Assignment #3-A: Binary Trees and AVL Trees

Exercise 1: Determine the Order

Pre-Order – A, H, G, I, F, E, B, C, D *In-Order* – G, H, F, I, E, A, B, D, C *Post-Order* – G, F, E, I, H, D, C, B, A

Exercise 2: Insert and Rotate

Insert $3 \rightarrow Rotate Left$

Delete $F \rightarrow$ (Double Rotate could have been one Left Rotate instead) Rotate Right

Rotate Right Result \rightarrow Rotate Left

Rotate Left Result

Assignment #3-B: Hash Functions & Hash Tables Given input { 66, 28, 43, 29, 44, 69, 19 } and a hash $h(x) = x \mod 10$, show the resulting hash table:

1. Using Separate Chaining

Function	Index	Index	Element		
h(66) =	6	0			
h(28) =	8	1			
h(43) =	3	2	43		
h(29) =	9	3	44		
h(44) =	4	4			
h(69) =	9	5	66		
h(19) =	9	6			
		7			
		8	28		
		9	19	69	29

2. Using Linear Probing

Where f(y) = y

Function	Index	Index	Element
h(66 + f(0)) =	6	0	69
h(28 + f(0)) =	8	1	19
h(43 + f(0)) =	3	2	
h(29 + f(0)) =	9	3	43
h(44 + f(0)) =	4	4	44
h(69 + f(0)) =	9	5	
h(69 + f(1)) =	0	6	66
h(19 + f(0)) =	9	7	
h(19 + f(1)) =	0	8	28
h(19 + f(2)) =	1	9	29

3. Using Quadratic Probing

Where $f(y) = y^2$

Function	Index	Index	Element
h(66 + f(0)) =	6	0	69
h(28+f(0))=	8	1	
h(43+f(0))=	3	2	
h(29+f(0))=	9	3	43
h(44 + f(0)) =	4	4	44
h(69 + f(0)) =	9	5	19
h(69 + f(1)) =	0	6	66
h(19 + f(0)) =	9	7	
h(19+f(1)) =	0	8	28
h(19 + f(2)) =	3	9	29
h(19 + f(3)) =	8		
h(19 + f(3)) =	5		

4. Starting with the following hash function: $h_2(x) = 7 - (x \mod 7)$, apply Rehashing as described in the primary course slides.

Since load factor is

$$\lambda = \frac{(Number\ of\ elements\ in\ Table)}{(Size\ of\ Table)} = \frac{7}{7} = 1 > .5$$

The equation must be rehashed using the next prime number that is greater than the new table size where the table size is doubled to 14.

$$h_3(x) = 7 - (x \mod 17), \quad \text{where } \lambda \approx .411764$$

If we are changing the hashing function, why not remove the "7 - " portion to not deal with negatives due to the range of mod 17 being from 0 to 16. Why make a hashing function unnecessarily complicated?

$$h_4(x) = (x \bmod 17)$$

Function	Index	Index	Element
h(66) =	15	0	
h(28) =	11	1	69
h(43) =	9	2	19
h(29) =	12	3	
h(44) =	10	4	
h(69) =	1	5	
h(19) =	2	6	
		7	
		8	
		9	43
		10	44
		11	28
		12	29
		13	
		14	
		15	66
		16	
		17	