What might be the case after a change in view

(An)Thony Gillies

Department of Philosophy University of Michigan

2005 Formal Epistemology Workshop The University of Texas at Austin

The Problem

Fuhrmann Triviality Result

Belief revision cannot be "preservative" for reflective agents

This is usually put AGM-wise:

- Epistemic states are belief sets—sets of sentences of our favorite language
- ullet An agent in state K believes arphi iff $arphi\in K$
- Rationality constraints on revision are constraints on the K's

The Problem

Fuhrmann Triviality Result

Belief revision cannot be "preservative" for reflective agents

This is usually put **AGM-wise**:

- Epistemic states are belief sets—sets of sentences of our favorite language
- An agent in state K believes φ iff $\varphi \in K$
- Rationality constraints on revision are constraints on the K's

I don't go that way.

- Rationality constraints are only as good as the relations of "epistemic commitment"—consequence relations!—they are built on
- Os the consequence relations should be an explicit part of our modeling, not hidden in the background. It's prettier to do that model-theoretically.
- When we do this for modals, it will be a dynamic consequence relation that I will push for

A Not-Very-Diplomatic Subtitle

I don't go that way.

- Rationality constraints are only as good as the relations of "epistemic commitment"—consequence relations!—they are built on
- Os the consequence relations should be an explicit part of our modeling, not hidden in the background. It's prettier to do that model-theoretically.
- When we do this for modals, it will be a dynamic consequence relation that I will push for

A Not-Very-Diplomatic Subtitle

I don't go that way.

- Rationality constraints are only as good as the relations of "epistemic commitment"—consequence relations!—they are built on
- So the consequence relations should be an explicit part of our modeling, not hidden in the background. It's prettier to do that model-theoretically.
- When we do this for modals, it will be a dynamic consequence relation that I will push for

A Not-Very-Diplomatic Subtitle

I don't go that way.

- Rationality constraints are only as good as the relations of "epistemic commitment"—consequence relations!—they are built on
- So the consequence relations should be an explicit part of our modeling, not hidden in the background. It's prettier to do that model-theoretically.
- When we do this for modals, it will be a dynamic consequence relation that I will push for

A Not-Very-Diplomatic Subtitle

I don't go that way.

- Rationality constraints are only as good as the relations of "epistemic commitment"—consequence relations!—they are built on
- So the consequence relations should be an explicit part of our modeling, not hidden in the background. It's prettier to do that model-theoretically.
- When we do this for modals, it will be a dynamic consequence relation that I will push for

A Not-Very-Diplomatic Subtitle

Outline

- First Pass
 - Ideology
 - Doxastic Conservatism
 - Reflective Modality: 'Might'
- 2 Triviality
 - One Way
 - And Another Way
- Preservation vs. Persistence
 - Two Ways Out
 - Does LI Plus Vacuity Really Entail Preservation?
- 4 The Positive Bit
 - Updates
 - Back To Revision Models

Preservation

The Conservative's Credo

Information is not gratuitous! Belief change should minimize information loss

We are dealing here with coarse-grained qualitative models of belief change, so this is naturally codified as

Preservation

If you don't already believe $\neg \varphi$ in a prior state, then revising that state with φ should land you in a posterior state that is stronger—carries more commitments—than the prior state

Preservation

The Conservative's Credo

Information is not gratuitous! Belief change should minimize information loss

We are dealing here with coarse-grained qualitative models of belief change, so this is naturally codified as

Preservation

If you don't already believe $\neg \varphi$ in a prior state, then revising that state with φ should land you in a posterior state that is stronger—carries more commitments—than the prior state

Two truisms about might

You have two marbles (red, yellow) and a box. You put one of the marbles in the box without showing me which one. Then I ought to believe

(1) The yellow marble might (in view of what else I believe) be in the box.

Conversely: if I believe something like (1), then I **ought not** believe the yellow marble **isn't** in the box.

Two truisms about might

You have two marbles (red, yellow) and a box. You put one of the marbles in the box without showing me which one. Then I ought to believe

(1) The yellow marble might (in view of what else I believe) be in the box.

Conversely: if I believe something like (1), then I ought not believe the yellow marble isn't in the box.

Two truisms about might

You have two marbles (red, yellow) and a box. You put one of the marbles in the box without showing me which one. Then I ought to believe

(1) The yellow marble might (in view of what else I believe) be in the box.

Conversely: if I believe something like (1), then I **ought not** believe the yellow marble **isn't** in the box.

Well, they're truisms if we assume ...

- This might is epistemic and solpisistic
 - Intuitively: a consistency check on I believe
- 2 That 'belief'-talk is suitably permissive
 - Maybe things like might p aren't truth-bearing, and so maybe strictly speaking belief isn't quite the attitude we have toward them

In Other Words: might is a reflective modal

- My epistemic state commits me to *might* p iff it doesn't commit me to $\neg p$.
- Dually for must p.

Well, they're truisms if we assume . . .

- This might is epistemic and solpisistic
 - Intuitively: a consistency check on I believe
- That 'belief'-talk is suitably permissive
 - Maybe things like might p aren't truth-bearing, and so maybe strictly speaking belief isn't quite the attitude we have toward them

In Other Words: might is a reflective moda

- My epistemic state commits me to *might* p iff it doesn't commit me to $\neg p$.
- Dually for must p

Well, they're truisms if we assume ...

- This *might* is **epistemic** and **solpisistic**
 - Intuitively: a consistency check on I believe
- That 'belief'-talk is suitably permissive
 - Maybe things like might p aren't truth-bearing, and so maybe strictly speaking belief isn't quite the attitude we have toward them

In Other Words: might is a reflective modal

- My epistemic state commits me to *might* p iff it doesn't commit me to $\neg p$.
- Dually for must p.

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
- Introduce □ as the dual to □
- We will assume that beliefs are (expressed by) formulas in L⁺ but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - $\bullet \ \ \text{For all} \ \varphi \in \text{CPL:} \ \Diamond \varphi, \neg \Diamond \varphi \in L^+$
 - ullet Introduce \square as the dual to \Diamond
- We will assume that beliefs are (expressed by) formulas in L⁺ but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all φ ∈ CPL: ◊φ, ¬◊φ ∈ L⁺
 Introduce □ as the dual to ◊
- We will assume that beliefs are (expressed by) formulas in L⁺, but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all φ ∈ CPL: ◊φ, ¬◊φ ∈ L⁺
 Introduce □ as the dual to ◊
- We will assume that beliefs are (expressed by) formulas in L⁺, but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all φ ∈ CPL: ◊φ, ¬◊φ ∈ L⁺
 Introduce □ as the dual to ◊
- We will assume that beliefs are (expressed by) formulas in L⁺, but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all $\varphi \in CPL$: $\Diamond \varphi, \neg \Diamond \varphi \in L^+$
 - Introduce □ as the dual to ◊
- We will assume that beliefs are (expressed by) formulas in L⁺,
 but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all $\varphi \in \mathsf{CPL}$: $\Diamond \varphi, \neg \Diamond \varphi \in L^+$
 - ullet Introduce \Box as the dual to \Diamond
- We will assume that beliefs are (expressed by) formulas in L⁺,
 but inputs by formulas in CPL

- A revision model specifies 4 things: what states are; what the language of beliefs is, and what the language of inputs is; a revision function from states × inputs to states; and a "commitment" relation between states and beliefs
- Fix a language L⁺—the smallest that contains CPL and is such that:
 - For all $\varphi \in \mathsf{CPL}$: $\Diamond \varphi, \neg \Diamond \varphi \in L^+$
 - Introduce \square as the dual to \lozenge
- We will assume that **beliefs** are (expressed by) formulas in L^+ , but **inputs** by formulas in CPL

Basic AGM Revision

- States: $K, K', \dots \in \mathbf{K}$
- (More about K in a minute)

Two Constraints Not Up For Grabs

$$S_{AGM} \varphi \in K \star \varphi$$

 $\mathsf{C}_{\mathsf{AGM}}$ If $\neg \varphi \notin \mathsf{Cn}(\emptyset)$ then $K \star \varphi$ is consistent

A belief set K is **consistent** (w.r.t. L^+) iff for no $\varphi \in L^+$ is it the case that $\varphi, \neg \varphi \in K$

Basic AGM Revision

- States: $K, K', \dots \in \mathbf{K}$
- (More about K in a minute)

