(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-232769 (P2002-232769A)

(43)公開日 平成14年8月16日(2002.8.16)

5C053 FA08 CB36 KA04 KA08 KA26

LA11

(51) Int.CL'	識別記号	FΙ			テーマコード(多考)		
H04N 5/2		H04N 5	5/232		Z 5 C 0 2 2 B 5 C 0 5 2 5 C 0 5 3 L		
5/9	907	5/907					
5/1		101: 00					
# HO4N 101:0	00	5	5/91				
		審查請求	未請求	請求項の数7	OL	(全 9 頁)	
(21)出顧番号	特爾2001-23052(P2001-23052)	(71)出願人	000005201				
		富士写真フイルム株式会社					
(22)出顧日	平成13年1月31日(2001.1.31)	神奈川県南足柄市中招210番地					
		(72)発明者	五反田	芳泊			
			埼玉県	明護市泉水3-	13-45	富士写真フ	
			イルム	朱式会社内			
		(74)代理人	1000752	81			
			弁理士	小林 和實			
		Fターム(参	考) 50022 AA13 AB00 AC12 AC42 AC54				
				AC69 AC74	AC75 A	C77 AC78	
			500	52 GA02 GA07	GAO9 G	B06 CC05	
				GD09 GE04	Œ08		
		i					

(54) 【発明の名称】 デジタルカメラ

(57)【要約】

【課題】 PCカメラモードを容易に使用できるように するとともに、外部機器に表示される画像のフレームレ ートを向上させる。

【解決手段】 デジタルカメラ2は、USBコネクタ46を介してパーソナルコンピュータが接続されると、自動的にPCカメラモードにセットされる。これに連動してレンズ鏡筒13が広角側にセットされ、メディアコントローラ63及び画像表示用しCD22が停止される。更に、操作部21の操作ボタンが無効化され、設定表示用してDにモード名称が表示される。撮影された画像データは、圧縮伸張処理回路65にてパーソナルコンピュータで伸張可能なフォーマットに圧縮,変換され、バッファメモリ60の3個のフレーム0~2に記憶される。そして、パーソナルコンピュータからの要求に応じて順次送信される。

1

【特許請求の範囲】

【請求項1】 撮影した静止画像をメモリ内に記録する スチル撮影モードや撮影した画像を画像表示用LCDに 表示する再生モード、接続された外部機器にフレーム単位の画像データを断続的かつ周期的に送信する動画撮影 モード等を備えたデジタルカメラにおいて、

前記外部機器との接続に連動して、他のモードから動画 撮影モードに移行することを特徴とするデジタルカメ ラ。

【請求項2】 前記動画撮影モード以外のモードで使用 10 される操作手段のうち、少なくとも一つ以上の操作手段 を動画撮影モードで操作できないように無効化したこと を特徴とする請求項1記載のデジタルカメラ。

【請求項3】 前記動画撮影モードへの移行時に、撮影レンズを広角側に移動させることを特徴とする請求項1または2記載のデジタルカメラ。

【請求項4】 前記動画撮影モードへの移行に連動して、画像表示用LCDの画像表示を停止することを特徴とする請求項1ないし3いずれか記載のデジタルカメラ。

【請求項5】 前記動画撮影モードへの移行に連動して、動作モードの表示を行なうことを特徴とする請求項 1ないし4いずれか記載のデジタルカメラ。

【請求項6】 撮影された画像データを前記外部機器にて伸張可能な形式で圧縮する圧縮処理手段と、圧縮画像データを順次記憶する複数のメモリ空間に分割したバッファメモリとを備え、記録中とは別のメモリ空間から読み出した圧縮画像データを順次外部機器に送信することを特徴とする請求項1ないしちいずれか記載のデジタルカメラ。

【請求項7】 前記画像データの外部機器への送信は、 外部機器から入力された要求信号に応じて行なわれることを特徴とする請求項6記載のデジタルカメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、パーソナルコンピュータに接続して動画撮影を行なう動画撮影モードを備えたデジタルカメラに関するものである。

[0002]

