Regression

- In regression dependent variables is modeled as a function of some set of explanatory variables
- linear regression: the underlying model is assumed to be linear and can be expressed as matrix plus an error term

$$\mathbf{y} = \mathbf{X}h + \epsilon \tag{1}$$

$$\hat{h} = \left(X^T X\right)^{-1} X^T y \tag{2}$$

Ordinary Least Squares

- One explanatory variable and one dependent variable the problem becomes easy to visualize
- We are given pairs of values (x, y): (0, 1.5), (1, 1.9), (2, 2.7), (3, 3.1)

$$y = Ah \tag{3}$$

$$\begin{bmatrix} 1.5 \\ 1.9 \\ 2.7 \\ 3.1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \end{bmatrix}$$
 (4)

Sample Problem

■ linear fit $y = h_0 + h_1 x$

Ordinary Least Squares

 In general we may have multiple observations for a given value of the dependent variable

$$\begin{bmatrix}
1.5 \\
1.9 \\
2.7 \\
3.1 \\
1.7 \\
1.2 \\
3.0 \\
2.2
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{bmatrix} \begin{bmatrix}
h_0 \\
h_1
\end{bmatrix}$$
(5)

Sample Problem

Innear fit $y = h_0 + h_1 x$

Ordinary Least Squares

 Our data might have a more complicated relationship on the explanatory variables

$$y = Ah$$

$$\begin{bmatrix} 0.0319 \\ 0.0313 \\ 1.9135 \\ 5.9970 \\ 11.9835 \\ 20.0628 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \end{bmatrix}$$

$$(7)$$

Sample Problem

Innear fit $y = h_0 + h_1 x$

Ordinary Least Squares

Introduce a quadratic term in the design matrix

$$y = Ah$$

$$\begin{bmatrix} 0.0319 \\ 0.0313 \\ 1.9135 \\ 5.9970 \\ 11.9835 \\ 20.0628 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix}$$

$$(9)$$

Sample Problem

• quadratic fit $y = h_0 + h_1 x + h_2 x^2$

Binary Classification

- A scatter plot for a binary classification problem separates the data into to clusters
- Wilcoxon, ANOVA, Rank-sum, are ways of determining if there is a statistically significant difference between the central tendencies of the two groups

Digression on ANOVA (1)

- One-way ANOVA (Analysis of Variance) is a standard statistical test that can be used to measure the differences of the means of two different data sets
- In particular, a measured difference is due to random fluctuations or not
- Built into most statistics packages (SPSS etc.)
- Box-plot shown at right: same data as before

Digression on ANOVA (Box-Plots) (2)

- Box-plots provide a convenient visual summary of some data set that follows some standard conventions
- The central box extends from the first to the third quartiles (25th to 75th percentile)
- The whiskers show some idea of where the data is generally: within some number of standard deviations, within some function of the interquartile range
- The points outside of the whiskers are outliers

Digression on ANOVA (3)

- If we have a feature or variate that is highly-correlated with the class label we should see something like the plot below
- Significance of the correlation will be represented by a *p*-value
- This is the kind of data we want to present to the ML algorithm we have chosen

Slice Notation

- np.arange creates a sequence of incremental values
- Code above runs trials of our estimation task for different sample sizes
- Slice notation: [start:end:step]
- Colon generally means for all, works same as in matlab

Useful Python Linear Algebra Commands

```
// generate numbers according to normal dist
np.random.normal(size=(N))
// generate rand num with uniform dist
np.random.uniform(size=(N))
// matrix of zeros
np.zeros((N,2))
// element wise mult.
np.multiply
// form numpy array
S = np.array([[1/6.0, 0], [0, 1/3.0]])
// matrix multiplication
B = np.dot(A, np.dot(S,G))
// least squares
h = np.linalg.lstsq(X,y)[0]
// generate grids
xx,yy = np.meshgrid(np.linspace(-6,6,100),np.linspace(-6,6,100))
// concatenation
np.hstack((a,b))
np.vstack((a,b))
np.newaxis
// x[:,1,np.newaxis]
```

Some useful commands for performing linear algebra calculations

Working with the Digits Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats
from sklearn import datasets
digits = datasets.load_digits()
n_samples = len(digits.images)
print(digits.images.shape)
data = digits.images.reshape((n_samples, -1))
print(data.shape)
X = data[digits.target == 2, :]
Y = data[digits.target == 8, :]
```

Importing packages and selecting a subset of the data

Working with the Digits Dataset

```
feature1 = data[:, 35]
feature2 = data[:, 37]

R = np.corrcoef(data, rowvar=0)

e = np.random.rand(n_samples)
print((feature1 + e).shape)

r = scipy.stats.pearsonr(feature1, feature2)
print(r)
```

Measuring correlation with libraries

Working with the Digits Dataset

```
plt.figure(1)
plt.plot(feature1 + e, feature2 + np.random.rand(n_samples), 'bo')
plt.figure(2)
plt.plot(X[:, 35], X[:, 36], 'bo')
plt.plot(Y[:, 35], Y[:, 36], 'ro')
plt.figure(3)
plt.imshow(R, interpolation="nearest")
plt.show()
```

Matlab style plotting

Correlation of Two Pixel Values

- Testing the correlation of two pixel values
- (-0.23774427860140765, 1.6459700981727808e-24)

Using pixel values as features directly

 Pixel values themselves do not separate the classes particularly well

Visualizing the Correlation or Covariance

 Rendering the Correlation as an image immediately reveals which variables are related