PREDICTORS OF POVERTY IN THE

U.S.

Insights into predictors of county poverty and child poverty.

ABSTRACT

We attempt to explore the predictors of the poverty based on the 2017 U.S. Census Data.

Anusha Sagi, Fatima Kahack, & Lydia Tse CS 418 Final Project

Table of Contents

Premise	2
Data Science Approach	2
Data Collection	2
Data Preparation	2
Data Exploration	4
Descriptive Statistics	4
Box Plots	4
Data Outliers	7
Data Modeling	8
Regression Models	8
Classification Models	13
Data Visualization	25
Choropleth Maps	25
Bibliography	27

Premise

While poverty has long been a concern amongst philanthropists, economists, and politicians alike, the seemingly widening income gap and stagnant wages further serve as the impetus for developing modern solutions for poverty. According to a 2018 published study from the United States Census Bureau, the national poverty rate was 11.8% and 16.2% for children under age 18 (Semega, Kollar and Mohanty 2019). Poverty is inextricably linked to a variety of factors such as race, gender, or age. Thus, by utilizing data science techniques, we aim to gain better insight into the factors that can best predict whether or not a county is predicted to be categorized as falling above or below the poverty line.

Data Science Approach

Data Collection

We will use a dataset that is the compilation of 2017 U.S. Census Demographic Data (Kaggle 2017). This dataset provides ample numerical and categorical variables that can be utilized as predictors for our regression and classification models. Such predictors include race, gender, household income, unemployment rate, and so forth. Additionally, the dataset is fairly complete in the sense that missing data is at a minimum.

Data Preparation

To prepare our dataset, we performed the following.

- 1. Partitioned data such that 75% of the observations are utilized for training and 25% are utilized for testing.
- 2. Observed the following
 - a. The dimensions of our training set were (2427, 37)
 - b. Datatypes included float64 for 25 variables, int64 for 10 variables, and object for 2 variables
- 3. Determined irrelevant attributes
 - a. We determined that neither "IncomeErr" now "IncomePerCapErr", income error and income per capita error respectively, were relevant to our solution. Thus, these attributes were dropped
 - b. We also removed "Pacific", "Transit and FamilyWork" attribute since many of the values were 0's meaning that those attributes were not particularly meaningful
 - c. "Employed" was also dropped because we already have a percent unemployed attribute which meant that this column would provide redundant information
- 4. Identified missing values
 - a. There was only one missing value for a single observation of "Child Poverty". So, we filled this value with 0 since it was unnecessary to discard the entire observation.

Attribute	Number of Missing
	Values
Countyld	0

State	0
County	0
TotalPop	0
Men	0
Women	0
Hispanic	0
White	0
Black	0
Native	0
Asian	0
Pacific	0
VotingAgeCitizen	0
Income	0
IncomePerCap	0
Poverty	0
ChildPoverty	1 0
Professional	0
Service	0
Office	0
Construction	0
Production	0
Drive	0
Carpool	0
Transit	0
Walk	0
OtherTransp	0
WorkAtHome	0
MeanCommute	0
Employed	0
PrivateWork	0
PublicWork	0
SelfEmployed	0
FamilyWork	0
Unemployment	0

- 5. Added a "percent_women" attribute while dropping the count of men and women. This was done to prevent population skewing of data. Percentages also allowed us to reduce the total number of attributes in the dataset
- 6. Performed mean and median poverty and child poverty calculations. This allows us to better categorize whether or not a county falls above or below the poverty line. We use binary indicators for the "Poverty Category" and the "Child Poverty Category" where 0 represents falling below the mean poverty line (poverty is low) and 1 represents falling above the line (poverty is high)
- 7. Rearranged columns so that similar attributes are side-by-side

Data Exploration

Descriptive Statistics

We begin by calculating the descriptive statistics for each attribute.

