Exponentialfunktionen

Beispiel: Bakterienwachstum

- Gegeben:
 - Täglich: +60%
 - Beobachtungsbeginn: 200 Bakterien
- Gesucht:
 - Funktion N(t)
 - N: Population
 - t: Zeit in Tagen

Beispiel: Zinsrechnung

- Gegeben:
 - Jährlich: +5%
 - Startkapital: 500€
- Gesucht:
 - Wann beträgt das Kapital 20000€?

Beispiel: Zinsrechnung

Funktion:

$$K(t) = 500 * 1,05^{t}$$

Umstellen:

$$\frac{K}{500} = 1,05^{t} \qquad t = \log_{1,05} \frac{K}{500}$$

$$t = \log_{1.05} \frac{20000}{500} = 75.6$$

Differenzieren

Gegeben:

$$f(x) = x^2$$

• Gesucht:

$$f'(x) = ?$$

Grafisches Differenzieren

- Die Ableitung scheint ebenfalls eine Exponentialfunktion zu sein
- Vermutung:

$$f'(x) = c * f(x)$$

$$f'(0)=c*f(0)=c=0,7$$

$$=> f'(x) = 0.7*f(x)$$

Rechnerisches Differenzieren

Differenzialquotient (Steigung einer Sekante an f):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h}$$

$$f'(x) = \lim_{h \to 0} \left(\frac{2^h - 1}{h} * 2^x \right)$$

$$=> f'(x) \approx 0.693$$

Die Eulersche Zahl

 Gesucht ist eine Zahl e als Basis einer Exponentialfunktion, für die der eben berechnete Grenzwert den Wert 1 hat, für die also gilt:

$$e^x = (e^x)'$$

$$\lim_{h\to 0} \left(\frac{e^h - 1}{h}\right) = 1$$

Die Eulersche Zahl

$$\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) = 1 \qquad \Rightarrow \frac{e^h - 1}{h} \approx 1 \qquad \Rightarrow \frac{e^h}{h} - \frac{1}{h} \approx 1$$

$$\Rightarrow \frac{e^h}{h} \approx 1 + \frac{1}{h} \qquad \Rightarrow e^h \approx h + 1 \qquad \Rightarrow h = \frac{1}{n}, h \to 0, n \to \infty$$

$$\Rightarrow e^{\frac{1}{n}} \approx \frac{1}{n} + 1 \qquad \Rightarrow \sqrt[n]{e} \approx \frac{1}{n} + 1 \qquad \Rightarrow e \approx \left(\frac{1}{n} + 1 \right)^n$$

$$\Rightarrow e = \lim_{n \to \infty} \left(\frac{1}{n} + 1\right)^n$$

Die Eulersche Zahl

$$e = \lim_{n \to \infty} \left(\frac{1}{n} + 1\right)^n$$

$n \longrightarrow \infty$	$\left(\frac{1}{n}+1\right)^n$
1	2.00000000
10	2.5937424601
1.000	2.71692393224
100.000	2.71826823719

 $e=2,71828\,18284\,59045\,23536\,02874\,71352\,66249\,77572\,47093\,69995$ $95749\,66967\,62772\,40766\,30353\,54759\,45713\,82178\,52516\,64274$ $27466\,39193\,20030\,59921\,81741\,35966\,29043\,57290\,03342\,95260$ $59563\,07381\,32328\,62794\,34907\,63233\,82988\,07531\,95251\,01901\dots$

Der natürliche Logarithmus

Der natürliche Logarithmus

 Umkehrfunktion der natürlichen Exponentialfunktion:

$$\ln(e^x) = x$$

$$e^{\ln(x)} = x$$

