Op Amp Bandwidth

CIRCUIT

choices.

amplifier.

large.

values!

OP BANDWIDTH1.CIR

edge your op amp can process. A few simple concepts provide insight into an amplifier's bandwidth. And knowing this can help you make better op amp and circuit

Download the SPICE file

THE REAL STORY OF GAIN To understand bandwidth, we must understand the real gain equation. You've probably seen the ideal Closed-Loop voltage gain equation Gcl=vo/vs for a non-inverting

Its all about speed - at least that's what this topic is about. In an ideal world, an op amp

responds accurately and instantly to a change in signal (audio, sensor, video, other). But in the real world, there's a limit on the highest frequency (bandwidth) and fasted

$G_{CL} = \frac{R1 + R2}{R1}$

But, what's the real story including the op amp's internal gain? It actually looks like this $G_{CL} = \frac{A}{1 + A R}$

 $A = \frac{V_O}{(V_{\cdot} - V_{\cdot})}$

$$\beta$$
 - feedback factor - how much of the output is fed back to the negative input
$$\beta = \frac{V_-}{V_D} = \frac{R1}{R1 + R2}$$

Here's the beauty of this equation. Check out what happens to GcL if A is made For A >> (R2+R1) / R1,

$$G_{\rm CZ} \approx \frac{1}{\beta} = \frac{R1 + R2}{R1}$$

The bottom line? **The gain is set by R1 and R2, not the op amp gain** *A***!** (This fact certainly simplifies op amp circuit design.) And consequently, *A* can vary due to initial

So what's the problem with the real gain equation? Although, A is large (+100,000) at lower frequencies, it falls at higher frequencies to well below unity (<<1). And when A drops near (R2+R1) / R1, GcL drops too. The frequency where GcL falls below the ideal gain is called the closed-loop bandwidth fc. CIRCUIT INSIGHT Run a simulation of OP_BANDWIDTH1.CIR.

The closed-loop gain for this circuit is GCL = (10k+10k)/10k = 2 V/ V. Plot the AC

Response for the output at V(4) and open loop gain A using the equation V(4)/(V(2)-

that all is well as long as A >> 2. But when A drops close to GcL, the closed-loop gain

tolerances or temperature drift, but the voltage gain holds rock solid set by the resistor

V(1)). To get a clearer view, select **log** for the Y-Axis. For this particular op amp, A has a DC gain of 100,000 V/V, then falls off above 100 Hz. What about Gcl? You can see

takes a dive.

BANDWIDTH

Note where Gcl begins to drop. The frequency where the voltage falls to 0.707 of its DC value is the cutoff or -3 dB frequency, fc. (Gain in decibels = $20 \cdot \log(0.707)$ = -3dB.) HANDS-ON DESIGN Pick a higher gain. Choose R2 somewhere in the range of 10 k to 10,000 kΩ. Rerun the simulation. Yes, Gc∟ looks great at low frequencies, but what

happened to the bandwidth? Because GcL is essentially bounded by A, the bandwidth

fc gets smaller for a higher gain! Life and circuit design are full of compromise, and

Increase the 100k by a factor of 10 or so. Or, you can increase the bandwidth by decreasing RP1 or CP1 by a factor of 10. Run a new simulation. Did your new op amp extend the bandwidth at V(4)?

Sure, select an op amp with larger A. The op amp model simulates the DC gain A with

NON-INVERTING BANDWIDTH How can you predict the bandwidth at any gain? A simple equation gets you the answer. fc = fu / GN

fu (Unity Gain Frequency) - the frequency where the open-loop gain A

GN (Noise Gain) - the gain from v+ to vo. Note: it's the inverse of the

Why the name "noise gain"? Typically, noise is modeled as a voltage source at the op amps's positive input v+. So the non-inverting gain is used to calculate the resulting

 $G_N = v_O/v_+ = (R_1 + R_2) / R_1 = 1/\beta$

falls to unity (1V/V or 0dB).

feedback factor β .

fc = fu/GN

= 5 MHz

= 10 MHz / 2

gain versus bandwidth is a fine example.

Can you extend the bandwidth GcL?

EGAIN 3 0 1 2 100K.

where

get

output. Does the noise gain equation look familiar? It should! The noise gain same as the closed-loop signal gain for the non-inverting amplifier GN = GCL.

For example, a non-inverting amplifier having a fu = 10 MHz and R1 = R2 = 10k gives a closed-loop gain GCL = 2 and a noise gain of GN = 2. Calculating its bandwidth fc, we

HANDS-ON DESIGN Run a few simulations with various voltage gains of OP BANDWIDTH1.CIR. Plot the AC Response at the output at V(4) and A via the equation V(4)/(V(2)-V(1)). Adjust the gain by varying R2 and R1. You should be able to

The term **fu** is related to the **Gain-Bandwidth-Product (GBP)**. Why? If we rearrange the above equation, we get $fu = GN \times fc = GBP$ Notice, that the product of gain GN and the closed-loop bandwidth fc is constant and bounded by GBP (fu)!

predict the bandwidth at V(4) for any of your chosen gains.

GAIN-BANDWIDTH-PRODUCT

THE INVERTING AMPLIFIER

 $G_{\rm CZ} = -\frac{R2}{R1} \frac{A\beta}{1 + A\beta}$

 $G_{CI} \approx -\frac{R2}{R1}$

inverting amplifier we calculate

fc = fu / GN

/R1 = 2 giving

where A is the internal gain and the feedback factor is

What does this mean? You can't arbitrarily set the gain and bandwidth for a given op amp. Increase the gain GN, and the bandwidth fc will drop to keep GBP constant. Alternatively, if you need a higher bandwidth, then you must choose a lower gain. If you need both higher gain and bandwidth, you're out of luck with this device. You need to pick an op amp with a higher GBP (fu) on its data sheet.

