# **DSP56305**

# Advance Information SINGLE CHIP CHANNEL CODEC DIGITAL SIGNAL PROCESSOR

Motorola designed the DSP56305 to deliver the high performance required to support Global System for Mobile (GSM) communications applications that use digital signal processing to perform channel equalization, channel coding, and speech coding. By combining three dedicated on-chip hardware co-processors (filter, Viterbi, and cyclic code) with a DSP56300 core, the DSP56305 performs all the complex signal processing required by a single Radio Frequency (RF) carrier in one chip, satisfying the demand for high integration cost effectively. The DSP56300 core includes an on-chip PLL, a Data ALU, an instruction cache, on-chip debugging modules, on-chip program and data memory, six DMA channels, and an external memory expansion port. In addition to the co-processors, the DSP56305 provides two types of serial ports, a PCI/Universal bus 32-bit Host Interface, and timers (see **Figure 1**). The DSP56305 provides an industry-leading performance rate of 80 MIPS at 3.3 V.



Figure 1 DSP56305 Block Diagram

This document contains information on a new product. Specifications and information herein are subject to change without notice.



### **TABLE OF CONTENTS**

| SECTION 1  | SIGNAL/CONNECTION DESCRIPTIONS | .1-1 |
|------------|--------------------------------|------|
| SECTION 2  | SPECIFICATIONS                 | .2-1 |
| SECTION 3  | PACKAGING                      | .3-1 |
| SECTION 4  | DESIGN CONSIDERATIONS          | .4-1 |
| SECTION 5  | ORDERING INFORMATION           | .5-1 |
| APPENDIX A | POWER CONSUMPTION BENCHMARK    | A-1  |
| APPENDIX B | BOOTSTRAP PROGRAM              | B-1  |
|            | INDEX Ind                      | ex-1 |

### FOR TECHNICAL ASSISTANCE:

**Telephone:** 1-800-521-6274

Email: dsphelp@dsp.sps.mot.com

Internet: <a href="http://www.motorola-dsp.com">http://www.motorola-dsp.com</a>

# **Data Sheet Conventions**

This data sheet uses the following conventions:

| OVERBAR      | Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when low.) |                                                                                                   |              |                         |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|-------------------------|--|--|
| "asserted"   | Means that a high true (active high) signal is high or that a low true (active low) signal is low         |                                                                                                   |              |                         |  |  |
| "deasserted" | Means that a high tru<br>signal is high                                                                   | Means that a high true (active high) signal is low or that a low true (active low) signal is high |              |                         |  |  |
| Examples:    | Signal/Symbol                                                                                             | Logic State                                                                                       | Signal State | Voltage <sup>1</sup>    |  |  |
|              | PIN                                                                                                       | True                                                                                              | Asserted     | $V_{IL}/V_{OL}$         |  |  |
|              | PIN                                                                                                       | False                                                                                             | Deasserted   | $V_{\rm IH}/V_{\rm OH}$ |  |  |
|              | PIN                                                                                                       | True                                                                                              | Asserted     | $V_{IH}/V_{OH}$         |  |  |
|              | PIN                                                                                                       | False                                                                                             | Deasserted   | $V_{\rm IL}/V_{\rm OL}$ |  |  |

Note: Values for  $V_{IL}$ ,  $V_{OL}$ ,  $V_{IH}$ , and  $V_{OH}$  are defined by individual product specifications.

### **DSP56305 FEATURES**

### **High Performance DSP56300 Core**

- 80 Million Instructions Per Second (MIPS) with an 80 MHz clock at 3.3 V
- Object code compatible with the DSP56000 core
- Highly parallel instruction set
- Data Arithmetic Logic Unit (ALU)
  - Fully pipelined 24 x 24-bit parallel Multiplier-Accumulator
  - 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)
  - Conditional ALU instructions
  - 24-bit or 16-bit arithmetic support under software control
- Program Control Unit (PCU)
  - Position Independent Code (PIC) support
  - Addressing modes optimized for DSP applications (including immediate offsets)
  - On-chip instruction cache controller
  - On-chip memory-expandable hardware stack
  - Nested hardware DO loops
  - Fast auto-return interrupts
- Direct Memory Access (DMA)
  - Six DMA channels supporting internal and external accesses
  - One-, two-, and three- dimensional transfers (including circular buffering)
  - End-of-block-transfer interrupts
  - Triggering from interrupt lines and all peripherals
- Phase Lock Loop (PLL)
  - Allows change of low power Divide Factor (DF) without loss of lock
  - Output clock with skew elimination

- Hardware debugging support
  - On-Chip Emulation (OnCE<sup>TM</sup>) module
  - Joint Action Test Group (JTAG) Test Access Port (TAP) port
  - Address tracing mode reflects internal Program RAM accesses at the external port

### **On-Chip Memories**

Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable:

| Program<br>RAM Size   | Instruction<br>Cache Size | X Data<br>RAM Size    | Y <mark>Data</mark><br>RAM <mark>Si</mark> ze | Instruction<br>Cache <sup>1</sup>                   | Switch<br>Mode <sup>2</sup>                         |
|-----------------------|---------------------------|-----------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| $6656 \times 24$ -bit | 0                         | 3840 × 24-bit         | $2048 \times 24$ -bit                         | disabled<br>(CE = 0)                                | $\begin{array}{l} disabled \\ (MS = 0) \end{array}$ |
| $5632 \times 24$ -bit | $1024 \times 24$ -bit     | $3840 \times 24$ -bit | 2048 × 24-bit                                 | enabled<br>(CE = 1)                                 | $\begin{array}{l} disabled \\ (MS = 0) \end{array}$ |
| $7680 \times 24$ -bit | 0                         | 2816 × 24-bit         | $2048 \times 24$ -bit                         | $\begin{array}{l} disabled \\ (CE = 0) \end{array}$ | enabled $(MS = 1)$                                  |
| $6656 \times 24$ -bit | 1024 × 24-bit             | $2816 \times 24$ -bit | $2048 \times 24$ -bit                         | enabled<br>(CE = 1)                                 | enabled $(MS = 1)$                                  |

Note: 1. Controlled by the Cache Enable (CE) bit in the Status Register (SR)

- 2. Controlled by the Memory Select (MS) bit in the Operating Mode Register (OMR)
- 6144×24-bit Program ROM
- $3072 \times 24$ -bit Y data ROM
- 192 × 24-bit bootstrap ROM

# Off-Chip Memory Expansion

- Data memory expansion to two 16 M  $\times$  24-bit word memory spaces in 24-Bit mode or two 64 K  $\times$  16-bit memory spaces in 16-Bit Compatibility mode
- Program memory expansion to one 16 M  $\times$  24-bit words memory space in 24-Bit mode or 64 K  $\times$  16-bit in 16-Bit Compatibility mode
- · External memory expansion port
- Chip select logic provides glueless interface to SRAMs and SSRAMs
- On-chip DRAM controller provides glueless interface to DRAMs

### On-Chip Peripherals

- PCI Rev. 2.1-compliant 32-bit parallel PCI/Universal Host Interface (HI32) with glueless interface to other DSP563xx buses
- ISA interface requires only 74LS45-style buffer
- Two Enhanced Synchronous Serial Interfaces (ESSI0 and ESSI1)
- Serial Communications Interface (SCI) with baud rate generator
- Triple timer module
- Up to forty-two programmable General Purpose Input/Output pins (GPIO), depending on which peripherals are enabled

# **On-Chip Co-Processors**

- Filter Co-Processor (FCOP) implements a wide variety of convolution and correlation filtering algorithms. In GSM applications, the FCOP cross-correlates between the received training sequence and a known midamble sequence to estimate the channel impulse response, and then performs match filtering of received data symbols using coefficients derived from that estimated channel.
- Viterbi Co-Processor (VCOP) implements a Maximum Likelihood Sequential Estimation (MLSE) algorithm for channel decoding and equalization (uplink) and channel convolution coding (downlink). The VCOP supports constraint lengths (k) of 4, 5, 6, or 7 with number of states 8, 16, 32, or 64, respectively; code rates of 1/2, 1/3, 1/4, or 1/6; and trace-back Trellis depth of 36.
- Cyclic-code Co-Processor (CCOP) executes cyclic code calculations for data ciphering and deciphering, as well as parity code generation and check. The CCOP is fully programmable and not dedicated to a specific algorithm, but it is well suited for GSM A5.1 and A5.2 data ciphering algorithms. The CCOP can generate mask sequences for data ciphering, and supports Fire encode and decode for burst error correction, as well as generation of Cyclic Redundancy Code (CRC) syndrome for any polynomial of any degree up to 48.

# **Reduced Power Dissipation**

- · Very low power CMOS design
- Wait and Stop low power standby modes
- Fully-static logic, operation frequency down to DC
- · Optimized power management circuitry

### PRODUCT DOCUMENTATION

The three documents listed in **Table 1** are required for a complete description of the DSP56305 and are necessary to design properly with the part. Documentation is available from one of the following locations (see back cover for detailed information):

- A local Motorola distributor
- A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW) (the source for the latest information)

 Table 1
 DSP56305
 Documentation

| Topic                      | Description                                                                                | Order Number  |
|----------------------------|--------------------------------------------------------------------------------------------|---------------|
| DSP56300 Family<br>Manual  | Detailed description of the DSP56300 family architecture, 24-bit core, and instruction set | DSP56300FM/AD |
| DSP56305 User's<br>Manual  | Detailed description of DSP56305 memory, peripherals, and interfaces                       | DSP56305UM/AD |
| DSP56305 Technical<br>Data | DSP56305 pin and package descriptions, and electrical and timing specifications            | DSP56305/D    |



# SECTION 1

# SIGNAL/CONNECTION DESCRIPTIONS

### SIGNAL GROUPINGS

The input and output signals of the DSP56305 are organized into functional groups, as shown in **Table 1-1** and as illustrated in **Figure 1-1**.

The DSP56305 is operated from a 3 V supply; however, some of the inputs can tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs.

**Table 1-1** DSP56305 Functional Signal Groupings

| Functional Group                             | Number of<br>Signals       | Detailed<br>Description |                              |
|----------------------------------------------|----------------------------|-------------------------|------------------------------|
| Power (V <sub>CC</sub> )                     |                            | 25                      | Table 1-2                    |
| Ground (GND)                                 |                            | 26                      | Table 1-3                    |
| Clock                                        |                            | 2                       | Table 1-4                    |
| PLL                                          | <u> </u>                   | 3                       | Table 1-5                    |
| Address Bus                                  | Port A <sup>1</sup>        | 24                      | Table 1-6                    |
| Data Bus                                     | 24                         | Table 1-7               |                              |
| Bus Control                                  | 1                          | 15                      | Table 1-8                    |
| Interrupt and Mode Control                   |                            | 5                       | Table 1-9                    |
| Host Interfac <mark>e (HI32)</mark>          | Port B <sup>2</sup>        | 52                      | Table 1-11                   |
| Extended Synchronous Serial Interface (ESSI) | Ports C and D <sup>3</sup> | 12                      | Table 1-12 and<br>Table 1-13 |
| Serial Communication Interface (SCI)         | Port E <sup>4</sup>        | 3                       | Table 1-14                   |
| Timer                                        | 3                          | Table 1-15              |                              |
| JTAG/OnCE Port                               |                            | 6                       | Table 1-16                   |

Note:

- 1. Port A signals define the external memory interface port, including the external address bus, data bus, and control signals.
- Port B signals are the HI32 port signals multiplexed with the GPIO signals.
- Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.
- Port E signals are the SCI port signals multiplexed with the GPIO signals.

**Figure 1-1** is a diagram of DSP56305 signals by functional group.



Note:

- 1. The HI32 port supports PCI and non-PCI bus configurations. Twenty-four of these HI32 signals can also be configured alternately as GPIO signals (PB0–PB23).
- 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC0–PC5), Port D GPIO signals (PD0–PD5), and Port E GPIO signals (PE0–PE2), respectively.
- 3. TIO0-TIO2 can be configured as GPIO signals.

Figure 1-1 Signals Identified by Functional Group

| DSP56305               | PCI Bus          | Universal Bus                     | Port B GPIO                             | HP Reference |
|------------------------|------------------|-----------------------------------|-----------------------------------------|--------------|
|                        | HAD0             | HA3                               | PB0                                     | HP0          |
|                        | HAD1             | HA4                               | PB1                                     | HP1          |
|                        | HAD2             | HA5                               | PB2                                     | HP2          |
|                        | HAD3             | HA6                               | PB3                                     | HP3          |
|                        | HAD4             | HA7                               | PB4                                     | HP4          |
|                        | HAD5             | HA8                               | PB5                                     | HP5          |
|                        | HAD6             | HA9                               | PB6                                     | HP6          |
|                        | HAD7             | HA10                              | PB7                                     | HP7          |
|                        | HAD8             | HD0                               | PB8                                     | HP8          |
|                        | HAD9             | HD1                               | PB9                                     | HP9          |
|                        | HAD10            | HD2                               | PB10                                    | HP10         |
|                        | HAD11            | HD3                               | PB11                                    | HP11         |
|                        | HAD12            | HD4                               | PB12                                    | HP12         |
|                        | HAD13            | HD5                               | PB13                                    | HP13         |
|                        | HAD14            | HD6                               | PB14                                    | HP14         |
|                        | HAD15            | HD7                               | PB15                                    | HP15         |
|                        | HC0/HBE0         | HA0                               | PB16                                    | HP16         |
|                        | HC1/HBE1         | HA1                               | PB17                                    | HP17         |
|                        | HC2/HBE2         | HA2                               | PB18                                    | HP18         |
| Host Interface (HI32)/ | HC3/HBE3         | Tie to pull-up or V <sub>CC</sub> | PB19                                    | HP19         |
|                        | HTRDY            | HDBEN                             | PB20                                    | HP20         |
| Port B Signals         | HIRDY<br>HDEVSEL | HDBDR<br>HSAK                     | PB21<br>PB22                            | HP21<br>HP22 |
| Port B Signals         | HLOCK            | HBS                               | PB23                                    | HP23         |
|                        | HPAR             | HDAK                              | Internal disconnect                     | HP24         |
|                        | HPERR            | HDRQ                              | Internal disconnect                     | HP25         |
|                        | HGNT             | HAEN                              | Internal disconnect                     | HP26         |
|                        | HREQ             | HTA                               | Internal disconnect                     | HP27         |
|                        | HSERR            | HIRQ                              | Internal disconnect                     | HP28         |
|                        | HSTOP            | HWR/HRW                           | Internal disconnect                     | HP29         |
|                        | HIDSEL           | HRD/HDS                           | Internal disconnect                     | HP30         |
|                        | HFRAME           | Tie to pull-up or V <sub>CC</sub> | Internal disconnect                     | HP31         |
|                        | / HCLK           | Tie to pull-up or V <sub>CC</sub> | Internal disconnect                     | HP32         |
|                        | HAD16            | HD8                               | Internal disconnect                     | HP33         |
|                        | HAD17            | HD9                               | Internal disconnect                     | HP34         |
|                        | HAD18            | HD10                              | Internal disconnect                     | HP35         |
|                        | HAD19            | HD11                              | Internal disconnect                     | HP36         |
|                        | HAD20            | HD12                              | Internal disconnect                     | HP37         |
|                        | HAD21            | HD13                              | Internal disconnect                     | HP38         |
|                        | HAD22            | HD14                              | Internal disconnect                     | HP39         |
|                        | HAD23            | HD15                              | Internal disconnect                     | HP40         |
|                        | HAD24            | HD16                              | Internal disconnect                     | HP41         |
|                        | HAD25            | HD17                              | Internal disconnect                     | HP42         |
|                        | HAD26            | HD18                              | Internal disconnect                     | HP43         |
|                        | HAD27            | HD19                              | Internal disconnect                     | HP44         |
|                        | HAD28            | HD20                              | Internal disconnect                     | HP45         |
|                        | HAD29            | HD21                              | Internal disconnect                     | HP46         |
| <b>/</b>               | HAD30            | HD22                              | Internal disconnect                     | HP47         |
|                        | HAD31<br>HRST    | HD23                              | Internal disconnect Internal disconnect | HP48         |
|                        | HINTA            | HRST<br>HINTA                     | Internal disconnect                     | HP49<br>HP50 |
|                        | PVCL             | Leave unconnected                 | Leave unconnected                       | PVCL         |
|                        | . VOL            | Louve dilooilileoted              | Loavo anoomiootea                       |              |

Note: HPxx is a reference only and is not a signal name. GPIO references formerly designated as HIOxx have been renamed PBxx for consistency with other Motorola DSPs.

Figure 1-2 Host Interface/Port B Detail Signal Diagram

Power

### **POWER**

 Table 1-2
 Power Inputs

| Power Name                                                                                                                                                                                                                                                                                                                                      | Description                                                                                                                                                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| V <sub>CCP</sub>                                                                                                                                                                                                                                                                                                                                | <b>PLL Power</b> — $V_{CCP}$ provides isolated power for the Phase Lock Loop (PLL). The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the $V_{CC}$ power rail. There is one $V_{CCP}$ input.                            |  |  |
| V <sub>CCQ</sub> (4)                                                                                                                                                                                                                                                                                                                            | <b>Quiet Power</b> — $V_{CCQ}$ provides isolated power for the internal processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four $V_{CCQ}$ inputs.                        |  |  |
| V <sub>CCA</sub> (6)                                                                                                                                                                                                                                                                                                                            | Address Bus Power— $V_{CCA}$ provides isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are six $V_{CCA}$ inputs.                 |  |  |
| V <sub>CCD</sub> (4)                                                                                                                                                                                                                                                                                                                            | <b>Data Bus Power</b> —V <sub>CCD</sub> provides isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four V <sub>CCD</sub> inputs. |  |  |
| V <sub>CCN</sub> (2)                                                                                                                                                                                                                                                                                                                            | <b>Bus Control Power</b> — $V_{CCN}$ provides isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two $V_{CCN}$ inputs.                     |  |  |
| V <sub>CCH</sub> (6)                                                                                                                                                                                                                                                                                                                            | <b>Host Power</b> — $V_{CCH}$ provides isolated power for the HI32 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There is one $V_{CCH}$ input.                                     |  |  |
| V <sub>CCS</sub> (2)                                                                                                                                                                                                                                                                                                                            | <b>ESSI, SCI, and Timer Power</b> — $V_{CCS}$ provides isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two $V_{CCS}$ inputs.   |  |  |
| Note: These designations are package-dependent. Some packages connect all $V_{CC}$ inputs except $V_{CCP}$ to each other internally. On those packages, all power input, except $V_{CCP}$ , are labeled $V_{CC}$ . The numbers of connections indicated in this table are minimum values; the total $V_{CC}$ connections are package-dependent. |                                                                                                                                                                                                                                                                                     |  |  |

# **GROUND**

 Table 1-3
 Grounds

| <b>Ground Name</b>                                                                                                                                                                                                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $GND_P$                                                                                                                                                                                                                                                                                                                                                        | <b>PLL Ground</b> —GND <sub>P</sub> is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. $V_{CCP}$ should be bypassed to GND <sub>P</sub> by a 0.47 $\mu F$ capacitor located as close as possible to the chip package. There is one GND <sub>P</sub> connection. |  |  |  |
| GND <sub>1P</sub>                                                                                                                                                                                                                                                                                                                                              | <b>PLL Ground 1</b> —GND $_{1P}$ is ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. There is one GND $_{P1}$ connection.                                                                                                                                        |  |  |  |
| GND <sub>Q</sub> (4)                                                                                                                                                                                                                                                                                                                                           | <b>Quiet Ground</b> —GND $_{\rm Q}$ provides isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND $_{\rm Q}$ connections.                                         |  |  |  |
| GND <sub>A</sub> (6)                                                                                                                                                                                                                                                                                                                                           | <b>Address Bus Ground</b> — $GND_A$ provides isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four $GND_A$ connections.                                      |  |  |  |
| GND <sub>D</sub> (4)                                                                                                                                                                                                                                                                                                                                           | <b>Data Bus Ground</b> —GND <sub>D</sub> provides isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GND <sub>D</sub> connections.                           |  |  |  |
| GND <sub>N</sub> (2)                                                                                                                                                                                                                                                                                                                                           | <b>Bus Control Ground</b> — $GND_N$ provides isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two $GND_N$ connections.                                                   |  |  |  |
| GND <sub>H</sub> (6)                                                                                                                                                                                                                                                                                                                                           | <b>Host Ground</b> —GND $_{\rm H}$ provides isolated ground for the HI32 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There is one GND $_{\rm H}$ connection.                                                      |  |  |  |
| GND <sub>S</sub> (2)                                                                                                                                                                                                                                                                                                                                           | <b>ESSI, SCI, and Timer Ground</b> —GND <sub>S</sub> provides isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two $\text{GND}_{\text{S}}$ connections.         |  |  |  |
| Note: These designations are package-dependent. Some packages connect all GND inputs except $GND_P$ and $GND_{1P}$ to each other internally. On those packages, all power input, except $GND_P$ and $GND_{1P}$ , are labeled $GND$ . The numbers of connections indicated in this table are minimum values; the total $GND$ connections are package-dependent. |                                                                                                                                                                                                                                                                                                                                 |  |  |  |

# **CLOCK**

**Table 1-4** Clock Signals

| Signal<br>Name | Туре   | State During<br>Reset | Signal Description                                                                                                                                |
|----------------|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| EXTAL          | Input  | Input                 | External Clock/Crystal Input—EXTAL interfaces the internal crystal oscillator input to an external crystal or an external clock.                  |
| XTAL           | Output | Chip Driven           | Crystal Output—XTAL connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected. |

# PHASE LOCK LOOP (PLL)

Table 1-5 Phase Lock Loop Signals

| Signal Name | Туре   | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|--------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCAP        | Input  | Input                 | PLL Capacitor — PCAP is an input connecting an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to $V_{CCP}$ .  If the PLL is not used, PCAP may be tied to $V_{CC}$ , GND, or left floating.                                                                                                                                                                                                         |
| CLKOUT      | Output | Chip-driven           | Clock Output —CLKOUT provides an output clock synchronized to the internal core clock phase.  If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL.  If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.                                                                                                                                                 |
| PINIT/NMI   | Input  | Input                 | PLL Initial/Non-Maskable Interrupt — During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered Non-Maskable Interrupt (NMI) request internally synchronized to CLKOUT.  PINIT/NMI can tolerate 5 V. |

### **EXTERNAL MEMORY EXPANSION PORT (PORT A)**

Note: When the DSP56305 enters a low-power standby mode (Stop or Wait), it releases bus mastership and tri-states the relevant Port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BS, CAS, BCLK, and BCLK.

Note: If hardware refresh of external DRAM is enabled, Port A exits the Wait mode

to allow the refresh to occur and then returns to the Wait mode.

#### **EXTERNAL ADDRESS BUS**

Table 1-6 External Address Bus Signals

| Signal Name | Туре   | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                                                                                                      |
|-------------|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0-A23      | Output | Tri-stated                              | Address Bus—When the DSP is the bus master, A0–A23 are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A0–A23 do not change state when external memory spaces are not being accessed. |

#### **EXTERNAL DATA BUS**

Table 1-7 External Data Bus Signals

| Signal Name | Туре             | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                            |
|-------------|------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0-D23      | Input/<br>Output | Tri-stated                              | <b>Data Bus</b> —When the DSP is the bus master, D0–D23 are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D0–D23 are tri-stated. |

### EXTERNAL BUS CONTROL

**Table 1-8** External Bus Control Signals

| Signal<br>Name        | Туре   | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                                                                                                             |
|-----------------------|--------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA0-AA3/<br>RAS0-RAS3 | Output | Tri-stated                              | Address Attribute or Row Address Strobe—When defined as AA, these signals can be used as chip selects or additional address lines. When defined as RAS, these signals can be used as RAS for Dynamic Random Access Memory (DRAM) interface. These signals are tri-statable outputs with programmable polarity. |

 Table 1-8 External Bus Control Signals (Continued)

| Signal<br>Name | Туре   | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RD             | Output | Tri-stated                              | <b>Read Enable</b> —When the DSP is the bus master, $\overline{RD}$ is an active-low output that is asserted to read external memory on the data bus (D0–D23). Otherwise, $\overline{RD}$ is tri-stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WR             | Output | Tri-stated                              | Write Enable—When the DSP is the bus master, WR is an active-low output that is asserted to write external memory on the data bus (D0–D23). Otherwise, the signals are tri-stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BS             | Output | Tri-stated                              | Bus Strobe—When the DSP is the bus master, BS is asserted for half a clock cycle at the start of a bus cycle to provide an "early bus start" signal for a bus controller. If the external bus is not used during an instruction cycle, BS remains deasserted until the next external bus cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TA             | Input  | Ignored Input                           | Transfer Acknowledge—If the DSP56305 is the bus master and there is no external bus activity, or the DSP56305 is not the bus master, the TA input is ignored. The TA input is a Data Transfer Acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2,, infinity) may be added to the wait states inserted by the Bus Control Register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles.  In order to use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access can not be extended by TA deassertion, otherwise improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register (OMR).  TA functionality may not be used while performing DRAM type accesses, otherwise improper operation may result. |

 Table 1-8
 External Bus Control Signals (Continued)

| Signal<br>Name | Туре             | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BR             | Output           | Driven high<br>(deasserted)             | Bus Request— $\overline{BR}$ is an active-low output, never tri-stated. $\overline{BR}$ is asserted when the DSP requests bus mastership. $\overline{BR}$ is deasserted when the DSP no longer needs the bus. $\overline{BR}$ may be asserted or deasserted independent of whether the DSP56305 is a bus master or a bus slave. Bus "parking" allows $\overline{BR}$ to be deasserted even though the DSP56305 is the bus master (see the description of bus "parking" in the $\overline{BB}$ signal description). The Bus Request Hole (BRH) bit in the BCR allows $\overline{BR}$ to be asserted under software control even though the DSP does not need the bus. $\overline{BR}$ is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus, $\overline{BR}$ is only affected by DSP requests for the external bus, never for the internal bus. During hardware reset, $\overline{BR}$ is deasserted and the arbitration is reset to the bus Slave state. |
| BG             | Input            | Ignored Input                           | Bus Grant— $\overline{BG}$ is asserted by an external bus arbitration circuit when the DSP56305 becomes the next bus master. $\overline{BG}$ must be asserted/deasserted synchronous to CLKOUT for proper operation. When $\overline{BG}$ is asserted, the DSP56305 must wait until $\overline{BB}$ is deasserted before taking bus mastership. When $\overline{BG}$ is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BB             | Input/<br>Output | Input                                   | Bus Busy—\$\overline{BB}\$ indicates that the bus is active. \$\overline{BB}\$ must be asserted and deasserted synchronous to CLKOUT. Only after \$\overline{BB}\$ is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep \$\overline{BB}\$ asserted after ceasing bus activity regardless of whether \$\overline{BB}\$ is asserted or deasserted. This is called "bus parking" and allows the current bus master to reuse the bus without re-arbitration until another device requires the bus. The deassertion of \$\overline{BB}\$ is done by an "active pull-up" method (i.e., \$\overline{BB}\$ is driven high and then released and held high by an external pull-up resistor).                                                                                                                                                                                                                                                                                  |

 Table 1-8 External Bus Control Signals (Continued)

| Signal<br>Name | Туре   | State During<br>Reset, Wait, or<br>Stop | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BL             | Output | Driven high<br>(deasserted)             | Bus Lock—\$\overline{BL}\$ is asserted at the start of an external divisible Read-Modify-Write (RMW) bus cycle, remains asserted between the read and write cycles, and is deasserted at the end of the write bus cycle. This provides an "early bus start" signal for the bus controller. BL may be used to "resource lock" an external multi-port memory for secure semaphore updates. Early deassertion provides an "early bus end" signal useful for external bus control. If the external bus is not used during an instruction cycle, BL remains deasserted until the next external indivisible RMW cycle. The only instructions that assert \$\overline{BL}\$ automatically are the BSET, CLR, and BCHG instructions when they are used to modify external memory. An operation can also assert \$\overline{BL}\$ by setting the BLH bit in the Bus Control Register. |
| CAS            | Output | Tri-stated                              | Column Address Strobe—When the DSP is the bus master, CAS is used by DRAM to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM Control Register is cleared, the signal is tri-stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BCLK           | Output | Tri-stated                              | Bus Clock—When the DSP is the bus master, BCLK is an active-high output used by Synchronous Static Random Access Memory (SSRAM) to sample address, data, and control signals. BCLK is active either during SSRAM accesses or as a sampling signal when the program Address Tracing mode is enabled (by setting the ATE bit in the OMR). When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle. The BCLK rising edge may be used to sample the internal Program Memory access on the A0–A23 address lines.                                                                                                                                                                                                                                                                                                  |
| BCLK           | Output | Tri-stated                              | <b>Bus Clock</b> —When the DSP is the bus master, BCLK is an active-low output that is the inverse of the BCLK signal. When the DSP is not the bus master, the signal is tri-stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### INTERRUPT AND MODE CONTROL

The interrupt and mode control signals select the chip's operating mode as it comes out of hardware reset. After  $\overline{RESET}$  is deasserted, these inputs are hardware interrupt request lines.

 Table 1-9
 Interrupt and Mode Control

| Signal<br>Name | Туре  | State<br>During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|-------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET          | Input | Input                    | Reset—RESET is an active-low, Schmitt-trigger input. Deassertion of RESET is internally synchronized to the clock out (CLKOUT). When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in "lock-step." When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after power up. |
| MODA           | Input | Input                    | Mode Select A—MODA selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQA during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.                                                                                                                                                                                                                                                                                                                                             |
| ĪRQA           | Input |                          | <b>External Interrupt Request A</b> — $\overline{IRQA}$ is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If $\overline{IRQA}$ is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting $\overline{IRQA}$ to exit the Wait state. If the processor is in the Stop standby state and $\overline{IRQA}$ is asserted, the processor will exit the Stop state.  These inputs are 5 V tolerant.                                                                                                                                                                                                                           |

 Table 1-9 Interrupt and Mode Control (Continued)

| Signal<br>Name | Туре  | State<br>During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODB           | Input | Input                    | Mode Select B—MODB selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQB during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.                                                      |
| ĪRQB           | Input |                          | External Interrupt Request B—IRQB is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the Wait state. If the processor is in the Stop standby state and IRQC is asserted, the processor will exit the Stop state.  These inputs are 5 V tolerant. |
| MODC           | Input | Input                    | Mode Select C—MODC selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input IRQC during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.                                                      |
| ĪRQC           | Input |                          | External Interrupt Request C—IRQC is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQC is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQC to exit the Wait state. If the processor is in the Stop standby state and IRQC is asserted, the processor will exit the Stop state.  These inputs are 5 V tolerant. |

| Signal<br>Name | Туре  | State<br>During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODD           | Input | Input                    | Mode Select D—MODD selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input $\overline{IRQD}$ during normal instruction processing. MODA, MODB, MODC, and MODD select one of sixteen initial chip operating modes, latched into the OMR when the RESET signal is deasserted.                                         |
| ĪRQD           | Input |                          | External Interrupt Request D—IRQD is an active-low Schmitt-trigger input, internally synchronized to CLKOUT. If IRQD is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQD to exit the Wait state. If the processor is in the Stop standby state and IRQD is asserted, the processor will exit the Stop state.  These inputs are 5 V tolerant. |

 Table 1-9
 Interrupt and Mode Control (Continued)

# **HOST INTERFACE (HI32)**

The Host Interface (HI32) provides a fast parallel data to 32-bit port, which may be connected directly to the host bus.

The HI32 supports a variety of standard buses, and provides a glueless connection to a PCI bus and a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

# Host Port Usage Considerations

Careful synchronization is required when reading multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in the following table:

 Table 1-10 Host Port Usage Considerations

| Action                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asynchronous read of receive byte registers   | When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag which indicates that data is available. This assures that the data in the receive byte registers will be valid.                                                  |
| Asynchronous write to transmit byte registers | The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the Host Receive (HRX) register. |
| Asynchronous write to host vector             | The host interface programmer should change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This will guarantee that the DSP interrupt control logic will receive a stable vector.                                                                                                                                                                                              |

# **Host Port Configuration**

The functions of the signals associated with the HI32 vary according to the programmed configuration of the interface as determined by the 24-bit DSP Control Register (DCTR). Refer to the *DSP56305 User's Manual* for detailed descriptions of this and the other configuration registers used with the HI32.



 Table 1-11
 Host Interface

| Signal Name | Туре               | State During<br>Reset | Signal Description                                                                                                                                                                                               |
|-------------|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HAD0-HAD7   | Input/<br>Output   | Tri-stated            | Host Address/Data 0-7—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 0-7 of the bidirectional, multiplexed Address/Data bus.                        |
| НА3-НА10    | Input              |                       | Host Address 3–10—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 3–10 of the input Address bus.                                           |
| PB0-PB7     | Input or<br>Output |                       | Port B 0-7—When the HI32 is configured as GPIO through the DCTR, these signals are individually programmed as inputs or outputs through the HI32 Data Direction Register (DIRH).  These inputs are 5 V tolerant. |
| HAD8-HAD15  | Input/<br>Output   | Tri-stated            | Host Address/Data 8-15—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 8-15 of the bidirectional, multiplexed Address/Data bus.                      |
| HD0-HD7     | Input/<br>Output   |                       | <b>Host Data 0–7</b> —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.                                   |
| PB8-PB15    | Input or<br>Output |                       | Port B 8–15—When the HI32 is configured as GPIO through the DCTR, these signals are individually programmed as inputs or outputs through the HI32 DIRH.  These inputs are 5 V tolerant.                          |

 Table 1-11 Host Interface (Continued)

| Signal Name           | Туре               | State During<br>Reset | Signal Description                                                                                                                                                                              |
|-----------------------|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HC0-HC3/<br>HBE0-HBE3 | Input/<br>Output   | Tri-stated            | Command 0-3/Byte Enable 0-3—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 0-7 of the bidirectional, multiplexed Address/Data bus. |
| НА0-НА2               | Input              |                       | Host Address 0-2—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 0-2 of the input Address bus.                            |
|                       |                    |                       | Note: The fourth signal in this set should be connected to a pull-up resistor or directly to V <sub>CC</sub> when using a non-PCI bus.                                                          |
| PB16-PB19             | Input or<br>Output |                       | <b>Port B 16–19</b> —When the H <mark>I</mark> 32 is configured as GPIO through the DCTR, these signals are individually programmed as inputs or outputs through the HI32 DIRH.                 |
|                       |                    |                       | These inputs are 5 V tolerant.                                                                                                                                                                  |
| HTRDY                 | Input/<br>Output   | Tri-stated            | <b>Host Target Ready</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Target Ready signal.                                             |
| HDBEN                 | Output             |                       | <b>Host Data Bus Enable</b> —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Enable output.                          |
| PB20                  | Input or<br>Output |                       | <b>Port B 20</b> —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.                                     |
|                       |                    |                       | This input is 5 V tolerant.                                                                                                                                                                     |
| HIRDY                 | Input/<br>Output   | Tri-stated            | <b>Host Initiator Ready</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Initiator Ready signal.                                       |
| HDBDR                 | Output             |                       | <b>Host Data Bus Direction</b> —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Direction output.                    |
| PB21                  | Input or<br>Output |                       | <b>Port B 21</b> —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.                                     |
|                       |                    |                       | This input is 5 V tolerant.                                                                                                                                                                     |

 Table 1-11 Host Interface (Continued)

| Signal Name | Туре               | State During<br>Reset | Signal Description                                                                                                                                                                       |
|-------------|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDEVSEL     | Input/<br>Output   | Tri-stated            | <b>Host Device Select</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Device Select signal.                                    |
| HSAK        | Output             |                       | Host Select Acknowledge—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Select Acknowledge output.                     |
| PB22        | Input or<br>Output |                       | <b>Port B 22</b> —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.  This input is 5 V tolerant. |
| HLOCK       | Input/<br>Output   | Tri-stated            | Host Lock—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Lock signal.                                                              |
| HBS         | Input              |                       | Host Bus Strobe—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Bus Strobe Schmitt-trigger input.                      |
| PB23        | Input or<br>Output |                       | <b>Port B 23</b> —When the HI32 is configured as GPIO through the DCTR, this signal is individually programmed as an input or output through the HI32 DIRH.                              |
| HPAR        | Input/<br>Output   | Tri-stated            | This input is 5 V tolerant.  Host Parity—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Parity signal.                             |
| HDAK        | Input              |                       | Host DMA Acknowledge—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host DMA Acknowledge Schmitt-trigger input.            |
|             | •                  |                       | <b>Port B</b> —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.                                                                             |
|             |                    |                       | This input is 5 V tolerant.                                                                                                                                                              |

 Table 1-11 Host Interface (Continued)

| Signal Name | Туре             | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                              |
|-------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HPERR       | Input/<br>Output | Tri-stated            | <b>Host Parity Error</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Parity Error signal.                                                                                                                                             |
| HDRQ        | Output           |                       | Host DMA Request—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host DMA Request output.                                                                                                                                          |
|             |                  |                       | <b>Port B</b> — When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.                                                                                                                                                                                   |
|             |                  |                       | This input is 5 V tolerant.                                                                                                                                                                                                                                                                     |
| HGNT        | Input            | Input                 | Host Bus Grant—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Grant signal.                                                                                                                                                           |
| HAEN        | Input            |                       | Host Address Enable—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Address Enable output.  Port B—When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.  This input is 5 V tolerant. |
| HREQ        | Output           | Tri-stated            | <b>Host Bus Request</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Request signal.                                                                                                                                               |
| нта         | Output           |                       | <b>Host Transfer Acknowledge</b> —When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Bus Enable output.                                                                                                                     |
|             |                  |                       | <b>Port B</b> —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.                                                                                                                                                                                    |
|             | Ť                |                       | This input is 5 V tolerant.                                                                                                                                                                                                                                                                     |

 Table 1-11 Host Interface (Continued)

| Signal Name | Туре                  | State During<br>Reset | Signal Description                                                                                                                                                                                                                                |
|-------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSERR       | Output,<br>open drain | Tri-stated            | <b>Host System Error</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host System Error signal.                                                                                               |
| HIRQ        | Output,<br>open drain |                       | Host Interrupt Request—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Interrupt Request output.                                                                                |
|             |                       |                       | <b>Port B</b> — When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.                                                                                                                                     |
|             |                       |                       | This input is 5 V tolerant.                                                                                                                                                                                                                       |
| HSTOP       | Input/<br>Output      | Tri-stated            | <b>Host Stop</b> —When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Stop signal.                                                                                                               |
| HWR/HRW     | Input                 |                       | Host Write/Host Read-Write—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Write/Host Read-Write Schmitt-trigger input.  Port B—When the HI32 is configured as GPIO through the |
|             |                       |                       | DCTR, this signal is internally disconnected.  This input is 5 V tolerant.                                                                                                                                                                        |
| HIDSEL      | Input                 | Input                 | Host Initialization Device Select—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Initialization Device Select signal.                                                                       |
| HRD/HDS     | Input                 |                       | Host Read/Host Data Strobe—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is Host Data Read/Host Data Strobe Schmitt-trigger input.                                                    |
|             |                       |                       | <b>Port B</b> —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.                                                                                                                                      |
|             |                       |                       | This input is 5 V tolerant.                                                                                                                                                                                                                       |

# Host Interface (HI32)

 Table 1-11 Host Interface (Continued)

| Signal Name     | Туре             | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HFRAME          | Input/<br>Output | Tri-stated            | Host Frame—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host cycle Frame signal.  Non-PCI bus—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V <sub>CC</sub> .  Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.  This input is 5 V tolerant. |
| HCLK            | Input            | Input                 | Host Clock—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Host Bus Clock input.  Non-PCI bus—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal must be connected to a pull-up resistor or directly to V <sub>CC</sub> .  Port B—When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.  This input is 5 V tolerant.     |
| HAD16-<br>HAD31 | Input/<br>Output | Tri-stated            | Host Address/Data 16–31—When the HI32 is programmed to interface a PCI bus and the HI function is selected, these signals are lines 16–31 of the bidirectional, multiplexed Address/Data bus.                                                                                                                                                                                                                                                                           |
| HD8-HD23        | Input/<br>Output |                       | Host Data 8–23—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, these signals are lines 8–23 of the bidirectional Data bus.  Port B —When the HI32 is configured as GPIO through the DCTR, these signals are internally disconnected.                                                                                                                                                                                      |
|                 |                  |                       | These inputs are 5 V tolerant.                                                                                                                                                                                                                                                                                                                                                                                                                                          |

 Table 1-11 Host Interface (Continued)

| Signal Name | Туре                  | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                               |
|-------------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HRST        | Input                 | Tri-stated            | Hardware Reset—When the HI32 is programmed to interface a PCI bus and the HI function is selected, this is the Hardware Reset input.                                                                                                                                                                                                                             |
| HRST        | Input                 |                       | Hardware Reset—When HI32 is programmed to interface a universal non-PCI bus and the HI function is selected, this signal is the Hardware Reset Schmitt-trigger input.  Port B —When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.  This input is 5 V tolerant.                                                        |
| HINTA       | Output,<br>open drain | Tri-stated            | Host Interrupt A—When the HI function is selected, this signal is the Interrupt A open-drain output.  Port B—When the HI32 is configured as GPIO through the DCTR, this signal is internally disconnected.  This input is 5 V tolerant.                                                                                                                          |
| PVCL        | Input                 | Input                 | PCI Voltage Clamp—When the HI32 is programmed to interface a PCI bus and the HI function is selected and the PCI bus uses a 3 V signal environment, connect this pin to V <sub>CC</sub> (3.3 V) to enable the high voltage clamping required by the PCI specifications. In all other cases, including a 5 V PCI signal environment, leave the input unconnected. |

# **ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)**

There are two synchronous serial interfaces (ESSI0 and ESSI1) that provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals which implement the Motorola Serial Peripheral Interface (SPI).

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0)

| Signal |                    |          | te During    | Signal Description                                                                                                                                                                                                                                                                                                     |
|--------|--------------------|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Name 13PC          | Reset    | Stop         | Signal Description                                                                                                                                                                                                                                                                                                     |
| SC00   | Input or<br>Output | Input    | Disconnected | Serial Control 0—The function of SC00 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitttrigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0. |
| PC0    |                    |          |              | Port C 0—The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port Directions Register (PRR0). The signal can be configured as ESSI signal SC00 through the Port Control Register (PCR0). This input is 5 V tolerant.                       |
| SC01   | Input/<br>Output   | Input    | Disconnected | Serial Control 1—The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.                         |
| PC1    | Input or<br>Output | <b>7</b> |              | Port C 1—The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC01 through PCR0.  This input is 5 V tolerant.                                                                              |

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

| Signal | Type               | State During |              | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Туре               | Reset        | Stop         | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SC02   | Input/<br>Output   | Input        | Disconnected | Serial Control Signal 2—SC02 is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation). |
| PC2    | Input or<br>Output |              |              | Port C 2—The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SC02 through PCR0.  This input is 5 V tolerant.                                                                                                                                                                                               |
| SCK0   | Input/<br>Output   | Input        | Disconnected | Serial Clock—SCK0 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK0 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes.                                                                                                                                                          |
|        |                    |              |              | Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6 T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.                                                                                                  |
| PC3    | Input or<br>Output | 7            |              | <b>Port C 3</b> —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SCK0 through PCR0.                                                                                                                                                                                                                    |
|        |                    |              |              | This input is 5 V tolerant.                                                                                                                                                                                                                                                                                                                                                                                                             |

### Enhanced Synchronous Serial Interface 0 (ESSI0)

 Table 1-12
 Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)

| Signal   | Туре                                   | State During |              | Signal Description                                                                                                                                                                                                                                                                                                                                               |
|----------|----------------------------------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name     | Туре                                   | Reset        | Stop         | Signal Description                                                                                                                                                                                                                                                                                                                                               |
| SRD0     | Input/<br>Output                       | Input        | Disconnected | Serial Receive Data—SRD0 receives serial data and transfers the data to the ESSI receive shift register. SRD0 is an input when data is being received.                                                                                                                                                                                                           |
| PC4      | Input or<br>Output                     |              |              | Port C 4—The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal SRD0 through PCR0.  This input is 5 V tolerant.                                                                                                                        |
| STD0 PC5 | Input/<br>Output<br>Input or<br>Output | Input        | Disconnected | Serial Transmit Data—STD0 is used for transmitting data from the serial transmit shift register. STD0 is an output when data is being transmitted.  Port C 5—The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through PRR0. The signal can be configured as an ESSI signal STD0 through PCR0. |
|          |                                        |              |              | This input is 5 V tolerant.                                                                                                                                                                                                                                                                                                                                      |



# **ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)**

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1)

| Signal | Type               | Type State During |              | Signal Description                                                                                                                                                                                                                                                                                                      |
|--------|--------------------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Name 13 PC         | Reset             | Stop         | Signal Description                                                                                                                                                                                                                                                                                                      |
| SC10   | Input or<br>Output | Input             | Disconnected | Serial Control 0—The function of SC10 is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal will be used for the receive clock I/O (Schmitt-trigger input). For Synchronous mode, this signal is used either for Transmitter 1 output or for Serial I/O Flag 0. |
| PD0    |                    |                   |              | Port D 0—The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port Directions Register (PRR1). The signal can be configured as an ESSI signal SC10 through the Port Control Register (PCR1).  This input is 5 V tolerant.                    |
| SC11   | Input/<br>Output   | Input             | Disconnected | Serial Control 1—The function of this signal is determined by the selection of either Synchronous or Asynchronous mode. For Asynchronous mode, this signal is the receiver frame sync I/O. For Synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.                          |
| PD1    | Input or<br>Output |                   |              | Port D 1—The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC11 through PCR1.  This input is 5 V tolerant.                                                                               |

# Enhanced Synchronous Serial Interface 1 (ESSI1)

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

| Signal | Type               | State During |              | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Туре               | Reset        | Stop         | - Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SC12   | Input/<br>Output   | Input        | Disconnected | Serial Control Signal 2—SC12 is used for frame sync I/O. SC12 is the frame sync for both the transmitter and receiver in Synchronous mode, and for the transmitter only in Asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in Synchronous operation). |
| PD2    | Input or<br>Output |              |              | Port D 2—The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SC12 through PCR1.  This input is 5 V tolerant.                                                                                                                                                                                               |
| SCK1   | Input/<br>Output   | Input        | Disconnected | Serial Clock—SCK1 is a bidirectional Schmitt-trigger input signal providing the serial bit rate clock for the ESSI interface. The SCK1 is a clock input or output used by both the transmitter and receiver in Synchronous modes, or by the transmitter in Asynchronous modes.  Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must                                               |
|        |                    |              |              | exceed the minimum clock cycle time of 6 T (i.e., the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.                                                                                                                                                                                                            |
| PD3    | Input or<br>Output |              |              | <b>Port D 3</b> —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SCK1 through PCR1.                                                                                                                                                                                                                    |
|        |                    |              |              | This input is 5 V tolerant.                                                                                                                                                                                                                                                                                                                                                                                                             |

 Table 1-13
 Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)

| Signal | Tyme               | Sta   | te During    | Signal Description                                                                                                                                                                                                                        |
|--------|--------------------|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Туре               | Reset | Stop         | Signal Description                                                                                                                                                                                                                        |
| SRD1   | Input/<br>Output   | Input | Disconnected | Serial Receive Data—SRD1 receives serial data and transfers the data to the ESSI receive shift register. SRD1 is an input when data is being received.                                                                                    |
| PD4    | Input or<br>Output |       |              | Port D 4—The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal SRD1 through PCR1.  This input is 5 V tolerant. |
| STD1   | Input/<br>Output   | Input | Disconnected | Serial Transmit Data—STD1 is used for transmitting data from the serial transmit shift register. STD1 is an output when data is being transmitted.                                                                                        |
| PD5    | Input or<br>Output |       |              | Port D 5—The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through PRR1. The signal can be configured as an ESSI signal STD1 through PCR1.  This input is 5 V tolerant. |



# **SERIAL COMMUNICATION INTERFACE (SCI)**

The Serial Communication interface (SCI) provides a full duplex port for serial communication to other DSPs, microprocessors, or peripherals, such as modems.

 Table 1-14
 Serial Communication Interface (SCI)

| Signal | Type               | State During |              | Signal Description                                                                                                                                                                                                                                                                                       |
|--------|--------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Туре               | Reset        | Stop         | Signal Description                                                                                                                                                                                                                                                                                       |
| RXD    | Input              | Input        | Disconnected | Serial Receive Data—This input receives byte oriented serial data and transfers it to the SCI receive shift register.                                                                                                                                                                                    |
| PE0    | Input or<br>Output |              |              | Port E 0—The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the SCI Port Directions Register (PRR). The signal can be configured as an SCI signal RXD through the SCI Port Control Register (PCR).  This input is 5 V tolerant. |
| TXD    | Output             | Input        | Disconnected | Serial Transmit Data—This signal transmits data from SCI transmit data register.                                                                                                                                                                                                                         |
| PE1    | Input or<br>Output |              |              | Port E 1—The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal TXD through the SCI PCR.                                                                                 |
|        |                    |              |              | This input is 5 V tolerant.                                                                                                                                                                                                                                                                              |
| SCLK   | Input/<br>Output   | Input        | Disconnected | <b>Serial Clock</b> —This is the bidirectional Schmitt-trigger input signal providing the input or output clock used by the transmitter and/or the receiver.                                                                                                                                             |
| PE2    | Input or<br>Output |              |              | Port E 2—The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the SCI PRR. The signal can be configured as an SCI signal SCLK through the SCI PCR.  This input is 5 V tolerant.                                                   |

### **TIMERS**

Three identical and independent timers are implemented in the DSP56305. Each timer can use internal or external clocking, and can interrupt the DSP56305 after a specified number of events (clocks), or can signal an external device after counting a specific number of internal events.

**Table 1-15** Triple Timer Signals

| Signal | Т                  | Sta   | te During    | Chanal Describer                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|--------------------|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Туре               | Reset | Stop         | - Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TIO0   | Input or<br>Output | Input | Disconnected | Timer 0 Schmitt-Trigger Input/Output—When Timer 0 functions as an external event counter or in Measurement mode, TIO0 is used as input. When Timer 0 functions in Watchdog, Timer, or Pulse Modulation mode, TIO0 is used as output.  The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/ Output through the Timer 0 Control/Status Register (TCSR0).  This input is 5 V tolerant. |
| TIO1   | Input or<br>Output | Input | Disconnected | Timer 1 Schmitt-Trigger Input/Output—When Timer 1 functions as an external event counter or in Measurement mode, TIO1 is used as input. When Timer 1 functions in Watchdog, Timer, or Pulse Modulation mode, TIO1 is used as output.  The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 1 Control/Status Register (TCSR1).  This input is 5 V tolerant.  |
| TIO2   | Input or<br>Output | Input | Disconnected | Timer 2 Schmitt-Trigger Input/Output—When Timer 2 functions as an external event counter or in Measurement mode, TIO2 is used as input. When Timer 2 functions in Watchdog, Timer, or Pulse Modulation mode, TIO2 is used as output.  The default mode after reset is GPIO input. This can be changed to output or configured as a Timer Input/Output through the Timer 2 Control/Status Register (TCSR2).  This input is 5 V tolerant.  |

### **JTAG/ONCE INTERFACE**

**Table 1-16** JTAG/OnCE Interface

| Signal Name | Туре   | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                           |
|-------------|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCK         | Input  | Input                 | Test Clock—TCK is a test clock input signal used to synchronize the JTAG test logic.  This input is 5 V tolerant.                                                                                                                                                            |
| TDI         | Input  | Input                 | Test Data Input—TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.  This input is 5 V tolerant.                                                                      |
| TDO         | Output | Tri-stated            | Test Data Output—TDO is a test data serial output signal used for test instructions and data. TDO is tristatable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.                                              |
| TMS         | Input  | Input                 | Test Mode Select—TMS is an input signal used to sequence the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.  This input is 5 V tolerant.                                                                    |
| TRST        | Input  | Input                 | Test Reset—TRST is an active-low Schmitt-trigger input signal used to asynchronously initialize the test controller. TRST has an internal pull-up resistor. TRST must be asserted after power up. Always assert TRST immediately after power-up. This input is 5 V tolerant. |

**Table 1-16** JTAG/OnCE Interface (Continued)

| Signal Name | Туре         | State During<br>Reset | Signal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DE          | Input/Output | Input                 | Debug Event—DE is an open-drain bidirectional active-low signal providing, as an input, a means of entering the Debug mode of operation from an external command controller, and, as an output, a means of acknowledging that the chip has entered the Debug mode. This signal, when asserted as an input, causes the DSP56300 core to finish the current instruction being executed, save the instruction pipeline information, enter the Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters the Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor.  This is not a standard part of the JTAG Test Access Port (TAP) Controller. The signal connects directly to the OnCE module to initiate Debug mode directly or to provide a direct external indication that the chip has entered the Debug mode. All other interface with the OnCE module must occur through the JTAG port.  This input is 5 V tolerant. |





# SECTION 2 **SPECIFICATIONS**

#### INTRODUCTION

The DSP56305 is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56305 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after full characterization and device qualifications are complete.

#### **MAXIMUM RATINGS**

## **CAUTION**

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic <mark>vo</mark>ltage level (e.g., either GND or V<sub>CC</sub>).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

**Table 2-1** Maximum Ratings

| Rating <sup>1</sup>                                             | Symbol           | Value <sup>1, 2</sup>                 | Unit |
|-----------------------------------------------------------------|------------------|---------------------------------------|------|
| Supply Voltage                                                  | V <sub>CC</sub>  | -0.3 to +4.0                          | V    |
| All input voltages excluding "5 V tolerant" inputs <sup>3</sup> | V <sub>IN</sub>  | $GND - 0.3 \text{ to } V_{CC} + 0.3$  | V    |
| All "5 V tolerant" input voltages <sup>3</sup>                  | $V_{IN5}$        | $GND - 0.3 \text{ to } V_{CC} + 3.95$ | V    |
| Current drain per pin excluding $V_{CC}$ and GND                | I                | 10                                    | mA   |
| Operating temperature range                                     | $T_{J}$          | -40 to +100                           | °C   |
| Storage temperature                                             | T <sub>STG</sub> | −55 to +150                           | °C   |

Note: 1. GND = 0 V,  $V_{CC}$  = 3.3 V ± 0.3 V,  $T_{J}$  = -40°C to +100°C, CL = 50 pF + 2 TTL Loads

- 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.
- 3. **CAUTION**: All "5 V Tolerant" input voltages can not be more than 3.95 V greater than the supply voltage; this restriction applies to "power on", as well as during normal operation. "5 V Tolerant" inputs are inputs that tolerate 5 V.

#### THERMAL CHARACTERISTICS

Table 2-2 Thermal Characteristics

| Characteristic                         | Symbol                           | PBGA <sup>3</sup> Value | Unit |
|----------------------------------------|----------------------------------|-------------------------|------|
| Junction-to-ambient thermal resistance | $R_{\theta JA}$ or $\theta_{JA}$ | 50                      | °C/W |
| Junction-to-case thermal resistance    | $R_{\theta JC}$ or $\theta_{JC}$ | 9                       | °C/W |
| Thermal characterization parameter     | $\Psi_{ m JT}$                   | 5                       | °C/W |

- Junction-to-ambient thermal resistance is based on measurements on a horizontal single sided printed circuit board per SEMI G38-87 in natural convection. (SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111)
- 2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.
- 3. Estimated values; testing not complete

## DC ELECTRICAL CHARACTERISTICS

 Table 2-3
 DC Electrical Characteristics $^6$ 

| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                                                   | Min                                             | Тур             | Max                                       | Unit           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------|-------------------------------------------|----------------|
| Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>CC</sub>                                          | 3.0                                             | 3.3             | 3.6                                       | V              |
| Input high voltage  • D0-D23, \overline{BG}, \overline{BB}, \overline{TA}  • \overline{MOD}^1/\overline{IRQ}^1, \overline{RESET}, \overline{PINIT}/\overline{NMI} \overline{AMI} \overline | V <sub>IH</sub><br>V <sub>IHP</sub>                      | 2.0<br>2.0                                      |                 | V <sub>CC</sub><br>V <sub>CC</sub> + 3.95 | V<br>V         |
| Timer/HI32 pins • EXTAL <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{IHX}$                                                | $0.8 \times V_{CC}$                             | -               | V <sub>CC</sub>                           | V              |
| Input low voltage  • $D0-D23$ , $\overline{BG}$ , $\overline{BB}$ , $\overline{TA}$ , $MOD^1/\overline{IRQ^1}$ , $\overline{RESET}$ , PINIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{\mathrm{IL}}$                                        | - 0.3                                           | _               | 0.8                                       | V<br>V         |
| All JTAG/ESSI/SCI/Timer/<br>HI08 pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{ILP}$                                                | - 0.3                                           |                 | 0.8                                       | V              |
| • EXTAL <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{ILX}$                                                | - 0.3                                           | <del>-</del>    | $0.2 	imes { m V}_{ m CC}$                |                |
| Input leakage current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{IN}$                                                 | -10                                             |                 | 10                                        | μΑ             |
| High impedance (off-state) input current (@ 2.4 V / 0.4 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>TSI</sub>                                         | - 10                                            |                 | 10                                        | μΑ             |
| Output high voltage  • TTL $(I_{OH} = -0.4 \text{ mA})^{5,7}$ • CMOS $(I_{OH} = -10 \mu\text{A})^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>OH</sub>                                          | V <sub>CC</sub> - 0.4<br>V <sub>CC</sub> - 0.01 | _<br>_<br>_     | _<br>_                                    | V<br>V         |
| Output low voltage • TTL ( $I_{OL} = 3.0 \text{ mA}$ , open-drain pins $I_{OL} = 6.7 \text{ mA}$ ) <sup>5,7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>OL</sub>                                          | _                                               | _               | 0.4                                       | V              |
| • CMOS $(I_{OL} = 10 \mu\text{A})^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          | _                                               | _               | 0.01                                      | V              |
| Internal supply current <sup>2</sup> :  • In Normal mode  • In Wait mode <sup>3</sup> • In Stop mode <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I <sub>CCI</sub><br>I <sub>CCW</sub><br>I <sub>CCS</sub> |                                                 | 102<br>6<br>100 | 145<br>9<br>150                           | mA<br>mA<br>μA |
| PLL supply c <mark>urrent in Stop mode<sup>5</sup></mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                 | 1               | 2.5                                       | mA             |
| Input capacitance <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>IN</sub>                                          | _                                               | _               | 10                                        | pF             |

#### **AC Electrical Characteristics**

**Characteristics** 

**Table 2-3** DC Electrical Characteristics<sup>6</sup> (Continued)

Min

**Typ** 

Unit

Max

Symbol

|       |    | J                                                                                                                                         |
|-------|----|-------------------------------------------------------------------------------------------------------------------------------------------|
| Note: | 1. | Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins                                                                             |
|       | 2. | <b>Power Consumption Considerations</b> on page 4-4 provides a formula to compute the                                                     |
|       |    | estimated current requirements in Normal mode. In order to obtain these results, all inputs must be                                       |
|       |    | terminated (i.e., not allowed to float). Measurements are based on synthetic intensive DSP benchmarks                                     |
|       |    | (see <b>Appendix A</b> ). The power consumption numbers in this specification are 90% of the measured                                     |
|       |    | results of this benchmark. This reflects typical DSP applications. Typical internal supp <mark>ly</mark> current is                       |
|       |    | measured with $V_{CC} = 3.0 \text{ V}$ at $T_J = 100^{\circ}\text{C}$ . Maximum internal supply current is measured with $V_{CC} = 3.6$   |
|       |    | $V \text{ at } T_J = 100^{\circ} C.$                                                                                                      |
|       | 3. | In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). PLL and XTAL                                |
|       |    | signals are disabled during Stop state.                                                                                                   |
|       | 4. | In order to obtain these results, all inputs, which are not disconnected <mark>at Stop</mark> m <mark>od</mark> e, must be                |
|       |    | terminated (i.e., not allowed to float).                                                                                                  |
|       | 5. | Periodically sampled and not 100% tested                                                                                                  |
|       | 6. | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_J = -40^{\circ}\text{C to} + 100^{\circ}\text{C}, C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$ |
|       | 7. | This characteristic does not apply to XTAL and PCAP.                                                                                      |
|       | 8. | Driving EXTAL to the low $V_{IHX}$ or the high $V_{ILX}$ value may cause additional power consumption (DC                                 |
|       |    | current). To minimize power consumption, the minimum V <sub>IHX</sub> sho <mark>ul</mark> d be no lower than                              |
|       |    | $0.9 \times V_{CC}$ and the maximum $V_{II,X}$ should be no higher than $0.1 \times V_{CC}$ .                                             |

#### AC ELECTRICAL CHARACTERISTICS

The timing waveforms shown in the AC electrical characteristics section are tested with a  $V_{IL}$  maximum of 0.3 V and a  $V_{IH}$  minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in **Note 6** of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal's transition. DSP56305 output levels are measured with the production test machine  $V_{OL}$  and  $V_{OH}$  reference levels set at 0.8 V and 2.0 V, respectively.

#### **INTERNAL CLOCKS**

 Table 2-4
 Internal Clocks, CLKOUT

| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Symbol         | Expression <sup>1, 2</sup>                                                                                                                                                                                                               |                                                                                              |                                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Symbol         | Min                                                                                                                                                                                                                                      | Тур                                                                                          | Max                                                                                                                      |  |
| Internal operation frequency and CLKOUT with PLL enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f              | _                                                                                                                                                                                                                                        | $\begin{array}{c} (\text{Ef} \times \text{MF})/\\ (\text{PDF} \times \text{DF}) \end{array}$ | _                                                                                                                        |  |
| Internal operation frequency and CLKOUT with PLL disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f              | _                                                                                                                                                                                                                                        | Ef/2                                                                                         | <del></del>                                                                                                              |  |
| $eq:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_con$ | T <sub>H</sub> | $\begin{matrix} - \\ 0.49 \times \mathrm{ET_{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \\ 0.47 \times \mathrm{ET_{C}} \times \\ \mathrm{PDF} \times \mathrm{DF} / \mathrm{MF} \end{matrix}$                            | ET <sub>C</sub>                                                                              | $-\\0.51\times ET_{C}\times\\PDF\times DF/MF\\0.53\times ET_{C}\times\\PDF\times DF/MF$                                  |  |
| $ \begin{array}{ccc} Internal \ clock \ and \ CLKOUT \ low \\ period & \bullet & With \ PLL \ disabled \\ \bullet & With \ PLL \ enabled \ and \\ MF \leq 4 & \bullet & With \ PLL \ enabled \ and \\ MF > 4 & \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T <sub>L</sub> | $\begin{array}{c}\\ \textbf{0.49} \times \textbf{ET}_{\textbf{C}} \times\\ \textbf{PDF} \times \textbf{DF}/\textbf{MF}\\ \textbf{0.47} \times \textbf{ET}_{\textbf{C}} \times \textbf{PDF}\\ \times \textbf{DF}/\textbf{MF} \end{array}$ | ЕТ <sub>С</sub><br>—                                                                         | $\begin{array}{c} -\\ 0.51\times ET_{C}\times\\ PDF\times DF/MF\\ 0.53\times ET_{C}\times\\ PDF\times DF/MF \end{array}$ |  |
| Internal clock and CLKOUT cycle time with PLL enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T <sub>C</sub> | _                                                                                                                                                                                                                                        | $ET_{C} \times PDF \times \\DF/MF$                                                           | _                                                                                                                        |  |
| Internal clock and CLKOUT cycle time with PLL disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sub>C</sub> | _                                                                                                                                                                                                                                        | $2 \times ET_{C}$                                                                            | _                                                                                                                        |  |
| Instruction cycle time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $I_{CYC}$      | _                                                                                                                                                                                                                                        | T <sub>C</sub>                                                                               | _                                                                                                                        |  |

1. DF = Division FactorNote:

Ef = External frequency

ET<sub>C</sub> = External clock cycle

MF = Multiplication Factor

PDF = Predivision Factor

T<sub>C</sub> = internal clock cycle

See the PLL and Clock Generation section in the DSP56300 Family Manual for a detailed discussion of the PLL.

#### **EXTERNAL CLOCK OPERATION**

The DSP56305 system clock may be derived from the on–chip crystal oscillator, as shown on the cover page, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL not connected physically to the board or socket (See **Figure 2-2**.).



Fundamental Frequency Fork Crystal Oscillator

#### **Suggested Component Values:**

$$\begin{split} f_{OSC} &= 32.768 \text{ kHz} \\ \text{R1} &= 3.9 \text{ M}\Omega \pm 10\% \\ \text{C} &= 22 \text{ pF} \pm 20\% \\ \text{R2} &= 200 \text{ k}\Omega \pm 10\% \end{split}$$

Calculations were done for a 32.768 kHz crystal with the following parameters:

a load capacitance ( $C_L$ ) of 12.5 pF, a shunt capacitance ( $C_0$ ) of 1.8 pF, a series resistance of 40 k $\Omega$ , and a drive level of 1  $\mu$ W.

2.768 kHz crystal with the 5 pF,



Fundamental Frequency
Crystal Oscillator

#### Suggested Component Values:

 $f_{OSC} = 4 \text{ MHz}$   $f_{OSC} = 20 \text{ MHz}$   $R = 680 \text{ k}\Omega \pm 10\%$   $R = 680 \text{ k}\Omega \pm 10\%$   $C = 56 \text{ pF} \pm 20\%$   $C = 22 \text{ pF} \pm 20\%$ 

Calculations were done for a 4/20 MHz crystal with the following parameters:

- a C<sub>L</sub>of 30/20 pF,
- a C<sub>0</sub> of 7/6 pF,
- a series resistance of 100/20  $\Omega$ , and
- a drive level of 2 mW.

Figure 2-1 Crystal Oscillator Circuits



Figure 2-2 External Clock Timing

Table 2-5 Clock Operation

| Nic | Characteristics                                                                                                                                                                           |                   | 80 MHz               |                  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|------------------|--|
| No. | Characteristics                                                                                                                                                                           | Symbol            | Min                  | Max              |  |
| 1   | Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of the external clock should be 3 ns maximum.                                                                             | Ef                | 0                    | 80.0             |  |
| 2   | <ul> <li>EXTAL input high<sup>1, 2</sup></li> <li>With PLL disabled (46.7%-53.3% duty cycle)</li> <li>With PLL enabled (42.5%-57.5% duty cycle)</li> </ul>                                | ET <sub>H</sub>   | 5.84 ns<br>5.31 ns   | ∞<br>157.0 μs    |  |
| 3   | • With PLL disabled (46.7%–53.3% duty cycle) • With PLL enabled (42.5%–57.5% duty cycle)                                                                                                  | $\mathrm{ET_{L}}$ | 5.84 ns<br>5.31 ns   | ∞<br>157.0 μs    |  |
| 4   | EXTAL cycle time <sup>2</sup> • With PLL disabled  • With PLL enabled                                                                                                                     | ET <sub>C</sub>   | 12.50 ns<br>12.50 ns | ∞<br>273.1 μs    |  |
| 5   | CLKOUT change from EXTAL fall with PLL disabled                                                                                                                                           |                   | 4.3 ns               | 11.0 ns          |  |
| 6   | CLKOUT from EXTAL with PLL enabled <sup>3,5</sup> a. $MF = 1$ , $PDF = 1$ , $Ef > 15$ MHz b. $MF = 2$ or 4, $PDF = 1$ , $Ef > 15$ MHz, or, $MF \le 4$ , $PDF \ne 1$ , $Ef / PDF > 15$ MHz |                   | 0.0 ns<br>0.0 ns     | 1.8 ns<br>1.8 ns |  |

 Table 2-5
 Clock Operation (Continued)

| No. | Characteristics                                                                                                                                                    | Cumbal    | 80 MHz              |              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------|
| NO. | Characteristics                                                                                                                                                    | Symbol    | Min                 | Max          |
| 7   | Instruction cycle time = I <sub>CYC</sub> = T <sub>C</sub> <sup>4</sup> (See <b>Table 2-4</b> .) (46.7%–53.3% duty cycle)  • With PLL disabled  • With PLL enabled | $I_{CYC}$ | 25.0 ns<br>12.50 ns | ∞<br>8.53 μs |

- 1. Measured at 50% of the input transition
- 2. The maximum value for PLL enabled is given for minimum  $V_{CO}$  and maximum MF.
- 3. Periodically sampled and not 100% tested
- 4. The maximum value for PLL enabled is given for minimum V<sub>CO</sub> and <mark>maxim</mark>um DF.
- 5. The skew is not guaranteed for any other MF value.
- 6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

# PHASE LOCK LOOP (PLL) CHARACTERISTICS

Table 2-6 PLL Characteristics

| Chamataria in                                                                                   | 80 N | 80 MHz                       |          |  |  |
|-------------------------------------------------------------------------------------------------|------|------------------------------|----------|--|--|
| Characteristics                                                                                 | Min  | Max                          | Unit     |  |  |
| $V_{CO}$ frequency when PLL enabled (MF $\times$ E <sub>f</sub> $\times$ 2/PDF)                 | 30   | 160                          | MHz      |  |  |
| PLL external capacitor (PCAP pin to $V_{CCP}$ ) $(C_{PCAP}^{-1})$ • @ MF $\leq$ 4  • @ MF $>$ 4 |      | (MF × 590) – 175<br>MF × 920 | pF<br>pF |  |  |

Note: C<sub>PCAP</sub> is the value of the PLL capacitor (connected between the PCAP pin and V<sub>CCP</sub>). The recommended value in pF for C<sub>PCAP</sub> can be computed from one of the following equations:

 $(500 \times MF) - 150$ , for MF  $\leq 4$ , or

 $690 \times MF$ , for MF > 4.

# RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

**Table 2-7** Reset, Stop, Mode Select, and Interrupt Timing<sup>6</sup>

| No  | Characteristics                                                                                                                                                                                                                                                                                       | Eummagaiam                                                                                                                                                                                                    | 80 MHz                                      |           | Unit                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|----------------------------|
| No. | Characteristics                                                                                                                                                                                                                                                                                       | Expression                                                                                                                                                                                                    | Min                                         | Max       | Unit                       |
| 8   | Delay from RESET assertion to all pins at reset value <sup>3</sup>                                                                                                                                                                                                                                    | _                                                                                                                                                                                                             | _                                           | 26.0      | ns                         |
| 9   | Required RESET duration <sup>4</sup> • Power on, external clock generator, PLL disabled  • Power on, external clock generator, PLL enabled  • Power on, internal oscillator  • During STOP, XTAL disabled (PCTL Bit 16 = 0)  • During STOP, XTAL enabled (PCTL Bit 16 = 1)  • During normal operation | $50 \times \text{ET}_{\text{C}}$ $1000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$ | 625.0<br>12.5<br>1.0<br>1.0<br>31.3<br>31.3 |           | ms<br>ms<br>ms<br>ms<br>ns |
| 10  | Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion) <sup>5</sup> • Minimum  • Maximum                                                                                                                                                             | $3.25 \times T_{C} + 2.0$<br>$20.25 T_{C} + 9.95$                                                                                                                                                             | 42.6<br>—                                   | <br>263.1 | ns<br>ns                   |
| 11  | Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1  Minimum Maximum                                                                                                                                                                                                           | ${ m T_C}$                                                                                                                                                                                                    | 7.4<br>—                                    | —<br>12.5 | ns<br>ns                   |
| 12  | Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output  • Minimum  • Maximum                                                                                                                                                                      | $3.25 \times T_{C} + 1.0$ $20.25 T_{C} + 5.0$                                                                                                                                                                 | 41.6                                        | <br>258.1 | ns<br>ns                   |
| 13  | Mode select setup time                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | 30.0                                        | _         | ns                         |
| 14  | Mode select hold time                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                               | 0.0                                         |           | ns                         |
| 15  | Minimum edge-triggered interrupt request assertion width                                                                                                                                                                                                                                              |                                                                                                                                                                                                               | 8.25                                        | _         | ns                         |
| 16  | Minimum edge-triggered interrupt request deassertion width                                                                                                                                                                                                                                            |                                                                                                                                                                                                               | 8.25                                        | _         | ns                         |
| 17  | Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid  • Caused by first interrupt instruction fetch  • Caused by first interrupt instruction execution                                                                                                        | $4.25 \times T_{C} + 2.0 \\ 7.25 \times T_{C} + 2.0$                                                                                                                                                          | 55.1<br>92.6                                |           | ns<br>ns                   |
| 18  | Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution                                                                                                                                                             | $10 \times T_{\rm C} + 5.0$                                                                                                                                                                                   | 130.0                                       | _         | ns                         |

**Table 2-7** Reset, Stop, Mode Select, and Interrupt Timing<sup>6</sup> (Continued)

| NI. | Chanastaviatics                                                                                                                                                                          | F                                                                                                                 | 80 N        | 80 MHz            |          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|-------------------|----------|
| No. | Characteristics                                                                                                                                                                          | Expression                                                                                                        | Min         | Max               | Unit     |
| 19  | Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts <sup>1</sup>                          | $3.75 \times T_C + WS \\ \times T_C - 12.4$                                                                       |             | Exp. <sup>8</sup> | ns       |
| 20  | Delay from $\overline{RD}$ assertion to interrupt request deassertion for level sensitive fast interrupts $^1$                                                                           | $3.25 \times T_C + WS \\ \times T_C - 12.4$                                                                       | 4           | Exp.8             | ns       |
| 21  | Delay from WR assertion to interrupt request deassertion for level sensitive fast interrupts <sup>1</sup> • SSRAM for all WS                                                             | (3.75 + WS)                                                                                                       |             | Exp.8             | ns       |
|     | DRAM for all WS                                                                                                                                                                          | $  \times T_{C} - 12.4  (3.5 + WS) \times T_{C}  - 12.4 $                                                         | _           | Exp.8             | ns       |
|     | • SRAM WS = 1                                                                                                                                                                            | $(WS + 3.5) \times T_C$<br>-12.4                                                                                  | _           | Exp.8             | ns       |
|     | • SRAM WS = 2, 3                                                                                                                                                                         | $(WS + 3) \times T_C$<br>- 12.4                                                                                   | _           | Exp.8             | ns       |
|     | • SRAM WS ≥ 4                                                                                                                                                                            | $(2.5 + WS) \times T_C$<br>- 12.4                                                                                 | _           | Exp. <sup>8</sup> | ns       |
| 22  | Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2                                                                                   |                                                                                                                   | 7.4         | T <sub>C</sub>    | ns       |
| 23  | Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state |                                                                                                                   |             |                   |          |
|     | Minimum     Maximum                                                                                                                                                                      | $\begin{vmatrix} 9.25 \times T_{C} + 1.0 \\ 24.75 \times T_{C} + 5.0 \end{vmatrix}$                               | 116.6<br>—  | —<br>314.4        | ns<br>ns |
| 24  | Duration for IRQA assertion to recover from Stop state                                                                                                                                   |                                                                                                                   | 7.4         | _                 | ns       |
| 25  | Delay from IRQA assertion to fetch of first instruction (when exiting Stop) <sup>2, 3</sup> PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0)    | PDF + (128 K –                                                                                                    | 1.6         | 17.0              | ms       |
|     | • PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)                                                                                          | $\begin{array}{c} PLC/2) \times T_C \\ PLC \times ET_C \times \\ PDF + (23.75 \pm \\ 0.5) \times T_C \end{array}$ | 290.6<br>ns | 15.4<br>ms        |          |
|     | <ul> <li>PLL is active during Stop (PCTL Bit 17 = 1)<br/>(Implies No Stop Delay)</li> </ul>                                                                                              | $(8.25 \pm 0.5) \times T_{\rm C}$                                                                                 | 96.9        | 109.4             | ns       |

 Table 2-7
 Reset, Stop, Mode Select, and Interrupt Timing<sup>6</sup> (Continued)

| No  | Chamataviatias                                                                                                                                                                                                                                                                                                                                                                                                       | Ermungaion                                                                                              | 80 MHz               |                                  | Unit                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------|
| No. | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                      | Expression                                                                                              | Min                  | Max                              | Unit                 |
| 26  | <ul> <li>Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)<sup>2, 3</sup></li> <li>PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0)</li> <li>PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1)</li> <li>PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay)</li> </ul> | PDF + (128K –<br>PLC/2) × T <sub>C</sub>                                                                | 17.0<br>15.4<br>68.8 | _                                | ms<br>ms             |
| 27  | Interrupt Requests Rate  • HI08, ESSI, SCI, Timer  • DMA  • IRQ, NMI (edge trigger)  • IRQ, NMI (level trigger)                                                                                                                                                                                                                                                                                                      | 12T <sub>C</sub><br>8T <sub>C</sub><br>8T <sub>C</sub><br>12T <sub>C</sub>                              |                      | 150.0<br>100.0<br>100.0<br>150.0 | ns<br>ns<br>ns       |
| 28  | DMA Requests Rate  • Data read from HI08, ESSI, SCI • Data write to HI08, ESSI, SCI • Timer • IRQ, NMI (edge trigger)                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 6T_{\mathrm{C}} \\ 7T_{\mathrm{C}} \\ 2T_{\mathrm{C}} \\ 3T_{\mathrm{C}} \end{array}$ | <br> -<br> -<br> -   | 75.0<br>87.5<br>25.0<br>37.5     | ns<br>ns<br>ns<br>ns |
| 29  | Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid                                                                                                                                                                                                                                                                                                            | $4.25 \times T_{\rm C} + 2.0$                                                                           | 55.1                 | _                                | ns                   |

Note: 1. When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-Triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-Sensitive mode.



