

DX-LR01-433T22S Serial port application guide

Version: 2.1

Date: 2025-01-02

Updated records

Version	Date	Instructions	Author
V1.0	2022/12/11	Initial version	SML
V1.1	2023/05/12	Optimize instructions	SML
V2.0	2023/08/20	Optimize the air rate rating	SML
V2.1	2025/01/02	List of new instructions added	SML

Contact Us

SHEN ZHEN DX-SMART TECHNOLOGY CO.,LTD,

Email: manager@szdx-smart.com

Tel: 0755-2997 8125

Whatsapp:+86 15798463070 Website: en.szdx-smart.com

Address: 601, A1 Block, Huafengzhigu, Hang Kong Road, Hang Cheng Street, Baoan District,

Shenzhen

${\tt Contents}$

1.	Introduction	6 -
	1.1. Basic parameters of serial port	6 -
	1.2. Module default RF basic parameters	6 -
	1.3. Transmission mode and AT command mode	7 -
2.	PC side test tool	7 -
	2.1. Pc-side testing software	7 -
3.	Serial port usage	8 -
	3.1. Module test minimum system	
	3.2. Example of module usage operation	9 -
	3.2.1. Module to module transparent transfer	9 -
	3.2.2. Module-to-module fixed-point transmission	10 -
	3.2.3. Module-to-module broadcast transmission	11 -
4.	Related AT commands explained in detail	13 -
	4.1. Command Format Description	13 -
	4.2. Response Format Notes	13 -
	4.3. An example of the AT command	13 -
	4.4. List of AT commands	14 -
5.	AT command details	15 -
	5.1. Basic commands	15 -
	5.1.1. Test instructions	15 -

DX-LR01-433T22S 串口应用指导

	5.1.2. Enter or exit the AT command mode	15 -
	5.1.3. Querying configuration information	· 16 -
	5.1.4. Set \ Query - Serial baud rate	· 17 -
	5.1.5. Set \ Query - serial port stop bit	· 17 -
	5.1.6. Set \ Query - serial port check bit	· 18 -
	5.1.7. Set \ Query - Work mode	· 18 -
	5.1.8. Set \ Query - Power Consumption mode	· 20 -
	5.1.9. Software Restarts	· 21 -
	5.1.10. factory data reset	. 21 -
5.2	Module RF parameters (one-click configuration module air rate and communica	tion
dist	tance)	· 21 -
	5.2.1. Set/Query - Configure module air rate and communication range with one click	(- 21
5.3	Module RF parameter configuration (general configuration)	· 22 -
	5.3.1. Setup \ Query - Working Channel	· 22 -
	5.3.2. Settings \ Query - Device address	· 23 -
	5.3.3. Set \ query Transmit power	- 24 -
5.4	Module RF parameter configuration (differentiated configuration)	. 24 -
	5.4.1. Query - RF bandwidth	. 25 -
	5.4.2. Set \ Query - RF Coding rate	. 25 -
	5.4.3. Set \ Query - spread factor	- 25 -
	5.4.4. Set \ query-crc check	· 26 -
	5.4.5. Set \ Query Iq signal flip	- 26 -

DX-LR01-433T22S 串口应用指导

	5.5. List of error codes	- 26 -
6.	Value-added services	- 27 -
	Image Index	
	Figure 1: Computer side serial port software	- 8 -
	Figure 2: Module minimum system figure	- 9 -
	Figure 3: Transparent transmission Figure	10 -
		11 -
	Figure 5: Broadcast transmission Figure	12 -

1. Introduction

DX-LR01-433T22S is a low-power LoRa module, which is built by SHEN ZHEN DX-SMART TECHNOLOGY CO.,LTD, for intelligent wireless data transmission. It uses domestic ASR6601 SOC chip. The chip is integrated with SUb 1GHz RF transceiver, Arm China STAR-MC1 microprocessor, built-in Flash storage, SRAM. The module supports UART, I2C, I2S and other interfaces, supports IO port control, ADC acquisition, and has the advantages of low power consumption, high performance, long distance, networking and so on. It is suitable for a variety of application scenarios in the field of IoT, such as smart meters, intelligent logistics, intelligent buildings, smart cities, smart agriculture and many other application scenarios.

