Anomaly Detection

... reviewing machine learning literature about anomaly detection in fund (fund outliers)

A Unifying Review of Deep and Shallow Anomaly Detection

- Goal : identify the common underlying principles as well as the assumptions that are often made implicitly by various methods
- Link: https://research.google/pubs/pub50044/ (05/2021)
- Code :
- Credible source: Google Research

Background knowledge

- · anomaly: an anomaly is an observation that deviates considerably from some concept of normality
- type of anomalies
 - 1. point anomaly: an individual anomalous data point
 - i.e. illegal transaction in fraud detection or image of a damaged product in manufacturing
 - 2. conditional or contextual anomaly: anomalous data in a specific context such as time, space or the connections in a graph
 - i.e. price of \$1 Apple stock might be normal back then, mean daily temperature below freezing point would be anomaly in Amazon
 - add contextual variable T in equation
 - 3. group or collective anomaly: set of related or dependent points that is anomalous
 - i.e. cluster of anomalies such as similar or related network attacks
- types of machine learning approaches for anomaly detection (shallow and deep learning anomaly detection) are usually referred to as low and high, which is the level in the feature hierarchy of some hierarchical distribution
 - 1. low-level / sensory anomalies
 - semantic concepts: individual characters and words
 - pixel-level features: edges or texture
 - 2. high-level / semantic anomalies
 - · semantic concepts: topics
 - pixel-level features: objects and scenes in image
- anomaly, outlier, and novelty
 - anomalies are often the data points of interest (e.g., a longterm survivor of a disease)
 - outliers are frequently regarded as 'noise' or 'measurement error' that should be removed in a data preprocessing step ('outlier removal')
 - novelties are new observations that require models to be updated to the 'new normal'
- challenges in anomaly detection
 - mostly unsupervised nature of the problem
- different approaches
 - typical decision functions
 - one-class classification model : learn a discriminative decision boundary
 - · probabilistic model : learn density
 - reconstruction model : learn some underlying geometric structure of the data
 - shallow and deep feature maps
 - one-class classification model : SVDD, Deep SVDD
 - probabilistic model : KDE, Flows
 - reconstruction model : PCA, AE
- probability density estimation (https://machinelearningmastery.com/probability-density-estimation/)
 - 1. the relationship between observations and their probability
 - 2. useful to know the probability density function for a sample of data in order to know whether a given observation is very unlikely as to be considered an anomaly
 - parametric probability density estimation: involves selecting a common distribution (uniform, normal, exponential) and estimating the parameters for the density function from a data sample
 - 4. nonparametric probability density estimation: involves using a technique to fit a model to the arbitrary distribution of the data, like kernel density estimation
 - a. still have parameters but not directly controllable in the same way as simple probability distributions
 - b. i.e. using all observations in a random sample, in effect making all observations in the sample "parameters"

Model

normal

approa		mo ty description del pe		description	equation/pseudo code			
density estimatio n and probabilis tic models	Cla ssic Den sity Esti mat ion		 one of the most basic approaches to multivariate anomaly detection is to compute the Mahalanobis distance from a test point to the training data mean Mahalanobis distance: a measure of the distance between a point P and a distribution D i.e. KDE, histogram estimators, and Gaussian mixture models (GMMs) classic nonparametric density estimators perform well for low dimensional problems, but they suffer from the curse of dimensionality curse of dimensionality: the sample size required to attain a fixed level of accuracy grows exponentially in the dimension of the feature space. 					
predict anomalie s through estimatio n of the								

data probabilit y distribution		Ker nel De nsit y Esti mat	ba se line	most widely used nonparametri c density estimator kernel is a	$\hat{f}(x) =$	$\sum_{observation}$	$K(\frac{x}{x})$	-observa $bandwidt$	$\frac{ation}{th}$)		
		ion (KD E)		mathematical function that returns a probability for a given value of a random variable the kernel function weights the contribution of observations from a data sample based on their relationship to a given query sample smooth parameter (bandwidth): controls the number of samples or window of samples used to estimate the probability for a new point that the probability for a new point that the probability or a new point that the probability for a new point that the probability or a new point the probability or a new poin							
	Ene rgy- Bas ed Mo dels		 tra i.e. 	Deep Belief Networks	ent, and approximating and Deep Boltzmann	the log-likelihood gr Machines		kov chain Monte Carlo or sables to recover some valu		amics	
	Neu ral Ge ner ativ			n to learn a neural netw variational autoencode				source distribution			
	e Mo dels (VA Es and GA Ns)										

