Homework 4 Measure Theory

Gandhar Kulkarni (mmat2304)

1

Let (X, \mathcal{S}, μ) be a measure space, and let $f: X \to \mathbb{R}$ be a measurable function. Suppose

$$\mu(\{x \in X : |f(x)| \ge \varepsilon\}) = 0,$$

for all $\varepsilon > 0$. Prove that f = 0 a.e.

Solution: For all $n \in \mathbb{N}$, we can say that $\mu(\{x \in X : |f(x)| \ge 1/n\}) = 0$. Define $\{x \in X : |f(x)| \ge 1/n\}$ as N_n . See that $N_n \subseteq N_{n+1}$. Consider $\mu(\cap_{n=1}^\infty N_n) = \mu(\lim_{n \to \infty} N_n) = \lim_{n \to \infty} \mu(N_n) = 0$. See that $\lim_{n \to \infty} N_n = \{x \in X : |f(x)| > 0\}$. This is precisely the definition of f = 0 a.e., proving the statement.

2

Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that the set

$${x \in \mathbb{R} : a \le f(x) \le b},$$

is measurable for any a < b. Prove that f is measurable.

Solution: Consider the collection $\{[a-1/n,b+n]\}_{n\in\mathbb{N}}$. Thus union of this collection is (a,∞) . Let $C_n:=f^{-1}([a-1/n,b+n])$. See that C_n is measurable for all n. Since measurable sets are closed under countable union, we have $\bigcup_{n=1}^{\infty}C_n=f^{-1}([a-1/n,b+n])=f^{-1}((a,\infty))$ is also measurable. Our choice of a was arbitrary, which implies that f is a measurable function.

3

Suppose that $f:[a,b]\to\mathbb{R}$ is a function such that

$${x \in [a,b] : f(x) = c},$$

is measurable for each $c \in \mathbb{R}$. Is f necessarily measurable?

Solution: We know that $f^{-1}(\{c\})$ is measurable for all $c \in \mathbb{R}$. See that the function $f:[0,1] \to \mathbb{R}$ where f(x)=x if $x \in V$, where V is the Vitali set, and x+1 otherwise. See that this function is actually one-one, so the pre-image has only one point, which is measurable. However, $f^{-1}([0,1] \cap f([0,1]))$ is V, a non-measurable set. Thus f needn't be measurable as a function even though the fibre of each point is measurable as a set.

4

Show that Egorov's theorem is no longer true if the condition that the sequence of functions be measurable is dropped.

Solution: Take the measure space $(\mathbb{Z},\mathcal{M},\mu)$ where $\mathcal{M}=\{\phi,\mathbb{Z},E,\mathbb{Z}\backslash E\}$, where E is the set of even integers. The measure μ is zero for ϕ , and $\mathbb{Z}\backslash E$, and one otherwise. This is a finite measure space. Let $\{f_n\}$ be such that $f_n(k)=\frac{k}{n}$. This sequence has pointwise convergence for all $k\in\mathbb{Z}$ to the function f=0. Each f_n is an injective function, thus $f^{-1}(\{\frac{k}{n}\})=\{k\}$. $\{\frac{k}{n}\}$ is measurable in $B_{\mathbb{R}}$, but $\{k\}$ is not measurable in M. So none of the functions f_n are measurable.

To show the Egorov's theorem cannot hold in this case, we need to find a subset in \mathbb{Z} such that it does not have arbitrarily low measure. Thus there exists an $\varepsilon > 0$ such that for all measurable subsets

S of \mathbb{Z} $\{f_n\}$ does not converge uniformly, or a subset exists where the function converges uniformly but $\mu(S^c) \geq \varepsilon$. For $\varepsilon = \frac{1}{2}$, see that if $S = \phi$, then $\mu(S^c) = 1$, so this is not a valid candidate. If S = E, then $\sup_{k \in E} (\mid f_n(x) - f(x) \mid) = \infty$. Therefore the function does not converge uniformly. For $S = \mathbb{Z} \setminus E$, $\mu(E) = 1$, so we cannot choose this set. Finally, for $S = \mathbb{S}$, then $\sup_{k \in \mathbb{Z}} (\mid f_n(x) - f(x) \mid) = \infty$. Therefore the function does not converge uniformly.

See that this example gives a reason as to why Egorov's theorem will fail provided the functions are not measurable.

5

Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions. Suppose f=g a.e. Prove that f=g everywhere.

Solution: Let h=f-g, which is continuous due to the continuity of f and g. Let Z be the set of points where h(x)=0. We know that $\mu(Z^c)=0$. Then $Z^c=\{x\in\mathbb{R}:h(x)>0 \text{ or } h(x)<0\}=h^{-1}((\infty,0))\cup h^{-1}((0,\infty))$. By the continuity of $h,h^{-1}((\infty,0))$ and $h^{-1}((0,\infty))$ are both open sets. If Z^c is non-empty, then there exists a $a\in Z^c$. As Z^c is open, there is an $\varepsilon>0$ such that $(a-\varepsilon,a+\varepsilon)\subseteq Z^c$. However, this implies that $\mu(Z^c)>2\varepsilon>0$, which is a contradiction. Thus Z^c must be empty, implying that f=g for all $x\in\mathbb{R}$.

6

Prove that an increasing function $f:[a,b]\to\mathbb{R}$ is measurable.

Solution: We know from the previous homework that monotone functions are measurable, since we can explicitly find $f^{-1}((a,\infty))$, where f is a monotone function. Since $f:[a,b]\to\mathbb{R}$ in this case is given to be increasing, it is also monotone. Therefore it must also be measurable.

