Acceptance-rejection method

Use an $instrumental\ distribution\ g$ (which we know how to sample from)

 \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Acceptance-rejection method

Use an $instrumental\ distribution\ g$ (which we know how to sample from)

 \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Let f be the targeted density function

Let g be a proposal density function (from which one knows how to sample) such that, for all x: $f(x) \le Mg(x)$

While $i \le n$:

- **1** Sample $x_i \sim g$ and $u_i \sim \mathcal{U}_{[0,1]}$
- 2 If $u_i \le \frac{f(x_i)}{Mg(x_i)}$, accept the draw: $y_i := x_i$ else **reject** it and return to 1.

$$\Rightarrow (v_1, \dots, v_n) \stackrel{iid}{\sim} f$$

Acceptance-rejection: importance of the proposal

Example of a proposal and a target ditribution for the accept-reject algorithm

Remarque: The smaller M, the greater acceptance rate

 \Rightarrow the more the algorithm is efficient at sampling from f (less iterations for a sample size n)

So one wishes g the as close as possible to f!

 $\underline{\wedge}$ g will necessarily have heavier tail than the target

⇒ when the number of parameters increases, acceptance rate decrease svery rapidly (curse of dimension)