Differentiating Exponential Functions

The derivative of e^x is quite remarkable. The expression for the derivative is the same as the expression that we started with; that is, e^x

$$\boxed{\frac{d}{dx}e^x = e^x} \qquad \boxed{\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}}$$
 Example: i) $\frac{d}{dx}e^{2x} =$ ii) $\frac{d}{dx}e^{x+sinx} =$

Exercise 1

In questions 1 to 7 differentiate the given functions with respect to x.

1. (a)
$$e^{2x}$$

(b)
$$5e^{-x}$$

(c)
$$e^{3x+5}$$

2. (a)
$$e^{2x^3}$$

(b)
$$e^{\sqrt{x}}$$

(c)
$$e^{-1/x}$$

3. (a)
$$e^{\sin x}$$

(b)
$$e^{\cos 2x}$$

(c)
$$e^{4 \tan x}$$

4. (a)
$$xe^{x^2}$$
 (b) x^2e^{5x}

(b)
$$x^2e^{5x}$$

(c)
$$e^{x \cos x}$$

5. (a)
$$e^{2x}\cos 3x$$
 (b) $e^{-x^2}\sin x$ (c) $(x+1)^3e^{x/2}$

(b)
$$e^{-x^2} \sin x$$

(c)
$$(x+1)^3 e^{x/2}$$

6. (a)
$$\sqrt{(1-e^{4x})}$$

(b)
$$e^{(e^x)}$$

(c)
$$\sin(e^x)$$

6. (a)
$$\sqrt{(1 - e^{4x})}$$
 (b) $e^{(e^x)}$ (c) $\sin(e^x)$

7. (a) $\frac{1}{2}(e^x - e^{-x})^2$ (b) $\frac{e^x}{1 + e^{-x}}$ (c) $\frac{e^{\sin^2 x}}{e^{-\cos^2 x}}$

$$\text{(b) } \frac{e^x}{1 + e^{-x}}$$

$$(c) \frac{e^{\sin^2 x}}{e^{-\cos^2 x}}$$

Question 8

If
$$y = e^x \sin x$$
, show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.

Question 9

Find the equation of the tangent to the curve $y = e^{3x-5}$ at the point where x = 2.

Question 10

Find the values of x for which the function $(x^2 - 2x - 1)e^{2x}$ has maximum or minimum values, distinguish between them.

Question 11

Find the values of x between 0 and 2π for which the function $e^x \cos x$ has maximum or minimum values, distinguish between them.

Question 12

The curve C has the equation $y = \sqrt{x} + e^{1-4x}$, $x \ge 0$.

Find an equation for the normal to the curve at the point $(\frac{1}{4}, \frac{3}{2})$.

Question 13

The curve $y = e^x + 4e^{-2x}$ has one stationary point.

(i) Find the x-coordinate of this point.

[4]

(ii) Determine whether the stationary point is a maximum or a minimum point.

[2]

Answers:

1. (a)
$$2e^{2x}$$
, (b) $-5e^{-x}$, (c) $3e^{3x+5}$

2. (a)
$$6x^2e^{2x^3}$$
, (b) $\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$, (c) $\frac{1}{x^2}e^{-1/x}$

3. (a)
$$\cos xe^{\sin x}$$
, (b) $-2\sin 2xe^{\cos 2x}$, (c) $4\sec^2 xe^{4\tan x}$

4. (a)
$$(2x^2 + 1)e^{x^2}$$
, (b) $(5x + 2)xe^{5x}$. (c) $(\cos x - x \sin x)e^{x \cos x}$

2. (a)
$$6x^2e^{2x^3}$$
, (b) $\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$, (c) $\frac{1}{x^2}e^{-1/x}$.
3. (a) $\cos xe^{\sin x}$, (b) $-2\sin 2xe^{\cos 2x}$, (c) $4\sec^2 xe^{4\tan x}$.
4. (a) $(2x^2+1)e^{x^2}$, (b) $(5x+2)xe^{5x}$, (c) $(\cos x-x\sin x)e^{x\cos x}$.
5. (a) $e^{2x}(2\cos 3x-3\sin 3x)$, (b) $e^{-x^2}(\cos x-2x\sin x)$, (c) $\frac{1}{2}(x+1)^2(x+7)e^{x/2}$.

6. (a)
$$-2e^{4x}(1-e^{4x})^{-\frac{1}{2}}$$
, (b) $e^{(x+e^x)}$, (c) $e^x \cos(e^x)$.
7. (a) $e^{2x} - e^{-2x}$, (b) $(2+e^x)/(1+e^{-x})^2$, (c) 0.

7. (a)
$$e^{2x} - e^{-2x}$$
, (b) $(2 + e^x)/(1 + e^{-x})^2$, (c) 0.

9.
$$y = e(3x - 5)$$
. 10. $x = -1$, max; $x = 2$, min. 11. $x = \pi/4$, max; $x = 5\pi/4$, min.

