Versuchsname

Steven Becker und Stefan Grisad

27. Oktober 2016 WS 2016/2017

1 Theorie

2 Versuchsdurchführung

3 Auswertung

3.1 Messung der Schwingungsdauern

Alle Messungen wurden für zwei verschiedene Pendellängen $(l=(0.70\pm0.01)m$ und $l=(0.60\pm0.01)m)$ durchgeführt, die identische Auswertung soll an dieser Stelle parallel geschehen.

Für die beiden Pendel wurden zunächst die Zeiten $5 \cdot T_1$ und $5 \cdot T_2$ für jeweils 5 Schwingungen aufgezeichnet. Die jeweiligen Mittelwerte berechnen sich gemäß:

$$\bar{T}_j = \frac{1}{n} \sum_{i=1}^{n} t_i \tag{1}$$

Selbiges wurde für die gleichsinnige (T_+) , gegesinnige (T_-) und gekoppelte (T_G) Schwingung durchgeführt. Zur direkten Messung der Schwebungszeit T_S wurde lediglich die Zeit für einen vollen Schwebungsvorgang gemessen. Die Berechnung der Standardabweichung des Mittelwerts erfolgt in allen Fällen nach der Formel:

$$\bar{\sigma}_{\bar{T}_j} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (2)

Die entsprechenden Ergebnisse sind in Tabelle 1 bzw. 2 aufgetragen.

Nun soll mit den gefundenen Werten der Kopplungsgrad K berechnet werden:

$$K = \frac{T_{+}^{2} - T_{-}^{2}}{T_{+}^{2} + T_{-}^{2}} \tag{3}$$

Hiermit ergibt sich für den Mittelwert \bar{K} als Funktion der einzelnen Mittelwerte:

$$\bar{K}_{0.7} = 0.20 \tag{4}$$

Für die erste Konfiguration (l = 0.70m), respektive:

$$\bar{K}_{0.6} = 0.05 \tag{5}$$

Für die zweite Konfiguration (l = 0.60m). Um die zugehörigen Fehler anzugeben, muss die Gaußsche-Fehlerfortpflanzung verwendet werden:

Hierzu müssen zunächst die partiellen Ableitungen nach T_+ und T_- bestimmt werden:

$$\frac{\partial K}{\partial T_{+}} = \frac{4 \cdot T_{+} \cdot T_{-}^{2}}{(T_{+}^{2} + T_{-}^{2})^{2}} \tag{7}$$

$$\frac{\partial K}{\partial T_{-}} = -\frac{4 \cdot T_{-} \cdot T_{+}^{2}}{T_{+}^{2} + T_{-}^{2}} \tag{8}$$

	Mittelwert		Mittelwert
$\overline{5 \cdot T_1}$	$8,32 \pm 0,02$	$5 \cdot T_1$	$7,79 \pm 0,05$
$5 \cdot T_2$	$8,29 \pm 0,02$	$5 \cdot T_2$	$7,76 \pm 0,04$
$5 \cdot T_+$	$8,\!25 \pm 0,\!05$	$5 \cdot T_+$	$7,63 \pm 0,05$
$5 \cdot T_{-}$	$6,72 \pm 0,03$	$5 \cdot T_{-}$	$7,25 \pm 0,05$
$5 \cdot T_K$	$46,23 \pm 1,24$	$5 \cdot T_K$	$133,94 \pm 1,97$
T_S	$7,95 \pm 0,15$	T_S	$25,48 \pm 0,52$

Tabelle 1: Gemittelte Werte für l = 0.7m

Tabelle 2: Gemittelte Werte für l = 0.6m

3.2 Messungen

$5 \cdot 7$	r_1/s	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\frac{7}{2}$ /s
8,50	8,29	8,13	8,26
8,35	8,29	8,30	8,44
8,32	8,30	8,36	$8,\!27$
8,26	8,23	8,29	$8,\!26$
8,26	8,38	8,30	8,33

Tabelle 3: linkes Pendel

Tabelle 4: Schwingungsdauer rechtes Pendel

$5 \cdot T$	/ ₊ /s	$5 \cdot T_{-}/\mathrm{s}$
8,12	8,33	6,89 6,76
8,18	8,16	$6,66 \qquad 6,73$
$8,\!23$	8,18	6,80 6,69
$8,\!55$	8,10	6,55 $6,84$
8,18	8,50	6,61 $6,64$

 Tabelle 5: Schwingungsdauer gleichsinnig
 Tabelle 6: Schwingungsdauer gegensinnig

		<u></u>	
$5 \cdot T_K/s$			Γ_S/s
48,30	41,93	-7,18	8,59
$49,\!47$	40,01	7,10	8,23
$44,\!23$	$53,\!81$	7,86	8,36
$48,\!23$	$44,\!67$	7,80	8,04
$48,\!42$	$43,\!23$	8,11	8,21

 Tabelle 7: Schwingungsdauer gekoppelt

Tabelle 8: Schwebungsdauer

3.3 Pendellänge $l=0,6\mathrm{m}$

$5 \cdot T_1/\mathrm{s}$	$5 \cdot T_2$
7,86	7,86
7,61	7,83
7,76	7,64
7,78	7,80
7,92	7,67

Tabelle 9: linkes Pendel

Tabelle 10: Schwingungsdauer rechtes Pendel

$5 \cdot T_{+}$	$5 \cdot T_{-}/\mathrm{s}$
7,47	7,15
$7,\!55$	$7,\!21$
$7,\!64$	7,38
7,75	7,13
7,73	7,36

Tabelle 11: Schwingunsdauer gleichsinnig

Tabelle 12: Schwingungsdauer gegensinnig

$\overline{5 \cdot T_K/\mathrm{s}}$	T_S/s
$\frac{3 \cdot 1_{K/S}}{}$	$\frac{I_{S}/S}{}$
129,61	$26,\!34$
137,27	$24,\!62$
129,47	26,21
140,67	23,64
132,66	26,60

 Tabelle 13: Schwingungsdauer gekoppelt
 Tabelle 14: Schwebungsdauer

4 Diskussion