ESP-WROOM-02D/02U

技术规格书

包括:

ESP-WROOM-02D

ESP-WROOM-02U

版本 1.6 乐鑫信息科技 版权所有 © 2019

关于本手册

本文介绍了 ESP-WROOM-02D 和 ESP-WROOM-02U 的产品规格。

发布说明

日期	版本	发布说明
2017.11	V1.0	首次发布。
2018.03	V1.1	更新 ESP-WROOM-02U 尺寸图。
2018.08	V1.2	 ・ 更新表 1-1 和 表 1-2; ・ 更新模组尺寸图; ・ 増加第7章 PCB 封装图形; ・ 更新文档封面。
2019.04	V1.3	・ 更新表 1-2 增加潮湿灵敏度 (MSL) 等级; ・ 图 5-1 和图 5-2 中増加说明。
2019.08	V1.4	更新第6章外围设计原理图。
2019.12	V1.5	增加温度回流说明;增加用户反馈链接。
2019.12	V1.6	更新 ESP-WROOM-02D 模组尺寸图中的一处笔误。

文档变更通知

用户可通过乐鑫官网订阅页面 https://www.espressif.com/zh-hans/subscribe 订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网证书下载页面 https://www.espressif.com/zh-hans/certificates 下载产品证书。

1.	产品概	张述	1
2.	管脚描	i述	3
3.	功能描	i述	5
	3.1.	CPU	5
	3.2.	存储描述	5
		3.2.1. 内置 SRAM 与 ROM	5
		3.2.2. SPI Flash	5
	3.3.	晶振	5
	3.4.	接口说明	6
4.	电气参	>数	7
	4.1.	电气特性	7
	4.2.	Wi-Fi 射频	7
	4.3.	功耗	8
	4.4.	回流焊温度曲线	9
	4.5.	静电释放电压	10
5.	原理图		11
		设计原理图	
7.	模组尺	只寸图	14
		封装图形	
		スロバ 座子尺寸	
		- 学习资源	
۲۱.	A.1.	- 子 刁 贞 // // // // // // // // // - 子 刁 贞 // / / // // // // // // // // // // //	
		必备资源	
	A.3.	视频资源	20

产品概述

乐鑫为客户提供集成 ESP8266EX 的贴片式模组 ESP-WROOM-02D 和 ESP-WROOM-02U。在 ESP-WROOM-02 基础上,乐鑫优化了这两个模组的射频性能。ESP-WROOM-02U 集成了 U.FL 座子,需搭配 IPEX 天线使用。U.FL 座子信息详见**章节 8. U.FL 座子尺寸**。

表 1-1. ESP-WROOM-02D vs. ESP-WROOM-02U

模组	ESP-WROOM-02D	ESP-WROOM-02U
芯片	ESP8266	ESP8266
天线	板载天线	IPEX 天线
模组尺寸 (单位: mm)	(18.00 ± 0.10) × (20.00 ± 0.10) × (3.20 ± 0.10) 详见图 <i>6-1</i> 。	(18.00 ± 0.10) x (14.30 ± 0.10) x (3.20 ± 0.10) 详见图 6-2 。
原理图	详见图 <i>5-1</i> 。	详见图 5-2。

山 说明:

更多关于 ESP8266EX 的信息,请参考《ESP8266EX 技术规格表》。

表 1-2. ESP-WROOM-02D/ESP-WROOM-02U 参数表

类别	参数	说明
212T	RF 认证	FCC/CE (RED)/TELEC (MIC)/KCC/SRRC/IC/NCC
认证	环保认证	RoHS, REACH
测试	可靠性	HTOL/HTSL/uHAST/TCT/ESD
\A/: F:	Wi-Fi 协议	802.11 b/g/n
Wi-Fi	频率范围	2.4 GHz ~ 2.5 GHz (2400 MHz ~ 2483.5 MHz)
	数据接口	UART/HSPI/I2C/I2S/红外遥控
		GPIO/PWM
	工作电压	2.7 V ~ 3.6 V
	工作电流	平均值: 80 mA
硬件参数	供电电流	最小值: 500 mA

类别	参数	说明
	工作温度	-40 °C ~ 85 °C
	存储温度	-40 °C ~ 85 °C
	外部接口	-
	潮湿敏感度等级 (MSL)	等级 3
	无线网络模式	Station/SoftAP/SoftAP+Station
	安全机制	WPA/WPA2
	加密类型	WEP/TKIP/AES
软件参数	升级固件	本地串口烧录/云端升级/主机下载烧录
	软件开发	支持客户自定义服务器 提供二次开发所需的 SDK
	网络协议	IPv4, TCP/UDP/HTTP/FTP
	用户配置	AT+ 指令集,云端服务器,Android/iOS app