12.
$$4x - 12y + 17 = 0$$
 13. i) $x = \ln 2$, ii) minimum

Differentiating Logarithmic Functions

The derivative of the logarithmic function $y = \ln x$ is given by:

$$\left(\frac{d}{dx}\ln x = \frac{1}{x}\right)$$

If $y = \ln f(x)$, then the derivative of y is given by: $\frac{d}{dx} \ln[f(x)] = \frac{f'(x)}{f(x)}$

$$\frac{d}{dx}\ln[f(x)] = \frac{f'(x)}{f(x)}$$

Example: Find the derivative of

i)
$$y = 2 \ln (3x^2 - 1)$$
 ii) $y = \ln(1 - 2x)^3$ iii) $y = \ln(\cos x^2)$. iv) $y = [\ln(x^2 + 3)]^4$

Exercise 2

In questions 1 to 7 differentiate the given functions with respect to x.

1. (a) $\ln 3x$,

(b) ln(x + 3),

(c) ln(2x-1).

2. (a) $ln(x^3 + 4)$,

(b) $\ln(\sin 2x)$,

(c) $ln(\sec x)$.

3. (a) $x^2 \ln x$,

(b) $(\ln x)/x^2$,

(c) ln(ln x).

4. (a) $\ln(x^3)$,

(b) $\ln \sqrt{4x + 5}$,

(c) $x \ln(1/x)$.

5. (a) $\ln(\sec x + \tan x)$, (b) $\ln(x^2 + 4)^2$,

(c) $\log_{10} x$.

6. (a) $\ln\left(\frac{x^2}{3x-2}\right)$, (b) $\ln\sqrt{\left(\frac{x}{1+x}\right)}$,

(c) $\ln \frac{\cos x}{\sqrt{(1-x^2)}}$.

7. (a) $e^{2 \ln x}$.

(b) $\ln(e^{\tan x})$,

(c) $\ln(3x^2e^{-x})$.

8. Find the equation of the tangent to the curve $y = \ln(3x - 5)$ at the point where x = 2.

Question 9

If
$$y = \ln(x^2 - 5)$$
, show that $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 2e^{-y}$.

Question 10

If
$$y = \sin 2x \ln(\tan x)$$
, show that $\frac{d^2y}{dx^2} + 4y = 4\cot 2x$.

Question 11

The equation of a curve is $y = \ln x + \frac{2}{x}$, where x > 0.

(i) Find the coordinates of the stationary point of the curve and determine whether it is a maximum or a minimum point.

Question 12

A curve has the equation $x = y^2 - 3 \ln 2y$.

(i) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{2y^2 - 3}.$$
 [3]

Find an equation for the tangent to the curve at the point where $y = \frac{1}{2}$. (ii) Give your answer in the form ax + by + c = 0 where a, b and c are integers. [3]

Question 13

The sketch below shows the curve with equation $y = x^2 \ln(2x)$

(i) Find the exact coordinates of the stationary point.

(ii) Find the x-coordinate of the point where the curve cuts the x-axis.

Question 14

The diagram shows the curve with equation $y = 2x - 3 \ln (2x + 5)$ and the normal to the curve at the point P(-2, -4).

(i) Find an equation for the normal to the curve at P.

[4]

Question 15

The curve C has the equation $y = 2e^x - 6 \ln x$ and passes through the point P with x-coordinate 1.

(i) Find an equation for the tangent to C at P.

[4]

The tangent to C at P meets the coordinate axes at the points Q and R.

(ii) Show that the area of triangle *OQR*, where *O* is the origin, is $\frac{9}{3-e}$. [4]

Answers:

1. (a)
$$\frac{1}{x}$$
, (b) $\frac{1}{x+3}$, (c) $\frac{2}{2x-1}$.

2. (a)
$$\frac{3x^2}{x^3+4}$$
, (b) $2 \cot 2x$, (c) $\tan x$.

3. (a)
$$x(2 \ln x + 1)$$
, (b) $(1 - 2 \ln x)/x^3$, (c) $1/x \ln x$.

4. (a)
$$\frac{3}{x}$$
, (b) $\frac{2}{4x+5}$, (c) $-1 - \ln x$.

5. (a)
$$\sec x$$
, (b) $\frac{4x}{x^2 + 4}$, (c) $(\log_{10} e)/x$.

6. (a)
$$\frac{3x-4}{x(3x-2)}$$
, (b) $\frac{1}{2x(x+1)}$, (c) $\frac{x}{1-x^2} - \tan x$.

7. (a)
$$2x$$
, (b) $\sec^2 x$, (c) $\frac{2}{x} - 1$. 8. $y = 3x - 6$.

12. ii)
$$4x + 20y - 11 = 0$$

14. i)
$$y = \frac{1}{4}x - \frac{7}{2}$$

15. i)
$$y = (2e - 6)x + 6$$