CS 440 Problem Set 4

Gordon Ng

TOTAL POINTS

39 / 45

QUESTION 1

1Q131/31

√ - 0 pts Correct

QUESTION 2

- 2 Q2 4/5
 - **0 pts** Correct
 - 1 Point adjustment
 - 2b

QUESTION 3

- 3 Q3 **0/5**
 - 0 pts Correct
 - 5 Point adjustment
 - 3a) Increase epsilon, 3b) unrelated solution

QUESTION 4

4Q44/4

√ - 0 pts Correct

Problem Set 4

Total: 45 points, Due: Dec 10, 11:59pm

Q1 [31 points] Reinforcement Learning

Q1a. [11 points] Written RL problem

For a simple cliff-walker Q-value problem, compute the Q-values at each state. The goal is the cell marked in green (with a reward of 0), and stepping on the red cells results in immediate failure with reward -100. All other states get a reward of -1.

The Q-value equation is given by:

$$Q(s, a) = r + \gamma \max_{a}' Q(s', a')$$

Assume a discount factor of 1.0 (i.e. $\gamma=1$). As an example, Q-values for one cell have been computed for you.

(R = -1)	(R = -1)	(R = -1)	(R = -1)
U:	U:	U:	U:
D:	D:	D:	D:
L:	L:	L:	L:
R:	R:	R:	R:
(R = -1)	(R = -1)	(R = -1)	(R = -1)
U:	U:	U:	U: -2.0
D:	D:	D:	D: 0.0
L:	L:	L:	L: -2.0
R:	R:	R:	R: -1.0
(R = -1) U: D: L: R:	Cliff (R = -100)		Goal (R = 0)

Q1b. [20 points] Coding RL problem

Let's start by reading about the <u>Cliff Walking Problem (https://medium.com/@lgvaz/understanding-g-learning-the-cliff-walking-problem-80198921abbc)</u>

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from CliffWalker import GridWorld
```

We create a 4×12 grid, similar to the written problem in 1a. above on which you will implement a Q-learning algorithm.

Tasks

We ask you to implement two functions:

- an ϵ -greedy action picker
- · a basic Q-learning algorithm

 ϵ -greedy choices make the greedy choice most of the time but choose a random action ϵ fraction of the time. For example, for $\epsilon = 0.1$, if a random number is ≤ 0.1 , then a random action is taken.

Now, you can implement a basic Q-learning algorithm. For your reference, use the following:

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'

until S is terminal
```

We provide a skeleton code, leaving the Q-value update for you to implement.

Note: learning rate α , exploration rate ϵ , and discount factor γ are provided as inputs to the function

```
In [4]: def q_learning(env, num_episodes=200, render=True, epsilon=0.1,
                      learning rate=0.5, gamma=0.9):
            q_values = np.zeros((num_states, num_actions))
            ep rewards = []
            for _ in range(num_episodes):
                state = env.reset()
                done = False
                reward sum = 0
                while not done:
                    # Choose action
                    action = egreedy_policy(q_values, state, epsilon)
                    # Do the action
                    next_state, reward, done = env.step(action)
                    reward_sum += reward
                    # Update Q-values
                    # === STUDENT CODE GOES HERE ===
                    td_target = reward + 0.9 * np.max(q_values[next_state])
                    td_error = td_target - q_values[state][action]
                    q_values[state][action] += learning_rate * td_error
                    # Update state
                    state = next_state
                    if render:
                        env.render(q values, action=actions[action], colorize q=True)
                ep_rewards.append(reward_sum)
            return ep_rewards, q_values
```

Now, let's the run Q-learning

1 Q1 31 / 31

√ - 0 pts Correct

Mean Reward: -46.67

Visualization

Finally, let's look at the policy learned

```
In [6]: def play(q_values):
    env = GridWorld()
    state = env.reset()
    done = False

while not done:
    # Select action
    action = egreedy_policy(q_values, state, 0.0)
    # Do the action
    next_state, reward, done = env.step(action)

# Update state and action
    state = next_state

env.render(q_values=q_values, action=action, colorize_q=True)
```

```
In [ ]: %matplotlib
    play(q_values)
```

Q2 [5 points] Metrics

Q2a. [3 points]

Give one example each of error metrics that can be used to evaluate: classification, regression, clustering.

=== ANSWER GOES HERE === Classification - log loss Regression - Mean Squared Error, Root mean squared error, mean absolute error Clustering - Dunn's index

Q2b. [2 points]

Which are the correct definitions of precision and recall? Here 'actual positives' are examples labeled positive (by humans), and 'predicted positives' are examples for which the algorithm predicts a positive label.

- 1. precision=(true positives)/(predicted positives)
- 2. precision=(true positives)/(actual positives)
- 3. recall=(predicted positives)/(actual positives)
- 4. recall=(true positives)/(actual positives)

=== ANSWER GOES HERE === 2 and 4

Q3 [5 points] Unsupervised Learning

Q3a. [2 points]

Suppose you have trained an anomaly detection system for intruder detection in a security camera, and your system flags anomalies when p(x) is less than ε . You find on the cross-validation set that it is missing many intruder events. What should you do?

=== ANSWER GOES HERE === Decrease Epsilon

Q3b. [3 points]

Suppose we are given inputs $x^i \in \mathbb{R}^n$, $i=1,\ldots,m$ and we want to learn a lower-dimensional (k-dim) PCA projection of the data onto basis vectors $U=[u^1\ldots u^k]$ where each $u^j\in\mathbb{R}^n$. Write down the equation for the general k-dimensional point z^i obtained by projecting an n-dimensional point x^i onto the k basis vectors.

=== ANSWER GOES HERE ===

$$ilde{x} = egin{bmatrix} x_{ ext{rot},1} \ dots \ x_{ ext{rot},k} \ 0 \ dots \ 0 \end{bmatrix} pprox egin{bmatrix} x_{ ext{rot},k} \ x_{ ext{rot},k+1} \ dots \ x_{ ext{rot},k+1} \ dots \ x_{ ext{rot},n} \end{bmatrix} = x_{ ext{rot}}$$

Q4 [4 points] Bayesian Methods

Q4a. [2 points]

What in the Bayesian model is equivalent to changing the regularization parameter λ ?

```
=== ANSWER GOES HERE === Prior distributions p(\theta) are probability distributions of model parameters based on some a priori knowledge about the parameters.
```

Q4b. [2 points]

Write the posterior probability function, and comment on its relation to the likelihood.

=== ANSWER GOES HERE ===

2 Q2 4/5

- 0 pts Correct
- 1 Point adjustment
 - 2b

Q3b. [3 points]

Suppose we are given inputs $x^i \in \mathbb{R}^n$, $i=1,\ldots,m$ and we want to learn a lower-dimensional (k-dim) PCA projection of the data onto basis vectors $U=[u^1\ldots u^k]$ where each $u^j\in\mathbb{R}^n$. Write down the equation for the general k-dimensional point z^i obtained by projecting an n-dimensional point x^i onto the k basis vectors.

=== ANSWER GOES HERE ===

$$ilde{x} = egin{bmatrix} x_{ ext{rot},1} \ dots \ x_{ ext{rot},k} \ 0 \ dots \ 0 \end{bmatrix} pprox egin{bmatrix} x_{ ext{rot},k} \ x_{ ext{rot},k+1} \ dots \ x_{ ext{rot},k+1} \ dots \ x_{ ext{rot},n} \end{bmatrix} = x_{ ext{rot}}$$

Q4 [4 points] Bayesian Methods

Q4a. [2 points]

What in the Bayesian model is equivalent to changing the regularization parameter λ ?

```
=== ANSWER GOES HERE === Prior distributions p(\theta) are probability distributions of model parameters based on some a priori knowledge about the parameters.
```

Q4b. [2 points]

Write the posterior probability function, and comment on its relation to the likelihood.

=== ANSWER GOES HERE ===

3 Q3 **o** / **5**

- 0 pts Correct
- 5 Point adjustment
 - 3a) Increase epsilon, 3b) unrelated solution

Given a prior belief that a probability distribution function is $p(\theta)$ and that the observations x have a likelihood $p(x|\theta)$, then the posterior probability is defined as

$$p(heta|x) = rac{p(x| heta)}{p(x)}p(heta)^{ extstyle{1}}$$

where p(x) is the normalizing constant and is calculated as

$$p(x) = \int p(x| heta)p(heta)d heta$$

for continuous θ , or by summing $p(x|\theta)p(\theta)$ over all possible values of θ for discrete θ .^[2] The posterior probability is therefore proportional to the product *Likelihood · Prior probability*.

In []:]:	

4 Q4 4 / 4

√ - 0 pts Correct