

Le provisionnement en assurance non-vie

10 septembre 2018 Vanessa Désert

PLAN

- Généralités Les différentes provisions techniques
- Méthodes d'évaluation des provisions pour sinistres
- Evaluation règlementaire / Solvabilité 2 : calcul du Best Estimate

Pourquoi des Provisions?

- Cycle de production inversé : les compagnies d'assurance perçoivent les cotisations des clients (assurés) parfois très longtemps avant de fournir le service pour lequel elles sont rémunérées.
- Cela conduit les compagnies d'assurance à constituer, grâce aux cotisations versées, des réserves financières appelées « Provisions », destinées à faire face aux engagements futurs vis-àvis de leurs assurés.
- Ces provisions représentent la part la plus importante du bilan de la compagnie, c'est pourquoi leur évaluation doit être réalisée avec le plus grand soin par les actuaires.

Bilan simplifié d'une compagnie d'assurance

Les différentes provisions techniques

La règlementation définit les provisions techniques devant être constituées en assurance non vie. Article R.331-6 du Code des Assurances:

1) Provision mathématique (PM) des rentes

 Valeur actuelle des engagements de l'entreprise en ce qui concerne les rentes et accessoires de rentes mis à sa charge.

2) Provision pour primes non acquises (PPNA)

 Destinée à constater, pour l'ensemble des contrats en cours, la part des primes émises et des primes restant à émettre se rapportant à la période comprise entre la date de l'inventaire et la date de la prochaine échéance de prime ou le terme du contrat.

2b)Provision pour risques en cours

- Destinée à couvrir, pour l'ensemble des contrats en cours, la charge des sinistres et des frais afférents aux contrats, pour la période s'écoulant entre la date de l'inventaire et la prochaine échéance de prime pouvant donner lieu à révision de la prime par l'assureur (ou le terme du contrat), pour la part de ce coût qui n'est pas couverte par la PPNA.
- Sert à palier une éventuelle insuffisance des tarifs.

Les différentes provisions techniques

3) Réserve de capitalisation

- Destinée à parer la dépréciation des valeurs comprises dans l'actif de l'entreprise et la diminution de leurs revenus.
- Elle est construite à partir des plus-values réalisées sur les actifs (ou au contraire en cas de moins value elle est déduite). La particularité de cette provision est d'être incluse dans les fonds propres.

4) Provision pour sinistres à payer (PSAP)

 Valeur estimative des dépenses en capital et en frais, tant internes qu'externes, nécessaires au règlement de tous les sinistres survenus et non payés, y compris les capitaux constitutifs des rentes non encore mises à la charge de l'entreprise.

5) Provision pour risques croissants (PRC)

- Provision pouvant être exigée [...] pour les opérations d'assurance contre les risques de maladie et d'invalidité et égale à la différence des valeurs actuelles des engagements respectivement pris par l'assureur et par les assurés.
- elle permet de lisser les résultats, les tarifs, dans les branches où le risque est croissant (le risque augmente) au cours du temps.

Les différentes provisions techniques

6) Provision pour égalisation (PE)

- Destinée à faire face aux charges exceptionnelles afférentes aux opérations garantissant les risques dus à des éléments naturels, le risque atomique [...]
- Elle permet de lisser le résultats des branches où la probabilité de survenance d'un sinistre est faible et peu « estimable ». Le principe consiste à utiliser les années sans sinistre pour faire face aux sinistres rares.

7) Provision pour risque d'exigibilité (PRE)

- Destinée à faire face aux engagements dans le cas de moins-value de l'ensemble des actifs mentionnés à l'article R. 332-20 [...]
- ➤ Elle vise à faire face à une potentielle insuffisance de liquidité des placements (si modification des cadences de règlements des sinistres). Il s'agit de la différence entre la valeur globale des placements en actions et immobiliers ET leur valeur de marché

La Provision pour Sinistres A Payer

- Parmi les provisions constituées par une compagnie d'assurance non-vie, la plus importante est la Provision pour Sinistres A Payer (PSAP).
- Elle correspond, à un instant donné, à la différence entre :
 - L'évaluation de la charge « ultime » des sinistres survenus, c'est-à-dire le montant final que la compagnie estime avoir à payer quand le sinistre sera définitivement réglé (clos).
 - Le montant déjà réglé de ces mêmes sinistres.
- Deux sous-ensembles:
 - La provision pour sinistres connus : estimation des montants restant à régler sur les sinistres déjà connus à la date de l'inventaire.
 - La provision pour **sinistres non connus**, les **IBNR** : estimation du coût des sinistres survenus mais non encore connus au moment de l'inventaire. Il s'agit en général de sinistres déclarés tardivement à l'assureur, ce qui est relativement fréquent en Responsabilité Civile.

PLAN

- Généralités Les différentes provisions techniques
- Méthodes d'évaluation des provisions pour sinistres
 - Panorama des méthodes
 - Méthodes déterministes
 - Méthodes stochastiques
- Evaluation règlementaire / Solvabilité 2 : calcul du Best Estimate

Méthodes d'évaluation des provisions pour sinistres

- Les sinistres peuvent être réglés très lentement, notamment en responsabilité civile en cas de dommages corporels graves. Leur analyse doit donc être faite par exercice de survenance, et non par exercice comptable.
- L'analyse sur plusieurs exercices permet d'évaluer in fine le coût réel d'un exercice, et vérifier la pertinence du tarif correspondant.
- La provision est calculée dossier par dossier, mais aussi au travers de méthodes statistiques ou stochastiques, notamment :
 - Méthodes déterministes : méthode des cadences (Chain Ladder), Bornhuetter-Ferguson, Coût moyen, GLM, Loss Ratio ...
 - Méthodes stochastiques : Modèle de Mack, Bootstrap, GLM,...

Méthodes d'évaluation des provisions pour sinistres

L'objectif de ces méthodes est de compléter la partie inférieure du triangle de liquidation, afin de déterminer la charge ultime des sinistres survenus (déjà déclarés ou non), par année de survenance.

Année de développement

Trois différentes approches

Techniques de coût moyen

Charges ultimes = nb ultime $sinistres \times coût$ moyen sinistres

Techniques sur les loss-ratio

Charges ultimes = $Primes \times Loss \ ratio \ ultime$

Méthodes liquidatives

Raisonnement à partir des facteurs de développement

Méthodes d'évaluation des provisions pour sinistres

- Toutes les techniques récentes visant à améliorer la fiabilité des calculs de provisionnement sont utiles pour :
 - La certification du Best Estimate,
 - La justification de la suffisance du provisionnement,

Auprès des commissaires contrôleurs, auditeurs, etc.

- La qualité de l'estimation de la provision repose sur une certaine stabilité des données : comment ont-elles été générées? Quels sont les facteurs de risque d'un éventuel changement?
 - Facteurs internes : évolution du portefeuille, politique de souscription, tarification, réassurance, politique de gestion des sinistres.
 - Facteurs externes : pratiques de marché, cycles économiques, inflation des coûts, évolution de la sinistralité (en fréquence et en sévérité), évolutions règlementaires et comptables.

Flexibilité des méthodes sur triangles

- Outre la sinistralité historique, on peut intégrer des informations exogènes à l'estimation de la provision : indicateurs d'exposition (volume de prime, nombre de contrats), etc.
- On peut utiliser les triangles de liquidation sur des quantités de natures très différentes :
 - Montants, montants moyens
 - Primes
 - Nombres de contrats
 - Loss-ratios (sinistres/primes)
 - ...

Ces quantités sont ramenées à des périodes (année, mois, ...)

Panorama mondial des méthodes de provisionnement

Méthodes déterministes

 Chain Ladder est la méthode la plus utilisée au niveau mondial, suivie par Bonhuetter-Ferguson (dérivé de Chain Ladder).

Méthodes stochastiques

 Moins utilisées que les méthodes déterministes, mais de plus en plus répendaues du fait des nouvelles normes (Solva2). Les méthodes les plus répandues sont la méthode analytique de Mack et la méthode algorithmique du Bootstrap.

(source étude ASTIN 2016 -

Méthodes d'évaluations des provisions pour sinistres

MÉTHODES DÉTERMINISTES

Les méthodes déterministes

- Ces méthodes doivent être appliquées avant de recourir à des méthodes stochastiques
- Elles ont l'avantage d'être simples et robustes
- Elles s'appliquent à des triangles de toutes natures : paiement cumulés, charges, ...
- Elles sont basées sur l'utilisation des facteurs de développements (ou, avec la même approche, les cadences de règlement)

Hypothèse implicite à toutes ces méthodes : les facteurs de développement sont supposés constants pour toutes les années d'origine.

La méthode des cadences (« Chain Ladder »)

Principe : construire des triangles de paiements où figurent les règlements effectués, par année de survenance du sinistre, en tenant compte du délai écoulé (année de développement). On peut également travailler sur les triangles de charges (=paiements cumulés + réserves).

On consigne dans un tableau les paiements de sinistres $C_{i,j}$ cumulés pour l'exercice de survenance i, vus au bilan de la période j.

N.B. : on peut également travailler sur la charge des sinistres, c'est-à-dire le coût ultime évalué à chaque période j.

La méthode des cadences (« Chain Ladder »)

- Hypothèse de la méthode
 - La cadence des paiements (ou des charges) des sinistres est identique quelle que soit l'année de survenance.
 - Il s'agit d'une hypothèse très forte qui suppose donc que :
 - ✓ Les sinistres sont déclarés et payés au même rythme quelle que soit l'année de survenance.
 - ✓ Le développement des sinistres est régulier.

Calcul des facteurs de développement

On calcule pour chaque exercice de déroulement un coefficient de passage f_j, aussi appelé facteur de développement, LDF (Loss Development Factor) ou Link Ratio :

$$f_{j} = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}} , 0 \le j \le n-1$$

Pour l'exercice de survenance i, le montant de la provision (PSAP) R_{i,j} à constituer à la fin de l'année j par la méthode Chain Ladder est tel que :

$$R_{i,j} = C_{i,j} \times \left(\prod_{k>i} f_k - 1 \right)$$

Exemple: « RC »

Triangle de paiements annuels

-	nents non mulés	I I 0	1	An 2	née de dév 3	veloppeme 4	ent 5
e	2009	7 246	14 088	5 517	3 031	1 368	1 036
anc	2010	7 162	14 262	5 560	2 346	987	838
survenance	2011	7 469	15 246	5 470	3 319	1 782	973
sur	2012	6 559	12 311	6 468	2 947	1 506	
de	2013	6 351	13 656	6 753	3 602		, Montant des
kercice	2014	6 726	13 367	8 153			cours de l'a
Ker	2015	6 079	13 132				de survenar

On suppose que le dernier paiement pour la survenance 2009 est de 412, en n+7 (donc sinistres clos en 2016).

Montant des paiements effectués au cours de l'année 2013 pour l'exercice de survenance 2011.

412

6

470

439

5 871

2016

1		ments			An	née de dév	eloppeme/	nt		
L	cui	nulés	0	1	2	3	4	5	6	7
	au	2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168
	anc	2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594	
	survenance	2011	7 469	22 715	28 185	31 504	33 286	34 259		
	sur	2012	6 559	18 870	25 338	28 285	29 791			
	de	2013	6 351	20 007	26 760	30 362				
	Exercice de	2014	6 726	20 093	28 246					
	Exer	2015	6 079	19 211						
		2016	5 871							

Exemple: « RC »

Exemple: « RC »

Facteurs de passage par la méthode Chain Ladder

	ements			Anr	née de dév	veloppeme	ent		
cu	ımulés	0	1	2	3	4	5	6	7
a	2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168
anc	2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594	
survenance	2011	7 469	22 715	28 185	31 504	33 286	34 259		
	2012	6 559	18 870	25 338	28 285	29 791)		
de	2013	6 351	20 007	26 760	30 362	f3 = <i>fac</i>	teur de p	assage d	e l'année d
Exercice	2014	6 726	20 093	28 24 <mark>6</mark>		•	•	3 à l'anné	e de
xer	2015	6 079	19 211			dévelop	pement		
Ш	2016	5 871				$f_3 =$			33 286 + 2
2010						73	29 882 +	- 29 330 +	31 504 + 2
		f0	f1	f2	f3	f4	f5	f6	
	LDF	3,018	1,305	1,114	1,047	1,030 1,014 1,013			

	f0	f1	f2	f3	f4	f5	f6
LDF	3,018	1,305	1,114	1,047	1,030	1,014	1,013
Produit	4,860	1,610	1,234	1,108	1,058	1,027	1,013
				1/.			

Pour passer directement de l'année 3 à l'ultime, il faut multiplier par 1,108 (=1,047*1,030*1,014*1,013).

Variantes de la méthode Chain Ladder

Facteurs de passage unitaires (exemple RC) :

	DE unitaires			Anne	ée de déve	eloppeme	nt		
L	DF unitaires	0	1	2	3	4	5	6	7
Ce	2009	2,944	1,259	1,113	1,046	1,033	1,015	1,013	
Jan	2010	2,991	1,260	1,087	1,034	1,028	1,014		
survenance	2011	3,041	1,241	1,118	1,057	1,029			
sur	2012	2,877	1,343	1,116	1,053				
de	2013	3,150	1,338	1,135					
ice	2014	2,987	1,406						
Exercice	2015	3,160							
Ě	2016								
Moyenn	ie	3,022	1,307	1,114	1,047	1,030	1,014	1,013	
Moyenne - min - max		3,023	1,300	1,116	1,050	1,029	1,014	1,013	
Moyenn	Moyenne des 4 derniers		1,317	1,114	1,047	1,030	1,014	1,013	

- On peut utiliser d'autres approches pour calculer le facteur de passage moyen, à partir des facteurs unitaires:
 - Moyenne des ratios
 - Moyenne en retranchant les extrêmes (min et max)
 - Moyenne des k derniers ratios.

