Zufallsstichproben

Definition

Eine einfache Zufallsstichprobe vom Umfang n ist eine Folge von stochastisch unabhängigen und identisch verteilten Zufallsvariablen X_1, \ldots, X_n , den sogenannten Stichprobenvariablen. Dabei bezeichnet X_i die Merkmalsausprägung des i-ten Elements in der Stichprobe. Die beobachteten Merkmalswerte x_1, \ldots, x_n der n Elemente sind Realisierungen der Zufallsvariablen X_1, \ldots, X_n und heissen Stichprobenwerte.

Parameterschätzungen

Definition

Allgemein ist eine Stichprobenfunktion eine Funktion, die von den Stichprobenvariablen X_1,\ldots,X_n abhängt. Eine $Schätzfunktion\ \Theta=g(X_1,\ldots,X_n)$ ist eine spezielle Stichprobenfunktion, nämlich eine "Formel", mit der man den Wert eines Parameters θ der Grundgesamtheit schätzen kann: Setzt man eine konkrete Stichprobe $x_1,\ldots x_n$ ein, so erhält man einen $Schätzwert\ \hat{\theta}=g(x_1,\ldots,x_n)$ für den Parameter θ .

Definition

Eine Schätzfunktion Θ eines Parameters θ heisst *erwartungstreu*, wenn gilt:

$$E(\Theta) = \theta$$

Gegeben sind zwei erwartungstreue Schätzfunktionen Θ_1 und Θ_2 desselben Parameters θ . Man nennt Θ_1 effizienter als Θ_2 , falls gilt:

$$V(\Theta_1) < V(\Theta_2)$$

Eine Schätzfunktion Θ eines Parameters θ heisst *konsistent*, wenn gilt:

$$E(\Theta)
ightarrow heta$$
 und $V(\Theta)
ightarrow 0$ für $n
ightarrow \infty$

Schätzfunktionen für die wichtigsten statistischen Parameter

	Schätzfunktion	Schätzwert
Erwartungswert Spezialfall: Anteilswert einer Bernoulli- Verteilung	$ar{X} = rac{1}{n} \cdot \sum_{i=1}^{n} X_i$	$\hat{\mu}=ar{x}=rac{1}{n}\cdot\sum_{i=1}^nx_i$ $\hat{p}=ar{x}=rac{1}{n}\sum_{i=1}^nx_i=rac{ ext{Anzahl 1en}}{n}$
Varianz	$S^2 = rac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \bar{X})^2$	$\hat{\sigma}^2 = s^2 = rac{1}{n-1} \cdot \sum\limits_{i=1}^n \left(x_i - ar{x} ight)^2$

Standardabweichung $S=\sqrt{S^2}$ $\hat{\sigma}=s=\sqrt{rac{1}{n-1}\cdot\sum\limits_{i=1}^{n}\left(x_i-ar{x}
ight)^2}$

Satz

- (1) \bar{X} und S^2 sind erwartungstreu und konsistent.
- (2) S ist konsistent, aber nicht erwartungstreu.

Vertrauensintervalle

Man bestimmt zwei Stichprobenfunktionen Θ_u und Θ_o , die den wahren Wert des Parameters θ mit der vorgegebenen Wahrscheinlichkeit γ einschliessen:

$$P(\Theta_u \leq \theta \leq \Theta_o) = \gamma$$

Setzt man nun die Werte x_1, x_2, \ldots, x_n einer konkreten Stichprobe in Θ_u und Θ_o ein, so erhält man die Zahlen c_u und c_o . Das Intervall $[c_u; c_o]$ ist dann ein *Vertrauensintervall* für den unbekannten Parameter θ .

Die Wahrscheinlichkeit γ heisst *Vertrauensniveau* oder *statistische Sicherheit* (übliche Werte: 95% oder 99%); $\alpha = 1 - \gamma$ wird *Irrtumswahrscheinlichkeit* genannt.

Wenn man hundertmal eine Stichprobe nehmen und zu jeder Stichprobe das Vertrauensintervall berechnen würde, so würden etwa $100 \cdot \gamma$ dieser Intervalle (bei $\gamma = 95\%$ also etwa 95) den wahren Wert des Parameters einschliessen: