Université Chouaib Doukkali Faculté des Sciences - EL JADIDA

Niveau : Algèbre 2 (MIP et IA)

Année Universitaire 2023/24

Département de Mathématiques

Série 1

Exercice 1. Soit K un corps commutatif. L'ensemble K^2 muni des lois suivantes est-il in K-espace vectoriel?

1)
$$(x,y) + (x',y') = (y+y',x+x')$$
 et $\alpha(x,y) = (\alpha x, \alpha y)$.

2)
$$(x,y) + (x',y') = (x+x',y+y')$$
 et $\alpha(x,y) = (\alpha x, y)$.

3)
$$(x,y) + (x',y') = (x+x',y+y')$$
 et $\alpha(x,y) = (\alpha x, 0)$.

Exercice 2. Soit K un corps commutatif quelconque.

- 1. Montrer que l'ensemble des solutions d'une équation linéaire homogène à p inconnues sur le corps K est un K-sev de K^p .
- 2. En déduire que l'ensemble des solutions d'un système linéaire homogène à n équations à p inconnues sur le corps K est un K-sev de K^p .

Exercice 3. Les ensembles suivants, munis de leurs opérations usuelles, sontils des espaces vectoriels?

$$E_1 = \{(x, y, z) \in \mathbb{C}^3 / x + y + \mathrm{i}z = 0\}, E_2 = \{(x, y) \in \mathbb{R}^2 / x^2 = 0\},\$$

$$E_3 = \{(x+y, x-y+z, y+3z)/x, y, z \in \mathbb{R}\}, E_4 = \{(x,y) \in \mathbb{R}^2/xy \ge 0\},\$$

$$E_5 = \{ P \in \mathbb{Q}[X]/P(X+1) = 3P(X-1) + P(X) \},\$$

$$E_6 = \{ P \in \mathbb{R}[X]/P(2) = 0 \}, E_7 = \{ P \in \mathbb{R}[X]/\deg(P) = 2 \},$$

 E_8 est l'ensemble des fonctions de classe C^1 sur \mathbb{R} ,

 E_9 est l'ensemble des fonctions bornées sur \mathbb{R} ,

 E_{10} est l'ensemble des fonctions monotones sur \mathbb{R} ,

$$E_{11} = \{(u_n) \in \mathbb{R}^{\mathbb{N}}/(u_n) \text{ est stationnaire}\}.$$

Exercice 4. On considère l'ensemble E des fonctions numériques définies continues sur I = [0,1]. On sait que E est un \mathbb{R} -sev de l'ensemble H des fonctions numériques définies sur I. Préciser parmi les ensembles suivants ceux qui sont des sous-espaces vectoriels de E:

1)
$$F_1 = \{ f \in E/f(2) = f(0) + 3 \}.$$

- 2) $F_2 = \{ f \in H/f(x) = ax \, si \, x > \frac{1}{2} \, et \, f(x) = |a|x \, si \, x \le \frac{1}{2}, a \in \mathbb{R} \}.$
- 3) $F_3 = \{ f \in E/x^2 f^{(3)}(x) f(x) = 0 \}.$
- 4) $F_4 = \{ f \in E / \int_0^1 f(t) dt = 0 \}.$

Exercice 5. Dans \mathbb{R}^4 on considère les sous-espaces vectoriels

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z + t = 0\}$$

et

$$G = \{(2a, -a, 0, a)/a \in \mathbb{R}\}.$$

- 1. Démontrer que F et G sont en somme directe.
- 2. Soit $(x,y,z,t) \in \mathbb{R}^4$. Déterminer $a \in \mathbb{R}$ tel que le vecteur $(x-2a,y+a,z,t-a) \in F$.
- 3. En déduire que $\mathbb{R}^4 = F \oplus G$.

Exercice 6. Dans l'espace vectoriel des fonctions numériques $\mathcal{F}(\mathbb{R}, \mathbb{R})$ on considère les sous-ensembles suivants

$$F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(0) = f(1) = 0 \}$$

et

$$G = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(x) = ax + b, \ a, b \in \mathbb{R} \}.$$

- 1. Démontrer que F et G sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- 2. Démontrer que F et G sont en somme directe.
- 3. Soit $h \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Déterminer $a, b \in \mathbb{R}$ tels que la fonction f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = h(x) - (ax + b)$$

vérifie $f \in F$.

