This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Cyclohexenonequinolinoyl derivatives

The present invention relates to novel cyclohexenonequinolinoyl derivatives of the formula I,

$$R^4$$
 R^3
 R^2
 R^1

where:

 \mathbb{R}^1

is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl,

20

25

30

35

 $\texttt{C}_1 - \texttt{C}_6 - \texttt{alkoxy, C}_1 - \texttt{C}_6 - \texttt{haloalkoxy, C}_1 - \texttt{C}_6 - \texttt{alkylthio,}$

 C_1 — C_6 —haloalkylthio, C_1 — C_6 —alkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, aminosulfonyl,

 $N-(C_1-C_6-alkyl)$ aminosulfonyl,

 $N, N-di-(C_1-C_6-alkyl)$ aminosulfonyl,

 $N-(C_1-C_6-alkylsulfonyl)amino,$

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino,

phenoxy, heterocyclyloxy, phenylthio or

heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated

and/or may carry one to three of the following

substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

 R^2 , R^3

are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or

halogen;

40

R⁴ is a compound IIa or IIb

(R⁶)₁—

(R⁶)₁

IIa

IIb

where

10

15

5

R⁵

is halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , POR^8R^9 , OPR^8R^9 , $OPOR^8R^9$, $OPSR^8R^9$, $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following

radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

20

25

30

 R^6

is nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl,

 $di-(C_1-C_6-alkylthio)$ methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxy,

 $C_1-C_6-alkoxy$, $C_1-C_6-haloalkoxy$,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

 $C_1-C_6-haloalkylthio$, $C_1-C_6-alkylsulfinyl$,

C₁-C₆-haloalkylsulfinyl,

C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl,

C1-C6-alkylcarbonyl, C1-C6-haloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

or

35

40

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

45

Dazezzut "desen

two radicals R^6 , which are linked to the same carbon, together form a $-(CH_2)_p$ chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group: halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

10

5

two radicals R⁶, which are linked to the same carbon, together form a methylidene group which may be substituted by one or two radicals from the following group:

15

halogen, hydroxyl, formyl, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkylthio, C_1 — C_6 —haloalkylthio, C_1 — C_6 —alkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfonyl;

20

or

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

30

35

25

two radicals R^6 , which are linked to different carbons, together form a $-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:

halogen, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, hydroxyl or

 C_1-C_6 -alkoxycarbonyl;

C3-C6-alkynylaminocarbonyl,

R⁷

is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, (C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl,

40

45

 $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl,

	4
	$N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,
5	$N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,
	di-(C ₁ -C ₆ -alkyl)-aminothiocarbonyl,
	$C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$,
	$C_1-C_6-alkoxyimino-C_1-C_6-alkyl$,
	$N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or
10	$N, N-di-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$ where
10	the abovementioned alkyl, cycloalkyl and alkoxy
•	radicals may be partially or fully halogenated
	and/or may carry one to three of the following
1-	groups:
15	cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di - $(C_1$ - C_4 -
	alkyl)amino, C_1-C_4 -alkylcarbonyl,
	C_1-C_4 -alkoxycarbonyl,
	C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,
•	$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
20	hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl,
	$di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
	C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;
	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
25	heterocyclyl-C ₁ -C ₆ -alkyl,
	phenylcarbonyl-C ₁ -C ₆ -alkyl,
	heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl,
	heterocyclylcarbonyl, phenoxycarbonyl,
	heterocyclyloxycarbonyl, phenoxythiocarbonyl,
30	heterocyclyloxythiocarbonyl,
	phenoxy-C ₁ -C ₆ -alkylcarbonyl,
	heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl,
	phenylaminocarbonyl,
	$N-(C_1-C_6-alkyl)-N-(phenyl)$ aminocarbonyl,
35	heterocyclylaminocarbonyl,
	$N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl,
	phenyl-C ₂ -C ₆ -alkenylcarbonyl or
	heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the
	phenyl and the heterocyclyl radical of the 20
40	last-mentioned substituents may be partially or
	fully halogenated and/or may carry one to three of
	the following radicals:
	nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,
	C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;
45	CI-C4-diroxy of CI-C4-natodiroxy,

	•	5
	R ⁸ , R ⁹	are C_1 — C_6 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —haloalkenyl, C_3 — C_6 —alkynyl, C_3 — C_6 —cycloalkyl, hydroxyl, C_1 — C_6 —alkoxy, amino, C_1 — C_6 —alkylamino,
		C_1 — C_6 —haloalkylamino, di- $(C_1$ — C_6 —
5		alkyl)amino or $di-(C_1-C_6-haloalkyl)$ amino, where the
		abovementioned alkyl, cycloalkyl and alkoxy
		radicals may be partially or fully halogenated
		<pre>and/or may carry one to three of the following groups:</pre>
10		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di - $(C_1$ - C_4 -
		alkyl)amino, C_1 — C_4 —alkylcarbonyl,
		C ₁ -C ₄ -alkoxycarbonyl,
		C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxycarbonyl,
		$di-(C_1-C_4-alkyl)$ amino $-C_1-C_4-alkoxycarbonyl,$
15		hydroxycarbonyl, C_{1} _ C_{4} _alkylaminocarbonyl,
		$di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
		C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;
20		phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
20		heterocyclyl-C ₁ -C ₆ -alkyl, phenoxy, heterocyclyloxy,
		where the phenyl and the heterocyclyl radical of
		the last-mentioned substituents may be partially
		or fully halogenated and/or may carry one to three
25		of the following radicals:
		nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl,
		C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
	R ¹⁰	is $C_1-C_6-alkyl$, $C_3-C_6-alkenyl$, $C_3-C_6-haloalkenyl$,
		$C_3-C_6-alkynyl$, $C_3-C_6-haloalkynyl$, $C_3-C_6-cycloalkyl$,
30		hydroxyl, C ₁ -C ₆ -alkoxy, C ₃ -C ₆ -alkenyloxy,
		C ₃ -C ₆ -alkynyloxy, amino, C ₁ -C ₆ -alkylamino,
		$di-(C_1-C_6-alkyl)$ amino or $C_1-C_6-alkyl$ carbonylamino,
		where the abovementioned alkyl, cycloalkyl and
25		alkoxy radicals may be partially or fully
35		halogenated and/or may carry one to three radicals
		from the following group:
		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio,
		$di-(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkyl$ carbonyl,
40		C ₁ -C ₄ -alkoxycarbonyl,
		$C_1-C_4-alkoxy-C_1-C_4-alkoxycarbonyl,$
		$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
		hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl,
		di-(C ₁ -C ₄ -alkyl)aminocarbonyl, aminocarbonyl,
45		C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

10 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

1 is 0 to 6;

m is 2 to 4;

n is 1 to 5;

20 p is 2 to 5;

and their agriculturally useful salts.

- 25 Moreover, the invention relates to processes for preparing compounds of the formula I, to compositions comprising them and to the use of these derivatives or the compositions comprising them for controlling harmful plants.
- The literature, for example WO 98/12 180 and EP-A 283 261, discloses quinolinoyl or fused phenyl derivatives which are linked to an unsubstituted or substituted (1-hydroxy-3-oxo-cyclohex-1-en-2-yl)carbonyl radical. However, the herbicidal properties of the prior art compounds and their compatibility with crop plants are not entirely satisfactory.

It is an object of the present invention to provide other biologically, in particular herbicidally, active compounds.

We have found that this object is achieved by the cyclohexenonequinolinoyl derivatives of the formula I and their herbicidal action.

Furthermore, we have found herbicidal compositions which comprise the compounds I and have very good herbicidal action. Moreover, we have found processes for pr paring these compositions and

methods for controlling undesirable vegetation using the compounds I.

- Depending on the substitution pattern, the compounds of the formula I may contain one or more chiral centers, in which case they are present as enantiomers or mixtures of diastereomers. The invention provides both the pure enantiomers or diastereomers and their mixtures.
- The compounds of the formula I may also be present in the form of their agriculturally useful salts, where the type of salt is usually immaterial. In general, the salts of those cations and the acid addition salts of those acids are suitable whose cations and anions, respectively, do not negatively affect the herbicidal action of the compounds I.

Suitable cations are, in particular, ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, where, if desired, one to four hydrogen atoms may be replaced by C₁—C₄—alkyl, hydroxy—C₁—C₄—alkyl, C₁—C₄—alkyl, hydroxy—C₁—C₄—alkoxy—C₁—C₄—alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2—(2-hydroxyeth-1-oxy)eth-1-ylammonium, di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C₁—C₄—alkyl)sulfonium and sulfoxonium ions, preferably tri(C₁—C₄—alkyl)sulfoxonium.

Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen

35 phosphate, hydrogen phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and also the anions of C₁—C₄—alkanoic acids, preferably formate, acetate, propionate and butyrate.

The organic moieties mentioned for the substituents R1-R12 or as radicals on phenyl and heterocyclyl radicals are collective terms for individual enumerations of the particular group members. All hydrocarbon chains, i.e. all alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfynyl,

haloalkylsulfynyl, alkylsulfonyl, haloalkylsulfonyl, N-alkylaminosulfonyl, N-dialkylaminosulfonyl, N-alkylamino, N-haloalkylamino, N-alkoxyamino,

N-alkoxy-N-alkylamino, N-alkylcarbonylamino, N-alkylsulfonylamino, N-haloalkylsulfonylamino,

N-alkyl-N-alkylsulfonylamino, N-alkyl-N-haloalkylsulfonylamino,

- alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl,
- 5 haloalkoxycarbonyl, alkylthiocarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, dialkylaminothiocarbonyl, alkoxyalkyl, dialkoxymethyl, dialkylthiomethyl, (alkoxy)(alkylthio)methyl, alkylcarbonylalkyl, alkoxyiminomethyl, alkoxyiminoalkyl, N-(alkylamino)iminoalkyl,
- 10 N-(dialkylamino)iminoalkyl, phenylalkenylcarbonyl, heterocyclylalkenylcarbonyl, phenoxyalkylcarbonyl, heterocyclyloxyalkylcarbonyl, N-alkoxy-N-alkylaminocarbonyl, N-alkyl-N-phenylaminocarbonyl,

N-alkyl-N-heterocyclylaminocarbonyl, alkoxycarbonyloxy,

- 15 phenylalkyl, heterocyclylalkyl, phenylcarbonylalkyl, heterocyclylcarbonylalkyl, dialkylaminoalkoxycarbonyl, alkoxyalkoxycarbonyl, alkenylcarbonyl, alkenyloxycarbonyl, alkenylaminocarbonyl, N-alkenyl-N-alkylaminocarbonyl, N-alkenyl-N-alkoxyaminocarbonyl, alkynylcarbonyl,
- 20 alkynyloxycarbonyl, alkynylaminocarbonyl, N-alkynyl-N-alkylaminocarbonyl, N-alkynyl-N-alkoxyaminocarbonyl, alkenyl, alkynyl, haloalkenyl, haloalkynyl, alkenyloxy, alkynyloxy and alkoxyalkoxy moieties, may be straight-chain or branched. Unless indicated otherwise, halogenated substituents
- 25 preferably carry one to five identical or different halogen atoms. The term "halogen" in each case represents fluorine, chlorine, bromine or iodine.

Examples of other meanings are:

30

- C₁-C₄-alkyl: for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl or 1,1-dimethylethyl;
- C_1 - C_6 -alkyl, and the alkyl moieties of 35 -
 - $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$,
 - $N-(di-C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$
 - $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkoxy)$

 $C_1-C_6-alkoxyimino-C_1-C_6-alkyl$,

- alkyl)—aminocarbonyl, 40
 - $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
 - $(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
 - $N-(C_1-C_6-alkyl)-N-phenylaminocarbonyl, N-(C_1-C_6-alkyl)-N-phenylaminocarbonyl, N-(C_1-C_6-alkyl)-N-phenylaminocarb$ heterocyclylaminocarbonyl, phenyl-C₁-C₆-alkyl, N-(C₁-C₆-
- $alkyl)-N-(C_1-C_6-alkylsulfonyl)amino, N-(C_1-C_6-alkyl)-N-$ 45
- (C₁-C₆-haloalkylsulfonyl)amino, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl:

C₁-C₄-alkyl as mentioned above, and also, for example, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2—dimethylbutyl, 1,3—dimethylbutyl, 2,2—dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl or 1-ethyl-3-methylpropyl;

10

5

- C_1-C_4 -haloalkyl: a C_1-C_4 -alkyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl,
- 15 difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl,
- 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 20 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl,
- 25 heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or nonafluorobutyl;
- 30 C₁-C₆-haloalkyl, and the haloalkyl moieties of N-C1-C6-haloalkylamino: C1-C4-haloalkyl, as mentioned above, and also, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl or 35 dodecafluorohexyl;
- C1-C4-alkoxy: for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or 1,1-dimethylethoxy; 40
 - C_1 - C_6 -alkoxy, and the alkoxy moieties of N- C_1 - C_6 -alkoxyamino, $di-(C_1-C_6-alkoxy)$ methyl, $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)-methyl,$
- C_1-C_6 -alkoxyiminomethyl, C_1-C_6 -alkoxyimino- C_1-C_6 -alkyl, 45 $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl and

N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy) aminocarbonyl: C₁-C₄-alkoxy as mentioned above, and also, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy,

1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy,
10 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or
1-ethyl-2-methylpropoxy;

- C₁-C₄-haloalkoxy: a C₁-C₄-alkoxy radical as mentioned above which is partially or fully substituted by fluorine, 15 chlorine, bromine and/or iodine, i.e., for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 20 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 25 2,3—dichloropropoxy, 3,3,3—trifluoropropoxy,
- 2,3—dichloropropoxy, 3,3,3—trifluoropropoxy,
 3,3,3—trichloropropoxy, 2,2,3,3,3—pentafluoropropoxy,
 heptafluoropropoxy, 1—(fluoromethyl)—2—fluoroethoxy,
 1—(chloromethyl)—2—chloroethoxy,
 1—(bromomethyl)—2—bromoethoxy, 4—fluorobutoxy,
 4—chlorobutoxy, 4—bromobutoxy or nonafluorobutoxy;
- C₁-C₆-haloalkoxy: C₁-C₄-haloalkoxy as mentioned above, and also, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy;
- C₁-C₄-alkylthio: for example methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio or 1,1-dimethylethylthio;
- C₁-C₆-alkylthio, and the alkylthio moieties of (C₁-C₆-alkylthio)carbonyl, di-(C₁-C₆-alkylthio)methyl and (C₁-C₆-alkoxy)-(C₁-C₆-alkylthio)methyl: C₁-C₄-alkylthio as mentioned above, and also, for example, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio,

- 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio,
- 1,1-dimethylpropylthio, 1,2-dimethylpropylthio,
- 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio,
- 4-methylpentylthio, 1,1-dimethylbutylthio,
- 5 1,2—dimethylbutylthio, 1,3—dimethylbutylthio,
 - 2,2-dimethylbutylthio, 2,3-dimethylbutylthio,
 - 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio,
 - 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio,
 - 1—ethyl-1—methylpropylthio or 1—ethyl-2—methylpropylthio;

- C_1 - C_{20} -alkylthio as alkylthio radical of $(C_1$ - C_{20} -alkylthio)carbonyl: C_1 - C_6 -alkylthio as mentioned above, and also, for example, heptylthio, octylthio, hexadecylthio or octadecylthio;

15

- C₁-C₄-haloalkylthio: a C₁-C₄-alkylthio radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethylthio, difluoromethylthio, trifluoromethylthio,
- chlorodifluoromethylthio, bromodifluoromethylthio,
- 2-fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio,
- 2-iodoethylthio, 2,2-difluoroethylthio,
 - 2,2,2-trifluoroethylthio, 2,2,2-trichloroethylthio,
 - 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio,
- 2,2-dichloro-2-fluoroethylthio, pentafluoroethylthio,
 - 2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio,
 - 3-chloropropylthio, 2-bromopropylthio, 3-bromopropylthio,
 - 2,2-difluoropropylthio, 2,3-difluoropropylthio,
 - 2,3—dichloropropylthio, 3,3,3—trifluoropropylthio,
- 3,3,3-trichloropropylthio, 2,2,3,3,3-pentafluoropropylthio, heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio,
 - 1-(chloromethyl)-2-chloroethylthio,
 - 1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio,
 - 4-chlorobutylthio, 4-bromobutylthio or nonafluorobutylthio;

35

- C₁-C₆-haloalkylthio: C₁-C₄-haloalkylthio, as mentioned above, and also, for example, 5-fluoropentylthio, 5-chloropentylthio, 5-bromopentylthio, 5-iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio, 6-iodohexylthio or dodecafluorohexylthio;
 - C₁-C₆-alkylsulfinyl (C₁-C₆-alkyl-S(=0)-): for example methylsulfinyl, ethylsulfinyl, propylsulfinyl,
- 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl,

10

12 3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl, 1,2-dimethylpropylsulfinyl, hexylsulfinyl, 1-methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl, 1,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl, 2,3—dimethylbutylsulfinyl, 3,3—dimethylbutylsulfinyl, 1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl, 1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl, 1—ethyl—1—methylpropylsulfinyl or 1-ethyl-2-methylpropylsulfinyl;

C₁-C₆-haloalkylsulfinyl: a C₁-C₆-alkylsulfinyl radical as 15 mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethylsulfinyl, difluoromethylsulfinyl, trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl, bromodifluoromethylsulfinyl, 2-fluoroethylsulfinyl, 20 2-chloroethylsulfinyl, 2-bromoethylsulfinyl,

2-iodoethylsulfinyl, 2,2-difluoroethylsulfinyl, 2,2,2-trifluoroethylsulfinyl, 2,2,2-trichloroethylsulfinyl, 2-chloro-2-fluoroethylsulfinyl,

2-chloro-2,2-difluoroethylsulfinyl,

25 2,2-dichloro-2-fluoroethylsulfinyl, pentafluoroethylsulfinyl, 2-fluoropropylsulfinyl, 3-fluoropropylsulfinyl, 2-chloropropylsulfinyl, 3-chloropropylsulfinyl, 2-bromopropylsulfinyl, 3-bromopropylsulfinyl, 2,2-difluoropropylsulfinyl, 2,3-difluoropropylsulfinyl,

30 2,3-dichloropropylsulfinyl, 3,3,3-trifluoropropylsulfinyl, 3,3,3-trichloropropylsulfinyl,

2,2,3,3,3-pentafluoropropylsulfinyl, heptafluoropropylsulfinyl,

1-(fluoromethyl)-2-fluoroethylsulfinyl,

35 1-(chloromethyl)-2-chloroethylsulfinyl, 1-(bromomethyl)-2-bromoethylsulfinyl, 4-fluorobutylsulfinyl, 4-chlorobutylsulfinyl, 4-bromobutylsulfinyl, nonafluorobutylsulfinyl, 5-fluoropentylsulfinyl, 5-chloropentylsulfinyl, 5-bromopentylsulfinyl,

40 5-iodopentylsulfinyl, undecafluoropentylsulfinyl, 6-fluorohexylsulfinyl, 6-chlorohexylsulfinyl, 6-bromohexylsulfinyl, 6-iodohexylsulfinyl or dodecafluorohexylsulfinyl;

 C_1 - C_6 -alkylsulfonyl (C_1 - C_6 -alkyl-S(=0)₂-), and the alkylsulfonyl radicals of N-(C1-C6-alkylsulfonyl)amino and $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino: for example,

methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 5 3-methylbutylsulfonyl, 1,1-dimethylpropylsulfonyl, 1,2—dimethylpropylsulfonyl, 2,2—dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 10 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3—dimethylbutylsulfonyl, 1—ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl or 1-ethyl-2-methylpropylsulfonyl; 15 C_1 - C_6 -haloalkylsulfonyl, and the haloalkylsulfonyl radicals of N-(C₁-C₆-haloalkylsulfonyl)amino and $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino: a 20 C1-C6-alkylsulfonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 25 2-fluoroethylsulfonyl, 2-chloroethylsulfonyl, 2-bromoethylsulfonyl, 2-iodoethylsulfonyl, 2,2-difluoroethylsulfonyl, 2,2,2-trifluoroethylsulfonyl, 2-chloro-2-fluoroethylsulfonyl, 2-chloro-2, 2-difluoroethylsulfonyl, 30 2,2-dichloro-2-fluoroethylsulfonyl, 2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl, 2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl, 2-chloropropylsulfonyl, 3-chloropropylsulfonyl, 2-bromopropylsulfonyl, 3-bromopropylsulfonyl, 35 2,2-difluoropropylsulfonyl, 2,3-difluoropropylsulfonyl, 2,3-dichloropropylsulfonyl, 3,3,3-trifluoropropylsulfonyl, 3,3,3-trichloropropylsulfonyl, 2,2,3,3,3-pentafluoropropylsulfonyl, heptafluoropropylsulfonyl, 40 1-(fluoromethyl)-2-fluoroethylsulfonyl, 1-(chloromethyl)-2-chloroethylsulfonyl, 1-(bromomethyl)-2-bromoethylsulfonyl, 4-fluorobutylsulfonyl, 4-chlorobutylsulfonyl, 4-bromobutylsulfonyl, nonafluorobutylsulfonyl, 5-fluoropentylsulfonyl, 45 5-chloropentylsulfonyl, 5-bromopentylsulfonyl,

5-iodopentylsulfonyl, 6-fluorohexylsulfonyl,

14 6-bromohexylsulfonyl, 6-iodohexylsulfonyl or dodecafluorohexylsulfonyl;

```
C<sub>1</sub>-C<sub>6</sub>-alkylamino, and the alkylamino radicals of
 5
       N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl: for example
       methylamino, ethylamino, propylamino, 1-methylethylamino,
       butylamino, 1-methylpropylamino, 2-methylpropylamino,
       1,1-dimethylethylamino, pentylamino, 1-methylbutylamino,
       2-methylbutylamino, 3-methylbutylamino,
10
       2,2-dimethylpropylamino, 1-ethylpropylamino, hexylamino,
       1,1-dimethylpropylamino, 1,2-dimethylpropylamino,
       1-methylpentylamino, 2-methylpentylamino,
       3-methylpentylamino, 4-methylpentylamino,
       1,1-dimethylbutylamino, 1,2-dimethylbutylamino,
15
       1,3-dimethylbutylamino, 2,2-dimethylbutylamino,
       2,3-dimethylbutylamino, 3,3-dimethylbutylamino,
       1-ethylbutylamino, 2-ethylbutylamino,
       1,1,2-trimethylpropylamino, 1,2,2-trimethylpropylamino,
       1-ethyl-1-methylpropylamino or 1-ethyl-2-methylpropylamino;
20
       (C1-C4-alkylamino) sulfonyl: for example methylaminosulfonyl,
       ethylaminosulfonyl, propylaminosulfonyl,
       1-methylethylaminosulfonyl, butylaminosulfonyl,
       1-methylpropylaminosulfonyl, 2-methylpropylaminosulfonyl or
25
       1,1-dimethylethylaminosulfonyl;
       (C_1-C_6-alkylamino) sulfonyl: (C_1-C_4-alkylamino) sulfonyl, as
       mentioned above, and also, for example, pentylaminosulfonyl,
       1-methylbutylaminosulfonyl, 2-methylbutylaminosulfonyl,
30
       3-methylbutylaminosulfonyl, 2,2-dimethylpropylaminosulfonyl,
       1-ethylpropylaminosulfonyl, hexylaminosulfonyl,
       1,1-dimethylpropylaminosulfonyl,
       1,2-dimethylpropylaminosulfonyl, 1-methylpentylaminosulfonyl,
       2-methylpentylaminosulfonyl, 3-methylpentylaminosulfonyl,
35
       4-methylpentylaminosulfonyl, 1,1-dimethylbutylaminosulfonyl,
       1,2-dimethylbutylaminosulfonyl,
       1,3-dimethylbutylaminosulfonyl,
       2,2-dimethylbutylaminosulfonyl,
       2,3-dimethylbutylaminosulfonyl,
40
       3,3-dimethylbutylaminosulfonyl, 1-ethylbutylaminosulfonyl,
       2-ethylbutylaminosulfonyl,
        1,1,2-trimethylpropylaminosulfonyl,
        1,2,2-trimethylpropylaminosulfonyl,
        1-ethyl-1-methylpropylaminosulfonyl or
45
        1-ethyl-2-methylpropylaminosulfonyl;
```

