Newton's Second Law

Data:

Part 1 – constant mass

mass (g)	Force (N)	acceleration (m/s²)
50	0.49	
60	0.59	
70	0.69	
80	0.79	
90	0.88	
100	0.98	

Include	a graph	of	acceleration of	on	the x-a	axis	vs	force	on	the	u-axis.
	. J . I	- J		-				,			9

Slope of the line:	include	units
Diope of the mic.	 uiciaac	uius

Part 2 – constant force

mass (g)	acceleration (m/s ²)
300	
550	
800	
1050	

Include	graphs	s of mass	s on the	x-axis υ	s accele	ration o	on the	y-axis	and	inverse	e
mass or	n the x-	axis vs.	acceler	ation on	the y-ax	is.					

Slope of the line for the second graph only:	(include units)

Questions:

1.	According to Newton's Second Law, F = ma, the equation has a y-intercept of zero. How does the graph of force versus acceleration for a system of constant mass support this relationship?
2.	Compare the slope of the line to the total accelerating mass. Comment on the two values, and the expected relationship between them if the second law is true.
3.	Newton's Second Law, F = ma can be re-written as: a = $F(1/m)$. How does the graph of acceleration versus inverse mass for a system of constant force support this relationship?
4.	Compare the slope of the line to the constant applied force. Comment on the two values, and the expected relationship between them if the second law is true.