MATEMÁTICA DISCRETA

Ano Letivo 2023/24 (Versão: 13 de Fevereiro de 2024)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO I LÓGICA DE PRIMEIRA ORDEM E

DEMONSTRAÇÃO AUTOMÁTICA

Algumas questões

Na matemática (e não só!!), estamos tipicamente interessados em certas afirmações e nas consequências destas afirmações.

Isto conduz-nos às seguintes questões:

- O que significa consequência? Como justificar?
- Consegue-se provar qualquer consequência, a partir de um conjunto de afirmações?
- O que é, em rigor, uma prova?

Para dar esta resposta teremos que especificar:

- o que é, em rigor, uma afirmação/asserção.
- o que é, em rigor, uma linguagem formal.

Aprender português (ou alemão ou ...) significa ...

- 1. Aprender o alfabeto. Ou seja, que símbolos podemos utilizar.
 - «A, B, C, D, E,..., !,?,...»
 - $\langle\!\langle \wedge, \rightarrow, \neg, \forall, \cos, x, y, \ldots \rangle\!\rangle$
- 2. Aprender ortografia e gramática. Ou seja, que palavras (isto é: sequências de símbolos) podemos escrever. E em que ordem.
 - «Futebol» conta mas «hhcdgwldb» não.
 - · «Eu sou do Porto» está ótimo mas «Porto sou Eu do» não.
 - $\forall x \exists y \ x < y$ » está bem mas $\forall x \forall x \exists y \ x < y$ » não.
- 3. Aprender o significado das palavras (isto é, a sua interpretação).

Por exemplo, a palavra «esquilo» significa

A fórmula

$$(p \land q) \rightarrow q$$

é uma tautologia, isto é «verdadeira em todas as interpretações»?

Interpretação??

Vamos interpretar as variáveis por proposições.

- Se o Porto é campeão e está à chover, então está à chover.
- Se 3 + 3 = 0 e o céu é azul, então o céu é azul.
- Se o céu é azul e 3 + 3 = 0, então 3 + 3 = 0.
- ...

Mas não temos todo o dia!! Felizmente, basta considerar os casos «p representa algo verdadeiro», «p representa algo falso», «q representa algo verdadeiro» e «q representa algo falso».

A fórmula

$$(p \land q) \rightarrow q$$

é uma tautologia, isto é «verdadeira em todas as interpretações»?

Demonstração.

Verificamos de facto todas as interpretações:

р	q	$p \wedge q$	$(p \wedge q) \rightarrow q$	
0	0	0	1	
0	1	0	1	
1	0	0	1	
1	1	1	1	

A fórmula

$$((p \lor q) \land (q \to r)) \to (p \lor r)$$

é uma tautologia?

Para justificar esta afirmação, em lugar de criar uma tabela de verdade, é melhor(?) argumentar:

Suponha, por causa de argumento, $((p \lor q) \land (q \to r))$, portanto $p \lor q$ e $q \to r$. Sabendo $p \lor q$, podemos distinguir em dois casos.

Se p, então $p \vee r$.

Se q, então r porque $q \rightarrow r$, logo $p \lor r$.

Portanto, obtemos $p \lor r$ em ambos os casos.

Assim, concluímos $((p \lor q) \land (q \rightarrow r)) \rightarrow (p \lor r)$.

Proposições

Na lógica proposicional estudam-se afirmações que são verdadeiras ou falsas mas não ambos os casos — as chamadas proposições.

Exemplos

- «O Porto é campeão» é uma proposição.
- «3 < (2+7)» é uma proposição.
- «x = 6» não é uma proposição.
- «O Porto é campeão ou não» é uma proposição.
- «Se está chover, então está chover» é uma proposição.

Nota

No que se segue, denotamos proposições por p,q,r,\ldots ou por $\varphi,\psi,\theta\ldots$ e não discutimos mais a questão o que é uma proposição.

Nota

Observamos que certos conetivos ocorrem frequentemente:

- «... e ...»,
- «... ou ...»,
- «não ...»,
- «Se ... então ...».

Assim, uma proposição pode ser

- atómica (o valor de verdade é dado pelo contexto ou escolhido livremente) ou
- composta por proposições e pelos conectivos acima, cujo valor de verdade depende do valor de verdade das componentes.

Sobre o «ou»

- Na matemática e na lógica formal, a disjunção «... ou ...» é apenas falsa se ambas as componentes são falsas; ou seja, é verdadeira quando pelo menos uma das componentes é verdadeira.
- No entanto, na linguagem comum o significado de «... ou ...» não é tão determinado: pode ter o significado inclusivo acima, também pode ter o significado exclusivo onde «... ou ...» é verdadeira quando exatamente uma das componentes é verdadeira.
- Para evitar a ambiguidade, na linguagem comum acrescentam-se as vezes
 - «... mas não ambos», «... ou ambos», «... e/ou ...», ...
- Neste curso, como é habitual na matemática, estabelecemos que «ou» tem o significado inclusivo.

Eliminar conetivos

Num discurso comum ocorrem também frequentemente

```
«... mas ...», «... só se ...», «... exceto se ...».
```

- «... mas ...» pode-se substituir por «... e ...».
- «... só se ...» pode-se substituir por «... implica ...».
- «... exceto se ...» pode-se substituir por «... ou ...».

Portanto, «exceto se» tem a mesma ambiguidade como o «ou», e estabelecemos que neste semestre tem o significado inclusivo.

- 1. Revisão de lógica proposicional
- 2. A sintaxe (lógica de 1ª ordem)
- 3. A semântica (lógica de 1ª ordem)
- 4. Formas normais de fórmulas
- 5. Unificação
- 6. O método de resolução

1. REVISÃO DE LÓGICA PROPOSICIONAL

Fórmulas (bem formadas – «fbf»)

Consideremos

- uma coleção de variáveis (que representam as proposições),
- os símbolos ⊥ (contradição) e ⊤ (tautologia) e os conetivos

```
      Negação:
      ¬ (não ...),

      Conjunção:
      ∧ (... e ...),

      Disjunção:
      ∨ (... ou ...),

      Implicação:
      → (se ..., então ...),

      Equivalência:
      ↔ (... se e somente se ...).
```

- Cada variável é uma fórmula, e \perp and \top são fórmulas.
- Se φ e ψ são fórmulas, então as expressões

$$(\neg \psi), \quad (\varphi \land \psi), \quad (\varphi \lor \psi), \quad (\varphi \to \psi), \quad (\varphi \leftrightarrow \psi)$$

são fórmulas.

Nota

Para tornar a notação menos pesada, suprimem-se os parêntesis mais externos. Por exemplo, escreve-se

$$\varphi \vee (\psi \to \gamma) \quad \text{em lugar de} \quad (\varphi \vee (\psi \to \gamma)).$$

Nota

Entende-se que o conetivo «¬» tem uma «ligação mais forte» (ou seja, aplica-se primeiro) do que os outros conetivos. Por exemplo, escreve-se

$$\neg \varphi \lor \psi$$
 em lugar de $(\neg \varphi) \lor \psi$.

Exemplos (de fórmulas)

Sejam p, q, r variáveis:

- ⊤, ⊥, p, q, r, ...
 - $(p \lor q)$ (escrevemos apenas $p \lor q$), $p \to \bot$, $\neg \top$, ...
 - $(p \land q) \rightarrow q$, $(p \rightarrow q) \land (p \lor q)$, ...
 - $(p \land q) \rightarrow ((p \lor q) \rightarrow q)$, ...

Exemplos (não são fórmulas)

Sejam p, q, r variáveis:

$$(\top \bot)$$
, $(p q r)$, $(\top \rightarrow)$, $(p \rightarrow \land)$, ...

Interpretar formulas

Para interpretar as fórmulas, começamos por associar a cada variável um valor de verdade (ou seja, um valor em {0,1}), depois estendemos recursivamente esta interpretação a todas as fórmulas:

- ⊥ interpreta-se por o (falso)
- T por 1 (verdadeiro)
- os conectivos interpretam-se usando as seguintes «tabelas de verdade»:

φ	$\neg \varphi$
0	1
1	0

φ	ψ	$\varphi \lor \psi$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

φ	ψ	$\varphi \wedge \psi$
0	0	0
0	1	0
1	0	0
1	1	1

Interpretar formulas

Para interpretar as fórmulas, começamos por associar a cada variável um valor de verdade (ou seja, um valor em {0,1}), depois estendemos recursivamente esta interpretação a todas as fórmulas:

- ⊥ interpreta-se por o (falso)
- T por 1 (verdadeiro)
- os conectivos interpretam-se usando as seguintes «tabelas de verdade»:

φ	ψ	$\varphi \rightarrow \psi$		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

φ	ψ	$\varphi \leftrightarrow \psi$		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

A interpretação da fórmula $(p \lor q) \rightarrow q$

• para a interpretação das variáveis $p \mapsto o$ e $q \mapsto o$:

р	q	$p \lor q$	$(p \lor q) \rightarrow q$
0	0	0	1

• para a interpretação das variáveis $p\mapsto$ 1 e $q\mapsto$ 0:

р	q	$p \lor q$	$(p \lor q) \rightarrow q$
1	0	1	0

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca.
- Se 2 + 2 = 5, então a neve é branca.
- Se 2 + 2 = 5, então a neve é preta.
- Se 2 + 2 = 4, então a neve é preta.

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \rightarrow q$ é uma tautologia.

Demonstração.

р	q	$p \wedge q$	$(p \wedge q) \rightarrow q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \rightarrow q$ é uma tautologia.

Nota

Uma fórmula é **inconsistente** (ou uma **contradição**) quando não é consistente; isto é, se tem valor lógico o para cada a interpretação.

As fórmulas φ e ψ dizem-se **equivalentes** (em símbolos: $\varphi \equiv \psi$) quando a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \rightarrow q) \equiv (\neg p \lor q).$$

Demonstração.

p	9	$p \rightarrow q$	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

$\neg p$	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$
1	1	1
1	1	1
0	0	1
0	1	1

Verificam-se as equivalências

$$(p \wedge q) \equiv (q \wedge p) \qquad (p \vee q) \equiv (q \vee p)$$

$$((p \wedge q) \wedge r) \equiv (p \wedge (q \wedge r)) \qquad ((p \vee q) \vee r) \equiv (p \vee (q \vee r))$$

$$(p \wedge p) \equiv p \qquad (p \vee p) \equiv p$$

$$(p \wedge T) \equiv p \qquad (p \vee \bot) \equiv p$$

$$(p \wedge \bot) \equiv \bot \qquad (p \vee T) \equiv T$$

bem como as leis de distributividade

$$(p \wedge (q \vee r)) \equiv (p \wedge q) \vee (p \wedge r)$$
 $(p \vee (q \wedge r)) \equiv (p \vee q) \wedge (p \vee r),$

as leis de De Morgan

$$\neg(p \lor q) \equiv (\neg p \land \neg q) \qquad \neg(p \land q) \equiv (\neg p \lor \neg q),$$

e a lei da contraposição e da dupla negação

$$(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$$
 $\neg \neg p \equiv p$.

- Um literal é uma variável ou a negação de uma variável.
- Uma fórmula φ diz-se na forma normal conjuntiva (disjuntiva) quando

$$\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n \qquad (\varphi = \varphi_1 \vee \cdots \vee \varphi_n)$$

onde cada φ_i é da forma

$$L_1 \vee \cdots \vee L_k \qquad (L_1 \wedge \cdots \wedge L_k)$$

com literais L_i (dizemos que φ_i é uma cláusula).

Exemplos

Consideremos as variáveis p, q, r.

- $p, q, \neg r$ são literais.
- $\neg \neg q, p \rightarrow q$ não são literais.

- Um literal é uma variável ou a negação de uma variável.
- Uma fórmula φ diz-se na forma normal conjuntiva (disjuntiva) quando

$$\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n \qquad (\varphi = \varphi_1 \vee \cdots \vee \varphi_n)$$

onde cada φ_i é da forma

$$L_1 \vee \cdots \vee L_k \qquad (L_1 \wedge \cdots \wedge L_k)$$

com literais L_i (dizemos que φ_i é uma **cláusula**).

Exemplos

Consideremos as variáveis p, q, r.

- $(p \lor q) \land (p \lor r) \land (\neg r)$ é uma CNF (conjuntiva).
 - $(p \land q) \lor (p \land r) \lor (\neg r)$ é uma DNF (disjuntiva).
 - $p \wedge q \wedge r$ é uma CNF e uma DNF.
 - $(p \land (q \lor r)) \lor q$ nem é uma CNF nem uma DNF.

Teorema

Cada fórmula da lógica proposicional é equivalente a uma fórmula na forma normal conjuntiva (disjuntiva).

Como obter?

Utilizar

$$\varphi \to \psi \equiv \neg \varphi \lor \psi, \qquad \varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$$

e as leis de De Morgan

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi, \qquad \neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

e as leis de distributividade

$$(\varphi \land (\psi \lor \theta)) \equiv (\varphi \land \psi) \lor (\varphi \land \theta),$$
$$(\varphi \lor (\psi \land \theta)) \equiv (\varphi \lor \psi) \land (\varphi \lor \theta).$$

Um conjunto $\{\varphi_1, \dots, \varphi_n\}$ de fórmulas diz-se **consistente** quando existe uma interpretação que avalia todas as fórmulas de $\{\varphi_1, \dots, \varphi_n\}$ em 1.

Exemplo

O conjunto

$$\{\neg p, p \rightarrow q, q\}$$

é consistente: podemos escolher a interpretação

$$p \longmapsto 0, \quad q \longmapsto 1.$$

	2	6						
						1	7	
		3	1		6			
	6			5		8		3
		9	2	6	1	7		
5		4		8			6	
			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k \in \{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

· Portanto, de acordo com o quadro acima, as fórmulas

$$P_{1,2,2}, P_{1,3,6}, P_{2,7,1}, \ldots, P_{9,8,4}$$

devem ser válidas.

