Stories Behind NBA Stats

-- Shuo Yang

Agenda

- Introduction
- Dataset & KPIs
- Data Analysis & Visualization
- Prediction Results
- Project Plan
- Lessons Learned & Future works

Introduction

Objectives

- Explore overall trends of the NBA.
- What are the key factors that make a team win a championship?
- Correlation between regular season winning percentage and KPIs.
- Predicting 2012 ~ 2013 season's NBA championship

Introduction

- Motivation
 - I am a big fan of basketball.
 - The business of professional sports like NBA is a multi-billion dollar industry.

Dataset

- Main Data Source
 - DatabaseBasketball website [1]
- Other Sources
 - NBA official website
 - Wikipedia
 - ESPN

Table View of Data

team season +year +team +league +o Tgm +o rga +o î tili +o fta +o oreb +o dreb +o reb +o 3pm +o 3pa +o asts +0 pT +o stl +o to +o blk +won +lost +d fgm +d fga +d dreb +d oreb +d reb +d stl +d 3pm +d 3pa +d asts +d pts +pace +d to

```
player_playoffs
+year
+ilkid
+firstname
+lastname
+team
+qp
+minutes
+assist
+block
+turnover
+3pm
+3pa
+league
+oreb
+dreb
+rebound
+fqm
+fga
+ftm
+fta
+pf
```

```
player regular season
+vear
+ilkid
+firstname
+lastname
+team
+qp
+minutes
+assist
+block
+turnover
+3pm
+3pa
+league
+oreb
+dreb
+rebound
+fgm
+fga
+ftm
+fta
+pf
```


+ilkid

+firstname

+firstseason

+lastseason

+lastname

+position

+h inches

+h feet

+weiaht

+college

+birthdate

Preliminary KPIs

Refined KPIs

- ratio of assist made by team over assist made by opponents
- ratio of assist made by team over assist made by opponents
- regular season field goal percentage per team

regular season field goal percentage per team

 regular season three-point percentage per team

regular season three-point percentage per team

- average team age weighted by minutes played
- •
- average team age weighted by minutes played

- number of all star per team
- •
- number of all star per team

 regular season free throw percentage per team

ETL Iteration

Data Analysis & Visualization

How did field goal percentage change over time?

Boxplot of Regular Season Field Goal Percentage by Year (Red line shows moving average)

Story behind the data:

Overall decreasing of field goal percentage

- League has become more and more physically demanding.
- Players' and teams' defensive skills have been improving
- Scoring inside the paint has become more and more difficult.
- Many teams now rely on jump shot which drags down the field goal percentage.

Boxplot of Regular Season Field Goal Percentage by Year (Red line shows moving average)

The lowest average in 30 years shows the impact of 1998 ~ 1999 season long time which lasted over six month.

- 1998 1999 regular season was shorted to 50 games.
- Tightened schedule resulted in many 'ugly games'.
- All-Star Game was canceled.

Boxplot of Regular Season Field Goal Percentage by Year (Red line shows moving average)

Field goal percentage has been improving since 2003-2004 season

- Many talented players emerged from colleges or other countries, like LeBron James who entered NBA in 2003, Dirk Nowitzki.
- The competitive environment pushes players to practice and play hard in order to stay on contract.

Data Analysis & Visualization

How did three-point percentage change over time?

Boxplot of Regular Season Three Point Percentage by Year (Red line shows moving average)

Stories behind the data:

The overall increasing of three-point percentage

- There is a growing importance of three-point.
- There is a growing popularity of the three-pointer, like Ray Allen.
- Sometimes three point is crucial to win the game.

Boxplot of Regular Season Three Point Percentage by Year (Red line shows moving average)

Data Analysis & Visualization

What makes a team a championship?

Average Team Age (Weighted by Minutes Played)

Stories behind the data:

Championship teams are significantly older than league average, and they continue to win as they get older [6].

- Older team age implies better team cohesion.
- They know how to play together.
- They have built excellent leadership.
- They share experiences and make each other a better player.
- Good teams are kept in one piece.

Regular Season Field Goal Percentage

Stories behind the data:

Championship teams usually have above league average field goal percentage which implies that a key to win championship is consistency.

Regular Season Three-point Percentage

Stories behind the data:

Three-point percentage seems not correlated with winning a championship. But a championship should at least achieve the league average as shown by the graph.

Regular Season (Assists Made by team) / (Assist Made by Opponents)

Stories behind the data:

A championship team usually gives more assists than its opponents. Higher ratio here means a better offense team and a better defensive team.

Number of All Star

Stories behind the data:

A championship team should have at least one super star. 1998 season's all star game was canceled due to lockout.

Data Analysis & Visualization

Correlation Analysis: regular season winning percentage Vs. (KPIs)

win_ratio (regular season winning ratio)
avg_age (average team age)
fgp (field goal percentage)

tfp: free throw percentage tpp: three-point percentage num_allstar: number of all-star

oast_dast : assists made by team / assists by opponents

Prediction

Applying Linear Regression to predict 2012 ~ 2013 regular season winning percentage for each team.

R code:

```
teams.train = read.csv('team_season_1980-2009.csv', header=TRUE)

tt.lm = lm(win ratio ~ oast dast+fgp+tpp+num allstar+avg age, data=teams.train)
```

Summary of the Linear Regression Model

```
Call:
lm(formula = win ratio ~ oast dast + fgp + tpp + num allstar +
   avg age, data = teams.t)
Residuals:
     Min
                10
                      Median
                                    3 Q
                                            Max
-0.264966 -0.066357 0.002714 0.066635 0.279363
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.330377 \quad 0.104582 -12.721 < 2e-16
oast dast 0.486478 0.034628 14.049 < 2e-16 ***
                                                      P-value shows that
        1.468739 0.179844 8.167 1.22e-15 ***
fgp
                                                      they are all statistical significant
           0.412871 0.072163 5.721 1.49e-08 ***
tpp
num allstar 0.061072 0.004295 14.218 < 2e-16 ***
                                7.525 1 42e-13 ***
            0.017531
                       0.002330
avg age
Signif. codes: 0 \*** 0.001 \** 0.01 \*/ 0.05 \./ 0.1 \ / 1
Residual standard error: 0.09072 on 806 degrees of freedom
Multiple R-squared: 0.6618,
                              Adjusted R-squared: 0.6597
F-statistic: 315.4 on 5 and 806 DF, p-value: < 2.2e-16
                                                       Indicates the model fits well
```

2012~2013 Regular Season Winning Percentage Prediction

On average, there is a 6.5 percent deviation. More factors need to be considered!

Prediction

Which team is going win 2012 ~ 2013 NBA Championship?

MIA (Miami Heat) is outstanding in all 4 factors. Followed by SAS (San Antonio Spurs).

Prediction

Applying Logistic Regression to predict which team is going win 2012 ~ 2013 NBA Championship?

R code:

```
teams.t = read.csv('team_season_1980-2009.csv', header=TRUE)
tt.logm = glm(is_champ~fgp+num_allstar+avg_age+oast_dast, data=teams.t, family=binomial)
```

Summary of the Logistic Regression Model

```
Call:
glm(formula = is champ ~ fgp + num allstar + avg age + oast dast,
   family = binomial, data = teams.t)
Deviance Residuals:
             1Q Median 3Q
    Min
                                       Max
-1.24007 -0.23242 -0.14031 -0.08127 2.92886
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -28.7221 6.7790 -4.237 2.27e-05 ***
fgp
      19.7895 10.3770 1.907 0.05651 .
num allstar 0.6904 0.2427 2.845 0.00444 **
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 256.78 on 811 degrees of freedom
Residual deviance: 192.67 on 807 degrees of freedom
AIC: 202.67
Number of Fisher Scoring iterations: 7
```

Prediction Result Generated by the Logistic Regression Model

2012~2013 Season NBA Championship Prediction

Team

The chance of Miami Heat (MIA) winning a championship calculated by the model is about 48% which is way ahead of other teams!

Comparing my work with works done by others

Works done by Paul Van Slembrouck [6]

Comparison:

- He did better visualization.
- I separated playoff teams with non-playoff teams.
- He only used average team age to predict 2011 NBA championship.
- I took 4 factors into consideration and applied logistic regression model.

Initial Plan

Hours Spent

Scope Change

- Originally, I only wanted to find out the key factors that make a NBA championship.
- As I dived into the data, I found there were more interesting stories to explore, so I changed the project title from "How do teams win NBA championship?" to "Stories behind the NBA stats".

Lesson Learned

- Knowing the objective of the class is essential to the success of the class.
- Getting data ready for use was harder than I thought.
- Python + SQL is a good way of performing ETL.
- Solid statistical knowledge is the foundation of the data analysis and visualization.
- R rocks! Learning and using R was easier than I thought.
- I should have planned and started earlier.
- Project plan is also an iteration. It should be ready for change at any time.

Future Works

- Performing more thoroughly check on data to make sure data is clean and consistent.
- Taking more factors into consideration since basketball is a complicated game, many factors can impact the game results.
- Using R's googlevis package to do animation.
- Applying more models on data and comparing the results given by each model.

References

[1] databaseBasketball [web] Available: http://www.databasebasketball.com

[2] NBA. (May 2 2008). NBA Rules History. [web]

Available: http://www.nba.com/history/finals/champions.html

[3] wikipedia. (April 23 2013) 2010 NBA Playoffs [Web]

Available: http://en.wikipedia.org/wiki/2010 NBA Playoffs

[4] ESPN. NBA Player Scoring Per Game Statistics – 2012-13. [web] Available: http://espn.go.com/nba/statistics/player/ /stat/scoring-per-game/sort/avgPoints/seasontype/2

[5] NBA. (May 2 2008). NBA Rules History. [web]

Available: http://www.nba.com/analysis/rules history.html

[6] Paul Van Slembrouck. (May 08, 2011). I Know Who's Going to Win the NBA Finals. [web] Available: http://www.paulvanslembrouck.com/2011/i-know-whos-going-to-win-the-nba-finals/

[7] wikipedia. (April 28 2013) Logistic regression [Web]

Available: http://en.wikipedia.org/wiki/Logistic regression

[8] Matthew Beckler, Hongfei Wang, Michael Papamichael. (Spring 2009). NBA Oracle [web].

Available: http://www.mbeckler.org/coursework/2008-2009/10701 report.pdf

Thanks !!!

Questions ???