数字逻辑第一章逻辑代数基础

信息科学与工程学院计算机系

杨永全

yangyq@ouc.edu.cn

逻辑代数基础

- 逻辑函数及标准形式
- 逻辑代数的主要定理及常用公式
- 逻辑函数的化简
 - 代数法化简
 - 卡诺图化简

逻辑代数基础

逻辑代数定义:按一定的逻辑规律进行运算的代数。由逻辑变量集K,常量0、1及与、或、非三种运算符所构成的代数系统。

又称为布尔代数,最早是由英国数学家布尔1850年提出来的,现在适用于数字系统的布尔代数是美国贝尔实验室的香农于1928年提出的,为改进的布尔代数。

逻辑代数为分析设计数字逻辑电路提供了坚实的理论基础。

1. 逻辑变量

取值:逻辑0、逻辑1。逻辑0和逻辑1不代表数值大小,仅表示相互矛盾、相互对立的两种逻辑状态

- 2. 基本逻辑运算
- 与运算
- 或运算
- 非运算

与逻辑

只有决定某一事件的所有条件全部具备,事件才能发生

开关A	开关B	灯F	Α	В	F
断	断	灭	0	0	0
断	合	灭	0	1	0
合	断	灭	1	0	0
合	合	亮	1	1	1

逻辑表达式: F=A·B=AB 也可以使用&、^, N、×表示

或逻辑

只要决定某一事件条件有一个及以上具备,事件就能发生

开关A	开关B	灯F	Α	В	F
断	断	灭	0	0	0
断	合	亮	0	1	1
合	断	亮	1	0	1
合	合	亮	1	1	1

逻辑表达式:

F=A+B 也可以使用∨、 ∪表示

非逻辑

当决定某一事件的条件满足时,事件不发生;反之发生

Α	F
0	1
1	0

逻辑表达式:

$$F = \overline{A}$$

复合逻辑

与非逻辑:

 $F = \overline{AB}$

或非逻辑:

 $F = \overline{A + B}$

与或非逻辑:

 $F = \overline{AB + CD}$

A O & + O F

请大家写出上述复合逻辑的真值表。

复合逻辑

异或运算:

$$F = A \oplus B = A\overline{B} + \overline{A}B$$

同或运算:

$$F = A \odot B = \overline{A \oplus B}$$

请大家写出上述复合逻辑的真值表,体会为什么叫做异或和同或。

0-1律

1.
$$A \cdot 0 = 0$$
 $A + 1 = 1$

$$A + 1 = 1$$

2.
$$A \cdot 1 = A$$
 $A + 0 = A$

$$A + 0 = A$$

$$3. \ 0 \cdot 0 = 0 \ 0 + 0 = 0$$

$$0 + 0 = 0$$

4.
$$1 \cdot 1 = 1$$
 $1 + 1 = 1$

$$1 + 1 = 1$$

5.
$$0+1=1+0=1$$

6.
$$1 \cdot 0 = 0 \cdot 1 = 0$$

重叠律

1.
$$A \cdot A = A$$
 $A + A = A$

互补律

1.
$$A \cdot \overline{A} = 0$$
 $A + \overline{A} = 1$

对合律

1.
$$\frac{=}{A} = A$$

交换律

1.
$$A + B = B + A$$

2.
$$A \cdot B = B \cdot A$$

结合律

1.
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

2.
$$(A + B) + C = A + (B + C)$$

分配律

1.
$$A \cdot (B + C) = A \cdot B + A \cdot C$$

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$

请大家尝试证明上述第二条定律

用有限个与、或、非逻辑运算符,按某种逻辑关系将逻辑变量 a_1 、 a_2 、 a_3 、…连接起来,所得的表达式F = f(a_1 、 a_2 、 a_3 、…)称为逻辑函数。

输入变量 a_1 、 a_2 、 a_3 、…确定后,F的值就唯一确定。

逻辑表达式

• 用逻辑符号来表示函数式的运算关系

真值表

• 输入变量不同取值组合与函数值间的对应关系 列成表格

卡诺图

• 是一种几何图形,由若干个小方格构成,n个 变量则有2ⁿ 个小方格,每个小方格代表逻辑 变量的一种组合,方格的排列有一定的规律性。

真值表

是一种用表格表示逻辑函数的方法。由逻辑变量的所有取值组合及对应的逻辑函数值构成表格。

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

所代表的逻辑表达式为:

