

AD-A107 414

FLAHERTY-GIAVARA ASSOCIATES NEW HAVEN CT
NATIONAL DAM SAFETY PROGRAM. NORWICH RESERVOIR NUMBER 2 DAM (IN--ETC(U)
AUG 81 H C FLAHERTY

F/G 13/13
DACW51-81-C-0006
NL

UNCLASSIFIED

1-13
AD-A107 414

ADA107414

SUSQUEHANNA RIVER BASIN

LEVEL

NORWICH RESERVOIR NO. 2 DAM

**CHENANGO COUNTY, NEW YORK
INVENTORY No. NY 349**

**PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM**

THIS DOCUMENT IS UNCLASSIFIED - EXCERPT
REPRODUCTION OF THIS DOCUMENT IS NOT PROHIBITED
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

DTIC
SELECTED
NOV 16 1981
S D

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

THIS PAGE COPY

NEW YORK DISTRICT, CORPS OF ENGINEERS
MAY 1981

81 11 13 080

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Phase I Inspection Report Norwich Reservoir No. 2 Dam Susquehanna River Basin, Chenango County, N.Y. Inventory No. 349		5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program
6. AUTHOR(s) HUGH C. FLAHERTY		7. PERFORMING ORG. REPORT NUMBER
8. CONTRACT OR GRANT NUMBER(s)		DACW51-81-C-0606
9. PERFORMING ORGANIZATION NAME AND ADDRESS Flaherty-Giavara Associates One Columbus Plaza New Haven, CT 06510		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army 26 Federal Plaza - New York District, CofE New York, New York 10287		12. REPORT DATE 11 4 August 1981
13. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Department of the Army 26 Federal Plaza - New York District, CofE New York, NY 10287		14. NUMBER OF PAGES
15. SECURITY CLASS. (of this report)		UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; Distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 6 National Dam Safety Program. Norwich Reservoir Number 2 Dam (Inventory Number NY 349), Susquehanna River Basin, Chenango County, New York. Phase I Inspection Report		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability Norwich Reservoir No. 2 Dam Chenango County Susquehanna River Basin		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. Examination of available documents and a visual inspection of the dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some deficiencies that need to be evaluated and remedied.		

Using the Corps of Engineers' Screening Criteria for the initial review of spillway adequacy, it has been determined that the embankment would be overtopped by the outflow resulting from all storms exceeding 13 percent of the Probable Maximum Flood (PMF). Dam overtopping, the resulting erosion of the embankment and hence, dam breaching would cause water surface levels downstream to reach depths which would pose significant danger to residents. Therefore, the spillway is adjudged to be seriously inadequate and the dam is assessed as unsafe, nonemergency.

The classification "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to connote the same degree of emergency as would be associated with an "unsafe" classification applied for a structural deficiency. It does mean that there appears to be a serious deficiency in spillway capacity and if a severe storm were to occur, overtopping and failure of the dam could take place, significantly increasing the hazard to life downstream from the dam.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
	23
	41

DTIC
ELECTE
S NOV 16 1981 D
D

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
NORWICH RESERVOIR NO. 2 DAM
INVENTORY NO. NY 349
SUSQUEHANNA RIVER BASIN
CHENANGO COUNTY, NEW YORK

TABLE OF CONTENTS

	<u>PAGE NO.</u>
ASSESSMENT	-
OVERVIEW PHOTOGRAPH	-
LOCATION MAP	1
1 - PROJECT INFORMATION	1
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1
1.3 PERTINENT DATA	4
2 - ENGINEERING DATA	6
2.1 GEOTECHNICAL DATA	6
2.2 DESIGN RECORDS	6
2.3 CONSTRUCTION RECORDS	6
2.4 OPERATION RECORDS	7
2.5 EVALUATION OF DATA	7
3 - VISUAL INSPECTION	8
3.1 FINDINGS	8
3.2 EVALUATION OF OBSERVATIONS	10
4 - OPERATION AND MAINTENANCE PROCEDURES	12
4.1 PROCEDURE	12
4.2 MAINTENANCE OF DAM	12
4.3 WARNING SYSTEM	12
4.4 EVALUATION	12

5 - HYDROLOGIC/HYDRAULIC	13
5.1 DRAINAGE AREA CHARACTERISTICS	13
5.2 ANALYSIS CRITERIA	13
5.3 SPILLWAY CAPACITY	13
5.4 RESERVOIR CAPACITY	14
5.5 FLOODS OF RECORD	15
5.6 OVERTOPPING POTENTIAL	15
5.7 EVALUATION	15
6 - STRUCTURAL STABILITY	16
6.1 EVALUATION OF STRUCTURAL STABILITY	16
7 - ASSESSMENT/RECOMMENDATIONS	17
7.1 ASSESSMENT	17
7.2 RECOMMENDED MEASURES	18

APPENDICES

- A. PHOTOGRAPHS
- B. VISUAL INSPECTION CHECKLIST
- C. HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS
- D. PREVIOUS INSPECTION REPORTS/AVAILABLE DOCUMENTS
- E. REFERENCES
- F. DRAWINGS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Norwich Reservoir No. 2 Dam
State Located: New York
County: Chenango
Watershed: Susquehanna River Basin
Stream: Ransford Creek
Date of Inspection: March 13, 1981

ASSESSMENT

Examination of available documents and a visual inspection of the dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some deficiencies that need to be evaluated and remedied.

Using the Corps of Engineers' screening criteria for the initial review of spillway adequacy, it has been determined that the embankment would be overtopped by the outflow resulting from all storms exceeding 13 percent of the Probable Maximum Flood (PMF). Dam overtopping, the resulting erosion of the embankment and hence, dam breaching would cause water surface levels downstream to reach depths which would pose significant danger to residents. Therefore, the spillway is adjudged to be seriously inadequate and the dam is assessed as unsafe, nonemergency.

The classification "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to connote the same degree of emergency as would be associated with an "unsafe" classification applied for a structural deficiency. It does mean that there appears to be a serious deficiency in spillway capacity and if a severe storm were to occur, overtopping and failure of the dam could take place, significantly increasing the hazard to life downstream from the dam.

It is recommended that the following additional investigations be performed by a registered professional engineer engaged by the owner:

1. Conduct a detailed hydrologic and hydraulic analysis to determine the need for and methods of increasing the discharge capacity of the dam. This would include investigating the adequacy of the principal spillway weir and discharge channel (bypass canal) and the emergency spillway.

2. Verify the location, methods of construction and if possible, the condition of the outlet modifications (where the 36 inch former principal spillway was cut off and flow was diverted to the twin 12 inch pipes leading to the lower reservoir).

It is recommended that within 3 months of the final approval date of this report, the hydrologic investigation of the structure should be undertaken and within 6 months, the remaining investigation should commence. Appropriate remedial measures for both additional investigations should be completed within 18 months of the final approval.

The following remedial measures should be completed within 12 months to correct existing deficiencies:

1. Remove all spruce trees that are growing between the crest and lower berm on the left side of the downstream embankment slope and also any whose trunks or roots may be encroaching onto the right side of the embankment. The trees growing on the abutments may remain. The trees to be removed constitute a potential hazard if uprooted during a storm. This may lead to a loss of freeboard, to a dangerous reduction of embankment width, or to the formation of piping channels if uprooted and the remaining roots rot in place.
2. The trunks of all cut trees are to be removed and backfilled. Equipment and procedures for this maintenance operation should be such as to avoid damage to existing grass and weed cover on the slopes. Any slopes that become scarred by runoff or traffic should be reseeded and mulched.
3. Patch the cracks in the concrete apron and repair the separation between the concrete headwall and apron of the emergency spillway inlet to prevent water from flowing up from beneath the apron.
4. Place rockfill in the bypass canal below the outlet headwall of the emergency spillway where undermining has begun.
5. Ensure the reservoir drain and its controls are operational.
6. Backfill and regrade the areas of minor surface sloughs on the downstream slope.
7. Regrade the dam crest to remove vehicle ruts and shallow depressions and allow surface runoff without concentrated flow. A gravel surface layer would improve trafficability and reduce rutting.
8. Continue to periodically cut the brush on the slopes of the embankment and the bypass canal bottom to prevent their being overgrown.

9. Fill in the animal burrows noted on the embankment slopes.
10. Develop and implement a flood warning and emergency evacuation plan to alert the downstream residents in the event conditions occur which could result in failure of the dam.

Submitted by:

FLAHERTY GIAVARA ASSOCIATES, P.C.

Hugh C. Flaherty, P.E. & L.S.
Chairman of the Board
New York License No. 58508

Approved by:

Col. W. M. Smith, Jr.
New York District Engineer

Date:

3 Aug 8

PHOTO #1: Overview of
Norwich Reservoir No. 2 Dam
Inventory No. NY 349

**NORWICH RESERVOIR No. 2 DAM
INVENTORY No. NY 349**

**SUSQUEHANNA RIVER BASIN
CHENANGO COUNTY
NORWICH, NEW YORK**

0 2000 4000

SCALE IN FEET

FLAHERTY • GIAVARA ASSOCIATES, P.C.

NATIONAL DAM SAFETY PROGRAM
PHASE I INSPECTION REPORT
NORWICH RESERVOIR NO. 2 DAM
INVENTORY NO. NY 349
D.E.C. NO. 117C-621
SUSQUEHANNA RIVER BASIN
CHENANGO COUNTY, NEW YORK

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase I Inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367. Flaherty Giavara Associates, P.C. has been retained by the New York District to inspect and report on selected dams in the State of New York. Authorization and notice to proceed was issued to Flaherty Giavara Associates, P.C. under a letter of December 24, 1980 from W. M. Smith, Jr. Colonel, Corps of Engineers. Contract No. DACW 51-81-C-0006 has been assigned by the Corps of Engineers for this work.

b. Purpose

Evaluation of the existing conditions of the subject dam to identify deficiencies and hazardous conditions, determine if they constitute hazards to life and property and recommend remedial measures where necessary.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

Norwich Reservoir No. 2 Dam consists of an earthen embankment with a 36 inch diameter cast iron water supply pipe under the right central portion of the embankment, a cut stone masonry and concrete principal spillway with flashboards and a "bypass canal" beyond the right abutment and an emergency spillway utilizing twin 48 inch diameter corrugated metal pipes through the right abutment. Profiles and sections prepared for the project by the Norwich Water Works are included on drawings in Appendix F.

The dam embankment is 638 feet long and a maximum of 56 feet high and has an upstream slope of 3 horizontal to 1 vertical and a downstream slope of 2 to 1. The crest of

the dam is 10 feet in width and its elevation is 1249.0 (NGVD). There is a 15 to 18 foot berm near the downstream toe of slope. The embankment cross section consists primarily of compacted glacial material except for a 10+ foot wide zone of compacted clay and gravel (puddled) core. The core is 5 feet wide near the top of the embankment and widens to 9 to 14 feet at the original ground surface. The core extends 7 to 18 feet below ground surface to form a cutoff. The width of the bottom of the cutoff is approximately 5 to 6 feet.

The upstream slope has a layer of 15 inches of broken rock for slope protection, while the downstream slope has a "soil dressing" and grass.

A 36 inch diameter cast iron water supply pipe runs beneath the right central part of the embankment from an intake structure in the reservoir, and constitutes part of the water supply system for the City of Norwich.

The principal spillway is 45 feet wide consisting of a cut stone masonry and concrete weir with wooden flashboards, cut stone masonry abutments and wingwalls and a 2400 foot long "bypass canal". It is located to the north of the right abutment diverting flow around both this dam and Norwich Water Works Dam No. 1 (NY 347). The "bypass canal" is excavated into earth and rock while portions of the left side are formed by a berm. The excavated side slopes vary; however, the berm side slopes are 2 horizontal to 1 vertical on the canal side and 2.5 to 1 on the side sloping away from the canal.

The emergency spillway consists of two 48 inch diameter corrugated metal pipes located between the reservoir and the bypass canal and discharging a short distance downstream of the principal spillway weir. At the inlet, there is a concrete headwall and a concrete apron which serves as a weir, and at the outlet into the bypass canal there is a concrete endwall.

b. Location

The Norwich Reservoir No. 2 Dam is located off New York Route 23 approximately 1.6 miles northeast of the City of Norwich in the Town of Norwich, New York. The dam is located at latitude north 42° 33.0' and longitude west 75° 29.3' on the U.S. Geological Survey 7.5 minute series topographic map "Holmesville, New York". The Location Map on page i indicates where the dam is situated.

c. Size Classification

The maximum height of the dam is 56 feet and the maximum storage capacity is 222 acre-feet. Therefore, Norwich Reservoir No. 2 Dam is classified as an "Intermediate" dam as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

There are approximately 2 dwellings, a large trailer park (30 to 40 trailers), 4 commercial buildings, two major roads (including New York Route 23) and high voltage transmission lines within the dam failure flood hazard area. Therefore, the dam is in the "High" hazard category as defined by the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the City of Norwich. The address and telephone number of the owner is as follows:

Owner

Contact: Mr. Nicholas W. Andrews, Superintendent
Norwich Water Department
City of Norwich
31 East Main Street
Norwich, New York 13815

Telephone: (607) 334-6618

f. Purpose

The primary purpose of this dam is water supply for the City of Norwich.

g. Design and Construction History

The dam was designed in 1888 by the Norwich Water Works, W. S. Franklin, Chief Engineer and John Mitchell, President. It was constructed in 1890 by the Troy Public Works Company-Limited of Troy, New York. Major post construction modifications include the installation of flashboards on the principal spillway weir in 1913 and the construction of the emergency spillway in 1967.

h. Normal Operating Procedure

The water level in the reservoir is checked visually twice daily, seven days a week. The flashboards are lowered in late spring to retain flow during the dry months,

then they are raised in late fall to permit flow to pass during the wet months.

1.3 PERTINENT DATA

a. <u>Drainage Area (Square Miles)</u>	3.79
b. <u>Discharge at Dam Site (CFS)</u>	
- Top of Dam	934
- Crest of Emergency Spillway	95
- Crest of Principal Spillway left weir (with flashboards)	69
right weir (without flashboards)	-
c. <u>Elevations</u>	
- Top of Dam	1249.0
- Crest of Emergency Spillway	1245.6
- Crest of Principal Spillway left weir (with flashboards)	1245.4
right weir (without flashboards)	1244.1
- Reservoir Drain Inlet	1205.0
d. <u>Reservoir Surface Area (Acres)</u>	
- Top of Dam	12.0
- Crest of Emergency Spillway	10.0
- Crest of Principal Spillway left weir (with flashboards)	9.9
right weir (without flashboards)	9.1
e. <u>Storage (Acre-Feet)</u>	
- Top of Dam	222
- Crest of Emergency Spillway	189
- Crest of Principal Spillway left weir (with flashboards)	187
right weir (without flashboards)	176
f. <u>Dam</u>	
- Type: Compacted glacial material with a compacted clay and gravel (puddled) core and cutoff	
- Length (Feet)	638
- Upstream Slope (H:V)	3:1
- Downstream Slope (H:V)	2:1
- Crest Width (Feet)	10

g. Principal Spillway

- Type: Cut stone masonry weir with a concrete crest and adjustable flashboards as well as an excavated earthen channel (bypass canal)
- Length (Feet)

weir	42
channel	2400
- Bottom Width (Feet)

weir	30
channel	45
- Side Slopes (H:V)

weir	vertical
channel	0.5-2.0:1
- Channel Bottom Slopes (Feet/Foot)

upstream	-
downstream	0.004 to 0.060
- Control: Flashboards

h. Emergency Spillway

- Type: Twin 48 inch diameter corrugated metal pipes (112 feet long) with a concrete apron and headwall at its inlet and a concrete endwall at its outlet
- Control: None

i. Reservoir Drain

- Type: 36 inch diameter cast iron pipe (200 feet long)
- Control: 36 inch diameter slide gate located near the outlet into the stilling basin

SECTION 2 - ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. Geology

The Norwich Reservoir No. 2 Dam is located on Ransford Creek, a southwesterly flowing tributary to the Chenango River, about 1.5 miles northeast of the City of Norwich in the Appalachian (Allegheny) Plateau physiographic province of New York State.

The topography in the area ranges from elevation 1200 at the streambed downstream of the dam to about elevation 1500 to 1780 at the summits of hills surrounding the dam and reservoir area.

The underlying bedrock at the site consists of the Unadilla Formation belonging to the Upper Devonian Genesee group. This formation consists of coarse silty shales and siltstones that were deposited in a shallow water, near-shore setting of the Catskill Delta that propagated across the state from east to west. The bedding of these deposits is quite even and laminated, splitting readily into thin sheets upon exposure.

Above the bedrock, the valley bottom and side slopes are mantled by a heterogeneous mixture of clay, silt, sand and rock fragments known as glacial till (or hardpan).

b. Subsurface Investigations

No known subsurface explorations were made at the site. Based on reports made in the mid 1920's, the subsurface conditions at the site consist of relatively impermeable glacial till (hardpan) or shale bedrock.

2.2 DESIGN RECORDS

The Norwich Reservoir No. 2 Dam was designed in 1888 by the Norwich Water Works, W. S. Franklin, Chief Engineer. No design data was obtained for this dam.

2.3 CONSTRUCTION RECORDS

This dam was constructed in 1890 by the Troy Public Works Company-Limited of Troy, New York. Cross sections and a profile of the embankment and bypass canal, a plan and profile of the waste weir and plans for the installation of the flashboards are included in Appendix F. In addition, excerpts from the technical specifications can be found in Appendix D.

2.4 OPERATION RECORDS

There were no operation records available for this dam.

2.5 EVALUATION OF DATA

The data presented herein was obtained primarily from the Norwich Water Department located in Norwich, New York and also from the files of the New York State Department of Environmental Conservation (DEC). This information appears to be reliable and adequate for the purposes of a Phase I Inspection Report.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of the Norwich Reservoir No. 2 Dam was conducted on March 13, 1981. The weather was overcast and the temperature was 40°F . At the time of the inspection, there were small patches of snow on the ground and water was flowing in the principal spillway (See Photo No. 9).

b. Dam

The earthfill embankment of the dam is generally in good condition (See Photos No. 4, 5, 6 and 7). The dam crest is also in good condition except for vehicle ruts and shallow depressions and is presently used for access to Norwich Water Works Dam No. 1 (See Photo No. 3). There was no visible evidence of lateral movement, seepage, major settlement or erosion, or other serious defects.

The following specific items were noted:

1. Several minor surface sloughs were observed on the right side of the upper downstream slope.
2. Several large animal burrows were noted on the upper portion of the downstream slope. Several small animal burrows were observed near the crest on both the upstream and downstream slopes (See Photo No. 18).
3. Moderate to large-sized spruce trees are growing on the downstream slope along the left and right abutments; this tree cover overlaps onto the downstream embankment slope on the left side (See Photos No. 5 and 7).

c. Principal Spillway

1. Principal Spillway Weir

This two-stage broad-crested weir is constructed of cut stone masonry and concrete and is in good condition. The lower stage contains provisions for 2.5 foot high adjustable flashboards. The approach channel to the weir is straight, free from debris and also in good condition (See Photo No. 8). A 50 foot long by 13 foot wide bridge spans the spillway weir (See Photo No. 8) and is used for access to the lower reservoir, dam and chemical feed building. It has two spans constructed of steel I-beams, a steel grate

deck and a 3 foot high pipe rail parapet (See Photo No. 8).

2. Principal Spillway Discharge Channel (Bypass Canal)

The discharge channel has a typical width of 45 feet, a length of approximately 2400 feet and is in good condition (See Photo No. 12). This channel directs flow around both this dam and the lower dam (NY 347). The side slopes of the channel vary from 0.5 horizontal to 1 vertical to 2:1 and are excavated into bedrock in some sections. Portions of the left side slope are formed by an earthen berm.

d. Emergency Spillway

The twin 48 inch diameter corrugated metal pipes which discharge into the bypass canal are in good condition showing little sign of deterioration.

The following observations were made:

1. Numerous cracks were observed in the concrete walls and apron of the inlet structure (See Photo No. 10). These cracks range from hairline to 1/4 inch in width and at one location as indicated on the sketch on page B-11 in Appendix B, there is a 3/8 inch separation between the abutment and wingwall. Water seepage was noted between the concrete apron and the headwall at the inlet (See Photo No. 11). The pipe inlet elevation was approximately 0.3 feet below the reservoir level at the time of observation.
2. Slight undermining of the concrete endwall was noted at the emergency spillway outlet into the bypass canal (See Photos No. 12 and 13). No flow beneath the headwall was observed.
3. The left 48 inch CMP has an angle point in its horizontal alignment.

e. Water Distribution System Appurtenances

1. Intake Structure

A wood and stone masonry intake structure is located approximately 100 feet from the dam crest within the reservoir (See Photo No. 14). It is connected to the shoreline by a 58 foot long by 5 foot wide access footbridge. Both structures are in good condition showing little sign of deterioration.

2. Outlet Works

The primary outlet works is a 36 inch diameter cast iron water supply pipe located between the intake structure and the stilling basin (See No. Photo 15). Connected to this pipe is a 12 inch diameter cast iron pipe which supplies water to two 4 inch diameter cast iron discharge pipes (See Photo No. 16), to the aerating jets of the lower reservoir and to the City of Norwich water distribution system. Additionally, a 14 inch diameter cast iron pipe serves as a drain for the stilling basin emptying into the lower reservoir (See Photo No. 17). The pipe networks for the upper and lower reservoirs are shown on a "Sketch Map" on page D-17 in Appendix D.

f. Downstream Channel

The only natural channel downstream of the dam is located at the end of the bypass canal below the lower dam and reservoir. It has a width of 10 to 15 feet and a depth of 6 inches. Immediately downstream of the upper dam is the lower reservoir and dam - NY 347 (See Photo No. 19).

g. Reservoir - Storage Pool Area

The reservoir area is bordered by moderately to steeply sloping wooded land. There does not appear to be any significant probability of landslides into the storage pool affecting the safety of the dam (See Photo No. 2).

The "bypass canal" for Reservoir No. 2 runs along the top of the slope above the right side of Reservoir No. 1. An earthen berm was built along portions of the bypass canal on the side adjacent to Reservoir No. 1, but well back from the top of slope.

3.2 EVALUATION OF OBSERVATIONS

The visual inspection revealed several deficiencies. The following observations were made:

- a. Moderate to large-sized spruce trees were growing on the left downstream slope and along each abutment.
- b. Numerous cracks were noted in the concrete walls and apron of the emergency spillway inlet structure.
- c. Slight undermining of the concrete endwall was observed at the outlet to the emergency spillway.
- d. Several minor surface sloughs were observed on the right side of the upper downstream slope.

- e. Vehicle ruts and shallow depressions were noted on the dam crest.
- f. Several large animal burrows were noted on the upper portion of the downstream slope.

SECTION 4 - OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

The normal water surface level is maintained by the crest of the right broad-crested weir of the principal spillway at elevation 1244.1 (NGVD). However, with the flashboards in place, the normal water surface level is increased to the elevation of the left broad-crested weir at 1245.4 (NGVD). The following operational procedures are in effect at this time:

- a. The reservoir water level is checked visually twice daily, seven days a week.
- b. The reservoir level can be raised by diverting water via a tunnel to Ransford Creek from Chenango Lake in the Unadilla River watershed.

4.2 MAINTENANCE OF DAM

Maintenance operations at the Norwich Reservoir No. 2 Dam include:

- a. The dam crest and embankments are mowed manually once every year.
- b. Deciduous trees are cut back annually to prevent them from growing too close to the reservoir.
- c. Repairs to masonry are performed as required.
- d. Metalwork and wooden structures are painted as necessary.

4.3 WARNING SYSTEM

No warning system is presently in effect.

4.4 EVALUATION

Presently, the operation and maintenance procedures in effect for this dam and its appurtenances are satisfactory. However, increased maintenance efforts are required to correct the deficiencies which now exist.

SECTION 5 - HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The dam is located in the Town of Norwich on Ransford Creek, approximately 8100 feet upstream of the Chenango River. Ransford Creek joins the Chenango River at the City of Norwich, approximately forty-five miles upstream of the Susquehanna River at Binghamton, New York.

The watershed (shown on the Watershed Map on Page C-5 in Appendix C) consists of 2424 acres (3.79 square miles) of hilly uplands. It is divided into two subwatersheds, one has typical slopes of 15 \pm percent while the other has slopes ranging from 5 to 10 percent. Land within the watershed is primarily agricultural with extensive open fields.

Two watercourses flow into the reservoir; each is a small perennial stream with a typical flow width of 10 feet and a typical flow depth of 6 inches.

5.2 ANALYSIS CRITERIA

The purpose of the hydrologic/hydraulic analysis is to evaluate the spillway capacity and the potential for overtopping. The analysis of the spillway capacity of the dam and storage of the reservoir was performed using the Corps of Engineers HEC-1 Computer Model - Dam Safety Version. The procedure included determining the Probable Maximum Flood (PMF) runoff from the watershed and routing the inflow hydrograph through the impoundment to determine the outflow hydrograph. The unit hydrograph was defined by the Snyder Synthetic Unit Hydrograph method, and the Modified Puls routing procedure was incorporated.

The initial rainfall loss was assumed to be 1.0 inches, and the uniform rainfall loss was assumed to be 0.1 inches per hour. In accordance with recommended guidelines of the Corps of Engineers, the Probable Maximum Precipitation (PMP) was 20.2 inches (24 hour duration, 200 square mile area).

The analysis was conducted for both the full PMF and for several fractional PMF conditions. The PMF inflow of 8626 CFS was routed through the reservoir and the peak outflow was determined to be 8626 CFS.

5.3 SPILLWAY CAPACITY

The total outlet capacity is the sum of the discharges from the principal spillway and the emergency spillway.

The principal spillway consists of a two stage broad-crested overflow weir, one stage being 16.7 feet long and the other

13.0 feet long. The right weir is at a lower elevation (1244.1 NGVD) than the left weir (1245.4 NGVD) and has 2.5 feet of adjustable flashboards.

The emergency spillway consists of a concrete apron at the inlet that acts as a weir for certain stages and two 48 inch diameter corrugated metal pipes (CMP).

The stage discharge data for the combined principal and emergency spillways was calculated for the stages tabulated below:

<u>Stage (Feet)</u>	<u>Discharge Capacity (CFS)</u>	<u>Element of Structure</u>
1244.1	0	Right Broad-Crested Weir
1244.4	6	--
1245.4	69	Left Broad-Crested Weir
1245.6	95	Emergency Spillway Crest
1246.4	263	--
1247.4	487	--
1248.4	746	--
1249.0	934	Top of Dam

The total spillway capacity at the top of the dam is 934 CFS.

The principal spillway can pass the peak outflow from a flood equal to approximately 3 percent of the PMF before use of the emergency spillway would be required.

5.4 RESERVOIR CAPACITY

The storage capacity of the reservoir was obtained primarily from the records of the Norwich Water Department as indicated below:

<u>Stage (Feet)</u>	<u>Storage (Acre-Feet)</u>	<u>Storage (Inches of Runoff)</u>
1244.1	176	0.87
1245.4	187	0.93
1245.6	189	0.94
1249.0	222	1.10

5.5 FLOODS OF RECORD

No data regarding floods of record was obtained for this dam.

5.6 OVERTOPPING POTENTIAL

The results of the HEC-1 DB computer analysis indicate that the crest of the dam is overtopped by all storms exceeding 13 percent of the outflow from the PMF event. The PMF discharge rate of 8626 cubic feet per second (CFS) would occur at a peak flood stage of 1252.7 feet, which is 3.7 feet above the crest of the dam.

The results of the analysis are tabulated below:

<u>Flood Condition</u>	Peak Inflow (CFS)	Peak Outflow (CFS)	Maximum Stage Elevation (NGVD)
0.5 PMF	4313	4313	1251.0
1.0 PMF	8626	8626	1252.7

5.7 EVALUATION

Using the Corps of Engineers' screening criteria for the initial review of spillway adequacy, it has been determined that the combined capacity of the principal and emergency spillways is not adequate to pass either the full PMF or one half the PMF; only approximately 13 percent of the outflow from the PMF can be safely passed before overtopping will occur. The PMF event would overtop the dam for a duration of 13 hours and the maximum depth of flow over the crest would be 3.7 feet. It is estimated that as a result of overtopping, breaching of the dam would cause water surface levels downstream to reach depths which would pose significant danger to residents. Therefore, the spillway is adjudged to be seriously inadequate and the dam is assessed as unsafe, nonemergency.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

There was no visible evidence of major settlement, lateral movement or other signs of overall structural instability of the dam during the site examination. Based on the conditions that were observed, there is no reason to question the static structural stability of the dam.

b. Design and Construction Data

The drawings entitled "Storage Reservoir Embankment, Upper Location", "Waste Weir" and "Bypass Canal" for the Norwich Reservoir No. 2 Dam (See Appendix F) show a configuration for the embankment, principal spillway and discharge channel that generally corresponds to the conditions observed on March 13, 1981, with the following exceptions:

1. The discharge is no longer through the 36 inch diameter cast iron pipe into the lower reservoir.
2. An earthen berm has been constructed at the downstream toe of the embankment.
3. Flashboards were installed on the principal spillway weir in 1913.
4. The emergency spillway was built in 1967.

There is no construction data to confirm the actual physical properties and configuration of the earthfill or the puddled core in the embankment. However, the dam proportions are considered to be reasonable for the soils that were available at the site and the dam would be expected to have adequate safety margins with respect to stability under static loading conditions.

c. Seismic Stability

The Norwich Reservoir No. 2 Dam is located in Seismic Zone 1, and in accordance with recommended Phase I guidelines does not require seismic analysis.

SECTION 7 - ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Condition

On the basis of the visual examination, the embankment and appurtenances of the Norwich Reservoir No. 2 Dam are considered to be in good condition. There were no signs of impending structural failure or other conditions which would warrant urgent remedial action; however, a number of minor deficiencies were noted.

b. Adequacy of Information

The evaluation of the embankment portions of this dam is based primarily on visual examination, reference to available plans, approximate hydraulic and hydrologic computations, and application of engineering judgement. The available information that was obtained is adequate for the purposes of a Phase I assessment.

c. Need for Additional Investigations

It is recommended that the following additional investigations be performed by a registered professional engineer engaged by the owner:

1. Conduct a detailed hydrologic and hydraulic analysis to determine the need for and methods of increasing the discharge capacity of the dam. This would include investigating the adequacy of the principal spillway weir and discharge channel (bypass canal) and the emergency spillway.
2. Verify the location, methods of construction and if possible, the condition of the outlet modifications (where the 36 inch former principal spillway was cut off and flow was diverted to the twin 12 inch pipes leading to the lower reservoir).

d. Urgency

It is recommended that within 3 months of the final approval date of this report, the necessary hydrologic investigation should be undertaken and within 6 months, the remaining investigation should commence. Appropriate remedial measures for both of the additional investigations described in Section 7.1c should be completed within 18 months of the final approval of the report. Corrective measures listed in Section 7.2 should be accomplished within 12 months of final approval.

