Sztuczna Inteligencja

Soma Dutta

Wydział Matematyki i Informatyki, UWM w Olsztynie soma.dutta@matman.uwm.edu.pl

Wykład - 12: Systemy uczące się Semestr letni 2022

Podsumowanie

Uczenie się perceptronu: jak wyuczyć perceptron dla danej funkcji, czyli jak nauczyć się wag dla jednego perceptronu. Tutaj, dokładniej problemem uczenia się jest określenie wektora wag, który powoduje że perceptron generuje poprawne wyjścia +1/0 dla każdego z podanych przykładów treningowych.

Uczenie się jednostki liniowej na podstawie reguły delta: Regułę treningową delta najlepiej zrozumieć, biorąc pod uwagę zadanie treningu perceptronu bez progu

Wielowarstwowa sieć neuronowa

- Jak wspomniano wcześniej, pojedyncze perceptrony mogą wyrażać jedynie decyzyjne liniowe powierzchnie.
- Istnieją proste funkcje, takie jak XOR, a także złożone zadania, takie jak rozpoznawanie mowy, które obejmuje nieliniową reprezentację.
- Przedstawiona tutaj sieć została wyuczona rozpoznawania 1 z 10 dźwięków samogłoskowych występujących w kontekście 'h...d' (np. had, hid). Wejście sieci składa się z dwóch parametrów, I₁ i I₂, uzyskanych z analizy spektralnej dźwięku. Dziesięć wyjść sieci odpowiada 10 możliwym dźwiękom samogłosek. Decyzją sieci jest wyjście, którego wartość jest najwyższa.

Wielowarstwowa sieć neuronowa

Jednostki:

Jednostki podzielone są na warstwy, każda jednostka przyporządkowana jest do dokładnie jednej warstwy

Wejścia:

Wejścia podłączone są wyłącznie do jednostek znajdujących się w najniższej warstwie

Połączenia:

Połączenia występują wyłącznie pomiędzy jednostkami z sąsiednich warstw, łączą zawsze wyjścia jednostek z warstwy niższej z wejściami do jednostek w warstwie wyższej

Wyjście:

Typowa sieć z jedną wartością funkcji ma tylko jedną jednostkę w najwyższej warstwie, wyjście z tej jednostki jest wyjściem całej sieci

Wielowarstwowa sieć neuronowa: ewaluacja

$$x_5 = \sigma(w_{3,5} \cdot x_3 + w_{4,5} \cdot x_4)$$

= $\sigma(w_{3,5} \cdot \sigma(w_{1,3} \cdot x_1 + w_{2,3} \cdot x_2) + w_{4,5} \cdot \sigma(w_{1,4} \cdot x_1 + w_{2,4} \cdot x_2))$

Uwaga:

Zastosowanie liniowych funkcji przejścia w warstwach pośrednich byłoby nieefektywne - warstwy takie można pominąć, poprzez odpowiednie przeliczenie wag i bezpośrednie połącznie warstw poprzedającej i następującej.

Wielowarstwowa sieć neuronowa: inna funkcja aktywacji

Jakiego rodzaju jednostki będziemy używać jako podstawy do budowy sieci wielowarstwowych?

- Wiele warstw jednostek liniowych nadal wytwarza tylko funkcje liniowe, a wolimy sieci zdolne do reprezentowania wysoce nieliniowych funkcji.
- Jednostka perceptronowa jest kolejnym możliwym wyborem, ale nieciągły próg czyni ja nieróżniczkowalną i dlatego nie nadaje się do zastosoawnia w metodzie spadku gradientu.
- Potrzebujemy jednostki, której wyjście jest nieliniową funkcją jego wejść, oraz której wyjście jest również różniczkowalną funkcji jego danych wejściowych.
- ▶ Jednym z rozwiązań jest jednostka sigmoidalna (sigmoid unit) jednostka bardzo podobna do perceptronu, ale bazująca na wygładzonym, różniczkowalnym progu funkcjonalności.

