IGBT-Module

F3L200R12W2H3_B11

EasyPACK Modul mit aktiver "Neutral Point Clamp 2" Topologie und PressFIT / NTC EasyPACK module with active "Neutral Point Clamp 2" topology and PressFIT / NTC

Typische Anwendungen

- 3-Level-Applikationen
- Motorantriebe
- · Solar Anwendungen
- USV-Systeme

Elektrische Eigenschaften

- High Speed IGBT H3
- Niedrige Schaltverluste
- $T_{vj op} = 150^{\circ}C$

Mechanische Eigenschaften

- · PressFIT Verbindungstechnik
- · RoHS konform

 V_{CES} = 1200V $I_{C \text{ nom}}$ = 100A / I_{CRM} = 200A

Typical Applications

- · 3-Level-Applications
- · Motor Drives
- Solar Applications
- UPS Systems

Electrical Features

- High Speed IGBT H3
- · Low Switching Losses
- $T_{vi op} = 150^{\circ}C$

Mechanical Features

- PressFIT Contact Technology
- RoHS compliant

Module Label Code

Barcode Code 128

DMX - Code

Content of the CodeDigitModule Serial Number1 - 5Module Material Number6 - 11Production Order Number12 - 19Datecode (Production Year)20 - 21Datecode (Production Week)22 - 23

prepared by: CM	date of publication: 2014-12-04	
approved by: AKDA	revision: 3.0	UL approved (E83335)

IGBT-Modul IGBT-Module

F3L200R12W2H3_B11

IGBT, T1 / T4 / IGBT, T1 / T4

Höchstzulässige Werte / Maximu	m Rated Values

Kollektor-Emitter-Sperrspannung Collector-emitter voltage	T _{vj} = 25°C	V _{CES}	1200	V
Implementierter Kollektor-Strom Implemented collector current		Icn	200	А
Kollektor-Dauergleichstrom Continuous DC collector current	$T_C = 100^{\circ}C, T_{vj \text{ max}} = 175^{\circ}C$	I _{C nom}	100	А
Periodischer Kollektor-Spitzenstrom Repetitive peak collector current	t _P = 1 ms	I _{CRM}	400	А
Gesamt-Verlustleistung Total power dissipation	T _C = 25°C, T _{vj max} = 175°C	P _{tot}	600	W
Gate-Emitter-Spitzenspannung Gate-emitter peak voltage		V _{GES}	+/-20	V

