

(Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. S,S¹ are the foci, ZQ and Z¹Q¹ the directrixes, PG, PT, PN are the normal, tangent and the ordinate at P.)

Tangent; $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{h} = 1$

 $y = 0 : x = \frac{a}{\cos \theta}$

 $x = 0 : \frac{y \sin \theta}{h} = 1$

$$ON = a \cos \theta$$

$$OT = ^{a}/\cos \Theta$$

ON • OT =
$$a \cos \theta \cdot \frac{a}{\cos \theta}$$

$$\therefore$$
 ON \cdot OT = a^2

Q1. 2.

On =
$$b \sin \theta$$

$$OT^1 = \frac{b}{\sin \theta}$$

$$\therefore \text{ On } \cdot \text{OT}^{1} = \text{b } \sin \theta \cdot \frac{\text{b}}{\sin \theta}$$

Equ. of normal
$$\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2$$

 $SG = SO + OG$

at G y = 0 :
$$\frac{ax}{\cos \theta} = a^2 - b^2$$
 : $x = \frac{\cos \theta (a^2 - b^2)}{a}$

$$SG = ae + ae^{2}cos \theta$$

$$= e(a + ae cos \theta) \implies ae(1 + e cos \theta)$$

$$= e(a + ae \cos \theta) \implies ae(1 + e \cos \theta)$$

(continued on next page)

>.)

UNIT 4

= SG

$$SP^{2} = (-ae - a\cos\theta)^{2} + (-b\sin\theta)^{2}$$

$$= a^{2}e^{2} + 2a^{2}e\cos\theta + a^{2}\cos^{2}\theta + (b^{2}\sin^{2}\theta) \qquad b^{2}=a^{2}-a^{2}e^{2}$$

$$= a^{2}e^{2} + 2a^{2}e\cos\theta + a^{2}\cos\theta + (a^{2} - a^{2}e^{2})\sin^{2}\theta$$

$$= a^{2}(e^{2} + 2e\cos\theta + \cos^{2}\theta + \sin^{2}\theta - e^{2}\sin^{2}\theta)$$

$$= a^{2}(1 + 2e\cos\theta + e^{2}(1 - \sin^{2}\theta))$$

$$= a^{2}(1 + 2e\cos\theta + e^{2}\cos^{2}\theta)$$

$$= (a(1 + e\cos\theta)^{2}) \qquad \therefore SP = a(1 + e\cos\theta)$$

$$eSP = ae(1 + e\cos\theta) =$$

Q1. 4.
$$S^{1}G = eS^{1}P$$
 (to prove)
 $S^{1}G = 0G - 0S^{1}$
 $= ae^{2}\cos\theta - ae$
 $= ae(e\cos\theta - 1)$
 $eS^{1}P^{2} = e((a\cos\theta - ae)^{2} + (b\sin\theta)^{2})$ from 1.(3)
 $= e(a(\cos\theta - 1))^{2}$
 $eS^{1}P = ae(\cos\theta - 1)$
 $= S^{1}G$

Q1. 5.
$$SG = e^2PM$$
 (to prove)
 $SG = ae + ae^2cos \theta$
 $PM = \frac{a}{e} + acos \theta$
 $e^2PM = ae + ae^2cos \theta$
 $= SG$

Q1. 6. Prove:
$$\angle GPS^1 = \angle PM^1S^1$$

Gradient of $S^1M = \frac{b \sin \theta}{\frac{a}{e} - ae} = \frac{eb \sin \theta}{a(1 - e^2)} = \frac{ae \sin \theta}{b}$

From the second seco

Gradient of
$$S^{1}P = \frac{b \sin \theta}{a \cos \theta - ae}$$

$$\tan \angle GPS^{1} = \frac{\frac{a \sin \theta}{b \cos \theta} + \frac{b \sin \theta}{ae - a \cos \theta}}{1 + \frac{ab \sin^{2} \theta}{-abe \cos \theta + ab \cos^{2} \theta}}$$

(continued on next page)

Q1. 6. (cont'd)

$$= \frac{a^2 e \sin \theta + a^2 \sin \theta \cos \theta + b^2 \sin \theta \cos \theta}{-abe \cos \theta = ab \cos^2 \theta + ab \sin^2 \theta}$$

$$= \frac{a^2 e \sin \theta + \sin \theta \cos \theta (b^2 - a^2)}{-abe \cos \theta + ab(\cos^2 \theta + \sin^2 \theta)}$$

$$= \frac{a^2 e \sin \theta - a^2 e^2 \sin \theta \cos \theta}{ab - abe \cos \theta}$$

$$= \frac{a^2 e \sin \theta (1 - e \cos \theta)}{ab(1 - e \cos \theta)}$$

$$= \frac{ae \sin \theta}{b}$$

$$= \tan \angle PM^1 S^1$$

$$\therefore$$
 GPS¹ = \angle PM¹S¹

Q1. 7.
$$\angle PS^1R = 90^\circ$$
 (to prove)

Gradient of $PS^1 = \frac{b \sin \theta}{a \cos \theta - ae} = m_1$

Gradient of $RS^1 = \frac{k - 0}{\frac{a}{e} - ae}$

$$= \frac{b(e - \cos \theta)}{\frac{c \sin \theta}{e} - ae}$$

$$= \frac{b(e - \cos \theta)}{\frac{c \sin \theta}{e} - ae}$$

$$= \frac{b(e - \cos \theta)}{ae \sin \theta (1 - e^2)}$$

$$= \frac{b(e - \cos \theta)}{ae \sin \theta (1 - e^2)}$$

$$= \frac{b(e - \cos \theta)}{ae \sin \theta (b)}$$

$$= \frac{b(e - \cos \theta)}{ae \sin \theta} = m_2$$

$$m_1 m_2 = \frac{b \sin \theta}{a(\cos - e)} \cdot \frac{a(e - \cos \theta)}{b \sin \theta}$$

$$= -1$$

$$\therefore \angle PS^1R = 90^\circ$$

Q1. 8. SY · SY¹ = b² (to prove)

Tangent YY¹ =
$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$$

S(-ae,0), S¹(ae,0)

$$d_1 = \begin{vmatrix} -\frac{aeb \cos \theta - ab}{b^2 \cos^2 \theta + a^2 \sin^2 \theta} \\ \frac{b^2 \cos^2 \theta + a^2 \sin^2 \theta}{b^2 \cos^2 \theta + a^2 \sin^2 \theta} \end{vmatrix}$$

$$= \frac{aeb \cos \theta - ab}{b^2 \cos^2 \theta + a^2 \sin^2 \theta}$$

$$= \left| \frac{a^2b^2(e^2\cos^2\theta - 1)}{(b^2 - a^2)\cos^2\theta + a^2} \right|$$

$$= \left| \frac{a^2b^2(e^2\cos^2\theta - 1)}{-a^2e^2\cos^2\theta + a^2} \right|$$

$$= \left| \frac{a^2b^2(e^2\cos^2\theta - 1)}{a^2(1 - e^2\cos^2\theta - 1)} \right|$$

$$sy \cdot sy^1 = b^2$$

Q1. 9.

