

Introducing myself: Aryan Ritwajeet Jha

Advisor: Anamika Dubey
PhD Thesis Topic: Scalable Multi-Period Optimal Power
Flow in Active Distribution Systems
Or simply, Scalable MPOPF in ADS

Bachelor of Engineering in EEE at BITS Pilani, Hyderabad Campus

2018 Summer Internship at **Power Grid Corporation of India**, Gurgaon

2016 - 2020

Master of
Science
(Research)
in EE
(Power
Systems) at
IIT Delhi

Discontinued after 2 years

2020 - 2022

Pursuing PhD ECE (Power Systems) at Washington State University, Pullman, WA

2024 Summer Internship at North American Electric Reliability Corporation (NERC)

2025 Summer Internship at **GE Vernova Advanced Research Center** (GEVARC)

2022 August -

The Multi Period Optimal Power Flow (MPOPF) problem for Active Distribution Systems

min. Desired Objective Function

subject to

Network Constraints

Engineering Constraints

Component Constraints (DERs, Batteries)

Intertemporal Constraints

Intertemporal Constraints

Battery SOC Equation

$$B_{j}^{t} = B_{j}^{t-1} + \Delta t \eta_{c} P_{c_{j}}^{t} - \Delta t \frac{1}{\eta_{d}} P_{d_{j}}^{t}$$

Controllable Components: Grid
Edge Devices (GEDs) like
Batteries and PVs spread
throughout whose real and
reactive dispatch may be set
every time-period

Intertemporal Constraints

Due to these intertemporal constraints, the optimization problem size becomes *T* times larger, becoming more difficult to solve.

Full Optimization Model – Balanced Three-Phase Nonlinear/Linear OPF

min. Desired Objective
Function, (appended with an
Battery Loss Function) [4]

subject to

Network Constraints

Engineering Constraints

Component Constraints (DERs, Batteries)

Battery Reactive Power Constraints

$$q_{B_j}^t \in \left[-\sqrt{3}(P_{B_j}^t + S_{B_{R,j}}), -\sqrt{3}(P_{B_j}^t - S_{B_{R,j}}) \right] \quad \text{(18a)}$$

$$q_{B_j}^t \in \left[-\frac{\sqrt{3}}{2} S_{B_{R,j}}, \frac{\sqrt{3}}{2} S_{B_{R,j}} \right]$$
 (18b)

$$q_{B_j}^t \in \left[\sqrt{3}(P_{B_j}^t - S_{B_{R,j}}), \sqrt{3}(P_{B_j}^t + S_{B_{R,j}})\right]$$
 (18c)

$$P_{B_i}^t = P_{d_i}^t - P_{c_i}^t (19)$$

$$B_i^t \in [soc_{min}B_{R,i}, soc_{max}B_{R,i}] \tag{20}$$

Objective

$$\min \sum_{t=1}^{T} \left\{ f_0^t + f_{SCD}^t \right\} \tag{1}$$

where

$$f_0^t = C^t P_{Subs}^t \Delta t$$

$$f_{SCD}^{t} = \alpha \sum_{i \in \mathcal{B}} \left\{ (1 - \eta_C) P_{C_i}^{t} + \left(\frac{1}{\eta_D} - 1\right) P_{D_i}^{t} \right\}$$

Network Constraints

Subject to the constraints (2) to (20) as given below:

$$\sum_{(j,k)\in\mathcal{L}} \left\{ P_{jk}^t \right\} - \left(P_{ij}^t - r_{ij} l_{ij}^t \right) = p_j^t \tag{2}$$

$$\sum_{(j,k)\in\mathcal{L}} \left\{ P_{jk}^t \right\} - \left(P_{ij}^t \right) = p_j^t \tag{3}$$

$$p_j^t = \left(P_{d_j}^t - P_{c_j}^t\right) + p_{D_j}^t - p_{L_j}^t \tag{4}$$

$$\sum_{(j,k)\in\mathcal{L}} \left\{ Q_{jk}^t \right\} - \left(Q_{ij}^t - x_{ij} l_{ij}^t \right) = q_j^t \tag{5}$$

$$\sum_{(j,k)\in\mathcal{L}} \left\{ Q_{jk}^t \right\} - \left(Q_{ij}^t \right) = q_j^t \tag{6}$$

$$q_j^t = q_{D_j}^t + q_{B_j}^t - q_{L_j}^t (7)$$

$$v_j^t = v_i^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t) + \left\{r_{ij}^2 + x_{ij}^2\right\}l_{ij}^t$$
 (8)

$$v_i^t = v_i^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
(9)

$$(P_{ij}^t)^2 + (Q_{ij}^t)^2 = l_{ij}^t v_i^t \tag{10}$$

PV and Battery Real Power Constraints

$$P_{Subs}^t \ge 0 \tag{11}$$

$$v_i^t \in \left[V_{min}^2, V_{max}^2\right] \tag{12}$$

$$q_{D_j}^t \in \left[-q_{D_{Max,j}}^t, q_{D_{Max,j}}^t \right] \tag{13}$$

$$q_{D_{Max,j}}^t = \sqrt{S_{D_{R,j}}^2 - p_{D_j}^{t^2}}$$
 (14)

$$B_{j}^{t} = B_{j}^{t-1} + \Delta t \left(\eta_{c} P_{c_{j}}^{t} - \frac{1}{\eta_{d}} P_{d_{j}}^{t} \right)$$
 (15)

$$P_{c_j}^t, P_{d_j}^t \in \left[0, P_{B_{R,j}}\right] \tag{16}$$

$$(P_{B_j}^t)^2 + (q_{B_j}^t)^2 \le S_{B_{R,j}}^2 \tag{17}$$

MPOPF Problem Decomposition - Spatial

Previously utilized* and proven to cut down computational costs!

A. R. Jha, S. Paul and A. Dubey, "Spatially Distributed Multi-Period Optimal Power Flow with Battery Energy Storage Systems," 2024 56th North American Power Symposium (NAPS), El Paso, TX, USA, 2024, pp. 1-6, doi: 10.1109/NAPS61145.2024.10741846.

MPOPF Problem Decomposition - Temporal

Tested with good results! Currently being perfected..

My reasons to take/ My expectations from EE 582

Slides End Here. Thank you!

