Macroeconomics B Notes

Nicholas Umashev *

2019

Contents

1 Dynamic Optimisation in Continuous Time

 $\mathbf{2}$

^{*}Add pages from google Notes

Dynamic Optimisation in Continuous Time

<u>Continuous vs Discrete Time</u>: in discrete time the intervals between periods are $\Delta > 0$ (e.g. the interval between t and t + 1 is 1), in continuous time the intervals between periods are $\Delta \to 0$

- <u>Continuous Variables Issue</u>: while state variables are often naturally continuous, when using computational methods we can only evaluation the value function on a finite number of points
 - <u>Solution</u>: we can address this problem via using (1) discretization of the state space, or, (2) polynomial approximation to the value function

<u>Discretization Method</u>: consider a problem with continuous state and control variables $\mathfrak{x} \in \mathbb{R}$, discretization just replaces \mathfrak{x} and \mathfrak{u} by the finite grids $\hat{\mathfrak{x}} = \{x^1, \dots, x^n\}$ and $\hat{\mathfrak{u}} = \{u^1, \dots, u^n\}$

- Value Function Impact: now the value function becomes a finite list of numbers, $V = [V^1, \dots, V^n]^T$
- Advantage: the maximization step is much simpler than under the original bellman equation, which is a key advantage of discretization methods
- Disadvantage: there is a "curse of dimensionality" in multidimensional state spaces where we must decide whether to have N points for a one-dimensional state space vs N^k points for a k-dimensional state space
 - Grid Decision: requires some a-priori information about the state space, which is sometimes difficult to obtain (e.g. upper and lower bounds)
- Optimal Growth Illustration: suppose $V(k) = \max_{k'} \{ \ln(Ak^{\alpha} k') + \beta V(k') \}$ where in this case $\mathfrak{x} = \mathfrak{u}$
 - <u>Discretization</u>: if we discretize \mathfrak{x} then the Bellman equation becomes $V_i = \max_j \{\ln(Ak_i^{\alpha} k_j) + \beta V_j\}$ for all i = 1, ..., n
 - <u>Value Function Iteration Solution</u>: suppose we applied value function iteration and therefore iterate on the mapping $V_i^s = \max \left\{ \ln(Ak_i^{\alpha} k_1) + \beta V_1^{s-1}, \dots, \ln(Ak_i^{\alpha} k_n) + \beta V_n^{s-1} \right\}$ for all $i = 1, \dots, n$ where s indexes the iteration step

TERATION

(1) Start = /a guess:

$$V_{1}^{0} = \begin{bmatrix} V_{1}^{0} \\ V_{2}^{0} \\ V_{1}^{0} \end{bmatrix}, \text{ where } V_{1}^{0} \equiv V^{0}(k_{1})$$

$$V_{1}^{1} = \text{max} \left\{ I_{1}(A k_{1}^{0} - k_{2}^{0}) + \beta V_{1}^{0} \right\}$$

$$= \left\{ I_{1}(A k_{1}^{0} - k_{2}^{0}) + \beta V_{1}^{0} \right\}$$

$$= \left\{ I_{2}(A k_{1}^{0} - k_{2}^{0}) + \beta V_{2}^{0} \right\}$$

$$= \left\{ I_{3}(A k_{1}^{0} - k_{2}^{0}) + \beta V_{2}^{0} \right\}$$

$$= \left\{ I_{3}(A k_{1}^{0} - k_{2}^{0}) + \beta V_{2}^{0} \right\}$$

Ordinary Differential Equations (ODEs): a "differential" equation" is one where the unknown is a function (instead of a variable) and the equation includes one or more of the derivatives of the function, an "ordinary differential equation" equation is one for which the unknown is a function of only one variable (typically time)

- Partial ODEs: where the unknown is a function of more than one variable
- <u>First-Order ODE Form</u>: $\dot{x}(t) = F(t, x(t))$, where $\dot{x}(t) \equiv dx(t)/dt$ and $t \in [t_a, t_b]$

- <u>Unknown</u>: here the unknown is a function x(t) with $x:[t_a,t_b]\to\mathbb{R}$
- <u>Uniqueness</u>: the solution is not unique with the form having infinitely many solutions indexed by an integrating constant C. However, generally the constant C can be uniquely determined by requiring the solution to pass through a given point on the tx-plane
- Example: $\dot{x}(t) = 2t$ with $t \in [0, \infty)$
 - * Solution without Initial Condition: the general solution is $x(t) = t^2 + C$
 - * Solution with Initial Condition: suppose we impose the initial condition x(0) = 1, therefore C = 1 and the particular solution is $x(t)t^2 + 1$