Projection des triangles

La PSAP est obtenue en retranchant à la charge ultime le montant des paiements déjà réalisés.

Pai	ements			Anı	née de dév	eloppeme	nt			Coût	PSAP
CL	ımulés	0	1	2	3	4	5	6	7	ultime	PJAP
	2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168	33 168	0
ınce	2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594	31 991	31 991	397
survenance	2011	7 469	22 715	28 185	31 504	33 286	34 259	34 750	35 187	35 187	928
	2012	6 559	18 870	25 338	28 285	29 791	30 685	31 125	31 516	31 516	1 725
Exercice de	2013	6 351	20 007	26 760	30 362	31 802	32 756	33 226	33 644	33 644	3 282
rcic	2014	6 726	20 093	28 246	31 457	32 948	33 937	34 424	34 857	34 857	6 611
Exe	2015	6 079	19 211	25 065	27 914	29 238	30 115	30 547	30 931	30 931	11 720
	2016	5 871	17 721	23 121	25 750	26 971	27 780	28 178	28 533	28 533	22 662
		x_3.0	18 x 1,3	05 x 1,1	114 x 1.	047 x 1,0)30 x 1,	014 x 1.	013		
			,,,	,	,	·	, A 1,				
						x 4,860					

Provision à constituer au bilan 2016 au titre des sinistres survenus en 2014 :

 $R_{2014.2} = 34857 - 28246 = 6611$

Projection des triangles

On suppose ici que 8 années sont suffisantes pour régler tous les sinistres, c'est-à-dire que l'ultime est atteint au bout de la 8^{ème} année.

On provisionne:

- 0 pour l'exercice de survenance 2009, 397 pour l'exercice 2010, ..., 22 662 pour l'exercice 2016.
- Soit au total 47325.

L'année suivante on observe une diagonale supplémentaire, ce qui modifie les estimations et donc les provisions, et créé les **boni et mali de liquidation.**

Application sur un triangle de charges

La méthode Chain Ladder peut également s'appliquer sur le triangle des charges cumulées, c'est-à-dire l'estimation du coût total (payés + provisions) des sinistres par exercice de survenance et année de développement.

Charge	es cumulées			Ann	ée de dév	eloppeme	ent		
Charge	s cumulees	0	1	2	3	4	5	6	7
e S	2009	8 662	11 332	11 172	11 135	11 098	11 062	11 076	11 082
lan	2010	12 380	14 727	14 388	14 372	14 336	14 289	14 299	
survenance	2011	9 774	12 072	11 962	11 678	11 606	11 605		
sur	2012	11 503	13 841	13 406	13 096	12 865			
de	2013	11 660	14 323	13 960	13 762				
ice	2014	12 044	17 077	16 664					
Exercice	2015	12 715	16 718						
Ä	2016	17 784							

	f0	f1	f2	f3	f4	f5	f6
LDF	1,271	0,978	0,987	0,993	0,998	1,001	1,001

- Des coefficients inférieurs à 1 signifient que l'évaluation de la charge lors de l'inventaire est à un moment supérieure à l'ultime. Plusieurs raisons possibles :
 - Surévaluation du coût des sinistres par les gestionnaires
 - Evaluations de recours sur les compagnies « adverses » sous-estimées

Prudence dans l'évaluation des provisions

Lissage des coefficients

- Dans la pratique, l'actuaire doit souvent lisser les coefficients par soucis de cohérence.
 - Exemple:

	f0	f1	f2	f3	f4	f5	f6
LDF	1,271	0,978	0,987	0,993	0,998	1,001	1,001
coefficients Lissés	1,271	0,978	0,987	0,993	0,998	1,000	1,000

Par exemple ci-dessus, nous lissons les dernières années de développement : on considère l'ultime atteint au bout de l'année de développement 6.

Points de vigilance

- Le passé ne prédit pas toujours l'avenir. Il faut éliminer les développements « atypiques » :
 - Evènements d'intensité exceptionnelle
 - Cadences irrégulières ou qui évoluent dans le temps
 - Liées à des pratiques de gestion des sinistres qui peuvent évoluer dans le temps
 - ✓ Liées à des évolutions de la règlementation
 - ✓ Liées à des phénomènes conjoncturels.
- Choix de la queue de développement :
 - Les années les plus anciennes peuvent être encore en développement (tous les sinistres ne sont pas clos) → quel ultime retenir?
 - Cadences de marché (données publiques ou d'une compagnie comparable)
 - ✓ Avis d'expert
 - ✓ Ajustements de courbes: projection de la courbe pour les développements futurs (exponentielle décroissante, puissance inverse,.....)

Méthodes basées sur les ratios

- En plus du triangle des paiements, on dispose d'une information sous la forme d'un indicateur d'exposition au risque ou de sinistralité E_i, pour toute année d'origine i (i=1...n):
 - Un montant de primes
 - Un nombre de sinistres
 - Un nombre de contrats
 - ...
- Exemples:
 - Bornhuetter-Ferguson
 - Cape-Cod
 - Méthode du coût moyen

- Méthode mixte, conjuguant la méthode des cadences (prise en compte de la sinistralité passée) et les Loss Ratios
- Très utilisée en entreprise, en complément de la méthode Chain Ladder
- Particulièrement adaptée au provisionnement des années récentes dans des triangles instables
- Trois types de données sont nécessaires:
 - Les Loss Ratios (ratios S/P) attendus par exercice de survenance
 - Le montant des primes émises ou acquises
 - Les cadences de développement

Méthode

On part de l'égalité suivante:

$$S_i = C_{i,n-i} + (1 - pc_{n-i})L_iP_i$$

Avec:

- S_i la charge des sinistres de l'exercice de survenance i
- C_{i, n-i} : les paiements cumulés vus l'année de développement n-i (dernière diagonale)
- pc_{n-i} la cadence de règlement cumulée vue en n-i
- L_i : le Loss Ratio de l'exercice i. En pratique, on substitue à ce Loss Ratio inconnu un ratio « attendu » déterminé par des considérations exogènes
- P_i: le montant des primes émises (ou acquises selon la situation) de l'exercice i

On a alors le montant de la réserve à constituer pour chaque exercice i :

$$R_i = (1 - pc_{n-i})L_iP_i$$

- Cette approche est adaptée à :
 - Des produits à développement long
 - Des situations dans lesquelles le niveau de sinistralité enregistré à la date d'inventaire est très faible et ne présente pas un degré de crédibilité suffisant à l'utilisation des méthodes telles que celles des cadences.

