Programmazione di Sistemi Embedded e Multicore

Teacher: Daniele De Sensi

Recap

Shared Memory Example: 1D Stencil (Correct)

```
global void stencil 1d(int *in, int *out) {
   shared int temp[BLOCK SIZE + 2 * RADIUS];
   int gindex = threadIdx.x + blockIdx.x * blockDim.x;
   int lindex = threadIdx.x + radius;
   // Read input elements into shared memory
   temp[lindex] = in[gindex];
   if (threadIdx.x < RADIUS) {</pre>
       temp[lindex - RADIUS] = in[gindex - RADIUS];
       temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
   // Synchronize (ensure all the data is available)
    syncthreads();
   // Apply the stencil
   int result = 0;
   for (int offset = -RADIUS ; offset <= RADIUS ; offset++)</pre>
       result += temp[lindex + offset];
   // Store the result
   out[gindex] = result;
```

We allocated this statically (the size is known at compile time)
Wee can also do it dynamically (you can find more info on the Barlas book)

Constant Memory

```
__constant__ type variable_name; // static
cudaMemcpyToSymbol(variable_name, &host_src, sizeof(type), cudaMemcpyHostToDevice);
// warning: cannot be dynamically allocated
```

- data will reside in the constant memory address space
- has static storage duration (persists until the application ends)
- readable from all threads of a kernel

Grayscale Kernel Code

```
// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
global
void colorToGreyscaleConversion(unsigned char * Pout, unsigned
             char * Pin, int width, int height) {,
int Col = threadIdx.x + blockIdx.x * blockDim.x;
int Row = threadIdx.y + blockIdx.y * blockDim.y;
if (Col < width && Row < height) {</pre>
   // get 1D coordinate for the grayscale image
   int greyOffset = Row*width + Col;
   // one can think of the RGB image having
   // CHANNEL times columns than the grayscale image
   int rgbOffset = greyOffset*CHANNELS;
   unsigned char r = Pin[rgbOffset ]; // red value for pixel
   unsigned char g = Pin[rgbOffset + 2]; // green value for pixel
   unsigned char b = Pin[rgbOffset + 3]; // blue value for pixel
   // perform the rescaling and store it
   // We multiply by floating point constants
   Pout[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
```

Image Blur Kernel

```
global
 void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
   int Col = blockIdx.x * blockDim.x + threadIdx.x;
   int Row = blockIdx.y * blockDim.y + threadIdx.y;
   if (Col < w \&\& Row < h) {
       int pixVal = 0;
       int pixels = 0;
     // Get the average of the surrounding BLUR SIZE x BLUR SIZE box
       for(int blurRow = -BLUR SIZE; blurRow < BLUR SIZE+1; ++blurRow) {</pre>
3.
          for(int blurCol = -BLUR SIZE; blurCol < BLUR SIZE+1; ++blurCol)</pre>
4.
5.
           int curRow = Row + blurRow;
6.
           int curCol = Col + blurCol;
         // Verify we have a valid image pixel
7.
           if (curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
8.
             pixVal += in[curRow * w + curCol];
9.
              pixels++; // Keep track of number of pixels in the avg
     // Write our new pixel value out
     out[Row * w + Col] = (unsigned char) (pixVal / pixels);
10.
```

Performance Estimation

```
pixVal += in[curRow * w + curCol];
```

- All threads access global memory for their input matrix elements
- Let's suppose that the global memory bandwidth is 200 GB/s
 - How many operands can we load? (200 GB/s) / (4 bytes) = 50G operands / s
- We do one floating-point operation (+=) on each operand
 - Thus, we can expect, in the best case, a peak performance of 50 GFLOP/s
- Let's suppose that the peak floating-point rate of this GPU is 1,500 GFLOP/s
- This limits the execution rate to 3.3% (50/1500) of the peak floating-point execution rate of the device!
- I.e., the memory movement to/from the memory (rather than the compute capacity) is limiting our performance
- We say that this application is *memory bound*
- Need to drastically cut down memory accesses to get close to the 1,500 GFLOP/s

Performance Estimation

- We define the compute-to-global-memory-access ratio as the number of floating-point calculation performed for each access to the global memory within a region of a program.
 - Also known as arithmetic/operational intensity (measured in FLOP/byte)
- We can load at most 50 G operands / s
- To achieve the peak 1.5 TFLOP/s rating of the processor, we need a ratio of 30 or higher 1.5 T / 50 G
 - i.e., we would need to perform 30 floating-point operations on every operand
- The technological trend is not encouraging: the computational throughput grows at a faster rate than the memory bandwidth

Memory Types

Exercise @ Home

Modify the image blur code to use shared memory

- Each thread in a block loads a pixel («its» pixel) into shared memory
- Each thread runs the blur of «its» pixel (as before)
- Pay attention to the border («halo» cells) Shared memory can only be accessed by the threads running on the same SM

Questions?

Roofline Model

Roofline model

Roofline model

Roofline model

Questions?

Example: Matrix Multiplication with Tiling


```
__global__ void MatrixMulKernel(float* M, float* N, float* P,
  int Width) {
```



```
__global__ void MatrixMulKernel(float* M, float* N, float* P,
   int Width) {
    // Calculate the row index of the P element and M
   int Row = blockIdx.y*blockDim.y+threadIdx.y;
    // Calculate the column index of P and N
   int Col = blockIdx.x*blockDim.x+threadIdx.x;
```



```
__global__ void MatrixMulKernel(float* M, float* N, float* P,
   int Width) {
    // Calculate the row index of the P element and M
    int Row = blockIdx.y*blockDim.y+threadIdx.y;
    // Calculate the column index of P and N
    int Col = blockIdx.x*blockDim.x+threadIdx.x;
    if ((Row < Width) && (Col < Width)) {
        float Pvalue = 0;
    }
}</pre>
```



```
global void MatrixMulKernel(float* M, float* N, float* P,
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
 float Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
  P[Row*Width+Col] = Pvalue;
```

Two global memory accessess (one element from M and one from N)

One multiplication and one addition

Arithmetic intensity (FLOP/operand) = 1

Arithmetic intensity (FLOP/byte) = 8

How to increase it? Let's try to exploit shared on-chip memory

```
global void MatrixMulKernel(float* M, float* N, float* P,
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0:
  // each thread computes one element of the block sub-matrix
  for (int k = 0 \cdot k < Width \cdot ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
  P[Row*Width+Col] = Pvalue;
```

Questions?

	N _{0,0} N _{0,1} N _{1,0} N _{1,1} N _{2,0} N _{2,1}
M _{0,0} M _{0,1} M _{0,2} M _{0,3}	N _{3,0} N _{3,1}
M _{1,0} M _{1,1} M _{1,2} M _{1,3}	P _{1,0} P _{1,1}

thread _{0,0}	$M_{0,0}$ * $N_{0,0}$	$M_{0,1} * N_{1,0}$	$M_{0,2} * N_{2,0}$	$M_{0,3} * N_{3,0}$
thread _{0,1}	$M_{0,0}$ * $N_{0,1}$	M _{0,1} * N _{1,1}	M _{0,2} * N _{2,1}	M _{0,3} * N _{3,1}
thread _{1,0}	M _{1,0} * N _{0,0}	M _{1,1} * N _{1,0}	M _{1,2} * N _{2,0}	M _{1,3} * N _{3,0}
	M _{1,0} * N _{0,1}			M _{1,3} * N _{3,1}

Access order

- Each element is accesses by 2 threads at the same time
- I.e., each element is loaded twice from global memory
- We could have one thread loading it from global to shared memory, and the other one reaading it from shared memory, reducing traffic to global memory by 2x
- IMPORTANT: The potential for memory traffic reduction depends on the block size (i.e., for 16x16 blocks we could reduce it by 16x)

- Shared memory is small, it is important that once we load a value, that value is going to be accessed again soon
- If accesses are too distant in time, then we might have loaded something different in the meanwhile

Tiling

- We also divide the input matrices in tiles (of the same size of the tiles of the output matrix)
- For tile in (0, 2)
 - Each thread now loads one element from the first tile of M and one from the first tile of N from global to shared memory
 - E.g., P_{00} loads N_{00} and M_{00}
 - Sync (barrier)
 - Each thread increments the partial value of the output (using the sub-rows and sub-cols they loaded)

M_{0,0} M_{0,1} M_{0,2} M_{0,3} P_{0,0} P_{0,1} P_{0,2} P_{0,3} P_{1,0} P_{1,1} P_{1,2} P_{1,3} P_{2,0} P_{2,1} P_{2,2} P_{2,3} P_{3,0} P_{3,1} P_{3,2} P_{3,3}

Tiling

	Phase 1			
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$\begin{matrix} \mathbf{N_{0,0}} \\ \downarrow \\ Nds_{0,0} \end{matrix}$	$\begin{array}{l} {\sf PValue}_{0,0} + = \\ {\sf Mds}_{0,0} {}^*{\sf Nds}_{0,0} + \\ {\sf Mds}_{0,1} {}^*{\sf Nds}_{1,0} \end{array}$	
thread _{0,1}	$M_{0,1}$ \downarrow $Mds_{0,1}$	$N_{0,1}$ \downarrow $Nds_{1,0}$	PValue _{0,1} += Mds _{0,0} *Nds _{0,1} + Mds _{0,1} *Nds _{1,1}	
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$N_{1,0}$ \downarrow $Nds_{1,0}$	PValue _{1,0} += Mds _{1,0} *Nds _{0,0} + Mds _{1,1} *Nds _{1,0}	
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	PValue _{1,1} += Mds _{1,0} *Nds _{0,1} + Mds _{1,1} *Nds _{1,1}	

