Programming Languages – Lexical and Syntax Analysis

Jongwoo Lim

Introduction

- Language implementation systems must analyze source code, regardless of the specific implementation approach.
- Nearly all syntax analysis is based on a formal description of the syntax of the source language (BNF).
 - Compared to informal syntax descriptions, BNF descriptions are
 - Clear and concise.
 - Used as the direct basis for the syntax analyzer.
 - Relatively easy to maintain due to their modularity.

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Syntax Analysis

- The syntax analysis portion of a language processor nearly always consists of two parts:
 - A low-level part called a lexical analyzer
 (mathematically, a finite automaton based on a regular grammar)
 - A high-level part called a **syntax analyzer**, or **parser** (mathematically, a push-down automaton based on a context-free grammar, or BNF)

Why?

- Simplicity: less complex approaches can be used for lexical analysis; separating them simplifies the parser
- Efficiency: separation allows optimization of the lexical analyzer
- Portability: parts of the lexical analyzer may not be portable, but the parser always is portable

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Lexical Analysis

- A lexical analyzer is a pattern matcher for character strings.
- A lexical analyzer is a "front-end" for the parser.
- Identifies substrings of the source program that belong together lexemes
 - Lexemes match a character pattern, which is associated with a lexical category called a token.

```
sum = a + b;
```

- sum is a lexeme; its token may be IDENT.
- = is a lexeme and its token may be ASSIGN OP.
- Skip comments and blanks outside lexemes.
- Put user-defined names into the symbol table.
- Detect syntactic errors in tokens (e.g. 0.0001.23, 2to3).

© 2009 Addison-Wesley

Lexical Analyzer

- The lexical analyzer is usually a function that is called by the parser when it needs the next token.
- Three approaches to building a lexical analyzer:
 - Write a formal description of the tokens and use a software tool that constructs table-driven lexical analyzers given such a description.
 - Design a **state diagram** that describes the tokens and write a program that implements the state diagram.
 - Design a state diagram that describes the tokens and hand-construct a table-driven implementation of the state diagram.

© 2009 Addison-Wesley

State Diagram Design

- State transition diagram:
 - A directed graph, whose nodes are state names, and whose edges(arcs) are with input characters that cause the transition.
 - Mathematically, a finite automaton based on a regular grammar.
 - Example: wildcard in filename matching.

```
*.txt, report[0-9]+.doc, etc.
```

HANYANG UNIVERSITY © 2009 Addison-Wesley.

State Diagram Design

- State transition diagram
 - A naïve state diagram would have a transition from every state on every character in the source language - such a diagram would be very large!
 - Group characters in the same transition.
 - e.g. Letter for all 52 upper- and lower-case characters, a digit class DIGIT for all digits.
 - Reserved words and identifiers can be recognized together (rather than having a part of the diagram for each reserved word).
 - Use a table lookup to determine whether a possible identifier is in fact a reserved word.

© 2009 Addison-Wesley

State Diagram

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Lexical Analyzer

- Convenient utility subprograms:
 - getChar gets the next character of input, puts it in nextChar,
 determines its class and puts the class in charClass.
 - addChar puts the character from nextChar into the place the lexeme is being accumulated, lexeme.
 - lookup determines whether the string in lexeme is a reserved word (returns a code).
- Not a good example!
 - Avoid using global variables.
 - Function names do not show there meanings clearly.
 - Complex structure.

Q 2009 Addison-Wesley

Chomsky Hierarchy

Grammar	Languages	Automaton	Production rules
Type-0	Recursively enumerable	<u>Turing machine</u>	$\alpha \rightarrow \beta$ (no restriction)
Type-1	<u>Context-sensitive</u>	<u>Linear-bounded non-deterministic</u> <u>Turing machine</u>	$\alpha A \beta \rightarrow \alpha \gamma \beta$
Type-2	<u>Context-free</u>	Non-deterministic <u>pushdown</u> <u>automaton</u>	$A \to \gamma$
Type-3	Regular	<u>Finite state automaton</u>	$A \rightarrow a$ and $A \rightarrow aB$

recursively enumerable

context-sensitive

context-free

regular

From wikipedia

HANYANG UNIVERSITY

Regular Language

- Formal definition:
 - The empty language \emptyset is a regular language.
 - For each $a \in \Sigma$, the singleton language $\{a\}$ is a regular language.
 - If A and B are regular languages, then
 - A∪B (union, OR),
 - A·B (concatenation), and
 - A* (Kleene star) are regular languages.
 - No other languages over Σ are regular.
- Accepted by a finite state machine.

Regular Expressions

- Boolean OR: 'gray' or 'grey' → gray|grey
- Grouping: gr(a|e)y
- Quantification: repetition (?, *, +), e.g. ab*c \rightarrow ac, abc, abbc, ...

POSIX (POSIX (extended) regular expressions				
•	Matches any single character (many applications exclude newlines).	a.c [a.c]			
[]	Matches a single character that is contained within the brackets.	[abc] [a-z] [abcx-z]			
[^]	Matches a single character that is not contained within the brackets.	[^abc] [^a-z]			
^	Matches the starting position within the string.	^abc			
\$	Matches the ending position of the string.	abc\$			
()	Defines a marked subexpression (a block or capturing group).	a(b c)d			
	The choice (aka alternation or set union) operator.	abc def			
*	Matches the preceding element zero or more times.	ab*c [xyz]* (ab)*			
?	Matches the preceding element zero or one time.	ab? a.?			
+	Matches the preceding element one or more times.	ab+			
{m, n}	Matches the preceding element at least m and not more than n times.	a{3,5}			

HANYANG UNIVERSITY

Finite-state Automaton

- Finite-state machine
 - It is in only one state at a time (the current state).
 - It changes state by a triggering event or condition (transition).
 - Acceptors (recognizers): start and accept (final) state.
 - Deterministic vs. non-deterministic.
 - Multiple transitions for the same symbol.
 - Transitions without input symbols ("ε-moves").

