

第一章 算法分析与设计基础

湖南大学信息科学与工程学院

联系方式

任课教师: 彭 鹏

办公室:软件大楼536

邮箱: hnu16pp@hnu.edu.cn

教材及考核方式

教材:

算法导论,[美] Thomas H.Cormen, [美] Charles E.Leiserson, [美] Ronald L.Rivest, [美] Clifford Stein 著,殷建平,徐云,王刚 等 译

考核形式:

- (1)课堂点名(占10%)
- (2) Leetcode (占30%)
- (3)期末考试(占60%)

课程网站:

https://bnu05pp.github.io/AlgorithmCourse/2023.ht

Leetcode考核说明

- □每周周三8:00到24:00之间,将自己Leetcode截屏发给我学生邮箱 2335346159@qq.com,邮件标题格式为"Leetcode截屏-[姓名]-[学号]-[日期]"
- □每周要求起码做3道题目,题目范围参照课程进度。每周3道题目难度全是简单,当次成绩是及格;有1个中等,当次成绩是良好;有1个困难,当次成绩是优秀。

提纲

- 1.1背景介绍
- 1.2算法基本概念
- 1.3算法与数据结构、程序的关系
- 1.4重要问题类型
- 1.5算法时间复杂度分析
- 1.6一个算法例子: 文本距离

提纲

1.1背景介绍

- 1.2算法基本概念
- 1.3算法与数据结构、程序的关系
- 1.4重要问题类型
- 1.5算法时间复杂度分析
- 1.6一个算法例子: 文本距离

1.1 算法历史

- □"算法"一词的来历
 - >中文的"算法":《九章算术》
 - ▶英文的"算法" (algorithm):

れ): 花拉子米(al-Khw

▶图灵机

1.1 算法历史

- □二十世纪十大著名算法
 - >蒙特卡洛方法: 1946年
 - ▶单纯形法: 1947 年
 - > Krylov子空间迭代法: 1950年
 - ▶矩阵计算的分解方法: 1951 年
 - ▶优化的Fortran编译器: 1957年
 - ▶ 计算矩阵特征值的QR算法: 1959-61 年
 - ▶快速排序算法: 1962年
 - ▶快速傅立叶变换: 1965年
 - ▶整数关系探测算法: 1977年
 - ▶快速多极算法: 1987年

1.1 算法与生活-导航

1.1 算法与生活-导航

1.1 算法与生活-导航

提纲

1.1背景介绍

1.2算法基本概念

1.3算法与数据结构、程序的关系

1.4重要问题类型

1.5算法时间复杂度分析

1.6一个算法例子: 文本距离

- □广义算法
 - >算法是解决问题的方法,如一道菜谱、一个安装电脑的操作指南等。
- □狭义算法: 计算机算法
 - >计算机算法是对特定问题求解步骤的一种描述,是指令的有限序列。

□算法的五个重要特性

图 1.1 算法的概念

- □ "好"算法的五个其他特性
 - ▶正确性
 - >健壮性
 - ▶可理解性
 - ▶抽象分级
 - ▶高效性

□算法的描述方法

▶自然语言

- >流程图
- >程序设计语言
- > 伪代码

武松打死老虎

武松/打死老虎

武松/打/死老虎

Sum=1+2+3+4+5.....+ (n-1) +n为例

- ① 确定一个n的值;
- ② 假设等号右边的算式项中的初始值i为1;
- ③ 假设sum的初始值为O;
- ④ 如果i≤n时,执行⑤,否则转出执行⑧;
- ⑤ 计算sum加上i的值后,重新赋值给sum;
- ⑥ 计算i加1,然后将值重新赋值给i;
- ⑦ 转去执行④;
- ⑧ 输出sum 的值,算法结束。

- □算法的描述方法
 - ▶自然语言
 - >流程图
 - >程序设计语言
 - > 伪代码

□算法的描述方法

- ▶自然语言
- >流程图
- >程序设计语
- > 伪代码

符号	名 称	作用				
	开始、结束符	表示算法的开始和结束符号。				
	输入、输出框	表示算法过程中,从外部获取的信息(输入),然后将处理过的信息输出。 表示算法过程中,需要处理的内容,只有一个入口和一个出口。				
	处理框					
$\langle \rangle$	判断框	表示算法过程中的分支结构。菱形框的4个顶点中。 通常用上面的顶点表示入口,根据需要用其余的顶点表示出口。				
-	流程线	算法过程中的指向流程的方向。				

