Formelsammlung Mathematik 2

Tim Hilt

25. Juni 2018

Inhaltsverzeichnis

14 Differenzialgleichungen				4
	14.1	Differe	nzialgleichungen erster Ordnung	4
			DGL aus Richtungsfeld bestimmen	
			Separierbare Differenzialgleichung	
		14.1.3	Separation der Variablen	4
			Lösungsansatz homogene Dgl 1. Ordnung	5
		14.1.5	Variation der Konstanten	5
			Beispiel	5
	14.2	Differe	nzialgleichungen höherer Ordnung	6
		14.2.1	Nichtlineare Differenzialgleichungen	6
		14.2.2	Lineare DGL n-ter Ordnung lösen	7
			Charakteristische Gleichung	
			Lösungsansatz für homogene, lineare DGLs mit AWP	
			Fälle beim Lösen von Eigenwerten	
			Mehrfache reelle Eigenwerte	
			komplexe Eigenwerte	8
		14.2.6	Störansatz	8
			Vorgehen bei partikulärer Lösung mit Störansatz	8
			Superposition	9
			Resonanz	9
		14.2.7	Eulerverfahren	9
	14.3	Differe	nzialgleichungssysteme	10
			Differenzialgleichung in Differenzialgleichungssystem umschreiben	
			Kriterien für stabile und instabile Systeme	
			Vorgehen bei komplexen Eigenwerten	
			Lösungsstrategie für lineare DGL-Systeme mit konstanten Koeffizienten	
			Eulerverfahren bei DGL-Systemen	
			,	
10	Pote	nzreihe	en	13
	10.1	Reihe .		13
	10.2	Partials	summe	13
	10.3	Geome	trische Reihe	13
	10.4	Konver	genzkriterium	13
	10.5	Reihe d	der e-Funktion e^x	13
	10.6	Potenz	reihe (mit Entwicklungspunkt)	14
	10.7	Genaui	gkeit abschätzen mit Leibniz-Kriterium	14
	10.8	Aufgab	penstellung "Entwickeln Sie eine Reihe aus der Funktion $f(x)$ bis zum n -ten Grad" .	14
	10.9	Konver	genzradius einer zusammengesetzten Reihe	14
	10.10)Taylorr	eihe	15
	10.11	Reihen	von Sinus und Cosinus	15
_		ier-Rei		16
			Ilung einer Fourier-Reihe	16
	16.2	Berech	nung von $\frac{a_0}{2}$	16
			Δ	

	16.3 Berechnung der reellen Fourier-Koeffizienten a_k und b_k	16				
	16.4 Umformung der Kosinus- und Sinusterme bei Berechnung der reellen Fourier-Koeffizienten	17				
	16.5 Stetigkeit und Koeffizienten	17				
	16.6 Darstellung einer Funktion vom Grad n	17				
	16.7 Komplexe Fourier-Reihe	17				
	16.7.1 Komplexer Fourier-Koeffizient $\mathbf{c_k}$	17				
	16.8 Umrechnung der e -Terme beim Berechnen von c_k	18				
	16.9 Umrechnung von c_k zu a_k und b_k	18				
	16.10Generelle Vorgehensweise beim Erstellen einer Fourier-Reihe	18				
	16.11Integrale von $t*\sin(k\omega t)$ und $t*\cos(k\omega t)$	18				
17 Wichtige Integrale						
	ln(x)	19				
	arctan(x)					

14 Differenzialgleichungen

14.1 Differenzialgleichungen erster Ordnung

14.1.1 DGL aus Richtungsfeld bestimmen

Eine Differenzialgleichung erster Ordnung beschreibt immer die Steigung einer Funktion. Am einfachsten ist es in diesem Fall, sich zu überlegen, wann die Steigung = 0 wird; also für y'(x) 0 einzusetzen und sich dann zu überlegen, wann die Gleichung erfüllt ist; wo also die Steigung = 0 wird.

