Dynamic Programming

- Collection of algorithms used to compute optimal policies given a perfect model of the environment as an MDP
- DP provides an essential foundation for understanding reinforcement learning algorithms

MDP recap

- Assume environment is a finite MDP (states, actions, rewards)
- Dynamics given by set probabilities p(s', r|s, a)
- Bellman optimally equations:

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_*(s') \Big], \text{ or}$$

$$q_*(s,a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a \Big]$$

$$= \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a') \Big],$$

Policy Evaluation (Prediction)

State-value function expected update rule (based on Bellman equation):

- Bootstrapping: update estimates on the basis of estimates.
- Convergence (update no longer results in value changes) guaranteed as number of samples $\rightarrow \infty$

Gridworld example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1 \\ \text{on all transitions}$

$v_{m{k}}$	for	the	е
rando	m	pol	icy

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

	Ţ	↓	Ţ	
1	Ţ	Ç	ļ	
1	₽	₽	1	
t→	\rightarrow	\rightarrow		
				` \
	←	←	←	\
1				ontimal
†	† .	` , †	+	optimal policy
<u>'</u>	`	L,	Ţ	/ /

$$k = 1$$

k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

		\longleftrightarrow	\longleftrightarrow
†	\Leftrightarrow	\leftrightarrow	$ \Longleftrightarrow $
\Leftrightarrow	\Rightarrow	\Leftrightarrow	ţ
\longleftrightarrow	\Rightarrow	†	

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

k	=	2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$\begin{aligned} v &\leftarrow V(s) \\ V(s) &\leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta &\leftarrow \max(\Delta,|v-V(s)|) \end{aligned}$$

until $\Delta < \theta$

Policy Improvement

- State-action value function $q_{\pi}(s,a) \doteq \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$ $= \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big].$
- Policy improvement theorem: policy π' must be as good as, or better than, π . $v_{\pi'}(s) \geq v_{\pi}(s)$.
- Greedy policy $\pi'(s) \doteq \underset{a}{\operatorname{argmax}} q_{\pi}(s, a)$ $= \underset{a}{\operatorname{argmax}} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$ $= \underset{a}{\operatorname{argmax}} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Value Iteration

- Truncate policy evaluation to a single sweep/update
- Update rule that combines policy improvement and evaluation (Bellman optimally equation):

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \max_{a} \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma v_k(s') \Big],$$

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Asynchronous Dynamic Programming

- Synchronous involves a complete sweep of the state space every iteration
- Asynchronous is preferred for problems with large state spaces where the values of states are updated in any order
- Allows flexibility in selecting states to update and the policy can be improved more frequently
- To converge correctly, asynchronous algorithms must continue to update the values of all the states
- Allows real-time interaction

Generalized Policy Iteration

Two interacting processes:

 v,π

 Policy evaluation - makes the value function consistent with the current policy

 Policy improvement - make the policy greedy with respect to the current value

function

Efficiency of Dynamic Programming

- Worst case time DP methods take to find an optimal policy is polynomial in the number of states (n) and actions (k).
- Faster convergence with good initial value functions or policies.
- However, direct search of policy space is exponential in state space
- Classical DP algorithms are of limited use in RL because of known dynamics assumption and great computational expense