Exemple

Doi	omonto	s cumulés			Ann	ée de dév	eloppeme	ent			Coût ultime		
Pai	ements	culliules	0	1	2	3	4	5	6	7		out uitime	
lce	0	2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168		33 168	
survenance	1	2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594			31 991	
Ş.	2	2011	7 469	22 715	28 185	31 504	33 286	34 259				35 187	
sur	3	2012	6 559	18 870	25 338	28 285	29 791				l	31 516	
de	4	2013	6 351	20 007	26 760	30 362		,				33 644	
	5	2014	6 726	20 093	28 246							34 857	
Exercice	6	2015	6 079	19 211								30 931	
EX	7	2016	5 871									28 533	

Cadence cumulée :

 pc_4 = en moyenne, au bout de la 5^{ème} année de développement, on a réglé 94.5% de la charge totale.

Exemple

		Prii	me acquise ultime	Loss Rati estimé	0		
exercice	i	1-pc _{n-i}	P _i	L,	R_{i}		
2009	1	0.0%	39 000	85%	_		
2010	2	1.2%	37 500	85%	396		
2011	3	2.6%	40 000	87%	918		
2012	4	5.5%	35 000	90%	1 724		
2013	5	9.8%	40 000	85%	3 3 1 6		
2014	6	19.0%	41 000	85%	6 609		
2015	7	37.9%	36 500	85%	11 756		
2016	8	79.4%	34 000	85%	22 953		
				Total	47 673		PSA

Méthode du coût moyen

- Dans l'hypothèse où les coûts sont prévisibles, le coût de l'exercice est le nombre de sinistres, déclarés et non déclarés, que multiplie le coût moyen.
- La méthode consiste à construire des triangles contenant le coût moyen des sinistres:

$$CM_{i,j} = rac{C_{i,j}}{n_{i,j}}$$
 Nombre de sinistres

- Le nombre de sinistre doit prendre en compte, surtout pour la dernière année, ceux finalement déclarés par rapport à ceux initialement déclarés : observer le passer pour corriger ce nombre.
- Les CM futurs sont ensuite projetés et la charge ultime déduite:

$$C_{i,N} = CM_{i,N} \times n_{i,N}$$

❖ Point de vigilance : cette méthode suppose une bonne qualité du dénombrement des sinistres et une définition rigoureuse de celui-ci. Il faut par exemple définir le traitement des sinistres n'ayant pas donné lieu à indemnisation (« sans suite »).

Méthode du coût moyen

Exemple

 Etape 1 : détermination du nombre ultime de sinistres par exercice de survenance

En moyenne, 3 sinistres sont déclarés en n+1, et 1 sinistre en n+2 (dans l'exemple on ne suppose pas de tendance)

=194 - 192

Méthode du coût moyen

- Exemple (suite)
 - Etape 2 : détermination du coût moyen ultime par exercice de survenance

_	s (paiements provisions) en		Année de	e développe	ment		CM sur	croissance
cuiii. 1	M€	0	1	2	3	4	diagonale (k€)	du CM
a) (1)	2012	268	441	447	450	452	2,318	
exercice de survenance	2013	283	463	474	478		2,464	6,3%
exercice de survenance	2014	278	451	465			2,514	2,0%
exe	2015	281	458				2,618	
O 0,	2016	294					2,727	
		Ces deux incomplè	estimations tes	s sont	2,5	2,618= 14x(1+4,2	%)	Croissand moyenne = 4

Méthode du coût moyen

- Exemple (suite)
 - Etape 3 : on en déduit la charge totale reconstituée.

•	reconstituées		Année de	développe	ment	
	en M€	0	1	2	3	4
a) (1)	2012	268	441	447	450	452
exercice de survenance	2013	283	463	474	478	
rcic /ena	2014	278	451	465		
exe	2015	281	487			
	2016	483		7		
			4	187 = 186 x	2,618	

A partir des règlements déjà effectués, on peut alors déterminer la somme à provisionner.

Quelques mots sur d'autres méthodes déterministes

- Méthode du Loss Ratio (rapport Sinistre à primes)
 - Principe : la charge finale prévisible est estimée à partir d'une mesure à priori de la sinistralité
 - Pertinente pour un nouveau produit en phase de lancement, plutôt que pour un produit ayant déjà un historique dans la compagnie.
- Méthode de Bornhuetter Fregusson
 - Elle conjugue les méthodes Chain Ladder et du Loss Ratio
 - Adaptée à des produits à développement long et des situations dans lesquelles le niveau de sinistralité enregistré à la date d'inventaire est très faible, et ne revêt pas un degré de crédibilité suffisant à l'utilisation d'autres méthodes telles que Chain Ladder.

Méthodes d'évaluations des provisions pour sinistres

MÉTHODES STOCHASTIQUES

Méthodes stochastiques

- Le recours aux méthodes stochastiques a pour objectif initial de mesurer l'incertitude présente dans les triangles et les résultats issus des méthodes déterministes.
- On suppose que les constituants du rectangle de liquidation (paiements cumulés ou non, nombre de sinistres, charges...), sont des variables aléatoires réelles (v.a.r.). Elles sont observées au 31/12/n.
- Les méthodes stochastiques permettent :
 - D'expliciter les hypothèses utilisées dans le modèle et de valider, au moins partiellement, celles-ci par une analyse des résidus;
 - De détecter des irrégularités potentielles dans le triangle;
 - D'élargir le champ des paramètres de provisionnement « pertinents » et d'évaluer la variabilité des estimations de ceux-ci, ainsi que de construire des intervalles de confiance pour ces paramètres;
 - De simuler, à l'aide de méthodes de Monte Carlo, la sinistralité d'exercices futurs, outil indispensable pour toute analyse DFA, modèle interne ou Gestion Actif-Passif.

Lien avec la méthode Chain Ladder

- Importance pratique de la méthode déterministe Chain Ladder : les travaux de recherche actuarielle ont visé à obtenir une méthode stochastique reproduisant les évaluations de celle-ci.
- Par exemple, modèles permettant de fournir exactement le même estimateur de provision que chain ladder:
 - Modèle de Mack (1993)
 - Modèle Log-Poisson de Renshaw et Verrall (1994 et 1998)
- D'autres méthodes consistent à s'approcher de l'évaluation chain ladder:
 - Régression lognormale,.....
- N.B.: un modèle reproduisant exactement les résultats de Chain Ladder n'est pas une garantie d'optimalité dans le monde stochastique.

- Non paramétrique : aucune hypothèse de loi n'est faite sur les composantes du triangle.
- Conditionnel : les espérances sont prises connaissant les réalisations du triangle supérieur.
- S'applique à des montants cumulés.
- Le modèle de Mack repose sur 3 hypothèses:
 - H1) Indépendance des exercices d'origine :

 $(C_{i1,j})_{j=1,...n}$ et $(C_{i2,j})_{j=1,...n}$ sont indépendants pour tout i1 \neq i2.

