Aussage 1. Der durch 4 Punkte auf der Einheitssphäre \mathbb{S}^3 definierte sphärische Tetraeder hat ein größeres Volumen als der durch die gleichen Punkte definierte euklidische Tetraeder. (Und das müsste sich eigentlich auf alle dimensionen verallgemeinern lassen.)

Teil 1. Der Abstand von jedem Punkt des euklidischen Tetraeders zum Nullpunkt ist ≤ 1 .

Beweis. Jeder Punkt auf der Kante zwischen den Punkten v_1 und v_2 lässt sich als $v_1 + (v_2 - v_1) \cdot t = (1 - t)v_1 + tv_2$. Die Norm dieses Vektors ist:

$$||(1-t)v_{1} + tv_{2}|| = ((1-t)x_{1} + tx_{2})^{2} + ((1-t)y_{1} + ty_{2})^{2} + ((1-t)z_{1} + tz_{2})^{2}$$

$$= (1-t)^{2}x_{1}^{2} + t^{2}x_{2}^{2} + (1-t)tx_{1}x_{2} + (1-t)^{2}y_{1}^{2} + t^{2}y_{2}^{2} + (1-t)ty_{1}y_{2} + (1-t)^{2}z_{1}^{2} + t^{2}z_{2}^{2} + (1-t)tz_{1}z_{2}$$

$$= (1-t)^{2}||v_{1}|| + t^{2}||v_{2}|| + (1-t)t\langle v_{1}, v_{2}\rangle$$

$$= (1-t)^{2} + t^{2} + (1-t)t\langle v_{1}, v_{2}\rangle$$

$$= (1-t)^{2} + t^{2} + (t-t)\langle v_{1}, v_{2}\rangle$$

$$= 1-2t+2t^{2} + (t-t^{2})\langle v_{1}, v_{2}\rangle$$

$$= 1-2(t-t^{2}) + (t-t^{2})\langle v_{1}, v_{2}\rangle$$

$$= 1+(t-t^{2})((v_{1}, v_{2}) - 2)$$

$$\leq 1+(t-t^{2})(1-2)$$

$$= 1-(t-t^{2}) \leq 1$$

Alle anderen Punkte liegen auf Strecken zwischen Punkten auf diesem Kanten. Mit dem gleichen Argument Ergibt sich die Behaupttung somit für alle Punkte des euklidischen Tetraeders.