1.1. Basic parameters of serial port

• Default parameters of module serial port: 9600bps/8/n/1 (baud rate/data bit/no check/stop bit)

1.2. Module default RF basic parameters

- Module working mode: transparent transmission
- Module power consumption mode: high aging mode
- Module air speed and communication distance LEVEL gear: 0 gear
- Module frequency band: 433MHz
- Module address: ffff
- Module bandwidth: 125KHz
- Module spreading factor: SF12
- Module RF coding rate: 4/6
- Module air rate configuration: 244bit/s
- Module CRC check: No check
- Module preamble length: 8
- Module IQ signal: do not flip

Module transmit power: 22dB

1.3. Transmission mode and AT command mode

- Transfer mode: When the module is powered on, it is in transfer mode, at which time it can start transferring data.
- AT command mode: In transmission mode, use "+++" to switch to AT command mode, which can respond to AT commands. To enter the transmission mode, you need to send "+++" to exit the AT command mode.

2. PC side test tool

2.1. Pc-side testing software

Please download and install the Uart Assistant computer serial port software in the data package for testing. The serial port software interface is as follows:

Figure 1: Computer side serial port software diagram1

3. Serial port usage

3.1. Module test minimum system

Figure 2: Diagram of the modular minimal system2

3.2. Example of module usage operation

3.2.1. Module to module transparent transfer

- 1. Connect the two DX-LR01-433T22S modules to serial port and power supply.
- 2. Send +++ to let the module enter the AT command mode.
- 3. Use AT+MODE0 to set both modules in transparent transfer mode.
- 4. Configure both DX-LR01-433T22S modules to the same rate LEVEL using AT+LEVEL, for example: set the level to 1 and send the command AT+LEVEL1. (Note: Only when the RF parameters of the two modules are the same can you transmit data, if it is your own configuration parameters, you can use AT+HELP to compare whether the basic RF parameters of the two modules are the same)
- 5. Power off and restart the module or use AT+RESET to restart. After restarting, the instruction will take effect.
 - 6. When one module sends data, the other module can receive data.

 (Note: lora is a half-duplex protocol, so only one module can send at a time)

数据 Data

信道 channel

无数据 no date

Figure 3: Transparent transmission diagram3

3.2.2. Module-to-module fixed-point transmission

- 1. Connect the two DX-LR01-433T22S modules to the serial port and power supply.
- 2. Send +++ to let the module enter the AT command mode.
- 3. Using the AT+MODE1 command, set the module working mode to fixed-point transfer mode.
- 4. Use the AT+LEVEL instruction to configure the rate levels of the two DX-LR01-433T22S modules and make them the same, for example: set the level to 1 and send the instruction AT+LEVEL1. (Note: Only when the RF parameters of the two modules are the same can you transmit data, if it is your own configuration parameters, you can use AT+HELP to compare whether the basic RF parameters of the two modules are the same)
- 5. Power off and restart the module or use AT+RESET to restart the module. After the restart, the instruction takes effect.
 - 6. Select the send method as HEX send.
- 7. Fixed-point transmission is a private protocol done on lora, so it needs to follow a certain data transmission format to be received normally.

The transmission format is described as follows: device address (hexadecimal, two bytes)

+ channel (hexadecimal, one byte) + data (hexadecimal)

Instructions use: AT+MAC instruction, you can query or modify the device address of the current module

The AT+CHANNEL command can query or modify the working channel of the current module

For example:

The address of the receiver module is 0001, and the channel is 01; The data sent by the transmitting module is aabbcc, so the data content sent is: 000101aabbcc (hexadecimal: 000101 61 62 62 63 63)

目标信道 Target channel

目标地址 Target address

数据 date

无数据 no date

Figure 4: Fixed-point transmission diagram4

3.2.3. Module-to-module broadcast transmission

- 1. Connect the two DX-LR01-433T22S modules to serial port and power supply.
- 2. Send +++ to let the module enter the AT command mode.
- 3. Using AT+MODE2, set the module working mode to broadcast transmission mode.
- 4. Configure the rate levels of the two DX-LR01-433T22S modules using the AT+LEVEL instruction and make them the same, for example: set the level to 1 and send the instruction AT+LEVEL1. (Note: Only when the RF parameters of the two modules are the same can you transmit data, if it is your own configuration parameters, you can use AT+HELP to compare whether the basic RF parameters of the two modules are the same)
- 5. Power off and restart the module or use AT+RESET to restart. After restarting, the instruction will take effect.

