

Estimation of Left Ventricle Ejection Fraction using Cardiac MRIs

Ahsan Shehzad

What is Ejection Fraction (EF) ratio?

Challenges

- Heart is non rigid body
- Heart is moving organ

- Occlusion due to presence of other organs in images
- Less illumination variations between walls and blood

State of the art

• Thresholding and active contour [Lynch et al. 2008]

• Deep learning for volume estimation [Tan et al. 2017]

However

- Prior heart shape is required
- Segmented dataset is required for model training

Contributions

1. Segment the Left Ventricle of heart and count the number of pixels in each slice for blood volume

- 2. Estimation of Left Ventricle systole/diastole blood volume by applying different regression models
- 3. Comparative study of regression models based on subject's age and gender

Left Ventricle Segmentation

Short axis view

Comparative study

Results and Discussion

Dataset

- Dataset is provided by National Institutes of Health and Children's National Medical Center
- We use 450 subjects data
- 270 subject use for training and 180 use for testing
- Only short axis views are utilized

Evaluation measure

Root Mean Square Error (RMSE) use for evaluation

Diastole

Systole

Result and Discussion

Systole RMSE

Regression models

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)2}{n}}$$

where n is the total number of subjects, ^ y_i is the model predicted volumes and y is the original volumes of systole and diastolic.

Result

Approach	N-RMSE (ml)	Diastole-RMSE(ml)	N-RMSE (ml)	Systole-RMSE(ml)
Polynomial	0.1	56	0.07	39
Power2	0.1	56	0.07	39
Fourier	0.1	56	0.1	56
Gaussian	0.1	56	0.1	56
SVM	0.1	56	0.1	56
Stepwise Linear	0.1	56	0.1	56
Regression tree	0.12	45.4	0.08	45
Gaussian process regression	0.12	45.4	0.08	45

Ensemble Models

Model name	N-RMSE (ml)	Diastolic-RMSE (ml)	N-RMSE (ml)	Systole-RMSE (ml)
Random forest	0.18	102	0.1	56
LSBoost	0.14	79	0.08	45

Thank you.