Two Constraints Not Up For Grabs

 $\begin{array}{ll} \mathsf{S}_{\mathsf{AGM}} & \varphi \in K \star \varphi \\ \\ \mathsf{C}_{\mathsf{AGM}} & \mathsf{If} \neg \varphi \not\in \mathsf{Cn}(\emptyset) \mathsf{ then } K \star \varphi \mathsf{ is consistent} \end{array}$

A belief set K is **consistent** (w.r.t. L^+) iff for no $\varphi \in L^+$ is it the case that $\varphi, \neg \varphi \in K$

Basic AGM Revision

- States: $K, K', \dots \in \mathbf{K}$
- (More about K in a minute)

Two Constraints Not Up For Grabs

$$S_{AGM} \varphi \in K \star \varphi$$

 $\mathsf{C}_{\mathsf{AGM}}$ If $\neg \varphi \notin \mathsf{Cn}(\emptyset)$ then $K \star \varphi$ is consistent

A belief set K is **consistent** (w.r.t. L^+) iff for no $\varphi \in L^+$ is it the case that $\varphi, \neg \varphi \in K$

Our Two Players

AGM Preservation

$$P_{AGM}$$
 If $\neg \varphi \notin K$, then $K \subseteq K \star \varphi$

A model is basic iff it satisfies the two non-negotiable constraints plus $P_{\mbox{\scriptsize AGM}}$

Take a $\varphi \in \mathsf{CPL}$ and belief set K. $\mathsf{Poss}(K)$ is the smallest set s.t.

- if $\varphi \in K$, then $\Box \varphi \in K$
- if $\varphi \notin K$, then $\Diamond \varphi \in K$

Closure Under Poss

All belief sets $K \in \mathbf{K}$ are closed under Poss—i.e., Poss $(K) \subseteq K$

Our Two Players

AGM Preservation

$$P_{AGM}$$
 If $\neg \varphi \notin K$, then $K \subseteq K \star \varphi$

A model is basic iff it satisfies the two non-negotiable constraints plus $\mathsf{P}_{\mathsf{AGM}}$

Take a $\varphi \in \mathsf{CPL}$ and belief set K. Poss(K) is the smallest set s.t.

- if $\varphi \in K$, then $\Box \varphi \in K$
- if $\varphi \notin K$, then $\Diamond \varphi \in K$

Closure Under Poss

All belief sets $K \in \mathbf{K}$ are closed under Poss—i.e., Poss $(K) \subseteq K$

Our Two Players

AGM Preservation

$$P_{AGM}$$
 If $\neg \varphi \notin K$, then $K \subseteq K \star \varphi$

A model is basic iff it satisfies the two non-negotiable constraints plus $\mathsf{P}_{\mathsf{AGM}}$

Take a $\varphi \in \mathsf{CPL}$ and belief set K. $\mathsf{Poss}(K)$ is the smallest set s.t.

- if $\varphi \in K$, then $\Box \varphi \in K$
- if $\varphi \notin K$, then $\Diamond \varphi \in K$

Closure Under Poss

All belief sets $K \in \mathbf{K}$ are closed under Poss—i.e., Poss $(K) \subseteq K$

The Fuhrmann Result

An (AGM-wise) model is **non-trivial** iff:

For Some $\varphi \in \mathsf{CPL}$ and $K \colon \varphi \not\in K \& \neg \varphi \not\in K$

Proposition (Fuhrmann, Levi)
If a model $\langle K, \star \rangle$ is basic, it is trivial

The Fuhrmann Result

An (AGM-wise) model is **non-trivial** iff:

For Some $\varphi \in \mathsf{CPL}$ and $K \colon \varphi \not\in K \& \neg \varphi \not\in K$

Proposition (Fuhrmann, Levi)

If a model $\langle K, \star \rangle$ is basic, it is trivial

Revision Models

Worlds, states Fix a set W of worlds. States s, s', \ldots are subsets of W. I is the set of such s's.

```
Revision function \circ: I \times \mathsf{CPL} \to I
Consequence relation \models \subseteq I \times L^+
Revision model M = \langle I, \circ, \models \rangle
```

We'll say that state s is **consistent** (w.r.t. a choice for \models) iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$. We'll write it this way: $s \neq \bot$

Revision Models

Worlds, states Fix a set W of worlds. States s, s', \ldots are subsets of W. I is the set of such s's.

Revision function $\circ: I \times CPL \rightarrow I$

Consequence relation $\models \subseteq I \times L^+$

Revision model $M = \langle I, \circ, \models \rangle$

We'll say that state s is **consistent** (w.r.t. a choice for \models) iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$. We'll write it this way: $s \neq \bot$

Revision Models

Worlds, states Fix a set W of worlds. States s, s', \ldots are subsets of W. I is the set of such s's.

Revision function $\circ: I \times \mathsf{CPL} \to I$

Consequence relation $\models \subseteq I \times L^+$

Revision model $M = \langle I, \circ, \models \rangle$

We'll say that state s is **consistent** (w.r.t. a choice for \models) iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$. We'll write it this way: $s \neq \bot$

Revision Models

Worlds, states Fix a set W of worlds. States s, s', \ldots are subsets of W. I is the set of such s's.

Revision function $\circ: I \times CPL \rightarrow I$

Consequence relation $\models \subseteq I \times L^+$

Revision model $M = \langle I, \circ, \models \rangle$

We'll say that state s is **consistent** (w.r.t. a choice for \models) iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$. We'll write it this way: $s \neq \bot$

Revision Models

Worlds, states Fix a set W of worlds. States s, s', \ldots are subsets of W. I is the set of such s's.

Revision function $\circ: I \times \mathsf{CPL} \to I$ Consequence relation $\models \subseteq I \times L^+$ Revision model $M = \langle I, \circ, \models \rangle$

We'll say that state s is **consistent** (w.r.t. a choice for \models) iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$. We'll write it this way: $s \neq \bot$

Basic AGM Revision

Two Constraints Not Up For Grabs

$$S \circ \varphi \models \varphi$$

C If
$$\llbracket \neg \varphi \rrbracket \neq W$$
 then $s \circ \varphi \neq \bot$

Preservation

P If
$$s \not\models \neg \varphi$$
, then $\{\psi : s \models \psi\} \subseteq \{\psi : s \circ \varphi \models \psi\}$

A model $M = \langle I, \circ, \models \rangle$ is basic iff it satisfies S, C, and P

Basic AGM Revision

Two Constraints Not Up For Grabs

$$\mathsf{S} \; \mathsf{s} \circ \varphi \models \varphi$$

C If
$$\llbracket \neg \varphi \rrbracket \neq W$$
 then $s \circ \varphi \neq \bot$

Preservation

$$P \text{ If } s \not\models \neg \varphi \text{, then } \{ \psi : s \models \psi \} \subseteq \{ \psi : s \circ \varphi \models \psi \}$$

A model $M = \langle I, \circ, \models \rangle$ is basic iff it satisfies S, C, and P

Basic AGM Revision

Two Constraints Not Up For Grabs

S
$$s \circ \varphi \models \varphi$$

C If
$$\llbracket \neg \varphi \rrbracket \neq W$$
 then $s \circ \varphi \neq \bot$

Preservation

P If
$$s \not\models \neg \varphi$$
, then $\{\psi : s \models \psi\} \subseteq \{\psi : s \circ \varphi \models \psi\}$

A model $M = \langle I, \circ, \models \rangle$ is basic iff it satisfies S, C, and P

Basically Reflective Consequence

Basically Reflective Consequence

 $\models \subseteq I \times L^+$ is basically reflective iff:

- $s \models \varphi$ iff $s \subseteq \llbracket \varphi \rrbracket$, for $\varphi \in \mathsf{CPL}$
- if $s \models \varphi$, then $s \models \Box \varphi$
- if $s \not\models \neg \varphi$, then $s \models \Diamond \varphi$
- (truth-functionally equivalent subformulas can be swapped inside the scope of the modals)
- s is consistent w.r.t. \models iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$ —i.e., not both are in $\{\psi : s \models \psi\}$
- if s is consistent, we write $s \neq \bot$

Basically Reflective Consequence

Basically Reflective Consequence

 $\models \subseteq I \times L^+$ is basically reflective iff:

- $s \models \varphi$ iff $s \subseteq \llbracket \varphi \rrbracket$, for $\varphi \in \mathsf{CPL}$
- if $s \models \varphi$, then $s \models \Box \varphi$
- if $s \not\models \neg \varphi$, then $s \models \Diamond \varphi$
- (truth-functionally equivalent subformulas can be swapped inside the scope of the modals)
- s is consistent w.r.t. \models iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$ —i.e., not both are in $\{\psi : s \models \psi\}$
- if s is consistent, we write $s \neq \bot$

