2

What is claimed is:

7	1. A sequential method for integrated, in-situ modification of a			
2	substrate and subsequent atomic layer deposition of a thin film onto said			
3	substrate in an evacuated chamber beginning with initial modification steps,			
4	comprising:			
5	introducing at least one first ion generating feed gas into said chamber;			
6	generating a plasma from said ion generating feed gas to form ions;			
7	exposing said substrate to said ions;			
8	modulating said ions;			
9	reacting said substrate with said modulated ions to remove any			
10	contaminants from said substrate and producing a modified substrate; and			
11	following said initial modification steps, performing an atomic layer			
12	deposition of a thin film onto said modified substrate in said chamber including			
13	introducing a first reactant gas into said chamber;			
14	adsorbing at least one monolayer of said first reactant gas onto said			
15	modified substrate;			
16	evacuating any excess said first reactant gas from said chamber;			
17	introducing at least one additional ion generating feed gas into said			
18	chamber, said additional ion generating feed gas may be the same feed gas as			
19	said first ion generating feed gas;			
20	generating a second plasma from said additional ion generating feed gas			
21	to form additional ions;			
22	exposing said modified substrate to said additional ions;			
23	modulating said additional ions; and			
24	reacting said adsorbed monolayer of said first reactant gas with said			
25	modulated additional ions to deposit said thin film.			

2. The sequential method of claim 1 wherein said initial modification steps are cleaning steps.

3

1

2

3

4

to form radicals.

- 1 3. The sequential method of claim 1 wherein said initial modification 2 steps are surface treatment steps.
- 4. The sequential method of claim 1 wherein said initial modification
 steps additionally include introducing at least one radical generating feed gas
 into said chamber and generating a plasma from said radical generating feed gas
- 5. The sequential method of claim 1 wherein said atomic layer deposition steps additionally include introducing at least one radical generating feed gas into said chamber and generating a plasma from said radical generating feed gas to form radicals.
 - 6. The sequential method of claim 1 wherein said contaminants comprise native oxides, metal oxides, particulate contamination, and carbon-containing impurities.
 - 7. The sequential method of claim 1, wherein said ion modulation is modulated in a way selected from the group consisting of modulating an ion flux and modulating an ion energy.
- 1 8. The sequential method of claim 1, further comprising electrically biasing said substrate to a negative potential.
- 1 9. The sequential method of claim 8, wherein said electrical bias is 2 induced by a radio frequency power supply.
- 1 10. The sequential method of claim 8, wherein a magnitude of said 2 electrical bias during said initial cleaning steps is lower than a magnitude of said
- 3 electrical bias during said atomic layer deposition steps.

- 1 11. The sequential method of claim 1 wherein said method is repeated 2 for each film deposition layer.
- 1 12. The sequential method of claim 1 wherein a barrier material film is 2 deposited following said initial modification steps.
- 1 13. The sequential method of claim 1 wherein a copper seed layer is 2 deposited following said initial modification steps.

2

1	14. A sequential method for integrated, in-situ modification of a
2	substrate and subsequent atomic layer deposition of a thin film onto said
3	substrate in an evacuated chamber beginning with initial modification steps,
4	comprising:
5	introducing at least one first radical generating feed gas into said
6	chamber;
7	generating a plasma from said radical generating feed gas to form
8	radicals;
9	exposing said substrate to said radicals;
10	reacting said substrate with said radicals to remove any contaminants
11	from said substrate and producing a modified substrate; and
12	following said initial modification steps, performing an atomic layer
13	deposition of a thin film onto said modified substrate in said chamber including:
14	introducing a first reactant gas into said chamber;
15	adsorbing at least one monolayer of said first reactant gas onto said
16	modified substrate;
17	evacuating any excess said first reactant gas from said chamber
18	introducing at least one additional radical generating feed gas into said
19	chamber, said additional radical generating feed gas may be the same feed gas as
20	said first radical generating feed gas;
21	generating a second plasma from said additional radical generating feed
22	gas to form additional radicals;
23	exposing said modified substrate to said additional radicals; and
24	reacting said adsorbed monolayer of said first reactant gas with said
25	additional radicals to deposit said thin film.

1

1

2

- 1 16. The sequential method of claim 14 wherein said initial modification 2 steps are surface treatment steps.
- 1 17. The sequential method of claim 14 wherein said atomic layer 2 deposition steps additionally include introducing at least one ion generating feed 3 gas into said chamber and generating a plasma from said ion generating feed gas 4 to form ions.
- 1 18. The sequential method of claim 14 wherein said contaminants 2 comprise native oxides, metal oxides, particulate contamination, and carbon-3 containing impurities.
 - 19. The sequential method of claim 14 wherein said method is repeated for each film deposition layer.
 - 20. The sequential method of claim 14 wherein a barrier material film is deposited following said initial modification steps.
 - 21. The sequential method of claim 14 wherein a copper seed layer is deposited following said initial modification steps.

1	22. A single-module system for atomic layer deposition of a	a film onto a	
2	substrate, comprising:		
3	a main chamber containing a plasma generation chamber for g	enerating a	
4	plasma, said main chamber also containing an integrated cleaning and		
5	deposition chamber for cleaning said substrate and depositing said film on said		
6	substrate;		
7	said plasma generation chamber coupled to receive at least on	e feed gas to	
8	form said plasma; and		
9	said integrated cleaning and deposition chamber coupled to re	eceive at	
10	least one precursor gas.		