

6.7.8.9.

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

QUÍMICA DE CIENCIAS DE LA TIERRA			1	10		
		Asignatura		Clave	Semestre	Créditos
C	CIENCIA	S BÁSICAS	COORI FISICA	DINACIÓN DE A Y QUÍMICA	INGENIERÍA GEOLÓGICA Licenciatura	
]	División	Depa	artamento		
,	Asignatı	ura:	Horas/sei	nana:	Horas/seme	estre:
	Obligato		Teóricas	4.0	Teóricas	64.0
(Optativa		Prácticas	2.0	Prácticas	32.0
			Total	6.0	Total	96.0
	no aplica	curso: ará los conceptos básico sarrollará sus capacidad	•			la resolució
Temario						
	NÚM.	NOMBRE			HOR	
	1.	Estructura atómica				3.0
	2.	Periodicidad química				2.0
	3.	Enlaces químicos y fuerzas				3.0
	4.	Teoría del orbital molecula	ar y cristaloquímic	a		5.0
	5.	Estequiometría			10	0.0

Estequiometría	10.0
Termoquímica y equilibrio químico	6.0
Electroquímica	8.0
Química orgánica	10.0
Tópicos selectos de química en las ingenierías de ciencias de la tierra	6.0
	64.0
Actividades prácticas	32.0
Total	96.0

1 Estructura atómica

Objetivo: El alumno aplicará el modelo atómico de Bohr y el modelo atómico de la mecánica cuántica para predecir las características magnéticas de los átomos.

Contenido:

- **1.1** Descripción de los experimentos: Thomson, Millikan, Planck, efecto fotoeléctrico, espectro electromagnético.
- **1.2** Modelo atómico de Bohr y teoría de De Broglie.
- 1.3 Modelo atómico de la mecánica cuántica, números cuánticos y estructura electrónica.
- 1.4 Diamagnetismo. Paramagnetismo. Ferromagnetismo. Dominios magnéticos. Magnetización.

2 Periodicidad química

Objetivo: El alumno relacionará las principales propiedades de los elementos con las analogías verticales y horizontales en la tabla periódica.

Contenido:

- **2.1** Propiedades de los elementos: masa atómica, punto de ebullición, carácter ácido-base, punto de fusión, carácter metálico, densidad, radio atómico, radio iónico, energía de primera ionización, estructura cristalina, electronegatividad, conductividad térmica y conductividad eléctrica.
- 2.2 Analogías en las propiedades de los elementos para los miembros de un mismo periodo o grupo.

3 Enlaces químicos y fuerzas intermoleculares

Objetivo: El alumno explicará las interacciones entre las moléculas a partir de la estructura de Lewis y la diferencia de electronegatividades.

Contenido:

- **3.1** Teoría de enlace valencia. Enlaces covalentes: puro, polar y coordinado. Enlace iónico.
- **3.2** Fuerzas intermoleculares entre moléculas diatómicas.
- **3.3** Estructuras de Lewis de moléculas sencillas.
- **3.4** Teoría de repulsión de los pares electrónicos de la capa de valencia.
- 3.5 Geometría molecular y polaridad con respecto a átomos centrales.
- **3.6** Fases: sólida, líquida y gaseosa. Fenómenos de superficie: tensión superficial, capilaridad.
- 3.7 Disoluciones: diluidas, saturadas y sobresaturadas. Disoluciones verdaderas. Suspensiones. Coloides.
- 3.8 Conductividad eléctrica de materiales iónicos en disolución.

4 Teoría del orbital molecular y cristaloquímica

Objetivo: El alumno aplicará la teoría de las bandas para explicar la diferencia en el comportamiento eléctrico de los materiales, así como la estructura cristalina.

Contenido:

- 4.1 Teoría del orbital molecular para moléculas diatómicas.
- **4.2** Teoría de las bandas.
- 4.3 Enlace metálico.
- **4.4** Aislantes, semiconductores, conductores y superconductores. Aplicaciones.
- **4.5** Cristales: celdas unitarias, tipos de cristales.

5 Estequiometría

Objetivo: El alumno aplicará las diferentes relaciones estequiométricas y las unidades que se emplean para medir las concentraciones en fase sólida, líquida y gaseosa para la resolución de ejercicios.