Beispiel:

$$y'(x) = xy$$
 wird null bei $x = 0$ oder $y = 0$.
 $y'(x) = x + y$ wird null, wenn $x = -y$ ist.
 $y'(x) = x^2$ wird null, für $x = 0$.
 $y'(x) = y^2$ wird null, für $y = 0$.

14.1.2 Separierbare Differenzialgleichung

Eine Differenzialgleichung erster Ordnung, die man in der Form

$$y' = \frac{f(x)}{g(y)}$$

schreiben kann, bezeichnet man als separierbar

14.1.3 Separation der Variablen

Die allgemeine Lösung einer separierbaren Differenzialgleichung kann man durch folgende Schritte bestimmen

- 1. Ersetze y' formal durch $\frac{dy}{dx}$.
- 2. Separiere alle Terme in x und alle Terme in y und bringe die Differenzialgleichung damit in die Form g(y)dy = f(x)dx.
- 3. Integriere symbolisch $\int g(y)dy = \int f(x)dx$ separat auf beiden Seiten.
- 4. Löse die integrierte Gleichung nach der gesuchten Funktion y(x) auf.

- 5. Falls Anfangswertproblem gegeben (Bspw. sei y(0) = 1): Für x = 0 setzen; für y = 1 setzen
- 6. Nach C auflösen
- 7. Gelöste DGL mit neuem C nochmals hinschreiben

14.1.4 Lösungsansatz homogene Dgl 1. Ordnung

Die allgemeine Lösung y_h einer homogenen linearen Differenzialgleichung

$$a_1(x)y' + a_0(x)y = 0$$

erster Ordnung lässt sich durch Separation bestimmen und lautet

$$y_h(x) = Ce^{-\int \frac{a_o(x)}{a_y(x)} dx}$$

14.1.5 Variation der Konstanten

Eine partikuläre Lösung einer linearen Differenzialgleichung erster Ordnung

$$a_1(x)y' + a_0(x)y = r(x)$$

lässt sich durch Variation der Konstanten bestimmen:

- 1. Berechne die allgemeine Lösung der homogenen Differenzialgleichung (meist durch Separation der Variablen)
- 2. Ersetze die Konstante C in der homogenen Lösung durch eine Funktion C(x). Daraus ergibt sich ein Ansatz y_p für eine partikuläre Lösung.
- 3. Bestimme die Funktion C(x) durch Einsetzen von y_p in die Differenzialgleichung.

Achtung: Signalcharakter!!! Bei DGL erster Ordnung mit Störfunktion meist zuerst Separation der Variablen, dann Variation der Konstanten!!!

Beispiel

DGL:
$$y' + \frac{1}{x}y = \frac{2}{1+x^2}$$

1. zuerst homogene Lösung finden

$$\rightarrow y_h(x) = \frac{C}{x}$$

2. Variation der Konstanten; ersetze C durch "Pseudofunktion" C(x):

$$y(x) = \frac{C(x)}{x}$$

3. Berechne alle relevanten Ableitung der Funktion y(x) und setze in ursprüngliche **inhomogene** DGL ein:

Ableiten:

$$y(x) = \frac{C(x)}{x}$$
$$y'(x) = \frac{C'(x) * x - C(x)}{x^2}$$

Einsetzen:

$$\underbrace{\frac{C'(x) * x - C(x)}{x^2}}_{y'(x)} + \frac{1}{x} * \underbrace{\frac{C(x)}{x}}_{y(x)} = \frac{2}{1 + x^2}$$

- 4. Soweit als möglich kürzen (C(x) muss sich immer kürzen!!)
- 5. Nach C'(x) auflösen und aufleiten
- 6. Beim Aufleiten hier Integrationskonstante C weglassen, da ja ein Wert für C gesucht ist!
- 7. C(x) wieder zurück einsetzen in partikulären Ansatz $y_p(x)$ und soweit als möglich kürzen
- 8. Allgemeine Lösung y(x) ergibt sich aus Addition von $y_h(x)$ und $y_p(x)$

$$y(x) = y_h(x) + y_p(x)$$

9. Bei AWP jetzt noch Wert am gegebenen Punkt einsetzen

14.2 Differenzialgleichungen höherer Ordnung

14.2.1 Nichtlineare Differenzialgleichungen

Nichtlinear ist eine Differenzialgleichung dann, wenn sie Produkte ihrer Lösung y(x) oder der Ableitungen beinhaltet

