Session 8. Advanced Optimization Models

* Algorithms for Optimization

- *Direct methods*: Direct methods compute the solution to a problem in a *finite* number of iterations. These methods would give the precise answer if they were performed in infinite precision arithmetic.
- Iterative methods: Iterative methods approach the solution gradually, rather than in one large computational step.
 Therefore, when solving a problem with an iterative method, you can observe the error estimate in the solution decreases with the number of iterations.

* Bisection Method

• Let x^* be the root of f(x), i.e., $f(x^*) = 0$. If x^* is known to be located in an initial bracket [a, b], then *bisect* this interval into two intervals [a, c] and [c, b] where c is the *midpoint*.

If f(a) f(c) < 0 and f(c) f(b) > 0, then x^* is located in [a, c]If f(a) f(c) > 0 and f(c) f(b) < 0, then x^* is located in [c, b]

■ This process may now be *iterated* such that the size of the bracket (as well as the actual error of the estimate) is being divided by 2 every iteration.

8-2 ISDS 7103

A. Gradient Vector*

* Gradient of a Function

- Let $\mathbf{x} = [x_1, x_2, ..., x_k]'$ be a vector and $f(\mathbf{x})$ be
- Let $\mathbf{x} = [x_1, x_2, ..., x_k]'$ be a vector and $f(\mathbf{x})$ be a differentiable function.

 The gradient of the function $f(\mathbf{x})$, evaluated at \mathbf{x} , is defined as the $k \times 1$ column vector, where ∇ (the nabla symbol) denotes the vector differential operator. $\frac{\partial}{\partial x_1} f(\mathbf{x}) = \frac{\partial}{\partial x_2} f(\mathbf{x})$ $\frac{\partial}{\partial x_k} f(\mathbf{x})$ vector differential operator.

ector, the
$$\nabla f(\mathbf{x}) = \begin{vmatrix} \frac{\partial}{\partial x_2} f(\mathbf{x}) \\ \frac{\partial}{\partial x_k} f(\mathbf{x}) \end{vmatrix}$$

Ex 1] Consider the bivariate function, $f(x_1, x_2) = 2x_1^2 - 3x_1x_2 + x_2^2$.

(a) Compute the partial derivatives of $f(x_1, x_2)$.

$$\frac{\partial}{\partial x_1} f(x_1, x_2) = \frac{\partial}{\partial x_2} f(x_1, x_2) =$$

- (b) The gradient vector is $\nabla f(x_1, x_2) =$
- **Ex 2**] Compute the *partial derivatives* of the function,

$$f(b_0, b_1) = \sum_{i=1}^{n} [y_i - b_0 - b_1 x_i]^2.$$

(Note that b_0 and b_1 are variables, while x_i and y_i are constants.)

$$\frac{\partial}{\partial b_0} f(b_0, b_1) =$$

$$\bullet \frac{\partial}{\partial b_1} f(b_0, b_1) =$$

* Interpretation of the Gradient

(a) Single variable:

• In one dimension, the gradient of a function f(x) is just the *derivative*, which is the *slope* of the *tangent line* to the graph of f at the point x.

Ex 1] Find the *gradient* of the function, $f(x) = -x^2 + 100x$.

$$\nabla f(x) = \frac{d}{dx}f(x) =$$

(b) Two variables:

- Consider a surface whose *height* level at a point x and y is f(x, y). The gradient of the function f at a point is a vector pointing in the direction of the *steepest* slope or grade at that point.
- The *steepness* of the slope at that point is given by the *magnitude* of the gradient vector $\|\nabla f(x,y)\|$.

Ex 2] Consider f(x, y) = x + y.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix} =$$

Ex 3] Consider $f(x, y) = (x-y)^2$.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix} =$$

B. Gradient Ascent Method*

* Gradient Method

- The gradient method is a first-order optimization algorithm, which is also known as *steepest ascent* or *steepest decent*.
- The *gradient* of a function gives the direction of *steepest increase*. Thus, a natural maximization algorithm is to take steps proportional to the gradient of the function at the current point.

