Elements Of Data Science - F2022

Week 12: Time Series, Model API with Flask

11/30/2020

TODOs

- Readings:
 - Recommended: DSFS: <u>Chap 9: Getting Data</u>
 - Recommended: DSFS: <u>Chap 23: Databases and SQL</u>
- HW4, Due Friday December 2nd 11:59pm ET
- Quiz 12, Due Tuesday December 6th 11:59pm ET
- Final
 - Review sheet in github repo (soon!)
 - Online via Gradescope, open-book, open-note, open-python
 - Released Wednesday December 7th 11:59pm ET
 - Due Friday December 9th 11:59pm ET
 - Have maximum of 24hrs after starting to finish
 - 30-40 questions (fill in the blank/multiple choice/short answer)
 - Questions asked/answered privately via Ed

Quiz Common Mistakes (points off)

- don't remove instructions from quiz/homework
- .info() not .info: make sure function/method calls are made with ()
- Pandas .sample() default n=1: need to set n= or frac=
- LinearRegression (regression) vs LogisticRegression (classification)
- using a model "with default settings" means Model() or just a subset of parameters set
- Be careful which dataset you're training/evaluating on: X_train vs X_test
- Make sure all plotting settings get used (eg hue=)

- y_digits[cluster_assignments_km == 9]
- sns.scatterplot(x=X_2D[:,0],y=X_2D[:,1],...

Today

- Time Series Transformations
- Model Prediction API with Flask

Questions?

Environment Setup

Environment Setup

```
import numpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('darkgrid')
%matplotlib inline
```

Time Series

• Data ordered in time

- Applications
 - Financial
 - Economic
 - Scientific
 - etc.

Time Series Differences

• Non-i.i.d.: not independent and identically distributed

- not independent
 - Ex: Stock price
- not-identically distributed
 - Ex: Seasonality
- In other words: Order matters!

Representing Time in Python

- datetime library
- Pandas Timestamp

```
In [2]: from datetime import date
    friday = date(2022,11,1) # year, month, day
    friday

Out[2]: datetime.date(2022, 11, 1)
```

```
In [2]: from datetime import date
    friday = date(2022,11,1) # year, month, day
    friday

Out[2]: datetime.date(2022, 11, 1)

In [3]: today = date.today()
    today

Out[3]: datetime.date(2022, 11, 30)
```

```
In [2]: from datetime import date
    friday = date(2022,11,1) # year, month, day
    friday

Out[2]: datetime.date(2022, 11, 1)

In [3]: today = date.today()
    today

Out[3]: datetime.date(2022, 11, 30)

In [4]: today.year

Out[4]: 2022
```

datetime.time

datetime.time

```
In [5]: from datetime import time
    class_start = time(19,10,0) # hour, minute, second, microsecond
    class_start
Out[5]: datetime.time(19, 10)
```

datetime.time

```
In [5]: from datetime import time
    class_start = time(19,10,0) # hour, minute, second, microsecond
    class_start

Out[5]: datetime.time(19, 10)

In [6]: class_start.hour

Out[6]: 19
```

datetime.datetime

datetime.datetime

```
In [7]: from datetime import datetime
# year, month, day, hour, minute, second, microsecond
wednesday_afternoon = datetime(2022, 11, 30, 15)
wednesday_afternoon

Out[7]: datetime.datetime(2022, 11, 30, 15, 0)
```

datetime.datetime

```
In [7]: from datetime import datetime
    # year, month, day, hour, minute, second, microsecond
    wednesday_afternoon = datetime(2022, 11, 30, 15)
    wednesday_afternoon

Out[7]: datetime.datetime(2022, 11, 30, 15, 0)

In [8]: now = datetime.now()
    now

Out[8]: datetime.datetime(2022, 11, 30, 18, 4, 6, 48207)
```

```
In [9]: diff = datetime(2022,11,30,1) - datetime(2022,11,29,0)
diff
Out[9]: datetime.timedelta(days=1, seconds=3600)
```

```
In [9]: diff = datetime(2022,11,30,1) - datetime(2022,11,29,0)
diff

Out[9]: datetime.timedelta(days=1, seconds=3600)

In [10]: diff.total_seconds()
Out[10]: 90000.0
```

```
In [9]: diff = datetime(2022,11,30,1) - datetime(2022,11,29,0)
diff

Out[9]: datetime.timedelta(days=1, seconds=3600)

In [10]: diff.total_seconds()

Out[10]: 90000.0

In [11]: from datetime import timedelta

#days, seconds, microseconds, milliseconds, minutes, hours, weeks
one_day = timedelta(1)
    date(2022,11,30) + 2*one_day

Out[11]: datetime.date(2022, 12, 2)
```

```
In [12]: now = datetime.now() print(now)

2022-11-30 18:04:06.077953
```

```
In [12]: now = datetime.now()
          print(now)
           2022-11-30 18:04:06.077953
   In [13]: now.strftime('%a %h %d, %Y %I:%M %p')
   Out[13]: 'Wed Nov 30, 2022 06:04 PM'
%Y 4-digit year
%y 2-digit year
%m 2-digit month
%d 2-digit day
%H Hour (24-hour)
%M 2-digit minute
%S 2-digit second
```

```
In [12]: now = datetime.now()
          print(now)
           2022-11-30 18:04:06.077953
   In [13]: now.strftime('%a %h %d, %Y %I:%M %p')
   Out[13]: 'Wed Nov 30, 2022 06:04 PM'
%Y 4-digit year
%y 2-digit year
%m 2-digit month
%d 2-digit day
%H Hour (24-hour)
%M 2-digit minute
%S 2-digit second
```

See <u>strftime.org</u> and <u>strfti.me</u>

Parsing Datetimes: pandas.to_datetime()

- dateutil.parser available
- pandas has parser built in: pd.to_datetime()

Parsing Datetimes: pandas.to_datetime()

- dateutil.parser available
- pandas has parser built in: pd.to_datetime()

```
In [14]: pd.to_datetime('11/30/2022 7:36pm')
Out[14]: Timestamp('2022-11-30 19:36:00')
```

Parsing Datetimes: pandas.to_datetime()

- dateutil.parser available
- pandas has parser built in: pd.to_datetime()

- like datetime.datetime
- can include **timezone** and **frequency** info
- can handle a missing time: NaT
- can be used anywhere datetime can be used
- an array of Timestamps can be used as an index

