Employee attrition Classification

The issue of keeping one's employees happy and satisfied is a perennial and age-old challenge. If an employee you have invested so much time and money leaves for "greener pastures", then this would mean that you would have to spend even more time and money to hire somebody else. In the spirit of Kaggle, let us therefore turn to our predictive modelling capabilities and see if we can predict employee attrition on this synthetically generated IBM dataset.

```
In [1]: import warnings
In [2]: warnings.filterwarnings('ignore')
```

Let's Dive into it

Import necessary libraries

```
In [3]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Read 'HR-Employee-Attrition.csv' dataset and store it inside a variable

```
In [4]: df=pd.read_csv('HR-Employee-Attrition.csv')
```

Check head

```
In [5]: pd.set_option("display.max_columns", None)
```

In [6]:	df	.head()									
Out[6]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ		
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Lif		
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Lif		
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2			
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Lif		
	4	27	No	Travel_Rarely	591	Research & Development	2	1			
	4										

Check last 5 rows

In	[7]:	df.tail()
	L · J ·	

Out[7]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	E
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	
	1468	49	No	Travel_Frequently	1023	Sales	2	3	
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	
	4								

Check shape

In [8]: df.shape

Out[8]: (1470, 35)

View info about the dataset

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	 int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

View basic statistical information about the dataset

In [10]: df.describe()

Out[10]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNu
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.00
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.86
std	9.135373	403.509100	8.106864	1.024165	0.0	602.02
min	18.000000	102.000000	1.000000	1.000000	1.0	1.00
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.25
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.50
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.75
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.00
4						•

Check for null values

```
In [11]: df.isna().sum()
Out[11]: Age
                                       0
         Attrition
                                       0
         BusinessTravel
                                       0
         DailyRate
                                       0
         Department
                                       0
         DistanceFromHome
                                       0
                                       0
         Education
         EducationField
                                       0
         EmployeeCount
                                       0
         EmployeeNumber
                                       0
         EnvironmentSatisfaction
                                       0
         Gender
                                       0
         HourlyRate
                                       0
         JobInvolvement
                                       0
         JobLevel
                                       0
         JobRole
                                       0
         JobSatisfaction
                                       0
                                       0
         MaritalStatus
         MonthlyIncome
                                       0
                                       0
         MonthlyRate
         NumCompaniesWorked
                                       0
         Over18
                                       0
         OverTime
                                       0
         PercentSalaryHike
                                       0
                                       0
         PerformanceRating
         RelationshipSatisfaction
                                       0
         StandardHours
                                       0
                                       0
         StockOptionLevel
         TotalWorkingYears
                                       0
         TrainingTimesLastYear
                                       0
         WorkLifeBalance
                                       0
         YearsAtCompany
                                       0
         YearsInCurrentRole
                                       0
         YearsSinceLastPromotion
                                       0
         YearsWithCurrManager
                                       0
         dtype: int64
```

View unique values in all categorical columns

```
pd.set option("display.max columns", None)
In [12]:
          df.head()
Out[12]:
             Age Attrition
                           BusinessTravel DailyRate
                                                   Department DistanceFromHome Education Educ
          0
              41
                      Yes
                             Travel_Rarely
                                             1102
                                                        Sales
                                                                            1
                                                                                      2
                                                                                           Lif
                                                   Research &
                      No Travel_Frequently
                                              279
                                                                                           Lif
              49
                                                                            8
                                                                                      1
                                                  Development
                                                   Research &
          2
              37
                      Yes
                             Travel Rarely
                                             1373
                                                                                      2
                                                  Development
                                                   Research &
              33
                      No Travel_Frequently
                                             1392
                                                                            3
                                                                                           Lif
          3
                                                  Development
                                                   Research &
              27
                      No
                             Travel Rarely
                                              591
                                                                            2
                                                                                      1
                                                  Development
In [13]: categorical_columns=[ 'Attrition', 'BusinessTravel',
                                                                  'Department',
                    'EducationField', 'Gender', 'JobRole',
                 'MaritalStatus','Over18', 'OverTime']
          for i in categorical columns:
              print("unique values in ",i,"are:" ,df[i].unique())
          unique values in Attrition are: ['Yes' 'No']
          unique values in BusinessTravel are: ['Travel_Rarely' 'Travel_Frequently' 'N
          on-Travel'l
          unique values in Department are: ['Sales' 'Research & Development' 'Human Re
          sources']
          unique values in EducationField are: ['Life Sciences' 'Other' 'Medical' 'Mar
          keting' 'Technical Degree'
           'Human Resources']
          unique values in Gender are: ['Female' 'Male']
          unique values in
                             JobRole are: ['Sales Executive' 'Research Scientist' 'Labor
          atory Technician'
           'Manufacturing Director' 'Healthcare Representative' 'Manager'
           'Sales Representative' 'Research Director' 'Human Resources']
          unique values in MaritalStatus are: ['Single' 'Married' 'Divorced']
          unique values in Over18 are: ['Y']
```

unique values in OverTime are: ['Yes' 'No']

Check the number of unique values in all columns

```
In [14]: | columns_nunique=['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Departmen'
                 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
                 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
                 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
                 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
                 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
                 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                 'YearsWithCurrManager']
In [15]: for i in columns_nunique:
              print("Number of unique elements in ",i,"are:" ,df[i].nunique())
          Number of unique elements in Age are: 43
          Number of unique elements in Attrition are: 2
          Number of unique elements in BusinessTravel are: 3
          Number of unique elements in DailyRate are: 886
          Number of unique elements in
                                         Department are: 3
          Number of unique elements in
                                         DistanceFromHome are: 29
          Number of unique elements in Education are: 5
          Number of unique elements in
                                         EducationField are: 6
          Number of unique elements in
                                         EmployeeCount are: 1
          Number of unique elements in
                                         EmployeeNumber are: 1470
          Number of unique elements in
                                         EnvironmentSatisfaction are: 4
          Number of unique elements in
                                         Gender are: 2
          Number of unique elements in
                                         HourlyRate are: 71
          Number of unique elements in
                                         JobInvolvement are: 4
          Number of unique elements in
                                         JobLevel are: 5
          Number of unique elements in
                                         JobRole are: 9
          Number of unique elements in
                                         JobSatisfaction are: 4
          Number of unique elements in
                                         MaritalStatus are: 3
          Number of unique elements in
                                         MonthlyIncome are: 1349
          Number of unique elements in
                                         MonthlyRate are: 1427
          Number of unique elements in
                                         NumCompaniesWorked are: 10
          Number of unique elements in
                                         Over18 are: 1
          Number of unique elements in
                                         OverTime are: 2
          Number of unique elements in
                                         PercentSalaryHike are: 15
          Number of unique elements in
                                         PerformanceRating are: 2
          Number of unique elements in
                                         RelationshipSatisfaction are: 4
          Number of unique elements in
                                         StandardHours are: 1
          Number of unique elements in
                                         StockOptionLevel are: 4
          Number of unique elements in
                                         TotalWorkingYears are: 40
          Number of unique elements in
                                         TrainingTimesLastYear are: 7
                                         WorkLifeBalance are: 4
          Number of unique elements in
          Number of unique elements in
                                         YearsAtCompany are: 37
          Number of unique elements in YearsInCurrentRole are: 19
          Number of unique elements in YearsSinceLastPromotion are: 16
          Number of unique elements in YearsWithCurrManager are: 18
```

Print out the names of the columns having only one unique values

```
In [16]: for i in columns_nunique:
    if df[i].nunique()==1:
        print(i)
```

EmployeeCount Over18 StandardHours

Drop these columns as they won't be useful in our predicition

In [17]:	df.drop(columns=["EmployeeCount",'Over18',"StandardHours"],inplace=True)	

In [18]: df.head()

Out[18]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Lif
1	49	No	Travel_Frequently	279	Research & Development	8	1	Lif
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Lif
4	27	No	Travel_Rarely	591	Research & Development	2	1	
4								

Drop EmployeeNumber column aswell

