

انتخاباتهاى انتهابهانتها قابل راستى آزمايي

سید محمدمهدی احمدپناه smahmadpanah@aut.ac.ir

ارائه درس پروتکلهای امنیتی

دانشگاه صنعتی امیرکبیر ۲۸ تیر ۱۳۹۵

فهرست

- مقدمه
- خواستههای امنیتی
- مروری بر کارهای گذشته
- مدلسازی خواسته امنیتی
- ساختار کلی سیستم پیشنهادی
 - معرفی اجزای سیستم
 - بیان سیستم پیشنهادی
 - جمعبندی
- مسائل باز و پروژه کارشناسی ارشد

مقدمه

- انتخابات الكترونيكي
- ضرورت ایجاد سیستم انتخابات الکترونیکی
 - اهمیت بررسی امنیت در انتخابات
 - ایجاد سیستم انتخابات امن
 - خواستههای امنیتی گوناگون

خواستهها کامنیت

- بررسی صلاحیت داشتن
- یکتایی رأی به ازای رأی دهنده
 - عدم قابلیت بازاستفاده کردن
 - حریم خصوصی رأی دهنده
 - قابلیت راستی آزمایی
 - جامعبودن
 - مانعبودن
 - ناظر به مسئولیت اجتماعی
 - بىطرفى
 - تازگی رسید

خواستهها امنیتے (ادامه)

- تعریف سیستم انتخابات انتهابهانتها قابل راستی آزمایی
 - خوشفرمبودن برگههای رأی ارائهشده
 - خوشفرمبودن برگههای رأی انداختهشده
 - ثبتشدن همانی که انداختهشده
 - شمارش همانی که ثبتشده
 - ۰ سازگاری
 - عدم وجود برگه رأی در شمارش که بررسی نشده
 - تشخیص مرجع انتخابات بدخواه

خواستهها امنیت (ادامه)

- Cast as Intended
- 2. Recorded as Cast
- 3. Tallied as Recorded
 - قابلیت راستی آزمایی انتخابات برای هر فرد ثالث خارجی
 - قابل تفویضبودن رسیدها به فرد ثالث
 - عدم استفاده از رسید برای مشخصشدن محتوای رأی
 - جلوگیری از خرید و فروش رأی
 - تعریف مدل استاندارد
 - بدون نیاز به فرضیات در گام راهاندازی یا دسترسی به یک اوراکل تصادفی

مرورك بركارهاك كذشته

- مبتنی بر فرضیات مرحله راهاندازی
 - نیاز به حضور فرد ثالث مورد اعتماد
 - Remotegrity •
- طرحهای مبتنی بر محاسبات چندطرفه قابل حسابرسی
 - در مدل اوراکل تصادفی
 - نیاز به دسترسی به یک اوراکل تصادفی
 - Helios •

مرورك بركارهاك كذشته (ادامه)

- چاوم (سال ۱۹۸۱)
 - ارتباط بينام
- انتخابات با قابلیت راستی آزمایی انفرادی
 - ساکو و کیلیان (سال ۱۹۹۵)
- انتخابات با قابلیت راستی آزمایی همگانی
- چاوم (سال ۲۰۰۴) و نِف (سال ۲۰۰۴)
 - معرفی قابلیت راستی آزمایی انتهابهانتها
 - کِرمِر و همکاران (سال ۲۰۱۰)
- تعریف صوری و نمادین با استفاده از حساب Applied Pi

مدل سازے خواستھ امنیتے

- نحوه مدل کردن صوری راستی آزمایی انتهابهانتها
 - ۰ رویکرد مبتنی بر بازی
 - تعریف یک بازی بین مهاجم و چالش گر
- وجود مرجع انتخابات بدخواه و یا رأی دهندگان نادرستکار
- شرط برنده شدن مهاجم: اختلاف از نتیجه واقعی انتخابات بیش از مقدار مشخصی باشد.
 - احتمال برندهشدن مهاجم بسیار کوچک باشد.

$$\Pr[G_{\text{E2E-Ver}}^{\mathcal{A},\mathcal{E},d,\theta}(1^{\lambda},m,n)=1] \leq \epsilon$$