Perceptron z sigmoidalną funkcją aktywacji

- Podobnie jak perceptron, sigmoidalna jednostka najpierw oblicza liniową kombinację danych wejściowych, a następnie stosuje próg dla wyniku. Jednak w przypadku jednostki sigmoidalnej wyjście progowe jest wyjściem ciągłym jego wejść.
- $ightharpoonup \sigma$ jest nazywany funkcją sigmoidalną lub funkcją logistyczną.
- ▶ Jego wartość wyjściowa wynosi od 0 do 1, rośnie monotonicznie wraz ze swoimi wejściami, a pochodna sigmoidalna jest łatwo wyrażalna przy użyciu jego wyjścia (konkretnie $\frac{d(\sigma(z))}{dz} = \sigma(z).(1-\sigma(z))$).

Propagacja wsteczna: algorytm

```
function BACK-PROP-UPDATE(examples, lavers, α) returns a network
    inputs: examples - a set of examples, each with input \vec{x} and output v(\vec{x})
               layer_0, layer_1,..., layer_n - neuron layers sorted from the bottom to the top
               \alpha - the learning rate
    repeat
        for each \vec{x} = (x_1, \dots, x_n) in examples do
             for each unit i \in layer_0 do
                 o_i \leftarrow x_i
             end for
             for each unit j \in layer_D in order from layer_1 up to layer_D do
                 z_j \leftarrow \sum_{i \in layer_{n-1}} w_{i,j} o_i
                 o_i \leftarrow \sigma(z_i)
             end for
             for each unit i \in laver_n do
                 \delta_i \leftarrow \sigma'(z_i)(y_i(\vec{x}) - o_i)
             end for
             for each unit j \in layer_D in order from layer_{D-1} down to layer_0 do
                 \delta_j \leftarrow \sigma'(z_j) \sum_{k \in layer_{D+1}} w_{j,k} \delta_k
                 \Delta w_{i,k} \leftarrow \alpha \delta_k o_i
                 w_{i,k} \leftarrow w_{i,k} + \Delta w_{i,k}
             end for
         end for
    until some stopping criterion is satisfied
    return lavers with modified weights
end function
```

Propagacja wsteczna: funkcja błędu

- $E(\overrightarrow{w}) = \frac{1}{2} \Sigma_{\overrightarrow{x} \in U} \Sigma_{j \in Outputs} (y_j(\overrightarrow{x}) O_j(\overrightarrow{x}))^2$ = $\frac{1}{2} \Sigma_{\overrightarrow{x} \in U} \Sigma_{j \in Outputs} (y_j(\overrightarrow{x}) - \sigma((\overrightarrow{w}.\overrightarrow{x})_j)^2$
- ▶ Dla każdej jednostki j w ostatniej warstwie $\delta_j = \frac{\partial E_j}{\partial \overrightarrow{w}}$ to wektor, w którym i-tej składnik $\delta_{j,i}$ jest pochodną względem i-tej składnik j-tego wektora wagi.

$$\begin{split} \bullet \quad & \delta_{j,i} = \frac{\partial E_{j}(\overrightarrow{w})}{\partial w_{i}} = \frac{1}{2} \Sigma_{\overrightarrow{x} \in U} \frac{\partial}{\partial w_{i}} (y_{j}(\overrightarrow{x}) - \sigma(\overrightarrow{w}.\overrightarrow{x})_{j})^{2} \\ & = -\Sigma_{\overrightarrow{x} \in U} (y_{j}(\overrightarrow{x}) - \sigma(\overrightarrow{w}.\overrightarrow{x})_{j}) \cdot \frac{\partial \sigma(\overrightarrow{w}.\overrightarrow{x})_{j}}{\partial w_{i}} \\ \text{Niech } \overrightarrow{w}.\overrightarrow{x} = z. \text{ Więc } \frac{\partial \sigma(\overrightarrow{w}.\overrightarrow{x})}{\partial w_{i}} = \frac{\partial \sigma(z)}{\partial z} \frac{\partial(\overrightarrow{w}.\overrightarrow{x})}{\partial w_{i}} \text{ gdzie } \sigma(z) = \\ \frac{1}{1 + e^{-z}} \cdot \\ & = -\Sigma_{\overrightarrow{x} \in U} (y_{j}(\overrightarrow{x}) - \sigma(\overrightarrow{w}.\overrightarrow{x})_{j}) \cdot \frac{\partial \sigma(z_{j})}{\partial z_{j}} \frac{\partial(\overrightarrow{w}.\overrightarrow{x})_{j}}{\partial w_{i}} \\ & = -\Sigma_{\overrightarrow{x} \in U} (y_{j}(\overrightarrow{x}) - \sigma(\overrightarrow{w}.\overrightarrow{x})_{j}) \cdot (\sigma(z_{j})(1 - \sigma(z_{j})))(x_{i}) \end{split}$$

Propagacja wsteczna z sigmoidalną funkcją aktywacji

Sigmoidalna funkcja aktywacji $\sigma(z) = \frac{1}{1+e^{-z}}$ we wszystkich neuronach

$$o(\vec{x}) = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

$$\frac{\partial \sigma}{\partial z} = \left(\frac{1}{1+e^{-z}}\right) \left(1 - \frac{1}{1+e^{-z}}\right)$$

$$\frac{\partial \sigma}{\partial z}[z = \vec{w} \cdot \vec{x}] = o(\vec{x})(1 - o(\vec{x}))$$

Wartości współczynników zmiany wag δ_j

- dla neuronów j z warstwy najwyższej:
 - $\delta_j \leftarrow o_j(1-o_j)(y_j(\vec{x})-o_j)$
- dla neuronów j z każdej niższej warstwy p:

$$\delta_j \leftarrow o_j (1 - o_j) \sum_{k \in layer_{p+1}} w_{j,k} \delta_k$$

Propagacja wsteczna: własności

- Algorytm propagacji wstecznej działa dla dowolnego grafu skierowanego bez cykli.
- ► Twierdzenie: Algorytm propagacji wstecznej zbiega lokalnie do minimalnego błędu średniokwadratowego.

Uczenie indukcyjne

- ▶ Obiekty: dane reprezentujące rzeczywisty stan lub obiekt, tworzą przestrzeń obiektów *X*.
- ▶ Decyzja: Funkcja $dec: X \mapsto V_{dec}$ przypisująca obiektom wartość decyzji z ustalonego zbioru V_{dec} .
- **Z**biór przykładów (zbiór treningowy, próbka treningowa): Ustalony zbiór obiektów z X z przypisanymi wartościami decyzji: $(x_1, dec(x_1)), (x_2, dec(x_2)), \ldots, (x_m, dec(x_m)).$
- Problem: Z danego zbioru przykładów nauczyć się funkcji (hipotezy) h: X → V_{dec} aproksymującej decyzję dec tak, zeby możliwie najbardziej poprawnie przypisywała decyzyję obiektom z przestrzeni X nie występujących w zbiorze przykładów.

Drzewa decyzjna

- Indukcja drzewa decyzyjnego jest jedną z najprostszych, a jednocześnie najbardziej udanych form maszynowego uczenie się.
- Drzewo decyzyjne reprezentuje funkcję, która przyjmuje jako dane wejściowe wektor wartości atrybutów i zwraca 'decyzję' - pojedynczą wartość wyjściową.
- Wartości wejściowe i wyjściowe mogą być dyskretne lub ciągłe. Dla uproszczenia skoncentrujemy sią na problemach, w których dane wejściowe mają dyskretne wartości a dane wyjściowe mają dokładnie dwie możliwe wartości; jest to klasyfikacja boolowska (binarna), gdzie każde przykładowe dane wejściowe zostaną sklasyfikowane jako prawda (przykład pozytywny) bądź jako fałsz (przykład negatywny).
- W drzewie decyzyjnym każdy węzeł wewnętrzny odpowiada testowi wartości a_i, jednego z atrybutów. Gałęzie z węzła są oznaczone możliwymi wartościami atrybutu a_i. Każdy węzeł liścia w drzewie jest etykietowany wartością zwracaną przez funkcję jako wynik.

