Evolutionary Computation

Dr. Suyanto, S.T., M.Sc.

HP/WA: 0812 845 12345

Intelligence Computing Multimedia (ICM)
Informatics faculty – Telkom University

Fuzzy C-Means (FCM)

x1	x2	у
0	0	0
0	1	0
1	0	0
1	1	1

$$x1 + x2 - 1,5 = 0$$

$$w1.x1 + w2.x2 - 1,5 = 0$$

Perceptron Network

ANN: MLP

Fuzzy, ANN, dan EC

- Fuzzy
 - Reasoning → Logika & Inferensi
 - Kontrol
 - Klasifikasi, prediksi, optimasi, dsb.
- ANN
 - Learning → Sistem kerja otak
 - Klasifikasi
 - Prediksi, optimasi, kontrol, dsb.
- Evolutionary Computation
 - Searching → "Teori Evolusi"
 - Optimasi
 - Prediksi, klasifikasi, kontrol, dsb.

Berbeda konsep, tetapi saling mendukung dan bisa digabungkan

Apa itu EC?

Evolutionary Computation is an abstraction from the theory of biological evolution that is used to create **optimization** procedures or methodologies, usually implemented on computers, that are used to solve problems" [JUL07].

Apa itu EAs?

Evolutionary Algorithms are generic, population-based meta-heuristic optimization algorithms that use biologyinspired mechanisms like mutation, crossover, natural selection and survival of the fittest.

EAs = algoritma2 yang mengimplementasikan abstraksi EC

Yang termasuk EAs:

- Genetic Algorithms (GA): binary strings
- 2. Evolution Strategies (ES): real-valued vectors
- 3. Evolutionary Programming (EP): finite state machines
- 4. Genetic Programming (GP): LISP trees
- 5. Differential Evolution (DE): Perkembangan dari ES
- 6. Grammatical Evolution (GE) ← Perkembangan GP

Skema umum EAs

Komponen GA

- Inisialisasi Populasi (N kromosom)
- Evaluasi Individu (berbasis fungsi fitness)
- Seleksi Ortu
- Rekombinasi/Cross-over
- Mutasi
- Seleksi Survivor

Bekerja dengan GA

- Buat skema pengkodean Individu → Kromosom
- Bangun fungsi fitness
- Definisikan operator GA

Studi kasus: Minimasi fungsi

Nilai minimum h = ?

$$h(x_1, x_2) = x_1^2 + x_2^2$$

$$x_1, x_2 \in [-5,12;5,12]$$

Individu

Fitness

$$f = \frac{1}{(x_1^2 + x_2^2) + 0.01}$$

Jika nilai minimum = 0, nilai maks f = ?

$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 2^{-i}} (g_1 \cdot 2^{-1} + g_2 \cdot 2^{-2} + \dots + g_N \cdot 2^{-N})$$

 $x_1, x_2 \in [-5,12;5,12]$

No -	Genotype	Phenotype		Nilai
	kromosom biner	X1	X2	fitness
1	00010011011001101110	-4.35	1.1	0.049646
2	11001101110001000011	3.11	-4.45	0.033916
3	10110010111111001110	2.03	4.62	0.039254
4	11001110001101111101	3.12	3.81	0.041219
5	11001110101011011001	3.14	2.17	0.068594
6	00101110000110110110	-3.28	-0.74	0.08837
7	01111011111010110010	-0.17	1.78	0.31179
50	11010110011000111011	3.45	0.59	0.081562

$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 2^{-i}} (g_1 \cdot 2^{-1} + g_2 \cdot 2^{-2} + \dots + g_N \cdot 2^{-N})$$

 $x_1, x_2 \in [-5,12;5,12]$

No	Genotype	Phenotype		Nilai fitness
140	kromosom biner		X2	
1	0111111111000000000	-0.01	0	99.01
2	01111111111000000000	-0.01	0	99.01
3	01111101010001000001	-3.77	1.03	0.065429
4	01111101011001110001	-2.4	1.2	0.1387
5	01111001111000100001	3.58	0.52	0.076355
6	01011101111000101010	4.83	1.01	0.041053
7	01111101111000100001	-1.38	1.2	0.29812
50	0111110111100000001	-1.93	0.02	0.26772

$$f(\vec{x}) = \sum_{i=0}^{D-1} \left(e^{-0.2} \sqrt{x_{i-1}^2 + x_i^2} + 3(\cos(2x_{i-1}) + \sin(2x_i)) \right)$$

- Untuk presisi 10⁻⁹ → Berapa bit?
- Bisa menggunakan kromosom Real?

Representasi individu -> kromosom

- Representasi Biner
- Representasi Integer
- Representasi Real
- Representasi Permutasi

Setting parameter GA

- Tidak ada panduan yang pasti
- Umumnya:
 - Representasi kromosom = biner/integer/real/permutasi
 - Jumlah bit per variabel → presisi yang diinginkan
 - Ukuran Populasi = **50 100**
 - Probabilitas Crossover (Pc) = 0.8
 - Probabilitas Mutasi (Pm) = 1/NL sampai 1/L

```
N = Ukuran Populasi
```

L = Panjang Kromosom (Jumlah Gen)

Desain GA

- Representasi kromosom yang sesuai masalah
- Fungsi fitness yang efisien
- Operator evolusi yang sesuai dengan kromosom & fungsi fitness
- Advanced GA
- Penambahan algoritma desterministik

Observasi parameter GA

- Minimasi fungsi $h = x_1^2 + x_2^2$, x_1 dan x_2 elemen [-10, 10]
- Fitness = $1/(x_1^2 + x_2^2 + 0.001)$
- Ukuran Populasi = [50 100 200]
- Jumlah bit = [10 50 90]
- Prob Rekombinasi = [0.5 0.7 0.9]
- Prob Mutasi = [0.5/JumGen 1/JumGen 2/JumGen]
- Jumlah Individu maksimum = 20000 (fairness)
- Jumlah running/percobaan = 30 (valid)

No Observasi	Ukuran populasi	Jumlah bit	Probabilitas Pdh Silang	Probabilitas Mutasi	Rata-rata Fitness	Rata-rata Jml Individu
					terbaik	yang dievaluasi
1	50	10	0,5	0,0250	839,5544749	
2	50	10	0,5	0,0500	839,5544749	
3	50	10	0,5 0,1000		611,0770624	20000,0000
4	50	10	0,7	0,0250	839,5544749	20000,0000
5	50	10	0,7	0,0500	839,5544749	20000,0000
6	50	10	0,7	0,1000	528,7161733	20000,0000
7	50	10	0,9	0,0250	839,5544749	20000,0000
8	50	10	0,9	0,0500	839,5544749	20000,0000
9	50	10	0,9	0,1000	622,2201392	20000,0000
10	50	50	0,5	0,0050	1000,0000000	8301,6667
11	50	50	0,5	0,0100	1000,0000000	20000,0000
12	50	50	0,5	0,0200	999,9987777	20000,0000
13	50	50	0,7	0,0050	1000,0000000	8013,3333
14	50	50	0,7	0,0100	1000,0000000	20000,0000
15	50	50	0,7	0,0200	999,9982015	20000,0000
16	50	50	0,9	0,0050	1000,0000000	8133,3333
17	50	50	0,9	0,0100	1000,0000000	20000,0000
18	50	50	0,9	0,0200	999,9988782	20000,0000
19	50	90	0,5	0,0028	1000,0000000	8361,6667
20	50	90	0,5	0,0056	1000,0000000	8796,6667
21	50	90	0,5	0,0111	1000,0000000	20000,0000
22	50	90	0,7	0,0028	1000,0000000	8151,6667
Pake	t param	eter to	erbaik [,] untu	k kasus di	ata 8 0000000	8780,0000
24	50	90	0,7	0,0111	1000,0000000	20000,0000
25	50	90	0,9	0,0028	1000,0000000	7538,3333
26	50	90	0,9	0,0056	1000,0000000	8995,0000
27	50	90	0,9	0,0111	1000,0000000	20000,0000
28	100	10	0,5	0,0250	839,5544749	20000,0000
29	100	10	0,5	0,0500	839,5544749	20000,0000
30	100	10	0,5	0,1000	599,4452769	20000,0000

