

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
 - 8 Lab Session 8

Learning objectives

- Describe model building strategy for ARIMA models
- Explain criteria for best model selection
- Produce forecast using ARIMA models

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
 - 8 Lab Session 8

Exponential smoothing vs ARIMA models

- Exponential smoothing models were based on a description of trend and seasonality in the data,
- ARIMA models aim to describe the autocorrelations in the data.
- Exponential smoothing and ARIMA models are the two most widely-used approaches to time series forecasting

ARIMA models

Autoregressive Integrated Moving Average models

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

ARIMA model

- Combine ARMA model with **differencing**.
- $(1 B)^d y_t$ follows an ARMA model.

Autoregressive Moving Average(ARMA) models:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \dots + \phi_p \mathbf{y}_{t-p} \\ &+ \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t. \end{aligned}$$

ARIMA model

- Combine ARMA model with differencing.
- $(1 B)^d y_t$ follows an ARMA model.

Autoregressive Moving Average(ARMA) models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

ARIMA(p, d, q) model

AR: p = number of preceding/lagged y values

I: d = number of times series have to be "differenced"

MA: q = number of preceding/lagged values for the error term.

What does ARIMA account for?

- Previous observations
- Rate of change in the previous observations
- Error term in the previous observations
- Perform weel for short term horizons

Stationarity

ARIMA models are stationary

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

ARIMA models are stationary

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term

Stationarity vs. Non-Stationarity

Stationary?

Stationary?

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \dots, y_{t+s}) does not depend on t.

Transformations help to **stabilize the variance**.

For ARIMA modelling, we also need to **stabilize the mean**.

Is your data stationarity?

Identifying non-stationary series

- Time plot.
- The ACF of stationary data drops to zero relatively quickly
- The ACF of non-stationary data decreases slowly.
- For non-stationary data, the value of r_1 is often large and positive.

Example: Google stock price

Unit root tests

- One way to determine more objectively whether data is non stationary to use a unit root test
- These are statistical hypothesis tests of stationarity that are designed for determining whether differencing is required

Statistical tests to determine the required order of differencing.

■ Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary

KPSS test

```
google_2018 %>%
features(Close, unitroot_kpss)
```

Differencing

- Differencing helps to **stabilize the mean**.
- The differenced series is the *change* between each observation in the original series.
- Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time.
- In practice, it is almost never necessary to go beyond second-order differences.

Number of differencing

```
google_2018 %>%
  features(Close, unitroot_ndiffs)
## # A tibble: 1 x 2
## Symbol ndiffs
## <chr> <int>
## 1 GOOG
```

```
#seasonal differencing
#features(Close, unitroot_nsdiffs)
```

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
 - 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

Autoregressive models

Autoregressive (AR) models:

 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \varepsilon_t$, where ε_t is white noise. We use **lagged values** of y_t as predictors.

Autoregressive models

- In an autoregression model, we forecast the variable of interest using a linear combination of past values of the variable.
- Where c is a constant and e_t i.i.d. (white noise) random variable with zero mean and known variance, σ^2 .
- Changing the parameters $\phi_1, \phi_2, \dots, \phi_p$ results in different time series patterns.

Moving Average (MA) models

Moving Average (MA) models:

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q},$$

where ε_t is white noise.

We use **past errors** as predictors. Don't confuse this with moving average smoothing!

Moving Average (MA) models

- We forecast the variable of interest using a linear combination of past errors
- c is a constant and e_t i.i.d. (white noise) random variable with zero mean and known variance, σ^2 .
- Changing the parameters $\theta_1, \theta_2, \dots, \theta_q$ results in different time series patterns.

ARMA(p,q) models

Autoregressive Moving Average(ARMA) models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

Select order of p,d,q

- Once you have a stationary time series, the next step is to select the appropriate ARIMA model. -Number of differencing determine d
- This means finding the most appropriate values for p and q in the \$ ARIMA(p, d, q) model.
- To do so, you need to examine the Autocorrelation and Partial Autocorrelation of the stationary time series.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags — 1, 2, 3, . . . , k-1 — are removed.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags — 1, 2, 3, . . . , k-1 — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
= equal to the estimate of ϕ_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags — 1, 2, 3, . . . , k-1 — are removed.

$$\alpha_k$$
 = kth partial autocorrelation coefficient
= equal to the estimate of ϕ_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$.

