Modelare și Simulare Proiect

Etapa 3

Student: Baciu Claudia-Iuliana

Grupa: 1310A

Profesor îndrumător: Petru Cașcaval

Număr proiect: 4

An universitar: 2021-2022

Program de simulare pentru problema de interferență în condițiile în care sistemele sunt prevăzute cu modul de rezervă

1. Stabilirea modulului la care se adaugă rezerva

Scăderea disponibilității este o consecință a suprapunerii efectelor celor două cauze independente de întrerupere accidentală. Pentru a obține o disponibilitate mai ridicată, se adaugă o rezervă identică cu modulul de bază acolo unde întreruperile accidentale afectează într-o măsură mai mare disponibilitatea sistemului. Pentru stabilirea modulului la care se adaugă o rezervă trebuie avută în vedere atât frecvența întreruperilor cât și timpul mediu de remediere. Așa cum se cunoaște, pentru modelul primar în care nu intervine fenomenul de interferență, disponibilitatea este dată de relația

$$D = 1/(1 + \lambda A/\mu A + \lambda B/\mu B) \cdot 100 (\%)$$

Relația de calcul evidențiază explicit influența fiecărei cauze de întrerupere accidentală asupra disponibilității sistemului. Pe baza acestei relații se deduce că în ceea ce privește disponibilitatea este mai bine ca rezerva să se adauge la modulul pentru care raportul $\lambda\mu$ este mai mare.

2. Algoritmul de simulare

➤ O analiză preliminară

La un modul prevăzut cu rezervă, în cazul unei întreruperi accidentale rezerva înlocuiește modulul afectat asigurându-se astfel continuarea funcționării sistemului. Este de dorit ca remedierea modulului defect să se facă înaintea apariției unei noi întreruperi pentru a readuce sistemul la starea de toleranță de la început. Ca urmare, la această problemă de interferență nu orice întrerupere duce și la oprirea sistemului. De asemenea, nu orice remediere permite repornirea sistemului. În aceste condiții, algoritmul de simulare trebuie să urmărească explicit schimbările de stare din sistem, pentru ca la apariția unei întreruperi să se poată stabili dacă sistemul se oprește sau își continuă funcționarea cu modulul de rezervă, și dacă după remedierea unui modul afectat de întrerupere sistemul poate fi repus în funcțiune sau nu.

- ➤ Semnificația mărimilor folosie în algoritmul de simulare:
- St[i], $i = 1 \div S$ starea sistemului i: în funcțiune (F) sau oprit (O);
- nmf[m][i], m = A sau B, $i = 1 \div S$ numărul modulelor funcționale de tip A sau B la sistemul i (la inițializare se specifică astfel modulul care este prevăzut cu rezervă);
- nf numărul de sisteme în funcțiune la un moment dat;
- nmd numărul de module afectate de întrerupere care necesită remediere, indiferent de tipul lor sau de sistemele de care aparțin;
- Tf[i] timpul de funcționare până la prima întrerupere accidentală la sistemul i, $i = 1 \div S$; locația Tf[i] nu are semnificație când sistemul i este oprit (St[i] = 0);

- Tpd timpul până la prima întrerupere accidentală (defectare) care se va produce, indiferent de tipul modulului afectat sau de sistemul de care aparține; variabila nu are semnificație când nf = 0;
- Tr timpul până la terminarea remedierii în curs; variabila nu are semnificație când nmd = 0:
- sd, md sistemul la care va apărea prima defectare și tipul modulului afectat;
- sr, mr sistemul la care se efectuează o operație de remediere și tipul modulului în curs de remediere.

Statistici:

- *STf* Suma timpilor de funcționare pentru cele *S* sisteme în perioada simulată;
- STr Suma timpilor de lucru pentru operațiile de remediere efectuate de muncitor în perioada simulată;
- Nd Numărul de întreruperi accidentale (defectări) produse în perioada de monitorizare;
- Nr Numărul de remedieri efectuate de muncitor în perioada de simulare.

➤ Precizare:

Pentru început vom considera că modulul de rezervă se menține în stare pasivă, nefiind așadar solicitat cât timp nu este folosit.

Algoritm de simulare pentru problema de interferență în care sistemele sunt prevăzute cu modul de rezervă

3. Verificarea programului de simulare

ightharpoonup Cu inițializarea nmf[A][i]=1, nmf[B][i]=1, $i=1\div S$, se obține o altă implementare pentru problema de interferență a sistemelor fără modul de rezervă, studiată la Etapa 2.

Observație:

Modulele de rezervă sunt menţinute în stare pasivă şi nu sunt afectate de întreruperi cât timp nu sunt folosite. Prin urmare, rata medie de întrerupere accidentală pentru un sistem în funcţiune este tot $\lambda A + \lambda B$ cât era şi la etapa anterioară.

1) Modulul A nu este echipat cu modul de rezervă

S	1	2	3	4	5	6	7	8	9	10	11	12	13
D(%)	90.7329	89.9575	89.0684	88.0638	86.879	85.5273	83.9468	82.1922	80.1225	77.8312	75.2591	72.4448	69.4846
etapa 2													
O(%)	9.26712	18.3777	27.3011	35.9515	44.3774	52.4244	60.0763	67.1312	73.7069	79.492	84.5656	88.8376	92.2108
etapa 2													
D(%)	90.733	89.9554	89.0716	88.0572	86.8766	85.5239	83.9668	82.1686	80.1379	77.821	75.2233	72.4336	69.4434
O(%)	9.26696	18.3806	27.2932	35.9726	44.3757	52.4078	60.032	67.1732	73.6614	79.5082	84.6017	88.8257	92.2254

```
S = 1
D = 90.733
D = 90.76696
Nd = 10000000
Ds * S* (D/100) (lambdaA + lambdaB) = 1.00019e+07
STF *(lambdaA + lambdaB) = 1.00019e+07
STF *(lambdaA + lambdaB) = 9.99828e+06
STF *(lambdaA + lambdaB) = 9.999478e+06
STF *(lambdaA + lambdaB) = 9.99478e+06
STF *(lambdaA + lambdaB) = 9.99478e+06
STF *(lambdaA + lambdaB) = 9.99496e+06
STF *(lambdaA + lambdaB) = 9.99973e+06
STF *(lambdaA + lambdaB) = 9.99998e+06
S
```

Prin similaritatea rezultatelor se demostrează, deci, corectitudinea programului.

2) Modulul A este echipat cu modul de rezervă

S	1	2	3	4	5	6	7	8	9	10	11	12	13
D(%)	90.733	89.9554	89.0716	88.0572	86.8766	85.5239	83.9668	82.1686	80.1379	77.821	75.2233	72.4336	69.4434
Fara rezerva													
O(%)	9.26696	18.3806	27.2932	35.9726	44.3757	52.4078	60.032	67.1732	73.6614	79.5082	84.6017	88.8257	92.2254
Fara rezerva													
D(%)	95.0236	93.3156	92.5984	91.8436	90.9892	89.9832	88.8063	87.4201	85.7269	83.6548	81.1022	77.8678	73.9462
O(%)	9.70822	19.0697	28.4044	37.5348	46.4661	55.1728	63.4983	71.4205	78.8404	85.5031	91.0965	95.4481	98.1959

Concluzie:

În cea de-a doua simulare, în varianta cu rezervă, se observă o creștere a disponibilității sistemului cât și a gradului de ocupare al muncitorului de deservire.

COD SURSĂ:

```
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;
#define lambdaA 0.2105
#define lambdaB 0.1626
#define miuA 3.8533
#define miuB 3.4218
#define pA lambdaA/(lambdaA + lambdaB)
#define pB 1-pA
#define mA 1/miuA
#define mB 1/miuB
#define sigmaA 1/(3.5*miuA)
#define sigmaB 1/(3.5*miuB)
enum Module { A, B };
enum Stare { 0, F };
double genExp(double lambda)
{
       double u, x;
       u = (double)rand() / (RAND_MAX + 1);
       x = -1 / lambda * log(1 - u);
       return x;
}
double genTr(Module m)
       double Tr;
       if (m == A)
       {
             Tr = genExp(miuA);
       }
       else
       {
             Tr = genExp(miuB);
       return Tr;
}
void Simulare(int& S, double& D, double& Oc)
       double NS = 1e+7; //numarul de simulari
       double DS;
       double STr = 0; //suma timpilor de remediere
       double STf = 0; //suma timpilor de functionare
       double ceas = 0; //ceasul simularii
       int Nd = 0; //numarul sistemelor decfectate pe parcursul simularii
       int Nr = 0; //numarul remedierilor efectuate
       int nf = S; //numarul de sisteme in functiune
       int nmd = 0; // numarul modulelor defecte, indiferent de tipul lor si de
sistemele de care apartin
```

```
int nmf[2][100];
       double Tf[100]; //pentru un sistem in functiune, timpul pana la aparitia primei
intreruperi accidentale
       Stare St[100]; //starea sistemului i
       double Tpd; //timpul pana la prima intrerupere accidentala(defectare) la
sistemele aflate in functiune
       int sd;//sistemul la care va aparea prima defectare
       int sr; //sistemul la care se face remedierea;
       Module md; //modulul afectat de aceasta intrerpere accidentala
       Module mr; //modulul de remediat in curs
       double Tr = 0; //timpul pana la terminarea remedierii in curs
       int No = 0; //numarul de sisteme oprite
       for (int i = 1; i <= S; i++)
       {
              //nmf[A][i] = 1;///modulul A este fara modul de rezerva(pentru
verificare etapa II)
              nmf[A][i] = 2;//modulul A este prevazut cu modul de rezerva
              nmf[B][i] = 1;
       for (int i = 1; i <= S; i++)
       {
              St[i] = F;
              Tf[i] = genExp(lambdaA + lambdaB);
       }
       double min = 1e+7;
       int ind;
       for (int i = 1; i <= S; i++)
              if (St[i] == F && Tf[i] < min)</pre>
                     min = Tf[i];
                     ind = i;
              }
       Tpd = min;
       sd = ind;
       //determina modulul afectat de intrerupere
       double u = (double)rand() / RAND_MAX;
       if(u < pA)
       {
              md = A;
       }
       else
       {
              if (u < (pA + pB))
                     md = B;
       do {
              //Determinarea evenimentului urmator
              if (nmd == 0 || ((nf > 0) && Tpd < Tr))</pre>
              {
                     //defectare
                    Nd++;
                     ceas += Tpd;
```

```
if (nmd > 0)
              Tr -= Tpd;
       }
      for (int i = 1; i <= S; i++)
              if (St[i] == F)
                     Tf[i] -= Tpd;
              }
       }
      STf += nf * Tpd;
      nmf[md][sd]--;
      nmd++;
      if (nmf[md][sd] == 0) //oprire sistem
       {
              St[sd] = 0;
              nf--;
              No++;
      }
      else
       {
              if (nmf[md][sd] > 0)
                     Tf[sd] = genExp(lambdaA + lambdaB);
       }
       if (nmd == 1)
       {
              sr = sd;
              mr = md;
              Tr = genTr(mr);
              STr += Tr;
       }
}
else
{
       //remediere
      Nr++;
       ceas += Tr;
       for (int i = 1; i <= S; i++)
              if (St[i] == F)
              {
                     Tf[i] -= Tr;
              }
       STf += nf * Tr;
      nmf[mr][sr]++;
      nmd--;
       if (St[sr] == 0 \&\& nmf[A][sr] >= 1 \&\& nmf[B][sr] >= 1)
              St[sr] = F;
              nf++;
              Tf[sr] = genExp(lambdaA + lambdaB);
       if (nmd > 0)
              //inceputul unei noi remedieri
              //Actualizare sr, mr
              for (int i = 1; i <= S; i++)</pre>
                     if (St[i] == 0)
```

```
{
                                            if (nmf[B][i] < 1)</pre>
                                                    mr = B;
                                                    sr = i;
                                                    break;
                                            }
                                            else
                                            {
                                                    //if (nmf[A][i] < 1)//modulul A fara</pre>
rezerva, pentru verificare etapa II
                                                    if (nmf[A][i] < 2)</pre>
                                                    {
                                                           mr = A;
                                                           sr = i;
                                                           break;
                                                    }
                                            }
                                     }
                             Tr = genTr(mr);
                             STr += Tr;
                      }
               }
               if (nf > 0)
               { //Actualizare Tpd,sd
                      min = 1e+6;
                      for (int i = 1; i <= S; i++)
                              if (Tf[i] < min && St[i] == F)</pre>
                                     min = Tf[i];
                                     ind = i;
                              }
                      Tpd = min;
                      sd = ind;
                      //Actualizare md
                      double u = (double)rand() / RAND_MAX;
                      if (u < pA)
                      {
                             md = A;
                      }
                      else
                      {
                              if (u < (pA + pB))
                                     md = B;
                      }
       } while (Nd < NS);</pre>
       DS = ceas;
       //calcul statistici
       D = (STf / (DS * S)) * 100;
       Oc = (STr / DS) * 100;
       cout << "D = " << D << endl;</pre>
       cout << "0 = " << Oc << endl;
```

4. Completarea programului de simulare pentru a acoperi și alte aspecte

Generalizare privind regimul de lucru pentru modulul de rezervă

În funcție de gradul de solicitare a rezervei (în sensul de modul cu regim de rezervă), aceasta poate fi pasivă, activă sau parțial activă. Pentru o rezervă identică cu modulul de bază, rata întreruperilor accidentale (rata de defectare) se exprimă cu relația: $\lambda R = \alpha \lambda M$, în care M = A sau B, iar $\alpha \in [0, 1]$. (1)

- $\alpha = 0 \rightarrow \text{rezerv} \tilde{a}$ pasivă (nesolicitată cât timp nu este în funcțiune);
- $\alpha = 1 \rightarrow$ rezervă activă (solicitată în aceeași măsură cu modulul de bază);
- $\alpha \in (0, 1) \rightarrow$ rezervă parțial activă (solicitată într-o măsură mai mică decât modulul de bază); în studiul nostru vom lucra cu $\alpha = 0.5$ și vom numi rezerva ca fiind semi-activă.
- ➤ Rezervă la modulul A

```
\lambda = \lambda B + \lambda A(1 + \alpha(nmf[A][i] - 1))
```

Probabilitatea ca la sistemul *i* modulul care se va defecta mai întâi să fie de tip *B* este:

```
pB = \lambda B/(\lambda B + \lambda A(1 + \alpha(nmf[A][i] - 1)))
```

Programul de simulare trebuie modificat ținând cont de aceste relații care reflectă faptul că rata defectărilor la un sistem în funcțiune nu mai este constantă în timp. În plus, pe ramura care tratează terminarea unei remedieri la sistemul sr, secvența de program trebuie modificată astfel:

```
: if(nmf[A][sr] \ge 1 \&\& nmf[B][sr] \ge 1)
```

```
{ Tf[sr] = genExp\ (\lambda B + \lambda A(1 + \alpha(nmf[A][sr] - 1))); // actualizarea se impune chiar dacă sistemul era deja în funcțiune pentru că în urma // remedierii s-a modificat configurația sistemului if(St[sr] == 0) { St[sr] = F; nf + +; } } :
```

S	Fără rezervă		Rezer	vă activă	Rezervă	i semiactivă	Rezervă pasivă			
			o	ι = 1	α	= 0.5	$\alpha = 0$			
	D(%)	0(%)	D(%)	0(%)	D(%)	0(%)	D(%)	0(%)		
1	90.733	9.26696	93.9203	9.53029	93.9203	9.53029	93.9203	9.53029		
2	89.9554	18.3806	93.5494	18.9785	93.5494	18.9785	93.5494	18.9785		
3	89.0716	27.2932	93.1256	28.3306	93.1256	28.3306	93.1256	28.3305		
4	88.0572	35.9726	92.656	37.5567	92.6561	37.5564	92.656	37.5567		
5	86.8766	44.3757	92.1039	46.6361	92.1048	46.6323	92.104	46.6339		
6	85.5239	52.4078	91.4255	55.6266	91.426	55.625	91.4254	55.6285		
7	83.9668	60.032	90.6191	64.3163	90.6221	64.3096	90.6199	64.3089		
8	82.1686	67.1732	89.594	72.7184	89.5919	72.7236	89.6045	72.6994		
9	80.1379	73.6614	88.2575	80.577	88.2608	80.5854	88.2632	80.5579		
10	77.821	79.5082	86.405	87.5539	86.3965	87.5618	86.3967	87.5563		
11	75.2233	84.6017	83.6837	93.2888	83.6739	93.3034	83.7194	93.2577		
12	72.4336	88.8257	79.9071	97.1788	79.9309	97.1765	79.8916	97.1796		
13	69.4434	92.2254	75.219	99.1244	75.1673	99.1439	75.2439	99.1305		

Concluzie:

Se observă o creștere a disponibilității sistemelor, începând cu sistemele fără rezervă până la sistemele ce au o rezervă pasivă. Disponibilitatea sistemelor cu rezervă pasivă este cea mai mare urmată de disponibilitatea sistemelor cu rezervă semi-activă și rezervă activă (în această ordine), cea mai mică fiind pentru sistemele care nu dețin niciun modul de rezervă.

COD SURSĂ:

```
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;
#define lambdaA 0.2105
#define lambdaB 0.1626
#define miuA 3.8533
#define miuB 3.4218
#define alfa 0.5 //alfa=0 sau alfa=1
//#define pA lambdaA/(lambdaA + lambdaB)
//#define pB 1-pA
#define MFR B
#define mA 1/miuA
#define mB 1/miuB
#define sigmaA 1/(3.5*miuA)
#define sigmaB 1/(3.5*miuB)
enum Module { A, B };
enum Stare { 0, F };
double genExp(double lambda)
{
       double u, x;
       u = (double)rand() / (RAND_MAX + 1);
       x = -1 / lambda * log(1 - u);
       return x;
}
double genTr(Module m)
       double Tr;
       if (m == A)
       {
              Tr = genExp(miuA);
       }
       else
       {
              Tr = genExp(miuB);
```

```
return Tr;
}
void Simulare(int& S, double& D, double& Oc)
       double NS = 1e+7; //numarul de simulari
       double DS;
       double STr = 0; //suma timpilor de remediere
       double STf = 0; //suma timpilor de functionare
       double ceas = 0; //ceasul simularii
       int Nd = 0; //numarul sistemelor decfectate pe parcursul simularii
       int Nr = 0; //numarul remedierilor efectuate
       int nf = S; //numarul de sisteme in functiune
       int nmd = 0; // numarul modulelor defecte, indiferent de tipul lor si de
sistemele de care apartin
       int nmf[2][100];
       double Tf[100]; //pentru un sistem in functiune, timpul pana la aparitia primei
intreruperi accidentale
       Stare St[100]; //starea sistemului i
       double Tpd; //timpul pana la prima intrerupere accidentala(defectare) la
sistemele aflate in functiune
       int sd;//sistemul la care va aparea prima defectare
       int sr; //sistemul la care se face remedierea;
      Module md; //modulul afectat de aceasta intrerpere accidentala
      Module mr; //modulul de remediat in curs
       double Tr = 0; //timpul pana la terminarea remedierii in curs
       int No = 0; //numarul de sisteme oprite
       for (int i = 1; i <= S; i++)
       {
              //nmf[A][i] = 1;///modulul A este fara modul de rezerva(pentru
verificare etapa II)
              nmf[A][i] = 2;//modulul A este prevazut cu modul de rezerva
              nmf[B][i] = 1;
       for (int i = 1; i <= S; i++)</pre>
              St[i] = F;
              Tf[i] = genExp(lambdaB + lambdaA * (1 + alfa * (nmf[A][i] - 1)));
       }
       double min = 1e+7;
       int ind;
       for (int i = 1; i <= S; i++)
              if (St[i] == F && Tf[i] < min)</pre>
              {
                    min = Tf[i];
                    ind = i;
              }
       Tpd = min;
       sd = ind;
       //determina modulul afectat de intrerupere
       double u = (double)rand() / RAND_MAX;
       double pB = lambdaB + lambdaA * (1 + alfa * (nmf[A][sd] - 1));
```

```
double pA = 1 - pB;
       if (u < pA)
       {
              md = A;
       }
       else
       {
              if (u < (pA + pB))
                     md = B;
       }
       do {
              //Determinarea evenimentului urmator
              if (nmd == 0 || ((nf > 0) && Tpd < Tr))</pre>
              {
                     //defectare
                     Nd++;
                     ceas += Tpd;
                     if (nmd > 0)
                            Tr -= Tpd;
                     }
                     for (int i = 1; i <= S; i++)
                            if (St[i] == F)
                            {
                                   Tf[i] -= Tpd;
                            }
                     STf += nf * Tpd;
                     nmf[md][sd]--;
                     nmd++;
                     if (nmf[md][sd] == 0) //oprire sistem
                            St[sd] = 0;
                            nf--;
                            No++;
                     }
                     else
                     {
                            if (nmf[md][sd] > 0)
                                   Tf[sd] = genExp(lambdaB + lambdaA * (1 + alfa *
(nmf[A][sd] - 1)));
                            else
                            {
                                   St[sd] = 0;
                                   --nf;
                                   ++No;
                            }
                     if ((nmd == 1) || (St[sr] == F && St[sd] == 0) || (sd == sr && md
== MFR))
                     {
                            sr = sd;
                            mr = md;
                            if (nmd > 1)
                            {
                                   STr -= Tr;
                            }
                            Tr = genTr(mr);
                            STr += Tr;
```

```
}
              }
else
              {
                     //remediere
                     Nr++;
                     ceas += Tr;
                     for (int i = 1; i <= S; i++)</pre>
                            if (St[i] == F)
                                    Tf[i] -= Tr;
                            }
                     STf += nf * Tr;
                     nmf[mr][sr]++;
                     nmd--;
                     if (nmf[A][sr] >= 1 && nmf[B][sr] >= 1)
                            if (St[sr] == 0)
                                    St[sr] = F;
                            Tf[sr] = genExp(lambdaB + lambdaA * (1 + alfa * (nmf[A][sr]
- 1)));
                     }
if (nmd > 0)
                            //inceputul unei noi remedieri
                            //Actualizare sr, mr
                            bool gasit = false;
                            for (int i = 1; i <= S; i++)</pre>
                                    if (nmf[B][i] == 0) //starea S2 sau S3(se remediaza
B)
                                    {
                                           mr = B;
                                           sr = i;
                                           gasit = true;
                                           break;
                                    }
                            if (gasit == false) //nu s a gasit modulul remediat
                                    for (int i = 1; i <= S; i++)
                                           if (nmf[A][i] == 0) //starea 4 (ambele module
A defecte)
                                           {
                                                  mr = A;
                                                  sr = i;
                                                  gasit = true;
                                                  break;
                                           }
                                    }
                            if (gasit == false)
```

```
for (int i = 1; i <= S; i++)
                                           if (nmf[A][i] == 1 && nmf[B][i] == 1)
//starea 1
                                           {
                                                  mr = B;
                                                  sr = i;
                                                  gasit = true;
                                           }
                                    }
                             }
                            Tr = genTr(mr);
                            STr += Tr;
                     }
              }
              if (nf > 0)
              { //Actualizare Tpd,sd
                     min = 1e+6;
                     for (int i = 1; i <= S; i++)
                     {
                             if (Tf[i] < min && St[i] == F)</pre>
                                    min = Tf[i];
                                    ind = i;
                             }
                     Tpd = min;
                     sd = ind;
                     //Actualizare md
                     double u = (double)rand() / RAND_MAX;
                     double pB = lambdaB + lambdaA * (1 + alfa * (nmf[A][sd] - 1));
                     double pA = 1 - pB;
                     if (u < pA)
                     {
                            md = A;
                     }
                     else
                     {
                             if (u < (pA + pB))
                                    md = B;
                     }
              }
       } while (Nd < NS);</pre>
       DS = ceas;
       //calcul statistici
       D = (STf / (DS * S)) * 100;
       Oc = (STr / DS) * 100;
       cout << "D = " << D << endl;</pre>
       cout << "0 = " << Oc << end1;
       //Verificarea programului de simulare (Modulul B cu rezerva)
       cout << "Nd = " << Nd << endl;</pre>
       cout << "DS * S * (D/100) (lambdaA + lambdaB) = " << DS * S * (D / 100) *
(lambdaA + lambdaB) << endl;</pre>
       cout << "STf *(lambdaA + lambdaB) = " << STf * (lambdaA + lambdaB) << endl <<</pre>
end1;
```

```
S++;
}
int main(void)
{
    double Oc = 0, D;
    int S = 1;

    while (Oc <= 99)
    {
        cout << "S = " << S << endl;
        Simulare(S, D, Oc);
    }
}</pre>
```

Alegerea următorului modul pentru remediere

La terminarea remedierii în curs, dacă mai sunt module defecte, muncitorul trebuie să înceapă imediat o nouă remediere. La alegerea următorului modul care să fie remediat, muncitorul trebuie să urmărească repunerea cât mai rapidă în funcțiune a unui sistem oprit. Modulele de rezervă defecte de la sistemele în funcțiune trebuie remediate ulterior. Prin urmare, la alegerea următorului modul pentru remediere trebuie să se țină cont de starea sistemelor și de intensitățile medii de remediere pentru cele două tipuri de module, A și B. Să analizăm mai întâi stările posibile pentru un sistem, în funcție de modulul la care este prevăzută rezerva.

Rezervă la modulul A

Stări posibile:

$$S_1 = A B \overline{A}$$
 } Sistem în funcțiune
$$S_2 = A \overline{B} A$$

$$S_3 = A \overline{A} \overline{B}$$
 Sistem oprit
$$S_4 = \overline{A} \overline{A} \overline{B}$$

Dacă $\mu A > \mu B$ ordinea de prioritate la remediere este: S4, S2 sau S3 (se repară \overline{B}), S1;

Dacă $\mu B > \mu A$ ordinea de prioritate la remediere este: S2 sau S3 (se repară \overline{B}), S4, S1.

Verificăm creșterea disponibilității sistemelor prin impunere la remediere a acestor priorități.

1	2	3	4	5	6	7	8	9	10	11	12	13
											<u> </u>	
95.0236	93.3156	92.5984	91.8436	90.9892	89.9832	88.8063	87.4201	85.7269	83.6548	81.1022	77.8678	73.9462
 	1	1		'			1	'	'	'		1 7
9.70822	19.0697	28.4044	37.5348	46.4661	55.1728	63.4983	71.4205	78.8404	85.5031	91.0965	95.4481	98.1959
ı!	1'	1'	'	1'		'	1'	'	l'	1'	1 ¹	1 /
94.3954	93.8494	93.252	92.5644	91.8103	90.9401	89.9126	88.6873	87.1814	85.1917	82.503	78.9429	74.5046
 	1	1	'	'			1	'	'	'	1	
9.6513	19.1837	28.5642	37.8456	46.9036	55.7531	64.322	72.5135	80.1314	87.0408	92.7048	96.7155	98.8961
<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u> '	<u> </u> '	<u> </u> '	<u> </u> '		
-	9.70822	95.0236 93.3156 9.70822 19.0697 94.3954 93.8494	95.0236 93.3156 92.5984 9.70822 19.0697 28.4044 94.3954 93.8494 93.252	95.0236 93.3156 92.5984 91.8436 9.70822 19.0697 28.4044 37.5348 94.3954 93.8494 93.252 92.5644	95.0236 93.3156 92.5984 91.8436 90.9892 9.70822 19.0697 28.4044 37.5348 46.4661 94.3954 93.8494 93.252 92.5644 91.8103	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 94.3954 93.8494 93.252 92.5644 91.8103 90.9401	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 87.4201 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 71.4205 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126 88.6873	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 87.4201 85.7269 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 71.4205 78.8404 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126 88.6873 87.1814	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 87.4201 85.7269 83.6548 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 71.4205 78.8404 85.5031 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126 88.6873 87.1814 85.1917	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 87.4201 85.7269 83.6548 81.1022 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 71.4205 78.8404 85.5031 91.0965 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126 88.6873 87.1814 85.1917 82.503	95.0236 93.3156 92.5984 91.8436 90.9892 89.9832 88.8063 87.4201 85.7269 83.6548 81.1022 77.8678 9.70822 19.0697 28.4044 37.5348 46.4661 55.1728 63.4983 71.4205 78.8404 85.5031 91.0965 95.4481 94.3954 93.8494 93.252 92.5644 91.8103 90.9401 89.9126 88.6873 87.1814 85.1917 82.503 78.9429

