The Grammar of Grammars

K. Kogkalidis

Logic & Language 2020

Recap: Formal Grammars

Formal Grammars

A formal grammar \mathcal{G} is a tuple $\mathcal{G} = \langle V, \Sigma, R, S \rangle$, where

- V the vocabulary, a set of symbols
- Σ the set of *terminal* symbols, $\Sigma \subset V$
- *R* the set of *production rules*, $R \subset V^* \times V^*$
- *S* the *initial symbol*, $S \in V \Sigma$

Rules

A rule $r \in R$ is usually written as $\alpha \to \beta$, where α , β strings of V, i.e. $\alpha, \beta \in V^*$.

Allowing only specific forms of rules R leads to a hierarchy of formal grammars, each with their own expressivity and complexity.

Language

The set of words (strings) $\mathcal{L}_{\mathcal{G}} \in \Sigma^*$ that can be generated by \mathcal{G} .

Chomsky Hierarchy

type	grammar	automaton	rule form
3	regular	finite state machine	A ightarrow a; $A ightarrow$ a B
2	context-free	pushdown automaton	$A o \gamma$
1	context-sensitive	linear bounded automaton	$\alpha A \beta \to \alpha \gamma \beta$
0	recursively enumerable	Turing machine	$\alpha \to \beta$

A, B: non-terminals, a: terminal, α, β, γ : strings of V

 $\mathsf{Type\text{-}3} \subset \mathsf{Type\text{-}2} \subset \mathsf{Type\text{-}1} \subset \mathsf{Type\text{-}0}$

Natural Language

- ► *R* aligned with speech, phonology, morphology
- CF captures most syntactic patterns (but not all!)
- CS too expressive and complex to be of real use
- \rightarrow need a better charting between *CF* and *CS*

Pumping Lemma for CFL

Let $\mathcal{G} = \langle V, \Sigma, R, S \rangle$ a CFG generating an infinite language $\mathcal{L}_{\mathcal{G}}$.

```
\exists k \in \mathbb{N} :
\forall w \in \mathcal{L}_{\mathcal{G}} \land |w| \geq k :
\exists x, y, z, v_1, v_2 \in \Sigma^* :
\bigwedge \left\{ w = xv_1yv_2z, |v_1v_2| \geq 1, |v_1yv_2| \leq k, \right.
\forall i \in \mathbb{N} : \left\{ xv_1^i yv_2^i z \in \mathcal{L}_{\mathcal{G}} \right\} \right\}
```

Pumping Lemma for CFL

Let $\mathcal{G} = \langle V, \Sigma, R, S \rangle$ a CFG generating an infinite language $\mathcal{L}_{\mathcal{G}}$.

```
\exists k \in \mathbb{N}:
\forall w \in \mathcal{L}_{\mathcal{G}} \land |w| \geq k:
\exists x, y, z, v_1, v_2 \in \Sigma^*:
\bigwedge \left\{ w = xv_1yv_2z, |v_1v_2| \geq 1, |v_1yv_2| \leq k, \right.
\forall i \in \mathbb{N}: \left\{ xv_1^i yv_2^i z \in \mathcal{L}_{\mathcal{G}} \right\} \right\}
```

Example

The copy language $\mathcal{L} = \{ww \mid w \in \{a,b\}^*\}$ is not context-free, but similar constructions occur in natural language (crossing dependencies):

```
... dat Wim Jan Marie de kinderen zag helpen leren zwemmen ... "... that Wim saw Jan help Marie teach the kids how to swim ..."
```

The landscape beyond CFL

The class of mildly context-sensitive languages:

- contains context-free languages
- capture a finite number of cross-serial dependencies, i.e languages of the form: $\mathcal{L} = \{ w^k | \ w \in \Sigma^* \} \text{ for some } k$
- ▶ maintains polynomial parsing time (CFGs have $\mathcal{O}(n^3)$)
- is characterized by constant growth: word length increase is linear-bound

