习题 1.2

习题 1.2.1 用定义证明下面的结论:

(1)
$$\lim_{n \to \infty} \frac{n}{5+3n} = \frac{1}{3};$$

$$(2) \lim_{n \to \infty} \frac{\sin n}{n} = 0;$$

(3)
$$\lim_{n\to\infty} (-1)^n \frac{1}{\sqrt{n+1}} = 0;$$

$$(4) \lim_{n\to\infty} \frac{n!}{n^n} = 0.$$

解

(1)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{5}{9\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n}{5+3n} - \frac{1}{3} \right| = \left| \frac{3n - (5+3n)}{3(5+3n)} \right| = \frac{5}{3(5+3n)} < \frac{5}{9n} < \varepsilon.$$

(2)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \leqslant \frac{1}{n} < \varepsilon.$$

(3)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon^2} - 1 \right\rceil$, 则当 $n > N$ 时, 有

$$\left| (-1)^n \frac{1}{\sqrt{n+1}} - 0 \right| = \frac{1}{\sqrt{n+1}} < \varepsilon.$$

(4)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{n!}{n^n} - 0 \right| = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} < \frac{1}{n} < \varepsilon.$$

习题 1.2.2 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在正整数 N, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

习题 1.2.3 证明: 当且仅当 $\lim_{n\to\infty} (a_n - a) = 0$ 时, 有 $\lim_{n\to\infty} a_n = a$. (数列极限的许多证明问题, 都可用同样的方法处理.)

证明 充分性: 由 $\lim_{n\to\infty}(a_n-a)=0$, 则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty}a_n=a$.

必要性:由 $\lim_{n\to\infty}a_n=a$,则 $\forall \varepsilon>0,\exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立.因此 $\lim_{n\to\infty}(a_n-a)=0$.

习题 1.2.4 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$; 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0$, 则有 $\lim_{n\to\infty} a_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ 当 } n > N \text{ 时, } \text{ f } |a_n - a| < \varepsilon.$ 则

$$||a_n| - |a|| \le |a_n - a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}|a_n|=|a|.$

反之不一定成立, 如数列 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |a_n| = 1$, 但 $\{a_n\}$ 发散. 若 $\lim_{n \to \infty} |a_n| = 0$, 则 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 当 n > N 时, 有 $||a_n| - 0| < \varepsilon$. 则

$$|a_n - 0| = |a_n| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_n=0.$

习题 1.2.5 证明: 若 $\lim_{n\to\infty} a_n = 0$, 又 $|b_n| \leqslant M$, $(n = 1, 2, \cdots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = 0 \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ if } n > N \text{ if } |a_n - 0| < \frac{\varepsilon}{M}.$ 则

$$|a_n b_n - 0| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_nb_n=0.$

习题 1.2.6 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty} a_{2k+1}=a$,及 $\lim_{k\to\infty} a_{2k}=a$,则 $\lim_{n\to\infty} a_n=a$.

证明 按已知条件 $\forall \varepsilon > 0, \exists N_1 > 0, \exists n > N_1$ 时 $|x_{2n} - a| < \varepsilon$ 。又 $\exists N_2 > 0, \exists n > N_2$ 时 $|x_{2n+1} - a| < \varepsilon$ 。于是令 $N = \max\{2N_1, 2N_2 + 1\},$ 则 n > N 时恒有 $|x_n - a| < \varepsilon$ 。故 $\lim_{n \to +\infty} x_n = a$ 。

习题 1.2.7 证明下列数列不收敛:

(1)
$$a_n = (-1)^n \frac{n}{n+1}$$
; (2) $a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$.

解

(1) 取
$$a_{2n} = \frac{2n}{2n+1}$$
, $a_{2n+1} = -\frac{2n+1}{2n+2}$, 则 $\lim_{n\to\infty} a_{2n} = 1$, $\lim_{n\to\infty} a_{2n+1} = -1$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1}$, 矛盾.

(2) 取
$$a_{2n} = 5\left(1 - \frac{1}{n}\right) + 1$$
, $a_{2n+1} = 5\left(1 - \frac{1}{n}\right) - 1$, 则 $\lim_{n \to \infty} a_{2n} = 6$, $\lim_{n \to \infty} a_{2n+1} = 4$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1}$, 矛盾.

