

Релације

7

Неформално, релације представљају везе (односе) између извесних објеката. Најчешће се ради о вези два објекта, то су бинарне релације. У математици се релације дефинишу скуповном терминологијом.

Дефиниција.

- lacktriangle Скуп ho је бинарна релација на скупу A ако је $ho\subseteq A^2.$
- lacktriangle Ако $(a,b)\in
 ho$ кажемо да је a у релацији ho са b и пишемо a
 ho b,
- lacktriangle ако (a,b)
 otin
 ho кажемо да a није у релацији ho са b и пишемо a
 ho b.

Релација $ho=\emptyset$ је празна релација, а $ho=A^2$ је пуна релација.

Релације

Пример.

▶ На скупу $A = \{1, 2, 3\}$ примери бинарних релација су

$$\begin{split} \rho_1 &= \{(1,1),(2,2),(3,3)\}, \quad \text{ tj.} \quad \rho_1 = \text{"} = \text{"}, \\ \rho_2 &= \{(1,2),(1,3),(2,3)\}, \quad \text{tj.} \quad \rho_2 = \text{"} < \text{"}. \end{split}$$

На скупу особа примери бинарних релација су: "бити старији од", "бити виши од", "бити тежи од", "бити пријатељ", ...

Карактеристична функција бинарне релације

Свакој бинарној релацији ho скупа A одговара функција $f_
ho:A^2 o \{1,0\}$, дата на следећи начин

$$f_{\rho}(x,y) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0, & (x,y) \notin \rho \\ 1, & (x,y) \in \rho \end{array} \right.$$

која се зове карактеристична функција релације ho. Обратно, свака функција $f:A^2 \to \{1,0\}$ одређује бинарну релацију $ho_f \subseteq A^2$ дату са

$$\rho_f \stackrel{\text{def}}{=} \{(x,y)|f(x,y)=1\}.$$

Дакле, бинарну релацију можемо задати и њеном карактеристичном функцијом. У случају коначног скупа A, функцију f_{ρ} обично задајемо таблицом.

Пример. Нека је $A=\{a,b,c,d,e\}$. Бинарну релацију ρ можемо задати

▶ навођењем елемената $\rho = \{(a,a), (a,c), (b,a), (c,a), (c,b), (d,d), (d,e)\}$

таблицом карактеристичне функције

графом.

Појам n-арне релације

Слично појму бинарне релације, за било који природан број n уводимо појам n-арне релације ρ на непразном скупу A.

Дефиниција. Сваки подскуп ho Декартовог степена A^n зовемо n-арна релација скупа A. Број n се назива арност или дужина релације ho.

- Специјално, за n=1, релација $\rho\subseteq A$ је унарна релација. Унарне релације издвајају из скупа A елементе који имају одређену особину (својство). Ако $x\in \rho$ кажемо да x има својство ρ и пишемо $\rho(x)$.
- Релације арности 2 су управо бинарне релације.
- Релације арности 3 називамо тернарне релације.

У математици се најчешће ради са бинарним релацијама.

Особине релација

Основне особине које бинарна релација може имати су: рефлексивност, симетричност, антисиметричност и транзитивност.

Дефиниција. Бинарна релација ho скупа A је:

- (Р) рефлексивна ако $(\forall x \in A) \ x \rho x;$
- (C) симетрична ако $(\forall x, y \in A) (x \rho y \Rightarrow y \rho x);$
- (A) антисиметрична ако $(\forall x,y\in A)$ $(x\rho y\wedge y\rho x\Rightarrow x=y);$
- (T) транзитивна ако $(\forall x, y, z \in A) \ (x\rho y \land y\rho z \Rightarrow x\rho z).$

Једина релација скупа A која има све четири наведене особине (РСАТ) је релација једнакости.

Релација еквиваленције

Дефиниција. Бинарна релација ho скупа A је релација

еквиваленције ако је рефлексивна, симетрична и транзитивна (РСТ).

Релација еквиваленције се обично означава са \sim (чита се *тилда*).

Примери релација еквиваленције: једнакост (на било ком скупу), паралелност правих у равни, еквипотентност скупова,...

