(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-156885

(43)公開日 平成10年(1998) 6月16日

	識別記号	FΙ	
45/17		B 2 9 C	45/17
33/00		•	33/00
45/76			45/76
	,	45/17 33/00	45/17 B 2 9 C 33/00

審査請求 未請求 請求項の数2 OL (全 12 頁)

(21)出願番号	特顯平8-317515	/71\ LILPS# L	000000170
(51) 田岡(田 (1	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	(71)出顧人	
(22)出顧日	17 ±2 0 4= (100e) 11 ≥ 00 □		三菱樹脂株式会社
(66) 田瀬 日	平成8年(1996)11月28日		東京都千代田区丸の内2丁目5番2号
		(72)発明者	林 達也
			神奈川県平塚市真土2480番地 三菱樹脂株
			式会社平塚工場内
		(74)代理人	弁理士 近藤 久美
*			
		f	

(54) 【発明の名称】 結晶性熱可塑性樹脂射出成形品の機械的強度予測方法

(57)【要約】

【課題】実際に射出成形により成形品を得ることなく、 設計段階で成形品の機械的強度を予測する。

【解決手段】 結晶性ポリオレフイン系樹脂の射出成形品の結晶化度および配向度と機械的強度との重相関データを実測によって作成しておき、成形条件、成形樹脂特性などの成形諸元に基づく解析によって結晶化度と配向度を求め、求められた結晶化度および配向度と、前記重相関データとから射出成形品の機械的強度を予測する。

【特許請求の範囲】

【請求項1】 結晶性熱可塑性樹脂射出成形品の機械的 強度を予測する方法であって、成形品の結晶化度および 配向度と機械的強度との重相関データを実測によって作 成しておき、

成形条件、成形品形状および成形樹脂特性を含む成形諸 元に基づく解析によって結晶化度と配向度を求め、

求められた結晶化度および配向度と、前記重相関データ とから射出成形品の機械的強度を予測することを特徴と する機械的強度予測方法。

【請求項2】 機械的強度が曲げ強度、曲げ弾性率、引 張強度、引張破断伸びまたはアイゾツト衝撃強度である 請求項1記載の機械的強度予測方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明はポリオレフイン樹脂などの射出成形品の製品あるいは金型形状を設計するにあたって、最終成形品の機械的強度が要求を満足できるものか否かの評価を行うために有用な機械的強度予測方法に関する。

[0002]

【従来の技術とその課題】射出成形用の金型あるいは製品形状の設計に際して、金型内での樹脂の流動解析や金型の構造解析などの解析を行うことにより評価を行うことは従来から知られている(例えば特開平4-102179号公報)。しかしこのような解析により最終製品の機械的強度の予測を行うまでには至っていないのが現状である。

【0003】そのため、金型設計などはある程度試行錯 誤的に行われ、金型設計後に射出成形を行いその成形品 が要求の機械的強度に満たない場合にはコストの高い原 料を選定せざるを得なかったり、強度を向上させるため 金型を修正し厚肉にしたりしているのが現状である。

【0004】本発明の目的は、金型を製作したり、またその金型を用いて実際に射出成形を行うことなく、設計 段階で最終成形品の物性値を予測することができる金型 設計、製品設計などのための評価方法を提供することに ある。

[0005]

【課題を解決するための手段】本発明は、ポリオレフイン系樹脂などの結晶性熱可塑性樹脂の射出成形における金型設計、製品設計などに有用な機械的強度予測方法を提供するものであって、その要旨は、成形品の結晶化度および配向度と機械的強度との重相関データを実測によって作成しておき、成形条件、成形品形状および成形樹脂特性を含む成形諸元に基づく解析によって結晶化度と配向度を求め、求められた結晶化度および配向度と、前記重相関データとから射出成形品の機械的強度を予測することを特徴とする機械的強度予測方法にある。

[0006]

【作用】本発明によれば、成形諸元からの解析結果によって求められる成形品の結晶化度と配向度とを、実測して得たこれらの値の各機械的強度に関する重相関データに照合することで成形品の各部位の各機械的強度を予測することができるものであり、金型設計、製品設計段階において最終成形品の機械的強度が要求を満たすか否かを判断でき、迅速な設計と設計修正が可能になる。

[0007]

【発明の実施の形態】以下、本発明を図示の実施例に基づいて詳細に説明する。図1は本発明の一つの実施例のフローチャートである。図1に示す本発明予測方法の一つの実施例は、次の4つのステップを含んでいる。

