

Daniel Anker Hermansen, Markus Engelund Mathiasen, Lasse Overgaard Møldrup

1	Contest	1	8.5 3D	What special cases have you not thought of? Are you sure the STL functions you use work as you think?
2	Mathematics	1	9 Strings 17	Add some assertions, maybe resubmit. Create some testcases to run your algorithm on.
	2.1 Equations	1		Go through the algorithm for a simple case.
	2.2 Recurrences	1	10 Various 18	Go through this list again. Explain your algorithm to a teammate.
	2.3 Trigonometry	1	10.1 Intervals	Ask the teammate to look at your code.
	2.4 Geometry	1	10.2 Misc. algorithms	Go for a small walk, e.g. to the toilet.
	2.5 Derivatives/Integrals	2	10.3 Dynamic programming	Is your output format correct? (including whitespace) Rewrite your solution from the start or let a teammate do it.
	2.6 Sums	2	10.4 Debugging tricks	Rewrite your solution from the state of let a commute do le.
	2.7 Series	2	10.5 Optimization tricks	Runtime error:
	2.8 Probability theory	2		Have you tested all corner cases locally? Any uninitialized variables?
	2.9 Markov chains	2	$\underline{\text{Contest}}$ (1)	Are you reading or writing outside the range of any vector? Any assertions that might fail?
3	Data structures	3	template.cpp 13 lines	Any possible division by 0? (mod 0 for example) Any possible infinite recursion? Invalidated pointers or iterators?
1	Numerical	4	<pre>#include <bits stdc++.h=""> using namespace std;</bits></pre>	Are you using too much memory?
	4.1 Polynomials and recurrences	4		Debug with resubmits (e.g. remapped signals, see Various).
	4.1 Polynomials and recurrences	4	#define rep(i, a, b) for(ll i = a; i < (b); ++i)	Time limit exceeded:
	4.3 Matrices	4	#define all(x) begin(x), end(x) #define sz(x) (ll)(x).size()	Do you have any possible infinite loops?
	4.4 Fourier transforms	6	typedef long long 11;	What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References)
	4.4 Fourier transforms	U	<pre>typedef pair<11, 11> pii; typedef vector<11> vi;</pre>	How big is the input and output? (consider scanf)
5	Number theory	7	cypeder vector(if) vi,	Avoid vector, map. (use arrays/unordered_map)
	5.1 Modular arithmetic	7	<pre>int main() {</pre>	What do your teammates think about your algorithm?
	5.2 Primality	7	<pre>cin.tie(0)->sync_with_stdio(0); }</pre>	Memory limit exceeded:
	5.3 Divisibility	8		What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?
	5.4 Fractions	8	.bashrc	Are you clearing all data structures between test cases?
	5.5 Pythagorean Triples	8	alias c='q++ -Wall -Wconversion -Wfatal-errors -q -std=c++17 \	Mothermetics (2)
	5.6 Primes	8	-fsanitize=undefined,address'	$\underline{\text{Mathematics}} \ (2)$
	5.7 Estimates	8	<pre>export ASAN_OPTIONS=detect_leaks=0</pre>	2.1 Equations
	5.8 Mobius Function	8	.vimrc	
			7 lines	$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
6	Combinatorial	9	set ai si is aw ts=4 sw=4 tm=400 nu sy on im jk <esc> im kj <esc> no ; :</esc></esc>	2a
	6.1 Permutations	9	im { <cr> {<cr>b<cr>}<up><right></right></up></cr></cr></cr>	The extremum is given by $x = -b/2a$.
	6.2 Partitions and subsets	9	" Select region and then type :Hash to hash your selection. " Useful for verifying that there aren't mistypes.	·
	6.3 General purpose numbers	9	ca hash w !cpp -dD -P -fpreprocessed \ tr -d '[:space:]' \	ed-bf
			\ md5sum \ cut -c-6	$ax + by = e$ $x = \frac{3}{ad - bc}$
7	Graph	10	troubleshoot.txt	$ax + by = e \Rightarrow x = \frac{ed - bf}{ad - bc}$ $cx + dy = f \Rightarrow y = \frac{af - ec}{ad - bc}$
	7.1 Fundamentals	10	52 lines	$y = \frac{3}{ad - bc}$
	7.2 Network flow	10	Pre-submit: Write a few simple test cases if sample is not enough.	
	7.3 Matching	11	Are time limits close? If so, generate max cases.	In general, given an equation $Ax = b$, the solution to a variable
	7.4 DFS algorithms	12	Is the memory usage fine?	x_i is given by
	7.5 Coloring	13	Could anything overflow? Make sure to submit the right file.	$x_i = \frac{\det A_i'}{\det A}$
	7.6 Heuristics	13	Take Sale to Submit the right rife.	
	7.7 Trees	13	Wrong answer:	where A'_i is A with the <i>i</i> 'th column replaced by b.
	7.8 Math	14	Print your solution! Print debug output, as well. Are you clearing all data structures between test cases?	2.2 Recurrences
			Can your algorithm handle the whole range of input?	If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots
8	Geometry	14	Read the full problem statement again. Do you handle all corner cases correctly?	$x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \ldots, d_k s.t.
	8.1 Geometric primitives	14	Have you understood the problem correctly?	$a_n = d_1 r_1^n + \dots + d_k r_k^n.$
	8.2 Circles	15	Any uninitialized variables?	
	8.3 Polygons	16	Any overflows? Confusing N and M, i and j, etc.?	Non-distinct roots r become polynomial factors, e.g.
	8.4 Misc. Point Set Problems	16	Are you sure your algorithm works?	$a_n = (d_1 n + d_2)r^n.$

Mathematics (2)

.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax + by = e$$

$$cx + dy = f$$

$$x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

$$x_i = \frac{\det A_i'}{\det A}$$

.2 Recurrences

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

template .bashrc .vimrc troubleshoot

Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

Sums 2.6

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

2.8 Probability theory

assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will

Let X be a discrete random variable with probability $p_X(x)$ of

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{r^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

3fcd32, 14 lines

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is $\mathrm{U}(a,b),\ a < b.$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

<u>Data structures</u> (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

Segment Tree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit.

```
Time: \mathcal{O}(\log N)
struct Tree {
  typedef 11 T;
  static constexpr T unit = INT MIN;
  T f(T a, T b) { return max(a, b); } // (any associative fn)
  vector<T> s; ll n;
  Tree(ll n = 0, T def = unit) : s(2*n, def), n(n) {}
  void update(ll pos, T val) {
    for (s[pos += n] = val; pos /= 2;)
      s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
 T query(11 b, 11 e) { // query (b, e)
    T ra = unit, rb = unit;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
      if (b % 2) ra = f(ra, s[b++]);
      if (e % 2) rb = f(s[--e], rb);
    return f(ra, rb);
};
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory.

```
Usage: Node* tr = new Node(v, 0, sz(v));

Time: \mathcal{O}(\log N). b98ab6, 52 lines
```

```
//#include "../various/BumpAllocator.h"
```

```
struct Node {
 Node *1 = 0, *r = 0;
 ll lo, hi, mset = inf, madd = 0, val = -inf;
  Node(ll lo, ll hi):lo(lo), hi(hi){} // Large interval of -inf
  Node (vi& v, 11 lo, 11 hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
      11 \text{ mid} = 10 + (hi - 10)/2;
      1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(1->val, r->val);
    else val = v[lo];
 ll query(ll L, ll R) {
    if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    push();
    return max(l->query(L, R), r->query(L, R));
 void set(l1 L, l1 R, l1 x) {
    if (R <= lo | | hi <= L) return;</pre>
    if (L <= lo && hi <= R) mset = val = x, madd = 0;</pre>
      push(), l\rightarrow set(L, R, x), r\rightarrow set(L, R, x);
      val = max(1->val, r->val);
 void add(ll L, ll R, ll x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) {
      if (mset != inf) mset += x;
      else madd += x;
      val += x;
    else {
      push(), l\rightarrow add(L, R, x), r\rightarrow add(L, R, x);
      val = max(1->val, r->val);
  void push() {
      11 \text{ mid} = 10 + (hi - 10)/2;
      l = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
      1->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
    else if (madd)
      1- add (lo, hi, madd), r- add (lo, hi, madd), madd = 0;
};
```

UnionFind.h

Time: $\mathcal{O}(\alpha(N))$

const 11 inf = 1e9;

Description: Disjoint-set data structure.

