

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

AGENDA • Problemi, algoritmi ed esecutori Automi a stati finiti Macchina di Turing

DEFINIZIONE DI PROBLEMA

- Uno degli scopi principali dell'informatica è risolvere problemi con i calcolatori
- Un problema è una classe di domande omogenee alle quali è possibile dare una risposta attraverso un metodo o una procedura uniforme di risoluzione
 - ad esempio, qual è il la somma di due numeri X e Y?
- Ogni specifica domanda della classe si chiama istanza del problema
 - ad esempio, qual è il la somma di 4 e 7?

DEFINIZIONE DI PROBLEMA

- Un problema opera tipicamente su uno o più termini variabili
 - tali termini si chiamano variabili/dati di ingresso o di input
 - per ogni possibile combinazione di valori delle variabili di ingresso, si genera una diversa istanza del problema
- Ad esempio, qual è il la somma di due numeri X e Y?
 - X e Y sono le variabili di ingresso del problema
 - se X=4 e Y=7, si genera l'istanza «qual è il la somma di 4 e 7?»
 - se X=3 e Y=5, si genera l'istanza «qual è il la somma di 3 e 5?»
 - etc.

DEFINIZIONE DI PROBLEMA

- Il risultato (output) di un problema è tipicamente costituito da uno o più termini variabili
 - tali termini si chiamano variabili/dati di uscita o output
 - le variabili di output dipendendo dai dati di ingresso della particolare istanza del problema
- Ad esempio, qual è il la somma Z di due numeri X e Y?
 - X e Y sono le variabili di ingresso, Z è la variabile di uscita del problema
 - se X=4 e Y=7, si genera l'istanza «qual è il la somma di 4 e 7?» \rightarrow Z = 11
 - se X=3 e Y=5, si genera l'istanza «qual è il la somma di 3 e 5?» \rightarrow Z = 8
 - etc.

ESEMPI DI PROBLEMA

- Preparare una torta alla frutta
 - è noto il risultato
 - non si riesce a ricavare alcuna indicazione sulla ricetta da seguire
 - la ricetta non è di facile individuazione in un libro di cucina per la sua formulazione generica
- Risolvere le equazioni di secondo grado
 - Problema di analisi matematica di cui si conosce chiaramente il procedimento risolvente
- Individuare il massimo tra tre numeri
 - problema impreciso ed ambiguo
 - non specifica se la variabile di uscita dev'essere il valore numerico del massimo o la posizione in cui si trova il massimo tra i numeri assegnati

ESEMPI DI PROBLEMA

- Inviare un invito ad un insieme di amici
 - diverse possibili soluzioni per inviare l'invito (posta ordinaria, SMS, posta
 - elettronica, WhatsApp, etc.)
 - bisogna scegliere la soluzione più conveniente
 - Ad es. si può scegliere la soluzione che presenta un costo più basso e più efficiente
- Individuare le tracce del passaggio di extraterrestri
 - problema che non ammette soluzione o non risolvibile

OSSERVAZIONI

- La descrizione del problema non fornisce, in generale, indicazioni sul metodo risolutivo
 - In alcuni casi può presentare imprecisioni e ambiguità che possono portare a soluzioni errate
- Per alcuni problemi non esiste una soluzione
 - in tal caso, si parla di problemi non calcolabili
 - la teoria della **calcolabilità** valuta se un problema può essere svolto o meno in un procedimento automatico, ovvero se è risolvibile mediante un calcolatore

OSSERVAZIONI

- Alcuni problemi hanno più soluzioni possibili
 - in tal caso, si calcola quella più vantaggiosa sulla base di un insieme di parametri prefissati:
 - costo della soluzione, tempi di attuazione, risorse necessarie alla sua realizzazione, ecc.
- Per alcuni problemi non esistono soluzioni eseguibili in tempi ragionevoli
 - in tal caso, si parla di problemi **non trattabili**
 - la teoria della **trattabilità** valuta la complessità e i costi di esecuzione della soluzione di un problema calcolabile

