凸性と l_1 測地的凸性と直交凸性

1

記号 1.1. (X,d) を距離空間とする. $x,y\in X$ に対して, x から y への測地線全体を Γ_y^x

で表す.

定義 1.2. (測地的凸). (X,d) を距離空間とする. $A\subset X$ は, 任意の $x,y\in A$ に対して, $\gamma_y^x\in \Gamma_y^x$ で $\mathrm{image}\gamma_y^x\subset A$

を満たすものが存在する時, 測地的凸集合という.

定義 1.3. $(l_1$ 測地的凸性). $A \subset \mathbb{R}^n$ は l_1 距離に関して測地的凸であるとき, l_1 測地的凸であるという.

記号 **1.4.** $x \in \mathbb{R}^n, i \in 1, ..., n$ に対して,

$$L_{i,x} := \{ x + re_i \subset \mathbb{R}^n \mid r \in \mathbb{R} \}$$

と定める. (これはi軸に平行な直線である.)

定義 1.5. (直交凸性). $A \subset \mathbb{R}^n$ は, 任意の $i \in \{1, ..., n\}, x \in \mathbb{R}^n$ に対して,

 $A \cap L_{i,x}$

が凸集合であるとき, 直交凸であるという.

命題 1.6. $A \subset \mathbb{R}^n$ が凸集合であるならば, l_1 測地的凸である.

証明. 任意の異なる 2 点 $x,y \in A$ に対して, $\gamma(t) \coloneqq x + \frac{t}{d(x,y)}(y-x)$ は $((x + \frac{t}{d(x,y)}(y-x)) - (x + \frac{s}{d(x,y)}(y-x))$ を考えることにより, $)l_1$ 距離に関して測地線である. 凸性より, $image\gamma \subset A$ であるので, 主張が従う.

命題 1.7. $x,y\in\mathbb{R}^n$ を, 第 i 成分のみが異なる 2 点とする. このとき, Γ^x_y の要素は x,y を結ぶ線分ただ一つである.

証明. □

命題 1.8. $A \subset \mathbb{R}^n$ が l_1 測地的凸であるならば, 直交凸である.

証明・任意の $i \in \{1,\dots,n\}, x \in \mathbb{R}^n$ に対して、(空でないとき) 2 点 $p,q \in A \cap L_{i,x}$ をとる。p,q は第 i 成分 のみが異なる 2 点であるので、p,q を結ぶ測地線は p,q を結ぶ線分のみである。A が l_1 測地的凸であること から、この p,q を結ぶ線分は A に含まれ、当然 $L_{i,x}$ に含まれるので、 $A \cap L_{i,x}$ は凸集合である。

1