To find M¹ and M.
$$x = a$$
 $\frac{x}{a} \cos \theta + \frac{y}{b} (\sin \theta) = 1$

$$y = \frac{b(1 - \cos \theta)}{\sin \theta}$$
M¹ (a, $\frac{b(1 - \cos \theta)}{\sin \theta}$ and M(-a. $\frac{b(1 + \cos \theta)}{\sin \theta}$

$$m_{S} \gamma_{M} \gamma = \frac{b(1 - \cos \theta)}{a \sin \theta (1 - e)}$$

$$m_{S1M} = \frac{-b(1+\cos\theta)}{(1+e)a\sin\theta}$$

$$\begin{split} \mathbf{m}_{S} \mathbf{1}_{M} \mathbf{1} \cdot \mathbf{m}_{S} \mathbf{1}_{M} &= \frac{-b^{2} (1 - \cos^{2} \theta)}{a^{2} \sin^{2} \theta (1 - e^{2})} \\ &= -\frac{b^{2}}{a^{2}} \cdot \frac{1}{\frac{2}{b^{2}}} \end{split}$$

= -1 (The result is identical when using S instead of S1.)

Hence MM¹ subtends a right angle at either focus.

Q1. 10.
$$y = mx - c \cap \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} + \frac{m^2x^2 + c^2 - 2mcx}{b^2} = 1$$

$$bx^2 + a^2m^2x^2 + a^2c^2 - 2a^2mc - a^2b^2 = 0$$

$$x^2(b^2 + a^2m^2) - 2a^2mcx + a^2(c^2 - b^2) = 0$$
If $y = mx - c$ is a tangent then
$$\Delta = b^2 - 4ac = 0 \text{ i.e.}$$

$$a^2m^2c^2 - b^2c^2 + b^4 - a^2m^2c^2 + a^2b^2m^2 = 0$$

$$b^2c^2 = a^2b^2m^2 + b^4$$

$$\therefore c = \pm \sqrt{a^2m^2 + b^2}$$

Q1. 11.

to prove that the foot of the perpendicular from the foci lie on the auxiliary circle $x^2 + y^2$

(This question lends itself to a rather straightforward geometric solution, which is not part of the syllabus.) It is complicated to find the point of \bigcap of $x^2 + y^2 = a^2$ with $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$.

Instead; find the point of intersection of the tangent with the perpendiculars through S and S¹, then show that those points lie on the circle $x^2 + y^2 = a^2$.

Equation of tangent at $P(a \cos \theta, b \sin \theta)$;

$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \qquad (1)$$

Gradient of a line \downarrow to tangent = $\frac{a \sin \theta}{b \cos \theta}$

Equation of perpendicular through S;

$$y = \frac{a \sin \theta}{b \cos \theta} (x - ae)$$

$$y = \frac{ax \sin \theta - a^2 e \sin \theta}{b \cos \theta}$$
(2)

(2)
$$\longrightarrow$$
 (1) $\frac{x \cos \theta}{a} + \frac{(xa \sin \theta - a^2 e \sin \theta) \sin \theta}{b^2 \cos \theta} = 1$

 $xb^{2}\cos^{2}\theta + xa^{2}\sin^{2}\theta - a^{3}e\sin^{2}\theta = ab^{2}\cos\theta$ $x = \frac{ab^{2}\cos\theta + a^{3}e\sin^{2}\theta}{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}$

$$x = \frac{ab^2\cos \theta + a^3e\sin^2\theta}{b^2\cos^2\theta + a^2\sin^2\theta}$$

From (2)
$$x = \frac{by \cos \theta + a^2}{a \sin \theta}$$
 (3)

$$(3) \rightarrow (1) \frac{\cos \theta}{a} \cdot \frac{by \cos \theta + a^2 e \sin \theta}{a \sin \theta} + \frac{y \sin \theta}{b} = 1$$

 $b^2v \cos^2\theta + ya^2\sin^2\theta + a^2be\cos\theta\sin\theta - a^2b\sin\theta = 0$

into a LHS =

Now st

LHS =

substi

Q1

$$y = \frac{a^2b \sin \theta - a^2be \cos \theta \sin \theta}{b^2\cos^2\theta + a^2\sin^2\theta}$$

Now substitute
$$\frac{ab^2\cos\theta + a^3e\sin^2\theta}{b^2\cos^2\theta + a^2\sin^2\theta}, \frac{a^2b\sin\theta - a^2be\cos\theta\sin\theta}{b^2\cos^2\theta + a^2\sin^2\theta}$$

into
$$x^2 + y^2 = a^2$$

$$LHS = x^2 + y^2$$

LHS =
$$\frac{a^{2}b^{4}\cos^{2}\theta + a^{6}e^{2}\sin^{4}\theta + 2a^{4}b^{2}e\cos\theta\sin^{2}\theta}{(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)^{2}} +$$

$$\frac{a^{4}b^{2}\sin^{2}\theta + a^{4}b^{2}e^{2}\cos^{2}\theta \sin^{2}\theta - 2a^{4}b^{2}e\sin^{2}\theta\cos\theta}{(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)^{2}}$$

substitute
$$a^2e^2 = a^2 - b^2$$

$$= \frac{a^2 \left[\left(a^4 - a^2 b^2 \right) \sin^4 \theta + b^4 \cos^2 \theta + \left(a^2 b^2 - b^4 \right) \cos^2 \theta \sin^2 \theta + a^2 b^2 \sin^2 \theta \right]}{a^4 \sin^4 \theta + 2a^2 b^2 \cos^2 \theta \sin^2 \theta + b^4 \cos^4 \theta}$$

$$= \frac{a^{2} \left[a^{4} \sin^{4} \theta + \left(a^{2} b^{2} \sin^{2} \theta - a^{2} b^{2} \sin^{4} \theta\right) + a^{2} b^{2} \cos^{2} \theta \sin^{2} \theta + \left(b^{4} \cos^{2} \theta - b^{4} \cos^{2} \theta \sin^{2} \theta\right)\right]}{a^{4} \sin^{4} \theta + 2a^{2} b^{2} \cos^{2} \theta \sin^{2} \theta + b^{4} \cos^{4} \theta}$$

$$= \frac{a^2 (a^4 \sin^4 \theta + a^2 b^2 \cos^2 \sin^2 \theta + a^2 b^2 \cos^2 \sin^2 \theta + b^4 \cos^4 \theta)}{a^4 \sin^4 \theta + 2a^2 b^2 \cos^2 \theta \sin^2 \theta + b^4 \cos^4 \theta}$$

$$= a^2$$

= RHS Hence M,L lie on
$$x^2 + y^2 = a^2$$

Q1. 12.