【従来の技術】撮影した静止画像をメモリ内に記録するスチル撮影モードや、記録された画像データを画像表示用LCDに表示する再生モードを備えたデジタルカメラがある。このようなデジタルカメラの中には、パーソナルコンピュータ等の外部機器に接続し、動画入力に使用することのできるPCカメラモードを備えたものがある。

【0003】デジタルカメラをPCカメラモードで使用 ドで操作する際には、まずデジタルカメラをパーソナルコンピュ 角側に利力を接続、あるいはパーソナルコンピュータに接続さ 止させたれたドッキングステーションにデジタルカメラを装着す 50 である。

る。そして、デジタルカメラの操作部を操作してPCカメラモードにセットしていた。また、パーソナルコンピュータに接続する際には、使用者自身をパーソナルコンピュータが設置されている場所(例えば、机上)から撮影する場合が多く比較的近距離であるので、広角撮影するために、ズームレンズを備えたデジタルカメラでは、撮影レンズを広角側に移動させる等の操作が必要であった。

2

【0004】上記PCカメラモードでは、画像データの 転送速度が遅くなり、パーソナルコンピュータ上に表示 される画像のフレームレートが低下し、動画ではなくコ マ送り状態となってしまうことがあった。また、データ 量の小さな画像データを速い転送速度で送信しても、受 け取る側の外部機器の処理速度が間に合わないこともあ った。そこで、特開平11-69326号公報には、静 止画や動画等の画像データの種類に合わせて転送速度を 切り換えるようにしたビデオカメラが記載されている。 【0005】

【発明が解決しようとする課題】上記デジタルカメラを PCカメラモード使用する際に、モード切り換えや撮影 画角をズーミング操作(広角側に)等で調整する必要が あり、操作上煩わしいものであった。また、PCカメラモードでの撮影中に、操作を誤って撮影が中断してしまうことがあった。

【0006】更に、従来のデジタルカメラでは、PCカメラモードでの撮影中にも画像表示用LCDに撮影画像が表示されていたが、PCカメラモードではパーソナルコンピュータの画面上で撮影内容を確認できるため、電力消費と画像転送効率の点で無駄なものであった。また、デジタルカメラがどのモードで動作しているのかが

30 た、デジタルカメラがどのモードで動作しているのかが 分かりにくいという問題もあった。

【0007】また、たんに画像データの転送速度を向上 させても、外部機器の能力等によってコマ落ちが発生す ることがあった。

【0008】本発明は、上記問題点を解決するためのもので、PCカメラモードを容易に使用できるようにするとともに、外部機器に表示される画像のフレームレートを向上させることを目的とする。

[0009]

0 【課題を解決するための手段】上記問題点を解決するために、本発明のデジタルカメラは、外部機器との接続に連動して他のモードから動画撮影モードに移行するようにしたものである。

【0010】また、動画撮影モードへの移行に連動して、動画撮影モード以外のモードで使用される操作手段のうち、少なくとも一つ以上の操作手段を動画撮影モードで操作できないように無効化したり、撮影レンズを広角側に移動させたり、画像表示用LCDの画像表示を停止させたり、動作モードの表示を行なうようにしたものである。

っている。

3

【0011】更に、撮影された画像データを外部機器に て伸張可能な形式で圧縮する圧縮処理手段と、圧縮画像 データを順次記憶する複数のメモリ空間を備えたバッフ ァメモリとを設け、記録中とは別のメモリ空間から読み 出した圧縮画像データを順次外部機器に送信するように したものである。また、画像データの外部機器への送信 は、外部機器から入力された要求信号に応じて行なわれ るようにしたものである。

[0012]

【発明の実施の形態】図1及び図2は、本発明を実施し 10 た電子機器であるデジタルカメラ2と、このデジタルカ メラ2のドッキングステーション3との構成を示す外観 斜視図である。デジタルカメラ2は、スチル撮影を行な う撮影モードと、撮影画像を再生する再生モードと、パ ーソナルコンピュータ等の外部機器との間でデータの送 受信を行なう通信モードと、パーソナルコンピュータに 接続して動画入力用のカメラとして機能するPCカメラ モード等の複数の動作モードを備えている。