7.2 RECOMMENDED MEASURES

It is considered important that the following items be accomplished in addition to any items required as a result of the additional investigations recommended in Section 7.1c:

- a. Remove all spruce trees that are growing between the crest and lower berm on the left side of the downstream embankment slope, and also any whose trunks or roots may be encroaching onto the right side of the embankment. Trees growing on the abutments may remain. The trees to be removed constitute a potential hazard if uprooted during a storm. This may lead to a loss of freeboard, to a dangerous reduction of embankment width, or to the formation of piping channels if uprooted and the remaining roots rot in place.
- b. The trunks of all cut trees are to be removed and back-filled. Equipment and procedures for this maintenance operation should be such as to avoid damage to existing grass and weed cover on the slopes. Any slopes that become scarred by runoff or traffic should be reseeded and mulched.
- c. Patch the cracks in the concrete apron and repair the separation between the concrete headwall and apron of the emergency spillway inlet to prevent water from flowing up from beneath the apron.
- d. Place rockfill in the bypass canal below the outlet headwall of the emergency spillway where undermining has begun.
- e. Ensure the reservoir drain and its controls are operational.
- f. Backfill and regrade the areas of minor surface sloughs on the downstream slope.
- g. Regrade the dam crest to remove vehicle ruts and shallow depressions and allow surface runoff without concentrated flow. A gravel surface layer would improve trafficability and reduce rutting.
- h. Continue to periodically cut the brush on the embankment slopes and the bypass canal bottom to prevent their being overgrown.
- i. Fill in the animal burrows observed on the embankment slopes.
- j. Develop and implement a flood warning and emergency evacuation plan to downstream residents public in the event

conditions occur which could result in the failure of the dam.

APPENDIX A
PHOTOGRAPHS

PHOTO #2: Overview of impoundment

PHOTO #3: Crest of dam looking toward
right abutment

PHOTO #4: Overview of upstream face of dam

PHOTO #5: Overview of downstream face of dam

PHOTO #6: Upstream face of dam

PHOTO #7: Downstream face of dam

PHOTO #8: View of principal spillway from upstream

PHOTO #9: Closeup of flashboards from downstream

PHOTO #10: View of emergency spillway (twin 48" corrugated metal pipes - CMP) from upstream

PHOTO #11: Seepage through joint between concrete headwall and apron

PHOTO # 12: Outlet of emergency spillway and downstream channel conditions

PHOTO #13: Closeup of emergency spillway outlet

PHOTO #14: Intake structure

PHOTO #15: Outlet works (36" cast iron
pipe - CIP)

PHOTO #16: 4" CIP outlet pipe flowing
nearly full

PHOTO #17: 14" CIP drain from outlet works
(shown in Photo #15)

PHOTO #18: Animal burrow

PHOTO #19: Downstream channel conditions -
impoundment for Norwich Water Works
Dam No. 1 (Inventory No. NY 347)

APPENDIX B
VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

1) Basic Data

a. General

Name of Dam Norwich Reservoir No. 2 Dam

Fed. I.D. # NY 349 DEC Dam No. 117C-621

River Basin Susquehanna

Location: Town Norwich County Chenango

Stream Name Ransford Creek

Tributary of Chenango River

Latitude (N) 42° - 33.0' Longitude (W) 75° - 29.3'

Type of Dam Earthen embankment

Hazard Category High

Date(s) of Inspection March 13, 1981

Weather Conditions Overcast, 40° ±F.

Reservoir Level at Time of Inspection Elevation 1244.2 (NGVD)

b. Inspection Personnel R.C. Smith, T.L. Ward & R.A. Criscuolo of Flaherty Giavara Associates, P.C.; J.J. Rixner & C.W. Eller of Haley & Aldrich, Inc.; E. Thomas of Salmon Associates.

c. Persons Contacted (Including Address & Phone No.)

Nicholas W. Andrews, Superintendent

Thomas J. Natoli, City Engineer

Norwich Water Department

City of Norwich

City of Norwich

P.O. Box 430

31 East Main Street

31 East Main Street

Norwich, New York 13815

Norwich, New York 13815

(607) 334-6618

(607) 334-4427

d. History:

Date Constructed 1890

Date(s) Reconstructed Never

Designer Norwich Water Works; W.S. Franklin, Chief Engineer

Constructed By Troy Public Works Company - Limited

Owner City of Norwich

2) Embankment

a. Characteristics

(1) Embankment Material Compacted earth material

(2) Cutoff Type Compacted clay and gravel (puddled)

(3) Impervious Core Compacted clay and gravel (puddled)

(4) Internal Drainage System None observed

(5) Miscellaneous No comments

b. Crest

(1) Vertical Alignment Good; minor wheel rutting in roadway

(2) Horizontal Alignment Good; angled upstream toward the left abutment

(3) Surface Cracks None observed

(4) Miscellaneous Mowed grass cover

c. Upstream Slope

(1) Slope (Estimate - V:H) 1:3

(2) Undesirable Growth or Debris, Animal Burrows Few mouse/mole burrows near the crest

(3) Sloughing, Subsidence or Depressions Slight surface erosion on right abutment

(4) Slope Protection Layer of riprap with flat platey shale extending within one foot of the crest; one foot strip of grass at crest; heavier grass and brush cover at the abutments.

(5) Surface Cracks or Movement at Toe None evident

d. Downstream Slope

(1) Slope (Estimate - V:H) 1:2

(2) Undesirable Growth or Debris, Animal Burrows Several woodchuck burrows near the toe of slope; pine and spruce (6 inch - 24 inch in diameter) cover the left abutment and slope.

(3) Sloughing, Subsidence or Depressions Two minor surface sloughs were noted near the right abutment; some erosion of surface soil through the stone below

(4) Surface Cracks or Movement at Toe None observed

(5) Seepage None evident

(6) External Drainage System (Ditches, Trenches, Blanket) None observed

(7) Condition Around Outlet Structure Dry stone masonry stilling basin in good condition

(8) Seepage Beyond Toe None observed

e. Abutments - Embankment Contact

Right: good condition

Left: good condition

(1) Erosion at Contact None apparent

(2) Seepage Along Contact None observed

3) Drainage System

- a. Description of System Masonry and wood intake structure with a 36 inch diameter cast iron pipe (CIP) feeds water into the distribution system through a 12 inch CIP from which two 4 inch CIP blowoffs discharge into the lower reservoir (NY 347)
- b. Condition of System Fair; some valves have not been opened or closed in years and may be inoperable
- c. Discharge from Drainage System Stilling basin and rirapped outlet

4) Instrumentation (Monumentation/Surveys, Observation Wells, Weirs, Peizometers, Etc.)

None observed

5) Reservoir

a. Slopes Moderately to steeply sloping woodlands

b. Sedimentation No apparent problems

c. Unusual Conditions Which Affect Dam None apparent

6) Area Downstream of Dam

a. Downstream Hazard (No. of Homes, Highways, etc.) Approximately 2 dwellings, a large trailer park (30 to 40 trailers), 4 commercial buildings, two major roads (including New York Route 23) and high voltage transmission lines are within the dam failure flood hazard area

b. Seepage, Unusual Growth

None observed

c. Evidence of Movement Beyond Toe of Dam None evident

d. Condition of Downstream Channel Not applicable

7) Spillway(s) (Including Discharge Conveyance Channel)

Principal spillway, emergency spillway and discharge conveyance channel

(bypass canal)

a. General Principal spillway and discharge conveyance channel (bypass canal) handle normal flows while the emergency spillway conveys flow during overflow conditions

b. Condition of Principal Spillway Good; minor seepage around right abutment; some open joints in masonry

c. Condition of Emergency Spillway Some seepage through the joint between the concrete apron and headwall at the inlet to the twin 48 inch CMP; cracks observed in the concrete apron; the center of the concrete endwall has been undermined by 9 ± inches.

d. Condition of Discharge Conveyance Channel Fair; side slopes have a moderate growth of trees and brush but appear stable

8) Reservoir Drain/Outlet

Type: Pipe Conduit _____ Other _____

Material: Concrete _____ Metal Other _____

Size: 36 inch cast iron pipe (CIP) Length 200 feet

Invert Elevations: Entrance 1205.0 (NGVD) Exit 1199.4 (NGVD)

Physical Condition (Describe): Unobservable

Material: Rust was visible at the outlet

Joints: Unobservable Alignment Straight

Structural Integrity: Good

Hydraulic Capability: Good; pipe is used for water supply for the City of Norwich

Means of Control: Gate _____ Valve Uncontrolled _____

Operation: Operable _____ Inoperable _____ Uncontrolled _____

Present Condition (Describe): Unknown; the valve was not operated during the inspection

9) Structural

a. Concrete Surfaces Concrete surfaces of the emergency spillway inlet have several cracks.

b. Structural Cracking Minor shrinkage cracks were observed

c. Movement - Horizontal & Vertical Alignment (Settlement) Numerous settlement cracks up to $\frac{1}{8}$ inch wide at the inlet (See the sketch on page B-11)

d. Junctions with Abutments or Embankments A $\frac{3}{8}$ inch separation was observed between the headwall and the right wingwall (See the sketch on page B-11)

e. Drains - Foundation, Joint, Face None evident

f. Water Passages, Conduits, Sluices 36 inch cast iron water supply pipe from the intake structure having a 12 inch cast iron pipe branching off to the distribution system.

g. Seepage or Leakage Some seepage was noted through the joint separation mentioned in 9)d. above.

- h. Joints - Construction, etc.** Some open joints in stone masonry of the principal spillway; no indication of reinforcement between the wingwalls and the headwall of the emergency spillway inlet.
- i. Foundation** Inaccessible
- j. Abutments** Minor openings in masonry joints as noted in 9)h, above
- k. Control Gates** Valves control the flow of water to the distribution system
- l. Approach & Outlet Channels** Concrete surface is cracked at the approach to the emergency spillway.
- m. Energy Dissipators (Plunge Pool, etc.)** Stilling basin at the outlet of the 36 inch diameter cast iron water supply pipe.
- n. Intake Structures** Stone masonry and wood structure with access footbridge in good condition
- o. Stability** Appears to be stable
- p. Miscellaneous** No comments

10) Appurtenant Structures (Power House, Lock, Gatehouse, Other)

a. Description and Condition

1. Intake structure: It appears to be in good condition.
2. Bridge over principal spillway weir: Good condition.

FED I.D. NO : 349

SECTION THRU CONC. SPILLWAY AT BRIDGE.

(N.T.S)

FED. ID. NO : 349

• PLAN OF EMERGENCY SPILLWAY •
(N.T.S)

1/8" WIDE CRACKS.

• ELEVATION OF EMERGENCY SPILLWAY. •
(N.T.S)

NAME OF DAM : NORWICH RESERVOIR N^o2

FED. I.D. NO : 349.

ELEVATION OF INTAKE STRUCTURE & FOOT BRIDGE .
(N.T.S)

SECTION THRU FOOT BRIDGE.
(N.T.S)

APPENDIX C

HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS

CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

AREA-CAPACITY DATA:

	<u>Elevation</u> (ft.)	<u>Surface Area</u> (acres)	<u>Storage Capacity</u> (acre-ft.)
1) Top of Dam	1249.0	12.0	222
2) Design High Water (Max. Design Pool)	--	--	--
3) Emergency Spillway Crest	1245.6	10.0	189
4) Pool Level with Flashboards	1245.4	9.9	187
5) Principal Spillway Crest	1244.1	9.1	176

DISCHARGES:

	<u>Volume</u> (cfs)
1) Average Daily	Unknown
2) Emergency Spillway @ Maximum High Water (Top of Dam)	126
3) Principal Spillway @ Maximum High Water (Top of Dam)	808
4) Principal Spillway @ Emergency Spillway Crest	95
5) Low Level Outlet @ Principal Spillway Crest	--
6) Total (of all facilities) @ Maximum High Water	934
7) Maximum Known Flood	Unknown
8) At Time of Inspection	0

CREST:

ELEVATION: 1249.0

Type Vegetated earthen embankment

Width 10 feet

Length 638 feet

Spillover Cut stone masonry and concrete spillway

Location Beyond and upstream of the right abutment

SPILLWAY:

PRINCIPAL

EMERGENCY

1244.1 (NGVD)

Elevation

1245.6 (NGVD)

Broad-crested weirs

Type

Twin 48 inch CMP

13.0 feet and 16.7 feet

Width

15 feet @ entrance to pipes;
32 feet @ concrete apron

Type of Control

Weir

Uncontrolled

Weir

--

Controlled

--

Flashboards

Type:
(Flashboards; gate)

None

One

Number

One

2.5 feet high/ 16.7 feet

Size/Length

32 foot weir/ 18 feet long
2-48 inch CMP/112 feet long

Reinforced concrete

Invert Material

Reinforced concrete and corrugated metal

Continuously

Anticipated Length
of Operating Service

Unknown

Not applicable

Chute Length

18 feet

1 \pm foot

Height Between
Spillway Crest
& Approach Channel
Invert (Weir Flow)

1 \pm foot

Type: _____

Location: _____

Records: _____

Date Unknown

Max. Reading Unknown

FLOOD WATER CONTROL SYSTEM:

Warning System None in effect

Method of Controlled Releases (mechanisms) Valves used to control flow to the
water distribution system; flashboards used to regulate reservoir levels.

DRAINAGE AREA: 2424 acres = 3.79 square miles

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type Rural, agriculture

Terrain - Relief Moderate slopes

Surface - Soil Glacial till

Runoff Potential (existing or planned extensive alterations to existing surface or subsurface conditions)

Primarily open fields with scattered woodlands; glacial till soils;
average watershed slope is 5 to 10 percent; some residential homes
and roadways.

Potential Sedimentation problem areas (natural or man-made; present or future)

None

Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:

None

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the reservoir perimeter:

Location: None

Elevation: _____

Reservoir:

Length @ Maximum Pool 1000 ± feet = 0.2 miles (Miles)

Length of Shoreline (@ Spillway Crest) 3500 ± feet = 0.7 miles (Miles)

WATERSHED MAP

NORWICH RESERVOIR No. 2 DAM
INVENTORY No. NY 349

SUSQUEHANNA RIVER BASIN
CHENANGO COUNTY
NORWICH, NEW YORK

0 2000 1000

SCALE IN FEET

FLAHERTY · GIAVARA ASSOCIATES, P.C.

CALCULATIONS

WATERSHED DATA FOR PEAK STORM HYDROGRAPH

1) Time to Peak - Sub-Watershed No. 1

$$L = 15,500 \text{ ft} = 2.94 \text{ miles}$$

$$L_c = 8,000 \text{ ft} = 1.52 \text{ miles}$$

C_t = 2.0 for average slopes

$$T_p = 2.0(2.94 \times 1.52)^{0.3} = 3.13 \text{ Hours}$$

$$t_r = \frac{T_p}{5.5} = \frac{3.13}{5.5} = 0.57 \text{ USE } t_R = 0.5$$

$$t_{PR} = T_p + 0.25(t_R - t_r) \\ = 3.13 + 0.25(0.5 - 0.57) = 3.11 \text{ Hours}$$

$$\text{DRAINAGE AREA} = 1340.7 \text{ Acres} = 2.09 \text{ mi}^2$$

2) Time to Peak - Sub-Watershed No. 2

$$L = 15,000 \text{ ft} = 2.84 \text{ miles}$$

$$L_c = 7,000 \text{ ft} = 1.33 \text{ miles}$$

C_t = 2.0 for average slopes

$$T_p = 2.0(2.84 \times 1.33)^{0.3} = 2.93 \text{ Hours}$$

$$t_r = \frac{T_p}{5.5} = \frac{2.93}{5.5} = 0.54 \text{ USE } t_R = 0.5$$

$$t_{PR} = T_p + 0.25(t_R - t_r) \\ = 2.93 + 0.25(0.5 - 0.54) = 2.97 \text{ Hours}$$

$$\text{DRAINAGE AREA} = 1083.6 \text{ Acres} = 1.67 \text{ mi}^2$$

3) Infiltration

Q_{infil} = 0.0001

$$\text{Roads, } 17,000 \text{ ft} \times 25' = 425,000 \text{ ft}^2 \\ \text{Hour } 20 \pm 1.00 \text{ in/hr } 20 \pm 1.00 \text{ in/hr} \\ 495 = 1.4 \text{ A.U.}$$

1.4 A.U. = 0.4 A.U. (approx.)

1.2 A.U. = 0.4 A.U. (approx.)

C-6

PROJECT 2000-1A

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
 ONE COLUMBUS PLAZA, NEW HAVEN, CONN. 06510/203/789-1280

SHEET NO. 2 OF 13
 BY RAC DATE 5-26-81
 CHK'D. BY TLW DATE 5-7-81

Watershed No 2

$$\begin{aligned}
 \text{Roads} & 18,000 \text{ ft}^2 \times .01 = 180,000 \text{ ft}^2 \\
 \text{House} & 10 \pm 3 \text{ (1000 ft)}^2 = 10,000 \text{ ft}^2 \\
 & 180,000 + 10,000 = 190,000 \text{ ft}^2 = 10.6 \text{ Acres}
 \end{aligned}$$

$$\frac{10.6 \text{ Acres}}{1083.6 \text{ Acres}} = 1.0\%$$

4) Rainfall Data (From Hydrometeconomics Report No. 33).

24 Hour Duration PMP = 20.2 in at 750
 200 square miles

Duration min. Adj. Factor (%)

6	111
12	122
24	133
48	143

PROJECT CORPS DAME
NY 349

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN. 06510/203/789-1280

SHEET NO. 3 OF 13
BY RAC DATE 5-1-81
CHK'D. BY TLW DATE 5-7-81

EMERGENCY SPILLWAY

NTS

Earth rises to a elevation ≥ 1252 above
the CMP's. CREST OF the main section of the
Dam = 1249.0 ft.

EMERGENCY SPILLWAY

The outlet capacity of the emergency spillway (2-48" CMP) was determined by examining the structure for different controlling flow conditions that may differ depending on the head acting on the structure. Flow conditions were looked at in the following order - A) Flow over the triangular concrete weir; B) Assuming inlet control; C) assuming outlet control; and D) for open channel flow.

A stage discharge curve was plotted for the four flow conditions and a new stage discharge curve was derived from the plot by selecting the controlling discharge for a given stage. It was assumed that no submergence of the spillway will take place, as submergence is possible.

Overtopping of the dam was assumed to occur over the main crest of the dam only elevations above the HEC-DE output reflect overtopping of the main section only (No low lying A.R.).

PROJECT CORP. DATE
345

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA NEW HAVEN CONN 06510/203/789-1200

SHEET NO. 5 OF 13
BY DATE 4-1-81
CHK'D. BY TLW DATE 5-7-81

EMERGENCY SPILLWAY

A) WEIR @ 2-48" PIPE.

SLOPE OF triangular weir \approx 10 to 1

$$Q = CLH^{1.5}$$

L = Length @ Impoundment = 32'

<u>H(FT)</u>	<u>C</u>	<u>Q (CU FT/SEC)</u>	<u>ELEV (FT)</u>
0	-	-	1245.6
0.2	2.82	3.1	1245.8
0.4	2.83	22.9	1246.0
0.6	2.86	42.5	1246.2
0.8	2.90	66.4	1246.4
1.0	2.91	93.1	1246.6
1.2	2.92	122.3	1246.8
1.5	2.93	172.2	1247.1

PROJECT 600-100
1-1-81

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN 06510/203/789-1200

SHEET NO. 6 OF 13
BY E/C DATE 5-7-81
CHK'D. BY T.L.V DATE 5-7-81

STAGE DISCHARGE FOR EMERGENCY

2-4E - M³/S

B) INLET CONTROL

H	W/H	Q	ZQ	EL. (F.S.)
1.2	0.3	3 CREST OF CONDUIT ME 2	1245.6	
1.5	0.4	16	32	1245.9
2.0	0.5	23	46	1246.4
2.5	0.6	32	64	1246.9
3.0	0.8	53	106	1247.4
3.5	0.9	70	134	1247.9
4.0	1.0	73	137	1248.4
4.2	1.1	52	134	1248.9
4.6	1.2	11	122	1249.0
5.0	1.3	100	160	1249.4
5.5	1.4	110	220	1249.9
6.0	1.5	111	238	1250.4
6.5	1.6	125	251	1250.9
7.0	1.6	140	262	1251.4

INLET AND OUTLET STORM CONDUITS FOR
DISCHARGE AT THE NEW DRAINAGE
TERMINATION ON'S ARE LOCATED IN THE
100' HYDRAULIC CHARTS FOR THE 100' DRAINAGE
COLLECTORS.

FOR INLET CONTROL APPROXIMATE VELOCITY WAS
NEGLECTED.

EMERGENCY CHANNEL DATA

C) OUTLET Con-tin.

$$L = 112'$$

$$\beta = 0.024$$

$$K_E = 0.5$$

 $T_u \text{ assume} = T_0 \text{ for } 1243.6 \text{ ft}, E_{ext} = 1243.6$

$z_{out} = H + h_o - L_{so} = H + 4 - 0.3$

<u>H (FT)</u>	<u>Q (CFS)</u>	<u>ZQ (CFS)</u>	<u>FW</u>	<u>ELEV USGS</u>
0.5	40	80	4.2	1249.1
1.0	55	110	4.7	1249.6
2.0	77	154	5.7	1249.6
3.0	95	190	6.7	1250.6
4.0	110	220	7.7	1251.6
5.0	121	242	8.7	1252.6
6.0	135	270	9.7	1253.6
7.0	150	300	10.7	1254.6

D) OPEN CHANNEL FLOW

 $I_{nu} = 1243.9$, flow chart @ 1245.9 due to $\gamma = 0.024$

<u>D(FT)</u>	<u>Q_{nom} (CFS)</u>	<u>Q_{0.017} (CFS)</u>	<u>FW</u>	<u>ELEV</u>
0.5	14	1.0	2.4	1244.4
1.0	28	4.5	2.3	1244.9
1.5	43.5	10.5	2.4	1245.4
2.0	57.0	16.0	2.5	1245.9
3.0	93.0	27.0	2.6	1246.4
3.9	47.0	35.0	3.0	1247.4

OPEN CHANNEL FLOW FROM NOMOGRAPHS FOUND IN U.S.
DEPARTMENT OF TRANSPORTATION, HYDRAULIC DESIGN SERIES
H-3, (Design Charts for Open Channel Flow).

PROJECT 44-345

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA NEW HAVEN CONN 06510/203/780-1200

SHEET NO. 3 OF 15
BY E.G. DATE 4-2-81
CHK'D BY T.W. DATE 5-7-81

STAGE DISCHARGE CURVE

EMERGENCY SPILLWAY

C-13

Discharge (cfs)

ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN. 06510/203/780-1280

BY RAY
CHK'D. BY J.W.

DATE 4-2-81
DATE

STAGE DISCHARGE CURVE

EMERGENCY SPILLWAY

PRINCIPAL SPILLWAY

$C = 3.0$

$C = 3.0$

$Q = (3) L H^{1.5}$

STAGE (FT)DISCHARGE (CFS)

1244.1	0
1244.4	8.2
1245.4	74.0
1245.6	95.3
1246.4	213.2
1247.4	409.7
1248.4	743.0
1249.0	812.2
1249.4	1015

② 1250.4 Q = CA + CS

$$Q_1 = 0.5 (88.25) \frac{12 \times 32.2 \times 5.7}{2} \\ = 817.4$$

Q_2 = 1252.1 \frac{12 \times 32.2 \times 5}{2}

$= 7$

$Q_T = 1251.1 \text{ CFS}$

③ 1251.4

$$Q_1 = 0.5 (88.25) \frac{12 \times 32.2 \times 4.7}{2} \\ = 921.2$$

$$Q_2 = 1252.1 \frac{12 \times 32.2 \times 4}{2} \\ = 830.7$$

$Q_T = 1422.0 \text{ CFS}$

④ 1252.4

$$Q_1 = 0.5 (88.25) \frac{12 \times 32.2 \times 5.7}{2} \\ = 1014.5$$

$$Q_2 = 1252.1 \frac{12 \times 32.2 \times 5}{2} \\ = 859.7$$

$\bar{r}_3 = 25 \cdot (40) (0.5)^{1.5} = 16.4$

$Q_T = 1590.2 \text{ CFS}$

PROJECT 1053.4
1. 343

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN. 06510/203/789-1280

SHEET NO. 11 OF 13
BY RAS DATE 4-1-81
CHK'D. BY TLW DATE 5-7-81

③ 1053.4

$$Q_1 = (0.6)(32.25) \overline{12 \times 32.2 \times 6.7} \\ = 1094.1$$

$$Q_3 = (2.5)(40)(2.3)^{1.5} = 148.2$$

$$Q_T = 1851.4 \text{ cfs}$$

$$Q_2 = (0.6)(52) \overline{12 \times 32.2 \times 7.7} \\ = 662.4$$

④ 1054.4

$$Q_1 = (0.6)(32.25) \overline{12 \times 32.2 \times 7.7} \\ = 1179.1$$

$$Q_3 = (2.5)(40)(2.3)^{1.5} = 348.2$$

$$Q_T = 2120.3 \text{ cfs}$$

$$Q_2 = (0.6)(52) \overline{12 \times 32.2 \times -} \\ = 662.4$$

PROJECT LORRETTA LAK
- N 34 E

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN 06510/203/780-1200

SHEET NO. 12 OF 12
BY AJ DATE 7-2
CHK'D. BY JLW DATE 5-7

Cumulative Stage Discharge
Principal & Emergency Spills

STAGE (FT)	PRINCIPAL (cfs)	EMERGENCY (cfs)	TOTAL (cfs)
1244.1	0	-	0
1244.4	8.2	-	8.2
1245.4	74.0	-	74.0
1245.6	95.3	-	95.3
1246.4	113.2	50.0	263.2
1247.1	409.7	77.0	486.7
1248.4	348.0	13.0	361.0
1249.0	313.2	13.0	326.2
1249.4	921.5	145.0	1066.5
1250.4	1251.1	183.0	1434.1
1251.4	1422.0	214.0	1636.0
1252.4	1522.6	232.0	1754.6
1253.4	1301.4	268.0	2129.4
1254.4	511.2	294.0	2484.2

PROJECT

1-24-1

FLAHERTY-GIAVARA ASSOCIATES
ENVIRONMENTAL DESIGN CONSULTANTS
ONE COLUMBUS PLAZA, NEW HAVEN, CONN. 06510/203/789-1260SHEET NO. 13 OF 15
BY TLW DATE 4-2-81
CHK'D. BY TLW DATE 5-7-81STAGE DISCHARGE CURVE
PRINCIPAL & EMERGENCY CURVES

HEC-1 FLOOD HYDROGRAPH COMPUTATIONS

FLORIDA GIavarA ASSOCIATES, P.C.
FLORIDA HYDROGRAPHIC PACKAGE (HF-1)
DAM SITE VERSION JULY 1971
LAST MODIFICATION 26 FEB 79

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION 1
LAST MODIFICATION 26 FEB 78

DATE: 6/27/
TIME: 3:01 P.M.

