Générer des nombres aléatoires avec Hasard

Victor Stinner

OSDCfr, octobre 2009

Générer des nombres aléatoires

Bibliothèque Hasard Générateurs de nombres aléatoires Langage C et cmake Binding Python (ctypes) Tests

Usage en sécurité

Propriétés pour la sécurité Simulation Propriétés pour la simulation

Tests Bugs connus

Usage en sécurité

- Confidentialité : SSL/TLS
- Authentification : mot de passe, certificat
- Chiffrement par flot
- Autres : loterie, roulette, machine à sous

Usage en sécurité
Propriétés pour la sécurité
Simulation
Propriétés pour la simulation
Bugs courants
Bugs connus

Propriétés pour la sécurité

- empêcher de prédire les nombres suivants et l'état interne à partir de la sortie
- empêcher de prédire les nombres précédents (et les nombres suivants s'il y a une source d'entropie) à partir de l'état interne

Usage en sécurité
Propriétés pour la sécurité
Simulation
Propriétés pour la simulation
Bugs courants
Bugs connus

Simulation

- Jeux vidéos
- Simulation physique
- Monte Carlo (approximation numérique)

Usage en sécurité
Propriétés pour la sécurité
Simulation
Propriétés pour la simulation
Bugs courants
Bugs connus

Propriétés pour la simulation

- Rapide
- Distribution uniforme (sur plusieurs dimensions)
- Reproductible (déterministe)
- Longue période (2¹²⁸ ou plus)

Usage en sécurité
Propriétés pour la sécurité
Simulation
Propriétés pour la simulation
Bugs courants
Bugs connus

Bugs courants

- rand() % n # modulo
- rand() & n # masque (et)
- Faible entropie : getpid(), time(NULL)
- Nouvelle graine pour chaque nombre généré, bug PHP et ClamAV

Usage en sécurité
Propriétés pour la sécurité
Simulation
Propriétés pour la simulation
Bugs courants
Bugs connus

Bugs connus

- 2003 : Python ne génère que des nombres pairs
- 2007 : Générateur ID de BIND9 cassé
- 2008 : Bug OpenSSL dans Debian
- 2008 : Biais dans la graîne en PHP

Bibliothèques existantes Hasard Profiles API Hasard Hébergement

Bibliothèques existantes

- Initialisation manuelle
- Pas de fonction randint(a, b)
- Distribution non uniforme
- Faible période
- Peu ou pas de test

Bibliothèques existantes Hasard Profiles API Hasard Hébergement

Bibliothèque Hasard

- Initialisation automatique
- API conçue pour éviter les erreurs courantes
- Fonctions réentrantes
- Nombreux tests

Bibliothèques existantes Hasard Profiles API Hasard Hébergement

Profiles

- @fast : simulation, jeux vidéos
- @secure_blocking : sécurisé, bloquant
- @secure_nonblocking : compromis vitesse / sécurité
- @hardware : générateur matériel

Bibliothèques existantes Hasard Profiles API Hasard Hébergement

API Hasard

- Entiers: int, unsigned long, (u)int8/16/32
- Autres : bool, bytes, double, uuid
- Mélanger un tableau
- Informations sur le générateur
- Lire/écrire l'état interne, cloner, reseed

Bibliothèques existantes Hasard Profiles API Hasard Hébergement

Hébergement

- Avant : page Trac hébergée sur un serveur à la maison (ADSL)
- Aujourd'hui : hébergement gratuit chez Bitbucket
- Mercurial : développer dans le train, commits instantanés, intuitif

Générateurs

Mersenne Twister Arcfour (RC4) Générateurs faibles Où trouver de l'entropie

Générateurs dans Hasard

- Arcfour, ISAAC, KISS, Mersenne Twister
- Réutilise OpenSSL, gcrypt, GSL, GMP, glib, Havege
- /dev/random, /dev/urandom, CryptGen
- Générateurs faibles bannis

Générateurs Mersenne Twister Arcfour (RC4) Générateurs faibles Où trouver de l'entropie

Mersenne Twister

- Bons résultats aux tests statistiques
- Par défaut dans Python, Ruby, glib, GSL, GMP, . . .
- Disponible dans PHP, Perl, . . .
- Non cryptographique

Générateurs Mersenne Twister Arcfour (RC4) Générateurs faibles Où trouver de l'entropie

Arcfour (RC4)

- Algorithme très simple
- Cryptographique, mais cassé (WEP)
- Répandu : wifi (WEP, WPA), SSL, PDF, ...

