Teoría de la integral y de la medida

Hoja n⁰ 4 (Integración y teoremas de convergencia)

- 1.- Sea $f:[0,1] \to \mathbb{R}^+$ definida mediante f(x)=0, si x es racional, f(x)=n, si n es el número de ceros inmediatamente después del punto decimal en la representación de x en la escala decimal. Calcular $\int f(x)dm$, siendo m la medida de Lebesgue.
- 2.- Sea f(x) = 0 en cada punto del conjunto ternario de Cantor en [0,1]. Sea f(x) = p en cada intervalo del complementario de longitud $\frac{1}{3p}$. Demostrar que f es medible y calcular $\int f(x)dm$, siendo m la medida de Lebesgue.
- 3.- Sea f(x) la función definida en (0,1) mediante f(x)=0, si x es racional, $f(x)=\left[\frac{1}{x}\right]$ si x es irracional $\left(\left[\frac{1}{x}\right]\right]$ es la parte entera de $\frac{1}{x}$). Calcular $\int f(x)dm$ siendo m la medida de Lebesgue
- 4.- Llamemos $d_i(x)$ a los dígitos del desarrollo decimal $0.d_1d_2...$ de un $x \in (0,1)$. Decir por qué son convergentes las siguientes series:

$$f(x) = \sum_{i} d_i(x)/2^i$$
 $g(x) = \sum_{i} (-1)^{d_i(x)}/2^i$,

y hallar $\int_0^1 f$, $\int_0^1 g$, expresándolas como sumas de series. ¿Por qué son válidas esas expresiones?

- 5.- Sea $f_{2n-1} = \chi_{[0,1]}$ $f_{2n} = \chi_{[1,2]}$ $n = 1, 2, \dots$ Comprobar que se verifica la desigualdad de Fatou estrictamente.
- 6.- Comprobar $\int_{1}^{\infty} \frac{1}{x} dm = \infty$, siendo m la medida de Lebesgue.
- 7.- Sea $f_n \ge 0$, medible, $\lim f_n = f$, $f_n \le f$ $\forall n$. Comprobar que $\int f d\mu = \lim \int f_n d\mu$. (Sugerencia: Usar el lema de Fatou y que $\int f_n d\mu \le \int f d\mu$)
- 8.- Sea $f_n(x) = \min(f(x), n)$ siendo $f(x) \ge 0$ y medible. Demostrar que $\int f_n d\mu \uparrow \int f d\mu$.
- 9.- Sean $f \geq 0$, $g \geq 0$ medibles $f \geq g$, $\int g d\mu < \infty$. Probar que

$$\int f d\mu - \int g d\mu = \int (f - g) d\mu$$

10.- Sean $f_n(x)$ funciones medibles no negativas y acotadas. Supongamos que $f_n(x) \downarrow f(x)$ y que para algún k se verifica $\int f_k d\mu < \infty$. Probar que:

$$\lim \int f_n d\mu = \int f d\mu.$$

(Sugerencia: Formar la sucesión $g_n = f_k - f_{k+n}$).

11.- Sea $1 = a_1 \ge a_2 \ge a_3, \ldots, \ge a_n, \ldots$, una sucesión de números positivos tales que $\lim a_n = 0$. Sea $f_n(x) = a_n/x$, x > a > 0. Comprobar que f_n decrece a cero uniformemente pero $\int f_n dm = \infty$ para $\forall n$.

1

12.- Sea $f_n:[0,1]\to[0,\infty)$, definida mediante

$$f_n(x) = n$$
, si $0 \le x \le \frac{1}{n}$
 $f_n(x) = 0$, en otro caso.

Comprobar que $f_n \to 0$, puntualmente pero $\int f_n dm = 1$.

13.- Sea $g:(X,\mathcal{A},\mu)\to(\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$ integrable. Sea $\{E_n\}$ una sucesión decreciente de conjuntos tal que $\cap_1^\infty E_n=\emptyset$. Probar que $\lim_{n\to\infty}\int_{E_n}gd\mu=0$

14.- Sea $f: \mathbb{R} \to [0, \infty)$ medible y $f \in L^1(m)$. Sea $F: \mathbb{R} \to \mathbb{R}$ definida mediante $F(x) = \int_{-\infty}^x f(t) dm$.

Probar que F(x) es continua. (Sugerencia: Usar teoremas de convergencia)

Probar que dados $x_1 < x_2 < x_3 < \dots$ números reales, se tiene

$$\sum_{k} |F(x_{k+1}) - F(x_k)| \le \int_{\mathbb{R}} |f| dm$$

15.- Sea $\mu(X) < \infty$. Sean $\{f_n\}$ una sucesión de funciones de $L^1(\mu)$, con $f_n(x) \to f(x)$ uniformemente. Demostrar que $f \in L^1(\mu)$ y que $\int f_n d\mu \to \int f d\mu$. (Sugerencia: Estudiar la sucesión $\varepsilon_n(x) = f_n(x) - f(x)$, escribir $f(x) = f_n(x) - (f_n(x) - f(x))$.

16.- Sea $A = [0,1] \cap \mathbf{Q}$, entonces $A = \{a_1, a_2, \dots, a_n \dots\}$. Definimos $f_n : [0,1] \to \mathbb{R}$ mediante: $f_n(x) = 1$ si $x \in \{a_1, a_2, \dots, a_n\}$ y $f_n(x) = 0$ en los demás casos. Probar que f_n es integrable Riemann, hallar $f(x) = \lim_{n \to \infty} f_n(x)$ estudiar si f(x) es integrable Riemann

17.- Demostrar que $\lim_{n \to \infty} \int_0^\infty \frac{dx}{(1 + \frac{x}{n})^n x^{\frac{1}{n}}} = 1.$

(Sugerencia: Usar que para n>1 ($1+\frac{x}{n})^n\geq \frac{x^2}{4}$)

18.- Sea $f_n(x) = \frac{nx-1}{(x \log n + 1)(1 + nx^2 \log n)}$, $x \in (0,1]$. Comprobar que $\lim_{n \to \infty} f_n(x) = 0$ y sin embargo $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \frac{1}{2}$. (Sugerencia: $f_n(x) = \frac{-1}{x \log n + 1} + \frac{nx}{(n \log n)x^2 + 1}$).

19.- Calcular $\lim_{n\to\infty}\int_a^\infty \frac{n}{1+n^2x^2}dx$ estudiando los casos a<0, $a=0,\ a>0$. i Qué teoremas de convergencia son aplicables ?

20.- Calcular $\lim_{n\to\infty} \int_0^\infty \frac{1+nx^2}{(1+x^2)^n} dx$.