

Ausbildungsinstitut für die Berufe der erneuerbaren Energien und der Energieeffizienz Tanger

Bericht über das Einführungspraktikum SOLARENERGIESYSTEM

Installation einer 270 kwp-Solarzentrale

Ort des Praktikums: SURATEM

Regie::

Umrahmt von:

AYMANE EL AGHZAOUI

Prof.EL MOUJAHED HANAE bei IFMEREE. Mr.AKKYENE MOHAMEDbei SURATEM.

Unterstützt am:.25../07/2023

Ausbildungsjahr 2022-2023

Danksagungen

Zunächst danke ich Allah dem Allmächtigen, dass er mir das Mut und Willen, die vorliegende Arbeit zu Ende zu führen.

Ich möchte meinem Betreuer, Herrn Driss Sahlouf, dem technischen Direktor, und allen seinen Assistenten für ihre Unterstützung, ihre guten Ratschläge und die unschätzbare Zusammenarbeit und Hilfe, die sie mir gewährt haben, meinen tiefsten Dank aussprechen.

Ich danke auch Frau Hanae El moujahid, Lehrerin und Betreuerin, für ihre wertvolle Hilfe und Ermutigung während der gesamten Zeit, sei es während der Ausbildung oder der Betreuung.

Ein großes Dankeschön an meine Mutter und meinen Vater für ihre Ratschläge sowie für ihre bedingungslose Unterstützung, sowohl moralisch als auch wirtschaftlich.

Schließlich möchte ich auch dem gesamten Lehrkörper und der Verwaltung des IFMEREE Tanger, meinen herzlichen Dank dafür aussprechen, dass sie mir während dieses Studienjahres alle notwendigen Kenntnisse vermittelt haben, und zwar in einem angenehmen Rahmen der Komplizenschaft und des Respekts.

Widmung

Ich möchte all jenen meine tiefe Dankbarkeit ausdrücken, die, egal wie ich mich ausdrücke, niemals die aufrichtige Liebe verstehen können, die ich für sie empfinde. Ihnen zu Ehren widme ich diese Arbeit demütig.

An meinen lieben Vater, diesen wertvollen Mann, den Gott mir gegeben hat und dem ich mein Leben, meinen Erfolg und meinen Respekt verdanke.

An meine wunderbare Mutter, diese Frau, die gelitten hat, ohne mich jemals leiden zu lassen, die all meine Bitten ohne zu zögern akzeptiert hat und die keine Mühe gescheut hat, mich glücklich zu machen.

An meine beiden Brüder, die nie aufgehört haben, mir Ratschläge zu geben, mich zu ermutigen und mich während meines Studiums zu unterstützen. Möge Gott sie beschützen und sie mit Glück und Zufriedenheit überschütten.

An meinen engen Freund Mohammed Zairi, der mich während der gesamten Ausbildungszeit immer wieder motiviert.

An Herrn Abdelilah AKKYENE von der Gastorganisation, der mich als Praktikant in seinem Unternehmen SURATEM aufgenommen hat.

An die Organisation MOHAMED AKKEYNE, die es mir ermöglicht hat, zu erfahren, wie die Arbeit auf Baustellen funktioniert.

An alle meine Cousins, Nachbarn und Freunde, die ich bis jetzt kennenlernen durfte. Danke für ihre Liebe und Ermutigung.

Inhaltsverzeichnis

Inhalte

In	halts	verz	eichnis	1
V	erzei	chnis	s der Abbildungen	3
Li	ste d	er Ta	abellen	4
Αl	lgem	eine	Einleitung	5
I	Ka	apite	el 1: Präsentationen der Gastorganisation	6
	1)	Vor	stellung von SURATEM	6
	2)	Per	sonal von SURATEM	7
	3)	Ma	terielle Mittel	8
П	Ka	apite	el 2: Untersuchung und Dimensionierung einer Solaranlage	9
	1)	Vor	stellung eines Projekts	9
	2)	Allg	emeine Beschreibung der Website	9
	a)	Α	Allgemeines Geben	9
	b)	L	okalisierung der Seite	10
	c)	В	Bestrahlung durch die Sonne	10
	d)) N	Aaskeneffekt	10
	e)	(Grundriss und verfügbare Fläche	11
	3)	Bes	timmung des Energiebedarfs des Standorts	12
	a)	E	nergiebilanz	12
	b)) A	sbgerufene/installierte Leistung	13
	4)	Din	nensionierung der Einrichtung	13
	a)	В	Berechnung des Energiebedarfs	13
		i)	Verbrauchte Energie	13
		ii)	Tägliche Energie vom ungünstigsten Zeitpunkt an	13
		iii)	Spitzenleistung	14
		iv)	Auswahl an Panels	15
		v)	Anzahl der Panels	15
	b)) K	Compatibilität der Oberfläche	15
	c)		Dimensionierung des Wechselrichters	18
		i)	Kompatibilität in Potenz	18

i	ii) Kompatibilität in Spannung	19
i d)	iii) Kompatibilität in Strom	
i	i) Kabelquerschnitt zwischen den Paneelen und der Anschlussdose	20
i	ii) Kabelquerschnitt zwischen der Anschlussdose und dem Wechselrichter	21
e)	Kabelquerschnitt des AC-Teils	21
i	i) Kabelquerschnitt zwischen Wechselrichter und Schalttafel	21
f)	DC-Schutzvorrichtungen	22
i	i) Dc-Sicherung	22
i	ii) DC-Lasttrennschalter	23
i	iii) DC-Leistungsschalter	23
i	iv) DC-Überspannungsableiter	24
g)	Der Eigenverbrauch	25
h)	Elektrisches Schema der Einrichtung	26
i) 5) [Die 3D-Simulation Die wirtschaftliche Studie	
a)	Die Preisliste	28
b)	Die Rentabilität	29
a)	Der jährliche Gewinn	30
III Kap	pitel3:Die erledigten Aufgaben	31
1) [Die Solaranlagen	31
a)	Solarpumpanlage	31
b)	Solaranlage mit einer Leistung von 270kwp	36
c)	Installation von Solarwarmwasserbereitern	41
ALLGEN	1EINE SCHLUSSFOLGERUNG	42
Bibliogra	afie	43
Anhäng	e	44
Classor		50

