【习题加强】-计算题

一、平均数

$$\overline{x} = \frac{\sum x}{n}$$

中文解析: 即为所有数据的和除以数据的个数。

例题:

例 1. 妈妈买来香蕉 5千克,每千克2.4元;梨4千克,每千克3.2元;贡桔11千克,每千克4.2元。妈妈买的这些水果平均每千克多少元?

 $M: (2.4 \times 5 + 3.2 \times 4 + 4.2 \times 11) \div (5 + 4 + 11)$

 $= (12+12.8+46.2) \div 20$

 $=71 \div 20$

=3.55(元)

例题 2 : 某校有 100 名学生参加数学考试, 平均分是 63 分, 其中女生 平均分是 60 分, 男同学的平均分是多少分?

解题: 设女同学的成绩为 $x_1 = 60$, 男同学的成绩为 x_2

已知
$$\overline{x} = 63$$
,则 $\overline{x} = \frac{x_1 + x_2}{2}$,将已知数据带入可得 $63 = \frac{60 + x_2}{2}$

 $x_2 = 63 \times 2 - 60 = 66_{\circ}$

答: 男同学的平均分为66分。

二、众数

众数: 出现次数最多的数

例题 1: 2、3、4、2、3、4、5、6、2

解: 2 出现次数为最多,故众数为 2

例题 2: 测试一个班级考试成绩如下,得分 80 的有 10 人,得分 70 的有 8 人,得分 60 的有 15 人,问该题分数的众数为多少?

解:据题可知 80 分出现 10 次,70 分出现 8 次,60 分出现 15 次。故 众数为 60。

三、中位数

拿到中位数先排序(从大到小,从小到大均可以),然后看数的个数是偶数组还是奇数组。偶数组,第 N/2 位置的数据和第 N/2+1 位置的数据和的平均值就是中位数,即中间两位数的平均数为中位数。若是基数组,则第 (N+1) /2 位置的数就是中位数,即中间一个数为中位数。

例题 1: 已知一组数据为 2、3、4、2、3、4、5、6, 求改组数据的中位数?

解:排序可得 2、2、3、3、4、4、5、6,共8组数据,为偶数组数据。故中位数出现在第 $\frac{8}{2}$ =4,4+1=5的位置,第 4 和第 5 位置的数据对应为 3 和 4,故中位数为 $\frac{3+4}{2}$ =3.5。

例题 2: 测试一个班级考试成绩如下,得分 80 的有 10 人,得分 70 的有 8 人,得分 60 的有 15 人,问该题的中位数为多少?

解:据题可知 80 出现 10次,70 出现 8次,60 出现 15次。共出现 10+8+15=33次,为奇数组数据。由此可知中位数出现在 $\frac{33+1}{2}=17$ 的位置,

排序后可知, 第17位数为70, 故该题中位数为70。

四、全距

全距=最大值-最小值

中文解析: 即最大数与最小数的差值为全距

例题 1: 已知一组数据为 20、30、40、50、60、70、100。求该组数据的全距?

解: 由题可知最小数为 20, 最大数为 100, 则全距为 100-20=80。

例题 2: 测试一个班级考试成绩如下,得分 80 的有 10 人,得分 70 的有 8 人,得分 60 的有 15 人,问该题的全距为多少?

解: 由题可知最大数为80,最小数60,则全距为80-60=20。

五、集合意见法

公式:
$$\widetilde{Y} = \frac{\sum_{i} W_{i} Y_{i}}{\sum_{i} W_{i}}$$

 \tilde{Y} : 某类人员综合预测值:

 \tilde{Y}_i :某类各人员的方案期望值;

W_i: 某类各人员的方案期望值权数。

各类人员综合预测值 = 各类人员方案期望值的权数与对应类人员的方案期望值的积的和

各类人员方案期望值的权数和

= 各类人员期望值的权重比与对应类人员期望值的积的和

例题 1:

某零售企业为了预测明年烟酒销售额,要求经理和业务科、计划科、财务科及销售员作出年度销售预测。

经理	销售估计值								
红柱	销售好	概率	销售一般	概率	销售差	概率	权数		
甲	500	0.3	420	0.5	380	0.2	0.6		
Z	550	0. 4	480	0.4	360	0. 2	0. 4		

科室	科室 销售估计值							
人员	人员 销售好		销售一般	概率	销售差	概率	权数	
业务	600	0.5	400	0. 2	360	0.3	0.3	
计划	540	0. 4	480	0.3	340	0.3	0.3	
财务	580	0.3	440	0.3	320	0. 4	0. 4	
售货员		销售估计值						
音贝贝	销售好	概率	销售一般	概率	销售差	概率	权数	
甲	480	0. 3	400	0. 5	300	0. 2	0. 4	
Z	520	0.3	440	0.4	360	0. 3	0.3	

现假定:

经理类权数为: 4

科室人员类权数为: 3 售货人员类权数为: 2

解

1、计算各预测人员的方案期望值。

方案期望值等于各种可能状态的销售值与对应的概率乘积之和。 如经理甲的方案期望值:

业务科人员的计算期望值:

售货员甲的方案期望值:

计算各类人员综合预测值。

即分别求出经理类、科室人员类、售货员类的综合预测值。

综合预测值公式为:

$$\tilde{Y} = \frac{\sum W_i \tilde{Y}_i}{\sum W_i}$$

 \hat{Y} : 某类人员综合预测值;

 \tilde{Y}_i :某类各人员的方案期望值;

W_i: 某类各人员的方案期望值权数。

经理类综合预测值为:

$$\frac{436\times0.6+484\times0.4}{0.6+0.4}$$
=455 (万元)

科室人员类综合预测值为:

$$\frac{488\times0.3+462\times0.3+434\times0.4}{0.3+0.3+0.4}$$
 = 459 (万元)

售货员类综合预测值为:

$$\frac{404\times0.4+442\times0.3+432\times0.3}{0.4+0.3+0.3}=424\ (万元)$$

确定最后预测值。

最后预测值为:

$$\frac{455\times4+459\times3+424\times2}{4+3+2} = \frac{1820+1377+848}{9} = 449 \ (5\pi)$$

六、分层比例抽样

$$n_i = \frac{N_i}{N} n$$

中文解析:

例题 1: 某校高中生一年级 250 人,二年级 350 人,三年级 400 人,分层抽样抽取 200 人,问每层抽取的样本数为多少?

$$n_{i} = \frac{N_{i}}{N} n$$
解题:

具体可知: 总人数为 250+350+400=1000 人

一年级抽取人数为:
$$n_{-} = \frac{250}{1000} \times 200 = 50(人)$$

二年级抽取人数为:
$$n_{=} = \frac{350}{1000} \times 200 = 70(人)$$

三年级抽取人数为:
$$n_{\Xi} = \frac{400}{1000} \times 200 = 80(人)$$

答: 一年级抽取50人, 二年级抽取70人, 三年级抽取80人。

例题 2: 某地由企业 500 家,大型企业 50 家,中型企业 250 家,小型企业 200 家,采用分层抽样抽取 50 家,问每层抽取的样本数为多少?

$$m_{i} = \frac{N_{i}}{N} n$$

大型企业抽取样本数为:
$$n_{+} = \frac{50}{500} \times 50 = 5(家)$$

中型企业抽取样本数为:
$$n_{+} = \frac{250}{500} \times 50 = 25(家)$$

小型企业抽取样本为:
$$n_{\text{h}} = \frac{200}{500} \times 50 = 20(家)$$

答: 大型企业抽取5家,中型企业抽取25家,小型企业抽取20家。

七、分层最优抽样

$$n_{i} = \frac{N_{i}S_{i}}{\sum N_{i}S_{i}}n$$
公式:

中文解析:

样本容量 = <u>各层总单位数 ×该层标准差</u> 各层总单位与该层标准 差积的和 ×总样本数

例题 1: 某地由企业 5000 家, 大型企业 1000 家, 中型企业 2000 家, 小型企业 2000 家,相应的标准差为 20、10、30 采用分层抽样抽取 1000家,问每层抽取的样本数为多少?

