- ПМ6. Установка, настройка программного обеспечения и обеспечение функционирования базы данных РО 5.1. Устанавливать программное обеспечение для администрирования базы данных.
- РО 5.2. Обеспечивать функционирование базы данных.
- РО 5.3. Настраивать программное обеспечение для поддержки работы пользователей с базой данных. (Big Data)

5 семестр:

- **.** 42 лекции
- . 30 лабораторных работ
- . Зачет
- **Экзамен**

Тема 1. Введение в базы данных.

Цель занятия:

Ознакомиться с основными понятиями и видами баз данных.

Учебные вопросы:

- 1. Введение.
- 2. Типы баз данных.
- 3. Реляционные БД.
- 4. Установка MySQL.

1. Введение.

Понятие базы данных.

База данных — это организованная совокупность данных, хранимая в соответствии со схемой данных и предназначенная для эффективного поиска, обновления, управления и использования этих данных.

База данных — это набор взаимосвязанных данных и правила хранения этих данных.

Система Управления Базами Данных (СУБД)

Система управления базами данных (СУБД) - это программное обеспечение, которое используется для управления базами данных. Она предоставляет средства для создания, организации, хранения, обновления и извлечения данных из базы данных.

Архив с данными – это информация, которую хотим хранить.

Архивариус – СУБД, через него идут все манипуляции с данными, будь то удаление, добавление или получение.

Посетитель – программа, которой необходимо производить операции с данными.

Типы СУБД

- файл-серверные
- клиент-серверные
- встраиваемые

Клиент и сервер

Клиент:

- 1. программа, которая хочет получить информацию;
- 2. физическое устройство, на котором работает программа-клиент.

Сервер:

- 1. специальная программа, которая дает информацию;
- 2. физическое устройство, на котором запущена программа-сервер.

Обычно эти программы расположены на разных вычислительных машинах и взаимодействуют между собой по различным протоколам, но они могут быть расположены и на одной машине.

Файл-серверные СУБД

Файлы с информацией хранятся на сервере, а СУБД на клиенте.

Программа: Microsoft Access.

Примерами СУБД файл-серверной организации являются Borland Paradox, Microsoft Access, Microsoft Visual FoxPro.

Клиент-серверные СУБД

И файлы с информацией и СУБД находятся на сервере, а клиент обращается за информацией через легковесную вспомогательную программу.

Программы: MySQL, PostgreSQL, Microsoft SQL, Oracle, MongoDB, Cassandra.

Примеры: Oracle, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР.

Встраиваемые СУБД

Файлы и СУБД хранятся на клиенте.

Программа: SQLite.

Примеры: OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Microsoft SQL Server Compact, ЛИНТЕР.

Какими плюсами и минусами обладает каждый тип СУБД?

Тип СУБД	Плюсы	Минусы	
Файл-серверные	 Сервер может быть обычным файловым хранилищем Легко переносить базу 	 Плохо параллелятся действия от разных клиентов Требуется установка СУБД на каждом клиенте 	
Клиент-серверные	 На клиенте не надо устанавливать СУБД Хорошо параллелятся действия от разных клиентов 	 Сервер должен быть достаточно производительным => дорого 	
Встраиваемые	 Не надо ничего устанавливать 	 Подходит только для локального хранения 	

Зачем нужны базы данных?

- Хранение информации: Базы данных позволяют хранить огромные объемы информации в структурированном виде, что облегчает ее поиск и управление.
- Обеспечение доступа: Множество пользователей могут одновременно получать доступ к данным и вносить изменения.
- Управление данными: Базы данных предоставляют инструменты для добавления, удаления, обновления и поиска данных.
- **Сохранение целостности:** Благодаря механизмам контроля целостности, данные в базе данных остаются согласованными и точными.

2. Типы баз данных.

• Реляционные базы данных:

Самый распространенный тип.

Данные организованы в таблицы, состоящие из строк и столбцов.

Используют язык SQL для выполнения запросов.

Примеры СУБД: MySQL, PostgreSQL, Oracle.

• NoSQL базы данных:

Не имеют жесткой структуры.

Подходят для хранения больших объемов неструктурированных данных.

Типы:

- Ключ-значение (Redis)
- Документоориентированные (MongoDB)
- Колоночные (Cassandra)
- Графовые (Neo4j)

• Другие типы:

Объектно-реляционные базы данных Иерархические базы данных Сетевые базы данных

Типы баз данных

Реляционные – это БД, в которых информация строго структурирована и связана с другой информацией жёсткими правилами.

Нереляционные (NoSQL) – это БД, в которых нет жёстких ограничений ни по структуре, ни по связи между информацией.