(i) If PS is a semi latus rectum

$$x_1 = ae$$

$$\frac{a^2e^2}{a^2} + \frac{y_1^2}{a^2} = 1$$

$$y_1^2 = (\frac{a^2 - a^2 e^2}{a^2})b^2$$

$$=\frac{a^2(1-e^2)}{a^2}b^2$$

$$=\frac{b^4}{a^2}$$

$$y_1 = \frac{b^2}{a}$$

So the length of PS =
$$\frac{b^2}{a}$$
 units.

nich

nc

Q1. 12. (cont'd)

OR (ii) If P(a cos
$$\theta$$
, b sin θ)

$$PS^{2} = (ae - a cos \theta)^{2} + b^{2} sin^{2}\theta$$

$$= a^{2}e^{2} + a^{2}cos^{2}\theta + b^{2}sin^{2}\theta$$

$$= a^{2}[e^{2} + cos^{2}\theta - 2e cos \theta + (1-e^{2})sin^{2}\theta] \quad (b^{2} = a^{2}-a^{2}e^{2})$$

$$= a^{2}[e^{2} + cos^{2}\theta - 2e cos \theta + (1-e^{2})(1-cos^{2}\theta)]$$

$$= a^{2}[e^{2} + cos^{2}\theta - 2e cos \theta + 1 - cos^{2}\theta - e^{2} + e^{2}cos^{2}\theta]$$

$$= a^{2}[1 - e cos \theta]$$

$$= a^{2}[1 - e cos \theta]$$

$$= a^{2}(1 - e^{2})$$

$$= a^{2}(1 - e^{2})$$

$$= a^{2}(1 - e^{2})$$

$$= a^{2}(1 - e^{2})$$

$$\Rightarrow but ae = a cos \theta$$

$$but 1-e^{2} = \frac{b^{2}}{a^{2}}$$

$$\therefore PS = \frac{b^{2}}{a}$$

Q1. 13.

To prove:OT \cdot NG = b^2

At T we have
$$\frac{xx_1}{a^2} = 1$$

$$x = \frac{a^2}{x_1}$$

at G we have
$$\frac{xa^2}{x_1} = a^2 - b^2$$

$$x = \frac{(a^2 - b^2)}{a^2} x_1$$

$$\therefore \quad \text{OT} = \frac{a^2}{x_1}$$

NG = ON-OG
=
$$x_1 - \frac{x_1}{a^2} (a^2 - b^2)$$

= $x_1 - \frac{x_1}{a^2} (a^2 - b^2)$
= $x_1 - \frac{x_1}{a^2} (a^2 - b^2)$
= $x_1 (1 - e^2)$
= $x_1 \frac{b^2}{a^2}$
OT · NG = $\frac{a^2}{x_1} \cdot \frac{b^2 x_1}{a^2}$
= b^2

Q1. 14.

UNIT 4

Prove:
$$TSK = 90^{\circ}$$

Note that PP¹ is a chord of contact with equation

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1 \quad \left[\text{and } T(x_0, y_0) \right]$$

PP¹ intersects directrix
$$x = \frac{a}{e}$$

when $\frac{x_0}{ae} + \frac{yy_0}{b^2} = 1$

$$\therefore y = b^2 \frac{(ae - x_0)}{y_0 ae}$$

Hence K
$$(\frac{a}{e}, \frac{b^2(ae - x_0)}{y_0 ae})$$

Then the gradient of the line joining $T(x_0, y_0)$ S(ae,0) is

$$m_1 = \frac{y_0}{x_0 - ae}$$

The gradient of the line joining S(ae,0)

Ine gradient of the line joining
$$S(ae,0)$$

$$K\left(\frac{a}{e}, \frac{b^2(ae - x_0)}{y_0 ae}\right) \quad \text{is} \quad \frac{b^2(ae - x_0)}{y_0 ae} = 0$$

$$m_2 = \frac{\frac{a}{e} - ae}{\frac{ae - x_0}{e}}$$

$$m_2 = \frac{ae - x_0}{y_0}$$

$$m_1 m_2 = \frac{y_0}{x_0 - ae} \cdot \frac{ae - x_0}{y_0}$$

Hence
$$TSK = 90^{\circ}$$

(Notice; as $P^1 \longrightarrow P$; $T \longrightarrow P$, $TS \longrightarrow PS$, so this property applies for a single tangent at P also. Secenample page 42.)

Q1. 15.

)]

(i) (a) Let P be (a $\cos \theta$, b $\sin \theta$)

Gradient of
$$PA^{1} = \frac{b \sin \theta}{a(\cos \theta + 1)}$$

Equation of PA¹
$$\Rightarrow$$
 y = $\frac{b \sin \theta}{a(1 + \cos \theta)}$ (x + a)

At
$$K^1$$
 $x = \frac{a}{e}$, hence we have $y = \frac{b \sin \theta(1+e)}{e(1+\cos \theta)}$ $\therefore K^1(\frac{a}{e}, \frac{b \sin \theta(1+e)}{e(1+\cos \theta)})$
Gradient of PA = $\frac{b \sin \theta}{a(\cos \theta - 1)}$
Equation of PA; $y = \frac{b \sin \theta}{a(\cos \theta - 1)}$ $(x - a)$
At K, $x = \frac{a}{e}$ hence we have $y = \frac{(1-e)b \sin \theta}{e(\cos \theta - 1)}$ $\therefore K(\frac{a}{e}, \frac{(1-e)b \sin \theta}{e(\cos \theta - 1)})$
 $m_1 = \text{gradient of PK} = \frac{(1-e)b \sin \theta}{e(\cos \theta - 1)} / (\frac{a}{e} - ae) = \frac{(1-e)b \sin \theta}{a(1-e^2)(\cos \theta - 1)}$
 $m_2 = \text{gradient of P}^1K = \frac{(1+e)b \sin \theta}{e(\cos \theta + 1)} / (\frac{a}{e} - ae) = \frac{(1+e)b \sin \theta}{a(1-e^2)(\cos \theta + 1)}$
 $m_1^m_2 = \frac{(1-e^2)b^2 \sin^2\theta}{a^2(1-e^2)^2(\cos^2\theta - 1)} = \frac{b^2}{a^2} \cdot \frac{\sin^2\theta}{(-\sin^2\theta)} \cdot \frac{1}{1-e^2} = -1$
Hence $\angle KSK^1 = 90^0$

(continued on next page)

 $\begin{cases} \text{Note} \\ 1 - e^2 = \frac{b^2}{3} \end{cases}$

 $y_1^2 = \frac{b^2}{2}(a^2 - x_1^2)$

UNIT 4

$$= \frac{b^2(a^2 - x_1^2)}{a^2(x_1^2 - a^2)} \cdot \frac{a^2}{b^2}$$

 $= \frac{y_1^2}{(x^2 - a^2)(1 - e^2)}$

$$= -1$$
 .. $\widehat{KSK} = 90^{\circ}$

(ii)
$$K^1X \cdot KX = XS^2$$

(a) using similar triangles (\triangle KXS \sim \triangle SXK 1)

$$\frac{KX}{XS} = \frac{XS}{K^{1}X} : K^{1}X \cdot KX = XS^{2}$$

(b)
$$K^{1}X = \left| \frac{b \sin \theta (1+e)}{e(1+\cos \theta)} \right|$$
, $KX = \left| \frac{(1-e) b \sin \theta}{e(\cos \theta - 1)} \right|$

$$SX = \left| \frac{a}{e} - ae \right| = \left| \frac{a}{e} (1 - e^2) \right| = \frac{a}{e} \cdot \frac{b^2}{a^2} = \frac{b^2}{ae}$$

$$K^{1}X \cdot KX = \left| \frac{b^{2} \sin^{2} \theta (1 - e^{2})}{e^{2} (-\sin^{2} \theta)} \right|$$

$$= \frac{b^2(1 - e^2)}{e^2}$$
$$= \frac{b^4}{2.2}$$

$$= SX^2$$

(iii)
$$PN : NA^1 = XK^1 : XA^1$$

(to prove)

(a) Using similar triangles ($\triangle A^{1}PN \sim \triangle A^{1}K^{1}X$)

$$\frac{PN}{NA^{1}} = \frac{K^{1}X}{XA^{1}}$$

$$\underline{OR}$$
 (b) $PN : NA^{1} = XK^{1} : XA^{1} \iff PN \cdot XA^{1} = XK^{1} \cdot NA^{1}$

LHS = PN
$$\cdot$$
 XA¹

$$RHS = XK^{1} \cdot NA^{1}$$

$$= b \sin \theta \left(a + \frac{a}{6} \right)$$

$$= \frac{b\sin\theta(1+e)}{e(1+\cos\theta)}, (a + a\cos\theta)$$

$$= \frac{ab}{e} \sin \theta (e + 1)$$

$$= \frac{ab \sin \theta (1 + \cos \theta) (1 + e)}{e (1 + \cos \theta)}$$

$$= \frac{\text{ab} \sin \theta (1 + e)}{e}$$

$$\therefore PN : NA^{1} = XK^{1} : XA^{1}$$

Q2. 2

UNIT 4

Q.2. 1.

Let P be the point (cp, $\frac{c}{p}$), deduce that S and S' (foci) are (c/2, c/2) and (-c/2, -c/2) respectively. Verify that $p^2 + \frac{1}{p^2} = (p + \frac{1}{p})^2 - 2...(1)$ $p^4 + \frac{1}{p^4} = (p + \frac{1}{p})^4 - 4(p + \frac{1}{p})^2 + 2....(2)$ To prove: SP.S'P = OP² i.e. that $sP^2.s'P^2 = oP^4.$ $sP^2 = (c/2 - cp)^2 + (c/2 - \frac{c}{p})^2$ $= 4c^2 - 2 \sqrt{2}c^2(p + \frac{1}{p}) + c^2(p^2 + \frac{1}{p})^2$

 $S^{\bullet}P^{2} = (cp + c\sqrt{2})^{2} + (^{C}/p + c\sqrt{2})^{2} = 4c^{2} + 2\sqrt{2}c^{2}(p + ^{1}/p) + c^{2}(p^{2} + ^{1}/p^{2})$ $LHS = SP^{2}. S^{\bullet}P^{2}$ $= c^{2} \left[(p^{2} + \frac{1}{p^{2}}) - 2\sqrt{2}(p + ^{1}/p) + 4 \right] c^{2} \left[(p^{2} + ^{1}/p^{2}) + 2 \cdot 2(p + ^{1}/p^{2}) + 4 \right]$ $= c^{4} \left[(p + ^{1}/p)^{2} - 2\sqrt{2}(p + ^{1}/p) + 2 \right] \left[(p + ^{1}/p)^{2} + 2\sqrt{2}(p + ^{1}/p) + 2 \right]$ $= c^{4} \left[(p + ^{1}/p) - \sqrt{2} \right]^{2} \left[(p + ^{1}/p) + \sqrt{2} \right]^{2}$ $= c^{4} \left[(p + ^{1}/p)^{2} - 2 \right]^{2}$ $RHS = OP^{4} = (c^{2}p^{2} + c^{2}/p^{2})^{2} = c^{4}(p^{4} + \frac{1}{p^{4}} + 2)$ $= c^{4} \left[(p + ^{1}/p)^{4} - 4(p + ^{1}/p)^{2} + 4 \right] \qquad \text{from (2)}$ $= c^{4} \left[(p + ^{1}/p)^{2} - 2 \right]^{2}$

Let P(x,y) be any point on $x^2 - y^2 = a^2$ with foci S(ae,o), S'(-ae,o). $SP^2.S'P^2 = [(x - ae)^2 + y^2][(x + ae)^2 + y^2]$ $= [(x - ae)(x + ae)]^2 + y^2[(x + ae)^2 + (x - ae)^2]$ $+ y^4$ $= (x^2 - a^2 e^2)^2 + 2y^2(x^2 + a^2 e^2) + y^4$

 $= \left[x^2 - 2(x^2 - y^2) \right]^2 + 2y^2 \left[x^2 + 2(x^2 - y^2) \right] + y^4$ (Using $a^2 = x^2 + y^2$; $e^2 = 2$) $= x^4 + 2x^2y^2 + y^4 = (x^2 + y^2)^2$ (Simplifying and factorizing). $SP^2 \cdot S \cdot P^2 = x^2 + y^2$ $= OP^2 \quad \text{as required.}$

Q2.

Q2. 2.

Let (c,0) be the coordinates of S, (x_1,y_1) the coordinates of P and U is the point of concurrence of the tangent at P, the asymptote and of the perpendicular through S.

The tangent at $P = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ intersects the asymptote

$$y = \frac{b}{a}x$$
 at U_1 so we have

$$\frac{xx_{1}}{a^{2}} - \frac{bxy_{1}}{b^{2}a} = 1$$

$$x = \frac{a^{2}b}{bx_{1} - ay_{1}}$$
(and $y = \frac{ab^{2}}{bx_{1} - ay_{1}}$)

but at U = c $\frac{a^2b}{bx_1 - ay_1} = c$ is the condition for concurrency.

Since
$$\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$$
 i.e., $bx_1^2 - ay_1^2 = a^2b^2$ the above equation

can be simplified to
$$\frac{a^2b}{bx_1 - ay_1} \cdot \frac{bx_1 + ay_1}{bx_1 + ay_1} = \frac{a^2b(bx_1 + ay_1)}{b^2x_1^2 - a^2y_1^2} = \frac{bx_1 + ay_1}{b}$$

Hence we have
$$\frac{bx_1 + ay_1}{b} = c \qquad (1)$$

The gradient of SP is
$$\frac{y_1}{x_1-c} = m$$
(2)

(1)
$$\longrightarrow$$
 (2) $m = \frac{y_1}{x_1 - (\frac{bx_1 + ay_1}{b})} = \frac{by_1}{bx_1 - bx_1 - ay_1}$ $\therefore m = -\frac{b}{a}$ which

is the same as the gradient of the other asymptote. So PS is parallel to $y=-\frac{b}{a}x$.

Prove that as P(x,y) moves so that $S^{1}P - SP = constant$, then the equation of the locus is $\frac{x^{2}}{2^{2}} - \frac{y^{2}}{b^{2}} = 1$.