$$n_{i} = \frac{N_{i}S_{i}}{\sum N_{i}S_{i}}n$$

大型企业抽取样本数为 $n_{\pm} = \frac{1000 \times 20}{1000 \times 20 + 2000 \times 10 + 2000 \times 30} \times 1000 = 200(家)$ 中型企业抽取样本数为 $n_{\rm p} = \frac{2000 \times 10}{1000 \times 20 + 2000 \times 10 + 2000 \times 30} \times 1000 = 200(家)$ 小型企业抽取样本为: $n_{\downarrow} = \frac{2000 \times 30}{1000 \times 20 + 2000 \times 10 + 2000 \times 30} \times 1000 = 600(家)$

答: 大型企业抽取 200 家,中型企业抽取 200 家,小型企业抽取 600 家。

例题 2: 某校高中生一年级 2500 人, 二年级 3500 人, 三年级 4000 人,相对应的标准差为 20、30、40 分层抽样抽取 2000 人,问每层抽 取的样本数为多少?

$$n_{i} = \frac{N_{i} S_{i}}{\sum N_{i} S_{i}} n$$

一年级抽取人数为:
$$n_{-} = \frac{2500 \times 20}{2500 \times 20 + 3500 \times 30 + 4000 \times 40} \times 2000 \approx 317(人)$$
 二年级抽取人数为: $n_{=} = \frac{3500 \times 30}{2500 \times 20 + 3500 \times 30 + 4000 \times 40} \times 2000 \approx 667(人)$ 三年级抽取人数为: $n_{=} = \frac{4000 \times 40}{2500 \times 20 + 3500 \times 30 + 4000 \times 40} \times 2000 \approx 1016(人)$

答:一年级抽取317人,二年级抽取667人,三年级抽取1016人。

八、等距抽样

公式:
$$b = \frac{N}{n}$$

样本间距 = <u>总体单位数</u> 中文解析:

例题 1: 从 800 个学生中抽取 100 名进行调查,问样本间距?

$$B = \frac{N}{n}$$

 $b = \frac{800}{100} = 8$

答: 样本间距为8.

例 2: 若有 8000 个学生,抽取 100 名,利用班级名册编号为 1-8000 号,若第 80 个样本为 6330 号,则第 2 个样本数为多少号?

$$partial b = \frac{N}{n}$$

$$b = \frac{8000}{100} = 80$$
 , 另知第 80 个样本为 6330 号,80-2=78

故可得第二个样本号为: 6330-78x80=90 号

答: 第二个样本号为90号

九、抽样误差

公式:
$$\mu = \frac{\sigma}{\sqrt{n}}$$

抽样误差= <u>标准差</u> 中文解析:

例题 1: 某高校准备采用简单随机抽样调查大学生每月消费支出情况。抽取 1600 人进行调,大学生平均每人每月消费支出的标准差为 90 元。计算抽样误差: (保留两位小数)

$$\mu = \frac{\sigma}{\sqrt{n}}$$

据题意可知: $\sigma = 90$ 元, n = 1600人

故
$$\mu = \frac{90}{\sqrt{1600}} = \frac{90}{40} = 2.25 \overline{\pi}$$

答: 抽样误差为 2.25 元。

十、允许误差

$$_{\text{公式:}}$$
 $\Delta x = t \times \mu$

例题1:某高校准备采用简单随机抽样调查大学生每月消费支出情况。 抽取1600人进行调,大学生平均每人每月消费支出的标准差为90元, 并要求95.45%的可信度,推断总体。计算允许误差。(当可信度为95.45%时,t=2)

$$_{\text{\tiny Hz}} \Delta x = t \times \mu$$

据题意可知: $\sigma = 90$, n = 1600

故
$$\mu = \frac{90}{\sqrt{1600}} = \frac{90}{40} = 2.25 \overline{\pi}$$

t = 2

故
$$\Delta x = t \times \mu = 2 \times 2.25 = 4.5$$
元

答:允许误差为4.5元

十一、样本容量

$$n = \frac{t^2 \sigma^2}{\Delta x^2}$$

公式:

样本容量
$$=\frac{t^2 \times 标准差的平方}{允许误差的平方}$$

中文解析:

例题 1: 某高校准备采用简单随机抽样调查大学生每月消费支出情况。已知大学生平均每人每月消费支出的标准差为 30 元,要求 95. 45%的可信度,推断总体,允许误差为 2 元,计算调查的样本容量。(当可信度为 95. 45%时,t=2)

解:
$$n = \frac{t^2 \sigma^2}{\Lambda x^2}$$

由题可知: t=2, $\sigma=30$, $\Delta x=2$

故
$$n = \frac{t^2 \sigma^2}{\Delta x^2} = \frac{2^2 \times 30^2}{2^2} = 900$$
人

答: 样本容量为900人。

例题 2,某地市政府预调查当地工人月薪资水平,准备采用简单随机抽样调查工人每月薪资水平。已经知道平均每人每月薪资的标准差为200。问

- (一) 如果抽取 1600 人进行调查, 计算抽样误差:
- (二)要求 95. 45%的可信度,推断总体,允许误差为 2元,计算调查的样本容量。(当可信度为 95. 45%时, t=2)

(一)解:

$$\mu = \frac{\sigma}{\sqrt{n}}$$
, 由题可知 $\sigma = 200$, $n = 1600$ 故可得 $\mu = \frac{\sigma}{\sqrt{n}} = \frac{200}{\sqrt{1600}} = \frac{200}{40} = 5$ 元

(二)解

$$n = \frac{t^2 \sigma^2}{\Delta x^2}$$
,由题可知 $t = 2$, $\sigma = 200$, $\Delta x = 2$ 故可得 $n = \frac{t^2 \sigma^2}{\Delta x^2} = \frac{2^2 \times 200^{-2}}{2^2} = 40000$ 人

答:调查的样本容量为40000人。

十二、方差、标准差

方差公式:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + (x_{3} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$

标准差公式:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}}$$

标准差 = $\sqrt{\frac{每个数据与平均数的差 的平方和}{数据个数 -1}}$

中文解析:

例题 1: 假设某企业有职工 5 人, 月基本工资分别为 2000 元、4000 元、5000 元、5000 元, 4000 元, 计算标准差. (保留两位小数)解:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}},$$
由题可知 $\overline{x} = \frac{2000 + 4000 + 5000 + 5000 + 4000}{5} = 4000$
故:
$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{\frac{(2000 - 4000)^2 + (4000 - 4000)^2 + (5000 - 4000)^2 + (5000 - 4000)^2 + (4000 - 4000)^2}{5-1}}$$

$$= \sqrt{\frac{2000^2 + 0 + 1000^2 + 1000^2 + 0}{4}} = \sqrt{\frac{6000000}{4}} = \sqrt{1500000} \approx 1224.74$$
 元

答: 标准差为 1224.74 元

例题 2: 甲乙两个销售人员近 4 个月的销售额 (万元) 分别为甲: 20、

10、40、10。乙: 5、5、60、10。问谁的销售业绩更稳定? (保留两

位小数)

解:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}, 由題可知: \overline{x}_{\#} = \frac{20 + 10 + 40 + 10}{4} = 20, \overline{x}_{Z} \frac{5 + 5 + 60 + 10}{4} = 20$$

$$S_{\#} = \sqrt{\frac{(20 - 20)^2 + (10 - 20)^2 + (40 - 20)^2 + (10 - 20)^2}{4 - 1}} = \sqrt{\frac{0 + 10^2 + 20^2 + 10^2}{3}} = \sqrt{\frac{600}{3}} = \sqrt{\frac{200}{3}} \approx 14.14$$

$$S_{Z} = \sqrt{\frac{(5 - 20)^2 + (5 - 20)^2 + (60 - 20)^2 + (10 - 20)^2}{4 - 1}} = \sqrt{\frac{15^2 + 15^2 + 40^2 + 10^2}{3}} = \sqrt{\frac{2150}{3}} \approx 26.77$$

