Systemic Risk and Stability in Financial Networks

Acemoglu, Ozdaglar, Tahbaz-Salehi, 2015, AER

Yuya Furusawa

May 22, 2019

U-Tokyo, GSE

Table of contents

- 1. Introduction
- 2. Model
- 3. Payment Equilibrium
- 4. Financial Contagion
- 5. Extensions
- 6. Conclusion

Introduction

Introduction

- The view that the architecture of the financial system plays a central role in shaping systemic risk has become conventional wisdom.
- There are two conflicting views on the relationship between the structure of the financial network and the extent of financial contagion.
 - A more interconnected architecture enhances the resilience of the system ti the insolvency of any individual bank. (Allen and Gale(2000), Freixas, Parigi, and Rochet(2000))
 - Dense interconnections may function as a destabilizing force, paving the way for systemic failures. (Vivier-Lirimont(2006), Blume te al.(2011, 2013))

Contribution

- This paper provides a framework for studying the network's role as a shock propagation and amplification mechanism.
- The Executive Director for Financial Stability at the Bank of England suggested that highly interconnected financial network may be "robust-yet-fragile".
 - "within a certain range, connections serve as shock-absorbers and connectivity engenders robustness".
 - beyond the range, "the system flips to the wrong side of the knife-edge"

Main Results

- Regardless of the structure of the financial network, a payment equilibrium always exists and is generically unique.
- When the magnitude of negative shocks is below a certain threshold, a more diversified pattern of interbank liabilities leads to a less fragile financial network.
- As the magnitude or the number of negative shocks crosses certain thresholds, highly diversified lending patterns facilitate financial contagion and create a more fragile system.

Model

Model - Financial Institutions (1)

- $\mathcal{N} = \{1, \dots, n\}$: risk-neutral banks
- The economy lasts for three periods, t = 0, 1, 2
- Each bank *i* is endowed with k_i units of capital that it can either hoard as cash, lend to other banks, or invest in a project
- Project yields a random return z_i at t=1 and non-pledgeable long-term return of A at t=2
- The bank can (partially) liquidate its project at t= 1, but can only recover a fraction $\zeta<$ 1

Model - Financial Institutions (2)

- Interbank lending takes place through standard debt contracts signed at t=0
- $\cdot k_{ij}$ denote the amount of capital borrowed by bank j from bank i
- The face value of j's debt to i is equal to $y_{ij} = R_{ij}k_{ij}$ where R_{ij} is interest rate
- Each bank must meet an outside obligation of magnitude v>0 at t=1
- The sum of liabilities of bank i is thus equal to $y_i + v$, where $y_i = \sum_{j \neq i} y_{ji}$

Model - Financial Institutions (3)

- All debts have to be cleared at t=1
- If bank j is unable to meet its t=1 liabilities in full, it has to liquidate its project prematurely
- · Assume that all junior creditors are of equal seniority
- If bank *j* can meet its senior liabilities, *v*, but defaults on its debt to the junior creditors, they are repaid in proportion to the face value of the contracts.

Model - The Financial Network

- Financial Network: the bilateral debt contracts in the economy as a weighted, directed graph on n vertices, where each vertex corresponds to a bank.
- The weight of the edge from i to j is equal to y_{ij}
- We denote a financial network with the collection of interbank liabilities $\{y_{ij}\}$
- A financial network is **symmetric** if $y_{ij} = y_{ji}$ for all pairs of banks i and j.
- A financial network is **regular** if $\sum_{j\neq i} y_{ij} = \sum_{j\neq i} y_{ji} = y$ for some y and all banks i

Example - The Financial Network

Panel A. The ring financial network

Panel B. The complete financial network

FIGURE 1. THE RING AND THE COMPLETE FINANCIAL NETWORKS

Payment Equilibrium

Liquidation

- x_{js} : the repayment by bank s on its debt to bank j at t=1, $x_{js} \in [0, y_{js}]$
- When bank j does not liquidate its project, the total cash flow is $h_j = c_j + z_j + \sum_{s \neq i} x_{js}$
- If $h_j > v + y_j$, the bank can meet its liability in full, then $x_{ij} = y_{ij}$.
- If $h_j < v + y_j$, the bank needs to liquidate its project.
 - The bank liquidate its project up to the point where it can cover the shortfall $v + y_j h_j$, or entirety to pay back as much as possible
- Mathematically, the bank's liquidation $l_i \in [0, A]$

$$l_j = \left[\min\{\frac{1}{\zeta}(v + y_j - h_j), A\}\right]^+ \tag{1}$$

Repayment

- If the bank cannot pay its debts in full, it defaults and its creditors are repaid according to their seniority.
- If $h_j + \zeta A < v$, the bank defaults on its senior liabilities and its junior creditors receive nothing, $x_{ij} = 0$.
- If $h_j + \zeta A \in (v, v + y_j)$, senior liabilities are paid in full and the junior creditors are repaid in proportion to the face value of their contracts.
- · Thus,

$$x_{ij} = \frac{y_{ij}}{y_j} \left[\min\{y_j, h_j + \zeta l_j - v\} \right]^+$$
 (2)

Payment Equilibrium

- **Definition 2**: For a given realization of the projects' short-term returns and the cash available to the banks, the collections $(\{x_{ij}\}, \{l_i\})$ of interbank debt repayments and liquidation decisions is a **payment equilibrium** of the financial network if (1) and (2) are satisfied for all i and j simultaneously.
- Proposition 1: For any given financial network, cash holdings, and realization of shocks, a payment equilibrium always exists and generically unique.