Let S and S¹ be the points (ae,0) and (-ae,0) respectively, and the constant 2a.

·) + 2

and

..(1)

..(2)

-ae)²] + v4

2)

UNIT 4

Q2. 3. (cont'd)

Hence
$$S^{1}P - SP = 2a$$

i.e., $\sqrt{(x + ae)^{2} + y^{2}} - \sqrt{(x - ae)^{2} + y^{2}} = 2a$
 $\sqrt{(x + ae)^{2} + y^{2}} = 2a + \sqrt{(x - ae)^{2} + y^{2}}$
 $x^{2} + 2aex + a^{2}e^{2} + y^{2} = 4a^{2} + (x - ae)^{2} + y^{2} + 4a \sqrt{(x - ae)^{2} + y^{2}}$
 $x^{2} + 2aex + a^{2}e^{2} + y^{2} = 4a^{2} + x^{2} - 2aex + a^{2}e^{2} + y^{2} + 4a \sqrt{(x - ae)^{2} + y^{2}}$
 $4aex - 4a^{2} = 4a \sqrt{(x - ae)^{2} + y^{2}}$
 $(ex - a)^{2} = (x - ae)^{2} + y^{2}$
 $e^{2}x^{2} - 2aex + a^{2} = x^{2} - 2aex + a^{2}e^{2} + y^{2}$
 $a^{2}(1 - e^{2}) = x^{2}(1 - e^{2}) + y^{2}$ \div by $a^{2}(1 - e^{2})$
 $1 = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{a^{2}(1 - e^{2})}$

Let $b^2 = (1 - e^2)a^2$, but for the hyperbola e > 1 ... $1 - e^2$ is negative and since b^2 must be positive, we must let $b^2 = -a^2(1 - e^2)$ or $b^2 = a^2(e^2 - 1)$, so the equation becomes

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 as required.

Q2. 4.

For the hyperbola $x^2 - y^2 = a^2$ the equation of tangent at $P(x_1, y_1)$ is $xx_1 - yy_1 = a^2$, and the asymptotes are $y = \pm x$.

The tangent at $P(x_1, y_1)$ meets the asymptotes when

$$xx_{1} + xy_{1} = a^{2}$$

$$\therefore x = \frac{a^{2}}{x_{1} - y_{1}} \text{ or } x = \frac{a^{2}}{x_{1} + y_{1}}$$
then $y = \frac{a^{2}}{x_{1} - y_{1}} \text{ or } y = \frac{a^{2}}{x_{1} + y_{1}}$

Hence A is $(\frac{a^2}{x_1 - y_1}, \frac{a^2}{x_1 - y_1})$ and B is $(\frac{a^2}{x_1 + y_1}, \frac{-a^2}{x_1 + y_1})$

$$AB^{2} = \left(\frac{a^{2}}{x_{1} - y_{1}} - \frac{a^{2}}{x_{1} + y_{1}}\right)^{2} + \left(\frac{a^{2}}{x_{1} - y_{1}} + \frac{a^{2}}{x_{1} + y_{1}}\right)^{2}$$

$$= \frac{4a^{4}(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} - y_{1}^{2})} \text{ but } x_{1}^{2} - y_{1}^{2} = a^{2} : AB^{2} = 4(x_{1}^{2} + y_{1}^{2})$$

Q.2. 4. cont.

For the hyperbola $xy = c^2$ the equation of tangent at $P(x_1, y_1)$ is $xy_1 + yx_1 = 2c^2$ and it meets the asymptote x = 0 at $B(\frac{2c^2}{y_1}, 0)$ and the asymptote y = 0 at $D(0, \frac{2c^2}{x_4})$.

But $2c^2 = 2x_1y_1$.. $B(2x_1,0)$ and $D(0,2y_1)$ and $BD^2 = 4(x_1^2 + y_1^2)$.

Hence the diagonals of quadrilateral ABCD are equal. Gradient of AC is $\frac{x^1}{y_1}$ and of BD is $-\frac{y_1}{x_1}$.: AC \perp BD and ABCD is a square.

$$\therefore x = \frac{a}{\sec \theta - \tan \theta}$$

$$x = \frac{1 - \sin \theta}{1 - \sin \theta}$$

Let (c,0) and (a sec θ , b tan θ) be the coordinates of S and P respectively.

The equation of the tangent at P is $\frac{x}{a}$ sec $\theta - \frac{y}{b}$ tan $\theta = 1$ (1) and the equations of the asymptotes are $y = \pm \frac{b}{a}x$ (2) Then solving (1) and (2) we obtain $\frac{x \sec \theta}{a} \pm \frac{x \tan \theta}{a} = 1$

or
$$x = \frac{a}{\sec \theta + \tan \theta}$$

or
$$x = \frac{a \cos \theta}{1 + \sin \theta}$$

Since
$$y = \pm \frac{bx}{a}$$

 $y = \frac{b \cos \theta}{1 + \sin \theta}$ or $y = \frac{-b \cos \theta}{1 + \sin \theta}$

Thus the coordinates of the points of intersection are;

$$Q(\frac{a\cos\theta}{1-\sin\theta}, \frac{b\cos\theta}{1-\sin\theta}) \quad R(\frac{a\cos\theta}{1+\sin\theta}, \frac{b\cos\theta}{1+\sin\theta})$$

The gradient of QS is
$$\frac{\frac{b \cos \theta}{1 - \sin \theta}}{\frac{a \cos \theta}{1 - \sin \theta} - c} = \frac{b \cos \theta}{a \cos \theta - c + c \sin \theta} = m_1$$

The gradient of RS is $\frac{-b\cos\theta}{a\cos\theta-c-c\sin\theta} = m_2$

is

mes

and

:ts

UNIT 4

$$\tan \emptyset = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$\frac{b\cos\theta}{a\cos\theta-c+c\sin\theta} + \frac{b\cos\theta}{a\cos\theta-c-c\sin\theta}$$

$$\frac{1-\frac{b\cos\theta}{a\cos\theta-c+c\sin\theta} \cdot \frac{b\cos\theta}{a\cos\theta-c-c\sin\theta}}{a\cos\theta-c-c\sin\theta}$$

$$= \frac{2b\cos\theta(a\cos\theta-c)}{(a\cos\theta-c+c\sin\theta)(a\cos\theta-c-c\sin\theta)-b^2\cos^2\theta}$$

$$= \frac{2b\cos\theta(a\cos\theta - c)}{a^2\cos\theta - 2a\cos\theta + c^2 - c^2\sin^2\theta - b^2\cos^2\theta}$$

$$= \frac{2b\cos\theta(a\cos\theta-c)}{a^2\cos^2\theta-b^2\cos^2\theta+c^2\cos^2\theta-2ac\cos\theta+c^2-c^2}$$

$$= \frac{2b\cos\theta(a\cos\theta - c)}{(a^2 + c^2 - b^2)\cos^2\theta - 2ac\cos\theta}$$
 (since $ae = c$
$$a^2 + c^2 - b^2 = 2a^2$$
)

$$= \frac{2b\cos\theta(a\cos\theta - c)}{2a^2\cos^2\theta - 2ac\cos\theta}$$

$$= \frac{2b\cos\theta(a\cos\theta - c)}{2a\cos\theta(a\cos\theta - c)}$$

: tan $\emptyset = \frac{b}{a}$. Hence QR subtends a constant angle; $\tan^{-1}(\frac{b}{a})$ at S.

Q3. 1.

Let the coordinates of S and P be (ae,0) and (x_1,y_1) respectively.

The tangent at $P = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ cuts $x = \pm a$ at $y = \frac{b^2}{y_1} (1 \pm \frac{x_1}{a})$

$$\therefore \mathbb{T}\left[-a, \frac{b^2}{y_1}(1+\frac{x_1}{a})\right] \text{ and}$$

$$\mathbb{T}^1\left[a, \frac{b^2}{y_1}(1-\frac{x_1}{a})\right]$$

UNIT 4

The equation of a circle on a given diameter $A(x_3,y_3)$, $B(x_4,y_4)$ is $(x-x_3)(x-x_4)$ + $(y-y_3)(y-y_4)$ = 0 (see page 21).

The equation of the circle with diameter TT1 is

$$(x-a)(x+a) + \left[y - \frac{b^2}{y_1}(1 - \frac{x_1}{a})\right] \left[y - \frac{b^2}{y_1}(1 + \frac{x_1}{a})\right] = 0$$

The circle intersects the x axis when y = 0 i.e. when

$$x^{2} - a^{2} + \left[\frac{b^{2}}{y_{1}}(1 - \frac{x_{1}}{a})\right] \left[\frac{b^{2}}{y_{1}}(1 + \frac{x_{1}}{a})\right] = 0$$

$$x^{2} - a^{2} + \frac{b^{4}}{y_{1}^{2}}(1 - \frac{x_{1}^{2}}{a^{2}}) = 0$$

$$(but \frac{y_{1}^{2}}{b^{2}} = 1 - \frac{x_{1}^{2}}{a^{2}})$$

$$x^{2} - a^{2} + \frac{b^{4}}{y_{1}^{2}} \cdot \frac{y_{1}^{2}}{b^{2}} = 0$$

$$(b^{2} = a^{2}(1 - e^{2}) = a^{2} - a^{2}e^{2})$$

$$x^{2} = a^{2} - b^{2}$$

$$x^2 = a^2 e^2 \quad \text{so } x = \frac{1}{4} \text{ ae. i.e. the circle passes through}$$

Let P be the point (x_1, y_1) S (ae,0) and S¹(-ae,0).

The tangent at P

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1 \text{ meets the}$$

transverse axis at G.

$$\therefore \frac{xx_1}{a^2} = 1 \text{ i.e. } x = \frac{a^2}{x_1}$$
hence $G(\frac{a^2}{x_1}, 0)$

GS =
$$ae - \frac{a^2}{x_1}$$
 and $GS^1 = ae + \frac{a^2}{x_1}$
 $PS^2 = (x_1 - ae)^2 + y_1^2 = x_1^2 - 2aex_1 + a^2e^2 + y_1^2$

$$PS^{2} = (x_{1} - ae)^{2} + y_{1}^{2} = x_{1}^{2} - 2aex_{1} + a^{2}e^{2} + y_{1}^{2}$$

$$= x_{1}^{2} - 2aex_{1} + a^{2}e^{2} + \frac{b^{2}}{a^{2}}(x_{1}^{2} - a^{2}) - - - - - - (NOTE: y_{1}^{2} = \frac{b^{2}}{2}(x_{1}^{2} - a^{2})$$

$$= x_{1}^{2} - 2aex_{1} + a^{2}e^{2} + (e^{2} - 1)(x_{1}^{2} - a^{2})$$

$$= x_{1}^{2}e^{2} - 2aex_{1} + a^{2}$$

$$= \sqrt{(x_{1}e - a)^{2}} = x_{1}e - a \qquad \text{similarly PS}^{1} = x_{1}e + a$$

and

 $\frac{y_1}{2} = 1$

UNIT 4

$$\frac{PS}{SG} = \frac{x_1 e - a}{a e - \frac{a^2}{x_1}} = \frac{x_1^2 e - x_1 a}{a e x_1 - a^2} = \frac{x_1(x_1 e - a)}{a(x_1 e - a)} = \frac{x_1}{a}$$

$$\frac{\text{PS}^{1}}{\text{GS}^{1}} = \frac{x_{1}e + a}{ae + \frac{a^{2}}{x_{1}}} = \frac{x_{1}^{2}e + x_{1}a}{aex_{1} + a^{2}} = \frac{x_{1}(x_{1}e + a)}{a(x_{1}e + a)} = \frac{x_{1}}{a}$$

$$\therefore \frac{PS}{SG} = \frac{PS^1}{GS^1}$$

Assume that PG makes $S^{\widehat{1}}PG = \alpha$ and $\widehat{SPG} = \beta$ i.e. divides \widehat{SPS} Unequally.

Using the sine rule in \triangle 's S¹PG and SPG we have

$$\frac{\text{GS}^1}{\sin \alpha} = \frac{\text{S}^1 \text{P}}{\sin \text{S}^1 \hat{\text{GP}}}$$
 and $\frac{\text{SG}}{\sin \beta} = \frac{\text{SP}}{\sin \text{SGP}}$

i.e.,
$$\frac{GS^1}{S^1P} = \frac{\sin \alpha}{\sin(180^{\circ} - \widehat{SGP})}$$
 and $\frac{SG}{SP} = \frac{\sin \beta}{\sin \widehat{SGP}}$

but
$$\frac{\text{GS}^1}{\text{S}^1\text{P}} = \frac{\text{SG}}{\text{SP}}$$
 $\therefore \frac{\sin \alpha}{\sin(180^\circ - \hat{\text{SGP}})} = \frac{\sin \beta}{\sin \hat{\text{SGP}}}$

Since $\sin(180^{\circ} - \widehat{SGP}) = \sin \widehat{SGP}$

$$\therefore \sin \alpha = \sin \beta$$

and
$$\alpha = \beta$$

i.e. the tangent PG bisects the angle S¹PS.

OR

Theorem: The bisector of one angle of a triangle divides the opposite side in the ratio of the sides about that angle.

Hence it is sufficient to prove that

$$\frac{GS^1}{S^1P} = \frac{SG}{SP}$$

Conclusion: PG bisects the angle S¹PS.

Q3. 3.

PN is the normal at P.

The normal $\frac{xa}{\cos \theta} - \frac{yb}{\sin \theta} = a^2b^2 = a^2e^2$ meets the x axis at N. :we have $x = \frac{a^2e^2\cos \theta}{a}$ So N($e^2a\cos \theta$,0). If S and S^1 are the points (ae,0), (-ae,0) respectively, P is (a cos θ , b sin θ) as given.

