X_1, \dots, X_n are i.i.d. $N_p(\mu, \Sigma)$

What about the situation when normality is not there?

Or underlying distribution is not known.

Asymptotic:

We have,

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{\text{in dist}} N(0,1) , \text{ by CLT}$$

$$S^{2} \xrightarrow{\text{in p}} \delta^{2} , \text{WLLN}$$

i.e.,
$$S/\sigma \xrightarrow[n \to \infty]{\text{in } p} 1$$
 , (Continuous Mapping Theorem)

Using Slutsky's Theorem

$$\frac{\overline{X} - \mu}{5/\sqrt{n}}$$
 in dist $N(0,1)$

Therefore for large n.

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$
 is approximately $N(0,1)$ distributed

- Applications:

1) To test Ho:
$$\mu = \mu_0$$

2 For constructing confidence set for µ

Multivariate

X, ,..., Xn are iid with mean u & Covariance moutrix &, & >0

$$S \xrightarrow{\text{in } P} \sum$$

Then,
$$n(\bar{x}-\mu)^T S^{-1}(\bar{x}-\mu) \xrightarrow{\text{in dist}} \chi^2_{\rho}$$

Application:

- ① Testing Ho: μ = μο ② Finding confidence region for μ

$$\underline{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix}, \quad \underline{\Upsilon} = \begin{pmatrix} \Upsilon_1 \\ \vdots \\ \vdots \\ \Upsilon_p \end{pmatrix}$$

$$x_1 \dots x_n$$
 from propⁿ I $\xrightarrow{\text{Sample}} \overline{x}$

Groals of Profile Analysis:

To test
$$H_{01}: \mu_{k} - \gamma_{k} = \mu_{k-1} - \gamma_{k-1}$$
 for $k=2,...,p$
against $H_{A1}: H_{01}$ is not true

(i) If
$$H_{01}$$
 is accepted

 H_{02} : $\mu_{K} = \Upsilon_{K}$, $K=1,2,...,p$

against H_{A2} : H_{02} is not true

equivalently:
$$H_{02}': \sum_{k=1}^{P} \mu_k = \sum_{k=1}^{P} \gamma_k$$

iii) If
$$H_0$$
, L H_{02} are accepted

 $H_{03}: \mu_1 = \mu_2 = \dots = \mu_p = r_1 = r_2 = \dots = r_p$
 $H_{A3}: H_{03}: s$ not true

$$\frac{\overline{X}}{\overline{Y}} \sim N_{p} \left(\mu, \Sigma / n \right)$$

$$\frac{\overline{Y}}{\overline{Y}} \sim N_{p} \left(r, \Sigma / m \right) \qquad \text{indep}$$

$$\left(n-1 \right) S_{x} \sim W_{p} \left(n-1, \Sigma \right)$$

$$\left(m-1 \right) S_{y} \sim W_{p} \left(m-1, \Sigma \right)$$

$$\overline{X} - \overline{y} \sim N_{P} \left(\mu - \tau, \left(\frac{1}{n} + \frac{1}{m} \right) \Sigma \right)$$

and

$$A\left(\bar{x}-\bar{y}\right) \sim N_{p-1}\left(A\left(\mu-\bar{x}\right),\left(\frac{1}{n}+\frac{1}{m}\right)A\Sigma A^{T}\right)$$

(Home work)

Profile Analysis Pg. 323

similar to previous one,

instead of A, Take

$$1^{T}(\bar{x} - \bar{y}) \sim N(1^{T}(\mu - \underline{r}), (\frac{1}{n} + \frac{1}{m}) 1^{T} \Sigma 1)$$

$$\rightarrow$$
 $(n+m-2)$ $\underline{1}^{T} S \underline{1} \sim W(n+m-2, 1^{T} \Sigma 1)$

$$\frac{\overline{Z}}{N+m} = \frac{n\overline{X} + m\overline{Y}}{N+m} \sim N_{p} \left(\mu, \left(\frac{1}{m+n} \right) \overline{\Sigma} \right)$$

