Booth's Algorithm (1)

```
6_{\text{ten}} = -2_{\text{ten}} + 8_{\text{ten}}
-0010
0110_{\text{two}} = -0010_{\text{two}} + 1000_{\text{two}}
+1000
```

```
0010<sub>two</sub>
                 \rightarrow 0010x(-0010+0000+1000)
    0110<sub>two</sub>
                         1 in multiplier)
               ft (middle of string of 1s
          add (prior step had last 1)
00001100two
```

Booth's Algorithm (2)

0 1 1 1 1 0

00: no arithmetic operation

10: Subtract multiplicand from the left half of the product

11: no arithmetic operation

01: add multiplicand to the left half of the product

Booth's Algorithm (3)

Example: 2*6 (0010*0110)

Itera- tion	Multi- plicand	Booth's algorithm		
		Step	Product	
0	0010	Initial values	0000 0110 0	
1	0010	1a: 00 ⇒ no operation	0000 0110 0 -	
	0010	2: Shift right Product	0000 00110 .	
2	0010	1c: 10 ⇒ Prod = Prod - Mcand	1110 0011 0	
	0010	2: Shift right Product	1111 00011	
3	0010	1d: 11 ⇒ no operation	1111 0001 1	
	0010	2: Shift right Product	1111 1000 1	
4	0010	1b: 01 ⇒ Prod = Prod + Mcand	0001 1000 1	
	0010	2: Shift right Product	0000 1100 0	

Booth's Algorithm (4)

Example: 2*(-3) (0010*1101)

Iteration	Step	Multiplicand	Product
0	Initial values	0010	0000 1101 0
1	1c: 10 ⇒ Prod = Prod – Mcand	0010	1110 1101 0
	2: Shift right Product	0010	1111 0110 1)
2	1b: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
	2: Shift right Product	0010	0000 101(10)
3	1c: 10 ⇒ Prod = Prod – Mcand	0010	1110 1011 0
	2: Shift right Product	0010	1111 010(11)
4	1d: 11 ⇒ no operation	0010	1111 0101 1
De-4 - 1	2: Shift right Product	0010	1111 1010 1

Booth Algorithm's exercises

Ex 1: 2x7 (0010x0111)

Ex 2: (-6)x(-5) (1010x1011)