Oate-emitter peak voitage							
Charakteristische Werte / Charac	cteristic Values			min.	typ.	max.	
Kollektor-Emitter-Sättigungsspannung Collector-emitter saturation voltage	I _C = 100 A, V _{GE} = 15 V I _C = 100 A, V _{GE} = 15 V I _C = 100 A, V _{GE} = 15 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	V _{CE} sat		1,55 1,70 1,75	1,75	V V
Gate-Schwellenspannung Gate threshold voltage	$I_C = 7,60 \text{ mA}, V_{CE} = V_{GE}, T_{vj} = 25^{\circ}\text{C}$		V_{GEth}	5,05	5,80	6,45	V
Gateladung Gate charge	V _{GE} = -15 V +15 V		Q_{G}		1,60		μC
Interner Gatewiderstand Internal gate resistor	T _{vj} = 25°C		R _{Gint}		3,8		Ω
Eingangskapazität Input capacitance	$f = 1 \text{ MHz}, T_{vj} = 25^{\circ}\text{C}, V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$,	C _{ies}		11,5		nF
Rückwirkungskapazität Reverse transfer capacitance	f = 1 MHz, T _{vj} = 25°C, V _{CE} = 25 V, V _{GE} = 0 V	,	C _{res}		0,70		nF
Kollektor-Emitter-Reststrom Collector-emitter cut-off current	V _{CE} = 1200 V, V _{GE} = 0 V, T _{vj} = 25°C		I _{CES}			1,0	mA
Gate-Emitter-Reststrom Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = 20 V, T _{vj} = 25°C		I _{GES}			100	nA
Einschaltverzögerungszeit, induktive Last Turn-on delay time, inductive load	$I_{C} = 100 \text{ A, } V_{CE} = 400 \text{ V}$ $V_{GE} = \pm 15 \text{ V}$ $R_{Gon} = 1,1 \Omega$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	t _{d on}		0,14 0,155 0,16		μs μs μs
Anstiegszeit, induktive Last Rise time, inductive load	$I_{C} = 100 \text{ A, } V_{CE} = 400 \text{ V}$ $V_{GE} = \pm 15 \text{ V}$ $R_{Gon} = 1,1 \Omega$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	t _r		0,025 0,03 0,03		μs μs μs
Abschaltverzögerungszeit, induktive Last Turn-off delay time, inductive load	I_{C} = 100 A, V_{CE} = 400 V V_{GE} = ±15 V R_{Goff} = 1,1 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	t _{d off}		0,32 0,40 0,42		µs µs µs
Fallzeit, induktive Last Fall time, inductive load	I_{C} = 100 A, V_{CE} = 400 V V_{GE} = ±15 V R_{Goff} = 1,1 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	t _f		0,03 0,055 0,06		μs μs μs
Einschaltverlustenergie pro Puls Turn-on energy loss per pulse	I_C = 100 A, V_{CE} = 400 V, L_S = 25 nH V_{GE} = ±15 V, di/dt = 3700 A/ μ s (T_{vj} = 150°C) R_{Gon} = 1,1 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	Eon		1,20 2,00 2,25		mJ mJ mJ
Abschaltverlustenergie pro Puls Turn-off energy loss per pulse	I_C = 100 A, V_{CE} = 400 V, L_S = 25 nH V_{GE} = ±15 V, du/dt = 2700 V/ μ s (T_{vj} = 150°C R_{Goff} = 1,1 Ω	T _{vj} = 25°C)T _{vj} = 125°C T _{vj} = 150°C	E _{off}		3,50 5,30 5,90		mJ mJ mJ
Kurzschlußverhalten SC data	$ \begin{aligned} V_{\text{GE}} &\leq 15 \text{ V, V}_{\text{CC}} = 800 \text{ V} \\ V_{\text{CEmax}} &= V_{\text{CES}} \text{ -L}_{\text{sCE}} \cdot \text{di/dt} \end{aligned} \qquad t_{P} \leq 10 \mu\text{s,} $	T _{vj} = 150°C	I _{sc}		800		А
Wärmewiderstand, Chip bis Gehäuse Thermal resistance, junction to case	pro IGBT / per IGBT		R _{thJC}		0,20	0,25	K/W

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Modul IGBT-Module

F3L200R12W2H3_B11

Wärmewiderstand, Gehäuse bis Kühlkörper Thermal resistance, case to heatsink	pro IGBT / per IGBT $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·K)}$	RthCH		0,20		K/W
Temperatur im Schaltbetrieb Temperature under switching conditions		T _{vj op}	-40		150	°C

Diode, D2 / D3 / Diode, D2 / D3

Höchstzulässige Werte / Maximum Rated Values

Periodische Spitzensperrspannung Repetitive peak reverse voltage	T _{vj} = 25°C	V_{RRM}	650	V
Implementierter Durchlassstrom Implemented forward current		I _{FN}	125	А
Dauergleichstrom Continuous DC forward current		l _F	100	А
Periodischer Spitzenstrom Repetitive peak forward current	t _P = 1 ms	I _{FRM}	250	А
Grenzlastintegral I²t - value	$V_R = 0 \text{ V}, t_P = 10 \text{ ms}, T_{vj} = 125^{\circ}\text{C}$ $V_R = 0 \text{ V}, t_P = 10 \text{ ms}, T_{vj} = 150^{\circ}\text{C}$	I²t	1450 1400	A²s A²s