```
struct UF {
    vi e;
    UF(ll n) : e(n, -l) {}
    bool sameSet(ll a, ll b) { return find(a) == find(b); }
    ll size(ll x) { return -e[find(x)]; }
    ll find(ll x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
    bool join(ll a, ll b) {
        a = find(a), b = find(b);
        if (a == b) return false;
        if (e[a] > e[b]) swap(a, b);
        e[a] += e[b]; e[b] = a;
        return true;
```

};

UnionFindRollback.h

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

Usage: 11 t = uf.time(); ...; uf.rollback(t); Time: $O(\log(N))$

beaec1, 21 lines

```
struct RollbackUF {
  vi e: vector<pii> st:
  RollbackUF(ll n) : e(n, -1) {}
  11 size(ll x) { return -e[find(x)]; }
  11 find(ll x) { return e[x] < 0 ? x : find(e[x]); }</pre>
  11 time() { return sz(st); }
  void rollback(ll t) {
    for (ll i = time(); i --> t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(ll a, ll b) {
    a = find(a), b = find(b);
    if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
```

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new value.

Time: Both operations are $\mathcal{O}(\log N)$.

d8aa67, 22 lines

61fc1c, 22 lines

```
struct FT {
  vector<ll> s;
  FT(ll n) : s(n) {}
  void update(ll pos, ll dif) { // a[pos] += dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(11 pos) { // sum of values in [0, pos)
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  11 lower_bound(11 sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum \le 0) return -1;
    for (11 pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw \leq sz(s) && s[pos + pw-1] \leq sum)
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

FenwickTree2d.h

Description: Computes sums a[i,j] for all i < I, j < J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

Time: $\mathcal{O}(\log^2 N)$. (Use persistent segment trees for $\mathcal{O}(\log N)$.)

```
"FenwickTree.h"
struct FT2 {
  vector<vi> ys; vector<FT> ft;
  FT2(l1 limx) : ys(limx) {}
  void fakeUpdate(l1 x, l1 y) {
```

```
for (; x < sz(ys); x \mid = x + 1) ys[x].push_back(y);
  void init() {
    for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
 ll ind(ll x, ll y) {
    return (11) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
  void update(ll x, ll y, ll dif) {
    for (; x < sz(ys); x | = x + 1)
      ft[x].update(ind(x, y), dif);
 ll query(ll x, ll y) {
    11 \text{ sum} = 0;
    for (; x; x &= x - 1)
      sum += ft[x-1].query(ind(x-1, y));
};
RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V[a
+ 1], ... V[b - 1]) in constant time.
Usage: RMQ rmq(values);
rmg.query(inclusive, exclusive);
Time: \mathcal{O}(|V|\log|V|+Q)
                                                       3d1a46, 16 lines
template<class T>
```

```
template < class T >
struct RMQ {
  vector < vector < T >> jmp;
  RMQ (const vector < T >& V) : jmp(1, V) {
    for (11 pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
        jmp.emplace_back(sz(V) - pw * 2 + 1);
        rep(j,0,sz(jmp[k]))
            jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
    }
}
T query(ll a, ll b) {
    assert(a < b); // or return inf if a == b
    ll dep = 63 - _builtin_clzll(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
};</pre>
```

Numerical (4)

4.1 Polynomials and recurrences

```
Polynomial.h
                                                     f1441f, 17 lines
struct Polv {
 vector<double> a;
 double operator()(double x) const {
   double val = 0;
   for (11 i = sz(a); i--;) (val *= x) += a[i];
   return val:
 void diff() {
   rep(i,1,sz(a)) a[i-1] = (double)i*a[i];
   a.pop_back();
 void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for (11 i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
   a.pop_back();
};
```

```
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots(\{\{2, -3, 1\}\}, -1e9, 1e9\}) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
 Poly der = p_i
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort (all (dr));
  rep(i, 0, sz(dr) - 1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^{(p(h) > 0)}) {
      rep(it, 0, 60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f \le 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
  return ret;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0\ldots \geq n-1]$ and $tr[0\ldots n-1]$. Faster than matrix multiplication. Useful together with Berlekamp-Massey. Usage: linearRec($\{0, 1\}, \{1, 1\}, k$) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2\log k\right)$

```
typedef vector<11> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
 11 n = sz(tr);
  auto combine = [&] (Poly a, Poly b) {
    Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (l1 i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
  Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

Usage: double func(double x) { return 4+x+.3*x*x; }

HillClimbing.h

Description: Poor man's optimization for unimodal functions_{8eeeaf, 14 lines}

```
typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
    pair<double, P> cur(f(start), start);
    for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
        rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
            P p = cur.second;
            p[0] += dx*jmp;
            p[1] += dy*jmp;
            cur = min(cur, make_pair(f(p), p));
        }
    }
    return cur;
}
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

44e194, 7 lines

```
template<class F>
double quad(double a, double b, F f, const ll n = 1000) {
  double h = (b - a) / 2 / n, v = f(a) + f(b);
  rep(i,1,n*2)
    v += f(a + i*h) * (i&l ? 4 : 2);
  return v * h / 3;
}
```

IntegrateAdaptive.h

```
Description: Fast integration using an adaptive Simpson's rule. Usage: double sphereVolume = quad(-1, 1, [](double x) { return quad(-1, 1, [&](double y) { return quad(-1, 1, [&](double z) { return x*x + y*y + z*z < 1; \});});}
```

```
return x*x + y*y + z*z < 1; });});

typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6

template <class F>
d rec(F& f, d a, d b, d eps, d S) {
    d c = (a + b) / 2;
    d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
```

```
if (abs(T - S) <= 15 * eps || b - a < 1e-10)
    return T + (T - S) / 15;
    return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
}
template<class F>
d quad(d a, d b, F f, d eps = 1e-8) {
    return rec(f, a, b, eps, S(a, b));
}
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x);
```

const T eps = 1e-8, inf = 1/.0;

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
```

```
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j

struct LPSolver {
    ll m, n;
    vi N, B;
    vvd D;

LPSolver(const vvd& A, const vd& b, const vd& c):
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
        rep(i,0,m) rep(j,0,n) D[i][j] = A[i][j];
        rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
        rep(j,0,n) { N[j] = j; D[m][j] = -c[j]; }
        N[n] = -1; D[m+1][n] = 1;</pre>
```

```
void pivot(ll r, ll s) {
  T \star a = D[r].data(), inv = 1 / a[s];
  rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
   T *b = D[i].data(), inv2 = b[s] * inv;
    rep(j,0,n+2) b[j] -= a[j] * inv2;
    b[s] = a[s] * inv2;
  rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
  rep(i,0,m+2) if (i != r) D[i][s] \star = -inv;
  D[r][s] = inv;
  swap(B[r], N[s]);
bool simplex(ll phase) {
  11 x = m + phase - 1;
  for (;;) {
    11 s = -1;
    rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
    if (D[x][s] >= -eps) return true;
    11 r = -1;
    rep(i,0,m) {
      if (D[i][s] <= eps) continue;</pre>
      if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                    < MP(D[r][n+1] / D[r][s], B[r])) r = i;
```

if (r == -1) return false;

```
pivot(r, s);
}

T solve(vd &x) {
    11 r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
        pivot(r, n);
        if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;
        rep(i,0,m) if (B[i] == -1) {
            11 s = 0;
            rep(j,1,n+1) ltj(D[i]);
            pivot(i, s);
        }
        bool ok = simplex(1); x = vd(n);
        rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
        return ok ? D[m][n+1] : inf;
}
</pre>
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}(N^3)$

```
double det(vector<vector<double>>& a) {
    11 n = sz(a); double res = 1;
    rep(i,0,n) {
        11 b = i;
        rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
        if (i != b) swap(a[i], a[b]), res *= -1;
        res *= a[i][i];
        if (res == 0) return 0;
        rep(j,i+1,n) {
            double v = a[j][i] / a[i][i];
            if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
        }
    }
    return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

```
Time: \mathcal{O}(N^3)
                                                       ec7c09, 18 lines
const 11 mod = 12345;
11 det(vector<vector<ll>>& a) {
  11 n = sz(a); 11 ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
      while (a[j][i] != 0) { // gcd step}
        11 t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
          a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans \star = -1;
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
  return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

typedef vector<double> vd; const double eps = 1e-12; 11 solveLinear(vector<vd>& A, vd& b, vd& x) { ll n = sz(A), m = sz(x), rank = 0, br, bc; **if** (n) assert(sz(A[0]) == m); vi col(m); iota(all(col), 0); rep(i,0,n) { double v, bv = 0; rep(r,i,n) rep(c,i,m)**if** ((v = fabs(A[r][c])) > bv)br = r, bc = c, bv = v; **if** (bv <= eps) { rep(j,i,n) if (fabs(b[j]) > eps) return -1; break; swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j,0,n) swap(A[j][i], A[j][bc]); bv = 1/A[i][i];rep(j,i+1,n) { double fac = A[j][i] * bv; b[j] -= fac * b[i]; rep(k,i+1,m) A[j][k] -= fac*A[i][k];rank++; x.assign(m, 0);for (ll i = rank; i--;) { b[i] /= A[i][i]; x[col[i]] = b[i];rep(j, 0, i) b[j] -= A[j][i] * b[i];return rank; // (multiple solutions if rank < m)

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef bitset<1000> bs;

11 solveLinear(vector<bs>& A, vi& b, bs& x, 11 m) {
    11 n = sz(A), rank = 0, br;
    assert(m <= sz(x));
    vi col(m); iota(all(col), 0);
    rep(i,0,n) {
        for (br=i; br<n; ++br) if (A[br].any()) break;
    }
}</pre>
```

```
if (br == n) {
    rep(j,i,n) if(b[j]) return -1;
    break;
  ll bc = (ll)A[br]._Find_next(i-1);
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  rep(j, 0, n) if (A[j][i] != A[j][bc]) {
   A[j].flip(i); A[j].flip(bc);
  rep(j,i+1,n) if (A[j][i]) {
   b[j] ^= b[i];
   A[j] ^= A[i];
  rank++;
x = bs();
for (11 i = rank; i--;) {
  if (!b[i]) continue;
  x[col[i]] = 1;
  rep(j,0,i) b[j] ^= A[j][i];
return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

return n;

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
                                                       43e345, 35 lines
11 matInv(vector<vector<double>>& A) {
 11 n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    11 r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j, i+1, n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] = f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j,i+1,n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
    A[i][i] = 1;
  for (11 i = n-1; i > 0; --i) rep(j, 0, i) {
    double v = A[j][i];
    rep(k, 0, n) tmp[j][k] -= v*tmp[i][k];
```

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];

```
| Tridiagonal
```

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \operatorname{tridiagonal}(\{1, -1, -1, \dots, -1, 1\}, \{0, c_1, c_2, \dots, c_n\}, \\ \{b_1, b_2, \dots, b_n, 0\}, \{a_0, d_1, d_2, \dots, d_n, a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag(i) = 0 is needed

definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed. Time: $\mathcal{O}(N)$ c488a8, 26 lines typedef double T; vector<T> tridiagonal(vector<T> diag, const vector<T>& super, const vector<T>& sub, vector<T> b) {

```
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
 ll n = sz(b); vi tr(n);
 rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
    } else {
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] = b[i] * sub[i] / diag[i];
  for (11 i = n; i--;) {
    if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

4.4 Fourier transforms

for (static 11 k = 2; k < n; k *= 2) {

auto x = polar(1.0L, acos(-1.0L) / k);

R.resize(n); rt.resize(n);

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv (a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
    ll n = sz(a), L = 63 - _builtin_clzll(n);
    static vector<complex<long double>> R(2, 1);
    static vector<C> rt(2, 1); // (^ 10% faster if double)
```

```
rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (11 k = 1; k < n; k *= 2)
    for (ll i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
  ll L = 64 - \underline{builtin\_clzll(sz(res))}, n = 1 << L;
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x \star = x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (double)(4 * n);
  return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N\log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) ab7fb3, 22 lines

```
typedef vector<11> v1;
template<11 M> v1 convMod(const v1 &a, const v1 &b) {
 if (a.emptv() || b.emptv()) return {};
  vl res(sz(a) + sz(b) - 1);
  11 B=64-__builtin_clzll(sz(res)), n=1<<B, cut=ll(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i, 0, sz(a)) L[i] = C(double((11)a[i] / cut), double((11)a[i] / cut)
      il % cut));
  rep(i,0,sz(b)) R[i] = C(double((11)b[i] / cut), double((11)b[i] / cut)
      il % cut));
  fft(L), fft(R);
  rep(i,0,n) {
   11 j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * (double)n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * (double)n) /
  fft(outl), fft(outs);
  rep(i, 0, sz(res)) {
   11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
   11 bv = 11(imag(out1[i])+.5) + 11(real(outs[i])+.5);
   res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
 return res;
```

Number Theoretic Transform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
"../number-theory/ModPow.h"
                                                      20a803, 33 lines
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root). The last two are > 10^9.
typedef vector<11> v1;
void ntt(vl &a) {
 ll n = sz(a), L = 63 - _builtin_clzll(n);
 static v1 rt(2, 1);
  for (static 11 k = 2, s = 2; k < n; k \star= 2, s++) {
   rt.resize(n);
   11 z[] = {1, modpow(root, mod >> s)};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (11 k = 1; k < n; k *= 2)
    for (11 i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 11 s = sz(a) + sz(b) - 1, B = 64 - builtin clzl1(s), n = 1
  11 \text{ inv} = \text{modpow}(n, \text{mod} - 2);
 vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i,0,n) out [-i \& (n-1)] = (11)L[i] * R[i] % mod * inv %
  return {out.begin(), out.begin() + s};
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
35bfea, 18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(11 xx) : x(xx) \{ \}
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
  Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
  Mod invert (Mod a) {
   ll x, y, g = euclid(a.x, mod, x, y);
    assert(g == 1); return Mod((x + mod) % mod);
 Mod operator^(ll e) {
    if (!e) return Mod(1);
    Mod r = *this ^ (e / 2); r = r * r;
    return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    11 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. $\operatorname{modLog}(a,1,m)$ can be used to calculate the order of a.

Time: $\mathcal{O}(\sqrt{m})$

```
11 modLog(l1 a, l1 b, l1 m) {
    l1 n = (l1) sqrt(m) + 1, e = 1, f = 1, j = 1;
    unordered_map<l1, l1> A;
    while (j <= n && (e = f = e * a % m) != b % m)
        A[e * b % m] = j++;
    if (e == b % m) return j;
    if (__gcd(m, e) == __gcd(m, b))
        rep(i,2,n+2) if (A.count(e = e * f % m))
        return n * i - A[e];
    return -1;</pre>
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

5c5bc5, 16 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
   ull res = k / m * sumsq(to) + c / m * to;
   k % = m; c % = m;
   if (!k) return res;
   ull to2 = (to * k + c) / m;
   return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}

ll modsum(ull to, ll c, ll k, ll m) {
   c = ((c % m) + m) % m;
   k = ((k % m) + m) % m;
   return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
```

```
for (; e; b = modmul(b, b, mod), e /= 2)
 if (e & 1) ans = modmul(ans, b, mod);
return ans;
```

ModSart.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds xs.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
b167b9, 24 lines
ll sqrt(ll a, ll p) {
  a %= p; if (a < 0) a += p;
  if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  11 r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), q = modpow(n, s, p);
  for (;; r = m) {
    11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(q, 1LL \ll (r - m - 1), p);
    a = as * as % p;
    x = x * gs % p;
    b = b * q % p;
```

Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

```
Time: LIM=1e9 \approx 1.5s
const 11 LIM = 1e6;
```

```
bitset<LIM> isPrime;
vi eratosthenes() {
  const 11 S = (11) round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (11 i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
   cp.push_back(\{i, i * i / 2\});
    for (ll j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (11 L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (ll i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (ll i : pr) isPrime[i] = 1;
 return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                                      60dcd1, 12 lines
```

```
bool isPrime(ull n) {
```

```
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
    s = builtin ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trailing zeroes
  ull p = modpow(a%n, d, n), i = s;
  while (p != 1 && p != n - 1 && a % n && i--)
   p = modmul(p, p, n);
  if (p != n-1 && i != s) return 0;
return 1:
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                     a33cf6, 18 lines
ull pollard(ull n) {
 auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 1.insert(1.end(), all(r));
 return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (!b) return x = 1, y = 0, a;
 11 d = euclid(b, a % b, y, x);
 return y -= a/b * x, d;
```

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \text{lcm}(m, n)$. Assumes $mn < 2^{62}$ Time: $\log(n)$

```
04d93a, 7 lines
"euclid.h"
11 crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 ll x, y, g = euclid(m, n, x, y);
 assert ((a - b) % g == 0); // else no solution
 x = (b - a) % n * x % n / g * m + a;
 return x < 0 ? x + m*n/q : x;
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = qcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, $m, n \text{ coprime } \Rightarrow \phi(mn) = \phi(m)\phi(n).$ If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ then $\phi(n) = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ $(p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}.$ $\phi(n)=n\cdot\prod_{p\mid n}(1-1/p).$ $\sum_{d|n} \phi(d) = n, \sum_{1 \le k \le n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$ Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$. **Fermat's little thm**: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

