Лекция №1

Часть 4. Семантическая стойкость.

Елена Киршанова Курс "Основы криптографии"

Информационно-теоретическая vs. семантическая стойкость

OTP

любые атакующие

Большие ключи $|\mathcal{K}| = |\mathcal{M}|$

Фиксированная длина m_1

Вычислительный шифр

вычилительно ограниченные атакующие

несколько сотен бит

Любая длина m

Семантическая безопасность: формальное определение

$$\Pi = (\mathsf{Key}\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$$

Челленджер $\mathcal C$ $k \leftarrow \mathsf{KeyGen}(1^{\lambda})$ $b \stackrel{\$}{\leftarrow} \{0,1\}$ $c \leftarrow \mathsf{Enc}(k, m_b)$

 $m_0, m_1 \in \mathcal{M}$

Атакующий ${\cal A}$

 $m_0, m_1 \leftarrow \mathcal{M}$

 $\mathbb{W}_{\Pi,\mathcal{A}}$ – событие $b==\hat{b}$.

 $\mathsf{SSAdv} = \left| \Pr[\mathtt{W}_{\Pi,\mathcal{A}}] - rac{1}{2} \right|$ -выигрыш \mathcal{A}

Схема Π –семантически безопасна, если для любого ppt \mathcal{A} :

 $SSAdv = negl(\lambda).$

Семантическая безопасность ОТР

Теорема. Для абсолютно стойкой схемы (OTP) и для всех атакующих ${\cal A}$ выполняется

$$\Pr[\mathtt{W}_{\Pi,\mathcal{A}}] = rac{1}{2}.$$

Эквивалентно

$$\mathtt{SSAdv} = |\Pr[\mathtt{W}_{\Pi,\mathcal{A}}] - 1/2| = 0.$$

"Взлом" абсолютно стойкой схемы эквивалентен угадываю ключа.

Следствия семантической безопасности

Теорема.

$$\Pi = (\mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec}) - \mathsf{семантически}$$
 стойкая схема. Тогда \forall ppt $\mathcal A$

$$\Pr[\mathcal{A}(\mathsf{Enc}(k,m)) \to m[i]] \le \frac{1}{2} + \operatorname{negl}(\lambda) \quad \forall i$$

To есть семантически безопасная схема стойка к угадыванию i-ого бита открытого текста.

Доказательство редукцией

$$I_0 = \{m \in \mathcal{M} \mid m[i] = 0\}$$
 $I_1 = \{m \in \mathcal{M} \mid m[i] = 1\}$
$$\Pr[\mathcal{A}(\mathsf{Enc}(k, m)) \to m[i]] \le \frac{1}{2} + \operatorname{negl}(\lambda)$$

Построим \mathcal{A}' , отличающий шифр-тексты I_0 от шифр-текстов I_1 .

Доказательство редукцией

Следствия семантической безопасности

Теорема.

 $\Pi = (\mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec})$ — семантически стойкая схема. Тогда \forall ppt атакующего $\mathcal A$ существует $\mathcal A'$:

$$|\Pr[\mathcal{A}(\lambda, \mathsf{Enc}(k, m)) \to f(m)] - \Pr[\mathcal{A}'(\lambda) \to f(m)]| \le \operatorname{negl}(\lambda).$$

To есть семантически безопасная схема стойка к вычислению любой эффективной функции f(m).