NICHTLINEARE OPTIK

Ein Überblick von Steven Becker

Agenda

Zweite Harmonische

Ausblick

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 + \cdots)$$

Lichtmaterie WW

Selbstfokussierung

Lineare Lichtmaterie WW

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

 ϵ_0 - Dielektrischekonstante, \vec{E} - Elektrisches Feld, \vec{P} - Polarisation

$$\vec{P} = \epsilon_0 \, \chi^{(1)} \vec{E}$$

 $\chi^{(1)}$ - Dielektrische Suszeptbilitität, $(1) \triangleq$ Tensor erster Ordnung (Matrix)

Licht einer Glühbirne führt zu linearen Antworten

LASER

Lineare Lichtmaterie WW

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

 ϵ_0 - Dielektrischekonstante, \vec{E} - Elektrisches Feld, \vec{P} - Polarisation

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 + \cdots)$$

 $\chi^{(n)}$ - Dielektrische Suszeptbilitität, $(n) \triangleq$ Tensor n-ter Ordnung

Laser führen zu Nichtlinearen Antworten

Lineare Lichtmaterie WW

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 + \cdots)$$

 $\chi^{(n)}$ - Dielektrische Suszeptbilitität, $(n) riangleq ext{Tensor n-ter Ordnung}$

$$\chi^{(2)} \sim 10^{-12} \frac{\text{m}}{\text{V}}, \qquad \chi^{(3)} \sim 10^{-24} \frac{\text{m}^2}{\text{V}^2}$$

Laser führen zu Nichtlinearen Antworten

Zweite Ordnung

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 + \cdots)$$

Der grüne Laserpointer

Zweite Harmonische

Zweite
Harmonische
im Laserpointer

Zweite Harmonische - Beschreibung

Eingangswelle:

$$\tilde{E}(t) = Ee^{-i\omega t} + c.c.$$

Polarisation:

$$P^{(2)} = \epsilon_0 \chi^{(2)} \tilde{E}^2$$

$$= 2\epsilon_0 \chi^{(2)} |E|^2 + (\epsilon_0 \chi^{(2)} E^2 e^{-2i\omega t} + c.c.)$$

Zweite Harmonische - Beschreibung

Polarisation:

$$P^{(2)} = \epsilon_0 \chi^2 E^2$$

$$= 2\epsilon_0 \chi^{(2)} |E|^2 - (\epsilon_0 \chi^{(2)} E^2 e^{-2i\omega t} + c.c.)$$

Wellengleichung:

$$\nabla^2 \vec{E} - \frac{1}{c^2} \ddot{\vec{E}} = \mu_0 \ddot{\vec{P}}$$

Effizienz

$$\Gamma = \frac{I(2\omega)}{I(\omega)} \propto \chi_{\text{eff}}^2 L^2 I(\omega) \frac{\sin^2\left(\frac{\Delta k L}{2}\right)}{\left(\frac{\Delta k L}{2}\right)^2}$$

 χ_{eff} - effektive Suszepbilität, L – Kristalllänge, Δk - Phasenunterschied

mit

$$\Delta k = 2k_1(\omega) - k_2(2\omega)$$

Effizienz

Effizienz in Abhängigkeit von der Phasendifferenz

Phase matching

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} - \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 - \cdots)$$

Phase-matching

Maximale Effizienz wenn:

$$\Delta k = 2k_1(\omega) - k_2(2\omega) = 0$$

$$\Leftrightarrow \quad 2\frac{\omega}{c} n(\omega) = \frac{2\omega}{c} n(2\omega)$$

$$\Leftrightarrow \quad n(\omega) = n(2\omega)$$

Phase-matching

Schematische Darstellung der Frequenzabhängigkeit des Brechungsindexes

Doppelbrechung als Lösung

Brechungsindices eines Doppelbrechenden Materials,

 n_{O} - Brechungsindex vom ordentlichen Strahl,

 n_e - Brechungsindex vom außerordentlichen Strahl

Anwendung für Phase-matching

 \hat{c} - Kristallachse, ϑ – Drehwinkel des Kristalls

Resultat - Drehmethode

Auswirkung der Drehung des Kristalls auf die Intensität der zweiten Harmonischen

Quasi phase matching

Quasi phase matching

Auswirkung der alternierenden Vorzugsrichtungen auf die Polarisation

Vergleich der Methoden

Vergleich der verschiedenen Phase matching methoden

Auswirkung phase matching

Geringes phase matching

Hohes phase matching

Dritte Ordnung

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 - \cdots)$$

Optischer Kerr-Effekt

Selbstfokussierung eines Laserstrahls hoher Intensität

Optischer Kerr-Effekt

$$n = n_0 + 2n_2I$$

mit

$$n_0 = \sqrt{1 + \chi^{(1)}},$$

$$n_2 = \frac{3\chi^{(3)}}{4n_0}$$

Für Kohlenstoffdisulfid: $n_2 = 3 \cdot 10^{-14} \frac{\text{cm}^2}{\text{W}}$

Pulsed Laser

Der Kerr-Effekt kann durch Verwendung von Pulsen zugänglich gemacht werden.