#### Reset, Stop, Mode Select, and Interrupt Timing

**Table 2-7** Reset, Stop, Mode Select, and Interrupt Timing<sup>6</sup> (Continued)

| Nie | Chanastanistica | Eummagaian | 80 N | ИHz | 11:4 |
|-----|-----------------|------------|------|-----|------|
| No. | Characteristics | Expression | Min  | Max | Unit |

2. This timing depends on several settings:

For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure the oscillator is stable before executing programs. In that case, resetting the Stop delay (OMR Bit 6 = 0) will provide the proper delay. While it is possible to set OMR Bit 6 = 1, it is not recommended and these specifications do not guarantee timings for that case.

For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization delay is required and recovery time will be minimal (OMR Bit 6 setting is ignored).

For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time will be defined by the PCTL Bit 17 and OMR Bit 6 settings.

For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery will end when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure completion.

PLC value for PLL disable is 0.

The maximum value for ET<sub>C</sub> is 4096 (maximum MF) divided by the desired internal frequency (i.e., for 66 MHz it is 4096/66 MHz =  $62 \mu s$ ). During the stabilization period,  $T_C$ ,  $T_{H_c}$  and  $T_L$  will not be constant, and their width may vary, so timing may vary as well.

- 3. Periodically sampled and not 100% tested
- 4. For an external clock generator,  $\overline{RESET}$  duration is measured during the time in which  $\overline{RESET}$  is asserted,  $V_{CC}$  is valid, and the  $\overline{EXTAL}$  input is active and valid.

For internal oscillator,  $\overline{RESET}$  duration is measured during the time in which  $\overline{RESET}$  is asserted and  $V_{CC}$  is valid. The specified timing reflects the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions.

When the  $V_{CC}$  is valid, but the other "required  $\overline{RESET}$  duration" conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration.

- 5. If PLL does not lose lock
- 6.  $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ;  $T_{J} = -40 ^{\circ}\text{C}$  to  $+100 ^{\circ}\text{C}$ ,  $C_{L} = 50 \text{ pF} + 2 \text{ TTL Loads}$
- 7.  $\sqrt{WS}$  = number of wait states (measured in clock cycles, number of  $T_C$ )
- 8. Use expression to compute maximum value.



#### Reset, Stop, Mode Select, and Interrupt Timing



Figure 2-6 External Interrupt Timing (Negative Edge-Triggered)



Figure 2-7 Synchronous Interrupt from Wait State Timing



Figure 2-8 Operating Mode Select Timing



Figure 2-9 Recovery from Stop State Using IRQA

#### Reset, Stop, Mode Select, and Interrupt Timing



Figure 2-10 Recovery from Stop State Using IRQA Interrupt Service



a) First Interrupt Instruction Execution

Figure 2-11 External Memory Access (DMA Source) Timing

# **EXTERNAL MEMORY INTERFACE (PORT A)**

 Table 2-8
 SRAM Read and Write Accesses

| n.  | <b>a</b>                                                                                                                                | G 1 1                             | 1                                                                                                                 | 80 N                  | ИHz         | <b>T</b> T ••  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------|
| No. | Characteristics                                                                                                                         | Symbol                            | Expression <sup>1</sup>                                                                                           | Min                   | Max         | Unit           |
| 100 |                                                                                                                                         | t <sub>RC</sub> , t <sub>WC</sub> | $(WS + 1) \times T_C - 4.0$<br>$(WS + 2) \times T_C - 4.0$<br>$(WS + 3) \times T_C - 4.0$                         | 21.0<br>71.0<br>133.5 | <u>-</u>    | ns<br>ns<br>ns |
| 101 |                                                                                                                                         | t <sub>AS</sub>                   | $0.25 \times T_{C} - 3.0 \\ 0.75 \times T_{C} - 4.0 \\ 1.25 \times T_{C} - 4.0$                                   | 0.1<br>5.4<br>11.6    | _<br>_<br>_ | ns<br>ns<br>ns |
| 102 | $\overline{WR} \ assertion \ pulse \ width$ $\bullet  WS = 1$ $\bullet  2 \leq WS \leq 3$ $\bullet  WS \geq 4$                          | t <sub>WP</sub>                   | $ \begin{array}{c} 1.5 \times T_{C} - 4.5 \\ WS \times T_{C} - 4.0 \\ (WS - 0.5) \times T_{C} - 4.0 \end{array} $ | 14.8<br>21.0<br>39.8  | _<br>_<br>_ | ns<br>ns<br>ns |
| 103 | $\overline{WR} \ deassertion \ to \ address \ not \ valid$ $\bullet  1 \leq WS \leq 3$ $\bullet  4 \leq WS \leq 7$ $\bullet  WS \geq 8$ | t <sub>WR</sub>                   | $0.25 \times T_{C} - 3.0$ $1.25 \times T_{C} - 4.0$ $2.25 \times T_{C} - 4.0$                                     | 0.0<br>11.6<br>24.1   | _<br>_<br>_ | ns<br>ns<br>ns |
| 104 | Address and AA valid to input data valid [WS $\geq$ 1]                                                                                  | t <sub>AA</sub> , t <sub>AC</sub> | $(WS + 0.75) \times T_C - 9.5$                                                                                    | _                     | 12.4        | ns             |
| 105 | $\overline{\text{RD}}$ assertion to input data valid [WS $\geq$ 1]                                                                      | t <sub>OE</sub>                   | $(WS + 0.25) \times T_C - 9.5$                                                                                    | _                     | _           | ns             |
| 106 | RD deassertion to data not valid (data hold time)                                                                                       | t <sub>OHZ</sub>                  |                                                                                                                   | 0.0                   | _           | ns             |
| 107 | Address valid to WR deassertion [WS ≥ 1]                                                                                                | t <sub>AW</sub>                   | $(WS + 0.75) \times T_C - 4.0$                                                                                    | 17.9                  | _           | ns             |
| 108 | Data valid to WR deassertion (data setup time) [WS≥1]                                                                                   | $t_{\rm DS} (t_{\rm DW})$         | $(WS - 0.25) \times T_C - 3.3$                                                                                    | _                     | _           | ns             |
| 109 | Data hold time from $\overline{WR}$ deassertion • $1 \le WS \le 3$ • $4 \le WS \le 7$ • $WS \ge 8$                                      | t <sub>DH</sub>                   | $0.25 \times T_{C} - 3.0 \\ 1.25 \times T_{C} - 3.7 \\ 2.25 \times T_{C} - 3.7$                                   | <br>11.8<br>24.3      | _<br>_<br>_ | ns<br>ns<br>ns |
| 110 | $\overline{WR}$ assertion to data active<br>• WS = 1<br>• $2 \le WS \le 3$<br>• WS $\ge 4$                                              |                                   | $0.75 \times T_{C} - 3.7 \\ 0.25 \times T_{C} - 3.7 \\ -0.25 \times T_{C} - 3.7$                                  | 5.7<br>-0.6<br>-6.8   | _<br>_<br>_ | ns<br>ns<br>ns |

 Table 2-8
 SRAM Read and Write Accesses (Continued)

| NI    | Cl                                                | C 1.1          | 1                              | 80 N | ИHz         | TT   |
|-------|---------------------------------------------------|----------------|--------------------------------|------|-------------|------|
| No.   | Characteristics                                   | Symbol         | Expression <sup>1</sup>        | Min  | Max         | Unit |
| 111   | WR deassertion to data high impedance             |                |                                |      |             |      |
|       | • 1 ≤ WS ≤ 3                                      |                | $0.25 \times T_C + 0.2$        |      | 3.3         | ns   |
|       | • 4 ≤ WS ≤ 7                                      |                | $1.25 \times T_{C}^{C} + 0.2$  |      | 15.8        | ns   |
|       | • WS ≥ 8                                          |                | $2.25 \times T_C + 0.2$        | 7    | 28.3        | ns   |
| 112   | Previous RD deassertion to data active (write)    |                |                                |      | <b>&gt;</b> |      |
|       | • 1 ≤ WS ≤ 3                                      |                | $1.25 \times T_{\rm C} - 4.0$  | 11.6 | _           | ns   |
|       | • 4 ≤ WS ≤ 7                                      |                | $2.25 \times T_C - 4.0$        | 24.1 |             | ns   |
|       | • WS ≥ 8                                          |                | $3.25 \times T_{\rm C} - 4.0$  | 36.6 | —           | ns   |
| 113   | RD deassertion time                               |                |                                |      |             |      |
|       | • 1 ≤ WS ≤ 3                                      |                | $0.75 \times T_{\rm C} - 4.0$  | 5.4  | _           | ns   |
|       | • 4 ≤ WS ≤ 7                                      |                | $1.75 \times T_C - 4.0$        | 17.9 | _           | ns   |
|       | • WS ≥ 8                                          |                | $2.75 \times T_{\rm C} - 4.0$  | 30.4 | _           | ns   |
| 114   | WR deassertion time                               |                |                                |      |             |      |
|       | • WS = 1                                          |                | $0.5 \times T_{\rm C} - 3.5$   | 2.8  | _           | ns   |
|       | • 2 ≤ WS ≤ 3                                      |                | $T_{C} = 3.5$                  | 9.0  |             | ns   |
|       | • 4 ≤ WS ≤ 7<br>• WS > 8                          |                | $2.5 \times T_C - 3.5$         | 27.8 | _           | ns   |
|       | 115 = 0                                           |                | $3.5 \times T_{\rm C} - 3.5$   | 40.3 | _           | ns   |
| 115   | Address valid to $\overline{\text{RD}}$ assertion |                | $0.5 \times T_{\rm C} - 4$     | 2.3  | _           | ns   |
| 116   | RD assertion pulse width                          |                | $(WS + 0.25) \times T_C - 3.8$ | 11.8 |             | ns   |
| 117   | RD deassertion to address not valid               |                |                                |      |             |      |
|       | • 1 ≤ WS ≤ 3                                      |                | $0.25 \times T_C - 3.0$        | 0.1  | _           | ns   |
|       | • 4 ≤ WS ≤ 7                                      |                | $1.25 \times T_{\rm C} - 3.0$  | 12.6 | _           | ns   |
|       | • WS≥8                                            |                | $2.25 \times T_{\rm C} - 3.0$  | 25.1 | _           | ns   |
| Note: | 1. WS is the number of wait states speci          | ified in the I | BCR.                           |      |             |      |

2.  $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ;  $T_{J} = -40 ^{\circ}\text{C}$  to  $+100 ^{\circ}\text{C}$ ,  $C_{L} = 50 \text{ pF} + 2 \text{ TTL Loads}$ 



Figure 2-12 SRAM Read Access



Figure 2-13 SRAM Write Access

 Table 2-9
 SSRAM Read and Write Access

| Characteristics                                                                    | a 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ИHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BCLK high to BCLK high (cycle time)                                                | t <sub>KHKH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(WS + 1) \times T_C$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high time                                                                     | t <sub>KHKL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.5 \times T_C - 4.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK low time                                                                      | t <sub>KLKH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(WS + 0.5) \times T_C - 2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high to input data valid                                                      | t <sub>KHQV</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(WS + 1) \times T_C - 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RD assertion to input data valid                                                   | $t_{ m GLQV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(WS + 1) \times T_C - 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>5</b> .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RD deassertion to input data invalid                                               | t <sub>GHQX</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Address and AA setup time to clock high                                            | t <sub>AVKH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.5 \times T_{\rm C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WR setup time to clock high                                                        | t <sub>SWVKH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.5 \times T_{\rm C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data out setup time to clock high                                                  | t <sub>DVKH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(WS + 0.5) \times T_C - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high to address and AA invalid (hold time)                                    | t <sub>KHAX</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(WS + 0.5) \times T_C - 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high to $\overline{\rm WR}$ deassertion (hold time)                           | t <sub>KHSWX</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(WS + 0.5) \times T_C - 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high to input data invalid (data hold time)                                   | t <sub>KHQX2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BCLK high to output data invalid (data hold time) BCLK high to data high impedance | t <sub>KHDX</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.5 \times T_C - 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                    | BCLK high time BCLK low time BCLK high to input data valid RD assertion to input data valid RD deassertion to input data invalid Address and AA setup time to clock high WR setup time to clock high Data out setup time to clock high BCLK high to address and AA invalid (hold time) BCLK high to WR deassertion (hold time) BCLK high to input data invalid (data hold time) BCLK high to output data invalid (data hold time) BCLK high to data high impedance | BCLK high time  BCLK low time  BCLK low time  BCLK high to input data valid  RD assertion to input data valid  RD deassertion to input data invalid  Address and AA setup time to clock high  WR setup time to clock high  Data out setup time to clock high  BCLK high to address and AA invalid (hold time)  BCLK high to input data invalid (data hold time)  BCLK high to output data invalid (data hold time)  BCLK high to output data invalid (data hold time) | BCLK high time $t_{KHKL} = 0.5 \times T_C - 4.2$ BCLK low time $t_{KLKH} = 0.5 \times T_C - 2.5$ BCLK high to input data valid $t_{KHQV} = 0.5 \times T_C - 2.5$ BCLK high to input data valid $t_{GLQV} = 0.5 \times T_C - 3.5$ RD assertion to input data invalid $t_{GHQX} = 0.5 \times T_C - 4.0$ Address and AA setup time to clock high $t_{SWVKH} = 0.5 \times T_C - 4.0$ Data out setup time to clock high $t_{SWVKH} = 0.5 \times T_C - 4.0$ BCLK high to address and AA invalid (hold time) BCLK high to input data invalid (data hold time) BCLK high to output data invalid (data hold time) BCLK high to output data invalid (data hold time) BCLK high to data high impedance $t_{KHDX} = 0.5 \times T_C - 1.0$ | BCLK high time $t_{KHKL} = 0.5 \times T_C - 4.2 = 1.5$ BCLK low time $t_{KLKH} = (WS + 0.5) \times T_C - 2.5 = 3.8$ BCLK high to input data valid $t_{KHQV} = (WS + 1) \times T_C - 3.5 = -1.5$ BCLK high to input data valid $t_{CLQV} = (WS + 1) \times T_C - 3.5 = -1.5$ BCLK high to input data invalid $t_{CLQV} = (WS + 1) \times T_C - 3.5 = -1.5$ BCLK high to address and AA setup time to clock high $t_{CLQV} = (WS + 1) \times T_C - 3.5 = -1.5$ BCLK high to address and AA invalid (hold time) $t_{CLQV} = (WS + 1) \times T_C - 4.0 = 2.8$ BCLK high to address and AA invalid (hold time) $t_{CL} = (WS + 0.5) \times T_C - 4.0 = 2.8$ BCLK high to input data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to input data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ BCLK high to output data invalid (data hold time) $t_{CL} = (WS + 0.5) \times T_C - 1.0 = 5.3$ | BCLK high time $t_{KHKL} = 0.5 \times T_C - 4.2 = 1.5 - BCLK \text{ low time}$ $t_{KLKH} = (WS + 0.5) \times T_C - 2.5 = 3.8 - BCLK \text{ high to input data valid}$ $t_{KHQV} = (WS + 1) \times T_C - 3.5 - 9.5$ $\overline{RD} \text{ assertion to input data invalid}$ $\overline{RD} \text{ deassertion to input data invalid}$ $T_{GLQV} = (WS + 1) \times T_C - 7.5 - 5.0$ $\overline{RD} \text{ deassertion to input data invalid}$ $T_{GLQV} = (WS + 1) \times T_C - 7.5 - 5.0$ $T_{C} - 7.5 - 7.5 - 5.0$ $T_{C} - 7.5 - 7.5 - 7.0$ $T_{C} $ |



Figure 2-14 SSRAM Read Access



Figure 2-15 SSRAM Write Access

#### **External Memory Interface (Port A)**



Figure 2-16 DRAM Page Mode Wait States Selection Guide

 Table 2-10
 DRAM Page Mode Timings, One Wait State (Low-Power Applications)<sup>1, 2, 3</sup>

| No.  | Characteristics                                                                                                | Symbol            | Expression                | 20 M | IHz <sup>6</sup> | 30 M | Hz <sup>6</sup> | Unit |
|------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------|------------------|------|-----------------|------|
| 140. | Characteristics                                                                                                | Symbol            | Expression                | Min  | Max              | Min  | Max             | Omt  |
| 131  | Page mode cycle time                                                                                           | t <sub>PC</sub>   | $1.25 \times T_{\rm C}$   | 62.5 | _                | 41.7 | _               | ns   |
| 132  | CAS assertion to data valid (read)                                                                             | t <sub>CAC</sub>  | $T_{\rm C} - 7.5$         | 1    | 42.5             | 1    | 25.8            | ns   |
| 133  | Column address valid to data valid (read)                                                                      | t <sub>AA</sub>   | $1.5 \times T_{C} - 7.5$  | l    | 67.5             | l    | 42.5            | ns   |
| 134  | CAS deassertion to data not valid (read hold time)                                                             | $t_{ m OFF}$      |                           | 0.0  |                  | 0.0  | _               | ns   |
| 135  | Last CAS assertion to RAS deassertion                                                                          | t <sub>RSH</sub>  | $0.75 \times T_C - 4.0$   | 33.5 | _                | 21.0 | _               | ns   |
| 136  | $\frac{\text{Previous }\overline{\text{CAS}}\text{ deassertion to}}{\overline{\text{RAS}}\text{ deassertion}}$ | t <sub>RHCP</sub> | $2 \times T_{C} - 4.0$    | 96.0 | _                | 62.7 | _               | ns   |
| 137  | CAS assertion pulse width                                                                                      | t <sub>CAS</sub>  | $0.75 \times T_{C} - 4.0$ | 33.5 | _                | 21.0 | _               | ns   |

 Table 2-10
 DRAM Page Mode Timings, One Wait State (Low-Power Applications)<sup>1, 2, 3</sup>

| Na  | Characteristics                                                                                                  | Cross al         | Ermussion                                                                                                                               | 20 M                            | IHz <sup>6</sup> | 30 M                            | IHz <sup>6</sup> | I Ii-t         |
|-----|------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|---------------------------------|------------------|----------------|
| No. | Characteristics                                                                                                  | Symbol           | Expression                                                                                                                              | Min                             | Max              | Min                             | Max              | Unit           |
| 138 | Last CAS deassertion to  RAS deassertion <sup>4</sup> BRW[1:0] = 00  BRW[1:0] = 01  BRW[1:0] = 10  BRW[1:0] = 11 | t <sub>CRP</sub> | $\begin{array}{c} 1.75 \times T_{C} - 6.0 \\ 3.25 \times T_{C} - 6.0 \\ 4.25 \times T_{C} - 6.0 \\ 6.25 \times T_{C} - 6.0 \end{array}$ | 81.5<br>156.5<br>206.5<br>306.5 | _<br>_<br>_<br>_ | 52.3<br>102.2<br>135.5<br>202.1 |                  | ns<br>ns<br>ns |
| 139 | CAS deassertion pulse width                                                                                      | t <sub>CP</sub>  | $0.5 \times T_{C} - 4.0$                                                                                                                | 21.0                            |                  | 12.7                            |                  | ns             |
| 140 | Column address valid to CAS assertion                                                                            | t <sub>ASC</sub> | $0.5 \times T_{\text{C}} - 4.0$                                                                                                         | 21.0                            | -                | 12.7                            | _                | ns             |
| 141 | CAS assertion to column address not valid                                                                        | t <sub>CAH</sub> | $0.75 \times T_{\rm C} - 4.0$                                                                                                           | 33.5                            | <u></u>          | 21.0                            | _                | ns             |
| 142 | Last column address valid to RAS deassertion                                                                     | t <sub>RAL</sub> | $2 \times T_C = 4.0$                                                                                                                    | 96.0                            | _                | 62.7                            | _                | ns             |
| 143 | WR deassertion to CAS assertion                                                                                  | t <sub>RCS</sub> | $0.75 \times T_{\rm C} - 3.8$                                                                                                           | 33.7                            | _                | 21.2                            | _                | ns             |
| 144 | CAS deassertion to WR assertion                                                                                  | t <sub>RCH</sub> | $0.25 \times T_C - 3.7$                                                                                                                 | 8.8                             | _                | 4.6                             | _                | ns             |
| 145 | CAS assertion to WR deassertion                                                                                  | t <sub>WCH</sub> | $0.5 \times T_{\rm C} - 4.2$                                                                                                            | 20.8                            | _                | 12.5                            | _                | ns             |
| 146 | WR assertion pulse width                                                                                         | t <sub>WP</sub>  | $1.5 \times T_C - 4.5$                                                                                                                  | 70.5                            | _                | 45.5                            | _                | ns             |
| 147 | Last WR assertion to RAS deassertion                                                                             | t <sub>RWL</sub> | $1.75 \times T_C - 4.3$                                                                                                                 | 83.2                            | _                | 54.0                            | _                | ns             |
| 148 | WR assertion to CAS deassertion                                                                                  | t <sub>CWL</sub> | $1.75 \times T_C - 4.3$                                                                                                                 | 83.2                            | _                | 54.0                            | _                | ns             |
| 149 | Data valid to CAS assertion (Write)                                                                              | t <sub>DS</sub>  | $0.25 \times T_{\rm C} - 4.0$                                                                                                           | 8.5                             | _                | 4.3                             | _                | ns             |
| 150 | CAS assertion to data not valid (write)                                                                          | t <sub>DH</sub>  | $0.75 \times T_{\rm C} - 4.0$                                                                                                           | 33.5                            | _                | 21.0                            | _                | ns             |
| 151 | WR assertion to CAS assertion                                                                                    | t <sub>WCS</sub> | $T_C - 4.3$                                                                                                                             | 45.7                            | _                | 29.0                            | _                | ns             |
| 152 | Last $\overline{RD}$ assertion to $\overline{RAS}$ deassertion                                                   | t <sub>ROH</sub> | $1.5 \times T_{\text{C}} - 4.0$                                                                                                         | 71.0                            | _                | 46.0                            | _                | ns             |
| 153 | RD assertion to data valid                                                                                       | t <sub>GA</sub>  | $T_{\rm C} - 7.5$                                                                                                                       | _                               | 42.5             | _                               | 25.8             | ns             |
| 154 | $\overline{\text{RD}}$ deassertion to data not valid $^5$                                                        | t <sub>GZ</sub>  |                                                                                                                                         | 0.0                             | _                | 0.0                             | _                | ns             |

#### **External Memory Interface (Port A)**

 $\textbf{Table 2-10} \ \ \mathsf{DRAM} \ \mathsf{Page} \ \mathsf{Mode} \ \mathsf{Timings}, \ \mathsf{One} \ \mathsf{Wait} \ \mathsf{State} \ (\mathsf{Low\text{-}Power} \ \mathsf{Applications})^{1,\ 2,\ 3}$ 

| No.  | Characteristics                       | Symbol | Expression              | 20 M | IHz <sup>6</sup> | 30 M | Hz <sup>6</sup> | Unit |
|------|---------------------------------------|--------|-------------------------|------|------------------|------|-----------------|------|
| 110. | Characteristics                       | Symbol | Lapression              | Min  | Max              | Min  | Max             | Ont  |
| 155  | WR assertion to data active           |        | $0.75 \times T_C - 0.3$ | 37.2 | _                | 24.7 | _               | ns   |
| 156  | WR deassertion to data high impedance |        | $0.25 \times T_{\rm C}$ | _    | 12.5             |      | 8.3             | ns   |

- 1. The number of wait states for page mode access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g.,  $t_{PC}$  equals  $2 \times T_{C}$  for read-after-read or write-after-write sequences).
- 4. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.
- 5. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t<sub>OFF</sub> and not t<sub>GZ</sub>.
- 6. Reduced DSP clock speed allows use of Page Mode DRAM with one Wait state (See Figure 2-16.).

**Table 2-11** DRAM Page Mode Timings, Two Wait States<sup>1, 2, 3</sup>

| N.T. |                                                                       | C                 |                                                                                            | 80 N         | ИHz | TT       |
|------|-----------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|--------------|-----|----------|
| No.  | Characteristics                                                       | Symbol            | Expression                                                                                 | Min          | Max | Unit     |
| 131  | Page mode cycle time                                                  | t <sub>PC</sub>   | $2.75 \times T_{\rm C}$                                                                    | 34.4         | _   | ns       |
| 132  | CAS assertion to data valid (read)                                    | t <sub>CAC</sub>  | $1.5 \times T_{\rm C} - 6.5$                                                               | _            | _   | ns       |
| 133  | Column address valid to data valid (read)                             | t <sub>AA</sub>   | $2.5 \times T_{\rm C} - 6.5$                                                               | _            | _   | ns       |
| 134  | CAS deassertion to data not valid (read hold time)                    | t <sub>OFF</sub>  |                                                                                            | 0.0          | _   | ns       |
| 135  | Last CAS assertion to RAS deassertion                                 | t <sub>RSH</sub>  | $1.75 \times T_C - 4.0$                                                                    | 17.9         | _   | ns       |
| 136  | Previous CAS deassertion to RAS deassertion                           | t <sub>RHCP</sub> | $3.25 \times T_{\rm C} - 4.0$                                                              | 36.6         | _   | ns       |
| 137  | CAS assertion pulse width                                             | t <sub>CAS</sub>  | $1.5 \times T_C - 4.0$                                                                     | 14.8         | _   | ns       |
| 138  | Last <u>CAS</u> deassertion to <u>RAS</u><br>deassertion <sup>5</sup> | t <sub>CRP</sub>  |                                                                                            |              |     |          |
|      | • BRW[1:0] = 00                                                       |                   | $2.0 \times T_{\rm C} - 6.0$                                                               | 19.0         | _   | ns       |
|      | BRW[1:0] = 01 BRW[1:0] = 10                                           |                   | $ \begin{vmatrix} 3.5 \times T_{\rm C} - 6.0 \\ 4.5 \times T_{\rm C} - 6.0 \end{vmatrix} $ | 37.8<br>50.3 |     | ns<br>ns |
|      | • BRW[1:0] = 11                                                       |                   | $6.5 \times T_{\rm C} - 6.0$                                                               | 75.3         | _   | ns       |
| 139  | CAS deassertion pulse width                                           | t <sub>CP</sub>   | $1.25 \times T_C - 4.0$                                                                    | 11.6         | _   | ns       |
| 140  | Column address valid to $\overline{\text{CAS}}$ assertion             | t <sub>ASC</sub>  | $T_{\rm C} - 4.0$                                                                          | 8.5          | _   | ns       |

| Table 2-11 | DRAM Page Mode Timings, Two Wait States <sup>1, 2, 3</sup> ( | Continued) |
|------------|--------------------------------------------------------------|------------|
|            |                                                              |            |

| NI  |                                                                              | C 1.1            | Б                             | 80 N | ИHz  | T1 .*4 |
|-----|------------------------------------------------------------------------------|------------------|-------------------------------|------|------|--------|
| No. | Characteristics                                                              | Symbol           | Expression                    | Min  | Max  | Unit   |
| 141 | CAS assertion to column address not valid                                    | t <sub>CAH</sub> | $1.75 \times T_C - 4.0$       | 17.9 | _    | ns     |
| 142 | Last column address valid to $\overline{RAS}$ deassertion                    | t <sub>RAL</sub> | $3 \times T_C - 4.0$          | 33.5 | _    | ns     |
| 143 | $\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion      | t <sub>RCS</sub> | $1.25 \times T_{\rm C} - 3.8$ | 11.8 |      | ns     |
| 144 | $\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}$ assertion      | t <sub>RCH</sub> | $0.5 \times T_{\rm C} - 3.7$  | 2.6  |      | ns     |
| 145 | CAS assertion to WR deassertion                                              | t <sub>WCH</sub> | $1.5 \times T_{C} - 4.2$      | 14.6 | _    | ns     |
| 146 | WR assertion pulse width                                                     | t <sub>WP</sub>  | $2.5 \times T_C - 4.5$        | 26.8 | _    | ns     |
| 147 | Last $\overline{\text{WR}}$ assertion to $\overline{\text{RAS}}$ deassertion | t <sub>RWL</sub> | $2.75 \times T_{\rm C} - 4.3$ | 30.1 | _    | ns     |
| 148 | WR assertion to CAS deassertion                                              | t <sub>CWL</sub> | $2.5 \times T_C - 4.3$        | 27.0 | _    | ns     |
| 149 | Data valid to <del>CAS</del> assertion (write)                               | t <sub>DS</sub>  | $0.25 \times T_{\rm C} - 3.0$ | 0.1  | _    | ns     |
| 150 | CAS assertion to data not valid (write)                                      | t <sub>DH</sub>  | $1.75 \times T_{\rm C} - 4.0$ | 17.9 | _    | ns     |
| 151 | WR assertion to CAS assertion                                                | t <sub>WCS</sub> | $T_C - 4.3$                   | 8.2  | _    | ns     |
| 152 | Last $\overline{RD}$ assertion to $\overline{RAS}$ deassertion               | t <sub>ROH</sub> | $2.5 \times T_{\rm C} - 4.0$  | 27.3 | _    | ns     |
| 153 | RD assertion to data valid                                                   | t <sub>GA</sub>  | $1.75 \times T_{\rm C} - 6.5$ | _    | 15.4 | ns     |
| 154 | RD deassertion to data not valid <sup>6</sup>                                | t <sub>GZ</sub>  |                               | 0.0  | _    | ns     |
| 155 | WR assertion to data active                                                  | <b>&gt;</b>      | $0.75 \times T_C - 0.3$       | 9.1  | _    | ns     |
| 156 | WR deassertion to data high impedance                                        |                  | $0.25 \times T_{\rm C}$       | _    | 3.1  | ns     |

- 1. The number of Wait States for Page mode access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56305.
- 4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t<sub>PC</sub> equals 3 × T<sub>C</sub> for read-after-read or write-after-write sequences).
- 5. BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.
- 6.  $\overline{RD}$  deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .

 $\textbf{Table 2-12} \quad \text{DRAM Page Mode Timings, Three Wait States}^{1,\;2,\;3}$ 

|     |                                                                                                                                  | G 1.1             |                                                        | 80 N         | ИНz  | <b>T</b> T 4. |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------|--------------|------|---------------|
| No. | Characteristics                                                                                                                  | Symbol            | Expression                                             | Min          | Max  | Unit          |
| 131 | Page mode cycle time                                                                                                             | t <sub>PC</sub>   | $3.5 \times T_{\rm C}$                                 | 43.8         | _    | ns            |
| 132 | CAS assertion to data valid (read)                                                                                               | t <sub>CAC</sub>  | $2 \times T_{\rm C} - 6.5$                             |              | 18.5 | ns            |
| 133 | Column address valid to data valid (read)                                                                                        | t <sub>AA</sub>   | $3 \times T_{\rm C} - 6.5$                             | _            | 31.0 | ns            |
| 134 | CAS deassertion to data not valid (read hold time)                                                                               | t <sub>OFF</sub>  |                                                        | 0.0          |      | ns            |
| 135 | Last $\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ deassertion                                                    | t <sub>RSH</sub>  | $2.5 \times T_{\rm C} - 4.0$                           | 27.3         |      | ns            |
| 136 | Previous $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion                                                            | t <sub>RHCP</sub> | $4.5 \times T_{\rm C} - 4.0$                           | 52.3         | 1    | ns            |
| 137 | CAS assertion pulse width                                                                                                        | t <sub>CAS</sub>  | $2 \times T_{\mathbb{C}} - 4.0$                        | 21.0         | _    | ns            |
| 138 | Last $\overline{CAS}$ deassertion to $\overline{RAS}$ deassertion <sup>5</sup> • BRW[1:0] = 00  • BRW[1:0] = 01  • BRW[1:0] = 10 | t <sub>CRP</sub>  | $2.25 \times T_{C} - 6.0$<br>$3.75 \times T_{C} - 6.0$ | 22.2<br>40.9 |      | ns<br>ns      |
|     | • BRW[1:0] = 11                                                                                                                  |                   | $4.75 \times T_{C} - 6.0$<br>$6.75 \times T_{C} - 6.0$ | 53.4<br>78.4 | _    | ns            |
| 139 | CAS deassertion pulse width                                                                                                      | t <sub>CP</sub>   | $1.5 \times T_C - 4.0$                                 | 14.8         |      | ns<br>ns      |
| 140 | Column address valid to CAS assertion                                                                                            | t <sub>ASC</sub>  | $T_C - 4.0$                                            | 8.5          | _    | ns            |
| 141 | CAS assertion to column address not valid                                                                                        | t <sub>CAH</sub>  | $2.5 \times T_{\rm C} - 4.0$                           | 27.3         | _    | ns            |
| 142 | Last column address valid to RAS deassertion                                                                                     | t <sub>RAL</sub>  | $4 \times T_{\rm C} - 4.0$                             | 46.0         | _    | ns            |
| 143 | WR deassertion to CAS assertion                                                                                                  | t <sub>RCS</sub>  | $1.25 \times T_C - 3.8$                                | 11.8         |      | ns            |
| 144 | CAS deassertion to WR assertion                                                                                                  | t <sub>RCH</sub>  | $0.75 \times T_{\rm C} - 3.7$                          | 5.7          |      | ns            |
| 145 | CAS assertion to WR deassertion                                                                                                  | t <sub>WCH</sub>  | $2.25 \times T_{\text{C}} - 4.2$                       | 23.9         | _    | ns            |
| 146 | WR assertion pulse width                                                                                                         | $t_{\mathrm{WP}}$ | $3.5 \times T_C - 4.5$                                 | 39.3         | _    | ns            |
| 147 | Last WR assertion to RAS deassertion                                                                                             | t <sub>RWL</sub>  | $3.75 \times T_C - 4.3$                                | 42.6         | _    | ns            |
| 148 | WR assertion to CAS deassertion                                                                                                  | t <sub>CWL</sub>  | $3.25 \times T_C - 4.3$                                | 36.3         | _    | ns            |
| 149 | Data valid to CAS assertion (write)                                                                                              | t <sub>DS</sub>   | $0.5 \times T_C - 4.0$                                 | 2.3          | _    | ns            |
| 150 | $\overline{\text{CAS}}$ assertion to data not valid (write)                                                                      | t <sub>DH</sub>   | $2.5 \times T_{\text{C}} - 4.0$                        | 27.3         | _    | ns            |
| 151 | $\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion                                                            | t <sub>WCS</sub>  | $1.25 \times T_{\text{C}} - 4.3$                       | 11.3         | _    | ns            |
| 152 | Last $\overline{RD}$ assertion to $\overline{RAS}$ deassertion                                                                   | t <sub>ROH</sub>  | $3.5 \times T_C - 4.0$                                 | 39.8         | _    | ns            |
| 153 | RD assertion to data valid                                                                                                       | $t_{GA}$          | $2.5 \times T_{\rm C} - 6.5$                           |              | 24.8 | ns            |
| 154 | $\overline{RD}$ deassertion to data not valid $^6$                                                                               | $t_{GZ}$          |                                                        | 0.0          | _    | ns            |

| <b>Table 2-12</b> DRAM Page Mode Timings, Three Wait States <sup>1, 2, 3</sup> (Continued) |
|--------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|

| No. | Characteristics                       | Cumbal | Evanossion              | 80 N           | ИHz | Unit |
|-----|---------------------------------------|--------|-------------------------|----------------|-----|------|
|     | Characteristics                       | Symbol | Expression              | Expression Min |     |      |
| 155 | WR assertion to data active           |        | $0.75 \times T_C - 0.3$ | 9.1            | _   | ns   |
| 156 | WR deassertion to data high impedance |        | $0.25 \times T_{\rm C}$ | _              | 3.1 | ns   |

- 1. The number of wait states for Page mode access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56305.
- 4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., t<sub>PC</sub> equals 4 × T<sub>C</sub> for read-after-read or write-after-write sequences).
- 5. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of page-access.
- 6. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t<sub>OFF</sub> and not t<sub>CZ</sub>.

**Table 2-13** DRAM Page Mode Timings, Four Wait States 1, 2, 3

| No.  | Characteristics                                           | Symbol            | Eumagian                      | 80 MHz       |      | Unit     |
|------|-----------------------------------------------------------|-------------------|-------------------------------|--------------|------|----------|
| INO. | Characteristics                                           | Symbol            | Expression                    | Min          | Max  |          |
| 131  | Page mode cycle time                                      | t <sub>PC</sub>   | $4.5 \times T_{\rm C}$        | 56.3         | _    | ns       |
| 132  | CAS assertion to data valid (read)                        | t <sub>CAC</sub>  | $2.75 \times T_{\rm C} - 6.5$ | _            | 27.9 | ns       |
| 133  | Column address valid to data valid (read)                 | t <sub>AA</sub>   | $3.75 \times T_{\rm C} - 6.5$ | _            | 40.4 | ns       |
| 134  | CAS deassertion to data not valid (read hold time)        | t <sub>OFF</sub>  |                               | 0.0          | _    | ns       |
| 135  | Last CAS assertion to RAS deassertion                     | t <sub>RSH</sub>  | $3.5 \times T_{\rm C} - 4.0$  | 39.8         | _    | ns       |
| 136  | Previous CAS deassertion to RAS deassertion               | t <sub>RHCP</sub> | $6 \times T_{\rm C} - 4.0$    | 71.0         | _    | ns       |
| 137  | CAS assertion pulse width                                 | $t_{CAS}$         | $2.5 \times T_C - 4.0$        | 27.3         |      | ns       |
| 138  | Last CAS deassertion to RAS deassertion <sup>5</sup>      | $t_{CRP}$         |                               |              |      |          |
|      | • BRW[1:0] = 00                                           |                   | $2.75 \times T_{\rm C} - 6.0$ | 28.4         | _    | ns       |
|      | • BRW[1:0] = 01<br>• BRW[1:0] = 10                        |                   | $4.25 \times T_{\rm C} - 6.0$ | 47.2<br>59.7 | _    | ns       |
|      | • BRW[1:0] = 10<br>• BRW[1:0] = 11                        |                   |                               | 72.2         | _    | ns<br>ns |
| 139  | CAS deassertion pulse width                               | t <sub>CP</sub>   | $2 \times T_{\rm C} - 4.0$    | 21.0         | _    | ns       |
| 140  | Column address valid to $\overline{\text{CAS}}$ assertion | t <sub>ASC</sub>  | T <sub>C</sub> - 4.0          | 8.5          | _    | ns       |
| 141  | CAS assertion to column address not valid                 | t <sub>CAH</sub>  | $3.5 \times T_{C} - 4.0$      | 39.8         | _    | ns       |

**Table 2-13** DRAM Page Mode Timings, Four Wait States<sup>1, 2, 3</sup> (Continued)

| NI- | Characteristics                                                         | C                | E                             | 80 N         | Unit |      |
|-----|-------------------------------------------------------------------------|------------------|-------------------------------|--------------|------|------|
| No. | Characteristics                                                         | Symbol           | Expression                    | Min          | Max  | Oint |
| 142 | Last column address valid to RAS deassertion                            | t <sub>RAL</sub> | $5 \times T_C - 4.0$          | 58.5         | _    | ns   |
| 143 | $\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion | t <sub>RCS</sub> | $1.25 \times T_C - 3.8$       | 11.8         | \ —  | ns   |
| 144 | $\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}$ assertion | t <sub>RCH</sub> | $1.25 \times T_C - 3.7$       | 11.9         | 1    | ns   |
| 145 | $\overline{\text{CAS}}$ assertion to $\overline{\text{WR}}$ deassertion | t <sub>WCH</sub> | $3.25 \times T_{\rm C} - 4.2$ | 36.4         |      | ns   |
| 146 | WR assertion pulse width                                                | $t_{WP}$         | $4.5 \times T_{\rm C} - 4.5$  | <b>5</b> 1.8 | , I  | ns   |
| 147 | Last $\overline{WR}$ assertion to $\overline{RAS}$ deassertion          | $t_{RWL}$        | $4.75 \times T_{C} - 4.3$     | 55.1         |      | ns   |
| 148 | WR assertion to CAS deassertion                                         | t <sub>CWL</sub> | $3.75 \times T_C - 4.3$       | 42.6         | _    | ns   |
| 149 | Data valid to $\overline{\text{CAS}}$ assertion (write)                 | t <sub>DS</sub>  | $0.5 \times T_{\rm C} - 4.0$  | 2.3          | _    | ns   |
| 150 | CAS assertion to data not valid (write)                                 | t <sub>DH</sub>  | $3.5 \times T_{\rm C} - 4.0$  | 39.8         |      | ns   |
| 151 | $\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion   | t <sub>WCS</sub> | $1.25 \times T_C - 4.3$       | 11.3         | _    | ns   |
| 152 | Last $\overline{RD}$ assertion to $\overline{RAS}$ deassertion          | t <sub>ROH</sub> | $4.5 \times T_C - 4.0$        | 52.3         | _    | ns   |
| 153 | RD assertion to data valid                                              | t <sub>GA</sub>  | $3.25 \times T_{\rm C} - 6.5$ | _            | 34.1 | ns   |
| 154 | RD deassertion to data not valid <sup>6</sup>                           | t <sub>GZ</sub>  |                               | 0.0          | _    | ns   |
| 155 | WR assertion to data active                                             |                  | $0.75 \times T_C - 0.3$       | 9.1          |      | ns   |
| 156 | WR deassertion to data high impedance                                   |                  | $0.25 \times T_{\rm C}$       |              | 3.1  | ns   |

- 1. The number of wait states for Page mode access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56305.
- 4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g.,  $t_{PC}$  equals  $3 \times T_{C}$  for read-after-read or write-after-write sequences).
- 5. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.
- 6.  $\overline{RD}$  deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .



Figure 2-17 DRAM Page Mode Write Accesses

## **External Memory Interface (Port A)**



Figure 2-18 DRAM Page Mode Read Accesses



Figure 2-19 DRAM Out-of-Page Wait States Selection Guide

Table 2-14 DRAM Out-of-Page and Refresh Timings, Four Wait States<sup>1, 2</sup>

| No.  | Characteristics <sup>3</sup>                               | Symbol           | Expression                    | 20 N  | 20 MHz <sup>4</sup> | 30 M  | IHz <sup>4</sup> | Unit |
|------|------------------------------------------------------------|------------------|-------------------------------|-------|---------------------|-------|------------------|------|
| 110. | Characteristics                                            | Symbol           | Lapression                    | Min   | Max                 | Min   | Max              |      |
| 157  | Random read or write cycle time                            | t <sub>RC</sub>  | $5 \times T_{\rm C}$          | 250.0 | —                   | 166.7 |                  | ns   |
| 158  | RAS assertion to data valid (read)                         | t <sub>RAC</sub> | $2.75 \times T_{\rm C} - 7.5$ | _     | 130.0               | l     | 84.2             | ns   |
| 159  | CAS assertion to data valid (read)                         | t <sub>CAC</sub> | $1.25 \times T_{\rm C} - 7.5$ | _     | 55.0                |       | 34.2             | ns   |
| 160  | Column address valid to data valid (read)                  | t <sub>AA</sub>  | $1.5 \times T_{\rm C} - 7.5$  | _     | 67.5                | l     | 42.5             | ns   |
| 161  | CAS deassertion to data<br>not valid (read hold<br>time)   | t <sub>OFF</sub> |                               | 0.0   | _                   | 0.0   | _                | ns   |
| 162  | $\overline{RAS}$ deassertion to $\overline{RAS}$ assertion | t <sub>RP</sub>  | $1.75 \times T_{\rm C} - 4.0$ | 83.5  | _                   | 54.3  | _                | ns   |

**Table 2-14** DRAM Out-of-Page and Refresh Timings, Four Wait States<sup>1, 2</sup> (Continued)

| No.  | Gl 3                                                                     | Cymbal           | Evangaion                        | 20 N  | IHz <sup>4</sup> | 30 N  | 1Hz <sup>4</sup> | Unit |
|------|--------------------------------------------------------------------------|------------------|----------------------------------|-------|------------------|-------|------------------|------|
| INO. | Characteristics <sup>3</sup>                                             | Symbol           | Expression                       | Min   | Max              | Min   | Max              | Unit |
| 163  | RAS assertion pulse width                                                | t <sub>RAS</sub> | $3.25 \times T_C - 4.0$          | 158.5 |                  | 104.3 | _                | ns   |
| 164  | CAS assertion to RAS deassertion                                         | t <sub>RSH</sub> | $1.75 \times T_C - 4.0$          | 83.5  | _                | 54.3  | 7                | ns   |
| 165  | RAS assertion to CAS deassertion                                         | t <sub>CSH</sub> | $2.75 \times T_C - 4.0$          | 133.5 |                  | 87.7  | 7                | ns   |
| 166  | CAS assertion pulse width                                                | t <sub>CAS</sub> | $1.25 \times T_{\text{C}} - 4.0$ | 58.5  | _                | 37.7  | _                | ns   |
| 167  | RAS assertion to CAS assertion                                           | $t_{RCD}$        | $1.5 \times T_{\rm C} \pm 2$     | 73.0  | 77.0             | 48.0  | 52.0             | ns   |
| 168  | RAS assertion to column address valid                                    | t <sub>RAD</sub> | $1.25 \times T_{\rm C} \pm 2$    | 60.5  | 64.5             | 39.7  | 43.7             | ns   |
| 169  | $\overline{\text{CAS}}$ deassertion to $\overline{\text{RAS}}$ assertion | t <sub>CRP</sub> | $2.25 \times T_{C} - 4.0$        | 108.5 | _                | 71.0  | _                | ns   |
| 170  | CAS deassertion pulse width                                              | t <sub>CP</sub>  | $1.75 \times T_{\rm C} - 4.0$    | 83.5  | _                | 54.3  | _                | ns   |
| 171  | Row address valid to RAS assertion                                       | t <sub>ASR</sub> | $1.75 \times T_C - 4.0$          | 83.5  | _                | 54.3  | _                | ns   |
| 172  | RAS assertion to row address not valid                                   | t <sub>RAH</sub> | $1.25 \times T_{\rm C} - 4.0$    | 58.5  | _                | 37.7  | _                | ns   |
| 173  | Column address valid to CAS assertion                                    | t <sub>ASC</sub> | $0.25 \times T_{\text{C}} - 4.0$ | 8.5   | _                | 4.3   | _                | ns   |
| 174  | CAS assertion to column address not valid                                | t <sub>CAH</sub> | $1.75 \times T_C - 4.0$          | 83.5  | _                | 54.3  | _                | ns   |
| 175  | RAS assertion to column address not valid                                | $t_{AR}$         | $3.25 \times T_C - 4.0$          | 158.5 | _                | 104.3 | _                | ns   |
| 176  | Column address valid to RAS deassertion                                  | t <sub>RAL</sub> | $2 \times T_{\rm C} - 4.0$       | 96.0  | _                | 62.7  | _                | ns   |
| 177  | WR deassertion to CAS assertion                                          | t <sub>RCS</sub> | $1.5 \times T_{\rm C} - 3.8$     | 71.2  | _                | 46.2  | _                | ns   |
| 178  | $\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}$ assertion  | t <sub>RCH</sub> | $0.75 \times T_{\text{C}} - 3.7$ | 33.8  | _                | 21.3  | _                | ns   |
| 179  | $\overline{RAS}$ deassertion to $\overline{WR}$ assertion                | t <sub>RRH</sub> | $0.25 \times T_C - 3.7$          | 8.8   | _                | 4.6   | _                | ns   |
| 180  | CAS assertion to WR deassertion                                          | t <sub>WCH</sub> | $1.5 \times T_{\rm C} - 4.2$     | 70.8  | —                | 45.8  | _                | ns   |

 Table 2-14
 DRAM Out-of-Page and Refresh Timings, Four Wait States<sup>1, 2</sup> (Continued)

|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charactaristics <sup>3</sup>                                            | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IHz <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IHz <sup>4</sup>                                        | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Characteristics                                                         | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAPICSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\overline{RAS}$ assertion to $\overline{WR}$ deassertion               | t <sub>WCR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3 \times T_{C} - 4.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 145.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WR assertion pulse width                                                | $t_{WP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4.5 \times T_C - 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 145.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\overline{\text{WR}}$ assertion to $\overline{\text{RAS}}$ deassertion | t <sub>RWL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.75 \times T_{\rm C} - 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 233.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>~</b>                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WR assertion to CAS deassertion                                         | $t_{CWL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4.25 \times T_{\rm C} - 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 137.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data valid to <del>CAS</del> assertion (write)                          | t <sub>DS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.25 \times T_C - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CAS assertion to data<br>not valid (write)                              | t <sub>DH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.75 \times T_{\rm C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAS assertion to data not valid (write)                                 | t <sub>DHR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.25 \times T_{\rm C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion   | t <sub>WCS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3 \times T_C - 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CAS assertion to RAS assertion (refresh)                                | t <sub>CSR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.5 \times T_{C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAS deassertion to CAS assertion (refresh)                              | t <sub>RPC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.25 \times T_{\rm C} - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RD assertion to RAS deassertion                                         | t <sub>ROH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.5 \times T_C - 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 221.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 146.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RD assertion to data valid                                              | $t_{GA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4 \times T_{\rm C} - 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.8                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RD deassertion to data not valid <sup>3</sup>                           | t <sub>GZ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WR assertion to data active                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.75 \times T_{C} - 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WR deassertion to data high impedance                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.25 \times T_{\rm C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.3                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                         | deassertion  WR assertion pulse width  WR assertion to RAS deassertion  WR assertion to CAS deassertion  Data valid to CAS assertion (write)  CAS assertion to data not valid (write)  WR assertion to data not valid (write)  WR assertion to TAS assertion to RAS assertion  CAS assertion to RAS assertion (refresh)  RAS deassertion to TAS assertion (refresh)  RD assertion to RAS deassertion to TAS deassertion  RD assertion to TAS deassertion to TAS deassertion  RD assertion to TAS deassertion to TAS deassertion to TAS deassertion  RD assertion to TAS deassertion to data valid  RD deassertion to data valid  WR assertion to data active  WR deassertion to data | RAS       assertion to WR       twcr         deassertion       twp       twp         WR       assertion pulse width       twp         WR       assertion to RAS       trwL         deassertion       to CAS       tcwL         deassertion       to CAS       tcwL         deassertion       to data       tb         deassertion (write)       to data       tb         RAS       assertion to data       tb         deassertion       to CAS       twcs         deassertion       to CAS       tree         assertion (refresh)       tree       tree         RAS       deassertion to RAS       tree         deassertion       tree       tree         RD       assertion to data       tree         valid       tree       tree         RD       deassertion to data       tree         deassertion to data       tree       tree         deassertion to data       tree         deassertion to data       tree       tree         deassertion to data       tree       tree         deassertion to data       tree       tree         deassertion to data       tree <t< td=""><td><math display="block"> \begin{array}{ c c c c c } \hline RAS &amp; assertion to \$\overline{WR}\$ \\ deassertion \\ \hline \hline WR &amp; assertion pulse \\ width \\ \hline \hline WR &amp; assertion to \$\overline{RAS}\$ \\ deassertion \\ \hline \hline WR &amp; assertion to \$\overline{CAS}\$ \\ deassertion \\ \hline \hline WR &amp; assertion to \$\overline{CAS}\$ \\ deassertion \\ \hline \hline Data valid to \$\overline{CAS}\$ \\ assertion (write) \\ \hline \hline \hline CAS &amp; assertion to data \\ not valid (write) \\ \hline \hline RAS &amp; assertion to data \\ not valid (write) \\ \hline \hline WR &amp; assertion to \$\overline{CAS}\$ \\ assertion (refresh) \\ \hline \hline RAS &amp; deassertion to \$\overline{CAS}\$ \\ assertion (refresh) \\ \hline RD &amp; assertion to \$\overline{RAS}\$ \\ deassertion to \$\overline{CAS}\$ \\ assertion to \$\overline{CAS}\$ \\ assertion to \$\overline{CAS}\$ \\ assertion to \$\overline{CAS}\$ \\ assertion (refresh) \\ \hline RD &amp; assertion to \$\overline{CAS}\$ \\ deassertion to \$CAS</math></td><td><math display="block"> \begin{array}{ c c c c c c c c } \hline \textbf{Characteristics}^3 &amp; \textbf{Symbol} &amp; \textbf{Expression} &amp; \textbf{Min} \\ \hline \hline \textbf{RAS} \ assertion \ to \ \overline{WR} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ pulse \ width &amp; t_{WP} &amp; 4.5 \times T_C - 4.5 &amp; 220.5 \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{RAS} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ deassertion \\ \hline \textbf{Data} \ valid \ to \ \overline{CAS} \ assertion \ to \ data \ not \ valid \ (write) \\ \hline \hline \textbf{RAS} \ assertion \ to \ data \ not \ valid \ (write) \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ assertion \ to</math></td><td><math display="block">\begin{array}{ c c c c c c }\hline RAS &amp; assertion to \$\overline{WR}\$ &amp; \$t_{WCR}\$ &amp; \$3\times T_C-4.2\$ &amp; \$145.8\$ &amp; \$-\$\\\hline \hline RAS &amp; assertion pulse &amp; \$t_{WP}\$ &amp; \$4.5\times T_C-4.5\$ &amp; \$220.5\$ &amp; \$-\$\\\hline width &amp; \$\overline{WR}\$ assertion to \$\overline{RAS}\$ &amp; \$t_{RWL}\$ &amp; \$4.75\times T_C-4.3\$ &amp; \$233.2\$ &amp; \$-\$\\\hline deassertion &amp; \$\overline{WR}\$ assertion to \$\overline{CAS}\$ &amp; \$t_{CWL}\$ &amp; \$4.25\times T_C-4.3\$ &amp; \$208.2\$ &amp; \$-\$\\\hline Data valid to \$\overline{CAS}\$ &amp; \$t_{DS}\$ &amp; \$2.25\times T_C-4.0\$ &amp; \$108.5\$ &amp; \$-\$\\\hline assertion (write) &amp; \$\overline{CAS}\$ assertion to data not valid (write) &amp; \$T_{DHR}\$ &amp; \$3.25\times T_C-4.0\$ &amp; \$158.5\$ &amp; \$-\$\\\hline WR assertion to \$\overline{CAS}\$ &amp; \$t_{WCS}\$ &amp; \$3\times T_C-4.3\$ &amp; \$145.7\$ &amp; \$-\$\\\hline WR assertion to \$\overline{CAS}\$ &amp; \$t_{WCS}\$ &amp; \$3\times T_C-4.3\$ &amp; \$145.7\$ &amp; \$-\$\\\hline ASS &amp; deassertion to \$\overline{CAS}\$ &amp; \$t_{CSR}\$ &amp; \$0.5\times T_C-4.0\$ &amp; \$21.0\$ &amp; \$-\$\\\hline RAS &amp; deassertion to \$\overline{CAS}\$ &amp; \$t_{RPC}\$ &amp; \$1.25\times T_C-4.0\$ &amp; \$21.0\$ &amp; \$-\$\\\hline RAS &amp; deassertion to \$\overline{CAS}\$ &amp; \$t_{RPC}\$ &amp; \$1.25\times T_C-4.0\$ &amp; \$21.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{RPC}\$ &amp; \$1.25\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$t_{ROH}\$ &amp; \$4.5\times T_C-4.0\$ &amp; \$221.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline RD &amp; assertion to \$\overline{CAS}\$ &amp; \$0.0\$ &amp; \$-\$\\\hline R</math></td><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td><td><math display="block"> \begin{array}{ c c c c c c c c c } \hline Characteristics^3 &amp; Symbol &amp; Expression &amp; \hline &amp; Min &amp; Max &amp; Min &amp; Max \\ \hline \hline RAS assertion to \$\overline{WR}\$ &amp; \$t_{WCR}\$ &amp; \$3\times T_C-4.2\$ &amp; \$145.8\$ &amp; \$-\$ &amp; 95.8\$ &amp; \$-\$ &amp; </math></td></t<> | $ \begin{array}{ c c c c c } \hline RAS & assertion to $\overline{WR}$ \\ deassertion \\ \hline \hline WR & assertion pulse \\ width \\ \hline \hline WR & assertion to $\overline{RAS}$ \\ deassertion \\ \hline \hline WR & assertion to $\overline{CAS}$ \\ deassertion \\ \hline \hline WR & assertion to $\overline{CAS}$ \\ deassertion \\ \hline \hline Data valid to $\overline{CAS}$ \\ assertion (write) \\ \hline \hline \hline CAS & assertion to data \\ not valid (write) \\ \hline \hline RAS & assertion to data \\ not valid (write) \\ \hline \hline WR & assertion to $\overline{CAS}$ \\ assertion (refresh) \\ \hline \hline RAS & deassertion to $\overline{CAS}$ \\ assertion (refresh) \\ \hline RD & assertion to $\overline{RAS}$ \\ deassertion to $\overline{CAS}$ \\ assertion to $\overline{CAS}$ \\ assertion to $\overline{CAS}$ \\ assertion to $\overline{CAS}$ \\ assertion (refresh) \\ \hline RD & assertion to $\overline{CAS}$ \\ deassertion to $CAS$ | $ \begin{array}{ c c c c c c c c } \hline \textbf{Characteristics}^3 & \textbf{Symbol} & \textbf{Expression} & \textbf{Min} \\ \hline \hline \textbf{RAS} \ assertion \ to \ \overline{WR} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ pulse \ width & t_{WP} & 4.5 \times T_C - 4.5 & 220.5 \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{RAS} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ deassertion \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ deassertion \\ \hline \textbf{Data} \ valid \ to \ \overline{CAS} \ assertion \ to \ data \ not \ valid \ (write) \\ \hline \hline \textbf{RAS} \ assertion \ to \ data \ not \ valid \ (write) \\ \hline \hline \textbf{WR} \ assertion \ to \ \overline{CAS} \ assertion \ to$ | $\begin{array}{ c c c c c c }\hline RAS & assertion to $\overline{WR}$ & $t_{WCR}$ & $3\times T_C-4.2$ & $145.8$ & $-$\\\hline \hline RAS & assertion pulse & $t_{WP}$ & $4.5\times T_C-4.5$ & $220.5$ & $-$\\\hline width & $\overline{WR}$ assertion to $\overline{RAS}$ & $t_{RWL}$ & $4.75\times T_C-4.3$ & $233.2$ & $-$\\\hline deassertion & $\overline{WR}$ assertion to $\overline{CAS}$ & $t_{CWL}$ & $4.25\times T_C-4.3$ & $208.2$ & $-$\\\hline Data valid to $\overline{CAS}$ & $t_{DS}$ & $2.25\times T_C-4.0$ & $108.5$ & $-$\\\hline assertion (write) & $\overline{CAS}$ assertion to data not valid (write) & $T_{DHR}$ & $3.25\times T_C-4.0$ & $158.5$ & $-$\\\hline WR assertion to $\overline{CAS}$ & $t_{WCS}$ & $3\times T_C-4.3$ & $145.7$ & $-$\\\hline WR assertion to $\overline{CAS}$ & $t_{WCS}$ & $3\times T_C-4.3$ & $145.7$ & $-$\\\hline ASS & deassertion to $\overline{CAS}$ & $t_{CSR}$ & $0.5\times T_C-4.0$ & $21.0$ & $-$\\\hline RAS & deassertion to $\overline{CAS}$ & $t_{RPC}$ & $1.25\times T_C-4.0$ & $21.0$ & $-$\\\hline RAS & deassertion to $\overline{CAS}$ & $t_{RPC}$ & $1.25\times T_C-4.0$ & $21.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{RPC}$ & $1.25\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $t_{ROH}$ & $4.5\times T_C-4.0$ & $221.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline RD & assertion to $\overline{CAS}$ & $0.0$ & $-$\\\hline R$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c } \hline Characteristics^3 & Symbol & Expression & \hline & Min & Max & Min & Max \\ \hline \hline RAS assertion to $\overline{WR}$ & $t_{WCR}$ & $3\times T_C-4.2$ & $145.8$ & $-$ & 95.8$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $ |

- 1. The number of wait states for out of page access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3.  $\overline{RD}$  deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .
- t<sub>GZ</sub>.
   Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states (See Figure 2-19.).

 $\textbf{Table 2-15} \quad \text{DRAM Out-of-Page and Refresh Timings, Eight Wait States}^{1,\;2}$ 

|     |                                                                          |                  |                                  | 80 N  |      |      |
|-----|--------------------------------------------------------------------------|------------------|----------------------------------|-------|------|------|
| No. | Characteristics <sup>4</sup>                                             | Symbol           | Expression <sup>3</sup>          | Min   | Max  | Unit |
| 157 | Random read or write cycle time                                          | t <sub>RC</sub>  | $9 \times T_{C}$                 | 112.5 | _    | ns   |
| 158 | RAS assertion to data valid (read)                                       | t <sub>RAC</sub> | $4.75 \times T_{\rm C} - 6.5$    | _     | 52.9 | ns   |
| 159 | CAS assertion to data valid (read)                                       | $t_{CAC}$        | $2.25 \times T_C - 6.5$          | 7     | 21.6 | ns   |
| 160 | Column address valid to data valid (read)                                | t <sub>AA</sub>  | $3 \times T_C - 6.5$             |       | 31.0 | ns   |
| 161 | $\overline{\text{CAS}}$ deassertion to data not valid (read hold time)   | t <sub>OFF</sub> |                                  | 0.0   | 7    | ns   |
| 162 | $\overline{RAS}$ deassertion to $\overline{RAS}$ assertion               | t <sub>RP</sub>  | $3.25 \times T_C - 4.0$          | 36.6  | _    | ns   |
| 163 | RAS assertion pulse width                                                | t <sub>RAS</sub> | $5.75 \times \frac{T_C - 4.0}{}$ | 67.9  | _    | ns   |
| 164 | $\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ deassertion | t <sub>RSH</sub> | $3.25 \times T_{\rm C} - 4.0$    | 36.6  | _    | ns   |
| 165 | $\overline{RAS}$ assertion to $\overline{CAS}$ deassertion               | t <sub>CSH</sub> | $4.75 \times T_{\rm C} - 4.0$    | 55.4  | _    | ns   |
| 166 | CAS assertion pulse width                                                | t <sub>CAS</sub> | $2.25 \times T_{\rm C} - 4.0$    | 24.1  | _    | ns   |
| 167 | RAS assertion to CAS assertion                                           | t <sub>RCD</sub> | $2.5 \times T_C \pm 2$           | 29.3  | 33.3 | ns   |
| 168 | RAS assertion to column address valid                                    | t <sub>RAD</sub> | $1.75 \times T_{\rm C} \pm 2$    | 19.9  | 23.9 | ns   |
| 169 | CAS deassertion to RAS assertion                                         | t <sub>CRP</sub> | $4.25 \times T_{\rm C} - 4.0$    | 49.1  | _    | ns   |
| 170 | CAS deassertion pulse width                                              | $t_{CP}$         | $2.75 \times T_C - 4.0$          | 30.4  | _    | ns   |
| 171 | Row address valid to RAS assertion                                       | t <sub>ASR</sub> | $3.25 \times T_C - 4.0$          | 36.6  | _    | ns   |
| 172 | RAS assertion to row address not valid                                   | t <sub>RAH</sub> | $1.75 \times T_{C} - 4.0$        | 17.9  | _    | ns   |
| 173 | Column address valid to CAS assertion                                    | t <sub>ASC</sub> | $0.75 \times T_{C} - 4.0$        | 5.4   | _    | ns   |
| 174 | CAS assertion to column address not valid                                | t <sub>CAH</sub> | $3.25 \times T_C - 4.0$          | 36.6  | _    | ns   |
| 175 | RAS assertion to column address not valid                                | t <sub>AR</sub>  | $5.75 \times T_{C} - 4.0$        | 67.9  | _    | ns   |
| 176 | Column address valid to RAS deassertion                                  | t <sub>RAL</sub> | $4 \times T_{\rm C} - 4.0$       | 46.0  | _    | ns   |
| 177 | WR deassertion to CAS assertion                                          | t <sub>RCS</sub> | $2 \times T_{\rm C} - 3.8$       | 21.2  | _    | ns   |
| 178 | CAS deassertion to WR assertion                                          | t <sub>RCH</sub> | $1.25 \times T_C - 3.7$          | 11.9  | _    | ns   |
| 179 | RAS deassertion to WR assertion                                          | t <sub>RRH</sub> | $0.25 \times T_C - 3.0$          | 0.1   | _    | ns   |
| 180 | CAS assertion to WR deassertion                                          | t <sub>WCH</sub> | $3 \times T_C - 4.2$             | 33.3  | _    | ns   |
| 181 | RAS assertion to WR deassertion                                          | t <sub>WCR</sub> | $5.5 \times T_C - 4.2$           | 64.6  | _    | ns   |
| 182 | WR assertion pulse width                                                 | t <sub>WP</sub>  | $8.5 \times T_C - 4.5$           | 101.8 | _    | ns   |
| 183 | WR assertion to RAS deassertion                                          | t <sub>RWL</sub> | $8.75 \times T_C - 4.3$          | 105.1 | _    | ns   |
| 184 | WR assertion to CAS deassertion                                          | t <sub>CWL</sub> | $7.75 \times T_C - 4.3$          | 92.6  | _    | ns   |
| 185 | Data valid to CAS assertion (write)                                      | t <sub>DS</sub>  | $4.75 \times T_{\text{C}} - 4.0$ | 55.4  | _    | ns   |

| <b>Table 2-15</b> | DRAM Out-of-Page and Refresh Timings, Eight Wait States <sup>1, 2</sup> | (Continued) |
|-------------------|-------------------------------------------------------------------------|-------------|
|                   | 210 101 0 40 01 1 400 4114 1011 0011 111111100, 210110 114110 0         | (           |

| NI- | Characteristics <sup>4</sup>                                                     | C 1.1            | _ 2                           | 80 MHz       |              | T 1  |
|-----|----------------------------------------------------------------------------------|------------------|-------------------------------|--------------|--------------|------|
| No. |                                                                                  | Symbol           | Expression <sup>3</sup>       | Min          | Max          | Unit |
| 186 | CAS assertion to data not valid (write)                                          | t <sub>DH</sub>  | $3.25\times T_C-4.0$          | 36.6         | _            | ns   |
| 187 | RAS assertion to data not valid (write)                                          | t <sub>DHR</sub> | $5.75 \times T_{C} - 4.0$     | 67.9         |              | ns   |
| 188 | $\overline{\text{WR}}$ assertion to $\overline{\text{CAS}}$ assertion            | t <sub>WCS</sub> | $5.5 \times T_C - 4.3$        | 64.5         | _            | ns   |
| 189 | $\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ assertion (refresh) | t <sub>CSR</sub> | $1.5 \times T_{\rm C} - 4.0$  | 14.8         | J            | ns   |
| 190 | $\overline{RAS}$ deassertion to $\overline{CAS}$ assertion (refresh)             | t <sub>RPC</sub> | $1.75 \times T_{\rm C} - 4.0$ | <b>1</b> 7.9 | <del> </del> | ns   |
| 191 | $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion          | t <sub>ROH</sub> | $8.5 \times T_{\rm C} - 4.0$  | 102.3        | _            | ns   |
| 192 | RD assertion to data valid                                                       | $t_{GA}$         | $7.5 \times T_C - 6.5$        |              | 87.3         | ns   |
| 193 | $\overline{ m RD}$ deassertion to data not valid $^4$                            | $t_{GZ}$         | 0.0                           | 0.0          | _            | ns   |
| 194 | WR assertion to data active                                                      |                  | $0.75 \times T_C - 0.3$       | 9.1          | _            | ns   |
| 195 | WR deassertion to data high impedance                                            |                  | $0.25 \times T_{\rm C}$       | _            | 3.1          | ns   |

Note: 1. The number of wait states for out-of-page access is specified in the DCR.

- 2. The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56305.
- 4.  $\overline{\text{RD}}$  deassertion will always occur after  $\overline{\text{CAS}}$  deassertion; therefore, the restricted timing is  $t_{\text{OFF}}$  and not  $t_{\text{GZ}}$ .

**Table 2-16** DRAM Out-of-Page and Refresh Timings, Eleven Wait States<sup>1, 2</sup>

| NI. |                                                                          | 6 1 1            |                                  | 80 MHz |      | T1 .4 |
|-----|--------------------------------------------------------------------------|------------------|----------------------------------|--------|------|-------|
| No. | Characteristics <sup>4</sup>                                             | Symbol           | Expression <sup>3</sup>          | Min    | Max  | Unit  |
| 157 | Random read or write cycle time                                          | t <sub>RC</sub>  | $12 \times T_{\rm C}$            | 150.0  | _    | ns    |
| 158 | RAS assertion to data valid (read)                                       | t <sub>RAC</sub> | $6.25 \times T_{\rm C} - 6.5$    | _      | 71.6 | ns    |
| 159 | CAS assertion to data valid (read)                                       | t <sub>CAC</sub> | $3.75 \times T_{\rm C} - 6.5$    | _      | 40.4 | ns    |
| 160 | Colu <mark>mn address va</mark> lid to data valid (read)                 | t <sub>AA</sub>  | $4.5 \times T_{\rm C} - 6.5$     | _      | 49.8 | ns    |
| 161 | CAS deassertion to data not valid (read hold time)                       | t <sub>OFF</sub> |                                  | 0.0    | _    | ns    |
| 162 | RAS deassertion to RAS assertion                                         | t <sub>RP</sub>  | $4.25 \times T_{\text{C}} - 4.0$ | 49.1   |      | ns    |
| 163 | RAS assertion pulse width                                                | t <sub>RAS</sub> | $7.75 \times T_{\text{C}} - 4.0$ | 92.9   |      | ns    |
| 164 | $\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ deassertion | t <sub>RSH</sub> | $5.25 \times T_{C} - 4.0$        | 61.6   | _    | ns    |
| 165 | $\overline{RAS}$ assertion to $\overline{CAS}$ deassertion               | t <sub>CSH</sub> | $6.25 \times T_{\text{C}} - 4.0$ | 74.1   | _    | ns    |
| 166 | CAS assertion pulse width                                                | t <sub>CAS</sub> | $3.75 \times T_{\text{C}} - 4.0$ | 42.9   | _    | ns    |
| 167 | $\overline{RAS}$ assertion to $\overline{CAS}$ assertion                 | t <sub>RCD</sub> | $2.5 \times T_C \pm 2$           | 29.3   | 33.3 | ns    |
| 168 | RAS assertion to column address valid                                    | t <sub>RAD</sub> | $1.75 \times T_{\text{C}} \pm 2$ | 19.9   | 23.9 | ns    |
| 169 | CAS deassertion to RAS assertion                                         | t <sub>CRP</sub> | $5.75 \times T_C - 4.0$          | 67.9   | _    | ns    |

 $\textbf{Table 2-16} \quad \text{DRAM Out-of-Page and Refresh Timings, Eleven Wait States}^{1,\;2} \; (\text{Continued})$ 

|     |                                                                         |                                |                                   | 80 N  | <b>T</b> 7 •. |      |
|-----|-------------------------------------------------------------------------|--------------------------------|-----------------------------------|-------|---------------|------|
| No. | Characteristics <sup>4</sup>                                            | Symbol Expression <sup>3</sup> |                                   | Min   | Max           | Unit |
| 170 | CAS deassertion pulse width                                             | t <sub>CP</sub>                | $4.25 \times T_C - 4.0$           | 49.1  | _             | ns   |
| 171 | Row address valid to RAS assertion                                      | t <sub>ASR</sub>               | $4.25 \times T_C - 4.0$           | 49.1  | <u>~</u> —    | ns   |
| 172 | RAS assertion to row address not valid                                  | t <sub>RAH</sub>               | $1.75 \times T_C - 4.0$           | 17.9  | \ <u> </u>    | ns   |
| 173 | Column address valid to <del>CAS</del> assertion                        | t <sub>ASC</sub>               | $0.75 \times T_C - 4.0$           | 5.4   |               | ns   |
| 174 | CAS assertion to column address not valid                               | t <sub>CAH</sub>               | $5.25 \times T_C - 4.0$           | 61.6  | 7             | ns   |
| 175 | RAS assertion to column address not valid                               | $t_{AR}$                       | $7.75 \times T_{\rm C} - 4.0$     | 92.9  | _             | ns   |
| 176 | Column address valid to $\overline{RAS}$ deassertion                    | $t_{RAL}$                      | $6 \times T_C - 4.0$              | 71.0  | _             | ns   |
| 177 | $\overline{\text{WR}}$ deassertion to $\overline{\text{CAS}}$ assertion | $t_{RCS}$                      | $3.0 \times T_{\rm C} - 3.8$      | 33.7  | _             | ns   |
| 178 | CAS deassertion to WR assertion                                         | t <sub>RCH</sub>               | $1.75 \times T_{\rm C} - 3.7$     | 18.2  | _             | ns   |
| 179 | $\overline{RAS}$ deassertion to $\overline{WR}$ assertion               | t <sub>RRH</sub>               | $0.25 \times T_{\rm C} - 3.0$     | 0.1   | _             | ns   |
| 180 | CAS assertion to WR deassertion                                         | t <sub>WCH</sub>               | $5 \times T_{\rm C} - 4.2$        | 58.3  | _             | ns   |
| 181 | RAS assertion to WR deassertion                                         | t <sub>WCR</sub>               | $7.5 \times T_{\rm C} - 4.2$      | 89.6  | _             | ns   |
| 182 | WR assertion pulse width                                                | t <sub>WP</sub>                | $11.5 \times T_{C} - 4.5$         | 139.3 | _             | ns   |
| 183 | WR assertion to RAS deassertion                                         | t <sub>RWL</sub>               | $11.75 \times T_{\text{C}} - 4.3$ | 142.7 | _             | ns   |
| 184 | WR assertion to CAS deassertion                                         | t <sub>CWL</sub>               | $10.25 \times T_C - 4.3$          | 130.1 | _             | ns   |
| 185 | Data valid to CAS assertion (write)                                     | $t_{DS}$                       | $5.75 \times T_{C} - 4.0$         | 67.9  | _             | ns   |
| 186 | CAS assertion to data not valid (write)                                 | $t_{DH}$                       | $5.25 \times T_C - 4.0$           | 61.6  | _             | ns   |
| 187 | RAS assertion to data not valid (write)                                 | $t_{\mathrm{DHR}}$             | $7.75 \times T_{C} - 4.0$         | 92.9  | _             | ns   |
| 188 | WR asse <mark>rtion to CAS asse</mark> rtion                            | t <sub>WCS</sub>               | $6.5 \times T_C - 4.3$            | 77.0  | _             | ns   |
| 189 | CAS assertion to RAS assertion (refresh)                                | $t_{CSR}$                      | $1.5 \times T_{\rm C} - 4.0$      | 14.8  | _             | ns   |
| 190 | RAS deassertion to CAS assertion (refresh)                              | $t_{RPC}$                      | $2.75 \times T_{\rm C} - 4.0$     | 30.4  | _             | ns   |
| 191 | RD assertion to RAS deassertion                                         | $t_{ROH}$                      | $11.5 \times T_{\rm C} - 4.0$     | 139.8 | _             | ns   |
| 192 | RD assertion to data valid                                              | $t_{GA}$                       | $10 \times T_C - 6.5$             | _     | 118.5         | ns   |
| 193 | RD deassertion to data not valid <sup>4</sup>                           | $t_{GZ}$                       |                                   | 0.0   | _             | ns   |
| 194 | WR assertion to data active                                             |                                | $0.75 \times T_C - 0.3$           | 9.1   |               | ns   |
| 195 | WR deassertion to data high impedance                                   |                                | $0.25 \times T_{C}$               | _     | 3.1           | ns   |

- 1. The number of wait states for out-of-page access is specified in the DCR.
- 2. The refresh period is specified in the DCR.
- 3. The asynchronous delays specified in the expressions are valid for DSP56305.
- 4.  $\overline{RD}$  deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .

 $\textbf{Table 2-17} \quad \text{DRAM Out-of-Page and Refresh Timings, Fifteen Wait States}^{1,\;2}$ 

| No.   Characteristics   Symbol   Expression   Min   Max     157   Random read or write cycle time   t <sub>RC</sub>   16 × T <sub>C</sub>   200.0   − 158   RAS assertion to data valid (read)   t <sub>RAC</sub>   8.25 × T <sub>C</sub> − 6.5   − 96.6     159   CAS assertion to data valid (read)   t <sub>CAC</sub>   4.75 × T <sub>C</sub> − 6.5   − 62.3     160   Column address valid to data valid (read)   t <sub>CAC</sub>   4.75 × T <sub>C</sub> − 6.5   − 62.3     161   CAS deassertion to data not valid (read)   t <sub>CAS</sub>   0.0   − 0.0   − 0.0     162   RAS deassertion to RAS assertion   t <sub>RP</sub>   6.25 × T <sub>C</sub> − 4.0   74.1   − 0.0     163   RAS assertion to RAS deassertion   t <sub>RSH</sub>   9.75 × T <sub>C</sub> − 4.0   117.9   − 0.0     164   CAS assertion to RAS deassertion   t <sub>RSH</sub>   8.25 × T <sub>C</sub> − 4.0   74.1   − 0.0     165   RAS assertion to CAS deassertion   t <sub>CSH</sub>   8.25 × T <sub>C</sub> − 4.0   74.1   − 0.0     166   CAS assertion to CAS assertion   t <sub>RCSH</sub>   8.25 × T <sub>C</sub> − 4.0   55.4   − 0.0     167   RAS assertion to CAS assertion   t <sub>RCSH</sub>   8.25 × T <sub>C</sub> − 4.0   55.4   − 0.0     168   RAS assertion to CAS assertion   t <sub>RCSH</sub>   8.75 × T <sub>C</sub> ± 2   32.4   36.4     169   CAS deassertion to RAS assertion   t <sub>RCH</sub>   7.75 × T <sub>C</sub> ± 2   32.4   36.4     169   CAS deassertion pulse width   t <sub>CAS</sub>   7.75 × T <sub>C</sub> ± 4.0   74.1   − 0.0     170   CAS deassertion pulse width   t <sub>CAS</sub>   6.25 × T <sub>C</sub> − 4.0   74.1   − 0.0     171   Row address valid to RAS assertion   t <sub>ASR</sub>   6.25 × T <sub>C</sub> − 4.0   74.1   − 0.0     172   RAS assertion to column address not valid   t <sub>RAH</sub>   2.75 × T <sub>C</sub> − 4.0   30.4   − 0.0     174   CAS assertion to Column address not valid   t <sub>RAH</sub>   7.75 × T <sub>C</sub> − 4.0   83.5   − 0.0     176   Column address valid to RAS deassertion   t <sub>RCH</sub>   7.75 × T <sub>C</sub> − 3.7   18.2   − 0.0     178   CAS deassertion to CAS assertion   t <sub>RCH</sub>   7.75 × T <sub>C</sub> − 3.0   0.1   − 0.0     176   Column address valid to RAS deassertion   t <sub>RCH</sub>   7.75 × T <sub>C</sub> − 3.0   0.1   − 0.0     177   WR deassertion to WR assertion   t <sub>RCH</sub>   1.75 × T <sub>C</sub> − 3.0   0.1   − 0.0     180   CAS assertion to WR deassertion   t <sub>RCH</sub>   1.75 × T <sub>C</sub> − 4.2   114.6   − 0.0 | 1124 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 158   RAS   assertion to data valid (read)   transport   transpo                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| 161   CAS deassertion to data not valid (read hold time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ns   |
| hold time     162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ns   |
| 163         RAS         assertion pulse width         t <sub>RAS</sub> 9.75 × T <sub>C</sub> − 4.0         117.9         —           164         CAS         assertion to RAS         deassertion         t <sub>RSH</sub> 6.25 × T <sub>C</sub> − 4.0         74.1         —           165         RAS         assertion to CAS         deassertion         t <sub>CSH</sub> 8.25 × T <sub>C</sub> − 4.0         99.1         —           166         CAS         assertion pulse width         t <sub>CSS</sub> 4.75 × T <sub>C</sub> − 4.0         55.4         —           167         RAS         assertion to CAS         assertion         t <sub>RCD</sub> 3.5 × T <sub>C</sub> ± 2         41.8         45.8           168         RAS         assertion to column address valid         t <sub>RAD</sub> 2.75 × T <sub>C</sub> ± 2         32.4         36.4           169         CAS         deassertion to RAS         assertion         t <sub>CRP</sub> 7.75 × T <sub>C</sub> ± 2         32.4         36.4           169         CAS         deassertion to RAS         assertion         t <sub>CRP</sub> 7.75 × T <sub>C</sub> ± 4.0         92.9         —           170         CAS         deassertion to RAS         assertion         t <sub>CAS</sub> 6.25 × T <sub>C</sub> − 4.0         74.1         —           172         RAS         assertion to column add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| 182 $\overline{\text{WR}}$ assertion pulse width $t_{\text{WP}}$ 15.5 × $T_{\text{C}}$ - 4.5 189.3 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns   |
| 100 WD DAG 1 1 17 77 1 100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns   |
| 183 $\overline{\text{WR}}$ assertion to $\overline{\text{RAS}}$ deassertion $t_{\text{RWL}}$ $15.75 \times T_{\text{C}} - 4.3$ $192.6$ $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   |

 Table 2-17
 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States<sup>1, 2</sup> (Continued)

| No. | Characteristics <sup>3</sup>                                                     | 6 1 1            |                               | 80 N               | T 1 *4       |      |
|-----|----------------------------------------------------------------------------------|------------------|-------------------------------|--------------------|--------------|------|
|     |                                                                                  | Symbol           | Expression                    | Min                | Max          | Unit |
| 186 | CAS assertion to data not valid (write)                                          | t <sub>DH</sub>  | $6.25 \times T_C - 4.0$       | 74.1               | _            | ns   |
| 187 | RAS assertion to data not valid (write)                                          | t <sub>DHR</sub> | $9.75 \times T_{C} - 4.0$     | 117.9              |              | ns   |
| 188 | $\overline{\mathrm{WR}}$ assertion to $\overline{\mathrm{CAS}}$ assertion        | t <sub>WCS</sub> | $9.5 \times T_C - 4.3$        | 114.5              | <del>-</del> | ns   |
| 189 | $\overline{\text{CAS}}$ assertion to $\overline{\text{RAS}}$ assertion (refresh) | t <sub>CSR</sub> | $1.5 \times T_C - 4.0$        | 14.8               |              | ns   |
| 190 | $\overline{RAS}$ deassertion to $\overline{CAS}$ assertion (refresh)             | t <sub>RPC</sub> | $4.75 \times T_{\rm C} - 4.0$ | <mark>55.</mark> 4 | -            | ns   |
| 191 | RD assertion to RAS deassertion                                                  | t <sub>ROH</sub> | $15.5 \times T_{\rm C} - 4.0$ | 189.8              | <u> </u>     | ns   |
| 192 | RD assertion to data valid                                                       | t <sub>GA</sub>  | $14 \times T_C = 6.5$         |                    | 168.5        | ns   |
| 193 | RD deassertion to data not valid <sup>3</sup>                                    | t <sub>GZ</sub>  |                               | 0.0                | _            | ns   |
| 194 | WR assertion to data active                                                      |                  | $0.75 \times T_C - 0.3$       | 9.1                | _            | ns   |
| 195 | WR deassertion to data high impedance                                            |                  | $0.25 \times T_{\rm C}$       |                    | 3.1          | ns   |

Note: 1. The number of wait states for out-of-page access is specified in the DCR.

2. The refresh period is specified in the DCR.

3.  $\overline{RD}$  deassertion will always occur after  $\overline{CAS}$  deassertion; therefore, the restricted timing is  $t_{OFF}$  and not  $t_{GZ}$ .





Figure 2-20 DRAM Out-of-Page Read Access



Figure 2-21 DRAM Out-of-Page Write Access



Figure 2-22 DRAM Refresh Access

**Table 2-18** External Bus Synchronous Timings (SRAM Access)<sup>4</sup>

| NI- | Characteristics                                                                  | - 12                             | 80 MHz     |            | T I 24   |
|-----|----------------------------------------------------------------------------------|----------------------------------|------------|------------|----------|
| No. |                                                                                  | Expression <sup>1, 2</sup>       | Min        | Max        | Unit     |
| 196 | CLKOUT high to BS assertion                                                      | $0.25 \times T_{\text{C}} + 4.5$ | 4.1        | 7.6        | ns       |
| 197 | CLKOUT high to BS deassertion                                                    | $0.75 \times T_{\text{C}} + 4.5$ | 10.4       | 13.9       | ns       |
| 198 | CLKOUT high to <u>address</u> and AA valid<br>CLKOUT high to BL valid            | $0.25 \times T_{\rm C} + 4.5$    | _<br>_     | 7.6<br>5.0 | ns<br>ns |
| 199 | CLKOUT high to address and AA invalid<br>CLKOU <mark>T high</mark> to BL invalid | $0.25 \times T_{\rm C}$          | 3.1<br>0.0 |            | ns<br>ns |
| 200 | TA valid to CLKOUT high (setup time)                                             |                                  | 5.0        |            | ns       |
| 201 | CLKOUT high to $\overline{\text{TA}}$ invalid (hold time)                        |                                  | 0.0        |            | ns       |
| 202 | CLKOUT high to data out active                                                   | $0.25 \times T_{\rm C}$          | 3.1        | _          | ns       |
| 203 | CLKOUT high to data out valid                                                    | $0.25 \times T_{\text{C}} + 4.5$ | 4.1        | 7.6        | ns       |
| 204 | CLKOUT high to data out invalid                                                  | $0.25 \times T_{\rm C}$          | 3.1        |            | ns       |
| 205 | CLKOUT high to data out high impedance                                           | $0.25 \times T_{\text{C}} + 0.5$ | _          | 3.6        | ns       |
| 206 | Data in valid to CLKOUT high (setup)                                             |                                  | 5.0        |            | ns       |
| 207 | CLKOUT high to data in invalid (hold)                                            |                                  | 0.0        | _          | ns       |
| 208 | CLKOUT high to $\overline{ m RD}$ assertion                                      | $0.75 \times T_{\text{C}} + 4.5$ | 10.4       | 13.9       | ns       |
| 209 | CLKOUT high to $\overline{\mathrm{RD}}$ deassertion                              |                                  | 0.0        | 4.5        | ns       |

 Table 2-18
 External Bus Synchronous Timings (SRAM Access)<sup>4</sup> (Continued)

| No. | Characteristics                                                                                       | F . 12                     | 80 N       | I Inaid |          |
|-----|-------------------------------------------------------------------------------------------------------|----------------------------|------------|---------|----------|
|     |                                                                                                       | Expression <sup>1, 2</sup> | Min        | Max     | Unit     |
| 210 | CLKOUT high to $\overline{WR}$ assertion <sup>3</sup> • WS = 1 or WS $\geq$ 4  • $2 \leq$ WS $\leq$ 3 | $0.5 \times T_C + 4.8$     | 7.6<br>1.3 | 11.1    | ns<br>ns |
| 211 | CLKOUT high to WR deassertion                                                                         |                            | 0.0        | 4.3     | ns       |

- 1. WS is the number of wait states specified in the BCR.
- 2. The asynchronous delays specified in the expressions are valid for DSP56305.
- 3. If WS > 1,  $\overline{\text{WR}}$  assertion refers to the next rising edge of CLKOUT.
- 4. External bus synchronous timings should be used only for reference to the clock and not for relative timings.





Figure 2-23 Synchronous Bus Timings SRAM 1 WS (BCR Controlled)



Figure 2-24 Synchronous Bus Timings SRAM 2 WS (TA Controlled)

 Table 2-19
 Arbitration Bus Timings

|       |                                                                                            |                               | 80 MHz |            | <b>T</b> T •. |  |  |
|-------|--------------------------------------------------------------------------------------------|-------------------------------|--------|------------|---------------|--|--|
| No.   | Characteristics                                                                            | Expression                    | Min    | Max        | Unit          |  |  |
| 212   | CLKOUT high to BR assertion/deassertion                                                    |                               | 1.0    | 4.5        | ns            |  |  |
| 213   | BG valid to CLKOUT high (setup)                                                            |                               | 5.0    | <u>^</u> — | ns            |  |  |
| 214   | BG invalid to CLKOUT high (hold)                                                           |                               | 0.0    | \_         | ns            |  |  |
| 215   | BB Valid to CLKOUT high (input setup)                                                      |                               | 5.0    |            | ns            |  |  |
| 216   | BB invalid to CLKOUT high (input hold)                                                     |                               | 0.0    | 7          | ns            |  |  |
| 217   | CLKOUT high to $\overline{BB}$ assertion (output)                                          |                               | 1.0    | 4.5        | ns            |  |  |
| 218   | CLKOUT high to BB deassertion (output)                                                     |                               | 1.0    | 4.5        | ns            |  |  |
| 219   | BB high to BB high impedance (output)                                                      |                               | _      | 5.6        | ns            |  |  |
| 220   | CLKOUT high to address and controls active                                                 | $0.25 \times T_{\mathbb{C}}$  | 3.1    | _          | ns            |  |  |
| 221   | CLKOUT high to address and controls high impedance                                         | $0.25 \times T_{\rm C} + 0.5$ | _      | 3.6        | ns            |  |  |
| 222   | CLKOUT high to AA active                                                                   | $0.25 \times T_C$             | 3.1    | _          | ns            |  |  |
| 223   | CLKOUT high to AA deassertion                                                              | $0.25 \times T_{\rm C} + 4.5$ | 4.1    | 7.6        | ns            |  |  |
| 224   | CLKOUT high to AA high impedance                                                           | $0.75 \times T_{\rm C} + 0.5$ | _      | 9.9        | ns            |  |  |
| Note: | The asynchronous delays spec <mark>ified</mark> in the expressions are valid for DSP56305. |                               |        |            |               |  |  |





Figure 2-25 Bus Acquisition Timings



Figure 2-26 Bus Release Timings Case 1 (BRT Bit in OMR Cleared)



Figure 2-27 Bus Release Timings Case 2 (BRT Bit in OMR Set)



# **HOST INTERFACE TIMING**

 $\textbf{Table 2-20} \quad \textbf{Universal Bus Mode Timing Parameters}$ 

|     |                                                                                                          |                               | 80 MHz |      | <b>T</b> T |
|-----|----------------------------------------------------------------------------------------------------------|-------------------------------|--------|------|------------|
| No. | Characteristic                                                                                           | Expression                    | Min    | Max  | Unit       |
| 300 | Access Cycle Time                                                                                        | $3 \times T_{C}$              | 37.5   | \    |            |
| 301 | HA[10:0], HAEN Setup to Data Strobe Assertion <sup>1</sup>                                               |                               | 7.0    | -    | ns         |
| 302 | HA[10:0], HAEN Valid Hold from Data Strobe<br>Deassertion <sup>1</sup>                                   |                               | 0.0    | 7    | ns         |
| 303 | HRW Setup to HDS Assertion <sup>2</sup>                                                                  |                               | 7.0    | _    | ns         |
| 304 | HRW Valid Hold from HDS Deassertion <sup>2</sup>                                                         |                               | 0.0    | _    | ns         |
| 305 | Data Strobe Deasserted Width <sup>1</sup>                                                                |                               | 5.0    | _    | ns         |
| 306 | Data Strobe Asserted Pulse Width <sup>1</sup>                                                            | $2.5 \times T_{\rm C} + 2.0$  | 33.3   | _    | ns         |
| 307 | HBS Asserted Pulse Width                                                                                 |                               | 3.0    | _    |            |
| 308 | HBS Assertion to Data Strobe Assertion <sup>1</sup>                                                      | $T_{\rm C} - 6.0$             | _      | 6.5  | ns         |
| 309 | HBS Assertion to Data Strobe Deassertion <sup>1</sup>                                                    | $2.5 \times T_{\rm C} + 3.5$  | 34.8   | _    |            |
| 310 | HBS Deassertion to Data Strobe Deassertion <sup>1</sup>                                                  | $1.5 \times T_{\rm C} + 4.0$  | 22.8   | _    |            |
| 311 | Data Out Valid to TA Assertion (HBS Not Used—Tied to V <sub>CC</sub> ) <sup>2</sup>                      | $2 \times T_{\rm C} - 14.0$   | 11.0   | _    | ns         |
| 312 | Data Out Active from Read Data Strobe Assertion <sup>3</sup>                                             |                               | 2.0    | _    | ns         |
| 313 | Data Out Valid from Read Data Strobe Assertion (No Wait States Inserted—HTA Asserted) <sup>3</sup>       |                               | _      | 18.9 | ns         |
| 314 | Data Out Valid Hold from Read Data Strobe<br>Deassertion <sub>3</sub>                                    |                               | 2.0    | _    | ns         |
| 315 | Data Out High Impedance from Read Data Strobe<br>Deassertion <sup>3</sup>                                |                               | _      | 14.5 | ns         |
| 316 | Data In Valid Setup to Write Data Strobe Deassertion <sup>4</sup>                                        |                               | 10.0   | _    | ns         |
| 317 | Data In Valid Hold from Write Data Strobe<br>Deassertion <sup>4</sup>                                    |                               | 0.0    | _    | ns         |
| 318 | HSAK Assertion from Data Strobe Assertion <sup>1</sup>                                                   |                               | _      | 22.2 | ns         |
| 319 | HSAK Asserted Hold from Data Strobe Deassertion <sup>1</sup>                                             |                               | 2.0    | _    | ns         |
| 320 | HTA Active from Data Strobe Assertion <sup>1,2,5</sup>                                                   |                               | 3.8    | _    | ns         |
| 321 | HTA Assertion from Data Strobe Assertion ( $\overline{HBS}$ Not Used—Tied to $V_{CC}$ ) <sup>1,2,5</sup> | $2.0 \times T_{\rm C} + 13.8$ | 38.0   | _    |            |
| 322 | HTA Assertion from HBS Assertion <sup>2,5</sup>                                                          | $2.0 \times T_{\rm C} + 13.8$ | 38.0   | _    | ns         |

 Table 2-20
 Universal Bus Mode Timing Parameters (Continued)

| No. | Characteristic                                                                                         | F                                | 80 MHz |          | Unit |
|-----|--------------------------------------------------------------------------------------------------------|----------------------------------|--------|----------|------|
| NO. | Characteristic                                                                                         | Expression                       | Min    | Max      | Unit |
| 323 | HTA Deasserted from Data Strobe Assertion <sup>1,2,5</sup>                                             |                                  | _      | 23.6     | ns   |
| 324 | HTA Assertion to Data Strobe Deassertion <sup>1,2</sup>                                                |                                  | 0.0    | <u> </u> | ns   |
| 325 | HTA High Impedance from Data Strobe Deassertion <sup>1,2</sup>                                         |                                  | 7      | 18.5     | ns   |
| 326 | HIRQ Asserted Pulse Width (HIRH = 0, HIRD = 1)                                                         | $(LT + 1) \times T_C - 6.0^7$    | 6.5    |          | ns   |
| 327 | Data Strobe Deasserted Hold from $\overline{HIRQ}$ Deassertion (HIRH = 0) <sup>1</sup>                 |                                  | 0.0    | -        | ns   |
| 328 | $\overline{\text{HIRQ}}$ Asserted Hold from Data Strobe Assertion (HIRH = 1) <sup>1</sup>              | $1.5 \times T_{\rm C}$           | 22.7   | _        | ns   |
| 329 | $\overline{\text{HIRQ}}$ Deassertion from Data Strobe Assertion (HIRH = 1, HIRD = 1) <sup>1</sup>      | $2.5 \times T_{\text{C}} + 28.0$ | _      | 55.9     | ns   |
| 330 | $\overline{\text{HIRQ}}$ High Impedance from Data Strobe Assertion (HIRH = 1, HIRD = 0) <sup>1,6</sup> | $2.5 \times T_{\rm C} + 28.0$    | _      | 55.9     | ns   |
| 331 | $\overline{\text{HIRQ}}$ Active from Data Strobe Deassertion (HIRH = 1, HIRD = 0) <sup>1</sup>         | $2.5 \times T_{\rm C}$           | 31.3   | _        | ns   |
| 332 | HIRQ Deasserted Hold from Data Strobe Deassertion <sup>1</sup>                                         | $2.5 \times T_{\rm C}$           | 31.3   | _        | ns   |
| 333 | HDRQ <sup>2</sup> Asserted Hold from Data Strobe Assertion <sup>1</sup>                                | $1.5 \times T_{\rm C}$           | 18.8   | _        | ns   |
| 334 | HDRQ <sup>2</sup> Deassertion from Data Strobe Assertion <sup>1</sup>                                  | $2.5 \times T_{\text{C}} + 28.0$ | _      | 55.9     | ns   |
| 335 | HDRQ <sup>2</sup> Deasserted Hold from Data Strobe<br>Deassertion <sup>1</sup>                         | $2.5 \times T_{\text{C}} + 4.5$  | 35.8   |          | ns   |
| 336 | HDAK Assertion to Data Strobe Assertion <sup>1</sup>                                                   |                                  | 7.0    | _        | ns   |
| 337 | HDAK Asserted Hold from Data Strobe Deassertion <sup>1</sup>                                           |                                  | 0.0    | _        | ns   |
| 338 | HDBEN Deasserted Hold from Data Strobe Assertion <sup>1</sup>                                          |                                  | 3.0    | _        | ns   |
| 339 | HDBEN Assertion from Data Strobe Assertion 1                                                           |                                  | _      | 22.2     | ns   |
| 340 | HDBEN Asserted Hold from Data Strobe Deassertion <sup>1</sup>                                          |                                  | 3.0    | _        | ns   |
| 341 | HDBEN Deassertion from Data Strobe Deassertion <sup>1</sup>                                            |                                  | _      | 22.2     | ns   |
| 342 | HDBDR High Hold from Read Data Strobe Assertion <sup>3</sup>                                           |                                  | 3.0    | _        | ns   |
| 343 | HDBDR Low from Read Data Strobe Assertion <sup>3</sup>                                                 |                                  | _      | 22.2     | ns   |
| 344 | HDBDR Low Hold from Read Data Strobe Deassertion <sup>3</sup>                                          |                                  | 3.0    | _        | ns   |
| 345 | HDBDR High from Read Data Strobe Deassertion <sup>3</sup>                                              |                                  | _      | 22.2     | ns   |
| 346 | HRST Assertion to Host Port Pins High Impedance <sup>2</sup>                                           |                                  | _      | 25.0     | ns   |

 Table 2-20
 Universal Bus Mode Timing Parameters (Continued)

| NI-   |    |                                                             | F                                            | 80 MHz                   |                          | Ilnit   |
|-------|----|-------------------------------------------------------------|----------------------------------------------|--------------------------|--------------------------|---------|
| No.   |    | Characteristic                                              | Expression                                   | Min                      | Max                      | Unit    |
| Note: | 1. | The Data Strobe is HRD or HWR in the Dual Data Strobe       | e mode and HDS in                            | the Single               | Data Stro                | be      |
|       |    | mode.                                                       |                                              | _                        |                          |         |
|       | 2. | HTA, HDRQ, and HRST may be programmed as active-            |                                              |                          |                          | ng      |
|       |    | diagrams, HDRQ and H <u>RST</u> are shown as active-high ar |                                              |                          |                          |         |
|       | 3. | The Read Data Strobe is HRD in the Dual Data Strobe me      |                                              |                          |                          |         |
|       | 4. | The Write Data Strobe is HWR in the Dual Data Strobe n      |                                              |                          |                          |         |
|       | 5. | HTA requires an external pull-down resistor if programs     | med as active high (                         | HTAP = 0                 | ); or an ex              | ternal  |
|       |    | pull-up resistor if programmed as active low (HTAP = 1)     | ). The resistor v <mark>al</mark> ue         | sh <mark>ou</mark> ld be | con <mark>si</mark> ster | nt with |
|       |    | the DC specifications.                                      |                                              |                          |                          |         |
|       | 6. | HIRQ requires an external pull-up resistor if programme     | d as open drain (HII                         | RD = 0). $T$             | he resisto               | r value |
|       |    | should be consistent with the DC specifications.            | •                                            |                          |                          |         |
|       | 7. | "LT" is the value of the latency timer register (CLAT) as   | programmed by the                            | user duri                | ing self                 |         |
|       |    | configuration.                                              | 1 10                                         |                          | 6                        |         |
|       | 8. | Values are valid for $V_{CC}$ = 3.3 $\pm$                   | <b>〈                                    </b> |                          |                          |         |

 Table 2-21
 Universal Bus Mode, Synchronous Port A
 Type Host Timing

| No. | Chamatanistia                                                                                         | Eummandan                    | 80 N | Unit |      |
|-----|-------------------------------------------------------------------------------------------------------|------------------------------|------|------|------|
| NO. | Characteristic                                                                                        | Expression                   | Min  | Max  | Unit |
| 300 | Access Cycle Time                                                                                     | $3 \times T_{\mathrm{C}}$    | 37.5 | _    | ns   |
| 301 | HA[10:0], HAEN Setup to Data Strobe Assertion <sup>1</sup>                                            |                              | 7.0  | _    | ns   |
| 302 | HA[10:0], HAEN Valid Hold from Data Strobe<br>Deassertion                                             |                              | 0.0  | _    | ns   |
| 305 | Data Strobe Deasserted Width <sup>1</sup>                                                             |                              | 5.0  | _    | ns   |
| 307 | HBS Asserted Pulse Width                                                                              |                              | 3.0  | _    | ns   |
| 308 | HBS Assertion to Data Strobe Assertion <sup>1</sup>                                                   | $1.25 \times T_C - 6.0$      | _    | 9.6  | ns   |
| 309 | HBS Assertion to Data Strobe Deassertion <sup>1</sup>                                                 | $2.5 \times T_{\rm C}$       | 31.3 | _    | ns   |
| 310 | HBS Deassertion to Data Strobe Deassertion 1                                                          | $1.5 \times T_{\rm C} + 4.0$ | 22.8 | _    | ns   |
| 312 | Data Out Active from Read Data Strobe Assertion <sup>3</sup>                                          |                              | 2.0  | _    | ns   |
| 313 | Data Out Valid from Read Data Strobe Assertion (No<br>Wait States Inserted—HTA Asserted) <sup>3</sup> |                              | _    | 18.9 | ns   |
| 314 | Data Out Valid Hold from Read Data Strobe<br>Deassertion <sup>3</sup>                                 |                              | 2.0  | _    | ns   |
| 315 | Data Out High Impedance from Read Data Strobe<br>Deassertion <sup>3</sup>                             |                              | _    | 14.5 | ns   |
| 316 | Data In Valid Setup to Write Data Strobe Deassertion <sup>4</sup>                                     |                              | 10.0 |      | ns   |
| 317 | Data In Valid Hold from Write Data Strobe Deassertion <sup>4</sup>                                    |                              | 0.0  | _    | ns   |

**Table 2-21** Universal Bus Mode, Synchronous Port A Type Host Timing (Continued)

| N.T. |                                                                                                        | Г                             | 80 N | T I:4    |      |
|------|--------------------------------------------------------------------------------------------------------|-------------------------------|------|----------|------|
| No.  | Characteristic                                                                                         | Expression                    | Min  | Max      | Unit |
| 324  | HTA Assertion to Data Strobe Deassertion <sup>1,2</sup>                                                |                               | 0.0  | _        | ns   |
| 325  | HTA High Impedance from Data Strobe Deassertion <sup>1,2</sup>                                         |                               | _    | 18.5     | ns   |
| 326  | HIRQ Asserted Pulse Width (HIRH = 0, HIRD = 1)                                                         | $(LT + 1) \times T_C - 6.0^7$ | 6.5  | 1        | ns   |
| 327  | Data Strobe Deasserted Hold from $\overline{HIRQ}$ Deassertion (HIRH = 0) <sup>1</sup>                 |                               | 0.0  | <b>\</b> | ns   |
| 328  | $\overline{\text{HIRQ}}$ Asserted Hold from Data Strobe Assertion (HIRH = 1) <sup>1</sup>              | $2.5 \times T_{\rm C}$        | 31.3 |          | ns   |
| 329  | $\overline{\text{HIRQ}}$ Deassertion from Data Strobe Assertion (HIRH = 1, HIRD = 1) <sup>1</sup>      | $3.5 \times T_{\rm C} + 28.0$ | _    | 68.4     | ns   |
| 330  | $\overline{\text{HIRQ}}$ High Impedance from Data Strobe Assertion (HIRH = 1, HIRD = 0) <sup>1,6</sup> | $3.5 \times T_{\rm C} + 28.0$ | _    | 68.4     | ns   |
| 331  | $\overline{\text{HIRQ}}$ Active from Data Strobe Deassertion (HIRH = 1, HIRD = 0) <sup>1</sup>         | $2.5 \times T_{\rm C}$        | 31.3 | _        | ns   |
| 332  | HIRQ Deasserted Hold from Data Strobe Deassertion <sup>1</sup>                                         | $2.5 	imes T_{ m C}$          | 31.3 | _        | ns   |
| 346  | HRST Assertion to Host Port Pins High Impedance <sup>2</sup>                                           |                               |      | 25.0     | ns   |
| 347  | HBS Assertion to CLKOUT Rising Edge                                                                    |                               | 5.2  | _        | ns   |
| 348  | Data Strobe Deassertion to CLKOUT Rising Edge <sup>1</sup>                                             |                               | 9.0  | _        | ns   |

- 1. The Data Strobe is HRD or HWR in the Dual Data Strobe mode; and HDS in the Single Data Strobe mode.
- 2. The Read Data Strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.
- 3. The Write Data Strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.
- 4. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the following timing diagrams, HDRQ and HRST are shown as active-high and HTA is shown as active low.
- 5. HTA requires an external pull-up resistor if programmed as active high (HTAP = 0); or an external pull-down resistor if programmed as active low (HTAP = 1). The resistor value should be consistent with the DC specifications.
- 6. HIRQ requires an external pull-up resistor if programmed as open drain (HIRD = 0). The resistor value should be consistent with the DC specifications.
- 7. "LT" is the value of the latency timer register (CLAT) as programmed by the user during self configuration.



Figure 2-29 Universal Bus Mode DMA Access Timing

# **Host Interface Timing**







Figure 2-35 HBS Synchronous Timing



Figure 2-36 Data Strobe Synchronous Timing

**Table 2-22** PCI Mode Timing Parameters<sup>1</sup>

| No  | GI 10                                     | Symph al              | 80 MHz        |      | - Unit |
|-----|-------------------------------------------|-----------------------|---------------|------|--------|
| No. | Characteristic <sup>10</sup>              | Symbol                | Min           | Max  | Unit   |
| 349 | HCLK to Signal Valid Delay—Bussed Signals | t <sub>VAL</sub>      | 2.0           | 11.0 | ns     |
| 350 | HCLK to Signal Valid Delay—Point to Point | t <sub>VAL(ptp)</sub> | 2.0           | 12.0 | ns     |
| 351 | Float to Active Delay                     | t <sub>ON</sub>       | 2.0           | _    | ns     |
| 352 | Active to Float Delay                     | t <sub>OFF</sub>      | _             | 28.0 | ns     |
| 353 | Input Set Up Time to HCLK—Bussed Signals  | t <sub>SU</sub>       | 7.0           | _    | ns     |
| 354 | Input Set Up Time to HCLK—Point to Point  | t <sub>SU(ptp)</sub>  | 10.0,<br>12.0 | _    | ns     |
| 355 | Input Hold Time from HCLK                 | t <sub>H</sub>        | 0.0           | _    | ns     |
| 356 | Reset Active Time After Power Stable      | t <sub>RST</sub>      | 1.0           | _    | ms     |
| 357 | Reset Active Time After HCLK Stable       | t <sub>RST-CLK</sub>  | 100.0         | _    | μs     |
| 358 | Reset Active to Output Float Delay        | t <sub>RST-OFF</sub>  | _             | 40.0 | ns     |
| 359 | HCLK Cycle Time                           | t <sub>CYC</sub>      | 30.0          | _    | ns     |
| 360 | HCLK High Time                            | t <sub>HIGH</sub>     | 11.0          | _    | ns     |
| 361 | HCLK Low Time                             | t <sub>LOW</sub>      | 11.0          | _    | ns     |

- 1. See PCI Local Bus Specification, Rev. 2.0.
- 2. The HI32 supports these timings for a PCI bus operating at 33 MHz for a DSP clock frequency of 56 MHz and above. The DSP core operating frequency should be greater than 5/3 of the PCI bus frequency to maintain proper PCI operation.
- 3.  $\overline{\text{HGNT}}$  has a setup time of 10 ns.  $\overline{\text{HREQ}}$  has a setup time of 12 ns.



Figure 2-38 PCI Reset Timing

#### **SCI TIMING**

**Table 2-23** SCI Timing

| <b>.</b> | a 1                                                                  | G 1.1                         |                                       | 80 MHz |      | TT *4 |
|----------|----------------------------------------------------------------------|-------------------------------|---------------------------------------|--------|------|-------|
| No.      | Characteristics <sup>1</sup>                                         | Symbol                        | Expression                            | Min    | Max  | Unit  |
| 400      | Synchronous clock cycle                                              | t <sub>SCC</sub> <sup>2</sup> | $8 \times T_{\rm C}$                  | 100.0  | \_   | ns    |
| 401      | Clock low period                                                     |                               | $t_{SCC}/2 - 10.0$                    | 40.0   | -    | ns    |
| 402      | Clock high period                                                    |                               | $t_{SCC}/2 - 10.0$                    | 40.0   | 7    | ns    |
| 403      | Output data setup to clock falling edge (internal clock)             |                               | $t_{SCC}/4 + 0.5 \times T_{C} - 17.0$ | 14.3   | _    | ns    |
| 404      | Output data hold after clock rising edge (internal clock)            |                               | $t_{SCC}/4 - 0.5 \times T_{C}$        | 18.8   | _    | ns    |
| 405      | Input data setup time before clock rising edge (internal clock)      |                               | $t_{SCC}/4 + 0.5 \times T_C + 25.0$   | 56.3   | _    | ns    |
| 406      | Input data not valid before clock rising edge (internal clock)       |                               | $t_{SCC}/4 + 0.5 \times T_C - 5.5$    | _      | 25.8 | ns    |
| 407      | Clock falling edge to output data valid (external clock)             |                               |                                       | _      | 32.0 | ns    |
| 408      | Output data hold after clock rising edge (external clock)            |                               | T <sub>C</sub> + 8.0                  | 20.5   | _    | ns    |
| 409      | Input data setup time before clock rising edge (external clock)      |                               |                                       | 0.0    | _    | ns    |
| 410      | Input data hold time after clock rising edge (external clock)        |                               |                                       | 9.0    | _    | ns    |
| 411      | Asynchronou <mark>s clo</mark> ck cycle                              | t <sub>ACC</sub> <sup>3</sup> | $64 \times T_{C}$                     | 800.0  | _    | ns    |
| 412      | Clock low period                                                     |                               | $t_{\rm ACC}/2 - 10.0$                | 390.0  |      | ns    |
| 413      | Clock high period                                                    |                               | $t_{ACC}/2 - 10.0$                    | 390.0  | _    | ns    |
| 414      | Output data setup to clock rising edge (internal clock)              |                               | $t_{ACC}/2 - 30.0$                    | 370.0  |      | ns    |
| 415      | Outputdataholdafterclockrisingedge<br>(inte <mark>rnal</mark> clock) |                               | $t_{\rm ACC}/2 - 30.0$                | 370.0  | _    | ns    |

- V<sub>CC</sub> = 3.3 V ± 0.3 V; T<sub>J</sub> = -40°C to +100 °C, C<sub>L</sub> = 50 pF + 2 TTL Loads
   t<sub>SCC</sub> = synchronous clock cycle time (For internal clock, t<sub>SCC</sub> is determined by the SCI clock control
- $t_{ACC}$  = asynchronous clock cycle time; value given for 1X Clock mode (For internal clock,  $t_{ACC}$  is determined by the SCI clock control register and  $T_{\mbox{\scriptsize C}}.)$



Figure 2-40 SCI Asynchronous Mode Timing

# **ESSIO/ESSI1 TIMING**

 Table 2-24
 ESSI Timings

| NT. | GI 46.7                                                              | C 1.1              | Expression                                                | 80 MHz       |              | Cond-              | TI24     |
|-----|----------------------------------------------------------------------|--------------------|-----------------------------------------------------------|--------------|--------------|--------------------|----------|
| No. | Characteristics <sup>4, 6, 7</sup>                                   | Symbol             |                                                           | Min          | Max          | ition <sup>5</sup> | Unit     |
| 430 | Clock cycle <sup>1</sup>                                             | t <sub>SSICC</sub> | $\begin{array}{c} 4\times T_C \\ 3\times T_C \end{array}$ | 50.0<br>37.5 | Z            | i ck<br>x ck       | ns       |
| 431 | Clock high period                                                    |                    | $2 \times T_{\text{C}} - 10.0$ $1.5 \times T_{\text{C}}$  | 15.018       | 7            |                    | ns<br>ns |
| 432 | Clock low period                                                     |                    | $2 \times T_{\text{C}} - 10.0$ $1.5 \times T_{\text{C}}$  | 15.0<br>18.8 |              |                    | ns<br>ns |
| 433 | RXC rising edge to FSR out (bl) high                                 |                    |                                                           | _            | 37.0<br>22.0 | x ck<br>i ck a     | ns       |
| 434 | RXC rising edge to FSR out (bl) low                                  |                    |                                                           |              | 37.0<br>22.0 | x ck<br>i ck a     | ns       |
| 435 | RXC rising edge to FSR out (wr) high <sup>2</sup>                    |                    | <b>)</b>                                                  | _<br>_       | 39.0<br>24.0 | x ck<br>i ck a     | ns       |
| 436 | RXC rising edge to FSR out (wr) low <sup>2</sup>                     |                    |                                                           |              | 39.0<br>24.0 | x ck<br>i ck a     | ns       |
| 437 | RXC rising edge to FSR out (wl) high                                 | <b>&gt;</b>        |                                                           | _<br>_       | 36.0<br>21.0 | x ck<br>i ck a     | ns       |
| 438 | RXC rising edge to FSR out (wl) low                                  |                    |                                                           | _<br>_       | 37.0<br>22.0 | x ck<br>i ck a     | ns       |
| 439 | Data in setup time before RXC (SCK in Synchronous mode) falling edge |                    |                                                           | 0.0<br>19.0  | _            | x ck<br>i ck       | ns       |
| 440 | Data in hold time after RXC falling edge                             |                    |                                                           | 5.0<br>3.0   | _            | x ck<br>i ck       | ns       |
| 441 | FSR input (bl, wr) high before RXC falling edge 2                    |                    |                                                           | 23.0<br>1.0  | _            | x ck<br>i ck a     | ns       |
| 442 | FSR input (wl) high before RXC falling edge                          |                    |                                                           | 23.0<br>1.0  | _            | x ck<br>i ck a     | ns       |
| 443 | FSR input hold time after RXC falling edge                           |                    |                                                           | 3.0<br>0.0   |              | x ck<br>i ck a     | ns       |
| 444 | Flags input setup before RXC falling edge                            |                    |                                                           | 0.0<br>19.0  |              | x ck<br>i ck s     | ns       |
| 445 | Flags input hold time after RXC falling edge                         |                    |                                                           | 6.0<br>0.0   |              | x ck<br>i ck s     | ns       |

 Table 2-24
 ESSI Timings (Continued)

| N.T. | Cl 467                                                                  | C 1.1  | T                            | 80 N              | 80 MHz       |              | TT                 |      |
|------|-------------------------------------------------------------------------|--------|------------------------------|-------------------|--------------|--------------|--------------------|------|
| No.  | Characteristics <sup>4, 6, 7</sup>                                      | Symbol | Expression                   | Symbol Expression | Min          | Max          | ition <sup>5</sup> | Unit |
| 446  | TXC rising edge to FST out (bl) high                                    |        |                              | _<br>_            | 29.0<br>15.0 | x ck<br>i ck | ns                 |      |
| 447  | TXC rising edge to FST out (bl) low                                     |        |                              |                   | 31.0<br>17.0 | x ck<br>i ck | ns                 |      |
| 448  | TXC rising edge to FST out (wr) high <sup>2</sup>                       |        |                              |                   | 31.0<br>17.0 | x ck<br>i ck | ns                 |      |
| 449  | TXC rising edge to FST out (wr) low <sup>2</sup>                        |        |                              | _                 | 33.0<br>19.0 | x ck<br>i ck | ns                 |      |
| 450  | TXC rising edge to FST out (wl) high                                    |        | , [                          | 7                 | 30.0<br>16.0 | x ck<br>i ck | ns                 |      |
| 451  | TXC rising edge to FST out (wl) low                                     |        |                              | _                 | 31.0<br>17.0 | x ck<br>i ck | ns                 |      |
| 452  | TXC rising edge to data out enable from high impedance                  |        |                              | _                 | 31.0<br>17.0 | x ck<br>i ck | ns                 |      |
| 453  | TXC rising edge to Transmitter #0 drive enable assertion                |        |                              | _                 | 34.0<br>20.0 | x ck<br>i ck | ns                 |      |
| 454  | TXC rising edge to data out valid                                       |        | $35 + 0.5 \times T_{C}$ 21.0 | _                 | 41.3<br>21.0 | x ck<br>i ck | ns                 |      |
| 455  | TXC rising edge to data out high impedance <sup>3</sup>                 |        |                              | _<br>_            | 31.0<br>16.0 | x ck<br>i ck | ns                 |      |
| 456  | TXC rising edge to Transmitter #0 drive enable deassertion <sup>3</sup> |        |                              |                   | 34.0<br>20.0 | x ck<br>i ck | ns                 |      |
| 457  | FST input (bl, wr) setup time before TXC falling edge <sup>2</sup>      |        |                              | 2.0<br>21.0       | _            | x ck<br>i ck | ns                 |      |
| 458  | FST input (wl) to data out enable from high impedance                   |        |                              | _                 | 27.0         | _            | ns                 |      |
| 459  | FST input (wl) to Transmitter #0 drive enable assertion                 |        |                              | _                 | 31.0         | _            | ns                 |      |
| 460  | FST input (wl) setup time before TXC falling edge                       |        |                              | 2.0<br>21.0       | _            | x ck<br>i ck | ns                 |      |
| 461  | FST input hold time after TXC falling edge                              |        |                              | 4.0<br>0.0        | _            | x ck<br>i ck | ns                 |      |
| 462  | Flag output valid after TXC rising edge                                 |        |                              |                   | 32.0<br>18.0 | x ck<br>i ck | ns                 |      |

Table 2-24 ESSI Timings (Continued)

| No.   |    | Characteristics <sup>4, 6, 7</sup>                                                        | Symbol         | Expression                      | 80 MHz   |           | Cond-              | ***      |
|-------|----|-------------------------------------------------------------------------------------------|----------------|---------------------------------|----------|-----------|--------------------|----------|
|       |    |                                                                                           |                |                                 | Min      | Max       | ition <sup>5</sup> | Unit     |
| Note: | 1. | For the internal clock, the external clo                                                  | ock cycle is o | defined by I <sub>cyc</sub> and | the ESSI | control r | egister.           |          |
|       | 2. | The word-relative frame sync signal                                                       |                |                                 |          |           |                    | r as the |
|       |    | bit-length frame sync signal wavefor                                                      |                |                                 |          |           |                    |          |
|       |    | Bit Length Frame Sync signal), until                                                      |                |                                 |          |           |                    |          |
|       | 3. | Periodically sampled and not 100% to                                                      |                |                                 |          |           |                    |          |
|       | 4. | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{I} = -40 ^{\circ}\text{C to } +10 ^{\circ}$ |                | 0 pF + 2 TTL Loads              | 6        |           |                    |          |
|       | 5. | TXC (SCK Pin) = Transmit Clock                                                            | , г            | 1                               |          |           |                    |          |
|       |    | RXC (SC0 or SCK Pin) = Receive Clo                                                        | ck             |                                 |          |           |                    |          |
|       |    | FST (SC2 Pin) = Transmit Frame Syn                                                        |                |                                 |          |           |                    |          |
|       |    | FSR (SC1 or SC2 Pin) Receive Frame                                                        |                |                                 |          |           |                    |          |
|       | 6  | i.ck - Internal Clock                                                                     | 3              |                                 |          |           |                    |          |

6. i ck = Internal Clock

x ck = External Clock

i ck a = Internal Clock, Asynchronous Mode

(Asynchronous implies that TXC and RXC are two different clocks)

i ck s = Internal Clock, Synchronous Mode

(Synchronous implies that TXC and RXC are the same clock)

7. bl = bit length wl = word length

wr = word length relative





In Network mode, output flag transitions can occur at the start of each time slot within the frame. In Normal mode, the output flag state is asserted for the entire frame period.

AA0490

Figure 2-41 ESSI Transmitter Timing



# **TIMER TIMING**

Table 2-25 Timer Timing

| N.T.  |                                                                                                                                                      |                                                       | 80 MHz     |                | <b>T</b> I. *4 |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|----------------|----------------|--|--|--|
| No.   | Characteristics                                                                                                                                      | Expression                                            | Min        | Max            | Unit           |  |  |  |
| 480   | TIO Low                                                                                                                                              | $2 \times T_C + 2.0$                                  | 27.0       |                | ns             |  |  |  |
| 481   | TIO High                                                                                                                                             | $2 \times T_{\rm C} + 2.0$                            | 27.0       | _              | ns             |  |  |  |
| 482   | Timer setup time from TIO (Input) assertion to CLKOUT rising edge                                                                                    |                                                       | 9.0        | T <sub>C</sub> | ns             |  |  |  |
| 483   | Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution | $10.25 \times T_{\rm C} + 1.0$                        | 129.1      | _              | ns             |  |  |  |
| 484   | CLKOUT rising edge to TIO (Output) assertion                                                                                                         | $0.5 \times T_{C} + 3.5$<br>$0.5 \times T_{C} + 19.8$ | 9.8        |                | ns<br>ns       |  |  |  |
| 485   | CLKOUT rising edge to TIO (Output) deassertion                                                                                                       | $0.5 \times T_{C} + 3.5$<br>$0.5 \times T_{C} + 19.8$ | 9.8<br>9.8 | 26.1<br>26.1   | ns<br>ns       |  |  |  |
| Note: |                                                                                                                                                      |                                                       |            |                |                |  |  |  |



Figure 2-43 TIO Timer Event Input Restrictions



Figure 2-44 Timer Interrupt Generation



Figure 2-45 External Pulse Generation



## **GPIO TIMING**

Table 2-26 GPIO Timing

| No    |                                                                                                                     | Ermungsion              | 80 N | T 1 24 |      |
|-------|---------------------------------------------------------------------------------------------------------------------|-------------------------|------|--------|------|
| No.   | Characteristics                                                                                                     | Expression              | Min  | Max    | Unit |
| 490   | CLKOUT edge to GPIO out valid (GPIO out delay time)                                                                 |                         |      | 31.0   | ns   |
| 491   | CLKOUT edge to GPIO out not valid (GPIO out hold time)                                                              |                         | 3.0  |        | ns   |
| 492   | GPIO In valid to CLKOUT edge (GPIO in set-up time)                                                                  |                         | 12.0 | _      | ns   |
| 493   | CLKOUT edge to GPIO in not valid (GPIO in hold time)                                                                | 4                       | 0.0  | _      | ns   |
| 494   | Fetch to CLKOUT edge before GPIO change                                                                             | $6.75 \times T_{\rm C}$ | 84.4 | _      | ns   |
| Note: | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_J = -40^{\circ}\text{C to} +100 ^{\circ}\text{C}, C_L = 50 \text{ pc}$ | F + 2 TTL Loads         |      |        |      |



Figure 2-46 GPIO Timing

# **JTAG TIMING**

**Table 2-27** JTAG Timing

|       | Characteristics                                                                                                                                           | -                                 | 80 N               | <b>T</b> T •. |      |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|---------------|------|--|--|--|
| No.   |                                                                                                                                                           | Expression                        | Min                | Max           | Unit |  |  |  |
| 500   | TCK frequency of operation                                                                                                                                | $1/(3 \times T_C)$ , max 22.0 MHz | 0.0                | 22.0          | MHz  |  |  |  |
| 501   | TCK cycle time in Crystal mode                                                                                                                            |                                   | 45.0               | 7             | ns   |  |  |  |
| 502   | TCK clock pulse width measured at 1.5 V                                                                                                                   |                                   | <mark>20</mark> .0 | <u> </u>      | ns   |  |  |  |
| 503   | TCK rise and fall times                                                                                                                                   |                                   | 0.0                | 3.0           | ns   |  |  |  |
| 504   | Boundary scan input data setup time                                                                                                                       |                                   | 5.0                | _             | ns   |  |  |  |
| 505   | Boundary scan input data hold time                                                                                                                        | 4                                 | 24.0               | _             | ns   |  |  |  |
| 506   | TCK low to output data valid                                                                                                                              |                                   | 0.0                | 40.0          | ns   |  |  |  |
| 507   | TCK low to output high impedance                                                                                                                          |                                   | 0.0                | 40.0          | ns   |  |  |  |
| 508   | TMS, TDI data setup time                                                                                                                                  |                                   | 5.0                | _             | ns   |  |  |  |
| 509   | TMS, TDI data hold time                                                                                                                                   | 7                                 | 25.0               | _             | ns   |  |  |  |
| 510   | TCK low to TDO data valid                                                                                                                                 |                                   | 0.0                | 44.0          | ns   |  |  |  |
| 511   | TCK low to TDO high impedance                                                                                                                             |                                   | 0.0                | 44.0          | ns   |  |  |  |
| 512   | TRST assert time                                                                                                                                          |                                   | 100.0              | _             | ns   |  |  |  |
| 513   | TRST setup time to TCK low                                                                                                                                |                                   | 40.0               | _             | ns   |  |  |  |
| Note: | Note: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ; $T_J = -40^{\circ}\text{C}$ to $\pm 100^{\circ}\text{C}$ , $C_L = 50 \text{ pF} + 2 \text{ TTL Loads}$ |                                   |                    |               |      |  |  |  |



(Output)

TDO (Output)

TDO

(Output)

## **JTAG Timing**



Figure 2-49 Test Access Port Timing Diagram

**Output Data Valid** 

AA0498

(511)

510



Figure 2-50 TRST Timing Diagram

## **OnCE MODULE TIMING**

Table 2-28 OnCE Module Timing

| No.   | Characteristics                                                                       | Expression                           | 80 N | Unit |     |
|-------|---------------------------------------------------------------------------------------|--------------------------------------|------|------|-----|
| 140.  | Characteristics                                                                       | Expression                           | Min  | Max  |     |
| 500   | TCK frequency of operation                                                            | $1/(T_C \times 3)$ ,<br>max 22.0 MHz | 0.0  | 22.0 | 0.0 |
| 514   | $\overline{\rm DE}$ assertion time in order to enter Debug mode                       | $1.5 \times T_{\rm C} + 10.0$        | 28.8 | _    | ns  |
| 515   | Response time when DSP56305 is executing NOP instructions from internal memory        | $5.5 \times T_{\rm C} + 30.0$        |      | 98.8 | ns  |
| 516   | Debug acknowledge assertion time                                                      | $3 \times T_{\rm C} + 10.0$          | 47.5 | _    | ns  |
| Note: | $V_{CC}$ = 3.3 V $\pm$ 0.3 V; $T_{J}$ = $-40^{\circ}$ C to +100 °C, $C_{L}$ = 50 pF + | - 2 TTL Loads                        |      |      |     |





# SECTION 3 PACKAGING

### **PIN-OUT AND PACKAGE INFORMATION**

This sections provides information about the available packages for this product, including diagrams of the package pinouts and tables describing how the signals described in **Section 1** are allocated for each package.

The DSP56305 is available in a 252-pin Plastic Ball Grid Array (PBGA) package.



## **PBGA Package Description**

Top and bottom views of the PBGA package are shown in **Figure 3-1** and **Figure 3-2** with their pin-outs.



Figure 3-1 DSP56305 Plastic Ball Grid Array (PBGA), Top View



Figure 3-2 DSP56305 Plastic Ball Grid Array (PBGA), Bottom View

 Table 3-1
 DSP56305 PBGA Signal Identification by Pin Number

| Pin<br>No. | Signal Name               | Pin<br>No. | Signal Name                            | Pin<br>No. | Signal Name               |
|------------|---------------------------|------------|----------------------------------------|------------|---------------------------|
| A2         | NC                        | B12        | HAD25 or HD17                          | D5         | $V_{CC}$                  |
| A3         | HAD15, HD7, or PB15       | B13        | HAD29 or HD21                          | D6         | PVCL 4                    |
| A4         | HCLK                      | B14        | HAD31 or HD23                          | D7         | HSTOP or HWR/HRW          |
| A5         | HPAR or HDAK              | B15        | NC                                     | D8         | HTRDY, HDBEN, or PB20     |
| A6         | HPERR or HDRQ             | B16        | NC                                     | D9         | Vcc                       |
| A7         | HIRDY, HDBDR, or PB21     | C1         | HAD8, HD0, or PB8                      | D10        | V <sub>CC</sub>           |
| A8         | HAD16 or HD8              | C2         | HAD11, HD3, or PB11                    | D11        | V <sub>CC</sub>           |
| A9         | HAD17 or HD9              | C3         | HAD12, HD4, or PB <mark>12</mark>      | D12        | HAD28 or HD20             |
| A10        | HAD20 or HD12             | C4         | HAD13, HD5, or PB13                    | D13        | MODC/IRQC                 |
| A11        | HAD23 or HD15             | C5         | HC1/HBEI, HA1, or<br>PB17              | D14        | NC                        |
| A12        | HAD24 or HD16             | C6         | HREQ or HTA                            | D15        | MODB/IRQB                 |
| A13        | HAD27 or HD19             | C7         | HLOC <mark>K, HBS</mark> , or PB23     | D16        | D23                       |
| A14        | HAD30 or HD22             | C8         | HFRAME /                               | E1         | HAD2, HA5, or PB2         |
| A15        | NC                        | C9         | HAD18 or HD10                          | E2         | HAD4, HA7, or PB4         |
| B1         | NC                        | C10        | HAD21 or HD13                          | E3         | HAD6, HA9, or PB6         |
| B2         | NC                        | C11        | HC3/ <del>HBE3</del> , HA2, or<br>PB19 | E4         | HC0/HBE0, HA0, or<br>PB16 |
| В3         | HAD14, HD6, or PB14       | C12        | HAD26 or HD18                          | E5         | $V_{CC}$                  |
| B4         | HGNT or HAEN              | C13        | MODD/IRQD                              | E6         | $V_{CC}$                  |
| B5         | HRST/HRST                 | C14        | NC                                     | E7         | $V_{CC}$                  |
| В6         | HSERR or HIRQ             | C15        | NC                                     | E8         | $V_{CC}$                  |
| В7         | HDEVSEL, HSAK, or<br>PB22 | C16        | NC                                     | E9         | $V_{CC}$                  |
| B8         | HIDSEL or HRD/HDS         | D1         | HAD5, HA8, or PB5                      | E10        | $V_{CC}$                  |
| В9         | HC2/HBE2, HA2, or<br>PB18 | D2         | HAD7, HA10, or PB7                     | E11        | $V_{CC}$                  |
| B10        | HAD19 or HD11             | D3         | HAD9, HD1, or PB9                      | E12        | $V_{CC}$                  |
| B11        | HAD22 or HD14             | D4         | HAD10, HD2, or PB10                    | E13        | $V_{CC}$                  |

 Table 3-1
 DSP56305 PBGA Signal Identification by Pin Number (Continued)

| Pin<br>No. | Signal Name       | Pin<br>No. | Signal Name     | Pin<br>No. | Signal Name     |
|------------|-------------------|------------|-----------------|------------|-----------------|
| E14        | MODA/IRQA         | G7         | GND             | H16        | D8              |
| E15        | D22               | G8         | GND             | J1         | SC11 or PD1     |
| E16        | D21               | G9         | GND             | J2         | SC12 or PD2     |
| F1         | HAD1, HA4, or PB1 | G10        | GND             | J3         | TXD or PE1      |
| F2         | HAD0, HA3, or PB0 | G11        | GND             | J4         | SC10 or PD0     |
| F3         | HAD3, HA6, or PB3 | G12        | $V_{CC}$        | J5 🔸       | V <sub>CC</sub> |
| F4         | $V_{CC}$          | G13        | D12             | J6         | GND             |
| F5         | $V_{CC}$          | G14        | D15             | J7         | GND             |
| F6         | GND               | G15        | D16             | J8         | GND             |
| F7         | GND               | G16        | D14             | <b>1</b> 9 | GND             |
| F8         | GND               | H1         | SCLK or PE2     | J10        | GND             |
| F9         | GND               | H2         | HINTA           | J11        | GND             |
| F10        | GND               | Н3         | TIO0            | J12        | $V_{CC}$        |
| F11        | GND               | H4         | V <sub>CC</sub> | J13        | $V_{CC}$        |
| F12        | $V_{CC}$          | H5         | $V_{CC}$        | J14        | D5              |
| F13        | D18               | H6         | GND             | J15        | D10             |
| F14        | D19               | H7         | <b>G</b> ND     | J16        | D7              |
| F15        | D20               | H8         | GND             | K1         | STD1 or PD5     |
| F16        | D17               | H9         | GND             | K2         | SCK1 or PD3     |
| G1         | TIO1              | H10        | GND             | K3         | SCK0 or PC3     |
| G2         | RXD or PE0        | H11        | GND             | K4         | SRD0 or PC4     |
| G3         | TIO2              | H12        | $V_{CC}$        | K5         | $V_{CC}$        |
| G4         | V <sub>CC</sub>   | H13        | D11             | K6         | GND             |
| G5         | V <sub>CC</sub>   | H14        | D9              | K7         | GND             |
| G6         | GND               | H15        | D13             | K8         | GND             |

 Table 3-1
 DSP56305 PBGA Signal Identification by Pin Number (Continued)

| Pin<br>No. | Signal Name     | Pin<br>No. | Signal Name     | Pin<br>No. | Signal Name     |
|------------|-----------------|------------|-----------------|------------|-----------------|
| K9         | GND             | M2         | DE              | N11        | $V_{CC}$        |
| K10        | GND             | M3         | TDO             | N12        | V <sub>CC</sub> |
| K11        | GND             | M4         | TMS             | N13        | A16             |
| K12        | $V_{CC}$        | M5         | $V_{CC}$        | N14        | A17             |
| K13        | $V_{CC}$        | M6         | $V_{CC}$        | N15        | A20             |
| K14        | D3              | M7         | $V_{CC}$        | N16        | NC              |
| K15        | D6              | M8         | $V_{CC}$        | P1         | TRST            |
| K16        | D4              | M9         | $V_{CC}$        | P2         | BS              |
| L1         | SRD1 or PD4     | M10        | $V_{CC}$        | P3         | AA0/RAS0        |
| L2         | STD0 or PC5     | M11        | $V_{CC}$        | P4         | CLKOUT          |
| L3         | SC02 or PC2     | M12        | V <sub>CC</sub> | P5         | PINIT/NMI       |
| L4         | SC01 or PC1     | M13        | A19             | P6         | $GND_P$         |
| L5         | $V_{CC}$        | M14        | A21             | P7         | BG              |
| L6         | GND             | M15        | A22             | P8         | AA3/RAS3        |
| L7         | GND             | M16        | A23             | P9         | EXTAL           |
| L8         | GND             | N1         | тск             | P10        | A5              |
| L9         | GND             | N2         | TDI             | P11        | A8              |
| L10        | GND             | N3         | NC              | P12        | A12             |
| L11        | GND             | N4         | BL              | P13        | NC              |
| L12        | $V_{CC}$        | N5         | TA              | P14        | A15             |
| L13        | V <sub>CC</sub> | N6         | $V_{CC}$        | P15        | NC              |
| L14        | D0              | N7         | $V_{CC}$        | P16        | A18             |
| L15        | D2              | N8         | $V_{CC}$        | R1         | NC              |
| L16        | D1              | N9         | A1              | R2         | NC              |
| M1         | SC00 or PC0     | N10        | A2              | R3         | AA1/RAS1        |

| Pin<br>No. | Signal Name      | Pin<br>No. | Signal Name       | Pin<br>No. | Signal Name |
|------------|------------------|------------|-------------------|------------|-------------|
| R4         | CAS              | R13        | A11               | T7         | BR          |
| R5         | V <sub>CCP</sub> | R14        | A14               | Т8         | WR          |
| R6         | BB               | R15        | NC                | Т9         | RD          |
| R7         | AA2/RAS2         | R16        | NC                | T10        | A0          |
| R8         | XTAL             | <b>T2</b>  | NC                | T11        | A4          |
| R9         | BCLK             | Т3         | BCLK              | T12 🗸      | A7          |
| R10        | A3               | T4         | RESET             | T13        | A10         |
| R11        | A6               | T5         | PCAP              | T14        | A13         |
| R12        | A9               | Т6         | GND <sub>1P</sub> | T15        | NC          |

**Table 3-1** DSP56305 PBGA Signal Identification by Pin Number (Continued)

Note:

- Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GNDp and GNDp1 that support the PLL, other GND signals do not support individual subsystems in the chip.
- 2. NC stands for Not Connected. These pins are reserved for future development. Do not connect and line, component, trace, or via to these pins.

 Table 3-2
 DSP56305 PBGA Signal Identification by Name

| Signal Name | Pin<br>No. | Signal Name              | Pin<br>No. | Signal Name | Pin<br>No. |
|-------------|------------|--------------------------|------------|-------------|------------|
| A0          | T10        | AA2                      | R7         | D22         | E15        |
| A1          | N9         | AA3                      | P8         | D23         | D16        |
| A10         | T13        | BB                       | R6         | D3          | K14        |
| A11         | R13        | BCLK                     | Т3         | D4          | K16        |
| A12         | P12        | BCLK                     | R9         | D5          | J14        |
| A13         | T14        | $\overline{\mathrm{BG}}$ | P7         | D6          | K15        |
| A14         | R14        | BL                       | N4         | D7          | J16        |
| A15         | P14        | $\overline{BR}$          | T7         | D8          | H16        |
| A16         | N13        | BS                       | P2         | D9          | H14        |
| A17         | N14        | CAS                      | R4         | <u>DE</u>   | M2         |
| A18         | P16        | CLKOUT                   | P4         | EXTAL       | P9         |
| A19         | M13        | D0                       | L4         | GND         | F10        |
| A2          | N10        | D1                       | L16        | GND         | F11        |
| A20         | N15        | D10                      | J15        | GND         | F6         |
| A21         | M14        | D11                      | H13        | GND         | F7         |
| A22         | M15        | D12                      | G13        | GND         | F8         |
| A23         | M16        | D13                      | H15        | GND         | F9         |
| A3          | R10        | D14                      | G16        | GND         | G10        |
| A4          | T11        | D15                      | G14        | GND         | G11        |
| A5          | P10        | D16                      | G15        | GND         | G6         |
| A6          | R11        | D17                      | F16        | GND         | G7         |
| A7          | T12        | D18                      | F13        | GND         | G8         |
| A8          | P11        | D19                      | F14        | GND         | G9         |
| A9          | R12        | D2                       | L15        | GND         | H10        |
| AA0         | Р3         | D20                      | F15        | GND         | H11        |
| AA1         | R3         | D21                      | E16        |             |            |

 Table 3-2
 DSP56305 PBGA Signal Identification by Name (Continued)

| Signal Name       | Pin<br>No. | Signal Name        | Pin<br>No. | Signal Name | Pin<br>No. |
|-------------------|------------|--------------------|------------|-------------|------------|
| GND               | H6         | HA0                | E4         | HAD21       | C10        |
| GND               | H7         | HA1                | C5         | HAD22       | B11        |
| GND               | Н8         | HA10               | D2         | HAD23       | A11        |
| GND               | Н9         | HA2                | В9         | HAD24       | A12        |
| GND               | J10        | HA3                | F2         | HAD25       | B12        |
| GND               | J11        | HA4                | F1         | HAD26       | C12        |
| GND               | J6         | HA5                | E1         | HAD27       | A13        |
| GND               | Ј7         | HA6                | F3         | HAD28       | D12        |
| GND               | J8         | HA7                | E2         | HAD29       | B13        |
| GND               | Ј9         | HA8                | D1         | HAD3        | F3         |
| GND               | K10        | HA9                | E3         | HAD30       | A14        |
| GND               | K11        | HAD0               | F2         | HAD31       | B14        |
| GND               | K6         | H <mark>AD1</mark> | F1         | HAD4        | E2         |
| GND               | K7         | HAD10              | D4         | HAD5        | D1         |
| GND               | K8         | HAD11              | C2         | HAD6        | E3         |
| GND               | K9         | HAD12              | C3         | HAD7        | D2         |
| GND               | L10        | HAD13              | C4         | HAD8        | C1         |
| GND               | L11        | HAD14              | В3         | HAD9        | D3         |
| GND               | L6         | HAD15              | A3         | HAEN        | B4         |
| GND               | L7         | HAD16              | A8         | HBE0        | E4         |
| GND               | L8         | HAD17              | A9         | HBE1        | C5         |
| GND               | L9         | HAD18              | С9         | HBE2        | В9         |
| GND <sub>1P</sub> | Т6         | HAD19              | B10        | HBE3        | C11        |
| GND <sub>P</sub>  | P6         | HAD2               | E1         | HBS         | C7         |
|                   |            | HAD20              | A10        | HC0         | E4         |

 Table 3-2
 DSP56305 PBGA Signal Identification by Name (Continued)

| Signal Name | Pin<br>No. | Signal Name         | Pin<br>No. | Signal Name | Pin<br>No. |
|-------------|------------|---------------------|------------|-------------|------------|
| HC1         | C5         | HD7                 | A3         | HTA         | C6         |
| HC2         | В9         | HD8                 | A8         | HTRDY       | D8         |
| HC3         | C11        | HD9                 | A9         | HWR         | D7         |
| HCLK        | A4         | HDAK                | A5         | ĪRQĀ        | E14        |
| HD0         | C1         | HDBDR               | A7         | <u>IRQB</u> | D15        |
| HD1         | D3         | HDBEN               | D8         | <u>IRQC</u> | D13        |
| HD10        | C9         | HDEVSEL             | В7         | <u>IRQD</u> | C13        |
| HD11        | B10        | HDRQ                | A6         | MODA        | E14        |
| HD12        | A10        | HDS                 | B8         | MODB        | D15        |
| HD13        | C10        | HFRAME              | C8         | MODC        | D13        |
| HD14        | B11        | HGNT                | B4         | MODD        | C13        |
| HD15        | A11        | HIDSEL              | B8         | NC          | A15        |
| HD16        | A12        | HINTA               | H2         | NC          | A2         |
| HD17        | B12        | HIRDY               | A7         | NC          | B1         |
| HD18        | C12        | HIRQ                | В6         | NC          | B15        |
| HD19        | A13        | H <mark>LOCK</mark> | C7         | NC          | B16        |
| HD2         | D4         | HPAR                | A5         | NC          | B2         |
| HD20        | D12        | HPERR               | A6         | NC          | C14        |
| HD21        | B13        | HRD                 | В8         | NC          | C15        |
| HD22        | A14        | HREQ                | C6         | NC          | C16        |
| HD23        | B14        | HRST/HRST           | B5         | NC          | D14        |
| HD3         | C2         | HRW                 | D7         | NC          | N16        |
| HD4         | C3         | HSAK                | В7         | NC          | N3         |
| HD5         | C4         | HSERR               | В6         | NC          | P13        |
| HD6         | В3         | HSTOP               | D7         | NC          | P15        |

Table 3-2 DSP56305 PBGA Signal Identification by Name (Continued)

| Signal Name | Pin<br>No. | Signal Name | Pin<br>No. | Signal Name | Pin<br>No. |
|-------------|------------|-------------|------------|-------------|------------|
| NC          | R1         | PB3         | F3         | RAS0        | Р3         |
| NC          | R2         | PB4         | E2         | RAS1        | R3         |
| NC          | R15        | PB5         | D1         | RAS2        | R7         |
| NC          | R16        | PB6         | E3         | RAS3        | P8         |
| NC          | T2         | PB7         | D2         | RD          | Т9         |
| NC          | T15        | PB8         | C1         | RESET       | T4         |
| NMI         | P5         | PB9         | D3         | RXD         | G2         |
| PB0         | F2         | PC0         | M1         | SC00        | M1         |
| PB1         | F1         | PC1         | L4         | SC01        | L4         |
| PB10        | D4         | PC2         | L3         | SC02        | L3         |
| PB11        | C2         | PC3         | K3         | SC10        | J4         |
| PB12        | C3         | PC4         | K4         | SC11        | J1         |
| PB13        | C4         | PC5         | L2         | SC12        | J2         |
| PB14        | В3         | PCAP        | T5         | SCK0        | K3         |
| PB15        | A3         | PD0         | J4         | SCK1        | K2         |
| PB16        | E4         | PD1         | J1         | SCLK        | H1         |
| PB17        | C5         | PD2         | J2         | SRD0        | K4         |
| PB18        | B9         | PD3         | K2         | SRD1        | L1         |
| PB19        | C11        | PD4         | L1         | STD0        | L2         |
| PB2         | E1         | PD5         | K1         | STD1        | K1         |
| PB20        | D8         | PE0         | G2         | TA          | N5         |
| PB21        | A7         | PE1         | J3         | TCK         | N1         |
| PB22        | В7         | PE2         | H1         | TDI         | N2         |
| PB23        | C7         | PINIT       | P5         | TDO         | M3         |
|             |            | PVCL        | D6         | TIO0        | Н3         |

Table 3-2 DSP56305 PBGA Signal Identification by Name (Continued)

| Signal Name     | Pin<br>No. | Signal Name     | Pin<br>No. | Signal Name     | Pin<br>No. |
|-----------------|------------|-----------------|------------|-----------------|------------|
| TIO1            | G1         | $V_{CC}$        | F12        | $V_{CC}$        | M10        |
| TIO2            | G3         | V <sub>CC</sub> | F4         | V <sub>CC</sub> | M11        |
| TMS             | M4         | V <sub>CC</sub> | F5         | V <sub>CC</sub> | M12        |
| TRST            | P1         | $V_{CC}$        | G12        | $V_{CC}$        | M5         |
| TXD             | J3         | $V_{CC}$        | G4         | V <sub>CC</sub> | M6         |
| $V_{CC}$        | D10        | $V_{CC}$        | G5         | V <sub>CC</sub> | M7         |
| $V_{CC}$        | D11        | $V_{CC}$        | H12        | V <sub>CC</sub> | M8         |
| $V_{CC}$        | D5         | $V_{CC}$        | H4         | V <sub>CC</sub> | M9         |
| $V_{CC}$        | D9         | V <sub>CC</sub> | H5         | $V_{CC}$        | N11        |
| $V_{CC}$        | E10        | V <sub>CC</sub> | J12        | V <sub>CC</sub> | N12        |
| $V_{CC}$        | E11        | V <sub>CC</sub> | J13        | V <sub>CC</sub> | N6         |
| $V_{CC}$        | E12        | V <sub>CC</sub> | J5         | $V_{CC}$        | N7         |
| $V_{CC}$        | E13        | V <sub>cc</sub> | K12        | $V_{CC}$        | N8         |
| $V_{CC}$        | E5         | $V_{CC}$        | K13        | $V_{CCP}$       | R5         |
| V <sub>CC</sub> | E6         | V <sub>CC</sub> | K5         | WR              | Т8         |
| V <sub>CC</sub> | E7         | Vcc             | L12        | XTAL            | R8         |
| V <sub>CC</sub> | E8         | V <sub>CC</sub> | L13        |                 |            |
| V <sub>CC</sub> | E9         | V <sub>CC</sub> | L5         |                 |            |

Note: NC stands for Not Connected. These pins are reserved for future development. Do not connect and line, component, trace, or via to these pins.

## **PBGA Package Mechanical Drawing**



Figure 3-3 DSP56305 Mechanical Information, 252-pin PBGA Package

#### ORDERING DRAWINGS

Complete mechanical information regarding DSP56305 packaging is available by facsimile through Motorola's Mfax<sup>TM</sup> system. Call the following number to obtain information by facsimile:

(602) 244-6591

The Mfax automated system requests the following information:

- The receiving facsimile telephone number including area code or country code
- The caller's Personal Identification Number (PIN)

**Note:** For first time callers, the system provides instructions for setting up a PIN, which requires entry of a name and telephone number.

- The type of information requested:
  - Instructions for using the system
  - A literature order form
  - Specific part technical information or data sheets
  - Other information described by the system messages

A total of three documents may be ordered per call.

The reference number for the 252-pin PBGA package is 1205-01.



# SECTION 4

# **DESIGN CONSIDERATIONS**

#### THERMAL DESIGN CONSIDERATIONS

An estimation of the chip junction temperature, T<sub>J</sub>, in °C can be obtained from the equation:

**Equation 1:**  $T_J = T_A + (P_D \times R_{\theta JA})$ 

Where:

 $T_A$  = ambient temperature °C

 $R_{\theta JA}$  = package junction-to-ambient thermal resistance °C/W

 $P_D$  = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2:  $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ 

Where:

 $R_{\theta JA}$  = package junction-to-ambient thermal resistance °C/W

 $R_{\theta IC}$  = package junction-to-case thermal resistance °C/W

 $R_{0CA} = package$  case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$  is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or otherwise change the thermal dissipation capability of the area surrounding the device on a printed circuit board. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the printed circuit board, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

#### **Thermal Design Considerations**

The thermal performance of plastic packages is more dependent on the temperature of the printed circuit board to which the package is mounted. Again, if the estimations obtained from  $R_{\theta JA}$  do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages:

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case.
- If the temperature of the package case  $(T_T)$  is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation  $(T_I T_T)/P_D$ .

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, Thermal Characterization Parameter or  $\Psi_{\text{TT}}$ , has been defined to be

 $(T_J - T_T)/P_D$ . This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.



#### **ELECTRICAL DESIGN CONSIDERATIONS**

#### **CAUTION**

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V<sub>CC</sub>).

Use the following list of recommendations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each  $V_{CC}$  pin on the DSP, and from the board ground to each GND pin.
- Use at least six  $0.01-0.1~\mu F$  bypass capacitors positioned as close as possible to the four sides of the package to connect the  $V_{CC}$  power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V<sub>CC</sub> and GND pins are less than 0.5 in per capacitor lead.
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V<sub>CC</sub> and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V<sub>CC</sub> and GND circuits.
- Every input pin (except TRST, TMS, and DE—these three pins have internal pull-up resistors) should be driven to a valid value after deassertion of RESET (i.e., each pin should be connected to a pull-up or pull-down resistor if not used). However, if HRST is kept asserted, only HFRAME and HCLK require a pull-up resistor or connection to VCC; the remaining HI32 pins do not require external pull-up or pull-down connections. Unused outputs may be left

#### **Power Consumption Considerations**

unconnected. Unused GPIO pins may either be connected to pull-up or pull-down resistors, or, defined as outputs and left unconnected.

- Take special care to minimize noise levels on the  $V_{CCP}$ ,  $GND_P$ , and  $GND_{P1}$  pins.
- The following pins must be asserted after power-up: RESET and TRST (see **Note 4** in **Table 2-7**).
- If multiple DSP56305 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.

#### POWER CONSUMPTION CONSIDERATIONS

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is Alternating Current (AC), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by the formula:

**Equation 3:**  $I = C \times V \times f$ 

where:  $C = node/pin_{capacitance}$ 

V = voltage swing

f = frequency of node/pin toggle

#### Example 4-1 Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is:

**Equation 4:** 
$$V = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^6 = 5.48 \text{ mA}$$

The Maximum Internal Current (I<sub>CCI</sub>max) value reflects the typical possible switching of the internal buses on worst-case operation conditions, which is not necessarily a real application case. The Typical Internal Current (I<sub>CCItyp</sub>) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption:

- Set the EBD bit when not accessing external memory.
- Minimize external memory accesses, and use internal memory accesses.
- Minimize the number of pins that are switching.

- Minimize the capacitive load on the pins.
- Connect the unused inputs to pull-up or pull-down resistors. Unused outputs
  may be left unconnected. Unused GPIO pins may either be connected to pullup or pull-down resistors, or defined as outputs and left unconnected.
- Disable unused peripherals.
- Disable unused pin activity (e.g., CLKOUT, XTAL).

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value:

**Equation 5:**  $I/MIPS = I/MHz = (I_{typF2} - I_{typF1})/(F2 - F1)$ 

where:  $I_{typF2} = current$  at F2

 $I_{typF1}$  = current at F1

F2 = high frequency (any specified operating frequency)

F1 = low frequency (any specified operating frequency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

#### PLL PERFORMANCE ISSUES

The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

## Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2-2** on page 2-7, for input frequencies greater than 15 MHz and the Multiplication Factor (MF)  $\leq$  4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

#### **Phase Jitter Performance**

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF  $\leq$  4, this jitter is less than  $\pm 0.6$  ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than  $\pm 2$  ns.

## **Frequency Jitter Performance**

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and  $\sim$ 2%. For large MF (MF > 500), the frequency jitter is 2–3%.

## Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values.





# SECTION 5 ORDERING INFORMATION

### **ORDERING PRODUCT**

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and to place an order.

 Table 5-1
 Ordering Information

| Part     | Supply<br>Voltage | Package Type                      | Pin Count | Frequency<br>(MHz) | Order Number |  |
|----------|-------------------|-----------------------------------|-----------|--------------------|--------------|--|
| DSP56305 | 3 V               | Plastic Ball Grid<br>Array (PBGA) | 252       | 80                 | DSP56305GC80 |  |





## APPENDIX A

## POWER CONSUMPTION BENCHMARK

The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated Multiply-Accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
;*
            Typical Power Consumption
         page
                   200,55,0,0,0
         nolist
I_VEC EQU $000000
                  ; Interrupt vectors for program debug only
                  ; MAIN (external) program starting address
START EQU $8000
INT_PROG EQU$100
                 ; INTERNAL program memory starting address
INT_XDAT EQU$0
                  ; INTERNAL X-data memory starting address
INT YDAT EOU$0
                   ; INTERNAL Y-data memory starting address
         INCLUDE "ioequ.asm"
         INCLUDE "intequ.asm"
         list
                   P:START
         movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)
  Area 2 : 0 w.s (SSRAM)
 Default: 1 w.s (SRAM)
                   #$0d0000,x:M_PCTL; XTAL disable
 PLL enable
 CLKOUT disable
;Load the program
         move
                   #INT_PROG,r0
                   #PROG_START,r1
         move
         do
                   #(PROG_END-PROG_START),PLOAD_LOOP
         move
                   p:(r1)+,x0
                   x0,p:(r0)+
         move
```

```
nop
PLOAD_LOOP
; Load the X-data
                    #INT_XDAT,r0
          move
                    #XDAT_START,r1
          move
          do
                    #(XDAT_END-XDAT_START),XLOAD_LOOP
                    p:(r1)+,x0
          move
                    x0,x:(r0)+
          move
XLOAD_LOOP
;Load the Y-data
          move
                    #INT_YDAT,r0
                    #YDAT_START,r1
          move
                    #(YDAT_END-YDAT_START),YLOAD_LOOP
          do
                    p:(r1)+,x0
          move
          move
                    x0,y:(r0)+
YLOAD_LOOP
          jmp
                    INT_PROG
PROG_START
                    #$0,r0
          move
          move
                    #$0,r4
          move
                    #$3f,m0
                    #$3f,m4
          move
          clr
                    a
                    b
          clr
                    #$0,x0
          move
                    #$0<mark>,</mark>x1
          move
                    #$0,y0
          move
          move
                    #$0,y1
          bset
                    \#4,omr
                                         ; ebd
          dor
sbr
                    #60,_end
          mac
                    x0,y0,a
                              x:(r0)+,x1
                                                   y:(r4)+,y1
          mac
                    x1,y1,a
                              x:(r0)+,x0
                                                   y:(r4)+,y0
          add
                    a,b
          mac
                    x0,y0,a
                              x:(r0)+,x1
          mac
                    x1,y1,a
                                                   y:(r4)+,y0
          move
                    b1,x:$ff
_end
          bra
                    sbr
          nop
          nop
          nop
          nop
PROG_END
          nop
```

nop

| XDAT_S   |      |                         |  |          |  |
|----------|------|-------------------------|--|----------|--|
| ;        | org  | x:0                     |  |          |  |
|          | dc   | \$262EB9                |  |          |  |
|          | dc   | \$86F2FE                |  |          |  |
|          | dc   | \$E56A5F                |  |          |  |
|          | dc   | \$616CAC                |  | 4        |  |
|          | dc   | \$8FFD75                |  |          |  |
|          | dc   | \$9210A                 |  |          |  |
|          | dc   | \$A06D7B                |  |          |  |
|          | dc   | \$CEA798                |  |          |  |
|          | dc   | \$8DFBF1                |  |          |  |
|          | dc   | \$A063D6                |  |          |  |
|          | dc   | \$6C6657                |  |          |  |
|          | dc   | \$C2A544                |  |          |  |
|          | dc   | \$A3662D                |  |          |  |
|          | dc   | \$A4E762                |  | <b>-</b> |  |
|          | dc   | \$84F0F3                |  |          |  |
|          | dc   | \$E6F1B0                |  |          |  |
|          | dc   | \$B3829                 |  |          |  |
|          | dc   | \$8BF7AE                |  |          |  |
|          | dc   | \$63A94F                |  |          |  |
|          | dc   | \$EF78DC                |  |          |  |
|          | dc   | \$242DE5                |  |          |  |
|          | dc   | \$A3E0BA                |  |          |  |
|          | dc   | \$EBAB6B                |  |          |  |
|          | dc   | \$8726C8                |  |          |  |
|          | dc   | \$CA361                 |  |          |  |
|          | dc   | \$ <mark>2F6E</mark> 86 |  |          |  |
|          | dc   | \$A57347                |  |          |  |
|          | dc   | \$4BE774                |  |          |  |
|          | dc   | \$8F349D                |  |          |  |
|          | dc   | \$A1ED12                |  |          |  |
|          | dc   | \$4BFCE3                |  |          |  |
|          | dc   | \$EA26E0                |  |          |  |
|          | dc   | \$CD7D99                |  |          |  |
|          | dc   | \$4BA85E                |  |          |  |
|          | dc   | \$27A43F                |  |          |  |
|          | dc   | \$A8B10C                |  |          |  |
|          | / dc | \$D3A55                 |  |          |  |
|          | dc   | \$25EC6A                |  |          |  |
|          | dc   | \$2A255B                |  |          |  |
| <b>₹</b> | dc   | \$A5F1F8                |  |          |  |
|          | dc   | \$2426D1                |  |          |  |
|          | dc   | \$AE6536                |  |          |  |
|          | dc   | \$CBBC37                |  |          |  |
|          | dc   | \$6235A4                |  |          |  |
|          | dc   | \$37F0D                 |  |          |  |
|          | dc   | \$63BEC2                |  |          |  |
|          | dc   | \$A5E4D3                |  |          |  |
|          | dc   | \$8CE810                |  |          |  |



```
dc
                    $A1B6EB
          dc
                    $48AC48
          dc
                    $EF7AE1
                    $6E3006
          dc
          dc
                    $62F6C7
          dc
                    $6064F4
          dc
                    $87E41D
          dc
                    $CB2692
                    $2C3863
          dc
                    $C6BC60
          dc
          dc
                    $43A519
          dc
                    $6139DE
          dc
                    $ADF7BF
          dc
                    $4B3E8C
          dc
                    $6079D5
          dc
                    $EOF5EA
          dc
                    $8230DB
                    $A3B778
          dc
          dc
                    $2BFE51
          dc
                    $E0A6B6
          dc
                    $68FFB7
          dc
                    $28F324
          dc
                    $8F2E8D
                    $667842
          dc
          dc
                    $83E053
                    $A1FD90
          dc
          dc
                    $6B2689
          dc
                    $85B68E
                    $622EAF
          dc
          dc
                    $6162BC
          dc
                    $E4A245
YDAT_END
          EQUATES for DSP56301 I/O registers and ports
          Reference: DSP56301 Specifications Revision 3.00
          L<mark>a</mark>st update:
                              November 15 1993
          Changes:
                              GPIO for ports C,D and E,
                              HI32
                              DMA status req
                               PLL control reg
                              AAR
                              SCI registers address
                              SSI registers addr. + split TSR from SSISR
          December 19 1993 (cosmetic - page and opt directives)
                     9 1994 ESSI and SCI control registers bit update
          August
* * *
```

```
page 132,55,0,0,0 opt mex
ioequ ident 1,0
;-----
      EQUATES for I/O Port Programming
      Register Addresses
M_DATH EQU $FFFFCF ; Host port GPIO data Register
M DIRH EQU $FFFFCE ; Host port GPIO direction Register
M_PCRC EQU $FFFFBF ; Port C Control Register
M_PRRC EQU $FFFFBE ; Port C Direction Register
M_PDRC EQU $FFFFBD ; Port C GPIO Data Register
M_PCRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAE ; Port D Direction Data Register
M_PDRD EQU $FFFFAD ; Port D GPIO Data Register
M_PCRE EQU $FFFF9F; Port E Control register
M_PRRE EQU $FFFF9E ; Port E Direction Register
M_PDRE EQU $FFFF9D ; Port E Data Register
M_OGDB EQU $FFFFFC ; OnCE GDB Register
                                <mark>_</mark>
------
; EQUATES for Host Interface
                             ______
   Register Addresses
M DTXS EQU SFFFFCD ; DSP SLAVE TRANSMIT DATA FIFO (DTXS)
M_DTXM EQU $FFFFCC ; DSP MASTER TRANSMIT DATA FIFO (DTXM)
M_DRXR EQU $FFFFCB ; DSP RECEIVE DATA FIFO (DRXR)
M_DPSR EQU $FFFFCA ; DSP PCI STATUS REGISTER (DPSR)
M_DSR EQU $FFFFC9 ; DSP STATUS REGISTER (DSR)
M_DPAR EQU $FFFFC8 ; DSP PCI ADDRESS REGISTER (DPAR)
M_DPMC EQU $FFFFC7 ; DSP PCI MASTER CONTROL REGISTER (DPMC)
M_DPCR EQU $FFFFC6 ; DSP PCI CONTROL REGISTER (DPCR)
M_DCTR EQU $FFFFC5 ; DSP CONTROL REGISTER (DCTR)
     Host Control Register Bit Flags
M_HCIE EQU 0 ; Host Command Interrupt Enable
M_STIE EQU 1 ; Slave Transmit Interrupt Enable
M_SRIE EQU 2 ; Slave Receive Interrupt Enable
```

```
M_HF35 EQU $38
                   ; Host Flags 5-3 Mask
M_HF3 EQU 3
                    ; Host Flag 3
M HF4 EQU 4
                   ; Host Flag 4
M_HF5 EQU 5
                   ; Host Flag 5
M HINT EQU 6
                   ; Host Interrupt A
M_HDSM EQU 13
                   ; Host Data Strobe Mode
M_HDSM EQU 13

M_HRWP EQU 14

; Host RD/WR Polarity

M_HTAP EQU 15

; Host Transfer Acknowledge Polarity

M_HDRP EQU 16

; Host Dma Request Polarity
M HIRP EQU 18
                   ; Host Interrupt Request Polarity
M_HIRC EQU 19
                   ; Host Interupt Request Control
                   ; Host Interface Mode
M_HM0 EQU 20
                   ; Host Interface Mode
M_HM1 EQU 21
M HM2 EQU 22
                   ; Host Interface Mode
M HM EOU $700000 ; Host Interface Mode Mask
        Host PCI Control Register Bit Flags
                   ; PCI Master Transmit Interrupt Enable
M_PMTIE EQU 1
M_PMRIE EQU 2
                   ; PCI Master Receive Interrupt Enable
M_PMAIE EQU 4
                   ; PCI Master Address Interrupt Enable
M_PPEIE EQU 5
                   ; PCI Parity Error Interrupt Enable
M_PTAIE EQU 7
                   ; PCI Transaction Abort Interrupt Enable
M_PTTIE EQU 9 ; PCI Transaction Termination Interrupt Enable
M_PTCIE EQU 12 ; PCI Transfer Complete Interrupt Enable
M_CLRT EQU 14 ; Clear Transmitter
M MTT EOU 15
                   ; Master Transfer Terminate
M_SERF EQU 16
                   ; HSERR~ Force
                   ; Master Access Counter Enable
M_MACE EQU 18
M_MWSD EQU 19
                    ; Master Wait States Disable
M_RBLE EQU 20
                   ; Receive Buffer Lock Enable
M_IAE EQU 21
                   ; Ins<mark>e</mark>rt Address Enable
        Host PCI Master Control Register Bit Flags
M_ARH EQU $00ffff ; DSP PCI Transaction Address (High)
M BL EQU $3f0000 ; PCI Data Burst Length
M FC EQU $c00000 ; Data Transfer Format Control
        Host PCI Address Register Bit Flags
M_ARL EQU $00ffff ; DSP PCI Transaction Address (Low)
M C EQU $0f0000 ; PCI Bus Command
M BE EQU $f00000 ; PCI Byte Enables
        DSP Status Register Bit Flags
M_HCP EQU 0
                   ; Host Command pending
M STRO EQU 1
                   ; Slave Transmit Data Request
M SRRQ EQU 2
                   ; Slave Receive Data Request
                   ; Host Flag 0-2 Mask
M_HF02 EQU $38
M_HF0 EQU 3
                   ; Host Flag 0
```

```
M_HF1 EQU 4 ; Host Flag 1
M_HF2 EQU 5 ; Host Flag 2
           DSP PCI Status Register Bit Flags
M MWS EOU 0
                               ; PCI Master Wait States
M_MWS EQU 0 ; PCI Master Wait States

M_MTRQ EQU 1 ; PCI Master Transmit Data Request

M_MRRQ EQU 2 ; PCI Master Receive Data Request

M_MARQ EQU 4 ; PCI Master Address Request

M_APER EQU 5 ; PCI Address Parity Error

M_DPER EQU 6 ; PCI Data Parity Error

M_MAB EQU 7 ; PCI Master Abort

M_TAB EQU 8 ; PCI Target Abort

M_TDIS EQU 9 ; PCI Target Disconnect

M_TRTY EQU 10 ; PCI Target Retry

M_TO EQU 11 ; PCI Time Out Termination

M_RDC EQU $3F0000 ; Remaining Data Count Mask (RDC5-R
M RDC EQU $3F0000 ; Remaining Data Count Mask (RDC5-RDC0)
M_RDC EQU $3F0000 , Remaining Data Count Mask
M_RDC0 EQU 16 ; Remaining Data Count 0
M_RDC1 EQU 17 ; Remaining Data Count 1
M_RDC2 EQU 18 ; Remaining Data Count 2
M_RDC3 EQU 19 ; Remaining Data Count 3
M_RDC4 EQU 20 ; Remaining Data Count 4
M_RDC5 EQU 21 ; Remaining Data Count 5
M_HACT EQU 23 ; Hi32 Active
           EQUATES for Serial Communications Interface (SCI)
             Register Addresses
M_STXH EQU $FFFF97; SCI Transmit Data Register (high)
M_STXM_EQU $FFFF96 ; SCI Transmit Data Register (middle)
M STXL EQU SFFFF95 ; SCI Transmit Data Register (low)
M_SRXH EQU $FFFF9A ; SCI Receive Data Register (high)
M_SRXM EQU $FFFF99 ; SCI Receive Data Register (middle)
M_SRXL EQU $FFFF98 ; SCI Receive Data Register (low)
M_STXA EQU $FFFF94 ; SCI Transmit Address Register
M_SCR EQU $FFFF9C ; SCI Control Register
M_SSR EQU $FFFF93 ; SCI Status Register
M_SCCR EQU $FFFF9B ; SCI Clock Control Register
 ; SCI Control Register Bit Flags
```

```
M_SSFTD EQU 3
                     ; SCI Shift Direction
M_SBK EQU 4
                     ; Send Break
                    ; Wakeup Mode Select
M_WAKE EQU 5 ; Wakeup Mode Select
M_RWU EQU 6 ; Receiver Wakeup Enable
M_WOMS EQU 7 ; Wired-OR Mode Select
M_SCRE EQU 8 ; SCI Receiver Enable
M_SCTE EQU 9 ; SCI Transmitter Enable
M_ILIE EQU 10 ; Idle Line Interrupt Enable
M_SCRIE EQU 11 ; SCI Receive Interrupt Enable
M_SCTIE EQU 12 ; SCI Transmit Interrupt Enable
M_WAKE EQU 5
M_TMIE EQU 13
                    ; Timer Interrupt Enable
M_TIR EQU 14
                     ; Timer Interrupt Rate
M_SCKP EQU 15 ; SCI Clock Polarity
M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE)
       SCI Status Register Bit Flags
                ; Transmitter Empty
; Transmit Data Register Empty
M_TRNE EQU 0
M_TDRE EQU 1
M_RDRF EQU 2
                    ; Receive Data Register Full
M_IDLE EQU 3
                    ; Idle Line Flag
M_OR EQU 4
                     ; Overrun Error Flag
M_PE EQU 5
                    ; Parity Error
                    ; Framing Error Flag
M_FE EQU 6
                   ; Received Bit 8 (R8) Address
M_R8 EQU 7
; SCI Clock Control Register
M CD EQU $FFF
                   Clock Divider Mask (CD0-CD11)
M_COD EQU 12
                    ; Clock Out Divider
                   ; Clock Prescaler
M_SCP EQU 13
M_RCM EQU 14
                     ; Receive Clock Mode Source Bit
                    ; Transmit Clock Source Bit
M_TCM EQU 15
        EQUATES for Synchronous Serial Interface (SSI)
        Register Addresses Of SSIO
M TX00 EQU $FFFFBC ; SSI0 Transmit Data Register 0
M_TX01 EQU $FFFFBB ; SSIO Transmit Data Register 1
M_TX02 EQU $FFFFBA; SSIO Transmit Data Register 2
M_TSR0 EQU $FFFFB9 ; SSI0 Time Slot Register
M_RX0 EQU $FFFFB8 ; SSI0 Receive Data Register
M_SSISRO EQU $FFFFB7; SSIO Status Register
M_CRBO EQU $FFFFB6 ; SSIO Control Register B
M_CRA0 EQU $FFFFB5 ; SSI0 Control Register A
M_TSMA0 EQU $FFFFB4; SSI0 Transmit Slot Mask Register A
```

```
M_TSMB0 EQU $FFFFB3; SSI0 Transmit Slot Mask Register B
M_RSMA0 EQU $FFFFB2; SSI0 Receive Slot Mask Register A
M_RSMB0 EQU $FFFFB1; SSI0 Receive Slot Mask Register B
         Register Addresses Of SSI1
M TX10 EQU $FFFFAC ; SSI1 Transmit Data Register 0
M_TX11 EQU $FFFFAB ; SSI1 Transmit Data Register 1
M_TX12 EQU $FFFFAA ; SSI1 Transmit Data Register 2
M_TSR1 EQU $FFFFA9 ; SSI1 Time Slot Register
M_RX1 EQU $FFFFA8 ; SSI1 Receive Data Register
M_SSISR1 EQU $FFFFA7; SSI1 Status Register
M_CRB1 EQU $FFFFA6 ; SSI1 Control Register B
M_CRA1 EQU $FFFFA5 ; SSI1 Control Register A
M_TSMA1 EQU $FFFFA4; SSI1 Transmit Slot Mask Register A
M_TSMB1 EQU $FFFFA3; SSI1 Transmit Slot Mask Register B
M_RSMA1 EQU $FFFFA2; SSI1 Receive Slot Mask Register A
M RSMB1 EQU $FFFFA1; SSI1 Receive Slot Mask Register B
         SSI Control Register A Bit Flags
M_PM EQU $FF
                     ; Prescale Modulus Select Mask (PM0-PM7)
M_PSR EQU 11
                     ; Prescaler Range
M_DC EQU $1F000 ; Frame Rate Divider Control Mask (DC0-DC7)
                    ; Alignment Control (ALC)
M_ALC EQU 18
M_WL EQU $380000 ; Word Length Control Mask (WL0-WL7)
M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1)
         SSI Control Register B Bit Flags
M_OF EQU $3
                     / Serial Output Flag Mask
M_OF0 EQU 0
                     ; Serial Output Flag 0
M_OF1 EQU 1
                     ; Serial Output Flag 1
                    ; Serial Control Direction Mask
M_SCD EQU $1C
                    ; Serial Control 0 Direction
M_SCD0 EQU 2
; Clock Source Direction
M_SCKD EQU 5
M SHFD EQU 6
                   ; Shift Direction
M_FSL EQU $180 ; Frame Sync Length Mask (FSL0-FSL1)
M_FSL0 EQU 7 ; Frame Sync Length 0
M_FSL1 EQU 8 ; Frame Sync Length 1
M_FSR EQU 9 ; Frame Sync Relative Timing
M_FSP EQU 10 ; Frame Sync Polarity
M_CKP EQU 11 ; Clock Polarity
                ; Sync/Async Control; SSI Mode Select
M_SYN EQU 12
M_MOD EQU 13
M_SSTE EQU $1C000 ; SSI Transmit enable Mask
M_SSTE2 EQU 14 ; SSI Transmit #2 Enable
M_SSTE1 EQU 15 ; SSI Transmit #1 Enable
M_SSTE0 EQU 16 ; SSI Transmit #0 Enable
M_SSRE EQU 17 ; SSI Receive Enable
M_SSTIE EQU 18 ; SSI Transmit Interrupt Enable
M_SSRIE EQU 19 ; SSI Receive Interrupt Enable
```

```
M_STLIE EQU 20 ; SSI Transmit Last Slot Interrupt Enable
M_SRLIE EQU 21  ; SSI Receive Last Slot Interrupt Enable M_STEIE EQU 22  ; SSI Transmit Error Interrupt Enable M_SREIE EQU 23  ; SSI Receive Error Interrupt Enable
; SSI Status Register Bit Flags
M_IF EQU $3
                     ; Serial Input Flag Mask
M_IFO EQU 0
                    ; Serial Input Flag 0
M_IF1 EQU 1
                     ; Serial Input Flag 1
M_TFS EQU 2
                     ; Transmit Frame Sync Flag
M_RFS EQU 3 ; Receive Frame Sync Flag

M_TUE EQU 4 ; Transmitter Underrun Error FLag

M_ROE EQU 5 ; Receiver Overrun Error Flag

M_TDE EQU 6 ; Transmit Data Register Empty

M_RDF EQU 7 ; Receive Data Register Full
         SSI Transmit Slot Mask Register A
M_SSTSA EQU $FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15)
       SSI Transmit Slot Mask Register B
M_SSTSB EQU $FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31)
       SSI Receive Slot Mask Register A
SSI Receive Slot Mask Register B
M_SSRSB EQU $FFFF ; $SI Receive Slot Bits Mask B (RS16-RS31)
         EQUATES for Exception Processing
         Register Addresses
M_IPRC EQU $FFFFFF ; Interrupt Priority Register Core
M_IPRP EQU $FFFFFE ; Interrupt Priority Register Peripheral
       Interrupt Priority Register Core (IPRC)
M_IAL EQU $7 ; IRQA Mode Mask
```

```
M_IALO EQU 0  ; IRQA Mode Interrupt Priority Level (low)
M_IAL1 EQU 1  ; IRQA Mode Interrupt Priority Level (high)
M_IAL2 EQU 2  ; IRQA Mode Trigger Mode

M_IBL EQU $38  ; IRQB Mode Mask

M_IBLO EQU 3  ; IRQB Mode Interrupt Priority Level (low)
M_IBL1 EQU 4  ; IRQB Mode Interrupt Priority Level (high)
M_IBL2 EQU 5  ; IRQB Mode Trigger Mode

M_ICL EQU $1C0  ; IRQC Mode Mask

M_ICLO EQU 6  ; IRQC Mode Interrupt Priority Level (low)
M_ICL1 EQU 7  ; IRQC Mode Interrupt Priority Level (high)
M_ICL2 EQU 8  ; IRQC Mode Trigger Mode

M_IDL EQU $200  ; IRQD Mode Mask

M_IDLO EQU 9  ; IRQD Mode Interrupt Priority Level (low)
M_IDL1 EQU $200  ; IRQD Mode Interrupt Priority Level (high)
M_IDL2 EQU 10  ; IRQD Mode Interrupt Priority Level (high)
M_IDL2 EQU $3000  ; DMAO Interrupt Priority Level Mask
M_DOL0 EQU $2  ; DMAO Interrupt Priority Level (low)
  M_IALO EQU 0
                                                      ; IRQA Mode Interrupt Priority Level (low)
M_DOLO EQU 12 ; DMAO Interrupt Priority Level (low)
M_DOL1 EQU 13 ; DMAO Interrupt Priority Level (high)
M_D1L EQU $C000 ; DMA1 Interrupt Priority Level Mask
M_D1L0 EQU 14 ; DMA1 Interrupt Priority Level (low)
M_D1L1 EQU 15 ; DMA1 Interrupt Priority Level (high)
  M_D2L EQU $30000 ; DMA2 Interrupt priority Level Mask
 M_D2L0 EQU 16 ; DMA2 Interrupt Priority Level (low)
M_D2L1 EQU 17 ; DMA2 Interrupt Priority Level (high)
 M_D3L EQU $C0000 ; DMA3 Interrupt Priority Level Mask
 M_D3L0 EQU 18 ; DMA3 Interrupt Priority Level (low)
M_D3L1 EQU 19 ; DMA3 Interrupt Priority Level (high)
  M_D4L EQU $300000 ; DMA4 Interrupt priority Level Mask
 M_D4L0 EQU 20 ; DMA4 Interrupt Priority Level (low)
 M_D4L1 EQU 21 ; DMA4 Interrupt Priority Level (high)
  M_D5L EQU $C00000 ; DMA5 Interrupt priority Level Mask
  M_D5L0 EQU 22 ; DMA5 Interrupt Priority Level (low)
  M_D5L1 EQU 23
                                                        ; DMA5 Interrupt Priority Level (high)
                          Interrupt Priority Register Peripheral (IPRP)
M_HPL EQU $3

M_HPLO EQU 0

M_HPL1 EQU 1

M_SOL EQU $C

M_SOLO EQU 2

M_SOLO EQU 3

M_SOLO EQU 3

M_SOLO EQU 3

M_SOLO EQU 4

M_S1L EQU $30

M_S1L EQU 5

M_SCLO EQU 4

M_SCLO EQU 5

M_SCLO EQU 5

M_SCLO EQU 5

M_SCLO EQU 5

M_SCLO EQU 6

M_SCLO EQU 7

M_SCLO EQU 8

M_TOLO EQU 8

M_TOLO EQU 8

M_TOLO EQU 8

M_TOLO EQU 9

TIMER Interrupt Priority Level (high)
  M HPL EQU $3
                                                    ; Host Interrupt Priority Level Mask
```

```
EQUATES for TIMER
        Register Addresses Of TIMERO
M_TCSR0 EQU $FFFF8F; TIMER0 Control/Status Register
M_TLR0 EQU $FFFF8E ; TIMER0 Load Reg
M_TCPR0 EQU $FFFF8D; TIMER0 Compare Register
M_TCR0 EQU $FFFF8C ; TIMER0 Count Register
        Register Addresses Of TIMER1
M_TCSR1 EQU $FFFF8B; TIMER1 Control/Status Register
M_TLR1 EQU $FFFF8A ; TIMER1 Load Reg
M_TCPR1 EQU $FFFF89; TIMER1 Compare Register
M_TCR1 EQU $FFFF88 ; TIMER1 Count Register
        Register Addresses Of TIMER2
M_TCSR2 EQU $FFFF87; TIMER2 Control/Status Register
M TLR2 EOU $FFFF8 ; TIMER2 Load Req
M_TCPR2 EQU $FFFF85; TIMER2 Compare Register
M_TCR2 EQU $FFFF84; TIMER2 Count Register
M_TPLR EQU $FFFF83; TIMER Prescaler Load Register
M_TPCR EQU $FFFFF82 ; TIMER Prescalar Count Register
      Timer Control/Status Register Bit Flags
M_TE EQU 0
                  ; Timer Enable
M TOIE EQU 1
                  ; Timer Overflow Interrupt Enable
M_TCIE_EQU_2
                  ; Timer Compare Interrupt Enable
M_TC EQU $F0
                  ; Timer Control Mask (TC0-TC3)
M_INV EQÚ 8
                  ; Inverter Bit
M TRM EQU 9
                  ; Timer Restart Mode
M_DIR EQU 11
                  ; Direction Bit
M_DI EQU 12
                  ; Data Input
M_DO EQU 13
                  ; Data Output
M_PCE EQU 15
                  ; Prescaled Clock Enable
M_TOF EQU 20
                  ; Timer Overflow Flag
M_TCF EQU 21
                  ; Timer Compare Flag
       Timer Prescaler Register Bit Flags
M_PS EQU $600000 ; Prescaler Source Mask
M_PS0 EQU 21
```

```
M_PS1 EQU 22
      Timer Control Bits
M\_TC0 EQU 4 ; Timer Control 0
M_TC1 EQU 5 ; Timer Control 1
M_TC2 EQU 6 ; Timer Control 2
M_TC3 EQU 7 ; Timer Control 3
;-----
      EQUATES for Direct Memory Access (DMA)
; Register Addresses Of DMA
M_DSTR EQU $FFFFFF4 ; DMA Status Register
M_DORO EQU $FFFFFF3 ; DMA Offset Register 0
M_DOR1 EQU $FFFFFF2 ; DMA Offset Register 1
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2
M_DOR3 EQU $FFFFFF0 ; DMA Offset Register 3
Register Addresses Of DMA0
M_DSR0 EQU $FFFFEF; DMA0 Source Address Register
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register
M_DCOO EQU $FFFFED ; DMAO Counter
M_DCR0 EQU $FFFFEC ; DMA0 Control Register
      Register Addresses Of DMA1
M_DSR1 EQU $FFFFEB ; DMA1 Source Address Register
M_DDR1 EQU $FFFFEA; DMA1 Destination Address Register
M_DCO1 EQU $FFFFE9 ; DMA1 Counter
M DCR1 EQU $FFFFE8 ; DMA1 Control Register
    Register Addresses Of DMA2
M DSR2 EQU $FFFFE7 ; DMA2 Source Address Register
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register
M_DCO2 EQU $FFFFE5 ; DMA2 Counter
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register
      Register Addresses Of DMA4
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register
M DDR3 EQU $FFFFE2; DMA3 Destination Address Register
M_DCO3 EQU $FFFFE1 ; DMA3 Counter
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register
```

```
Register Addresses Of DMA4
M_DSR4 EQU $FFFFDF ; DMA4 Source Address Register
M DDR4 EQU $FFFFDE ; DMA4 Destination Address Register
M_DCO4 EQU $FFFFDD ; DMA4 Counter
M_DCR4 EQU $FFFFDC ; DMA4 Control Register
       Register Addresses Of DMA5
M DSR5 EQU $FFFFDB ; DMA5 Source Address Register
M_DDR5 EQU $FFFFDA ; DMA5 Destination Address Register
M_DCO5 EQU $FFFFD9 ; DMA5 Counter
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register
         DMA Control Register
M_DSS EQU $3
                 ; DMA Source Space Mask (D<mark>SS</mark>0-Dss1)
                 ; DMA Source Memory space 0
M_DSS0 EQU 0
M_DSS1 EQU 1
                 ; DMA Source Memory space 1
M_DDS EQU $C
                 ; DMA Destination Space Mask (DDS-DDS1)
M_DDS0 EQU 2
                 ; DMA Destination Memory Space 0
M_DDS1 EQU 3
                 ; DMA Destination Memory Space 1
                 ; DMA Address Mode Mask (DAM5-DAM0)
M_DAM EQU $3F0
                 ; DMA Add<mark>re</mark>ss Mode 0
M_DAMO EQU 4
                 ; DMA Add<mark>ress</mark> Mode 1
M DAM1 EQU 5
                 ; DMA Address Mode 2
M_DAM2 EQU 6
M DAM3 EOU 7
                 ; DMA Address Mode 3
M_DAM4 EQU 8
                 ; DMA Address Mode 4
                 ; DMA Address Mode 5
M_DAM5 EQU 9
M_D3D EQU 10
                 ; DMA Three Dimensional Mode
M_DRS EQU $F8<mark>00</mark>
                 ; DMA Request Source Mask (DRS0-DRS4)
                ; DMA Continuous Mode
M_DCON EQU 16
M_DPR EQU $60000 ; DMA Channel Priority
M_DTM EQU $380000 ; DMA Transfer Mode Mask (DTM2-DTM0)
M_DTMO EQU 19 ; DMA Transfer Mode 0
M DTM1 EQU 20
                 ; DMA Transfer Mode 1
M_DTM2 EQU 21
                 ; DMA Transfer Mode 2
                 ; DMA Interrupt Enable bit
M DIE EQU 22
M DE EQU 23
                  ; DMA Channel Enable bit
       DMA Status Register
M_DTD EQU $3F
                  ; Channel Transfer Done Status MASK (DTD0-DTD5)
M_DTD0 EQU 0
                  ; DMA Channel Transfer Done Status 0
M DTD1 EQU 1
                 ; DMA Channel Transfer Done Status 1
M_DTD2 EQU 2
                 ; DMA Channel Transfer Done Status 2
M_DTD3 EQU 3
                 ; DMA Channel Transfer Done Status 3
                 ; DMA Channel Transfer Done Status 4
M DTD4 EQU 4
M_DTD5 EQU 5
                 ; DMA Channel Transfer Done Status 5
M DACT EQU 8
                 ; DMA Active State
```

```
{\tt M\_DCH} EQU $E00 ; DMA Active Channel Mask (DCH0-DCH2)
M_DCH0 EQU 9 ; DMA Active Channel 0
M_DCH1 EQU 10 ; DMA Active Channel 1
M_DCH2 EQU 11 ; DMA Active Channel 2
        EQUATES for Phase Lock Loop (PLL)
; Register Addresses Of PLL
M_PCTL EQU $FFFFFD ; PLL Control Register
; PLL Control Register
M_MF EQU $FFF ; Multiplication Factor Bits Mask (MF0-MF11)
M_DF EQU $7000
                    ; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15 ; XTAL Range select bit
M_XTLD EQU 16 ; XTAL Disable Bit
M_PSTP EQU 17 ; STOP Processing State Bit
M_PEN EQU 18 ; PLL Enable Bit
M_PCOD EQU 19 ; PLL Clock Output Disable Bit
M_PD EQU $F00000 ; PreDivider Factor Bits Mask (PD0-PD3)
         EQUATES for BIL
         Register Addresses Of BIU
M_BCR EQU $FFFFFB ; Bus Control Register
M_DCR EQU $FFFFFA ; DRAM Control Register
M_AARO EQU $FFFFFF9 ; Address Attribute Register 0
M_AAR1 EQU $FFFFFF8 ; Address Attribute Register 1
M_AAR2 EQU $FFFFFF7 ; Address Attribute Register 2
M_AAR3 EQU $FFFFF6 ; Address Attribute Register 3
M_IDR EQU $FFFFF5 ; ID Register
; Bus Control Register
```

```
M_BA2W EQU $1C00 ; Area 2 Wait Control Mask (BA2W0-BA2W2)
M_BA3W EQU $E000 ; Area 3 Wait Control Mask (BA3W0-BA3W3)
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)
                 ; Bus State
M_BBS EQU 21
M BLH EQU 22
                 ; Bus Lock Hold
M_BRH EQU 23
                 ; Bus Request Hold
        DRAM Control Register
M_BCW EQU $3
                 ; In Page Wait States Bits Mask (BCW0-BCW1)
M BRW EQU $C
                 ; Out Of Page Wait States Bits Mask (BRW0-BRW1)
M_BPS EQU $300
                 ; DRAM Page Size Bits Mask (BPS0-BPS1)
                 ; Page Logic Enable
M_BPLE EQU 11
M BME EQU 12
                 ; Mastership Enable
M BRE EQU 13
                 ; Refresh Enable
M_BSTR EQU 14
                 ; Software Triggered Refresh
M BRF EQU $7F8000 ; Refresh Rate Bits Mask (BRF0-BRF7)
                  ; Refresh prescaler
M_BRP EQU 23
       Address Attribute Registers
M_BAT EQU $3
                  ; External Access Type and Pin Definition Bits Mask
(BAT0-BAT1)
M_BAAP EQU 2
                  ; Address Attribute Pin Polarity
M_BPEN EQU 3
                  ; Program Space Enable
M BXEN EQU 4
                 ; X Data Space Enable
M BYEN EQU 5
                 ; Y Data S<mark>pace Ena</mark>ble
                 ; Address Muxing
M BAM EOU 6
M BPAC EQU 7
                  Packing Enable
M_BNC EQU $F00
                 / Number of Address Bits to Compare Mask (BNC0-BNC3)
M_BAC EQU $FFF000 ; Address to Compare Bits Mask (BAC0-BAC11)
        control and status bits in SR
M_CP EQU $c00000 ; mask for CORE-DMA priority bits in SR
M_CA EQU 0
                  ; Carry
M_V EQU 1
                  ; Overflow
M Z EQU 2
                   ; Zero
M N EQU 3
                  ; Negative
M_U EQU 4
                  ; Unnormalized
M E EQU 5
                  ; Extension
M L EQU 6
                  ; Limit
M_S EQU 7
                  ; Scaling Bit
M IO EQU 8
                 ; Interupt Mask Bit 0
M I1 EQU 9
                 ; Interupt Mask Bit 1
M_S0 EQU 10
                 ; Scaling Mode Bit 0
                  ; Scaling Mode Bit 1
M_S1 EQU 11
M_SC EQU 13
                 ; Sixteen_Bit Compatibility
M_DM EQU 14
                 ; Double Precision Multiply
M LF EQU 15
                 ; DO-Loop Flag
M FV EQU 16
                 ; DO-Forever Flag
M_SA EQU 17
                 ; Sixteen-Bit Arithmetic
M CE EQU 19
                 ; Instruction Cache Enable
```

```
; Arithmetic Saturation
M_SM EQU 20
M_RM EQU 21
                    ; Rounding Mode
                   ; bit 0 of priority bits in SR
M_CP0 EQU 22
                    ; bit 1 of priority bits in SR
M_CP1 EQU 23
        control and status bits in OMR
M_CDP EQU $300
                 ; mask for CORE-DMA priority bits in OMR
                   ; Operating Mode A
M MA EQU 0
                  ; Operating Mode B
M_MB EQU 1
M_MC EQU 2
                   ; Operating Mode C
                   ; Operating Mode D
M MD EQU 3
                   ; External Bus Disable bit in OMR
M_EBD EQU 4
                ; External Bus Disable bit in OMR
; Stop Delay
; bit 0 of priority bits in OMR
; bit 1 of priority bits in OMR
; bit 1 of priority bits in OMR
; Burst Enable
; TA Synchronize Select
; Bus Release Timing
; Stack Extension space select bit in OMR.
; Extensed stack UNderflow flag in OMR.
; Extended WPap flag in OMR.
; Extended WPap flag in OMR.
M_SD EQU 6
M CDP0 EQU 8
M_CDP1 EQU 9
M_BEN EQU 10
M_TAS EQU 11
M_BRT EQU 12
M_XYS EQU 16
M_EUN EQU 17
M_EOV EQU 18
                   ; Extended WRaP flag in OMR.
M_WRP EQU 19
M SEN EQU 20
                    ; Stack Extension Enable bit in OMR.
* *
;
;
      EQUATES for DSP56301 interrupts
      Reference: DSP56301 Specifications Revision 3.00
      Last update: November 15 1993 (Debug request & HI32 interrupts)
                     December 19 1993 (cosmetic - page and opt directives)
                     August 16 1994 (change interrupt addresses to be
                              relative to I_VEC)
                           ************
                     132,55,0,0,0
          page
          opt
                     mex
intequ
         ident 1,0
          if
                    @DEF(I_VEC)
          ; leave user definition as is.
          else
                     $0
I_VEC
          equ
          endif
; Non-Maskable interrupts
```

