Robust Controller Synthesis

Jan-Willem van Wingerden

Delft Center for Systems and Control Delft University of Technology J.W.vanWingerden@TUDelft.nl

SC42145, 2024/25

Real parametric uncertainty

- $|\delta_1| \le 1$
- $|\delta_2| \le 1$
- stable nominal system
- static feedback K > 0

Questions:

- Compute $\max_{\omega} \mu(M(j\omega))$?
- Compute $||M||_{\infty}$?
- What does it mean?
- What are the real conditions for stability?

Example

$$M = \frac{1}{s + \alpha + K_0 K} \begin{bmatrix} -K & -1 \\ -K & -1 \end{bmatrix}$$

example taken from: robust control (lecture notes) by Ad Damen and Siep Weiland

First compute $\mu(M(j\omega))$:

$$\det \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{\mu} \frac{1}{s + \alpha + K_0 K} \begin{bmatrix} K & 1 \\ K & 1 \end{bmatrix} \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{\mu} \frac{1}{s + \alpha + K_0 K} \begin{bmatrix} K \delta_1 & \delta_2 \\ K \delta_1 & \delta_2 \end{bmatrix} \end{pmatrix} = 0$$

$$1 + \frac{1}{\mu} \frac{K \delta_1 + \delta_2}{s + \alpha + K_0 K} = 0$$

Now we have to find the biggest μ for which the above equality holds:

$$\mu = \frac{-K\delta_1 - \delta_2}{s + \alpha + K_0 K} = \frac{|K| + 1}{s + \alpha + K_0 K}$$

Compute $\max_{\omega} \mu(M(j\omega))$ (note: low pass filter):

$$\max_{\omega} \mu(M(j\omega)) = rac{|K|+1}{|lpha+K_0K|}$$
ifi) Delft Caller for Systems and Control

Example: compute $||M||_{\infty}$

First remember that $||M||_{\infty} = \max_{\omega} \overline{\sigma}(M(\omega))$. So, first find $\overline{\sigma}(M(\omega))$:

$$M = \frac{1}{s + \alpha + K_0 K} \begin{bmatrix} -K & -1 \\ -K & -1 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} 1 & * \\ 1 & * \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sqrt{(2)} \frac{1}{|s + \alpha + K_0 K|} \sqrt{(K^2 + 1)} & 0 \\ 0 & 0 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} -K & -1 \\ * & * \end{bmatrix}}_{V^T}$$

Now compute $||M||_{\infty} = \max_{\omega} \overline{\sigma}(M(\omega))$ (note: low pass filter):

$$||M||_{\infty} = \frac{\sqrt{2(K^2+1)}}{\sqrt{(\omega^2 + (\alpha + K_0 K)^2}} = \frac{\sqrt{2(K^2+1)}}{|\alpha + K_0 K|}$$

Example: What does it mean?

First observe that:

$$\frac{\mu(M(\omega))}{\sqrt{K\omega^2 + (\alpha + K_0 K)^2}} \le \frac{\overline{\sigma}(M(\omega))}{\sqrt{\omega^2 + (\alpha + K_0 K)^2}}$$

It means that we know that the system is RS if $\max_{\omega} \mu(M(\omega)) < 1$ or $||M||_{\infty} < 1$.

Scaling:If $\delta_1 \leq \frac{1}{\gamma}$ and $\delta_2 \leq \frac{1}{\gamma}$ the RS turns out to be $\max_{\omega} \mu(M(\omega)) < \gamma$ or $||M||_{\infty} < \gamma$.

Example: What are the real conditions for stability?