Abstract Categorial Grammars

Abstract Categorial Grammars model the landscape of formal grammars as a morphism between two $ILL_{-\circ}$ logics:

$$\begin{array}{ccc} \mathsf{ILL}^A_{-\!\!\!\!\circ} & \xrightarrow{h} & \mathsf{IL}^{A'}_{-\!\!\!\!\circ} \\ \mathsf{Source} & \textit{Homomorphism} & \mathsf{Target} \end{array}$$

- source logic describing the abstract function-argument structure of the language (tectogrammar)
- target logic describing the concrete surface materialization of the language: strings, trees, etc (phenogrammar)

Abstract Categorial Grammars

Vocabulary

A vocabulary Σ is a "higher-order linear signature" $\Sigma = \langle \mathcal{A}, \mathcal{C}, \tau \rangle$, where:

- \mathcal{A} a set of atomic types ($\mathcal{T}_{\mathcal{A}}$ the type universe)
- C a set of constants (Λ_{Σ} the set of well-formed λ -terms)
- au a mapping $C o \mathcal{T}_\mathcal{A}$

Lexicon

A lexicon $\mathfrak L$ is a mapping $\Sigma_1 \to \Sigma_2$ consisting of $\langle \eta, \theta \rangle$, where

- η a mapping $\mathcal{A}_1 \to \mathcal{T}_{\mathcal{A}_2}$, deriving the homomorphic extension $\hat{\eta}: \mathcal{T}_{\mathcal{A}_1} \to \mathcal{T}_{\mathcal{A}_2}$
- $\theta~$ a mapping $C_1\to \Lambda_{\Sigma_2}$, deriving the homomorphic extension $\hat{\theta}:\Lambda_{\Sigma_1}\to \Lambda_{\Sigma_2}$

such that $\vdash \theta(c) : \hat{\eta}(\tau(c))$, i.e. θ respects typing

Abstract Categorial Grammars

ACG

An abstract categorial grammar is a tuple $\langle \Sigma_1, \Sigma_2, \mathfrak{L}, s \rangle$, where:

- Σ_1 the abstract vocabulary
- Σ_2 the object language
 - ${\mathfrak L}$ the map $\Sigma_1 o \Sigma_2$
 - s the initial or distinguished type, $s \in \mathcal{T}_{\mathcal{A}_1}$

From the vocabularies we obtain languages $\mathcal{L}_1, \mathcal{L}_2$:

 \mathcal{L}_1 the abstract language

$$\mathcal{L}_1 = \{t \in \Lambda_{\Sigma_1} | \ t \ \text{an inhabitant of} \ s\}$$

 \mathcal{L}_2 the object language

$$\mathcal{L}_2 = \{ t \in \Lambda_{\Sigma_2} \mid \exists \ u \in \mathcal{L}_1 : t \text{ the } \hat{\theta} \text{-image of } u \}$$

Example: ACG for the Dyck Language

Dyck Language

The language of well-bracketed parentheses, captured by the CFG:

$$S \rightarrow SS_{(R_1)} \mid [S]_{(R_2)} \mid \epsilon_{(R_3)}$$

Source Signature
$$\Sigma_1 = \langle \mathcal{A}_1, \mathcal{C}_1, \mathcal{T}_1 \rangle$$

$$\mathcal{A}_1 = \{S\} \quad C_1 = \{R_1, R_2, R_3\} \quad \tau_1 = \{R_1 \mapsto S \multimap S \multimap S, R_2 \mapsto S \multimap S, R_3 \mapsto S\}$$

Target Signature
$$\Sigma_2 = \langle \mathcal{A}_2, \mathcal{C}_2, \tau_2 \rangle$$

$$\mathcal{A}_2 = \{*\} \quad \textit{C}_2 = \{ \texttt{[}, \texttt{]} \} \quad \tau_2 = \{ \texttt{[} \mapsto * \multimap *, \texttt{]} \mapsto * \multimap * \}$$

where * a primitive type s.t. $str = * - \circ *$ $: str - \circ str - \circ str = \lambda f. \lambda g. \lambda i. f(g i)$