PROBLEMA CALCOLABILE MA NON TRATTABILE: ESEMPIO

• Torre di Hanoi

- tre paletti e n dischi di grandezza decrescente
- l'obiettivo è spostare i dischi da un paletto ad un altro, tenendo conto che un disco può essere appoggiato su un altro disco soltanto se più piccolo di esso

PROBLEMA CALCOLABILE MA NON TRATTABILE: ESEMPIO

• Torre di Hanoi

- sono necessarie almeno $2^n 1$ mosse per risolverlo
- se n=64 e una mossa richiede 1 secondo allora sono necessari $2^{64} 1$ secondi per risolverlo $\rightarrow 585$ miliardi di anni

DEFINIZIONE DI ALGORITMO

- Un algoritmo è una sequenza finita di passi che portano alla realizzazione di un compito
 - un insieme finito di istruzioni che, eseguite secondo un ordine prestabilito, permettono di giungere alla soluzione di un problema
- Aspetti da tenere presente nella definizione
 - insieme finito di passi
 - i passi vanno eseguiti in sequenza
 - i dati di input sono elaborati per giungere alla soluzione del problema
 - i dati di output sono prodotti come soluzione del problema

DEFINIZIONE DI ESECUTORE

- Un algoritmo viene definito presupponendo la disponibilità di un opportuno esecutore che dovrà eseguire le istruzioni descritte
 - un algoritmo dipende sia dal compito che si vuole realizzare, sia dall'esecutore per il quale viene formulato
- L'esecutore di un algoritmo è l'entità che deve realizzare il compito di giungere alla soluzione di un problema, attuando la sequenza di passi che compongono l'algoritmo stesso
 - un esecutore può far fronte al suo compito se e solo se è in grado di comprendere ed eseguire tutti i passi della sequenza

SCHEMA DI SOLUZIONE DI UN PROBLEMA

- Soluzione di un problema:
- Informazioni di ingresso (Input)
 - Le informazioni da fornire per risolvere il problema
- Algoritmo
 - sequenza finita di passi che portano alla realizzazione di un problema/compito
- Esecutore
 - L'entità che esegue l'algoritmo
 - Deve comprendere le singole istruzioni e deve essere capace di eseguirle
- Informazioni di uscita (Output)
 - I risultati prodotti dall'esecutore

DEFINIZIONE DI PROGRAMMA

- Un **programma** è un algoritmo scritto in un linguaggio comprensibile all'esecutore (linguaggio di programmazione)
- Il **linguaggio** serve a descrivere in modo non ambiguo tutte e sole le operazioni che l'esecutore è in grado di eseguire
 - descrive tutto ciò che occorre sapere dell'esecutore per poter formulare algoritmi
- Si può identificare l'esecutore con il suo linguaggio di programmazione, ignorando il suo funzionamento interno

DEFINIZIONE DI CALCOLATORE

- Un **calcolatore** è un apparecchio elettronico progettato per eseguire autonomamente e velocemente attività diverse
 - non ha nessuna capacità decisionale o discrezionale
 - si limita a compiere determinate azioni secondo procedure prestabilite
- Il **processore** di un calcolatore è un esecutore che interpreta ed esegue le singole istruzioni di un algoritmo scritto in un prefissato linguaggio di programmazione
 - è un **automa**, cioè una macchina che esegue algoritmi
 - a partire da un opportuno insieme di dati iniziali, produce in uscita i risultati dell'esecuzione dell'algoritmo per quei dati iniziali

AUTOMA A STATI FINITI

- Astrazione del concetto di macchina che esegue algoritmi
 - basato sul concetto di stato, cioè la particolare condizione di funzionamento in cui può trovarsi la macchina
- Applicabile a qualsiasi sistema che evolve nel tempo per effetto di sollecitazioni esterne
 - ogni sistema se soggetto a sollecitazioni in ingresso risponde in funzione della sua situazione attuale eventualmente emettendo dei segnali di uscita
 - l'effetto della sollecitazione in ingresso è il mutamento dello stato del sistema stesso
 - il sistema ha sempre uno stato iniziale di partenza da cui inizia la sua evoluzione
 - <u>eventualmente</u>, può terminare in uno **stato finale** dopo aver attraversato una serie di stati intermedi

