Союз Советских Социалистических Республик

Государственный комитет CCCP по делам изобретений н открытий :

OПИСАНИЕ изобретения

к авторскому свидетельству

(61) Дополнительное к авт. свид-ву

(21) 2644647/23-26 (22) Заявлено 13.07.78

с присоединением заявки № --

(23) Приоритет . —

Опубликовано 23.02.81. Бюллетень Nº 7

Дата опубликования описания 23.02,81

(ii) 806661

(51) M. Kn.³

C 05 C 1/02 C 05 C 9/00

(53) УДК 631.842. .4(088.8)

(72) Авторы изобретения

м. н. набиев, С. Тухтаев, И. И. Усманов и Л. С. Тустамовя

HATTHING. ТЕХНИЧЕСКАЯ БИБЛЯОТЕКА

(71) Заявитель

Институт химии АН Узбекской ССР

(54) СПОСОВ ПОЛУЧЕНИЯ НЕСЛЕЖИВАЮЩЕГОСЯ УДОБРЕНИЯ

изобретение относится к производству минеральных удобрений и может быть использовано для устранения их слеживаемости.

Известен способ получения стабилизированного удобрения, например аммиачной селитры, путем покрытия частиц кристаллического нитрата аммония кислотой с последующим нанесением твердых неорганических веществ окислов или карбонатов кальция или магния [1].

Недостатком этого способа является то, что на поверхности частиц образуются гигроскопичные соли кальция или магния, которые сильно притягивают влагу. Нельзя достичь равномерного распределения солей кальция и магния на поверхности гранул.

Наиболее близким к предлагаемому изобретению по технической сущности является способ получения твердого гранулированного нитрата аммония, путем обработки гранул удобрения сначала азотной кислотой, а затем нейтрализуют газообразным или жидким аммиаком [2]:

Недостатком такого способа является образование вновь на поверхности нитрата аммония, который явля ется гигроскопичным соединением, склонным к слеживанию. Прочность

гранул 0,85 кг/гран.

Цель изобретения - повышение прочности гранул и гигроскопической. точки при одновременном обогащении удобрения микроэлементами.

Поставленная цель достигается тем, что в качестве аммиачных соединений используют аммиачные комплексы меди, 10 или цинка, или кобальта, или никеля. При этом в качестве кислоты используют азотную или серную, или фосфорную, или щавелевую, или янтарную, а ам-15 миачные комплексы вводят в количестве 5-30% от веса удобрения.

В результате прочность гранул увеличивается в 1,5 раза и повышается гигроскопическая точка и удобрение 20 обогащается микроэлементами. Данные сопоставительного анализа приведены

в таблице.

пример. На 100 г гранулированной мочевины (или аммиачной селитры) при перемешивании разбрызгивают форсункой 2 г азотной кислоты концентрации 56%, или 1 г серной кислоты концентрации 98%, или 6 г щаве-30 левой кислоты концентрации 35%, или

0,7 г янтарной кислоты концентрации 30%, или 2 г фосфорной кислоты концентрации 62%, а затем удобрение обрабатывают в течении 1-5 мин, в зависимости от интенсивности перемешивания и температуры сушки, 30 г аммизиного комплекса, который получают

растворением 5 г сульфата меди, или 7 г сульфата цинка, или 2,5 г сульфата нифата кобальта, или 2 г сульфата никеля в 30 г 25% раствора аммиака. После сушки получают гранулированное удобрение с оболочкой из аммиачного комплекса.

, we see the see	Образец	Прочность гранул, кг/гранулу	Гигроско- пичность точка,%	Слежи- вае- мость,
	Предлагаемый			
	чная селитра, обработан- вотной кислотой и окисью ия	0,82	60,1	55,4
	ина, обработанная сер- ислотой и карбонатом ия	0,47	72,3	78,3
	чная селитра, обработан- вотной кислотой и аммиа-	0,85	63,1	65,0
Morror	Известный		·	
ной н	вина, обработанная азот- кислотой и аммиа́чным кексом меди	0,62	82,3	97,3
танна	ичная селитра, обрабо- ия серной кислотой и ичным комплексом цинка	1,06	67,8	76,4
левой	вина, обработанная щаве- и кислотой и аммиачным нексом кобальта	0,58	81,4	94,2
танна	ачная селитра, обрабо- ая ортофосфорной кисло- и аммиачным комплексом	1,22	68,1	81,3

Формула изобретения

1. Способ получения неслеживающегося удобрения путем последовательной обработки гранул удобрения кислотой и 50 аммиачными соединениями, о т л и ч а ю щ и й с я тем, что, с целью повышения прочности гранул и гигроскопической точки, при одновременном обогащении удобрений микроэлементами, в качестве аммиачных соединений используют аммиачные комплексы меди, или цинка, или кобальта, или никеля.

2. Способ по п.1, о т л и ч а ющ и й с я тем, что в качестве кислоты используют азотную, или серную, или фосфорную, или щавелевую, или 50 янтарную, а аммиачные соединения вводят в количестве 5-30% от веса удобрения.

Источники информации, принятые во внимание при экспертизе
1. Патент США № 3419379,кл. 71-60, 1968.
2. Патент США № 3199950

2. Патент США № 3199950, кл. 23-103, 1964 (прототип).

вниипи Заказ 167/39 Тираж 456 Подписное филиал ППП "Патент", г. Ужгород, ул. Проектная, 4