【0013】デジタルカメラ2の前面には、鏡筒収納部 4、レンズバリア5、ファインダ6を構成する対物側フ 20 ァインダ窓7、被写体に向けてストロボ光を照射するス トロボ発光部8,シャッタレリーズ操作に用いられるシ ャッタボタン9、タイマ撮影時に点滅して撮影タイミン グを知らせるセルフタイマ用発光部10等が設けられて いる。

【0014】図3に示すように、鏡筒収納部4の中に は、撮影レンズ12が組み込まれたズームレンズ鏡筒1 3が収納されており、デジタルカメラ2が電源オフ状態 にある際には、鏡筒収納部4内に沈胴してレンズバリア ンすると、デジタルカメラ2の前面から突出する。ま た、デジタルカメラ2がPCカメラモードにセットされ た際には、撮影画角が広く被写界深度の深いパンフォー カスとなる広角側に自動的に移動する。

【0015】デジタルカメラ2の一方の側面には、メモ リカード15がセットされるメモリカードスロット16 が設けられている。このメモリカードスロット16の奥 には、メモリカード15へのデータの読み書きを行なう メモリカードリーダが内蔵されている。メモリカードス ロット16は、塵芥の侵入等を防止するために、開閉式 40 の保護カバー17によって保護されている。

【0016】デジタルカメラ2の背面には、ファインダ 6を構成する接眼側ファインダ窓20、操作部21、ビ ューファインダとして機能する画像表示用LCD22等 が設けられている。接眼側ファインダ20の側方には、 点灯,点減してデジタルカメラ2の状態を知らせるファ インダ発光部23が設けられている。操作部21内に は、電源のオン/オフを切り換える電源ボタン24と、 複数の操作ボタン25~27と、各種設定等の情報を表

カメラ2のモードセットやその他の各種設定は、操作部 21にて行なわれる。この設定用してD28には、各種 設定事項とともに、「撮影モード」や「再生モード」, 「PCカメラモード」等のモード内容が表示される。 【0017】デジタルカメラ2がPCカメラモードに設 定されると、操作部21の各操作ボタンは無効化され、 操作されても何ら反応を示さないようにセットされる。 また、画像表示用LCD22は何も表示されないように セットされる。設定用LCD28には、「PCカメラモ ード」と動作モードが表示される。メモリカードリーダ は、電源供給が停止されるため、メディア挿抜の監視も 停止される。なお、デジタルカメラ2がPCカメラモー ドにある際も、電源ボタン24の操作は可能なままとな

4

【0018】 デジタルカメラ2の他方の側面には、 モニ タやビデオデッキにNTSC等のコンポジット信号を出 力するビデオ出力コネクタ29、AC電源アダプタが接 続されてDC電源が供給されるAC電源コネクタ30、 パーソナルコンピュータ等に接続されるUnivers al Serial Bus (USB) コネクタ31が 設けられている。 デジタルカメラ 2の底面には、 凹形状 の接続コネクタ32が設けられている。USBコネクタ 31を用いたパーソナルコンピュータとの接続は、メモ リカード15に記録された画像データを送受信する際 と、デジタルカメラ2を動画入力用のカメラとして使用 する場合に用いられる。

【0019】 デジタルカメラ2には、バッテリ34がセ ットされるバッテリ室が設けられており、デジタルカメ ラ2の底面には、バッテリ室にアクセスするための開口 5により保護されている。デジタルカメラ2の電源がオ 30 部35が設けられている。この開口部35は、蓋部材3 6によって開閉される。バッテリ室には、充電可能なバ ッテリ34がセットされる。

> 【0020】ドッキングステーション3は、デジタルカ メラ2に接続してAC電源やパーソナルコンピュータ等 の外部機器との接続を介在し、一般にクレイドルと呼ば れることもある。ドッキングステーション3は、略台形 状をされており、上面にデジタルカメラ2が装着される 凹形状の載置部38が設けられている。この載置部38 内には、デジタルカメラ2の底面の接続コネクタ32に 嵌合して電気的に接続する接続端子39が設けられてい る.

