Exercices

Alexandre Guillemot

9 octobre 2022

Exercice 10, feuille 2

Avant de résoudre les questions, il faut prouver que C est bien une variété algébrique, i.e. $Y^2 - X(X-1)(X-a)$ est irréductible (car dans ce cas $I(C) = \sqrt{(Y^2 - X(X-1)(X-a))}$ sera un idéal premier). Pour cela, utilisons le résultat suivant :

Lemme 0.1. Soit A un anneau commutatif, et $a \in A$. Alors le polynôme $X^2 - a \in A[X]$ est irréductible si et seulement si a est un carré dans A.

Démonstration.

Si a est un carré, disons $a=b^2$ avec $b\in A$, alors $X^2-a=(X-b)(X+b)$ et donc X^2-a est réductible.

Supposons maintenant que X^2-a est réductible, écrivons $X^2-a=PQ$ avec $P,Q\in A[X]$ qui ne sont pas des unités dans A. Alors 3 cas se présentent :

- 1. deg P = 0, deg Q = 2, écrivons $P = \lambda_1 X^2 + \lambda_2 X + \lambda_3$, et $Q = \lambda$. Alors $\lambda \lambda_1 = 1$ donc λ est inversible dans A, absurde.
- 2. $\deg P = 2$, $\deg Q = 0$, c'est le même cas que dans le point précédent.
- 3. $\deg P = \deg Q = 1$: écrivons $P = \lambda_1 X + \lambda_2$, $Q = \lambda_3 X + \lambda_4$. Comme $\lambda_1 \lambda_2 = 1$, on peut se ramener au cas où $\lambda_1 = \lambda_2 = 1$. Mais alors on dispose des équations $\lambda_2 + \lambda_4 = 0$ et $\lambda_2 \lambda_4 = -a$, d'où $a = \lambda_2^2$ est bien un carré dans A.

Maintenant considérons f comme un élément de k[X][Y], alors par analyse de degré en X on remarque que X(X-1)(X-a) n'est pas un carré dans k[X], et ainsi par le lemme précédent f est irréductible dans k[X][Y] = k[X,Y].

1. Comme k est algébriquement clos et f est irréductible,

$$K[V] = k[X,Y]/I(C) = k[X,Y]/I(V(f)) = k[X,Y]/\sqrt{(f)} = k[X,Y]/(f) =: k[x,y]$$
 où $x = [X], y = [Y] \in k[X,Y]/(f)$ (et donc $y^2 = x(x-1)(x-a)$).

Exercice 6, feuille 3

Si deux variétés sont isomorphes, alors leurs algèbres de fonctions régulières sont isomorphes. La dimension d'une variété étant égale à la dimension de Krull de leurs algèbres de fonctions régulières, deux variétés isomorphes sont de même dimension. Pour terminer l'exercice, considérons les isomorphismes

$$\begin{array}{ccc} \mathbb{A}^1 & \to & V(X-Y) \subseteq \mathbb{A}^2 \\ x & \mapsto & (x,x) \end{array}$$

$$\begin{array}{ccc} \mathbb{A}^2 & \to & V(X-Y) \subseteq \mathbb{A}^3 \\ (x,y) & \mapsto & (x,x,y) \end{array}$$

Ainsi $V(X-Y)\subseteq \mathbb{A}^2$ est de dimension 1, alors que $V(X-Y)\subseteq \mathbb{A}^3$ est de dimension 2.

Exercice 7, feuille 3

1. Première méthode : si le corps k est infini, on a déja bu on a déja vu dans un exercice précédent que $V(X^2-Y,Y^2-Z)=\{(t,t^2,t^4)\in\mathbb{A}^3\mid t\in k\}$ et $I(V(X^2-Y,Y^2-Z))=(X^2-Y,Y^2-Z)$. Ainsi considérons l'application

$$\varphi \quad \mathbb{A}^3 \quad \to \quad \mathbb{A}^2$$

$$(x, y, z) \quad \mapsto \quad (x^2 - y, y^2 - z)$$

sa jacobienne en $(x, y, z) \in \mathbb{A}^3$ est donné par

$$\begin{bmatrix} 2x & -1 & 0 \\ 0 & 2y & -1 \end{bmatrix}$$

Maintenant soit $(x, y, z) \in V(X^2 - Y, Y^2 - Z)$, alors $\exists t \in k \text{ tq } (x, y, z) = (t, t^2, t^4)$. Mais alors