Homework #7: Brief solutions

***** (about lecture #5) *****

1. (9points) For $j_1=2,\ j_2=1,\ j=1,\ compute\ all\ the\ nonzero\ Clebsch-Gordon\ coefficients,\ \langle j,m|j_1,m_1;j_2,m_2\rangle$. [Hint: think of this as an "addition of angular momentum" problem, define angular momentum operators $\hat{\boldsymbol{J}}_1$ and $\hat{\boldsymbol{J}}_2$ for $|j_1,m_1\rangle$ and $|j_2,m_2\rangle$ Hilbert spaces respectively, $m_i=-j_i,-j_i+1,\ldots,j_i$, define total angular momentum operators $\hat{\boldsymbol{J}}=\hat{\boldsymbol{J}}_1+\hat{\boldsymbol{J}}_2$, then solve the total angular momentum eigenbasis $|j,m\rangle$ in terms of tensor product basis $|j_1,m_1\rangle|j_2,m_2\rangle$]

Solution:

Consider highest m = j = 1 state $|j = 1, m = 1\rangle$ first, it should be a linear superposition of $|j_1, m_1\rangle|j_2, m_2\rangle$ states with $m_1 + m_2 = m$.

Assume
$$|j = 1, m = 1\rangle = c_1|2, 2\rangle|1, -1\rangle + c_2|2, 1\rangle|1, 0\rangle + c_3|2, 0\rangle|1, 1\rangle$$
.

From
$$\hat{J}_{+}|j=1, m=1\rangle = 0$$
, and $\hat{J}_{+} = \hat{J}_{1,+} + \hat{J}_{2,+}$.

$$c_1 \cdot (0 + \sqrt{2}|2, 2\rangle|1, 0\rangle) + c_2 \cdot (2|2, 2\rangle|1, 0\rangle + \sqrt{2}|2, 1\rangle|1, 1\rangle) + c_3 \cdot (\sqrt{6}|2, 1\rangle|1, 1\rangle + 0) = 0.$$

Therefore $\sqrt{2}c_1 + 2c_2 = 0$, and $\sqrt{2}c_2 + \sqrt{6}c_3 = 0$.

We can choose $c_1 = \sqrt{\frac{6}{10}}$, $c_2 = -\sqrt{\frac{3}{10}}$, $c_3 = \sqrt{\frac{1}{10}}$, up to overall phase factor.

Namely
$$\langle 2, 2; 1, -1 | 1, 1 \rangle = \sqrt{\frac{6}{10}}, \ \langle 2, 1; 1, 0 | 1, 1 \rangle = -\sqrt{\frac{3}{10}}, \ \langle 2, 0; 1, 1 | 1, 1 \rangle = \sqrt{\frac{1}{10}}.$$

$$\begin{aligned} |j=1,m=0\rangle &= \frac{1}{\sqrt{2}} \hat{J}_{-} |j=1,m=1\rangle \\ &= \frac{1}{\sqrt{2}} \left[(2c_{1} + \sqrt{2}c_{2})|2,1\rangle |1,-1\rangle + (\sqrt{6}c_{2} + \sqrt{2}c_{3})|2,0\rangle |1,0\rangle + (\sqrt{6}c_{3})|2,-1\rangle |1,1\rangle \right] \\ &= \sqrt{\frac{3}{10}} |2,1\rangle |1,-1\rangle - \sqrt{\frac{4}{10}} |2,0\rangle |1,0\rangle + \sqrt{\frac{3}{10}} |2,-1\rangle |1,1\rangle. \end{aligned}$$

Namely,
$$\langle 2, 1; 1, -1 | 1, 0 \rangle = \sqrt{\frac{3}{10}}, \ \langle 2, 0; 1, 0 | 1, 0 \rangle = -\sqrt{\frac{4}{10}}, \ \langle 2, -1; 1, 1 | 1, 0 \rangle = \sqrt{\frac{3}{10}}$$

$$|j = 1, m = -1\rangle = \frac{1}{\sqrt{2}}\hat{J}_{-}|j = 1, m = 0\rangle$$

$$= (\sqrt{6}c_1 + 2\sqrt{3}c_2 + c_3)|2, 0\rangle|1, -1\rangle + (3c_2 + 2\sqrt{3}c_3)|2, -1\rangle|1, 0\rangle + (\sqrt{6}c_3)|2, -2\rangle|1, 1\rangle$$

$$= \sqrt{\frac{1}{10}} |2,0\rangle |1,-1\rangle - \sqrt{\frac{3}{10}} |2,-1\rangle |1,0\rangle + \sqrt{\frac{6}{10}} |2,-2\rangle |1,1\rangle.$$

Namely
$$\langle 2,0;1,-1|1,-1\rangle=\sqrt{\frac{1}{10}},\ \langle 2,-1;1,0|1,-1\rangle=-\sqrt{\frac{3}{10}},\ \langle 2,-2;1,1|1,-1\rangle=\sqrt{\frac{6}{10}}$$

Note that $\langle j, m | j_1, m_1; j_2, m_2 \rangle = (\langle j_1, m_1; j_2, m_2 | j, m \rangle)^*$.

- 2. (21points) Consider a spin-1 moment, denote the spin angular momentum operators by $\hat{\boldsymbol{S}}$. Then $[\hat{S}_a, \hat{S}_b] = \sum_c \mathrm{i}\epsilon_{abc}\hat{S}_c$. A complete orthonormal basis for the 3-dimensional Hilbert space is the S_z -eigenbasis $|S_z = +1, 0, -1\rangle$. Define "magnetic quadrupole" operators, $\hat{Q}_1 = \hat{S}_y\hat{S}_z + \hat{S}_z\hat{S}_y$, $\hat{Q}_2 = \hat{S}_z\hat{S}_x + \hat{S}_x\hat{S}_z$, $\hat{Q}_3 = \hat{S}_x\hat{S}_y + \hat{S}_y\hat{S}_x$, $\hat{Q}_4 = \hat{S}_x\hat{S}_x \hat{S}_y\hat{S}_y$, $\hat{Q}_5 = \frac{1}{\sqrt{3}}(\hat{S}_x\hat{S}_x + \hat{S}_y\hat{S}_y 2\hat{S}_z\hat{S}_z)$. They are obviously hermitian.
- (a) (5pts) Check that $\sum_{a=x,y,z} [\hat{S}_a, [\hat{S}_a, \hat{Q}_i]] = 6 \cdot \hat{Q}_i$, i = 1, ..., 5. [Therefore the \hat{Q}_i operators "angular momentum" quantum number is k = 2, because $6 = 2 \cdot (2+1)$] [The commutators $[\hat{S}_a, \hat{Q}_i]$ will be useful later]
- (b) (7pts) By making linear combinations of \hat{Q}_i , we can form "irreducible tensor operators" $\hat{T}_q^{(k=2)}$, q=-2,-1,0,1,2. And $[\hat{S}_z,\hat{T}_q^{(k=2)}]=q\cdot\hat{T}_q^{(k=2)}$, $[\hat{S}_\pm,\hat{T}_q^{(k=2)}]=\sqrt{(k\mp q)(k\pm q+1)}\cdot\hat{T}_{q\pm 1}^{(k=2)}$. Solve $\hat{T}_q^{(k=2)}$ as linear combinations of \hat{Q}_i . [Hint: find $\hat{T}_{q=0}^{(k=2)}$ first, then generate others]
- (c) (9pts) Compute the matrix elements $\langle S_z = m | \hat{T}_{q=m_1}^{(k=2)} | S_z = m_2 \rangle$, for m = -1, 0, 1, $m_1 = -2, -1, 0, 1, 2$, $m_2 = -1, 0, 1$. Show that this is proportional to the C-G coefficients $\langle j = 1, m | j_1 = 2, m_1; j_2 = 1, m_2 \rangle$ solved in Problem 1.

Solution:

Under the
$$|S_z = +1, 0, -1\rangle$$
 basis, $\hat{Q}_1 = \begin{pmatrix} 0 & -\frac{i}{\sqrt{2}} & 0 \\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ 0 & -\frac{i}{\sqrt{2}} & 0 \end{pmatrix}$, $\hat{Q}_2 = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$, $\hat{Q}_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$, $\hat{Q}_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\hat{Q}_5 = \begin{pmatrix} -\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{2}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{1}{\sqrt{3}} \end{pmatrix}$.