F=AB

逻辑表达式

直接用逻辑变量和逻辑运算符构成。

$$F = A \oplus B = A\overline{B} + \overline{A}B$$

$$F = A \odot B = \overline{A \oplus B}$$

卡诺图

是一种几何图形,由若干个小方格构成,n个变量则有2ⁿ个小方格,每个小方格代表逻辑变量的一种组合,方格的排列有一定的规律性。

A	\overline{B}	В
\overline{A}	$\overline{A} \overline{B}$	$\overline{A} B$
A	$A\overline{B}$	AB

函数值为1时,对应的小方格标1,例如F=AB可表示为:

A	\overline{B}	В
\overline{A}	0	0
A	0	1

逻辑函数的标准形式

最小项表达式 最大项表达式

最小项:n个变量的逻辑函数中,包括全部n个变量的乘积项(每个变量必须而且只能以原变量或反变量的形式出现一次)

n个变量有2n个最小项,记作mi

3个变量有23(8)个最小项

最小 项	$\overline{A} \overline{B} \overline{C}$	$\overline{A} \overline{B} C$	$\overline{A} B \overline{C}$	$\overline{A} BC$	$A \overline{B} \overline{C}$	$A \overline{B} C$	AB \overline{C}	ABC
二进制数	000			011			110	111
十进 制数	0	1	2	3	4	5	6	7
编号	m_0	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇

性质:

- 任意一组变量取值,只有一个最小项的值为1,其它最小项的值均为0
- 同一组变量取值任意两个不同最小项的乘积为0。即 $m_i \times m_j = 0$ ($i \neq j$)
- 全部最小项之和为1,即

$$\sum_{i=0}^{2^{n}-1} m_i = 1$$

Α	В	С	m_0	m ₁	m_2	m_3	m ₄	m_5	m ₆	m ₇	F
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	1	0	0	0	0	0	0	1
0	1	0	0	0	1	0	0	0	0	0	1
0	1	1	0	0	0	1	0	0	0	0	1
1	0	0	0	0	0	0	1	0	0	0	1
1	0	1	0	0	0	0	0	1	0	0	1
1	1	0	0	0	0	0	0	0	1	0	1
1	1	1	0	0	0	0	0	0	0	1	1

最小项号:用m来表示最小项,把每个最小项的原变量用1表示,反变量用0表示所对应的二进制数的十进制值就是 其最小项号。

例如:

ABC的最小项编号为111即7,用m₇来表示。

最小项表达式

1. 定义:由最小项之和所构成的表达式.

任何一个逻辑函数都只有一个最小项表达式.

2. 怎样得到最小项表达式

方法: 反复用
$$X = X(Y + \overline{Y})$$

$$F(A,B,C) = A + \overline{B} C + \overline{A} B C$$

$$=A(B+\overline{B})+\overline{B}\ C+\overline{A}\ B\ C$$

$$=AB + A\overline{B} + \overline{B} C(A + \overline{A}) + \overline{A} B C$$

$$=AB(C+\overline{C})+A\overline{B}(C+\overline{C})+A\overline{B}C+\overline{A}BC+\overline{A}BC$$

$$=ABC + AB\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + \overline{A}\overline{B}C + \overline{A}BC$$

$$=\sum(1,3,4,5,6,7)$$

最小项表达式的性质

- 1. m_i为F(A₁、A₂...A_n)的一个最小项,则使m_i=1的一组变量取值使F=1。
- 2. F_1 和 F_2 为 A_1 、 A_2 ... A_n 的函数,则 $F=F_1+F_2$ 包含 F_1 和 F_2 中所有的最小项, $F=F_1\cdot F_2$ 包含 F_1 和 F_2 中共有的最小项.。
- 3. 若 \overline{F} 是 \overline{F} 是 \overline{F} 包含 \overline{F} 包含 \overline{F} 引力项。

最大项表达式

最大项:为一个和项,并且每个变量以原变量或反变量的 形式出现一次并且只出现一次。

用M来表示最大项,把每个最大项的原变量用0表示,反变量用1表示所对应的二进制数的十进制值就是其最大项号。

三个变量的最大项包括:

$$\overline{A} + \overline{B} + \overline{C} \cdot \overline{A} + \overline{B} + C \cdot \overline{A} + B + \overline{C} \cdot \overline{A} + B + C \cdot A + \overline{B} + \overline{C} \cdot A + \overline{B} + C \cdot A + \overline{B} + \overline{C} \cdot A + \overline{C}$$

