

Licence 3^e année parcours Mathématiques 2018-2019 M67, GÉOMÉTRIE ÉLÉMENTAIRE

Solutions du devoir surveillé

21 mai 2019

[durée : 3 heures]

Exercice 1 (Construction à la règle et au compas)

a) Soient O et I deux points distincts du plan. Construire à la règle et au compas à partir de ces deux points les sommets $A_1 = I, A_2, \ldots, A_8$ d'un octogone régulier inscrit dans le cercle de centre O et de rayon OI (c.-à-d. des points $A_1 = I, A_2, \ldots, A_8$ deux à deux distincts situés sur le cercle de centre O passant par I tels que $A_1A_2 = A_2A_3 = \cdots = A_7A_8 = A_8A_1$).

b) Déterminer l'aire de cet octogone régulier en fonction du rayon R = OI.

Solution:

a) On pose $A_1 = I$. Soit A_5 le second point d'intersection de (OI) et du cercle \mathcal{C} de centre O passant par I. Les cercles de centre A_1 passant par A_5 et de centre A_5 passant par A_1 se coupent en deux points J et K. La droite (JK), médiatrice de $[A_1A_5]$, coupe le cercle \mathcal{C} en deux points, A_3 et A_5 . Le cercle de centre A_1 passant par O et celui de centre A_3 passant par O se recoupent en un point L. La droite (OL), bissectrice de l'angle $\widehat{A_1OA_3}$ coupe le cercle en deux points, A_2 , sur la demi-droite [OL), et A_6 . Le cercle de centre A_3 passant par A_2 recoupe \mathcal{C} en A_4 , et le cercle de centre A_7 passant par A_6 recoupe \mathcal{C} en A_8 .

b) Les huit triangles $\triangle A_1OA_2$, $\triangle A_2OA_3$, ..., $\triangle A_7OA_8$ et $\triangle A_8OA_1$ étant égaux, ils ont même aire, et l'aire \mathcal{A} de l'octogone est donc égale à $8 \cdot \mathcal{A}_{\triangle A_1OA_2}$. D'autre part, l'angle $\widehat{A_1OA_2}$ vaut $\frac{1}{8} \cdot 2\pi = \frac{\pi}{4}$. Ainsi, l'aire du triangle $\triangle A_1OA_2$ vaut $\frac{1}{2} \cdot OA_1 \cdot OA_2 \cdot \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{4}R^2$. L'aire de l'octogone est donc égale à :

$$\mathcal{A} = 2\sqrt{2}R^2.$$

Exercice 2 (Quadrilatère « des milieux »)

Étant donné un quadrilatère convexe (dit « de départ ») on appelle « quadrilatère des milieux » le quadrilatère convexe dont les sommets sont les milieux des côtés du quadrilatère de départ.

- a) Montrer que quel que soit le quadrilatère de départ, le quadrilatère des milieux est un parallélogramme.
- b) Quel est le rapport entre l'aire du quadrilatère de départ et l'aire du quadrilatère des milieux?
- c) Si le quadrilatère de départ est lui-même un parallélogramme, sous quelle condition le quadrilatère des milieux est-il un rectangle? et un carré?

Solution:

a) Soient ABCD un quadrilatère convexe (ou non : la convexité n'est pas nécessaire pour cette première question), et I le milieu de [AB], J celui de [BC], K celui de [CD] et L celui de [DA]. La droite (IJ) passe par les milieux des côtés [AB] et [BC] du triangle $\triangle ABC$, et est donc parallèle à (AC). La droite (KL) passe par les milieux des côtés [CD] et [DA] du triangle $\triangle ACD$, et est donc parallèle à (AC). Les droites (IJ) et (KL) étant toutes deux parallèles à (AC) sont parallèles entre elles. On montre de même que (IL) et (JK) sont parallèles entre elles, car toutes deux parallèles à (BD). Le quadrilatère IJKL est donc un parallèlogramme.

b) On conserve les notations de la première question. Comme le triangle $\triangle AIL$ est homothétique de rapport $\frac{1}{2}$ à $\triangle ABD$ nous avons la relation des aires $\mathcal{A}_{\triangle AIL} = \frac{1}{4}\mathcal{A}_{\triangle ABD}$. Et de même pour les trois autres triangles complémentaires au parallélogramme IJKL. Donc on trouve

$$\mathcal{A}_{ABCD} - \mathcal{A}_{IJKL} = \mathcal{A}_{\triangle AIL} + \mathcal{A}_{\triangle BJI} + \mathcal{A}_{\triangle CJK} + \mathcal{A}_{\triangle DKL}$$

$$= \frac{1}{4} \left(\mathcal{A}_{\triangle ABD} + \mathcal{A}_{\triangle BCA} + \mathcal{A}_{\triangle CDB} + \mathcal{A}_{\triangle DAC} \right)$$

$$= \frac{1}{4} \cdot 2 \cdot \mathcal{A}_{ABCD} = \frac{1}{2} \mathcal{A}_{ABCD}.$$