Note that the closed loop pole is given by: $-(\alpha + \delta_2) - (K_0 + \delta_1) K$ Or: $-\alpha - K_0 K - \delta_2 - \delta_1 K$

The system is NS and consequently $\alpha + K_0 K > 0$

This directly implies for **RS** that $\alpha + K_0 K > -\delta_2 - \delta_1 K$

Numerical example: $K_0 = \alpha = 1$ and K = 2 for **RS** it should hold that:

- True: $2\delta_1 + \delta_2 > -3$
- According μ : $|\delta_1| < 1$ and $|\delta_2| < 1$
- According ∞ : $|\delta_1|<\frac{1}{\sqrt{\frac{10}{9}}}$ and $|\delta_2|<\frac{1}{\sqrt{\frac{10}{9}}}$

Example: Graphical representation

- True
- μ
- ∞

Why didn't we work with: $M = \frac{1}{s + \alpha + K_0 K} \begin{bmatrix} -K & -1 \end{bmatrix}$

The similarity between RS and RP (SISO example)

Consider:

Remember: RS: $|w_IT| < 1 \ \forall \omega$ and RP: $|w_IT| + |w_PS| < 1 \ \forall \omega$

Main idea: Check RS: for the settings above

The similarity between RS and RP (SISO example)

Assume: Stable L_p and **NS** (nyquist doesn't encircle -1)

RS
$$\Leftrightarrow$$
 $|1 + L_p| > 0$, $\forall L_p, \forall \omega$ \Leftrightarrow $|1 + L(1 + w_I \Delta)(1 - w_P \Delta_P)^{-1}| > 0, \forall \Delta, \forall \Delta_P, \forall \omega$ \Leftrightarrow $|1 + L + w_I L \Delta - w_P \Delta_P| > 0, \forall \Delta, \forall \Delta_P, \forall \omega$

Last condition is most easily violated if $|\Delta|=|\Delta_P|=1$ and if 1+L and $w_IL\Delta$ and $w_P\Delta_P$ have opposite signs

$$|1+L|-|w_IL|-|w_P|>0, \quad \forall \omega$$

 $\mathbf{RS} \Leftrightarrow |w_I T| + |w_P S| < 1, \forall \omega$

The similarity between RS and RP (SISO example)

Conclusion: We can reformulate the **RP** problem into an **RS** problem with structured uncertainty

Robust Performance (SISO)

The similarity between RS and NP (General)

In the \mathcal{H}_{∞} framework we have NP if $||N_{22}||_{\infty} < 1$ (given NS).

Lets consider the following feedback loop with a full Δ_P block (for all stable $||\Delta_P||_\infty \le 1)$

Apply Generalized Nyquist theorem: $\det(I-N_{22}(j\omega)\Delta_P(j\omega))$ shouldn't encircle the origin

Same condition RS $M\Delta$ -structure (see last lecture). So, NP can be represented by a full uncertainty structure.

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1 \text{) and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega \text{ and NS}$

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1 \text{) and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1$ $\forall \omega$ (or $\mu_{\Delta_P}(N_{22}) < 1$) and **NS**

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

RP:
$$\mu_{\hat{\Delta}}(N) < 1 \quad \forall \omega, \, \hat{\Delta} = \begin{bmatrix} \Delta & 0 \\ 0 & \Delta_P \end{bmatrix}$$
 and **NS**

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1$ $\forall \omega$ (or $\mu_{\Delta_P}(N_{22}) < 1$) and **NS**

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

$$G(s) = \frac{1}{75s+1} \begin{bmatrix} 87.8 & -86.4 \\ 108.2 & -109.6 \end{bmatrix} \text{ with RGA } \forall \omega \begin{bmatrix} 35.1 & -34.1 \\ -34.1 & 35.1 \end{bmatrix}$$

Due to large elements in RGA difficult to control

Controller: inverse with integral action $K_{inv} = \frac{0.7}{2}G^{-1}$

 NS: With inverse control you end up with decoupled two first order plants

• RS: No high $\overline{\sigma}(S)$ but high RGA values cause for concern (\Rightarrow)

Old Example 2: Distillation column (cont'd)

RS: We will consider diag. input uncertainty (typically 20% for process applications)

Uncertainty in input is given by: $u_1' = (1 + \epsilon_1) u_1$, $u_2' = (1 + \epsilon_2) u_2$

We have:
$$L(s) = \frac{0.7}{s} \begin{bmatrix} 1+\epsilon_1 & 0 \\ 0 & 1+\epsilon_2 \end{bmatrix}$$

