Homework 9

MATH 301 October 29, 2020

Kevin Evans ID: 11571810

1. **Proposition.** $\{12n : n \in \mathbb{Z}\} \subseteq \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$

Proof. Suppose $a \in \{12n : n \in \mathbb{Z}\}$. Then a can be expressed as 12n for some $n \in \mathbb{Z}$, and can be written as $a = 2 \cdot 3(2n)$. This means a = 2k and a = 3m for a $k, m \in \mathbb{Z}$ and therefore belongs in the intersection of the two latter sets. This then implies

$$\{12n: n \in \mathbb{Z}\} \subseteq \{2n: n \in \mathbb{Z}\} \cap \{3n: n \in \mathbb{Z}\}$$

2. **Proposition.** If $m, n \in \mathbb{Z}$, then $\{x \in \mathbb{Z} : mn \mid x\} \subseteq \{x \in \mathbb{Z} : m \mid x\} \cap \{x \in \mathbb{Z} : n \mid x\}$.

Proof. Suppose $m, n \in \mathbb{Z}$ and $y \in \{x \in \mathbb{Z} : mn \mid x\}$. Then y can be expressed as y = kmn for a $k \in \mathbb{Z}$. This also means $m \mid y$ and $n \mid y$. Therefore, all elements of the first set are also elements of the intersection of the latter two sets, i.e. $\{x \in \mathbb{Z} : mn \mid x\} \subseteq \{x \in \mathbb{Z} : m \mid x\} \cap \{x \in \mathbb{Z} : n \mid x\}$.

- 3. Disproof. Let $A = \{1\}$, $B = \{2\}$, $X = \{1, 2\}$. Then $X \subseteq A \cup B$, but $X \nsubseteq A$ and $X \nsubseteq B$.
- 4. **Proposition.** $\{9^n : n \in \mathbb{Z}\} \subseteq \{3^n : n \in \mathbb{Z}\}, but \{9^n : n \in \mathbb{Z}\} \neq \{3^n : n \in \mathbb{Z}\}.$

Proof. Let $x \in \{9^n : n \in \mathbb{Z}\}$, then $x = 9^m$ for an $m \in \mathbb{Z}$. This can also be written $x = (3^2)^m = 3^{2m}$. Since $2m \in \mathbb{Z}$, $x \in \{3^n : n \in \mathbb{Z}\}$ too. Therefore $\{9^n : n \in \mathbb{Z}\} \subseteq \{3^n : n \in \mathbb{Z}\}$. However, $3 \in \{3^n : n \in \mathbb{Z}\}$, but $3 \notin \{9^n : n \in \mathbb{Z}\}$. Therefore these two sets are not equal.

5. **Proposition.** For sets A, B, and C,

$$(A \cup B) - C = (A - C) \cup (B - C)$$

Proof. If we let $x \in (A \cup B) - C$, this means $x \in A \cup B$ but $x \notin C$. And since $x \in A \cup B$, this means $(x \in A \lor x \in B) \land (x \notin C)$. This can also be expressed as $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$, or $(A \cup B) - C \subseteq (A - C) \cup (B - C)$.

Then, if we let $x \in (A-C) \cup (B-C)$. This means $x \in A-C \vee x \in B-C$, or equivalently, $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$. Since $x \notin C$ is common to both terms, this is also equivalent to $(A \cup B) - C$.

6. **Proposition.** For sets A and B, $A \subseteq B \iff A - B = \emptyset$.

Proof. Suppose $A \subseteq B$. Then let $x \in A$, then $x \in B$ ($\forall x \in A$). Therefore $\nexists y \in A \land y \notin B$, and $A - B = \emptyset$.

Next, suppose $A - B = \emptyset$. Then $\forall x \in A, x \in B$, therefore $A \subseteq B$.