	count	mean	std	min	25%	50%	75%	max
Countyld	2427.0	31584.119489	16286.815957	1001.000000	19046.000000	30059.000000	47018.000000	7.215300e+04
TotalPop	2427.0	100277.147507	338543.745227	74.000000	11264.000000	25625.000000	66275.000000	1.010572e+07
Percent_Women	2427.0	49.997184	2.338260	19.166215	49.495212	50.432776	51.144426	5.663391e+01
Hispanic	2427.0	11.403296	19.532931	0.000000	2.100000	4.100000	9.900000	9.990000e+01
White	2427.0	74.983890	23.100311	0.000000	63.450000	83.800000	92.800000	1.000000e+02
Black	2427.0	8.547796	14.205141	0.000000	0.500000	1.900000	8.950000	8.690000e+01
Native	2427.0	1.732674	7.250648	0.000000	0.100000	0.300000	0.600000	9.030000e+01
Asian	2427.0	1.282118	2.628246	0.000000	0.200000	0.600000	1.200000	4.180000e+01
VotingAgeCitizen	2427.0	70967.882159	218772.977868	59.000000	8524.000000	19425.000000	50359.000000	6.218279e+06
Income	2427.0	49057.969922	13641.123656	11680.000000	40893.000000	47873.000000	55613.000000	1.175150e+05
IncomePerCap	2427.0	25711.307787	6629.901586	7047.000000	21669.500000	25208.000000	29038.000000	6.952900e+04
Professional	2427.0	31.536259	6.542366	11.400000	27.300000	30.500000	34.900000	6.900000e+01
Service	2427.0	18.133704	3.699940	0.000000	15.700000	17.800000	20.100000	4.640000e+01
Office	2427.0	21.897775	3.181856	4.800000	20.000000	22.100000	23.900000	3.720000e+01
Construction	2427.0	12.625010	4.156398	0.000000	9.800000	12.200000	14.800000	3.640000e+01
Production	2427.0	15.807499	5.846940	0.000000	11.450000	15.100000	19.600000	4.870000e+01
Drive	2427.0	79.589864	7.742675	4.600000	77.250000	81.000000	84.100000	9.720000e+01
Carpool	2427.0	9.842027	2.981947	0.000000	8.000000	9.500000	11.200000	2.930000e+01
Walk	2427.0	3.271240	3.941989	0.000000	1.400000	2.300000	3.900000	5.920000e+01
OtherTransp	2427.0	1.622744	1.758607	0.000000	0.850000	1.300000	1.900000	4.320000e+01
WorkAtHome	2427.0	4.736918	3.062729	0.000000	2.900000	4.100000	5.700000	2.960000e+01
MassCommuta	2/27 0	22 /70010	5 600222	5 100000	10 600000	22 200000	26 000000	4 510000 c 01

Box Plots Race & Ethnicity Attributes

From these plots we can identify that White, Black attributes have significant differences in the poverty categories, whereas Hispanic attribute have small differences in the poverty category. There are very low percentage values for Native and Asian attributes.

For these plots, we can identify differences in Professional, Service, and Production attributes. There are no visible differences seen in Office and Construction attributes for poverty category.

For these plots, we can cannot identify many differences in the commute attributes for poverty category.

For these plots, there are small differences in Private work and Public Work. Likewise, there are very small difference in the Self Employed attribute of the Poverty Category.

For these plots, there is small differences in Percent_women and huge difference in unemployment attributes of Poverty Category.

Box Plot Conclusion

Through the analysis from the boxplots, we have dropped columns such as Native, Asian, Office, Construction, Drive, Walk, OtherTransport and VotingAgeCitizen attributes since they do not provide meaningful information into poverty prediction.

Data Outliers

Black	341
Carpool	108
ChildPoverty	83
Child_Poverty Category	0
County	0
CountyId	0
Hispanic	319
Income	131
IncomePerCap	112
MeanCommute	36
Percent_Women	215
Poverty	100
Poverty Category	0
PrivateWork	72
Production	14
Professional	76
PublicWork	82
SelfEmployed	118
Service	71
State	0
TotalPop	326
Unemployment	112
White	97
WorkAtHome	122
dtype: int64	

Even though this data has outliers, all of them fall within the percentage values and none of them exceed 100%. This is reasonable and hence the data provides insight in identifying and predicting the values regarding poverty.

^{*}Note that the code regarding the aforementioned information is provided in the DPTestdata.ipynb file.

Data Modeling

Both regression and classification models were created for this dataset.

Regression Models

Poverty

The following are plots for attributes that affect Poverty values.

Including all variables

R squared: 0.8513298077255882

Adjusted R-squared: 0.8472980736978075

RMSE - 3.4209848294802594

Training & Validation R squared values

[0.8272983071536646, 0.8504796157247451]

The training and Validation R squared values tells us that the model is predicting validation results better than training set which is good.

Remarks: Here, using all the variables, the evaluation metrics provide a good Adjusted R squared value.

Model 2

LASSO Regression

R squared: 0.8336599709647284

Adjusted R squared: 0.829149054923094

RMSE: 3.9933497011553434

Remarks: Here using LASSO Regression, the adjusted R squared has decreased slightly but this gives us a good estimate of which parameters are more useful. In this LASSO, the attributes 'White', 'Income', 'IncomePerCap' and 'Unemployment' are considered important and affecting parameters.

