## **Summary of Key Concepts**

## Quantum Key Distribution: Part I

### Week of November 26, 2023

| Resources           | 1 |
|---------------------|---|
| Key Terms           | 2 |
| Lecture             | 3 |
| Learning Objectives | 3 |
| Key Ideas           | 3 |
| Lab                 | 5 |
| Learning Objectives | 5 |
| Key Ideas           | 5 |
|                     |   |

#### **Resources**

- QXQ YLC Week 9 Lab Notebook [STUDENT].ipynb
- QXQ YLC Week 9 Homework Notebook [STUDENT].ipynb
- 3 4. QXQ YLC BB84 Cheat Sheet
- Python choices function documentation
- Python dictionaries documentation
- Python for loops documentation
- The Original BB84 Paper



# **Key Terms**

| Key Term                 | Definition                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Algorithm                | A specific procedure for solving a computational problem.                                                          |
| Quantum Algorithm        | Quantum circuits for solving a computational problem.                                                              |
| Protocol                 | A set of standard rules that allow electronic devices to communicate with each other.                              |
| Quantum Protocol         | The rules that allow multiple quantum computers to communicate and work together.                                  |
| Cybersecurity            | An emerging field of technology that protects our computer and network systems from bad actors.                    |
| Cryptography             | The set of techniques for secure communication in the presence of eavesdroppers.                                   |
| Secret Key               | A password for secure, <i>encrypted</i> communication.                                                             |
| Channel                  | A way of communicating that can be either public or private. This includes emails, phones, fiber optics, and more. |
| Encryption               | "Hiding" or encoding messages using a secret key so no one without the key understands them.                       |
| Decryption               | "Unhiding" or decoding messages using the same secret key that was used to encrypt them.                           |
| Quantum Key Distribution | A way to share passwords (secret keys) for communication more securely than we possibly can classically.           |
| BB84                     | A quantum key distribution scheme that relies on quantum superposition and measurement to detect Eve.              |
| Encoding in the Z Basis  | Encoding bits into the 0 and 1 states of qubits, which lie along the Z axis of the Bloch sphere.                   |
| Encoding in the X Basis  | Encoding bits into the + and - states of qubits, which lie along the X axis of the Bloch sphere.                   |



#### Lecture

### **Learning Objectives**

- 1. Recognize what quantum algorithms and protocols are.
- 2. Recognize what quantum key distribution is.
- 3. *Recognize* the steps of the BB84 protocol.

#### **Key Ideas**

- 1. An **algorithm** is a specific procedure for solving a computational problem. It is like a recipe for a computer.
- 2. A **quantum algorithm** accomplishes this using quantum circuits.
- 3. A **protocol** is a set of standard rules that allow electronic devices to communicate with each other. It is like the rules that allow multiple chefs to communicate and work together.
- 4. A **quantum protocol** allows multiple quantum computers to communicate and work together. The three most famous quantum protocols are:
  - a. **Quantum Teleportation**: Send quantum information more efficiently using quantum computers and sending classical bits.
  - b. **Superdense Coding**: Send classical information more efficiently using quantum computers and sending qubits.
  - c. **Quantum Key Distribution**: Create a secure password for classical communication by sending qubits and classical bits.
- 5. **Quantum Key Distribution** is a way to share passwords (secret keys) for communication more securely than we possibly can classically.
  - a. This is part of a large field known as **cybersecurity** and is specifically a **cryptography** protocol or "scheme".



6. Cryptography protocols typically follow these three steps:



7. **BB84**, founded by Charles **B**ennett and Gilles **B**rassard in 19**84**, is a Quantum Key Distribution protocol that relies on quantum superposition and measurement to detect an Eavesdropper. It follows these steps:





### Lab

### **Learning Objectives**

- 1. *Recognize* how to use three useful python tools: the choices function, dictionaries, and loops.
- 2. Recognize how to implement the steps of BB84 between Alice and Bob using cirq.

#### **Key Ideas**

- 1. The python **choices function** allows us to to randomly select any number of elements from a given list such as:
  - a. Bits for a key.
  - b. Bases to encode qubits.
- 2. A python **dictionary** is effectively a list, but you can use more than indices. We typically call the general index a key and the element it refers to a value, forming **key**, **value pairs**.
- 3. **Loops** allow us to rerun the same code a given number of times instead of having to retype it over and over again.

