

การทดลองที่ 3 การใช้ Spectrum Analyzer วัดกำลังของสัญญาณ

หน้า 1 / 3

รหัสวิชา010113340ชื่อวิชา Antenna and Microwave Engineering Laboratory
ภาคการศึกษาที่2ประจำปีการศึกษา2565
รหัสนักศึกษา6201011631188ชื่อ-นามสกุลนายโสภณสุขสมบูรณ์
รหัสนักศึกษา6201011631072ชื่อ-นามสกุลนาย ธนภูมิอังอำนวยศิริ
วันที่และช่วงเวลาที่ทำการทดลอง
อาจารย์ผู้สอนPTD,WWT

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นักศึกษามีความรู้และความเข้าใจในการใช้ Spectrum Analyzer
- 2. เพื่อให้นักศึกษาสามารถเข้าใจคุณสมบัติของสายสัญญาณแบบโคแอกเชียลแต่ละชนิด เมื่อนำไปใช้งานในช่วง ความถี่ต่าง ๆ

<u>เครื่องมือและอูปกรณ์</u>

- 1. RF Power Meter รุ่น HP8347A (10 Hz 20 GHz)
- 2. Power Sensor รุ่น HP8485A (50 MHz 26.5 GHz)
- 3. Standard Termination 50 W, Short, Open
- 4. Standard 50 W Coaxial cable
- 5. Attenuator หมายเลข MDC 1055- 3 dB และ 6 dB
- 6. Directional coupler รุ่น CA-69X และ HP778D (10 Hz 2.0 GHz)
- 7. Circulator รุ่น MA 7N027 (320 550 MHz)
- 8. Spectrum analyzer รุ่น HP4395A (10 Hz 500 MHz)/ Advantage TR4133A
- 9. Synthesized Signal Generator/Signal Generator รุ่น HP83620B (10 MHz 20 GHz)/ HP8657A (100 kHz 1040 MHz)

<u>ทฤษฎีที่เกี่ยวข้อง</u>

สาย Coaxial แบ่งเป็น 2 ประเภท คือ Thin Coaxial และ Thick Coaxial โดยที่สายประเภท Thin Coaxial จะมีขนาดเล็ก ติดตั้งและใช้งานง่าย เหมาะกับในห้องปฏิบัติการ ราคาถูก สามารถนำสัญญาญได้ไกลถึง 185 เมตร และ สายประเภท Thick Coaxial เป็นสายค่อนข้างใหญ่ ส่วนใหญ่ใช้เป็น Backbone สามารถนำสัญญาณ ได้ไกลถึง 500 เมตร

2/3

การทดลองที่ 3 การใช้ Spectrum Analyzer วัดกำลังของสัญญาณ

<u>ขั้นตอนการทดลอง</u>

- 1. ต่อเอาต์พุตของเครื่อง RF generator เข้ากับเครื่อง spectrum analyzer ผ่านสายโคแอกเชียล ที่มีรุ่นและ ความยาวต่าง ๆ กัน สัก 3 เส้น
- 2. ปรับความถี่และกำลังงานเอาต์พุตของเครื่อง RF generator ตามข้อมูลในตารางที่ 1
- 3. ปรับ center frequency และ frequency span ของเครื่อง spectrum analyzer ให้สอดคล้องกับค่าที่ตั้ง ไว้กับ RF generator
- 4. กดปุ่มปล่อยสัญญาณให้ออกจาก RF generator อ่านค่ากำลังงานที่แสดงผลบนจอของ spectrum analyzer
- 5. บันทึกผลการทดลองในตารางที่ 1