Modificările efectuate în programul de simulare:

```
if (nmd > 0)
                             //inceputul unei noi remedieri
                             //Actualizare sr, mr
                            bool gasit = false;
                            for (int i = 1; i <= S; i++)
                                    if (nmf[B][i] == 0) //starea S2 sau S3(se remediaza
B)
                                    {
                                           mr = B;
                                           sr = i;
                                           gasit = true;
                                           break;
                            }
if (gasit == false) //nu s a gasit modulul remediat
                                    for (int i = 1; i <= S; i++)</pre>
                                           if (nmf[A][i] == 0) //starea 4 (ambele module
A defecte)
                                           {
                                                  mr = A;
                                                  sr = i;
                                                  gasit = true;
                                                  break;
                                           }
                                    }
                            }
if (gasit == false)
                                    for (int i = 1; i <= S; i++)</pre>
                                           if (nmf[A][i] == 1 && nmf[B][i] == 1)
//starea 1
                                           {
                                                  mr = B;
                                                  sr = i;
                                                  gasit = true;
                                           }
                                    }
                            Tr = genTr(mr);
                            STr += Tr;
```

}

Concluzie:

Atunci când nu alegem modulul defect la întâmplare, ci se stabilesc anumite priorități în funcție de starea sistemului și de rata de defectare a modulelor, se observă o creștere a disponibilității care este mai accentuată atunci când creștem și numărul de sisteme.

Întreruperea remedierii în curs

Dacă în timp ce muncitorul remediază o rezervă de la un sistem în funcțiune se produce o întrerupere accidentală care conduce la oprirea sistemului, se poate pune problema întreruperii remedierii în curs pentru a interveni cu prioritate asupra modulului afectat, astfel încât sistemul oprit să fie repus în funcțiune cât mai rapede.

Pentru implementarea acestei facilități în programul de simulare, pe ramura care tratează apariția unei întreruperi accidentale, se impune următoarea modificare:

```
: if(nmd == 1 \parallel St[sr] == F \&\& St[sd] == 0 \parallel sd == sr \&\& md == MFR) { sr = sd; mr = md; Tr = genTr(mr); } :
```

în care MFR reprezintă modulul fără rezervă.

Verificăm creșterea disponibilității sistemelor prin impunere la remediere a acestor priorități.

S	1	2	3	4	5	6	7	8	9	10	11	12	13
D(%)	95.0236	93.3156	92.5984	91.8436	90.9892	89.9832	88.8063	87.4201	85.7269	83.6548	81.1022	77.8678	73.9462
O(%)	9.70822	19.0697	28.4044	37.5348	46.4661	55.1728	63.4983	71.4205	78.8404	85.5031	91.0965	95.4481	98.1959
` /													
D(%)	94.3949	94.0699	93.6954	93.2569	92.7609	92.1374	91.3723	90.3684	88.9706	86.9208	83.8957	79.7012	74.8414
Întrerup													
ere													
O(%)	9.65287	19.2277	28.7184	38.1164	47.3606	56.4731	65.3252	73.8196	81.7623	88.7624	94.2707	97.7555	99.347
Întrerup													
ere													

Concluzie:

Întreruperea remedierii în curs a crescut și mai mult disponibilitatea sistemelor și prin urmare rezultatele obținute, adăugând programului anterior și această facilitate, sunt mai bune, sistemul având capacitatea mai mare de a-și îndeplini funcțiile la un moment dat.