Lösungsvorschläge zu Aufgabenblatt 6

(Abbildungen)

Aufgabe 6.1

- (a) Prüfen Sie die "teilt"-Ordnung auf N auf Links-/Rechtseindeutigkeit und Links-/Rechtstotalität.
- (b) Es sei R eine reflexive linkseindeutige Relation auf der Menge M. Zeigen Sie $R = I_M$.

Lösung

(a) Bezeichne die "teilt"-Ordnung auf \mathbb{N} mit R. Dann ist R links- und rechtstotal und weder links- noch rechtseindeutigkeit:

Als Ordnungsrelation gilt $I_{\mathbb{N}} \subseteq R$, also ist R links- und rechtstotal, denn für jedes $x \in \mathbb{N}$ ist $(x, x) \in R$.

Dass R nicht linkseindeutig ist, folgt z.B. aus 1|2 und 2|2, also $(1,2), (2,2) \in R$, und dass R nicht rechtseindeutig ist, folgt z.B. aus 1|1 und 1|2, also $(1,2), (1,2) \in R$.

(b) Da R reflexiv ist, gilt $I_M \subseteq R$, es bleibt also nur $R \subseteq I_M$ zu zeigen. Sei dazu $(x,y) \in R$. Da R reflexiv ist, gilt auch $(y,y) \in R$, und da R linkseindeutig ist, folgt x = y, also ist $(x,y) = (x,x) \in I_M$.

Aufgabe 6.2

Es sei M eine nichtleere Menge.

(a) Es sei N eine Menge und $f: M \to N$ eine Abbildung. Zeigen Sie, dass durch

$$R_f := \{(x, y) \in M \times M \mid f(x) = f(y)\}\$$

eine Äquivalenzrelation auf M definiert wird (die sogenannte Bildgleichheitsrelation unter der Abbildung <math>f).

(b) Sei umgekehrt R eine Äquivalenzrelation auf M und

$$f_R: M \to M/R, x \mapsto [x]_R$$

die Abbildung, die jedes $x \in M$ auf seine zugehörige Äquivalenzklasse $[x]_R$ bzgl. R abbildet. Zeigen Sie: $R_{f_R} = R$.

Anmerkung: Aufgabenteil (a) verallgemeinert die Aufgaben 4.2 und 4.3 - die zugrundeliegenden Funktionen dort sind $f: M \to \mathbb{N}_0, (x_1, x_2) \mapsto x_1^2 + x_2^2$ (Aufgabe 4.2) bzw. $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (a, b) \mapsto a + b$ (Aufgabe 4.3). Aufgabenteil (b) zeigt, dass letztlich **jede** Äquivalenzfunktion als Bildgleichheitsrelation zustande kommt.

Lösung

(a) R_f ist reflexiv: Sei $x \in M$, dann gilt f(x) = f(x), also $(x, x) \in R_f$ nach Definition.

 R_f ist symmetrisch: Sei $(x, y) \in R_f$. Dann gilt f(x) = f(y), also auch f(y) = f(x) und damit $(y, x) \in R_f$ nach Definition.

 R_f ist transitiv: Seien $(x, y) \in R_f$ und $(y, z) \in R_f$. Dann gilt f(x) = f(y) und f(y) = f(z), also auch f(x) = f(z) und damit $(x, z) \in R_f$ nach Definition.

(b) Es sei R eine Äquivalenzrelation auf M. Sei $(x,y) \in M \times M$. Dann gilt:

$$(x,y) \in R_{f_R} \stackrel{\text{Def. } R_{f_R}}{\Leftrightarrow} f_R(x) = f_R(y) \stackrel{\text{Def. } f_R}{\Leftrightarrow} [x]_R = [y]_R \Leftrightarrow (x,y) \in R.$$

Also gilt $R_{f_R} = R$.

Aufgabe 6.3

Wir betrachten $M := \mathbb{N} \times \mathbb{N}$ mit der Äquivalenzrelation aus Aufgabe 4.3, also

$$(a,b) \equiv (c,d) :\Leftrightarrow a+d=b+c$$
 für alle $(a,b),(c,d) \in M$,

und die zugehörige Menge $X := M/\equiv$ der Äquivalenzklassen. Welche der folgenden Relationen von X nach \mathbb{Z} sind auch Abbildungen?

(a)
$$f := \{([(a,b)], a-b) \mid a, b \in \mathbb{N}\},\$$

(b)
$$g := \{([(a,b)], a+b) \mid a, b \in \mathbb{N}\}.$$

Hinweis: Aufgrund unseres Kenntnisstands über Relationen haben wir hier eine formal korrekte Formulierung der Aufgabenstellung gegeben. In beiden Fällen handelt es sich um Kandidaten für Abbildungen auf der Menge $X = M/\equiv von$ Äquivalenzklassen, die repräsentantenweise definiert werden sollen. Hierfür wird oft auch die intuitivere, jedoch formal nicht ganz korrekte Formulierung verwendet (vgl. Vorlesung):

Welche der beiden folgenden Abbildungsvorschriften sind wohldefiniert (bzw. unabhängig vom Repräsentanten)?

$$f: X \to \mathbb{Z}, [(a,b)] \mapsto a-b, \qquad g: X \to \mathbb{Z}, [(a,b)] \mapsto a+b.$$

Lösung

(a) Die Relation f ist eine Abbildung: Zunächst ist f linkstotal, denn für alle $(a,b) \in \mathbb{N}$ ist nach Definition $([a,b],a-b) \in f$. Es bleibt also zu zeigen, dass f rechtseindeutig ist, also ist zu zeigen:

$$\forall (a,b), (c,d) \in M : [(a,b)] = [(c,d)] \Rightarrow a - b = c - d.$$

Seien also $(a,b),(c,d)\in M$. Es gelte [(a,b)]=[(c,d)], also $(a,b)\equiv (c,d)$, nach Definition also a+d=b+c. Umstellen liefert a-b=c-d.

(b) Die Relation g ist keine Abbildung: g ist zwar linkstotal (sieht man analog wie in Teil (a)), aber g ist nicht rechtseindeutig, denn es gilt z.B. $(1,1) \equiv (2,2)$, da 1+2=1+2, also $\lceil (1,1) \rceil = \lceil (2,2) \rceil$, aber es ist $1+1=2 \neq 4=2+2$.

Aufgabe 6.4

Zeigen Sie, dass die Abbildung

$$g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (m,n) \mapsto 2^{m-1} \cdot (2n-1)$$

bijektiv ist.

Lösung

Injektivität. Seien $m_1, n_1, m_2, n_2 \in \mathbb{N}$ mit $g(m_1, n_1) = g(m_2, n_2)$. Wir haben $(m_1, n_1) = (m_2, n_2)$ zu zeigen, also $m_1 = m_2$ und $n_1 = n_2$.

Wir nehmen an, es wäre $m_1 \neq m_2$. Dann können wir o.B.d.A. annehmen, daß $m_1 > m_2$, also $k := m_1 - m_2 \in \mathbb{N}$ ist.¹ Es gilt

$$2^{m_1-1} \cdot (2n_1-1) = g(m_1, n_1) = g(m_2, n_2) = 2^{m_2-1} \cdot (2n_2-1), \tag{*}$$

also $2^k \cdot (2n_1 - 1) = 2^{m_1 - m_2} \cdot (2n_1 - 1) = 2^{(m_1 - 1) - (m_2 - 1)} \cdot (2n_1 - 1) = (2n_2 - 1)$. Da $(2n_2 - 1)$ jedoch ungerade ist, also nicht 2 als Teiler besitzt, muß k = 0 sein. Also ist doch $m_1 = m_2$ im Widerspruch zu unser Annahme. Damit ist unsere Annahme zum Widerspruch geführt, also gilt $m_1 = m_2$.

Damit liefert (*) auch die Identität $2n_1 - 1 = 2n_2 - 1$, also $n_1 = n_2$.

Surjektivität. Sei $x \in \mathbb{N}$. Wir haben zu zeigen, daß ein Paar $(m,n) \in \mathbb{N} \times \mathbb{N}$ existiert mit g(m,n)=x.

Wir finden ein $k \in \mathbb{N}_0$ sowie eine ungerade Zahl $u \in \mathbb{N}$ mit $x = 2^k \cdot u$: Ist x ungerade, so wähle k = 0 und u = x. Ist x gerade, so dividiere x solange durch 2, bis das Ergebnis u ungerade ist. Wurden k Divisionen durchgeführt, so ist $x = 2^k \cdot u$. Definiere nun $m := k+1 \in \mathbb{N}$ und $n := \frac{u+1}{2}$, dann ist $n \in \mathbb{N}$, da u ungerade ist, und wir erhalten $g(m, n) = 2^{m-1} \cdot (2n-1) = 2^k \cdot u = x$.

Aufgabe 6.5

(1) Beweisen Sie den Satz "Verkettung und totale Relationen" (Folie 118):

Seien M_1, M_2, M_3 beliebige Mengen und $R_1 \subseteq M_1 \times M_2$ und $R_2 \subseteq M_2 \times M_3$ links-(rechts)totale Relationen. Dann ist R_1R_2 links-(rechts)total.

(2) Beweisen Sie den Satz "Notwendige Bedingung für Sur- und Injektivität der Verkettung" (Folie 124):

¹"o.B.d.A." ist die Abkürzung für "ohne Beschränkung der Allgemeinheit" - dies bedeutet, daß wir die Allgemeinheit des Beweises durch unsere Annahme nicht verletzen. Wegen $m_1 \neq m_2$ muß nämlich $m_1 > m_2$ oder $m_1 < m_2$ sein - und im zweiten Fall erreichen wir durch Umbenennung von m_1 und m_2 wieder den ersten Fall.

²Dies ist nur ein anschauliches und formal nicht ganz sauberes Argument. Einen ordentlichen Beweis kann man an dieser Stelle zum Beispiel durch Abschnittsinduktion führen.

- Seien M_1, M_2, M_3 beliebige Mengen und $f: M_1 \to M_2$ sowie $g: M_2 \to M_3$ beliebige Abbildungen. Ist $g \circ f: M_1 \to M_3, x \mapsto g(f(x))$ eine surjektive (injektive) Abbildung, dann ist g surjektiv (f injektiv).
- (3) Zeigen Sie durch Beispiele, dass im Satz "Notwendige Bedingung für Sur- und Injektivität der Verkettung" nicht auf die Surjektivität von f (Injektivität von g) geschlossen werden kann.

Lösung

(1) Seien M_1, M_2, M_3 beliebige Mengen und $R_1 \subseteq M_1 \times M_2$ und $R_2 \subseteq M_2 \times M_3$ linkstotale Relationen. Zu zeigen: R_1R_2 ist linkstotal.

Sei $x_1 \in M_1$. Wir haben zu zeigen, dass es ein $x_3 \in M_3$ gibt mit $(x_1, x_3) \in R_1R_2$. Da R_1 linkstotal ist, finden wir ein $x_2 \in M_2$ mit $(x_1, x_2) \in R_1$. Da auch R_2 linkstotal ist, finden wir außerdem ein $x_3 \in M_3$ mit $(x_2, x_3) \in R_2$. Nach Definition der Verkettung folgt $(x_1, x_3) \in R_1R_2$.

Die entsprechende Aussage für Rechtstotalität erhält man analog, oder durch Bilden der inversen Relation, was an dieser Stelle kurz demonstriert werden soll: Seien M_1, M_2, M_3 beliebige Mengen und $R_1 \subseteq M_1 \times M_2$ und $R_2 \subseteq M_2 \times M_3$ rechtstotale Relationen. Dann sind $R_2^{-1} \subseteq M_3 \times M_2$ und $R_1^{-1} \subseteq M_2 \times M_1$ linkstotale Relationen, und nach dem bereits Gezeigtem ist dann auch $R_2^{-1}R_1^{-1}$ linkstotal. Also ist $(R_1R_2)^{-1} = R_2^{-1}R_1^{-1}$ linkstotal und damit die inverse Relation R_1R_2 rechtstotal wie behauptet.

- (2) Seien M_1, M_2, M_3 beliebige Mengen und $f: M_1 \to M_2$ sowie $g: M_2 \to M_3$ beliebige Abbildungen.
- (i) Die Abbildung $g \circ f : M_1 \to M_3, x \mapsto g(f(x))$ sei surjektiv. Wir zeigen, dass dann auch g eine surjektive Abbildung ist, es ist also zu zeigen: $\forall x_3 \in M_3 \exists x_2 \in M_2 : g(x_2) = x_3$.

Sei also $x_3 \in M_3$. Da $g \circ f$ surjektiv ist, finden wir ein $x_1 \in M_1$ mit $x_3 = (g \circ f)(x_1) = g(f(x_1))$. Also ist $x_3 = g(x_2)$ mit $x_2 := f(x_1) \in M_2$.

- (ii) Die Abbildung $g \circ f: M_1 \to M_3, x \mapsto g(f(x))$ sei injektiv. Wir zeigen, dass dann auch f eine injektive Abbildung ist, es ist also zu zeigen: $\forall x, y \in M_1: f(x) = f(y) \Rightarrow x = y$.
- Seien also $x, y \in M_1$ mit f(x) = f(y). Dann gilt auch $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$, und da die Abbildung $g \circ f$ injektiv ist, folgt x = y.
- (3) Wir geben ein Beispiel von Funktionen f und g an, für die $g \circ f$ bijektiv, also injektiv und surjektiv ist, aber f nicht surjektiv und g nicht injektiv: Setze $M_1 := M_3 := \{1\}$ und $M_2 := \{1, 2\}$ sowie $f := \{(1, 1)\} \subseteq M_1 \times M_2$ und $g := \{(1, 1), (2, 1)\} \subseteq M_2 \times M_3$. Dann ist $g \circ f = \{(1, 1)\} \subseteq M_1 \times M_3$ bijektiv, aber f ist nicht surjektiv, da $M_2 = \{1, 2\}$ und g nicht im Bild von g liegt, und g ist nicht injektiv, da g(1) = 1 = g(2).