NATIONAL DAM INSPECTION PROGRAM, PHASE I REPORT, COPIES OF EIK, IN THIS NEW YORK DISTRICT
DATA INVENTORY NO. NY 349, NORWICH RESERVOIR NO. 2 DAM, CHINLIGO COUNTY, JUNE 27, 1981
PREPARED BY FLAHERTY GIAVARA ASSOCIATES, P. C., ONE COLUMBUS PLAZA, NEW HAVEN, CONNECTICUT

NAME	NHHR	NMIN	IDAY	JUB	PRECIPITATION	METRIC	IPLI	IPRI	INSTAN
NA 120	0	30	0	JUPER	1HK NWT	IMIN LROPT	0 0	2 TRACE	0 0

MULTI-PLAN ANALYSES TO BE PERFORMED
 RT10S = 0.10 RT10 = 0.40 RT10 = 0.30

卷之三

SUB-AREA BUNDIFF COMPUTATION

INFLOW	HYDROGRAPH	SUB-WATERSHED NO.	I, SNYDER	METHOD	JPR1	I NAME	I STAGE	I AUTO		
1STAG	1CIMP	1CON	ITAPE	JPLT	O	1	0	0		
1HYNG	1UNG	TAKEA	SNAP	HYDROGRAPH DATA	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	0	0							

		PRECIP DATA				LOSS DATA					
		PMS	R6	R12	R24	R48	R72	R96	ALSMX	RTIMX	
SPFE	0.00	20.20	111.00	122.00	133.00	143.00	0.00	0.00	0.00	0.00	
STRAK	0.00	DLTKR	R710L	ERAIN	SIRAK	RT10K	ST10L	CNSTL	0.10	0.10	
LROPT	0	0.00	1.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	

TP= UNIT HYDROGRAPH DATA
3.1 CP=0.63 NTA= 9

RECEDITION DATA
INTERVALS FROM GIVEN SNYDER CP AND TP ARE TC= .7, 22 AND R= 3.49 INTERVALS
GRAPH 33 END-OF-PERIOD ORDINATES, LAG= 3.09 HOURS, CP= 0.64 VI
STR10=-2.00 QRSN= -0.10 RTION= 1.30
119 183 230 271 278 254 41,
103 86 71 59 49 41,
16 14 11 10 8

COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE TC = 7.22 AND R = 5.49 INTERVALS

MU	DA	HR	MIN	PERIOD	RAIN	EELS	LOSS	CUMP_Q	END-OF-PERIOD	FLOW			PERIOD	HAIN	LOSS	LSS	CUMP
										MU	DA	HR	MIN				
0	0	30	1	0	0.01	0.00	0.01	4	1	0.02	6	30	61	0.14	0.05	59	
1	1	0.0	2	0.01	0.00	0.01	0.01	4	1	0.02	7	00	62	0.19	0.05	68	
1	1	30	3	0.01	0.00	0.01	0.01	4	1	0.02	7	30	63	0.19	0.05	82	
1	1	0.0	4	0.01	0.00	0.01	0.01	4	1	0.02	8	00	64	0.19	0.05	103	

C-20

30	00	30	10	00	10	11	00	11	12	00	12	13	00	13	14	00	14	15	00	15	16	00	16	17	00	17	18	00	18	19	00	19	20	00	20	21	00	21	22	00	22	23	00	23	24	00	24	25	00	25	26	00	26	27	00	27	28	00	28	29	00	29	30	00	30	31	00	31	32	00	32	33	00	33	34	00	34	35	00	35	36	00	36	37	00	37	38	00	38	39	00	39	40	00	40	41	00	41	42	00	42	43	00	43	44	00	44	45	00	45	46	00	46	47	00	47	48	00	48	49	00	49	50	00	50	51	00	51	52	00	52	53	00	53	54	00	54	55	00	55	56	00	56	57	00	57	58	00	58	59	00	59	60	00	60	61	00	61	62	00	62	63	00	63	64	00	64	65	00	65	66	00	66	67	00	67	68	00	68	69	00	69	70	00	70	71	00	71	72	00	72	73	00	73	74	00	74	75	00	75	76	00	76	77	00	77	78	00	78	79	00	79	80	00	80	81	00	81	82	00	82	83	00	83	84	00	84	85	00	85	86	00	86	87	00	87	88	00	88	89	00	89	90	00	90	91	00	91	92	00	92	93	00	93	94	00	94	95	00	95	96	00	96	97	00	97	98	00	98	99	00	99	100	00	100	101	00	101	102	00	102	103	00	103	104	00	104	105	00	105	106	00	106	107	00	107	108	00	108	109	00	109	110	00	110	111	00	111	112	00	112	113	00	113	114	00	114	115	00	115	116	00	116	117	00	117	118	00	118	119	00	119	120	00	120	121	00	121	122	00	122	123	00	123	124	00	124	125	00	125	126	00	126	127	00	127	128	00	128	129	00	129	130	00	130	131	00	131	132	00	132	133	00	133	134	00	134	135	00	135	136	00	136	137	00	137	138	00	138	139	00	139	140	00	140	141	00	141	142	00	142	143	00	143	144	00	144	145	00	145	146	00	146	147	00	147	148	00	148	149	00	149	150	00	150	151	00	151	152	00	152	153	00	153	154	00	154	155	00	155	156	00	156	157	00	157	158	00	158	159	00	159	160	00	160	161	00	161	162	00	162	163	00	163	164	00	164	165	00	165	166	00	166	167	00	167	168	00	168	169	00	169	170	00	170	171	00	171	172	00	172	173	00	173	174	00	174	175	00	175	176	00	176	177	00	177	178	00	178	179	00	179	180	00	180	181	00	181	182	00	182	183	00	183	184	00	184	185	00	185	186	00	186	187	00	187	188	00	188	189	00	189	190	00	190	191	00	191	192	00	192	193	00	193	194	00	194	195	00	195	196	00	196	197	00	197	198	00	198	199	00	199	200	00	200	201	00	201	202	00	202	203	00	203	204	00	204	205	00	205	206	00	206	207	00	207	208	00	208	209	00	209	210	00	210	211	00	211	212	00	212	213	00	213	214	00	214	215	00	215	216	00	216	217	00	217	218	00	218	219	00	219	220	00	220	221	00	221	222	00	222	223	00	223	224	00	224	225	00	225	226	00	226	227	00	227	228	00	228	229	00	229	230	00	230	231	00	231	232	00	232	233	00	233	234	00	234	235	00	235	236	00	236	237	00	237	238	00	238	239	00	239	240	00	240	241	00	241	242	00	242	243	00	243	244	00	244	245	00	245	246	00	246	247	00	247	248	00	248	249	00	249	250	00	250	251	00	251	252	00	252	253	00	253	254	00	254	255	00	255	256	00	256	257	00	257	258	00	258	259	00	259	260	00	260	261	00	261	262	00	262	263	00	263	264	00	264	265	00	265	266	00	266	267	00	267	268	00	268	269	00	269	270	00	270	271	00	271	272	00	272	273	00	273	274	00	274	275	00	275	276	00	276	277	00	277	278	00	278	279	00	279	280	00	280	281	00	281	282	00	282	283	00	283	284	00	284	285	00	285	286	00	286	287	00	287	288	00	288	289	00	289	290	00	290	291	00	291	292	00	292	293	00	293	294	00	294	295	00	295	296	00	296	297	00	297	298	00	298	299	00	299	300	00	300	301	00	301	302	00	302	303	00	303	304	00	304	305	00	305	306	00	306	307	00	307	308	00	308	309	00	309	310	00	310	311	00	311	312	00	312	313	00	313	314	00	314	315	00	315	316	00	316	317	00	317	318	00	318	319	00	319	320	00	320	321	00	321	322	00	322	323	00	323	324	00	324	325	00	325	326	00	326	327	00	327	328	00	328	329	00	329	330	00	330	331	00	331	332	00	332	333	00	333	334	00	334	335	00	335	336	00	336	337	00	337	338	00	338	339	00	339	340	00	340	341	00	341	342	00	342	343	00	343	344	00	344	345	00	345	346	00	346	347	00	347	348	00	348	349	00	349	350	00	350	351	00	351	352	00	352	353	00	353	354	00	354	355	00	355	356	00	356	357	00	357	358	00	358	359	00	359	360	00	360	361	00	361	362	00	362	363	00	363	364	00	364	365	00	365	366	00	366	367	00	367	368	00	368	369	00	369	370	00	370	371	00	371	372	00	372	373	00	373	374	00	374	375	00	375	376	00	376	377	00	377	378	00	378	379	00	379	380	00	380	381	00	381	382	00	382	383	00	383	384	00	384	385	00	385	386	00	386	387	00	387	388	00	388	389	00	389	390	00	390	391	00	391	392	00	392	393	00	393	394	00	394	395	00	395	396	00	396	397	00	397	398	00	398	399	00	399	400	00	400	401	00	401	402	00	402	403	00	403	404	00	404	405	00	405	406	00	406	407	00	407	408	00	408	409	00	409	410	00	410	411	00	411	412	00	412	413	00	413	414	00	414	415	00	415	416	00	416	417	00	417	418	00	418	419	00	419	420	00	420	421	00	421	422	00	422	423	00	423	424	00	424	425	00	425	426	00	426	427	00	427	428	00	428	429	00	429	430	00	430	431	00	431	432	00	432	433	00	433	434	00	434	435	00	435	436	00	436	437	00	437	438	00	438	439	00	439	440	00	440	441	00	441	442	00	442	443	00	443	444	00	444	445	00	445	446	00	446	447	00	447	448	00	448	449	00	449	450	00	450	451	00	451	452	00	452	453	00	453	454	00	454	455	00	455	456	00	456	457	00	457	458	00	458	459	00	459	460	00	460	461	00	461	462	00	462	463	00	463	464	00	464	465	00	465	466	00	466	467	00	467	468	00	468	469	00	469	470	00	470	471	00	471	472	00	472	473	00	473	474	00	474	475	00	475	476	00	476	477	00	477	478	00	478	479	00	479	480	00	480	481	00	481	482	00	482	483	00	483	484	00	484	485	00	485	486	00	486	487	00	487	488	00	488	489	00	489	490	00	490	491	00	491	492	00	492	493	00	493	494	00	494	495	00	495	496	00	496	497	00	497	498	00	498	499	00	499	500	00	500	501	00	501	502	00	502	503	00	503
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----	-----	----	-----

FLAHERTY GIAVARA ASSOC. LTD., P.C.

PAGE 0064

	PEAK CFS CM ³ INCHES MM AC-FT THOUSANDS CU M	6-HOUR 3614 102 16 09 408 75 1793 2211	24-HOUR 1403 40 24 78 634 62 2784 3433	72-HOUR 595 17 26 48 672 70 2951 3640	TOTAL VOLUME 71405 202 ² 26 48 672 70 2951 3640
1 *OFF*	0	1000	2000	3000	4000

1 *OFF*

STATION 1

	INFLOW(1), OUTFLOW(1) AND OBSERVED FLOW(*)
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0
16	0
17	0
18	0
19	0
20	0

	0 PRECIP(L) AND EXCESS(X) 4 2
0	0
1	0
2	0
3	0
4	0
5	0
6	0

21 00 42 1
22 00 44 1
23 00 45 1
24 00 46 1
25 00 47 1
26 00 48 1
27 00 49 1
28 00 50 1
29 00 51 1
30 00 52 1
31 00 53 1
32 00 54 1
33 00 55 1
34 00 56 1
35 00 57 1
36 00 58 1
37 00 59 1
38 00 60 1
39 00 61 1
40 00 62 1
41 00 63 1
42 00 64 1
43 00 65 1
44 00 66 1
45 00 67 1
46 00 68 1
47 00 69 1
48 00 70 1
49 00 71 1
50 00 72 1
51 00 73 1
52 00 74 1
53 00 75 1
54 00 76 1
55 00 77 1
56 00 78 1
57 00 79 1
58 00 80 1
59 00 81 1
60 00 82 1
61 00 83 1
62 00 84 1
63 00 85 1
64 00 86 1
65 00 87 1
66 00 88 1
67 00 89 1
68 00 90 1
69 00 91 1
70 00 92 1
71 00 93 1
72 00 94 1
73 00 95 1
74 00 96 1
75 00 97 1
76 00 98 1
77 00 99 1

FIAFFRIY GIAVARA ASSOCIATES, P C

PAGE 0006

2	00100	1
2	30101	1
3	00102	1
3	30103	1
4	00104	1
4	30105	1
5	00106	1
5	30107	1
6	00108	1
6	30109	1
7	00110	1
7	30111	1
8	00112	1
8	30113	1
9	00114	1
9	30115	1
10	00116	1
10	30117	1
11	00118	1
11	30119	1
12	00120	1

1*0VN*

HYDROGRAPH AT STA		1 FOR PLAN 1, RTIO 1		1 FOR PLAN 1, RTIO 2	
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
14	12	10	13	17	17
13	3	8	17	16	13
6	3	4	4	5	5
7	8	10	13	19	22
6	32	39	51	76	128
28	329	436	464	444	163
268	321	438	465	402	210
262	187	158	135	115	355
32	44	42	41	39	72
31	30	28	27	26	61
CFS	467	362	140	60	33
CMS	13	10	4	2	22
INCHES	1	61	50	55	55
MM	40	88	63	67	67
AC-FT	179	179	46	27	27
THOUS CU M	221	221	295	295	295
			343	364	364
PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME

C-24

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0007

	536	659	777	872	928	935	888	804	711
CFS	523	442	373	316	269	230	197	168	144
CMS	104	92	89	85	82	78	75	72	69
INCHES	61	61	59	57	54	52	50	48	44
MM									
AC-FT									
THOUS CU M									
PEAK	935	726	723	720	261	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	26.	3.22	20.	8.	5.00	5.30	5.30	5.30	615
CMS	81.75	81.75	81.75	81.75	126.92	134.54	134.54	134.54	123
INCHES	359	357	357	357	357	357	357	357	67
MM	442	442	442	442	442	442	442	442	44
AC-FT									
THOUS CU M									

	1	1	1	1	1	1	1	1	1
CFS	1	1	1	1	1	1	1	1	1
CMS	1	1	1	1	1	1	1	1	1
INCHES	1	1	1	1	1	1	1	1	1
MM	1	1	1	1	1	1	1	1	1
AC-FT									
THOUS CU M									
PEAK	935	726	723	720	261	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	26.	3.22	20.	8.	5.00	5.30	5.30	5.30	604
CMS	81.75	81.75	81.75	81.75	126.92	134.54	134.54	134.54	404
INCHES	359	357	357	357	357	357	357	357	304
MM	442	442	442	442	442	442	442	442	281
AC-FT									
THOUS CU M									

	1	1	1	1	1	1	1	1	1
CFS	1	1	1	1	1	1	1	1	1
CMS	1	1	1	1	1	1	1	1	1
INCHES	1	1	1	1	1	1	1	1	1
MM	1	1	1	1	1	1	1	1	1
AC-FT									
THOUS CU M									
PEAK	935	726	723	720	261	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	26.	3.22	20.	8.	5.00	5.30	5.30	5.30	604
CMS	81.75	81.75	81.75	81.75	126.92	134.54	134.54	134.54	404
INCHES	359	357	357	357	357	357	357	357	304
MM	442	442	442	442	442	442	442	442	281
AC-FT									
THOUS CU M									

C-25

FL AMHERST GIAVARA ASSUMERIAFF PRC

PAGE 0009

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3273	2531	982	417	1415	47283
CMS	93	72	28	12	18	54
INCHES						
MM						
AC-FT						
THOUS CU M						

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3739	2892	1123	416	1618	57124
CMS	106	82	32	13	21	19
INCHES						
MM						
AC-FT						
THOUS CU M						

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3739	2892	1123	416	1618	57124
CMS	106	82	32	13	21	19
INCHES						
MM						
AC-FT						
THOUS CU M						

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	4674	3616	1403	595	3	3
CMS	137	102	40	17	2	2
INCHES						
MM						
AC-FT						
THOUS CU M						

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	4674	3616	1403	595	3	3
CMS	137	102	40	17	2	2
INCHES						
MM						
AC-FT						
THOUS CU M						

PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3968	3069	350	550	66400
CPH	113	87	35	16	1869
INCHES					
FEET					
ACFT	429	87	626	83	30128
THOUS. CU M	12.57	2.41	16.92	2.03	76.17
	18.77	2.984	22.75	2.98	117.18
					3365

1*0VF

1000 INFLOW (L) 1000 INFLOW (L) AND OBSERVED FLOW (•)
1300 2000 2300 3000

O 10

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGEL. 0012

A scatter plot showing the relationship between two variables. The x-axis ranges from 0 to 1000 with increments of 200. The y-axis ranges from 0 to 1000 with increments of 200. Data points are plotted as small squares. A dashed diagonal line represents the identity line (y=x).

The data points show a strong positive correlation, with most points falling close to the identity line. There is a noticeable cluster of points at the bottom left (x < 200, y < 200) and a few outliers at the top right (x > 800, y > 800).

5 00 58
6 00 59
6 00 60
6 30 61
7 00 62
7 30 63
8 00 64
8 30 65
9 00 66
9 30 67
10 00 68
10 30 69
11 00 70
11 30 71
12 00 72
12 30 73
13 00 74
13 30 75
14 00 76
14 30 77
15 00 78
15 30 79
16 00 80
16 30 81
17 00 82
17 30 83
18 00 84
18 30 85
19 00 86
19 30 87
20 00 88
20 30 89
21 00 90
21 30 91
22 00 92
22 30 93
23 00 94
23 30 95
24 00 96
24 30 97
25 00 98
25 30 99
26 00 00
26 30 01
27 00 02
27 30 03
28 00 04
28 30 05
29 00 06
29 30 07
30 00 08
30 30 09
31 00 10
31 30 11
32 00 12
32 30 13
33 00 14
33 30 15

FLUIDITY GIAVARA AND DATE

10	06116
10	49117
11	00118
11	36119
12	00120

100VN*

PLAN	HOUR	HYDROGRAPH AT STA			1 FOR PLAN 1. RTIO 1			1 FOR PLAN 1. RTIO 2		
		1	2	3	1	2	3	1	2	3
0-2 HRS	01	1	1	1	1	2	2	1	2	2
	02	3	3	3	3	4	4	3	4	4
	03	16	17	26	29	30	30	27	29	29
	04	12	12	12	10	10	10	12	25	25
	05	7	7	14	12	11	12	13	6	6
	06	14	15	9	10	11	12	13	14	14
	07	10	17	19	21	24	27	29	31	33
	08	34	37	43	34	72	95	122	153	192
	09	40	47	480	399	394	368	332	290	249
	10	212	172	130	112	97	84	63	30	54
	11	42	36	37	35	34	32	31	21	19
	12	26	27	24	23	22	22	21	20	19
6-HR	PLAN	6-MIN	24-HOUR	12-HOUR	72-HOUR	55	TOTAL	VOLUME		
0-2 HRS	11	307	122	122	55	55	6602			
INTERVAL		1-64	2-3	2-3	2-2	2-2	187			
AC-FT		42-94	68-69	68-69	76-92	76-92	3-03			
THOUS CFS		152	242	242	273	273	273			
		188	298	298	337	337	337			
6-HR	PLAN	6-MIN	24-HOUR	12-HOUR	72-HOUR	55	TOTAL	VOLUME		
0-2 HRS	11	307	122	122	55	55	6602			
INTERVAL		1-64	2-3	2-3	2-2	2-2	187			
AC-FT		42-94	68-69	68-69	76-92	76-92	3-03			
THOUS CFS		152	242	242	273	273	273			

C-32

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0015

	3	4	5	6	7
	7	8	9	10	11
	35	43	50	57	64
66	26	30	36	41	46
46	20	23	26	30	33
43	18	20	26	30	33
105	105	112	120	130	140
102	102	107	114	120	127
879	879	927	977	1027	1077
639	639	697	737	797	857
138	138	144	150	156	162
119	119	124	130	136	142
82	82	86	92	97	102

	4	5	6	7	8
	6	7	8	9	10
	66	77	86	90	95
41	41	50	59	69	78
36	36	44	53	63	72
150	150	163	172	181	190
1196	1196	1207	1215	1223	1231
34	34	40	46	52	58
CFS	CFS	PEAK	6-HOUR	24-HOUR	72-HOUR
CMS	CMS		921	366	165
INCHES	INCHES		26	10	5
MM	MM		26	9	4
AC-FT	AC-FT		07	06	03
THOUS CU M	THOUS CU M		128	204	230
			73	61	76
			497	726	818
			563	895	1010

	1 FOR PLAN 1.	RTIO 3	4	5	6
	2	3	2	3	4
	3	4	5	6	7
10	10	11	12	13	14
46	58	73	88	103	115
87	75	64	54	46	39
24	27	30	35	40	44
57	61	67	75	85	96
136	140	145	173	218	286
962	1172	1369	1520	1995	1577
184	184	192	201	221	248
110	106	101	97	94	90
CFS	CFS	PEAK	6-HOUR	24-HOUR	72-HOUR
CMS	CMS		1228	488	220
INCHES	INCHES		33	14	6
MM	MM		676	1074	1211
AC-FT	AC-FT		171	272	307
THOUS CU M	THOUS CU M		64	81	68
			609	968	1091
			751	1193	1346

	1 FOR PLAN 1.	RTIO 3	4	5	6
	2	3	2	3	4
	3	4	5	6	7
6	6	6	7	8	9
12	13	14	15	17	19
58	72	91	111	129	143
109	94	80	68	58	49
31	33	38	44	50	55
71	76	84	94	108	120
170	175	187	216	272	358
1202	1465	1712	1900	1994	1971
1058	896	762	651	560	484
230	198	190	183	175	168
137	132	127	117	112	108
CFS	CFS	PEAK	6-HOUR	24-HOUR	72-HOUR
CMS	CMS		1228	488	220
INCHES	INCHES		33	14	6
MM	MM		676	1074	1211
AC-FT	AC-FT		171	272	307
THOUS CU M	THOUS CU M		64	81	68
			609	968	1091
			751	1193	1346

EL AMERITV GIAVARA ASSOCIATES, P.C.

PAGE 0016

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0017

		PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3190	2455	976	440	440	32816	1496
CMS	90	270	28	12	12	24	23
INCHES							
MM	135	31	21	12	12	615	35
AC-FT							
THOUS CU M	1502	343.27	545.62	615.35	615.35	2182	2182
		1217	1935	2182	2182	2692	2692
		1502	2387	2692	2692		

		HYDROGRAPH AT STA	1 FOR PLAN 1	RTID 9		
		4	6	7	9	10
11	12	12	13	14	17	23
12	26	27	28	29	34	22
13	145	182	221	238	286	297
14	188	160	139	115	85	277
15	67	76	88	100	110	65
16	152	167	187	212	240	132
17	351	374	433	544	947	1225
18	2930	3423	3800	3988	3942	3304
19	1792	1524	1303	1198	967	730
20	396	380	365	351	337	323
21	264	254	243	234	225	216
CFS	3938	3069	1220	350	350	66020
CMS	113	87	35	16	16	1869
INCHES						
MM						
AC-FT						
THOUS CU M	1522	42909	66203	76919	76919	76919
	1877	2419	2728	2728	2728	2728
		2984	3365	3365	3365	3365

***** * ***** * ***** * ***** * ***** * ***** * *****

COMBINE HYDROGRAPHS

INFLOW HYDROGRAPHS STA#	SUB-WATERSHEDS NO 1 & NO 2 COMBINED 1COMP 2	JPLT 0	NAME 1	1STAGE 0	1AURO 0
1	1	1	1	1	1
1	1	1	2	2	2
3	3	3	3	4	3

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0018

	10	16	21	26	29	36	42	46	47	49	55
CFS	35	30	10	11	12	14	15	16	17	18	10
CMS	20	22	25	24	29	34	40	46	47	49	19
INCHES	65	70	75	82	89	106	142	191	191	251	55
MM	622	622	731	816	863	863	862	862	862	918	402
AC. /' /	400	400	339	288	246	212	182	182	182	135	557
THOUS. CU M	98	86	82	79	76	73	70	67	65	62	116
57	57	55	53	53	51	49	47	45	43	41	41

1*0VF*

STATION 1
200 INFLOW (1), OUTFLOW (0) AND OBSERVED FLOW (*)

6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

18 00 36
18 30 37
19 00 38
19 30 39 1
20 00 40
20 30 41 1
21 00 42 1
21 30 43 1
22 00 44 1
22 30 45 1
23 00 46 1
23 30 47 1
24 00 48 1
24 30 49 1
25 00 50 1
25 30 51 1
26 00 52 1
26 30 53 1
27 00 54 1
27 30 55 1
28 00 56 1
28 30 57 1
29 00 58 1
29 30 59 1
30 00 60 1
30 30 61 1
31 00 62 1
31 30 63 1
32 00 64 1
32 30 65 1
33 00 66 1
33 30 67 1
34 00 68 1
34 30 69 1
35 00 70 1
35 30 71 1
36 00 72 1
36 30 73 1
37 00 74 1
37 30 75 1
38 00 76 1
38 30 77 1
39 00 78 1
39 30 79 1
40 00 80 1
40 30 81 1
41 00 82 1
41 30 83 1
42 00 84 1
42 30 85 1
43 00 86 1
43 30 87 1
44 00 88 1
44 30 89 1
45 00 90 1
45 30 91 1
46 00 92 1
46 30 93 1

23	00	94
23	30	95
0	00	96
0	30	97
1	00	98
1	30	99
2	00	100
2	30	101
3	00	102
3	30	103
4	00	104
4	30	105
5	00	106
5	30	107
6	00	108
6	30	109
7	00	110
7	30	111
8	00	112
8	30	113
9	00	114
9	30	115
10	00	116
10	30	117
11	00	118
11	30	119
12	00	120

◆ १५८ ◆

		SUM OF	2	HYDROGRAPHS AT	1	PLAN 1	RATIO 2		
1	3	2	3	2	4	2	2	3	3
1	3	3	3	3	4	4	4	5	5
2	6	6	6	6	7	9	11	15	19
3	9	13	57	71	84	92	94	90	81
4	12	31	52	44	37	31	26	20	18
5	15	61	25	25	28	31	33	37	39
6	18	16	50	58	68	80	92	102	118
7	21	44	139	164	211	284	382	502	604
8	24	124	1461	1632	1725	1723	1623	1465	1296
9	27	800	678	577	493	423	365	314	271
10	30	945	171	165	158	152	140	134	124
11	33	1196	114	110	105	101	97	90	86
12	36	1197							
		PEAK	6-HOUR	24-HOUR	72-HOUR			TOTAL	VOLUME
		1725	1337	524	229			27485	
		149	38	15	6			778	
CFS	CMPS	INCHES	MM	AC/F	FT				

AD-A107 414 FLAHERTY-GIAVARA ASSOCIATES NEW HAVEN CT
NATIONAL DAM SAFETY PROGRAM. NORWICH RESERVOIR NUMBER 2 DAM (IN--ETC(U)
AUG 81 H C FLAHERTY DACW51-81-C-0006

UNCLASSIFIED NL

2-3
40
3-14

FLAHERTY, GIAVARA ASSOCIATES, P. C.

PAGE 0021

		INFLOW(I), OUTFLOW(Q) AND OBSERVED FLOW(*)	1000. 800 600 400 200	1400. 1200 1000 800 600 400 200	1600. 1400 1200 1000 800 600 400 200	1800. 1600 1400 1200 1000 800 600 400 200	0 0 0 0 0 0 0 0
0 30	11						
1 00	21						
1 30	31						
2 00	41						
2 30	51						
3 00	61						
3 30	71						
4 00	81						
4 30	91						
5 00	101						
5 30	111						
6 00	121						
6 30	131						
7 00	141						
7 30	151						
8 00	161						
8 30	171						
9 00	181						
9 30	191						
10 00	201						
10 30	211						
11 00	221						
11 30	231						
12 00	241						
12 30	251						
13 00	261						
13 30	271						
14 00	281						
14 30	291						
15 00	301						
15 30	31						
16 00	321						
16 30	331						
17 00	341	1	1				
17 30	351	1	1				
18 00	361	1	1				
18 30	371	1	1				
19 00	381	1	1				
19 30	391	1	1				
20 00	401	1	1				
20 30	411	1	1				
21 00	421	1	1				
21 30	431	1	1				
22 00	441	1	1				
22 30	451	1	1				
23 00	461	1	1				
23 30	471	1	1				
24 00	481	1	1				
24 30	491	1	1				
25 00	501	1	1				
25 30	511	1	1				
26 00	521	1	1				
26 30	531	1	1				
27 00	541	1	1				
27 30	551	1	1				
28 00	561	1	1				

RUN DATE 6/27/
TIME 3:01 PM

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0022

4 40 57 I
5 30 59 I
6 00 60 I
7 30 61 I
8 00 62 I
9 30 63 I
0 30 64 I
1 30 65 I
2 00 66 I
3 30 67 I
4 00 68 I
5 30 69 I
6 00 70 I
7 30 71 I
8 00 72 I
9 30 73 I
0 00 74 I
1 30 75 I
2 00 76 I
3 30 77 I
4 00 78 I
5 30 79 I
6 00 80 I
7 30 81 I
8 00 82 I
9 30 83 I
0 00 84 I
1 30 85 I
2 00 86 I
3 30 87 I
4 00 88 I
5 30 89 I
6 00 90 I
7 30 91 I
8 00 92 I
9 30 93 I
0 00 94 I
1 30 95 I
2 00 96 I
3 30 97 I
4 00 98 I
5 30 99 I
6 00 100 I
7 30 101 I
8 00 102 I
9 30 103 I
0 00 104 I
1 30 105 I
2 00 106 I
3 30 107 I
4 00 108 I
5 30 109 I
6 00 110 I
7 30 111 I
8 00 112 I
9 30 113 I

9 30115 1
 10 00116 1
 10 30117 1
 11 00118 1
 11 30119 1
 12 00120 1

1*OVN*

	SUM OF 2 HYDROGRAPHS AT			1 PLAN 1	RTD 3	4	4
	2	2	3	3	3	7	8
2	4	4	5	5	6	17	22
4	8	8	9	11	13	22	29
8	36	47	64	107	126	141	121
16	91	91	69	55	47	34	30
32	27	77	37	42	46	50	56
64	61	75	87	103	120	138	153
128	186	194	209	247	317	426	573
256	1425	1867	2192	2448	2588	2589	1754
512	1419	1200	1017	865	739	635	2198
1024	294	247	237	229	219	210	472
2048	178	171	165	158	152	146	406
4096							194
8192							124

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	2588	2005	786	344	41227	
CMS	73	57	22	10	1167	
INCHES						
MM						
AC-FT						
THOUS CU M						

1*OVF*

STATION 1
 800 INFLOW(1), OUTFLOW(0) AND OBSERVED FLOW(*)
 1200 2000 2400 2800

0 0 0 0 0

RUN DATE 6/27/
 TIME 3:01 PM

201
10 00 211
11 00 221
12 00 231
13 00 241
14 00 251
15 00 261
16 00 271
17 00 281
18 00 291
19 00 301
20 00 311
21 00 321
22 00 331
23 00 341
18 00 351
19 00 361
20 00 371
19 00 381
20 00 391
21 00 401
22 00 411
23 00 421
18 00 431
19 00 441
20 00 451
21 00 461
22 00 471
23 00 481
18 00 491
19 00 501
20 00 511
21 00 521
22 00 531
23 00 541
18 00 551
19 00 561
20 00 571
21 00 581
22 00 591
23 00 601
18 00 611
19 00 621
20 00 631
21 00 641
22 00 651
23 00 661
18 00 671
19 00 681
20 00 691
21 00 701
22 00 711
23 00 721
18 00 731
19 00 741
20 00 751
21 00 761
22 00 771
23 00 781

15 00 78
 15 30 79
 16 00 80
 16 30 81
 17 00 82
 17 30 83
 18 00 84
 18 30 85
 19 00 86
 19 30 87
 20 00 88
 20 30 89
 21 00 90
 21 30 91
 22 00 92
 22 30 93
 23 00 94
 23 30 95
 20 00 96
 0 30 97
 1 00 98
 1 30 99
 2 00 00
 2 2 30 01
 3 00 02
 3 30 03
 4 00 04
 4 30 05
 5 00 06
 5 30 07
 6 00 08
 6 30 09
 7 00 10
 7 30 11
 8 00 12
 8 30 13
 9 00 14
 9 30 15
 10 00 16
 10 30 17
 11 00 18
 11 30 19
 12 00 20

C-43

1*DVN*

SUM OF 2 HYDROGRAPHS AT 4
 3 3
 6 6
 11 11
 47 62
 142 122
 36 38
 81 88
 249 259

1 PLAN 1 RTD 4
 4 4
 7 7
 12 12
 142 142
 87 103
 43 49
 100 116
 279 329

9 9
 18 18
 184 184
 53 53
 62 62
 137 137
 160 160
 184 184
 764 764

10 10
 30 30
 179 179
 168 168
 45 45
 71 71
 204 204
 1003 1003

 RUN DATE 6/27/
 TIME 3:01 PM

20 30 41 1
21 00 42 1
21 30 43 1
22 00 44 1
22 30 45 1
22 30 46 1
22 30 47 1
22 30 48 1
22 30 49 1
22 30 50 1
22 30 51 1
22 30 52 1
22 30 53 1
22 30 54 1
22 30 55 1
22 30 56 1
22 30 57 1
22 30 58 1
22 30 59 1
22 30 60 1
22 30 61 1
22 30 62 1
22 30 63 1
22 30 64 1
22 30 65 1
22 30 66 1
22 30 67 1
22 30 68 1
22 30 69 1
22 30 70 1
22 30 71 1
22 30 72 1
22 30 73 1
22 30 74 1
22 30 75 1
22 30 76 1
22 30 77 1
22 30 78 1
22 30 79 1
16 00 80 1
16 30 81 1
16 30 82 1
17 30 83 1
18 30 84 1
18 30 85 1
18 30 86 1
19 30 87 1
20 00 88 1
20 30 89 1
21 00 90 1
21 30 91 1
22 00 92 1
22 30 93 1
23 00 94 1
23 30 95 1
23 00 96 1
23 00 97 1
23 00 98 1

1	30	99
2	00100	
2	30101	
2	30102	
3	30103	
3	30104	
4	30105	
4	30106	
5	30107	
5	30108	
6	30109	
6	30110	
7	30111	
7	30112	
8	30113	
8	30114	
9	30115	
9	30116	
0	30117	
0	30118	
1	30119	
1	30120	
2	30121	

