I had mixed feeling about what I wanted to do. At the end, I worked as usual on the script (as seen in the first 2 pages). I solved 2 exercises and then decided to learn how to use latex, in order to write a summary for the course. I got to the point seen in the last 2 pages.

95

UNDERSTAND

Measurable sets: Part III

Measure extensions 6.1

Proposition 6.1. Let (a,b], $a < b \in \mathbb{R}$, be any left-open interval. Let I be countable and $(a_i, b_i], i \in I, be s.t., (a, b] \subset \bigcup_{i \in I} (a_i, b_i], then$

$$b - a \le \sum_{i \in I} (b_i - a_i). \tag{10}$$

Proof. The finite case, i.e., there exists $N \in \mathbb{N}$ s.t. $\bigcup_{i \in I} (a_i, b_i] = \bigcup_{i=1}^N (a_i, b_i]$ follows by induction. The base step of the induction is clear, if $(a, b] \subset (c, d]$, then $c \le a < b \le d$ and hence $b - a \le d - c$. For the induction step assume that (10) holds for N - 1 intervals. Let $(a,b] \subset \bigcup_{i=1}^N (a_i,b_i]$. We want to show that $b-a \leq \sum_{i=1}^N (b_i-a_i)$. Notice first that we can always assume that $b_1 \leq b_2 \leq \cdots \leq b_N$. If not, we can just consider a relabeling and the union would remain unchanged. Assume first that $b \notin (a_N, b_N]$. Then, $b \leq a_N$ since $b > b_N$ is not possible. To see this, assume by contradiction that $b > b_N$. Then, since $b_1 \leq b_2 \leq \cdots \leq b_N, \ \underline{b \notin (a_i, b_i]} \text{ for any } i = 1, \dots, N.$ Since $b \in (a, b] \subset \bigcup_{i=1}^N (a_i, b_i]$, this is not possible. Hence, $b \notin (a_N, b_N] \Rightarrow b \leq a_N$. Hence, $(a, b] \subset \bigcup_{i=1}^{N-1} (a_i, b_i]$ since if $y \in (a, b]$, $x \times a_N = a_N$ $y \leq b \leq a_N$ and hence $y \notin (a_N, b_N]$. By the induction hypothesis, the result follows. Thus, in the remaining we assume that $b \in (a_N, b_N]$. If $a_N \leq a_0$ then $a_N \leq a < b \leq b_N$ and the result follows. Hence, assume that $a < a_N$? Then, $(a, a_N) \subset \bigcup_{i=1}^{N-1} (a_i, b_i]$. This is because $y \in (a, a_N]$ implies that $y \notin (a_N, b_N]$. Further $y \in (a, a_N]$ implies that $a < y \le a_N < b$ $(b \in (a_N, b_N])$ and hence $(a, a_N] \subset (a, b]$. Since (a, b] is a subset of $\bigcup_{i=1}^N (a_i, b_i]$ it follows that $y \in (a_i, b_i]$ for some $i \neq N$, i.e., $(a, a_N] \subset \bigcup_{i=1}^{N-1} (a_i, b_i]$. By the induction hypothesis, $\sum_{i=1}^{N-1} (b_i - a_i) \ge a_N - a$. Therefore, $\sum_{i=1}^{N} (b_i - a_i) \ge a_N - a + b_N - a_N \ge a_N - a + b - a_N = b - a$. We use the Heine-Borel theorem for intervals (cf. Proposition 2.9) to prove the infinite case, i.e., $\bigcup_{i\in I}(a_i,b_i]=\bigcup_{i=1}^{\infty}(a_i,b_i]$. Suppose that $(a,b]\subset\bigcup_{i=1}^{\infty}(a_i,b_i]$. Let $\varepsilon>0$ be s.t. $b-a>\varepsilon$. This is possible since $b \neq a$. Clearly, the family of intervals $(a_i, b_i + \varepsilon 2^{-i}), i \in \mathbb{N}$, are s.t.

$$[a+\varepsilon,b]\subset\bigcup_{i\in\mathbb{N}}(a_i,b_i+\varepsilon 2^{-i}).$$

By Proposition 2.9 it follows that there exists i_1, \ldots, i_N , s.t.

$$[a+\varepsilon,b]\subset\bigcup_{k=1}^N(a_{i_k},b_{i_k}+\varepsilon 2^{-i_k}).$$

