Scott ranks of models of arithmetic

Mateusz Łełyk

Faculty of Philosophy, University of Warsaw

15.07.2024

The language of arithmetic \mathcal{L}_{PA} , officially contains

The language of arithmetic \mathcal{L}_{PA} , officially contains

• constants 0, 1,

The language of arithmetic \mathcal{L}_{PA} , officially contains

- constants 0, 1,
- function symbols $+, \times$,

The language of arithmetic \mathcal{L}_{PA} , officially contains

- constants 0, 1,
- function symbols $+, \times$,
- relation <.

The language of arithmetic \mathcal{L}_{PA} , officially contains

- constants 0, 1,
- function symbols $+, \times$,
- relation <.

Definition

The system PA⁻ contains the axioms of non-negative parts of discretely-ordered rings.

The language of arithmetic \mathcal{L}_{PA} , officially contains

- constants 0, 1,
- function symbols $+, \times$,
- relation <.

Definition

The system PA⁻ contains the axioms of non-negative parts of discretely-ordered rings. PA extends PA⁻ with the induction scheme, to wit, the collection of sentences

$$\phi(0) \land \forall x (\phi(x) \to \phi(x+1)) \longrightarrow \forall x \phi(x),$$

where ϕ might contain free variables other than x.

The language of arithmetic \mathcal{L}_{PA} , officially contains

- constants 0, 1,
- function symbols $+, \times$,
- relation <.

Definition

The system PA⁻ contains the axioms of non-negative parts of discretely-ordered rings. PA extends PA⁻ with the induction scheme, to wit, the collection of sentences

$$\phi(0) \wedge \forall x (\phi(x) \to \phi(x+1)) \longrightarrow \forall x \phi(x),$$

where ϕ might contain free variables other than x.

Remark

PA is biinterpretable with $ZF \setminus \{Infty\} + \neg Infty + TC$.

Suppose $\mathcal{M} \models \mathsf{PA}$

• Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$.

Suppose $\mathcal{M} \models PA$

• Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$. Then $K(\mathcal{M}) \preceq \mathcal{M}$.

Suppose $\mathcal{M} \models \mathsf{PA}$

• Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$. Then $K(\mathcal{M}) \preceq \mathcal{M}$. In fact, $K(\mathcal{M})$ is the prime model of $\mathsf{Th}(\mathcal{M})$.

Suppose $\mathcal{M} \models \mathsf{PA}$

- Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$. Then $K(\mathcal{M}) \preceq \mathcal{M}$. In fact, $K(\mathcal{M})$ is the prime model of $\mathsf{Th}(\mathcal{M})$.
- Finitely generated models. Let $K(\mathcal{M}, a)$ be the submodel of \mathcal{M} generated by $Def(\mathcal{M}, a)$. Then $a \in K(\mathcal{M}, a) \preceq \mathcal{M}$.

Suppose $\mathcal{M} \models \mathsf{PA}$

- Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$. Then $K(\mathcal{M}) \preceq \mathcal{M}$. In fact, $K(\mathcal{M})$ is the prime model of $\mathsf{Th}(\mathcal{M})$.
- Finitely generated models. Let $K(\mathcal{M}, a)$ be the submodel of \mathcal{M} generated by $Def(\mathcal{M}, a)$. Then $a \in K(\mathcal{M}, a) \preceq \mathcal{M}$.
- Recursively saturated models. \mathcal{M} is recursively saturated if every recursive set of formulae with finitely many parameters which is consistent with $\mathsf{Th}((\mathcal{M},a)_{a\in\mathcal{M}})$ is realized in \mathcal{M} .