- like datetime.datetime
- can include **timezone** and **frequency** info
- can handle a missing time: NaT
- can be used anywhere datetime can be used
- an array of Timestamps can be used as an index

```
In [16]: pd.Timestamp(2022,11,30,19)

Out[16]: Timestamp('2022-11-30 19:00:00')
```

- like datetime.datetime
- can include **timezone** and **frequency** info
- can handle a missing time: NaT
- can be used anywhere datetime can be used
- an array of Timestamps can be used as an index

```
In [16]: pd.Timestamp(2022,11,30,19)
Out[16]: Timestamp('2022-11-30 19:00:00')
In [17]: pd.Timestamp('20221130 7:00pm EST')
Out[17]: Timestamp('2022-11-30 19:00:00-0500', tz='tzlocal()')
In [18]: pd.Timestamp('20221130 7:00pm',tz='US/Pacific')
Out[18]: Timestamp('2022-11-30 19:00:00-0800', tz='US/Pacific')
```

- like datetime.datetime
- can include **timezone** and **frequency** info
- can handle a missing time: NaT
- can be used anywhere datetime can be used
- an array of Timestamps can be used as an index

```
In [16]: pd.Timestamp(2022,11,30,19)
Out[16]: Timestamp('2022-11-30 19:00:00')
In [17]: pd.Timestamp('20221130 7:00pm EST')
Out[17]: Timestamp('2022-11-30 19:00:00-0500', tz='tzlocal()')
In [18]: pd.Timestamp('20221130 7:00pm',tz='US/Pacific')
Out[18]: Timestamp('2022-11-30 19:00:00-0800', tz='US/Pacific')
In [19]: dt_index[0]
Out[19]: Timestamp('2020-11-26 00:00:00')
```

Accessing Datetime Components with .dt

```
In [20]: df_taxi = pd.read_csv('../data/yellowcab_tripdata_2017-01_subset10000rows.csv',
                               parse_dates=['tpep_pickup_datetime']).head(3)
         df_taxi.tpep_pickup_datetime
Out[20]: 0
             2017-01-10 18:37:59
             2017-01-05 15:14:52
         2 2017-01-11 14:47:52
         Name: tpep_pickup_datetime, dtype: datetime64[ns]
In [21]: df_taxi.tpep_pickup_datetime.dt.day
Out[21]: 0
              10
               5
              11
         Name: tpep_pickup_datetime, dtype: int64
In [22]: df_taxi.tpep_pickup_datetime.dt.day_of_week # Monday=0 ... Sunday=6
Out[22]: 0
              3
         Name: tpep_pickup_datetime, dtype: int64
```

```
In [20]: df_taxi = pd.read_csv('../data/yellowcab_tripdata_2017-01_subset10000rows.csv',
                               parse_dates=['tpep_pickup_datetime']).head(3)
         df_taxi.tpep_pickup_datetime
Out[20]: 0
             2017-01-10 18:37:59
             2017-01-05 15:14:52
         2 2017-01-11 14:47:52
         Name: tpep_pickup_datetime, dtype: datetime64[ns]
In [21]: df_taxi.tpep_pickup_datetime.dt.day
Out[21]: 0
              10
               5
              11
         Name: tpep_pickup_datetime, dtype: int64
In [22]: df_taxi.tpep_pickup_datetime.dt.day_of_week # Monday=0 ... Sunday=6
Out[22]: 0
              3
         Name: tpep_pickup_datetime, dtype: int64
In [23]: |df_taxi.tpep_pickup_datetime.dt.hour
Out[23]: 0
              18
              15
              14
         Name: tpep_pickup_datetime, dtype: int64
```

```
In [24]: s = pd.Series(['Dec 1 2021', 'Jan 2 2022', 'Feb 3 2022'],
                       index=pd.to_datetime(['Dec 1 2021','Jan 2 2022','Feb 3 2022']))
         S
Out[24]: 2021-12-01
                       Dec 1 2021
         2022-01-02
                       Jan 2 2022
         2022-02-03
                       Feb 3 2022
         dtype: object
In [25]: # can index normally using iloc
         s.iloc[0:2]
Out[25]: 2021-12-01
                       Dec 1 2021
         2022-01-02
                       Jan 2 2022
         dtype: object
```

```
In [26]: # only rows from the year 2022
         s.loc['2022']
Out[26]: 2022-01-02
                       Jan 2 2022
         2022-02-03
                       Feb 3 2022
         dtype: object
In [27]: # only rows from January 2022
         s.loc['2022-01']
Out[27]: 2022-01-02
                       Jan 2 2022
         dtype: object
In [28]: # only rows between Jan 1st 2021 and Jan 2nd 2022, inclusive
         s.loc['01/01/2021':'01/02/2022']
Out[28]: 2021-12-01
                       Dec 1 2021
         2022-01-02
                       Jan 2 2022
         dtype: object
```

Datetimes in DataFrames

Datetimes in DataFrames

Datetimes in DataFrames

```
In [29]: df = pd.DataFrame([['12/1/2021',101,'A'],
                             ['1/1/2022',102,'B']],columns=['col1','col2','col3'])
         df.col1 = pd.to_datetime(df.col1)
         df.set_index('col1',drop=True,inplace=True)
         df
Out[29]:
                   col2 col3
          col1
          2021-12-01 101 A
          2022-01-01 102 B
In [30]: # only return rows from 2022
         df.loc['2022']
Out[30]:
                   col2 col3
          col1
          2022-01-01 102 B
```

```
In [31]: s = pd.Series(['Nov 1 2022','Nov 3 2022'],index=pd.to_datetime(['Nov 1 2022','Nov 3 2022']))
s
Out[31]: 2022-11-01    Nov 1 2022
    2022-11-03    Nov 3 2022
    dtype: object
```

```
In [31]: s = pd.Series(['Nov 1 2022','Nov 3 2022'],index=pd.to_datetime(['Nov 1 2022','Nov 3 2022']))
Out[31]: 2022-11-01
                       Nov 1 2022
         2022-11-03
                       Nov 3 2022
         dtype: object
In [32]: # Use resample() and asfreq() to set frequency
         s.resample('D').asfreq()
Out[32]: 2022-11-01
                       Nov 1 2022
         2022-11-02
                              NaN
         2022-11-03
                       Nov 3 2022
         Freq: D, dtype: object
In [33]: pd.to_datetime(['Nov 1 2022','Nov 3 2022'])
Out[33]: DatetimeIndex(['2022-11-01', '2022-11-03'], dtype='datetime64[ns]', freq=None)
```

```
In [31]: s = pd.Series(['Nov 1 2022','Nov 3 2022'],index=pd.to_datetime(['Nov 1 2022','Nov 3 2022']))
Out[31]: 2022-11-01
                       Nov 1 2022
         2022-11-03
                       Nov 3 2022
         dtype: object
In [32]: # Use resample() and asfreq() to set frequency
         s.resample('D').asfreq()
Out[32]: 2022-11-01
                       Nov 1 2022
         2022-11-02
                              NaN
         2022-11-03
                       Nov 3 2022
         Freq: D, dtype: object
In [33]: pd.to_datetime(['Nov 1 2022','Nov 3 2022'])
Out[33]: DatetimeIndex(['2022-11-01', '2022-11-03'], dtype='datetime64[ns]', freq=None)
In [34]: # Use date_range with freq to get a range of dates of a certain frequency
         pd.date_range(start='Nov 1 2022', end='Nov 3 2022', freq='D')
Out[34]: DatetimeIndex(['2022-11-01', '2022-11-02', '2022-11-03'], dtype='datetime64[ns]', freq='D')
```

```
Sample of Available Frequencies
         business day frequency
    В
         calendar day frequency
         weekly frequency
    W
         month end frequency
         business month end frequency
    BM
         quarter end frequency
    Q
    BQ
         business quarter end frequency
       year end frequency
    Υ
         business year end frequency
    BY
            business hour frequency
    BH
            hourly frequency
    Н
    T, min
            minutely frequency
            secondly frequency
    S
            milliseconds
    L,ms
    U, us
            microseconds
    N
            nanoseconds
```

```
Sample of Available Frequencies
        business day frequency
    В
        calendar day frequency
        weekly frequency
   W
        month end frequency
    BM
        business month end frequency
        quarter end frequency
   Q
         business quarter end frequency
    BQ
       year end frequency
    Υ
         business year end frequency
    BY
            business hour frequency
    BH
            hourly frequency
    Н
           minutely frequency
   T, min
            secondly frequency
   S
           milliseconds
    L,ms
   U, us
           microseconds
           nanoseconds
    N
```

Timezones

Handled by pytz library

Timezones

Handled by pytz library

Timezones

Handled by pytz library

UTC: coordinated universal time (EST is 5 hours behind, -5:00)

```
In [36]: ts = pd.date_range('11/2/2022 9:30am', periods=2, freq='D')
ts

Out[36]: DatetimeIndex(['2022-11-02 09:30:00', '2022-11-03 09:30:00'], dtype='datetime64[ns]', freq='D')
```

```
In [36]: ts = pd.date_range('11/2/2022 9:30am',periods=2,freq='D')
ts
Out[36]: DatetimeIndex(['2022-11-02 09:30:00', '2022-11-03 09:30:00'], dtype='datetime64[ns]', freq='D')
In [37]: # Set timezone using .localize()
ts_utc = ts.tz_localize('US/Eastern')
ts_utc
Out[37]: DatetimeIndex(['2022-11-02 09:30:00-04:00', '2022-11-03 09:30:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq=None)
```

```
In [36]: ts = pd.date_range('11/2/2022 9:30am',periods=2,freq='D')
ts
Out[36]: DatetimeIndex(['2022-11-02 09:30:00', '2022-11-03 09:30:00'], dtype='datetime64[ns]', freq='D')
In [37]: # Set timezone using .localize()
ts_utc = ts.tz_localize('US/Eastern')
ts_utc
Out[37]: DatetimeIndex(['2022-11-02 09:30:00-04:00', '2022-11-03 09:30:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq=None)
In [38]: # Change timezones using .tz_convert()
ts_utc.tz_convert('UTC')
Out[38]: DatetimeIndex(['2022-11-02 13:30:00+00:00', '2022-11-03 13:30:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
```

```
In [36]: ts = pd.date_range('11/2/2022 9:30am', periods=2, freq='D')
         ts
Out[36]: DatetimeIndex(['2022-11-02 09:30:00', '2022-11-03 09:30:00'], dtype='datetime64[ns]', freq='D')
In [37]: # Set timezone using .localize()
         ts_utc = ts.tz_localize('US/Eastern')
         ts_utc
Out[37]: DatetimeIndex(['2022-11-02 09:30:00-04:00', '2022-11-03 09:30:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq=None)
In [38]: # Change timezones using .tz_convert()
         ts_utc.tz_convert('UTC')
Out[38]: DatetimeIndex(['2022-11-02 13:30:00+00:00', '2022-11-03 13:30:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
In [39]: # Can also initilize with timezone set
         ts = pd.date_range('11/2/2022 9:30am', periods=2, freq='D', tz='US/Eastern')
         ts
Out[39]: DatetimeIndex(['2022-11-02 09:30:00-04:00', '2022-11-03 09:30:00-04:00'], dtype='datetime64[ns, US/Eastern]', freq='D')
```

Time Series in Python so far:

- datetime .date .time .datetime .timedelta
- format with .strftime()
- parse time with pd.to_datetime()
- pandas Timestamp Timedelta DatetimeIndex
- Indexing with DatetimeIndex
- Frequencies
- Timezones

Next: Operations on Time Series data

- Shifting
- Resampling
- Moving Windows

Shifting/Lagging

- Moving data backward or forward in time (lagging/leading)
- Ex: calculate percent change

Shifting/Lagging

- Moving data backward or forward in time (lagging/leading)
- Ex: calculate percent change

Shifting/Lagging

- Moving data backward or forward in time (lagging/leading)
- Ex: calculate percent change

Shifting

- percent change, use one of:
 - (new_value old_value) / old_value
 - (new_value / old_value) 1

Shifting

- percent change, use one of:
 - (new_value old_value) / old_value
 - (new_value / old_value) 1