4. En déduire que $\mathcal{F}(\mathbb{R}, \mathbb{R}) = F \oplus G$.

Exercice 7. On considère l'ensemble $E = \{(x, y, z) \in \mathbb{C}^3 / x + \overline{y} + z = 0\}.$

- 1. Montrer que E est un \mathbb{R} -sev de \mathbb{C}^3 .
- 2. Montrer que E n'est pas un \mathbb{C} -sev de \mathbb{C}^3 .
- 3. Déterminer une base et la dimension du \mathbb{R} -espace vectoriel E.

Exercice 8. Dans \mathbb{R}^4 on considère les vecteurs u=(1,1,1,1) et v=(1,2,3,4). Déterminer a et b pour que $w=(1,-1,a,b)\in \text{sev}\langle u,v\rangle$.

Exercice 9. Pour chacune des familles de \mathbb{R}^2 suivantes, dire si elle est génératrice, libre ou elle constitue une base de \mathbb{R}^2

- 1)) $A_1 = \{(1,2), (2,1), (3,3)\}.$
- 2) $A_2 = \{(1,2)\}.$
- 3) $A_3 = \{(0,0), (2,1), \}.$
- 4) $A_4 = \{(1,2), (2,1)\}.$

Exercice 10. Dans $E = \mathbb{R}^3$ on considère les vecteurs u = (2, 1, 1), v = (1, 3, 1) et w = (-2, 1, 3). Montrer que la famille A = (u, v, w) est une base de E et déterminer les coordonnées du vecteur e = (1, 1, 1) dans cette base.

Exercice 11. Dans $E = \mathbb{R}_2[X]$ on considère les vecteurs P = X + 1, $Q = X^2$ et $R = X^2 - X$. Montrer que la famille A = (P, Q, R) est une base de E et déterminer les coordonnées du vecteur $S = aX^2 + bX + c$ dans cette base.

Exercice 12. Déterminer une base de l'espace vectoriel

- 1) $F = \{\{(x, y, z) \in \mathbb{R}^3 / x y = 2x + z = 0\}.$
- 2) $G = \{ P \in \mathbb{R}_3[X]/P(X-1) = P(X^2) \}.$
- 3) $H = \{ u = (u_n) \in \mathbb{R}^{\mathbb{N}} / u_n + u_{n+3} = 0 \}.$

Exercice 13. Soit E un espace vectoriel de dimension finie n et soient F et G deux sous-espaces vectoriels de E tels que $\dim(F) + \dim(G) > n$. Montrer que $F \cap G \neq \{0\}$.

Exercice 14. Déterminer le rang des familles de vecteurs de \mathbb{R}^4 :

- 1) $A = \{u, v, w\}$ avec u = (1, 1, 1, 1), v = (1, -1, 1, -1) et w = (1, 0, 1, 1).
- 2) $B = \{u, v, w, t\}$ avec u = (1, 1, 0, 1), v = (1, -1, 1, 0), w = (2, 0, 1, 1) et t = (0, 2, -1, 1).

Exercice 15. Dans $\mathcal{F}(]-1,1[,\mathbb{R})$ on considère les vecteurs

$$f_1(x) = \sqrt{\frac{1+x}{1-x}}, f_2(x) = \sqrt{\frac{1-x}{1+x}}, f_3(x) = \frac{1}{\sqrt{1-x^2}}, \text{ et } f_4(x) = \frac{x}{\sqrt{1-x^2}}.$$

Quel est le rang de la famille $A = \{f_1, f_2, f_3, f_4\}$?

Exercice 16. Dans $E = \mathbb{R}_2[X]$ on considère les vecteurs P_1, P_2 tels que $P_1 = X^2, P_2 = (X - 1)^2$. Soit $F = \text{sev}\langle P_1, P_2 \rangle$.

- 1. Déterminer les coordonnées de P_1 et P_2 dans la base canonique $C=(1,X,X^2)$ de E.
- 2. Calculer $\operatorname{rg}(P_1,P_2)$ et en déduire que la famille $\{P_1,P_2\}$ est une base de F.
- 3. Compléter la famille $\{P_1, P_2\}$ en une base de E.
- 4. En déduire un supplémentaire de F dans E.