

c.
$$y(x'z + xz') + x(yz + yz') = x'yz + xyz' + xyz' + xyz'$$
 Distributive/Commutative
 $= x'yz + xyz + xyz'$ Idempotent
 $= x'yz + xyz + xyz + xyz'$ Idempotent
 $= (x'+x)yz + xy(z+z')$ Distributive
 $(x'+x)yz + xyz + xyz'$ Inverse
 $= xy + yz$ Identity

d. Truth table for F(x,y,z) = xy + yz

0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	1	1

e. Logic diagram for F(x, y, z) = xy + yz

= x(x'y + yz' + x'z + zz') Distributive = xx'y + xyz' + xx'z + xzz' Distributive = 0 + xyz' + 0 + 0 Inverse/Null

Distributive/Commutative

b) xy + xyz + xy'z + x'y'z = xy(1 + z) + (x + x')y'z

Distributive Idempotent

= xy/z + xy'(z + z')

Inverse

Distributive

DeMorgan

Distributive

		0	0
	1	0	0
1	0	1	0
1	1	0	1
		1	0
	1	0	1
		1	1
1	1	1	1

