- To be more general, we'll derive properties of a linear combination of $\widehat{\pmb{\beta}}$ (rather than $\widehat{\pmb{\beta}}$ itself)
- We can obtain a single element of $m{\beta}$ by appropriately setting the coefficients of the linear combination of $m{\beta}$
- Contrasts is a special type of linear combination of β , where the coefficients of this linear combination sums to 0

Multiple linear regression: Statistical Properties of LSE

- Contrasts are useful for comparing different group means
- For example, we regress wine quality on 4 different types of wine
 - Two of the wines are red wine, while the other two are white wines
 - Using contrasts, we can setup a test compare within white wine group only
 - Similarly, we can compare within the red wine group only
 - We can also use contrasts to set up a test to test whether there is a difference between red and white wines

Lemma 7

Suppose $Y_1, Y_2, ..., Y_n$ are independent with $E(Y_i) = \eta_i$ and $var(Y_i) = \sigma^2$. Let

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
, $\mathbf{\eta} = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$, and $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$.

and let $V = \boldsymbol{a}^{\mathsf{T}} Y$. Then

$$E(V) = \mathbf{a}^{\mathsf{T}} \mathbf{\eta}, \qquad = \sum_{i=1}^{2} a_{i} \mathbf{\eta}_{i}$$

$$var(V) = \mathbf{\sigma}^{2} \mathbf{a}^{\mathsf{T}} \mathbf{a}. \qquad = \mathbf{\sigma} \sum_{i=1}^{2} a_{i}^{2}$$

If, furthermore, $Y_i \sim N(\eta_i, \sigma^2)$ independently, then

$$V \sim N(\boldsymbol{a}^{\mathsf{T}}\boldsymbol{\eta}, \sigma^2 \boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$

Proof of Lemma 7

$$E[\mathbf{a}^T \mathbf{Y}] = E\left[\sum_{i=1}^n a_i Y_i\right]$$
$$= \sum_{i=1}^n a_i E[Y_i]$$
$$= \sum_{i=1}^n a_i \eta_i$$
$$= \mathbf{a}^T \mathbf{\eta}$$

$$\operatorname{var}(\boldsymbol{a}^{T}\boldsymbol{Y}) = \operatorname{var}\left(\sum_{i=1}^{n} a_{i}Y_{i}\right)$$

$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{var}(Y_{i}) \quad \text{by independence}$$

$$= \sum_{i=1}^{n} a_{i}^{2}\sigma^{2}$$

$$= \sigma^{2} \sum_{i=1}^{n} a_{i}^{2}$$

$$= \sigma^{2} \boldsymbol{a}^{T} \boldsymbol{a}.$$

Theorem 11

Suppose $Y_1, Y_2, ..., Y_n$ are independent with $E(Y_i) = \eta_i$ and $var(Y_i) = \sigma^2$, where

$$\boldsymbol{\eta} = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix} = \underline{\boldsymbol{X}\boldsymbol{\beta}}.$$

and where X is an $x \times p$ matrix with linearly independently columns and let (λ) be a constant vector, then, consider $\lambda^T \hat{\beta}$, where $\hat{\beta} = (x^T x)^T x^T y$.

- 1. $E(\lambda^{\mathsf{T}}\widehat{\boldsymbol{\beta}}) = \lambda^{\mathsf{T}}\boldsymbol{\beta}$ 2. $var(\lambda^{\mathsf{T}}\widehat{\boldsymbol{\beta}}) = \sigma^2 \lambda^{\mathsf{T}} (X^{\mathsf{T}}X)^{-1} \lambda$ 3. $E(s_e^2) = \sigma^2$

 - 4. If, furthermore, $Y_i \sim N(\eta_i, \sigma^2)$, then

$$\lambda^{\mathsf{T}}\widehat{\boldsymbol{\beta}} \sim N(\lambda^{\mathsf{T}}\boldsymbol{\beta}, \sigma^2\lambda^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}\lambda)$$
 and $\underbrace{\frac{(n-p)s_e^2}{\sigma^2}}_{\text{independently.}} \sim \chi_{n-p}^2$ independently.

Proof of Theorem 11

 $= \sigma^2 \lambda^{\mathsf{T}} (x^{\mathsf{T}} x)^{\mathsf{T}} \lambda$

Proof of Theorem 11

Se² =
$$\frac{1}{n-p}$$
 Y^T (I-H) Y from Example 3.4
 $E[x^TAx] = tr(A\Sigma) + \mu^TA\mu$ if $E(x) = \mu$ and $var(x) = \Sigma$ (We will prove this in the next tutorial.)
 $E[Se^2] = \frac{1}{n-p}$ $E[Y^T(I-H)Y]$ (Let $x=Y$, $A=I-H$)
 $=\frac{1}{n-p}$ [$tr((I-H)v^2) + E(Y)^T(I-H)E(Y)$]
 $=\frac{1}{n-p}$ [v^2 tr($I-H$) + IXB^T ($I-H$) IXB^T)
 $=\frac{v^2}{n-p}$ tr($I-H$)

 $=\frac{v^2}{n-p}$ tr($I-H$)

 $=\frac{v^2}{n-p}$ [$tr(I) - tr(H)$]

 $=\frac{v^2}{n-p}$ [$tr(I) - tr(H)$]

BLUE for Multiple Linear Regression

Gauss-Markov Theorem

Suppose $Y_1, Y_2, ..., Y_n$ are independent observations with $E(Y_i) = \eta_i$ and $var(Y_i) = \sigma^2$. Let

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
 and $\mathbf{\eta} = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$

and suppose $\eta = X\beta$, where X is an $n \times p$ matrix whose columns are linearly independent.

Gauss-Markov Theorem (cont.)

If $\boldsymbol{a}^{\mathsf{T}}\boldsymbol{Y}$ is an unbiased linear estimator for $\boldsymbol{\lambda}^{\mathsf{T}}\boldsymbol{\beta}$ then

$$var(\boldsymbol{a}^{\mathsf{T}}\boldsymbol{Y}) \geq var(\boldsymbol{\lambda}^{\mathsf{T}}\widehat{\boldsymbol{\beta}})$$

with equality if and only if

$$a = X(X^{\mathsf{T}}X)^{-1}\lambda.$$

This means that $\lambda^T \hat{\beta}$ will have the smallest variance among all the unbiased linear estimator for $\lambda^T \beta$. So $\lambda^T \hat{\beta}$ is the BLUE for $\lambda^T \beta$.

Proof: Omitted here. It will be covered in Statistical Modelling III.