MATH 557 Oct 15

Amalgamation Classes

Let \overline{K} be a class of finitely generated structures. \overline{K} is called an **amalgamation class** if it has the following three properties:

(HP) Hereditary Property

If $A \in \overline{K}$, $\mathcal{B} \cong \mathcal{C} \in A$, and \mathcal{C} is finitely generated, then $\mathcal{B} \in \overline{K}$.

(JEP) Joint Embedding Property

If $A, \mathcal{B} \in \overline{K}$, then there exists $\mathcal{C} \in \overline{K}$ and embeddings

$$f_0: A \to \mathcal{C}, \quad f_1: \mathcal{B} \to \mathcal{C}$$

(AP) Amalgamation Property

If $A, \mathcal{B}, \mathcal{C} \in \overline{K}$ with embeddings $f_0 : A \to \mathcal{B}$ and $f_1 : A \to \mathcal{C}$, then there exists $\mathcal{D} \in \overline{K}$ and embeddings

$$g_0: \mathcal{B} \to \mathcal{D}, \quad g_1: \mathcal{C} \to \mathcal{D}$$

such that $g_0 \circ f_0 = g_1 \circ f_1$.

Exercise 0.1.

Show that (AP) does not imply (JEP).

(Hint: finite fields)

Example 0.1.

 $\overline{K} = \{(Z, <) : (Z, <) \text{ finite linear order} \}$ forms an amalgamation class.

Fraïssé's Theorem

Theorem 0.1. Let \overline{K} be a class of finitely generated \mathcal{L} -structures such that there are only countably many isomorphism types in \overline{K} .

Then: \overline{K} is an amalgamation class $\Leftrightarrow \overline{K}$ is the age of a countable homogeneous \mathcal{L} -structure.

Proof. (\Leftarrow): Suppose $\overline{K} = age(\mathcal{M})$ where \mathcal{M} is countable and homogeneous.

(HP): Holds by definition of age.

(**JEP**): Let $\mathcal{A}, \mathcal{B} \in \operatorname{age}(\mathcal{M})$. Then $A \cong \langle A \rangle^{\mathcal{M}}$ and $\mathcal{B} \cong \langle B \rangle^{\mathcal{M}}$, with $A, B \subseteq M$ finite. Then \mathcal{A} and \mathcal{B} embed into $\langle A \cup B \rangle^{\mathcal{M}}$.

(AP): Suppose $f_0: \mathcal{A} \to \mathcal{B}$ and $f_1: \mathcal{A} \to \mathcal{C}$ are embeddings, where $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \text{age}(\mathcal{M})$.

Without loss of generality, $\mathcal{A}, \mathcal{B}, \mathcal{C} \subseteq \mathcal{M}$ and $f_0 = \mathrm{id}_A$.

Since \mathcal{M} is homogeneous, there exists an automorphism $\pi:\mathcal{M}\stackrel{\sim}{\to}\mathcal{M}$ such that $\pi^{-1}|_A=f_1$ (i.e., π extends f_1^{-1}).

Consider
$$\mathcal{D} = \langle B \cup \pi^{-1}(C) \rangle^{\mathcal{M}}$$
. \mathcal{D} amalgamates \mathcal{B} and \mathcal{C} via $\mathrm{id}_{\mathcal{B}} : \mathcal{B} \to \mathcal{D}$ and $\pi^{-1}|_{C} : \mathcal{C} \to \mathcal{D}$.

 (\Rightarrow) : Assume \overline{K} is an amalgamation class. We construct a structure \mathcal{N} with $age(\mathcal{N}) = \overline{K}$ where \mathcal{N} is homogeneous and has domain $N \subset \mathbb{N}$.

Since \overline{K} has countably many isomorphism types, we enumerate the elements of \overline{K} (up to isomorphism) as $(\mathcal{K}_e : e \in \mathbb{N})$ where $K_e \subseteq \mathbb{N}$.

Consider tuples (\bar{a}, \bar{b}, f) where \bar{a}_i, \bar{b}_i are finite subsets of \mathbb{N} and f is a partial function with $\text{dom}(f) = \bar{a}$ and $\text{ran}(f) \subseteq \bar{b}$. Enumerate all such triples as $(\bar{a}_e, \bar{b}_e, f_e)$ so that every (\bar{a}, \bar{b}, f) occurs infinitely often.

