Deep Learning

Transformer

Lionel Fillatre 2025-2026

Outline

- Attention Mecanism
- Single-Head Attention
- Multi-Head Attention
- Decode Only Transformer
- Input Encoding
- How does training work?
- Encoder-Decoder Transformer
- Conclusion

Attention Mecanism

Reminder: Encoder/Decoder

- The encoder-decoder model, translating the sentence "she is eating a green apple" to Chinese.
- The visualization of both encoder and decoder is unrolled in time.

Decoder with attention

- The decoder is still a RNN
 - RNN decoder hidden state: $s_{t'} = f(y_{t'-1}, s_{t'-1}, c_{t'})$
- With an RNN, each conditional probability is modeled as

$$p(y_{t'}|y_1,...,y_{t'-1},x) = g(y_{t'-1},s_{t'},c_{t'})$$

- g is a nonlinear, potentially multi-layered, function that outputs the probability of y_{t^\prime}
- Principle: the probability is conditioned on a distinct context vector $c_{t'}$ for each target word $y_{t'}$

Annotation

- The context vector c_i depends on a sequence of annotations $h=(h_1,h_2,\ldots,h_T)$ to which an encoder maps the input sentence.
- Each annotation h_i contains information about the whole input sequence (especially for a bidirectional RNN) with a strong focus on the parts surrounding the i-th word of the input sequence.
- Generally, the annotation is a RNN hidden state
- The context vector c_i is computed as a weighted sum of the annotations h_i :

$$c_i = \sum_{j=1}^T \alpha_{ij} h_j$$

with $0 \le \alpha_{ij} \le 1$

Annotation weights

• The weight α_{ij} of each annotation h_i is computed by a softmax function

$$\alpha_{ij} = \operatorname{softmax}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k=1}^{T} \exp(e_{ik})}$$

where

$$e_{ij} = score(s_i, h_j)$$

- The score e_{ij} measures how well the inputs around position j and the output at position i match
- The score is based on the RNN hidden state s_i (just before emitting y_i) and the j-th annotation h_i of the input sentence.

To to compute the score?

- The most popular score are
 - Dot-product: $e_{ij} = \text{score}(s_i, h_j) = s_i^T h_j = h_j^T s_i$
 - Bilinear function: $e_{ij} = score(s_i, h_j) = s_i^T W h_j = h_j^T W s_i$
 - Multi-Layer Perceptron: $e_{ij} = \text{score}(s_i, h_j) = a(s_i, h_j) = w_2^T \tanh(W_1[s_i, h_j])$

• In the original paper, the authors used the **alignment model** $a(\cdot)$ as a feedforward neural network which is jointly trained with all the other components of the proposed system.

Interpretation of
$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T} \exp(e_{ik})}$$

- We can understand the approach of taking a weighted sum of all the annotations as computing an **expected annotation**, where the expectation is over possible alignments.
- Let α_{ij} be a probability that the target word y_i is aligned to, or translated from, a source word x_j . Then, the i-th context vector c_i is the expected annotation over all the annotations h_j with probabilities α_{ij}

$$c_i = \sum_{j=1}^{T} \alpha_{ij} h_j$$

- The probability α_{ij} , or its associated score e_{ij} , reflects the importance of the annotation h_j with respect to the current decoding state s_i in deciding the next prediction y_i .
- Intuitively, this implements a **mechanism of attention** in the decoder.

Illustration of the alignment

- The x-axis and y-axis of the plot correspond to the words in the source sentence (English) and the generated translation (French), respectively.
- Each pixel shows the weight α_{ij} of the annotation of the j-th source word for the i-th target word, in grayscale (0: black, 1: white).

Single-head attention

Transformer's Encoder: Principle

- Self-attention
- Queries, keys and values
- Scaling the dot product
- Multi-head attention

Example with a sentence

• The word « licked » is most correlated to « cat » (who?) ans « owner » (to whom?)

