Histórico e motivação da Teoria dos Grafos

Notas de aula da disciplina IME 04-11311 Algoritmos em Grafos (Teoria dos Grafos)

Paulo Eustáquio Duarte Pinto (pauloedp at ime.uerj.br)

abril/2018

O problema Original: as pontes de Konigsberg:

"É possível fazer um passeio que passe por todas as pontes uma única vez e retorne ao ponto de partida?"

O problema original: as pontes de Konigsberg

A solução de Euler (1736)

Problema das 4 cores Francis Guthrie conjecturou, em 1852, que qualquer mapa poderia ser colorido com, no máximo, 4 cores.

Várias tentativas de solução fracassaram. Provou-se que pode-se usar apenas 5 cores.

Teorema "provado" em 1976, por Appel e Hacken..

roblemas clássicos em grafos e suas dificuldade

No Século XIX Kirchoff e Cayley criaram a Teoria das Árvores, para ajudar a resolver problemas de circuitos elétricos.

Na década de 30, os fundamentos da Teoria dos *G*rafos foi estabelecida por Kuratowski, Konig e Menger.

Após a invenção do computador, a Teoria "explodiu", pois grafos são a estrutura de dados mais geral possível.

Grafos - Problemas clássicos em grafos Estudos de trânsito - Alcançabilidade O Departamento de Trânsito quer mudar o trânsito devido a obras que irão começar. Com a nova configuração algum ponto da cidade ficaria inacessível a partir de algum outro?

Grafos - Problemas clássicos em grafos Ciclo euleriano-

Dado um grafo que representa um trecho de cidade, é possível que um carteiro comece seu trabalho em dado ponto e percorra todos os trechos de rua uma única vez, retornando ao ponto inicial? Como?

Grafos - Problemas clássicos em grafos

Circuito euleriano-

Dado um grafo que representa umn trecho de ciadde, é possível que um carteiro comece seu trabalho em dado ponto e percorra todos os trechos de rua uma única vez, retornando ao ponto inicial? Como?

Problema do carteiro chinês

quando o grafo não tem circuito euleriano, qual o número mínimo de repetições de arestas para se construir um circuito euleriano?

Grafos - Problemas clássicos em grafos

Circuito hamiltoniano-

Trump × Putin

Dado um grafo que representa as amizades entre pessoas, é possível distribuí-las em uma mesa circular tal que inimigos não fiquem um ao lado do outro? Como?

Solução do problema:

Criar um grafo completo dos convidados, eliminar as arestas das inimizades e procurar um ciclo . Hamiltoniano no mesmo

Grafos - Problemas clássicos em grafos

Isomorfismo de grafos -

Dados dois grafos eles são o isomorfos?

Grafo de Moléculas

Os isômeros C₂H₆O são o mesmo produto?

Grafos - Problemas clássicos em grafos

Emparelhamento máximo em grafo bipartido -

Grafos - Problemas clássicos em grafos

Emparelhamento máximo em grafo qualquer -Jogo de recrutamento: Dadas n candidatos e seus conhecimentos, determinar o maior número de duplas de desconhecidos que podem ser formadas.

Solução ótima 5

Obs: fez-se o grafo dos "desconhecimentos"

Grafos - Problemas clássicos em grafos

Busca de ciclos negativos-

Arbitragem: Dadas as taxas de conversão de moedas existe uma oportunidade de ganhar dinheiro sucessivamente fazendo câmbios de diversas moedas?

	USD	EUR	GPH	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GPH	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Observe que USD × EUR × CAD × USD = 1 × 0.741 × 1.366 × 0.995 = 1.00714497.

O problema é resolvido criando-se um grafo adequado e procurando ciclos negativos

Grafos - Problemas clássicos em grafos

Problemas de colorabilidade:

rabilidade: Cado mapa pode ser colorido com apenas 3 cores?

Teorema "provado" em 1976, por Appel e Hacken.

Todo grafo planar pode ser colorido com 4 cores, no máximo

Poderia também ser colorido com apenas 3 cores

Grafos - Problemas clássicos em grafos e suas dificuldades

- Dificuldades consideradas para os problemas: F tem algoritmo polinomial fácil de implementar
 - T tem algoritmo polinomial difícil de implementar
 - I provavelmente só tem algoritmos exponenciais
 - ? dificuldade desconhecida

Problemas considerados:

Conectividade - determinar se o grafo é conexo. Circuito Euleriano - apresentar um circuito euleriano para o grafo

Ciclo Hamiltoniano - apresentar um cilo hamiltoniano para o grafo

Emparelhamento bipartido - apresentar um emparelhamento máximo em um grafo bipartido

Emparelhamento máximo - apresentar um emparelhamento máximo em um grafo gualguer

Planaridade - determinar se dado grafo é planar

Clique máxima - determinar a mior clique do grafo

Grafos - Problemas clássicos em grafos e suas dificuldades

2-colorabilidade - determinar se o grafo pode ser colorido com 2 cores 3-colorabilidade - determinar se o grafo pode ser colorido com 3 cores Menores caminhos - encontrar o menor caminho entre dois vértices dados

Maiores caminhos - encontrar o maior caminho entre dois vértices dados

Cobertura de vértices - encontrar uma cobertura mínima de vértices Isomorfismo - determinar se dois grafos dados são isomorfos Fechamento transitivo - determinar a alcançabilidade em um digrafo Conectividade forte - determinar os componentes fortemente conexos Ciclo de tamanho par - encontrar um ciclo de tamanho par num digrafo Ciclo de tamanho ímpar - encontrar um ciclo de tamanho ímpar num digrafo

Árvore Geradora Mínima - encontrar a árvore geradora de custo mínimo de um grafo ponderado

Grafos - Problemas clássicos em grafos e suas dificuldades

Caixeiro Viajante - encontrar um ciclo hamiltoniano de custo mínimo em um grafo ponderado

Menores caminhos (pesos positivos) - encontrar o caminho de custo mínimo entre um par de vértices em um grafo ponderado com pesos positivos

Menores caminhos (pesos negativos) - encontrar o caminho de custo mínimo entre um par de vértices em um grafo ponderado com pesos negativos

Fluxo máximo - determinar o fluxo máximo em uma rede, dadas as capacidades das arestas

Alocação - apresentar um emparelhamento máximo em um grafo ponderado

Fluxo máximo/custo mínimo - determinar o fluxo máximo em uma rede, dadas as capacidades das arestas considerando custos nas arestas

Grafos - Problemas clássicos em grafos e suas dificuldades

GRAFOS SIMPLES	F	Т	I	?
Conectividade	X			
Circuito Euleriano	×			
Ciclo Hamiltoniano			X	
Emparelhamento bipartido	X			
Emparelhamento máximo		Х		
Planaridade		Х		
Clique má×ima			X	
2-colorabilidade	×			
3-colorabilidade			X	
Coloração de mapas		Х		
Menores caminhos	X			
Maiores caminhos			X	
Cobertura de vértices			X	
Isomorfismo				×

DIGRAFOS	F	T	I	?
Fechamento transitivo	X			
Conectividade forte	X			
Ciclo de tamanho par	X			
Ciclo de tamanho ímpar		Х		
GRAFOS PONDERADOS				
Árvore Geradora Mínima	X			
Caixeiro Viajante			X	
REDES				
Menores caminhos (pesos positivos)	X			
Menores caminhos (pesos negativos)			X	
Fluxo máximo	X			
Alocação		X		
Fluxo máximo/custo mínimo		×		

