1 Cilindro com bordas aterradas e potencial na superfície lateral

Figura 1: Cilindro a ser estudado. Tampas aterradas e lateral com potencial dependente de ϕ fixo.

Vamos considerar um cilindro com as tampas aterradas e a borda submetida a um potencial $V = V(\phi)$. Nossas condições de contorno para este problema serão:

$$V(\rho, \phi, z) = \begin{cases} V(\rho, \phi, z = 0) = 0, & \text{(1a)} \\ V(\rho, \phi, z = L) = 0, & \text{(1b)} \\ V(\rho = R, \phi, z) = V(\phi). & \text{(1c)} \end{cases}$$

A solução da equação diferencial de Laplace em coordenadas cilíndricas, por sua vez, é dada por

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{k\neq 0\\k=-\infty}}^{\infty} (E_{\nu}J_{\nu}(k\rho) + F_{\nu}N_{\nu}(k\rho)) \times (C_{\nu}\cos\nu\phi + D_{\nu}\sin\nu\phi)(A_{k}e^{kz} + B_{k}e^{-kz}).$$
(2)

Para o potencial dentro do cilindro, nossa solução deve ser regular em todo ponto, inclusive em $\rho = 0$. A solução radial então não pode depender das funções de Neumann, visto que estas são irregulares na origem. Podemos, ao mesmo tempo, absorver a constante (E_{ν}) que acompanha a função de Bessel nas outras constantes de nossa solução. Temos então

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} J_{\nu}(k\rho) (C_{\nu} \cos \nu \phi + D_{\nu} \sin \nu \phi) (A_{k} e^{kz} + B_{k} e^{-kz}).$$
 (3)

Vamos utilizar a primeira condição de contorno, (1a), em nosso potencial:

$$V(\rho, \phi, 0) = \sum_{\nu=0}^{\infty} \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} J_{\nu}(k\rho) (C_{\nu} \cos \nu \phi + D_{\nu} \sin \nu \phi) (A_k + B_k) = 0.$$
 (4)

Como a condição vale para todo valor de ρ e ϕ , temos que $A_k + B_k$ deve ser nulo, $\forall k$. Desta forma, $B_k = -A_k$, e a parte longitudinal da solução será

$$A_k e^{kz} + B_k e^{-kz} = A_k (e^{kz} - e^{-kz}) = 2A_k \frac{e^{kz} - e^{-kz}}{2} \propto A_k \sinh kz,$$
 (5)

onde podemos unificar as constantes sem problema algum.

Nosso potencial se resume agora a

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{k\neq 0\\k=-\infty}}^{\infty} J_{\nu}(k\rho) (C_{\nu}\cos\nu\phi + D_{\nu}\sin\nu\phi) A_{k}\sinh kz.$$
 (6)

Na segunda condição, (1b):

$$V(\rho, \phi, L) = \sum_{\nu=0}^{\infty} \sum_{\substack{k\neq 0\\k=-\infty}}^{\infty} J_{\nu}(k\rho) (C_{\nu}\cos\nu\phi + D_{\nu}\sin\nu\phi) A_{k}\sinh kL = 0.$$
 (7)

Para isto ocorrer, novamente, precisamos que $\sinh kL$ seja nulo. Ora,

$$\sinh kL = \frac{e^{kL} - e^{-kL}}{2} = 0 \implies e^{kL} = e^{-kL},$$
(8)

o que só é possível caso k seja puramente imaginário, visto que $L \neq 0$ (verifique se quiser). Vamos então adotar k como real, e substituir $k \rightarrow ik$:

$$\sinh(ikL) = \frac{e^{ikL} - e^{-ikL}}{2} = i\sin kL = 0.$$

$$\tag{9}$$

Desta forma,

$$\sin kL = 0, (10)$$

o que implica em

$$kL = n\pi, \ \forall n \in \mathbb{Z}, \ \text{ou}, \ k = \frac{n\pi}{L}.$$
 (11)

A soma em k em nossa solução para o potencial pode ser substituída por uma soma em n, visto que ambos se relacionam pela condição (11). Temos assim então

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{n \neq 0 \\ n = -\infty}}^{\infty} J_{\nu} \left(i \frac{n\pi}{L} \rho \right) (C_{\nu} \cos \nu \phi + D_{\nu} \sin \nu \phi) A_{n} i \sin \left(\frac{n\pi}{L} z \right). \tag{12}$$

Se distribuirmos A_n dentro do parêntesis, iremos obter duas constantes que acompanham os senos e cossenos, A_kC_ν e A_kD_ν , que podem ser reescritas como

$$A_n C_{\nu} = A_{n\nu},\tag{13}$$

$$A_n D_{\nu} = B_{n\nu}.\tag{14}$$

Além de que as funções de Bessel com argumento puramente imaginário e multiplicadas de i são representadas como

$$iJ_{\nu}\left(i\frac{n\pi}{L}\rho\right) = j_{\nu}\left(\frac{n\pi}{L}\rho\right),\tag{15}$$

onde j_{ν} são denominadas as funções modificadas de Bessel.

Nosso potencial se encontra então da forma

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{n\neq 0\\n=-\infty}}^{\infty} j_{\nu} \left(\frac{n\pi}{L}\rho\right) \left(A_{n\nu}\cos\nu\phi + B_{n\nu}\sin\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right). \tag{16}$$

Vamos analisar a última condição de contorno, (1c), sobre como fica nosso potencial nas bordas:

$$V(R,\phi,z) = \sum_{\nu=0}^{\infty} \sum_{\substack{n\neq 0\\n=-\infty}}^{\infty} j_{\nu} \left(\frac{n\pi}{L}R\right) \left(A_{n\nu}\cos\nu\phi + B_{n\nu}\sin\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) = V(\phi). \tag{17}$$

A fim de utilizar a ortogonalidade dos senos e cossenos, iremos multiplicar a solução do potencial por $\sin\left(\frac{n'\pi}{L}z\right)$ e $\sin\left(\nu'\phi\right)$ e integrar em um período de oscilação:

$$\sum_{\nu=0}^{\infty} \sum_{\substack{n\neq0\\n=-\infty}}^{\infty} \int_{-L}^{L} \int_{-\pi}^{\pi} A_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \cos\left(\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz + \\
+ \int_{-L}^{L} \int_{-\pi}^{\pi} B_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \sin\left(\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz = \\
= \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz. \quad (18)$$

É útil lembrar das relações de integrais entre senos e cossenos num período de oscilação:

$$\int_0^{2\pi} \sin(m\theta) \sin(m'\theta) d\theta = \pi \delta_{m,m'}, \text{ onde } m, m' \ge 1,$$
(19)

$$\int_{0}^{2\pi} \cos(m\theta) \sin(m'\theta) d\theta = 0. \tag{20}$$

Da segunda relação vemos de cara que a integral que acompanha $A_{n\nu}$ é zero. Logo, o que nos resta é avaliar a integral que acompanha $B_{n\nu}$.

$$\int_{-L}^{L} \int_{-\pi}^{\pi} B_{n\nu} j_{\nu} \left(\frac{n\pi}{L} R \right) \sin \left(\nu \phi \right) \sin \left(\frac{n\pi}{L} z \right) \sin \left(\nu' \phi \right) \sin \left(\frac{n'\pi}{L} z \right) d\phi dz =$$

$$B_{n\nu} j_{\nu} \left(\frac{n\pi}{L} R \right) \int_{-\pi}^{\pi} \sin \left(\nu \phi \right) \sin \left(\nu' \phi \right) d\phi \int_{-L}^{L} \sin \left(\frac{n\pi}{L} z \right) \sin \left(\frac{n'\pi}{L} z \right) dz, \quad (21)$$

onde a primeira integra será:

$$\int_{-\pi}^{\pi} \sin(\nu\phi) \sin(\nu'\phi) d\phi = \pi \delta_{\nu,\nu'}, \forall \nu, \nu' \neq 0, \tag{22}$$

verifique se quiser. E a segunda será

$$\int_{-L}^{L} \sin\left(\frac{n\pi}{L}z\right) \sin\left(\frac{n'\pi}{L}z\right) dz = \frac{L}{\pi} \int_{-\pi}^{\pi} \sin(nu) \sin(n'u) du = L\delta_{n,n'}$$
(23)

com a substituição $\pi z/L = u$. Retornando ao potencial original:

$$\sum_{\nu=0}^{\infty} \sum_{\substack{n\neq0\\n=-\infty}}^{\infty} \int_{-L}^{L} \int_{-\pi}^{\pi} B_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \sin\left(\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz =$$

$$= \sum_{\nu=0}^{\infty} \sum_{\substack{n\neq0\\n=-\infty}}^{\infty} B_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \pi \delta_{\nu,\nu'} L \delta_{n,n'} = B_{n'\nu'} j_{\nu'} \left(\frac{n'\pi}{L}R\right) \pi L, \forall \nu' n' \neq 0, \quad (24)$$

o que nos leva a

$$B_{n'\nu'} = \frac{1}{\pi L j_{\nu'} \left(\frac{n'\pi}{L}R\right)} \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz, \forall \nu', n' \ge 1.$$
 (25)

Para n'=0 ou $\nu'=0$, uma ou outra integral será nula, então $B_{n'0}$ e $B_{0\nu'}$ serão nulos para todo n' e ν' , respectivamente. Para n' negativo, a integral inverte seu sinal, dada a paridade do seno. Ou seja,

$$B_{n'\nu'} = \frac{-1}{\pi L j_{\nu'} \left(\frac{n'\pi}{L}R\right)} \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \sin\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz, \forall n' < 0, \nu' \neq 0. \tag{26}$$

Podemos multiplicar a expressão original do potencial por $\cos(\nu'\phi)$ e integrar no período de oscilação, de tal forma que

$$\sum_{\nu=0}^{\infty} \sum_{\substack{n\neq 0\\n=-\infty}}^{\infty} \int_{-L}^{L} \int_{-\pi}^{\pi} A_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \cos\left(\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) \cos\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz + \\
+ \int_{-L}^{L} \int_{-\pi}^{\pi} B_{n\nu} j_{\nu} \left(\frac{n\pi}{L}R\right) \sin\left(\nu\phi\right) \sin\left(\frac{n\pi}{L}z\right) \cos\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz = \\
= \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \cos\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz. \quad (27)$$

As relações integrais são análogas às apresentadas anteriormente, de tal forma que temos

$$\int_0^{2\pi} \cos(m\theta) \cos(m'\theta) d\theta = \pi \delta_{m,m'}, \text{ onde } m, m' \neq 0,$$
(28)

$$\int_0^{2\pi} \cos(m\theta) \cos(m'\theta) d\theta = 2\pi, \text{ se } m, m' = 0,$$
(29)

$$\int_0^{2\pi} \cos(m\theta) \cos(m'\theta) d\theta = 0, \text{ se ou } m = 0 \text{ ou } m' = 0,$$
(30)

$$\int_0^{2\pi} \sin(m\theta) \cos(m'\theta) d\theta = 0. \tag{31}$$

De maneira análoga à anterior, para os $B_{n'\nu'}$, encontramos as relações para os $A_{n'\nu'}$ como

$$A_{n'\nu'} = \frac{1}{\pi L i_{\nu'} \left(\frac{n'\pi}{R}R\right)} \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \cos\left(\nu'\phi\right) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz, \forall \nu', n' \neq 0, \tag{32}$$

$$A_{00} = \frac{1}{2\pi L j_{\nu'} \left(\frac{n'\pi}{L}R\right)} \int_{-L}^{L} \int_{-\pi}^{\pi} V(\phi) \sin\left(\frac{n'\pi}{L}z\right) d\phi dz,\tag{33}$$

$$A_{0\nu'} = A_{n'0} = 0. (34)$$

2 Aplicando a solução para um potencial bipolar

Vamos agora aplicar o resultado obtido anteriormente para encontrar o potencial causado por uma distribuição do potencial onde metade (em ϕ) do cilindro é mantida em V_0 e metade do cilindro mantida a $-V_0$.

As tampas ainda serão mantidas aterradas, em potencial nulo.

Podemos definir matematicamente o potencial aplicado como

Figura 2: Diagrama do potencial imposto no cilindro

 $V(\rho, \phi, z) = \begin{cases} +V, \text{se } -\pi \le \phi < 0\\ -V, \text{se } 0 \le \phi < \pi \end{cases}$ (35)

Para determinar os coeficientes da série do potencial, basta que calculemos as integrais

$$\int_{-\pi}^{\pi} V(\phi) \cos(\nu'\phi) d\phi = \int_{-\pi}^{0} V \cos(\nu'\phi) d\phi - \int_{0}^{\pi} V \cos(\nu'\phi) d\phi, \tag{36}$$

$$\int_{-\pi}^{\pi} V(\phi) \sin(\nu'\phi) d\phi = \int_{-\pi}^{0} V \sin(\nu'\phi) d\phi - \int_{0}^{\pi} V \sin(\nu'\phi) d\phi, \tag{37}$$

$$\int_{-L}^{L} \sin\left(\frac{n'\pi}{L}z\right) dz. \tag{38}$$

A primeira integral será ($\nu \neq 0$):

$$\int_{-\pi}^{0} V \cos(\nu' \phi) d\phi - \int_{0}^{\pi} V \cos(\nu' \phi) d\phi = V \frac{1}{\nu'} \sin(\nu' \phi) \Big|_{-\pi}^{0} - V \frac{1}{\nu'} \sin(\nu' \phi) \Big|_{0}^{\pi}$$

$$= V \frac{1}{\nu'} \sin(\nu' \pi) - V \frac{1}{\nu'} \sin(\nu' \pi)$$

$$= 0. \tag{39}$$

A segunda ($\nu \neq 0$):

$$\int_{-\pi}^{0} V \sin(\nu'\phi) d\phi - \int_{0}^{\pi} V \sin(\nu'\phi) d\phi = -V \frac{1}{\nu'} \cos(\nu'\phi) \Big|_{-\pi}^{0} + V \frac{1}{\nu'} \cos(\nu'\phi) \Big|_{0}^{\pi}$$

$$= V \frac{1}{\nu'} (\cos(\nu'\pi) - 1) + V \frac{1}{\nu'} (\cos(\nu'\pi) - 1)$$

$$= \frac{2V}{\nu'} (\cos(\nu'\pi) - 1). \tag{40}$$

Logo,

$$A_{n'\nu'} = 0, (41)$$

$$B_{n'\nu'} = \frac{1}{\pi L j_{\nu'} \left(\frac{n'\pi}{L}R\right)} \left[\frac{2V}{\nu'} (\cos(\nu'\pi) - 1)\right] \int_{-L}^{L} \sin\left(\frac{n'\pi}{L}z\right) dz, \forall \nu', n' \ge 1.$$

$$(42)$$

3 Plano infinito aterrado com disco mantido a um potencial fixo

Figura 3: Diagrama das condições de contorno. Feio, mas ilustrativo.

Vamos considerar agora um plano infinito aterrado, onde nele há um disco circular, centrado na origem, de raio a, e este círculo é mantido a um potencial constante, V.

As condições de contorno podem ser escritas matematicamente como

$$V(\rho, \phi, 0) = \begin{cases} V, \text{ se } \rho < a, \\ 0, \text{ caso contrário.} \end{cases}$$
 (43a)

A solução para a equação de Laplace em coordenadas cilíndricas é

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{k\neq 0\\k=-\infty}}^{\infty} (E_{\nu}J_{\nu}(k\rho) + F_{\nu}N_{\nu}(k\rho)) \times (C_{\nu}\cos\nu\phi + D_{\nu}\sin\nu\phi)(A_{k}e^{kz} + B_{k}e^{-kz}).$$
(44)

Como nosso potencial deve desaparecer para pontos muito longe do disco, $A_k = 0$ se k > 0. Para k < 0, o mesmo acontece com B_k . Como a soma se extende até o infinito, é irrelevante impormos esta condição explicitamente, sendo igualmente equivalente utilizar $A_k = 0, \forall k$, e k > 0, apenas. Para que o potencial seja regular na origem, $F_{\nu} = 0$. Note também que para mantermos a simetria azimutal, é necessário restringirmos nosso valor de ν para 0 apenas. Qualquer outro valor de ν irá causar a aparição de termos dependentes de ϕ , tornando o potencial variante ante uma transformação $\phi \to \phi + \delta \phi$. Assim, teremos

$$V(\rho, \phi, z) = \sum_{\substack{k \neq 0 \\ k = 0}}^{\infty} B_k J_0(k\rho) e^{-kz}.$$
 (45)

Como não temos restrições para um valor de k, vamos generalizar para o contínuo:

$$V(\rho, \phi, z) = \lim_{\beta \to 0} \int_{\beta}^{\infty} B(k) J_0(k\rho) e^{-kz} dk.$$
(46)

Sabemos que as funções de Bessel obedecem à condição

$$\int_0^\infty z J_n(kz) J_n(k'z) dz = \frac{1}{k} \delta(k - k'). \tag{47}$$

Multiplicando então a expressão para o potencial por $\rho J_0(k'\rho)$ e integrando de 0 a ∞ em ρ :

$$\int_0^\infty V(\rho,\phi,z)\rho J_0(k'\rho)d\rho = \lim_{\beta \to 0} \int_0^\infty \int_\beta^\infty B(k)J_0(k\rho)\rho J_0(k'\rho)e^{-kz}dkd\rho, \tag{48}$$

$$= \lim_{\beta \to 0} \int_{\beta}^{\infty} B(k) \left(\int_{0}^{\infty} J_{0}(k\rho) \rho J_{0}(k'\rho) d\rho \right) e^{-kz} dk, \tag{49}$$

$$= \lim_{\beta \to 0} \int_{\beta}^{\infty} B(k) \frac{1}{k} \delta(k - k') e^{-kz} dk, \tag{50}$$

$$=B(k')\frac{1}{k'}e^{-k'z}, k'>0. (51)$$

Temos então uma equação integral do tipo

$$k'e^{k'z} \int_0^\infty V(\rho, \phi, z)\rho J_0(k'\rho)d\rho = B(k'), k' > 0.$$
 (52)

Vamos agora considerar o plano z=0 e aplicar nossas condições de contorno (CORRIGIR ISTO, esquecik'):

$$B(k') = k' \int_0^\infty V(\rho, \phi, 0) \rho J_0(k'\rho) d\rho, k' > 0,$$
(53)

$$= k' \int_{0}^{a} V \rho J_0(k'\rho) d\rho, k' > 0, \tag{54}$$

$$= k'V \int_0^a \rho J_0(k'\rho) d\rho, k' > 0, \tag{55}$$

$$= k'V \int_0^a \rho \sum_{m=0}^\infty \frac{(-1)^m}{m!\Gamma(m+1)} \left(\frac{\rho}{2}\right)^{2m} d\rho, k' > 0, \tag{56}$$

$$= k'V \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1)} \left(\frac{1}{2}\right)^{2m} \int_0^a \rho^{2m+1} d\rho, k' > 0, \tag{57}$$

$$= k'V \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1)} \left(\frac{1}{2}\right)^{2m} \frac{a^{2m+2}}{2m+2}, k' > 0,$$
 (58)

$$= k'V \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \underbrace{(m+1)\Gamma(m+1)}_{=\Gamma(m+2)}} \left(\frac{1}{2}\right)^{2m+1} a^{2m+2}, k' > 0, \tag{59}$$

$$= k' V a \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+2)} \left(\frac{a}{2}\right)^{2m+1}, k' > 0,$$
(60)

$$= k'VaJ_1(k'a). (61)$$

Finalmente,

$$V(\rho, \phi, z) = \lim_{\beta \to 0} \int_{\beta}^{\infty} VaJ_1(ka)J_0(k\rho)e^{-kz}dk.$$
(62)

4 Cilindro com tampa inferior a potencial fixo e tampa superior e borda aterradas

Condições de contorno:

$$V(\rho, \phi, z) = \begin{cases} 0, \text{ se } \rho = R, \\ 0, \text{ se } z = L, \\ V, \text{ se } z = 0. \end{cases}$$
 (63a)
(63b)

Equação de Laplace:

$$V(\rho, \phi, z) = \sum_{\nu=0}^{\infty} \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} (E_{\nu} J_{\nu}(k\rho) + F_{\nu} N_{\nu}(k\rho)) (C_{\nu} \cos \nu \phi + D_{\nu} \sin \nu \phi) (A_{k} e^{kz} + B_{k} e^{-kz}).$$
 (64)

 $F_{\nu}=0$, pois queremos o potencial dentro do cilindro, e $\nu=0$ é a única opção possível, dada a simetria azimutal. Assim:

$$V(\rho, \phi, z) = \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} J_0(k\rho) (A_k e^{kz} + B_k e^{-kz}).$$
 (65)

Condição de contorno em z:

$$V(\rho, \phi, L) = \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} J_0(k\rho) (A_k e^{kL} + B_k e^{-kL}) = 0.$$
 (66)

Pela ortogonalidade de $J_0(k'\rho)$

$$B_k = -A_k e^{2kL}. (67)$$

 $\operatorname{Em} z = 0,$

$$V(\rho, \phi, 0) = \sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} A_k J_0(k\rho) (1 - e^{2kL}) = V.$$
(68)