Social Surplus

 For any given financial network and the corresponding payment equilibrium, we define the social surplus in the economy as the sum of the returns to all agents; that is,

$$u=\sum_{i=1}^n(\pi_i+T_i)$$

where $T_i \le v$ is the transfer from bank i to its senior creditors and π_i is the bank's profit

Financial Contagion

Assumptions

- · We focus on the regular financial networks.
- We also assume that the short-term returns on the bank's investment are i.i.d. and only can have two values $z_i \in \{a, a \epsilon\}$
 - a > v is the return in the "business as usual" regime
 - $\epsilon \in (a v + \zeta A, a)$ corresponding to the magnitude of a negative shock
- We assume that all banks hold the same amount of cash, which we normalize zero.
- We initially assume only one bank is hit with negative shock, p=1 and the proceeds from liquidation are "trivial", $\zeta=0$.

Financial Contagion

• **Proposition 2**: Conditional on the realization of *p* negative shocks, the social surplus in the economy is equal to

$$u = n(a+A) - p\epsilon - (1-\zeta)\sum_{i=1}^{n} l_i$$

- **Definition 3**: Consider two regular financial networks $\{y_{ij}\}$ and $\{\tilde{y}_{ij}\}$. Conditional on the realization of p negative shocks,
 - 1. $\{y_{ij}\}$ is more **stable** than $\{\tilde{y}_{ij}\}$ if $E_p u \geq E_p \tilde{u}$, where E_p is the expectation conditional on the realization of p negative shocks.
 - 2. $\{y_{ij}\}$ is more **resilient** than $\{\tilde{y}_{ij}\}$ if min $u \ge \min \tilde{u}$, where the minimum is taken over all positive realizations of p negative shocks.

Aggregate Interbank Liabilities

- Proposition 3 : For a given regular financial network $\{y_{ij}\}$. let $\tilde{y}_{ij} = \beta y_{ij}$ for all $i \neq j$ and some constant $\beta > 1$. Then, financial network $\{\tilde{y}_{ij}\}$ is less stable and resilient than $\{y_{ij}\}$
- Larger liabilities raise the exposure of each bank to the potential distress at its counterparties, hence facilitating contagion.

Small Shock Regime

- Proposition 4: Let $\epsilon^* = n(a v)$ and suppose that $\epsilon < \epsilon^*$. Then, there exists y^* such that for $y > y^*$,
 - The ring network is the least resilient and least stable financial network.
 - 2. The complex network is the most resilient and most stable financial network.
- Proposition 4 is thus in line with the observations made by Allen and Gale(2000) and Freixas, Parigi, and Rochet(2000).
- Intuition: a more diversified pattern of interbank liabilities implies that the burden of any potential losses is shared among more banks, creating a more robust financial system.

δ -connected Financial Network

- **Definition 5**: A regular financial network is δ -connected if there exists a collection of banks $\mathcal{S} \subset \mathcal{N}$ such that $\max\{y_{ij},y_{ji}\} \leq \delta y$ for all $i \in \mathcal{S}$ and $j \notin \mathcal{S}$.
- In a δ -connected financial network, the fraction of liabilities of banks inside and outside of $\mathcal S$ to one another is no more than $\delta \in [0,1].$

Large Shock Regime

- **Proposition 6** : Suppose that $\epsilon > \epsilon^*$ and $y > y^*$. Then,
 - 1. The complete network and the ring networks are the least stable and least resilient financial networks.
 - 2. For small enough values of δ , any δ -connected financial network is strictly more stable and resilient than the ring and complete financial networks.
- When the magnitude of the negative shock crosses the critical threshold ϵ^* , the complete network exhibits a form of **phase** transition.
- Intuition: since all banks in the complete network are creditors of the distressed bank, the adverse effects of the negative shock are transmitted to them.

Shock Absorbers

- Excess liquidity of the non-distressed banks at t=1
 - The impact of a shock is attenuated once it reaches banks with excess liquidity.
 - This mechanism is best utilized in dense financial network.
- The claim v of senior creditors of the distressed bank
 - The senior creditors can be forced to bear the losses, and hence limit the extent of contagion.
 - This mechanism is best utilized in weakly connected financial network.

Other Results

· Harmonic distance

· Def:

$$m_{ij} = 1 + \sum_{k \neq j} \frac{y_{ik}}{y} m_{kj}$$

- Distance between banks in a financial network, which takes into account the intensity of each connection.
- If bank *j* is hit with negative shock, the banks whose harmonic distance is small defaults.

· Bottleneck parameter

· Def:

$$\phi = \min_{S \subset \mathcal{N}} \sum_{i \in S} \sum_{j \notin S} \frac{y_{ij}/y}{|S||S^{C}|}$$

- How the financial network can be partitioned into two roughly equally-sized components.
- · We can see how many banks default by using this parameter.

Extensions

Extensions, Generalizations

- We can have same results even when some assumptions are relaxed.
 - · Multiple shocks :multiple banks hit negative shocks
 - Non-trivial liquidation : $\zeta > 0$
 - * Size heterogeneity : all assets and liabilities of bank i are scaled by a constant $\theta_i>0$

Conclusion

Conclusion

- As long as the magnitude of negative shocks is below a certain threshold, a more diversified pattern of interbank relationship leads to less fragility.
- When negative shocks are larger than a certain threshold, weakly connected network is less prone to systemic failures.
- · Policy implication
 - When regulating the extent and nature of interbank linkage, it
 must be based on the expected size of the negative shocks.
 - Efficiency of the network(working paper version)