

Correction to "Theoretical and Kinetic Study of the Reactions of Ketones with HO₂ Radicals. Part I: Abstraction Reaction Channels"

Jorge Mendes,* Chong-Wen Zhou,* and Henry J. Curran *J. Phys. Chem. A* **2013**, *117* (22), 4515–4525. DOI: 10.1021/jp4000413

For clarification we recommend that Tables 3 and 4 have the following format.

Table 3. Recommended Fit Parameters, A, n, and E, According to Hydrogen Atom Type and Position Relative to the Carbonyl Group of the Ketone, on a Per-Hydrogen Atom Basis in cm³ mol⁻¹ s⁻¹, from 500 to 2000 K^a

hydrogen atom type	A	n	E
primary, α'	3.52×10^{-3}	4.25	8120
secondary, α	2.54×10^{-2}	3.95	6458
tertiary, α	8.48×10^{-1}	3.53	5725
primary, eta	7.29×10^{-5}	4.76	7330
secondary, eta	5.75×10^{-4}	4.43	5719
tertiary, β	$5.69 \times 10^{+1}$	2.99	5550
primary, γ	1.48×10^{-1}	3.84	7952
$ak = A \times T^n \times \exp(-E/T)$	T).		

Table 4. Total Rate Constants Fit Parameters, A, n, and E, in cm³ mol⁻¹ s⁻¹ a

	A	n	E	
DMK	3.97×10^{-3}	4.51	8372	
EMK	2.16×10^{-4}	4.83	6461	
nPMK	3.67×10^{-4}	4.80	6019	
iPMK	1.06×10^{-7}	5.75	4664	
iBMK	2.68×10^{-5}	5.04	4587	
$ak = A \times T^n \times \exp(-E/T).$				

This has no implications on the discoveries and conclusions described in the manuscript.