SYSC 2006 Fall 2019

Canada's Capital University

Data and Their Representation

Copyright (c) 2019, D.L. Bailey, Department of Systems and Computer Engineering Last edited by C.-H. Lung: Sept 11, 2019

Base 10 Number System

- How do we interpret the decimal value 742?
- "7 hundreds, 4 tens, 2 ones"
- $742 \Rightarrow 7 \times 10^2 + 4 \times 10^1 + 2 \times 10^0$
 - Weights associated with digit positions are powers of 10

- Different bases may be more natural in different circumstances
 - Base 10 (decimal) ⇒ 10 fingers
 - Base 2 (binary) ⇒ On/Off (Digital circuits)
- Base 10 has 10 symbols: 0 1 2 3 4 5 6 7 8 9
- Base 2 has 2 symbols: 0 1
- Base 16 (hexadecimal) has 16 symbols:
 - 0123456789<u>ABCDEF</u>

Counting in Binary and Decimal

<u>Value</u>	Base 2	Base 10	<u>Value</u>	Base 2	Base 10
zero	0	0	seven	111	7
one	1	1	eight	1000	8
two	10	2	nine	1001	9
three	11	3	ten	1010	10
four	100	4	eleven	1011	11
five	101	5			
six	110	6	fifteen	1111	15

Base N to Decimal Conversion

- Multiply each digit by its weight, sum the results
 - weights in binary are powers of 2
 - weights in base N are power of N
- $d_3 d_2 d_1 d_0$ (base N) =

$$d_3 \times N^3 + d_2 \times N^2 + d_1 \times N^1 + d_0 \times N^0$$

Base 2 to Decimal Conversion

- $1001011001_2 = ?_{10}$
- Position of symbol determines exponent

$$1 \times 2^{9} + 0 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6}$$

+ $0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2}$
+ $0 \times 2^{1} + 1 \times 2^{0}$

Base 2 to Decimal Conversion

- Short form: $2^9 + 2^6 + 2^4 + 2^3 + 2^0$
- So, 1001011001₂

$$= 2^9 + 2^6 + 2^4 + 2^3 + 2^0$$

$$=512_{10}+64_{10}+16_{10}+8_{10}+1_{10}$$

$$=601_{10}$$

Carleton Adding Binary Numbers

$$\bullet$$
 0 + 0 = 0

$$\bullet$$
 0 + 1 = 1

$$\bullet$$
 1 + 0 = 1

•
$$1 + 1 = 0$$
 carry 1

Data Storage: Cells

- In a computer, data are stored as binary digits (bits) in fixed-size cells
- 8 bits ⇒ byte
 - common size for a computer's memory cells
- 4 bits ⇒ nibble (nybble)
- Cells always contain a pattern of 1s and 0's (are never empty)

Words and Cells

- Computer designers pick "word" size
 - 16 and 32 bits are now typical
 - 2 adjacent 8-bit memory cells are treated as a single 16-bit word
 - 4 adjacent 8-bit memory cells are treated as a single 32-bit word
- Example: 0110110011110010 ⇒ 16-bit word

Representing Values

- With a k-bit word, you can represent 2^k different values
 - 8-bit word (byte) ⇒ 256 different values
 - 9-bit word ⇒ 512 different values
 - 16-bit word ⇒ 65,536 different values
 - 32-bit word ⇒ 4,294,967,296 different values
- Increasing the word size by one bit doubles the number of values it can represent

Canada's Capital University

 Interpret an 8-bit cell as an unsigned (positive) integer

Cell contents (binary)	Value (base 10)	
0000000	0	
0000001	1	
0000010	2	
• • •	• • •	
1111111	255	

 Interpreted as unsigned integers, the values in a k-bit word range from 0 to 2^k - 1

Signed Integers

Canada's Capital University

 How do we represent signed (positive or negative) binary numbers in a computer if a cell can store only 0's and 1's (no minus sign)?

Signed Magnitude

- A simple technique for representing signed integers is to use the most significant bit as a sign bit, and the remaining bits to represent the magnitude
- Sign bit
 - \circ 0 \Rightarrow positive
 - \circ 1 \Rightarrow negative

Signed Magnitude

Cell contents (binary)	Value (base 10)
0000000	<mark>+0</mark>
0000001	+1
0000010	+2
• • •	• • •
<mark>0111111</mark>	+127
<mark>1000000</mark>	<mark>-0</mark>
1000001	-1
• • •	• • •
1111111	-127

Signed Magnitude

- 8-bit word can represent 128 positive and 128 negative integers
- Drawbacks:
 - 2 representations for 0
 - relatively complex circuits to perform arithmetic operations

2's Complement

- Use most significant bit as a sign bit
 - \circ 0 \Rightarrow positive
 - \circ 1 \Rightarrow negative
- If a decimal integer is positive, it is represented in binary as if it was an unsigned integer
- If a decimal integer is negative, we negate the binary representation of the equivalent positive value (how?)

Negation Rule

- How do we negate a binary number?
- 1. Complement all bits (change all 0's to 1's and all 1's to 0's)
- 2. Then add 1, ignoring any carry out of the most significant bit

Canada's Capital University

$$\bullet$$
 -1₁₀ = ?₂

$$+1_{10} = 00000001_2 \Rightarrow complement \Rightarrow 111111110_2$$
 add 1 1_2

1111111₂

So, -1₁₀ is represented as 11111111₂

Canada's Capital University

•
$$-127_{10} = ?_2$$

So, -127₁₀ is represented as 10000001₂

Canada's Capital University

$$\bullet$$
 -2₁₀ = ?₂

$$+2_{10} = 00000010_2 \Rightarrow complement \Rightarrow 111111101_2$$
 add 1 1_2

So, -2₁₀ is represented as 111111110₂

2's Complement

Cell contents (binary)	Value (base 10)
0000000	+0
0000001	+1
• • •	• • •
0111111	+127
1000000	-128
1000001	-127
• • •	• • •
1111110	-2
1111111	-1

2's Complement

Canada's Capital University

 Interpreted as 2's complement integers, the values in a k-bit word range

from -2^{k-1} to 2^{k-1} - 1

- We can negate negative 2's complement numbers using the same technique
- Example: negate $-1_{10} = 111111111_2$

$$11111111_2 \Rightarrow complement \Rightarrow 00000000_2$$
 add 1 1_2

$$0000001_2 = +1_{10}$$

Canada's Capital University

• Example: negate $-127_{10} = 10000001_2$

Canada's Capital University

What happens if we negate 0?

```
0_{10} = 00000000_{2} \Rightarrow complement \Rightarrow 11111111_{2}
add 1 \qquad 1_{2}
00000000_{2}
```

 Using 2's complement notation, there's only 1 representation for 0

Canada's Capital University

What happens if we negate -128₁₀?

```
-128_{10} = 10000000_{2} \Rightarrow complement \Rightarrow 01111111_{2} add 1 1_{2} ----- 10000000_{2}
```

So, negating -128₁₀ yields -128₁₀

Base 2 to decimal

- Positive 2's complement binary numbers are converted to decimal using the technique shown earlier for converting unsigned binary numbers to decimal
- For a negative 2's complement number, convert it to a positive value (use the negation rule), perform binary to decimal conversion, then place a minus sign in front of the result

Base 2 to decimal

- Assuming 2's complement representation, $10001100_2 = ?_{10}$
- First, positive or negative?
- The sign bit is 1, so the value is negative, so negate it:

- Convert to decimal: $01110100_2 = 116_{10}$
- Affix minus sign: $10001100_2 = -116_{10}$

Characters

- Characters are represented as binary values (character codes)
- ASCII American Standard Code for Information Interchange
 - \circ 7-bit code (2⁷ = 128 possible values)
 - typically stored in 8-bit bytes, most significant bit set to 0

Characters

- 95 codes
 - upper & lowercase alphabet
 - decimal digits 0 .. 9
 - 32 punctuation characters (., !, @, *, /, },
 etc.)
- 33 control codes (ring bell, carriage return, line feed, etc.)

Selected ASCII Character Codes

Binary	Char	Binary	Char
0000000	NUL	01000001	Α
00100000	space	01000010	В
00100001	!	10011010	Z
00101000	(01100001	а
00101111	/	01100010	b
00110000	0	01111010	Z
00110001	1	01111101	}
00111001	9	0111111	DEL

Floating Point

- Binary numbers can have a binary point
- Digits to the right represent a fractional value
- Each digit is weighted by a negative power of
- 0.1011₂

$$= 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

$$=0.5_{10}+0.125_{10}+0.0625_{10}$$

$$= 0.6875_{10}$$

Floating Point

- Some decimal fractions produce a repeating fraction when converted to binary
- $0.1_{10} = 0.00011001100110011..._2$
- To store these values in a fixed-size cell, it must be truncated, introducing a small error
 - \circ e.g., 0.0001100110011₂ is a close approximation of 0.1₁₀ but isn't equal to 0.1₁₀

Floating Point

Canada's Capital University

That's why

```
// Calculate 1.0 as
// 0.1 + 0.1 + 0.1 + ... + 0.1
double x = 0.0;
for (int i = 0; i < 10; i++) {
    x = x + 0.1;
}</pre>
```

sets x to 0.99999999999999999181, not 1.0, and why x == 1.0 is false

Representing Floating Point

- A simple technique: store the value in an nbit word, with an implicit binary point
- Example: use a 24-bit word, implicit binary point after the 12th bit

Contents	Interpretation	Decimal
000000000000000000000000000000000000000	000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	000000000000000000000000000000000000000	1/4096 = 0.00024414
000000000100000000000	0000000001.00000000000	1
111111111111111111111111111111111111111	1111111111111111111111	4095.99975586

Representing Floating Point

- Drawbacks
 - can't represent negative values
 - range of values is too limited for practical purposes

Scientific Notation

- Represent values as a base N mantissa multiplied by the base raised to a power
- $7123660000000_{10} = 71.2366_{10} \times 10^{11}$
- $93450.0_{10} = 9.345_{10} \times 10^4$
- \bullet -0.0456₁₀ = -45.6₁₀ × 10⁻³
- $111010.0_2 = 11.101_2 \times 2^4$
- $0.01001_2 = 1.0012 \times 2^{-2}$
 - exponent indicates how far the point is to be shifted, right or left

Normalized Scientific Notation

Canada's Capital University

Represent real numbers in binary using the format:

0 is a special case

Normalized Scientific Notation

- To store a normalized binary number in a 24-bit word
 - use 8 bits for the exponent
 - use 16 bits for the mantissa
 - 1 bit for the sign (0 = +ve, 1 = -ve)
 - don't store the mantissa's leading one or binary point
 - 15 digits for the fractional part of the mantissa
- See Principles of Computer Systems, Fig 1.18