E - 109 - 2011

활선작업 및 활선근접작업에 관한 기술지침

2011. 12.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 제정자 : 한국산업안전보건공단 류보혁

ㅇ 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

O 제·개정 경과

- 2005년 11월 KOSHA Code 전기안전분야 제정위원회 심의

- 2005년 12월 KOSHA Code 총괄제정위원회 심의

- 2011년 12월 전기안전분야 제정위원회 심의(개정)

ㅇ 관련규격

- NFPA 70E (Standard for Electrical safety in the workplace (Chapter I, II)
- KOSHA GUIDE E-85-2011 (전기설비설치상의 안전에 관한 기술지침)
- KOSHA GUIDE E-86-2011 (정전작업에 관한 기술지침)
- KOSHA GUIDE E-105-2011 (전기작업안전에 관한 기술지침)
- o 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제321조 (충전전로에서의 전기작업)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12월 29일

제 정 자 : 한국산업안전보건공단 이사장

활선작업 및 활선근접작업에 관한 기술지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제321조 (충전 전로에서의 전기작업)을 실시하는 활선작업 및 활선근접작업 계획의 수립·실시와 그 전기 위험성평가에 필요한 사항을 정함을 목적으로 한다.

2. 적용 범위

- (1) 이 지침은 작업장에서 노출 설치된 전기도체 및 전기회로에서 하는 활선작업 및 그 인근에서 실시하는 활선근접작업에 대하여 적용한다.
- (2) 이 지침은 다음의 설비에서 실시하는 활선작업 및 활선근접작업에는 적용하지 않는다.
- (가) 선박, 철도차량, 항공기, 자동차량 등에 설치된 설비
- (나) 광산의 지하 시설물
- (다) 철도차량 전용의 발전, 송전, 배전용의 레일 설비
- (라) 신호 및 통신전용 설비 등

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
- (가) "아크정격(Arc rating)"이라 함은 어떠한 물질(또는 물질의 여러 층)에 브레이크오픈(break-open) 또는 2도 화상을 일으키기 직전의 최대 사고 에너지저항을 말하며, 그 단위는 통상 cal/c㎡로 표시한다.

E - 109 - 2011

- (나) "배리어(Barrier)"이라 함은 노출 충전되어 있는 전선이나 기기 등에 작업자가 접촉되는 것을 막기 위한 물리적인 장애물을 말하며, 임시 또는 영구적으로 설치된다.
- (다) "전기 위험(Electrical hazard)"이라 함은 부주의 또는 무의식적인 접촉이나 기 기 고장으로 인한 감전, 아크 섬광화상, 열화상 또는 폭발을 가져올 수 있는 위험한 상태를 말한다.
- (라) "전기작업 안전조건(Electrically safe work condition)"이라 함은 충전부로부터 단로된 도체·기기의 위 또는 부근에서 작업하는 경우, 관련 지침에 따라 잠금 장치 및 꼬리표를 부착하고 전압이 있는지를 시험하고 필요시에 단락접지를 하고 실시하는 작업을 말한다.
- (마) "섬광위험(Flash hazard)"이라 함은 순식간에 임의의 물체를 강한 증기상태로 변환시키는 아크로 인하여 유발되는 에너지 방출과 관련된 위험한 상태를 말하다.
- (바) "유자격자(Qualified person)"라 함은 기기의 구조와 작동, 또는 특수 작업방법 등에 대한 교육을 받아 이를 숙지하고 있는 자를 말한다.
- (사) "전격위험(Shock hazard)"이라 함은 충전부가 노출된 도체나 기기 등에 최소한의 공기 절연거리 이내로 가깝게 접근하거나 접촉 시 발생하는 에너지 방출과 관련된 위험한 상태를 말한다.
- (아) "무자격자(Unqualified person)"라 함은 전기작업과 관련된 교육훈련이나 경험 등이 없는 사람을 말한다.
- (자) "활선근접작업(Working near)"이라 함은 전기적으로 안전한 작업조건에 속하지 않는 노출된 충전도체 또는 기기 등의 접근한계 내에서의 작업을 말한다.
- (차) "활선작업(Working on)"이라 함은 노출 충전된 도체나 기기 등을 작업자의 보호구 착용 여부와 관계없이 손·발 또는 신체의 기타 부분으로 만지거나 시험기기로 접촉하는 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 활선작업 및 활선근접작업시의 일반 요구사항

E - 109 - 2011

활선작업 및 활선근접작업(이하 "활선작업 등"이라 한다)의 일반 요구사항은 KOSHA GUIDE E-105-2011 "전기작업안전에 관한 기술지침" 제4항을 준용한다.

5. 활선작업 등의 필요성 판단

- (1) 전기설비의 설계 또는 운전상의 정전 불가, 정전작업 시 위험의 추가 또는 증가 1)2)로 정전작업이 불가능한 경우를 제외하고는 작업자에게 노출될 수 있는 충전부에서의 활선작업 등을 하여서는 안 된다. 다만, 전기작업 안전조건에 있는 경우는 예외로 한다.
- (2) (1)항의 이유로 인하여 활선작업 등의 실시가 불가피한 경우에는 전기작업 안전 조건을 만족시킨 후에 작업하여야 한다. 다만, 대지전압이 50 V 미만인 충전부의 경우, 전기로 인한 화상 또는 폭발위험이 증가되지 않는다면 전기차단을 요하지 않는다.3)

6. 활선작업 등의 계획 수립

6.1 개요

- (1) 사업주는 전압 및 전력량의 크기와 전로상태에 따라 적합한 활선작업계획을 수립·시행하여야 한다.
- (2) 활선작업계획은 전기에너지 위험에 노출되는 환경에서 작업하는 근로자가 전기 위험을 인지하고 대처할 수 있도록 수립한다. 이 작업계획은 노출된 충전 도체

¹⁾ 위험의 추가 또는 증가의 예는 생명지원(구명) 장비의 차단, 비상경보장치의 미작동화, 위험장소의 환기장치의 정지 등이다.

²⁾ 가압된 전로에서만 수행할 수 있고 연속공정의 집적부(Integral parts)로 형성되는 전로에서 작업하는 전로의 성능 진단 및 시험(기동 또는 고장발견 수리 등)을 포함하는 기기 설계 또는 운전제한으로 인한 실행 불가능성 때문에 어쩔 수 없이 노출된 가압 전기도체 또는 전로부에서의 활선작업 또는 활선근접작업의 예이며, 그렇지 않으면 기 기의 일부 또는 하나의 전로에서 작업하기 위하여 완전히 정지하여야 하는 공정

^{3) 50} V 미만의 전압에서의 전원차단여부는 전원의 용량, 전원과 작업자 사이의 과전류 보호 고려를 포함하여 결정한다.

E - 109 - 2011

(활선작업) 및 기기 위 또는 그 부근에서 작업(활선근접작업)을 실시하는 근로자에게 필요한 자체 교육 내용이 포함될 수 있도록 수립하여야 한다.

6.2 작업계획 수립 시 고려사항

활선작업 등의 작업계획 수립 시에는 최소한 다음사항을 고려하여야 한다.

- (1) 전기기기의 점검 및 평가
- (2) 전기기기의 절연 및 외함 유지를 위한 정비
- (3) 모든 작업 계획 수립 및 최초 절차의 문서화
- (4) 가능한 한 전원의 차단
- (5) 불의의 사고 예측
- (6) 위험의 확인 및 최소화
- (7) 감전, 화상 및 폭발과 작업환경에 기인한 기타 위험으로부터 작업자 보호
- (8) 작업에 적합한 공구의 사용
- (9) 작업자의 능력 평가
- (10) 계획 내용 준수의 감시
- 6.3 작업계획 수립시 유의사항(전제)
 - (1) 모든 전기기기는 충전되지 않았다는 것이 입증되기 전까지는 충전된 것으로 간주하여야 한다.

E - 109 - 2011

- (2) 대지전압 50 V를 초과하는 노출 충전부 등에 대한 충분한 안전조치 없이는 절대로 맨손으로 이를 접촉하여서는 안 된다.
- (3) 전기기기의 전원을 차단시켜 안전한 작업을 할 수 있도록 하는 것 자체가 잠재적인 위험작업이다.
- (4) 사업주는 교육을 포함한 작업계획을 개발·수립하고, 작업자는 이 작업계획을 따라야 한다.
- (5) 위험 확인을 위한 절차를 이용하고 위험을 경감 또는 관리하기 위한 계획을 수립하여야 한다.
- (6) 전기에너지의 영향을 받는 장소(전기위험 장소)에서 작업하는 경우에 필요한 자격을 갖도록 작업자를 교육시킨다.
- (7) 노출된 충전부 또는 그 인근에서 실시하는 작업을 확인하여 그 위험에 따라 분류한다.
- (8) 논리적인 접근으로 작업의 잠재적 위험성을 정한다.
- (9) 작업 환경에 적합한 예방책을 확인하고 사용한다.

6.4 작업계획에 포함할 내용

활선작업계획에는 최소한 다음사항을 포함하도록 한다.

- (1) 작업 목적
- (2) 관련 작업자 자격 및 인원수
- (3) 작업 범위 및 위험 특성

- (4) 접근 한계
- (5) 적용 가능한 안전작업지침
- (6) 필요한 개인용 보호구
- (7) 필요한 절연용 방호구 및 기구
- (8) 특수 예방 기술
- (9) 전기도면
- (10) 기기 세부사항
- (11) 특별한 사항에 대한 스케치 또는 그림
- (12) 기타 참고 자료
- 6.5 작업계획의 모니터링

활선작업 등의 계획은 모니터링 및 성과측정에 의하여 관리되어야 한다.

- 6.6 계획 등의 준수
 - 50 V를 넘는 활선작업 등의 경우에는 작업계획에 따라 작업을 시행하여야 한다.

7. 활선작업 등의 실시

- 7.1 활선작업허가
- 7.1.1 적용범위

E - 109 - 2011

충전부가 전기작업 안전조건에 있지 않다면 (5(1)항에서의 위험의 추가 또는 증가나 실현불가 사유의 예) 수행되는 작업은 활선작업으로 간주하고 문서로 된 허가서에 의해서만 작업을 실시하여야 한다(<붙임 1> 참조).

주) 활선작업허가는 안전보건기술지침 "안전작업허가지침"에서의 안전작업허가서와는 그 취지(정전작업이 아님)가 다르므로 이 지침을 적용하지 않는다.

7.1.2 허가서의 요소

활선작업허가서에는 최소한 다음사항을 포함하여야 한다.

- (1) 작업대상 전로 및 기기와 그 위치에 대한 기술
- (2) 수행 작업을 활선작업조건(5(1)항 참조)으로 하여야 하는 사유
- (3) 적용하여야 하는 안전작업계획(6항 참조)에 대한 기술
- (4) 전격위험분석의 결과(8.2.1항 참조)
- (5) 전격보호한계의 결정(8.2.1.(1)항 및 <표 1> 참조)
- (6) 섬광위험분석의 결과(8.2.2항 참조)
- (7) 섬광보호한계(8.2.2.(1)항 참조)
- (8) 작업에 필요한 개인용 보호구(KOSHA GUIDE E-105-2011 "전기작업안전에 관한 기술지침" 제4장 참조)
- (9) 작업구역내의 무자격자의 접근제한 수단(KOSHA GUIDE E-105-2011 "전기작업 안전에 관한 기술지침" 6.1.2항 참조)
- (10) 작업상세위험기술을 포함한 작업내용에 대한 간단한 지시 입증(KOSHA GUIDE

E - 109 - 2011

E-105-2011 "전기작업안전에 관한 기술지침" 5.8항 참조)

(11) 가압승인 서명(책임자, 안전관리자, 소유자 등)

7.1.3 작업허가서의 생략(면제)

시험·고장수리·전압측정 등과 같은 업무에 관련된 유자격자에 의한 활선작업이나 활 선근접작업이 개인용 보호구를 착용하고 안전작업지침을 준수하는 경우에는 활선작 업허가서 없이 작업할 수 있다.

7.2 충전부의 접근한계

- (1) 활선작업 등의 경우에는 8.2.1항에 의한 전격위험분석을 실시한 결과에 따른 <표 1>의 접근한계거리를 유지하여야 한다.
- (2) 활선작업 등의 경우에는 8.2.2항에 의한 섬광위험분석을 실시한 결과에 따라 아크로 인한 재해를 입을 우려가 있는 경우에는 개인용 보호구를 착용하여야 한다.

7.3 시험기기의 사용

50 V 이상의 충전부 또는 그 인근에서의 시험기기를 사용하는 작업은 유자격자만이 하도록 하여야 한다.

7.4 가공 나도체에서의 활선작업 등

7.4.1 비절연 충전부

- (1) 방호 격리되지 않은 가공 나도체가 있는 장소에서 수행하는 작업의 경우, 방호되지 않은 근로자가 직접 또는 도전성 재료·기구 또는 장비를 통하여 간접적으로 전로에 접촉되는 것을 방지하기 위한 조치를 취하여야한다.
- (2) 가공 나도체에 접촉될 수 있는 작업을 수행하는 경우. 전로의 전원을 차단하고

E - 109 - 2011

작업지점에서 보이는 곳에 가시적으로 접지시키거나 적절히 방호하여야 한다.

7.4.2 정전 또는 방호조치

- (1) 전원의 차단이 필요한 경우, 그 전로를 관리/운전하는 부서 또는 담당자는 전원을 차단하고, 작업 지점을 눈으로 확인할 수 있도록 확실히 접지시켜야 한다.
- (2) 방호, 격리 또는 절연과 같은 방호수단을 사용하기 위한 조치를 하여야 할 경우, 이러한 전로가 작업자의 신체 부위에 직접 접촉되거나, 도전성 물체나 공구 또는 기기를 통하여 간접적으로 접촉되지 않도록 하기 위하여 우리의 방호수단과 같은 예방조치가 필요하다.

7.4.3 사업주 및 작업자의 책임

사업주 및 작업자는 방호장치 또는 보호조치를 만족한 상태로 유지시킬 책임이 있다. 작업자는 정해진 작업방법을 준수하고 적합한 보호장비를 사용하여야 한다.

7.4.4 무자격자의 접근제한거리

- (1) 전기에 관한 교육을 받지 않은 작업자가 가공선로 인근의 지상 또는 높은 장소에서 작업하는 경우, 작업자 또는 작업자가 접촉할 수 있는 가장 긴 도전성 물체가 방호되지 않은 충전 가공전로에 <표 1>에 제시된 접근제한거리보다 더 가까이 접근할 수 없는 위치에서 작업이 이루어지도록 하여야 한다.
- 주) 이때, 전압에 대해 적합하게 절연되지 않은 물체는 도체로 간주한다.
- (2) 만약 전로전압이 50 kV를 넘을 경우, 그 거리는 50 kV, 3.04 m에서 매 10 kV마다 100 mm씩 증가시켜야 한다.

7.4.5 차량 및 기계장비

(1) 고소 장비

E - 109 - 2011

차량 또는 기계장비 구조가 가공전로 인근의 높은 위치에 있는 경우, <표 1> 2행의 접근제한거리를 유지하고 작동시켜야 한다. 다만 다음의 조건하에서는 그 이격거리를 줄일 수 있다.

- (가) 차량의 높이를 낮춰서 이동할 경우에는 <표 1>에서 가공전로 접근제한거리를 1.83 m까지 줄일 수 있다. 만약 정격 전압에 적합한 절연된 배리어가 설치되고 이것이 차량 부착물의 일부가 아니라면, 이격거리는 절연 배리어의 작업 설계거리까지 감소시킬 수 있다.
- (나) 당해 전압에 적합하게 절연된 가공 리프트를 유자격자가 운전하는 경우, 이격거리(가공 리프트의 미절연부와 전력선 사이)는 <표 1>의 4행에 명시된 접근제한거리까지 감소시킬 수 있다.

(2) 장비 접촉

다음의 경우 이외에는 지상의 작업자는 충전전로에 근접되어 있는 차량이나 기계장 치 또는 그 어떠한 부착물과도 접촉하여서는 안 된다.

- (가) 작업자가 정격전압에 적합한 보호장구를 착용하고 있는 경우
- (나) 장비 구조물(지상의 작업자에게 도전성을 제공하는 구조 부품)의 모든 미절연 부를 7.4.5.(1)항에서 허용된 것 이상 접근하지 못하도록 배치한 경우

(3) 장비의 접지

- (가) 접지된 차량이나 기계장비가 충전된 가공선로에 접근할 위험이 있는 경우, 지 상에서 작업하는 작업자는 접지점 부근에 있어서는 안 된다.
- (나) 바리케이드, 절연 조치 등의 추가 예방조치를 취한 접지점에서 수 미터 이내 또는 안전한계 이상으로 전이될 수 있는 대지 전위(접촉 및 보폭전압)로부터 작업자를 보호하여야 한다.

E - 109 - 2011

7.5 기타 개인행동 상의 주의사항

7.5.1 위험주의

- (1) 불의의 전기위험이 존재하는 50 V를 넘는 전로에서 활선작업 등을 실시 할 경우에는 항상 주의하도록 교육받아야 한다.
- (2) 작업자는 작업자들이 질병·피로·기타 이유로 인하여 뚜렷하게 주의가 산만해졌을 경우, 50 V를 넘는 전로 또는 기타 전기위험이 있는 작업을 하여서는 안 된다.

7.5.2 접근금지

작업자는 전기위험이 존재할 수 있는 충전부가 있는 지역에는 아무런 목적 없이 접 근하지 않도록 교육받아야 한다.

7.5.3 조명

(1) 일반사항

작업자는 조명상태가 부적절한 공간에 있는 노출 충전부에 접근하여서는 안 된다.