```
In [19]: df.drop(columns=["EmployeeNumber"],inplace=True)
```

In [20]: df.head()

Out[20]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Lif
1	49	No	Travel_Frequently	279	Research & Development	8	1	Lif
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Lif
4	27	No	Travel_Rarely	591	Research & Development	2	1	
4 (

Create following groupby valuecounts

In [21]: df.groupby(["Department","EducationField","Gender"],observed=True,dropna=False

Out[21]:

			Age	DailyRate	DistanceFromHome	Education	Environ
Department	EducationField	Gender					
	Human	Female	310	6084	96	25	
	Resources	Male	690	12148	148	59	
	Life Colomans	Female	352	8293	103	28	
	Life Sciences	Male	278	3756	36	21	
Human Resources	Medical	Female	57	2318	28	4	
	Wedicai	Male	461	9065	90	30	
	Other	Male	104	3015	26	9	
	Technical	Female	34	1107	9	4	
	Degree	Male	96	1561	12	7	
	Life Sciences	Female	6060	125412	1408	494	
	Life Sciences	Male	10219	221834	2492	787	
	Medical	Female	5788	125306	1523	442	
Research &	Wedicai	Male	7731	174434	1941	589	
Development	Other	Female	919	16866	218	71	
	Other	Male	1397	31989	357	127	
	Technical	Female	1395	31396	303	111	
	Degree	Male	2089	48147	546	165	
	Life Sciences	Female	2570	57199	583	196	
	Life Sciences	Male	3008	70988	805	249	
	Marketing	Female	2646	53745	634	217	
	wa keung	Male	3384	61981	973	280	
Sales	Medical	Female	1224	30600	332	85	
Jaies	Wedicai	Male	1832	40056	426	151	
	Other	Female	105	5300	38	11	
	Other	Male	375	8104	93	34	
	Technical	Female	490	11639	141	37	
	Degree	Male	664	17311	152	49	
4							

Plot the following

```
In [22]: plt.figure(figsize=(5,3))
    sns.countplot(x='Attrition',data=df)
    plt.show()
```



```
In [23]: plt.figure(figsize=(5,3))
    sns.countplot(x='Attrition',hue='Gender',data=df)
    plt.show()
```



```
In [24]: sns.countplot(x='BusinessTravel',hue='JobRole',data=df)
```

Out[24]: <AxesSubplot:xlabel='BusinessTravel', ylabel='count'>


```
In [26]: plt.figure(figsize=(6,5))
sns.barplot(y='JobRole',x='MonthlyIncome',data=df)
plt.show()
```



```
In [28]: plt.figure(figsize=(7,4))
    sns.barplot(y='EducationField',x='MonthlyIncome',data=df)
    plt.show()
```


In [29]: plt.figure(figsize=(8,6))
 sns.countplot(x='JobSatisfaction',hue='JobRole',data=df)
 plt.show()


```
In [30]: sns.histplot(df['Age'],kde=False);
plt.show()
```


Data Preprocessing

Convert Attrition from ('Yes', 'No') to (1,0)

```
In [31]: def attrition(x):
    if x == "No":
        return 0
    else:
        return 1
In [32]: df['Attrition'] = df['Attrition'].apply(attrition)
```

In [33]:	df.	df.head()										
Out[33]:		Age	Attrition	BusinessTravel DailyRate		Department	DistanceFromHome	Education	Educ			
	0	41	1	Travel_Rarely	1102	Sales	1	2	Lif			
	1	49	0	Travel_Frequently	279	Research & Development	8	1	Lif			
	2	37	1	Travel_Rarely	1373	Research & Development	2	2				
	3	33	0	Travel_Frequently	1392	Research & Development	3	4	Lif			
	4	27	0	Travel_Rarely	591	Research & Development	2	1				
	4								•			

Convert the rest of the categorical values into numeric using dummy variables and store the results in a new dataframe called 'newdf'

In [34]:		<pre>ewdf=pd.get_dummies(df,drop_first=True) ewdf.head()</pre>										
Out[34]:		Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate				
	0	41	1	1102	1	2	2	94				
	1	49	0	279	8	1	3	61				
	2	37	1	1373	2	2	4	92				
	3	33	0	1392	3	4	4	56				
	4	27	0	591	2	1	1	40				

Check the shape of our new dataset

In [35]: newdf.shape
Out[35]: (1470, 45)

Print unique values in our new dataframe

