Artificial Neural Networks for Geothermal Resource Assessment

Stephen Brown
Aprovechar Lab L3C
Montpelier, Vermont USA

Class 1 - Introduction

```
# Problem Setting
# Historical Approaches
```

Lab 1 - Installing Software and Datasets

Lab 2 - Dataset Contents and Preprocessing

Class 2 - Classification with Fully Connected Neural Networks

```
# Define a Supervised Learning Problem

# Mathematical Formulation

# Classification Problem

# Statistical Model

# Training the Neural Network

# Regularization of Network Training
```

Class 3 - Neural Network Architecture and Programming

- # Architecture
- # Implementation

Lab 3 - Running the Code

Class 4 - Modeling and Results

```
# Discussion of confidence in predictions
```

Discussion of variability in predictions

Class 5. Variational Inference with Bayesian Neural Networks

```
# Paradigm
```

Mathematical Formulation

Training the Neural Network

Class 6. Variational Inference with Bayesian Neural Networks (continued)

```
# A Practical Approach - Variational Bayes
```

- # Regularization of Network Training
- # Interpretation of the Output

Class 7 - Bayesian Neural Network Architecture and Programming

- # Architecture
- # Implementation

Lab 4 - Running the Code

Class 8 - Modeling and Results

```
# Controlling the Model Complexity
```

- # An Optimal Degree of Regularization
- # Variability in Predictions
- # Synopsis

Class 9 - Results of the Favored Model

```
# Review of Bayesian Neural Networks
```

- # Distribution of Probabilities
- # A Tool for Decision Makers
- # Summary and TODOs

Extensions

Class 10 - Siamese Neural Networks for Site Similarity

Concepts and Implementation

Lab 5 - Running the Code

Class 11 - Gaussian Processes Regression for Feature Engineering

Concepts and Implementation

Class 12 - Gaussian Processes Regression for Feature Engineering (continued)

Concepts and Implementation

Lab 6 - Running the Code