Verzeichnis der Abbildungen

Abbildung 1:Organisationsdiagramm	7
Abbildung 2:Die Mittel	8
Abbildung 3:: Lage des Standorts	10
Abbildung 4:Verfügbare Dachfläche	11
Abbildung 5:Gerufene Leistung der Fabrik	13
Abbildung 6:TRJKM 450 W "Datenblatt"	15
Abbildung 7:Schema für die Anordnung der PV-Paneele auf den Dächern	16
Abbildung 8:Berechnung der Schattierung zwischen den Strings	
Abbildung 9:SUN2000-60KTL-M0 "Datenblatt"	
Abbildung 10:SUN2000-60KTL-M0 "Datenblatt"	18
Abbildung 11:HUAWEI SUN2000-100KTL-M1	20
Abbildung 12:HUAWEI SUN2000-60KTL-M0	20
Abbildung 13:Sicherung Und Sicherungshalter Solar SUNTREE 20A 1000V	
Abbildung 14:Lasttrennschalter DC1000V, 16A	
Abbildung 15:Modularer Schutzschalter - 2P - 32A	
Abbildung 16:PV-Leistungsschalter C63 A PV-DC	24
Abbildung 17:DS210-75DC	24
Abbildung 18:Elektrische Schaltpläne der Installation	26
Abbildung 19:Die 3D-Simulation	
Abbildung 20:Bauernhof	
Abbildung 21:Die Natur des Baumes	
Abbildung 22:Schacht	
Abbildung 23:Schacht	33
Abbildung 24:Solarpanels	
Abbildung 25::Schutzbrief	
Abbildung 26:Struktur	
Abbildung 27:Photovoltaikpaneele	37
Abbildung 28:Die Sicherungstüren	38
Abbildung 29:Schutzkasten	39
Abbildung 30: Der Wechselrichter	40
Abbildung 31:Die Installation eines Solarwarmwasserbereiters	41

Liste der Tabellen

Tabelle 1:Monatliche Bestrahlung (PVGIS)	10
Tabelle 2:Technische Daten von Dächern	11
Tabelle 3:Monatliche Verbrauchsbilanz	12
Tabelle 4:Technische Daten zur max. installierten Leistung	17
Tabelle 5:Eigenverbrauch	25
Tabelle 6:Die Preisliste	28
Tabelle 7:Im ersten Jahr erzielte Gewinne	29
Tabelle 8:Der monatliche Gewinn, Routerdaten auf Investitionen	29
Tabelle 9:: Der jährliche Gewinn	30

Allgemeine Einführung

Vom 15.04.2022 bis zum 15.07.2023 hatte ich das Privileg, ein bereicherndes Praktikum bei der Firma SURATEM zu absolvieren. Diese Erfahrung bot mir eine einzigartige Gelegenheit, neues technisches Wissen zu erforschen und zusätzliche Fähigkeiten zu erwerben. Tatsächlich war das Praktikum äußerst vorteilhaft, da es uns in die Realität und das echte industrielle Umfeld der Unternehmen eintauchen ließ. Während der gesamten Zeit habe ich verschiedene Aufgaben erfüllt, von denen hier einige Beispiele genannt werdensollen:

- Ich habe umfangreiche Studien und Forschungen zum Thema Energie durchgeführt Photovoltaik.
 - Ich habe an Design- und Berechnungsaktivitäten teilgenommen.

Diese Aufträge ermöglichten es mir, meine theoretischen Kenntnisse in die Praxis umzusetzen und mein Verständnis für Konzepte im Zusammenhang mit der Solarenergie zu vertiefen. Darüber hinaus hatte ich die Möglichkeit, in einem Team zu arbeiten, mit erfahrenen Branchenexperten zu interagieren und den Umgang mit branchenspezifischen Werkzeugen und Software zu erlernen. Das Praktikum hat mein Vertrauen in meine Fähigkeiten wirklichgestärkt und meine beruflichen Perspektiven erweitert. Ich bin SURATEM dankbar, dass sie mir diese wertvolle Gelegenheit zum persönlichen und beruflichen Wachstum geboten hat.

I Kapitel 1: Präsentationen der Gastorganisation

1) Vorstellung von SURATEM

SURATEM ist eine im August 1996 gegründete GmbH, deren Generaldirektor Herr Abdelilah AKKYENE ist. SURATEM wurde gegründet, um den Bedürfnissen des marokkanischen Marktes gerecht zu werden. Das Unternehmen zeichnet sich durch die Qualität und Effizienz seiner Dienstleistungen aus.

SURATEM ist sich der technologischen Entwicklung ständig bewusst und stellt seinen Kunden seine Erfahrung und sein Know-how zur Verfügung, um elektronische Systeme zu planen, zu beraten, zu realisieren und zu warten.

5 Tätigkeitsschwerpunkte, die in ein Kontinuum von Dienstleistungen für unsere Kunden integriert sind:

- System zur Automatisierung von Türen
- Zugangskontrollsystem
- · Sicherheitssystem; Einbruchsalarm, Brandmeldeanlage, Videoüberwachung
- · Lösungen für Computernetzwerke & Telefonstandards
- Domotisches System
- · Solarenergie; Beleuchtung, Solarwarmwasserbereiter, Pumpen

2) Personal von SURATEM

3) Materielle Mittel

- 01 gut organisierter Showroom.
- 02 Gut ausgestattete Werkstatt mit einem Elektronik-Kit für Montageund Tests sowieelektronischen Mess- und Kontrollgeräten.
- 03 Mikrocomputer.
- 04 Geschäfte.
- 05 Dienstwagen.

Abbildung 2:Die Mittel

Kapitel 2: Untersuchung und Dimensionierung einer Solaranlage

1) Projektvorstellung:

Im Rahmen dieses Projekts konzentrieren wir uns auf die Installation einer photovoltaischen Solaranlage in der ARICOF II-Fabrik in Tanger. Ziel ist es, die Nutzung von Solarenergie als Ergänzung zur Stromversorgung aus dem öffentlichen Netz zu optimieren. Die Integration dieses Solarkraftwerks wird eine Nutzung durch Eigenverbrauch ermöglichen und so die Abhängigkeit vom öffentlichen Netz in Zeiten, in denen Sonnenenergie zur Verfügung steht, verringern.

Eine der Schlüsselfragen, mit denen wir uns beschäftigen, ist die Suche nach Lösungen, wie dieses Photovoltaik-Solarkraftwerk am besten in das bestehende Gelände integriert werden kann. Wir prüfen sorgfältig die technischen Einschränkungen und die potenziellen Vorteile jeder Option. Darüber hinaus betrachten wir dieses Projekt im Rahmen einer breiteren Perspektive der globalen Energieeffizienz und berücksichtigen dabei die gesamte Energiekette der Anlage.

Auf der Grundlage einer eingehenden Analyse versuchen wir, den besten Ansatz für die Realisierung dieser Photovoltaik-Solaranlage zu ermitteln, wobei wir die spezifischen Anforderungen der ARICOF II-Fabrik berücksichtigen. Unser Ziel ist es, die effizientesten und wirtschaftlich tragfähigsten Lösungen zu ermitteln und gleichzeitig einen Beitrag zum Übergang zu einer nachhaltigeren Energiequelle zu leisten und die Energiekosten der Fabrik zu senken.

2) Allgemeine Beschreibung der Website:

a) Allgemeines Geben

Aktivität am Standort : Industrieanlage

Betrieb des Unternehmens: 24/24

Preis für KWh Netz konstant: 0,8 dhs/KWh

Art des Netzanschlusses: über MS-Transformator im öffentlichen Netz

b) Lokalisierung des Standorts

Abbildung 3:: Lage des Standorts

c) Sonneneinstrahlung

Die folgende Tabelle zeigt die monatliche Einstrahlung auf unsere Anlage. Diese Daten werden von der PVGIS-Website berechnet, die ein hervorragendes Simulationswerkzeug darstellt und es ermöglicht, die Produktion von netzgekoppelten Photovoltaikanlagen in Europa und Afrika kostenlos zu berechnen ...