- 6. Send +++ to exit AT command mode and enter transfer mode.
- 7. Select the send method as HEX send.
- 8 Broadcast transmission is a private protocol done on lora, so it needs to follow a certain data transmission format to be received normally.

The transmission format is described as follows: channel (1 byte, hexadecimal) + data (hexadecimal)

Instruction use: AT+CHANNEL instruction, you can query or modify the current module working frequency

For example:

The channel of the receiving module is 01, and the data sent by the transmitting module is aabbcc, so the data content sent is: 01aabbcc (hexadecimal: 01 61 61 62 62 63 63)

目标信道 Target channel

地址 address

数据 date

无数据 no date

Figure 5: Broadcast transmission diagram5

4. Related AT commands explained in detail

4.1. Command Format Description

AT+Command<param1, param2, param3> <CR><LF>

- All commands begin with AT and end with <CR><LF>. In the table that shows commands
 and responses in this document, <CR><LF> is omitted and only commands and
 responses are displayed.
- All AT command characters are capitalized in English.
- <> is optional content, if there are multiple arguments in the command, separated by a comma ", ", the actual command does not contain Angle brackets.
- <CR> is the carriage return character \r, which is 0X0D in hexadecimal.
- <LF> is the newline character \n, which is 0X0A in hexadecimal.
- If the instruction is executed successfully, the corresponding command is returned with the end of OK, and if it fails, EEROR=<> is returned, and the "<>" content is the corresponding error code (refer to 5.5).

4.2. Response Format Notes

+Indication<=param1, param2, param3><CR><LF>

- The response instruction begins with the plus sign "+" and ends with <CR><LF>
- Equals "=" followed by the response argument
- If there are multiple arguments in the response argument, they are separated by a comma ","

4.3. An example of the AT command

Example: Modify the LoRa device baud rate to 128000

Send: AT+BAUD9

Return: OK

4.4. List of AT commands

Instructions	Functions	Instructions
AT	Test instructions	Used to test the serial port
+++	Enter or exit the AT command mode	Power on defaults to transmission mode
AT+HELP	Ask for basic module configuration information	
AT+BAUD	Set \ Query baud rate	Default: 4 (9600)
AT+STOP	Set \ Query serial port stop bit	Default: 1 (1 stop bit)
AT+PARI	Set \ Query serial port check bits	Default: 0 (no parity)
AT+MODE	Set \ Query working mode	Default: 0 (transparent transfer)
AT+SLEEP	Set \ Query Power mode	Default: 2 (high aging mode)
AT+RESET	Software restart	-
AT+DEFAULT	factory data reset	-
AT+LEVEL	Set \ Query module air rate and communication distance	Default: 0
AT+CHANNEL	Set \ Query working channel	Default: 00
AT+MAC	Set \ Query device address	Default: ff,ff
AT+POWE	Set \ Query transmit power	Default :22
AT+BW	Query RF bandwidth	Default: 0
AT+CR	Set \ Query RF coding rate	Default: 2
AT+SF	Set \ Query spread spectrum factor	Default: 12
AT+CRC	Set \ Query CRC check	Default: 0
AT+IQ	Set \ Query whether the Iq signal is flipped	Default: 0

5. AT command details

5.1. Basic commands

5.1.1. Test instructions

Function	Instructi ons	Response	Instructions
Testing	AT	ОК	

5.1.2. Enter or exit the AT command mode

Features	Instructi ons	Response	Notes
		Exit AT	Exit AT: Exit AT command mode
Enter or exit the AT command mode	+++	or Entry AT	Entry AT: Enter the AT command mode Power on defaults to
			transmission mode

Notes:

- 1. It will be reset automatically when you exit the AT command mode.
- 2. The command will not be saved when the power is off.

5.1.3. Querying configuration information

Features Instruction	ns Response	Instructions
Query basic module configura AT+HEL tion informati on	LoRa Parameter: +VERSION= <version> MODE:<mode> LEVEL:<level> SLEEP:<sleep> Frequency:<frequency> MAC:<mac></mac></frequency></sleep></level></mode></version>	Instructions LoRa Parameter: LoRa parameter <version>: Version <mode> : Data sending mode <level> : Air rate configuration <sleep> : Power mode</sleep></level></mode></version>
		<pre><iq> : Whether the IQ signal is flipped or not <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></iq></pre>

Examples:

Query module basic information

Send: AT+HELP

LoRa Parameter:

+ VERSION = V1.0.0

MODE:0

LEVEL:0 >> 244.140625bps

SLEEP:2

Frequency:433000000hz >> 00

MAC:ffff

Bandwidth:0

Spreading Factor:12

Coding rate:2

CRC:0(false)

Preamble:8

IQ:0(false)

Power:22dBm

5.1.4. Set \ Query - Serial baud rate

Features	Instructions	Response	Instru	ıctions
			<baud> Th</baud>	e baud rate
Query baud rate	AT+BAUD	+BAUD= <baud></baud>	corresponds to	the serial
			number	
	AT+BAUD <baud></baud>		1: 1200	6: 38400
		ОК	2: 2400	7: 57600
			3: 4800	8: 115200
Set baud rate			4: 9600	9: 128000
			5: 19200	
		K /X/	Default	: 4(9600)

Notes:

After the instruction is set, it needs to be restarted to take effect.

5.1.5. Set \ Query - serial port stop bit

Features	Instructions	Response	Instructions
Query the serial port stop bit	AT+STOP	+STOP= <param/>	< param> sequence number
Set the serial port	AT+STOP <param/>	OK	0:1 stop bit 1:2 stop bits
stop bit	AI+310F\paraili>		Default: 0

Remarks:

After setting this instruction, it should be restarted to take effect.

5.1.6. Set \ Query - serial port check bit

Features	Instructions	Response	Instructions
Query the serial port	AT+PARI	DADI	< param> sequence
check bit		+PARI= <param/>	number
	AT+PARI <param/>		0: No validation
Set the serial port		ОК	1: odd check
check bit			2: Even check
555.K 5.K			Default: 0

Notes:

After setting this instruction, it should be restarted to take effect.

5.1.7. Set \ Query - Work mode

Features	Instructions	Response	Instructions
	AT+MODE	+MODE= <param/>	param: 0,1,2
Query working mode			0: Transparent transmission
			1: Fixed-point transmission
Set working mode	AT+MODE <param/>	+MODE= <param/> OK	2: Broadcast transmission
			Default setting: 0

Notes:

- 1. After setting this instruction, it should be restarted to take effect.
- 2. Transparent transmission data format: Send data directly
- 3. Fixed-point transmission data format: device address (hexadecimal, two bytes) + channel number (hexadecimal, one byte) + data (hexadecimal)
- 4. Broadcast transmission data format: channel number (hexadecimal, one byte) + data (hexadecimal)

Examples:

1. Transparent transmission:

2. Fixed-point transfer:

3. Broadcast transmission:

DX-LR01-433T22S 串口应用指导

5.1.8. Set \ Query - Power Consumption mode

Functions	Instructions	Response	Instructions
Querying power			< param> serial number
consumption	AT+SLEEP	+SLEEP= <param/>	0: Sleep mode
mode			1: Air wake-up mode
Set Power mode AT+SLEEP <param/>	OV.	2: High Time mode	
Set Power mode	AI+SLEEP <param/>	OK	Default value: 2

Notes:

1. Sleep mode:

In this mode, both MCU and RF go to sleep. Use the serial port to wake up, that is, the serial port receives data, and the module wakes up automatically. This mode does not write to save, every time you enter the sleep mode, you need to use the command to enter.

2. Air wake-up mode:

A. In this mode, the module performs CAD detection in a cycle of four seconds (the overall sleep time is: 4s minus CAD detection time). If the module detects data, it will enter the receiving mode, and automatically enter the sleep after receiving data. During the sleep period, the RF will sleep, and the MCU will not sleep.

- B. When using the air wakeup mode, both the receiver and the transmitter should be in the air wakeup mode before they can receive and send data.
 - C. This mode can be written and saved.

www.szdx-smart.com

3. High aging mode:

In this mode, the module is always in the receiving state and can receive data from other devices at any time. When the serial port of the module receives the data from the master control, it switches to the transmitting state and transmits the data out. After the transmission is completed, it switches back to the receiving state.

Note: CAD explanation: LoRa CAD (Channel Activity Detection) is a technology used to detect channel activity in LoRa network. It is used to determine whether there is activity (such as transmission by other devices) on a specified physical channel to help the device choose the right time to send and avoid collisions.

5.1.9. Software Restarts

Features	Instructions	Response	Instructions
Software restart	AT+RESET	OK Power On	

5.1.10. factory data reset

Features	Instructions	Response	Instructions
factory data	AT+DEFAULT	OK OK	
reset	ATTOLFAULT	Power On	

5.2. Module RF parameters (one-click configuration module air rate and communication distance)

5.2.1. Set/Query - Configure module air rate and communication range with one click

Functions	Instructions	Response	Instructions
Querying module parameters	AT+LEVEL	+LEVEL = <param/>	<pre><param/> : 0-7, Air speed and communication range configuration, with eight</pre>
Set module	AT+LEVEL <param/>	ОК	gears

parameters Default value: 0

Notes:

- 1. You can choose different gears according to your own data volume and communication distance (data volume and distance can refer to the table below). The larger the air character rate, the faster the amount of data that can be sent.
- 2, the command will RF bandwidth, RF coding rate, spread spectrum factor has been set, can be used directly.
- 3. The LEVEL of transmitting equipment and receiving equipment should be consistent to receive and send data.
- 4. After setting the instruction, it needs to be restarted.

Note: The following table is the configuration parameters under different gear under the premise of coding rate CR=4/6, the following outdoor distance (open visible distance) and urban distance are for reference only, the actual distance is subject to the actual measurement.

LEVEL(gear)	SF(spread spectrum factor)	BW(bandwidth KHz)	Air character rate (bit/s)	Outdoor distance (Km)	Distance within the city (Km)
0	12	125	244	8.0	3.8
1	11	125	447	7.5	2.8
2	10	125	813	5.7	2.8
3	9	125	1464	5.3	2.7
4	8	125	2604	5.2	2.7
5	7	125	4557	5.0	2.7
6	6	125	7812	4.5	2.7
7	5	125	13020	4.1	2.5

5.3. Module RF parameter configuration (general configuration)

5.3.1. Setup \ Query - Working Channel

Functions	Instructions	Response	Instructions

DX-LR01-433T22S 串口应用指导

Query the working	AT+CHANNEL	+ CHANNEL= <param/>	param: 00-1E
channel			(hexadecimal)
Sat the working	AT+CHANNEL	+CHANNEL= <param/>	Starting at 433Mhz,
Set the working		•	Grow at 1400Khz
channel	<param/>	OK	Default setting: 00

Notes:

- 1, this module is set up with 31 general channels, if you need more, please contact our company.
- 2. After the instruction is set, it needs to be restarted.
- 3. When multiple receiving devices are too close to the transmitting device, it may lead to the receiving device of different channels can receive data, so the distance between the transmitting device and the receiving device is required to be as far as possible.

Note: The following table is a comparison of the working frequency bands of different channels,

unit: Mhz.

Channel	Operating frequency band	Channel	Operating frequency band
00	433	10	455.4
01	434.4	11	456.8
02	435.8	12	458.2
03	437.2	13	459.6
04	438.6	14	461
05	440	15	462.4
06	441.4	16	463.8
07	442.8	17	465.2
08	444.2	18	466.6
09	445.6	19	468
0A	447	1A	469.4
ОВ	448.4	1B	470.8
0C	449.8	1C	472.2
0D	451.2	1D	473.6
OE	452.6	1E	475
OF	454	-	-

5.3.2. Settings \ Query - Device address

Features	Instructions	Response	Instructions
Looking up device addresses	AT+MAC	+MAC= <param/> <param/>	param:
Set device	AT+MAC <param/> ,	+MAC= <param/> <param/>	Hexadecimal, one byte Default setting: ffff
address	<param/>	OK	Delauit Setting. IIII

Notes:

After setting this instruction, it should be restarted to take effect.

