

Exit Presentation

Kate Melone

12/8/16

Overview

- About Me
 - Education
 - Hobbies and Interests
 - Past Experiences
- Projects
 - Radiated Materials Tensile Testing
 - Outgassing Testing for SHERLOC on Mars 2020 Rover
 - Z2 Support
 - LCVG Flush and Purge Console
- Lessons Learned
- Future Plans
- Acknowledgements

About Me

- Born and raised in Delaware
- I have a cat named Comet
- Dream car: Lamborghini
- Favorite TV Show: Leave It To Beaver
- Space Geek
 - Manned Space Exploration
 - Crew Systems, Orbital Mechanics, Aerodynamics, Propulsion

Education

- University of Maryland, College Park
 - Go Terps!
- Pursuing my B.S. in Aerospace Engineering
 - Concentration in Astronautics

Hobbies and Interests

- Sports
 - Basketball, football, hockey, baseball, soccer
- Music
 - Listening to music and going to concerts
- Family and Friends
 - Spending time with family and friends

Past Experiences: UMD Research and Conferences

- Undergraduate research
 - Analog space suit joint torque elbow testing
 - Development of analog spacesuits
 - Pneumatically powered EVA Glove
- Conferences and Papers
 - AIAA Region 1 Student Paper Conference (Spring 2014, planning to go Spring 2017)
 - AIAA Young Professionals, Students, and Education Conference (Fall 2014 and Fall 2015)

Past Experiences: JSC SK3 Summer 2014 Internship

EVA Glove Sensor Feasibility II Project

- **Goals:** Develop a method and list of sensors for measuring the glove environment acting on the fingers and hands inside the glove box
- **Importance:** Obtain data that can be correlated with astronaut injury reports
- **Accomplishments:** Analyzed extensive amounts of data and assisted in writing the EVA Glove Sensor Feasibility II Report

Past Experiences: JSC EC5

Summer 2015 Internship

RoboGlove Cycle Tester

- **Goals:** Test repeatability and endurance of Force Sensitive Resistors (FSRs)
- **Importance:** Determine whether or not FSRs will suffice for long term use
- **Accomplishments:** Successfully designed and built a cycle tester by the completion of my internship

Tensile Testing of
Radiated Space
Suit Materials

Outgassing
Testing for
SHERLOC on
Mars 2020 Rover

Z2 Support

LCVG Flush and
Purge Console

Tensile Testing of Radiated Materials

- Objective: Tensile test radiated space suit materials
- Purpose: Compare pre/post radiation mass, max tensile load, and max tensile extension

Radiated Materials Tensile Testing

Orthofabric

Teflon

Vectran

Dacron

Spectra

Bladder Material

nGimat Coated Orthofabric

nGimat Coated
Teflon

Polycarbonate

Radiated Materials Tensile Testing

- Conducted tensile testing of various radiated materials
 - Prepared samples for testing
 - Set up tests
 - Collected data

Radiated Materials Tensile Testing

- Assembled Test Reports
- Analyzed data and put together a test results summary of total mass loss (TML), fabric appearance, maximum/minimum max load, maximum/minimum max tensile extension

NASA JOHNSON SPACE CENTER CTSD ADVANCED MATERIALS LABORATORY BUILDING 7, ROOM 2023	
Work Request	AML-16-19, Space Suit Material Testing
TPS	None
Part Number	TBD
Lot Number	TBD
2000 lbf Load Cell (M209421)	Calibration Due Date: 7/15/2017
Test Speed (in/min.)	12
Temperature (deg F):	71.5
Humidity (%):	60
Operator	Joseph Scatlos and Kate Malone
Requestor	Kristine Larson (x34846)

	Specimen label	Maximum Load (lb)	Maximum Tensile Extension (in)	Comment
1	OnGO-77	367.47	0.97	
2	OnGO-78	401.01	0.91	
3	OnGO-79	347.61	0.39	
4	OnGO-710	394.30	0.91	
5	OnGO-712	373.67	0.92	

NOTES:

Radiated nGimat Orthofabric
Used rubber grips to help hold material in place

Radiated Materials Tensile Testing: Summary of Results

Material	Mass Difference (g)	Average Max Load Baseline (lbf)	Average Max Load Radiated (lbf)	Average Max Tensile Extension Baseline (in)	Average Max Tensile Extension Radiated (in)
Orthofabric	.0053	335.9	343.4	.410	.238
Teflon	.0053	30.6	24.1	3.76	2.01
Vectran	.0055	464	241	.640	.444
Dacron	.0010	245	105	1.10	.476
Spectra	.0191	1363	1190	14.0	12.0
Bladder Material	.0032	117	100	.85	.50
nGimat Coated Orthofabric	.0061	304	379	1.18	.93
nGimat Coated Teflon	.0006	67.1	51.8	3.32	2.25
Polycarbonate	.0034	1071	1079	.360	.325

Tensile Testing of
Radiated Space
Suit Materials

Outgassing
Testing for
SHERLOC on
Mars 2020 Rover

Z2 Support

LCVG Flush and
Purge Console

Outgassing Testing for SHERLOC on Mars 2020 Rover

- SHERLOC
 - Scanning Habitable Environments with Ramen and Luminescence for Organics and Chemicals
 - Will search for organic materials altered by water environments
- Space suit materials will be placed on the SHERLOC calibration target

Outgassing Testing for SHERLOC on Mars 2020 Rover

- Became familiar with and understood contents of the Goddard outgassing database
- Put together database summary of relevant materials
- Compared to NASA's MAPTIS materials database
- Helped to determine additional testing would be required for some samples

Outgassing Testing for SHERLOC on Mars 2020 Rover

- Requirements: Must pass ASTM E595 standards
 - <1.0% Total Mass Loss (TML)
 - <.1% Collected Volatile Condensable Materials (CVCM)

Pass	Fail	Unsure
Orthofabric	Bladder Material (>1.0% TML)	Spectra
Polycarbonate		nGimat Coated Orthofabric
Teflon		nGimat Coated Teflon
Vectran		
Dacron		

Outgassing Testing for SHERLOC on Mars 2020 Rover

- Requirements: Must pass ASTM E595 standards
 - <1.0% Total Mass Loss (TML)
 - <.1% Collected Volatile Condensable Materials (CVCM)

Pass	Fail	Unsure
Orthofabric	Bladder Material (>1.0% TML)	
Polycarbonate	Spectra (.4% CVCM)	
Teflon	nGimat Coated Orthofabric (1.2% TML)	
Vectran		
Dacron		
nGimat Coated Teflon		

Tensile Testing of
Radiated Space
Suit Materials

Outgassing
Testing for
SHERLOC on
Mars 2020 Rover

Z2 Support

LCVG Flush and
Purge Console

Z2 Support: Pre Manned NBL Testing

- Assisted with preparing Corn Man
- Made a communication box mockup for the Corn Man test

Z2 Support: Pre-NBL Testing

- Assisted with preparing Z2 Processing Procedures
 - DIDB
 - MAG
- Assisted with preparing data scales
- Suit Fit Checks

Z2 Support: NBL Testing

- Weigh outs
 - Assisting as needed with keeping track of weight pack adjustments
- Contact Points
 - Recording contact points during testing
 - Developing standardized system/guidelines
 - Interpreting contact points results
- NBL Data
 - Organizing and combining data into one spreadsheet

Z2 NBL Support: Contact Points Analysis

Tensile Testing of
Radiated Space
Suit Materials

Outgassing
Testing for
SHERLOC on
Mars 2020 Rover

Z2 Support

LCVG Flush and
Purge Console

LCVG Modified Flush and Purge Console

- Objective:
 - Design an LCVG Flush and Purge Console
- Requirements:
 - Must be able to flush and purge the LCVG
 - Must be able to structurally test the LCVG
 - Must have access to both air and water
 - Must be as small as possible
 - ~\$2000 budget
- Importance:
 - Ability to test at higher pressures
 - B34 location

