Advanced Statistics

Dr. Syed Faisal Bukhari
Associate Professor
Department of Data Science
Faculty of Computing and Information Technology
University of the Punjab

Textbooks

☐ Probability & Statistics for Engineers & Scientists,
Ninth Edition, Ronald E. Walpole, Raymond H.
Myer

Variance of a Random Variable (Discrete and Continuous)

Let X be a random variable with probability distribution f(x) and mean μ .

$$\sigma^2 = E[(X - \mu)^2] = \Sigma (x - \mu)^2 f(x), \text{ if } X \text{ is discrete, and}$$

$$\sigma^2 = E[(X - \mu)^2] = \int_{x = -\infty}^{x = +\infty} (x - \mu)^2 f(x) dx, \text{ if } X \text{ is continous}$$

The positive square root of the variance, σ , is called the **standard deviation** of X.

Example: Let the random variable X represent the number of automobiles used for official business purposes on a workday. Probability distribution for Company A is

X	1	2	3
f(x)	0.3	0.4	0.3

and that for company B is

X	0	1	2	3	4
f(x)	0.2	0.1	0.3	0.3	0.1

Show that the variance of the probability distribution for company *B* is greater than that for company *A*.

$$\sigma^2 = E[(X - \mu)^2] = \Sigma (x - \mu)^2 f(x)$$

X	f(x)	xf(x)	x^2 f(x)	<i>x</i> - μ	$(x - \mu)^2$	$(x - \mu)^2$ f(x)
1	0.30	0.30	0.30	1 - 2 = -1	1	0.30
2	0.40	0.80	1.60	2 - 2 = 0	0	0.00
3	0.30	0.90	2.70	3 - 2 = 1	1	0.30
Total	1.0	2.0	4.6			0.60

$\sigma^2 = E[(X - \mu)^2] = \Sigma (x - \mu)^2 f(x)$

X	f(x)	xf(x)	x^2 f(x)	<i>x</i> - μ	$(x - \mu)^2$	$(x-\mu)^2$ f(x)
0	0.20	0.00	0	0-2 = -2	4	0.80
1	0.10	0.10	0.10	1 - 2 = -1	1	0.10
2	0.30	0.60	1.20	2 - 2 = 0	0	0.00
3	0.30	0.90	2.70	3 - 2 = 1	1	0.30
4	0.10	0.40	1.60	4 – 2 = 2	4	0.40
Total	1.0	2.0	5.6			1.60

Alternative Method

The variance of a random variable X is

$$\sigma^2 = E(X^2) - \mu^2$$

Or

$$\sigma^2 = E(X^2) - \{E(X)\}^2$$

$$\sigma^2 = E(X^2) - \{E(X)\}^2$$
 $\sigma^2_A = 4.6 - (2.0)^2$
 $\sigma^2_A = 0.60$

$$\sigma_B^2 = 5.6 - (2.0)^2$$
 $\sigma_B^2 = 1.60$

$$\sigma^{2}_{A} = 0.60$$

$$\sigma_{B}^{2} = 1.60$$

Clearly, the variance of the number of automobiles that are used for official business purposes is greater for company *B* than for company *A*.

Example: Let the random variable *X* represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested. The following is the

X	0	1	2	3
f(x)	0.51	0.38	0.10	0.01

Calculate σ^2 .

X	f(x)	xf(x)	x ² f(x)
0	0.51	0	0
1	0.38	0.38	0.38
2	0.10	0.20	0.40
3	0.01	0.03	0.09
Total		0.61	0.87

$$\sigma^2 = E(X^2) - \mu^2$$

Or

$$\sigma^2 = E(X^2) - \{E(X)\}^2$$

$$= 0.87 - (0.61)^2$$

$$= 0.4979.$$

Example: The weekly demand for a drinking-water product, in thousands of liters, from a local chain of efficiency stores is a continuous random variable *X* having the probability density

$$f(x) = \begin{cases} 2(x-1), & \text{for } 1 < x < 2 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the **mean** and **variance of** X.

$$\mu = E(X) = \int_{X=-\infty}^{X=+\infty} xf(x)dx$$

$$= 2\int_{1}^{2} x(x-1)dx$$

$$\mu = \frac{5}{3}$$

$$E(X^{2}) = \int_{X=-\infty}^{X=+\infty} x^{2}f(x)dx$$

$$= 2\int_{1}^{2} x^{2}(x-1)dx$$

$$E(X^{2}) = \frac{17}{6}$$

$$\sigma^{2} = E(X^{2}) - \{E(X)\}^{2}$$

$$= \frac{17}{6} - (\frac{5}{3})^{2}$$

$$\sigma^{2} = \frac{1}{18}$$

Mean of Linear Combinations of Random Variable

If a and b are constants, then E(aX + b) = aE(X) + b.