408 114

C-4E

100

JUNCTION	STREFLOW (L/S)	OUTFLOW (L/S)	AND OBSERVED FLOW (*)
200	1200	1600	2400
200	1200	1600	2000
200	1200	1600	2400

୧୦୮

41
51
61
2 00
3 00
34 00 81
4 00 101
5 00 111
6 00 121
6 07 00 141
7 00 151
8 00 161
8 30 171
9 00 181
9 30 191
10 00 201
10 00 211
11 00 221
11 00 231
12 00 241
12 00 251
13 00 261
13 00 271
14 00 281
14 30 291
15 00 301
15 00 311
15 00 321
16 00 331
16 00 341
17 00 351
17 30 361
18 00 371
18 00 381
19 00 391
19 00 401
20 00 411
20 00 421
21 00 431
22 00 441
22 30 451
23 00 461
23 00 471
23 00 481
24 00 491
25 00 501
25 00 511
25 00 521
25 00 531
25 00 541
25 00 551
25 00 561
25 00 571
25 00 581
25 00 591
25 00 601
25 00 611

7	00	62
8	00	64
8	30	65
9	00	66
9	30	67
10	00	68
10	30	69
11	00	70
11	30	71
12	00	72
13	00	74
14	00	76
14	30	77
15	00	78
15	30	79
16	00	80
16	30	81
17	00	82
17	30	83
18	00	84
18	30	85
19	00	86
19	30	87
20	00	88
20	30	89
21	00	90
21	30	91
22	00	92
22	30	93
23	00	94
23	30	95
24	00	96
24	10	97
24	30	98
25	00	99
25	10	00
25	30	01
26	00	02
26	30	03
27	00	04
27	30	05
28	00	06
28	30	07
29	00	08
29	30	09
30	00	10
30	30	11
31	00	12
31	30	13
32	00	14
32	30	15
33	00	16
33	30	17
34	00	18
34	30	19

12 00120

1*DVN*

		SUM OF 2 HYDROGRAPHS AT						
		4	5	6	7	8	9	
8	9	17	17	18	19	19	19	
16	17	128	170	213	251	276	282	
71	73	155	131	110	93	79	68	
213	183	65	74	84	93	100	107	
54	57	149	174	205	240	275	307	
121	132	418	493	634	852	1146	1505	
333	388	4384	4896	5176	5170	4870	4396	
3050	3734	2400	2034	1731	1479	1269	1094	
2838	589	514	494	474	455	437	420	
357	343	329	316	316	304	291	280	
CFS	CMPS	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME	
INCHES	MM	5176	4011	1573	687	82455	2335	
AC-FT	AC-FT	147	114	45	17			
THOUS CU M	THOUS CU M		9 87	15 48	16 91		16 91	
			250 71	393 21	429 50		429 50	
			1989	3119	3407		3407	
			2453	3848	4203		4203	

1*DVF*

		STATION 1										
		1000 INFLOW(1)	1500 OUTFLOW(0)	2000 AND OBSERVED FLOW(*)	2500	3000	3500	4000	4500	5000	5500	6000
0 30	0 11	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500
1 00	1 21											
1 30	1 31											
2 00	2 41											
3 00	3 51											
3 30	3 61											
4 00	4 81											
4 30	4 91											
5 00	5 11											
5 30	5 21											
6 00	6 121											
6 30	6 131											
7 00	7 141											
7 30	7 151											
8 00	8 161											
8 30	8 171											
9 00	9 181											
9 30	9 191											
10 00	10 201											
10 30	10 211											
11 00	11 221											
11 30	11 231											
	12 241											

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0032

12 30 25
13 00 26
14 70 29
15 30 31
16 30 32
17 00 33
18 30 34
19 00 35
20 30 36
21 00 37
22 30 38
23 00 39
24 30 40
25 00 41
26 30 42
27 00 43
28 30 44
29 00 45
30 30 46
31 00 47
32 30 48
33 00 49
34 00 50
35 00 51
36 00 52
37 00 53
38 00 54
39 00 55
40 30 56
41 00 57
42 30 58
43 00 59
44 30 60
45 00 61
46 30 62
47 00 63
48 30 64
49 00 65
50 30 66
51 00 67
52 30 68
53 00 69
54 30 70
55 00 71
56 30 72
57 00 73
58 30 74
59 00 75
60 30 76
61 00 77
62 30 78
63 00 79
64 30 80
65 00 81
66 30 82

C-50

17	30	83
18	00	84
18	30	85
19	00	86
19	30	87
20	00	88
20	30	89
21	00	90
21	30	91
22	00	92
22	30	93
23	00	94
23	30	95
24	00	96
24	30	97
25	00	98
25	30	99
26	00	100
26	30	101
27	00	102
27	30	103
28	00	104
28	30	105
29	00	106
29	30	107
30	00	108
30	30	109
31	00	110
31	30	111
32	00	112
32	30	113
33	00	114
33	30	115
34	00	116
34	30	117
35	00	118
35	30	119
36	00	120

1*DVR*

C-51

SUM OF 2 HYDROGRAPHS AT		PLAN 1	PLAN 2	RTID 7	9	10
5	6	7	8	9	10	11
10	10	11	12	13	14	15
19	19	20	21	22	23	24
83	109	149	178	249	322	391
248	213	152	129	109	93	69
63	67	75	98	108	117	130
142	154	174	203	232	321	388
435	453	488	575	739	1337	2815
3358	4356	5114	5712	6038	5682	4516
3311	2800	2374	2019	1725	1276	3876
687	600	576	553	531	490	810
416	400	384	369	340	327	434

SUM OF 2 HYDROGRAPHS AT		PLAN 1	PLAN 2	RTID 7	9	10
5	6	7	8	9	10	11
10	10	11	12	13	14	15
19	19	20	21	22	23	24
83	109	149	178	249	322	391
248	213	152	129	109	93	69
63	67	75	98	108	117	130
142	154	174	203	232	321	388
435	453	488	575	739	1337	2815
3358	4356	5114	5712	6038	5682	4516
3311	2800	2374	2019	1725	1276	3876
687	600	576	553	531	490	810
416	400	384	369	340	327	434

FI AMERI, GIAVARA ASSIST IATES, P C

PAGE 0034

	PEAK CMS	6-HOUR 171	24-HOUR 133	72-HOUR 52	TOTAL 96197
CFS	5038	4679	1835	802	2724
CMS	171	1152	1806	1973	1973
INCHES		29249	45875	50109	50109
MM		2320	3639	3975	3975
ACFT		2862	4489	4903	4903
THOUS CU M					

STATION 1
 INFLOW(*), OUTFLOW(0) AND OBSERVED FLOW(*)
 2000 3000 4000 5000 6000

QVF

0 11
 10 21
 11 31
 12 41
 13 51
 14 61
 15 71
 16 81
 17 91
 18 101
 19 111
 20 121
 21 131
 22 141
 23 151
 24 161
 25 171
 26 181
 27 191
 28 201
 29 211
 30 221
 31 231
 32 241
 33 251
 34 261
 35 271
 36 281
 37 291
 38 301
 39 311
 40 321
 41 331
 42 341
 43 351
 44 361
 45 371
 46 381
 47 391
 48 300
 49 310
 50 320
 51 330
 52 340
 53 350
 54 360
 55 370
 56 380
 57 390
 58 400
 59 410
 60 420
 61 430
 62 440
 63 450
 64 460
 65 470
 66 480
 67 490
 68 500
 69 510
 70 520
 71 530
 72 540
 73 550
 74 560
 75 570
 76 580
 77 590
 78 600
 79 610
 80 620
 81 630
 82 640
 83 650
 84 660
 85 670
 86 680
 87 690
 88 700
 89 710
 90 720
 91 730
 92 740
 93 750
 94 760
 95 770
 96 780
 97 790
 98 800
 99 810
 100 820
 101 830
 102 840
 103 850
 104 860
 105 870
 106 880
 107 890
 108 900
 109 910
 110 920
 111 930
 112 940
 113 950
 114 960
 115 970
 116 980
 117 990
 118 1000
 119 1010
 120 1020
 121 1030
 122 1040
 123 1050
 124 1060
 125 1070
 126 1080
 127 1090
 128 1100
 129 1110
 130 1120
 131 1130
 132 1140
 133 1150
 134 1160
 135 1170
 136 1180
 137 1190
 138 1200
 139 1210
 140 1220
 141 1230
 142 1240
 143 1250
 144 1260
 145 1270
 146 1280
 147 1290
 148 1300
 149 1310
 150 1320
 151 1330
 152 1340
 153 1350
 154 1360
 155 1370
 156 1380
 157 1390
 158 1400
 159 1410
 160 1420
 161 1430
 162 1440
 163 1450
 164 1460
 165 1470
 166 1480
 167 1490
 168 1500
 169 1510
 170 1520
 171 1530
 172 1540
 173 1550
 174 1560
 175 1570
 176 1580
 177 1590
 178 1600
 179 1610
 180 1620
 181 1630
 182 1640
 183 1650
 184 1660
 185 1670
 186 1680
 187 1690
 188 1700
 189 1710
 190 1720
 191 1730
 192 1740
 193 1750
 194 1760
 195 1770
 196 1780
 197 1790
 198 1800
 199 1810
 200 1820
 201 1830
 202 1840
 203 1850
 204 1860
 205 1870
 206 1880
 207 1890
 208 1900
 209 1910
 210 1920
 211 1930
 212 1940
 213 1950
 214 1960
 215 1970
 216 1980
 217 1990
 218 2000
 219 2010
 220 2020
 221 2030
 222 2040
 223 2050
 224 2060
 225 2070
 226 2080
 227 2090
 228 2100
 229 2110
 230 2120
 231 2130
 232 2140
 233 2150
 234 2160
 235 2170
 236 2180
 237 2190
 238 2200
 239 2210
 240 2220
 241 2230
 242 2240
 243 2250
 244 2260
 245 2270
 246 2280
 247 2290
 248 2300
 249 2310
 250 2320
 251 2330
 252 2340
 253 2350
 254 2360
 255 2370
 256 2380
 257 2390
 258 2400
 259 2410
 260 2420
 261 2430
 262 2440
 263 2450
 264 2460
 265 2470
 266 2480
 267 2490
 268 2500
 269 2510
 270 2520
 271 2530
 272 2540
 273 2550
 274 2560
 275 2570
 276 2580
 277 2590
 278 2600
 279 2610
 280 2620
 281 2630
 282 2640
 283 2650
 284 2660
 285 2670
 286 2680
 287 2690
 288 2700
 289 2710
 290 2720
 291 2730
 292 2740
 293 2750
 294 2760
 295 2770
 296 2780
 297 2790
 298 2800
 299 2810
 300 2820
 301 2830
 302 2840
 303 2850
 304 2860
 305 2870
 306 2880
 307 2890
 308 2900
 309 2910
 310 2920
 311 2930
 312 2940
 313 2950
 314 2960
 315 2970
 316 2980
 317 2990
 318 3000
 319 3010
 320 3020
 321 3030
 322 3040
 323 3050
 324 3060
 325 3070
 326 3080
 327 3090
 328 3100
 329 3110
 330 3120
 331 3130
 332 3140
 333 3150
 334 3160
 335 3170
 336 3180
 337 3190
 338 3200
 339 3210
 340 3220
 341 3230
 342 3240
 343 3250
 344 3260
 345 3270
 346 3280
 347 3290
 348 3300
 349 3310
 350 3320
 351 3330
 352 3340
 353 3350
 354 3360
 355 3370
 356 3380
 357 3390
 358 3400
 359 3410
 360 3420
 361 3430
 362 3440
 363 3450
 364 3460
 365 3470
 366 3480
 367 3490
 368 3500
 369 3510
 370 3520
 371 3530
 372 3540
 373 3550
 374 3560
 375 3570
 376 3580
 377 3590
 378 3600
 379 3610
 380 3620
 381 3630
 382 3640
 383 3650
 384 3660
 385 3670
 386 3680
 387 3690
 388 3700
 389 3710
 390 3720
 391 3730
 392 3740
 393 3750
 394 3760
 395 3770
 396 3780
 397 3790
 398 3800
 399 3810
 400 3820
 401 3830
 402 3840
 403 3850
 404 3860
 405 3870
 406 3880
 407 3890
 408 3900
 409 3910
 410 3920
 411 3930
 412 3940
 413 3950
 414 3960
 415 3970
 416 3980
 417 3990
 418 4000
 419 4010
 420 4020
 421 4030
 422 4040
 423 4050
 424 4060
 425 4070
 426 4080
 427 4090
 428 4100
 429 4110
 430 4120
 431 4130
 432 4140
 433 4150
 434 4160
 435 4170
 436 4180
 437 4190
 438 4200
 439 4210
 440 4220
 441 4230
 442 4240
 443 4250
 444 4260
 445 4270
 446 4280
 447 4290
 448 4300
 449 4310
 450 4320
 451 4330
 452 4340
 453 4350
 454 4360
 455 4370
 456 4380
 457 4390
 458 4400
 459 4410
 460 4420
 461 4430
 462 4440
 463 4450
 464 4460
 465 4470
 466 4480
 467 4490
 468 4500
 469 4510
 470 4520
 471 4530
 472 4540
 473 4550
 474 4560
 475 4570
 476 4580
 477 4590
 478 4600
 479 4610
 480 4620
 481 4630
 482 4640
 483 4650
 484 4660
 485 4670
 486 4680
 487 4690
 488 4700
 489 4710
 490 4720
 491 4730
 492 4740
 493 4750
 494 4760
 495 4770
 496 4780
 497 4790
 498 4800
 499 4810
 500 4820
 501 4830
 502 4840
 503 4850
 504 4860
 505 4870
 506 4880
 507 4890
 508 4900
 509 4910
 510 4920
 511 4930
 512 4940
 513 4950
 514 4960
 515 4970
 516 4980
 517 4990
 518 5000
 519 5010
 520 5020
 521 5030
 522 5040
 523 5050
 524 5060
 525 5070
 526 5080
 527 5090
 528 5100
 529 5110
 530 5120
 531 5130
 532 5140
 533 5150
 534 5160
 535 5170
 536 5180
 537 5190
 538 5200
 539 5210
 540 5220
 541 5230
 542 5240
 543 5250
 544 5260
 545 5270
 546 5280
 547 5290
 548 5300
 549 5310
 550 5320
 551 5330
 552 5340
 553 5350
 554 5360
 555 5370
 556 5380
 557 5390
 558 5400
 559 5410
 560 5420
 561 5430
 562 5440
 563 5450
 564 5460
 565 5470
 566 5480
 567 5490
 568 5500
 569 5510
 570 5520
 571 5530
 572 5540
 573 5550
 574 5560
 575 5570
 576 5580
 577 5590
 578 5600
 579 5610
 580 5620
 581 5630
 582 5640
 583 5650
 584 5660
 585 5670
 586 5680
 587 5690
 588 5700
 589 5710
 590 5720
 591 5730
 592 5740
 593 5750
 594 5760
 595 5770
 596 5780
 597 5790
 598 5800
 599 5810
 600 5820
 601 5830
 602 5840
 603 5850
 604 5860
 605 5870
 606 5880
 607 5890
 608 5900
 609 5910
 610 5920
 611 5930
 612 5940
 613 5950
 614 5960
 615 5970
 616 5980
 617 5990
 618 6000
 619 6010
 620 6020
 621 6030
 622 6040
 623 6050
 624 6060
 625 6070
 626 6080
 627 6090
 628 6100
 629 6110
 630 6120
 631 6130
 632 6140
 633 6150
 634 6160
 635 6170
 636 6180
 637 6190
 638 6200
 639 6210
 640 6220
 641 6230
 642 6240
 643 6250
 644 6260
 645 6270
 646 6280
 647 6290
 648 6300
 649 6310
 650 6320
 651 6330
 652 6340
 653 6350
 654 6360
 655 6370
 656 6380
 657 6390
 658 6400
 659 6410
 660 6420
 661 6430
 662 6440
 663 6450
 664 6460
 665 6470
 666 6480
 667 6490
 668 6500
 669 6510
 670 6520
 671 6530
 672 6540
 673 6550
 674 6560
 675 6570
 676 6580
 677 6590
 678 6600
 679 6610
 680 6620
 681 6630
 682 6640
 683 6650
 684 6660
 685 6670
 686 6680
 687 6690
 688 6700
 689 6710
 690 6720
 691 6730
 692 6740
 693 6750
 694 6760
 695 6770
 696 6780
 697 6790
 698 6800
 699 6810
 700 6820
 701 6830
 702 6840
 703 6850
 704 6860
 705 6870
 706 6880
 707 6890
 708 6900
 709 6910
 710 6920
 711 6930
 712 6940
 713 6950
 714 6960
 715 6970
 716 6980
 717 6990
 718 7000
 719 7010
 720 7020
 721 7030
 722 7040
 723 7050
 724 7060
 725 7070
 726 7080
 727 7090
 728 7100
 729 7110
 730 7120
 731 7130
 732 7140
 733 7150
 734 7160
 735 7170
 736 7180
 737 7190
 738 7200
 739 7210
 740 7220
 741 7230
 742 7240
 743 7250
 744 7260
 745 7270
 746 7280
 747 7290
 748 7300
 749 7310
 750 7320
 751 7330
 752 7340
 753 7350
 754 7360
 755 7370
 756 7380
 757 7390
 758 7400
 759 7410
 760 7420
 761 7430
 762 7440
 763 7450
 764 7460
 765 7470
 766 7480
 767 7490
 768 7500
 769 7510
 770 7520
 771 7530
 772 7540
 773 7550
 774 7560
 775 7570
 776 7580
 777 7590
 778 7600
 779 7610
 780 7620
 781 7630
 782 7640
 783 7650
 784 7660
 785 7670
 786 7680
 787 7690
 788 7700
 789 7710
 790 7720
 791 7730
 792 7740
 793 7750
 794 7760
 795 7770
 796 7780
 797 7790
 798 7800
 799 7810
 800 7820
 801 7830
 802 7840
 803 7850
 804 7860
 805 7870
 806 7880
 807 7890
 808 7900
 809 7910
 810 7920
 811 7930
 812 7940
 813 7950
 814 7960
 815 7970
 816 7980
 817 7990
 818 8000
 819 8010
 820 8020
 821 8030
 822 8040
 823 8050
 824 8060
 825 8070
 826 8080
 827 8090
 828 8100
 829 8110
 830 8120
 831 8130
 832 8140
 833 8150
 834 8160
 835 8170
 836 8180
 837 8190
 838 8200
 839 8210
 840 8220
 841 8230
 842 8240
 843 8250
 844 8260
 845 8270
 846 8280
 847 8290
 848 8300
 849 8310
 850 8320
 851 8330
 852 8340
 853 8350
 854 8360
 855 8370
 856 8380
 857 8390
 858 8400
 859 8410
 860 8420
 861 8430
 862 8440
 863 8450
 864 8460
 865 8470
 866 8480
 867 8490
 868 8500
 869 8510
 870 8520
 871 8530
 872 8540
 873 8550
 874 8560
 875 8570
 876 8580
 877 8590
 878 8600
 879 8610
 880 8620
 881 8630
 882 8640
 883 8650
 884 8660
 885 8670
 886 8680
 887 8690
 888 8700
 889 8710
 890 8720
 891 8730
 892 8740
 893 8750
 894 8760
 895 8770
 896 8780
 897 8790
 898 8800
 899 8810
 900 8820
 901 8830
 902 8840
 903 8850
 90

C-53

፩፻፭፻፯

C-54

					PLAN
					1 8
					1
SUM OF	2	HYDROGRAPHS	AT	7	
6	6		7	13	14
12	12		12	23	28
22	23		24	28	33
124	170		226	147	125
244	206		174	112	124
64	65		99	274	320
75	74		194	657	1133
75	76		557	845	6893
67	517		5845	6528	1692
77	4978		2713	1972	1692
67	3200		658	632	5893
85	686		658	607	389
85	686		571	403	

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	6,901	5348	2097	916	10,9940
INCHES	1.95	1.51	.79	.26	3.11
MM					52
AC-FT					572.67
					3454.3
					5604.

4 30 91
5 00 101
5 30 111
6 30 121
6 30 131
7 00 141
7 30 151
8 00 161
8 70 171
9 70 181
9 70 191
10 00 201
10 70 211
11 00 221
11 70 231
12 00 241
12 70 251
13 00 261
13 70 271
14 00 281
14 70 291
15 00 301
15 70 311
16 00 321
16 70 331
17 00 341
17 70 351
18 00 361
18 70 371
19 00 381
19 70 391
20 00 401
20 70 411
21 00 421
21 70 431
22 00 441
22 70 451
23 00 461
23 70 471
24 00 481
24 70 491
25 00 501
25 70 511
26 00 521
26 70 531
27 00 541
27 70 551
28 00 561
28 70 571
29 00 581
29 70 591
30 00 601
30 70 611
31 00 621
31 70 631
32 00 641
32 70 651
33 00 661

REVIEWS OF CLAVIBACTER SPECIES 87

PAGE 0038

C-56

二

	1	PLAN 1	RTIO 9	12	13	14
SUM OF 2 HYDROGRAPHS AT 9.	8.	10.	11.	12.	24	25
7.	1.4	1.5	1.6	1.8	2.0	2.2
1.4	1.5	1.5	1.6	1.8	2.0	2.2
2.7	2.8	2.9	2.7	3.1	4.4	5.7
1.19	1.75	2.13	1.93	3.56	4.19	4.71
3.05	3.05	2.98	2.18	1.84	4.60	4.71
3.305	3.305	3.20	2.13	1.32	1.13	1.13
89	89	108	123	167	178	178
202	220	249	290	342	400	459
621	647	697	B22	1056	1419	1911
6223	7306	8160	8626	8616	8117	7326
4600	3391	2885	2464	2115	1823	1572
781	857	623	759	729	700	672
571	549	527	506	486	466	448
395	395	395	395	395	395	430

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	8626	6685	2621	1145	137425	
CMS	244	189	74	32	3871	
INCHES		16.45	25.80	28.18	28.18	
MM		417.85	655.36	715.84	715.84	
AC-FT					5679	
CU					7003	
THOUS						

1 * Q' / F *	STATION	1	
		OUTFLOW (Q)	AND OBSERVED FLOW (*)
0	1000	2000 3000 4000	3000 4000 5000 6000

C-57

11-01181

C-59

DRUGGRAPH ROUTING

IAUTO
0
GE
0
TR
0
AI

* * * * *

PEAK QUITLOW IS	830	AT TIME	43.00	HOURS	PEAK CFS 830.	6-HOUR 662 24.	24-HOUR 261. 17.	72-HOUR 113. 7.	TOTAL	VOLUME: 13563. 384.
CMS					1.63		2.57	3.		2.78
INCHES MM					41.36		65.37	70.65		70.65
AC-FT					328.		519.	560.		560.
THDUS CU M					405.		640.	691.		691.

۱۰۷

	STATION	1
	INFLOW (1), OUTFLOW (0) AND OBSERVED FLOW (*)	
100	200.	300.
	300.	400.
	500.	600.

C-61

EL SISTEMA JUDICIAL ARGENTINO 165

PAGE 0044

C-62

1	30 .99
2	.00100
3	.30101
4	.00102
5	.30103
6	.00104
7	.30105
8	.00106
9	.30107
10	.00108
11	.30109
12	.00110
13	.30111
14	.00112
15	.30113
16	.00114
17	.30115
18	.00116
19	.30117
20	.00118
21	.30119
22	.00120

1 * DOWN

STATION 1, PLAN 1, RATIO 2.
END-OF-PERIOD HYDROGRAPH ORDINATES

	OUTFLOW	STORAGE	
1	1	1	1
2	2	2	2
3	4	4	4
4	22	30	30
5	69	37	30
6	23	24	26
7	40	44	49
8	130	144	173
9	1430	1596	1718
10	1373	1670	1776
11	180	168	159
12	114	110	105
13	24	23	26
14	37	40	44
15	114	1136	1144
16	126	130	132
17	73	69	67
18	26	24	23
19	35	37	39
20	114	1136	1144
21	841	884	979
22	979	884	884
23	235	202	180
24	124	119	114
25	78	69	67
26	24	23	23
27	37	40	44
28	114	1136	1144
29	126	130	132
30	73	69	67
31	26	24	23
32	35	37	39
33	114	1136	1144
34	841	884	979
35	979	884	884
36	235	202	180
37	124	119	114
38	78	69	67
39	24	23	23
40	37	40	44
41	114	1136	1144
42	126	130	132
43	73	69	67
44	26	24	23
45	35	37	39
46	114	1136	1144
47	841	884	979
48	979	884	884
49	235	202	180
50	124	119	114
51	78	69	67
52	24	23	23
53	35	37	39
54	114	1136	1144
55	841	884	979
56	979	884	884
57	235	202	180
58	124	119	114
59	78	69	67
60	24	23	23
61	35	37	39
62	114	1136	1144
63	841	884	979
64	979	884	884
65	235	202	180
66	124	119	114
67	78	69	67
68	24	23	23
69	35	37	39
70	114	1136	1144
71	841	884	979
72	979	884	884
73	235	202	180
74	124	119	114
75	78	69	67
76	24	23	23
77	35	37	39
78	114	1136	1144
79	841	884	979
80	979	884	884
81	235	202	180
82	124	119	114
83	78	69	67
84	24	23	23
85	35	37	39
86	114	1136	1144
87	841	884	979
88	979	884	884
89	235	202	180
90	124	119	114
91	78	69	67
92	24	23	23
93	35	37	39
94	114	1136	1144
95	841	884	979
96	979	884	884
97	235	202	180
98	124	119	114
99	78	69	67
100	24	23	23
101	35	37	39
102	114	1136	1144
103	841	884	979
104	979	884	884
105	235	202	180
106	124	119	114
107	78	69	67
108	24	23	23
109	35	37	39
110	114	1136	1144
111	841	884	979
112	979	884	884
113	235	202	180
114	124	119	114
115	78	69	67
116	24	23	23
117	35	37	39
118	114	1136	1144
119	841	884	979
120	979	884	884
121	235	202	180
122	124	119	114
123	78	69	67
124	24	23	23
125	35	37	39
126	114	1136	1144
127	841	884	979
128	979	884	884
129	235	202	180
130	124	119	114
131	78	69	67
132	24	23	23
133	35	37	39
134	114	1136	1144
135	841	884	979
136	979	884	884
137	235	202	180
138	124	119	114
139	78	69	67
140	24	23	23
141	35	37	39
142	114	1136	1144
143	841	884	979
144	979	884	884
145	235	202	180
146	124	119	114
147	78	69	67
148	24	23	23
149	35	37	39
150	114	1136	1144
151	841	884	979
152	979	884	884
153	235	202	180
154	124	119	114
155	78	69	67
156	24	23	23
157	35	37	39
158	114	1136	1144
159	841	884	979
160	979	884	884
161	235	202	180
162	124	119	114
163	78	69	67
164	24	23	23
165	35	37	39
166	114	1136	1144
167	841	884	979
168	979	884	884
169	235	202	180
170	124	119	114
171	78	69	67
172	24	23	23
173	35	37	39
174	114	1136	1144
175	841	884	979
176	979	884	884
177	235	202	180
178	124	119	114
179	78	69	67
180	24	23	23
181	35	37	39
182	114	1136	1144
183	841	884	979
184	979	884	884
185	235	202	180
186	124	119	114
187	78	69	67
188	24	23	23
189	35	37	39
190	114	1136	1144
191	841	884	979
192	979	884	884
193	235	202	180
194	124	119	114
195	78	69	67
196	24	23	23
197	35	37	39
198	114	1136	1144
199	841	884	979
200	979	884	884
201	235	202	180
202	124	119	114
203	78	69	67
204	24	23	23
205	35	37	39
206	114	1136	1144
207	841	884	979
208	979	884	884
209	235	202	180
210	124	119	114
211	78	69	67
212	24	23	23
213	35	37	39
214	114	1136	1144
215	841	884	979
216	979	884	884
217	235	202	180
218	124	119	114
219	78	69	67
220	24	23	23
221	35	37	39
222	114	1136	1144
223	841	884	979
224	979	884	884
225	235	202	180
226	124	119	114
227	78	69	67
228	24	23	23
229	35	37	39
230	114	1136	1144
231	841	884	979
232	979	884	884
233	235	202	180
234	124	119	114
235	78	69	67
236	24	23	23
237	35	37	39
238	114	1136	1144
239	841	884	979
240	979	884	884
241	235	202	180
242	124	119	114
243	78	69	67
244	24	23	23
245	35	37	39
246	114	1136	1144
247	841	884	979
248	979	884	884
249	235	202	180
250	124	119	114
251	78	69	67
252	24	23	23
253	35	37	39
254	114	1136	1144
255	841	884	979
256	979	884	884
257	235	202	180
258	124	119	114
259	78	69	67
260	24	23	23
261	35	37	39
262	114	1136	1144
263	841	884	979
264	979	884	884
265	235	202	180
266	124	119	114
267	78	69	67
268	24	23	23
269	35	37	39
270	114	1136	1144
271	841	884	979
272	979	884	884
273	235	202	180
274	124	119	114
275	78	69	67
276	24	23	23
277	35	37	39
278	114	1136	1144
279	841	884	979
280	979	884	884
281	235	202	180
282	124	119	114
283	78	69	67
284	24	23	23
285	35	37	39
286	114	1136	1144
287	841	884	979
288	979	884	884
289	235	202	180
290	124	119	114
291	78	69	67
292	24	23	23
293	35	37	39
294	114	1136	1144
295	841	884	979
296	979	884	884
297	235	202	180
298	124	119	114
299	78	69	67
300	24	23	23
301	35	37	39
302	114	1136	1144
303	841	884	979
304	979	884	884
305	235	202	180
306	124	119	114
307	78	69	67
308	24	23	23
309	35	37	39
310	114	1136	1144
311	841	884	979
312	979	884	884
313	235	202	180
314	124	119	114
315	78	69	67
316	24	23	23
317	35	37	39
318	114	1136	1144
319	841	884	979
320	979	884	884
321	235	202	180
322	124	119	114
323	78	69	67
324	24	23	23
325	35	37	39
326	114	1136	1144
327	841	884	979
328	979	884	884
329	235	202	180
330	124	119	114
331	78	69	67
332	24	23	23
333	35	37	39
334	114	1136	1144
335	841	884	979
336	979	884	884
337	235	202	180
338	124	119	114
339	78	69	67
340	24	23	23
341	35	37	39
342	114	1136	1144
343	841	884	979
344	979	884	884
345	235	202	180
346	124	119	114
347	78	69	67
348	24	23	23
349	35	37	

FIFTY GIAVARA ASSOCIATES, p.c.