Tabelle 1:Monatliche Bestrahlung (PVGIS)

N	Monat	Jan	Feb.	März	April	Mai	Juni	Juli	Augus t	siebe n	Okt.	Nov.	Dec.
	Sestrahlung KWh/m²/d		6,14	5,50	5,57	7	6,88	7,40	7,38	6,75	5,88	4,71	4,07

d) Maskeneffekt

Wenn es Masken gibt, egal ob nah oder fern, können sie die Menge an Sonnenlicht beeinflussen, die die Solarpaneele erreicht. Dies führt zu einer geringeren Menge an gewonnener Sonnenenergie und damit zu einer geringeren Stromproduktion. Es ist wichtig, diese potenziellen Masken zu identifizieren und zu verstehen, um die Nutzung der Sonnenenergie zu maximieren. Durch die Charakterisierung dieser Masken können wir Maßnahmen zur Optimierung der Solarenergieerzeugung ergreifen und die Effizienz unseres Photovoltaiksystems verbessern.

e) Grundriss und verfügbare Fläche

Da es s ich bei der Integration einer Photovoltaikanlage um ein Projekt handelt, das sowohl architektonische als auch elektrische Einschränkungen mit sich bringt, ist eine detaillierte Standortstudie mit aktuellen Plänen erforderlich, um die folgenden Punkte zu ermitteln Bereiche, die Hindernisse aufweisen, und Bereiche mit starkem Schatteneffekt.

Abbildung 4:Verfügbare Dachfläche

Auf dem folgenden Plan sind die potenziell attraktiven Standorte für eine schattenfreie Solaranlage markiert:

Tabelle 2:Technische Daten von Dächern

Bereich	1
Fläche (m²)	1 225,82 m ²
Bereich	2
Fläche (m²)	1 266,89 m ²
Orientierung	Süden

Die Zonen "*" weisen Schlagschatten auf und werden ausgeschlossen, da mit Strukturen gearbeitet wird. Die nutzbare Fläche (Zonen 1 und 2) wird auf 2492,71 m² geschätzt.

3) Bestimmung des Energiebedarfs des Standorts:

a) Energiebilanz

Tabelle 3:Monatliche Verbrauchsbilanz

	Leistung	Verbrauch	Verbrauch	Verbrauch	Verbrauch
Monat	angerufen	gesamt	HN	НС	НР
	(KW/Monat)	(KWh/Monat)	(KWh/Monat)	(KWh/Monat)	(KWh/Monat)
Januar	493	87932	74972	10272	2688
Februar	435	86280	72303	10603	3374
März	435	86280	72303	10603	3374
April	266	59673	42727	14450	2496
Mai	376	48531	37355	9930	1246
Juni	469	94458	82134	9854	2470
Juli	389	85317	71201	8896	5220
August	474	76534	64355	9667	2512
September	476	127308	113258	11008	3042
Oktober	445	111975	94292	11977	5706
November	488	115563	96471	12916	6176
Dezember	476	55509	46263	7061	2185
Insgesamt	5222	1035360	867634	127237	40489
<u>Durchschni</u> <u>tt</u>	435	86280	72303	10603,1	3374,1
Min	266	59673	37355	7061	1246
Max	493	127308	113258	12916	6176
Verteilung des Verbrauchs			84%	12%	4 %

b) Abgerufene/installierte Leistung

Abbildung 5:Gerufene Leistung der Fabrik

Der durchschnittliche Stromverbrauch des Standorts beträgt 435 kW, mit einem Minimum im April von 266 kW.

4) Dimensionierung der Einrichtung

a) Berechnung des Energiebedarfs

i) Verbrauchte Energie

Der durchschnittliche monatliche Energieverbrauch in den normalen Stunden beträgt: 72303 kWh/Monat

Dann ist die täglich verbrauchte Energie:

$$Ec_{Tag} = \frac{E_{Durchschnitt}}{30}$$

= 2410,1 kwh/dr

ii) Tägliche Energie aus dem ungünstigsten Monat :

Da die Fabrik 24 Stunden am Tag und in allen Monaten dann arbeiten wird, um das Bedürfnis zu befriedigen

in der normalen Arbeitszeit, werden wir den Monat mit den meisten Stunden bearbeiten.

ungünstig ist. Also laut PV GIS findet man, dass der Monat Dezember am meisten ungünstig.

Bestrahlung = 4.07 wh//2

iii) Spitzenleistung

Diese Leistung stellt die Leistung dar, die das Panel am Leistungspunkt liefert. maximal zu erreichen. Es handelt sich um eine ideale Leistung, die unter optimalen Bedingungen erbracht wird (STC):

- Eine Sonneneinstrahlung von 1 000 W Licht/m2.
- Eine Außentemperatur von 25°C.
- Eine gute Ausrichtung der Paneele und keine Schatten.
- AM = 1.5

Formel für die Spitzenleistung:

$$P_c = \frac{E_{Bedarf} \times P_i}{E_i \times k}$$

Mit:

Pc in (W c)

Ec in (Wh/j)

Ir in (kWh/m2.Tag)

Der K-Koeffizient: die Leistungsration "PR" der PV-Anlage

Numerische Anwendung:

Es gibt
$$P_{c} = \frac{E_{bedarf} \times 1}{0.85 \times 4.07}$$
$$= \frac{2410.1 \times 1}{0.85 \times 4.07}$$
$$= 697 \text{ kwc}$$

iv) Wahl des Panels

Panel JAM72S20 Monofacial

· Anzahl der Zellen: 156

Module Type		N-7RL3 N-7RL3-V	JKM455 JKM455N	Carlo Commercia		0N-7RL3 N-7RL3-V	JKM465 JKM465N	1000	-	N-7RL3 47RL3-V
	STC	NOCT	STC	NOCT	5TC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	450Wp	336Wp	455Wp	339Wp	400Wp	343Wp	465Wp	347Wp	470Wp	350Wp
Maximum Power Voltage (Vmp)	42 90V	39.29V	43.01V	39,40V	43.12V	39.51V	43.22V	39.67V	43.32V	39.78V
Maximum Power Current (Imp)	10.49A	8.54A	10.58A	8.61A	10:67A	A83.8	10.76A	8,74A	10.85A	8.81A
Open-circuit Voltage (Voc)	51.50V	48.61V	51.60V	48.70V	51.70V	48.80V	51.90V	48.99V	52.10V	49.18V
Short-circuit Current (Isc)	11.32A	9.14A	11.41A	9.22A	11.50A	9.29A	11.59A	9.36A	11.68A	9.43A
Module Efficiency STC (%)	20.0	14%	20.	26%	20.	49%	20.	71%	20.	33%
Operating Temperature(°C)					-40°C	+85°C				
Maximum system voltage					1000/1500	VDC (IEC)				
Maximum series fuse rating					20	A				
Power tolerance					0-+	3%				
Temperature coefficients of Pmax					-0.34	%/°C				
Temperature coefficients of Voc					-0.28	%/°C				
Temperature coefficients of Isc					0.048	1%/°C				
Nominal operating cell temperature	(NOCT)				45±	2°C				

Abbildung 6:TRJKM 450 W "Datenblatt".

v) Anzahl der Panels

Anzahl der Panels =
$$\frac{P_c}{P_c Einzelner Paneel}$$

$$=697000 = 1549 odules$$

b) Oberflächenkompatibilität

Wir sehen, wie viele Paneele mit der verfügbaren Fläche vereinbar sind.