(2) 조명이 부족한 작업지역에서의 작업

작업자는 조명이 부족하거나 희미하여 작업 대상을 명확히 확인할 수 없는 경우, 50 V를 넘는 전로 또는 기타 전기위험이 있는 작업을 하여서는 안 된다.

7.5.4 도전성 물체의 착용금지

작업자는 도전성 물체 및 의복(시계줄·팔찌·반지·열쇠 체인·목걸이·안경테·금속성 치마·도전성 실로 된 천이나 금속 헤드기어, 다만, 도전성의 보석이나 옷은 덮개·표피나 기타 절연조치에 의하여 도전성을 갖지 않는 경우에는 제외) 등 노출 충전부와전기적으로 접촉될 위험이 있는 물품은 착용하여서는 안 된다.

E - 109 - 2011

7.5.5 도전성 물체·공구 및 기기 등의 취급

(1) 일반사항

작업자의 신체에 접촉되는 도전성 물체·공구 및 기기는 노출 충전부에 우발적인 접촉을 일으키지 않도록 하여야 한다. 여기에서의 도전성 물체에는 덕트 배관·튜브·도전성 호스와 로프·금속자나 스케일·금속 테이프·금속 비계 부분·금속성 체인 등이해당된다.

(2) 충전부 접근금지

도전성 물체가 노출 충전부에 <표 1>의 허용거리 이내로 접근할 수 없도록 하는 수단을 강구하여야 한다.

7.5.6 제한 또는 밀폐 작업공간

- (1) 50 V를 넘는 노출 충전부 또는 전기위험이 있는 맨홀이나 저장실 같은 제한 또는 밀폐된 공간에서의 작업 시, 사업주는 충전부에 불의의 접촉을 방지하기 위하여 필요한 방호차폐·방호 배리어 또는 절연재를 작업자가 사용하도록 하여야 한다.
- (2) 50 V를 넘거나 전기위험이 있는 노출 충전부에 작업자가 접촉하는 것을 방지하기 위하여 문, 패널 등이 작업자 쪽으로 갑자기 열리지 않도록 고정시켜야 한다.

7.5.7 청소작업

- (1) 접촉위험이 있는 충전부가 있는 경우, 작업자는 접촉을 방지하기 위한 충분한 안전조치 (절연성 장비 또는 배리어)가 없다면 접근제한한계 내에서 청소작업을 하여서는 안 된다.
- (2) 물·스팀·도전성 에어로졸·강모(Steel wool)·금속 천이나 실리콘 등의 청소용 도구 는 적합한 절차가 없이 접근제한거리 내에서 사용하여서는 안 된다.

7.5.8 인화성 물질의 수시 사용

E - 109 - 2011

용매·페인트·접착제 또는 기타 휘발성 물체와 같은 가연성이나 인화성 물질을 사용하거나 취급하는 장소 및 발화성 또는 도전성 분진이 축적될 수 있는 장소로서 폭발위험 분위기 생성을 방지하기 위한 적합한 조치를 취하지 않은 경우, 점화원이 될수 있는 전기기기를 사용하여서는 안 된다.

비고 인화성 물질을 상시 취급 사용하는 장소, 즉 폭발위험장소에서의 전기설비 설치에 관한 사항은 KOSHA GUIDE E-48-2010 "가스폭발분위기에서의 전기설비 설계, 선정 및 설치에 관한 기술 지침" 참조한다.

7.5.9 예측되는 고장

- (1) 전기기기의 고장이 작업자에게 위해를 줄 수 있다고 판단되는 경우, 전원의 차단 으로 기기의 설계 또는 작동제한으로 인하여 위험을 추가 또는 증가시키거나 무 효화하지 시키지 않는 한, 즉시 기기의 전원을 차단하여야 한다.
- (2) 기기의 전원이 차단되거나 수리중일 경우, 작업자를 기기의 고장과 관련한 위험으로부터 보호하여야 한다.

7.5.10 회로의 일상 개폐조작

- (1) 전로의 차단장치로 설계된 부하개폐기(LS), 차단기(CB) 등의 장치들은 부하상태 에서 전로를 개방, 변경 또는 투입하는 데 사용되어야 한다.
- (2) 부하차단용이 아닌 케이블 접속기, 퓨즈, 단자 및 케이블 접속기구(Splice)는 비 상용 이외에는 위의 목적으로 사용하여서는 안 된다.

7.5.11 보호장치 작동후의 재투입

- (1) 보호장치에 의해 전로가 차단된 후에는 기기와 전로가 안전하다고 확인될 때 까지 임의로 수동 투입하여서는 안 된다.
- (2) 차단기의 수동 반복투입이나 퓨즈 교체를 통한 전로 재가압은 금지되어야 한다.

E - 109 - 2011

(3) 전로고장 이외의 과전류에 의해 전로 및 과전류장치(차단장치의 자동작동용)의 설계에 의한 경우에는 전로의 시험이나 기기의 연결을 전로 재가압 전에 필요 로 하지 않는다.

8. 전기위험성 평가

8.1 개요

- (1) 50 V를 넘는 활선작업 등을 실시하는 경우에는 작업시작 전에 작업계획에 따라 위험성평가를 실시하여야 한다.
- (2) 50 V 이상의 충전부에서의 활선작업 등이 전기작업 안전조건에 놓여있지 않다면, 전기위험에 노출될 수 있는 작업자를 보호하기 위하여 다른 전기안전작업지침 (KOSHA GUIDE E-XX-2011 "전기작업안전에 관한 기술지침"을 적용한다.
- (3) 이러한 작업지침은 작업자가 50 V 이상의 충전부에 직접 접촉하거나 다른 물체를 통하여 간접 접촉 또는 아크 섬광을 방지할 수 있어야 한다.
- (4) 작업지침은 수행되는 작업과 충전부의 전압크기에 적합하여야 한다. 적절한 안전 작업지침에는 전격위험분석 및 섬광위험분석의 두 가지 모두가 포함되어야 하며 접근제한한계에서의 노출충전부에 접근하기 전에 결정한다.
- 주) 전기위험성평가는 화재폭발위험, 기계적 위험 등의 평가방법과는 그 방법이나 절차에서 차이가 날수 있다.

8.2 전기위험요인

활선작업 시에 고려하여야 할 전기위험요인에는 전격(Electrical shock), 아크섬광 (Arc flash) 및 아크폭발(Arc blast)이 있다(<붙임 2> 참조).

8.2.1 전격위험분석(Shock hazard analysis)

전격위험분석은 전격보호한계 내에 노출된 작업자의 전격위험을 최소화하기 위하여 개인용 보호구를 착용해야 하는 전압을 결정하기 위한 것이다.

- (1) 전격보호한계(Shock protection boundaries)
- (가) 전격보호한계는 충전부에 제한(Limited), 한계(Restricted) 및 접근금지(Prohibited approach)로 구분된 전격보호한계 이내로 접근하는 사람에게 적용한다.
- (나) 다양한 계통전압에 관련된 안전이격거리는 <표 1>을 참조한다.
- (2) 50 V 이상의 노출 충전부의 접근

유자격자는 다음의 경우 이외에는 50 V 이상의 노출충전부에 <표 1>의 제한 접근 한계이내로 접근하거나 근접된 도전성 물체의 취급을 하여서는 안 된다.

- (가) 전압 50 V 이상의 충전부로부터 절연 또는 보호된 경우(절연장갑 또는 절연장갑 및 소매는 실시되는 작업하의 충전부에서만 절연된 것으로 간주한다). 다만, 접근금지한계를 지나는 유자격자 몸에 절연되지 않은 부분이 없는 경우는 <표 1>에 의한다.
- (나) 전압이 50 V 이상인 충전부는 유자격자 및 전위차를 갖는 기타 도전성 물체로 부터 절연된 경우
- (다) 맨손활선작업 중에는 다른 도전성 물체로부터 절연·격리된 경우

<표 1> 충전부의 접근한계(전격방지를 위한 충전부와 작업자사이 거리)

공칭계통전압 · (선간전압, kV)	접근제한(m)		기기위제()		
	노출 이동 도체	노출 고정 전로	접근한계(m) (부주의한 이동 감안)	접근금지(m)	
0.05 미만	미규정	미규정	미규정	미규정	
0.05~0.3	3.05	1.07	접촉 금지	접촉 금지	
0.31~0.75	3.05	1.07	0.305	0.025	
0.751~15	3.05	1.53	0.66	0.178	
15.1~36	3.05	1.83	0.787	0.254	
36.1~46	3.05	2.44	0.838	0.432	
46.1~72.5	3.05	2.44	0.965	0.635	
72.5~121	3.05	2.44	0.991	0.813	
138~145	3.36	3.05	1.093	0.940	
161~169	3.56	3.56	1.22	1.07	
230~242	3.97	3.97	1.6	1.45	
345~362	4.68	4.68	2.59	2.44	
500~550	5.8	5.8	3.43	3.28	
765~800	7.24	7.24	4.55	4.4	

(3) 무자격자의 접근

전기도체 및 기기가 전기작업 안전조건이 아닌 경우, 유자격자만이 접근할 수 있는 공간에는 무자격자는 절대로 접근하여서는 안 된다.

