卷一甲部

題號	答案	題號	答案
1.	D (86)	26.	A (46)
2.	C (88)	27.	B (73)
3.	A (68)	28.	C (46)
4.	D (72)	29.	A (68)
5.	A (70)	30.	D (54)
6.	A (67)	31.	A (57)
7.	C (93)	32.	C (64)
8.	B (75)	33.	B (69)
9.	B (68)		
10.	A (40)		
11.	B (57)		
12.	C (89)		
13.	C (59)		
14.	A (54)		
15.	D (61)		
16.	C (77)		
17.	B (42)		
18.	D (73)		
19.	D (51)		
20.	B (63)		
21.	C (66)		
22.	B (63)		
23.	D (55)		
24.	B (62)		
25.	D (70)		

註: 括號內數字為答對百分率。

		答案	分數	說明
1.	(a)	較大的感溫泡能改善溫度計的靈敏度。	1A	-
		或 由於溫度計的刻度幹處於不同溫度的位置,較大的感溫 泡能減少各不同溫度處對溫度計讀數的影響。	1A	
	(b)	(i) $E = mc\Delta T$ = 0.015 × (2.9 × 10 ³) × (20 – 15) = 217.5 J	1M 1A 2	
		(ii)	1M 1A	
		(iii) 溫度計與較冷的空氣直接接觸會快速冷卻。 溫度計的讀數變得低於泥土實際的溫度。	1A 1A	
2.	把子 讀取	子彈的質量 m 和裝有泥膠的小車質量 M 。 彈射向泥膠。 子彈剛擊中泥膠後小車的速率 v 。 的速率 u 可由 $u = \frac{M+m}{v}$ 求得。	1A 1A 1A	
	預防 - 子:	加 指施: 彈必須靠近泥膠發射。 彈必須沿着小車的移動方向發射。 抗要水平放置/已作摩擦補償。	1A 1A 1A	· ·

答案	分數	說明
3. (a) $\frac{(c_{rms})_f}{c_{rms}} = \sqrt{\frac{T_f}{T}}$ $\frac{c_{r.m.s.}}{c_{r.m.s.}} \frac{f \gtrsim 350 \text{ K}}{300 \text{ K}} = \sqrt{\frac{350}{300}}$	1M	
$c_{\text{r.m.s.}}$ f ₹ 300 K	1A2	
(b) 氣體分子速率增加, 與容器壁碰撞更頻繁及猛烈, 因此氣體的壓強會增加。	1A+1A 2	
4. (a) (i) $\frac{1}{18} s = ut + \frac{1}{2} gt^2$		
$0.11 = \frac{1}{2} g (0.05 \times 3)^2$	1M	
$g = 9.78 \text{ m s}^{-2}$	1A2	
(ii) (1) × • • • • • • • • • • • • • • • • • •		正確水平位置 正確豎直位置
(2) $v_x = 1 \text{ m s}^{-1}$ $v_y = u_y + gt$ $= 0 + 9.78 \times (0.05 \times 3)$ $= 1.47 \text{ m s}^{-1}$	1M	
$v = \sqrt{v_x^2 + v_y^2}$ $= \sqrt{1^2 + 1.47^2}$ $= 1.78 \text{ m s}^{-1}$	1M 1A	
(b) 隨着小球的速率增加,作用於它的空 當空氣阻力相等於小球的重量時,	孫阻力亦增加。 1A 1A	
作用於小球的淨力為零,根據牛頓 球的速率成恆定。	運動第一定律, 1A	
或 作用於小球的淨力為零,根據牛頓 球不會再加速,並以恆定的速率移動	1 . 1	

	分數	
5. (a) 法向反作用力		· · · · · · · · · · · · · · · · · · ·
摩擦力	1A+1A	
●重量	2	
(b) $\omega = \pi \text{ s}^{-1}$ $F = mr\omega^2$	1A	
= (1)(0.3)(π) ² = 2.96 N (指向轉盤的中心)	1M 1A	
另解: $v = 0.3\pi \text{ m s}^{-1}$ $F = m \frac{v^2}{r}$	1A 1M	
= 2.96 N	1A 3	
(c) 茶壺的初始線速率 = $r\omega$ = 0.3π m s ⁻¹ 茶壺的減速度 $a = \frac{f}{m} = \frac{10}{1} = 10$ m s ⁻² 移動的距離 s 可用下式求得 $v^2 - u^2 = 2as$	1M	
$s = \frac{u^2}{2a} = \frac{(0.3\pi)^2}{2(10)}$ = 0.044 m (\$\frac{1}{2}\$ 4.4 cm)	1M	
另解: 茶壺的初始線速率 = $r\omega$ = 0.3π m s ⁻¹	1M	
茶壺的動能耗散於克服摩擦所作的功。 $\frac{1}{2} mu^2 = fd$		
$d = \frac{mu^2}{2f} = \frac{(1)(0.3\pi)^2}{2(10)}$	1M	
= 0.044 m	1A 3	

		答案	分數	說明
7. (a)	(i)	於臨界角 c		
		$\frac{\sin 90^{\circ}}{\sin c} = n$		
		$\frac{1}{\sin c} = 1.36$	1M	
		$\sin c$ $c = 47.3^{\circ}$	1A	
			2	
	(ii)	於 E 點的折射角 = 90° 47.33° = 42.67° 根據斯涅耳定律	1M	
		$\frac{\sin\theta}{\sin 42.67^{\circ}} = 1.36$	1M	
		θ = 67.2°	1A 3	
	(iii)			
		B		
		E		
	ϵ	' /		
	1	//	2A	
		A D		
			2	
(b)	(i)	45°		
		I I	1A	
		光線從實物射出的入射角(為 45°)小於塑膠稜鏡	1A	
		的臨界角。 全内反射不會出現以致不能清楚觀察到影像。	1A	
			3	
	(ii)	(其臨界角小於 45°的)玻璃稜鏡	1A	
		<u>或</u> 平面鏡	1A	
			1	

				, , , , , , , , , , , , , , , , , , , ,	
			答案	分數	說明
9.	(a)	(i)	於 Q 處由 P 所產生的磁場指出紙面。	1A 1	
		(ii)	導線 P	-	
				1A 1	-
		(iii)	於 Q 處由 P 所產生磁場 $B_Q = \frac{\mu_0 I_P}{2\pi r}$	1M	
			對長度為 l 的導線線段,其磁力為 $F = B_Q I_Q l \sin \theta$	TIVI	
			$=\frac{\mu_0 I_P}{2\pi r} I_Q l$	1M	
			每單位長度的磁力為 $F_l = \frac{F}{l} = \frac{\mu_0 I_P I_Q}{2\pi r}$	1M	
		(iv)	該兩力是作用力和反作用力對,所以兩力的量值相等。	1A 1A	
	(b) ^a	(i)	因相鄰導線段的電流方向相同, 導線段互相吸引以致彈簧壓縮。	1A 1A	
		(ii)	在每一瞬間,相鄰導線段的電流方向仍是相同 的,因而有磁力令彈簧壓縮。	1A	

			r - 1
	答案	分數	說明
10. (a)	$^{210}_{84}\text{Po} \rightarrow ^{206}_{82}\text{Pb} + ^{4}_{2}\text{He}$	2A	
		2	
(b)	~粉之m 空气粉之蚕酸.	1A	
	α粒子把空氣粒子電離, 離子把相片或菲林表面/塵埃上的電荷中和。	1A	
		2	
(c)	因 α粒子在空氣中的射程只有數厘米。	1A	
		1	
(d)	365		
	一年後的放射強度 = $\left(\frac{1}{2}\right)^{\frac{365}{138}}$	1M	
	= 0.160 單位	1A	
	早報・		
	$A = A_0 e^{-\frac{\ln 2}{t_{1/2}}t}$ $= 1 \times e^{-\frac{\ln 2}{138}(365)}$ $= 0.160 單位$		
	$= 1 \times e^{-\frac{\ln 2}{138}(365)}$	1M	
	= 0.160 單位	1A	
		2	

