Labor_03

LOGISTIC REGRESSION LINEAR CASE

Classification problem

 $y \in \{0, 1\}$

0: Negative class

1: Positive class

$$h_w(x) = XW$$

Threshold classifier output $h_w(x)$ at 0.5:

If $h_w(x) \ge 0.5$, predict "y=1"

If $h_w(x) < 0.5$, predict "y=0"

$$h_w(x)$$
 can be >1 or <0

Logistic regession: $0 \le h_w(x) \le 1$

New Model

Logistic Regression Model:

Want
$$0 \le h_w(x) \le 1$$

 $h_w(x) = g(Xw)$

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $h_w(x) \Rightarrow$ estimated probability that y = 1 on input x $h_w(x) = P(y = 1|x, W)$

Example linear boundary

$$h_w(x) = g(w_0 1 + w_1 x_1 + w_2 x_2)$$

$$w = [-3 \ 1 \ 1]$$

$$g(z) \ge 0.5$$
 when $z \ge 0$
$$x_1 + x_2 \ge 3$$

Example non linear boundary

$$h_w(x) = g(w_0 1 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2)$$

$$w = [-1\ 0\ 0\ 1\ 1]$$

Predict:
$$y = 1$$
 if $-1 + x_1^2 + x_2^2 \ge 0$

$$x_1^2 + x_2^2 \ge 1$$

Cost function

$$C = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^i) - y^i)^2$$

Cost function

$$Cost(h_w(x), y) = \begin{cases} -log(h_w(x)), & \text{if } y = 1\\ -log(1 - h_w(x)), & \text{if } y = 0 \end{cases}$$

$$Cost(h_w(x), y) = -y \cdot log(h_w(x)) - (1 - y) \cdot log(1 - h_w(x))$$

$$C(w) = -\frac{1}{m} \sum_{i=1}^{m} y^{i} \cdot log(h_{w}(x^{i})) - (1 - y^{i}) \cdot log(1 - h_{w}(x^{i}))$$

Gradient Descent

$$\begin{split} C(W) &= -\frac{1}{m} \sum_{i=1}^m y^i \cdot log(h_w(x^i)) - (1-y^i) \cdot log(1-h_w(x^i)) \\ \text{Want min } \min_{W} \{C(W)\} \\ \text{Algorithm:} \\ \text{repeat until convergence } \{ \\ W_j &:= W_j - \mu \frac{\partial}{\partial W_j} C(W) \\ \} \\ \\ \frac{\partial}{\partial W_j} C(W) &= \frac{1}{m} \sum_{i=1}^m (h_w(x^i) - y^i) \cdot x_j^i \end{split}$$

Algorithm looks identical to linear regression!