[Side remarks: define $\hat{Q}_6 = \hat{S}_x$, $\hat{Q}_7 = \hat{S}_y$, $\hat{Q}_8 = \hat{S}_z$, then $\text{Tr}(\hat{Q}_i) = 0$, $\text{Tr}(\hat{Q}_i\hat{Q}_j) = 2\delta_{i,j}$, for $i, j = 1, \dots, 8$. They are related to the Gell-Mann matrices. Any 3×3 traceless matrix \hat{M} can be represented as a unique linear combination $\sum_{i=1}^8 (\hat{Q}_i \cdot \frac{1}{2} \text{Tr}(\hat{Q}_i \hat{M}))$.]

Use the commutation relations of spin operators, we have

$$\begin{split} [\hat{S}_x,\hat{Q}_1] &= 2\mathrm{i}(\hat{S}_z^2 - \hat{S}_y^2) = \mathrm{i}\hat{Q}_4 - \sqrt{3}\mathrm{i}\hat{Q}_5; \ [\hat{S}_y,\hat{Q}_1] = \mathrm{i}(\hat{S}_y\hat{S}_x + \hat{S}_x\hat{S}_y) = \mathrm{i}\hat{Q}_3; \\ [\hat{S}_z,\hat{Q}_1] &= -\mathrm{i}(\hat{S}_x\hat{S}_z + \hat{S}_z\hat{S}_x) = -\mathrm{i}\hat{Q}_2; \end{split}$$

$$\begin{split} & [\hat{S}_x,\hat{Q}_2] = -\mathrm{i}(\hat{S}_y\hat{S}_x + \hat{S}_x\hat{S}_y) = -\mathrm{i}\hat{Q}_3; \ [\hat{S}_y,\hat{Q}_2] = 2\mathrm{i}(\hat{S}_x^2 - \hat{S}_z^2) = \mathrm{i}Q_4 + \sqrt{3}\mathrm{i}\hat{Q}_5; \\ & [\hat{S}_z,\hat{Q}_2] = \mathrm{i}(\hat{S}_z\hat{S}_y + \hat{S}_y\hat{S}_z) = \mathrm{i}\hat{Q}_1; \\ & [\hat{S}_x,\hat{Q}_3] = \mathrm{i}(\hat{S}_x\hat{S}_z + \hat{S}_z\hat{S}_x) = \mathrm{i}\hat{Q}_2; \ [\hat{S}_y,\hat{Q}_3] = -\mathrm{i}(\hat{S}_z\hat{S}_y + \hat{S}_y\hat{S}_z) = -\mathrm{i}\hat{Q}_1; \\ & [\hat{S}_z,\hat{Q}_3] = 2\mathrm{i}(\hat{S}_y^2 - \hat{S}_x^2) = -2\mathrm{i}\hat{Q}_4; \\ & [\hat{S}_x,\hat{Q}_4] = -\mathrm{i}(\hat{S}_y\hat{S}_z + \hat{S}_z\hat{S}_y) = -\mathrm{i}\hat{Q}_1; \ [\hat{S}_y,\hat{Q}_4] = -\mathrm{i}(\hat{S}_z\hat{S}_x + \hat{S}_x\hat{S}_z) = -\mathrm{i}\hat{Q}_2; \\ & [\hat{S}_z,\hat{Q}_4] = 2\mathrm{i}(\hat{S}_y\hat{S}_x + \hat{S}_x\hat{S}_y) = 2\mathrm{i}\hat{Q}_3; \\ & [\hat{S}_x,\hat{Q}_5] = \sqrt{3}\mathrm{i}(\hat{S}_z\hat{S}_y + \hat{S}_y\hat{S}_z) = \sqrt{3}\mathrm{i}\hat{Q}_1; \ [\hat{S}_y,\hat{Q}_5] = -\sqrt{3}\mathrm{i}(\hat{S}_z\hat{S}_x + \hat{S}_x\hat{S}_z) = -\sqrt{3}\mathrm{i}\hat{Q}_2; \\ & [\hat{S}_z,\hat{Q}_5] = 0. \end{split}$$

