Chapter 7: Channel coding: Convolutional codes

Vahid Meghdadi

University of Limoges meghdadi@ensil.unilim.fr

Reference: Digital communications by John Proakis; Wireless communication by Andreas Goldsmith

Channel coding

Convolutional encoder

Encoder representation

Decoding

Maximum Likelihood (ML) decoding Viterbi algorithm Error probability of CC

Communication system

The data is first coded then interleaved. The interleaving is used to avoid the channel presenting burst errors. Then it is transmitted through a kind of modulation over a noisy channel. At the receiver, all the operations must be inversed to estimate the transmitted data.

Channel coding

Channel coding can be classified in two categories:

- ▶ block coding
 - Cylclic codes
 - BCH
 - Reed-Solomon
 - Product Turbo code
 - LDPC
- trellis coding
 - Convolutional coding
 - TCM (Trellis code modulation)
 - Turbo codes (SCCC or PCCC)
 - Turbo TCM

Here, we are concentrating on convolutional coding.

Convolutional encoder

This is the simplest convolutional encoder. The input sequence is

$$\mathbf{c} = (..., c_{-1}, c_0, c_1, ..., c_l, ...)$$

where *I* is the time index. The output sequences are:

$$\mathbf{v}^{(1)} = (..., v_{-1}^{(1)}, v_0^{(1)}, v_1^{(1)}, ..., v_l^{(1)}, ...)$$

$$\mathbf{v}^{(2)} = (..., v_{-1}^{(2)}, v_0^{(2)}, v_1^{(2)}, ..., v_l^{(2)}, ...)$$

Convolutional code characteristics

- ▶ The constraint length of a CC is the number of input bit involved to generate each output bit. It is the number of the delay elements plus one. For the previous example, the constraint length is 3.
- Once all the output are serialized and get out of the coder, k right shift occurs.
- ▶ The code rate is defined as $R_c = k/n$ where n is the number of output.
- ▶ For the previous example n = 2, k = 1, and $R_c = 0.5$.

Describing a CC by its generator

- In the previous example, assuming all-zero state, the sequence v₁¹¹ will be [101] for a 1 at the input (impulse response).
- At the same time the sequence $\mathbf{v}_1^{(2)}$ will be [111] for a 1 at the input.
- ▶ Therefore, there are two generators $\mathbf{g}_1 = [101]$ and $\mathbf{g}_2 = [111]$ and the encoder is completely known.
- It is convenient to represent the encoder in octal form of as $(\mathbf{g}_1, \mathbf{g}_2) = (5, 7)$.

Exercise: Draw the encoder circuit of the code (23,35).

State diagram representation

Using this diagram one can easily calculate the output of the coder.

Exercise: What is the coded sequence of [10011]?

Trellis representation

We assume that the trellis begins at the state zero. The bits on the diagram show the output of the encoder $(v_t^{(1)}, v_t^{(2)})$.

Exercise: Using above diagram what is the coded sequence of the [1 0 1 1 0 1]?

Modulation and the channel

The coded sequence is denoted by \mathbf{C} . The output of the encoder is modulated, then sent to the channel.

We assume a BPSK modulation with 0 \to -1 volt and 1 \to +1 volt. The channel adds a white Gaussian to the signal.

The RX receives a real sequence \mathbf{R} . The decoder should estimate the transmitted sequence by observing the channel output. For the i-th information bit, corresponding to the i-th branch in the trellis, the code sequence of size n is denoted by C_{ij} where 0 < i < n-1. Assuming a memoryless channel, the received signal for the i-th information bit is:

$$r_{ij} = \sqrt{E_c}(2C_{ij} - 1) + n_{ij}$$

Maximum Likelihood decoding

Given the received sequence \mathbf{R} , the decoder decides that the coded sequence \mathbf{C}^* was transmitted if

$$p(R|C^*) \ge p(R|C) \quad \forall C$$

It means that the decoder finds the maximum likelihood path in the trellis given \mathbf{R} . Thus, over an AWGN channel and for a code of rate 1/n and for an information sequence of size L, the likelihood can be written as:

$$p(\mathbf{R}|\mathbf{C}) = \prod_{i=0}^{L-1} p(R_i|C_i) = \prod_{i=0}^{L-1} \prod_{j=0}^{n-1} p(R_{ij}|C_{ij})$$

Log Likelihood function

Taking logarithm:

$$\log p(\mathbf{R}|\mathbf{C}) = \sum_{i=0}^{L-1} \log p(R_i|C_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{n-1} \log p(R_{ij}|C_{ij})$$

The expression $B_i = \sum_{j=0}^{n-1} \log p(R_{ij}|C_{ij})$ is called the *branch metric*. Maximizing the likelihood function is equivalent to maximizing the log likelihood function.