Charakteristische Werte / Charac	min.	typ.	max.				
Durchlassspannung Forward voltage	$ I_F = 100 \text{ A}, V_{GE} = 0 \text{ V} $ $ I_F = 100 \text{ A}, V_{GE} = 0 \text{ V} $ $ I_F = 100 \text{ A}, V_{GE} = 0 \text{ V} $	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	V _F		1,55 1,50 1,45	1,70	V V V
Rückstromspitze Peak reverse recovery current	$ I_F = 100 \text{ A, - } di_F/dt = 3700 \text{ A/}\mu\text{s } (T_{vj} = 150^{\circ}\text{C}) $ $V_R = 400 \text{ V} $ $V_{GE} = -15 \text{ V} $	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	I _{RM}		90,0 100 100		A A A
Sperrverzögerungsladung Recovered charge	$ I_F = 100 \text{ A, - } di_F/dt = 3700 \text{ A/}\mu\text{s } (T_{vj} = 150^{\circ}\text{C}) $ $V_R = 400 \text{ V} $ $V_{GE} = -15 \text{ V} $	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Qr		3,25 5,90 6,40		μC μC μC
Abschaltenergie pro Puls Reverse recovery energy	$\begin{array}{l} I_F = 100 \ A, - \ di_F/dt = 3700 \ A/\mu s \ (T_{vj} = 150 ^{\circ} C) \\ V_R = 400 \ V \\ V_{GE} = -15 \ V \end{array}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Erec		0,95 1,55 1,65		mJ mJ mJ
Wärmewiderstand, Chip bis Gehäuse Thermal resistance, junction to case	pro Diode / per diode		R _{thJC}		0,55	0,65	K/W
Wärmewiderstand, Gehäuse bis Kühlkörper Thermal resistance, case to heatsink	pro Diode / per diode $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·K)}$		R _{thCH}		0,60		K/W
Temperatur im Schaltbetrieb Temperature under switching conditions			Туј ор	-40		150	°C

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Modul **IGBT-Module**

F3L200R12W2H3_B11

IGBT, T2 / T3 / IGBT, T2 / T3

Kollektor-Emitter-Sperrspannung Collector-emitter voltage	$T_{vj} = 25^{\circ}C$	V _{CES}	650	V
Kollektor-Dauergleichstrom Continuous DC collector current	T _C = 100°C, T _{vj max} = 175°C	I _{C nom}	100	А
Periodischer Kollektor-Spitzenstrom Repetitive peak collector current	$t_P = 1 \text{ ms}$	I _{CRM}	200	А
Gesamt-Verlustleistung Total power dissipation	T _C = 25°C, T _{vj max} = 175°C	P _{tot}	250	W
Gate-Emitter-Spitzenspannung Gate-emitter peak voltage		V _{GES}	+/-20	V

