4 ב"ח – ת"ב מטרים וטופולוגיים

רן
שם פרטי
קירי
יי שם משפחה
24452222
311532238
תעודת זהות
1/12/2016
תאריך הגשה
4.4
11
קבוצת תרגול

<u>:1 שאלה</u>

יהא מרחב טופולוגי (X,τ) כך שנתונות A_1,\cdots,A_k קבוצות דלילות ב- (X,τ) . נרצה להראות כי (X,τ) היא קבוצה דלילה ב- (X,τ) .

לשם כך, תהא קבוצה פתוחה כלשהי $B\in au$. מהגדרת A_i לכל A_i , קיימות נקודות לכל C כך שלנקודות אליה C כך שלנקודות אליה עבורן C עבורן C עבורן C

נבנה קבוצה כזו בצורה איטרטיבית באופן הבא:

עבור B_1 , קיימת סביבה $B_1 \subset B$ עבורה $B_1 \cap A_1 = \emptyset$. עתה, נתבונן ב- B_1 שהינה קבוצה פתוחה, ונסיק כי עבורה $B_2 \cap A_2 = \emptyset$ כך ש- $B_2 \subset B_1$ קיימת סביבה $B_2 \cap A_2 = \emptyset$

יכך, לכל i קבוצה B_i כך ש: $1 \leq i \leq k$ כך, לכל ולקבל לכל נוכל לבחור קבוצות כנ"ל

$$B \supset B_1 \supset B_2 \cdots \supset B_k$$

ונגדיר את $x \in B_i$ נשים לב כי לכל $x \in B_k$ מתקיים שלכל $x \notin A_i$ משום שבפרט $x \notin A_i$ שעל פי $x \in B_k$ נשים לב כי לכל $x \in B_k$ מתקיים שלכל $x \notin \bigcup_{i=1}^k A_i$ משום שבפרט $x \notin \bigcup_{i=1}^k A_i$ ולכן פתוחה ולכן פתוחה $x \notin U$ פתוחה ולכן פתוחה ב- $x \notin U$ פי הגדרה.

כלומר, הראינו כי לכל $B\in au$ ניתן למצוא סביבה פתוחה $U\subset B$ כך ש- $U\subset B$ כלומר הקבוצה $B\in au$ כלומר הלכלה ב-X כדרוש.

שאלה 2:

א. על מנת להראות כי $(\mathbb{R},d_1)\mapsto (\mathbb{R},d_1)$ רציפה, נראה כי המקור של כל קבוצה פתוחה ב- $(V,d)\mapsto (\mathbb{R},d_1)$ הוא קבוצה פתוחה ב-(V,d). לשם כך, תהא קבוצה פתוחה $U\subseteq (\mathbb{R},d_1)$ בישר הממשי ניתנת לכתיבה כאיחוד בן מניה של בתרגיל הבית השני, הראינו כי כל קבוצה פתוחה U בישר הממשי ניתנת לכתיבה כאיחוד בן מניה של קטעים פתוחים. כלומר:

$$U = \bigcup_{i \in I} (a_i, b_i)$$

עתה, על מנת להראות כי $F^{-1}(u)$ פתוחה, נרצה להראות כי לכל $u\in U$ מתקיים $F^{-1}(u)$ פתוח. עתה, על מנת להראות כי $u\in U$ פתוחה, נרצה להראות כי $u\in U$ מובע כי קיים $u\in U$ עבורו $u\in U$. נשים לב כי

$$F^{-1}(u) = \{v \in V | \|v\| = u\} = \{v \in V | a_i < \|v\| < b_i\} = \{v \in V | a_i < \|v - \overline{0}\| < b_i\}$$

$$= \{v \in V | a_i < d(v, \overline{0}) < b_i\} = \{v \in V | v \notin B(0, a_i)\} = \underbrace{B(0, b_i)}_{\text{quadrage}} \cap \underbrace$$

ומפני שחיתוך סופי של קבוצות פתוחות גם הוא פתוח, נסיק כי $F^{-1}(u)$ קבוצה פתוחה. מכאן שמתקיים:

$$F^{-1}(U) = \bigcup_{u \in U} F^{-1}(u)$$

. רציפה $\|\cdot\|:(V,d)\mapsto (\mathbb{R},d_1)$ כי נסיק לכן נסיק של קבוצות של קבוצות של היא קבוצה פתוחה כאיחוד א

ב. יהא $\lambda \in \mathbb{R}$ סקלר כלשהו, ויהא מרחב מטרי (V,d) כלשהו. נגדיר את ההעתקה: $f: V \mapsto V \quad f(v) = \lambda v$ ונרצה להראות כי העתקה זו הינה רציפה.

