Text Retrieval and Search Engines Evaluation of TR Systems: Practical Issues

ChengXiang "Cheng" Zhai Department of Computer Science University of Illinois at Urbana-Champaign

Course Schedule

Challenges in Creating a Test Collection

Queries: representative & many

Relevance Judgments

Judgments:

completeness vs. minimum human work

D2
D1
D3
D48

Measures: capture the perceived utility by users

Q2 D1 –

Q2 D2+

Q2 D3 +

Q2 D4 –

. . .

Q50 D1 –

Q50 D2 –

Q50 D3 +

Docs: representative & many

Statistical Significance Tests

 How sure can you be that an observed difference doesn't simply result from the particular queries you chose?

	Experiment	t 1		Experimen ^a	t 2
Query	System A	System B	<u>Query</u>	System A	System B
1	0.20	0.40	1	0.02	0.76
2	0.21	0.41	2	0.39	0.07
3	0.22	0.42	3	0.16	0.37
4	0.19	0.39	4	0.58	0.21
5	0.17	0.37	5	0.04	0.02
6	0.20	0.40	6	0.09	0.91
7	0.21	0.41	7	0.12	0.46
Average	0.20	0.40	Average	0.20	0.40

Statistical Significance Testing

<u>Query</u>	System A	System B	<u>Sign Test</u>	<u>Wilcoxon</u>
1	0.02	0.76	+	+0.74
2	0.39	0.07	-	- 0.32
3	0.16	0.37	+	+0.21
4	0.58	0.21	-	- 0.37
5	0.04	0.02	-	- 0.02
6	0.09	0.91	+	+0.82
7	0.12	0.46	+	+0.34
Average	0.20	0.40	<i>p</i> =1.0	<i>p</i> =0.9375

Pooling: Avoid Judging all Documents

- If we can't afford judging all the documents in the collection, which subset should we judge?
- Pooling strategy
 - Choose a diverse set of ranking methods (TR systems)
 - Have each to return top-K documents
 - Combine all the top-K sets to form a pool for human assessors to judge
 - Other (unjudged) documents are usually assumed to be non-relevant (though they don't have to)
 - Okay for comparing systems that contributed to the pool, but problematic for evaluating new systems

Summary of TR Evaluation

- Extremely important!
 - TR is an empirically defined problem
 - Inappropriate experiment design misguides research and applications
 - Make sure to get it right for your research or application
- Cranfield evaluation methodology is the main paradigm
 - MAP and nDCG: appropriate for comparing ranking algorithms
 - Precision@10docs is easier to interpret from a user's perspective
- Not covered
 - A-B Test [Sanderson 10]
 - User studies [Kelly 09]

Additional Readings

- Donna Harman, Information Retrieval Evaluation. Synthesis Lectures on Information Concepts, Retrieval, and Services, Morgan & Claypool Publishers 2011
- Mark Sanderson, Test Collection Based Evaluation of Information Retrieval Systems. Foundations and Trends in Information Retrieval 4(4): 247-375 (2010)
- Diane Kelly, Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends in Information Retrieval 3(1-2): 1-224 (2009)