Compute poles: $\det(I+L)=(s+0.7\,(1+\epsilon_1))\,(s+0.7\,(1+\epsilon_2))$. We can have up to 100% error in all the input channels

RP: Consider
$$u'_1 = 1.2u_1$$
, $u'_2 = 0.8u_2$

Old Example 2: Distillation column (cont'dd)

RP: Consider
$$u'_1 = 1.2u_1$$
, $u'_2 = 0.8u_2$

Reference, Nominal control, Uncertain Input

RP From the response we can conclude that we don't have RP

Old Example 2: **NS:** N internally stable


```
With: w_I=\frac{s+0.2}{0.5s+1} and w_P=\frac{\frac{s}{2}+0.05}{s}
```

```
>>systemnames = 'G Wp Wi';
>>inputvar ='[udel(2); w(2); u(2)]';
>>outputvar='[Wi; Wp; -G-w]';
>>input_to_G='[u+udel]';
>>input_to_Wp='[G+w]';
>>input_to_Wi='[u]';
>>sysoutname='P'; cleanupsysic= 'yes'; sysic;
>>N=lft(P,Kinv); max(real(eig(N))); % -1E-6
```


Old Example 2: **NP:** $\mu_{\Delta_P}(N_{22}) < 1$


```
With: w_I=rac{s+0.2}{0.5s+1} and w_P=rac{rac{s}{2}+0.05}{s}
```

```
>>omega=logspace(-3,3,61);
>>Nf=frd(N,omega);
>>blk=[ 2 2]; % Full complex uncertainty block
>>[mubnds,muinfo]=mussv(Nf(3:4,3:4),blk,'c');
>>muNP=mubnds(:,1);
>>[muNPinf, muNPw]=norm(muNP,inf); % bound = 0.5
```


Old Example 2: **RS:** $\mu_{\Delta}(N_{11}) < 1$


```
With: w_I=rac{s+0.2}{0.5s+1} and w_P=rac{rac{s}{2}+0.05}{s}
```

```
>>omega=logspace(-3,3,61);
>>Nf=frd(N,omega);
>>blk=[ 1 1; 1 1]; % structured uncertainty
>>[mubnds,muinfo]=mussv(Nf(1:2,1:2),blk,'c');
>>muRS=mubnds(:,1);
>>[muRSinf, muRSw]=norm(muRS,inf); % bound = 0.5242
```


Old Example 2: **RP:** $\mu_{\hat{\Lambda}}(N) < 1$


```
With: w_I=rac{s+0.2}{0.5s+1} and w_P=rac{rac{s}{2}+0.05}{s}
```

```
>>omega=logspace(-3,3,61);

>>Nf=frd(N,omega);

>>blk=[ 1 1; 1 1; 2 2]; % structured uncertainty and \Delta_P

>>[mubnds,muinfo]=mussv(Nf(1:4,1:4),blk,'c');

>>muRP=mubnds(:,1);

>>[muRPinf, muRPw]=norm(muRP,inf); % bound = 5.77
```


Old Example 2: The different SSV's

$$\underbrace{\mu_{\Delta_P}(N_{22}(j\omega))}_{NP}$$

$$\underbrace{\mu_{\Delta}(N_{11}(j\omega))}_{RS}$$

$$\underbrace{\mu_{\hat{\Delta}}(N(j\omega))}_{RP}$$

D-K iterations

For MIMO systems we know how to check for **NS**, **NP**, **RS**, **RP**: μ -analysis

Seek a controller that minimizes a certain μ -condition: the μ -synthesis problem

There is no direct method to synthesize a μ -optimal controller

However, we have an upperbound: $\mu(N(K)) \leq \min_{D \in \mathcal{D}} \overline{\sigma}(DN(K)D^{-1})$

Seek a controller that: $\min_K(\min_{D\in\mathcal{D}}||DN(K)D^{-1}||_{\infty})$

Alternate, between minimizing $||DND^{-1}||_{\infty}$ using D or K. (D-K iterations)

D-K iterations (cont'd)

The D-K iterations (start with D = I):

- **V-step:** Synthesis a controller that minimizes the scaled problem: $\min_K ||DN(K)D^{-1}||_{\infty}$.
- **② D-step:** Find $D(j\omega)$ to minimize at each frequency $\overline{\sigma}(D(j\omega)N(j\omega)D^{-1}(j\omega))$ with fixed N (number of frequency points).
- **③** Fit a transfer function on top of $D(j\omega)$ and return to step-1.

