Be Ko Cheat Sheet WS22/23 Version $0.3\,$

Sei $L \subseteq \Sigma^*$ für ein endliches Alphabet Σ und seien χ_L (und χ_L') die (halbe) charakteristische Funktion von L.

-	
um das zu zeigen	kann ich eins hiervon zeigen
L semi-entscheidbar	1. χ'_L berechenbar (DTM, NTM, WHILE, oder GOTO)
L aufzählbar	2. $\chi'_L \mu$ -rekursiv
	3. $L \leq Q$ für semi-entscheidbare Sprache Q
	4. $L = T(M)$ für eine (N)TM M
L entscheidbar	1. χ_L berechenbar (DTM, NTM, WHILE, oder GOTO)
	2. $\chi_L \mu$ -rekursiv
	3. $L \leq Q$ für entscheidbare Sprache Q
	4. L und \overline{L} semi-entscheidbar
L nicht semi-entscheidbar	1. L unentscheidbar und \overline{L} semi-entscheidbar
	2. $Q \leq L$ für eine nicht semi-entscheidbare Sprache Q (z.B. Äquivalenzproblem)
	3. Widerspruchsbeweis (z.B. Diagonalisierung)
L unentscheidbar	1. L nicht semi-entscheidbar oder \overline{L} nicht semi-entscheidbar
	2. $Q \leq L$ für unentscheidbare Sprache Q (z.B. Halteproblem)
	3. Widerspruchsbeweis (z.B. Diagonalisierung)
	4. Satz von Rice:
	(a) nichttriviale Menge $\mathcal S$ von Sprachen/Funktionen definieren
	(b) zeigen, dass $L = C(S)$
$L \in \mathrm{NP}$	1. NTM die L in Polynomzeit entscheidet
	2. Zertifikate für Ja-Instanzen können von DTM in Polynomzeit überprüft wer-
	den ("guess and check")
	$3. \overline{L} \in \text{coNP}$
	4. $L \leq_m^p Q$ für ein $Q \in NP$ (z.B. 3-SAT)
$L \in \text{coNP}$	1. co-nichtdeterministische Turing-Maschine, die L in Polynomzeit entscheidet
	2. Zertifikate für Nein-Instanzen können von DTM in Polynomzeit überprüft
	werden ("guess and check")
	$3. \overline{L} \in NP$
	4. $L \leq_m^p Q$ für ein $Q \in \text{coNP}$ (z.B. TAUT)
$L \in PSPACE$	1. (N)TM die L in polynomiellem Platz entscheidet
	4. $L \leq_{m}^{p} Q$ für ein $Q \in PSPACE$ (z.B. TQBF)
L ist NP-schwer	1. $Q \leq_m^p L$ für jedes $Q \in NP$
	2. $\underline{Q} \leq_m^p L$ für ein NP-schweres Q (z.B. 3-SAT)
	3. \overline{L} ist coNP-schwer
L ist coNP-schwer	1. $Q \leq_m^p L$ für jedes $Q \in \text{coNP}$
	2. $Q \leq_m^p L$ für ein coNP-schweres Q (z.B. TAUT)
	3. \overline{L} ist NP-schwer
L ist PSPACE-schwer	1. $Q \leq_n^p L$ für jedes $Q \in PSPACE$
	2. $Q \leq_m^p L$ für ein PSPACE-schweres Q (z.B. TQBF)
L ist NP-vollständig	$L \in NP \text{ und } L \text{ ist } NP \text{-schwer}$
L ist coNP-vollst.	$L \in \text{coNP}$ und L ist coNP-schwer
L ist PSPACE-vollst.	$L \in PSPACE \text{ und } L \text{ ist } PSPACE\text{-schwer}$
$L \leq Q$	Reduktionsfunktion f , die Eingaben für L in Eingaben für Q umbaut, sodass
	(a) f berechenbar & total auf Σ^*
	(b) $x \in L \iff f(x) \in Q \text{ für alle } x \in \Sigma^*$
$L \leq_m^p Q$	Reduktionsfunktion f , die Eingaben für L in Eingaben für Q umbaut, sodass
	(a) f polynomzeitberechenbar & total auf Σ^*
	(b) $x \in L \iff f(x) \in Q \text{ für alle } x \in \Sigma^*$
	·