Générateurs faibles

- Bibliothèque à part : hasardweak
- Générateurs congruentiels linéaires
- $x_{n+1} \equiv (a \cdot x(n) + c) \mod m$
- Fonctions de la libc (rand(), nrand48())
- Sert aux tests et à la compatibilité

Générateurs Mersenne Twister Arcfour (RC4) Générateurs faibles Où trouver de l'entropie

Où trouver de l'entropie

- Utilisateur : clavier, souris
- Matériel : disque dur, interruptions
- Mauvaise idée : getpid(), time()
- Matériel dédié (ex: clé USB)

Langage C
Options de gcc
Chargement dynamique des bibliothèques
cmake
cmake (2)

Langage C

- Facilité d'intégration aux autres langages
- Compilateurs disponibles partout
- Performances
- Joie de la compilation et des erreurs de segmentation!

Langage C
Options de gcc
Chargement dynamique des bibliothèques
cmake
cmake (2)

Options de gcc

- Communes : -Wall -Wextra
- Mode debug : -Werror -OØ -ggdb
- Mode release : -O3
- Soucis avec int, long, size_t : utiliser
 -Wconversion sur une machine 64 bits

Langage C
Options de gcc
Chargement dynamique des bibliothèques
cmake
cmake (2)

Chargement dynamique des bibliothèques

- Limiter les dépendences
- Linux : dlopen(), dlsym()
- Windows : LoadLibraryW(), GetProcAddress()

Langage C
Options de gcc
Chargement dynamique des bibliothèques
cmake
cmake (2)

cmake (1/2)

- Génère des Makefile UNIX ou un projet Visual Studio
- Un seul langage simple, lisible et concis
- Testé sous Windows (MinGW), Linux, Mac OS X, FreeBSD, OpenBSD

Langage C
Options de gcc
Chargement dynamique des bibliothèques
cmake
cmake (2)

cmake (2/2)

- Détecte endian, bibliothèques, fonctions
- Choix des drapeaux de compilation
- Points faibles : peu d'utilisateurs, peu de documentation, rarement préinstallé

Binding ctypes Hello World ctypes Types de ctypes Binding Hasard

Binding ctypes

- ctypes: binding en pur Python, sans compilation
- Syntaxe triviale et intuitive
- Intégré à Python 2.5

Hello World ctypes

- from ctypes import cdll
- libc = cdll.LoadLibrary('libc.so.6')
- libc.printf("Hello World\n")

Types

- func.argtypes = (c_int, c_char_p, c_double)
- func.restype = c_char
- func.restype = None # procédure

Binding ctypes Hello World ctypes Types de ctypes Binding Hasard

Binding Hasard

- Binding de chaque fonction
- API objet simple
- Conversion dans les types Python

Tests en Python

- Tests écrits plus rapidement en Python qu'en C
- 36 tests différents : valeurs connues, collision, entropie, ...
- Permet le refactoring
- Effet de bord : permet de valider le binding

Tests en Python Options des tests Fichier texte Outils

Options des tests

- Tester un seul générateur
- Filtrage des tests par mot clé
- Répéter le même test
- Nombre de boucles

Tests en Python Options des tests Fichier texte Outils

Fichier texte

• Texte : facile à manipuler

• Entêtes : nombre, min/max, type, ...

• Pipe : générateur | outil

Compression gzip / bz2

Tests en Python Options des tests Fichier texte Outils

Outils

- Générer un fichier
- Dessiner une image ou graphique
- Outils externes : ENT, Dieharder
- Calcul de la période
- Calcul de l'état interne

