

DTL Assignments

Sarvesh Mankar - 142203013January 18, 2023

Assignment - Mathematical Eq^ns

1 ODEMC Syllabus

1.1 Unit 1

- 1. Review of first order differential equations
- 2. Reduction of order
- 3. Linear Differential Equations

1.2 Unit 2

- 1. Laplace Transform
- 2. Properties
- 3. Unit step function

1.3 Unit 3

- 1. Functions of several variables
- 2. Level curves and level surfaces
- 3. Partial and directional derivatives

Q.1) Solve the following:

(a)
$$3x(xy-2)dx + (x^3+2y)dy = 0$$
 [CO 2] [2]

(b)
$$(2\cos y + 4x^2)dx - x\sin ydy == 0$$
 [CO 2] [3]

- Q.2) Find a homogeneous linear second order ordinary differential equation whose solution is the set of all straight lines in the xy-plane. [CO 1] [1]
- Q.3)State whether the following differential equations are linear or non linear ,justify and solve:

(a)
$$xy' + 2y = \frac{e^{3x}}{x}, x > 0$$
with $y(1) = 1 + \frac{e^3}{3}$. [CO 2] [3]

(b)
$$x^2 y \frac{dy}{dx} - xy^2 = 1$$
 [CO 2] [3]

- Q.4) If x^2 and 1 are solutions of yy'' xy' = 0 then so is any linear combination of these. State true or false and justify. [CO 4] [2]
- Q.5) Find a linear ordinary differential equation for which the function $e^{-x}\cos 2x$ and $e^{-x}\sin 2x$ are linearly independent solutions. [CO 2] [3]
- Q.6) Find the Rank and Nullity of following Matrix:

$$A = \begin{pmatrix} 1 & -2 & -4 & 1 \\ 3 & 7 & 8 & 2 \\ 2 & 0 & 3 & 4 \\ 5 & 2 & 4 & 7 \end{pmatrix}$$

Q.7) Solve the given equation of form AX = B

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} B = \begin{pmatrix} 6 \\ 14 \\ 30 \end{pmatrix}$$

Q.8) Show that the following matrix is diagonalizable:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$