ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę

MMA-P1 1P-082

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1 12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

MAJ ROK 2008

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

	Wypełnia zdający przed rozpoczęciem pracy									
PESEL ZDAJĄCEGO										

KOD ZDAJĄCEGO

Zadanie 1. (4 pkt)

Na poniższym rysunku przedstawiono łamaną ABCD, która jest wykresem funkcji y = f(x).

Korzystając z tego wykresu:

- a) zapisz w postaci przedziału zbiór wartości funkcji f,
- b) podaj wartość funkcji f dla argumentu $x = 1 \sqrt{10}$,
- c) wyznacz równanie prostej BC,
- d) oblicz długość odcinka BC.

Wypełnia egzaminator!	Nr zadania	1.1	1.2	1.3	1.4
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 2. (4 pkt)

Liczba przekątnych wielokąta wypukłego, w którym jest n boków i $n \ge 3$ wyraża się wzorem $P(n) = \frac{n(n-3)}{2}$.

Wykorzystując ten wzór:

- a) oblicz liczbę przekątnych w dwudziestokącie wypukłym.
- b) oblicz, ile boków ma wielokąt wypukły, w którym liczba przekątnych jest pięć razy większa od liczby boków.
- c) sprawdź, czy jest prawdziwe następujące stwierdzenie: Każdy wielokąt wypukły o parzystej liczbie boków ma parzystą liczbę przekątnych. Odpowiedź uzasadnij.

Wypełnia	Nr zadania	2.1	2.2	2.3	2.4
	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 3. (4 pkt)

Rozwiąż równanie $4^{23}x - 32^9x = 16^4 \cdot (4^4)^4$.

Zapisz rozwiązanie tego równania w postaci 2^k , gdzie k jest liczbą całkowitą.

Wypełnia	Nr zadania	3.1	3.2	3.3	3.4
* *	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 4. (3 pkt)

Koncern paliwowy podnosił dwukrotnie w jednym tygodniu cenę benzyny, pierwszy raz o 10%, a drugi raz o 5%. Po obu tych podwyżkach jeden litr benzyny, wyprodukowanej przez ten koncern, kosztuje 4,62 zł. Oblicz cenę jednego litra benzyny przed omawianymi podwyżkami.

Wypełnia	Nr zadania	4.1	4.2	4.3
	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 5. (5 pkt)

Nieskończony ciąg liczbowy (a_n) jest określony wzorem $a_n = 2 - \frac{1}{n}$, n = 1, 2, 3, ...

- a) Oblicz, ile wyrazów ciągu (a_n) jest mniejszych od 1,975.
- b) Dla pewnej liczby x trzywyrazowy ciąg (a_2, a_7, x) jest arytmetyczny. Oblicz x.

	Nr zadania	5.1	5.2	5.3	5.4	5.5
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 6. (5 pkt)

Prosta o równaniu 5x+4y-10=0 przecina oś Ox układu współrzędnych w punkcie A oraz oś Oy w punkcie B. Oblicz współrzędne wszystkich punktów C leżących na osi Ox i takich, że trójkąt ABC ma pole równe 35.

	Nr zadania	6.1	6.2	6.3	6.4	6.5
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 7. *(4 pkt)*

Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30° i 45°. Oblicz wysokość tego trapezu.

egzaminatori	Nr zadania	7.1	7.2	7.3	7.4
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 8. (4 pkt)

Dany jest wielomian $W(x) = x^3 - 5x^2 - 9x + 45$.

- a) Sprawdź, czy punkt A = (1, 30) należy do wykresu tego wielomianu.
- b) Zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.

Wypełnia egzaminator!	Nr zadania	8.1	8.2	8.3	8.4
	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 9. *(5 pkt)*

Oblicz najmniejszą i największą wartość funkcji kwadratowej f(x) = (2x+1)(x-2) w przedziale $\langle -2,2 \rangle$.

	Nr zadania	9.1	9.2	9.3	9.4	9.5
	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 10. (3 pkt)

Rysunek przedstawia fragment wykresu funkcji h, określonej wzorem $h(x) = \frac{a}{x}$ dla $x \neq 0$.

Wiadomo, że do wykresu funkcji h należy punkt P = (2,5).

- a) Oblicz wartość współczynnika a.
- b) Ustal, czy liczba $h(\pi) h(-\pi)$ jest dodatnia czy ujemna.
- c) Rozwiąż nierówność h(x) > 5.

Wypełnia	Nr zadania	10.1	10.2	10.3
	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 11. *(5 pkt)*

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się $\frac{a^2\sqrt{15}}{4}$, gdzie

a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz $\cos \beta$ i korzystając z tablic funkcji trygonometrycznych odczytaj przybliżoną wartość β z dokładnością do 1°.

	Nr zadania	11.1	11.2	11.3	11.4	11.5
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 12. (4 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo każdego z następujących zdarzeń:

- a) A w każdym rzucie wypadnie nieparzysta liczba oczek.
- b) B suma oczek otrzymanych w obu rzutach jest liczbą większą od 9.
- c) C suma oczek otrzymanych w obu rzutach jest liczbą nieparzystą i większą od 9.

Wypełnia egzaminator!	Nr zadania	12.1	12.2	12.3	12.4
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

BRUDNOPIS