

Ligação Iônica

Características

O átomo de sódio transfere o seu elétron mais externo para o átomo de cloro

CI

Lei básica:

Ligações químicas Ocorrem desde que

Sistema atinja maior estabilidade (menor nível de energia)

Os íons possuem configurações eletrônicas mais estáveis como a conhecida configuração de gás nobre, mas há outras configurações também estáveis

Ligações iônicas

- Encontrada nos compostos cuja composição envolve tanto elementos metálicos como não-metálicos, ou seja, elementos localizados nas extremidades horizontais da tabela;
- A ligação iônica é denominada não-directional (a magnitude da ligação é igual em todas as direções ao redor de um íon);
- Todos os íons positivos devem possuir como vizinhos mais próximos íons negativamente carregados (material estável);
- Energias de ligação relativamente elevadas → materiais duros, frágeis, isolantes térmico e elétrico e alto ponto de fusão;
- É a ligação predominante em materiais cerâmicos.

Características de compostos

iônicos

Ligação não direcional todos os íons estão ligados Ligação onipresente

Sólidos cristalinos : ordem na estrutura

Sódio metálico

Gás cloro

Cloreto de sódio

Elevados pontos de fusão e ebulição

<u>Dureza elevada</u>, via de regra,

São frágeis quando solicitados mecanicamente

Alta energia de de ligação Coulomb

Natureza eletrostática

- Não conduzem corrente elétrica enquanto sólidos, mas sim quando fundidos Movimento das espécies iônicas
- Dissolvem-se em água e solventes polares

FIGURA 4.2 Representação da estrutura cristalina do cloreto de sódio (NaCℓ).

Ligações metálicas

- Os elementos metálicos são átomos eletropositivos dispostos a doar seus elétrons de valência;
- Os elétrons de valência movem-se livremente e por isso os metais são bons condutores de eletricidade a baixa temperatura;
- Os núcleos, positivamente carregados, ficam unidos pela atração mútua com os elétrons, produzindo uma forte ligação metálica;
- Apresentam boa ductilidade, pois suas ligações não são direcionais.

Características e propriedades da ligação metálica

- São não direcionais
- Força da ligação metálica depende dos cátions
- Brilho interação dos elétrons com os diversos comprimentos de onda
- Condução de eletricidade
- Condução de calor
 - A vibração dos cátions no reticulado cristalino contribui para a diminuição da condutividade elétrica.

Ligações covalentes

- Ligações por compartilhamento dos elétrons de valência;
- Para que sejam formadas, os átomos devem estar dispostos de modo que tais ligações tenham uma relação direcional fixa;
- As ligações covalentes podem ser bastante fortes → materiais muito resistentes e duros (diamante, SiC, nitreto de silício, NB...) ou muito fracas (polímeros);
- Os materiais com essas ligações apresentam baixa condutividade elétrica.

LIGAÇÕES IÔNICAS E COVALENTES - CONSIDERAÇÕES

- Muito poucos compostos exibem ligação iônica e covalente puras;
- O grau do tipo de ligação depende da eletronegadividade dos átomos constituintes;
- Quanto maior a diferença nas eletronegatividades mais iônica é a ligação;
- Quanto menor a diferença nas eletronegatividades mais covalente é a ligação.

PORQUE ESTUDAR CIÊNCIA DOS MATERIAIS ???

"A classificação tradicional dos materiais é geralmente baseada nas estruturas atômica e química destes".

- Metais
- Cerâmicas
- Polímeros
- Compósitos
- Semicondutores
- Biomateriais

Classificação tradicional

TEORIA DE MATERIAIS DE CONSTRUÇÃO

- Materiais metálicos são geralmente uma combinação de elementos metálicos
- Os elétrons não estão ligados a nenhum átomo em particular e por isso são bons condutores de calor e eletricidade
- Não são transparentes à luz visível
- Têm aparência lustrosa quando polidos
- Geralmente são resistentes e deformáveis
- São muito utilizados para aplicações estruturais

Os metais na tabela periódica

18	_																<u> </u>
L																	2
Η	II A											III A	N A	V A	V [A	VII A	H≓
3	4											5	ń	7	R	Ĵ	10
Li	Во											В	U	И	0	F	Nο
11	12							VIIII				10	14	15	16	ן [18
Na	Мђ	III B	NΒ	V E	VIB	VIIB	<u> </u>		٦	ΙB	IJВ	All	Si	7	3	CL	ÀГ
15	20	2.1	5.3	5.3	24	25	26	27	78	29	30	31	32	33	37	35	36
K	Ca	30	Ε.	V	α	Mn	Fe	ထ	Ni	Сu	ZL	Эа	F	As	3e	Вι	Kı
27	38	39	40	41	42	43	44	45	46	47	48	49	20	21	52	53	54
RЪ	Sr	Y	Zr	Nb	Mo	Tο	Ru	Rh	Га	Δ_8	Ωč	In	Σ'n	ВЪ	Tс	I	$X_{\mathbb{R}}$
22	56	57	72	73	74	75	76	77	78	70	80	81	82	83	84	85	86
Cis	Ba	Тa	ΗF	Та	₩	Re	Os	T-	Pt	411	Fg	Tl	Ph	B.	Pο	At	Rn
87	88	89															
Fr	Ra	Ac															