```
In [36]: ncategorical_columns=['Age', 'Attrition', 'DailyRate', 'DistanceFromHome', 'Ed
                  'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
                  'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked'
                  'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                  'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
                  'YearsSinceLastPromotion', 'YearsWithCurrManager',
                  'BusinessTravel_Travel_Frequently', 'BusinessTravel_Travel_Rarely', 'Department_Research & Development', 'Department_Sales',
                  'EducationField_Life Sciences', 'EducationField_Marketing',
                  'EducationField_Medical', 'EducationField_Other',
                  'EducationField_Technical Degree', 'Gender_Male',
                  'JobRole_Human Resources', 'JobRole_Laboratory Technician', 'JobRole_Manager', 'JobRole_Manufacturing Director',
                  'JobRole_Research Director', 'JobRole_Research Scientist',
                  'JobRole_Sales Executive', 'JobRole_Sales Representative',
                  'MaritalStatus_Married', 'MaritalStatus_Single', 'OverTime_Yes']
In [37]: | for i in ncategorical_columns:
              print("Unique values in",i,"are",newdf[i].unique())
          onitque vatues in rearsaccompany are [ o io o
          2 14 22 15 27 21 17 11 13 37 16 20
           40 24 33 19 36 18 29 31 32 34 26 30 23]
          Unique values in YearsInCurrentRole are [ 4 7 0 2 5 9 8 3 6 13 1
          15 14 16 11 10 12 18 17]
          Unique values in YearsSinceLastPromotion are [ 0 1 3 2 7 4 8 6 5 1
          5 9 13 12 10 11 14]
          Unique values in YearsWithCurrManager are [ 5 7 0 2 6 8 3 11 17 1
          4 12 9 10 15 13 16 14]
          Unique values in BusinessTravel_Travel_Frequently are [0 1]
          Unique values in BusinessTravel_Travel_Rarely are [1 0]
          Unique values in Department Research & Development are [0 1]
          Unique values in Department_Sales are [1 0]
          Unique values in EducationField_Life Sciences are [1 0]
          Unique values in EducationField Marketing are [0 1]
          Unique values in EducationField Medical are [0 1]
          Unique values in EducationField Other are [0 1]
          Unique values in EducationField Technical Degree are [0 1]
          Unique values in Gender_Male are [0 1]
          Unique values in JobRole_Human Resources are [0 1]
          Split the columns into input and target variables (X and y)
In [38]: X=newdf.drop(columns=['Attrition'])
          y=newdf['Attrition']
```

```
In [39]: from sklearn.preprocessing import StandardScaler
In [40]:
          scalar=StandardScaler()
In [41]: X_scalar=scalar.fit_transform(X)
In [42]: | scaled_X=pd.DataFrame(X_scalar,columns=X.columns)
In [43]: | scaled_X.head()
Out[43]:
                   Age DailyRate DistanceFromHome Education EnvironmentSatisfaction HourlyRate Jol
              0.446350
                       0.742527
                                          -1.010909
                                                    -0.891688
                                                                           -0.660531
                                                                                       1.383138
              1.322365 -1.297775
                                          -0.147150
                                                   -1.868426
                                                                           0.254625
                                                                                      -0.240677
              0.008343
                       1.414363
                                          -0.887515 -0.891688
                                                                            1.169781
                                                                                       1.284725
              -0.429664
                       1.461466
                                          -0.764121
                                                    1.061787
                                                                           1.169781
                                                                                      -0.486709
             -1.086676 -0.524295
                                          -0.887515 -1.868426
                                                                           -1.575686
                                                                                      -1.274014
```

Split the dataset into training and testing set

```
In [44]: from sklearn.model_selection import train_test_split
In [45]: X_test,X_train,y_test,y_train=train_test_split(X,y,test_size=0.3)
```

Machine Learning Models

Logistic Regression

