Table of Contents

Basic Electricity	2
Definitions	2
Relationships	2
Passive Sign Convention	2
Circuit Elements	2
Independent	2
Dependent	2
Resistors	2
Capacitors	2
Inductors	3
Op Amps	3
Voltmeter	3
Ammeters	3
Analysis Methods	2
KCL	
KVL	
Node-Voltage	
Super-Nodes	
Current Mesh	
SuperMesh	
Thévenin Equivalent	
Norton Equivalent	
Source Transform	
Inductors and Capacitors	
Sinusoidal Steady State	4
AC	4
Impedance and Reactance Equations	
Sinusoidal Functions	
Power	5

Basic Electricity

Definitions

Voltage is energy per unit charge. = $\frac{dw}{dq} \left(\frac{J}{C} = V \right)$

Current is rate of charge flow. = $\frac{dq}{dt} \left(\frac{C}{s} = A \right)$

Power is energy per unit time. = $\frac{dw}{dt}$ ($W = VA = \frac{J}{s}$)

Resistance is the capacity to impede flow of current. = $R(\Omega)$

Nodes are points where two or more elements join

Loops are any closed path in circuit

Meshes are loops not containing other loops

Relationships

$$p = vi = i^2 R = \frac{v^2}{R}$$

$$v = iR$$

Passive Sign Convention

Passive Element(Load) = Power Dissipated > 0

Active Element = Power Dissipated < 0

Circuit Elements

Independent

Ideal Voltage Sources deliver a prescribed voltage independent of current flow.

Idea Current Sources deliver a prescribed current independent of voltage

Dependent

Voltage/Current Control Voltage/Current Sources depend on Independent Elements.

VCVS. = $v_s = \alpha v_x$

CCVS. = $v_s = \beta i_x$

VCCS. = $i_S = \gamma v_x$

CCCS. = $i_S = \gamma i_X$

Resistors

Resistors impede the flow of charge. **Ohm's Law** states v=iR. **Shorts** are when voltage across is 0. Ex: $R=0 \rightarrow V=i(0)=0$. **Opens** are when current is 0. Ex: $R=\omega \rightarrow i=\frac{v}{\omega}=0$.

Series:
$$R_{eq}=R_1+R_2+\cdots+R_n=\sum_n R_n$$
 , $V_n=\frac{R_n}{R_{eq}}V_S \to V_1=\frac{R_1}{R_1+R_2}V_S$

Parallel:
$$G_{eq} = G_1 + G_2 + \dots + G_n = \sum_n G_n$$
, $i_n = \frac{\frac{1}{R_n}}{\frac{1}{R_{eq}}} i_s = \frac{G_n}{G_{eq}} i_s \rightarrow i_1 = \frac{R_2}{R_1 + R_2} i_s$, $R_{eq} = \frac{R_2}{R_1 + R_2} i_s$, $R_{eq} = \frac{R_2}{R_1 + R_2} i_s$

$$\sum_{n} 1/R_n \to R_{eq\ TWO} = \frac{R_1 R_2}{R_1 + R_2}$$

Capacitors

Capacitors store energy and are model as an open in DC steady state. Series add in parallel and parallel add in series.

$$q = cv, i = c\frac{dv}{dt} \rightarrow i = c(0) = 0, v = \frac{1}{c} \int_{t_0}^t i \, dt + v(t_0), w_c = \frac{1}{2} cv^2$$

Inductors

Inductors store energy and are model as closed in DC steady state. Series add in series and parallel add in parallel.

$$v = L \frac{di}{dt} \rightarrow v = L(0) = 0, i = \frac{1}{L} \int_{t_0}^{t} v \, dt + i(t_0), w_L = \frac{1}{2} L i^2$$

Op Amps

Op Amps can add, subtract, multiply or divide input voltage signals.

$$v_p = v_n, R_{in} \rightarrow \infty, R_{out} = 0, A = \frac{v_o}{v_s} = \frac{v_o}{v_p - v_n} \rightarrow A \rightarrow \infty, -V_{cc} \leq V_o \leq V_{cc}$$

Procedure to solve for v_o

- 1) Solve for v_p or v_n (whichever is not connected to v_o).
- 2) Use Node-Voltage Method for the one connected to v_o .
- 3) Substitute Equation from step (1) and (2) and solve.

