Louis Meunier

Algebra 2 MATH251

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Anush Tserunyan.

Contents

1	Introduction		
	1.1	Vector Spaces	2
	1.2	Creating Spaces from Other Spaces	4
	1.3	Linear Combinations and Space	6

1 Introduction

Remark 1.1. This course is about vector spaces and linear transformations between them; a vector space involves multiplication by scalars, where the scalars come from some field. We recall first examples of fields, then vector spaces, as a motivation, before presenting a formal definition.

1.1 Vector Spaces

Remark 1.2. Much of this is recall from Algebra 1.

Example 1.1: Examples of Fields

- 1. Q; the field of rational numbers.
- 2. \mathbb{R} ; the field of real numbers; $\mathbb{Q} \subseteq \mathbb{R}$.
- 3. \mathbb{C} ; the field of complex numbers; $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 4. $\mathbb{F}_p \equiv \mathbb{Z}/p\mathbb{Z} \equiv \{0, 1, \dots, p-1\}$; the (unique) field of pelements, where pprime.

(a)
$$p = 2$$
; $\mathbb{F}_2 \equiv \{0, 1\}$.

(b)
$$p = 3$$
; $\mathbb{F}_3 \equiv \{0, 1, 2\}$.

(c) · · ·

a where $a +_p b :=$ remainder of $\frac{a+b}{p}$, $a \cdot_p b :=$ remainder of $\frac{a \cdot b}{p}$.

Remark 1.3. Throughout the course, we will denote an abstract field as \mathbb{F} .

® Example 1.2: Examples of Vector Spaces

- 1. $\mathbb{R}^3 := \{(x, y, z) : x, y, z \in \mathbb{R}\}$. We can add elements in \mathbb{R}^3 , and multiply them by real scalars.
- 2. $\mathbb{F}^n := \underbrace{\mathbb{F} \times \mathbb{F} \times \cdots \mathbb{F}}_{n \text{ times}} := \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}\}, \text{ where } n \in \mathbb{N}^1; \text{ this is a generalization of the previous example, where we took } n = 3, \mathbb{F} = \mathbb{R}. \text{ Operations follow identically; addition:}$

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) := (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and, taking a scalar $\lambda \in \mathbb{F}$, multiplication:

$$\lambda \cdot (a_1, a_2, \dots, a_n) := (\lambda \cdot a_1, \lambda \cdot a_2, \dots, \lambda \cdot a_n).$$

We refer to these elements (a_1, \dots, a_n) as vectors in \mathbb{F}^n ; the vector for which

 $a_i = 0 \,\forall i$ is the 0 *vector*, and is the additive identity, making \mathbb{F}^n an abelian group under addition, that admits multiplication by scalars from \mathbb{F} .

- 3. $C(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} : f \text{ continuous} \}$. Here, we have the constant zero function as our additive identity $(x \mapsto 0 \forall x)$, and addition/scalar multiplication of two continuous real functions are continuous.
- 4. $\mathbb{F}[t] := \{a_0 + a_1t + a_2t^2 + \cdots + a_nt^n : a_i \in \mathbb{F} \, \forall i, n \in \mathbb{N} \}$, ie, the set of all polynomials in t with coefficients from \mathbb{F} . Here, we can add two polynomials;

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_mt^m) := \sum_{i=0}^{\max\{n,m\}} (a_i + b_i)t^i,$$

(where we "take" undefined a_i/b_i 's as 0; that is, if m > n, then $a_{m-n}, a_{m-n+1}, \ldots, a_m$ are taken to be 0). Scalar multiplication is defined

$$\lambda \cdot (a_0 + a_1t + a_2t^2 + \dots + a_nt^n) := \lambda a_0 + \lambda a_1t + \lambda a_2t^2 + \dots + \lambda a_nt^n.$$

Here, the zero polynomial is simply 0 (that is, $a_i = 0 \,\forall i$).

→ Definition 1.1: Vector Space

A vector space V over a field \mathbb{F} is an abelian group with an operation denoted + (or $+_V$) and identity element²denoted 0_V , equipped with scalar multiplication for each scalar $\lambda \in \mathbb{F}$ satisfying the following axioms:

1.
$$1 \cdot v = v$$
 for $1 \in \mathbb{F}$, $\forall v \in V$.

2.
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta)v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

3.
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

4.
$$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v, \forall \alpha \in \mathbb{F}, u, v \in V.$$

We refer to elements $v \in V$ as vectors.

\hookrightarrow Proposition 1.1

For a vector space V over a field \mathbb{F} , the following holds:

1.
$$0 \cdot v = 0_V, \forall v \in V \text{ (where } 0 := 0_{\mathbb{F}}\text{)}$$

2.
$$-1 \cdot v = -v, \forall v \in V \text{ (where } 1 := 1_{\mathbb{F}})^3$$

¹Where we take $0 ∈ \mathbb{N}$, for sake of consistency. Moreover, by convention, we define \mathbb{F}^0 (that is, when n=0) to be $\{0\}$; the trivial vector space.

²The "zero vector".

p. 3

3.
$$\alpha \cdot 0_V = 0_V, \forall \alpha \in \mathbb{F}$$

³NB: "additive inverse"

<u>Proof.</u> 1. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 \cdot v = 0_V$ (by "cancelling" one of the $0 \cdot v$ terms on each side).

2.
$$v + (-1 \cdot v) = (1 \cdot v + (-1) \cdot v) = (1 - 1) \cdot v = 0 \cdot v = 0_V \implies (-1 \cdot v) = -v$$
.

3. $\alpha \cdot 0_V = \alpha \cdot (0_V + 0_V) = \alpha \cdot 0_V + \alpha \cdot 0_V \implies \alpha \cdot 0_V = 0_V$ (by, again, cancelling a term on each side).

→ Mon Jan 8 13:50:37 EST 2024

1.2 Creating Spaces from Other Spaces

→ **Definition** 1.2: Product/Direct Sum of Vector Spaces

For vector spaces U, V over the same field \mathbb{F} , we define their *product* (or *direct sum*) as the set

$$U \times V = \{(u, v) : u \in U, v \in V\},\$$

with the operations:

$$(u_1, v_1) + (u_2, v_2) := (u_1 + u_2, v_1 + v_2)$$

 $\lambda \cdot (u, v) := (\lambda \cdot u, \lambda \cdot v)$

\circledast Example 1.3: \mathbb{F}

 $\mathbb{F}^2 = \mathbb{F} \times \mathbb{F}$, where \mathbb{F} is considered as the vector space over \mathbb{F} (itself).

$\hookrightarrow \underline{\textbf{Definition}}$ 1.3: Subspace

For a vector space V over a field \mathbb{F} , a *subspace* of V is a subset $W \subseteq V$ s.t.

- 1. $0_V \in W^4$
- 2. $u + v \in W \, \forall \, u, v \in W$ (closed under addition)
- 3. $\alpha \cdot u \in W \, \forall \, u \in W, \alpha \in \mathbb{F}^5$

Then, W is a vector space in its own right.

Example 1.4: Examples of Subspaces

- 1. Let $V := \mathbb{F}^n$.
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 = 0\} = \{(0, x_2, x_3, \dots, x_n) : x_i \in \mathbb{F}\}.$
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 + 2 \cdot x_2 = 0\}$

<u>Proof.</u> Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in W$. Then, $x + y = (x_1 + y_1, ..., x_n + y_n)$, and $x_1 + y_1 + 2 \cdot (x_2 + y_2) = x_1 + 2 \cdot x_2 + y_1 + 2 \cdot y_2 = 0 + 0 = 0 \implies x + y \in W$. Similar logic follows for axioms 2., 3.

• (More generally)

$$a_{11}x_1 + \cdots + a_{1n}x_n = 0$$

$$W := \{(x_1, \dots, x_n) \in \mathbb{F}^n : a_{21}x_1 + \cdots + a_{2n}x_n = 0 \},$$

$$\vdots$$

$$a_{k1}x_1 + \cdots + a_{kn}x_n = 0$$

that is, a linear combination of homogenous "conditions" on each term.

- $W^* := \{(x_1, \dots, x_n) : x_1 + x_2 = 1\}$ is *not* a subspace; it is not closed under addition, nor under scalar multiplication.
- 2. Let $\mathbb{F}[t]_n := \{a_0 + a_1t + \dots + a_nt^n : a_i \in \mathbb{F}\}$. Then, $\mathbb{F}[t]_n$ is a subspace of $\mathbb{F}[t]$, the more general polynomial space. *However*, the set of all polynomials of degree *exactly* n (all axioms fail, in fact) is not a subspace of $\mathbb{F}[t]_n$.
 - $W := \{p(t) \in \mathbb{F}[t]_n : p(1) = 0\}.$
 - $W := \{p(t) \in \mathbb{F}[t]_n : p''(t) + p'(t) + 2p(t) = 0\}.$
- 3. Let $V:=C(\mathbb{R})$ be the space of continuous function $\mathbb{R} \to \mathbb{R}$.

- ⁵This is equivalent to requiring that $W \neq \emptyset$; stated this way, axiom 3. would necessitate that $0 \cdot w = 0_V \in W$.
- ⁵Note that these axioms are equivalent to saying that W is a subgroup of V with respect to vector addition; 2. ensures closed under addition, and 3. ensures the existence of additive inverses (as per $-1 \cdot v = -v$).

• $W := \{ f \in C(\mathbb{R}) : f(\pi) + 7f(\sqrt{2}) = 0 \}.$

• $W:=C^1(\mathbb{R}):=$ everywhere differentiable functions.

• $W := \{ f \in C(\mathbb{R}) : \int_0^1 f \, \mathrm{d}x = 0 \}.$

\hookrightarrow Proposition 1.2

Let W_1, W_2 be subspaces of a vector space V over \mathbb{F} . Then, define the following:

1. $W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$

2. $W_1 \cap W_2 := \{ w \in V : w \in W_1 \land w \in W_2 \}$

These are both subspaces of V.

Proof. 1. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 + W_2$.

(b) $(u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W_1 + W_2$.

(c) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \in W_1 + W_2$

2. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 \cap W_2$.

(b) $u, v \in W_1 \cap W_2 \implies u + v \in W_1 \wedge u + v \in W_2 \implies u + v \in W_1 \cap W_2$.

(c) $\alpha \cdot u \in W_1 \wedge \alpha \cdot u \in W_2 \implies \alpha \cdot u \in W_1 \cap W_2$.

1.3 Linear Combinations and Space

→ Definition 1.4: Linear Combination

Let V be a vector space over a field \mathbb{F} . For finitely many vectors v_1, v_2, \ldots, v_n , their *linear combination* is a sum of the form

$$\sum_{i=1}^{n} a_i v_i = a_1 \cdot v_1 + \dots + a_n \cdot v_n,$$

where $a_i \in \mathbb{F} \, \forall i$.

A linear combination is called *trivial* if $a_i = 0 \,\forall i$, that is, all coefficients are 0.

 \hookrightarrow Mon Jan 8 14:58:22 EST 2024