

UNIVERSITY OF JORDAN

Computer Engineering Department

Digital Electronics Laboratory Project

Name	ID
Fatima Hesham	0194433
Tala Kafafi	0197035

Inverter Gate:

Inverter

Input	Output
0	1
1	0

AND Gate:

Symbol	Truth Table		e
	A	В	Q
	0	0	0
A Q	0	1	0
2-input AND Gate	1	0	0
	1	1	1
Boolean Expression Q = A. B, A	AND B	<u> </u>	

NOR Gate:

Symbol	Truth Table		
	A	В	Q
	0	0	1
A ≥1	0	1	0
2-input NOR Gate	1	0	0
	1	1	0
Boolean Expression Q = A NOR I	3	To a second	i.

XOR Gate:

Symbol	Truth Table		е
	A	В	Q
A = 1 Q 2-input Ex-OR Gate	0	0	0
	0	1	1
	1	0	1
	1	1	0

SR LATCH:

CLK To Q:

D To Q:

D Flip Flop:

setup time : the signal should appear befor 2ns.

hold time: if the signal goes to zero befor 0.7n or more this change will not appear on Q.

Decoder:

SRAM:

Write 0

Read

1 Column SRAM:

Full Design:

Test Cases:

Layout

Decoder:

vin EN 0 PULSE(0 1.2 0 1n 1n 40n 80n 5)
vin2 R 0 PULSE(0 1.2 0 1n 1n 20n 40n 5)
cload W0 0 50fF
cload2 W1 0 50fF
.tran 0 120n
.include E:\downloads C\DELAB PROJECT - Copy\Tech_models.txt
.END

XOR

D-FF

SRAM:

vdd VDD 0 DC 1.1
vin WRITE 0 PULSE(0 1.1 4n 100p 100p 500p 10n)
vin2 SE 0 PULSE(0 1.1 2n 100p 100p 300p 10n)
vin3 SE_BAR 0 PULSE(1.1 0 2n 100p 100p 300p 10n)
vin4 D 0 PULSE(1.1 0 0 1n 1n 10n 20n)
vin5 D_AR 0 PULSE(0 1.1 0 1n 1n 10n 20n)
vin6 PC 0 PULSE(1.1 0 15n 100p 100p 1n 10n 10n)
vin7 WL 0 PULSE(0 1.1 1.5n 100p 100p 10n 20n 100)
cload Q 0 50fF
cload1 Q_BAR 0 100f
cload2 BIT 0 100f
cload3 BIT_BAR 0 100f
.tran 0 100n
.include E:\downloads C\DELAB PROJECT - Copy\Tech_models.txt
.END

Read:

Write:

Full Design Layout:

