Introduction to Machine Learning CSE474/574: Lecture 8

Varun Chandola <chandola@buffalo.edu>

11 Feb 2015

- Recap Perceptrons
 - Issues with Gradient Descent
 - Stochastic Gradient Descent
- Multi Layered Perceptrons
 - Generalizing to Multiple Labels
 - An Example of a Multilayer Neural Network
 - Properties of Sigmoid Function
 - Motivation for Using Non-linear Surfaces
- Feed Forward Neural Networks

- Recap Perceptrons
 - Issues with Gradient Descent
 - Stochastic Gradient Descent
- 2 Multi Layered Perceptrons
 - Generalizing to Multiple Labels
 - An Example of a Multilayer Neural Network
 - Properties of Sigmoid Function
 - Motivation for Using Non-linear Surfaces
- 3 Feed Forward Neural Networks

Recap - Perceptrons

Training Rule for Gradient Descent

$$\vec{\mathbf{w}} = \vec{\mathbf{w}} - \eta \nabla E(\vec{\mathbf{w}})$$

For each weight component:

$$w_i = w_i - \eta \frac{\partial E}{\partial w_i}$$

Issues with Gradient Descent

- Slow convergence
- Stuck in local minima

Stochastic Gradient Descent [?]

- Update weights after every training example.
- For sufficiently small η , closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after summing er-	Weights updated after examining
ror over all examples	each example
More computations per weight up-	Significantly lesser computations
date step	
Risk of local minima	Avoids local minima

Extending Perceptrons

- Questions?
 - Why not work with thresholded perceptron?
 - Not differentiable
 - How to learn non-linear surfaces?
 - How to generalize to multiple outputs, numeric output?

- Recap Perceptrons
 - Issues with Gradient Descent
 - Stochastic Gradient Descent
- Multi Layered Perceptrons
 - Generalizing to Multiple Labels
 - An Example of a Multilayer Neural Network
 - Properties of Sigmoid Function
 - Motivation for Using Non-linear Surfaces
- Feed Forward Neural Networks

Generalizing to Multiple Labels

- Distinguishing between multiple categories
- Solution: Add another layer Multi Layer Neural Networks

Generalizing to Multiple Labels

- Distinguishing between multiple categories
- Solution: Add another layer Multi Layer Neural Networks

ALVINN - Autonomous Land Vehicle In a Neural Network

What Threshold Unit to Use?

- Linear Unit
- Perceptron Unit
- Sigmoid Unit
 - Smooth, differentiable threshold function

$$\sigma(net) = \frac{1}{1 + e^{-net}}$$

Non-linear output

What Threshold Unit to Use?

- Linear Unit
- Perceptron Unit
- Sigmoid Unit
 - Smooth, differentiable threshold function

$$\sigma(\textit{net}) = rac{1}{1 + e^{-\textit{net}}}$$

Non-linear output

Properties of Sigmoid Function

Motivation for Using Non-linear Surfaces

- Recap Perceptrons
 - Issues with Gradient Descent
 - Stochastic Gradient Descent
- Multi Layered Perceptrons
 - Generalizing to Multiple Labels
 - An Example of a Multilayer Neural Network
 - Properties of Sigmoid Function
 - Motivation for Using Non-linear Surfaces
- 3 Feed Forward Neural Networks

Feed Forward Neural Networks

- d input nodes
- m hidden nodes
- *k* output nodes

- At hidden nodes: $\vec{\mathbf{w_i}}, 1 \leq j \leq m, \ \vec{\mathbf{w_i}} \in \Re^d$
- ullet At output nodes: $ec{\mathbf{w_j}}, 1 \leq j \leq k$, $ec{\mathbf{w_j}} \in \Re^m$

References