Ge ba ner se ativ line

e Adv ers aria I Net wor ks (GA Ns)

class	Ker	On	ba			
	nel-	е	se line	Support Vector	■ SVM	
tion	bas ed On	Cla ss Sup	iiile	Vector Machines • super	Data : Dataset with p^* variables and binary outcome.	
	On e-	port		vised	Output: Ranked list of variables according to their relevance.	
а	Cla	Vec		learni ng	Find the optimal values for the tuning parameters of the SVM model;	
ative	Cla ssifi	Ma chi		model s for	Train the SVM model;	
	cati on	nes (O C-		classif ication	$p \leftarrow p^*$;	
anomaly detection		C- SV		 find a hyper 	while $p \geq 2$ do	
		M)		plane that	$\overrightarrow{SVM_p} \leftarrow \text{SVM}$ with the optimized tuning parameters for the p variables and	
used when we				separ	observations in Data ;	
only have				the	$w_p \leftarrow \text{calculate weight vector of the } SVM_p \ (w_{p1}, \dots, w_{pp});$	
data of one				data in	$rank.criteria \leftarrow (w_{p1}^2, \dots, w_{pp}^2);$	
class and the				featur e	$min.rank.criteria \leftarrow \text{variable with lowest value in } rank.criteria \text{ vector};$	
goal is to test new				space with	Remove min.rank.criteria from Data ;	
data and				maxi mum	$Rank_p \leftarrow min.rank.criteria;$	
found out				margi n	p ← p - 1;	
whether it is alike				from the	end	
or not like the				origin	$Rank_1 \leftarrow \text{variable in } \mathbf{Data} \notin (Rank_2, \dots, Rank_{p^*});$	
training data				the difference from a	return $(Rank_1, \dots, Rank_{p^*})$	
				standard SVM is that		
key question				• it is fit in an		
is how to minimise				unsup ervise		
the miss rate for				d mann		
some given				er		
target false				• it		
alarm				provid es a		
rate with access				hyper param		
to no anomalies				eter " <i>nu</i> " that		
				contro Is the		
				sensiti vity of		
				the		
				rt		
				vector s and		
				• shoul d be		
				tuned to the		
				appro ximat		
				e ratio		
				of outlier		
				s in		
				data,		
				e.g. 0.01%		
				https://machi nelearningma		
				stery.com /one-class-		
				classification- algorithms/		
				https://arshre n.medium.		
				com /anomaly-		
				detection- techniques-		
				part-2-		
				92e1a7bc411c		
		Sup		find a data-		
		Vec		enclosing hypersphere		
		Dat		of minimum		
		a Des		volume • data		
		crip tion		description method that		
		(SV DD)		can give the target data		
		.,		set a spherically		
				shaped description		
				and be used to outlier		
				detection or		
				classification • https://github.		
				com/iqiukp /SVDD		

Dee p On e-Cla ss Cla ssifi cati on On e-Reince Cla ssifi cati on On e-Reince Comp nt Analy (PCA	oone sis	ad va nc ed ad va nc ed ba se line	selecting kernels and hand-crafting relevant features can be challenging and quickly become impractical for complex data deep one-class classification methods aim to overcome these challenges by learning useful neural network feature maps deep OCSVM variants and deep SVDD and employ a hypersphere model and linear model with explicit neural feature maps http://procedings.mlr.press/v80/ruff18a.html https://github.com/lukasruff/Deep-SVDD-PyTorch • a dimensionalit y-reduction method that is often used to reduce the dimensionalit y of large data sets by transforming a large set of variables into a smaller one that still contains most of the information in the large set reduce the number of variables of a data set, while preserving as much information as possible https://buita-science/step-step-explanation-principal-component-	1: procedure PCA 2: Compute dot product matrix: $\mathbf{X}^T\mathbf{X} = \sum_{i=1}^N (\mathbf{x}_i - \boldsymbol{\mu})^T (\mathbf{x}_i - \boldsymbol{\mu})$ 3: Eigenanalysis: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$ 4: Compute eigenvectors: $\mathbf{U} = \mathbf{X}\mathbf{V}\mathbf{\Lambda}^{-\frac{1}{2}}$ 5: Keep specific number of first components: $\mathbf{U}_{\mathbf{d}} = [\mathbf{u}_1, \dots, \mathbf{u}_d]$ 6: Compute d features: $\mathbf{Y} = \mathbf{U}_{\mathbf{d}}^T\mathbf{X}$	
			com/data- science/step- step- explanation- principal-		

