Assignment 13

Abhishek Kumar

IIT Hyderabad

18 May,2022

Outline

Question

Solution

Question Statement

Question: if a state e_j is accessible from a persistent state e_i , then e_i is also accessible from e_j and moreover e_j is persistent.

Solution

Solution: suppose a state e_j is accessible from a persistent state e_i , but e_i is not accessible from e_j . Thus system goes from e_i to e_j in a certain number of steps with positive probability $p_i^m = a$ and after that it does not return to e_i .consequently starting from e_i the probability of the system not returning to e_i is at least a or the probability of the system eventually returning to e_i cannot exceed 1-a. Thus $f_{11} \leq 1-a$. But 1-a is strictly less than 1, contradicting the assumption that e_i is persistent. Hence e_i must be accessible from e_j , that is, $p_j^r = b > 0$ for some r. from above we have

$$p_{ij}^{n+m} \ge p_{ik}^{m} p_{kj}^{n} \tag{1}$$

$$\Rightarrow p_{i_j}^{n+m+r} \ge p_{i_j}^m p_{j_i}^{n+r} \ge p_{i_j}^m p_{j_j}^n p_{j_i}^r = abp_{i_j}^n$$
 (2)

Similarly,

$$p_{j_{j}}^{n+m+r} \ge p_{j_{i}}^{r} p_{i_{i}}^{n} p_{i_{j}}^{m} = abp_{i_{i}}^{n}$$
(3)

Result

Thus the two series $\sum p_{i_i}^n$ and $\sum p_{j_j}^n$ converge or diverge together .But $\sum p_{i_i}^n = \infty$,since e_i is persistent and it follows now that e_j is also persistent .This completes the proof.