【0008】1)成形に使用する樹脂について多種類の グレードを用いて射出成形を行い、機械的強度(曲げ強 度、曲げ弾性率、引張強度など)、結晶化度および配向 度を実測して、機械的強度に対する結晶化度および配向 度の重回帰分析を行って、重回帰式を求める。

【0009】2)成形条件、成形品形状および成形樹脂 特性を含む成形諸元に基づいて、樹脂の流動解析によっ て、結晶化度および配向度の予測に必要な樹脂の状態、 すなわち金型内の温度、圧力、せん断速度などを位置お よび時間の関数として求める。

3)上で求められた温度、圧力、せん断速度などから、射出成形品における結晶化度および配向度を求める。

【0010】4)求められた結晶化度および配向度と、前記重回帰式とから射出成形品の機械的強度を求める。 【0011】以下に、各ステップを説明する。

1)機械的強度に対する結晶化度および配向度の重回帰分析:ここでは、信頼性の高い重回帰式を得るため、多種類の樹脂グレードについて、射出成形条件を種々変更して射出成形品を作成する。

【0012】本例では、1次構造が大きく異なるポリプロピレン樹脂を用いて、27通りの成形条件で、300mm×200mmの板状成形品(肉厚2、3、4mm)を射出成形した。これらの成形品の中央から、JIS規格に従って試験片を切り出して各種機械的強度の測定を実施した。一方、同じ射出成形品の中央部より2cm角程度の少量の試料を切り出し、結晶化度および配向度を測定した。

【0013】結晶化度は成形品の密度から算出した。配向度は顕微フーリエ変換赤外分光光度計により、成形品断面の表面から中心までの c 軸配向関数 f c の値を積分することにより求めた。

【0014】得られた各機械的強度と、結晶化度および 配向度との関係を重回帰分析した結果、ホモポリマーと ブロツクコポリマーの各々について、成形品の肉厚ごと に、表1~5に示す係数を持った下記重回帰式が得られ た。

 $[0\ 0\ 1\ 5]\ Y = A \cdot X_1 + B \cdot X_2 + C$ Y : 機械的強度 A : 配向度についての偏回帰係数 X_2 : 結晶化度測定値

X₁: 配向度測定値

道 【表1】

B : 結晶化度についての偏回帰係数

表 1

	偏回帰保数				alle Mr. o		有意整
			配向度A	結晶化度B	定数C	重相関係数	検定
	*	2■	1320	23. 97	-971. 3	0. 896	**
#	モポリマ	3ඎ	741. 9	10. 51	-47. 17	0. 782	**
げ	1	4 100	237. 4	21. 53	-732.0	0. 817	**
強	# C	2 🕮	945. 4	8. 489	-97. 08	0. 926	**
度	マ !	3₌	843.4	13. 31	-335.8	0. 958	**
_		4m	1336. 2	11. 10	-169. 3	0. 959	**

[0016]

【表 2】

表 2

			偏回帰	深数			有意差
L			配向度A	結晶化度B	定数C	重相関係数	検定
曲	ホモ	2 mm	7.089	0. 1.66	-8. 597	0. 875	**
げ	ポリマ	3 200	4. 663	0.026	0. 230	0.704	**
弾	J	4 m	3. 154	0.090	-4. 197	0. 780	**
姓	コボ	2 🖦	5. 205	0. 012	0. 724	0. 724	**
率	イリマー	3 mm	4. 639	0. 045	-1. 367	0. 907	**
		4 nm	5. 911	0, 043	-1, 271	0. 871	**

[0017]

【表3】

麦 3

			偏回帰	係 数			**
	,		配向度A	結晶化度 B	定数C	重相関係数	有意差 検定
	ホモ	2 100	473.5	2. 135	247. 4	0. 907	**
引	ーポリマ	3 1001	351.9	3, 462	158, 1	0.860	**
張	1	4 mm	86. 09	14, 57	-566. 2	0.808	**
強	二米	2 m.	704.6	-0.472	276. 5	0. 821	**
度	リマー	3 2001	403.3	4. 236	17. 08	0. 936	**
	_	4 113	650.9	4. 327	9. 968	0. 953	**

[0018]