> 【0021】ドッキングステーション3の前面には、ド ッキングステーション3に接続されたデジタルカメラ2 の電源のオン/オフを操作する電源ボタン41と、デジ タルカメラ2の動作状態に合わせて発光する状態表示用 発光部42とが設けられている。

【0022】ドッキングステーション3の背面には、デ ジタルカメラ2に設けられているものと同様のビデオ出 カコネクタ44、AC電源コネクタ45、USBコネク 示する設定用LCD28とが設けられている。 デジタル 50 タ46が設けられている。 これらのコネクタ44~46

6

は、ドッキングステーション3内部で接続端子39に接続されている。なお、デジタルカメラ2が単体である際には、コネクタ29~31が使用され、デジタルカメラ2がドッキングステーション3に接続された際には、デジタルカメラ2のコネクタ29~31が無効化されて、ドッキングステーション3の各コネクタ44~46のみが使用可能となる。

【0023】図4は、デジタルカメラ2とドッキングステーション3との電気的構成を示すブロック図である。詳しくは図示しないが、レンズ鏡筒13には、焦点調整 10を行なうフォーカス用モータと、ズーミングを行なうズーム用モータとが組み込まれている。これらのモータは、デジタルカメラ2全体を制御するCPU48に接続されたモータドライバ49によって駆動制御される。また、レンズ鏡筒13内には、絞り兼用のシャッタユニットが組み込まれており、このシャッタユニットもCPU 48によって制御される。

【0024】レンズ鏡筒13の背後には、撮影レンズ12を透過した被写体光が撮像されるCCD51が配置されている。このCCD51には、CPU48によって制20倒されるタイミングジェネレータ52からタイミング信号(クロック信号)が入力される。CCD51から出力された信号は、相関二重サンプリング回路(CDS)53に入力され、CCD51の各セルの蓄積電荷量に正確に対応したR、G、Bの画像データとして出力される。CDS53から出力された画像データは、増幅器(AMP)54で増幅され、A/D変換器55でデジタルデータに変換される。なお、タイミングジェネレータ52のクロック信号は、データバス56を介して各部の動作タイミングにも利用される。30

【0025】画像入力コントローラ58は、データバス56を介してCPU48に接続されており、CPU48の命令によってCCD51、CDS53、AMP54、A/D変換器55を制御する。また、A/D変換器55から出力された画像データをビデオメモリ59、あるいはバッファメモリ60に書き込む。

【0026】ビデオメモリ59は、画像表示用LCD2 2をビューファインダとして使用する際に、解像度の低い画像データが一時的に記録される。ビデオメモリ59 に記録された画像データは、データバス56を介してL 40 CDドライバ62に送られ、画像表示用LCD22に表示される。バッファメモリ60は、撮像された高解像度の画像データが一時的に記録される。

【0027】画像信号処理回路65は、撮像された高解像度の画像データがバッファメモリ59に記録されている間に、例えば12ビットRGBの画像データに色変換やア変換等を施して8ビットRGBの画像データに変換し、Y-C処理する。その後、圧縮伸張処理回路66にて、例えばJPEGフォーマットの画像データに圧縮変換される。バッファメモリ60から読み出された画像デ 50

ータは、メディアコントローラ63によって駆動制御されるメモリカードリーダにより、メモリカード15に記録される。

【0028】また、デジタルカメラ2をパーソナルコンピュータに接続して、PCカメラとして使用する場合には、ビデオメモリ59が、フレームA、フレームBの二つの領域に分割され、パッファメモリ60はフレーム0、フレーム1、フレーム2の三つの領域に分割して使用される。また、各メモリ59、60のどのフレームに画像データを書き込むかは、CPU48と、0~2のカウントを行なうカウンタ68とによって制御される。画像データの読み書きは、タイミングジェネレータ52から供給されるクロック信号に同期して実行される。【0029】データバス56には、CPU48に制御さ

【0029】データバス56には、CPU48に制御さ れてパーソナルコンピュータ等の外部機器とのデータ通 信を行なう外部機器通信回路70が接続されている。こ の外部機器通信回路70には、デジタルカメラ2のビデ オ出力コネクタ29、AC電源コネクタ30、USBコ ネクタ31が接続されている。USBコネクタ31にU SBケーブルを介してパーソナルコンピュータが接続さ れると、外部機器通信回路70はパーソナルコンピュー タが接続されたことを表す外部機器検出信号をCPU4 8に入力する。CPU48は、外部機器検出信号に応じ てデジタルカメラ2をPCカメラモードにセットする。 【0030】また、外部機器通信回路70には、デジタ ルカメラ2底面の接続コネクタ32が接続されている。 この接続コネクタ32と接続端子39との接続によっ て、ドッキングステーション3のビデオ出力コネクタ4 4、AC電源コネクタ45、USBコネクタ46が外部 機器通信回路70に接続されることになる。そして、ド ッキングステーション3のUSBコネクタ46にパーソ ナルコンピュータが接続されている場合にも、外部機器 通信回路70から外部機器検出信号がCPU48に入力

【0031】図5及び図6に示すように、デジタルカメラ2がPCカメラモードにセットされ、外部機器通信回路70を介してパーソナルコンピュータ72から「スタートビデオ」コマンドがCPU48に送信されると、撮影が開始される。この撮影開始と同時に、カウンタ68がリセットされ、カウント値が0にセットされる。

【0032】撮影された1フレーム分の画像データは、画像入力コントローラ58によってビデオメモリ59のフレームAに入力される。これと同時に、ビデオメモリ59のフレームBから画像データが読み出され、圧縮伸張処理回路66に入力される。圧縮伸張処理回路66は、入力された画像データをパーソナルコンピュータ72で伸張するのに必要最低限のデータを備えたJPEGFILE INTERCHANGE FORMAT(FIF)の画像データに圧縮変換する。

【0033】圧縮処理された画像データは、カウンタ6

7

8のカウント値と同じ数値のバッファメモリ60のフレ ームに入力される。また、パーソナルコンピュータ72 から外部機器通信回路70を介してリードフレームコマ ンドがCPU48に送信される。CPU48は、カウン ト値-1の値と同じバッファメモリ60のフレームから 圧縮された画像データが読み出し、外部機器通信回路7 0を介してパーソナルコンピュータ72に入力する。パ ーソナルコンピュータ72への画像データの転送後、カ ウンタ68がカウントアップされる。この繰り返しによ り、画像データが順次パーソナルコンピュータ72に入 10 力される。

【0034】次に、上記実施形態の作用について、図

7.8のフローチャートを参照しながら説明する。 図3 に示すように、デジタルカメラ2の下部をドッキングス テーション3の載置部38内に挿入すると、接続コネク タ32と接続端子39とが嵌合し、デジタルカメラ2と ドッキングステーション3とが電気的に接続される。 【0035】デジタルカメラ2のドッキングステーショ ン3への装着時に、ドッキングステーション3のUSB ていた場合には、図3に示す外部機器通信回路70が外 部機器検出信号をCPU48に入力する。CPU48 は、デジタルカメラ2の電源状態、モード状態に関わら ず、デジタルカメラ2をPCカメラモードにセットす **å**.

【0036】また、レンズ鏡筒13は、パンフォーカス である広角側に移動し、メディアコントローラ63及び 画像表示用しCD22が停止される。更に、操作部21 の電源ボタン24以外の操作ボタンが無効化され、設定 表示用LCD28にPCカメラモードと、モード名称が 30 表示される。このように、パーソナルコンピュータ72 との接続を識別して自動的にPCカメラモードに移行す るようにしたので、操作の煩わしさが軽減される。

【0037】パーソナルコンピュータ72との接続状態 が確立され、パーソナルコンピュータ72から「スター トビデオ」コマンドがCPU48に送信されると、撮影 が開始される。この撮影開始と同時に、カウンタ68が リセットされ、カウント値が〇にセットされる。

【0038】撮影された1フレーム分の画像データは、 画像入力コントローラ58によってビデオメモリ59の 40 フレームAに入力される。これと同時に、ビデオメモリ 59のフレームBから画像データが読み出され、圧縮伸 張処理回路66に入力される。圧縮伸張処理回路66 は、入力された画像データをパーソナルコンピュータフ 2で伸張可能な、JPEG FIFの画像データに圧縮 変換する。

【0039】圧縮処理された画像データは、カウンタ6 8のカウント値と同じ数値のバッファメモリ60のフレ ーム、例えばフレーム0に入力される。これらの動作を 繰り返し、バッファメモリ60の三つのフレームに画像 50

データが記録されると、CPU48はパーソナルコンピ ュータ72に画像転送準備が整ったことを示す信号を送 信する。

【0040】その後、パーソナルコンピュータ72から 外部機器通信回路70を介して「リードフレーム」コマ ンドがCPU48に送信される。CPU48は、カウン ト値-1の値と同じバッファメモリ60のフレーム、例 えばフレーム2から圧縮された画像データを読み出し、 外部機器通信回路70を介してパーソナルコンピュータ 72に入力する。パーソナルコンピュータ72への画像 データの転送後、カウンタ68がカウントアップされ

【0041】パーソナルコンピュータ72に送られた画 像データは、パーソナルコンピュータ72のワークメモ リ内で伸張され、モニタ上に表示される。以降、バッフ ァメモリ60に記録された画像データが順次パーソナル コンピュータ72に送られることで、パーソナルコンピ ュータ72のモニタ上に動画像が表示される。これによ り、フレームレートの低下を発生させずに動画像を撮影 コネクタ46にパーソナルコンピュータ72が接続され 20 することができる。また、パーソナルコンピュータ72 からのリードフレーム信号を得てから画像データを送信 するので、パーソナルコンピュータ72の処理能力に適 したデータ転送を行なうことができる。

> 【0042】なお、上記実施形態では、設定用LCDに モード表示を行なったが、セルフタイマ用発光部や、ド ッキングステーションの状態表示用発光部を発光させ て、モード表示を行ってもよい。

[0043]

【発明の効果】以上説明したように、本発明のデジタル カメラによれば、動作撮影モードのセットを容易に行な うことができ、誤操作による撮影ミス等も発生しない。 また、外部機器の処理能力に応じて画像データを転送す ることができるので、コマ落ちなく、高フレームレート の動画入力を行うことができる.

【図面の簡単な説明】

【図1】 デジタルカメラ及びドッキングステーションの 構成を示す前面側外観斜視図である。

【図2】デジタルカメラ及びドッキングステーションの 構成を示す背面側外観斜視図である。

【図3】ドッキングステーションに装着時のデジタルカ メラを示す説明図である。

【図4】 デジタルカメラ及びドッキングステーションの 電気的構成を示すブロック図である。

【図5】画像データの転送経路を示すブロック図であ

【図6】画像データの転送状態を示すタイミングチャー トである。

【図7】 P C カメラモードへのセット順序を示すフロー チャートである。

【図8】 P C カメラモードの動作順序を示すフローチャ

03/17/2004, EAST Version: 1.4.1

(6)

特開2002-232769

10

ートである。

【符号の説明】

- 2 デジタルカメラ
- 3 ドッキングステーション
- 15 メモリカード
- 21 操作部
- 22 画像表示用LCD
- 24 デジタルカメラの電源ボタン
- 28 設定表示用LCD
- 29 デジタルカメラのビデオ出力コネクタ
- 30 デジタルカメラのAC電源コネクタ
- 31 デジタルカメラのUSBコネクタ
- 32 接続コネクタ

34 バッテリ

- 39 接続端子
- 41 ドッキングステーションの電源ボタン
- **48 CPU**
- 52 タイミングジェネレータ
- 56 データバス
- 59 ビデオメモリ
- 60 バッファメモリ
- 65 画像信号処理回路
- 10 66 圧縮伸張処理回路
 - 68 カウンタ
 - 70 外部機器通信回路
 - 72 パーソナルコンピュータ

【図1】

【図2】

【図4】

03/17/2004, EAST Version: 1.4.1

03/17/2004, EAST Version: 1.4.1