Multiplicando por $\rho J_0(k'\rho)$ e integrando para aproveitar a ortogonalidade:

$$\sum_{\substack{k \neq 0 \\ k = -\infty}}^{\infty} \int_{0}^{\infty} A_k J_0(k\rho) \rho J_0(k'\rho) (1 - e^{2kL}) d\rho = \int_{0}^{\infty} V \rho J_0(k'\rho) d\rho.$$
 (69)

$$A_k \frac{1}{k} (1 - e^{2kL}) = V \int_0^\infty \rho J_0(k'\rho) d\rho.$$
 (70)

5 Expansão em multipolos de distribuições discretas de carga

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^l \rho(\vec{x}') d^3 x'.$$
 (71)

A distribuição de cargas é:

$$\rho(\vec{x}) = \frac{q}{a^2} \delta(r - a) \left(\delta(\phi) + \delta\left(\phi - \frac{\pi}{2}\right) - \delta(\phi - \pi) - \delta\left(\phi - \frac{3\pi}{2}\right) \right) \delta\left(\theta - \frac{\pi}{2}\right). \tag{72}$$

Logo,

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^l \rho(\vec{x}') d^3 x', \tag{73}$$

$$= \int_0^{\pi} \int_0^{2\pi} \int_0^{\infty} Y_{lm}^*(\theta', \phi') r'^l \rho(\vec{x}') r'^2 \sin \theta' dr' d\phi' d\theta', \tag{74}$$

$$= qa^{l} \left(Y_{lm}^{*}(\pi/2, 0) + Y_{lm}^{*}(\pi/2, \pi/2) - Y_{lm}^{*}(\pi/2, \pi) - Y_{lm}^{*}(\pi/2, 3\pi/2) \right). \tag{75}$$

A expansão do potencial para um dipolo, sabendo os momentos de dipolo¹

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \sum_{l,m} \frac{4\pi}{2l+1} q_{lm} \frac{Y_{lm}(\theta,\phi)}{r^{l+1}},\tag{76}$$

е

$$Y_{lm}^* = (-1)^m Y_{l,-m}(\theta, \phi), \tag{77}$$

caso queira usar.

Para a outra distribuição de cargas, teremos uma densidade descrita por

$$\rho(\vec{x}) = q \left(-2 \frac{\delta(r)}{r^2 4\pi} \underbrace{\frac{\delta(\theta)}{\sin \theta}}_{\text{arbitrário}} + \frac{\delta(r-a)}{a^2 2\pi} \frac{(\delta(\theta) + \delta(\theta - \pi))}{\sin \theta} \right) \underbrace{\frac{\delta(\phi)}{2\pi}}_{\text{arbitrário}}.$$
 (78)

Vale a pena reservar um tempo para comentar a minha indignação com este método de resolução. Aqui fazemos algo que eu não gosto muito, que é tentar driblar a "filtragem" dos deltas para valores onde o resultado seria originalmente nulo, como no caso de $\delta(\theta)$. Uma partícula pontual situada em cima do eixo z positivo terá este valor acompanhando sua densidade. Porém, em coordenadas esféricas, nosso jacobiano possui um termo multiplicativo de $\sin \theta$. Isto irá fazer com que o resultado seja nulo, pois integrar $\delta(\theta) \sin \theta$ nos dará zero, já que $\sin 0 = 0$.

Para "driblar" este resultado, o que se faz é considerar $\delta(\theta)/\sin\theta$, o que, teoricamente, "removeria" o seno do nosso integrando, fazendo com que o resultado da integral seja um 1 multiplicativo, eliminando nossos problemas. Porém, isto é tão errado que eu nem sei como nomear algo do gênero, as camadas de erro neste feito são tão grandes que chamar isto de erro chega a ser um erro absurdo com a palavra erro. O delta de dirac "filtra" justamente o valor em $\theta=0$ do integrando. Porém, neste caso, ambas as funções $\sin\theta$, no numerador e no denominador, serão nulas, fazendo com que a divisão de uma pela outra seja **indefinida**. Remover o zero de nossa integração ou substituí-lo por um limite seria uma tentativa inútil, pois sem o 0 em nossa integração, não haveria o que o delta filtrar. Substituí-lo por um limite seria frívolo, visto que o limite da "função" delta de Dirac avaliada em **qualquer valor real** é zero. A mesma só irá divergir no exato ponto determinado pelo argumento.

O delta em ϕ é outra arbitrariedade imensa, pois ϕ ali pode ser avaliado em qualquer ponto, porém, este erro não chega a ser tão crasso quanto o anterior para $\delta(r)$ e $\delta(\theta)$.

Fechando os olhos para estas barbaridades, teremos,

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^l \rho(\vec{x}') d^3 x', \tag{79}$$

$$= qa^{l} \left(Y_{lm}^{*}(0,0) + Y_{lm}^{*}(\pi,0) \right). \tag{80}$$

6 Dipolo pontual como uma representação alternativa de densidade de cargas

Vamos mostrar que a densidade de cargas

$$\rho_{\text{eff}}(\vec{x}) = -\vec{p} \cdot \nabla \delta(\vec{x} - \vec{x}_0) \tag{81}$$

pode ser uma representação para a densidade de cargas de um dipolo.

O potencial de uma distribuição de cargas é

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int \rho(\vec{x}') \frac{1}{|\vec{x} - \vec{x}'|} d^3x'.$$
 (82)

Substituindo a densidade nesta expressão, teremos

$$\Phi(\vec{x}) = \frac{-1}{4\pi\epsilon_0} \int \vec{p} \cdot \nabla \delta(\vec{x} - \vec{x}_0) \frac{1}{|\vec{x} - \vec{x}'|} d^3x'$$

¹Substitua se quiser.

$$\begin{aligned}
&= \frac{-1}{4\pi\epsilon_0} \int \vec{p} \cdot \nabla \delta(\vec{x} - \vec{x}_0) \frac{1}{|\vec{x} - \vec{x}'|} d^3 x' \\
&= \frac{-1}{4\pi\epsilon_0} \vec{p} \cdot \int \nabla \delta(\vec{x} - \vec{x}_0) \frac{1}{|\vec{x} - \vec{x}'|} d^3 x' \\
&= \frac{1}{4\pi\epsilon_0} \vec{p} \cdot \int \delta(\vec{x} - \vec{x}_0) \nabla \frac{1}{|\vec{x} - \vec{x}'|} d^3 x' \text{ (integrando por partes)} \\
&= \frac{1}{4\pi\epsilon_0} \vec{p} \cdot \int \delta(\vec{x} - \vec{x}_0) \frac{(\vec{x} - \vec{x}')}{(\vec{x} - \vec{x}')^{3/2}} d^3 x' \\
&= \frac{1}{4\pi\epsilon_0} \vec{p} \cdot \frac{(\vec{x} - \vec{x}_0)}{(\vec{x} - \vec{x}_0)^{3/2}} = \frac{1}{4\pi\epsilon_0} \vec{p} \cdot \frac{(\vec{x} - \vec{x}_0)}{|\vec{x} - \vec{x}_0|^3}, \quad (83)
\end{aligned}$$

que é justamente o potencial do dipolo.