【表4】

表 4

配向度A 結晶化度B に関する 検定 を取り に関する 検定 では、 2mm 219、2 -0、788 66、7 0、583 ************************************				傷回帰	系数			有意差
破			·	配向度A	結晶化度B	ENC	重相関係数	検定
破 ポリス 3 mm 172.4 -2.902 202.1 0.654 *** 「	f l	•	2==	219, 2	-0. 788	66. 7	0. 583	**
断 3 4mm 84.02 -6.300 429.4 0.672 *** (申 フ 2 mm 788.0 -11.58 864.3 0.534 *** (プ ジ 3 mm -647.4 0.113 274.5 0.492 ***	破	ポリ	3 mm	172.4	-2. 902	202. 1	0. 654	**
伸 2 mm 788, 0 -11.58 864.3 0.534 3 ボーン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	断		4 mm	84. 02	-6. 300	429, 4	0.672	**
U 0.113 3 mm -647.4 0.113 274.5 0.492	伸	_	2 № 1	788. 0	-11. 58	864. 3	0. 534	*
	U	ij	3 mm	-647.4	0. 113	274. 5	0. 492	*
	-		4 mm	1467. 4	-19. 41	1332. 0	0. 492	*

[0019]

	傷回帰係數				有意差		
			配向度∧	結晶化度B	定数C	重相関係数	検定
	ホモ	2 000	14. 21	0.453	-25.75	0. 532	**
衡	がりマ	3 a an	12. 31	-0. 029	4.069	0. 638	**
繫	1	4 mm	3. 115	-0, 003	4. 518	0. 452	*
*	コポ	200	67. 98	-0. 288	28. 15	0. 479	**
椬	リマー	3100	139. 47	-1.641	109, 80	0. 693	**
	•	4 man	1292. 5	-2. 220	135. 81	0. 858	**

【0020】そして、各重回帰式の分散分析を行い、重回帰の検定をしたところ、多くの機械強度については危険率1%で有意(表では**で表示した)、一部の機械的強度についても危険率5%で有意(表では*で示した)との結果が得られた。これらの重回帰式が機械的強度の予測に役立つことを示している。

【0021】また、重回帰式のあてはまりの良さを示す 重相関係数を算出したところ、各表に示すような高い重 相関係数が得られ、結晶化度および配向度の2要因から 高精度で機械的強度を予測できることが明らかになっ た。なお成形品厚さについては、現実に使用されている 射出成形品の大部分の厚さが2~4mmの範囲にあるこ とから、厚さ2、3、4mmの場合について重回帰分析 を行ったが、これらの中間の厚さについては線形補間等 による近似が可能である。

【0022】2) 成形諸元に基づく樹脂の流動解析:このステップでは、成形条件、成形品形状、成形樹脂特性

などの成形諸元に基づいて、樹脂の流動解析を行うことにより金型内の樹脂状態をシミュレートして、次ステップで結晶化度、配向度を求めるのに必要な温度、圧力、応力、せん断速度などを求める。

【0023】すなわち、成形条件データ(金型温度、樹脂温度、射出速度など)、成形品形状データ(使用される金型のキャビテイ形状のデータであり、例えば微少な有限の要素に分割することによって得る)、成形樹脂特性データ(粘度、比熱、密度、熱伝導率、固化温度などの物性データ)、さらには金型特性(熱伝導率、比熱など)などの成形諸元を基に流動解析を行う。

【0024】流動の解析は例えば、次の運動方程式

(1) と、式(2)で与えられる連続の式と、式(3)で与えられるエネルギー方程式により行なう。

[0025]

【数1】

$$\frac{\partial \tau_{x}}{\partial z} = \frac{\partial P}{\partial x}$$

$$\frac{\partial \tau_{y}}{\partial z} = \frac{\partial P}{\partial y}$$

$$\begin{pmatrix} x, y : 流れ方向, z : 厚さ方向, \\ \tau_{x}, \tau_{y} : x, y 方向のせん断応力 P : 圧力 \end{pmatrix}$$
[数2]

[0026]

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$(u, v: x, y方向の確認)$$
(2)

[0027]

【数3】

$$\rho C_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial z} \left(\frac{\lambda \partial T}{\partial z} \right) + J^{II}
\left(T : 温度、 \eta : 粘度、 \lambda : 熱伝導率、 \rho : 密度、
C_{p} : 比熱、 \gamma : 世人斯速度、 J : 定数、 t : 時間$$
(3)

【0028】これにより、成形樹脂の流れ場を位置およ び時間の関数として求めることができるとともに、次の 結晶化度解析に必要な温度、圧力および応力、ならびに 次の配向度(残留応力)解析に必要なせん断速度、温度 を位置および時間の関数として求めることができる。

【0029】3) 結晶化度、配向度の算出:次に、結晶 化度は流動解析によって得られた温度、圧力、応力を基 に結晶化度解析によって求める。結晶化度は例えば次の

ようにして求めることができる(成形加工、Vo1.1 6, No. 4, P. 265 (1994)).

