

Internet Of Things

First Circuit with RPi board

Prepared by:

Dr. Murad Yaghi Eng. Malek Al-Louzi

School of Computing and Informatics - Al Hussein Technical University

Fall 2024/2025

Introduction

- You need the following: Eng. Malek Lozi
 - **RPi** board
 - LED
 - Resistor
 - **Breadboard**
 - Wires

Introduction

BE CAREFUL

- Want to make a change on the circuit? Always power off the RPi first
- When powering ON, avoid touching the circuit

 For this circuit, we want to connect the LED to 5 V pin which will supply current as long as the RPi is powered on

 The current will flow from the 5 V pin through the components then returned to ground

- The resistor is placed in the circuit to limit the current
- Without the resistor, we would have an excessively high current which would burn our LED
- If we choose that has too high value, our LED will not light
- If we choose a resistance that is too low, we risk creating a high current
- How do we choose the desired resistor value?

 What the voltage drop across the resistor should be? That means how much the 5 V that we are supplying should be used by the resistor

If we are using Red LED, it has a voltage drop of 2 V

That means there 3 V left over

These 3 Volts must be used by the resistor

- Next, we must consider the current passing through the circuit
- Small LEDs usually will light with a current around 4 mA

This means 4 mA will also passing through the resistor

Now we can use Ohm's law to calculate the resistance

$$R = \frac{V}{I} = \frac{3}{0.004} = 750 \,\Omega$$

- So, we need a resistor close to 750 ohm
- LEDs typically functions well up to 20 mA
- A resistor with slightly lower value still works just fine
- Now we can setup the circuit on the breadboard

- One common error is to place the LED backwards
- The LED has long flat section that looks like a negative symbol called (Cathode), this side needs to lead towards ground

- Now, power ON your RPi and the LED will light
- Next, we want to turn ON and OFF the LED using GPIO pin
- To do that, we need to write a simple Python program
- But before that we need to make small updates on the circuit
- Can you expect these updates?

 We will use GPIO pin at pin 12, but any of the GPIO pins would work fine

Remember that GPIO pins use 3.3 V

- If we are using Red LED, it has a voltage drop of 2 V
- So, there will be 1.3 V left across the resistor

- Recall that we are using the resistor to limit the current passing through the circuit
- This is important when dealing with GPIO pins as only 16 mA of current can safely pass through a GPIO pin

- For our LED, we will need 4 mA of current
- So, we will be fine with the safe current limit

To calculate the value of the resistor we use Ohm's law

$$R = \frac{V}{I} = \frac{1.3}{0.004} = 325$$

So, 330 Ohm resistor should work just fine

Now it's time to write the code

Eng. Malek Lozi

Eng. Malek Lozi

EUB. Walek For

Any Questions???

Eng. Malek Lozi

Eng. Malek Lozi

e. Walek Lozi

Eng. Malek Lozi

Eug. Malek For