ساختار کلے سیستم پیشنهادے

• نمادگذاری

 Π : سیستم انتخابات

λ: پارامتر امنیتی

n: تعداد رأىدهندهها

m: تعداد كانديداها

عموعه رأى دهندهها $\mathcal{V} = \{V_1, ..., V_n\}$

انديدا $\mathcal{P} = \{P_1, \dots, P_m\}$

مجموعه زیرمجموعههای کاندیداهای مجاز: $\mathcal{U} \subseteq \mathbf{2}^{\mathcal{P}}$

 V_ℓ کاندیداهای انتخابشده توسط رأی دهنده \mathcal{U}_ℓ

• نمادگذاری

E2E: End-to-End

EA: Election Authority

BB: Bulletin Board

Election Evaluation Function (f)

$$f: \mathcal{P}^* \rightarrow \mathbb{Z}_+^m \text{ s.t.}$$

 $f(\mathcal{U}_1, \dots, \mathcal{U}_n) = \langle \mathbf{t}_1, \dots, \mathbf{t}_m \rangle$

- یک سیستم انتخابات Π ، یک پنجتایی از الگوریتمها و پروتکلهای زیر است:
- Setup (Algorithm)
- Cast (Protocol)
- Tally (Protocol)
- Result (Algorithm)
- Verify (Algorithm)

• Setup $(1^{\lambda}, \mathcal{P}, \mathcal{V}, \mathcal{U})$

- اجرا توسط EA
- تولید یک کلید محرمانه اصلی msk و پارامترهای عمومی سیستم Pub (حاوی $\mathcal{P}, \mathcal{V}, \mathcal{U}$) و مقادیر محرمانه رأی دهندگان $\mathbf{s_1}, \dots, \mathbf{s_n}$
 - EA یک حالت st دارد که در ابتدا msk است.
- ارسال BB در ابتدا گزارش عمومی T = Pub ارسال می کند.

Cast

- $oldsymbol{\mathsf{EA}}$ یروتکل بین $oldsymbol{\mathsf{V}}_\ell$ BB و
- $oldsymbol{\mathsf{BB}}_{\varrho}$ سا ورودی ($oldsymbol{\mathsf{Pub}}, \mathbf{s}_{\ell}, oldsymbol{\mathcal{U}}_{\ell}$ با ورودی $oldsymbol{\mathsf{T}}$ با ورودی $oldsymbol{\mathsf{T}}$
 - عالت خود و BB نیز T را بهروز می کنند.
 - در صورت موفقیت آمیزبودن، V_{ϱ} رسید α_{ϱ} را دریافت می کند.

Tally

- پروتکل بین BB و EA
- ورودی مشترک Pub و EA با ورودی msk و BB با ورودی *T*
- در صورت موفقیت آمیزبودن، BB گزارش عمومی T را بهروز می کند.

Result(T)

- خروجی R_7 برای نتیجه انتخابات
- $^{\circ}$ در صورت تعریفنشدهبودن نتیجه، خروجی \bot برگردانده می شود.
- خروجی این الگوریتم، همان نتیجه شمارش آرا و نتیجه انتخابات است.

۲۸ تیر ۱۳۹۵

• Verify(T, α)

Cast رسید رأی دهنده از خروجی پروتکل lpha

• خروجی مقدار صفر یا یک

• تعریف صحت انتخابات

 $^{\circ}$ سیستم انتخابات Π صحت دارد اگر برای هر اجرای درستکارانه از آن:

Result(T) = $f(\mathcal{U}_1, ..., \mathcal{U}_n)$ and $\wedge_{\ell=1}^n$ (Verify(T, α_ℓ) = 1).