--

```
15
       di-(C_1-C_4-alkyl) aminosulfonyl: for example
       N, N-dimethylaminosulfonyl, N, N-diethylaminosulfonyl,
       N, N-di-(1-methylethyl) aminosulfonyl,
       N, N-dipropylaminosulfonyl, N, N-dibutylaminosulfonyl,
       N, N-di-(1-methylpropyl)aminosulfonyl,
 5
       N, N-di-(2-methylpropyl) aminosulfonyl,
       N, N-di-(1, 1-dimethylethyl) aminosulfonyl,
       N-ethyl-N-methylaminosulfonyl,
       N-methyl-N-propylaminosulfonyl,
       N-methyl-N-(1-methylethyl)aminosulfonyl,
10
       N-butyl-N-methylaminosulfonyl,
       N-methyl-N-(1-methylpropyl)aminosulfonyl,
       N-methyl-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-methylaminosulfonyl,
15
       N-ethyl-N-propylaminosulfonyl,
       N-ethyl-N-(1-methylethyl)aminosulfonyl,
       N-butyl-N-ethylaminosulfonyl,
       N-ethyl-N-(1-methylpropyl)aminosulfonyl,
       N-ethyl-N-(2-methylpropyl)aminosulfonyl,
20
       N-ethyl-N-(1,1-dimethylethyl)aminosulfonyl,
       N-(1-methylethyl)-N-propylaminosulfonyl,
       N-butyl-N-propylaminosulfonyl,
       N-(1-methylpropyl)-N-propylaminosulfonyl,
       N-(2-methylpropyl)-N-propylaminosulfonyl,
       N-(1,1-dimethylethyl)-N-propylaminosulfonyl, N-butyl-N-
25
       (1-methylethyl)aminosulfonyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminosulfonyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminosulfonyl,
30
       N-butyl-N-(1-methylpropyl)aminosulfonyl,
       N-butyl-N-(2-methylpropyl)aminosulfonyl,
       N-butyl-N-(1,1-dimethylethyl)aminosulfonyl,
       N-(1-methylpropyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminosulfonyl or
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminosulfonyl;
35
       di-(C_1-C_6-alkyl) aminosulfonyl: di-(C_1-C_4-alkyl) aminosulfonyl,
       as mentioned above, and also, for example,
       N-methyl-N-pentylaminosulfonyl,
40
       N-methyl-N-(1-methylbutyl)aminosulfonyl,
       N-methyl-N-(2-methylbutyl)aminosulfonyl,
       N-methyl-N-(3-methylbutyl)aminosulfonyl, N-methyl-N-
       (2,2-dimethylpropyl)aminosulfonyl,
       N-methyl-N-(1-ethylpropyl)aminosulfonyl,
```

N-methyl-N-hexylaminosulfonyl,
N-methyl-N-(1,1-dimethylpropyl)aminosulfonyl, N-methyl-N-(1,2-dimethylpropyl)aminosulfonyl,

N

16

```
N-methyl-N-(1-methylpentyl)aminosulfonyl,
       N-methyl-N-(2-methylpentyl)aminosulfonyl,
       N-methyl-N-(3-methylpentyl)aminosulfonyl,
       N-methyl-N-(4-methylpentyl)aminosulfonyl, N-methyl-N-
 5
       (1,1-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(1,2-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(1,3-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(2,2-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(2,3-dimethylbutyl)aminosulfonyl, N-methyl-N-
10
       (3,3-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(1-ethylbutyl)aminosulfonyl,
       N-methyl-N-(2-ethylbutyl)aminosulfonyl,
       N-methyl-N-(1,1,2-trimethylpropyl)aminosulfonyl,
       N-methyl-N-(1,2,2-trimethylpropyl)aminosulfonyl,
15
       N-methyl-N-(1-ethyl-1-methylpropyl)aminosulfonyl, N-methyl-N-
       (1-ethyl-2-methylpropyl)aminosulfonyl,
       N-ethyl-N-pentylaminosulfonyl,
       N-ethyl-N-(1-methylbutyl)aminosulfonyl,
       N-ethyl-N-(2-methylbutyl)aminosulfonyl,
20
       N-ethyl-N-(3-methylbutyl)aminosulfonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1-ethylpropyl)aminosulfonyl,
       N-ethyl-N-hexylaminosulfonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminosulfonyl,
25
       N-ethyl-N-(1,2-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1-methylpentyl)aminosulfonyl,
       N-ethyl-N-(2-methylpentyl)aminosulfonyl,
       N-ethyl-N-(3-methylpentyl)aminosulfonyl,
       N-ethyl-N-(4-methylpentyl)aminosulfonyl,
30
       N-ethyl-N-(1,1-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,2-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(2,2-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(2,3-dimethylbutyl)aminosulfonyl,
35
       N-ethyl-N-(3,3-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1-ethylbutyl)aminosulfonyl,
       N-ethyl-N-(2-ethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,1,2-trimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl)aminosulfonyl,
40
       N-ethyl-N-(1-ethyl-1-methylpropyl)aminosulfonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl)aminosulfonyl,
       N-propyl-N-pentylaminosulfonyl,
       N-butyl-N-pentylaminosulfonyl, N,N-dipentylaminosulfonyl,
       N-propyl-N-hexylaminosulfonyl, N-butyl-N-hexylaminosulfonyl,
45
       N-pentyl-N-hexylaminosulfonyl or N, N-dihexylaminosulfonyl;
```

```
17
       di-(C1-C4-alkyl)amino and the dialkylamino radicals of:
       di-(C_1-C_4-alkyl) amino-C_1-C_4-alkoxycarbonyl and
       N-(di-C_1-C_4-alkylamino)imino-C_1-C_6-alkyl for example
       N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino,
       N, N-di-(1-methylethyl)amino, N, N-dibutylamino,
 5
       N, N-di-(1-methylpropyl)amino, N, N-di-(2-methylpropyl)amino,
       N, N-di-(1, 1-dimethylethyl)amino, N-ethyl-N-methylamino,
       N-methyl-N-propylamino, N-methyl-N-(1-methylethyl)amino,
       N-butyl-N-methylamino, N-methyl-N-(1-methylpropyl)amino,
       N-methyl-N-(2-methylpropyl)amino,
       N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino,
       N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino,
       N-ethyl-N-(1-methylpropyl)amino,
       N-ethyl-N-(2-methylpropyl)amino,
15
       N-ethyl-N-(1,1-dimethylethyl)amino,
       N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino,
       N-(1-methylpropyl)-N-propylamino,
       N-(2-methylpropyl)-N-propylamino,
       N-(1,1-dimethylethyl)-N-propylamino,
20
       N-butyl-N-(1-methylethyl)amino,
       N-(1-methylethyl)-N-(1-methylpropyl)amino,
       N-(1-methylethyl)-N-(2-methylpropyl)amino,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)amino,
```

N-butyl-N-(1-methylpropyl)amino, 25 N-butyl-N-(2-methylpropyl)amino, N-butyl-N-(1,1-dimethylethyl)amino, N-(1-methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino or N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino;

30

35

ŤĮ

T

j <u>__</u>

- $di-(C_1-C_6-alkyl)$ amino, and the dialkylamino radicals of $di-(C_1-C_6-alkyl)$ amino-imino- $C_1-C_6-alkyl$: $di-(C_1-C_4-alkyl)$ amino as mentioned above, and also N,N-dipentylamino, N, N-dihexylamino, N-methyl-N-pentylamino, N-ethyl-N-pentylamino, N-methyl-N-hexylamino or N-ethyl-N-hexylamino;
- C1-C4-alkylcarbonyl: for example methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, 40 butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl or 1,1-dimethylethylcarbonyl;
- C_1 - C_6 -alkylcarbonyl, and the alkylcarbonyl radicals of phenoxy-C₁-C₆-alkylcarbonyl, 45 $\label{eq:condition} heterocyclyloxy-C_1-C_6-alkylcarbonyl, \ C_1-C_6-alkylcarbonylamino,$ $C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl: C_1-C_4-alkylcarbonyl, as$


```
mentioned above, and also, for example, pentylcarbonyl,
       1-methylbutylcarbonyl, 2-methylbutylcarbonyl,
       3-methylbutylcarbonyl, 2,2-dimethylpropylcarbonyl,
       1-ethylpropylcarbonyl, hexylcarbonyl,
5
       1,1-dimethylpropylcarbonyl, 1,2-dimethylpropylcarbonyl,
       1-methylpentylcarbonyl, 2-methylpentylcarbonyl,
       3-methylpentylcarbonyl, 4-methylpentylcarbonyl,
       1,1-dimethylbutylcarbonyl, 1,2-dimethylbutylcarbonyl,
       1,3-dimethylbutylcarbonyl, 2,2-dimethylbutylcarbonyl,
       2,3-dimethylbutylcarbonyl, 3,3-dimethylbutylcarbonyl,
10
       1-ethylbutylcarbonyl, 2-ethylbutylcarbonyl,
       1,1,2-trimethylpropylcarbonyl, 1,2,2-trimethylpropylcarbonyl,
       1-ethyl-1-methylpropylcarbonyl or
       1-ethyl-2-methylpropylcarbonyl;
15
       C<sub>1</sub>-C<sub>20</sub>-alkylcarbonyl: C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, as mentioned above,
       and also heptylcarbonyl, octylcarbonyl, pentadecylcarbonyl or
       heptadecylcarbonyl;
20
       C<sub>1</sub>-C<sub>6</sub>-haloalkylcarbonyl: a C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl radical as
       mentioned above which is partially or fully substituted by
       fluorine, chlorine, bromine and/or iodine, i.e., for example,
       chloroacetyl, dichloroacetyl, trichloroacetyl, fluoroacetyl,
       difluoroacetyl, trifluoroacetyl, chlorofluoroacetyl,
25
       dichlorofluoroacetyl, chlorodifluoroacetyl,
       2-fluoroethylcarbonyl, 2-chloroethylcarbonyl,
       2-bromoethylcarbonyl, 2-iodoethylcarbonyl,
       2,2-difluoroethylcarbonyl, 2,2,2-trifluoroethylcarbonyl,
       2-chloro-2-fluoroethylcarbonyl,
30
       2-chloro-2,2-difluoroethylcarbonyl,
       2,2-dichloro-2-fluoroethylcarbonyl,
       2,2,2-trichloroethylcarbonyl, pentafluoroethylcarbonyl,
       2-fluoropropylcarbonyl, 3-fluoropropylcarbonyl,
       2,2-difluoropropylcarbonyl, 2,3-difluoropropylcarbonyl,
35
       2-chloropropylcarbonyl, 3-chloropropylcarbonyl,
       2,3-dichloropropylcarbonyl, 2-bromopropylcarbonyl,
       3-bromopropylcarbonyl, 3,3,3-trifluoropropylcarbonyl,
       3,3,3-trichloropropylcarbonyl,
       2,2,3,3,3-pentafluoropropylcarbonyl,
40
       heptafluoropropylcarbonyl,
        1-(fluoromethyl)-2-fluoroethylcarbonyl,
        1-(chloromethyl)-2-chloroethylcarbonyl,
        1-(bromomethyl)-2-bromoethylcarbonyl, 4-fluorobutylcarbonyl,
        4-chlorobutylcarbonyl, 4-bromobutylcarbonyl,
45
       nonafluorobutylcarbonyl, 5-fluoropentylcarbonyl,
        5-chloropentylcarbonyl, 5-bromopentylcarbonyl,
```

Perfluoropentylcarbonyl, 6-fluorohexylcarbonyl,

6-chlorohexylcarbonyl, 6-bromohexylcarbonyl or Perfluorohexylcarbonyl;

C₁—C₄—alkoxycarbonyl, and the alkoxycarbonyl moieties of di—(C₁—C₄—alkyl)amino—C₁—C₄—alkoxycarbonyl, for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1—methylethoxycarbonyl, butoxycarbonyl, 1—methylpropoxycarbonyl, 2—methylpropoxycarbonyl or 1,1—dimethylethoxycarbonyl;

- $(C_1-C_6-alkoxy)$ carbonyl, and the alkoxycarbonyl moieties of $C_1-C_6-alkoxy$ carbonyloxy: $(C_1-C_4-alkoxy)$ carbonyl, as mentioned above, and also, for example, pentoxycarbonyl,

1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl,
3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl,
1-ethylpropoxycarbonyl, hexoxycarbonyl,

1,1-dimethylpropoxycarbonyl, 1,2-dimethylpropoxycarbonyl, 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl,

3-methylpentoxycarbonyl, 4-methylpentoxycarbonyl,

1,1-dimethylbutoxycarbonyl, 1,2-dimethylbutoxycarbonyl,

1,3-dimethylbutoxycarbonyl, 2,2-dimethylbutoxycarbonyl,

2,3-dimethylbutoxycarbonyl, 3,3-dimethylbutoxycarbonyl,

1-ethylbutoxycarbonyl, 2-ethylbutoxycarbonyl,

1,1,2-trimethylpropoxycarbonyl,

1,2,2-trimethylpropoxycarbonyl,

1-ethyl-1-methylpropoxycarbonyl or

1-ethyl-2-methylpropoxycarbonyl;

- 30 C₁-C₆-haloalkoxycarbonyl: a C₁-C₆-alkoxycarbonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, chlorodifluoromethoxycarbonyl,
- bromodifluoromethoxycarbonyl, 2-fluoroethoxycarbonyl, 2-chloroethoxycarbonyl, 2-bromoethoxycarbonyl, 2-iodoethoxycarbonyl, 2,2-difluoroethoxycarbonyl,

2,2,2-trifluoroethoxycarbonyl, 2-chloro-

2-fluoroethoxycarbonyl, 2-chloro-2,2-difluoroethoxycarbonyl,

2,2-dichloro-2-fluoroethoxycarbonyl,

2,2,2-trichloroethoxycarbonyl, pentafluoroethoxycarbonyl,

2-fluoropropoxycarbonyl, 3-fluoropropoxycarbonyl,

2-chloropropoxycarbonyl, 3-chloropropoxycarbonyl,

2-bromopropoxycarbonyl, 3-bromopropoxycarbonyl,

2,2-difluoropropoxycarbonyl, 2,3-difluoropropoxycarbonyl,

2,3-dichloropropoxycarbonyl, 3,3,3-trifluoropropoxycarbonyl,

3,3,3-trichloropropoxycarbonyl,

```
20
       2,2,3,3,3-pentafluoropropoxycarbonyl,
       heptafluoropropoxycarbonyl,
       1-(fluoromethyl)-2-fluoroethoxycarbonyl,
       1-(chloromethyl)-2-chloroethoxycarbonyl,
 5
       1-(bromomethy1)-2-bromethoxycarbony1, 4-fluorobutoxycarbony1,
       4-chlorobutoxycarbonyl, 4-bromobutoxycarbonyl,
       4-iodobutoxycarbonyl, 5-fluoropentoxycarbonyl,
       5-chloropentoxycarbonyl, 5-bromopentoxycarbonyl,
       6-fluorohexoxycarbonyl, 6-chlorohexoxycarbonyl or
10
       6-bromohexoxycarbonyl;
       (C_1-C_4-alkyl) carbonyloxy: acetyloxy, ethylcarbonyloxy,
       propylcarbonyloxy, 1-methylethylcarbonyloxy,
       butylcarbonyloxy, 1-methylpropylcarbonyloxy,
15
       2-methylpropylcarbonyloxy or 1,1-dimethylethylcarbonyloxy;
       (C_1-C_4-alkylamino) carbonyl: for example methylaminocarbonyl,
       ethylaminocarbonyl, propylaminocarbonyl,
       1-methylethylaminocarbonyl, butylaminocarbonyl,
20
       1-methylpropylaminocarbonyl, 2-methylpropylaminocarbonyl or
       1,1-dimethylethylaminocarbonyl;
       (C_1-C_6-alkylamino)carbonyl: (C_1-C_4-alkylamino)carbonyl, as
       mentioned above, and also, for example, pentylaminocarbonyl,
25
       1-methylbutylaminocarbonyl, 2-methylbutylaminocarbonyl,
       3-methylbutylaminocarbonyl, 2,2-dimethylpropylaminocarbonyl,
       1-ethylpropylaminocarbonyl, hexylaminocarbonyl,
       1,1-dimethylpropylaminocarbonyl,
       1,2-dimethylpropylaminocarbonyl, 1-methylpentylaminocarbonyl,
30
       2-methylpentylaminocarbonyl, 3-methylpentylaminocarbonyl,
       4-methylpentylaminocarbonyl, 1,1-dimethylbutylaminocarbonyl,
       1,2-dimethylbutylaminocarbonyl,
       1,3-dimethylbutylaminocarbonyl,
       2,2-dimethylbutylaminocarbonyl,
35
       2,3-dimethylbutylaminocarbonyl,
       3,3-dimethylbutylaminocarbonyl, 1-ethylbutylaminocarbonyl,
       2-ethylbutylaminocarbonyl,
       1,1,2-trimethylpropylaminocarbonyl,
       1,2,2-trimethylpropylaminocarbonyl,
40
       1-ethyl-1-methylpropylaminocarbonyl or
       1-ethyl-2-methylpropylaminocarbonyl;
       di-(C_1-C_4-alkyl) aminocarbonyl: for example
45
       N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl,
       N, N-di-(1-methylethyl)aminocarbonyl,
       N, N-dipropylaminocarbonyl, N, N-dibutylaminocarbonyl,
```

```
21
       N, N-di-(1-methylpropyl)aminocarbonyl,
       N, N-di-(2-methylpropyl)aminocarbonyl,
       N, N-di-(1, 1-dimethylethyl) aminocarbonyl,
       N-ethyl-N-methylaminocarbonyl,
       N-methyl-N-propylaminocarbonyl,
5
       N-methyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-methylaminocarbonyl,
       N-methyl-N-(1-methylpropyl)aminocarbonyl,
       N-methyl-N-(2-methylpropyl)aminocarbonyl,
10
       N-(1,1-dimethylethyl)-N-methylaminocarbonyl,
       N-ethyl-N-propylaminocarbonyl,
       N-ethyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-ethylaminocarbonyl,
       N-ethyl-N-(1-methylpropyl)aminocarbonyl,
       N-ethyl-N-(2-methylpropyl)aminocarbonyl,
15
       N-ethyl-N-(1,1-dimethylethyl)aminocarbonyl,
       N-(1-methylethyl)-N-propylaminocarbonyl,
       N-butyl-N-propylaminocarbonyl,
       N-(1-methylpropyl)-N-propylaminocarbonyl,
       N-(2-methylpropyl)-N-propylaminocarbonyl,
20
       N-(1,1-dimethylethyl)-N-propylaminocarbonyl,
       N-butyl-N-(1-methylethyl)aminocarbonyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminocarbonyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminocarbonyl,
25
       N-butyl-N-(1-methylpropyl)aminocarbonyl,
       N-butyl-N-(2-methylpropyl)aminocarbonyl,
       N-butyl-N-(1,1-dimethylethyl)aminocarbonyl,
       N-(1-methylpropyl)-N-(2-methylpropyl)aminocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminocarbonyl or
30
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminocarbonyl;
       di-(C_1-C_6-alkyl) aminocarbonyl: di-(C_1-C_4-alkyl) aminocarbonyl,
       as mentioned above, and also, for example,
35
       N-methyl-N-pentylaminocarbonyl,
       N-methyl-N-(1-methylbutyl)aminocarbonyl,
       N-methyl-N-(2-methylbutyl)aminocarbonyl,
       N-methyl-N-(3-methylbutyl)aminocarbonyl, N-methyl-N-
       (2,2-dimethylpropyl)aminocarbonyl,
40
       N-methyl-N-(1-ethylpropyl)aminocarbonyl,
       N-methyl-N-hexylaminocarbonyl,
       N-methyl-N-(1,1-dimethylpropyl)aminocarbonyl, N-methyl-N-
       (1,2-dimethylpropyl)aminocarbonyl,
       N-methyl-N-(1-methylpentyl)aminocarbonyl,
45
       N-methyl-N-(2-methylpentyl)aminocarbonyl,
       N-methyl-N-(3-methylpentyl)aminocarbonyl,
       N-methyl-N-(4-methylpentyl)aminocarbonyl, N-methyl-N-
```

```
22
       (1,1-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1,2-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1,3-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(2,2-dimethylbutyl)aminocarbonyl,
 5
       N-methyl-N-(2,3-dimethylbutyl)aminocarbonyl, N-methyl-N-
       (3,3-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminocarbonyl,
       N-methyl-N-(2-ethylbutyl)aminocarbonyl,
       N-methyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
       N-methyl-N-(1,2,2-trimethylpropyl)aminocarbonyl, N-methyl-
10
       N-(1-ethyl-1-methylpropyl)aminocarbonyl, N-methyl-N-(1-
       ethyl-2-methylpropyl)aminocarbonyl,
       N-ethyl-N-pentylaminocarbonyl,
       N-ethyl-N-(1-methylbutyl)aminocarbonyl, N-ethyl-
       N-(2-methylbutyl)aminocarbonyl,
15
       N-ethyl-N-(3-methylbutyl)aminocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-ethylpropyl)aminocarbonyl,
       N-ethyl-N-hexylaminocarbonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminocarbonyl,
20
       N-ethyl-N-(1,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminocarbonyl,
       N-ethyl-N-(2-methylpentyl)aminocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminocarbonyl,
25
       N-ethyl-N-(4-methylpentyl)aminocarbonyl,
       N-ethyl-N-(1,1-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,2-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(2,2-dimethylbutyl)aminocarbonyl, N-ethyl-N-(2,3-
       dimethylbutyl)aminocarbonyl,
30
       N-ethyl-N-(3,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1-ethylbutyl)aminocarbonyl,
       N-ethyl-N-(2-ethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl)aminocarbonyl,
35
       N-ethyl-N-(1-ethyl-1-methylpropyl)aminocarbonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl)aminocarbonyl,
       N-Propyl-N-pentylaminocarbonyl,
       N-butyl-N-pentylaminocarbonyl, N,N-dipentylaminocarbonyl,
       N-Propyl-N-hexylaminocarbonyl, N-butyl-N-hexylaminocarbonyl,
40
       N-pentyl-N-hexylaminocarbonyl or N, N-dihexylaminocarbonyl;
        di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)aminothiocarbonyl: for example
        N, N-dimethylaminothiocarbonyl, N, N-diethylaminothiocarbonyl,
45
        N, N-di-(1-methylethyl) aminothiocarbonyl,
        N, N-dipropylaminothiocarbonyl, N, N-dibutylaminothiocarbonyl,
        N, N-di-(1-methylpropyl)aminothiocarbonyl,
```

```
N, N-di-(2-methylpropyl) aminothiocarbonyl,
       N, N-di-(1, 1-dimethylethyl) aminothiocarbonyl,
       N-ethyl-N-methylaminothiocarbonyl,
       N-methyl-N-propylaminothiocarbonyl,
       N-methyl-N-(1-methylethyl)aminothiocarbonyl,
5
       N-butyl-N-methylaminothiocarbonyl,
       N-methyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-methyl-N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-methylaminothiocarbonyl,
       N-ethyl-N-propylaminothiocarbonyl,
10
       N-ethyl-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-ethylaminothiocarbonyl,
       N-ethyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-ethyl-N-
       (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-methylethyl)-
15
       N-propylaminothiocarbonyl, N-butyl-N-propylaminothiocarbonyl,
       N-(1-methylpropyl)-N-propylaminothiocarbonyl,
       N-(2-methylpropyl)-N-propylaminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-propylaminothiocarbonyl,
       N-butyl-N-(1-methylethyl)aminothiocarbonyl,
20
       N-(1-methylethyl)-N-(1-methylpropyl)aminothiocarbonyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-butyl-N-(2-methylpropyl)aminothiocarbonyl, N-butyl-N-
25
       (1,1-dimethylethyl)aminothiocarbonyl, N-(1-methylpropyl)-
       N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl) aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(2-methylpropyl) aminothiocarbonyl,
       N-methyl-N-pentylaminothiocarbonyl,
30
       N-methyl-N-(1-methylbutyl)aminothiocarbonyl,
       N-methyl-N-(2-methylbutyl)aminothiocarbonyl,
       N-methyl-N-(3-methylbutyl)aminothiocarbonyl, N-methyl-N-
       (2,2-dimethylpropyl)aminothiocarbonyl,
       N-methyl-N-(1-ethylpropyl)aminothiocarbonyl,
35
       N-methyl-N-hexylaminothiocarbonyl,
       N-methyl-N-(1,1-dimethylpropyl)aminothiocarbonyl, N-methyl-
       N-(1,2-dimethylpropyl)aminothiocarbonyl, N-methyl-N-
        (1-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(2-methylpentyl)aminothiocarbonyl,
40
       N-methyl-N-(3-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(4-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(1,1-dimethylbutyl)aminothiocarbonyl, N-methyl-
        N-(1,2-dimethylbutyl)aminothiocarbonyl,
        N-methyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
45
        N-methyl-N-(2,2-dimethylbutyl)aminothiocarbonyl,
        N-methyl-N-(2,3-dimethylbutyl)aminothiocarbonyl,
```

```
N-methyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminothiocarbonyl,
       N-methyl-N-(2-ethylbutyl)aminothiocarbonyl, N-methyl-N-ethyl-
       N-(1,1,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-
       (1,2,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-(1-
5
       ethyl-1-methylpropyl)aminothiocarbonyl, N-methyl-N-(1-ethyl-
       2-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-pentylaminothiocarbonyl,
       N-ethyl-N-(1-methylbutyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylbutyl)aminothiocarbonyl, N-ethyl-N-(3-
10
       methylbutyl) aminothiocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-ethylpropyl)aminothiocarbonyl,
       N-ethyl-N-hexylaminothiocarbonyl, N-ethyl-N-
       (1,1-dimethylpropyl)aminothiocarbonyl, N-ethyl-N-(1,2-
15
       dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(4-methylpentyl)aminothiocarbonyl, N-ethyl-N-
20
       (1,1-dimethylbutyl)aminothiocarbonyl,
                                               N-\text{ethyl}-N-(1,2-
       dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(2,2-dimethylbutyl)aminothiocarbonyl,
25
       N-ethyl-N-(2,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1-ethylbutyl)aminothiocarbonyl, N-ethyl-N-(2-
       ethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1,1,2-trimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl)aminothiocarbonyl,
30
       N-ethyl-N-(1-ethyl-1-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl)aminothiocarbonyl,
       N-Propyl-N-pentylaminothiocarbonyl,
       N-butyl-N-pentylaminothiocarbonyl,
       N, N-dipentylaminothiocarbonyl,
35
       N-Propyl-N-hexylaminothiocarbonyl,
       N-butyl-N-hexylaminothiocarbonyl,
       N-pentyl-N-hexylaminothiocarbonyl or
       N, N-dihexylaminothiocarbonyl;
40
       C_1-C_4-alkoxy-C_1-C_4-alkyl: C_1-C_4-alkyl which is substituted by
       C_1-C_4-alkoxy as mentioned above, i.e., for example,
       methoxymethyl, ethoxymethyl, propoxymethyl,
       (1-methylethoxy) methyl, butoxymethyl,
45
        (1-methylpropoxy)methyl, (2-methylpropoxy)methyl,
       (1,1-dimethylethoxy)methyl, 2-(methoxy)ethyl,
       2-(ethoxy)ethyl, 2-(propoxy)ethyl, 2-(1-methylethoxy)ethyl,
```

```
25
       2-(butoxy)ethyl, 2-(1-methylpropoxy)ethyl,
       2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl,
       2-(methoxy)-propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl,
       2-(1-methylethoxy)propyl, 2-(butoxy)propyl,
 5
       2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl,
       2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,
       3-(ethoxy)propyl, 3-(propoxy)propyl,
       3-(1-methylethoxy)propyl, 3-(butoxy)propyl,
       3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl,
       3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl,
10
       2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl,
       2-(butoxy)butyl, 2-(1-methylpropoxy)butyl,
       2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl,
       3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl,
15
       3-(1-methylethoxy)butyl, 3-(butoxy)butyl,
       3-(1-methylpropoxy)butyl, 3-(2-methylpropoxy)butyl,
       3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)-
       butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl,
       4-(butoxy)butyl, 4-(1-methylpropoxy)butyl,
20
       4-(2-methylpropoxy)butyl or 4-(1,1-dimethylethoxy)butyl;
       C_1-C_4-alkoxy-C_1-C_4-alkoxy, and the alkoxyalkoxy moieties of
       C_1-C_4-alkoxy-C_1-C_4-alkoxycarbonyl: C_1-C_4-alkoxy which is
       substituted by C_1-C_4-alkoxy as mentioned above, i.e., for
25
       example, methoxymethoxy, ethoxymethoxy, propoxymethoxy,
       (1-methylethoxy) methoxy, butoxymethoxy,
       (1-methylpropoxy)methoxy, (2-methylpropoxy)methoxy,
       (1,1-dimethylethoxy) methoxy, 2-(methoxy) ethoxy,
       2-(ethoxy)ethoxy, 2-(propoxy)ethoxy,
30
       2-(1-methylethoxy)ethoxy, 2-(butoxy)ethoxy,
       2-(1-methylpropoxy)ethoxy, 2-(2-methylpropoxy)ethoxy,
       2-(1,1-dimethylethoxy)ethoxy, 2-(methoxy)propoxy,
       2-(ethoxy)propoxy, 2-(propoxy)propoxy,
       2-(1-methylethoxy)propoxy, 2-(butoxy)propoxy,
35
       2-(1-methylpropoxy)propoxy, 2-(2-methylpropoxy)propoxy,
       2-(1,1-dimethylethoxy)propoxy, 3-(methoxy)propoxy,
       3-(ethoxy)propoxy, 3-(propoxy)propoxy, 3-(1-methylethoxy)-
       propoxy, 3-(butoxy)propoxy, 3-(1-methylpropoxy)propoxy,
       3-(2-methylpropoxy) propoxy, 3-(1,1-dimethylethoxy) propoxy,
40
       2-(methoxy)butoxy, 2-(ethoxy)butoxy, 2-(propoxy)butoxy,
       2-(1-methylethoxy)butoxy, 2-(butoxy)butoxy,
       2-(1-methylpropoxy)butoxy, 2-(2-methylpropoxy)butoxy,
       2-(1,1-dimethylethoxy)butoxy, 3-(methoxy)butoxy,
       3-(ethoxy)butoxy, 3-(propoxy)butoxy,
45
       3-(1-methylethoxy)butoxy, 3-(butoxy)butoxy,
       3-(1-methylpropoxy)butoxy, 3-(2-methylpropoxy)butoxy,
       3-(1,1-dimethylethoxy)butoxy, 4-(methoxy)butoxy,
```

```
4-(ethoxy)butoxy, 4-(propoxy)butoxy,
       4-(1-methylethoxy) butoxy, 4-(butoxy) butoxy,
       4-(1-methylpropoxy)butoxy, 4-(2-methylpropoxy)butoxy or
       4-(1,1-dimethylethoxy)butoxy;
 5
       C<sub>3</sub>-C<sub>6</sub>-alkenyl, and the alkenyl moieties of
       C<sub>3</sub>-C<sub>6</sub>-alkenylcarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkenyloxy,
       C<sub>3</sub>-C<sub>6</sub>-alkenyloxycarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkenylaminocarbonyl,
       N-(C_3-C_6-alkenyl)-N-(C_1-C_6alkyl) aminocarbonyl,
10
       N-(C_3-C_6-alkeny1)-N-(C_1-C_6-alkoxy) aminocarbonyl: for example
       prop-2-en-1-yl, but-1-en-4-yl, 1-methyl-prop-2-en-1-yl,
        2-methylprop-2-en-1-yl, 2-buten-1-yl, 1-penten-3-yl,
        1-penten-4-yl, 2-penten-4-yl, 1-methylbut-2-en-1-yl,
        2-methylbut-2-en-1-yl, 3-methylbut-2-en-1-yl,
15
        1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl,
        3-methylbut-3-en-1-yl, 1,1-dimethylprop-2-en-1-yl,
        1,2-dimethylprop-2-en-1-yl, 1-ethylprop-2-en-1-yl,
        hex-3-en-1-y1, hex-4-en-1-y1, hex-5-en-1-y1,
        1-methylpent-3-en-1-y1, 2-methylpent-3-en-1-y1,
20
        3-methylpent-3-en-1-yl, 4-methylpent-3-en-1-yl,
        1-methylpent-4-en-1-yl, 2-methylpent-4-en-1-yl,
        3-methylpent-4-en-1-yl, 4-methylpent-4-en-1-yl,
        1,1-dimethylbut-2-en-1-yl, 1,1-dimethylbut-3-en-1-yl,
        1,2-dimethylbut-2-en-1-yl, 1,2-dimethylbut-3-en-1-yl,
25
        1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-3-en-1-yl,
        2,2-dimethylbut-3-en-1-yl, 2,3-dimethylbut-2-en-1-yl,
        2,3-dimethylbut-3-en-1-yl, 3,3-dimethylbut-2-en-1-yl,
        1-ethylbut-2-en-1-yl, 1-ethylbut-3-en-1-yl,
        2-ethylbut-2-en-1-yl, 2-ethylbut-3-en-1-yl,
30
        1,1,2-trimethylprop-2-en-1-yl, 1-ethyl-1-methylprop-2-en-1-yl
        or 1-ethyl-2-methylprop-2-en-1-yl;
        C2-C6-alkenyl, and the alkenyl moieties of
        C_2-C_6-alkenylcarbonyl, phenyl-C_2-C_6-alkenylcarbonyl and
35
        heterocyclyl-C_2-C_6-alkenylcarbonyl: C_3-C_6-alkenyl as mentioned
        above, and also ethenyl;
        C3-C6-haloalkenyl: a C3-C6-alkenyl radical as mentioned above
        which is partially or fully substituted by fluorine,
40
        chlorine, bromine and/or iodine, i.e., for example,
        2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl,
        3,3-dichloroally1, 2,3,3-trichloroally1,
        2,3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl,
        2,3-dibromoally1, 3,3-dibromoally1, 2,3,3-tribromoally1 or
45
        2,3-dibromobut-2-enyl;
```

```
C<sub>3</sub>-C<sub>6</sub>-alkynyl, and the alkyinyl moieties of
C<sub>3</sub>-C<sub>6</sub>-alkynylcarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkynyloxy,
C<sub>3</sub>-C<sub>6</sub>-alkynyloxycarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkynylaminocarbonyl,
N-(C<sub>3</sub>-C<sub>6</sub>-alkynyl)-N-(C<sub>1</sub>-C<sub>6</sub>-alkyl)aminocarbonyl,
```

