LINMA1731 – Project 2019 Fish schools tracking

By Louis Navarre and Gilles Peiffer

Abstract

In this paper we solve the first part of the project for the class "Stochastic processes: Estimation and prediction" given during the Fall term of 2019. The average speed of each fish in a school of fish is approximated by a gamma-distributed random variable with a shape parameter k and a scale parameter s, and various methods for estimating this quantity are given; a numerical simulation is also included.

Contents

Part 1. Average speed estimation	2
1. Introduction	2
2. Maximum likelihood estimation	2
3. Properties of the estimator	3
4. Joint maximum likelihood estimation	4
5. Numerical simulation	5
6. Fisher information matrix	7
7. Numerical proof	7
Appendix A. Definitions of properties	8
A.1. Asymptotically unbiased	8
A.2. Efficiency	8
A.3. Best asymptotically normal	8
A.4. Consistency	9
Appendix B. Omitted proofs	9
B.1. Proof of normality using the central limit theorem	6
Appendix C. Calculations of the Fisher information matrix	10
References	11

[©] 2019 Gilles Peiffer and Louis Navarre.

Part 1. Average speed estimation

1. Introduction

For the purpose of this project, we assume that the speed of each fish in a school at time i is a random variable V_i following a Gamma distribution, as suggested in [1]. This distribution is characterized by two parameters: a shape parameter k > 0 and a scale parameter s > 0. The parameters are the same for every fish and are time invariant. The aim of this first part is to identify these two parameters using empirical observations v_i .

2. Maximum likelihood estimation

Let v_i be i.i.d. realisations of a random variable following a Gamma distribution $\Gamma(k,s)$ (with $i=1,\ldots,N$). We first assume that the shape parameter k is known.

We start by deriving the maximum likelihood estimator of $\theta := s$ based on N observations. Since the estimand θ is a deterministic quantity, we use Fisher estimation. In order to do this, let us restate the probability density function of $V_i \sim \Gamma(k, s)$:

(2.1)
$$f_{V_i}(v_i; k, s) = \frac{1}{\Gamma(k)s^k} v_i^{k-1} e^{-\frac{v_i}{s}}, \quad i = 1, \dots, N.$$

With this in mind, we can find that the likelihood $\mathcal{L}(v_1,\ldots,v_N;k,\theta)$ is given by

(2.2)
$$\mathcal{L}(v_1, \dots, v_N; k, \theta) = \prod_{i=1}^{N} f_{V_i}(v_i; k, \theta) = \prod_{i=1}^{N} \frac{1}{\Gamma(k)\theta^k} v_i^{k-1} e^{-\frac{v_i}{\theta}}.$$

In order to alleviate notation, we compute instead the log-likelihood, which is generally easier to work with¹:

(2.3)
$$\ell(v_1, \dots, v_N; k, \theta) := \ln \mathcal{L}(v_1, \dots, v_N; k, \theta)$$

$$= \sum_{i=1}^{N} \ln \left(\frac{1}{\Gamma(k)\theta^k} v_i^{k-1} e^{-\frac{v_i}{\theta}} \right)$$

(2.5)
$$= (k-1)\sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{\theta} - N(k \ln \theta + \ln \Gamma(k)).$$

Now, in order to obtain the maximum likelihood estimate $\hat{\theta}$, we must differentiate the log-likelihood with respect to the estimand θ , and set it equal to

¹This is possible because the values of θ which maximize the log-likelihood also maximize the likelihood.

zero:

(2.6)
$$\frac{\partial \ell(v_1, \dots, v_N; k, \theta)}{\partial \theta} \bigg|_{\theta = \hat{\theta}} = -\frac{kN}{\hat{\theta}} + \frac{\sum_{i=1}^N v_i}{\hat{\theta}^2} = 0$$

(2.7)
$$\iff \hat{\theta} = \frac{\sum_{i=1}^{N} v_i}{kN} = \frac{\overline{v}}{k}.$$

This then allows us to find the maximum likelihood estimator $\widehat{\Theta}$, given by

(2.8)
$$\widehat{\Theta} = \frac{\sum_{i=1}^{N} V_i}{kN} = \frac{\overline{V}}{k}.$$

3. Properties of the estimator

The estimator we just found has many interesting properties. First, it is an asymptotically unbiased estimator (A.1) . One can show that $\lim_{N\to+\infty}\mathbb{E}\left[\frac{\overline{V}}{k}\right]=\theta$:

(3.1)
$$\mathbb{E}\left[\frac{\overline{V}}{k}\right] = \frac{\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}V_{i}\right]}{k} = \frac{\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[V_{i}\right]}{k} = \frac{\frac{1}{N}Nk\theta}{k} = \theta.$$

