Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție în LISP
(DEFUN F(L1 L2)
(APPEND (F (CAR L1) L2)
(COND
((NULL L1) (CDR L2))
(T (LIST (F (CAR L1) L2) (CAR L2)))
)
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L1) L2), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

 ${f B.}$ Dându-se o listă formată din numere întregi, să se genereze lista submulțimilor cu ${f k}$ elemente în progresie aritmetică. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[1,5,2,9,3] şi k=3 \Rightarrow [[1,2,3],[1,5,9],[1,3,5]] (nu neapărat în această ordine)

C. Să se substituie un element e prin altul e1 la orice nivel impar al unei liste neliniare. Nivelul superficial se consideră 1. De exemplu, pentru lista (1 d (2 d (d))), e=d şi e1=f rezultă lista (1 f (2 d (f))). Se va folosi o funcție MAP.