EJEMPLO MEZCLA I.S.I.

Ejercicio 1: Se desea el planteo del siguiente problema, detallando los siguientes ítems:

- 1. Establezca las hipótesis que considere necesaria y diagrama de procesos.
- 2. Defina las variables reales y sus unidades.
- 3. Defina la función objetivo y sus unidades.
- 4. Defina las restricciones
- 5. Defina las slacks y sus unidades.
- 6. Defina las ecuaciones y sus unidades.

Una compañía petrolera produce dos tipos de gasolina, normal y súper, que vende a sus estaciones de servicio a 120 y 140 pesos/barril respectivamente.

Las características del combustible disponible en el almacén son:

	Presión de vapor	Octaje	Barriles en almacén	Coste pesos/barriles
Nacional	25	87	40.000	80
Extranjero	15	98	60.000	150

Ambos tipos de gasolina se realizan mezclando combustible nacional extranjero de sus almacenes, y debe cumplir las siguientes especificaciones:

	Presión de	Octanaje	Demanda máxima	Entregas mínimas
	vapor máxima	mínimo	barriles/semana	barriles/semana
Normal	23	88	100.000	50.000
súper	23	93	20.000	5.000

¿Qué cantidad de combustible nacional y extranjero deben mezclarse para producir las dos gasolinas y obtener los máximos beneficios semanales?

<u>Nota:</u> Los componentes de la mezcla contribuyen al octanaje (y a la presión de vapor) de acuerdo a su porcentaje en la mezcla.

EJEMPLO MEZCLA I.S.I.

Ejercicio 2: Se desea el planteo del siguiente problema, detallando los siguientes ítems:

- 1. Establezca las hipótesis que considere necesaria y diagrama de procesos.
- 2. Defina las variables reales y sus unidades.
- 3. Defina la función objetivo y sus unidades.
- 4. Defina las restricciones
- 5. Defina las slacks y sus unidades.
- 6. Defina las ecuaciones y sus unidades.

En una fábrica se mezclan tres tipos de aceites comestibles para producir 2 productos: MISOL y CAFUL. El número de barriles de plástico por día de cada materia prima disponible, viscosidad, costo del barril y cantidad de barriles a utilizar por día es la siguiente:

Materia Prima	Costo del Barril	Cantidad de Barril	Viscosidad
Maíz	800	500	70%
Girasol	850	400	80%
Oliva	900	450	75%

La viscosidad para el producto MISOL tiene que ser hasta el 80 % y el CAFUL al menos 75 %.

Existe un contrato que obliga a entregar diariamente 500 barriles del MISOL y del CAFUL respectivamente. Los precios de venta son \$1520 por barril del producto MISOL y \$2700 por barril del producto CAFUL. Todos los sobrantes no utilizados en las mezclas con una viscosidad superior a 70, pueden venderse a 800 \$/barril y las de una viscosidad menor a 75 se venden a 700 \$/barril. ¿Cuál será el programa que arroje el máximo beneficio?

EJEMPLO MEZCLA I.S.I.

Ejercicio 3: Se desea el planteo del siguiente problema, detallando los siguientes ítems:

- 1. Establezca las hipótesis que considere necesaria y diagrama de procesos.
- 2. Defina las variables reales y sus unidades.
- 3. Defina la función objetivo y sus unidades.
- 4. Defina las restricciones
- 5. Defina las slacks y sus unidades.
- 6. Defina las ecuaciones y sus unidades.

Un fraccionador de whisky importa el licor en tres distintas producciones: A, B y C.

Mediante la mezcla de éstos, de acuerdo a sus fórmulas, se obtienen los whisky de calidad comerciable: ESCOSES, KILT y TARTAN.

Las citadas fórmulas especifican las siguientes relaciones entre los elementos a mezclar:

MARCA	ESPECIFICACION	PRECIO DE VENTA (\$/LITRO)
Escocés	No menos del 60 % de A No más del 50 % de C	680
Kilt	No más del 60 % de C No menos del 15 % de A	670
Tartán	No más del 50 % de C	450

Se conocen las **disponibilidades** y **precios de los licores** A, B, y C, que indican en el siguiente cuadro:

MARCA	LITROS DISPONIBLES	PRECIO DE COSTO (\$/LITRO)
Α	2000	700
В	2500	500
С	1200	400

Se desea definir la composición que haga máximo el beneficio total.