Information-Theretic Metric Learning

Davis, J. V., Kulis, B., Jain, P., Sra, S., & Dhillon, I. S. Information-theoretic metric learning.(ICML 2007) Implemented by Junjie Hu (jjhu@cse.cuhk.edu.hk) Sun Jul 6 2014 05:11:37

This is the C++ implementation of ITML. To use this C++ version, you need to install the C++ boost library, which is very popular in std C++ users. You can install it from its website. http://www.boost.org/

Copy all the files to the Linux machine. It is tested on the Ubuntu 12.04. The result is exactly the same as the Matlab version, but much faster. Run the demo:

- (1) cmake .
- (2) make
- (3) ./demo

Then you will find the result in the ./dataset folder.

Contents

1	Gen	erate th	e Constra	ints											1
2	Clas	s Index													3
	2.1	Class I	List					 	 	 	 			 	 3
3	Clas	s Docu	mentatior	1											5
	3.1	dml_pr	oblem Str	uct Refere	nce			 	 	 	 			 	5
		3.1.1	Detailed	Descriptio	n			 	 	 	 			 	 5
	3.2	ITML (Class Refe	rence				 	 	 	 			 	5
		3.2.1	Detailed	Descriptio	n			 	 	 	 			 	 6
		3.2.2	Member	Function [Oocumer	ntation		 	 	 	 			 	 6
			3.2.2.1	Compute	Distance	eExtrem	ne	 	 	 	 			 	 6
			3.2.2.2	Compute	Distance	eExtrem	ne	 	 	 	 			 	 6
			3.2.2.3	GetCons	traints .			 	 	 	 			 	 6
			3.2.2.4	itml_alg				 	 	 	 			 	7
			3.2.2.5	KNN .				 	 	 	 				 7
	3.3	itml_pa	aram Struc	t Referenc	e			 	 	 	 			 	7
		331	Detailed	Description	n										۵

Chapter 1

Generate the Constraints

ITML C++ version, implemented by Junjie Hu. CreateDate 2014-07-05

Version

0.1

2	Generate the Constraints

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

dml_problem	
Struct to store the raw data for the Distance Metric Learning	 5
ITML	
ITML class containing all the supporting functions	 5
itml_param	
Struct storing the parameters of ITML	 7

Class Index

Chapter 3

Class Documentation

3.1 dml_problem Struct Reference

the struct to store the raw data for the Distance Metric Learning

```
#include <itml.h>
```

Public Attributes

- matrix< float > X
- vector< float > v
- matrix< float > C
- vector< float > label

3.1.1 Detailed Description

the struct to store the raw data for the Distance Metric Learning

The documentation for this struct was generated from the following file:

• itml.h

3.2 ITML Class Reference

ITML class containing all the supporting functions.

```
#include <itml.h>
```

Public Member Functions

void itml_alg (const matrix< float > &C, const matrix< float > &X, const matrix< float > &M_0, const itml
—param ¶m, matrix< float > &M)

The main function of ITML.

- void KNN (const vector< float > &y, const matrix< float > &X, const matrix< float > &M, int k, const matrix< float > &Xt, vector< float > &pred_y)
- void ComputeDistanceExtreme (const matrix< float > &X, int lpercent, int upercent, const matrix< float > &M, float &I, float &u)

This function is to compute the distance extreme value for the similar/dissimilar pairs.

• void ComputeDistanceExtreme (const matrix< float > &X, int lpercent, int upercent, float &I, float &u)

6 Class Documentation

This function is to compute the distance extreme value for the similar/dissimilar pairs.

void GetConstraints (const vector< float > &y, int contraints_num, float I, float u, matrix< float > &C)

This function is to generate the similar/dissimilar pairs of constraints.

3.2.1 Detailed Description

ITML class containing all the supporting functions.

3.2.2 Member Function Documentation

3.2.2.1 void ITML::ComputeDistanceExtreme (const matrix < float > & X, int *Ipercent*, int *upercent*, const matrix < float > & M, float & I, float & u)

This function is to compute the distance extreme value for the similar/dissimilar pairs.

