1. Generative Effects

In cat theory there are these structures that are preserved in a category, and less the structure is preserved more suprices occurs when we obsorve its operations

Take a system of 3 points which * are connected in

some 'way' -> There are total 5 ways of making a system from these 3 points

* Suppose \$ is an observation - whether is connected to * or not which results in true in 2 cases q false in remaining 3.

Now an operation "JOIN" is defined. (V)

* Duer lap & systems (in mind)
* Ensure TRANSITIVITY

This is an example of generative effect.

'JOIN'ing is not presoured by the observation of

In our previous of observation, if & & * is come 7 ceted in A + then
of presoures the < order so is in B.Z
but, $\phi(A) \vee \phi(B) \leq \phi(A \vee B)$, (exercise 1.7. captures this) but this was not presorved by the $\frac{101N}{\sqrt{10}}$ operation $\frac{101N}{\sqrt{10}}$ operation $\frac{1}{\sqrt{10}}$
JOIN operation (f vf = t)
Disjoint union of 2 sets: A = {1,2}
$B = \{1, 6, 7\}$
$A \sqcup B = \{ (1,1), (2,1), (1,2), (6,2), (7,2) \}$
contains dements of form $(x, i) & (y, a)$ where $x \in A$, $y \in B$
PARTITION: see book for formal def.
It is basically dividing the elements into groups no element is common in any of groups & together they from the set
* All the diagrams above are partitions of the
SYMBOLS:
-> arbitrary func, ->> Surjective, >> injective
≅ bijective
F; G means G(F(X))