Математическое программирование, лекция 8 Метод Нелдера-Мида

Продолжение прошлой лекции

Достоинства:

- 1. Простота вычислений
- 2. Невысокие требования к объему памяти
- 3. Небольшое число задаваемых параметров α, β, γ, δ
- 4. Алгоритм оказывается эффективным даже в том случае, когда ошибка вычисления значений функции велика, поскольку при реализации оперирует наибольшими значениями функции в вершинах, а не наименьшими.
- 5. Достаточная гибкость
- 6. Учитывает различные ограничения Недостаток:
- 1. Медленный

3. Теоретические основы метода сопряженных направлений Пауэлла

Метод ориентирован на решение задач безусловной минимизации с квадратичными функциями и основан на теоретических результатах.

Он использует понятие сопряженных векторов и свойство квадратичной функции, которое называют свойством параллельного подпространства.

Два направления d_i и d_j сопряжены относительно симметричной матрицы C, если $d_i^T C d_i = 0$.

Доказано, что минимум квадратичной функции может быть найден не более чем за n одномерных поисков при условии, что поиск ведется вдоль каждого из n сопряженных направлений.

Сформулируем свойством параллельного подпространства для случая 2-ух переменных.

Пусть заданы квадратичная функция q(x)

$$q(x) = a + b^T x + 1/2x^T C x,$$

и 2 произвольные несовпадающие точки $x^{(1)}$ и $x^{(2)}$, а также направление d. Если точка $y^{(1)}$ найдена в результате поиска из точки $x^{(1)}$ вдоль каждого из m (m < n) сопряженных направлений, а точка $y^{(2)}$ получена в результате поиска...

Т.о. в 3-ехмерном случае для нахождения точного оптимума квадратичной функции требуется провести 9 поисков вдоль прямой с использованием только значений функции.

Вспомним, что для 2ухмерного случая нам потребовалось 4 поиска

Для n-мерного пространства алгоритм требует проведения последовательности n^2 одномерных поисков, котороя приводит к получению точки оптимума

квадратичной функции при отсутствии ошибок округления.

4. Алгоритм метода Пауэлла (n-мерный случай)

Шаг 1. Задаем $x^{(0)}$, начальную систему п линейно независимых направлений поиска $S^{(0)}=(S_1^{(0)},...,S_n^{(0)})$ Обычно за начальные направления принимают направления осей координат $S_1^{(0)}=e^{(1)},\,S_2^{(0)}=e^{(2)}$ и т.д.; i=0 (i - кол-во циклов)

Шаг 2. Решаем n+1 задачу минимизации по каждому направлению поиска. Здесь индекс k пробегает значения от 0 до n. При этом полученная ранее точка минимума берется в качестве исходной для следующего поиска. При первом поиске (k=0) минимизируем функцию f(x) по направлению $S_n^{(1)}$, т.е. находим min[$f(x^{(0)})$]...

Шаг 3. Определяем новое сопряженное направление $s = (x^{(n+1)} - x^{(1)})$

Шаг 4. Заменяем направления $S_k^{(i+1)}$ = $S_{k+1}^{(i)}$ для всех k=1, 2, ..., n-1 т.е. $S_1^{(1)}$ = $S_2^{(0)}$, $S_2^{(1)}$ = $S_3^{(0)}$, и т.д

Отбрасываем $S_1^{(0)}$, заменяя его новым сопряженным с $S_n^{(0)}$ направлением $S_n^{(1)}$ = s

Полученное на последнем поиске значение х станет новым начальным значением на новом цикле поисков $x^{(0)} = x^{(n+1)}$, $\mathbf{i} = \mathbf{i} + \mathbf{1}$

Если i < n+1, переходим к **шагу 2**, для поиска следующего сопряженного направления Если i = n-1, переходим к **шагу 5**

Шаг 5. В результате выполнения n-1 цикла все n направлений станут сопряженными. на последнем n-ом цикле осуществляем поиск вдоль последнего найденного направления s , т.е. решаем задачу минимизации $min[f(x^{(0)} + \alpha s)]$, а затем вычисляем $x^* = x^{(0)}$, то ...

Тема 3. Безусловная оптимизация функций многих переменных

Лекция 8. Методы поиска оптимума функций многих переменных первого порядка

1. Общая характеристика методов первого порядка Градиент функции - некий n-мерный вектор, компонентами которого являются частными производными функции f(x), вычисленными в точке $x^{(0)}$.

▼ f(x^({0})) =
$$[(df(x^{(0)}))/dx_1)$$
 ... $(df(x^{(0)}))/dx_n$] Этот вектор перпендикулярен к плоскости, касательной к поверхности уровня функции f(x) проведенной через точку $x^{(0)}$ Методы первого порядка (градиентные методы)

- метод наискорейшего спуска (метод Коши)
- метод сопряженных градиентов

- квазиньютоновские методы (методы переменной метрики)
- 2. Метод наискорейшего спуска

При использовании метода наискорейшего спуска на каждой итерации величина шага a_k выбирается из условия минимума функции f(x) в направлении наискорейшего убывания функции, т.е.

$$f[x^{(k)} - \alpha_k^* \triangledown f(x^{(k)})] = min[f(x^{(k)} - \alpha_k \triangledown f(x^{(k)}))]$$

Это условие означает, что движение вдоль антиградиента происходит до тех пор, пока значение функции f(x) убывает. С математической точки зрения на каждой итерации необходимо решить задачу одномерной оптимизации по a_k функции

$$\phi(\alpha_k) = f(x^{(k)} - \alpha_k \vee f(x^{(k)}).$$

Значение a_k может быть найден с помощью любого из методов одномерного поиска, например, золотого сечения.

Алгоритм:

Шаг 1. Задаем начальную точку $x^{(0)}$ и критерий остановки ϵ . k = 0

Шаг 2. В точке х^{(k)}, k = 0, 1, ..., вычисляем значение градиента ▼ f(x^{(k)})

Шаг 3. Определяем величину шага путем одномерной минимизации по α_k функции $\phi(\alpha_k)$ =

$$f(x^{(k)} - \alpha_k \mathbf{\nabla} f(x^{(k)}))$$

Шаг 4. Определяем координаты точки

$$x_i^{(k+1)} = x_i^{(k)} - a_k^* (df(x^{(k)})/dx_i)$$
, i = 1, ... , n;

Шаг 5. Проверяем условие останова.

Достоинства метода: возможность использования самых эффективных методов одномерного поиска. Недостатки:

- 3. Медленная скорость сходимости в окрестности минимума из-за малости градиента
- 4. Плохая эффективность работы в случае овражных функций, т.е. функций, линии уровня которых сильно вытянуты и изогнуты. Направление антиградиента этих функций существенно отклоняется от направления в точку минимума.

В частности, алгоритм наискорейшего спуска сойдется за одну итерацию при любом начальном приближении для функции $f(x)=x_1^2+x_2^2$, а в случае функции вида $f(x)=x_1^2+100x_2^2$ сходимость будет очень медленной