- yl, hex-1-yn-4-yl, hex-1-yn-5-yl, hex-1-yn-6-yl, hex-2-yn-1yl, hex-2-yn-4-yl, hex-2-yn-5-yl, hex-2-yn-6-yl,
 hex-3-yn-1-yl, hex-3-yn-2-yl, 3-methylpent-1-yn-3-yl,
 3-methylpent-1-yn-4-yl, 3-methylpent-1-yn-5-yl,
 4-methylpent-2-yn-4-yl or 4-methylpent-2-yn-5-yl;

- C_2 - C_6 -alkynyl, and the alkynyl moieties of C_2 - C_6 -alkynylcarbonyl: C_3 - C_6 -alkynyl as mentioned above, and also ethynyl;

C₃-C₆-haloalkynyl: a C₃-C₆-alkynyl radical as mentioned above
which is partially or fully substitued by fluorine, chlorine,
bromine and/or iodine, i.e., for example,
1,1-difluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl,
4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1-yl,
1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl,
5-fluoropent-3-yn-1-yl, 5-iodopent-4-yn-1-yl,
6-fluorohex-4-yn-1-yl or 6-iodohex-5-yn-1-yl;

- 30 C₃-C₆-cycloalkyl, and the cycloalkyl moieties of C₃-C₆-cycloalkylcarbonyl: for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
- heterocyclyl, and the heterocyclyl moieties of heterocyclylcarbonyl, heterocyclyl-C₁-C₆-alkyl, heterocyclyloxy, heterocyclylthio, heterocyclyloxyalkylcarbonyl, heterocyclyloxycarbonyl, heterocyclyloxythiocarbonyl, heterocyclylcarbonyl-C₁-C₆-alkyl, N-(C₁-C₆-alkyl)-N-(heterocyclyl)aminocarbonyl,
- heterocyclylaminocarbonyl: a saturated, partially saturated or unsaturated 5— or 6—membered heterocyclic ring which is attached via a carbon and has one to four identical or different hetero atoms selected from the following group: oxygen, sulfur or nitrogen, i.e., for example, 5—membered rings having a hetero atom such as, for example:

```
tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-
       2-yl, tetrahydrothien-3-yl, tetrahydropyrrol-2-yl,
       tetrahydropyrrol-3-yl, 2,3-dihydrofuran-2-yl,
       2,3-dihydrofuran-3-yl, 2,5-dihydrofuran-2-yl,
 5
       2,5-dihydrofuran-3-yl, 4,5-dihydrofuran-2-yl,
       4,5-dihydrofuran-3-yl, 2,3-dihydrothien-2-yl,
       2,3-dihydrothien-3-yl, 2,5-dihydrothien-2-yl,
       2,5-dihydrothien-3-yl, 4,5-dihydrothien-2-yl,
       4,5-dihydrothien-3-yl, 2,3-dihydro-1H-pyrrol-2-yl,
       2,3-dihydro-1H-pyrrol-3-yl, 2,5-dihydro-1H-pyrrol-2-yl,
10
       2,5-dihydro-1H-pyrrol-3-yl, 4,5-dihydro-1H-pyrrol-2-yl,
       4,5-dihydro-1H-pyrrol-3-yl, 3,4-dihydro-2H-pyrrol-2-yl,
       3,4-dihydro-2H-pyrrol-3-yl, 3,4-dihydro-5H-pyrrol-2-yl,
       3,4-dihydro-5H-pyrrol-3-yl, 2-furyl, 3-furyl, 2-thienyl,
       3-thienyl, pyrrol-2-yl or pyrrol-3-yl;
15
       5-membered rings having two hetero atoms such as, for
       example,
20
       tetrahydropyrazol-3-yl, tetrahydropyrazol-3-yl,
       tetrahydropyrazol-4-yl, tetrahydroisoxazol-3-yl,
       tetrahydroisoxazol-4-yl, tetrahydroisoxazol-5-yl,
       1,2-oxathiolan-3-yl, 1,2-oxathiolan-4-yl,
       1,2-oxathiolan-5-yl, tetrahydroisothiazol-3-yl,
25
       tetrahydroisothiazol-4-yl, tetrahydroisothiazol-5-yl,
       1,2-dithiolan-3-yl, 1,2-dithiolan-4-yl,
       tetrahydroimidazol-2-yl, tetrahydroimidazol-4-yl,
       tetrahydrooxazol-2-yl, tetrahydrooxazol-4-yl,
       tetrahydrooxazol-5-yl, tetrahydrothiazol-2-yl,
30
       tetrahydrothiazol-4-yl, tetrahydrothiazol-5-yl,
       1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, 1,3-oxathiolan-2-yl,
       1,3-oxathiolan-4-yl, 1,3-oxathiolan-5-yl, 1,3-dithiolan-2-yl,
       1,3-dithiolan-4-yl, 4,5-dihydro-1H-pyrazol-3-yl,
       4,5-dihydro-1H-pyrazol-4-yl, 4,5-dihydro-1H-pyrazol-5-yl,
35
       2,5-dihydro-1H-pyrazol-3-yl, 2,5-dihydro-1H-pyrazol-4-yl,
       2,5-dihydro-1H-pyrazol-5-yl, 4,5-dihydroisoxazol-3-yl,
       4,5-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol-5-yl,
       2,5-dihydroisoxazol-3-yl, 2,5-dihydroisoxazol-4-yl,
       2,5-dihydroisoxazol-5-yl, 2,3-dihydroisoxazol-3-yl,
40
       2,3-dihydroisoxazol-4-yl, 2,3-dihydroisoxazol-5-yl,
       4,5-dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl,
       4,5-dihydroisothiazol-5-yl, 2,5-dihydroisothiazol-3-yl,
       2,5-dihydroisothiazol-4-yl, 2,5-dihydroisothiazol-5-yl,
       2,3-dihydroisothiazol-3-yl, 2,3-dihydroisothiazol-4-yl,
45
       2,3-dihydroisothiazol-
       5-yl, \Delta^{3-1}, 2-dithiol-3-yl, \Delta^{3-1}, 2-dithiol-4-yl,
       \Delta^{3-1}, 2-dithiol-5-yl, 4,5-dihydro-1H-imidazol-2-yl,
```

```
4.5-dihydro-1H-imidazol-4-yl, 4.5-dihydro-1H-imidazol-5-yl,
       2,5-dihydro-1H-imidazol-2-yl, 2,5-dihydro-1H-imidazol-4-yl,
       2,5-dihydro-1H-imidazol-5-yl, 2,3-dihydro-1H-imidazol-2-yl,
       2,3-dihydro-1H-imidazol-4-yl, 4,5-dihydrooxazol-2-yl,
       4,5-dihydrooxazol-4-yl, 4,5-dihydrooxazol-5-yl,
 5
       2,5—dihydrooxazol-2-yl, 2,5—dihydrooxazol-4-yl,
       2,5-dihydrooxazol-5-yl, 2,3-dihydrooxazol-2-yl,
       2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl,
       4,5-dihydrothiazol-2-yl, 4,5-dihydrothiazol-4-yl,
10
        4,5-dihydrothiazol-5-yl, 2,5-dihydrothiazol-2-yl,
       2,5-dihydrothiazol-4-yl, 2,5-dihydrothiazol-5-yl,
       2,3-dihydrothiazol-2-yl, 2,3-dihydrothiazol-4-yl,
        2,3-dihydrothiazol-5-yl, 1,3-dioxol-2-yl, 1,3-dioxol-4-yl,
        1,3-dithiol-2-yl, 1,3-dithiol-4-yl, 1,3-oxathiol-2-yl,
        1,3-oxathiol-4-yl, 1,3-oxathiol-5-yl, pyrazol-3-yl,
15
       pyrazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
        isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl,
        imidazol-2-yl, imidazol-4-yl, oxazol-2-yl, oxazol-4-yl,
        oxazol-5-yl, thiazol-2-yl, thiazol-4-yl or thiazol-5-yl;
20
        5-membered rings having 3 hetero atoms such as, for example,
        1,2,3-\Delta^2-oxadiazolin-4-yl, 1,2,3-\Delta^2-oxadiazolin-5-yl,
        1,2,4-\Delta^4-oxadiazolin-3-yl, 1,2,4-\Delta^4-oxadiazolin-5-yl,
        1,2,4-\Delta^2-oxadiazolin-3-yl, 1,2,4-\Delta^2-oxadiazolin-5-yl,
25
        1,2,4-\Delta^3-oxadiazolin-3-yl, 1,2,4-\Delta^3-oxadiazolin-5-yl,
        1,3,4-\Delta^2-oxadiazolin-2-yl, 1,3,4-\Delta^2-oxadiazolin-5-yl,
        1,3,4-\Delta^3-oxadiazolin-2-yl, 1,3,4-oxadiazolin-2-yl,
        1,2,4-\Delta^4-thiadiazolin-3-yl, 1,2,4-\Delta^4-thiadiazolin-5-yl,
        1,2,4-\Delta^3-thiadiazolin-3-yl, 1,2,4-\Delta^3-thiadiazolin-5-yl,
30
        1,2,4-\Delta^2-thiadiazolin-3-yl, 1,2,4-\Delta^2-thiadiazolin-5-yl,
        1,3,4-\Delta^2-thiadiazolin-2-yl, 1,3,4-\Delta^2-thiadiazolin-5-yl,
        1,3,4-\Delta^3-thiadiazolin-2-yl, 1,3,4-thiadiazolin-2-yl,
        1,3,2-dioxathiolan-4-yl, 1,2,3-\Delta^2-triazolin-4-yl,
        1,2,3-\Delta^2-triazolin-5-yl, 1,2,4-\Delta^2-triazolin-3-yl,
35
        1,2,4-\Delta^2-triazolin-5-yl, 1,2,4-\Delta^3-triazolin-3-yl,
        1,2,4-\Delta^3-triazolin-5-yl, 1,2,4-\Delta^1-triazolin-2-yl,
        1,2,4-triazolin-3-yl, 3H-1,2,4-dithiazol-5-yl,
        2H-1,3,4-dithiazol-5-yl, 2H-1,3,4-oxathiazol-5-yl,
        1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl,
40
        1,2,4-oxadiazol-3-yl, 1,2,4,-oxadiazol-5-yl,
        1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl,
        1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl,
        1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazolyl-2-yl,
        1,2,3-triazol-4-yl or 1,2,4-triazol-3-yl;
45
        5-m mbered rings having 4 hetero atoms such as, for example,
```

tetrazol-5-yl,

6-membered rings having 1 hetero atom such as, for example:

```
5
       tetrahydropyran-2-yl, tetrahydropyran-3-yl,
       tetrahydropyran-4-yl, piperidin-2-yl, piperidin-3-yl,
       piperidin-4-yl, tetrahydrothiopyran-2-yl,
       tetrahydrothiopyran-3-yl, tetrahydrothiopyran-4-yl,
       2H-3,4-dihydropyran-6-yl, 2H-3,4-dihydropyran-5-yl,
10
       2H-3,4-dihydropyran-4-yl, 2H-3,4-dihydropyran-3-yl,
       2H-3,4-dihydropyran-2-yl, 2H-3,4-dihydropyran-6-yl,
       2H-3,4-dihydrothiopyran-5-yl, 2H-3,4-dihydrothiopyran-4-yl,
       2H-3,4-dihydropyran-3-yl, 2H-3,4-dihydropyran-2-yl,
       1,2,3,4-tetrahydropyridin-6-yl,
15
       1,2,3,4-tetrahydropyridin-5-yl, 1,2,3,4-tetrahydropyridin-4-
       yl, 1,2,3,4-tetrahydropyridin-3-yl,
       1,2,3,4-tetrahydropyridin-2-yl, 2H-5,6-dihydropyran-2-yl,
       2H-5,6-dihydropyran-3-yl, 2H-5,6-dihydropyran-4-yl,
       2H-5,6-dihydropyran-5-yl, 2H-5,6-dihydropyran-6-yl,
20
       2H-5,6-dihydrothiopyran-2-yl, 2H-5,6-dihydrothiopyran-3-yl,
       2H-5,6-dihydrothiopyran-4-yl, 2H-5,6-dihydrothiopyran-5-yl,
       2H-5,6-dihydrothiopyran-6-yl, 1,2,5,6-tetrahydropyridin-2-yl,
       1,2,5,6-tetrahydropyridin-3-yl, 1,2,5,6-tetrahydro-
       pyridin-4-yl, 1,2,5,6-tetrahydropyridin-5-yl, 1,2,5,6-
25
       tetrahydropyridin-6-yl, 2,3,4,5-tetrahydropyridin-2-yl,
       2,3,4,5-tetrahydropyridin-3-yl, 2,3,4,5-tetra-
       hydropyridin-4-yl, 2,3,4,5-tetrahydropyridin-5-yl,
       2,3,4,5-tetrahydropyridin-6-yl, 4H-pyran-2-yl, 4H-pyran-3-yl,
       4H-pyran-4-yl, 4H-thiopyran-2-yl, 4H-thiopyran-3-yl,
30
       4H-thiopyran-4-yl, 1,4-dihydropyridin-2-yl,
       1,4-dihydropyridin-3-yl, 1,4-dihydropyridin-4-yl,
       2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl,
       2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl,
       2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl,
35
       1,2-dihydropyridin-2-yl, 1,2-dihydropyridin-3-yl,
       1,2-dihydropyridin-4-yl, 1,2-dihydropyridin-5-yl,
       1,2-dihydropyridin-6-yl, 3,4-dihydropyridin-2-yl,
       3,4-dihydropyridin-3-yl, 3,4-dihydropyridin-4-yl,
       3,4-dihydropyridin-5-yl, 3,4-dihydropyridin-6-yl,
40
       2,5-dihydropyridin-2-yl, 2,5-dihydropyridin-3-yl,
       2,5-dihydropyridin-4-yl, 2,5-dihydropyridin-5-yl,
       2,5-dihydropyridin-6-yl, 2,3-dihydropyridin-2-yl,
       2,3-dihydropyridin-3-yl, 2,3-dihydropyridin-4-yl,
       2,3-dihydropyridin-5-yl, 2,3-dihydropyridin-6-yl,
45
       pyridin-2-yl, pyridin-3-yl or pyridin-4-yl;
```

