Réseau de neurones à propagation avant

Jian Tang

HEC Montréal

Institut IA Mila-Québec

Courriel: jian.tang@hec.ca

La tâche

• Le but est d'apprendre la fonction de mappage $y = f(x; \theta)$ (ex: pour une classification $f: \mathbb{R}^d \to \mathcal{C}$).

Exemple: classification d'images

Apprentissage automatique traditionnel

Extraction Artisanale de caractéristiques

Classification Simple Ex: SVM, LR

Apprentissage profond = Apprentissage de caractéristiques / bout-à-bout

Extraction de caractéristiques entrainables

Classification simple et entrainable Ex: SVM, LR

Apprentissage profond = Apprendre les représentations hiérarchiques

Représentations hiérarchiques avec niveau d'abstraction incrémental

- Reconnaissance d'images
 - Pixel -> bordure -> texture-> motif -> partie d'objet -> objet
- Reconnaissance de la parole
 - Échantillon -> bande spectrale-> son -> voix -> mot
- Texte
 - Caractère -> mot -> phrase -> clause -> paragraphe -> document

Plan

- Composants d'un réseau de neurones
 - Neurones (unités cachées)
 - Unités de sorties
 - Fonction de coût
- Design de l'architecture
 - Capacité du réseau de neurones
- Entrainement
 - Rétropropagation par algorithme du gradient stochastique

Neurones: fonctions non linéaires

• Entrée : combinaison linéaire:

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = \mathbf{w}^T \mathbf{x} + b$$

• Sortie: transformation non linéaire:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(\mathbf{w}^T \mathbf{x} + b)$$

- w: sont les poids
- b: est le terme de biais
- g(.) est appelée la fonction d'activation

Fonctions d'activation / unités cachées

- Fonction sigmoïde
 - g(x) = 1/(1+exp(-x))
 - Mappage des valeurs entrantes à (0,1)
- Fonction tanh
 - g(x) = (1-exp(-2x))/(1+exp(-2x))
 - Mappage des valeurs entrantes à (-1,1)
- Fonction unité linéaire rectifiée (ReLU)
 - g(x) = max(0,x)
 - Aucune borne supérieure

Autres fonctions d'activation

- Leaky ReLU (Maas et al. 2013)
 - $g(x) = \max(0, x) + \alpha \min(0, x)$
 - Fixe α à une petite valeur, ex: 0.01

- Traite lpha comme un paramètre pouvant être appris
- Maxout units (Goodfellow et al. ,2013)
 - Généralisation de la fonction unité linéaire rectifiée
 - Divise les unités de sortie en des groupes de k valeurs, et prend la valeur maximale de chaque groupe
 - Permet d'apprendre une fonction linéaire par partie, en répondant au multiple directions pouvant être prises par les valeurs d'entrées.

Réseau de neurones à une couche cachée

• Entrée:

$$a(\mathbf{x}) = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

• Transformation non linéaire:

$$h(\mathbf{x}) = g_1(a(\mathbf{x}))$$

• Sortie:

$$f(\mathbf{x}) = o(h(\mathbf{x}))$$

Plan

- Composants d'un réseau de neurones
 - Neurones (unités cachées)
 - Unités de sorties
 - Fonction de coût
- Design de l'Architecture
 - Capacité du réseau de neurones
- Entrainement
 - Rétropropagation par Algorithme du gradient stochastique

Unité de sortie pour la distribution gaussienne

• Pour la tâche de régression, nous supposons généralement que la variable de sortie \boldsymbol{y} suit une distribution gaussienne

$$p(y|x) = N(y|\hat{y}, I)$$

• Pour la sortie ${f h}$ de la couche cachée, une couche linéaire produit $\widehat{{m y}} = {m W}^T {m h} + {m h}$

Unités sigmoïdes pour une sortie de distribution binary

- Sortie de distribution binary: classification binaire
- Le but est de définir p(y=1|x), qui peut être définie comme suit:

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

Unités softmax pour une sortie de distribution multinomiale

- Distributions de sortie multinomiale: classification multiclasse
- Premièrement, définir une couche linéaire pour prédire la log probabilités non normalisée d'une fonction softmax:

$$z = W^T h + b$$

où $z_i = \log p(y = i | x)$. La fonction softmax est donnée par

$$p(y = i | \mathbf{x}) = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Réseau de neuronnes à couches multiples

- Réseau de neurones à couches multiples
- La sortie des couches précédentes est l'entrée des couches suivantes:(k=1..., L)

$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$$

 $h^{(k)}(x) = g(a^{(k)}(x))$

Couche finale de sortie

$$\mathbf{f}(\mathbf{x}) = \mathbf{o}\left(\mathbf{h}^{\mathrm{L}}(\mathbf{x})\right)$$