Translation
$$\mathfrak{L} = \langle \eta, \theta \rangle$$

$$\eta = \{S \mapsto \text{str}\}\ \theta = \{R_1 \mapsto \lambda x \lambda y. x \cdot y, R_2 \mapsto \lambda x. [\cdot x \cdot], R_3 \mapsto \lambda x. x\}$$

Example: ACG for the Dyck Language

Parsing

$$[][]] \in \mathcal{L}_2 \quad \Leftrightarrow \quad \exists \mathcal{L}_1.\hat{\theta}(u) = [][]]$$

$$u = (R_1(R_2R_3)) (R_2(R_2R_3))$$

$$\hat{\theta}(u) = (\theta(R_1) (\theta(R_2) \theta(R_3))) (\theta(R_2) (\theta(R_2) \theta(R_3)))$$

$$= \dots$$

$$\stackrel{\beta}{\Longrightarrow} \Pi \Pi \Pi \Pi$$

ACG Hierarchy

The order
$$\mathcal O$$
 of a type T is $\mathcal O(T) = \begin{cases} 0 & T \in \mathcal A \\ \max\left(\mathcal O(A) + 1, \mathcal O(B)\right) & T = A {\:\multimap\:} B \end{cases}$

ACG Hierarchy

The order
$$\mathcal O$$
 of a type T is $\mathcal O(T) = \begin{cases} 0 & T \in \mathcal A \\ \max\left(\mathcal O(A) + 1, \mathcal O(B)\right) & T = A {\:\multimap\:} B \end{cases}$

ACG measures of complexity:

- ▶ Complexity of abstract signature: $C(\Sigma_1) = \max_{c \in C_1} \{ O(\tau(c)) \}$
- ▶ Complexity of interpretation: $\mathcal{C}(\mathfrak{L}) = \max_{\alpha \in A_1} \{\mathcal{O}(\eta(\alpha))\}$

The type of an ACG is the tuple $(\mathcal{C}(\Sigma_1), \mathcal{C}(\mathfrak{L}))$.

ACG Hierarchy

The order
$$\mathcal O$$
 of a type T is $\mathcal O(T) = \begin{cases} 0 & T \in \mathcal A \\ \max\left(\mathcal O(A) + 1, \mathcal O(B)\right) & T = A {\:\multimap\:} B \end{cases}$

ACG measures of complexity:

- ▶ Complexity of abstract signature: $C(\Sigma_1) = \max_{c \in C_1} \{ O(\tau(c)) \}$
- ► Complexity of interpretation: $C(\mathfrak{L}) = \max_{\alpha \in A_1} \{ \mathcal{O} (\eta(\alpha)) \}$

The type of an ACG is the tuple $(\mathcal{C}(\Sigma_1), \mathcal{C}(\mathfrak{L}))$.

Embedding the Chomsky Hierarchy

ACG Type	\mathcal{L}_2 Class
(2, 1)	regular
(2, 2)	context-free
(2, 3)	well-nested mildly context-sensitive
$(2, n \ge 4)$	mildly context-sensitive

Example: m-CFGs in ACG

Multiple context-free grammars operate on tuples of strings; tuples can be encoded as higher-order λ -terms:

$$\langle a_1, \ldots, a_n \rangle \rightsquigarrow \lambda t.(t \ a_1 \ldots a_n) : \operatorname{str}^{(n)} \equiv (\underbrace{\operatorname{str} \multimap \ldots \multimap \operatorname{str}}_{n+1}) \multimap \operatorname{str}$$

The language $\{a^nb^nc^nd^n \mid n>0\}$ is generated by the 2-CFG:

$$S(xy) \to A(x,y)_{(\mathrm{R}_1)} \quad A(\mathtt{axb},\mathtt{cyd}) \to A(x,y)_{(\mathrm{R}_2)} \quad A(\epsilon,\epsilon) \to \epsilon_{(\mathrm{R}_3)}$$

