$11a_7 (K11a_7)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -17u^{50} + 25u^{49} + \dots + 2b - 13, \ 15u^{50} - 24u^{49} + \dots + 2a + 6, \ u^{51} - 3u^{50} + \dots - 3u^2 - 1 \rangle$$

$$I_2^u = \langle -au + b, \ a^2 - a + 1, \ u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -17u^{50} + 25u^{49} + \dots + 2b - 13, \ 15u^{50} - 24u^{49} + \dots + 2a + 6, \ u^{51} - 3u^{50} + \dots - 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{15}{2}u^{50} + 12u^{49} + \dots - \frac{5}{2}u - 3 \\ \frac{17}{2}u^{50} - \frac{25}{2}u^{49} + \dots + 2u + \frac{13}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{17}{2}u^{50} + 13u^{49} + \dots - \frac{5}{2}u - 3 \\ \frac{25}{2}u^{50} - \frac{33}{2}u^{49} + \dots + 3u + \frac{17}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{50} + u^{49} + \dots + \frac{3}{2}u - 1 \\ \frac{1}{2}u^{50} - \frac{1}{2}u^{49} + \dots + 2u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -8u^{50} + \frac{25}{2}u^{49} + \dots - \frac{7}{2}u - \frac{5}{2} \\ 11u^{50} - 15u^{49} + \dots + 3u + 8 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -8u^{50} + \frac{25}{2}u^{49} + \dots - \frac{7}{2}u - \frac{5}{2} \\ 11u^{50} - 15u^{49} + \dots + 3u + 8 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{5}{2}u^{50} + 3u^{49} + \dots + \frac{1}{2}u^2 \frac{11}{2}u$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{51} + 3u^{50} + \dots + 4u + 1$
c_2	$u^{51} + 25u^{50} + \dots - 2u - 1$
c_{3}, c_{8}	$u^{51} - u^{50} + \dots + 100u^2 - 16$
<i>C</i> ₅	$u^{51} - 3u^{50} + \dots - 488u + 241$
c_6, c_7, c_9 c_{10}	$u^{51} - 3u^{50} + \dots - 3u^2 - 1$
c_{11}	$u^{51} + 13u^{50} + \dots + 102u - 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{51} + 25y^{50} + \dots - 2y - 1$
c_2	$y^{51} + 5y^{50} + \dots - 42y - 1$
c_3,c_8	$y^{51} - 25y^{50} + \dots + 3200y - 256$
<i>C</i> 5	$y^{51} - 15y^{50} + \dots + 378406y - 58081$
c_6, c_7, c_9 c_{10}	$y^{51} - 59y^{50} + \dots - 6y - 1$
c_{11}	$y^{51} + y^{50} + \dots + 27134y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.010040 + 0.185114I		
a = 0.028727 + 0.217779I	-0.74107 - 3.69137I	3.00000 + 3.57636I
b = 1.155140 + 0.071848I		
u = 1.010040 - 0.185114I		
a = 0.028727 - 0.217779I	-0.74107 + 3.69137I	3.00000 - 3.57636I
b = 1.155140 - 0.071848I		
u = -0.696278 + 0.562745I		
a = -0.126496 - 0.100580I	-3.44622 - 10.79080I	1.49962 + 9.34961I
b = -0.65483 - 1.57526I		
u = -0.696278 - 0.562745I		
a = -0.126496 + 0.100580I	-3.44622 + 10.79080I	1.49962 - 9.34961I
b = -0.65483 + 1.57526I		
u = -0.669411 + 0.527277I		
a = -0.078362 + 0.148261I	-0.91928 - 5.72397I	4.37797 + 6.08222I
b = 0.48562 + 1.39970I		
u = -0.669411 - 0.527277I		
a = -0.078362 - 0.148261I	-0.91928 + 5.72397I	4.37797 - 6.08222I
b = 0.48562 - 1.39970I		
u = -0.601097 + 0.571095I		
a = 0.200819 + 0.207134I	-5.51696 - 2.60444I	-1.87192 + 3.52202I
b = -0.716384 - 1.036900I		
u = -0.601097 - 0.571095I		
