_		sembles de nombres inclus dans \mathbb{R} . Nombres entiers						
	1.2	Nombres décimaux						
	1.3	Nombres rationnels						
2		Bornes d'une partie de $\mathbb R.$						
	2.1	Majorants, minorant, maximum, minimum.						
	2.2	Borne supérieure, borne inférieure						
	2.3	Retour sur la notion d'intervalle.						

1 Ensembles de nombres inclus dans \mathbb{R} .

1.1 Nombres entiers.

Définition 1.

On note \mathbb{N} l'ensemble des entiers naturels $\mathbb{N}=\{0,1,2,\ldots\}$ et $\mathbb{Z}=\{0,1,2,\ldots\}\cup\{-1,-2,\ldots\}$ l'ensemble des entiers relatifs.

On admet les deux propositions suivantes :

Proposition 2.

L'ensemble des entiers relatifs est stable par somme, différence, et produit.

Proposition 3.

Toute partie non vide et majorée de $\mathbb N$ ou de $\mathbb Z$ admet un plus grand élément.

Toute partie non vide et minorée de Z admet un plus petit élément.

En particulier, toute partie non vide de N admet un plus petit élément.

Définition 4.

Pour tout nombre réel x, on appelle **partie entière** de x, et on note $\lfloor x \rfloor$ le plus grand entier relatif inférieur à x:

$$|x| = \max\{k \in \mathbb{Z} \mid k \le x\}.$$

Proposition 5.

Pour tout nombre réel x,

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1.$$

En « croisant » les inégalités, ceci implique notamment que pour tout $x \in \mathbb{R}$,

$$x - 1 < |x| \le x$$
.

On connaît le graphe de la fonction $x \mapsto \lfloor x \rfloor$. On avait démontré dans le cours sur les fonctions de la variable réelle que cette fonction est croissante (bon exercice).

Corollaire 6.

L'ensemble \mathbb{R} possède la propriété dite d'Archimède : pour tout nombre réel $x \in \mathbb{R}_+^*$, pour tout réel positif $\varepsilon > 0$, il existe $n \in \mathbb{N}$ tel que $n\varepsilon > x$.

1.2 Nombres décimaux.

Définition 7.

On appelle **nombre décimal** un nombre réel qui s'écrit sous la forme $\frac{p}{10^k}$, où $p \in \mathbb{Z}$ et $k \in \mathbb{N}$. L'ensemble des nombres décimaux, est noté \mathbb{D} .

Définition 8 (généralisation).

Soit p un entier naturel supérieur ou égal à 2.

On appelle **fraction** p-adique un nombre réel qui s'écrit sous la forme $\frac{q}{p^k}$ où $q \in \mathbb{Z}$ et $k \in \mathbb{N}$.

Les fractions 2-adiques sont dites dyadiques. Les nombres "flottants" en info sont des dyadiques.

L'encadrement donné par la partie entière est à la précision 1. Ce qui suit généralise le principe et permet d'obtenir une précision arbitraire.

Proposition 9.

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Le nombre $d_n(x) := \frac{\lfloor 10^n x \rfloor}{10^n}$ satisfait l'encadrement

$$d_n(x) \le x < d_n(x) + 10^{-n}$$
.

Les nombres $d_n(x)$ et $d_n(x) + 10^{-n}$ sont appelés respectivement valeur décimale par défaut (resp. par excès) de x à la précision 10^{-n} .

Exemple. Voici les valeurs décimales par défaut et par excès à la précision 10^{-3} de certaines constantes.

	1	$\sqrt{2}$	$\sqrt{3}$	π	e	ln(2)
par défaut à 10^{-3} près	1,000	1,414	1,732	3,141	2,718	0.693
par excès à 10^{-3} près	1,001	1,415	1,733	3,142	2,719	0.694

Corollaire 10 (\mathbb{D} est dense dans \mathbb{R}).

Entre deux réels distincts, il existe toujours un nombre décimal :

$$\forall a < b \in \mathbb{R} \quad \mathbb{D} \cap]a, b \neq \emptyset.$$

1.3 Nombres rationnels.

Définition 11.

Un nombre **rationnel** est un nombre réel qui s'écrit sous la forme d'un quotient d'entiers $\frac{p}{q}$, où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. On note \mathbb{Q} l'ensemble des nombres rationnels. On dit d'un nombre de $\mathbb{R} \setminus \mathbb{Q}$ qu'il est **irrationnel**.

Les nombres décimaux sont des nombres rationnels, et on peut écrire les inclusions

$$\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$
.

La dernière inclusion est stricte car il existe des nombres irrationnels. On a prouvé que $\sqrt{2}$ est irrationnel. Les nombres e et π sont aussi irrationnels (ce sera prouvé dans des exercices). On pense que la constante d'Euler γ est irrationnelle mais il s'agit toujours d'une conjecture.

Proposition 12.

L'ensemble des rationnels est stable par somme, produit, et passage à l'inverse.

Exemple 13.

Justifier que $\mathbb{R} \setminus \mathbb{Q}$ n'est PAS stable par somme, ni par produit.

Théorème 14 (\mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}).

Entre deux réels distincts, il existe toujours un nombre rationnel et un irrationnel. Autrement dit, pour tous a, b réels avec a < b,

$$|a,b| \cap \mathbb{Q} \neq \emptyset$$
 et $|a,b| \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$.

Autrement dit, tout intervalle ouvert non vide rencontre \mathbb{Q} :

2 Bornes d'une partie de \mathbb{R} .

2.1 Majorants, minorant, maximum, minimum.

Les quatre notions figurant dans le titre du paragraphe ont été définies pour une relation d'ordre quelconque.

On rappelle que si A est une partie de \mathbb{R} , un réel M est un **majorant** de A si tous les éléments de A sont inférieurs à M. Lorsqu'un tel réel existe, la partie A est dite **majorée**. Il n'y a pas unicité du majorant, bien sûr : si M est un majorant de A, alors M' en est un autre dès que $M \leq M'$.

Si A est un ensemble de réels, on parle de **maximum** de A au sujet d'un majorant qui appartient à A. On sait que le maximum est unique lorsqu'il existe, mais certaines parties majorées n'ont pas de maximum.

Proposition 15 (Caractérisation des parties bornées de \mathbb{R}).

Soit A une partie de \mathbb{R} .

$$A$$
 est bornée $\iff \exists \mu \in \mathbb{R}_+ \ \forall x \in A \ |x| \leq \mu.$

2.2 Borne supérieure, borne inférieure.

Définition 16.

Soit A une partie de \mathbb{R} .

- On appelle **borne supérieure** de A et on note sup A, le plus petit des majorants de A, lorsque ce nombre existe.
- On appelle **borne inférieure** de A et on note inf A, le plus grand des minorants de A, lorsque ce nombre existe.

Implicite dans cette définition : l'unicité de la borne supérieure. On peut la montrer comme on avait prouvé celle d'un maximum. Pour ce qui concerne l'existence, commençons par examiner un cas simple.

Proposition 17.

Si une partie de \mathbb{R} possède un maximum M, alors elle a une borne supérieure, qui vaut M.

Le théorème ci-dessous, admis, est une propriété fondamentale de \mathbb{R} .

Théorème 18 (Propriété de la borne supérieure/inférieure).

Toute partie de \mathbb{R} non-vide et majorée admet une borne supérieure dans \mathbb{R} .

Toute partie de \mathbb{R} non-vide et minorée admet une borne inférieure dans \mathbb{R} .

Remplacez R par Q dans les phrases précédentes et elles deviennent fausses : voir l'exercice 7

Proposition 19 (Caractérisation de la borne supérieure.).

Soit A une partie de \mathbb{R} non vide et majorée et $\alpha \in \mathbb{R}$. On a l'équivalence

$$\sup A = M \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} M \text{ est un majorant de } A \\ \forall \varepsilon > 0, \exists x \in A : M - \varepsilon < x \leq M \end{array} \right.$$

Interprétons l'assertion commençant par $\forall \varepsilon \ \exists x \in A : M - \varepsilon < x \leq M$ dans ce qui précède : il est dit que l'on peut trouver un élément de A aussi proche que l'on veut de M.

Si on a compris pour la borne supérieure, on sait adapter pour la borne inférieure : pour A une partie non vide et minorée et α un réel,

$$\inf A = m \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} m \text{ est un minorant de } A \\ \dots \end{array} \right.$$

Exemple 20.

Soit A = [0, 1[. Justifier l'existence de $\sup A$ puis la calculer.

Soit $B = \{r \in \mathbb{Q} : r < \sqrt{2}\}$. Justifier l'existence de sup B puis la calculer.

Soit $C = \{1/n - 1/p, n, p \in \mathbb{N}^*\}$. Calculer $\sup C$ et inf C, après avoir justifié qu'elles existent.

Méthode (Majorer une borne supérieure/"Passage au sup").

Soient M un réel et A une partie de \mathbb{R} possédant une borne supérieure. Pour démontrer l'inégalité

$$\sup A \leq M$$
,

il suffira de montrer que M est un majorant de A (sup A étant le plus petit des majorants de A).

Exemple 21 (Calculs de bornes supérieures).

Soient A et B deux parties non vides et majorées de $\mathbb R$ telles que $A\subset B$. Justifier que $\sup A\leq \sup B$.

Remarque: Pour montrer que deux bornes supérieures sont égales, on pourra utiliser l'équivalence

$$\sup A = \sup B \iff \sup A \le \sup B \text{ et } \sup B \le \sup A.$$

Exemple 22 (Homogénéité du sup).

Soit A une partie de \mathbb{R} non vide et majorée et $\lambda \in \mathbb{R}_+$. On définit la partie $\lambda A := \{\lambda x \mid x \in A\}$. Montrer l'égalité

$$\sup(\lambda A) = \lambda \sup(A).$$

2.3 Retour sur la notion d'intervalle.

Définition 23.

On dit qu'une partie A de \mathbb{R} est **convexe** si pour tout $a, b \in A$ avec a < b, on a $[a, b] \subset A$.

Proposition 24 (Caractérisation des intervalles).

Les intervalles de \mathbb{R} sont exactement les parties convexes de \mathbb{R} .

Preuve. Soit X une partie de \mathbb{R} .

- \bullet Supposons que X est un intervalle. Il est donc de l'un des trois types suivants.
 - · un segment $[g,d] = \{x \in \mathbb{R} : g \le x \text{ et } x \le d\}$ où $g,d \in \mathbb{R}$.
 - · un intervalle ouvert $[g, d] = \{x \in \mathbb{R} : g < x \text{ et } x < d\}$ où $g \in \mathbb{R} \cup \{-\infty\}, d \in \mathbb{R} \cup \{+\infty\}, d$
- · un intervalle semi-ouvert, par exemple du type $]g,d] = \{x \in \mathbb{R} : g < x \text{ et } x \leq d\}$ où $g \in \mathbb{R} \cup \{-\infty\}, d \in \mathbb{R}$ Dans les trois cas, on peut vérifier facilement que ces parties sont convexes.
- Supposons que X est convexe, c'est-à-dire satisfait : $\forall a, b \in X \quad [a, b] \subset X$.
 - \star Cas où X est vide. Alors X est un intervalle : l'intervalle [0, -5] par exemple!
 - \star Cas où X est non vide, majorée et minorée. La partie X admet alors une borne supérieure, que l'on note d et une borne inférieure, que l'on note g. Ce sont respectivement un majorant, et un minorant de X, de sorte que

$$X \subset [q, d].$$

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure (et inférieure), il existe $\alpha \in X$ tel que $g \le \alpha < g + \varepsilon$. Il existe $\beta \in X$ tel que $d - \varepsilon < \beta \le d$. Si on a supposé de surcroît que $\varepsilon < \frac{d-g}{2}$, on a

$$g \le \alpha < g + \varepsilon < d - \varepsilon < \beta \le d$$
.

Or, d'après l'hypothèse, le segment $[\alpha, \beta]$ est tout entier inclus dans X. Puisqu'il contient $[g + \varepsilon, d - \varepsilon]$, on a

$$[g+\varepsilon,d-\varepsilon]\subset X\subset [g,d].$$

Dans ce qui précède, le nombre ε , peut être pris arbitrairement petit, ce qui conduit à

$$]g,d[\subset X\subset [g,d],$$

et donc
$$X = [g, d]$$
 ou $X = [g, d]$ ou $X = [g, d]$ ou $X = [g, d]$.

On a bien montré que X est un intervalle.

 \star Cas où X est non vide, majorée et non minorée. En adaptant les idées ci-dessus, le lecteur montrera que qu'il existe $d \in \mathbb{R}$ tel que

$$X=]-\infty, d[\quad \text{ ou } \quad X=]-\infty, d].$$

 \star Cas où X est non vide, non majorée, et minorée. En adaptant les idées ci-dessus, le lecteur montrera que qu'il existe $g \in \mathbb{R}$ tel que

$$X =]g, +\infty[$$
 ou $X = [g, +\infty[$.

 \star Cas où X est non vide, non majorée et non minorée. On peut alors montrer que $X=]-\infty,+\infty[=\mathbb{R}.$

Exemple 25.

Démontrer qu'une intersection d'intervalles est un intervalle.

Exercices

16.2 $[\blacklozenge \blacklozenge \diamondsuit]$ Soient x et y deux rationnels positifs tels que que \sqrt{x} et \sqrt{y} sont irrationnels. Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel.

- **16.3** [♦♦♦]
 - 1. Montrer que

$$\forall (a,b) \in (\mathbb{R}_+^*)^2 : \frac{a^2}{a+b} \ge \frac{3a-b}{4}.$$

Étudier le cas d'égalité.

2. En déduire que l'ensemble

$$E = \left\{ \frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \mid (a,b,c) \in (\mathbb{R}_+^*)^3 \text{ et } a+b+c \ge 2 \right\}$$

admet un minimum et le calculer.

16.4 [♦♦♦] Calculer les bornes supérieures et inférieures des parties, après en avoir prouvé l'existence.

$$A = \left\{\frac{1}{n} + (-1)^n \mid n \in \mathbb{N}^*\right\}, \quad B = \left\{\frac{m}{nm+1} \mid m \in \mathbb{N}^*, n \in \mathbb{N}^*\right\}, \quad C = \left\{x^2 + y^2 \mid (x,y) \in \mathbb{R}^2 \text{ et } xy = 1\right\}.$$

16.5 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit u une suite bornée et v la suite définie par

$$\forall n \in \mathbb{N} \quad v_n = \sup \{u_k \mid k \in [n, +\infty]\}.$$

Justifier que v est bien définie et qu'elle est convergente.

 $\fbox{16.6}$ $\fbox{[} \spadesuit \spadesuit \spadesuit \fbox{]}$ Soient A et B deux parties non vides et majorées de $\Bbb R$. On note $A+B:=\{x+y\mid x\in A,y\in B\}$. Prouver l'égalité :

$$\sup(A+B) = \sup(A) + \sup(B)$$

- **16.7** $[\blacklozenge \blacklozenge \blacklozenge]$ [\mathbb{Q} ne possède pas la propriété de la borne supérieure] Justifier que $\{r \in \mathbb{Q} \mid r < \sqrt{2}\}$ est une partie non vide et majorée de \mathbb{Q} . Démontrer qu'elle n'a pas de plus petit majorant dans \mathbb{Q}
- **16.8** $[\spadesuit \spadesuit \spadesuit]$ Soit $f:[0,1] \longrightarrow [0,1]$ une application croissante. On pose

$$E = \{x \in [0, 1] / f(x) \ge x\}$$

- 1. Montrer que E admet une borne supérieure notée a.
- 2. Montrer que E est stable par f.
- 3. Montrer que f(a) = a.