Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, G. Maier

5° Appello – 19 Febbraio 2021

Cognome e nome:				(sta	mpatello)
				(firma	leggibile)
Matricola:	Es.1	Es.2	Es.3	Ques.	Lab.

<u> 1 - Esercizio (6 punti)</u>

Nella rete in figura è già aperta una connessione TCP tra il dispositivo A ed il dispositivo B. I parametri iniziali della connessione TCP siano i seguenti: MSS=500 [byte], RCWND=10 MSS, SSTHRESH=5 MSS, dimensione segmenti di riscontro trascurabile. Supponendo che:

- il segmento #13 in trasmissione vada perso (supporre che i pacchetti fuori ordine vengano scartati)
- il valore del time out sia $t_{out} = 5$ [ms]
- all'interno dell'ACK relativo al segmento #20 di A, il dispositivo B segnali un campo di *window* pari a 1000 [byte] (si trascuri il fattore di scala),

Indicare:

- Se la trasmissione sulla connessione TCP diventa continua quando viene trasferito un file di 13500 [byte]. In caso positivo, indicare il tempo oltre cui la trasmissione diventa continua e su quale collegamento
- 2. Il tempo di trasferimento del file di 13500 [byte] di cui sopra
- 3. Il rate medio di trasferimento del file

Soluzione

$$\begin{split} &T_1 \!\!=\!\! 80 [us], \ T_2 \!\!=\!\! T_3 \!\!=\!\! 40 [us] \\ &RTT \!\!=\!\! T_1 +\!\! T_2 +\!\! T_3 \!\!+\!\! 6 \setminus \!\! tau \!\!=\!\! 760 [us] \\ &W_c \!\!=\!\! RTT/T_1 = 9,5 \\ &File = 13500 \ [byte] \ / \ 500 \ [byte] = 27 \ MSS \end{split}$$

- 1- We mai raggiunta
- 2- $T_{tot} = 4RTT + T_{out} + 7RTT = 11RTT + T_{out} = 13.36 \text{ [ms]}$ 3- $R = 13500*8/T_{tot} = 8 \text{ [Mb/s]}$

2 - Esercizio (6 punti)

La società *RaceBoat S.p.A.*, costituita dalle sottoreti A, B, C, D, interconnesse tramite i router R1, R2, R3, R4 (si veda la figura sottostante), si rivolge ad un ISP per ottenere un blocco di indirizzi IP sufficiente a soddisfare le proprie necessità di indirizzamento. L'ISP, che dispone complessivamente del blocco CIDR **131.17.0.0/16**, assegna a *RaceBoat* il blocco **131.17.152.0/21**.

- a) Effettuare il piano di indirizzamento per la società *RaceBoat* adottando la tecnica VLSM. Per ciascuna sottorete specificare il numero di indirizzi occupati (inclusi gli indirizzi speciali), l'indirizzo di rete, la *netmask* (in formato /n), e l'indirizzo di broadcast diretto, usando la Tabella 1. **Ordinare le sottoreti in ordine di dimensione decrescente e assegnare gli indirizzi alle sottoreti a partire da quelli più bassi del blocco**. (Suggerimento: fare attenzione alla presenza dei collegamenti punto-punto tra i router PP23 e PP21.)
- b) Assegnare **a ogni interfaccia** dei router **l'indirizzo più grande possibile** compatibilmente con i vincoli sugli indirizzi riservati, compilando la Tabella 2. Si usi la notazione "RnX" (n=1,2,3,4; X=A,B,...) per indicare l'interfaccia del router Rn verso la rete X, ed "Rn-Rm" per indicare l'interfaccia del router Rn verso il router Rm.
- c) Scrivere nella Tabella 3 la tabella di inoltro (diretto e indiretto) del router R4 <u>nel modo più compatto possibile e che minimizzi il numero di salti per raggiungere la rete di destinazione e, a parità di numero di salti, si preferisca il transito dalla rete più piccola.</u> Si preveda anche una rotta per destinazioni esterne.
- d) Supponendo che tutti i clienti siano esattamente identici a *RaceBoat*, e che l'ISP assegni gli indirizzi ai clienti in modo contiguo partendo dalla base del proprio blocco, rispondere alle domande sottostanti. Motivare le risposte.

La rete di *RaceBoat* parte dall'indirizzo 131.17.152.0/21 ed è un blocco di 2exp11=2048 indirizzi. Dunque, prima di questa rete sono assegnate 152*256 / 2exp11 subnet di uguale dimensione.