```
I_RESET EQU I_VEC+$00 ; Hardware RESET
I_STACK EQU I_VEC+$02 ; Stack Error
I_TRAP EQU I_VEC+$08 ; Trap
I NMI EQU I VEC+$0A ; Non Maskable Interrupt
; Interrupt Request Pins
I_IRQA EQU I_VEC+$10 ; IRQA
I_IRQB EQU I_VEC+$12 ; IRQB
I_IRQC EQU I_VEC+$14 ; IRQC
I_IRQD EQU I_VEC+$16 ; IRQD
; DMA Interrupts
I_DMA0 EQU I_VEC+$18 ; DMA Channel 0
       EQU I_VEC+$1A ; DMA Channel 1
I_DMA1
I_DMA2 EQU I_VEC+$1C ; DMA Channel 2
I_DMA3 EQU I_VEC+$1E ; DMA Channel 3
I_DMA4 EQU I_VEC+$20 ; DMA Channel 4
I_DMA5 EQU I_VEC+$22 ; DMA Channel 5
; Timer Interrupts
I_TIMOC EQU I_VEC+$24 ; TIMER 0 compare
I_TIMOOF EQU I_VEC+$26  ; TIMER 0 overflow
I TIM1C EQU I VEC+$28 ; TIMER 1 compare
I_TIM1OF EQU I_VEC+$2A  ; TIMER 1 overflow
I_TIM2C EQU I_VEC+$2C ; TIMER 2 compare
I TIM2OF EQU I VEC+$2E ; TIMER 2 overflow
; ESSI Interrupts
;-----
I_SIORD EQU I_VEC+$30  ; ESSIO Receive Data
I SIORDE EQU I VEC+$32 ; ESSIO Receive Data With Exception Status
I_SIORLS EQU I_VEC+$34   ; ESSIO Receive last slot
I_SIOTD EQU I_VEC+$36  ; ESSIO Transmit data
I SIOTDE EQU I VEC+$38 ; ESSIO Transmit Data With Exception Status
```

```
I_SIOTLS EQU I_VEC+$3A   ; ESSIO Transmit last slot
I_SI1RD EQU I_VEC+$40    ; ESSI1 Receive Data
I_SI1RDE EQU I_VEC+$42    ; ESSI1 Receive Data With Exception Status
I_SI1RLS EQU I_VEC+$44  ; ESSI1 Receive last slot
I_SI1TD EQU I_VEC+$46 ; ESSI1 Transmit data
I SI1TDE EQU I VEC+$48 ; ESSI1 Transmit Data With Exception Status
I_SI1TLS EQU I_VEC+$4A ; ESSI1 Transmit last slot
; SCI Interrupts
I_SCIRD EQU I_VEC+$50  ; SCI Receive Data
I_SCIRDE EQU I_VEC+$52 ; SCI Receive Data With Exception Status
I_SCITD EQU I_VEC+$54 ; SCI Transmit Data
I_SCIIL EQU I_VEC+$56 ; SCI Idle Line
I_SCITM EQU I_VEC+$58 ; SCI Timer
; HOST Interrupts
I_HPTT EQU I_VEC+$60 ; Host PCI Transaction Termination
I_HPTA EQU I_VEC+$62 ; Host PCI Transaction Abort
I_HPPE EQU I_VEC+$64 ; Host PCI Parity Error
I HPTC EOU I VEC+$66; Host PCI Transfer Complete
I_HPMR EQU I_VEC+$68 ; Host PCI Master Receive I_HSR EQU I_VEC+$6A ; Host Slave Receive
I_HPMT EQU I_VEC+$6C ; Host PCI Master Transmit
I_HPMA EQU I_VEC+$70 ; Host PCI Master Address
I_HCNMI EQU I_VEC+$72 ; Host Command/Host NMI (Default)
; INTERRUPT ENDING ADDRESS
I_INTEND EQU I_VEC+$FF ; last address of interrupt vector space
```

## APPENDIX B

## **DSP56305 BOOTSTRAP CODE LISTING**

```
; BOOTSTRAP CODE FOR DSP56305 - (C) Copyright 1996 Motorola Inc.
; Revised June 18, 1996.
; Bootstrap through the Host Interface, External EPROM or SCI.
; This is the Bootstrap program contained in the DSP56305 192-word Boot
; ROM. This program can load any program RAM segment from an external
; EPROM, from the Host Interface or from the SCI serial interface.
; If MD:MC:MB:MA=x000, then the Boot ROM is bypassed and the DSP56305
; will start fetching instructions beginning with address $C00000 (MD=0)
; or $008000 (MD=1) assuming that an external memory of SRAM type is
; used. The accesses will be performed using 31 wait states with no address
; attributes selected (default area).
; If MD:MC:MB:MA=x001, then it loads a program RAM segment
; consecutive byte-wide P memory locations, starting at P:$D00000 (bits
; 7-0). The memory is selected by the Address Attribute AA1 and is
; accessed with 31 wait states.
; The EPROM bootstrap code expects first to read 3 bytes specifying the
; number of program words, afterwards 3 bytes specifying the address to
; start loading the program words and then 3 bytes for each program word
; to be loaded. The number of words, the starting address and the program
; words are read least significant byte first followed by the mid and
; then by the most significant byte.
; The program words will be condensed into 24-bit words and stored in
; contiguous PRAM memory locations starting at the specified starting
; address. After reading the program words, program execution starts
; from the same address where loading started.
; If MD:MC:MB:MA=x010, then it loads the program RAM from the SCI interface.
```

```
; The SCI bootstrap code expects first to receive 3 bytes specifying the
; number of program words, afterwards 3 bytes specifying the address to
; start loading the program words and then 3 bytes for each program word
; to be loaded. The number of words, the starting address and the program
; words are received least significant byte first followed by the mid and
; then by the most significant byte.
; The program words will be condensed into 24-bit words and stored in
; contiguous PRAM memory locations starting at the specified starting
           After reading the program words, program execution starts
; from the same address where loading started.
; The SCI is programmed to work in asynchronous mode with 8 data bits, 1
; stop bit and no parity. The clock source is external and the clock
; frequency must be 16x the baud rate. After each byte is received, it
; is echoed back through the SCI transmitter.
; If MD:MC:MB:MA=x011, then it loads the program RAM from the Host Interface
; programmed to operate in the Universal Bus mode supporting 56305-to-56305
; glue less connection.
; The HI32 bootstrap code expects first to read a 24-bit word specifying
; the number of program words, afterwards a 24-bit word specifying the
; address to start loading the program words and then 24-bit word for
; each program word to be loaded.
; The
                                          in contiguous
                words
                       will
                             be
                                 stored
       program
                                                          PRAM
; locations
             starting
                       at the
                                 specified starting
                                                     address.
                                                                 After
; reading the program words,
                              program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0) in HCTR register. This will start execution of the
; loaded program from the specified starting address.
; During the access, the HAEN and HA10-HA3 pins must be driven low; pins
; HA2-HA0 select the HI32 registers.
; Before booting through the Host Interface it is recommended that the
; Host boot program will verify that the HI32 is operational, by reading
; the status register (HSTR) and confirm that its value is $3.
; Suggested 56305-to-56305 connection:
   slave master
;
   56305/HI32 56305/PortA
```

```
;
   HA[10:3] <- A[10:3]
                             ; selects HI32 (base address 00000000)
;
   HA[2:0]
            <- A[2:0]
                              ; selects HTXR registers
   HD[24:0]
             <-> D[24:0]
                              ; Data bus
;
                             ; Bus Strobe (optional, see Notel)
;
   HBS
             <- BS_
                             ; DMA cycle disable (AAx is active low)
   HAEN
             <- AAx
;
;
   HTA
             -> TA
                             ; Transfer Acknowledge (optional, see Note2)
                            ; Interrupt Request (active low, open drain)
;
   HIRO
             -> IRQx_
   HWR_
             <- WR_
                             ; Write strobe
   HRD
             <- RD
                              ; Read strobe
   HRST
             <- system reset ; Reset (active low)
; Pins HP31, HP32 and HDAK_ must be tied to Vcc. Pins HP[22:20] may be
; used as GPIO pins. Pin HINTA_ may be used as software driven interrupt
; request pin.
; Notel: If HBS_ to BS_ connection is used, the synchronous connection of
; the HI32 is used and therefore the 56305/master should access the
; 56305/slave as SRAM with 2 wait states.
                                           In addition the CLKOUT of
; 56305/master should be connected to EXTAL of 56305/slave, and both
; master and slave should enable the PLL while in the case of slave
; multiplication,
                 division and pre-division factors should be one to
; guarantee synchronization between master and slave.
; In the case of asynchronous connection, HBS_ must be tied to Vcc.
; Note2: If HTA to HTA_ connection is not used, it is recommended that
; the HOST Processor's boot program will verify that the Host Interface
; is ready, by reading the status register (HSTR) and confirm that TRDY=1
; or HTRQ=1.
; If MD:MC:MB:MA=x100, then it loads the program RAM from the Host
; Interface programmed to operate in the PCI target (slave) mode.
; The HI32 bootstrap code expects first to read a 24-bit word specifying
; the number of program words, afterwards a 24-bit word specifying the
; address to start loading the program words and then 24-bit word for
; each program word to be loaded.
; The
       program
                words
                     will
                             be
                                  stored
                                          in contiguous
                                                          PRAM
; locations
                       at the
                                           starting
             starting
                                 specified
                                                      address.
                                                                 After
; reading the program words, program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0) in HCTR register. This will start execution of the
```

```
; loaded program from the specified starting address.
; The HOST Processor must first configure the Host Interface as PCI slave
; and then start writing data to the Host Interface. The HOST Processor
; must program the HCTR HTF1-HTF0
                                    bits as 01,
                                                   10 or 11 and then
; correspondingly drive the 24-bit data mapped into 32-bit PCI bus word.
; Note that for the synchronization purposes, the DSP to PCI clock ratio
; should be more then 5/3.
; If MD:MC:MB:MA=x101, then it loads the program RAM from the Host
; Interface programmed to operate in the Universal Bus mode supporting
; ISA (slave) glue less connection.
; Using self configuration mode, the base address in CBMA is initially
; written with $2f which corresponds to an ISA HTXR address of $2fe
; (Serial Port 2 Modem Status read only register).
; The HI32 bootstrap code expects to read 32 consecutive times the "magic
; number" $0037. Subsequently the bootstrap code expects to read a 16-bit word
; which is the designated ISA Port Address; this address is written into the
; CBMA. The HOST Processor must poll for the Host Interface to be re-configured.
; This must be done by reading the HSTR and verifying that the value $0013 is
; read. From this moment the HOST Processor may start writing data to the
; Host Interface.
; The HI32 bootstrap code expects first to read a 24-bit word (see
; Note below)
               specifying the number of program words,
                                                           afterwards a
                          the address
                                        to start
; 24-bit word specifying
                                                  loading
                                                            the program
; words and then 24-bit word for each program word to be loaded.
       program
                words
                       will
                              be
                                   stored
                                           in contiquous
                                                           PRAM
                                                                  memory
                                             starting
; locations
             starting at
                            the
                                  specified
                                                      address.
; reading the program words,
                               program execution starts from the same
; address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0) in HCTR register. This will start execution of the
; loaded program from the specified starting address.
; Note: This ISA connection implies 16 bit data width access only and
; that the number of 16-bit wide words that are transferred must be
; even.
; The 24-bit words has to be packed into 16-bit ISA words and then sent
```

```
; by the HOST Processor in the following sequence:
   M0
         | L0
     L1 |
            H0
     H1
         M1
; The boot program will convert every three 16-bit wide host words to two
; 24-bit wide 56305 opcodes in the following format:
      H0
            MO |
                  L0
      H1 | M1
; The Host Processor must program the Host Interface to operate in the
; zero fill mode (HTF1-HTF0 = 01 in HCTR).
; Suggested 56305 to ISA connection:
;
   HA[10] <- SBHE_
                            ; selects HI32 (base address 10011111)
;
                            ; selects HI32 (base address 10011111)
;
   HA[9]
          <- SA[0]
   HA[8:3] <- SA[9:4]
                           ; selects HI32 (base address 10011111)
   HA[2:0] <- SA[3:1]
                            ; selects HTXR registers
   HD[15:0] - SD[15:0]
                            ; Data bus
   HD[23:16] - Not connected ; High Data Bus - Should be pulled up or down
   HDBEN -> OE
                           ; Output enable of transceivers
          -> DIR
                            ; Direction of transceivers
   HDBDR
   HSAK_
          -> IO16_
                           ; 16 bit data word
                            ; Bus Strobe disabled
          <- Vcc
   HBS
   HAEN <- AEN
                            ; DMA cycle enable
;
         -> CHRDY
                           ; Channel ready
   HTA
   HWR_
          <- IOWC_
                            ; IO/DMA write strobe
;
          <- IORC
                            ; IO/DMA read strobe
   HRD_
   HRST
          <- inverted RSTDRV ; invert ISA reset
;
; If MD:MC:MB:MA=x110, then it loads the program RAM from the Host
; Interface programmed to operate in the Universal Bus (UB) mode, in
; double-strobe pin configuration.
; The HI32 bootstrap code expects first to receive 3 bytes specifying the
; number of program words, afterwards 3 bytes specifying the address to
; start loading the program words and then 3 bytes for each program word
; to be loaded. The number of words, the starting address and the program
; words are received least significant byte first followed by the mid and
; then by the most significant byte.
; The program words will be condensed into 24-bit words and stored in
```

```
; contiguous PRAM memory locations starting at the specified starting
            After reading the program words, program execution starts
; address.
; from the same address where loading started.
; The Host Interface bootstrap load program may be stopped by setting the
; Host Flag 0 (HF0) in HCTR register. This will start execution of the
; loaded program from the specified starting address.
; The user must externally decode the port address with active low logic and
; connect the select line to HAEN; all the address lines shall be pulled down
; except for HA3, HA2 and HA1 that select the HOST Interface registers.
; When booting through the Host Interface it is recommended that the Host
; boot program will verify that the Host Interface is operational, by
; reading the status register (HSTR) and confirm that TRDY=1.
; When booting through the Host Interface, it is recommended that the
; HOST Processor's boot program will verify that the Host Interface is
; ready, by reading the status register (HSTR) and confirm that TRDY=1
; or HTRQ=1.
; If MD:MC:MB:MA=x111,
                       then it loads the program RAM from the Host
; Interface programmed to operate in the Universal Bus
                                                          (UB) mode, in
; single-strobe pin configuration.
; Other than the single-strobe pin configuration, this mode is identical to
; the double-strobe pin configuration UB mode (MD:MC:MB:MA=x110).
BOOT
               $D00000
                              ; this is the location in P memory
       eau
                              ; on the external memory bus
                              ; where the external byte-wide
                              ; EPROM would be located
AARV
               $D00409
                              ; AAR1 selects the EPROM as CE~
       equ
                              ; mapped as P from $D00000 to
                              ; $DFFFFF, active low
M_SSR
       EQU
               $FFFF93
                              ; SCI Status Register
                              ; SCI Transmit Data Register (low)
M_STXL EQU
               $FFFF95
                              ; SCI Receive Data Register (low)
M_SRXL EQU
               $FFFF98
M_SCCR EQU
               $FFFF9B
                              ; SCI Clock Control Register
M_SCR
       EQU
               $FFFF9C
                              ; SCI Control Register
M PCRE EQU
               $FFFF9F
                              ; Port E Control register
                             ; DSP Control Register (DCTR)
M_DCTR EQU
               $FFFFC5
```

```
; DSP PCI Master Control Register (DPMC)
M_DPMC EQU
              $FFFFC7
                            ; DSP PCI Address Register (DPAR)
M_DPAR EQU
              $FFFFC8
M_DSR
       EQU
              $FFFFC9
                             ; DSP Status Register (DSR)
M_DRXR EQU
                             ; DSP Receive Data FIFO (DRXR)
              $FFFFCB
                            ; Address Attribute Register 1
M_AAR1 EQU
              $FFFFF8
       ORG PL:$ff0000,PL:$ff0000
                                  ; bootstrap code starts at $ff0000
START
       jclr #3,omr,CONT
                             ; If MD:MC:MB:MA=xxxx continue boot
CONT
       clr a #$0a,X0
                             ; clear a and load X0 with constant $0a0000
programmimqve #$3e,x1
                             ; X1=$3E0000 prepare for UB mode host
                             ; HM=$3 (UB)
                             ; HIRD=1 (HIRQ_ pin - drive high enabled)
                             ; HIRH=1 (HIRQ_ pin - handshake enabled)
                             ; HRSP=1 (HRST pin - active low)
                             ; HTAP=0 (HTA pin - active high)
                             ; HDSM=0 (Double-strobe pin mode enabled)
       jclr #2,omr,EPRSCILD
                             ; If MD:MC:MB:MA=x0xx,
                             ; go load from EPROM/SCI/56305-56305
       jclr #1,omr,IHOSTLD
                             ; If MD:MC:MB:MA=x10x, go load from PCI/ISA HOST
       jclr #0,omr,UB2HOSTLD ; If MD:MC:MB:MA=x110, go load from
                              ; double-strobe UB Host
                             ; If MD:MC:MB:MA=x111, go load from
                              ;single-strobe UB Host
; This is the routine that loads from the Host Interface in UB (UNIVERSAL) mode,
; with single-strobe pin configuration (RD/WR,DS).
; MD:MC:MB:MA=x111 - Host UB
UB1HOSTLD
  bset #13,x1
                        ; HDSM=1 (Double-strobe pin mode disabled)
; This is the routine that loads from the Host Interface in UB (UNIVERSAL) mode,
; with double-strobe pin configuration (RD,WR).
; MD:MC:MB:MA=x110 - Host UB
UB2HOSTLD
        movep x1, X:M_DCTR; Configure HI32 in UB mode Single or Double strobe
       do #6,_LOOP0
                            ; read # of words and start address
       jclr #2,X:M_DSR,*
                            ; Wait for SRRQ to go high (i.e. data ready)
       movep X:M_DRXR,a2
       asr #8,a,a
                             ; Shift 8 bit data into A1
LOOP0
                             ;
```

```
; starting address for load
       move al,r0
                             ; save it in r1
       move al,rl
                             ; a0 holds the number of words
; Download P memory through UB
       do a0, LOOP1
                             ; Load instruction words
       do #3,_LOOP2
                             ; for each byte
_LBLA
       jset #2,X:M DSR, LBLB; Wait for SRRQ to go high (i.e. data ready)
       jclr #3,X:M_DSR,_LBLA ; If HF0=1, stop loading new data.
                             ; Must terminate the do loop
       enddo
       bra <TERMINATE
                             ; Terminate loop (enddo) and finish
_LBLB
                            ; Store 16-bit data in accumulator
       movep X:M_DRXR,a2
                             ; Shift 8 bit data into Al
       asr #8,a,a
                             ; and go get another 24-bit word.
_LOOP2
                             ; Store 24-bit data in P mem
       movem a1,p:(r0)+
                             ; movem cannot be at LA.
        nop
LOOP1
                             ; and go get another 24-bit word.
                             ; finish bootstrap
       bra <FINISH
IHOSTLD
       jclr #0,omr,PCIHOSTLD ; If MD:MC:MB:MA=x100, go load from PCI HOST
; This routine loads from the Host Interface in ISA (UNIVERSAL) mode.
; MD:MC:MB:MA=x101 - Host ISA
; Using self configuration mode, the base address in CBMA is written with
; $2f which corresponds to an ISA HTXR address of $2fe (Serial Port 2 Modem
; Status read only register).
ISAHOSTLD
       move #$5a,b
                             ; b1=$5a0000
       movep b1,X:M_DCTR
                           ; Configure HI32 as Self-Config
       movep #$00002f, X:M_DPMC; write to DPMC
       rep #4
      movep X0,X:M DPAR
                           ; write to DPAR (CSTR+CCMR, CCCR+CRID, CLAT, CBMA)
                             ; completing 32 bit write
; Switch to ISA mode
       movep X0,X:M DCTR
                           ; Software personal reset
       move #$010020,y1
                            ; width 16, offset 32
                            ; (also used as replacement to needed NOP after
                              ;sw reset!)
       movep \#$3a0000,X:M_DCTR ; HM=$3 (UB)
```

```
; HIRD=1 (HIRQ_ pin - drive high enabled)
                               ; HIRH=0 (HIRQ_ pin - handshake disabled)
                               ; HRSP=1 (HRST pin - active low)
                               ; HDRP=0 (HDRQ pin - active high)
                               ; HTAP=0 (HTA pin - active high)
                               ; HDSM=0 (Data-strobe pin mode enabled)
; read the "magic sequence" 32 consecutive words with value $37
_LBLC
       do #32, LOOP3
       jclr #2,X:M_DSR,*
                              ; Wait for SRRQ to go high (i.e. data ready)
                              ; Store 24-bit data into A1
       movep X:M_DRXR,A1
       and #$00ffff,A
                              ; Mask upper byte
       cmp #$37,A
                              ; Compare the 24-bit dat to $000037
                              ; If data = $37 then go back to loop
       beq <_LBLD
       enddo
                              ; else break the loop and retry
       bra <_LBLC
_LBLD
       nop
_LOOP3
; read new CBMA value ("ISA base address")
        jclr #2,X:M_DSR,*
                           ; Wait for SRRQ to go high (i.e. data ready)
       movep X:M_DRXR,A1
                              ; Store 24-bit data into A1
; Switch to Self Configuration mode
       movep X0,X:M_DCTR
                            ; Software personal reset
       movep A1,X:M_DPMC
                              ; write to DPMC
                    ; (also used as replacement to needed NOP after sw reset!)
       movep b1,X:M_DCTR ; Configure HI32 as Self-Config
       rep #4
       movep X0, X:M_DPAR ; write to DPAR (CSTR+CCMR, CCCR+CRID, CLAT, CBMA)
; Switch to ISA mode
       movep X0,X:M DCTR
                              ; Software personal reset
       move #$010010,x1
                               ; width 16, offset 16
                    ; (also used as replacement to needed NOP after sw reset!)
       movep #$3a0010,x:M_DCTR ; HM=$3 (UB)
                               ; HIRD=1 (HIRQ_ pin - drive high enabled)
                               ; HIRH=0 (HIRQ pin - handshake disabled)
                               ; HRSP=1 (HRST pin - active low)
                               ; HDRP=0 (HDRQ pin - active high)
                               ; HTAP=0 (HTA pin - active high)
                               ; HDSM=0 (Double-strobe pin mode enabled)
                               ; HF4 =1 (turn on flag 4 for handshake)
        jclr #2,X:M_DSR,* ; Wait for SRRQ to go high (i.e. data ready)
```

```
; Store number of words
       movep X:M_DRXR,a0
       jclr #2,X:M_DSR,*
                            ; Wait for SRRQ to go high (i.e. data ready)
       movep X:M_DRXR,x0
                            ; Store starting address
       jclr #2,X:M_DSR,*
                            ; Wait for SRRQ to go high (i.e. data ready)
       movep X:M_DRXR,y0
                            ; Store starting address
       insert x1,x0,a
                             ; concatenate next 16-bit word
       insert y1,y0,a
                             ; concatenate next 16-bit word
       move al,r0
                              ; start to p-mem
       move a0,a1
                              ; number of words to transfer
; Download P memory through UB
                              ; divide loop count by 2 and save r0
       lsr a
              r0,r1
                              ; Load instruction words
       do a1,_LOOP4
_LBLE
       jset #2,X:M_DSR,_LBLF ; Wait for SRRQ to go high (i.e. data ready)
       jclr #3,X:M_DSR,_LBLE ; If HF0=1, stop loading new data.
       bra <TERMINATE
                             ; Terminate loop (enddo) and finish
LBLF
       movep X:M_DRXR,a0
                              ; Store 16-bit data in accumulator
LBLG
       jset #2,X:M_DSR,_LBLH ; Wait for SRRQ to go high (i.e. data ready)
       jclr #3,X:M_DSR,_LBLG ; If HF0=1, stop loading new data.
       bra <TERMINATE
                             ; Terminate loop (enddo) and finish
LBLH
       movep X:M_DRXR,x0 ; Store 16-bit data in register
\_{	t LBLI}
       jset #2,X:M_DSR,_LBLJ ; Wait for SRRQ to go high (i.e. data ready)
       jclr #3,X:M_DSR,_LBLI ; If HF0=1, stop loading new data.
       bra <TERMINATE
                              ; Terminate loop (enddo) and finish
_LBLJ
       movep X:M_DRXR,y0
                            ; Store 16-bit data in register
       insert x1,x0,a
                             ; concatenate next 16-bit word
                              ; concatenate next 16-bit word
       insert y1,y0,a
                             ; Store 24-bit data in P mem.
       movem a0,p:(r0)+
       movem al,p:(r0)+
                              ; Store 24-bit data in P mem.
                              ; movem cannot be at LA.
       nop
LOOP4
                              ; and go get another 24-bit word.
       bra <FINISH
                              ; finish bootstrap
; This is the routine that loads from the Host Interface in PCI mode.
; MD:MC:MB:MA=x100 - Host PCI
PCIHOSTLD
       bset #20,X:M DCTR ; Configure HI32 as PCI
UB3_CONT
```

```
; Wait for SRRQ to go high (i.e. data ready)
       jclr #2,X:M_DSR,*
                          ; Store number of words
      movep X:M_DRXR,a0
      jclr #2,X:M_DSR,*
                          ; Wait for SRRQ to go high (i.e. data ready)
      movep X:M_DRXR,r0
                           ; Store starting address
      move r0,r1
                           ; save r0
      do a0,_LOOP5
                           ; Load instruction words
_LBLK
      jset #2,X:M_DSR,_LBLL ; Wait for SRRQ to go high (i.e. data ready)
      jclr #3,X:M_DSR,_LBLK ; If HF0=1, stop loading data. Else check SRRQ.
      bra <TERMINATE
                          ; Terminate loop (enddo) and finish
_LBLL
      movep X:M DRXR,P:(R0)+ ; Store 24-bit data in P mem.
                           ; movem cannot be at LA.
_LOOP5
                           ; and go get another 24-bit word.
                           ; finish bootstrap
      bra <FINISH
EPRSCILD
       jclr #1,omr,EPROMLD ; If MD:MC:MB:MA=x001, go load from EPROM
       jclr #0,omr,SCILD
                          ; If MD:MC:MB:MA=x010, go load from SCI
                           ; If MD:MC:MB:MA=x011, 56305-to-56305 boot
; This is the routine for 56305-to-56305 boot.
; MD:MC:MB:MA=x011 - HI32 in UB mode, double strobe, HTA pin active low
UB3HOSTLD
      movep #$268000,x:M_DCTR ; HM=$2 (UB)
                  ; HIRD=0 (HIRQ_ pin - drive high disabled, open drain)
                           ; HIRH=1 (HIRQ_ pin - handshake enabled)
                           ; HRSP=1 (HRST pin - active low)
                           ; HDRP=0 (HDRQ pin - active high)
                           ; HTAP=1 (HTA pin - active low)
                           ; HDSM=0 (Double-strobe pin mode enabled)
      bra <UB3_CONT
                           ; continue
; This is the routine that loads from the SCI.
; MD:MC:MB:MA=x010 - external SCI clock
SCILD
      movep #$0302,X:M SCR ; Configure SCI Control Reg
      movep #$C000,X:M_SCCR ; Configure SCI Clock Control Reg
```

```
; Configure SCLK, TXD and RXD
       movep #7,X:M_PCRE
       do #6,_LOOP6
                            ; get 3 bytes for number of
                            ; program words and 3 bytes
                            ; for the starting address
       jclr #2,X:M_SSR,*
                            ; Wait for RDRF to go high
                           ; Put 8 bits in A2
       movep X:M SRXL,A2
       jclr #1,X:M_SSR,*
                            ; Wait for TDRE to go high
       movep A2,X:M_STXL
                            ; echo the received byte
       asr #8,a,a
_LOOP6
                            ; starting address for load
       move a1,r0
       move al,rl
                            ; save starting address
       do a0,_LOOP7
                           ; Receive program words
       do #3,_LOOP8
       jclr #2,X:M_SSR,*
                          ; Wait for RDRF to go high
       movep X:M_SRXL,A2
                           ; Put 8 bits in A2
       jclr #1,X:M_SSR,*
                            ; Wait for TDRE to go high
       movep a2,X:M_STXL
                            ; echo the received byte
       asr #8,a,a
LOOP8
       movem al,p:(r0)+
                            ; Store 24-bit result in P mem.
                            ; movem cannot be at LA.
LOOP7
       bra <FINISH
                            ; Boot from SCI done
; This is the routine that loads from external EPROM.
; MD:MC:MB:MA=x001
EPROMLD
       move #BOOT,r2
       do #6,_LOOP9
                            ; read number of words and starting address
                            ; Get the 8 LSB from ext. P mem.
       movem p:(r2)+,a2
                            ; Shift 8 bit data into Al
       asr #8,a,a
LOOP9
       move al,r0
                            ; starting address for load
                            ; save it in r1
       move al,rl
                            ; a0 holds the number of words
       do a0,_LOOP10
                            ; read program words
      do #3,_LOOP11
                            ; Each instruction has 3 bytes
                            ; Get the 8 LSB from ext. P mem.
       movem p:(r2)+,a2
```

```
asr #8,a,a
                          ; Shift 8 bit data into Al
_LOOP11
                          ; Go get another byte.
      movem a1,p:(r0)+
                          ; Store 24-bit result in P mem.
                           ; movem cannot be at LA.
      nop
_LOOP10
                          ; and go get another 24-bit word.
      bra <FINISH
                           ; Boot from EPROM done
TERMINATE
      enddo
                           ; End the loop before exit.
FINISH
; This is the exit handler that returns execution to normal
; expanded mode and jumps to the RESET vector.
      andi #$0,ccr
                           ; Clear CCR as if RESET to 0.
      jmp (r1)
                           ; Then go to starting Prog addr.
; End of bootstrap code. Number of program words: 191.
```

<del>dsp</del>

# **INDEX**

| Α                                        | write access 2-35                                   |
|------------------------------------------|-----------------------------------------------------|
| AC electrical characteristics 2-4        | out of page and refresh timings                     |
| address, electronic mail ii              | 11 Wait states 2-30                                 |
| arbitration bus timings 2-40             | 15 Wait states 2-31                                 |
|                                          | 8 Wait states 2-28                                  |
| В                                        | Page mode                                           |
| block diagram 1                          | read accesse <mark>s 2-27</mark>                    |
| bootstrap ROM iv                         | Wait states selection guide 2-21                    |
| boundary scan (JTAG) timing diagram 2-65 | write accesses 2-26                                 |
| bus                                      | Page mode <mark>timings</mark>                      |
| external address 1-7                     | 2 Wait states 2-21                                  |
| external data 1-7                        | 3 Wait states 2-23                                  |
| bus acquisition timings 2-41             | 4 Wait states 2-24                                  |
| bus release timings 2-42, 2-43           | refresh access 2-36                                 |
| C                                        | drawing                                             |
|                                          | mechanical 3-14                                     |
| CCOP v                                   | mechanical information 3-13                         |
| Clock 1-6                                | pins                                                |
| clock                                    | top view 3-2                                        |
| operation 2-6 clocks                     | drawings                                            |
| internal 2-4                             | ordering 3-14                                       |
| contents ii                              | DSP56300                                            |
| co-processors iv                         | core features iii                                   |
| core features iii                        | Family Manual vi                                    |
| crystal oscillator circuits 2-5          | DSP56305                                            |
| Cyclic-code Co-Processor (CCOP) v        | block diagram 1<br>description 1                    |
|                                          | specifications 2-1                                  |
| D                                        | Technical Data vi                                   |
| DC electrical characteristics 2-3        | User's Manual Vi                                    |
| description 1                            |                                                     |
| design considerations                    | E                                                   |
| elec <mark>trica</mark> l 4-3, 4-4       | electrical design considerations 4-3, 4-4           |
| PLL 4-5, 4-6                             | Enhanced Synchronous Serial Interface 1-1, 1-21     |
| power c <mark>on</mark> sumption 4-4     | 1-24                                                |
| thermal 4-1, 4-2                         | ESSI 1-1, 1-2, 1-21, 1-24                           |
| document conventions ii                  | receiver timing 2-60                                |
| documentation vi                         | timings 2-56                                        |
| DRAM out of page                         | transmitter timing 2-59                             |
| out of page<br>read access 2-34          | external address bus 1-7                            |
|                                          | external bus control 1-7, 1-8, 1-9                  |
| Wait states selection guide 2-28         | external bus synchronous timings (SRAM access) 2-37 |

| external data bus 1-7                               | Host Interrupt Request 2-49                       |
|-----------------------------------------------------|---------------------------------------------------|
| external interrupt timing (negative edge-triggered) | host port                                         |
| 2-13                                                | configuration 1-14                                |
| external level-sensitive fast interrupt timing 2-13 | usage considerations 1-13                         |
| external memory access (DMA Source) timing 2-       | I                                                 |
| 15                                                  | •                                                 |
| external memory expansion port 1-7                  | instruction cache iv                              |
| External Memory Interface (Port A) 2-16             | internal clocks 2-4                               |
| F                                                   | internal RAM iv                                   |
| EGOD'                                               | internal ROM iv                                   |
| FCOP iv                                             | internet address ii                               |
| Filter Co-Processor (FCOP) iv                       | interrupt and mode control 1-11, 1-12             |
| functional groups 1-2                               | interrupt control 1-11, 1-12 interrupt timing 2-8 |
| functional signal groups 1-1                        | external level-sensitive fast 2-13                |
| G                                                   | external negative edge-triggered 2-13             |
| 1.1                                                 | synchronous from Wait state 2-14                  |
| general description 1                               |                                                   |
| GPIO 1-28                                           | J                                                 |
| Timers 1-2                                          | JTAG 1-29                                         |
| GPIO timing 2-63<br>Ground 1-5                      | JTAG reset timing diagram 2-66                    |
| PLL 1-5                                             | JTAG timing 2-64                                  |
|                                                     | Trad thining 2 04                                 |
| H                                                   | M                                                 |
| helpline electronic mail (email) address ii         | maximum ratings 2-1, 2-2                          |
| HI08 1-1                                            | mechanical                                        |
| HI32 1-2, 1-3, 1-13, 1-14                           | drawing 3-14                                      |
| Host Inteface 1-1                                   | mechanical information                            |
| Host Interface 1-2, 1-13, 1-14, 2-44                | drawing 3-13                                      |
| PCI 1-2                                             | memory configuration iv                           |
| PCI bus 1-3                                         | Mfax 3-14                                         |
| universal bus 1-3                                   | mode control 1-11, 1-12                           |
| Host Interface timing                               | Mode select timing 2-8                            |
| universal bus mode 2-44                             | 0                                                 |
| synchr <mark>onous</mark> Port <mark>A 2-4</mark> 6 |                                                   |
| Host Interface timings                              | OnCE                                              |
| PCI mode 2-52, 2-53                                 | Debug request 2-66                                |
| Reset 2-53                                          | module timing 2-66                                |
| <mark>universa</mark> l bus m <mark>o</mark> de     | OnCE module 1-29                                  |
| d <mark>ata</mark> strobe synchronous 2-52          | OnCE/JTAG 1-2                                     |
| DM <mark>A</mark> access 2-49                       | OnCE/JTAG port 1-1                                |
| Host Bus Strobe synchronous 2-51                    | operating mode select timing 2-14                 |
| Host Interrupt Request pulse width 2-49             | ordering<br>drawings 3-14                         |
| HRS to HDS 2-49                                     | product 5-1                                       |
| HRST 2-49                                           | product 5 1                                       |
| I/O access timing 2-48                              | P                                                 |
| read 2-50                                           | Phase Lock Loop 2.7                               |
|                                                     | Phase Lock Loop 2-7                               |
| write 2-51                                          | pins                                              |

| drawing                                                     | 2 WS 2-39                                            |
|-------------------------------------------------------------|------------------------------------------------------|
| top view 3-2                                                | SRAM 1 WS (BCR controlled) 2-38                      |
| PLL 1-6, 2-7                                                | synchronous interrupt from Wait state timing 2       |
| Characteristics 2-7                                         | 14                                                   |
| performance issues 4-5                                      | synchronous Reset timing 2-12                        |
| PLL design considerations 4-5, 4-6                          | · ·                                                  |
| PLL performance issues 4-6                                  | Т                                                    |
| Port A 1-7, 2-16                                            | table of contents ii                                 |
| Port B                                                      | technical assistance ii                              |
| GPIO 1-3                                                    |                                                      |
| Port C 1-2, 1-21                                            | Test Access Port timing diagram 2-65                 |
| Port D 1-2, 1-24                                            | Test Clock (TCLK) input timing diagram 2-64          |
| Port E 1-27                                                 | thermal characteristics 2-2                          |
| Power 1-4                                                   | thermal design consi <mark>derations 4-1, 4-2</mark> |
| power consumption design considerations 4-4                 | Timer                                                |
| product                                                     | event input restrictions 2-61                        |
| ordering 5-1                                                | external pu <mark>lse generation 2-62</mark>         |
| ordering 5-1                                                | interrupt generation 2-62                            |
| R                                                           | timing 2-61                                          |
|                                                             | Timers 1-1, 1-2, 1-28                                |
| recovery from Stop state using $\overline{IRQA}$ 2-14, 2-15 | timing                                               |
| RESET 1-11                                                  | interrupt 2-8                                        |
| Reset timing 2-8, 2-12                                      | mode select 2-8                                      |
| synchronous 2-12                                            | Reset 2-8                                            |
| s                                                           | <b>Stop</b> 2-8                                      |
| 3                                                           | V                                                    |
| SCI 1-2, 1-27                                               |                                                      |
| Asynchronous mode timing 2-55                               | VCOP v                                               |
| Synchronous mode timing 2-55                                | Viterbi Co-Processor (VCOP) v                        |
| timing 2-54                                                 | ,                                                    |
| Serial Communications Interface 1-27                        |                                                      |
| Serial Communications Interface (SCI) 1-1                   |                                                      |
| signal groupings 1-1                                        |                                                      |
| signals 1-1                                                 |                                                      |
| functional grouping 1-2                                     |                                                      |
| SRAM 2-38                                                   |                                                      |
| Access 2-37                                                 |                                                      |
| read access 2-18                                            |                                                      |
| read and write accesses 2-16                                |                                                      |
| write access 2-18                                           |                                                      |
| SSRAM                                                       |                                                      |
| read access 2-20                                            |                                                      |
| read and write access 2-19                                  |                                                      |
| write access 2-20                                           |                                                      |
| Stop state                                                  |                                                      |
| recovery from 2-14, 2-15                                    |                                                      |
| Stop timing 2-8                                             |                                                      |
| supply voltage 2-2                                          |                                                      |
| switch mode iv                                              |                                                      |
| synchronous bus timings                                     |                                                      |
| SRAM                                                        |                                                      |
| DIW IIVI                                                    |                                                      |

OnCE and Mfax are trademarks of Motorola, Inc.



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### How to reach us:

#### **USA/Europe/Locations Not Listed:**

Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 303-675-2140 1 (800) 441-2447

#### Mfax™:

RMFAX0@email.sps.mot.com TOUCHTONE (602) 244-6609

#### Asia/Pacific:

Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong 852-26629298

#### **Technical Resource Center:**

1 (800) 521-6274

#### **DSP Helpline**

dsphelp@dsp.sps.mot.com

### Japan:

Nippon Motorola Ltd. Tatsumi-SPD-JLDC 6F Seibu-Butsuryu-Center 3-14-2 Tatsumi Koto-Ku Tokyo 135, Japan 81-3-3521-8315

#### Internet:

http://www.motorola-dsp.com