Includes: 'Percent_Women', 'White', 'Income', 'IncomePerCap', 'Professional', 'Unemployment'

R squared: 0.8471259545707231

Adjusted R squared: 0.8455972141164304

RMSE: 3.473878047933116

Remarks: Here the in combination with the LASSO attributes, we have included 'Percent_Women', 'Professional' attributes which increased the Adjusted R squared value but it is not as high as using all the variables. We want our model not to be complex, so we should find out the right set of attributes and in minimum number.

Model 4 – Best Regression Model for Poverty

Includes: 'Hispanic', 'White', 'Income', 'IncomePerCap', 'Professional', 'Production',

'Unemployment' (BEST MODEL) R squared: 0.8514433108569243

Adjusted R squared: 0.849707256058925

RMSE: 3.422593507053815

Training & Validation R squared values

[0.8142781696578959, 0.8503389622847697]

The model is doing very well in the validation set than the training set and has a good Adjusted R squared value.

Remarks: In this model, the attributes used with LASSO and additional attributes such as 'Hispanic', 'Professional' and 'Production'

Child Poverty

The following are plots impact Child Poverty values.

Including all variables

R squared: 0.7725131347267581

Adjusted R squared: 0.7663439993973142

RMSE: 5.989999440186332

Remarks: Here, using all the variables, the evaluation metrics provide us a moderate Adjusted R squared value.

Model 2

LASSO Regression

R squared: 0.7680747760798697

Adjusted R squared: 0.7617852784820357

RMSE: 6.264814834157485

Remarks: In this LASSO regression model, it provides us with an important set of attributes that help in predicting the results efficiently. The attributes that were selected by the LASSO regression model are 'White', 'Income', 'IncomePerCap', 'SelfEmployed' and 'Unemployment'.

Model 3 – Best Regression Model for Child Poverty

Includes: 'Percent_Women', 'Hispanic', 'White', 'Income', 'IncomePerCap', 'SelfEmployed',

'Unemployment' (BEST MODEL) R squared: 0.7724443465917782

Adjusted R squared: 0.7697850985552881

RMSE: 5.992641178686748

Remarks: In this regression model, using the above-mentioned attributes in combination with LASSO attributes, we have achieved a greater Adjusted R squared value which is 0.7697. This is the best model so far for predicting Child Poverty percentage.

Classification Models

Poverty

In the following sections, we utilize various classification techniques to find the best model for classifying poverty.

Decision Tree Classifier

Model 1

Using all variables and entropy

Number of Nodes: 295

Accuracy: 0.83 Error: 0.17

Precision: array([0.86, 0.80]) Recall: array([0.85, 0.82]) F1 Score: array([0.85, 0.81])

Model 2

Using some variables and entropy - Hispanic,

White, Black, Percent_Women

of Nodes: 879 Accuracy: 0.66 Error: 0.34

Precision: array([0.70, 0.60]) Recall: array([0.69, 0.61]) F1_Score: array([0.70, 0.61])

Model 3

Using some variables and entropy -

Unemployment, Income,

SelfEmployed # of Nodes: 577 Accuracy: 0.80 Error: 0.20

Precision: array([0.82, 0.77]) Recall: array([0.83, 0.76]) F1 Score: array([0.82, 0.76])

Model 5

Using some variables and entropy - Hispanic, Black, White, Percent_Women, Unemployment,

Income, SelfEmployed

of Nodes: 405 Accuracy: 0.85 Error: 0.15

Precision: array([0.86, 0.82]) Recall: array([0.87, 0.82]) F1 Score: array([0.87, 0.82])

Using some variables and entropy - Hispanic, Black, White, Percent_Women, Unemployment, Income, SelfEmployed, Professional

of Nodes: 375 Accuracy: 0.86 Error: 0.14

Precision: array([0.88, 0.84]) Recall: array([0.88, 0.84]) F1_Score: array([0.88, 0.84])

Model 6

Using some variables and entropy - Hispanic, Black, White, Unemployment, Income, SelfEmployed, Professional

of Nodes: 381 Accuracy: 0.87 Error: 0.13

Precision: array([0.89, 0.85]) Recall: array([0.88, 0.85]) F1_Score: array([0.89, 0.85])

Model 1 Confusion matrix 300 250 316.000 29.000 0 200 Actual 150 51.000 - 100 - 50 ò í Predicted

