Energie et puissance

Puissance moyenne

$$P(t_1, t_2) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt$$
 W

Signaux à énergie finie

Les signaux périodiques ont forcément une énergie infinie

Périodicité discréte

Lorsqu'un signal continu x(t) de pulsation $\omega = 2\pi f$ est échantilloné dans un signal x[n] à une pulsation $\Omega = 2\pi F_s$, on ne peut pas forcément détecter sa pulsation d'origine.

$$\frac{2\pi k}{N} = \Omega_0$$

Opération élementaire sur les signaux discret

décalage à gauche (le graph part à x[n-1] Z^{-1} droite)

décalage à droite (le graph part à x[n+1] Z^{+1} gauche)

TITRE