武汉大学计算机学院

《操作系统》考试试卷

	(注	: 所有解答必	须写在答题:	纸上,写在	E试卷上无效)	
4.	单项选择题(每小题 1 分,	共20分)			
) 1	不是基本	的操作系统。			
	A. 批处理操	作系统	3. 分时操作	系统		
	C. 实时操作	系统	D. 网络操作:	系统		
() 2. 下列的边	性程状态变化中	¹ ,	变化是	是不可能发生的。	
	A. 运行→就	绪	B. 运行→	等待		
	C. 等待→运	行	D. 等待→原	就绪		
			, , , , , , , , , , , , , , , , , , ,			
		并发执行是指若	干个进程_		o	
	A. 同一时刻				时间段内向前推进	
	C. 推进的时	间不可重叠		D. 并行:	执行	
	.)		rn z ev		/ / X A NUTTINUS NAT	n rn
			段,而母次:	最多允许 II	ı(m <n)个进程进入该科< td=""><td>呈序段,</td></n)个进程进入该科<>	呈序段,
则信	号量的取值范	· · · · -				
	C. [m-n, m]		D. [m-n, n]			
) 5 下面光日	F FCFS 处理机 ⁻	国	出法由	是错误的。	
		有利,不利于短		田处丁		
		CPU 时间长的作				
		需要 I/0 时间长				
		『ダゴ/O 町間ひ 系统中 CPU 和 I		田家低		
		Kali Loro Ala I	/ ○ 人 田 田 / 1、	1) 13 <u>—</u> 180		
() 6. 当设备辖	♠入輸出操作Ⅱ	常结束时,	操作系统》	将请求该设备的进程的	状态设
置成		A		\$1.11 ×4.1 ×2.1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	A. 等待状态	B. 运行状	态 C. j	圭起状态	D. 就绪状态	
) 7. 对资源采	用按序分配策	略能达到		的目的。	
					D. 解除死锁	
() 8. 设系统中	仅有一类数量	为M的独占	型资源,系	统中N个进程竞争该差	类资源,
其中	各进程对该类	资源的最大需	求量为 W。当	M、N、W 分	·别取下列约	且值时,
可能	会发生死锁。					
	A. $M=2$, $N=2$,	W=1	B. M=3,	N=2, $W=2$	2	
	C. M=3, N=2,	W=3	D. M=5,	N=3, $W=2$	2	

(() 9. 支持紧凑处理的地址转换机制是 。	
	A. 页式地址转换 B. 段式地址转换	
	C. 静态重定位 D. 动态重定位	
	() 10. 采用 SPOOLing 技术的目的是。(通过共享设备虚	拟独占设备,提
同	高设备利用率) A. 提高独占设备的利用率 B. 提高共享设备利用率	
	C. 减轻用户编程负担 D. 减轻操作系统的负担	
	5. 城柱用广编柱贝担 D. 城社採旧东纽的贝坦	
假	()11. 某虚拟存储器的用户编程空间共32个页面,每页为1KB,假定某时刻用户进程的0,1,2,3页面在内存物理块5,10,4,7中	
地	地址 0A5C(H) 所对应的物理地址是。	
	A. 2A5C B. 1A5C	
	C. 165C D. 125C	
	()12.产生系统死锁的原因可能是由于	and more take a li
	A. 进程释放资源 B. 多个进程竞争资源出现了	循坏等待
	C. 一个进程进入死循环 D. 多个进程竞争共享型设备	
(() 13. 分段存储系统中,每次从主存中取指令或取操作数,	最多要访问主
存	存。	7000000
, ,	A. 0次 B. 1次 C. 2次 D. 3次	
	() 14. 由于实现页面置换算法的成本高,通常使用一种	近似的页面置
狭	换算法	
	A. Optimal LRU B. LRU Clock C. FCFS Clock D. Clock 改进的 Clock	
	C. FCFS Clock D. Clock 以近的 Clock	
(() 15. 操作系统采用缓冲技术,能够减少对 CPU 的次数,	从而提高资源
的	的利用率。	
	A. 中断 B. 访问 C. 控制 D. 依赖	
	15'12'	_
(() 16. 下面有关 I/O 设备数据传输控制方式的描述中,正确的是	
	A. DMA 控制方式下输入的数据通过中断处理才被写入内存指定位置	
	B. 程序控制方式下设备传输数据时,CPU 是空闲的	
	C. 中断控制方式一次可以传送一个数据块	
	D. DMA 控制方式和通道控制方式都是以内存为中心的	
(()17. 文件的存取方法依赖于 。	
	A. 文件的物理结构 B. 存放文件的存储设备的特	件
	C. A 和 B D. 文件的逻辑结构	,
	>=-	
(() 18. 通过可以共享全球任何地方的机器上的任何	可文件。
	A. 符号链接 B. 索引节点 C. 基本文件目录表 D. 文件目录	