```
88d327, 8 lines
const 11 LIM = 5000000;
ll phi[LIM];
void calculatePhi() {
 rep(i, 0, LIM) phi[i] = i&1 ? i : i/2;
 for (11 i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>
    for (ll j = i; j < LIM; j += i) phi[j] -= phi[j] / i;</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \geq 0$, finds the closest rational approximation p/q with p, q < N. It will obey |p/q - x| < 1/qN.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
  11 LP = 0, LO = 1, P = 1, O = 0, inf = LLONG MAX; dv = x;
    ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (11) floor(v), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NO) < abs(x - (d)P / (d)O)) ?
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > (d)(3*N)) {
      return {NP, NQ};
    LP = P; P = NP;
    LO = O; O = NO;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

struct Frac { ll p, q; }; template<class F> Frac fracBS(F f, 11 N) { **bool** dir = 1, A = 1, B = 1; Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N] if (f(lo)) return lo; assert (f(hi)); while (A | | B) { 11 adv = 0, step = 1; // move hi if dir, else lo for (11 si = 0; step; (step *= 2) >>= si) { Frac mid{lo.p * adv + hi.p, lo.g * adv + hi.g}; if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) { adv -= step; si = 2; hi.p += lo.p * adv;hi.q += lo.q * adv;dir = !dir; swap(lo, hi); A = B; B = !!adv;return dir ? hi : lo;

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p = 962592769 is such that $2^{21} \mid p - 1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group \mathbb{Z}_{2a}^{\times} is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2a-2}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n=1]$$
 (very useful)

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\lfloor \frac{n}{m} \rfloor) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m) g(\lfloor \frac{n}{m} \rfloor)$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. Time: $\mathcal{O}(n)$

11 permToInt(vi& v) { 11 use = 0, i = 0, r = 0; for(ll x:v) $r = r * ++i + \underline{\quad builtin_popcount(use & -(1<<x)),}$ // (note: minus, not \sim !) return r;

6.1.2 Cycles

Let $q_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by q(q.x=x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^{k} \binom{n_i}{m_i} \pmod{p}.$ **6.2.3** Binomials

multinomial.h

Description: Computes $\binom{k_1 + \dots + k_n}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1! k_2! \dots k_n!}$. 11 c = 1, m = v.emptv() ? 1 : v[0];rep(i,1,sz(v)) rep(j,0,v[i])c = c * ++m / (j+1);return c:

General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0,\ldots] = [1,-\frac{1}{2},\frac{1}{6},0,-\frac{1}{20},0,\frac{1}{42},\ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

BellmanFord FloydWarshall TopoSort MinCostMaxFlow

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(i) > i$, k j:s s.t. $\pi(i) > i$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = $1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, \dots$ For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).

- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$ Time: $\mathcal{O}(VE)$

```
const ll inf = LLONG_MAX;
struct Ed { 11 a, b, w, s() { return a < b ? a : -a; }};</pre>
struct Node { ll dist = inf; ll prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, ll s) {
 nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
 11 lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
 rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
   if (d < dest.dist) {</pre>
      dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf if i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
Time: \mathcal{O}(N^3)
                                                        8a8348, 12 lines
const ll inf = 1LL << 62;</pre>
void floydWarshall(vector<vector<11>>& m) {
 rep(i, 0, n) m[i][i] = min(m[i][i], OLL);
 rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)
    if (m[i][k] != inf && m[k][j] != inf) {
      auto newDist = max(m[i][k] + m[k][j], -inf);
      m[i][j] = min(m[i][j], newDist);
 rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
    if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
Time: \mathcal{O}\left(|V| + |E|\right)
```

1fd721, 14 lines

```
vi topoSort(const vector<vi>& gr) {
```

```
vi indeg(sz(gr)), ret;
for (auto& li : gr) for (ll x : li) indeg[x]++;
queue<11> q; // use priority_queue for lexic. largest ans.
rep(i, 0, sz(gr)) if (indeg[i] == 0) q.push(i);
while (!q.empty()) {
  11 i = q.front(); // top() for priority queue
  ret.push_back(i);
  q.pop();
  for (ll x : gr[i])
    if (--indeq[x] == 0) q.push(x);
return ret;
```

Network flow

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

```
Time: Approximately \mathcal{O}\left(E^2\right)
```

4dd49f, 81 lines

10

```
#include <bits/extc++.h>
const 11 INF = numeric_limits<11>::max() / 4;
typedef vector<11> VL;
struct MCMF {
 11 N;
 vector<vi> ed. red:
 vector<VL> cap, flow, cost;
 vi seen;
 VL dist, pi;
 vector<pii> par;
  MCMF(11 N):
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
  void addEdge(ll from, ll to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  void path(ll s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; 11 di;
    __gnu_pbds::priority_queue<pair<11, 11>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](11 i, 11 cap, 11 cost, 11 dir) {
      11 val = di - pi[i] + cost;
      if (cap && val < dist[i]) {
        dist[i] = val;
        par[i] = \{s, dir\};
        if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
    while (!q.empty()) {
      s = q.top().second; q.pop();
```

seen[s] = 1; di = dist[s] + pi[s];

for (ll i : ed[s]) if (!seen[i])

```
relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (ll i : red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
    rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
  pair<11, 11> maxflow(11 s, 11 t) {
    11 \text{ totflow} = 0, \text{ totcost} = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
      for (ll p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      totflow += fl;
      for (ll p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
    rep(i, 0, N) rep(j, 0, N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
  void setpi(ll s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    11 \text{ it} = N, \text{ ch} = 1; 11 \text{ v};
    while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
        for (ll to : ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
            pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

flow += inc;

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

template<class T> T edmondsKarp(vector<unordered_map<11, T>>& graph, 11 source, 11 sink) { assert (source != sink); T flow = 0: vi par(sz(graph)), q = par;for (;;) { fill(all(par), -1); par[source] = 0; 11 ptr = 1;q[0] = source;rep(i,0,ptr) { ll x = q[i];for (auto e : graph[x]) { if (par[e.first] == -1 && e.second > 0) { par[e.first] = x;q[ptr++] = e.first; if (e.first == sink) goto out; return flow; T inc = numeric_limits<T>::max(); for (11 y = sink; y != source; y = par[y]) inc = min(inc, graph[par[y]][y]);

```
for (11 y = sink; y != source; y = par[y]) {
    11 p = par[y];
    if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
    graph[y][p] += inc;
}
}</pre>
```

Dinic.h

Description: Flow algorithm with complexity $O(VE \log U)$ where $U = \max |\text{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching.

```
struct Dinic {
  struct Edge {
   ll to, rev;
   11 c. oc:
    11 flow() { return max(oc - c, OLL); } // if you need flows
 vi lvl, ptr, q;
 vector<vector<Edge>> adj;
 Dinic(ll n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(ll a, ll b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(11 v, 11 t, 11 f) {
    if (v == t || !f) return f;
    for (ll& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
     Edge& e = adj[v][i];
     if (lvl[e.to] == lvl[v] + 1)
        if (ll p = dfs(e.to, t, min(f, e.c))) {
          e.c -= p, adj[e.to][e.rev].c += p;
          return p;
    return 0;
  ll calc(ll s, ll t) {
    11 flow = 0; q[0] = s;
    rep(L,0,31) do { // 'int L=30' maybe faster for random data
     lvl = ptr = vi(sz(q));
      11 \text{ qi} = 0, \text{ qe} = 1 \text{vl[s]} = 1;
      while (qi < qe && !lvl[t]) {
        11 v = q[qi++];
        for (Edge e : adj[v])
          if (!lvl[e.to] && e.c >> (30 - L))
            q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
      while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
    } while (lvl[t]);
    return flow:
 bool leftOfMinCut(ll a) { return lvl[a] != 0; }
};
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
11 n = sz(mat);
vector<vi> co(n);
rep(i, 0, n) co[i] = {i};
rep(ph,1,n) {
  vi w = mat[0];
  size_t s = 0, t = 0;
  rep(it,0,n-ph) { //O(V^2) \rightarrow O(E \log V) with prio. queue
    w[t] = INT_MIN;
    s = t, t = max\_element(all(w)) - w.begin();
    rep(i, 0, n) w[i] += mat[t][i];
  best = min(best, \{w[t] - mat[t][t], co[t]\});
  co[s].insert(co[s].end(), all(co[t]));
  rep(i, 0, n) mat[s][i] += mat[t][i];
  rep(i, 0, n) mat[i][s] = mat[s][i];
  mat[0][t] = INT_MIN;
return best;
```

7.3 Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi_btoa(m, -1); hopcroftKarp(g, btoa);
```

