RNA-Seq Analysis

Author: Tony Kabilan Okeke

Date: 22 May 2022

In this assignment, we you will re-analyze the RNA-Seq data reported in the following paper: Regulation of Glucose-Dependent Expression by the RNA Helicase Dbp2 in Saccharomyces cerevisiae

The corresponding data for this study is at GSE58097.

The following runs were included in this analysis:

- Wild Type SRR1302790
- Mutant SRR1302792

```
In [ ]: %load_ext autoreload
        %autoreload 2
        # Imports
        from urllib.request import urlretrieve
        from multiprocessing import cpu count
        from glob import glob
        import pandas as pd
        import numpy as np
        import subprocess
        import os
        # Paths to command line tools
        FEATURECOUNTS = "/home/kabil/.anaconda3/envs/binf/bin/featureCounts"
        FASTQDUMP = "/home/kabil/.anaconda3/envs/binf/bin/fastq-dump"
        PREFETCH = "/home/kabil/.anaconda3/envs/binf/bin/prefetch"
        BWA = "/home/kabil/.anaconda3/envs/binf/bin/bwa"
        # Directories and files
        fastqdir = "/mnt/h/data/fastq"
        samdir = "/mnt/h/data/samfiles"
        yeastgenome = "/mnt/h/data/refseq/NC_001133.9_genomic.fna.gz"
        yeastannot = "/mnt/h/data/refseq/NC 001133.9 genomic.gtf.gz"
        genomelink = "https://ftp.ncbi.nih.gov/genomes/refseq/fungi/Saccharomyces cerevisiae/reference/GCF 000146045.
        annotlink = "https://ftp.ncbi.nih.gov/genomes/refseq/fungi/Saccharomyces cerevisiae/reference/GCF 000146045.2
```

Download fastq Files from SRA

SRR1302792 fastq files already exist.

Download and Index the Yeast Genome

The yeast genome was retrieved through the NCBI FTP site at

/genomes/refseq/Saccharomyces_cerevisiae/.../GCF_000146045.2_R64_genomic.fna.gz.

The genome annotation file was also downloaded from the same site.

```
In []: # Download genome
    if not os.path.exists(yeastgenome):
        print("Downloading yeast reference genome...")
        urlretrieve(genomelink, yeastgenome)

# Download annotation
    if not os.path.exists(yeastannot):
        print("Downloading genome annotation...")
        urlretrieve(annotlink, yeastannot)

# Index genome
    if not os.path.exists(yeastgenome + '.bwt'):
        print("Indexing yeast reference genome...")
        cmd = f"{BWA} index '{yeastgenome}'"
        subprocess.call(cmd, shell=True)
```

Map Reads to Yeast Reference Genome

Running fastq-dump with the --split-3 option produces 2 files for each run; for each run, both files will be passed to bwa as a read pair, so only 2 SAM files will be created.

```
In []: # Create read pairs
    readpairs = []
    for run in runs:
        readpairs.append( ' '.join(glob(f"{fastqdir}/{run}_pass_[12].fastq.gz")) )

# Map reads to the reference genome
samfiles = []
    for run, readpair in zip(runs, readpairs):
        samfile = f"{samdir}/{run}.sam"

    if not os.path.exists(samfile):
        cmd = f"{BWA} mem -t {cpu_count()} {yeastgenome} {readpair} > {samfile}"
        subprocess.call(cmd, shell=True)
    else:
        print(f"{run} has already been mapped.")

    samfiles.append(samfile)
```

SRR1302790 has already been mapped. SRR1302792 has already been mapped.

Feature Counts

feauture_counts.txt already exists.

```
'Geneid': 'Gene'}, axis=1)
# Use pseudo-counts to avoid inf fold changes
df[['WT', 'Mutant']] = df[['WT', 'Mutant']] + 1

# Perform TPM Normalization
df[['WT', 'Mutant']] = df[['WT', 'Mutant']].div(df.Length, axis=0)
df[['WT', 'Mutant']] = df[['WT', 'Mutant']].sum() * 1e6
```

Differential Gene Expression

Out[]:	ut[]: Gene		Chr	FoldChange	
	0	YFL014W	NC_001138.5	801.449474	
	1	YBR115C	NC_001134.8	-323.410199	
	2	YPR157W	NC_001148.4	321.143255	
	3	YDL048C	NC_001136.10	299.833276	
	4	YGR248W	NC_001139.9	277.168362	
	5	YGR052W	NC_001139.9	276.768792	
	6	YNL112W	NC_001146.8;NC_001146.8	-264.086003	
	7	YBR054W	NC_001134.8	247.015566	
	8	YLR297W	NC_001144.5	243.609418	
	9	YGR138C	NC_001139.9	234.155755	

Functional Enrichment Analysis

Only genes that exhibit a 5-fold change or higher were included in the functional enrichment analysis.

The functional enrichment results are stored in the results/enrichment_go_terms.txt and results/enrichment_kegg_paths.txt; the top 10 enriched go terms and kegg pathways are shown below.

Enriched GO TERMS

	Term	PValue	Count
0	GO:0031505~fungal-type cell wall organization	0.000000	53
1	GO:1902600~hydrogen ion transmembrane transport	0.000000	38
2	GO:0055085~transmembrane transport	0.000000	73
3	GO:1904659~glucose transmembrane transport	0.000000	15
4	GO:0015761~mannose transport	0.000000	14
5	GO:0015755~fructose transport	0.000000	14
6	GO:0008645~hexose transport	0.000000	14
7	GO:0008643~carbohydrate transport	0.000000	19
8	GO:0030435~sporulation resulting in formation of a cellular spore	0.000001	36
9	GO:0006122~mitochondrial electron transport, ubiquinol to cytochrome c	0.000003	11
10	GO:0006754~ATP biosynthetic process	0.000035	10

Enriched KEGG PATHS

	Term	PValue	Count
0	sce01100:Metabolic pathways	0.000000	142
1	sce00190:Oxidative phosphorylation	0.000000	34
2	sce01200:Carbon metabolism	0.000031	28
3	sce00500:Starch and sucrose metabolism	0.000052	15
4	sce00010:Glycolysis / Gluconeogenesis	0.001567	15
5	sce04113:Meiosis - yeast	0.001569	27
6	sce01110:Biosynthesis of secondary metabolites	0.002828	55
7	sce00520:Amino sugar and nucleotide sugar metabolism	0.008197	10
8	sce01250:Biosynthesis of nucleotide sugars	0.008618	8
9	sce00730:Thiamine metabolism	0.009211	7
10	sce00052:Galactose metabolism	0.011068	8