Comparison with convolution

• The word « licked » is only correlated to words in a given neighborhood (kernel size)

Self-attention

- Self-attention is a sequence-to-sequence operation:
 - A sequence of vectors goes in, and a sequence of vectors comes out.
 - Let's call the input vectors $x_1, x_2, ..., x_t$ and the corresponding output vectors $y_1, y_2, ..., y_t$.
 - The vectors all have dimension d (the inputs are embedded with an embedding layer).
- To produce output vector y_i , the self attention operation simply takes a weighted average over all the input vectors

$$y_i = \sum_{j=1}^t w_{ij} x_j$$

where the positive weights w_{ij} sum to one over all j.

Self-attention: basic operation

The weight

$$w_{ij} = \operatorname{softmax}(e_{ij}) = \operatorname{softmax}(\operatorname{score}(x_i, x_j))$$

is not a parameter, as in a normal neural net, but it is derived from a function over x_i and x_j .

The simplest option for the score function is the dot product:

$$e_{ij} = x_i^T x_j$$

• The dot product gives us a value anywhere between negative and positive infinity, so we apply a softmax to map the values to [0,1] and to ensure that they sum to 1 over the whole sequence:

$$w_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{t} \exp(e_{ik})}$$

Self-attention

A visual illustration of basic self-attention. Note that the softmax operation over the weights is not illustrated.

Example: How to draw a rose

Queries, keys and values

$$y_i = \sum_{j=1}^t w_{ij} x_j, \quad w_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^t \exp(e_{ik})}, \quad e_{ij} = x_i^T x_j$$

• Every input vector x_i is used in three different ways in the self attention operation (each role has a name: query, key or value):

$$y_i = \sum_{j=1}^t \frac{\exp(\mathbf{x}_i^T \mathbf{x}_j)}{\sum_{k=1}^t \exp(\mathbf{x}_i^T \mathbf{x}_k)} \mathbf{x}_j$$

- 1. Query: vector from which the attention is looking for its own output y_i
- 2. Key: It is compared to every other vector at which the query looks to establish the weights
- 3. Value: It is used as part of the weighted sum to compute each output vector once the weights have been established.
- In the basic self-attention we've seen so far, each input vector must play all three roles.
- In the transformer, new vectors for each role are derived, by applying a linear transformation to the original input vector

Linear transformation for each role

• We can add three $d \times d$ weight matrices W^Q , W^K , W^V to compute three linear transformations of each x_i , for the three different parts of the self attention:

$$q_i = W^Q x_i, \qquad k_i = W^K x_i, \qquad v_i = W^V x_i$$
 $e_{ij} = q_i^T k_j$ $w_{ij} = \operatorname{softmax}(e_{ij})$ $y_i = \sum_{i=1}^t w_{ij} v_j$

• This gives the self-attention layer some controllable parameters, and allows it to modify the incoming vectors to suit the three roles they must play.

Attention function: matrix form

- In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix Q (after the linear transformation if we use it).
 - Initial vectors are the rows of Q
- The keys and values are also packed together into matrices K and V.
- We compute the matrix of outputs as:

Attention(Q, K, V) = softmax
$$\left(\frac{Q K^T}{\sqrt{d}}\right) V$$

Scaling the dot product: why \sqrt{d} ?

- The softmax function can be sensitive to very large input values.
- These kill the gradient, and slow down learning, or cause it to stop altogether.
- Since the average value of the dot product grows with the embedding dimension k, it helps to scale the dot product back a little to stop the inputs to the softmax function from growing too large:

$$e_{ij} = \frac{q_i^T k_j}{\sqrt{d}}$$

- Why \sqrt{d} ?
 - Imagine a vector in \mathbb{R}^d with values all $c:(c,c,\cdots,c)$. Its Euclidean length is $c\sqrt{d}$.
 - Therefore, we are dividing out the amount by which the increase in dimension increases the length of the average vectors.
- An other theoretical justification of \sqrt{d} :
 - if all the elements q_i and k_j are drawn independently from a $\mathcal{N}(0, \sigma^2)$ then $q_i^T k_j$ would have a variance $d\sigma^4$.
 - But e_{ij} has variance of σ^4 .
 - · This normalization ensures that the numbers given to softmax are not too dispersed.