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
                                                      9b9552, 42 lines
bool dfs(11 a, 11 L, vector<vi>& q, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1:
  for (11 b : g[a]) if (B[b] == L + 1) {
    if (btoa[b] == -1 || dfs(btoa[b], L + 1, q, btoa, A, B))
      return btoa[b] = a, 1;
 return 0;
11 hopcroftKarp(vector<vi>& q, vi& btoa) {
 11 \text{ res} = 0;
 vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    for (ll a : btoa) if(a != -1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (11 lay = 1;; lay++) {
      bool islast = 0;
      next.clear();
      for (ll a : cur) for (ll b : g[a]) {
        if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
          B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
      if (next.empty()) return res;
      for (ll a : next) A[a] = lay;
      cur.swap(next);
    rep(a, 0, sz(g))
```

```
res += dfs(a, 0, g, btoa, A, B); }
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa);

```
Time: \mathcal{O}(VE)
                                                      9e2c3d, 22 lines
bool find(ll j, vector<vi>& q, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; ll di = btoa[j];
  for (ll e : g[di])
   if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
      return 1;
  return 0;
ll dfsMatching(vector<vi>& g, vi& btoa) {
  vi vis;
  rep(i, 0, sz(q)) {
    vis.assign(sz(btoa), 0);
    for (ll j : q[i])
      if (find(j, q, btoa, vis)) {
       btoa[j] = i;
        break;
  return sz(btoa) - (11) count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
                                                     755302, 20 lines
vi cover(vector<vi>& q, ll n, ll m) {
  vi match (m, -1);
  11 res = dfsMatching(g, match);
  vector<bool> lfound(n, true), seen(m);
  for (ll it : match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
   11 i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (ll e : q[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
     q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
  rep(i,0,m) if (seen[i]) cover.push_back(n+i);
  assert(sz(cover) == res);
 return cover:
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. Time: $\mathcal{O}\left(N^2M\right)$

```
pair<11, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 11 n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n-1);
 rep(i,1,n) {
   i = [0]q
   11 i0 = 0; // add "dummy" worker 0
   vi dist(m, INT MAX), pre(m, -1);
    vector < bool > done (m + 1);
    do { // dijkstra
     done[j0] = true;
     11 i0 = p[j0], j1 = 0, delta = INT_MAX;
     rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
     rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
     j0 = j1;
   } while (p[j0]);
    while (j0) { // update alternating path
     ll j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}\left(N^3\right)$

```
2e8fc2, 40 lines
"../numerical/MatrixInverse-mod.h"
vector<pii> generalMatching(ll N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   11 a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 ll r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert (r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<ll>(M));
   rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       11 r = rand() % mod;
        mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has (M, 1); vector<pii> ret;
 rep(it, 0, M/2) {
   rep(i,0,M) if (has[i])
     rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
        fi = i; fj = j; goto done;
    } assert(0); done:
    if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
   rep(sw, 0, 2) {
     11 a = modpow(A[fi][fj], mod-2);
     rep(i,0,M) if (has[i] && A[i][fj]) {
```

```
11 b = A[i][fj] * a % mod;
    rep(j,0,M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    }
    swap(fi,fj);
}
return ret;
}
```

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

```
Usage: scc(graph, [\&](vi\& v) \{ ... \}) visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. Time: \mathcal{O}(E+V)
```

```
vi val, comp, z, cont;
11 Time, ncomps;
template < class G, class F > 11 dfs(11 j, G& q, F& f) {
 ll low = val[j] = ++Time, x; z.push_back(j);
 for (auto e : q[j]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,g,f));
 if (low == val[j]) {
     x = z.back(); z.pop_back();
     comp[x] = ncomps;
     cont.push_back(x);
    } while (x != i);
    f(cont); cont.clear();
    ncomps++;
  return val[j] = low;
template < class G, class F> void scc(G& g, F f) {
 11 n = sz(q);
 val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
 rep(i,0,n) if (comp[i] < 0) dfs(i, q, f);
```

BiconnectedComponents.h

if (num[v] < me)

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: 11 eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}\left(E+V\right)
                                                       b49247, 33 lines
vi num, st;
vector<vector<pii>> ed;
11 Time;
template<class F>
ll dfs(ll at, ll par, F& f) {
 11 me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[v]) {
      top = min(top, num[y]);
```

```
st.push back(e);
    } else {
     11 si = sz(st);
     11 up = dfs(y, e, f);
      top = min(top, up);
      if (up == me) {
       st.push_back(e);
        f(vi(st.begin() + si, st.end()));
       st.resize(si);
     else if (up < me) st.push_back(e);</pre>
     else { /* e is a bridge */ }
  return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(-\times)$.

```
Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
 11 N;
 vector<vi> gr;
 vi values; // 0 = false, 1 = true
 TwoSat(11 n = 0) : N(n), gr(2*n) {}
  11 addVar() { // (optional)
   gr.emplace_back();
   gr.emplace_back();
   return N++;
  void either(ll f, ll i) {
    f = \max(2 * f, -1 - 2 * f);
    j = \max(2*j, -1-2*j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
  void setValue(ll x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   11 \text{ cur} = \sim \text{li}[0];
    rep(i,2,sz(li)) {
     11 next = addVar();
      either(cur, ~li[i]);
      either(cur, next);
      either(~li[i], next);
```

cur = ~next;

either(cur, ~li[1]);

```
vi val, comp, z; ll time = 0;
 ll dfs(ll i) {
   11 low = val[i] = ++time, x; z.push_back(i);
   for(ll e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x >> 1] == -1)
       values[x>>1] = x&1;
   } while (x != i);
   return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1;
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
 \begin{array}{lll} \textbf{Time: } \mathcal{O}(V+E) & \textbf{fcf70a, 15 lines} \\ \textbf{vi eulerWalk (vector<vector<pii>& gr, 11 nedges, 11 src=0) } \{ \\ 11 n = sz(gr); \\ \textbf{vi D(n), its(n), eu(nedges), ret, s = {src}; } \\ \textbf{D[src]++;} & \textbf{// to allow Euler paths, not just cycles} \\ \textbf{while (!s.empty()) } \{ \\ 11 x = s.back(), y, e, & it = its[x], end = sz(gr[x]); \\ \textbf{if (it == end) \{ ret.push\_back(x); s.pop\_back(); continue; \} } \\ \textbf{tie(y, e) = gr[x][it++];} \\ \textbf{if (!eu[e]) } \{ \\ \textbf{D[x]--, D[y]++;} \\ eu[e] = 1; s.push\_back(y); \\ \} \} \\ \textbf{for (11 x : D) if (x < 0 || sz(ret) != nedges+1) return } \{\}; \\ \textbf{return } \{ret.rbegin(), ret.rend()\}; \\ \} \end{aligned}
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: O(NM)
vi edgeColoring(11 N, vector<pii> eds) {
  vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
  l1 u, v, ncols = *max_element(all(cc)) + 1;
  vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
    tie(u, v) = e;
    fan[0] = v;
    loc.assign(ncols, 0);
    ll at = u, end = u, d, c = free[u], ind = 0, i = 0;
    while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
    loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
```

```
cc[loc[d]] = c;
for (ll cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
   swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
while (adj[fan[i]][d] != -1) {
   ll left = fan[i], right = fan[++i], e = cc[i];
   adj[u][e] = left;
   adj[left][e] = u;
   adj[right][e] = -1;
   free[right] = e;
}
adj[u][d] = fan[i];
adj[fan[i]][d] = u;
for (ll y : {fan[0], u, end})
   for (ll& z = free[y] = 0; adj[y][z] != -1; z++);
}
rep(i,0,sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

b0d5b1, 12 lines

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = ~B(), B X={}, B R={}) {
   if (!P.any()) {    if (!X.any()) f(R); return; }
   auto q = (P | X)._Find_first();
   auto cands = P & ~eds[q];
   rep(i,0,sz(eds)) if (cands[i]) {
     R[i] = 1;
     cliques(eds, f, P & eds[i], X & eds[i], R);
     R[i] = P[i] = 0; X[i] = 1;
}
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

dee708, 49 lines

```
typedef vector<bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { ll i, d=0; };
  typedef vector<Vertex> vv;
  vb e;
  vv V;
  vector<vi> C;
 vi qmax, q, S, old;
  void init(vv& r) {
    for (auto& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    11 mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, ll lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
```

BinaryLifting LCA DirectedMST Point

```
q.push_back(R.back().i);
    vv T;
    for(auto v:R) if (e[R.back().i][v.i]) T.push back({v.i});
    if (sz(T)) {
      if ((double)S[lev]++ / ++pk < limit) init(T);</pre>
     11 j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 111)
      C[1].clear(), C[2].clear();
      for (auto v : T) {
       11 k = 1;
        auto f = [&](ll i) { return e[v.i][i]; };
        while (any_of(all(C[k]), f)) k++;
        if (k > mxk) mxk = k, C[mxk + 1].clear();
        if (k < mnk) T[j++].i = v.i;
        C[k].push_back(v.i);
      if (j > 0) T[j - 1].d = 0;
      rep(k, mnk, mxk + 1) for (ll i : C[k])
       T[j].i = i, T[j++].d = k;
      expand(T, lev + 1);
    } else if (sz(q) > sz(qmax)) qmax = q;
    q.pop_back(), R.pop_back();
vi maxClique() { init(V), expand(V); return qmax; }
Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
  rep(i,0,sz(e)) V.push_back({i});
```

7.7 Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

```
Time: construction \mathcal{O}(N \log N), queries \mathcal{O}(\log N)
                                                         eb4825, 25 lines
vector<vi> treeJump(vi& P){
 11 \text{ on} = 1, d = 1;
  while (on < sz(P)) on *= 2, d++;
  vector<vi> jmp(d, P);
  rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
  return jmp;
ll jmp(vector<vi>& tbl, ll nod, ll steps){
  rep(i, 0, sz(tbl))
    if(steps&(1<<i)) nod = tbl[i][nod];
  return nod;
11 lca(vector<vi>& tbl, vi& depth, ll a, ll b) {
  if (depth[a] < depth[b]) swap(a, b);</pre>
  a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
  for (ll i = sz(tbl); i--;) {
   11 c = tbl[i][a], d = tbl[i][b];
    if (c != d) a = c, b = d;
  return tbl[0][a];
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

```
Time: \mathcal{O}\left(N\log N + Q\right)
```

"../data-structures/RMQ.h" 69b04a, 21 lines

```
struct LCA {
    11 T = 0;
    vi time, path, ret;
    RMQ<11> rmq;

LCA(vector<vi>& C) : time(sz(C)), rmq((dfs(C,0,-1), ret)) {}
    void dfs(vector<vi>& C, ll v, ll par) {
        time[v] = T++;
        for (ll y : C[v]) if (y != par) {
            path.push_back(v), ret.push_back(time[v]);
            dfs(C, y, v);
        }
    }
}

ll lca(ll a, ll b) {
    if (a == b) return a;
    tie(a, b) = minmax(time[a], time[b]);
    return path[rmq.query(a, b)];
    }
//dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}\left(E\log V\right)$

"../data-structures/UnionFindRollback.h"

```
struct Edge { ll a, b; ll w; };
struct Node {
 Edge kev:
 Node *1 = nullptr, *r = nullptr;
 11 delta = 0;
  void prop() {
    kev.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
   delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->1, (a->r = merge(b, a->r)));
 return a:
void pop(Node*& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(11 n, 11 r, vector<Edge>& g) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
  for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0;
 vi seen(n, -1), path(n), par(n);
  seen[r] = r;
 vector<Edge> Q(n), in(n, \{-1,-1,0\}), comp;
 deque<tuple<11, 11, vector<Edge>>> cycs;
 rep(s,0,n) {
   ll u = s, qi = 0, w;
    while (seen[u] < 0) {
      if (!heap[u]) return {-1,{}};
     Edge e = heap[u] -> top();
     heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
       Node \star cyc = 0;
        11 end = qi, time = uf.time();
```

```
do cyc = merge(cyc, heap[w = path[--qi]]);
    while (uf.join(u, w));
    u = uf.find(u), heap[u] = cyc, seen[u] = -1;
    cycs.push_front({u, time, {&Q[qi], &Q[end]}});
}
rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
}

for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
}
rep(i,0,n) par[i] = in[i].a;
return {res, par};
}
```

7.8 Math

6de1e0, 60 lines

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat [a] [b] --, mat [b] [b] ++ (and mat [b] [a] --, mat [a] [a] ++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.8.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle 11 sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
 typedef Point P;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
```

b0153d, 13 lines

```
P unit() const { return *this/dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate (double a) const {
 return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {</pre>
 return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using ll or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.

f6bf6b, 4 lines template<class P>

```
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

5c88f4, 6 lines

```
"Point.h"
typedef Point < double > P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
 auto d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
 return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using ll or long long.


```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter) == 1)
cout << "segments intersect at " << inter[0] << endl;</pre>
"Point.h", "OnSegment.h"
```

```
9d57f2, 13 lines
template < class P > vector < P > seqInter (P a, P b, P c, P d) {
 auto oa = c.cross(d, a), ob = c.cross(d, b),
       oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
   return { (a * ob - b * oa) / (ob - oa) };
  set<P> s:
  if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
 return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1, e^2\}$ (0,0)} is returned. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in inter- \$1 mediate steps so watch out for overflow if using ll or ll.

```
Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
```

```
"Point.h"
template<class P>
pair<11, P> lineInter(P s1, P e1, P s2, P e2) {
 auto d = (e1 - s1).cross(e2 - s2);
 if (d == 0) // if parallel
   return {-(s1.cross(e1, s2) == 0), P(0, 0)};
 auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
 return {1, (s1 * p + e1 * q) / d};
```

cout << "intersection point at " << res.second << endl;

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using ll or long long. Usage: bool left = sideOf(p1,p2,q)==1;

```
"Point.h"
template<class P>
11 sideOf(P s, P e, P p) { return sqn(s.cross(e, p)); }
template<class P>
ll sideOf(const P& s, const P& e, const P& p, double eps) {
 auto a = (e-s).cross(p-s);
 double 1 = (e-s).dist()*eps;
 return (a > 1) - (a < -1);
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point < double >.

```
template < class P > bool on Segment (P s, P e, P p) {
 return p.cross(s, e) == 0 \&\& (s - p) .dot(e - p) <= 0;
```

Angle.h

Description: A class for ordering angles (as represented by ll points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector\langle Angle \rangle v = \{w[0], w[0].t360() ...\}; // sorted
ll j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
                                                        c0c63f, 35 lines
```

```
struct Angle {
 11 x, y;
 11 t;
 Angle(11 x, 11 y, 11 t=0) : x(x), y(y), t(t) {}
 Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
 11 half() const {
   assert(x || y);
   return y < 0 || (y == 0 && x < 0);
 Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
 Angle t180() const { return {-x, -y, t + half()}; }
```

```
Angle t360() const { return {x, y, t + 1}; }
};
bool operator<(Angle a, Angle b) {</pre>
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (11)b.x) <</pre>
         make tuple(b.t, b.half(), a.x \star (ll)b.v);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point \ a + vector \ b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;</pre>
Angle angleDiff(Angle a, Angle b) { // angle b - angle a
  11 tu = b.t - a.t; a.t = b.t;
  return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
typedef Point<double> P;
bool circleInter(P a, P b, double r1, double r2, pair < P, P >* out) {
  if (a == b) { assert(r1 != r2); return false; }
  P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
  P mid = a + vec*p, per = vec.perp() * sqrt(fmax(011, h2) / d2
  *out = {mid + per, mid - per};
  return true:
```

CircleTangents.h

"Point.h"

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers), first and second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
  P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};</pre>
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
    P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
    out.push_back(\{c1 + v * r1, c2 + v * r2\});
  if (h2 == 0) out.pop_back();
  return out;
```

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

"../../content/geometry/Point.h" a1ee63, 19 lines

```
typedef Point < double > P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&] (P p, P q) {
   auto r2 = r * r / 2;
   P d = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   Pu = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
  return sum;
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point < double > P;
double ccRadius (const P& A, const P& B, const P& C) {
 return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
 return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