甲部:天文學和航天科學

1. C (55%)	2. B (52%)	3. C (55%)	4. B (51%)
5. D (62%)	6. D (61%)	7. A (53%)	8. A (65%)

			答案	分數	說明
1.	(a)	(i)	$\frac{GMm}{r^2} = \frac{mv^2}{r}$	1M	
			$v^2 = \frac{GM}{r}$	1	
		())i	$T = \frac{2\pi r}{v}$	1M	
			$T = \frac{2\pi r}{v}$ $T^2 = \frac{4\pi^2 r^2}{v^2}$ $= \frac{4\pi^2 r^2}{\left(\frac{GM}{r}\right)}$ 根據 (i)	1M	
			$=\frac{4\pi^2}{GM}r^3$	2	
	(b)	()i	利用 $\frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$		
			$\Delta \lambda \approx \frac{v}{c} \lambda_0 = \frac{1.23 \times 10^5}{3 \times 10^8} \times 21.106$ = 8.65346 × 10 ⁻³ cm	1M	
			$\lambda = \lambda_0 - \Delta \lambda$ = 21.106 - 8.65346 × 10 ⁻³ = 21.097 cm	1A 2	
		(ii)	$T = \frac{2\pi r}{v}$		
			$= \frac{2 \times 3.14 \times \left(3.98 \times 10^{20}\right)}{1.23 \times 10^{5}}$ $= 2.03 \times 10^{16} \text{ s } (\vec{\boxtimes} 6.42 \times 10^{8} \mp)$	1A 1	

答案	分數	說明
1. (b) (ii) 對在 X 處圍繞 M33 星系運行的氫氣而言,		
$T^2 = \frac{4\pi^2}{GM}r^3 \dots (1)$		
其中 T為 (b)(ii) 部的答案, M為 M33 星系的質	Ī	
量,而 r 為 X 處與星系中心的距離。		
考慮地球圍繞太陽運行,		
$T_{\rm S}^2 = \frac{4\pi^2}{GM_{\rm S}} r_{\rm S}^3 \dots (2)$		
其中 $T_S = 1$ 年, $r_S = 1$ AU 而 M_S 為太陽質量。	1M	
(1) 得		
$\frac{T^2}{T_{\rm S}^2} = \frac{M_{\rm S}}{M r_{\rm S}^3} r^3$		
	1M	
$M = \frac{T_{\rm S}^2 r^3}{T^2 r_{\rm S}^3} M_{\rm S}$		
$= \left(\frac{3.16 \times 10^7}{2.03 \times 10^{16}}\right)^2 \left(\frac{3.98 \times 10^{20}}{1.50 \times 10^{11}}\right)^3 M_{\rm S}$		
$= 4.526 \times 10^{10} M_{\rm S} \approx 4.53 \times 10^{10} M_{\rm S}$	1A	
另解:		
利用 $T^2 = \frac{4\pi^2}{GM}r^3$ 找出 M33 的質量	1M	
$M = \frac{4\pi^2 (3.98 \times 10^{20})^3}{G(2.03 \times 10^{16})^2} = 9.055 \times 10^{40}$	kg	
利用 $T_{\rm S}^2 = \frac{4\pi^2}{GM_{\rm S}} r_{\rm S}^3$ 計算太陽質量	1M	
$M_{\rm S} = \frac{4\pi^2 (1.5 \times 10^{11})^3}{G(3.16 \times 10^7)^2} = 2.0 \times 10^{30} \mathrm{kg}$		
得出 M=4.526×10 ¹⁰ M _S	1A	
	3	
(vi) 星系內有暗物質/質量(非常) 巨大的黑洞/非例 體存在。	發光	
	1	

