BASICS OF ROCKETRY AND **PARACHUTE** DEPLOYMENT

BASIC PRINCIPLES

NEWTON'S FIRST LAW

At rest: forces are balanced. The force of gravity on the rocket balances with that of the launch pad.

In motion: thrust from the rocket unbalances the forces as a result it travels upward.

NEWTON'S SECOND LAW

Force equals mass times acceleration: The pressure created inside the rocket acts across the area of the rocket exhaust it produces force. Here mass represents the total mass of rocket including its fuel

NEWTON'S THIRD LAW

Action and reaction: a rocket takes off only when it expels gas Action: the rocket pushes the gas out of the engine.

Reaction: the gas pushes off the rocket

PARTS OF ROCKET

Model Rockets

CENTER OF GRAVITY:

It is the point where the weight of all the rocket components seem to be concentrated.

Determining Center of Gravity - cg

Each component has some weight \mathbf{w}_i located some distance \mathbf{d}_i from the reference line.

Distance cy times the weight W equals the sum of the component distance times component weight.

$$cg W = d_n w_n + d_r w_r + d_b w_b + d_e w_e + d_f w_f$$

CENTER OF PRESSURE:

It is the point where where the aerod -ynamic forces seem to be concentrated.

Determining Center of Pressure – cp (simplified)

Each component has some area a_i located some distance d_i from reference line.

Distance *cp* times the area A equals the sum of the component distance times area.

$$c\rho A = d_n a_n + d_b a_b + d_f a_f$$

BARROWMAN EQUATIONS

Conical Transition Terms

$$(C_N)_T = 2\left[\left(\frac{d_R}{d}\right)^2 - \left(\frac{d_F}{d}\right)^2\right]$$

$$X_{T} = X_{P} + \frac{L_{T}}{3} \left[1 + \frac{1 - \frac{d_{F}}{d_{R}}}{1 - \left(\frac{d_{F}}{d_{R}}\right)^{2}} \right]$$

Fin Terms

$$(C_N)_F = \left[1 + \frac{R}{S + R}\right] \left[\frac{4N\left(\frac{S}{d}\right)^2}{1 + \sqrt{1 + \left(\frac{2L_F}{C_R + C_T}\right)^2}}\right]$$

$$X_{F} = X_{B} + \frac{X_{R}}{3} \frac{(C_{R} + 2C_{T})}{(C_{R} + C_{T})} + \frac{1}{6} \left[(C_{R} + C_{T}) - \frac{(C_{R}C_{T})}{(C_{R} + C_{T})} \right]$$

Finding the Center of Pressure

Sum up coefficients: $(C_N)_R = (C_N)_N + (C_N)_T + (C_N)_F$

Find CP Distance from Nose Tip:

$$\bar{X} = \frac{(C_N)_N X_N + (C_N)_T X_T + (C_N)_F X_F}{(C_N)_R}$$

DRAG:

Drag is defined as the aerodynamic resistance to motion of the rocket through air. Drag directly depends on the shape and size of rocket.

The Drag Equation

Drag = coefficient x density x velocity squared x reference area two

Coefficient Cd contains all the complex dependencies and is usually determined experimentally.

Choice of reference area A affects the value of Cd.

LIFT: Lift of a rocket is a side force used to stabilize a nd control the direction of flight.

The Lift Equation

$$L = Cl \frac{\rho V^2 A}{2}$$

Lift = coefficient x density x velocity squared x wing area two

Coefficient CI contains all the complex dependencies and is usually determined experimentally.

THRUST:

Thrust is the force which moves the rocket through the air, and through space. Thrust is generated by the p -ropulsion system of the rocket through the application of Newton's third law of motion

FORCES ACTING ON ROCKET

Forces on a Rocket

PROPULSION

Rocket **propulsion** is the process that uses force to move a rocket off the ground and into the atmosphere.

TYPES OF PROPULSION

PROPULSION

STAGES OF ROCKET **FLIGHT**

PARACHUTE DEPLOYMENT

PARACHUTE DEPLOYMENT

OPERATING PRINCIPLE:

The new design and system us es inertial force for the deploy ment of payload parachute and relies on break parachutes for the recovery of the rocket body

