Machine

Learning

Inception V3와 전이학습을 이용한 고양이 종 판별 프로젝트

발 표 자 강 명 훈

KYUNG HEE UNIVERSITY

CONTENTS

01

02

03

04

연구 배경

연구 과정

연구 결과

결론

- 연구 주제

- 관련 연구

- 데이터 가공

- 학습 데이터

- 훈련 방법

-Train 별 그래프

- Model Accuracy

- 검증

- 결과 원인 분석

- 한계점 및 의의

KYUNG HEE UNIVERSITY

1.연구 배경

" 연구 주제 "

전이 학습을 이용한 고양이 종 판별 모델 구현

Google의 Inception V3와 고양이 이미지를 이용하여 고양이 종을 판별하는 모델을 구현한다.

Classification 정확도 80% 이상

Classification

관련 연구 1

Rethinking the Inception Architecture for Computer Vision

- 1 x 1 Conv 사용
- 효과적으로 파라미터 수와 차원 감소를 통한 연산량 감소
- Error 발생율 3.58%

original inception module

Fig. 5. 3 x Inception-A

Fig. 6. 5 x Inception-B

Fig. 7. 2 x Inception-C

관련 연구 2

Deep Learning guinea pig image dassification using Nvidia DIGITS and GoogleNet

- GoogleNet의 Inception Module 이용
- 다양한 시점의 guinea pig image이용 classification

1. First test:

- Epoch count: 15,
- Learning rate: 0.001 with fixed policy,
- Optimizer: Stochastic Gradient Descent.

2. Second test:

- Epoch count: 15,
- Learning rate: 0.001 with step down policy,
- Optimizer: Adam.

3. Third test:

- Epoch count: 15,
- Learning rate: 0.01 with step down policy,
- Optimizer: Stochastic Gradient Descent.

2.연구 과정

데이터 수집 및 가공

- Google Web Crawler 통해 고양이 이미지 수집
- 고양이 종당 400~ 500장의 이미지 수집

이미지 데이터 가공

학습 데이터

Train Setting

	Optimizer	Learning rate	Loss function	Train Step	Batch Size
value	Gradient Descent	0.01	Softmax Cross Entropy	1000	Train: 100 Validation :100

Train 1 Data

	American Short	British Short	Munchkin	Persian	Ragdoll	Russian Blue	Scottish Fold	SIAMESE	Total
Count	309	291	217	279	230	369	352	302	2349

Train 2 Data

	American Short	British Short	Munchkin	Persian	Ragdoll	Russian Blue	Scottish Fold	SIAMESE	Total
Count	304	415	306	407	401	420	402	350	3005

훈련 방법

- Pre-trained Graph 생성 (Inception V3)
- 훈련을 위한 데이터 Directory 생성
- 각 Image 별 Bottleneck 생성
- 생성된 Bottleneck을 통해서 새로운 학습 층을 만들고 train 시작

3.연구 결과

Train 1 Graph

Train Accuracy (Smoothing 0.99)

Validation Accuracy (Smoothing 0.99)

Train Cross Entropy (Smoothing 0.99)

Validation Cross Entropy (Smoothing 0.99)

Train 2 Graph

Train Accuracy (Smoothing 0.99)

Validation Accuracy (Smoothing 0.99)

Train Cross Entropy (Smoothing 0.99)

Validation Cross Entropy (Smoothing 0.99)

Model Accuracy

Result (Final step (999) 기준)

Train1	Accuracy	Cross Entropy
Train	72%	0.8009
Validation	71%	0.8687

Train2	Accuracy	Cross Entropy
Train	78%	0.6195
Validation	84%	0.5192

Comparison Train

	Accuracy	Cross Entropy
Train	1.08%	0.77%
Validation	1.18%	0.59%

4.결론

연구 검증

• Train에 사용되지 않은 전혀 새로운 이미지 5장으로 검증

Train 1

	Image1	Image2	Image3	Image4	Image5	Average
American	0.83	0.86	0.89	0.69	0.81	0.816
British	0.34	0.76	0.52	0.66	0.65	0.586
Munchkin	0.05	0.20	0.28	0.28	0.30	0.222
Persian	0.89	0.91	0.78	0.72	0.53	0.766
Ragdoll	0.90	0.97	0.84	0.40	0.72	0.766
Russian	0.97	0.96	0.86	0.90	0.87	0.912
Scottish	0.50	0.59	0.25	0.37	0.36	0.414
Siamese	0.98	0.88	0.85	0.99	0.99	0.938

연구 검증

• Train에 사용되지 않은 전혀 새로운 이미지 5장으로 검증

Train 2

	Image1	Image2	Image3	lmage4	Image5	Average
American	0.89	0.84	0.67	0.89	0.95	0.848
British	0.53	0.67	0.92	0.84	0.80	0.752
Munchkin	0.20	0.23	0.24	0.60	0.67	0.388
Persian	0.93	0.95	0.68	0.57	0.85	0.796
Ragdoll	0.95	0.90	0.40	0.65	0.95	0.77
Russian	0.97	0.94	0.70	0.79	0.58	0.796
Scottish	0.50	0.76	0.38	0.32	0.32	0.456
Siamese	0.98	0.81	0.85	0.99	0.99	0.924

검증 결과 분석 및 한계점

Siamese Cat

Munchkin Cat

- 정확도가 좋은 경우는 명확한 특징이 존재 한다.
- Siamese, Russian Blue의 경우는 고양이 모습의 명확한 특징이 존재한다.
- Munchkin의 경우는 가장 큰 특징이 짧은 다리인데 이를 잘 특정하지 못함
- Munchkin의 경우는 이종 교배가 권장이라 여러 고양이의 모습이 존재함

연구 의의

- 대부분의 고양이 판별 정확도에서 80%가 넘거나 비슷한 수치를 기록
- 전이 학습을 이용하여 짧은 시간 내에 다른 도메인에서도 충분히 효과적인 결과물을 낼 수 있음을 확인

추후 연구

- 더 많은 Train Step을 이용하여서 학습
- 좀 더 많은 데이터를 이용하여서 학습
- 다른 도메인에도 적용

THANK YOU

발 표 자 강 명 훈