These relations can be written as $[\hat{S}_a, \hat{Q}_i] = \sum_j \hat{Q}_j(M_a)_{j,i}$, where the 5 × 5 matrices M_a

$$\text{are } M_x = \begin{pmatrix} 0 & 0 & 0 & -\mathrm{i} & \sqrt{3}\mathrm{i} \\ 0 & 0 & \mathrm{i} & 0 & 0 \\ 0 & -\mathrm{i} & 0 & 0 & 0 \\ \mathrm{i} & 0 & 0 & 0 & 0 \\ -\sqrt{3}\mathrm{i} & 0 & 0 & 0 & 0 \end{pmatrix}, \, M_y = \begin{pmatrix} 0 & 0 & -\mathrm{i} & 0 & 0 \\ 0 & 0 & 0 & -\mathrm{i} & -\sqrt{3}\mathrm{i} \\ \mathrm{i} & 0 & 0 & 0 & 0 \\ 0 & \mathrm{i} & 0 & 0 & 0 \\ 0 & \sqrt{3}\mathrm{i} & 0 & 0 & 0 \end{pmatrix}, \, M_z = \begin{pmatrix} 0 & \mathrm{i} & 0 & 0 & 0 \\ -\mathrm{i} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\mathrm{i} & 0 \\ 0 & 0 & -2\mathrm{i} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

(a) use $[\hat{S}_a, \hat{Q}_i]$ results above, you can check that $\sum_{a=x,y,z} (M_a)^2 = 6 \cdot \mathbb{1}_{5 \times 5}$ (steps omitted)

(b) We can obviously choose
$$\hat{T}_{q=0}^{(k=2)} = \hat{Q}_5$$
, because $[\hat{S}_z, \hat{Q}_5] = 0$. Then $\hat{T}_{q=1}^{(k=2)} = \frac{1}{\sqrt{6}}[\hat{S}_+, \hat{T}_{q=0}^{(k=2)}] = \frac{1}{\sqrt{2}}(i\hat{Q}_1 + \hat{Q}_2)$. $\hat{T}_{q=2}^{(k=2)} = \frac{1}{2}[\hat{S}_+, \hat{T}_{q=1}^{(k=2)}] = \frac{1}{\sqrt{2}}(-\hat{Q}_4 - i\hat{Q}_3)$. $\hat{T}_{q=-1}^{(k=2)} = \frac{1}{\sqrt{6}}[\hat{S}_-, \hat{T}_{q=0}^{(k=2)}] = \frac{1}{\sqrt{2}}(i\hat{Q}_1 - \hat{Q}_2)$. $\hat{T}_{q=-2}^{(k=2)} = \frac{1}{2}[\hat{S}_-, \hat{T}_{q=-1}^{(k=2)}] = \frac{1}{\sqrt{2}}(-\hat{Q}_4 + i\hat{Q}_3)$.

Note: if we replace $\hat{S}_{x,y,z}$ by x,y,z in the definition of \hat{Q}_i , then $\hat{T}_q^{(k=2)}$ becomes functions proportional to spherical harmonics, $(-4\sqrt{\frac{\pi}{15}})\cdot r^2\cdot Y_{l=2}^{m=q}(\theta,\phi)$.

(c) Under the
$$|S_z = +1, 0, -1\rangle$$
 basis,
$$\hat{T}_{q=2}^{(k=2)} = \begin{pmatrix} 0 & 0 & -\sqrt{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \, \hat{T}_{q=1}^{(k=2)} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \, \hat{T}_{q=0}^{(k=2)} = \begin{pmatrix} -\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \\ \hat{T}_{q=-1}^{(k=2)} = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \, \hat{T}_{q=-2}^{(k=2)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 \end{pmatrix}.$$
We can check that

$$\langle S_z = m | \hat{T}_{q=m_1}^{(k=2)} | S_z = m_2 \rangle = \langle j = 1, m | j_1 = 2, m_1; j_2 = 1, m_2 \rangle \cdot (-\sqrt{\frac{10}{3}}).$$