Plan

- Composants d'un réseau de neurones
 - Neurones (Unités Cachées)
 - Unités de sorties
 - Fonction de coût
- Design de l'Architecture
 - Capacité du réseau de neurones
- Entrainement
 - Rétropropagation par Algorithme du gradient stochastique

Maximum de vraisemblance

• La plupart du temps, les réseaux de neurones sont utilisés pour définir une distribution $p(y^t|x^t;\theta)$. De ce fait, l'objectif général est défini comme:

$$argmax_{\theta} \frac{1}{T} \sum_{t} \log p(y^{t} | \boldsymbol{x}^{t}; \boldsymbol{\theta}) - \lambda \Omega(\boldsymbol{\theta})$$

• Ce qui est équivalent à minimiser l'erreur d'entropie croisée.

Plan

- Composants d'un réseau de neurones
 - Neurones (unités cachées)
 - Unités de sorties
 - Fonction de coût
- Design de l'architecture
 - Capacité du réseau de neurones
- Entrainement
 - Rétropropagation par algorithme du gradient stochastique

Approximation Universelle

- Théorème d'approximation universelle (Hornik, 1991)
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrary well, given enough hidden units"
- Cependant, il est possible que nous ne soyons pas capables de trouver les bons paramètres....
 - La couche permettant cette approximation pourrait être trop grande
 - Optimiser tel un réseau de neurones est difficile...

Des réseaux plus profonds sont préférables

Figure: Résultats empiriques montrant que les réseaux plus profonds ont un plus grand pouvoir de généralisation

Des réseaux plus profonds sont préférables

Figure: Des modèles plus profonds ont tendance à mieux performer pour un nombre de paramètres constant

Plan

- Composants d'un réseau de neurones
 - Neurones (Unités Cachées)
 - Unités de sorties
 - Fonction de coût
- Design de l'architecture
 - Capacité du réseau de neurones
- Entrainement
 - Rétropropagation par algorithme du gradient stochastique

Algorithme du gradient stochastique

- Algorithme du gradient (Gradient descent):
 - Mettre à jour les paramètres dans la direction negative du gradient
 - Besoin de calculer le gradient sur tous les exemples à chaque étape
- Algorithme du gradient stochastique
 - Initialize: $\theta = \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \}$
 - For t=1:T

– for each training example
$$(\mathbf{x}^{(t)}, y^{(t)})$$
 –
$$\Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$$
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$

Training epoch

Iteration of all examples

Rétropropagation: règle de la chaîne

$$y = g(x)$$
$$z = f(y) = f(g(x))$$

Rétropropagation: simple dérivée en chaine

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

$$\vec{y} = g(\vec{x})$$
$$z = f(\vec{y}) = f(g(\vec{x}))$$

Propagation Avant

• Pour chaque exemple d'entrainement (x, y), calculer la valeur de sortie \hat{y} basée sur le réseau de neurones courant et la valeur de pertes (supervisée) $loss(y, \hat{y})$

```
Require: Network depth, l
Require: W^{(i)}, i \in \{1, \dots, l\}, the weight matrices of the model
Require: b^{(i)}, i \in \{1, \ldots, l\}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output
   h^{(0)} = x
   for k = 1, \ldots, l do
      a^{(k)} = b^{(k)} + W^{(k)}h^{(k-1)}
      \boldsymbol{h}^{(k)} = f(\boldsymbol{a}^{(k)})
   end for
   \hat{\boldsymbol{y}} = \boldsymbol{h}^{(l)}
   J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)
```

Propagation Arrière

 $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} J = \boldsymbol{W}^{(k)\top} \boldsymbol{g}$

end for

- Calculer les gradients par rapport aux paramètres de chaque couche
 - Propager vers l'arrière les erreurs dans la sortie aux paramètres de chaque couche

```
After the forward computation, compute the gradient on the output layer: m{g} \leftarrow \nabla_{m{g}} J = \nabla_{m{g}} L(\hat{m{g}}, y) for k = l, l - 1, \ldots, 1 do Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise): m{g} \leftarrow \nabla_{m{a}^{(k)}} J = m{g} \odot f'(m{a}^{(k)}) Compute gradients on weights and biases (including the regularization term, where needed): \nabla_{m{b}^{(k)}} J = m{g} + \lambda \nabla_{m{b}^{(k)}} \Omega(\theta) \nabla_{m{W}^{(k)}} J = m{g} \ h^{(k-1)\top} + \lambda \nabla_{m{W}^{(k)}} \Omega(\theta)
```

Propagate the gradients w.r.t. the next lower-level hidden layer's activations:

Régularisation et Optimisation

Qu'est-ce que la régularisation?