PAGE 0046

THE EASY WAY TO LEARN ALITTLE ENGLISH

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	1727	1327	324	227	27189	
CMS	49	38.	15.	6.	770.	
INCHES		3.27	0.13	0.58	5.98	
in		82.95	130.91	141.63	141.63	
AC-FT						1124
THOUS. CU M						1386
CU M						1386

C-64

14	30	2901
15	00	3001
16	00	33 01
17	00	24 0 1
17	30	35 0 1
18	00	36 0 1
18	30	37 0 1
19	00	38 0 1
19	30	39 1
20	00	40 1
21	00	42 10
21	30	43 1
22	00	44 10
22	30	45 10
23	00	46 10
23	30	47 10
24	00	48 10
24	30	49 10
25	00	50 1
25	30	51 1
26	00	52 1
26	30	53 1
27	00	54 1
27	30	55 1
28	00	56 0 1
28	30	57 0 1
29	00	58 0 1
29	30	59 0 1
30	00	60 1
30	30	61 1
31	00	62 1
31	30	63 1
32	00	64 0 1
32	30	65 0 1
33	00	66 0 1
33	30	67 0 1
34	00	68 0 1
34	30	69 0 1
35	00	70 0 1
35	30	71 0 1
36	00	72 0 1
36	30	73 0 1
37	00	74 0 1
37	30	75 0 1
38	00	76 0 1
38	30	77 0 1
39	00	78 0 1
39	30	79 0 1
40	00	80 0 1
40	30	81 0 1
41	00	82 0 1
41	30	83 0 1
42	00	84 0 1
42	30	85 0 1
43	00	86 0 1

*CUNY

C-66

STATION	1, PLAN 1, RATIO 3		
	END-OF-PERIOD HYDROGRAPH ORDINATES		
OUTFLOW	1	1	1
1	3	6	9
2	34	45	59
3	93	84	75
4	35	34	36
5	55	65	73
6	185	216	258
7	176	211	2576
8	175	1063	2411
9	1245	926	832
10	302	269	239
11	172	165	158
SURFACE			
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

PEAK OUTFLOW IS	2392. AT TIME 43.00 HOURS	STATION	1
0	0	0	0
1	0	1	1
2	1	2	1
3	2	2	1
4	5	3	1
5	13	12	1
6	14	12	1
7	14	12	1
8	16	10	1
9	16	10	1
10	17	18	1
11	16	18	1
12	16	18	1
13	16	18	1
14	16	18	1
15	16	18	1
16	16	18	1
17	16	18	1
18	16	18	1
19	16	18	1
20	16	18	1
21	16	18	1
22	16	18	1
23	16	18	1
24	16	18	1
25	16	18	1
26	16	18	1
27	16	18	1
28	16	18	1
29	16	18	1
30	16	18	1
31	16	18	1
32	16	18	1
33	16	18	1
34	16	18	1
35	16	18	1
36	16	18	1
37	16	18	1
38	16	18	1
39	16	18	1
40	16	18	1
41	16	18	1
42	16	18	1
43	16	18	1
44	16	18	1
45	16	18	1
46	16	18	1
47	16	18	1
48	16	18	1
49	16	18	1
50	16	18	1
51	16	18	1
52	16	18	1
53	16	18	1
54	16	18	1
55	16	18	1
56	16	18	1
57	16	18	1
58	16	18	1
59	16	18	1
60	16	18	1
61	16	18	1
62	16	18	1
63	16	18	1
64	16	18	1
65	16	18	1
66	16	18	1
67	16	18	1
68	16	18	1
69	16	18	1
70	16	18	1
71	16	18	1
72	16	18	1
73	16	18	1
74	16	18	1
75	16	18	1
76	16	18	1
77	16	18	1
78	16	18	1
79	16	18	1
80	16	18	1
81	16	18	1
82	16	18	1
83	16	18	1
84	16	18	1
85	16	18	1
86	16	18	1
87	16	18	1
88	16	18	1
89	16	18	1
90	16	18	1
91	16	18	1
92	16	18	1
93	16	18	1
94	16	18	1
95	16	18	1
96	16	18	1
97	16	18	1
98	16	18	1
99	16	18	1
100	16	18	1
101	16	18	1
102	16	18	1
103	16	18	1
104	16	18	1
105	16	18	1
106	16	18	1
107	16	18	1
108	16	18	1
109	16	18	1
110	16	18	1
111	16	18	1
112	16	18	1
113	16	18	1
114	16	18	1
115	16	18	1
116	16	18	1
117	16	18	1
118	16	18	1
119	16	18	1
120	16	18	1
121	16	18	1
122	16	18	1
123	16	18	1
124	16	18	1
125	16	18	1
126	16	18	1
127	16	18	1
128	16	18	1
129	16	18	1
130	16	18	1
131	16	18	1
132	16	18	1
133	16	18	1
134	16	18	1
135	16	18	1
136	16	18	1
137	16	18	1
138	16	18	1
139	16	18	1
140	16	18	1
141	16	18	1
142	16	18	1
143	16	18	1
144	16	18	1
145	16	18	1
146	16	18	1
147	16	18	1
148	16	18	1
149	16	18	1
150	16	18	1
151	16	18	1
152	16	18	1
153	16	18	1
154	16	18	1
155	16	18	1
156	16	18	1
157	16	18	1
158	16	18	1
159	16	18	1
160	16	18	1
161	16	18	1
162	16	18	1
163	16	18	1
164	16	18	1
165	16	18	1
166	16	18	1
167	16	18	1
168	16	18	1
169	16	18	1
170	16	18	1
171	16	18	1
172	16	18	1
173	16	18	1
174	16	18	1
175	16	18	1
176	16	18	1
177	16	18	1
178	16	18	1
179	16	18	1
180	16	18	1
181	16	18	1
182	16	18	1
183	16	18	1
184	16	18	1
185	16	18	1
186	16	18	1
187	16	18	1
188	16	18	1
189	16	18	1
190	16	18	1
191	16	18	1
192	16	18	1
193	16	18	1
194	16	18	1
195	16	18	1
196	16	18	1
197	16	18	1
198	16	18	1
199	16	18	1
200	16	18	1
201	16	18	1
202	16	18	1
203	16	18	1
204	16	18	1
205	16	18	1
206	16	18	1
207	16	18	1
208	16	18	1
209	16	18	1
210	16	18	1
211	16	18	1
212	16	18	1
213	16	18	1
214	16	18	1
215	16	18	1
216	16	18	1
217	16	18	1
218	16	18	1
219	16	18	1
220	16	18	1
221	16	18	1
222	16	18	1
223	16	18	1
224	16	18	1
225	16	18	1
226	16	18	1
227	16	18	1
228	16	18	1
229	16	18	1
230	16	18	1
231	16	18	1
232	16	18	1
233	16	18	1
234	16	18	1
235	16	18	1
236	16	18	1
237	16	18	1
238	16	18	1
239	16	18	1
240	16	18	1
241	16	18	1
242	16	18	1
243	16	18	1
244	16	18	1
245	16	18	1
246	16	18	1
247	16	18	1
248	16	18	1
249	16	18	1
250	16	18	1
251	16	18	1
252	16	18	1
253	16	18	1
254	16	18	1
255	16	18	1
256	16	18	1
257	16	18	1
258	16	18	1
259	16	18	1
260	16	18	1
261	16	18	1
262	16	18	1
263	16	18	1
264	16	18	1
265	16	18	1
266	16	18	1
267	16	18	1
268	16	18	1
269	16	18	1
270	16	18	1
271	16	18	1
272	16	18	1
273	16	18	1
274	16	18	1
275	16	18	1
276	16	18	1
277	16	18	1
278	16	18	1
279	16	18	1
280	16	18	1
281	16	18	1
282	16	18	1
283	16	18	1
284	16	18	1
285	16	18	1
286	16	18	1
287	16	18	1
288	16	18	1
289	16	18	1
290	16	18	1
291	16	18	1
292	16	18	1
293	16	18	1
294	16	18	1
295	16	18	1
296	16	18	1
297	16	18	1
298	16	18	1
299	16	18	1
300	16	18	1
301	16	18	1
302	16	18	1
303	16	18	1
304	16	18	1
305	16	18	1
306	16	18	1
307	16	18	1
308	16	18	1
309	16	18	1
310	16	18	1
311	16	18	1
312	16	18	1
313	16	18	1
314	16	18	1
315	16	18	1
316	16	18	1
317	16	18	1
318	16	18	1
319	16	18	1
320	16	18	1
321	16	18	1
322	16	18	1
323	16	18	1
324	16	18	1
325	16	18	1
326	16	18	1
327	16	18	1
328	16	18	1
329	16	18	1
330	16	18	1
331	16	18	1
332	16	18	1
333	16	18	1
334	16	18	1
335	16	18	1
336	16	18	1
337	16	18	1
338	16	18	1
339	16	18	1
340	16	18	1
341	16	18	1
342	16	18	1
343	16	18	1
344	16	18	1

* 11

STATION 1, PLAN 1, RATIO 4
END-OF-PERIOD HYDROGRAPH ORDINATES

OUTFLOW	25	26
2	3	3
5	6	6
14	15	15
16	17	17
16	17	17
0	0	0

FRANCESCO GIAVARA ASSOCIATES, PC

PAGE 0052

PEAK OUTFLOW IS 3457 AT TIME 43 00 HOURS

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
CFS	3457	2673.	1048	453	34583	
CMS	98	76	30	13	1346	
INCHES		6. ⁵⁸	10. ³²	11. ¹⁹	11. ¹⁹	
MM		167	262	284	284	
AC-FT		1325	2079	2256	2256	
THOUS CU M		1635	2364	2782	2782	

۱۴۰

STATION 1	
INFLOW (L)	OUTFLOW (L) AND OBSERVED
800	1200
	1600

8600

1

३००

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0053

2 30	51
3 30	61
4 30	81
4 30	91
5 30	101
6 00	111
6 00	121
6 30	131
7 00	141
7 30	151
8 00	161
8 30	171
8 30	181
9 00	191
9 30	201
10 30	211
11 30	221
11 30	231
12 00	241
12 30	251
13 00	261
13 30	271
14 00	2801
14 30	2901
15 00	301
15 30	311
16 00	32 01
16 30	33 01
17 00	34 01
17 30	35 01
18 00	36 01
18 30	37 01
19 00	38 01
19 30	39 10
20 00	40 1
20 30	41 1
21 00	42 10
21 30	43 1
22 00	44 10
22 30	45 1
23 00	46 1
23 30	47 10
0 00	48 10
0 30	49 1
1 00	50 1
1 30	51 1
2 00	52 1
2 30	53 1
3 00	54 1
3 30	55 1
4 00	56 01
4 30	57 01
5 00	58 01
5 30	59 1
6 00	60 1
6 30	61 1
7 00	62 1

EL ANTHONY GIAYARA ASSOCIATES, P.C.

PAGE 0054

7 30 63
8 30 64
9 30 65
10 30 66
11 30 67
12 30 68
13 30 69
14 30 70
15 30 71
16 30 72
17 30 73
18 30 74
19 30 75
20 30 76
21 30 77
22 30 78
23 30 79
24 30 80
25 30 81
26 30 82
27 30 83
28 30 84
29 30 85
30 30 86
31 30 87
32 30 88
33 30 89
34 30 90
35 30 91
36 30 92
37 30 93
38 30 94
39 30 95
40 30 96
41 30 97
42 30 98
43 30 99
44 30 100
45 30 101
46 30 102
47 30 103
48 30 104
49 30 105
50 30 106
51 30 107
52 30 108
53 30 109
54 30 110
55 30 111
56 30 112
57 30 113
58 30 114
59 30 115
60 30 116
61 30 117
62 30 118
63 30 119
64 30 120

1 * OWN*

STATION 1. PLAN 1. RATIO 5
END-OF-PERIOD HYDROGRAPH ORDINATES

PEAK OUTFLOW IS	4320. AT TIME 43.00 HOURS											
	6-HOUR PEAK CFS			24-HOUR CFS			72-HOUR CFS			TOTAL VOLUME INCHES MM		
0 4	1 5.	2 5.	3 6.	4 6.	5 6.	6 6.	7 6.	8 6.	9 6.	10 6.	11 6.	12 6.
4 9	5 11	6 12	7 13	8 14	9 15	10 16	11 17	12 18	13 19	14 20	15 21	16 22
8 35	9 44	10 58	11 76	12 98	13 110	14 126	15 147	16 172	17 200	18 227	19 242	20 267
12 200	13 258	14 355	15 454	16 555	17 655	18 755	19 855	20 955	21 1055	22 1155	23 1255	24 1355
16 294	17 309	18 327	19 357	20 379	21 4031	22 4293	23 4320	24 4320	25 4320	26 4320	27 4320	28 4320
20 2465	21 3027	22 3055	23 3179	24 3179	25 3179	26 3179	27 3179	28 3179	29 3179	30 3179	31 3179	32 3179
24 2423	25 310	26 310	27 310	28 310	29 310	30 310	31 310	32 310	33 310	34 310	35 310	36 310
28 575	29 594	30 613	31 632	32 651	33 670	34 689	35 708	36 727	37 746	38 765	39 784	40 803
32 310	33 310	34 310	35 310	36 310	37 310	38 310	39 310	40 310	41 310	42 310	43 310	44 310
36 0	37 0	38 0	39 0	40 0	41 0	42 0	43 0	44 0	45 0	46 0	47 0	48 0
40 0	41 1	42 3	43 5	44 7	45 9	46 11	47 13	48 14	49 15	50 16	51 17	52 18
44 4	45 6	46 8	47 10	48 12	49 14	50 15	51 16	52 17	53 18	54 19	55 20	56 21
48 9	49 11	50 13	51 15	52 17	53 18	54 19	55 20	56 21	57 22	58 23	59 24	60 25
52 35	53 44	54 53	55 61	56 69	57 75	58 81	59 86	60 91	61 96	62 101	63 106	64 111
56 200	57 258	58 310	59 355	60 454	61 555	62 655	63 755	64 855	65 955	66 1055	67 1155	68 1255
60 294	61 309	62 327	63 357	64 379	65 4031	66 4293	67 4320	68 4320	69 4320	70 4320	71 4320	72 4320
64 2465	65 3027	66 3055	67 3179	68 3179	69 3179	70 3179	71 3179	72 3179	73 3179	74 3179	75 3179	76 3179
68 2423	69 310	70 310	71 310	72 310	73 310	74 310	75 310	76 310	77 310	78 310	79 310	80 310
72 575	73 594	74 613	75 632	76 651	77 670	78 689	79 708	80 727	81 746	82 765	83 784	84 803
76 310	77 310	78 310	79 310	80 310	81 310	82 310	83 310	84 310	85 310	86 310	87 310	88 310
80 0	81 0	82 0	83 0	84 0	85 0	86 0	87 0	88 0	89 0	90 0	91 0	92 0
84 0	85 1	86 3	87 5	88 7	89 9	90 11	91 13	92 14	93 15	94 16	95 17	96 18
88 4	89 6	90 8	91 10	92 12	93 14	94 15	95 16	96 17	97 18	98 19	99 20	100 21
92 9	93 11	94 13	95 15	96 17	97 18	98 19	99 20	100 21	101 22	102 23	103 24	104 25
96 35	97 44	98 53	99 61	100 69	101 75	102 81	103 86	104 91	105 96	106 101	107 106	108 111
100 200	101 258	102 310	103 355	104 454	105 555	106 655	107 755	108 855	109 955	110 1055	111 1155	112 1255
104 294	105 309	106 327	107 357	108 379	109 4031	110 4293	111 4320	112 4320	113 4320	114 4320	115 4320	116 4320
108 2465	109 3027	110 3055	111 3179	112 3179	113 3179	114 3179	115 3179	116 3179	117 3179	118 3179	119 3179	120 3179
112 2423	113 310	114 310	115 310	116 310	117 310	118 310	119 310	120 310	121 310	122 310	123 310	124 310
116 575	117 594	118 613	119 632	120 651	121 670	122 689	123 708	124 727	125 746	126 765	127 784	128 803
120 310	121 310	122 310	123 310	124 310	125 310	126 310	127 310	128 310	129 310	130 310	131 310	132 310
124 0	125 1	126 3	127 5	128 7	129 9	130 11	131 13	132 14	133 15	134 16	135 17	136 18
128 4	129 6	130 8	131 10	132 12	133 14	134 15	135 16	136 17	137 18	138 19	139 20	140 21
132 9	133 11	134 13	135 15	136 17	137 18	138 19	139 20	140 21	141 22	142 23	143 24	144 25
136 35	137 44	138 53	139 61	140 69	141 75	142 81	143 86	144 91	145 96	146 101	147 106	148 111
140 200	141 258	142 310	143 355	144 454	145 555	146 655	147 755	148 855	149 955	150 1055	151 1155	152 1255
144 294	145 309	146 327	147 357	148 379	149 4031	150 4293	151 4320	152 4320	153 4320	154 4320	155 4320	156 4320
148 2465	149 3027	150 3055	151 3179	152 3179	153 3179	154 3179	155 3179	156 3179	157 3179	158 3179	159 3179	160 3179
152 2423	153 310	154 310	155 310	156 310	157 310	158 310	159 310	160 310	161 310	162 310	163 310	164 310
156 575	157 594	158 613	159 632	160 651	161 670	162 689	163 708	164 727	165 746	166 765	167 784	168 803
160 310	161 310	162 310	163 310	164 310	165 310	166 310	167 310	168 310	169 310	170 310	171 310	172 310
164 0	165 1	166 3	167 5	168 7	169 9	170 11	171 13	172 14	173 15	174 16	175 17	176 18
168 4	169 6	170 8	171 10	172 12	173 14	174 15	175 16	176 17	177 18	178 19	179 20	180 21
172 9	173 11	174 13	175 15	176 17	177 18	178 19	179 20	180 21	181 22	182 23	183 24	184 25
176 35	177 44	178 53	179 61	180 69	181 75	182 81	183 86	184 91	185 96	186 101	187 106	188 111
180 200	181 258	182 310	183 355	184 454	185 555	186 655	187 755	188 855	189 955	190 1055	191 1155	192 1255
184 294	185 309	186 327	187 357	188 379	189 4031	190 4293	191 4320	192 4320	193 4320	194 4320	195 4320	196 4320
188 2465	189 3027	190 3055	191 3179	192 3179	193 3179	194 3179	195 3179	196 3179	197 3179	198 3179	199 3179	200 3179
192 2423	193 310	194 310	195 310	196 310	197 310	198 310	199 310	200 310	201 310	202 310	203 310	204 310
196 575	197 594	198 613	199 632	200 651	201 670	202 689	203 708	204 727	205 746	206 765	207 784	208 803
200 310	201 310	202 310	203 310	204 310	205 310	206 310	207 310	208 310	209 310	210 310	211 310	212 310
204 0	205 1	206 3	207 5	208 7	209 9	210 11	211 13	212 14	213 15	214 16	215 17	216 18
208 4	209 6	210 8	211 10	212 12	213 14	214 15	215 16	216 17	217 18	218 19	219 20	220 21
212 9	213 11	214 13	215 15	216 17	217 18	218 19	219 20	220 21	221 22	222 23	223 24	224 25
216 35	217 44	218 53	219 61	220 69	221 75	222 81	223 86	224 91	225 96	226 101	227 106	228 111
220 200	221 258	222 310	223 355	224 454	225 555	226 655	227 755	228 855	229 955	230 1055	231 1155	232 1255
224 294	225 309	226 327	227 357	228 379	229 4031	230 4293	231 4320	232 4320	233 4320	234 4320	235 4320	236 4320
228 2465	229 3027	230 3055	231 3179	232 3179	233 3179	234 3179	235 3179	236 3179	237 3179	238 3179	239 3179	240 3179
232 2423	233 310	234 310	235 310	236 310	237 310	238 310	239 310	240 310	241 310	242 310	243 310	244 310
236 575	237 594	238 613	239 632	240 651	241 670	242 689	243 708	244 727	245 746	246 765	247 784	248 803
240 310	241 310	242 310	243 310	244 310	245 310	246 310	247 310	248 310	249 310	250 310	251 310	252 310
244 0	245 1	246 3	247 5	248 7	249 9	250 11	251 13	252 14	253 15	254 16	255 17	256 18
248 4	249 6	250 8	251 10	252 12	253 14	254 15	255 16	256 17	257 18	258 19	259 20	260 21
252 9	253 11	254 13	255 15	256 17	257 18	258 19	259 20	260 21	261 22	262 23	263 24	264 25
256 35	257 44	258 53	259 61	260 69	261 75	262 81	263 86	264 91	265 96	266 101	267 106	268 111
260 200	261 258	262 310	263 355	264 454	265 555	266 655	267 755	268 855	269 955	270 1055	271 1155	272 1255
264 294	265 309	266 327	267 357	268 379	269 4031	270 4293	271 4320	272 4320	273 4320	274 4320	275 4320	276 4320
268 2465	269 3027	270 3055	271 3179	272 3179	273 3179	274 3179	275 3179	276 3179	277 3179	278 3179	279 3179	280 3179
272 2423	273 310	274 310	275 310	276 310	277 310	278 310	279 310	280 310	281 310	282 310	283 310	284 310
276 575	277 594	278 613	279 632	280 651	281 670	282 689	283 708	284 727	285 746	286 765	287 784	288 803
280 310	281 310	282 310	283 310	284 310	285 310	286 310	287 310	288 310	289 310	290 310	291 310	292 310
284 0	285 1	286 3	287 5	288 7	289 9	290 11	291 13	292 14	293 15	294 16	295 17	296 18
288 4	289 6	290 8	291 10	292 12	293 14	294 15	295 16	296 17	297 18	298 19	299 20	300 21
292 9	293 11	294 13	295 15	296 17	297 18	298 19	299 20	300 21	301 22	302 23	303 24	304 25
296 35	297 44	298 53	299 61	300 69	301 75	302 81	303 86	304 91	305 96	306 101	307 106	308 111
300 200	301 258	302 310	303 355	304 454	305 555	306 655	307 755	308 855	309 955	310 1055	311 1155	312 1255
304 294	305 309	306 327	307 357	308 379	309 4031	310 4293	311 4320	312 4320	313 4320	314 4320	315 4320	316 4320
308 2465	309 3027	310 3055	311 3179	312 3179	313 3							

FLAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0056

AC-FT THOUS CU M	1656. 2043.	2599. 3205.	2822. 3480.
---------------------	----------------	----------------	----------------

1*OVT

500	1000 INFLOW ⁽¹⁾ , OUTFLOW ⁽²⁾ 1500. 2000.	AND OBSERVED FLOW ^(*) 2500. 3000.	3500.
-----	--	---	-------

STATION 1

0 30 01			
1 00 21			
1 40 31			
2 00 41			
2 30 51			
3 00 61			
3 30 71			
4 00 81			
4 30 91			
5 00 101			
5 30 111			
6 00 121			
6 30 131			
6 60 141			
7 00 151			
8 00 161			
8 30 171			
9 00 181			
9 30 191			
10 00 201			
10 30 211			
11 00 221			
11 30 231			
12 00 241			
12 30 251			
13 00 261			
13 30 271			
14 00 2801			
14 30 2901			
15 00 301			
15 30 311			
16 00 3201			
16 30 3301			
17 00 3401			
17 30 3501	0 1		
18 00 3601	0 1		
18 30 3701	0 1		
19 00 3801	0 1		
19 30 3910	10		
20 00 4010	1		
20 30 4110	10		
21 00 4210	10		
21 30 4310	1		
22 00 4410	10		
22 30 4510	1		
23 00 4610	10		
23 30 4710	10		
24 00 4810	10		
24 30 4910	1		
25 00 5010	1		
25 30 5110	1		

30109	10
07	00110
7	30111
8	00112
8	30113
9	00114
9	30115
10	00116
10	30117
11	00118
11	30119
12	00120

1 * 0.01

C-76

STATION 1, PLAN 1, RATIO 6
END-OF-PERIOD HYDROGRAPH ORDINATES

	OUTFLOW	STORAGE	STAGE
1	2	1	1244.1
5	6	2	1244.1
13	14	3	1244.3
42	53	3	1244.3
240	63	10	1244.5
65	63	15	1244.5
119	123	14	1245.0
352	134	15	1245.0
371	392	16	1245.0
2953	4333	27	1245.3
2909	4839	31	1245.3
2458	5209	72	1245.3
682	530	54	1245.4
358	343	31	1245.4
372	330	23	1245.5
0	0	23	1246.1
33	33	24	1246.1
17	18	25	1246.1
10	19	10	1246.2
13	14	15	1246.2
23	24	16	1246.3
61	65	72	1246.3
61	58	73	1246.3
37	33	52	1246.4
24	24	30	1246.4
		22	1246.5
		23	1246.5
		21	1246.6
		21	1246.6
		21	1246.7
		20	1246.7
		20	1246.8
		20	1246.9
		20	1247.0
		19	1247.0
		19	1247.1
		19	1247.1
		18	1247.2
		18	1247.2
		17	1247.3
		17	1247.3
		16	1247.4
		16	1247.4
		15	1247.5
		15	1247.5
		14	1247.6
		14	1247.6
		13	1247.7
		13	1247.7
		12	1247.8
		12	1247.8
		11	1247.9
		11	1247.9
		10	1248.0
		10	1248.0
		9	1248.1
		9	1248.1
		8	1248.2
		8	1248.2
		7	1248.3
		7	1248.3
		6	1248.4
		6	1248.4
		5	1248.5
		5	1248.5
		4	1248.6
		4	1248.6
		3	1248.7
		3	1248.7
		2	1248.8
		2	1248.8
		1	1248.9
		1	1248.9
		0	1249.0

FLAMERIV GIAVARA ASSOCIATES, P.C.

PAGE 0059

PEAK INFLOW IS 5184 AT TIME 43 00 HOURS		PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL	VOLUME
		CFS	4009	1572	683		
		CMS	114	45	19		
		INCHES	9.87	15.48	16.81		
		MM	250.60	393.08	427.03		
		AC-FT	1988.	3118.	3388.		
		THOUS CU M	2452.	3846.	4178.		
1800 FT							

STATION 1

2000 INFLOW(1), OUTFLOW(2) AND OBSERVED FLOW(*)
3000 4000 5000 6000

0	0	0	0	0	0	0	0
0 30	0 11	0	0	0	0	0	0
1 00	21	0	0	0	0	0	0
1 30	31	0	0	0	0	0	0
2 00	41	0	0	0	0	0	0
2 30	51	0	0	0	0	0	0
3 00	61	0	0	0	0	0	0
3 30	71	0	0	0	0	0	0
4 00	81	0	0	0	0	0	0
4 30	91	0	0	0	0	0	0
5 00	101	0	0	0	0	0	0
5 30	111	0	0	0	0	0	0
6 00	121	0	0	0	0	0	0
6 30	131	0	0	0	0	0	0
7 00	141	0	0	0	0	0	0
7 30	151	0	0	0	0	0	0
8 00	161	0	0	0	0	0	0
8 30	171	0	0	0	0	0	0
9 00	181	0	0	0	0	0	0
9 30	191	0	0	0	0	0	0
10 00	201	0	0	0	0	0	0
10 30	211	0	0	0	0	0	0
11 00	221	0	0	0	0	0	0
11 30	231	0	0	0	0	0	0
12 00	241	0	0	0	0	0	0
12 30	251	0	0	0	0	0	0
13 00	261	0	0	0	0	0	0
13 30	271	0	0	0	0	0	0
14 00	281	0	0	0	0	0	0
14 30	291	0	0	0	0	0	0
15 00	3001	0	0	0	0	0	0
15 30	3101	0	0	0	0	0	0
16 00	321	0	0	0	0	0	0
16 30	331	0	0	0	0	0	0
17 00	3401	0	0	0	0	0	0
17 30	3501	0	0	0	0	0	0
18 00	3601	0	0	0	0	0	0
18 30	3701	0	0	0	0	0	0
19 00	3801	0	0	0	0	0	0
19 30	3901	0	0	0	0	0	0

FILIPPI & GLAVARA ASSOCIATES, P.C.