معرفے اجزاے سیستم

- Perfectly Binding Commitment
 - Additively Homomorphic
 - استفاده از طرح الجمال روى منحنيهاي بيضوي
- Param := (p, a, b, g, q)
- Elliptic Curve E: $y^2 = x^2 + ax + b \pmod{p}$
 - G گروه دوری تولیدشده توسط g
 - با فرض برقراری DDH روی ©
 - \circ g^a, g^b \rightarrow g^{ab} random-like in G

- Perfectly Binding Commitment
 - Gen(Param; 1^{λ}):
 - picks $x \leftarrow Zq$, sets $h := g^x$, and outputs ck := (Param; h)
 - Com_{ck}(m; r):
 - outputs $c := (g^r; g^m h^r)$
 - Ver_{ck}(c; m; r):
 - outputs accept if c = (g^r; g^mh^r); otherwise, outputs reject
 - $Com_{ck}(m_1; r_1)$. $Com_{ck}(m_2; r_2) = Com_{ck}(m_1 + m_2; r_1 + r_2)$

- A Σ Protocol for Candidate Encoding Correctness
 - \circ N = n+1
 - هر برگه رأی شامل دو قسمت مشابه حاوی لیستی از m کد رأی مربوط به لیست کاندیداها
 - دو مجموعه تعهدها: $E_{l,j}^{(a)}$ ه
 - $a \in \{0,1\}, \ell = 1,...,n, j = 1,...,m$
 - هر مجموعه به جایگشتی از کدهای کاندیداها متعهد میشود.
 - N^{j-1} با مقدار P_j با مقدار ullet

P(i,r):

Define b_j such that $i = \sum_{j=0}^{\log m-1} b_j 2^j$. Pick

• $t_j, z_j, y_j, r_j, w_j, f_j \leftarrow \mathbb{Z}_q \text{ for } j \in [0, \log m - 1].$

Compute the following commitments:

- For $j \in [0, \log m 1]$,
 - $B_j = \mathsf{Com}_{\mathsf{ck}}(b_j; r_j); T_j = \mathsf{Com}_{\mathsf{ck}}(t_j; z_j);$
 - $Y_j = \mathsf{Com}_{\mathsf{ck}}((1 b_j)t_j; y_j);$
 - $W_j = \mathsf{Com}_{\mathsf{ck}}(w_j; f_j)$.

Define A_j, a_j, r_j' such that $A_j = B_j^{N^{2^j}-1} \cdot \mathsf{Com}_{\mathsf{ck}}(1;0) = \mathsf{Com}_{\mathsf{ck}}(a_j; r_j')$, for $j \in [0, \log m - 1]$. Define $\{\beta_j, \gamma_j\}_{j=0}^{\log m}$ such that $\prod_{j=0}^{\log m-1} (a_j X + w_j) = \sum_{j=0}^{\log m} \beta_j X^j$ and $\prod_{j=0}^{\log m-1} (r_j' X + f_j) = \sum_{j=0}^{\log m} \gamma_j X^j$. (Note that for efficiency reasons, the prover needs to choose the $\{r_j\}_{j=0}^{\log m-1}$ such that $\gamma_{\log m} = r$ in previous step.)

• For $j \in [0, \log m - 1]$, $D_j = \mathsf{Com}_{\mathsf{ck}}(\beta_j; \gamma_j)$.

Return
$$\phi_1 = \{B_j, T_j, Y_j, W_j, D_j\}_{j=0}^{\log m-1}$$
 and

$$state_{\phi} = \{t_j, z_j, y_j, r_j, b_j, w_j, f_j\}_{j=0}^{\log m - 1}.$$

 $P \to V$: Send ϕ_1 .

$$V \to P$$
: Send $\rho \leftarrow \mathbb{Z}_q$.

 ϕ_1 (Commitment)

 $P(\text{state}_{\phi})$: Compute the following answers:

- For $j \in [0, \log m 1]$,
 - $t'_{j} = (1 t'_{j}) + (1 t'_$
 - $w_j, f_j' = r_j' \rho + f_j;$

Set ϕ_2

P

pgm-p (Challenge)

 $P \to V$: send

 $V(E, \phi_1, \rho, \phi_2)$: proof (i.e. output accept) if and only

- For $j \in [0, \log m 1]$,
 - $B_j^{\rho} \cdot T_j = \mathsf{Com}_{\mathsf{ck}}(t_j', z_j'),$
 - $(Com_{ck}(1;0)/B_j)^{t'_j}/Y_j = Com_{ck}(0;y'_j)$:
 - $-A_j^{\rho} \cdot W_j = \mathsf{Com}_{\mathsf{ck}}(w_j', \mathcal{D}_j); (\mathsf{Response})$
- $E^{
 ho^{\log m}}\prod_{j=0}^{\log m-1}D_j^{
 ho^j}=\mathrm{Com}_{\mathsf{ck}}(\prod_{j=0}^{\log m-1}w_j';\prod_{j=0}^{\log m-1}f_j');$

۲۸ تیر ۱۳۹۵

Producing the Verifier's Challenge

- $\ell_{\Sigma} = \lfloor q \rfloor$ ؛ فضای چالشها $\{\mathbf{0,1}\}^{\ell_{\Sigma}} \circ$
- a_1, \ldots, a_k افراز سکههای رأی دهندگان a به k بلوک؛ یعنی \circ
 - برای هر a_i اثبات صحت برگه رأی a_i با استفاده از یک پروتکل سیگما جداگانه که در آن a_i چالش باشد.
 - پذیرش صحت اثبات EA توسط Verfier در صورتی که همه پروتکلهای سیگما معتبر باشند.
- قضیه بعدی مشخص می کند که خطای درستی با **k**بار اجرای پروتکل سیگما به شرح بالا، به صورت نمایی افت می کند.

Producing the Verifier's Challenge

$$\circ$$
 a = $(a_1,...,a_k)$

$$\cdot H_{\infty}(a) = \theta$$

all adversarial prover A

$$\begin{split} \epsilon(m,n,k,\theta) &= \Pr \left[\begin{array}{l} \mathsf{ck} \leftarrow \mathsf{Gen}(\mathsf{Param},1^\lambda); (E,x,r,\{\phi_{1,i}\}_{i=1}^k) \leftarrow \mathcal{A}(\mathsf{Param},\mathsf{ck}); \\ \{\phi_{2,i}\}_{i=1}^k \leftarrow \mathcal{A}(\mathbf{a}_1,\ldots,\mathbf{a}_k) : \mathsf{Ver}_{\mathsf{ck}}(E;x;r) = \mathsf{accept} \quad \land \\ x \not\in \left\{N^0,\ldots,N^{m-1}\right\} \, \land \, \forall i \in [k], V(E,\phi_{1,i},\mathbf{a}_i,\phi_{2,i}) = \mathsf{accept} \end{array} \right] \\ &\leq 2^{k\log\log m - \theta + k}. \end{split}$$

بیان سیستم پیشنهادک

- انتخابات یک از m (مشابه ریاست جمهوری ایران)
 - البته طرح كلى مىتواند چند از m باشد.
- $\mathcal{U} = \{\{P_1\}, ..., \{P_m\}\}$
- Setup $(1^{\lambda}, \mathcal{P}, \mathcal{V}, \mathcal{U})$
 - اجرای (Param, 1^{λ}) توسط نامی و تعهد Gen (Param, 1^{λ}) اجرای دk
 - یرای هر [n] مراحل زیر را انجام می دهد: $^{\circ}$
 - (tag_ℓ) انتخاب شماره منحصربهفرد برای برگه رأی دوتایی ℓ ام (
 - انتخاب جایگشتهای تصادفی $\pi^{(0)}_{\ell}$ و $\pi^{(1)}_{\ell}$ روی [m] برای بهمریختن $\pi^{(0)}_{\ell}$ از برگه رأی ترتیب زوجهای (کد-رأی، کاندیدا) در بخش $\pi^{(i)}_{\ell}$ از برگه رأی

- انتخاب جایگشتهای تصادفی $\eta_{
 ho}^{(0)}$ و $\eta_{
 ho}^{(1)}$ روی $\eta_{
 ho}^{(1)}$ برای بهمریختن ترتیب زوجهای (کد-رأی، کاندیدا) در بخش $\eta_{
 ho}^{(i)}$ از برگه رأی دوتایی $\eta_{
 ho}^{(i)}$
- برای حفظ حریم خصوصی، جایگشتهای برگههای رأی را به صورت متعهدشده به BB ارسال می کند.
 - $C_{\ell,j}^{(0)},C_{\ell,j}^{(1)}\leftarrow Zq$ برای $j\in [m]$ ، کد-رأیهای منحصربهفرد $j\in [m]$
 - ان که کاندیدای Pj واست که کاندیدای $S_{\ell}^{(i)}$ از بخش $S_{\ell}^{(i)}$ است که کاندیدای و در $C_{\ell,\mathbf{j}}^{(i)}$ هسمتی از بخش
- ، برای $s_{\ell}^{(a)}=\{(P_j,C_{\ell,\mathbf{j}}^{(a)})\}_{j\in[m]}$ و در نهایت، $\mathbf{a}\in\{\mathbf{0},1\}$ و در نهایت، برگه رأی $s_{\ell}=(tag_l,s_{\ell}^{(0)},s_{\ell}^{(1)})$ را تولید می کند.

- و j' = $\pi_{\ell}^{(0)}(j)$ محاسبه $j \in [m]$ و ،
- برای $t_{\ell,\,\mathbf{j}'}^{(a)}$ و محاسبه تعهد کد-رأی \mathbf{a} و محاسبه تعهد کد-رأی $\mathbf{c}_{\ell,\,\mathbf{j}'}^{(a)}$ و محاسبه تعهد کد $\mathbf{c}_{\ell,\,\mathbf{j}'}^{(a)}$ و محاسبه تعهد کد-رأی برای $\mathbf{c}_{\ell,\,\mathbf{j}'}^{(a)}$

$$U_{\ell,j'}^{(a)} = Com_{ck}(C_{\ell,j'}^{(a)}; t_{\ell,j'}^{(a)})$$

$$E_{\ell,j'}^{(a)} = Com_{ck}((n+1)^{j'-1}; r_{\ell,j'}^{(a)})$$

که در آن $P_{j'}$ کدشده کاندیدای $P_{j'}$ است.

برای $E^{(a)}_{\ell,j'}$ داده پیشحسابرسی $\phi^{(a)}_{1,\ell,j'}$ برای راستی آزمایی $a\in\{0,1\}$ تولید می شود. حالت اثبات کننده $state^{(a)}_{1,\ell,j'}$ را نیز نگه داری می کند. نحوه تولید این دو در گام اول پروتکل سیگما

اطلاعات عمومی مربوط به $oldsymbol{arphi}$ ، یعنی $oldsymbol{arphi}$ به شکل زیر است: $oldsymbol{arphi}$ اطلاعات عمومی مربوط به $oldsymbol{arphi}$. $oldsymbol{arphi}$

$$Pub_{\ell} = (tag_{l}, \{(U_{\ell,j'}^{(a)}, E_{\ell,j'}^{(a)}, \phi_{1,\ell,j'}^{(a)})\}_{j \in [m]}^{a \in \{0,1\}}$$

• مرتبشده بر اساس tag

• اطلاعات عمومی که توسط EA تولید میشود:

$$Pub = (ck, \mathcal{P}, \mathcal{U}, \{Pub_{\ell}\}_{l \in [n]})$$

و کلید محرمانه EA:

 $msk = \{Pub_{\ell}, s_l, msk_l, state_{\phi, l}\}_{l \in [n]}$

$$msk_{\ell} = \left\{ (C_{\ell,j}^{(a)}, t_{\ell,j}^{(a)}, \pi_{\ell}^{(a)}(j) = j', r_{\ell,j}^{(a)}) \right\}_{j \in [m]}^{a \in \{0,1\}} \text{ and } \text{state}_{\phi,\ell} = \left\{ \text{state}_{\phi,\ell,j'}^{(a)} \right\}_{j \in [m]}^{a \in \{0,1\}}$$

Cast

- $(Pub_{\ell},s_l,\mathcal{U}_l)$ ورودی $^{\circ}$
- $s_{\ell}^{(a)}$ با سکهاندازی $a_l {\leftarrow} \{0,1\}$ و انتخاب بخش برای V_l ه رأیدادن
 - $\mathcal{U}_l = \{P_{j_l}\}$ کاندیدای مورد نظر $^\circ$
 - $s_{\ell}^{(a)}$ که کد-رأی متناظر با P_{j_l} در بخش $V_l \circ V_{\ell,j_l}$ در بخش $V_l \circ V_{\ell,j_l}$ در بخش ارائه کند.
- . در نهایت، V_l رأی $V_{\ell,j_l}(a_l)$ در نهایت، V_l در نهایت، V_l در نهایت، V_l

 $\Psi
ho$ رأی را میگیرد و حالت ${
m st}$ خود را با اضافه کردن ${
m EA}$ هرو ${
m St}^{(1-a_l)}$ به روز می کند. رسید ${
m a}_{\ell}$ حاوی رأی ${
m d}_{\ell}$ و بخش برای حسابرسی به ${
m V}_{l}$ داده می شود.

Tally

- . مجموعه رأی دهندگانی که با موفقیت رأی دادند. $ilde{V}$ \circ
- و برای هر Ψ_{ℓ} از (tag_{l},a_{l}) از Ψ_{ℓ} ، برای بازیابی $S_{\ell}^{(1-a_{l})}$ از S_{ℓ} استفاده می کند.
 - BB ارسال لیست $\{(\psi_\ell,s_\ell^{(1-a_l)})\}_{V_l\in\widetilde{V}}$ به \circ
- باز کردن همه تعهدهای کد-رأیها ($\{U_{\ell,\mathbf{j}}^{(a)}\}_{l\in[n],j\in[m]}^{a\in\{0,1\}}$) با $^{\circ}$

BB ارسال لیست زوجهای
$$\{C_{\ell,\mathbf{j}}^{(a)},t_{\ell,\mathbf{j}}^{(a)}\}_{l\in[n],j\in[m]}^{a\in\{0,1\}}$$
 به

- برای هر ψ_{ℓ} متناظر با $V_l \in \tilde{V}$ مراحل زیر را انجام میدهد:
- محل کد-رأی بازشده $C_{
 ho}$ که با کد-رأی انداخته شده $C_{
 ho}$ مطابقت میکند، را پیدا میکند.
 - مشخص می کند. 'voted' مشخص می کند. $c_{
 ho}$
 - . تعهد $E_{\ell,j'l}^{(a_l)}$ مربوطه را به مجموعه $E_{\ell,j'l}^{(a_l)}$ اضافه می کند.
 - \mathbf{j}_{ℓ} ' = $\pi_{\ell}^{(a_l)}(j_l)$ یادآوری: •

۲۸ تیر ۱۳۹۵

- همه تعهدهای $\{E_{\ell,\mathbf{j}}^{(1-a_l)}\}_{j\in[m]}$ مرتبط با کد-رأیهای موجود در $\mathbf{E}_{\mathrm{open}}$ همه تعهدهای $\mathbf{E}_{\mathrm{open}}$ اضافه می کند.
 - $\mathbf{E}_{\mathrm{open}}$ در نهایت، $\mathbf{E}_{\mathrm{tally}}$ حاوی مجموعه آرا برای شمارش و $\mathbf{E}_{\mathrm{tally}}$ داوی اطلاعات برای راستی آزمایی صحت بر گه رأی است.
- $\mathbf{E}_{\mathsf{open}}$ و ارسال لیست کد-رأیهای نشاندار به همراه $\mathbf{E}_{\mathsf{tally}}$ و \mathbf{BB}
- و تولید همه چالشهای ρ_E $\}_{E \in E_{tally}}$ پروتکلهای سیگما برای اعتبارسنجی تعهدهای موجود در \mathbf{E}_{tally} و ارسال آنها به \mathbf{B} (گام دوم پروتکل سیگما)
- استخراج چالشها از تصادفیبودن مربوط به سکهاندازی رأی دهندگان

- $\phi_{2,E}$ تهیه همه دادههای پسحسابرسی $\phi_{2,E}$ و تهیه همه دادههای پروتکلهای سیگما برای اعتبارسنجی تعهدهای موجود در E_{tally} . (گام سوم پروتکل سیگما)
- سه تایی داده پیش حسابرسی، چالش و پس حسابرسی برای تشکیل یک اثبات سیگمای کامل برای یک تعهد معتبر، به ازای هر تعهد در E_{tally}
 - محاسبه شمارش آرا با استفاده از homomorphism
 - $E_{sum} = \prod_{E \in E_{tally}} E$

- (T, R) محاسبه
- R نتیجه انتخابات کدشده در مبنای N؛ تعهدشده با مقدارتصادفی T
- است. \mathbf{E}_{tally} مجموعه همه مقادیر تصادفی استفاده شده در تعهدهای \mathbf{E}_{tally}

- $\mathsf{E}_{\mathsf{open}}$ باز کردن همه تعهدهای $^{\circ}$
- Openning: مجموعه همه Openningها
- ° ارسال Open، و (T, R) و S_{sum} (Open) به
- در پایان، BB حاوی اطلاعات کد-رأیهای نشاندار و اطلاعات زیر خواهد بود:

$$\text{Pub}, \left\{ (C_{\ell,j}^{(a)}, t_{\ell,j}^{(a)}) \right\}_{\ell \in [n], j \in [m]}^{a \in \{0,1\}}, \left(\mathbf{E}_{\text{tally}}, E_{\text{sum}}, (T,R) \right),$$

$$(Open, \mathbf{E}_{open}), \{\rho_E\}_{E \in \mathbf{E}_{tally}}, \{\phi_{2,E}\}_{E \in \mathbf{E}_{tally}}.$$

Result

 با استفاده از الگوریتم زیر، نتیجه کدشده انتخابات در T را می توان مشخص کرد.

Set
$$X \leftarrow T$$
;

For
$$j = 1, ..., m$$
:

•
$$x_j \leftarrow X \mod (n+1);$$

•
$$X \leftarrow (X - x_j)/(n+1)$$
;

Return
$$\langle x_1, \ldots, x_m \rangle$$
;

Verify

- . تجزیه می شود. (tag, a, c, $s^{(1-a)}$) تجزیه می α
- نتیجه این الگوریتم برابر با یک خواهد بود اگر همه بررسیهای زیر معتبر باشند:
 - ۱) همه اطلاعات متعهدشده در گزارش عمومی T مربوط به T برگه رأی هستند، طبق Tهای جداگانه مرتب شده باشند و هیچ دو کد–رأی با T مشابه، نشان T نداشته باشند.

رأی موجود در بخش $\hat{s}^{(\hat{a})}$ اگر \hat{C} یک برگه رأی اگر \hat{c} از یک برگه رأی باشد و نشان 'voted' داشته باشد، فقط اطلاعات متعهدشده در بخش دیگر $\hat{s}^{(1-\hat{a})}$ از آن برگه رأی باز شده باشد.

 E_{tally} همه اثباتهای سیگما مرتبط با تعهدهای موجود در معتبر باشند.

$$E_{sum} = \prod_{E \in E_{tally}} E$$
 (*

۵) همه openningهای تعهدها معتبر باشند.

مربوط به رسید، برابر یکی از tag_l ها ($l\in [n]$) باشد و $a=a_l$

که در مرحله قبل مشخص (که در مرحله قبل مشخص (که در مرحله قبل مشخص شد)، همان ${\bf C}$ موجود در رسید باشد.

رای افشاشده در باز کردن کدشده کاندیدا و کد-رأی افشاشده در باز کردن $\{U_{l,j}^{(1-a_l)}, E_{l,j}^{(1-a_l)}\}_{j\in[m]}$ تعهدهای $\{U_{l,j}^{(1-a_l)}, E_{l,j}^{(1-a_l)}\}_{j\in[m]}$ باشده در مرحله ۶ است) برابر با همان قسمت در بخش $\{S^{(1-a_l)}, E_{l,j}^{(1-a_l)}\}_{j\in[m]}$ باشد.

مثالے از سیستم پیشنهادے

Referendum

- \circ P₁ = YES, P₂ = NO : candidates
- $\circ V_1; V_2; V_3 : voters$

$$(C_{1,1}^{(0)} = 27935, C_{1,2}^{(0)} = 75218, C_{1,1}^{(1)} = 84439, C_{1,2}^{(1)} = 77396),$$

 $(C_{2,1}^{(0)} = 58729, C_{2,2}^{(0)} = 45343, C_{2,1}^{(1)} = 14582, C_{2,2}^{(1)} = 93484),$
 $(C_{3,1}^{(0)} = 52658, C_{3,2}^{(0)} = 65864, C_{3,1}^{(1)} = 84373, C_{3,2}^{(1)} = 49251)$

101	
27935	YES
75218	NO
84439	YES
77396	NO

102	
58729 45343	YES NO
14582 93484	YES NO

103	
52658 65864	YES NO
84373	YES
49251	NO

مثالے از سیستم پیشنهادک (ادامه)