Multi-head attention

Multi-head attention

- Finally, we must account for the fact that a word can mean different things to different neighbours.
 - Consider the following example: « Mary gave roses to Susan »
 - We see that the word gave has different relations to different parts of the sentence.
 - Mary expresses who's doing the giving,
 - roses expresses what's being given,
 - and Susan expresses who the recipient is.
- In a single self-attention operation, all this information just gets summed together.
 - If « Susan gave Mary the roses » instead, the output vector y_{gave} would be the same, even though the meaning has changed.

Multi-head attention

• We can give the self attention greater power of discrimination, by combining several self attention mechanisms (which we'll index with i), each with different matrices W_i^Q , W_i^K , W_i^V . These are called attention heads.

• For input x_j each attention head produces a different output vector y_j^i . We concatenate these, and pass them through a linear transformation W^0 to reduce the dimension back to d.

Multi-Head Attention

Just concatenate all the heads and apply an output projection.

$$\begin{aligned} \text{head}_i &= \text{Attention}\big(W_i^Q x, W_i^K x, W_i^V x\big) \\ \text{MultiHeadedAttention}(\mathbf{x}) &= \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O \end{aligned}$$

• Previously, we used the following dimensions for **single**-head SA:

$$W^Q \in \mathbb{R}^{d \times d}$$
, $W^K \in \mathbb{R}^{d \times d}$, $W^V \in \mathbb{R}^{d \times d}$,

• In practice, we use a reduced dimension for each head.

$$W_i^Q \in \mathbb{R}^{d \times \frac{d}{h}}, \qquad W_i^K \in \mathbb{R}^{d \times \frac{d}{h}}, \qquad W_i^V \in \mathbb{R}^{d \times \frac{d}{h}}, \qquad W^O \in \mathbb{R}^{d \times d}$$

 The total computational cost is similar to that of single-hear attention with full dimensionality.

h: number of heads

d: feature dimension in output of SA

Combine with FFN

- Add a feed-forward network to add more expressivity.
 - This applies another nonlinearity to the representations (or "post-process" them).

$$\begin{aligned} \mathbf{FFN}(x) &= \sigma(x \mathbf{W}_1 + b_1) \mathbf{W}_2 + \mathbf{b}_2 \\ \mathbf{W}_1 &\in \mathbb{R}^{d \times d_{\mathrm{ff}}}, \\ \mathbf{W}_2 &\in \mathbb{R}^{d_{\mathrm{ff}} \times d} \end{aligned}$$

• Usually, the dimensionality of the hidden feedforward layer $d_{\rm ff}$ is 2-8 times larger than the input dimension d.

How Do We Prevent Vanishing Gradients?

- Residual connections let the model "skip" layers
 - These connections are particularly useful for training deep networks

 Use layer normalization to stabilize the network and allow for proper gradient flow

Putting it Together: Self-Attention Block

- Layer normalization is similar to batch normalization (but it is not strictly speaking a batch normalization)
- Layer normalization prevents the range of values in the layers from changing too much, which allows faster training and better generalization ability
- Given input *x*:

$$z = LayerNorm (\tilde{x} + x)\tilde{x}$$
= MultiHeadedAttention(x; W^Q, W^K, W^V)

$$\tilde{\mathbf{z}} = \text{FFN}(\mathbf{z}) = \sigma(\mathbf{z}W_1 + b_1)W_2 + b_2$$

out = $LayerNorm(\tilde{\mathbf{z}} + \mathbf{z})$

LayerNorm(x + Sublayer(x))

• For a batch $\{x_n\}_{n=1,...,N}$ of N vectors $x_n \in \mathbb{R}^K$, also written as $\{x_{n,k}\} \in \mathbb{R}^{N \times K}$, the expectation and variance accros spatial dimensions are « estimated » by

$$\mu_n = \frac{1}{K} \sum_{k=1}^K x_{n,k} \in \mathbb{R}, \qquad \sigma_n^2 = \frac{1}{K} \sum_{k=1}^K (x_{n,k} - \mu_n)^2 \in \mathbb{R}$$

