

# Plan

# Introduction sur la logique

- Buts
- Applications
- Types, niveaux et branches de la logique

# Le langage L1

- Problématique
- Syntaxe de L1
- Variables libres et liées
- Représentation des connaissances

L1 ou L0?

Quantificateurs, propositions syllogistiques

# Sémantique de L1

- Sémantique et interprétation
- Evaluation
- Vocabulaire
- Équivalences

# Introduction sur la Logique

# Quelques références

### ■ Lectures de base à l'UTC

- Nilsson N.J.: « Principes d'intelligence artificielle » Collection Techniques Avancées de l'Informatique, 1990, Cépadues.
- J-P Delahaye : « Outils logiques pour l'Intelligence Artificielle ». Eyrolles, 1986.
- Henri Farreny et M. Ghallab : « Eléments d'Intelligence Artificielle », Hermès 1987.

# Mots-clés pour Internet

- logique, "histoire de la logique"
- propositions, prédicats
- "démonstration automatique"
- "systèmes formels"

# Buts de la logique

# Période classique

- Analyse des raisonnements
- Science de l'argumentation

### Période moderne

- Mécanisation des raisonnements
- Fondements des mathématiques
  - Établir leur non-contradiction
  - Axiomatiser leurs diverses branches
- Formalisation des objets, des concepts informatiques

# **Applications**

# **En Informatique**

- Algorithmique
- Conception de circuits
- Preuve de programmes
- Langages de programmation
- Bases de données
- Ordonnancement, planification
- Optimisation sous contraintes

# **En Intelligence Artificielle**

- Représentation des connaissances
- Démonstration automatique
- Diagnostic, aide à la décision,...
- Robotique
- Analyse de documents
- Traitement du langage naturel

# Types de Logique

# Logiques classiques

A deux valeurs de vérité

Pour les raisonnements valides

- Logique des Propositions
- Logique des Prédicats du Premier Ordre
- Logiques d'ordre supérieur......

# Logiques non classiques

Pour les raisonnements non valides

- Logiques modales
- Logique temporelles
- Logiques non monotones
- Logiques multi-valuées......

# Types de Logique

### Définition commune

- Un langage : pour définir les formules bien formées
- Une sémantique (formelle) : pour définir la valeur de vérité des formules bien formées
- Un système formel : des axiomes et des règles d'inférence pour faire des preuves

### Caractères discriminants

- Expressivité du langage
- Axiomatique versus sémantique
- Faisabilité des preuves

# Niveaux de Logique

# La théorie logique

- Encore appelée « théorie objet »
- Le système logique proprement dit

# La meta-théorie

- Est aussi un système logique!
- Permet de raisonner sur la théorie-objet
- Produit des méta-théorèmes parmi lesquels :
  - > la non-contradiction
  - l'adéquation
  - > la complétude

# Le langage L1 de la logique des prédicats du premier ordre

```
« Paul est petit »
objet : Paul
```

relation: « est petit »

« Paul mange une pomme »

objets: Paul, pomme

relation: « mange »

### Pour représenter des propositions :

des objets : ce dont on parle

des relations : ce qu'on en dit

$$\sin(90-x)=\cos(x)$$

### Identification de:

- constantes : les objets (nombres) dont on dit quelque chose
- variables : des symboles qui représentent un objet quelconque
- fonctions : appliquées à des objets, elles renvoient un objet
- relations : appliquées à des objets, elles renvoient une valeur de vérité
- quantifications (implicites) : une loi est universelle ou existentielle



 Un univers du discours : l'ensemble des objets auxquels on s'intéresse

```
\rightarrow {A;B;C;D;E}
```

 Une fonction à un argument : appliquée à un objet, elle renvoie un objet

```
→ SUT
```

- Des relations à 1, 2... arguments : appliquées à des objets, elles renvoient V ou F
  - → table, libre, au-dessus,.....
- Plusieurs représentations possibles : (i.e.) fonctions et relations deviennent des objets (par réification)