- <u>Finite-Difference Methods for Solution</u>: here we approximate derivates using finite-differences to approximate the solution to the ODE. This involves finding $\dot{x}(t) = F(t, x(t)), x(t_a) = x_a$, and $t \in [t_a, t_b]$. There are a wide range of methods depending on how the derivatives are approximated
 - Euler's Method
 - * Step 1: specify a grid for t, i.e. $t_0 = t_a < t_1 < t_2 < \cdots < t_N = t_b$
 - * Step 2: approximate the ODE using the difference equation

$$\frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i} = F(t_i, x(t_i))$$

over i = 0, ..., N - 1, where $x(t_0) = x_a$ is fixed by the initial condition

 $\bullet\,$ ODE Systems: consider the system of two equations in two unknowns

$$\dot{x}(t) = f(t, x(t), y(t))$$

$$\dot{y}(t) = g(t, x(t), y(t))$$

where $t \in [t_a, t_b]$. The general solution typically depends on two arbitrary constants, say A and B, and can be written as

$$x(t) = \phi_1(t; A, B)$$

$$y(t) = \phi_2(t; A, B)$$

Here A and B can be pinned down via two conditions on the solution and two types of problems emerge depending on the nature of such conditions. Note that, like single-equation ODEs, exact solutions to ODE systems can only be obtained under special cases

- Initial Value Problem(IVP): $x(t_a) = x_a$, $y(t_a) = y_a$, can be solved numerically by applying Euler's Methods
 - * Step 1: discretize the domain

- * Step 2: iterate forward starting from $x(t_a) = x_a$ and $y(t_a) = y_a$
- Boundary Value Problem (BVP): $x(t_a) = x_a$, $y(t_b) = y_b$, can be solved by applying a shooting algorithm
 - * Step 1: make an initial guess for $y(t_a)$ called y_a^G
 - * Step 2: solve the ODE system by applying Euler's method given $x(t_a) = x_a$ and $y(t_a) = y_a^G$
 - * Step 3: if $y(t_b)$ is 'close enough' to y_b then stop, else update y_a^G and go back to step 2

- <u>Higher-Order ODEs</u>: techniques for solving ODE systems also apply to analysing higher-order Equations
 - Example: consider the second-order ODE

$$\ddot{x}(t) = f(t,\dot{(}t),x(t))$$

where $\ddot{x}(t) \equiv \partial^2 x(t)/\partial t^2$. Define the new variables $y = \dot{x}$ and you are left with the two-equation ODE system

$$\dot{y}(t) = f(t, y(t), x(t))$$
$$\dot{x}(t) = y(t)$$

The Maximum Principle: the typical continuous time optimization problem is

$$\max_{x(t),y(t)} \int_0^{t_1} f(t,x(t),y(t)) \quad dt$$

subject to

$$\dot{x}(t) = g(t, x(t), y(t)), \quad x(t) \in \mathcal{X} \ \forall t, \quad y(t) \in \mathcal{Y} \ \forall t, \quad x(0) = x_0$$

There are two main issues with conventional solution methods to this problem; (1) we are choosing over

infinitely dimensional objects such as the function $x : [0, t_1] \to \mathcal{X}$, (2) the constaints include a differential equation rather than a set of equalities/inequalities. In order to overcome these issues and find a solution, we apply the maximum principle theorem

- Notation and Assumptions: x is the state variable, y is the control variable, $\mathcal{X} \subset \mathbb{R}$ and $\mathcal{Y} \subset \mathbb{R}$ are nonempty and convex, f and g are continuously differentiable in their arguments, we define a Hamiltonian, and for simplicity we assume $t_1 < \infty$
 - Hamiltonian: we define the hamiltonian

$$H(t, x(t), y(t), \mu(t)) \equiv f(t, x(t), y(t)) + \mu(t)g(t, x(t), y(t))$$

where $\mu(t)$ is a continuously differentiable function called the costate variable

• Maximum Principle Theorem: suppose that the aforementioned continuous time problem has an interior continuous solution $(\widehat{x}(t), \widehat{y}(t))$. Then there exists a continuously differentiable function $\mu(t)$ such that

$$H_y(t, \widehat{x}(t), \widehat{y}(t), \mu(t)) = 0 \ \forall t \in [0, t_1]$$
$$\dot{\mu}(t) = -H_x(t, \widehat{x}(t), \widehat{y}(t), \mu(t)) \ \forall t \in [0, t_1]$$
$$\mu(t_1) = 0$$

- ODE Usage 1: by $H_y(t, \widehat{x}(t), \widehat{y}(t), \mu(t)) = 0$ we can write $y = Y(t, x\mu)$. Using $\dot{\mu}(t) = -H_x(t, \widehat{x}(t), \widehat{y}(t), \mu(t))$ and $mu(t_1) = 0$ and combining the law of motion we are left with

$$\dot{x} = g(t, x, Y(t, x, \mu))$$

$$\dot{\mu} = -H_x(t, x, Y(t, x, \mu), \mu)$$

$$x(0) = x_0, \quad \mu(t_1) = 0$$

which is an ODE system in x and μ that can be solved numerically by applying the shooting algorithm

- Sufficient Condition Requirements: the maximum principle only provides necessary conditions for an optimum, sufficient conditions for a maximum rely on concavity properties of the objective and on convexity of the feasible set
- Technique Generalization: the techniques generalize to multidimensional problems (where x and y are vectors), infinite horizon problems (ie $t_1 = \infty$), and to including terminal conditions on the final state (e.g. $x(t_1) = x_1$)
- <u>Index</u>: the variable t may represent time or any other index