习题 1.2.8 求下列极限:

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(2)
$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n};$$

(3)
$$a_n = \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{6}\right) \cdots \left(1 - \frac{1}{n(n+1)/2}\right), \ n = 2, 3, \ldots;$$

(4)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right);$$

(5)
$$a_n = (1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m}), (|q|<1).$$

解

(1)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4 + \frac{5}{n} + \frac{2}{n^2}}{3 + \frac{2}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} 4 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3}.$$

(2)
$$a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

(3)
$$a_n = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{(n+2)(n-1)}{n(n+1)} = \frac{2 \cdot 5 \cdot \cdot \cdot (n^2 + n - 2)}{3 \cdot 6 \cdot \cdot \cdot n(n+1)} = \frac{1}{2} \cdot \frac{n+2}{n+1} = \frac{n+2}{2(n+1)},$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+2}{2(n+1)} = \frac{1+\frac{2}{n}}{2(1+\frac{1}{n})} = \frac{1+0}{2(1+0)} = \frac{1}{2}.$$

(4)
$$a_n = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \dots \cdot \frac{(n-1)(n+1)}{n \cdot n} = \frac{1}{2} \cdot \frac{n+1}{n} = \frac{n+1}{2n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} = \frac{1+0}{2} = \frac{1}{2}.$$

(5)
$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m})}{1-q} = \frac{1-q^{2^{m+1}}}{1-q},$$

$$\lim_{n\to\infty} a_n = \lim_{m\to\infty} \frac{1-q^{2^{m+1}}}{1-q} = \frac{1-\lim_{m\to\infty} q^{2^{m+1}}}{1-q} = \frac{1-0}{1-q} = \frac{1}{1-q}.$$

习题 1.2.9 若 $a_n \neq 0 (n = 1, 2, ...)$ 且 $\lim_{n \to \infty} a_n = a$, 能否断定 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$? 解 不能. 例如 $a_n = \frac{1}{2^n}$, 则 $\lim_{n \to \infty} a_n = 0$, 但 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} = 2$. 一个可能的错误做法是

$$\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} a_{n+1}} = \frac{a}{a} = 1,$$

但这是不允许的, 因为 $\lim_{n\to\infty} a_n$ 可能为 0.

习题 1.2.10 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty} a_n \cdot b_n = 0$, 是否必有 $\lim_{n\to\infty} a_n = 0$ 或 $\lim_{n\to\infty} b_n = 0$? 若还假设 $\lim_{n\to\infty} a_n = a$, 回答同样的问题.

解 不一定. 例如 $a_n = \frac{1}{n}, b_n = n(-1)^n$, 则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} (-1)^n$ 不存在,但 $\lim_{n \to \infty} a_n = 0$. 当 $\lim_{n \to \infty} a_n = a$ 时成立.假设 $a \neq 0$ 时,则 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{a_n b_n}{a_n} = \frac{0}{a} = 0$.

习题 1.2.11 若数列 $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则数列 $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ 的收敛性如何? 举例

说明. 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散, 回答同样的问题.

解设 $\{a_n\}$ 收敛于 a, $\{b_n\}$ 发散. 则 $\{a_n+b_n\}$, $\{a_n-b_n\}$ 都发散. 例如 $a_n=1$, $b_n=n$, 则 $a_n+b_n=n+1$, $a_n-b_n=1-n$ 都发散. 但 $\{a_n\cdot b_n\}$ 的收敛性不确定. 例如 $a_n=\frac{1}{n}$, $b_n=n$, 则 $a_n\cdot b_n=1$ 收敛; 但 $a_n=1$, $b_n=n$, 则 $a_n\cdot b_n=n$ 发散.

若 $\{a_n\}$, $\{b_n\}$ 都发散, 则 $\{a_n+b_n\}$, $\{a_n-b_n\}$, $\{a_n\cdot b_n\}$ 的收敛性都不确定. 例如 $a_n=n,b_n=n$, 则 $a_n+b_n=2n, a_n-b_n=0, a_n\cdot b_n=n^2$ 中只有 a_n-b_n 收敛; 又如 $a_n=n,b_n=(-1)^n n$, 则 $a_n+b_n=n+(-1)^n n$, $a_n-b_n=n-(-1)^n n$, $a_n\cdot b_n=(-1)^n n^2$ 都发散.

习题 1.2.12 下面的推理是否正确?

1. 设数列 $\{a_n\}$: $a_1 = 1$, $a_{n+1} = 2a_n - 1$ (n = 1, 2, 3, ...), 求 $\lim_{n \to \infty} a_n$. 解: 设 $\lim_{n \to \infty} a_n = a$, 在 $a_{n+1} = 2a_n - 1$ 两边取极限, 得 a = 2a - 1, 即 a = 1.

2.

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= \underbrace{0 + 0 + \dots + 0}_{n \uparrow} = 0.$$

3.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right]^n = 1^n = 1.$$

解

- 1. 错误. 不能在未知数列是否收敛时, 就假设极限存在并对递推公式两边取极限. 实际上, 该数列的通项公式为 $a_n = 1$, 所以 $\lim_{n \to \infty} a_n = 1$.
- 2. 错误. 不能将一个数列的极限拆成无穷多个数列极限的和. 实际上

$$\frac{1}{\sqrt{n^2+k}} = \frac{1}{n\sqrt{1+\frac{k}{n^2}}} \sim \frac{1}{n}, (k=1,2,\ldots,n).$$

因此

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) \sim \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} \right) = 1.$$

3. 错误. 不能将一个数列的极限拆成无穷多个数列极限的积. 实际上

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

习题 1.2.13 设数列 $\{a_n\}$ 与 $\{b_n\}$ 分别收敛于 a,b. 若 a>b, 则从某一项开始, 有 $a_n>b_n$; 反之, 若从某项开始恒有 $a_n\geqslant b_n$, 则 $a\geqslant b$.

解 这是保序性的直接推论.

习题 1.2.14 设数列 $\{a_n\}$, $\{b_n\}$ 分别收敛于 a 及 b. 记 $c_n = \max(a_n, b_n)$, $d_n = \min(a_n, b_n)$ $(n = a_n, b_n)$

1,2,...). 证明

$$\lim_{n \to \infty} c_n = \max(a, b), \quad \lim_{n \to \infty} d_n = \min(a, b).$$

解由 $\max(x,y) = \frac{x+y+|x-y|}{2}$, $\min(x,y) = \frac{x+y-|x-y|}{2}$, 以及数列极限的四则运算和绝 对值运算可得.

习题 1.2.15 求下列极限:

(1)
$$\lim_{n\to\infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right];$$

(2)
$$\lim_{n \to \infty} (\sqrt[k]{(n+1)^k} - n^k)$$
, $\sharp \neq 0 < k < 1$;

$$(3) \lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdots \sqrt[2^n]{2});$$

$$(4) \lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right)$$

(4)
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right);$$
(5)
$$\lim_{n \to \infty} \left(\sqrt{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \right).$$

解

(1)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^2} \le \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n^2} = \lim_{n \to \infty} \frac{n}{n^2} = 0.$$

$$\lim_{n\to\infty}((n+1)^k-n^k)=\lim_{n\to\infty}n^k\left(\left(1+\frac{1}{n}\right)^k-1\right)\leqslant\lim_{n\to\infty}n^k\left(\left(1+\frac{1}{n}\right)^1-1\right)=\lim_{n\to\infty}n^{1-k}=0.$$

(3)

$$\lim_{n \to \infty} \prod_{k=1}^{n} \sqrt[2^k]{2} = \lim_{n \to \infty} 2^{\sum_{k=1}^{n} \frac{1}{2^k}} = 2^1 = 2.$$

$$\lim_{n \to \infty} \sqrt[n]{n^2 - n + 2} = \lim_{n \to \infty} e^{\lim_{n \to \infty} \frac{1}{n} \ln n^2 - n + 2} = e^0 = 1.$$

(5)

$$1 = \lim_{n \to \infty} \sqrt[n]{\cos^1} \leqslant \lim_{n \to \infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \leqslant \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

习题 1.2.16 设 a_1, a_2, \ldots, a_m 为 m 个正数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max(a_1, a_2, \dots, a_m).$$

解 设 $a_k = \max(a_1, a_2, \dots, a_m)$,则

$$a_k = \sqrt[n]{a_k^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \sqrt[n]{ma_k^n} = m^{\frac{1}{n}} a_k.$$

由夹逼定理可得

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_k = \max(a_1, a_2, \dots, a_m).$$

习题 1.2.17 证明下列数列收敛:

(1)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right);$$

(2)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1};$$

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\sharp + |\alpha_k| \le M$, $(k = 1, 2, \dots)$, $\vec{m} |q| < 1$;

(4)
$$a_n = \frac{\cos 1}{1 \cdot 2} + \frac{\cos 2}{2 \cdot 3} + \frac{\cos 3}{3 \cdot 4} + \dots + \frac{\cos n}{n(n+1)}$$
.

证明

(1) 由
$$1-\frac{1}{2^n}$$
 < 1, 可知 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(2) 由
$$a_n < \sum_{k=1}^n \frac{1}{3^k} < \frac{1}{2}$$
, 可知 $\{a_n\}$ 有上界, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(3) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left\lfloor \log_{|q|} \frac{\varepsilon(1-|q|)}{2M} \right\rfloor + 1$, 则当 $m, n > N$ 时,

$$|a_m - a_n| = |\alpha_{n+1}q^{n+1} + \dots + \alpha_m q^m| \le M(|q|^{n+1} + |q|^{n+2} + \dots) = M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon.$$

(4) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \frac{1}{\varepsilon} \right| + 1$, 则当 $m, n > N$ 时,

$$|a_m - a_n| = \left| \frac{\cos(n+1)}{(n+1)(n+2)} + \dots + \frac{\cos m}{m(m+1)} \right| \le \sum_{k=n+1}^m \frac{1}{k(k+1)} = \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \varepsilon.$$

习题 1.2.18 证明下列数列收敛,并求出其极限:

(1)
$$a_n = \sqrt[n]{n^2}$$
;

(2)
$$a_n = \frac{n}{c^n}, (c > 1);$$

(3)
$$a_1 = \frac{c}{2}$$
, $a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2}$ $(0 \le c \le 1)$;

(4)
$$a > 0, a_0 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
 (提示: 先证明 $a_n^2 \ge a$);

(5)
$$a_0 = 1$$
, $a_n = 1 + \frac{a_{n-1}}{a_{n-1} + 1}$;

(6)
$$a_n = \sin \sin \cdots \sin 1$$
 $(n \uparrow \sin)$.

解

(1) 由 $a_n > 0$, 且 $\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \cdot \frac{1}{c} < 1$ 在充分大时成立, **注** 详细而言, 当 $n > \frac{1}{c-1}$ 时, 有 $\frac{a_{n+1}}{a_n} < 1$. 但数列极限与有限项无关, 我们只需要考虑充分大的 n. 可知 $\{a_n\}$ 在充分大时单调减, 因此 $\{a_n\}$ 收敛. 又由 Stolz 定理, 有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{c^n} = \lim_{n \to \infty} \frac{(n+1) - n}{c^{n+1} - c^n} = \lim_{n \to \infty} \frac{1}{c^n(c-1)} = 0.$$

(2)
$$a_{n+1} - a_n = \frac{1}{2}(a_{n+1} - a_n)(a_{n+1} + a_n)$$

由 $a_2 - a_1 = \left(\frac{c}{2}\right)^2 > 0$,可递归的得知 $a_{n+1} - a_n > 0$,因此 $\{a_n\}$ 单调增,且 $a_1 < c$,归纳

的可得 $a_{n+1} < \frac{c}{2} + \frac{c^2}{2} < \frac{c}{2} + \frac{c}{2} = c$, 因此 $\{a_n\}$ 有上界, 故 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \frac{c}{2} + \frac{a^2}{2} \Rightarrow a^2 - 2a + c = 0 \Rightarrow a = 1 \pm \sqrt{1-c}$, 又由 $a_n > 0$, 可知 $a = 1 - \sqrt{1-c}$.

