

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento IV — Exame Final - Época Normal de Exames

10 de janeiro de 2018 Duração: **2h30m**

N	N.° Mec.:				Non	ne:										
((Declaro que desisto:) N.° folhas suplementares:															
_																
	Questão	1	2a	2b	3a	3b	4a	4b	5	6	7a	7b	8	9a	9b	Classificação
	[Cotação]	[15pts]	[10pts]	[10pts]	[15pts]	[20pts]	[15pts]	[10pts]	[20pts]	[15pts]	[10pts]	[10pts]	[15pts]	[15pts]	[20pts]	(valores)

- Justifique todas as respostas e indique os cálculos efetuados -

[15pts] 1. Seja $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ a função real de variável real definida por

$$f(x) = e^{\frac{1}{x}} + \operatorname{arctg}\left(\frac{1}{x}\right).$$

Estude f quanto à monotonia e existência de extremos locais.

Continua na folha suplem	entar N°	

	2. S	eja	g a função real de variável real definida por $g(x)=% \frac{d^{2}}{dx^{2}}$	$\frac{\arcsin(x)-\frac{\pi}{2}}{x^2}$	<u>.</u>	
[10pts]	((a)	Determine o domínio de g e indique, se existirem,	os zeros de g		
			8π	(Continua na folha suplementar N	0
[10pts]	((b)	Mostre que existe $c \in \left]\frac{1}{2},1\right[$ tal que $g'(c)=\frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c\in\left]\frac{1}{2},1\right[$ tal que $g'(c)=\frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c\in\left]\frac{1}{2},1\right[$ tal que $g'(c)=\frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c\in\left]\frac{1}{2},1\right[$ tal que $g'(c)=\frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1 \right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]	((b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]		(b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	0
[10pts]		(b)	Mostre que existe $c \in \left] \frac{1}{2}, 1\right[$ tal que $g'(c) = \frac{8\pi}{3}.$	(Nota: $\operatorname{sen}(\frac{\pi}{6})$	Continua na folha suplementar N $=rac{1}{2}$)	

N ° Mec:	Nomes	
IN IVIEC:	Nome:	

3. Determine os seguintes integrais (simplificando o mais possível o resultado):

[15pts]

(a)
$$\int x \ln(1+x^2) \, dx$$

Continua na folha suplementar No

[20pts]

(b)
$$\int \frac{x+12}{x(x^2+4)} \, dx$$

Continua na folha suplementar Nº

	4. Seja	$F: \left]0, \frac{\pi}{2}\right[$	$\widehat{\ \ } o\mathbb{R}$ a função d	efinida por $F(x)$	$(x) = \int_0^{\sin x} \frac{1}{\sqrt{x}}$	$\frac{1}{(1-t^2)(4-t^2)}$	$\overline{\overline{t^2)}} dt.$	
[15pts]	(a)	Justifique	e que F é diferen	ciável e mostr	e que $F'(x)$ =	$= \frac{1}{\sqrt{4 - \sin^2 x}}$	$[x, x \in]0, \frac{\pi}{2}[.$	
						Со	ntinua na folha sup	lementar N°_
[10pts]	(b)	Calcule	$\lim_{x \to 0^+} \frac{F(x)}{\sin x \cos x}$	- .				

Continua na folha suplementar No

[20]	pts]

5. Calcule a área da região do plano delimitada pelo gráfico da função f definida por

$$f(x) = \frac{2 \arctan x}{1 + x^2}$$

e pelas retas de equações $y=0,\,x=-1$ e x=1.

[15pts]

6. Mostre, sem calcular os integrais de Riemann, que $\int_{\frac{\sqrt{2}}{2}}^{1} \frac{1-x^2}{\arcsin x} \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^3 x}{x} \, dx.$

(Nota: $\operatorname{sen}(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$)

	7.		
[10pts]	(a)	Mostre que o integral impróprio $\int_1^{+\infty} x e^{-x^2} dx$ é convergente e indique o seu valor.	
		Continua na folha suplementar Nº	
[10pts]	(b)	Continua na folha suplementar N° Estude a natureza do integral impróprio $\int_1^{+\infty} xe^{-x^2}\cos^2(x)dx$ sem recorrer à definição.	
[10pts]	(b)	Continua na folha suplementar N° Estude a natureza do integral impróprio $\int_1^{+\infty} xe^{-x^2}\cos^2(x)dx$ sem recorrer à definição.	
[10pts]	(b)		

Continua na folha suplementar Nº

8. Estude a natureza da série $\sum_{n=1}^{+\infty}\left(\frac{1}{(n+2)!}-\frac{1}{n!}\right)$ e, em caso de convergência, indique a sua soma.

Continua na folha suplementar Nº

9. Verifique se as séries seguintes são convergentes e, em caso de convergência, indique se a convergência é absoluta ou simples:

[15pts]

(a) $\sum_{n=0}^{+\infty} \frac{(-3)^{n+1}}{(n+1)!}.$

[20pts]

(b)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{\ln(n+2)}$$
.

Continua na folha suplementar Nº

Formulário

$(f(x)^p)' = p (f(x))^{p-1} f'(x), \operatorname{com} p \in \mathbb{R}$	
$\left(a^{f(x)}\right)' = f'(x)a^{f(x)}\ln(a), \operatorname{com} a \in \mathbb{R}^+ \setminus \{1\}$	$\left(\log_a(f(x))\right)' = \frac{f'(x)}{f(x)\ln(a)}, \text{com } a \in \mathbb{R}^+ \setminus \{1\}$
$(\operatorname{sen}(f(x)))' = f'(x)\operatorname{cos}(f(x))$	$(\cos(f(x)))' = -f'(x)\sin(f(x))$
$(\operatorname{tg}(f(x)))' = f'(x) \sec^2(f(x))$	$(\cot g(f(x)))' = -f'(x)\csc^2(f(x))$
$(\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$	$\left(\operatorname{cosec}(f(x))\right)' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$
$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$	$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$
$(\operatorname{arctg}(f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$	$\left(\operatorname{arccotg}(f(x))' = -\frac{f'(x)}{1 + (f(x))^2}\right)$

$1 + \operatorname{tg}^2(x) = \sec^2(x)$, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$	$1 + \cot^2(x) = \csc^2(x)$, para $x \neq k\pi, k \in \mathbb{Z}$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\operatorname{sen}(x \pm y) = \operatorname{sen} x \cos y \pm \cos x \operatorname{sen} y$
$\cos^2(x) = \frac{1 + \cos(2x)}{2}$	$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}$