FAST 74F133

FAST Products

PRODUCT SPECIFICATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F133	4.0ns	2.0 mA

ORDERING INFORMATION

	ORDER CODE					
DESCRIPTION	COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%,$ $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$	INDUSTRIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = -40° C to +85 $^{\circ}$ C				
16–pin plastic DIP	N74F133N	174F133N				
16–pin plastic SO	N74F133D	I74F133D				

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D _O - D ₁₂	Data inputs	1.0/1.0	20μA/0.6mA
Q	Data output	50/33	1.0mA/20mA

Note to input and output loading and fan out table

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

^{1.} One (1.0) FAST unit load is defined as: 20µA in the high state and 0.6mA in the low state.

FAST 74F133

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS									OUTPUT				
DO	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	Q
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Any one input = L									Н			

July 2, 1993 2

FAST 74F133

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the

operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT	
V _{CC}	Supply voltage	upply voltage			
V _{IN}	Input voltage	-0.5 to +7.0	V		
I _{IN}	Input current	−30 to +5	mA		
V _{OUT}	Voltage applied to output in high output state	−0.5 to V _{CC}	V		
I _{OUT}	Current applied to output in low output state		40	mA	
T _{amb}	Operating free air temperature range	Commercial range	0 to +70	°C	
		Industrial range	-40 to +85	°C	
T _{stg}	Storage temperature range		-65 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			UNIT		
			MIN	NOM	MAX	1
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
V _{IH}	High-level input voltage		2.0			V
V _{IL}	Low-level input voltage				0.8	V
I _{lk}	Input clamp current				-18	mA
I _{OH}	High-level output current				-1	mA
I _{OL}	Low-level output current				20	mA
T _{amb}	Operating free air temperature range	Commercial range	0		+70	°C
		Industrial range	-40		+85	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITION	LIMITS			UNIT	
							MAX	
V _{OH}	High-level output voltage		V _{CC} = MIN, V _{IL} = MAX	±10%V _{CC}	2.5			V
			V _{IH} = MIN, I _{OH} = MAX	±5%V _{CC}	2.7	3.4		V
V _{OL}	Low-level output voltage		V _{CC} = MIN, V _{IL} = MAX	±10%V _{CC}		0.35	0.50	V
			$V_{IH} = MIN, I_{OI} = MAX$	±5%V _{CC}		0.35	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$	-		-0.73	-1.2	V
l _l	Input current at maximum input vo	oltage	$V_{CC} = MAX, V_I = 7.0V$				100	μΑ
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
I _{IL}	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA
I _{OS}	Short-circuit output current ³		V _{CC} = MAX	-60		-150	mA	
Icc	Supply current (total)	I _{CCH}	V _{CC} = MAX	•		1.0	2.0	mA
		Iccl	V _{CC} = MAX			2.5	4.0	mA

NOTES:

July 2, 1993 3

^{1..} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

^{2.} All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$.

^{3..} Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

FAST 74F133

AC ELECTRICAL CHARACTERISTICS

			LIMITS							
SYMBOL	CVMPOI DADAMETED			nb = +25		T _{amb} = +70)°C	$T_{amb} = -40^{\circ}$		
SYMBOL	PARAMETER	TEST CONDITION	V_{CC} = +5.0V C_L = 50pF, R_L = 500 Ω		V_{CC} = +5.0V \pm 10% C_L = 50pF, R_L = 500 Ω		V_{CC} = +5.0V \pm 10% C_L = 50pF, R_L = 500 Ω		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Dn to Qn	Waveform 1	2.0 2.5	4.0 4.5	7.0 7.5	1.5 2.0	7.5 8.0	1.5 2.0	7.5 8.0	ns

AC WAVEFORMS

Note to AC Waveforms

1. For all waveforms, $V_M = 1.5V$.

TEST CIRCUIT AND WAVEFORMS

see AC electrical characteristics for value.

 $R_T =$ Termination resistance should be equal to Z_{OUT} of pulse generators.

family	INPUT PULSE REQUIREMENTS								
family	amplitude	ν _M	rep. rate	t _w	t _{TLH}	t _{THL}			
74F	3.0V	1.5V	1MHz	500ns	2.5ns	2.5ns			

July 2, 1993