最大项表达式

性质:

- 每一个最大项只有一组取值可以使其值为0。
- 任意两个最大项的和为1。
- n个变量的所有2ⁿ个最大项之积为0。

最大项表达式

最大项表达式

- 1. 定义:由最大项之积所构成的表达式。
- 任何一个逻辑函数都只有一个最大项表达式。
- 2. 怎样得到最大项表达式

$$F=A\overline{C}+B\overline{C}$$

$$= \overline{C}(A+B)$$

$$= (\overline{C} + A\overline{A} + B\overline{B})(A + B + C\overline{C})$$

$$= (A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + \overline{C})(A + B + C)$$

$$=\prod(0,1,3,5,7)$$

最小项与最大项的关系

相同编号的最小项和最大项存在互补关系

$$m_i = \overline{M_i}$$

若干个最小项之和表示的表达式F,其反函数F可用等同个与这些最小项相对应的最大项之积表示。

$$F = m_1 + m_3 + m_5 + m_7$$

$$\overline{F} = \overline{m_1 + m_3 + m_5 + m_7}$$

$$= \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_5} \cdot \overline{m_7}$$

$$= M_1 \cdot M_3 \cdot M_5 \cdot M_7$$

逻辑函数的标准形式

最小项表达式:积之和范式 最大项表达式:和之积范式

逻辑函数三种表示方法之间的关系

- 真值表:逻辑函数的本质(较为复杂)
- 逻辑表达式:逻辑函数的数学描述(便于化简、运算)
- 卡诺图:逻辑函数的图形表示(复杂,直观,可用于化 简)

用例子说明

请大家将下式化简为最小项表达式:

$$F(A,B,C) = A\overline{C} + B\overline{C} + ABC$$

$$F = \sum (2,4,6,7)$$

请大家画出该函数的真值表:

$$F = \sum (2,4,6,7)$$

请大家画出该函数的真值表:

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

逻辑函数及标准形式

$$F = \sum (2,4,6,7)$$

请大家画出该函数的卡诺图:

逻辑函数及标准形式

$$F = \sum (2,4,6,7)$$

请大家画出该函数的卡诺图:

(卡诺图在后面化简时将发挥重要作用)

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}				1
\boldsymbol{A}	1		1	1

逻辑函数及标准形式

三种表示法存在——对应的关系。

逻辑函数相等的概念

两函数:

$$F=f(A_1,A_2,...A_n)$$

$$G=g(A_1,A_2,...A_n)$$

对任一组 $A_1, A_2...A_n$ 的取值F=G,则两函数相等。

怎样判断 (三个条件是一样的):

- 1. 标准表达式相同。
- 2. 真值表相同。
- 3. 卡诺图相同。

德·摩根定理

$$\overline{X_1 + X_2 \cdots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdots \overline{X_n}$$

$$\overline{X_1 \cdot X_2 \cdots X_n} = \overline{X_1} + \overline{X_2} \cdots + \overline{X_n}$$

请尝试证明。

对偶定理

对偶函数的概念:

对于任意一个逻辑函数, 做如下处理:

- 1. 若把式中的运算符 "."换成 "+", "+"换成 ".";
- 2. 常量 "0"换成 "1", "1"换成 "0"

得到新函数式为原函数式F的对偶式F',也称对偶函数

$$F = AB + \overline{A}C + 1 \cdot B$$

的对偶函数是:

$$F' = (A+B) \cdot (\overline{A} + C) \cdot (0+B)$$

对偶定理

$$f'(x_1, x_2 \cdots x_n, 0, 1, +, \cdot) = \overline{f}(\overline{x_1}, \overline{x_2} \cdots \overline{x_n}, 0, 1, +, \cdot)$$

推理1:

$$(f')' = f$$

推理2:

如果: f=g, 则: f'=g'

