Baseball & Nobita Problem

จัดทำโดย

นายศุภณัฐ	ฤทัยแช่มชื่น	รหัสประจำตัวนิสิต 6033440623
นายวีระวัฒน์	ก่อแก้ว	รหัสประจำตัวนิสิต 6033437823
นางสาวอัจฉริยภรณ์	วงษ์ลา	รหัสประจำตัวนิสิต 6033447023
นางสาวเกษศราภรณ์	บุญญานุเคราะห์	รหัสประจำตัวนิสิต 5933411023

รายงานนี้เป็นส่วนหนึ่งของวิชา 2304263 Introduction to Computational Physics

เสนอ

อาจารย์ ผศ.ดร.ณัฐกร ทับทอง

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

แรงบันดาลใจ

เนื่องจากในยามว่างได้ผ่อนคลายความเครียดโดยการดูการ์ตูนเรื่องโดราเอมอน และสังเกตพบว่าทีมเบสบอล ของไจแอนท์ ซึ่งโนบิตะเป็นสมาชิก โนบิตะต้องตีลูกเบสบอลในการแข่งขัน แล้วมักจะพลาดการเก็บแต้ม ทำให้ถูกไจ แอนท์หงุดหงิดใส่เสมอ เพื่อให้โนบิตะตีลูกเบสบอลและพาทีมชนะ เราจึงสนใจพิจารณาการตีลูกเบสบอล "Home Run" เป็นการทำให้ลูกบอลออกจากสนาม โดยกำหนดให้ว่าหากตีลูกบอลออกจากสนามจะไม่มีผู้เล่นฝ่ายตรงข้าม สามารถรับบอลได้

ความสำคัญของปัญหา

การตีลูกเบสบอลความเร็วเริ่มต้นค่าต่าง ๆที่ส่งลูกบอลให้เคลื่อนที่ได้ระยะไกลที่สุด ที่เป็นการทำให้ลูกบอลออก จากสนาม โดยกำหนดให้ว่าหากตีลูกบอลออกจากสนามจะไม่มีผู้เล่นฝ่ายตรงข้ามสามารถรับบอลได้ หรือที่เรียกว่า "Home Run" ในกีฬาเบสบอล พิจารณาในกรณี

- i. การตีลูกเบสบอลในกรณีที่ไม่มีแรงต้านอากาศ
- ii. การตีลูกเบสบอลในกรณีที่มีลมพัดทิศทางเดียวกัน
- iii. การตีลูกเบสบอลในกรณีที่มีลมพัดทิศทางตรงข้ามกัน
- iv. การตีลูกเบสบอลในกรณีที่แรงต้านอากาศขึ้นกับความสูง

ทฤษฎีทางฟิสิกส์

การทดลองนี้เป็นการศึกษาเกี่ยวกับการเคลื่อนที่แบบโปรเจคไทล์ เมื่อพิจารณากรณีไม่มีแรงเสียดทาน จะได้ เคลื่อนที่เป็นรูปวิถีพาราโบลา หากความเร็วเริ่มต้นคือ v_0 , Φ มุมเริ่มต้นจากแกน z และ θ คือมุมเริ่มต้นจาก แนวนอน ดังนั้นสมการพาราเมทริกสำหรับองค์ประกอบแนวนอนและแนวตั้งของเวกเตอร์ตำแหน่งคือ

$$x(t) = v_0 t \cos \theta \sin \Phi \tag{1}$$

$$y(t) = v_0 t \sin \theta \sin \Phi \tag{2}$$

$$z(t) = v_0 t \cos \Phi - \frac{1}{2}gt^2 \tag{3}$$

จากสมการ (1) จะได้ว่า

$$t = \frac{\sec\theta\csc\Phi}{v_0}x\tag{4}$$

แทนสมการ (4) ลงในสมการ (3) จะได้

$$z = x \cos \theta \cot \Phi - \frac{g}{2v_0^2} x^2 \cot^2 \theta \csc^2 \Phi$$
 (5)

จะเห็นว่าสมการ (5) เป็นสมการที่มีรูปแบบความสัมพันธ์เป็นพาราโบลา

เมื่อพิจารณาเวลา ณ ตำแหน่งต่างๆ โดยที่ตำแหน่งวัตถุอยู่ตำแหน่งไกลที่สุด(Maximum Distance) ทราบว่า ระยะในแนวแกน Z มีค่าเท่ากับ 0 นั่นคือ

$$z(t) = v_0 t \cos \Phi - \frac{1}{2}gt^2 = 0 \tag{6}$$

จะได้เวลาที่ตำแหน่งไกลที่สุด

$$t_{distance\ max} = \frac{2v_0\cos\Phi}{q} \tag{7}$$

และพิจารณาเวลา ณ ตำแน่งวัตถุอยู่ตำแหน่งสูงที่สุด ทราบว่าความเร็วในแนวแกน Z มีค่าเท่ากับ 0 นั่นคือ

$$z'(t) = v_0 \cos \Phi - gt = 0 \tag{8}$$

จะได้เวลาที่ตำแหน่งสูงที่สุด

$$t_{Height\ max} = \frac{v_0 \cos \Phi}{g} \tag{9}$$

เมื่อเราได้เวลาที่ตำแหน่งไกลที่สุดได้ ก็สามารถหาระยะที่ไกลที่สุดได้ (distance max)

$$distance \ max = \sqrt{x^2 + y^2} \tag{10}$$

$$distance \ max = 2v_0^2 \cos \Phi \sin \Phi \tag{11}$$

จากสมการ(7)และสมการ(9) สรุปได้ว่า

$$t_{Height\ max} = \frac{1}{2} t_{distance\ max} \tag{12}$$

ระเบียบวิธีเชิงตัวเลข

การเคลื่อนที่แบบโปรเจคไทล์ที่สนใจ สามารถนำเสนอเป็นโมเดลทางคณิตศาสตร์ได้ดังนี้

(i) ไม่มีแรงต้านอากาศ

$$x''(t) = 0 (13)$$

$$y''(t) = 0 (14)$$

และ

$$z''(t) = -g \tag{15}$$

(ii) มีแรงต้านอากาศ ซึ่งเป็นสัดส่วนกับความเร็ว

$$x''(t) = -kx'(t) \tag{16}$$

$$y''(t) = -ky(t) \tag{17}$$

และ

$$z''(t) = -kz'(t) - g \tag{18}$$

(iii) การตีลูกเบสบอลในกรณีที่มีลมพัดทิศทางเดียวกัน

$$x''(t) = kx'(t) \tag{19}$$

$$y''(t) = ky'(t) \tag{20}$$

$$z''(t) = -kz'(t) - g \tag{21}$$

(iv) การตีลูกเบสบอลในกรณีที่แรงต้านอากาศขึ้นกับความสูงและมีแรงลมในทิศ +x ใช้สมการ

$$x''(t) = \frac{k}{z} * x'(t)$$
 (22)

$$y''(t) = -\frac{k}{z} * y'(t)$$
 (23)

$$z''(t) = -\frac{k}{z} * z'(t) - g \tag{24}$$

เพื่อคำนวณการประมาณค่าตัวเลขสำหรับการแก้ปัญหาค่าเริ่มต้น (The initial value problem) โดยการ ทดลองนี้ใช้ระเบียบวิธีรุงเก-คุตตาอันดับ 4 ในการแก้ไขปัญหาสมการเชิงอนุพันธ์

$$\frac{dy}{dt} = y' = f(t, y) \tag{25}$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h \tag{26}$$

เมื่อ
$$k_1 = f(x_i, y_i) \tag{27}$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$
 (28)

$$k_2 = f\left(x_i + \frac{1}{2}h, \ y_i + \frac{1}{2}k_2h\right)$$
 (29)

$$k_2 = f(x_i + h, y_i + k_3 h)$$
 (30)

ให้ Initial Value คือ y_0 และ t_0

การดำเนินงาน

ตอนที่ 1 โปรแกรมแก้สมการเชิงอนุพันธ์

```
#define g 9.8
    #define PI 3.1415926535
    #define k 0.38
   /* Note that height is z variable*/
   double Force(double z, double v)
9
         return -k*v;
10 L }
     double Fn1(double t, double x, double v)/*x', y'=*/
12 □ {
13
         return v;
14
     double Fn2(double t,double x,double v,double z)/*x''=*/
15
16日 {
         return -Force(z,v);
17
18
    double Fn3(double t,double y,double v,double z)/*y"=*/
19
20 □ {
         return -Force(z,v);
21
22
    double Fn4(double t,double z,double v)/*z"=*/
23
24 □ {
        return -g+Force(z,v);
25
26 L }
```

รูปที่ 1 กำหนดค่าคงที่และฟังก์ชันที่ต้องการ

```
/* Spherical coordinate*/
27
     double Projectile3D(double Fn1(double,double,double,double),double Fn2(double,double,double,double),double Fn3(double,double,double)
29
    ,double Fn4(double,double),double t0,double x0,double y0,double z0,double v0,double dt,double angle,double phi)
30 □ {
31
        FILE *fptw;
32
        double ti=t0,xi=x0,yi=y0,zi=z0;
33
        double vxi=v0*cos(angle*PI/180)*sin(phi*PI/180),vyi=v0*sin(angle*PI/180)*sin(phi*PI/180),vzi=v0*cos(phi*PI/180);
34
        double k1,k2,k3,k4,l1,l2,l3,l4,m1,m2,m3,m4,n1,n2,n3,n4,p1,p2,p3,p4,q1,q2,q3,q4;
35
        int i=0;
```

```
64
             p1=Fn1(ti,zi,vzi);
             q1=Fn4(ti,zi,vzi);
65
66
             p2=Fn1(ti+dt/2,zi+p1*dt/2,vzi+q1*dt/2);
             q2=Fn4(ti+dt/2,zi+p1*dt/2,vzi+q1*dt/2);
67
68
             p3=Fn1(ti+dt/2,zi+p2*dt/2,vzi+q2*dt/2);
69
             q3=Fn4(ti+dt/2,zi+p2*dt/2,vzi+q2*dt/2);
70
             p4=Fn1(ti+dt,zi+p3*dt,vzi+q3*dt);
             q4=Fn4(ti+dt,zi+p3*dt,vzi+q3*dt);
71
72
73
             xi+=(k1+2.*k2+2.*k3+k4)*dt/6;
74
             yi+=(m1+2.*m2+2.*m3+m4)*dt/6;
75
             zi+=(p1+2.*p2+2.*p3+p4)*dt/6;
76
             vxi+=(11+2.*12+2.*13+14)*dt/6;
77
             vyi+=(n1+2.*n2+2.*n3+n4)*dt/6;
78
             vzi+=(q1+2.*q2+2.*q3+q4)*dt/6;
79
             ti+=dt;
             printf(" %d\t%8.41f\t%8.41f\t%8.41f\t%8.41f\n",i++,ti,xi,yi,zi);
80
         }while( zi>0);
81
82
         fclose(fptw);
83
         return sqrt(pow(xi,2.)+pow(yi,2.));
84
```

รูปที่ 3 คำนวณแยกสามแกนและฟังก์ชันคืนค่า

ตอนที่ 2 โปรแกรมหามุมที่ทำให้ระยะแนวระนาบ x-y ไกลที่สุด

```
78
         double xi, Xmax=0, Phimax=0, phi=0;
79
80
         printf("
                            Degree
                                             Xmax
                                                      \n");
81 -
         do{
82
             xi=Projectile3D(Fn1,Fn2,Fn3,Fn4,0,0,0,1.4,35.5,0.01,0,phi);
                                       %10.6f \n",phi,xi);
             printf("
                          %10.2f
83
84
85 🖹
              if(Xmax < xi){
                  Phimax=phi;
86
87
                  Xmax=xi;
88
89
             phi+=1;
90
         } while (phi<=90);
```

รูปที่ 4 เปรียบเทียบมุมและเก็บค่ามุมที่ทำให้ระยะในแนวระนาบ x-y ไกลที่สุด

การทดลอง

1. กำหนดค่าคงที่

กำหนดค่าต่างๆในโปรแกรม

#define tolerance 0.01 #define g 9.8 (หน่วยเป็น m/s²) #define PI 3.1415926535 กำหนด ระยะทางเริ่มต้นแกน X = ระยะทางเริ่มต้น แกน Y = 0 เมตร หรือ x(0)=y(0)=0

ระยะทางเริ่มต้นแกน Z = 1.4 เมตร หรือ z(0)=1.4 m

Step Size ในรุงเก-คุตตาอันดับ 4 หรือ dt = 0.01 และมุม $oldsymbol{\phi}$ เพิ่มขึ้นครั้งละ 1 องศา

ในกรณี

i. การตีลูกเบสบอลในกรณีที่ไม่มีแรงต้านอากาศ กำหนด #define k 0.0 (หน่วยเป็น s⁻¹)

ii. การตีลูกเบสบอลในกรณีที่มีลมพัดทิศทางเดียวกัน กำหนด #define k -0.38 (หน่วยเป็น s^{-1})

iii. การตีลูกเบสบอลในกรณีที่มีลมพัดทิศทางตรงข้ามกัน กำหนด #define k 0.38 (หน่วยเป็น ${
m s}^{ ext{-}1}$)

iv. การตีลูกเบสบอลในกรณีที่แรงต้านอากาศแปรผกผันกับความสูง กำหนด k(z)=0.38/z (หน่วยเป็น ${
m s}^{ ext{-1}}$)

2. ผลการทดลอง

ตอนที่ 1 การเคลื่อนที่ใน 2 มิติ

เส้นสีน้ำเงิน คือ มีแรงต้านอากาศ เส้นสีแดง คือ ไม่มีแรงต้านอากาศ

รูปที่ 5 เปรียบเทียบการเคลื่อนที่แบบไม่มีแรงต้านอากาศและมีแรงต้านอากาศที่มุมเริ่มต้น 30 องศา

รูปที่ 6 เปรียบเทียบการเคลื่อนที่แบบไม่มีแรงต้านอากาศและมีแรงต้านอากาศที่มุมเริ่มต้น 45 องศา

รูปที่ 7 เปรียบเทียบการเคลื่อนที่แบบไม่มีแรงต้านอากาศและมีแรงต้านอากาศที่มุมเริ่มต้น 60 องศา

ตารางที่ 1 เปรียบเทียบมุมและระยะแนวระนาบ x-y กรณีที่ไม่มีแรงต้านอากาศและมีแรงต้านอากาศ

ท่า	ระยะแนวระนาบ x-y (เมตร)			
(องศา)	ไม่มีแรงต้านอากาศ	มีแรงต้านอากาศ		
30	113.75	56.56		
45	130.03	52.67		
60	112.18	39.56		

พบว่าในกรณีมีแรงต้านอากาศมุมที่ทำให้ระยะแนวระนาบ x-y ไกลที่สุดไม่เป็นมุม 45 องศา จึงนำไปคำนวณ ในโปรแกรมคำนวณหามุมที่ทำให้ระยะแกน x ไกลที่สุด ได้ดังนี้

ม่ท	ระยะแกนนอน	ท่ท	ระยะแกนนอน
(องศา)	(เมตร)	(องศา)	(เมตร)
24	54.52	31	56.69
25	55.00	32	56.78
26	55.42	33	56.74
0.7	55.00	0.4	5470
27	55.89	34	56.73
28	56.20	35	56.59
20	30.20	33	30.37
29	56.45	36	56.40
30	56.64	37	56.18

จากตารางพบว่าค่าระยะแกนนอนจะเพิ่มมากที่สุดเมื่อ มุม 32 องศา ระยะ 56.78 เมตร

รูปที่ 8 การเคลื่อนที่แบบมีแรงต้านอากาศที่มุมเริ่มต้น 32 องศา

ตอนที่ 2 การเคลื่อนที่ในสามมิติ

พิจารณาเมื่อมีแรงลมทิศแกน +x และ +y แต่มีแรงต้านปกติในแกน z มุมที่ทำให้ระยะระนาบ x-y ไกลที่สุด คือ 37 องศาจากแนวแกน z โดย เส้นสีน้ำเงิน คือ มีแรงลม ได้ระยะ 270 เมตร เส้นสีแดง คือ ไม่มีแรงลม ได้ระยะ 124 เมตร และลูกศรสีส้มคือทิศของแรงจากลม

รูปที่ 9 เปรียบเทียบการเคลื่อนที่แบบไม่มีแรงลมและมีแรงลมในทิศ +x และ +y ที่มุมเริ่มต้น 37 องศา

หมายเหตุ ในกรณี 3 มิติ จะใช้ระบบพิกัดทรงกลมในการอธิบายมุมซึ่งเป็นมุมที่วัดจากแกน z

พิจารณาเพิ่มเติมในกรณีที่น่าสนใจ ดังนี้

1. ที่มุมเริ่มต้น 45 มีแรงลมในทิศแกน +x ทำให้เกิดเส้นทางการเคลื่อนเป็นเส้นโค้งดังรูปโดย เส้นสีน้ำเงิน คือ กรณีที่สนใจ ได้ระยะ 187 เมตร เส้นสีแดง คือ ไม่มีแรงต้านอากาศ ได้ระยะ 130 เมตร และลูกศรสีส้มคือทิศ ของแรงจากลม

รูปที่ 10 การเคลื่อนที่แบบมีไม่มีแรงลมและมีแรงลมในทิศทิศแกน +x ที่มุมเริ่มต้น 45 องศา

2. แรงต้านแปรผกผันตามความสูงที่มุมเริ่มต้น 45 มีแรงลมในทิศแกน +x โดย เส้นสีน้ำเงิน คือ กรณีที่สนใจ ได้ ระยะ 125 เมตร เส้นสีแดง คือ ไม่มีแรงต้านอากาศ ได้ระยะ 130 เมตรและลูกศรสีส้มคือทิศของแรงจากลม

รูปที่ 11 การเคลื่อนที่แบบไม่มีแรงลมและมีแรงลมในทิศทิศแกน +x ที่มุมเริ่มต้น 45 องศา

สรุปผลการทดลอง

การจำลองการเคลื่อนที่ของเบสบอล เป็นผลการจำลองที่ได้จากระเบียบวิธีเชิงตัวเลข แสดงในรูปแบบของ ตาราง กราฟ และแอนิเมชัน โดยจะเล่าเรื่องผ่านโนบิตะเกี่ยวกับการเล่นเบสบอลซึ่งเป็นปัญหาการเคลื่อนที่แบบโพรเจค ไทล์ ซึ่งแบ่งการทดลองเป็นหลายกรณีได้แก่ กรณีไม่มีแรงภายนอก กรณีมีแรงต้าน กรณีมีแรงลมช่วยให้เคลื่อนที่ได้ไกล ขึ้น และกรณีที่แรงต้านของลมขึ้นอยู่กับความสูง พบว่าเราสามารถนำการทดลองที่ได้นำไปพัฒนาต่อเพื่อหาแบบจำลอง ของแรงต้านอากาศที่สอดคล้องกับชีวิตจริง อีกทั้งยังพบข้อสังเกตคือ มุมที่ทำให้วัตถุไปไกลที่สุดเมื่อมีแรงต้านอากาศ จะขึ้นอยู่กับความเร็วต้นและค่าแรงต้านอากาศ นอกจากนี้การทดลองครั้งนี้ยังมีประโยชน์ในด้านการประยุกต์ใช้ ระเบียบวิธีเชิงตัวเลขในงานทางด้านฟิสิกส์อื่น ๆอีกด้วย

อ้างอิง

John H. Mathews. (2004). Projectile Motion. สืบค้นเมื่อ 24 เมษายน 2562, จาก
http://mathfaculty.fullerton.edu/mathews/n2003/ProjectileMotionMod.html
กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน. (2557). พลังงานลม. In กรมพัฒนาพลังงานทดแทนและอนุรักษ์
พลังงาน, สารานุกรมพลังงานทดแทน (pp. 283-284, 289, 297-299, 302). กรุงเทพมหานคร,ประเทศไทย.
ผศ.ดร.ณัฐกร ทับทอง. ฟิสิกส์เชิงคำนวณเบื้องต้น(Introduction to Computational Physics). สมการเชิงอนุพันธ์
(Differential Equation). ม.ป.ท., 2561