Homework2

February 26, 2024

1 Homework 2

1.1 Section 1: Setup

```
[]: # Dataset: Kaggle
      # The data set contains medical insurance costs
      # Source:
      # https://www.kaggle.com/datasets/mirichoi0218/insurance
      # https://www.kaggle.com/datasets/mirichoi0218/insurance/download?
       \rightarrow dataset Version Number=1
[17]: import pandas as pd
      import numpy as np
      import statsmodels.api as sm
      import statsmodels.stats.outliers_influence as inf
      import matplotlib.pyplot as plt
      import seaborn as sns
      data = pd.read_csv('insurance.csv')
[21]: data.head()
[21]:
         age
                 sex
                         bmi
                              children smoker
                                                   region
                                                               charges
          19
                     27.900
                                                           16884.92400
              female
                                           ves
                                                southwest
      1
          18
                male 33.770
                                     1
                                           no
                                                southeast
                                                            1725.55230
      2
          28
                male 33.000
                                     3
                                                            4449.46200
                                                southeast
                                            no
      3
          33
                male 22.705
                                     0
                                                northwest 21984.47061
                                            no
          32
                male 28.880
                                     0
                                                            3866.85520
                                                northwest
[25]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1338 entries, 0 to 1337
     Data columns (total 7 columns):
                    Non-Null Count Dtype
          Column
                    -----
          _____
      0
                    1338 non-null
                                     int64
          age
      1
          sex
                    1338 non-null
                                     object
```

```
1338 non-null
                                    float64
      2
          bmi
      3
          children 1338 non-null
                                    int64
      4
          smoker
                    1338 non-null
                                    object
      5
          region
                    1338 non-null
                                    object
          charges
                    1338 non-null
                                    float64
     dtypes: float64(2), int64(2), object(3)
     memory usage: 73.3+ KB
[27]: data points = [
      {'age': 18, 'bmi': 30.0, 'charges': 1111.0, },
      {'age': 19, 'bmi': 24.0, 'charges': 2111.5, },
      {'age': 20, 'bmi': 25.0, 'charges': 7111.0, },
      {'age': 21, 'bmi': 23.0, 'charges': 4111.5, },
      {'age': 22, 'bmi': 26.0, 'charges': 5111.8, }
```

1.2 Section 2: Simple Linear Regression

```
[46]: X = data['age']
y = data['charges']

plt.figure(figsize=(10,6))
sns.scatterplot(x='age', y='charges', data=data)
plt.title('Relationship between Age and Insurance Charges')
plt.show()
```



```
[48]: X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
model.summary()
```

[48]:

Dep. Variable:	charges	R-squared:	0.089
Model:	OLS	Adj. R-squared:	0.089
Method:	Least Squares	F-statistic:	131.2
Date:	Mon, 26 Feb 2024	Prob (F-statistic):	4.89e-29
Time:	19:39:30	Log-Likelihood:	-14415.
No. Observations:	1338	AIC:	2.883e + 04
Df Residuals:	1336	BIC:	2.884e + 04
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
const	3165.8850	937.149	3.378	0.001	1327.440	5004.330
age	257.7226	22.502	11.453	0.000	213.579	301.866
Omn	ibus:	399.600	Dur	bin-Wat	son:	2.033
Prob	(Omnibus):	0.000	Jarq	ue-Bera	(JB):	864.239
\mathbf{Skew}	:	1.733	Prob	o(JB):		2.15e-188
\mathbf{Kurt}	osis:	4.869	Con	d. No.		124.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.3 Section 3: Multicollinearity

```
[55]: array([[<Axes: xlabel='age', ylabel='age'>,
              <Axes: xlabel='bmi', ylabel='age'>,
              <Axes: xlabel='children', ylabel='age'>,
              <Axes: xlabel='charges', ylabel='age'>],
             [<Axes: xlabel='age', ylabel='bmi'>,
              <Axes: xlabel='bmi', ylabel='bmi'>,
              <Axes: xlabel='children', ylabel='bmi'>,
              <Axes: xlabel='charges', ylabel='bmi'>],
             [<Axes: xlabel='age', ylabel='children'>,
              <Axes: xlabel='bmi', ylabel='children'>,
              <Axes: xlabel='children', ylabel='children'>,
              <Axes: xlabel='charges', ylabel='children'>],
             [<Axes: xlabel='age', ylabel='charges'>,
              <Axes: xlabel='bmi', ylabel='charges'>,
              <Axes: xlabel='children', ylabel='charges'>,
              <Axes: xlabel='charges', ylabel='charges'>]], dtype=object)
```



```
# - bmi: Displays a possible correlation with both insurance costs and age.
# - age: Seems to correlate with charges and bmi.
# - charges: Indicates a potential correlation with age and bmi.

[78]: X_numeric = X.select_dtypes(include=[np.number])

X_filled = X_numeric.fillna(0) # Or X_numeric.fillna(X.mean())

X_dropped = X_numeric.dropna()

X_no_inf = X_filled.replace([np.inf, -np.inf], np.nan).fillna(0)
```

