(a) Express the outputs y_i^k in terms of the inputs z_i^k .

(a) 表达输出 y_i^k 就投入而言 z_i^k 。

Since each z^k is a 10 imes 1 column vector that includes nine pixel values from a 3 imes 3 patch of the original image X and a bias term (1), the output for each neuron j in the fullyconnected layer is given by:

由于每个 z^k 是一个 10×1 列向量,包括来自 a 的九个像素值 3×3 原始图像的补丁 X 和偏置项 (1), 每个神经元的输出 j 在全连接层中由下式给出:

$$y_j^k = \sum_{i=1}^g w_{ij} z_i^k + w_{0j} \cdot 1 + b_j$$

This can be simplified to:这可以简化为:

$$y_j^k = \sum_{i=1}^9 w_{ij} z_i^k + b_j$$

where w_{ij} are the weights associated with each input z_i^k and b_j is the bias for the output neuron j.在哪里 w_{ij} 是与每个输入相关的权重 z_i^k 和 b_j 是输出神经元的偏差 j 。

- (b) Construct the matrix \boldsymbol{W} that contains all network parameters, and express the output y^k in terms of the input z^k .
- (b) 构造矩阵 W 包含所有网络参数,并表达输出 \mathbf{y}^k 就输入而言 z^k 。

Define a weight matrix W of size 6 imes 10 where each row corresponds to a specific output y_i^k and each column corresponds to an input z_i^k (including the bias term).

定义权重矩阵 W 尺寸的 6 imes 10 其中每一行对应一个特定的输出 y_j^k 每列对应一个输入 z_i^k (包括偏 差项)。

So, the matrix W can be represented as:所以,矩阵 W 可以表示为:

$$W=egin{bmatrix} w_{11}&w_{12}&\dots&w_{19}&b_1\ w_{21}&w_{22}&\dots&w_{29}&b_2\ dots&dots&\ddots&dots&dots\ w_{61}&w_{62}&\dots&w_{69}&b_6 \end{bmatrix}$$
 The output vector \mathbf{y}^k can then be expressed in terms of the input z^k as:

输出向量 \mathbf{y}^k 然后可以用输入来表示 z^k 作为:

 $\mathbf{y}^k = W \cdot z^k$

original 100×100 grid.

where
$$W$$
 is the $6 imes 10$ weight matrix, and z^k is the $10 imes 1$ input vector.

在哪里 W 是 6×10 权重矩阵,以及 z^k 是 10×1 输入向量。 (c) Six images Y_j are constructed by the 10,000 outputs \mathbf{y}^k , k=

 $1,\ldots,10,000$. Express the output images Y_j in terms of the input image X. (c) 六幅图像 Y_j 由 10,000 个输出构成 \mathbf{y}^k , $k=1,\ldots,10,000$ 。 表达输出图 像 Y_j 就输入图像而言 X 。

Each output y_j^k corresponds to a specific 3 imes 3 patch in the original image X. Therefore, each output image Y_j is constructed by mapping each y_j^k back to the spatial position in the

 y_i^k 回到原来的空间位置 100×100 网格。

每个输出 y_j^k 对应于特定的 3 imes 3 原始图像中的补丁 X 。因此,每个输出图像 Y_j 是通过映射每个

Thus, each output image Y_i can be seen as a filtered version of the input image X, where each pixel in Y_j is the result of applying the weights w_{ij} and bias b_j to the corresponding 3 imes 3 patch in X. Mathematically, this can be expressed as a convolution operation over Xwith the filter w_{ij} for each output image Y_j , followed by the addition of bias b_j :

因此,每个输出图像 Y_j 可以看作是输入图像的过滤版本 X ,其中每个像素 Y_j 是应用权重的结果 w_{ij} 和偏见 b_j 到对应的 3 imes 3 修补 X 。在数学上,这可以表示为卷积运算 X 带过滤器 w_{ij} 对于每 个输出图像 Y_j , 然后添加偏差 b_j :

 $Y_j = X * w_j + b_j$

(d) Suppose this network is trained by 100 images of size 100×100 .

parameters W or w_{ij} and b_j ? (d) 假设该网络由 100 张大小为 100 imes 100 。用于训练网络参数的训练样本数

What is the number of training samples used to train the network

量是多少 W 或者 w_{ij} 和 b_j ? Each 100 imes 100 image generates 10,000 3 imes 3 patches, which correspond to 10,000 training

每个 100×100 图像生成 10,000 3×3 patch,对应于每张图像 10,000 个训练样本。

With 100 images, the total number of training samples is:100张图像,训练样本总数为:

$$100 \times 10,000 = 1,000,000$$

So, there are **1,000,000 training samples** used to train the network parameters W (the

weights w_{ij} and biases b_j).

因此,有**1,000,000 个训练样本**用于训练网络参数 W (权重 w_{ij} 和偏见 b_j)。

samples per image.