101	
$Com_{ck}(27935; t_{1,1}^{(0)})$	$Com_{ck}(1; r_{1,1}^{(0)})$
$Com_{ck}(75218;t_{1,2}^{(0)})$	$Com_{ck}(4; r_{1,2}^{(0)})$
$Com_{ck}(77396; t_{1,2}^{(1)})$	$Com_{ck}(4; r_{1,2}^{(1)})$
$Com_{ck}(84439; t_{1,1}^{(1)})$	$Com_{ck}(1; r_{1,1}^{(1)})$

(101,1,77396)	
27935	YES
75218	NO

 $E_{\mathrm{sum}} = \mathsf{Com}_{\mathsf{ck}}(4; r_{1,2}^{(1)}) \cdot \mathsf{Com}_{\mathsf{ck}}(1; r_{2,1}^{(1)}) \cdot \mathsf{Com}_{\mathsf{ck}}(1; r_{3,1}^{(0)}) = \mathsf{Com}_{\mathsf{ck}}(6; r_{1,2}^{(1)} + r_{2,1}^{(1)} + r_{3,1}^{(0)})$

مثالے از سیستم پیشنهادے (ادامه)

101			
27935	YES	$(1, r_{1,1}^{(0)})$	$Com_{ck}(1; r_{1,1}^{(0)})$
75218	NO	$(4, r_{1,2}^{(0)})$	$Com_{ck}(4; r_{1,2}^{(0)})$
77396	VOTED		$Com_{ck}(4; r_{1,2}^{(1)})$
84439			$Com_{ck}(1; r_{1,1}^{(1)})$

Encodings	
YES	1
NO	4

۴۸ از ۴۸

جمعبندك

- بیان خواستههای امنیتی و تعریف انتخابات انتهابهانتها قابل راستی آزمایی
- بیان مزیت سیستم پیشنهادی نسبت به کارهای گذشته
 - بیان جزئیات سیستم پیشنهادی

مسائل باز

- برآورده کردن خواسته های امنیتی دیگر
- تغییر در طرح برای اضافهشدن خواستههای دیگر
 - حذف تابلوی اعلانات
 - اهمیت حفظ امنیت تابلوی اعلانات
- بیان صوری قابلیت راستی آزمایی انتهابه انتها با رویکرد جدید
 - کاهش پیچیدگی و افزایش کارایی طرح

پروژه کارشناسے ارشد

- اضافه کردن خواسته امنیتی جدید به سیستم موجود
- مطالعه خواستههای امنیتی و تعیین محدودیتهای اعمال هر یک
 - مطالعه کارهای موجود در برآوردهسازی خواستههای امنیتی
- امکانسنجی خواستههای امنیتی ممکن برای افزودن و انتخاب خواسته مورد نظر، طبق فرضیات و مشخصات سیستم پیشنهادی
 - طرح سیستم جدید برای خواستههای امنیتی جدید
 - اثبات درستی سیستم ارائهشده

- [1] Kiayias, Aggelos, Thomas Zacharias, and Bingsheng Zhang. "End-to-end verifiable elections in the standard model." In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 468-498. Springer Berlin Heidelberg, 2015.
- [7] Popoveniuc, Stefan, John Kelsey, Andrew Regenscheid, and Poorvi Vora. "Performance requirements for end-to-end verifiable elections." In Proceedings of the 2010 international conference on Electronic voting technology/workshop on trustworthy elections, pp. 1-16. USENIX Association, 2010.
- [π] Adida, Ben. "Helios: Web-based Open-Audit Voting." In USENIX Security Symposium, vol. 17, pp. 335-348. 2008.
- [f] Zagórski, Filip, Richard T. Carback, David Chaum, Jeremy Clark, Aleksander Essex, and Poorvi L. Vora. "Remotegrity: Design and use of an end-to-end verifiable remote voting system." In International Conference on Applied Cryptography and Network Security, pp. 441-457. Springer Berlin Heidelberg, 2013.
- [Δ] Kremer, Steve, Mark Ryan, and Ben Smyth. "Election verifiability in electronic voting protocols." In European Symposium on Research in Computer Security, pp. 389-404. Springer Berlin Heidelberg, 2010.

باسپاس از توجه شما! ©

