

MOSFET

MOSFET:

- Funcionamento do MosFet de enriquecimento.
- NMOS
- PMOS
- Exercício.
- Noção de Amplificador com MosFet.
- Modelo para pequenos sinais
- Amplificador Fonte Comum
- Amplificador Dreno Comum

DETI-UA (JEO) SE 2016-17

MosFet - 1

MOSFET de enriquecimento canal N (NMOS) MOSFET = Metal Oxide Semiconductor Field Effect Transistor Drain - dreno Gate - porta Source - fonte Substrato / Body (em geral ligado à Source) Canal Região de corte (cut-off) Região de corte (cut-off) MOSFET - 2

NMOS - funcionamento Tensão de threshold - V_{to} , V_{T} , V_{TN} , V_{th} , V_{GSth} Região de corte - cut-off $v_{DS} < v_{CS} - V_{to}$ and $v_{GS} \ge V_{to}$ DETIMA (JEO) SE 2016-17 NMOS - funcionamento Região triodo (linear/ohmica) $v_{DS} < v_{CS} - V_{to}$ and $v_{GS} \ge V_{to}$ MosFet - 3

NMOS - funcionamento (3)

Região de saturação

$$V_{DS}$$
 (sat) = v_{GS} - V_{to}

$$v_{DS} \ge v_{GS} - V_{to}$$

se VGS = constante . $\dot{t}D$ = constante (fonte de corrente controlada por VGS)

MosFet ideal

MosFet ideal

DETI-UA (JEO) SE 2016-17

MosFet - 5

 $V_{GS3} > V_{GS2}$

 $v_{GS1} > V_{to} > 0$

NMOS - funcionamento (4)

Parâmetro de condução (A/V2)

$$K = \left(\frac{W}{L}\right) \frac{KF}{2}$$

Região de corte - cut-off

$$i_D = 0$$
 for $v_{GS} \le V_{to}$

Região triodo (linear/ohmica)

$$v_{DS} < v_{GS} - V_{to}$$
 and $v_{GS} \ge V_{to}$

$$i_D = K \left[2(v_{GS} - V_{to})v_{DS} - v_{DS}^2 \right]$$

Região de saturação

$$v_{DS} \ge v_{GS} - V_{to}$$

$$i_D = K(v_{GS} - V_{to})^2$$

DETI-UA (JEO) SE 2016-17

MosFet - 6

PMOS (enriquecimento)

Tensão de threshold - V_{to} , V_{T} , V_{TP} , V_{th} , V_{GSth}

 $|V_{TP} < 0|$

 V_{SD} (sat) = $v_{SG} + V_{TP}$

Região de corte - cut-off

 $v_{SG} \le |V_{TP}|$ $i_D = 0$

Região triodo (linear/ohmica)

 $v_{SG} \ge |V_{TP}|$ $v_{SD} < v_{SG} + V_{TP}$

$$i_D = K_p [2(v_{SG} + V_{TP})v_{SD} - v_{SD}^2]$$

Região de saturação

 $v_{SG} \ge |V_{TP}|$ $v_{SD} \ge v_{SG} + V_{TP}$

$$i_D = K_p (v_{SG} + V_{TP})^2$$

DETI-UA (JEO) SE 2016-17

MosFet - 7

Exercício

Calcular o ponto de funcionamento Q (I_D, V_{DS}, V_{GS}) do NMOS

NMOS:
$$V_{to} = 2V$$
; K = 1 mA/V²

$$V_G = V_{DD} \frac{R_2}{R_1 + R_2} = 20 \frac{1}{(3+1)} = 5 \text{ V}$$
 $I_G = 0$!!!

Hipótese tentativa: NMOS está na saturação

$$V_G = V_{GSQ} + R_S I_{DQ}$$
$$I_{DQ} = K(V_{GSQ} - V_{to})^2$$

$$V_G = V_{GSQ} + R_S K (V_{GSQ} - V_{to})^2$$

$$V_{GSQ}^{2} + \left(\frac{1}{R_{S}K} - 2V_{to}\right)V_{GSQ} + V_{to}^{2} - \frac{V_{G}}{R_{S}K} = 0$$

 $V_{GSQ}^2 - 3.630V_{GSQ} + 2.148 = 0$ $V_{GSQ} = 2.886 \text{ V}$ $V_{GSQ} = 0.744 \text{ V}$ corte ? $V_{GS} < V_{to}$?

$$I_{DQ} = K (V_{GSQ} - V_{to})^2 = 0.784 \text{ mA}$$

$$V_{DSQ} = V_{DD} - (R_D + R_S) I_{DQ} = 14.2 \text{ V}$$

 $V_{DS} > V_{GS} - V_{to}$ --> zona de saturação. OK !!!

