

UNIVERSITÁ DEGLI STUDI DI SALERNO

Dipartimento di Informatica

Laurea Magistrale in Sicurezza Informatica

Tesina in Sicurezza dei Dati

Carte di credito contactless e tecnologia HCE

Hilary De Gregorio 0522500401 Antonio Mazzarelli 0522500394 Francesco Silvano 0522500435

Sommario

- Introduzione
- RFID
- NFC
- Le nostre app
- Attacchi
- Conclusioni

Introduzione

Negli ultimi decenni l'uso delle tecnologie RFID ha subito una forte espansione. Ad oggi, infatti, viene usata in molteplici applicazioni tra le quali:

- Controllo presenze
- Passaporto
- Tracciatura merci
- Pagamenti contactless

Una domanda sorge spontanea:

Questa tecnologia è realmente sicura?

Il nostro lavoro

(G)

Avendo in mente di analizzare la sicurezza della tecnologia sono state sviluppate 3 applicazioni:

- CardInfo App: lettura delle informazioni da una carta di credito contactless
- CardEmulator App: emulare una carta tramite un cellulare Android
- CardReader App: simulare un sistema pos

Inoltre sono stati analizzati due attacchi che sfruttano I'NFC:

- Distributed Guessing Attack
- Relay Attack

La tecnologia RFID

RFID

Radio Frequency Identification nasce negli anni '60 per scopi militari e si basa sull'uso di onde elettro-magnetiche.

Gli usi principali sono:

- Identificazione di oggetti,animali e persone
- Memorizzazione di informazioni

Per l'uso servono:

- Tag: chip dove sono memorizzate le informazioni
- Reader: dispositivo in grado di leggere/scrivere i tag

Perchè RFID?

RFID ha introdotto numerosi vantaggi rispetto allo standard precedentemente utilizzato ovvero la banda magnetica, tra i più importanti troviamo:

- Non deve essere a contatto per essere letto
- Non deve essere visibile per essere letto
- Si possono anche aggiungere informazioni sui chip in funzione della tipologia del chip
- L'identificazione e la verifica avvengono in 1/10 di secondo
- Possibilità di cifrare la comunicazione

NFC

NFC

Il Near Field Communication che significa comunicazione di prossimità è l'evoluzione più recente della tecnologia RFID.

Le caratteristiche principali sono:

- Frequenza di 13.56 MHz
- Distanza massima di 10 cm
- Velocità di trasmissione data fino a 424 kbit/s

La nascita di NFC

La tecnologia NFC nasce come naturale evoluzione dei sistemi RFID. La sua diffusione è dovuta anche alla sempre maggiore diffusione delle nuove tecnologie, in particolare di smartphone.

L'NFC è in grado di semplificare molte operazioni comuni quali ad esempio il pagamento di piccole somme di denaro o la tracciatura di oggetti e persone.

La tecnologia Nfc ha 3 funzioni

1

Lo scambio di informazioni tra due dispositivi accostandoli tramite il *Peerto-Peer*

2

Effettuare
pagamenti
rapidi e con il
proprio
cellulare,
tramite il
protocollo
HCE(Host Card
Emulation)

3

Leggere e scrivere i Tag NFC

Carte di credito contactless ed EMV

66

I soldi non danno la felicità per questo hanno inventato le carte di credito.

Carte di credito contactless

L'evoluzione delle carte di credito è la carta di credito "contactless" cioè senza contatto, non richiedono l'inserimento fisico della carta nel lettore ma è sufficiente l'avvicinamento, i POS sono dotati di un apparato supplementare che si aggiunge alla base principale oppure al PIN PAD e le carte sono dotate di Chip NFC.

EMV

EMV (Europay Mastercard VISA) è uno standard, nato nel 1994, per l'utilizzo delle smart card, terminali POS, sportelli ATM e per l'autenticazione di transizioni.

Le schede EMV sono conosciute anche come schede chip o schede IC che memorizzano i dati in circuiti integrati, nello standard sono incluse sia schede contactless che normali.

APDU (1)

APDU, acronimo di *Application Protocol Data Units*, è una sequenza di byte che possono essere inviati da un'applicazione software del lettore alla smart card, le specifiche sono definite da ISO/IEC 7816.

Lo standard permette di comunicare con una smartcard e di effettuare transazioni.

APDU (2)

Esistono due categorie di APDU:

 Comandi APDU: inviato dal lettore smart card alla carta che contiene obbligatoriamente 4 byte di header (CLA, INS, P1, P2) e di seguito da 0 a 255 byte dati.4

CLA	INS	P1	P2	Lc	Data	Le
	Hea	der			Body	

 Risposte APDU: inviata dalla carta al lettore che contiene da 0a 65536 byte di dati e 2 byte riguardanti lo stato (SW1, SW2)

	Data		SW1	SW2	
←	Body	\rightarrow	\leftarrow Trailer \rightarrow		

Vulnerabilità (1)

Clonazione bande magnetiche

Se il lettore EMV è compromesso, viene intercettata la comunicazione tra la scheda e il terminale l'attaccante potrebbe recuperare entrambi i dati binari e il PIN costruendo una nuova banda magnetica.

Nel 2006 nei terminali Shell si è verificato l'attacco rubando più di 1 milione di sterline.