6-membered rings having 2 hetero atoms such as, for example,

```
1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl,
       1,4-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-dithian-4-yl,
5
       1,3-dithian-5-yl, 1,4-dithian-2-yl, 1,3-oxathian-2-yl,
       1,3-oxathian-4-yl, 1,3-oxathian-5-yl, 1,3-oxathian-6-yl,
       1,4-oxathian-2-yl, 1,4-oxathian-3-yl, 1,2-dithian-3-yl,
       1,2-dithian-4-yl, hexahydropyrimidin-2-yl,
       hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl,
10
       hexahydropyrazin-2-yl, hexahydropyridazin-3-yl,
       hexahydropyridazin-4-yl, tetrahydro-1,3-oxazin-2-yl,
       tetrahydro-1,3-oxazin-4-yl, tetrahydro-1,3-oxazin-5-yl,
       tetrahydro-1,3-oxazin-6-yl, tetrahydro-1,3-thiazin-2-yl,
       tetrahydro-1,3-thiazin-4-yl, tetrahydro-1,3-thiazin-5-yl,
15
       tetrahydro-1,3-thiazin-6-yl, tetrahydro-1,4-thiazin-2-yl,
       tetrahydro-1,4-thiazin-3-yl, tetrahydro-1,4-oxazin-2-yl,
       tetrahydro-1,4-oxazin-3-yl, tetrahydro-1,2-oxazin-3-yl,
       tetrahydro-1,2-oxazin-4-yl, tetrahydro-1,2-oxazin-5-yl,
       tetrahydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-1,2-oxazin-3-yl,
20
       2H-5,6-dihydro-1,2-
       oxazin-4-yl, 2H-5,6-dihydro-1,2-oxazin-5-yl,
       2H-5,6-dihydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-
       1,2-thiazin-3-yl, 2H-5,6-dihydro-1,2-thiazin-4-yl,
       2H-5,6-dihydro-1,2-thiazin-5-yl, 2H-5,6-dihydro-1,2-
25
       thiazin-6-yl, 4H-5,6-dihydro-1,2-oxazin-3-yl,
       4H-5,6-dihydro-1,2-oxazin-4-yl, 4H-5,6-dihydro-
       1,2-oxazin-5-yl, 4H-5,6-dihydro-1,2-oxazin-6-yl,
       4H-5,6-dihydro-1,2-thiazin-3-yl, 4H-5,6-dihydro-1,2-
       thiazin-4-yl, 4H-5,6-dihydro-1,2-thiazin-5-yl,
30
       4H-5,6-dihydro-1,2-thiazin-6-yl, 2H-3,6-dihydro-1,2-
       oxazin-3-yl, 2H-3,6-dihydro-1,2-oxazin-4-yl,
       2H-3,6-dihydro-1,2-oxazin-5-yl, 2H-3,6-dihydro-1,2-
       oxazin-6-yl, 2H-3,6-dihydro-1,2-thiazin-3-yl,
       2H-3,6-dihydro-1,2-thiazin-4-yl, 2H-3,6-dihydro-1,2-
35
       thiazin-5-yl, 2H-3,6-dihydro-1,2-thiazin-6-yl,
       2H-3,4-dihydro-1,2-oxazin-3-yl, 2H-3,4-dihydro-1,2-
       oxazin-4-yl, 2H-3,4-dihydro-1,2-oxazin-5-yl,
       2H-3,4-dihydro-1,2-oxazin-6-yl, 2H-3,4-dihydro-1,2-
       thiazin-3-yl, 2H-3,4-dihydro-1,2-thiazin-4-yl,
40
       2H-3,4-dihydro-1,2-thiazin-5-yl, 2H-3,4-dihydro-
       1,2-thiazin-6-yl, 2,3,4,5-tetrahydropyridazin-3-yl,
       2,3,4,5-tetrahydropyridazin-4-yl,
       2,3,4,5-tetrahydropyridazin-5-yl,
       2,3,4,5-tetrahydropyridazin-6-yl,
45
       3,4,5,6-tetrahydropyridazin-3-yl,
       3,4,5,6-tetrahydropyridazin-4-yl,
       1,2,5,6-tetrahydropyridazin-3-yl,
```

```
1,2,5,6-tetrahydropyridazin-4-yl,
       1,2,5,6-tetrahydropyridazin-5-yl,
       1,2,5,6-tetrahydropyridazin-6-yl,
       1,2,3,6-tetrahydropyridazin-3-yl,
       1,2,3,6-tetrahydropyridazin-4-yl,
5
       4H-5,6-dihydro-1,3-oxazin-2-yl,
       4H-5,6-dihydro-1,3-oxazin-4-yl,
       4H-5,6-dihydro-1,3-oxazin-5-yl,
       4H-5,6-dihydro-1,3-oxazin-6-yl
       4H-5,6-dihydro-1,3-thiazin-2-yl,
10
       4H-5,6-dihydro-1,3-thiazin-4-yl,
       4H-5,6-dihydro-1,3-thiazin-5-yl, 4H-5,6-dihydro-
       1,3-thiazin-6-yl, 3,4,5-6-tetrahydropyrimidin-2-yl,
       3,4,5,6-tetrahydropyrimidin-4-yl, 3,4,5,6-tetrahydro-
15
       pyrimidin-5-yl, 3,4,5,6-tetrahydropyrimidin-6-yl,
       1,2,3,4-tetrahydropyrazin-2-yl, 1,2,3,4-tetrahydro-
       pyrazin-5-yl, 1,2,3,4-tetrahydropyrimidin-2-yl,
       1,2,3,4-tetrahydropyrimidin-4-yl, 1,2,3,4-tetrahydro-
       pyrimidin-5-yl, 1,2,3,4-tetrahydropyrimidin-6-yl,
       2,3-dihydro-1,4-thiazin-2-yl, 2,3-dihydro-1,4-thiazin-3-yl,
20
       2,3-dihydro-1,4-thiazin-5-yl, 2,3-dihydro-1,4-thiazin-6-yl,
       2H-1,2-oxazin-3-yl, 2H-1,2-oxazin-4-yl, 2H-1,2-oxazin-5-yl,
       2H-1,2-oxazin-6-yl, 2H-1,2-thiazin-3-yl, 2H-1,2-thiazin-4-yl,
       2H-1,2-thiazin-5-yl, 2H-1,2-thiazin-6-yl, 4H-1,2-oxazin-3-yl,
25
       4H-1,2-oxazin-4-yl, 4H-1,2-oxazin-5-yl, 4H-1,2-oxazin-6-yl,
       4H-1,2-thiazin-3-yl, 4H-1,2-thiazin-4-yl,
       4H-1,2-thiazin-5-yl, 4H-1,2-thiazin-6-yl, 6H-1,2-oxazin-3-yl,
       6H-1,2-oxazin-4-yl, 6H-1,2-oxazin-5-yl, 6H-1,2-oxazin-6-yl,
       6H-1,2-thiazin-3-yl, 6H-1,2-thiazin-4-yl,
       6H-1,2-thiazin-5-yl, 6H-1,2-thiazin-6-yl, 2H-1,3-oxazin-2-yl,
30
       2H-1,3-oxazin-4-yl, 2H-1,3-oxazin-5-yl, 2H-1,3-oxazin-6-yl,
       2H-1,3-thiazin-2-yl, 2H-1,3-thiazin-4-yl, 2H-1,3-thiazin-5-
       yl, 2H-1,3-thiazin-6-yl, 4H-1,3-oxazin-2-yl, 4H-1,3-oxazin-
       4-y1, 4H-1,3-oxazin-5-y1, 4H-1,3-oxazin-6-y1, 4H-1,3-thiazin-
35
       2-yl, 4H-1,3-thiazin-4-yl, 4H-1,3-thiazin-5-yl,
       4H-1,3-thiazin-6-yl, 6H-1,3-oxazin-2-yl, 6H-1,3-oxazin-4-yl,
       6H-1,3-oxazin-5-yl, 6H-1,3-oxazin-6-yl, 6H-1,3-thiazin-2-yl,
       6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl, 6H-1,3-thiazin-6-yl,
       2H-1,4-oxazin-2-yl, 2H-1,4-oxazin-3-yl, 2H-1,4-oxazin-5-yl,
       2H-1,4-oxazin-6-yl, 2H-1,4-thiazin-2-yl, 2H-1,4-thiazin-3-yl,
40
       2H-1,4-thiazin-5-yl, 2H-1,4-thiazin-6-yl, 4H-1,4-oxazin-2-yl,
       4H-1,4-oxazin-3-yl, 4H-1,4-thiazin-2-yl, 4H-1,4-thiazin-3-yl,
       1,4-dihydropyridazin-3-yl, 1,4-dihydropyridazin-4-yl,
       1,4-dihydropyridazin-5-yl, 1,4-dihydropyridazin-6-yl,
       1,4-dihydropyrazin-2-yl, 1,2-dihydropyrazin-2-yl,
45
       1,2-dihydropyrazin-3-yl, 1,2-dihydropyrazin-5-yl,
       1,2-dihydropyrazin-6-yl, 1,4-dihydropyrimidin-2-yl,
```

1,4—dihydropyrimidin—4—yl, 1,4—dihydropyrimidin—5—yl, 1,4—dihydropyrimidin—6—yl, 3,4—dihydropyrimidin—2—yl,

3,4—dihydropyrimidin—4—yl, 3,4—dihydropyrimidin—5—yl or

3,4-dihydropyrimidin-6-yl, pyridazin-3-yl, pyridazin-4-yl,

pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl or pyrazin-2-yl;

6-membered rings having 3 hetero atoms such as, for example,

1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl or 1,2,4-triazin-6-yl;

6-membered rings having 4 hetero atoms such as, for example,

1,2,4,5-tetrazin-3-yl;

where, if appropriate, the sulfur of the abovementioned heterocycles may be oxidized to S=0 or $S(=0)_2$;

and where a bicyclic ring system may be formed with a fused-on phenyl ring or with a C_3-C_6 -carbocycle or with another 5- to 6-membered heterocycle.

N-linked heterocyclyl: a saturated, partially saturated or unsaturated 5- or 6-membered heterocyclic ring which is attached via nitrogen and which contains at least one nitrogen and optionally one to three identical or different hetero atoms selected from the following group: oxygen, sulfur or nitrogen, i.e., for example,

5-membered rings having 1 hetero atom which are linked by a nitrogen, such as, for example,

tetrahydropyrrol-1-yl, 2,3-dihydro-1H-pyrrol-1-yl,
2,5-dihydro-1H-pyrrol-1-yl or pyrrol-1-yl;

5-membered rings having 2 hetero atoms which are linked by a nitrogen such as, for example,

tetrahydropyrazol-1-yl, tetrahydroisoxazol-2-yl, tetrahydroisothiazol-2-yl, tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl, tetrahydrothiazol-3-yl,

4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-1H-pyrazol-1-yl, 2,3-dihydro-1H-pyrazol-1-yl, 2,5-dihydroisoxazol-2-yl, 2,3-dihydroisoxazol-2-yl, 2,5-dihydroisothiazol-2-yl,

10

15

20

25

30

35

40

45

```
34
2,3-dihydroisoxazol-2-yl, 4,5-dihydro-1H-imidazol-1-yl,
2,5-dihydro-1H-imidazol-1-yl, 2,3-dihydro-1H-imidazol-1-yl,
2,3-dihydrooxazol-3-yl, 2,3-dihydrothiazol-3-yl, pyrazol-1-yl
or imidazol-l-yl;
5-membered rings having 3 hetero atoms which are linked by a
nitrogen such as, for example,
1,2,4-\Delta^4-oxadiazolin-2-yl, 1,2,4-\Delta^2-oxadiazolin-4-yl,
1,2,4-\Delta^3-oxadiazolin-2-yl, 1,3,4-\Delta^2-oxadiazolin-4-yl,
1,2,4\Delta5-thiadiazolin-2-yl, 1,2,4\Delta3-thiadiazolin-2-yl,
1,2,4\Delta^2-thiadiazolin-4-yl, 1,3,4\Delta^2-thiadiazolin-4-yl,
1,2,3-\Delta^2-triazolin-1-yl, 1,2,4-\Delta^2-triazolin-1-yl,
1,2,4\Delta^2-triazolin-4-yl, 1,2,4\Delta^3-triazolin-1-yl, 1,2,4\Delta^1-
triazolin-4-yl, 1,2,3-triazol-1-yl or 1,2,4-triazol-1-yl;
5-membered rings having 4 hetero atoms which are linked by a
nitrogen such as, for example,
tetrazol-1-yl;
and 6-membered rings having 1 hetero atom which are linked by
a nitrogen, such as, for example
piperidin-1-yl, 1,2,3,4-tetrahydropyridin-1-yl,
1,2,5,6-tetrahydropyridin-1-yl, 1,4-dihydropyridin-1-yl or
1,2-dihydropyridin-1-yl;
6-membered rings having 2 hetero atoms which are linked by a
nitrogen such as, for example,
hexahydropyrimidin-1-yl, hexahydropyrazin-1-yl,
hexahydropyridazin-1-yl, tetrahydro-1,3-oxazin-3-yl,
tetrahydro-1,3-thiazin-3-yl, tetrahydro-1,4-thiazin-4-yl,
tetrahydro-1,4-oxazin-4-yl, tetrahydro-1,2-oxazin-2-yl,
2H-5,6-dihydro-1,2-oxazin-2-yl,
2H-5,6-dihydro-1,2-thiazin-2-yl, 2H-3,6-dihydro-1,2-
oxazin-2-y1, 2H-3,6-dihydro-1,2-thiazin-oxazin-2-y1,
2H-3,4-dihydro-1,2-thiazin-2-yl, 2,3,4,5-tetrahydro-
pyridazin-2-yl, 1,2,5,6-tetrahydropyridazin-1-yl,
1,2,5,6-tetrahydropyridazin-2-yl, 1,2,3,6-tetrahydro-
pyridazin-1-yl, 3,4,5,6-tetrahydropyrimidin-3-yl,
```

1,2,3,4-tetrahydropyrazin-1-y1, 1,2,3,4-tetrahydropyrimidin-1-yl, 1,2,3,4-tetrahydropyrimidin-3-yl, 2,3-dihydro-1,4-thiazin-4-yl, 2H-1,2-oxazin-2-yl,

2H-1,2-thiazin-2-yl, 4H-1,4-oxazin-4-yl, 4H-1,4-thiazin-4-yl, 1,4-dihydropyridazin-1-yl, 1,4-dihydropyrazin-1-yl, 1,2-dihydropyrazin-1-yl, 1,4-dihydropyrimidin-1-yl or 3,4-dihydropyrimidin-3-yl, and also cyclic imides which are linked via nitrogen, such as: phthalimide, tetrahydrophthalimide, succinimide, maleimide or glutarimide, and also 4-oxo-1,4-dihydropyridin-1-yl.

All phenyl rings or heterocyclyl radicals, and also all phenyl components in phenyl—C₁—C₆—alkyl, phenylcarbonyl—C₁—C₆—alkyl, phenoxy, phenylthio, phenylcarbonyl, phenylalkenylcarbonyl, phenoxycarbonyl, phenoxyalkylcarbonyl, phenylaminocarbonyl and N—(C₁—C₆—alkyl)—N—phenylaminocarbonyl or heterocyclyl components in heterocyclyl—C₁—C₆—alkyl, heterocyclylcarbonyl—C₁—C₆—alkyl, heterocyclylcarbonyl—C₁—C₆—alkyl, heterocyclylcarbonyl, heterocyclylalkenylcarbonyl, heterocyclyloxyalkylcarbonyl, heterocyclylakylcarbonyl, heterocyclylaminocarbonyl and N—(C₁—C₆—alkyl)—N—heterocyclylaminocarbonyl are, unless stated otherwise, preferably unsubstituted, or they carry one to three halogen atoms and/or one nitro group, one cyano radical and/or one or two methyl, trifluoromethyl, methoxy or trifluoromethoxy substituents.

The compounds of the formula I according to the invention where R⁴ = IIa are referred to as compounds of the formula Ia, and compounds of the formula I where R⁴ = IIb are referred to as Ib.

The compounds of the formula I should be particularly emphasized, where

 R^7 is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, $C_3-C_6-alkynyl$, $C_3-C_6-haloalkynyl$, $C_3-C_6-cycloalkyl$, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C2-C6-alkynylcarbonyl, C3-C6-cycloalkylcarbonyl, 35 C_1-C_6 -alkoxycarbonyl, C_3-C_6 -alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆-alkylthiocarbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, $C_3-C_6-alkynylaminocarbonyl, N,N-di-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)-$ 40 aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, di-(C₁-C₆-alkyl)aminothiocarbonyl, 45 $C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$, $C_1-C_6-alkoxyimino-alkylcarbonyl-C_1-C_6-alkyl$ $C_1-C_6-alkyl$, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or N, N-di- $(C_1$ - C_6 -alkylamino)imino- C_1 - C_6 -alkyl, where the alkyl, cycloalkyl and alkoxy radicals mentioned may be

partially or fully halogenated and/or may carry one to thre of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, $di-(C_1-C_4$ -alkyl)-5 amino, C1-C4-alkylcarbonyl, C1-C4-alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, $di-(C_1-C_4-alkyl)$ amino $-C_1-C_4$ -alkoxycarbonyl, hydroxycarbonyl, C1-C4-alkylaminocarbonyl, di-(C1-C4-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; 10 phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl-C1-C6-alkyl, phenylcarbonyl-C1-C6-alkyl, heterocyclyl $carbonyl-C_1-C_6-alkyl$, phenylcarbonyl, heterocyclyl-15 carbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 alkylcarbonyl, phenylaminocarbonyl, $N-(C_1-C_6-alkyl)-$ N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl, 20 phenyl-C2-C6-alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following 25 radicals:

With a view to the use of the compounds of the formula I according to the invention as herbicides, the variables preferably have the following meanings, in each case on their own or in combination:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy

is nitro, halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylthio, C_1 — C_6 —alkylsulfonyl or C_1 — C_6 —haloalkylsulfonyl;

40 R², R³ are hydrogen, C_1-C_6 -alkyl or halogen;

or C_1-C_4 -haloalkoxy;

R4 is a compound of IIa or IIb

$$(R^6)_1$$
 R^5
 $(R^6)_1$
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

where

10

15

5

is halogen, OR⁷, SR⁷, SO₂R⁸, OSO₂R⁸, OPOR⁸R⁹, OPR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be

partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

20 R6

25

is halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, di— $(C_1$ — C_6 —alkoxy)methyl, di— $(C_1$ — C_6 —alkoxy) $(C_1$ — C_6 —alkylthio)methyl, hydroxyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylthio,

 C_1 — C_6 —alkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, C_1 — C_6 —alkylcarbonyl, C_1 — C_6 —haloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

30 or

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n-$ chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

40

45

35

or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or 5 two radicals R^6 , which are linked to the same carbon, together with this carbon form a carbonyl group; or two radicals R6, which are linked to different carbons, 10 together form a $-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or 15 C₁-C₆-alkoxycarbonyl; is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, \mathbb{R}^7 C₃-C₆-alkynyl, C₁-C₂₀-alkylcarbonyl, C2-C6-alkenylcarbonyl, C3-C6-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, 20 C_3-C_6 -alkynyloxycarbonyl, (C_1-C_{20} -alkylthio)carbonyl (particularly preferably (C1-C6-alkylthio)carbonyl), C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl, 25 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, 30 di-(C1-C6-alkyl)aminothiocarbonyl, $C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$, C₁-C₆-alkoxyimino-C₁-C₆-alkyl, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or N, N-di- $(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$, where the 35 abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, 40 C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C1-C6-alkyl, 45

heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl,

heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, 5 heterocyclyloxy-C₁-C₆-alkylcarbonyl, phenyl-C2-C6-alkenylcarbonyl or heterocyclyl-C2-C6-alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 16 last mentioned substituents may be partially or fully halogenated 10 and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C_1 - C_4 -haloalkoxy; 15 _{R8, R9} are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,

R8, R9 are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,

C₃-C₆-cycloalkyl, hydroxy, C₁-C₆-alkoxy,

di-C₁-C₆-alkylamino, or di-(C₁-C₆-haloalkyl)amino,

where the abovementioned alkyl, cycloalkyl and alkoxy

radicals may be partially or fully halogenated and/or

may carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio,

C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl,

hydroxycarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl,

C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl, heterocyclyl— C_1 — C_6 —alkyl, phenoxy, heterocyclyloxy, where the phenyl— and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;

is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,
C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy or
di-(C₁-C₆-alkyl)amino, where the abovementioned alkyl,
cycloalkyl and alkoxy radicals may be partially or
fully halogenated and/or may carry one to three
radicals from the following group:

45

		40
		cyano, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -alkylthio,
		C ₁ -C ₄ -alkylcarbonyl, C ₁ -C ₄ -alkoxycarbonyl,
		hydroxycarbonyl, di-(C ₁ -C ₄ -alkyl)aminocarbonyl,
		C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
5		-1 -4
		phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl or
		heterocyclyl-C ₁ -C ₆ -alkyl, where the phenyl or
		heterocyclyl radical of the four last-mentioned
		substituents may be partially or fully halogenated
10		and/or may carry one to three of the following
		radicals:
		nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -alkoxy
		or C ₁ -C ₄ -haloalkoxy;
15		
	R^{11}, R^{12}	are C ₁ -C ₆ -alkyl or C ₃ -C ₆ -alkenyl;
	1	0 to 6;
20	m	2 to 4;
	•••	2 00 4,
	n	1 to 5;
25	p	2 to 5.
	Particular	preference is given to compounds of the formula I
		variables have the following meanings, either on their
		combination:
30		
	m1	de belegge of a client of a belegibed of allegge
	R ¹	is halogen, C ₁ -C ₆ -alkyl, C ₁ -C ₆ -haloalkyl, C ₁ -C ₆ -alkoxy,
		C ₁ -C ₆ -alkylthio or C ₁ -C ₆ -alkylsulfonyl;
		in particular halogen, such as fluorine or chlorine,
35		$C_1-C_6-alkyl$, such as methyl or ethyl, $C_1-C_6-haloalkyl$,
33		such as difluoromethyl or trifluoromethyl;
		particularly preferably fluorine, chlorine, methyl,
		difluoromethyl or trifluoromethyl;
40	n?	is hudgered on C. C. albul such as mathel as athele
40	K.	is hydrogen or C ₁ -C ₆ -alkyl, such as methyl or ethyl;
		in particular hydrogen or methyl;
	R ³	is hydrogen or C_1 - C_6 -alkyl; in particular hydrogen;

45 R4 is a compound IIa or IIb

$$(R^6)_1$$
 R^5

(R⁶)₁
IIIa

where

10

15

5

is halogen, OR⁷, SR⁷, SO₂R⁸, OSO₂R⁸, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the

following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy

or C₁-C₄-haloalkoxy;

20 is halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, $di-(C_1-C_6$ -alkoxy)methyl, $di-(C_1-C_6$ -alkylthio)methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxyl,

 C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkoxycarbonyloxy,

 C_1 - C_6 -alkylthio or C_1 - C_6 -haloalkylthio;

or

25

35

40

two radicals R⁶, which are linked to the same carbon, together
with this carbon form a carbonyl group;

 R^7 is C_1 — C_6 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —haloalkenyl,

C₃-C₆-alkynyl, C₁-C₂₀-alkylcarbonyl,

 C_3 - C_6 -cycloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl,

 C_3-C_6 -alkenyloxycarbonyl, C_1-C_6 -alkylaminocarbonyl,

C3-C6-alkenylaminocarbonyl,

 $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl,

 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,

 $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl,

 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,

 $di-(C_1-C_6-alkyl)$ aminothiocarbonyl or

 C_1-C_6 -alkylcarbonyl- C_1-C_6 -alkyl, where the

abovementioned alkyl, cycloalkyl and alkoxy radicals

may be partially or fully halogenated and/or may carry

one to three of the following groups:

10

15

20

25

30

35

40

45

R10

R8

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl-C1-C6-alkyl, $heterocyclyl-C_1-C_6-alkyl$, $phenylcarbonyl-C_1-C_6-alkyl$, heterocyclylcarbonyl-C1-C6-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl or heterocyclyloxy-C₁-C₆-alkylcarbonyl, where the phenyl and the heterocyclyl radical of the 14 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C_1 - C_4 -haloalkoxy; is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, $di-C_1-C_6-alkylamino$ or $di-(C_1-C_6-haloalkyl)amino$, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, di-(C1-C4-alkyl)aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1-C_4 -haloalkoxy; is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, $C_3-C_6-cycloalkyl$, $C_1-C_6-alkoxy$, $C_3-C_6-alkenyloxy$ or $di-(C_1-C_6-alkyl)$ amino, where the abovementioned alkyl,

cycloalkyl and alkoxy radicals may be partially or

fully halogenated and/or may carry one to three radicals from the following group: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, $C_1-C_4-alkylcarbonyl$, $C_1-C_4-alkoxycarbonyl$, hydroxycarbonyl, $di-(C_1-C_4-alkyl)$ aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, heterocyclyl, phenyl-C1-C6-alkyl or heterocyclyl-C1-C6-alkyl, where the phenyl or 10 heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy 15

or C_1-C_4 -haloalkoxy;

 R^{11}, R^{12} are C₁-C₆-alkyl or C₃-C₆-alkenyl;

is 0 to 6. 20 ¹

> Particular preference is also given to the compounds of the formula I where the variables have the following meaning, on their own or in combination:

25 \mathbb{R}^1 is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below: 30 nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1-C_4 -haloalkoxy; particularly preferably halogen, C1-C6-alkyl or

35 \mathbb{R}^2 is hydrogen, C₁-C₆-alkyl or C₁-C₆-haloalkyl; particularly preferably hydrogen;

 C_1-C_6 -alkylthio;

 \mathbb{R}^3 is hydrogen;

40 is halogen, OR7, SR7, SOR8, SO₂R8, OSO₂R8, OPR8R9, R⁵ OPOR8R9, OPSR8R9, NR10R11 or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy 45 or C_1-C_4 -haloalkoxy; particularly preferably halogen, OR7, NR10R11 or

N-bonded heterocyclyl which may be partially or fully

	halogenated and/or may carry one to three of the
5	following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
	particularly preferably fluorine, OR ⁷ , NR ¹⁰ R ¹¹ or N-bonded heterocyclyl selected from the group consisting of 4-morpholinyl or 4-oxo-1,4-dihydro-pyrid-1-yl;
10	
R ⁶	is $C_1-C_6-alkyl$ or two radicals R^6 which are attached to the same carbon form, together with this carbon, a carbonyl group;
15	•
R ⁷	is C ₁ -C ₆ -alkyl, C ₁ -C ₂₀ -alkylcarbonyl, C ₁ -C ₆ -alkoxy-carbonyl, (C ₁ -C ₂₀ -alkylthio)carbonyl, N,N-di-(C ₁ -C ₆ -alkyl)aminocarbonyl, phenyl,
20	phenylcarbonyl or phenoxy-C ₁ -C ₆ -alkylcarbonyl, where
20	the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated
	and/or may carry one to three of the following
	radicals:
	nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy
25	or C ₁ -C ₄ -haloalkoxy;
	particularly preferably C_1 - C_6 -alkyl, C_1 - C_{20} -alkyl-carbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_6 -alkylthio)-carbonyl, N , N -di- $(C_1$ - C_6 -alkyl) aminocarbonyl, phenyl,
30	phenylcarbonyl or phenoxy-C ₁ -C ₆ -alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following
	• •
	radicals: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy
35	or C_1 - C_4 -haloalkoxy;
	particularly preferably C ₁ -C ₂₀ -alkylthiocarbonyl;
	most preferably C ₁ -C ₆ -alkylthiocarbonyl;
R ⁸ , R ⁹	are C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, di- $(C_1$ - C_6 -alkyl)amino or phenyl, where the last-mentioned radical may be
	partially or fully halogenated and/or may carry one to three of the following radicals:
	nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
45	· · · · · · · · · · · · · · · · · · ·
R ¹⁰	is C_1-C_6 -alkyl or C_1-C_6 -alkoxy;

İ

1

```
45
   R<sup>11</sup>
                  is C_1-C_6-alkyl;
                  is from 0 to 6;
    1
                  particularly preferably from 4 to 6;
 5
                  in particular 6.
    Particular preference is also given to compounds of the formula I
   where
10 <sub>R6</sub>
                  is nitro, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl,
                  di-(C_1-C_6-alkoxy) methyl, di-(C_1-C_6-alky)thio) methyl,
                  (C_1-C_6-alkoxy)(C_1-C_6-alkylthio) methyl, hydroxyl,
                  C_1-C_6-alkoxy, C_1-C_6-haloalkoxy, C_1-C_6-alkoxycarbonyloxy,
                  C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio,
15
                  C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfinyl,
                  C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfonyl,
                  C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylcarbonyl,
                  C_1-C_6-alkoxycarbonyl or C_1-C_6-haloalkoxycarbonyl;
20
    or
    two radicals R6, which are linked to the same carbon, together
                  form an -O-(CH_2)_m-O-, -O-(CH_2)_m-O-, -O-(CH_2)_m-S-,
                  -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which may be
25
                  substituted by one to three radicals from the following
                  group:
                  halogen, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl or
                  C_1-C_4-alkoxycarbonyl;
30
    or
    two radicals R6, which are linked to the same carbon, form a
                  -(CH2)p chain which may be interrupted by oxygen or
35
                  sulfur and/or which may be substituted by one to four
                  radicals from the following group:
                  halogen, cyano, C_1-C_4-alkyl, C_1-C_4-haloalkyl or
                  C_1-C_4-alkoxycarbonyl;
40
    or
```

two radicals R6, which are linked to the same carbon, together with this carbon form a carbonyl group. 45

Particular preference is given to compounds of the formula I where

is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl,

di-(C₁-C₆-alkoxy)methyl, di-(C₁-C₆-alkylthio)methyl,

(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyloxy,

C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl,

C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl,

C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

15 or

30

35

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group.

20 Particular preference is also given to the compounds of the formula I where

is halogen or (C₁-C₂₀-alkylthio)carbonyloxy; particularly preferably fluorine or (C₁-C₆-alkylthio)carbonyloxy;

Particular preference is also given to the compounds of the formula I where

is $NR^{10}R^{11}$ or N-linked heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

Particular preference is also given to the compounds of the formula I where R⁴ has the following meanings:

Very particular preference is given to the compounds of the formula I where

IIa10

IIb10

is NR¹⁰R¹¹ or tetrahydropyrrol-1-yl,
2,3-dihydro-1H-pyrrol-1-yl, 2,5-dihydro-1H-pyrrol-1-yl,
pyrrol-1-yl, tetrahydropyrazol-1-yl,
tetrahydroisoxazol-2-yl, tetrahydrothiazol-2-yl,
tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl,
tetrahydrothiazol-3-yl, pyrazol-1-yl, imidazol-1-yl,
1,2,4-triazol-1-yl, tetrazol-1-yl, piperidin-1-yl,
4-oxo-1,4-dihydro-1-pyridyl, hexahydropyrimidin-1-yl,
hexahydropyrazin-1-yl, tetrahydro-1,4-oxazin-4-yl,
tetrahydro-1,2-oxazin-2-yl, succinimide, maleimide or

glutarimide, where the abovementioned heterocycles may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, such as methyl or ethyl, C_1 - C_4 -haloalkyl such as chloromethyl, difluoromethyl or trifluoromethyl, C_1 - C_4 -alkoxy, such as methoxy or ethoxy or C_1 - C_4 -haloalkoxy such as difluoromethoxy or trifluoromethoxy;

 $\begin{array}{ccc} \textbf{10} & & & & \\ \textbf{R}^{10} & & \textbf{C}_1 - \textbf{C}_6 - \textbf{alkoxy} \end{array}$

Extraordinary preference is given to compounds of the formula Ial and Ibl (\equiv I where l=0), in particular to the compounds Ial.1 to Ibl.456 and the compounds Ibl.1 to Ibl.456, where the radical definitions R^1 to R^5 and l have a preferred meaning for the compounds according to the invention not only in combination with each other, but in each case also on their own.

20

5

25

30

35

40

Table 1:

ſ	No.	R^1	R ²	\mathbb{R}^3	R ⁵
15	Ial.1 or Ibl.1	CH ₃	H	H	F
İ	Ial.2 or Ibl.2	CH ₃	H	н	Cl
	Ial.3 or Ibl.3	CH ₃	H	Н	Br
1	Ial.4 or Ibl.4	CH ₃	Н	H	I
20	Ial.5 or Ibl.5	CH ₃	H	Н	SCH ₃
	Ial.6 or Ibl.6	CH ₃	H	Н	SCH ₂ CH ₃
	Ial.7 or Ibl.7	CH ₃	Н	Н	$SCO(N(CH_3)_2)_2$
	Ial.8 or Ibl.8	CH ₃	H	Н	SO ₂ CH ₃
	Ial.9 or Ibl.9	CH ₃	H	Н	SO ₂ CH ₂ CH ₃
25	Ial.10 or Ib1.10	CH ₃	Н	Н	SC ₆ H ₅
	Ial.11 or Ib1.11	CH ₃	Н	H	S(4-CH ₃ -C ₆ H ₄)
	Ial.12 or Ib1.12	CH ₃	Н	H	S(4-C1-C ₆ H ₄)
	Ial.13 or Ib1.13	CH ₃	H	H	SO ₂ C ₆ H ₅
20	Ial.14 or Ib1.14	CH ₃	H	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
30	Ial.15 or Ib1.15	CH ₃	Н	Н	SO ₂ (4-C1-C ₆ H ₄)
	Ial.16 or Ibl.16	CH ₃	Н	н	4-morpholinyl
	Ial.17 or Ibl.17	CH ₃	Н	H	1-pyrrolidinyl
	Ial.18 or Ibl.18	CH ₃	Н	Н	1-(1,2,4-triazolyl)
35	Ial.19 or Ibl.19	CH ₃	H	Н	1-imidazolyl
	Ial.20 or Ibl.20	CH ₃	н	Н	1-pyrazolyl
	Ia1.21 or Ib1.21	CH ₃	Н	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ial.22 or Ibl.22	CH ₃	Н	Н	N(OCH ₃)CH ₃
40	Ial.23 or Ibl.23	CH ₃	Н	Н	2-tetrahydroisoxazolyl
	Ial.24 or Ibl.24	CH ₃	Н	H	N(CH ₃)N(CH ₃) ₂
	Ial.25 or Ibl.25	CH ₃	Н	Н	$N(CH_2CH=CH_2)N(CH_3)_2$
	Ial.26 or Ibl.26	CH ₃	Н	Н	OPO(OCH ₃) ₂
A E	Ial.27 or Ibl.27	CH ₃	H	Н	OPO(OCH ₂ CH ₃) ₂
45	Ial.28 or Ibl.28	CH ₃	H	H	OPO(N(CH ₃) ₂) ₂
	Ial.29 or Ibl.29	CH ₃	H	Н	OPO(OC ₆ H ₅) ₂

ſ	No.	R ¹	R ²	R ³	R ⁵
Ì	Ial.30 or Ibl.30	CH ₃	H	Н	OPO(CH ₃) ₂
İ	Ial.31 or Ibl.31	CH ₃	H	Н	OPO(CH ₂ CH ₃) ₂
ı	Ial.32 or Ibl.32	CH ₃	H	Н	OPO(C ₆ H ₅) ₂
5	Ial.33 or Ibl.33	CH ₃	Н	H	OPS(OCH ₃) ₂
	Ia1.34 or Ib1.34	CH ₃	Н	Н	OPS(OCH ₂ CH ₃) ₂
ļ	Ial.35 or Ibl.35	CH ₃	Н	Н	OP(OCH ₃) ₂
Ī	Ia1.36 or Ib1.36	CH ₃	Н	н	OP(OCH ₂ CH ₃) ₂
10	Ial.37 or Ibl.37	CH ₃	H	Н	PO(OCH ₃) ₂
	Ial.38 or Ibl.38	CH ₃	H	Н	PO(OCH ₂ CH ₃) ₂
İ	Ial.39 or Ibl.39	CH ₃	н	Н	PO(C ₆ H ₅) ₂
Ī	Ial.40 or Ibl.40	CH ₃	Н	н	OCH ₃
Ì	Ial.41 or Ibl.41	CH ₃	H	Н	OCH ₂ CH ₃
15	Ia1.42 or Ib1.42	CH ₃	H	Н	OCH ₂ C ₆ H ₅
	Ial.43 or Ibl.43	CH ₃	Н	Н	OCH ₂ (2-furyl)
	Ial.44 or Ibl.44	CH ₃	Н	Н	OCH ₂ (3-furyl)
l	Ial.45 or Ibl.45	CH ₃	н	Н	OCOOCH ₃
20	Ial.46 or Ibl.46	CH ₃	Н	Н	OCOOCH ₂ CH ₃
	Ial.47 or Ibl.47	CH ₃	Н	Н	OCOOCH (CH ₃) ₂
	Ial.48 or Ibl.48	CH ₃	Н	Н	OCOOC ₆ H ₅
	Ial.49 or Ibl.49	CH ₃	H	Н	OCOOC(CH ₃) ₃
	Ial.50 or Ibl.50	CH ₃	Н	H	OCSOC ₆ H ₅
25	Ial.51 or Ibl.51	CH ₃	H	Н	OCSN(CH ₃) ₂
	Ia1.52 or Ib1.52	CH ₃	H	H	OCON(CH ₃) ₂
	Ial.53 or Ibl.53	CH ₃	H	Н	OCOSCH ₃
	Ial.54 or Ibl.54	CH ₃	Н	H	ON(CH ₃) ₂
30	Ial.55 or Ibl.55	CH ₃	H	H	O-1-piperidyl
30	Ial.56 or Ibl.56	CH ₃	H	Н	ососн3
	Ial.57 or Ibl.57	CH ₃	Н	H	OCOCH ₂ CH ₃
	Ial.58 or Ibl.58	CH ₃	Н	Н	OCOCH(CH ₃) ₂
	Ial.59 or Ibl.59	CH ₃	н	H	OCOC(CH ₃) ₃
35	Ial.60 or Ib1.60	CH ₃	н	H	OCO(CH ₂) ₆ CH ₃
	Ial.61 or Ib1.61	CH ₃	Н	Н	OCO(CH ₂) ₇ CH ₃
	Ial.62 or Ibl.62	CH ₃	Н	Н	OCO(CH ₂) ₁₆ CH ₃
	Ial.63 or Ibl.63	CH ₃	Н	Н	OCO(CH ₂) ₁₄ CH ₃
40	Ial.64 or Ibl.64	CH ₃	H	Н	OCOCH ₂ CH ₂ CH=CH ₂
40	Ial.65 or Ibl.65	CH ₃	Н	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
	Ial.66 or Ibl.66	CH ₃	н	н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
			Н	Н	OCOcyclopropyl
	Ial.67 or Ibl.67	CH ₃	ļ		OCOcyclopenty1
45	Ial.68 or Ibl.68	CH ₃	H	H	OCOcyclohexyl
	Ial.69 or Ibl.69 Ial.70 or Ibl.70	CH ₃	H	H	OCOC ₆ H ₅
	Ial.70 or Ib1.70	CH ₃	H	<u> </u>	00006115

ſ	No.	R ¹	R ²	\mathbb{R}^3	R ⁵
ř	Ial.71 or Ibl.71	CH ₃	н	H	OCO(2-tetrahydrofuryl)
ŀ	Ial.72 or Ibl.72	CH ₃	н	H	OCO(2-furyl)
ł	Ial.73 or Ibl.73	CH ₃	Н	Н	OCO(2-thienyl)
5	Ial.74 or Ibl.74	CH ₃	Н	H	OCO(3-pyridyl)
ľ	Ial.75 or Ibl.75	CH ₃	Н	H	OSO ₂ CH ₃
Ì	Ial.76 or Ibl.76	CH ₃	Н	Н	OSO ₂ CH ₂ CH ₃
ŀ	Ial.77 or Ibl.77	F	H	Н	F
10	Ial.78 or Ibl.78	F	Н	Н	Cl
	Ial.79 or Ibl.79	F	Н	Н	Br
ļ	Ial.80 or Ibl.80	F	Н	Н	I
Ì	Ial.81 or Ibl.81	F	Н	н	SCH ₃
	Ial.82 or Ibl.82	F	Н	Н	SCH ₂ CH ₃
15	Ial.83 or Ibl.83	F	Н	Н	SCO(N(CH ₃) ₂) ₂
	Ial.84 or Ibl.84	F	Н	Н	SO ₂ CH ₃
	Ial.85 or Ibl.85	F	Н	H	SO ₂ CH ₂ CH ₃
	Ial.86 or Ibl.86	F	Н	Н	SC ₆ H ₅
20	Ial.87 or Ibl.87	F	Н	Н	S(4-CH ₃ -C ₆ H ₄)
20	Ial.88 or Ibl.88	F	н	Н	S(4-C1-C ₆ H ₄)
	Ial.89 or Ibl.89	F	Н	H	SO ₂ C ₆ H ₅
	Ial.90 or Ib1.90	F	H	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ial.91 or Ibl.91	F	H	H	SO ₂ (4-C1-C ₆ H ₄)
25	Ial.92 or Ib1.92	F	Н	Н	4-morpholinyl
	Ial.93 or Ibl.93	F	Н	H	1-pyrrolidinyl
	Ial.94 or Ibl.94	F	H	Н	1-(1,2,4-triazolyl)
	Ial.95 or Ibl.95	F	Н	н	1-imidazolyl
30	Ial.96 or Ibl.96	F	H	Н	1-pyrazolyl
30	Ial.97 or Ibl.97	F	н	н	4-oxo-1,4-dihydro-1- pyridyl
	Ial.98 or Ibl.98	F	Н	Н	N(OCH ₃)CH ₃
	Ial.99 or Ibl.99	F	Н	. Н	2-tetrahydroisoxazolyl
35	Ial.100 or Ib1.100	F	Н	Н	N(CH ₃)N(CH ₃) ₂
	Ial.101 or Ibl.101	F	H	H	$N(CH_2CH=CH_2)N(CH_3)_2$
	Ial.102 or Ibl.102	F	Н	H	OPO(OCH ₃) ₂
	Ial.103 or Ibl.103	F	H	H	OPO(N(CH ₃) ₂) ₂
	Ial.104 or Ibl.104	F	Н	Н	OPO(OCH ₂ CH ₃) ₂
40	Ial.105 or Ibl.105	F	Н	H	OPO(OC ₆ H ₅) ₂
	Ial.106 or Ibl.106	F	H	Н	OPO(CH ₃) ₂
	Ial.107 or Ibl.107	F	Н	Н	OPO(CH ₂ CH ₃) ₂
	Ial.108 or Ibl.108	F	Н	н	OPO(C ₆ H ₅) ₂
45	Ial.109 or Ibl.109	F	Н	Н	OPS(OCH ₃) ₂
43	Ial.110 or Ibl.110	F	H	Н	OPS(OCH ₂ CH ₃) ₂
	Ial.111 or Ib1.111	F	Н	Н	OP(OCH ₃) ₂

1	No.	R ^I	R ²	R ³	R ⁵
	Ial.112 or Ib1.112	F	Н	Н	OP(OCH ₂ CH ₃) ₂
	Ial.113 or Ibl.113	F	Н	Н	PO(OCH ₃) ₂
	Ial.114 or Ib1.114	F	Н	Н	PO(OCH ₂ CH ₃) ₂
5	Ial.115 or Ibl.115	F	Н	Н	PO(C ₆ H ₅) ₂
	Ial.116 or Ib1.116	F	н	Н	OCH ₃
	Ial.117 or Ib1.117	F	Н	Н	OCH ₂ CH ₃
	Ial.118 or Ib1.118	F	Н	Н	OCH ₂ C ₆ H ₅
10	Ial.119 or Ib1.119	F	Н	H	OCH ₂ (2-furyl)
	Ial.120 or Ib1.120	F	Н	H	OCH ₂ (3-furyl)
	Ial.121 or Ibl.121	F	Н	Н	OCOOCH ₃
	Ial.122 or Ibl.122	F	Н	Н	OCOOCH ₂ CH ₃
	Ia1.123 or Ib1.123	F	Н	H	OCOOCH(CH ₃) ₂
15	Ia1.124 or Ib1.124	F	Н	Н	OCOOC ₆ H ₅
	Ial.125 or Ibl.125	F	Н	H	OCOOC(CH ₃) ₃
	Ial.126 or Ibl.126	F	H	Н	OCSOC ₆ H ₅
	Ial.127 or Ibl.127	F	Н	H	OCSN(CH ₃) ₂
20	Ial.128 or Ibl.128	F	Н	H	OCON(CH ₃) ₂
20	Ial.129 or Ibl.129	F	H	Н	OCOSCH ₃
	Ial.130 or Ibl.130	F	H	H	ON(CH ₃) ₂
	Ial.131 or Ib1.131	F	Н	Н	0-1-piperidyl
	Ia1.132 or Ib1.132	F	H	H	OCOCH3
25	Ial.133 or Ibl.133	F	Н	Н	OCOCH ₂ CH ₃
	Ial.134 or Ibl.134	F	H	Н	OCOCH(CH ₃) ₂
	Ial.135 or Ibl.135	F	Н	H	OCOC(CH ₃) ₃
	Ial.136 or Ibl.136	F	H	Н	OCO(CH ₂) ₆ CH ₃
30	Ial.137 or Ibl.137	F	Н	H	OCO(CH ₂) ₇ CH ₃
30	Ial.138 or Ibl.138	F	Н	Н	OCO(CH ₂) ₁₆ CH ₃
	Ial.139 or Ibl.139	F	Н	Н	OCO(CH ₂) ₁₄ CH ₃
	Ial.140 or Ibl.140	F	н	Н	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.141 or Ib1.141	F	н	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
35	Ial.142 or Ib1.142	F	н	н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.143 or Ib1.143	F	н	Н	OCOcyclopropyl
	Ial.144 or Ibl.144	F	Н	Н	OCOcyclopentyl
	Ial.145 or Ibl.145	F	Н	Н	OCOcyclohexyl
40	Ial.146 or Ibl.146	F	Н	Н	OCOC ₆ H ₅
	Ial.147 or Ibl.147	F	Н	Н	OCO(2-tetrahydrofuryl)
	Ial.148 or Ibl.148	F	Н	Н	OCO(2-furyl)
	Ial.149 or Ibl.149	F	Н	Н	OCO(2-thienyl)
. –	Ial.150 or Ibl.150	F	Н	Н	OCO(3-pyridyl)
45	Ial.151 or Ib1.151	F	Н	Н	OSO ₂ CH ₃
	Ial.152 or Ibl.152	F	Н	H	OSO ₂ CH ₂ CH ₃

ſ	No.	R ¹	R ²	R ³	R ⁵
}	Ial.153 or Ibl.153	CF ₃	Н	Н	F
- 1	Ial.154 or Ibl.154	CF ₃	Н	Н	Cl
ŀ	Ial.155 or Ibl.155	CF ₃	Н	H	Br
5	Ial.156 or Ibl.156	CF ₃	Н	Н	I
	Ial.157 or Ibl.157	CF ₃	Н	Н	SCH ₃
	Ial.158 or Ibl.158	CF ₃	Н	Н	SCH ₂ CH ₃
	Ial.159 or Ibl.159	CF ₃	Н	Н	SCO(N(CH ₃) ₂) ₂
10	Ial.160 or Ibl.160	CF ₃	Н	Н	SO ₂ CH ₃
10	Ial.161 or Ibl.161	CF ₃	Н	Н	SO ₂ CH ₂ CH ₃
:	Ial.162 or Ibl.162	CF ₃	Н	H	SC ₆ H ₅
	Ial.163 or Ibl.163	CF ₃	Н	Н	S(4-CH ₃ -C ₆ H ₄)
	Ial.164 or Ibl.164	CF ₃	н	н	S(4-C1-C ₆ H ₄)
15	Ial.165 or Ibl.165	CF ₃	Н	Н	SO ₂ C ₆ H ₅
	Ial.166 or Ibl.166	CF ₃	н	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ial.167 or Ibl.167	CF ₃	Н	Н	SO ₂ (4-C1-C ₆ H ₄)
	Ial.168 or Ibl.168	CF ₃	Н	Н	4-morpholinyl
20	Ial.169 or Ibl.169	CF ₃	Н	Н	1-pyrrolidinyl
20	Ial.170 or Ibl.170	CF ₃	H	Н	1-(1,2,4-triazoly1)
	Ial.171 or Ib1.171	CF ₃	H	H	1-imidazolyl
	Ial.172 or Ibl.172	CF ₃	Н	Н	1-pyrazolyl
25	Ial.173 or Ib1.173	CF ₃	Н	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ial.174 or Ibl.174	CF ₃	Н	Н	N(OCH ₃)CH ₃
	Ial.175 or Ibl.175	CF ₃	Н	Н	2-tetrahydroisoxazolyl
	Ial.176 or Ibl.176	CF ₃	Н	н	N(CH ₃)N(CH ₃) ₂
	Ial.177 or Ibl.177	CF ₃	Н	Н	$N(CH_2CH=CH_2)N(CH_3)_2$
30	Ial.178 or Ibl.178	CF ₃	Н	Н	OPO(OCH ₃) ₂
	Ial.179 or Ibl.179	CF ₃	Н	Н	OPO(OCH ₂ CH ₃) ₂
	Ial.180 or Ibl.180	CF ₃	Н	Н	OPO(N(CH ₃) ₂) ₂
	Ial.181 or Ibl.181	CF ₃	н	H	OPO(OC ₆ H ₅) ₂
35	Ial.182 or Ib1.182	CF ₃	Н	Н	OPO(CH ₃) ₂
	Ial.183 or Ibl.183	CF ₃	Н	Н	OPO(CH ₂ CH ₃) ₂
	Ial.184 or Ibl.184	CF ₃	Н	H	OPO(C ₆ H ₅) ₂
	Ial.185 or Ibl.185	CF ₃	Н	Н	OPS(OCH ₃) ₂
	Ial.186 or Ib1.186	CF ₃	H	H	OPS(OCH ₂ CH ₃) ₂
40	Ial.187 or Ibl.187	CF ₃	Н	H	OP(OCH ₃) ₂
	Ial.188 or Ibl.188	CF ₃	H	H	OP(OCH ₂ CH ₃) ₂
	Ial.189 or Ibl.189	CF ₃	H	H	PO (OCH ₃) ₂
	Ial.190 or Ibl.190	CF ₃	H	H	PO(OCH ₂ CH ₃) ₂
45	Ial.191 or Ibl.191	CF ₃	H	H	PO(C ₆ H ₅) ₂
- -	Ial.192 or Ibl.192	CF ₃	H	H	OCH ₃
	Ial.193 or Ibl.193	CF ₃	Н	H	OCH ₂ CH ₃

ı	No.	R ¹	R ²	R ³	R ⁵
	Ial.194 or Ibl.194	CF ₃	Н	H	OCH ₂ C ₆ H ₅
	Ial.195 or Ibl.195	CF ₃	Н	Н	OCH ₂ (2-furyl)
	Ial.196 or Ibl.196	CF ₃	Н	Н	OCH ₂ (3-furyl)
5	Ial.197 or Ibl.197	CF ₃	Н	Н	осоосн3
	Ial.198 or Ibl.198	CF ₃	Н	Н	OCOOCH ₂ CH ₃
	Ial.199 or Ibl.199	CF ₃	Н	Н	OCOOCH(CH ₃) ₂
	Ia1.200 or Ib1.200	CF ₃	H	Н	OCOOC ₆ H ₅
10	Ial.201 or Ibl.201	CF ₃	Н	Н	OCOOC(CH ₃) ₃
	Ia1.202 or Ib1.202	CF ₃	Н	Н	OCSOC ₆ H ₅
	Ial.203 or Ibl.203	CF ₃	Н	Н	OCSN(CH ₃) ₂
	Ial.204 or Ibl.204	CF ₃	Н	Н	OCON(CH ₃) ₂
	Ia1.205 or Ib1.205	CF ₃	Н	Н	OCOSCH ₃
15	Ia1.206 or Ib1.206	CF ₃	Н	Н	ON(CH ₃) ₂
	Ial.207 or Ibl.207	CF ₃	Н	Н	O-1-piperidyl
	Ial.208 or Ibl.208	CF ₃	Н	Н	OCOCH ₃
	Ial.209 or Ibl.209	CF ₃	Н	Н	OCOCH ₂ CH ₃
20	Ial.210 or Ibl.210	CF ₃	Н	H	OCOCHC (CH ₃) ₂
	Ial.211 or Ibl.211	CF ₃	H	H	OCOC(CH ₃) ₃
	Ial.212 or Ibl.212	CF ₃	Н	H	OCO(CH ₂) ₆ CH ₃
	Ial.213 or Ibl.213	CF ₃	H	H	OCO(CH ₂) ₇ CH ₃
	Ial.214 or Ibl.214	CF ₃	H	H	OCO(CH ₂) ₁₆ CH ₃
25	Ial.215 or Ibl.215	CF ₃	H	H	OCO(CH ₂) ₁₄ CH ₃
	Ial.216 or Ibl.216	CF ₃	Н	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.217 or Ibl.217	CF ₃	H	H	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ial.218 or Ibl.218	CF ₃	Н	н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
30	Ial.219 or Ibl.219	CF ₃	H	H	OCOcyclopropyl
	Ial.220 or Ibl.220	CF ₃	H	H	OCOcyclopentyl
	Ial.221 or Ib1.221	CF ₃	Н	Н	OCOcyclohexyl
	Ia1.222 or Ib1.222	CF ₃	H	н	OCOC ₆ H ₅
35	Ial.223 or Ibl.223	CF ₃	Н	Н	OCO(2-tetrahydrofuryl)
	Ial.224 or Ib1.224	CF ₃	Н	Н	OCO(2-furyl)
	Ial.225 or Ibl.225	CF ₃	Н	н	OCO(2-thienyl)
	Ial.226 or Ibl.226	CF ₃	Н	Н	OCO(3-pyridyl)
	Ial.227 or Ibl.227	CF ₃	Н	Н	OSO ₂ CH ₃
40	Ial.228 or Ibl.228	CF ₃	Н	H	OSO ₂ CH ₂ CH ₃
	Ial.229 or Ibl.229	C1	H	H	F
	Ial.230 or Ibl.230	Cl	H	H	Cl
	Ial.231 or Ibl.231	Cl	H	H	Br
45	Ial.232 or Ibl.232	C1	H	H	I
	Ial.233 or Ibl.233	C1	H	H	SCH ₃
	Ial.234 or Ibl.234	Cl	Н	H	SCH ₂ CH ₃

	56							
1	No.	R ¹	R ²	R ³	R ⁵			
	Ia1.235 or Ib1.235	Cl	H	Н	SCO(N(CH ₃) ₂) ₂			
	Ial.236 or Ibl.236	Cl	Н	Н	SO ₂ CH ₃			
_	Ial.237 or Ibl.237	Cl	H	Н	SO ₂ CH ₂ CH ₃			
5	Ial.238 or Ibl.238	Cl	Н	H	SC ₆ H ₅			
	Ial.239 or Ibl.239	Cl	Н	Н	S(4-CH ₃ -C ₆ H ₄)			
	Ial.240 or Ibl.240	Cl	Н	Н	S(4-Cl-C ₆ H ₄)			
	Ia1.241 or Ib1.241	Cl	Н	Н	SO ₂ C ₆ H ₅			
10	Ial.242 or Ibl.242	Cl	Н	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)			
	Ia1.243 or Ib1.243	Cl	Н	Н	SO ₂ (4-C1-C ₆ H ₄)			
	Ia1.244 or Ib1.244	Cl	H	Н	4-morpholinyl			
	Ial.245 or Ibl.245	Cl	H	Н	1-pyrrolidinyl			
	Ial.246 or Ibl.246	Cl	Н	H	1-(1,2,4-triazolyl)			
15	Ial.247 or Ibl.247	Cl	Н	Н	1-imidazolyl			
	Ial.248 or Ibl.248	Cl	H	H	1-pyrazolyl			
	Ial.249 or Ibl.249	Cl	Н	Н	4-oxo-1,4-dihydro-1-			
					pyridyl			
20	Ial.250 or Ibl.250	Cl	Н	H	N(OCH ₃)CH ₃			
20	Ial.251 or Ibl.251	Cl	Н	H	2-tetrahydroisoxazolyl			
	Ial.252 or Ibl.252	Cl	Н	H	N(CH ₃)N(CH ₃) ₂			
	Ial.253 or Ibl.253	Cl	H	Н	$N(CH_2CH=CH_2)N(CH_3)_2$			
	Ial.254 or Ibl.254	Cl	H	H	OPO(OCH ₃) ₂			
25	Ial.255 or Ibl.255	Cl	Н	H	OPO(OCH ₂ CH ₃) ₂			
	Ial.256 or Ibl.256	Cl	H	Н	OPO(N(CH ₃) ₂) ₂			
	Ial.257 or Ibl.257	Cl	H	H	OPO(OC ₆ H ₅) ₂			
	Ial.258 or Ibl.258	Cl	Ħ	Н	OPO(CH ₃) ₂			
	Ial.259 or Ibl.259	Cl	H	Н	OPO(CH ₂ CH ₃) ₂			
30	Ial.260 or Ibl.260	Cl	H	H	OPO(C ₆ H ₅) ₂			
	Ial.261 or Ibl.261	Cl	H	H	OPS(OCH ₃) ₂			
	Ial.262 or Ibl.262	Cl	Н	H	OPS(OCH ₂ CH ₃) ₂			
	Ial.263 or Ib1.263	Cl	Н	H	OP(OCH ₃) ₂			
35	Ial.264 or Ib1.264	Cl	Н	Н	OP(OCH ₂ CH ₃) ₂			
	Ial.265 or Ibl.265	Cl	Н	Н	PO(OCH ₃) ₂			
	Ial.266 or Ibl.266	Cl	Н	Н	PO(OCH ₂ CH ₃) ₂			
	Ial.267 or Ibl.267	Cl	Н	Н	PO(C ₆ H ₅) ₂			
	Ial.268 or Ibl.268	Cl	Н	Н	OCH ₃			
40	Ial.269 or Ibl.269	Cl	Н	Н	OCH ₂ CH ₃			
	Ial.270 or Ibl.270	Cl	Н	Н	OCH ₂ C ₆ H ₅			
	Ial.271 or Ibl.271	Cl	Н	Н	OCH ₂ (2-furyl)			
	Ial.272 or Ibl.272	Cl	Н	Н	OCH ₂ (3-furyl)			
4-	Ial.273 or Ibl.273	Cl	Н	Н	осоосн3			
45	Ial.274 or Ibl.274	Cl	Н	Н	OCOOCH ₂ CH ₃			
	Ial.275 or Ibl.275	Cl	Н	Н	OCOOCH(CH ₃) ₂			
		 -		•				

; ;

•

			5/		
	No.	R ¹	R ²	R ³	R ⁵
	Ial.276 or Ibl.276	Cl	H	H	OCOOC ₆ H ₅
	Ial.277 or Ibl.277	Cl	Н	Н	OCOOC(CH ₃) ₃
_	Ial.278 or Ibl.278	Cl	Н	H	OCSOC ₆ H ₅
5	Ial.279 or Ibl.279	Cl	H	H	OCSN(CH ₃) ₂
	Ial.280 or Ibl.280	Cl	Н	H	OCON(CH ₃) ₂
	Ial.281 or Ibl.281	Cl	Н	Н	OCOSCH ₃
	Ial.282 or Ibl.282	Cl	Н	Н	ON(CH ₃) ₂
10	Ial.283 or Ibl.283	Cl	Н	Н	0-1-piperidyl
	Ial.284 or Ibl.284	Cl	Н	Н	OCOCH ₃
	Ial.285 or Ibl.285	Cl	Н	Н	OCOCH ₂ CH ₃
	Ial.286 or Ibl.286	Cl	Н	Н	OCOCH(CH ₃) ₂
	Ial.287 or Ibl.287	Cl	Н	H	OCOC(CH ₃) ₃
15	Ial.288 or Ibl.288	Cl	Н	Н	OCO(CH ₂) ₆ CH ₃
	Ial.289 or Ibl.289	Cl	Н	Н	OCO(CH ₂) ₇ CH ₃
	Ial.290 or Ibl.290	Cl	Н	H	OCO(CH ₂) ₁₆ CH ₃
	Ial.291 or Ibl.291	Cl	Н	H	OCO(CH ₂) ₁₄ CH ₃
20	Ial.292 or Ibl.292	Cl	Н	Н	OCOCH ₂ CH ₂ CH=CH ₂
20	Ial.293 or Ibl.293	Cl	Н	H	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ial.294 or Ibl.294	Cl	н	н	OCOCH(CH ₃)O-
					(2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.295 or Ibl.295	C1	H	H	OCOcyclopropyl
25	Ial.296 or Ibl.296	Cl	H	H	OCOcyclopentyl
	Ial.297 or Ibl.297	C1	H	H	OCOcyclohexyl
	Ial.298 or Ibl.298	C1	H	H	OCOC ₆ H ₅
	Ial.299 or Ibl.299	Cl	H	Н	OCO(2-tetrahydrofuryl)
30	Ial.300 or Ibl.300	C1	H	H	OCO(2-furyl)
30	Ial.301 or Ibl.301	C1	H	H	OCO(2-thienyl)
	Ial.302 or Ibl.302	Cl	H	H	OCO(3-pyridyl)
	Ial.303 or Ibl.303	Cl	H	H	OSO ₂ CH ₃
	Ial.304 or Ibl.304	cl	Н	Н	·OSO ₂ CH ₂ CH ₃
35	Ial.305 or Ibl.305	CHF ₂	H	Н	F
	Ial.306 or Ibl.306	CHF ₂	H	Н	Cl
	Ial.307 or Ib1.307	CHF ₂	H	Н	Br
	Ial.308 or Ibl.308	CHF ₂	H	Н	I
	Ia1.309 or Ib1.309	CHF ₂	H	H	SCH ₃
40	Ial.310 or Ibl.310	CHF ₂	H	H	SCH ₂ CH ₃
	Ial.311 or Ib1.311	CHF ₂	H	H	SCO(N(CH ₃) ₂) ₂
	Ial.312 or Ib1.312	CHF ₂	H	Н	SO ₂ CH ₃
	Ial.313 or Ibl.313	CHF ₂	H	Н	SO ₂ CH ₂ CH ₃
45	Ial.314 or Ibl.314	CHF ₂	H	H	SC ₆ H ₅
4.J	Ial.315 or Ib1.315	CHF ₂	H	H	S(4-CH ₃ -C ₆ H ₄)
	Ial.316 or Ibl.316	CHF ₂	H	Н	S(4-C1-C ₆ H ₄)

			50		
	No.	R^1	R ²	\mathbb{R}^3	R ⁵
	Ial.317 or Ibl.317	CHF ₂	Н	Н	SO ₂ C ₆ H ₅
	Ial.318 or Ibl.318	CHF ₂	Н	Н	$SO_2(4-CH_3-C_6H_4)$
_	Ial.319 or Ibl.319	CHF ₂	Н	Н	SO ₂ (4-Cl-C ₆ H ₄)
5	Ial.320 or Ibl.320	CHF ₂	Н	Н	4-morpholinyl
	Ial.321 or Ibl.321	CHF ₂	H	H	1-pyrrolidinyl
	Ial.322 or Ibl.322	CHF ₂	Н	Н	1-(1,2,4-triazoly1)
	Ial.323 or Ibl.323	CHF ₂	Н	Н	1-imidazolyl
10	Ial.324 or Ibl.324	CHF ₂	Н	Н	1-pyrazolyl
	Ial.325 or Ibl.325	CHF ₂	Н	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ial.326 or Ibl.326	CHF ₂	Н	Н	N(OCH ₃)CH ₃
	Ial.327 or Ibl.327	CHF ₂	Н	Н	2-tetrahydroisoxazolyl
15	Ial.328 or Ibl.328	CHF ₂	Н	H	N(CH ₃)N(CH ₃) ₃
	Ial.329 or Ibl.329	CHF ₂	Н	H	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ial.330 or Ibl.330	CHF ₂	Н	Н	OPO(OCH ₃) ₂
	Ial.331 or Ibl.331	CHF ₂	H	Н	OPO(OCH ₂ CH ₃) ₂
	Ial.332 or Ibl.332	CHF ₂	Н	H	OPO(N(CH ₃) ₂) ₂
20	Ial.333 or Ibl.333	CHF ₂	H	H	OPO(OC ₆ H ₅) ₂
	Ial.334 or Ibl.334	CHF ₂	Н	Н	OPO(CH ₃) ₂
	Ial.335 or Ibl.335	CHF ₂	Н	Н	OPO(CH ₂ CH ₃) ₂
	Ia1.336 or Ib1.336	CHF ₂	Н	Н	OPO(C ₆ H ₅) ₂
25	Ial.337 or Ibl.337	CHF ₂	H	H	OPS(OCH ₃) ₂
	Ial.338 or Ibl.338	CHF ₂	H	H	OPS(OCH ₂ CH ₃) ₂
	Ial.339 or Ibl.339	CHF ₂	н	H	OP(OCH ₃) ₂
	Ial.340 or Ibl.340	CHF ₂	Н	H	OP(OCH ₂ CH ₃) ₂
	Ial.341 or Ibl.341	CHF ₂	H	Н	PO(OCH ₃) ₂
30	Ia1.342 or Ib1.342	CHF ₂	H	Н	PO(OCH ₂ CH ₃) ₂
	Ia1.343 or Ib1.343	CHF ₂	Н	H	PO(C ₆ H ₅) ₂
	Ial.344 or Ibl.344	CHF ₂	H	H	OCH ₃
	Ial.345 or Ibl.345	CHF ₂	H	H	OCH ₂ CH ₃
35	Ial.346 or Ibl.346	CHF ₂	Н	Н	OCH ₂ C ₆ H ₅
	Ial.347 or Ibl.347	CHF ₂	H	Н	OCH ₂ (2-furyl)
	Ial.348 or Ibl.348	CHF ₂	Н	Н	OCH ₂ (3-furyl)
	Ial.349 or Ibl.349	CHF ₂	Н	Н	OCOOCH ₃
	Ial.350 or Ib1.350	CHF ₂	Н	H	OCOOCH ₂ CH ₃
40	Ial.351 or Ibl.351	CHF ₂	H	Н	OCOOCH(CH ₃) ₂
	Ial.352 or Ib1.352	CHF ₂	Н	Н	OCOOC ₆ H ₅
	Ial.353 or Ibl.353	CHF ₂	Н	Н	OCOOC(CH ₃) ₃
	Ial.354 or Ibl.354	CHF ₂	Н	H	OCSOC ₆ H ₅
45	Ial.355 or Ibl.355	CHF ₂	Н	H	OCSN(CH ₃) ₂
7.7	Ial.356 or Ibl.356	CHF ₂	Н	Н	OCON (CH ₃) ₂
	Ial.357 or Ibl.357	CHF ₂	Н	Н	OCOSCH ₃

			23		
	No.	R ¹	R ²	R ³	R ⁵
	Ial.358 or Ibl.358	CHF ₂	Н	Н	ON (CH ₃) ₂
	Ial.359 or Ibl.359	CHF ₂	н	Н	O-1-piperidyl
5	Ial.360 or Ibl.360	CHF ₂	H	Н	OCOCH ₃
9	Ial.361 or Ib1.361	CHF ₂	H	Н	OCOCH ₂ CH ₃
	Ial.362 or Ibl.362	CHF ₂	Н	Н	OCOCH(CH ₃) ₂
	Ial.363 or Ibl.363	CHF ₂	Н	Н	OCOC(CH ₃) ₃
	Ial.364 or Ibl.364	CHF ₂	Н	Н	OCO(CH ₂) ₆ CH ₃
10	Ial.365 or Ibl.365	CHF ₂	Н	Н	OCO(CH ₂) ₇ CH ₃
	Ial.366 or Ibl.366	CHF ₂	Н	Н	OCO(CH ₂) ₁₆ CH ₃
	Ial.367 or Ibl.367	CHF ₂	Н	Н	OCO(CH ₂) ₁₄ CH ₃
	Ial.368 or Ibl.368	CHF ₂	Н	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.369 or Ibl.369	CHF ₂	Н	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
15	Ial.370 or Ibl.370	CHF ₂	Н	н	OCOCH(CH ₃)O-
			••		(2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.371 or Ibl.371	CHF ₂	Н	H	OCOcyclopropyl
	Ial.372 or Ibl.372	CHF ₂	H	H	OCOcyclopentyl
20	Ial.373 or Ibl.373	CHF ₂	Н	H	OCOcyclohexyl
20	Ial.374 or Ibl.374	CHF ₂	H	H	OCOC ₆ H ₅
	Ial.375 or Ibl.375	CHF ₂	H	H	OCO(2-tetrahydrofuryl)
	Ial.376 or Ibl.376	CHF ₂	H	H	OCO(2-furyl)
	Ial.377 or Ibl.377	CHF ₂	H	H	OCO(2-thienyl)
25	Ial.378 or Ibl.378	CHF ₂	Н	H	OCO(3-pyridyl)
	Ial.379 or Ibl.379	CHF ₂	H	H	OSO ₂ CH ₅
	Ial.380 or Ibl.380	CHF ₂	Н	H	OSO ₂ CH ₂ CH ₃
	Ial.381 or Ibl.381	Cl	CH ₃	H	F
	Ial.382 or Ibl.382	Cl	CH ₃	H	Cl
30	Ial.383 or Ibl.383	Cl	CH ₃	H	Br
	Ial.384 or Ibl.384	Cl	CH ₃	н	I
	Ia1.385 or Ib1.385	Cl	CH ₃	Н	SCH ₃
	Ial.386 or Ibl.386	Cl	CH ₃	Н	SCH ₂ CH ₃
35	Ia1.387 or Ib1.387	Cl	CH ₃	Н	SCO(N(CH ₃) ₂) ₂
-	Ial.388 or Ibl.388	Cl	CH ₃	Н	SO ₂ CH ₃
	Ia1.389 or Ib1.389	Cl	CH ₃	H	SO ₂ CH ₂ CH ₃
	Ial.390 or Ibl.390	Cl	CH ₃	Н	SC ₆ H ₅
	Ia1.391 or Ib1.391	Cl	CH ₃	Н	S(4-CH ₃ -C ₆ H ₄)
40	Ial.392 or Ibl.392	Cl	CH ₃	Н	S(4-C1-C ₆ H ₄)
	Ial.393 or Ibl.393	Cl	CH ₃	Н	SO ₂ C ₆ H ₅
	Ial.394 or Ibl.394	Cl	CH ₃	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ial.395 or Ibl.395	C1	CH ₃	Н	SO ₂ (4-C1-C ₆ H ₄)
	Ial.396 or Ibl.396	Cl	CH ₃	Н	4-morpholinyl
45	Ial.397 or Ibl.397	Cl	CH ₃	Н	1-pyrrolidinyl
	Ial.398 or Ibl.398	Cl	CH ₃	Н	1-(1,2,4-triazolyl)
			<u> </u>		