	0	1
S	S	S
S	S	S

State/event tables

	0	1
p	р	p,q
q	-	-

Regular Expressions

•	Matches any single character (many applications exclude newlines).	a.c [a.c]
[]	Matches a single character that is contained within the brackets.	[abc] [a-z] [abcx-z]
[^]	Matches a single character that is not contained within the brackets.	[^abc] [^a-z]
^	Matches the starting position within the string.	^abc
\$	Matches the ending position of the string.	abc\$
()	Defines a marked subexpression (a block or capturing group).	a(b c)d
	The choice (aka alternation or set union) operator.	abc def
*	Matches the preceding element zero or more times.	ab*c [xyz]* (ab)*
+	Matches the preceding element one or more times.	ab+

Nondeterministic Finite-state Automaton

- Powerset construction:
 - Converting a nondeterministic finite-state automaton (NFA) to a deterministic one (DFA).
 - If the NFA has n states, the resulting DFA may have 2ⁿ states.

	ε	0	1
1	3	2	-
2	-	-	2,4
3	2	4	-
4	-	3	-

	0	1
{1,2,3}	{2,4}	{2,4}
{2,4}	{2,3}	{2,4}
{2,3}	{4}	{2,4}
{4}	{2,3}	Ø
Ø	Ø	Ø

Nondeterministic Finite-state Automaton

- Powerset construction:
 - Initial state of the resulting DFA:
 - The initial state of NFA, and the states reachable by ε-moves from the initial state.
 - For each state in the DFA whose transition is unknown:
 - For each symbol, find the states in NFA after the transition by the symbol, and all the states reachable by ϵ -moves from those states.
 - Repeat until no such states in the DFA exist.

Lex / Flex

Lexical analyzer generator.

```
8 {
#include <stdio.h>
용}
digit [0-9]
letter [a-zA-Z]
%% /*** Rules section ***/
"var" { printf("VAR\n"); }
"while" { printf("WHILE\n"); }
{letter}({letter}|{digit})* { printf("ID: %s\n", yytext); }
{digit}+ { printf("Integer: %s\n", yytext); }
.|\n { /* Ignore all other characters. */ }
%% /*** C Code section ***/
int main(void) {
 yylex();
 return 0;
```

HANYANG UNIVERSITY

The Parsing Problem

- Goals of the parser:
 - Given an input program, find all syntax errors; for each, produce an appropriate diagnostic message and recover quickly.
 - Detect as many errors as possible during a single analysis.
 - Produce the parse tree, or at least a trace of the parse tree, for the program.

© 2009 Addison-Wesley

The Parsing Problem

- Two categories of parsers
 - Top down: produce the parse tree, beginning at the root.
 - Order is that of a leftmost derivation.
 - Traces or builds the parse tree in preorder.
 - Bottom up: produce the parse tree, beginning at the leaves.
 - Order is that of the reverse of a rightmost derivation.
- Useful parsers look only one token ahead in the input.

Notational conventions in the chapter.				
Terminal symbols	Lowercase letters at the beginning of alphabet.	a, b, c,		
Non-terminal symbols	Uppercase letters at the beginning of alphabet.	A, B, C,		
Terminals or non-terminals	Uppercase letters at the end of alphabet.	Z, Y, X, W,		
Strings of terminals	Lowercase letters at the end of alphabet.	z, y, x, w,		
Mixed strings	Lowercase Greek letters.	α, β, γ, δ,		

Top-down Parsers

- Top-down Parsers
 - Builds a parse tree in preorder (leftmost derivation).
 - Given a sentential form, $xA\alpha$, and the A-rules,
 - e.g. $A \rightarrow bB$, $A \rightarrow cBb$, and $A \rightarrow a$,

the parser must choose the correct A-rule to get the next sentential form in the leftmost derivation,

e.g. xbB α , xcBb α , or xa α , using only the first token produced by A.

- The most common top-down parsing algorithms:
 - Recursive-descent parser: a coded implementation of BNF.
 - LL parsers: table driven implementation.
 - Left-to-right scan, and a Leftmost derivation is generated.

© 2009 Addison-Wesley

Bottom-up Parsers

- Bottom-up parsers
 - Builds a parse tree from leaves toward the root the reverse of a rightmost derivation.
 - Given a right sentential form, α , determine what substring of α is the right-hand side of the rule (handle) in the grammar that must be reduced to produce the previous sentential form in the right derivation.
 - e.g. $S \rightarrow aAc$, $A \rightarrow aA \mid b$, and $S \Rightarrow aAc \Rightarrow aaAc \Rightarrow aabc$. then aabc >> aAc >> aAc >> S.
 - The most common bottom-up parsers are in the LR family.
 - Left-to-right scan, and a Rightmost derivation is generated.

© 2009 Addison-Wesley.

The Parsing Problem

- The Complexity of Parsing
 - Parsers that work for any unambiguous grammar are complex and inefficient – $O(n^3)$, where n is the length of the input.
 - Compilers use parsers that only work for a subset of all unambiguous grammars, but do it in linear time – O(n).

© 2009 Addison-Wesley.

- There is a subprogram for each nonterminal in the grammar, which can parse sentences that can be generated by that nonterminal.
- EBNF is ideally suited for being the basis for a recursive-descent parser, because EBNF minimizes the number of nonterminals.

© 2009 Addison-Wesley HANYANG UNIVERSITY

- Assume we have a lexical analyzer named lex, which puts the next token code in nextToken.
 - Every parsing routine leaves the next token in nextToken.
- The coding process when there is only one RHS:
 - For each terminal symbol in the RHS, compare it with the next input token; if they match, continue, else there is an error.
 - For each nonterminal symbol in the RHS, call its associated parsing subprogram.

© 2009 Addison-Wesley

- A nonterminal that has more than one RHS requires an initial process to determine which RHS it is to parse.
 - The correct RHS is chosen on the basis of the next token of input (the lookahead).
 - The next token is compared with the first token that can be generated by each RHS until a match is found.
 - If no match is found, it is a syntax error.