H2) Pour j=1,...,n-1, il existe un paramètre f tel que :

$$E(C_{i,j+1} / C_{i,1}, ..., C_{i,j}) = f_j C_{ij}$$
 pour i=1,...,n

Ou:

$$E\left(\frac{C_{i,j+1}}{C_{i,j}} \mid C_{i,1}, \dots, C_{i,j}\right) = f_j$$

Pour j=1,...,n-1, $\widehat{f}_j = \frac{\sum_{i=1}^{n-j} C_{i,j+1}}{\sum_{i=1}^{n-j} C_{i,j}}$ sont des estimateurs sans biais des paramètres f_j .

Interprétations

- Pour chaque année de survenance i, le même facteur $\widehat{f_j}$ quantifie l'évolution du montant de l'année j à l'année j+1
- Ce facteur est différent des facteurs individuels f_{i,i}
- La base du modèle de Mack est de supposer que les facteurs individuels de développement sont des réalisations d'une v.a. d'espérance inconnue f_j.
- \blacktriangleright Lien direct avec la méthode Chain Ladder : cette espérance est estimée par l'estimateur $\widehat{f_i}$ de Chain Ladder.

La provision à constituer est :

$$\widehat{R}_{i} = \widehat{C_{i,n}} - \widehat{C_{i,n-i+1}}$$

$$\widehat{R} = \sum \widehat{R_{i}}$$

H3) Pour j=1,...,n-1, il existe un paramètre σ_i^2 tel que :

$$V(C_{i,j+1} | C_{i,1},..., C_{i,j}) = \sigma_j^2 C_{i,j}$$
 pour i=1,...n.

On définit un estimateur sans biais de σ_i^2 , pour j<n-1:

$$\widehat{\sigma_j^2} = \frac{1}{n-j-1} \sum_{i=0}^{n-j-1} C_{i,j} \left(\frac{C_{i,j+1}}{C_{i,j}} - \widehat{f_j} \right)^2$$
Si j=n-1 : $\widehat{\sigma_j^2} = min\left(\widehat{\sigma}_{n_{-2}}^4 / \widehat{\sigma}_{n_{-3}}^2; \widehat{\sigma}_{n-2}^2; \widehat{\sigma}_{n-3}^2\right)$

Incertitude de l'estimateur

Sous les 3 hypothèses précédentes, on peut estimer les erreurs quadratiques moyennes MSEP (Mean Square Error of Prediction) du montant de provision \widehat{R}_i , et de \widehat{R}

$$\widehat{MSEP}(\widehat{R}_i) = \widehat{C}_{i,n}^2 \sum_{k=n-i}^{n-1} \frac{\widehat{\sigma}_k^2}{\widehat{f}_k^2} \left(\frac{1}{\widehat{C}_{i,k}} + \frac{1}{\sum_{j=0}^{n-k} C_{j,k}} \right)$$

Où $\hat{C}_{i,k} = \hat{f}_{n-i-1} \dots \hat{f}_{k-1} \times C_{i,n-i+1} \ pour \ k > n-i-1 \ avec \ la \ convention \ \hat{C}_{i,n-i+1} = C_{i,n-i+1}$

$$\widehat{MSEP}(\widehat{R}) = \sum_{i=2}^{n} \left((\widehat{MSEP}(\widehat{R}_i))^2 + \hat{C}_{i,n} \left(\sum_{j=i+1}^{n} \hat{C}_{j,n} \right) \sum_{k=n-i+1}^{n-1} \frac{2\widehat{\sigma}_k^2}{\sum_{j=1}^{n-k} C_{j,k}} \right)$$

On en déduit l'erreur standard (volatilité) de la provision:

$$\widehat{SE}(\widehat{R}_i) = \sqrt{\widehat{MSEP}(\widehat{R}_i)}$$
 et $\widehat{SE}(\widehat{R}) = \sqrt{\widehat{SEP}(\widehat{R}_i)}$

Exemple

Paiem	ents cumulés			Ar	nnée de déve	loppement			
i	ents cumules	1	2	3	4	5	6	7	8
1 بو	2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168
survenance	2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594	
Ven	2011	7 469	22 715	28 185	31 504	33 286	34 259		
ans 4	2012	6 559	18 870	25 338	28 285	29 791			
de 5	2013	6 351	20 007	26 760	30 362				
<u>i</u> 6	2014	6 726	20 093	28 246					
Exercice 6	2015	6 079	19 211						
ü 8	2016	5 871							

Estimation des paramètres

j	1	2	3	4	5	6	7
fj	3,018	1,305	1,114	1,047	1,030	1,014	1,013
σ_{i}^{2}	69,882	87,184	7,918	3,078	0,249	0,003	0,000

On calcule ensuite les éléments suivants :

				Exercice de	survenance			
	1	2	3	4	5	6	7	8
	2009	2010	2011	2012	2013	2014	2015	2016
Charge ultime	33 168	31 991	35 187	31 516	33 644	34 857	30 931	28 533
PSAP \widehat{R}_i	0	397	928	1 725	3 282	6 611	11 720	22 662
$\widehat{MSEP}(\widehat{R_i})$		3	190	10 463	142 630	481 299	3 362 491	4 263 323
$\widehat{SE}(\widehat{R}_i) / \widehat{R}_i$		0.0043	0.0149	0.0593	0.1151	0.1049	0.1565	0.0911

$$\widehat{R}=47\ 235$$
 —> Provision (PSAP) estimée par Chain Ladder à la fin de l'année 2016 $\widehat{MSE}(\widehat{R})=9\ 609\ 237$

$$\widehat{SE}(\widehat{R})/\widehat{R} = 6.6\%$$
 — Erreur standard relative

En s'appuyant sur une hypothèse de normalité de la distribution, on obtient un **intervalle de confiance** pour les provisions:

Dans notre exemple, l'IC à 95% est $[\widehat{R} + 1.96*\widehat{SE}(\widehat{R})] = [41 \ 249 \ ; 53 \ 400].$

- La méthode du bootstrap est une méthode non paramétrique de **rééchantillonnage** qui substitue à des calculs statistiques complexes l'usage de simulations de Monte-Carlo basées sur l'échantillon originel. L'objectif est l'estimation de paramètres et de leur variabilité.
- Simulation en très grand nombre de triangles de pseudodonnées sur lesquels est appliquée la méthode de Chain Ladder classique, dans le but d'obtenir la distribution de la loi de sinistralité.
- Analyse des provisions enrichie d'une prise en compte d'un seuil de risque (α)
 - Value at risk (VaR): réalisation d'ordre supérieur au seuil de risque α souhaité. C'est le quantile d'ordre 1- α de la distribution :

$$P(X > VaR) = \alpha$$

 Tail-VaR : moyenne des réalisations d'ordre supérieur au seuil de risque α souhaité

E(X / X > Var)

Etape 1 : On part du triangle cumulé suivant, auquel on a appliqué la méthode de Chain Ladder pour développer les charges jusqu'à l'ultime.

