

Hierarchical Deep Temporal Models for Group Activity Recognition

Mostafa S. Ibrahim, Srikanth Muralidharan, Zhiwei Deng, Arash Vahdat, Greg Mori

IEEE 2016 Conference on Computer Vision and Pattern Recognition

Vision and Media Lab

PROBLEM

Perform group activity recognition in two different contexts: Surveillance and Volleyball

CHALLENGES

- . Definition of group activity is **context** dependent. In surveillance video, it is based on what the majority of the people are doing, while in volleyball video, it is defined by what a few key players are doing.
- 2. It is a high level description of a video Group activity is function of each individual activity.

CONTRIBUTION

A novel deep temporal architecture that models group activities in a principled structured spatio-temporal framework based on modeling individual activities.

STEP 1: BUILD PERSON REPRESENTATIONS

- Target: Build a spatio-temporal representation for every person's
- Track a manually annotated bounding box for each person for a fixed temporal window around the target frame.
- Extract deep visual representation for each tracked person using Alexnet's fc7 features,
- Feed fc7 to a person LSTM to model the temporal dimension.
- Extract spatio-temporal features per person from its LSTM

STEP 2: BUILD GROUP ACTIVITY REPRESENTATION

- Target: Build a spatio-temporal representation for the group activity of a given frame
- Aggregate all individual person representations for every temporal step.
- For aggregation, standard pooling operators (e.g. max/avg pooling) are experimented
- Feed aggregated representation to a group level LSTM
- Extract spatio-temporal representation for the group activity from the top-level LSTM
- Learn a softmax classifier on top of the group activity representation.

OVERALL MODELS

PERSON LEVEL LSTMs

$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$ $f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$ $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$ $g_t = \phi(W_{xc}x_t + W_{hc}h_{t-1} + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot g_t$ $h_t = o_t \odot \phi(c_t)$

Spatial Model

Frame LEVEL LSTMs

Frame LEVEL LSTMs

 $P_{tk} = x_{tk} \oplus h_{tk}$

 $Z_t = P_{t1} \diamond P_{t2} \dots \diamond P_{tk}$

- **Problem**: Pooling all players' representation in one representation reduces the model capabilities
- **Proposal**: players are split to several sub-groups and recognize the team activity based on the concatenation of each sub-group's representation.

NEW VOLLEYBALL DATASET

- 4830 annotated frames from 55 publicly available YouTube videos.
- 9 person level labels, and 8 group activity labels.

EXPERIMENTS

Collective Activity Dataset

- Same label set for people and group activities
- 1925 video clips for training, 638 clips for testing

1929 video clips for training, 000 clips for te-					
Method	Accuracy				
31-Image Classification	63.0				
32-Person Classification	61.8				
33-Fine-tuned Person Classification	66.3				
84-Temporal Model with Image Features	64.2				
35-Temporal Model with Person Features	64.0				
86-Two-stage Model without LSTM 1	70.1				
37-Two-stage Model without LSTM 2	76.8				
Wo-stage Hierarchical Model	81.5				

Volleyball Dataset

Method	Accuracy	Ipass	65.49	13.72	1
B1-Image Classification	66.7	rpass	18.10	61.90	2
B2-Person Classification	64.6		10.10	01.50	_
B3-Fine-tuned Person Classification	68.1	Iset	11.90	1.19	7
B4-Temporal Model with Image Features	63.1	rset			
B5-Temporal Model with Person Features	67.6		6.77	19.27	5
B6-Two-stage Model without LSTM 1	74.7	Ispike	3.91	1.68	3
B7-Two-stage Model without LSTM 2	80.2				
Our Two-stage Hierarchical Model	81.9	rspike	3.47	1.16	C
IDTF (Improved Dense Trajectories)	73.4	lwin	n 0.98	1.96	0
IDTF - 1 group-box trajectories	71.7				
IDTF - 2 groups-box trajectories	78.7	rwin	1.15	1.15	C
		ı	lpass	rpass	F

SUMMARY

- A two stage hierarchical model for group activity recognition
- LSTMs as a highly effective temporal model and temporal feature source
- Decent people-relation modeling with simple pooling
- Code & Dataset: https://github.com/mostafa-saad/deep-activity-rec

ACKNOWLEDGMENT

This work was supported by grants from NSERC and Disney Research.