Circuit Modeling

Author:

Julie-Anne Chaine 101104568

Assignment 4 ELEC 4700 A A2 11:30-1:30pm 10 April 2022

3.0 Report on PA 7

C =

0.2500	-0.2500	0	0	0	0	0	0
-0.2500	0.2500	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-0.2000	0
0	0	0	0	0	0	0	0

Figure 1: DC Response from PA7

Figure 2: AC Gain from PA 7

4.0 Transient Circuit Simulation

- a) The circuit is an amplifier
- b) I expect a bandpass frequency response with a top and bottom cutoff frequency. The values/magnitude will depend on the input voltage.

c)

$$\frac{CV_t - V_{t-1}}{\Delta t} + GV_t = T$$

$$\frac{CV_t}{\Delta t} + GV_t = F + \frac{V_{t-1}C}{\Delta t}$$

$$V_t = A / (F + CV_{t-1})$$

Figure 3: Step Input Numerical Solution Results

Figure 4: Sinusoidal Input Numerical Solution Results

Figure 5: Gaussian Input Numerical Solution Results

Figure 6: Step Frequency Response

Figure 7: Sinusoidal Frequency Response

Figure 8: Gaussian Frequency Response

When I increase the time step then the curves get narrower and very slightly less smooth as the others.

5.0 Circuit with Noise

C =	0.2500	-0.2500	0	0	0	0	0	0
	-0.2500	0.2500	0	0	0	0	0	0
	0	0	1.0000e-05	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	-0.2000	0
	0	0	0	0	0	0	0	0

Figure 9: Output Voltage with Noise

Figure 10: Gaussian Frequency Response with Noise

Figure 11: Output Voltage for Cn = 10e-3

Figure 12: Output Voltage for Cn = 10e-6

Figure 13: Output Voltage for Cn = 10e-9

As the capacitor changes, we get RC behaviour (Bigger cap) and we get more noise (Smaller cap).

Figure 14: Output Voltage for dt = 1/100

Figure 15: Output Voltage for dt = 1/5000

6.0 Non-Linearity

For my code that uses the stamps, and assuming that beta and gamma are also given to us, I would have to change the value of my voltage controlled voltage source from alpha/R3 to alpha/R3+(beta/R3)^2+(gamma/R3)^3.

Figure 16: Output Voltage

Figure 17: Frequency Response