Kunyi Zhang

(86) 139-1900-5209 | <u>kunyizhang@zju.edu.cn</u> | <u>https://zhangkunyi.github.io/</u>
Room 303, Institute of Cyber-system and Control, Zhejiang University, Hangzhou, China.

Education				
Zhejiang University		Hangzhou, China		
Ph.D.	Electronic Information (Tutor: <u>Fei Gao</u>)	2020.4 - present		
M.Eng.	Control Science and Engineering (Tutor: Chao Xu)	2017.9 - 2020.3		
East China University of Science and Technology		Shanghai, China		
B.Eng.	Mechanical Engineering	2012.9 - 2016.7		
B.Sc.	Applied Mathematics	2013.3 - 2016.7		
D 11. 4.				

Publications

- Kunyi Zhang, Chenxing Jiang, Sheng Yang, Teng Ma, Shaojie Shen, Chao Xu, Fei Gao, WING: Wheel-Inertial-Neural Odometry with Ground Manifold Constraints. Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2023. [Paper | Video]
- Kunyi Zhang, Chenxing Jiang, Jinghang Li, Sheng Yang, Teng Ma, Chao Xu, Fei Gao, DIDO:
 Deep Inertial Quadrotor Dynamical Odometry. Published by IEEE Robotics and Automation Letters (RA-L), 2022. [Paper | Video | Code]
- Kunyi Zhang, Tiankai Yang, Ziming Ding, Sheng Yang, Teng Ma, Mingyang Li, Chao Xu, Fei Gao, The Visual-Inertial- Dynamical Multirotor Dataset. Published by *International Conference on Robotics and Automation (ICRA)*, 2022. [Paper | Video | Code]
- Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, Fei Gao, VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation. Published by International Conference on Robotics and Automation (ICRA), 2021. [Paper | Video | Code]

In	ternship			
Ali	ibaba DAMO Academy	Hangzhou, China		
Localization and mapping group Autonomous Driving Lab			2022.1 - present	
Projects				
•	Visual inertial odometry based on quadrotor dynamics	Leader	2020.4 - 2021.9	
•	State grid UAV long range power inspection solution	Member	2018.10 - 2020.6	
•	International aerial robotics competition	Member	2017.7 - 2018.8	
•	Fast target recognition and tracking technology for UAV	Member	2021.3 - 2021.6	
Awards				

- First Prize in the 2017 International Aerial Robot Competition;
- First Prize & Champion in the 2018 International Aerial Robot Competition;
- Second Prize in the 2018 "Huawei Cup" Graduate Mathematical Modeling Competition;
- Scholarship for the 2017-2018 academic year.

Skills

- Familiar with common Robotics development tools and environments such as C/C++, Python, ROS, Git, Linux, MATLAB, Python, and Mathematica;
- Familiar with MSF, MSCKF, VINS-MONO, ORB-SLAM, LIO-SAM, and other SLAM frameworks;
- Familiar with basic classical control theory, numerical optimization method, and optimization theory;
- Familiar with CAD, Pro-E, and other computer-aided design software;
- Capable of reading and translating literature independently and writing professional English.