	2	6						
						1	7	
		3	1		6			
	6			5		8		3
Г		9	2	6	1	7		
5		4		8			6	
			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k\in\{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

· Cada número aparece em cada linha:

$$F_{1} = (P_{1,1,1} \vee P_{1,2,1} \vee \cdots \vee P_{1,9,1}) \wedge (P_{1,1,2} \vee P_{1,2,2} \vee \cdots) \wedge \cdots$$

$$= \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} P_{i,j,k}.$$

	2	6						
						1	7	
		3	1		6			
	6			5		8		3
		9	2	6	1	7		
5		4		8			6	
			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k\in\{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

· Cada número aparece em cada coluna:

$$F_2 = \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} P_{i,j,k}.$$

	2	6						
						1	7	
		3	1		6			
	6			5 6		8		3
Г		9	2	6	1	7		
5		4		8			6	
			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k\in\{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

• Cada número aparece em cada bloco 3×3 :

$$F_3 = \bigwedge_{k=1}^9 \bigwedge_{u=0}^2 \bigwedge_{v=0}^2 \bigvee_{j=1}^3 \bigvee_{i=1}^3 P_{3u+i,3v+j,k}.$$

	2	6						
ı						1	7	
		3	1		6			
	6			<u>5</u>		8		3
		9	2	6	1	7		
5		4		8			6	
Г			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k\in\{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

Nenhuma posição tem dois números:

$$F_{4} = \neg (P_{1,1,1} \wedge P_{1,1,2}) \wedge \neg (P_{1,1,1} \wedge P_{1,1,3}) \wedge \dots$$

$$= \bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{1 \leq k < k' \leq 9} \neg (P_{i,j,k} \wedge P_{i,j,k'}).$$

	2	6						
ı						1	7	
		3	1		6			
	6			5		8		3
		9	2	6	1	7		
5		4		8			6	
			8		4	3		
	4	8						
						9	4	

Para todos os $i,j,k\in\{1,\ldots,9\}$, a proposição atómica $P_{i,j,k}$ representa a afirmação

«a posição (i,j) contém o número k».

Resolver o jogo significa de facto verificar que o conjunto das fórmulas

$$\{P_{1,2,2}, P_{1,3,6}, P_{2,7,1}, \dots, P_{9,8,4}, F_1, F_2, F_3, F_4\}$$

é consistente. O número de variáveis é $9^3=729$, portanto, a tabela de verdade correspondente tem $2^{729}>10^{200}$ linhas ...

No entanto, podem utilizar um SAT-solver como www.minisat.se.

A fórmula ψ diz-se consequência (semântica ou lógica) das fórmulas $\varphi_1, \ldots, \varphi_n$ quando, para toda a interpretação I,

se $\varphi_1, \ldots, \varphi_n$ têm o valor 1 em *I*, então ψ tem o valor 1 em *I*.

Neste caso escrevemos: $\varphi_1, \ldots, \varphi_n \models \psi$.

Exemplo

Verificamos: $p \lor q, p \rightarrow q \models q \lor \neg p$.

р	q	$p \vee q$	$p \rightarrow q$	$\neg p$	$q \vee \neg p$
0	0	0	1	1	1
0	1	1	1	1	1
1	0	1	0	0	0
1	1	1	1	0	1

Nota

$$\ldots, \varphi_1 \land \varphi_2 \models \psi$$
 se e só se $\ldots, \varphi_1, \varphi_2 \models \psi$.

Consideremos: $\varphi \to \psi$, $\psi \to \theta \models \varphi \to \theta$

Podemos validar esta consequência verificando todas as interpretações (ou seja, criar a tabela de verdade). No entanto, como veremos, na lógica de primeira ordem não é possível verificar todas as interpretações pois em geral há uma infinidade ...

Em alternativa, podemos fazer uma prova (= argumentação), ou seja, escrevemos uma sequência de fórmulas

$$\varphi \to \psi, \ \psi \to \theta$$
, ... algo esperto^a ... $\varphi \to \theta$.

Nota

Se existe uma prova de ψ a partir de $\varphi_1, \ldots, \varphi_n$, escreve-se

$$\varphi_1,\ldots,\varphi_n\vdash\psi.$$

^aJustificado pelo anterior utilizando certas regras (as regras de inferência).

As regras de inferência (lógica proposicional)

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge \mathcal{I} \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge \mathcal{E}_{1} \qquad \frac{\varphi \wedge \psi}{\psi} \wedge \mathcal{E}_{2}$$

$$\frac{\varphi}{\varphi \vee \psi} \vee \mathcal{I}_{1} \qquad \frac{\psi}{\varphi \vee \psi} \vee \mathcal{I}_{2} \qquad \frac{\varphi \vee \psi \qquad \psi}{\theta} \qquad \frac{\psi}{\theta} \vee \mathcal{E}$$

$$\frac{\varphi}{\varphi} \qquad \frac{\psi}{\varphi \vee \psi} \rightarrow \mathcal{I} \qquad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow \mathcal{E} \qquad \frac{\psi}{\varphi} \perp \mathcal{E} \qquad \frac{\psi}{\varphi \vee \neg \varphi} \neq \mathbb{E}$$

$$\mathcal{E} - \text{Eliminação}, \quad \mathcal{I} - \text{Introdução}$$

A matéria deste slide é complementar e não faz parte da avaliação.

Verificamos: $\varphi \to \psi, \psi \to \theta \vdash \varphi \to \theta$.

Formulês:

1
$$\varphi \rightarrow \psi$$

2 $\psi \rightarrow \theta$
3 φ H
4 ψ \Rightarrow E, 1, 3
5 θ \Rightarrow E, 2, 4
6 $\varphi \rightarrow \theta$ \Rightarrow I, 3, 5

Português:

Por hipótese, $\varphi \to \psi$ e $\psi \to \theta$.

Com o objetivo de provar $\varphi \to \theta$, suponhase φ (temporariamente!!). Como $\varphi \to \psi$, conclua-se ψ ; como $\psi \to \theta$, conclua-se θ .

Portanto, $\varphi \to \theta$ (e retire-se φ).

A matéria deste slide é complementar e não faz parte da avaliação.

Teorema (As regras são corretas)

«Tudo o que se prova é válido.»

Teorema (As regras são suficientes)

«Tudo o que é válido se pode provar.»

Um pouco de história...

O Kurt Gödel apresentou o resultado correspondente para a lógica de primeira ordem numa conferência em Königsberg (Kaliningrad) em 1930 ... um dia antes de anunciar o seu famoso resultado de incompletude.

Kurt Friedrich Gödel (1906 – 1978), matemático austríaco e norte-americano.

Nota

No que se segue, apresentamos um algoritmo para verificar se a fórmula ψ é consequência das fórmulas $\varphi_1,\ldots,\varphi_n$.

Começamos por observar:

Teorema

 $\varphi_1, \dots, \varphi_n \models \psi$ se e só se $\{\varphi_1, \dots, \varphi_n, \neg \psi\}$ é inconsistente.

A questão

Como verificar se o conjunto de fórmulas $\{\theta_1, \dots, \theta_n\}$ é inconsistente?

A preparação

- · Consideremos que cada fórmula está na forma normal conjuntiva.
- Como
 - $\{\ldots \psi_1 \wedge \psi_2\}$ é consistente se e só se $\{\ldots \psi_1, \psi_2\}$ é consistente, podemos supor que $\{\theta_1, \ldots, \theta_n\}$ é um conjunto de cláusulas.
- É conveniente identificar uma cláusula com o conjunto de literais que ocorrem na cláusula (por causa da associatividade, comutatividade e idempotência da disjunção). Assim, não distinguimos entre

$$p \vee \neg q \vee p$$
, $\neg q \vee p \vee p$, $\neg q \vee p$,

e a fórmula \perp corresponde ao conjunto vazio de literais.

A questão

Como verificar se o conjunto de cláusulas $\{\theta_1, \dots, \theta_n\}$ é inconsistente?

O método

Deduzimos uma «contradição»: $\theta_1, \ldots, \theta_n \vdash \bot$.

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \perp$$

de fórmulas onde $\psi_i \in \{\theta_1, \dots, \theta_n\}$ ou ψ_i é «consequência» das fórmulas anteriores.

Para definir «consequência», consideremos agora apenas a seguinte regra (Resolução):

$$\frac{\psi \to \theta \quad \psi \lor \varphi}{\theta \lor \varphi} \text{ Res } \qquad \text{para as formulas } \varphi, \psi, \theta.$$

Teorema

Para as cláusulas $\theta_1, \ldots, \theta_n$,

$$\{\theta_1,\ldots,\theta_n\}$$
 é inconsistente se e só se $\theta_1,\ldots,\theta_n\vdash\bot$.

Nota

Como cada resolvente a partir de $\{\theta_1, \dots, \theta_n\}$ corresponde a um conjunto de literais, então só há um número finito destes resolventes.

O algoritmo

Para verificar se $\varphi_1, \ldots, \varphi_n \models \psi$:

- 1. Converter as fórmulas $\varphi_1, \ldots, \varphi_n$ na forma normal conjuntiva.
- 2. Negar a fórmula ψ e converter $\neg \psi$ na forma normal conjuntiva.
- 3. Aplicar a regra de resolução às cláusulas obtidas acima até ou
 - obtém-se \perp e neste caso verifica-se $\varphi_1, \ldots, \varphi_n \models \psi$, ou
 - não se aplica mais a regra de resolução (sem obter \perp) e neste caso não se verifica $\varphi_1, \ldots, \varphi_n \models \psi$.

Verificamos: $p \rightarrow q$, $q \rightarrow r \models p \rightarrow r$.

Portanto, consideremos as fórmulas

$$p \rightarrow q$$
, $q \rightarrow r$, $\neg (p \rightarrow r)$;

ou seja, temos as cláusulas

$$\neg p \lor q$$
, $\neg q \lor r$, $p \land \neg r$.

Agora: $\neg p \lor q$, p, q, $\neg q \lor r$, r, $\neg r$, \bot .

Em suma, provámos que

$$p \rightarrow q, q \rightarrow r \models p \rightarrow r$$

uma vez que o conjunto de cláusulas

$$\{\neg p \lor q, \neg q \lor r, p, \neg r\}$$

é inconsistente, tal como se verifica na seguinte dedução:

1.	$\neg p \lor q$	Hip.
2.	$\neg q \lor r$	Hip.
3.	р	Hip.
4.	$\neg r$	Hip.
5.	q	Res (1,3)
6.	r	Res (2,5)
7.	Т	Res (4,6)

Será que $p, p \rightarrow q, \neg(r \land \neg q) \models r$?

Aplicamos o método de resolução:

- (1) p
- (2) $\neg p \lor q$
- (3) $\neg r \lor q$
- $(4) \neg r$
- (5) q (Resolvente de (1) e (2))

Não há mais resolventes. Logo, a afirmação

$$p,p \to q, \neg (r \land \neg q) \models r$$

é falsa.

2. A SINTAXE (LÓGICA DE 1^A ORDEM)

Nota

Na lógica proposicional podemos expressar, por exemplo,

$$((p \land q) \rightarrow r).$$

Agora, na lógica de primeira ordem, podemos ser mais específicos

$$\forall x \forall y ((par(x) \land par(y)) \rightarrow par(x + y))$$

e podemos quantificar.

Por exemplo, para expressar que «todos os gatos têm garras»:

$$\forall x \ (\text{gato}(x) \rightarrow \text{garras}(x)).$$

Também podemos utilizar a lógica de primeiro ordem para

representar factos (criar bases de dados) e fazer inquéritos.

Exemplo (Os factos)

- 1. A Ana é docente.
- 2. Todos os docentes são pessoas.
- 3. O Paulo é diretor.
- 4. Os diretores são docentes.
- Todos os docentes consideram o diretor um amigo ou não o conhecem.
- 6. Todos têm um amigo.
- 7. As pessoas apenas criticam aquelas pessoas que não são suas amigas.
- 8. A Ana critica o Paulo.

https://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/16_FirstOrderLogic.pdf

Exemplo (Os factos ... mais formais)

- docente(Ana)
- 2. $\forall x (docente(x) \rightarrow pessoa(x))$
- 3. diretor(Paulo)
- 4. $\forall x (diretor(x) \rightarrow docente(x))$
- 5. $\forall x \forall y ((\mathsf{docente}(x) \land \mathsf{diretor}(y)) \rightarrow (\mathsf{amigo}(y, x) \lor \neg \mathsf{conhece}(x, y)))$
- 6. $\forall x \exists y \text{ amigo}(y, x)$
- 7. $\forall x \forall y ((pessoa(x) \land pessoa(y) \land critica(x,y)) \rightarrow \neg amigo(y,x))$
- 8. critica(Ana, Paulo)

Questão. O Paulo não é amigo da Ana?

¬amigo(Paulo, Ana)

Exemplo (Os factos ... do ponto de vista de um computador)

- 1. P1(A)
- 2. $\forall x (P1(x) \rightarrow P3(x))$
- 3. P4(B)
- **4.** $\forall x (P4(x) \rightarrow P1(x))$
- 5. $\forall x \forall y ((P1(x) \land P4(y)) \rightarrow (P2(x,y) \lor \neg P5(x,y)))$
- 6. $\forall x \exists y P2(y, x)$
- 7. $\forall x \forall y ((P3(x) \land P3(y) \land P6(x,y)) \rightarrow \neg P2(y,x))$
- 8. P6(A, B)

Questão. $\neg P2(B, A)$

As tarefas

- Colecionar o conhecimento.
- Escolher uma linguagem apropriada: símbolos de constantes, de predicados ...
- Representar o conhecimento nesta linguagem.
- Consultar a base de dados (e o procedimento de dedução).

Definição

Um alfabeto de 1ª ordem consiste em:

- 1. uma coleção de variáveis,
- 2. os símbolos $\langle \land, \lor, \rightarrow, \leftrightarrow, \neg, \bot, \top \rangle$ da lógica proposicional,
- 3. os quantificadores: os símbolos «∃» (existe) e «∀» (para todos),
- 4. o símbolo de igualdade «=»,
- 5. Além destes símbolos, e dependente do contexto, temos
 - · uma coleção de símbolos de constante,
 - uma coleção de símbolos de função (cada símbolo de função f tem uma «aridade» $n \in \mathbb{N}$ o número de argumentos),
 - uma coleção de símbolos de predicado (= relação)
 (cada símbolo de predicado R tem uma «aridade» n ∈ IN o número de argumentos).

Exemplo (espaços vetoriais)

O alfabeto da teoria de espaços vetoriais reais consiste em (além dos símbolos de lógica e dos variáveis):

- · o símbolo de constante o,
- para cada $\alpha \in \mathbb{R}$, o símbolo de função $\alpha \cdot -$ de uma variável, e
- o símbolo de função + de duas variáveis.

Termos 56 (45)

Definição

Definimos agora recursivamente o conceito de termo:

- 1. Cada variável e cada símbolo de constante é um termo.
- 2. Se f é um símbolo de função de n variáveis e t_1, \ldots, t_n são termos, então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo

Consideremos a linguagem com as variáveis x, y, z, um símbolo de constante a, um símbolo de função i de um argumento e um símbolo de função m de dois argumentos. Então, as seguintes expressões são termos:

- x, y, z, a.
- i(a), i(x), m(z, y), m(a, z), ...
- m(i(x), x), i(m(x, a)), m(m(z, a), i(x)), ...
- •

Definição

Definimos agora recursivamente o conceito de fórmula:

- $P(t_1, ..., t_n)$ é uma fórmula onde P é um símbolo de predicado de n argumentos e $t_1, ..., t_n$ são termos.
- $t_1 = t_2$ é uma fórmula onde t_1, t_2 são termos.
- ⊥ e ⊤ são fórmulas.

Ás fórmulas acima chamamos átomos.

• Se φ e ψ são fórmulas, então

$$(\varphi \wedge \psi), \quad (\varphi \vee \psi), \quad (\varphi \to \psi), \quad (\neg \varphi), \quad \bot, \quad \top$$

são fórmulas.

• Se φ é uma fórmula e \mathbf{x} é uma variável, então

$$\forall x \varphi$$
 e $\exists x \varphi$

são fórmulas.

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula $\varphi \in \mathbf{o}$ alcance do quantificador \forall respetivamente \exists .

Exemplos

- $\forall x \ (\text{gato}(x) \rightarrow \text{garras}(x))$:
 - O alcance de « \forall » é « $(\text{gato}(x) \rightarrow \text{garras}(x))$ ».
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de « \forall » é « $\exists y \ x < y$ ».
 - O alcance de « \exists » é «x < y».
- $\forall x \exists y (x < y \land a < x)$:
 - O alcance de \forall » é \forall y ($x < y \land a < x$)».
 - O alcance de « \exists » é « $x < y \land a < x$ ».

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi$ e $\exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Variável livre e ligada

Uma ocorrência de uma variável numa fórmula diz-se **ligada** se a ocorrência da variável está dentro do alcance de um quantificador utilizado para essa variável. Uma ocorrência de uma variável numa fórmula diz-se **livre** se essa ocorrência não é ligada.

Uma variável numa fórmula diz-se **livre** quando ocorre pelo menos uma vez livre na fórmula.

Nota

Uma fórmula diz-se fechada quando não tem variáveis livres.

No que se segue, gato e garras são símbolos de relação unária e a é um símbolo de constante.

- $\forall x \ (\text{gato}(x) \rightarrow \text{garras}(x))$:
 - A variável x ocorre ligada. A fórmula é fechada.
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - A variável y ocorre ligada e a variável x ocorre livre e ligada. A fórmula não é fechada.
- $\forall x \exists y (x < y \land a < x)$:

As variáveis x e y ocorrem ligadas. A fórmula é fechada.

3. A SEMÂNTICA (LÓGICA DE 1^A ORDEM)

Nota

Para interpretar os termos respetivamente as fórmulas

$$M(M(x,y),I(A)), R(y,A), \exists y R(y,A),$$

precisamos de saber o significado de cada uma dos símbolos. Quais elementos denotam as variáveis? Quais funções correspondem às símbolos de funções? E às símbolos de predicados?

No que se segue, explicaremos como interpretar cada uma das componentes da fórmula.

Nota

- Sendo c um símbolo de constante que interpretamos por 3, então a interpretação da fórmula x = c depende da interpretação de x.
- No entanto, para a interpretação da fórmula ∀x x = c, a interpretação de x é irrelevante. Ou seja, os quantificadores alterem o «estatuto da variável».

Definição

Uma **estrutura** \mathcal{M} para um alfabeto de 1ª ordem consiste em:

- · um conjunto D,
- a cada símbolo de constante a associamos um elemento $a^{\mathcal{M}} \in \mathcal{D}$,
- a cada símbolo de função f com n argumentos associamos uma função $f^{\mathcal{M}}: D^n \longrightarrow D$,
- a cada símbolo de predicado P com n argumentos associamos um subconjunto $P^{\mathcal{M}} \subseteq D^n$.

Definição

Dada uma estrutura \mathcal{M} , uma valoração V em \mathcal{M} associa a cada variável x um elemento $V(x) \in D$.

O par (\mathcal{M}, V) diz-se **interpretação**.

Interpretação de termos

Dada uma interpretação (\mathcal{M}, V) de uma linguagem, definimos recursivamente a interpretação de termos:

$$V(f(t_1,\ldots,t_n))=f^{\mathcal{M}}(V(t_1),\ldots,V(t_n))\in D.$$

Exemplo

Consideremos a linguagem com um símbolo de função binária *M* (ou seja, de dois argumentos), um símbolo de função *I* de um argumento e um símbolo de constante *A*.

Para a interpretação (\mathcal{M}, V) com a estrutura \mathcal{M} dada por

$$D = \{0, \ldots, 10\}, \quad M^{\mathcal{M}} : D^2 \to D, (n, m) \mapsto |n - m|, \quad I^{\mathcal{M}} = \mathrm{id}_{D}, \quad A^{\mathcal{M}} = 1$$

e a valoração V com V(x) = 2 e V(y) = 1, temos:

•
$$V(M(A, x)) = |1 - 2| = 1$$
.

•
$$V(M(M(x,y),I(A))) = ||2-1|-1| = 0.$$

Definição

Dada uma interpretação (\mathcal{M}, V) de um alfabeto de 1ª ordem e uma fórmula φ , definimos recursivamente o conceito de φ **é válido em** (\mathcal{M}, V) , ou (\mathcal{M}, V) **é modelo de** φ , denotado por (\mathcal{M}, V) $\models \varphi$.

- $(\mathcal{M}, V) \models t_1 = t_2$ quando $V(t_1) = V(t_2)$.
- $(\mathcal{M}, V) \models R(t_1, \dots, t_n)$ quando $(V(t_1), \dots, V(t_n)) \in R^{\mathcal{M}}$.
- $(\mathcal{M}, V) \models \top$ e **não** $(\mathcal{M}, V) \models \bot$
- $(\mathcal{M}, V) \models (\varphi \land \psi)$ quando $(\mathcal{M}, V) \models \varphi$ e $(\mathcal{M}, V) \models \psi$.
- $(\mathcal{M}, V) \models (\varphi \lor \psi)$ quando $(\mathcal{M}, V) \models \varphi$ ou $(\mathcal{M}, V) \models \psi$.
- $(\mathcal{M}, V) \models (\varphi \rightarrow \psi)$ quando $(\mathcal{M}, V) \models \varphi$ implica $(\mathcal{M}, V) \models \psi$.
- $(\mathcal{M}, V) \models \neg \varphi$ quando **não** $(\mathcal{M}, V) \models \varphi$.

Falta considerar os quantificadores ...

Modificação da valoração

Para uma variável x e um elemento $a \in \mathcal{D}$, $V^{\frac{x}{a}}$ denota a valoração definida por

$$V^{\frac{x}{a}}(y) = \begin{cases} V(y) & \text{se } y \text{ \'e diferente de } x, \\ a & \text{se } y \text{ \'e igual ao } x. \end{cases}$$

Definição

Continuamos:

- $(\mathcal{M}, V) \models \exists x \psi$ quando, para algum $a \in D$, $(\mathcal{M}, V^{\frac{x}{a}}) \models \psi$.
- $(\mathcal{M}, V) \models \forall x \psi$ quando, para todo o $a \in D$, $(\mathcal{M}, V^{\frac{x}{a}}) \models \psi$.

Nota

Se uma fórmula φ não tem variáveis livres, a interpretação das variáveis é irrelevante na interpretação de φ .

Consideremos a linguagem com um símbolo de função *M* de dois argumentos, um símbolo de função *I* de um argumento, um símbolo de constante *A* e um símbolo de predicado *R* de dois argumentos.