Model 2

Model 3

Using some variables with k = 5 - Hispanic, Black, White, Unemployment, Income, SelfEmployed, Professional

Accuracy: 0.87 Error: 0.13

Precision: array([0.86, 0.88]) Recall: array([0.92, 0.81]) F1_Score: array([0.89, 0.84])

Using some variables with k = 7 - Hispanic, Black, White, Unemployment, Income, SelfEmployed, Professional

Accuracy: 0.87 Error: 0.13

Precision: array([0.86, 0.89]) Recall: array([0.92, 0.81]) F1_Score: array([0.89, 0.85])

Using some variables with k = 5 - Hispanic, Black, White, Unemployment, Income, SelfEmployed, Professional, Percent_Women

Accuracy: 0.86 Error: 0.14

Precision: array([0.86, 0.87]) Recall: array([0.91, 0.80]) F1_Score: array([0.88, 0.83])

Using some variables with k = 7 - Hispanic, Black, White, Percent_Women

Accuracy: 0.71 Error: 0.29

Precision: array([0.70, 0.73]) Recall: array([0.86, 0.53]) F1 Score: array([0.77, 0.61])

Using some variables with k = 7 -Unemployment, Income, SelfEmployed, Professional

Accuracy: 0.85 Error: 0.15

Precision: array([0.87, 0.82]) Recall: array([0.87, 0.82]) F1 Score: array([0.87, 0.82])

Using some variables with k = 7 -Unemployment, Income, SelfEmployed, Professional, Percent Women

Accuracy: 0.88 Error: 0.13

Precision: array([0.87, 0.88]) Recall: array([0.92, 0.82]) F1_Score: array([0.90, 0.85])

Support Vector Machines

Using all variables

Accuracy: 0.87 Error: 0.13

Precision: array([0.88, 0.86]) Recall: array([0.90, 0.84]) F1_Score: array([0.89, 0.85])

Model 2

Using some variables - Hispanic, White, Black

Accuracy: 0.72 Error: 0.28

Precision: array([0.69, 0.84]) Recall: array([0.93, 0.45]) F1_Score: array([0.79, 0.58])

Model 3

Using some variables - Hispanic, White, Black, Percent_Women

Accuracy: 0.72 Error: 0.28

Precision: array([0.69, 0.83]) Recall: array([0.93, 0.45]) F1_Score: array([0.79, 0.59])

Model 4

Using some variables - Unemployment, Income, SelfEmployed

Accuracy: 0.86 Error: 0.14

Precision: array([0.86, 0.87]) Recall: array([0.91, 0.80]) F1_Score: array([0.88, 0.84])

Model 6 – Best Classification Model for Predicting Poverty

Child Poverty

Decision Tree Classifier

Using some variables - Unemployment, Income, SelfEmployed, Black, White, Hispanic, Percent_Women

Accuracy: 0.88 Error: 0.12

Precision: array([0.88, 0.87]) Recall: array([0.91, 0.85]) F1_Score: array([0.90, 0.86])

Using some variables - Unemployment, Income, SelfEmployed, Black, White, Hispanic, Percent_Women, Professional

Accuracy: 0.89 Error: 0.11

Precision: array([0.89, 0.88]) Recall: array([0.91, 0.86]) F1_Score: array([0.90, 0.87])

Model 2

Model 3

Model 4

Using all variables and entropy

of Nodes: 365 Accuracy: 0.80 Error: 0.20

Precision: array([0.82, 0.78]) Recall: array([0.82, 0.78]) F1_Score: array([0.82, 0.78])

Using some variables and entropy - Hispanic, White, Black, Percent_Women

of Nodes: 887

Accuracy: 0.65 Error: 0.35

Precision: array([0.67, 0.61]) Recall: array([0.69, 0.60]) F1 Score: array([0.68, 0.60])

Using some variables and entropy -Unemployment, Income, SelfEmployed # of Nodes: 673

Accuracy: 0.76

Error: 0.24

Precision: array([0.78, 0.73]) Recall: array([0.77, 0.75]) F1_Score: array([0.78, 0.74])

Using some variables and entropy - Hispanic, Black, White, Percent_Women,

Unemployment, Income, SelfEmployed

of Nodes: 435

Accuracy: 0.78 Error: 0.22

Precision: array([0.80, 0.76]) Recall: array([0.80, 0.76]) F1_Score: array([0.80, 0.76])