* Maximization Problem

• Input:

Differentiable function $f(\mathbf{x})$ Initial solution $\mathbf{x}^{(0)}$ Learning rate $\delta > 0$ Tolerance limit $\epsilon > 0$

Output

Maximum point x

Procedure

Step 1.
$$t = 1$$

Step 2. $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)} + \delta \nabla f(\mathbf{x}^{(t-1)})$

Step 3. If
$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t-1)}) > \varepsilon$$
, then $t = t+1$ and go to Step 2. else $\mathbf{x}^* = \mathbf{x}^{(t)}$ and stop.

It eventually results in the local maximum point because

$$f(\mathbf{x}^{(t+1)}) = f(\mathbf{x}^{(t)} + \delta \nabla f(\mathbf{x}^{(t)})] > f(\mathbf{x}^{(t)}) > f(\mathbf{x}^{(t-1)}).$$

Ex 1] Local maximum: Consider the maximization problem. As shown in the graph, the global maximum is at $x^*=20$, while the local maximum is at $x^*=80$.

•
$$Max f(x) = -x^4/4 + 160x^3/3 - 3800x^2 + 96000x$$

• Gradient:
$$\nabla f(x) = \frac{d}{dx}f(x) =$$

■ Iteration:
$$x^{(t)} = x^{(t-1)} + \delta \nabla f(x^{(t-1)})$$

= $x^{(t-1)} + \delta \{-[x^{(t-1)}]^3 + 160 [x^{(t-1)}]^2 - 7600 [x^{(t-1)}] + 96000\}$

Let's consider four different cases with the same initial value $x^{(0)}=0$, but with a different learning rate δ .

• Case 1. If $\delta = 0.0005$, it finds the global maximum $x^* = 20$.

Iteration, t	0	1	2	3	4	• • •
$\chi^{(t)}$	0	48	42.62	35.28	26.83	

• Case 2. If $\delta = 0.0009$, it converges to the local maximum $x^* = 80$.

Iteration,
$$t$$
 0
 1
 2
 3
 4
 ...

 $x^{(t)}$
 0
 86.4
 76.30
 79.36
 80.02
 ...

■ Case 3. If $\delta = 0.0010$, x^* oscillates between 14.94 and 29.78.

Iteration, t	0	1	2	3	4	• • •
$\chi^{(t)}$	0	96	52.22	45.26	32.33	• • •

■ Case 4. If δ =0.0012, it *diverges*.

Iteration, t	0	1	2	3	4	
$\chi^{(t)}$	0	115.2	-106.8	4632	-∞	

Ex 2] Multivariate Optimization

A monopolist produces a single product for two types of customer. To maximize profit, how much should the monopolist sell to each customer?

Objective function

$$Max f(x_1, x_2) = x_1 (70-4x_1) + x_2 (150-15x_2) - [100+15(x_1+x_2)]$$

Gradient vector

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} =$$

(1) Analytical solution:

Set the gradient vector equal to 0 and solve the equations!

Then,
$$x_1^* =$$
 and $x_2^* =$

(2) Steepest ascent algorithm: $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)} + \delta \nabla f(\mathbf{x}^{(t-1)})$ or

$$\begin{bmatrix} x_1^{(t)} \\ x_2^{(t)} \end{bmatrix} = \begin{bmatrix} x_1^{(t-1)} \\ x_2^{(t-1)} \end{bmatrix} + \delta \begin{bmatrix} 55 - 8x_1^{(t-1)} \\ 135 - 30x_2^{(t-1)} \end{bmatrix}.$$

Table. 20 iterations with the learning rate $\delta = 0.05$ and the initial value $\mathbf{x}^{(0)} = [0, 0]$.

				2	3	4	 10	 20
ĺ	$X_1^{(t)}$	0	2.75 6.75		5.390	5.984	 6.833	 6.875
	$X_2^{(t)}$	0	6.75		5.063	4.219	 4.509	 4.500

C. Gradient Descent Method*

* Minimization Problem

• If you take steps proportional to the negative of the gradient, you approach a local minimum of the function; the procedure is then known as gradient descent.

