$learning_rate = -1.00, reg_par = -1.00$

3.0 3.0 2.5 2.5

 $learning_rate = -1.44$, $reg_par = -1.44$

R² explained variance

2.00 -

learning rate = -1.89, reg par = -1.89

learning rate = -2.33, reg par = -2.332.00 2.00 1.75 1.75 1.50 1.50

R² explained variance Mean Squared Error [AUC²]

2.00

learning rate = -2.78, reg par = -2.78

1.0 2.00 1.75 8.0 1.50 1.25

 $learning_rate = -3.22, reg_par = -3.22$

 $learning_rate = -3.67, reg_par = -3.67$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

learning_rate = -4.11, reg_par = -4.11 3.0 2.00-

3.0 -

 $learning_rate = -4.56$, $reg_par = -4.56$

2.00

learning rate = -5.00, reg par = -5.00

 $learning_rate = -1.00, reg_par = -1.00$

3.0 -

 $learning_rate = -1.44$, $reg_par = -1.44$

 $learning_rate = -1.89$, $reg_par = -1.89$ 2.00 3.0 1.75 2.5 -1.50 2.0 1.25

R² explained variance

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

1.0

 $learning_rate = -2.78$, $reg_par = -2.78$

2.00 -1.75 -2.00 -1.75 -

learning rate = -3.22, reg par = -3.22

 $learning_rate = -3.67, reg_par = -3.67$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

4.0 3.0 3.5 2.5 3.0 2.0

 $learning_rate = -4.56$, $reg_par = -4.56$

R² explained variance

2.00

 $learning_rate = -5.00, reg_par = -5.00$

5 4.0 3.5 4 3.0 2.5

 $learning_rate = -1.00, reg_par = -1.00$

R² explained variance

3.0

 $learning_rate = -1.44$, $reg_par = -1.44$

2.00 2.00 1.75 1.75 1.50 1.50

learning rate = -1.89, reg par = -1.89

R² explained variance

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

learning_rate = -2.78, reg_par = -2.78

1.0 2.00 1.75 8.0 1.50 1.25

 $learning_rate = -3.22, reg_par = -3.22$

3.0 2.00

 $learning_rate = -4.11, reg_par = -4.11$

learning_rate = -4.56, reg_par = -4.56

3.0 2.00

 $learning_rate = -5.00, reg_par = -5.00$

8 -6 6 5

 $learning_rate = -1.00, reg_par = -1.00$

2.00 - 3.0 -

 $learning_rate = -1.44$, $reg_par = -1.44$

learning_rate = -1.89, reg_par = -1.89

2.00 2.00 1.75 1.75 1.50 1.50 1.25 1.25

learning rate = -2.33, reg par = -2.33

R² explained variance Mean Squared Error [AUC²]