	Paiements			Anne	ée de dév	eloppem	ent			Coût	PSAP
	cumulés	0	1	2	3	4	5	6	7	ultime	PJAP
	ღ 2009	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168	33 168	0
	<u>E</u> 2010	7 162	21 424	26 984	29 330	30 317	31 155	31 594	31 991	31 991	397
	2010 2010 2011 2012	7 469	22 715	28 185	31 504	33 286	34 259	34 750	35 187	35 187	928
	ັ້ສ 2012	6 559	18 870	25 338	28 285	29 791	30 685	31 125	31 516	31 516	1 725
-	ຍ 2013	6 351	20 007	26 760	30 362	31 802	32 756	33 226	33 644	33 644	3 282
	<u>9</u> 2014	6 726	20 093	28 246	31 457	32 948	33 937	34 424	34 857	34 857	6 611
	2014 2015	6 079	19 211	25 065	27 914	29 238	30 115	30 547	30 931	30 931	11 720
•	മ് 2016	5 871	17 721	23 121	25 750	26 971	27 780	28 178	28 533	28 533	22 662
											47 325

	f0	f1	f2	f3	f4	f5	f6
LDF	3.018	1.305	1.114	1.047	1.030	1.014	1.013

Etape 2 : construction du triangle « rétrospectif » des paiements « théoriques » à partir des facteurs de développement et des montants de la dernière diagonale.

Pour,
$$i+j \le n$$
, $M_{i,j} = \frac{M_{i,j+1}}{f_j}$ ou $M_{i,j} = \frac{C_{i,n-i}}{\prod_{k=j}^{n-i} f_k}$

	f0	f1	f2	f3	f4	f5	f6
LDF	3.018	1.305	1.114	1.047	1.030	1.014	1.013

_	ements			Ann	ée de dév	eloppem	ent		
cum	ulés Mi,j	0	1	2	3	4	5	6	7
a	2009	6 825	20 600	26 878	29 933	31 352	32 293	32 756	33 168
survenance	2010	6 583	19 869	25 924	28 871	30 240	31 148	31 594	
Ven	2011	7 240	21 854	28 514	31 755	33 261	34 259		
sur	2012	6 485	19 574	25 539	28 442	29 791			
de	2013	6 923	20 896	27 263	30 362				
cice	2014	7 172	21 649	28 246					
Exercice de	2015	6 365	19 211			3	` 1 755 =33	3 261/ 1,04	7
	2016	5 871					=	34259 /(1,	047*1,030)

- Etape 3 : Calcul des résidus du triangle supérieur à partir des triangles en données non cumulées.
 - Au préalable, on « décumule » les valeurs des triangles précédents :

Non Cu	mulé Observé			Anr	née de dével	oppement			
Non Cu	illule Observe	1	2	3	4	5	6	7	8
e	2009	7 246	14 088	5 517	3 031	1 368	1 036	470	412
venance	2010	7 162	14 262	5 560	2 346	987	838	439	
Ver	2011	7 469	15 246	5 470	3 319	1 782	973		
sur	2012	6 559	12 311	6 468	2 947	1 506			
de	2013	6 351	13 656	6 753	3 602				
ë	2014	6 726	13 367	8 153					
Exercice	2015	6 079	13 132						
ă	2016	5 871							

No	n Cumulé			Anr	iée de dével	loppement			
Tł	néorique	1	2	3	4	5	6	7	8
e C	2009	6 825	13 775	6 277	3 055	1 419	941	463	412
venance	2010	6 583	13 287	6 055	2 947	1 369	908	446	
Ver	2011	7 240	14 614	6 660	3 241	1 506	998		
sur	2012	6 485	13 089	5 965	2 903	1 349			
de	2013	6 923	13 973	6 367	3 099				
<u>.</u>	2014	7 172	14 477	6 597					
Exercice	2015	6 365	12 846						
Ä	2016	5 871							

Etape 3 : Calcul des résidus du triangle supérieur à partir des triangles en données non cumulées.

$$ullet$$
 Résidus de Pearson : $oldsymbol{r_{i,j}} = rac{c_{i,j} - m_{i,j}}{\sqrt{m_{i,j}}}$

Avec
$$m_{i,j}=M_{i,j}-M_{i,j-1}$$
; $c_{i,j}=C_{i,j}-C_{i,j-1}$; $m_{i,1}=M_{i,1}$ et $c_{i,1}=C_{i,1}$

Résidus		Année de développement										
Nesidus	0	1	2	3	4	5	6	7				
ູ 2009	5.10	2.66	-9.60	-0.44	-1.36	3.10	0.34					
g 2010	7.14	8.46	-6.36	-11.07	-10.33	-2.31	-0.35	•				
§ 2011	2.69	5.23	-14.58	1.37	7.12	-0.80		T				
ਹੈ 2012	0.92	-6.80	6.51	0.82	4.28							
g 2013	-6.87	-2.68	4.83	9.04								
.ဗ္ဗီ 2014	-5.27	-9.22	19.16									
2010 2011 2012 9 2013 2014 2015	-3.58	2.52					On ne ret	ient pas				
2016							bornes, le	s résid				

- Etape 4 : rééchantillonnage. Tirage avec remise de ces résidus à l'aide d'un générateur aléatoire jusqu'à obtenir N nouveaux triangles de résidus (=N simulations).
 - Exemple d'un tirage obtenu :

Tira	ge des	Année de d	léveloppe	ment					
Rési	dus r _{i,j}	0	1	2	3	4	5	6	7
e e	2009	-0.80	5.23	8.46	4.28	-10.33	-11.07	2.69	-11.07
survenance	2010	0.92	-10.33	-0.80	3.10	-11.07	-1.36	9.04	
ven	2011	3.10	9.04	1.37	8.46	-10.33	7.14		
sur	2012	-6.36	-9.60	-0.44	-1.36	7.14			
de	2013	3.10	5.23	0.34	7.12				
ice	2014	0.92	-0.44	-0.80					
Exercice	2015	0.92	-0.80						
ũ	2016	7.12							

Etape 5 : Reconstitution, pour chaque simulation, du triangle des paiements non cumulés :

$$c_{i,j} = m_{i,j} + r_{i,j} \sqrt{m_{i,j}}$$

Paiements non cumulés tirage k		Année de développement									
		0	1	2	3	4	5	6	7		
a u	2009	6 759	14 389	6 948	3 292	1 030	602	521	187		
survenance	2010	6 657	12 097	5 992	3 115	960	867	637			
ven	2011	7 504	15 706	6 771	3 723	1 105	1 224				
	2012	5 973	11 991	5 931	2 829	1 611					
de	2013	7 180	14 591	6 394	3 495						
Exercice	2014	7 250	14 424	6 532							
Exel	2015	6 438	12 756								
_	2016	6 416									

