

MLT2

Deep Learning: concepts, algorithms & use cases

Julien Simon
Global Evangelist, AI & Machine Learning
Amazon Web Services

@julsimon

What to expect

An introduction to Deep Learning theory

Neurons & Neural Networks

The Training Process

Backpropagation

Optimizers

Common network architectures and use cases

Convolutional Neural Networks

Recurrent Neural Networks

Long Short Term Memory Networks

Generative Adversarial Networks

Getting started

An introduction to Deep Learning theory

The neuron

$$\sum_{i=1}^{l} x_i * wi + b = u$$

Activation functions

Source: Wikipedia

Neural networks

Building a simple classifier

Neural networks Building a simple classifier

Accuracy

Total number of predictions

Neural networks Building a simple classifier

Initially, the network will not predict correctly $f(X_1) = Y'_1$

A loss function measures the difference between the real label Y_1 and the predicted label Y'_1 error = loss(Y_1 , Y'_1)

For a batch of samples:

batch size

$$\sum_{i=1}^{\infty} loss(Y_{i,} Y'_{i}) = batch error$$

The purpose of the training process is to minimize error by gradually adjusting weights.

Mini-batch Training

Training data set

Forward propagation

Trained neural network

Batch size
Learning rate
Number of
epochs

Hyper parameters

Validation

Validation data set (also called dev set)

Neural network in training

Prediction at the end of each epoch

This data set must have the same distribution as real-life samples, or else validation accuracy won't reflect real-life accuracy.

Test

This data set must have the same distribution as real-life samples, or else test accuracy won't reflect real-life accuracy.

Stochastic Gradient Descent (1951)

Imagine you stand on top of a mountain (...). You want to get down to the valley as quickly as possible, but there is fog and you can only see your immediate surroundings. How can you get down the mountain as quickly as possible?

You look around and identify the steepest path down, go down that path for a bit, again look around and find the new steepest path, go down that path, and repeat—this is exactly what gradient descent does.

Tim Dettmers, University of Lugano, 2015

The « step size » depends on the learning rate

Finding the slope with Derivatives

End-to-end example of computing backpropagation with partial derivatives:

https://mattmazur.com/2015/03/17/a-step-by-stepackpropagation-example

all possible partial derivatives of f.

Local minima and saddle points

Local optima in neural networks

« Do neural networks enter and escape a series of local minima? Do they move at varying speed as they approach and then pass a variety of saddle points? Answering these questions definitively is difficult, but we present evidence strongly suggesting that the answer to all of these questions is no. »

« Qualitatively characterizing neural network optimization problems », Goodfellow et al, 2015 https://arxiv.org/abs/1412.6544

c. or its affiliates. All rights reserved.

Optimizers

SGD works remarkably well and is still widely used.

Adaptative optimizers use a variable learning rate.

Some even use a learning rate per dimension (Adam).

Summing things up

« Deep Learning ultimately is about finding a minimum that generalizes well, with bonus points for finding one fast and reliably », Sebastian Ruder

Demo

Common network architectures and use cases

Fully Connected Networks are nice, but...

What if we need lots of layers in order to extract complex features?

The number of parameters increases very quickly with the number of layers Overfitting is a constant problem

What about large data?

256x256 images = 65,535 input neurons?

What about 2D/3D data? Won't we lose lots of info by flattening it? Images, videos, etc.

What about sequential data, where the order of samples is important?

Translating text

Predicting time series

Convolutional Neural Networks

The convolution operation

Source: Theano documentation

Extracting features with convolution

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Source: http://timdettmers.com

Convolution extracts features automatically.

Kernel parameters are learned during the training

Downsampling images with pooling

Pooling shrinks images while preserving significant information.

Convolutional Neural Networks (CNN) Le Cun, 1998: handwritten digit recognition, 32x32 pixels

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/

Demo

Classification, detection, segmentation

[electric_guitar], with probability 0.671

Demo

Image Inpainting

Detectron2

https://github.com/facebookresearch/detectron2 November 2019

Demo

Recurrent Neural Networks

Recurrent Neural Networks (RNN)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks (RNN)

Long Short Term Memory Networks (LSTM)

Hochreiter and Schmidhuber, 1997

- A LSTM neuron computes the output based on the input and a previous state
- LSTM neurons have « short-term memory »
- They do a better job than RNN at predicting longer sequences of data (i.e. hundreds of steps)
- Gated Recurrent Units aka GRU (Cho et al. 2014) are easier to train, and just as efficient.