ACG encoding

$$\begin{split} & \Sigma_{1} = \{A,S\} \qquad \tau_{1} = \{\mathrm{R}_{1} \mapsto A \multimap S, \ \mathrm{R}_{2} \mapsto A \multimap A, \ \mathrm{R}_{3} \mapsto A\} \\ & \Sigma_{2} = \{*\}, \qquad \tau_{2} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d} \mapsto \mathtt{str}\} \\ & \eta = \{S \mapsto \mathtt{str}, A \mapsto \mathtt{str}^{(2)}\} \\ & \theta = \{\mathrm{R}_{1} \mapsto \lambda \rho. \left(\rho \ \lambda xy. \left(x + y\right)\right) : \mathtt{str}^{(2)} \multimap \mathtt{str}, \\ & \mathrm{R}_{2} \mapsto \lambda \rho q. \left(\rho \ \lambda xy. \left(q \ \left(a + x + b\right) \ \left(c + y + d\right)\right)\right) : \mathtt{str}^{(2)} \multimap \mathtt{str}^{(2)}, \\ & \mathrm{R}_{3} \mapsto \lambda t. (t \ \epsilon \ \epsilon) : \mathtt{str}^{(2)}\} \end{split}$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

$$\theta(R_1) \text{ ("logic", "language")} = \lambda \rho. \left(\rho \text{ λxy.} \left(x+y\right)\right) \text{ λt.} \\ \text{(t "logic" "language")}$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

$$\theta(R_1) \ ("logic", "language") = \lambda \rho. (\rho \ \lambda xy. (x+y)) \ \lambda t. (t \ "logic" \ "language") \\ \stackrel{\beta}{\leadsto} \lambda t. (t \ "logic" \ "language") \ \lambda xy. (x+y)$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

$$\begin{split} \theta(R_1) \ \left(\text{"logic"} \,, \text{"language"} \right) &= \lambda \rho. \left(\rho \,\, \lambda xy. \, (x+y) \right) \,\, \lambda t. (t \,\, \text{"logic"} \,\, \text{"language"}) \\ &\stackrel{\beta}{\leadsto} \,\, \lambda t. (t \,\, \text{"logic"} \,\, \text{"language"}) \,\, \lambda xy. (x+y) \\ &\stackrel{\beta}{\leadsto} \,\, \lambda xy. (x+y) \,\, \text{"logic"} \,\, \text{"language"} \end{split}$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

$$\begin{split} \theta(R_1) \ \left(\text{"logic"}, \text{"language"} \right) &= \lambda \rho. \left(\rho \ \lambda xy. \left(x + y \right) \right) \ \lambda t. \left(t \ \text{"logic"} \ \text{"language"} \right) \\ &\stackrel{\beta}{\leadsto} \lambda t. \left(t \ \text{"logic"} \ \text{"language"} \right) \ \lambda xy. \left(x + y \right) \\ &\stackrel{\beta}{\leadsto} \lambda xy. \left(x + y \right) \ \text{"logic"} \ \text{"language"} \\ &\stackrel{\beta}{\leadsto} \lambda y. \left(\text{"logic"} + y \right) \ \text{"language"} \end{split}$$

("logic", "language")
$$\rightsquigarrow \lambda t.(t$$
 "logic" "language")
$$\theta(R_1) = \lambda \rho. (\rho \ \lambda xy. (x+y))$$

$$\begin{split} \theta(R_1) \ \left(\text{"logic"}, \text{"language"} \right) &= \lambda \rho. \left(\rho \ \lambda xy. \left(x + y \right) \right) \ \lambda t. \left(t \ \text{"logic"} \ \text{"language"} \right) \\ &\stackrel{\beta}{\leadsto} \lambda t. \left(t \ \text{"logic"} \ \text{"language"} \right) \ \lambda xy. (x + y) \\ &\stackrel{\beta}{\leadsto} \lambda xy. (x + y) \ \text{"logic"} \ \text{"language"} \\ &\stackrel{\beta}{\leadsto} \lambda y. \left(\text{"logic"} + y \right) \ \text{"language"} \\ &\stackrel{\beta}{\leadsto} \text{"logic"} + \text{"language"} \end{split}$$

Example: m-CFGs in ACG (cont)