对偶定理

自对偶函数: 对偶函数等于函数本身。

尝试证明函数: $F = (A + \overline{C})\overline{B} + A(\overline{B} + \overline{C})$

是自对偶函数。

对偶定理

自对偶函数: 对偶函数等于函数本身。

尝试证明函数: $F = (A + \overline{C})\overline{B} + A(\overline{B} + \overline{C})$ 是自对偶函数。

$$F' = (A\overline{C} + \overline{B})(A + \overline{B}C)$$

$$= (A + \overline{B})(\overline{B} + \overline{C})(A + \overline{B})(A + \overline{C})$$

$$= A(\overline{B} + \overline{C})(A + \overline{C}) + \overline{B}(\overline{B} + \overline{C})(A + \overline{C})$$

$$= A(\overline{B} + \overline{C}) + (A + \overline{C})\overline{B}$$

展开定理

$$f(x_1, \dots x_i, \dots x_n) = x_i \cdot f(x_1, \dots 1 \dots x_n) + \overline{x_i} f(x_1, \dots 0, \dots x_n)$$

$$f(x_1, \dots x_i, \dots x_n)$$

$$= [x_i + f(x_1, \dots 0 \dots x_n)][\overline{x_i} + f(x_1, \dots 1, \dots x_n)]$$

推理1:

$$x_i \cdot f(x_1, \dots x_i, \dots x_n) = x_i \cdot f(x_1, \dots 1 \dots x_n)$$

$$x_i + f(x_1, \dots x_i, \dots x_n) = x_i + f(x_1, \dots 0 \dots x_n)$$

推理2:

$$\overline{x_i} \cdot f(x_1, \dots x_i, \dots x_n) = \overline{x_i} f(x_1, \dots 0, \dots x_n)$$

$$\overline{x_i} + f(x_1, \dots x_i, \dots x_n) = \overline{x_i} + f(x_1, \dots 1, \dots x_n)$$

请尝试证明上述推论。

吸收律

$$A \cdot B + A \cdot \overline{B} = A$$

$$(A + B) \cdot (A + \overline{B}) = A$$

$$A + A \cdot B = A$$

$$A \cdot (A + B) = A$$

$$A + \overline{A} \cdot B = A + B$$

$$A \cdot (\overline{A} + B) = A \cdot B$$

包含律

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

异或相关公式

$$A \oplus B = A\overline{B} + \overline{A}B$$

$$\overline{A \oplus B} = \overline{A} \overline{B} + AB$$

$$A \oplus A = 0$$

$$A \oplus \overline{A} = 1$$

$$A \oplus 0 = A$$

$$A \oplus 1 = \overline{A}$$

$$A \oplus \overline{B} = \overline{A \oplus B} = A \oplus B \oplus 1$$

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

$$A \cdot (B \oplus C) = (A \cdot B) \oplus (A \cdot C)$$

最简式定义

- 1. 该式中乘积项最少
- 2. 每个乘积项再不能用变量更少的乘积项代替

代数法化简

- 1. 并项: 利用 $AB + A\overline{B} = A$ 将两项并为一项,且消去一个变量B
- 2. 消项: 利用A + AB = A消去多余的项AB
- 3. 消元: 利用 $A + \overline{AB} = A + B$ 消去多余变量 \overline{A}
- 4. 配项:利用 $AB + \overline{AC} + BC = AB + \overline{AC}$ 和互补律、重叠律先增添项,再消去多余项BC

代数法化简

例:

$$F = AC + \overline{A}D + \overline{B}D + B\overline{C}$$

$$= AC + B\overline{C} + D(\overline{A} + \overline{B})$$

$$= AC + B\overline{C} + D\overline{A}B$$

$$= AC + B\overline{C} + AB + D\overline{A}B$$

$$= AC + B\overline{C} + AB + D$$

$$= AC + B\overline{C} + D$$

代数法化简

例: 请尝试化简下列函数:

$$AB + \overline{A} \overline{C} + B\overline{C}$$

代数法化简

例:请尝试化简下列函数:

$$AB + \overline{A} \overline{C} + B\overline{C}$$

$$= AB + \overline{A} \overline{C} + B\overline{C}(A + \overline{A})$$

$$= AB + \overline{A} \overline{C} + AB\overline{C} + \overline{A}B\overline{C}$$

$$= AB + \overline{A} \overline{C}$$

代数法化简

例: 请尝试化简下列函数:

$$F = \overline{AB + \overline{C}} + A\overline{C} + B$$

代数法化简

例:请尝试化简下列函数:

$$F = \overline{AB} + \overline{C} + A\overline{C} + B$$

$$= (\overline{A} + \overline{B}) \cdot C + A\overline{C} + B$$

$$= \overline{AC} + \overline{BC} + A\overline{C} + B$$

$$= B + C + \overline{AC} + A\overline{C}$$

$$= B + C + A\overline{C}$$

$$= B + C + A$$

代数法化简

例: 请尝试化简下列函数:

$$F = AB\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{C}$$

代数法化简

例:请尝试化简下列函数:

$$F = AB\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{C}$$

$$= A\overline{C} + \overline{A}BC + \overline{A}\overline{C}$$

$$= \overline{C} + \overline{A}BC$$

$$= \overline{C} + \overline{A}B$$

代数法化简

例:请尝试化简下列函数:

$$F = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, C + \overline{A} B \, \overline{C} + A \overline{B} \, \overline{C}$$

$$= \overline{A} \, \overline{B} + \overline{A} B \, \overline{C} + A \overline{B} \, \overline{C}$$

$$= \overline{A} (\overline{B} + B \overline{C}) + A \overline{B} \, \overline{C}$$

$$= \overline{A} \, \overline{B} + \overline{A} \, \overline{C} + A \overline{B} \, \overline{C}$$

$$= \overline{A} \, \overline{B} + \overline{A} \, \overline{C} + \overline{B} \, \overline{C}$$

卡诺图化简

利用布尔代数可以把逻辑函数变为较简单的形式,但要求对公式熟悉并准确,特别是无法判断是否最简,卡诺图可简便地得到最简式。

卡诺图的构成

逻辑函数的最小项表达式:

一个逻辑函数有n个变量,则有 2ⁿ个最小项;

卡诺图化简

有一个逻辑函数:

$$F(A, B, C) = AB + \overline{A}C$$

$$= ABC + AB\overline{C} + \overline{A}BC + \overline{A}\overline{B}C$$

$$= \sum (1,3,6,7)$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}		1	3	
A			7	6

卡诺图化简

卡诺图 (K图): 图中的一小格对应真值表中的一行,即对应一个最小项,又称真值图。

Α	В	С	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	0	1	3	2
A	4	5	7	6

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	m_0	m_1	m_3	m_2
A	m_4	m_5	m ₇	m_6

卡诺图化简

请大家听我的,把这两个卡诺图记住

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	m_0	m_1	m_3	m_2
A	m_4	m_5	m_7	m_6

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	m_0	m_1	m_3	m_2
$\overline{A}B$	m_4	m_5	m ₇	m_6
AB	m ₁₂	m ₁₃	m ₁₅	m ₁₄
$A\overline{B}$	m ₈	m_9	m ₁₁	m ₁₀

卡诺图化简

0表式反变量, 1表示原变量。每个小方格的编号与 其最小项的编号一致

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	0	1	3	2
A	4	5	7	6

数字有效位分配给 变量的方法也一致, A为高位, C为低位。

卡诺图化简

卡诺图化简函数规则:

几何相邻的2ⁱ (i = 1、2、3…n) 个小格可合并在一起构成正方形或矩形圈,消去i个变量,而用含 (n - i) 个变量的积项标注该圈。

卡诺图化简

卡诺图化简

卡诺图化简

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$				1
$\overline{A}B$				
AB		1	1	
$A\overline{B}$				1

$$F = AB\overline{C}D + ABCD$$

$$= ABD$$

$$F = \overline{A}\overline{B}C\overline{D} + A\overline{B}C\overline{D}$$

$$= \overline{B}C\overline{D}$$

1. 任两个相邻单元可以 形成一个圆,消去一 个变量

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$				
$\overline{A}B$		1	1	
AB		1	1	
$A\overline{B}$				

$$F$$

$$= AB\overline{C}D + ABCD$$

$$+ \overline{A}B\overline{C}D + \overline{A}BCD$$

$$= \overline{A}B(\overline{C}D + CD)$$

$$+ AB(\overline{C}D + CD) = BD$$

2. 任四个相邻单元可以 形成一个圆,消去两 个变量

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$		1	1	
$\overline{A}B$		1	1	
AB		1	1	
$A\overline{B}$		1	1	

$$F = D$$

3. 任八个相邻单元可以 形成一个圆,消去三 个变量

卡诺图化简

总结:N变量的卡诺图 2^M个相邻单元,可消去M个变量,乘积项由N-M个变量组成

卡诺图化简

几个概念:

- 蕴涵项:F表示为积之和式,则任一乘积项称为蕴含 项。
- 素项:某蕴涵项不是其他蕴涵项的子集,则为素项。
- 实质素项:某一函数的素项所包含的至少一个最小项不 是其他任何素项的子集