- □算法的描述方法
 - ▶自然语言
 - >流程图
 - ▶程序设计语言(代码)
 - > 伪代码

- □算法的描述方法
 - ▶自然语言
 - >流程图
 - >程序设计语言
 - >伪代码

```
算法开始
```

```
输入n的值;
              可以加注解
i \leftarrow 1;
            /*为 i 赋初值
            /*为s 赋初值*/
s←0;
While(i<=n) /*循环语句*/
            /*循环开始*/
     s←s+i;
            /*把 i 累加到 s*/
     i←i+1; /*记数*/
             /*循环结束*/
输出 s 的值;
算法结束
```


□算法设计的一般过程

提纲

1.1背景介绍

1.2算法基本概念

1.3算法与数据结构、程序的关系

1.4重要问题类型

1.5算法时间复杂度分析

1.6一个算法例子: 文本距离

□算法与数据结构

▶数据结构是底层,算法高层。数据结构为算法提供服务。算法围绕数据 结构操作。

□算法与程序

- ▶程序是某个算法或过程的在计算机上的一个具体的实现。
- ▶程序是依赖于程序设计语言的,甚至依赖于计算机结构的。
- >算法是脱离具体的计算机结构和程序设计语言的。

提纲

1.1背景介绍

1.2算法基本概念

1.3算法与数据结构、程序的关系

1.4重要问题类型

1.5算法时间复杂度分析

1.6一个算法例子: 文本距离

3/23/2023 25

1.4 重要问题类型

- □查找问题
- □排序问题
- □图问题
- □组合问题
- □几何问题

提纲

- 1.1背景介绍
- 1.2算法基本概念
- 1.3算法与数据结构、程序的关系
- 1.4重要问题类型

1.5算法时间复杂度分析

1.6一个算法例子: 文本距离

3/23/2023 27

□影响软件(算法)性能的因素?请同学们列举几项。

10种排序算法的时间效率比较

算法\输入 数据	N=50 K=50	N=200 K=100	N=500 K=500	N=2000 K=2000	N=5000 K=8000	N=10000 K=20000	N=20000 K=20000	N=20000 K=200000
冒泡排序	0ms	15ms	89ms	1493ms	9363ms	36951ms	147817ms	143457ms
插入排序	1ms	13ms	82ms	1402ms	8698ms	34731ms	134817ms	134836ms
希尔排序	0ms	1ms	6ms	30ms	110ms	257ms	599ms	606ms
选择排序	0ms	5ms	31ms	461ms	2888ms	11736ms	45308ms	44838ms
堆排序	0ms	3ms	9ms	40ms	124ms	247ms	525ms	527ms
归并排序	2ms	6ms	18ms	75ms	199ms	392ms	778ms	793ms
快速排序	0ms	1ms	2ms	14ms	36ms	84ms	196ms	163ms
计数排序	0ms	1ms	1ms	5ms	15ms	32ms	51ms	62ms
基数排序	0ms	1ms	4ms	19ms	47ms	114ms	237ms	226ms
桶排序	0ms	2ms	6ms	25ms	68ms	126ms	254ms	251ms

□算法的好与坏

▶高斯的故事

$$(1+100) + (2+99) \dots +$$

高斯 (数学王子)

高斯: "给我最大快乐的,不是已懂得知识,而是不断的学

习;不是已有的东西,而是不断的获取;不是已达到的高

度,而是继续不断的攀登。"

□百钱百鸡问题

中国古代数学家张丘建在他的《算经》中提出了他的著名的"百钱百鸡问题":鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买百鸡,翁、母、雏各几何?

意思是公鸡每只5元、母鸡每只3元、小鸡3只1元,用100元钱买100只鸡,求公鸡、母鸡、小鸡的只数。

□百钱百鸡问题

回想算法设计过程

首先分析问题,并建立数学模型

如何建立数学模型?

□百钱百鸡问题

```
def chicken_question1():
   # x + y + z = 100
   # 5x + 3y + z/3 = 100
   iCount = 0
   for x in range(1, 20):
      for y in range(1, 33):
         for z in range(1,99):
            iCount = iCount + 1
            if z \% 3 == 0 and 5 * x
+3*y+z/3 == 100 and x+y+z
== 100:
              print('公鸡:', x, '只', '
母鸡: ', y, '只', '小鸡: ', z, '只')
  print('iCount:',iCount)
```

```
def chicken_question2():
   # x + y + z = 100
   # 5x + 3y + z/3 = 100
   iCount = 0
   for x in range(1, 20):
      for y in range(1, 33):
         iCount = iCount + 1
         z = 100 - y - x
         if z \% 3 == 0 and 5 * x
+ 3 * y + z / 3 == 100:
            print('公鸡: ', x, '只', '
母鸡: ', y, '只', '小鸡: ', z, '只')
   print('iCount:',iCount)
```


□百钱百鸡问题

算法1和算法2,哪个运行快?为什么?

□百钱百鸡问题

```
算法1:
```

公鸡: 4 只 母鸡: 18 只 小鸡: 78 只 公鸡: 8 只 母鸡: 11 只 小鸡: 81 只 公鸡: 12 只 母鸡: 4 只 小鸡: 84 只

iCount: 59584

771 function calls in 0.010

Seconds

算法2:

公鸡: 4 只 母鸡: 18 只 小鸡: 78 只 公鸡: 8 只 母鸡: 11 只 小鸡: 81 只 公鸡: 12 只 母鸡: 4 只 小鸡: 84 只

iCount: 608

771 function calls in 0.001

seconds

1.5 算法复杂性分析

□什么样的算法是高效算法?

1.5 算法复杂性分析

□为什么需要高效的算法?

节省时间,存储需求,能源消耗,代价等

使用有限的资源解决大规模输入问题

(CPU, 内存, 硬盘灯)

优化旅行时间,调度冲突等

1.5 算法复杂性分析

- □是关于计算机程序性能和资源利用的研究
 - >时间复杂度分析
 - >空间复杂度分析

- □算法运行时间的衡量方法1-事后统计
 - ▶利用计算机内记时功能。
 - ➤缺点:
 - ①必须先运行依据算法编制的程序;
 - ②所得时间统计量依赖于硬件、软件等环境因素,掩盖算法本身的优劣;
 - ③算法的测试数据设计困难。

- □算法运行时间的衡量方法2-事前分析估计
 - >一个高级语言程序在计算机上运行所消耗的时间取决于:
 - ①依据的算法选用何种策略
 - ②问题的规模
 - ③程序语言
 - ④编译程序产生机器代码质量
 - ⑤机器执行指令速度

□基本概念

- ▶问题规模:指输入量的多少。运行算法所需要的时间T是问题规模n的函数,记作T(n)。
- ▶基本语句: 执行次数与整个算法的执行次数成正比的语句。

问题规模可控

估算算法运行时间的方法

迭代计数: 计算循环的迭代次数

操作计数:找出关键操作,确定这些关键操作所需要的执行次数

渐进符号——运行时间的上界

定义1-1:

若存在两个正的常数c和 n_0 ,对于任意 $n \ge n_0$,都有 $T(n) \le c f(n)$,则称T(n) = O(f(n))。

大O符号描述增长率的上限,表示T(n)的增长最多像f(n)增长的那样快,换言之,当输入规模为n时,算法消耗时间的最大值,这个上限的阶越低,结果越有价值。

该算法的运行时间至多是O(f(n))。

□渐进分析

次数	算法A(2n+3)	算法 A' (2n)	算法B(3n+1)	算法 B'(3n)
n = 1	5	2	4	3
n = 2	h++n+//171	or acdn not	Comila From 7	15 6
n = 3	9	6	10	9
n = 10	23	20	31	30
n = 100	203	200	301	300

□渐进分析

次数	算法 C (4n+8)	算法 C'(n)	算法 D (2n ² +1)	算法 D' (n²)
n = 1	12	1	3	1
n = 2	16	2	9	4
n = 3	http://b200	g. csdn. neg	smile_from ₁₉ (15 9
n = 10	48	10	201	100
n = 100	408	100	20 001	10 000
n = 1000	. 4 008	1 000	2 000 001	1 000 000