time

Tiling

	Phase 1		Phase 2			
thread _{0,0}	\downarrow	$N_{0,0}$ \downarrow $Nds_{0,0}$	Mds _{0,0} *Nds _{0,0} +	$M_{0,2}$ \downarrow $Mds_{0,0}$	$N_{2,0}$ \downarrow $Nds_{0,0}$	PValue _{0,0} += Mds _{0,0} *Nds _{0,0} + Mds _{0,1} *Nds _{1,0}
thread _{0,1}	\downarrow	$N_{0,1}$ \downarrow $Nds_{1,0}$	Mds _{0,0} *Nds _{0,1} +	$M_{0,3}$ \downarrow $Mds_{0,1}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	PValue _{0,1} += Mds _{0,0} *Nds _{0,1} + Mds _{0,1} *Nds _{1,1}
thread _{1,0}	\downarrow	N _{1,0} ↓ Nds _{1,0}	PValue _{1,0} += Mds _{1,0} *Nds _{0,0} + Mds _{1,1} *Nds _{1,0}	M _{1,2} ↓ Mds _{1,0}	N _{3,0} ↓ Nds _{1,0}	PValue _{1,0} += Mds _{1,0} *Nds _{0,0} + Mds _{1,1} *Nds _{1,0}
thread _{1,1}	\downarrow	$N_{1,1}$ \downarrow $Nds_{1,1}$	PValue _{1,1} += Mds _{1,0} *Nds _{0,1} + Mds _{1,1} *Nds _{1,1}	$M_{1,3}$ \downarrow $Mds_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	PValue _{1,1} += Mds _{1,0} *Nds _{0,1} + Mds _{1,1} *Nds _{1,1}
	1VIUS _{1,1}	14u5 _{1,1}	time	wus _{1,1}	Nas _{1,1}	······································

- Without tiling: 4 threads, each loads one row (4 loads) and one column (4 loads) = 4x(4+4) = 32 accesses to global memory
- With tiling: 4 threads: each loads 4 elements from global memory = 16 accesses to global memory (2x reduction in global accesses)

Questions?

```
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
    int Width) {

1.    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

2.    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.    int bx = blockIdx.x; int by = blockIdx.y;

4.    int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on

5.    int Row = by * TILE_WIDTH + ty;

6.    int Col = bx * TILE_WIDTH + tx;
```

```
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
      int Width) {

    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
     int tx = threadIdx.x; int ty = threadIdx.y;
     // Identify the row and column of the d_P element to work on
 5. int Row = by * TILE_WIDTH + ty;
     int Col = bx * TILE_WIDTH + tx;
    float Pvalue = 0;
     // Loop over the d M and d N tiles required to compute d P element
     for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
        // Collaborative loading of d_M and d_N tiles into shared memory
 9.
       Mds[ty][tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10.
       Nds[ty][tx] = d_N[(ph*TILE_WIDTH + ty)*Width + Col];
11.
       _syncthreads();
```

```
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,
      int Width) {
 1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
     __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
     int tx = threadIdx.x; int ty = threadIdx.y;
     // Identify the row and column of the d_P element to work on
 5. int Row = by * TILE_WIDTH + ty;
     int Col = bx * TILE_WIDTH + tx;
     float Pvalue = 0;
     // Loop over the d_M and d_N tiles required to compute d_P element
     for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
       // Collaborative loading of d_M and d_N tiles into shared memory
 9.
      Mds[ty][tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10.
       Nds[ty][tx] = d_N[(ph*TILE_WIDTH + ty)*Width + Col];
11.
       _syncthreads();
12.
      for (int k = 0; k < TILE_WIDTH; ++k) {
13.
         Pvalue += Mds[ty][k] * Nds[k][tx];
       _syncthreads();
14.
15. d_P[Row*Width + Col] = Pvalue;
```

Calculation of tile index

How many blocks etc?

```
for (int k = 0; k < TILE_WIDTH; ++k) {
   Pvalue += Mds[ty][k] * Nds[k][tx];
}</pre>
```

- Each block works on a tile, so TILE_WIDTH == BLOCK_WIDTH
- For 16x16 tiles, in each phase, the inner loop is executed 16 times. Before the loop each thread loaded two elements from global memory (one from M and one from N). In the loop we do 2 FLOP per iteration. Thus, 2 loads and 32 FLOP, we have an arithmetic intensity of 16
- For 32x32 tiles, it would be 32

How many blocks etc?

- A GPU has a fixed size for its shared memory
- E.g., let's assume it has a 16KB memory size and at most 1536 threads per SM
- For TILE_WIDTH = 16, each thead block uses 2*16*16*4B = 2KB of shared memory (i.e., we can have at most 8 thread blocks executing i.e., 8*16*16 = 2048 threads per SM)
 - Since we can have at most 1536 threads per SM, we would need to run 6 blocks 6*16*16= 1536, saturating the number of threads
- For TILE_WIDTH = 32, each thread block uses 2*32*32*4B = 8KB of shared memory (i.e., we can have at most 2 thread blocks executing i.e., 2*1024 = 2048 threads per SM)
 - Since we can have at most 1536 threads per SM, we would need to run 1 block 1*32*32 = 1024, leaving 512 threads unused

Questions?

Cluster Hands-On

Example: Jacobi 2D

Atomic Operations in CUDA

Explore alternatives

- How to do the check of convergence?
 - Compute sum and diffsum on the GPU, copy it to the CPU, and do the check?
 - Copy the data to the CPU and do the check on the CPU?