

MATRICES

SPECIAL MATRICES

→ Only square matrix nxn

- 1. Diagonal Matrix
- 5. Tridiagonal Matrix
- 2. Lower Triangular
- 6. Band Matrix
- 3. Upper Triangular
- Toeplitz Matrix
- 4. Symmetric Matrix 8. Sporse Matrix

1. DIAGONAL MATRIX

```
00400
0 0 0 0 6
```

```
ROWS COWMNS ELEMENT TO
                A BE INSERTED
Void set ( int A[], int i, int j, int x)
     if (i==_j)
       A[i-i] = 2;
void get (int A[], int i, int j)
      (نے== نا ¢ن
      return A[i-1];
           return 0;
```

C++ Class For Diagonal Matrix

```
Class Diagonal ()
                                         void Diagonal " set (int i, int j, int x);
  2
                                                 (ن== ن) F
       private:
                                                    A[i-1] = x;
                 int n;
                int *A;
        public:
                 Diagonal (int n)
                      This → n=n;
                       A = new int(n);
                                               int Diagonal :: get Lint i, int j)
                 3
                                                        if (i==j)
                 void set lint i, int j, int k);
                 void get (inti, int i);
                                                             return 0;
                  void Display();
                  ~ Diagonall)
                       delete []A;
 2
void Diagonal: Display()
                  if (i = = i)
             cout << endl;
```

LOWER TRIANGULAR MATRIX

$$M = \begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{bmatrix}$$

Non Zero =
$$1+2+3+4+5$$

= $1+2+3+4....n$
= $n(n+1)$

$$Zero = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$

ROW MAJOR

	Q,μ	0.21	022	a ₃₁	Q ₃₂	a ₃₃	ayı	q ₄₂	aus	a _{yy}	ası	a_{S_2}	a ₅₃	asy	۵ ₅₅
	0	ı	2	3	Ч	5	6	7	8	9	10	17	12	13	14
lmog		₹ 0W∑		76W3			TOW 4				γοω 5				

Index
$$(A[4][3]) = [1+2+3]+2=8$$

Index $(A[5][4]) = [1+2+3+4]+3=13$

Index
$$(A[i][i]) = \left[\frac{i(i-i)}{2}\right] + j-1$$

COLUMN MAJOR

Index
$$(A[4][4]) = [5+4+3]+0=12$$

Index $(A[5][4]) = [5+4+3]+1=13$
Index $(A[5][3]) = [5+4]+2=11$

Index (A[i][i]) =
$$\begin{bmatrix} n + n-1 + n-2 + ... & n - (i-2) \end{bmatrix} + (i-i)$$

= $\begin{bmatrix} n (i-1) - [1+2+3+... i-2] \end{bmatrix} + (i-i)$
= $\begin{bmatrix} n (i-1) - (i-2)(i-1) \end{bmatrix} + (i-i)$

UPPER TRIANGULAR MATRIX

$$M = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{21} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix}$$

$$M[i,j] = 0 \quad \text{if} \quad i \neq j$$

Non Zero =
$$5+4+3+2+1$$

= $\frac{n(n+1)}{2}$

$$Ze_{80} = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$

ROW MAJOR

$$INDEX (A[i][i]) = [n+n-1+n-2+...+n-(i-2)] + (j-i)$$

$$= \frac{(i-1)n-(i-2)(i-1)}{2}+(j-i)$$

COLUMN MAJOR

$$INDEX (A[i][i]) = [1+2+3+....j-1]+i-1 = [i(i-1)]+i-1$$

SYMMETRIC MATRIX

if
$$M[i,j] = M[j,i]$$

Either we can store lower triangular matrix, or we can store upper triangular matrix

TRI DIAGONAL MATRIX

$$M = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45} \\ 0 & 0 & 0 & a_{54} & a_{55} \end{bmatrix}$$

```
Main diagonal i-j=0

Lower diagonal i-j=1

Upper diagonal i-j=-1
```

Index (A[i][i])

$$M[i,j] = Non Zero if | i-j| \le 1$$

 $M[i,j] = Zero if | i-j| > 1$

SQUARE BAND MATRIX (Same as TRI DIAGONAL matrix)

When there are more than one diagonals below the main diagonal and the number of lower and upper diagonal is equal.

TOEPLITZ MATRIX

$$M[i,j] = M[i-1,j-1]$$

No of elements we want to store: n + n-1

Index A[i](j)

case 1: if
$$i < = j$$
 Index = $j-1$

CREATING A DYNAMICALLY ALLOCATED ARRAY

```
int *A,n;

printf (" Enter dimension");

scanf (" ".d", In);

A = (int*) malloc (n* size of (int));

A = new int [n]; (++
```