Parsing

$$\begin{array}{c} \text{aabbccdd} \in ?\mathcal{L}_{2} \iff \exists ?u \in \mathcal{L}_{1}.\hat{\theta}(u) = \text{aabbccdd} \\ \\ \frac{\text{R}_{2}: A \multimap A}{\text{R}_{2}: A \multimap A} \frac{\text{R}_{3}: A}{\text{R}_{2}\text{R}_{3}: A} \multimap E} ^{- \wp E} \\ \frac{\text{R}_{1}: A \multimap S}{\text{H}_{1}\left(\text{R}_{2}\left(\text{R}_{2}\text{R}_{3}\right)\right): S} ^{- \wp E} \end{aligned}$$

$$\theta(R_2)\theta(R_3) = \lambda pq.(p \ \lambda xy.(q \ (a+x+b) \ (c+y+d))) \ \lambda t.(t \ \epsilon \ \epsilon)$$

$$\stackrel{\beta}{\leadsto} \lambda q.(\lambda t.(t \ \epsilon \ \epsilon) \ \lambda xy.(q \ (a+x+b) \ (c+y+d)))$$

$$\stackrel{\beta}{\leadsto} \lambda q.(\lambda xy.(q \ (a+x+b) \ (c+y+d)) \ \epsilon \ \epsilon)$$

$$\stackrel{\beta}{\leadsto} \lambda q.(q \ (a+\epsilon+b) \ (c+\epsilon+d)) \stackrel{\beta}{\leadsto} \lambda q.(q \ ab \ cd)$$

Example: m-CFGs in ACG (cont)

Parsing

$$\begin{array}{ccc} \mathtt{aabbccdd} \in ?\mathcal{L}_2 & \Leftrightarrow & \exists ?u \in \mathcal{L}_1. \hat{\theta}(u) = \mathtt{aabbccdd} \\ & & \\ \frac{\mathrm{R}_2 : A \multimap A}{\mathrm{R}_2 : A \multimap A} \frac{\mathrm{R}_2 : A \multimap A}{\mathrm{R}_2 \mathrm{R}_3 : A} \frac{\mathrm{R}_3 : A}{\multimap E} \multimap E \\ & & \\ \frac{\mathrm{R}_1 : A \multimap S}{\vdash \mathrm{R}_1 \left(\mathrm{R}_2 \left(\mathrm{R}_2 \mathrm{R}_3\right)\right) : S} \multimap E \end{array}$$

$$\theta(R_2)\theta(R_3) = \lambda pq.(p \ \lambda xy.(q \ (a+x+b) \ (c+y+d))) \ \lambda t.(t \ \epsilon \ \epsilon)$$

$$\stackrel{\beta}{\leadsto} \lambda q.(\lambda t.(t \ \epsilon \ \epsilon) \ \lambda xy.(q \ (a+x+b) \ (c+y+d)))$$

$$\stackrel{\beta}{\leadsto} \lambda q.(\lambda xy.(q \ (a+x+b) \ (c+y+d)) \ \epsilon \ \epsilon)$$

$$\stackrel{\beta}{\leadsto} \lambda q.(q \ (a+\epsilon+b) \ (c+\epsilon+d)) \stackrel{\beta}{\leadsto} \lambda q.(q \ ab \ cd)$$

$$\theta(R_2)(\theta(R_2)\theta(R_3)) = \lambda fg.(f \ \lambda xy.(g \ a+x+b) \ (c+y+d))) \ \lambda q.(q \ ab \ cd)$$

$$\stackrel{\beta}{\leadsto} \lambda g.(\lambda q.(q \ ab \ cd) \ \lambda xy.(g \ (a+x+b) \ (c+y+d))) \ ab \ cd)$$

$$\stackrel{\beta}{\leadsto} \lambda g.(\lambda xy.(g \ (a+x+b) \ (c+y+d))) \ ab \ cd)$$

$$\stackrel{\beta}{\leadsto} \lambda g.(g \ (a+ab+b) \ (c+cd+d)) \stackrel{\beta}{\leadsto} \lambda g.(g \ aabb \ ccdd)$$