Übungsblatt 08 Stochastik 2

Abgabe von: Linus Mußmächer

15. Juni 2023

8.1 Zentralübung

 (X_n) konvergiert $\mathbb P$ stochastisch gegen X=0. Sei dazu $\varepsilon>0$ (und o.B.d.A. < 1) beliebig. Dann existiert ein $N\in\mathbb N$ mit $\frac{1}{N}<\varepsilon$ und es gilt $|X_n-X|\geq \varepsilon \Leftrightarrow X_n=n$ für alle $n\geq N$. Somit folgt $\lim_{n\to\infty}\mathbb P(|X_n-X|\geq \varepsilon)=\lim_{n\to\infty}\mathbb P(X_n=n)=\lim_{n\to\infty}\frac{1}{n}=0$.

 (X_n) konvergiert nicht in L_p , denn wäre sie L_p -konvergent gegen eine Grenzvariable \tilde{X} , dann wäre (X_n) auch stochastisch konvergent gegen \tilde{X} und aufgrund der Eindeutigkeit des Grenzwertes folgt $X = \tilde{X}$. Wir zeigen daher, dass (X_n) nicht in L_p gegen X konvergieren kann. Es ist X = 0, also $|X_n - X|^p = X_n^p$. Dann gilt

$$\mathbb{E}[|X_n - X|^p] = \mathbb{E}[X_n^p] = (1 - \frac{1}{n}) \cdot 0^p + \frac{1}{n} \cdot n^p = n^{p-1}$$

wobe
i $n^{p-1}=1\to 1$ für p=1und $n^{p-1}\to \infty$ für
 p>1 gilt. Die L_p -Konvergenz ist also für kein
 p gegeben.

Die fast sichere Konvergenz kann nicht entschieden werden. Wie oben muss (X_n) , falls \mathbb{P} -fast sicher konvergent, gegen X konvergieren. Sind die X_n unabhängig verteilt, so gilt für beliebiges $\varepsilon > 0$ (und o.B.d.A. < 1)

$$\mathbb{P}(\bigcup_{k=n}^{\infty}\{|X_k-X|\geq\varepsilon\})=\mathbb{P}(\bigcup_{k=n}^{\infty}\{X_k=k\})=\sum k=n^{\infty}\mathbb{P}(\{X_k=k\})=\sum_{k=n}^{\infty}\frac{1}{k}$$

und diese Summe kann für $k \to \infty$ nicht gegen 0 konvergieren, da dann die harmonische Reihe beschränkt wäre. Also gilt für unabhängige X_n , dass X_n nicht fast sicher konvergiert.

Für abhängige X_n lassen sich allerdings fast sicher konvergente Beispiele formulieren. Wir wollen dazu $X_n=0 \Rightarrow X_{n+1}=0$ festlegen und im Fall $X_n=n$ verlangen, dass $X_{n+1}=n+1$ mit bedingter Wahrscheinlichkeit $\frac{n}{n+1}$ und $X_{n+1}=0$ mit bedingter Wahrscheinlichkeit $\frac{1}{n+1}$. Dann erfüllt die Folge (X_n) alle Forderungen und es gilt $X_{n+1}\neq 0 \Rightarrow X_n\neq 0$ für alle n, also $\bigcup_{k=n}^{\infty}\{X_k=k\}=\bigcup_{k=n}^{\infty}\{X_k\neq 0\}\subseteq\{X_n\neq 0\}=\{X_n=n\}$ und somit

$$\mathbb{P}(\bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}) = \mathbb{P}(\bigcup_{k=n}^{\infty} \{X_k = k\}) \le \mathbb{P}(\{X_n = n\}) = \frac{1}{n} \to 0$$

und die X_n sind fast sicher konvergent.

8.2

8.3

(i) Sei $\varepsilon > 0$ beliebig. Dann gilt $\mathbb{P}(X_1 \geq 1 - \varepsilon) = \varepsilon$ und es ist

$$\mathbb{P}(|X_{(n)} - 1| \ge \varepsilon) = \mathbb{P}(X_{(n)} < 1 - \varepsilon) = \mathbb{P}(X_k < 1 - \varepsilon \ \forall_{1 \le k \le n}) = (1 - \varepsilon)^n \to 0,$$

da $1 - \varepsilon < 1$. Dies zeigt die stochastische Konvergenz.

(ii) Wir berechnen zuerst die Dichte von $Y_n = n(1-X_{(n)}).$ Für ein $t \geq 0$ gilt:

$$\mathbb{P}(Y_n \ge t) = \mathbb{P}(X_{(n)} \le 1 - \frac{t}{n}) = \mathbb{P}(X_k \le 1 - \frac{t}{n} \ \forall_{1 \le k \le n}) = (1 - \frac{t}{n})^n.$$

Diese Dichte konvergiert punktweise gegen die Grenzdichte $\lim_{n\to\infty}(1-\frac{t}{n})^n\cdot 1_{[0,\infty)}(t)=\exp(-t)\cdot 1_{[0,\infty)}(t)$, also konvergiert auch ihre Verteilung punktweise gegen die Grenzverteilung $\int_0^t \exp(-\tau)\cdot 1_{[0,\infty)}(\tau)d\tau=(1-\exp(-t))\cdot 1_{[0,\infty)}(t)$. Dies ist eine Exponentialverteilung zum Parameter 1.