Hence, by the finite case,

$$b - a + \varepsilon \le \sum_{k=1}^{N} (b_{i_k} - a_{i_k} + \varepsilon 2^{-i_k}) = \sum_{k=1}^{N} (b_{i_k} - a_{i_k}) + \varepsilon \sum_{k=1}^{N} 2^{-i_k}$$
$$\le \sum_{i=1}^{\infty} (b_i - a_i) + \varepsilon \sum_{i=1}^{\infty} 2^{-i} = \sum_{i=1}^{\infty} (b_i - a_i) + \frac{\varepsilon}{2} \sum_{i=0}^{\infty} 2^{-i}.$$

By Exercise 3.15, we obtain that $b-a+\varepsilon \leq \sum_{i=1}^{\infty}(b_i-a_i)+\varepsilon$. This completes the argument.

If the collection $\{(a_i,b_i]: i \in I\}$ is disjoint we also have the following result (Exercise 6.10).

Proposition 6.2. Let (a,b], $a < b \in \mathbb{R}$, be any left-open interval. Let I be countable and $\{(a_i,b_i]: i \in I\}$ be a <u>disjoint collection</u> of left-open intervals s.t. $\cup_{i\in I}(a_i,b_i] \subset (a,b]$. Then

Q1

61

Definition 6.1. Let $\Omega \neq \emptyset$ be a set and A be a collection of subsets from Ω . Let $A \in \mathcal{P}(\Omega)$ be any subset of Ω . A collection $\{U_i : i \in I\}$ is said to be a covering of A by sets from A if $\{U_i : i \in I\} \subset A$ and $A \subset \bigcup_{i \in I} U_i$. A covering $\{U_i : i \in I\}$ of A by sets from A is referred to as countable (resp. finite) if I is countable (resp. finite). We write $C_A(A)$ for the set which

as countable (resp. finite) if I is countable (resp. finite). We write $C_{\mathcal{A}}(A)$ for contains all the countable coverings of A by sets from \mathcal{A} , i.e.,

Example 4.6.

e countable coverings of A by sets from A, i.e., $\mathcal{E} = \{U_i : i \in I\}$ $C_A(A) = \{\xi : \xi \text{ is a countable covering of A by sets from A}\}.$

Example 6.1. Consider the setting of Example 4.6 and let $\Omega = \mathbb{R}$ and \mathcal{R} be the family of left-open intervals with the empty set adjoined:

$$\mathcal{R} = \{A \colon A = (a, b], \ a, b \in \mathbb{R}\} \cup \{\emptyset\}.$$

Let $B_r(x)$ be any open ball with center $x \in \mathbb{R}$ and radius r > 0. That is, $B_r(x) = (x - r, x + r)$ is an open interval with endpoints a = x - r and b = x + r. Consider the set $\xi_1 = \{(a, r], (r, b]\}$. Then, $\xi_1 \in C_{\mathcal{R}}((a, b))$. As another example, let for $n \in \mathbb{N}$,

$$(a,b) c(a,r) v(r,b) U_i^n = \left(a + \frac{2ri}{2^n}, a + \frac{2r(i+1)}{2^n}\right), \quad i = 0, \dots 2^n - 1.$$

$$(a,b) c(a,r) v(r,b) U_i^n = \left(a + \frac{2ri}{2^n}, a + \frac{2r(i+1)}{2^n}\right), \quad i = 0, \dots 2^n - 1.$$

Then, $\xi_n^2 = \{U_i^n : i = 0, \dots 2^n - 1\} \in C_{\mathcal{R}}((a, b))$ for any $n \in \mathbb{N}$. As a final example, let $\varepsilon > 0$ and define

$$U_k^{\varepsilon} = \left(\frac{a}{2^k}, \frac{b}{2^k}\right], \quad k \in \mathbb{N} \cup \{0\}.$$

$$Then, \, \xi_{\varepsilon}^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi_{\varepsilon}^3 \text{ of } (a,b) \text{ by sets from } \mathcal{R} \text{ offers an approach to quantify the length of } (a,b) \text{ by summing } \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi_{\varepsilon}^3 \text{ of } (a,b) \text{ by sets from } \mathcal{R} \text{ offers an approach to quantify the length of } (a,b) \text{ by summing } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi_{\varepsilon}^2 \text{ and } \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0. \text{ Each of the coverings } \xi, \, \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \xi > 0. \text{ Each of the coverings } \xi, \, \xi \in \mathcal{L}_k^3 = \{U_k^{\varepsilon} : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \xi > 0. \text{ for any$$