Пример:

- Microsoft Access
- SQLite
- PostgreSQL
- MySQL
- Microsoft SQL

Пример:

- Redis
- MongoDB
- Cassandra

3. Реляционные БД.

Реляционная база данных - это тип базы данных, в которой данные организованы в **таблицы**, **связанные** между собой по определенным правилам.

Основные понятия реляционных баз данных:

Таблица: Основной элемент реляционной базы данных, состоящая из строк и столбцов.

- Запись: Отдельная строка в таблице, представляющая один экземпляр данных.
- Поле: Отдельный столбец в таблице, содержащий определенный тип данных.
- Ключ: Уникальный идентификатор записи.

Реляционные базы данных

id	name	gpa
1	Егор	4.82
2	Егор	4.11
3	Егор	3.88

Пример отношения «Успеваемость студентов»

Реляционные базы данных

Атрибут (или поле) – столбец.

Запись (или кортеж) – строка.

Пример отношения «Успеваемость студентов»

Преимущества реляционных баз данных

- •Структурированность: Данные хранятся в четко определенной структуре, что облегчает их поиск и управление.
- •**Целостность**: Механизмы обеспечения целостности данных гарантируют, что информация остается точной и согласованной.
- •Гибкость: Реляционные базы данных легко адаптируются к изменениям в структуре данных.
- •Мощность выразительных средств: Язык SQL позволяет выполнять сложные запросы к данным.
- •Широкая поддержка: Существует множество СУБД, поддерживающих реляционную модель данных.

Особенности реляционных баз данных:

Таблицы: Данные в реляционных базах данных хранятся в виде таблиц, которые состоят из строк и столбцов. Каждая таблица представляет собой отдельную сущность, а каждая строка в таблице представляет отдельную запись.

Схема данных: РБД используют предварительно определенную схему данных, которая определяет структуру таблиц и связи между ними. Схема данных определяет типы данных, ограничения целостности, связи и другие атрибуты таблиц.

Отношения: Реляционные базы данных поддерживают связи между таблицами с помощью ключей. Связи могут быть один-к-одному, один-ко-многим или многие-ко-многим. Это позволяет эффективно организовывать данные и выполнять операции объединения, фильтрации и связи данных.

SQL: Реляционные базы данных используют язык структурированных запросов SQL (Structured Query Language) для выполнения операций доступа к данным, таких как выборка, вставка, обновление и удаление данных. SQL предоставляет мощные возможности для манипуляции данными и выполнения сложных запросов.

АСІD-свойства: РБД обеспечивают ACID-свойства, которые гарантируют надежность и целостность данных. ACID означает атомарность (atomicity), согласованность (consistency), изолированность (isolation) и долговечность (durability) операций в базе данных.

Пример базы данных

Схема БД. Таблицы и данные

Таблица 1

Атрибут 1	Атрибут 2	Атрибут 3
1	Егор	4.25
2	Дима	3.82
3	Миша	4.15

Таким способом описываются конкретные данные в таблице.

Таблица 1

Атрибут 1

Атрибут 2

Атрибут 3

Таким способом описываются таблицы и их атрибуты: информацию какого вида таблица содержит.

ld	Name	Birthday
1	Лев Толстой	1828
2	Александр Солженицын	1918
3	Иван Тургенев	1818
4	Антон Чехов	1860
5	Иван Бунин	1870
6	Михаил Булгаков	1891
7	Николай Гоголь	1809
8	Александр Пушкин	1799
9	Федор Достоевский	1821
10	Михаил Лермонтов	1814

~	-	_	10	ка
v	u	0	ı,	na

ld	Authorld	Start	End	
1	9	1850	1854	
2	2	1945	1953	
3	8	1824	1826	
4	10	1837	1837	
5	10	1840	1841	

ld Author		Name	Start	End	
1	10	Герой нашего времени	1838	1840	
2	1	Война и мир	1863	1873	
3	8	Капитанская дочка	1836	1836	
4	10	Смерть поэта	1837	1837	
5	2	Архипелаг ГУЛАГ	1958	1968	
6	10	Бородино	1837	1837	
7 3		Отцы и дети	1860	1861	
8	4	Три сестры	1900	1901	
9 5 Ko		Косцы	1921	1921	
10 6		Белая гвардия	1922	1924	
11 7		Мертвые души	1835	1835	
12	9	Идиот	1867	1869	
13	8	Моцарт и Сальери	1830	1830	

Произволонио

Сколько произведений написал Лермонтов?

Сколько авторов писали свои произведения с 1830 по 1840 годы?