Tabella 1: Indirizzamento (Usare la notazione decimale puntata)

Rete	Numero di indirizzi IP usati (incluso indirizzi speciali)	Netmask /n	Indirizzo di rete	Ind. broadcast diretto
С	1004	22	131.17.152.0	131.17.155.255
A	123	25	131.17.156.0	131.17.156.127
В	89	25	131.17.156.128	131.17.156.255
D	64	26	131.17.157.0	131.17.157.63
PP12	4	30	131.17.157.64	131.17.157.67
PP23	4	30	131.17.157.68	131.17.157.71

Tabella 2: Interfacce dei Router (Usare la notazione decimale puntata)

	Interfaccia	Indirizzo IP	Netmask (/n)
	R1B	131.17. 156.254	25
D 1	R1D	131.17. 157.62	26
R1	R1R2	131.17.157.66	30
	R1Ext	Es. 131.17.0.1	Es. 18
	R2A	131.17.156.126	25
R2	R2R3	131.17.157.70	30
	R2R1	131.17.157.65	30
D2	R3C	131.17.155.254	22
R3	R3R2	131.17.157.69	30
	R4C	131.17.155.253	22
R4	R4B	131.17. 156.253	25
	R4D	131.17. 157.61	26

Tabella 3: Tabella di Routing di R4 (Usare la notazione decimale puntata)

Rete/reti	Ind. IP di interfaccia o prefisso di rete (/n)	Next-hop (indirizzo IP)	Interfaccia next-hop (RnX)
Net C	131.17.155.253/22	-	
Net D	131.17.157.61/26	-	
Net B	131.17.156.253/25	-	
Net A*	131.17.156.0/25	131.17. 157.62	R1D
Ext.	0.0.0.0/0	131.17. 157.62	R1D

^{*} La entry Net A può essere aggregata all'indirizzo di default router per risparmiare una linea della tabella

Esercizio 3 (5 punti)

Un router ha 3 interfacce di rete con i seguenti indirizzi MAC, IP e Netmask:

Interfaccia	IP	Netmask	MTU (B)
Eth0	140.27.15.174	/29	200
Eth1	140.27.15.146	/28	1500
Eth2	140.27.251.6	/24	80

E la seguente tabella di routing:

Riga	Network	Netmask	Next hop
1	128.30.30.212	255.255.255.252	140.27.15.171
2	128.30.30.208	255.255.255.240	140.27.251.254
3	128.30.24.0	255.255.248.0	140.27.15.150
4	10.27.89.0	255.255.255.0	140.27.15.169
5	10.27.102.128	255.255.255.128	140.27.15.147
6	0.0.0.0	0.0.0.0	140.27.251.254

Indicare l'azione del router sui seguenti pacchetti ricevuti:

Pacch.	interfaccia	IP Destinazione	Size (B)	Flag D	TTL
1	Eth0	140.27.15.152	1630	1	5
2	Eth1	10.18.102.191	101	0	1
3	Eth1	140.27.15.169	307	1	4
4	Eth0	128.30.30.220	78	1	8
5	Eth2	128.30.27.33	2031	0	11

scart. per MTU (in. dir. eth1) scart. per TTL (in. indir. riga 6 eth. 2) scart. per MTU (in. dir. eth0) in. indir. riga 2 eth 2 in. indir. riga 3 eth 1

4 - Domande (9 punti)

Q1) Si consideri la configurazione di rete in figura in cui il dispositivo A voglia scaricare dal web server www.temaesame.it un documento HTML. Si noti che il documento scaricato non contiene oggetti referenziati al suo interno. Si indichino le sequenze di messaggi che vengono scambiati tra i tre dispositivi in figura fino all'arrivo in A del documento, supponendo che A abbia inizialmente tabelle ARP vuote e la scheda di rete (NIC) configurata in modo completo e il router abbia tabelle di routing ed inoltro già a convergenza.

Q2) Un router che implementa il protocollo RIPv2 è configurato con la tabella di instradamento indicata sotto e riceve il distance vector riportato da un router con indirizzo 2.35.2.254. Il collegamento tra il router in questione e il router che invia il distance vector abbia costo unitario. Indicare come cambia la tabella di instradamento scrivendo le informazioni richieste.

Destinazione	Next Hop	Costo
2.23.24.0/23	2.34.1.1	5
2.23.26.0/23	2.34.1.1	4
2.23.28.0/24	2.35.2.254	3
2.23.29.0/24	2.35.2.254	4
2.23.30.0/24	2.36.4.254	5

Destinazione	Costo
2.23.24.0/23	6
2.23.26.0/23	6
2.23.28.0/23	2
2.23.29.0/24	10
2.23.30.0/24	3
2.23.31.0/24	7

2.23.24.0/23	2.34.1.1	5	2.23.26.0/23 2.34.1.1	4
2.23.28.0/24	2.35.2.254	3	2.23.28.0/23 2.35.2.254	3
2.23.30.0/24	2.35.2.254	4	2.23.29.0/24 2.35.2.254	11
2.23.31.0/24	2.35.2.254	8		

Sia data la rete locale in figura costituita da switch, hub e PC. Le tabelle di inoltro dei dispositivi sono inizialmente vuote e vengono regolarmente riempite sulla base delle trame inviate dai PC, in ordine e secondo il seguente elenco:

- 1. Da PC A a PC C
- 2. Da PC C a PC A
- 3. Da PC E a PC A

Si chiede di indicare i PC che ricevono ciascuna delle trame (a prescindere che le scartino o meno).

- 1- B, C, D, E, F
- 2- D, A
- 3- C, D, A