乙部:原子世界

1. B (70%)	2. A (30%)	3. C (57%)	4. C (60%)
5. B (52%)	6. A (64%)	7. A (70%)	8. D (70%)

			答案		分數	故	說明
2.	(a)	量相由於	子從較高能級躍遷到低能級,優等於該兩能級的能量差)。 等於該兩能級的能量差)。 能級皆為量子化,因此所發射光 波長)只能為分立的數值。		1A 1A	2	
	(b)	(i)	線 X 屬於紫外線範圍。		1A	1	
		(ii)	能量 = $\frac{hc}{\lambda e}$ = $\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(366 \times 10^{-9}\right)\left(1.60 \times 10^{-19}\right)}$ = 3.40 eV		1M 1A	2	
		(iii)	輻射會被吸收, 而氫原子電離。		1A 1A	2	
	(c)		從 n=3 到 n=2 的躍遷。 (即從第二到第一受激態)		1A	1	
			由線 X 可得 $ \frac{1}{366} = R(\frac{1}{2^2} - 0) $ $R \approx 0.0109 \text{ (nm}^{-1)} (或 1.09 \times 10^7 \text{ m}^{-1})$ 對線 Y , $ \frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2}) $ $\lambda = 658.8 \text{ nm}$		1M		
			$ -=R(-\frac{1}{2}-\frac{1}{2})$	$13.6 \left(\frac{1}{2^2} - \frac{1}{3^2}\right) \text{ eV}$ $5 \left(\frac{1}{2^2} - \frac{1}{3^2}\right) \times 1.6 \times 10^{-19}$	1M	2	

丙部:能量及能源的使用

	1. B (63%)	2. C (89%)	3. B (75%)	4. D (73%)
ľ	5. C (57%)	6. D (38%)	7. *	8. A (52%)

			答案	分數	說明
3.	(a)	(i)	製冷劑通過壓縮機從室內流向室外。	1A 1	
		(ii)	製冷劑凝結/從氣態變成液態, 把熱/內能散發到周圍環境。	1A D	
	(b)	(i)	總面積 = $(4 \times 2) \times 4 + (2 \times 2) \times 2 = 40 \text{ m}^2$ 製冷能力 = 吸熱率 = $\kappa \frac{A(T_H - T_C)}{d} = 0.03 \frac{40(50)}{0.08}$ = 750 W	1M 1M 1A	
		(ii)	隔室以輻射方式吸收熱,使冷藏隔室的表面溫度 高於 35℃。因此內部溫度高於 -15℃。	1A 1A	隔室從引擎/廢氣排放系統吸熱。
	(c)		:二極管 (LED) 有較長的壽命 :高效能。	1A 1A	

^{*}本試題被刪去。

丁部:醫學物理學

1. A (69%)	2. C (40%)	3. B (72%)	4. D (58%)
5. B (57%)	6. A (72%)	7. C (65%)	8. D (53%)

		答案	分數	說明
4.	(a)	快速的電子撞擊重金屬靶會產生 X-射線。	1A 1	·
	(b)	CT 掃描在軟組織圖形成像/區分體內互相覆蓋的組織結構/ 製造 3D 影像較為優勝。	1A	
	(c)	(i) 由於 次 CT 掃描涉及多次 X-射線放射攝影成像,因此 CT 掃描的有效劑量較高。	1A	
		(ii) 等效本底輻射劑量 = 1.85 × 1.5		
		0.02 = 138.75 天	1A	
	(d)	(i) 肺腔内充滿空氣/肺腔和骨骼的密度相差甚大	1A 1	
		(ii) $I = I_0 e^{-(\mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3)}$		
		$\frac{I}{I_0} = e^{(0.1 \times 19.8 + 0.18 \times 8.8 + 0.48 \times 4.4)}$	1M+1M	
		$= e^{-5.676} = 3.43 \times 10^{-3}$	1A 3	
	(e)	不同意,因為 CT 掃描可引致細胞內產生電離作用(改變)/損害胎兒的DNA。可以利用超聲波掃描檢查胎兒。	1A 1A	

71