Die Fläche des Paneels ist: S = 2,17 m2

Die PV-Feldfläche ist: Feld = $2,17 \times 1549$

Feld = 3367 m2

Wir haben die verfügbaren Flächen geschätzt, die für Solarenergie genutzt werden können (Zone 1 und 2). Zur Erinnerung: Diese Fläche ist die Fläche, die frei von Hindernissen und Abschattungen ist.

Nach den Anweisungen des Betreuers erstellte ich ein Schema für die Anordnung der Paneele und Strukturen auf den in der Software "AutoCAD" verfügbaren Flächen.

NB: AutoCAD ist eine Software, mit der man elektrische Schaltpläne und auch 3D-Zeichnungen erstellen kann.

Hier ist das Schema für die Anordnung der PV-Paneele :

Abbildung 7:Schema für die Anordnung der PV-Paneele auf den Dächern

Wir verwenden Strukturen mit 3 PV-Panels, jede ist 5,2 m lang und 3 m hoch, insgesamt haben wir 4 Strings für jedes Dach, jeder String hat 25 Strukturen, jede Struktur hat 3 PV-Panels, wobei der Abstand zwischen den Strings eingehalten werden muss, damit kein Schatten entsteht.

Laut einer Website zur Berechnung der Verschattung zwischen den Modulen in Marokko findet man:Der Mindestabstand zwischen den Modulen

$$PV = 442,19 \text{ cm} = 4,42 \text{ m}$$

Abbildung 8:Berechnung der Schattierung zwischen den Strings

Die gesamte auf dem Dach installierbare Leistung ist im Folgenden detailliert aufgeführt:

Tabelle 4: Technische Daten zur max. installierten Leistung

Bereich	1 - 2
Anzahl der Panels von 450W	600
Spitzenleistung (kWp)	270
Fläche (m²)	1302

600 JAM72S20 450Wp-Paneele aus monokristallinem Silizium werden benötigt, um den Leistungsbedarf des Solarkraftwerks zu decken.

c) Dimensionierung des Wechselrichters

i) Potenz-Kompatibilität

Wir haben die Spitzenleistung beträgt 270 kWp, dann ist die Leistung des Wechselrichters muss sein :

Pc \times 0.8 < Leistung des Wechselrichters < Pc \times 1.1 270 \times 0.8 < Leistung des Wechselrichters < 270 \times 1.1 216 < Leistung des Wechselrichters < 297

Dann brauchen wir zwei Wechselrichter mit 100 kW und einen mit 60 KW.

Es wurden drei Wechselrichter der Marke HUAWEI mit den Artikelnummern <u>SUN2000-100KTL-M1</u> und .

Input				
Max. Input Voltage	1,100 V			
Max. Current per MPPT	26 A			
Max. Short Circuit Current per MPPT	40 A			
Start Voltage	200 V			
MPPT Operating Voltage Range	200 V ~ 1,000 V			
Nominal Input Voltage	720 V @480 Vac, 600 V @400 Vac, 570 V @380 Vac			
Number of Inputs	20			
Number of MPP Trackers	10			

Abbildung 9:SUN2000-60KTL-M0 "Datenblatt".

	Entrée	
Tension d'entrée max. 1	1,100 V	
Courant d'entrée max par MPPT	22 A	
Max. Courant de court-circuit par MPPT	30 A	
Tension de démarrage	200 V	
MPPT Tension de fonctionnement 2	200 V ~ 1,000 V	
Tension nominale d'entrée	600 V @380 Vac / 400 Vac; 720 V @480 Vac	
Nombre d'entrées	12	
Nombre de trackers MPP	6	

Abbildung 10:SUN2000-60KTL-M0 "Datenblatt".

ii) Kompatibilität in Spannung

Maximal zulässige Spannung

Max. Anzahl der Module in Reihe = E –
$$\left[\frac{U_{max}}{U_{co} \times k}\right]$$

$$=\frac{1100}{51,15\times1,15}=\frac{19 \text{ Module}}{1}$$

MPPT-Spannungsbereich

Max. Anzahl der Module in Reihe = E –
$$\left[\frac{U_{mppt,max}}{U_{mpp} \times k}\right]$$

$$=\frac{1000}{42,9\times1,15}$$
 = 20 Module

Min. Anzahl der Module in Reihe = E +
$$\left[\frac{U_{mppt,min}}{U_{mpp} \times 0.85}\right]$$

$$=\frac{200}{42,9\times0,85}=6$$
 Module

iii) Die Kompatibilität in Strom

• Für den 100 KW-Wechselrichter

Max. Anzahl der parallelen Module = E - $\left[\frac{I_{max}}{I_{mpp}}\right]$

$$=\frac{260}{10.49} = \frac{23}{10.49}$$
 Kanäle

Für den 60 KW-Wechselrichter

Max. Anzahl paralleler Module = E - $\left[\frac{I_{max}}{I_{mpp}}\right]$

$$=\frac{132}{10.49}$$
 = 12 Zeichenfolgen

Die angebotenen Wechselrichter verfügen über integrierte DC-Anschlusskästen mit allen Vorgeschriebene Schutzmaßnahmen (Überspannungsableiter, Trennschalter, ...).

Abbildung 11:HUAWEI SUN2000-100KTL-M1

Abbildung 12:HUAWEI SUN2000-60KTL-M0

⇒ Nach einer Diskussion mit dem Betreuer fand ich heraus, dass die Anzahl der Module, die man beim 60-KW-Wechselrichter verwenden wird, 14 in Reihe und 12 parallel ist, und beim 100-KW-Wechselrichter wird man 12 Module in Reihe und 18 Module parallel verwenden.

d) Kabelquerschnitt des DC-Teils

i) Kabelquerschnitt zwischen den Paneelen und der Anschlussdose

Wir haben:

$$S = \frac{\rho \times 2l \times I_{mpp}}{\varepsilon \times NS \times V_{mpp}}$$

$$\frac{\text{Für: NS} = 14}{= 0.02314 \times 2 \times 500 \times 10,49}$$
$$= 0.03 \times 14 \times 42,90$$
$$= 13,47 \text{ mm2}$$

 $\frac{\text{Für: NS} = 12}{0.02314 \times 2 \times 500 \times 10,49}$ $= \frac{0.03 \times 12 \times 42,90}{0.03 \times 12 \times 42,90}$ $= \frac{15,71 \text{ mm}}{2}$

NS: Bezug auf die Anzahl der in Reihe geschalteten Solarmodule

: Der spezifische Widerstand des leitenden Kupfermaterials im Normalbetrieb (.mm²/m) L: Die Länge des Kabels zwischen den Platten und dem Umrichter (m)

€: der Spannungsabfall (%)

S: Der Kabelquerschnitt in mm2

ii) Kabelquerschnitt zwischen der Anschlussdose und dem Wechselrichter

Wir haben:

$$S = \frac{\rho \times 2l \times NP \times I_{mpp}}{\varepsilon \times NS \times V_{mnn}}$$

 $- F\ddot{\mathbf{u}}\mathbf{r} : \mathbf{NS} = \mathbf{14}$

 $= \frac{0.02314 \times 2 \times 100 \times 2 \times 10,49}{0,03 \times 14 \times 42,90}$

 $= 5.38 \text{ mm}^2$

Für: NS = 12

 $=\frac{0.02314\times2\times100\times2\times10,49}{0,03\times12\times42,90}$

 $= 6.28 \text{ mm}^2$

NP: "Polzahl" bezieht sich auf die Anzahl der Phasen des vom Wechselrichter erzeugten Wechselstroms.

- e) Kabelquerschnitt des AC-Teils
 - i) Kabelquerschnitt zwischen Wechselrichter und Schalttafel

Wir haben:

$$S = \frac{\rho \times 2l \times Is \times 1,25}{\varepsilon \times U}$$

Für: Wechselrichter 60KW

 $\frac{=0.02314 \times 2 \times 50 \times 91,2 \times 1,25}{0,03 \times 380}$

= 23,14 mm2

Für: 100KW-Wechselrichter

 $= \frac{0.02314 \times 2 \times 50 \times 152 \times 1,25}{0,03 \times 380}$

 $= 38,5 \, mm2$

Is: Ausgangsstrom des Wechselrichters (A)

R: Linearer Leiterwiderstand (.mm²/m)

X: Leiterdrossel (/ m)

Cos φ: Leistungsfaktor

f) DC-Schutzvorrichtungen

Wir nehmen die Schutzausrüstung, die mit unserer Anlage kompatibel ist, nach den folgenden Beziehungen :

- i) Dc-Sicherung
- Kalibrierung "A"

 $1,1 \times 1,25 \times \mathit{Icc} \leq \mathit{I}$ Sicherungsgröße $\leq 2 \times \mathit{Icc}$ $15,95 \leq \mathit{I}$ Sicherungsgröße $\leq 23,2$

Kalibrierung "V"

Für die Nb. S = 14

U Sicherungsgröße $\geq Uco \times Ns \times K$ *U* Sicherungsgröße $\geq 793,73$

Für die Nb. S = 12

U calcebre de ffusceble \geq Uco \times Ns \times K U calcebre de ffusceble \geq 680,34

* Dann wählen wir ein Kaliber von 20A – 1000V.

Abbildung 13:Sicherung Und Sicherungshalter Solar SUNTREE 20A 1000V

ii) DC-Lasttrennschalter

Kalibrierung "A"

I Kaliber des Schalters - Trennschalters $\geq 1,25 \times Icc$

I Kaliber des Schalters - Trennschalters ≥ 14,5

Kalibrierung "V"Für die Nb. S = 14

U Kaliber des Schalters - Trennschalters \geq Uco \times Ns \times K

U Kaliber des Schalters - Trennschalters ≥ 793.73

Für die Nb. S = 12

U Kaliber des Schalters - Trennschalters \geq Uco \times Ns \times K

U Kaliber des Schalters - Trennschalters ≥ 680,34

⇒ Dann wählen wir ein Kaliber von 16A 1000V.

Abbildung 14:Lasttrennschalter DC1000V, 16A

iii) DC-Leistungsschalter

• Kalibrierung "A"

I Leistungsschalterkaliber $\geq Np \times 1,25 \times Icc$

*I*Kaliber des Leistungsschalters ≥ 58 ⇒ Np = 4

*I*Kaliber des Leistungsschalters ≥ 29 ⇒ Np = 2

⇒ Dann wählen wir eine 63-A-Größe für den ersten Leistungsschalter und eine weitere 32-A-Größe für den zweiten Leistungsschalter.

Abbildung 16:Schutzschalter PV C63 A PV-DC

Abbildung 15:Modularer Schutzschalter - 2P - 32A

iv) DC-Überspannungsableiter

Kalibrierung "V"

U Kalibrierung von Blitzableitern $\geq 1,5 \times Uoc$

U Kalibrierung von Blitzableitern $\geq 73,95$

⇒ Dann wählen wir ein Kaliber von 75 V.

Abbildung 17:DS210-75DC

- Parafoudre pour Alimentation Continue
- 75 Vdc
- Imax: 6 kA
- Module débrochable
- > Indicateur de fonctionnement
- Conforme NF EN 61643-11, IEC 61643-11 et UL1449 ed.4

g) Eigenverbrauch

Der Photovoltaik-Eigenverbrauch ist der Verbrauch des selbst erzeugten Solarstroms. Dadurch wird die Abhängigkeit vom nationalen Stromnetz verringert.

Tabelle 5:Eigenverbrauch

Monat	Elektrisches I	Eigenverbra Netzwerk	Solaranlage	Konsum	
	Kwh/Mon at	%	Kwh/Mon at	%	Kwh/Monat
Januar	63924	72,70	24008	27,30	87932
Februar	59789	69,30	26491	30,70	86280
März	56144	65,07	30136	34,93	86280
April	35039	58,72	24634	41,28	59673
Mai	26957	55,55	21574	44,45	48531
Juni	56692	60,02	37766	39,98	94458
Juli	50162	58,79	35155	41,21	85317
Augu st	44802	58,54	31732	41,46	76534
September	87983	69,11	39325	30,89	127308
Oktober	77501	69,21	34474	30,79	111975
November	85721	74,18	29842	25,82	115563
Dezember	38956	70,18	16553	29,82	55509
Jährlich es Mittel	56972,5	66,03	29307,5	33,97	86280

h) Elektrisches Schema der Einrichtung:

Aus der AutoCAD-Software habe ich ein Beispiel für einen Schaltplan erstellt:

Abbildung 18:Elektrische Schaltpläne der Anlage

i) Die 3D-Simulation

Abbildung 19:Die 3D-Simulation

5) Die Wirtschaftsstudie

a) Die Preisliste

N°	BESCHREIBUNG	UNIT	QTE	P.EINHEIT	P.TOTAL	P.INK L.
						MWS T.
1	Ausführungsstudie	F	1	15.000,00 DH	15.000,00 DH	18.000,00 DH
2	Photovoltaik-Paneele 450 Wp	U	600	2.000,00 DH	1.200.000,00 DH	1.320.000,00 DH
3	Befestigungssystem in Schienen auf Schrägdächern	U	600	350,00 DH	210.000,00 DH	252.000,00 DH
4	Dreiphasige Wechselrichter Einspeisung 100 KW (Marke Huawei)	U	2	75.000,00 DH	150.000,00 DH	180.000,00 DH
5	Dreiphasige Wechselrichter Einspeisung 60 KW (Marke Huawei)	U	1	43.330,00 DH	43.330,00 DH	51.996,00 DH
В	Bauingenieurwesen	U	150	120,00 DH	18.000,00 DH	21.600,00 DH
7	Solarkabel(13,47mm² - 15,71mm² -5,38mm² -) 6,28mm²- 23,14mm² - 38,5mm²)	М	Х	50.000,00 DH	50.000,00 DH	60.000,00 DH
8	Schutzausrüstungen für Verdrahtung und Anschluss	F	1	60.000,00 DH	60.000,00 DH	72.000,00 DH
9	Intelligenter Zähler Injektionsbegrenzer + Monitoringsystem + Kommunikationssystem (Marke Huawei)	F	1	15.750,00 DH	15.750,00 DH	18.900,00 DH
	Transport und Handhabung	F	1	3.000,00 DH	3.000,00 DH	3.600,00 DH
11	Installation Anschluss und Inbetriebnahme	F	1	140.000,00 DH	140.000,00 DH	168.000,00 DH
	TOTAL HT -MAD	2.115.080,00 DH				
GESAMT INKL. TTC - MAD				2.166.096,00 DH		

Tabelle 6:Die Preisliste

b) Die Rentabilität

Die folgende Tabelle zeigt die im ersten Jahr erzielten Gewinne nach die Einrichtung

Tabelle 7:Im ersten Jahr erzielte Gewinne

Monat	die Solarproduktion Gewinn Kwh/Mt.	derfinanzielle MAD/Monat	
Januar	24008	22.807,60 DH	
Februar	26491	25.166,45 DH	
März	30136	28.629,20 DH	
April	24634	23.402,30 DH	
Mai	21574	20.495,30 DH	
Juni	37766	35.877,70 DH	
Juli	35155	33.397,25 DH	
August	31732	30.145,40 DH	
September	39325	37.358,75 DH	
Oktober	34474	32.750,30 DH	
November	29842	28.349,90 DH	
Dezember	16553	15.725,35 DH	
den jährlichen Gewinn der Anlage	351690	334.105,50 DH	

Tabelle 8:der monatliche Gewinn, Routerdaten auf Investitionen

Preis pro Einheit für H. Normal :	0,95 DH		
Investition	2.115.080,00 DH		
Lebensdauer	25 Jahre		
Zeit des Routers über die Investition	6,33 JAHRE		

a) Der jährliche Verdienst

Die folgende Tabelle zeigt die kumulierten Gewinne, die während der gesamten (finanziellen) Lebensdauer des Kraftwerks von 25 Jahren erzielt wurden.

Tabelle 9:: Der jährliche Gewinn

	Tabelle 9:: Der jährliche Gewinn							
	Solarertrag KWh/Jahr	Jährlicher Gewinn MAD/Jahr	Wartungsk osten	Gewinnkumulati on	Saldokumulation			
0					- 2.115.080,00 DH			
1	351690	334.105,50 DH		334.105,50 DH	- 1.780.974,50 DH			
2	349558,5632	332.080,64 DH	5.000,00 DH	661.186,14 DH	- 1.448.893,86 DH			
3	347440,044	330.068,04 DH	5.000,00 DH	986.254,18 DH	- 1.118.825,82 DH			
4	345334,3643	328.067,65 DH	5.000,00 DH	1.309.321,82 DH	-790 .758,18 DH			
5	343241,4461	326.079,37 DH	5.000,00 DH	1.630.401,20 DH	-464 .678,80 DH			
6	341161,2122	324.103,15 DH	5.000,00 DH	1.949.504,35 DH	-140 .575,65 DH			
7	339093,5857	322.138,91 DH	5.000,00 DH	2.266.643,25 DH	181.563,25 DH			
8	337038,4901	320.186,57 DH	5.000,00 DH	2.581.829,82 DH	501.749,82 DH			
9	334995,8496	318.246,06 DH	5.000,00 DH	2.895.075,88 DH	819.995,88 DH			
10	332965,5886	316.317,31 DH	5.000,00 DH	3.206.393,19 DH	1.136.313,19 DH			
11	330947,6321	314.400,25 DH	5.000,00 DH	3.515.793,44 DH	1.450.713,44 DH			
12	328941,9055	312.494,81 DH	5.000,00 DH	3.823.288,25 DH	1.763.208,25 DH			
13	330947,6321	314.400,25 DH	5.000,00 DH	4.132.688,50 DH	2.077.608,50 DH			
14	328941,9055	312.494,81 DH	5.000,00 DH	4.440.183,31 DH	2.390.103,31 DH			
15	326948,3348	310.600,92 DH	5.000,00 DH	4.745.784,23 DH	2.700.704,23 DH			
16	324966,8462	308.718,50 DH	5.000,00 DH	5.049.502,73 DH	3.009.422,73 DH			
17	322997,3665	306.847,50 DH	5.000,00 DH	5.351.350,23 DH	3.316.270,23 DH			
18	321039,823	304.987,83 DH	5.000,00 DH	5.651.338,06 DH	3.621.258,06 DH			
19	319094,1433	303.139,44 DH	5.000,00 DH	5.949.477,50 DH	3.924.397,50 DH			
20	317160,2554	301.302,24 DH	5.000,00 DH	6.245.779,74 DH	4.225.699,74 DH			
21	315238,088	299.476,18 DH	5.000,00 DH	6.540.255,92 DH	4.525.175,92 DH			
22	313327,57	297.661,19 DH	5.000,00 DH	6.832.917,11 DH	4.822.837,11 DH			
23	311428,6309	295.857,20 DH	5.000,00 DH	7.123.774,31 DH	5.118.694,31 DH			
24	309541,2003	294.064,14 DH	5.000,00 DH	7.412.838,45 DH	5.412.758,45 DH			
25	307665,2086	292.281,95 DH	5.000,00 DH	7.700.120,40 DH	5.705.040,40 DH			

Wir stellen fest, dass die Investition ab dem sechsten Jahr wieder hereingeholt wird. Der gesamte Gewinn, der in den folgenden Jahren übrig bleibt, ist ein Nettogewinn.

III Kapitel3:Die erledigten Aufgaben

1) Solaranlagen

a) Solarpumpanlage

Ramaser geben auf das Projekt:

Abbildung 20:Bauernhof

Die Natur des Baumes und sein Wasserbedarf.

Abbildung 21:Die Natur des Baumes

Die Schachthöhe

Abbildung 22:Schacht

Pumpe bestimmen

Abbildung 23:Schacht

<u>Installation der Panels</u>

Abbildung 24:Solarpanels

<u>Schutzkastenanschluss</u>

Abbildung 25::COSchutzbrief

b) Solaranlage mit einer Leistung von 270kwc

Die Installation und Befestigung der Tragstruktur

Abbildung 26:Struktur

Befestigung der PV-Paneele an der Struktur und elektrischer Anschluss

Abbildung 27:Photovoltaikpaneele

Der DC-Sicherungshalterkasten

Abbildung 28:Die Sicherungstüren

Schutzkastenanschluss

Abbildung 29:Schutzkasten

Der Anschluss von Wechselrichtern

Abbildung 30: Der Wechselrichter

c) Installation eines Solarwarmwasserbereiters

Abbildung 31:Die Installation eines Solarwarmwasserbereiters

ALLGEMEINE SCHLUSSFOLGERUNG

Dieses Praktikum stellt eine wertvolle Gelegenheit dar, die theoretischen Kenntnisse, die wir während unseres Studiums erworben haben, in die Praxis umzusetzen. Durch die Verschmelzung von Praxis und Theorie konnten wir einen besseren Einblick in den Bereich der Solarenergie gewinnen und unsere technischen und praktischen Fähigkeiten weiterentwickeln.

Die Installation einer photovoltaischen Solaranlage in der Fabrik ARICOF II in Tanger wurde rigoros angegangen. Durch die Analyse der technischen Einschränkungen und der potenziellen Vorteile konnten wir die effizientesten und wirtschaftlich tragfähigsten Lösungen ermitteln. Die Integration dieses Solarkraftwerks wird eine Nutzung für den Eigenverbrauch ermöglichen, die Abhängigkeit vom öffentlichen Netz verringern und zum Übergang zu einer nachhaltigeren Energiequelle beitragen.

Dieses Projekt hat die Bedeutung der Nutzung von Solarenergie im industriellen Kontext bestätigt. Die erzielten Ergebnisse belegen die Vorteile sowohl in wirtschaftlicher als auch in ökologischer Hinsicht. Die Optimierung der Nutzung von Solarenergie in der Fabrik ARICOF II wird zu erheblichen Einsparungen bei den Energiekosten führen.

Zusammenfassend lässt sich sagen, dass dieses Praktikum eine bereichernde Erfahrung war, bei der wir unser Wissen in die Praxis umsetzen und unsere Fähigkeiten im Bereich der Solarenergie weiterentwickeln konnten. Die ermittelten Lösungen werden zu einer effizienteren Nutzung der Solarenergie und zur Senkung der Energiekosten der Fabrik beitragen. Das Projekt ebnet außerdem den Weg für zukünftige Forschungs- und Entwicklungsarbeiten im Bereich der Solarenergie und der industriellen Energieeffizienz.

Bibliografie :

- · Huawei. (Abgerufen im Juli 2023). Website von Huawei. Abgerufen von http://www.solar.huawei.com
- JA Solar. (Abgerufen im Juli 2023). Website von JA Solar. Abgerufen von http://www.jasolar.com
- PVsyst Software. (Abgerufen im Juli 2023). Website von PVsyst. Abgerufen von http://www.pvsyst.com
- SketchUp. (Jahr der Veröffentlichung). Website von SketchUp.
 Abgerufen von http://www.sketchup.com
- AutoCAD. (Jahr der Veröffentlichung). Website von AutoCAD.
 Abgerufen von http://www.autodesk.com/autocad

Anhänge

Annex 1:Datenblatt für Paneele

Comprehensive Certificates

- IEC 61215, IEC 61730, UL 61215, UL 61730
- ISO 9001: 2015 Quality management systems
- ISO 14001: 2015 Environmental management systems
- ISO 45001:2018 Occupational health and safety management
- IEC TS 62941: 2016 Terrestrial photovoltaic (PV) modules Guidelines for increased confidence in PV module design qualification and type approval

JAM72S20 445-470/MR Series

	JAM72S20	JAM72S20	JAM72S20	JAM72S20	JAM72S20	JAM72520
TYPE	-445/MR	-450/MR	-455/MR	-460/MR	-465/MR	-470/MR
Rated Maximum Power(Pmax) [W]	445	450	455	460	465	470
Open Circuit Voltage(Voc) [V]	49.56	49.70	49.85	50.01	50,15	50.31
Maximum Power Voltage(Vmp) [V]	41.21	41.52	41.82	42.13	42.43	42.69
Short Circuit Current(isc) [A]	11.32	11.36	11.41	11.45	11,49	11.53
Maximum Power Current(Imp) [A]	10.80	10.84	10.88	10.92	10.96	11.01
Module Efficiency [%]	20.0	20.3	20.5	20.7	20.9	21,2
Power Tolerance			0~+5W			
Temperature Coefficient of isc(α_lsc)			+0.044%/°C			
Temperature Coefficient of Voc(β_Voc)			-0.272%/°C			
Temperature Coefficient of Pmax(y Pm	np)		-0.350%/ □			

STC Irradiance 1000W/m², cell temperature 25°C, AM1.5G

Remark: Electrical data in this catalog do not refer to a single module and they are not part of the offer. They only serve for comparison among different module types.

ELECTRICAL PARAMETERS AT NOCT					OPERATING CONDITIONS			
TYPE	JAM72S20 -445/MR	JAM72S20 -450/MR	JAM72S20 -455/MR	JAM72S20 -460/MR	JAM72S20 -465/MR	JAM72S20 -470/MR	Maximum System Voltage	1000V/1500V DC
Rated Max Power(Pmax) [W]	336	340	344	348	352	355	Operating Temperature	-40 C-+85 C
Open Circuit Voltage(Voc) [V]	46.65	46.90	47,15	47.38	47.61	47.84	Maximum Series Fuse Rating	20A
Max Power Voltage(Vmp) [V]	38.95	39.19	39.44	39.68	39.90	40.10	Maximum Static Load Front* Maximum Static Load Back*	5400Pa(112 lb/ft²) 2400Pa(50 lb/ft²)
Short Circuit Current(Isc) [A]	9.20	9.25	9.29	9.33	9.38	9.42	NOCT	45±2 €
Max Power Current(Imp) [A]	8.64	8.68	8.72	8.76	8,81	8.86	Safety Class	Class II
NOCT	Irradian	ce 800W/m²,	ambient tem	perature 20°	C,wind speed	1m/s, AM1.5G	Fire Performance	UL Type 1

CHARACTERISTICS

Premium Cells, Premium Modules

Anhang 2:Datenblatt des 100-kw-Wechselrichters

SUN2000-100KTL-M1 Smart String Inverter

10 MPP Trackers

98,8% (à 480 V) Max. Efficacité

Gestion au niveau des chaînes

Smart I-V Curve Diagnosis pris en charge

MBUS Prise en charge

Conception sans fusible

Parafoudres pour DC & AC

IP66 protection

SOLAR.HUAWEI.COM/FR/

SUN2000-100KTL-M1 Spécifications Techniques

	Rendement
Rendement max.	98.8% @480 V, 98.6% @380 V / 400 V
tendement énergétique européen pondéré	98.6% @480 V, 98.4% @380 V / 400 V
	Entrée
ension d'entrée max. 1	1,100 V
ourant d'entrée max, par MPPT	26 A
Nax. Courant de court-circuit par MPPT	40 A
ension de démarrage	200 V
APPT Tension de fonctionnement 2	200 V ~ 1,000 V
ension nominale d'entrée	720 V @480 Vac, 600 V @400 Vac, 570 V @380 Vac
lombre d'entrées	20
lombre de trackers MPP	10
	Sortie
uissance active CA nominale	100,000 VV
Nax. Pulssance apparente AC	110,000 VA
Λax. Pulssance active CA (cosφ = 1)	110,000 W
ension de sortie nominale	480 V/ 400 V/ 380 V, 3VV+(N)+PE
réquence nominale réseau AC	50 Hz / 60 Hz
ourant nominal de sortie	120.3 A @480 V, 144.4 A @400 V, 152.0 A @380 V
Nax. Courant de sortie	133.7 A @480 V, 160.4 A @400 V, 168.8 A @380 V
acteur de puissance réglable	0.8 captatlf 0.8 inductif
Distorsion totale d'harmonique max.	< 3%
	Protection
Dispositif de déconnexion côté entrée	Oui
rotection anti-ilotage	Oui
rotection contre la surintensité AC	Oui
rotection contre l'inversion de polarité DC	Oui
urveillance des défauts de la chaîne PV	Oul
Parafoudre DC	Type II
arafoudre AC	Type II
Pétection de résistance d'isolement DC	Oui
urveillance du courant résiduel	Oui
	Communication
cran	Voyants LED; WLAN + APP
\$485	Oui
JSB .	Oui
US de surveillance (MBUS)	Oul (transformateur d'isolement requis)
	Données GENERALES
Pimensions (L x H x P)	1,035 x 700 x 365 mm
olds (support de montage compris)	90 kg
tage de température de fonctionnement	-25°C ~ 60°C
tefroidissement	Smart Air refroidissement
Nax. Altitude de fonctionnement	4,000 m
lumidité relative de fonctionnement	0 ~ 100%
onnecteur DC	Staubli MC4
Connecteur AC	Terminal PG étanche + pince de términal
ndice de protection	IP66
opologie	Transformerless
Consommation noctume	< 3.5 W
	Conformité aux normes (plus disponible sur demande)
Sécurité Normes de connexion au réseau	EN 62109-17-2, IEC 62109-17-2, EN 50530, IEC 62116, IEC 61727, IEC 60068, IEC 61683 VDE-AR-N4105, EN 50549-1, EN 50549-2, RD 661, RD 1699, C10/11 Toute terision CC d'encrée plus dévee endom magerial probablement fonduteur.

Anhang 3:Datenblatt des 60-kw-Wechselrichters

SUN2000-60KTL-M0 **Smart String Inverter**

Intelligent Surveillance intelligente à 12 chaînes PV Rendement maximum 98.7%

Conception sans fusible

Parafoudres de type II pour DC & AC

SUN2000-60KTL-M0 Spécifications Techniques

Spécifications techniques	SUN2000-60KTL-M0
	Rendement
Rendement max.	98.9% @480 V; 98.7% @380 V / 400 V
Rendement énergétique européen pondéré	98.7% @480 V; 98.5% @380 V / 400 V
	Entrée
Tension d'entrée max. 1	1,100 V
Courant d'entrée max, par MPPT	27. ▲
Max. Courant de court-circuit par MPPT	30 A
Tension de démarrage	200 V
MPPT Tension de fonctionnement 2	200 V ~ 1,000 V
Tension nominale d'entrée	600 V @380 Vac / 400 Vac, 720 V @480 Vac
Nambre d'entrées	12
Nombre de trackers MPP	6
110110, 2 00 00000 3 1111	
22 V - W - W - W - W	Sortie
Puissance active CA nominale	60,000 W
Max. Puissance apparente AC	55,000 VA
Max. Pulssance active CA (cosp = 1)	66,000 W
Tension de sortie nominale	220 V / 380 V, 230 V / 400 V, default 3W + N + PE; 3W + PE optional in settings; 277 V / 480 V, 3W +
Fréquence nominale réseau AC	50 Hz / 60 Hz
Courant nominal de sortie	91.2 A @380 V, 86.7 A @400 V, 72.2 A @480 V
Max. Courant de sortie	100 A @380 V, 95.3 A @400 V, 79.4 A @480 V
Facteur de puissance réglable	0.8 captatif 0.8 inductif
Distorsion totale d'harmonique max.	< 3%
	Protection
Dispositif de déconnexion côté entrée	Oul
Protection anti-flotage	Oul
Protection contre la surintensité AC	Oul
Protection contre l'inversion de polarité DC	Oul
Surveillance des défauts de la chaîne PV	Oui
Parafoudre DC	Type II
Parafoudre AC	Type II
Détection de résistance d'isolement DC	Oul
Surveillance du courant résiduel	Qui
	Communication
Écran	Communication Voyants LED; Bluetooth/WLAN + APP
RS485	Oul
USB	Oul
BUS de surveillance (MBUS)	Oul
Research Committee Williams	
22 2 2 2	Données GENERALES
Dimensions (L x H x P)	1,075 × 555 × 300 mm
Poids (support de montage compris)	74 kg
Plage de température de fonctionnement	-25°C - 60°C
Refroidissement	Convection naturelle
Max. Altitude de fonctionnement	4,000 m
Humidité relative de fonctionnement	0 ~ 100%
Connecteur DC	Amphenol Helios H4
Connecteur AC	Terminal PG étanche + pince de terminal
Indice de protection	IP65
Topologie	Transformeriess
Consommation nocturne	<2 W
	Conformité aux normes (plus disponible sur demande)
Sécurité	EN 62109-1/-2, IEC 62109-1/-2, EN 50530, IEC 62116, IEC 60068, IEC 61683

1) La tension d'entrée maximale est la limite apérieure de la tension continue. Toute tension CC d'initiée plus élevée endommager ait probablement l'onduler

Version No.:02-(20190512)-

SOLAR.HUAWELCOM/FR/

Glossar

Photovoltaik: Ist der Begriff, der sich auf die Umwandlung von Licht in Elektrizität bezieht. Im weiteren Verlauf des Textes wird die Abkürzung "PV" für "Photovoltaik" verwendet.

PV-Zelle: Eine grundlegende PV-Vorrichtung, die Strom erzeugen kann, wenn sie der Sonnenstrahlung ausgesetzt.

PV-Modul: Die kleinste Anordnung von miteinander verbundenen Solarzellen, die vollständig von der Umwelt abgeschirmt sind.

PV-String: Ein Schaltkreis, in dem PV-Module in Reihe geschaltet sind, um Strings zu bilden, so dass sie die angegebene Ausgangsspannung erzeugen. In der Umgangssprache werden Verkettungen häufiger als "String" bezeichnet.

PV-Gruppe: Eine Gruppe von Strängen, die die Einheit zur Erzeugung elektrischer Energie bilden.

in Gleichstrom.

Anschlusskasten: Kasten, in dem alle PV-Gruppen elektrisch verbunden sind und in dem eventuelle Schutzvorrichtungen angebracht werden können.

Wechselrichter: Gerät, das Gleichspannung und Gleichstrom in Wechselspannung und Wechselstrom umwandelt.

Gleichstromteil:Dies ist der Teil einer PV-Anlage, der sich zwischen den Modulen befindet. PV und den Gleichstromanschlüssen des Wechselrichters.

Wechselstromteil: Dies ist der Teil der PV-Anlage, der sich hinter den Klemmen { Wechselstrom des Wechselrichters befindet.

Monitoring: Monitoring (Anglizismus) ist die Überwachung und Durchführung von Messungen im Zusammenhang mit der Überwachung einer PV-Anlage.

Bestrahlungsstärke: momentane Leistung der Sonnenstrahlung in W.m-2

Bestrahlung: Die Energie der Sonnenstrahlung. Sie entspricht { der Energiemenge, die während einer bestimmten Zeitdauer empfangen wird, ausgedrückt in kWh.m-2