נרצה להראות זאת על ידי שימוש בהגדרה שהוכחנו את שקילותה, לפיה f רציפה אם ורק אם לכל סדרה . $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים עבורה $x_n = x$ עבורה $\{x_n\}_{n=1}^\infty$

תהא, אם כן, סדרה $\{x_n\}_{n=1}^\infty$ עבורה הנ"ל מתקיים. אזי, על פי הגדרת התכנסות סדרות במרחבים $\|x_n-x\|<arepsilon$ מתקיים $n\geq N$ כך שלכל $N\in\mathbb{N}$ מטריים, נסיק כי לכל

עתה, נשים לב כי בהנתן arepsilon>N מובטח כי גם בבחירת $arepsilon'=rac{arepsilon}{|\lambda|}$ קיים $N\in\mathbb{N}$ כך שלכל arepsilon>0 מתקיים אך מכאן שלכל n כנ"ל מתקיים: $\|x_n-x\|<arepsilon'=rac{arepsilon}{\|\lambda\|}$

$$||f(x_n) - f(x)|| = ||\lambda x_n - \lambda x|| = |\lambda| ||x_n - x|| < \frac{|\lambda|\varepsilon}{|\lambda|} = \varepsilon$$

כלומר, הראינו כי עבור סדרה מתכנסת $\{x_n\}_{n=1}^\infty$ מתקיים שגם $\{x_n\}_{n=1}^\infty$ מתכנסת ל-כן נסיק. .cי f אכן רציפה כדרוש

> יהא (V,d) מרחב וקטורי כלשהו, ויהא $v \in V$. נגדיר העתקה על ידי: $f: V \mapsto V \quad f(u) = u + v$

> > נרצה להראות כי העתקה זו רציפה.

 $\{x_n\}_{n=1}^\infty$ גם כאן, בדומה לסעיף ב', נשתמש בהגדרה השקולה לפיה f רציפה אם ורק אם כל סדרה f(x)-שמתכנסת ל- $x \in V$ מתכנסת גם היא ל- $x \in V$ שמתכנסת גם היא

תהא, אם כן, סדרה כנ"ל, $\sum_{n=0}^{\infty}u_n=u$ עבורה מתקיים עבורה מתקיים לומר, על פי הגדרת ההתכנסות לכל עבורה כנ"ל, אם כן, סדרה ביינים, אם כן

$$\varepsilon \ge ||u_n - u|| = ||u_n + v - u - v|| = ||f(u_n) - f(u)||$$

. כלומר f כל נסיק כי f נסיק לכל סדרה כנ"ל ולכן $\lim_{n\to\infty}f(u_n)=f(u)$ כלומר

ד. $(2 \Longrightarrow 1)$ נניח כי T העתקה רציפה ב-x=0 כהעתקה מהמרחב המטרי לעצמו. כלומר, לכל סדרה נרצה להראות כי עבור כל סדרה . $\lim_{n \to \infty} T x_n = 0$ מתקיים בנוסף, מתקיים, $\lim_{n \to \infty} x_n = 0$ עבורה מתקיים $\{x_n\}_{n=1}^\infty$

עבורה מתקיים $x_n=x$ עבורה מתקיים $x_n=x$ עבורה מתקיים $x_n=x$ עבורה מתקיים $x_n=x$ עבורה מתקיים $x_n\xrightarrow[n\to\infty]{n\to\infty}x$

$$x_n \xrightarrow{n \to \infty} x \iff ||x_n - x|| \xrightarrow{n \to \infty} 0$$

ואכן מתקיים:

$$x_{n} \xrightarrow{n \to \infty} x \iff \|x_{n} - x\| \xrightarrow{n \to \infty} 0 \overset{y_{n} = x_{n} - x}{\iff} \|T(x_{n} - x)\| \xrightarrow{n \to \infty} 0 \iff \|Tx_{n} - Tx\| \xrightarrow{n \to \infty} 0$$
$$\iff Tx_{n} \xrightarrow{n \to \infty} Tx$$

כלומר נקבל כי T אכן רציפה בכל המרחב הוקטורי כדרוש.

