

Sistemas de Visão e Percepção Industrial

Trabalho Prático nº 3 - Maio/Junho 2020 Sistema Automático de Inspeção de Placa de Circuito Impresso

Objetivos

Desenvolvimento de uma aplicação em Sherlock que, pela análise de uma sequência de imagens, elabore um registo de leituras e inconformidades presentes em imagens de placas de circuito impresso. O registo consiste num ficheiro ASCII (com o nome TP3_nnnnn.txt, onde nnnnn representa o número mecanográfico do aluno) em que cada entrada deve estar numa linha (separação com *newline*: \n), e cada campo de cada entrada deve estar separado do anterior por uma vírgula.

Propriedades e inconformidades a inspecionar nas imagens

As imagens a processar estarão em sequência e serão variáveis em posição e orientação. A figura 1 contém a imagem de referência e ilustra a placa com os elementos no estado normal, incluindo um número de identificação que surgirá num dos 4 cantos da imagem.

Figura 1: Imagem da placa de referência completa e sem inconformidades.

As imagens poderão apresentar várias indicações ou inconformidades que devem ser detetadas se presentes na imagem. O objeto principal é o circuito integrado (CI) e muitas inconformidades estão-lhe diretamente relacionadas; mas também há características relativas à placa restante. A lista completa de indicadores a extrair da imagem é a seguinte:

Sigla	Descrição	Valor nominal	Variação
NI	Número da imagem	_	_
SOK	Número de setas nas posições corretas na imagem	3	0 - 3
SNOK	Número de setas fora das posições corretas da imagem	0	0,1,2,
XFUR	Número de furos em excesso ligados aos pinos do CI	0	0,1,2,
PNTOP	Número de pinos corretos na parte de cima do CI	14	0 - 14
PNBOT	Número de pinos corretos na parte de baixo do CI	14	0 - 14
PNCC	Número total de pinos fora dos locais corretos	0	0 - 26
CTRKA	Número de pistas cortadas na zona A da placa	0	0 - 13
CTRKB	Número de pistas cortadas na zona B da placa	0	0 - 10
STR	String central do chip	LC3664NML	Subconjunto

Na figura 2 ilustram-se as diversas fontes de inconformidades:

Figura 2: Imagem da placa com um elevado numero de inconformidades.

NI	SOK	SNOK	XFUR	PNTOP	PNBOT	PNCC	CTRKA	CTRKB	STR
2101	2	3	2	11	10	2	5	7	L3664NML

Formato do ficheiro de (in)conformidades a gerar

O programa em Sherlock, quando executado, deve gerar um ficheiro com o nome TP3_nnnnn.txt onde em cada linha deverão figurar as campos da inspeção separados por vírgulas e na seguinte ordem:

NM, NI, SOK, SNOK, XFUR, PNTOP, PNBOT, PNCC, CTRKA, CTRKB, STR

Sigla	significado	
NM	Número mecanográfico do aluno.	
NI	Número da imagem a extrair da própria imagem por OCR. Parâmetro obrigatório sem o qual nenhum dos outros poderá ser bem avaliado.	
SOK	Número de setas nas posições corretas na imagem.	
SNOK	Número de setas fora das posições corretas da imagem.	
XFUR	Número de furos em excesso ligados aos pinos do circuito integrado (CI). Trata-se de furos para além dos de referência que estão ligados a um pino ou a outro furo ligado a um pino.	
PNTOP	Número de pinos corretos na parte de cima do CI quando está horizontal e com as letras direitas. Num CI sem inconformidades são 14 pinos.	
PNBOT	Número de pinos corretos na parte de baixo do CI quando está horizontal e com as letras direitas. Num CI sem inconformidades são 14 pinos.	
PNCC	Número total de pinos fora dos locais corretos. São pinos que acidentalmente foram colocados nos espaços entre pinos corretos definidos pela referência.	
CTRKA	Número de pistas cortadas na zona A da placa (região cima-esquerda). Podem ocorrer apenas na parte vertical das 13 linhas mais próximas do CI.	
CTRKB	Número de pistas cortadas na zona B da placa (à direita). Podem ocorrer apenas na parte	
	horizontal das 10 pistas mais próximas do CI.	
STR	String central do chip até ao traço, exclusive. Os espaços não se representam. Pode ser qualquer subconjunto da string completa do CI até ao traço (exclusive).	