Then, $\zeta_{\varepsilon} = \{C_k : k \in \mathbb{N} \cup \{0\}\} \in C_{\mathcal{R}}((a,b)) \text{ for any } \varepsilon > 0$. Each of the coverings ζ_i , ζ_{ε} and ζ_{ε}^2 of (a,b) by sets from \mathcal{R} offers an approach to quantify the length of (a,b) by summing up the respective lengths of the sets from \mathcal{R} . Given $A \in \mathcal{P}(\mathbb{R})$, we define the function $v_{\ell}(\xi) = \sum_{U \in \xi} \ell(U), \ \xi \in C_{\mathcal{R}}(A) \text{ where } \ell \colon \mathcal{R} \to [0,\infty) \text{ is s.t.}$

$$\ell(U) = \begin{cases} b - a, & \text{if } U = (a, b], \\ 0, & \text{if } U = \emptyset. \end{cases}$$

$$\mathcal{U} : b - \mathbf{a}$$

$$\mathcal{U} : b - \mathbf{a}$$

As an example, we have that $v_{\ell}(\xi_1) = r - a + b - r = b - a$. Notice also, that

$$v_{\ell}(\xi_{n}^{2}) = \sum_{i=0}^{2^{n}-1} \frac{2r(i+1)-i}{2^{n}} \qquad \{(\alpha,r],(r,b)\} = > (r-\alpha) + (b-r) = b-a$$

$$= \frac{2r}{2^{n}} + \frac{4r}{2^{n}} - \frac{2r}{2^{n}} + \frac{6r}{2^{n}} - \frac{4r}{2^{n}} + \dots + \frac{2r(2^{n}-1)}{2^{n}} + 2r - \frac{2r(2^{n}-1)}{2^{n}}$$

$$= 2r = b-a.$$

Exercise 6.1. Verify that $v_{\ell}(\xi_{\varepsilon}^3) = 2(b-a)$.

In the following we show that

$$\inf\{v_{\ell}(\xi) \colon \xi \in C_{\mathcal{R}}((a,b])\} = \inf_{\xi \in C_{\mathcal{R}}((a,b])} v_{\ell}(\xi) = b - a, \tag{11}$$

i.e., b-a is a lower bound for the values of $v_{\ell}(\xi)$, $\xi \in C_{\mathcal{R}}((a,b])$.

Exercise 6.2. Verify that $\inf_{\xi \in C_{\mathcal{R}}((a,b])} v_{\ell}(\xi) \leq b-a$.

Upon the later exercise, it remains to show that $b-a \leq \inf_{\xi \in C_{\mathcal{R}}((a,b])} v_{\ell}(\xi)$. Let ξ be any countable covering of (a,b] by sets from \mathcal{R} . That is, $\xi = \{U_i : i \in I\}$, with $U_i = (a_i,b_i]$ or $U_i = \emptyset$, $i \in I$, where I is countable. Since $\ell(\emptyset) = 0$, we assume without loss of generality that $U_i = (a_i,b_i]$ for any $i \in I$. Therefore, we have that $(a,b] \subset \bigcup_{i \in I} (a_i,b_i]$ and $v_{\ell}(\xi) = 0$

Summary: Introduction to Probability

Daniele Cambria

2024

Chapter 1

Measurable sets: Part III

1.1 Measure extensions

Proposition 1.1. Let (a,b], $a < b \in \mathbb{R}$, be any left-open interval. Let I be countable and $(a_i,b_i]$, $i \in I$, be s.t., $(a,b] \subset \bigcup_{i \in I} (a_i,b_i]$, then

$$b - a \le \sum_{i \in I} (b_i - a_i). \tag{10}$$

Proposition 1.2. Let (a,b], $a < b \in \mathbb{R}$, be any left-open interval. let I be countable and $\{(a_i,b_i]:i\in I\}$ be a disjoint collection of left-open intervals s.t. $\bigcup_{i\in I}(a_i,b_i]\subset (a,b]$. Then

$$\sum_{i \in I} (b_i - a_i) \le b - a.$$

Definition 1.1. Let $\Omega \neq \emptyset$ be a set and \mathcal{A} be a collection of subsets from Ω . Let $A \in \mathcal{P}(\Omega)$ be any subset of Ω . A collection $\{U_i : i \in I\}$ is said to be a covering of A by sets from \mathcal{A} if:

(i) $\{U_i : i \in I\} \subset \mathcal{A}$ (Set membership condition)

NOTE that (i) means $U_i \subset \mathcal{A} \ \forall i \in I$, not $\bigcup_{i \in I} U_i \subset \mathcal{A}$.

(ii) $A \subset \bigcup_{i \in I} U_i$ (Covering condition)

A covering $\{\bigcup_i : i \in I\}$ of A by sets from A is referred as countable (resp. finite) if I is countable (resp. finite). We write $C_A(A)$ for the set which contains all the countable covering of A by sets from A, i.e.,

 $C_{\mathcal{A}}(A) = \{ \xi : \xi \text{ is a countable covering of } A \text{ by sets from } \mathcal{A} \}.$

Why do we say $A \in \mathcal{P}(\Omega)$ instead of $A \in \Omega$? When we use the notation $A \in \mathcal{P}(\Omega)$, it signifies that A is a subset of Ω , not an element of Ω . The power set $\mathcal{P}(\Omega)$ represents all possible subsets of Ω , including Ω itself, any subset of it, or even an empty set. Using $A \in \Omega$ would incorrectly imply that A is an individual element of Ω , which does not align with the context of covering subsets with subsets.

My Example 1.1 (Finite Covering). Let $\Omega = \{1, 2, 3, 4, 5\}$, and let \mathcal{A} be a collection of subests of Ω , such as $\mathcal{A} = \{\{1\}, \{2, 3\}, \{3, 5\}\}$, if we take $A = \{1, 2, 3\}$, a finite covering of A by sets from \mathcal{A} could be $\{\{1\}, \{2, 3\}\}$. This covering is finite, as I can be $\{1, 2\}$, which is finite. The 2 conditions both hold. Each U_i is a subset of \mathcal{A} , and A is covered by the union of U_i . In this case, the possible countable coverings of A that can be formed using subsets of \mathcal{A} are restricted to the one already provided. Therefore, $C_{\mathcal{A}}(A) = \{\{1\}, \{2, 3\}\}$

Important from Example 6.1 (Script) Let $\Omega = \mathbb{R}$ and $\mathcal{R} = \{A : A = (a, b], a, b \in \mathbb{R}\} \cup \{\emptyset\}$. We define the function $\ell : \mathcal{R} \to [0, \infty)$ s.t.

$$\ell(U) = \begin{cases} b - a, & \text{if } U = (a, b], \\ 0, & \text{if } U = \emptyset. \end{cases}$$

Given $A \in \mathcal{P}(\mathbb{R})$, we also define the function $v_{\ell}(\xi) : \mathcal{R} \to [0, \infty)$, where $\xi \in C_{\mathcal{R}}(A)$ s.t.

$$v_{\ell}(\xi) = \sum_{U \in \xi} \ell(U).$$

We also show that

$$\inf\{v_{\ell}(\xi) : \xi \in C_{\mathcal{R}}((a,b])\} = \inf_{\xi \in C_{\mathcal{R}}((a,b])} v_{\ell}(\xi) = b - a, \tag{11}$$

i.e., b-a is a lower bound for the values of $v_{\ell}(\xi)$, $\xi \in C_{\mathcal{R}}((a,b])$. We also saw that there exists $\xi \in C_{\mathcal{R}}((a,b])$ s.t. $b-a=v_{\ell}(\xi)$. Hence, the latter infimum is a minimum (Proposition 1.3).

Proposition 1.3. Given any left open interval (a, b], $min_{\xi \in C_{\mathcal{R}}((a,b])}v_{\ell}(\xi) = b-a$

Define ℓ^* We build on the latter result and define the function

$$\ell^* = \inf_{\xi \in C_{\mathcal{R}}(A)} v_{\ell}(\xi), \quad A \in \mathcal{P}(\mathbb{R}).$$

Note, we know that if $A \in \mathcal{R}$, then $\ell^*(A) = b - a$.