OCENIANIE ARKUSZA POZIOM PODSTAWOWY

Uwagi dla sprawdzającego			Jeśli zdający nie wprowadzi opisu niewiadomej i nie sformułuje odpowiedzi, to za tę czynność nie przyznajemy punktu.				Jeśli zdający zapisze $ AD = a + 2$ wtedy otrzymuje równanie $2a(a+2) = a^2 + 12$. Rozwiązaniem tego równania są liczby: $a_1 = -6$, $a_2 = 2$. Zdający zapisze odpowiedź: żadna z tych liczb nie spełnia warunków zadania. Punktujemy to rozwiązanie następująco: 0, 2, 1.
Liczba punktów	1		1	1	1	1	1
Etapy rozwiązania zadania	Zapisanie ceny wycieczki po podwyżce, np. $x+5\%x$, gdzie x oznacza pierwotną cenę wycieczki.	Zapisanie równania: $0.92 \cdot (1.05 \cdot x) = 1449$.	Rozwiązanie równania: $x = 1500$ i sformułowanie odpowiedzi.	II sposób rozwiązania. Obliczenie ceny wycieczki przed obniżką: 1449:0,92 = 1575 zł.	Obliczenie ceny wycieczki przed podwyżką: 1575:1, 05 = 1500 zł.	Podanie odpowiedzi: 1500 zł.	2.1 Zapisanie długości boków prostokąta: $ AB = 2a$, $ AD = a - 2$.
	1.1	1.2	1.3	1.1	1.2	1.3	2.1
Numer zadania			,	_;			2.

	2.2	Zapisanie i rozwiązanie równania: $2a \cdot (a-2) = a^2 + 12$ $a = 6$ lub $a = -2$. 1 pkt za napisanie równania. 1 pkt za rozwiązanie równania. Uwaga! Zdający może napisać równanie w następujący sposób: $a(a-4) = 12$.	2	Jeśli równanie nie jest dobrze ułożone, ale jest to równanie kwadratowe zupełne i zdający rozwiąże je poprawnie, to punktujemy następująco: czynność 2.2 – 1 punkt, czynność 2.3 – 0 punktów.
	2.3	Wybór i podanie odpowiedzi: $a = 6$ cm.	1	
		Wykorzystanie do analizy zadania warunku styczności zewnętrznej dwóch okręgów, np. zaznaczenie na rysunku odcinka łączącego "środki półkoli". ✓ d →	-	
	3.1	2r = 120	-	
ĸ,	3.2	Za skorzystanie z twierdzenia Pitagorasa lub własności trójkąta prostokątnego, w którym jeden z kątów ostrych ma miarę 60° .	1	
	3.3	Obliczenie długości odcinka d : $d = 60\sqrt{3}$ cm.	1	Dopuszczamy operacje na wartościach przybliżonych pod warunkiem, że pozwalają uzyskać poprawne żądane zaokrąglenie.
	3.4	Obliczenie szukanej długości prostokąta: $120 + 60\sqrt{3} = 60(2 + \sqrt{3})$ cm.	1	
	3.5	3.5 Podanie długości z wymaganym zaokragleniem: 224 cm.	-	

	1.4	Podzielenie wielomianu $W(x)$ przez dwumian $2x + 1$: $W_1(x) = (-2x^4 + 5x^3 + 9x^2 - 15x - 9) : (2x + 1) = -x^3 + 3x^2 + 3x - 9.$	_	Po zastosowaniu schematu Hornera zdający otrzyma inny wynik częściowy: $(-2x^4 + 5x^3 + 9x^2 - 15x - 9): \left(x + \frac{1}{2}\right) =$ $= -2x^3 + 6x^2 + 6x - 18.$ Zdający może wyłączyć (-1) przed nawias i też otrzyma inny wynik częściowy: $-(2x^4 - 5x^3 - 9x^2 + 15x + 9): (2x + 1) =$ $= -(x^3 - 3x^2 - 3x + 9).$
4.	4.2	Rozłożenie wielomianu $W_1(x)$ na czynniki: $-x^3 + 3x^2 + 3x - 9 = (x - 3) \cdot (3 - x^2)$.	1	
	4.3	Podanie pierwiastków wielomianu: $-\sqrt{3}$, $-\frac{1}{2}$, $\sqrt{3}$, 3.	1	
	4.2	II sposób rozwiązania. A.2 Znalezienie drugiego pierwiastka $x = 3$ i wykonanie dzielenia: $ (-x^3 + 3x^2 + 3x - 9) : (x - 3) = (3 - x^2). $	1	
	4.3	Rozwiązanie równania $3-x^2=0$ i podanie pierwiastków: $-\sqrt{3}, -\frac{1}{2}, \sqrt{3}, 3.$	1	
5.	5.1	Zaznaczenie półpłaszczyzny $2x - y - 3 \le 0$.	1	
	5.2	Zaznaczenie półpłaszczyzny $2x-3y-7 \le 0$.		
	5.3	5.3 Zaznaczenie szukanego kąta.	1	Punkt przyznajemy tylko wtedy, gdy kąt jest wyraźnie zaznaczony.

	5.4	Obliczenie współrzędnych punktu P : $P = \left(\frac{1}{2}, -2\right)$.	1	Dopuszczamy możliwość, że zdający odczyta z wykresu współrzędne punktu <i>P</i> . Musi jednak sprawdzić poprawność odczytu przez podstawienie współrzędnych do obu równań.
	5.5	Obliczenie długości odcinka PS : $ PS = 6,5$.	-	
	6.1	Wyznaczenie liczby wszystkich kul w umie: 1230.	6	1 pkt przyznajemy za zastosowanie wzoru na sumę S_{41} ciągu arytmetycznego, gdzie $a_1 = 10$, $r = 1$ lub $(S_{50} - S_9)$ gdzie $a_1 = 1$, $r = 1$. 1 pkt za poprawne obliczenia. Jeśli zdający wykona obliczenia na kalkulatorze i poda prawidłową odpowiedź przyznajemy 2 pkt.
9	6.2	Wyznaczenie liczby wszystkich kul w urnie z numerami parzystymi: 630.	2	I pkt za za zastosowanie wzoru na sumę S_{21} ciągu arytmetycznego, gdzie $a_1 = 10$, $r = 2$. I pkt za poprawne obliczenia. Jeśli zdający wykona obliczenia na kalkulatorze i poda prawidłową odpowiedź przyznajemy 2 pkt.
	6.3	Obliczenie prawdopodobieństwa: $\frac{21}{41}$.	1	Jeśli metody zastosowane w czynnościach 6.1 i 6.2 są poprawne, ale wystąpiły błędy rachunkowe, to przyznajemy punkt w czynności 6.3. W przypadku błędu merytorycznego w czynności 6.1 lub 6.2 nie przyznajemy punktu w czynności 6.1.

					Zdający może pominąć w rozwiązaniu jednostki.
	1	1	1	1	1
Przyjęcie oznaczeń, np. a – długość krawędzi podstawy, b – długość krawędzi bocznej, c – długość przekątnej ściany bocznej, a – miara kąta jaki tworzy przekątna ściany bocznej z przekątna podstawy, lub wykonanie rysunku graniastosłupa z zaznaczonymi powyżej oznaczeniami.	7.2 Obliczenie długości krawędzi podstawy: $a = 4\sqrt{2}$ cm.	7.3 Obliczenie długości przekątnej ściany bocznej: $c = 6$ cm.	7.4 Obliczenie długości krawędzi bocznej: $b = 2$ cm.	7.5 Obliczenie objętości graniastosłupa: $V = 64 \text{ cm}^3$.	7.6 Obliczenie pola powierzchni całkowitej graniastosłupa: $32(2+\sqrt{2})$ cm ² .
7.1	7.2	7.3	7.4	7.5	7.6
7.					