- Varying number of terms on RHS gives α_k for different values of k.
- There are more efficient ways of calculating α_k .
- \blacksquare $\alpha_1 = \rho_1$
- same critical values of $\pm 1.96/\sqrt{T}$ as for ACF.

ACF and PACF interpretation

AR(1)

$$\rho_k = \phi_1^k \qquad \text{for } k = 1, 2, \dots;$$
 $\alpha_1 = \phi_1 \qquad \alpha_k = 0 \qquad \text{for } k = 2, 3, \dots$

So we have an AR(1) model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.

ACF and PACF interpretation

MA(1)

$$\rho_1 = \theta_1 \qquad \rho_k = 0 \qquad \text{for } k = 2, 3, \dots;$$

$$\alpha_k = -(-\theta_1)^k$$

So we have an MA(1) model when

- the PACF is exponentially decaying and
- there is a single significant spike in ACF

Example: Mink trapping

Example: Mink trapping

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$.

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$.

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t=1}^{T} e_t^2$$

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

BIC = AIC +
$$[\log(T) - 2](p + q + k - 1)$$
.

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

BIC = AIC +
$$[\log(T) - 2](p + q + k - 1)$$
.

Good models are obtained by minimizing either the

AIC, AICc or BIC. Our preference is to use the AICc.

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via KPSS test and seasonal strength measure.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

AICc = $-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$. where L is the maximised likelihood fitted to the differenced data, k=1 if $c \neq 0$ and k=0 otherwise.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the differenced data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- p, q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.

Modelling procedure with ARIMA

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- 4 Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Automatic modelling procedure with ARIMA

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- Use ARIMA to automatically select a model.
- 4 Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

Point forecasts

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

Prediction intervals

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

Multi-step prediction intervals for ARIMA(0,0,q):

$$y_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^{2} \left[1 + \sum_{i=1}^{h-1} \theta_{i}^{2} \right], \quad \text{for } h = 2, 3, \dots.$$

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
- 8 Lab Session 8

Seasonal ARIMA models

where m = number of observations per year.

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

ARIMA $(0,0,0)(1,0,0)_{12}$ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

```
eu_retail %>% autoplot(value) +
xlab("Year") + ylab("Retail index")
```



```
eu_retail %>% gg_tsdisplay(
  value %>% difference(4))
```



```
eu_retail %>% gg_tsdisplay(
  value %>% difference(4) %>% difference(1))
```


- \blacksquare d = 1 and D = 1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with $ARIMA(1,1,0)(1,1,0)_4$.

fit %>% select(arima) |> gg_tsresiduals()

```
fit <- eu_retail %>%
 model(arima = ARIMA(value \sim pdg(0,1,1) + PDQ(0,1,1)),
      auto_arima = ARIMA(value))
fit %>% report()
## # A tibble: 2 x 8
## .model sigma2 log_lik AIC AICc BIC ar_ro~1 ma_r
## 1 arima 0.188 -34.6 75.3 75.7 81.5 <cpl> <cpl
## 2 auto_ari~ 0.156 -28.6 67.3 68.4 77.6 <cpl>
                                             <cpl
## # ... with abbreviated variable names 1: ar_roots,
## # 2: ma_roots
```

```
augment(fit) %>%
features(.resid, ljung_box, lag = 8, dof = 2)
```

Outline

- 1 Learning objectives
- 2 Introduction to ARIMA models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Forecasting
- 7 Seasonal ARIMA models
 - 8 Lab Session 8

Lab Session 8

For the daily A&E time series:

- Fit the optimal ARIMA model.
- Produce forecasts of your fitted models for 42 days.
- specify the order of p,q,P,Q manually to compare with the optimal ARIMA
- Check the forecasts. Do they look reasonable?