Generative Adversarial Networks

Generative Adversarial Networks

Goodfellow, 2014 https://arxiv.org/abs/1406.2661

https://medium.com/@julsimon/generative-adversarial-networks-on-apache-mxnet-part-1-b6d39e6b5df1

GAN: Welcome to the (un)real world, Neo

Generating new "celebrity" faces https://
github.com/tkarras/progressive growing of gans
April 2018

From semantic map to 2048x1024 picture https://tcwang0509.github.io/pix2pixHD/
November 2017

More face generation with GANs

Controlled Image Generation with TL-GAN https://github.com/SummitKwan/transparent latent gan October 2018

Applying the style of a face to another face https://www.youtube.com/watch?v=kSLJriaOumA
March 2019

GAN: Everybody dance now

https://arxiv.org/abs/1808.07371 https://www.youtube.com/watch?v=PCBTZh41Ris August 2018

DEV DAY

Getting started

Resources

https://aws.training/machinelearning

https://deeplearning.ai

https://fast.ai

http://www.deeplearningbook.org/

https://d2l.ai/

https://gluon.mxnet.io

https://keras.io

https://gitlab.com/juliensimon/dlnotebooks

DEV DAY

Thank you!

DEV DAY

Appendix – Apache MXNet demos

Demo – Image classification: using a pre-trained model

```
*** VGG16
[(0.46811387, 'n04296562 stage'), (0.24333163,
'n03272010 electric guitar'), (0.045918692, 'n02231487
walking stick, walkingstick, stick insect'),
(0.03316205, 'n04286575 spotlight, spot'),
(0.021694135, 'n03691459 loudspeaker, speaker, speaker
unit, loudspeaker system, speaker system')]
*** ResNet-152
[(0.8726753, 'n04296562 stage'), (0.046159592,
'n03272010 electric guitar'), (0.041658506, 'n03759954
microphone, mike'), (0.018624334, 'n04286575 spotlight,
spot'), (0.0058045341, 'n02676566 acoustic quitar')]
*** Inception v3
[(0.44991142, 'n04296562 stage'), (0.43065304,
'n03272010 electric quitar'), (0.067580454, 'n04456115
torch'), (0.012423956, 'n02676566 acoustic guitar'),
(0.0093934005, 'n03250847 drumstick')]
```


Demo – Image classification: fine-tuning a model

CIFAR-10 data set

60,000 images in 10 classes 32x32 color images

Initial training

Resnet-50 CNN 200 epochs

82.12% validation

Cars vs. horses

88.8% validation accuracy

Demo – Image classification: fine-tuning a model

Freezing all layers but the last one Fine-tuning on « cars vs. horses » for 10 epochs 2 minutes on 1 GPU 98.8% validation accuracy

Demo – Image classification: learning from scratch

MNIST data set 70,000 hand-written digits 28x28 grayscale images

Multi-Layer Perceptron vs. Handmade-Digits-From-Hell™ 784/128/64/10, Relu, AdaGrad, 100 epochs → 97.51% validation accuracy

0		2	3	4	5	6	7	8	9
[[0.839 [[0.006 [[0.006 [[0.001 [[0.001 [[0.001 [[0.001	0.034 0.988 0.01 0.001 0.001 0.008 0.008	0.039 0.001 0.95 0. 0.005 0. 0.019 0.098 0.006 0.007	0.009 0.003 0.029 1. 0.001 0.078 0. 0.033 0.	0. 0.001 0. 0. 0.982 0. 0.005 0.	0.008 0.001 0.001 0.001 0.911 0.004 0.	0.066 0.002 0.004 0. 0. 0.01 0.863 0. 0.002	0.002 0.003 0. 0. 0. 0.007 0. 0. 0.852 0. 0.239	0. 0.001 0. 0. 0. 0. 0.105 0.004 0.991 0.17	<pre>0.004]] 0.002]] 0.]] 0.]] 0.002]] 0.]] 0.004]] 0.004]] 0.]]</pre>

LeNet vs. Handmade-Digits-From-Hell™ ReLu instead of tanh, 20 epochs, AdaGrad → 99.20% validation accuracy

\circ		$ \partial$	5	12	+ ͺ	51	6	7	
[[1.	0.	0.	0.	0.	0.	0.	0.	0.	0.]]
[[0.	1.	0.	0.	0.	0.	0.	0.	0.	0.]]
[[0.	0.	1.	0.	0.	0.	0.	0.	0.	0.]]
[[0.	0.	0.	1.	0.	0.	0.	0.	0.	0.]]
[[0.	0.	0.001	0.	0.998	0.	0.	0.001	0.	0.]]
[[0.	0.	0.	0.	0.	1.	0.	0.	0.	0.]]
[[0.	0.	0.	0.	0.	0.	1.	0.	0.	0.]]
[[0.	0.	0.	0.001	0.	0.	0.	0.999	0.	0.]]
[[0.	0.	0.006	0.	0.	0.	0.	0.	0.994	0.]]
[[0.	0.	0.	0.001	0.001	0.	0.	0.001	0.001	0.996]]

