

Řešení rekurentních problémů

Jitka Kreslíková, Aleš Smrčka

2023

Fakulta informačních technologií Vysoké učení technické v Brně

IZP – Základy programování

Řešení rekurentních problémů

- Posloupnosti
- □ Řady

Rekurentní vztah

```
Y_{i+1} = F(Y_{i-k} ..., Y_{i-2}, Y_{i-1}, Y_i), kde:

Y_{i-k}, Y_{i-k+1}, ..., Y_i, Y_{i+1} – zevšeobecněné proměnné,

F – funkce na základě které získáme z hodnot

Y_{i-k} ..., Y_{i-2}, Y_{i-1}, Y_i hodnotu Y_{i+1}

i,k \ge 0 – počet předchozích kroků řešení
```

Vlastnosti:

- pro výpočet další hodnoty potřebujeme pouze k+1 posledních hodnot.
- musí existovat takové n, že Y_n je požadovanou hodnotou, po jejímž získání iterační výpočet končí.
- musíme umět rozpoznat požadovanou hodnotu.

Posloupnosti

Uvažujme rekurentní vztah:

$$Y_{i+1} = F(Y_i)$$

- 🗖 pro výpočet Y_{i+1} je potřeba zjistit hodnotu Y_i.
- na začátku musí být dané Y₀, ze kterého celý výpočet začíná.
- postupně dostáváme hodnoty Y₁, Y₂, ..., Y_n, pro které platí:
 - 1. $Y_{i+1} = F(Y_i)$ pro $i \ge 0$
 - 2. $Y_i \neq Y_i$ pro $i \neq j$
 - 3. Y_i pro i < n nesplňuje podmínky požadované hodnoty.
 - 4. Y_n splňuje podmínky požadované hodnoty.

rg

Algoritmické schéma pro posloupnosti

- \square Algoritmus realizující vztah $Y_{i+1} = F(Y_i)$:
 - 1. $Y=y_0$;
 - 2. while $(\neg B(Y)) Y = F(Y)$;
- Všeobecné symboly:
 - Proměnná Y
 - Predikátový symbol B
 - Funkční symbol F
- Predikát B(Y) podmínka požadované hodnoty závislá na hodnotě Y
- Nejde o řešení konkrétního rekurentního vztahu

Algoritmické schéma

- Algoritmická konstrukce, ve které symboly proměnných, funkcí a predikátů nejsou interpretovány.
- Pro konkrétní rekurentní vztah uvedeného charakteru stačí interpretace příslušných symbolů.
- Rekurentní vztahy > iterační výpočty > algoritmické schéma lze použít pro řešení celé řady problémů.

Výpočet druhé odmocniny

Příklad: Výpočet druhé odmocniny reálného čísla A≥0 lze popsat rekurentním vztahem:

$$y_{i+1} = \frac{1}{2} \left(\frac{A}{y_i} + y_i \right)$$

- \square y₀ pro jednoduchost lze volit 1.
- Způsob ukončení algoritmu:
 - Obvykle se výpočet opakuje, dokud |y_i y_{i+1}| není menší než nějaká zadaná hodnota.
 - Této hodnotě se říká přesnost výpočtu značíme ji **eps**.
- Pro výpočet nové hodnoty y potřebujeme jednu předcházející hodnotu – použijeme dvě proměnné: stareY, noveY.

Výpočet druhé odmocniny

Algoritmus:

```
1. zadej A, eps
2. inicializuj stareY (1)
3. vypočítej noveY (podle vzorce)

 opakuj pokud abs(noveY – stareY)≥eps

     ulož noveY do stareY
     vypočítej noveY
```

zobraz výsledek

Řady

Uvažujme řadu vytvořenou z členů:

$$t_0, t_1, t_2, ...$$

Pro členy řady lze napsat rekurentní vztah:

$$t_i = f(t_{i-1}), \text{ pro } i > 0$$

Nechť částečné součty jsou:

$$S_0$$
, S_1 , S_2 , ...
 $S_i = t_0 + t_1 + ... + t_i$

Pro částečné součty platí rekurentní vztah:

$$s_0 = t_0$$

$$s_i = s_{i-1} + t_i$$

Řady

- Při konstrukci algoritmu nutno zohlednit
 - rekurentní vztah pro částečné součty
 - rekurentní vztah pro členy řady, jejich vzájemný vztah
 - způsob ukončení
- Použití řad pro aproximaci funkcí
 - Počet členů řad není dopředu znám
 - Konec algoritmu ⇔ přesnost aproximace
 - Přesnost dána buď dosaženou hodnotou částečné sumy nebo posledním sčítancem

Algoritmické schéma pro řady

Na základě uvedené analýzy lze sestavit modifikované algoritmické schéma pro řady:

```
    T = t<sub>0</sub>;
    S = T;
    while (¬B(S, T))
        {
                  T = f(T);
                  S = S + T;
        }
```