Charakteristische	Werte /	Characteristic Values	

Charakteristische Werte / Charact	teristic Values			min.	typ.	max.	
Kollektor-Emitter-Sättigungsspannung Collector-emitter saturation voltage	$\begin{array}{l} I_{C} = 100 \text{ A}, V_{GE} = 15 \text{ V} \\ I_{C} = 100 \text{ A}, V_{GE} = 15 \text{ V} \\ I_{C} = 100 \text{ A}, V_{GE} = 15 \text{ V} \end{array}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	V _{CE sat}		1,45 1,60 1,70	1,90	V V V
Gate-Schwellenspannung Gate threshold voltage	I_C = 1,60 mA, V_{CE} = V_{GE} , T_{vj} = 25°C		V_{GEth}	4,95	5,80	6,45	V
Gateladung Gate charge	V _{GE} = -15 V +15 V		Q_{G}		1,00		μC
Interner Gatewiderstand Internal gate resistor	T _{vj} = 25°C		R _{Gint}		2,0		Ω
Eingangskapazität Input capacitance	$f = 1 \text{ MHz}, T_{vj} = 25^{\circ}\text{C}, V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		C_{ies}		6,20		nF
Rückwirkungskapazität Reverse transfer capacitance	$f = 1 \text{ MHz}, T_{vj} = 25^{\circ}\text{C}, V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		C_{res}		0,19		nF
Kollektor-Emitter-Reststrom Collector-emitter cut-off current	$V_{CE} = 650 \text{ V}, V_{GE} = 0 \text{ V}, T_{vj} = 25^{\circ}\text{C}$		I _{CES}			1,0	mA
Gate-Emitter-Reststrom Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = 20 V, T _{vj} = 25°C		I_{GES}			100	nA
Einschaltverzögerungszeit, induktive Last Turn-on delay time, inductive load	$\begin{array}{l} I_C = 100 \text{ A, V}_{CE} = 400 \text{ V} \\ \text{V}_{GE} = \pm 15 \text{ V} \\ \text{R}_{Gon} = 3,3 \Omega \end{array}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	t _{d on}		0,055 0,06 0,065		μs μs μs
Anstiegszeit, induktive Last Rise time, inductive load	I_{C} = 100 A, V_{CE} = 400 V V_{GE} = ±15 V R_{Gon} = 3,3 Ω	T _{vj} = 25°C T _{vj} = 125°C T _{vj} = 150°C	t r		0,025 0,03 0,03		μs μs μs
Abschaltverzögerungszeit, induktive Last Turn-off delay time, inductive load	$\begin{array}{l} I_C = 100 \text{ A, V}_{CE} = 400 \text{ V} \\ V_{GE} = \pm 15 \text{ V} \\ R_{Goff} = 3,3 \Omega \end{array}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	$t_{ ext{d off}}$		0,25 0,27 0,28		μs μs μs
Fallzeit, induktive Last Fall time, inductive load	$ \begin{array}{l} I_C = 100 \text{ A, } V_{CE} = 400 \text{ V} \\ V_{GE} = \pm 15 \text{ V} \\ R_{Goff} = 3,3 \Omega \end{array} $	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	t _f		0,035 0,05 0,06		μs μs μs
Einschaltverlustenergie pro Puls Turn-on energy loss per pulse	$\begin{array}{l} I_{C} = 100 \text{ A, V}_{CE} = 400 \text{ V, L}_{S} = 25 \text{ nH} \\ V_{GE} = \pm 15 \text{ V, di/dt} = 3800 \text{ A/µs } (T_{vj} = 150 ^{\circ}\text{C}) \\ R_{Gon} = 3,3 \Omega \end{array}$	T _{vj} = 25°C T _{vj} = 125°C T _{vj} = 150°C	E _{on}		1,85 2,80 3,30		mJ mJ mJ
Abschaltverlustenergie pro Puls Turn-off energy loss per pulse	I_{C} = 100 A, V_{CE} = 400 V, L_{S} = 25 nH V_{GE} = ±15 V, du/dt = 4600 V/µs (T_{vj} = 150°C R_{Goff} = 3,3 Ω	T _{vj} = 25°C)T _{vj} = 125°C T _{vj} = 150°C	E _{off}		3,10 4,10 4,60		mJ mJ mJ
Kurzschlußverhalten SC data		$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$	I _{SC}		700 500		A A
Wärmewiderstand, Chip bis Gehäuse Thermal resistance, junction to case	pro IGBT / per IGBT		R_{thJC}		0,50	0,60	K/W
Wärmewiderstand, Gehäuse bis Kühlkörper Thermal resistance, case to heatsink	pro IGBT / per IGBT $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·K)}$		R _{thCH}		0,50		K/W
Temperatur im Schaltbetrieb Temperature under switching conditions			$T_{vj op}$	-40		150	°C

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Module

F3L200R12W2H3_B11

Diode, D1 / D4 / Diode, D1 / D4

Periodische Spitzensperrspannung Repetitive peak reverse voltage	$T_{vj} = 25^{\circ}C$	V _{RRM}	1200	V
Dauergleichstrom Continuous DC forward current		l _F	75	А
Periodischer Spitzenstrom Repetitive peak forward current	$t_P = 1 \text{ ms}$	I _{FRM}	150	А
Grenzlastintegral I²t - value	$V_R = 0 \text{ V}, t_P = 10 \text{ ms}, T_{v_j} = 125^{\circ}\text{C}$ $V_R = 0 \text{ V}, t_P = 10 \text{ ms}, T_{v_j} = 150^{\circ}\text{C}$	l²t	1050 985	A²s A²s