© 2009 Addison-Wesley

• A grammar for simple expressions:

```
<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | int_constant | ( <expr> )
```

HANYANG UNIVERSITY © 2009 Addison-Wesley.

```
\langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}
/* Function expr
   Parses strings in the language generated by the rule:
   <expr> → <term> {(+ | -) <term>}
 */
void expr() {
  printf("Enter <expr>\n");
  term(); // First term.
  // As long as the next token is + or -, call lex() to get
  // the next token and parse the next term.
  while (nextToken == ADD OP | nextToken == SUB OP){
    lex();
    term();
  // This routine does not detect errors.
  printf("Exit <expr>\n");
```

```
< term > \rightarrow < factor > \{(* | /) < factor > \}
/* Function term
   Parses strings in the language generated by the rule:
   <term> -> <factor> {(* | /) <factor>)
 */
void term() {
  printf("Enter <term>\n");
  factor(); // Parse the first factor.
  // As long as the next token is * or /, call lex() to get
  // next token and parse the next factor.
  while (nextToken == MULT OP | nextToken == DIV OP) {
    lex();
    factor();
  printf("Exit <term>\n");
```

```
<factor> → id | int constant | ( <expr> )
/* Function factor
   Parses strings in the language generated by the rule:
   <factor> -> id | (<expr>)
* /
void factor() {
  // Determine which RHS.
  if (nextToken) == ID CODE | nextToken == INT CODE) {
    // For the RHS id or int constant, just call lex.
    lex();
  } else if (nextToken == LP CODE) {
    // If the RHS is (<expr>) - call lex to pass over '(',
    // call expr, and check for ')'.
    lex();
   expr();
    if (nextToken == RP CODE) lex();
   else error();
  } else {
    error(); // Neither RHS matches.
```


(sum + 47) / total

```
Next token is: 25 Next lexeme is (
Enter <expr>
Enter <term>
Enter <factor>
Next token is: 11 Next lexeme is sum
Enter <expr>
Enter <term>
Enter <factor>
Next token is: 21 Next lexeme is +
Exit <factor>
Exit <term>
Next token is: 10 Next lexeme is 47
Enter <term>
Enter <factor>
Next token is: 26 Next lexeme is )
Exit <factor>
Exit <term>
Exit <expr>
```

```
Next token is: 24 Next lexeme is /
Exit <factor>
Next token is: 11 Next lexeme is total
Enter <factor>
Next token is: -1 Next lexeme is EOF
Exit <factor>
Exit <term>
Exit <expr>
                          <expr>
                          <term>
               <factor>
                                   <factor>
                <expr>
           <term>
                     <term>
          <factor>
                    <factor>
                                     total
```

```
<if stmt> → if ( <bool expr> ) <stmt> [else <stmt>]
void if stmt() {
  if (nextToken != IF CODE) {
    error();
  } else {
    lex();
    if (nextToken != LEFT PAREN) {
     error();
    } else {
      lex();
     bool expr();
      if (nextToken != RIGHT PAREN) {
        error();
      } else {
        lex();
        stmt();
        if (nextToken == ELSE CODE) {
          lex();
          stmt();
```

LL Grammar Class

- LL(k) parser
 - LL parser that requires k lookahead tokens.
 - We only deal with LL(1) parser in this class.
- The Left Recursion Problem
 - If a grammar has **left recursion**, either direct or indirect, it cannot be the basis for a top-down parser.
 - A grammar can be modified to remove left recursion: For each nonterminal, A, Group the A-rules as $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid ... \mid \beta_n$, where none of the β 's begins with A.

Replace the original A-rules with
$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid ... \mid \beta_n A'$$
 $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid ... \mid \alpha_m A' \mid \epsilon$

Disjointness

- The other characteristic of grammars that disallows top-down parsing is the lack of pairwise disjointness.
 - The inability to determine the correct RHS on the basis of one token of lookahead.
 - Definition the **first-set**: FIRST(α) = { c | $\alpha \Rightarrow * c \beta$ } If $\alpha \Rightarrow * \epsilon$, ϵ is in FIRST(α).
- Pairwise Disjointness Test:
 - For each nonterminal, A, that has more than one RHS, for each pair of rules, $A \rightarrow \alpha_i$, and $A \rightarrow \alpha_j$, FIRST(α_i) \cap FIRST(α_j) = \varnothing . Examples:

```
A \rightarrow aB | bAb | Bb, B \rightarrow cB | d FIRST of A-rules: {a}, {b}, {c,d}
A \rightarrow aB | Bab, B \rightarrow aB | b FIRST of A-rules: {a}, {a,b}
```

© 2009 Addison-Wesley.

Left Factoring

- Left factoring can resolve the problem
 - Leave the common parts and separate the rest into a new rule.
 - Example:
 <var> → identifier | identifier '[' <expression> ']'
 can be written as
 <var> → identifier <new>
 <new> → ε | '[' <expression> ']'
 or
 <var> → identifier ['[' <expression> ']']
 (the outer brackets are meta-symbols of EBNF)

HANYANG UNIVERSITY © 2009 Addison-Wesley.

LL(1) Parser

Parsing using the parsing table.

token	rule	stack
		S, EOF
(2	(, S, +, F,), EOF
		S, +, F,), EOF
a	1	F, +, F,), EOF
a	3	a, +, F,), EOF
<u>a</u>		+, F,), EOF
<u>+</u>		F,), EOF
a	3	a,), EOF
<u>a</u>), EOF
<u>)</u>		EOF

1.
$$S \rightarrow F$$
2. $S \rightarrow (S + F)$
3. $F \rightarrow a$

	()	a	+	EOF
s	2	_	1	_	_
F	_	_	3	_	_

First Set

- Build the first-set.
 - Given a grammar with the rules $A_1 \rightarrow \omega_1, ..., A_n \rightarrow \omega_n$,
 - Define FIRST(X) for a single terminal or nonterminal X:
 - X is a terminal 'a': FIRST(X) = {a}.
 - X is ' ϵ ': FIRST(X) = { ϵ }.
 - X is a nonterminal: for every rule $X \rightarrow B_1 B_2 ... B_n$, Put $FIRST(B_1) - \{\epsilon\}$ into FIRST(X). If all FIRST(B_i) contains ε , $1 \le j < i$, $i \le m$, put $FIRST(B_i) - \{\epsilon\}$ into FIRST(X). If all FIRST(B_i) contains ε , $1 \le j \le m$, put $\{\varepsilon\}$ into FIRST(X).

© 2009 Addison-Wesley.

First Set

- Algorithm:
 - Given a grammar with the rules $A_1 \rightarrow \omega_1, ..., A_n \rightarrow \omega_n$,
 - Initialize FIRST(A) \leftarrow { }, \forall A.
 - Iterate until no changes in all FIRST(A):
 - For each rule A \rightarrow X₁ X₂ ... X_m, set k = 1, empty = true.
 - While empty == true && k ≤ m,
 Put FIRST(X_k) {ε} into FIRST(A).
 k = k + 1, empty = (ε ∈ FIRST(X_k)).
 - If empty == true , put {ε} into FIRST(A).

