Project2

February 5, 2019

1 Baseflow and Direct Runoff for a Watershed

A) Report the baseflow index (BFI) for the watershed and create a graph showing the flow and baseflow hydrographs for a single year.

The BFI for the Tahquamenon River near Paradise, MI is 0.73. See below for the flow and baseflow hydrographs for 1985.

```
In [47]: import pandas as pd
         import numpy as np
         import datetime as dt
         import matplotlib.pyplot as plt
In [48]: data = pd.read_csv(
             'Tue_Feb__5_21_47_27_2019__9069.csv',
             names = \Gamma
                 'Day',
                 'Date',
                 'Flow',
                 'Direct Runoff',
                 'Baseflow'
             ],
             skiprows = 1,
             skipfooter = 3,
             engine='python',
             index_col = 0
         )
         data.Date = pd.to_datetime(data.Date)
         data = data.set_index(['Date'])
In [56]: fig,ax = plt.subplots(figsize=(12,10))
         data['19850101':'19860101'].Flow.plot(ax=ax,legend=True,color='k')
         data['19850101':'19860101'].Baseflow.plot(ax=ax,legend=True,color='k',linestyle='--')
         ax.set_ylabel('Discharge [cfs]')
         ax.set_title('Flow and Baseflow of Tahquamenon River in 1985')
         plt.savefig('Hydrograph_1985.png')
         plt.show()
```


B) Compute the climatology of monthly baseflow and direct runoff for the 30-year period from 1981 to 2010. Report the results as a table and in graphical form.

```
TableCombined['DaysInMonth'] = pd.Series(
    [31,28,31,30,31,30,31,30,31,30,31],
    index=TableCombined.index)
# Watershed Area
Area_mi2 = 790
Area_ft2 = Area_mi2 * 27878000
TableCombined['Total [cfs]'] = \
    TableCombined['Baseflow [cfs]'] + TableCombined['Direct Runoff [cfs]']
TableCombined['Baseflow_V'] = \
    TableCombined['Baseflow [cfs]']*60*60*24*TableCombined['DaysInMonth']
TableCombined['Direct Runoff_V'] = \
    TableCombined['Direct Runoff [cfs]']*60*60*24*TableCombined['DaysInMonth']
TableCombined['Baseflow [inch]'] = \
    TableCombined['Baseflow_V'] * 12 / Area_ft2
TableCombined['Direct Runoff [inch]'] = \
    TableCombined['Direct Runoff_V'] * 12 / Area_ft2
TableCombined['Total [inch]'] = \
    TableCombined['Baseflow [inch]'] + TableCombined['Direct Runoff [inch]']
TableCombined = TableCombined.drop(
    columns=[
        'DaysInMonth',
        'Baseflow_V',
        'Direct Runoff_V',
        'Total [cfs]',
        'Total [inch]'
   ]
)
```

TableCombined.round(decimals=2)

	Baseflow [cfs]	Direct Runoff [cfs]	Baseflow [inch]	Direct Runoff [inch]
January	461.11	87.34	0.67	0.13
February	394.99	105.01	0.52	0.14
March	546.77	308.70	0.80	0.45
April	1631.47	1004.95	2.30	1.42
May	1116.82	134.32	1.63	0.20
June	459.02	120.48	0.65	0.17
July	330.63	89.37	0.48	0.13
August	291.17	86.11	0.42	0.13
September	331.48	162.93	0.47	0.23
October	575.05	284.05	0.84	0.41
November	759.58	233.21	1.07	0.33
December	653.86	129.97	0.95	0.19

