安徽大学 2021—2022 学年第一学期

《线性代数 A》期末考试试卷(A卷)

(闭卷 时间 120 分钟)

	选择题	(本题共5小题,	每小题 3 分。	共 15 分
`	从门丰	(平赵芳)/7赵,	西小巡 3 刀 ,	77 10 71 .

1. 设 $AX = B \in n$ 元线性方程组,则此方程组有唯一解的充要条件是().

A.
$$r(A) = r(\overline{A})$$
.

B.
$$r(A) = r(\overline{A}) < n$$
.

C.
$$r(A) \neq r(\overline{A})$$
.

D.
$$r(A) = r(\overline{A}) = n$$
.

2. 设 3 阶矩阵 A 的特征值为 2, -2, 1,则 $|A^2 - A + I| = ($).

A. 0.

豼

江

超羧

专

В. 1.

C.21.

D. 5.

3. 设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$, $A^* 为 A$ 的伴随矩阵,则 $(A^*)^{-1}$ 为().

A. A^{-1} .

B. 10A.

C.
$$\frac{1}{10}A$$
.

D.
$$\frac{1}{10}A^{-1}$$
.

4. A为n阶方阵,方程组AX = 0有非零解,则A必有一个特征值为().

A. 0.

B. 1.

C. -1.

D. 2.

- 5. n阶方阵 A有n个互不相同的特征值是 A与对角矩阵相似的 ()条件.
 - A. 充要.
 - B. 充分.
 - C. 必要.
 - D. 即非充分也非必要.
- 二、填空题(本题共5小题,每小题3分,共15分)
- 7. n元排列中 $(n \ge 2)$,奇排列与偶排列各有 ______个.

- 8. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 4x_1x_3 + 4x_2^2 2x_2x_3$ 的矩阵为 ______.
- 9. 设矩阵 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{pmatrix}$ 与矩阵 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & b \end{pmatrix}$ 相似,则 $a = \underline{\hspace{1cm}}$, $b = \underline{\hspace{1cm}}$.
- 10. 设n维线性空间中的向量 α 和向量 β 在基 ε_1 , ε_2 ,..., ε_n 下的坐标分别为 $(a_1,a_2,...a_n)$ 和 $(b_1,b_2,\cdots b_n)$,则 $\alpha+\beta$ 在基 ε_1 , ε_2 ,…, ε_n 下的坐标为___
- 三、计算题(本题共5小题,每小题10分,共50分)
- 11. 计算行列式 $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$.

 12. 设矩阵 $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$, AX = 2X + A,求矩阵 X.
- 13. 设四元非齐次线性方程组的系数矩阵的秩为 3, η_1 , η_2 , η_3 , 均为它的解向量,已知

$$\eta_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \quad \eta_2 + \eta_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad 求该方程组的通解.$$
14. 设 $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 求正交矩阵 Q , 使得 $Q^{-1}AQ$ 为对角矩阵.

- 15. 已知二次型 $f(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2tx_1x_2 + 4x_2x_3 + 2x_1x_3$ 为正定二次型,求t的取值范 围.
- 四、分析计算题(本题10分)
- 16. 己知向量组 α_1 =(1,2,-1,1), α_2 =(2,0,t,0), α_3 =(0,-4,5,-2)的秩为2,求t的值.
- 五、证明题(本题10分)
- 17. 设方阵A与B相似,证明: $(\lambda I A)^k$ 和 $(\lambda I B)^k$ 相似. (k为任意正整数)