AUTOMA A STATI FINITI: MACCHINA DI MEALY

- Una macchina di Mealy è un automa a stati finiti i cui valori di uscita sono determinati dallo stato attuale e dall'ingresso corrente
- Può essere definita tramite una quintupla di elementi (Q, I, U, t, w)
 - Q è un insieme finito di stati interni caratterizzanti l'evoluzione della macchina
 - I è un insieme finito di sollecitazioni in ingresso
 - U è un insieme finito di uscite
 - t:Qxl→Q è una funzione di transizione degli stati, che determina lo stato successivo della macchina a partire da uno stato e da un ingresso fissati
 - w:Qxl→U è una funzione di uscita, che determina l'uscita della macchina a partire da uno stato e da un ingresso fissati

AUTOMA A STATI FINITI: MACCHINA DI MOORE

- Una macchina di Moore è un automa a stati finiti i cui valori di uscita sono determinati solo dallo stato attuale
- Può essere definita tramite una quintupla di elementi (Q, I, U, t, w)
 - Q è un insieme finito di stati interni caratterizzanti l'evoluzione della macchina
 - I è un insieme finito di sollecitazioni in ingresso
 - U è un insieme finito di uscite
 - t:Qxl→Q è una funzione di transizione degli stati, che determina lo stato successivo della macchina a partire da uno stato e da un ingresso fissati
 - w:Q→U è una funzione di uscita, che determina l'uscita della macchina a partire da uno stato fissato

AUTOMA A STATI FINITI: RAPPRESENTAZIONE A GRAFO

Grafo

- un nodo per rappresentare gli stati del sistema
- archi orientati ad indicare le transizioni
- Stati intermedi
 - nodi con archi entranti ed uscenti
- Stato iniziale
 - l'unico nodo con nessun arco entrante
- Stato finale
 - <u>se esiste</u>, nodo con nessun arco uscente

AUTOMA A STATI FINITI: RAPPRESENTAZIONE TABELLARE

- Tabella (vale anche il viceversa)
 - tante righe quanti sono gli ingressi
 - tante colonne quanti sono gli stati

- Stati nei quali il sistema transita per effetto delle sollecitazioni in ingresso (funzione t)
- indicazione dell'eventuale uscita prodotta nella transizione (funzione w)

$$Q = (S_0, S_1, S_2, S_f)$$

$$I = (I_1, I_2, I_3, I_4, I_5)$$

$$U = (U_1, U_2, U_3)$$

I/S	So	$\mathbf{S_1}$	$\mathbf{S_2}$	$\mathbf{S_f}$
I_1	S ₁ /-			
I_2		S_1/U_1		
I_3		S ₂ /-		
I_4			S_f/U_2	
I_5		S_f/U_3		

Rappresentazione tabellare di una macchina di Mealy

ESEMPIO

- Vogliamo realizzare una macchina in grado di riconoscere una sequenza di bit 101 in ingresso
 - la macchina avrà un unico ingresso I su cui arriva una sequenza di 1 e 0
 - un'unica uscita **U** che vale 1 quando in ingresso viene riconosciuta la sequenza 101

ESEMPIO

- Possiamo usare una macchina a stati finiti con tre stati S_0 , S_1 , S_2 con i seguenti significati:
 - S_o è lo stato in cui si è in attesa di riconoscere in ingresso il primo bit della sequenza desiderata, ovvero si attende "1" in ingresso
 - S_1 è lo stato in cui ci si trova se è stato ricevuto il primo bit della sequenza desiderata e si attende di riconoscere in ingresso il secondo bit della sequenza, ovvero si è ricevuto "1" e si attende "0"
 - S_2 è lo stato in cui ci si trova se sono stati ricevuti in ingresso sia il primo che il secondo bit della sequenza desiderata e si attende di riconoscere in ingresso l'ultimo bit della sequenza, ovvero è stata ricevuta la sequenza "10" in ingresso e si attende "1". Quando arriva un nuovo bit, in ogni caso, si ritorna in S_0 ma con uscite diverse a seconda che si sia ricevuto "1" o "0"