נניח כי T העתקה רציפה ב-(V,d) כהעתקה ממרחב וקטורי לעצמו. נרצה להראות כי $(T \Rightarrow 3)$ -הפונקציה חסומה בספירת היחידה שמרכזה $f(x) = \|Tx\|$ היא פונקציה $f:V \mapsto \mathbb{R}$.x = 0

לשם כך נניח בשלילה כי אין זה נכון. כלומר, נניח כי לכל M>0 קיים $x\in V$ לשם כך נניח בשלילה כי אין זה נכון. אך $\|x\|=1$ מתקיים $n\in\mathbb{N}$ עבורה לכל $\{x_n\}_{n=1}^\infty$ עבורה סדרה סדרה, אם כן, סדרה סדרה $f(x)=\|Tx\|>M$ (כאמור, הנחת השלילה מבטיחה כי ניתן לבחור x_n (כאמור, הנחת השלילה מבטיחה כי ניתן לבחור $f(x_n) = \|Tx_n\| > n^2$

עתה, נבחר סדרה חדשה $\{y_n\}_{n=1}^\infty$ שתוגדר על ידי $y_n=rac{1}{n}x_n$. ונשים לב כי:

$$\|y_n\| = \left\|\frac{1}{n}x_n\right\| = \left|\frac{1}{n}\right| \|x_n\| = \left|\frac{1}{n}\right| \stackrel{n \to \infty}{\longrightarrow} 0$$

כלומר נסיק כי $(y_n) \xrightarrow{n \to \infty} f(0) = 0$ מרציפות $(y_n) \xrightarrow{n \to \infty} f(0) = 0$ תקיים $(y_n) \xrightarrow{n \to \infty} f(0) = 0$ כלומר נסיק כי $(y_n) \xrightarrow{n \to \infty} f(0) = 0$ מרציפות $(y_n) \xrightarrow{n \to \infty} f(0) = 0$ מתקיים:

$$||f(y_n) - f(0)|| = \left| \left| T\left(\frac{1}{n}x_n\right) - T(0) \right| \right| = \left| \frac{1}{n} \right| ||Tx_n|| > \left| \frac{1}{n} \right| n^2 = n \xrightarrow{n \to \infty} \infty$$

f(x) < M אז $\|x\| = 1$ אז $x \in V$ אם $x \in V$ אם $x \in V$ אז אז מתקיים $x \in V$ אז אז מרגיפות $x \in V$ אז מכתירה לרציפות $x \in V$ אז מכן קיים $x \in V$ אם $x \in V$ מתקיים בהכרח נניח כי $x \in V$ רציפה ב- $x \in V$ כלומר, שבהנתן סדרה $x \in V$ עבורה $x \in V$ עבורה $x \in V$ מתקיים בהכרח $x \in V$ לשם כך, תהא סדרה $x \in V$ עבורה מתקיים, כאמור, $x \in V$ אזי בפרט $x \in V$ מתקיים $x \in V$ לשם כך, תהא סדרה $x \in V$ עבורה מתקיים, כאמור, $x \in V$ אזי בפרט מתקיים $x \in V$ ולכן:

$$||Tx_n|| = ||x_n|| \left\| T\left(\frac{x_n}{||x_n||}\right) \right\| \stackrel{\left\|\frac{x_n}{||x_n||}\right\| = 1}{=} ||x_n|| f\left(\frac{x_n}{||x_n||}\right) < M||x_n|| \xrightarrow{n \to \infty} 0$$

כלומר x=0 בירוש. $Tx_n \xrightarrow{n\to\infty} 0 = T(0)$ כלומר $Tx_n \xrightarrow{n\to\infty} 0 = T(0)$ כדרוש.

$$3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 3$$

ולכן כאמור, כל התנאים הללו שקולים.

שאלה 3:

. נתונה העתקה רציפה, $W \subset Y$ וכן $V \subset X$ וכן נתונות $F:(X,\tau) \mapsto (Y,\sigma)$ בהתאמה

א. נתבונן בהעתקה הבאה:

$$F: (\mathbb{R}^2, d_{Eucl}) \mapsto (\mathbb{R}, d_{Eucl}) \quad F(x, y) = x$$

קרי ההטלה על ציר ה-x, אשר הוכחנו בכיתה כי היא רציפה. נבחר את $W=\mathbb{R}$, ונבחר את קרי התוברה. הקבוצה:

$$V = S((0,0), 1) = \{(x, y) | ||(x, y)||_2 = 1\}$$

נשים לב כי:

$$F(V) = \{ x \in \mathbb{R} | \exists (x, y) \in V \quad F(x, y) = x \} = \{ x \in \mathbb{R} | \exists y \in \mathbb{R} \quad x^2 + y^2 = 1 \}$$