Then the gradient of PN
$$= \frac{b \sin \theta}{a \cos \theta - a e^2 \cos \theta} = \frac{b \sin \theta}{a \cos \theta (1 - e^2)} = \frac{a^2 b \sin \theta}{a \cos \theta \cdot b^2} = \frac{a \sin \theta}{b \cos \theta}$$

The gradient of PS

ut

$$= \frac{b \sin \theta}{a \cos \theta - ae}$$

and

the gradient of PS¹ = $\frac{b \sin \theta}{a \cos \theta + ae}$

$$\tan \widehat{NPS}^{1} = \begin{vmatrix} \frac{b \sin \theta}{a \cos \theta + ae} & \frac{a \sin \theta}{b \cos \theta} \\ 1 + \frac{b \sin \theta}{a \cos \theta + ae} \cdot \frac{a \sin \theta}{b \cos \theta} \end{vmatrix} = \begin{vmatrix} \frac{b^{2} \sin \theta \cos \theta - a^{2} \sin \theta \cos \theta - a^{2} e \sin \theta}{ab \cos^{2} \theta + ab \sin^{2} \theta + ab e \cos \theta} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{(b^{2} - a^{2}) \sin \theta \cos \theta - a^{2} e \sin \theta}{ab \cos^{2} \theta + ab \sin^{2} \theta + ab e \cos \theta} \end{vmatrix} = \begin{vmatrix} \frac{-a^{2} e^{2} \sin \theta \cos \theta - a^{2} e \sin \theta}{ab \cos^{2} \theta + ab \sin^{2} \theta + ab e \cos \theta} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{-a^{2} e \sin \theta (e \cos \theta + 1)}{ab(1 + e \cos \theta)} \end{vmatrix}$$

 $\tan \widehat{NPS}^1 = \frac{ae \sin \theta}{b}$. Similarly it can be shown that

$$\tan \widehat{NPS} = \frac{\frac{b \sin \theta}{a \cos \theta - ae} - \frac{a \sin \theta}{b \cos \theta}}{1 + \frac{b \sin \theta}{a \cos \theta - ae} \cdot \frac{a \sin \theta}{b \cos \theta}} = \frac{a^2 e \sin \theta (1 - e \cos \theta)}{ab (1 - e \cos \theta)} = \frac{a e \sin \theta}{b}$$

$$= \tan \widehat{NPS}^1$$

i.e. the normal at P bisects the angle GPS.

UNIT 4 - MISCELLANEOUS QUESTIONS

Q1.

(a) Let E = $x^2/_a^2 + y^2/_b^2 = 1$ (1)

Equation of tangent at

 $P(a\cos\theta, b\sin\theta)$ is:

$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \dots (2)$$

Equation of RR' parallel to (2)

is:

 $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 0 \text{ i.e. } x b \cos \theta + y a \sin \theta = 0 \dots (3)$

EnRR': Subst. (3) into (1) $x^{2}_{a}^{2} + \left[x^{2}b^{2}_{b}^{2}a^{2}\right] \cot^{2}\theta = 1$ $x^{2}(1 + \cot^{2}\theta) = a^{2}$

so
$$x = \pm a \sin \theta \dots (4)$$

Substitute (4) into (3) yields: $y = \overline{+} b \cos \theta$ So $R = (a \sin \theta, -b \cos \theta)$ and $R'(-a \sin \theta, b \cos \theta)$

Let h = perpendicular distance of P from RR'

So
$$h = \frac{ab \cos^2 \theta + a b \sin^2 \theta}{\sqrt{b^2 \cos^2 \theta + a^2 \sin^2 \theta}}$$
 i.e. $h = \frac{ab}{\sqrt{b^2 \cos^2 \theta + a^2 \sin^2 \theta}}$

RR' = $\sqrt{((2a\sin\theta)^2 + (2b\cos\theta)^2)}$ i.e. RR' = $2\sqrt{(b^2\cos^2\theta + a^2\sin^2\theta)}$

Area of triangle RPR' = $\frac{1}{2}$.h.RR'

= ab which is independent of the

position of P.

- (b) Using symmetry P'(-a cos θ , b sin θ). Since 0 is the midpoint of RR' and of PP' PRP'R' is a parallelogram of area = 2 × triangle PRP'. So area of PRP'R' = 2ab.
- Q2. (a) The equation of the directrix of the hyperbola $x^2/_a 2 y^2/_b 2 = 1$ is $y = \pm \frac{b}{a}x$ which is the same as $y = \pm x$ hence $\frac{b}{a} = 1$ i.e. a = b so the hyperbola is RECTANGULAR. $b^2 = a^2(e^2 1)$ becomes $1 = e^2 1$. So $e = \sqrt{2}$. The equation of the directrix is $x = \frac{a}{e}$ which is given to be x = 1 $\therefore a = e$ i.e. $a = \sqrt{2}$ and the required equation is $x^2/_2 y^2/_2 = 1$ or $x^2 y^2 = 2$(1)

..(1)

..(2)

2)

(4)

₁2θ)

(c) Differentiate $x^2 - y^2 = a^2$ (2) w.r.t.x. $2x - 2y \frac{dy}{dx} = 0$ So dy/dx = x/y. Hence the gradient of the normal at $P(x_1,y_1)$ is $-\frac{y_1}{y_{x_1}}$.

Equation of normal: $y - y_1 = -\frac{y_1}{x_1} (x - x_1)$ i.e. $y_1x + x_1y - 2x_1y_1 = 0 \dots (3)$

- (d) Put y = 0 into (3) so $X = 2x_1$ i.e. $x_1 = \frac{X}{2}$ (4) Put x = 0 into (3) so Y = $2y_1$ i.e. $y_1 = \frac{Y}{2}$(5) But $T(x_1,y_1)$ is a point on (2) so it must satisfy (2). Hence $(\frac{X}{2})^2 - (\frac{Y}{2})^2 = a^2$ i.e. $X^2 - Y^2 = 4a^2$ as required.
- (e) For H a = $\sqrt{2}$. So the equation of the locus of T is $x^2 - y^2 = 8$.
- Let P = $(ct, {}^{c}/t)$. If y = c^{2}/x , $dy/dx = {}^{-c^{2}}/x^{2}$ at x = ct Q3. $\frac{dy}{dx} = \frac{-1}{1} / \frac{2}{1}$

Hence the gradient of normal at P is t2. Equation of normal $y - {}^{c}/_{t} = t^{2}(x - ct)....(1)$ Put y = 0 into (1) so $x = c(t - \frac{1}{7}t3)$ Hence $Q \equiv (c(t - \frac{1}{2}t, 3), 0)$.

Let M(X,Y) be the midpoint of interval PQ.

$$X = \frac{ct + ct - \frac{c}{t^3}}{2} \text{ and } Y = \frac{\frac{c}{t}}{2}$$

$$X = \frac{c(2t^{\frac{1}{4}} - 1)}{2t^3}$$
(2) and $t = {}^{c}/2Y$ (3)

Subst. (3) into (2) in order to eliminate the parameter t.