Example (cont'dd)

Back to the distillation column:
$$G(s) = \frac{1}{75s+1}\begin{bmatrix} 87.8 & -86.4\\ 108.2 & -109.6 \end{bmatrix}$$

Automatic D-K iterations:

```
%% D-K iterations auto-tuning
>>Delta=[ultidyn('D.1',[1,1]) 0; 0 ultidyn('D.2',[1,1])];
>>Punc=lft(Delta,P);
>>opt=dkitopt('FrequencyVector', omega,'DisplayWhileAutoIter','on')
>>[K,clp,bnd,dkinfo]=dksyn(Punc,2,2,opt);
```


Example (cont'dd) Back to the distillation column:
$$G(s)=\frac{1}{75s+1}\begin{bmatrix} 87.8 & -86.4\\ 108.2 & -109.6 \end{bmatrix}$$

Decentralized design, μ -design iteration 1, μ -design iteration 2

	K_{inv}	μ it. 1	μ it. 2
Peak μ -value	5.77	1.215	1.048
D-order	-	0	12
K-order	6	6	18

Example (cont'ddd)

RP: Consider
$$u'_1 = 1.2u_1$$
, $u'_2 = 0.8u_2$

Reference, Nominal control, Uncertain Input, Robust

RP From μ we know we almost have **RP**.

D-scalings (example)

Given
$$M=\begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix}$$
 compute μ with $\overline{\sigma}(\Delta)\leq 1$:

- where ∆ is a full block (compute SVD)
- where $\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix} (\det(..) = 1 + \frac{\delta_1}{\mu} 3\frac{\delta_2}{\mu})$

Answers: 1) $\sqrt{20}$, 2) 4 3) 2

D-scalings (example, cont'd)

Given
$$M = \begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix}$$
 compute D: not by hand

- \bigcirc where \triangle is a full block D=I
- where $\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix}$ $(D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix})$


```
%% code to find D-scaling
>> M = [-1 -1; 3 3];
%% 1) full block
>>blk=[2 2];
>> [mubnds, muinfo] = mussv(M, blk); mubnds(2)
>>[VDelta, VSigma, VLmi] = mussvextract (muinfo);
>>D=VSigma.DLeft
%% 2) Two diagonal element
>>blk=[1 0; 1 0];
>> [mubnds, muinfo] = mussv(M, blk); mubnds(2)
>>[VDelta, VSigma, VLmi] = mussvextract(muinfo);
>>D=VSigma.DLeft
%% 3) Repeated block
>>blk=[2 0];
>> [mubnds, muinfo] = mussv(M, blk); mubnds(2)
>>[VDelta, VSigma, VLmi] = mussvextract (muinfo);
>>D=VSigma.DLeft
```


D-K iterations 0000000

```
%% doing mu synthesis using hinfsyn
>> blk=[ 1 1: 1 1: 2 2];
>>omega=logspace(-3,3,61);
>> [K2, CL, GAM, INFO] = hinfsyn(P, 2, 2);
>>
>>i=1:1:10
>>Nf=frd(lft(P,K2),omega);
>> [mubnds, muinfo] = mussv(Nf(1:4,1:4),blk,'c');
>>muRP=mubnds(:,1); [muRPinf, muRPw]=norm(muRP,inf);
>>[VDelta, VSigma, VLmi] = mussvextract(muinfo);
>>D=VSigma.DLeft;
>>dd1 = fitmagfrd((D(1,1)/D(3,3)),6);
>> dd2 = fitmagfrd((D(2,2)/D(3,3)),6);
>>Dscale=minreal(append(dd1, dd2,tf(eye(4))));
>>[K2,CL,GAM2,INFO] = hinfsyn(minreal(Dscale*P*inv(Dscale)),2,2);
>>end
```