Suppose $\mathcal{M} \models \mathsf{PA}$

- Prime models. Let $K(\mathcal{M})$ be the submodel of \mathcal{M} generated by $\mathsf{Def}(\mathcal{M})$. Then $K(\mathcal{M}) \preceq \mathcal{M}$. In fact, $K(\mathcal{M})$ is the prime model of $\mathsf{Th}(\mathcal{M})$.
- Finitely generated models. Let $K(\mathcal{M}, a)$ be the submodel of \mathcal{M} generated by $Def(\mathcal{M}, a)$. Then $a \in K(\mathcal{M}, a) \leq \mathcal{M}$.
- Recursively saturated models. \mathcal{M} is recursively saturated if every recursive set of formulae with finitely many parameters which is consistent with $\mathsf{Th}((\mathcal{M},a)_{a\in\mathcal{M}})$ is realized in \mathcal{M} .

Remark

Prime models and countable recursively saturated models of PA are homogeneous.

The structural complexity of models of PA

Theorem (Montalbán and Rossegger, 2023)

- **1** For every $\alpha \geq \omega$ there is a model of PA of Scott rank exactly α .
- **2** Assume that $\mathcal{M} \models PA$.
 - If \mathcal{M} is standard, then $SR(\mathcal{M}) = 1$. If \mathcal{M} is nonstandard, then $SR(\mathcal{M}) \geq \omega$.
 - If $\mathcal{M} = K(\mathcal{M})$ is nonstandard, then $SR(\mathcal{M}) = \omega$.
 - If \mathcal{M} is homogeneous, then $SR(\mathcal{M}) \leq \omega + 1$.

The structural complexity of models of PA

Theorem (Montalbán and Rossegger, 2023)

- **1** For every $\alpha \geq \omega$ there is a model of PA of Scott rank exactly α .
- **2** Assume that $\mathcal{M} \models PA$.
 - If \mathcal{M} is standard, then $SR(\mathcal{M}) = 1$. If \mathcal{M} is nonstandard, then $SR(\mathcal{M}) \geq \omega$.
 - If $\mathcal{M} = K(\mathcal{M})$ is nonstandard, then $SR(\mathcal{M}) = \omega$.
 - If \mathcal{M} is homogeneous, then $SR(\mathcal{M}) \leq \omega + 1$.

Question

What are the models of PA of rank ω ?

Models of rank ω

Theorem (Ł., Szlufik)

Assume $\mathcal{M} \models \mathsf{PA}$ and $\mathsf{a} \in \mathsf{M}$ is undefinable. Then the automorphism orbit of a is not $\Sigma^{\mathsf{inf}}_\omega$ definable.

Let $\mathcal{M} \models PA$.

Let $\mathcal{M} \models PA$. We say that a type p(x, a) is coded in \mathcal{M}

Let $\mathcal{M} \models \mathsf{PA}$. We say that a type p(x,a) is coded in \mathcal{M} if there is a $c \in \mathcal{M}$ such that for every formula $\phi(x,y)$

$$\phi(x, a) \in p(x, a) \iff \mathcal{M} \models \lceil \phi(x, y) \rceil \in c.$$

Let $\mathcal{M} \models \mathsf{PA}$. We say that a type p(x,a) is coded in \mathcal{M} if there is a $c \in \mathcal{M}$ such that for every formula $\phi(x,y)$

$$\phi(x, a) \in p(x, a) \iff \mathcal{M} \models \lceil \phi(x, y) \rceil \in c.$$

Lemma

Let p(x, a) be a \sum_{n} -type over \mathcal{M} . Then

- If p(x, a) is coded in \mathcal{M} , then p(x, a) is realized in \mathcal{M} .
- ② If for some b, $p(x, a) = \{\phi(x, a) \in \Sigma_n : \mathcal{M} \models \phi(b, a)\}$, then it is coded.

Let $\mathcal{M} \models \mathsf{PA}$. We say that a type p(x,a) is coded in \mathcal{M} if there is a $c \in \mathcal{M}$ such that for every formula $\phi(x,y)$

$$\phi(x, a) \in p(x, a) \iff \mathcal{M} \models \lceil \phi(x, y) \rceil \in c.$$

Lemma

Let p(x, a) be a Σ_n -type over \mathcal{M} . Then

- If p(x, a) is coded in \mathcal{M} , then p(x, a) is realized in \mathcal{M} .
- ② If for some b, $p(x, a) = \{\phi(x, a) \in \Sigma_n : \mathcal{M} \models \phi(b, a)\}$, then it is coded.