Charakteristische Werte / Charac	teristic Values			min.	typ.	max.	
Durchlassspannung Forward voltage	$I_F = 75 \text{ A}, V_{GE} = 0 \text{ V}$ $I_F = 75 \text{ A}, V_{GE} = 0 \text{ V}$ $I_F = 75 \text{ A}, V_{GE} = 0 \text{ V}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	V _F		1,65 1,65 1,65	2,15	V V V
Rückstromspitze Peak reverse recovery current	$\begin{array}{l} I_F = 75 \; A, - di_F/dt = 3500 \; A/\mu s \; (T_{vj} = 150 ^{\circ} C) \\ V_R = 400 \; V \\ V_{GE} = -15 \; V \end{array}$	T _{vj} = 25°C T _{vj} = 125°C T _{vj} = 150°C	I _{RM}		120 140 150		A A A
Sperrverzögerungsladung Recovered charge	$ I_F = 75 \text{ A, } - di_F/dt = 3500 \text{ A/}\mu\text{s } (T_{vj} = 150 ^{\circ}\text{C}) $ $V_R = 400 \text{ V} $ $V_{GE} = -15 \text{ V} $	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Qr		8,50 17,0 19,0		μC μC μC
Abschaltenergie pro Puls Reverse recovery energy	$ I_F = 75 \text{ A, } - di_F/dt = 3500 \text{ A/}\mu\text{s } (T_{vj} = 150 ^{\circ}\text{C}) $ $V_R = 400 \text{ V} $ $V_{GE} = -15 \text{ V} $	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	E _{rec}		2,85 5,70 6,30		mJ mJ mJ
Wärmewiderstand, Chip bis Gehäuse Thermal resistance, junction to case	pro Diode / per diode		R _{thJC}		0,55	0,60	K/W
Wärmewiderstand, Gehäuse bis Kühlkörper Thermal resistance, case to heatsink	pro Diode / per diode $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·K)}$		R _{thCH}		0,50		K/W
Temperatur im Schaltbetrieb Temperature under switching conditions			T _{vj op}	-40		150	°C

Modul / Module

Isolations-Prüfspannung Isolation test voltage	RMS, f = 50 Hz, t = 1 min.	V _{ISOL}		2,5		kV
Innere Isolation Internal isolation	Basisisolierung (Schutzklasse 1, EN61140) basic insulation (class 1, IEC 61140)			Al ₂ O ₃		
Kriechstrecke Creepage distance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			11,5 6,3		mm
Luftstrecke Clearance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			10,0 5,0		mm
Vergleichszahl der Kriechwegbildung Comperative tracking index		СТІ		> 200		
		•	min.	typ.	max.	
Modulstreuinduktivität Stray inductance module		L _{sCE}		14		nH
Lagertemperatur Storage temperature		T _{stg}	-40		125	°C
Anpresskraft für mech. Bef. pro Feder mountig force per clamp		F	40	-	80	N
Gewicht Weight		G		36		g

Der Strom im Dauerbetrieb ist auf 25A effektiv pro Anschlusspin begrenzt. The current under continuous operation is limited to 25A rms per connector pin.

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Modul **IGBT-Module**

F3L200R12W2H3_B11

NTC-Widerstand / NTC-Thermistor

Charakteristische Werte / Charac	cteristic Values		min.	typ.	max.	
Nennwiderstand Rated resistance	T _C = 25°C	R ₂₅		5,00		kΩ
Abweichung von R100 Deviation of R100	T_{C} = 100°C, R_{100} = 493 Ω	ΔR/R	-5		5	%
Verlustleistung Power dissipation	T _C = 25°C	P ₂₅			20,0	mW
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/50}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/50}		3375		К
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/80}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/80}		3411		К
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/100}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/100}		3433		К

Angaben gemäß gültiger Application Note.

Specification according to the valid application note.

prepared by: CM	date of publication: 2014-12-04				
approved by: AKDA	revision: 3.0				

IGBT-Modul **IGBT-Module**

F3L200R12W2H3 B11

Ausgangskennlinie IGBT, T1 / T4 (typisch) output characteristic IGBT, T1 / T4 (typical)

 $I_C = f(V_{CE})$

Ausgangskennlinienfeld IGBT, T1 / T4 (typisch) output characteristic IGBT, T1 / T4 (typical)

 $I_C = f(V_{CE})$

Übertragungscharakteristik IGBT, T1 / T4 (typisch) transfer characteristic IGBT, T1 / T4 (typical)

 $I_C = f(V_{GE})$

Schaltverluste IGBT, T1 / T4 (typisch) switching losses IGBT, T1 / T4 (typical)

