T.D. II - Dénombrement

I - Dés, Mots, Urnes,...

Solution de l'exercice 6.

- 1. $\binom{n_1}{p_1}\binom{n_2}{p_2}$.
- **2.** $A_{n_1}^{p_1} A_{n_2}^{p_2} \binom{p}{p_1}$.
- 3. $n_1^{p_1} n_2^{p_2} \binom{p}{p_1}$.

Solution de l'exercice 8. En notant Ω l'ensemble des mains possibles, alors $|\Omega| = {52 \choose 5}$. Pour la suite, on ne calcule que le nombre de cas favorables.

1. $\begin{pmatrix} 13 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 12 \\ 3 \end{pmatrix}$ La probabilité vaut environ

valeur faciale couleurs valeurs autres cartes couleurs 0,42.

2.
$$\underbrace{\begin{pmatrix} 10 \\ 1 \end{pmatrix}}_{\text{carte de départ couleurs}} \underbrace{\begin{pmatrix} 4 \\ 1 \end{pmatrix}^5}_{\text{carte de départ couleurs}}$$

carre de depart couleurs

La probabilité vaut environ 0.004.

(il faudrait soustraire 40 pour extraire les quintes flushes).

- **3.** $\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$. La probabilité vaut environ 0.048.
- **4.** $\binom{4}{1}\binom{13}{5}$. La probabilité vaut environ 0.00198. (on pourrait vouloir ici soustraire les 40 quintes flushes)

Solution de l'exercice 9. On modélise le problème en numérotant les figurines de 1 à 20. Il y a ainsi 20! manières de les disposer avant de prendre la photo.

1. On suppose que les oiseaux sont les figurines numérotées 1 et 2. Pour qu'elles soient côte à côte, il suffit de choisir leurs positions (i, i + 1) pour $i \in [1, 19]$ puis de choisir l'ordre dans lequel on les dispose. Les n-2 figurines restantes sont disposées aléatoirement sur les autres emplacements. Ainsi,

$$p = \frac{19 \cdot 2 \cdot (20 - 2)!}{20!} = \frac{2}{20} = \frac{1}{10}.$$

2ème méthode. On place les deux oiseaux côte à côte. Ensuite,

- * l'animal suivant peut être placé soit à gauche soit à droite du couple;
- * l'animal suivant a 3 positions posible;

* . . .

Ainsi, le nombre de positions est égal à (en comptant qu'il y a deux manières de constituer le couple d'oiseaux) :

$$2 \cdot 2 \cdot 3 \cdots 19$$

et on obtient une probabilité égale $\frac{2 \cdot 19!}{20!} = \frac{1}{10}$

- 2. On étudie l'événement complémentaire où tous les oiseaux ont au moins une figurine entre eux. Il y a 5 oiseaux et 15 figurines d'autres animaux.
 - * Soit le dernier oiseau est en dernière position. Il faut alors placer 4 couples (oiseau, autre) et 11 (autres) parmi les 19 places restantes, i.e. $\binom{15}{4}$. Il y a, pour chacune de ces positions, $5! \cdot 11!$ manières de disposer les figurines sur ces positions.
 - * Sinon, il y a 5 couples (oiseau, autre) et 10 (autres) à disposer parmi les 20 places, i.e. $\binom{15}{5}$. Il y a, pour chacune de ces positions, $5! \cdot 15!$ manières de disposer les figurines sur ces positions.

Ainsi,

$$q = 1 - \frac{5! \cdot 15!}{20!} \left(\binom{15}{4} + \binom{15}{5} \right) = 1 - \frac{\binom{16}{5}}{\binom{20}{5}}.$$

2ème méthode. On note n_1, \ldots, n_5, n_6 le nombre d'animaux alignés avant l'oiseau o_1, \ldots, o_5 et o_6 le nombre d'animaux après le 5ème oiseau. Alors, en notant $i_j = n_1 + \cdots + n_j$, on obtient $n_1 \ge 1$ et (i_j) est strictement croissante. il faut alors choisir (i_1, \ldots, i_5) dans [0, 16], soit $\binom{16}{5}$ possibilités.

3ème méthode. On place les animaux itérativement :

- * on place les animaux qui ne sont pas des oiseaux : 15!,
- * on place le premier oiseau dans cette succession : 16 places,
- * on place le second oiseau, mais pas à côté du premier : 15 places,

T.D. II - Dénombrement D 2

* ...

On obtient ainsi $15! \cdot 16 \cdots 12 = \frac{15! \cdot 16!}{11!}$ placements possibles. On obtient ainsi une probabilité égale à $\frac{15! \cdot 16!}{11! \cdot 20!}$.

II - Coefficients binomiaux

Solution de l'exercice 11.

- **1.** Cet ensemble est en bijection avec $\mathscr{F}(\llbracket 1,k \rrbracket, \llbracket 1,n \rrbracket)$. Ainsi, son cardinal vaut n^k .
- **2.** Cet ensemble est en bijection avec $\operatorname{Inj}(\llbracket 1,k \rrbracket, \llbracket 1,n \rrbracket)$. Ainsi, son cardinal vaut $\frac{n!}{(n-k)!}$.
- **3.** Cet ensemble est en bijection avec $\mathscr{P}_k(\llbracket 1, n \rrbracket)$. Ainsi, son cardinal vaut $\binom{n}{k}$.

III - Compter autrement

Solution de l'exercice 12. Une fois considérée la première pierre la plus à gauche, les instructions pour décrire un mur sont du type dessus/droite. Ainsi, le nombre de murs est 2^{n-1} .

2ème méthode. En distinguant en fonction du nombre de briques de la première colonne, $D_n = \sum_{k=1}^n D_{n-k}$.

Solution de l'exercice 13. On modélise les entiers (u_1, \ldots, u_p) par u_i est le nombre de ballons compris dans le panier numéro i. Ainsi, la p-liste (u_1, \ldots, u_p) telle que $u_1 + \cdots + u_p = n$ est une succession de \circ et de | pour lesquelles il y a n symboles \circ et (p-1) symboles |. Le nombre de tels p-uplets est donc égal à $\binom{n+p-1}{n}$.

Solution de l'exercice 14. Il y a $\binom{n}{r}$ manières de choisir Y avec r éléments, puis 2^r parties de Y. Ainsi, le nombre recherché est $\sum_{r=0}^{n} \binom{n}{r} 2^r = 3^n$.

On pourrait également, pour chaque élément choisir : s'il n'est pas dans Y, s'il est dans Y mais pas dans X, s'il est dans Y et dans X, soit 3^n choix. \square