()19. 当用户程序执行访管指令时,中断装置将使中央处理器工作。A. 维持在目态 B. 从目态转换到管态 C. 维持在管态 D. 从管态转换到目态
() 20. UNIX 系统中,文件存储空间的管理采用。 A. 位图法 B. 空闲块表法 C. 成组链接法 D. 块链接法
	. 填空题(每小题 2 分,共 20 分) 在系统中引入多道程序设计技术是为了提高和系统吞吐量。
2.	进程实体由程序代码段、数据段和组成。
	式最短进程优先调度算法将正在运行进程的 CPU,这种调度算法也称 最短剩余时间优先(Shortest Remaining Time,SRT)调度算法。
先给	在多级反馈队列调度算法中,建立多级就绪队列,并为每个队列赋予不同的优级,队列的优先级逐级降低,从优先级越高的队列中调度出来执行的进程,其执的时间片。
5.	最具代表性的算法是 Di jkstra 的银行家算法。
	设有某内存块,其开始地址为 d,长度为 2 ^k ,且 d % 2 ^{k+1} =0,则其伙伴地址。
7.	设备的数据传输过程采用 DMA 控制方式时,首先需要对 DMA 进行初始化,应预置 寄存器和寄存器的初值。
	设备,又称设备无关性,是指用户编制程序时使用的设备与实际使用 物理设备无关。
9.	输入井和输出井是在中开辟出来的两个存储区域。
	. 假定磁盘块大小为 2KB, 若硬盘容量为 2GB, 每个 FAT 表项占空间, ,个 FAT 需占用空间为。
1. 2. 3. 4.	. 判断正误并说明理由: (每小题 2 分,判断 1 分,说明 1 分,共 10 分) ()系统中所有进程均处于阻塞状态,则系统处于瘫痪状态。 ()缺页中断和其它中断一样,都是在一条指令执行完后被检测到并被处理。 ()引入目录的目的是为了实现按名存取。 ()可变式分区仍然没有解决碎片问题。 ()只要系统资源分配图中出现了环,就意味系统产生了死锁

四. 设有 7 个简单资源: $A \times B \times C \times D \times E \times F \times G$ 。其申请命令分别为 $a \times b \times c \times d \times e \times f \times g$; 释放命令分别为 $a \times b \times c \times d \times d \times f \times g$; 又设系统中有 P1、P2、P3 三个进程,其活动分别为:

P1 活动:

a b a- b-

e f g e- f- g-

P2 活动:

b c b- c-

d a d- a-

P3 活动:

c d c- d-

e g f e- f- g-

试分析当 P1、P2、P3 并发执行时,是否有发生死锁的可能性,并说明原因。(12 分)

五. 假定磁盘有 200 个柱面,编号 0~199,当前存取臂的位置在 142 号柱面上,并向磁道号增加的方向移动,如果请求队列的先后顺序是:86,147,91,177,94,150,102,175,130;试向:为完成上述请求,下列算法存取臂移动的总量是多少?并指出存取臂移动的顺序。(12 分)

- 1) 最短查找时间优先算法 SSTF;
- 2) 扫描算法 SCAN。

六. 假定执行表中所列作业,且所有作业按作业号的顺序,依次到达,每一个作业到达的时间如表所示。试分别用时间片轮转算法(时间片为1)、非抢占优先权调度算法(其中:优先数越小,优先权越高)算出各作业的周转时间。(10分)

作业号	到达时间	执行时间	优先权
1	0	8	3
2	1	1	1
3	2	2	3
4	3	1	4
5	4	5	2

七. 设玩具车间生产小组在一个工作台边工作,工作台上有 N 个位置(N≥3)用于存放车架或车轮,且每个位置只能放一件车架或车轮;又设生产小组有 3 个工人,其活动分别为:

工人1活动:

do

{加工1个车架;车架放于工作台上;}

while (1)

工人2活动:

do

{加工1个车轮;车轮放于工作台上;}

while (1)

工人3活动:

dο

{从工作台上取1车架;从工作台上取2车轮;组装为一辆车;}

while (1)

试用信号灯与 P、V 操作实现三个工人的合作,要求解中不含死锁。(共 16 分)

答案:

2007 操作系统试卷 A 参考答案

- 一、选择题: (每小题 1 分, 共 20 分)
- 1. D 2. C 3. B 4. C 5. C 6. D 7. A 8. C 9. D 10. A
- 11. D 12. B 13. C 14. B 15. A 16. D 17. C 18. A 19. B 20. C
- 二、填空题(每小题2分,共20分)
- 1. CPU 或者系统资源
- 2. PCB 或进程控制块
- 3. 抢占(或剥夺) 剥夺(或抢占)
- 4. 越短
- 5. 死锁避免
- 6. $d+2^{K}$
- 7. MAR (内存地址寄存器) 、DC (计数寄存器)
- 8. 设备独立性
- 9. 磁盘
- 10. 2.5B 2.5MB
- 三、(每小题2分,判断1分,说明1分)
- 1. 错。不一定,只要有某个阻塞进程陷入等待的原因不是因为资源请求得不到满足,如等待数据传输过程结束,进程可转为就绪就能立即投入运行,那么系统就不是瘫痪状态。
- 2. 错。缺页中断是指令被解释执行时在地址转换的过程中产生并处理的。
- 3. 对。在目录中包含文件名及文件在外存的存放地址,因此操作系统可以通过文件名找到文件。
- 4. 对。随着进程不断进入和退出内存,内存可能被划分成越来越多的小块,当这些块不能用时, 就成为碎片。
- 5. 错。需要进一步判定环中的各类资源数量均为1。

四、(12分)

3进程不会陷入死锁。(6分)

因为 P1、P2、P3 三进程都是分两段来申请资源的,在前一阶段的资源释放后才开始申请第二阶段的资源。

从 3 进程第一阶段的资源请求来看,若 3 进程各占有一个资源,在申请第二个资源时,仅 P3 的请求获得满足,不久,P3 又释放所占有的资源,P2 可以推进,之后,P1 也可推进,3 进程 进入第二阶段的资源请求,第二阶段,P2 所请求资源与其它两进程不同,P1 与 P3 所请求相同 资源 efg,但两进程都先请求同一个资源 e,必有一个进程阻塞,另一个进程能继续请求剩余资源,都能得到满足,所以能顺利结束,释放资源,被阻塞进程被唤醒,也可以继续推进直至结束。不会出现死锁。(每段不出现死锁的原因各 3 分,共 6 分)

3 进程并发执行的其它情况,如: P1、P2 各占一个资源,P3 还未提出资源请求,接下来,P2 请求资源 C 可以得到满足,随之又释放所占有资源,P1 被唤醒,之后 P1、P2 进入第二阶段的资源请求,也均不会出现死锁。

五、(12分)

- 1) SSTF: 读写臂移动的顺序为 147, 150, 130, 102, 94, 91, 86, 175, 177 (2分) 跨磁道数: 5+3+20+28+8+3+5+89+2=163 (4分)
- 2) SCAN 由题意,磁头正向磁道号增加的方向移动,读写臂移动的顺序为:

147, 150, 175, 177, 130, 102, 94, 91, 86 (2分)

跨磁道数: 5+3+25+2+47+28+8+3+5=126(4分)

六、时间片轮转(5分,每个周转时间1分)

作业号	执行时间	优先权	完成时间	周转时间
1	8	3	17	17
2	1	1	2	1
3	2	3	8	6
4	1	4	5	2
5	5	2	16	12

非抢占优先级调度(5分,每个周转时间1分)

作业号	执行时间	优先权	完成时间	周转时间
1	8	3	8	8
2	1	1	9	8
3	2	3	16	14
4	1	4	17	14
5	5	2	14	10

七、为防止死锁的发生,工作台中车架的数量不可超过 N-2, 车轮的数量不可超过 N-1, 这些限制可以用两个信号灯来表达。

semaphore s1=N-2; semaphore s2=N-1; $(2 \frac{1}{2})$

其余信号量: frame=0 为车架数量; wheel=0 为车轮数量; empty=N 为工作台上的空位($\frac{2}{9}$) 不含死锁的解法如下:

工人 1活动: (3分)

do {

加工1个车架;

P(s1); P(empty);

车架放入工作台中; V(frame);

} while (1)

工人 2活动: (3分)

do {

加工1个车轮;

P(s2);

P(empty);

车轮放入工作台中; V(wheel);

} while (1)

工人 3 活动: (6分)

do {

P(frame);

从工作台中取1车架;

V(empty); V(s1);

P(wheel); P(wheel);

从工作台中取2车轮;

V(empty); V(empty);

V(s2); V(s2);

组装为1台车;

} while (1)