

TEST REPORT For FCC

Test Report No.	:TK-FR10010	
Date of Issue	: 04/06/2010	
Description of Product	: 2.4GHz Radio Contro	ol .
Model No.	: RP24RA9D	
Applicant		pia II #144-5 Sangdaewon-dong, nam-si,Gyeonhgi-do
Manufacturer		a II #144-5 Sangdaewon-dong, mam-si,Gyeonhgi-do
Standards	: FCC Part 15 Subpart	C §15.247
Test Date	: 03/23/2010 ~ 04/06/	/2010
Test Results	: ⊠ PASS	☐ FAIL
The test results relate only	to the items tested.	
Tested by: Kyu-Chul Shin		Reviewed by: KT Kang
Test Engineer Date:04/06/2010)	Technical Manager Date: 04/06/2010

THRU-KES CO.,LTD.

477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test Report No.: TK-FR10010 Page 1 of 28

TABLE OF CONTENTS

1.0	Ger	neral Product Description	3
1.1	Tes	ted Frequency	
1.2	Mod	neral Product Description	4
1.3	Dev	vice Modifications	4
1.4	Per	ipheral Devices	4
1.5	Cal	ibration Details of Equipment Used for Measurement	5
1.6	Tes	t Facility(4769B-1)	5
2.0	Sur	mmary of tests	6
2.1	Technica	al Characteristic Test	
	2.1.1	6dB Bandwidth - 15.247(a)	7
	2.1.2	Maximum peak Conducted Output Power-15.247(b)	10
	2.1.3	Power Spectral Density-15.247(e)	13
	2.1.4	Band - edge -15.247(d)	16
	2.1.5	Field Strength of Emissions 15.209	21
	2.1.6	AC Conducted Emissions 15.207	
APP	ENDIX A	A – Test Equipment Used For Tests	27

1.0 General Product Description

Equipment model name : RP24RA9D

Serial number : Prototype

EUT condition : Pre-production, not damaged

Antenna type : Wire antenna Gain 1.83dBi

Frequency Range : 2405MHz ~ 2480MHz

RF output power : -9.12 dBm Peak Conducted

Number of channels : 76

Channel Spacing : 1 MHz

Power Source : DC 4.6V

1.1 Tested Frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2440	2480

1.2 Model Differences

Not applicable

1.3 Device Modifications

The following modifications were necessary for compliance: Not applicable

1.4 Peripheral Devices

Device	Manufacturer	Model No.	Serial No.	FCC ID or DoC
EUT	Nextlink Co., Ltd.	RP24RA9D		_
Notebook	FUJITSU LIMITED	S6120	-	DoC
DC Power Supply	HAN YOUNG ELECT. CO.	HYP-3010D	-	-

Test Report No.: TK-FR10010 Page 4 of 28

1.5 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

1.6 Test Facility

THRU-KES Co.,Ltd. (Test Site # : 343818) 477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do,469-803, Korea

Test Report No.: TK-FR10010 Page 5 of 28

2.0 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Output Power	< 1Watt		С
15.247(d)	Conducted Spurious emission	> 20 dBc	Conducted	С
15.247(d)	Band Edge	> 20 dBc		С
15.247(e)	Transmitter Power Spectral	< 8dBm @ 3kHz		С
	Density			С
15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.207	AC Conducted Emissions	EN 55022	Line Conducted	NA

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

- FCC Part 15.247, ANSI C63.4-2003

2.1 Technical Characteristic Test

2.1.1 6dB Bandwidth - 15.247(a)

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 40 MHz VBW = 100 kHz (VBW \geq RBW) Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Frequency	Test Results	
(MHz)	Measured Bandwidth (MHz)	Result
2405	1.621	Complies
2440	1.664	Complies
2480	1.635	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

See next pages for actual measured spectrum plots.

Test Report No.: TK-FR10010 Page 7 of 28

Test Report No.: TK-FR10010 Page 8 of 28

Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

This Report shall not be reproduced except in full without the written approval of THRU KES CO.,LTD.

2.1.2 Maximum peak Conducted Output Power-15.247(b)

Test Location

RF Test Room

Test Procedures

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Limit

< 1 W

Test Results

Frequency (MHz)	Channel No.	Peak output power(dBm)	Limit	Result
2405	Low	-9.83	30dBm	Complies
2440	Middle	-9.71	30dBm	Complies
2480	High	-9.12	30dBm	Complies

See next pages for actual measured spectrum plots.

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

Peak Conducted Output Power

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd. Page 11 of 28

Peak Conducted Output Power

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd. Page 12 of 28

2.1.3 Power Spectral Density-15.247(e)

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHz $VBW = (VBW \ge RBW)$

Sweep = 100KHz(Span/3KHz) Span = 300 KHz Detector function = peak Trace = max hold

Measurement Data:

Frequency (MHz)	Ch.	Test Results		
		dBm	Result	
2405	Low	-23.48	Complies	
2440	Middle	-21.86	Complies	
2480	High	-22.68	Complies	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density	< 8dBm @ 3kHz BW
------------------------	------------------

See next pages for actual measured spectrum plots.

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

Power Density Measurement

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd. Page 14 of 28

Test Report No.: TK-FR10010 Page 15 of 28

2.1.4 Band - edge -15.247(d)

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

See next pages for actual measured spectrum plots.

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

Band-edge Measurements

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd. Page 17 of 28

Band – edge (at 20 dB blow) – Low channel Frequency Range = 30 MHz ~ 10th harmonic

Test Report No.: TK-FR10010 Page 18 of 28

Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

This Report shall not be reproduced except in full without the written approval of THRU KES CO.,LTD.

Band – edge (at 20 dB blow) – Mid channel Frequency Range = 30 MHz ~ 10th harmonic

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

Band – edge (at 20 dB blow) – High channel Frequency Range = 30 MHz ~ 10th harmonic

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd.

This Report shall not be reproduced except in full without the written approval of THRU KES CO.,LTD.

2.1.5 Field Strength of Emissions 15.209

Test Location

☐ Testing was performed at a test distance of 3 meter Open Area Test Site

Test Procedures

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity. The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

Below 1GHz:

RBW=100KHz/VBW=300KHz/Sweep=AUTO

Above 1GHz:

(a) PEAK:RBW=VBW=1MHz/Sweep=AUTO

(b) AVERAGE:RBW=1MHz/VBW=10Hz/Sweep=AUTO

Limit

- 15.209(a)

Frequency(MHz)	Field Strength uV/m@3m	Field Strength dBuV/m@3m
30-88	100**	40
88-216	150**	43.5
216-960	200**	46
Above 960	500	54

^{**} Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Test Report No.: TK-FR10010 Page 21 of 28

EUT	2.4GHz Radio Control	Measurement Detail	
Model	RP24RA9D	Frequency Range	Below 1000MHz
Channel	-	Detector function	Quasi-Peak

-Operation mode

By preliminary testing and verifying three axis(X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the test was executed the worst condition and test data were recorded in his report

No	Emission Frequency (MHz)	Meter Reading dBuV/m	Ant. Polaritry	Correction Factor dB	Cable Loss dB	Field Strength (dBuv/m)	Margin (dBuv)	Limit (dBuv/m)
	No emi	ssions were	e detected a	t a level gre	eater th	an 20dB b	elow limit	

Test Report No.: TK-FR10010 Page 22 of 28

EUT	2.4GHz Radio Control	Measurement Detail		
Model	RP24RA9D	Frequency Range	1 ~ 25GHz	
Channel	Low	Detector function	Peak(PK) , Average(AV)	

-Operation mode

By preliminary testing and verifying three axis(X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the test was executed the worst condition and test data were recorded in his report

Frequency (MHz)	Reading (dBuV) P/A	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m) P/A	Limits (dBuV/m) P/A	Margin (dB) P/A
4808.97	56.23/49.91	45.97	39.1	49.36/43.04	74/54	24.64/10.96

Remark: 1. Corrected Level = Reading - Preamp + Correction Factor

2. Correction Factor = Antenna Factor + Cable Loss

3. Margin value = Limits - Corrected Level

Restricted band edge test data

Measured frequency range: 2310-2390 MHz, 2483.5-2500 MHz

Frequency (MHz)	Reading (dBuV)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Det. Mode
No	o emissions v	were detect	ed at a level g	reater than 20	OdB below I	imit.	

Test Report No.: TK-FR10010 Page 23 of 28

EUT	2.4GHz Radio Control	Measurement Detail		
Model	RP24RA9D	Frequency Range	1 ~ 25GHz	
Channel	Mid	Detector function	Peak(PK) , Average(AV)	

-Operation mode

By preliminary testing and verifying three axis(X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the test was executed the worst condition and test data were recorded in his report

Frequency (MHz)	Reading (dBuV) P/A	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m) P/A	Limits (dBuV/m) P/A	Margin (dB) P/A
4882.02	52.22/44.86	45.97	39.1	45.35/37.99	74/54	28.65/16.01

Remark: 1. Corrected Level = Reading - Preamp + Correction Factor

2. Correction Factor = Antenna Factor + Cable Loss

3. Margin value = Limits - Corrected Level

Restricted band edge test data

Measured frequency range: 2310-2390 MHz, 2483.5-2500 MHz

Frequency (MHz)	Reading (dBuV)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Det. Mode
No	emissions v	were detect	ted at a level g	reater than 20	OdB below I	imit.	

