

# Inteligência Artificial

Prof. Dr. Tiago Bonini Borchartt

#### Aconteceu!!!

Uma mulher em Tempe, no Arizona, morreu após ser atropelada por um carro autônomo operado pela Uber, informou a polícia da cidade americana nesta segunda-feira (19), no que parece ser a primeira morte conhecida de um pedestre atingido por um veículo autoguiado em via pública.

O carro estava em modo autônomo, mas com um motorista no volante por segurança, quando atingiu a mulher, que atravessava a rua fora do cruzamento para pedestres, disse a polícia em comunicado.

O acidente ocorreu às 22h de domingo (18), de acordo com o horário local (2h de segunda em Brasília).

https://www1.folha.uol.com.br/mercado/2018/03/mulher-morre-nos-eua-apos-ser-atropelada-por-carro-autonomo-da-uber.shtml

## Carro autônomo da Uber nos EUA causa primeira morte por atropelamento

Empresa suspendeu testes com veículos sem motorista nos Estados Unidos e no Canadá











Imagem da rede de televisão ABC mostra a cena após o acidente com o carro autônomo

#### Quem é o responsável pela morte?

- O carro?
- A IA do carro?
- A Uber?
- O programador?
- O motorista que estava ao volante, mas não estava guiando?

Vamos esperar pra ver...



# Agentes Inteligentes



#### Resumo:

- Agentes
- Mapeamento de percepções
- Agentes Racionais
- Modelo PEAS
- Estado da arte
- Questões para discussão
- Programas e funções de agentes
- Tipos básicos de agentes

#### Agente

• Um **agente** é algo capaz de perceber seu **ambiente** por meio de **sensores** e de agir sobre esse ambiente por meio de **atuadores**.



#### Exemplos

- Agente humano
  - Sensores: Olhos, ouvidos e outros órgãos.
  - Atuadores: Mãos, pernas, boca e outras partes do corpo.
- Agente robótico
  - Sensores: câmeras e detectores de infravermelho.
  - Atuadores: vários motores.
- Agente de software
  - Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
  - Atuadores: tela, disco, envio de pacotes pela rede.

#### Mapeando percepções em ações

- Sequência de percepções: história completa de tudo que o agente percebeu.
- O comportamento do agente é dado abstratamente pela função do agente:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

onde  $\mathcal{P}^*$  é uma sequência de percepções e  $\mathcal{A}$  é uma ação.

- O programa do agente roda em uma arquitetura física para produzir f.
- Agente = arquitetura + programa.

### Exemplo: O mundo do aspirador de pó

- Percepções: local e conteúdo
  - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar, NoOp



Uma função para o agente aspirador de pó \_\_\_\_\_

| Sequência de Percepções            | Ação     |
|------------------------------------|----------|
| [A, Limpo]                         | Direita  |
| [A, Sujo]                          | Aspirar  |
| [B, Limpo]                         | Esquerda |
| [B, Sujo]                          | Aspirar  |
| [A, Limpo], [A, Limpo]             | Direita  |
| [A, Limpo], [A, Sujo]              | Aspirar  |
|                                    |          |
| [A, Limpo], [A, Limpo], [A, Limpo] | Direita  |
| [A, Limpo], [A, Limpo], [A, Sujo]  | Aspirar  |
|                                    |          |

Programa: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

#### Agentes Racionais

- Como preencher corretamente a tabela de ações do agente para cada situação?
- O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso.
  - O conceito de sucesso do agente depende de uma medida de desempenho objetiva.
    - Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.
  - A medida de desempenho deve refletir o resultado realmente desejado.

#### Agentes Racionais

- Agente racional:
  - para cada sequência de percepções possíveis deve selecionar uma ação que espera-se que venha a maximizar sua medida de desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.
- Exercício: para que medida de desempenho o agente aspirador de pó é racional?

#### Agentes Racionais

- Racionalidade é diferente de perfeição.
  - A racionalidade maximiza o desempenho esperado, enquanto a perfeição maximiza o desempenho real.
  - A escolha racional só depende das percepções até o momento.
- Mas os agentes podem (e devem!) executar ações para coleta de informações.
  - Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido.
- O agente também pode (e deve!) aprender, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo.
  - Nesse caso o agente é chamado de autônomo.
  - Um agente que aprende pode ter sucesso em uma ampla variedade de ambientes.

#### Modelo PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
  - Performance = Medida de Desempenho
  - Environment = Ambiente
  - Actuators = Atuadores
  - **S**ensors = Sensores

#### Exemplo de PEAS: Motorista de Uber Automatizado

Medida de desempenho:

• Ambiente:

Atuadores:

Sensores:

# Exemplo de PEAS: Motorista de Uber Automatizado

- Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- Ambiente: ruas, estradas, outros veículos, pedestres, clientes.
- Atuadores: direção, acelerador, freio, embreagem, marcha, seta, buzina.
- Sensores: câmera, sonar, velocímetro, GPS, hodômetro, acelerômetro, sensores do motor, teclado ou microfone.

## Exemplo de PEAS: Sistema de Diagnóstico Médico

 Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.

- Ambiente: paciente, hospital, equipe.
- Atuadores: exibir na tela perguntas, testes, diagnósticos, tratamentos.

 Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente.



### Exemplo de PEAS: Robô de seleção de peças

 Medida de desempenho: porcentagem de peças em bandejas corretas.

