BM307-Dosya Organizasyonu (File Organization)

Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Konular

- Amaç
- Metrics
- Computational Complexity
- Veritabanı Yönetim Sistemleri
- Veri Depolama Aygıtları
- Primary ve Auxilary Memory

Amaç

- Veri yapıları araçları tanıtır
 - Stack, queue, linked list, vb.
- Dosya organizasyonu bu araçları kullanarak büyük boyuttaki verileri yönetmeyi öğretir
- "Veri Yapıları" "Dosya Organizasyonu" arasındaki farklar nelerdir

Cevap

- Veri Yapılarına göre daha büyük boyuttaki veriler üzerinde işlem yapılır
- Daha fazla sayıda yapı kullanılır
- Herbir yapının kullanım alanı daha özeldir (specific)
- Bir yazılım sisteminden beklenen özellikler
 - hızlı cevap süresi
 - gerçek zamanlı uygulamalarda performans
 - geliştirilme için gereken toplam süre
 - etkin hafıza kullanımı
 - kullanılabilirlik
- Dosya organizasyonundaki amaç tüm bu beklentiler ve sınırlamalar altında en iyi performansı elde etmektir

Amaç (BM307)

- Bu derste verilerin (genellikle çok büyük boyutta) organizasyonu/yapılandırılması ve işlemleri görülecektir
- Farklı dosya organizasyon yapıları çalışılacak ve avantajları ile dezavantajları görülecektir
- Çalışılan veri tipine uygun dosya yapısının seçilmesi öğrenilecektir

Metrics

- Dosya yapısı değerlendirme ölçütleri;
 - Simplicity (kolaylık)
 - Reliability (güvenilirlik)
 - Programmability (programlanabilirlik)
 - Maintainability (kolay bakım ve değiştirilebilirlik)
 - Space complexity (etkin hafıza kullanımı)
 - Computational veya time complexity (etkin işlem ve zaman kullanımı)
 - Security (güvenlik)

Computational complexity

- Eğer $c \ge 0$, $n_0 \ge 0$ iki sabit sayı varsa ve $|f(n)| \le c.|g(n)|$ tüm $n \ge n_0$ için doğruysa, f(n) algoritmasının hesaplama süresi f(n) = O(g(n)) şeklinde yazılabilir.
- burada n algoritmaya olan giriş sayısını ifade eder.

- O(1), sabit complexity
- O(log₂n), logaritmik complexity
- O(n), linear comlexity
- O(n log₂n), n log₂n complexity
- O(n²), quadratic complexity
- $O(n^3)$, cubic complexity
- O(cⁿ), exponential complexity

"=" İşareti eşitliği değil ait olmayı gösterir

Örnek: 5n = O(n)ancak $O(n) \neq 5n$

Computational complexity (devam)

Complexity
Fonksiyonlarının
büyüme oranları

MOD fonksiyonu

- Dönem boyunca kullanılacak
- $r = a \mod n$ nin formal tanımı

$$r = a - n \left\lfloor \frac{a}{n} \right\rfloor$$

- Örnek
 - $4 \mod 3 = 1$
 - 35 mod 11 = 2
 - $5 \mod 0 = 5$

Database Management Systems(DBMS)

- Bir DBMS bilginin saklanması ve işlem yapılması amacıyla hazırlanmış özel amaçlı yazılım sistemidir
- Dosya organizasyonu ve işlem yapıları bilgiyi fiziksel (physical level) seviyede, DBMS ise mantıksal seviyede (logical level) yönetmek için kullanılır
- DBMS genellikle uygulama yazılımı (Muhasebe Otomasyonu) geliştirmek için kullanılır
- Dosya organizasyonu ve işlem teknikleri ise sistem yazılımı (İşletim Sistemleri, Kelime İşlemciler, DBMS) geliştirmek için kullanılır

- Primary Memory
 - Hızlı erişim süresine sahiptir
 - Bit başına fiyatı daha fazladır
 - Daha küçük kapasiteye sahiptir
- Auxilary Memory
 - Erişim süresi daha uzundur
 - Bit başına fiyat daha düşüktür
 - Daha büyük kapasiteye sahiptir

Primary Memory

- Yarı iletken (semiconductor) teknolojisini kullanır
- Bir hafıza chip'i çok büyük ölçekte transistör ve diğer elektronik elemanların birleşiminden oluşturulur (VLSI)
- Tipik olarak erişim süreleri nano saniye seviyesindedir

Auxilary Memory

- Direct Access Storage Devices (DASDs)
 - Drums
 - Fixed-Head Disks
 - Movable-Head Disks
 - CD-ROMs
- Serial Devices
 - Magnetic Tapes

