une suite géométrique de raison 1,008.
 - b- Exprimer U_n en fonction de n et déduire S_n en fonction de n.
 - c- Dans combien de mois la somme que possède cet employé dans son compte dépassera-t-elle pour la première fois 40 000 000 LL ?

II- (4 points).

Un libraire possède **100** calculatrices réparties selon leurs marques et leurs années de fabrication dans le tableau suivant :

	Marque P	Marque G	Marque O	
Fabriquée en 2007	20	15	25	
Fabriquée en 2006	10	12	18	

A- Un client choisit au hasard **une** de ces calculatrices.

- 1) Sachant que la calculatrice choisie est fabriquée en 2007, montrer que la probabilité qu'elle soit de la marque G est égale à 0,25.
- 2) Quelle est la probabilité que la calculatrice choisie soit de la marque O et fabriquée en 2007 ?
- 3) Les prix des calculatrices sont donnés dans le tableau suivant :

	Marque P	Marque G	Marque O
Fabriquée en 2007	100 000 LL	80 000 LL	60 000 LL
Fabriquée en 2006	50 000 LL	40 000 LL	30 000 LL

Quelle est la probabilité que le prix de la calculatrice choisie ne dépasse pas 70 000 LL?

- B- Dans cette partie, le client choisit au hasard et simultanément deux de ces 100 calculatrices.
 - 1) Quelle est la probabilité que les deux calculatrices choisies soient fabriquées en 2007 ?
 - 2) Quelle est la probabilité que le prix des deux calculatrices choisies soit de 180 000 LL?

III – (4points)

L'évolution du nombre de moniteurs d'un club sportif durant les 6 dernières années est donnée par le tableau suivant :

Année	2001	2002	2003	2004	2005	2006
Rang de l'année x _i	1	2	3	4	5	6
Nombre de moniteurs y _i	15	20	25	28	30	32

- 1) Représenter, dans un repère orthogonal, le nuage de points associé à la série statistique $(x_i; y_i)$.
- 2) Calculer les coordonnées du point moyen G et placer ce point dans le repère précédent.
- 3) Ecrire une équation de la droite de régression $D_{y/x}$ de y en x et tracer cette droite dans le même repère.
- 4) On suppose que ce modèle d'évolution reste valable jusqu'en 2015.
 - a- Estimer le nombre de moniteurs de ce club en 2010.
 - b- En quelle année le nombre de moniteurs de ce club dépassera-t-il 50 pour la première fois ?

IV- (8points).

Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = x + 1 + e^{-x+1}$ et l'on désigne

par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

A-1) a- Calculer
$$\lim_{x \to +\infty} f(x)$$
.

- b- Démontrer que la droite (d) d'équation y = x + 1 est une asymptote à (C).
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Tracer (d) et (C).
- 4) Montrer que l'équation f(x) = 4 admet une racine unique α et vérifier que $2,84 < \alpha < 2,86$.
- 5) Calculer l'aire du domaine limité par la courbe (C), son asymptote (d) et les deux droites d'équations x = 0 et x = 1.
- **B** -Dans ce qui suit on prend $\alpha = 2.85$.

Une usine fabrique x milliers de jouets ; $(1 \le x \le 5)$.

Le coût de production, en millions de LL, est donné par : $C(x)=x+1+e^{-x+1}$.

- 1) Calculer le coût de production de 2000 jouets. Quel est dans ce cas le coût de production d'un jouet ?
- 2) Quel nombre de jouets l'usine doit-elle fabriquer pour que le coût de production soit 4 millions de LL?