Computer Organization, Spring 2020

Lab 3: Single-Cycle CPU (Simple Version)

Due: 2020/05/14

1. Goal

Utilizing the ALU in Lab2 to implement a Simple Single-Cycle CPU. CPU is the most important unit in computer system. Read the document carefully and do the Lab, and you will have the elementary knowledge of CPU.

2. HW Requirement

- (1) Please use ModelSim/ISE as you HDL simulator.
- (2) Please attach your names and student IDs as comment at the top of each file.
- (3) Please use the Program Counter, Instruction Memory, Register File and Testbench we provide you.

(4) Basic instruction set (60%)

Instruction	Example	Meaning	Opcode	Funct3	Funct7
Addition	add r1, r2, r3	r1 = r2 + r3	0110011	000	0000000
Add immediate	addi r1, r2, 100	r1 = r2 + 100	0010011	000	-
Subtraction	sub r1, r2, r3	r1 = r2 - r3	0110011	000	0100000
Bitwise and	and r1, r2, r3	r1 = r2 & r3	0110011	111	0000000
Bitwise or	or r1, r2, r3	$r1 = r2 \mid r3$	0110011	110	0000000
Exclusive OR	xor r1, r2, r3	r1 = r2 ⊕ r3	0110011	100	0000000
Set on	slt r1, r2, r3	if(r2 < r3)	0110011	010	0000000
less than		r1 = 1			
		else			
		r1 = 0			
Set on	slti r1, r2, 10	if(r2 < 10)	0010011	010	-
less than		r1 = 1			
immediate		else			
		r1 = 0			
Branch	beq r1, r2, 4	If(r1 == r2)	1100011	000	-
on equal		PC += 4			

3. Architecture Diagram

4. Advanced set (20%)

Instruction	Example	Meaning	Opcode	Funct3	Funct7
Shift left	sll r1, r2, r3	r1 = r2 << r3	0110011	001	0000000
logical					
Shift left	slli r1, r2, 10	r1 = r2 << 10	0010011	001	0000000
logical					
immediate					
Shift right	sra r1, r2, r3	r1 = r2 >>> r3	0110011	101	0100000
arithmetic					
Shift right	srli r1, r2, 10	r1 = r2 >>> 10	0010011	101	0000000
arithmetic					
immediate					
Bitwise and	andi r1, r2, 10	r1 = r2 & 10	0010011	111	-
immediate					
Bitwise or	ori r1, r2, 10	$r1 = r2 \mid 10$	0010011	110	-
immediate					
Branch on	bne r1, r2, 4	if(r1 != r2)	1100011	001	-
not equal		PC += 4			

5. Testbench

There contain 3 test pattern, CO_test_data1.txt ~ CO_test_data3.txt.

The default pattern is the first one. Please edit the line 18 in the file "Instr_Memory.v" to test the other cases.

Line 19: \$readmemb("CO_test_data1.txt", instruction_file);

The following are the assembly code for the test pattern:

Test data 1	Test data 2	Test data 3
addi r1, r0,21	addi r6, r0, 2	ori r10, r0, 4
addi r2, r0, 9	addi r7, r0, 5	addi r11, r0, 63
slti r3, r1, 0xFF	or r8, r6, r7	sra r11, r11, r10
beq r3, r0, 12	xor r9, r0, r8	sll r11, r11, r11
slt r4, r2, r1	beq r8, r9, 4	slli r10, r10, 2
and r5, r1, r4	addi r6, r6, 2	addi r11, r11, 8
sub r4, r1, r5	add r9, r9, r6	srli r10, r10, 3
		srli r11, r11, 2
		bne r11, r10, -4
Final result	Final result	Final result
r1 = 21, r2 = 9, r3 = 1,	r6 = 2, r7 = 5,	r10 = 2,
r4 = 20, r5 = 1	r8 = 7, r9 = 9	r11 = 2

[&]quot;CO_Result.txt" will be generated after Run -All !! the testbench. Check you answer with it.

6. Grade

- (1) Basic instructions score: 60 points.
- (2) Advance instructions score: 20 points.
- (3) Report: 20 points format is in CO_Report.docx.
- (4) Late submission: 10 percent penalty per day
- (5) No plagiarism, or you will get 0 point.

7. Hand in

- (1) Zip your folder and name it as "GroupID_ID1_ID2.zip" (e.g. G1_0816001_0816002.zip) before uploading to newe3. Other filenames and formats such as *.rar and *.7z are NOT accepted! Multiple submissions are accepted, and the version with the latest time stamp will be graded.
- (2) Please include ONLY Verilog source codes (*.v) and your report (*.docx or *.pdf) in the zipped folder.

8. Q&A

For any questions regarding Lab 3, please contact

張祐銘 yumingchang.cs03@g2.nctu.edu.tw

賴柏宏 bhbruce.cs07g@nctu.edu.tw

鄭俊賢 petertay1996.cs08g@nctu.edu.tw