• Input:

Differentiable function $f(\mathbf{x})$ Initial solution $\mathbf{x}^{(0)}$ Learning rate $\delta > 0$ Tolerance limit $\epsilon > 0$

Output

Minimum point \mathbf{x}^*

Procedure

Step 1. t = 1

Step 2. $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)} - \delta \nabla f(\mathbf{x}^{(t-1)})$ Step 3. If $f(\mathbf{x}^{(t-1)}) - f(\mathbf{x}^{(t)}) > \varepsilon$, then t = t+1 and go to Step 2. else $\mathbf{x}^* = \mathbf{x}^{(t)}$ and stop.

It eventually results in the local minimum point because

$$f(\mathbf{x}^{(t+1)}) = f[\mathbf{x}^{(t)} - \delta \nabla f(\mathbf{x}^{(t)})] < f(\mathbf{x}^{(t)}) < f(\mathbf{x}^{(t-1)}).$$

How to determine the learning rate δ and the initial values $\mathbf{x}^{(0)}$?

ISDS 7103

0.10

0.00

-0.10 -0.15

-1.5

8-8

Ex 1] Apply the steepest descent algorithm to find a local minimum of the univariate function,

$$f(x) = x^4 + x^3.$$

- $Min f(x) = x^4 + x^3$
- Gradient: $\nabla f(x) = \frac{d}{dx} f(x) =$

Thus, the stationary points are $x^* =$

■ Iteration:
$$x^{(t)} = x^{(t-1)} - \delta \nabla f(x^{(t-1)})$$

= $x^{(t-1)} - \delta \{ 4[x^{(t-1)}]^3 + 3[x^{(t-1)}]^2 \}$

- Initial value is $x^{(0)} = -1.1$ and the learning rate is δ .
- Case 1. If $\delta = 0.9$, it finds the global minimum $x^* = -0.75$.

Iteration, t	0	1	2	3	4	•••
$\mathcal{X}^{(t)}$	-1.1	0.425	-0.338	-0.507	-0.732	•••

• Case 2. If $\delta = 0.8$, it reaches at the inflection point $x^* = 0$.

Iteration, t	0	1	2	3	4	•••
$\mathcal{X}^{(t)}$	-1.1	0.255	0.046	0.040	0.036	•••

Figure. 500 iterations with $\delta = 0.9$ and $x^{(0)} = -1.1$

Ex 2] Rosenbrock Function

$$Min f(x_1, x_2) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$

which is a non-convex function used as a performance test problem for optimization algorithms.

Gradient vector

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$$

- (1) Analytical solution? $x_1^* =$ and $x_2^* =$
- (2) Steepest descent algorithm: $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)} \delta \nabla f(\mathbf{x}^{(t-1)})$

which is
$$\begin{bmatrix} x_1^{(t)} \\ x_2^{(t)} \end{bmatrix} = \begin{bmatrix} x_1^{(t-1)} \\ x_2^{(t-1)} \end{bmatrix}$$

$$-\delta \begin{bmatrix} -400x_1^{(t-1)} \{x_2^{(t-1)} - [x_1^{(t-1)}]^2\} - 2\{1 - x_1^{(t-1)}\} \\ 200\{x_2^{(t-1)} - [x_1^{(t-1)}]^2\} \end{bmatrix}.$$

Figure. 5,000 iterations with δ and $\mathbf{x}^{(0)} = [0, 0]$.

D. Gradient Methods for Prediction and Classification*

I. Gradient Descent for Regression Models

- *Minimization* of the sum of squared errors (SSE)
 - Objective function: $f(\mathbf{b}) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i \hat{y}_i(\mathbf{b})]^2$, where $\mathbf{b} = [b_0, b_1, ..., b_k]$ is a parameter vector.
 - Gradient vector of the objective function $f(\mathbf{b})$ for the kth parameter:

$$\nabla f(b_k) = \left[\frac{\partial}{\partial b_k} f(\boldsymbol{b}) \right] = \left[\frac{\partial}{\partial b_k} \sum_{i=1}^n [y_i - \hat{y}_i(\boldsymbol{b})]^2 \right]$$
$$= -2 \left[\sum_{i=1}^n [y_i - \hat{y}_i(\boldsymbol{b})] \frac{\partial}{\partial b_k} \hat{y}_i(\boldsymbol{b}) \right]$$
$$= -2 \left[\sum_{i=1}^n e_i \frac{\partial}{\partial b_k} \hat{y}_i(\boldsymbol{b}) \right].$$