Vamos calcular agora a energia eletrostática

$$W = \int \rho(\vec{x})\Phi(\vec{x})d^3x$$

$$= -\int \vec{p} \cdot \nabla \delta(\vec{x} - \vec{x}_0)\Phi(\vec{x})d^3x \text{ (integrando por partes)}$$

$$= \vec{p} \cdot \int \delta(\vec{x} - \vec{x}_0)\nabla\Phi(\vec{x})d^3x$$

$$= -\vec{p} \cdot \int \delta(\vec{x} - \vec{x}_0)\vec{E}(\vec{x})d^3x$$

$$= -\vec{p} \cdot \vec{E}(\vec{x}_0),$$
(85)

de acordo com o resultado esperado.

Terminamos de mostrar que, aparentemente, (81) é uma distribuição de cargas de um dipolo.

7 questão 5

8 Interação entre um quadrupolo e um campo elétrico

Vamos considerar um núcleo quadrupolar, com momento de quadrupolo Q, submisso a um campo elétrico com simetria cilíndrica, onde o gradiente do campo é $(\partial E/\partial z)_0$, ao longo do eixo z.

A energia de interação de quadrupolo é

$$W = -\frac{1}{6}Q_{ij}\left(\frac{\partial E_i}{\partial x_i}\right) \tag{86}$$

9 Expansão em multipolos de distribuição contínua de cargas

Considere a seguinte distribuição:

$$\rho(\vec{r}) = \frac{1}{64\pi} r^2 e^{-r} \sin^2 \theta. \tag{87}$$

Podemos substituir $\sin^2 \theta$ por $1 - \cos^2 \theta$. $P_0(\cos \theta) = 1$, e $P_2(\cos \theta) = (1/2)(3\cos^2 \theta - 1)$. Logo, $\sin^2 \theta = (2/3)(P_0(\cos \theta) - P_2(\cos \theta))$. Temos então que

$$\rho(\vec{r}) = \frac{1}{64\pi} r^2 e^{-r} \frac{2}{3} \left(P_0(\cos \theta) - P_2(\cos \theta) \right). \tag{88}$$

Como sabemos, os momentos de dipolo são definidos por

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^l \rho(\vec{x}') d^3 x'. \tag{89}$$

Teremos então

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^l \frac{1}{64\pi} r'^2 e^{-r} \frac{2}{3} \left(P_0(\cos \theta') - P_2(\cos \theta') \right) d^3 x'$$
(90)

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} Y_{lm}^{*}(\theta', \phi') r'^{l} \frac{1}{96\pi} r'^{2} e^{-r} \left(P_{0}(\cos \theta') - P_{2}(\cos \theta') \right) r'^{2} \sin \theta' dr' d\theta' d\phi'$$
(91)

$$= \frac{1}{96\pi} \int_0^{2\pi} \int_0^{\pi} Y_{lm}^*(\theta', \phi') \left(P_0(\cos \theta') - P_2(\cos \theta') \right) \int_0^{\infty} (r')^{l+4} e^{-r} dr' \sin \theta' d\theta' d\phi'$$
(92)

$$= \frac{1}{96\pi} \Gamma(l+5) \int_0^{2\pi} \int_0^{\pi} Y_{lm}^*(\theta', \phi') \left(P_0(\cos \theta') - P_2(\cos \theta') \right) \sin \theta' d\theta' d\phi', l > -5.$$
 (93)

Como a simetria é azimutal, teremos que m deve ser zero, para termos momentos independentes de ϕ . A relação entre os harmônicos esféricos e os polinômios de Legendre é

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi},$$
(94)

$$Y_{l0}(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi}} P_l(\cos\theta). \tag{95}$$

Teremos então que

$$q_{l0} = \frac{1}{96\pi} \Gamma(l+5) 2\pi \int_0^{\pi} \sqrt{\frac{(2l+1)}{4\pi}} P_l(\cos\theta') \left(P_0(\cos\theta') - P_2(\cos\theta') \right) \sin\theta' d\theta', l > -5$$
(96)

$$=\frac{1}{48}\Gamma(l+5)\sqrt{\frac{(2l+1)}{4\pi}}\left(\int_0^\pi P_l(\cos\theta')P_0(\cos\theta')\sin\theta'd\theta'-\int_0^\pi P_l(\cos\theta')P_2(\cos\theta')\sin\theta'd\theta'\right),l>-5 \quad (97)$$

$$= \frac{1}{48}\Gamma(l+5)\sqrt{\frac{(2l+1)}{4\pi}} \left(\frac{2}{2l+1}\delta_{l,0} - \frac{2}{2l+1}\delta_{l,2}\right), l > -5.$$
(98)

Logo, somente dois q_{l0} irão sobreviver, q_{00} e q_{20} :

$$q_{00} = \frac{1}{24}\Gamma(5)\sqrt{\frac{1}{4\pi}} = \sqrt{\frac{1}{4\pi}},\tag{99}$$

$$q_{20} = -\frac{1}{120}\Gamma(7)\sqrt{\frac{5}{4\pi}} = -\sqrt{\frac{45}{\pi}}.$$
 (100)

A expansão em multipolos do potencial será então

$$\Phi = \frac{1}{4\pi\epsilon_0} \sum_{l=-\infty}^{\infty} \frac{4\pi}{2l+1} q_{l0} \frac{Y_{lm}(\theta,\phi)}{r^{l+1}}$$
(101)

$$=\frac{1}{4\pi\epsilon_0} \sum_{l=-\infty}^{\infty} \sqrt{\frac{4\pi}{2l+1}} q_{l0} \frac{P_l(\cos\theta)}{r^{l+1}} \tag{102}$$

$$=\frac{1}{4\pi\epsilon_0} \left(\frac{1}{r} - 6 \frac{P_2(\cos\theta)}{r^3} \right) \tag{103}$$

$$= \frac{1}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{9\cos^2\theta - 3}{r^3} \right). \tag{104}$$

Para encontrar uma expansão do potencial próxima da origem, é necessário utilizar as funções de Green.

10 Casca cilíndrica imersa num dielétrico com vácuo entre as cascas

11 Distribuições discretas de carga sugeridas pelo Zezo

Avaliando as densidades das distribuições de carga fornecidas pelo zezo:

$$\rho_a(\vec{x}) = Q\delta(r - a)\delta\left(\theta - \frac{\pi}{2}\right)\left(-\delta(\phi) + \delta\left(\phi - \frac{\pi}{2}\right) + \delta\left(\phi - \pi\right) - \delta\left(\phi - \frac{3\pi}{2}\right)\right) \tag{105}$$

$$\rho_b(\vec{x}) = Q\delta(r - a)\delta\left(\theta - \frac{\pi}{2}\right)\left(\delta(\phi) + \delta\left(\phi - \frac{\pi}{2}\right) + \delta\left(\phi - \pi\right) + \delta\left(\phi - \frac{3\pi}{2}\right)\right) - \frac{4Q}{2\pi}\frac{\delta(r)}{r^2}\delta(\cos\theta)$$
(106)

$$\rho_c(\vec{x}) = \frac{Q}{2\pi} \frac{\delta(r)}{r^2} \delta(\cos \theta) - Q\delta(r - a)\delta\left(\theta - \frac{\pi}{2}\right) \left(\delta(\phi) + \delta\left(\phi - \frac{\pi}{2}\right)\right)$$
(107)

$$\rho_d(\vec{x}) = Q\delta(r - a) \left(\frac{\delta(\cos \theta - 1)}{2\pi} + \delta(\cos \theta) \left(\delta(\phi) + \delta\left(\frac{\pi}{2}\right) \right) \right)$$
(108)

12 Carga próxima a uma esfera dielétrica

Vamos considerar uma esfera dielétrica, com uma carga pontual próxima a sua superfície. Este problema é parecido com o problema da carga próxima à esfera condutora, onde se resolve por método das imagens. A diferença é que aqui é como se a carga imagem fosse "ofuscada", com apenas uma fração da imagem associada a um espelho perfeito. Considere a carga pontual acima do eixo z, localizada no ponto r=a.

