Tutorium 14 - Lineare Algebra 2

14.7,2021

G

Für welche $n \in \mathbb{N}$ gilt: Alle abelschen Gruppen der Ordnung n sind isomorph?

$$n = 4$$
. 4, (2,2)
 $n = 42$. ξ , ξ , ξ , η = 60. $6 \cdot \eta$ = 2·3·7

Korper des rationalen Flat

$$G \cong \frac{2\ell_{E_1}}{\ell_{E_1}} \oplus \cdots \oplus \frac{2\ell_{E_r}}{\ell_{E_r}}$$

$$1 \cdot 1 = \mathcal{E}_1 \qquad 1 \cdot 1 = \mathcal{E}_r$$

$$|G| = \xi_1 \cdots \xi_r$$

Aussage	wahr	falsch	k(t)=
Ein Körper positiver Charakteristik ist endlich.		×	$=5$ \pm $ f $ yells
Für $A\in M_n(K)$ ist die Summe der Grade der Elementarteiler der charakteristischen Matrix $M_A(x)$ genau $n.$	X		/ -2 g g = 0
Jeder Vektorraum V ist (kanonisch) isomorph zu seinem Bidualraum V^{**} .		×	To(t) lut
Für jeden kommutativen Ring R ist der Polynomring $R[x]$ ein Hauptidealring. $R[x] = R[x] = R[x]$	_ k _เ ห] i	ist hein	HIR Charalterstile f
Jedes irreduzible Polynom $f \in \mathbb{R}[x]$ erfüllt deg $f \in \{1,2\}$. Dasselbe gilt für jedes irreduzible Polynom $f \in \mathbb{C}[x]$.	_ '🔀		2 st runerallich
Seien $f, g: V \to V$ Endomorphismen auf dem K-Vektorraum V. Dann		×	10 F. 7 14 HTO
gilt für die dualen Abbildungen: $(q \circ f)^* = g^* \circ f^*$ Sei V ein endlichdimensionaler K -Vaktorraum und $g: V \times V \to K$ eine	X		R[x] ist the
K -Bilinearform. Dann ist β genau dann im ersten Argument ausgeartet, wenn β im zweiten Argument ausgeartet ist.			If of a falls
Sei $A \in M_n(\mathbb{C})$ mit $A^t A = AA^t$; dann ist A diagonalisierbar.		×	R ein Korper
Hauptidealringe sind faktoriell. Seien R faktoriell und M ein R-Modul. Dann ist der Torsionsmodul	×		-> moglicles Ggbzp:
T(M) ein Untermodul von M .			$A = \begin{pmatrix} 1 + 2i & 1 \\ 1 & 1 \end{pmatrix}$
$f = T = T(x - \alpha_i)$ $f = T = T(x - \alpha_i)$	f =	ŢŢ	(x-x;)(x-~;) -
$4 = 4 = 1i(x_2, x_3)$	•	κ;∈¢/ γ	IR E RINJ
firred. (=) f prim (=) Primideal		• 11 j	(x-a;) €R €R1×7
(=) R/(F) ist Integrit	āhb	عدون ك	

Jede Matrix besitet eine eindertige Jordanshe Normalform (bis out Awardy des læstelen) Men die JUF wicht diagerel ist ist die Platix wilt diagnolisiestes. (10) **Aufgabe 3** (10 Punkte). Es bezeichne $U(n) = \{A \in M_n(\mathbb{C}) \mid A^{-1} = A^*\}$ die unitäre Gruppe. Beweise: $\forall n, m \in \mathbb{N} \, \forall A \in U(n) \, \exists B \in U(n) : B^m = A.$ AN = E $\exists u \in \mathcal{U}(u)$: Spelitral sotz: $\mathcal{D} = \left(\begin{array}{c} \lambda_1 & & \\ & \lambda_2 & \end{array}\right)$ AEU(u) => D = UAUx ist unitar. u*u= id Klyemein: Wir wallen unte Werzeln von di, D mitar $\Rightarrow \lambda; \lambda_i = 1$ hat eine Heller! α ; wit $\alpha'' = \lambda'$ Fruitar (=) a; x; = 1 Es gilt: $(\alpha_i, \alpha_i)^m = 1$ \Rightarrow $\alpha_i \alpha_i = 1$ x; x; = x; 12 30 B:= U+Fu ist rutar. => & = (\u2444 F\u2444) = U F F \u2444 \u2444

Aufgabe 4 (20 = 5+5+5+5 Punkte). (a) Bestimme den Torsionsmodul des Z-Moduls

(d) Bestimme die Weierstraßsche Normalform der Matrix

$$A = \begin{pmatrix} -3 & -5 & 0 & -4 \\ 2 & 3 & 0 & 2 \\ 0 & \frac{1}{3} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_4(\mathbb{Q}).$$

$$A = \begin{pmatrix} -3 & -5 & 0 & -4 \\ 2 & 3 & 0 & 2 \\ 0 & \frac{1}{3} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R = \mathbb{Q}[X]$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 2 & 3 - x & 0 & 2 \\ 0 & 1 & 3 & 1 - x & 0 \\ 0 & 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 - x & 0 & 2 \\ -3 - x & 0 & 2 \\ -3 - x & -5 & 0 & 2 \\ -3 - x & -5 & 0 & 2 \\ 0 & -3 - x & 15(1 - x) & 2 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 - x & 0 & 2 \\ -3 - x & 0 & 2 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 - x & 0 & 2 \\ 3 - x & 2 & 0 & 2 \\ -5 - 3 - x & 0 & -4 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 & 1 & 0 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 1 &$$

Elementor teles =
$$x-1$$
, $(x-1)(15+\frac{3}{2}(x^2-9))$

Normiere!

 $= x-1$, $(x-1)(15+\frac{3}{2}(x^2-9))$
 $= x-1$, $(x-1)(15+\frac{3}{2}(x^2-9))$
 $= x-1$, $x-1$, x^2+1
 $= x-1$, $x-1$, x^2+1
 $= x-1$, $x-1$, x^2+1
 $= x-1$, $x-1$, $x-$

(b) Betrachte die beiden Geraden $g,h\subset\mathbb{R}^4,$ definiert als

$$g = \begin{pmatrix} 0 \\ \alpha \\ 0 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad h = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix},$$
 wobei $\alpha \in \mathbb{R}$. Bestimme den Abstand von g und h .

1.)
$$\rho := \chi_1 - \chi_2 = \begin{pmatrix} \chi_{-1} \\ -1 \end{pmatrix}$$

$$\mathcal{U} = \mathcal{U}_1 + \mathcal{U}_2 = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
2.) Restructe eine ONB von \mathcal{U} . (\sim Spates $T_{\mathcal{U}}(\rho)$)
$$\frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

Besedure
$$tT_{N}(p) = (x, p) \times + (y, p)y$$

$$= \frac{1}{3} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \alpha - 1 \\ -\frac{1}{3} \end{pmatrix} \right) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \sqrt{-1} \end{pmatrix} \right) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{\kappa - 1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} -$$