First Set Examples

$$S \rightarrow F$$
 $E \rightarrow E + T \mid$
 $S \rightarrow (S + F)$ $T \rightarrow T * F \mid$
 $F \rightarrow a$ $F \rightarrow (E) \mid$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

$E \rightarrow T E'$	
$E' \rightarrow + T E'$	8
$T \rightarrow F T'$	
$T' \rightarrow * F T'$	8
$F \rightarrow (E)$	id

Iterations

	1	2
S	((, a
F	a	

Iterations

	1	2	3
E			(, id
Т		(, id	
F	(, id		

Iterations

ittiations								
	1	2	3					
E			(, id					
E '	+, ε							
Т		(, id						
Т′	*, E							
F	(, id							

FirstSet Algorithm

```
Initialize FIRST(A) \leftarrow {}, \forallA.
Iterate until no changes in all FIRST(A) :
  For each rule A
  Set k = 1, empty = true.
  While empty == true && k \le m,
    Put FIRST(X
    k = k + 1, empty = (
  If empty == true, put \{\xi\} into FIRST(A).
```

Follow Set

- Follow set for a nonterminals A:
 - Set of terminals that can appear at the immediately right of A. e.g. 'a' is in FOLLOW(A) if $B \Rightarrow + \beta A a \gamma$.
 - If A can be at the rightmost symbol, \$ (EOF) is in FOLLOW(A).
 - ε' can never be in follow sets.
- Build follow sets for the nonterminals A.
 - If A is the start state, put \$ into FOLLOW(A).
 - For each rule $B \to \alpha A \beta$, put FIRST $(\beta) \{\varepsilon\}$ into FOLLOW(A).
 - If $FIRST(\beta)$ has ε , put FOLLOW(B) to FOLLOW(A).
 - For each rule $C \to \gamma A$, put FOLLOW(C) to FOLLOW(A).

© 2009 Addison-Wesley

- To build the parsing table,
 - For each rule $A \rightarrow \alpha$,
 - For each terminal 'a' in FIRST(α), put α in Table(A, a).
 - If ε is in FIRST(α),

 For each terminal 'a' in FOLLOW(A), put α in Table(A, a).
- The grammar is not LL(1) if and only if there is more than one entry for any cell in the table.

```
1. S \to F: FIRST(F) = { a }

2. S \to (S+F): FIRST((S+F)) = { ( }

3. F \to a: FIRST(a) = { a }
```

• Try to parse 'a', '(a + a)', and '((a + a) + a)'.

Build LL(1) Parsing Table

```
For each rule A \rightarrow \alpha,

For each terminal 'a' in FIRST(\alpha), put \alpha in Table(A, a).

If \epsilon is in FIRST(\alpha),

For each terminal 'a' in FOLLOW(A), put \alpha in Table(A, a).
```

a

```
1. S \to F S : FIRST(F S) = { a }

2. S \to + S : FIRST(+ S) = { + }

3. S \to \epsilon : FIRST(\epsilon) = { \epsilon }

FOLLOW(S) = { $ }

4. F \to a : FIRST(a) = { a }
```

	a	+	\$
S	1	2	3
F	4	_	_

• Try to parse 'a', 'a + a', and 'a + a + a'.

Build LL(1) Parsing Table

```
For each rule A \rightarrow \alpha,
For each terminal 'a' in FIRST(\alpha), put \alpha in Table(A, a).
If \epsilon is in FIRST(\alpha),
For each terminal 'a' in FOLLOW(A), put \alpha in Table(A, a).
```

```
    A → aB : FIRST(aB) = { a }
    A → bAb : FIRST(bAb) = { b }
    A → Bb : FIRST(Bb) = { c, d }
    B → cB : FIRST(cB) = { c }
    B → d : FIRST(d) = { d }
```

	a	b	С	d	\$
A	1	2	3	3	_
В	-	-	4	5	_

• Try to parse 'accd', 'badb', and 'bbcdbbb'.

Build LL(1) Parsing Table

```
For each rule A \rightarrow \alpha,

For each terminal 'a' in FIRST(\alpha), put \alpha in Table(A, a).

If \epsilon is in FIRST(\alpha),

For each terminal 'a' in FOLLOW(A), put \alpha in Table(A, a).
```

```
1. A \rightarrow Ba : FIRST(Ba) = { b, c }

2. A \rightarrow CB : FIRST(CB) = { b, c, d }

3. B \rightarrow bc : FIRST(bc) = { b }

4. B \rightarrow cA : FIRST(cA) = { c }

5. C \rightarrow d : FIRST(d) = { d }

6. C \rightarrow \epsilon : FIRST(\epsilon) = { \epsilon }

FOLLOW(C) = { b, c }
```

	a	b	С	d	\$	
A	_	1,2	1,2	2	_	
В	-	3	4	_	_	
C	_	6	6	5	_	

• Not an LL(1) grammar.

Build LL(1) Parsing Table

```
For each rule A \rightarrow \alpha,
For each terminal 'a' in FIRST(\alpha), put \alpha in Table(A, a).
If \epsilon is in FIRST(\alpha),
For each terminal 'a' in FOLLOW(A), put \alpha in Table(A, a).
```

- The parsing problem is finding the correct RHS in a rightsentential form to reduce to get the previous right-sentential form in the derivation.
 - Bottom-up parsing: use rightmost derivation.

$$id + id * id$$

$$E \Rightarrow \underline{E + T}$$

$$\Rightarrow E + \underline{T * F}$$

$$\Rightarrow E + T * \underline{id}$$

$$\Rightarrow E + \underline{F} * id$$

$$\Rightarrow E + \underline{id} * id$$

$$\Rightarrow \underline{T} + id * id$$

$$\Rightarrow \underline{F} + id * id$$

$$\Rightarrow \underline{id} + id * id$$

- Intuition about handles.
 - Definition: β is the **handle** of the right sentential form $\gamma = \alpha \beta w$ if and only if $S \Rightarrow^*_{rm} \alpha A w \Rightarrow_{rm} \alpha \beta w$.
 - Definition: β is a **phrase** of the right sentential form γ if and only if $S \Rightarrow^* \gamma = \alpha_1 A \alpha_2 \Rightarrow^+ \alpha_1 \beta \alpha_2$
 - Definition: β is a **simple phrase** of the right sentential form γ if and only if $S \Rightarrow^* \gamma = \alpha_1 A \alpha_2 \Rightarrow \alpha_1 \beta \alpha_2$.
 - #phrases = #internal nodes in parse tree.
 - A simple phrase is always an RHS in the grammar.

- Intuition about handles:
 - The handle of any rightmost sentential form is its leftmost simple phrase.
 - Given a parse tree, it is now easy to find the handle.
 - Parsing can be thought of as handle pruning.

$$E \Rightarrow \underline{E} + \underline{T}$$

$$\Rightarrow E + \underline{T} * \underline{F}$$

$$\Rightarrow E + T * \underline{id}$$

$$\Rightarrow E + \underline{F} * \underline{id}$$

$$\Rightarrow E + \underline{id} * \underline{id}$$

$$\Rightarrow \underline{T} + \underline{id} * \underline{id}$$

$$\Rightarrow \underline{F} + \underline{id} * \underline{id}$$

$$\Rightarrow \underline{id} + \underline{id} * \underline{id}$$

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

- Intuition about handles:
 - The handle of any rightmost sentential form is its leftmost simple phrase.
 - Given a parse tree, it is now easy to find the handle.
 - Parsing can be thought of as handle pruning.

$$E \Rightarrow \underline{E} + \underline{T}$$

$$\Rightarrow E + \underline{F}$$

$$\Rightarrow E + \underline{id}$$

$$\Rightarrow \underline{E} + \underline{T} + \underline{id}$$

$$\Rightarrow E + \underline{F} + \underline{id}$$

$$\Rightarrow E + \underline{id} + \underline{id}$$

$$\Rightarrow \underline{T} + \underline{id} + \underline{id}$$

$$\Rightarrow \underline{F} + \underline{id} + \underline{id}$$

$$\Rightarrow \underline{id} + \underline{id} + \underline{id}$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Shift-Reduce Algorithms

- Shift-Reduce Algorithms:
 - **Shift** action moves the next token onto the parse stack.
 - **Reduce** action replaces the handle on top of the parse stack with its corresponding LHS.
 - Pushdown automaton (PDA).

© 2009 Addison-Wesley. HANYANG UNIVERSITY

LR Parsers

- Advantages of LR parsers:
 - They will work for nearly all grammars that describe programming languages.
 - They work on a larger class of grammars than other bottom-up algorithms, but are as efficient as any other bottom-up parser.
 - They can detect syntax errors as soon as it is possible.
 - The LR class of grammars is a superset of the class parsable by LL parsers.
- Disadvantage of LR parsing:
 - The parsing table is hard to produce by hand.
 - Several programs available for this purpose.

LR Parsers

- Knuth's insight:
 - A bottom-up parser could use the entire history of the parse, up to the current point, to make parsing decisions.
 - There were only a finite and relatively small number of different parse situations that could have occurred, so the history could be stored in a parser state, on the parse stack.
 - An LR configuration stores the state of an LR parser $(S_0 X_1 S_1 X_2 ... X_m S_m, a_i a_{i+1} ... a_n \$)$
 - S_k : state symbols, X_k : grammar symbols.

© 2009 Addison-Wesley

• An LR configuration stores the state of an LR parser $(S_0 X_1 S_1 X_2 ... X_m S_m, a_i a_{i+1} ... a_n \$)$

- LR parsers are table driven, where the table has two components, an ACTION table and a GOTO table.
 - The ACTION table specifies the action of the parser, given the parser state and the next token.
 - Rows are state names; columns are terminals.
 - R for reduce and S for shift.
 - The GOTO table specifies which state to put on top of the parse stack after a reduction action is done.
 - Rows are state names; columns are nonterminals.
- A parser table can be generated from a given grammar with a tool, e.g., yacc

© 2009 Addison-Wesley

LR Parsing Table

1.
$$E \rightarrow E + T$$

2.
$$E \rightarrow T$$

3.
$$T \rightarrow T * F$$

4.
$$T \rightarrow F$$

5.
$$F \rightarrow (E)$$

6.
$$F \rightarrow id$$

$$(S_0, a_1 \dots a_n \$)$$

	Action							Goto	
State	id	+	*	()	\$	E	Т	F
0	\$5		S4 —	-			1	2	3
1		S6				accept			
2		R2	S7		R2	R2			
3		R4	R4		R4	R4			
4	\$5			S4			8	2	3
5		R6	R6		R6	R6			
6	\$5			S4				9	3
7	\$5			S4					10
8		S6			S11				
9		R1	S7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

- Initial configuration: (S₀, a₁ a₂ ... a_n \$)
 - Parser actions:

$$(S_0 X_1 S_1 X_2 S_2 ... X_m S_m, a_i a_{i+1} ... a_n \$)$$

- If ACTION[S_m, a_i] = Shift S, the next configuration is:
 - $(S_0 X_1 S_1 X_2 S_2 ... X_m S_m a_i S, a_{i+1} a_{i+2} ... a_n \$)$
- If ACTION[S_m, a_i] = Reduce $A \rightarrow \beta$ and S = GOTO[S_{m-r}, A], where $r = the length of \beta$, the next configuration is

$$(S_0 X_1 S_1 X_2 S_2 ... X_{m-r} S_{m-r} A S, a_i a_{i+1} ... a_n \$)$$

- If ACTION[S_m, a_i] = Accept, the parse is complete and no errors were found.
- If $ACTION[S_m, a_i] = Error$, the parser calls an error-handling routine.

© 2009 Addison-Wesley

LR Parsing Example

2. $E \rightarrow T$

3. $T \rightarrow T * F$

 $4. T \rightarrow F$

5. $F \rightarrow (E)$

6. $F \rightarrow id$

Гор	Inp
S _m	$a_i \mid a_{i+1}$
	<u> </u>
Parser Code	Parsing Table
	S _m

	Action							Goto	
	id	+	*	()	\$	E	Т	F
0	S 5			S4			1	2	3
1		S6				**			
2		R2	s 7		R2	R2			
3		R4	R4		R4	R4			
4	S 5			S4			8	2	3
5		R6	R6		R6	R6			
6	S 5			S4				9	3
7	S 5			S4					10
8		S6			S11				
9		R1	S 7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

E T F	T F id	F	E	$\Rightarrow \underline{E} + \underline{T}$ $\Rightarrow E + \underline{T} * \underline{F}$ $\Rightarrow E + \underline{F} * \underline{id}$ $\Rightarrow E + \underline{F} * \underline{id}$ $\Rightarrow E + \underline{id} * \underline{id}$ $\Rightarrow \underline{T} + \underline{id} * \underline{id}$ $\Rightarrow \underline{F} + \underline{id} * \underline{id}$ $\Rightarrow \underline{id} + \underline{id} * \underline{id}$

Stack	Input	Action
0	id + id * id \$	S5
0 id 5	+ id * id \$	R6 (G[0,F])
0 F 3	+ id * id \$	R4 (G[0,T])
0 т 2	+ id * id \$	R2 (G[0,E])
0 E 1	+ id * id \$	S6
0 E 1 + 6	id * id \$	S5
0 E 1 + 6 id 5	* id \$	R6 (G[6,F])
0 E 1 + 6 F 3	* id \$	R4 (G[6,T])
0 E 1 + 6 T 9	* id \$	S7
0 E 1 + 6 T 9 * 7	id \$	S5
0 E 1 + 6 T 9 * 7 id 5	\$	R6 (G[7,F])
0 E 1 + 6 T 9 * 7 F 10	\$	R3 (G[6,T])
0 E 1 + 6 T 9	\$	R1 (G[0,E])
0 E 1	\$	Accept

HANYANG UNIVERSITY

© 2009 Addison-Wesley.

LR Parsing Example

- 1. $E \rightarrow E + T$
- 2. $E \rightarrow T$
- 3. $T \rightarrow T * F$
- 4. $T \rightarrow F$
- 5. $F \rightarrow (E)$
- 6. $F \rightarrow id$

			Goto						
	id	+	*	()	\$	E	Т	F
0	S5			S4			1	2	3
1		S6				**			
2		R2	s7		R2	R2			
3		R4	R4		R4	R4			
4	S 5			S4			8	2	3
5		R6	R6		R6	R6			
6	S 5			S4				9	3
7	S5			S4					10
8		S6			S11				
9		R1	S 7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

Stack	Input	Action
0	id + id + id \$	S5
0 id 5	+ id + id \$	R6 (G[0,F])
0 F 3	+ id + id \$	R4 (G[0,T])
0 Т 2	+ id + id \$	R2 (G[0,E])
0 E 1	+ id + id \$	S6
0 E 1 + 6	id + id \$	S5
0 E 1 + 6 id 5	+ id \$	R6 (G[6,F])
0 E 1 + 6 F 3	+ id \$	R4 (G[6,T])
0 E 1 + 6 T 9	+ id \$	R1 (G[0,E])
0 E 1	+ id \$	S6
0 E 1 + 6	id \$	S5
0 E 1 + 6 id 5	\$	R6 (G[6,F])
0 E 1 + 6 F 3	\$	R4 (G[6,T])
0 E 1 + 6 T 9	\$	R1 (G[0,E])
0 E 1	\$	Accept

LR Parsing Example

```
1. E \rightarrow E + T
```

2. $E \rightarrow T$

3. $T \rightarrow T * F$

 $4. T \rightarrow F$

5. $F \rightarrow (E)$

6. $F \rightarrow id$

			Goto						
	id	+	*	()	\$	E	Т	F
0	S 5			S4			1	2	3
1		S6				**			
2		R2	S 7		R2	R2			
3		R4	R4		R4	R4			
4	S5			S4			8	2	3
5		R6	R6		R6	R6			
6	S 5			S4				9	3
7	S 5			S4					10
8		S6			S11				
9		R1	S 7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

F E E T T T T T F F F T T T T T T T T T	Е	$\Rightarrow \underline{T}$ $\Rightarrow \underline{T * F}$ $\Rightarrow T * (\underline{E})$ $\Rightarrow T * (\underline{E + T})$ $\Rightarrow T * (E + \underline{F})$ $\Rightarrow T * (E + \underline{id})$	$\Rightarrow T * (\underline{T} + id)$ $\Rightarrow T * (\underline{F} + id)$ $\Rightarrow T * (\underline{id} + id)$ $\Rightarrow \underline{F} * (id + id)$ $\Rightarrow \underline{id} * (id + id)$
---	---	--	--

Input	Action
id * (id + id) \$	S5
* (id + id) \$	R6 (G[0,F])
* (id + id) \$	R4 (G[0,T])
* (id + id) \$	S7
(id + id) \$	S4
id + id) \$	S5
+ id) \$	R6 (G[4,F])
+ id) \$	R4 (G[4,T])
+ id) \$	R1 (G[0,E])
+ id) \$	S6
id)\$	S5
) \$	R6 (G[6,F])
) \$	R4 (G[6,T])
) \$	R1 (G[4,E])
) \$	S11
\$	R5 (G[7,F])
\$	R3 (G[0,T])
\$	R2 (G[0,E])
\$	Accept
	<pre>id * (id + id) \$ (id + id) \$ (id + id) \$;</pre>

- 6. $F \rightarrow id$

									• •	`
							F	→	· id	
			Act	ion				Goto		\
	id	+	*	()	\$	E	Т	F	
0	S 5			S4			1	2	3	
1		S6				**				
2		R2	S 7		R2	R2				
3		R4	R4		R4	R4				
4	S 5			S4			8	2	3	
5		R6	R6		R6	R6				
6	S 5			S4				9	3	
7	S 5			S4					10	
8		S6			S11					
9		R1	S 7		R1	R1				
10		R3	R3		R3	R3				
11		R5	R5		R5	R5				

ole	$S \rightarrow E \cdot \$$ $E \rightarrow E \cdot + T$ [2]	$T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $T \rightarrow T \cdot * F$	
$[0]$ $S \rightarrow \cdot E \$$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$ $Goto$ $T F$ $2 3$	$ \begin{bmatrix} E \to T \\ T \to T \cdot * F \end{bmatrix} $ $ \begin{bmatrix} 3\\ T \to F \cdot \end{bmatrix} $ $ \begin{bmatrix} 4\\ F \to (\cdot E) \\ E \to \cdot E + T \\ T \to \cdot T \end{bmatrix} $ $ T \to \cdot T * F $ $ T \to \cdot F $ $ F \to \cdot (E) $ $ F \to \cdot (E) $ $ F \to \cdot id $ $ \begin{bmatrix} 5\\ F \to id \cdot \end{bmatrix} $	[7] $T \rightarrow T * \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$ $[8]$ $F \rightarrow (E \cdot)$ $E \rightarrow E \cdot + T$ $[10]$ $T \rightarrow T * F \cdot$ $F \rightarrow (E)$	
9 3			

[6]

[1]

- Put a dot at the beginning of the start rule.
- Move the dot over the next symbol, and expand.

Summary

- Syntax analysis is a common part of language implementation
- A lexical analyzer is a pattern matcher that isolates small-scale parts of a program
 - Detects syntax errors
 - Produces a parse tree
- A recursive-descent parser is an LL parser
 - EBNF
- Parsing problem for bottom-up parsers: find the substring of current sentential form
- The LR family of shift-reduce parsers is the most common bottom-up parsing approach

Calculator LR Parser

Grammar

```
<statement> > <command> | <expr> | id | id '=' <expr>
<command> > 'list' | 'clear' | 'exit' | 'quit'
<expr> > <expr> '+' <term> | <expr> '-' <term> | <term>
<term> > <term> '*' <factor> | <term> '/' <factor> | <factor>
<factor> > <unary_op> <base> <exponent>
<unary_op> > '+' | '-' | &
<base> > '(' <expr> ')' | id | number
<exponent> > '^' <factor> | &
```

Calculator LR Parser

```
Modified Grammar
                                                          Modified Grammar
<start> → <statement> $
                                                           1. A \rightarrow S S
                                                           2. S \rightarrow cmd
<statement> → command
<statement> → id '=' <expr>
                                                           3. S \rightarrow id = E
                                                           4. S \rightarrow E
<statement> → <expr>
                                                           5. E \rightarrow E + T
<expr> → <expr> '+' <term>
<expr> → <expr> '-' <term>
                                                           6. E \rightarrow E - T
                                                           7. E \rightarrow T
<expr> → <term>
<term> → <term> '*' <factor>
                                                           8. T \rightarrow T * F
<term> → <term> '/' <factor>
                                                           9. T \rightarrow T / F
                                                          10. T \rightarrow F
<term> → <factor>
<factor> → <base>
                                                          11. F \rightarrow B
<factor> → <base> '^' <factor>
                                                          12. F \rightarrow B ^ F
                                                          13. F \rightarrow + B
<factor> → '+' <base>
<factor> → '+' <base> '^' <factor>
                                                          14. F \rightarrow + B \wedge F
<factor> → '-' <base>
                                                          15. F \rightarrow - B
<factor> \( \dots \) '-' <base> '^' <factor>
                                                          16. F \rightarrow - B ^ F
<base> → id
                                                          17. B \rightarrow id
<br/>base> → number
                                                          18. B \rightarrow num
<base> → '(' <expr> ')'
                                                          19. B \rightarrow (E)
```

HANYANG UNIVERSITY

Modified Grammar $A \rightarrow S \$$ 1. $S \rightarrow cmd$ 2. $S \rightarrow id = E$ 3. $S \rightarrow E$ 4. $E \rightarrow E + T$ 5. $E \rightarrow E - T$ 6. $E \rightarrow T$ 7. $T \rightarrow T * F$ 8. $T \rightarrow T / F$	[0] $A \rightarrow . S $ \$ G1 $S \rightarrow . cmd$ S2 $S \rightarrow . id = E$ S3 $S \rightarrow . E$ G4 $E \rightarrow . E + T$ G4 $E \rightarrow . E - T$ G5 $T \rightarrow . T * F$ G5	[4] $S \to E$. R3 $E \to E$. + T S13 $E \to E$ T S14 [5] $E \to T$. R6 $T \to T$. * F S15	[11] $B \rightarrow (.E)$ G21 $E \rightarrow .E + T$ G21 $E \rightarrow .E - T$ G5 $T \rightarrow .T * F$ G5 $T \rightarrow .T / F$ G5 $T \rightarrow .F$ G6 $F \rightarrow .B$ G7	$T \rightarrow . T * F \qquad G23$ $T \rightarrow . T / F \qquad G23$ $T \rightarrow . F \qquad G6$ $F \rightarrow . B \qquad G7$ $F \rightarrow . B ^ F \qquad G7$ $F \rightarrow . + B \qquad S8$	[14] $E \rightarrow E T$ G24 $T \rightarrow . T * F$ G5 $T \rightarrow . T / F$ G5 $T \rightarrow . F$ G6 $F \rightarrow . B$ G7 $F \rightarrow . B ^{F}$ G7 $F \rightarrow . + B ^{S8}$ $F \rightarrow . + B ^{F}$ S8 $F \rightarrow . + B ^{F}$ S8	[20] $B \rightarrow id$. R16 [21] $B \rightarrow (E.)$ S30 $E \rightarrow E. + T$ S13 $E \rightarrow E T$ S14	$F \rightarrow . B \qquad G7$ $F \rightarrow . B \land F \qquad G7$ $F \rightarrow . + B \qquad S8$ $F \rightarrow . + B \land F \qquad S8$ $F \rightarrow B \qquad S9$ $F \rightarrow B \land F \qquad S9$
9. $T \to F$ 10. $F \to B$ 11. $F \to B \land F$ 12. $F \to + B$ 13. $F \to + B \land F$ 14. $F \to - B$	$T \rightarrow . T / F$ $T \rightarrow . F$ $F \rightarrow . B$ $F \rightarrow . B \wedge F$ $F \rightarrow . + B$ $S8$	$T \rightarrow T \cdot / F$ S16 [6] $T \rightarrow F \cdot R9$	$F \rightarrow . B \ F \ G7$ $F \rightarrow . + B \ S8$ $F \rightarrow . + B \ F \ S8$ $F \rightarrow B \ S9$ $F \rightarrow B \ F \ S9$	$F \rightarrow . + B \wedge F \leq 8$ $F \rightarrow B \leq 9$ $F \rightarrow B \wedge F \leq 9$ $B \rightarrow . id \leq 20$ $B \rightarrow . num \leq 10$ $B \rightarrow . (E) \leq 11$	$F \rightarrow . + B \wedge F \otimes B$ $F \rightarrow B \otimes B$ $F \rightarrow B \wedge F \otimes B$ $B \rightarrow . \text{ id} \otimes B$ $B \rightarrow . \text{ num} \otimes B$ $B \rightarrow . (E) \otimes B$	[22] $S \rightarrow id = E$. R2 $E \rightarrow E \cdot + T$ S13 $E \rightarrow E \cdot - T$ S14 [23]	$B \rightarrow . \text{ num}$ S10 $B \rightarrow . (E)$ S11 [29] $F \rightarrow - B \land . F$ G32
15. $F \rightarrow -B \land F$ 16. $B \rightarrow id$ 17. $B \rightarrow num$ 18. $B \rightarrow (E)$	$F \rightarrow + B ^ F _{S8}$ $F \rightarrow B _ S9$ $F \rightarrow B ^ F _ S9$ $B \rightarrow . id _ S3$ $B \rightarrow . num _ S10$		$B \rightarrow . id$ s20 $B \rightarrow . num$ s10 $B \rightarrow . (E)$ s11 [12] $S \rightarrow id = . E$ G22	[15] $T \rightarrow T^* \cdot F$ G25 $F \rightarrow \cdot B$ G7 $F \rightarrow \cdot B \wedge F$ G7 $F \rightarrow \cdot + B$ S8	[16] $T \rightarrow T / . F$ G26 $F \rightarrow . B$ G7 $F \rightarrow . B ^ F$ G7 $F \rightarrow . + B$ S8	$E \rightarrow E + T$. R4 $T \rightarrow T$. * F S15 $T \rightarrow T$. / F S16	$F \rightarrow . + B$ S8 $F \rightarrow . + B \wedge F$ S8 $F \rightarrow B$ S9
	$B \to . (E)$ S11 [1] $A \to S . $$	$F \rightarrow + . B \qquad G18$ $F \rightarrow + . B \wedge F \qquad G18$ $B \rightarrow . id \qquad S20$ $B \rightarrow . num \qquad S10$ $B \rightarrow . (E) \qquad S11$	$\begin{array}{ccc} E \rightarrow . \ E + T & _{G22} \\ E \rightarrow . \ E - T & _{G22} \\ E \rightarrow . \ T & _{G5} \\ T \rightarrow . \ T * F & _{G5} \end{array}$	$F \rightarrow . + B ^F _{88}$ $F \rightarrow B _{99}$ $F \rightarrow B ^F _{99}$ $B \rightarrow . id _{820}$	$F \rightarrow . + B ^F S8$ $F \rightarrow B S9$ $F \rightarrow B ^F S9$ $B \rightarrow . id S20$	$E \rightarrow E - T.$ $T \rightarrow T. *F$ $T \rightarrow T. /F$ $S15$ $T \rightarrow T. /F$ $S16$	$B \rightarrow . (E)$ S11
	$S \rightarrow cmd$. R1	[9]	$T \rightarrow . F \qquad G6$ $F \rightarrow . B \qquad G7$	$B \rightarrow . (E)$ S11	$B \rightarrow . (E)$ S11	[25] $T \rightarrow T * F$. R7	[30] B → (E). _{R18}
	[3] S \rightarrow id . = E _{S12} B \rightarrow id . _{R16}	$B \rightarrow . id$ S20	$F \rightarrow . + B$ S8 $F \rightarrow . + B ^ F$ S8	[17] $F \rightarrow B \land . F$ G27 $F \rightarrow . B$ G7	[18] $F \rightarrow + B$. R12 $F \rightarrow + B$. ^ F S28	[26] $T \rightarrow T/F$. R8	[31] $F \rightarrow + B \wedge F \cdot R13$
FOLLOW(S) = { \$ } FOLLOW(E) = { \$, +, FOLLOW(T) = { \$, +, FOLLOW(F) = { \$, +, FOLLOW(B) = { \$, +,	-, *, /,) } -, *, /,) }	$B \rightarrow . \text{ num}$ S10 $B \rightarrow . (E)$ S11 [10] $B \rightarrow \text{ num}$. R17	$F \rightarrow + B \land F $ s9 $B \rightarrow + id$ s20 $B \rightarrow + num$ s10	$F \rightarrow . B \land F \qquad G7$ $F \rightarrow . + B \qquad S8$ $F \rightarrow . + B \land F \qquad S8$ $F \rightarrow B \qquad S9$ $F \rightarrow B \land F \qquad S9$ $B \rightarrow . id \qquad S20$ $B \rightarrow . num \qquad S10$ $B \rightarrow . (E) \qquad S11$	[19] $F \rightarrow -B$. R14 $F \rightarrow -B$. $^{\wedge}F$ R29	[27] F → B ^ F . R15	[32] $F \rightarrow -B \wedge F$. R15

HANYANG UNIVERSITY

						Act	ion								Goto		
	id	num	cmd	=	+	_	*	/	^	()	\$	S	Е	Т	F	1
0	S3	S10	S2		S8	S9							1	4	5	6	
1												**					
2												R1					
3				S12	R16	R16	R16	R16	R16		R16	R16					
4					S13	S14						R3					
5					R6	R6	S15	S16			R6	R6					
6					R9	R9	R9	R9			R9	R9					
7					R10	R10	R10	R10	S17		R10	R10					
8	S20	S10								S11							1
9	S20	S10								S11							1
10					R17	R17	R17	R17	R17		R17	R17					
11	S20	S10			S8	S9				S11				21	5	6	
12	S20	S10			S8	S9				S11				22	5	6	
13	S20	S10			S8	S9				S11					23	6	
14	S20	S10			S8	S9				S11					24	6	
15	S20	S10			S8	S9				S11						25	
16	S20	S10			S8	S9				S11						26	
17	S20	S10			S8	S9				S11						27	
18					R12	R12	R12	R12	S28		R12	R12					
19					R14	R14	R14	R14	S29		R14	R14					
20					R16	R16	R16	R16	R16		R16	R16					
21					S13	S14					S30						
22					S13	S14						R2					
23					R4	R4	S15	S16			R4	R4					
24					R5	R5	S15	S16			R5	R5					
25					R7	R7	R7	R7			R7	R7					
26					R8	R8	R8	R8			R8	R8					
27					R15	R15	R15	R15			R15	R15					
28	S20	S10			S8	S9				S11						31	
29	S20	S10			S8	S9				S11						32	
30					R18	R18	R18	R18	R18		R18	R18					
31					R13	R13	R13	R13			R13	R13					
32					R15	R15	R15	R15			R15	R15					