1609. Even Odd Tree

Solved •

A binary tree is named **Even-Odd** if it meets the following conditions:

- The root of the binary tree is at level index 0, its children are at level index 1, their children are at level index 2, etc.
- For every even-indexed level, all nodes at the level have odd integer values in strictly increasing order (from left to right).
- For every **odd-indexed** level, all nodes at the level have **even** integer values in **strictly decreasing** order (from left to right).

Given the root of a binary tree, return true if the binary tree is **Even-Odd**, otherwise return false.

Example 1:

Input: root = [1,10,4,3,null,7,9,12,8,6,null,null,2]

Output: true

Explanation: The node values on each level are:

Level 0: [1] Level 1: [10,4] Level 2: [3,7,9] Level 3: [12,8,6,2]

Since levels 0 and 2 are all odd and increasing and levels 1 and 3 are all even and decreasing, the tree is Even-Odd.

Example 2:

Input: root = [5,4,2,3,3,7]

Output: false

Explanation: The node values on each level are:

Level 0: [5] Level 1: [4,2] Level 2: [3,3,7]

Node values in level 2 must be in strictly increasing order, so the tree is not Even-Odd.

Example 3:

Input: root = [5,9,1,3,5,7]

Output: false

Explanation: Node values in the level 1 should be even integers.

Constraints:

• The number of nodes in the tree is in the range [1, 10⁵].

• 1 <= Node.val <= 10⁶

Seen this question in a real interview before? 1/4

Yes No			
Accepted 147.4K	Submissions 224.3K	Acceptance Rate 65.7%	
Topics			~
Companies			~
Hint 1			~
Discussion (92)			V

Copyright © 2024 LeetCode All rights reserved