Zwei Strahl Ansatz

Selbstfokussierung mit einem einfallenden Strahl

Zwei Strahl Ansatz

Selbstfokussierung mit einem einfallenden Strahl

Zwei Strahl Ansatz

Selbstfokussierung mit einem zwei Strahlen

Ausblick

$$\vec{P} = \epsilon_0 (\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)} \vec{E}^3 + \cdots)$$

Ausblick - Parametrischer Oszillator (OPO)

Schematische Darstellung eines parametrischen Oszillators

Ausblick - Pockels-Zelle

Schematische Darstellung einer Pockels-Zelle

Ausblick - Squeezed Light

Anwendung des Squeezing Operators auf das Lichtfeld

VIELEN DANK FÜR DIE AUFMERKSAMKEIT!

APPENDIX

Phasenanpassung Drehmethode

$$\frac{1}{n_e(\Theta)} = \frac{\sin^2(\Theta)}{\widetilde{n_e}^2} + \frac{\cos^2(\Theta)}{n_0^2}$$

Die dritte Ordnung

$$P(\omega_1) = \epsilon_0 \chi^{(3)} \big(3E_1 E_1^* + 6E_2 E_2^* + 6E_3 E_3^* \big) E_1,$$

$$P(\omega_2) = \epsilon_0 \chi^{(3)} \big(6E_1 E_1^* + 3E_2 E_2^* + 6E_3 E_3^* \big) E_2,$$

$$P(\omega_3) = \epsilon_0 \chi^{(3)} \big(6E_1 E_1^* + 6E_2 E_2^* + 3E_3 E_3^* \big) E_3,$$

$$P(3\omega_1) = \epsilon_0 \chi^{(3)} E_1^3, \qquad P(3\omega_2) = \epsilon_0 \chi^{(3)} E_2^3, \qquad P(3\omega_3) = \epsilon_0 \chi^{(3)} E_3^3,$$

$$P(\omega_1 + \omega_2 + \omega_3) = 6\epsilon_0 \chi^{(3)} E_1 E_2 E_3,$$

$$P(\omega_1 + \omega_2 - \omega_3) = 6\epsilon_0 \chi^{(3)} E_1 E_2 E_3^*,$$

$$P(\omega_1 + \omega_3 - \omega_2) = 6\epsilon_0 \chi^{(3)} E_1 E_3 E_2,$$

$$P(\omega_1 + \omega_3 - \omega_1) = 6\epsilon_0 \chi^{(3)} E_1 E_3 E_2,$$

$$P(\omega_2 + \omega_3 - \omega_1) = 6\epsilon_0 \chi^{(3)} E_2 E_3 E_1^*,$$

$$P(2\omega_1 + \omega_2) = 3\epsilon_0 \chi^{(3)} E_1^2 E_2, \qquad P(2\omega_1 + \omega_3) = 3\epsilon_0 \chi^{(3)} E_1^2 E_3,$$

$$P(2\omega_2 + \omega_1) = 3\epsilon_0 \chi^{(3)} E_2^3 E_1, \qquad P(2\omega_2 + \omega_3) = 3\epsilon_0 \chi^{(3)} E_2^3 E_2,$$

$$P(2\omega_1 - \omega_2) = 3\epsilon_0 \chi^{(3)} E_1^2 E_2^*, \qquad P(2\omega_1 - \omega_3) = 3\epsilon_0 \chi^{(3)} E_1^2 E_3^*,$$

$$P(2\omega_2 - \omega_1) = 3\epsilon_0 \chi^{(3)} E_2^2 E_1^*, \qquad P(2\omega_2 - \omega_3) = 3\epsilon_0 \chi^{(3)} E_2^2 E_3^*,$$

$$P(2\omega_3 - \omega_1) = 3\epsilon_0 \chi^{(3)} E_2^3 E_1^*, \qquad P(2\omega_3 - \omega_2) = 3\epsilon_0 \chi^{(3)} E_2^3 E_2^*$$

Zweite Harmonische - Polarisation

In dem Beispiel:

