Topics Covered in Todays Class

Unit 2: Data Modeling using the Entity-Relationship(ER) diagram

- Entity Types, Entity Sets, Attributes and Keys

Sample Database Application

■ Example: HOD of CSE department calls you and asks to develop the following application

"Develop a database application to automate the process of course registration"

- Your first task should be to have a discussion with your client i.e HOD, to identify the requirements of the application.
 - Requirements are as follows
 - Department has students and faculty
 - Department will offer a set of courses during each semester
 - Each student in the department during course registration will be opting for courses offered by the department
 - Faculty will be handling courses
- Your **second task** should be to prepare a ER diagram which shows the Design plan of the database application to be developed.

Example: House design plan

During plan preparation Various notations and Terminologies

Design plan or ER diagram before actual development of the application

Design plan or ER diagram before actual development of the application

Requirements Were

- Department has students and faculty
- Department will offer a set of courses during each semester
- Each student in the department during course registration will be opting for courses offered by the department
- Faculty will be handling courses

Design plan or ER diagram before actual development of the application

Constraints

- Each semester student should register for minimum of 20 credits and maximum of 30 credits
- Each faculty can handle
 a maximum two courses
 During each semester

Requirements Were

- Department has students and faculty
- Department will offer a set of courses during each semester
- Each student in the department during course registration will be opting for courses offered by the department
- Faculty will be handling courses

What is Entity, Entity Types, Entity sets?

- Entity is object in real world which has independent existence.
 - Example: Student, Course, Faculty, Car, House, College, Book, Food

ER Diagram Notation for Entity: Rectangle

Student

Courses

Activity - Questionnaire

List out the Entities which you will come across in real world.

What is Entity Types, Entity sets?

- Entity type is collection of entities with common attributes
- Entity set collection of one or more attributes

Student <- - - Entity Type

	USN	Name	Email ID	Mobile No.	DOB
	1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
Ţ	1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996

Entity Set

What is Attribute?

Attribute is a property that describes Entity.

Attributes:

USN, Name, Email ID, Mobile Number, DOB

Student **<− − −** Entity Type

(USN	Name	Email ID	Mobile No.	DOB
	1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
	1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996

Entity Set

What is **Domain**?
Set of permitted values for an Attribute.

What is Attribute?

Attribute is a property that describes Entity.

Attributes:

USN, Name, Email ID, Mobile Number, DOB

Student <- - - Entity Type

_	USN	Name	Email ID	Mobile No.	DOB
	1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
	1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996

Entity Set

ER Diagram Notation for Attribute: Ellipse

Activity - Questionnaire

List attributes for

- 1. Car
- 2. Book

Different categories of attributes

- □ Simple (Atomic) vs Composite
 - Attributes that are not divisible are called **Simple**.
 - Attributes that can be divided into smaller parts are called Composite.
 - Ex.: Simple- USN, Composite- Name(First Name, Last Name),
 Address(Street name, Area Name, Place)
- Single value vs Multiple valued
 - Ex.: Single USN, Multiple Mobile numbers
- Stored vs Derived
 - Ex.: Stored DOB, Derived Age
- Complex Attributes
 - Ex.: {Address(Street name, Area Name, Place)} □ Office address and Residence Address
- Null values
 - Ex.: Middle Name is Optional i.e. Gautham Sharma or Gautham K Sharma

Attribute: ER diagram notations

Attribute

Composite Attribute

Multivalued Attribute

Derived Attribute

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

USN	Name	Email ID	Mobile No.	DOB
1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

USN	Name	Email ID	Mobile No.	DOB
1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996

ER Diagram Notation for Entity: Rectangle

<u>USN</u>

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

USN	Name	Email ID	Mobile No.	DOB
1BM14CS001	Aditya	aditya@bmsce.ac.in	9448444160	1-1-1997
1BM14CS002	Bharath	bharath@bmsce.ac.in	8762244699	31-12-1996
1BM14CS003	Dinesh K	dineshk@bmsce.ac.in	8444160944	6-6-1998
1BM14CS004	Dinesh K	Dineshk_4@bmsce.ac .in	7446998762	6-6-1998

17

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

Faculty	Departme nt	Salary
А	CSE	20K
В	CSE	21K
А	EC	30K
В	EC	27K
С	CSE	22K

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

Faculty	Departme nt	Salary
А	CSE	20K
В	CSE	21K
Α	EC	30K
В	EC	27K
С	CSE	22K

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

Faculty	Departme nt	Salary
А	CSE	20K
В	CSE	21K
А	EC	30K
В	EC	27K
С	CSE	22K

What is the Salary of Employee whose name is **A** ?

- Key attribute is a attribute or a combination of attributes which will uniquely identify remaining attributes of entity.
- What are the Key attributes in the following student table?

Faculty	Departme nt	Salary
А	CSE	20K
В	CSE	21K
А	EC	30K
В	EC	27K
С	CSE	22K

What is the Salary of Employee whose name is **A** ?

Note:

Before determining the Key attribute, look at the values present but it will not be consistent

Activity To DO

Represent Employee entity using ER diagram notation Which has following attributes

- Employee ID (Key)
- Name
- Address(House No., Street name, Area name, Place)
- Mobile Number (Can have more than one)
- DOB
- Age

Topics Covered in Todays Class

Unit 2:

- Relationship Types, Relationship sets, Roles and Structural Constraints
- Weak Entity Types

Relationship Type

- A Relationship Type defines a relationship set among entities of certain entity types.
- Example, an Faculty works_for a department, a student enrolls_for in a course. Here, works_for and enrolls_for are called relationships.

Relationship Type

- A Relationship Type defines a relationship set among entities of certain entity types.
- Example, an Faculty works_for a department, a student enrolls_for in a course. Here, works_for and enrolls_for are called relationships.

Relationship Type

- A Relationship Type defines a relationship set among entities of certain entity types.
- Example, an Faculty works_for a department, a student enrolls_for in a course. Here, works_for and enrolls are called relationships.

Relationship Set

An Relationship Set is a collection of relationships all belonging to one relationship type.

Here relationship set, has 4 relationships

Relationship

The association among entities is called a relationship. or A Relationship is one instance in a Relationship Set.

Relationship Degree

Binary Relationship: Degree two, two entities are participating

Relationship Degree

Ternary Relationship: Degree three, three entities are participating

Relationship Degree

Ternary Relationship: Degree three, three entities are participating

Recursive Relationship

In some cases the same entity type participates in more than once in a relationship type in different roles.

Recursive Relationship

In some cases the same entity type participates in more than once in a relationship type in different roles.

Relationship Constraints or Structural Constraints

Two Types

- 1. Cardinality Ratios
 - a. One to one (1:1)
 - b. One to Many (1:M)
 - c. Many to Many (N:M)
- 2. Participation Constraints
 - a. Total
 - b. Partial

Cardinality Ratios

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

One to One:

One entity from entity set A can be associated with at most one entity of entity set B and vice versa.

Cardinality Ratios

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

One to One:

One entity from entity set A can be associated with at most one entity of entity set B and vice versa.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

One to One:

One instance of one entity type can participate in one instance of other entity type.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

One to Many:

One entity from entity set A can be associated with more than one entities of entity set B however an entity from entity set B, can be associated with at most one entity.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

One to Many:

One entity from entity set A can be associated with more than one entities of entity set B however an entity from entity set B, can be associated with at most one entity.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

Many to Many:

One entity from A can be associated with more than one entity from B and vice versa.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

Many to Many:

One entity from A can be associated with more than one entity from B and vice versa.

Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

Many to Many:

One entity from A can be associated with more than one entity from B and vice versa.

- Minimum number of relationship instance that each entity can participate in.
- Total Participation Each entity is involved in the relationship. Total participation is represented by double lines.
- □ Partial participation Not all entities are involved in the relationship. Partial participation is represented by single lines.

- Minimum number of relationship instance that each entity can participate in.
- Total Participation Each entity is involved in the relationship. Total participation is represented by double lines.
- □ Partial participation Not all entities are involved in the relationship. Partial participation is represented by single lines.

44

- Minimum number of relationship instance that each entity can participate in.
- Total Participation Each entity is involved in the relationship. Total participation is represented by double lines.
- □ Partial participation Not all entities are involved in the relationship. Partial participation is represented by single lines.

What is wrong in following relationship representation?

- Minimum number of relationship instance that each entity can participate in.
- Total Participation Each entity is involved in the relationship. Total participation is represented by double lines.
- □ Partial participation Not all entities are involved in the relationship. Partial participation is represented by single lines.

Weak Entity

- A weak entity set is one which does not have any primary key associated with it.
- A weak entity type normally has partial key which is the set of attributes that can uniquely identify weak entities that are related to same owner entity.

Weak Entity

- A weak entity set is one which does not have any primary key associated with it.
- A weak entity type normally has partial key which is the set of attributes that can uniquely identify weak entities that are related to same owner entity.

ER Diagram Symbols

ER Diagram Symbols

Topics Covered in Todays Class

Unit 2:

ER diagram design for a given requirements

Database Design

Database design: Why do we need it?

 Agree on structure of the database before deciding on a particular implementation

Consideration Issues such as:

- What entities to model
- How entities are related
- What constraints exist in the domain
- How to achieve good design

ER diagram is a conceptual design of database

Database Design Process

Requirement Conceptual Logical, Physical, Analysis Design Security etc.,

Requirement Analysis

- What is going to be stored?
- How is it going to be used?
- What are we going to do with the data?
- Who should access the data?

Technical and Non-technical people are involved

Database Design Process

Requirement Conceptual Logical, Physical, Analysis Security etc.,

Conceptual Design

- A high-level description of the database.
- Sufficiently precise that technical people can understand it.
- But, not so precise that non-technical can not participate.

This is were Entity-Relationship (ER)

Diagram fits in.

Database Design Process

ER diagram is **visual syntax for DB design** which is precise enough for technical points, but abstracted enough for non-technical people.

Main phases of Database Design

ER Diagram Symbols

ER Diagram Symbols

Activity: ER diagram

Decision: Relationship vs Empty

Question 1: What does the following ER diagram say?

Activity: ER diagram

Decision: Relationship vs Empty

Question 2: What does the following ER diagram say?

Activity: ER diagram

Decision: Relationship vs Empty

Question 3: What does the following ER diagram

say?

Activity: ER diagram design

Draw ER diagram for the following requirements

Universal Records has decided to store information about musicians who perform on its albums (as well as other company data) in a database.

- ☐ Each musician that records at Universal has an ID(Key) and name.
- □ Each instrument used in songs recorded at Universal has a unique identification number (Key), a name and a musical key.
- Each album recorded on the Universal label has a unique identification number (Key), a title, a copyright date and a format.
- Each song recorded at Universal has a Song ID (Key), a title and an author.
- Each musician may play several instruments, and a given instrument may be played by several musicians.
- □ Each album has a number of songs on it, but no song may appear on more than one album.
- □ Each song is performed by one or more musicians, and a musician may perform a number of songs.
- Each album has exactly one musician who acts as its producer. A musician may produce several albums, of course.

Each musician that records at Universal has an ID (Key) and name.

Each instrument used in songs recorded at Universal has a unique identification number (Key), a name and a musical key.

Each album recorded on the Universal label has a unique identification number (Key), a title, a copyright date and a format.

Each song recorded at Universal has a Song ID (Key), a title and an author.

Each musician may play several instruments, and a given instrument may be played by several musicians.

Each album has a number of songs on it, but no song may appear on more than one album.

Each song is performed by one or more musicians, and a musician may perform a number of songs.

Each album has exactly one musician who acts as its producer. A musician may produce several albums, of course

Topics Covered in Todays Class

Unit 2:

Converting ER Diagrams to Tables
 or Database design using ER-to-Relational Mapping

- An ER diagram is a pictorial representation of the information that can be captured by a database. Such a "picture" serves two purposes:
 - It allows database professionals to describe an overall design concisely yet accurately.
 - (Most of) it can be easily transformed into the relational schema.
- The ER diagram represents the conceptual level of database design meanwhile the relational schema (or database table) is the logical level for the database design.

- Entities and Simple Attributes
 - An entity type within ER diagram is turned into a table.
 - Each attribute turns into a column (attribute) in the table. The key attribute of the entity is the primary key of the table which is usually underlined.

Multi-Valued Attributes

Which of the following representation of the table for Multivalued Attribute is best?

<u>USN</u>	Name	DOB	Mobile 1	Mobile 2
1BM14CS001	Aditya	1-1-1997	8766655433	
1BM14CS002	Bharath	31-12-1996	9762255433	7066722433

Student Table

<u>USN</u>	Name	DOB
1BM14CS001	Aditya	1-1-1997
1BM14CS002	Bharath	31-12-1996

Mobile Table

<u>USN</u>	Mobile
1BM14CS001	8766655433
1BM14CS002	9762255433
1BM14CS002	7066722433

If you have a multi-valued attribute, take the attribute and turn it into a new entity or table of its own. Then make a 1:N relationship between the new entity and the existing one. In simple words,

- Create a table for the attribute.
- 2. Add the primary (id) column of the parent entity as a foreign key within the new table

Student Table

<u>USN</u>	Name	DOB	Street	Area	Place
1BM14CS001	Aditya	1-1-1997	RK Road	Nagar	Mandya
1BM14CS002	Bharath	31-7-1996	S V Road	Layout	Kolar

Mobile Table

<u>USN</u>	<u>Mobile</u>
1BM14CS001	8766655433
1BM14CS002	9762255433
1BM14CS002	7066722433

5 April 2021 CSE, BMSCE

Student Table

<u>USN</u>	Name	DOB	Street	Area	Place
1BM14CS001	Aditya	1-1-1997	RK Road	Nagar	Mandya
1BM14CS002	Bharath	31-7-1996	S V Road	Layout	Kolar

			_				
Mobile Table	E	ab	Ta	ile	bi	0	M

<u>USN</u>	<u>Mobile</u>
1BM14CS001	8766655433
1BM14CS002	9762255433
1BM14CS002	7066722433

5 April 2021

CSE, BMSCE

Relationship: One-to-One

Approach 1: Foreign Key

Faculty Table

F-ID	F-Name		
1	Dr. H S Guruprasad		
2	Dr. Umadevi V		
3	Dr. Gowrishankar		
A			

Department Table

D-I D	D-Name	Heading F-ID
10	CSE	1
20	ISE	3

Faculty - Department Table

F- ID	F-Name		D-ID	D-Name	HOD
1	Dr. H S G	uruprasad	10	CSE	Yes
2	Dr. Umad	evi V	10	CSE	No
3	Dr. Gowri	shankar	20	ISE	Yes

Relationship: One-to-Many

Approach 1

Department Table

D-ID	D-Name
10	CSE
20	ISE

Student Table

<u>USN</u>	S-Name	D-ID
1BM14CS001	Akash	10
1BM14CS002	Bharath	10
1BM14CS003	Ragu	10
1BM14CS004	Mohan	20
1BM14CS005	Nikil	20

Relationship: One-to-Many

Approach 2

Department Table

D-ID	D-Name
10	CSE
20	ISE

Student Table

<u>USN</u>	S-Name
1BM14CS001	Akash
1BM14CS002	Bharath
1BM14CS003	Ragu
1BM14CS004	Mohan
1BM14CS005	Nikil

Department Student Table

<u>USN</u>	D-ID
1BM14CS001	10
1BM14CS002	10
1BM14CS003	10
1BM14CS004	20
1BM14CS005	20

Relationship: Many-to-Many

Relationship: Many-to-Many

Student Table

<u>USN</u>	S-Name
1BM14CS001	Avinash
1BM14CS002	Balaji
1BM14CS003	Chandan

Course Table

C-ID	C-Name
10	DBMS
20	Java

Student Course Table

<u>USN</u>	C-ID
1BM14CS001	10
1BM14CS001	20
1BM14CS002	20
1BM14CS003	10

Relationship: Many-to-Many

Student Table

<u>USN</u>	S-Name
1BM14CS001	Avinash
1BM14CS002	Balaji
1BM14CS003	Chandan

Course Table

C-ID	C-Name
10	DBMS
20	Java
$\overline{\uparrow}$	

Student Course Table

<u>USN</u>	C-ID
1BM14CS001	10
1BM14CS001	20
1BM14CS002	20
1BM14CS003	10
	<u> </u>

Faculty Table

F-ID	F-Name
10	Dr. Guruprasad
20	Dr. Gowrishankar

Dependent Table

F-ID	<u>Dependent</u> <u>Name</u>
10	Ram
10	Ravi
20	Ram

Activity To Do Convert the Following ER diagram to Database table schema

Database tables or Schema Diagram

Musician Table

Name Muscian-ID

Album Table

Album-ID	Copyright	Format	Title	Producer
	Date			ID

Song Table

Song-ID	Author	Title	Album-ID

Performing Table

Muscian-ID Song-ID

Plays

Instrument Table

<u>Instr-ID</u>	Name	M-Key
1115C1 1D	, rtarric	11110

Database tables or Schema Diagram

Thanks for Listening

Cardinality Ratios

 Cardinality is a constraint on a relationship specifying the number of entity instances that a specific entity may be related to via the relationship.

Many to One:

More than one entities from entity set A can be associated with at most one entity of entity set B, however an entity from entity set B can be associated with more than one entity from entity set A.

