Geometry and Topology

Solve every problem.

Problem 1.

- (a) Show that P^{2n} can not be the boundary of a compact manifold.
- (b) Show that P^3 is the boundary of some compact manifold.

Problem 2. Suppose M is a noncompact, complete n-dimensional manifold, and suppose there is an open subset $U \subset M$ and an open set $V \subset \mathbf{R}^{\mathbf{n}}$ such that $M \setminus U$ is isomorphic to $\mathbf{R}^{\mathbf{n}} \setminus V$. If $\mathrm{Ric}M \geq 0$, show that M is isometric to $\mathbf{R}^{\mathbf{n}}$.

Problem 3. Compute all the homotopy groups of the *n*-torus $T^n = S^1 \times S^1 \times \cdots \times S^1$, $n \ge 2$.

Problem 4. Consider the upper half space $\mathbf{H}^3 = \{(x,y,z) \mid z > 0\}$ equipped with hyperbolic metric $g = \frac{dx^2 + dy^2 + dz^2}{z^2}$. Let P be the surface defined by $\{z = x \tan \alpha, z > 0\}$ for some $\alpha \in (0, \frac{\pi}{2})$. Compute the mean curvature of P.

Problem 5. Suppose M is a compact 2-dimensional Riemannian manifold without boundary, with positive sectional curvature. Show that any two compact closed geodesics on M must intersect with each other.

Problem 6. Suppose Σ is a smooth compact embedded hypersurface (*i.e.* a codimension 1 submanifold) without boundary in \mathbb{R}^n for $n \geq 3$. Show that Σ is orientable.