管脚描述

ESP-WROOM-02D 贴片式模组的管脚分布如图 2-1 所示。

图 2-1. ESP-WROOM-02D 模组管脚分布 (俯视图)

山 说明:

ESP-WROOM-02U 和 ESP-WROOM-02D 管脚布局相同,但没有图中 PCB ANTENNA 区域。

ESP-WROOM-02D 和 ESP-WROOM-02U 共接出 18 个管脚,管脚定义见表 2-1。

表 2-1. ESP-WROOM-02U/ESP-WROOM-02D 管脚定义

序号	管脚名称	功能说明
		3.3 V 供电 (VDD)
1	3V3	Ⅲ 说明:
		外部供电电源的最大输出电流建议在 500 mA 及以上。
2	EN	芯片使能端,正常工作外部需拉高。
3	IO14	GPIO14; HSPI_CLK
4	IO12	GPIO12; HSPI_MISO

序号	管脚名称	功能说明
5	IO13	GPIO13; HSPI_MOSI; UARTO_CTS
6	IO15	GPIO15; MTDO; HSPICS; UARTO_RTS 外部需拉低。
7	102	GPIO2;UART1_TXD 悬空(内部有上拉)或外部拉高。
8	100	GPIOO ・ UART 下载: 外部拉低。 ・ Flash 启动: 悬空或外部拉高。
9	GND	接地
10	104	GPIO4
11	RXD	UARTO_RXD,UART 下载的接收端; GPIO3
12	TXD	UARTO_TXD,UART 下载的发送端,悬空或外部拉高; GPIO1
13	GND	接地
14	IO5	GPIO5
15	RST	复位
16	TOUT	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)。
17	IO16	GPIO16;接到 RST 管脚时可做 Deep-sleep 的唤醒。
18	GND	接地

功能描述

3.1. CPU

ESP8266EX 内置超低功耗 Tensilica L106 32-bit RISC 处理器, CPU 时钟速度最高可达 160 MHz, 支持实时操作系统 (RTOS) 和 Wi-Fi 协议栈,可将高达 80% 的处理能力留给应用编程和开发。CPU 包括以下接口:

- 可连接片内存储控制器和外部 flash 的可配置 RAM/ROM 接口 (iBus);
- 连接存储控制器的数据 RAM 接口 (dBus);
- 访问寄存器的 AHB 接口。

3.2. 存储描述

3.2.1. 内置 SRAM 与 ROM

ESP8266EX 芯片自身内置了存储控制器和存储单元,包括 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储单元。这些接口都可以根据要求访问存储单元。存储仲裁器以到达顺序确定运行顺序。

基于目前我司 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:

- RAM < 50 kB(Station 模式下,连上路由后,Heap + Data 区大致可用 50 kB 左右)。
- 目前 ESP8266EX 片上没有可编程 ROM,用户程序存放在 SPI flash 中。

3.2.2. SPI Flash

ESP8266EX 支持使用 SPI 接口的外置 Flash, 理论上最大支持 16 MB 的 SPI Flash。 ESP-WROOM-02D 和 ESP-WROOM-02U 配置了 2 MB 的 SPI Flash, 支持的 SPI 模式包括: Standard SPI、DIO (Dual I/O)、DOUT (Dual Output)、QIO (Quad I/O) 以及 QOUT (Quad Output)。

3.3. 晶振

ESP-WROOM-02D 和 ESP-WROOM-02U 使用 26 MHz 晶振。选用的晶振自身精度需在±10 PPM。使用时请注意在下载工具中选择对应晶体类型。晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 6 pF ~ 22 pF,具体值需要通过对系统测试后