Proof (1). Assume that c codes p(x, a) and consider a formula $\psi(y)$

$$\exists x \forall \phi < y (\phi \in c \rightarrow \mathsf{Sat}_n(\phi, \langle x, a \rangle)).$$

Let $\mathcal{M} \models \mathsf{PA}$. We say that a type p(x,a) is coded in \mathcal{M} if there is a $c \in \mathcal{M}$ such that for every formula $\phi(x,y)$

$$\phi(x, a) \in p(x, a) \iff \mathcal{M} \models \lceil \phi(x, y) \rceil \in c.$$

Lemma

Let p(x, a) be a \sum_{n} -type over \mathcal{M} . Then

- If p(x, a) is coded in \mathcal{M} , then p(x, a) is realized in \mathcal{M} .
- ② If for some b, $p(x, a) = \{\phi(x, a) \in \Sigma_n : \mathcal{M} \models \phi(b, a)\}$, then it is coded.

Proof (2). Assume d realizes p(x, a) and consider the type p'(x, a, d)

$$\{\phi(d,a) \equiv \lceil \phi(v,w) \rceil \in x : \phi \in \Sigma_n\}$$

Lemma

Let p(x, a) be a \sum_{n} -type over \mathcal{M} . Then

- If p(x, a) is coded in \mathcal{M} , then p(x, a) is realized in \mathcal{M} .
- ② If p(x, a) is \sum_{n} -complete and realized in \mathcal{M} , then it is coded.

Lemma

Let p(x, a) be a \sum_{n} -type over \mathcal{M} . Then

- If p(x, a) is coded in \mathcal{M} , then p(x, a) is realized in \mathcal{M} .
- ② If p(x, a) is \sum_{n} -complete and realized in \mathcal{M} , then it is coded.

Lemma

Suppose $\mathcal{M} \models \mathsf{PA}$, $a, b \in M$. Then, for every n, the following are equivalent:

- \sum_{n}^{inf} -types of a, b are the same.
- Σ_n -types of a, b are the same.

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Proof sketch (due to Fuchs-Gitman-Hamkins): assume F(a) = b, where F is an \mathcal{M} -definable total function.

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Proof sketch (due to Fuchs-Gitman-Hamkins): assume F(a) = b, where F is an \mathcal{M} -definable total function. Assume a < b (the other case being symmetric).

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Proof sketch (due to Fuchs-Gitman-Hamkins): assume F(a) = b, where F is an \mathcal{M} -definable total function. Assume a < b (the other case being symmetric). Put

$$xRy \iff F(y) = x \land y < x.$$

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Proof sketch (due to Fuchs-Gitman-Hamkins): assume F(a) = b, where F is an \mathcal{M} -definable total function. Assume a < b (the other case being symmetric). Put

$$xRy \iff F(y) = x \land y < x.$$

Then (\mathcal{M}, R) is a forest and we have bRa.

Lemma (Ehrenfeucht)

If $M \models PA$, $a \neq b \in M$ and b is definable from a, then the types of a and b are different.

Proof sketch (due to Fuchs-Gitman-Hamkins): assume F(a) = b, where F is an \mathcal{M} -definable total function. Assume a < b (the other case being symmetric). Put

$$xRy \iff F(y) = x \land y < x.$$

Then (\mathcal{M}, R) is a forest and we have bRa. Now a, b differ on the following formula

"The shortest path between me and the least element of my connected component is of even length".

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ_{ω}^{inf} -definable.

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ^{inf}_{ω} -definable. It follows that for some $n \in \omega$, the orbit of a is Σ^{inf}_{n} -definable.