Etape 6 : Application de la méthode Chain Ladder sur le triangle de paiements cumulés pour en déduire le montant de PSAP à provisionner:

Paie	ements			Ann	ée de dév	eloppem	ent			Coût	PSAP
cur	mulés	0	1	2	3	4	5	6	7	ultime	PJAP
ə	2009	6 759	21 148	28 095	31 387	32 418	33 019	33 540	33 727	33 727	0
survenance	2010	6 657	18 754	24 746	27 861	28 821	29 687	30 324		30 494	169
ven	2011	7 504	23 210	29 981	33 704	34 809	36 033			36 903	870
sur	2012	5 973	17 964	23 895	26 725	28 336				29 834	1 498
de	2013	7 180	21 771	28 166	31 661					34 645	2 984
ice	2014	7 250	21 674	28 206						34 630	6 424
Exercice	2015	6 438	19 194							30 864	11 670
û	2016	6 416								31 046	24 630
			_	_						A TOTAL	19 246

	f0	f1	f2	f3	f4	f5	f6
LDF	3.009	1.310	1.122	1.039	1.028	1.018	1.006
Produit	4.839	1.608	1.228	1.094	1.053	1.024	1.006

On simule N fois cette valeur.

On simule N montants de provisions. Plus le nombre de simulations est important, et plus la fonction de densité sera régulière.

Méthodes d'évaluations des provisions pour sinistres

LISSAGE ET EXTRAPOLATION

Lissage

- Une procédure additionnelle courante aux méthodes Chain Ladder consiste, pour atténuer les irrégularités des facteurs de développement f_i, à lisser ces facteurs.
- Le principe est d'ajuster sur les n points une fonction y=f(t) régulière et vérifiant f(t)≥1, par exemple:
 - Puissance inverse
 - √ À 2 paramètres : f(t) = 1+ a(1+t)-b, a,b>0
 - √ À 3 paramètres : f(t) = 1+ a(c+t)-b, a,b>0
 - Exponentielle négative : f(t) = 1+ ae-bt, b>0
 - Type Weibull : f(t) = 1+a(1+t)^be^{-ct} , a,b,c>0
- Les paramètres de la fonction d'ajustement f(t) sont déterminés par minimisation des carrés des écarts aux facteurs empiriques (f_i)_{i≥0}

Liquidation incomplète

- Classiquement on suppose que la première ligne du triangle est close, c'est-à-dire qu'il n'y a plus de sinistres ouverts, et donc le montant de provision pour cette année de survenance est nul.
- En pratique, et en particulier dans le cas de branches à déroulement long (par exemple responsabilité civile), on ne dispose souvent pas du développement complet de la sinistralité : le triangle est tronqué à droite.
- Il convient dans ce cas d'estimer un facteur de queue (ou Tail Factor) par extrapolation d'une fonction ajustée sur les facteurs de développement calculés jusqu'au dernier délai présent, et après avoir choisi un délai ultime
 - Le produit des facteurs théoriques obtenus est le tail factor.

Liquidation incomplète

PLAN

- Généralités Les différentes provisions techniques
- Méthodes d'évaluation des provisions pour sinistres

Evaluation règlementaire / Solvabilité 2 : calcul du Best Estimate

Le bilan prudentiel

Dans Solvabilité 2, le bilan de l'assureur est établi de façon différente de celui de Solvabilité 1, puisqu'il cherche à établir la valeur économique de l'activité : c'est le bilan prudentiel.

Principes de valorisation sous S2

- Passifs valorisés au montant pour lequel ils pourraient être transférés ou réglés dans le cadre d'une transaction conclue dans des conditions d'assurance et de réassurance normale, entre des parties informées et consentantes
- Provisions techniques = BE + marge de risque
- Pas de marge de prudence dans le BE
- "Moyenne pondérée par leur probabilité des flux de trésorerie futurs" (en espérance mathématique)
 - Approche cash-flows actualisés (entrées et sorties de trésorerie nécessaires pour faire face aux engagements)
- Calculs des engagements bruts (Passif) et cédés (Actif) séparés, prise en compte d'une perte probable pour défaut de contreparties.
- Calculs basés sur des informations actualisées et crédibles, sur des hypothèses réalistes.

Best Estimate des provisions pour sinistres

- Le Best Estimate (ou « Meilleure Estimation ») des provisions pour sinistres est l'actualisation des flux futurs engendrés par les sinistres survenus avant la date d'inventaire (31/12/N), mais non encore réglés. Ces flux comprennent donc les prestations et les frais liés à ces prestations.
- Périmètre : analogue aux « PSAP + IBNR » calculés en norme S1 pour les sinistres survenus (connus ou pas)

Pas de marge de prudence

- Estimation d'une provision sans marge de prudence, via des méthodes déterministes ou stochastiques.
- Application d'hypothèses (cadences, frais, etc) réalistes et objectives, prenant en compte le degré d'incertitude dans les jugements formulés.

Cadence de liquidation

- Calculée à partir du triangle complété par exercice de rattachement
- Méthodes retenues pour la complétion du triangle : doivent faire l'objet de validation et être auditables (Choix des méthodes, exclusion des facteurs, graves,...)
- Profondeur d'historique adaptée à la nature du risque étudié (ou calcul d'un facteur de queue en cas de données non disponibles)
- Actualisation (approache cash-flows)

Best Estimate des provisions pour primes

- ❖ La provision Best Estimate pour primes est l'actualisation des flux entrants et sortants résultant d'une nouvelle année d'activité (dans le cadre des contrats annuels renouvelés dès le 01/01/N+1). Ces flux comprennent donc les cotisations qui seront reçues en N+1, les prestations qui seront versées dans les années futures au titre des sinistres survenus en N+1, ainsi que les frais engendrés par ces cotisations et prestations. La provision best estimate pour primes est négative si le contrat est rentable.
- Importance de la notion de frontière de contrats
 - Intégration des engagements dans le Bilan dès lors que l'entreprise n'a plus la possibilité d'agir unilatéralement sur les termes du contrat
- Hypothèse de continuité d'activité
 - Les hypothèse de frais sont notamment fondées sous l'hypothèse que l'entreprise aura des affaires nouvelles à l'avenir
- Prise en compte du comportement de l'assuré (résiliations)

Exemple, calcul d'un BE Sinistres

- <u>Etape 1</u>: à partir des triangles de charges (règlements cumulés + réserves) ou de paiements cumulés, estimation de la charge ultime par exercice de survenance
 - Vision « économique » de la provision pour sinistres
 - Calcul des LDF,...
- <u>Etape 2</u>: à partir des triangles de paiements cumulés et de la charge ultime par exercice de survenance, détermination des cadences de règlement
 - Cela permet de déterminer les cash-flows de règlements futurs
- Etape 3 : actualisation des cash-flow, à l'aide de la courbe des taux adéquate
 - Courbe des taux sans volatility adjustment de l'EIOPA par exemple
- La valeur actualisée des cash-flows correspond au BE Sinistres.