Layer Normalization (LayerNorm in Pytorch)

$$\hat{x}_{n,k} = \frac{x_{n,k} - \mu_n}{\sqrt{\sigma_n^2 + \epsilon}} \in \mathbb{R} \quad \Rightarrow \quad \hat{x}_n = \begin{pmatrix} \hat{x}_{n,1} \\ \vdots \\ \hat{x}_{n,K} \end{pmatrix} \in \mathbb{R}^K$$

$$LN_{\gamma,\beta}(x_n) = \gamma \hat{x}_n + \beta$$

• γ and β are learnable affine transform parameters

Decoder-Only Transformer

From Representations to Prediction

- Use sequentially *N* Multi-Head attention modules.
- To perform prediction, add a classification head on top of the final layer of the transformer: $x \in \mathbb{R}^{n \times d}$.
 - *n* is the length of the input sequence.
- To obtain logits, we can apply a linear transformation with token embedding matrix $W^S \in \mathbb{R}^{d \times V}$
- To obtain probabilities, run this through softmax: softmax(xW^S) $\in \mathbb{R}^{n \times V}$

Input encoding

Positional Embeddings

Positional Embeddings

Criteria for Positional Encodings

- The first idea that might come to mind is to assign a number to each time-step within the [0, 1] range in which 0 means the first word and 1 is the last time-step.
 - One of the problems it will introduce is that you can't figure out how many words are present within a specific range. In other words, time-step doesn't have consistent meaning across different sentences.
- Another idea is to assign a number to each time-step linearly: the first word is given "1", the second word is given "2", and so on.
 - The problem with this approach is that not only the values could get quite large, but also our model can face sentences longer than the ones in training.
 - In addition, our model may not see any sample with one specific length which would hurt generalization of our model.
- Ideally, the following criteria should be satisfied:
 - It should output a unique encoding for each time-step (word's position in a sentence)
 - Distance between any two time-steps should be consistent across sentences with different lengths.
 - The model should generalize to longer sentences without any efforts. Its values should be bounded.
 - It must be deterministic.

Proposed Method for Transformer

- The encoding proposed by the authors satisfies all of those criteria.
 - First of all, it isn't a single number. Instead, it's a d-dimensional (same dimension as word embedding) vector p_t that contains information about a specific position t in a sentence.
 - Secondly, this encoding is not integrated into the model itself. Instead, this vector is used to equip each word with information about its position in a sentence.
 - According to the authors, for any fixed offset s, p_{t+s} can be represented as a linear function of p_t
- Let t the desired position in an input sentence, $p_t = \left(p_t(0), \dots, p_t(d-1)\right) \in \mathbb{R}^d$ be its corresponding encoding. Then,

$$p_t(i) = \begin{cases} \sin(w_k t) & \text{if } i = 2k \\ \cos(w_k t) & \text{if } i = 2k + 1 \end{cases} \quad \text{with} \quad w_k = \frac{1}{10000^{2k}/d}$$

• Example:
$$p_t(0) = \sin\left(\frac{t}{10000^0/d}\right)$$
, $p_t(1) = \cos\left(\frac{t}{10000^0/d}\right)$, $p_t(2) = \sin\left(\frac{t}{10000^2/d}\right)$, $p_t(3) = \cos\left(\frac{t}{10000^2/d}\right)$, ...

Visualizing the Positional Encodings

- The 128-dimensional positional encoding for a sentence with the maximum length of 50.
- Each row represents the embedding vector p_t

How does training work?

Generating text via Transformer

Training a Transformer Language Model

- Goal: Train a Transformer for language modeling (i.e., predicting the next word).
- Approach: Train it so that each position is predictor of the next (right) token.
 - We just shift the input to right by one, and use as labels

Y =cat sat on the mat </s> $\overline{TRANSFORMER}$ X =the cat sat on the mat

EOS special token

```
X = text[:, :-1]
Y = text[:, 1:]
```

Training a Transformer Language Model

• Sum the position-wise loss values to a obtain a global loss.

