Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ИПММ

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по курсовой работе по дисциплине «Математическая статистика» на тему «Метод главных компонент»

Выполнил студент гр. 3630102/80201 Кирпиченко С. Р. Руководитель Баженов А. Н.

Содержание

	Стран	Страница	
1	Постановка задачи	5	
2	Теория 2.1 Постановка задачи метода главных компонент		
3	Реализация	6	
4	Результаты 4.1 Примеры образцов	6	
5	Обсуждение	10	

Список иллюстраций

	Страни	граница	
1	Несколько исходных образцов	6	
2	Сглаженные исходные образцы	7	
3	Гистограмма распределения дисперсий по компонентам	7	
4	График первой полученной компоненты	8	
5	График второй полученной компоненты	8	
6	Разбиение главной компоненты 1 на области	9	
7	Разбиение главной компоненты 2 на области	9	

Список таблиц

		Страница
1	Сопоставление областей с данными	 10

1 Постановка задачи

2 Теория

2.1 Постановка задачи метода главных компонент

В компонентном анализе ищется такое линейное преобразование

$$\widehat{x} = L\widehat{f},\tag{1}$$

где $\hat{x} = (x_1, \dots, x_d)$, $\hat{f} = (f_1, \dots, f_d)$ - векторы-столбцы случайных величин и $L = ||l_{ij}||$ - квадратная матрица размером $d \times d$, в которой случайные величины f_1, \dots, f_d некоррелированы и нормированы $\mathbf{E}f_i = 0$, $\mathbf{D}f_i = 1$, $i = 1, \dots, d$; всегда для простоты предполагается, что $\mathbf{E}x_i = 0$, $i = 1, \dots, d$. В этом случае дисперсия выражается как

$$\mathbf{D}x_i = l_{i1}^2 + \dots + l_{id}^2, \quad i = 1, \dots, d$$

Следовательно, суммарная дисперсия $\{x_i\}_{i=1}^d$ равна

$$\sum_{i=1}^{d} \mathbf{D}x_i = \sum_{i=1}^{d} l_{i1}^2 + \dots + \sum_{i=1}^{d} l_{id}^2$$
 (2)

Отыскание представления (1) эквивалентно определению d таких нормированных линейных комбинаций y_1,\ldots,y_d переменных x_1,\ldots,x_d (т.е. сумма квадратов коэффициентов равна 1), что для каждого $k=1,\ldots,d$ y_k имеет наибольшую дисперсию среди всех нормированных линейных комбинаций при условии некоррелированности с предыдущими комбинациями y_1,\ldots,y_{k-1} . Такие линейные комбинации y_1,\ldots,y_d называются главными компонентами системы случайных величин x_1,\ldots,x_d .

2.2 Алгоритм

Пусть дана d — мерная выборка (X_1, \ldots, X_n) .

1. Составим матрицу

$$X = \begin{bmatrix} x_1^1 & \dots & x_n^1 \\ x_1^2 & \dots & x_n^2 \\ \dots & \dots & \dots \\ x_1^d & \dots & x_n^d \end{bmatrix}$$
 (3)

2. Построим ковариационную матрицу

$$C = \frac{1}{n-1}XX^T. (4)$$

3. С диагонализуемая, то есть представима в виде

$$C = P^T \Lambda P, \tag{5}$$

где P^T есть ортонормированная матрица, содержащая собственные векторы матрицы C, или главные компоненты, а Λ - диагональная матрица, содержащая соответствующие главным компонентам собственные числа матрицы C. Причем, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d > 0$, и λ_i есть вклад компоненты f_i в суммарную дисперсию $x_1...x_d$, равную в силу (2) $\lambda_1 + ... + \lambda_d = tr(\Lambda)$

4. Для проекции X на множество главных компонент с индексами $i_1, ... i_k$ составим матрицу P, столбцами которой будут являться собственые вектора $v_{i_1}, ..., v_{i_k}$. Тогда проекцией X на множество главных компонент с индексами $i_1, ... i_k$ будет являться

$$Y = PX. (6)$$

3 Реализация

Лабораторная работа выполнена на языке Python в среде PyCharm с использованием библиотек numpy, matplotlib.pyplot. Метод главных компонент был взят из модуля decomposition библиотеки sklearn.

Научным руководителем предоставлено 30 образцов исходных данных «Hexane_extr_Kivu_Lake» и 2 научные статьи: [4], [5].

4 Результаты

4.1 Примеры образцов

Рис. 1: Несколько исходных образцов

Исходные данные включают в себя 30 образцов, 4 из которых для примера изображены на рис. 1. Как видим, на всех графиках присутствует шум - две полосы резких пиков. Чтобы убрать данные выбросы из исходных данных, был применен медианный фильтр с размером окна (10,4). В результате этой операции приведенные на 1 образцы преобразованы следующим образом:

Рис. 2: Сглаженные исходные образцы

Как видим, характер и количество экстремумов (исключая описанный шум) было сохранено.

По итогам применения метода главных компонент были получены следующие результаты:

Рис. 3: Гистограмма распределения дисперсий по компонентам

Рис. 4: График первой полученной компоненты

Рис. 5: График второй полученной компоненты

Отметим области максимальной дисперсии на рассмтариваемых главных компонентах для сопоставления их с областями из рис. 7, [4].

Рис. 6: Разбиение главной компоненты 1 на области

Рис. 7: Разбиение главной компоненты 2 на области

Номер области	Сопоставленное из [4] вещество
1	Protein-like containing Tryptophan
2	Tryptophan and Protein-like Related to Biological
3	Humic acid-like
4	Marine humic acids
5	Humic acid-like
6	Humic acid-like

Таблица 1: Сопоставление областей с данными

5 Обсуждение

- 1. Из гистограммы (рис. 3) видно, что первая компонента покрывает примерно 90% дисперсии исходных данных. Первые две рассмотренные компоненты покрывают почти все 100% дисперсии;
- 2. Максимумы на рис. 4 и рис. 5 обозначают области, в которых дисперсия данных среди представленных образцов максимальна. Некоторым из этих максимумов удалось сопоставить вещества из статьи [4] (табл. 1), однако область глобального максимума в первой компоненте не удалось соотнести ни с какой аминокислотой в [4];
- 3. Рельеф первой главной компоненты в целом похож на большую часть исходных данных (например, можно визуально сопоставить рис. 4 и первые три образца из рис. 2).

Исходный код

С исходным кодом программы и отчета можно ознакомиться в репозитории https://github.com/Stasychbr/MatStat.

Список литературы

- [1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехн. ун-та, 2009. 395 с. (Математика в политехническом университете).
- [2] Ивченко Г.И., Медведев Ю.И. Математическая статистика: Учебник. М.: Издательство ЛКИ, 2014. 352 с.
- [3] Айвазян, Бухштабер, Енюков, Мешалкин. Прикладная Статистика. Классификация и снижение размерности. М.: Финансы и статистика, 1989. 607 с.
- [4] Chen W., Westerhoff P., Leenheer J.A., Booksh K. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter // Environ. Sci. Technol. 2003, 37, p. 5701-5710
- [5] Semenov P.B., et al. Methane and Dissolved Organic Matter in the Ground Ice Samples from Central Yamal: Implications to Biogeochemical Cycling and Greenhouse Gas Emission. // Geosciences. 2020: 450 c.
- [6] Dramichanin T., Ackovich L.L., Zekovich I., Dramichanin M. D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices // Hindawi Journal of Spectroscopy Volume 2018, Article ID 8395212, 6 p.