# S	59	K0	61	62	63	64	55	rrr.	67	68	46	70	71
Co	Pr	Nd	Рm	Sm	Eu	Gd	ТЪ	Οy	Нo	Er	Tm	УЪ	Lu
50	91	92	93	94	95	95	97	98	99	100	tot	102	133 Lw
Th	Pa	נ	Νp	Pa	Am	C'm	Зk	CY	Es	Fm	Md	No	Lw

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Cerâmicas

- Materiais cerâmicos são geralmente uma combinação de elementos metálicos e nãometálicos
- Geralmente são óxidos, nitretos e carbetos
- São geralmente isolantes de calor e eletricidade
- São mais resistêntes à altas temperaturas e à ambientes severos que metais e polímeros
- Com relação às propriedades mecânicas as cerâmicas são duras, porém frágeis
- Em geral são leves

TEORIA DE MATERIAIS DE CONSTRUÇÃO

OS MATERIAS CERÂMICOS NA TABELA PERIÓDICA

±8	59	60	61	62	63	64	55	ffi.	67	68	ķά	70	71
Co	Pr	Nd	Рm	Sm	Eu	Gd	հճ Ծ	Οy	Нo	Er	Tm	YЪ	Lu
50	91	92	93	94	95	95	97 3k	98	99	100	101	102	103
Th	Pa	ט	Иþ	Pa	Am	C'rr.	Вk	CY	Es	Fm	Md	No	Lw

Os cerâmicos são constituídos de metais e não-metais

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Polímeros

- Materiais poliméricos são geralmente compostos orgânicos baseados em carbono, hidrogênio e outros elementos não-metálicos
- São constituídos de moléculas muito grandes (macromoléculas)
- Tipicamente, esses materiais apresentam baixa densidade e podem ser extremamente flexíveis
- Materiais poliméricos incluem plásticos e borrachas

Os polímeros na tabela periódica

18																	D
L																	2
H	II A			A JIVA IV A VI A UI												VII A	H≓
3	1	•										ñ	ń	7	- 8	3	10
Li	Вс											В	C	И	0	F	Nο
11	12	•						Y.				12	14	15	16]7	18
Na	Μз	III B	ΝB	VΕ	VIB	E E.V	(١	IВ	IJВ	Al.	Si	?	3	IC'L	Ar
15	20	21	33	33	34	25	26	27	28	29	30	31	33	23	37	35	36
K	Ca	3с	Τ.	V	α	Mn	F∍	ထ	Ni	Cu	Zr	Эа	Оte	As	3e	Вι	Kι
27	38	39	40	4.	42	43	44	45	46	47	48	49	20	21	52	53	54
КЪ	Sī	Y	Z:	No	Мо	Тэ	Ru	Rh	Γď	Δ_8	Cá	In	٤'n	SP	Тс	I	Χэ
22	56	57	72	73	74	75	76	77	78	70	80	81	82	83	84	85	86
Cs	Ba	Īа	Ηf	Га	₩	R∍	Os	T-	Pt	411	Fa	Tl	Pħ	R.	Pο	At	Rn
87	88	89															
Гī	Ra	Αc	_														

fβ	59	Nd	Гът	62	63	64	մ5	nn	ñ?	Er	Ľm	70	71
Co	Pa	nn	Г	Sm	Eu	Gd	ТЪ	Oy	Eo	Er	Tm	YB	Lu
50	91	92	93	94	95	95	97	98	99	100	101	102	133
Th	Pa	"J	Np	Pa	Am	Cm.	3k	CY	Es	Fna	Ma	No	Lw

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Compósitos

- Materiais compósitos são constituídos de mais de um tipo de material insolúveis entre si.
- Os compósitos são "desenhados" para apresentarem a combinação das melhores características de cada material constituinte
- Muitos dos recentes desenvolvimento em materiais envolvem materiais compósitos
- Um exemplo classico é o compósito de matriz polimérica com fibra de vidro. O material compósito apresenta a resistência da fibra de vidro associado a flexibilidade do polímero

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Semicondutores

- Materiais semicondutores apresentam propriedades elétricas que são intermediárias entre metais e isolantes
- Além disso, as características elétricas são extremamente sensíveis à presença de pequenas quantidades de impurezas, cuja concentração pode ser controlada em pequenas regiões do material (para formar as junções p-n)
- Os semicondutores tornaram possível o advento do circuito integrado que revolucionou as indústrias de eletrônica e computadores
- Ex: Si, Ge, GaAs, InSb, GaN, CdTe...

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Biomateriais

- Biomateriais são empregados em componentes para implantes de partes em seres vivos
- Esses materiais não devem produzir substâncias tóxicas e devem ser compatíveis com o tecido humano (isto é, não deve causar rejeição)
- Metais, cerâmicos, compósitos e polímeros podem ser usados como biomateriais

