Joint Distributions

Definition: Joint Distribution

Let X and Y be two discrete random variables associated with the same sample space. The *joint* pmf is a function $F: \mathbb{R}^2 \to \mathbb{R}$, denoted f(X,Y) where:

$$f(x,y) = \begin{cases} P(X=x,Y=y) & \text{for all feasible } (x,y) \\ 0 & \text{otherwise} \end{cases}$$

that satisfies the following:

- 1) $p(x,y) \ge 0$
- 2) p(x,y) > 0 for a countable number of (x,y) pairs.

3)
$$\sum_{x} \sum_{y} p(x, y) = 1$$

4) The probability that (x, y) occurs in a set A is given by:

$$P[(X,Y) \in A] = \sum_{(x,y)\in A} p(x,y)$$

A joint discrete distribution is easily represented by a table with the possible values of X and Y across the top and left, respectively, and the *marginal* pdfs $f_X(x)$ and $f_Y(y)$ across the bottom and right, respectively, and the joint pmf f(x,y) in the middle.

Example

Toss two fair dice. Let X = their sum and let Y = the absolute value of their difference.

x y	2	3	4	5	6	7	8	9	10	11	12	$f_Y(y)$
0	$\frac{1}{36}$		$\frac{1}{36}$	$\frac{6}{36}$								
1		$\frac{2}{36}$		$ \begin{array}{r} \frac{6}{36} \\ \frac{10}{36} \\ \frac{8}{36} \\ \frac{6}{36} \\ \frac{4}{36} \\ \frac{2}{36} \end{array} $								
2			$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$			$\frac{8}{36}$
3				$\frac{2}{36}$		$\frac{2}{36}$		$\frac{2}{36}$				$\frac{6}{36}$
4					$\frac{2}{36}$		$\frac{2}{36}$					$\frac{4}{36}$
5						$\frac{2}{36}$						$\frac{2}{36}$
$f_X(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	

•
$$P(X \le 4, Y \le 2) = \frac{6}{36}$$

•
$$P(X \le 5) = \frac{10}{36}$$

•
$$P(X \ge 11, Y \ge 2) = 0$$

•
$$P(Y \le 1) = \frac{16}{36}$$

Definition: Conditional Probability

Let X and Y be two discrete random variables with joint pmf f(x,y). The *conditional* pmf of Y given X=x (with $f_X(x)\neq 0$) is given by:

$$f(y \mid x) = \frac{f(x,y)}{f_X(x)}$$

for all feasible y.

Example

From the previous example, the conditional pmfs of Y given X=x:

y	2	3	4	5	6	7	8	9	10	11	12
0	1		$\frac{1}{3}$		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{3}$		1
1		1		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{2}$		1	
2			$\frac{2}{3}$		$\frac{2}{5}$		$\frac{2}{5}$		$\frac{2}{3}$		
3				$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{2}$			
4					$\frac{2}{5}$		$\frac{2}{5}$				
5						$\frac{1}{3}$					

And the conditional pmfs of X given Y=y:

x y	2	3	4	5	6	7	8	9	10	11	12
0	$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$
1		1		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$	
2			$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		
3				$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$			
4					$\frac{1}{2}$		$\frac{1}{2}$				
5						1					

• Y given X = 6

У	0	2	4
$f\left(y\mid x=6\right)$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$

• Y given X=4

у	0	2
$f(y \mid x = 4)$	$\frac{1}{3}$	$\frac{2}{3}$

• X given Y = 3

X	5	7	9
$f\left(x\mid y=3\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

• X given Y = 0

Х	2	4	6	8	10	12
$f\left(x\mid y=0\right)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Definition

Independence Let X and Y be two discrete random variables. To say that X and Y are *independent* means that:

$$\forall x, y, f(x, y) = f_X(x) f_Y(y)$$

Example

In the previous example, \boldsymbol{X} and \boldsymbol{Y} are not independent because:

$$f_X(2)f_Y(0) = \frac{1}{36} \cdot \frac{6}{36} = \frac{1}{216} \neq \frac{1}{36} = f(2,0)$$

In fact, if the joint pmf has 0's then the variables are never independent.

Example

The following joint and marginal pmf's demonstrate independent variables:

x y	0	1	2	$p_Y(y)$
-1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$
1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$
$p_X(x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	

Theorem

Let X and Y be two discrete random variables. If for all x and y:

$$f(y \mid x) = f_Y(y) \text{ or } f(x \mid y) = f_X(x)$$

then \boldsymbol{X} and \boldsymbol{Y} are independent.