3. izpit iz Uvoda iz geometrijske topologije

10. 9. 2019

Veliko uspeha!

1. naloga (10 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna

P

oziroma napačna

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Vsaka mnogoterost je lokalno povezana.

Ploskev, ki jo predstavlja beseda $abcda^{-1}b^{-1}c^{-1}d^{-1}$, je povezana vsota dveh torusov.

Kvocientni prostor 1-števnega prostora je 1-števen.

Zvezna injektivna preslikava $f \colon (-1,1) \to \mathbb{R}^2$ je odprta preslikava.

Naj grupa G deluje na topološki prostor X. Tedaj je kvocientna preslikava $q\colon X\to X/G$ zaprta preslikava.

Če je X retrakt krogle \mathbb{B}^3 , ima X lastnost negibne točke.

Vsak neprazen povezan podprostor evklidske premice \mathbb{R} je absolutni ekstenzor za razred normalnih prostorov.

Naj bo $A \subset \mathbb{R}^2$, $B \subset \mathbb{R}^3$. Če sta A in B homeomorfna, ima B prazno notranjost v \mathbb{R}^3 .

2. naloga (20 točk)

Naj bo X prostor zveznih funkcij $\mathcal{C}(\mathbb{R}^2, \mathbb{R}^2)$ opremljen s kompaktno odprto topologijo. Naj bo $A = \{ f \in X \mid f(\mathbb{R}^2) \subset \mathbb{R} \times \{0\} \}.$

- 1. Ali je množica A odprta ali zaprta v X?
- 2. Ali je A retrakt prostora X?

Vse odgovore utemelji!

3. naloga (20 točk)

Naj bo $X = \mathbb{S}^1 \cup \{(x,y) \in \mathbb{R}^2 \mid xy = 0\}, G = \mathbb{S}^0 \times \mathbb{S}^0$ in $H = \mathbb{Z}$. Naj bo $r \colon \mathbb{R}^2 \to \mathbb{R}^2$ podana s predpisom r(x,y) = (y,-x). Grupa G deluje na X s predpisom (s,t)(x,y) = (sx,ty), grupa H pa deluje s predpisom $t(x,y) = r^t(x,y)$. Poišči podprostora ravnine, ki sta homeomorfna prostoroma orbit X/G in X/H. Odgovora utemelji!

4. naloga (20 točk)

Naj bo $a\in\mathbb{R}$ in naj bo $X_a=\{(x,y,z)\in\mathbb{R}^3\mid z=x^2+y^2\}\cup(\mathbb{B}^2\times\{a\})$

- 1. Poišči potreben in zadosten pogoj na a, da bo X_a absolutni ekstenzor za razred normalnih prostorov.
- 2. Poišči potreben in zadosten pogoj na a, da bo X_a mnogoterost.

Vse odgovore utemelji!