Setting a = 0, we see that E(b) = b.

Setting b = 0, we see that E(aX) = aE(X).

Let X be a random variable with probability distribution f(x). The expected value of the random variable g(X) is $\mu_g(X) = \mathbb{E}[g(X)] = \sum_x g(x) f(x)$, if X is discrete random variable

 $\mu_g(X) = E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)$, if X is continuous random variable

Variance

The variance is a measure of the dispersion of a set of data points around their mean. It quantifies how spread out the values are. Here are the key properties of variance:

1. Non-Negative

Variance is always non-negative:

 $Var(X) \ge 0$

2. Zero Variance

If all values are the same, variance is zero:

 $Var(X) = 0 \Leftrightarrow X \text{ is constant}$

3. Variance of a Constant

Variance of a constant is always zero:

$$Var(c) = 0$$

4. Variance of a Linear Transformation

For Y = aX + b, the variance is scaled:

$$Var(Y) = a^2 \times Var(X)$$

5. Variance of Sum of Independent Variables

For independent variables X and Y:

$$Var(X + Y) = Var(X) + Var(Y)$$

6. Variance of Difference of Independent Variables

For independent variables X and Y:

$$Var(X - Y) = Var(X) + Var(Y)$$

7. Scaling Effect

If all data points are multiplied by a constant a:

$$Var(aX) = a^2 \times Var(X)$$

8. Variance and Expectation

Variance can be expressed as:

$$Var(X) = E[X^2] - (E[X])^2$$

9. Additivity for Independent Variables

The variance of the **sum of independent variables** is the **sum of their variances**:

$$Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n)$$

Example: Calculate the variance of g(X) = 2X + 3, where X is a random variable with probability distribution

X	f(x)
0	1
	$\frac{\overline{4}}{4}$
1	1
	8
2	1
	$\overline{2}$
3	1
	8

Example: Calculate the variance of g(X) = 2X + 3, where X is a random variable with probability distribution

X	<i>f(x)</i>	xf(x)	$x^2f(x)$
0	2	0	0
	8		
1	1	1	1
	8	8	8
2	4	8	16
	8	8	8
3	1	3	9
	8	8	8
Total	$\frac{8}{8} = 1$	$\frac{12}{8}$ = 1.5	$\frac{26}{8}$ = 3.25

$$Var(g(X)) = Var(2X + 3)$$

 $\Rightarrow Var(g(X)) = 2^{2} Var(X)$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

= 3.25 - (1.5)²
 $Var(X) = 1$

$$Var(g(X)) = Var(2X + 3)$$

$$= 2^{2} Var(X)$$

$$= 2^{2} \times 1$$

$$= 4$$

Example: Let X be a random variable with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, -1 < x < 2, \\ 0, eslewhere \end{cases}$$

Find the expected value of g(X) = 4X + 3. Also find the variance of the random variable g(X) = 4X + 3.

$$E[g(X)] = E(4X + 3)$$

 $E[g(X)] = 4E(X) + 3$

$$E(X) = \frac{15}{12}$$
$$= \frac{5}{4}$$

Var[g(X)] = Var(4X+3)
=
$$4^2$$
 Var(X)

$$E(X) = \int_{-\infty}^{+\infty} xf(x) dx$$

$$E(X) = \int_{x=-1}^{x=2} x \times \frac{x^2}{3} dx$$

$$= |\frac{x^4}{12}|_{x=-1}^{x=2}$$

$$E[g(X)] = 4E(X) + 3$$
$$= 4(\frac{15}{12}) + 3$$
$$= 8$$

$$E(X) = \frac{2^4}{12} - \frac{(-1)^4}{12}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx$$

$$= \int_{-1}^{2} x^{2} \times \frac{x^{2}}{3} dx$$

$$= \int_{-1}^{2} \frac{x^{4}}{3} dx$$

$$= \left| \frac{x^{5}}{15} \right|_{x=-1}^{x=2}$$

$$= \frac{2^{5}}{15} - \frac{(-1)^{5}}{15}$$

$$E(X^{2}) = \frac{33}{15}$$

Var(X) =
$$E(X^2)$$
 -{ $E(X)$ }²
= $\frac{33}{15}$ - $(\frac{5}{4})^2$
= $\frac{51}{80}$
Var[g(X)] = Var(4X+3)
= 4^2 Var(X)
= $16 \times \frac{51}{80}$

 $Var[g(X)] = \frac{51}{5}$

What is Covariance?

Covariance is a measure of the relationship between two random variables. It shows how changes in one variable are associated with changes in another.

Key Points about Covariance

- Positive Covariance: Variables increase or decrease together.
- Negative Covariance: One variable increases when the other decreases.

 Zero Covariance: No consistent relationship between the variables.

Mathematical Definition of Covariance

Covariance between two random variables X and Y is:

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_{x})(y - \mu_{y}) f(x, y)$$

Covariance for Discrete and Continuous Variables

For discrete variables:

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_{x})(y - \mu_{y}) f(x, y)$$

if X and Y are discrete random variables.

For continuous variables:

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy$$

if X and Y are continuous random variables.

Covariance of X and Y (Discrete Case)

Let X and Y be random variables with joint probability distribution f(x, y).

The covariance of X and Y is given by:

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$

if X and Y are discrete random variables.

Covariance of X and Y (Continuous Case)

The covariance of X and Y is given by:

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] =$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \mu X)(y - \mu Y) f(x, y) dx dy \text{ if } X \text{ and } Y \text{ are continuous random variables.}$$

Example: Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected,

(a) Find the joint probability function f(x, y),

(b) Find the expected value of g(X, Y) = XY.

(c) Find the covariance of X and Y

		X			Danistatala
Т(Х	(, y)	0	1	2	Row totals
	0	3_	9	3_	<u>15</u>
У		28	28	28	28
	1	<u>6</u>	<u>6</u>	0	12
		28	28		28
	2	1_	0	0	1_
		28			28
Colum	n totals	<u>10</u>	<u>15</u>	3_	28 = 1
		28	28	28	28

Marginal Distribution of x

x = 0	0	1	2	Total
g(x)	10	15	3	28 = 1
	28	28	28	28

Marginal Distribution of y

y = 0	0	1	2	Total
h(y)	15	12	1	28 = 1
	28	28	28	28

$$\mu_{g}(X,Y) = E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f(x, y)$$

$$\mu_{g}(X,Y) = \sum_{x=0}^{x=2} \sum_{y=0}^{y=2} xy f(x,y)$$

$$\mathbf{E(XY)} = (0)(0) \times f(0,0) + (0)(1) \times f(0,1) + (0)(2) \times f(0,2) + (1)(0) \times f(1,0) + (1)(1) \times f(1,1) + (1)(2) \times f(1,2) + (2)(0) \times f(2,0) + (2)(1) \times f(2,1) + (2)(2) \times f(2,2)$$

$$E(XY) = (0)(0) \times \frac{3}{28} + (0)(1) \times \frac{6}{28} + (0)(2) \times \frac{1}{28} + (1)(0) \times \frac{9}{28} + (1)(1) \times \frac{6}{28} + (1)(2) \times 0 + (2)(0) \times \frac{3}{28} + (2)(1) \times 0 + (2)(2) \times 0 = \frac{6}{28}$$

$$E(XY) = \frac{3}{14}$$

$$\mu_X = \sum_{x=0}^2 x g(x)$$

$$\mu_X = (0)(\frac{10}{28}) + (1)(\frac{15}{28}) + (2)(\frac{3}{28})$$
$$= \frac{3}{4}$$

$$\mu_{y} = \sum_{y=0}^{2} yg(y)$$

$$= (0)(\frac{15}{28}) + (1)(\frac{3}{7}) + (2)(\frac{1}{28})$$
$$= \frac{1}{2}$$

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y$$

$$= \frac{3}{14} - \frac{3}{4} \times \frac{1}{2}$$

$$= -\frac{9}{56}$$