Ainsi au final le rapport des aires est \mathcal{A}_{IJKL} : $\mathcal{A}_{ABCD} = \frac{1}{2}$.

c) Nous avons les équivalences « le parallélogramme IJKL est un rectangle » \Leftrightarrow $(IJ) \perp (JK) \Leftrightarrow (AC) \perp (BD) \Leftrightarrow$ « le parallélogramme ABCD est un losange ». De plus, en utilisant que $IJ = \frac{1}{2}AC$ et $KL = \frac{1}{2}BD$, nous avons $IJ = KL \Leftrightarrow AC = BD$. Ainsi « le parallélogramme IJKL est un carré » \Leftrightarrow « le parallélogramme ABCD est un losange à diagonales égales » \Leftrightarrow « le parallélogramme ABCD est un carré ».

Exercice 3 (Triangle rectangle et cercles)

a) Soit ABC un triangle rectangle en C. Soient a = BC et b = AC les longueurs des côtés de l'angle droit. Montrer que la longueur h de la hauteur issue de C vérifie

$$\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

b) Soit C_1 un cercle de diamètre [OM]. Soit A un point de C_1 différent de O et M. Soit C_2 le cercle de centre O passant par M. On note B et C les points d'intersection de (OA) et C_2 . Montrer que

$$\frac{1}{MB^2} + \frac{1}{MC^2} = \frac{1}{MA^2}.$$

c) Exprimer les longueurs des arcs \widehat{MB} et \widehat{MC} de \mathcal{C}_2 en fonction des longueurs des arcs \widehat{AO} et \widehat{AM} de \mathcal{C}_1 . ¹

Solution:

- a) L'aire du triangle rectangle $\triangle ABC$ s'exprime comme $\frac{1}{2} \cdot BC \cdot AC = \frac{ab}{2}$ ou comme $\frac{1}{2} \cdot AB \cdot h$, d'où, en notant c = AB, ab = ch. D'après Pythagore, $c^2 = a^2 + b^2$, et donc $\frac{1}{h^2} = \frac{c^2}{(ab)^2} = \frac{1}{a^2} + \frac{1}{b^2}$.
- b) Considérons le triangle $\triangle BCM$. Comme [BC] est un diamètre de \mathcal{C}_2 et $M \in \mathcal{C}_2$, ce triangle est rectangle en M. D'autre part, A,M et O sont sur \mathcal{C}_1 dont [OM] est un diamètre. Le triangle $\triangle MAO$ est donc rectangle en A, ce qui signifie que [AH] est la hauteur de BCM issue de A. L'égalité résulte alors de la question précédente.

^{1.} On considère toujours l'arc le plus court : par exemple dans le cas de \widehat{MB} on parle de l'arc ne contenant pas C, dans le cas de \widehat{AM} on parle de l'arc ne contenant pas O.

c) Supposons pour fixer les notations que B soit le point d'intersection de [OA) et de C_2 . Notons $R_1 = \frac{OM}{2}$ et $R_2 = OM$ les rayons de C_1 et C_2 . La longueur de l'arc \widehat{BM} est égale à $R_2 \cdot \widehat{BOM}$ (où \widehat{BOM} est exprimée en radians). Mais $\widehat{BOM} = \widehat{AOM}$ est dans C_1 un angle inscrit qui intercepte l'arc \widehat{AM} . L'arc \widehat{AM} mesure donc $R_1 \cdot \frac{1}{2}\widehat{AOM}$. Autrement dit, les arcs \widehat{AM} et \widehat{BM} ont la même longueur.

Les points B et C sont diamétralement opposés. Ainsi la somme des arcs \widehat{MB} et \widehat{MC} est égale au demi-périmètre du cercle C_2 , soit le double de la longueur de l'arc \widehat{OM} de C_1 . La longueur $l(\widehat{CM})$ de l'arc \widehat{CM} vaut donc $l(\widehat{CM}) = l(\widehat{BC}) - l(\widehat{BM}) = 2(l(\widehat{OA}) + l(\widehat{AM})) - l(\widehat{AM}) = 2l(\widehat{OA}) + l(\widehat{AM})$.

Exercice 4 (Kangourou 2019)

La figure ci-contre est faite de trois cercles de même rayon R dont les centres sont alignés. Le cercle du milieu passe par les centres des deux autres. Quel est le périmètre de cette figure?

Solution:

Les triangles rouges sur la figure ci-contre sont équilatéraux, donc le périmètre est constitué de deux arcs de 240° et de deux arcs de 60° . Ainsi le périmètre est de $2\frac{4\pi}{3}R + 2\frac{\pi}{3}R = \frac{10}{3}\pi R$.