No Observasi	Ukuran populasi	Jumlah bit	Probabilitas Pdh Silang	Probabilitas Mutasi	Rata-rata Fitness terbaik	Rata-rata Jml Individu
31	100	10	0,7	0,0250	839,5544749	yang dievaluasi 20000,0000
32	100	10	0,7	0,0500	839,5544749	20000,0000
33	100	10	0,7	0,1000	575,8472869	20000,0000
34	100	10	0,9	0,0250	839,5544749	20000,0000
35	100	10	0,9	0,0500	839,5544749	20000,0000
36	100	10	0,9	0,1000	559,6804844	20000,0000
37	100	50	0,5	0,0050	1000,0000000	15246,6667
38	100	50	0,5	0,0100	1000,0000000	20000,0000
39	100	50	0,5	0,0200	999,9986429	20000,0000
40	100	50	0,7	0,0050	1000,0000000	14416,6667
41	100	50	0,7	0,0100	1000,0000000	20000,0000
42	100	50	0,7	0,0200	999,9988459	20000,0000
43	100	50	0,9	0,0050	1000,0000000	13390,0000
44	100	50	0,9	0,0100	1000,0000000	20000,0000
45	100	50	0,9	0,0200	999,9987118	20000,0000
46	100	90	0,5	0,0028	1000,0000000	15010,0000
47	100	90	0,5	0,0056	1000,0000000	16056,6667
48	100	90	0,5	0,0111	1000,0000000	20000,0000
49	100	90	0,7	0,0028	1000,0000000	14580,0000
50	100	90	0,7	0,0056	1000,0000000	15430,0000
51	100	90	0,7	0,0111	1000,0000000	19860,0000
52	100	90	0,9	0,0028	1000,0000000	13346,6667
53	100	90	0,9	0,0056	1000,0000000	15390,0000
54	100	90	0,9	0,0111	1000,0000000	20000,0000
55	200	10	0,5	0,0250	839,5544749	20000,0000
56	200	10	0,5	0,0500	839,5544749	
57	200	10	0,5	0,1000	599,0108676	20000,0000
58	200	10	0,7	0,0250	839,5544749	20000,0000
59	200	10	0,7	0,0500	828,6149185	20000,0000
60	200	10	0,7	0,1000	557,3828866	20000,0000

No Observasi	Ukuran populasi	Jumlah bit	Probabilitas Pdh Silang	Probabilitas Mutasi	Rata-rata Fitness terbaik	Rata-rata Jml Individu yang dievaluasi
61	200	10	0,9	0,0250	839,5544749	20000,0000
62	200	10	0,9	0,0500	839,5544749	20000,0000
63	200	10	0,9	0,1000	539,1055371	20000,0000
64	200	50	0,5	0,0050	1000,0000000	20000,0000
65	200	50	0,5	0,0100	999,9999995	20000,0000
66	200	50	0,5	0,0200	999,9986789	20000,0000
67	200	50	0,7	0,0050	1000,0000000	19966,6667
68	200	50	0,7	0,0100	999,9999997	20000,0000
69	200	50	0,7	0,0200	999,9947933	20000,0000
70	200	50	0,9	0,0050	1000,0000000	19986,6667
71	200	50	0,9	0,0100	999,9999996	20000,0000
72	200	50	0,9	0,0200	999,9939550	20000,0000
73	200	90	0,5	0,0028	999,9999988	19966,6667
74	200	90	0,5	0,0056	999,9999999	20000,0000
75	200	90	0,5	0,0111	999,9999976	20000,0000
76	200	90	0,7	0,0028	999,9999995	20000,0000
77	200	90	0,7	0,0056	1000,0000000	20000,0000
78	200	90	0,7	0,0111	999,9999979	20000,0000
79	200	90	0,9	0,0028	1000,0000000	19866,6667
80	200	90	0,9	0,0056	1000,0000000	19993,3333
81	200	90	0,9	0,0111	999,9999988	20000,0000

Rata-rata Fitness Terbaik

Rata-rata Jumlah Individu yg Dievaluasi

Advanced GA

- Konvergensi Prematur (KP)
- Gray Coding
- Messy Encoding
- Fitness Ranking
- Island Model
- Adaptive GA
- Grid-Based Crossover
- Grammatical Encoding

Konvergensi Prematur (KP)

Pencegahan KP

- Gray Coding
- Messy Encoding
- Fitness Ranking
- Island Model
- Adaptive GA

Hamming Distance

Binary Coding

- Jika solusi maksimum yang dicari adalah 10000 (16)
- Individu terbaik saat ini 01111 (15)
- Sampai beberapa generasi berikutnya ternyata individu terbaik tetap 01111 (15).
- Mengapa?
- 01111 → 10000 memerlukan mutasi 5 gen.
- Padahal probabilitas mutasi biasanya dibuat sangat kecil, biasanya 1/*NL* sampai 1/*L*, dimana *N* adalah ukuran populasi, L panjang kromosom.
- SOLUSINYA?