כלומר מתקיים:

$$F(V) = [-1,1] \Longrightarrow \operatorname{Int} F(V) = (-1,1)$$

אך נשים לב, כי:

$$Int V = \emptyset$$

וזאת משום שלספירה אין נקודות פנימיות, היא קבוצה סגורה. אך מכאן שמתקיים:

$$F(\operatorname{Int} V) = \emptyset$$

כלומר:

$$\operatorname{Int}(F(V)) \not\subseteq F(\operatorname{Int} V)$$

עתה, נתבונן בהעתקה:

$$F: (\mathbb{R}, d_{Eucl}) \mapsto (\mathbb{R}^2, d_{Eucl}) \quad F(x) = (\cos x, \sin x)$$

ונתבונן בהעתקה עבור $W=Sig((0,0),1ig)\subseteq (\mathbb{R}^2,d_{Eucl})$ ו- ו- $V=[0,2\pi]\subseteq (\mathbb{R},d_{Eucl})$ נשים לב כי $V=[0,2\pi]\subseteq (\mathbb{R},d_{Eucl})$ נשים לב כי ההעתקה לוקחת את V ומתאימה לה את מעגל היחידה (לא באופן חח"ע).

ינשים לב כי: $\cos x$, sin x נשים לב כי:

$$F(V) = S((0,0),1) \Longrightarrow \operatorname{Int} F(V) = \emptyset$$

:אך

$$\operatorname{Int} V = (0,2\pi) \Longrightarrow F(\operatorname{Int} V) = S((0,0),1) \setminus \{(1,0)\}$$

ולכן $\cos x_n \overset{n \to \infty}{\longrightarrow} \cos x$ וכן $\sin x_n \overset{n \to \infty}{\longrightarrow} \sin x$ ולכן $\sin x_n \overset{n \to \infty}{\longrightarrow} \sin x$ מתקיים $\sin x_n \cos x$ ולכן $\sin x_n \cos x$ ולכן $\cos x_n \sin x_n$ מתקיים $\sin x_n \cos x$ ולכן $\cos x_n \sin x_n$.

:כלומר

$F(\operatorname{Int} V) \not\subseteq \operatorname{Int} F(V)$

ולכן אין הכלה ככלל לאף אחד מהכיוונים.

ב. תהא $X = \{a, b\}$ עליה נגדיר את הטופולוגיה הבאה:

$$\sigma = \{\emptyset, \{a, b\}, \{a\}\}$$

ונגדיר, ראשית, העתקה, באופן הבא:

$$F: (X, \sigma) \mapsto (X, \sigma)$$
 $F(a) = a$
 $F(b) = a$

ונרצה להראות כי העתקה זו רציפה. נשים לב כי לכל קבוצה פתוחה, המקור שלה הוא קבוצה פתוחה שכן:

$$F^{-1}(\{a,b\}) = \{a,b\} \quad F^{-1}(\{a\}) = \{a,b\} \quad F^{-1}(\emptyset) = \emptyset$$

יים: $V = X = \{a, b\}$ מתקיים:

$$F(\overline{V}) = F(\overline{\{a,b\}}) = F(\{a,b\}) = \{a\} \quad \overline{F(V)} = \overline{F(\{a,b\})} = \overline{\{a\}} = \{a,b\}$$

כלומר קיבלנו כי:

$$F(\overline{V}) \not\supseteq \overline{F(V)}$$

עתה, נשים לב כי בהנתן מרחב טופולוגי ותתי קבוצות כנתון בשאלה, נתבונן ב- $u\in F(ar V)$. על פי הגדרה עתה, נשים לב כי בהנתן מרחב טופולוגי ותתי קבוצות כנתון בשאלה, נתבונן $v\in ar V$ עבורו מתקיים $v\in ar V$. נפריד עתה ל-2

- $u \in \overline{F(V)}$ אם $u \in F(V)$ ולכן בפרט, $v \in V$.i
- אזי, $u\in U'$ מתקיים $V'\cap V\neq\emptyset$ מתקיים $v\in V'$ מביבה $v\in U'$ אזי, נקבל כי לכל סביבה $v\in U'$ מרציפות $v\in U'$ היא סביבה של $v\in U'$ היא סביבה של $v\in U'$ היא סביבה של $v\in U'$

$$F^{-1}(U')\cap V\neq\emptyset\Longrightarrow \exists v'\in V\quad v'\in F^{-1}(U')$$

אך מכאן בפרט מתקיים $F(V)\cap U'\neq\emptyset$ וגם $F(v')\in F(V)$ וגם וגם $F(v')\in U'$ אך מכאן בפרט מתקיים: $u\in \overline{F(V)}$ טביבה $u\in U'$ סביבה מתקיים:

$F(\overline{V}) \subseteq \overline{F(V)}$

ונשים לתנאי השאלה. ונשים אירו. ונשים ער אירו מרחבים אופולוגיים (X, au), ותתי קבוצות אירו ונשים (ג. יהיו מרחבים טופולוגיים (X, au), ותתי קבוצות אירו מרחבים טופולוגיים:

$$\Leftrightarrow v \in F^{-1}(\operatorname{Int} W)$$

$$\Leftrightarrow \exists w \in \text{Int } W \quad F(v) = w$$

 $\Leftrightarrow F(v) = w$ וכן $w \in W' \subseteq W$ קיים $w \in W$ קיים $w \in W$

קיים, $w\in W'\subseteq W$ עבורו סביבה זו מתקיים, F(v)=w עבורו סביבה א עבורו סביבה א עבורו סביבה זו מתקיים א עבורו V'=F(V')=v סביבה פתוחה עבורה בפרט ע' $V'=F^{-1}(W')\subseteq V$, ולכן גם מתקיים $W'=F^{-1}(W')\subseteq V$

 $\Leftrightarrow V' \subseteq F^{-1}(W)$ קיימת סביבה $v \in V'$ עבורה $v \in \operatorname{Int} F^{-1}(W)$ ולסיכום:

$$F^{-1}(\operatorname{Int} W) = \operatorname{Int} F^{-1}(W)$$

נשים לתנאי השאלה. נשים אירו מרחבים טופולוגיים (X, au), ותתי קבוצות אירו ד. יהיו מרחבים טופולוגיים (X, au), ותתי קבוצות ד. יהיו מרחבים טופולוגיים לכל ער אירים:

:נפריד למקרים. $v \in \overline{F^{-1}(W)} \setminus F^{-1}(W)$ או $v \in F^{-1}(W)$ אם $v \in \overline{F^{-1}(W)}$

עבור $W\in \overline{W}$ נסיק כי קיים $w\in W$ כך ש-w, אך היות וממילא $w\in \overline{W}$ נקבל כי $v\in F^{-1}(W)$ מתקיים $v\in F^{-1}(\overline{W})$

 $v \in \overline{F^{-1}(W)}$ וגם $v \notin F^{-1}(W)$.ii

נסמן $w\in W'$ מתקיים $F^{-1}(W')$ פתוחה. אך $w\in W'$ מתקיים נובע כי לכל סביבה $v\in F^{-1}(W')$ פתוחה. אך מתקיים, בנוסף לכך, $v\in F^{-1}(W')$ ולכן מכך ש $v\in F^{-1}(W')$, נובע כי מתקיים.

$$F^{-1}(W') \cap F^{-1}(W) \neq \emptyset$$

כלומר, קיים $v' \in F^{-1}(W')$ עבורו מתקיים גם $v' \in F^{-1}(W)$ מכלומר, קיים כלומר, עבורו מתקיים איים $V' \in F^{-1}(W)$

אך מכאן נובע כי לכל $F(v)\in \overline{W}$ מתקיים $W'\cap W\neq\emptyset$ מתקיים קלכל לכל לכל לכל לכל גובע כי לכל מתקיים סיים $v\in F^{-1}(\overline{W})$

:כלומר

$$\overline{F^{-1}(W)} \subseteq F^{-1}(\overline{W})$$

יהטופולוגיה: $X = \{a, b\}$ קרי בקבוצה $X = \{a, b\}$ והטופולוגיה:

$$\tau = \{\emptyset, \{a, b\}, \{a\}\}$$

כאשר נגדיר את ההעתקה הבאה:

$$F: (X, \tau) \mapsto (X, \tau)$$
 $F(a) = b$
 $F(b) = b$

ונראה שהעתקה זו רציפה על ידי כך שנראה כי המקור של כל $V \in \mathcal{T}$ פתוח:

$$F^{-1}(\emptyset) = \emptyset$$
 $F^{-1}(\{a,b\}) = \{a,b\}$ $F^{-1}(\{a\}) = \emptyset$

כלומר זו אכן העתקה רציפה. אך נשים לב, כי עבור $W = \{a\}$ נקבל כי:

$$F^{-1}(\overline{W}) = F^{-1}(\overline{\{a\}}) = F^{-1}(\{a,b\}) = \{a,b\} \quad \overline{F^{-1}(W)} = \overline{F^{-1}(\{a\})} = \overline{\emptyset} = \emptyset$$

:כלומר

 $F^{-1}(\overline{W}) \nsubseteq \overline{F^{-1}(W)}$