Para isto, consideremos a equação de Laplace em coordenadas esféricas com simetria azimutal

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta). \tag{109}$$

Vamos considerar primeiramente a solução para o potencial dentro da esfera. Neste caso, as constantes B_l devem ser todas nulas, pois o potencial deve ser finito na origem. Logo,

$$V_{\rm in}(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta). \tag{110}$$

Por outro lado, fora da esfera, teremos

$$V_{\text{out}}(r,\theta) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{x} - a\hat{z}|} + V_0(r,\theta), \tag{111}$$

onde o potencial de uma carga pontual se apresentará junto de um potencial causado pela presença da esfera dielétrica. Vamos dar ao potencial V_0 a forma de uma solução da equação de Laplace, visto que não temos outra fonte de carga.

$$V_0(r,\theta) = \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta),$$
 (112)

pois é necessário que o potencial desapareça quando nos afastemos suficientemente da esfera e da carga.

Podemos expandir o potencial de uma carga pontual em função de dos polinômios de Legendre, de acordo

uma expressão do $\frac{1}{4}$ A C $\frac{1}{4}$ S $\frac{1}{4}$, que não lembro qual e necessito buscar o livro para olhar, perdendo o conforto do sofá. De qualquer forma,

$$\frac{1}{|\vec{x} - a\hat{z}|} = \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta), \tag{113}$$

onde $r_{>}$ é o maior entre r e a, e $r_{<}$ é o menor entre r e a. Bom, nosso potencial geral será

$$V_{\text{out}}(r,\theta) = \frac{q}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_l(\cos\theta) + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos\theta)$$
 (114)

$$= \frac{q}{4\pi\epsilon_0} \left(\sum_{l=0}^{\infty} \frac{r_{<}^l}{r_{+}^{l+1}} + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta), \tag{115}$$

incorporanto a constante eletrostática nos B_l .

Vamos avaliar as condições de contorno. Como estas se dão na superfície, teremos que, obviamente, o $r_{<}$ será r, e $r_{>}$, consequentemente, será a.

Vamos avaliar o campo elétrico tangente à superfície

$$E_{\text{in},\theta} = -\frac{1}{r} \frac{\partial V_{\text{in}}}{\partial \theta} \bigg|_{r=R} = \sum_{l=0}^{\infty} A_l R^{l-1} \frac{dP_l(\cos \theta)}{d\theta} \sin \theta$$
 (116)

$$E_{\text{out},\theta} = -\frac{1}{r} \frac{\partial V_{\text{out}}}{\partial \theta} \bigg|_{r=R} = \frac{q}{4\pi\epsilon_0} \left(\sum_{l=0}^{\infty} \frac{R^{l-1}}{a^{l+1}} + \frac{B_l}{R^{l+2}} \right) \frac{dP_l(\cos\theta)}{d\theta} \sin\theta$$
 (117)

Pela continuidade do campo paralelo à superfície,

$$E_{\text{in }\theta} = E_{\text{out }\theta} \tag{118}$$

$$\sum_{l=0}^{\infty} A_l R^{l-1} \frac{dP_l(\cos \theta)}{d\theta} \sin \theta = \frac{q}{4\pi\epsilon_0} \left(\sum_{l=0}^{\infty} \frac{R^{l-1}}{a^{l+1}} + \frac{B_l}{R^{l+2}} \right) \frac{dP_l(\cos \theta)}{d\theta} \sin \theta \tag{119}$$

$$A_l R^{l-1} = \frac{q}{4\pi\epsilon_0} \left(\frac{R^{l-1}}{a^{l+1}} + \frac{B_l}{R^{l+2}} \right)$$
 (120)

$$A_l = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{a^{l+1}} + \frac{B_l}{R^{2l+1}} \right). \tag{121}$$

Avaliando agora o deslocamento elétrico perpendicular à superfície, teremos

$$D_{\text{in},r} = -\epsilon \frac{\partial V_{in}}{\partial r} \Big|_{r=R} = -\epsilon \sum_{l=0}^{\infty} l A_l R^{l-1} P_l(\cos \theta)$$
(122)

$$D_{\text{out},r} = -\epsilon_0 \frac{\partial V_{out}}{\partial r} \bigg|_{r=R} = -\frac{q}{4\pi} \left(\sum_{l=0}^{\infty} \frac{lR^{l-1}}{a^{l+1}} - (l+1) \frac{B_l}{R^{l+2}} \right) P_l(\cos \theta).$$
 (123)

Pela continuidade do deslocamento elétrico perpendicular à superfície, teremos

$$D_{\text{in},r} = D_{\text{out},r} \tag{124}$$

$$-\epsilon \sum_{l=0}^{\infty} lA_l R^{l-1} P_l(\cos \theta) = -\frac{q}{4\pi} \left(\sum_{l=0}^{\infty} \frac{lR^{l-1}}{a^{l+1}} - (l+1) \frac{B_l}{R^{l+2}} \right) P_l(\cos \theta)$$
 (125)

$$-\epsilon l A_l R^{l-1} = -\frac{q}{4\pi} \left(\frac{l R^{l-1}}{a^{l+1}} - (l+1) \frac{B_l}{R^{l+2}} \right)$$
 (126)

$$A_{l} = \frac{q}{4\pi\epsilon} \left(\frac{1}{a^{l+1}} - \frac{(l+1)}{l} \frac{B_{l}}{R^{2l+1}} \right). \tag{127}$$

Já estamos com a faca e o queijo na mão, só resta resolver para A_l e B_l :

$$\frac{q}{4\pi\epsilon_0} \left(\frac{1}{a^{l+1}} + \frac{B_l}{R^{2l+1}} \right) = \frac{q}{4\pi\epsilon} \left(\frac{1}{a^{l+1}} - \frac{(l+1)}{l} \frac{B_l}{R^{2l+1}} \right) \tag{128}$$

$$\frac{1}{a^{l+1}} + \frac{B_l}{R^{2l+1}} = \frac{\epsilon_0}{\epsilon} \left(\frac{1}{a^{l+1}} - \frac{(l+1)}{l} \frac{B_l}{R^{2l+1}} \right) \tag{129}$$

$$\frac{B_l}{R^{2l+1}} + \frac{\epsilon_0}{\epsilon} \frac{(l+1)}{l} \frac{B_l}{R^{2l+1}} = \frac{\epsilon_0}{\epsilon} \left(\frac{1}{a^{l+1}} \right) - \frac{1}{a^{l+1}}$$

$$\tag{130}$$

$$\frac{B_l}{R^{2l+1}} \left(1 + \frac{\epsilon_0}{\epsilon} \frac{(l+1)}{l} \right) = \frac{1}{a^{l+1}} \left(\frac{\epsilon_0}{\epsilon} - 1 \right) \tag{131}$$

$$B_l = \frac{R^{2l+1}}{a^{l+1}} \frac{\left(\frac{\epsilon_0}{\epsilon} - 1\right)}{\left(1 + \frac{\epsilon_0}{\epsilon} \frac{(l+1)}{l}\right)}.$$
 (132)