Automa di Mealy in grado di riconoscere la sequenza "101"

	0	1
S ₀	S ₀ /0	S ₁ /0
S ₁	S ₂ /0	S ₁ /0
S ₂	S ₀ /0	S ₀ /1

 S_0 S_1 O/O O/O S_2 O/O

descrizione tramite tabella

descrizione tramite grafo

- Si definisca la tabella e il grafo di transizione degli stati di una macchina di Mealy in grado di riconoscere una sequenza di bit $0_i 1_{i+1} 0_{i+2} 1_{i+3}$ in ingresso, dove \mathbf{b}_i rappresenta il bit \mathbf{b} ricevuto al tempo $\mathbf{t}=\mathbf{i}$
 - la macchina avrà un unico ingresso I su cui arriva una sequenza di 1 e 0
 - un'unica uscita **U** che vale 1 se gli ultimi quattro bit ricevuti in ingresso formano la sotto sequenza **0101**, in corrispondenza dell'ultimo bit della sotto sequenza riconosciuta
 - la macchina dev'essere in grado di riconoscere anche <u>sotto sequenze corrette</u> <u>consecutive</u>

 $\mathbf{I} = \{|_0, |_1\}$

 I_0 = ricevuto 0 ingresso

 I_1 = ricevuto 1 ingresso

 $U = \{0, 1\}$

0 = gli ultimi 4 bit ricevuti sono una sotto-sequenza di interesse

1 = gli ultimi 4 bit ricevuti non sono una sotto-sequenza di interesse

 $S = \{A, B, C, D\}$

A = la macchina attende di riconoscere il primo bit della sequenza

B = la macchina ha riconosciuto 0 e attende di riconoscere 01

C = la macchina ha riconosciuto 01 attende di riconoscere 010

D = la macchina ha riconosciuto 010 e attende di riconoscere 0101

 $S = \{A, B, C, D\}$

A = la macchina attende di riconoscere il primo bit della sequenza

B = la macchina ha riconosciuto 0 e attende di riconoscere 01

C = la macchina ha riconosciuto 01 attende di riconoscere 010

D = la macchina ha riconosciuto 010 e attende di riconoscere 0101

Ingressi Stati	0	1
А	B/0	A/0
В	B/0	C/0
С	D/0	A/0
D	B/0	C/1

 $S = \{A, B, C, D\}$

A = la macchina attende di riconoscere il primo bit della sequenza

B = la macchina ha riconosciuto 0 e attende di riconoscere 01

C = la macchina ha riconosciuto 01 attende di riconoscere 010

D = la macchina ha riconosciuto 010 e attende di riconoscere 0101

ESERCIZIO: DISTRIBUTORE BIBITE

- Si definisca la tabella e il grafo di transizione degli stati di una macchina di Mealy per la distribuzione automatica di bibite
 - tutti i tipi di bibita costano 2 Euro
 - la macchina accetta in ingresso solo monete da 50 centesimi
 - $I_0 = nessuna moneta$
 - $I_1 = moneta inserita$
 - la macchina produce in uscita la consegna di una bibita
 - $U_0 = bibita$ non erogata
 - $U_1 = bibita erogata$

ESERCIZIO: DISTRIBUTORE BIBITE

- I_0 = nessuna moneta
- $I_1 = moneta inserita$

- U_0 = bibita non erogata
- U_1 = bibita erogata

- $Q_0 = 0$ centesimi
- $Q_1 = 50$ centesimi
- $Q_2 = 1$ euro
- $Q_3 = 1$ euro e 50 centesimi

ESERCIZIO: DISTRIBUTORE BIBITE

- I_0 = nessuna moneta
- $I_1 = moneta inserita$

- $U_0 = bibita$ non erogata
- U_1 = bibita erogata

- $Q_0 = 0$ centesimi
- $Q_1 = 50$ centesimi
- $Q_2 = 1$ euro
- $Q_3 = 1$ euro e 50 centesimi