Consideremos ainda a interpretação (\mathcal{M},V) com a estrutura \mathcal{M} dada por

$$D=\{0,\dots,10\}\text{, }M^{\mathcal{M}}\colon D^2\to D\text{, }(n,m)\mapsto |n-m|\text{, }I^{\mathcal{M}}=\text{id}_D\text{, }A^{\mathcal{M}}=1$$

e $R^{\mathcal{M}}$ é a relação «menor» em D, e com a valoração V com V(x)=2 e V(y)=1.

Portanto:

- R(x,A) não é válida em (\mathcal{M}, V) .
- $\exists x R(x, A)$ é válida em (\mathcal{M}, V) .
- $\forall x R(x, A)$ não é válida em (\mathcal{M}, V) .
- $\forall x \exists x R(x,A)$ é válida em (\mathcal{M}, V) .

Interpretamos os seguintes termos e fórmulas em $D = \mathbb{R}$ (onde os símbolos «comuns» têm o significado «habitual»).

Expressão	Interpretação
$\cos(\pi) + 3$	$2 \in \mathbb{R}$
3 < 4	válida
X < 4	Depende da interpretação de x
$\forall x x < 4$	não válida
$\forall y y < 4$	não válida
$\exists y \forall y y < 4$	não válida
$\forall x ((x < 4) \rightarrow (1 = 0))$	não válida
$\forall x \exists y x < y$	válida
$\exists x \forall y x \leq y$	não válida

Tautologias e fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em *cada* interpretação.
- **Notação:** Escreve-se $\models \varphi$ quando φ é válida.

Nota

 Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.

consistente quando é válida em alguma interpretação.

• Uma fórmula φ é inconsistente se e só se $\neg \varphi$ é válida. Portanto, uma fórmula inconsistente diz-se também uma contradição.

Definição

As fórmulas φ e ψ dizem-se **equivalentes** quando $\varphi \leftrightarrow \psi$ é uma tautologia. Neste caso escrevemos $\varphi \equiv \psi$.

Definição

Uma fórmula ψ diz-se **consequência** (semântica ou lógica) das fórmulas $\varphi_1, \ldots, \varphi_n$ quando, para toda a interpretação (\mathcal{M}, V) ,

se $\varphi_1, \ldots, \varphi_n$ são válidas em (\mathcal{M}, V) , então ψ é válida em (\mathcal{M}, V) .

Em símbolos: $\varphi_1, \ldots, \varphi_n \models \psi$.

Nota

As regras de dedução «natural» da lógica proposicional admitem uma extensão para a lógica de primeira ordem. Tal como na lógica proposicional, baseada nestas regras define-se $\varphi_1, \ldots, \varphi_n \vdash \psi$, e tem-se

$$\varphi_1, \ldots, \varphi_n \models \psi$$
 se e só se $\varphi_1, \ldots, \varphi_n \vdash \psi$.

No entanto, neste capítulo consideremos o método de resolução.

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1ª ordem

 $\forall x (gato(x) \rightarrow garra(x)), gato(Tom) \models garra(Tom).$

Aqui:

- «gato, garra» são símbolos de predicado de um argumento,
- «Tom» é um símbolo de constante.

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1ª ordem

 $\forall x (gato(x) \rightarrow garra(x)), gato(Tom) \models garra(Tom).$

Preparar para a dedução

 $\neg gato(x) \lor garra(x)$, a gato(Tom), $\neg garra(Tom)$.

^aNão escrevemos os quantificadores (mas não os esquecemos).

Deduzimos agora:

gato(Tom), \neg gato(Tom) \lor garra(Tom), a garra(Tom), \neg garra(Tom), \bot .

^aEscrever «Tom» em lugar de «x» ... já que a fórmula é válida «para todos».

4. FORMAS NORMAIS DE FÓRMULAS

Convenção

A partir de agora vamos supor que o domínio da interpretação não é vazio.

Definição

Adaptamos a definição da lógica proposicional:

- Um literal é um átomo ou a negação de um átomo.
- Uma fórmula φ diz-se na **forma normal conjuntiva (disjuntiva)** quando

$$\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n \qquad (\varphi = \varphi_1 \vee \cdots \vee \varphi_n)$$

onde cada φ_i é da forma

$$L_1 \vee \cdots \vee L_k \qquad (L_1 \wedge \cdots \wedge L_k)$$

com literais L_i .

Definição

Uma fórmula da forma

$$Qx_1 \ldots Qx_n \quad \varphi$$

onde φ é uma fórmula sem quantificadores e Q denota « \exists » ou « \forall » diz-se na **na forma normal prenex**.

Como obter?

Mover «¬» mais para o interior:

$$\neg \forall x \varphi \equiv \exists x \neg \varphi \qquad e \qquad \neg \exists x \varphi \equiv \forall x \neg \varphi.$$

- Mover os quantificadores mais para o exterior:
 - $(\forall x \varphi) \wedge (\forall x \psi) \equiv \forall x (\psi \wedge \varphi),$ $(\exists x \varphi) \vee (\exists x \psi) \equiv \exists x (\psi \vee \varphi).$
 - Suponha que ψ não contém a variável x:

$$(\forall \mathsf{x}\,\varphi) \wedge \psi \equiv \forall \mathsf{x}\,(\varphi \wedge \psi), \qquad (\exists \mathsf{x}\,\varphi) \wedge \psi \equiv \exists \mathsf{x}\,(\varphi \wedge \psi), (\forall \mathsf{x}\,\varphi) \vee \psi \equiv \forall \mathsf{x}\,(\varphi \vee \psi), \qquad (\exists \mathsf{x}\,\varphi) \vee \psi \equiv \exists \mathsf{x}\,(\varphi \vee \psi).$$

Definição

Uma fórmula na **forma normal de Skolem**^a é uma fórmula fechada (= sem variáveis livres)

$$\forall x_1 \ldots \forall x_n \quad \varphi$$

onde φ é uma fórmula sem quantificadores na forma normal conjuntiva.

^aThoralf Albert Skolem (1887 – 1963), matemático norueguês.

Nota

Como

$$\forall x_1 \ldots \forall x_n \ (\varphi \wedge \psi) \equiv (\forall x_1 \ldots \forall x_n \ \varphi) \wedge (\forall x_1 \ldots \forall x_n \ \psi),$$

uma fórmula na forma normal de Skolem pode-se escrever como uma conjunção de fórmulas normais de Skolem $\forall x_1 \dots \forall x_n \ \varphi_i$ onde φ_i é uma cláusula $L_1 \lor \dots \lor L_n$.

A partir da forma normal prenex

- No caso de $\exists x_1 Q_2 x_2 \dots Q_n x_n \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n \varphi$ por c, e
 - 3. eliminar $\exists x_1$.
 - No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k Q_{k+1} x_{k+1} \dots Q_n x_n \varphi (k > 1)$:
 - 1. Escolher um novo símbolo de função (digamos f) de k-1 argumentos,
 - 2. substituir todas as ocorrências livres de x_k em $Q_{k+1}x_{k+1}\dots Q_nx_n \varphi \operatorname{por} f(x_1,\dots,x_{k-1})$, e
 - 3. eliminar $\exists x_k$.

Teorema

Sejam ψ_1, \ldots, ψ_n as «skolemizações» das fórmulas $\varphi_1, \ldots, \varphi_n$, então $\{\psi_1, \ldots, \psi_n\}$ é consistente se e só se $\{\varphi_1, \ldots, \varphi_n\}$ é consistente.