(가) 접근제한경계 내 또는 인접작업

한명 이상의 무자격자가 접근제한경계 내 또는 인접하여 작업하는 경우, 전기 위험이 존재하는 작업공간의 책임자는 모든 작업을 안전하게 수행할 수 있도록 무자격자의 책임자와 협력하여야 한다. 여기에는 무자격자에게 전기위험에 대해 조언하고 제한접근경계 밖에 있도록 하는 것을 포함한다.

E - 109 - 2011

(나) 접근제한한계 내 진입

무자격자가 접근제한경계 내에 있어야 할 필요가 있는 경우에는, 유자격자는 무자격자가 그 경계내에 있는 동안 그 위험성에 대해 지속적으로 지도 및 보호하여야한다.

8.2.2 섬광위험분석(Flash hazard analysis)

섬광위험분석은 아크섬광에 의한 재해위험으로부터 작업자를 보호하기 위한 분석이다. 이 분석은 섬광보호한계를 결정하고 다음의 섬광보호한계 내의 작업자는 개인용보호구를 착용하여야 한다.

(1) 섬광보호한계

(가) 600 V이하의 계통에서 6 Hz(0.1초)의 소호시간 및 50 kA의 고장전류, 또는 300 kA·Hz(5,000 A·초)이하에서는 1.22 m를 유지한다. 300 kA·Hz 이외의 소호시간 및 고장전류, 또는 공학적인 지도하의 섬광보호한계는 다음 두개의 공식 중 하나에 따라 계산할 수 있다.

$$\begin{split} D_c = & [2.65 \times \textit{MVA}_{bf} \times t]^{1/2} \\ & \text{ } \Xi \Xi \\ D_c = & [53 \times \textit{MVA} \times t]^{1/2} \end{split}$$

여기서,

 D_c : 2도 화상 아크원에서의 거리

 MVA_{bf} : 해당 지점에서의 정격용량(MVA)

MVA : 변압기 정격용량(MVA), (다만, 0.75 MVA 이하의 변압기인 경우에는

용량에 1.25를 곱한다.)

t : 아크 노출시간(초)

(나) 600 V 이상의 전압에서 섬광보호한계는 발생에너지가 5 J/c㎡(1.2 cal/c㎡)인 거리를 섬광보호한계로 한다.

E - 109 - 2011

- (다) 고장해소시간이 0.1초(또는 그보다 빠른)인 경우에서 섬광보호한계는 발생에너지가 6.24 J/c㎡(1.5 cal/c㎡)인 거리이다.
 - 주) 경우에 따라, 노출된 활선부로부터의 섬광보호한계는 제한접근한계보다 더 큰 이격거리를 둘수도 있다.
- (2) 섬광위험분석용 보호복 및 개인용 보호구
 - (가) 8.2.2.(1)항에 따라 섬광보호한계 내에서 수행하는 작업의 경우, 섬광위험분석을 하여야 하며 사업주는 작업자의 노출에너지(cal/cm²)를 문서화하여야 한다.
 - (나) 에너지 노출수준은 수행되는 작업에서 예측되는 아크 원으로부터 작업자의 안 면 및 가슴부분의 작업거리를 기본으로 한다.
 - (다) 방염(FR)섬유 및 개인용 보호구(PPE)는 작업에 관련된 노출에너지를 기준으로 하여 작업자가 사용할 수 있도록 한다.
 - (라) 아크 섬광으로부터의 거리가 증가될수록 발생에너지는 감소되며, 결정된 발생에너지보다 더 근접할 경우에는 추가로 개인용 보호구(PPE)를 착용한다.
- 주) 발생에너지 평가에 관한 정보는 <붙임 4> 참조

8.3 전기 위험성평가

전기 위험성평가는 <그림 1> "위험성평가절차 흐름도"에 따라 실시하되, <그림 1>에서, 에너지 수준의 고저 판단기준은 8.2.2(1)(가) 및 (나)에 따라 5 J/c㎡(1.2 cal/c㎡)로 한다.

<그림 1> 위험성평가 절차 흐름도

/耳の	1\
스물임	-12

활선작업 허가서

П	작업	의	뢰 :	자	작성
1 1	- П	_		' '	7 0

- 허가서 번호(Job/Work order Number)
- (1) 전기회로/기기/작업위치
- (2) 작업내용
- (3) 차기 계획정지 때까지 정전 또는 작업을 미룰 수 없는 사유
- 작성자/직위 작성일

□ 전기 유자격자 작성

		확인
(1) 작업 수행 시 필요한 구체적인 작업절차서의	구비	
(2) 안전작업지침 작성		
(3) 전격위험분석 결과		
(4) 전격보호경계의 결정		
(5) 섬락위험분석		
(6) 섬락보호범위		
(7) 필요한 개인용 보호구		
(8) 무자격자의 접근제한 수단		
(9) 작업위험 등을 포함한 간단한 작업개요 작성		
(10) 안전작업 수행 가능 여부에 동의하는 가(아	니면 작업의뢰자에 반송)	
o 자격자	o 자격자	
o 작성일 <u>년 월 일</u>	o 작성일 년 월 일	

□ 활선작업승인

- 작업의뢰서 부서장
- 정비담당부서장

■ 안전담당 부서장

■ 전기전문가

■ 담당임원

년 월 일

주) 작업이 완료되면, 검토 및 보존을 위해 현장 안전담당부서로 이 허가서를 송부

<붙임 2>

전기위험의 종류(참고용)

1. 위험의 종류

전기위험의 종류에는 전격, 아크섬광 및 아크 폭발이 있다.

2. 전격

미국에서는 매년 약 30,000 건의 감전재해가 발생하고 그 중에서 약 1,000 명이 사망하는 데 사망자의 50 % 이상이 600 V 이하에서 발생한다고 미국 NSC가 발표했다.

감전사는 미국 산업현장에서의 사망재해 중 교통재해·자살·건설재해에 이어 4번째로 많이 발생하는 것으로 나타나 있다. $120\ V/7.5\ W$ 의 전구에 흐르는 전류가 사람의 가슴에 흐른다면 사망할 수 있다. 인체의 최악 통전경로는 허파·심장 및 뇌 등이다.

3. 아크섬광

전류가 공기를 통해 선도체 사이 또는 선도체와 접지도체 사이에 흐르는 경우에 온도가 1,925 ℃ 까지 올라갈 수 있다. 피부에 직접적인 화상 및 작업복 점화를 일으키는 과도한 온도의 노출은 화상재해를 부가시킨다. 전기사고에 의한 입원환자의 대부분은 전격이 아니라 아크섬락화상이다. 매년 2,000 명 이상이 심각한 아크섬광화상에 의하여 입원을 하고 있고, 아크섬광은 3 m의 거리에서도 사망재해를 발생시킬 수 있다.

4. 아크폭발

아크의 과도한 온도는 아크 경로의 금속과 그 주위의 공기 둘 모두의 폭발팽창을 일으킨다. 예를 들면, 구리가 고체에서 증기형태로 폭발하면 그 부피는 67,000배 증가한다. 이 팽창에 관련된 위험성은 압력, 소음 및 파편 중의 하나이다. 그 압력은 쉽게 수백 또는 수천 kg/m³를 넘을 수 있고, 작업자의 추락·고막 파손·허파 손상 등을 일으킬 수 있다. 이 압력에 따른 소음은 160 dB가 넘을 수도 있다. 결과적으로 물질 및 용해 금속은 시간당 1,100 km의 속도로 확산되어 인체 내부 깊숙하게 파편이 침투할 수 도 있다.

<붙임 3>

접근 한계(참고용)

1. 개요

노출 충전부로부터의 안전접근거리 관찰은 전기안전유지를 위해 아주 중요한 조치이다. 노출 충전부와의 거리가 가까워짐에 따라 전기재해의 가능성은 급격히 증가하므로, 노출충전부 인근에서는 안전한 이격거리를 준수하는 것이 전기안전을 유지하는 가장 효과적인 방법이다.

1.1 무자격자의 안전접근거리

- (1) 무자격자가 노출 충전부 등의 정하여진 한계거리 내에 들어가거나 접촉되지 않 도록 사용 중인 도전성 물체를 포함한 노출 충전부 등에서 일정한 거리를 유지 하므로써 안전을 확보할 수 있으며, 이러한 안전을 확보하기위한 이격거리가 접 근제한한계이다.
- (2) 유자격자가 근거리에서 감시하고 있지 않고 적합한 안전보호구를 착용하지 않은 상태라면, 작업자는 섬광 발생 한계거리 이내로 절대로 접근하여서는 안 된다.
- (3) 무자격자는 유자격자에 의한 지속적인 안내가 있을 경우에만 특수 전격방지기술 및 기기가 요구되는 접근제한한계 내를 지나 갈수 있다

1.2 유자격자의 안전접근거리

- (1) 섬광보호경계(Flash protection boundary)를 정하여야 하며, 이 한계를 지나가게 되면 적절한 섬광방지장비를 사용하여야 한다.
- (2) 접근제한경계(Limited approach boundary)구역을 넘어 한계구역(Limited space) 내로 들어가려는 작업자는 해당 업무 또는 작업의 유자격자로 제한하여야 한다.