Ingressi Stati	I _o	I ₁
Q_0	Q_0/U_0	Q_1/U_0
Q_1	Q_1/U_0	Q_2/U_0
Q_2	Q_2/U_0	Q_3/U_0
Q_3	Q_3/U_0	Q_0/U_1

MODELLO DI MACCHINA DI TURING

- È un particolare automa composto da una testina di scrittura/lettura capace di scrivere, leggere, e spostarsi su nastro bidirezionale potenzialmente illimitato
 - il nastro è costituito da celle su cui è possibile leggere e scrivere simboli
 - gli insiemi degli ingressi e delle uscite sono insiemi di simboli
 - trasforma un nastro di simboli t in un altro nastro di simboli t'
- È un modello fondamentale dell'informatica
 - permette di raggiungere risultati teorici sulla *calcolabilità* e sulla *complessità* degli algoritmi

- Descrive una macchina composta da:
 - una memoria costituita da un nastro di dimensione infinita diviso in celle
 - ogni cella contiene un simbolo oppure è vuota
 - una testina di lettura/scrittura posizionabile sulle celle del nastro
 - un dispositivo di controllo che, per ogni coppia (stato, simbolo letto), determina il cambiamento di stato ed esegue azioni elaborative (resta ferma, sposta a destra,

sposta a sinistra, scrivi un simbolo)

MACCHINA DI TURING: DEFINIZIONE FORMALE

- Definita dalla quintupla (A, S, f_m, f_s, f_d)
 - A è l'insieme finito dei **simboli** di ingresso e uscita
 - S è l'insieme finito degli **stati** (di cui uno è quello di terminazione)
 - f_m è la funzione di macchina $A \times S \rightarrow A$ che determina i simboli da scrivere
 - f_s è la funzione di stato $A \times S \rightarrow S$
 - f_d è la funzione di direzione $A \times S \rightarrow D = \{Sinistra, Destra, Nessuna\}$
- La macchina è capace di:
 - leggere un simbolo dal nastro
 - scrivere sul nastro il simbolo specificato dalla funzione di macchina
 - transitare in un nuovo stato interno specificato dalla funzione di stato
 - spostarsi sul nastro di una posizione come indicato dalla funzione di direzione
- La macchina si ferma quando raggiunge lo stato di terminazione

MACCHINA DI TURING E ALGORITMI

- Una macchina di Turing il cui dispositivo di controllo è capace di leggere da un nastro anche la descrizione dell'algoritmo è una macchina universale capace di simulare il lavoro compiuto da un'altra macchina qualsiasi
 - leggere dal nastro la descrizione dell'algoritmo richiede di saper
 - interpretare il linguaggio con il quale esso è stato descritto
- La macchina di Turing Universale è l'interprete di un linguaggio

TESI DI CHURCH E TURING

- Non esiste alcun formalismo, per modellare una determinata computazione meccanica, che sia più potente della Macchina di Turing e dei formalismi ad essi equivalenti
 - ogni algoritmo può essere codificato in termini di Macchina di Turing
 - un problema è non risolubile algoritmicamente se nessuna Macchina di Turing è in grado di fornire la soluzione al problema in tempo finito
- Problemi decidibili

 sono meccanicamente risolvibili da una macchina di Turing
- Problemi indecidibili

 non sono meccanicamente risolvibili da una macchina di Turing

TESI DI CHURCH E TURING: CONSEGUENZE

- Se un problema si può calcolare, allora esisterà una macchina di Turing in grado di risolverlo
 - la classe delle funzioni calcolabili coincide con quella delle funzioni calcolabili da una macchina di Turing
- Un algoritmo risolvente un dato problema calcolabile è indipendente dal sistema
 - per esso esiste una macchina di Turing in grado di risolverlo
- Un algoritmo è indipendente dal linguaggio usato per descriverlo
 - per ogni linguaggio si può sempre definire una macchina di Turing universale

