GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2023 (COGC-2023)

Semester - V

Course Title: Micro Controller in Instrumentation

(Course Code: 4351707)

Diploma programmer in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th Semester

1. RATIONALE

Microcontroller is used in all the domestic, industrial, consumer goods and other high end products in the area of Instrumentation and automation. Diploma engineers have to equip various microcontroller based systems and maintain them. In addition this course covers general hardware aspects along with some applications and interfacing of microcontrollers in instrumentation and control discipline.

2. COMPETENCY

The aim of this course is to help the students to attain industry identified competency through various teaching learning methods:

- i. Design microcontroller based systems.
- ii. Operate and Maintain microcontroller based process instruments.

3. COURSE OUTCOMES (COs)

On completion of this course, the student should be able to:

- a) Identify features of various microcontrollers.
- b) Interpret the program for 8051 in assembly language for the given operations.
- c) Interpret the program by using timer, interrupt and serial communication.
- d) Interface I/O devices with microcontroller for instrumentation applications.
- e) Maintain microcontroller used in instrumentation applications.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme					
(Ir	ո Hour	·s)	(L+T+P/2)	Theory Marks Practical Marks			Theory Marks		Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks	
3	0	2	4	30*	70	25	25	150	

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

Following practical outcomes (PrOs) are the subcomponents of the Course Outcomes (Cos). Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Study family of microprocessor and microcontroller.	1	2
2	Identify various blocks of microcontroller development board.	1	2
3	Write sample assembly language programs using various addressing modes.	2	2
4	Execute assembly language programs to transfer data from source to destination location. (Internal/ External Memory)	2	2
5	Execute assembly language programs to perform arithmetic operations. e.g. addition, subtraction, multiplication, division	2	2
6	Execute assembly language programs to perform logical operations.	2	2
7	Execute assembly language programs to perform SWAP and Rotate instruction.	2	2
8	Execute assembly language programs to perform branching instructions.	2	2
9	Execute an assembly language program to generate delay using a timer.	3	2
10	Execute an assembly language program to generate pulse and square wave using timer.	3	2
11	Execute assembly language programs on serial transmission with different baud rates.	3	2
12	Execute assembly language programs on interrupts.	3	2

13	Interface matrix keypad with microcontroller and display the key pressed.	4	2
14	Interface relay with microcontroller and turn it ON and OFF.	4	2
15	Interface seven segment display with microcontroller to display decimal number from 0 to 9.	4	2
16	Interface LCD with microcontroller to display the character and decimal numbers.	4	2
17	Interface ADC with microcontroller to receive analog input data.	4	2
18	Interface DAC with microcontroller to send analog output data.	4	2
19	Interface temperature sensor with microcontroller to measure ambient temperature.	4	2
20	Interface Stepper motor/ DC motor with microcontroller to rotate clockwise or anticlockwise.	5	2
21	Execute an assembly language program to perform traffic light control system.	5	2
22	Develop an assembly language program to maintain a water level control system.	5	2
Total H	ours (perform practical form every unit so that 28 hours are utilized	zed)	44

<u>Note</u>

- More Practical Exercises can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list. A suggestive List of PrOs are given above. More such PrOs can be added to attain the COs and competency.
- 2. Above PrOs (Sr. No. 4 to 22) can be either conducted using hardware interfacing modules or using simulated software also. A judicial mix of more practicals need to be performed, so the student reaches 'Psychomotor Domain Taxonomy' as generally required by industry.

The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Preparation of experimental set up	10
2	Setting and Operation	20
3	Safety Measures	10
4	Development of logic and troubleshooting	20
5	Interpretation of the result and Conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to the user in uniformity of practical's in all institutions across the state.

- 1. Microcontroller Trainer kit
- 2. Computer System with microcontroller simulation software
- 3. Function Generator
- 4. CRO
- 5. Stepper motor
- 6. DC motor
- 7. 4*4 matrix keypad for interfacing with microcontroller
- 8. 7 segment LED display (common anode, common cathode) kit
- Other peripheral Interfacing Trainer kits like ADC trainer kit, DAC trainer kit, LCD trainer kit, Relay trainer kit

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using electrical, electronics devices
- c) maintain tools and equipment
- d) follow ethical practices

e) Realize the importance of E-waste management. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that is formulated for the development of COs and competency. If required,

