COMP 285 (NC A&T, Spr '22) Weekly Quiz 2

Reporting Issues If you find any issues with the solutions, reach out to Chi Wang (author) or Luis Perez (reviewer).

1

Which of the following is the correct recurrence relations for MergeSort?

Solution

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

For each step, MergeSort divides the original problem by two, recursively calling itself to solve these two smaller problems. This is where $2 \cdot T(n)$ comes from. Once it has the answers, it merges the results which takes an additional O(n) time, giving the recurrence above.

2

What's the closed-form solution for the running time of the following recurrence relation $T(n) = 5 \cdot T\left(\frac{n}{3}\right) + O(n)$ (Hint: You might want to use the Master Theorem) (Aside: This is the actual recurrence relation of Strassen's Multiplication Algorithm, an improvement to Karatsuba's)

Solution

$$O(n^{\log_3 5})$$

We can see that a=5, b=3, d=1, $a=5>b^d=3$, so the result would be $O(n^{\log_b a})=O(n^{\log_3 5})$ according to the Master Theorem.

3

What's the closed-form solution for the running time of the following recurrence relation $T(n) = T\left(\frac{999n}{1000}\right) + O(n)$ (Hint: You might want to use the Master Theorem).

Solution

O(n)

 $a=1, b=\frac{1000}{999}, d=1, a=1 < b^d=\frac{1000}{999}$, so the result would be O(n) according to the Master Theorem.

4

Select the recurrence relations below for which you CANNOT directly apply the Master Theorem.

Solution

- $T(n) = 2T(n-1) + O(n^2)$ because were are creating smaller problems of size n-1. The Master Theore only works when the problems become a fraction of their original size.
- $T(n) = 4T\left(\frac{9n}{10}\right) + O(n\log n)$ because the additional work we do to combine the problems is not polynomial (eg, n^d) but $n\log n$.
- $T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + O(n)$ because we don't split the original problem into subproblems of equal size.

5

There is an O(n) time algorithm for the k-Select Problem.

Solution

Yes. Use divide-and-conquer recursive-based solution as we covered in class.

6

What is the running time of a mergesort-based solution to the k-Select problem?

Solution

 $\Theta(nlogn)$

MergeSort will take $\Theta(n \log n)$ time.

7

In our divide-and-conquer recursive-based solution to the k-Select problem, what is the running time if we always pick the minimum as the pivot.

Solution

$$\Theta(n^2)$$

If we always pick the minimum(worst-case pivot), we are unable to divide the problem into half each time. The recurrence relation will be T(n) = T(n-1) + O(n) which will end-up with a running time of $O(n^2)$.

8

In our divide-and-conquer recursive-based solution to the k-Select problem, what is the running time if we always pick the median as the pivot.

Solution

 $\Theta(n)$

If we always pick the median(best-case pivot), we can divide the problem into half each time. The recurrence relation will be $T(n) = T\left(\frac{n}{2}\right) + O(n)$ which is O(n) by the Master Theorem.

9

The running time of our trivial implementation of k-Select using MergeSort is always slower than the running time of a divide-and-conquer solution that randomly selects the pivot element.

Solution

False

The running time of k-Select using MergeSort is $\Theta(n \log n)$, and in worst-case the divide-and-conquer solution would take $\Theta(n^2)$ time, which is slower than $\Theta(n \log n)$.

10

In practice, it's often best to simply pick the pivot randomly rather than implement a more sophisticated, deterministic pivot selection method.

Solution

True

If there is a bad guy who gets to see our pivot choices, that's just as bad as the worst-case pivot.