【0030】結晶成長速度G、核形成速度Nを用いる と、時間 t における結晶化度X c は次式 (4) で示され

[0031]

【数4】

$$-\ln\left(1-\frac{X_{c}}{X_{u}}\right)=\frac{1}{X_{u}}\cdot\frac{\rho_{c}}{\rho_{l}}\int_{0}^{t}v\left(t,\tau\right)N_{l}\left(\tau\right)d\tau$$

$$v\left(t,\tau\right)=k_{f}\left\{\int_{\tau}^{t}G\left(u\right)du\right\}^{n}$$

$$X_{u}:結晶化過程で得られる最終結晶化度、$$

$$\rho_{c},\rho_{l}:結晶部および非晶部の密度、$$

$$G\left(t\right):結晶線成長速度、 $N_{l}\left(t\right):$ 核形成速度、
$$v\left(t,\tau\right):時刻 \tau に発生した核が特別 t まで成長したときの結晶体験、$$$$

【0032】核形成の形態はは近くで与えられる。 成という2つの形態がある。すなわち、前者は等温状態 で高分子の溶融体の非晶部中に時間と共に均一に核が生 じてくるもの、後者は等温状態で、結晶化開始時点で系 の中に不均一に活性点が存在するものである。均一核形

【0033】高分子溶融体において結晶化の条件が変化 して行く過程では、不均一核形成数はN₂の変化量で与 えられるので、(4)式は、

【数5】

$$-\ln\left(1-\frac{X_{c}}{X_{a}}\right) = \frac{1}{X_{a}} \cdot \frac{\rho_{c}}{\rho_{1}} \int_{0}^{t} \left\{\frac{dN_{2}(\tau)}{d\tau} + v(t, \tau) d\tau + N_{2}(0) \cdot v(t, 0)\right\}$$

$$(N_{2}(t) : \pi - \psi + v) d\tau + N_{2}(0) \cdot v(t, 0)$$

【0034】で表される。

【0035】ここで、結晶成長速度G、均一核形成速度 N₁ および不均一核形成速度N₂ には温度依存性があ り、これらの温度依存性は次の(6)式で示される。 【0036】 【数6】

$$\ln G = \ln G_0 - \frac{\rho C_1 T}{(T - C_2)^2} - \frac{C_3 T_m}{T \Delta T}$$

$$\ln N_1 = \ln N_{10} - \frac{\rho C_1 T}{(T - C_2)^2} - \frac{C_4 T_m}{T \Delta T}$$

$$\ln N_2 = \ln N_{20} - \frac{C_4 T_m}{T \Delta T}$$

$$C_1 = C_1' \cdot C_2' \cdot C_2 = T_g - C_2'$$

$$C_1' : 2 = C_1 + \mu D D D D D D D$$

$$C_1' : C_2' \cdot C_2 = T_g - C_2'$$

$$C_1' : 2 = C_1 + \mu D D D D D D D$$

$$C_1' : C_2' \cdot C_2 = T_g - C_2'$$

$$C_1' : C_1' : C_2' \cdot C_2 = T_g - C_2'$$

$$C_1' : C_1' : C_2' \cdot C_2' \cdot C_2 = T_g - C_2'$$

$$C_1' : C_1' : C_2' \cdot C_2' \cdot C_2' - C_2'$$

$$C_1' : C_1' : C_1' - C_1' - C_1' - C_1' - C_1' - C_1'$$

$$C_1' : C_1' : C_1' - C_1' - C_1' - C_1' - C_1' - C_1'$$

$$C_1' : C_1' : C_1' - C_1' - C_1' - C_1' - C_1' - C_1'$$

$$C_1' : C_1' : C_1' - C_1' - C_1' - C_1' - C_1' - C_1'$$

$$C_1' : C_1' : C_1' - C_1' - C_1' - C_1' - C_1' - C_1' - C_1'$$

$$C_1' : C_1' : C_1' - C_1' -$$

【0037】この温度依存性を考慮することにより、精度の高い予測を行うことができる。 さらには上記モデルにおいて、結晶化過程での圧力の影響や、樹脂の流動による配向の影響を考慮するのが好ましい。