more such UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(4 to 6 UOs at different	ropies and sub-topies		
	levels)			
Unit-I	1a. Compare	1.1 Comparison of microprocessor and		
Introduction	microprocessor	Microcontroller.		
to	and microcontroller with	1.2 Types of buses: Address bus, Data		
Microcontroller	its features.	bus, Control bus.		
	1b. Describe the	1.3 Block diagram and function of each		
	architecture of	block of 8051.		
	microcontroller with	1.4 Pin diagram and function of each pin		
	function of each blocks.	of 8051.		
	1c. Describe pin diagram of	1.5 Memory organization of 8051:		
	microcontroller with	Internal RAM, The stack and stack		
	function of each pin.	pointer, Special function registers,		
	1d. Explain Memory	Internal ROM.		
	organization of 8051	1.6 Major manufacturers of		
	with	microcontroller and family of		
	sketches.	microcontroller		
	1e. List the family of	1.7 Application of microcontroller in		
	microcontroller.	home, office and industries		
	1f. List application of			
	microcontroller.			
Unit-II	2a. Classify addressing	2.1 Addressing modes: immediate,		
8051 Assembly	modes of 8051 microcontroller with	Register, Direct, Indirect,, Indexed,		
Language Programming	microcontroller with examples.	Relative and bit addressing, external data moves, PUSH and POP opcodes		
Programming	2b. List the types of	2.2 Instructions: Moving data, Arithmetic		
	instruction set.	operation, Logical operation, stack		
	2c. Explain function of given	operation, Jump, Loop and Call		
	instructions with suitable	instructions		
	examples.	2.3 The structure of Assembly Language		
	2d. Write an assembly	Programming with examples		
	language program (ALP)	2.4 Assembling and running an 8051		
	for the given operation.	program		
	2e. Explain the use of given	2.4.1 The step of Assembly language		
	assembler directives with	program: editor, assembler, cross-		
	examples.	compiler, linker, locator, compiler		
		2.4.2 The program counter and ROM		
		space in 8051		
		2.4.3 8051 flag bits and PSW register		
		2.4.4 8051 register bank and stack		
		2.5 8051 data types and directives: DB,		
		ORG, EQU, END		

Unit-III 8051 timer, interrupt and serial communication

- 3a. Explain functions and operation of Timer/
 Counters and its application.
- 3b. Explain various timer modes of 8051.
- 3c. Develop a program to generate delay for the given crystal frequency using a timer.
- 3d. Develop a program to generate square wave for the given crystal frequency.
- 3d. Explain with the sketch operation of a given mode of serial communication.
- 3e. Develop a program for transmitting and receiving a single word.
- 3f. Explain interrupts of 8051.
- 3g. Explain IP and IE registers.

- 3.1 Configuration and programming of Timer/Counter using SFRs: TMOD, TCON, THx, TLx.
- 3.2 Modes of timer
- 3.3 Simple Programs on timer
- 3.4 Serial Communication of 8051: Basics, SBUF register, SCON and PCON registers
- 3.5 Modes of operation for serial communication
- 3.6 Simple program of serial communication
- 3.7 Generalized data transfer using RS 232
- 3.8 8051 Interrupts: Types of interrupt, steps in executing an interrupt, Interrupt priority and interrupt vector, IP and IE register

Unit-IV 8051 interfacing with I/O devices

- 4a. Interface the given external memory with 8051 microcontroller
- 4b. Interface Input Devices with 8051 microcontroller
- 4c. Interface Output Devices with 8051 microcontroller
- 4d. Interface A/D converter and D/A converter with 8051 microcontroller
- 4e. Interface analog input devices and analog output devices with 8051 microcontroller.
- 4f. Draw interfacing diagram 8051 with I/O devices (4.2 to 4.5)
- 4g. Develop an assembly language program to operate the given I/O devices (4.2 to 4.5)

- 4.1 Memory Interfacing: Program and data memory
- 4.2 Interfacing of 8051 with input devices: Pushbutton, 4*4 matrix keypad
- 4.3 Interfacing of 8051 with output devices : Relay, LED, 7 segment LED, LCD
- 4.4 Interfacing of 8051 with A/D converter: ADC 0804 and D/A converter: DAC 0808
- 4.5 Interfacing of 8051 with analog input/ output device: Temperature sensor LM35, DC Motor, Stepper Motor

Unit-V	5a. Select appropriate	5.1 Criteria for choosing a				
Microcontroller	microcontroller for given	microcontroller				
Applications	applications.	(https://www.microcontrollertips.com/k				
in		ey-factors-consider-choosing-				
Instrumentation	5b. Describe applications of microcontroller in	microcontroller/)				
	Instrumentation. (5.2)	5.2 Applications in				
		Instrumentation:				
	5c. Develop assembly	 Room Temperature Indicator 				
	language programs for	 Level detection application 				
	given instrumentation	 Water level Controller 				
	applications.	 Car parking - (Motion and obstacle 				
		sensing)				
	5d. State the procedures to	 Traffic light controller 				
	maintain the above (5.2)	- Stepper motor control for				
	instrumentation	clockwise and anticlockwise				
	applications	rotation				

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Introduction to Microcontroller	7	4	6	2	12
Ш	8051 Assembly Language	12	4	8	6	18
	Programming					
Ш	8051 timer, interrupt and serial	9	2	8	6	16
	communication					
IV	8051 interfacing with I/O devices	8	2	4	8	14
V	Microcontroller Applications in	6	2	2	6	10
	Instrumentation					
	Total	42	14	28	28	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Teachers guided self-learning activities.
- b) Prepare mini projects on industry defined problems.
- c) Explore the internet to remain up-to-date with the latest upgraded versions and facilities related to microcontrollers.
- d) Give seminars for relevant topics.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (**MOOCs**) may be used to teach various topics/ subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- f) Arrange an industrial visit to relevant industry.
- g) Prepare power point presentation on application of microcontroller.
- h) Undertake market survey of different microcontrollers