PAGE 004,0

0	30.97	1
1	00.98	10
1	30.99	10
2	00.100	10
2	30.101	10
3	00.102	10
3	30.103	1
4	00.104	1
4	30.105	1
5	00.106	10
5	30.107	1
6	00.108	1
6	30.109	1
7	00.110	1
7	30.111	1
8	00.112	10
8	30.113	1
9	00.114	1
9	30.115	1
10	00.116	1
10	30.117	1
11	00.118	1
11	30.119	1
12	00.120	10

1*QVN*

C-79

STATION 1, PLAN 1, RATIO 7
END-OF-PERIOD HYDROGRAPH ORDINATES

	OUTFLOW			STORAGE		
	1	2	3	1	2	3
1	1	2	3	1	2	3
1	6	7	8	10	11	14
1	15	16	17	22	26	39
1	49	62	83	20	285	318
2	79	247	215	243	131	87
2	273	270	184	155	111	123
3	135	143	73	61	101	114
3	135	143	157	178	206	280
4	411	432	457	507	241	319
4	3440	4254	3021	5651	612	1163
5	3391	2870	2073	1771	1024	5739
5	3782	683	2580	1315	1315	992
6	435	418	617	554	530	486
6	435	418	401	355	341	453
7	0	0	1	1	1	1
7	2	3	2	3	3	3
8	3	4	3	4	4	4
8	8	9	12	17	19	22
9	20	19	16	15	14	11
10	11	10	10	11	12	13
11	14	15	15	17	19	14
12	24	22	28	34	20	25
13	64	68	72	77	49	56
14	64	68	72	76	76	70
15	64	68	72	76	76	67
16	64	68	72	76	76	67
17	64	68	72	76	76	67
18	64	68	72	76	76	67
19	64	68	72	76	76	67
20	64	68	72	76	76	67
21	64	68	72	76	76	67
22	64	68	72	76	76	67
23	64	68	72	76	76	67
24	64	68	72	76	76	67
25	64	68	72	76	76	67
26	64	68	72	76	76	67
27	64	68	72	76	76	67
28	64	68	72	76	76	67
29	64	68	72	76	76	67
30	64	68	72	76	76	67
31	64	68	72	76	76	67
32	64	68	72	76	76	67
33	64	68	72	76	76	67
34	64	68	72	76	76	67
35	64	68	72	76	76	67
36	64	68	72	76	76	67
37	64	68	72	76	76	67
38	64	68	72	76	76	67
39	64	68	72	76	76	67
40	64	68	72	76	76	67
41	64	68	72	76	76	67
42	64	68	72	76	76	67
43	64	68	72	76	76	67
44	64	68	72	76	76	67
45	64	68	72	76	76	67
46	64	68	72	76	76	67
47	64	68	72	76	76	67
48	64	68	72	76	76	67
49	64	68	72	76	76	67
50	64	68	72	76	76	67
51	64	68	72	76	76	67
52	64	68	72	76	76	67
53	64	68	72	76	76	67
54	64	68	72	76	76	67
55	64	68	72	76	76	67
56	64	68	72	76	76	67
57	64	68	72	76	76	67
58	64	68	72	76	76	67
59	64	68	72	76	76	67
60	64	68	72	76	76	67
61	64	68	72	76	76	67
62	64	68	72	76	76	67
63	64	68	72	76	76	67
64	64	68	72	76	76	67
65	64	68	72	76	76	67
66	64	68	72	76	76	67
67	64	68	72	76	76	67
68	64	68	72	76	76	67
69	64	68	72	76	76	67
70	64	68	72	76	76	67
71	64	68	72	76	76	67
72	64	68	72	76	76	67
73	64	68	72	76	76	67
74	64	68	72	76	76	67
75	64	68	72	76	76	67
76	64	68	72	76	76	67
77	64	68	72	76	76	67
78	64	68	72	76	76	67
79	64	68	72	76	76	67
80	64	68	72	76	76	67
81	64	68	72	76	76	67
82	64	68	72	76	76	67
83	64	68	72	76	76	67
84	64	68	72	76	76	67
85	64	68	72	76	76	67
86	64	68	72	76	76	67
87	64	68	72	76	76	67
88	64	68	72	76	76	67
89	64	68	72	76	76	67
90	64	68	72	76	76	67
91	64	68	72	76	76	67
92	64	68	72	76	76	67
93	64	68	72	76	76	67
94	64	68	72	76	76	67
95	64	68	72	76	76	67
96	64	68	72	76	76	67
97	64	68	72	76	76	67
98	64	68	72	76	76	67
99	64	68	72	76	76	67
100	64	68	72	76	76	67
101	64	68	72	76	76	67
102	64	68	72	76	76	67
103	64	68	72	76	76	67
104	64	68	72	76	76	67
105	64	68	72	76	76	67
106	64	68	72	76	76	67
107	64	68	72	76	76	67
108	64	68	72	76	76	67
109	64	68	72	76	76	67
110	64	68	72	76	76	67
111	64	68	72	76	76	67
112	64	68	72	76	76	67
113	64	68	72	76	76	67
114	64	68	72	76	76	67
115	64	68	72	76	76	67
116	64	68	72	76	76	67
117	64	68	72	76	76	67
118	64	68	72	76	76	67
119	64	68	72	76	76	67
120	64	68	72	76	76	67
121	64	68	72	76	76	67
122	64	68	72	76	76	67
123	64	68	72	76	76	67
124	64	68	72	76	76	67
125	64	68	72	76	76	67
126	64	68	72	76	76	67
127	64	68	72	76	76	67
128	64	68	72	76	76	67
129	64	68	72	76	76	67
130	64	68	72	76	76	67
131	64	68	72	76	76	67
132	64	68	72	76	76	67
133	64	68	72	76	76	67
134	64	68	72	76	76	67
135	64	68	72	76	76	67
136	64	68	72	76	76	67
137	64	68	72	76	76	67
138	64	68	72	76	76	67
139	64	68	72	76	76	67
140	64	68	72	76	76	67
141	64	68	72	76	76	67
142	64	68	72	76	76	67
143	64	68	72	76	76	67
144	64	68	72	76	76	67
145	64	68	72	76	76	67
146	64	68	72	76	76	67
147	64	68	72	76	76	67
148	64	68	72	76	76	67
149	64	68	72	76	76	67
150	64	68	72	76	76	67
151	64	68	72	76	76	67
152	64	68	72	76	76	67
153	64	68	72	76	76	67
154	64	68	72	76	76	67
155	64	68	72	76	76	67
156	64	68	72	76	76	67
157	64	68	72	76	76	67
158	64	68	72	76	76	67
159	64	68	72	76	76	67
160	64	68	72	76	76	67
161	64	68	72	76	76	67
162	64	68	72	76	76	67
163	64	68	72	76	76	67
164	64	68	72	76	76	67
165	64	68	72	76	76	67
166	64	68	72	76	76	67
167	64	68	72	76	76	67
168	64	68	72	76	76	67
169	64	68	72	76	76	67
170	64	68	72	76	76	67
171	64	68	72	76	76	67
172	64	68	72	76	76	67
173	64	68	72	76	76	67
174	64	68	72	76	76	67
175	64	68	72	76	76	67
176	64	68	72	76	76	67
177	64					

FL. AFFRIVY GIAVARA ASSOCIATES, P.C.

PAGE 0062

	40	37	34	33	32	31	30	29	28
	27	26	25	24	23	22	21	20	19
1244 1	1244 1	1244 2	1244 2	1244 2	1244 2	1244 2	1244 2	1244 3	1244 3
1244 3	1244 3	1244 4	1244 4	1244 4	1244 4	1244 4	1244 4	1244 4	1244 4
1244 5	1244 5	1244 5	1244 5	1244 5	1244 5	1244 5	1244 5	1244 5	1244 5
1245 2	1245 2	1245 3	1245 3	1245 3	1245 3	1245 3	1245 3	1245 4	1245 4
1245 3	1245 3	1246 2	1246 2	1246 2	1246 2	1246 2	1246 2	1246 3	1246 3
1246 5	1246 5	1246 5	1246 5	1246 5	1246 5	1246 5	1246 5	1246 6	1246 6
1245 4	1245 4	1245 3	1245 3	1245 3	1245 3	1245 3	1245 3	1245 4	1245 4
1245 6	1245 6	1245 9	1245 9	1245 9	1245 9	1245 9	1245 9	1245 8	1245 8
1245 8	1245 8	1245 8	1245 8	1245 8	1245 8	1245 8	1245 8	1245 7	1245 7
1247 1	1247 2	1247 2	1247 3	1247 3	1247 3	1247 3	1247 3	1246 7	1246 7
1247 2	1247 2	1251 0	1251 0	1251 0	1251 0	1251 0	1251 0	1249 7	1249 7
1250 6	1250 3	1250 1	1250 1	1250 1	1250 1	1250 1	1250 1	1251 2	1251 2
1248 5	1248 2	1248 2	1247 9	1247 9	1247 9	1247 9	1247 9	1248 9	1248 9
1247 2	1247 1	1247 1	1247 0	1246 9	1246 9	1246 9	1246 9	1247 3	1247 2
PEAK CUI TLOW	15	6048	AT TIME 4:30 HOURS						

	PEAK CFS CMS INCHES MM AC-FT THOUS CU M	6-HOUR CFS 171	24-HOUR 1834	72-HOUR 767	TOTAL VOLUME
					936.8
					270.9
					19.62
					498.38
					393.4
					467.7
1st Q.F.*					

	STATION 1	INFLOW (I), OUTFLOW (O) AND OBSERVED FLOW (*) 2000 3000 4000 5000 6000	7000	0	0	0	0
0 30 11	0 1000	0	0	0	0	0	0
1 30 21							
2 30 41							
3 30 61							
3 30 71							
4 30 61							
4 30 91							
5 30 101							
5 30 111							
6 30 121							
6 30 131							
7 30 141							
8 30 151							
8 30 161							
9 30 171							
9 30 181							
9 30 191							
10 30 201							
10 30 211							
11 30 221							
11 30 231							
12 30 241							
13 30 261							

13	30	271	14	00	281	15	30	2701	16	00	334	17	00	335	18	00	336	19	00	337	20	00	338	21	00	339	22	00	340	23	00	341	24	00	342	25	00	343	26	00	344	27	00	345	28	00	346	29	00	347	30	00	348	31	00	349	32	00	350	33	00	351	34	00	352	35	00	353	36	00	354	37	00	355	38	00	356	39	00	357	40	00	358	41	00	359	42	00	360	43	00	361	44	00	362	45	00	363	46	00	364	47	00	365	48	00	366	49	00	367	50	00	368	51	00	369	52	00	370	53	00	371	54	00	372	55	00	373	56	00	374	57	00	375	58	00	376	59	00	377	60	00	378	61	00	379	62	00	380	63	00	381	64	00	382	65	00	383	66	00	384	67	00	385	68	00	386	69	00	387	70	00	388	71	00	389	72	00	390	73	00	391	74	00	392	75	00	393	76	00	394	77	00	395	78	00	396	79	00	397	80	00	398	81	00	399	82	00	400	83	00	401
----	----	-----	----	----	-----	----	----	------	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----	----	----	-----

C-82

140v

**STATION 1, PLAN 1, RATIO 8
END-OF-PERIOD HYDROGRAPH ORDINATES**

C-83

FLAMMERY GIAVARA ASSOCIATES, P C

PAGE 0066

7	30	151
8	00	161
6	30	171
9	00	181
9	30	191
10	00	201
10	10	211
11	00	221
11	10	231
12	00	241
12	10	251
13	00	261
13	10	271
14	00	281
14	30	2901
15	00	3001
15	30	311
16	00	321
16	30	3301
17	00	341
17	30	3501
18	00	361
18	30	3701
19	00	381
19	10	391
20	00	401
20	30	411
21	00	4210
21	30	431
22	00	441
22	30	4510
23	00	461
23	30	471
24	00	481
24	30	491
25	00	501
25	30	511
26	00	521
26	30	531
27	00	541
27	30	551
28	00	561
28	30	571
29	00	581
29	30	591
30	00	6001
30	30	611
31	00	621
31	30	631
32	00	641
32	30	6501
33	00	661
33	30	671
34	00	681
34	30	691
35	00	701
35	30	711
36	00	721

C-84

12 30 73	01
13 00 74	01
13 30 75	01
14 00 76	0 1
14 30 77	01
15 00 78	01
15 30 79	1
16 00 80	01
16 30 81	01
17 00 82	01
17 30 83	01
18 00 84	1
18 30 85	1
19 00 86	1
19 30 87	1
20 00 88	1
20 30 89	1
21 00 90	1
21 30 91	1
22 00 92	10
22 30 93	10
23 00 94	1
23 30 95	1
24 00 96	1
24 30 97	1
25 00 98	1
25 30 99	10
26 00 100	10
26 30 101	10
27 00 102	10
27 30 103	1
28 00 104	10
28 30 105	1
29 00 106	1
29 30 107	1
30 00 108	10
30 30 109	1
31 00 110	1
31 30 111	1
32 00 112	1
32 30 113	10
33 00 114	1
33 30 115	1
34 00 116	1
34 30 117	1
35 00 118	1
35 30 119	10
36 00 120	1

1*0114*

STATION 1, PLAN 1, RATIO 9
 END-OF-PERIOD HYDROGRAPH ORDINATES
 OUTFLOW

FLAMERTY GIAVARA ASSOCIATES, P.C.

PAGE 0068

STATION	TIME	INFLOW (1)	OUTFLOW (2)	AC-FT	THOUS CU M
1	10:00	1000	2000	4000	5000
2	11:00	111	222	444	555
3	12:00	123	246	492	615
4	13:00	135	270	540	675
5	14:00	137	272	544	677
6	15:00	139	274	548	681
7	16:00	141	276	552	685
8	17:00	143	278	556	689
9	18:00	145	280	560	693
10	19:00	147	282	564	697
11	20:00	149	284	568	701
12	21:00	151	286	572	705
13	22:00	153	288	576	709
14	23:00	155	290	580	713
15	00:00	157	292	584	717
16	01:00	159	294	588	721
17	02:00	161	296	592	725
18	03:00	163	298	596	729
19	04:00	165	300	600	733
20	05:00	167	302	604	737
21	06:00	169	304	608	741
22	07:00	171	306	612	745
23	08:00	173	308	616	749
24	09:00	175	310	620	753
25	10:00	177	312	624	757
26	11:00	179	314	628	761
27	12:00	181	316	632	765
28	13:00	183	318	636	769
29	14:00	185	320	640	773
30	15:00	187	322	644	777
31	16:00	189	324	648	781
32	17:00	191	326	652	785
33	18:00	193	328	656	789
34	19:00	195	330	660	793
35	20:00	197	332	664	797
36	21:00	199	334	668	801
37	22:00	201	336	672	805
38	23:00	203	338	676	809
39	24:00	205	340	680	813
40	01:00	207	342	684	817
41	02:00	209	344	688	821
42	03:00	211	346	692	825
43	04:00	213	348	696	829
44	05:00	215	350	700	833
45	06:00	217	352	704	837
46	07:00	219	354	708	841
47	08:00	221	356	712	845
48	09:00	223	358	716	849
49	10:00	225	360	720	853
50	11:00	227	362	724	857
51	12:00	229	364	728	861
52	13:00	231	366	732	865
53	14:00	233	368	736	869
54	15:00	235	370	740	873
55	16:00	237	372	744	877
56	17:00	239	374	748	881
57	18:00	241	376	752	885
58	19:00	243	378	756	889
59	20:00	245	380	760	893
60	21:00	247	382	764	897
61	22:00	249	384	768	901
62	23:00	251	386	772	905
63	24:00	253	388	776	909
64	01:00	255	390	780	913
65	02:00	257	392	784	917
66	03:00	259	394	788	921
67	04:00	261	396	792	925
68	05:00	263	398	796	929
69	06:00	265	400	800	933
70	07:00	267	402	804	937
71	08:00	269	404	808	941
72	09:00	271	406	812	945
73	10:00	273	408	816	949
74	11:00	275	410	820	953
75	12:00	277	412	824	957
76	13:00	279	414	828	961
77	14:00	281	416	832	965
78	15:00	283	418	836	969
79	16:00	285	420	840	973
80	17:00	287	422	844	977
81	18:00	289	424	848	981
82	19:00	291	426	852	985
83	20:00	293	428	856	989
84	21:00	295	430	860	993
85	22:00	297	432	864	997
86	23:00	299	434	868	1001
87	24:00	301	436	872	1005
88	01:00	303	438	876	1009
89	02:00	305	440	880	1013
90	03:00	307	442	884	1017
91	04:00	309	444	888	1021
92	05:00	311	446	892	1025
93	06:00	313	448	896	1029
94	07:00	315	450	900	1033
95	08:00	317	452	904	1037
96	09:00	319	454	908	1041
97	10:00	321	456	912	1045
98	11:00	323	458	916	1049
99	12:00	325	460	920	1053
100	13:00	327	462	924	1057
101	14:00	329	464	928	1061
102	15:00	331	466	932	1065
103	16:00	333	468	936	1069
104	17:00	335	470	940	1073
105	18:00	337	472	944	1077
106	19:00	339	474	948	1081
107	20:00	341	476	952	1085
108	21:00	343	478	956	1089
109	22:00	345	480	960	1093
110	23:00	347	482	964	1097
111	24:00	349	484	968	1101
112	01:00	351	486	972	1105
113	02:00	353	488	976	1109
114	03:00	355	490	980	1113
115	04:00	357	492	984	1117
116	05:00	359	494	988	1121
117	06:00	361	496	992	1125
118	07:00	363	498	996	1129
119	08:00	365	500	1000	1133
120	09:00	367	502	1004	1137
121	10:00	369	504	1008	1141
122	11:00	371	506	1012	1145
123	12:00	373	508	1016	1149
124	13:00	375	510	1020	1153
125	14:00	377	512	1024	1157
126	15:00	379	514	1028	1161
127	16:00	381	516	1032	1165
128	17:00	383	518	1036	1169
129	18:00	385	520	1040	1173
130	19:00	387	522	1044	1177
131	20:00	389	524	1048	1181
132	21:00	391	526	1052	1185
133	22:00	393	528	1056	1189
134	23:00	395	530	1060	1193
135	24:00	397	532	1064	1197
136	01:00	399	534	1068	1201
137	02:00	401	536	1072	1205
138	03:00	403	538	1076	1209
139	04:00	405	540	1080	1213
140	05:00	407	542	1084	1217
141	06:00	409	544	1088	1221
142	07:00	411	546	1092	1225
143	08:00	413	548	1096	1229
144	09:00	415	550	1100	1233
145	10:00	417	552	1104	1237
146	11:00	419	554	1108	1241
147	12:00	421	556	1112	1245
148	13:00	423	558	1116	1249
149	14:00	425	560	1120	1253
150	15:00	427	562	1124	1257
151	16:00	429	564	1128	1261
152	17:00	431	566	1132	1265
153	18:00	433	568	1136	1269
154	19:00	435	570	1140	1273
155	20:00	437	572	1144	1277
156	21:00	439	574	1148	1281
157	22:00	441	576	1152	1285
158	23:00	443	578	1156	1289
159	24:00	445	580	1160	1293
160	01:00	447	582	1164	1297
161	02:00	449	584	1168	1301
162	03:00	451	586	1172	1305
163	04:00	453	588	1176	1309
164	05:00	455	590	1180	1313
165	06:00	457	592	1184	1317
166	07:00	459	594	1188	1321
167	08:00	461	596	1192	1325
168	09:00	463	598	1196	1329
169	10:00	465	600	1200	1333
170	11:00	467	602	1204	1337
171	12:00	469	604	1208	1341
172	13:00	471	606	1212	1345
173	14:00	473	608	1216	1349
174	15:00	475	610	1220	1353
175	16:00	477	612	1224	1357
176	17:00	479	614	1228	1361
177	18:00	481	616	1232	1365
178	19:00	483	618	1236	1369
179	20:00	485	620	1240	1373
180	21:00	487	622	1244	1377
181	22:00	489	624	1248	1381
182	23:00	491	626	1252	1385
183	24:00	493	628	1256	1389
184	01:00	495	630	1260	1393
185	02:00	497	632	1264	1397
186	03:00	499	634	1268	1401
187	04:00	501	636	1272	1405
188	05:00	503	638	1276	1409
189	06:00	505	640	1280	1413
190	07:00	507	642	1284	1417
191	08:00	509	644	1288	1421
192	09:00	511	646	1292	1425
193	10:00	513	648	1296	1429
194	11:00	515	650	1300	1433
195	12:00	517	652	1304	1437
196	13:00	519	654	1308	1441
197	14:00	521	656	1312	1445
198	15:00	523	658	1316	1449
199	16:00	525	660	1320	1453
200	17:00	527	662	1324	1457
201	18:00				

FLAHERTY GIAVARA ASSOCIATES, P C

PAGE 0069

30	31
1 2 2 3 0	5 1
3 2 3 0 0	6 1
3 4 3 0 0	7 1
3 4 4 3 0 0	8 1
1 2 5 5 0 0	9 1
6 3 0 0	10 1
6 3 0 0	11 1
7 3 0 0	12 1
7 3 0 0	13 1
7 3 0 0	14 1
7 3 0 0	15 1
7 3 0 0	16 1
8 3 0 0	17 1
9 3 0 0	18 1
10 3 0 0	19 1
10 3 0 0	20 1
10 3 0 0	21 1
11 3 0 0	22 1
11 3 0 0	23 1
11 3 0 0	24 1
12 3 0 0	25 1
12 3 0 0	26 1
13 3 0 0	27 1
14 3 0 0	28 0 1
14 3 0 0	29 0 1
15 3 0 0	30 1
15 3 0 0	31 1
15 3 0 0	32 0 1
16 3 0 0	33 0 1
16 3 0 0	34 0 1
17 3 0 0	35 0 1
17 3 0 0	36 0 1
18 3 0 0	37 0 1
18 3 0 0	38 0 1
19 3 0 0	39 0 1
19 3 0 0	40 0 1
20 3 0 0	41 0 1
21 3 0 0	42 0 1
21 3 0 0	43 0 1
21 3 0 0	44 0 1
21 3 0 0	45 0 1
21 3 0 0	46 0 1
21 3 0 0	47 0 1
21 3 0 0	48 0 1
21 3 0 0	49 0 1
21 3 0 0	50 0 1
21 3 0 0	51 0 1
21 3 0 0	52 0 1
21 3 0 0	53 0 1
21 3 0 0	54 0 1
21 3 0 0	55 0 1
21 3 0 0	56 0 1
21 3 0 0	57 0 1
21 3 0 0	58 0 1
21 3 0 0	59 0 1
21 3 0 0	60 0 1

Q-87

FIAHERTY GIAVARA ASSOCIATES, P.C.

PAGE 0070

6 30 61
7 30 62
7 30 63
8 30 64
8 30 65
9 30 66
9 30 67
10 30 68
10 30 69
11 30 70
11 30 71
12 30 72
12 30 73
13 30 74
13 30 75
14 30 76
14 30 77
15 30 78
15 30 79
16 30 80
16 30 81
17 30 82
17 30 83
18 30 84
18 30 85
19 30 86
19 30 87
20 30 88
20 30 89
21 30 90
21 30 91
22 30 92
22 30 93
23 30 94
23 30 95
24 30 96
24 30 97
25 30 98
25 30 99
26 30 100
26 30 101
27 30 102
27 30 103
28 30 104
28 30 105
29 30 106
29 30 107
30 30 108
31 30 109
32 30 110
33 30 111
34 30 112
35 30 113
36 30 114
37 30 115
38 30 116
39 30 117
40 30 118
41 30 119
42 30 120
43 30 121
44 30 122
45 30 123
46 30 124
47 30 125
48 30 126
49 30 127
50 30 128
51 30 129
52 30 130
53 30 131
54 30 132
55 30 133
56 30 134
57 30 135
58 30 136
59 30 137
60 30 138
61 30 139
62 30 140
63 30 141
64 30 142
65 30 143
66 30 144
67 30 145
68 30 146
69 30 147
70 30 148
71 30 149
72 30 150
73 30 151
74 30 152
75 30 153
76 30 154
77 30 155
78 30 156
79 30 157
80 30 158
81 30 159
82 30 160
83 30 161
84 30 162
85 30 163
86 30 164
87 30 165
88 30 166
89 30 167
90 30 168
91 30 169
92 30 170
93 30 171
94 30 172
95 30 173
96 30 174
97 30 175
98 30 176
99 30 177
100 30 178
101 30 179
102 30 180
103 30 181
104 30 182
105 30 183
106 30 184
107 30 185
108 30 186
109 30 187
110 30 188
111 30 189
112 30 190
113 30 191
114 30 192
115 30 193
116 30 194
117 30 195
118 30 196
119 30 197
120 30 198
121 30 199
122 30 200
123 30 201
124 30 202
125 30 203
126 30 204
127 30 205
128 30 206
129 30 207
130 30 208
131 30 209
132 30 210
133 30 211
134 30 212
135 30 213
136 30 214
137 30 215
138 30 216
139 30 217
140 30 218
141 30 219
142 30 220
143 30 221
144 30 222
145 30 223
146 30 224
147 30 225
148 30 226
149 30 227
150 30 228
151 30 229
152 30 230
153 30 231
154 30 232
155 30 233
156 30 234
157 30 235
158 30 236
159 30 237
160 30 238
161 30 239
162 30 240
163 30 241
164 30 242
165 30 243
166 30 244
167 30 245
168 30 246
169 30 247
170 30 248
171 30 249
172 30 250
173 30 251
174 30 252
175 30 253
176 30 254
177 30 255
178 30 256
179 30 257
180 30 258
181 30 259
182 30 260
183 30 261
184 30 262
185 30 263
186 30 264
187 30 265
188 30 266
189 30 267
190 30 268
191 30 269
192 30 270
193 30 271
194 30 272
195 30 273
196 30 274
197 30 275
198 30 276
199 30 277
200 30 278
201 30 279
202 30 280
203 30 281
204 30 282
205 30 283
206 30 284
207 30 285
208 30 286
209 30 287
210 30 288
211 30 289
212 30 290
213 30 291
214 30 292
215 30 293
216 30 294
217 30 295
218 30 296
219 30 297
220 30 298
221 30 299
222 30 300
223 30 301
224 30 302
225 30 303
226 30 304
227 30 305
228 30 306
229 30 307
230 30 308
231 30 309
232 30 310
233 30 311
234 30 312
235 30 313
236 30 314
237 30 315
238 30 316
239 30 317
240 30 318
241 30 319
242 30 320
243 30 321
244 30 322
245 30 323
246 30 324
247 30 325
248 30 326
249 30 327
250 30 328
251 30 329
252 30 330
253 30 331
254 30 332
255 30 333
256 30 334
257 30 335
258 30 336
259 30 337
260 30 338
261 30 339
262 30 340
263 30 341
264 30 342
265 30 343
266 30 344
267 30 345
268 30 346
269 30 347
270 30 348
271 30 349
272 30 350
273 30 351
274 30 352
275 30 353
276 30 354
277 30 355
278 30 356
279 30 357
280 30 358
281 30 359
282 30 360
283 30 361
284 30 362
285 30 363
286 30 364
287 30 365
288 30 366
289 30 367
290 30 368
291 30 369
292 30 370
293 30 371
294 30 372
295 30 373
296 30 374
297 30 375
298 30 376
299 30 377
300 30 378
301 30 379
302 30 380
303 30 381
304 30 382
305 30 383
306 30 384
307 30 385
308 30 386
309 30 387
310 30 388
311 30 389
312 30 390
313 30 391
314 30 392
315 30 393
316 30 394
317 30 395
318 30 396
319 30 397
320 30 398
321 30 399
322 30 400
323 30 401
324 30 402
325 30 403
326 30 404
327 30 405
328 30 406
329 30 407
330 30 408
331 30 409
332 30 410
333 30 411
334 30 412
335 30 413
336 30 414
337 30 415
338 30 416
339 30 417
340 30 418
341 30 419
342 30 420
343 30 421
344 30 422
345 30 423
346 30 424
347 30 425
348 30 426
349 30 427
350 30 428
351 30 429
352 30 430
353 30 431
354 30 432
355 30 433
356 30 434
357 30 435
358 30 436
359 30 437
360 30 438
361 30 439
362 30 440
363 30 441
364 30 442
365 30 443
366 30 444
367 30 445
368 30 446
369 30 447
370 30 448
371 30 449
372 30 450
373 30 451
374 30 452
375 30 453
376 30 454
377 30 455
378 30 456
379 30 457
380 30 458
381 30 459
382 30 460
383 30 461
384 30 462
385 30 463
386 30 464
387 30 465
388 30 466
389 30 467
390 30 468
391 30 469
392 30 470
393 30 471
394 30 472
395 30 473
396 30 474
397 30 475
398 30 476
399 30 477
400 30 478
401 30 479
402 30 480
403 30 481
404 30 482
405 30 483
406 30 484
407 30 485
408 30 486
409 30 487
410 30 488
411 30 489
412 30 490
413 30 491
414 30 492
415 30 493
416 30 494
417 30 495
418 30 496
419 30 497
420 30 498
421 30 499
422 30 500
423 30 501
424 30 502
425 30 503
426 30 504
427 30 505
428 30 506
429 30 507
430 30 508
431 30 509
432 30 510
433 30 511
434 30 512
435 30 513
436 30 514
437 30 515
438 30 516
439 30 517
440 30 518
441 30 519
442 30 520
443 30 521
444 30 522
445 30 523
446 30 524
447 30 525
448 30 526
449 30 527
450 30 528
451 30 529
452 30 530
453 30 531
454 30 532
455 30 533
456 30 534
457 30 535
458 30 536
459 30 537
460 30 538
461 30 539
462 30 540
463 30 541
464 30 542
465 30 543
466 30 544
467 30 545
468 30 546
469 30 547
470 30 548
471 30 549
472 30 550
473 30 551
474 30 552
475 30 553
476 30 554
477 30 555
478 30 556
479 30 557
480 30 558
481 30 559
482 30 560
483 30 561
484 30 562
485 30 563
486 30 564
487 30 565
488 30 566
489 30 567
490 30 568
491 30 569
492 30 570
493 30 571
494 30 572
495 30 573
496 30 574
497 30 575
498 30 576
499 30 577
500 30 578
501 30 579
502 30 580
503 30 581
504 30 582
505 30 583
506 30 584
507 30 585
508 30 586
509 30 587
510 30 588
511 30 589
512 30 590
513 30 591
514 30 592
515 30 593
516 30 594
517 30 595
518 30 596
519 30 597
520 30 598
521 30 599
522 30 600
523 30 601
524 30 602
525 30 603
526 30 604
527 30 605
528 30 606
529 30 607
530 30 608
531 30 609
532 30 610
533 30 611
534 30 612
535 30 613
536 30 614
537 30 615
538 30 616
539 30 617
540 30 618
541 30 619
542 30 620
543 30 621
544 30 622
545 30 623
546 30 624
547 30 625
548 30 626
549 30 627
550 30 628
551 30 629
552 30 630
553 30 631
554 30 632
555 30 633
556 30 634
557 30 635
558 30 636
559 30 637
560 30 638
561 30 639
562 30 640
563 30 641
564 30 642
565 30 643
566 30 644
567 30 645
568 30 646
569 30 647
570 30 648
571 30 649
572 30 650
573 30 651
574 30 652
575 30 653
576 30 654
577 30 655
578 30 656
579 30 657
580 30 658
581 30 659
582 30 660
583 30 661
584 30 662
585 30 663
586 30 664
587 30 665
588 30 666
589 30 667
590 30 668
591 30 669
592 30 670
593 30 671
594 30 672
595 30 673
596 30 674
597 30 675
598 30 676
599 30 677
600 30 678
601 30 679
602 30 680
603 30 681
604 30 682
605 30 683
606 30 684
607 30 685
608 30 686
609 30 687
610 30 688
611 30 689
612 30 690
613 30 691
614 30 692
615 30 693
616 30 694
617 30 695
618 30 696
619 30 697
620 30 698
621 30 699
622 30 700
623 30 701
624 30 702
625 30 703
626 30 704
627 30 705
628 30 706
629 30 707
630 30 708
631 30 709
632 30 710
633 30 711
634 30 712
635 30 713
636 30 714
637 30 715
638 30 716
639 30 717
640 30 718
641 30 719
642 30 720
643 30 721
644 30 722
645 30 723
646 30 724
647 30 725
648 30 726
649 30 727
650 30 728
651 30 729
652 30 730
653 30 731
654 30 732
655 30 733
656 30 734
657 30 735
658 30 736
659 30 737
660 30 738
661 30 739
662 30 740
663 30 741
664 30 742
665 30 743
666 30 744
667 30 745
668 30 746
669 30 747
670 30 748
671 30 749
672 30 750
673 30 751
674 30 752
675 30 753
676 30 754
677 30 755
678 30 756
679 30 757
680 30 758
681 30 759
682 30 760
683 30 761
684 30 762
685 30 763
686 30 764
687 30 765
688 30 766
689 30 767
690 30 768
691 30 769
692 30 770
693 30 771
694 30 772
695 30 773
696 30 774
697 30 775
698 30 776
699 30 777
700 30 778
701 30 779
702 30 780
703 30 781
704 30 782
705 30 783
706 30 784
707 30 785
708 30 786
709 30 787
710 30 788
711 30 789
712 30 790
713 30 791
714 30 792
715 30 793
716 30 794
717 30 795
718 30 796
719 30 797
720 30 798
721 30 799
722 30 800
723 30 801
724 30 802
725 30 803
726 30 804
727 30 805
728 30 806
729 30 807
730 30 808
731 30 809
732 30 810
733 30 811
734 30 812
735 30 813
736 30 814
737 30 815
738 30 816
739 30 817
740 30 818
741 30 819
742 30 820
743 30 821
744 30 822
745 30 823
746 30 824
747 30 825
748 30 826
749 30 827
750 30 828
751 30 829
752 30 830
753 30 831
754 30 832
755 30 833
756 30 834
757 30 835
758 30 836
759 30 837
760 30 838
761 30 839
762 30 840
763 30 841
764 30 842
765 30 843
766 30 844
767 30 845
768 30 846
769 30 847
770 30 848
771 30 849
772 30 850
773 30 851
774 30 852
775 30 853
776 30 854
777 30 855
778 30 856
779 30 857
780 30 858
781 30 859
782 30 860
783 30 861
784 30 862
785 30 863
786 30 864
787 30 865
788 30 866
789 30 867
790 30 868
791 30 869
792 30 870
793 30 871
794 30 872
795 30 873
796 30 874
797 30 875
798 30 876
799 30 877
800 30 878
801 30 879
802 30 880
803 30 881
804 30 882
805 30 883
806 30 884
807 30 885
808 30 886
809 30 887
810 30 888
811 30 889
812 30 890
813 30 891
814 30 892
815 30 893
816 30 894
817 30 895
818 30 896
819 30 897
820 30 898
821 30 899
822 30 900
823 30 901
824 30 902
825 30 903
826 30 904
827 30 905
828 30 906
829 30 907
830 30 908
831 30 909
832 30 910
833 30 911
834 30 912
835 30 913
836 30 914
837 30 915
838 30 916
839 30 917
840 30 918
841 30 919
842 30 920
843 30 921
844 30 922
845 30 923
846 30 924
847 30 925
848 30 926
849 30 927
850 30 928
851 30 929
852 30 930
853 30 931
854 30 932
855 30 933
856 30 934
857 30 935
858 30 936
859 30 937
860 30 938
861 30 939
862 30 940
863 30 941
864 30 942
865 30 943
866 30 944
867 30 945
868 30 946
869 30 947
870 30 948
871 30 949
872 30 950
873 30 951
874 30 952
875 30 953
876 30 954
877 30 955
878 30 956
879 30 957
880 30 958
881 30 959
882 30 960
883 30 961
884 30 962
885 30 963
886 30 964
887 30 965
888 30 966
889 30 967
890 30 968
891 30 969
892 30 970
893 30 971
894 30 972
895 30 973
896 30 974
897 30 975
898 30 976
899 30 977
900 30 978
901 30 979
902 30 980
903 30 981
904 30 982
905 30 983
906 30 984
907 30 985
908 30 986
909 30 987
910 30 988
911 30 989
912 30 990
913 30 991
914 30 992
915 30 993
916 30 994
917 30 995
918 30 996
919 30 997
920 30 998
921 30 999
922 30 1000
923 30 1001
924 30 1002
925 30 1003
926 30 1004
927 30 1005
928 30 1006
929 30

11 30119

* १०४

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLows IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO 0.10	RATIO 0.20	RATIO 0.30	RATIO 0.40	RATIO 0.50	RATIO 0.60	RATIO 0.70	RATIO 0.80	ratio 0.90
HYDROGRAPH AT	1 (3.41)	2.09	1 (13.24)	1.467	26.471 (932	1402 (39.71) (52.94) (66.18) (79.41) (92.65) (
HYDROGRAPH AT	1 (4.38)	1.69	1 (11.29)	399	22.798 (798	1196 (33.88) (45.17) (56.46) (67.75) (79.04) (
? COMBINED	1 (9.79)	3.78	1 (24.43)	863	48.85) (1725	2588 (73.28) (97.70) (122.13) (146.56) (160.98) (
ROUTED TO	1 (9.79)	3.78	1 (24.07)	850	41.727	2592	3457 (73.38) (97.90) (122.34) (146.78) (160.48) (

SUMMARY OF DAM SAFETY ANALYSIS

RATIO OF PWF	MAXIMUM RESERVOIR S. ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF FAILURE HOURS
0.10	1248.73	0.00	43	850	0	43.00
0.20	1249.70	0.70	53	1727	5.00	43.00
0.30	1250.64	1.20	64	2592	7.00	43.00
0.40	1251.05	1.64	64	3457	8.50	43.00
0.50	1251.43	2.05	69	4320	10.00	43.00
0.60	1251.78	2.43	73	5184	10.50	43.00
0.70	1252.11	2.78	78	6048	11.50	43.00
0.80	1252.44	3.11	82	6911	12.00	43.00
0.90	1252.72	3.72	90	8637	13.00	43.00

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1973

FLAHERTY GIAVARA ASSOCIATES, P.C.