Beispiele:

$$y'' * y = 3x$$
$$2y' * y^{2} = 0$$
$$y' * \frac{y}{x} = 4x^{2}$$

14.2.2 Lineare DGL n-ter Ordnung lösen

- 1. Berechne die allgemeine Lösung $y_h(x)$ der homogenen Gleichung
- 2. Berechne eine partikuläre Lösung $y_p(x)$ der inhomogenen Differenzialgleichung
- 3. Die allgemeine Lösung einer **inhomogenen** linearen DGL y(x) ergibt sich aus der Addition der homogenen Lösung $y_h(x)$ und einer partikulären Lösung $y_p(x)$

$$y(x) = y_h(x) + y_p(x)$$

Bei homogenen DGLs Hergang derselbe, nur eben ohne partikulären Ansatz!

14.2.3 Charakteristische Gleichung

Zur homogenen linearen Differenzialgleichung

$$a_n y^{(n)} - a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

gehört die charakteristische Gleichung

$$a_n \lambda^n + a_{n-1} \lambda^{(n-1)} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$$

14.2.4 Lösungsansatz für homogene, lineare DGLs mit AWP

Bei DGL n-ter Ordnung sind auch n Anfangswerte gegeben!

- 1. Charakteristische Gleichung der DGL erstellen
- 2. Eigenwerte herausfinden
- 3. Allgemeine Lösung erstellen
- 4. Allgemeine Lösung n mal ableiten
- 5. Die Anfangswerte einsetzen und so alle Konstanten bestimmen
- 6. Neue, spezielle Lösung mit den zuvor bestimmten Konstanten formulieren

14.2.5 Fälle beim Lösen von Eigenwerten

Mehrfache reelle Eigenwerte

Wenn λ ein doppelter Eigenwert (z.B. MNF ergibt zweimal 2 oder so) der DGL ist, so werden trotzdem zwei reelle Fundamentallösungen erzeugt:

$$y_1(x) = e^{\lambda x}, y_2(x) = xe^{\lambda x}$$

Je höher die Vielfachheit der Nullstelle, umso größer die Potenz auf dem vorangestellten x. Zum Beispiel bei vierfacher Nullstelle:

$$y_1(x) = e^{\lambda x},$$

$$y_2(x) = xe^{\lambda x},$$

$$y_3(x) = x^2 e^{\lambda x},$$

$$y_4(x) = x^3 e^{\lambda x}$$

komplexe Eigenwerte

Jedes konjugiert komplexe Paar Eigenwerte $\lambda_{1,2}=a\pm ib$ erzeugt zwei Fundamentallösungen:

$$y_1(x) = e^{ax}\cos(bx), \qquad y_2(x) = e^{ax}\sin(bx)$$

14.2.6 Störansatz

Bei linearen **DGLs erster Ordnung** kann eine partikuläre Lösung mithilfe von *Variation der Konstanten* ermittelt werden.

Dieser Ansatz funktioniert jedoch bei DGLs höherer Ordnung nicht mehr! Bei DGLs höherer Ordnung wird die partikuläre Lösung anhand eines **Störansatzes** ermittelt. Dieser ergibt sich aus der Art der Störfunktion. Für verschiedene Arten von Funktionen gibt es verschiedene Störansätze. Diese können durch nachschlagen in einer **Störansatztabelle** ermittelt und eingesetzt werden.