	8.1	8.1 Podanie przedziałów, w których funkcja jest rosnąca: $\langle -3, 0 \rangle$ i $\langle 3, 6 \rangle$.		Przyjmujemy również odpowiedzi, w których zdający podaje przedziały (-3,0) i (3,6) (również jednostronnie domknięte).
×	8.2	Podanie zbioru argumentów, dla których funkcja przyjmuje wartości dodatnie: $(-6,-5) \cup (-1,1) \cup (5,6)$.	1	Zdający może zapisać odpowiedzi w postaci nierówności.
;	8.3	8.3 Podanie największej wartości funkcji f w przedziale $\langle -5,5 \rangle$: 1.	1	Możemy przyjąć jako poprawne odpowiedzi: $f(0)$ lub " dla $x = 0$ ".
	8.4	8.4 Podanie miejsc zerowych funkcji g: -4, 0, 2, 6.	1	
	8.5	8.5 Wyznaczenie najmniejszej wartości funkcji <i>h</i> : –2.	1	
	9.1	Obliczenie średniego wyniku testu w każdej z klas I A i I B: średnia w klasie I A = 5.6 , średnia w klasie I B = 6.08 .	2	Po 1 punkcie za każdy poprawny wynik.
9.	9.2	9.2 Podanie odpowiedzi: 48%.	1	
	9.3	9.3 Wyznaczenie mediany dla klasy I A: mediana = 5,5.	1	

		7		
		Zaznaczenie zbiotu A na osi uczbowej	_	Zapis algebraiczny $A = (-\infty, 2) \cup (8, +\infty)$ nie
	10.1	▼	1	jest oceniany. Jeśli zdający nie zaznaczy, jaki jest charakter końców odcinków, nie przyznajemy punktów.
		Zaznaczenie zbioru B na osi liczbowej:.		Zapis algebraiczny $B = (-\infty, -3) \cup (3, +\infty)$ nie
	10.2	-++++++++++++++++++++++++++++++++++++	-	jest oceniany. Jeśli zdający nie zaznaczy, jaki jest charakter końców odcinków, nie przyznajemy punktów.
				1 pkt przyznajemy gdy zdający:algebraicznie rozwiąże nierówność, np.
		Zaznaczenie zbioru C na osi liczbowej:		mnoży przez $(x-1)^2$ i w odpowiedzi nie
				uwzględni warunku $x \neq 1$,
10.	10.2	4 ++++++++++++++++++++++++++++++++++++	c	 rozwiąże graficznie (poprawnie narysuje wykres funkcji homograficznej ale źle
	0.01		۷	odczyta zbiór argumentów),
		dul		 doprowadzi nierówność do postaci
		0.1		$\frac{2}{x-1} \le 0$ (dalej nie potrafi rozwiązać).
		1 pkt za prawidłowe rozwiazanie nierówności,		Jeżeli zdający pomnoży obie strony nierówności
		1 pkt za zaznaczenie zbioru na osi liczbowej.		przez $(x-1)$ ouzymuje o pkt.
	10.4	Wyznaczenie zbioru $A \cap B : A \cap B = (-\infty, -3) \cup (8, +\infty)$.	1	Jeśli zdający wykonał rysunek, to takiej
				oupowiedzi ine ocenianiy. Jeśli zdający popełnił błędy przy wyznaczaniu
	10.5	10.5 Wyznaczenie zbioru $C \setminus (A \cap B)$: $C \setminus (A \cap B) = (-3,1)$.		zbiorów A, B, C, ale błędy te nie ułatwiły
				rozwiązania podpunktu b), to przyznajemy punkty za czynności 10.4 i 10.5.

	11.1	11.1 Zapisanie wzoru funkcji: $f(x) = \frac{1}{2}x^2 - 8$.	1	
=	11.2	Podanie pierwszej współrzędnej wierzchołka paraboli: $x_v = 0$ i $x_v \notin \langle -4, -2 \rangle$.	1	
	11.3	Obliczenie wartości funkcji na końcach przedziału: $f(-4) = 0$, $f(-2) = -6$.	1	Zdający może narysować wykres funkcji i na jego podstawie rozwiązać podpunkt b).
	11.4	11.4 Sformułowanie wniosku dotyczącego wartości najmniejszej.	-	

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.