渐进符号——运行时间的上界

大 0 符号的含义

析

渐进符号——运行时间的上界

例如: 当有 $T(n) \le 100n + n$ 取 $n_0 = 5$, 对任意 $n \ge n_0$, 有: $T(n) \le 100n + n = 101n$ 令c = 101, f(n) = n, 有: $T(n) \le cn = cf(n)$ 所以T(n) = O(f(n)) = O(n)

析

渐进符号——运行时间的下界

定义1-2

若存在两个正的常数c和 n_0 ,对于任意 $n \ge n_0$,都有 $T(n) \ge cg(n)$,则称 $T(n) = \Omega(g(n))$ 。

大 Ω 符号用来描述增长率的下限,也就是说,当输入规模为n时,算法消耗时间的最小值。与大O符号对称,这个下限的阶越高,结果就越有价值。

该算法的运行时间至少是 $\Omega(g(n))$ 。

渐进符号——运行时间的下界

图 2.2 大 Ω符号的含义

渐进符号——运行时间的下界

例如: 当有 $T(n) \ge n^2 + n \ge n^2$ 取 $n_0 = 1$,任意 $n \ge n_0$,存在常数c = 1, $g(n) = n^2$,使得: $T(n) \ge n^2 = cg(n)$

所以, $T(n)=\Omega(g(n))$

渐进符号——运行时间的准确界

 Θ 符号(运行时间的准确界) 定义1.3 若存在三个正的常数 c_1 、 c_2 和 n_0 ,对于 任意 $n \ge n_0$,都有 $c_1 g(n) \ge T(n) \ge c_2 \times g(n)$,则称 $T(n) = \Theta(g(n))$ 。

 Θ 符号意味着T(n)与g(n)同阶,用来表示算法的精确阶。

渐进符号——运行时间的准确界

渐进符号——运行时间的准确界

例1
$$T(n) = 3n-1$$

例2
$$T(n) = 5n^2 + 8n + 1$$

常用的级数公式及复杂度

```
❖ 算数级数:T(n) = 1 + 2 + ... + n = n(n+1)/2 = Ø(n²)
❖ 平方级数:T(n) = 1<sup>2</sup> + 2<sup>2</sup> + ... + n<sup>2</sup> = n(n+1)(2n+1)/6 = Ø(n<sup>3</sup>)
◆ 幂级数: T<sub>a</sub>(n) = a<sup>0</sup> + a<sup>1</sup> + a<sup>2</sup> + ... + a<sup>n</sup>, a > 0
  最常见: 1+2+4+ ... +2<sup>n</sup> = 2<sup>n+1</sup>-1 = 0(2<sup>n+1</sup>) = 0(2<sup>n</sup>)//总和与末项同阶
❖ 收敛: 1/1/2 + 1/2/3 + 1/3/4 + ... + 1/(n-1)/n = 1 - 1/n = Ø(1)
          1 + 1/2^2 + ... + 1/n^2 < 1 + 1/2^2 + ... = \pi^2/6 = 0(1)
❖ 有必要讨论这类级数吗?难道,基本操作次数、存储单元数可能是分数?
❖ 调和级数:h(n) = 1 + 1/2 + 1/3 + ... + 1/n = Θ(logn)
          // h(n) < 1 + \int_{1\sim n} 1/x = 1 + lnn = O(logn)
          // h(n) > \int_{1\sim n+1} 1/x = \ln(n+1) = \Omega(\log n)
❖ 对数级数:log1 + log2 + log3 + ... + logn = log(n!) = Θ(nlogn)
```


常用的级数公式及复杂度

常用的求和公式(级数求和).docx

渐进符号——渐进比较

传递性

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ \Rightarrow $f(n) = \Theta(h(n))$

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$ \Rightarrow $f(n) = O(h(n))$

$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$ \Rightarrow $f(n) = \Omega(h(n))$

3/23/2023 5⁻⁻

渐进符号——渐进比较

自反性

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

渐进符号——渐进比较

对称性

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

- 1.最好情况时间复杂度(best case time complexity)。
- 2.最坏情况时间复杂度(worst case time complexity)。
- 3.平均情况时间复杂度(average case time complexity)。
- 4.均摊时间复杂度(amortized time complexity)。