(3) 由均值不等式,

$$a_{n+1} = \left(\frac{1}{2}\left(a_n + \frac{a}{a_n}\right)\right)^2 \geqslant a$$

于是

$$a_{n+1} - a_n = \frac{a - a_n^2}{2a_n} \le 0$$

因此 $\{a_n\}$ 在 $n \ge 1$ 时单调减,且有下界 \sqrt{a} ,因此 $\{a_n\}$ 收敛. 设 $\lim_{n\to\infty} a_n = a$,则 $a = \frac{1}{2}\left(a + \frac{a}{a}\right) = \sqrt{a}$.

(4)

$$a_n - a_{n-1} = \frac{1 + a_{n-1} - a_{n-1}^2}{a_{n-1} + 1}$$

$$a_{n-1} = \left(\frac{a_{n-1}}{a_{n-1}} \right)^2 = 1 + a_{n-1} - \frac{a_{n-1}}{a_{n-1}} = \frac{1 + a_{n-1} - a_{n-1}}{a_{n-1}} = \frac{1 + a_{n-1}}{a_{n-1}} = \frac{1$$

 $1+a_n-a_n^2=1+1+\frac{a_{n-1}}{a_{n-1}+1}-\left(1+\frac{a_{n-1}}{a_{n-1}+1}\right)^2=\frac{1+a_{n-1}-a_{n-1}^2}{(a_{n-1}+1)^2}$ 由 $1+a_0-a_0^2=1>0$ 归纳的可得 $1+a_n-a_n^2>0$,因此 $a_n-a_{n-1}>0$,即 $\{a_n\}$ 单调

增,且 $1+a_n-a_n^2>0\Rightarrow a_n<\frac{1+\sqrt{5}}{2}$ 有上界,因此 $\{a_n\}$ 收敛. 递推式两侧取极限,得 $a=1+\frac{a}{a+1}\Rightarrow a^2-a-1=0\Rightarrow a=\frac{1+\sqrt{5}}{2}.$

(5) $a_n = \sin a_{n-1} < a_{n-1}$, 因此 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \sin a \Rightarrow a = 0$.

习题 1.2.19 设 $a_n \le a \le b_n \ (n=1,2,\ldots)$, 且 $\lim_{n\to\infty} (a_n-b_n)=0$. 求证: $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$. 解 由 $\lim_{n\to\infty} (a_n-b_n)=0$, 对 $\forall \varepsilon>0$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $|a_n-b_n|<\varepsilon$. 又由 $a_n\le a\le b_n$, 可知 $|a_n-a|=a-a_n\le b_n-a_n<\varepsilon$, 同理 $|b_n-a|<\varepsilon$. 因此 $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$.

例 0.1 设 $a_n > 0, n = 1, 2, ...$,且 $\lim_{n \to \infty} a_n = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$. 证明

 $(1) \ a = 0 \ \mathbb{H},$

$$0 \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n} \stackrel{\text{Stolz}}{=} \frac{z_n}{1} \to 0.$$

由夹逼定理,得证.

(2) a > 0 时,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

由 Stolz 定理,有

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_n}} = a,$$

且

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} a_n = a.$$

由夹逼定理,得证.

习题 1.2.20 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 则 $\lim_{n \to \infty} a_n = 0$.

解 由0.1, 可知 $\lim_{n\to\infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} = \lim_{n\to\infty} \frac{a_n}{a_{n-1}} = \frac{1}{l} < 1$. 因此 $\exists r = \frac{1+\frac{1}{l}}{2} \in (0,1)$, 使得 当 n 充分大时, $\sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} < r$. 由此可知,

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} < r^n,$$

即 $a_n < a_1 r^n$. 因此 $\lim_{n \to \infty} a_n = 0$.

习题 1.2.21 设数列 $\{a_n\}$, $\{b_n\}$ 是正数列, 满足 $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$ 求证: 若 $\{b_n\}$ 收敛, 则 $\{a_n\}$ 收敛.