- Steepest *descent* method for the minimization problem:

$$b_k^{(t)} = b_k^{(t-1)} - \delta \nabla f(\mathbf{b}_k^{(t-1)})$$
 or

$$b_k^{(t)} = b_k^{(t-1)} + 2\delta \sum_{i=1}^n e_i^{(t-1)} \frac{\partial}{\partial b_k} \hat{y}_i(b).$$

Model, $\hat{y}_i(\boldsymbol{b})$	Gradient ve	ctor
• Polynomial regression $\hat{y}_i(\mathbf{b}) = b_0 + b_1 x_i + b_2 x_i^2$	$\frac{\partial}{\partial b_k} \hat{y}_i(\boldsymbol{b}) = \begin{cases} 1 \\ x_i \\ {x_i}^2 \end{cases}$	for $k = 0$ for $k = 1$ for $k = 2$
• Linear regression $\hat{y}_i(\mathbf{b}) = b_0 + b_1 x_i + + b_k x_k$	$\frac{\partial}{\partial b_k} \hat{y}_i(\boldsymbol{b}) = \begin{cases} 1 \\ x_k \end{cases}$	for $k = 0$ for $k \ge 1$

Ex 1] Simple Linear Regression Model

3 2 4 4 6 3

Find the least square estimates $\mathbf{b} = (b_0, b_1)$ that minimize the sum of squared errors (*SSE*).

(a) Matrix approach

$$\mathbf{y}_{4\times 1} = \begin{bmatrix} 3\\4\\6\\5 \end{bmatrix} \quad \text{and} \quad \mathbf{X}_{4\times 2} = \begin{bmatrix} 1 & 2\\1 & 4\\1 & 3\\1 & 5 \end{bmatrix}.$$

Thus,
$$\mathbf{b} = (\mathbf{X}' \mathbf{X})^{-1} (\mathbf{X}' \mathbf{y}) = \begin{bmatrix} 3.1 \\ 0.4 \end{bmatrix}$$
.

(b) Microsoft Excel – Data Analysis

Regression Statistics						
Multiple R	0.4					
R Square	0.16					
Adjusted R Square	-0.26					
Standard Error	1.4491					
Observations	4					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	8.0	8.0	0.3810	0.6
Residual	2	4.2	2.1		
Total	3	5.0			

	Coefficients	Standard	t	P-	Lower	Upper
	Coemcients	Error	Stat	value	95%	95%
Intercept	3.1	2.381	1.302	0.323	-7.145	13.345
Χ	0.4	0.648	0.617	0.6	-2.388	3.188

(c) Gradient descent method with the learning rate δ =0.01 and the initial solutions, $b_0^{(0)}$ =3 and $b_1^{(0)}$ =0.3.

y_i	χ_i	\hat{y}_i	e_i	$e_i x_i$
3	2	3.6	-0.6	-1.2
4	4			
6	3	3.9	2.1	6.3
5	5	4.5	0.5	2.5
$b_0^{(0)}=3$	$b_1^{(0)} = 0.3$	Total =		

• Step 1. The solutions at t=1 are $b_0^{(1)}=3.036$ and $b_1^{(1)}=0.436$,

because
$$\begin{bmatrix} b_0^{(1)} \\ b_1^{(1)} \end{bmatrix} = \begin{bmatrix} 3.0 \\ 0.3 \end{bmatrix} + 2 \times 0.01 \begin{bmatrix} 1.8 \\ 6.8 \end{bmatrix} = .$$

y_i	χ_i	\hat{y}_i	e_i	$e_i x_i$
3	2	3.908	-0.908	-1.816
4	4			
6	3	4.344	1.656	4.968
5	5	5.216	-0.216	-1.080
$b_0^{(1)}=3.036$	$b_1^{(1)} = 0.436$	Total =		

• Step 2. The solutions at t=2 are $b_0^{(2)}=$ and $b_1^{(2)}=$

because
$$\begin{bmatrix} b_0^{(2)} \\ b_1^{(2)} \end{bmatrix} = \begin{bmatrix} 3.036 \\ 0.436 \end{bmatrix} + 2 \times 0.01 \begin{bmatrix} -0.248 \\ -1.048 \end{bmatrix} =$$

Figure. 100 iterations with $\delta = 0.015$ and $\mathbf{b}^{(0)} = [0, 0]$.

They approach the optimal solutions, $\mathbf{b}^* = [3.1, 0.4]$.

II. Gradient Ascent for Logistic Regression Model

- *Maximization* of the *log-likelihood* function:
 - Objective function

$$f(\mathbf{b}) = \sum_{i=1}^{n} y_i \ln \pi_i + \sum_{i=1}^{n} (1 - y_i) \ln (1 - \pi_i),$$
where $\pi_i = \frac{1}{1 + exp(-bx_i)}$.

- Gradient vector of the objective function $f(\mathbf{b})$ for the kth parameter:

$$\nabla f(b_k)$$

$$= \frac{\partial}{\partial b_k} \sum_{i=1}^n y_i \ln \pi_i + \frac{\partial}{\partial b_k} \sum_{i=1}^n (1 - y_i) \ln (1 - \pi_i)$$

$$= \sum_{i=1}^n y_i \frac{1}{\pi_i} \frac{\partial}{\partial b_k} \pi_i + \sum_{i=1}^n (1 - y_i) \frac{1}{1 - \pi_i} \frac{\partial}{\partial b_k} (1 - \pi_i)$$

$$= \left(\sum_{i=1}^n \left[\frac{y_i}{\pi_i} - \frac{(1 - y_i)}{1 - \pi_i} \right] \right) \frac{\partial}{\partial b_k} \pi_i$$

$$= \left(\sum_{i=1}^n \left[\frac{y_i - \pi_i}{\pi_i (1 - \pi_i)} \right] \right) \frac{\partial}{\partial b_k} \pi_i,$$

which can be shown to be

$$\nabla f(b_k) = \sum_{i=1}^n (y_i - \pi_i) x_{i,k}.$$

- Steepest ascent method:

$$b_k^{(t)} = b_k^{(t-1)} + \delta \nabla f(\mathbf{b}_k^{(t-1)}) \text{ or}$$

$$b_k^{(t)} = b_k^{(t-1)} + \delta \sum_{i=1}^n (y_i - \pi_i^{(t)}) x_{i,k}.$$

Ex 2] Logistic Regression Model

Consider the simple logistic regression model for a classification problem with 8 sample observations.

	Α	В	С	D	Ε	F
1	y i	X_i	$b_0+b_1x_i$	π_i	y _i -π _i	$(y_i-\pi_i)x_i$
2	1	4	1.0	0.731	0.269	1.076
3	1	6	2.0	0.881	0.119	0.715
4	1	8	3.0	0.953	0.047	0.379
5	1	9	3.5	0.971	0.029	0.264
6	0	1	-0.5	0.378	-0.378	-0.378
7	0	3	0.5	0.622	-0.622	-1.867
8	0	5	1.5	0.818	-0.818	-4.088
9	0	7	2.5	0.924	-0.924	-6.469
10	b_0	b_1		Sum=	-2.277	-10.368
11	-1.0	0.5				

Suppose that the solution at t-1 is $\mathbf{b}^{(t-1)} = [-1, 0.5]$. Find the solution at t with the learning rate $\delta = 0.1$.

$$\begin{bmatrix} b_0^{(t)} \\ b_1^{(t)} \end{bmatrix} = \begin{bmatrix} b_0^{(t-1)} \\ b_1^{(t-1)} \end{bmatrix} + \delta \begin{bmatrix} \sum_{i=1}^n \left[y_i - \pi_i^{(t-1)} \right] \\ \sum_{i=1}^n \left[y_i - \pi_i^{(t-1)} \right] x_i \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 0.5 \end{bmatrix} + 0.1 \begin{bmatrix} -2.277 \\ -10.368 \end{bmatrix} =$$