Definição

Uma **substituição** é uma função σ : {variáveis} \longrightarrow {termos}.

Nota

• Se

$$\{\mathbf{v} \mid \sigma(\mathbf{v}) \neq \mathbf{v}\} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$$

é finito, podemos descrever a substituição σ indicando apenas as substituições «relevantes»:

$$\{t_1/v_1,\ldots,t_n/v_n\}$$

sendo $t_i = \sigma(v_i)$.

A substituição

$$\{\text{variáveis}\} \longrightarrow \{\text{termos}\}, \quad \mathbf{v} \longmapsto \mathbf{v}$$

denotamos por ε . Portanto, escrevemos $\varepsilon = \emptyset$.

$$\sigma = \{f(z)/x, A/y\}$$
 corresponde à substituição

$$\sigma \colon \{ \mathsf{vari\'{a}veis} \} \longrightarrow \{ \mathsf{termos} \}$$

$$v \longmapsto egin{cases} f(z) & \text{se a variável } v \in x, \\ A & \text{se a variável } v \in y, \\ v & \text{nos outros casos.} \end{cases}$$

Estender substituições:

Cada substituição $\sigma\colon\{\text{variáveis}\}\longrightarrow\{\text{termos}\}$ se pode estender a uma função

$$\widehat{\sigma} \colon \{\mathsf{termos}\} \longrightarrow \{\mathsf{termos}\}$$

utilizando recursão:

- $\widehat{\sigma}(\mathbf{v}) = \sigma(\mathbf{v})$, para cada variável \mathbf{v} .
- $\widehat{\sigma}(c) = c$, para cada símbolo de constante c.
- $\widehat{\sigma}(f(t_1,\ldots,t_n)=f(\widehat{\sigma}(t_1),\ldots,\widehat{\sigma}(t_n))$, para cada símbolo de função f de n argumentos e termos t_1,\ldots,t_n .

Portanto, obtemos

Estender ainda mais

Dada uma substituição $\sigma\colon\{\text{variáveis}\}\longrightarrow\{\text{termos}\}$ e uma fórmula E (sem quantificadores),

$$E\sigma$$

denota a fórmula obtida aplicando $\widehat{\sigma}$ ao todos os termos em E.

Para um conjunto ${\mathcal E}$ de fórmulas (sem quantificadores), definimos:

$$\mathcal{E}\sigma = \{\mathsf{E}\sigma \mid \mathsf{E} \in \mathcal{E}\}.$$

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z),A).$$

•
$$\sigma = \{f(z,y)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z,y),A).$$

Definição

Sejam

$$\sigma, \theta \colon \{ \text{variáveis} \} \longrightarrow \{ \text{termos} \}$$

substituições. A **composta de** θ **após** σ é a função

$$\theta \mathrel{\triangle} \sigma = \widehat{\theta} \circ \sigma.$$

$$\{\mathsf{termos}\} \xrightarrow{\widehat{\theta}} \{\mathsf{termos}\}$$

$$\{\mathsf{variáveis}\}$$

Nota

Para cada expressão (= termo, fórmula) *E*: $E(\theta \triangle \sigma) = (E\sigma)\theta$.

Consideremos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

Então,

$$\theta \triangle \sigma = \{\widehat{\theta}(A)/x, \, \widehat{\theta}(g(x))/y, \, \widehat{\theta}(y)/z, \, x/u\}$$
$$= \{A/x, \, g(f(y))/y, \, z/z, \, x/u\}$$
$$= \{A/x, \, g(f(y))/y, \, x/u\}.$$

Consideremos as expressões $E_1 = x$ e $E_2 = y$:

Substituição	Х	У
{ <i>y</i> / <i>x</i> }	у	У
{ <i>x</i> / <i>y</i> }	Х	Х
${f(f(A))/x, f(f(A))/y}$	f(f(A))	f(f(A))

Nota:

$${f(f(A))/x, f(f(A))/y} = {f(f(A))/y} \triangle {y/x}$$

= ${f(f(A))/x} \triangle {x/y}.$

Definição

- Seja ${\mathcal E}$ um conjunto de expressões (termos, fórmulas). Uma substituição

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

diz-se unificador de \mathcal{E} quando, para todos as expressões $E_1, E_2 \in \mathcal{E}$, $E_1 \sigma = E_2 \sigma$.

 Um conjunto E de expressões diz-se unificável quando existe um unificador de E.

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x,y), Q(z)\}$ não é unificável.
- 3. $\mathcal{E} = \{f(x), f(f(z))\}\$ é unificável com $\sigma = \{f(z)/x\}$.
- 4. $\mathcal{E} = \{f(x), f(f(x))\}$ não é unificável.

Definição

Seja $\mathcal E$ um conjunto de expressões. Um unificador σ de $\mathcal E$ diz-se **unificador mais geral** (abreviação: mgu) de $\mathcal E$ quando, para cada unificador θ de $\mathcal E$, existe uma substituição λ tal que

$$\theta = \lambda \triangle \sigma$$
.

Ou seja, cada unificador de \mathcal{E} se pode descrever como «acrescentar substituições acima do unificador mais geral».

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

- 1. Começar com k = 0, $\mathcal{E}_0 = \mathcal{E}$, $\sigma_0 = \varepsilon$.
- 2. **Se** \mathcal{E}_k tem apenas uma expressão, **então** σ_k é unificador mais geral de \mathcal{E} e podemos PARAR.
- 3. Determinar o conjunto das diferenças de \mathcal{E}_k ; isto é, o conjunto $\mathcal{D}_k = \{D_1, \dots\}$ das *primeiras* sub-expressões (a contar da esquerda) onde as expressões de \mathcal{E}_k são diferentes.
- 4. **Se** existem uma variável v e um termo t em \mathcal{D} e v não ocorre em t, então
 - $\sigma_{k+1} = \{t/v\} \triangle \sigma_k$
 - $\mathcal{E}_{k+1} = \mathcal{E}_k\{t/v\}$,
 - k := k + 1 e voltar ao ponto (2);

se não PARAR com a mensagem «Não é unificável».

Consideremos $\mathcal{E} = \{P(y,z), P(x,h(y)), P(A,h(A))\}$:

Aqui:

- x, y, z são variáveis.
- A é um símbolo de constante.
- h é um símbolo de função de um argumento.
- P é um símbolo de predicado de dois argumentos.

Consideremos $\mathcal{E} = \{P(y,z), P(x,h(y)), P(A,h(A))\}$:

o. $\mathcal{D}_o = \{y, x, A\}$. Portanto:

$$\sigma_1 = \{x/y\}, \quad \mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(x,z), P(x,h(x)), P(A,h(A))\}$$

1. $\mathcal{D}_1 = \{x, A\}$. Portanto:

$$\sigma_2 = \{A/x\} \triangle \sigma_1 = \{A/x, A/y\},\$$

 $\mathcal{E}_2 = \mathcal{E}_1 \sigma_2 = \{P(A, z), P(A, h(A)), P(A, h(A))\}$

2. $\mathcal{D}_2 = \{z, h(A)\}$. Portanto:

$$\sigma_3 = \{h(A)/z\} \triangle \sigma_2 = \{h(A)/z, A/x, A/y\},\$$

 $\mathcal{E}_3 = \mathcal{E}_2\sigma_3 = \{P(A, h(A)), P(A, h(A)), P(A, h(A))\}$

3. $\mathcal{E}_3 = \{P(A, h(A))\}.$ Logo: $mgu = \{A/x, A/y, h(A)/z\}.$

Consideremos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}$:

o. $\mathcal{D}_o = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},$$

$$\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{h(A), A\}.$

Como nenhuma variável pertence à \mathcal{D}_1 , terminamos com a mensagem «Não é unificável».

