Gym Member Churn Analysis

Simran Karamchandani, Roselyn Rozario, Mathew Spencer Linear and Non-Linear Models | ADSP 31010 | Winter 2024

Agenda

Introduction

Exploratory Data Analysis

Model Selection

Explainable Al Methods

Business Value & Final Thoughts

Organization

ABC Fitness is a high-end fitness club in Chicago. It provides thousands of members with access to a wide range of exercise equipment, group classes, a café, and other amenities.

Challenge

ABC Fitness is experiencing elevated membership churn, which is pressuring financial results and threatening the viability of the business.

Business Data Strategy

Our goal is to reduce churn rates by identifying members likely to churn through a mix of linear and non-linear modeling techniques and developing targeted retention strategies based on feature importance learnings from our Explainable Al solutions.

Proactively address and minimize membership churn through implementation of linear and non-linear modeling techniques.

Novelty

There are plenty of commercial gyms in the U.S., but ABC Fitness's circumstances (e.g., location, amenities, membership mix) require a unique data analytics strategy

Monetary Value

Cost Savings

Pricing Optimization

- Finding new members is expensive
- Better develop pricing strategies catered to level of customer engagement

Data-Driven Decision Making

Personalized Experience

Resource Optimization

- Offer services and promotions that will peak customer interest
- Allocate resources towards favored activities

Data Overview

EDA

Quality Concerns:

- No missing values
- Narrow age range

Gender Location Partner Referral Phone Age Lifetime Contract Period Group

of Months to end Total Frequency Current Frequency Additional Charges

Less additional charges

Less frequent

Less committed

LOGISTIC REGRESSION

RANDOM FOREST

PROS	 Highly interpretable Robust Computationally efficient 	 Works well with heterogeneous data Robust
CONS	 Susceptible to overfitting Suboptimal for complex relationships Limited applications 	 Less efficient Performance degradation with high dimensionality Harder to interpret

Logistic Regression

Fit initial model with all **13** features

Implemented recursive feature elimination (RFE) for optimization of model

Reduced model to 6 defining features

Random Forest Modeling (RFM)

Model Selection

Logistic Regression vs. Random Forest

↑ Precision ~ ↑ # of True Positives

Explainable Boosting Machine (EBM) vs. General Additive Models (GAMs)

Explainable Al

Explainable Al

Local Interpretable Model-Agnostic Explanations (LIME)

Feature Insight Model-Independent Transparency

- 1. Selection of instance
- 2. Use **RFM** to make predictions
- 3. Approximate **weighted** distance
- 4. Fit model
- 5. Analyze **influential** coefficients

SHapley Additive exPlanations (SHAP)

Explainable Al

Feature Insight

Model-Independent

Model Validation

- 1. Train **logistic regression** model
- 2. Generate **SHAP values** from explaining model
- 3. Summarize **effects** of each variable based on predictions

Models Comparison

	Linear		Non-Linear	Explainable Al	
Metric	Logistic Regression	Logistic Regression with RFE	Random Forest	EBM	GAM
Accuracy	0.92	0.93	0.92	0.95	0.93
Correct Prediction Rate (Precision)	0.88	0.89	0.86	0.93	0.89
Missed Opportunity Rate (Recall)	0.82	0.82	0.80	0.88	0.84
Overall Performance Score (F1-Score)	0.85	0.85	0.83	0.90	0.86
ROC AUC	0.89	0.89	0.88	0.93	0.90

Ensemble Model

- Combination of linear and non-linear techniques with Explainable AI
 - Logistic Regression with RFE
 - Random Forest
 - Explainable Boosting Mechanism (EBM)

Metric	Model	
Accuracy	0.92	
Correct Prediction Rate (Precision)	0.88	
Missed Opportunity Rate (Recall)	0.82	
Overall Performance Score (F1-Score)	0.85	
ROC AUC	0.89	

Proposed Model & Explainable Al

Logistic Regression with RFE

- Selection of subset of influential features
- Simplifies model and computational complexity

Random Forest

 Random Forest can detect nonlinear patterns and provide highly accurate models.

Explainable Boosting Mechanism (EBM) Illustrates impact of

- Illustrates impact of each feature on model's predictions through summation
- Higher accuracy ~ strong in making correct predictions

Business Considerations

Business Value & Final Thoughts

KEY INSIGHTS

Does not get a discount through their workplaces.

Does not sign up through a friend's promo/referral option.

Signs up for a 1-month contract period.

Does not take part in group-related activities.

Typically visits less than 3 times in a week.

When there isn't long left in the contract period.

NOTEWORTHY TRENDS

High churn rates amongst those within the 20-to-30-year-old age range.

High churn rates when the average additional charges total ranges between \$0 to \$300.

In order to minimize gym membership churn, ABC Fitness will need to focus on cost for customers, frequency of visits, and sign-up/contract options.

- Offering Activities (i.e., Zumba Classes)
- Fitness Challenges

Long-Term Discounts

- Student Discounts
- Corporate Discounts

Loyalty/Rewards Programs

- Points-Based Rewards
- Referral Bonuses
- Personal Training Packages
- Exclusive Access
- Attendance Milestones

Sign-Up/Contract Options

- Special Sign-Up Offers
- DiscountedContract Promos

Recap

Completeness/Substance:

- Examined Linear & Non-Linear techniques
- Incorporated Explainable Al Methods
- Customer data trained, tested, and split
- Key insights noted from modeling techniques and Explainable Al methods

Project Design:

- Ensemble model is a result of highly accurate models that were chosen from the modelling approach process and incorporates several techniques, resulting in reliable predictions
- Thought-process behind ensemble model is what makes the project design sound and well-chosen

Thank you!

Simran Karamchandani, Roselyn Rozario, Mathew Spencer

Linear and Non-Linear Models | ADSP 31010 | Winter 2024