- Le but d'un algorithme d'apprentissage automatique est de bien performer sur le jeu de données d'entrainement et de bien généraliser sur de nouvelles données
- La régularisation permet d'améliorer la capacité de généralisation
 - C.-à-d. d'éviter le surapprentissage

Plan

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage semi-supervisé
 - Apprentissage multi-tâche
 - Arrêt prématuré
 - Décrochage (Dropout)

Pénalité sur la norme de paramètres

• Ajouter une pénalité sur la norme de paramètre $\Omega(\theta)$ à la fonction objective I; La fonction objective régularisée est notée:

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- $\alpha \in [0, \infty)$ est un hyperparamètre contrôlant le poids du terme de régularisation
- Pour la régularisation dans les réseaux de neurones
 - Seulement les poids des transformations linéaires à chaque couche sont régularisés
 - Les biais ne sont pas régularisés (ils ont besoin de moins de données que les poids pour être bien ajustés)

Régularisation de Paramètres L^2

• $\Omega(\theta) = \frac{1}{2} ||\mathbf{w}||^2$, aussi connu comme dégradation des pondérations (« weight decay») ou régression Ridge

• La fonction objective :

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^T \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

$$\nabla_{w}\tilde{J}(w;X,y) = \alpha w + \nabla_{w}J(w;X,y)$$

• Mettre à jour w avec SGD:

$$\mathbf{w} = (1 - \epsilon \alpha)\mathbf{w} - \epsilon \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$$

Pousser w vers zéro

Régularisation de Paramètres L^1

•
$$\Omega(\theta) = ||\mathbf{w}||_1 = \sum_i w_i$$
,

• La fonction objective:

$$\tilde{J}(w; \mathbf{X}, \mathbf{y}) = \alpha ||\mathbf{w}||_{1} + J(w; \mathbf{X}, \mathbf{y})$$

$$\nabla_{w} \tilde{J}(w; \mathbf{X}, \mathbf{y}) = \alpha \operatorname{sign}(\mathbf{w}) + \nabla_{w} J(w; \mathbf{X}, \mathbf{y})$$

- Comparativement à la régularisation L2, la régularisation L1 trouve des parameters moins dense (« more sparse »)
 - Certains paramètres ont une valeur optimale à zéro
 - Peut être très utile pour la sélection de variables

Plan

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation des données
 - Robustesse au bruit
 - Apprentissage Semi-supervisé
 - Apprentissage Multi-tâche
 - Arrêt Prématurée
 - Décrochage (Dropout)

Augmentation des données

- Meilleure façon d'améliorer la performance en apprentissage automatique
 - Entrainer avec plus de données
- Ajouter des données artificielles au données d'entrainements
 - Translation
 - Rotation
 - Recadrage Aléatoire
 - Ajouter du bruit
 - ...

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage Semi-supervisé
 - Apprentissage Multi-tâche
 - Arrêt Prématurée
 - Décrochage (Dropout)

Robustesse au bruit

- Ajouter du bruit aux poids
 - Pousser le modèle dans des régions où le modèle est relativement insensible à de petites variations de poids
 - Trouver des points qui ne sont pas seulement des minimums mais des minimums entourés de régions plate.
- Ajouter du bruit aux données cibles
 - La plupart des jeu de données ont un certain niveau d'erreurs involontaires dans leur catégories cibles: y
 - On peut explicitement modéliser ce bruit dans les valeurs cibles
 - Par exemple, le valeur cible d'entrainement y est bonne avec une probabilité de $1-\epsilon$, et peut prendre une autre valeur cible avec probabilité ϵ

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage Semi-supervisé
 - Apprentissage Multi-tâche
 - Arrêt Prématurée
 - Décrochage (Dropout)

Apprentissage Semi-supervisé

- Apprentissage semi-supervisé: des exemples non libellés p(x) et des exemples libellés p(x,y) sont utilisés pour estimer p(y|x)
- Paramètres partagés entre l'objectif non-supervisé p(x) et l'objectif supervisé p(y|x)
 - Dans les deux objectifs le but est d'apprendre la représentation h = f(x), et cette représentation peut être utilisée dans les deux cas
- Un sujet très tendance actuellement
 - Spécifiquement dans le pré entrainement des modèles linguistiques (NLP).

