

What is claimed is:

1. A method for determining an adjustment amount to be made to an input hue, H_{in} , to squeeze the input hue toward a region of preferred hue, H_{pref} , comprising:
 - a) defining a change in hue as: $\Delta H = H_{in} - H_{pref}$;
 - b) defining a hue weighting function;
 - c) defining an amount of hue adjustment as: $H_{Adjust} = \Delta H * H_{weight}$; and
 - d) generating an output hue by applying hue adjustment to hue input as follows: $H_{out} = H_{in} - H_{Adjust}$.
2. A method, as defined in **claim 1**, wherein the weighting function results in monotonic behavior between H_{in} and H_{out} .
3. A method, as defined in **claim 1**, wherein the weighting function is defined as a Gaussian function: $H_{weight} = Gaussian(H_{pref}, H_{sigma})$, where H_{sigma} is a parameter which controls how widespread the effect of the squeezing is.
4. A method, as defined in **claim 1**, wherein the weighting function is defined as a Gaussian convolved with a Rect function: $H_{weight} = Gaussian(H_{pref}, H_{sigma}) * Rect(H_{rectsize})$, where $H_{rectsize}$ is an additional parameter which controls the severity of the squeezing.
5. A method, as defined in **claim 1**, wherein the weighting function is defined as the combination of two Gaussian functions given by:
$$weight_tmp = e^{\frac{-(H_in-M)^2}{2*H_sigma^2}} + e^{\frac{-(H_in+M)^2}{2*H_sigma^2}}, \text{ and}$$
$$H_{weight} = K * weight_tmp / max(weight_tmp);$$
6. A method, as defined in **claim 5**, wherein K is chosen to assure monotonicity between H_{in} and H_{out} .

7. A method, as defined in **claim 1**, wherein the input is squeezed toward a point in a predetermined colorspace e.g., RGB, a^*b^* , or $u'v'$ space.
8. A method, as defined in **claim 1**, wherein the preferred hue represents an optimal memory color.
9. A method, as defined in **claim 1**, comprising multiple hue centers to sequentially squeezing the input toward regions of preferred color.
10. A method, as defined in **claim 1**, wherein, in the case of multiple squeezes, defining finite non-overlapping regions of support.
11. A method, as defined in **claim 1**, wherein inputs are pre-specified in a color management system.
12. A method, as defined in **claim 1**, wherein the inputs are dynamically specified by the user.
13. A method, as defined in **claim 1**, wherein the squeezing is applied in a non-uniform way by one weighting function at input hue values less than the preferred hue and another weighting function at input hue values greater than the preferred hue.