Substituindo para A_l , teremos que

$$A_{l} = \frac{q}{4\pi\epsilon_{0}} \left(\frac{1}{a^{l+1}} + \frac{1}{R^{2l+1}} \frac{R^{2l+1}}{a^{l+1}} \frac{\left(\frac{\epsilon_{0}}{\epsilon} - 1\right)}{\left(1 + \frac{\epsilon_{0}}{\epsilon} \frac{(l+1)}{l}\right)} \right)$$

$$(133)$$

$$= \frac{q}{4\pi\epsilon_0} \frac{1}{a^{l+1}} \left(1 + \frac{\left(\frac{\epsilon_0}{\epsilon} - 1\right)}{\left(1 + \frac{\epsilon_0}{\epsilon} \frac{(l+1)}{l}\right)} \right) \tag{134}$$

$$= \frac{q}{4\pi\epsilon_0} \frac{1}{a^{l+1}} \left(1 + \frac{l\left(\frac{\epsilon_0}{\epsilon} - 1\right)}{\left(l + \frac{\epsilon_0}{\epsilon}(l+1)\right)} \right) \tag{135}$$

$$= \frac{q}{4\pi\epsilon_0} \frac{1}{a^{l+1}} \left(\frac{\left(l + \frac{\epsilon_0}{\epsilon}(l+1)\right) + l\left(\frac{\epsilon_0}{\epsilon} - 1\right)}{\left(l + \frac{\epsilon_0}{\epsilon}(l+1)\right)} \right) \tag{136}$$

$$= \frac{q}{4\pi\epsilon_0} \frac{1}{a^{l+1}} \left(\frac{2\frac{\epsilon_0}{\epsilon} l + \frac{\epsilon_0}{\epsilon}}{\left(l + \frac{\epsilon_0}{\epsilon} (l+1)\right)} \right) \tag{137}$$

$$= \frac{q}{4\pi\epsilon} \frac{1}{a^{l+1}} \left(\frac{2l+1}{\left(l + \frac{\epsilon_0}{\epsilon} (l+1)\right)} \right). \tag{138}$$

(139)

Desta forma, concluímos nossa expressão final para o potencial, onde temos que

$$V_{\rm in}(r,\theta) = \frac{q}{4\pi\epsilon} \frac{1}{a} \sum_{l=0}^{\infty} \left(\frac{2l+1}{\left(l + \frac{\epsilon_0}{\epsilon}(l+1)\right)} \right) \left(\frac{r}{a}\right)^l P_l(\cos\theta),\tag{140}$$

 \mathbf{e}

$$V_{\text{out}}(r,\theta) = \frac{q}{4\pi\epsilon_0} \left(\sum_{l=0}^{\infty} \frac{r_{<}^l}{r_{>}^{l+1}} + \frac{l\left(\frac{\epsilon_0}{\epsilon} - 1\right)}{\left(l + \frac{\epsilon_0}{\epsilon}(l+1)\right)} \frac{R^{2l+1}}{(ar)^{l+1}} \right) P_l(\cos\theta). \tag{141}$$

Caso coloquemos $\epsilon = \epsilon_0$, ou seja, assumindo a esfera como "vácuo", teremos

$$V_{\rm in}(r,\theta) = \frac{q}{4\pi\epsilon_0} \frac{1}{a} \sum_{l=0}^{\infty} \left(\frac{r}{a}\right)^l P_l(\cos\theta) = \frac{q}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{r^l}{a^{l+1}} P_l(\cos\theta), \tag{142}$$

 \mathbf{e}

$$V_{\text{out}}(r,\theta) = \frac{q}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_l(\cos\theta). \tag{143}$$

Ora, mas isto é justamente o potencial de uma carga pontual no vácuo, posicionada no eixo z, em z=a, que confirma nosso resultado, "with striking fashion".

13 Cascas esféricas meio preenchidas com dielétrico (complicado e incompleto)

Vamos considerar o dielétrico no hemisfério inferior, e o vácuo no superior, de maneira a preservar a simetria azimutal. A esfera interior tem carga Q, e a exterior tem sua carga igual a -Q.

Entre as duas esferas, teremos o potencial descrito pela equação de Laplace ordinária, representada por

$$V_{\rm in}(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta). \tag{144}$$

Fora da esfera, teremos a mesma equação, porém, com os coeficientes que acompanham r^l serão todos nulos, pois o potencial deverá ir a zero à medida que nos afastemos das cargas. Ou seja,

$$V_{\text{out}}(r,\theta) = \sum_{l=0}^{\infty} \frac{C_l}{r^{l+1}} P_l(\cos \theta). \tag{145}$$

Vamos para as condições de contorno. Calculando o campo elétrico tangente à superfície, teremos

$$E_{\text{in},\theta} = -\frac{1}{r} \frac{\partial V_{\text{in}}}{\partial \theta} \bigg|_{r=b} = \sum_{l=0}^{\infty} \left(A_l b^{l-1} + \frac{B_l}{b^{l+2}} \right) \frac{dP_l(\cos \theta)}{d\theta} \sin \theta$$
 (146)

$$E_{\text{out},\theta} = -\frac{1}{r} \frac{\partial V_{\text{out}}}{\partial \theta} \bigg|_{r=b} = \sum_{l=0}^{\infty} \frac{C_l}{b^{l+2}} \frac{dP_l(\cos \theta)}{d\theta} \sin \theta.$$
 (147)

Aplicando a continuidade do campo tangencial:

$$E_{\text{in},\theta} = E_{\text{out},\theta} \tag{148}$$

$$\sum_{l=0}^{\infty} \left(A_l b^{l-1} + \frac{B_l}{b^{l+2}} \right) \frac{dP_l(\cos \theta)}{d\theta} \sin \theta = \sum_{l=0}^{\infty} \frac{C_l}{b^{l+2}} \frac{dP_l(\cos \theta)}{d\theta} \sin \theta$$
 (149)

$$A_l b^{l-1} + \frac{B_l}{b^{l+2}} = \frac{C_l}{b^{l+2}} \tag{150}$$

$$A_l b^{2l+1} + B_l = C_l. (151)$$

O deslocamento elétrico perpendicular à superfície será:

$$D_{\text{in},r} = -\epsilon_0 \frac{\partial V_{\text{in}}}{\partial r} \bigg|_{r=b} = -\epsilon_0 \sum_{l=0}^{\infty} \left(l A_l b^{l-1} - (l+1) \frac{B_l}{b^{l+2}} \right) P_l(\cos \theta), 0 < \theta < \frac{\pi}{2}$$
 (152)

$$D_{\text{in},r} = -\epsilon \frac{\partial V_{\text{in}}}{\partial r} \bigg|_{r=b} = -\epsilon \sum_{l=0}^{\infty} \left(lA_l b^{l-1} - (l+1) \frac{B_l}{b^{l+2}} \right) P_l(\cos \theta), \frac{\pi}{2} < \theta < \pi$$
 (153)

$$D_{\text{out},r} = -\epsilon_0 \frac{\partial V_{\text{in}}}{\partial r} \bigg|_{r=b} = \epsilon_0 \sum_{l=0}^{\infty} (l+1) \frac{C_l}{b^{l+2}} P_l(\cos \theta).$$
 (154)

Como temos uma carga distribuída uniformemente na superfície, $\sigma_f = Q/4\pi b^2$.