a = 0.200819 - 0.207134I	-5.51696 + 2.60444I	-1.87192 - 3.52202I
b = -0.716384 + 1.036900I		
u = 0.782212 + 0.168121I		
a = 0.268689 - 0.110103I	1.51394 + 0.22954I	7.32004 + 0.16659I
b = -0.800842 - 0.378551I		
u = 0.782212 - 0.168121I		
a = 0.268689 + 0.110103I	1.51394 - 0.22954I	7.32004 - 0.16659I
b = -0.800842 + 0.378551I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.579058 + 0.450651I		
a = -1.037300 + 0.151216I	-0.67124 + 4.97036I	2.71900 - 7.31464I
b = 0.36687 + 1.44155I		
u = 0.579058 - 0.450651I		
a = -1.037300 - 0.151216I	-0.67124 - 4.97036I	2.71900 + 7.31464I
b = 0.36687 - 1.44155I		
u = -0.343524 + 0.624420I		
a = -0.976295 - 0.922559I	-6.27450 - 1.45252I	-3.69386 + 3.06697I
b = 0.269931 - 0.191977I		
u = -0.343524 - 0.624420I		
a = -0.976295 + 0.922559I	-6.27450 + 1.45252I	-3.69386 - 3.06697I
b = 0.269931 + 0.191977I		
u = -0.599839 + 0.369476I		
a = -0.798578 + 0.484702I	1.18905 - 3.57721I	4.64362 + 8.91865I
b = -0.125617 + 1.082760I		
u = -0.599839 - 0.369476I		
a = -0.798578 - 0.484702I	1.18905 + 3.57721I	4.64362 - 8.91865I
b = -0.125617 - 1.082760I		
u = -0.228379 + 0.658723I		
a = -1.28242 - 1.11756I	-4.82761 + 6.67077I	-1.71165 - 4.27909I
b = -0.201046 - 0.506980I		
u = -0.228379 - 0.658723I		
a = -1.28242 + 1.11756I	-4.82761 - 6.67077I	-1.71165 + 4.27909I
b = -0.201046 + 0.506980I		
u = 0.614370 + 0.324141I		
a = 0.701582 - 0.039747I	1.41349 + 0.80124I	7.83477 - 2.87289I
b = -0.491878 - 0.972906I		
u = 0.614370 - 0.324141I		
a = 0.701582 + 0.039747I	1.41349 - 0.80124I	7.83477 + 2.87289I
b = -0.491878 + 0.972906I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.243226 + 0.591006I		
a = 1.28551 + 0.93694I	-2.16539 + 1.90010I	1.028545 - 0.515555I
b = 0.170934 + 0.215041I		
u = -0.243226 - 0.591006I		
a = 1.28551 - 0.93694I	-2.16539 - 1.90010I	1.028545 + 0.515555I
b = 0.170934 - 0.215041I		
u = 1.366540 + 0.105513I		
a = 0.073383 - 0.327087I	-0.93634 + 4.10134I	0
b = 0.780564 + 0.143090I		
u = 1.366540 - 0.105513I		
a = 0.073383 + 0.327087I	-0.93634 - 4.10134I	0
b = 0.780564 - 0.143090I		
u = 1.40634		
a = 0.303169	2.53581	0
b = -1.14879		
u = -0.511782 + 0.272136I		
a = 1.43457 - 0.46586I	0.64233 + 1.35638I	0.89935 + 4.08945I
b = 0.446013 - 0.822688I		
u = -0.511782 - 0.272136I		
a = 1.43457 + 0.46586I	0.64233 - 1.35638I	0.89935 - 4.08945I
b = 0.446013 + 0.822688I		
u = 0.359561 + 0.428490I		
a = -1.281080 - 0.420225I	-1.31778 - 1.81267I	0.238643 - 0.120411I
b = -0.329117 + 1.066960I		
u = 0.359561 - 0.428490I		
a = -1.281080 + 0.420225I	-1.31778 + 1.81267I	0.238643 + 0.120411I
b = -0.329117 - 1.066960I		
u = -1.51828 + 0.07351I		
a = 0.37450 - 1.82930I	4.98533 + 0.33539I	0
b = 0.11043 + 1.78445I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.51828 - 0.07351I		
a = 0.37450 + 1.82930I	4.98533 - 0.33539I	0
b = 0.11043 - 1.78445I		
u = 1.56233 + 0.08226I		
a = 1.12351 + 1.94512I	7.78597 - 0.04605I	0
b = -1.69642 - 2.80365I		