7

Let (X, \mathcal{S}, μ) , and let $f_n, f: X \to \overline{\mathbb{R}}, n \geq 1$ be measurable functions. Suppose $f_n \stackrel{p}{\to} f$ a.e. Prove that there exist measurable functions $\{g_n\}_{n\geq 1}$ such that $f_n=g_n$ a.e. for all $n\geq 1$ and $f=\lim_{n\to\infty}g_n$ everywhere. Solution: Let E be the set of all points where $f_n\to f$. Since this happens almost everywhere, $\mu(E^c)=0$.

Then define g_n thus— $g(x) = \begin{cases} f_n(x) & x \in E \\ f(x) & x \notin E. \end{cases}$ Thus f_n and g_n both differ only on a set of measure zero,

hence they are equal a.e. g_n is also a measurable function for all n, as $g_n(B) = (f_n^{-1}(B) \cap E) \cup (f^{-1}(B) \cap E^c)$, which is measurable. Thus by Egorov's theorem, the sequence $\{g_n\}$ converges a.e., with the additional condition that f is exactly equal to $\lim_{n\to\infty} g_n$.

8

If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $g: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, then $g \circ f$ is Lebesgue measurable. True or false?

Solution: Let $f:[0,2] \to [0,1]$ be the inverse of the function $K:[0,1] \to [0,2]$, which is given by $K(x) = \Lambda(x) + x$, where Λ is the Cantor function. It is strictly increasing, hence one-one. It is also surjective onto [0,2] as it takes every value in that range due to the continuity of Λ and x. Thus K is bijective, and the function $f:=K^{-1}$ is also bijective and continuous, thus a measurable function. Let C be the Cantor set. Then we know that K(C) is a set of measure 1, since $K([0,1]\setminus C) + K(C) = [0,2] \Longrightarrow m(K([0,1]\setminus C)) + m(K(C)) = 2$. Then $[0,1]\setminus C$ is open, as C is closed. Then $[0,1]\setminus C = \coprod_{j=1}^{\infty} I_j$, where I_j is an open interval, (a_j,b_j) . See that Λ is constant on $[0,1]\setminus C$, and that $m(\coprod_{j=1}^{\infty} I_j) = 1$, since m(C) = 0.

Then

$$m(K([0,1]\backslash C)) = m(K(\prod_{j=1}^{\infty} I_j)$$

$$= \sum_{j=1}^{\infty} m(K(I_j)) = \sum_{i=1}^{\infty} (m(\Lambda(b_j) - \Lambda(a_j)) + m(b_j - a_j))$$

$$= \sum_{j=1}^{\infty} m(I_j) = 1.$$

Thus m(K(C)) = 2 - 1, hence has non-zero measure. This implies that there exists a non-measurable set contained in K(C), denoted by A. Then f(A) is a subset of C, a null set. Therefore by the completeness of measure, f(A) must be measurable.

Let $g = \chi_B$. We know that B is Lebesgue measurable, thus g is also measurable. Now consider $g \circ f$. See that

$$(g \circ f)^{-1}((\frac{1}{2}, \infty)) = K \circ g^{-1}((\frac{1}{2}, \infty)) = \{x \in [0, 2] : \chi_B(K(x)) \in (\frac{1}{2}, \infty)\}$$
$$= \{x \in [0, 2] : K(x) \in B\}$$
$$= K(B) = A.$$

As A is not Lebesgue measurable, $g \circ f$ is not a Lebesgue measurable function.

9

Let $E \in \mathcal{M}(\mathbb{R})$ and let $\{f_n\}$ be a sequence of real valued measurable functions on E. Prove that the set of points at which this sequence converges is measurable.

Solution: Let C be the set of all points such that $f_n(x)$ converges. For a fixed $x \in E$, we have a sequence of real numbers. This sequence is convergent if and only if the sequence is Cauchy. The claim is that

$$C = \bigcap_{K=1}^{\infty} \left(\bigcup_{N=1}^{\infty} \left(\bigcap_{n \ge N} \left(\bigcap_{m \ge N} \left((f_n - f_m)^{-1} \left(-\frac{1}{K}, \frac{1}{K} \right) \right) \right) \right) \right).$$

Let D denote the RHS of the above equation. Denote by D_K the set $\bigcup_{N=1}^{\infty} \left(\cap_{n \geq N} \left((f_n - f_m)^{-1} \left(-\frac{1}{K}, \frac{1}{K} \right) \right) \right)$. Denote by $D_{K,N}$ the set $\bigcap_{n \geq N} \left((f_n - f_m)^{-1} \left(-\frac{1}{K}, \frac{1}{K} \right) \right)$. Fix $x \in D$. Then $x \in D_K$ for all $K \in \mathbb{N}$. See that for all $K \in \mathbb{N}$, $x \in \bigcup_{N=1}^{\infty} D_{K,N}$. We can see that for all $K \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that $x \in D_{K,N}$. $D_{K,N} = \bigcap_{n \geq N} \left((f_n - f_m)^{-1} \left(-\frac{1}{K}, \frac{1}{K} \right) \right) \right)$. For $x \in D_{K,N}$, for all m,n we have $-\frac{1}{K} < f_n(x) - f_m(x) < \frac{1}{K}$. Now we can see that this is true for all m,n. We now know that for all $\varepsilon > 0$ we can find a $K \in \mathbb{N}$ such that the above condition holds. This is the exact criterion for convergence, thus $x \in C$. Thus $D \subseteq C$. By a similar argument, $D \supseteq C$. Thus C = D. Thus, each f_n is a measurable function. C is a countable union of countable intersection of measurable sets, implying that C must be measurable.