	N-	R ¹	R ²	R ³	R ⁵
	No. Ial.399 or Ibl.399	Cl	CH ₃	H	1-imidazolyl
	Ial.400 or Ibl.400	Cl	CH ₃	Н	1-pyrazolyl
5					4-oxo-1,4-dihydro-1-
	Ial.401 or Ibl.401	Cl	CH ₃	н	pyridyl
	Ial.402 or Ibl.402	Cl	CH ₃	Н	N(OCH ₃)CH ₃
	Ial.403 or Ibl.403	Cl	CH ₃	H	2-tetrahydroisoxazolyl
10	Ial.404 or Ibl.404	Cl	CH ₃	Н	N(CH ₃)N(CH ₃) ₂
	Ial.405 or Ibl.405	Cl	CH ₃	H	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ial.406 or Ibl.406	Cl	CH ₃	Н	OPO(OCH ₃) ₂
	Ial.407 or Ibl.407	Cl	CH ₃	H	OPO(OCH ₂ CH ₃) ₂
	Ial.408 or Ibl.408	Cl	CH ₃	H	OPO(N(CH ₃) ₂) ₂
	Ial.409 or Ibl.409	Cl	CH ₃	н	OPO(OC ₆ H ₅) ₂
15	Ial.410 or Ibl.410	Cl	CH ₃	H	OPO(CH ₃) ₂
	Ial.411 or Ibl.411	Cl	CH ₃	Н	OPO(CH ₂ CH ₃) ₂
	Ial.412 or Ibl.412	Cl	CH ₃	Н	OPO(C ₆ H ₅) ₂
	Ial.413 or Ibl.413	Cl	CH ₃	Н	OPS(OCH ₃) ₂
20	Ial.414 or Ibl.414	Cl	CH ₃	Н	OPS(OCH ₂ CH ₃) ₂
	Ial.415 or Ibl.415	Cl	CH ₃	H	OP(OCH ₃) ₂
	Ial.416 or Ibl.416	Cl	CH ₃	H	OP(OCH ₂ CH ₃) ₂
25	Ial.417 or Ibl.417	Cl	CH ₃	Н	PO(OCH ₃) ₂
	Ial.418 or Ibl.418	Cl	CH ₃	H	PO(OCH ₂ CH ₃) ₂
	Ial.419 or Ibl.419	Cl	CH ₃	H	PO(C ₆ H ₅) ₂
	Ial.420 or Ibl.420	Cl	CH ₃	H	OCH ₃
	Ial.421 or Ibl.421	Cl	CH ₃	H	OCH ₂ CH ₃
30	Ial.422 or Ibl.422	Cl	CH ₃	H	OCH ₂ C ₆ H ₅
	Ial.423 or Ibl.423	Cl	CH ₃	H	OCH ₂ (2-furyl)
	Ial.424 or Ibl.424	Cl	CH ₃	н	OCH ₂ (3-furyl)
	Ial.425 or Ibl.425	Cl	CH ₃	Н	OCOOCH ₃
	Ial.426 or Ibl.426	Cl	CH ₃	Н	OCOOCH ₂ CH ₃
35	Ial.427 or Ibl.427	Cl	CH ₃	Н	OCOOCH(CH ₃) ₂
	Ial.428 or Ibl.428	Cl	CH ₃	Н	OCOOC ₆ H ₅
	Ial.429 or Ibl.429	Cl	CH ₃	H	OCOOC(CH ₃) ₃
	Ial.430 or Ibl.430	Cl	CH ₃	Н	OCSOC ₆ H ₅
40	Ial.431 or Ibl.431	Cl	CH ₃	H	OCSN(CH ₃) ₂
	Ial.432 or Ibl.432	Cl	CH ₃	H	OCON (CH ₃) ₂
	Ial.433 or Ibl.433	Cl	CH ₃	H	OCOSCH ₃
	Ial.434 or Ibl.434	Cl	CH ₃	H	ON (CH ₃) ₂
	Ial.435 or Ibl.435	Cl	CH ₃	H	O-1-piperidyl
45	Ial.436 or Ibl.436	Cl	CH ₃	H	OCOCH ₃
	Ial.437 or Ibl.437	Cl	CH ₃	H	OCOCH ₂ CH ₃
	Ial.438 or Ibl.438	Cl	CH ₃	H	OCOCH(CH ₃) ₂
	Ial.439 or Ibl.439	Cl	CH ₃	Н	OCOC(CH ₃) ₃

	No.	R ¹	R ²	R ³	R ⁵
5	Ial.440 or Ibl.440	Cl	CH ₃	H	OCO(CH ₂) ₆ CH ₃
	Ial.441 or Ibl.441	Cl	CH ₃	Н	OCO(CH ₂) ₇ CH ₃
	Ial.442 or Ibl.442	Cl	CH ₃	н	OCO(CH ₂) ₁₆ CH ₃
	Ial.443 or Ibl.443	Cl	CH ₃	Н	OCO(CH ₂) ₁₄ CH ₃
	Ial.444 or Ibl.444	Cl	CH ₃	Н	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.445 or Ibl.445	Cl	CH ₃	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
10	Ial.446 or Ibl.446	Cl	CH ₃	Н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.447 or Ib1.447	Cl	CH ₃	Н	OCOcyclopropyl
	Ial.448 or Ibl.448	Cl	CH ₃	Н	OCOcyclopentyl
15	Ial.449 or Ibl.449	Cl	CH ₃	Н	OCOcyclohexyl
	Ial.450 or Ibl.450	Cl	CH ₃	H	OCOC ₆ H ₅
	Ial.451 or Ibl.451	Cl	CH ₃	Н	OCO(2-tetrahydrofuryl)
	Ial.452 or Ibl.452	Cl	CH ₃	H	OCO(2-furyl)
	Ial.453 or Ibl.453	Cl	CH ₃	Н	OCO(2-thienyl)
	Ial.454 or Ibl.454	Cl	CH ₃	H	OCO(3-pyridyl)
	Ial.455 or Ibl.455	Cl	CH ₃	Н	OSO ₂ CH ₃
20	Ial.456 or Ibl.456	Cl	CH ₃	H	OSO ₂ CH ₂ CH ₃

Extraordinary preference is furthermore given to the following cyclohexenonequinolinoyl derivatives of the formula I:

25

30

- the compounds of the formulae Ia2 and Ib2, in particular the compounds Ia2.1 to Ia2.456 and the compounds Ib2.1 to Ib2.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5,5-dimethy1".

35
$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

$$\bigcap_{\mathbb{R}^5} \mathbb{R}^2$$

40

the compounds of the formulae Ia3 and Ib3, in particular the compounds Ia3.1 to Ia3.456 and the compounds Ib3.1 to Ib3.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5-methyl".

 $\begin{array}{c|c}
R^3 \\
R^2 \\
R^5 \\
R^1
\end{array}$

$$\begin{array}{c|c}
0 & R^5 & R^2 \\
\hline
0 & R^1 & R^2
\end{array}$$
Ib3

the compounds of the formulae Ia4 and Ib4, in particular the compounds Ia4.1 to Ia4.456 and the compounds Ib4.1 to Ib4.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "4,4-dimethyl".

- the compounds of the formulae Ia5 and Ib5, in particular the compounds Ia5.1 to Ia5.456 and the compounds Ib5.1 to Ib5.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "6,6-dimethyl".

TOVETC - POVECT

25

30

- the compounds of the formulae Ia6 and Ib6, in particular the compounds Ia6.1 to Ia6.456 and the compounds Ib6.1 to Ib6.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "4,4,6,6-tetramethy1-5-oxo".

$$\begin{array}{c|c}
 & R^3 \\
 & R^2 \\
 & R^1 \\
 & R^1
\end{array}$$
Ib6

- the compounds of the formulae Ia7 and Ib7, in particular the compounds Ia7.1 to Ia7.456 and the compounds Ib7.1 to Ib7.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "6-methyl".

the compounds of the formulae Ia8 and Ib8, in particular the compounds Ia8.1 to Ia8.456 and the compounds Ib8.1 to Ib8.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5-hydroxy-4,4,6,6-tetramethyl".

30

35

5
$$R^3$$
 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^2 R^3 R^3 R^3 R^2 R^3 $R^$

The cyclohexenonequinolinoyl derivatives of the formula I can be obtained by various routes, for example by the following processes:

A. Preparation of compounds of the formula I where R⁵ = halogen by reaction of cyclohexanedione derivatives of the formula III with halogenating agents:

25
$$(R^6)_1$$
 halogenating Ia and/or Ib (where R^5 = halogen)

Suitable halogenating agents are, for example, phosgene, diphosgene, triphosgene, thionyl chloride, oxalyl chloride, phosphorus chloride, phosphorus pentachloride, mesyl chloride, chloromethylene-N,N-dimethylammonium chloride,

oxalyl bromide, phosphorus oxybromide etc.

B. Preparation of compounds of the formula I where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$ by reaction of cyclohexane dione derivatives of the formula III with alkylating, sulfonylating or phosphonylating agents $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\epsilon$.

25

$$\mathbf{5} \quad (\mathbf{R}^{6})_{1} \xrightarrow{\mathbf{R}^{3}} \mathbf{R}^{2} \qquad \mathbf{L}^{1}-\mathbf{R}^{7} \quad (\mathbf{IV}\alpha) \text{ or } \\ \mathbf{L}^{1}-\mathbf{SO}_{2}\mathbf{R}^{8} \quad (\mathbf{IV}\beta) \text{ or } \\ \mathbf{L}^{1}-\mathbf{PR}^{8}\mathbf{R}^{9} \quad (\mathbf{IV}\gamma) \text{ or } \\ \mathbf{L}^{1}-\mathbf{POR}^{8}\mathbf{R}^{9} \quad (\mathbf{IV}\delta) \text{ or } \\ \mathbf{L}^{1}-\mathbf{PSR}^{8}\mathbf{R}^{9} \quad (\mathbf{IV}\epsilon) \\ \mathbf{III} \qquad \qquad \mathbf{V}$$

Ia and/or Ib (where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$)

L¹ is a nucleophilically replaceable leaving group, such as halogen, for example chlorine or bromine, hetaryl, for example imidazolyl, carboxylate, for example acetate, or sulfonate, for example mesylate or triflate, etc.

The compounds of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\epsilon$ can be employed directly such as, for example, in the case of the carbonyl halides, or generated in situ, for example activated carboxylic acids (using carboxylic acid and dicyclohexyl carbodimide, etc.).

C. Preparation of compounds of the formula I where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl) by reaction of compounds of the formula I where $R^5 = \text{halogen}$, OSO_2R^8 (I α) with compounds of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\epsilon$, $V\eta$ or $V\delta$, if appropriate in the presence of a base or with prior formation of salt.

40

30

35

```
HOR^7 (Va) or
                                           HSR^7 (V\beta) or
                                           HPOR8R9 (Vy) or
 5
                                           HNR^{10}R^{11} (Vδ) or
           Ia and/or Ib
                                           HONR^{11}R^{12} (Ve) or
     where R^5 = halogen, OSO_3R^8)
                                           H(N-linked
                                           heterocyclyl) (Vη) or
10
                                           H(ON-linked
                                           heterocyclyl) (Vϑ)
                             Ia and/or Ib
                              (where R^5 = OR^7, SR^7,
15
                              POR8R9, NR10R11,
                              ONR<sup>11</sup>R<sup>12</sup>
                              N-linked
                              heterocyclyl or
                              ON-linked
                              heterocyclyl)
20
```

D. Preparation of compounds of the formula I where $R^5=SOR^8$, SO_2R^8 by reaction of compounds of the formula I where $R^5=SR^8$ (IB) with an oxidizing agent.

Ia and/or Ib oxidizing agent Ia and/or Ib (where $R^5 = SR^8$) (where $R^5 = SOR^8$ or SO_2R^8)

Suitable oxidizing agents are, for example, m-chloroperbenzoic acid, peroxy acetic acid, trifluoroperoxy acetic acid, hydrogen peroxide, if appropriate in the presence of a catalyst such as tungstate.

The following conditions apply to the abovementioned reactions:

The starting materials are generally employed in equimolar amounts. However, it will also be advantageous to employ an excess of one or the other component.

If appropriate, it may be advantageous to carry out the reactions in the presence of a base. Here, the starting materials and the base are advantageously employed in equimolar amounts. An excess 45 of base, for example 1.5 to 3 molar equivalents, based on Ia

and/or Ib (where R^5 = halogen or OSO_2R^8) or III may in certain cases be advantageous.

Suitable bases are tertiary alkyl amines, such as triethylamine,

5 aromatic amines, such as pyridine, alkali metal carbonates, for
example sodium carbonate or potassium carbonate, alkali metal
bicarbonates, such as sodium bicarbonate and potassium
bicarbonate, alkali metal alkoxides, such as sodium methoxide,
sodium ethoxide, potassium tert-butoxide or alkali metal

10 hydrides, for example sodium hydride. Preference is given to using triethylamine or pyridine.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2—dichloroethane, aromatic hydrocarbons, for example toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyl—tert—butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethyl formamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.

The reaction temperature is generally in the range of from 0° C to the boiling point of the reaction mixture.

25 Work-up to give the product can be carried out in a manner known per se.

Depending on the reaction conditions, the compounds Ia, Ib or mixtures of these can be formed. The latter can be separated by classical separation methods, such as, for example, crystallization, chromatography, etc.

The cyclohexanedione derivatives of the formula III are known or can be prepared by processes known per se (for example DE-A 19 532 311), for example by reacting cyclohexanones of the formula VI with an activated benzoic acid VIIa or a benzoic acid VIIb, which is preferably activated in situ, to give the acylation product which is subsequently rearranged.

5 R^{3} R^{2} VIIb R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3}

30 L^2 is a nucleophilically replaceable leaving group, such as halogen, for example bromine or chlorine, hetaryl, for example imidazolyl or pyridyl, carboxylate, for example acetate or trifluoroacetate, etc.

III

35 The activated benzoic acid VIIa can be employed directly, such as in the case of the benzoyl halides, or be generated in situ, for example using dicyclohexyl carbodiimide, triphenylphosphine/azodicarboxylic ester, 2-pyridine disulfide/triphenyl phosphine, carbonyldiimidazole, etc.
40

If appropriate, it may be advantageous to carry out the acylation reaction in the presence of a base. Here, the starting materials and the auxiliary base are advantageously employed in equimolar amounts. A slight excess of the auxiliary base, for exampl from 1.2 to 1.5 molar equivalents, based on VII, may be advantageous in certain cases.

Suitable auxiliary bases are tertiary alkyl amines, pyridine or alkali metal carbonates. Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, such as toluene, sylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.

10

If the activated carboxylic acid component employed is a benzoyl halide, it may be advantageous to cool the reaction mixture to 0-10°C on addition of this reaction partner. The mixture is subsequently stirred at 20 - 100°C, preferably at 25 - 50°C, until the reaction is complete. Work-up is carried out in a customary manner, for example the reaction mixture is poured into water and the product of value is extracted. Solvents which are suitable for this purpose are, in particular, methylene chloride, diethyl ether and ethyl acetate. The organic phase is dried and the solvent is removed, after which the crude ester can be employed without any further purification for the rearrangement.

The rearrangement of the esters to the compounds of the formula

III is advantageously carried out at 20 - 100°C in a solvent and in the presence of a base and, if appropriate, with the aid of a cyano compound as catalyst.

Suitable solvents are, for example, acetonitrile, methylene 30 chloride, 1,2-dichloroethane, dioxane, ethyl acetate, toluene or mixtures of these. Preferred solvents are acetonitrile and dioxane.

Suitable bases are tertiary amines, such as triethylamine,
35 aromatic amines, such as pyridine, or alkali metal carbonates,
such as sodium carbonate or potassium carbonate, which are
preferably employed in an equimolar amount, or up to a four-fold
excess, based on the ester. Preference is given to using
triethylamine or alkali metal carbonate, preferably in twice the
40 equimolar amount, based on the ester.

Suitable cyano compounds are inorganic cyanides, such as sodium cyanide or potassium cyanide, and organic cyano compounds, such as acetone cyanohydrin or trimethylsilyl cyanide. They are employed in an amount from 1 to 50 mol percent, based on the ester. Preference is given to using acetone cyanohydrin or

trimethylsilyl cyanide, for example in an amount from 5 to 15, preferably 10, mol percent, based on the ester.

Work-up can be carried out in a manner known per se. For example, the reaction mixture is acidified with dilute mineral acid, such as 5% strength hydrochloric acid, or sulfuric acid, and extracted with an organic solvent, for example methylene chloride or ethyl acetate. The organic extract can be extracted with 5-10% strength alkali metal carbonate solution, for example sodium carbonate or potassium carbonate solution. The aqueous phase is acidified and the resulting precipitate is filtered off with suction and/or extracted with methylene chloride or ethyl acetate, dried and concentrated.

The benzoyl halides of the formula VIIa (where L² = Cl, Br) can be prepared in a manner known per se by reaction of the benzoic acids of the formula VIIb with halogenating agents, such as thionyl chloride, thionyl bromide, phosgene, diphosgene, triphosgene, oxalyl chloride, oxalyl bromide.

The benzoic acids of the formula VIIb can be prepared in a known manner from the corresponding esters by acidic or basic hydrolysis. The latter are known from the literature or can be prepared in a manner known per se.

8-Difluoromethyl-5-alkoxycarbonyl-quinolines can be obtained from the corresponding 8-aldehyde derivatives by fluorination. A suitable fluorinating agent is, inter alia, DAST. The formyl30 quinoline is obtained by oxidation of the corresponding bromomethyl quinoline.

Furthermore, it is possible to obtain
8-difluoromethoxy-5-alkoxycarbonyl-quinolines from the
corresponding 8-hydroxy derivatives by reaction with chlorodifluoromethane. This reaction is preferably carried out in the presence of a base, such as potassium hydroxide or sodium hydroxide, in an aprotic solvent. The
8-hydroxy-5-alkoxycarbonylquinolines are obtained from

8-hydroxy-5-hydroxycarbonyl-quinoline by esterification reactions which are known per se.

Preparation examples:

- 2-[(8-Chloroquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.22) and

 2-[(8-chloroquinolin-5-yl)chloromethylidene]-4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione (Compound 3.1)
- 4.0 g (10.8 mmol) of 2-(8-chloroquinolin-5-yl)carbonyl-4,4,6,6-10 tetramethylcyclohexane-1,3,5-trione were dissolved in 40 ml of dichloromethane, and 4.1 g (32.4 mmol) of oxalyl chloride and 1.5 ml of dimethylformamide were added. The mixture was stirred at 25°C for 1.5 hours, after which the solvent was removed. This gave 3.9 g of colorless crystals. Silica gel chromatography
 15 (mobile phase: toluene/methyl-tert-butyl ether) gave:
- 2-[(8-chloroquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetra-methylcyclohex-1-ene-3,5-dione: Yield 0.65 g (colorless crystals); m.p.: 180°C;
- 2-[(8-chloroquinolin-5-yl)chloromethylidene-4,4,6,6-tetramethyl20 cyclohexane-1,3,5-trione: Yield: 0.35 g (colorless crystals);
 m.p.: 156°C.
- 2-[(8-Chloroquinolin-5-yl)-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.46) and
 2-[(8-chloroquinolin-5-yl)-(4'-oxo-1',4'-dihydropyrid-1'-yl)methylidene]-4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione
 (Compound 3.5)
- 30 1.0 g (2.6 mmol) of a mixture of the compounds 2.22 and 3.1 was dissolved in 25 ml of methylene chloride, 0.82 g (8.7 mmol) of 4-hydroxypyridine were added and the mixture was stirred at 40°C for 8 hours. Insoluble components were subsequently filtered off, the solvent was removed and the residue was chromatographed over
- 35 silica gel (mobile phase: methylene chloride/methanol). This gave: 2-[(8-chloroquinolin-5-yl)-4'-oxo-1',4'-dihydropyridin-1'-yl)methylidene-4,4,6,6-tetramethylcyclohexane-1,3,5-trione: Yield 0.40 g (colorless oil);
- 2-[(8-chloroquinolin-5-yl)carbonyl]-1-(4'-oxo-1',4'-dihydro-40 pyrid-1'-yl)-4,4,6,6-tetramethylcyclohex-1-ene-3,5-dione: Yield 0.25 g (colorless crystals); m.p. > 210°C.
 - 2-(8-fluoroquinolin-5-yl)carbonyl-1,5-di(ethoxycarbonyloxy)-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 3.20)

0.12 g (4 mmol) of sodium hydride was dissolved in 10 ml of
tetrahydrofuran, 0.36 g (1 mmol) of
2-[(8-fluoroquinolin-5-yl)carbonyl]-4,4,6,6-tetramethyl-1hydroxy-cyclohexane-3,5-dione in 5 ml of tetrahydrofuran was
5 added dropwise at room temperature and the mixture was stirred at
40°C for 1 hour. At room temperature, 0.43 g (4 mmol) of ethyl
chloroformate were subsequently added dropwise, and the mixture
was heated under reflux for 3 hours. After cooling, water was
added and the mixture was extracted with ethyl acetate, the
10 organic phase was washed with 2% strength potassium carbonate
solution and water and dried and the solvent was removed. This
gave 0.45 g of a colorless oil).

2-[(8-Chloroquinolin-5-yl)carbonyl]-1-[(dimethylamino)carbonylthio]-4,4,6,6-tetramethyl-cyclo-hex-1-ene-3,5-dione (Compound
2.45) and
2-{(8-chloroquinolin-5-yl)-[(dimethylamino)carbonylthio]methylidene}-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
(Compound 3.4)

0.50 g (1.3 mmol) of 2-[(8-chloroquinolin-5-yl)carbonyl]-4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione was dissolved in 15 ml of tetrahydrofuran, 0.52 g (5.2 mmol) of triethylamine was added and 0.32 q (2.6 mmol) of dimethylaminothiocarbonyl chloride in 5 ml of tetrahydrofuran was added dropwise. The mixture was stirred at room temperature for 30 hours, the solvent was removed, and the residue was taken up in the ethyl acetate, washed with 5% strength potassium carbonate solution and water, dried, concentrated and chromatographed over silica gel using cyclohexane/ethyl acetate. This gave 2-[(8-chloroquinolin-5-yl)carbonyl]-1-[(dimethylamino)carbonylthio]-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione: Yield 0.5 g (colorless crystals); m.p. 138°C; 2-{(8-chloroquinolin-5-yl)-{(dimethylamino)carbonyl-thio]methyl-i dene}-4,4,6,6-tetramethylcyclohexane-1,3,5-trione: Yield: 0.2 g (colorless crystals) m.p. 75°C.

2-[(8-difluoromethylquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-40 tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.31)

Step a) Methyl 8-formyl-5-quinolinecarboxylate

28.8 g (103 mmol) of 8-(bromomethyl)-5-quinolinecarboxylate were dissolved in 200 ml of acetonitrile, 36.1 g (309 mmol) of N-methylmorpholine N-oxide were added, the mixture was stirred at 25°C for 7 hours and the solvent was then removed. Silica gel

chromatography (mobile phase: cyclohexane/ethyl acetate) gave 12.0 g of methyl 8-formyl-5-quinolinecarboxylate (colorless crystals), m.p.: 128°C.

- 5 Step b) 8-difluoromethyl-5-quinolinecarboxylate
- 0.5 g (2.3 mmol) of methyl 8-formyl-5-quinolinecarboxylate was dissolved in 50 ml of dichloroethane and, at -20°C, 1.1 g

 (6.8 mmol) of diethylaminosulfur trifluoride (DAST) were added dropwise. The mixture was stirred at -20°C for 30 min and then warmed to 25°C, and 50 ml of water were added dropwise. The aqueous phase was extracted with methylene chloride, the combined organic phases were washed with sodium bicarbonate solution and dried and the solvent was removed. Yield: 0.7 g of colorless crystals;

¹H-NMR (δ in ppm, d⁶-DMSO): 9.28 (d,1H); 9.04 (s, 1H); 8.36 (d, 1H); 8.11 (d, 1H); 7.90 (t, 1H); 7.80 (brd s, 1H); 3.96 (s,3H).

- 20 Step c) 8-difluoromethyl-5-quinolinecarboxylic acid
- 0.5 g (2.0 mmol) of methyl 8-difluoromethyl-5-quinolinecarboxylate was dissolved in 5 ml of ethanol, 0.43 g (10.5 mmol)
 of sodium hydroxide and 1 ml of water were added, and the mixture
 was stirred at 25°C for 20 hours. The solvents were subsequently
 removed, the residue was taken up in water, washed twice with
 methylene chloride and adjusted to pH 1 using 10 N hydrochloric
 acid, and the precipitate was filtered off with suction. Drying
 gave 0.5 g of 8-difluoromethyl-5-quinolinecarboxylic acid
 (colorless crystals);
 ¹H-NMR (δin ppm, d6-DMSO): 9.35 (d,1H); 9.04 (s, 1H); 8.38 (d,

¹H-NMR (δ in ppm, d⁶-DMSO): 9.35 (d,1H); 9.04 (s, 1H); 8.38 (d,1H); 8.10 (d, 1H); 7.92 (t, 1H); 7.78 (brd s, 1H).

- 35 Step d) 2-[(8-difluoromethylquinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
- 0.26 g (1.4 mmol) of 2,2,4,4-tetramethylcyclohexane-1,3,5-trione was dissolved in 10 ml of acetonitrile, 0.34 g (1.4 mmol) of 8-difluoromethyl-5-quinolinecarboxylic acid and 0.38 g (1.9 mmol) of dicyclohexylcarbodiimide were added and the mixture was stirred at 25°C for 17 hours. 0.57 g (5.6 mmol) of triethylamine and 5 drops of trimethylsilyl cyanide were then added to the suspension, and stirring was continued at 25°C for a further 25 hours. 50 ml of 5% strength potassium carbonate solution were subsequently added, the mixture was filtered, the filtrate was washed with methyl tert-butyl ether, the aqueous phase was

powder;

adjusted to pH 2 using concentrated hydrochloric acid and the precipitate was filtered off, washed with water and dried. Yield: 0.25 g (colorless crystals);

¹H-NMR (δin ppm, CDCl₃): 17.5 (s,1H); 9.02 (q, 1H); 8.24 (d, 1H); 5 8.06 (d, 1H); 7.82 (t, 1H); 7.50 (m, 2H); 1.60 (s,6H); 1.36 (s,6H).

