ASSIGNMENT – 02

How to Run a code:

- Install:
 - 1. Matplotlib
 - 2. cv2
 - 3. Numpy
 - 4. Pandas
 - 5. scipy
- Open Jupyter Notebook and make sure that files and images, that are available in the same folder as jupyter notebook and then start running the code from the beginning.
- Input images present in the same folder as that of code files with question number.
- Run the cells sequentially.

Key points : Points in the image to match irrespective of rotation, translation, intensity and scale changes

1. Harrsis Corner Detection:

Formula Used:

$$R = \lambda_1 \lambda_2 - k \cdot (\lambda_1 + \lambda_2)^2 = \det(M) - k \cdot \operatorname{tr}(M)^2$$

where k is an empirically determined constant; $k \in [0.04, 0.06]$

First Image where value of k = 0.06

Input Image:

Output Image:

"Edges"

"Corners"

Second image where value of k = 0.06

Input Image

Output Image

"Edges"

"Corners"

2. Shi Thomasi Corner Detection:

Formula Used:

$$R = min(\lambda_1, \lambda_2)$$

First Image where value of k = 0.06

Input Image

Output Image:

Second image where value of k = 0.06

Input Image

Output Image

3. Sift Key Points Detection:

Input Image

DOG Images

"Octave 1 with DOG"

"Octave 2 with DOG"

"Octave 3 with DOG"

"Octave 4 with DOG"

Output Images

4. <u>Mean Shift</u>

Input Image:

Ouput Image:

For bandwidth = 0.2

Second Image

Output Image

5. <u>SLIC</u>

Formula Used:

$$D = d_{color} + (m/S)*d_{space}$$

Input Image

Gray and Edge Image:

Edge Image

Centres:

Output Image:

Second Input Image:

Gray and Edge Image:

Centres:

Output Image

