Lecture 23: Similarity Transformations (Sections 5.6)

Thang Huynh, UC San Diego 3/9/2018

► Example.
$$U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$
 has eigenvalues e^{it} and e^{-it} .

► Example.
$$U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$
 has eigenvalues e^{it} and e^{-it} .

Orthogonal eigenvectors are
$$\mathbf{x} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1 \\ i \end{bmatrix}$.

► Example. $U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$ has eigenvalues e^{it} and e^{-it} .

Orthogonal eigenvectors are $\mathbf{x} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ i \end{bmatrix}$.

► Example. (normalized) Fourier matrix

$$U = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & w & \cdots & w^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & w^{n-1} & \cdots & w^{(n-1)^2} \end{bmatrix}$$

where $w = e^{2\pi i/n}$

▶ Example. $U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$ has eigenvalues e^{it} and e^{-it} .

Orthogonal eigenvectors are $\mathbf{x} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ i \end{bmatrix}$.

► Example. (normalized) Fourier matrix

$$U = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & w & \cdots & w^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & w^{n-1} & \cdots & w^{(n-1)^2} \end{bmatrix}$$

where $w = e^{2\pi i/n}$.

Row i of U^H times column j of U is

$$\frac{1}{n}(1+W+W^2+\cdots+W^{n-1})=\frac{W^n-1}{W-1}=0,$$

where $W = w^{j-i}$.

▶ Definition. Two $n \times n$ matrices A and B are called similar if $B = M^{-1}AM$ for some invertible $n \times n$ matrix M.

- ▶ Definition. Two $n \times n$ matrices A and B are called similar if $B = M^{-1}AM$ for some invertible $n \times n$ matrix M.
- \blacktriangleright Example. If A can be diagonalized, Λ and A are similar.

▶ Property. If A and B are similar, they have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B.

▶ Property. If A and B are similar, they have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B.

 $A - \lambda I$ and $B - \lambda I$ have the same determinant.

▶ Property. If A and B are similar, they have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B.

 $A - \lambda I$ and $B - \lambda I$ have the same determinant.

Example.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 has eigenvalues 1. Each B is $M^{-1}AM$:

Example.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 has eigenvalues 1. Each B is $M^{-1}AM$:

If
$$M = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$
, then $B = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$: triangular with $\lambda = 1$ and 0 .

Example. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ has eigenvalues 1. Each B is $M^{-1}AM$:

If
$$M = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$
, then $B = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$: triangular with $\lambda = 1$ and 0 .

If
$$M = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, then $B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$: triangular with $\lambda = 1$ and 0 .

Triangular forms with a unitary M

Theorem. (Schur's Theorem) There is a unitary matrix U such that $U^{-1}AU = T$ is triangular. The eigenvalues of A appear along the diagonal of this similar matrix T.

Triangular forms with a unitary M

Theorem. (Schur's Theorem) There is a unitary matrix U such that $U^{-1}AU=T$ is triangular. The eigenvalues of A appear along the diagonal of this similar matrix T.

Example. $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ has the eigenvalue $\lambda = 1$ (twice).

$$U^{-1}AU = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T.$$

Theorem. (Spectral Theorem) Every real symmetric A can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary U:

(real)
$$Q^{-1}AQ = \Lambda \text{ or } A = Q\Lambda Q^T$$
 (complex)
$$U^{-1}AU = \Lambda \text{ or } A = U\Lambda U^H$$

Example. Consider
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Example. Consider
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Then A is symmetric with repeated eigevalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$.

► Example. Consider $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then A is symmetric with repeated eigevalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$.

• For
$$\lambda_1 = \lambda_2 = 1$$
, eigenvectors $\mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

• For
$$\lambda_3 = -1$$
, eigenvector $\mathbf{x}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

These are the columns of Q.

▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$.

▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.

- ▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.
- ► Example.
 - Symmetric and Hermitian matrices are normal.

- ▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.
- ► Example.
 - Symmetric and Hermitian matrices are normal.
 - Orthogonal and unitary matrices are also normal.

▶ Property. If *N* is normal, then so is the triangular $T = U^{-1}NU$.

- ▶ Property. If *N* is normal, then so is the triangular $T = U^{-1}NU$.
- ightharpoonup Property. A triangular T that is normal must be diagonal. (Why?)