Example Dataset: Twitter Stock

```
In [43]: # from pandas_datareader import data
         # df_twtr = data.DataReader('TWTR', start='2015', end='11/27/2022', data_source='yahoo')
         # df_twtr.to_csv('../data/twtr_20150102-20221127.csv')
         df_twtr = pd.read_csv('../data/twtr_20150102-20221127.csv', parse_dates=['Date'], index_col='Date')
         df_twtr.head(3).round(2)
Out[43]:
                   High Low Open Close Volume
                                                 Adj Close
          Date
          2015-01-02 36.74 35.54 36.23 36.56 12062461.0 36.56
          2015-01-05 37.11 35.64 36.26 36.38 15062744.0 36.38
          2015-01-06 39.45 36.04 36.27 38.76 33050812.0 38.76
In [44]: df_twtr.info() # Adj Close factors in corporate actions, such as stock splits, dividends, and rights offerings
          <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 1970 entries, 2015-01-02 to 2022-10-27
         Data columns (total 6 columns):
                         Non-Null Count Dtype
               Column
                          1970 non-null float64
               High
                         1970 non-null
                                        float64
              Low
          2 Open
                         1970 non-null
                                         float64
            Close
                         1970 non-null
                                         float64
              Volume
                         1970 non-null
                                         float64
              Adj Close 1970 non-null
                                         float64
         dtypes: float64(6)
         memory usage: 107.7 KB
```


Shifting Example: Percent Change Twitter Close

Shifting Example: Percent Change Twitter Close

Shifting Example: Percent Change Twitter Close

```
In [46]: ((df_twtr.Close / df_twtr.Close.shift(1)) - 1).tail(3).round(3) # # (today / yesterday) - 1
Out[46]: Date
          2022-10-25
                        0.024
         2022-10-26
                        0.011
          2022-10-27
                        0.007
         Name: Close, dtype: float64
In [47]: # plot percent change of close in 2022
         fig,ax = plt.subplots(1,1,figsize=(24,8))
         close_2020 = df_twtr.loc['2020','Close']
         ((close_2020 / close_2020.shift(1)) - 1).plot(marker='x',ax=ax,zorder=2);
         ax.axhline(ls=':',c='k',zorder=1)
         ax.set_ylabel('percent change');
            0.15
            0.10
            0.05
            -0.10
            -0.15
            -0.20
```

Resampling

Convert from one frequency to another

Downsampling

- from higher to lower (day to month)
- need to aggregate

Upsampling

- from lower to higher (month to day)
- need to fill missing

• Can also be used to set frequency from None

Resampling: Initialize Frequency

Resampling: Initialize Frequency

Resampling: Initialize Frequency

```
In [48]: df_twtr.index
Out[48]: DatetimeIndex(['2015-01-02', '2015-01-05', '2015-01-06', '2015-01-07',
                         '2015-01-08', '2015-01-09', '2015-01-12', '2015-01-13',
                         '2015-01-14', '2015-01-15',
                         '2022-10-14', '2022-10-17', '2022-10-18', '2022-10-19',
                         '2022-10-20', '2022-10-21', '2022-10-24', '2022-10-25',
                         '2022-10-26', '2022-10-27'],
                        dtype='datetime64[ns]', name='Date', length=1970, freq=None)
In [49]: |df_twtr_B = df_twtr.resample('B').asfreq() # set frequency to business day
         df twtr B.index
Out[49]: DatetimeIndex(['2015-01-02', '2015-01-05', '2015-01-06', '2015-01-07',
                         '2015-01-08', '2015-01-09', '2015-01-12', '2015-01-13',
                         '2015-01-14', '2015-01-15',
                         '2022-10-14', '2022-10-17', '2022-10-18', '2022-10-19',
                         '2022-10-20', '2022-10-21', '2022-10-24', '2022-10-25',
                         '2022-10-26', '2022-10-27'],
                        dtype='datetime64[ns]', name='Date', length=2040, freq='B')
```

- Go from higher/shorter to lower/longer
- Need to aggregate (like groupby)
- Example: Downsampling from business day to business quarter

- Go from higher/shorter to lower/longer
- Need to aggregate (like groupby)
- Example: Downsampling from business day to business quarter

```
In [50]: df_twtr_BQ = df_twtr_B.resample('BQ')
    df_twtr_BQ

Out[50]: <pandas.core.resample.DatetimeIndexResampler object at 0x7fed6a232560>
```

- Go from higher/shorter to lower/longer
- Need to aggregate (like groupby)
- Example: Downsampling from business day to business quarter

```
In [50]: df_twtr_BQ = df_twtr_B.resample('BQ')
df_twtr_BQ

Out[50]: <pandas.core.resample.DatetimeIndexResampler object at 0x7fed6a232560>

In [51]: print(df_twtr_BQ)

DatetimeIndexResampler [freq=<BusinessQuarterEnd: startingMonth=12>, axis=0, closed=right, label=right, convention=start, origin=start_day]
```

- Go from higher/shorter to lower/longer
- Need to aggregate (like groupby)
- Example: Downsampling from business day to business quarter

```
In [50]: df_twtr_BQ = df_twtr_B.resample('BQ')
df_twtr_BQ

Out[50]: <pandas.core.resample.DatetimeIndexResampler object at 0x7fed6a232560>

In [51]: print(df_twtr_BQ)

DatetimeIndexResampler [freq=<BusinessQuarterEnd: startingMonth=12>, axis=0, closed=right, label=right, convention=start, origin=start_day]

In [52]: df_twtr_BQ.mean().head(3).round(2)

Out[52]: High Low Open Close Volume AdjClose

Date
2015-03-31 45.10 43.55 44.23 44.34 20840997.51 44.34
2015-06-30 41.63 40.38 41.17 40.87 22287099.56 40.87
2015-09-30 30.64 29.42 30.05 30.00 20065038.11 30.00
```

```
In [53]: fig,ax = plt.subplots(1,1,figsize=(24,8))
         df_twtr_B.Close.plot(style='-', label='by B',ax=ax)
         df_twtr_BQ.Close.mean().plot(style='--', marker='x', label='by BQ', ax=ax)
         plt.legend(loc='upper right');
           70
           60
          20
           2015
                                             2017
                                                                                                                2021
```

- Go from lower/longer to higher/shorter
- Need to decide how to handle missing values
- Example: Upsample from business day to hour

- Go from lower/longer to higher/shorter
- Need to decide how to handle missing values
- Example: Upsample from business day to hour

```
In [54]: df_twtr_B.index[:3]
Out[54]: DatetimeIndex(['2015-01-02', '2015-01-05', '2015-01-06'], dtype='datetime64[ns]', name='Date', freq='B')
```

- Go from lower/longer to higher/shorter
- Need to decide how to handle missing values
- Example: Upsample from business day to hour

