ALGEBRAIC GEOMETRY: EXAM (USTC 2020-2021)

Let k be an algebraically closed field.

- 1. (10 points)
- (1) State the definition of dimension of varieties.
- (2) Let $f: X \to Y$ be a surjective morphism of varieties. Prove that dim $X \ge$ $\dim Y$.
 - 2. (15 points)
- (1) State the definition of affine variety.
- (2) Is $\mathbb{A}^2_{(x,y)} \setminus \{x=0\}$ affine? Compute $\Gamma(\mathbb{A}^2_{(x,y)} \setminus \{x=0\})$. (3) Compute $\Gamma(\mathbb{A}^2_{(x,y)} \setminus \{(0,0)\})$. Is $\mathbb{A}^2_{(x,y)} \setminus \{(0,0)\}$ affine?
 - 3. (15 points)
- (1) Describe the construction of the blowup Z of \mathbb{A}^2 at (0,0), and decompose Z into two open subsets with both isomorphic to \mathbb{A}^2 .
- (2) Let $C = V(y^n x^{n+1})$ and denote by \tilde{C} the strict transform under the blow up $\pi: Z \to \mathbb{A}^2$ at (0,0). Show that \tilde{C} is nonsingular and is isomorphic to \mathbb{A}^1 .
 - 4. (15 points)
- (1) Embed $\mathbb{P}^1 \times \mathbb{P}^2$ into a projective space as a closed subvariety and present the
- (2) Construct a birational map from \mathbb{P}^2 to $\mathbb{P}^1 \times \mathbb{P}^1$.
- (3) Prove there does not exist a birational morphism from \mathbb{P}^2 to $\mathbb{P}^1 \times \mathbb{P}^1$.
- Let $X \subset \mathbb{A}^3$ be a curve defined by V(f(x,y,z),g(x,y,z)) where $f,g \in k[x,y,z]$. (1) Prove that if char $k \neq 2$ and $f = x^2 + y^2 + z^2, g = x + y + z^3$, then X is isomorphic to a plane curve.
- (2) State the definition of simple point of a curve.
- (3) A closed point $P \in X$ is simple if and only if

$$\operatorname{rank} \begin{pmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \end{pmatrix} |_P = 2.$$

6. (30 points)

Assume char k=0. Let X be defined by $X^5+Y^5+Z^5=0$ in \mathbb{P}^2 . Let $D_0 = div(X + Y)$ and denote by K the canonical divisor.

- (1) Show that X is nonsingular.
- (2) Compute g(X), deg(K).
- (3) State the Riemann-Roch Theorem and prove that l(K) = g(X).
- (4) Prove that $D_0 = 5P_0$ where $P_0 = [1, -1, 0]$, and for $n \ge 3$, compute $l(nD_0)$.
- (5) Compute $l(D_0)$, find a basis of $L(D_0)$.

- (6) Compute $l(D_0-P_0)$ and $l(D_0-2P_0)$. (7) Find the divisor $div(\mathrm{d}x)$ where $x=\frac{X}{Z}$, and find a basis of the space of all the differential forms such that $div(\omega)\geq 0$.