- (3) 유자격자는 접근한계경계(Restricted approach boundary)구역을 넘어 제한구역 (Restricted space)으로 들어가려면 다음 사항을 준수하여야 한다.
 - (가) 작업계획을 문서화하여 관리자에게 승인받아야 한다.
 - (나) 노출 충전부 등의 인근에서의 작업과 해당 정격전압 및 에너지에 적합한 개인 용 보호구를 작용한다.
 - (다) 신체의 어떠한 부분도 금지구역 내로는 들어가지 않도록 한다.
 - (라) 작업을 위하여 필요한 구역에는 가능한 한 보호된 신체 일부분만을 들어가게 하고 신체의 나머지 대부분은 제한구역 밖에 있도록 함으로써 부주의한 동작 으로 인한 위험을 최소화시킨다.
- (4) 접근금지경계(Prohibited approach boundary)구역을 지나 금지구역(Prohibited space)으로 들어가는 것은 노출 충전부 등에 접촉하는 것으로 간주한다.<그림 붙임 3의 1> 접근한계 참조) 따라서 유자격자는 다음 사항을 준수해야 한다.
 - (가) 충전부 등에서 작업할 수 있는 특수 교육을 받는다.
 - (나) 접근하여 작업하여야 하는 필요성을 구체화시킨 계획을 문서화한다.
 - (다) 위험을 분석한다.
 - (라) (나), (다)항을 담당 관리자로부터 승인받는다.
 - (마) 노출 충전부 등의 작업에 적절하며 해당 전압 및 에너지 수준에 적합한 개인 용 보호구를 착용한다.

<그림 붙임 3의 1> 접근한계도(<표 1> 거리 기준)

2. <표 1>의 거리계산

2.1 일반사항

<= The Normal Section (Standard technique for high-voltage testing, Appendix 2B; and voltages over 72.5 kV are based on ANSI/IEEE 516-2003, Guide for Maintenance Methods on energized power lines)에 따른다.

섬락을 피하기 위하여 필요한 최소공기절연거리는 다음과 같다.

- (1) 전압 ≤ 300 V : 1 mm
- (2) 300 V < 전압 ≤ 750 V : 2 mm
- (3) 750 V < 전압 ≤ 2 kV : 5 mm
- (4) 2 kV < 전압 ≤ 15 kV : 39 mm
- (5) 15 kV < 전압 ≤ 36 kV : 161 mm

E - 109 - 2011

- (6) 36 kV < 전압 ≤ 48.3 kV : 254 mm
- (7) 48.3 kV < 전압 ≤ 72.5 kV : 381 mm
- (8) 72.5 kV < 전압 ≤ 121 kV : 640 mm
- (9) 138 kV < 전압 ≤ 145 kV : 778 mm
- (10) 161 kV < 전압 ≤ 169 kV : 915 mm
- (11) 230 kV < 전압 ≤ 242 kV : 1,281 mm
- (12) 345 kV < 전압 ≤ 362 kV : 2,282 mm
- (13) 500 kV < 전압 ≤ 550 kV : 3,112 mm
- (14) 765 kV < 전압 ≤ 800 kV : 4,225 mm

2.1.1 1열

전압범위는 절연내력강도와 부주의한 이동계수의 합을 기초로 하여 요구되는 유사한 접근거리에서 선정한다. 전압범위의 상한 값은 ANSI C84.1-1995 (Electric power system and equipment)를 기초로 한 공칭전압 범위의 최대전압이다.

단상전력계통은 최대 상전압(대지전압)의 1.732배의 전압범위에서 선정한다.

2.1.2 2열

이 열에서의 거리는 50 kV까지의 모든 전압에서의 작업공간 3.05 m를 유지하고 50 kV를 넘는 전압에서는 1 kV마다 102 mm를 더하는 OSHA의 무자격자 기준을 기초로 작성한 것이다.

2.1.3 3열

- 이 거리는 다음에 따라 작성한 것이다.
- (1) 전압 ≤ 750 V : NEC 표 110.26(A)(1), 151-600 V용 작업공간, 조건 2
- (2) 750 V < 전압 ≤145 kV : NEC 표 110.34(A)(1), 작업공간, 조건 2
- (3) 145 kV < 전압 : 2열의 OSHA의 3.05 m 기준

2.1.4 4열

- 이 거리는 다음의 부주의한 이동거리를 섬락거리에 추가한 것이다.
- (1) 전압 ≤ 300 V : 접촉금지, 가정용 120/240 V 계통 가정용에서 경험과 주의사항 바탕
- (2) 300 V < 전압 ≤ 750 V : 부주의한 이동을 감안 304.8 mm 추가
- (3) 72.5 kV < 전압 : 부주의한 이동 감안 304.8 mm 추가
 - ※ 위의 값은 ANSI C2(NESC(National Electrical Safety Code), in the approach distances for communication workers)에서 인용

2.1.5 5열

- 이 거리는 다음에 따라 계산한 것이다.
- (1) 전압 $\leq 300 \text{ V}$: 접촉금지
- (2) 300 V < 전압 ≤ 750 V : NEC 표 230.51(C), 작업 공간 노출 도체와 표면 사이, 600 V 이상은 대기 중에 미노출
- (3) 72.5 kV < 전압 : 부주의한 이동 감안 152.4 mm 추가
 - ※ 위의 값들은 접근제한한계거리보다 더 근접하는 것을 허용하는 특수 작업절차의 공식 또는 비공식적인 위험을 분석하여 수년간에 걸쳐 적절한 값을 찾아낸 것이다.

<붙임 4>

섬광보호한계의 계산 예(참고용)

1. 개요

600 V 이상의 전압수준에서 아크섬광노출에 대한 기존의 지식은 제한되기 때문에 이러한 노출을 계산하는 다른 방법들이 존재하고 사용되기도 한다. 상업용 맛보기 프로그램은 이들 값을 계산하는데 사용될 수 있다. 그러나 기 사용되고 있는 이러한 프로그램의 한계를 조사하는 것은 아주 중요하다. 예를 들면, 일부 단상 전용 프로그램의 경우, 전류한계를 갖고 있다.

다음은 전압 600 V 이상에서의 조심스러운 예로, 이 예는 전압이 높아질수록 신중에 신중을 기하여야 한다는 것이 경험으로부터 나타난다. 고전압에서의 사고에너지를 계산하는 모든 방법은 한계가 있다는 것을 유의하여야 한다.

섬광위험분석 요구사항은 8.2.2항(섬광위험분석) 참조

2. 노출 피부에서의 아크 에너지와 온도 상승

다음은 노출된 작업자로부터 다양한 거리에서 전기아크폭발 강도에 따라 노출된 작업자의 피부에 아크에너지의 발생과 온도상승에 대한 설명이다.

이 계산법은 Ralph Iee의 논문"IEEE trans. Industrial Application, Vol 1A-18, No.3, page 246, May/june 1982"에서 인용한 것이다. 계산은 최악의 아크 임피던스로 한다. (<표 붙임 4의 1> 참조)

<표 붙임 4의 1> 대형 석유화학공장의 여러 섬광화상 위험

모선 공칭 전압	설비용량 (MVA)	변압기 용량(MVA)	설비 또는 변압기%Z	단락대칭 전류(A)	섬광용 량(MW)	고장사이클 의 개방시간	섬광보호 한계거리 ⁽ 1)
230 kV	9,000	-	1.11	23,000	4,000	6.0	14,300
13.8 kV	750	-	9.4	31,300	374	6.0	4,300
13.8 kV(퓨즈 부하측)	750	-	9.4	31,300	374	1.0	1,770
4.16 kV	-	10	5.5	25,000	91	6.0	2,230
4.16 kV	-	5	5.5	12,600	45	6.0	1,680
600 V(퓨즈의 입력측)	-	2.5	5.5	44,000	23	6.0	1,130
600 V 모선	-	2.5	5.5	44,000	23	0.25	225.6
600 V 모선	-	1.5	5.5	26,000	27	6.0	854
600 V 모선	-	1.0	5.75	17,000	17	6.0	702

주) 공기가 없는 곳에서 치료 가능한 2도 화상[피부온도 80℃(106°F)미만]을 일으키는 개방 아크로부 터의 거리(mm)

3. 섬광보호한계거리 계산용 기본 공식

(1) 변압기 단자에서 볼티드(Bolted) 3상고장시, 단락 대칭 전류는 다음 식을 이용하여 계산한다.

$$I_{sc} = \{ (MVA_b \times 10^6) \div (1.732 \times V) \} \times \{100 \div \% Z\}$$
 (4.1)

여기서, I_{sc} : 전류(A)

V : 전압(V)

MVAb: 기준정격용량

%Z : 변압기 MVA기준에서의 임피던스

(2) 3상 섬광에서의 최대 전력(MW)의 대표적인 값은 다음 식을 이용하여 계산한다.

$$P = (MVA_{bf}) \times 0.707^2 \tag{4.2}$$

(3) 섬광 보호 한계거리는 다음 식을 이용하여 계산한다.

$$P = 1.732 \times V \times I_{sc} \times 10^{-6} \times 0.707^{2} \tag{4.3}$$

$$D_c = (2.65 \times MVA_{bt} \times t)^{1/2} \quad \text{E} = D_c = (53 \times MVA \times t)^{1/2}$$
 (4.4)

여기서,

Dc : 치료 가능한 화상(즉, 피부온도가 80℃ 이하인 경우)에서 아크 원으로

부터 사람까지의 거리(ft)

MVA_{bf} : 사고지점에서의 볼티드 고장

MVA : 변압기의 정격용량(다만, 용량이 0.75 MVA이하인 변압기에서는 용량

(MVA)에 1.25를 곱한 값)

t : 아크 노출시간(초)

한류형 퓨즈의 소호시간은 대략 1/4 Hz 또는 0.004초이고, 5 kV 및 15 kV 차단기는 대략 0.1초 또는 6 Hz이다.

