Специальные методы моделирования Типовой расчет № 1

«Моделирование дискретных распределений»

Следуя Указаниям выполнить следующие Задания.

Задание 1. Моделирование биномиального распределения.

Получить две выборки из 200 псевдослучайных чисел, распределенных по биномиальному закону с параметрами n и p:

- 1) используя общий (стандартный) метод моделирования дискретных распределений и псевдослучайные числа, равномерно распределенные на интервале (0,1);
- 2) используя функцию Octave binornd (*n*, *p*) или функцию Python scipy.stats.binom.rvs(*n*, *p*, size=200).

Полученные выборки упорядочить по возрастанию, построить статистические ряды вида:

x_i	n_i	w_i	p_i	s_i
0	n_0	w_0	p_0	S_0
1	n_1	w_{l}	$p_{\rm l}$	S_1
•••	•••	•••	•••	•••
m	n_m	W_m	p_m	S_m
	$\sum_{i=0}^{m} n_i$	$\sum_{i=0}^{m} w_i$	$\sum_{i=0}^{m} p_i$	

где m=n, n_i – частота значения i в выборке (проверить $\sum\limits_{i=0}^m n_i = N = 200$);

 w_i — относительная частота значения i , $w_i = \frac{n_i}{N}$, (проверить $\sum_{i=0}^m w_i = 1$),

$$p_i = C_n^i \cdot p^i \cdot q^{n-i}, \ s_i = \sum_{j=0}^i p_j.$$

Задание 2. Моделирование геометрического распределения.

Получить две выборки из 200 псевдослучайных чисел, распределенных по геометрическому закону с параметром p:

- 1) используя общий (стандартный) метод моделирования дискретных распределений и псевдослучайные числа, равномерно распределенные на интервале (0,1);
- 2) используя функцию Octave geornd (p) или функцию Python scipy.stats.geom.rvs(p, size=200). Полученные выборки упорядочить по возрастанию, построить статистические ряды вида:

x_i	n_i	w_i	p_i	s_i
0	n_0	w_0	p_0	S_0
1	n_1	w_1	$p_{\rm l}$	S_1
•••	•••	•••		• • •
m	n_m	W_m	p_m	S_m
	$\sum_{i=0}^{m} n_i$	$\sum_{i=0}^{m} w_i$	$\sum_{i=0}^{m} p_i$	

где m — максимальное значение в двух полученных выборках, $p_i = p \cdot q^i$.

Задание 3. Моделирование распределения Пуассона.

Получить две выборки из 200 псевдослучайных чисел, распределенных по закону Пуассона с параметром λ :

- 1) используя общий (стандартный) метод моделирования дискретных распределений и псевдослучайные числа, равномерно распределенные на интервале (0,1);
- 2) используя функцию Octave poissrnd (lam), lam = λ, или функцию Python scipy.stats.poisson.rvs(λ, size=200).

Полученные выборки упорядочить по возрастанию, построить статистические ряды вида:

x_i	n_i	w_i	p_i	s_i
0	n_0	w_0	p_0	S_0
1	n_1	w_1	$p_{\rm l}$	S_1
•••	• • •	• • •	• • •	•••
m	n_m	W_m	p_m	S_m
	$\sum_{i=0}^{m} n_i$	$\sum_{i=0}^{m} w_i$	$\sum_{i=0}^{m} p_i$	l

где m — максимальное значение в двух полученных выборках, $p_i = \frac{\lambda^i}{i!} e^{-\lambda}$.

Для всех распределений построить полигоны относительных частот для двух выборок и полигон вероятностей $\{(i,p_i)\}$ (на одном рисунке, используя для линий синий, зелёный и красный цвета соответственно), найти для каждой выборки выборочное среднее и выборочную дисперсию и сравнить их с теоретическими значениями.

Для всех распределений проверить при уровне значимости $\alpha = 0.05$ следующие гипотезы:

- 1) о соответствии каждой выборки теоретическому распределению;
- 2) об однородности данных первой и второй выборок.

Результаты вычислений приводить в отчете с точностью до 0,00001.

Указания

В разделе отчета **Краткие теоретические сведения** для каждого распределения привести выражения для вероятностей ряда распределения, а также для математического ожидания (среднего значения) и дисперсии. В этом разделе должен быть описан общий (стандартный) метод моделирования дискретных распределений, а также средства языка программирования, которые применялись в программе расчета.

Сведения о распределениях:

- биномиальное

Ряд распределения	$p_i = C_n^i \cdot p^i \cdot q^{n-i}, i = 0,,n, p \in (0,1), q = 1-p;$
Математическое ожидание	np
Дисперсия	npq, $q=1-p$

- геометрическое

Ряд распределения	$p_i = p \cdot q^i, i = 0,; p \in (0,1), q = 1-p;$		
Математическое ожидание	$\frac{q}{p}$		
Дисперсия	$\frac{q}{p^2}$		

- Пуассона

Ряд распределения	$p_i = \frac{\lambda^i}{i!} e^{-\lambda}, i = 0, \dots$		
Математическое ожидание	λ		
Дисперсия	λ		

В разделе отчета **Результаты расчетов** для каждого задания и каждой выборки должны иметься 2 таблицы 20*10 (20 строк, 10 столбцов): с полученной выборкой и упорядоченной по возрастанию выборкой. Затем приводится статистический ряд, графики полигонов относительных частот для двух выборок и полигона вероятностей. Полигон относительных частот — ломаная линия, соединяющая последовательно точки с координатами $(0, w_0), (1, w_1), ..., (m, w_m)$. Полигон вероятностей: ломаная линия, соединяющая последовательно точки с координатами $(0, p_0), (1, p_1), ..., (m, p_m)$.