***** (about lecture #5 & #6) *****

- 3. (20points) Consider two spin-1 moments, $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{S}}_2$. They satisfy $[\hat{S}_{i,a}, \hat{S}_{j,b}] = \delta_{i,j} \sum_c \mathrm{i} \epsilon_{abc} \hat{S}_{i,c}$ (here a,b,c label x,y,z components), and $\hat{\boldsymbol{S}}_1^2 = \hat{\boldsymbol{S}}_2^2 = 1 \cdot (1+1) = 2$. A complete orthonormal basis for the 9-dimensional Hilbert space is the S_z -basis, $|s_1, s_2\rangle$, with $s_{1,2} = -1, 0, 1$ and $\hat{S}_{1,z}|s_1, s_2\rangle = s_1|s_1, s_2\rangle$ and $\hat{S}_{2,z}|s_1, s_2\rangle = s_2|s_1, s_2\rangle$. The matrix elements of $\hat{S}_{i,x}$ and $\hat{S}_{i,y}$ under this basis follow the Condon-Shortley convention.
- (1) (9pts) Consider $\hat{H}_0 = -J \cdot \hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2 \equiv -J \sum_a \hat{S}_{1,a} \hat{S}_{2,a}$. Here J > 0 is a positive real constant. Solve all the eigenvalues and eigenstates (in terms of S_z -basis) of \hat{H}_0 . [Hint: $\hat{H}_0 = -\frac{J}{2}(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2 + \frac{J}{2}\hat{\boldsymbol{S}}_1^2 + \frac{J}{2}\hat{\boldsymbol{S}}_2^2$.]
- (2) (6pts) Define vector spin chirality $\hat{\chi} = \hat{S}_1 \times \hat{S}_2$ (namely $\hat{\chi}_x = \hat{S}_{1,y}\hat{S}_{2,z} \hat{S}_{1,z}\hat{S}_{2,y}$, ...). Define total spin operator (spin rotation generator) $\hat{S} = \hat{S}_1 + \hat{S}_2$. Check that $\hat{\chi}$ transforms like a vector under spin rotation, namely $[\hat{S}_a, \hat{\chi}_b] = i\epsilon_{abc}\hat{\chi}_c$. Evaluate the matrix elements of $\hat{\chi}_a$ (a = x, y, z) between the degenerate ground states of \hat{H}_0 solved in (1). [Hint: certain symmetry may help, and you can use the "projection theorem"]
- (3) (5pts) Add a small staggered magnetic field term to the Hamiltonian as perturbation, $\hat{H} = \hat{H}_0 B \cdot (\hat{S}_{1,z} \hat{S}_{2,z})$. Treat the real constant B as a small parameter. Solve the second order perturbation results for the energies of the original ground states of \hat{H}_0 . [NOTE: the unperturbed ground states of \hat{H}_0 are degenerate, but degenerate perturbation theory can be avoided by dividing the Hilbert spaces by symmetry (conserved quantity)]

Solution:

(1) $\hat{H}_0 = -\frac{J}{2}(\hat{S}_1 + \hat{S}_2)^2 + 2J$. The total spin can be 2 or 1 or 0, " $\mathbf{1} \otimes \mathbf{1} = \mathbf{2} \oplus \mathbf{1} \oplus \mathbf{0}$ ".

The basis states $|S_{1+2}, S_{1+2,z}\rangle$ are eigenstates, and can be built in similar way as that of Homework #5 Problem 3(a,b). First solve the highest S_z state in each total S_{1+2} subspace, then the other states can be obtained by applications of lowering ladder operators.

$$|S_{1+2} = 2, S_{1+2,z} = 2\rangle = |1, 1\rangle.$$

Suppose $|S_{1+2} = 1, S_{1+2,z} = 1\rangle = c_1|1,0\rangle + c_2|0,1\rangle$, then by $0 = \hat{S}_{1+2,+}|S_{1+2} = 1, S_{1+2,z} = 1\rangle = (\hat{S}_{1,+} + \hat{S}_{2,+})(c_1|1,0\rangle + c_2|0,1\rangle) = \sqrt{2}(c_1 + c_2)|1,1\rangle$, we have $c_2 = -c_1$. The normalized state $|S_{1+2} = 1, S_{1+2,z} = 1\rangle = \frac{1}{\sqrt{2}}(|1,0\rangle - |0,1\rangle)$.

Suppose $|S_{1+2} = 0, S_{1+2,z} = 0\rangle = c_1|1, -1\rangle + c_2|0, 0\rangle + c_3|-1, 0\rangle$, then by $0 = \hat{S}_{1+2,+}|S_{1+2} = 0, S_{1+2,z} = 0\rangle = (\hat{S}_{1,+} + \hat{S}_{2,+})(c_1|1, -1\rangle + c_2|0, 0\rangle + c_3|-1, 0\rangle) = \sqrt{2}(c_1 + c_2)|1, 0\rangle + \sqrt{2}(c_2 + c_3)|0, 1\rangle$, we have $c_2 = -c_1$ and $c_3 = -c_2$. The normalized state $|S_{1+2} = 0, S_{1+2,z} = 0\rangle = \frac{1}{\sqrt{3}}(|1, -1\rangle - |0, 0\rangle + |-1, 1\rangle)$.