Przykład

- Predykat celowy: zdecydować, czy czekać na stolik w restauracji
- Celem jest poznanie definicji predykatu celu WillWait
- Atrybuty, na podstawie których należy podjąć decyzję:
 - Alternate: czy w pobliżu znajduje się odpowiednia alternatywna restauracja
 - Bar: czy w restauracji jest wygodny bar, w którym można czekać
 - Friday/Saturday: można czekać, jeśli jest piątek lub sobota
 - Hungry: czy jesteśmy głodni
 - Patron: ile osób jest w restauracji (brak, niektóre pełne)
 - Price: przedział cenowy dań w restauracji
 - Raining: czy na zewnątrz pada deszcz
 - Reservation: czy dokonaliśmy rezerwacji
 - Type: rodzaj restauracji (francuska, włoska, tajska lub burger)
 - ► WaitEstimate: czas oczekiwania oszacowany przez gospodarza (0-10 minut, 10-30, 30-60 lub > 60)

Przykład restauracji

Example											Decision
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
×1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
<i>x</i> ₂	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
×4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
×5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	> 60	No
×6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
×7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
×9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	> 60	No
×10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X11	No	No	No	No	None	\$	No	No	Thai	0-10	No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Drzewo decyzyjne

Ekspresyjność drzewa decyzyjnego

Drzewo decyzyjne jest logicznie równoważne z twierdzeniem, że atrybut celowy lub atrybut decyzyjny jest prawdziwy tylko wtedy, gdy atrybuty wejściowe spełniają jedną ze ścieżek prowadzących do węzła liścia o wartości prawdziwy.

 $Goal \Leftrightarrow Path_1 \vee Path_2 \vee \ldots \vee Path_n$ gdzie każda ścieżka jest koniunkcją testów atrybut-wartość wymaganych do podążenia tą ścieżką.

- Na przykład: $Path_1 \equiv (Patron = Full) \land (WaitEstimate = 0 10)$. $Path_2 \equiv (Patron = Full) \land (WaitEstimate = 10 30) \land (Hungry = No)$.
- Zatem całe wyrażenie jest równoważne DNF.

Indukowanie drzewa decyzyjnego na podstawie przykładów

- Przykład systemu decyzyjnego ma postać (x, dec(x)), gdzie x jest wektorem wartości atrybutów wejściowych, a dec(x) jest jedną z wartości atrybutu decyzyjnego.
- Jeśli mamy n atrybutów i każdy atrybut ma dwie możliwe wartości, drzewa decyzyjne to funkcje od zbioru z 2ⁿ do zbioru wartości z 2 elementami. Istnieje więc 2^{2ⁿ} możliwych drzew decyzyjnych.
- Na przykład tylko z dziesięcioma atrybutami boolowskimi naszego problemu w restauracji do wyboru jest 2¹⁰²⁴ różnych funkcji.
- Musimy więc szukać dobrej hipotezy na tak dużej przestrzeni.
- Zatem celem jest skonstrukowanie drzewa, które jest zgodne z pozytywnymi przykładami (tzn. dec(x) = prawda) i jest tak małego rozmiaru, jak to możliwe.