```
In [49]: y_pred=model.predict(X_test)
In [90]: | a=metrics.accuracy_score(y_test,y_pred)
Out[90]: 0.8347910592808552
In [51]: metrics.confusion_matrix(y_test,y_pred)
Out[51]: array([[856,
                         3],
                         4]], dtype=int64)
                 [166,
In [52]: print(metrics.classification_report(y_test,y_pred))
                        precision
                                     recall f1-score
                                                         support
                    0
                             0.84
                                       1.00
                                                 0.91
                                                             859
                     1
                             0.57
                                       0.02
                                                 0.05
                                                             170
                                                 0.84
                                                            1029
             accuracy
                                                 0.48
                                                            1029
            macro avg
                             0.70
                                       0.51
         weighted avg
                             0.79
                                       0.84
                                                 0.77
                                                            1029
In [53]: |metrics.confusion_matrix(y_test,y_pred)
Out[53]: array([[856,
                         3],
                [166,
                         4]], dtype=int64)
In [54]:
         plt.figure(figsize=(4,3))
         sns.heatmap(metrics.confusion_matrix(y_test,y_pred),annot=True,fmt='d')
         plt.show()
                                                   800
                    856
           0 -
                                                    600
                                                    400
                    166
                                                   - 200
                      0
                                      1
```

Random Forest Classifier

** Choose the best estimator and parameters :GridSearchCV**

```
In [55]: | from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [56]: model1 = RandomForestClassifier(n estimators= 100)
In [57]: model1.fit(X_train, y_train)
Out[57]: RandomForestClassifier()
In [58]: | forest_params = [{'max_depth': [0.5,1,5,10], 'max_features': list(range(0,14))
In [59]: | clf = GridSearchCV(model1, forest_params, scoring='accuracy')
In [60]: clf.fit(X_train, y_train)
Out[60]: GridSearchCV(estimator=RandomForestClassifier(),
                       param_grid=[{'max_depth': [0.5, 1, 5, 10],
                                    'max_features': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
         11,
                                                     12, 13]}],
                       scoring='accuracy')
In [61]: clf.best params
Out[61]: {'max depth': 10, 'max features': 6}
In [62]: clf.best_score_
Out[62]: 0.8662665985699693
In [63]: clf.best_estimator_
Out[63]: RandomForestClassifier(max_depth=10, max_features=6)
         Create Random forest model with the best parameters
In [91]: b=model1.score(X_train, y_train)
Out[91]: 1.0
```

```
In [65]: y_pred = model1.predict(X_test)
In [66]: | metrics.accuracy_score(y_test, y_pred)
Out[66]: 0.8425655976676385
In [67]: metrics.confusion_matrix(y_test, y_pred)
Out[67]: array([[849, 10],
                [152, 18]], dtype=int64)
In [68]: print(metrics.classification_report(y_test,y_pred))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.85
                                      0.99
                                                0.91
                                                           859
                    1
                            0.64
                                      0.11
                                                0.18
                                                           170
                                                0.84
                                                           1029
             accuracy
                            0.75
                                      0.55
                                                0.55
                                                           1029
            macro avg
                                      0.84
                                                0.79
         weighted avg
                            0.81
                                                           1029
```

Visualize confusion matrix

In [70]: sns.heatmap(metrics.confusion_matrix(y_test,y_pred), annot = True, fmt = 'd')
plt.show()

Support Vector Machine

Visualize confusion matrix

View score of different models in one dataframe

Use PCA to reduce dimensionality of the data

Import PCA and fit our X_train

```
In [ ]: from sklearn.decomposition import PCA
```

```
In [ ]:
           PCA(n components = 0.95)
          Apply the mapping (transform) to both the training set and the test set.
  In [ ]: | train_X = PCA.transform(X_train)
          test_X = PCA.transform(X_test)
          Import machine learning model of our choice, we are going with RandomForest for this
          problem
  In [ ]: from sklearn.ensemble import RandomForestClassifier
          Create RandomForest model with the best parameter we got earlier and train it
In [112]: from sklearn.ensemble import RandomForestClassifier
          from sklearn.model selection import GridSearchCV
          model1 = RandomForestClassifier(n_estimators= 100)
          model1.fit(X train, y train)
Out[112]: RandomForestClassifier()
          Check the score of our model
In [113]: | model1.score(X_train, y_train)
Out[113]: 1.0
          Make predictions with X test and check the accuracy score
In [114]: metrics.accuracy_score(y_test, y_pred)
Out[114]: 0.8347910592808552
          Print Confusion matrix and Classification report
In [115]: metrics.confusion_matrix(y_test, y_pred)
Out[115]: array([[859,
                          0]], dtype=int64)
```

[170,

In [116]: print(metrics.classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.83	1.00	0.91	859
1	0.00	0.00	0.00	170
accuracy			0.83	1029
macro avg	0.42	0.50	0.45	1029
weighted avg	0.70	0.83	0.76	1029