Examples:

Set the module address to 0a01

Send: AT+MAC0a,01 Return: +MAC=0a01

OK

5.3.3. Set \ query -- Transmit power

Features	Instructions	Response	Instructions	
Query transmit power	AT+POWE	+POWE= <param/>	param: 0-22dB (take	
Set transmit power	AT+POWE <param/>	+POWE= <param/> OK	integer values) Default setting: 22dB	

Notes:

After setting this instruction, it should be restarted to take effect.

Examples:

Modify the transmit power to 10dB

Send: AT+POWE10
Return: +POWE=10

OK

5.4. Module RF parameter configuration (differentiated configuration)

5.4.1. Query - RF bandwidth

Features	Instructions	Response	Instructions
Overving DE			<param/> : 0
Querying RF	AT+BW	+BW= <param/>	0:125K
bandwidth			Default value: 0

Notes:

For other RF bandwidth, please contact us.

5.4.2. Set \ Query - RF Coding rate

Features	Instructions	Response	Instructions
Query the RF			<param/> : 1-4
coding rate	AT+CR	+CR= <param/>	1:4/5
coung rate			2:4/6
Set the RF		+CR= <param/>	3:4/7
	AT+CR <param/>		4:4/8
coding rate		OK	Default value: 2

Notes:

After setting this instruction, it should be restarted to take effect.

5.4.3. Set \ Query - spread factor

Features	Instructions	Response	Instructions
Query the spreading factor	AT+SF	+SF= <param/>	<param/> : 5-12
			5: SF5
			6: SF6
			7: SF7
			8: SF8
Set the spreading factor	AT+SF <param/>	+SF= <param/> OK	9: SF9
			10: SF10
			11: SF11

12: SF12

Default value: 12

Notes:

After setting this instruction, it should be restarted to take effect.

5.4.4. Set \ query-crc check

Features	Instructions	Response	Instructions
Inquire about	AT+CRC	+CRC= <param/>	<param/> : 0,1
CRC validation			0: Turns off CRC validation
Set the CRC	AT+CRC <param/>	ОК	1: Turn CRC check on
check			Default: 0

Notes:

After setting this instruction, it should be restarted to take effect.

5.4.5. Set \ Query -- Iq signal flip

Features	Instructions	Response	Instructions	
Inquire if the Iq	AT+IQ	LIO — Amorama	<param/> : 0,1	
signal is flipped		+IQ = <param/>	0: The Iq signal does not flip	
Set Iq signal flip	AT+IQ <param/>	OK	1: Iq signal flips	
			Default: 0	

Notes:

- 1. After the instruction is set, it needs to be restarted to take effect.
- 2. IQ explanation: IQ flip refers to the phase flip operation of the received IQ signal in LoRa communication. This operation can be performed before or after demodulation and is used to change the phase of the signal to achieve different functions or optimize performance.

5.5. List of error codes

The details of the error code in EEROR=<> are as follows:

DX-LR01-433T22S 串口应用指导

Return value	Error Message Description	
101	Parameter length error	
102	Parameter format is wrong	
103	Abnormal parameter data	
104	Instruction error	

6. Value-added services

In order to meet the various functional requirements of customers, our company can provide the following technical value-added services:

- Module program customization, such as: IO function port customization, AT instruction customization, broadcast package customization, etc.
- Module PCB hardware customization, can be customized to the hardware requirements of customer needs.
- A variety of Bluetooth program customization, can be customized according to customer needs, a full set of bluetooth software and hardware solutions.
- A full set of networking solutions customization, can be customized according to customer needs, a full set of networking, gateway solutions.

If you have the above customized requirements, please contact our business personnel directly.