Diagonale alcebra avancination details bala	b afava ante		nfown ation
Please check the examination details below before entering your candidate information			
Candidate surname		Other names)
			J
Centre Number Candidate Nu	ımber		
Control variables			
Pearson Edexcel Interi	nation	al Advand	ed Level
Friday 26 May 2023			
	Paper		
Morning (Time: 1 hour 20 minutes)	reference	WCH	13/01
Chemistry			₾ •
International Advanced Su	ıbsidiar	y/Advanced	Level
UNIT 3: Practical Skills in (
OINIT 5. Plactical 5kills ill	CHEIIIIS	луі	
You must have:			Total Marks
Scientific calculator			
Scientific calculator			

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 This question is about two ionic compounds, **A** and **B**.
 - (a) Compound **A** is a white crystalline solid that contains one cation and one anion.
 - (i) A flame test was carried out on solid **A** and a pale green colour was observed. Identify, by name or formula, the cation present in **A**.

(1)

(ii) Aqueous silver nitrate, acidified with dilute nitric acid, was added to a sample of solid **A** dissolved in distilled water.

A yellow precipitate formed.

Identify, by name or formula, the anion present in A.

(1)

(iii) Give the formula of A.

(1)

(iv) The **anion** present in **A** can be shown by a **different** test on solid **A**.

Give a suitable different test with the expected result to show the identity of this **anion**.

(2)

Test	Expected result

- (b) Solid **B** is ammonium sulfate.
 - (i) Give a test, with the expected result, to confirm the presence of the ammonium ion in **B**.

(2)

Test	Expected result

(ii) Give a test, with the expected result, to confirm the presence of the sulfate ion in **B**.

(3)

Test	Expected result

(iii) Write the **ionic** equation for the reaction taking place in (b)(ii). Include state symbols.

(1)

(Total for Question 1 = 11 marks)

- 2 Tests are carried out to identify two liquid organic compounds, **C** and **D**.
 - (a) A small amount of phosphorus(V) chloride, PCl₅, is added to separate 2 cm³ samples of each compound.

Observations		
С	D	
Misty fumes are given off	Misty fumes are given off	

Identify, by name or formula, the misty fumes.

(1)

(b) 2 cm³ of aqueous sodium hydrogencarbonate, NaHCO₃(aq), is added to separate 2 cm³ samples of each compound.

Any gas given off is tested with limewater.

Observations		
С	D	
Bubbles of a colourless gas	No change	
Limewater turns cloudy	Two change	

Identify, by name or formula, the gas produced by compound C.

(1)

(c) 2 cm³ of Benedict's or Fehling's solution is added to separate 2 cm³ samples of each compound. The test tubes are placed in a warm water bath.

Observations		
С	D	
No change	Positive result	

Give the expected observation for the positive result produced by liquid **D**. Include the initial and final appearance of the contents of the test tube.

(2)

- (d) Both ${\bf C}$ and ${\bf D}$ have the molecular formula $C_3H_6O_2$.
 - (i) Deduce the structure of **C** and the **two** possible structures of **D**. Use the molecular formula and the results from (a), (b) and (c).

(3)

Structure of C

Possible structure of D	Possible structure of D

(ii) Some infrared data are given in the table.

Group	Wavenumber range / cm ⁻¹	
O—H stretching in alcohols	3750–3200	
O—H stretching in carboxylic acids 3300–2500		
C—O stretching in aldehydes	1740–1720	
C—O stretching in ketones	1720–1700	
C=O stretching in carboxylic acids	1725–1700	
C—H stretching in aldehydes	2900–2820, 2775–2700	
C—H stretching in alkanes 2962–2853		

State the wavenumber range for one peak that would be present in the infrared spectra of **both C** and **D**, identifying the bond responsible for this peak.

(1)

(iii) A student suggested that the structure of **D** could be identified using mass spectrometry because only one of the possible structures of **D** would have a peak at m/z = 15.

Identify which of the possible structures of ${\bf D}$ would be expected to give this peak. Justify your answer.

(2)

(Total for Question 2 = 10 marks)

- **3** This question is about some reactions of butan-1-ol.
 - (a) A group of students was required to oxidise butan-1-ol to butanoic acid. The students suggested three different types of apparatus for this reaction.

Their teacher told them they should use apparatus F.

(i) Explain why apparatus **E** is **not** suitable for the oxidation of butan-1-ol to butanoic acid.

(2)

(ii) Give a **different** reason why apparatus **G** is also **not** suitable for the oxidation of butan-1-ol to butanoic acid.

(1)

(ii		Explain why, in apparatus F , the water should flow in from the bottom of the condenser.	
			(2)
(i)	-	State the reaction mixture that can be used to oxidise the	
		butan-1-ol to butanoic acid.	(1)
		Give the colour change observed in the flask during this oxidation.	
(v)	dive the colour change observed in the hask during this oxidation.	(1)
From		to	
(b) E	But	an-1-ol can also form the alkene but-1-ene in an elimination reaction.	
((i)	Name a suitable chemical reagent to carry out this elimination reaction.	
			(1)
(i		Give a chemical test, including the expected result, to confirm the presence of	
		the C=C double bond in but-1-ene.	(2)
		/Tatal fac Occasion 2	ulca)
		(Total for Question 3 = 10 ma	rKS)

4 This question is about calcium and calcium hydroxide, Ca(OH)₂.

A student reacted calcium with water to determine a value for the molar volume of hydrogen at room temperature and pressure.

Procedure

- Step 1 200 cm³ of distilled water (an excess) was transferred to a conical flask.
- Step **2** A small piece of calcium metal was placed in a pre-weighed weighing boat. The boat was then reweighed.
- Step **3** The calcium was dropped into the conical flask and a bung connected to a gas syringe was inserted.
- Step 4 The volume of hydrogen collected was recorded.

Results

Mass of weighing boat / g	1.657
Mass of weighing boat and calcium / g	1.783
Volume of hydrogen collected / cm ³	72.0

The equation for the reaction in the conical flask is shown.

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$$

(a) (i) State **two** observations when this reaction takes place.

(2)

10

(ii)	Calculate the value for the molar volume of hydrogen under these conditions
	using the student's results.

Give your answer to an appropriate number of significant figures and include units.

(4)

- (b) A second student using this method obtained a value of 21.8 dm³ mol⁻¹ for the molar volume of hydrogen.
 - (i) Calculate the percentage error in this student's value.

 The data book value for the molar volume of hydrogen under these conditions is 23.9 dm³ mol⁻¹.

(1)

(ii) Give **two** possible reasons why this student obtained a value below the data book value.

Assume the method was followed correctly and there were no measurement errors.

(2)

(c) A third student carried out an experiment to determine the concentration of a saturated solution of calcium hydroxide, Ca(OH)₂, in water at room temperature.

25.0 cm³ of a saturated solution of calcium hydroxide was pipetted into a conical flask. Three drops of methyl orange indicator were added and the solution was titrated with 0.0400 mol dm⁻³ hydrochloric acid.

The procedure was repeated until concordant titres were obtained.

The results are shown in the table.

Titration	1	2	3	4
Final burette reading / cm ³	26.85	31.25	34.55	27.15
Initial burette reading / cm ³	0.00	5.00	8.00	1.00
Titre / cm ³				
Concordant results (✓)				

(i)	State the colour change observed in the conical flask at the end-	point of
	the titration.	

From	tο	

(ii) Complete the table and use the concordant results to calculate the mean titre.

(2)

(iii) The reaction taking place in this titration is

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$$

Calculate the concentration of the calcium hydroxide solution in g dm⁻³.

(4)

(d) Dissolving calcium hydroxide in water is an exothermic process.

Describe what you would see if the saturated solution of calcium hydroxide was heated from room temperature to $50\,^{\circ}$ C. Justify your answer.

(2)

(Total for Question 4 = 19 marks)

TOTAL FOR PAPER = 50 MARKS