UNIT 4 - MISCELLANEOUS QUESTIONS

So
$$X = \frac{c(\frac{2c^{\frac{4}{4}}}{16Y^{\frac{1}{4}}} - 1)}{2c^{\frac{3}{8}Y^{\frac{3}{4}}}}$$
 i.e. $X = \frac{c(c^{\frac{4}{4}} - 8Y^{\frac{4}{4}})}{8Y^{\frac{4}{4}}} \times \frac{4Y^{\frac{3}{4}}}{c^{\frac{3}{4}}}$

 $2c^2YX = c^4 - 8Y^4$ i.e. $8y^4 = c^2(c^2 - 2xy)$ is the locus of M the midpoint of PQ.

Q4. Using (1) from Q3. (above) the equation of the normal to $xy = c^2$ is $ty - c = t^3(x - ct)$.

If the normal passes through an arbitrary point (x_0, y_0) then (1) (from Q3) becomes

$$ty_0 - c = t^3x_0 - ct^4$$

i.e.
$$ct^4 - x_0t^3 + y_0t - c = 0$$
(2)

This equation is of the fourth degree (quartic) in t hence four normals can be drawn through an arbitrary point.

If t_1, t_2, t_3, t_4 are the 4 roots of (2) then it is true that $\Sigma t_1 t_2 = 0$ and $t_1 t_2 t_3 t_4 = - {}^{c}/c = -1$.

Q5.

Let P(X,Y) be any point on the locus. We need to obtain expressions for X and Y. By eliminating the parameter from these we obtain the red. eqn.

$$Y = r$$
 (by inspection)
 $X^2 + t^2 = r^2$ (in triangle ABP).

Eliminate the parameter r.

So $X^2 + t^2 = Y^2$ or $Y^2 - X^2 = t^2$ is the required locus.

- Q6. (a) $y = c^2/x$ So $dy/dx = -c^2/x^2$. $m = f'(cp) = -\frac{1}{7}p^2$ So the eqn. of tangent at P is $y = c^7/p = \frac{1}{7}p^2(x cp)$ i.e. $p^2/p = c^2/p = c$
 - (b) Tangent at Q is

$$x + q^2y = 2cq$$
(2)

$$(p^2 - q^2)y = 2c(p - q)$$
 (1) - (2)

$$(p + q)y = 2c (p \neq q)$$

$$y = \frac{2c}{(p+q)}.........(3)$$

Put (3) into (1) $x + \frac{p^22c}{p+q} = 2cp$
So $x = 2cpq_{(n+q)}......(4)$

UNIT 4 - MISCELLANEOUS QUESTIONS

(3)
$$y_0 = 2c_{y(p+q)}$$
 i.e. $p + q = 2c_{y_0}$ (5)

Subst. (5) into (6)
$$x_0 = 2cpq \frac{30}{2c}$$

i.e.
$$\frac{x_0}{y_0} = pq \dots (7)$$

(c)
$$d^2 = (cp - cq)^2 + (\sqrt[6]{p} - \sqrt[6]{q})^2$$

= $c^2(p-q)^2 + c^2(\frac{q-p}{pq})^2$

$$a^2 = e^2(p-q)^2 \left\{1 + \frac{1}{p^2 q^2}\right\} \qquad (8)$$

Put (10), (7) into (8) So
$$d^2 = c^2 \left[\frac{4c^2}{y_0^2} - 4x_0 y_0 \right] \left[\frac{1+y_0^2}{x_0^2} \right]$$

$$= c^2 \left[\frac{4c^2 - 4x_0 y_0}{y_0^2} \right] \left[\frac{x_0^2 + y_0^2}{x_0^2} \right]$$

$$x^2y^2d^2 = 4c^2(x^2 + y^2)(c^2 - x y)$$

which is the required eqn. of the locus of R.

Q7. (a)
$$x^2/_{225} + y^2/_{144} = 1$$
. So a = 15, b = 12 e = $\frac{\sqrt{(a^2 - b^2)}}{a} = \frac{9}{15}$

Equation of tangent at $P(x_1,y_1)$ is:

$$\frac{x^{2}}{215} + \frac{y^{2}}{144} = 12$$

$$0 \qquad 5(9,0)$$

$$x = 22/5/1$$

$$x_1 x_{/225} + y_1 y_{/144} = 1 \dots (1)$$

Equation of directrix: $x = \frac{a}{e}$

i.e.
$$x = {}^{225}/9$$
(2)

Put (2) into (1) to find T the point where the tangent meets the directrix.

So
$$\frac{225}{9} \cdot \frac{x_1}{225} + \frac{yy_1}{144} = 1$$
 which yields $y = 16(9 - x_1)/y_1$

i.e. T is the point $\{^{225}/_{9}, 16(9 - x_1)/_{y_1}\}$

ae = $15 \times \frac{9}{15} = 9$ So the focus S is the point (9,0)

$$m_{PS} = y_{1/(x_1-9)}$$
 $m_{ST} = 16(9-x_1)_{y_1} \times 9_{144} = (9-x_1)_{y_1}$

Since $m_{\rm PS}$ · $m_{\rm ST}$ = -1 PT subtends a right angle at the focus S.

BP).

eqn.

(1)

(2)

. (2)

£ q)

.(3)

om

MISCELLANEOUS QUESTIONS

Q.7. (b) (i) Differentiate $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ implicitly with respect to x to obtain $\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$ i.e. show that $\frac{dy}{dx} = \frac{-b^2x}{a^2y}$.

Therefore the gradient of the normal at $P(x_1, y_1)$ is $m = \frac{a^2y_1}{b^2x_1}$ and the

equation of the normal at $P(x_1, y_1)$

is
$$y - y_1 = \frac{a^2y_1}{b^2x_1}(x - x_1)$$
 i.e.

$$a^{2}y_{1}x - b^{2}x_{1}y = x_{1}y_{1}(a^{2} - b^{2})$$
 (1)

However
$$a^2 - b^2 = a^2 e^2$$
 (2)

(2)
$$\rightarrow$$
 (1) gives $a^2y_1x - b2x_1y = x_1y_1a^2e^2$ (3) When $x = 0$ in (3) $y = \frac{-a^2e^2y_1}{b^2}$. So $N(0, -\frac{a^2e^2y_1}{b^2})$

When y = 0 in (3)
$$x = x_1 e^2$$
. So $E(x_1 e^2, 0)$

Using similar triangles PNA and PGB and noting that the coordinates of A and B are $(x_1$, 0) and (0 , $\frac{-a^2e^2y_1}{b^2}$, respectively, we obtain:

$$\frac{PN}{NG} = \frac{PA}{AB} = \frac{y_1}{y_1 e^2 a^2/b^2} = \frac{b^2}{a^2} \cdot \frac{1}{e^2} = \frac{1 - e^2}{e^2}$$
 as required

(ii)

$$\frac{PN}{PG} = \frac{PA}{PB} = \frac{y_1}{y_1 + y_1 a^2 e^2 / b^2} = \frac{y_1 b^2}{y_1 (b^2 + a^2 e^2)} = \frac{b^2}{a^2} \text{ as required}$$