Attorney's Docket: 2003CH011

Serial No.: 10/582,418

Group: 1626

Amendments to the Claims

1. (currently amended) A disperse dye of the general formula (I)

where

D is a diazo component derived from a substituted or unsubstituted aromatic amine,

K is an aromatic radical of the formula K_1 , K_2 or K_3

 R_1 is hydrogen, chlorine, C_{1-2} -alkyl, C_{1-2} -alkoxy, hydroxyl or acylamino,

 R_2 is hydrogen, C_{1-4} -alkoxy, C_{1-2} -alkoxyethoxy, chlorine, or bromine or combines with R_3 to form a group of the formula -*CH(CH₃)CH₂C(CH₃)₂- (* attached to the nucleus \underline{K}_1),

 R_3 is hydrogen, C_{1-6} -alkyl, C_{3-4} -alkenyl, chloro- or bromo- C_{3-4} -alkenyl, C_{3-4} -alkynyl, phenyl- C_{1-3} -alkyl, C_{1-4} -alkoxycarbonyl- C_{1-3} -alkyl, C_{3-4} -alkenyloxycarbonyl- C_{1-3} -alkyl, C_{3-4} -alkynyloxycarbonyl- C_{1-3} -alkyl, phenoxy-

Group: 1626

 C_{2-4} -alkyl, halogen-, cyano-, C_{1-4} -alkoxy-, C_{1-4} -alkylcarbonyloxy- or C_{1-4} -alkoxycarbonyloxy-substituted C_{2-4} -alkyl, or a group of the formula -CH₂-CH(R₈)CH₂-R₉,

 R_4 is hydrogen or C_{1-2} -alkyl,

 R_5 is phenyl optionally substituted by one or two substituents selected from the group consisting of methyl, chlorine, bromine and nitro or combines with R_4 to form a c-pentanone or c-hexanone ring,

R₆ is hydrogen or hydroxyl,

R₇ is hydrogen or methyl,

 R_8 is hydroxyl or C_{1-4} -alkylcarbonyloxy,

R₉ is chlorine, C₁₋₄-alkoxy, phenoxy, allyloxy or C₁₋₄-alkylcarbonyloxy,

Y is C₁₋₃-alkylene,

wherein R_3 is hydrogen when K is a radical of the formula K_2 or K_3 ,

with the following formula being excluded

2. (currently amended) A disperse dye according to Claim 1, of formula (la)

Group: 1626

where

 D_1 is 3-phenyl-1,2,4-thiadiazolyl or conforms to one of the following formulae:

$$(b) \xrightarrow{\qquad \qquad } (g) \xrightarrow{\qquad \qquad } (g)$$

where

a) is hydrogen, chlorine, bromine, cyano, nitro-, C₁₋₄-alkoxycarbonyl, or C₁₋₃-alkyl-sulphonyl,

Group: 1626

(b) is chlorine, bromine, nitro, methyl, C_{1-2} -alkylsulphonyl, C_{1-4} -alkylcarbonyl, aminosulphonyl, mono- or di- C_{1-4} -alkylaminosulphonyl, phenylaminosulphonyl, C_{1-4} -alkoxycarbonyl, benzyloxycarbonyl, tetrahydrofurfuryl-2-oxycarbonyl, C_{3-4} -alkenyloxycarbonyl, C_{3-4} -alkynyloxycarbonyl, aminocarbonyl, mono- or di- C_{1-4} -alkylaminocarbonyl, phenylaminocarbonyl or phenylazo,

- (c) is hydrogen or chlorine or when (d) is hydrogen, (c) is hydroxyl or rhodan,
- (d) is hydrogen, chlorine, bromine, hydroxyl or cyano,
- (e) is nitro, C₁₋₄-alkylcarbonyl, C₁₋₄-alkoxycarbonyl, cyano, aminocarbonyl, mono- or di-C₁₋₄-alkylaminocarbonyl,
- (f) is hydrogen, chlorine, bromine, C₁₋₂-alkyl or phenyl,
- (g) is nitro, cyano, formyl, dicyanovinyl or a group of the formula -CH=CH-NO₂, -CH=C(CN)CO-OC₁₋₄-alkyl, H₅C₆-N=N- or 3- or 4-NO₂-C₆H₄-N=N-,
- (h) is cyano or C₁₋₄-alkoxycarbonyl,
- (i) is C₁₋₄-alkyl or phenyl.
- (j) is -CN, -CH=CH2 or phenyl,
- (k) is C_{1-4} -alkyl,
- (I) is hydrogen, chlorine, bromine, cyano, rhodan, nitro, C₁₋₄-alkoxycarbonyl or di-C₁₋₄-alkylaminosulphonyl,
- (p) is hydrogen, chlorine or bromine, and
- (q) is C_{1-4} -alkyl or C_{1-4} -alkoxycarbonyl- C_{1-4} -alkyl,

wherein the phenyl nuclei of these substituents optionally have one or two substituents selected from the group consisting of chlorine, bromine, methyl and C_{1-2} -alkoxy,

R'₁ is hydrogen, methyl, chlorine or acylamino,

Attorney's Docket: 2003CH011

Serial No.: 10/582,418

Group: 1626

R'₂ is hydrogen, chlorine, C_{1-2} -alkoxy, C_{1-2} -alkoxyethoxy or combines with R_3 to form a group of the formula -CH(CH₃)CH₂C(CH₃)₂-,

R₃ and R₅ are each as defined above,

R'₄ is hydrogen or methyl, and

Y is a group of the formula $-CH_2CH_2$ - or $-CH_2CH(CH_3)$ -.