- Go from lower/longer to higher/shorter
- Need to decide how to handle missing values
- Example: Upsample from business day to hour

```
In [54]: df_twtr_B.index[:3]
Out[54]: DatetimeIndex(['2015-01-02', '2015-01-05', '2015-01-06'], dtype='datetime64[ns]', name='Date', freq='B')
In [55]: df_twtr_B.Close.resample('H').asfreq().iloc[0:3].round(2)
Out[55]: Date
         2015-01-02 00:00:00
                                36.56
         2015-01-02 01:00:00
                                   NaN
         2015-01-02 02:00:00
                                   NaN
         Freq: H, Name: Close, dtype: float64
In [56]: df_twtr_B.Close.resample('H').asfreq().iloc[70:73].round(2)
Out[56]: Date
         2015-01-04 22:00:00
                                   NaN
         2015-01-04 23:00:00
                                   NaN
         2015-01-05 00:00:00
                                 36.38
         Freq: H, Name: Close, dtype: float64
```

• ffill():Forward Fill

• ffill():Forward Fill

```
In [57]: df_twtr_B.Close.resample('H').ffill().head(3).round(2)

Out[57]: Date
    2015-01-02 00:00:00     36.56
    2015-01-02 01:00:00     36.56
    2015-01-02 02:00:00     36.56
    Freq: H, Name: Close, dtype: float64
```

• ffill():Forward Fill

• bfill():Backward Fill

• ffill():Forward Fill

• bfill(): Backward Fill

```
In [58]: df_twtr_B.Close.resample('H').bfill().head(3).round(3)
Out[58]: Date
    2015-01-02 00:00:00    36.56
    2015-01-02 01:00:00    36.38
    2015-01-02 02:00:00    36.38
    Freq: H, Name: Close, dtype: float64
```

- Apply function on a fixed window moving across time
- Method of smoothing out the data
- center: place values at center of window

- Apply function on a fixed window moving across time
- Method of smoothing out the data
- center: place values at center of window

- Apply function on a fixed window moving across time
- Method of smoothing out the data
- center: place values at center of window

```
In [59]: df_twtr_B.Close['2020-11-02':'2020-11-06'].round(2)
Out[59]: Date
                       39.47
         2020-11-02
                       41.73
         2020-11-03
                       42.76
         2020-11-04
         2020-11-05
                       43.71
         2020-11-06
                       43.12
         Freq: B, Name: Close, dtype: float64
In [60]: rolling_3 = df_twtr_B.Close['2020-11-02':'2020-11-06'].rolling(3, center=True)
         rolling_3
Out[60]: Rolling [window=3,center=True,axis=0,method=single]
```

- Apply function on a fixed window moving across time
- Method of smoothing out the data
- center : place values at center of window

```
In [59]: df_twtr_B.Close['2020-11-02':'2020-11-06'].round(2)
Out[59]: Date
         2020-11-02
                        39.47
                       41.73
         2020-11-03
                       42.76
         2020-11-04
         2020-11-05
                       43.71
         2020-11-06
                        43.12
         Freq: B, Name: Close, dtype: float64
In [60]: rolling_3 = df_twtr_B.Close['2020-11-02':'2020-11-06'].rolling(3, center=True)
         rolling_3
Out[60]: Rolling [window=3,center=True,axis=0,method=single]
In [61]: rolling_3.mean()['2020-11-02':'2020-11-06'].round(2)
Out[61]: Date
         2020-11-02
                          NaN
         2020-11-03
                        41.32
                       42.73
         2020-11-04
                       43.20
         2020-11-05
         2020-11-06
                          NaN
         Freq: B, Name: Close, dtype: float64
```

Moving Windows

Moving Windows

```
In [62]:
    sns.set_style("whitegrid")
    rolling = df_twtr_B.Close.rolling(5, center=True)

fig,ax = plt.subplots(1,1,figsize=(24,8));
    df_twtr_B.loc['2020'].Close.plot(style='-',alpha=0.3,label='business day');
    rolling.mean().loc['2020'].plot(style='--',label='5 day rolling window mean');
    (rolling.mean().loc['2020'] + 2*rolling.std().loc['2020']).plot(style=':',c='g',label='_nolegend_');
    (rolling.mean().loc['2020'] - 2*rolling.std().loc['2020']).plot(style=':',c='g',label='_nolegend_');
    ax.legend();
```


Example: Bike Travel (From PDSH Chapter 3.11)

- Bicycle traffic over Fremont Bridge in Seattle in 2012
- Data gathered using: !curl -o ../data/FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Example: Bike Travel (From PDSH Chapter 3.11)

- Bicycle traffic over Fremont Bridge in Seattle in 2012
- Data gathered using: !curl -o ../data/FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Example: Bike Travel (From PDSH Chapter 3.11)

- Bicycle traffic over Fremont Bridge in Seattle in 2012
- Data gathered using: !curl -o ../data/FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

```
In [63]: df_bike_counts = pd.read_csv('../data/FremontBridge_2012-2015.csv', parse_dates=['Date'], index_col='Date')
         df_bike_counts.columns = ['Total', 'East', 'West']
         df bike counts.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 28440 entries, 2012-10-03 00:00:00 to 2015-12-31 23:00:00
         Data columns (total 3 columns):
              Column Non-Null Count Dtype
          O Total 28433 non-null float64
          1 East 28433 non-null float64
                     28433 non-null float64
              West
         dtypes: float64(3)
         memory usage: 888.8 KB
In [64]: df bike counts.head(3)
Out[64]:
                          Total East West
          Date
          2012-10-03 00:00:00 13.0 4.0 9.0
          2012-10-03 01:00:00 10.0 4.0 6.0
          2012-10-03 02:00:00 2.0 1.0 1.0
```

Example: Fill Missing Values

Example: Fill Missing Values

```
In [65]: f'proportion missing: {sum(df_bike_counts.Total.isna()) / len(df_bike_counts):0.5f}'
Out[65]: 'proportion missing: 0.00025'
```

Example: Fill Missing Values

Plot data from 2015

Plot data from 2015

Downsample to weekly sum to smooth things out

Downsample to weekly sum to smooth things out

Resample at daily for a more granular view and apply a rolling window of 30 days

Resample at daily for a more granular view and apply a rolling window of 30 days

From Datetime to Time

From Datetime to Time

From Datetime to Time

Plot by hour of the day

Plot by hour of the day

```
In [73]: hourly_ticks = 60 * 60 * 4 * np.arange(6) # sec * min * every4hours
          by_time.plot(xticks=hourly_ticks, style=[':', '--', '-'], figsize=(24,8));
          plt.ylabel('mean hourly count');
             300
             250
            mean hourly count
             100
              50
                     00:00
                                           04:00
                                                                 08:00
                                                                                                              16:00
                                                                                                                                    20:00
                                                                                       12:00
```