LCVG Modified Flush and Purge Console

- Preparation
 - Became familiar with pressure system components
 - Pressure Systems Design Course
 - Reference previous LCVG Flush and Purge Console Design

LCVG Modified Flush and Purge Console

LCVG Modified Flush and Purge Console: Structure Test

LCVG Modified Flush and Purge Console: Purging LCVG

LCVG Modified Flush and Purge Console: Approval Process

Reference Designators	Manufacturer	Item	Manufacturer Part #	McMaster Part #	MAWP	Specifications
SO-LFP-01	Anderson Brass Company	Shut Off Valve		3662T24	200 psig @70F	1/4 x 1/4 Pipe Size, Brass
PG-LFP-02	Ashcroft Inc	Pressure Gage (0-300 psig)		4089K63	300 psig	1/4 NPT Pipe, Brass Connection Material
PR-LFP-03	Swagelok	Pressure Regulator (Air)	KLF1DJA411A60 000		Inlet: 500 psig, Outlet: 0-25 psig	1/4 x 1/4 Pipe Size, Brass
RV-LFP-04	Circle Seal Combraco Industries	Relief Valve (Air)	A-532T1-6M-15	NA	400 psi	3/4 Pipe Size, 316 Stainless Steel, Set at 15 psig
CV-LFP-05		Check Valve		47715K21	400 psig @70F	1/4 x 1/4 Pipe Size, Bronze
PG-LFP-06	Ashcroft Inc	Pressure Gage (0-30 psig)		4089K63	30 psig	1/4 NPT Pipe, Brass Connection Material
GD-LFP-07	Colder Products Company	Male Quick Disconnect; Barbed Valve Couplings	NS4D22006	NA	120 psig	Polypropylene, 3/8 Barb Valved In-Line
GD-LFP-08	Colder Products Company	Male Quick Disconnect; Barbed Valve Couplings	NS4D22006	NA	120 psig	Polypropylene, 3/8 Barb Valved In-Line
GD-LFP-09	Colder Products Company	Male Quick Disconnect; Barbed Valve Couplings	NS4D22006	NA	120 psig	Polypropylene, 3/8 Barb Valved In-Line
PG-LFP-10	Ashcroft Inc	Pressure Gage (0-60 psig)		4089K63	60 psig	1/4 NPT Pipe, Brass Connection Material
NV-LFP-11	Deltrol Fluid Products	Needle Valve		46425K12	2000 psig @ 400F	1/4x1/4 Pipe Size, Brass
Tank-LFP-12	Den Hartog Industries Inc	Tank		4433T11	NA	Polyethylene plastic, max temperature 120F, 5 gallon capacity
Pump-LFP-13	Aquatec	Pump	5851-7E12-J574	NA	Max inlet pressure 60 psig, maximum discharge pressure 70 psig	115 VAC, .7 gpm maximum
GFCI-LFP-14	Tripp-Lite	Surge Protector with GFCI and Switch	TLM609GF	7693K43	NA	Built in GFCI and switch 3/4" connection, compatible with pleated filter Model #FXwPC from General Electric
F-LFP-15	General Electric	Filtration System	GXWH04F	NA	125 psig	1/4 NPT Pipe, Bronze body, set at 40 psig
RV-LFP-16	Pentair	Relief Valve ('Water)		4662K461	600 psig (max set pressure); set at 40 psig	connection, 316 Stainless Steel, 213 in orifice, 15 micron pore size
F-LFP-17	Swagelok	Filter	SS-6TF-15	NA	1000 psi (min)	1/4 NPT Pipe, Bronze body, set at 20 psig
RV-LFP-18	Pentair	Relief Valve ('Water)		4662K461	600 psig (max set pressure); set at 20 psig	1/4 x 1/4 Pipe Size, Brass
SO-LFP-19	Anderson Brass Company	Shut Off Valve		3662T24	200 psig @70F	1/4 NPT Pipe, Brass Connection Material
PG-LFP-20	Ashcroft Inc	Pressure Gage (0-60 psig)		4089K63	60 psig	1/4 x 1/4 Pipe Size, Brass
SO-LFP-21	Anderson Brass Company	Shut Off Valve		3662T12	200 psig @70F	1/4 x 1/4 Pipe Size, Brass
NV-LFP-22	Deltrol Fluid Products	Needle Valve		46425K12	2000 psig @ 400F	1/4 x 1/4 Pipe Size, Brass
GD-LFP-23	Hansen Products	Male Quick Disconnect; Hydraulic Coupling	Item #41 (Series 4000)	NA	1000 psig	1/4 x 1/4 NPT, Stainless Steel
T-LFP-24	Tygon	Tygon Tubing with Barbed Fittings		6516T53	60 psig @ 72F	PVC Plastic
T-LFP-25	Tygon	Tygon Tubing with Barbed Fittings		6516T53	60 psig @ 72F	PVC Plastic
T-LFP-26	Tygon	Tygon Tubing with Barbed Fittings		6516T53	60 psig @ 72F	PVC Plastic
C-LFP-27	Grainger	Barbed Male Connector	2GUR1	NA	150 psig	Brass, 3/8" OD, .25" Barb Size
C-LFP-28	Grainger	Barbed Male Connector	2GUR1	NA	150 psig	Brass, 3/8" OD, .25" Barb Size
C-LFP-29	Grainger	Barbed Male Connector	2GUR1	NA	150 psig	Brass, 3/8" OD, .25" Barb Size

LCVG Modified Flush and Purge Console: RV Calculation

Pressure Regulator

- $Q = C_v * \left[\frac{816 * P_1}{\sqrt{S.G.*T}} \right]$
- $Q = .02 * \left[\frac{816 * 214.7}{\sqrt{1 * 530}} \right]$
- $Q = 153 \text{ SCFH} = 2.5 \text{ SCFM}$

Relief Valve

M = Popoff valves, ½"-1"; MP = Inline valves, ¾"-1¼"

Crack Pressure PSIG	Percent Over Pressure Beyond Cracking (SCFM air at room temperature)								
	10%			25%			50%		
	4M/6MP	6M/8MP	8M/10MP	4M/6MP	6M/8MP	8M/10MP	4M/6MP	6M/8MP	8M/10MP
.5	.07	.07	—	.50	.50	—	.80	2.2	—
1	.10	.10	—	.70	.70	—	1.7	3.2	—
1.5	.30	.30	—	1.0	1.4	—	2.2	5.5	—
2	.50	.50	—	1.2	1.7	—	3.0	7.0	—
2.5	.60	.60	—	1.8	3.0	—	4.2	10.5	—
3	.80	.80	—	2.2	4.0	—	5.0	13	—
4	1.0	1.0	1.5	3.0	5.0	30	7.5	17	56
5	1.0	1.2	2.5	3.5	6.0	34	9.0	20	64
10	1.0	2.4	7.0	6.0	12	60	19	40	115
15	1.6	3.0	7.0	8.5	22	60	27	80	160
20	2.0	5.0	7.0	10	30	60	34	110	190
25	3.0	5.5	9.0	13.5	34	72	43	116	—
30	3.5	6.0	11.5	16	37	80	50	121	—
40	5.5	8.5	18	24	48	115	72	136	—
50	7.0	10	23	30	56	140	90	150	—
60	11	13	35	38	64	160	100	165	—
70	15	17	59	47	72	185	111	182	—
80	20	21	77	56	81	215	123	204	—
90	26	26	88	68	94	235	138	225	—
100	30	30	100	75	105	250	150	240	—
110	33	38	115	80	112	258	166	—	—
120	37	47	132	86	125	270	183	—	—
130	41	57	150	93	150	282	201	—	—
140	46	71	175	102	163	290	222	—	—
150	50	80	190	110	175	300	240	—	—

LCVG Modified Flush and Purge Console: Approval Process

PRESSURE SYSTEM DESIGN REVIEW RECORD		Design Review Number
National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058		DATE: _____
INITIATOR Kare Melone	ORGANIZATION ECS	PHONE NO. 302-650-2769
SYSTEM <input checked="" type="checkbox"/>	VESSEL <input type="checkbox"/>	OTHER: <input type="checkbox"/>
SYSTEM / VESSEL NUMBER: A2700023		
SYSTEM / VESSEL NAME: Liquid Cooling Ventilation Garment (LCVG) Modified Flush and Purge Console		
System Location: Site JSC Building: 34 Room: 109		
MAWP: Air: 200 psig, 30 psig Water: 60 psig AT: 70 Degrees F		
FLUID: Air, Water		
OTHER:		
System Design Complies with: <input checked="" type="checkbox"/> ASME B31.3 Process Piping Code <input type="checkbox"/> ASME B31.1 Power Piping Code <input type="checkbox"/> 49 CFR Parts 100-165 (DOT) <input type="checkbox"/> Other		
ASME B&PVC Sect. VIII Div. 1 <input type="checkbox"/> ASME B&PVC Sect. I <input type="checkbox"/> ASME B&PVC Sect. IV		
DRAWING NUMBER: A27-M00023 (Sheets 1 and 2) REVISION: Basic		
PSE APPROVAL:		
DATE: _____		
CALCULATIONS:		
PSE APPROVAL:		
DATE: _____		
COMMENTS: LCVG connects between T-LFP-18 and T-LFP-25 for purging the LCVG with air. LCVG connects between T-LFP-19 and T-LFP-25 for flushing the LCVG with water. The LCVG Modified Flush and Purge Console connects to the PGA test stand in B34 (system number L1601003) for the breathing air source.		

JSC Form 1876 (Rev August 29, 2013) (MS Word Aug 98)

JSC Pressure System System Inventory Input/Change Form		Page: 1 of 2
INPUT: <input checked="" type="checkbox"/> Add New <input type="checkbox"/> Remove Existing Component from System <input type="checkbox"/> Other: <input type="checkbox"/> Change Status to: (Select as needed)		
Current information on existing items is available from http://sma.jsc.nasa.gov/psdb/pressure.aspx		
GENERAL INFORMATION: Responsible Org.: ECS System Number: A2700023 Coordinator: John Harris System Description: Liquid Cooling Ventilation Garment (LCVG) Modified Flush and Purge Console Further Directions: Site: JSC Building: 34 Room: 109 Service Fluid(s): Air, Water OCC#: MAWP: Drawing No.: A27-M00023 Rev: Basic Design Review Date: Tube Trainer: No Manufacture Date: PSCR: Waiver:		
Relevant Damage Mechanisms: <input type="checkbox"/> Corrosion (Atmospheric, Under Insulation, Soil, Galvanic, etc.) <input type="checkbox"/> Erosion <input type="checkbox"/> Fatigue (Vibration/Pressure or Thermal Cycling) <input type="checkbox"/> Creep <input type="checkbox"/> Refractory Degradation		
Inspection Type:	CLASS 1 Frequency: 730 days	Inspector's Stamp: Pass Date: Fail
COMMENTS: MAWP for Air: 200 psig, 30 psig MAWP for Water: 60 psig		

JSC Form 1665 (Rev August 29, 2013) (MS Word March 2005)