Etape 1 : calcul des facteurs de développement et projection de la charge à l'ultime

Pai	iements			Ann	ée de dév	eloppeme	nt			Coût	PSAP
CL	umulés	0	1	2	3	4	5	6	7	ultime	PSAP
	N-7	7 246	21 334	26 851	29 882	31 250	32 286	32 756	33 168	33 168	0
9	N-6	7 162	21 424	26 984	29 330	30 317	31 155	31 594		31 991	397
Exercice de survenance	N-5	7 469	22 715	28 185	31 504	33 286	34 259			35 187	928
surv	N-4	6 559	18 870	25 338	28 285	29 791				31 516	1 725
ice de	N-3	6 351	20 007	26 760	30 362					33 644	3 282
Exerc	N-2	6 726	20 093	28 246						34 857	6 611
	N-1	6 079	19 211							30 931	11 720
	N	5 871								28 533	22 662

	f0	f1	f2	f3	f4	f5	f6
LDF	3,018	1,305	1,114	1,047	1,030	1,014	1,013

Etape 2 : détermination des cadences de règlement

Ca	dences de			Ann	ée de déve	eloppemer	nt		
rè	glements	0	1	2	3	4	5	6	7
Ce	2009	21.85%	64.32%	80.95%	90.09%	94.22%	97.34%	98.76%	100.00%
survenance	2010	22.39%	66.97%	84.35%	91.68%	94.77%	97.39%	98.76%	
Ve	2011	21.23%	64.56%	80.10%	89.53%	94.60%	97.36%		
sur	2012	20.81%	59.87%	80.40%	89.75%	94.53%			
de	2013	18.88%	59.47%	79.54%	90.25%				
<u>ice</u>	2014	19.30%	57.64%	81.04%					
Exercice	2015	19.65%	62.11%						
Ä	2016	20.58%							
Cadenc	e cumulée :								
n	noyenne	20.58%	62.13%	81.06%	90.26%	94.53%	97.36%	98.76%	100.00%
cha	ain ladder	20.58%	62.11%	81.04%	90.25%	94.53%	97.36%	98.76%	100.00%
(moyei	nne pondérée)	20.36%	02.11%	81.04%	90.25%	34.33%	97.30%	36.70%	100.00%
Cadence incrémentale "Chain Ladder":									
		20.58%	41.53%	18.93%	9.21%	4.28%	2.84%	1.40%	1.24%

On peut décider de retenir ces coefficient, ou de choisir une autre cadence (valeur marché, jugement d'expert, ...)

Etape 2 bis : projection des cash flow de règlements

• On commence par déterminer la cadence sur ce qu'il reste à payer, en fonction du pourcentage déjà payé à la période j :

$$Cad_{i,j} = Cad_{i,j-1} + Incrémentale_j \times \frac{1 - Cad_{i,j-1}}{Reste à payer_j}$$

Cadences de			Année de développement j										
règler	ments Cad _{i,j}	0	1	2	3	4	5	6	7				
	2009	21.85%	64.32%	80.95%	90.09%	94.22%	97.34%	98.76%	100.00%				
nce	2010	22.39%	66.97%	84.35%	91.68%	94.77%	97.39%	98.76%	100.00%				
rvenance	2011	21.23%	64.56%	80.10%	89.53%	94.60%	97.36%	98.68%	100.00%				
sur	2012	20.81%	59.87%	80.40%	89.75%	94.53%	96.87%	98.44%	100.00%				
d e	2013	18.88%	59.47%	79.54%	90.25%	93.00%	96.00%	98.00%	100.00%				
Exercice	2014	19.30%	57.64%	81.04%	90.25%	93.00%	96.00%	98.00%	100.00%				
Exer	2015	19.65%	62.11%	81.04%	90.25%	93.00%	96.00%	98.00%	100.00%				
	2016	20.58%	62.11%	81.04%	90.25%	93.00%	96.00%	98.00%	100.00%				

$$96,87\%$$

$$= 94.53\% + 3\% \times \frac{1 - 94.53\%}{7\%}$$

Etape 2 bis : projection des cash flow de règlements

 Puis on en déduit le montant des règlement par exercice de survenance et année de projection:

$$Paiement_{i,j} = Ultime_i \times (Cadence_{i,j} - Cadence_{i,j-1})$$

Cash flow futurs Année de projection									PSAP
		N+1	N+2	N+3	N+4	N+5	N+6	N+7	
Se	N-7	0							0
survenance	N-6	397							397
Š	N-5	491	437						928
sur	N-4	894	440	391					1 725
de	N-3	1 440	955	469	418				3 282
<u>e</u>	N-2	3 211	1 492	989	486	433			6 611
Exercice	N-1	5 854	2 849	1 324	878	432	384		11 720
Ä	N	11 850	5 400	2 628	1 221	810	398	354	22 662
	Total	24 137	11 572	5 802	3 003	1 674	782	354	47 325

2849 = 30391 * (90,25% - 81,04%)

Etape 3 : actualisation

A partir de la courbe des taux, calcul du facteur d'actualisation par année de

projection

$$TF_1 = t_1$$

$$TF_n = \frac{(1+t_n)^n}{(1+t_{n-1})^{n-1}} - 1$$

$$ZC_n = \frac{1}{(1+t_n)^n}$$

$$F_1 = \frac{1}{(1 + TF_1)^{1/2}}$$
$$F_n = \frac{ZC_{n-1}}{(1 + TF_n)^{1/2}}$$

 $Flux actu_n = Flux non actu_n \times F_n$

Année de projection	Taux d'actualisation (t)	Taux fwd (TF)	Prix des ZC de maturité pleine (ZC)	Facteur d'actualisation (F)	Flux non actualisé	Flux actualisé
N+1	0.06%	0.06%	0.999	1.000	24 137	24 130
N+2	0.08%	0.088%	0.999	0.999	11 572	11 560
N+3	0.12%	0.210%	0.996	0.997	5 802	5 787
N+4	0.18%	0.376%	0.993	0.995	3 003	2 986
N+5	0.26%	0.570%	0.987	0.990	1 674	1 657
N+6	0.34%	0.754%	0.980	0.983	782	769
N+7	0.43%	0.961%	0.970	0.975	354	346

- 47 325 47 235
- Dans cet exemple, on obtient un BE sinistres de 47235, contre 47325 de flux non actualisés. Ici, l'effet d'actualisation est très faible du fait d'une courbe des taux basse et d'une cadence de liquidation courte.
- Nb : au 31/12/2016 et au 31/12/2017, les taux d'actualisation (courbe des taux EIOPA) était négatifs sur les 1ères années de projection!

Quelques références

C. Partrat & co, « Provisionnement Technique en Assurance non-vie » (Economica, 2007)

Claim reserving manual, sur https://www.actuaries.org.uk