Störfunktion	Ansatz für partikuläre Lösung
Polynom vom Grad n: $r(x) = a_0 + a_1 x + a_2 x^2 \dots a_n x^n$	Polynom vom Grad n $y_p(x) = A_0 + A_1 x + A_2 x^2 \cdots + A_n x^n$
Exponential funktion $r(x) = ae^{kx}$	Exponential funktion $y_p(x) = Ae^{kx}$
Harmonische Schwingung $r(x) = a_1 \cos(\omega x) + a_2 \sin(\omega x)$	Harmonische Schwingung $y_p(x) = A_1 \cos(\omega x) + A_2 \sin(\omega x)$
Gedämpfte harmonische Schwingung $r(x) = e^{kx}(a_1 \cos(\omega x) + a_2 \sin(\omega x))$	Gedämpfte harmonische Schwingung $y_p(x) = e^{kx} (A_1 \cos(\omega x) + A_2 \sin(\omega x))$

Vorgehen bei partikulärer Lösung mit Störansatz

1. Homogene Lösung $y_h(x)$ lösen

- 2. Resonanz prüfen
- 3. geeigneten Störansatz wählen und Störansatz ableiten, bis die höchste auftretende Ableitung erreicht wurde
- 4. Störansatz + Ableitungen in ursprüngliche **inhomogene** DGL einsetzen
- 5. alles ausmultiplizieren und nach Potenzen ordnen
- 6. Koeffizientenvergleich mit der " originalen " Störfunktion (Faktoren der gleichen Potenz werden gleichgesetzt und aufgelöst)

Superposition

Ist die Störfunktion r(x) eine zusammengesetzte Funktion von Addition oder Subtraktion verschiedener Einzelfunktionen $r(x) = r_1(x) \pm r_2(x) \pm \cdots r_n(x)$, so kann für jede Einzelfunktion der Störansatz separat errechnet werden. Dieses Vorgehen nennt man Superposition.

Resonanz

Ist die **gesamte** Störfunktion (oder bei Superposition eine der Störfunktionen) in der allgemeinen Lösung der homogenen DGL enthalten, so liegt **Resonanz** vor.

In einem solchen Fall muss der für den Typ der Störfunktion gewählte Ansatz mit x multipliziert werden. Ist der resonante Eigenwert ein mehrfacher (n-facher) Eigenwert, so wird der Ansatz mit x^n multipliziert.

14.2.7 Eulerverfahren

Um das Eulerverfahren anwenden zu können benötigen wir eine Differenzialgleichung 1. Ordnung, sowie einen Funktionswert an der Stelle $f(x_0) = m$ und eine Schrittweite h

Algorithmus für das Vorgehen: $y_{k+1} = y_k + h * y'(x_k) \mid x_{k+1} = x_k + h$

Vorgehen:

- 1. Differenzialgleichung nach y'(x) auflösen
- 2. Startwerte x_0 und y_0 festlegen (sind gegeben)
- 3. y_1 berechnen: $y_1 = y_0 + h * y'(x_0)$
- 4. $x_1 = x_0 + h$
- 5. y_2 berechnen: $y_2 = y_1 + h * y'(x_1)$
- 6. $x_2 = x_1 + h$
- 7. ...

Beispiel:

" Berechnen Sie zwei Schritte des Eulerverfahrens für die DGL $y'(x)+4x^3\cdot y(x)=0,\quad y(1)=1,\quad h=0.1$

1. Nach y'(x) auflösen: $y'(x) = -4x^3 \cdot y(x)$

2. Startwerte festlegen: $x_0 = 1, \quad y_0 = 1$

3. y_1 berechnen: $y_1 = y_0 + h \cdot y'(x_0) = y_1 = 1 + 0.1 \cdot (-4 \cdot 1^3 \cdot 1) = \dots$

4. x_1 berechnen: $x_1 = x_0 + h = 1 + 0.1 = 1.1$

5. y_2 berechnen: . . .

14.3 Differenzialgleichungssysteme

14.3.1 Differenzialgleichung in Differenzialgleichungssystem umschreiben

Eine inhomogene Differenzialgleichung mit konstanten Koeffizienten

$$a_n y^n + a_{n-1} y^{n-1} + \dots + a_2 y'' + a_1 y' + a_0 y = r(t)$$

kann auch als Differenzialgleichungssystem der Form

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & -\frac{a_2}{a_n} & \dots & -\frac{a_{n-1}}{a_n} \end{pmatrix} * \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \frac{r(t)}{a_n} \end{pmatrix}$$

Geschrieben werden.