2.00

learning rate = -2.78, reg par = -2.78

2.00 3.0 1.75 2.5 1.50 2.0 1.25

 $learning_rate = -3.22, reg_par = -3.22$

2.00 -

learning rate = -3.67, reg par = -3.67

learning rate = -4.11, reg par = -4.113.0 3.0 2.5 2.5 2.0 2.0

R² explained variance

3.0 -

 $learning_rate = -4.56$, $reg_par = -4.56$

 $learning_rate = -5.00, reg_par = -5.00$

5 8 6 -

 $learning_rate = -1.00, reg_par = -1.00$

5 8 -4 6

learning_rate = -1.44, reg_par = -1.44

3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -1.89$, $reg_par = -1.89$

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 4.0 1.75 3.5 1.50 3.0 1.25

learning_rate = -2.78, reg_par = -2.78

2.00-

2.00 -

learning rate = -3.22, reg par = -3.22

learning rate = -3.67, reg par = -3.67

$learning_rate = -4.11, reg_par = -4.11$ 2.00 4.0 1.75 3.5 1.50 3.0 1.25 1.00

 $learning_rate = -4.56$, $reg_par = -4.56$ 3.0 3.0 2.5 2.5 2.0 2.0

4.0 3.0 3.5 2.5

 $learning_rate = -5.00, reg_par = -5.00$

R² explained variance

4.0 4.0 3.5 3.5 3.0 3.0

 $learning_rate = -1.00, reg_par = -1.00$

2.00 -

learning_rate = -1.44, reg par = -1.44

 $learning_rate = -1.89$, $reg_par = -1.89$ 2.00 3.0 1.75 2.5 -1.50 2.0 1.25

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

learning rate = -2.78, reg par = -2.78

3.0 -

 $learning_rate = -3.22, reg_par = -3.22$

learning_rate = -3.67, reg_par = -3.67

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

4.0 -

 $learning_rate = -4.56$, $reg_par = -4.56$

 $learning_rate = -5.00, reg_par = -5.00$

6 8 -5 6

 $learning_rate = -1.00, reg_par = -1.00$

 $learning_rate = -1.44$, reg par = -1.44

 $learning_rate = -1.89$, $reg_par = -1.89$

3.0 4.0 3.5 2.5 3.0 2.0

 $learning_rate = -2.33, reg_par = -2.33$

 $learning_rate = -2.78$, $reg_par = -2.78$

learning rate = -3.22, reg par = -3.22

learning_rate = -3.67, reg_par = -3.67

 $learning_rate = -4.11, reg_par = -4.11$ 3.0 3.0 2.5 2.5 2.0 2.0

learning_rate = -4.56, reg_par = -4.56

3.0 -

 $learning_rate = -5.00, reg_par = -5.00$

5 6 -5

 $learning_rate = -1.00, reg_par = -1.00$

2.5 4 2.0

 $learning_rate = -1.44$, $reg_par = -1.44$

R² explained variance

 $learning_rate = -1.89$, $reg_par = -1.89$ 2.00 3.0 1.75 2.5

R² explained variance

learning rate = -2.33, reg par = -2.332.00 2.00 1.75 1.75 1.50 1.50 1.25 1.25

R² explained variance

2.00 - 4.0 -

learning rate = -2.78, reg par = -2.78

2.00 - 2.00 - 1.75 -

learning rate = -3.22, reg par = -3.22

learning_rate = -3.67, reg_par = -3.67

learning rate = -4.11, reg par = -4.114.0 4.0 3.5 3.5 3.0 3.0

learning_rate = -4.56, reg_par = -4.56 2.00 - 2.00 - 2.00 - 1

learning_rate = -5.00, reg_par = -5.00 2.00

 $learning_rate = -1.00, reg_par = -1.00$

learning_rate = -1.44, reg_par = -1.44 3.0 4.0 3.5 2.5 3.0 2.0

 $learning_rate = -1.89$, $reg_par = -1.89$ 4.0 4.0 3.5 3.5 3.0 3.0

 $learning_rate = -2.33, reg_par = -2.33$ 3.0 5 -2.5 4 -2.0 1.5

4.0

learning rate = -2.78, reg par = -2.78

5 6

8

 $learning_rate = -3.22, reg_par = -3.22$

6 -

learning_rate = -3.67, reg_par = -3.673.0 5 -2.5 4 -2.0 counts w counts 1.5

 $learning_rate = -4.11, reg_par = -4.11$ 3.0 3.0 2.5 2.5 2.0 2.0

3.0 3.0 2.5 2.5

 $learning_rate = -4.56$, $reg_par = -4.56$

R² explained variance

5 6 -5

 $learning_rate = -5.00, reg_par = -5.00$

 $learning_rate = -1.00, reg_par = -1.00$ counts 6 -

 $learning_rate = -1.44$, $reg_par = -1.44$

 $learning_rate = -1.89$, $reg_par = -1.89$

 $learning_rate = -2.33, reg_par = -2.33$

5 6 -5

 $learning_rate = -2.78$, $reg_par = -2.78$

 $learning_rate = -3.22, reg_par = -3.22$

learning_rate = -3.67, reg_par = -3.67

learning_rate = -4.11, reg_par = -4.11 6 6 5 5 counts w counts

 $learning_rate = -4.56$, $reg_par = -4.56$

 $learning_rate = -5.00, reg_par = -5.00$