u = 1.56233 - 0.08226I		
a = 1.12351 - 1.94512I	7.78597 + 0.04605I	0
b = -1.69642 + 2.80365I		
u = 1.56086 + 0.16665I		
a = -0.23171 + 1.99295I	1.69351 + 5.28998I	0
b = 0.61349 - 2.25582I		
u = 1.56086 - 0.16665I		
a = -0.23171 - 1.99295I	1.69351 - 5.28998I	0
b = 0.61349 + 2.25582I		
u = -1.56649 + 0.12512I		
a = 0.81106 - 1.94624I	6.58151 - 7.03980I	0
b = -0.02960 + 2.45788I		
u = -1.56649 - 0.12512I		
a = 0.81106 + 1.94624I	6.58151 + 7.03980I	0
b = -0.02960 - 2.45788I		
u = 1.57533 + 0.10647I		
a = -0.67114 - 2.26632I	8.59223 + 5.32247I	0
b = 0.83041 + 3.20187I		
u = 1.57533 - 0.10647I		
a = -0.67114 + 2.26632I	8.59223 - 5.32247I	0
b = 0.83041 - 3.20187I		
u = -1.57717 + 0.09542I		
a = -0.78995 + 1.70101I	8.87289 - 2.35791I	0
b = 0.32037 - 2.17607I		

9
)
)
)
)
)
)
)
)
)
336I
)

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.036663 - 0.311170I		
a =	1.63637 - 1.04446I	-0.118620 - 1.395530I	-0.02533 + 5.05336I
b =	0.422361 + 0.375155I		

II.
$$I_2^u = \langle -au + b, \ a^2 - a + 1, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a - u - 1 \\ au \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} au + a \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} au + a \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2au + 5a u + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_2,c_5	$(u^2 + u + 1)^2$
c_3,c_8	u^4
C4	$(u^2 - u + 1)^2$
c_{6}, c_{7}	$(u^2 - u - 1)^2$
c_9, c_{10}, c_{11}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5$	$(y^2+y+1)^2$
c_3, c_8	y^4
c_6, c_7, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.500000 + 0.866025I	0.98696 - 2.02988I	6.50000 + 5.40059I
b = 0.309017 + 0.535233I		
u = 0.618034		
a = 0.500000 - 0.866025I	0.98696 + 2.02988I	6.50000 - 5.40059I
b = 0.309017 - 0.535233I		
u = -1.61803		
a = 0.500000 + 0.866025I	8.88264 - 2.02988I	6.50000 + 1.52761I
b = -0.80902 - 1.40126I		
u = -1.61803		
a = 0.500000 - 0.866025I	8.88264 + 2.02988I	6.50000 - 1.52761I
b = -0.80902 + 1.40126I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2+u+1)^2)(u^{51}+3u^{50}+\cdots+4u+1)$
c_2	$((u^2+u+1)^2)(u^{51}+25u^{50}+\cdots-2u-1)$
c_3, c_8	$u^4(u^{51} - u^{50} + \dots + 100u^2 - 16)$
c_4	$((u^2 - u + 1)^2)(u^{51} + 3u^{50} + \dots + 4u + 1)$
<i>C</i> ₅	$((u^2+u+1)^2)(u^{51}-3u^{50}+\cdots-488u+241)$
c_{6}, c_{7}	$((u^2 - u - 1)^2)(u^{51} - 3u^{50} + \dots - 3u^2 - 1)$
c_9, c_{10}	$((u^2 + u - 1)^2)(u^{51} - 3u^{50} + \dots - 3u^2 - 1)$
c_{11}	$((u^2 + u - 1)^2)(u^{51} + 13u^{50} + \dots + 102u - 7)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^2)(y^{51} + 25y^{50} + \dots - 2y - 1)$
c_2	$((y^2+y+1)^2)(y^{51}+5y^{50}+\cdots-42y-1)$
c_3,c_8	$y^4(y^{51} - 25y^{50} + \dots + 3200y - 256)$
c_5	$((y^2 + y + 1)^2)(y^{51} - 15y^{50} + \dots + 378406y - 58081)$
c_6, c_7, c_9 c_{10}	$((y^2 - 3y + 1)^2)(y^{51} - 59y^{50} + \dots - 6y - 1)$
c_{11}	$((y^2 - 3y + 1)^2)(y^{51} + y^{50} + \dots + 27134y - 49)$