МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №3 По теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил: Студент группы ИУ7-34Б

Андреев Александр Алексеевич

Вариант №3

Работу проверил: Оглобин Дмитрий Игоревич

Оглавление

Цель работы	2
Эксперимент №1	3
Эксперимент №2	4
Построение схемы и измерения	4
Эксперимент №3	5
Построение схемы	5
Задание соответствующих параметров для измерения	6
Измерения	6
Экспортирование данных	7
Расчеты в Mathcad	7
Эксперимент №4	8
Построение схемы	8
Измерения	9
Отрисовка графика	10
Отрисовка графика со Stepping	11
Создание таблицы и произведение вычислений в Mathcad	12
Вычисление барьерной емкости	13
Данные диода для сравнения	14

Цель работы

Цель работы - Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах Multisim и Mathcad по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов..

По инструкции в программу был добавлен диод D2d2997 в соответствии с Вариантом №3 при помощи пунктов меню "Tools\Database\Database Manager", семья, в которую был добавлен диод была названа мною по названию диода для упрощения последующей работы с ним.

Во время второго эксперимента по заданию необходимо было построить схему, используя диод в соответствии с моим вариантом исследовать ее.

Построение схемы и измерения

По инструкции была построена схема с диодом D2d2997 в соответствии с Вариантом №3 (см. Рисунок 2).

Рисунок 2.

Во время третьего эксперимента по заданию необходимо было построить схему, используя диод в соответствии с моим вариантом исследовать ее, зафиксировать исследования в файл и дальше сравнить значения уже в программе Mathcad

Построение схемы

По инструкции Эксперимента №3 была построена схема с диодом D2d2997 в соответствии с Вариантом №3 (см. Рисунок 3).

Задание соответствующих параметров для измерения

Далее были заданы параметры генератора XFG1.

Рисунок 4.

Измерения

Далее был построен график и открыты данные осциллоскопа (см. Рисунок 5).

Рисунок 5.

Экспортирование данных

Затем полученные данные на графике были экспортированы в текстовый файл .lmv для последующего открытия в Mathcad (см. Рисунок 6, 7).

Рисунок 6, 7.

Расчеты в Mathcad

Далее данные были прочитаны из файла в программе Mathcad и проведены расчеты над ними для дальнейшего сравнения (см. Рисунок 7, 8, 9).

Рисунок 7, 8, 9, 10.

Во время второго эксперимента по заданию необходимо было построить схему, используя диод в соответствии с моим вариантом исследовать ее.

Построение схемы

По инструкции Эксперимента №4 была построена схема с диодом D2d2997 в соответствии с Вариантом №3 (см. Рисунок 12).

Измерения

После настроек параметров XFG1 и осциллоскопа схема была запущена и ее данные были отражены в Grapher View (см. Рисунок 12)

Рисунок 12.

Отрисовка графика

Далее после запуска получаем отрисованный график:

Отрисовка графика со Stepping

Для того, чтобы отобразить Stepping на графике в параметрах Stepping указываем данные:

И получаем график:

Создание таблицы и произведение вычислений в Mathcad

Дальше переносим данные в программу Mathcad для дальнейших вычислений в таблицу, после этого вычисляем :

Строим график зависимости Cdi от VVARi:

Вычисление барьерной емкости

Выполняем расчет параметров барьерной емкости:

$$M := 0.8$$
 $CJ0 := 1.7 \cdot 10^{-12}$ $VJ0 := 0.15$ $U := -10, -8...0$
$$Cd(U) := CJ0 \cdot \left(1 - \frac{U}{VJ0}\right)^{-M}$$

$$Cd(U) = U =$$

Given

$$(5.836 \times 10^{-14}) = \text{CJO} \cdot \left(1 - \frac{-10}{\text{VJO}}\right)^{-1} \text{M}$$

 $(2.02 \times 10^{-13}) = \text{CJO} \cdot \left(1 - \frac{-2}{\text{VJO}}\right)^{-1} \text{M}$
 $(8.714 \times 10^{-14}) = \text{CJO} \cdot \left(1 - \frac{-6}{\text{VJO}}\right)^{-1} \text{M}$

find (CJ0, VJ0, M) =
$$\begin{pmatrix} 1.657 \times 10^{-12} \\ 0.156 \\ 0.801 \end{pmatrix}$$

Данные диода для сравнения

