

Pneumonia Detection Through Fine-Tuning FRCNN and FCOS Models

Colin Sullivan, Surya Sanapala Stanford CS230 Final Project, Department of Computer Science

Overview

Problem:

Computer vision model that can detect pneumonia in chest radiographs and draw a bounding box around the location of infection.

Approach:

- Fine tuned Faster Region-Based Convolutional Neural Network (FRCNN) with Custom Anchors and Generalized Intersection over Union (GloU) Loss.
- Fine tuned Fully Convolutional One-Stage (FCOS) Object Detection with Weighted Loss.
- Implemented Data Augmentations.

Findings:

Best model was FCOS + Weighted Loss

Overall Findings

Model	mAP at 50%	mAP at 50%:95%	Recall_ 100		
Baseline	76.47%	55.74%	60.65%		
FRCNN + Custom Anchors + GloU	80.52%	69.72%	74.21%		
FCOS + Weighted Loss	80.21%	71.25%	78.24%		
FCOS + Weighted Loss + Data Augmentation	58.05%	25.0%	51.56%		
	Baseline FRCNN + Custom Anchors + GloU FCOS + Weighted Loss FCOS + Weighted Loss	Baseline 76.47% FRCNN + Custom Anchors + GloU FCOS + Weighted Loss FCOS + Weighted Loss 58.05%	Model 50% 50%:95% Baseline 76.47% 55.74% FRCNN + Custom Anchors + GloU 80.52% 69.72% FCOS + Weighted Loss 80.21% 71.25% FCOS + Weighted Loss 58.05% 25.0%		

Future Work

- Multi-GPU Training
- Fine-tune the DEtection and TRansformer (DERT) model, proposed by Meta AI.
- DERT uses uses a set-based global loss function that forces unique predictions through a transformer encoder-decoder architecture and bipartite matching.

References

[1] Alapat DJ, Menon MV, Ashok S. A Review on Detection of Pneumonia in Chest X-ray Images Using Neural Networks. J Biomed Phys Eng. 2022 Dec 1;12(6):551-558. doi: 10.31661/jbpe.v0i0.2202-1461. PMID: 36569568; PMCID: PMC9759647.

[2] Anouk Stein, MD, Carol Wu, Chris Carr, George Shih, Jamie Dulkowski, kalpathy, Leon Chen, Luciano Prevedello, Marc Kohli, MD, Mark McDonald, Peter, Phil Culliton, Safwan Halabi MD, Tian Xia. (2018). RSNA Pneumonia Detection Challenge. Kaggle. https://kaggle.com/competitions/rsna-pneumonia-detection-challenge [3] Ren, Shaoqing. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

[4] Tian, Zhi, et al. "Fully convolutional one-stage 3d object detection on lidar range images." Advances in Neural Information Processing Systems 35 (2022): 34899-34911.

[5] Wu, Linghua et al. "Pneumonia detection based on RSNA dataset and anchor-free deep learning detector." Scientific reports vol. 14,1 1929. 22 Jan. 2024, doi:10.1038/s41598-024-52156-7 [17] Chunhua Shen et al. "Fully Convolutional One-Stage Object Detection". https://arxiv.org/pdf/1904.01355

Dataset

RSNA Pneumonia Detection Challenge dataset [2]

- 26,685 chest radiographs
- For each label, if pneumonia is present, one or more sets of bounding box coordinates indicate location of the infection
- We randomly sample 6000 positive and 6000 negative examples from the dataset, then shuffle and divide this into 80% train, 10% validation, and 10% test

Description	Values	
Positive Pneumonia Radiographs	6,012	
Negative Pneumonia Radiographs	20,672	Frequency
Total Positive Labels	9,555	
Total Negative Labels	20,672	
Bounding box distribution (small / medium / large)	0 / 86 / 30,141	

FRCNN

Two-stage Object detection architecture

- Depends on predefined anchors of different sizes and aspect ratios generated by first stage RPN
- Between 2 stages it computes loss_objectness, loss_rpn_box_reg, loss_classifier,loss_box_reg respectively.
- With RSNA dataset, gives a moderate performance but it is over confident in predicting high scores to the incorrect examples(shown in PR Curve) at higher thresholds

FCOS with weighted loss

One-stage Object detection architecture

optimal performance

- Anchor free architecture and easy to train
- Uses Focal loss for classification and GloU for regression
- Computes losses loss_cls, loss_reg ,loss_centerness.
- Fine tune weights for all 3 and find the weights that gives
 - losses = loss_cls + lambda_reg * loss_reg + lambda_cen * loss_centerness
- Further enhancements can be done by fine turning values of alpha and gamma of Focal loss function

Dataset

Evaluation

FRCNN

FRCNN w/
Custom
Anchors
and GloU

FCOS with Weighted Loss

Data
Augmentations

Evaluation

- Calculate mAP at given Intersection over Union (IoU) thresholds.
- Calculate recall at 100 hits per image.
- Experimented with two evaluation implementations:
 - 1. Implemented custom functions where model predictions are filtered by a score threshold of 0.83, then IoU is calculated, and finally non-max suppression filters outputs with a threshold of 0.5
 - 2. Utilize Python library TorchMetrics

FRCNN With Custom Anchor Generator and GloU reg loss

- Smooth L1 loss used for box regression does not give meaningful gradients when there is no overlap between predicted box and ground truth box.
- Replace Smooth L1 loss with GIoU loss which enhances learning process by providing meaningful gradients.
- Depending on the dataset distribution, fine tune the anchor sizes and aspect ratios so that RPN can focus on right object sizes during training.

Data Augmentation

- Five data augmentation techniques including horizontal/ vertical flips, Gaussian Blur, rotation, shear, and brightness/color adjustments to 10% of the training data.
- Utilized the Albumentations Python library.

 Dess. map at 50% lou.

