Apuntes de clase

José Antonio de la Rosa Cubero

Clasificación de los grupos de orden hasta 15

Observación 1 (Grupos de orden primo). Los orden 2, 3, 5, 7, 11 y 13, son respectivamente isomorfos a los grupos cíclico de orden correspondiente.

Observación 2 (Grupos de orden cuadrado de un primo). Los grupos de orden 4 y 9 cumplen que como todo grupo de orden p^2 con p primo, es abeliano, solo hay 2: C_{p^2} y $C_p \times C_p$.

Proposición 1. Si p es un primo impar, entonces todo grupo de oden 2p es isomorfo a C_{2p} o a D_p .

Demostración. Tenemos que $n_p = 1$. Existe un único $P \leq G$ de orden p. $P \cong C_p$.

Supongamos $P=\langle a|a^p=1\rangle.$ Tenemos que $n_2|p$ y $n_2\cong 1$ mód 2, luego $n_2=1$ o $n_2=p.$

En el caso $n_2 = 1$, como $n_p = 1$ entonces si $Q \leq G$ que tiene orden 2 y por tanto es isomorfo a C_2 , es el único 2-subgrupo de Sylow.

$$G \cong P \times Q \cong C_p \times C_2 \cong C_{2p}$$

Caso $n_2=p$, como G no es abeliano, $P=\langle a|a^p=1\rangle$. Como $[G:P]=\frac{|G|}{P}=\frac{2p}{p}=2$, entonces hay únicamente dos clases laterales a derecha: P y Pb para algún $b\notin P$.

Entonces

$$G = P \cap Pb = \{1, a, \dots, a^{p-1}, b, ab, \dots, a^{p-1}b\}$$

Veamos que ord(b) = 2. En efecto, ord(b)||G| = 2p, con lo que ord $(b) \in \{1, 2, p, 2p\}$. $b \neq 1$ ya que b no pertenece a P, $b \neq 2p$ porque si no G sería abeliano. $b \neq p$ porque entonces $\langle b \rangle = P$ y tendríamos $b \in P$. Luego ord(b) = 2.

Veamos que $ba = a^{-1}b$. En efecto,

y entonces tenemos que $\operatorname{ord}(ba)=2$ por los mismos motivos que antes.

$$(ba)^2 = baba = 1$$
 y $ba = a^{-1}b$, luego $G = D_p$.

Observación 3. Los grupos de orden 6, 10 y 14 son isomorfos a C_6 o D_6 , C_{10} o D_5 y C_{14} o D_7 respectivamente.

Observación 4. Todo grupo de orden 15 es isomorfo a C_{15} .

 $Demostración.~|G|=15=3\times 5,$ tenemos que $n_3=1$ y $n_5=1.$ Por lo tanto $G\cong P\times Q$ con Pel único 3-subgrupo de Sylow y Qel único 5-subgrupo de Sylow

Tenemos que $G \cong C_3 \times C_5 \cong C_{15}$, donde el último paso es cierto porque son primos relativos.

Observación 5. Grupos de orden 8 abelianos tenemos C_8 , $C_4 \times C_2$ y $C_2 \times C_2 \times C_2 \times C_2$.

Grupos de orden 8 noabelianos tenemos D_4 y Q_2 .

Demostración. Para el caso abeliano ya lo hemos visto.

Si G no es abeliano, los elementos no triviales tienen orden 2 o 4. Por otro lado, como G no es abeliano, no todos los elementos de G tienen orden 2.

Consecuentemente, existe un $a \in G$ tal que el orden de a es 4. Sea

$$H = \langle a \rangle = \{1, a, a^2, a^3\}$$

Como $[G:H]=\frac{|G|}{|H|}=\frac{8}{4}=2$. Por tanto $H \leq G$ y el número de clases laterales a derecha módulo H es exactamente 2:H,Hb con $b\notin H$.

Por tanto $G = H \cap Hb = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Consideramos el elemento $b^2 \in G$.

Tenemos que o bien $b^2 \in H$ o $b^2 \in Hb$, pero la segunda posibilidad nos daría que $b=a^i \in H$. Luego tenemos que $b^2 \in H=\{1,a,a^2,a^3\}$. Si $b^2=a$, entonces el orden de b^2 sería 4, pero en ese caso el orden de b sería 8. Tenemos que G sería abeliano.

Por el mismo razonamiento $b^2 \neq a^3$. Así que $b^2 = 1$ o $b^2 = a^2$.

Caso $b^2 = 1$, veamos que $ba = a^{-1}b = a^3b$, con lo que G es D_4 .

Como $H \leq G$, tenemos que $bab^{-1} = bab \in H$, con lo que $bab \in \{1, a, a^2, a^3\}$. No es posible que bab = 1, porque entonces a = 1. Tampoco es posible que bab = a porque entonces ba = ab y G sería abeliano.

Si $bab = a^2$, entonces $baba = a^3$, y entonces $\operatorname{ord}((ba)^2) = \operatorname{ord}(a^3) = 4$ y tendríamos que $\operatorname{ord}(ba) = 8$, y G sería abeliano.

Luego $bab = a^3$ y tenemos que $ba = a^3b$. Por tanto $G = D_4$.

Caso $b^2=a^2$, veamos que $ba=a^{-1}b=a^3b$. Como $H \leq G$ y entonces $bab^{-1} \in H$.

Tenemos que $bab^{-1} \in \{1, a, a^2, a^3\}$. Por los mismos motivos, descartamos 1 y a. Tenemos que si $bab^{-1} = a^2 = b^2$, tendríamos $ab^{-1} = b$ y por tanto $a = b^2 = a^2$ con lo que a = 1. Por tanto tiene que ocurrir $bab^{-1} = a^3$ y por tanto $ba = a^3b$.

Luego $ba = a^3b$ y por tanto $G \cong Q_2$.