1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	1	자연과학	2	1
2021	1	공학	29	28
2022	1	자연과학	1	1
2022	1	공학	24	23
2023	1	공학	29	29
2024	1	인문.사회	1	1
2024	1	공학	34	33
2025	1	공학	39	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2016	1	37.88	73.25	32.17	22.5	
2015	2	36.28	70.35	30.36		
2015	1	37.21	54.62	34.32	20	
2014	2					
2014	1		1939			

3. 성적부여현황(평점)

비율

35.29 14.71 2.94 2.94

5.88 2.94

교과목 포트폴리오 (MAE4036 재료상변태)

4. 성적부여현황(등급)

2024

1

Α+

12

			7			_ \		
수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2021	1	Α+	5	17.24	2024	1	A0	12
2021	1	A0	10	34.48	2024	1	B+	5
2021	1	B+	6	20.69	2024	1	ВО	1
2021	1	ВО	2	6.9	2024	1	C+	1
2021	1	C+	1	3.45	2024	1	C0	2
2021	1	C0	3	10.34	2024	1	D+	1
2021	1	D+	2	6.9	60			
2022	1	Α+	13	54.17				
2022	1	Α0	4	16.67				
2022	1	ВО	2	8.33	_			
2022	1	C+	4	16.67				
2022	1	C0	1	4.17	_			
2023	1	Α+	12	41.38	_			
2023	1	Α0	5	17.24	_			
2023	1	B+	3	10.34	_			
2023	1	ВО	2	6.9				
2023	1	C+	3	10.34	_			
2023	1	C0	2	6.9	_			
2023	1	D+	2	6.9	_			

35.29

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	97	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	96	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	92	

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	H 017			점수별 인원분포				
번호	평가문항 번호		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다	
		5점	학과		내학	1 24	2 Z-l	그래	4 24	디저
교강사: 	교강사:	미만	차이 평균	· 차이	평균	- 1점	2점	3점	4점	5점

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	2021/1
신소재공학부	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2021/1	2022/1	2023/1	2024/1	2025/1
일반	1강좌(31)	1강좌(25)	1강좌(29)	1강좌(35)	1강좌(39)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 신소재공학부		This course effectively consists of two parts. It will cover during first half (chapters 1~3 in textbook) cover the background material necessary for understanding phase transformations: thermodynamics kinetics, diffusion theory and the structure and propweties of interfaces. During the second half (chapter 4~6 in textbook), this course will deal with specific transformations: solidfication, diffusional transformations in solid and diffusionless transdormations. At the end of the course, diffusion-controlles transformations and martensite, it will introduce selected case studies of engineering alloys to illustrate some of the principles discussed earlier.	
학부 2020 - 2023 교육과		이 교과목의 내용은(교재의 내용과 같이) 두 부 분으로 나뉘어 지는데, 전반부(교재 1~3장)은	This course effectively consists of two parts. It will cover during first half	

교육과정	관장학과	국문개요	영문개요	수업목표
정	학부	재료의 상변태를 이해하는데 필요한 배경에 대한 것, 즉 열역학, 속도론, 확산론과 계면의 구조와 성질, 고상변태와 무확산변태를 강의하고, 후반부(교재 4-6장)에서는 응고와 확산제어변태, 마르텐사이트 및 앞에서 논의한 원리들을 적용한 공업용합금의 몇가지 사례에 대하여 학습한다.	(chapters 1~3 in textbook) cover the background material necessary for understanding phase transformations: thermodynamics kinetics, diffusion theory and the structure and propweties of interfaces. During the second half (chapter 4~6 in textbook), this course will deal with specific transformations: solidfication, diffusional transformations in solid and diffusionless transformations. At the end of the course, diffusion-controlles transformations and martensite, it will introduce selected case studies of engineering alloys to illustrate some of the principles discussed earlier.	
학부 2016 - 2019 교육과 정	서울 공과대학 신소재공학부	이 교과목의 내용은(교재의 내용과 같이) 두 부분으로 나뉘어 지는데, 전반부(교재 1~3장)은 재료의 상변태를 이해하는데 필요한 배경에 대한 것, 즉 열역학, 속도론, 확산론과 계면의 구조와 성질, 고상변태와 무확산변태를 강의하고, 후반부(교재 4-6장)에서는 응고와 확산제어변태, 마르텐사이트 및 앞에서 논의한 원리들을 적용한 공업용합금의 몇가지 사례에 대하여 학습한다.	This course effectively consists of two parts. It will cover during first half (chapters 1~3 in textbook) cover the background material necessary for understanding phase transformations: thermodynamics kinetics, diffusion theory and the structure and propweties of interfaces. During the second half (chapter 4~6 in textbook), this course will deal with specific transformations: solidfication, diffusional transformations in solid and diffusionless transdormations. At the end of the course, diffusion-controlles transformations and martensite, it will introduce selected case studies of engineering alloys to illustrate some of the principles discussed earlier.	
학부 2013 - 2015 교육과 정	서울 공과대학 신소재공학부	이 교과목의 내용은(교재의 내용과 같이) 두 부분으로 나뉘어 지는데, 전반부(교재 1~3장)은 재료의 상변태를 이해하는데 필요한 배경에 대한 것, 즉 열역학, 속도론, 확산론과 계면의 구조와 성질, 고상변태와 무확산변태를 강의하고, 후반부(교재 4-6장)에서는 응고와 확산제어변태, 마르텐사이트 및 앞에서 논의한 원리들을 적용한 공업용합금의 몇가지 사례에 대하여 학습한다.	This course effectively consists of two parts. It will cover during first half (chapters 1~3 in textbook) cover the background material necessary for understanding phase transformations: thermodynamics kinetics, diffusion theory and the structure and propweties of interfaces. During the second half (chapter 4~6 in textbook), this course will deal with specific transformations: solidfication, diffusional transformations in solid and diffusionless transdormations. At the end of the course, diffusion-controlles transformations and martensite, it will introduce selected case studies of engineering alloys to illustrate some of the principles discussed earlier.	
학부 2009 - 2012 교육과 정		이 교과목의 내용은(교재의 내용과 같이) 두 부분으로 나뉘어 지는데, 전반부(교재 1~3장)은 재료의 상변태를 이해하는데 필요한 배경에 대한 것, 즉 열역학, 속도론, 확산론과 계면의 구조와 성질, 고상변태와 무확산변태를 강의하고, 후반부(교재 4-6장)에서는 응고와 확산제어변	This course effectively consists of two parts. It will cover during first half (chapters 1~3 in textbook) cover the background material necessary for understanding phase transformations: thermodynamics kinetics, diffusion theory	

교육과정	관장학과	국문개요	영문개요	수업목표
		태, 마르텐사이트 및 앞에서 논의한 원리들을 적 용한 공업용합금의 몇가지 사례에 대하여 학습 한다.	and the structure and propweties of interfaces. During the second half (chapter 4~6 in textbook), this course will deal with specific transformations: solidfication, diffusional transformations in solid and diffusionless transdormations. At the end of the course, diffusion-controlles transformations and martensite, it will introduce selected case studies of engineering alloys to illustrate some of the principles discussed earlier.	

10. CQI 등록내역		
	No data have been found.	