3/23/2023 6C

- □三种情况下的时间复杂性
 - ▶最坏情况

$$T_{max}(n) = max\{ T(1) \mid size(1)=n \}$$

▶最好情况

$$T_{min}(n) = min\{ T(1) \mid size(1)=n \}$$

>平均情况

$$T_{avg}(n) = \sum_{size(I)=N} p(I)T(I)$$

其中,/是问题的规模为n的实例,p(1)是实例/出现的概率。

表 2-2 输入规模为 100 万个数据元素时的最好、最坏及平均情况排序时间(单位:毫秒)

排序算法	平均情况	最坏情况 (逆序)	最好情况(正序)
胃泡排序	549 432 478 694	1 534 035 587 240	366 936 367 658
选择排序			
插入排序	253 115	515 621	0.897
希尔排序/增量3	61	203	35
堆排序	79	126	74.8
归并排序	70	140	61
快速排序	39	93	30
基数排序/进制 100	117	118	116
基数排序/进制 1 000	89	90	88

□非递归算法分析的一般步骤

- 1. 决定用哪个(或哪些)参数作为算法问题规模的度量可以从问题的描述中得到。
- 2. 找出算法中的基本语句 通常是最内层循环的循环体。
- 3. 检查基本语句的执行次数是否只依赖于问题规模 如果基本语句的执行次数还依赖于其他一些特性,则需要分别研究最好情况、最坏情况和平均情况的效率。
- 4. 建立基本语句执行次数的求和表达式 计算基本语句执行的次数,建立一个代表算法运行时间的求和表达式。
- 5. 用渐进符号表示这个求和表达式 计算基本语句执行次数的数量级,用大*O*符号来描述算法增长率的上限。

□小结:

基本技术:

- ◆根据循环统计基本 语句次数
- ◆用递归关系统计基 本语句次数
- ◆用平摊方法统计基 本语句次数

选取基本语句

统计基本语句频数

计算并简化统计结果

渐近复杂度:

 $O \setminus \Omega \setminus \Theta$

标准:

- ●平均时间复杂
- ●最坏时间复杂
- ●最好时间复杂度

基本技术:

- ●常用求和公式
- ●定积分近似求和
- ●递归方程求解

提纲

- 1.1算法历史
- 1.2算法与生活
- 1.3算法基本概念
- 1.4算法与数据结构、程序的关系
- 1.5重要问题类型
- 1.6算法时间复杂度分析

1.7一个算法例子: 文本距离

Given two documents, how similar are they?

- Applications:
 - Find similar documents
 - Detect plagiarism / duplicates
 - Web search(one "document" is query)
 - 自动客服

□向量空间模型(Vector Space Model, VSM)

- How to define "document"?
- Word = sequence of alphanumeric characters
- **Document** = sequence of words

Ignore punctuation & formatting

- □向量空间模型(Vector Space Model, VSM)
 - How to define "distance"?
 - Idea: focus on shared words
 - Word frequencies:
 - D(w) = #
 occurrences of word
 w in document D

3/23/2023 6°C

- □向量空间模型(Vector Space Model, VSM)
 - Treat each document D as a vector of its words
 - One coordinate D(w) for every possible word w
 - · Example:

$$-D_1$$
 = "the cat"

$$-D_2$$
 = "the dog"

- Similarity between vectors?
 - Dot product:

$$D_1 \cdot D_2 = \sum_{w} D_1(w) \cdot D_2(w)$$

http://portal.acm.org/citation.cfm?id=361220

- Problem: Dot product not scale invariant
- Example 1:

$$-D_1$$
 = "the cat"

$$-D_2$$
 = "the dog"

$$-D_1 \cdot D_2 = 1$$

Example 2:

 $-D_1$ = "the cat the cat"

 $-D_2$ = "the dog the dog"

$$-D_1 \cdot D_2 = 4$$

http://portal.acm.org/citation.cfm?id=361220

• Idea: Normalize by # words:

$$\cos \theta = \frac{D_1 \cdot D_2}{||D_1|| \cdot ||D_2||}$$

 Geometric solution: angle between vectors

$$\theta(D_1, D_2) = \arccos \frac{D_1 \cdot D_2}{||D_1|| \cdot ||D_2||}$$

-0 = "identical", 90° = orthogonal (no shared words)

http://portal.acm.org/citation.cfm?id=361220

Algorithm

- 1.Read documents
- 2. Split each document into words
- 3. Count word frequencies (document vectors)
- 4.Compute document distance