\hat{H}_0 eigenvalue	S_{1+2}	$S_{1+2,z}$	state
-J	2	2	$ 1,1\rangle$
-J	2	1	$\left \frac{1}{\sqrt{2}} (1,0\rangle + 0,1\rangle) \right $
-J	2	0	$\left \frac{1}{\sqrt{6}} (1, -1\rangle + 2 0, 0\rangle_{+} - 1, 1\rangle) \right $
-J	2	-1	$\left \frac{1}{\sqrt{2}} (0, -1\rangle + -1, 0\rangle) \right $
-J	2	-2	$ -1,-1\rangle$
J	1	1	$\left \frac{1}{\sqrt{2}} (1,0\rangle - 0,1\rangle) \right $
J	1	0	$\left \frac{1}{\sqrt{2}} (1, -1\rangle - -1, 1\rangle) \right $
J	1	-1	$\frac{1}{\sqrt{2}}(0,-1\rangle- -1,0\rangle)$
2J	0	0	$\left \frac{1}{\sqrt{3}} (1, -1\rangle - 0, 0\rangle + -1, 1\rangle) \right $

(2)

Use Einstein convention, $\hat{\chi}_a = \epsilon_{abc} \hat{S}_{1,b} \hat{S}_{2,c}$.

Use
$$[\hat{S}_a, \hat{S}_{i,b}] = i\epsilon_{abc}\hat{S}_{i,c}$$
, and $\epsilon_{abc}\epsilon_{cdf} = \delta_{ad}\delta_{bf} - \delta_{af}\delta_{bd}$. Then
$$[\hat{S}_a, \hat{\chi}_b] = [\hat{S}_a, \epsilon_{bcd}\hat{S}_{1,c}\hat{S}_{2,d}] = \epsilon_{bcd}i\epsilon_{acf}\hat{S}_{1,f}\hat{S}_{2,d} + \epsilon_{bcd}\hat{S}_{1,c}i\epsilon_{adf}\hat{S}_{2,f}$$
$$= i(\delta_{ba}\delta_{df} - \delta_{bf}\delta_{da})\hat{S}_{1,f}\hat{S}_{2,d} + i(\delta_{bf}\delta_{ca} - \delta_{ba}\delta_{cf})\hat{S}_{1,c}\hat{S}_{2,f} = i(\hat{S}_{1,a}\hat{S}_{2,b} - \hat{S}_{1,b}\hat{S}_{2,a}) = i\epsilon_{abc}\hat{\chi}_c.$$

Ground states of \hat{H}_0 are $|S_{1+2}=2,S_{1+2,z}\rangle$ states. All the matrix elements of $\hat{\chi}_a$ between these states vanish, $\langle S_{1+2}=2,S_{1+2,z}=m|\hat{\chi}_a|S_{1+2}=2,S_{1+2,z}=m'\rangle=0$.

Method #1: brute-force evaluation (omitted).

Method #2: use "projection theorem",

$$\hat{\boldsymbol{\chi}} \text{ transform like a vector, so } \langle S_{1+2} = 2, S_{1+2,z} = m | \hat{\chi}_a | S_{1+2} = 2, S_{1+2,z} = m' \rangle$$

$$= \langle S_{1+2} = 2, S_{1+2,z} = m | \hat{S}_{1+2,a} | S_{1+2} = 2, S_{1+2,z} = m' \rangle \cdot \frac{\langle S_{1+2} = 2, S_{1+2,z} = m | \hat{S}_{1+2} \cdot \hat{\boldsymbol{\chi}} | S_{1+2} = 2, S_{1+2,z} = m' \rangle}{2 \cdot (2+1)} .$$
But $\hat{\boldsymbol{S}}_{1+2} \cdot \hat{\boldsymbol{\chi}} = \epsilon_{abc} (\hat{S}_{1,a} + \hat{S}_{2,a}) \hat{S}_{1,b} \hat{S}_{2,c} = i \hat{S}_{1,c} \hat{S}_{2,c} + \hat{S}_{1,b} \cdot (-i \hat{S}_{2,b}) = 0.$ Here we have used the Einstein convention, and $\epsilon_{abc} \hat{S}_{i,a} \hat{S}_{i,b} = i \hat{S}_{i,c}.$