Isso tá ficando muito complicado, melhor deixar pra lá.

14 Esfera dielétrica submissa a um campo uniforme

Vamos considerar uma esfera dielétrica, e um campo uniforme na direção z. Temos que, para pontos muito distantes de $r=R, \vec{E}(r\gg R)=E_0\hat{z}$, e o potencial será $V(r\gg R)=-E_0z=-E_0r\cos\theta$. Assim,

$$V_{\text{out}}(r,\theta) = -E_0 r \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta), \tag{155}$$

e

$$V_{\rm in}(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta). \tag{156}$$

O deslocamento elétrico perpendicular à superfície será

$$D_{\text{in},r} = -\epsilon \frac{\partial V_{\text{in}}}{\partial r} \bigg|_{r=b} = -\epsilon \sum_{l=0}^{\infty} l A_l b^{l-1} P_l(\cos \theta)$$
(157)

$$D_{\text{out},r} = -\epsilon_0 \frac{\partial V_{\text{in}}}{\partial r} \Big|_{r=b} = \epsilon_0 \left(E_0 \cos \theta + \sum_{l=0}^{\infty} (l+1) \frac{B_l}{b^{l+2}} P_l(\cos \theta) \right). \tag{158}$$

Como não existem cargas livres no nosso problema, o deslocamento elétrico será contínuo:

$$D_{\text{in},r} = D_{\text{out},r} \tag{159}$$

$$-\epsilon \sum_{l=0}^{\infty} lA_l b^{l-1} P_l(\cos \theta) = \epsilon_0 \left(E_0 \cos \theta + \sum_{l=0}^{\infty} (l+1) \frac{B_l}{b^{l+2}} P_l(\cos \theta) \right), \tag{160}$$

(161)

que nos leva a

$$-\epsilon A_1 = \epsilon_0 E_0 + 2\epsilon_0 \frac{B_1}{b^3},\tag{162}$$

$$-\epsilon l A_l b^{l-1} = \epsilon_0 (l+1) \frac{B_l}{b^{l+2}}.$$
 (163)

Precisamos agora encontrar uma outra relação entre os coeficientes para determiná-los.

Vamos calcular as componentes tangenciais do campo elétrico

$$E_{\text{in},\theta} = -\frac{1}{r} \frac{\partial V_{\text{in}}}{\partial \theta} \bigg|_{r=b} = -\sum_{l=0}^{\infty} A_l b^{l-1} \frac{dP_l(\cos \theta)}{d(\cos \theta)} \sin \theta$$
 (164)

$$E_{\text{out},\theta} = -\frac{1}{r} \frac{\partial V_{\text{out}}}{\partial \theta} \bigg|_{r=b} = E_0 \sin \theta - \sum_{l=0}^{\infty} \frac{B_l}{b^{l+2}} \frac{dP_l(\cos \theta)}{d(\cos \theta)} \sin \theta.$$
 (165)

Pela continuidade da componente tangencial do campo elétrico,

$$E_{\text{in},\theta} = E_{\text{out},\theta} \tag{166}$$

$$\sum_{l=0}^{\infty} A_l b^{l-1} \frac{dP_l(\cos \theta)}{d(\cos \theta)} \sin \theta = E_0 \sin \theta + \sum_{l=0}^{\infty} \frac{B_l}{b^{l+2}} \frac{dP_l(\cos \theta)}{d(\cos \theta)} \sin \theta, \tag{167}$$

nos levando a

$$A_1 = -E_0 + \frac{B_1}{b^3},\tag{168}$$

$$A_l b^{l-1} = \frac{B_l}{b^{l+2}} \implies A_l = \frac{B_l}{b^{2+1}}.$$
 (169)

Juntando as condições para B_l e A_l gerais, temos que

$$-\epsilon l \frac{B_l}{h^{2+1}} b^{l-1} = \epsilon_0 (l+1) \frac{B_l}{h^{l+2}}$$
(170)

$$B_l(-\epsilon lb^{l-1} - \epsilon_0(l+1)) = 0, l \neq 1.$$
(171)

(172)

Logo, B_l deve ser zero para todo $l \neq 1$. Para l = 1:

$$\epsilon \frac{B_1}{b^3} + 2\epsilon_0 \frac{B_1}{b^3} = \epsilon E_0 - \epsilon_0 E_0, \tag{173}$$

$$B_1 = b^3 E_0 \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \tag{174}$$

$$A_1 = -E_0 + \frac{b^3 E_0 \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0}}{b^3} \tag{175}$$

$$= -E_0 + E_0 \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \tag{176}$$

$$= E_0 \left(\frac{\epsilon - \epsilon_0 - \epsilon - 2\epsilon_0}{\epsilon + 2\epsilon_0} \right) \tag{177}$$

$$=E_0\left(\frac{-3\epsilon_0}{\epsilon+2\epsilon_0}\right). \tag{178}$$

O potencial dentro da esfera será

$$V_{\rm in}(r,\theta) = -E_0 \left(\frac{3\epsilon_0}{\epsilon + 2\epsilon_0}\right) r \cos \theta = -E_0 \left(\frac{3\epsilon_0}{\epsilon + 2\epsilon_0}\right) z,\tag{179}$$

e o campo será

$$E_{\rm in} = E_0 \left(\frac{3\epsilon_0}{\epsilon + 2\epsilon_0} \right). \tag{180}$$

Teremos então um campo uniforme dentro da esfera.

15 Esfera dielétrica com polarização uniforme

Vamos considerar agora uma esfera dielétrica, apresentando uma polarização uniforme. Por questões de preservação da simetria azimutal, consideremos a polarização paralela ao eixo z, ou seja, $\vec{P} = P_0 \hat{z}$.

Comecemos escrevendo as densidades volumétrica e superficial de cargas ligadas:

$$\rho_b = -\nabla \cdot \vec{P} = 0,\tag{181}$$

$$\sigma_h = \vec{P} \cdot \hat{n} = P \cos \theta. \tag{182}$$

Ora, o que nos resta agora é encontrar o potencial produzido por uma densidade superficial de cargas análoga, numa esfera de raio R.

A solução da equação de Laplace nos dá

$$V_{\rm in} = \sum ag{183}$$

$$\frac{1}{4\pi\epsilon_0} \int \frac{\sigma_b}{\nabla} da' \tag{184}$$

16 Esfera dielétrica com carga pontual na origem

17 Esfera dielétrica com dipolo simples na origem