Can also look at average by day of week

Can also look at average by day of week

```
In [74]: # note that for dayofweek: 0 == Mon, 1 == Tues,..., 6 == 'Sun'
         by_weekday = df_bike_counts.groupby(df_bike_counts.index.dayofweek).mean()
         by_weekday = by_weekday.set_index(pd.Index(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']))
         fig,ax = plt.subplots(1,1,figsize=(24,8))
         by_weekday.plot(style=[':', '--', '-'], ax=ax);
         ax.set_xlabel('Day of Week');ax.set_ylabel('mean daily count');
            120
            60
                                                                          Day of Week
```

Separate out weekdays and weekends

Separate out weekdays and weekends

```
In [75]: # create a weekend mask
          weekend = np.where(df_bike_counts.index.weekday < 5, 'Weekday', 'Weekend')</pre>
          # get hourly mean values split by weekday, weekend
          by_time = df_bike_counts.groupby([weekend, df_bike_counts.index.time]).mean()
         fig, ax = plt.subplots(1, 2, figsize=(24, 8))
          by_time.loc['Weekday'].plot(ax=ax[0], title='Weekdays', xticks=hourly_ticks, style=[':', '--', '-'])
          by_time.loc['Weekend'].plot(ax=ax[1], title='Weekends', xticks=hourly_ticks, style=[':', '--', '-']);
                                                                                                                   Weekends
                                         Weekdays
                                                                                     120
                                                                                     100
           300
                                                                                     20
                                                                                         00:00
                                                                                                                                16:00
               00:00
                         04:00
                                  08:00
                                            12:00
                                                      16:00
                                                               20:00
                                                                                                   04:00
                                                                                                            08:00
                                                                                                                      12:00
                                                                                                                                         20:00
```

Can we predict daily Total bike traffic?

Can we predict daily Total bike traffic?

Can we predict daily Total bike traffic?

On to Feature Engineering...

Add 'day of week'

Add 'day of week'

Add 'is it a holiday' dummy feature

Add 'is it a holiday' dummy feature

```
In [78]: from pandas.tseries.holiday import USFederalHolidayCalendar
        cal = USFederalHolidayCalendar()
        holidays = cal.holidays('2012', '2016')
        df_bike = df_bike.join(pd.Series(1, index=holidays, name='IsHoliday'))
        df_bike['IsHoliday'].fillna(0, inplace=True)
        print(df_bike.head(3))
                      Total DayOfWeek IsHoliday
         Date
         2012-10-03 3521.0
                                            0.0
                                 Wed
         2012-10-04 3475.0
                                 Thu
                                            0.0
         2012-10-05 3148.0
                                 Fri
                                            0.0
```

Add number of hours of daylight

Add number of hours of daylight

```
In [79]: from datetime import datetime
         def hours_of_daylight(date, axis=23.44, latitude=47.61):
              """Compute the hours of daylight for the given date"""
             days = (date - datetime(2000, 12, 21)).days # days till winter solstice
             m = (1. - np.tan(np.radians(latitude))
                   * np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25)))
             return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180.
         df_bike['HoursDaylight'] = list(map(hours_of_daylight, df_bike.index));
         ax = df_bike[['HoursDaylight']].plot(figsize=(18,4));
         ax.set_ylim(8, 16);
                                                                                                                         HoursDaylight
           15
           14
           13
           12
           11
           10
                    Jan
2013
                                                          Jan
2014
                                                                                               Jan
2015
                                                                        Date
```

Add weather information (Q: can we predict this for future dates?)

Add weather information (Q: can we predict this for future dates?)

```
In [80]: # temperatures are in 1/10 deg C; convert to C
         df_bike_weather['TMIN'] /= 10
         df_bike_weather['TMAX'] /= 10
         df_bike_weather['TempC'] = 0.5 * (df_bike_weather['TMIN'] + df_bike_weather['TMAX'])
         # precip is in 1/10 mm; convert to inches
         df_bike_weather['PRCP'] /= 254
         df_bike_weather['IsDryDay'] = (df_bike_weather['PRCP'] == 0).astype(int)
         df_bike = df_bike.join(df_bike_weather[['PRCP', 'TempC', 'IsDryDay']],how='inner')
         df_bike.head(3).round(2)
Out[80]:
                          DayOfWeek IsHoliday HoursDaylight PRCP TempC IsDryDay
                    Total
          2012-10-03 3521.0 Wed
                                                            13.35 1
                                    0.0
                                            11.28
          2012-10-04 3475.0 Thu
                                           11.22
                                                            13.60 1
                                    0.0
                                                            15.30 1
          2012-10-05 3148.0 Fri
                                            11.16
                                    0.0
                                                       0.0
```

Add time of year

Add time of year

```
In [81]: df_bike['TimeOfYear'] = (df_bike.index - df_bike.index[0]).days / 365.0 # Days since the beginning of the year
          df_bike.head(3)
Out[81]:
                           DayOfWeek IsHoliday HoursDaylight PRCP TempC IsDryDay TimeOfYear
           2012-10-03 3521.0 Wed
                                      0.0
                                              11.277359
                                                                13.35 1
                                                                              0.000000
           2012-10-04 3475.0 Thu
                                      0.0
                                              11.219142
                                                                13.60 1
                                                                              0.002740
                                                          0.0
           2012-10-05 3148.0 Fri
                                                                              0.005479
                                              11.161038
                                                               15.30 1
                                      0.0
```

Generate and evaluate a model

Generate and evaluate a model

```
In [82]: from sklearn.ensemble import GradientBoostingRegressor
                      from sklearn.dummy import DummyRegressor
                      from sklearn.metrics import mean_absolute_error
                      # drop any rows with missing data
                      df_bike.dropna(axis=0, how='any', inplace=True)
                      X_bike = pd.get_dummies(df_bike.loc[:,df_bike.columns != 'Total'])
                      display(X_bike.head(1).round(2))
                      y_bike = df_bike.Total
                      X_bike_train = X_bike.loc['2012':'2014']
                      y_bike_train = y_bike.loc['2012':'2014']
                      X_bike_test = X_bike.loc['2015']
                      y_bike_test = y_bike.loc['2015']
                      dummy_bike = DummyRegressor().fit(X_bike_train,y_bike_train)
                      gb_bike = GradientBoostingRegressor().fit(X_bike_train,y_bike_train)
                      print(f'dummy training mae : {mean_absolute_error(y_bike_train,dummy_bike.predict(X_bike_train)).round(2)}')
                      print(f'one-back training mae : {mean_absolute_error(y_bike_train,y_bike_train.shift(1).fillna(0)).round(2)}')
                      print(f'gb training set mae : {mean_absolute_error(y_bike_train,gb_bike.predict(X_bike_train)).round(2)}')
                                                                                               : {mean_absolute_error(y_bike_test,gb_bike.predict(X_bike_test)).round(2)}')
                      print(f'gb test set R^2
                                     IsHoliday HoursDaylight PRCP TempC IsDryDay TimeOfYear DayOfWeek_Fri DayOfWeek_Mon DayOfWeek_Sat DayOfWeek_Sun DayOfWeek_Thu DayOfWeek_Tue DayOfWeek_To DayOfWeek_Tue DayO
                        2012-
                                    0.0
                                                                                  0.0 13.35 1
                                                        11.28
                                                                                                                              0.0
                                                                                                                                                     0
                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                         1
                        10-03
                       dummy training mae
                                                                             : 1019.45
                       one-back training mae : 710.39
                      gb training set mae
                                                                         : 213.37
                       gb test set R^2
                                                                             : 308.24
```

Plot predictions vs observed

Plot predictions vs observed

Time Series Operations Review

- Shifting
- Resampling
 - Downsampling
 - Upsampling
- Moving/Rolling Windows
- for more info, including time-series cross-validation:
 - sklearn: Time-related feature engineering
 - PML Chapter 13 Modeling Sequential Data Using Recurrent Neural Network (with Tensorflow)
- for more models:
 - skforecast
 - statsmodels

Questions re Time Series Transformations?

Delivering Data With Flask

Delivering Data With Flask

- Flask: lightweight web server
- can be used to create a small API to:
 - return transformed data
 - return predictions
 - return datasets
 - **-**

```
In [84]:
    !cat ../src/sample_script.py

# import necessary libraries and function
    from datetime import datetime

# python as usual
    def current_time():
        return datetime.now()

# will run as script or on import
    run_or_imported_at = current_time()
    print(f"this was run or imported at {run_or_imported_at}")
    print(f"{__name__ = :s}")

if __name__ == "__main__":
        # will only run if this is a script
        # won't be run if imported
        print("running as a script")
```

```
In [84]: !cat ../src/sample_script.py
         # import necessary libraries and function
         from datetime import datetime
         # python as usual
         def current_time():
             return datetime.now()
         # will run as script or on import
         run_or_imported_at = current_time()
         print(f"this was run or imported at {run_or_imported_at}")
         print(f"{__name__ = :s}")
         if __name__ == "__main__":
             # will only run if this is a script
             # won't be run if imported
             print("running as a script")
In [85]: import sys
         sys.path.append('../src/') # need to tell python where to look for this file
         import sample_script
         this was run or imported at 2022-11-30 18:04:12.290787
         __name__ = sample_script
```

```
In [84]: !cat ../src/sample_script.py
         # import necessary libraries and function
         from datetime import datetime
         # python as usual
         def current_time():
             return datetime.now()
         # will run as script or on import
         run_or_imported_at = current_time()
         print(f"this was run or imported at {run_or_imported_at}")
         print(f''\{\underline{name} = :s\}'')
         if __name__ == "__main__":
             # will only run if this is a script
             # won't be run if imported
             print("running as a script")
In [85]: import sys
         sys.path.append('../src/') # need to tell python where to look for this file
         import sample_script
         this was run or imported at 2022-11-30 18:04:12.290787
         __name__ = sample_script
In [86]: %run ../src/sample_script.py
         this was run or imported at 2022-11-30 18:04:12.299807
         __name__ = __main__
         running as a script
         <Figure size 640x480 with 0 Axes>
```

Aside: Function Decorators

- act like wrappers around functions
- decorators are prefixed by the "@" symbol
- placed above the function to be wrapped

Aside: Function Decorators

- act like wrappers around functions
- decorators are prefixed by the "@" symbol
- placed above the function to be wrapped

```
In [87]: def my_decorator(func):
    def wrapper():
        print("Happens before the function is called.")
        func()
        print("Happens after the function is called.")
        return wrapper

@my_decorator
def say_hello():
        print("Hello")

say_hello()

Happens before the function is called.
Hello
Happens after the function is called.
```

```
In [88]: !cat ../src/hello_flask.py

from flask import Flask, escape, request

app = Flask(__name__)

@app.route('/')
def hello():
    name = request.args.get("name", "World")
    return f'Hello, {escape(name)}!\n'

if __name__ == '__main__':
    app.run()
```

```
In [88]: !cat ../src/hello_flask.py

from flask import Flask, escape, request

app = Flask(__name__)

@app.route('/')
def hello():
    name = request.args.get("name", "World")
    return f'Hello, {escape(name)}!\n'

if __name__ == '__main__':
    app.run()
```

- 1. at command line, run: \$ python hello_flask.py
- 2. in another terminal, ipython (or notebook), run:

```
In [88]: !cat ../src/hello_flask.py

from flask import Flask, escape, request

app = Flask(__name__)

@app.route('/')
def hello():
    name = request.args.get("name", "World")
    return f'Hello, {escape(name)}!\n'

if __name__ == '__main__':
    app.run()
```

- 1. at command line, run: \$ python hello_flask.py
- 2. in another terminal, ipython (or notebook), run:

```
# need to change "Cell Type" to code to run in notebook
import requests
r = requests.get('http://127.0.0.1:5000/?name=Bryan')
print(r.text)
```

Creating APIs: Flask with Multiple Routes

Creating APIs: Flask with Multiple Routes

```
In [89]: !cat ../src/die_flask.py
         import numpy as np
         from flask import Flask, request, jsonify
         app = Flask(__name___)
         @app.route("/")
         def help():
             return "Give the number of sides the die should have.\n"
         @app.route("/<int:sides>")
         def roll_die(sides):
             return str(np.random.randint(1, sides+1))
         @app.route("/json/<int:sides>")
         def roll_die_json(sides):
             return jsonify({'sides': sides,'roll': np.random.randint(1, sides+1)})
         if __name__ == '__main__':
             app.run()
```

GET vs POST

• **GET**: pass information in the url

```
127.0.0.1:5000/?firstname=Bryan&lastname=Gibson
```