 $E_{on} = f(I_C), E_{off} = f(I_C)$

$$V_{GE} = \pm 15 \text{ V}, R_{Gon} = 1.1 \Omega, R_{Goff} = 1.1 \Omega, V_{CE} = 400 \text{ V}$$

prepared by: CM	date of publication: 2014-12-04		
approved by: AKDA	revision: 3.0		

IGBT-Module

F3L200R12W2H3_B11

Schaltverluste IGBT, T1 / T4 (typisch) switching losses IGBT, T1 / T4 (typical)

E_{on} = f (R_G), E_{off} = f (R_G) V_{GE} = ±15 V, I_C = 100 A, V_{CE} = 400 V

Transienter Wärmewiderstand IGBT, T1 / T4 transient thermal impedance IGBT, T1 / T4 Z_{thJH} = f (t)

Sicherer Rückwärts-Arbeitsbereich IGBT, T1 / T4 (RBSOA) reverse bias safe operating area IGBT, T1 / T4 (RBSOA)

$$\begin{split} I_{C} &= f\left(V_{CE}\right) \\ V_{GE} &= \pm 15 \text{ V}, \text{ R}_{Goff} = 1.1 \text{ }\Omega, \text{ T}_{vj} = 150 ^{\circ}\text{C} \end{split}$$

Durchlasskennlinie der Diode, D2 / D3 (typisch) forward characteristic of Diode, D2 / D3 (typical) I_F = f (V_F)

prepared by: CM	date of publication: 2014-12-04		
approved by: AKDA	revision: 3.0		

IGBT-Modul **IGBT-Module**

F3L200R12W2H3 B11

Schaltverluste Diode, D2 / D3 (typisch) switching losses Diode, D2 / D3 (typical)

 $R_{Gon} = \dot{1}.\dot{1}\Omega$, $V_{CE} = 400 \text{ V}$

Schaltverluste Diode, D2 / D3 (typisch) switching losses Diode, D2 / D3 (typical)

 $E_{rec} = f(R_G)$

 $I_F = 100 \text{ A}, V_{CE} = 400 \text{ V}$

Transienter Wärmewiderstand Diode, D2 / D3 transient thermal impedance Diode, D2 / D3

 $Z_{thJH} = f(t)$

Ausgangskennlinie IGBT, T2 / T3 (typisch) output characteristic IGBT, T2 / T3 (typical)

 $I_C = f(V_{CE})$ V_{GE} = 15 V

prepared by: CM	date of publication: 2014-12-04		
approved by: AKDA	revision: 3.0		

IGBT-Modul **IGBT-Module**

F3L200R12W2H3 B11

Ausgangskennlinienfeld IGBT, T2 / T3 (typisch) output characteristic IGBT, T2 / T3 (typical)

 $I_C = f(V_{CE})$ $T_{vj} = 150^{\circ}C$

Übertragungscharakteristik IGBT, T2 / T3 (typisch) transfer characteristic IGBT, T2 / T3 (typical)

 $I_C = f(V_{GE})$

V_{CE} = 20 V

Schaltverluste IGBT, T2 / T3 (typisch) switching losses IGBT, T2 / T3 (typical)

 $E_{on} = f(I_C), E_{off} = f(I_C)$ $V_{GE} = \pm 15 \text{ V}, R_{Gon} = 3.3 \Omega, R_{Goff} = 3.3 \Omega, V_{CE} = 400 \text{ V}$

Schaltverluste IGBT, T2 / T3 (typisch) switching losses IGBT, T2 / T3 (typical)

 $E_{on} = f(R_G), E_{off} = f(R_G)$ $V_{GE} = \pm 15 \text{ V}, I_C = 100 \text{ A}, V_{CE} = 400 \text{ V}$

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Modul

F3L200R12W2H3_B11

Transienter Wärmewiderstand IGBT, T2 / T3 transient thermal impedance IGBT, T2 / T3 $Z_{thJH} = f(t)$

Sicherer Rückwärts-Arbeitsbereich IGBT, T2 / T3 (RBSOA) reverse bias safe operating area IGBT, T2 / T3 (RBSOA) |c = f (VcF)

