Université de Bretagne Occidentale

NOTE DE COURS

Ondes et Matière

Malo Kerebel

Cours par Bruno Rouvellou

Semestre 6, année 2020-2021

Table des matières

1	Rappel d'ondes électromagnétiques dans le vide		
	1.1	Équat	ions de Maxwell
	1.2	Ondes	électromagnétiques dans le vide
		1.2.1	Équations de propagation
		1.2.2	Onde plane progressive monochromatique
		1.2.3	Vecteur de Poynting
		1.2.4	Impédance cacractéristique

Chapitre 1

Rappel d'ondes électromagnétiques dans le vide

CC1 (2021-01-15)

Équations de Maxwell 1.1

1.
$$\nabla \cdot E = divE = \frac{\rho}{\varepsilon_0}$$
 2.
$$\nabla \cdot B = divB = 0$$
 3.

3.
$$\nabla \wedge E = rotE = -\frac{\partial B}{\partial t}$$

4.
$$\nabla \wedge B = rotB = \mu_0 \left(j + \varepsilon_0 \frac{\partial E}{\partial t} \right)$$

- 1) Forme locale du théorème de Gauss : $\oiint_{(S)} E \cdot dS = \frac{q_{int}}{\varepsilon_0}$
- 2) pas de monopole magnétique : $\oiint_{(S)} B \cdot \overrightarrow{dS} = 0$
- 3) Induction de Faraday : $\oint E \cdot dl = -\frac{d\Phi}{dt}$ 4) Théorème d'Ampère : $\oint B \cdot dl = \mu_0 I \Rightarrow rot B = \mu_0 j$

1.2 Ondes électromagnétiques dans le vide

Les équations 1 et 4 deviennent :

$$divE = 0 \qquad rotB = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

 ρ et j sont nuls dans le vide ((absence de source de courant).

1.2.1 Équations de propagation

En prenant le rotationnel de l'équation (3) il vient :

$$rot(rotE) = -rot\frac{\partial B}{\partial t} = -\frac{\partial}{\partial t}rotB$$

À l'aide de l'équation 4' on obtient :

$$rot(rotE) = -\mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial^2 t}$$

$$rot(rotE) = grad(divE) - \Delta E$$

compte tenu de 1':

$$\Delta E = \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial^2 t}$$

avec μ_0 la perméabilité du vide

De même pour B en utilisant 4', 3 et 2 On a l'équation de propagation :

$$\Delta B = \mu_0 \varepsilon_0 \frac{\partial^2 B}{\partial^2 t}$$

1.2.2 Onde plane progressive monochromatique

$$E = E_m \cos(kr - \omega t) = \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} \cos(kr - \omega t)$$
 (1.1)

$$B = B_m \cos(kr - \omega t) = \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix} \cos(kr - \omega t)$$
 (1.2)

La divergence du champ électrique est donné par :

$$\nabla E = divE = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = -(E_x k_x + E_y k_y + E_z k_z)\sin(kr - \omega t)$$

La condition divE = 0 implique donc que $E_m k = 0 \Rightarrow E$ est transversal, de même B est transversal.

À l'aide l'équation 3 on obtient :

$$k \wedge E_m = \omega B_m$$
 ou $k \wedge E = B$

En notation complexe c'est plus simple.

$$divE = ik \cdot E$$
 $rotE = ik \wedge E$
 $\frac{\partial E}{\partial t} = -i\omega E$ $\Delta E - k^2 E$

relation de dispersion

$$k = \frac{\omega}{c}$$

Polarisation Hypotèse : propagation selon $o_z \Rightarrow k \cdot r = kz$

$$E_x = E_{m_0 x} \cos(kz - \omega t)$$

$$E_y = E_{m_0 y} \cos(kz - \omega t + \phi)$$

$$E_z = 0$$

Par définition ce qui définit la polarisation est la direction de E. Les composantes du champ électriques peuvent s'écrire sous la forme :

$$\frac{E_x}{E_{m_0x}} = \cos(kz - \omega t)$$

$$\frac{E_y}{E_{max}} = \cos(kz - \omega t)\cos\phi - \sin(kz - \omega t)\sin\phi$$

d'où après simplification:

$$\frac{E_y^2}{E_{m_0y}^2} + \frac{E_x^2}{E_{m_0x}^2} = \frac{2E_y}{E_{m_0x}^2} \frac{E_y}{E_{m_0y}} \cos\phi + \sin^2\phi$$

Dans le cas $\phi=0$ $ou\phi=\pi$ on a une polarisation rectiligne. Si on a $\phi\pm\pi/2$ on a une polarisation circulaire.

1.2.3 Vecteur de Poynting

Charge élémentaire $\rho d\tau$ (Charge ρ dans un volume élémentaire $d\tau$) subie dans oem : $F = \rho d\tau (R + v \wedge B)$

La puissance fourni à cette charge élémentaire est :

$$F \cdot v = \rho d\tau (R + v \wedge B) \cdot v$$
$$= \rho d\tau E \cdot v$$

On peut réécrire :

$$F \cdot v = j \cdot E d\tau$$

(j la densité du courant) avec la 4ème équation de Maxwell on a :

$$E \cdot j = \frac{1}{\mu_0} rot B \cdot E - \epsilon_0 E \cdot \frac{\partial E}{\partial t}$$

En utilisant:

$$div(U \wedge V) = rot(U) \cdot V - U \cdot rotV$$

Ainsi, on a:

$$E \cdot j = -div\left(E \wedge \frac{B}{\mu_0}\right) + \frac{B}{\mu_0} \cdot rotE - \varepsilon_0 E \cdot \frac{\partial E}{\partial t}$$

À l'aide de la troisième équation de Maxwell

$$E \cdot j = -div\left(E \wedge \frac{B}{\mu_0}\right) - \frac{B}{\mu_0} \cdot rotE - \varepsilon_0 E \cdot \frac{\partial E}{\partial t}$$

On définit le vecteur de Poynting R par la relation :

$$R = E \wedge \frac{B}{\mu_0}$$

$$\vec{E} \cdot \vec{j} = -div\vec{R} - \frac{\partial}{\partial t}w$$

avec $w = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0}B^2$

En abscence de courant on a la loi de conservation des charges :

$$div\vec{R} + \frac{\partial}{\partial t}w = 0$$

On peut considérer le vecteur de Poynting cocmme une "densité de courant d'énergie". Il est de la forme :

$$\vec{R} = w\vec{v}$$

où \vec{v} est la vitesse de propagation de l'énergie

Le vecteur de Poynting a donc pour expression :

$$\vec{R} = \vec{E} \wedge \frac{(\vec{k} \wedge \vec{E})}{\omega \mu_0}$$

Finalement:

$$\vec{R} = \frac{kE^2}{\omega \mu_0} \frac{\vec{k}}{k}$$

La densité d'énergie magnétique peut s'écrire sous la forme :

$$W_m = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2} \varepsilon_0 c^2 B^2$$

On peut écrire:

$$E = \frac{\omega}{k}B = cB$$

La densité d'énergie magnétique est donc égale à la densité d'énergie électrique

1.2.4 Impédance cacractéristique

Dans le cas d'une onde plane monochromatique on définit l'impédance caractéristique d'un milieu par :

$$Z = \frac{E}{H}$$

Dans le vide on définit H par :

$$\vec{B} = \mu_0 \vec{H}$$

Donc l'impédance du vide est de

$$Z_0 = 377\Omega$$