K-Nearest Neighbors

Using some variables and entropy - Hispanic,

Black, White, Unemployment, Income, SelfEmployed

of Nodes: 411

Accuracy: 0.80 Error: 0.20

Precision: array([0.81, 0.78])
Recall: array([0.82, 0.77])
F1_Score: array([0.82, 0.78])

Model 2

Model 3

Using all variables with k = 13

Accuracy: 0.83 Error: 0.17

Precision: array([0.83, 0.84]) Recall: array([0.88, 0.78]) F1_Score: array([0.85, 0.81])

Using some variables with k = 13 - Hispanic, Black, White, Unemployment, Income, SelfEmployed, Professional

Accuracy: 0.83 Error: 0.17

Precision: array([0.83, 0.83]) Recall: array([0.87, 0.78]) F1_Score: array([0.85, 0.81])

Using some variables with k = 13 - Hispanic, Black, White, Percent_Women

Accuracy: 0.78 Error: 0.22

Precision: array([0.78, 0.79]) Recall: array([0.85, 0.71]) F1_Score: array([0.81, 0.75])

Model 4 – Best Model Classification model for predicting Child Poverty

Using some variables with k = 13 - Hispanic, Black, White, Unemployment, Income, WorkAtHome

Accuracy: 0.85 Error: 0.15

Precision: array([0.85, 0.86]) Recall: array([0.89, 0.81]) F1_Score: array([0.87, 0.83])

Support Vector Machines

Model 2

Model 3

Using all variables

Accuracy: 0.85 Error: 0.15

Precision: array([0.85, 0.84]) Recall: array([0.88, 0.81]) F1_Score: array([0.86, 0.83])

Using some variables- Hispanic, White, Black

Accuracy: 0.71 Error: 0.29

Precision: array([0.67, 0.82]) Recall: array([0.92, 0.44]) F1_Score: array([0.77, 0.58])

Using some variables- Hispanic, White, Black, Percent_Women

Accuracy: 0.71 Error: 0.29

Precision: array([0.67, 0.83]) Recall: array([0.92, 0.45]) F1_Score: array([0.77, 0.58])

Using some variables- Unemployment, Income, SelfEmployed

Accuracy: 0.83 Error: 0.17

Precision: array([0.83, 0.83]) Recall: array([0.87, 0.79]) F1_Score: array([0.85, 0.81])

Using some variables- Hispanic, White, Black, Unemployment

Accuracy: 0.84 Error: 0.16

Precision: array([0.85, 0.83]) Recall: array([0.86, 0.81]) F1 Score: array([0.86, 0.82])

Conclusion

The best model that accurately classifies poverty in an area is the support vector machine model 6. This model uses variables <u>Hispanic</u>, <u>Black</u>, <u>White</u>, <u>Unemployment</u>, <u>Income</u>, <u>SelfEmployed</u>, <u>Percent Women</u>, and <u>Professional</u>.

The best model that accurately classifies child poverty in an area is the K-Nearest Neighbors model 4. The variables used in this model are <u>Hispanic, Black, White,</u> Unemployment, Income, and WorkAtHome.

The variables shared among these models are Hispanic, Black, White, Unemployment, and Income.

Sample Output

[148]:		Countyld	State	County	Poverty	ChildPoverty	Poverty Category	Child_Poverty Category
	0	1005	Alabama	Barbour County	27.773252	38.212651	1	1
	1	1025	Alabama	Clarke County	27.235754	40.508661	1	1
	2	1037	Alabama	Coosa County	22.358539	34.926116	1	1
	3	1047	Alabama	Dallas County	31.408525	45.562577	1	1
	4	1053	Alabama	Escambia County	26.052590	36.944246	1	1

Data Visualization Choropleth Maps *Poverty*

County Poverty Prediction Based on Census Data

Concluding Remarks

At glance, the two maps appear identical. However, there are a few counties in which the child poverty and the poverty indicator do not coincide. In spite of this, we observe that poverty and child poverty are closely related. Finally, it is important to note that while the strongest predictors of poverty in a county involve race, we want to emphasize that this does not imply that race is a causation of poverty. Instead, we conclude that poverty is closely related to opportunities and access to employment based on the common predictors of employment and type of employment.

Bibliography

- 2017. *Kaggle.* 12 13. Accessed 11 22, 2019. https://www.kaggle.com/muonneutrino/us-census-demographic-data.
- Semega, Jessica, Melissa Kollar, and Abinash Mohanty. 2019. "Income and Poverty in the United States: 2018." *Income and Poverty in the United States: 2018.* September 10. Accessed 11 28, 2019. https://www.census.gov/library/publications/2019/demo/p60-266.html.