DETI-UA (JEO) SE 2016-17

MosFet - 8

Exemplo: Amplificador em fonte comum NMOS: $V_{Io} = 2V$; K = 1 mA/V² $r_d = 1$ MΩ $v(t) = 100 \sin(2000\pi t)$ mV Calcular: a) polarização b) ganho $v_O v_{Din}$ e v_o c) R_{in} e R_o a) polarização foi calculada no slide 8: $V_{GSQ} = 2.886$ V $V_{DSQ} = 14.2$ V $I_{DQ} = 0.78$ mA

Amplificador Fonte Comum (3)

 $v(t) = 100\sin(2000\pi t) \text{ mV}$

$$R'_L = \frac{1}{1/r_d + 1/R_D + 1/R_L} = 3.2$$
k Ω

a) polarização

- b) ganho vo/vin e vo

 $R_I = 3 \text{ M}\Omega$; $R_2 = 1 \text{ M}\Omega$ $R_D = 4.7 \text{k}\Omega : R_L = 10 \text{k}\Omega$

$$v_{\rm in} = v_{\rm gs}$$

$$R_{\rm in} = \frac{v_{\rm in}}{i_{\rm in}} = R_G = R_1 || R_2 = 750 \text{ k}\Omega$$

$$R_{\rm in} = \frac{v_{\rm in}}{i_{\rm in}} = R_G = R_1 || R_2 = 750 \text{ k}\Omega$$
 $R_o = \frac{1}{1/R_D + 1/r_d} = 4.7 \text{ k}\Omega$

$$g_{\it m}$$
 = 2 K ($\it V_{\it GS}$ - $\it V_{\it to}$) = 2 × 10⁻³ (2.886 - 2) = 1.77 mA/V
$$A_{\it v} = \frac{v_o}{v_{\it in}} = -g_{\it m}R_L' = -5.66$$

$$v_{\text{in}} = v(t) \frac{R_{\text{in}}}{R + R_{\text{in}}} = 88.23 \sin(2000\pi t) \text{ mV}$$

$$v_o(t) = A_v v_{in}(t) = -500 \sin(2000\pi t) \text{ mV}$$

DETI-UA (JEO) SE 2016-17

MosFet - 13

Amplificador Dreno Comum (Seguidor de Fonte)

NMOS: $V_{to} = 1V$; K = 2 mA/V²

 $r_d = 1 M\Omega$

Pretende-se I_{DO} = 10 mA

Calcular:

- a) polarização e Rs
- b) ganho vo/vin
- c) Rin e Ro

a)
$$I_{DQ} = K(V_{GSQ} - V_{to})^2$$
 $V_{GSQ} = \sqrt{I_{DQ}/K} + V_{to} = 3.236 \text{ V}$

$$V_G = V_{DD} \times \frac{R_2}{R_1 + R_2} = 7.5 \text{ V}$$

$$V_S = V_G - V_{GSQ} = 4.264 \text{ V}$$

$$R_S = \frac{V_S}{I_{DQ}} = 426.4 \, \Omega$$

 $V_G = V_{DD} \times \frac{R_2}{R_1 + R_2} = 7.5 \text{ V}$ $V_S = V_G - V_{GSQ} = 4.264 \text{ V}$ $R_S = \frac{V_S}{I_{DQ}} = 426.4 \Omega$ $V_{DSQ} = 15 - 4.264 = 10.736 \text{ V}$

 $g_m = 2 \text{ K} (V_{GS} - V_{to}) = 2 \times 2 \times 10^{-3} (3.236 - 1) = 8.944 \text{ mA/V}$

Para a análise de pequenos sinais (com V(t) sinusoidal), considerar C1 e C2 como curto-circuitos e que a fonte V_{DD} é um curto-circuito à massa.

DETI-UA (JEO) SE 2016-17

MosFet - 14

Amplificador Dreno Comum (2)

NMOS: $g_m = 8.944 \text{ mA/V}$; $r_d = 1 \text{ M}\Omega$ Calcular: b) ganho vo/vin c) Rin e Ro

 $R_{\rm in} = R_1 || R_2 = 1 \text{ M}\Omega$

DETI-UA (JEO) SE 2016-17

MosFet - 15

Amplificador Dreno Comum (3)

NMOS: $g_m = 8.944 \text{ mA/V}$; $r_d = 1 \text{ M}\Omega$ Calcular: b) ganho vo/vin c) Rin e Ro

$$R_o = \frac{1}{g_m + 1/R_S + 1/r_d} = 88.58 \ \Omega$$

$$A_{v} = \frac{v_{o}}{v_{\text{in}}} = \frac{g_{m}R'_{L}}{1 + g_{m}R'_{L}} = 0.7272$$

$$v_{in} / R_{in} = i_{in}$$

DETI-UA (JEO) SE 2016-17

 $R_{\rm in} = R_1 || R_2 = 1 \text{ M}\Omega$

MosFet - 16