Method #3: use "parity selection rule", consider unitary transformation \hat{I} : $|s_1, s_2\rangle \mapsto |s_2, s_1\rangle$, $\hat{S}_{1,a} \leftrightarrow \hat{S}_{2,a}$, then $\hat{I}^2 = \mathbb{I}$, it generates a Z_2 group $\{\mathbb{I}, \hat{I}\}$, with two irreps: $R_{\Gamma_1}(\hat{I}) = (+1)$, $R_{\Gamma_2}(\hat{I}) = (-1)$. Note that all $|S_{1+2} = 2, S_{1+2,z}\rangle$ states belong to the trivial(even) irrep of this group, $\hat{I}|S_{1+2} = 2, S_{1+2,z}\rangle = |S_{1+2} = 2, S_{1+2,z}\rangle \cdot (+1)$, but the operators $\hat{\chi}$ belong to the non-trivial(odd) irrep, $\hat{I}\hat{\chi}_a\hat{I}^\dagger = \hat{\chi}_a \cdot (-1)$. Therefore the matrix element $\langle S_{1+2} = 2, S_{1+2,z} = m|\hat{\chi}_a|S_{1+2} = 2, S_{1+2,z} = m'\rangle$ belongs to the "(even)* \otimes (odd) \otimes (even) = (odd)" irrep, so must vanish by the selection rule.

(3) Note that the perturbed Hamiltonian still conserves total $\hat{S}_{1+2,z} \equiv \hat{S}_{1,z} + \hat{S}_{2,z}$, $[\hat{H}, \hat{S}_{1+2,z}] = 0$. Therefore \hat{H} is block-diagonalized by dividing the 9-dimensional Hilbert space into different total- S_z subspaces.

The $S_{1+2,z}=\pm 2$ subspaces are 1-dimensional with the complete orthonormal basis $(|S_{1+2}=2,S_{1+2,z}=\pm 2\rangle)$ respectively.

The $S_{1+2,z}=\pm 1$ subspaces are 2-dimensional with the complete orthonormal basis $(|S_{1+2}=2,S_{1+2,z}=\pm 1\rangle,|S_{1+2}=1,S_{1+2,z}=\pm 1\rangle)$ respectively.

The $S_{1+2,z}=0$ subspace is 3-dimensional with the complete orthonormal basis ($|S_{1+2}=2,S_{1+2,z}=0\rangle,|S_{1+2,z}=1,S_{1+2,z}=0\rangle,|S_{1+2,z}=0\rangle$).

In each subspace, the ground state is non-degenerate, $|S_{1+2} = 2, S_{1+2,z}\rangle$, so one can use non-degenerate perturbation theory.

on aces	n-degenerate perturbation theory.					
$S_{1+2,z}$	\hat{H} in subspace	2nd order ground state energy				
2	(-J) + (0)	-J				
1	$ \begin{pmatrix} -J & 0 \\ 0 & J \end{pmatrix} + \begin{pmatrix} 0 & -B \\ -B & 0 \end{pmatrix} $	$\approx -J + \frac{(-B)\cdot(-B)}{-J-J} = -J - \frac{B^2}{2J}$				
0	$ \begin{vmatrix} -J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & 2J \end{vmatrix} + \begin{vmatrix} 0 & -\frac{2}{\sqrt{3}}B & 0 \\ -\frac{2}{\sqrt{3}}B & 0 & -\frac{4}{\sqrt{6}}B \\ 0 & -\frac{4}{\sqrt{6}}B & 0 \end{vmatrix} $	$\approx -J + \frac{(-2B/\sqrt{3})\cdot(-2B/\sqrt{3})}{-J-J} = -J - \frac{2B^2}{3J}$				
-1	$ \begin{pmatrix} -J & 0 \\ 0 & J \end{pmatrix} + \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix} $	$\approx -J + \frac{(B)\cdot(B)}{-J-J} = -J - \frac{B^2}{2J}$				
-2	(-J) + (0)	-J				