Structured Query Language (SQL)

Structured Query Language (SQL)

– язык для извлечения/изменения/удаления/добавления данных. Данный язык понимает СУБД, которая и производит соответствующие операции с данными.

Structured Query Language (SQL)

Пример запроса

SELECT * FROM student;

Результат выполнения

	123 id VI	nac name VI	123 gpa 📆	⊕ birth ₹
1	12	Карина	4.7	2000-09-12 00:00:00
2	13	Игорь	3.8	2000-01-26 00:00:00
3	15	Илья	4.2	1999-05-08 00:00:00
4	17	Вова	[NULL]	1999-04-14 00:00:00

Стандартизация SQL. ANSI SQL-92

Типы запросов в SQL

DDL (Data Definition Language) в SQL представляет набор команд, используемых для **определения и изменения структуры** базы данных. Они позволяют создавать, изменять и удалять таблицы, индексы, представления и другие объекты базы данных.

DML (Data Manipulation Language) в SQL - это набор команд, используемых для **манипулирования данными** в базе данных. Они позволяют вставлять, обновлять, удалять и извлекать данные из таблиц.

TCL (Transaction Control Language) в SQL - это набор команд, используемых **для управления транзакциями** в базе данных. Транзакция представляет собой логическую операцию или набор операций, которые должны быть выполнены как единое целое, либо все операции должны быть отменены.

DCL (Data Control Language) в SQL - это набор команд, используемых **для управления правами доступа** и безопасностью в базе данных. Они позволяют управлять разрешениями пользователей на выполнение определенных операций с данными.

Типы запросов в SQL

- DDL (Data Definition Language) CREATE, ALTER, DROP
- DML (Data Manipulation Language) SELECT, INSERT, UPDATE, DELETE
- TCL (Transaction Control Language) COMMIT, ROLLBACK, SAVEPOINT
- DCL (Data Control Language) GRANT, REVOKE, DENY

4. Установка MySQL.

MySQL - это одна из самых популярных в мире **свободных реляционных** систем управления базами данных (**СУБД**).

Она широко используется для создания и управления веб-приложений, а также в других областях, где требуется надежное хранение и обработка структурированных данных.

Порядок установки MySQL:

Шаг 1: Скачивание MySQL

- 1.Перейдите на официальный сайт MySQL: MySQL Downloads.
- 2.В разделе "Select Operating System" выберите "Microsoft Windows".
- 3.Выберите **MySQL Installer for Windows** (32-bit and 64-bit) и нажмите **Download**.
- 4.Выберите версию MySQL и скачайте инсталляционный файл.

• MySQL Community Downloads

MySQL Community Server

MySQL Community Downloads

Login Now or Sign Up for a free account.

An Oracle Web Account provides you with the following advantages:

- Fast access to MySQL software downloads
- Download technical White Papers and Presentations
- Post messages in the MySQL Discussion Forums
- Report and track bugs in the MySQL bug system

Login »

using my Oracle Web account

Sign Up »

for an Oracle Web account

MySQL.com is using Oracle SSO for authentication. If you already have an Oracle Web account, click the Login link. Otherwise, you can signup for a free account by clicking the Sign Up link and following the instructions.

No thanks, just start my download.

Шаг 2: Установка MySQL

- 1.Запустите скачанный установочный файл.
- 2.В установщике выберите тип установки. Рекомендуется выбрать "Developer Default", чтобы установить все необходимые компоненты для разработки.
- 3.Следуйте инструкциям мастера установки, принимая лицензионное соглашение и выбирая каталог установки.

На этапе настройки MySQL, вам нужно будет:

- Выбрать тип конфигурации сервера (по умолчанию оставьте "Standalone MySQL Server").
- Настроить порт сервера (обычно 3306).
- Создать root-пользователя и задать пароль.
- Выбрать метод аутентификации (рекомендуется оставить Use Strong Password Encryption).

Проверьте корректность установки:

```
C:\Users\user>mysql -u root -p
Enter password: ****
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8
Server version: 8.4.2 MySQL Community Server - GPL
Copyright (c) 2000, 2024, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> SELECT VERSION();
 VERSION()
 8.4.2
1 row in set (0.00 sec)
mysql>
```

Если получите ошибку: "mysql" не является внутренней или внешней командой..., то нужно настроить переменные окружения.

- Откройте Панель управления.
- Перейдите в раздел Система и безопасность > Система.
- В левой колонке выберите Дополнительные параметры системы.
- В окне "Свойства системы" на вкладке Дополнительно нажмите кнопку Переменные среды.
- В разделе Системные переменные найдите переменную Path и выберите ее.
- Нажмите Изменить.
- В появившемся окне нажмите Создать и добавьте путь к папке bin MySQL. Haпример: C:\Program Files\MySQL\MySQL Server 8.4\bin
- Нажмите ОК во всех окнах, чтобы сохранить изменения.