卡诺图化简

举例说明一下:

$$F = \sum (0, 5, 7, 8, 9, 10, 11, 14, 15)$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0			
$\overline{A}B$		5	7	
AB			15	14
$A\overline{B}$	8	9	11	10

$$A = \sum (0,8)$$

$$B = \sum (5,7)$$

$$C = \sum (7,15)$$

$$D = \sum (10,11,14,15)$$

$$E = \sum (8,9,10,11)$$

$$F = \sum (8,9)$$

$$G = \sum (10,11)$$

$$H = \sum (14,15)$$

A-H都是蕴含项,A-E为素项,ABDE为实质素项

卡诺图化简

化简步骤

- 1. 作出卡诺图, 找出全部素项
- 2. 找出实质素项
- 3. 求出最简素项集(保证覆盖所有最简项)

卡诺图化简

例1 化简逻辑函数:

$$F(A, B, C) = \sum (0,1,2,4,5,7)$$

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	0	1		2
A	4	5	7	

$$F = \overline{B} + AC + \overline{A} \overline{C}$$

卡诺图化简

例2试用卡诺图将:

$$Y = \prod (4, 5, 6, 7, 9, 11)$$

化简为最简或与式。

卡诺图化简

例2试用卡诺图将:

$$Y = \prod (4, 5, 6, 7, 9, 11)$$

化简为最简或与式。

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$	4	5	7	6
AB				
$A\overline{B}$		9	11	

根据最大项和最小项的性质:

$$\overline{Y} = \sum (4,5,6,7,9,11)$$

$$\overline{Y} = \overline{A}B + A\overline{B}D$$

$$Y = (A + \overline{B})(\overline{A} + B + \overline{D})$$

卡诺图化简

例3 化简:

$$F(A, B, C, D) = \sum (0,2,3,5,6,8,9,10,11,12,13,14,15)$$

卡诺图化简

例3 化简:

$$F(A, B, C, D) = \sum (0,2,3,5,6,8,9,10,11,12,13,14,15)$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1		1	1
$\overline{A}B$		1		1
AB	1	1	1	1
$A\overline{B}$	1	1	1	1

$$F$$

$$= A + C\overline{D} + \overline{B}C + \overline{B}\overline{D}$$

$$+ B\overline{C}D$$

卡诺图化简

我们来总结一下

- 1. 画出卡诺图
- 2. 先画大圈,再画小圈,直到所有的内容都覆盖
- 3. 根据每一个圈,写出化简后的表达式

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$				
AB	1	1	1	1
$A\overline{B}$	1	1	1	1

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1	1	1	1
$\overline{A}B$	1	1	1	1
AB				
$A\overline{B}$				

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1	1		
$\overline{A}B$	1	1		
AB	1	1		
$A\overline{B}$	1	1		

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$			1	1
$\overline{A}B$			1	1
AB			1	1
$A\overline{B}$			1	1

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$		1	1	
$\overline{A}B$		1	1	
AB		1	1	
$A\overline{B}$		1	1	

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$				
$\overline{A}B$	1	1	1	1
AB	1	1	1	1
$A\overline{B}$				

卡诺图化简

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1			1
$\overline{A}B$	1			1
AB	1			1
$A\overline{B}$	1			1

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1	1	1
$\overline{A}B$				
AB				
$A\overline{B}$	1	1	1	1

卡诺图化简

四个连在一起的情况:

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1			
$\overline{A}B$	1			
AB	1			
$A\overline{B}$	1			

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1	1	1
$\overline{A}B$				
AB				
$A\overline{B}$				

卡诺图化简

四个连在一起的情况:

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1		
$\overline{A}B$	1	1		
AB				
$A\overline{B}$				

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1		
$\overline{A}B$				
AB				
$A\overline{B}$	1	1		

卡诺图化简

四个连在一起的情况:

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$				
$\overline{A}B$	1			1
AB	1			1
$A\overline{B}$				

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1			1
$\overline{A}B$				
AB				
$A\overline{B}$	1			1

卡诺图化简

化简结果并不唯一:

请大家看下面的情况,如何化简,结果又是什么?

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}		1	1	1
A	1	1		1

卡诺图化简

卡诺图化简的优势与劣势

优势:

- 1. 简单,直观
- 2. 能够画成最简

劣势:

- 1. 操作步骤繁琐,慢
- 2. 适用于4个变量以下