366S Form

JSC Pressure System Component Inventory Input/Change Form		Page: 1 of 1
INPUT: <input checked="" type="checkbox"/> Add New Component <input type="checkbox"/> Remove Existing Component from System <input type="checkbox"/> Other: <input type="checkbox"/> Change Status to: (Select as needed)		
Current information on existing items is available from http://sma.jsc.nasa.gov/psdb/pressure.aspx		
Component Type: <input checked="" type="checkbox"/> Relief Valve <input type="checkbox"/> Flex Hose <input type="checkbox"/> Vessel <input type="checkbox"/> Other -		
GENERAL INFORMATION: Responsible Org.: ECS System Number: A2700023 Coordinator: John Harris System Description: Liquid Cooling Ventilation Garment (LCVG) Modified Flush and Purge Console Component Number: RV-LFP-04 P/Serial Number: System Location: JSC Building: 34 Room: 109 Further Directions: Size: (for RV - In & Out for FH & V - Dia & Len) 3/4 x 3/4 Service Fluid: Air Applicable Code: none Flow Capacity (RV): 3 SCFM Component MAWP (FH, V): Set Pressure (RV): 15.00 Manufacturer: Material: 316 Stainless Steel Manufacturer Date: Rebuild Date: PSCR: Waiver:		
Relevant Damage Mechanisms: <input type="checkbox"/> Corrosion (Atmospheric, Galvanic, Boiler Water Condensate, Microbiologically Induced, Caustic, Stress Corrosion Cracking, etc.) <input type="checkbox"/> Erosion <input type="checkbox"/> Fatigue (Vibration/Pressure or Thermal Cycling) <input type="checkbox"/> Creep <input type="checkbox"/> Refractory Degradation		
Inspection / Test:	Clean Level: Set Pressure Test Value (RV): TPSI:	
Inspection Type:	CLASS 1 Frequency: 730 days	Inspector's Stamp: Pass Date: Fail
COMMENTS:		

JSC Form 366C (Rev August 29, 2013) (MS Word March 2005)

366C Form

Hazard Analysis for the Liquid Cooling Ventilation Garment (LCVG) Modified Flush and Purge Console

CTSD-ADV-1399
Revision: Basic

Crew and Thermal Systems Division
Systems Test Branch

November 21, 2016
Revision: Basic

Crew and Thermal Systems Division
Engineering Directorate
Lyndon B. Johnson Space Center
Houston, Texas

Hazard Analysis

1876 Form

LCVG Modified Flush and Purge Console: Status

- Preliminary Research/Preparation
- Design Sketches
- Technical Drawing
- Bill of Materials/ Determining Components (Calculations)
- Required Forms (1876, 366S, 366C)
- Hazard Analysis
- Pressure Systems Approval
- Order Components and Assemble
- Test/Inspect/Final Approval

Lessons Learned

- Data can be confusing at times
 - Example: Material appeared to be stronger after radiation
- A lot goes into the formal design process
 - Design review, forms, Hazard Analysis, inspection, etc.
- Understanding specifications
 - AN vs NPT
 - Tube vs Pipe
- Learning about pressure system components
 - In addition to pressure ratings, need to consider size and flow rates

Skills Acquired

- Tensile Testing
 - Prepare materials and setting up the tensile tests
 - Collect and interpret (messy) data
- Outgassing Testing
 - Understand TML and CVCM
 - Collaboration with other NASA centers
- Z2 Support
 - Hands on building mockups of components
 - Analyze data
 - Work with others; understanding what both parties need in order to make a run successful
- LCVG Flush and Purge Console
 - Both formal design and design review process
 - How to determine which components to use; flow calculations, pressure ratings, size, etc.
 - Hazard Analysis
 - How to make design tradeoffs

Future Plans

2017

- Spring: UMD
- Summer: CM4 Co-op
- Fall: UMD

2018

- Spring-Summer: Co-op
- August: Class and Graduate with B.S. in Aerospace Engineering
- Fall: UMD for M.S. in Aerospace Engineering

2019

- Spring: UMD for M.S. in Aerospace Engineering
- Summer: UMD and finish M.S. in Aerospace Engineering
- Fall: Grad co-op/Starting Ph.D.

Acknowledgements

- Kris Larson
- Amy Ross
- Richard Rhodes
- Raul Blanco
- Teresa Shurtz
- Ian Meginnis
- Ben Peters
- Steve Anderson
- John Harris
- Pete Meeh
- Kevin Groneman
- Nate Smith
- John Hollis
- Joe Settles
- April Smith
- Jonathan Abary
- Amber Tucker
- Everyone in EC5
- All the co-ops and interns in EC5
(Chad, Kelly, Sarosh)

Questions?