Batch	Agent1	Agent2
1	7.7	8.5
2	9.2	9.6
3	6.8	6.4
4	9.5	9.8
5	8.7	9.3
6	6.9	7.6
7	7.5	8.2
8	7.1	7.7
9	8.7	9.4
10	9.4	8.9
11	9.4	9.7
12	8.1	9.1

	Agent1	Agent2
Mean	8.2500	8.6833
Variance	1.0591	1.0779
Observations	12.0000	12.0000
Pearson Correlation	0.9011	
Hypothesized Mean Difference	-	
df	11.0000	
t Stat	- 3.2639	
P(T<=t) one-tail	0.0038	
t Critical one-tail	1.7959	
P(T<=t) two-tail	0.0075	
t Critical two-tail	2.2010	

Mean Difference - 0.43

TWO-TAIL TEST INTERPRETATION

The "P(T <= t) two-tail" value is given as 0.0075. This is significant at the 1% level Sample mean for Agent1 is 8.25, for Agent2 is 8.68

The mean difference between Agent1 and Agent2 is -0.43 in favour of Agent1

To determine whether the null hypothesis

I compare the t-Stat with the critical value

- Critical value for two-tail is: 2.2010 left and right
- ${f t-Stat}$ falls below -2.2010 therefore the null-hypothesis can be rejected, OR

I compare the "P(T <= t) two-tail"

- P(T <= t) two-tail is 0.0075 which is less than 0.05 therefore the null hypothesis can be rejected

ONE-TAIL TEST INTERPRETATION

t Stat	-	3.2639
P(T<=t) one-tail		0.0038
t Critical one-tail		1.7959

The t Stat (-3.2639) falls well beyond the t-Critical (left) of (-1.7959). Therefore according to the data, we must reject the null hypothesis.

The t-Stat is negative therefore the one-tail p-value is for the LEFT tail and we must check for LESS THAN

"P(T \leq t) one tail" (0.0038) is LESS THAN 0.05 which confirms to reject the null hypothesis.

If the t-Stat was a POSITIVE value (+3.2639):

We take the *complement* of the one-tail which yields $1 - P(T \le t)$ one tail (0.0038) = 0.9962

0.9962 GREATER THAN 0.05, therefore we accept the hypothesis in relation to Agent 1