ตารางที่ 1 ค่าการสูญเสียของสายนำสัญญาณ

	ค่ากำลังงานที่อ่านได้ (dBm)		
ความถี่ (MHz)/กำลัง	ชื่อของสายโคแอกเชียล	ชื่อของสายโคแอกเชียล	ชื่อของสายโคแอกเชียล
งานส่ง (dBm)			
	ความยาวของสาย	ความยาวของสาย	ความยาวของสาย
	โคแอกเชียล1 ม.	โคแอกเชียล1.2 ม.	โคแอกเชียล2 ม.
100 MHz/ -15 dBm	-15.97	-15.47	-15.66
1000 MHz/ -15 dBm	-18.19	-17.60	-15.77
2000 MHz/ -15 dBm	-19.81	-18.90	-15.97
3000 MHz/ -15 dBm	-23.09	-19.65	-15.70
4000 MHz/ -15 dBm	-25.71	-20.53	-17.52
100 MHz/ 0 dBm	-1.25	-0.45	-0.83
1000 MHz/ 0 dBm	-3.06	-2.68	-1.01
2000 MHz/ 0 dBm	-4.83	-3.84	-0.66
3000 MHz/ 0 dBm	-8.21	-4.79	-0.57
4000 MHz/ 0 dBm	-10.85	-5.73	-1.92

จากผลการวัดค่าต่าง ๆ ที่ได้ในตารางที่ 1

ความยาวสายสัญญาณมีผลต่อความแรงสัญญาณที่ได้ทางปลายทางหรือไม่ อย่างไร?

ความยาวของสายมีผลต่อสัญญาณโดยเมื่อสายมีความยาวเพิ่มขึ้น Loss เพิ่มขึ้นดังแสดงบนตารางที่ 1

ความถี่ที่ใช้ในการส่งมีผลต่อความแรงของสัญญาณที่รับเที่ปลายสายหรือไม่ อย่างไร?

ความถี่มีผลอย่างเห็นได้ชัดเมื่อพิจารณาจากตารางที่ 1 โดยเมื่อความถี่เพิ่ม Loss เพิ่มดังที่แสดง

การทดลองที่ 3 การใช้ Spectrum Analyzer วัดกำลังของสัญญาณ

หน้า

3/3

5. ทำการต่อ Attenuator แทรกเข้าไประหว่าง Signal Generator และป้อน Power ตามตารางที่ 2 โดยใช้สาย โคแอกเชียลเส้นใดเส้นหนึ่งจากตารางที่ 1 ในการทดลอง พร้อมบันทึกผล

ตารางที่ 2 กำลังงานที่อ่านได้จาก spectrum analyzer เมื่อต่อ Attenuator

ความถี่ (MHz)/กำลัง	ค่ากำลังงานที่อ่านได้ (dBm)		
พ ม มม (MH2)/ 11 เล่ง งานส่ง (dBm)	เบอร์ตัวลดทอน599 ค่าลดทอนที่เขียนไว้6dB	เบอร์ตัวลดทอน1344 ค่าลดทอนที่เขียนไว้10dB	
100 MHz/ -15 dBm	-22.06	-45.62	
1000 MHz/ -15 dBm	-24.31	-42.53	
2000 MHz/ -15 dBm	-26.60	-36.71	
3000 MHz/ -15 dBm	-28.11	-32.78	
4000 MHz/ -15 dBm	-31.66	-29.08	
100 MHz/ 0 dBm	-6.92	-18.84	
1000 MHz/ 0 dBm	-9.4	-17.28	
2000 MHz/ 0 dBm	-11.91	-16.09	
3000 MHz/ 0 dBm	-13.76	-14.97	
4000 MHz/ 0 dBm	-16.72	-13.67	

จากผลการทดลองที่ได้ ตัวลดทอนมีคุณสมบัติอย่างไร?

ตัว Attenuator ช่วยในการลดทอนหรือลดความแรงของสัญญาณ ทำให้ Power ที่จะส่งมามีกำลังอ่อนลง

สรุปผลการทดลอง

จากการทดลอง สามารถสรุปได้ดังนี้

ในการทดลองที่ 3.1 สามารถสรุปได้ว่า ค่าความสูญเสียแปรผันตามความยาวของสาย Coaxial และ Frequency

ในการทดลองที่ 3.2 สามารถสรุปได้ว่า เมื่อทำการต่อ Attenuator เข้าไปจะทำให้กำลังส่งมีค่าต่ำลงอย่างเห็นได้ ชัด ยิ่งตัว Attenuator มีค่ามากขึ้น กำลังส่งยิ่งมีความน้อยดังแสดงในตารางที่ 2