Linked Lists

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

Why Lists?

- Problems of ordered lists implemented by arrays
 - Data movement
 - □ Although the data movement problem can be avoided by implementing an ordered list by two arrays, memory management problem still exists.

Pointers

- ❖ For any type T in C there is a corresponding type pointer-to-T.
- The actual value of a pointer type is an address of memory.
 - &: the address operator
 - → *: the dereferencing (or indirection) operator
- Accessing dynamically allocated storage (i.e., heap)

❖ A typical program layout in memory

- Pointer problems
 - ☐ Dangling pointers problem
 - ◆ A dangling pointer is a pointer that contains the address of a heap-dynamic variable that has been deallocated.
 - Memory leakage
 - ◆ This problem occurs when an allocated heap-dynamic variable is no longer accessible to the user program.

Pointer p1 is set to point at a new heap-dynamic variable.

Pointer p2 is assigned p1's value.

The heap-dynamic variable pointed to by p1 is explicitly deallocated, but p2 is not changed by this operation.

p2 is a dangling pointer.

Pointer p1 is set to point to a newly heap-dynamic variable.

p1 is later set to point to another newly created heap-dynamic variable.

The first heap-dynamic variable is inaccessible, or lost.

Singly Linked Lists

- ❖ Each node on a singly linked list consists of exactly one link field and at least one other field (p.147, Fig. 4.2).
- Necessary capabilities to make linked representations possible
 - ☐ A mechanism for defining a node's structure
 - ☐ A way to create new nodes when we need them
 - *♦ malloc* in C
 - □ A way to remove nodes that we no longer need
 - ♦ free in C

Singly Linked Lists -- Operations

❖ Insertion (p. 153, Program 4.2)

Singly Linked Lists -- Operations (contd.)

❖ Deletion (p. 155, Program 4.3)

Dynamically Linked Stacks and Queues

- Stacks
 - ☐ Structure definitions (p. 156)
 - ☐ The initial condition
 - igstar top[i] = NULL, $0 \le i \le MAX_STACKS$
 - Boundary conditions
 - $\bullet top[i] = NULL$ iff the *i*th stack is empty, and
 - ◆the memory is full
 - ☐ Push operation (p.158, Program 4.5)
 - ☐ Pop operation (p.158, Program 4.6)

Dynamically Linked Stacks and Queues (contd.)

- Queues
 - ☐ Structure definitions (p. 158)
 - ☐ The initial condition
 - $lacktrianglefootnote{} front[i] = NULL, \ 0 \le i \le MAX_QUEUES$
 - Boundary conditions
 - igspace front[i] = NULL iff the *i*th queue is empty, and
 - ◆the memory is full
 - ☐ Insertion (p.159, Program 4.7)
 - □ Deletion (p.160, Program 4.8)

Polynomials

Each polynomial term can be defined as

- Adding polynomials
 - ☐ Three cost measures
 - ◆ Coefficient additions
 - ◆ Exponent comparisons
 - ◆ Creation of new nodes
 - \Box Time complexity O(m+n), assuming that the two polynomials have m and n terms, respectively
 - ◆p. 163~164, Program 4.9 and 4.10

Additional List Operations

- Inverting chains
 - ☐ "in place" processing if there are three pointers
 - □ p. 171, Program 4.16

Equivalence Relations

- ❖ Definition: A relation, ≡, over a set, S, is said to be an equivalence relation over S iff it is symmetric, reflexive, and transitive over S.
 - \square Reflexive: $x \equiv x$

 - ☐ Transitive: $x \equiv y$ and $y \equiv z \rightarrow x \equiv z$
- Equivalence classes of a set S
 - \square Two members x and y of S are in the same equivalence class iff $x \equiv y$.

Equivalence Relations (contd.)

- Equivalence determination
 - \square Phase 1: Read in and store the equivalence pairs $\langle i, j \rangle$ ♦p. 176, Fig. 4.16
 - \square Phase 2: Begin at 0 and find all pairs of the form <0, j>, where 0 and i are in the same equivalence class.
- ❖ P. 177~178, Program 4.22
 - \Box Let m and n represent the number of related pairs and the number of objects, respectively.
 - ☐ Phase 1: O(m + n) The overall computing time is O(m + n).

Sparse Matrices

- Each column of a sparse matrix is represented as a circularly linked list with a head node.
 - □ A similar representation for each row
- ❖ Node structure for sparse matrices (p. 179, Fig. 4.17)
 - □ A tag field is used to distinguish between head nodes and entry nodes.
 - ☐ The *down* field is used to link into a column list and the *right* field to link into a row list.
 - lacktriangle The head node for row i is also the head node for column i.

Sparse Matrices (contd.)

- Each head node is in three lists: a list of rows, a list of columns, and a list of head nodes.
- The list of head nodes also has a head node that has this node to store the matrix dimensions.
 - □ p. 180, Fig. 4.18; p. 181, Fig. 4.19

Doubly Linked Lists

- Singly linked lists pose problems because we can move easily only in the direction of the links.
 - ☐ Doubly linked lists
- ❖ A node in a doubly linked list has at least three fields.
 - □ A left link field
 - ☐ A data field
 - □ A right link field

Doubly Linked Lists -- Doubly Linked Circular Lists (contd.)

- ❖ A doubly linked list may or may not be circular.
- ❖ A head node allows us to implement our operations more easily.
 - ☐ The item field of the head node usually contains no information.
 - ☐ An empty list is not really empty. (p. 188, Fig. 4.22)
- Insertion and Deletion
 - ☐ In constant time (p. 188~189, Program 4.26 and 4.27)