- Step e) 2-[(8-Difluoromethylquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.31)
- 0.25 g (0.65 mmol) of 2-(8-difluoromethylquinolin-5-yl)carbonyl4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione was dissolved in

 15 ml of dichloromethane and 0.25 g (1.95 mmol) of oxalyl
 chloride and 7 drops of dimethylformamide were added. The mixture
 was stirred at 25°C for 17 hours, after which the solvent was
 removed. This gave 0.2 g of colorless crystals.
- 20 Preparation of the precursor 2-[(8-difluoromethoxyquinolin-5y1)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
 - Step a) Methyl 8-hydroxy-5-quinolincarboxylate
- 16.25 g (86 mmol) of 8-hydroxy-5-quinolinecarboxylic acid were dissolved in 70 ml of methanol, 3 ml of concentrated sulfuric acid were added and the mixture was heated under reflux for 25 hours. The solvent was then removed and the residue was taken up in ice-water, adjusted to a pH of 8 using sodium carbonate
- solution and filtered hot. The residue was extracted with methyl-tert-butyl ether for 7 hours on a jacketed Soxhlet extractor, and the solvent was subsequently removed from the extract. This gave 6.8 g of a brown powder;
- $^{1}\text{H-NMR}$ (δ in ppm, d^{6} -DMSO): 9.38 (d, 1H); 8.90 (d, 1H); 8.26 (d, 35 1H); 7.71 (dd, 1H); 7.15 (d, 1H); 3.93 (s, 3H).
 - Step b) Methyl 8-difluoromethoxy-5-quinolinecarboxylate
- 40 1.0 g (5.0 mmol) of methyl 8-hydroxy-5-quinolinecarboxylate was dissolved in 20 ml of dimethylformamide, 0.76 g (5.5 mmol) of potassium carbonate was added and 14 g of chlorodifluoromethane were introduced at 40°C over a period of 2 hours. Solid components were then filtered off, the solvent was removed and the residue
 45 was washed with water and dried. This gave 0.75 g of a brown

75

 $^{1}\text{H-NMR}$ (δ in ppm, CDCl₃): 9.45 (d,1H); 9.00 (d, 1H); 8.30 (d, 1H); 7.61 (dd, 1H); 7.49 (d, 1H); 7.18 (t, 1H); 3.99 (s, 3H).

Step c) 8-difluoromethoxy-5-quinolinecarboxylic acid

0.7 g (2.8 mmol) of methyl 8-difluoromethoxy-5-quinoline-carboxylate was suspended in 15 ml of water and 0.4 g (10 mmol) of sodium hydroxide was added. The mixture was stirred at 25°C for 20 hours and then filtered off, and the filtrate was washed with methyl tert-butyl ether. The aqueous phase was adjusted to pH 3 using concentrated hydrochloric acid and filtered off, and the residue was dried. This gave 0.45 g of a colorless powder; ¹H-NMR (δin ppm, d⁶-DMSO): 13.5 (br, 1H); 9.39 (d, 1H); 9.03 (d, 1H); 8.32 (d, 1H); 7.78 (dd, 1H); 7.62 (d, 1H); 7.60 (t, 1H).

Step d) 2-[(8-difluoromethoxyquinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione

- 20 0.4 g (1.7 mmol) of 8-difluoromethoxy-5-quinolinecarboxylic acid
 was dissolved in 20 ml of acetonitrile, 0.4 g (1.9 mmol) of
 N,N-dicyclohexylcarbodiimide and 0.3 g (1.7 mmol) of
 2,2,4,4-tetramethylcyclohexane-1,3,5-trione were added and the
 mixture was stirring at 25°C for 20 hours. 0.4 g (4.0 mmol) of
 25 triethylamine and 2 drops of trimethylsilyl cyanide were then
 added, and stirring was continued at 30-35°C for a further 3
 hours. The precipitate was filtered off, and the filtrate was
 concentrated, 20 ml of 5% strength potassium carbonate solution
 were added and the mixture was washed with methyl tert-butyl
 ether. The aqueous phase was subsequently adjusted to pH 3 using
 concentrated hydrochloric acid and extracted with ethyl acetate.
 The solvent was removed and the residue was chromatographed over
 silica gel (mobile phase: methylene chloride/methanol). This gave
 0.2 g of a colorless powder;
- 35 1H-NMR (δin ppm, CDCl₃): 16.5 (br, 1H); 9.02 (d, 1H); 8.30 (d, 1H); 7.51 (m, 2H); 7.21 (d, 1H); 7.17 (t, 1H); 1.60 (s, 6H); 1.35 (s, 6H).
- In addition to the cyclohexenone quinolinoyl derivatives of the formula I described above, further derivatives which were prepared or are preparable in a similar manner or in a manner known per se are listed in Tables 2 and 3:

	Ia
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$(R^6)_1$

Table 2:

		- 		<u> </u>			
m.p. [°C] or ¹ H-NMR [ppm]	178	4,4,6,6-(CH ₃) ₄ -5-oxo 9.22(d, 1H); 9.03 (d, 1H); 7.98 (q, 1H); 7.62 (q, 1H); 7.39 (t, 1H); 1.49 (s, 6H); 1.11 (s, 9H)	>200	4,4,6,6-(CH ₃) ₄ -5-oxo 9.20 (dd, 2H); 8.85 (q, 2H); 7.60 (q, 1H); 1.40 (s, 12H); 1.12 (s, 9H)	4,4,6,6-(CH ₃) ₄ -5-oxo 9.50 (d, 1H); 8.98 (d, 1H); 8.06 (d, 1H); 7.60 (m, 2H); 3.95 (m, 4H); 2.90 (s, 3H); 1.65 (s, 6H); 1.51 (s, 6H)	128	163
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo 128	4,4,6,6-(CH ₃) ₄ -5-oxo 163
R5	OCOC6H5	осос(сн3)3	OCOC6H5	осос(снз)з	OPS(OCH ₂ CH ₃) ₂	осовснз	OCSN(CH ₃) ₂
\mathbb{R}^3	н	Œ	H	н	æ	Н	Н
R ²	н	H	н	н	H	н	Н
\mathbb{R}^1	Ęų	Ē4	C1	C1	СН3	СН3	CH ₃
No.	2.1	2.2	2.3	2.4	2.5	2.6	2.7

E .	
uf.	
7.	
Ĺ.	,
-	
	=
3	
Π	
Hall Hall Hall	
Ĩ.	1

No.	\mathbb{R}^1	R ²	R3	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
2.8	СН3	æ	ж	осос, н5	4,4,6,6-(CH ₃) ₄ -5-oxo	9.05 (d, 1H); 9.85 (d, 1H); 7.92 (d, 1H); 7.72 (d, 2H); 7.51 (d, 1H); 7.48 (t, 1H); 7.35 (q, 1H); 7.28 (t, 2H); 2.79 (s, 3H); 1.62 (s, 6H); 1.55 (s, 6H)
2.9	СН3	H	Œ	OPO[N(CH ₃)] ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	9.41 (d, 1H); 8.95 (d, 1H); 8.07 (d, 1H); 7.58 (d, 1H); 7.50 (q, 1H); 2.88 (s, 3H); 2.45 (s, 6H); 2.42 (s, 6H); 1.65 (s, 6H); 1.48 (s, 6H)
2.10	СН3	н	æ	OCO(CH ₂) ₃ O(2,4- Cl2-C ₆ H ₃)	4,4,6,6-(CH ₃) ₄ -5-oxo	oil
2.11	СН3	æ	н	ососн(сн ₃)о(2-сн ₃ - 4-с1-с ₆ н ₃)	4,4,6,6-(CH ₃) ₄ -5-oxo	oil
2.12	CH ₃	H	н	осос(снз)3	4,4,6,6-(CH ₃)4-5-oxo	9.20 (d, 1H); 8.85 (d, 1H); 7.80 (d, 1H); 7.51 (d, 1H); 7.48 (q, 1H); 2.85 (s, 3H); 1.55 (s, 6H); 1.50 (s, 6H); 1.08 (s, 9H)
2.13	Ē4.	H	罡	OCOC(CH3)3	4,4,6-(CH ₃) ₃	oil
2.14	C1	Ħ	н	ососн2сн3	4,4,6,6-(CH ₃) ₄ -5-oxo	9.13 (d, 1H); 9.02 (d, 1H); 7.85 (s, 2H); 7.58 (q, 1H); 2.40 (q, 2H);1.60 (s, 6H); 1.50 (s, 6H); 1.05 (t, 3H)
2.15	FI	田	=	осовснз	4,4,6,6-(CH ₃) ₄ -5-(OH)	190-192
2.16	C1	н	н	осоѕснз	4,4,6,6-(CH ₃) ₄ -5-oxo	84
2.17	뎐	H	H	осовснз	4,4,6,6-(CH ₃) ₄ -5-oxo	72

ď	1
, J. P.	Here
İ	1
Ì,	1
÷===	
Ė	1
+	=
⊞	
Ħ	1
Ħ	1
Ţ	

				78					
m.p. [oC] or ¹ H-NMR [ppm]	9.44 (d, 1H); 9.03 (d, 1H); 7.88 (d, 1H); 7.59 (m, 2H); 3.92 (s, 3H); 2.90 (s, 3H); 1.50 (s, 6H); 1.38 (s, 6H)	9.30 (d, 1H); 9.02 (d, 1H); 7.93 (q, 1H); 7.61 (q, 1H); 7.40 (q, 1H); 3.01 (s, 3H); 1.57 (s, 3H); 1.53 (s, 3H); 1.32 (s, 3H); 1.28 (s, 3H)	9.18 (d, 1H); 9.02 (s, 1H); 7.92 (q, 1H); 7.65 (q, 1H); 7.41 (q, 1H); 4.32 (q, 2H); 4.11 (q, 1H); 1,45 (s, 3H); 1.40 (s, 3H); 1.38 (s, 3H); 1.30 (s, 3H); 1.15 (s, 3H)	9.45 (d, 1H); 9.03 (d, 1H); 7.96 (q, 1H); 7.68 (q, 1H); (7.40 (t, 1H); 3.88 (s, 3H); 1.50 (s, 6H); 1.39 (s, 6H)	180	152	119	132-135	
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-(OH)	4,4,6,6-(CH ₃) ₄ -5- (OCOOCH ₂ CH ₃)	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	оснз	оѕо2сн3	осоосн2сн3	осн ₃	Cl	C1	S(4-CH ₃ -C ₆ H ₄)	S(4-CH ₃ -C ₆ H ₄)	C1
R3	H	Ħ	Ħ	Œ	H	罡	н	Œ	Ħ
R ²	Æ	Ħ	ш	æ	н	田田	田田	æ	Ξ
\mathbb{R}^1	СН3	Ē4	Ĺч	Ē4	c1	Ēų	C1	S(4-CH ₃ -C ₆ H ₄)	<u>2</u>
No.	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26

_		
=	- -	
į	Í	2
-		
		7
Į	Ä	
-	÷	
Ĩ		7
=	Ī	-
Ξ:	i	
į	<u></u>	-
Ē	I Harry	
Ï	'n.	
Ē		
		-
	-	1

		,					79				
m.p. [oC] or ¹ H-NMR [ppm]	9.65 (d, 1H); 9.05 (d, 1H); 8.83 (d, 1H); 7.66 (q, 1H); 6.95 (d, 1H); 5.23 (m, 1H); 4.21 (d, 2H); 4.05 (m, 2H); 2.39 (m, 2H); 1.62 (s, 6H); 1.48 (s, 6H)	194	oi1	oil	9.40 (d, 1H); 9.05 (d, 1H); 8.05 (d, 1H); 7.86 (t, 1H); 7.80 (d, 1H); 7.65 (d, 1H); 1.59 (s, 6H); 1.48 (s, 6H)	oi1	9.15 (d, 1H); 8.10 (d, 1H); 7.75 (d, 1H); 7.52 (d, 1H); 3.02 (s, 2H); 2.91 (s, 2H); 2.80 (s, 3H); 1.20 (s, 6H)	oi1	9.50 (d, 1H); 9.02 (d, 1H); 7.80 (d, 1H); 7.50 (m, 3H); 2.90 (s, 3H); 2.30 (s, 3H); 1.50 (s, 6H); 1.35 (s, 3H); 1.25 (s, 3H)	9.30 (d, 1H); 9.05 (d, 1H); 7.80 (d, 1H); 7.75 (d, 1H); 7.61 (q, 1H); 7.52 (d, 1H); 7.40 (s, 1H); 6.11 (s, 1H); 1.65 (s, 3H); 1.60 (s, 3H); 1.50 (s, 6H)	190
(R6) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6-(CH ₃) ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	5,5-(CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	c1	C1	C1	Br	C1	C1	c1	N (CH ₃) OCH ₃	SCH ₃	1-pyrazolyl	N (CH ₃) OCH ₃
R ³	н	Н	н	H	н	Н	Н	Н	н	ш	Н
R ²	Ħ	H	н	н	H	Н	CH ₃	Н	н	#	Н
R^1	O(te- trahy- drofu- ran-3- v1)	+	Ēτ	CH ₃	CHF ₂	CF_3	CF_3	CH ₃	СН3	C1	C1
No.	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37

-	
-	-
Ī	Ī
1	
-	٠.
1	
-	
æ	
The state of	=
Fig.	I Line
Hann.	, J
Ī	ī
i i	_
	_

										8			
m.p. [°C] or ¹ H-NMR [ppm]	oi1	205	205	194	150	oi1	oi1	138	>210	oi1	166	9.65 (d, 1H); 8.97 (d, 1H); 7.79 (d, 1H); 7.60 (m, 2H); 4.00 (m, 4H); 2.91 (s, 3H); 1.71 (s, 6H); 1.51 (s, 6H)	9.65 (d, 1H); 9.01 (d, 1H); 7.83 (d, 1H); 7.65 (q, 1H); 7.02 (d, 1H); 4.18 (s, 3H); 1.65 (s, 6H); 1.55 (s, 6H)
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,6-(CH ₃) ₂ -4-SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	1-pyrolidinyl	4-morpholinyl	4-morpholinyl	C1	1-pyrazolyl	4-morpholinyl	Cl	SCON (CH ₃) ₂	4.0xo-1,4-dihydro- pyrid-1-yl	C1	SCON (CH ₃) ₂	OP (OCH ₂ CH ₃) ₂	C1
R3	н	Ħ	н	н	H	田田	н	H	н	H	H	н	H
R ²	Н	Н	н	Н	H	н	H	H	н	H	H	н	H
R1	СН3	CH_3	C1	CH ₃	CH ₃	CF_3	CHNOCH ₃	C1	C1	ഥ	CH3	СН3	осн3
No.	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50

14.	
7	
İ	-
L	
1	
i in	1
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-
æ	
Ë	
Ä	
and the second	1
	1
The first stand stand stands	1

R1	R ²	R ³	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
	H	ш	OCOS (CH ₂) ₇ CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	9.20 ((d, 1H); 9.02 (d, 1H); 7.89 (q, 1H); 7.60 (q, 1H); 7.40 (t, 1H); 2.62 (t, 2H); 1.55 (s, 6H); 1.48 (s, 6H); 1.1-1.5 (m, 12H); 0.85 (t, 3H)
	H	ш	C1	4,6-(ethan-1,2-diyl) ¹⁾ 9.55 (q, 1H);	9.55 (d, 1H); 9.02 (d, 1H); 7.78 (q, 1H); 7.65 (q, 1H); 7.40 (t, 1H); 3.24 (m, 1H); 3.17 (m, 1H); 2.41 (d, 1H); 1.8-2.4 (m, 5H)
SCH ₃	H	Н	осоѕсн3	4,4,6,6-(CH ₃) ₄ -5-oxo	147
	н	н	OCOSCH2CH3	4,4,6,6-(CH ₃) ₄ -5-oxo	107
Br	H	н	OCOC(CH3)3	4,4,6,6-(CH ₃) ₄ -5-oxo	134
Br	æ	E	OCO(C ₆ H ₅)	4,4,6,6-(CH ₃) ₄ -5-oxo	228
c1	æ	H	ᄄ	4,4,6,6-(CH ₃) ₄ -5-oxo	181
	E	н	SO ₂ CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	206
	æ	Ħ	SOCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	190
SCH ₂ F	æ	æ	Ē.	4,4,6,6-(CH ₃) ₄ -5-oxo	9.50 (d, 1H); 9.00 (d, 1H); 7.81 (s, 2H); 7.65 (g, 1H); 6.01 (d, 2H); 1.60 (s, 6H); 1.51 (s, 6H)
	н	н	SC ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	65
	H	H	SO ₂ C ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	111
	H	H	SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	143
CHF2	Н	Н	F	4,4,6,6-(CH ₃) ₄ -5-oxo	183

DOVERVA - CHESOI

No.	\mathbb{R}^1	R ²	R ³	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
2.65	C1	CHF_2	н	H	4,4,6,6-(CH ₃) ₄ -5-oxo	173
2.66	দি	Н	н	F	4,4,6,6-(CH ₃) ₄ -5-oxo	153

1) $R^4 = 4-0xo-(bicyclo[3.2.1]oct-2-en-3-yl)carbonyl$

Table 3:

$$(R^6)_1$$

O

R

N

Ib

No.	R1	R ²	R ³	R5	R6	m.p. [°C] or ¹ H-NMR [ppm]
3.1	C1	Œ	罡	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	156
3.2	СН3	æ	斑	1-(1,2,4-triazo- ly1)	4,4,6,6-(CH ₃) ₄ -5-oxo	9.00 (d, 1H); 8.09 (s, 1H); 7.82 (d, 1H); 7.72 (s, 1H); 7.68 (d, 1H); 7.47 (d, 1H); 7.35 (q, 1H); 2.95 (s, 3H); 1.55 (s, 6H); 1.30 (s, 6H)
3.3 C1	CI	E	=	4-morpholinyl	4,4,6,6-(CH ₃) ₄ -5-oxo	9.15 (d, 1H); 8.32 (d, 1H); 7.82 (d, 1H); 7.60 (q, 1H); 7.45 (d, 1H); 4.05 (m, 2H); 3.68 (m, 4H); 3.35 (m, 1H); 3.25 (m, 1H); 1.30 (s, 6H); 1.22 (s, 6H)
3.4	c1	H	H	SCON(CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	75
3.5	ដ	≖	Ħ	4-oxo-1,4-dihydro- pyrid-1-yl	1-dihydro- 4,4,6,6-(CH ₃) ₄ -5-oxo	9.02 (d, 1H); 8.42 (d, 1H); 7.80 (2d, 3H); 7.50 (q, 1H); 7.38 (d, 1H); 6.72 (d, 2H); 1.50 (s, 12H)
3.6	c1	н	н	N(CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	190

The compounds of the formula I and their agriculturally useful salts are suitable, both in the form of isomer mixtures and in the form of the pure isomers, as herbicides. The herbicidal 5 compositions comprising compounds of the formula I control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and harmful grasses in crops such as wheat, rice, maize, soya and cotton without causing any significant damage to the crop plants. 10 This effect is mainly observed at low rates of application.

Depending on the application method used, the compounds of the formula I, or the compositions comprising them, can additionally be employed in a further number of crop plants for eliminating 15 undesirable plants. Examples of suitable crops are the following:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var.

- 20 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum,
- 25 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum
- 30 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao,
- 35 Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.

In addition, the compounds of the formula I may also be used in crops which tolerate the action of herbicides owing to breeding, 40 including genetic engineering methods.

The compounds of the formula I, or the herbicidal compositions comprising them, can be used for example in the form of ready-to-spray aqueous solutions, powders, suspensions, also

45 highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for broadcasting or granules, by means of spraying, atomizing,

dusting, broadcasting or watering. The use forms depend on the intended aims; in any case, they should guarantee a very fine distribution of the active compounds according to the invention.

- 5 The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or of an agriculturally useful salt of I, and auxiliaries which are customary for the formulation of crop protection agents.
- 10 Essentially, suitable inert auxiliaries include:
 mineral oil fractions of medium to high boiling point, such as
 kerosene and diesel oil, furthermore coal tar oils and oils of
 vegetable or animal origin, aliphatic, cyclic and aromatic
 hydrocarbons, e.g. paraffin, tetrahydronaphthalene, alkylated
 15 naphthalenes and their derivatives, alkylated benzenes and their
 derivatives, alcohols such as methanol, ethanol, propanol,
 butanol and cyclohexanol, ketones such as cyclohexanone, or
 strongly polar solvents, e.g. amines such as N-methylpyrrolidone,
 and water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the cyclohexenonequinolinoyl derivatives of the 25 formula I, either as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetting agent, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or 30 oil, which are suitable for dilution with water.

Suitable surfactants are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic 35 acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of 40 naphthalene, or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated 45 castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

15

Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.

5 Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Solid carriers are mineral earths, such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth,

10 calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate and ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers.

The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise from about 0.001 to 98% by weight, preferably 0.01 to 95% by weight of at least one active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).

The following formulation examples illustrate the production of 25 such preparations:

- 20 parts by weight of the compound No. 2.2 are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide to 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.
- 11. 20 parts by weight of the compound No. 2.4 are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.

III. 20 parts by weight of the compound No. 2.16 are dissolved in a mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.

Ì

10

15

5

IV. 20 parts by weight of the compound No. 2.18 are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalenesulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel, and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the active compound.

20

V. 3 parts by weight of the compound No. 2.22 are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active compound.

25 VI. 20 parts by weight of the compound No. 2.46 are mixed intimately with 2 parts by weight of the calcium salt of dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.

- VII. 1 part by weight of the compound No. 3.1 is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.
- VIII. 1 part by weight of the compound No. 3.4 is dissolved in a
 40 mixture composed of 80 parts by weight of cyclohexanone and
 20 parts by weight of Wettol® EM 31 (nonionic emulsifier
 based on ethoxylated castor oil). This gives a stable
 emulsion concentrate.
- 45 The compounds of the formula I or the herbicidal compositions can be applied pre- or post-emergence. If the active compounds are less well tolerated by certain crop plants, application

techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that they come into contact as little as possible, if at all, with the leaves of the sensitive crop plants, while the active compounds reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by).

The application rates of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0 kg/ha of active substance 10 (a.s.), depending on the control target, the season, the target plants and the growth stage.

To widen the activity spectrum and to achieve synergistic effects, the cyclohexenonequinolinoyl derivatives of the formula 15 I may be mixed with a large number of representatives of other herbicidal or growth-regulating active compound groups and then applied concomitantly. Suitable components for mixtures are, for example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles,

20 anilides, (het)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-aroyl-1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates, quinolinecarboxylic acid and its derivatives, chloroacetanilides,

25 cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran- 3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-

30 3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides,

35 sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.

It may furthermore be advantageous to apply the compounds of the formula I, alone or else concomitantly in combination with other 40 herbicides, in the form of a mixture with other crop protection agents, for example together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions, which are employed for treating nutritional and trace element deficiencies.

45 Non-phytotoxic oils and oil concentrates may also be added.

Use Examples

The herbicidal activity of the cyclohexenonequinolinoyl derivatives of the formula I was demonstrated by the following 5 greenhouse experiments:

The culture containers used were plastic pots containing loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species.

10

For the pre-emergence treatment, the active compounds, which had been suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and

- 15 growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants, unless this was adversely affected by the active compounds.
- 20 For the post-emergence treatment, the test plants were first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the active compounds which had been suspended or emulsified in water. The test plants were for this purpose either sown directly and grown in the same containers, or
- 25 they were first grown separately as seedlings and transplanted into the test containers a few days prior to treatment. The application rate for the post-emergence treatment was 0.25 or 0.125 kg of a.s. (active substance)/ha.
- 30 Depending on the species, the plants were kept at 10 25°C or 20 35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.
- 35 The evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts and 0 means no damage, or normal course of growth.
- 40 The plants used in the greenhouse experiments are composed of the following species:

	Scientific Name	Common Name
	Abutilon theophrasti	velvet leaf
5	Chenopodium album	lambsquarters
	Galium aparine	catchweed bedstraw
	Ipomoea spp.	morning glory
10	Setaria faberi	giant foxtail
	Setaria viridis	green foxtail
	 Solanum nigrum	black nightshade

90

15 At application rates of 0.25 and 0.125 kg of a.s./ha, the compounds 2.2, 2.4 and 2.16, applied post-emergence, showed very good activity against harmful plants such as giant foxtail, green foxtail and black nightshade. Furthermore, the compounds 2.2 and 2.4 controlled velvet leaf and morning glory very efficiently.

20 Compound 2.16 additionally showed excellent activity against the weeds lambsquarters and catchweed bedstraw.

25

30

35

40

45