□Algorithm

- 1. Read documents
- 2. Split each document into words
 - re.findall('\w+', doc)
 - But how does this actually work?
- 3. Count word frequencies (document vectors)
- 4. Compute dot product

Algorithm

1. Read documents

2. Split each document into words

For each line in document:

 For each character in line:
 If not alphanumeric:
 Add previous word
 (if any) to list

 Start new word

- 3. Count word frequencies (document vectors)
- 4. Compute dot product

Algorithm

- 1. Read documents
- 2. Split each document into words
- 3. Count word frequencies (document vectors)
 - a. Sort the word list
 - b. For each word in word list:
 - If same as last word:
 Increment counter
 - Else:

Add last word and its counter to list Reset counter to 0

4. Compute dot product

Algorithm

- 1. Read documents
- 2. Split each document into words
- 3. Count word frequencies (document vectors)

4. Compute dot product:

For every possible word: $\leftarrow \infty$ iterations...

Look up frequency in each document

Multiply

Add to total

Algorithm

- 1. Read documents
- 2. Split each document into words
- 3. Count word frequencies (document vectors)

4. Compute dot product:

For every word in first document: (ω_1) iterations If it appears in second document: (ω_2) Multiply word frequencies Add to total (ω_1)

Algorithm

- 1. Read documents
- 2. Split each document into words
- 3. Count word frequencies (document vectors)

4. Compute dot product:

a. Start at first word of each document (in sorted order)

b. If words are equal:Multiply word frequenciesAdd to total

 In whichever document has lexically lesser word, advance to next word

d. Repeat until either document out of words

□Python Implementations:详见代码

- >docdist1.py
- >docdist2.py
- >docdist3.py
- >docdist4.py
- >docdist5.py
- >docdist6.py
- >docdist7.py
- >docdist8.py

□Python Profiling

import cProfile cProfile.run("main()")

File t2.bobsey.txt: 6667 lines,49785 words,3354 distinct words
File t3.lewis.txt: 15996 lines,182355 words,8530 distinct words
The distance between the documents is: 0.574160 (radians)
3309360 function calls in 33.453 seconds

Ordered by: standard name

```
ncalls tottime percall cumtime percall filename: lineno (function)
                      33.453 33.453 <string>:1(<module>)
       0.001 0.001
   1
       0.000 0.000 0.000 bootlocale.py:11(getpreferredencoding)
      0.000 0.000 28.484 14.242 docdist1.py:100(word_frequencies_for_file)
       4.964 1.655 4.964 1.655 docdist1.py:116(inner_product)
   3
   1
       0.000 0.000 4.964 4.964 docdist1.py:131(vector_angle)
      0.004 0.004 33.452 33.452 docdist1.py:141(main)
   1
     0.000 0.000 0.012 0.006 docdist1.py:37(read_file)
   2
                                9.401 docdist1.py:49(get_words_from_line_list)
     17.998 8.999 18.803
                                 0.000 docdist1.py:61(get_words_from_string)
22663
         0.529 0.000
                         0.805
                               4.834 docdist1.py:86(count_frequency)
       9.666
              4.833 9.668
                               0.000 iostream.py:195(schedule)
  41
       0.000 0.000
                     0.001
                               0.000 iostream.py:307(_is_master_process)
  38
       0.000
              0.000
                       0.000
                               0.000 iostream.py:320(_schedule_flush)
  38
       0.000
              0.000
                       0.000
       0.000
              0.000
                      0.001
                               0.000 iostream.py:382(write)
  38
  41
       0.000
              0.000
                      0.000
                               0.000 iostream.py:93(_event_pipe)
                               0.000 socket.py:334(send)
  41
       0.000
              0.000
                       0.000
                               0.000 threading.py:1038(_wait_for_tstate_lock)
  41
       0.000
               0.000
                       0.000
                               0.000 threading.py:1080(is_alive)
  41
       0.000
               0.000
                       0.000
```

算法是什么? 总结

- □从哲学角度看: 算法是解决一个问题的抽象行为序列。
- □从技术层面上看: 算法是一个计算过程, 它接受一些输入, 并产生某些输出。
- □从抽象层次上看: 算法是一个将输入转化为输出的计算步骤序列。
- □从宏观层面上看: 算法是解决一个精确定义的计算问题的工具。