Homework #4

Confidence Interval (CI) of Mean ปริมาณแอลกอฮอล์ของไวน์แดง

ผู้จัดทำเลือก **1 คอลัมน์** มีทั้งหมด **1599 แถว**:

1. Alcohol (%/volume)

	CI	Lower	Mean	Upper	Margin	Z - Score	Standard	Standard
	Lv.	Boundary		Boundary	Error		Error	Deviation
1.Alcohol	90%	10.3791	10.4230	10.4668	0.0439	1.6458	0.0267	1.0657
(%/volume)								
2.Alcohol	95%	10.3707	10.4230	10.4753	0.0523	1.9614	0.0267	1.0657
(%/volume)								
3.Alcohol	99%	10.3543	10.4230	10.4917	0.0687	2.5789	0.0267	1.0657
(%/volume)								

อ้างอิงจากการคำนวณในโปรแกรม WineGraph3.py

กราฟ Confidence Interval (CI) of Mean ปริมาณแอลกอฮอล์ของไวน์แดง

บทวิเคราะห์ข้อมูลจากกราฟทั้งหมด

Confidence Interval (CI) of Mean เป็นช่วงค่าเฉลี่ยที่บอกระดับความมั่นใจของข้อมูล โดย สามารถอิงจากกลุ่มตัวอย่าง (sample) และสามารถอิงไปถึงกลุ่มข้อมูลจริง (population) ทั้งหมดได้

สูตรการคำนวณหา Confidence Interval (CI) of Mean

โดยจากกราฟ มีกลุ่มตัวอย่างปริมาณแอลกอฮอล์อยู่ทั้งหมด 1599 ข้อมูล เราจะสามารถสรุปได้ดังนี้

- 1. ช่วงระดับความเชื่อมั่น 90% จะมีปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3791 10.4668 %/volume
- 2. ช่วงระดับความเชื่อมั่น 95% จะมีปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3707 10.4753 %/volume
- 3. ช่วงระดับความเชื่อมั่น 99% จะมีปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3543 10.4917 %/volume

เมื่อดูจากภาพด้านบน และจากข้อมูลที่ได้ จะเห็นได้ว่า ทั้ง 3 ช่วง เป็นช่วงที่แคบมาก เพราะ เนื่องจากมีปริมาณข้อมูลอยู่มากถึง 1599 ข้อมูล ทำให้เรามั่นใจได้ว่า ช่วงค่าเฉลี่ยที่ได้จะไม่ห่างกันมาก เนื่องจากข้อมูลชุดนี้ มีข้อมูลที่มีความคล้ายคลึงกัน และไปในทิศทางเดียวกัน ยิ่งมีข้อมูลมาก ทำให้ช่วงค่าเฉลี่ย ที่ได้ ยิ่งแคบและเล็กลง เนื่องจาก Standard Error มีค่าน้อยลง ทำให้ Margin Error ลดลงไปด้วย

" เราจึงสามารถสรุปได้ว่า ช่วงทั้ง 3 ช่วงนี้ สามารถอิงไปถึงกลุ่มข้อมูลจริง (Population) ได้ว่า "

- ที่ระดับความเชื่อมั่น 90% มีช่วงปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3791 10.4668 %/volume
 จะสามารถคลอบคลุม<u>ปริมาณแอลกอฮอล์เฉลี่ยจริง</u>ได้ ที่ระดับความเชื่อมั่นนี้
- 2. **ที่ระดับความเชื่อมั่น 95%** มีช่วงปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3707 10.4753 %/volume จะสามารถคลอบคลุม<u>ปริมาณแอลกอฮอล์เฉลี่ยจริง</u>ได้ ที่ระดับความเชื่อมั่นนี้
- ที่ระดับความเชื่อมั่น 99% มีช่วงปริมาณแอลกอฮอล์เฉลี่ยอยู่ที่ 10.3543 10.4917 %/volume
 จะสามารถคลอบคลุมปริมาณแอลกอฮอล์เฉลี่ยจริงได้ ที่ระดับความเชื่อมั่นนี้

สรุปได้ว่า หากเราทำการผลิตไวน์ขึ้นมาโดยโรงงานผลิตไวน์นี้ สามารถมีความมั่นใจได้ว่า หากมี การผลิตเพิ่มเติม และมีการสุ่มเป็นกลุ่มตัวอย่างอีกครั้ง ค่าเฉลี่ยปริมาณแอลกอฮอล์ในไวน์แดงจะอยู่ ในช่วงนี้ ซึ่งจะขึ้นกับระดับความเชื่อมั่นที่เรากำหนด โดยค่าเฉลี่ยปริมาณแอลกอฮอล์ในไวน์แดงจะอยู่ ในช่วงราว ๆ 10.35 – 10.49 %/volume อย่างแน่นอน

