Implementation of PID Control

A/Prof Lindsay Kleeman

WARNING

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice

Outline

- Definition continuous time real variables
- Gain benefits and behaviours
- Implementation: discrete time, integer variables
- ☐ How to tune
- How to implement
- ☐ Understanding what can go wrong.

Background

- □ PID control is the most common controller used in industry.
- Simple to implement suitable for embedded systems
- Works robustly for most control problems
- Computational simple and well understood

Definitions

- Suppose we wish to control x(t) to some desired trajectory $x^*(t)$ with the input u(t).
- \Box Define the error, $e(t) = x^*(t) x(t)$
- A Proportional Integral Differential (PID) Controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d e(t)}{dt}$$

Proportional Gain

Integral Gain

Differential Gain

Motivation for Gains

- lacktriangledown Increasing K_p gives system greater reaction to errors
 - Decreases response time
 - $-K_p$ too high results in oscillatory response or instability
- \square K_p alone cannot remove steady state errors.
 - \Rightarrow Need for integral feedback K_i steady state errors wind up integral term, reducing error.
- \square Increasing K_i causes overshoot and oscillation.
 - Differential gain K_d damps overshoot by "predicting" errors using the current error derivative.

Getting the Sign Wrong!

What happens when the feedback sign is wrong?

– Eg Optical shaft encoder swapping φA and φB
 Eg Swapping DC motor voltage terminals

Digital Implementation

- □ Continuous time is mapped to discrete time at a constant sample period ∆t
 - Variations in sample period generate controller errors
 - Eg scheduling latencies in RTOS
- □ Real variables approximated by finite precision integer_bit.fraction_bits or i.f (see fixed point arithmetic notes)
 - More controller errors.
 - Need to analyse effects.

Proportion Gain Implementation

 \square $K_p e(t)$ implemented directly with integer multiplication

Integral Gain Implementation

$$K_{i} \int_{0}^{t} e(\tau) d\tau \cong K_{i} \Delta t \sum_{k=0}^{k=n} e(k\Delta t)$$

$$\equiv K_{i} \Delta t \sum_{k=0}^{k=n} e_{k} \longrightarrow \text{Discrete time error}$$

$$\equiv K_{i} \Delta t S(n) = K_{i} \Delta t \left(S(n-1) + e_{n}\right)$$

$$\stackrel{\text{Recursive formulation - one addition and multiply per sample}}{}$$

Integral Windup

- When steady state error cannot be corrected quickly, integral term increases indefinitely – called integral windup.
 - Controller saturates and cannot recover quickly
- Solutions:
 - limiting integral term, or
 - Limiting time period of integration
 - Disabling integral term outside controllable region

Differential Gain Implementation

$$K_{d} \frac{d e(t)}{dt} \cong K_{d} \frac{e_{n} - e_{n-1}}{\Delta t} = \frac{K_{d}}{\Delta t} \left(e_{n} - e_{n-1}\right)$$
without noise

Recursive formulation – one subtraction and multiply per sample

e(n) $d(11)=K_{d} \xrightarrow{e(11)-e(10)} \text{ with noise}$ $d(12)=K_{d} \xrightarrow{e(12)-e(11)} \Delta t$ $0 \qquad 5 \qquad 10 \qquad 15$ From [Valvano] time, n

Error Difference can be noisy: average below better:

$$K_{d} \frac{d e(t)}{dt} \cong K_{d} \left(\frac{1}{2} \left[\frac{e_{n} - e_{n-3}}{3\Delta t} \right] + \frac{1}{2} \left[\frac{e_{n-1} - e_{n-2}}{\Delta t} \right] \right)$$

$$= \frac{K_{d}}{6\Delta t} \left(e_{n} + 3e_{n-1} - 3e_{n-2} - e_{n-3} \right)$$

Commercial Implementation

http://www.pmdcorp.com/downloads/app_notes/servoLoop.pdf

Pendulum Lab Implementation

$$MotorVolt_n = \left(K_p e_n + K_d^1 (e_n - e_{n-1}) + (128 + K_i^1 \sum_{j=0}^n e_j) / 256 + 128\right) / 256$$

- \square $K'_d = K_d/\Delta t$ and $K'_i = K_i^* \Delta t$, so that K_p , K'_d and K'_i scale as 1 1/ Δt and Δt
- \square K_p and K'_d 8.8 bit representation (8 integer + 8 fraction bits)
- \square K'_i 0.16 representation
- Rounding is used when removing fractional bits from results
- \Box Δt approximately 10 msec.
 - If Δt too small =>
 - error difference mostly 0 and rarely 1, rendering K_d useless,
 - integral winds up since error ~constant
 - If Δt too large => poor control and slow. Want Δt << time constant of motor response.

Gain/Sample Time Tuning

Design controller (Ziegler and Nichol)

 ΔT is the time step for the digital controller. run P and PI controllers with $\Delta T = 0.1 L$, run a PID controller $\Delta T = 0.05 L$. Proportional Controller

$$\mathbf{K}_P = \Delta \mathbf{U}/(\mathbf{L} * \mathbf{R})$$

Proportional-Integral Controller

$$\mathbf{K_P} = 0.9 \; \Delta \mathbf{U} / (\mathbf{L*R})$$

$$K_I = K_P / (3.33L)$$

Proportional-Integral-Derivative Controller

$$\mathbf{K_P} = 1.2 \,\Delta \mathbf{U}/(\mathbf{L*R})$$

$$\mathbf{K_I} = 0.5 \ \mathbf{K_P} / \mathbf{L}$$

$$\mathbf{K_D} = 0.5 \; \mathbf{K_P} \; \mathbf{L}$$

From [Valvano]

Not suitable for DC motors with angle feedback and voltage control – why?

Ziegler-Nichols Tuning

- \square K_i and K_d are first set to zero.
- K_p increased to "critical gain" Kc where starts to oscillate.
- ☐ Kc and the oscillation period Pc are used to set the gains as shown:

Ziegler–Nichols method						
Control Type	K_p	K_i	K_d			
ρ	0.5· <i>K</i> _c	-	-			
PI	0.45· <i>K</i> _c	$1.2K_p/P_c$	-			
PID	0.6· <i>K</i> _c	$2K_p/P_c$	$K_p P_c / 8$			

Discrete Time Version	Кр	Ki'	Kd'
P	0.5 Kc	-	-
PI	0.45 Kc	1.2∆t Kp/Pc	-
PID	0.6 Kc	2 ∆t Kp/Pc	KpPc/(8∆t)

http://en.wikipedia.org/wiki/PID_controller

Manual Tuning

Requires experience and trial and error

Effects of increasing parameters							
Parameter	Rise Time	Overshoot	Settling Time	S.S. Error			
K_p	Decrease	Increase	Small Change	Decrease			
K_i	Decrease	Increase	Increase	Eliminate			
K_d	Small Decrease	Decrease	Decrease	None			

http://en.wikipedia.org/wiki/PID_controller

Summary

- ☐ PID is a low cost, popular & effective control strategy
- ☐ Tuning and servo sample time dependent on system dynamics
- Need good understanding of implementation issues:
 - Integral windup
 - Output saturation
 - Over/under sample rates
 - Benefits of feedforward: reduced errors, faster response.