Training a Transformer Language Model

- The model would solve the task by copying the next token to output (data leakage) since we process the input sequence as a whole.
- Does not learn anything useful

Attention mask

Attention raw scores

	Attention law scores											
0	-0.08	1.24	0.69	-0.98	1.43	-0.6	0.7	0.16	0.93	1.28	-1.61	-1.1
←	-0.09	-0.0	-0.7	0.06	0.25	0.23	0.26	0.18	0.78	-0.21	-1.01	1.01
2	0.86	1.19	1.59	0.86	-0.13	-0.15	-2.13	-0.98	-0.87	-1.72	1.87	-0.72
3	0.12	-0.03	-0.02	0.88	-0.46	-0.7	0.54	-0.42	-1.89	-0.38	0.04	-0.84
4	0.51	0.17	0.13	-1.64	0.24	-0.02	1.68	-0.36	0.64	0.36	0.27	0.66
2	0.24	-1.44	0.43	0.74	0.96	-1.21	-0.31	1.54	1.66	1.14	0.58	-1.44
9	0.26	-0.1	0.93	0.72	-0.38	1.65	0.47	-0.96	-0.17	-0.9	-1.57	0.22
7	-0.55	0.81	0.71	1.7	-0.8	-1.14	-0.32	1.78	-0.7	-0.04	1.54	0.81
8	0.74	-0.76	-0.44	-0.08	-1.38	-0.13	1.25	-1.37	1.84	0.3	0.57	0.74
6	-0.97	-0.91	0.15	0.35	-0.81	0.11	1.14	-1.52	1.06	1.87	0.5	-0.3
10	1.56	0.9	0.39	1.46	1.44	-1.05	0.9	-0.73	0.36	-0.67	-0.62	-0.43
1	0.32	0.74	0.44	-0.1	1.19	0.83	0.29	2.06	0.51	-0.26	1.51	0.11
	1	2	3	4	5	6	7	8	9	10	11	12

Attention mask

Attention mask

Attention masking: Why Before Softmax?

• We applied attention masking before softmax. Why not after?

- Softmax normalizes the scores so that it's a probability.
- Masking after softmax, would lead to an unnormalized probability distribution.

Encoder-Decoder Transformer

- Transformer is two blocks
 - **Encoder** = read or encode the input

- Transformer is two blocks
 - **Encoder** = read or encode the input

- Transformer is two blocks
 - **Encoder** = read or encode the input
 - **Decoder =** generates text

- Transformer is two blocks
 - **Encoder** = read or encode the input
 - mat • **Decoder =** generates text Dec Enc

- Transformer is two blocks
 - **Encoder** = read or encode the input
 - **Decoder** = generates text

<eos>

[Vaswani et al. 2017] 62

Transformer Output Generator **Probabilities** (prediction head) (for y_t) T Add & Norm Decoding Decoder Procedure Feed Forward Stack auto-regressive $\times N$ decoding Add & Norm t++ Multi-Head (shift right) Self-Attention Positional **Positional** Encoding Encoding Input Output x_1 $x_2 \longrightarrow x_n$ Embedding Embedding

Transformer Output Generator **Probabilities** (prediction head) (for y_t) Add & Norm Feed Forward Add & Norm Multi-Head Add & Norm Decoding Cross- $\times N$ Procedure Feed Forward Attention auto-regressive $\times N$ Add & Norm decoding Add & Norm Masked t++ Multi-Head Multi-Head (shift right) Self-Attention Self-Attention Positional Positional Encoding Encoding Input Output x_1 $x_2 \longrightarrow x_n$ **Embedding Embedding**

Transformer Output Softmax **Probabilities** (for y_t) Linear Add & Norm Feed Forward Add & Norm Multi-Head Add & Norm Decoding Cross- $\times N$ Procedure Feed Forward Attention auto-regressive y_t $\times N$ Add & Norm decoding Add & Norm Masked t++ Multi-Head Multi-Head (shift right) Self-Attention Self-Attention Positional 6 **Positional** Encoding Encoding Input Output x_1 $x_2 \longrightarrow x_n$ Embedding Embedding

Transformer

• Computation of **encoder** attends to both sides.

Transformer

Output **Probabilities**

Softmax

Output Probabilities

Conclusion

Conclusion

- Attention is nowadays a crucial mechanism for deep neural networks
- Transformers are exploiting self-attention
- Transformers are powerful and generic
- There are many ways to aggregate transformers.
- Each method has advantages and disadvantages.