Drums

- Drum silindir bir yapıya sahiptir ve bilgi üzerinde bulunan birbirine paralel izlere (track) yazılır
- Her track üzerinde bir okuma/yazma kafası bulunur
- Drum bilginin yerini bulmak için döndürülür
- Belirli bir adresi bulmak için dönmeden dolayı gecikmeye latency time denir
- Erişim süreleri 10-2 sn seviyesindedir

Fixed-Head Disks

- Bilgi disk üzerinde bulunan track'lar üzerine yazılır
- Track'lar üzerindeki bilgi eşittir
- İçteki track üzerindeki bilgi yoğunluğu dıştaki track üzerindekinden daha fazladır
- Her disk üzerindeki iki yüzeyede bilgi yazılır. Sadece sürücüdeki en alttaki ve en üstteki disklerin bir yüzüne bilgi yazılır
- Fixed-head disklerde her bir track için bir okuma/yazma kafası bulunur
- Erişim için sadece dönme gecikmesi alınır

Movable-Head Disks

- Kısaca "disk" olarak ifade edilir
- Fixed-head disklerden farklı olarak her yüzey için sadece bir okuma/yazma kafası bulunur
- Tüm okuma/yazma kafaları aynı anda hareket eder. Dikey olarak aynı noktaya erişirler
- Erişim süresi fixed-head disklere göre daha fazladır, ancak maliyet daha düşüktür
- En yaygın kullanılan ikincil depolama (Secondary Storage Media, Auxilary Memory) aygıtıdır

Disks

- Birçok farklı türü vardır. Hard disk'ler büyük kapasite ve düşük fiyat sunarlar. Floppy disk'ler çok ucuzdur ve çok az bilgi saklarlar.
- Diğer bir depolama aygıtı ise optik disklerdir.
 Laser ile bilgiler disk üzerine yazılır veya okunur.
- Küçük boyutlu optik diskler CD-ROM (Compact Disc - Read Only Memory) olarak adlandırılır
- DVD (Digital Versatile Disc)

Disklerin Organizasyonu

- Bilgi plaka yüzeyinde bulunan track'lar üzerinde saklanır
- Her bir track sector'lerden oluşur
 - Her sector 512 byte
- Program ile bir byte bilgi dosyadan okunmak istendiğinde
 - işletim sistemi doğru yüzey, track ve sector'ü bulur.
 - sector'ün tamamı buffer olarak adlandırılan özel bir hafızaya alınır
 - istenen bir byte bilgi buffer üzerinde bulunur

Disklerin Organizasyonu (2)

Disk sürücünün şematik görünümü

Disk yüzeyi

Disklerin Organizasyonu (3)

- Disklerdeki track'lar altalta bir silindir şeklinde düşünülebilir
- Bir silindirdeki tüm bilgiye kafayı hareket ettirmeden ulaşılabilir

 Kafanın hareketi seeking time olarak adlandırılır ve diskin en yavaş parçasıdır

Silindir olarak disk sürücünün görünümü

Disklerin Kapasitesi

- Track kapasitesi = her track'taki sector sayısı X her sector'deki byte sayısı
- Cylinder kapasitesi = her silindirdeki track sayısı X track kapasitesi
- Drive (Sürücü) kapasitesi = cylinder sayısı X cylinder kapasitesi
- Örnek: Her birisi 256 byte olan 50.000 kayıttan oluşan bir dosya aşağıdaki özelliklere sahip bir diskte kaç tane cylinder üzerine sığdırılabilir ?

Number of bytes per sector = 512

Number of sectors per track = 63

Number of tracks per cylinder = 16

Number of cylinder = 4092

Gereken sector sayısı = (50.000 x 256) / 512 = 25.000 sector Bir cylinder'deki sector sayısı = 63 x 16 = 1008 sector İhtiyaç duyulan toplam cylinder sayısı = 25.000 / 1008 = 24.8 cylinder

7-Oct-09 21

Track'ların Sector ile Organizasyonu

- En basit şekliyle sektörler yanyana ve sabit boyutlu olarak track üzerinde bulunur
- Mantıksal olarak bilginin yanyana olduğu düşünülebilir ancak fiziksel olarak yanyana değildir

32 sektörden oluşan bir track

7-Oct-09 22

- Aynı track üzerinde yanyana sektörlerdeki bilgiler sıklıkla okunamaz
- Disk kontroller bir sektördeki bilgiyi okuduktan sonra üzerinde işlem yapmak için bir süreye ihtiyaç duyar ve diğerini hemen alamaz
- Bu sürede diğer sektörün başını kaçırabilir ve her turda bir sektör okunmuş olur
- Bu problem interleaving yaklaşımıyla çözülür. Şekilde interleaving faktörü 5 olan disk görülmektedir. 5 turda bir track komple okunur.