进行调节确定。基于目前市场中主流晶振的情况,一般 26 MHz 晶振的输入输出所加电容 C1、C2 在 10 pF 以内。

3.4. 接口说明

表 3-1. 接口说明

A O II IX II MUMI				
接口名称	管脚	功能说明		
HSPI 接口	IO12 (MISO), IO13 (MOSI), IO14 (CLK), IO15 (CS)	可外接 SPI Flash、显示屏和 MCU 等。		
PWM 接口	IO12 (R), IO15 (G), IO13 (B)	Demo 中提供 4 路 PWM(用户可自行扩展至 8 路),可用来控制彩灯,蜂鸣器,继电器及电机等。		
IR 接口	IO14 (IR_T), IO5 (IR_R)	IR 遥控接口由软件实现,接口使用 NEC 编码及调制解调,采用 38 kHz 的调制载波。		
ADC 接口	TOUT	可用于检测 VDD3P3 (Pin3, Pin4) 电源电压和 TOUT (Pin6) 的输入电压(二者不可同时使用)。可用于传感器等应用。		
I2C 接口	1014 (SCL), 102 (SDA)	可外接传感器及显示屏等。		
UART 接口	UARTO: TXD (U0TXD), RXD (U0RXD), IO15 (RTS), IO13 (CTS) UART1: IO2 (TXD)	可外接 UART 接口的设备。 下载: U0TXD + U0RXD 或者 GPIO2 + U0RXD 通信 (UARTO): U0TXD, U0RXD, MTDO (U0RTS), MTCK (U0CTS) 调试: UART1_TXD (GPIO2) 可作为调试信息的打印。 UART0 在 ESP8266EX 上电时默认会输出一些打印信息。对此敏感的应用,可以使用 UART 的内部引脚交换功能,在初始化的时候,将 U0TXD,U0RXD 分别与 U0RTS,U0CTS 交换。硬件上将 MTDO MTCK 连接到对应的外部 MCU 的串口进行通信。		
I2S 接口	I2S 输入: IO12 (I2SI_DATA); IO13 (I2SI_BCK); IO14 (I2SI_WS) I2S 输出: IO15 (I2SO_BCK); IO3 (I2SO_DATA); IO2 (I2SO_WS)	主要用于音频采集、处理和传输。		

电气参数

単 说明:

如无特殊说明,测试条件为: VDD = 3.3 V,温度为 $25 \circ C$ 。

4.1. 电气特性

表 4-1. 电气特性

参数	名称	最小值	典型值	最大值	单位
工作温度	-	-40	20	85	°C
最大焊接温度(焊接条件: IPC/ JEDEC J-STD-020)	-	-	-	260	°C
供电电压	VDD	2.7	3.3	3.6	V
输入逻辑电平低	VIL	-0.3	-	0.25 VDD	V
输入逻辑电平高	V _{IH}	0.75 VDD	-	VDD + 0.3	V
输出逻辑电平低	V _{OL}	-	-	0.1 VDD	V
输出逻辑电平高	V _{OH}	0.8 VDD	-	-	V

4.2. Wi-Fi 射频

表 4-2. Wi-Fi 射频参数

参数	最小值	典型值	最大值	单位		
输入频率	2412	-	2483.5	MHz		
输入反射	-	-	-10	dB		
输出反抗	-	*	-	Ω		
	输出功率					
72.2 Mbps下,PA 的输出功率	13	14	15	dBm		
11b 模式下,PA 的输出功率	19.5	20	20.5	dBm		
接收灵敏度						

参数	最小值	典型值	最大值	单位
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	- 75	-	dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)	-	-72	-	dBm
	邻频抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

単 说明:

使用 IPEX 天线的模组,输出阻抗为 50Ω 。

4.3. 功耗

下列功耗数据是基于 3.3 V 的电源、25 °C 的周围温度,并使用内部稳压器测得。所有发射数据是基于 50% 的占空比,在持续发射的模式下测得的。

表 4-3. 功耗

模式	最小值	典型值	最大值	单位
传送 802.11 b,CCK 11 Mbps,Pout = +17 dBm	-	170	-	mA
传送 802.11 g,OFDM 54 Mbps,Pout = +15 dBm	-	140	-	mA
传送 802.11 n,MCS7,Pout = +13 dBm	-	120	-	mA
接收 802.11 b,包长 1024 字节,-80 dBm	-	50	-	mA
接收 802.11 g,包长 1024 字节,-70 dBm	-	56	-	mA
接收 802.11 n,包长 1024 字节,-65 dBm	-	56	-	mA
Modem-sleep [⊕]	-	15	-	mA
Light-sleep ^②	-	0.9	-	mA
Deep-sleep [®]	-	20	-	μΑ

模式	最小值	典型值	最大值	单位
断电	-	0.5	-	μΑ

単 说明:

- ① *Modem-sleep* 用于需要 *CPU* 一直处于工作状态的应用,如 *PWM* 或 *I2S* 应用等。在保持 *Wi-Fi* 连接 时,如果没有数据传输,可根据 *802.11* 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路来省电。例如,在 *DTIM3* 时,每睡眠 *300 ms*,醒来 *3 ms* 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 *15 mA*。
- ② **Light-sleep** 用于 *CPU* 可暂停的应用,如 *Wi-Fi* 开关。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 802.11 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路并暂停 *CPU* 来省电。例如,在 *DTIM3* 时,每睡 眠 300 ms,醒来 3 ms 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 0.9 mA。
- ③ **Deep-sleep** 用于不需一直保持 *Wi-Fi* 连接,很长时间才发送一次数据包的应用,如每 $100 \, s$ 测量一次温度的传感器。例如,每 $300 \, s$ 醒来后需 $0.3 \, s \sim 1 \, s$ 连上 *AP* 发送数据,则整体平均电流可远小于 $1 \, mA$ 。电流值 $20 \, \mu A$ 是在 $2.5 \, V$ 下测得的。