 $V_{GE} = \pm 15 \text{ V}, R_{Goff} = 3.3 \Omega, T_{vj} = 150 ^{\circ}\text{C}$

Durchlasskennlinie der Diode, D1 / D4 (typisch) forward characteristic of Diode, D1 / D4 (typical) I_F = f (V_F)

Schaltverluste Diode, D1 / D4 (typisch) switching losses Diode, D1 / D4 (typical)

 $E_{rec} = f(I_F)$ $R_{Gon} = 3.3 \Omega, V_{CE} = 400 V$

prepared by: CM date of publication: 2014-12-04 approved by: AKDA revision: 3.0

IGBT-Modul IGBT-Module

F3L200R12W2H3_B11

Schaltverluste Diode, D1 / D4 (typisch) switching losses Diode, D1 / D4 (typical)

E_{rec} = f (R_G) I_F = 75 A, V_{CE} = 400 V

Transienter Wärmewiderstand Diode, D1 / D4 transient thermal impedance Diode, D1 / D4 Z_{thJH} = f (t)

NTC-Widerstand-Temperaturkennlinie (typisch) NTC-Thermistor-temperature characteristic (typical) R = f(T)

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Modul IGBT-Module

F3L200R12W2H3_B11

Schaltplan / circuit_diagram_headline

Gehäuseabmessungen / package outlines

- Pin-Grid 3.2mm
- Tolerance of PCB hole pattern ϕ 0.1
- Hole specification for contacts see AN 2009-01:

Diameters of drill Ø 1.15mm

and copper thickness in hole $25-50\mu m$

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0

IGBT-Module

F3L200R12W2H3_B11

Nutzungsbedingungen

Die in diesem Produktdatenblatt enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Eignung dieses Produktes für Ihre Anwendung sowie die Beurteilung der Vollständigkeit der bereitgestellten Produktdaten für diese Anwendung obliegt Ihnen bzw. Ihren technischen Abteilungen.

In diesem Produktdatenblatt werden diejenigen Merkmale beschrieben, für die wir eine liefervertragliche Gewährleistung übernehmen. Eine solche Gewährleistung richtet sich ausschließlich nach Maßgabe der im jeweiligen Liefervertrag enthaltenen Bestimmungen. Garantien jeglicher Art werden für das Produkt und dessen Eigenschaften keinesfalls übernommen. Die Angaben in den gültigen Anwendungs- und Montagehinweisen des Moduls sind zu beachten.

Sollten Sie von uns Produktinformationen benötigen, die über den Inhalt dieses Produktdatenblatts hinausgehen und insbesondere eine spezifische Verwendung und den Einsatz dieses Produktes betreffen, setzen Sie sich bitte mit dem für Sie zuständigen Vertriebsbüro in Verbindung (siehe www.infineon.com, Vertrieb&Kontakt). Für Interessenten halten wir Application Notes bereit.

Aufgrund der technischen Anforderungen könnte unser Produkt gesundheitsgefährdende Substanzen enthalten. Bei Rückfragen zu den in diesem Produkt jeweils enthaltenen Substanzen setzen Sie sich bitte ebenfalls mit dem für Sie zuständigen Vertriebsbüro in Verbindung.

Sollten Sie beabsichtigen, das Produkt in Anwendungen der Luftfahrt, in gesundheits- oder lebensgefährdenden oder lebenserhaltenden Anwendungsbereichen einzusetzen, bitten wir um Mitteilung. Wir weisen darauf hin, dass wir für diese Fälle

- die gemeinsame Durchführung eines Risiko- und Qualitätsassessments;
- den Abschluss von speziellen Qualitätssicherungsvereinbarungen;
- die gemeinsame Einführung von Maßnahmen zu einer laufenden Produktbeobachtung dringend empfehlen und gegebenenfalls die Belieferung von der Umsetzung solcher Maßnahmen abhängig machen.

Soweit erforderlich, bitten wir Sie, entsprechende Hinweise an Ihre Kunden zu geben.

Inhaltliche Änderungen dieses Produktdatenblatts bleiben vorbehalten.

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics. The information in the valid application- and assembly notes of the module must be considered.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.

prepared by: CM	date of publication: 2014-12-04
approved by: AKDA	revision: 3.0