Znajdowanie drzewa decyzyjnego

- Pozytywne przykłady: te, dla których WillWait ma wartość 'Tak' (np. x₁, x₃,...)
- Przykłady negatywne: te, dla których WillWait ma wartość 'Nie' (np. x₂, x₅,...)
- Szukamy drzewa, które jest zgodne z przykładami i jest tak możliwie małego rozmiaru. Niestety znalezienie najmniejszego spójnego z przykładami drzewo jest trudnym problemem; nie ma sposobu na skuteczne przeszukanie 2²ⁿ drzew.
- Za pomocą prostych heurystyk możemy jednak znaleźć dobre przybliżone rozwiązanie: małe (ale nie najmniejsze) niesptrzeczne z przykładami drzewo.
- Algorytm DECISION-TREE-LEARNING bazuje na strategii zachłannej dziel i rządź: zawsze najpierw przetestuj najważniejszy atrybut. Ten test dzieli problem na mniejsze podproblemy, które można następnie rozwiązać rekurencyjnie.
- 'Najważniejszy atrybut' to ten, który najbardziej wpływa na klasyfikację przykładu.

Zły atrybut i znaczący atrybut

 'Type' jest słabym atrybutem, ponieważ dla każdej możliwej wartości ma taką samą liczbę pozytywnych i negatywnych przykładów.

- 'Patron' jest bardzo istotnym atrybutem, ponieważ dla wartości 'None' i 'Some' cały zbiór danych jest podzielony na przykłady negatywne i pozytywne.
- ► Tak więc po pierwszym teście atrybutów, gdy przykłady zostaną podzielone, możemy przejść do testu następnego poziomu z mniejszą liczbą przykładów.
- 'Hungry' jest wybierany jako następny, ponieważ dla wartości 'No' ma tylko negatywne przykłady.

- Na tym etapie 'Alt' nie jest dobrym atrybutem, ponieważ w przypadku 'Alt = Yes', ponieważ wyznacza taką samą liczbę pozytywnych i negatywnych przykładów.
- Ale 'Price' jest tutaj dobrym atrybutem, ponieważ dla 'Price = \$\$\$' mamy tylko negatywny przykład.

Kolejnym znaczącym atrybutem jest 'Friday', ponieważ dzieli przykłady na przypadki pozytywne i negatywne.

- ▶ Więc jedną z klasyfikacji niektórych pozytywnych przykładów jest: $(Patron = Full) \land (Hungry = Yes) \land (Price = \$) \land (Friday = Yes)$
- Dla pozostałych pozytywnych przykładów mamy następującą klasyfikację.
 (Patron = Some)

Niespójne przepadki

- Jeśli po zastosowaniu tej strategii dziel i rządź nie pozostanie żaden atrybut, ale nadal pozostaną pewne pozytywne i negatywne przykłady, oznacza to, że przykłady te mają ten sam opis, ale inną klasyfikację. Oznacza to, że istnieją niespójne (sprzeczne) przypadki.
- Może się to zdarzyć z powodu błędu lub szumu w danych; lub ponieważ nie możemy zaobserwować atrybutu, który odróżniałby przypadki pozytywne i negatywne.