Проверка гипотезы о соответствии выборки теоретическому распределению проводится следующим образом:

1) рассматривается таблица расчета критерия χ^2_B

i	w_i	p_i	$ w_i - p_i $	$\frac{N(w_i - p_i)^2}{p_i}$
0	w_0	p_0	$ w_0-p_0 $	$\frac{N(w_0 - p_0)^2}{p_0}$
1	w_1	p_1	$ w_1 - p_1 $	$\frac{N(w_1 - p_1)^2}{p_1}$
•••	•••	•••	•••	•••
m	W_m	p_m	$ w_m - p_m $	$\frac{N(w_m - p_m)^2}{p_m}$
	$\sum_{i=0}^{m} w_i$	$\sum_{i=0}^{m} p_i$	$\max w_i - p_i $	$\sum_{i=0}^{m} \frac{N(w_i - p_i)^2}{p_i}$

2) найденное значение критерия $\chi_B^2 = \sum_{i=0}^m \frac{N(w_i - p_i)^2}{p_i}$ сравнивается с критическим значением

 $\chi^2_{\kappa p, \alpha}(l)$, где α — уровень значимости, $\alpha = 0.05$, l = m — число степеней свободы.

Критические значений $\chi^2_{\kappa p,\alpha}(l)$ можно найти с помощью функции языка Octave chi2inv $(1-\alpha,l)$ и функции языка Python scipy.stats.chi2.ppf $(1-\alpha,l)$.

Если $\chi_B^2 \le \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки теоретическому распределению не противоречит экспериментальным данным (может быть принята) при уровне значимости $\alpha=0.05$.

Если $\chi_B^2 > \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки теоретическому распределению противоречит экспериментальным данным (не может быть принята) при уровне значимости $\alpha=0.05$.

Проверка гипотезы об однородности данных первой и второй выборок проводится следующим образом:

1) рассматривается таблица расчета критерия χ^2_B для проверки об однородности

i	w_{i1}	w_{i2}	$\frac{(w_{i1})^2 + (w_{i2})^2}{w_{i1} + w_{i2}}$
0	w_{01}	w_{02}	$\frac{(w_{01})^2 + (w_{02})^2}{w_{01} + w_{02}}$
1	w_{11}	w_{12}	$\frac{(w_{11})^2 + (w_{12})^2}{w_{11} + w_{12}}$
• • •	•••	• • •	
m	W_{m1}	W_{m2}	$\frac{(w_{m1})^2 + (w_{m2})^2}{w_{m1} + w_{m2}}$
	$\sum_{i=0}^{m} w_{i1}$	$\sum_{i=0}^{m} w_{i2}$	$2N[(\sum_{i=0}^{m} \frac{(w_{i1})^2 + (w_{i2})^2}{w_{i1} + w_{i2}}) - 1]$

где $w_{01}, w_{11}, ..., w_{m1}$ — относительные частоты первой выборки, $w_{02}, w_{12}, ..., w_{m2}$ — относительные частоты второй выборки.

2) найденное значение критерия $\chi_B^2 = 2N[(\sum_{i=0}^m \frac{(w_{i1})^2 + (w_{i2})^2}{w_{i1} + w_{i2}}) - 1]$ сравнивается с критическим значением $\chi_{\kappa p,\alpha}^2(l)$, где α — уровень значимости, $\alpha = 0.05$, l = m — число степеней свободы.

Если $\chi_B^2 \le \chi_{\kappa p,\alpha}^2(l)$, то гипотеза об однородности данных первой и второй выборок не противоречит экспериментальным данным (может быть принята) при уровне значимости $\alpha=0.05$.

Если $\chi_B^2 > \chi_{\kappa p,\alpha}^2(l)$, то гипотеза об однородности данных первой и второй выборок противоречит экспериментальным данным (не может быть принята) при уровне значимости $\alpha=0.05$.

Для каждого распределения нужно также привести для каждой выборки таблицу следующего вида:

Название распределения

Trasbanno paeripe de transfer					
Название показателя	Эксперимен-	Теоретическое	Абсолютное	Относительное	
	тальное	значение	отклонение	отклонение	
	значение				
Выборочное среднее					
Выборочная дисперсия					

Абсолютное отклонение – модуль разности экспериментального и теоретического значений. Относительное отклонение – отношение абсолютного отклонения к абсолютной величине теоретического значения, если теоретическое значение равно нулю, то записывается ' – '.

Данные к типовому расчету № 1 по специальным методам моделирования «Моделирование дискретных распределений»

Вариант	n	p	λ
1	7	0,312	4,5
2	6	0,589	1,9
3	5	0,572	2,5
4	12	0,323	3,3
5	9	0,718	5,3
6	13	0,577	2,2
7	11	0,529	1,4
8	15	0,564	2,1
9	14	0,419	1,6
10	9	0,61	3,5
11	8	0,714	2,9
12	10	0,514	3,6
13	6	0,357	2,4
14	14	0,423	3,1
15	7	0,412	1,5
16	12	0,75	3,4