Falls n-1 Anfangsbedingungen gegeben sind werden diese als Lösungsvektor an der Stelle x_0 geschrieben!

Bsp.:

Gegeben:

$$7y''' + 3y'' + 2y' - 5y = \sin(x)$$

Anfangsbedingungen: y(0) = 1, y'(0) = 4, y''(0) = 0

Gesucht: Dgl-System mit Lösungsvektor

Lösung:

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{5}{7} & -\frac{2}{7} & -\frac{3}{7} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{\sin(x)}{7} \end{pmatrix}$$

$$\mathbf{z}(\mathbf{0}) = \begin{pmatrix} 1\\4\\0 \end{pmatrix}$$

Bsp.:

14.3.2 Kriterien für stabile und instabile Systeme

- 1. Realteile aller Eigenwerte sind negativ: System ist asymptotisch stabil
- 2. Mindestens ein Eigenwert ist positiv: System ist instabil
- 3. Mindestens ein Realteil eines Eigenwerts ist 0: System ist grenzstabil

14.3.3 Vorgehen bei komplexen Eigenwerten

Besitzt das DGL-System als Eigenwert ein Paar konjugiert komplexer Eigenwerte $\lambda_{1/2}=a\pm ib$, so genügt es, zu einem der beiden Eigenwerte einen Eigenvektor zu berechnen.

Der so entstandene komplexe Eigenvektor lässt sich zerlegen in Real- und Imaginärteil mithilfe des eulerschen Satzes: $e^{(a+ib)t}=e^{at}\cdot e^{ibt}=e^{at}(\cos(bt)+i\sin(bt))$

$$\begin{split} z_1(t) &= e^{(3+2i)t} \begin{pmatrix} -2i \\ 1 \end{pmatrix} \\ &= e^{3t} (\cos(2t) + i \sin(2t)) \begin{pmatrix} -2i \\ 1 \end{pmatrix} \\ &= e^{3t} \left(\begin{pmatrix} 2\sin(2t) \\ \cos(2t) \end{pmatrix} + i \begin{pmatrix} -2\cos(2t) \\ \sin(2t) \end{pmatrix} \right) \end{split}$$

Das DGL-System hat somit die allgemeine Lösung:

$$\mathbf{x}(t) = C_1 e^{3t} \begin{pmatrix} 2\sin(2t) \\ \cos(2t) \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} -2\cos(2t) \\ \sin(2t) \end{pmatrix}$$

14.3.4 Lösungsstrategie für lineare DGL-Systeme mit konstanten Koeffizienten

- 1. DGL System in Matrixform bringen
- 2. Eigenwerte der A-Matrix berechnen (Hauptdiagonale $-\lambda$, Determinante berechnen, charakteristische Gleichung aufstellen, mit 0 gleichsetzen und auflösen)
- 3. Eigenvektoren aus Eigenwerten berechnen (zu jedem Eigenwert $\lambda_1 \cdots \lambda_n$ ein LGS ausfstellen (λ jeweils einsetzen und neue Matrix = 0 setzen) und auflösen)
- 4. Allgemeine Lösung ist $y(x) = C_1 * e^{\lambda_1 * t} * EV_1 + \dots + C_n * e^{\lambda_n * t} * EV_n$
- 5. Bei einem AWP, z.B. $z(0) = {n \atop k}$ Wird 0 für t gewählt und die Lösungsgleichung mit dem Vektor ${n \atop k}$ gleichgesetzt. nun werden die Konstanten $C_1, C_2 \dots C_n$ aus dem entstehenden LGS bestimmt.

Auch hier ist y(x) eine Summe aus den einzelnen Fundamentallösungen $y_1 \cdots y_n)$

14.3.5 Eulerverfahren bei DGL-Systemen

To do!

