Neural networks

Training CRFs - loss function

LINEAR CHAIN CRF

Topics: reminder of notation

• Then we have:

$$p(\mathbf{y}|\mathbf{X}) = \exp\left(\sum_{k=1}^{K} a_u(y_k) + \sum_{k=1}^{K-1} a_p(y_k, y_{k+1})\right) / Z(\mathbf{X})$$

where

$$Z(\mathbf{X}) = \sum_{y_1'} \sum_{y_2'} \cdots \sum_{y_k'} \exp\left(\sum_{k=1}^K a_u(y_k') + \sum_{k=1}^{K-1} a_p(y_k', y_{k+1}')\right)$$

- Two types of (log-)factors:
 - unary: $a_u(y_k) = a^{(L+1,0)}(\mathbf{x}_k)_{y_k} +$ $1_{k>1} \ a^{(L+1,-1)}(\mathbf{x}_{k-1})_{y_k} +$ $1_{k< K} \ a^{(L+1,+1)}(\mathbf{x}_{k+1})_{y_k}$
 - pairwise: $a_p(y_k, y_{k+1}) = 1_{1 \le k < K} V_{y_k, y_{k+1}}$

MACHINE LEARNING

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(\mathbf{f}(\mathbf{X}^{(t)}; \boldsymbol{\theta}), \mathbf{y}^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $l(\mathbf{f}(\mathbf{X}^{(t)}; \boldsymbol{\theta}), \mathbf{y}^{(t)})$ is a loss function
- $m \Omega(m heta)$ is a regularizer (penalizes certain values of m heta)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize

MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- · Algorithm that performs updates after each example
 - ightharpoonup initialize $oldsymbol{ heta}$
 - for N iterations
 - for each training example $(\mathbf{X}^{(t)}, \mathbf{y}^{(t)})$ $\checkmark \ \Delta = -\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{X}^{(t)}; \boldsymbol{\theta}), \mathbf{y}^{(t)}) \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$ = $\checkmark \ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \ \Delta$ iteration over **all** examples
- To apply this algorithm to a CRF, we need
 - lack the loss function $l(\mathbf{f}(\mathbf{X}^{(t)}; m{ heta}), \mathbf{y}^{(t)})$
 - lacktriangle a procedure to compute the parameter gradients $abla_{m{ heta}}l(\mathbf{f}(\mathbf{X}^{(t)};m{ heta}),\mathbf{y}^{(t)})$
 - lack the regularizer $\Omega(oldsymbol{ heta})$ (and the gradient $abla_{oldsymbol{ heta}}\Omega(oldsymbol{ heta})$)
 - initialization method

LOSS FUNCTION

Topics: loss function for sequential classification with CRF

- CRF estimates $p(\mathbf{y}|\mathbf{X})$
 - $oldsymbol{ iny}$ we could maximize the probabilities of $oldsymbol{y}^{(t)}$ given $oldsymbol{X}^{(t)}$ in the training set
- To frame as minimization, we minimize the negative log-likelihood

$$l(\mathbf{f}(\mathbf{X}), \mathbf{y}) = -\log p(\mathbf{y}|\mathbf{X})$$

• unlike for non-sequential classification, we never explicitly compute the value of $p(\mathbf{y}|\mathbf{X})$ for all values of \mathbf{y}