 Ambiente: correia transportadora com peças; bandejas.

Atuadores: braço e mão articulados.

 Sensores: câmera, sensores angulares articulados.



## Exemplo de PEAS: Instrutor de Inglês Interativo

• Medida de desempenho: maximizar nota de aluno em teste.

Ambiente: conjunto de alunos.

• Atuadores: exibir exercícios, sugestões, correções.

Sensores: entrada pelo teclado.



#### Propriedades de ambientes de tarefa

- Completamente observável (versus parcialmente observável)
  - Os sensores do agente dão acesso ao estado completo do ambiente em cada instante.
  - Todos os aspectos relevantes do ambiente são acessíveis.

- Determinístico (versus estocástico)
  - O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.
  - Se o ambiente é determinístico exceto pelas ações de outros agentes, dizemos que o ambiente é estratégico.

#### Propriedades de ambientes de tarefa

- Episódico (versus sequencial)
  - A experiência do agente pode ser dividida em episódios (percepção e execução de uma única ação).
  - A escolha da ação em cada episódio só depende do próprio episódio.

- Estático (versus dinâmico)
  - O ambiente não muda enquanto o agente pensa.
  - O ambiente é semidinâmico se ele não muda com a passagem do tempo, mas o nível de desempenho do agente se altera.

#### Propriedades de ambientes de tarefa

- Discreto (versus contínuo)
  - Um número limitado e claramente definido de percepções e ações.

- Agente único (versus multi-agente)
  - Um único agente operando sozinho no ambiente.
  - No caso multi-agente podemos ter
    - Multi-agente cooperativo
    - Multi-agente competitivo

#### Exemplo

|                          | Xadrez com<br>relógio | Xadrez sem<br>relógio | Direção de<br>Uber |
|--------------------------|-----------------------|-----------------------|--------------------|
| Completamente observável |                       |                       |                    |
| Determinístico           |                       |                       |                    |
| Episódico                |                       |                       |                    |
| Estático                 |                       |                       |                    |
| Discreto                 |                       |                       |                    |
| Agente único             |                       |                       |                    |

• O tipo de ambiente de tarefa determina em grande parte o projeto do agente.

#### Exemplo

|                          | Xadrez com<br>relógio | Xadrez sem<br>relógio | Direção de<br>Uber |
|--------------------------|-----------------------|-----------------------|--------------------|
| Completamente observável | Sim                   | Sim                   | Não                |
| Determinístico           | Sim                   | Sim                   | Não                |
| Episódico                | Não                   | Não                   | Não                |
| Estático                 | Semi                  | Sim                   | Não                |
| Discreto                 | Sim                   | Sim                   | Não                |
| Agente único             | Não                   | Não                   | Não                |

- O tipo de ambiente de tarefa determina em grande parte o projeto do agente.
- O mundo real é parcialmente observável, estocástico, sequêncial, dinâmico, contínuo, multi-agente.

## Programas e funções de agentes

- Um agente é completamente especificado pela função de agente que mapeia sequências de percepções em ações.
- Uma única função de agente (ou uma única classe de funções equivalentes) é racional.
- Objetivo: encontrar uma maneira de representar a função racional do agente concisamente.

#### Agente Dirigido por Tabela

Função AGENTE-DIRIGIDO-POR-TABELA (percepção) retorna uma ação

#### Variáveis estáticas:

- percepções, uma sequência, inicialmente vazia
- tabela, uma tabela de ações, indexada por sequências de percepções, de início completamente especificada

anexar percepção ao fim de percepções  $ação \leftarrow ACESSAR(percepções, tabela)$  retornar ação

#### Desvantagens:

- Tabela gigante (xadrez =  $10^{150}$  entradas)
- Tempo longo para construir a tabela
- Não tem autonomia
- Mesmo com aprendizado demoraria muito para aprender a tabela.

#### Tipos básicos de agentes

- Quatro tipos básicos, do mais simples ao mais geral
  - Agentes reativos simples
  - Agentes reativos baseados em modelos
  - Agentes baseados em objetivos
  - Agentes baseados na utilidade

#### Agente Reativo Simples



## Exemplo: Agente Reativo Simples

```
Função AGENTE-ASPIRADOR-DE-PÓ-REATIVO([posição, estado])
  retorna uma ação
  se estado = Sujo então retorna Aspirar
  senão se posição = A então retorna Direita
  senão se posição = B então retorna Esquerda
```

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação.
- O agente funciona apenas se o ambiente for completamente observável e a decisão correta puder ser tomada com base apenas na percepção atual.

#### Agentes reativos baseados em modelos



#### Agentes reativos baseados em modelos

## **Função** AGENTE-REATIVO-COM-ESTADOS(percepção) **retorna** uma ação

#### Variáveis estáticas:

```
estado, uma descrição do estado atual do mundo regras, um conjunto de regras condição-ação ação, a ação mais recente, incialmente nenhuma estado ← ATUALIZA-ESTADO(estado, ação, percepção) regra ← REGRA-CORRESPONDENTE(estado, regras) ação ← AÇÃO-DA-REGRA[regra] retornar ação
```

#### Agentes reativos baseados em objetivos



#### Agentes reativos baseados na utilidade



#### Agentes com aprendizagem



#### Atividade

• Construa um agente reativo simples capaz de atravessar a rua em segurança.