【0038】圧力が結晶化過程に及ぼす影響は、融点Tmおよびガラス転移温度Tgの変化として現われ、圧力の増加に伴いTm、Tgが上昇することが報告されている(Journal of Applied Polymer Science、22,633(197

8))。この上昇率を考慮に入れて補正したTm、Tgの値を(6)式に代入することにより、A々の圧力におけるG、 N_2 が計算できる。

【0039】一方、樹脂が溶融状態で流動することによる高分子鎖の配向の影響は、エントロピーを減少させ、下記(7)式のように融点の上昇として現れる。

【0040】 【数7】

$$T_{m0} = \left(\begin{array}{c} \Delta S \\ \Delta S - \Delta S_0 \end{array} \right)$$
 ・ T_m
$$\begin{pmatrix} T_{m0} : 流動配向時の融点、 \Delta S : 溶融時のエントロピー変化、 \\ \Delta S_0 : 配向によるエントロピー変化 \\ 【0041】ここで、複屈折 Δ n と応力 σ の関係は応力 【数8】$$

【0041】ここで、複屈折Δnと応力σの関係は応力 光学係数Cを用いて、

【0042】で与えられる。

【0043】一方、溶融状態の分子鎖をガウス鎖と仮定すると、流動による配向は、複屈折△nをパラメーター

として、下記 (9) 式で示される。 【0044】

【数9】

$$\Delta n = \frac{2\pi}{45} \cdot \frac{(n^2+2)^2}{n} \cdot N (\alpha_1 - \alpha_2) \cdot \left(\lambda^2 - \frac{1}{\lambda}\right)$$

$$\begin{pmatrix} \Delta n : 夜屈折、n : 平均屈折率、N : 単位体積あたりのセグメント数、 \\ \lambda : 流動によるガウス鎖の変形率、 $\alpha_1 :$ 配向方向の分極率、 $\alpha_2 :$ 配向に対して郵直方向の分極率$$

【0045】これら(8)、(9)式の結果を用い、配 【数10】 向によるエントロピー変化 ΔS_0 は

$$\Delta S_0 = \frac{N_A k}{2} \cdot \left(\lambda^2 + \frac{2}{\lambda} - 3\right)$$

$$(\Delta S_0 : エントロピー変化、N_A : Avogadro定数、k : Boltzmann 定数)$$

【0046】で求められる。

【0047】従って、成形過程での応力がわかれば、

- (7) 式により配向によるTmの上昇を評価し、これを
- (6) 式に代入することで、配向試料でのG、 N_2 が計算できる。以上の手順により射出成形過程での結晶化度の解析を行うことができる。

【0048】次に配向度についてであるが、配向度は複屈折とほぼ等価と考えられるので、残留応力解析を行えばよい。流動に起因する残留応力は先の流動解析で計算される樹脂の熱流動場に基づき計算される。(成形加工、Vol. 2, No. 4, 317 (1990))残留応力解析では、応力の緩和現象をシミュレートする

ために粘弾性構成方程式が用いられる。溶融樹脂の粘弾性挙動を表現する構成方程式としてはさまざまな式が提案されているが、レオノフモデルがよく使用されており、ここではこのモデルを例に説明する。

【数11】

$$\tau = 2 \eta_{0} s \gamma^{*} + 2 \Sigma \mu_{k} c_{k}$$

$$k = 1$$

$$\gamma^{*} = 1 / 2 \begin{bmatrix} 0 & 0 & \gamma_{xx} \\ 0 & 0 & \gamma_{xy} \\ \gamma_{xx} & \gamma_{xy} & 0 \end{bmatrix}$$

$$C k = \begin{bmatrix} c_{11, k} & c_{12, k} & c_{13, k} \\ c_{12, k} & c_{22, k} & c_{23, k} \\ c_{13, k} & c_{23, k} & c_{33, k} \\ c_{13, k} & c_{23, k} & c_{33, k} \end{bmatrix}$$

$$\eta_{0} = \Sigma \eta_{k} / (1 - s)$$

$$k = 1$$
(11)

(〒:応力テンソル、ア*:ひずみ速度テンソル

ic k: 第k次モード弾性ひずみテンソル (Finger ひずみテンソル)

η o: zero-shear 粘度、s: レオロジーパラメータ、N:最和モード数、

ημ: 第 k 次モード粘度(温度依存)μμ: 第 k 次モード級和弾性率

μμ=ημ/2θμθμ: 第k次モード緩和時間 (温度依存)

c 。: 第 k 次モード弾性ひずみテンソル)