LAST MODIFICATION 26 FEB 79

PAGE 0072

C-90

APPENDIX D

PREVIOUS INSPECTION REPORTS/AVAILABLE DOCUMENTS

EXCERPTS FROM TECHNICAL SPECIFICATIONS

THE NORWICH WATER WORKS.

CONTRACT.

THIS AGREEMENT, made the Fourth day of April,
1890: Between The Norwich Water Works, of Norwich, New York, party of the first part, and

Long Public Works Company - Limited

..... party of the second part:

WITNESSETH, That said party of the second part has agreed, and by these presents do ~~do~~ agree to and with said parties of the first part, for the consideration hereinafter mentioned, and of the covenants and agreements herein mutually entered into, and under the penalty expressed in a certain bond bearing even date with these presents: to perform, furnish and provide, and deliver to the parties of the first part, at its own proper cost and expense, all the labor and materials of whatever kind, and to execute and perform in the most workmanlike manner, of the best materials, and in the manner, and subject to all the requirements of the Specifications, all the work mentioned, enumerated and called for in the following Specifications, which Specifications are hereby made a part of this agreement and contract:

SPECIFICATIONS.

Description. The work will consist of the construction of a Storage Reservoir in the town of Norwich, N. Y., and situate above what is now termed "the Storage Reservoir" of the Norwich Water Works aforesaid, and all other work necessary to meet the demands and intent of the plans designed therefor, subject to such modifications as the Engineer may make by reason of unforeseen causes or otherwise.

Foundations of all embankments. All embankments are to be constructed upon a well prepared and solid foundation; and the payment rendered will be deduced from the schedule of prices expressed in the proposal for the various materials excavated, or otherwise constructed therefore, regardless of depth or expanse in any direction. In final, the Contractor should exercise his own judgment, arrange his prices and cover all contingencies by the price designated in the proposal for excavation.

Material for embankments. The material with which all embankments are to be made, will be such as is best suitable for the purpose intended, and excavated from such points as the Engineer may direct, and in case any or all such material be found to exist within the consequent slopes,

The Material paid for.
necessary to effect the final flow line of the said Storage Reservoir and for By-Pass Canal shall be paid for in excavation and as otherwise provided, but in case of any excavation being made *outside* of the same, embracing rock and necessary stripping therefore, shall not be paid for in excavation, *excepting material for puddle*, hence the only payment to be awarded to the Contractor in such case, will be that deduced from his or their schedule of prices for the work constructed *in place* with such *borrowed material*. The Norwich Water Works does not guarantee the existence of all necessary material within the limits of the boundaries of its lands.

Formation of the embankment.
All material used for the purpose aforesaid shall be deposited properly in courses extending longitudinally with the bank, having a concaved surface transversely so as to retain a depressed surface at point of puddle wall as represented by the plan, and the various courses so applied, must be of approved material, entirely free from all such stone, lumps, roots and foreign matter as will be deemed detrimental by the Engineer, and the said courses must not exceed a thickness of eight inches at the time of deposit, after which, if considered necessary by the Engineer, it must be rolled with a grooved iron roller weighing at least six hundred pounds to the lineal foot, to such extent as to compact the said course to a degree of hardness approved by said Engineer, and should the action of said roller fail to transmit sufficient hardness, or result in rendering an imperfect bond, the material thus rolled must be sprinkled or wetted sufficiently with water, and if necessary, be re-rolled until sufficient compactness is finally attained. The finest and most appropriate material hauled from time to time upon the bank, must be deposited upon the entire width of the front slope, and be extended also upon the rear slope for at least a distance of ten feet from the rear face of the puddle wall. The construction of rear slopes must receive the same care and attention as specified for the front slope. In final, the only difference allowed between the front and rear slopes is that the material built into the outer portion of said rear slope may be coarser and may also contain a greater percentage of stone, but the amount of stone thus placed will be discretionary with said Engineer during the time of construction. Frozen material will be disallowed in every instance, and the amount and payment allowed the contractor for said frozen material will be discretionary with the Engineer.

Frozen material.
Dressing of borrow-pits.
The face of each and every excavation and borrow-pit must be dressed down and trimmed off so as to produce a good tidy appearance at date of completion, which expense must be covered by the price for earth excavation for material placed in embankment. The final measurements taken by the Engineer of all material having been used, made and placed into the work, will occur upon such dates as he may decide upon, but in no case shall he postpone it unnecessarily, neither shall the Contractor impede the transaction in any form or manner; but on the contrary furnish all facilities, and at times, assistance in obtaining measurements, data, etc. The Reservoir embankment will, so far as possible, be built in conformity with the sections represented by the plans.

Spoil banks.
If necessary, a part, or all of the natural soil, consisting of muck, etc., occupying the area covered by the flow line and embankments, will be hauled into spoil-banks, for subsequent use on the rear slope of said embankments.

Measurements for earthwork.
N. B.—All earthwork will be measured for payment in excavation only, except, that extra payment will be made for puddle, as herein provided.

Earth moved more than once is not to be measured a second time, excepting puddling material and muck as herein specified. Preparation of surfaces for complete incorporation of additional material are not to be measured until after having attained a depth of eighteen inches, after which the contract price will be paid.

Supply, how controlled.
The supply for the Distribution System, or to the "Distributing Reservoir," will be controlled by valves placed within a masonry Inlet Chamber, provided with a bridge as per plans, thence passing through a twenty-four or twenty-inch cast-iron pipe, as may be decided upon, extending under the embankment; said pipe being thoroughly supported throughout its entire length, and if deemed necessary, a cement masonry wall, or cut-off wall, will be built at its junction with the puddle trench, or as otherwise directed.

Location of Stop walls.	The Engineer will designate certain points at which stop-walls, consisting of either cement masonry, concrete, puddle or select material, will be built in under and all around said pipe, in accordance with directions, and number required, and the material so placed, must be executed by <i>experienced</i> workmen. The foundation of the puddle trench will be extended down and into a solid and impervious material, and the width at bottom shall be not less than that deemed necessary by the Engineer at the time of construction, which perhaps in no case, will be less than five feet, from which point it will ascend with a variable width, filling every void, situate between said foundation and the original line of the natural surface of the ground, at which point it must be lined into position, also to the proper width, and receive henceforth a batter of about one inch per foot, upon either side of the wall, and terminate with a top width of five feet, at a point situate two feet above the flow line.
Rip-rap.	The slope-lining, or rip rap, will consist of stone either wasted from the excavation pit, or procured otherwise, and the price named in the proposal, is for hauling and placing said material only. Payment for excavation will occur only where the stone is taken from excavation pits.
Surface puddling.	If deemed necessary by the Engineer, puddle will be placed upon the surface of Reservoir bottom; also into crevices, fissures, etc., and in fact every part of the work; but before so doing, all stone, roots, and perishable matter must be thoroughly removed, from the point of application.
Right of changing plans and amount of work.	The amount of work, and the plans therefor may be changed, during the progress of construction, if so ordered by the Engineer; but the contract price shall remain the same, for all <i>material named</i> in the schedule of prices.
Approximate quantities.	The approximate quantities of the work to be done, and as stated in the Quantity Sheet <i>are approximate only</i> ; and the Corporation reserve the right to increase or diminish them as they may deem necessary.
Price bid to include all work and material.	The price bid for each item, is to include the cost of all work and materials incidental thereto, such as bailing, pumping, and draining away water, furnishing all necessary tools, furnishing centers for masonry, furnishing water for all uses, etc., etc. It is intended that this specification shall provide for the full completion of the work above mentioned, ready for use, except as herein specially mentioned; and all labor and materials necessary to that end are to be included in the items to which prices are attached.
Grade timber becoming property of Contractor.	All the wood and timber directed to be cut, and herein considered under the head of grubbing and clearing, becomes the property of the Contractor, who must haul it immediately from off the grounds, and deposit all debris of whatever class at points approved by the Engineer.
Skilled labor.	The construction work must be done by competent men, skilled in the capacities assigned them by the Contractor.
Excavation classes.	All excavation is to come under the head of earth or rock; the latter to include all hard rock found in a mass of one cubic yard or more, for which explosives, in the opinion of the Engineer must necessarily be used.
Muck.	All other material found in excavating, of whatever nature, including disintegrated rock, or any other material that can be removed with picks or bars, shall with the exception of muck, come under the head of earth.
Fencing.	The price for earth and rock excavations shall apply to all trenching and foundations for masonry, puddle, concrete, etc., and permanent earth-work of any description necessary for the construction of the works connected herewith.

In case a deposit of muck is found, the Engineer may require its removal to such place as he may indicate. The payment for the same being at the price in proposal per cubic yard.

NEW PICKET FENCING.

A picket fence composed of good seasoned hemlock, free from all detrimental qualities, will, if required, be constructed in conformity with the plan, and upon such lines, directions, etc., as the Engineer may direct. The posts shall be of good, sound chestnut, entirely free from its bark, and have a diameter of at least six inches, midway of tip and butt, and

a length of not less than nine feet, all of which shall be set plumb, at intervals of six feet between centers. The back-filling shall be selected from the excavation made for the post-hole, and should such material fail to provide a sufficient amount to refill around said post, in a permanent and satisfactory manner, it must be taken from the general surface of the ground, and completed in a manner as not to produce a trench or pit-hole. The back-fill must be free of stone and thoroughly rammed with properly constructed rammers, during the operation of refilling.

Dimensions.

The pickets shall be four inches wide at base, three inches wide at top, one and one-quarter inches thick, and six and one-half feet long, spaced at intervals of seven inches apart at centers. They are to be securely nailed to a top, center and bottom rail, being two by four inches wide; and also finished off by a rail at top and bottom, planted upon the pickets in the manner represented by said plan, and the whole to be executed in a good and workmanlike manner. In case it is necessary to grade up or off such material as the engineer may direct in order to maintain a reasonably parallel grade between the base of the pickets and the finished surface of ground line, the same must be done, and the cost thereof must be included in price per linear foot of fence complete.

Gates.

N. B.—At points designated by said Engineer, substantial swing-gates shall be constructed of the aforesaid material.

The necessary hinges, locks, hasps and cross-bars, shall be of approved class and material. The entire set of locks must be of the same pattern; accompanied with duplicate keys, and the cost of said gates per linear foot must be covered by price per linear foot specified in the schedule sheet of prices.

TIMBER BRIDGE.

Material.

At the point designated by the Engineer, a timber farm bridge of the form, span, etc., represented by the plans may be built across the By-Pass Canal, and the material called for and built into said structure, must be of first-class, well seasoned Georgia pine lumber painted in two coats of good mineral paint.

And the material constituting the tie or suspension rods must be of good, pure, soft Swedish iron, upset at ends, upon which threads of the form shown upon the plan will be properly cut.

A Guard Rail, of the form also represented, will be built across both sides of the bridge, and be securely fastened to the string-piece as represented on said plan.

The price for the various classes of material in place, must cover the cost, etc., of every item.

Wrought iron bridge in lieu of timber bridge.

In case it be deemed advisable by the Corporation aforesaid, a wrought iron bridge, represented by "Plan A," will be adopted instead of the timber bridge above mentioned. It shall be fourteen feet wide, and be planked with such material as the Engineer may select from the quantity sheet. All the iron and such parts of the wood work as may be deemed necessary, must be painted in two coats of the best mineral paint.

Iron foot bridge in lieu of timber foot bridge.

Adjustment of increase or diminution.

Items compared separately

In case the said Corporation decide to adopt the wrought iron foot bridge, represented on plan "A", the same shall be constructed in accordance with said plan, and be painted in two coats of good mineral paint, and payment therefor, all in place exclusive of flooring, will be made per lineal foot, and should circumstances necessitate an increase or diminution in its length by reason of shifting the proposed location of the Inlet Chamber, the said additive or deductive amount will be covered and adjusted by the schedule price per lineal foot.

In canvassing the bids, the price, etc., of the Iron Farm Bridge, Iron Foot Bridge and Gate House upon Inlet Chamber (of corrugated iron siding) will be compared separately.

INFLUENT CHAMBER.

The Influent Chamber situate at influent end of the mud pipe proper, may be of the logs cut from the trees obtained from off the site of the work, provided such be accept-

Frame work of
crude
material.

able. It will be of the dimensions represented upon the plans, and the framing will consist in halving the ends to a reasonably fitting joint and be pinned alternately, log upon log, as represented, with wooden pins of hard wood, having a diameter of not less than one and one-half inches.

The grating will consist of three-quarter inch wrought pipe secured by staples, and the structure back filled with good sized stone of approved form.

The timbers forming the structure must be sound and entirely free from bark, and completed for a lump sum.

Frame work of
squared timber

In case squared timber be used, packing blocks must be inserted between said timbers so as to leave a void sufficient for the percolation of water to the mud pipe. In such case the work will be paid for as per schedule price for such material. The Engineer will decide as to which will be used at time of construction.

MASONRY.

INLET CHAMBER.

The masonry of the Inlet Chamber must be of a quality that will insure durability and also be impervious to water, the object being to afford the opportunity of descending into the same without drawing off at any time the stored waters of the Reservoir, and will be built according to the plan so far as is practicable, but if in the opinion of the Engineer circumstances necessitate a shift or change from the position represented upon the map, the change so made shall not increase or decrease the prices given in the proposal. The work must be executed by masons skilled in this particular class of work. Inexperienced workmen will not be allowed upon any portion of work falling under the head of Rubble Masonry.

SCREEN LUGS.

At a point situate about three feet below the central axis of the upper inlet, three iron plugs will be inserted into the fourteen-inch stand pipe sufficiently to project through the shell of said pipe in a manner as to afford a safe and substantial resting place for the basket screen, and the cost of the same must be included with that of setting the stand pipe.

VALVE RODS.

The Valve Rods must be securely fastened to the valves by a key, and be extended to the upper surface of the floor, supported throughout their length so as to maintain a plumb position and operate easily, as may be directed by the Engineer at time of construction. The heads of the said rods must have a bearing upon a cast iron collar planted and fastened to the flooring of the Inlet Chamber in such manner as not to extend above the general plane of the surface of said flooring, and the size of each valve operated, must be designated with red paint, also the direction for closing, by an arrow plainly scribed upon the floor, and directly opposite the rod for which it is intended.

GATE HOUSE.

WOOD STRUCTURE.

Ceiling.
Floor.

The Inlet Chamber will be surmounted by a Gate House as represented on the plan. The material used, in case the structure be built entirely of timber, shall be of good seasoned pine, encased upon the outside with sheeting paper of best quality and by two-inch clear lumber, tongued and grooved, planed and wrought in conformity with plans, in a good workmanlike manner. The sides and ceiling on the interior will be sheeted with good sheeting paper and one-inch pine lumber, tongued and grooved, as aforesaid. The floor will consist of good, well-seasoned one-inch pine and one-inch spruce, cross-laid, with proper provisions for trap door, gate rods, etc.

WINDOWS AND DOORS.

All swing doors shall be provided with good substantial butt hinges, and where necessary good substantial latches and locks appropriate for the purpose and situation. The

The payment to be made for said Lamp Holes will be rendered per lineal foot, *vertical measurement*, from hub of T, with which the same is connected, and shall also include the cost of the frost-wall, material, labor, etc., with exception of the roofing, which shall be paid for per B. M.—as otherwise provided.

BY-PASS PIPE LINE.

Location. The twelve-inch By-Pass Pipe Line will be commenced at a point situate in the line of twenty-inch mud pipe of the Storage Reservoir, as represented upon the map, from which point it will be extended in a westerly direction around the southerly side of the Distributing Reservoir and be connected with the Pipe Main of the Distribution System in such manner as to admit of a 10-inch Blow-off discharging into the original creek bed.

Blow-off. The weight of all straight cast pipe used upon said 12-inch By-Pass Line (in market lengths) must not deviate materially from the standard weights quoted by the Warren Iron Foundry, and generally known as "Class A" pipe.

BASKET GUTTER.

Size of stone. If deemed necessary a cobble stone basket gutter will be commenced and extended from and to all such points as the Engineer may designate at the time of construction. The stone shall not be more than ten nor less than five inches in their longest dimensions, and be of a material not liable to disintegrate nor crush. They shall be placed upon a ballast of creek gravel or coarse sand, having a depth of about twelve inches, prepared so as to make a depression of eight inches after the stone are rammed and paved into their final position.

Width. The width of the gutter from out to out, shall be not less than four feet, and the stone used shall be graduated so as to increase in size from centre line toward either side.

Surface of approach. The surface of the approach to, and into said basket gutter, must be so arranged as to prevent, as far as possible, any undermining effect caused by the water upon the outer courses of said gutter.

Entrance to catch basin. As the gutter approaches the Catch Basins, it must be so fashioned as to conduct the water properly into said basin, as represented upon the plans.

ROCK.

Rock excavation. In case any solid rock is found within the lines of excavation, it shall, if so ordered by the Engineer, be blasted out to such surfaces as he may direct, and any space so made beyond the grade surfaces of the work shall be properly filled with puddle, or otherwise treated as the Engineer may direct.

No payment will be made for excavations having been extended beyond the lines and limits previously designated by the Engineer.

PUDDLE

Puddle. The material for puddle shall be the best the excavation affords, and freed from all stones more than an inch in diameter, and from perishable earth; and if in the opinion of the Engineer, different materials require mixing, they shall be intermixed in proper proportions while dry, after which a sufficient quantity of water shall be applied, and the whole well and thoroughly worked up and rammed or cross cut with proper tools *operated by men experienced* in this particular kind of work, until the layers become sufficiently tough to meet the approval of the Engineer, and be impervious to water.

Contractor to furnish clay, etc., if needed. Any surface to which the puddle is to be bonded is to be broken up and properly prepared for that purpose. If, in the opinion of the Engineer, it shall be needful to mix any clay or other material not found in the excavation, into the puddle, such material shall be furnished and delivered on the ground by the Contractor who shall incorporate it properly with the puddle, without extra charge.

Puddle, how applied. The puddle shall be applied in horizontal layers, not exceeding six inches in thickness. Each six-inch layer shall be allowed to attain a proper consistency, but not dry, before another layer is applied; and if any portion of a layer shall have become hard and dry before the application of the following one, it shall be thoroughly broken up, watered and prepared, so as to insure a sufficient connection with the subsequent layer.

Puddle covered.

The finished surface shall be temporarily covered, when necessary, to prevent cracking from exposure to the sun or detrimental action of the frost.

Measurement of puddle.

All material falling under the head of puddle shall be measured in place, complete, and no allowances shall be made for shrinkage.

CEMENT.

Cement and its inspection.

All cement furnished by the Contractor for the entire work herein specified will be subject to inspection and rigorous tests, and, if found of improper quality, must be immediately removed from the work; and the character and severity of the tests are to be determined by the Engineer. It shall be of the best quality of American Hydraulic Cement, freshly ground, and must be packed in substantial barrels of material and workmanship as will protect the contents from water and air. When stored, it shall be kept in a tight building, free from draughts of air, and each cask must be raised several inches above the ground, by blocking or otherwise, so as to avoid the liability of absorbing moisture.

The particular brand to be used will depend upon the tests made by the Engineer with various specimens of cement mixed with the various sands found within the neighborhood of the works and the village of Norwich, and having decided upon which brand forms the best compound, the Contractor will be held to the same without any modification of schedule price or extras, and he or they shall use the same as directed.

MORTAR.

Mortar for stone masonry.

The mortar for the stone masonry shall be prepared by properly mixing one part of clear cement, well compacted, of the quality before described, and two parts of loose, sharp sand, all by measure.

Sand.

The sand shall be as clean, sharp and free from loam and frost as the section of country will admit. The cement shall be thoroughly mixed dry with sand, in the proportion of one part of cement to two parts of sand.

Water.

Clean water shall be added at such time, and in such quantity as to make a paste of the best quality and of proper consistence.

Mixed fresh.

The whole shall be thoroughly worked with proper tools, in suitable boxes made for the purpose.

The mortar shall be mixed fresh for the work in hand, and any mortar that may have been left standing long enough to "begin to set," shall not be used.

The ratio of sand and cement must be in accordance with experiment made by the Engineer, and should he consider a greater proportion of cement necessary the same shall be done without any extra charge.

CONCRETE.

Concrete.

The concrete shall be formed of sound and acceptable stone, either screened from gravel or broken so as to be not more than two and one-half inches in greatest dimension. The material shall be cleaned from frost, dirt and dust before being used, be properly wet, and thoroughly mixed with mortar in suitable boxes, in such proportions that the volume of mortar shall always be slightly in excess of the volume of voids in the broken stone.

Proportions.

The mortar used in concrete is to be such as above described for stone masonry, viz: one part cement to two of sand, or the proportions may be derived from test as aforesaid. The concrete is to be quickly placed in layers of about six inches in thickness, and thoroughly rammed with suitable rammers until the mortar flushes to the surface.

Rammed.

No walking or working upon its surface will be allowed while the mass is setting, and sufficient time must elapse before any succeeding work is allowed to be laid upon it.

Not disturbed.

All classes of work subject to injury from the action of frost, must be properly protected therefrom by the Contractor without extra charge.

RIP RAP.

After the bank is carried up sufficiently, the inner slope will be dressed true to a line given by the Engineer, and a layer of stone, averaging about fifteen inches in thickness, will be

Rip rap. applied. The stone used for this purpose must be sound, and shall be hand placed if required. Any additional depth of stone above that of fifteen inches will be allowed, provided the same be so placed as not to produce warped surfaces, but the additional depth so placed shall not constitute an extra price.

RUBBLE MASONRY.

Classification. The rubble masonry will be divided into two classes, viz: first and second, and the class adopted for the various structures will be designated by the Engineer at the time of construction, the probability being that the only structures built of the first class will be the Inlet Chamber and the Waste Weir, each of which may embrace both classifications.

Distinctive between 2nd and 1st class. Both classifications will embrace *equally good stone*, the difference being that all framework of the structures above mentioned, shall be stone assorted for the purpose, and in general receive a better degree of care and attention as regards fitness to perform the duty imposed upon them.

RUBBLE—FIRST CLASS

Jointage. The stone used will be of any formation that will not disintegrate, they shall have the property of being hammered or pitched, if necessary, to a line, and admit of being scabbled on bed and builas in order to obtain a satisfactory joint, the thickness of which will depend somewhat upon the size of the particular stone being set, which in no case shall be laid so as to admit of no mortar between it and the adjacent stones. In final, the joint must not be more than three-quarters, nor less than one-quarter, of an inch.

Beds, etc. The stone must be perfectly clean and laid upon a properly prepared bed of mortar with its *best bed down*, and in no case shall spalls or any other medium be driven in for the purpose of leveling its upper bed. In the preparation of the bed, all chips and spalls used for the purpose must be carefully hand-laid and be hammered down until the mortar flushes to the surface, and when doing likewise with the larger stone, a wooden block must be employed. Regular courses are not to be called for, further than to approach it sufficiently to produce a good bond and a harmonizing effect, approved by the Engineer, more attention being paid to the said bond throughout the whole thickness of the walls than to regular courses.

Rods, ladders, etc. The insertion of anchor rods, ladders, etc., must be carefully set so as not to admit of any percolation of water. All dowels must be set in sulphur

Projections. All projections on the face side of the work exceeding two inches, must be scabbled off prior to setting the stone, and in no case shall any stone be set so as to form an inverted batter. After the work becomes sufficiently set for the purpose, the Contractor will clean out the joints of all such work as may be designated by the Engineer, and re-point the same with rich mortar, to the satisfaction of the Engineer.

How measured. Masonry of all classes are to be measured in the work only, excepting such as are otherwise provided for.

COPING.

The material for coping must consist of either good sound blue stone, or stone quarried at Oxford, N. Y. They will be "rock-faced," neatly pitched to parallel lines, and laid to a joint not to exceed three-eighths of an inch, and be bonded back into the masonry walls as represented upon the plans, and laid in good, rich cement mortar, mixed especially for the purpose. All imperfect stone, also stone having endured long exposure to the natural elements, etc., or discolored thereby, will be rejected.

The material called for in cases of spillways, bridge seats, etc., shall consist of equally good stone and workmanship.

How measured. All coping will be measured by the cubic yard in place as per quantity sheet, and no extra payment will be made for dimensions exceeding those upon the plan.

PAVEMENT IN CEMENT MORTAR.

Arrangements. The stone used for all slack-water basins will be of good substantial material, regardless of color, but practically similar in length. They are to be carefully arranged in place, upon a properly prepared bed, as per plans, and wedged, rammed, etc., until becoming positively fixed

PREVIOUS REPORTS

RECEIVED

MAY 8 1914

DIVISION INLAND WATERS
NOTICE. Fill in and mail one of these forms as completely as possible for each dam in your district, return it at once to the
Chief Engineer
Conservation Commission, Albany.)

STATE OF NEW YORK
CONSERVATION COMMISSION
ALBANY

RECEIVED

MAY 8 1914

DIVISION INLAND WATERS

DAM REPORT

J. D. M.

No. 2

April 9, 1914.
(Date)

CONSERVATION COMMISSION,

DIVISION OF INLAND WATERS.

GENTLEMEN:

I have the honor to make the following report in relation to the structure known as the The Norwich Water Works Dam No. 2.

This dam is situated upon the Ramford Brook (Give name of stream) in the Town of Norwich, Chenango County, about 9000 feet from the Village or City of Norwich. (State distance)
The distance down stream from the dam, to the Chenango River (Give name of nearest important stream or of a bridge) is about 9000 feet. (State distance)

The dam is now owned by The Norwich Water Works (Give name of owner) and was built in or about the year 1891, and was extensively repaired or reconstructed and is in good order. (has been extensively maintained during the year)

As it now stands, the spillway portion of this dam is built of masonry (State whether of masonry, concrete or timber) and the other portions are built of earth with clay core. (State whether of masonry, concrete, earth or timber with or without rock fill)

As nearly as I can learn, the character of the foundation bed under the spillway portion of the dam is rock and under the remaining portions such foundation bed is rock a-b. earth b-c

The total length of this dam is..... 638 feet. The spillway or waste-weir portion, is about..... 45 feet long, and the crest of the spillway is about..... 5' - 4" feet below the top of the dam.

The number, size and location of discharge pipes, waste pipes or gates which may be used for drawing off the water from behind the dam, are as follows: 36" main pipe
with one 20' and 3 - 14" inlets

State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particularly any leaks or cracks which you may have observed.)

Reported by

(Signature)

173 Broad
(Address—Street and number, P. O. Box or R. F. D. route)

(Name of place)

(SEE OTHER SIDE)

(In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

(In the space below, make a third sketch showing the general plan of the dam, and its approximate position in relation to buildings or other conspicuous objects in the vicinity.)

STATE OF NEW YORK

DEPARTMENT OF

State Engineer and Surveyor

ALBANY

621 sec.
Reservoir No. 2

Report of a Structure Impounding Water

To assist in carrying out the provisions of Section 22 of the Conservation Law, being Chapter LXV of the Consolidated Laws of New York State, relating to safeguarding life and property and the erection, reconstruction, or maintenance of structures for impounding water, owners of such structures are requested to fill out as completely as possible this report form for each such dam or reservoir owned within the State of New York for which no plans or reports relative thereto are on file in this Department, and to return this report form, together with prints or photographs explanatory thereof to this department.

1. The structure is on Ransford Creek flowing into Chenango River in the Town of Norwich County of Chenango and about 8000 feet from the mouth of the stream on the City Line
(Give exact distance and direction from a well-known bridge, dam, village main cross-roads or mouth of a stream)

2. Is any part of the structure built upon or does its pond flood any State lands? No

3. The name and address of the owner is The Norwich Water Works, Norwich N.Y.

4. The structure is used for Impounding Water Supply used in the City of Norwich.

5. The material of the right bank, in the direction with the current, is Pack with earth above the top of dam; at the spillway crest elevation this material has a top slope of about .6 inches vertical to a foot horizontal on the center line of the structure, a vertical thickness at this elevation of about 1.0 feet, and the top surface extends for a vertical height of about 1.6 feet above the spillway crest.

6. The material of the left bank is Hard pack; has a top slope of about 3 inches to a foot horizontal, a thickness of about 1.0 feet, and a height of about 4.00 feet.

7. The natural material of the bed on which the structure rests is (clay, sand, gravel, boulders, granite, shale, slate, limestone, etc.) Limestone and Hard pack
Shale rock

8. State the character of the bed and the banks in respect to the hardness, perviousness, water bearing, effect of exposure to air and to water, uniformity, etc. The rock on the right bank is somewhat

laminated, in the bottom, dense, the next pan dense and impervious

* Rock disintegrates to some extent by exposure to the air. There has been no leakage from the reservoir during the 35 years since constructed

9. If the bed is in layers, are the layers horizontal or inclined? horizontal. If inclined what is the direction of the horizontal outcropping relative to the axis of the main structure and the inclination and direction of the layers in a plane perpendicular to the horizontal outcropping?
10. What is the thickness of the layers? variable
11. Are there any porous seams or fissures? Some on the right bank but all cut off by concrete and clay puddle
12. The watershed at the above structure and draining into the pond formed thereby is about 5 square miles.
13. The pond area at the spillway crest elevation is about 8 acres and the pond impounds about 8 million cubic feet of water. see note on page 3
14. The maximum known flow of the stream at the structure was cubic feet per second on May and Sept. 1, 1890.
(Date)
15. Has the spillway capacity ever been exceeded by a high flow? No
- Can any possible flood flow from the pond otherwise than through the wastes noted under 17 and 18 of this report? Yes. If so, give the location, the length and the elevation relative to the spillway crest and the character and slopes of the ground of such possible wastes (See plan on page 4) For about 100 feet the bank, or dam, is from 6 inches to 1 foot lower than the crest of the main dam and an overflow there would follow a natural graded bank, entirely away from the structure and discharge into Reservoir No 1. See sketch on separate sheet attached
16. State if any damage to life or to any buildings, roads or other property could be caused by any possible failure of the above structure. Describe the location, the character and the use of buildings below the structure which might be damaged by any failure of the structure; of roads adjacent to or crossing the stream below the structure, giving the lowest elevation of the roadway above the stream bed and giving the shape, the height and the width of stream openings; and of any embankments or steep slopes that any flood could pass over. Also indicate the character and use made of the ground below the structure. There are 5 houses and a small school house in a rather narrow valley, also 3 other houses and farm buildings as the valley opens to the river valley. Also a stone arch bridge (see sketch) and a steel bridge on the river road and a highway in the river valley near the break. The land is used for grazing and cultivation
17. WASTES. The spillway of the above structure is 43 feet long in the clear; the waters are held at the right end by a masonry wall the top of which is 6 feet above the spillway crest, and has a top width of 2.5 feet; and at the left end by a timber dam, the top of which is 6 feet above the spillway crest, and has a top width of 2.5 feet.
18. There is also for flood discharge a pipe 36 inches inside diameter and the bottom is 4.0 feet below the spillway crest; and a (sluice, gate outlet) 3 feet wide in the clear by decorates feet high, and the bottom is 4.0 feet below the spillway crest.

19. APRON. Below the spillway there is an open bank of Rock bottom channel with
45 feet wide and unknown feet thick. The down stream side of the apron has a thickness of
for a width of 45 feet.

20. Has the structure any weaknesses which are liable to cause its failure in high flows? No.

21. SKETCHES. On the back of this report make a sketch to scale for each different cross-section of the above structure at the greatest depth; giving the height and the depth from the surface of the foundation, the bottom width, the top width (for a concrete or masonry spillway at two feet below the crest), the elevation of the top in reference to the spillway crest, the length of the section, and the material of which the section is constructed; on the spillway section show a cross section of the apron, giving its width, thickness and material, and show the abutment or wash wall at the end of the spillway, giving its heights and thickness. Mark each section with a capital letter. Also sketch a plan; show the above sections by their top lines, giving the mark and the length of each; the openings by their horizontal dimensions; the abutments by their top width and top lengths from the upstream face of the spillway section; and outline the apron. Also sketch an elevation of each end of the structure with a cross section of the banks, giving the depth and width excavated into the banks.

22. WATER SUPPLY. The waters impounded by the above structure have (not) been used for a public water supply since 1891 by The City of Norwich (Formerly Village).

Note! During the construction of this work and before the completion of the rock cut in the bottom of the wash-bench, I think in the early part of May, 1890 a very heavy rainfall caused a flood that passing over the spillway of Reservoir No. 1 which is 45 feet long and 5 feet deep, was 3 feet deep.

Again about Sept. 1. of the same year, when the bank was 15 feet high a very heavy rain storm filled the pond to the top, but did not overflow but very little if at all. This storm all passed through about 200 feet of 36 inch pipe and filled the lower spillway to about the same depth as the earlier storm. The level of water 50 feet upstream was 3 feet above the top of the spillway.

These discharges have never been equalled during the 35 years, to the knowledge of the writer, who was Assistant Engineer at the time of construction for the preceding 10 years before and since the construction of Reservoir No. 1.

I have received from the U.S.
Weather Bureau data concerning
the precipitation at Oxford, 8 miles south
for May and Sept. of 1890 as follows:

May 4	6.68	May 10	-8.6	Sept. 9	-10
5	.57	11	.10	10	.04
6	1.12	13	-12.0	12	.81

May 4	6.68	May 10	-8.6	Sept. 9	-10
5	.57	11	.10	10	.04
6	1.12	13	-12.0	12	.81

May 4	6.68	May 10	-8.6	Sept. 9	-10
5	.57	11	.10	10	.04
6	1.12	13	-12.0	12	.81

May 4	6.68	May 10	-8.6	Sept. 9	-10
5	.57	11	.10	10	.04
6	1.12	13	-12.0	12	.81

E.F. Mission.

Plotted from Construction Notes of 1890

W.S. Franklin Engineer
E.F. Munson Assistant

Note City Elevations from 80.00 to 158.00

Plot of Waste Weir

Scale 1" = 6'
or Dimensions as indicated

21.5'
Elevation of Weir 334.0

Wing Wall same as on other side.

The above information is correct to the best of my knowledge and belief.

10 Sheldon St. Norwich N.Y.

(Address of signer)

E. F. Munson

(Signature)

March 1925

(Date)

Engineer for City of Norwich, N.Y., New York
(A person signing for owner should indicate his title or authority)

Sketch Map of the
Reservoirs
^{of}
The Norwich Water Works.
Scale 1 inch = 200 feet.

M. AM. SOC. C. E.
(RESIGNED)
E. J. Mussall
Civil Engineer
OFFICE AND RESIDENCE 10 SHELTON ST.

FREELIVL
OFFICE STATE FND
APR 20 1925
REFD TO *John H. Tim*
ANS'D

NORWICH, N.Y., April 16, 1925.
Department of State Engineer and Surveyor,
Albany, N.Y.
Gentlemen:-

As requested by your department, I enclose herewith reports concerning the two earth dams and appurtenances owned by The Norwich Water Works of this City.

That designated as Reservoir No. 1, was constructed in the year 1881. The information in regard to that has been mainly obtained from preliminary plans prepared before the construction, together with some measurements of parts that are now accessible and readily measured.

Since the construction of Reservoir No. 2, it has been in use as a distributing reservoir, the overflow ~~overfall~~ from reservoir No. 2 passing in a by-pass canal.

The supply from reservoir is discharged into reservoir No. 1 through aerating jets. In times of heavy rains when the water in No. 2 is roily this is shut off till the water is in good condition for use.

The elevations used in the construction of both reservoirs are derived from an arbitrary bench mark near the center of the City, the elevation of which is assumed as ~~xx~~ 100.814. and is located on the top of the water table at the North East corner of the Congregational Church.

Reservoir No. 2 was constructed in the year 1890. The Hon Richard W. Sherman was engaged with Mr. McDonough in the Troy Public Works Co. as contractors. Mr. W.S. Franklin was Engineer in charge, with the writer as assistant. The information contained in the report concerning this reservoir is from the original construction notes and drawings used in the computations for the final estimate.

During the construction of this work there were two very unusual storms, as noted on the report. These figures were obtained as noted from the Weather Bureau at Ithaca, N.Y. &

Owing to the very heavy rainfall that occurred in May it was decided to install a waste pipe 36 inches in diameter in place of one of 20 inches. This was cast iron, asphalt coated and very carefully laid both as to line and grade. It was laid on a masonry wall with several cut off stops extending on each side and over the pipe, extra precaution being taken where the pipe crosses the puddle trench, the masonry extending down several feet to the rock as excavated in the trench.

At the time of the heavy rainfall that occurred from Sep 9 to 13, the top of the dam was at about elevation 315. The 36 inch pipe was 192 feet in length, the elevation at the lower end was ~~299~~ 290.34 and at the upper end 296. The water rose above the dam

M. AM. SOC. C. E.
(RESIGNED)

E. F. Musson

Civil Engineer

OFFICE AND RESIDENCE 10 SHELDON ST.

NORWICH, N. Y.,

to the top thereof and I think overflowed a very little where a slight trench had been dug where less damage would doubtless resulted than would likely been done otherwise. Of course there was quite a large quantity of water impounded above the dam which would materially reduce the rate of discharge over the waste weir at reservoir No. 1. I am not at all satisfied with such computations as I have made from the lower weir and of the 36 inch pipe, but the facts are as stated and I leave any further computations for you to take up if you so desire. As stated in the report, at the time of the latter storm the water in the reservoir No. 1 was 3 feet above the top of the weir at a point 500' more feet back from the weir.

Mr. Sherman agrees with me as to the conditions at the dam at the time, except that he thinks the dam was about 30 feet above the pipe at the time, but as I have the original notes of construction at hand which show the elevation Sept. 1st as at 313 and Oct. 1st as 320, it would appear that 315 was about right.

Precipitation records have been kept by the writer for the past 16 years. Only twice during those years has there been a precipitation of over 3 inches in 24 hours, and in each case there has not been a discharge of 3 feet over the waste weir of res. No. 2, I should have stated that the water shed between the two reservoirs is probably less than 1/2 mile.

Trusting the information I have been able to furnish will meet your requirements, I remain

very truly yours

E. F. Musson

Engineer for The Norwich
Water Works

P.S.

We have a tracing of the entire area occupied by both reservoirs and adjacent territory as shown on the little map enclose. This is drawn to a scale of 1 inch = 40 feet and if you desire will send you a blue print. (we have no facilities for cloth prints)

D-3

MEMBERS OF COMMITTEE
TO THE
NEW YORK WATER POWER AND CONTRACT COMPANY
ON THE
NEW YORK WATER SERVICE CORPORATION
FOR THE
CITY OF NORWICH, NEW YORK

GENERAL AND HISTORICAL NOTES

The following description of the water supply system for the City of Norwich, New York has been compiled from information now available by the Company and the State Public Service Commission together with the results of various inspections in recent months by Barker & Hecker. The data are mostly as at the date of July 1, 1946 and closely show the property as of the present date since only minor work has been done since June, 1946.

The Norwich Water Works, so-called, was incorporated January 20, 1881. Plant construction was started early in 1881 and the first water service was given in January 1882. On November 16, 1926, the New York Water Service Corporation acquired the old company and changed the name to Norwich Water Service Corporation. On May 7, 1929 the system was merged into the New York Water Service Corporation, Inc., a now commonly known as the Norwich Plant of that Corporation.

The Corporation furnishes water to domestic, commercial and industrial customers and gives fire protection by water service, in the City of Norwich and in parts of the Towns of Norwich, immediately adjacent to the easterly and westerly corporate limits of the City.

SOURCE OF SUPPLY

There are two sources of water. The first is about four square miles of drainage area along Barnsford Creek in the Towns of Norwich, North Norwich and No. Berlin, beginning about 1.5 miles northeast of the City of Norwich as will be seen from the accompanying U. S. Geological Survey topographic maps. In this drainage area are the two reservoirs first built, known as the "Upper" and "Lower". The Lower Reservoir has a surface area of about 6.8 acres, a maximum depth of about 30 ft. and a storage capacity of 32 million gallons, for 16 feet draw-down. Spillway elevation is 1108 feet above sea-level compared with about 1015 ft. for the center of the City. The Upper Reservoir is immediately upstream and has a surface area of about 9.1 acres, a maximum depth of 40 ft. and a storage capacity of 56.5 million gallons for a draw-down of 30 ft. The spillway here has an elevation of 1242 ft. or 54 ft. above the Lower Reservoir.

The second source of supply is Chenango Lake, in the Town of New Berlin about 3.5 miles northeast of the Lower Reservoir already mentioned.

The drainage area of Chenango Lake is contiguous to back of Mansfield Creek and is about 0.2 square mile in extent. The lake surface is about 150 acres, and the normal elevation is 1760 ft. The drainage area has been developed to be contributory to the first area described, but it originally was part of the drainage area of Great Brook and the Unadilla River. Surplus waters not used for Norwich water supply still flow out to Great Brook. The Company, by purchasing the lands and water-rights of Chenango Lake and releasing upland cottontail rights, has retained a strip of lake shore mostly 16.5 ft. wide. This strip is continuous around the lake except for a few inhomogeneities totaling about 1900 ft. of shore, as shown on an appended map. The corporation obtained the right to raise the water level to a given height two feet above the prior normal level and to draw it down five feet below prior level. This gives a potential storage of 340,000,000 gallons when it can be utilized. The normal realized storage is from 200 to 280 million gallons. The old natural outlet at the south end of the lake was plugged, and an artificial spillway channel opened up at the north-east end into a different branch of Great Brook. To divert the lake water into Mansfield Creek, a tunnel 761 ft. long was driven through the ridge separating the two basins and a pipe line of 14, 16 and 18 inch cast iron pipe was run another 9587 ft. to connect the lake and creek with the tunnel. Water from the lake runs 8,000 ft. in open brook channel to the Upper Reservoir already described.

OTHER LANDS

The Company owns about 270 acres of land around the reservoirs and Mansfield Creek as shown in the accompanying maps. This has been replanted with about 177,000 evergreen trees. To improve the appearance around the two reservoirs, about 3100 shrubs have been planted.

There is a tract of about 7 acres on the south side of the New Berlin Highway in the Town of Norwich just east of the Chenango River and the City of Norwich. Here is located the filtration plant. On the opposite bank of the river, in the City of Norwich, is a corresponding tract of about 10 acres held undeveloped.

The Chenango lake tunnel and the approach pipe lines are under a strip of land 50 ft. wide owned in fee. The balance of the lake to creek line is on easements. The Company owns easements to extend the lake delivery line through to the Upper Reservoir and has rights to the waters of Mansfield Creek.

There is a private right of way about 4700 ft. long for two 12-inch cast-iron transmission mains leading down from the Lower Reservoir. This parallels the New Berlin highway. The two mains continue under the high-way for another 1200 ft. to the filtration plant just outside the City as already noted. From the filtration plant, one 18-inch cast-iron main runs mostly under public ways into the Town and City of Norwich to River and Roxford Streets where it becomes a part of the distribution grid. A 10-inch cast-iron delivery line also runs on certain lands about 2200 ft. from the filtration plant to River and Roxford Streets where it joins the distribution system. All river crossings are on private lands.

The distribution system is laid almost entirely under public streets. There is a length of about 650 ft. on a private easement near Broad and American Streets. South of the D.L. & W. R.R. at Front and Thompson Streets is a 600 ft. stretch. Near Main and Boopoe Streets are two lengths aggregating about 500 ft. From the end of East Main Street is a stretch on private right of way to River Road across the Chenango River.

STORAGE FACILITIES

Lower Reservoir. The dam at the Lower Reservoir was built in 1881. It is an earth embankment with puddled core. The maximum height is 30.3 ft. and the length is 240 ft. The top width is 12 ft. The upstream slope is 2.5 to 1 with a broken stone pavilion; and the downstream slope is 2 to 1 with a seeded soil top. The spillway is formed by a concrete and masonry weir, or overflow section, 45 ft. long between two wing walls of stone and concrete, 6.5 ft. wide, 2.8 ft. high and 45 ft. long. The spillway discharge is into the old creek channel. The spillway approach and apron are paved with heavy stone. The intake at this reservoir is a 24-inch cast-iron chamber with three 12-inch intake gates at different levels, all enclosed in a masonry tower. A "rad pipe," or drain, of 16-inch cast-iron pipe, 230 ft. long extends through the bottom of the dam and terminates in a dry masonry head-wall at the outlet end.

Upper Reservoir. The dam at the Upper Reservoir was built in 1891; it is an earth embankment with puddled core, 618 ft. long with a maximum height of 50.5 ft. and a top width of 18.5 ft. The upstream slope is 2.5 to 1 with 18 inches thickness of stone rip-rap. The downstream slope is 2 to 1 with seeded soil top. The spillway is a concrete weir, or overflow section, 45 ft. long, between wing walls, 2.5 ft. wide, 2.8 ft. high and 48 ft. long. The spillway has a cut-off wall extending 7 to 12 ft. below the flow line. The side walls extend 16 to 7.1 ft. below the flow line. The spillway approach channel and downstream apron are paved with heavy stone. This spillway discharges into a by-pass channel which has been dug past both reservoirs and carries into the old creek bed.

In 1914, counterweighted flashboard were installed on the spillway of the Upper Reservoir dam so as to raise the water level 2.4 ft. These boards are of 2" by 8" plank built in two sections. They are lifted by four hand wheels working through racks and pinions from a bridge above the spillway. This bridge is formed by two 8" I-beams with a 4" yellow-pine floor.

The upper intake is a 14-inch cast-iron pipe with a copper sheet screen, protected by a masonry chamber which is topped with a frame structure and connected to the dam by a 68 ft. steel bridge with wood floor. A 20 to 30-inch cast-iron "rad pipe," or drain, 29 ft. long, runs under the bottom of the dam from a influent chamber (tire, 10 ft. by 7 x 7 x 4 ft. with a top grill of 3/4 inch iron bars) to the outlet end and is protected by a 2 x 4 ft. masonry wall.

A 12-inch cast-iron by-pass line about 2,000 ft. long extends from the 36-inch outlet pipe of the Upper Reservoir below the dam, along the south side of the Lower Reservoir and connects into the two 12-inch transmission lines leading to the city. At a point about 150 ft. upstream from the lower dam is a 12-inch cast-iron pipe lateral leading to 15 jet aerator nozzle. Normally water from the Upper Reservoir is discharged through this jet into the Lower Reservoir.

A caretaker's two story frame house on rubble stone foundations is located opposite the Upper Reservoir. Adjacent to it is a one-story frame barn and a one-story garage.

Chenango Lake. The outlet dam at Chenango Lake is a block of concrete and masonry across an open cut previously made to supply a mill. Through the block is a 24-inch sleeve with sluice-gate and floor stand. Over this is a timber cover and around it is a steel-wire mesh fence, 7 ft. high. The Chenango Lake outlet consists of a 10 ft. riser of 14-inch cast-iron pipe, topped with a copper basket screen, 6 ft. high. The outflow is controlled on the shore by a 14-inch gate valve in box.

ADEQUACY OF SUPPLY

The Company records show conclusively that over periods of time aggregating several years, the described sources (exclusive of the use of Chenango River water which was used for a short time as an emergency supply) have supplied an average of 2 million gallons per day or more. (In the earlier days the consumption was excessive due to general lack of customers' meters and to the use of inadequately regulated sewer flush tanks.) The supply of 2 million gallons per day or more was maintained in spite of the fact that storage on Mansfield Creek amounts to only about 90 million gallons, or 13 million per square mile of drainage area, which is rather low.

However, we have investigated a dam and reservoir site on the south branch of Mansfield Creek above the Upper Reservoir. The drainage area is approximately 2 sq. mile, and there appear to be many springs in the area. At a point about 1400 ft. above the present Upper Dam a dam can be constructed to impound 150 to 200 million gallons of water. With this development, it is estimated that the present sources of supply, as enumerated, will be able to supply an increased consumption at least as great as can be foreseen for a long time in the future.

PURIFICATION WORKS

Filtration plant. From 1882 to 1905 the supply of water was delivered to customers without purification or treatment. In the latter year, the Company installed four horizontal-tank rapid-sand pressure filters, at the site which has been described as south of New Berlin highway adjacent to the Chenango River at 30' deep. Two additional horizontal-tank rapid-sand pressure filters were added in 1907. The pressure tanks are 8' in diameter by 30' long. The filter were made by the New York Continental Jewell Filtration Company and each contains 8 cu. yds. of gravel with 16 cu. yds. of "filter sand".

The secondary buildings at the filtration plant site include the following: (1) Storage barn; 1 story frame structure with ridge roof and gable ends, clap board sides, rubberoid roofing, on 1" sheathing. The barn section is 30 by 24 ft. and 20 ft. high to roof peak; a second section is 30 by 16.2 ft. and 17.5 ft. high; a third section is 16 by 16.2 ft. and 14.5 ft. high. (2) Sand Storage Bin; a Ship-lap bin 9 by 20 ft. by 6.8 ft. with rubberoid roof, painted outside. (3) Hydrant & Hose House; 1 story frame structure 6 by 8 by 6.5 ft. and 9 ft. high to roof peak. Has concrete foundation, rubberoid roof and batten door; contains a 6" hydrant with 2 hose nozzles and stemmer connections, and 350 ft. of 2-1/2" fire hose and nozzle. (4) There is a gravel drive, 12 ft. wide into the grounds and around the road. There is 1300 ft. of 3-strand wire fencing on wood posts.

Chemical House at Lower Reservoir. On the south side of the Lower Reservoir near the dam is a chemical feed house. This is a hollow tile building, 16.3 by 24.3 ft. and 14 ft. high to roof peak. The foundation is of concrete and the building has a basement. The roof is of wood frame with asphalt shingles. The house is heated by a cast-iron boiler and 7 wall type radiators. There are 6 electric outlets. There is located here a Wallace & German automatic chlorinator, Type U.S., with 1" copper delivery piping to the main outlet, and a 500 lb. platform scale. There is also a Wallace & German dry-faced alum machine driven by a 10-inch water wheel. A chemical feed line of 4-inch cast-iron pipe leads to the outlet below the lower dam.

Farm Drainage Purification. To meet the requirements of the State Department of Health and to prevent farm sewage on the Remond Creek drainage area from getting into the collected waters, the Company has built and maintains on the Pollett, Bixby, Hudson, Kimball, Cooley and Anderson farms, steel septic tanks 38 by 48-ins. each with asphalt cover and an average of 75 ft. of 4-in. tile drain.

LEADS, SERVICES, PIPES, EMBODIMENTS

Transmission mains. The transmission mains, as so classified by the Company, are shown in the following list, at July 1, 1946.

18" Pit-Cast Iron Pipe	784 L. ft.
16" " " " "	1734 "
14" " " " "	7003 "
12" Wrought Iron tar coated	137 "
12" Pit-Cast Iron Pipe	13106 "
10" Bell & Socket Cast Iron Pipe	480 "
10" Pit-Cast Iron Pipe	433 "
8" Centrifugal Cast Iron Pipe	14 "
6" Pit-Cast Iron Pipe	18 "
6" Centrifugal Cast Iron Pipe	50 "
Total length	23738 "

The following are facts about public Health
to the properties owned by the City of Norwich.

- - - - -

1881 - Norwich Water Works incorporated January 13, 1881.
Board of Trustees of the Village of Norwich granted
Franchise to lay and construct necessary pipes in and
along village streets.
Water Company purchased lands along Ransford Creek to
build and impound waters of this creek, and contract
let for building Reservoir No. 1 (Lower) holding about
30,000,000 gallons, and for laying 12" transmission
main to Rexford and Silver Streets. The original contract
and the Franchise are on file in the Water Office. The
record shows that approximately 3,800 feet of this
1881 line were laid in the highway (State Route 23).
All riparian rights in the waters of Ransford Creek
from the reservoir location to the Chenango River and
necessary rights of way for the 12" line were also pur-
chased. A record of these purchases and the deeds are
also on file in the Water Office.

1890
1891 Additional lands east of Reservoir No. 1 purchased and
Reservoir No. 2 (Upper) constructed to hold approximately
60,000,000 gallons. Original contract on file in the
Water Office. Both dams have puddled cores (clay) and
working drawings of both are on file in the Water Office.
A 12" line is laid from the 36" waste line of the Upper
Reservoir, around the south side of the lower Reservoir,
from which 1 4" and 3 3" inlets can be taken.
Sight glass is located on top of each with 10' increments.

- 1904 - A second 12" transmission main was constructed to the Village, and this line is interconnected with the first 12" (1881) line so that the city supply can be delivered from either reservoir or both. This new line was reduced to 10" west of the Filter Plant and was laid under the river (as was the 1881 line) and up Gold Street to Silver.
- 1905 - The Norwich Water Works paid Colonel Edwin Loomis the sum of \$15,000.00 to raise the level of Chenango Lake and draw down the water therefrom a maximum of 7'. Contract let to lay intake pipe and outlet line (including 750' of 4" rockcut tunnel) in Towns of New Berlin and North Scitula to the headwaters of Mansfield Creek. Rights were also purchased from other lake front owners to raise lake level and rights of way to lay outlet line.
- 1912 - Sale (on mortgage foreclosure) by National Bank of Trust Co. of Norwich to the Norwich Water Works of all the lands in Town of New Berlin owned by late Colonel Loomis including approximately 111 acres of the 135 acres total surface of Chenango Lake.
- The standing timber on the Loomis Lands sold to Col. G.W. Cottage lots surveyed and mapped on east, south and west sides of lake.
- 1905 Filter Plant land purchased in 1904 and plant filter built with four units installed in 1905 cost \$100,000.00 with a filtering capacity of 500,000 gallons per hour connected to each filter using solution of calcium carbonate for clarifying and hypochlorite of lime solution for post chlorination with laboratory control under the supervision of

PREVIOUS INSPECTION REPORTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
 DAM INSPECTION REPORT
 (By Visual Inspection)

Marie Ros 52

Dam Number	River Basin	Town	County	Hazard Class*	Date & Inspector
621	Susquehanna	Maryland	Cherry Grove	B+	10/25 KJH KUE

Type of Construction

- Earth w/concrete spillway
- Earth w/drop inlet pipe
- Earth w/stone or riprap spillway
- Concrete
- Stone
- Timber

Use

- Water Supply
- Power
- Recreation
- Fish and Wildlife
- Farm Pond
- No Apparent Use-Abandoned

Estimated Impoundment Size

- 1-5 acres
- 5-10 acres
- Over 10 acres

Estimated Height of Dam above Streambed

- Under 10 feet
- 10-25 feet
- Over 25 feet

Condition of Spillway

- Service satisfactory
- In need of repair or maintenance

- Auxiliary satisfactory
- In need of repair or maintenance

Explain: _____

Condition of Non-Overflow Section

- Satisfactory
- In need of repair or maintenance

Explain: _____

Condition of Mechanical Equipment

- Satisfactory
- In need of repair or maintenance

Explain: _____

Evaluation (From Visual Inspection)

- No defects observed beyond normal maintenance
- Repairs required beyond normal maintenance

*Explain Hazard Class, if Necessary _____

APPENDIX E

REFERENCES

REFERENCES

1. Chow, Ven Te, Editor - Handbook of Applied Hydrology. McGraw-Hill Book Company, New York, New York, 1964.
2. Hydrologic Engineering Center, U.S. Army Corps of Engineers, HEC-1 Flood Hydrograph Package, Users Manual. Davis, California, January 1973.
3. Hydrologic Engineering Center, U.S. Army Corps of Engineers, Flood Hydrograph Package (HEC-1), Users Manual for Dam Safety Investigations, Davis, California, September 1978.
4. King, Horace and Brater, Ernest. Handbook of Hydraulics, 5th Edition. McGraw-Hill Book Company, New York, New York, 1963.
5. Riedel, J.T., Appleby, J.F. and Schloemer, R.W. Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 Hours (Hydrometeorological Report No. 33) U.S. Department of Commerce - Weather Bureau and U.S. Department of the Army - Corps of Engineers, Washington, D.C., April 1956
6. U.S. Department of the Interior, Bureau of Reclamation, Design of Small Dams, Second Edition, Washington, D.C., 1973.

APPENDIX F
DRAWINGS

CROSS SECTIONS
of
STORAGE RESERVOIR EMBANKMENT.
LOWER LOCATION.
Norwich Water Works
Scale 1-20
S. Franklin, Eng
1888.

STATE 3R
Reconstruction of bridge
1960 - 1961

Panel 3c

PROFILE

Scale 1:10000

PLAN OF
WASTE WEIR.
NORWICH WATER WORKS
SCALE 1:1
W.S.FRANKLIN,ENG
1888

CROSS SECTIONS
BY-PASS CANAL.
Norwich Water Works.
SCALE 1:40.
W S FRANKLIN, Eng.
1888.

PLATE 2A.

Note: Present State Name Shows in Dotted Lines.

AD-A107 414 FLAHERTY-GIAVARA ASSOCIATES NEW HAVEN CT
NATIONAL DAM SAFETY PROGRAM. NORWICH RESERVOIR NUMBER 2 DAM (IN--ETC(U)
AUG 81 H C FLAHERTY DACW51-81-C-0006
NL

UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

**NORWICH WATER CO
NORWICH N.Y
MOVEABLE FLASH BOARDS**

BY PASS CANAL
DETAILS OF
BEAMS
BRACES
BILL OF MATERIAL

CE Harris
SAC

**DATE
ILMED
-8**