Math 107 Lecture 5

Logical Indexing and Plotting in MATLAB

by Dr. Kurianski on September 11, 2024

» Announcements and Objectives

Announcements

- * Skill Check 2 in two weeks (9/25, 60 mins then lecture)
- Pre-Notes due before start of next lecture
- * Assignments Due Friday (9/13):
 - * HW2 Handwritten Questions
 - * HW2 Coding Problems
 - * HW2 MATLAB File Upload
- * Office Hours Update: All of my office hours are now offered in hybrid format.

Objectives

- Plot functions in MATLAB with custom line and marker styles
- * Add titles and labels, and adjust axes on plots

Plotting in MATLAB

Plotting in MATLAB

» Plotting a Single Function

- 1. Create a vector x with your desired starting value, ending value, and step size.
- 2. Create the vector y using x in a computation.

plot(x,y)	Creates a line plot of y versus x
<pre>plot(x,y,'Options')</pre>	Creates line plot with custom options

Examples of custom options

- * color, e.g., 'r', 'b', 'g', 'k', 'm', 'c'
- * line type, e.g., ' ', ' - ', ' : ', ' . '
- * marker type, e.g., 'o', 's', 'd', '*'
- * 'linewidth', number

Remark: See the MATLAB documentation for plot for more details.

» Plotting Line Segments

When plotting a line segment between the points (x1,y1) and (x2,y2), the syntax is to plot the vector of x values against the vector of y values.

```
plot([x1, x2], [y1, y2])
```

» Title, Labels, Limits, and Legend

```
title('Title of Plot')
xlabel('Horizontal axis label')
vlabel('Vertical axis label')
xlim([xmin xmax])
ylim([ymin ymax])
legend('1st plot', '2nd plot', 'Location', 'Best')
```

Method 1

» Plotting Multiple Functions on Same Figure

```
plot(x1, y1, 'options1', x2, y2, 'options2')

Method 2
plot(x1, y1, 'options1')
hold on
plot(x2, y2, 'options2')
```

» Plotting Activity

Work together to complete the following plotting exercises:

- 1. Plot $y = x^2 e^{3x}$ over the interval [-5, 5].
- 2. Plot $z = \sin(t)/t$ over the interval [1, 10].
- 3. Plot $g = x^3 e^x \sin(x)$ over the interval [0, 10].
- 4. Plot two line segments on the same figure: One between the points (3, -4) and (-5, 2) and another between the points (-5, -3) and (3, 0).