10 Potenzreihen

10.1 Reihe

Eine Reihe ist definiert als die Summe einer Folge, also als:

$$\sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + a_3 \cdots$$

10.2 Partialsumme

Wenn man bei einer Reihe die Summe der ersten fünf Reihenglieder bildet nennt man das die vierte Partialsumme der Reihe (a_k)

10.3 Geometrische Reihe

Die Geometrische Reihe wird dargestellt durch

$$\sum_{k=0}^{\infty} x^k = 1 + q + q^2 + q^3 + \dots + q^n = \frac{1}{1-q}, r = 1$$

Die geometrische Reihe konvergiert nur für Werte |q|<1. Für alle anderen Werte für q divergiert die Reihe.

10.4 Konvergenzkriterium

Eine Reihe konvergiert nur dann, wenn ihre Glieder eine Nullfolge bilden; wenn Sie gegen Null streben.

10.5 Reihe der e-Funktion e^x

Die Reihe der e-Funktion wird dargestellt durch

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} \cdots \frac{x^n}{n!} , r = \infty$$

10.6 Potenzreihe (mit Entwicklungspunkt)

Eine Potenzreihe mit dem **Entwicklungspunkt** x_0 wird nach dem Muster:

$$p(x) = \sum_{k=0}^{\infty} a_k (x - \mathbf{x_0})^k = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

gebildet.

Falls $x_0 = 0$ ergibt sich dementsprechend:

$$p(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \cdots$$

10.7 Genauigkeit abschätzen mit Leibniz-Kriterium

Wenn alternierende Reihe gegeben ist, und eine Fehlerabschätzung (z.B. 10^{-2}) gesucht ist, dann kann nach dem Glied aufgehört werden, das einen Wert (im Beispiel) $\leq \left|\frac{1}{10}\right|$.

Achtung: Funktioniert nur bei alternierenden Reihen!

10.8 Aufgabenstellung "Entwickeln Sie eine Reihe aus der Funktion f(x) bis zum n-ten Grad"

- 1. Erkenne elementare Reihen in der gegebenen Funktion
- 2. Substituiere x und ersetze x der elementaren Reihen

Beispiel:

Gegeben: $f(x) = e^{-x} - 1$

10.9 Konvergenzradius einer zusammengesetzten Reihe

Bei einer Funktion, die aus mehreren Potenzreihen zusammengesetzt ist, gilt jeweils der kleinste Konvergenzradius als Gesamtkonvergenzradius der Funktion.

10.10 Taylorreihe

Eine Taylorreihe an der Stelle x_0 ist definiert durch

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \quad \text{, also} \quad T(x) = f(x_0) + \frac{f(x_0)^{'}}{1!} (x-x_0) + \frac{f(x_0)^{''}}{2!} (x-x_0)^2 + \frac{f(x_0)^{'''}}{3!} (x-x_0)^3 + \cdots$$

Das **Taylorpolynom** vom Grad n wäre dementsprechend definiert durch

$$T_n(x) = f(x_0) + \frac{f(x_0)'}{1!}(x - x_0) + \frac{f(x_0)''}{2!}(x - x_0)^2 + \frac{f(x_0)'''}{3!}(x - x_0)^3 + \dots + \frac{f(x_0)^n}{n!}(x - x_0)^n$$

10.11 Reihen von Sinus und Cosinus

Sinus:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \cdots \qquad r = \infty$$

Cosinus:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \cdots \qquad r = \infty$$

16 Fourier-Reihen

16.1 Darstellung einer Fourier-Reihe

Eine Fourier Reihe wird dargestellt durch

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega t) + b_k \sin(k\omega t)), \quad \omega = \frac{2\pi}{T}$$

16.2 Berechnung von $\frac{a_0}{2}$

 $\frac{a_0}{2}$ heißt auch **Mittelwert** oder **Gleichanteil**. Er entspricht dabei jeweils dem Integral der Funktion pro Periode.

$$\frac{a_0}{2} = \frac{\text{Integral "uber eine Periode}}{\text{Periodendauer}}$$

16.3 Berechnung der reellen Fourier-Koeffizienten a_k und b_k

Hierbei muss die Periodendauer T und die Kreisfrequenz $\omega = \frac{2\pi}{T}$ bekannt sein

$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(k\omega t) dt$$

$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(k\omega t) dt$$

Der Trick hierbei ist f(t) in eine Abschnittsweise definierte Funktion aufzuspalten und die Integrale dann getrennt zu berechnen.