13

# **Argument syllogistique**

Tout homme est mortel

Socrate est un homme

Socrate est mortel

### **Problèmes:**

- Cet argument ne relève pas du raisonnement propositionnel (langage L0)
- Il associe propositions singulières (relatives à des individus) et générales (au caractère universel)

# L'alphabet strict

- Parenthésage, virgule : () { } [],
- Ensembles dénombrables de symboles de :
  - $\rightarrow$  variables:  $x,y,z,...,x_0,x_1,....$
  - > constantes: a,b,c,...,a<sub>0</sub>,a<sub>1</sub>,..., A, B, C,...
  - > fonctions d'arité n : f,g,h,...f<sub>0</sub>,f<sub>1</sub>...
  - prédicats d'arité n : p,q,r,...p<sub>0</sub>,p<sub>1</sub>..., P, Q,...
- Connecteurs logiques:
  - à un argument : ¬
- Deux quantificateurs : ∀ ∃

### Les termes

- Une constante est un terme
- Une variable est un terme
- Si f est une fonction d'arité n, et si  $t_1$ ,  $t_2$ , ....,  $t_n$  sont des termes, alors  $f(t_1, t_2, ...., t_n)$  est un terme
- Il n'y a pas d'autres termes que ceux ainsi définis

### **Exemples:**

- en notation strictex, a, f(a), f(a,b,f(x,y,z))
- en notation étendue marie, père(paul)

### Les atomes

Si p est un prédicat n-aire et si  $t_1$ ,  $t_2$ , ...,  $t_n$  sont des termes, alors  $p(t_1, t_2, ..., t_n)$  est un atome

### **Exemples:**

- en notation strictep(x,a,f(y))
- en notation étendue aime(x,y)aime(paul,fille(jean))

### Les littéraux

Un littéral est soit un atome (littéral positif), soit un atome précédé du signe de négation (littéral négatif)

# Formules bien formées (fbf)

- Un littéral est une fbf
- Si  $F_1$  et  $F_2$  sont des fbfs, alors  $\neg F_1$ ,  $F_1 \land F_2$  $F_1 \lor F_2$ ,  $F_1 \Rightarrow F_2$ ,  $F_1 \Leftrightarrow F_2$  sont des fbfs
- Si F est un fbf, alors ∃x F et ∀x F sont des fbfs

### **Exemples:**

en notation stricte

$$\forall x \ \forall y \ (p(x) \Rightarrow (q(y) \Rightarrow \forall z \ r(x,y,z)))$$

en notation étendue

```
\forall x \ \forall y \ aime(x,y)
```

$$\forall x \exists y \ aime(x,y)$$

$$\exists y \ \forall x \ aime(x,y)$$

$$\forall x \ aime(x, fils(x))$$

$$\forall x \ \forall y \ (fils(x,y) \Rightarrow aime(x,y))$$

# Grammaire des formules

```
fbf
             ::= disjonction \Rightarrow fbf
                | disjonction
disjonction
             ::= conjonction
                  disjonction v conjonction
                  primaire
conjonction ::=
                | conjonction ∧ primaire
primaire
             ::=
                  atome
                  ¬ primaire
                  ∀ symb-de-variable
                  ∃ symb-de-variable-primaire
                i ( fbf ) | [ fbf ] | { fbf }
                  symb-prédicatif(arguments)
atome
arguments
             ::=
                  3
                  argument queue-arg
                 [fbf]
queue-arg
             ::=
                | argument queue-arg
             ::= symb-d'objet
argument
                | symb-de-variable
                  symb-fonctionnel(arguments)
```

# Variables libres et liées

# Portée d'une quantification

Dans les formules  $\exists x \ A$  et  $\forall y \ A$ , la fbf A est la *portée* des quantifications

$$\forall x \ (P(x,y) \lor \exists y \ Q(x,y))$$

# Occurrences liées

L'occurrence d'une variable suivant un quantificateur est "quantifiée"

Toute occurrence d'une variable *x* apparaissant dans la portée d'une quantification en x est "liée"

### Occurrences libres

Une occurrence d'une variable est "libre" dans une formule (A) si elle n'est ni quantifiée, ni liée

