Chemistry SCH4U-C Practice Test

Time: 2 hours Total Marks: 103

Final Test Score: ____ $\div 103 \times 100 =$ ____%

Instructions

- There is a label attached to this page. Compare the course code on the label with the course code printed on the Final Test to make sure that they are the same. Tell the Final Test supervisor **immediately** if they are not the same.
- The Final Test pages are numbered 1 through 20. Check to see that all 20 pages are there. Tell the Final Test supervisor **immediately** if there are any pages missing.
- You may use a non-marked dictionary during the Final Test if one is available at the test site. You may not use any other books or notes.
- You will need a pen and a scientific calculator.
- There is a periodic table of the elements included at the beginning to assist you with the chemistry questions.
- You must write your answers in the space provided.
- This test has three parts. A breakdown of the marks and the approximate time needed for each part is given below. Look over the entire test before you begin. Manage your time carefully and leave some time at the end to review your work.

Part	Activity Marks		Time (minutes)
	Preview		5
A	A Structure of Matter and Organic Chemistry 25		30
В	B Oxidation Reduction Reactions, Electrochemistry, and Energy 39		40
С	Rates of Reaction and Equilibrium Applications 39		40
Review		5	
Total		103	120

- At the end of the test, return this test paper and all of your work (including drafts) to the Final Test supervisor.
- Please note that, for security reasons, marked tests are not returned to students.
- Mathematical solutions require a proper problem-solving format. Final answers must include the correct units and the correct number of significant figures.

Formula Sheet and Periodic Table of the Elements

Formula Sheet

You will need a scientific calculator that is able to do exponents, logarithms, square roots, and cube roots.

$$n = \frac{m}{M}$$

$$c = \frac{n}{V}$$

$$q = mc\Delta T$$

$$\Delta H = \Sigma \Delta H_{f(products)} - \Sigma \Delta H_{f(reactants)}$$

$$K_{eq} = \frac{[products]}{[reactants]}$$

(for
$$A_x B_y$$
) $K_{sp} = [A^+]^x [B^-]^y$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_b = \frac{[\mathrm{HB}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

$$pH = -\log[H_3O^+]$$

Periodic Table

Group 18 VIIIA 2 He Helium 4.002602	10 Ne Neon 20.1797	18 Ar Argon 39.948	36 Krypton 83.80	54 Xe Xenon 131.29	86 Rn Radon (222.01761)	118 Uuo Ununoctium		71 S Lu Lutetium 174.967	103 Lr Lawrencium (262.111)
Group 17 VIIA	9 -1 F Fluorine 18.9984032	17 11 CI 3 Chlorine 35.4527	35 -1 Br 5 Bromine 79.904	53 -1 I 5 lodine 126.90447	85 1 At 3 Astatine (209.9871)	117 Uus Ununseptium		70 2 Y b Ytterbium 173.04	102 No Nobelium (259.1009)
Group 16 VIA	8 O Oxygen 15.9994	16 -2 S 2 Sulfur 32.066	3 34 -2 5 Se 6 Selenium 78.96	52 4 Te 6 Tellurium	84 Po Polonium (208.9824)	116 Uuh Ununhexium		69 7m Thulium 168.93421	101 Md Mendelevium (258.10)
Group 15 VA	Nitrogen 14.00674	15 - 3 P 3 Phosphorus 30.973762	33 AS Arsenic 74.92159	Sb Sh Antimony 121.757	83 B B Bismuth 208.98037	115 Uup Ununpentium		68 Er Erbium 167.26	100 Fm Fermium (257.0951)
Group 14 IVA	Carbon 12.011	14 Si Silicon 28.0855	32 Ge Ge Germanium 72.61	Sn Tin 118.710	82 Pb Ptb	114 Uuq Ununquadium (282)		67 Ho Holmium 164.93032	99 Es Einsteinium (252.083)
Group 13	5 B Boron 10.811	13 AI Aluminum 26.981539	Gallum 69.723	114.818	T1 T1 Thallium 204.3833	113 Uut Ununtrium (278)		5 66 3 Dy H	Californium (251.0796)
		Group 12 IIB	30 Z.n Zinc 65.39	Cadmium Cadmium 112.411	80 Hg Mercury 200.59	112 Uub Ununbium (275)		65 Tb Terbium 158.9253	97 Bk Berkelium (247.0703)
ates		Group 11 IB	29 Cu Copper 63.546	47 Ag Silver 107.8682	79 Au Gold 196.96654	Rg Roentgenium (272)		64 Gd Gadolinium 157.25	Curium (247.0703)
Common Oxidation States		Group 10	28 Ni Nickel 58.6934	Pd Palladium 106.42	78 Pt Platinum 195.08	110 Ds Damstadtium (269)		Eu Europium 151.965	95 Am Americium (243.0614)
- Common (Group 9 VIIIB	27 Co Cobalt 58.93320	45 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	77 Ir Iridium 192.22	109 Mt Meitnerium (266)		Sm Samarium 150.36	94 3 Pu 5 Plutonium (244.0642)
° C 244	ā	Group 8	26 Fe Iron 55.847	Ruthenium 101.07	76 Osmium 190.23	108 Hs Hassium (265)		Pm Promethium (144.9127)	93 5 N p 3 Neptunium (237.0482)
	12.011	Group 7 VIIB	25 Mn Manganese 54.93805	43 7 Tc Technetium (97.90772)	75 Re 6 Rhenium 186.207	107 Bh Bohrium (262.12)		Neodymium	92 U Uranium 238.0289
Atomic Number Symbol Name	Average Atomic Mass	Group 6 VIB	24 2 Cr 6 Chromium 51.9961	42 5 Molybdenum 95.94	74 5 W 24 Tungsten 183.84	106 Sg Seaborgium (263.118)		Pr Praseodymium 140.90765	91 Pa Pa Protactinium 231.03588
Aton	Average A	Group 5 VB	23 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AN Niobium 92.90638	73 5 Ta Tantalum 180.9479	105 Db Dubnium (262.114)		58 Cerium 140.115	90 Th Thorium 232.0381
		Group 4 IVB	22 3 Ti Titanium 47.88	40 Zr Zirconium 91.224	72 4 Hf Hafnium 178.49	104 Rf Rutherfordiun (261.11)			
		Group 3	21 Scandium 44.955910	39 8 Y Yttrium 88.90585	57 8 La Lanthanum 138.9055	89 8 Ac Actinium (227.0278)			
Group 2 IIA	Beryllium	12 2 Mg Magnesium 24.3050	20 Ca Ca Calcium 40.078	Sr Strontium 87.62	56 2 Ba Barium 137.327	88 Ra Ra Radium (226.0254)			
Group 1 IA T Hydrogen 1,00794	3 Li Lihium 6.941	11 Na Sodium 22.989768	19 K K Potassium 39.0983	37 Rb Rubidium 85.4678	55 Cs Cesium 132.90543	87 Fr Francium (223.0197)			
	2	က	4	2	9	7	<u> </u>		
			Period						

Part A: Structure of Matter and Organic Chemistry 25 marks (approximate time: 30 minutes)

1. Two of the lines in the hydrogen emission spectrum are coloured violet and blue-green. Violet light is known to have more energy than blue-green light. How did Niels Bohr explain the origin of these two lines? (4 marks)

2. Write the electronic configuration for an atom of potassium, which is element 19 on the periodic table. (2 marks)

3. a) Draw the Lewis structure (that is, the electron dot diagram) and structural formula for the sulfite ion, SO_3^{2-} . (4 marks)

b) Predict the shape of the sulfite ion. (1 mark)

c) Is the sulfite ion polar or non-polar? Justify your prediction. (3 marks)

4. Methanol and ethane have nearly the same molar mass. Refer to intermolecular forces to explain why there is such a large difference in their boiling points.

Compound	Formula	Boiling point (°C)
Ethane	C_2H_6	-89
Methanol	CH ₃ OH	65

(3 marks)

5. Name these compounds. (4 marks total)

a)

$$\begin{array}{c} \operatorname{CH}_3 \\ \downarrow \\ \operatorname{CH}_3 \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH}_3 \\ \downarrow \\ \operatorname{CH}_3 \end{array}$$

b)

c)

d)
$$CH_3-CH_2-CH-CH_2-OH$$
 OH

- **6.** Draw the structural formula for these compounds. (4 marks total)
 - **a)** 3,4-diethylhexane

b) propene

c) 3,3-dimethylhexane

d) methyl propanoate

Part B: Oxidation Reduction Reactions, Electrochemistry, and Energy 39 marks (approximate time: 40 minutes)

- **7.** Write a balanced equation for each of the following reactions.
 - **a)** The reaction of methanol with ethanoic acid in the presence of a sulfuric acid catalyst. Use structural formulas for all organic compounds in your equation. (3 marks)

b) The complete combustion of ethanol. Use molecular formulas for each chemical. (3 marks)

8. The following table shows the boiling points of alkanes and the corresponding alkyl chlorides.

Alkane	Boiling point (°C)
CH ₄	-164
C_2H_6	-89
C_3H_8	-42

Alkyl chloride	Boiling point (°C)
CH ₃ Cl	-24
C ₂ H ₅ Cl	12
C ₂ H ₇ Cl	14

- **a)** What effect does the size of the molecule have on the boiling point for both groups of compounds? (1 mark)
- **b)** What effect does the presence of a chlorine atom have on the boiling point of the corresponding alkyl chlorides? (1 mark)

c) Identify the type of intermolecular forces that occurs in both groups of compounds. Use the difference in forces to explain the difference in boiling points. (3 marks)

9. a) Chloroethene is the monomer used to manufacture the polymer called polyvinyl chloride. Distinguish between the terms "monomer" and "polymer." (2 marks)

b) Write a chemical equation showing the synthesis of polyvinyl chloride. (2 marks)

c) Why is this reaction an example of addition polymerization? (1 mark)

10. Use half-reactions to write a balanced chemical equation for the following net ionic equation. Assume that the reaction is occurring in water. Show each step in the process. **(6 marks)**

$$\operatorname{Cr_2O_7^{2-}} + \operatorname{NO} \rightarrow \operatorname{Cr}^{3+} + \operatorname{NO_3^{-}}$$

11. Consider the following reduction half-cell reactions and potentials:

$$Ag^{^{+}}_{\;(aq)}\;+\;e^{^{-}}\;\rightarrow\;Ag_{(s)}$$

$$E^{\circ} = +0.80 \text{ V}$$

$$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$$

$$E^{\circ} = -0.76 \text{ V}$$

- a) In the galvanic cell that uses these half-cells, predict which reaction will occur at the anode and which will occur at the cathode, and state the type of reaction each will be. (2 marks)
- **b)** Use this information to determine the cell potential if this redox reaction were occurring in a galvanic cell. (1 mark)

12. These are two half-reactions for a hydrogen fuel cell:

Anode reaction:
$$2H_2 \rightarrow 4H^+ + 4e^-$$

Cathode reaction:
$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

a) Write the overall cell reaction for the hydrogen fuel cell. (1 mark)

b) Refer to your answer in (a) to explain why running a car on hydrogen fuel cells would be better for the environment than running it on gasoline. (2 marks)

13. A student heated 100.0 mL of water in an aluminum container using an alcohol burner filled with ethanol (C_2H_5OH). The mass of the aluminum container was 42.5 g. The initial temperature of the water was 17.5°C and the final temperature was 26.3°C. The initial mass of the alcohol burner was 113.45 g and the final mass was 112.97 g. Calculate the molar heat of the combustion of ethanol. The specific heat capacities are $c_{Al} = 0.900 \text{ J/g}^{\circ}\text{C}$ and $c_{H_2O} = 4.18 \text{ J/g}^{\circ}\text{C}$. **(6 marks)**

14. Butane (C_4H_{10}) has a ΔH of –2871 kJ/mol when it undergoes complete combustion into carbon dioxide and liquid water. Given the following ΔH_f values:

Carbon dioxide = -393.5 kJ/mol

Oxygen gas = 0 kJ/mol

Liquid water = -285.8 kJ/mol

a) Write the balanced thermochemical equation for the complete combustion of 1 mol of butane. (2 marks)

b) Calculate ΔH_f of butane in kJ/mol. (3 marks)

Part C: Rates of Reaction and Equilibrium Applications 39 marks (approximate time: 40 minutes)

15. The balanced chemical equation for the reaction between iodine vapour and fluorine gas is:

$$3I_{2(g)} + 6F_{2(g)} \rightarrow 2IF_{5(g)} + I_4F_{2(g)}$$

A chemist measures the rate at which iodine vapour is consumed to be 4.5×10^{-4} mol/(L•s). At what rate is $F_{2(g)}$ consumed? (2 marks)

- **16.** Use the collision theory to explain the following. (2 marks total)
 - **a)** Chopped vegetables will cook faster than whole vegetables.

b) When a piece of magnesium is held in a flame, it ignites.

17. Use the concentration-rate data presented in the following table to answer the following questions about the hypothetical reaction $2A + 3B \rightarrow 2C$.

[A] in mol/L	[B] in mol/L	Rate in mol/L•s
0.100	0.100	3.0×10^{-4}
0.300	0.100	9.0×10^{-4}
0.300	0.200	3.6×10^{-3}
0.200	0.300	;

a) What is the order of reaction, with regard to each reactant? (2 marks)

b) Write the rate law equation for this reaction. (1 mark)

c) Calculate the rate indicated by the "?" (2 marks)

18. The following equilibrium reaction has a K_{eq} value of 2.5×10^{-6} :

$$2\mathrm{CO}_{2(g)} \iff 2\mathrm{CO}_{(g)} \,+\, \mathrm{O}_{2(g)}$$

Calculate the equilibrium concentrations of all gases if 0.800 mol of $CO_{2(g)}$ is initially placed in a 2.00 L reaction container. (5 marks)

19. Le Châtelier's principle states that when a system at equilibrium is affected by some kind of stress and loses equilibrium, the system will return to equilibrium by shifting the reaction either to the right or left (forwards or backwards) to minimize the effect of the stress. Use Le Châtelier's principle to describe and explain the shifts caused by the listed stresses placed on the following equilibrium reaction. (5 marks total)

$$3\text{Cl}_{2(g)} \ + \ \text{CS}_{2(g)} \ \Longleftrightarrow \ \text{CCl}_{4(g)} \ + \ \text{S}_2\text{Cl}_{2(g)}$$

$$\Delta H = -465 \text{ kJ}$$

- **a)** Adding $CCl_{4(g)}$
- **b)** Adding $Cl_{2(g)}$
- **c)** Adding a catalyst
- **d)** Decreasing the volume

e) Increasing the temperature

20. The K_{sp} for MgF₂ is 6.4×10^{-9} . What mass of MgF₂ will dissolve in 500 mL of distilled water? (5 marks)

21. a) What is the pH of a strong acid with [HA] = 0.125 mol/L? (1 mark)

b) What is the pH of a weak acid with [HA] = 0.125 mol/L and $K_a = 5.4 \times 10^{-7}$? (4 marks)

- **22.** During a titration, 28.0 mL of 0.150 mol/L $H_2SO_{4(aq)}$ neutralizes 35.0 mL of $NH_4OH_{(aq)}$. The K_a for H_2SO_4 is very large. The K_b for NH_4OH is 1.8×10^{-5} .
 - a) Write the balanced equation for the neutralization reaction. (1 mark)
 - **b)** Calculate the concentration of the $NH_4OH_{(aq)}$. (2 marks)

c) From the table below, select an indicator to use in a titration. Explain your selection. (2 marks)

Indicator	Range of pH of colour change
Bromocresol purple	5.2 - 6.8
Litmus	6.0 - 8.0
m-cresol purple	7.6 – 9.2

23. A buffer is created by adding 0.35 mol of sodium benzoate to 1.00 L of a 0.40 mol/L benzoic acid solution. The K_a of benzoic acid is 6.3×10^{-5} . What is the pH of the buffer? (5 marks)