The log likelihood function corresponding to a given path in the trellis is called the *path metric*, which is the sum of the branch metrics in the path.

ML and hard decoding

In hard decoding, the sequence \mathbf{R} is demodulated and contains only 0 and 1. This is called hard decision. The probability of error in hard decision depends to the channel state and is represented by p. If \mathbf{R} and \mathbf{C} are N symbol long and differ in d places (i.e. Hamming distance), then

$$p(\mathbf{R}|\mathbf{C}) = p^d (1-p)^{N-d}$$

$$\log p(\mathbf{R}|\mathbf{C}) = -d\log \frac{1-p}{p} + N\log(1-p)$$

The second term is independent of \mathbf{C} . Therefore only the first term should be maximized. Conclusion: the sequence \mathbf{C} with minimum Hamming distance to the received sequence \mathbf{R} corresponds to the ML sequence.

Soft decoding

In an AWGN with a zero mean Gaussian noise of variance $\sigma^2 = N_0/2$,

$$p(R_{ij}|C_{ij}) = rac{1}{\sqrt{2\pi}\sigma} exp\left[-rac{(R_{ij}-\sqrt{E_c}(2C_{ij}-1))^2}{2\sigma^2}
ight]$$

ML is equivalent to choose the C_{ij} that is closest in Euclidean distance to R_{ii} .

Taking logarithm and neglecting all scaling factor and common terms to all \mathbf{C}_i , the branch metric is:

$$\mu_i = \sum_{j=1}^n R_{ij} (2C_{ij} - 1)$$

Viterbi algorithm (1967)

- ▶ There are a huge number of paths to test for even moderate values of *L*. The Viterbi algorithm reduces considerably this amount.
- ▶ Viterbi proposed an ML decoding by systematically removing paths that cannot achieve the highest path metric.
- ▶ When two paths enter into a given node, the path with lowest likelihood cannot be the survivor path: it can be removed.

Viterbi algorithm

- ▶ P_1 is the survivor path because the partial path metric P_1 is greater than P_2 and P_3 where $P_i = \sum_{k=0}^{n-1} B_k^i$.
- ▶ The ML path starting from node N to infinity has the path metric of $P_i + \sum_{k=n}^{\infty} B_k$ (i = 1, 2, 3).
- Thus, the paths P₂ and P₃ cannot complete the path from n to ∞ and give a ML path. They will be discarded.

Trace back

- ► Theoretically, the depth of the trace back operation is ∞. However, it is observed that all the surviving paths merge finally to one common node, giving the decoding delay.
- ► Statistically speaking, for sufficiently large trellis' depth (typically five times the constraint length), all the paths merge to a common node. Therefore a decoding delay of 5K is considered.

Distance properties (example CC(7,5))

- ▶ The error occurs when the survivor path is to be selected.
- ▶ If the Hamming distance between two sequences entering to a node is large, the probability of making error becomes small.
- ► The *free distance* of CC(7,5) is 5 corresponding to the path 00-10-01-00.

Good codes

Testing all the possible combinations of encoders, the best codes for a given constraint length are proposed in tables.

Constraint Length	Generaor in octal	d_{free}
3	(5,7)	5
4	(15,17)	6
5	(13,35)	7
6	(53,75)	8
7	(133,171)	10

Rate 1/2 maximum free distance CC

Good codes

Constraint Length	Generaor in octal	d_{free}
3	(5,7,7)	8
4	(13,15,17)	10
5	(25,33,37)	12
6	(47,53,75)	13
7	(133,145,175)	15

Rate 1/3 maximum free distance CC

Error probability

- Convolutional code is linear so the P_e is calculated by supposing all zero sequence is sent.
- Coherent BPSK over AWGN is assumed.
- ▶ The energy per coded bit is related to the energy per information bit by $E_c = R_c E_b$.
- ► The probability of mistaking all zero sequence by another sequence with Hamming distance of *d* is:

$$P_e(d) = Q\left(\sqrt{\frac{2E_c}{N_0}d}\right) = Q(2\gamma_bR_cd)$$

- This probability is called pairwise error probability.
- There is no analytic expression for bit error rate but just some upper bounds.

Error probability