이 시간은 다음과 같이 분류한다. 실제 차단시간(대략 2.0 Hz), 대략 1.74 Hz의 작동 지연 시간, 그리고 추가 안전 여유 2 Hz로 총 시간은 대략 6 Hz가 된다.

<그림 붙임 4의 1> 석유화학공장에서의 단선도의 예

4. 석유화학공장에서의 계산 예

대표적인 화학설비의 배전계통의 복잡한 단선도(그림 붙임 4의 1)를 예로 한다.

5. 계산 예

설비 및 기기 등의 많은 전기적 특징을 <표 붙임 4의 1>에 제시된 예를 기준으로 4,160 V 모선 4 A 또는 4 B에서 계산한다. <표 붙임 4의 1>는 개개의 설비부품의 섬광 보호 계산 결과를 표로 만든 것이다.

- (1) 계산은 4,160 V 모선에서 실시
- (2) 변압기 MVA(기준 MVA): 10 MVA
- (3) 10 MVA 기준에서의 변압기 임피던스: 5.5 %
- (4) 회로 차단기 소호시간 : 6 Hz
- (5) 식 (4.1)을 이용하여 단락전류 계산

$$I_{sc} = \{ (MVA_b \times 10^6) \div (1.732 \times V) \} \times \{ 100 \div \%Z \}$$

= \{ (10 \times 10^6) \div (1.732 \times 4, 160) \} \times (100 \div 5.5) = 25,000A

(6) 식 (4.2)을 이용하여 섬광 전력 계산

$$P = 1.732 \times 4,160 \times 25,000 \times 10^{-6} \times 0.707^{2} = 91MW$$

(7) 식 (4.3)을 이용하여 2도 화상 거리를 계산하면:

$$D_c = \{2.65 \times (1.732 \times 25,000 \times 4,160 \times 10^{-6}) \times 0.1\}^{1/2}$$

= 6.9 or 7.00 ft

또는 식 (4.4)를 사용하여 다른 방법으로 2도 화상 거리를 계산하면:

$$D_c = (53 \times 10 \times 0.1)^{1/2} = 7.28 \text{ ft}$$

6. 섬광위험분석을 위한 사고에너지 노출 계산

다음 식은 정격전압 600 V 이하의 계통에서 3상 아크에 의하여 생성된 에너지를 예측하는데 사용된다. 이들 방정식의 결과는 모든 경우에서 최악은 아닐 수 있다. 이방정식 하에서 보여준 변수의 정의에서 나타난 한계 내에서만 사용되는 이 방정식이

필수적이다. 그 방정식은 자격자의 감시 하에서 만 사용하여야 한다.

주) 시험은 기존의 사고에너지 계산을 유효화하고 새로운 공식을 정하기 위해 계속되어야 한다)

요구되는 파라미터는 다음과 같이 계산한다.

- (1) 계산은 최대값을 이용하고 자발적 아크에서 최저고장수준으로 한다. 480 V 계통에서 지속적인 아크고장의 허용최저수준은 볼티드 고장 3상 단락전류의 38% 이다. 과전류장치가 개방되는 수초 또는 수분 이내에서 발생하는 최대 입사에너지 폭로는 최저수준에서 일어날 수 있다.
- (2) 최대단락전류에서 전체 보호장치 개방시간(예상 아크 개소의 상부 측)과 최소수 준에서 아크는 자발적이다.
- (3) 수행되는 작업에서 예측되는 아크에서 작업자와의 거리

6.1 개방된 곳에서의 아크

개방장소에서 평가한 사고에너지는 식(4.6)에 의해서 계산한다.

$$E_{MA} = 5,271 D_A^{-1.9593} t_A (0.0016 F^2 - 0.0076 F + 0.8938)$$
(4.6.a)

여기서.

 E_{MA} : 최대 개방 아크 사고에너지, cal/cm²

 D_A : 아크 전극으로부터의 거리, 인치(18인치 보다 커야한다)

*t*_A: 아크시간, 초

F: 단락전류, kA(16~50 kA의 범위)

계산 예 : 식 (4.6.a)를 이용하여 최대개방아크 사고에너지(cal/cm)를 계산한다. 여기서, D_A : 18 인치, t_A : 0.2 초, F : 20 kA

$$E_{MA} = 5,271 D_A^{-1.9593} t_A (0.0016 F^2 - 0.0076 F + 0.8938)$$

$$= 5,271 \times 0.0035 \times 0.2 (0.0016 \times 400 - 0.0076 \times 20 + 0.8938)$$

$$= 3.69 \times [1.381]$$

$$= 21.33 J/cm^2 (5.098 cal/cm^2)$$
(4.6.b)

6.2 박스내의 아크

박스(한 변 20인치, 한쪽 면 개방)내의 아크용 평가 에너지는 다음 식에 의하여 구한 다. 이 식은 스위치기어, 전동기제어센터 또는 기타 전기기기 외함 내에서 발생하는 아크섬광에 적용가능하다.

$$E_{MB} = 1038.7 D_B^{-1.4738} t_A (0.0093 F^2 - 0.3453 F + 5.9675)$$
(4.7.a)

여기서,

 E_{MB} : 최대 20 인치, 박스 사고에너지 cal/cm^2

 D_B : 아크전극으로부터 거리, 인치(18 인치 이상)

t_A: 아크시간, 초

F: 단락전류, kA(16~50 kA의 범위)

계산 예:

식(4.7.a)를 이용하여 다음과 같이 박스 내에서의 최대 20 인치 사고에너지(cal/cm²)를 계산한다. 여기서, $D_B:18$ 인치, $t_A:0.2$ 초, F:20 kA

$$E_{MB} = 1,038.7 D_B^{-1.4738} t_a (0.0093 F^2 - 0.3453 F + 5.9675)$$

$$= 1,038 \times 0.0141 \times 0.2 (0.0093 \times 400 - 0.3453 \times 20 + 5.9675)$$

$$= 2.928 \times (2.7815)$$

$$= 34.1 J/cm^2 (8.144 cal/cm^2)$$
(4.7.b)

6.3 참고문헌

이 장에서의 식은 IEEE paper by R.L. Doughty, T.E.Neal, and H.L. Floyd, II, "Predicating incident Energy to better manage the electric arc hazard on 600 V power distribution system," record of conference papers IEEE IAS 45th annual petroleum and chemical industry conference, Sept. 28=30,1998에서 인용한 것이다.

7. 섬광위험분석을 위한 600 V 이상에서의 사고에너지 폭로 계산

다음의 방정식은 600 V 이상의 계통 개방장소에서의 3상 아크에 의해 생성되는 사고에너지의 예측에 사용한다. 계산을 위해 요구되는 파라미터는 다음과 같다.

- (1) 기기에서 예측되는 최대 볼티드 3상단락전류
- (2) 최대단락전류에서 전체 보호장치 소호시간(아크발생개소의 앞쪽)
- (3) 아크워에서의 거리
- (4) 계통의 정격선간전압

$$E = \frac{793 \times F \times V \times t_A}{D^2} \tag{4.8}$$

여기서,

E: 사고에너지, cal/cm²

F: 볼티드 고장 단락전류, kA

V: 계통 선간전압, kV

*t*_A: 아크시간, 초

D: 아크원에서의 거리, 인치

8. 사고에너지와 섬광보호한계의 계산 기초식

이 부분은 이용 가능한 데이터의 통계분석 및 커브추적을 기초로 한 사고에너지 및 섬광보호한계 평가용 방정식을 제공한다. IEEE 작업반은 사고에너지의 모델을 만들기 위해 실시한 시험으로부터 데이터를 생성하였다. 표준 개인용 보호구(PPE)수준(1, 2, 8, 25 및 40 cal/cm)의 선정을 기초로 하여 PPE가 각 경우에 95%의 2도 화상으로부터 작업자를 보호하기 위하여 보다 더 적합한 것을 평가한다.