1. Thyroid dataset (http://odd s.cs.stonybrook.edu/) includes n=3772 data instances and has D=6 real-valued features contains a total of 93 (2. 5%) anomalies	 our goal is to learn a model to detect thyroid gland dysfunctions such as hyperthyroidism apply feature scaling to normalise value ranges 	One-Class Support Vector Machine (OCSVM) with standard RBF kernel Radial Basis Function (RBF) kernel is commonly used in SVM	model achieves a test set AUC(Area Under the Curve) of 99.2%, a false alarm rate of 14.8%, and a miss rate of zero
2. MVTec-AD dataset (https://www.mvtec.com/company/research/datasets/mvtec-ad) • wood images	AUC compared with different models Gaussian: 54.0 Minimum Volume Ellipsoids(MVE): 80.1 Principal Component Analysis(PCA): 90.4 Kernel Density Estimation(KDE): 94.7 Support Vector Data Description(SVDD): 94.1 Kernel PCA(kPCA): 90.6 Generative Adversarial Networks(AGAN): 74.5 Deep One-Class Classification(DOCC): 91.6 AutoEncoder(AE): 88.5 KDE does not compute higher-level image features such as DOCC the anomalies involve properties such as small perforations and stains that do not require high-level semantic information to be detected high AUC score must be due to a spurious correlation between the reaction of the model to stripes and anomalies improve model replace Gaussian kernel with Mahalanobis kernel AUC drops to 87	Kernel Density Estimation (KDE)	image represents anomaly prediction

Data

1. Thyroid dataset

type	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_medication	pregnant	sick	tumor	lithium	goitre	 binaryClass
hypothyroid	72	М	f	f	f	f	f	f	f	f	 Р
hypothyroid	15	F	t	f	f	f	f	f	f	f	 Р
hypothyroid	24	М	f	f	f	f	f	f	f	f	 N

2. MVTec-AD dataset

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks

- · Goal: application of adversarial autoencoder networks that are capable of learning a semantic meaningful representation of real-world journal
- Link: https://arxiv.org/pdf/1908.00734.pdf (08/2019)
 Code: https://github.com/GitiHubi/deepAD
- Credible source: 2nd KDD Workshop on Anomaly Detection in Finance

training data method	output
----------------------	--------

- real-world journal entries from SAP ERP system
- 2. synthetic dataset
 - data A is an extract of an SAP ERP and encompasses the entire population of journal entries of a single fiscal year
 - b. data B is an excerpt of the synthetic dataset presented in https://www.kaggle.com/ntnutestimon/paysim1
 - c. pre-process the categorical entry to obtain a binary ("onehot" encoded) representation by using pandas. get_dummies(), and numerical entry to be normalised
 - d. we inject a small fraction of synthetic global and local anomalies into both datasets.
- one-hot encoding: each categorical level becomes a separate feature in the dataset containing binary values (1 or 0).

Adversarial Autoencoder Neural Networks

 extends the concept of Autoencoder Neural Networks (AE) by imposing an arbitrary prior on the AEs latent space using a GAN training setup

- global and local anomalies
- global accounting anomalies are journal entries that exhibit unusual or rare individual attribute values. Such anomalies usually relate to skewed attributes, e.g., rarely used ledgers, or unusual posting times.
- local accounting anomalies are journal entries that exhibit an
 unusual or rare combination of attribute values while their
 individual attribute values occur quite frequently, e.g., unusual
 combinations of general ledger accounts or user accounts used
 by several accounting departments.

Data

BELNR	WAERS	BUKRS	KTOSL	PRCTR	BSCHL	HKONT	DMBTR	WRBTR	label
288203	СЗ	C31	C9	C92	A3	B1	280979.6	0.0	regular
324441	C1	C18	C7	C76	A1	B2	129856.53	243343.0	regular
133537	C1	C19	C2	C20	A1	B3	957463.97	3183838.41	regular

Model

type	model	description	equation/pseudo code				
adv anc ed	Autoen coder Neural Networ ks (AENs)		<pre>input_size = 784 hidden_size = 128 code_size = 32 input_img = Input(shape=(input_size,)) hidden_1 = Dense(hidden_size, activation='relu')(input_img) code = Dense(code_size, activation='relu')(hidden_1) hidden_2 = Dense(hidden_size, activation='relu')(code) output_img = Dense(input_size, activation='relu')(hidden_2) autoencoder = Model(input_img, output_img) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=5) input vector is 784 numbers between [0, 1] code size is 32 numbers autoencoders-77fd3a8dd368 com/applied-deep-learning-part-3-autoencoders-1c083af4d798</pre>				

Variati onal A utoenc oder (VAEs)