• **POST**: pass information as additional http request (often JSON)

```
127.0.0.1:5000/
{'firstname':'Bryan','lastname':'Gibson'}
```

```
In [90]: from sklearn.model_selection import train_test_split
         titanic_url = ('https://raw.githubusercontent.com/amueller/scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv')
         df_titanic = pd.read_csv(titanic_url)[['age','fare','embarked','sex','pclass','survived']]
         print(df_titanic.info())
        X_titanic = df_titanic.drop('survived', axis=1)
         y_titanic = df_titanic['survived']
        X_titanic_train, X_titanic_test, y_titanic_train, y_titanic_test = train_test_split(X_titanic, y_titanic,
                                                                                            test_size=0.2,
                                                                                            stratify=y_titanic,
                                                                                            random_state=42)
         display(X_titanic_train.head(3))
         print(f"y_train prop positive: {y_titanic_train.mean().round(2)}")
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1309 entries, 0 to 1308
         Data columns (total 6 columns):
              Column
                        Non-Null Count Dtype
                        1046 non-null float64
              age
                       1308 non-null float64
            fare
          2 embarked 1307 non-null object
                        1309 non-null
          3 sex
                                        object
              pclass
                        1309 non-null
                                        int64
             survived 1309 non-null int64
         dtypes: float64(2), int64(2), object(2)
         memory usage: 61.5+ KB
         None
              age fare
                         embarked sex
                                      pclass
          999 NaN 7.7500 Q
                                female 3
          392 24.0 27.7208 C
                                female 2
         628 11.0 31.2750 S
                                female 3
         y_train prop positive: 0.38
```

```
In [91]: from sklearn.pipeline import Pipeline
         from sklearn.compose import ColumnTransformer
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import OneHotEncoder,StandardScaler
         from sklearn.model_selection import GridSearchCV
         from sklearn.linear_model import LogisticRegression
         numeric_features = ['age', 'fare']
         numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                               ('scaler', StandardScaler())])
         categorical_features = ['embarked', 'sex', 'pclass']
         categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                                                   ('onehot', OneHotEncoder(handle_unknown='ignore'))])
         preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features),
                                                        ('cat', categorical_transformer, categorical_features)])
         pipe = Pipeline(steps=[('preprocessor', preprocessor),
                                ('classifier', LogisticRegression(solver='lbfgs', random_state=42))])
         param_grid = {
             'preprocessor__num__imputer__strategy': ['mean', 'median'],
             'classifier__C': [0.1, 1.0, 10, 100],
         gs_pipeline = GridSearchCV(pipe, param_grid, cv=3)
         gs_pipeline.fit(X_titanic_train, y_titanic_train)
         print("best test set score from grid search: {:.3f}".format(gs_pipeline.score(X_titanic_test, y_titanic_test)))
         print("best parameter settings: {}".format(gs_pipeline.best_params_))
         best test set score from grid search: 0.802
         best parameter settings: {'classifier__C': 1.0, 'preprocessor__num__imputer__strategy': 'median'}
```

• Export trained models (and other data structures) using pickle

• Export trained models (and other data structures) using pickle

```
In [92]: import pickle as pkl

# write/dump to disk
with open('../data/titanic_pipeline_clf.pkl','wb') as f:
    pkl.dump(gs_pipeline,f)
```

• Export trained models (and other data structures) using pickle

```
In [92]: import pickle as pkl
         # write/dump to disk
         with open('../data/titanic_pipeline_clf.pkl','wb') as f:
             pkl.dump(gs_pipeline,f)
In [93]: # read/load from disk
         with open('../data/titanic_pipeline_clf.pkl','rb') as f:
             pretrained_titanic_clf = pkl.load(f)
         pretrained_titanic_clf
Out[93]: GridSearchCV(cv=3,
                       estimator=Pipeline(steps=[('preprocessor',
                                                  ColumnTransformer(transformers=[('num',
                                                                                    Pipeline(steps=[('imputer',
                                                                                                     SimpleImputer(strategy='median')),
                                                                                                     ('scaler',
                                                                                                     StandardScaler())]),
                                                                                    ['age',
                                                                                     'fare']),
                                                                                   ('cat',
                                                                                    Pipeline(steps=[('imputer',
                                                                                                     SimpleImputer(fill_value='missing',
                                                                                                                    strategy='constant')),
                                                                                                     ('onehot',
                                                                                                     OneHotEncoder(handle_unknown='ignor
         e'))]),
                                                                                     'embarked',
                                                                                      'sex',
```

```
In [94]: !cat ../src/titanic_clf.py
         from flask import Flask, escape, request, jsonify
         import pickle as pkl
         import pandas as pd
         # need to train and pickle classifier first
         with open('../data/titanic_pipeline_clf.pkl','rb') as f:
             clf = pkl.load(f)
         app = Flask(__name___)
         @app.route('/', methods=['POST'])
         def predict():
             prediction = None
             query = pd.DataFrame(request.form,index=[0])
             print(query, flush=True)
             if query is not None:
                 prediction = clf.predict(query)
             if prediction:
                 return jsonify([str(x) for x in prediction])
             else:
                 return 'no predictions made'
         if __name__ == '__main__':
             app.run()
```

```
In [95]: query_label = df_titanic.iloc[0].loc['survived']
```

```
In [95]: query_label = df_titanic.iloc[0].loc['survived']
In [96]: query = df_titanic.iloc[0,:-1].to_dict()
query
Out[96]: {'age': 29.0, 'fare': 211.3375, 'embarked': 'S', 'sex': 'female', 'pclass': 1}
```

```
In [95]: query_label = df_titanic.iloc[0].loc['survived']
In [96]: query = df_titanic.iloc[0,:-1].to_dict()
query
Out[96]: {'age': 29.0, 'fare': 211.3375, 'embarked': 'S', 'sex': 'female', 'pclass': 1}
In [97]: query_label
Out[97]: 1
```

```
In [95]: query_label = df_titanic.iloc[0].loc['survived']
In [96]: query = df_titanic.iloc[0,:-1].to_dict()
query
Out[96]: {'age': 29.0, 'fare': 211.3375, 'embarked': 'S', 'sex': 'female', 'pclass': 1}
In [97]: query_label
Out[97]: 1
In [98]: # Start script from command line by first activating the eods-f22 environment and running: python titanic_clf.py
# Then uncomment the following:
#import requests
#print(requests.post('http://127.0.0.1:5000/', data=query).text)
```

Questions re Model API via Flask?