Vulnerabilità (2)

Disattivazione Pin

L'11 febbraio 2010 la squadra di Murdoch e Drimer alla Cambridge University ha annunciato di aver trovato "un difetto nel circuito integrato e nel PIN". Una carta rubata è collegata ad un circuito elettronico e ad una carta falsa viene inserita nel terminale ("man-in-the-middle").

Tutte le quattro cifre sono digitate e accettate come PIN validi.

Una squadra ha visitato la caffetteria dell'Università di Cambridge (con permesso) con il sistema e sono stati in grado di pagare utilizzando le proprie carte collegato al circuito, inserendo una carta falsa e digitando " 0000 "come PIN

Le nostre app

L'idea

Per poter studiare la sicurezza dei sistemi di pagamento NFC attuali sono state sviluppate 3 applicazioni:

- CardInfo App: leggere le informazioni
- CardEmulator App: emulare la carta con un device Android
- CardReader App: simulare il comportamento di / un POS

CardInfo app

L'app ha lo scopo di raccogliere i dati interrogando direttamente la carta.

Le fasi dell'acquisizione sono:

- Scansione di nuovi tag
- Identificazione del tipo di carta
- Lettura dei dati, in particolare PAN e data di scadenza

CardReader app

L'app è stata sviluppata come app tester per verificare l'emulazione.

L'esecuzione prevede:

- Lettura della tecnologia e dell'UID del tag
- Invio di comandi APDU simulando il comportamento di un POS

CardEmulator app

L'app si occupa di emulare una carta EMV reale.

Per il corretto funzionamento l'app deve ricevere:

- Il comando SELECT AID per iniziare la comunicazione
- Comandi in formato APDU.

Nel caso in cui non sia disponibile la risposta ad uno specifico comando l'app risponde con un codice di errore predefinito.

Host Card Emulation Service

Il servizio HCE di Android è la componente fondamentale per l'emulazione di una carta EMV sui dispositivi Android grazie al servizio HCE.

L'Host Card Emulation permette di instaurare una comunicazione tra un lettore e la nostra app.

Il servizio HCE è disponibile a partire dalla versione 4.4 di Android.

Possibili usi delle app

L'app CardEmulation potrebbe essere usata per impedire la lettura dei dati da parte di uno scanner.

Effettuando qualche modifica è possibile fare in modo che l'app risponda con dati casuali o comunque non reali, proteggendo l'utente da eventuali furti di dati, trasformandola di fatto in un HoneyPot NFC.

Attacchi

Attacchi

Sono stati analizzati attacchi che sfruttano l'NFC per la raccolta di informazioni.

In particolare gli attacchi presentati sono:

- Distributed Guessing Attack
- Relay Attack

Distributed Guessing Attack (1)

Pagamenti online

- PAN
- Data di scadenza
- CVV2
- Intestatario

Problema:

Non tutti i siti utilizzano tutti i dati

Distributed Online Payment Vulnerability

Quindi si possono sfruttare i siti web per ricavare i dati di una carta di credito.

L'attacco è stato presentato dai ricercatori dell'università di NewCastle nel 2016

Distributed Guessing Attack (2)

Sfruttando adeguatamente i vari siti è possibile ricavare

- La data di scadenza in 60 tentativi
- Il codice CVV2 in 1000 tentativi

Quindi si ottengono i dati in soli 1060 tentativi invece di 60000

Il browser bot realizzato dai ricercatori di NewCastle impiega circa 6 secondi per trovare tutti i dati.

Relay Attack (1)

Immaginiamo di sfidare due campioni di scacchi a distanza, potremmo ingannarli e farli giocare uno contro l'altro mentre loro pensano di giocare contro di noi.

Questa è l'idea alla base del Relay Attack per le carte di credito NFC

Relay Attack (2)

L'attacco è noto da tempo ed è stato implementato su diversi device mobili.

L'occorrente necessario è:

 Proxy-Token: simula il token reale ed è a contatto con il reader

 Proxy-Reader: simula il reader ed è a contatto con il token reale

L'attacco permette così di aggirare qualunque sistema di protezione anche non conoscendone i dettagli.

Relay Attack (3)

L'uso dei device token aggiunge del ritardo alla comunicazione tra carta e reader.

Nonostante l'aumento dei tempi di esecuzione di una transazione il tempo totale necessario è inferiore al tempo di timeout del reader.

Quindi l'attacco descritto, per quanto non di immediata realizzazione, può realmente essere effettuato

Conclusioni(1)

Il campo applicativo dei sistemi NFC è molteplice ed in via di forte sviluppo. Attualmente sono presenti sistemi di pagamento e di riconoscimento, non a caso esistono passaporti che integrano schede NFC.

Il lavoro svolto ha preso in considerazione unicamente i metodi di pagamenti e lo sviluppo delle app è stato effettuato su sistemi Android.

Conclusioni(2)

Sarebbe interessante ampliare l'analisi sia su altri sistemi che usano la tecnologia NFC. Potrebbe essere utile anche verificare se è possibile implementare le app descritte su sistemi IOS.

Le app descritte, opportunamente modificate, potrebbero essere usate come protezione da possibili furti di dati da parte di un attaccante.

GRAZIE PER L'ATTENZIONE