Due: 10/27/20

3.1 Inforence in a chain (a) Prove P(Xto(=j | X,=i)= [At]ij agner Aij = P(Xto(=j | X+=i) P(Xen=j |X,=i) = &P(Xen=j |Xe=k |X,=i) maraginal reaction · ZP(X+=K | X,=i)P(X++1=j | X+=k, X,=i) product rule - EP(Xt=k | X,=i)P(Xen=j | Xt=k) cond. ind [A+]; = P(X+++; 1X++i) [At-17 = P(X+=; |X,=i) = Z[At-1]ixP(Xen=j | Xe=k) subst. - [[At-1] ik Akj Subst Aij = P(X+1=1) X+=1) = [At]ij (b) Algo that scales O(n2t) Want [At] ij [At] = { Ak; [At-1]ik Tor each time step: ① Multiply entire A matrix by jth column (n multiplications) ② Sum across row to get values (n summetions) 6 O(n2t) (c) O(n3logzt) We can compute matrices at later time steps by using previous time steps squared. For example, A8 can be obtained by $A \longrightarrow A^2 \longrightarrow A^4 \longrightarrow A^8$

where -> is a squaring operation. Each squaring
operation is a matrix, matrix multiplication of O(n3).
The number of times it needs to be squared is
logat times (loga 8 = 3)
If the number is not a power of two, you can find the next largest power of 2 and multiply it by smaller powers
next largest power of 2 and multiply it by smaller powers
of 2.
415 h8 hU , 1 h
$A^{15} \rightarrow A^{8} \cdot A^{4} \cdot A^{2} \cdot A$ $O(\log_{2} \ln^{3}) O(\log_{2} \ln^{3})$
1 3 1/10 1 3
O(10g2tn') (10g2t·n')
(2.0.1) of $(2.0.1)$
Overall, this gives O(log2t·n3)
of matrix mult
The motory Mill
mu H
(d) For the multiplication in part (b) we would still have
(d) For the multiplication in part (b), we would still have to multiply n-elements but only need to sum over
the m nonzero elements
$O(n^2t) \rightarrow O(mnt)$ where mccn
(e) $P(X_i=i X_{\tau=j}) = \frac{P(X_{\tau=j} X_i=i)P(X_i=i)}{P(X_{\tau=j})}$ Bayes rule
P(X+ = j)
$= \mathcal{D}(V + I V + I V + I V)$
= P(X+=j X,=i)P(X,=i) marginalization ZP(X,=k)P(X+=j X,=k)
Z P(X'=K) L(XL2) (V) K)
$= \left(A^{T-1} \right) \left($
$= \underbrace{\begin{bmatrix} A^{\tau-1} \end{bmatrix}_{ij} P(X_{i} = i)}_{Z} \underbrace{\begin{bmatrix} A^{\tau-1} \end{bmatrix}_{ij} P(X_{i} = k)}_{Subst} P(X_{\tau} X_{\tau} = i) = \underbrace{\begin{bmatrix} A^{\tau-1} \end{bmatrix}_{ij}}_{Z} \underbrace{\begin{bmatrix} A^{\tau-1} \end{bmatrix}_{ij}}_{Z} P(X_{\tau} = k)$
Z LA JK CALL

33 Node clustering + polytrees

In the figure below, *circle* the DAGs that are polytrees. In the other DAGs, shade **two** nodes that could be *clustered* so that the resulting DAG is a polytree.

3.4 Cutsets + PolyErees

3.5 Node Clustering

Y_1	Y_2	Y_3	Y	P(Y X=0)	P(Y X=1)	$P(Z_1=1 Y)$	$P(Z_2=1 Y)$
0	0	0	1	0.504	0.048	0.2	0.9
1	0	0	2	0.056	0.192	0.3	0.8
0	1	0	3	0.126	0.072	8.4	0.7
0	0	1	4	0.216	0.032	0.5	0.6
1	1	0	5	0.014	0.288	0.6	0.5
1	0	1	6	0.024	0.128	0.7	6.4
0	1	1	7	0.054	0.048	9.8	0.3
1	1	1	8	0.006	0.192	0.9	0. 2

P(Y | x) = P(Y, Y2, Y3 | x) = P(Y, | x)P(Y2 | x)P(Y3 | x)

ex:
$$P(Y_1=0|X=0)=P(Y_1=0|X=0)P(Y_2=0|X=0)P(Y_3=0|X=0)$$

= $(1-0.1)(1-0.2)(1-0.3)$
= 0.504

$$P(Z_1=1|Y=1) = P(Z_1=1|Y_1=0,Y_2=0,Y_3=0)$$

= 0.2

3.6 Stochastic Simulation

(a)
$$\sum_{z} P(Z-z \mid B_{11}B_{2},...B_{n}) = 1$$

$$= \sum_{z} \left(\frac{1-\alpha}{1+\alpha}\right) \alpha^{|Z-f(B)|}$$

$$= \sum_{z} \left(\frac{1-\alpha}{1+\alpha}\right) \alpha^{|Z-f(B)|}$$

$$= \left(\frac{1-\alpha}{1+\alpha}\right) \sum_{z=-\infty}^{\infty} \alpha^{|B|}$$

$$= \left(\frac{1-\alpha}{1+\alpha}\right) \sum_{z=-\infty}^{\infty} \alpha^{|B|}$$

$$= \left(\frac{1-\alpha}{1+\alpha}\right) \left(\alpha^{\circ} + 2\sum_{j=1}^{\infty} \alpha^{j}\right)$$

$$= \left(\alpha^{\circ} + 2\sum_{j=1}^{\infty} \alpha^{j}\right)$$

0. 833

10

3.32 × 10-269

(d) Source code

```
In [6]: def indicator(desired, actual):
            Indicator function
            if desired == actual:
               return 1
            else:
                return 0
In [7]: def p_bi_z(n_samples):
            alpha = 0.2
            z = 128
            n_rvs = 10
            num = [0]*5
            denom = 0
            for i in range(n_samples):
                bits = randn_bits(n_rvs)
                for j in range(5):
                   num[j] += indicator(bits[2*j + 1], 1)*p_z_given_bs(alpha, z, bits)
                denom += p_z_given_bs(alpha, z, bits)
            probs = [x / denom for x in num]
            return probs
In [8]: n_samples = [10**i for i in range(1, 8)]
        probs = []
for n in n_samples:
          probs.append(p_bi_z(n))
In [9]: plt.figure(figsize=(10,6))
        lineObjects = plt.plot(n_samples, probs)
        plt.legend(iter(lineObjects), ("B2", "B4", "B6", "B8", "B10"))
        plt.xscale("log")
In [15]: print(probs[-1])
          [0.1922881447326238,\ 0.16672044933143992,\ 0.16671873260430486,\ 0.8332812673973782,\ 3.32453904 ]
```

5155545e-269]

3.8 More likelihood weighting

in CDTs, given P(nothe | perents (node))

(a)
$$P(Q=q|E=e)$$

$$P(Q=q|E=e) \approx \frac{1}{E} I(Q_1q_1) P(E=e|Y=y_1,Z=Z_1)$$

$$P(E=e|Y=y_1,Z=Z_1)$$
(b) $P(Q_1=q_1,Q_2=q_2|E_1=e_1,E_2=e_2)$

$$P(Q_1=q_1,Q_2=q_2|E_1=e_1,E_2=e_2)$$

$$P(Q_1=q_1,Q_2=q_2|E_1=e_1,E_2=e_2)$$