

CoolSiC™ 400V CoolSiC™ G2 MOSFET

Features

- Ideal for high frequency switching and synchronous rectification
- Commutation robust fast body diode with low Q_{fr}
- Low R_{DS(on)} dependency on temperature
 Benchmark gate threshold voltage, V_{GS(th)} = 4.5 V
- Recommended gate driving voltage 0 V to 18 V
- .XT interconnection technology for best-in-class thermal performance
- 100% avalanche tested

Potential applications

- SMPS
- Solar PV inverters
- Energy storage, UPS and battery formation
- Class-D audio
- Motor drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC JESD47, JESD22 and J-STD-020.

Table 1 Key performance parameters

Parameter	Value	Unit
V_{DS}	400	V
$R_{\mathrm{DS(on),typ}}$	25.4	mΩ
I_{D}	68	А
$Q_{\rm oss}$	59	nC
E _{oss}	4.2	μЈ
Q_{G}	36	nC

Part number	Package	Marking	Related links
IMLT40R025M2H	PG-HDSOP-16	40R025M2	-

Public

400V CoolSiC™ G2 MOSFET IMLT40R025M2H

Table of contents

Description	1
Maximum ratings	3
Thermal characteristics	4
Operating range	4
Electrical characteristics	5
Electrical characteristics diagrams	7
Test circuits	13
Package outlines	14
Revision history	17
Trademarks	18
Disclaimer	1.9

1 Maximum ratings

at T_A =25 °C, unless otherwise specified

Table 2 Maximum ratings

Parameter	Symbol	Values			l lnit	Note / Test condition
Parameter	Syllibol	Min.	Тур.	Max.		Note / Test condition
Continuous drain current 1)	,			68	Α	$V_{\rm GS}$ =18 V, $T_{\rm C}$ =25 °C
Continuous drain current	I _D	-	_	48	A	V _{GS} =18 V, T _C =100 °C
Pulsed drain current ²⁾	$I_{\rm D,pulse}$	-	-	204	А	<i>T</i> _C =25 °C
Avalanche energy, single pulse 3)	E _{AS}			93	ml	$I_{\rm D}$ =15.7 A, $R_{\rm GS}$ =25 Ω
Avalanche energy, repetitive	E _{AR}			0.47	1113	
Gate source voltage (static)	$V_{\rm GS,DC}$	-7	-	23	V	-
Gate source voltage (transient)	$V_{\rm GS,AC}$	-10	-	25	V	t _{pulse} ≤500 ns, duty cycle≤1%
Power dissipation	P_{tot}	-	-	214	W	<i>T</i> _c =25 °C
Storage temperature	$T_{\rm stg}$	55		150	°C	
Operating junction temperature	T _j	-55	-	175		-

¹⁾ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 2. De-rating will be required based on the actual environmental conditions.

²⁾ See Diagram 3 for more detailed information.

³⁾ See Diagram 19 for more detailed information.

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol		Values		Unit	Note / Test condition
raiametei	Syllibot	Min.	Тур.	Max.		
Thermal resistance, junction - case	R_{thJC}	-	-	0.7	°C/W	-

3 Operating range

Table 4 Operating range

Parameter	Symbol		Values		Unit	Note / Test condition
raianietei	Syllibot	Min.	Тур.	Max.		
Recommended turn-on voltage	$V_{\rm GS(on)}$		18		W	
Recommended turn-off voltage	$V_{\rm GS(off)}$		0		V	-

4 Electrical characteristics

at T_i =25 °C, unless otherwise specified

Table 5 Static characteristics

Parameter	Symbol	Values			l lmit	Note / Took oou dition
Parameter	Symbol	Min.	Тур.	Max.	Onic	Note / Test condition
Drain-source breakdown voltage	$V_{(BR)DSS}$	400	-	-	V	$V_{\rm GS}$ =0 V, $I_{\rm D}$ =0.56 mA
Gate threshold voltage ⁴⁾	$V_{\rm GS(th)}$	3.5	4.5	5.6	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 5.6 \rm mA$
Zoro gato voltago drain current	1		1	75		V _{DS} =400 V, V _{GS} =0 V, T _j =25 °C
Zero gate voltage drain current	I _{DSS}	-	2	-	μΑ	$V_{\rm DS}$ =400 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C $V_{\rm DS}$ =400 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =175 °C
Gate-source leakage current	I_{GSS}	-	1	100	nA	$V_{\rm GS}$ =20 V, $V_{\rm DS}$ =0 V
			25.4	32.1		$V_{\rm GS}$ =18 V, $I_{\rm D}$ =15.7 A, $T_{\rm j}$ =25 °C
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	-	36.5	-	mΩ	$V_{\rm GS}$ =18 V, $I_{\rm D}$ =15.7 A, $T_{\rm j}$ =175 °C
			31.1	-		$V_{\rm GS}$ =15 V, $I_{\rm D}$ =15.7 A, $T_{\rm j}$ =25 °C
Gate resistance	R_{G}	-	3.3	-	Ω	-

⁴⁾ Tested after 1ms pulse at V_{GS} = +20V.

Table 6 Dynamic characteristics

Davamakar	Symphol	Values			I I mit	Note / Test condition
Parameter	Symbol	Min.	Тур.	Max.	Onic	Note / Test condition
Input capacitance	C _{iss}		1200			
Output capacitance	C_{oss}	_	180	-	pF	V _{GS} =0 V, V _{DS} =200 V, <i>f</i> =1 MHz
Reverse transfer capacitance	C _{rss}		14			
Effective output capacitance, energy related ⁵⁾	$C_{\rm o(er)}$	-	211	-	pF	V _{GS} =0 V, V _{DS} =0200 V
Effective output capacitance, time related ⁶⁾	$C_{\rm o(tr)}$	-	290	-	рF	$I_{\rm D}$ =constant, $V_{\rm GS}$ =0 V, $V_{\rm DS}$ =0200 V
Turn-on delay time ⁷⁾	t _{d(on)}		12.5		ns	$V_{\rm DD}$ =200 V, $V_{\rm GS}$ =018 V, $I_{\rm D}$ =15.7 A, $R_{\rm G,ext}$ =1.8 Ω
Rise time ⁷⁾	t _r]-	11.9]-	ns	
Turn-off delay time ⁷⁾	$t_{\sf d(off)}$		19.9		ns	$V_{\rm DD}$ =200 V, $V_{\rm GS}$ =180 V, $I_{\rm D}$ =15.7 A,
Fall time ⁷⁾	$t_{\rm f}$	-	7.9	-	115	$V_{\rm DD}$ =200 V, $V_{\rm GS}$ =180 V, $I_{\rm D}$ =15.7 A, $R_{\rm G,ext}$ =1.8 Ω

 $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 200 V.

⁶⁾ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 200 V.

⁷⁾ Refer to Table 9 for test setup.

Table 7 Gate Charge Characteristics 8)

Parameter	Symbol	Values			l lni+	Note / Test condition
raiailletei	Syllibot	Min. Typ. Max		Max.	Oilit	Note / Test condition
Gate to source charge	Q_{gs}		9.8			
Gate to drain charge	Q_{gd}	4	7.5	- nC	nC	$V_{\rm DD}$ =200 V, $I_{\rm D}$ =15.7 A, $V_{\rm GS}$ =0 to 18 V
Gate charge total	Q_{g}		36			
Gate charge total, sync. FET	$Q_{\rm g(sync)}$	-	34	-	nC	V _{DS} =0.1 V, V _{GS} =0 to 18 V
Output charge	$Q_{\rm oss}$		59		nC	I/ -200 V I/ -0 V
Output Energy	E _{oss}]_	4.2	_	μJ	$V_{\rm DS}$ =200 V, $V_{\rm GS}$ =0 V

 $^{^{8)}}$ $\,$ As per JEP192, Guidelines for Gate Charge ($Q_{\rm G}$) Test Method for SiC MOSFET.

Table 8 Reverse diode characteristics

Devenueles	Complete	Values			11	Note / Test can dition
Parameter	Symbol	Min.	Тур.	ур. Мах.		Note / Test condition
Diode continuous forward current	I _S	-	-	32	Α	<i>T</i> _C =25 °C
Diode pulse current	I _{S,pulse}	-	-	204	Α	$T_{\rm C}$ =25 °C, $t_{\rm pulse}$ ≤250 ns
Diode forward voltage	$V_{\rm SD}$	-	3.5	4.3	V	$V_{\rm GS}$ =0 V, $I_{\rm S}$ =15.7 A, $T_{\rm j}$ =25 °C
MOSFET forward recovery time	t _{fr}	-	13.6	ns		$V_{\rm R}$ =200 V, $I_{\rm S}$ =15.7 A, d $i_{\rm S}$ /d t =1000 A/ μ s
			8.9		115	$V_{\rm R}$ =200 V, $I_{\rm S}$ =15.7 A, d $i_{\rm S}$ /d t =4000 A/ μ s
MOSEET forward management of a grap 9)			55		nC	$V_{\rm R}$ =200 V, $I_{\rm S}$ =15.7 A, d $i_{\rm S}$ /d t =1000 A/ μ s
MOSFET forward recovery charge ⁹⁾	harge ⁹⁾ Q _{fr}		116]-	110	$V_{\rm R}$ =200 V, $I_{\rm S}$ =15.7 A, d $i_{\rm S}$ /d t =4000 A/ μ s

⁹⁾ $Q_{\rm fr}$ includes $Q_{\rm oss}$. Refer to Table 10 for test setup.

5 Electrical characteristics diagrams

6 Test circuits

Table 9 Switching times

Table 10 Body diode characteristics

7 Package outlines

Figure 1 Outline PG-HDSOP-16, dimensions in mm

Figure 2 Footprint drawing PG-HDSOP-16, dimensions in mm

All dimensions are in units mm

The drawing is in compliance with ISO 128-30, Projection Method 1 [

Figure 3 Packaging variant PG-HDSOP-16, dimensions in mm

Public

400V CoolSiC™ G2 MOSFET IMLT40R025M2H

Revision history

IMLT40R025M2H

Revision 2025-07-15, Rev. 1.0

Previous revisions

Revision	Date	Subjects (major changes since last revision)
1.0	2025-07-15	Release of final datasheet

Public

400V CoolSiC™ G2 MOSFET IMLT40R025M2H

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon. General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).