Es kann zudem immer auch das Integral von 0 bis T berechnet werden; diese Form ist äquivalent zu $-\frac{T}{2}$ bis $\frac{T}{2}$

16.4 Umformung der Kosinus- und Sinusterme bei Berechnung der reellen Fourier-Koeffizienten

$$\sin(k\pi) = 0$$

$$\cos(k\pi) = \begin{cases} 1 & \text{für } k \text{ gerade} \\ -1 & \text{für } k \text{ ungerade} \end{cases}$$

$$\to (-1)^k$$

$$-\cos(k\pi) = \begin{cases} -1 & \text{für } k \text{ gerade} \\ 1 & \text{für } k \text{ ungerade} \end{cases}$$

$$\to (-1)^{k+1}$$

$$\cos(2\pi k) = 1$$

16.5 Stetigkeit und Koeffizienten

Wenn die Koeffizienten der Fourierreihe proportional zu $\frac{1}{k}$ sind ist die Reihe unstetig \rightarrow Langsame Konvergenz

Wenn die Koeffizienten dagegen proportional zu $\frac{1}{k^2}$ sind ist die Reihe stetig o Schnelle Konvergenz

16.6 Darstellung einer Funktion vom Grad ${\bf n}$

Ist die Fourier-Reihe einer Funktion vom Grad n gesucht, so ist nach der Fourier-Reihe

$$p_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(k\omega t) + b_k \sin(k\omega t)), \quad \omega = \frac{2\pi}{T}$$

gefragt.

Es müssen hier also lediglich die Fourier-Koeffizienten $a_1, a_2, \cdots a_n$ bzw. $b_1, b_2, \cdots b_n$ berechnet werden.

16.7 Komplexe Fourier-Reihe

16.7.1 Komplexer Fourier-Koeffizient c_k

Der komplexe Fourier-Koeffizient c_k berechnet sich durch die Formel

$$c_k = \frac{1}{T} * \int_0^T f(t)e^{-ikwt}dt, \quad k = 0, \pm 1, \pm 2, \cdots$$

16.8 Umrechnung der e-Terme beim Berechnen von c_k

$$\begin{aligned} e^{-ik2\pi} &= 1 \\ e^{-ik\pi} &= (-1)^k \\ &\to 1 \text{ für } k \text{ gerade} \\ &-1 \text{ für } k \text{ ungerade} \end{aligned}$$

16.9 Umrechnung von c_k zu a_k und b_k

$$a_k = 2\operatorname{Re}(c_k)$$

$$b_k = -2\operatorname{Im}(c_k)$$

$$\to c_k = \frac{a_k - ib_k}{2}$$

16.10 Generelle Vorgehensweise beim Erstellen einer Fourier-Reihe

- 1. Fourierreihe skizzieren
- 2. T und ω ablesen / berechnen
- 3. Feststellen ob die Fourierreihe gerade, ungerade oder keins von beidem ist
- 4. Fourierkoeffizienten berechnen
- 5. Falls Fourierkoeffizienten komplex: Umrechnen in reelle Darstellung
- 6. Erste Reihenglieder der Fourierreihe berechnen und aufschreiben

16.11 Integrale von $t*\sin(k\omega t)$ und $t*\cos(k\omega t)$

$$\int t * \sin(k\omega t) dt = \frac{\sin(k\omega t) - k\omega t \cos(k\omega t)}{k^2 \omega^2}$$
$$\int t * \cos(k\omega t) dt = \frac{k\omega t \sin(k\omega t) + \cos(k\omega t)}{k^2 \omega^2}$$

Im Falle von $\omega = \frac{2\pi}{T}~;~\frac{2\pi}{2\pi}$ verschwindet der $\omega\text{-Anteil}.$

17 Wichtige Integrale

$$ln(x)$$

$$\int \frac{1}{x}$$
 $arctan(x)$