- Clusters
 - Belirli sayıdaki sektörden oluşturulur
 - Bir cluster'a erişildiğinde içindeki tüm sektörler birden okunur ve ek erişim süresi gerekmez
 - FAT (File Allocation Table) bir file içindeki tüm cluster'ların bir listesini tutar
 - Sistem yöneticisi bir cluster'daki sektör sayısını 1-65535 arasında belirleyebilir

- Extents
 - Bir dosyanın tüm parçaları birer extents olarak adlandırılır
 - Eğer disk üzerinde yeterince yanyana boş alan varsa dosya tek bir extent olarak oluşturulur
 - Dosya yöneticisi yeni bir bilgi yazacağı zaman dosyanın en sonuna tek bir extent olarak eklemek ister. Yeterince yer yoksa birden fazla extent olarak eklenir.

- Fragmentation
 - Bütün sektörler aynı boyuta sahiptir
 - Eğer herbir kaydı 300 byte olan bir dosyayı 512 byte sektörlere yazmak istersek iki farklı yol kullanabiliriz.
 - Herbir kaydı bir sektöre yazarız
 - Herbir kayıt sadece bir sektör okunarak elde edilir
 - Sektörlerde kalan boşluklara internal fragmentation denir
 - Bir kaydın sonundan başlayarak ardarda sektörlere yazarız
 - Her bir kayıt birden fazla sektör okunarak elde edilir

Track'ların Block ile Organizasyonu

- Disk sektörlere bölünmez, kullanıcı-tanımlı farklı boyutlarda olabilen bloklara bölünür
- Bir blok belirli sayıdaki mantıksal kaydı tutmak için oluşturulur.
 Blocking factor her bir blokta saklanan kayıt sayısını ifade eder
- Eğer bir dosyada 300 byte olan kayıtlar varsa kolaylık olması için bloklar 300 byte veya katında oluşturulur

7-Oct-09 27

Track'ların Block ile Organizasyonu (2)

- Her blok alt bloklara sahip olabilir
- Count subblock data block içerisindeki byte sayısını bulundurur
- Key subblock son kayda ait anahtarı saklar

Nondata Overhead

- Bloklar ve sektörler non-data overhead bilgisine ihtiyaç duyarlar (formatlama zamanında yazılır)
- Sektör adreslenebilir disklerde overhead bilgisi sektör adresini, track adresini ve sektörün durumunu (kullanılabilir, bozuk) içerir.
- Blok adreslenebilir disklerde overhead bilgisi her blok için subblocks ve interblocks gaps bilgilerini içerir.

Disk Erişimi

- Seek time
 - Erişim kolunun doğru silindire konumlanması için gereken süredir.
 - Average seek time kullanılır
- Rotational delay
 - Diskin istenen sektörün okuma/yazma kafasının altına gelene kadar dönmesi için gereken süredir.
 - 5000 rpm ile dönen bir disk için her tur 12 ms'dir. Average rotational time ise 6 ms'dir.
 - Floppy diskler 360 rpm ile döner. Average rotational time ~83 ms'dir.
- Transfer time
 - Transfer time = (number of bytes transferred / number of bytes on a track) x rotation time
 - 10.000 rpm ile dönen bir disk her track'ta 170 sektöre sahipse bir sektör için transfer süresi = (1/(10.000 / 60)) / 170 = ~0.036 ms'dir

- Multiprogramming
 - CPU diskten bilgi gelene kadar başka bir işi gerçekleştirir
- Stripping
 - Bir dosya parçalara bölünür ve birden fazla sürücüye yazılır
 - Dosyanın parçaları eşzamanlı olarak okunur
- RAID (Redundant Array of Independent Disks)
 - Disk kontroller aldığı bir block bilgiyi eşit parçalara böler.
 - 8 drive RAID için block 8 parçaya bölünür 1.parça 1.diskte belirli bir track üzerine
 2.parça 2.diskteki aynı track üzerine ve 3.parça 3.diskteki aynı track üzerine ...
 Yazılır. Yazma ve okuma tek diske göre 8 kat daha hızlı yapılır
- RAM disk
 - Büyük bir hafıza parçasının mekanik disk gibi konfigüre edilmesidir.
 - Seek time ve rotational time olmaz
- Disk Cache
 - Büyük hafıza bloğudur ve diski üzerindeki belirli miktardaki bilgiyi bulundurur

7-Oct-09 31

Magnetic Tapes

- Disklerdeki doğrudan erişim (direct access) magnetic tape'lerde yapılamaz. Çok hızlı sıralı erişim (sequential access) yapılır.
- Tape üniteleri genelikle yedek almak için kullanılır
- Sıralı erişim olduğu için adres bilgisine ihtiyaç duyulmaz
- Tipik bir tape yüzeyinde birbirine paralel 9 track bulunur

- 9 track üzerinde 1 bit parity biti olarak kullanılır kalan 8 bit ise 1 byte bilgiyi oluşturur
- ¹Bir⁰byte oluşturan parça frame olarak adlandırılır