Test Report No.: TK-FR10010 Page 24 of 28

EUT	2.4GHz Radio Control	Measurement Detail	
Model	RP24RA9D	Frequency Range 1 ~ 25GHz	
Channel	High	Detector function	Peak(PK) , Average(AV)

-Operation mode

By preliminary testing and verifying three axis(X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the test was executed the worst condition and test data were recorded in his report

Frequency (MHz)	Reading (dBuV) P/A	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m) P/A	Limits (dBuV/m) P/A	Margin (dB) P/A
4962.46	61.97/41.27	45.97	39.1	55.10/34.40	74/54	18.90/19.60

Remark: 1. Corrected Level = Reading - Preamp + Correction Factor

2. Correction Factor = Antenna Factor + Cable Loss

3. Margin value = Limits - Corrected Level

Restricted band edge test data

Measured frequency range: 2310-2390 MHz, 2483.5-2500 MHz

Frequency (MHz)	Reading (dBuV)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Det. Mode
No	o emissions v	were detect	ed at a level g	reater than 20	OdB below I	imit.	

Test Report No.: TK-FR10010 Page 25 of 28

2.1.6 AC Conducted Emissions 15.207

Test Location

Shielded Room

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

- 15.207(a)

101-01 (0)	101207 (4)							
Frequency	Conducted Limit (dBuV)							
(MHz)	Quasi-peak	Average						
0.15 ~ 0.5	66 to 56*	56 to 46*						
0.5 ~ 5	56	46						
5 ~ 30	60	50						

^{*} Decreases with the logarithm of the frequency.

Test Results

The requirements are:

Complies			
Frequency (MHz)	Measured Data (dBuV/m)	Margin (dB)	Remark
-	1	-	-

Not Applicable

Test Report No.: TK-FR10010 Page 26 of 28

APPENDIX A – Test Equipment Used For Tests

No	Description	Manufacturer	Model No.	Serial No.	Due Cal.
1	Test Receiver	Rohde & Schwarz	ESHS 10	862970/018	2010.06.1
2	Test Receiver	Rohde & Schwarz	ESVS 10	826008/014	2010.05.2
3	Spectrum Analyzer	Hewlett Packard	8566B	2311A02394	2010.05.1
4	Spectrum Analyzer	Rohde & Schwarz	FSP13	100130	2010.05.1
5	Modulation Analyzer	Hewlett Packard	8901B	3438A05094	2010.05.1
6	Audio analyzer	Hewlett Packard	8903B	3011A12915	2010.05.1
7	Preamplifer	Hewlett Packard	8447F	2805A02570	2010.05.1
8	Preamplifer	A.H. Systems	PAM-0118	164	2010.04.1
9	Signal Generator	Hewlett Packard	8673D	2708A00448	2010.05.1
10	Power Meter	Hewlett Packard	437B	312U24787	2010.04.2
11	Power Sensor	Hewlett Packard	8482B	3318A06943	2010.05.1
12	Loop Antenna	Rohde & Schwarz	HFH2-Z2.335.4711.52	826532/006	2011.02.0
13	Dipole Antenna	Rohde & Schwarz	VHAP	574	2010.07.0
14	Dipole Antenna	Rohde & Schwarz	VHAP	575	2010.07.1
15	Dipole Antenna	Rohde & Schwarz	UHAP	545	2010.07.1
16	Dipole Antenna	Rohde & Schwarz	UHAP	546	2010.07.0
17	Biconical Antenna	Eaton Corp.	94455-1	0977	2010.07.0
18	Biconical Antenna	EMCO	3104C	9111-2468	2010.07.0
19	Log Periodic Antenna	EMCO	3146	2051	2010.06.0
20	Log Periodic Antenna	EMCO	3146	8901-2320	2010.07.0
21	Horn Antenna	A.H. Systems	SAS-571	414	2011.03.1
22	LISN	EMCO	3810/2	2228	2010.05.1
23	Waveform Generator	Hewlett Packard	33120A	US34001190	2010.05.1
24	Digital Oscilloscope	Tektronix	TDS 340A	B012287	2010.05.1
25	Dummy Load	Bird Electronics	8251	11511	2010.04.1

Test Report No.: TK-FR10010 Page 27 of 28

Test Setup Photos and Configuration

Radiated Electric Field Emissions

Test Report No.: TK-FR10010 Model No: RP24RA9D Applicant: Nextlink Co., Ltd. Page 28 of 28

This Report shall not be reproduced except in full without the written approval of THRU KES CO.,LTD.