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ^{\inf}_{ω} -definable. It follows that for some $n \in \omega$, the orbit of a is Σ^{\inf}_{n} -definable. By the lemmas it is enough to find $b \in \mathcal{K}(\mathcal{M},a)$ which has the same Σ_{n} type as a.

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ_{ω}^{inf} -definable. It follows that for some $n \in \omega$, the orbit of a is Σ_{n}^{inf} -definable. By the lemmas it is enough to find $b \in K(\mathcal{M}, a)$ which has the same Σ_{n} type as a. By MOPA folklore $K(\mathcal{M}, a) \prec \mathcal{M}$.

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ_{ω}^{inf} -definable. It follows that for some $n \in \omega$, the orbit of a is Σ_{n}^{inf} -definable. By the lemmas it is enough to find $b \in K(\mathcal{M}, a)$ which has the same Σ_{n} type as a. By MOPA folklore $K(\mathcal{M}, a) \prec \mathcal{M}$. By induction, the Σ_{n} -type of a is coded (in $K(\mathcal{M}, a)$) and so is the type

$$p(x) := \{\phi(x) \land x \neq a : K(\mathcal{M}, a) \models \phi(a), \phi \in \Sigma_n\}.$$

Proof sketch

Assume that $a \in M$ is undefinable but the automorphism orbit of a is Σ_{ω}^{inf} -definable. It follows that for some $n \in \omega$, the orbit of a is Σ_{n}^{inf} -definable. By the lemmas it is enough to find $b \in K(\mathcal{M}, a)$ which has the same Σ_{n} type as a. By MOPA folklore $K(\mathcal{M}, a) \prec \mathcal{M}$. By induction, the Σ_{n} -type of a is coded (in $K(\mathcal{M}, a)$) and so is the type

$$p(x) := \{\phi(x) \land x \neq a : K(\mathcal{M}, a) \models \phi(a), \phi \in \Sigma_n\}.$$

By induction and the undefinability of a, it follows that p(x) is realized in $K(\mathcal{M},a)$ and we are done.

Definition (Kalociński)

Theory T has the simplest model property, SMP, if up to an iso, T has exactly one model of the least rank.

Definition (Kalociński)

Theory T has the simplest model property, SMP, if up to an iso, T has exactly one model of the least rank.

Corollary

Every completion of PA has SMP.

Definition (Kalociński)

Theory T has the simplest model property, SMP, if up to an iso, T has exactly one model of the least rank.

Corollary

Every completion of PA has SMP.

Corollary

If $\mathcal{M} \models \mathsf{Th}(\mathbb{N})$ is nonstandard, then $\mathsf{SR}(\mathcal{M}) > \omega$.

Definition (Kalociński)

Theory T has the simplest model property, SMP, if up to an iso, T has exactly one model of the least rank.

Corollary

Every completion of PA has SMP.

Corollary

If $\mathcal{M} \models \mathsf{Th}(\mathbb{N})$ is nonstandard, then $\mathsf{SR}(\mathcal{M}) > \omega$.

Corollary

If \mathcal{M} is recursively saturated, then $SR(\mathcal{M}) = \omega + 1$.

Adding parameters

Proposition

If $\mathcal M$ is finitely generated by an undefinable element, then $\mathsf{SR}(\mathcal M) = \omega + 1$.

Adding parameters

Proposition

If $\mathcal M$ is finitely generated by an undefinable element, then $\mathsf{SR}(\mathcal M) = \omega + 1$.

Proposition

The models of PA with the parametrized Scott rank ω are exactly the finitely generated models of PA.

Recall that

- the quantifier $\forall x \phi \ (\exists x \phi)$ is bounded iff ϕ is of the form $x < t \rightarrow \psi$ $(x < t \land \psi)$ and t does not mention x.
- ϕ is Δ_0 if all the quantifiers in ϕ are bounded.