What about the inverting amplifier? The results are similar with a slight twist. Let's start

with it's closed-loop gain equation - significantly different than the non-inverting gain.

 $\beta = R1 / (R1 + R2)$. Note, the feedback factor, $\beta = R1 / (R1+R2)$, is the same for inverting or non-inverting *amplifier*. That's because β is simply the gain of vo to the neg input ($\beta = V$ - / Vo), just like the non-inverting amp. Similar to the non-inverting amplifier, when A is large, the ideal inverting gain is achieved For A >> (R2+R1) / R1,

However, as frequency increases and A drops close to the ideal gain, Gcl begins to drop. How do we predict this frequency where the gain falls off? Similar to the non-

The fc calculation also uses the noise gain. But here's the twist, the noise gain

For example, an op amp having a fu = 10 MHz and R1 = R2 = 10k gives an inverting gain of $G_{CL} = -1$. However, the bandwidth is reduced by the noise gain $G_{N} = (R_1 + R_2)$

signals are amplified by the R2 / R1 ratio, but the bandwidth is knocked down by

Plot the AC Response for the output V(14) and the op amp's internal gain V(14)/V(12). A log plot on the Y-Axis can give a better view. The gain should match the ideal -R2 /

CIRCUIT INSIGHT Try out the inverting amplifier in the OP BANDWIDTH1.CIR.

Here's a showdown between the two classic amplifiers. For the same gain, which amplifier has the greater bandwidth? We'll use a voltage gain of 2 for both circuits.

fu

(GBP)

10 MHz

10 MHz

Noise Gain

(R1+R2) / R1 = 3

PWL(0US 0V 0.01US 1V 100US 1V)

GN

Bandwidth

(R1+R2) / R1 = 2 10 MHz / 2 = 5 MHz

MHz

fc = GBP/GN

10 MHz / 3 = 3.3

for the inverting amp is the same as the non-inverting amp!

 $G_N = v_O/v_+ = (R_1 + R_2) / R_1 = 1/\beta$

Here's the disadvantage of the inverting amplifier:

fc = fu/GN= 10 MHz / 2= 5 MHz

the larger (R1+R2)/R1 ratio.

Gain

R1 = 10 k

R2 = 10 k

R1 = 10 k

R2 = 20 k

SIMULATION NOTES

Components

Amplifier

Non-Inverting

expectations?

SPICE FILE

1

12

0 12

VS

R_2

XOP2

.END

*

Inverting

R1 as long as A is larger than (R1+R2)/R1. HANDS-ON DESIGN Crank up the gain by choosing R2 somewhere in the range of 10 k to 10,000 k Ω . Rerun the simulation. For any gain, GCL should be bounded by A. Does the bandwidth get smaller as you increase gain?

NON-INVERTING VS. INVERTING AMPLIFIER

Closed-Loop

(R1+R2) / R1 = +2

- R2 / R1 = -2 V/V

CIRCUIT INSIGHT Run an AC simulation of OP BANDWIDTH1.CIR.

reach 90% of its final value compared to the inverting output?

Another critical parameter that limits bandwidth is Max Slew Rate.

For a quick review of subcircuits, check out Why Use Subcircuits?

AC 1V

10K

OPAMP1

Gain

GCL

V/V

The bandwidth champion is the non-inverting amplifier for the same absolute gain! However, as gains get larger, this bandwidth difference becomes smaller. Still, all other things being equal, choose the non-inverting amplifier to maximize your bandwidth.

Set the resistors in the non-inverting and inverting amplifiers to values in the table above. Plot the AC output at V(4) and V(14). Did the non-inverting gain live up to

Another way to measure circuit speed is how fast the amplifier responds to a step

signal or the rising / falling edge of a clock signal. Run a simulation and plot the

For a more detailed description of the op amp, see the **Basic Op Amp Model**.

<u>Download the file</u> or copy this netlist into a text file with the *.cir extension.

input. In the real world, the step input represents a quick brightness change in a video

Transient Response at V(4) and V(14). How much faster does the non-inverting output

* * NON-INVERTING AMPLIFIER 10K R1 R2 2 4 10K XOP1 1 2 4 OPAMP1 * INVERTING AMPLIFIER R_1 1 12 10K

* output .SUBCKT OPAMP1 2 6 * INPUT IMPEDANCE RIN 1 2 10MEG * DCGAIN =100K AND POLE1=1/(2*PI*RP1*CP1)=100HZ * GBP = DCGAIN X POLE1 = 10MHZ 3 0 1 2 EGAIN 100K RP1 3 4 1000 CP1 1.5915UF 0 * OUTPUT BUFFER AND RESISTANCE EBUFFER 5 0 4 0 1 ROUT 6 10 .ENDS

<u>top</u>

© 2002-2023 eCircuit Center

* VIEW RESULTS .PROBE

* OPAMP MACRO MODEL, SINGLE-POLE non-inverting input * connections: inverting input

14

14

OP_BANDWIDTH1.CIR - OPAMP BANDWIDTH

* ANALYSIS .AC DEC 5 10 100MEG *.TRAN 0.01US 0.5US

R1. 2 R2 4