3. (currently amended) A disperse dye according to Claim 1, of formula (lb)

where

D₂ is the residue of a diazo component of the formula 2,6-dicyano-4-chloro-, 2,6-dicyano-4-bromo-, 2,6-dicyano-4-methyl-,-or_2,6-dicyano-4-nitrophenyl, 2,4-dinitro-6-chloro-, 2,4-dinitro-6-bromo- or 2,4-dinitro-6-cyanophenyl, 2-chloro-4-nitro-6-cyanophenyl, 2-chloro-4-nitro-6-cyanophenyl, 2,6-dichloro-4-nitrophenyl, 2,6-dibromo-4-nitrophenyl, 2-chloro-4-nitro-6-bromophenyl, 2-chloro-4-nitrophenyl, 2-cyano-4-nitrophenyl, 2,4-dinitro-5,6-dichlorophenyl, 2,5-dichloro-4-nitrophenyl, 4-nitrophenyl, 4-phenylazophenyl, 4-C₁₋₄-alkoxycarbonylphenyl, 4-(tetrahydrofurfuryl-2'-oxycarbonyl)phenyl, 3,5-dicyano-4-chloro-thienyl-2, 3,5-dicyano-thienyl-2,3-cyano-5-nitro-thienyl-2, 3-acetyl-5-nitro-thienyl-2, 3,5-dinitro-thienyl-2, 3-(C₁₋₄-alkoxycarbonyl)-5-nitro-thienyl-2, 5-phenylazo-3-cyano-4-

Attorney's Docket: 2003CH011

Serial No.: 10/582,418

Group: 1626

methyl-thienyl-2, 5-nitro-thiazolyl-2, 5-nitrobenzoiso-thiazolyl-3, 3-methyl-4-cyano-isothiazolyl-5, 3-phenyl-1,2,4-thiadiazolyl-2, 5-(C_{1-2} -alkylmercapto)-1,3,4-thiadiazolyl-2, 3-(C_{1-2} -alkoxycarbonylethyl-mercapto)-1,2,4-thiadiazolyl-5, 1-cyanomethyl-4,5-dicyano-imidazolyl-2, 6-nitrobenzothiazolyl-2, 5-nitrobenzothiazolyl-2, 6-rhodanbenzothiazolyl-2, 6-chlorobenzothiazolyl-2, (5),6,(7)-dichlorobenzothiazolyl-2, or of the formula

and B is oxygen or a group of the formula = $(CN)_2$, = $CH-NO_2$, = $(CN)-COOC_{1-4}$ alkyl or = $(CN)-COOC_{3-4}$ alkenyl

and the symbols R'₄, R'₂, R₃, R'₄, R₅ and Y are each as defined above, and

R'₁ is hydrogen, methyl, chlorine or acylamino,

R'₂ is hydrogen, chlorine, C_{1-2} -alkoxy, C_{1-2} -alkoxyethoxy or combines with R_3 to form a group of the formula -CH(CH₃)CH₂C(CH₃)₂-, and

R'₄ is hydrogen or methyl.

4. (currently amended) A process for preparing a dye of the formula (I), according to Claim 1, comprising the step of coupling a diazotized amine of the formula (II)

 $D-NH_2$ (II)

Group: 1626

with a compound of the formula (III)

wherein D and K are each as defined in Claim 1 is a substituted phenyl, thienyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl, triazolyl, benzothiazolyl or benzoisothiazolyl radical with a compound of the formula (IIIa)

H-K-N(R³)-Y-C(O)-O-CH(R⁴)-C(O)-R⁵, wherein K is an aromatic radical of the formula K₁

$$R_2$$
 R_1
 (K_1)

and wherein R1, R2, R3, R4 and R5 are as defined in claim 1.

- 5. (previously presented) A method for dyeing or printing or both a hydrophobic fibrous material comprising the step of contacting at least one dye according to Claim 1 with the hydrophobic fibrous material.
- 6. (previously presented) A method for printing a hydrophobic fibrous material comprising the step of contacting at least one dye according to Claim 1 with the hydrophobic fibrous material with an ink jet printing device or a hot melt ink jet printing device.

8

Group: 1626

7. (previously presented) A composition comprising at least one dye according to Claim 1.

- 8. (previously presented) A fibrous material printed or dyed or both with at least one dye according to Claim 1.
- 9. (currently amended) A method according to Claim 5 wherein the hydrophobic fibrous material is polyester, acetate, or triacetate fiber or a mixture thereof.
- 10. (previously presented) A disperse dye according to claim 2 wherein (a) is hydrogen, chlorine, cyano or nitro.
- 11. (currently amended) A fibrous material printed or dyed or both by a process according to Claim 4_4.