解 若 $\lim_{n \to \infty} b_n = 0$,则由 $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}} \leqslant a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdots \frac{b_n}{b_{n-1}} = a_1 \cdot \frac{b_n}{b_1}$ 可知 $\lim_{n \to \infty} a_n = 0$. 若 $\lim_{n \to \infty} b_n = b > 0$,由原式有 $\frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n}$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 单调减,且 $\frac{a_n}{b_n} > 0$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,设

 $\lim_{n \to \infty} \frac{a_n}{b_n} = c, \; \mathbb{M} \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \cdot \lim_{n \to \infty} \frac{a_n}{b_n} = bc.$

习题 1.2.22 利用极限 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求下列数列的极限:

(1)
$$a_n = \left(1 + \frac{1}{2n+1}\right)^{2n+1};$$
 (2) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+1};$

(3)
$$a_n = \left(\frac{1+2n}{2+2n}\right)^{2n^3}$$
; (4) $a_n = \left(1+\frac{1}{n^3}\right)^{n^3}$.

简要说明: 由 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 故 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 的任意子列 $\left\{\left(1+\frac{1}{n_k}\right)^{n_k}\right\}$ 也收敛于

e. 因此, 我们可以通过适当的变形, 将题目中的数列变形为 $\left(1+\frac{1}{n_k}\right)^{n_k}$ 的形式, 从而求出极限. 在此过程中

命题 设数列 $\{a_n\}$ 收敛于 $a, a_n > 0, a > 0$. $\{b_n\}$ 收敛于 b. 则 $\lim_{n \to \infty} a_n^{b_n} = a^b$. 也相同有用.

解

(1)
$$\left(1 + \frac{1}{2n+1}\right)^{2n+1} = \left(1 + \frac{1}{m}\right)^m \Big|_{m=2n+1} \to e;$$

(2)
$$\left(1 - \frac{1}{n-2}\right)^{n+1} = \left(1 + \frac{1}{n-2}\right)^{n-2 \cdot \frac{n+1}{n-2}} = e^1 = e;$$

(3)
$$\left(1 - \frac{1}{n+2}\right)^{-(n+2)\cdot\left(-\frac{n}{n+2}\right)} = e^{-1};$$

(4)
$$\left(1 + \frac{1}{n^3}\right)^{n^3 \cdot 2} = e^2$$
.

习题 1.2.23 设 $\lim_{n\to\infty} a_n = \infty$, 且 $|b_n| \ge b > 0$ $(n=1,2,\ldots)$, 则 $\lim_{n\to\infty} a_n b_n = \infty$.

解 对 $\forall M > 0$,由 $\lim_{n \to \infty} a_n = \infty$,存在 $N \in \mathbb{N}^*$,使得当 n > N 时, $a_n > \frac{M}{b}$.又由 $|b_n| \ge b > 0$,可 知 $|a_n b_n| \ge a_n |b| > M$.因此 $\lim_{n \to \infty} a_n b_n = \infty$.

习题 1.2.24 确定 $n \to \infty$ 时, $\sqrt[n-2]{n!}$ 与 $n \sin \frac{n\pi}{2}$ $(n \ge 1)$ 是否有界, 是否趋于无穷大.

解 $\sqrt[n]$ 无界, 且趋于无穷大. 由均值不等式.

$$\sqrt[n]{n!} \geqslant \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}} \stackrel{\text{Stolz } \not \succeq \mathbb{P}}{=} \frac{1}{\frac{1}{n}} = n \to \infty.$$

无界, 但是不趋于无穷大. 当 n=4k+1 时, $n\sin\frac{n\pi}{2}=4k+1$, 趋于无穷大; 当 n=4k+3 时, $n\sin\frac{n\pi}{2}=-(4k+3)$, 趋于负无穷大; 当 n 为偶数时, $n\sin\frac{n\pi}{2}=0$.

习题 1.2.25 设数列 $\{a_n\}$ 由 $a_1=1, a_{n+1}=a_n+\frac{1}{a_n}\ (n\geq 1)$ 定义, 证明: $a_n\to +\infty\ (n\to \infty)$.

解 由
$$a_{n+1}^2 - a_n^2 = (a_{n+1} - a_n)(a_{n+1} + a_n) = \frac{1}{a_n}(a_n + a_n + \frac{1}{a_n}) = 2 + \frac{1}{a_n^2} > 2$$
,可知 $a_n^2 > 2(n-1)$,因此 $\lim_{n \to \infty} a_n = \infty$.

习题 **1.2.26** 给出 $\frac{0}{0}$ 型 Stolz 定理的证明.