The estimator is more than asymptotically unbiased; it is unbiased. Another interesting property is the efficiency (A.2) of θ . An unbiased estimator is said to be *efficient* if it reaches the Cramr-Rao bound for all values of θ , that is,

(3.2)
$$\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\theta), \quad \forall \theta.$$

Since we only have one estimator, we only have to calculate the expectation of the second derivative of the log-likelihood function derived earlier:

(3.3)
$$\mathcal{I}(\theta) = -N\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \left((k-1) \ln v_1 - \frac{v_1}{\theta} - \left(k \ln \theta + \ln \Gamma(k) \right) \right) \right]$$

$$(3.4) = N\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \left(\frac{v_1}{\theta} + k \ln \theta\right)\right] = \frac{kN}{\theta^2}.$$

Then, we have to compute the variance of the ML estimator $\hat{\Theta}$, which is given by

$$\mathbb{V}\left[\widehat{\Theta}\right] = \mathbb{V}\left[\frac{\overline{V}}{k}\right] = \frac{\theta^2}{kN}.$$

We directly see that the variance of our estimator reaches the Cramr-Rao lower bound; it is then an efficient estimator.

A third property is that the estimator is best asymptotically normal (A.3). In our case, we can show using the Cramr-Rao lower bound that Σ is minimal if it is equal to $\mathcal{I}^{-1}(\theta)$. To alleviate notations, we will write $\ell(\theta)$ instead of $\ell(v_1, \ldots, v_N; k, \theta)$. By definition, since $\hat{\theta} = \arg \max_{\theta} \ell(\theta)$, we know that

 $\ell'(\hat{\theta}) = 0$. Let θ_0 be the true value of the parameter θ . We can then use Taylor expansion on $\ell'(\hat{\theta})$ around $\hat{\theta} = \theta_0$ to obtain

(3.6)
$$\ell'(\hat{\theta}) = \ell'(\theta_0) + \frac{\ell''(\theta_0)}{1!} (\hat{\theta} - \theta_0) + \mathcal{O}\left((\hat{\theta} - \theta_0)^2\right).$$

We know the expression on the left is zero, hence

(3.7)
$$\ell'(\theta_0) = -\ell''(\theta_0)(\hat{\theta} - \theta_0) + \mathcal{O}\left((\hat{\theta} - \theta_0)^2\right).$$

Rearranging and multiplying by \sqrt{n} , we get

(3.8)
$$\sqrt{n}(\hat{\theta} - \theta_0) = \frac{\ell'(\theta_0)/\sqrt{n}}{-\ell''(\theta_0)/n + \mathcal{O}\left((\hat{\theta} - \theta_0)/n\right)}.$$

Next, we need to show that $\ell'(\theta_0)/\sqrt{n} \sim \mathcal{N}(0, \mathcal{I}(\theta_0))$. This is done using the Lindeberg–Lvy central limit theorem, in Appendix B.1. We know that $1/N\ell''(\theta_0) = \mathcal{I}(\theta_0)$. Finally, we can rewrite

(3.9)
$$\sqrt{N}(\hat{\theta} - \theta_0) \sim \frac{\mathcal{N}(0, \mathcal{I}(\theta_0))}{\mathcal{I}(\theta_0)} = \mathcal{N}(0, \mathcal{I}^{-1}(\theta_0)),$$

where we didn't take into account the remainder of the Taylor series, which goes to zero. This proves that the ML estimator is best asymptotically normal.

A last but important property to show that we have a "good" estimator is the consistency (A.4) of it. We have shown that the estimator is unbiased, hence its MSE is equal to its variance. Since the estimator is efficient - as said earlier - we know that its variance is equal to the Cramr–Rao lower bound, $\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\theta)$. We found this lower bound to be equal to $\theta^2/(kN)$ in (3.4). We have

(3.10)
$$\lim_{N \to +\infty} \operatorname{cov} \widehat{\Theta} = \lim_{N \to +\infty} \frac{\theta^2}{kN} = 0.$$

This proves that the variance (and hence the mean square error) of the estimator goes to zero as N goes to infinity, hence the estimator is consistent.

4. Joint maximum likelihood estimation

We now consider $V_i \sim \Gamma(k,s)$ (for $i=1,\ldots,N$) with both k and s unknown. Before, we assumed k was known, so we could maximize the log-likelihood function with respect to s. Now, we have to maximize this function with respect to s and k at the same time. We know the maximum likelihood estimator of s, $\hat{s} = f(k)$. Therefore, in the log-likelihood function, we can replace all the occurrences of s by the estimator we found, \hat{s} . We then get a function of k only, which we can differentiate and set its derivative to zero, solving to find the maximum likelihood estimator of k. We use the log-likelihood as given

in (2.5). We abusively write $\ell(v)$ instead of $\ell(v_1, \ldots, v_N; \theta)$ Substituting in the estimator \hat{s} instead of s, one finds

(4.1)
$$\ell(v) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{kv_i}{\overline{v}} - Nk \ln \overline{v} + Nk \ln k - N \ln \Gamma(k)$$

Taking the derivative of this function with respect to k, we get

$$(4.2) \qquad \frac{\partial \ell(v)}{\partial k} \bigg|_{k=\hat{k}} = \sum_{i=1}^{N} \ln v_i - N - N \ln \overline{v} + N \ln \hat{k} + \frac{N\hat{k}}{\hat{k}} - N \frac{\Gamma(\hat{k})}{\Gamma(\hat{k})} \psi^{(0)}(\hat{k})$$

(4.3)
$$= \sum_{i=1}^{N} \ln v_i - N \ln \sum_{i=1}^{N} v_i + N \ln \hat{k} + N \ln N - N \psi^{(0)}(\hat{k}),$$

where $\psi^{(0)}$ is the digamma function, i.e. the logarithmic derivative of the gamma function. We now look for a root of this equation:

(4.4)
$$\ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\sum_{i=1}^{N} v_i \right) - \ln N - \frac{\sum_{i=1}^{N} \ln v_i}{N}$$

(4.5)
$$\iff \ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\frac{\sum_{i=1}^{N} v_i}{N} \right) - \frac{\sum_{i=1}^{N} \ln v_i}{N}.$$

This equation has no closed-form solution for \hat{k} , but can be approximated using numerical methods since the function is very well-behaved.

5. Numerical simulation

6. Fisher information matrix

We can compute the Fisher information matrix. Since we have two estimators, this matrix is a 2×2 matrix. This matrix is hence computed by

$$\mathcal{I}(\theta) = \left(\begin{array}{cc} -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s^2} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k \partial s} \right] \\ -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s \partial k} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k^2} \right] \end{array} \right)$$

And remember the log-likelihood function, computed before.

(6.1)
$$\ell(x) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{s} - N(k \ln s + \ln \Gamma(k))$$

The calculation of theses entries can be found in appendix C. Finally, the Fisher information matrix is

$$\mathcal{I}(\theta) = N \left(\begin{array}{cc} \frac{K}{s^2} & \frac{1}{s} \\ \frac{1}{s} & \psi_1(k) \end{array} \right)$$

And the inverse of this matrix, the Cramr-Rao lower-bound, is

$$\mathcal{I}^{-1}(\theta) = \frac{1}{N} \begin{pmatrix} \psi_1(k) & -\frac{1}{s} \\ -\frac{1}{s} & \frac{K}{s^2} \end{pmatrix} \cdot \frac{s^2}{K\psi_1(k) - 1}$$

7. Numerical proof

Figure FIGURE shows the matrix norm induced by the vector 2-norm. We see that, the more N increase, the more we get close to 2 (which is the norm for a matrix 2x2 composed of 1). Figure FIGURE shows also the empirical covariance matrices, the inverse of the Fisher information matrix, and the

matrix composed of the the ratio between the coefficients of the first two for a value of N=3000. Wee directly see that these coefficients are very close to one, showing that the covariance matrix tends to the Cramer-Rao lower bound, resulting in the proof that our estimators are efficient.

Appendix A. Definitions of properties

A.1. Asymptotically unbiased.

Definition A.1 (Unbiased estimator). The Fisher estimator $\widehat{\Theta} = g(Z)$ of θ is unbiased if

$$(A.1) m_{\widehat{\Theta}:\theta} \coloneqq \mathbb{E}\left[g(Z);\theta\right] = \theta\,, \quad \text{for all } \theta\,.$$

A.2. Efficiency.

Definition A.2 (Efficient estimator). An unbiased estimator is said to be efficient if it reaches the Cramr–Rao bound for all values of θ , that is,

(A.2)
$$\operatorname{cov} \widehat{\Theta} = \mathcal{I}^{-1}(\theta), \quad \forall \theta.$$

A.3. Best asymptotically normal.

Definition A.3 (Best asymptotically normal). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of consistent estimators of θ is called best asymptotically normal if

(A.3)
$$\sqrt{N} \left(\widehat{\Theta}_N(Z) - \theta \right) \xrightarrow[N \to +\infty]{\mathcal{D}} \mathcal{N}(0, \Sigma),$$

for some minimal positive definite matrix Σ .

A.4. Consistency.

Definition A.4 (Consistent estimator). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of estimators of θ is called *consistent* if

(A.4)
$$\underset{N \to +\infty}{\text{plim}} \widehat{\Theta}_N(Z) = \theta.$$

Equivalently, we can show that the MSE of the estimator converges to zero as N goes to infinity.

Appendix B. Omitted proofs

B.1. Proof of normality using the central limit theorem.

Proof. We want to prove that $\ell'(\theta_0)/\sqrt{N} \sim \mathcal{N}(0,\mathcal{I}(\theta_0))$. We simplify notation by writing $f(v_i)$ instead of $f_{V_i}(v_i;k,\theta)$ and using Euler's notation for derivatives. First, we show that the expected value of $\ell'(\theta_0)/\sqrt{N}$ is zero.

(B.1)
$$\mathbb{E}\left[\frac{\ell'(\theta_0)}{\sqrt{N}}\right] = \int_{-\infty}^{+\infty} \partial_{\theta_0} \left(\sum_{i=1}^{N} \frac{\ln f(v_i)}{\sqrt{N}}\right) f(v_i) \, dv_i$$

(B.2)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\theta} f(v_i)}{f(v_i)} f(v_i) \, \mathrm{d}v_i$$

(B.3)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\theta} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

(B.4)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \partial_{\theta} f(v_i) \, dv_i$$

(B.5)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \partial_{\theta} \int_{-\infty}^{+\infty} f(v_i) \, \mathrm{d}v_i$$

(B.6)
$$= 0$$
.

Next, we compute the variance of $\ell'(\theta_0)/\sqrt{N}$. First, we compute (for $i=1,\ldots,N$)

(B.7)
$$\mathbb{E}\left[\left(\partial_{\theta_0} \ln f(v_i)\right)^2\right] = \int_{-\infty}^{+\infty} \partial_{\theta_0} \ln f(v_i) \frac{\partial_{\theta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

(B.8)
$$= \int_{-\infty}^{+\infty} \partial_{\theta_0} \ln f(v_i) \partial_{\theta_0} f(v_i) \, dv_i.$$

Using the product rule, we can then find

(B.9)
$$= -\int_{-\infty}^{+\infty} \partial_{\theta_0 \theta_0} \ln f(v_i) f(v_i) dv_i + \int_{-\infty}^{+\infty} \partial_{\theta_0} \left(\partial_{\theta_0} \ln f(v_i) f(v_i) \right) dv_i .$$

(B.10)
$$= -\mathbb{E}\left[\partial_{\theta_0 \theta_0} \ln f(v_i)\right] + \partial_{\theta_0} \int_{-\infty}^{\infty} \frac{\partial_{\theta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

$$(B.11) = \mathcal{I}(\theta),$$

where the last expression can be shown to be zero by a similar argument as the one used above for the expected value. Knowing this, one easily finds

(B.12)
$$\mathbb{V}\left[\frac{\ell'(\theta_0)}{\sqrt{N}}\right] = \frac{1}{N}\mathbb{V}\left[\sum_{i=1}^{N} \partial_{\theta_0} \ln f(v_i)\right] = \mathcal{I}(\theta_0),$$

since the random variables are i.i.d.. Using the Lindeberg–Lvy CLT, we thus have

(B.13)
$$\frac{\ell'(\theta_0)}{\sqrt{N}} \sim \mathcal{N}(0, \mathcal{I}(\theta_0)). \qquad \Box$$

Appendix C. Calculations of the Fisher information matrix

(C.1)
$$\frac{\partial h(z;\theta)}{\partial s} = \frac{1}{s^2} \sum_{i=1}^{N} v_i - \frac{Nk}{s}$$

(C.2)
$$\frac{\partial h(z;\theta)}{\partial k} = \sum_{i=1}^{N} \ln v_i - N \ln s - N\psi_0(k)$$

(C.3)
$$\frac{\partial^{2}h(z;\theta)}{\partial s^{2}} = -\frac{2}{s^{3}} \sum_{i=1}^{N} v_{i} + \frac{Nk}{s^{2}}$$

(C.4)
$$\frac{\partial^2 h(z;\theta)}{\partial k^2} = -N\psi_1(k).$$

(C.5)
$$\frac{\partial^2 h(z;\theta)}{\partial k \partial s} = -\frac{N}{s}.$$

Then, we take the expectation of these computed values.

$$(C.6) \mathcal{I}_{00} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial s^2}\right\} = -\mathbb{E}\left\{-\frac{2}{s^3}\sum_{i=1}^N v_i + \frac{Nk}{s^2}\right\}$$

(C.7)
$$= \frac{2}{s^3} Nsk - \frac{NK}{s^2} = \frac{NK}{s^2}.$$

(C.8)
$$\mathcal{I}_{01} = \mathcal{I}_{10} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial k \partial s}\right\} = \frac{N}{s}.$$

(C.9)
$$\mathcal{I}_{11} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial k^2}\right\} = -N\psi_1(k).$$

References

Universit catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium $E\text{-}mail\colon$ navarre.louis@student.uclouvain.be

Universit catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium E-mail: gilles.peiffer@student.uclouvain.be