Algorytm uczenia się drzewa decyzyjnego

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples) returns a tree
if examples is empty then return PLURALITY-VALUE(parent examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else
  A \leftarrow argmax_{a \in attributes} IMPORTANCE(a, examples)
  tree \leftarrow a new decision tree with root test A
  for each value v_k of A do
  exs \leftarrow \{e : e \in examples, A(e) = v_k\}
  subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes \setminus \{A\}, examples)
  add a branch to tree with label (A = v_k) and subtree subtree
return tree
```

Jedno drzewo decyzyjne

- Zauważamy, że istnieje niebezpieczeństwo nadinterpretacji drzewa wybranego przez algorytm.
- Kiedy istnieje kilka zmiennych o podobnym znaczeniu, wybór między nimi jest nieco arbitralny: przy nieco innych przykładach danych wejściowych do podziału zostanie wybrana inna zmienna po pierwsze, a całe drzewo wyglądałoby zupełnie inaczej.
- Funkcja decyzyjna obliczana przez drzewo byłaby nadal podobna, ale struktura skonstrukowanego drzewa może się znacznie różnić.

Entropia

- Algorytm uczenia się drzewa decyzyjnego polega na wybraniu ważnego podzbioru atrybutów w stosunku do podanego zbioru przykładów.
- Potrzebna jest więc formalna miara 'dość dobrych' i 'bezużytecznych' atrybutów.
- ► Tutaj wprowadzono funkcję o nazwie 'Ważność' (Importance). W tym celu stosuje się pojęcie wzmocnienia informacji (information gain), które definiuje się przez entropią.
- Warto wiedzieć, że entropia jest podstawową wielkością w teorii informacji (Shanon and Weaver 1949)

Entropia

- Entropia jest miarą niepewności zmiennej losowej; pozyskiwanie informacji odpowiada zmniejszeniu entropii.
- Ogólnie entropia zmiennej losowej V o wartościach v_k , każda z prawdopodobieństwem $p(v_k)$, jest zdefiniowana jako:

Entropy:
$$H(V) = \sum_k P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$
.

- Shanon zdefiniował pojęcie zawartości informacji w zmiennej w odniesieniu do jego prawdopodobieśstwa p, oznaczonego jako I(p), przez pewne aksjomaty, a później odkrył, że $I(p) = log_2(\frac{1}{p})$ jest dobrym kandydatem na funkcję I. Relacja między entropią a treścią informacyjną jest podana jako H(V) = E(I(prob(V))).
- Więc entropia rzutu monetą: $H(fair) = -(0.5log_2(0.5) + 0.5log_2(0.5)) = 1$
- Entropia boolowskiej zmiennej losowej z prawdopodobieństwem q dla 'true' wynosi:

$$B(q) = -(q\log_2 q + (1-q)\log_2(1-q))$$

Entropia atrybutu

- ▶ Jeśli zbiór treningowy zawiera p przykładów pozytywnych i n przykładów negatywnych, wówczas entropia atrybutu decyzyjnego dla całego zbioru to: $H(decision) = B(\frac{p}{p+n})$.
- W przykładzie związanym z restauracją p = n = 6. Więc odpowiednia entropia jest B(0,5), która jest dokładnie 1 bit.
- Atrybut A z odrębnymi wartościami dzieli zbiór treningowy na podzbiory $E_1, E_2, \ldots E_d$. Każdy podzbiór E_k ma p_k pozytywne przykłady i n_k negatywne przykłady. Tak więc, jeśli pójdziemy wzdłuż gałęzi, potrzebujemy dodatkowych $B(\frac{p_k}{p_k+n_k})$ bitów informacji, aby odpowiedzieć na pytanie.
- Losowo wybrany przykład z zbioru treningowego ma k-tą wartość dla A z prawdopodobieństwem $\frac{p_k+n_k}{p+n}$.
- ► Tak więc oczekiwana entropia pozostała po przetestowaniu atrybutu A wynosi: $Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n_k} . B(\frac{p_k}{p_k + n_k})$
- Uzyskanie informacji (information gain) z testu atrybutu A to oczekiwane zmniejszenie entropii:
 Coin(A)
 Proposition(A)

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

Zysk informacji definiujący funkcję IMPORTANCE

- Gain(A) jest tym, czego potrzebujemy do realizacji funkcji IMPORTANCE.
- Na przykład: $Gain(Patron) = B(\frac{6}{12}) - Remainder(Patron)$ $= 1 - [\frac{2}{12}B(\frac{0}{2}) + \frac{4}{12}B(\frac{4}{4}) + \frac{6}{12}B(\frac{2}{6})] \approx 0.541 \text{ bits}$ $Gain(Type) = 1 - [\frac{2}{12}B(\frac{1}{2}) + \frac{2}{12}B(\frac{1}{2}) + \frac{4}{12}B(\frac{2}{4}) + \frac{4}{12}B(\frac{2}{4})] = 0 \text{ bit}$
- ► To potwierdza, że Patron jest lepszym atrybutem do podziału.
- W rzeczywistości w podanym przykładzie 'Patron' ma maksymalne wzmocnienie dowolnego z atrybutów i będzie wybierany przez algorytm uczenia decyzji jako węzeł początkowy.

Dziękuję za uwagę