

Feature extraction and working with tables

Robert Haase

With material from

Johannes Müller, BiAPoL, PoL TU Dresden

Marcelo Zoc<mark>coler, BiAPol, PoL, TU Dresden</mark>

Benoit Lombardot, Scientific Computing Facility, MPI CBG

Feature extraction

- Feature extraction is a late processing step in image analysis.
- It can be used for images, or segmented/labelled images

Feature extraction

- A feature is a countable or measurable property of an image or object.
- Goal of feature extraction is finding a minimal set of features to describe an object well enough to differentiate it from other objects.
- Intensity based
 - Mean intensity
 - Standard deviation
 - Total intensity
 - Textures

- Shape based /spatial
 - Area / Volume
 - Roundness
 - Solidity
 - Circularity / Sphericity
 - Elongation
 - Centroid
 - Bounding box

- Spatio-temporal
 - Displacement,
 - Speed,
 - Acceleration

- Others
 - Overlap
 - Colocalization
 - Neighborhood

- Mixed features
 - Center of mass
 - Local minima / maxima

Intensity based features

- Min / max
- Median
- Mean
- Mode
- Variance
- Standard deviation
- Can be derived from pixel values
- Don't take spatial relationship of pixels into account
- See also:
 - descriptive statistics
 - histogram

Count: 65024 Mean: 103.301 StdDev: 57.991 Min: 29 Max: 248 Mode: 53 (1663)

Count: 783 Mean: 141.308 StdDev: 61.876 Min: 44 Max: 243 Mode: 236 (9)

Count: 1056 Mean: 49.016 StdDev: 12.685 Min: 34 Max: 122 Mode: 45 (120)

Bounding rectangle / bounding box

- Position and size of the smallest rectangle containing all pixels of an object
 - x_b , y_b ... position of the bounding box
 - w_h ... width of the bounding box
 - h_b ... height of the bounding box

variable	value
x_b	0
y_b	2
w_b	3
h _b	2

	0	1	2	3	4 X
0	0	0	0	0	0
1	0	0	0	0	0
2	1	1	1	0	0
3	0	1	1	0	0
4 y	0	0	0	0	0

Center of mass

- Relative position in an image weighted by pixel intensities
 - x, y ... pixel coordinates
 - w ... image width
 - h ... image height
 - μ ... mean intensity
 - g_{x,y} ... pixel grey value
 - x_m , y_m ... center of mass coordinates

$$\mu = \frac{1}{wh} \sum_{v=0}^{h-1} \sum_{x=0}^{w-1} g_{x,y}$$

$$x_m = \frac{1}{wh\mu} \sum_{v=0}^{h-1} \sum_{x=0}^{w-1} x \ g_{x,y}$$

$$y_m = \sum_{wh\mu} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} y \ g_{x,y}$$

"sum intensity"
"total intensity"

$$x_m = 1/7 (1.0 + 1.1 + 2.2 + 2.1 + 1.2) = 1.3$$

$$y_m = 1/7 (1.2 + 1.2 + 2.3 + 2.2 + 1.3) = 2.4$$

Center of geometry / centroid

- Relative position in an image weighted by pixel intensities
- Special case of center of mass for binary images
 - x, y ... pixel coordinates
 - w ... image width
 - h ... image height
 - μ ... mean intensity
 - $g_{x,v}$... pixel grey value, integer in range [0;1]
 - x_m , y_m ... center of mass coordinates

$$\mu = \frac{1}{wh} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} g_{x,y}$$

$$x_m = \frac{1}{wh\mu} \sum_{v=0}^{h-1} \sum_{x=0}^{w-1} x \ g_{x,y}$$

$$y_m = \sum_{wh\mu} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} y g_{x,y}$$

Number of white pixels

$$x_m = 1/5 (1.0 + 1.1 + 1.2 + 1.1 + 1.2) = 1.2$$

$$y_m = 1/5 (1\cdot 2 + 1\cdot 2 + 1\cdot 3 + 1\cdot 2 + 1\cdot 3) = 2.4$$

Perimeter

- Length of the outline around an object
- Depends on the actual implementation

	0	1	2	3	4 X
0	0	0	0	0	0
1	0	0	0	0	0
2	1	1	1	0	0
3	0	1	1	0	0
4 y	0	0	0	0	0

Fit ellipse

- For every object, find the optimal ellipse simplifying the object.
- Major axis ... long diameter
- Minor axis ... short diameter
- Major and minor axis are perpendicular to each other

• The aspect ratio describes the elongation of an object.

AR = major / minor

$$solidity = \frac{A}{A_{convexHull}}$$

Roundness and circularity

Pol Physics of Life TU Dresden

- The definition of a circle leads us to measurements of circularity and roundness.
- In case you use these measures, define them correctly. They are not standardized!

Diameter

d

Circumference

 $C = \pi d$

Area

$$A = \frac{\pi d^2}{4}$$

$$roundness = \frac{4 * A}{\pi \; major^2}$$

$$circularity = \frac{4\pi * A}{perimeter^2}$$

Roundness = 1 Circularity = 1 Roundness ≈ 1 Circularity ≈ 1 Roundness < 1 Circularity < 1

Roundness and circularity

Feature extraction in Python

- In Fiji: Analyze > Analyze Particles...
- In Python: from skimage import measure

https://scikit-image.org/docs/stable/api/skimage.measure.html

skimage.measure.regionprops_table(label_image)	Compute image properties and return them as a pandas-compatible table.
skimage.measure.regionprops (label_image[,])	Measure properties of labeled image regions.
<pre>skimage.measure.label (label_image[,])</pre>	Label connected regions of an integer array.
skimage.measure.inertia_tensor_eigvals (image)	Compute the eigenvalues of the inertia tensor of the image.
<pre>skimage.measure.inertia_tensor (image[, mu])</pre>	Compute the inertia tensor of the input image.
<pre>skimage.measure.grid_points_in_poly (shape, verts)</pre>	Test whether points on a specified grid are inside a polygon.
<pre>skimage.measure.find_contours (image[,])</pre>	Find iso-valued contours in a 2D array for a given level value.
<pre>skimage.measure.euler_number (image[,])</pre>	Calculate the Euler characteristic in binary image.
<pre>skimage.measure.blur_effect (image[, h_size,])</pre>	Compute a metric that indicates the strength of blur in an image (0 for no blur, 1 for maximal blur).

area : int

Number of pixels of the region.

area_bbox : int

Number of pixels of bounding box.

area_convex : int

Number of pixels of convex hull image, which is the smallest convex polygon that e

area_filled : int

Number of pixels of the region will all the holes filled in. Describes the area of the i

axis_major_length : float

The length of the major axis of the ellipse that has the same normalized second ce the region.

axis_minor_length : float

The length of the minor axis of the ellipse that has the same normalized second ce the region.

Processing tables with Python

Robert Haase

Pandas

 pandas is a library providing highperformance, easy-touse data structures and data analysis tools for the Python programming language.

conda install pandas

Processing tables with pandas

- Typical use-case:
 - You get data from a colleague in form of a table.
 - Using pandas, you can analyze it in python.

Loading a table in python using pandas:

```
import pandas as pd

data_frame = pd.read_csv("Measurements_ImageJ.csv", delimiter=',')
data_frame
```

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Processing tables with pandas

- Typical use-case:
 - You get data from a colleague in form of a table.
 - Using pandas, you can analyze it in python.

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Accessing a column

M data_frame["Mean"]

0 96.920
1 90.114
2 110.222
Name: Mean, dtype: float64

Determining mean of a column

```
import numpy as np
np.mean(data_frame["Mean"])

99.08533333333333
```

Accessing an individual cell

```
▶ data_frame["Mean"][0]
```

1.289000000000000001

Processing tables with pandas

Creating tables with pandas

Creating a new table

```
header = ['A', 'B', 'C']

data = [
      [1, 2, 3], # this will later be colum A
      [4, 5, 6], # B
      [7, 8, 9] # C
]

# convert the data and header arrays in a pandas data frame data_frame = pd.DataFrame(data, header)

# show it data_frame
```

```
0 1 2
A 1 2 3
B 4 5 6
C 7 8 9
```

• Rotate a table

```
# rotate/flip it
data_frame = data_frame.transpose()
# show it
data_frame
```

Save it to disc

```
# save a dataframe to a CSV data_frame.to_csv("output.csv")
```

```
A B C

0 1 4 7

1 2 5 8

2 3 6 9
```


Selecting rows and columns

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

cities[['City', 'Country']]

	City	Country
0	Tokyo	Japan
1	Delhi	India
2	Shanghai	China
3	Sao Paulo	Brazil
4	Mexico City	Mexico

Selecting rows

cities[cities['Area_km2'] > 2000]

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
2	Shanghai	China	24183000	6341

Combining tables

• The big art in data science is the ability of combining information from multiple sources to gain new insights.

	Countr	y Population	_	С	ity Country	Population	-
0	Japa	n 127202192	0	Tol	kyo Japan	13515271	
1	Indi	a 1352642280	1	De	elhi India	16753235	
2	Chin	a 1427647786	2	Shang	hai China	24183000	
3	Braz	il 209469323	3	Sao Pa	ulo Brazil	12252023	
4	Mexic	0 126190788	4	Mexico C	City Mexico	9209944	
	1						
bine bine		tries.merge(c	ities, on='Country',	suffixes	=['_country	', '_city'])

	Country	Population_country	City	Population_city	Area_km2
0	Japan	127202192	Tokyo	13515271	2191
1	India	1352642280	Delhi	16753235	1484
2	China	1427647786	Shanghai	24183000	6341
3	Brazil	209469323	Sao Paulo	12252023	1521
4	Mexico	126190788	Mexico City	9209944	1485

```
# compute ratio
combined['City_Country_population_ratio'] = combined['Population_city'] / combined['Population_country']
# only show selected columns
combined[['City', 'City_Country_population_ratio']]
```

		City	City_Country_population_ratio
	0	Tokyo	0.106250
	Delhi	0.012386	
	2	Shanghai	0.016939
	3	Sao Paulo	0.058491
	4	Mexico City	0.072984