答:用标准差计算显示甲的标准差小于乙的标准差,故甲更稳定。

十三、一元回归分析

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

$$a = \overline{y} - b\overline{x}$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}, \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

b 的分步解析:

$$\sum xy = x_1y_1 + x_2y_2 + x_3y_3 + \dots + x_ny_n$$

$$\sum x\sum y = (x_1 + x_2 + x_3 + \dots + x_n)(y_1 + y_2 + y_3 + \dots + y_n)$$

$$\sum x^2 = (x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2)$$

$$(\sum x)^2 = (x_1 + x_2 + x_3 + \dots + x_n)^2$$

例题:某市 2000-2009 年消费品零售额分别为 13、12、14、15、18、17、15、13、12、11(亿元),同期居民人均收入分别为 12、11、15、16、19、17、14、13、12、11、(千元)。用一元线性回归分析预测 2010 年的该市消费品零售额(a、b 保留三位小数,2010 年居民收入预测值为 20)

解:根据题目,消费品零售额为 y,居民人均收入为 x 设一元回归方程为 y=a+bx

根据题目,消费品零售额为v,居民人均收入为x

设一元回归方程为 y=a+bx

由题可知

$$\frac{-}{y} = \frac{13+12+14+15+18+17+15+13+12+11}{10} = 14$$

$$\frac{-}{x} = \frac{12+11+15+16+19+17+14+13+12+11}{10} = 14$$

据已知条件可得

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2} = \frac{10\left(13 \times 12 + 12 \times 11 + 14 \times 15 + 15 \times 16 + 18 \times 19 + 17 \times 17 + 15 \times 14 + 13 \times 13 + 12 \times 12 + 11 \times 11\right) - 140 \times 140}{10\left(12^2 + 11^2 + 15^2 + 16^2 + 19^2 + 17^2 + 14^2 + 13^2 + 12^2 + 11^2\right) - 140 \times 140}$$

$$= \frac{530}{660} \approx 0.803$$

由此可知:

$$a = \overline{y} - b\overline{x} = 14 - 0.803 \times 14 \approx 2.758$$

综上可得: y=2.758+0.803x

由题知: x=20, 求 y

故
$$y = 2.758 + 0.803 \times 20 = 18.818$$
 (亿元)

故,当2010年居民收入预测值为20(千元)时,消费品零售额为18.818亿元。

例题 2: 为了研究受教育年限和职业声望之间的关系,设以下是 8 名抽样调查的结果,试求职业声望与受教育年限的回归方程 Y=a+bX,并估计当某人受教育年限为 20 年时,其职业声望的近似值。(保留整数)

调查对象	X (受教育年 限)	Y (职业声 望)	XY	X^{2}
1	8	60	480	64
2	16	70	1120	256
3	9	80	720	81
4	19	100	1900	361
5	21	90	1890	441
6	10	70	700	100
7	5	60	300	25
8	12	70	840	144
总数(∑)	100	600	7950	1472

设: y=a+bx

据题可知:
$$n = 8$$
, $\sum x = 100$, $\sum y = 600$, $\sum xy = 7950$, $\sum x^2 = 1472$,故: $b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} = \frac{.8 \times 7950 - 100 \times 600}{8 \times 1472 - 100^2} = \frac{3600}{1776} \approx 2$ 又可知: $\overline{x} = 13$, $\overline{y} = 75$ $a = y - bx = 75 - 2 \times 13 = 49$ 故y = 49 + 2x \Rightarrow x = 20时, y = 49 + 2 × 20 = 89

答: 当某人的受教育年限为20时, 其职业声望值为89.

