Chek de quality of fastq files:

FASTQC

- < fastqc input_file.fastq >
 - HTML file with the interactive report;
 - Zip file containing the detailed data of the report.
 - Source code available at: https://github.com/s-andrews/FastQC.git

Remove low-quality reads:

TRIMMOMATIC

- < java -jar trimmomatic.jar PE -phred30 input_forward.fastq input_reverse.fastq
 output_forward_paired.fastq ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 TRAILING:3
 SLIDINGWINDOW:4:15 MINLEN:36 >
 - PE: Mode for paired-end data;
 - phred30: Specifies the quality encoding;
 - ILLUMINACLIP:adapters.fa:2:30:10: Removes sequence adapters:
 - adapters.fa: File with adapter sequences;
 - 2:Number of allowed mismatches;
 - 30: Threshold score for trimming adapters;
 - 10: Minimum fragment length after adapter removal;
 - LEADING:3: Removes low-quality bases (score below 3) at the start of the read;
 - TRAILING:3: Removes low-quality bases at the end of the read;
 - SLIDINGWINDOW:4:15: Checks the average quality within a sliding window (4 bases). Trims when the average is below 15;
 - MINLEN:36: Discards reads shorter than 36 base Source code available at: https://github.com/usadellab/Trimmomatic.git

Removing duplicates:

PICARDTOOLS

- < java -jar picard.jar MarkDuplicates INPUT=input.bam OUTPUT=deduplicated.bam METRICS_FILE=metrics.txt >
 - MarkDuplicates: Call to exclude duplicate regions;
 - INPUT: Specifies the input BAM file;
 - OUTPUT: Specifies the output BAM file with duplicates;
 - METRICS_FILE: Output file containing duplication metrics.

Source code available at: https://github.com/broadinstitute/picard.git

Mapping against the reference genome - H37Rv

BWA-MEM

< bwa mem -t 8 -M reference.fa reads_1.fq reads_2.fq > aligned.sam >

- -t: Number of threads for parallelization;
- -M: Marks secondary reads as secondary alignments.

Source code available at: https://github.com/bwa-mem2/bwa-mem2.git

Variant calling (SNPs and indels):

SAMTOOLS

< samtools mpileup -uf reference.fasta input.bam | bcftools call -mv -Ov > variants.vcf >

- -u: Generates output in uncompressed format (to be processed by other tools);
- -f reference.fasta: Specifies the reference genome;
- input.bam: Input BAM file;
- -m: Performs variant calling using the multiallelic caller;
- -v: Reports only variants (excludes unchanged regions);
- -Ov: Specifies output in text-based VCF format.

Source code available at: https://github.com/samtools/samtools.git

Variant calling (SNPs and indels):

GATK

First part: Variant Calling:

< gatk HaplotypeCaller -R reference.fasta -I sorted_output.bam -O raw_variants.vcf >

- HaplotypeCaller: Identifies and calls all variants;
- -R reference.fasta: FASTA file containing the reference genome;

Second part: Variant Filtering:

< gatk VariantFiltration -R reference.fasta -V raw_variants.vcf -O filtered_variants.vcf >

- VariantFiltration: Applies filtering criteria to variant calls;
- -R reference.fasta: Same reference used in the previous step;
- -V raw_variants.vcf: Input VCF file containing raw variants;
- O filtered_variants.vcf: Output VCF file.
- Source code available at: https://github.com/broadinstitute/gatk.git

Perform mutation prediction and describe the lineage:

TB-PROFILER

< tb-profiler profile -1 input_forward.fq -2 input_reverse.fq -o tbprofiler_output >

- -1 and -2: Specify the input reads;
- -o: Defines the prefix for the output files.

Source code available at: https://github.com/jodyphelan/TBProfiler.git