Дефиниција. Нека је \sim релација еквиваленције скупа A и $a \in A$.

Скуп

$$C_a \stackrel{\mathrm{def}}{=} \{ x \in A | x \sim a \}$$

зове се класа еквиваленције елемента a у односу на релацију \sim .

Користи се и ознака [a].

Особине класа еквиваленције

Теорема. Нека је \sim релација еквиваленције скупа A. Тада

- (1) $C_a
 eq \emptyset$, за све $a \in A$ (тј. свака класа еквиваленције је непразан скуп);
- (2) $a \sim b$ акко $C_a = C_b$ (тј. два елемента имају исту класу еквиваленције акко су у релацији);
- (3) $a \not\sim b$ акко $C_a \cap C_b = \emptyset$ (тј. два елемента нису у релацији акко су им класе дисјунктне);

 $A=\cup_{a\in A}C_a$. (унија свих класа еквиваленције једнака је целом скупу A)

Доказ.

- (1) (P) \Rightarrow $(\forall a \in A) \ a \sim a \Rightarrow (\forall a \in A) \ a \in C_a \Rightarrow (\forall a \in A) \ C_a \neq \emptyset.$
- (2) (\rightarrow) Нека $a \sim b$. Из

$$z\in C_a\Rightarrow egin{array}{c} z\sim a\ a\sim b \end{array} \}\Rightarrow z\sim b\Rightarrow z\in C_b$$
 следи $C_a\subseteq C_b$. Слично, $C_b\subseteq C_a$, па је $C_a=C_b$. (\leftarrow) Из $C_a=C_b$ и $a\in C_a$ следи $a\in C_b$, па је $a\sim b$.

- (3) (\rightarrow) Нека $a \not\sim b$ и $C_a \cap C_b \neq \emptyset$. Тада $(\exists z)\ z \in C_a \cap C_b \Rightarrow (\exists z)(z \sim a \wedge z \sim b) \Rightarrow a \sim b$. Контрадикција. (\leftarrow) Нека $C_a \cap C_b = \emptyset$ и претпоставимо $a \sim b$. Тада из (2) следи $C_a = C_b$, па је $C_a \cap C_b = C_a \neq \emptyset$, контрадикција.
- (4) (Р) \Rightarrow $(\forall a \in A)$ $a \in C_a \Rightarrow (\forall a \in A)$ $a \in \cup_{a \in A} C_a \Rightarrow A \subseteq \cup_{a \in A} C_a$. Обратна инклузија тривијално важи. \square

Дакле, свака релација еквиваленције распарчава (врши партицију, сече) скуп A на дисјунктне подскупове (класе еквиваленције). У једној класи су груписани сви они елементи које обједињује заједничко својство - оно које описује та релација. Стога је једноставније, уместо са целим скупом A, радити са скупом који се састоји од представника класа еквиваленције.

Дефиниција. Скуп

$$A/_{\sim} \stackrel{\text{def}}{=} \{C_a | a \in A\}$$

зовемо фактор скуп или количнички скуп скупа A у односу на релацију \sim .

Фактор скуп се заправо добија тако што се свака класа еквиваленције сажме у један елемент.

Релације поретка

Дефиниција. Бинарна релација ho скупа A је релација поретка, у ознаци \preceq , ако је рефлексивна, антисиметрична и транзитивна (РАТ). Уређени пар (A, \preceq) зовемо парцијално (делимично) уређени скуп. **Пример.** (\mathbb{N}, \leq) , (\mathbb{R}, \geq) $(\mathcal{P}(E), \subseteq)$, $(\mathbb{N}, |)$ су парцијално уређени скупови. Релација < није релација поретка на скупу \mathbb{N} јер није (Р).

Дефиниција. Парцијално уређени скуп (A, \preceq) је линеарно (тотално) уређен ако су свака два елемента скупа A упоредива, тј. важи (Л) $(\forall a,b \in A) \ (a \preceq b \lor b \preceq a).$

□▶ 4団▶ 4 豆 ▶ 4 豆 ▶ 9 Q @

