Notes on the book: $A postol, \ Introduction \ to \ Analytic \\ Number \ Theory$

Meng-Gen Tsai plover@gmail.com

July 26, 2021

Contents

Chapter 1: The Fundamental Theorem of Arithmetic
Exercise 1.15
Exercise 1.30
Chapter 2: Arithmetical functions and Dirichlet multiplication
Exercise 2.3
Exercise 2.4

Chapter 1: The Fundamental Theorem of Arithmetic

Exercise 1.15.

Prove that every $n \geq 12$ is the sum of two composite numbers.

Proof. Write n=2m (resp. n=2m+1) where $m\in\mathbb{Z},\ m\geq 6$. Then n=8+2(m-4) (resp. n=9+2(m-4)) is the sum of two composite numbers. \square

Exercise 1.30.

If n > 1 prove that the sum

$$\sum_{k=1}^{n} \frac{1}{k}$$

is not an integer.

Proof.

(1) (Reductio ad absurdum) Suppose

$$H := \sum_{k=1}^{n} \frac{1}{k}$$

were an integer.

(2) Let s be the largest integer such that $2^s \leq n$. So the integer number

$$2^{s-1}H = \sum_{k=1}^{n} \frac{2^{s-1}}{k}$$
$$= 2^{s-1} + 2^{s-2} + \frac{2^{s-1}}{3} + 2^{s-3} + \frac{2^{s-1}}{5} + \frac{2^{s-2}}{3} + \dots + \frac{1}{2} + \dots$$

has only one term of even denominators (as n > 1) if we write all terms in irreducible fractions. That is,

$$2^{s-1}H = \frac{1}{2} + \frac{c}{d} \in \mathbb{Z}$$

where $\frac{c}{d}$ is an irreducible fraction with odd d. Hence it suffices to show that $2 \mid d$ to get a contradiction.

(3) By

$$\frac{1}{2} + \frac{c}{d} = \frac{d+2c}{2d} \in \mathbb{Z}$$

we have d+2c=2dd' for some $d'\in\mathbb{Z}.$ Note that 2 is a prime. So $2\mid (d+2c)$ or $2\mid d,$ which is absurd.

Chapter 2: Arithmetical functions and Dirichlet multiplication

Exercise 2.3.

Prove that

$$\frac{n}{\varphi(n)} = \sum_{d|n} \frac{\mu^2(d)}{\varphi(d)}.$$

Proof.

(1) Note that fg, f/g and f*g are multiplicative if f and g are multiplicative (Example 5 on page 34 and Theorem 2.14). Hence $\frac{n}{\varphi(n)}$ and $\sum_{d|n} \frac{\mu^2(d)}{\varphi(d)}$ are multiplicative. Hence it might assume that $n=p^a$ for some prime p and integer $a \geq 1$. (The case n=1 is trivial.)

(2)
$$\frac{p^{a}}{\varphi(p^{a})} = \frac{p^{a}}{p^{a} - p^{a-1}} = \frac{p}{p-1}.$$

(3)

$$\sum_{d|p^a} \frac{\mu^2(d)}{\varphi(d)} = \frac{\mu^2(1)}{\varphi(1)} + \frac{\mu^2(p)}{\varphi(p)} + \overbrace{\frac{\mu^2(p^2)}{\varphi(p^2)}}^{=0} + \dots + \overbrace{\frac{\mu^2(p^a)}{\varphi(p^a)}}^{=0}$$

$$= 1 + \frac{1}{p-1} + 0 + \dots + 0$$

$$= \frac{p}{p-1}.$$

Exercise 2.4.

Prove that $\varphi(n) > \frac{n}{6}$ for all n with at most 8 distinct prime factors.

Proof.

(1)
$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$
 (Theorem 2.4)
$$\geq n \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right) \left(1 - \frac{1}{7} \right)$$

$$\left(1 - \frac{1}{11} \right) \left(1 - \frac{1}{13} \right) \left(1 - \frac{1}{17} \right) \left(1 - \frac{1}{19} \right)$$

$$= \frac{55296}{323323} n$$

$$> \frac{n}{6} .$$

(2) The conclusion does not hold if n has more than 9 distinct prime factors.