주) 사고에너지가 작업거리에서 40 cal/cm'를 초과할 때, 일반적으로 강조할 것은 충전부 위 또는 그 인근에서의 작업 전에 정전시키는 것이다.

식을 풀기 위하여 필요한 스프레드시트 계산기를 포함하는 완료 데이터는 IEEE

KOSHA GUIDE

E - 109 - 2011

Guide for performing Arc Flash Hazard calculations(IEEE Std 1584[™]-2002)에서 찾을 수 있다.

8.1 계통한계

사고에너지 계산방정식은 커브추적 알고리즘과 함께 원료 데이터의 통계적 분석을 사용하여 추출할 수 있다. 다음의 한계와 함께 계통에서 사용할 수 있다.

- (1) 3상, 0.208 kV~15 kV
- (2) 50 Hz \sim 60 Hz
- (3) 700 A~106,000 A, 가능한 단락전류
- (4) 13 mm~152 mm, 도체 간격

개방 송전설비, 개방 변전소 및 배전설비의 3상 계통에서 이론적으로 도출된 모델을 사용할 수 있다. 이론적 도출 모델은 고장이 3상 단락으로 파급되는 경우에 적용할 수 있다. 이러한 파급은 단상계통에서는 발생할 가능성이 거의 없으므로 이 방정식은 보수적인 결과를 나타낼 수 있다.

8.2 아크 전류

보호장치용 작동시간을 계산하기 위하여 예상 3상 아크 전류를 찾는다.

(1) 1 kV 이하의 계통전압이 적용되는 경우에는 식 (4.9)를 사용한다.

$$log I_a = K + 0.662 log I_{bf} + 0.0966 V + 0.000526 G + 0.5588 V (log I_{bf}) - 0.00304 G (log I_{bf})$$

$$(4.9)$$

여기서.

 I_a : 아크전류, kA

K : -0.153(개방공간 아크), -0.097(박스 내 아크)

 I_{bf} : bolted 삼상단락전류(대칭 실효값), kA

V: 계통전압, kV

G: 도체간격, mm (<표 붙임 4의 2> 참조)

(2) 1 kV 이상의 계통에서 식 (4.10)을 사용한다.

$$logI_a = 0.00402 + 0.983logI_{bf} (4.10)$$

(3) 보다 높은 전압방정식은 개방 아크 및 박스 내 아크에 사용 가능하다.

$$I_a = 10^{logI_a} \tag{4.11}$$

- (4) 2차 아크시간을 찾기 위하여 $0.85\ I_a$ 를 이용한다. 2차 아크전류는 아크 전류의 크기와 과전류차단장치의 개방 시간을 고려한다. 두 전류값(I_a 와 $0.85I_a$)과 높은 값을 이용하여 사고에너지를 계산한다.
- 8.3 작업거리에서의 사고에너지-경험식
 - (1) 경험식을 사용한 사고에너지를 결정하기 위하여 규준화한 사고에너지의 \log_{10} 을 정한다. 이 방정식은 610 mm의 사람에서 아크지점까지의 거리 및 0.2초의 아크시간의 규준데이터를 기초로 한다.

$$logE_1 = k_1 + k_2 + 1.081logI_2 + 0.0011G \tag{4.12}$$

여기서,

En: 시간 및 거리로 규준화한 사고에너지(J/cm²),

k₁: 개방 아크 = -0.792, 박스 내 아크 = -0.555

 k_2 : 비접지 및 고저항 접지계통 = 0, 접지계통 = -0.113

G: 도체 간격(mm) (<표 붙임 4의 2> 참조)

그리고

$$E_n = 10^{\log E_n} \tag{4.13}$$

<표 붙임 4의 2> 기기 및 전압등급 계수

계통전압(kV)	기기 형태	대표적인 도체 간격(mm)	거리 X-계수	
0.208 ~ 1.0	개방	10~40	2.000	
	개폐장치	32	1.473	
	MCC 및 패널	25	1.641	
	케이블	13	2.000	
>1~ 5.0	개방	102	2.000	
	개폐장치	13~102	0.973	
	케이블	13	2.000	
개방		13~153	2.000	
>5 ~ 15.0 개폐장치		153	0.973	
케이블		13	2.000	

(2) 규준화로부터 변환,

$$E = 4.184 C_f E_n \left(\frac{t}{0.2}\right) \left(\frac{610^x}{D^x}\right) \tag{4.14}$$

여기서,

E: 사고에너지, J/cm^2

C_f: 계산계수, 1 kV 초과 = 1.0, 1 kV 이하 = 1.5

 E_n : 사고에너지 규준값

t: 아크시간(초)

D: 아크로부터 사람까지의 거리(m)(작업거리)

x : <표 붙임 4의 2>에 규정된 지수거리

8.4 작업거리에서의 사고에너지 - 이론식

이론적으로 도입된 방정식은 15 kV 이상의 전압 또는 간격이 변하는 옥외에서 적용할 수 있다.

$$E = 2.142 \times 10^6 V I_{bf} \left(\frac{t}{D^2} \right) \tag{4.15}$$

KOSHA GUIDE

E - 109 - 2011

여기서,

E: 사고에너지, J/cm^2

V: 계통전압(kV)

t : 아크시간(초)

D: 아크로부터 사람까지의 거리(mm)(작업거리)

 I_{bf} : 3상 볼티드 고장 전류

15 kV 이상에서 아크 고장전류 및 볼티드 고장 전류는 같다고 본다.

8.5 섬광보호한계

섬광보호한계는 2도 화상을 입을 우려가 있는 거리를 말한다. 2도 화상의 시작은 피부가 5 J/cm²의 사고에너지를 받았을 때로 추정한다.

- 경험식에서,

$$D_B = \left[4.184C_f E_n \left(\frac{t}{0.2}\right) \left(\frac{610^x}{E_B}\right)\right]^{\frac{1}{2}} \tag{4.16}$$

- 이론식에서.

$$D_B = \sqrt{2.142 \times 10^6 V I_{bf} \left(\frac{t}{E_B}\right)} \tag{4.17}$$

여기서.

 D_B : 아크점에서 섬광보호한계의 거리(mm)

C_f: 계산계수, 1 kV 초과 = 1.0, 1 kV 이하 = 1.5

 E_n : 사고에너지 규준값

 E_B : 섬광보호한계에서의 사고에너지 J/cm^2

t: 시간(초)

x: <표 붙임 4의 2>에 규정된 지수거리

 I_{bf} : 3상 볼티트 고장 단락전류

V: 계통전압

주) 이들 방정식은 아크섬광의 경우, 특정거리에서 화상을 방지하기 위한 PPE가 적합한지를 결정하는데 사용할 수 있다.

8.6 전류제한퓨즈

다음은 전류제한 클래스 L 및 RK1 퓨즈와 함께 사용하기 위한 아크 섬광에너지 계산용으로 개발되었다. 이 시험은 한 제조업체의 상업용 퓨즈를 이용하여 600 V, 455 mm의 거리에서 실시하였다.

다음의 변수를 고려한다.

- I_{bf}: 3상 볼티드 고장 전류(대칭 실효값), kA

- *E* : 사고에너지(J/cm²)

8.6.1 클래스 L 퓨즈 1,601 A~2,000 A

(1) 22.6 kA > I_{bf} 의 경우,

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 22.6 kA ≤ I_{bf} ≤ 65.9 kA의 경우,

$$E = 4.184 \left(-0.12841 I_{bf} + 32.262 \right) \tag{4.18}$$

(3) 65.9 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 4.184 \left(-0.5177 I_{bf} + 57.917 \right) \tag{4.19}$$

(4) $106 \text{ kA} < I_{bf}$ 의 경우, 제조자의 자문을 받는다.

8.6.2 클래스 L 퓨즈 1,201 A~1,600 A

(1) 15.7 kA $> I_{bf}$ 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 결정하기 위하여 시간-전류 곡선을 이용한다.

(2) 15.7 kA ≤ I_{bf} ≤ 31.8 kA의 경우,

$$E = 4.184 \left(-0.1863 I_{bf} + 27.926 \right) \tag{4.20}$$

(3) 31.8 kA ≤ I_{bf} ≤ 44.1 kA의 경우,

$$E = 4.184 \left(-1.5504 I_{bf} + 71.303\right) \tag{4.21}$$

(4) 44.1 kA ≤ I_{bf} ≤ 65.9 kA의 경우,

$$E = 12.3 J/cm^{2} (2.94 cal/cm^{2})$$
(4.22)

(5) 65.9 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 4.184 \left(-0.0631 I_{bf} + 7.0878\right) \tag{4.23}$$

- (6) 106 kA $< I_{bf}$ 의 경우에는 제조자의 자문을 받는다.
- 8.6.3 클래스 L 퓨즈 801 A~1,200 A
 - (1) 15.7 kA $> I_{bf}$ 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 15.7 kA ≤ I_{bf} ≤ 22.6 kA의 경우,

$$E = 4.184 \left(-0.1928 I_{bf} + 14.226 \right) \tag{4.24}$$

(3) 22.6 kA ≤ I_{bf} ≤ 44.1 kA의 경우,

$$E = 4.184 (0.0143 I_{bf}^{2} - 1.3919 I_{bf} + 34.045)$$

$$(4.25)$$

(4) 44.1 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.63$$
 (4.26)

(5) $106 \text{ kA} < I_{bf}$ 의 경우에는 제조자의 자문을 받는다.