Шаг 3: Установка MySQL Workbench

Скачайте установщик:

https://dev.mysql.com/downloads/workbench/

и установите аналогичным образом.

MySQL Workbench 8.0.38

Select Operating System:

Microsoft Windows

Recommended Download:

MySQL Installer for Windows

All MySQL Products. For All Windows Platforms.
In One Package.

Starting with MySQL 5.6 the MySQL Installer package replaces the standalone MSI packages.

Windows (x86, 32 & 64-bit), MySQL Installer MSI

Go to Download Page >

Other Downloads:

Windows (x86, 64-bit), MSI Installer

8.0.38

41.7M

Для создания базы данных в главном меню выбираем пункт «File»->«New Model»:

Дважды кликаем на название БД, что изменить его:

Дважды кликаем на название БД, что изменить его:

Добавление диаграммы:

Добавление таблицы users:

Создание полей таблицы:

Далее сохраняем модель: File -> Save Model

Coxpaняем скрипт: File -> Export -> Forward Engineer SQL CREATE SCRIPT

Setup New Conn	nection	- □ ×		
Connection Name:	studentdb	Type a name for the connection		
Connection Method:	Standard (TCP/IP)	✓ Method to use to connect to the RDBMS		
Parameters SSL	Advanced			
Hostname:	127.0.0.1 Port: 3306	Name or IP address of the server host - and TCP/IP port.		
Username:	root	Name of the user to connect with.		
Password:	Store in Vault Clear	The user's password. Will be requested later if it's not set.		
Default Schema:		The schema to use as default schema. Leave blank to select it later.		
Configure Server	Management	Test Connection Cancel OK		

root

127.0.0.1:3306

1 root

Iocalhost:3306

Welcome to MySQL Workber

Загружаем скрипт:

И исполняем его:

Проверяем:

Вставка данных в таблицу:

Правой кнопкой мыши кликаем на таблицу, выбираем «Select Rows», затем «Edit Current Row»:

Заполняем строки и нажимаем «Apply»:

И еще раз «Apply» и «Finish»:

Вставка данных в таблицу с помощью SQL-запросов. В поле SQL-запроса пишем:

use <имя_БД>

И нажимаем «Execute»:

Пишем SQL-запрос и выполняем:

```
4 14:28:16 use students

5 14:28:16 INSERT INTO users (idusers, first_name, second_name, email) VALUES (3, 'lvan', 'lvanov', 'iv... 1 row(s) affected

7 14:28:16 INSERT INTO users (idusers, first_name, second_name, email) VALUES (3, 'lvan', 'lvanov', 'iv... 1 row(s) affected
```

Редактирование таблицы. Кликаем ПКМ на нужной таблице, выбираем «Alter Table», затем меняем нужное

свойство:

Можно добавить еще один столбец, средний балл:

Что посмотреть содержимое страницы, кликаем на ней ПКМ и выбираем «Select Rows»:

Экспорт данных в csv-файл. Нажмите иконку экспорта, выберите название файла и сохраните.

$\begin{bmatrix} 110 & \checkmark & 1x \end{bmatrix}$						
	Α	В	С	D	Е	
1	idusers	first_name	second_name	email	average_rating	
2	1	Nikita	Stepanov	stepa@gmail.com	NULL	
3	2	Alina	Kabirova	alina@ya.com	NULL	
4	3	Ivan	Ivanov	ivanof@bk.com	NULL	
5						

Контрольные вопросы:

- 1. Что такое база данных?
- 2. Какие задачи решает база данных?
- 3. Что такое СУБД и для чего она используется?
- 4. Перечислите примеры известных СУБД.
- 5. Какие типы баз данных существуют? Опишите их особенности.
- 6. Чем реляционные базы данных отличаются от NoSQL баз данных?
- 7. Какие типы NoSQL баз данных существуют? Приведите примеры.
- 8. Что такое реляционная база данных? Опишите основные элементы (таблица, запись, поле, ключ).
- 9. Какие преимущества имеют реляционные базы данных?
- 10. Что такое ACID-свойства и для чего они важны в базе данных?

Домашнее задание:

1. Повторить материал лекции.

Список литературы:

- 1. В. Ю. Кара-ушанов SQL язык реляционных баз данных
- 2. А. Б. ГРАДУСОВ. Введение в технологию баз данных
- 3. A.Мотеев. Уроки MySQL

Материалы лекций:

https://github.com/ShViktor72/Education

Обратная связь:

colledge20education23@gmail.com