"circumcircle.h" 09dd0a, 17 lines pair<P, double> mec(vector<P> ps) { shuffle(all(ps), mt19937(time(0))); $P \circ = ps[0];$ **double** r = 0, EPS = 1 + 1e-8; rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) { o = ps[i], r = 0;rep(j, 0, i) if $((o - ps[j]).dist() > r * EPS) {$ o = (ps[i] + ps[j]) / 2;r = (o - ps[i]).dist();rep(k, 0, j) **if** ((o - ps[k]).dist() > r * EPS) { o = ccCenter(ps[i], ps[j], ps[k]); r = (o - ps[i]).dist();return {o, r};

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P(3, 3), false);
```

Time: $\mathcal{O}(n)$

"Point.h", "OnSegment.h", "SegmentDistance.h"

d2c930, 11 lines template<class P> bool inPolygon(vector<P> &p, P a, bool strict = true) { 11 cnt = 0, n = sz(p); rep(i,0,n) { P q = p[(i + 1) % n];if (onSegment(p[i], q, a)) return !strict;

 $//or: if (segDist(p[i], q, a) \le eps) return !strict;$

cnt $^=$ ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;

return cnt;

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using ll as T!

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i, 0, sz(v) -1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}\left(n\right)$

"Point.h" 88ce9d, 9 lines typedef Point <double > P; P polygonCenter(const vector<P>& v) { P res(0, 0); double A = 0; for (11 i = 0, j = sz(v) - 1; i < sz(v); j = i++) { res = res + (v[i] + v[j]) * v[j].cross(v[i]);A += v[j].cross(v[i]);return res / A / 3;

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

Usage: vector<P> p = ...;

p = polygonCut(p, P(0,0), P(1,0));"Point.h", "lineIntersection.h"

f2b7d4, 13 lines

```
typedef Point < double > P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
 vector<P> res;
 rep(i, 0, sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
   bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))</pre>
      res.push_back(lineInter(s, e, cur, prev).second);
    if (side)
      res.push_back(cur);
 return res:
```

ConvexHull.h

Description:

"Point.h"

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

5fecbc, 14 lines

```
Time: \mathcal{O}(n \log n)
```

```
typedef Point<11> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
  sort(all(pts));
  vector<P> h((int)sz(pts)+1);
 11 s = 0, t = 0;
  for (11 it = 2; it--; s = --t, reverse(all(pts)))
    for (P p : pts) {
      while (t \ge s + 2 \&\& h[(int)t-2].cross(h[(int)t-1], p) \le
            0) t.--:
      h[(int)t++] = p;
  return {h.begin(), h.begin() + (int)t - (t == 2 && h[0] == h
       [1])};
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                       4f2403, 12 lines
typedef Point<ll> P;
array<P, 2> hullDiameter(vector<P> S) {
 11 n = sz(S), j = n < 2 ? 0 : 1;
 pair<11, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = \max(\text{res}, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
        break:
  return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$ "Point.h", "sideOf.h", "OnSeament.h"

```
typedef Point<ll> P;
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  11 a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
    return false;
  while (abs(a - b) > 1) {
    11 c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
  return sgn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side $(i,i+1), \bullet$ (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
                                                     8bf36b, 39 lines
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> 11 extrVertex(vector<P>& poly, P dir) {
  ll n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (lo + 1 < hi) {
   11 m = (10 + hi) / 2;
   if (extr(m)) return m;
   11 ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
  return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<11, 2> lineHull(P a, P b, vector<P>& poly) {
  11 endA = extrVertex(poly, (a - b).perp());
  11 endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
  array<11, 2> res;
  rep(i,0,2) {
    ll lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
     11 m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
  if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return {res[0], res[0]};
      case 2: return {res[1], res[1]};
  return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}(n \log n)$

"Point.h"

```
typedef Point<ll> P;
pair<P, P> closest (vector<P> v) {
   assert(sz(v) > 1);
   set<P> S;
   sort(all(v), [](P a, P b) { return a.y < b.y; });
   pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
   ll j = 0;
   for (P p : v) {
        P d{1 + (ll) sqrt (ret.first), 0};
        while (v[j].y <= p.y - d.x) S.erase(v[j++]);
        auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
        for (; lo != hi; ++lo)
            ret = min(ret, {(*lo - p).dist2(), {*lo, p}});</pre>
```

```
S.insert(p);
}
return ret.second;
```

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y -. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. **Time:** $\mathcal{O}(N \log N)$

```
"Point.h"
                                                    375a35, 23 lines
typedef Point<11> P;
vector<array<11, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<11, 3>> edges;
 rep(k,0,4) {
   sort(all(id), [&](ll i, ll j) {
        return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
   map<11, 11> sweep;
    for (ll i : id) {
     for (auto it = sweep.lower_bound(-ps[i].y);
               it != sweep.end(); sweep.erase(it++)) {
       11 j = it->second;
       P d = ps[i] - ps[j];
       if (d.y > d.x) break;
       edges.push_back(\{d.y + d.x, i, j\});
     sweep[-ps[i].y] = i;
    for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);
 return edges;
```

$8.5 \quad 3D$

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

5ef54b, 17 lines

Description: Class to handle points in 3D space. T can be e.g. double or long long. ${}_{8058ae,\ 32\ lines}$

```
template < class T > struct Point 3D {
  typedef Point3D P;
  typedef const P& R;
  T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z); }
  bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
  P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
```

```
T dist2() const { return x*x + y*y + z*z; }
double dist() const { return sqrt((double)dist2()); }
//Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
double phi() const { return atan2(y, x); }
//Zenith angle (latitude) to the z-axis in interval [0, pi]
double theta() const { return atan2(sqrt(x*x+y*y), z); }
P unit() const { return *this/(T)dist(); } //makes dist()=1
//returns unit vector normal to *this and p
P normal(P p) const { return cross(p).unit(); }
//returns point rotated 'angle' radians ccw around axis
P rotate(double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
}
};
```

3dHull.h

11 nw = sz(FS);

F f = FS[i];

rep(j,0,nw) {

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
"Point3D.h" 95d83d, 49 lines
```

```
typedef Point3D<double> P3;
 void rem(11 x) { (a == x ? a : b) = -1; }
 ll cnt() { return (a !=-1) + (b !=-1); }
 11 a, b;
}:
struct F { P3 q; 11 a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
 auto mf = [&](ll i, ll j, ll k, ll l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
 rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
   rep(j, 0, sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
```

#define C(a, b, c) **if** (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);

C(a, b, c); C(a, c, b); C(b, c, a);

for (F& it : FS) if ((A[it.b] - A[it.a]).cross(

```
A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
return FS;
;</pre>
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (θ_1) and f2 (θ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = 1) north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

611f07, 8 lines

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: O(n)

6003b6, 16 lines

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    ll g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
  }
  return p;
}

vi match(const string& s, const string& pat) {
  vi p = pi(pat + '\0' + s), res;
  rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
  return res;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** $\mathcal{O}(N)$

```
11 minRotation(string s) {
    11 a=0, N=sz(s); s += s;
    rep(b,0,N) rep(k,0,N) {
        if (a+k == b || s[a+k] < s[b+k]) {b += max(011, k-1); break
            ;}
        if (s[a+k] > s[b+k]) { a = b; break; }
    }
    return a;
}
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The 1cp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $O(n \log n)$

```
struct SuffixArray {
 vi sa, lcp;
 SuffixArray(string& s, 11 lim=256) { // or basic\_string < ll >
   11 n = sz(s) + 1, k = 0, a, b;
   vi \times (all(s)+1), v(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (11 j = 0, p = 0; p < n; j = max(111, j * 2), lim = p)
     p = j, iota(all(y), n - j);
     rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
     fill(all(ws), 0);
     rep(i,0,n) ws[x[i]]++;
     rep(i, 1, lim) ws[i] += ws[i - 1];
     for (ll i = n; i--;) sa[-ws[x[y[i]]]] = y[i];
     swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i - 1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
   rep(i,1,n) rank[sa[i]] = i;
   for (11 i = 0, j; i < n - 1; lcp[rank[i++]] = k)
     for (k \& \& k--, j = sa[rank[i] - 1];
         s[i + k] == s[j + k]; k++);
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l,r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l,r) substrings. The root is 0 (has l=-1, r=0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}(26N)
                                                     f2b886, 50 lines
struct SuffixTree {
  enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 11 toi(char c) { return c - 'a'; }
 string a; //v = cur \ node, q = cur \ position
 11 t[N][ALPHA], 1[N], r[N], p[N], s[N], v=0, q=0, m=2;
  void ukkadd(ll i, ll c) { suff:
    if (r[v]<=q) {
      if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
      v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
      p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
      l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
      v=s[p[m]]; q=l[m];
      while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
      if (q==r[m]) s[m]=v; else s[m]=m+2;
      q=r[v]-(q-r[m]); m+=2; goto suff;
  SuffixTree(string a) : a(a) {
    fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
```

s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;

```
rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  ll lcs(ll node, ll i1, ll i2, ll olen) {
    if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    11 \text{ mask} = 0, 1 \text{ en} = \text{node}? 0 \text{ en} + (r[\text{node}] - 1[\text{node}]): 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
      mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
      best = max(best, {len, r[node] - len});
    return mask:
  static pii LCS(string s, string t) {
    SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
Hashing.h
Description: Self-explanatory methods for string hashing. 049469, 44 lines
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64_t ull;
struct H {
  ull x; H(ull x=0) : x(x) {}
  H operator+(H \circ) { return x + \circ.x + (x + \circ.x < x); }
  H operator-(H ○) { return *this + ~○.x; }
  H operator*(H o) { auto m = (\underline{\text{uint128\_t}})x * o.x;
    return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9: random \ also \ ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
      ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(ll a, ll b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, ll length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
```