Basically Reflective Consequence

Basically Reflective Consequence

 $\models \subseteq I \times L^+$ is basically reflective iff:

- $s \models \varphi$ iff $s \subseteq \llbracket \varphi \rrbracket$, for $\varphi \in \mathsf{CPL}$
- if $s \models \varphi$, then $s \models \Box \varphi$
- if $s \not\models \neg \varphi$, then $s \models \Diamond \varphi$
- (truth-functionally equivalent subformulas can be swapped inside the scope of the modals)
- s is consistent w.r.t. \models iff for no $\varphi \in L^+$ is it the case that $s \models \varphi$ and $s \models \neg \varphi$ —i.e., not both are in $\{\psi : s \models \psi\}$
- if s is consistent, we write $s \neq \bot$

A Contrived Example

Fix a state s, and form the autoepistemic closure (in L^+) of it. Then you've got yourself a basically reflective consequence relation.

Let K_s be the smallest set s.t.

- $\varphi \in K_s$ iff $s \subseteq \llbracket \varphi \rrbracket$ (for $\varphi \in CPL$)
- if $\varphi \in K_s$, then $\Box \varphi \in K_s$;
- if $\neg \varphi \notin K_s$, then $\Diamond \varphi \in K_s$;
- if $[\alpha] = [\beta]$, then $\psi \in K_s$ iff $\psi[\alpha/\beta] \in K_s$.

Then define:

•
$$s \models^+ \varphi$$
 iff $\varphi \in K_s$

A Contrived Example

Fix a state s, and form the autoepistemic closure (in L^+) of it. Then you've got yourself a basically reflective consequence relation.

Let K_s be the smallest set s.t.

- $\varphi \in K_s$ iff $s \subseteq \llbracket \varphi \rrbracket$ (for $\varphi \in \mathsf{CPL}$)
- if $\varphi \in K_s$, then $\Box \varphi \in K_s$;
- if $\neg \varphi \notin K_s$, then $\Diamond \varphi \in K_s$;
- if $[\alpha] = [\beta]$, then $\psi \in K_s$ iff $\psi[\alpha/\beta] \in K_s$.

Then define:

•
$$s \models^+ \varphi$$
 iff $\varphi \in K_s$

A Contrived Example

Fix a state s, and form the autoepistemic closure (in L^+) of it. Then you've got yourself a basically reflective consequence relation.

Let K_s be the smallest set s.t.

- $\varphi \in K_s$ iff $s \subseteq \llbracket \varphi \rrbracket$ (for $\varphi \in \mathsf{CPL}$)
- if $\varphi \in K_s$, then $\Box \varphi \in K_s$;
- if $\neg \varphi \notin K_s$, then $\Diamond \varphi \in K_s$;
- if $[\![\alpha]\!] = [\![\beta]\!]$, then $\psi \in K_s$ iff $\psi[\alpha/\beta] \in K_s$.

Then define:

•
$$s \models^+ \varphi$$
 iff $\varphi \in K_s$

Basic Commitment Is Well-Behaved

Observation

Where \models is a basically reflective relation, and s, s' any states:

- If $s \neq \bot$, then $s \models \Box \varphi$ iff $s \models \varphi$
- For any $\varphi \in \mathsf{CPL}$, either $s \models \Diamond \varphi$ or $s \models \neg \Diamond \varphi$
- If $\{\varphi \in \mathsf{CPL} : s \models \varphi\} = \{\varphi \in \mathsf{CPL} : s' \models \varphi\}$, then $\{\varphi \in L^+ : s \models \varphi\} = \{\varphi \in L^+ : s' \models \varphi\}$ (if s, s' are consistent)

The Fuhrmann Result, Again

- M is the class of revision models with a basically reflective consequence relation
- $\langle I, \circ, \models \rangle$ is **non-trivial** iff there $s \in I$, φ such that $s \not\models \varphi$ and $s \not\models \neg \varphi$

Proposition

If $M \in \mathbf{M}$ is basic, it is trivial.

The Fuhrmann Result, Again

- M is the class of revision models with a basically reflective consequence relation
- $\langle I, \circ, \models \rangle$ is **non-trivial** iff there $s \in I$, φ such that $s \not\models \varphi$ and $s \not\models \neg \varphi$

Proposition

If $M \in M$ is basic, it is trivial.