Gray Coding

Integer	0	1	2	3	4	5	6	7
Binary coding	000	001	010	011	100	101	110	111
Gray coding	000	001	011	010	110	111	101	100

Gray Coding

individu: $x_1 = 5 \text{ dan } x_2 = 3$

	$-X_{1}^{-}$		X ₂					
1	0	1	0	1	1			

Binary coding

	$-X_1$		X ₂				
1	1	1	0	1	0		

Kromosom: Gray coding

Messy Encoding

Messy encoding:

Binary encoding:

Crossover

3 0 8 1 2 0 3 1 5 0 1 1 5 1 2 1

dipanjangkan n kali semula

6 0 4 1 8 1 3 1 2 0 5 1 4 1 5 1

1

Nilai gen untuk posisi 7 = 0 (dibangkitkan secara acak)

Binary encoding:

1 0 0 1 0 0 0 1

Mutasi

Linear Fitness Ranking

Maksimasi h dimana x_1 dan x_2 adalah real [-2, 2]?

$$h(x_1, x_2) = 100000 + 2x_1 + x_2$$

Linear Fitness Ranking

- Pada fungsi di atas, nilai-nilai *h* berada dalam interval 99994 sampai 100006.
- Dengan demikian, semua individu memiliki nilai *fitness* yang hampir sama dalam kisaran 100000.
- Hal ini akan berakibat buruk pada proses seleksi orangtua secara proporsional terhadap *fitness*-nya.
- Bagaimana Solusinya?

Linear Fitness Ranking

$$f_{LR}(i) = f_{\text{max}} - (f_{\text{max}} - f_{\text{min}}) \left(\frac{R(i) - 1}{N - 1}\right)$$

 $f_{LR}(i) \rightarrow$ nilai *fitness* individu ke-*i* yang sudah diskalakan

N → jumlah individu dalam populasi.

 $R(i) \rightarrow \text{ranking individu ke } i$.

 $f_{min} \rightarrow \text{nilai } fitness \text{ terkecil}$

 $f_{max} \rightarrow \text{nilai } fitness \text{ terbesar}$

Individu ke	fitness	Ranking R(i)	f _{LR}		
1	100004,00	1	100004,00		
2	100003,99	2	100003,56		
3	100003,98	3	100003,12		
4	100003,97	4	100002,68		
5	100003,96	5	100002,26		
6	100003,95	6	100001,82		
7	100003,94	7	100001,38		
8	100003,93	8	100000,84		
9	100003,92	9	100000,44		
10	100000,00	10	100000,00		

			Fitness Pera	ngkingan	
Fitness	Posisi				
		LR, S = 2	LR, S = 1,2	NLR, S = 3	NLR, S = 2
90,11	11	2	1,1	3	2
90,09	10	1,8	1,08	2,21	1,69
90,08	9	1,6	1,06	1,62	1,43
90,06	8	1,4	1,04	1,19	1,21
90,05	7	1,2	1,02	0,88	1,03
89,97	6	1	1	0,65	0,87
89,96	5	0,8	0,98	0,48	0,74
89,95	4	0,6	0,96	0,35	0,62
79,94	3	0,4	0,94	0,26	0,53
79,93	2	0,2	0,92	0,19	0,45
79,91	1	0	0,9	0,14	0,38

Island Models (Sub Population)

N kromosom dalam satu populasi dibagi menjadi N_k kelompok. Masing-masing kelompok berisi:

$$v = \frac{N}{N_k}$$

Suatu individu bisa dipindah ke sub populasi lain berdasarkan *tunneling probability p*t

Island model EAs

Island model EAs

The best individual

Adaptive EAs

Grid-based Crossover

- Individu-individu diletakkan dalam suatu *toroidal space*, dimana ujung-ujung kotak tersebut disatukan dan membentuk ruang tiga dimensi seperti bola.
- Individu hanya bisa di-crossover dengan indivdu2 tetangganya.
- Individu hitam hanya boleh crossover dengan 1 dari 8 individu tetangga.

