Plan du cours

I.	Pro	pportionnalité
	1.	Définition
	2.	Trouver la quatrième proportionnelle dans un tableau de proportionnalité
	3.	Représentation graphique
II.	Vit	esse moyenne
	1.	Calculer une vitesse moyenne
	2.	Calculer une distance
	3.	Calculer une durée
III.	Pou	urcentages et échelles
	1.	Pourcentages
	2	Échelles

I. Proportionnalité

1. Définition

Définition

On dit que deux grandeurs sont proportionnelles si on passe des valeurs de l'une aux valeur de l'autre en multipliant par un même nombre. Ce nombre est alors appelé le coefficient de proportionnalité.

Exemple:

Durée (en h)	1	2	3,5
Distance (en km)	40	80	140

$$\frac{40}{1} = 40$$
; $\frac{80}{2} = 40$; $\frac{140}{3.5} = 40$

Les quotients sont **tous** égaux donc les distances sont proportionnelles aux durées.

Age (en année)	5	15	20
Taille (en cm)	108	162	170

$$\frac{108}{5}$$
 = 21,6; $\frac{162}{15}$ = 10,8 et $\frac{170}{20}$ = 8,5

Les quotients ne sont pas **tous** égaux donc les âges ne sont pas proportionnelles aux tailles.

A vous de jouer!

Les tableaux ci dessous sont-ils des tableaux de proportionnalité?

Durée (en min)	10	20	45	50
Nombre de personnes	8	16	35	40

Solution:

$$\frac{8}{10} = 0.8$$
; $\frac{16}{20} = 0.8$; $\frac{35}{45} \approx 0.7778$; $\frac{40}{50} = 0.8$
Les quotients ne sont pas **tous** égaux donc le nombre de

Les quotients ne sont pas **tous** égaux donc le nombre de personnes n'est pas proportionnel à la durée

Masses (en kg)	100	125	300	540
Prix (en euros)	2,80	3,50	8,40	15,12

Solution:

$$\frac{2,80}{100} = 0,028; \frac{3,5}{125} = 0,028; \frac{8,4}{300} = 0,028;$$

 $\frac{15,12}{100} = 0,028$

Les quotients sont **tous** égaux donc prix en euros est proportionnel à la masse en kg

Exercice d'application 1^{-1}

Compléter les tableaux de proportionnalité suivant à l'aide de leur coefficient de proportionnalité :

Tours de pédaliers	5	8	13	20
Distance (en m)	11,25	18	29,25	45

2. Trouver la quatrième proportionnelle dans un tableau de proportionnalité

Méthode:

Dans un tableau de proportionnalité, si l'on connait trois valeurs sur quatre alors on peut calculer la quatrième. Cette valeur est appelée la **quatrième proportionnelle.**

Quantité de carburant (en L)	30	42
Prix à payer (en euros)	31,8	Х

$$x = \frac{42 \times 31, 8}{30}$$
$$x = 44, 52$$

Donc le prix de 42 litres de carburant est 44,52 euros.

Exercice d'application 2

Des amis sont en voyages à San Francisco. Lola a changé 150 euros contre 200 dollars.

1. Mario change 240 euros. Combien de dollars aura-t-il?

Euros	150	240
Dollars	200	X

Donc
$$x = \frac{200 \times 240}{150} = 320$$
 Mario obtiendra 320 dollars.

2. En partant, Lola change les 26 dollars qu'il lui reste. Combien d'euros aura-t-elle?

Euros	150	X
Dollars	200	26

Donc
$$x = \frac{150 \times 26}{200} = 19,50$$
 Lola obtiendra 19,50 euros.

3. Représentation graphique

Activité d'introduction

Les 3 graphiques ci-dessous représentent l'évolution d'une grandeur en fonction d'une autre.

Reproduire et compléter les tableaux ci-dessous en utilisant les renseignements donnés par les trois graphiques.

La cou de	rse o		ste	
Temps de course (en h)	0,5	2	4	5
Distance parcourue (en km)				

La facture téléphonique de Lisa						
Temps de communication (en h)	1	3	6	8		
Prix à payer (en €)						

Le four du boulanger							
Temps de fonctionnement (en min)	10	30	60	120			
Température (en °C)							

- Dire, pour chacun de ces tableaux, s'il s'agit ou non d'un tableau de proportionnalité.
- Comment semble-t-on pouvoir reconnaitre une situation de proportionnalité sur un graphique?

Solutions:

La course cycliste de Marco					
Temps de course (en h)	0,5	2	4	5	
Distance parcourue (en km)	20	80	160	200	

La facture téléphonique de Lisa					
Temps de communication (en h)	1	3	6	8	
Prix à payer (en €)	5	7	10	12	

Le four du boulanger					
Temps de fonctionnement (en min)	10	30	60	120	
Température (en °C)	110	180	220	240	

2. La course cycliste -> C'est une situation de proportionnalité La facture téléphonique -> Ce n'est pas une situation de proportionnalité Le four du boulanger -> Ce n'est pas une situation de proportionnalité

3. La courbe 1 qui représente une situation de proportionnalité (cf la course cycliste) est une droite qui passe par 0.

Propriété

Si deux grandeurs sont proportionnelles, alors **elles sont représentées graphiquement par des points alignés avec l'origine du repère.**

Propriété

Si, deux grandeurs sont représentées graphiquement dans un repère par des points alignés avec l'origine du repère, alors ces grandeurs sont proportionnelles.

Exemple:

Le périmètre d'un carré est-il proportionnel à la longueur d'un de ses côtés ? (Pour répondre à cette question, compléter le tableau et représenter la situation sous forme de graphique.)

Longueur d'un côté (en cm)	0	1	2	3	4
Périmètre (en cm)	$4\times 0=0$	$4\times 1=4$	$4\times 2=8$	$4 \times 3 = 12$	$4\times 4=16$