Compute the distance extreme for similar/dissimilar pairs Input:

Parameters

X	nxd matrix, n samples with d dimensions
lpercent	the lower percent of the distance range
upercent	the upper percent of the distance range
М	dxd matrix, the learned matrix that is returned as a reference parameter
1	the lower bound for the constrains
и	the upper bound for the constrains
X	nxd matrix, n samples with d dimensions
lpercent	lower percent of sorted distance
upercent	upper percent of sorted distance
М	dxd matrix, distance matrix Output:

Returns

I lower extreme u upper extreme

3.2.2.2 void ITML::ComputeDistanceExtreme (const matrix < float > & X, int Ipercent, int upercent, float & I, float & U)

This function is to compute the distance extreme value for the similar/dissimilar pairs.

Parameters

X	nxd matrix, n samples with d dimensions
lpercent	the lower percent of the distance range
upercent	the upper percent of the distance range
1	the lower bound for the constrains
и	the upper bound for the constrains

Input: X: nxd matrix, n samples with d dimensions lpercent: lower percent of sorted distance upercent: upper percent of sorted distance Output: I: lower extreme u: upper extreme

3.2.2.3 void ITML::GetConstraints (const vector < float > & y, int $constraints_num$, float u, matrix < float > & C)

This function is to generate the similar/dissimilar pairs of constraints.

Parameters

У	1xn vector, the label
contraints_num	int, the number of comstraints
1	float, the lower bound for the constrains
и	float, the upper bound for the constrains
С	mx4 matrix, 1:x1 2:x2 3:+/-1 similar/disimilar 4:l/u lower/upper bound

Input: y: the class labels of the samples constrains_num: number of the generated constraints I: lower extreme u: upper extreme Output: C: mx4 matrix, 1:x1 2:x2 3:+/-1 similar/disimilar 4:l/u lower/upper bound

Parameters

У	the class labels of the samples
constraints_num	number of the generated constraints
1	lower extreme
и	upper extreme
С	mx4 matrix, 1:x1 2:x2 3:+/-1 similar/disimilar 4:l/u lower/upper bound

3.2.2.4 void ITML::itml_alg (const matrix< float > & C, const matrix< float > & X, const matrix< float > & $A_{-}0$, const itml_param & param, matrix< float > & A)

The main function of ITML.

Parameters

С	mx4 matrix, 1:x1 2:x2 3:+/-1 similar/disimilar 4:l/u lower/upper bound
X	nxd matrix, n samples with d dimensions
M_0	dxd matrix, identity matrix
param	itml paramers
М	dxd matrix, the learned matrix that is returned as a reference parameter

Input: C: mx4 matrix, 1:x1 2:x2 3:+/-1 similar/disimilar 4:l/u lower/upper bound X: nxd matrix, n samples with d dimensions A_0: dxd matrix, identity matrix param: itml paramers Output: A: dxd matrix, the learned matrix

3.2.2.5 void ITML::KNN (const vector< float > & y, const matrix< float > & X, const matrix< float > & M, int k, const matrix< float > & Xt, vector< float > & y, const matrix< float > & y, const matrix

Parameters

У	1xn vector, the label
X	nxd matrix, n samples with d dimensions
M	dxd matrix, the learned matrix that is returned as a reference parameter
k	the number of the nearest neighbors
Xi	mxd matrix, m testing samples with d dimensions
pred_y	1xm vector, the predicted label for testing samples (return)

Input: y: the class labels of the samples X: n1xd matrix, n1 training samples with d dimensions M: dxd matrix, distance matrix k: the k-nearest neighbors Xt: n2xd matrix, n2 testing samples with d dimensions Output: pred_y: 1xn2 vector, predicted labels for the testing samples

The documentation for this class was generated from the following files:

- itml.h
- · itml.cpp

3.3 itml_param Struct Reference

the struct storing the parameters of ITML

8 Class Documentation

#include <itml.h>

Public Attributes

- float thresh
- float gamma
- int max_iters

3.3.1 Detailed Description

the struct storing the parameters of ITML

The documentation for this struct was generated from the following file:

• itml.h