Exemple:

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage Semi-supervisé
 - Apprentissage Multi-tâche
 - Arrêt Prématurée
 - Décrochage (Dropout)

Apprentissage Multi-tâche

 Apprendre conjointement plusieurs tâches en partageant les mêmes valeurs entrantes et certaines représentations intermédiaires capturant un ensemble de facteurs communs

Modèle

- Paramètres spécifiques à la tâche
- Paramètres génériques partagées dans différentes tâches

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage Semi-supervisé
 - Apprentissage Multi-tâche
 - Arrêt Prématuré
 - Décrochage (Dropout)

Arrêt Prématuré

Pour sélectionner le nombre d'epochs optimal, arrêter l'entrainement lorsque l'erreur du jeu de données de validation augmente (de manière consécutive)

- Régularisation
 - Pénalité sur la norme de paramètres
 - Augmentation du jeu de données
 - Robustesse au bruit
 - Apprentissage semi-supervisé
 - Apprentissage multi-tâche
 - Arrêt prématuré
 - Décrochage (Dropout)

Décrochage

- Surmonter le surapprentissage en utilisant plusieurs modèles différents
 - Entrainés avec différentes architectures
 - Entrainés sur différents jeux de données
- Trop coûteux avec des réseaux de neurones
- Décrochage (Dropout)
 - Entrainer plusieurs réseaux de neurones ensemble en partageant les paramètres

Décrochage

- Idée principale: enlever certains neurones de manière stochastique
 - Chaque neurone est fixé à 0 avec une probabilité de 0.5
- On peut utiliser une autre probabilité mais généralement 0.5 fonctionne bien

Décrochage

- Utiliser des masques binaires aléatoires $m^{(k)}$
 - Pré-activation de la couche pour k > 0 $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)} \mathbf{h}^{(k-1)}(\mathbf{x})$
 - Activation de la couche d'activation (k = 1 à L) $h^{(k)}(x) = g(a^{(k)}(x)) \odot m^{(k)}$

Décrochage au test

- Au moment du test, on remplace les masques par leur espérance
 - Dans le cas où la probabilité est 0.5, on a un vecteur de valeurs constantes 0.5

Optimisation

- Stratégie d'initialisation des paramètres
- Astuces et conseils
- Momentum
- Taux d'apprentissage adaptatif (AdaGrad, RMSProp, Adam)

Initialisation de paramètres (Glorot and Bengio, 2010)

• Pour un réseau de neurones complètement connecté avec *m* valeurs entrantes et n valeurs sortantes, les poids sont échantillonnés selon:

$$W_{ij} \sim U\left(-\frac{6}{\sqrt{m+n}}, \frac{6}{\sqrt{m+n}}\right).$$

 Cela cherche à être un compromis entre le but d'initialiser toutes les couches pour avoir la même variance d'activation et le but d'initialiser toutes les couches pour avoir la même variance de gradient

Astuces

- Normaliser vos données (de valeurs réelles):
 - Pour chacune des dimensions x_i soustraire sa moyenne obtenue dans le jeu de données d'entraînement
 - Diviser chacune des dimensions x_i par son écart-type obtenu dans le jeu de données d'entraînement
 - Ceci peut améliorer le temps d'entraînement
- Réduire le taux d'entraînement : Lorsqu'on s'approche de l'optimum, faire un plus petit pas de mise à jour
 - i. Commencer avec un grand taux d'apprentissage (« Learning Rate ») (ex: lr= 0.1)
 - ii. Garder ce taux jusqu'à ce que l'erreur de validation arrête de diminuer
 - iii. Diviser le taux d'apprentissage par 2 et retourner à (ii)

Mini-Lot et Momentum

- Faire des mises à jour sur de mini-lot d'observations (au lieu d'une observation):
 - Peut donner des estimés plus précis du gradient
 - Peut utiliser des opérations Matrice/Matrice qui sont plus efficaces

• Momentum: Peut utiliser une moyenne exponentielle des gradients précédents:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

Pourquoi le Momentum fonctionne vraiment?

Le momentum réduit les mises à jour des dimensions pour lesquelles le gradient change de directions

Le momentum augmente pour les dimensions pour lesquelles le gradient pointe dans la même direction

Demo: http://distill.pub/2017/momentum/

Taux d'apprentissage adaptatif

avec le momentum

- Mise à jour avec taux d'apprentissage adaptatif (Un taux d'apprentissage par paramètre)
 - Adagrad: Taux d'apprentissage sont mis à l'échelle selon la racine carrée de la somme cumulative des carrés des gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2} \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

• RMSProp: au lieu de la somme cumulative, on utilise une moyenne mobile exponentielle

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1-\beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^2$$

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$
 Adam: combine essentiellement RMSProp

Références

- Livre "Deep Learning"
 - Chapitre 7-8

Précision

• Certaines diapos on été prises depuis le cours d'apprentissage profond du CMU de Ruslan Salakhutdinov.