100	91	92	93	94	95	96	97	98	99	100	91
10	1	2	3	4	5	6	7	8	9	10	1
20	11	12	13	14	15	16	17	18	19	20	11
30	21	22	23	24	25	26	27	28	29	30	21
40	31	32	33	34	35	36	37	38	39	40	31
50	41	42	43	44	45	46	47	48	49	50	41
60	51	52	53	54	55	56	57	58	59	60	51
70	61	62	63	64	65	66	67	68	69	70	61
80	71	72	73	74	75	76	77	78	79	80	71
90	81	82	83	84	85	86	87	88	89	90	81
100	91	92	93	94	95	96	97	98	99	100	91
10	1	2	3	4	5	6	7	8	9	10	1

GA untuk melatih FFNN (MLP)

- Menemukan weights secara otomatis
- Menggunakan representasi biner
- Bagaimana performansi Advanced GA?

Masalah 3-Parity

Tabel Kebenaran XOR untuk tiga masukan X_1 , X_2 , dan X_3 .

X_1	X_2	X_3	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Fungsi Fitness

$$f = 1/delta$$

$$delta = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (d(i) - y(i))^2}$$

- $m = 2^n = 2^3 = 8$
- *d*(*i*) adalah output yang diharapkan.
- Pola masukan pertama, $X_1 = 0$, $X_2 = 0$, dan $X_3 = 0$, maka d(1) = 0.
- Pola masukan ke dua, $X_1 = 0$, $X_2 = 0$, dan $X_3 = 1$, maka d(2) = 1, dst.
- y(i) adalah output aktual yang dihasilkan.

Grammatical Encoding

- Otak manusia merupakan suatu komputer sangat kompleks yang terdiri dari sekitar 10¹¹ elemen komputasi (*neurons*).
- Terdapat sekitar 10¹⁴ sampai 10¹⁵ koneksi antar *neurons*, atau sekitar 1000 sampai 10000 koneksi per *neuron*.
- Jika setiap koneksi dikodekan ke dalam kromosom, maka informasi yang mengisi kromosom akan sekitar 105 GB, dimana bobot-bobot sinaptik dikodekan menggunakan hanya 1 *byte*.
- Tetapi, pada kenyataanya ukuran genome manusia hanya sekitar
 3 GB.
- Oleh karena itu para peneliti percaya bahwa pengkodean otak manusia bukanlah menggunakan pengkodean langsung, melainkan pengkodean prosedur dimana otak dibentuk.

Grammatical Encoding

- Pada skema ini, kromosom dipandang sebagai kalimat yang diekspresikan menggunakan *grammar* (tata bahasa).
- Ketika sebuah kalimat dibaca (kromosom didekodekan), maka individu dibangkitkan menggunakan grammar tsb.
- Contoh: skema Kitano yang digunakan untuk mengkodekan ANN yang berisi maksimum 8 neurons

Skema Kitano

s	ACBA	Aadfb	Bbefd	Dfanp	Bahjm	Ckhgf	
---	------	-------	-------	-------	-------	-------	--

$$S \to \begin{pmatrix} A & C \\ B & A \end{pmatrix}$$

$$A \to \begin{pmatrix} a & d \\ f & b \end{pmatrix} \qquad B \to \begin{pmatrix} b & e \\ f & d \end{pmatrix}$$

$$a \to \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, b \to \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, c \to \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \dots p \to \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Skema Kitano

S	ACBA	Aadfb		Bbefd	Dfanp		Bahjm			Ckhgf			•••
$\begin{pmatrix} A \\ B \end{pmatrix}$	$\begin{pmatrix} C \\ A \end{pmatrix}$	$ \begin{pmatrix} a & a \\ f & b \\ b & e \\ f & a \end{pmatrix} $	l k	$\begin{pmatrix} x & h \\ g & f \\ a & d \\ f & b \end{pmatrix}$	\	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 0 1 1 0 1 1	0 1 0 0 0 0 0	1 0 1	1 0 1	0 0 1 0 0 0 1 1	0 1 0 0 0 1 0	1 1 1 1 0 1 0 1)

Skema Kitano

Demo Program

Referensi

- [SUY08] Suyanto, 2008, "Soft Computing: Membangun Mesin Ber-IQ Tinggi", Informatika, Bandung Indonesia. ISBN: 978-979-1153-49-2.
- [TET01] Tettamanzi A., Tomassini M., "Soft Computing". Springer-Verlag Berlin Heidelberg, 2001. Printed in Germany.
- [MIT97] Mitchell M. Tom. 1997. "Machine Learning".
 McGraw-Hill International Editions. Printed in Singapore.