DHANUSH

In [2]:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [4]:

data=pd.read_csv("Titanic-Dataset.csv")

In [5]:

data.head()

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

In [6]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [7]:

data.describe()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

HANDALING NULL VALUES

In [8]:

data.isnull().any()

Out[8]:

PassengerId False Survived False Pclass False Name False False Sex True Age SibSp False Parch False Ticket False Fare False Cabin True Embarked True dtype: bool

In [9]:

data.isnull().sum()

Out[9]:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtunce intC1	

dtype: int64

FILLING NULL VALUES IN AGE COLUMN WITH MEAN<a href="#FILLING-NULL-VALUES-IN-AGE-COLUMN-WITH-MEAN"

```
class="anchor-link">¶
In [11]:
    mean=data["Age"].mean()
In [12]:
    data["Age"]=data["Age"].fillna(mean)
In [13]:
    data["Age"].tail()
Out[13]:
```

```
886 27.000000
887 19.000000
888 29.699118
889 26.000000
890 32.000000
Name: Age, dtype: float64

In [14]:
data["Age"].isnull().sum()

Out[14]:
0
```

FILLING NULL VALUES IN EMBARKED COLUMN WITH MODE<a href="#FILLING-NULL-VALUES-IN-EMBARKED-COLUMN-WITH-MODE"

```
class="anchor-link">¶
In [15]:
    em_mode=data["Embarked"].mode()
In [16]:
    data["Embarked"]=data["Embarked"].fillna(em_mode[0])
In [17]:
    data["Embarked"].isnull().sum()
Out[17]:
    0
```

FILLING NULL VALUES IN CABIN COLUMN WITH MODE<a href="#FILLING-NULL-VALUES-IN-CABIN-COLUMN-WITH-MODE"

```
class="anchor-link">¶
In [18]:
    c_mode=data["Cabin"].mode()
In [19]:
    data["Cabin"]
Out[19]:
```

```
0
             NaN
    1
            C85
    2
             NaN
    3
            C123
    4
             NaN
    886
            NaN
    887
            B42
    888
            NaN
    889
           C148
    890
             NaN
    Name: Cabin, Length: 891, dtype: object
In [20]:
    c_mode
Out[20]:
    0
              B96 B98
    1
         C23 C25 C27
    2
                   G6
    Name: Cabin, dtype: object
In [21]:
    data["Cabin"]=data["Cabin"].fillna(c_mode[2])
In [22]:
    data["Cabin"].isnull().sum()
Out[22]:
    0
In [23]:
    data["Cabin"]
Out[23]:
    0
             G6
    1
             C85
    2
              G6
    3
           C123
    4
             G6
            . . .
    886
             G6
    887
             B42
    888
             G6
    889
           C148
    890
             G6
    Name: Cabin, Length: 891, dtype: object
In [24]:
```

data.isnull().sum()

Out[24]:

Passen	gerId	0
Surviv	ed	0
Pclass		0
Name		0
Sex		0
Age		0
SibSp		0
Parch		0
Ticket		0
Fare		0
Cabin		0
Embark	ed	0
dtype:	int64	

DATA VISUALISATION

In [29]:

```
cor=data.corr()
```

C:\Users\venka\AppData\Local\Temp\ipykernel_9632\1426905697.py:1: FutureWarnin
g: The default value of numeric_only in DataFrame.corr is deprecated. In a futu
re version, it will default to False. Select only valid columns or specify the
value of numeric_only to silence this warning.
 cor=data.corr()

In [30]:

cor

Out[30]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerl	d 1.000000	-0.005007	-0.035144	0.033207	-0.057527	-0.001652	0.012658
Survive	d - 0.005007	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclas	s -0.035144	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Ag	e 0.033207	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibS	p - 0.057527	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parc	h -0.001652	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Far	e 0.012658	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

In [31]:

sns.heatmap(cor,annot=True)

Out[31]:

<Axes: >

HANDILING WITH OUTLIERS

In [32]:

sns.boxplot(data["Age"])

Out[32]:

<Axes: >


```
In [33]:
```

```
Age_q1=data.Age.quantile(0.25)
Age_q3=data.Age.quantile(0.75)
print(Age_q1)
print(Age_q3)

22.0
35.0
```

In [34]:

Out[34]:

13.0

In [35]:

Out[35]:

54.5

In [37]:

Out[37]:

2.5

```
In [38]:
    median_Age=data["Age"].median()
    median_Age

Out[38]:
    29.69911764705882
In [39]:
    data["Age"]=np.where(data["Age"]>ul_Age,median_Age,data["Age"])
In [40]:
    (data["Age"]>54.5).sum()

Out[40]:
    0
In [41]:
    sns.boxplot(data["Age"])
```

Out[41]:

<Axes: >


```
In [42]:
```

sns.boxplot(data["Fare"])

Out[42]:

<Axes: >


```
In [43]:
   fare_q1=data.Fare.quantile(0.25)
   fare_q3=data.Fare.quantile(0.75)
   print(fare_q1)
   print(fare_q3)
   7.9104
   31.0
In [46]:
   IQR_Fare=fare_q3-fare_q1
   IQR_Fare
Out[46]:
   23.0896
In [48]:
    upperlimit_Fare=fare_q3+1.5*IQR_Fare
    upperlimit_Fare
Out[48]:
   65.6344
In [49]:
    lower_limit_Fare=fare_q1-1.5*IQR_Fare
    lower_limit_Fare
```

```
Out[49]:
    -26.724

In [50]:
    median_Fare=data["Fare"].median()
    median_Fare

Out[50]:
    14.4542

In [51]:
    data['Fare']=np.where((data['Fare']>upperlimit_Fare),median_Fare,data['Fare'])

In [52]:
    sns.boxplot(data["Fare"])

Out[52]:
    <Axes: >
```



```
In [53]:
     (data["Fare"]>65).sum()
Out[53]:
     0
```

dropping the variables

In [54]:

data.drop(['Name'],axis=1,inplace=True)