Recall that

- the quantifier $\forall x \phi \ (\exists x \phi)$ is bounded iff ϕ is of the form $x < t \rightarrow \psi$ $(x < t \land \psi)$ and t does not mention x.
- ϕ is Δ_0 if all the quantifiers in ϕ are bounded.

$$\Sigma_0 = \Pi_0 = \Delta_0$$

$$\Sigma_{n+1} = \exists x \Pi_n$$

$$\Pi_{n+1} = \forall x \Sigma_n$$

Recall that

- the quantifier $\forall x \phi \ (\exists x \phi)$ is bounded iff ϕ is of the form $x < t \rightarrow \psi$ $(x < t \land \psi)$ and t does not mention x.
- ϕ is Δ_0 if all the quantifiers in ϕ are bounded.

$$\Sigma_0 = \Pi_0 = \Delta_0$$

$$\Sigma_{n+1} = \exists x \Pi_n$$

$$\Pi_{n+1} = \forall x \Sigma_n$$

For a class of formulae Γ , $I\Gamma$ denotes the extension of PA $^-$ with induction restricted to formulae from Γ .

Recall that

- the quantifier $\forall x \phi \ (\exists x \phi)$ is bounded iff ϕ is of the form $x < t \rightarrow \psi$ $(x < t \land \psi)$ and t does not mention x.
- ϕ is Δ_0 if all the quantifiers in ϕ are bounded.

$$\Sigma_{0} = \Pi_{0} = \Delta_{0}$$

$$\Sigma_{n+1} = \exists x \Pi_{n}$$

$$\Pi_{n+1} = \forall x \Sigma_{n}$$

For a class of formulae Γ , $I\Gamma$ denotes the extension of PA $^-$ with induction restricted to formulae from Γ .

Remark

 $I\Sigma_1$ proves MRDP theorem, so actually over $I\Sigma_1$ Σ_n -definable sets are \exists_n -definable.

Proposition

If $\mathcal{M} \models I\Sigma_n$ and \mathcal{M} contains a nonstandard definable element, then $SR(\mathcal{M}) > n$.

Proposition

If $\mathcal{M} \models \mathsf{I}\Sigma_n$ and \mathcal{M} contains a nonstandard definable element, then $\mathsf{SR}(\mathcal{M}) > n$.

Corollary

Suppose $\mathcal{M} \models \mathsf{I}\Sigma_1$ is nonstandard. Then $\mathsf{SR}(\mathcal{M}) > 1$.

Proposition

If $\mathcal{M} \models I\Sigma_n$ and \mathcal{M} contains a nonstandard definable element, then $SR(\mathcal{M}) > n$.

Corollary

Suppose $\mathcal{M} \models \mathsf{I}\Sigma_1$ is nonstandard. Then $\mathsf{SR}(\mathcal{M}) > 1$.

Corollary

 $I\Sigma_1$ has SMP.

Proposition

If $\mathcal{M} \models I\Sigma_n$ and \mathcal{M} contains a nonstandard definable element, then $SR(\mathcal{M}) > n$.

Corollary

Suppose $\mathcal{M} \models \mathsf{I}\Sigma_1$ is nonstandard. Then $\mathsf{SR}(\mathcal{M}) > 1$.

Corollary

 $I\Sigma_1$ has SMP. But there are nonstandard models of $\Pi_2\text{-}Cons(I\Sigma_1)$ of rank 1.

Extensions

Lemma (Essentially Ehrenfeucht)

Suppose that $\mathcal{M} \models \mathsf{I}\Sigma_{n+1}$ and $a \neq b \in M$ are such that b is Σ_n definable from a. Then Σ_{n+2} -types of a, b are different.

Extensions

Lemma (Essentially Ehrenfeucht)

Suppose that $\mathcal{M} \models \mathsf{I}\Sigma_{n+1}$ and $a \neq b \in M$ are such that b is Σ_n definable from a. Then Σ_{n+2} -types of a, b are different.

Proposition

Suppose $\mathcal{M} \models \mathsf{I}\Sigma_{n+1}$ is nonstandard. Then $\mathsf{SR}(\mathcal{M}) \geq n$.