H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}

18

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

Time: $\mathcal{O}(\log N)$ 690049, 23 lines set<pii>::iterator addInterval(set<pii>& is, ll L, ll R) { if (L == R) return is.end(); auto it = is.lower_bound({L, R}), before = it; while (it != is.end() && it->first <= R) { R = max(R, it->second);before = it = is.erase(it); if (it != is.begin() && (--it)->second >= L) { L = min(L, it->first);R = max(R, it->second);is.erase(it); return is.insert(before, {L,R}); void removeInterval(set<pii>& is, ll L, ll R) { if (L == R) return; auto it = addInterval(is, L, R); auto r2 = it->second; if (it->first == L) is.erase(it);

IntervalCover.h

else (11&) it->second = L;

if (R != r2) is.emplace(R, r2);

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$ 6cb7a6, 19 lines

```
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort(all(S), [&](ll a, ll b) { return I[a] < I[b]; });
    T cur = G.first;
    ll at = 0;
    while (cur < G.second) { // (A)
        pair<T, ll> mx = make_pair(cur, -l);
        while (at < sz(I) && I[S[at]].first <= cur) {
            mx = max(mx, make_pair(I[S[at]].second, S[at]));
            at++;
        }
        if (mx.second == -l) return {};
        cur = mx.first;
        R.push_back(mx.second);
    }
    return R;
}</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](ll x){return v[x];}, [&](ll lo, ll hi, T val){...}); 
 Time: \mathcal{O}\left(k\log\frac{n}{k}\right) 72f30e, 19 lines
```

```
template < class F, class G, class T>
void rec(l1 from, l1 to, F& f, G& g, l1& i, T& p, T q) {
    if (p == q) return;
    if (from == to) {
        g(i, to, p);
        i = to; p = q;
    } else {
        l1 mid = (from + to) >> 1;
        rec(from, mid, f, g, i, p, f(mid));
        rec(mid+1, to, f, g, i, p, q);
    }
}
template < class F, class G>
void constantIntervals(l1 from, l1 to, F f, G g) {
    if (to <= from) return;
    l1 i = from; auto p = f(i), q = f(to-1);
    rec(from, to-1, f, g, i, p, q);
    g(i, to, q);
}</pre>
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B). Usage: 11 ind = ternSearch(0,n-1, $\lceil k \rceil$) (Il i) {return a[i];});

Time: $\mathcal{O}(\log(b-a))$

```
template < class F >
11 ternSearch(11 a, 11 b, F f) {
   assert(a <= b);
   while (b - a >= 5) {
     11 mid = (a + b) / 2;
     if (f(mid) < f(mid+1)) a = mid; // (A)
     else b = mid+1;
   }
   rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
   return a;
}</pre>
```

LIS.h

Description: Compute indices for the longest increasing subsequence. **Time:** $\mathcal{O}(N \log N)$

```
template<class I> vi lis(const vector<I>& S) {
   if (S.empty()) return {};
   vi prev(sz(S));
   typedef pair<I, ll> p;
   vector res;
   rep(i,0,sz(S)) {
      // change 0 -> i for longest non-decreasing subsequence
      auto it = lower_bound(all(res), p{S[i], 0});
      if (it == res.end()) res.emplace_back(), it = res.end()-1;
      *it = {S[i], i};
      prev[i] = it == res.begin() ? 0 : (it-1)->second;
   }
   ll L = sz(res), cur = res.back().second;
   vi ans(L);
   while (L--) ans[L] = cur, cur = prev[cur];
   return ans;
}
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum $S \le t$ such that S is the sum of some subset of the weights.

```
Time: \mathcal{O}(N \max(w_i)) f4e05d, 16 lines
```

```
11 knapsack(vi w, 11 t) {
    11 a = 0, b = 0, x;
    while (b < sz(w) && a + w[b] <= t) a += w[b++];
    if (b == sz(w)) return a;
    11 m = *max_element(all(w));
    vi u, v(2*m, -1);
    v[a+m-t] = b;
    rep(i,b,sz(w)) {
        u = v;
        rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
        for (x = 2*m; --x > m;) rep(j, max(011,u[x]), v[x])
        v[x-w[j]] = max(v[x-w[j]], j);
    }
    for (a = t; v[a+m-t] < 0; a--);
    return a;
}</pre>
```

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. **Time:** $\mathcal{O}((N + (hi - lo)) \log N)$

```
f859cc, 18 lines
struct DP { // Modify at will:
 11 lo(11 ind) { return 0; }
 11 hi(ll ind) { return ind; }
 11 f(ll ind, ll k) { return dp[ind][k]; }
 void store(ll ind, ll k, ll v) { res[ind] = pii(k, v); }
 void rec(l1 L, l1 R, l1 L0, l1 HI) {
   if (L >= R) return;
   11 \text{ mid} = (L + R) >> 1;
   pair<11, 11> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
     best = min(best, make_pair(f(mid, k), k));
    store(mid, best.second, best.first);
   rec(L, mid, LO, best.second+1);
   rec(mid+1, R, best.second, HI);
 void solve(ll L, ll R) { rec(L, R, INT_MIN, INT_MAX); }
```

10.4 Debugging tricks

- signal (SIGSEGV, [] (11) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

Optimization tricks 10.5

builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit backs

- x & -x is the least bit in x.
- for (11 x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r is the$ next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if (i & 1 << b) $D[i] += D[i^(1 << b)];$ computes all sums of subsets.

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a \pmod{b} in the range [0, 2b).

751a02, 8 lines

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a \% b + (0 or b)
    return a - (ull) ((__uint128_t(m) * a) >> 64) * b;
};
```

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt</pre>

Time: About 5x as fast as cin/scanf.

d42732, 17 lines

```
inline char gc() { // like getchar()
  static char buf[1 << 16];</pre>
  static size_t bc, be;
  if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
  return buf[bc++]; // returns 0 on EOF
11 readInt() {
  11 a, c;
  while ((a = gc()) < 40);
  if (a == '-') return -readInt();
  while ((c = gc()) >= 48) a = a * 10 + c - 480;
  return a - 48;
```

Techniques (A)

techniques.txt

159 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contiquous subvector sum Invariants Huffman encoding Graph theory Dynamic graphs (extra book-keeping) Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algorithm MST: Prim's algorithm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Lovasz toggle Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Graphical sequences Floyd-Warshall Euler cycles Flow networks * Augmenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cut vertices, cut-edges and biconnected components Edge coloring * Trees Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programming Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over intervals Dynprog over subsets Dynprog over probabilities Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) Bitonic cycle

Log partitioning (loop over most restricted)

Combinatorics

Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Pick's theorem Number theory Integer parts Divisibility Euclidean algorithm Modular arithmetic * Modular multiplication * Modular inverses * Modular exponentiation by squaring Chinese remainder theorem Fermat's little theorem Euler's theorem Phi function Frobenius number Ouadratic reciprocity Pollard-Rho Miller-Rabin Hensel lifting Vieta root jumping Game theory Combinatorial games Game trees Mini-max Nim Games on graphs Games on graphs with loops Grundy numbers Bipartite games without repetition General games without repetition Alpha-beta pruning Probability theory Optimization Binary search Ternary search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression Ouadtrees KD-trees All segment-segment intersection Sweeping Discretization (convert to events and sweep) Angle sweeping Line sweeping Discrete second derivatives Strings Longest common substring Palindrome subsequences

Knuth-Morris-Pratt Tries Rolling polynomial hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Letter position lists Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex_hull_trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree

21