- an autoencoder whose training is regularised to avoid overfitting and ensure that the latent space has good properties that enable generative process
- objective: minimize reconstruction error + regularizer on latent

```
loss function {
           recon_loss = batch_size * MSE(input, decoder_output)
           kl_loss = -0.5 * sum(1 + z_variance - square(z_mean) - exp(z_varaiance))
           total_loss = recon_loss + kl_loss
train function {
           input= sample batch data()
           z_mean, z_logvar = encoder(input)
           noise = sample_noise()
           z = z_mean + noise * z_variance
           decoder output = decoder(z)
           loss = loss_fuction(input, decoder_output, z_mean, z_logvar)
           loss.backward()
```

- https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
- http://kvfrans.com/variational-autoencoders-explained/

Gener ative Advers arial Networ (GANs)

- a model architecture for training a generative model, and it is most common to use deep learning models in this architecture.
- The GAN model architecture involves two sub-models: a generator mode/for generating new examples and a disc riminator mode/for classifying whether generated examples are real, from the domain, or fake, generated by the generator model.
 - generator: model that is used to generate new plausible examples from the problem domain.
 - discriminator: mod el that is used to classify examples as real (from the domain) or fake (ge nerated).

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(m)}\}$ from noise prior $p_g(\boldsymbol{z})$. Sample minibatch of m examples $\{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(m)}\}$ from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right)\right).$$

end for

- training drives the discriminator to attempt to learn to correctly classify samples as real or fake. Simultaneously, the generator attempts to fool the classifier into believing its samples are real. At convergence, the generator's samples are indistinguishable from real data, and the discriminator outputs 1/2 everywhere. The discriminator may then be discarded.
- https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
- https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/

N/A bas eline

Repository

topics	title (link)	goal	features	algorithm	output
--------	--------------	------	----------	-----------	--------

anomaly detection	RLAD: Time Series Anomaly Detection through Reinforcement Learning and Active Learning • https://arxiv.org/abs/2104.00543	This paper introduces a new semi-supervised, time series anomaly detection algorithms that uses deep reinforcement learning and active learning.	Yahoo Benchmark - Webscope dataset for time series anomaly detection. A1 Benchmark which shows the Yahoo membership login data and synthetic one, A2 Benchmark contains the anomalies of single outliers. KPI dataset from AIOPs competition - collected from several internet companies such as Tencent, eBay and Sogou. There are 3,004,065 data points with timestamps and labels	RLAD model DRL(Deep Reinforcement Learning) active learning - specific machines learning algorithm which allows the model actively interacts with user to obtain the desired learning experience. reinforcement learning deep q network SR-CNN Deep-SAD	
 trac sup uns rein reia 	Actional approach a. simple machine learning algorithms based on distance and density b. usually time efficient but not able to achieve high performance c. KNN (K-Nearest Neighbourhood) d. LOF (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCI (Local Outlier Factor) > 1 – outlier e. LOCSVM (One-Class Support Vector Machine) h. PCA (Principle Component Analysis) ervised approach a. Yahoo EGADS frameworks b. reply on tons of labels to train models upervised approach a. not require labels and assume the abnormal points have larger dev b. the performance is low since they are difficult to leverage prior kno c. Linkedin Luminol - light weight python library for time series data at d. Twitter TwitterAD e. DONUM - based on VAE (Variational Auto Encoder) f. Microsoft SR-CNN g. DAGMN - utilizes a deep auto encoder to generate a low-dimension-insupervised approach a. uses a fraction of labeled data for training b. REPEN c. Deep-SAD forcement learning approach a. Deep Q Network i. value based algorithm ii. agent learns the action value function and predicts how goo iii. unstable or even divergent when action value function is ap b. Active Learning i. allows the model actively interacts with user to obtain the deted technology a. statsmodelspython decomposition b. seasonal data - sarima model c. AR (Auto Regression) model d. point anomalies : an observation that deviates from the trend d. contextual anomalies : condition/contextual anomalies with respect in	viation from the normal distrit wledge nalysis nal representation id to take an action as a sper proximated with a nonlinear esired learning experience	cific state		
anomaly detection	Anomaly Detection in Turbofan Engine using Prophet • https://www.linkedin.com/pulse/anomaly-detection-turbofanengine-using-prophet-apoorva-ravishankar? trk=public_profile_article_view • https://towardsdatascience.com/anomaly-detection-time-series-4c661f6f165f (simple example, and code is below link) • https://github.com/Diyagg/ML-DL-scripts/tree/master/time% 20series%20regression/anomaly%20detection • https://machinelearningmastery.com/time-series-forecasting-with-prophet-in-python/ (example with car sales data) • https://docs.seldon.io/projects/alibil-idetect/en/stable/examples /od_prophet_weather.html (example with weather data) • https://tmedium.com/swih/facebook-prophet-426421f7e331 (explain methods)	We were able to effectively determine if the sensor data had any anomalous points.	date and corresponding numeric value sensor data collected from turbofan engines (htt ps://tl.arc.nasa.gov/tech/dash/groups/pcce/prognostic-data-repository/#turbofan)	Prophet library (https://facebo ok.github.io/prophet/)	a mod ular regres sion model with interpretable param eters expect ed value, lower and upper bound ary can be retriev ed
anomaly detection	Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure • https://research.google/pubs/pub49180 • http://proceedings.mlr.press/v119/sipple20a/sipple20a.pdf • https://github.com/google/madi	We propose an unsupervised anomaly detection method that creates a negative sample from the positive, observed sample, and trains a classifier to distinguish between positive and negative samples. We have demonstrated that negative sampling with random forest or neural network classifiers yield significantly higher AUC scores compared to state-of-the-art approaches against benchmark anomaly detection datasets, and a multidimensional, multimodal dataset from real climate control devices.	We selected several familiar benchmark anomaly detection datasets from the Outlier Detection Dataset The Smart Buildings anomaly dataset	negative sampling: generate a negative sample from an unlabeled positive sample containing both normal and anomalous data, and then trains a classifier on the negative and positive samples to learn a decision boundary between normal and anomalous subspaces. negative sampling classifiers: one using random forests and the other based on neural networks Concentration of Measure Phenomenon: describes how manifolds distort as dimensionality increases, and is useful for characterizing anomaly detection algorithms in high-dimensional spaces, but has not been applied extensively in anomaly detection, with a few exceptions.	