4. zobraz výsledek

Algoritmické schéma pro řady

Analogicky jako pro posloupnosti tak i pro řady musí platit tvrzení:

1.
$$t_i = f(t_{i-1})$$

2.
$$t_i \neq t_i$$

3.
$$s_i = s_{i-1} + t_i$$

4.
$$\neg B(s_i, t_i)$$

5.
$$B(s_n, t_n)$$

pro
$$i > 0$$

pro
$$i > 0$$

změní se hodnota

Algoritmické schéma pro řady

- Při použití algoritmického schématu pro řady je třeba si uvědomit, že
 - musí existovat n, pro které se změní hodnota predikátu B(s_i, t_i).
 - při aproximaci funkce je třeba podmínku volit uváženě s ohledem na funkci, argument a řadu > konvergence řady může být velmi pomalá.
 - požadované přesnosti aproximace nemusí být vždy dosažitelné, anebo její cena může být velmi velká.

Aproximace e^x

Příklad: Aproximace $y = e^x$

Exponenciální funkci ex lze aproximovat řadou:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

Pro částečný součet s_i lze napsat:

$$s_i = 1 + x + \left(\frac{x^2}{2!} + \frac{x^3}{3!}\right) + \dots + \frac{x^i}{i!}$$

Aproximace e^x

Závislost sousedních členů řady lze vyjádřit rekurentním vztahem:

$$t_j = t_{j-1} \frac{x}{j}$$
 pro j > 0

- Cyklus se bude opakovat, dokud hodnota přírůstku, tedy hodnota členu řady, neklesne pod danou hranici, kterou označíme eps.

Aproximace ex

Algoritmus:

- zadání x, eps
- 2. inicializace: t=1, soucetRady=t, i=0

```
3. opakuj pokud abs(t)≥eps
{
   inkrementace i
   výpočet dalšího členu t
   soucetRady = soucetRady + t
}
```

4. zobrazení výsledku

Aproximace e^x

Příklad: $y = e^x$, $(-\infty < x < \infty)$

Aproximace e^x

Aproximace ex

- Rychlost konvergence
 - není stejná pro všechna reálná čísla.
 - je velká pro malé hodnoty argumentu x (okolo nuly).
- Pro velké hodnoty x se doporučuje rozdělit argument x na celou část c a desetinnou část d a použít vztah:

$$e^{c+d} = e^c \cdot e^d$$

Hodnota e^c se vypočítá opakovaným násobením e.

Aproximace sin(x)

$P\check{r}iklad$: Aproximace y = sin(x)

Pro částečný součet s; lze napsat:

$$s_i = x \left(\frac{x^3}{3!} + \frac{x^5}{5!} \right) - \dots (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

Členy řady:

$$t_{j} = -t_{j-1} \frac{x}{k_{i}(k_{i}-1)}, \text{ pro } j > 0$$

$$k_j = k_{j-1} + 2$$

počáteční hodnoty: $t_0 = x$, $k_0 = 1$
pro $x \in <0$; $\Pi/4> - konverguje nejrychleji (ověřte)$

Aproximace sin(x)

Podmínka ukončení nespecifikuje absolutní hodnotu posledního členu, ale určuje relativně jeho velikost vzhledem k celkové sumě.

Algoritmus:

- zadání x, eps
- 2. inicializace t=x, soucetRady=t, k=1

```
3. opakuj pokud abs(t) ≥ eps × abs(soucetRady)
{
    k = k + 2
    výpočet dalšího členu t
    soucetRady = soucetRady + t
}
```

4. zobrazení výsledku

Řešení rekurentních problémů

Příklad: $y = \sin x$, $(-\infty < x < \infty)$

Heuristika

- Opatření:
 - k snížení náročnosti výpočtu
 - k zvýšení efektivity výpočtu
- Posun výpočtu do intervalu nejrychlejší konvergence
 - $e^{c+d}=e^ce^d$
 - využití periodicity u goniometrických funkcí
- Odstranění zbytečných výpočtů
 - Zejména z těla cyklu odsunout mimo!

Řešení rekurentních problémů

Kontrolní otázky

- 1. Jak je definován rekurentní vztah?
- 2. Vysvětlete postup řešení problémů, které jsou definované rekurentním vztahem.
- Jakým způsobem se řeší přesnost výpočtu u problémů zadaných rekurentním vztahem?

Úkoly k procvičení

1. Vytvořte program v jazyku C se standardními knihovnami, který pomocí iteračních výpočtů vypočítá funkce o neznámém počtu hodnot na standardním vstupu a vypíše výsledky na standardní výstup. Každá hodnota bude vypočtena zvlášť ve vlastní funkci. Algoritmy musí řešit heuristiku a práci s nekonečnými a nečíselnými hodnotami podobně jako to řeší knihovna <math.h>.