Magnetic Tapes (3)

Ölçüm birimleri

- Tape density genellikle 800, 1600 ile 30000 bpi (bits per inch) arasında
- Tape speed genellikle 30 200 ips (inch per second)
- Size of interblock gap genellikle 0.3 inch 0.75 inch arasındadır

Data aktarım süresi

 Data transmission rate = tape density (bpi) x tape speed (ips)

6250 bpi ve 200 ips olan bir tape için Data transmission rate = 6250 x 200 = 1.250.000 byte / saniye

7-Oct-09 34

CD-ROMs

- Sadece okunabilir disktir. 600 MB 'tan fazla bilgi saklar ve kolay çoğaltılabilir
- Recordable CD sürücülerle kullanıcılar bilgilerlerini CD üzerine kayıt edebilir
- Hız birimi olarak 52X, 32X, 24X gibi birimler kullanılır.
 (X CD audio hızını gösterir)
- En son CD teknolojisi DVD (Digital Video Disk) dir
- Her DVD 10 GB bilgi bulundurabilir

7-Oct-09 35

- CD-ROM'larda konumlanma performansı çok düşüktür (0.5 -1 saniye)
- CD-ROM uygulamalarında dosya organizasyonu çok önemlidir
- CD üzerinde çukur (pit) ve yüzey (land) olarak iki farklı yapı vardır
- Her çukur ve yüzey değişimi 1 olarak alınır. Her iki geçiş arası ise 0 olarak alınır
- EFM (eight to fourteen modulation) kullanılır
- Her 8 bit bilgi 14 bit olarak ifade edilir
- Bu kodlama şemasıyla farklı hızlardaki sürücülerde aynı CD-ROM okunabilir

DVD

DVD-5: Single Side, Single Layer Disk (4.7 GB)

CD-ROM Organizasyonu (2)

- CLV (Constant Linear Velocity)
 - CD üzerinde merkezden dışa doğru yaklaşık 3 mil uzunluğunda bir spiral track bulunur
 - Ses dosyaları için kullanılır. Audio CD'lerin her sektöründeki kayıt yoğunluğu aynıdır
- CAV (Constant Angular Velocity)
 - CD üzerinde içten dışa doğru daireler halinde track'lar ve track'lar üzerinde sektörler vardır. Her track aynı boyutta bilgiyi saklar
 - Dönüş hızı sabittir. Sektörlerdeki kayıt yoğunluğu farklıdır.

velocity

CD-ROM Adresleme

- 1 saniyelik çalma süresi 75 sektörden oluşur
- Her sektörde 2KB bilgi saklanır
- 60 dakikalık bir CD üzerinde 60 * 60 * 75 = 270.000 sektör bulunur
- Toplam kapasitesi ise 270.000 * 2 KB = 540.000 KB ~
 540 MB olur
- Her sektör dakika, saniye ve sektör numarası şeklinde adreslenir

Örnek: 25:30:35

CD-ROM Güçlü ve Zayıf Yönleri

- Seek performance
 - Average access time 500 ms 1 s arasındadır. Magnetic disklerde bu süre (seek time + rotational time) 30 ms'nin altındadır
- Data Transfer Rate
 - Standart bit CD-ROM sürücü floppy diske göre hızlı ancak magnetic diske göre oldukça yavaş bilgi okur.
 - Konumlanma süresine göre data transfer oranı daha hızlıdır.
- Storage Capacity
 - Bir CD-ROM 600 MB üzerinde bilgi saklar. Üzerinde çok sayıda resim ve metin dosyası saklayabilir
 - Birçok metin veritabanı ve döküman kolleksiyonu CD-ROM larla yayınlanmaktadır
- Read-Only Access
 - CD-ROM genel olarak bir bilginin yayınlanması amacıyla kullanılır
 - Çok büyük bilgiler bulundurduğu için indeks yapıları ve diğer dosya organizasyon yapılarının kullanılması gerekmektedir

optical discs,

and tapes

Types of memory	Devices and media	Access times (sec)	Capacities (bytes)	Cost (Cents/bit)
Registers Memory	Semiconductors	$10^{-9} - 10^{-5}$	$10^0 - 10^9$	$10^{0} - 10^{-3}$
RAM disk and disk cache Secondary				
Direct-access	Magnetic disks	$10^{-3} - 10^{-1}$	$10^4 - 10^9$	$10^{-2} - 10^{-5}$
Serial	Tape and mass storage	$10^1 - 10^2$	$10^0 - 10^{11}$	$10^{-5} - 10^{-7}$
Offline —	Removable magnetic disks,	$10^0 - 10^2$	$10^4 - 10^{12}$	10 ⁻⁵ - 10 ⁻⁷

backup