8.6.4 클래스 L 퓨즈 601 A~800 A

(1) 15.7 kA $> I_{bf}$ 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 15.7 kA ≤ I_{bf} ≤ 44.1 kA의 경우,

$$E = 4.184 \left(-0.0601 I_{bf} + 2.8992\right) \tag{4.27}$$

(3) 44.1 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.046$$
 (4.28)

(4) $106 \text{ kA} < I_{bf}$ 의 경우에는 제조자의 자문을 받는다.

8.6.5 클래스 RK1 퓨즈 401 A~600 A

(1) $I_{bf} < 8.5 kA의 경우$

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 8.5 kA $\leq I_{bf} \leq$ 14 kA의 경우,

$$E = 4.184 \left(-3.0545 I_{bf} + 43.364 \right) \tag{4.29}$$

(3) 14 kA ≤ I_{bf} ≤ 15.7 kA의 경우,

$$E = 2.510$$
 (4.30)

(4) 15.7 kA $\leq I_{bf} \leq$ 22.6 kA의 경우,

$$E = 4.184 \left(-0.0507 I_{bf} + 1.3964\right) \tag{4.31}$$

(5) 22.6 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.046$$
 (4.32)

- (6) $106 < I_{bf}$ kA의 경우에는 제조자의 자문을 받는다.
- 8.6.6 클래스 RK1 퓨즈 201 A~400 A
 - (1) 3.16 kA $> I_{bf}$ 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 3.16 kA ≤ I_{bf} ≤ 5.04 kA의 경우,

$$E = 4.184 \left(-19.053 I_{bf} + 96.808\right) \tag{4.33}$$

(3) $5.04 \text{ kA} \leq I_{bf} \leq 22.6 \text{ kA의 경우,}$

$$E = 4.184 \left(-0.0302 I_{bf} + 0.9321\right) \tag{4.34}$$

(4) 22.6 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.046$$
 (4.35)

(5) $106 \text{ kA} < I_{bf}$ 의 경우에는 제조자의 자문을 받는다.

8.6.7 클래스 RK1 퓨즈 101 A~200 A

(1) $1.16~{\rm kA} > I_{bf}$ 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 1.16 kA ≤ I_{bf} ≤ 1.6 kA의 경우,

$$E = 4.184 \left(-18.409 I_{bf} + 36.355\right) \tag{4.36}$$

(3) 1.6 kA ≤ I_{bf} ≤ 3.16 kA의 경우,

$$E = 4.184 \left(-4.2628 I_{bf} + 13.721 \right) \tag{4.37}$$

(4) 3.16 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.046$$
 (4.38)

(5) 106 kA $< I_{bf}$ 의 경우에는 제조자의 자문을 받는다.

8.6.8 클래스 RK1 퓨즈 1 A~100 A

(1) 0.65 kA > I_{bf} 의 경우

식 (4.9)를 이용하여 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 계산하기 위하여 시간-전류 곡선을 이용한다.

(2) 0.65 kA ≤ I_{bf} ≤ 1.16 kA의 경우,

$$E = 4.184 \left(-11.176 I_{bf} + 13.565\right) \tag{4.39}$$

(3) 1.16 kA ≤ I_{bf} ≤ 1.4 kA의 경우,

$$E = 4.184 \left(-1.4583 I_{bf} + 2.2917\right) \tag{4.40}$$

(4) 1.4 kA ≤ I_{bf} ≤ 106 kA의 경우,

$$E = 1.046$$
 (4.41)

(5) $106 \text{ kA} < I_{bf}$ 의 경우에는 제조자의 자문을 받는다.

8.7 저전압 차단기

<표 붙임 4의 3>의 식은 저전압 차단기가 설치된 계통에 사용할 수 있다. 식의 결과는 I_{bf} 가 주어진 범위 내에 있을 때 사고에너지 및 섬광방호한계를 정한다. 차단기의 시간-전류커브는 적절한 범위 내를 필요로 하지 않는다.

KOSHA GUIDE

E - 109 - 2011

<표 붙임 4의 3> 차단기 형태 및 정격에 따른 사고에너지 및 섬광보호한계

			480 V 및 그 이하		575~600 V	
정격(A)	차단기 형태	트립 형태	사고에너지	섬광한계	사고에너지	섬광한계
			$(J/cm^2)^a$	(mm)	(J/cm^2)	(mm)
100~400	MCCB	TM 또는 M	$0.189\ I_{bf} + 0.548$	9.16 I _{bf} + 194	$0.271\ I_{bf} + 0.180$	11.8 I _{bf} + 196
600~1,200	MCCB	TM 또는 M	$0.223\ I_{bf} + 1.590$	8.45 I _{bf} + 364	$0.335\ I_{bf} + 0380$	$11.4\ I_{bf} + 369$
600~1,200	MCCB	E 또는 LI	$0377 \ I_{bf} + 1.360$	12.5 I _{bf} + 428	$0.468\ I_{bf} + 4.600$	$14.3\ I_{bf} + 568$
1,600~6,000	MCCB 또는 ICCB	TM 또는 E, LI	$0.448\ I_{bf} + 3.000$	11.10 I _{bf} + 696	$0.686\ I_{bf} + 0.165$	16.7 I _{bf} + 606
800~6,300	LVPCB	E, LI	$0.636\ I_{bf} + 3.670$	14.50 I _{bf} + 786	$0.958\ I_{bf} + 0.292$	19.1 I _{bf} + 864
800~6,300	KVPCB	E, LS ^b	$4.560 \ I_{bf} + 27.230$	47.20 I _{bf} + 2660	$6.860\ I_{bf}$ + 2.170	62.4 I _{bf} + 2930

주) 표에서 각 문자는 다음을 의미한다.

a : I_{bf} (kA), 작업거리(455 mm)

b : 단락시간 지연은 최대로 설정

MCCB: Mould-case circuit breaker ICCB: Insulated-case circuit breaker

LVPC: Low-voltage power circuit breaker

TM: Thermal-magnetic trip units

M: Magnetic (instantaneous only) trip units

E: Electronic trip units

L: Long time, S: Short time, I: Instantaneous

볼티드 고장 전류는 나타낸 범위 아래에 있을 경우, 식 (4.12)로 아크전류를 계산하고 식 (4.12), 식 (4.13) 및 식 (4.14)를 이용한 사고에너지를 정하기 위한 시간-전류곡선을 사용한다.

3상 볼티드 고장 전류의 범위는 700 A에서 106,000 A이다. 각 식의 크기는 다음의 범위 내이다.

$$I_1 < I_{bf} < I_2$$

여기서.

 I_2 : 대상 전압에서의 차단기의 차단정격

 I_1 : 적용 가능한 이 방법에서 최소 3상 볼티드 단락전류. 순시차단 또는 단시차단(순시차단이 없는) 시 충분히 발생하는 아크전류의 요인이 되는 가장 작은 3상 볼티드 단락전류 수준이다.

 I_1 을 찾기 위하여, 차단기의 순시차단(I_t) 값을 알아야 한다. 이것은 시간-전류곡선으로 구하거나, 차단기 정격전류가 100 A를 초과하는 경우에는 그 전류의 10배로할 수 있다. 차단기 정격전류가 100 A 이하인 경우에는 I_t : 1,300 A를 사용할 수 있다. 단시간 지연을 사용할 경우에는 I_t 은 단시간 픽업전류이다.

관련 볼티드 고장전류 I_{bf} 는 아크전류 대신 I_t 를 박스 내 아크전류 식을 풀어 구할 수 있다. 식 (4.43)의 1.3 계수는 차단 범위의 상단까지 전류를 조정한다.

$$log(1.3I_t) = 0.084 + 0.096V + 0.586(logI_{bf}) + 0.559V(logI_{bf})$$
(4.42)

여기서, I_t : 차단기의 순시차단 전류

(1) 600 V에서,

$$log I_1 = 0.0281 + 1.09log (1.3I_t)$$
(4.43)

(2) 480 V 이하에서,

$$log I_1 = 0.0407 + 1.17log (1.3I_t)$$
(4.44)

$$I_{hf} = I_1 = 10^{\log I_t} \tag{4.45}$$

8.8 참고문헌

이 방정식을 풀기위한 스프레드시트 계산기를 포함하는 완전한 데이터는 IEEE Guide for Performing Arc-Flash Hazard Calculations(IEEE Std 1584TM-2002)에서 찾을 수 있다.