MAXIMUM MARK: 100 Time allowed: 70 minutes

NOTE:

Unless otherwise stated, the questions are with reference to the C Programming Language and the UNIX operating System.

Language and the UNIX operating System.
Q1 (30 marks)
(a) Give two reasons why we may need to use files in our programs.
(b) Give two advantages of sequential access file
(c) Give three limitations of sequential access files
(d) What is the difference between each of the following:
(i) fprintf() and fwrite()
(ii) fwrite() and write()
(iii) system call and library call

- (e) (i) Given the following simple program, explain what the program does.
 - (ii) Give a sample command line usage for the program.

```
1
         sample test program - testProgram.c
2
3
      #include <stdio.h>
4
5
      int main( int argc, char *argv[] )
6
7
         FILE *fptr1, *fptr2;
8
         int c;
9
         if ( argc != 3 )
            printf( "wrong usage \n" );
10
11
          if ((fptr1 = fopen(argv[ 1 ], "r")) != NULL)
12
             if ((fptr2 = fopen(argv[2],"wr")) != NULL)
13
14
15
                 fseek(fptr2, 0, SEEK_END);
                  while ((c = fgetc(fptr1)) != EOF)
16
17
                     fputc(c, fptr2);
18
19
             else
               printf("Can't open file \"%s\"\n", argv[ 2 ] );
20
           else
21
             printf("Can't open file \"%s\"\n", argv[1]);
22
23
         return 0;
24
```

Q2 (12 marks).
For each of the following, indicate whether the assertion is TRUE or FALSE.

s/n	Assertion	True or False
1	The functions rewind() and fseek() are similar, in that, they are both used to reposition the file position	
	pointer. Also, rewind() can be implemented with appropriate use of fseek() , and vice versa.	
2	Pipes can be used to communicate between processes that are not related	
3	Signals can be used to communicated between processes on different machines	
4	Semaphores can be used to solve the mutual exclusion problem. They can also be used to provide synchronization between processes.	
5	Multiprogramming and timesharing are one and the same concept, in that, both aims at a more efficient utilization of the same computer system resource - the main memory	
6	Pipes could be blocking or non-blocking, full duplex or half-duplex, but they can only be message-boundary non-preserving (and not message-boundary preserving)	
7	At the time of creation, a process has access to the standard files: stdin, stdout and stderr. But these standard files can be redirected to other files in the course of program execution.	
8	The exec family of system calls is used to overlay one process with another. Thus, the only way to get a child process to perform a different task from the parent is by use of an exec call.	
9	With fread () (fwrite ()), we typically read (or write) one element of an array of data structures at a time. However, we can actually read (write) multiple elements with one call to fread () (fwrite ()).	
10	The operating system and other system programs operate in kernel (protected) mode, while all other programs operate in user mode.	
11	A zombie process is a major problem in operating systems, since a zombie process consumes system resources, and the zombie cannot be removed from the system.	
12	The system calls wait() and waitpid() are similar in the sense that both of them can be used to wait for a process. Therefore, one can always be used in place of the other.	

Q3 (30 marks)

(a)	Given that we have a program file imageServer.c. We compile this to produce an executable file, called imageServer . A some other stage, we talk of the " <i>imageServer process</i> ".
	(i) Give two differences between imageServer (the executable program), and imageServer , the process.

(ii) What is the relationship between the two?

(b) (i) Using a diagram explain the possible states that a process can be, indicating the transition between states.

(ii) Give one reason for each of the allowable transitions in your diagram.

- (c) When the following program is executed, the result will be a process tree, which may vary from one run to the other.
 - (i) Using a diagram, sketch two of the possible process trees than can result if the program were to be executed.
 - (ii) Very briefly, explain why we could have different possible process trees for the same program. [You can assume process ID's are integer numbers from 5, 6, 7, Assume no error during the fork() system call.]

```
#include <stdio.h>
1
2
      #include <sys/types.h>
3
      #include <unistd.h>
4
      int main()
5
6
         int k = 0;
7
         pid_t PID;
8
         PID=fork();
9
         if (PID %2 != 0 )
10
           break;
11
         else
12
           printf("I am %ld, the child of %ld, (long)getpid(), (long)getppid() );
13
         return 0;
14
      }
```

Q4 (28 marks) (a) Signals and pipes are two mechanisms that can be used to communicate between processes.
(i) List two advantages of using signals for inter-process communication
(ii) List two limitations in using signals for inter-process communication
(iii) List two advantages of using pipes for inter-process communication
(iii) Zist the data and get of doing p.p. 102 into process communication
(iv) List two limitations in using pipes for inter-process communication
(b) (i) Give one difference between SIGSTOP (the stop signal) and SIGKILL (the kill signal)
(ii) Give one similarity between SIGSTOP (the stop signal) and SIGKILL (the kill signal)
(d) The major making with most solutions to the critical costion making on brown matter and majority in consistent
(d) Two major problems with most solutions to the critical section problem are busy waiting and priority inversion(i) Very briefly, explain what busy waiting means, in the context of operating systems.
(ii) Varan briefly combain out at missister income in the content of a continuous
(ii) Very briefly, explain what priority inversion means, in the context of operating systems.
(ii) How can these problems be resolved?