4.4. 回流焊温度曲线

图 4-1. ESP-WROOM-02D/ESP-WROOM-02U 回流焊温度曲线图

単 说明:

建议模组只过一次回流焊。如果 PCBA 需要多次回流焊,则在最后一次回流焊时将模组放在 PCB 上方。

4.5. 静电释放电压

表 4-4. 静电释放参数

名称	符号	参照	等级	最大值	单位
静电释放电压 (人体模型)	Vesd (HBM)	温度: 23 ± 5 °C 遵守 ANSI / ESDA / JEDEC JS - 001 - 2014	2	2000	\/
静电释放电压 (充电器件模型)	VESD (CDM)	温度: 23 ± 5 °C 遵守 JEDEC EIA / JESD22 - C101F		500	- V

5. 原理图

图 5-1. ESP-WROOM-02D 模组原理图

图 5-2. ESP-WROOM-02U 模组原理图

外围设计原理图

图 6-1. ESP-WROOM-02D/ESP-WROOM-02U 模组外围设计原理图

山 说明:

- 1. ESP-WROOM-02DC 和 ESP-WROOM-02UC 系列模组的管脚 19,可以不焊接到底板。若用户将该管脚焊接到底板,请确保使用适量的焊锡膏。
- 2. 为了确保芯片上电时的供电正常,EN 管脚处需要增加 RC 延迟电路。RC 通常建议为 $R = 10 k\Omega$,C = 0.1 uF,但具体数值仍需根据模组电源的上电时序和 ESP8266EX 芯片的上电复位时序进行调整。 ESP8266EX 芯片的上电复位时序图可见<u>《ESP8266EX 技术规格书》</u>中的电气特性章节。
- 3. 为了增加模组的抗干扰能力,建议在 RST 管脚处预留 RC 延迟电路。RC 通常建议为 $R=10~k\Omega$,C=0.1~uF。

模组尺寸图

图 7-1. ESP-WROOM-02D 模组尺寸图

图 7-2. ESP-WROOM-02U 模组尺寸图

PCB 封装图形

图 8-1. ESP-WROOM-02D PCB 封装图形

图 8-2. ESP-WROOM-02U PCB 封装图形

U.FL 座子尺寸

图 8-1. ESP-WROOM-02U 模组 U.FL 座子尺寸图

A.

附录-学习资源

A.1. 必读资料

• ESP8266 快速入门指南

说明:该手册指导用户快速上手使用 ESP8266,包括软硬件准备、编译准备、程序烧录,还提供了 ESP8266 的学习资源、介绍了 RTOS SDK 的框架与调试方法。

• ESP8266 SDK 入门指南

说明:该手册以 ESP-LAUNCHER 和 ESP-WROOM-02D 为例,介绍 ESP8266 SDK 相关的使用方法,包括编译前的准备、Flash 布局、硬件和软件的准备、SDK 的编译和固件的下载。

• ESP-WROOM-02 PCB 设计和模组摆放指南

说明:该手册细说了六种天线摆放位置的比较、以及设计 PCB 时的一些注意事项。

• ESP8266 硬件资源

说明:该压缩包的内容主要是硬件原理图,包括板和模组的制造规范,物料清单和原理图。

• ESP8266 AT 指令使用示例

说明:该手册介绍几种常见的 Espressif AT 指令使用示例,包括单链接 TCP Client、UDP 传输、透传、多链接 TCP Service 等。

• ESP8266 AT 指令集

说明:该手册提供了ESP8266_NONOS_SDK的AT指令说明,包括烧录AT固件、自定义AT命令、基本AT指令、Wi-Fi相关的AT指令和TCP/IP相关的AT指令等。

• TCP/UDP UART 透传测试演示指南

本演示指南主要作用: 客户可以快速、直观地体验 ESP8266 物联网平台实现 TCP & UDP吞吐量测试的演示。

• 常见问题

A.2. 必备资源

ESP8266 SDK

说明:该页面提供了 ESP8266 所有版本 SDK。

• ESP8266 工具

说明:该页面提供了 ESP8266 Flash 下载工具以及 ESP8266 性能评估工具。

- ESP8266 App
- ESP8266 认证测试指南
- ESP8266 官方论坛
- ESP8266 资源合集

A.3. 视频资源

- ESP8266 开发板使用教程
- ESP8266 Non-OS SDK 编译教程

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2019 乐鑫所有。保留所有权利。