十四、一次移动平均法和二次移动平均法

一次移动平均法:

公式:

$$\overline{x}_{t+1} = M_t^{(1)} = \frac{x_t + x_{t-1} + \dots + x_{t-n+1}}{n}$$

 \bar{x}_{t+1} :代表t+1其的预测值, $M_t^{(1)}$ 代表为t期一次移动平均值,n代表的是跨越期数。

二次移动平均法

公式:

$$Y_{T+t} = a_t + b_t \times T$$

$$a_t = 2M_t^{(1)} - M_t^{(2)}$$

$$b_t = \frac{2}{n-1} [M_t^{(1)} - M_t^{(2)}]$$

T:代表t期至预测时间的个数,

 $M_{t}^{(1)}$ 是一次移动平均数序列中最后一个一次移动平均数 $M_{t}^{(2)}$ 是二次移动平均数中的最后一个二次移动平均数

例题 1: 某纺织品公司近年棉布销售量如下表,请用一次移动平均法 预测 1999 年棉布销售量,跨越期数为 3。(单位:万米)

年份	销售量 x	一次移动平均数
		$M_t^{(1)}$

1992	984	
1993	1022	
1994	1040	
1995	1020	
1996	1032	
1997	1015	
1998	1010	
1999		

解:

$$\overline{x}_{t+1} = M_{t}^{(1)} = \frac{x_{t} + x_{t-1} + \dots + x_{t-n+1}}{n}$$

$$\overline{x}_{1998+1} = M_{1998}^{(1)} = \frac{x_{1998} + x_{1997} + x_{1996}}{3}$$

$$\frac{1010 + 1015 + 1032}{3} = 1019 \quad (5\%)$$

答: 该纺织品公司 1999 年棉布销售量预测值为 1019 万米

例题 2: 某企业 1988-1999 年产品销售额如下, (万元)

年 份	198	198	199	199	199	199	199	199	199	199	199	199
(年)	8	9	0	1	2	3	4	5	6	7	8	9
销售额	192	224	188	198	206	203	238	228	231	221	259	273

根据材料,用二次移动品均法(跨越期为4),预测该企业2000年

和 2001 年的产品销售额

解:根据上述材料列二次移动平均法计算表:对照公式理解

$$Y_{T+t} = a_t + b_t \times T$$

$$a_t = 2M_t^{(1)} - M_t^{(2)}$$

$$b_t = \frac{2}{n-1} [M_t^{(1)} - M_t^{(2)}]$$

T:代表t期至预测时间的个数,

 $M_t^{(1)}$ 是一次移动平均数序列中最后一个一次移动平均数 $M_t^{(2)}$ 是二次移动平均数中的最后一个二次移动平均数

年份	销售额	一次移	二次移	$M_t^{(1)} - M_t^2$	a_{t}	b_t	预测值
		动平均			r	ι	Y_{T+t}
		数 M _t ⁽¹⁾	数 M _t ²				
(1)	(2)	(3)	(4)	(5) =	(6)=2	$(7) = \frac{2}{n-1} \times (5)$	(8) = (6) +T
				(3) -	(3) -		(7)
				(4)	(4)		
1988	192						
1989	224						
1990	188						
1991	198	200. 5					

1992	206	204					
1993	203	198. 75					
1994	238	211.5	203. 62	7. 625	218. 87	5. 08	
			5		5		
1995	228	218. 5	208. 18	10. 562	229. 31	7. 04	223. 96
			75	5	25		
1996	231	225	213. 43	11. 562	236. 56	7. 71	236. 35
			75	5	25		
1997	221	229. 5	221. 12	8. 375	237. 87	5. 58	244. 27
			5		5		
1998	259	234. 75	227	7. 75	242. 5	5. 17	243. 46
1999	273	246	233. 81	12. 187	258. 18	8. 13	247. 67
			25	5	75		
2000							266. 32

由上表可知:该企业的 2000 年的产品销售额为 266.32 万元。若要预

测 2001 年产品销售额,则 T=2,则

$$Y_{t+T} = a_t + T \times b_t$$

可得: $Y_{2001} = a_{1999} + 2 \times b_{1999} = 258.1875 + 2 \times 8.13 \approx 274.45 (万元)$

答: 该企业 2000 年的销售额为 266. 32 万元, 2001 年的产品销售额为

274.45 万元