Contenido:

5.1 Conceptos de mol y masa molar.

- 5.2 Relaciones estequiométricas: relación en entidades fundamentales, relación molar y relación en masa.
- **5.3** Tipos de recciones: redox y ácido-base.
- **5.4** Cálculos estequiométricos: reactivos limitante y en exceso, rendimientos teórico, experimental y porcentual.
- **5.5** La fase gaseosa y la ecuación del gas ideal.
- **5.6** Unidades de concentración: molaridad, porcentajes masa/masa, masa/volumen y volumen/volumen, fracción molar y partes por millón.

6 Termoquímica y equilibrio químico

Objetivo: El alumno aplicará los conceptos básicos de la termoquímica y el equilibrio químico y los empleará en la resolución de ejercicios.

Contenido:

- 6.1 Calor y entalpia de una reacción química. Determinación de la entalpia de una reacción.
- 6.2 Ley de Hess.
- **6.3** Constante de equilibrio de una reacción química.
- **6.4** Principio de Le Chatelier

7 Electroquímica

Objetivo: El alumno aplicará las leyes de Faraday y la serie de actividad para resolver ejercicios de pilas y de electrodepositación.

Contenido:

- 7.1 La electricidad y las reacciones óxido-reducción espontáneas y no espontáneas.
- 7.2 Potencial estándar de reducción. Serie de actividad.
- **7.3** Pilas voltáicas. Pares óxido-reducción. Reacciones en el cátodo y en el ánodo. Reacción iónica total. Potencial de la pila. Diagrama de la pila.
- 7.4 Celdas electrolíticas: leyes de Faraday. Galvanización. Electrodepositación.
- 7.5 Corrosión. Inhibidores. Protección catódica.

8 Química orgánica

Objetivo: El alumno comprenderá las propiedades de los compuestos del carbono, su nomenclatura y los mecanismos principales de sus reacciones.

Contenido:

- **8.1** Hibridación del átomo de carbono en los compuestos orgánicos.
- **8.2** Alcanos: nomenclatura y propiedades.
- **8.3** Alquenos y alquinos: nomenclatura y propiedades.
- **8.4** Principales grupos funcionales en la química orgánica, su nomenclatura y propiedades.
- **8.5** Reacciones de eliminación y adición en química orgánica.

9 Tópicos selectos de química en las ingenierías de ciencias de la tierra

Objetivo: El alumno hará una revisión bibliográfica de los conceptos de química que tengan una aplicación directa en su carrera.

Contenido:

- 9.1 Química en la ingeniería geofísica.
- 9.2 Química en la ingeniería geológica.
- 9.3 Química en la ingeniería de minas y metalurgia.
- **9.4** Química en la ingeniería petrolera.

Bibliografía básica	Temas para los que se recomienda:
ALBARÉDE, F.	
Geochemistry: An Introduction	9
New York	
Cambridge University Press, 2009	
BROWN, Theodore, LE MAY, Eugene, et al.	
Química la ciencia central	Todos
México	
Pearson Prentice Hall, 2004	
CALLISTER, William D., RETHWISCH, David G.	
Materials Science and Engineering: An Introduction	4
New York	
Willey, 2010	
CHANG, Raymond	
Química	Todos
México	
McGraw-Hill, 2010	
CRUZ GARRITZ, Diana, CHAMIZO, José, et al.	
Estructura atómica un enfoque químico	1, 2, 3
México	
Pearson Educación, 2002	
CYTEC	
Mining Chemicals Handbook	9
New York	
Cytec Industries, 2002	
EBBING, Darrell D, GAMMON, Steven	
Química general	Todos
México	
Cencage Learning, 2010	
KOTZ, John C., TREICHEL, Paul M.	
Química y reactividad química	Todos
México	
Thomson, 2003	
LEWIS, Rob, EVANS, Wynne	
Chemistry	Todos
New York	
Palgrave Foundations Series, 2011	

25/11/2014 11:36

Reverté S.A., 2003

volumen 1 y 2

1	7	1	7	1
(/	/	1	,

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	X
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	X
Uso de software especializado	X	Uso de redes sociales con fines académicos	X
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	X
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

Licenciatura en Química, Ingeniería Química o carreras afines, cuyo contenido en el área sea similar a éstas. Deseable haber realizado estudios de posgrado, contar con experiencia docente o haber participado en cursos o seminarios de iniciación en la práctica docente.