 $\mathcal N$ will be the union of an increasing sequence $(\mathcal C_n)_{n\in\mathbb N}$ where $\mathcal C_n\in\overline K$.

Initialize: $\mathcal{C}_0 = \mathcal{K}_0$

Now assume we have defined \mathcal{C}_n .

Case $n = 2\ell$ (even): Apply (JEP) to $\mathcal{C}_n, \mathcal{K}_\ell$ to obtain \mathcal{C}_{n+1} .

Case $n=2\ell+1$ (odd): If \bar{a}_{ℓ} or $\bar{b}_{\ell} \nsubseteq C_n$, put $\mathcal{C}_{n+1}=\mathcal{C}_n$. If $\bar{a}_{\ell}, \bar{b}_{\ell} \subseteq C_n$, let $\mathcal{A}_{\ell}=\langle \bar{a}_{\ell} \rangle^{\mathcal{C}_n}$ and $\mathcal{B}_{\ell}=\langle \bar{b}_{\ell} \rangle^{\mathcal{C}_n} \subseteq \mathcal{C}_n$. Apply (AP) to the embeddings id : $\mathcal{A}_{\ell} \to \mathcal{C}_n$ and $f: \mathcal{A}_{\ell} \to \mathcal{B}_{\ell}$ (induced by $f_{\ell}: \bar{a}_{\ell} \to \bar{b}_{\ell}$). This yields a structure $\mathcal{C}_{n+1} \in \overline{K}$. Renaming if necessary, we can assume $\mathcal{C}_n \subseteq \mathcal{C}_{n+1}$.

Define $\mathcal{N} = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$.

Claim 1: $age(\mathcal{N}) = \overline{K}$.

In the even steps $n=2\ell$, we ensure $K_{\ell}\subseteq \mathcal{N}$, so all structures isomorphic to K_{ℓ} also enter $\operatorname{age}(\mathcal{N})$. Since the $(K_e)_{e\in\mathbb{N}}$ enumerates all isomorphism types of \overline{K} , we get $\operatorname{age}(\mathcal{N})=\overline{K}$.

Claim 2: \mathcal{N} is homogeneous.

Let $\tau:A\to\mathcal{B}$ be an isomorphism between finitely generated substructures $\mathcal{A}=\langle\bar{a}\rangle^{\mathcal{N}}$ and $\mathcal{B}=\langle\bar{b}\rangle^{\mathcal{N}}$ where $\bar{a},\bar{b}\in N$ are finite. We show that for any $c_0\in N\setminus B$, there exists a partial isomorphism $\tau':\mathcal{A}'\to\mathcal{B}'$ where $\mathcal{A}',\mathcal{B}'$ are finitely generated, $\tau'\supseteq\tau$, and $c_0\in\mathrm{dom}(\tau')$. (This suffices since we can continue via back-and-forth.)

There exists ℓ such that f_{ℓ} induces an embedding $f: A \to \langle \mathcal{B} \cup \{c_0\} \rangle^{\mathcal{N}}$ (since every triple occurs infinitely often in the enumeration, in particular the triple $(\bar{a}, \bar{b} \cup \{c_0\}, f)$).

In step $n=2\ell+1, \ \mathcal{B}_\ell=\in \langle \mathcal{B}\cup \{c_0\}\rangle^{\mathcal{N}}$ and \mathcal{C}_n are amalgamated over A_ℓ . This yields embeddings:

$$\begin{split} & \mathrm{id}: \mathcal{A} \hookrightarrow \mathcal{C}_{n+1} \\ & g: \mathcal{B} \hookrightarrow \mathcal{C}_{n+1} \text{ where } g \circ f_{\ell} = \mathrm{id}_{A} \end{split}$$

Let $a_0 = g(c_0)$. Then $(g|_{\mathcal{B}})^{-1} : \langle \bar{a} \cup \{a_0\} \rangle^{\mathcal{N}} \xrightarrow{\sim} \langle \bar{b} \cup \{c_0\} \rangle^{\mathcal{N}}$ is the desired isomorphism.