Give Up On Reflective Agents

- Things like $\Diamond \varphi$ don't express propositions of the normal sort, and so aren't really the kinds of things that can be the object of belief
- And so they don't really enter into our constraints on revision models at all

- Suppose our revision operator is governed by the Levi Identity—revising by φ decomposes into a contraction/downdate/weakening w.r.t. $\neg \varphi$ followed by an expansion/update w.r.t. φ
- Suppose contraction/downdate/weakening idles on non-belief (Easy Contraction)
- These entail Preservation
- So we have to get rid of either the Levi Identity or the vacuity constraint on contraction/downdate/weakening

- Suppose our revision operator is governed by the Levi Identity—revising by φ decomposes into a contraction/downdate/weakening w.r.t. $\neg \varphi$ followed by an expansion/update w.r.t. φ
- Suppose contraction/downdate/weakening idles on non-belief (Easy Contraction)
- These entail Preservation
- So we have to get rid of either the Levi Identity or the vacuity constraint on contraction/downdate/weakening

- Suppose our revision operator is governed by the Levi Identity—revising by φ decomposes into a contraction/downdate/weakening w.r.t. $\neg \varphi$ followed by an expansion/update w.r.t. φ
- Suppose contraction/downdate/weakening idles on non-belief (Easy Contraction)
- These entail Preservation
- So we have to get rid of either the Levi Identity or the vacuity constraint on contraction/downdate/weakening

- Suppose our revision operator is governed by the Levi Identity—revising by φ decomposes into a contraction/downdate/weakening w.r.t. $\neg \varphi$ followed by an expansion/update w.r.t. φ
- Suppose contraction/downdate/weakening idles on non-belief (Easy Contraction)
- These entail Preservation
- So we have to get rid of either the Levi Identity or the vacuity constraint on contraction/downdate/weakening

Levi Identity

downdate: $s \subseteq s \downarrow \varphi$

M satisfies the Levi Identity (LI) iff: $s \circ \varphi = (s \downarrow \neg \varphi) \cap \llbracket \varphi \rrbracket$

EW If
$$s \not\models \varphi$$
, then $s \downarrow \varphi = s$

Levi Identity

downdate: $s \subseteq s \downarrow \varphi$

M satisfies the Levi Identity (LI) iff: $s \circ \varphi = (s \downarrow \neg \varphi) \cap \llbracket \varphi \rrbracket$

EW If
$$s \not\models \varphi$$
, then $s \downarrow \varphi = s$

Levi Identity

downdate: $s \subseteq s \downarrow \varphi$

M satisfies the Levi Identity (LI) iff: $s \circ \varphi = (s \downarrow \neg \varphi) \cap \llbracket \varphi \rrbracket$

EW If
$$s \not\models \varphi$$
, then $s \downarrow \varphi = s$

Levi Identity

downdate: $s \subseteq s \downarrow \varphi$

M satisfies the Levi Identity (LI) iff: $s \circ \varphi = (s \downarrow \neg \varphi) \cap \llbracket \varphi \rrbracket$

EW If
$$s \not\models \varphi$$
, then $s \downarrow \varphi = s$

LI + EW amounts to

$$\mathsf{ER} \ \text{if} \ s \not\models \neg \varphi \ \mathsf{then} \ s \circ \varphi = s \cap \llbracket \varphi \rrbracket$$

- Assume LI and EW for a model $M = \langle I, \circ, \models^+ \rangle$
 - = is our contrived example of a basically reflective consequence relation
- Suppose $s = \{w_1, w_2\}$, where $w_1(p) = 1$ and $w_2(p) = 0$
 - So $s \not\models^+ \neg p$
- Consider $s \circ p$. By LI + EW (= ER) $s \circ p = s \cap \llbracket p \rrbracket = \{w_1\}$
- But then $s \models^+ \lozenge \neg p$ and $s \circ p \not\models^+ \lozenge \neg p$, violating I

LI + EW amounts to

ER if
$$s \not\models \neg \varphi$$
 then $s \circ \varphi = s \cap \llbracket \varphi \rrbracket$

- Assume LI and EW for a model $M = \langle I, \circ, \models^+ \rangle$
 - |= + is our contrived example of a basically reflective consequence relation
- Suppose $s = \{w_1, w_2\}$, where $w_1(p) = 1$ and $w_2(p) = 0$
 - So $s \not\models^+ \neg p$
- Consider $s \circ p$. By LI + EW (= ER) $s \circ p = s \cap \llbracket p \rrbracket = \{w_1\}$
- But then $s \models^+ \lozenge \neg p$ and $s \circ p \not\models^+ \lozenge \neg p$, violating F

LI + EW amounts to

ER if
$$s \not\models \neg \varphi$$
 then $s \circ \varphi = s \cap \llbracket \varphi \rrbracket$

- Assume LI and EW for a model $M = \langle I, \circ, \models^+ \rangle$
 - |=+ is our contrived example of a basically reflective consequence relation
- Suppose $s = \{w_1, w_2\}$, where $w_1(p) = 1$ and $w_2(p) = 0$
 - So $s \not\models^+ \neg p$
- Consider $s \circ p$. By LI + EW (= ER) $s \circ p = s \cap \llbracket p \rrbracket = \{w_1\}$
- But then $s \models^+ \lozenge \neg p$ and $s \circ p \not\models^+ \lozenge \neg p$, violating F

LI + EW amounts to

ER if
$$s \not\models \neg \varphi$$
 then $s \circ \varphi = s \cap \llbracket \varphi \rrbracket$

- Assume LI and EW for a model $M = \langle I, \circ, \models^+ \rangle$
 - \equiv is our contrived example of a basically reflective consequence relation
- ullet Suppose $s=\{w_1,w_2\}$, where $w_1(p)=1$ and $w_2(p)=0$
 - So $s \not\models^+ \neg p$
- Consider $s \circ p$. By LI + EW (= ER) $s \circ p = s \cap \llbracket p \rrbracket = \{w_1\}$
- But then $s \models^+ \lozenge \neg p$ and $s \circ p \not\models^+ \lozenge \neg p$, violating F

LI + EW amounts to

ER if
$$s \not\models \neg \varphi$$
 then $s \circ \varphi = s \cap \llbracket \varphi \rrbracket$

- Assume LI and EW for a model $M = \langle I, \circ, \models^+ \rangle$
 - \equiv is our contrived example of a basically reflective consequence relation
- Suppose $s = \{w_1, w_2\}$, where $w_1(p) = 1$ and $w_2(p) = 0$
 - So $s \not\models^+ \neg p$
- Consider $s \circ p$. By LI + EW (= ER) $s \circ p = s \cap \llbracket p \rrbracket = \{w_1\}$
- But then $s \models^+ \lozenge \neg p$ and $s \circ p \not\models^+ \lozenge \neg p$, violating P

So What's The Deal?

To get the entailment to go through, we also need to assume something about the consequence relation

Persistence

 $\models \subseteq I \times L$ is **persistent** iff for all $\varphi \in L$: if $s \models \varphi$ and $s' \subseteq s$, then $s' \models \varphi$

Observation

Consider a model $M = \langle I, \circ, \models \rangle$. If \models is persistent, then if M satisfies ER it satisfies P

So What's The Deal?

To get the entailment to go through, we also need to assume something about the consequence relation

Persistence

 $\models \subseteq I \times L$ is **persistent** iff for all $\varphi \in L$:

if $s \models \varphi$ and $s' \subseteq s$, then $s' \models \varphi$

Observation

Consider a model $M = \langle I, \circ, \models \rangle$. If \models is persistent, then if M satisfies ER it satisfies P

So What's The Deal?

To get the entailment to go through, we also need to assume something about the consequence relation

Persistence

 $\models \subseteq I \times L$ is **persistent** iff for all $\varphi \in L$:

if $s \models \varphi$ and $s' \subseteq s$, then $s' \models \varphi$

Observation

Consider a model $M = \langle I, \circ, \models \rangle$. If \models is persistent, then if M satisfies ER it satisfies P

Persistence = Bad

In the context of these modals persistence is just a bad idea

if
$$w_1(p) = 1$$
 and $w_2(p) = 0$

- $\{w_1, w_2\}$ should have $\lozenge \neg p$ as a consequence
- $\{w_1\}$ shouldn't