Voltmeter

Voltmeters find voltages & are connected in parallel.

$$R_{estiance\ into\ circuit} = \frac{v_{fullscale}}{y} \rightarrow Ideally \ \infty, R_v = \frac{v_r}{y}, v_R = fullscale - x$$

Ammeters

Ammeters find currents & are connected in series.

$$R_{estiance\;into\;circuit} = \frac{x}{i_{fullscale}} \rightarrow Ideally\;0, \\ R_a = \frac{x}{i_r}; \\ i_R = fullscale - y$$

Analysis Methods

KCI

Kirchhoff's current law states charge is conserved. $\sum_{node} i = 0$

KVL

Kirchhoff's voltage law states energy is conserved. $\sum_{loop} v = 0$

Node-Voltage

- 1) Define a Reference Node to 0V
- 2) Label all independent nodes (voltage unknown)
- 3) Define current directions
- 4) Write current in terms of Node-Voltage ($i = \frac{V_A v_B}{R}$) and substitute into KCL equations
- 5) Solve
- 6) Use Node-Voltage to find anything else in the circuit.

Super-Nodes

Super-Nodes are 2 non-reference nodes connected directly by a voltage source. To solve apply KVL in Loop with Super.

Current Mesh

- 1) Define current loop directions.
- 2) Express voltage in terms of Current Meshes ($v = i_1 R_1$) and substitute into KVL equations.
- 3) Solve
- 4) Use Mesh to find anything else in circuit

SuperMesh

To solve SuperMeshes find a closed path that does include the current source and apply KCL.

Thévenin Equivalent

A **Thévenin equivalent circuit** is a simple circuit with a voltage source and resistor in series.

- 1) Set all independent source to 0 (Short VS and open CS).
- $2) R_{th} = R_{eq}$
- 3) $v_{th} = v_{OC}$ (Set load to open).

Norton Equivalent

A **Norton equivalent circuit** is a simple circuit with a current source and resistor in parallel.

- $1) R_N = R_{th}$
- 2) $i_N = i_{sc}$ (Set load to closed).

Source Transform

A Thévenin equivalent circuit can be transformed into a Norton equivalent circuit and vice versa. $v_{th}=i_NR$ in Series is equal to $i_N=\frac{v_{th}}{R}$ in Parallel. The resistor remains constant and the sources change following Ohm's Law.

Inductors and Capacitors

- 1) Find time constant. = $\tau = Rc = \frac{L}{R}$
- 2) Capacitors: $v_{0-}=v_{0+}$, Inductors: $i_{0-}=i_{0+}$
- 3) Find X_f as $t \to \infty$
- 4) Standard form: $x(t) = x_f + (x_0 x_f)e^{-\frac{t}{\tau}}$

Sinusoidal Steady State

- 1) Find ω
- 2) Convert from time domain to frequency domain
 - a. Sinusoidal voltages and currents to phasors
 - b. R, L, C to Impedance
- 3) Solve linear system v = Zi
- 4) Convert back to time domain

AC

Impedance and Reactance Equations

	Impedance	Reactance
Resistor	R	0
Inductor	$j\omega L$	ωL
Capacitor	_ <u>j</u>	_ 1
	ωc	ως

Sinusoidal Functions

$$v(t) = v_m \cos(\omega t + \phi) = v_m \angle \phi, T = \frac{2\pi}{\omega}, \omega = 2\pi f$$

Power

$$\begin{aligned} & \textbf{Maximum Power: } Z_L = Z_{th} \rightarrow p_{L\,max} = \frac{v_{th}^2}{4R_{th}}(DC); Z_L = Z_{th}^* \rightarrow P_{L\,Max} = \frac{\left|v_{th\,(RMS)}\right|^2}{4R_L}(AC) \\ & \textbf{Apparent (S), Average}(P), \text{ and } \textbf{Reactive}(Q) \text{ Power: } S = P + jQ = v_{RMS}i_{RMS}^* \\ & \textbf{Power/Reactive Factor: } pf = \cos(\theta_v - \theta_i), rf = \sin(\theta_v - \theta_i); \\ & \textbf{Average Power: } P = \frac{1}{2}v_mi_m\cos(\theta_v - \theta_i) = v_{RMS}i_{RMS}\cos(\theta_v - \theta_i) \\ & \textbf{Reactive Power: } Q = \frac{1}{2}v_mi_m\sin(\theta_v - \theta_i) = v_{RMS}i_{RMS}\sin(\theta_v - \theta_i) \\ & \textbf{Units:} P \rightarrow watts, q \rightarrow VAR, S \rightarrow VA \end{aligned}$$