NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Chua Xin Rong, Agus Leonardi

Question 1

(a) (i)Since the rows are linearly independent, $\{(1,0,1,0,1),(0,0,1,0,1),(0,0,0,1,1)\}$ is a basis for the rowspace of A.

(ii) From a(i), we know that the rank of \boldsymbol{A} is 3, so the dimension for the column space is 3. But the column space of m x n matrix is a subspace of m-dimensional Euclidean space, and a subspace of \mathbb{R}^3 with dimension 3 is the whole space, hence column space of $\boldsymbol{A} = \mathbb{R}^3$, with basis vectors $\{e1, e2, e3\}$.

 $(iii)\{(0,1,0,0,0),(0,0,0,0,1)\}.$

(iv) $\{(0,1,0,0,0),(0,0,1,1,-1)\}$. By the rank-nullity theorem, nullspace(\mathbf{R}) has dimension 2, thus there are two basis vectors. The two vectors (0,1,0,0,0),(0,0,1,1,-1) are linearly independent. Since $\mathbf{R}(0,1,0,0,0)^T = \mathbf{0}$ and $\mathbf{R}(0,0,1,1,-1)^T = \mathbf{0}$, (0,1,0,0,0) and (0,0,1,1,-1) are basis vectors of the nullspace of \mathbf{R} .

$$(\mathbf{v}) \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix} + \mu \begin{pmatrix} 0\\0\\1\\1\\-1 \end{pmatrix}, \lambda, \mu \in \mathbb{R}.$$

(b)
$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$
, $\boldsymbol{C} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 4 \end{pmatrix}$.

Using Gaussian elimination, $\{(1,1,1)\}$ is a basis for the rowspace of \mathbf{B} . Thus, rank $(\mathbf{B})=1$. Similarly, $\{(1,1,1),(0,0,1)\}$ is a basis for the rowspace of \mathbf{C} . Thus, rank $(\mathbf{C})=2$.

(c) We show that $rank(PA) \leq rank(A)$, and $rank(PA) \geq rank(A)$.

1. $\operatorname{rank}(\boldsymbol{P}\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A})$.

Proof: Given any vector x such that $x \neq 0$ and Ax = 0, PAx = P(Ax) = P(0) = 0. Thus, nullspace(A) \subseteq nullspace(PA) and nullity(A) \le nullity(PA). Since both PA and A have p columns, by the rank-nullity theorem (Theorem 4.3.3), rank(PA) \le rank(A).

2. $rank(\mathbf{P}\mathbf{A}) \ge rank(\mathbf{A})$.

Proof: Assume to the contrary that $\operatorname{rank}(\boldsymbol{P}\boldsymbol{A}) < \operatorname{rank}(\boldsymbol{A})$. Then by the rank-nullity theorem, $\operatorname{nullity}(\mathbf{A}) < \operatorname{nullity}(\mathbf{P}\boldsymbol{A})$. Thus, there exists a vector \mathbf{v} such that $\mathbf{A}\mathbf{v} = \mathbf{b}, \mathbf{b} \neq \mathbf{0}$ but $\mathbf{P}\mathbf{A}\mathbf{v} = \mathbf{P}\mathbf{b} = 0$. This means that some linear combination of the columns in \mathbf{P} gives $\mathbf{0}$, and that the columns are linearly dependent. However, $\operatorname{rank}(\mathbf{P}) = n$, implying that all of the n columns in \mathbf{P} are linearly independent, which is a contradiction. Thus, $\operatorname{rank}(\boldsymbol{P}\boldsymbol{A}) \geq \operatorname{rank}(\boldsymbol{A})$.

Since $rank(PA) \leq rank(A)$, and $rank(PA) \geq rank(A)$, rank(PA) = rank(A).

Question 2

(a) (i) $\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)^3 - (1 - \lambda) = 1 + 3\lambda^2 - 3\lambda - \lambda^3 + \lambda - 1 = 3\lambda^2 - 2\lambda - \lambda^3.$ $3\lambda^2 - 2\lambda - \lambda^3 = 0 \Rightarrow$ the eigenvalues $\lambda = 0, 1, 2$.

(ii) For
$$\lambda = 0$$
, $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = 0$

$$\Leftrightarrow \begin{pmatrix} 0 - 1 & 0 & 1 \\ 0 & 0 - 1 & 0 \\ 1 & 0 & 0 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, t \in \mathbb{R}.$$

Hence the basis for the eigenspace of **A** associated with the eigenvalue 0 is $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

For
$$\lambda = 1$$
, $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = 0$

$$\Leftrightarrow \begin{pmatrix} 1 - 1 & 0 & 1 \\ 0 & 1 - 1 & 0 \\ 1 & 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, t \in \mathbb{R}.$$

Hence the basis for the eigenspace of **A** associated with the eigenvalue 1 is $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$.

For
$$\lambda = 2$$
, $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = 0$

$$\Leftrightarrow \begin{pmatrix} 2 - 1 & 0 & 1 \\ 0 & 2 - 1 & 0 \\ 1 & 0 & 2 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

Hence the basis for the eigenspace of **A** associated with the eigenvalue 2 is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$(iii)\mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1\\ 0 & \sqrt{2} & 0\\ -1 & 0 & 1 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}.$$

 $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are orthogonal. To make **P** an ${f P}$ can be obtained by noticing that orthogonal matrix, the columns must be orthonormal, thus we need to make all the columns have norm 1 by using a scaling factor.

Page: 2 of 6

(b) Since **B** is a triangular matrix, its eigenvalues are a, a, b.

For
$$\lambda = a$$
, $(\lambda \mathbf{I} - \mathbf{B})\mathbf{x} = 0$

$$\Leftrightarrow \begin{pmatrix} a - a & 1 & 0 \\ 0 & a - b & 1 \\ 0 & 0 & a - a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, t \in \mathbb{R}.$$

Hence the basis for the eigenspace of **B** associated with the eigenvalue a is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

For
$$\lambda = b$$
, $(\lambda \mathbf{I} - \mathbf{B})\mathbf{x} = 0$

$$\Leftrightarrow \begin{pmatrix} b - a & 1 & 0 \\ 0 & b - b & 1 \\ 0 & 0 & b - a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ a - b \\ 0 \end{pmatrix}, t \in \mathbb{R}.$$

Hence the basis for the eigenspace of **B** associated with the eigenvalue b is $\begin{pmatrix} 1 \\ a-b \\ 0 \end{pmatrix}$.

There are at most 2 linearly independent eigenvectors, but ${\bf B}$ is of order 3, hence ${\bf B}$ is not diagonalizable.

(c) Consider an orthogonal matrix \mathbf{Q} with eigenvalue(s) λ and corresponding eigenvector(s) \mathbf{x} . Then $\mathbf{Q}\mathbf{x} = \lambda \mathbf{x}$.

Since \mathbf{Q} is orthogonal,

$$\mathbf{I}\mathbf{x} = \mathbf{Q}^{\mathbf{T}}\mathbf{Q}\mathbf{x} = \mathbf{Q}^{\mathbf{T}}(\lambda\mathbf{x}) = \lambda(\mathbf{Q}^{\mathbf{T}}\mathbf{x}) = \lambda^{2}\mathbf{x}.$$

\Rightarrow \lambda^{2} = 1

$$\Rightarrow \lambda = 1$$

 $\Rightarrow \lambda = \pm 1$

Question 3

- (a) (i) The reduced row echelon form of $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, whose rows are the vectors in \mathbf{U} , is \mathbf{I} , thus the vectors in \mathbf{U} are linearly independent.
 - (ii) **V** is the set of all possible vectors of the form $\begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}, a, b, c \in \mathbb{R} \text{ or the column}$

space of
$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, which is span(**S**), where $\mathbf{S} = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$.

Since $\mathbf{V} = \operatorname{span}(\mathbf{S})$ and every vector in $\mathbf{S} \in \mathbb{R}^4$, \mathbf{V} is a subspace of \mathbb{R}^4 .

(iii)
$$\begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix} \in \mathbf{W}$$
 but $\begin{pmatrix} 2 \\ 2 \\ 4 \\ 2 \end{pmatrix}$ is not. If $\begin{pmatrix} 2 \\ 2 \\ 4 \\ 2 \end{pmatrix}$ were in \mathbf{W} , we would obtain an inconsistent system of

linear equations, which is a contradiction

(b) (i)
$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
.

$$(ii)\frac{1}{5} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}.$$

$$(iii)(\mathbf{w})_S = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}.$$

(c) 2, 3, or 4.

As in Exercise 3.10, we define the subspace $U + V = \{\mathbf{u} + \mathbf{v} | \mathbf{u} \in U \text{ and } \mathbf{v} \in V.\}$

If W = U + V, it is the smallest subspace of \mathbb{R}^5 that contains U and V.

The subspace W contains the subspaces U and V.

Proof: We show that W contains U. The proof that W contains V is similar. Let \mathbf{u} be a vector in U. Then $\mathbf{u} = \mathbf{u} + \mathbf{0}$, where $\mathbf{u} \in U$, $\mathbf{0} \in V$, so $\mathbf{u} \in W$. Thus, every vector in U is contained in W.

The subspace W is the smallest subspace of \mathbb{R}^5 that contains U and V because if W^* is another subspace which contains U and V, then $W \subseteq W^*$. Let $\mathbf{w} \in W$. Then $\mathbf{w} = \mathbf{u} + \mathbf{v}, \mathbf{u} \in U \subseteq W^*, \mathbf{v} \in V \subseteq W^*$. Since W^* is a subspace, $\mathbf{w} \in W^*$. Thus, $W \subseteq W^*$.

From Exercise 3.36, $\dim(\mathbf{U} + \mathbf{V}) = \dim(\mathbf{U}) + \dim(\mathbf{V}) - \dim(\mathbf{U} \cap \mathbf{V}) \le 3 + 3 - 2 = 4$. $\dim(\mathbf{U} + \mathbf{V}) = \dim(\mathbf{U}) + \dim(\mathbf{V}) - \dim(\mathbf{U} \cap \mathbf{V}) \ge 2 + 2 - 2 = 2$.

Example where dim(**W**)=2: $\mathbf{u_1} = (1,0,0,0,0)^T$, $\mathbf{u_2} = (0,1,0,0,0)^T$, $\mathbf{u_3} = (2,0,0,0,0)^T$, $\mathbf{v_1} = (1,0,0,0,0)^T$, $\mathbf{v_2} = (0,1,0,0,0)^T$, $\mathbf{v_3} = (2,0,0,0,0)^T$.

Example where dim(**W**)=3: $\mathbf{u_1} = (1,0,0,0,0)^T$, $\mathbf{u_2} = (0,1,0,0,0)^T$, $\mathbf{u_3} = (0,0,1,0,0)^T$, $\mathbf{v_1} = (1,0,0,0,0)^T$, $\mathbf{v_2} = (0,1,0,0,0)^T$, $\mathbf{v_3} = (0,0,1,0,0)^T$.

Example where dim(**W**)=4: $\mathbf{u_1} = (1,0,0,0,0)^T$, $\mathbf{u_2} = (0,1,0,0,0)^T$, $\mathbf{u_3} = (0,0,1,0,0)^T$, $\mathbf{v_1} = (1,0,0,0,0)^T$, $\mathbf{v_2} = (0,1,0,0,0)^T$, $\mathbf{v_3} = (0,0,0,1,0)^T$.

Question 4

(a) (i)A plane.

(ii) Denote the basis vectors of V by v_1 and v_2 . Using the Gram-Schmidt process,

$$\mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

$$\mathbf{v_2} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}.$$

(iii) The projection of $\mathbf w$ onto $\mathbf V$ is $1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 4/3 \\ 2/3 \end{pmatrix}$.

(iv)The answer is $\begin{pmatrix} 1/3 \\ 5/3 \\ 1/3 \end{pmatrix}$. To obtain it, we find the reflection of **w** about the space spanned by

Page: 4 of 6

the basis vectors of **v**.

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2/3 \\ 4/3 \\ 2/3 \end{pmatrix} = \begin{pmatrix} 1/3 \\ -1/3 \\ 1/3 \end{pmatrix},$$

$$\begin{pmatrix} 2/3 \\ 4/3 \\ 2/3 \end{pmatrix} - \begin{pmatrix} 1/3 \\ -1/3 \\ 1/3 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 5/3 \\ 1/3 \end{pmatrix}.$$

(b) A least squares solution \mathbf{x} satisfies the equation $\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathbf{T}}\mathbf{b}$.

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Simplifying,

$$\begin{pmatrix} 3 & 4 \\ 4 & 8 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}.$$

One value of **x** that satisfies this equation is $\binom{2}{0}$.

(c) False.

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 3 \\ 0 & 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 1/3 \\ 5/3 \\ 1/3 \end{pmatrix}$.

We can verify that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{A}\mathbf{x} = \mathbf{c}$ are inconsistent systems. Alternatively, it follows for Q4(a) that both \mathbf{b} and \mathbf{c} do not lie in the column space of \mathbf{A} and hence are inconsistent. Note

that
$$\mathbf{A^Tb} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 and $\mathbf{A^Tc} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1/3 \\ 5/3 \\ 1/3 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$.

Thus, both the least squares soutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{A}\mathbf{x} = \mathbf{c}$ are the same and work out to be $\begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$.

Question 5

(a) (i)
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

(ii) Since
$$\begin{pmatrix} x+y\\x\\y \end{pmatrix} = x \begin{pmatrix} 1\\1\\0 \end{pmatrix} + y \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
,

$$R(T) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- (iii) The kernel of T corresponds to all vectors \mathbf{v} that satisfy $\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Since $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and
- $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are linearly independent, \mathbf{v} can only be the zero vector. Hence $\text{Ker}(T) = \{\mathbf{0}\}.$

(iv)
$$(T \circ S) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 corresponds to $\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} x + 2y + z \\ x + y + z \end{pmatrix}.$$

(v) Yes.

Since
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}$$
, we can let the transformation T' correspond to $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(vi) No.

Let **A** be the matrix that corresponds to T and **B** be the matrix corresponding to Q. The range of $T \circ Q$ is the column space of the matrix **AB**. Since $AB = (Ab_1Ab_2Ab_3)$, each column of **AB** is a combination of the columns of **A**. Thus, column space $AB \subseteq \text{column space } A$.

$$\operatorname{rref}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \text{ implying that } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ is not in the column space of } \mathbf{A}. \text{ Thus, } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

is not in the column space of AB, so no such linear transformation exists.

(b) Let **A** be the matrix that corresponds to the transformation P. Using the reasoning in part (a), the column space of $\mathbf{A}^{\mathbf{m}+1} \subseteq$ the column space of $\mathbf{A}^{\mathbf{m}} \subseteq$ the column space of $\mathbf{A} \subseteq \mathbb{R}^n$. Thus, $\dim(\mathbf{A}^{\mathbf{m}+1}) \leq \dim(\mathbf{A}^{\mathbf{m}}) \leq n$.

Let us define a sequence of matrices starting with $\mathbf{A}^{\mathbf{m_1}} = \mathbf{A}$. If we assume to the contrary that there is no such integer k, given any $i \in \mathbb{N}, i \geq 2$, there exists m_i such that $\dim(\mathbf{A}^{\mathbf{m_i}}) < \dim(\mathbf{A}^{\mathbf{m_{i-1}}})$. In particular, $\dim(\mathbf{A}^{\mathbf{m_{n+2}}}) \leq n+1-(n+2) < 0$, which is a contradiction since all matrices have a nonnegative dimension.

Page: 6 of 6