Increasing precision by partitioning the error sum of squares:

$$F = \frac{s_{among}^{2}}{s_{within}^{2}} = \frac{MST}{MSE} = \frac{\frac{SST}{df_{txt}}}{\frac{SSE}{df_{e}}} \xrightarrow{\frac{Blocking:}{SSE (CRD)}} SSB + SSE (RCBD)$$

Increasing precision by partitioning the treatment sum of squares:

$$F = \frac{s_{among}^{2}}{s_{within}^{2}} = \frac{MST}{MSE} = \underbrace{\frac{SST}{df_{trt}}}_{SSE} \xrightarrow{\frac{Contrasts:}{SST \to (t-1)}} \text{ orthogonal contrasts}}_{SSE}$$

A factorial treatment structure ensures that the TSS can be partitioned into very specific orthogonal components (main effects and interaction effects):

$$SST$$

$$SSA + SSB + SS(AB)$$

$$SST$$

$$SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC) + SS(ABC)$$

The significance of the interaction F test determines what kind of subsequent analysis is appropriate:

<u>No significant interaction</u>: Subsequent analysis (mean comparisons, contrasts, etc.) are performed on the *main effects*.

<u>Significant interaction</u>: Subsequent analysis (mean comparisons, contrasts, etc.) are performed on the *simple effects*.

1

Another example of partitioning the Interaction SS

A 3x3 factorial experiment was conducted to determine the effects of vernalization genes *Vrn1* and *Vrn2* on flowering time (days to flowering) in wheat. 102 plants from a segregating population (parents A and B) were characterized with molecular markers and the number of alleles of parent A indicated *for each of the two genes* (BB = 0, AB = 1, AA = 2).

Gene			Vrn2			
	Genotype		BB	AB	AA	
		Dose A	0	1	2	
	BB	0	00 = Type 1	$01 = Type \ 2$	02 = Type 3	
Vrn1	AB	1	$10 = Type \ 4$	$11 = Type \ 5$	$12 = Type \ 6$	
	AA	2	20 = Type 7	$21 = Type \ 8$	22 = Type 9	

#The ANOVA
vrn_mod<-lm(Days ~ Vrn1 + Vrn2 + Vrn1*Vrn2, vrn_dat)</pre>

Results (obtained via Anova(), part of the "car" package, using partial SS)

	Sum Sq	Df	F value	Pr(>F)	
(Intercept)	858102	1	7761.1659	< 2.2e-16	***
Vrn1	4435	2	20.0558	5.734e-08	***
Vrn2	21310	2	96.3683	< 2.2e-16	***
Vrn1:Vrn2	808	4	1.8267	0.1303	NS
Residuals	10282	93			

Is it worth partitioning the Interaction SS?

$$F_{Calc} = \frac{SS(AB)}{1 \over MSE} = \frac{807.86071}{110.56357} = 7.31$$
$$F_{Crit} = F_{0.05,1,93} \approx 3.96$$

Partitioning the interaction

```
#The same contrasts are used for factors Vrn1 and Vrn2
# Contrast 'Linear' -1,0,1
# Contrast 'Quadratic' 1,-2,1
contrastmatrix<-cbind(c(-1,0,1),c(1,-2,1))

contrasts(vrn_dat$Vrn1)<-contrastmatrix
contrasts(vrn_dat$Vrn2)<-contrastmatrix
vrn_Rcon_mod<-lm(Days ~ Vrn1 + Vrn2 + Vrn1*Vrn2, vrn_dat)
summary(vrn_Rcon_mod)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)	
Vrn11	-9.45893	1.87007	-5.058	2.12e-06	***
Vrn12	2.20747	0.79774	2.767	0.006822	**
Vrn21	22.67063	1.87398	12.098	< 2e−16	***
Vrn22	-3.06971	0.79467	-3.863	0.000207	***
Vrn11:Vrn21	-6.30952	2.64122	-2.389	0.018920	*
Vrn12:Vrn21	0.35317	1.08924	0.324	0.746484	NS
Vrn11:Vrn22	-0.06488	1.08250	-0.060	0.952335	NS
Vrn12:Vrn22	-0.59239	0.49082	-1.207	0.230512	NS

There is a significant *linear by linear* component of the interaction!

Great. What does that mean?

A linear x linear interaction:

The effect of one factor (full dose vs. no dose) is different depending on the level (full dose vs. no dose) of the other factor.

Interactions of Vrn2 and Vrn1

Interactions of Vrn1 and Vrn2

2x2 CRD with a significant interaction (testing simple effects)

In this CRD with five replications per treatment combination, Factor A is genotype of mungbean (Control vs. Advanced Line) and Factor B is drought stress (Not irrigated vs. Irrigated). The response variable is yield.

Factor		A		
В	Control	Advanced	Means	se (A,B_i)
Not Irrigated	19.36	27.81	23.585	8.45
Irrigated	13.28	36.53	24.905	23.25
Means	16.32	32.17	24.245	
se (B,A _i)	6.08	-8.72		

#The ANOVA
mung_mod<-lm(Yield ~ A + B + A*B, mung_dat)
anova(mung_mod)</pre>

Output

If an interaction is present in a fixed-effects model, the next step is to analyze the simple effects.

An easy way of testing simple effects is to subset the data according to the levels of the factors involved and conduct individual ANOVAs within each level:

```
#Analyze the simple effects by subsetting the data...
mung_Irr_dat<-subset(mung_dat, mung_dat$B == "Irr")
mung_NoIrr_dat<-subset(mung_dat, mung_dat$B == "NoIrr")
mung_Cont_dat<-subset(mung_dat, mung_dat$A == "Cont")
mung_Adv_dat<-subset(mung_dat, mung_dat$A == "Adv")

#...and then performing multiple ANOVAs
anova(lm(Yield ~ A, mung_Irr_dat))
anova(lm(Yield ~ A, mung_NoIrr_dat))
anova(lm(Yield ~ B, mung_Cont_dat))
anova(lm(Yield ~ B, mung_Adv_dat))</pre>
```

The results (F tests pulled from the four separate ANOVAs):

		Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Geno	(Irr)	1	178.591	178.591	24.802	0.001079	**
Geno	(NoIrr)	1	1352.10	1352.10	33.559	0.0004084	***
Irr	(Cont)	1	92.477	92.477	7.7607	0.02371	*
Irr	(Adv)	1	190.18	190.183	5.3461	0.04952	*

Compare this to the previous F test for the *main effect* of Irrigation:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Geno	1	1256.75	1256.75	52.9263	1.859e-06	***
Irr	1	8.71	8.71	0.3669	0.553198	NS
Geno:Irr	1	273.95	273.95	11.5370	0.003686	**
Residuals	16	379.92	23.75			

Why not use contrasts to probe simple effects?

These contrasts are not orthogonal (prove it to yourself), so the results you obtain are not identical to those above.

Example of a factorial experiment with subsamples

Suppose in the quack-grass shoots experiment that *two* random areas of 1 square foot each were evaluated in each plot (each R-D combination):

D	R	Block	Plot	Area	Number
3	0	1	1	1	14.7
3	0	2	1	1	13.6
3	0	3	1	1	15.5
•••		•••	•••	•••	•••
10	8	2	1	2	9.2
10	8	3	1	2	12.3
10	8	4	1	2	12.2

The "Plot" and "Area" columns are here just to be very explicit about the fact that there is one experimental unit (Plot) per D:R:Block combination, and there are two subsamples (Areas) per experimental unit. The correct linear model in R, however, does not make use of either of these classification variables:

```
#The ANOVA
quack_mod<-lm(Number ~ D + R + D*R + Block + D:R:Block, quack_dat)
anova(quack_mod)</pre>
```

The output:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Đ	_1	3.000	3.000	1.5000	0.23256	
R	2	307.327	153.663	76.8317	3.693e-11	***
Block	3_	1.163	0.388	0.1939	0.89952	
D:R	2	0.980	0.490	0.2450	0.78464	
D:R:Block	15	78.767	5.251	2.6256	0.01698	*
Residuals	24	48.000	2.000			

Using the correct error term (D:R:Block) for testing D, R, Block, and D:R...

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
D	1	3.000	3.000	0.5713	0.46144	
R	2	307.327	153.663	29.2636	6.642e-06	***
Block	3	1.163	0.388	0.0739	0.97309	
D:R	2	0.980	0.490	0.0933	0.91143	
D:R:Block	15	78.767	5.251	2.6256	0.01698	*
Residuals	24	48.000	2.000			

The objective of analyzing the experiment using the individual subsample values is simply to understand the sources of variation in the experimental error:

```
#Calculating components of variance
#library(lme4)
quackCV_mod<-lmer(Number ~ D + R + D*R + Block + (1|Block:D:R), quack_dat)
summary(quackCV_mod)</pre>
```

The output:

Random effects:

Groups	Name		Vari	ance	Std.De	ev.
Block:D:R	(Interd	cept)	1.62	<mark>6</mark>	1.275	
Residual			2.00	0	1.414	
Number of o	obs: 48,	grou	ıps:	Block	ς:D:R,	24

If one plot (EU) costs \$50 and one subsample costs \$5...

$$n_{sub} = \sqrt{\frac{C_{e.u.} * s_{sub}^2}{C_{sub} * s_{e.u.}^2}} = \sqrt{\frac{50 * 2.00}{5 * 1.63}} = 3.5$$

...the optimum allocation of resources would be to take more than 3 subsamples per plot (i.e. 4).

Three-way ANOVA (Model I, fixed-effects model)

Three or more factors may be analyzed simultaneously, each at different levels.

However...

As the number of factors increases, the required number of experimental units becomes very large.

It may not be possible to run all the tests on the same day or to hold all of the material in a single controlled environmental chamber.

There arise a large number of higher-order interactions that are difficult to interpret.

The linear model:

$$\mu_{ijkl} = \mu + \tau_{Ai} + \tau_{Bj} + \tau_{Ck} + (\tau_A \tau_B)_{ij} + (\tau_A \tau_C)_{ik} + (\tau_B \tau_C)_{jk} + (\tau_A \tau_B \tau_C)_{ijk} + \epsilon_{ijklm}$$

Example

C.J. Monlezun (1979) Two-dimensional plots for interpreting interactions in the three-factor analysis of variance model. *The American Statistician* **33**: 63-69

The following group means from a hypothetical 3x5x2 experiment are used to illustrate an example with **no three-way interaction**.

	A1C1	A2C1	A3C1	A1C2	A2C2	A3C2
B1	61	38	81	31	27	113
B2	39	61	49	68	103	143
В3	121	82	41	78	57	63
B4	79	68	59	122	127	167
B5	91	31	61	92	43	128

There is a two-way interaction between factors A and B at *both* levels of factor C:

So, the *first order interaction* (A:B) has two values: (A:B at C_1) and (A:B at C_2). The interaction term (A:B) is the average of these values.

Similarly, there is a two-way interaction between factors B and C at *each* level of factor A:

Five interaction plots are needed to visualize the two-way A x C interactions at each level of B.

Visualizing a three-way interaction:

A	В	C	Response	Effect of C (C ₁ - C ₂)
1	1	1	61	30
2	1	1	38	11
3	1	1	81	-32
1	1	2	31	
2	1	2	27	
3	1	2	113	
1	2	1	39	-29
2	2	1	61	-42
3	2	1	49	-94
1	2	2	68	
2	2	2	103	
3	2	2	143	
1	3	1	121	43
2	3	1	82	25
3	3	1	41	-22
1	3	2	78	
2	3	2	57	
3	3	2	63	
1	4	1	79	-43
2	4	1	68	-59
3	4	1	59	-108
1	4	2	122	
2	4	2	127	
3	4	2	167	
1	5	1	91	-1
2	5	1	31	-12
3	5	1	61	-67
1	5	2	92	
2	5	2	43	
3	5	2	128	

$A \times B$, where Response = Effect of C

Each line represents one level of A.

The average of each line represents the average effect of C for each level of A.

While these *averages* differ among lines (i.e. A:C is significant), their *differences* are fairly constant across all levels of B.

The roughly parallel nature of the lines in this interaction plot shows us that the difference in the effects of C at the different levels of A do not vary significantly across the levels of B. [*Translation*: No significant three-way interaction.]

Example: Let A be nitrogen level and B be plow depth. In a simple two-factor experiment:

A significant two-way interaction (A:B) means that the crop's response to nitrogen varies, depending on plow depth.

Now introduce a third factor C, which could be soil type.

A significant three-way interaction (A:B:C) means that the effect of plow depth on the crop's response to nitrogen varies, depending on the soil type.