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, in the fifth and sixth semesters, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about **14-16** (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a chart evolution of microprocessor and microcontroller.
- b) Prepare a chart of various features of 8051 microcontroller.
- c) Prepare a chart of seven segment LED interfacing with microcontroller.
- d) prepare a chart of ADC 0804 and DAC 0808 interfacing with microcontroller.
- e) Prepare a chart of analog input/ analog output devices interfacing with microcontroller. (Temperature sensor, DC motor, Stepper motor)
- f) Build a circuit using 8051 to blink LEDs.
- g) Build a circuit to turn the buzzer ON after 5 seconds.
- h) Build a circuit to turn the buzzer ON after the key is pressed.
- i) Build a circuit of traffic light controller for specified given time delay.
- j) Build a circuit of water level controller for specified given parameters.
- k) Build a circuit to measure room temperature using a microcontroller.
- Build a circuit to rotate Stepper motor clockwise / anticlockwise for specified angle using a microcontroller.

- m) Build a circuit to rotate the DC motor clockwise / anticlockwise using a microcontroller.
- n) Prepare a list of various advanced microcontrollers used in industries. e.g. PIC microcontroller family, ARM microcontroller family, raspberry pi, arduino.
- o) Prepare features of advanced microcontrollers e.g. PIC microcontroller family, ARM microcontroller family, raspberry pi, arduino.
- p) Build applications based on advanced microcontrollers used in industries. e.g. PIC microcontroller family, ARM microcontroller family, raspberry pi, arduino.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of book	Author	Publication with place, year and ISBN
1	The 8051 microcontroller	Ayala, Kenneth	Cengage learning, New Delhi , Year-2007 ISBN: 978-8131502006
2	The 8051 microcontroller and embedded systems	Mazidi Ali, Muhammad Mazidi Gillispie Janice	PHI, New Delhi, (Latest edition), Year-2007 ISBN: 978-0199681273
3	The 8051 microcontroller	Mackenzie, I.S.	Pearson, New Delhi Year-1998 ISBN:978-0137800087
4	8051 Microcontroller: Internals, Instructions, Programming and Interfacing	Ghoshal, Subrata	Pearson Education, New Delhi, Year-2014 ISBN: 978-93-325-3575-6
5	The 8051 Microcontrollers: Architecture, Programming and Applications	Rao, K. Uma Andhe Pallavi	Wiley, Year- 2019 ISBN: 978-8126577545
6	Microcontroller Theory and Application	Ajay V. Deshmukh	McGraw Hill, New Delhi Year-2017 ISBN: 978-0070585959

14. SOFTWARE/ LEARNING WEBSITES

- https://www.geeksforgeeks.org/pin-diagram-of-8051-microcontroller/?ref=lbp
- https://www.electronicshub.org/microcontrollers/
- https://www.elprocus.com/8051-assembly-language-programming/
- https://microcontrollerslab.com/category/8051-microcontroller/
- https://www.elprocus.com/types-interfacing-devices-applications-with-microcontroller/
- https://nptel.ac.in/courses/117104072
- https://www.engineersgarage.com/8051-microcontroller/
- VLAB: http://vlabs.iitkgp.ac.in/rtes/#
- https://www.youtube.com/watch?v=0SZPr4iGACg
- https://freevideolectures.com/course/3018/microprocessors-and-microcontrollers

15. PO-COMPETENCY-CO MAPPING

Semester V	MICRO CONTROLLER IN INSTRUMENTATION (Course Code: 4351707)						
				POs			
Competency & Course Outcomes	PO 1 Basic & Disciplin e specific knowled ge	PO 2 Problem Analysis	PO 3 Design/ develop- ment of solutions	PO 4 Engineering Tools, Experimenta tion & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life-long learning
<u>Competency</u>							
Course Outcomes CO 1) Identify features of various microcontrollers	2	1	1	1	2	-	1
CO 2) Interpret the program for 8051 in assembly language for the given operations.	2	1	1	1	1	2	1
CO 3) Interpret the program by using timer, interrupt and serial communication	2	2	2	2	1	2	1
CO 4) Interface I/O devices with microcontroller for instrumentation applications	2	1	2	2	2	2	2
CO 5) Maintain microcontroller used in instrumentation applications	2	3	2	3	2	2	3

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Member – Board of Studies (GTU), Electrical and Allied branches

Prof. Suresh Z. Shyara, IC Engineering, AVPTI, Rajkot.

Prof. Mahesh J. Vadhavaniya, IC Engineering, Government Polytechnic, Palanpur.

GTU Resource Persons

Prof. M. A. Modi, IC Engineering, Government Polytechnic, Ahmedabad.

Prof. D. M. Makwana, IC Engineering, Government Polytechnic, Gandhinagar.