fund category	Machine Learning Fund Categorisations • https://arxiv.org/abs/2006.00123	In this paper, we establish that an industry wide well-regarded categorisation system is learnable using machine learning and largely reproducible, and in turn constructing a truly data-driven categorisation.	Morningstar Direct for one month supervised learning	decision tree random forest deep artificial neural network compared to Morningstar categorisation
fund group	Company classification using machine learning • https://arxiv.org/abs/2004.01496	In this paper, we demonstrate that unsupervised machine learning algorithms can be used to visualise and classify company data in an economically meaningful and effective way. The resulting company groups can then be utilised by experts in the field for empirical analysis and optimal decision making.	daily returns of 318 companies from the S&P 500 index over a four-years, Thomson Reuters industry classification system	t-SNE spectral clustering PCA unsupervised learning validated by Thomson Reuter industrial code
anomaly detection	Anomaly Detection in Univariate Time-series • https://arxiv.org/abs/2004.00433	This paper presents a quantitative comparison of multiple approaches on time-series data.	Real Yahoo Services Network traffic Synthetic Yahoo Service Network traffic Synthetic Yahoo Service with Seasonality Synthetic Yahoo Services with Changepoint Anomalies NYC Taxi Dataset	Statistical Approaches (AR-Model, MA-Model, ARIMA-Model, SES, ES, PCI) Machine Learning Approaches (k-means, DBSCAN, LOF, isolat ion forest, One-Class SVM, X GBoosting) Deep Learning approaches (MLP, CNN, WaveNet, LSTM, GRU, Autoencoder) compared AUC-values and computation time in different approaches
anomaly detection	Deep Reinforcement Learning for Unknown Anomaly Detection • https://arxiv.org/abs/2009.06847	This paper proposes an anomaly detection-oriented deep reinforcement learning approach that actively seeks and learns novel classes of anomaly that lie beyond the scope of the labeled anomaly data.	NB15 - network intrusion datasets with a range of network attacks Thyroid - dataset for detection of thyroid diseases HAR - embedded inertial sensor data from a waist-mounted smartphone for six different human activities Covertype - cartographic data of seven forest cover types	Deep Q-Learning with Partially Labeled Anomalies (DPLAN) deep reinforcement learning (DRL) compared with five anomaly detectors (DevNet, Deep SAD, REPEN, iForest, DevNet+)
anomaly detection	Time Series Anomaly Detection • https://research.google/pubs/pub46283/	Our goal is to utilise Machine Learning and statistical approaches to classify anomalous drops in periodic, but noisy, traffic patterns.	google daily traffic	DNN RNN LSTM Deep Neural Network Regression TensorFlow

https://paperswithcode.com/task/anomaly-detection/latest

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00320-x

https://www.researchgate.net/publication/330364884_Recent_Progress_of_Anomaly_Detection

One major problem in building a predictive model for anomaly detection, is the scarcity of fraudulent data records in comparison to non-fraudulent, which makes the training data imbalanced.