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(x, h(A))\}:$

o. $\mathcal{D}_0 = \{h(x), x, x\} = \{h(x), x\}.$

Como x (a única variável em \mathcal{D}_0) ocorre em h(x) (o único termo em \mathcal{D}_0 diferente do x), terminamos com a mensagem «Não é unificável».

Consideremos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}:$

o. $\mathcal{D}_0 = \{ \neg \}$.

Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem «Não é unificável».

Exemplo

Consideremos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), Q(A, h(A))\}:$

o. $D_0 = \{P, Q\}.$

Como nenhuma variável pertence à \mathcal{D}_o , terminamos com a mensagem «Não é unificável».

CONVENÇÕES 96 (78)

Convenção

A partir de agora consideremos apenas linguagens sem o símbolo «=». Além disso, continuamos supor que o domínio da interpretação não é vazio.

As regras

Consideremos as fórmulas $\varphi, \psi, \theta, \gamma$.

• Resolvente binária:
$$\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathrm{mgu}(\psi, \varphi)} \, \mathrm{BR}$$
 (aqui: $\neg \psi \lor \theta, \varphi \lor \gamma$ sem variáveis comuns)

• Fator:
$$\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$$

Exemplos

Consideremos $C_1 = P(x) \vee P(f(y)) \vee R(g(y)) \in C_2 = \neg P(f(g(a))) \vee Q(b)$.

- $P(f(y)) \vee R(g(y))$ é um fator de C_1 .
- $R(g(g(a))) \vee Q(b)$ é uma resolvente binária de um fator de C_1 e C_2 .
- $R(q(q(a))) \vee Q(b)$ é uma resolvente de C_1 e C_2 .

Resolvente de cláusulas C_1 e C_2 = Resolvente binária de (um fator de) C_1 e de (um fator de) C_2 .

As regras

Consideremos as fórmulas $\varphi, \psi, \theta, \gamma$.

• Resolvente binária:
$$\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathsf{mgu}(\psi, \varphi)} \, \mathsf{BR}$$
 (aqui: $\neg \psi \lor \theta, \varphi \lor \gamma$ sem variáveis comuns)

• Fator:
$$\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \operatorname{mgu}(\varphi, \psi)} \operatorname{Fator}$$

Recordamos

Para justificar que

$$\varphi_1,\ldots,\varphi_n\models\psi$$

(ψ é consequência de $\varphi_1, \ldots, \varphi_n$), mostramos que

$$\{\varphi_1,\ldots,\varphi_n,\neg\psi\}$$

é inconsistente.

As regras

Consideremos as fórmulas $\varphi, \psi, \theta, \gamma$.

• Resolvente binária:
$$\frac{\neg\psi\vee\theta\ \varphi\vee\gamma}{(\theta\vee\gamma)\,\mathrm{mgu}(\psi,\varphi)}\,\mathrm{BR}$$
 (aqui: $\neg\psi\vee\theta,\varphi\vee\gamma$ sem variáveis comuns)

• Fator:
$$\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \operatorname{mgu}(\varphi, \psi)} \operatorname{Fator}$$

O procedimento

Para «refutar» um conjunto $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ de fórmulas fechadas:

- 1. transformar todas as fórmulas na forma normal de Skolem;
- 2. «ignorar» os quantificadores ∀ (já que não há outros e todas as variáveis são quantificadas);
- 3. renomear as variáveis em cada cláusula tal que são distintas;
- 4. aplicar sucessivamente as duas regras anteriores, até se obter uma contradição (se for possível).

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata *Mondschein* (ao Luar).
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que seja completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein (ao Luar).
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Carg6.

Na linguagem de 1ª ordem (português → formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \rightarrow I(x)).$
- $\neg \exists x (I(x) \land S(x)).$
- $\forall x (P(x) \rightarrow \neg B(x))$. A negação: $\exists x (P(x) \land B(x))$.

Na linguagem de 1ª ordem (português → formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \rightarrow I(x)).$
- $\neg \exists x (I(x) \land S(x)).$
- $\forall x (P(x) \rightarrow \neg B(x))$. A negação: $\exists x (P(x) \land B(x))$.

Obter a forma normal («skolemização»)

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$, c um símbolo de constante.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

Consideremos as seguintes fórmulas

$$\neg B(x) \lor S(x)$$
, $\neg P(y) \lor I(y)$, $\neg I(z) \lor \neg S(z)$, $P(c)$, $B(c)$.

A dedução

- 1. *P*(*c*),
- 2. $\neg P(y) \lor I(y)$,
- 3. *I*(*c*),
- 4. $\neg I(z) \lor \neg S(z)$,
- 5. $\neg S(c)$,
- 6. ¬B(x) ∨ S(x),
- 7. $\neg B(c)$,
- 8. *B*(*c*),
- 9. ⊥.

- mgu de P(c) e P(y): $\{c/y\}$.
- mgu de I(c) e I(z): $\{c/z\}$.
- mgu de S(c) e S(x): $\{c/x\}$.

$$\forall x P(x) \models \exists x P(f(x)); \text{ ou seja } \forall x P(x), \forall x \neg P(f(x)) \vdash \bot.$$

Aqui:

- x é uma variável.
- f é um símbolo de função de um argumento.
- P é um símbolo de relação de um argumento.

Recordamos que suponhamos aqui que o domínio da interpretação não é vazio.

$$\forall x P(x) \models \exists x P(f(x));$$
 ou seja $\forall x P(x), \forall x \neg P(f(x)) \vdash \bot.$

Consideremos as fórmulas

$$P(x)$$
, $\neg P(f(x))$.

A dedução:

- 1. ¬P(f(x))
- 2. P(x), P(f(x)) e P(x) não são unificáveis!!?

Esquecemos renomear as variáveis: $P(x) \rightsquigarrow P(y)$...

Recordamos que suponhamos aqui que o domínio da interpretação não é vazio.

- 1. $\neg P(x_1) \lor \neg Q(y_1)$ (Hip)
- 2. $\neg P(x_2) \lor Q(y_2)$ (Hip)
- 3. $P(x_3) \vee \neg Q(y_3)$ (Hip)
- 4. $P(x_4) \vee Q(y_3)$ (Hip)
- 5. $\neg P(x_1) \lor \neg P(x_2)$ Resolvente (1,2) 6. $\neg P(x_1)$ Fator (5)
- 7. $P(X_3) \vee P(X_4)$ Resolvente (3,4)
- 8. $P(x_3)$ Fator (7)
- 9. \perp Resolvente (6,8)

O método de resolução baseia-se no trabalho

Este método é (correto e) completo na lógica de 1ª ordem no seguinte sentido:

Se

$$\varphi_1,\ldots,\varphi_n\models\psi,$$

então existe uma dedução de \perp a partir de $\varphi_1, \ldots, \varphi_n, \neg \psi$.

Sobre a programação (em lógica):

Em particular: 4.4. «Logical Programming».

Videos em: https://groups.csail.mit.edu/mac/classes/6.
oo1/abelson-sussman-lectures/