But that means that we don't want persistence

Persistence = Bad

In the context of these modals persistence is just a bad idea

if
$$w_1(p) = 1$$
 and $w_2(p) = 0$

- $\{w_1, w_2\}$ should have $\Diamond \neg p$ as a consequence
- {w₁} shouldn't

But that means that we don't want persistence

- Suppose $\varphi \in \mathsf{CPL}$ is true/supported/etc. w.r.t. s
- That means that s is a fixed-point of updating s with the information that φ carries

$$s \models_{\mathit{CL}} \varphi \text{ iff } s \cap \llbracket \varphi \rrbracket = s$$

- To extend this picture to the modal fragment, we have to either generalize the updating function or [.]
- Let's do the former

- Suppose $\varphi \in \mathsf{CPL}$ is true/supported/etc. w.r.t. s
- That means that s is a fixed-point of updating s with the information that φ carries
 - $s \models_{\mathit{CL}} \varphi \text{ iff } s \cap \llbracket \varphi \rrbracket = s$
- To extend this picture to the modal fragment, we have to either generalize the updating function or [.]
- Let's do the former

- Suppose $\varphi \in \mathsf{CPL}$ is true/supported/etc. w.r.t. s
- \bullet That means that s is a fixed-point of updating s with the information that φ carries
 - $s \models_{\mathit{CL}} \varphi \text{ iff } s \cap \llbracket \varphi \rrbracket = s$
- To extend this picture to the modal fragment, we have to either generalize the updating function or [.]
- Let's do the former

- Suppose $\varphi \in \mathsf{CPL}$ is true/supported/etc. w.r.t. s
- \bullet That means that s is a fixed-point of updating s with the information that φ carries
 - $s \models_{\mathit{CL}} \varphi \text{ iff } s \cap \llbracket \varphi \rrbracket = s$
- To extend this picture to the modal fragment, we have to either generalize the updating function or [.]
- Let's do the former

Updating

Let L^{\diamond} be the smallest set including CPL closed under \neg, \wedge, \Diamond

Updates

Consequence/Support/Commitment

$$s \Vdash \varphi \text{ iff } s \uparrow \varphi = s$$

Updating

Let L^{\diamond} be the smallest set including CPL closed under \neg, \wedge, \Diamond

Updates

Consequence/Support/Commitment

$$s \Vdash \varphi \text{ iff } s \uparrow \varphi = s$$

Three Fun Facts

Observation

It is not in general the case that $s \uparrow \varphi = \bigcup_{w \in s} \{w\} \uparrow \varphi$

Observation

⊩ is basically reflective

Observation

⊩ is not persistent

Three Fun Facts

Observation

It is not in general the case that $s \uparrow \varphi = \bigcup_{w \in s} \{w\} \uparrow \varphi$

Observation

⊩ is basically reflective

Observation

⊩ is not persistent

Three Fun Facts

Observation

It is not in general the case that $s \uparrow \varphi = \bigcup_{w \in s} \{w\} \uparrow \varphi$

Observation

⊩ is basically reflective

Observation

⊩ is not persistent

- Persistence is the problem
- So we've got ourselves a non-persistent consequence relation
- Take any old "broadly conditional" revision model off the shelf
- Swap out the consequence relation in it, and put I⊢ in its place
- That's it: the resulting (non-trivial) model will satisfy S, C, and ER—and we have an easy prediction for why it will not satisfy P

- Persistence is the problem
- So we've got ourselves a non-persistent consequence relation
- Take any old "broadly conditional" revision model off the shelf
- Swap out the consequence relation in it, and put I⊢ in its place
- That's it: the resulting (non-trivial) model will satisfy S, C, and ER—and we have an easy prediction for why it will not satisfy P

- Persistence is the problem
- So we've got ourselves a non-persistent consequence relation
- Take any old "broadly conditional" revision model off the shelf
- Swap out the consequence relation in it, and put I⊢ in its place
- That's it: the resulting (non-trivial) model will satisfy S, C, and ER—and we have an easy prediction for why it will not satisfy P

- Persistence is the problem
- So we've got ourselves a non-persistent consequence relation
- Take any old "broadly conditional" revision model off the shelf
- That's it: the resulting (non-trivial) model will satisfy S, C, and ER—and we have an easy prediction for why it will not satisfy P

- Persistence is the problem
- So we've got ourselves a non-persistent consequence relation
- Take any old "broadly conditional" revision model off the shelf
- That's it: the resulting (non-trivial) model will satisfy S, C, and ER—and we have an easy prediction for why it will not satisfy P