

Universidad Carlos III de Madrid Grado en Ingeniería Informática. Grupos 81,82,83 Tecnología de Computadores. 1^{er} parcial. Octubre de 2009

Nombre:	Grupo:
Apellidos:	

Problema 1 (1.75 puntos)

Dadas las funciones lógicas

$$\begin{split} f_1 &= \sum_{4} (0,2,9,13,14) + \underbrace{\Lambda}_{4} (5,6,7,11,15) \\ f_2 &= bc + \overline{a}c\overline{d} + b\overline{c}\overline{d} + \overline{b}c\overline{d} \end{split}$$

se pide:

- a) Obtener una expresión lógica simplificada de f_1 en forma de suma de productos
- b) Obtener una expresión lógica simplificada de f₂ en forma de productos de sumas
- c) Realizar f₂ sólo con puertas NOR de 2 entradas
- d) Realizar las dos funciones con un decodificador de 4:16 y puertas lógicas adicionales

Nota importante: se valorará el uso del menor número de componentes en las soluciones.

Cuestión 1 (0.75 punto)

Realizar las conversiones siguientes:

- a) 1275₁₀ a binario natural, octal, hexadecimal y BCD
- b) 10101110₂ a BCD
- c) Realizar las operaciones 39_{10} - 126_{10} y - 39_{10} - 126_{10} mediante una suma binaria de 8 bits, expresando los números negativos en complemento a 2. Razonar si hay acarreo y/o desbordamiento.
- d) Realizar las operaciones 39_{10} - 25_{10} y 39_{10} + 25_{10} mediante una suma binaria, expresando los números negativos en complemento a 2. Elegir el mínimo número de bits para que no haya desbordamiento.

Grado Ing. Informática. Tecnología de Computadores. 1er parcial. Octubre de 2009

Grupos 81, 82 y 83

Solución al problema 1

a) Simplificación en forma de suma de productos para f₁

а	b	С	d	f_1
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	X
0	1	1	1	X
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	Х
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

f_1				
ab\ ^{cd} 00 01 11	00	01	11	10
00	1	0	0	1
01	0	Χ	Χ	Χ
11	0	1	Χ	1
10	0	1	Χ	0

$$f_1 = a'b'd' + ad + bc$$

b) Simplificación en forma de producto de sumas de para \mathbf{f}_2

а	b	С	d	f ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

f_2				
ab\ ^{cd} 00 01 11	00	01	11	10
00	0	0	0	1
01	1	0	1	1
11	1	0	1	1
10	0	0	0	1

$$f_2 = (b+c) (c+d') (b+d')$$

c) Esquema con puertas NOR de 2 entradas para ${\bf f_2}$

d) Esquema con decodificador de 4 entradas para $\mathbf{f_1}$ y $\mathbf{f_2}$

TECNOLOGIA DE COMPUTADORES 1er Paraal oct. 2009 Cuestión 1

a) 127510 a bin ano natural, octal, hexadecumaly BCD

c) $39_{10}^{-126_{10}}$ y $-39_{10}^{-126_{10}}$ con 8 bits en C2 $39_{10}^{-126_{10}}$ y $-39_{10}^{-126_{10}}$ con 8 bits en C2 $39_{10}^{-126_{10}}$ = $3\frac{2}{10}$ + $7\frac{2}{10}$ = $2\frac{5}{10}$ + $2\frac{7}{10}$ + $2\frac{1}{10}$ = 00100111₂ 126_{10}^{-10} = 10111110₂

 $-39_{10} = 11011001_{CZ}$ $00100111 \quad 0 \Longrightarrow 1$ $11011000 \quad +1$

 $-126_{10} = 10000010_{C2}$

+64 01 00 0000

b) $40101110_2 \ \alpha BCD$ $\frac{1}{40101111000} \frac{4}{0100} = 174_{10} = \frac{1}{0001} \frac{7}{0111} \frac{4}{0100} = \frac{1}{0100} \frac{1}{0100} = \frac{1}{0100} \frac{1}{0100} = \frac{1}{0100} \frac{1}{0100} = \frac{1}{0100} \frac{1}{0100} = \frac$

+14 1000 1110

(acarreo)