[57]: # Visual Observations:

```
X_final = X_no_inf.astype(float)
```

```
[80]: from statsmodels.stats.outliers_influence import variance_inflation_factor

for i in range(X_final.shape[1]):
    vif = variance_inflation_factor(X_final.values, i)
    print(f"VIF for {X_final.columns[i]}: \tf{vif:10.3f}")
```

VIF for age: 8.098
VIF for bmi: 8.044
VIF for children: 1.800
VIF for charges: 2.474

1.4 Section 4: Multiple Linear Regression


```
[105]: X = pd.DataFrame(data[['age', 'bmi','charges','children']])
y = data['charges']

X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
model.summary()
```

[105]:

Dep. Variable:	charges	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	2.193e + 33
Date:	Mon, 26 Feb 2024	Prob (F-statistic):	0.00
Time:	20:08:24	Log-Likelihood:	32996.
No. Observations:	1338	AIC:	-6.598e + 04
Df Residuals:	1333	BIC:	-6.596e + 04
Df Model:	4		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	3.082e-12	7.35e-13	4.194	0.000	1.64e-12	4.52e-12
\mathbf{age}	1.199e-14	9.66e-15	1.241	0.215	-6.96e-15	3.09e-14
\mathbf{bmi}	-4.13e-14	2.17e-14	-1.906	0.057	-8.38e-14	1.2e-15
$_{ m charges}$	1.0000	1.14e-17	8.79e + 16	0.000	1.000	1.000
${f children}$	-1.137e-13	1.08e-13	-1.057	0.291	-3.25e-13	9.73e-14

Omnibus:	472.843	Durbin-Watson:	1.603
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1309.031
Skew:	1.867	Prob(JB):	5.59e-285
Kurtosis:	6.088	Cond. No.	1.02e + 05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.02e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
[150]: age_values = []
       bmi_values = []
       children_values = []
       charges_values = []
       for point in data_points:
           age_values.append(point['age'])
           bmi_values.append(point['bmi'])
           charges_values.append(point['charges'])
       beta_0 = model.params['const']
       beta_age = model.params['age']
       beta_bmi = model.params['bmi']
       beta_charges = model.params['charges']
       age_values = (beta_0 + beta_age * np.array(age_values) + beta_bmi * np.
        Garray(bmi_values) + beta_charges * np.array(charges_values))
       for i, (age, bmi, children, charges,) in enumerate(zip(age_values, bmi_values, u
        ⇔children_values, charges_values,)):
           print(np.array(age_values).shape)
       print(np.array(bmi_values).shape)
       print(np.array(charges_values).shape)
       print(beta_age, beta_bmi, beta_children, beta_charges)
      (5,)
      (5,)
```

1.199040866595169e - 14 - 4.1300296516055823e - 14 - 1.1368683772161603e - 13

0.99999999999997

[]: