K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a half wave rectifier circuit with input Amplitude = 220V peak, f = 50Hz and R_1 = 95 Ω using LTspice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage.
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the circuit

Also calculate the efficiency of the Half wave rectifier circuit.

Figure 1: Circuit 1

Given:

$$R_1 = 95 \Omega$$

 $R_S = 0.01 \text{m } \Omega$
 $V_{in} = 220 \text{V}$
 $f = 50 \text{Hz}$

Solution:

Since,
$$V_{in} = 220 \text{V}$$

 \therefore Primary peak voltage = 220V

Also, turn ratio is 10:1

$$\therefore V_m = \frac{220}{10}$$

$$\therefore V_m = 22V$$

 \therefore Secondary peak voltage = 22V

Current:

$$I_m = \frac{V_m}{R_1 + R_S}$$

$$\therefore I_m = \frac{22}{95 + 0.01 \times 10^{-3}}$$

$$\therefore I_m = 0.231578$$

$$I_m = 231.578 \text{mA}$$

DC output power:

$$P_{DC} = \left(\frac{I_m}{\pi}\right)^2 R_1$$

$$\therefore P_{DC} = \left(\frac{231.578 \times 10^{-3}}{\pi}\right)^2 \times 95$$

$$\therefore P_{DC} = \mathbf{0.489W}$$

AC output power:

$$P_{AC} = \left(\frac{I_m}{2}\right)^2 (R_1 + R_S)$$

$$\therefore P_{AC} = \left(\frac{231.578 \times 10^{-3}}{2}\right)^2 \times (95 + 0.01 \times 10^{-3})$$

$$\therefore P_{AC} = \mathbf{1.27367W}$$

Efficiency:

$$\eta = \frac{P_{AC}}{P_{DC}} \times 100$$

$$\therefore \eta = \frac{1.27367}{0.489} \times 100$$

$$\therefore \eta = \mathbf{40.5} \%$$

PIV rating of diode:

PIV rating =
$$-V_m$$

$$\therefore$$
 PIV rating = -22 V

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 2: Circuit Schematic and Simulated Results

The waveforms are shown in figure 3

Figure 3: waveforms obtained

Calculation:

DC output power:

$$P_{DC} = \frac{{V_m}^2}{\pi^2 R_1}$$

$$\therefore P_{DC} = \frac{21.0299^2}{\pi^2 \times 95}$$

$$\therefore P_{DC} = \mathbf{0.471W}$$

AC output power:

$$P_{AC} = \frac{V_m^2}{4(R_1 + R_S)}$$

$$\therefore P_{AC} = \frac{21.0299^2}{4(95 + 0.01 \times 10^{-3})}$$

$$\therefore P_{AC} = 1.1638W$$

Efficiency:

$$\eta = \frac{P_{AC}}{P_{DC}} \times 100$$

$$\therefore \eta = \frac{1.1638}{0.471} \times 100$$

$$\therefore \eta = 40.5282 \%$$

PIV rating of diode:

PIV rating =
$$-V_m$$

$$\therefore$$
 PIV rating = -21.984 V

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak value (V_m)	22V	21.0299V
Output Peak current (I_m)	231.578 mA	221.368mA
AC power	1.2736W	1.1638W
DC power	0.489W	0.471W
Efficiency	40.5 %	40.52 %
PIV rating	- 22V	- 21.9846V

Table 1: Numerical 1

Numerical 2: Simulate a Full wave rectifier circuit with input Amplitude = 220V peak, f = 50Hz and R_1 = 90 Ω using LTspice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage.
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the diodes
- f) Current flowing through the circuit

Also calculate the efficiency of the Full wave Center tapped rectifier circuit.

Figure 4: Circuit 2

Given:

$$R_1 = 90 \Omega$$

$$R_S = 0.01 \mathrm{m} \Omega$$

$$V_{in} = 220 \text{V}$$

$$f = 50Hz$$

Solution:

Since,
$$V_{in} = 220V$$

 \therefore Primary peak voltage = 220V

Also, turn ratio is 10:1

$$\therefore V_m = \frac{220}{10}$$

$$\therefore V_m = 22V$$

 \therefore Secondary peak voltage = 22V

Current:

$$I_m = \frac{V_m}{R_1 + R_S}$$

$$\therefore I_m = \frac{22}{90 + 0.01 \times 10^{-3}}$$

$$I_m = 0.244444$$

$$I_m = 244.444 \text{mA}$$

DC output power:

$$P_{DC} = \left(\frac{2I_m}{\pi}\right)^2 R_1$$

$$\therefore P_{DC} = \left(\frac{2 \times 244.444 \times 10^{-3}}{\pi}\right)^2 \times \times 90$$

∴
$$P_{DC} = 2.1795$$
W

AC output power:

$$P_{AC} = \frac{I_m^2}{2} (R_1 + R_S)$$

$$\therefore P_{AC} = \frac{\left(244.444 \times 10^{-3}\right)^2}{2} \times (90 + 0.01 \times 10^{-3})$$

$$\therefore P_{AC} = \mathbf{2.6888W}$$

Efficiency:

$$\eta = \frac{P_{AC}}{P_{DC}} \times 100$$

$$\therefore \eta = \frac{2.1795}{2.6888} \times 100$$

$$\therefore \eta = 81.05 \%$$

PIV rating of diode:

PIV rating =
$$-2V_m$$

$$\therefore$$
 PIV rating of Diode $D_1 = -44$ V

$$\therefore$$
 PIV rating of Diode $D_2 = -44$ V

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 5: Circuit Schematic and Simulated Results

Figure 6: Waveforms obtained

Figure 7: Waveforms obtained

Calculation:

DC output power:

$$P_{DC} = \frac{4I_m^2 R_1}{\pi^2}$$

$$\therefore P_{DC} = \frac{4 \times (233.6678 \times 10^{-3})^2 \times 90}{\pi^2}$$

$$\therefore P_{DC} = \mathbf{1.9915W}$$

AC output power:

$$P_{AC} = \frac{I_m^2}{2} (R_1 + R_S)$$

$$\therefore P_{AC} = \frac{(233.6678 \times 10^{-3})^2}{2} (90 + 0.01 \times 10^{-3})$$

$$\therefore P_{AC} = \mathbf{2.457W}$$

Efficiency:

$$\eta = \frac{P_{AC}}{P_{DC}} \times 100$$

$$\therefore \eta = \frac{1.9915}{2.457} \times 100$$

$$\therefore \eta = \mathbf{81.05659} \%$$

PIV rating of diode:

PIV rating = $-2V_m$

- ∴ PIV rating of $D_1 = -43.025$ V ∴ PIV rating of $D_2 = -43.025$ V

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak voltage (V_m)	22V	21.018V
Output peak current (I_m)	244.444mA	$233.667 \mathrm{mA}$
AC power	2.688W	2.457W
DC power	2.179W	1.9915W
Efficiency	81.05 %	81.05 %
PIV rating	- 44V	- 43.025V

Table 2: Numerical 2