As zonas A e B da imagem são ilustradas na figura 3.

Figura 3: Zonas A e B da placa onde poderão surgir pistas cortadas.

Quando não for possível avaliar uma inconformidade pelo facto de essa parte imagem estar fora dos limites e portanto invisível, essa inconformidade contribuirá com valor 0.

Critérios principais de avaliação do trabalho

- 1. Grau de adequação do ficheiro de conformidades à sequência de imagens a fornecer.
- 2. Eficiência e robustez do software desenvolvido. Também serão escrutinadas situações de plágio.

A avaliação de cada parâmetro é feita de forma proporcional aos acertos relativos por uma fórmula base similar a: $nota = 100\% \times \left(1 - \frac{\text{abs}(solucao-resposta_{aluno})}{\text{max}(1,solucao)}\right)$

A esta fórmula podem ser aplicados minorantes se o desvio for considerado excessivo. Isto é, se o desvio da resposta for superior a um determinado fator em relação ao desvio médio entre todas as imagens de avaliação, a nota para essa resposta será zero (falha grave de inspeção).

Indicações e Recomendações

O que deve ser entregue para avaliação Será entregue um único ficheiro (arquivo zip, rar, etc.) com todos os ficheiros criados (a investigação Sherlock e ficheiros anexos criados pelo próprio programa). Para isso, cada aluno deve criar uma pasta específica e nela desenvolver o trabalho – sugere-se usar o número mecanográfico como o nome da pasta. Esta recomendação deve-se ao facto do Sherlock criar ficheiros auxiliares também para entregar.

O ficheiro TP3_nnnnn.txt resultante da execução deve ser criado na pasta C:\tmp Esta recomendação é imperativa porque se for especificado um caminho (path) não existente no computador onde é executado, o ficheiro pode não ser criado e logo NÃO poderá haver avaliação. Os nomes das pastas e ficheiros indicados no enunciado são para cumprir exatamente conforme expresso.

O ficheiro a entregar dever ser um arquivo (zip, rar, ou similar) de toda a pasta do trabalho Esta recomendação é imperativa porque o Sherlock pode criar ficheiros associados à investigação (*.ivs) que são essenciais ao bom funcionamento do programa. Os resultados do programa podem ser dramaticamente alterados se esses ficheiros auxiliares não existirem. O nome do arquivo a entregar deve ser TP3_nnnnn.zip, onde nnnnn é o número mecanográfico do aluno.

A versão de Sherlock onde os trabalhos serão testados é a v7.2.7 colocada on-line Programas criados com versões diferentes poderão não funcionar, donde devem ser evitadas. As configurações a usar serão as de defeito de instalação. AEm particular, os ângulos serão em radianos!

As imagens a processar devem estar na pasta C:\imgtp3\ Esta recomendação é importante para uniformizar o nome e a localização das imagens para a execução. Os alunos devem criar esta pasta nos seus computadores e dar este caminho para a sequência de imagens que o Sherlock lerá.

Figura 4: Janela do Sherlock que mostra o local de onde se deve carregar a sequência a inspecionar.

Não são dadas indicações de quantas imagens o programa terá de processar, mas recomenda-se a paragem do programa ao fim de 20 imagens.

No processo de carregamento de imagens da sequência, o tempo de atraso entre imagens sucessivas deve ser pequeno (recomenda-se 30 ms) para que a execução total do programa não se prolongue excessivamente; na sequência da recomendação anterior, o programa deve forçosamente parar a execução depois de ter processado 20 imagens.