【0050】流動解析で得られたひずみ速度γ*の経時変化を用いて、レオノフのひずみ関係式を解くことにより弾性ひずみcが求められる。さらに、これらのひずみ速度γ*および弾性ひずみcを上記(11)のレオノフの応力-ひずみ関係式に代入することにより、応力の緩和を考慮した粘弾性応力τが計算される。

【0051】ここで流動解析で得られた温度Tの経時変化は、緩和時間 θ_{ν} 、 η_{ν} などの温度に依存するパラメ

ータを参照するときに用いられる。

【0052】そして残留応力解析により、上記のように応力の緩和を考慮して計算した残留応力分布に基づいて、次式(12)の応力光学則を用いて複屈折 Δn が算出される。

(12)

[0053]

【数12】

$\Delta n_{\perp i} = C (\sigma_{\perp} - \sigma_{i})$

(C:応力光学係数(光弾性係数)、σ:幾密応力の主応力成分)

【0054】4)求められた結晶化度および配向度から 系樹脂の射出成形品の機械的強度を予測するのに特に有の射出成形品の機械的強度の算出:以上のようにして得 用である。
た結晶化度と配向度(複屈折)を、予め算出した相関デ
【0057】

【0055】なお、重回帰式を求めるために実測される結晶化度および配向度は、解析で求める結晶化度および配向度と完全に同一定義のものである必要はなく、相互に換算できるものであれば、測定の便宜などを考慮した別定義のものであってもよい。

一夕(重回帰式)に代入することにより、射出成形品の

各部位の機械的強度を算出する。

【0056】これにより、実際に金型を製作して射出成形品の機械的強度を実測することなく、射出成形品の各種機械的強度を予測することが可能になる。本発明方法は、ポリエチレン、ポリプロピレン、ポリプテン、これらの混合物、2種以上のオレフインの共重合樹脂、ポリオレフイン系エラストマーなどの結晶性ポリオレフイン

【発明の効果】本発明方法によれば、曲げ強度、曲げ弾性率などの機械的強度と、結晶化度および配向度との相関データを予め求めておき、成形条件、成形品形状および成形樹脂特性を含む成形諸元に基づく解析により算出される結晶化度および配向度をこれに代入することにより射出成形品の機械的強度を予測することができるので、金型の製作や射出成形試験を行わなくても機械的強度の評価を行うことができる。従って、金型や射出成形品の設計段階において、機械的強度が要求に合致しない

時には設計変更や原料変更を行って再評価することがで

【図面の簡単な説明】

【図1】本発明の一つの実施例のフローチャート

き、大幅な時間短縮と原料の削減が可能とになる。

図 1

METHOD FOR PREDICTING MECHANICAL STRENGTH OF INJECTION-MOLDED ARTICLE OF CRYSTALLINE THERMOPLASTIC RESIN

Publication number: JP10156885 (A) Publication date: 1998-06-16

Inventor(s):

HAYASHI TATSUYA

Applicant(s):

MITSUBISHI PLASTICS IND

Classification:

- international:

B29C33/00; B29C45/17; B29C45/76; B29C33/00; B29C45/17; B29C45/76; (IPC1-

7): B29C45/17; B29C33/00; B29C45/76

- European:

B29C45/76R

Application number: JP19960317515 19961128 **Priority number(s):** JP19960317515 19961128

Abstract of JP 10156885 (A)

PROBLEM TO BE SOLVED: To make prediction at design stage possible by a method wherein multiple correlation data between crystallinity and degree of orientation and mechanical properties of a molded article are made by actual measurements and the mechanical strength is predicted from values obtd. by analysis based on various conditions for molding. SOLUTION: On resins used for molding, injection moldings are performed by using a various kinds of grades and mechanical strengths such as bending strength and bending elasticity and crystallinity and degree of orientation are actually measured and multiple regression analysis of the crystallinity and the degree of orientation to the mechanical strengths is performed to obtain a multiple regression equation.; Then, based on various conditions for molding contg. molding condition, the shape of a molded article and molding resin characteristics, temp., pressure, shear velocity, etc., in a mold are obtd. as a function of position and time by flow analysis of the resin. Then, the crystallinity and the degree of orientation in an injection-molded article are obtd. and the mechanical strength of the injection-molded article is obtd. from these and the multiple regression equation.

Data supplied from the **esp@cenet** database — Worldwide