รายละเอียด Source Code ของโปรแกรม WineGraph3.py

```
import numpy as np
import matplotlib.pyplot as plt
import pandas
       import scipy.stats
     plt.style.use('bmh')
columns = pandas.read_csv('testgraphredwine.csv')
 14 x = columns['alcohol'] # x (independent variable) = alcohol
 17  dataArray = 1.0 * np.array(x)
18  print('dataArray :', dataArray)
19  number = len(dataArray)
 20 mean = np.mean(dataArray)
21 standardError = scipy.stats.sem(dataArray)
m *candardError = standard deviation / samples 1.0656771926520383/ 39.98749804626440991456385162254 # from HW 1
23 print('standardError(hw1):', 1.0656771926520383 / 39.98749804626440991456385162254 ) # from HW 1
24 print('standardError(hw4):', standardError, '\n')
25
wineGraph3.py X 🕴 testcode.py
wineGraph3.pv > ...
            con = format(confidence, '.2f')
           print(f'*** confidence of {con} % ***')
           z_score = scipy.stats.t.ppf( (1 + confidence) / 2.0, number-1 )
          print('z-score :', z_score)
            marginError = standardError * z_score
             print('margin error :', marginError,'\n')
            print('***SUMMARY***')
             print('mean :', mean)
             print('lower-upper boundary:', mean - marginError, mean + marginError)
            return mean, mean - marginError, mean + marginError
      mean1, lowerB1, upperB1 = confidence_interval(0.90)
mean2, lowerB2, upperB2 = confidence_interval(0.95)
mean3, lowerB3, upperB3 = confidence_interval(0.99)
       al_count, al_bins_count = np.histogram(x, bins=18) # y (quantity) and x (value)
 56 al_pdf = al_count / sum(al_count)
```

```
wineGraph3.py × 💮 e testcode.py
wineGraph3.py > ...
      figure, al_func = plt.subplots(3, 1, figsize=(8, 10))
      plt.tight_layout(pad=5, h_pad=5.0)
 63 y = np.linspace(0,1)
 65 al_func[0].set_title('Confidence Interval (CI) Lv. 90% of Alcohol in Red Wine (PDF Graph)')
     al_func[0].set_xlabel("Alcohol (%/volume)")
      al_func[0].set_ylabel("Probability")
 68 al_func[θ].plot(al_bins_count[1:], al_pdf, color="green", label="PDF")
 69 x1 = np.linspace(lowerB1,lowerB1)
70 x2 = np.linspace(upperB1,upperB1)
     al_func[0].plot(x1,y, label="Lower Boudary = {:.4f}".format(lowerB1)) al_func[0].plot(x2,y, label="Upper Boudary = {:.4f}".format(upperB1))
       al_func[0].legend()
      al_func[0].axis(ymax=1)
     al_func[1].set_title('Confidence Interval (CI) Lv. 95% of Alcohol in Red Wine (PDF Graph)')
al_func[1].set_xlabel("Alcohol (%/volume)")
 78 al_func[1].set_ylabel("Probability")
     al_func[1].plot(al_bins_count[1:], al_pdf, color="green", label="PDF")
x1 = np.linspace(lowerB2,lowerB2)
 81 x2 = np.linspace(upperB2,upperB2)
 82 al_func[1].plot(x1,y, label="Lower Boudary = {:.4f}".format(lowerB2))
83 al_func[1].plot(x2,y, label="Upper Boudary = {:.4f}".format(upperB2))
      al_func[1].legend()
      al_func[1].axis(ymax=1)
      al_func[2].set_title('Confidence Interval (CI) Lv. 99% of Alcohol in Red Wine (PDF Graph)')
    al_func[2].set_xlabel("Alcohol (%/volume)")
    al_func[2].set_ylabel("Probability")
     al_func[2].plot(al_bins_count[1:], al_pdf, color="green", label="PDF" )
      x1 = np.linspace(lowerB3,lowerB3)
     x2 = np.linspace(upperB3,upperB3)
93 al_func[2].plot(x1,y, <a href="lower Boudary = {:.4f}".format(lowerB3),)</a>
94 al_func[2].plot(x2,y, <a href="lowerBaudary = {:.4f}".format(upperB3))</a>
     al_func[2].legend()
     al_func[2].axis(ymax=1)
      plt.show()
```

OUTPUT ของโปรแกรม WineGraph3.py

```
[Running] python -u "c:\Users\ASUS\Desktop\Prob-stat\wineGraph3.py"
dataArray : [ 8.4 8.4 8.5 ... 14. 14. 14.9]
standardError(hw1) : 0.026650259324028716
standardError(hw4) : 0.026650259324028723
*** confidence of 0.90 % ***
z-score : 1.645807731000542
margin error : 0.04386120282865575
***SUMMARY***
mean : 10.422983114446529
lower-upper boundary: 10.379121911617874 10.466844317275184
******
*** confidence of 0.95 % ***
z-score : 1.9614496156420809
margin error: 0.05227314090787792
***SUMMARY***
mean : 10.422983114446529
lower-upper\ boundary{:}\ 10.37070997353865\ 10.475256255354408
******
*** confidence of 0.99 % ***
z-score : 2.5789094543589206
margin error : 0.06872860573185464
***SUMMARY***
mean : 10.422983114446529
lower-upper boundary: 10.354254508714675 10.491711720178383
******
```

แหล่งที่มาของชุดข้อมูล (Reference/URL) :

- ที่มาของชุดข้อมูล Winequality-red.csv

https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

- ที่มาคำอธิบายแต่ละส่วนประกอบของไวน์

https://archive.ics.uci.edu/ml/datasets/wine+quality

 $\underline{https://rstudio-pubs-static.s3.amazonaws.com/57835_c4ace81da9dc45438ad0c286bcbb4224.html}\\$

https://waterlibrary.com/th-รู้ใหมว่า-ระดับปริมาณแ/#:~:text=ปัจจุบันมีแอลกอฮอล์อยู่ใน,สูงขึ้นด้วยเช่นกัน

- วิธีการทำไวน์

https://www.youtube.com/watch?v=7gquYRxLMFI&ab_channel=Insider

- ประเภทของไวน์

https://www.unlockmen.com/terrazas-unlock-wine-101-1/

https://thewinelist.shop/blog/news/wine-101

- รายละเอียดอื่นๆ เกี่ยวกับคุณภาพและวิธีรับรสที่ดีของไวน์

https://www.blockdit.com/posts/5e5f68d77b00780ed6462939

https://www.dummies.com/food-drink/drinks/wine/the-special-technique-for-tasting-wine/

https://www.guickanddirtytips.com/house-home/entertaining/wine/4-wavs-to-know-if-vour-wine-is-good