In [55]:

data

Out[55]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	ma l e	22.000000	1	0	A/5 21171	7.2500	G6	S
1	2	1	1	female	38.000000	1	0	PC 17599	14.4542	C85	С
2	3	1	3	female	26.000000	0	0	STON/O2. 3101282	7.9250	G6	S
3	4	1	1	female	35.000000	1	0	113803	53.1000	C123	S
4	5	0	3	male	35.000000	0	0	373450	8.0500	G6	S
886	887	0	2	male	27.000000	0	0	211536	13.0000	G6	S
887	888	1	1	female	19.000000	0	0	112053	30.0000	B42	S
888	889	0	3	female	29.699118	1	2	W./C. 6607	23.4500	G6	S
889	890	1	1	ma l e	26.000000	0	0	111369	30.0000	C148	С
890	891	0	3	ma l e	32.000000	0	0	370376	7.7500	G6	Q

891 rows × 11 columns

In [56]:

data.drop(['Ticket'],axis=1,inplace=True)

In [57]:

data

Out[57]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	G6	S
1	2	1	1	female	38.000000	1	0	14.4542	C85	С
2	3	1	3	female	26.000000	0	0	7.9250	G6	S
3	4	1	1	female	35.000000	1	0	53.1000	C123	S
4	5	0	3	ma l e	35.000000	0	0	8.0500	G6	S
886	887	0	2	ma l e	27.000000	0	0	13.0000	G6	S
887	888	1	1	fema l e	19.000000	0	0	30.0000	B42	S
888	889	0	3	female	29.699118	1	2	23.4500	G6	S
889	890	1	1	ma l e	26.000000	0	0	30.0000	C148	С
890	891	0	3	ma l e	32.000000	0	0	7.7500	G6	Q

891 rows × 10 columns

In [58]:

data.drop(["PassengerId"],axis=1,inplace=True)

In [59]:

data

Out[59]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	male	22.000000	1	0	7.2500	G6	S
1	1	1	female	38.000000	1	0	14.4542	C85	С
2	1	3	female	26.000000	0	0	7.9250	G6	S
3	1	1	female	35.000000	1	0	53.1000	C123	S
4	0	3	male	35.000000	0	0	8.0500	G6	S
886	0	2	male	27.000000	0	0	13.0000	G6	S
887	1	1	female	19.000000	0	0	30.0000	B42	S
888	0	3	female	29.699118	1	2	23.4500	G6	S
889	1	1	male	26.000000	0	0	30.0000	C148	С
890	0	3	male	32.000000	0	0	7.7500	G6	Q

891 rows × 9 columns

In [60]:

data.drop(["Cabin"],axis=1,inplace=True)

In [61]:

data

Out[61]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	ma l e	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	14.4542	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	ma l e	35.000000	0	0	8.0500	S
886	0	2	ma l e	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	ma l e	26.000000	0	0	30.0000	С
890	0	3	ma l e	32.000000	0	0	7.7500	Q

891 rows × 8 columns

Splitting the data

In [62]:

y=data["Survived"]

In [63]:

y.head()

Out[63]:

0 0

1 1

2 1

ο.

4 0

Name: Survived, dtype: int64

In [64]:

data

Out[64]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	ma l e	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	14.4542	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	ma l e	35.000000	0	0	8.0500	S
886	0	2	ma l e	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	ma l e	26.000000	0	0	30.0000	С
890	0	3	ma l e	32.000000	0	0	7.7500	Q

891 rows × 8 columns

ENCODING

In [65]:

from sklearn.preprocessing import LabelEncoder

In [66]:

le=LabelEncoder()

```
In [67]:
```

data["Sex"]=le.fit_transform(data["Sex"])

In [68]:

data["Sex"]

Out[68]:

Name: Sex, Length: 891, dtype: int32

In [69]:

data.head()

Out[69]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	S
1	1	1	0	38.0	1	0	14.4542	С
2	1	3	0	26.0	0	0	7.9250	S
3	1	1	0	35.0	1	0	53.1000	S
4	0	3	1	35.0	0	0	8.0500	S

In [70]:

data["Embarked"]=le.fit_transform(data["Embarked"])

In [71]:

data.head()

Out[71]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	14.4542	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2

```
In [72]:
    data["Pclass"].nunique()
Out[72]:
    3
In [73]:
    data["Pclass"].unique()
Out[73]:
    array([3, 1, 2], dtype=int64)
In [74]:
    data["Sex"].unique()
Out[74]:
    array([1, 0])
In [75]:
    data["Embarked"].unique()
Out[75]:
    array([2, 0, 1])
```

Spliting the train and test data

```
In [76]:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(data,y,test_size=0.3,random_state=0)
In [77]:
    x_train.shape,x_test.shape,y_train.shape,y_test.shape
Out[77]:
    ((623, 8), (268, 8), (623,), (268,))
```

Feature Scaling

```
In [78]:
    from sklearn.preprocessing import StandardScaler
In [79]:
    sc=StandardScaler()
```

```
In [80]:
```

x_train=sc.fit_transform(x_train)

In [81]: