GUÍA ACTUALIZADA DE NOMENCLATURA INORGÁNICA DE LA PONENCIA DE QUÍMICA DE ANDALUCÍA PARA LAS PRUEBAS DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

ÍNDICE

1.	Introducción	1
2.	Objetivos	1
3.	Nomenclatura aceptada por la Ponencia de Química para la PEvAU	2
4.	Nomenclatura utilizada por la Ponencia de Química para comunicarse	
	con el alumnado en la PEvAU	2
	4.1. Especies Homoatómicas	2
	4.2. Compuestos Binarios	3
	4.3. Compuestos Ternarios	6
5.	ANEXO: Preguntas frecuentes del profesorado	8

1.- INTRODUCCIÓN

La nomenclatura ha sido, durante mucho tiempo, una fuente de dudas y preocupaciones del profesorado de Bachillerato a la hora de preparar a sus alumnos para las Pruebas de Acceso y Admisión a la Universidad. Fundamentalmente, el origen de todo ello fue la decisión por parte de la Ponencia de Química de Andalucía de aceptar únicamente como válidos los sistemas de nomenclatura de Química Inorgánica recogidos en las recomendaciones de la IUPAC publicadas en 2005. La Ponencia decidió dar un margen de tiempo al profesorado de ESO y Bachillerato para que adaptasen sus enseñanzas a dichas recomendaciones y publicó, en 2011, una Guía sobre el uso de la nomenclatura de Química Inorgánica según las orientaciones de la Ponencia de Química de Andalucía para las Pruebas de Acceso a la Universidad con el objetivo de ayudar y orientar al profesorado en dicha tarea.

Tras el paso de los últimos cursos, se ha observado un gran esfuerzo por parte del profesorado para conseguir que el alumnado aprenda y use con éxito los sistemas de nomenclatura recomendados por la IUPAC, dejando atrás otros sistemas no aceptados, traduciéndose todo lo anterior en una mejora en las calificaciones relacionadas con esta parte de la materia en las pruebas.

Sin embargo, durante todo este tiempo, han seguido llegando a la Ponencia numerosas dudas en relación a este tema por parte del profesorado. Dado que una de las funciones de la Ponencia de Química de Andalucía es la de orientar al profesorado en relación a las pruebas, y a la vista de las dudas e inquietudes recibidas, se ha decidido elaborar el presente documento cuya única función es aclarar qué sistema de nomenclatura utilizará la Ponencia de Química de Andalucía para comunicarse con el alumnado en las pruebas y qué sistemas serán aceptados en las mismas. Además de lo anterior, se ha intentado dar respuesta a una serie de dudas recurrentes que llegan a la Ponencia y que, sin duda, facilitará la tarea del profesorado.

La Ponencia quiere recalcar explícitamente que <u>no es función</u> de la misma <u>orientar sobre la didáctica</u> de la nomenclatura inorgánica y que, en modo alguno, elaborará un documento que sirva para ser utilizado para dicho propósito. Será el profesorado, dentro de su autonomía, competencia y profesionalidad, el que decida cómo enseñar de manera efectiva los sistemas de nomenclatura aceptados por la Ponencia. Se incluyen, no obstante, en uno de los apartados de la presente guía, una serie de referencias documentales que pueden servir de ayuda y orientación para dicha tarea.

2.- OBJETIVOS

- Aclarar qué sistemas de nomenclatura son aceptados, aparte del utilizado por la Ponencia de Química de Andalucía, en las Pruebas de Acceso y que el alumnado puede utilizar.
- 2. Aclarar al profesorado qué sistema de nomenclatura utilizará la Ponencia de Química de Andalucía para comunicarse con el alumnado en las Pruebas de Acceso.
- 3. Aclarar las dudas más recurrentes en relación a la nomenclatura de Química Inorgánica enviadas a la Ponencia de Química de Andalucía por el profesorado de ESO y Bachillerato (Anexo).

3.- NOMENCLATURA ACEPTADA POR LA PONENCIA DE QUÍMICA PARA LAS PRUEBAS DE ACCESO Y ADMISIÓN

La Ponencia de Química dará por válida cualquier nomenclatura que esté aceptada por la IUPAC en las recomendaciones publicadas en 2005. Los sistemas de nomenclatura a los que se refiere este apartado son los siguientes:

- Nomenclatura de Composición o Estequiométrica (de prefijos multiplicadores, de número de carga o de número de oxidación).
- Nomenclatura de Sustitución.
- Nomenclatura de Adición.
- Nomenclatura de Hidrógeno.

Serán también correctos los nombres pertenecientes a la Nomenclatura Tradicional o Vulgar que son aceptados en las recomendaciones y que se detallarán más adelante.

4.- NOMENCLATURA UTILIZADA POR LA PONENCIA DE QUÍMICA PARA COMUNICARSE CON EL ALUMNADO EN LAS PRUEBAS DE ACCESO Y ADMISIÓN

La nomenclatura que utilizará la Ponencia de Química de Andalucía en las Pruebas de Acceso y Admisión, tanto en la pregunta específica de nomenclatura, como en el resto de ejercicios de la prueba, si así se requiere, será la nomenclatura de composición o estequiométrica (prefijos multiplicadores o números romanos para expresar el número de oxidación) excepto en los casos de oxoácidos y oxisales para los que se utilizarán nombres tradicionales (o vulgares) aceptados por la IUPAC en las recomendaciones del 2005.

A continuación se detallarán brevemente los casos que se pueden encontrar para los distintos compuestos indicándose cuáles se aceptan y cuáles no.

4.1.- ESPECIES HOMOATÓMICAS

En aquellos casos en los que se requiera nombrar especies moleculares que contienen únicamente átomos de un mismo elemento, se utilizarán prefijos multiplicadores indicando el número de átomos en la molécula. El prefijo "mono-" se usa básicamente cuando el elemento no se presenta en la naturaleza en estado monoatómico (p.e. N: mononitrógeno).

Se aceptan los nombres de oxígeno para el dioxígeno (O_2) y ozono para el trioxígeno (O_3) , pero no nitrógeno para el dinitrógeno (N_2) ni hidrógeno para el dihidrógeno (H_2) y lo mismo para el resto.

La Ponencia utilizará los nombres con prefijos aceptados para referirse a todas estas especies así como los nombres de oxígeno y ozono si fuese necesario. **Nota**: en los problemas, a las especies diatómicas que son gases, la Ponencia se podrá referir indistintamente a ellas usando el nombre sistemático: dicloro (Cl_2), dinitrógeno (N_2), entre otros, o haciendo alusión a su naturaleza (cloro molecular, nitrógeno molecular).

4.2.- COMPUESTOS BINARIOS (se incluyen también los hidróxidos dado que se utiliza el mismo sistema de nomenclatura para nombrarlos)

Para todos estos compuestos se usará la nomenclatura de composición o estequiométrica utilizando prefijos multiplicadores o números romanos para expresar el número de oxidación (la Ponencia no utilizará los números de carga para nombrar ningún compuesto).

Aclaraciones:

- Si se utilizan prefijos multiplicadores, la IUPAC considera innecesario indicarlos cuando el número de oxidación del catión es único ya que es superfluo, pero es correcto su uso. Según lo anterior, la Ponencia aceptará como válidos aquellos nombres en los que no sea necesario indicarlo pero sí se haga.
- El prefijo "mono-" no suele utilizarse salvo que su ausencia conduzca a confusiones. Según las recomendaciones de la IUPAC de 2005 (pág. 71) "El prefijo mono- es, hablando estrictamente, superfluo y se necesita solamente para enfatizar la estequiometría cuando se comentan sustancias relacionadas por la composición". Como por ejemplo: NO, óxido de nitrógeno o monóxido de nitrógeno.
- Por norma la Ponencia utilizará el prefijo mono para hacer énfasis en los casos en los que pueda haber ambigüedad.
- Si se utilizan números romanos, la IUPAC establece que si el número de oxidación del catión es único, <u>no debe indicarse</u>. Según lo anterior, la Ponencia *no dará como válidos los nombres en los que figure y no sea necesario*.

Se presentan a continuación una serie de ejemplos variados de todos los tipos de compuestos binarios posibles nombrados con la nomenclatura que utilizará la Ponencia en las pruebas:

HIDRUROS			
Fórmula	Nomenclatura Prefijos Multiplicadores	Nomenclatura Números romanos	
NaH	Hidruro de sodio	Hidruro de sodio	
CaH ₂	Dihidruro de calcio o		
FeH ₂	Dihidruro de hierro	Hidruro de hierro(II)	
FeH ₃	Trihidruro de hierro	Hidruro de hierro(III)	
AlH ₃	Trihidruro de aluminio o hidruro de aluminio	Hidruro de aluminio	
BH ₃	Trihidruro de boro o hidruro de boro	Hidruro de boro	
PH ₃	Trihidruro de fósforo	Hidruro de fósforo(III)	
H ₂ S ⁽¹⁾	Sulfuro de dihidrógeno o sulfuro de hidrógeno	Sulfuro de hidrógeno	
HF	Fluoruro de hidrógeno	Fluoruro de hidrógeno	

Nota: Se admiten los nombres tradicionales para el NH₃ (amoniaco) y H₂O (agua).

⁽¹⁾ Los nombres del tipo 'ácido clorhídrico', 'ácido sulfhídrico', etc. se refieren a **disoluciones acuosas** de cloruro de hidrógeno o sulfuro de hidrógeno y no corresponden a compuestos químicos sino a **mezclas**. Por tanto, su uso no está admitido en las normas de nomenclatura de la IUPAC.

Combinaciones de oxígeno y elementos de los grupos 1-16: ÓXIDOS		
Fórmula	Nomenclatura Prefijos	Nomenclatura Números
Formula	Multiplicadores	romanos
K₂O	Óxido de dipotasio u óxido de potasio	Óxido de potasio
MgO	Óxido de magnesio	Óxido de magnesio
Cu₂O	Óxido de dicobre	Óxido de cobre(I)
CuO	Óxido de cobre o monóxido de cobre [*]	Óxido de cobre(II)
NiO	Óxido de níquel o monóxido de níquel [*]	Óxido de níquel(II)
Ni ₂ O ₃ Trióxido de diníquel		Óxido de níquel(III)
Cr ₂ O ₃	Trióxido de dicromo	Óxido de cromo(III)
Al ₂ O ₃	Trióxido de dialuminio u óxido de aluminio	Óxido de aluminio
Ag ₂ O	Óxido de diplata u óxido de plata	Óxido de plata
NO	Óxido de nitrógeno o monóxido de nitrógeno*	Óxido de nitrógeno(II)
N ₂ O	Óxido de dinitrógeno	Óxido de nitrógeno(I)
NO ₂	Dióxido de nitrógeno	Óxido de nitrógeno(IV)
СО	Óxido de carbono o monóxido de carbono	Óxido de carbono(II)
CO ₂	Dióxido de carbono	Óxido de carbono(IV)
SO	Óxido de azufre o monóxido de azufre [*]	Óxido de azufre(II)
SO ₂	Dióxido de azufre	Óxido de azufre(IV)

^{*} En estos casos el **prefijo mono** se podría añadir para enfatizar la diferencia con otros óxidos del elemento.

Combinaciones de oxígeno y elementos del grupo 17: HALUROS DE OXÍGENO ⁽¹⁾		
Fórmula Nomenclatura Prefijos Multiplicadores		Nomenclatura Números romanos ⁽²⁾
OF ₂ Difluoruro de oxígeno		-
OCl ₂ Dicloruro de oxígeno		-
O ₃ Cl ₂ Dicloruro de trioxígeno		-
O₅Br₂ Dibromuro de pentaoxígeno		-
O ₅ l ₂ Diyoduro de pentaoxígeno		=
O_7Cl_2	Dicloruro de heptaoxígeno -	

⁽¹⁾ Según las orientaciones de la IUPAC de 2005, a efectos de formulación y por convenio, debe considerarse que cualquiera de los elementos del grupo 17 (F, Cl, Br e l) será tratado como más electronegativo que el oxígeno.
(2) El cambio en la posición en los elementos hace que la nomenclatura de números romanos

sea confusa, y por ello es recomendable no utilizarla en estos casos.

PERÓXIDOS		
Fórmula	Nomenclatura Prefijos Multiplicadores	Nomenclatura Números romanos
Li ₂ O ₂	Dióxido de dilitio	Peróxido de litio
CaO ₂	Dióxido de calcio	Peróxido de calcio
MgO ₂	Dióxido de magnesio	Peróxido de magnesio
Cu ₂ O ₂	Dióxido de dicobre	Peróxido de cobre(I)
CuO ₂	Dióxido de cobre	Peróxido de cobre(II)
H_2O_2	Dióxido de dihidrógeno	Peróxido de hidrógeno

Nota: Se acepta el nombre tradicional de agua oxigenada para el H₂O₂

SALES BINARIAS		
Fórmula	Nomenclatura Prefijos Multiplicadores	Nomenclatura Números romanos
Na ₂ S	Sulfuro de disodio o Sulfuro de sodio	
BaCl ₂	Dicloruro de bario o Cloruro de bario	Cloruro de bario
FeBr ₂	Dibromuro de hierro	Bromuro de hierro(II)
FeBr₃		
Cu₂Se	Selenuro de dicobre	Selenuro de cobre(I)
CuSe	Selenuro de cobre o monoselenuro de cobre	Selenuro de cobre(II)
Au ₃ N	Nitruro de trioro	Nitruro de oro(I)
FeS	Sulfuro de hierro o monosulfuro de hierro (II)	
Fe ₂ S ₃ Trisulfuro de dihierro Sulfuro d		Sulfuro de hierro(III)
NH ₄ Cl ⁽¹⁾	Cloruro de amonio	Cloruro de amonio
(NH ₄) ₂ Se	Selenuro ⁽²⁾ de diamonio	Selenuro de amonio
LiCN	Cianuro de litio	Cianuro de litio
Fe(CN) ₂	Dicianuro de hierro	Cianuro de hierro(II)
Fe(CN) ₃ Tricianuro de hierro		Cianuro de hierro(III)

⁽¹⁾ Se aceptan nombres propios para los iones NH₄⁺ (ion amonio) y CN⁻ (ion cianuro).
(2) El nombre correcto del anión es *selenuro* y no seleniuro, según el Libro Rojo de la IUPAC.

HIDRÓXIDOS			
Fórmula	Nomenclatura Prefijos	Nomenclatura Números	
Torridia	Multiplicadores	romanos	
KOH	Hidróxido de potasio	Hidróxido de potasio	
Mg(OH) ₂	Dihidróxido de magnesio o hidróxido de magnesio	Hidróxido de magnesio	
CuOH	Hidróxido de cobre o monohidróxido de cobre	Hidróxido de cobre(I)	
Cu(OH) ₂	Dihidróxido de cobre	Hidróxido de cobre(II)	
Ni(OH) ₂	Dihidróxido de níquel	Hidróxido de níquel(II)	
Ni(OH)₃	Trihidróxido de níquel	Hidróxido de níquel(III)	
ALCOLIN	Trihidróxido de aluminio	Hidróxido de aluminio	
Al(OH) ₃	o hidróxido de aluminio	midioxido de aldininio	
Pt(OH) ₂	Dihidróxido de platino	Hidróxido de platino(II)	
Pt(OH) ₄	Tetrahidróxido de platino	Hidróxido de platino(IV)	

4.3.- COMPUESTOS TERNARIOS

Los compuestos ternarios oxoácidos y oxosales, serán nombrados siempre por la Ponencia utilizando los *nombres tradicionales* (o vulgares) aceptados por la IUPAC. El matiz está en que la nomenclatura tradicional no sigue vigente, lo único que sucede es que se aceptan algunos nombres vulgares para oxoácidos y oxosales, de lo que no se debe deducir que se admiten todos los nombres anteriores. Únicamente se permiten los especificados en el capítulo IR-8 y en la tabla IR-8.1 del Libro Rojo.

No se admiten nombres como ácido crómico, ácido dicrómico o ácido permangánico. A todos estos ácidos se les pueden dar nombres sistemáticos usando los principios de las nomenclaturas de adición y de sustitución. Sin embargo, se usan habitualmente tal cantidad de nombres de "ácidos" ya existentes (ácido sulfúrico, ácido perclórico) que la sugerencia de reemplazarlos por alternativas sistemáticas sería poco práctica y sus nombres están permitidos por la IUPAC. Otra razón para incluirlos en las recomendaciones actuales y por el que hace uso de ellos la Ponencia, es que los citados ácidos se usan como estructuras progenitoras en la nomenclatura de algunos derivados orgánicos. Además, existe un tipo adicional de nombres que pueden considerarse una generalización de los nombres vulgares de aniones para los que se puede utilizar la llamada nomenclatura de hidrógeno.

Por último, aclarar que también se dejan de utilizar el prefijo "orto-" para los ácidos de B, Si, P, As y Sb, por innecesario, y el "piro—", que se sustituye por "di—". En el caso del prefijo "orto-" y lo innecesario de su uso, deseamos hacer una aclaración: "Orto" significa normal, correcto. Por eso, el prefijo "orto-" se aplicaba, en general, al ácido más común, el más estable, de la serie de ácidos de un elemento obtenidos añadiendo una, dos o tres moléculas de agua. En el caso del fosfórico resulta que el más común tiene por fórmula empírica H_3PO_4 . Simplemente por esa razón, la de su estabilidad y normalidad, el H_3PO_4 es considerado el "orto" de la familia de ácidos fosfóricos, dado que es el más común, se decide nombrarlo simplemente como ácido fosfórico, dejando el resto de los prefijos para identificar a los demás en caso de ser nombrados. En las tablas siguientes aparecen estos últimos a título informativo exclusivamente.

Se presentan a continuación una serie de ejemplos variados de oxoácidos y oxosales, nombrados con la nomenclatura que utilizará la Ponencia en las pruebas:

NOMBRES TRADICIONALES ACEPTADOS			
Fórmula	OXOÁCIDOS	ANIONES (supuesta total pérdida de H)	
H ₃ BO ₃	Ácido bórico (no es ortobórico)	Borato	
(HBO ₂) _n	Ácido metabórico	Metaborato	
H ₂ CO ₃	Ácido carbónico	Carbonato	
H ₄ SiO ₄	Ácido silícico (no es ortosilícico)	Silicato	
$(H_2SiO_3)_n$	Ácido metasilícico	Metasilicato	
HNO ₃	Ácido nítrico	Nitrato	
HNO ₂	Ácido nitroso	Nitrito	
H ₃ PO ₄	Ácido fosfórico (no es ortofosfórico)	Fosfato	

NOMBRES TRADICIONALES ACEPTADOS (cont.)				
Fórmula	OXOÁCIDOS	ANIONES (supuesta total pérdida de H)		
(HPO ₃) _n	Ácido metafosfórico	Metafosfato		
H ₄ P ₂ O ₇	Ácido difosfórico (no es pirofosfórico)	Difosfato		
H ₃ PO ₃	Ácido fosforoso	Fosfito		
H ₃ AsO ₄	Ácido arsénico	Arsenato		
H ₃ AsO ₃	Ácido arsenoso	Arsenito		
H ₂ SO ₄	Ácido sulfúrico	Sulfato		
H ₂ SO ₃	Ácido sulfuroso	Sulfito		
$H_2S_2O_7$	Ácido disulfúrico	Disulfato		
H ₂ SeO ₄	Ácido selénico	Selenato		
H₂SeO₃	Ácido selenoso	Selenito		
H_6TeO_6	Ácido ortotelúrico ⁽¹⁾	Ortotelurato		
H_2TeO_4	Ácido telúrico	Telurato		
H ₂ TeO ₃	Ácido teluroso	No tiene nombre aceptado		
HCIO ₄	Ácido perclórico	Perclorato		
HBrO₃	Ácido brómico	Bromato		
HIO ₂	Ácido yodoso	Yodito		
H ₅ IO ₆	Ácido ortoperyódico ⁽¹⁾	Ortoperyodato		
HCIO	Ácido hipocloroso	Hipoclorito		

⁽¹⁾ En estos casos se mantiene el prefijo orto-.

NOMBRES TRADICIONALES ACEPTADOS		
OXOSALES		
Fórmula	Nomenclatura	
Na₃BO₃	Borato de sodio	
Ca₂CO₃	Carbonato de calcio	
Ba(NO ₃) ₂	Nitrato de bario	
Fe(NO ₂) ₃	Nitrito de hierro(III)	
Be ₃ (PO ₄) ₂	Fosfato de berilio	
AlAsO ₄	Arsenato de aluminio	
NiSO ₄	Sulfato de níquel(II)	
Au ₂ SO ₃	Sulfito de oro(I)	
K ₂ S ₂ O ₇	Disulfato de potasio	
$Co_2(SeO_4)_3$	Selenato de cobalto(III)	
CaSeO₃	Selenito de calcio	
CuClO ₄	Perclorato de cobre(I)	
Zn(BrO ₃) ₂	Bromato de cinc	
Pb(IO ₂) ₄	Yodito de plomo(IV)	
NaClO	Hipoclorito de sodio	
CaCrO ₄	Cromato de calcio	
FeCr ₂ O ₇	Dicromato de hierro(II)	
KMnO ₄	Permanganato de potasio	

5.- ANEXO: PREGUNTAS FRECUENTES DEL PROFESORADO

ÍNDICE

- NOMENCLATURA DE COMPOSICIÓN CON PREFIJOS MULTIPLICADORES
- NOMENCLATURA DE COMPOSICIÓN CON NÚMEROS ROMANOS PARA EXPRESAR EL NÚMERO DE OXIDACIÓN
- NOMENCLATURA TRADICIONAL
- CRITERIOS DE CORRECCIÓN
- REDACCIÓN DEL EXAMEN POR PARTE DE LA PONENCIA

NOMENCLATURA DE COMPOSICIÓN CON PREFIJOS MULTIPLICADORES

¿Se admite monóxido de cobre? ¿O monóxido de nitrógeno?

Se admite, aunque no es necesario poner el prefijo "mono". Se podría utilizar para enfatizar ya que hay otros óxidos pero no es necesario.

En el Libro Rojo (p. 71) se puede leer:

"El prefijo "mono" es, hablando estrictamente, superfluo y se necesita solamente para enfatizar la estequiometria cuando se comentan sustancias relacionadas por la composición".

Aclarando lo anterior se indica que el NO puede ser nombrado como óxido de nitrógeno, pero también como monóxido de nitrógeno ya que hay varios óxidos de nitrógeno más (sustancias relacionadas por la composición). Siguiendo este razonamiento el CO puede nombrarse como monóxido de carbono o como óxido de carbono, el FeO como monóxido de hierro o como óxido de hierro, pero el Na₂O se nombraría como óxido de disodio, no monóxido de disodio.

Es decir, siempre se pueden distinguir los compuestos sin necesidad de utilizar el prefijo mono (ver Tabla I) y la IUPAC solo recomienda utilizarlo para enfatizar, es decir cuando se esté hablando de sustancias parecidas. Sin embargo, en las recomendaciones de la IUPAC de 2005 se considera demasiado estricto no recomendar su uso y deja libertad para hacerlo o no. Es decir, a nivel de las pruebas de acceso, utilizar el prefijo MONO o no hacerlo, es correcto.

Tabla I. Nomenclatura de óxidos de nitrógeno

Compuesto	Nomenclatura de composición con prefijos	Nomenclatura de composición con n ^{os} romanos
NO	Óxido de nitrógeno	Óxido de nitrógeno(II)
	Monóxido de nitrógeno	
NO ₂	Dióxido de nitrógeno	Óxido de nitrógeno(IV)

¿Cómo se nombran los compuestos Br₂, Cl₂ y O₂?

Deben nombrarse como dibromo, dicloro y dioxígeno. En el caso del O₂ es el único en el que se acepta el nombre alternativo "oxígeno".

¿Qué es lo correcto F₂O o OF₂?

La unión del oxígeno con los halógenos (F, Cl, Br, I) fue una novedad importante en las recomendaciones de la IUPAC 2005.

Así, el orden en que aparecen los símbolos de los elementos en las fórmulas de los compuestos binarios no se sigue exactamente de su electronegatividad, sino de su posición en la Tabla Periódica mediante la llamada secuencia de los elementos.

Tabla II. Secuencia de los elementos

La consecuencia es que los nombres de los compuestos de los halógenos con el oxígeno no son óxidos de los halógenos (F₂O) sino haluros de oxígeno (OF₂).

Ejemplo: OF₂ difluoruro de oxígeno

Aunque los haluros de oxígeno no son frecuentes en las pruebas de acceso, su nomenclatura no entraña problemática alguna si se considera que todos los compuestos binarios se pueden nombrar, en sentido de derecha a izquierda, utilizando la nomenclatura sistemática con prefijos multiplicadores.

NOMENCLATURA DE COMPOSICIÓN CON NÚMEROS ROMANOS PARA EXPRESAR EL NÚMERO DE OXIDACIÓN

¿Es correcto nombrar al Al(OH)₃ como hidróxido de aluminio(III)?

No es correcto. El corrector daría la respuesta por incorrecta. En este caso no es necesario indicar el estado de oxidación del aluminio. El catión aluminio se encuentra siempre en el mismo estado de oxidación y no es necesario especificarlo. La respuesta correcta es hidróxido de aluminio.

¿Es válido arsenuro de galio(III)? ¿Se puede utilizar también para aluminio, por ejemplo?

En el caso del aluminio claramente no se puede poner aluminio(III) ya que es su único estado de oxidación y no se debe indicar.

En el caso del galio al tener dos estados de oxidación (+1 y +3) sí hace falta indicar de cual de ellos se trata. Por otra parte, en la mayoría de los libros de texto se considera

(consideramos que acertadamente) que el galio solo puede tener el estado de oxidación +3 por lo que no habría que escribir galio(III). En definitiva, es el típico compuesto que se ha tratado de evitar hasta ahora en los exámenes y que, en caso de que aparezca, se darían por válidas ambas respuestas.

NOMENCLATURA TRADICIONAL

Si tenemos que nombrar el H₃PO₄, según IUPAC, el nombre vulgar es ácido fosfórico. ¿Estaría mal si los alumnos responden ácido ortofosfórico?

Sí, estaría mal. El corrector daría la respuesta por incorrecta. El alumno debe conocer esta excepción y saber que el H₃PO₄ aun siendo orto no se indica. También se dejan de utilizar el prefijo orto- para los ácidos de B, Si, P, As y Sb, por innecesario.

¿Es correcto nombrar como ácido permangánico al HMnO₄?

El HClO₄ es el ácido perclórico y por el mismo motivo el HMnO₄ debería ser el ácido permangánico. Sin embargo, en este último caso existe una excepción contenida en el libro rojo de la IUPAC (2005) en base a que se trata de un oxoácido de un metal de transición y a la dificultad para sistematizar en estos casos. Sin embargo, su correspondiente anión permanganato, especie mucho más común en los exámenes, es un nombre aceptado.

El del HMnO₄ es el típico caso de excepción que introduce la IUPAC en sus recomendaciones de 2005 y como tal excepción se tratará de evitar en los exámenes de acceso y admisión, pero en caso de que se preguntara el HMnO₄ no se daría por incorrecta la respuesta ácido permangánico ya que sería exigir demasiado que los alumnos conociesen esa excepción.

¿El orden en el que se escriben los elementos en los haluros de oxígeno (Ej. OCl₂) afecta también a los oxoácidos?

No, de hecho, los oxoácidos del elemento cloro serían: HClO, HClO₂, HClO₃ y HClO₄.

¿Se pueden utilizar los prefijos "piro-"?

El uso sería incorrecto, es decir, el prefijo piro- ha sido sustituido por di-.

H₂S₂O₇ ácido disulfúrico

¿Se acepta amonio para el NH₄⁺?

Sí, en las recomendaciones de la IUPAC de 2005 para formulación inorgánica se consideran válidos azanio y amonio para el NH₄⁺.

CRITERIOS DE CORRECCIÓN

¿Es correcto cloruro cúprico para referirse a CuCl₂?

No, el corrector calificará la cuestión como incorrecta. La forma correcta es cloruro de cobre(II) o dicloruro de cobre. La IUPAC es contraria al uso de los sufijos -oso e -ico para indicar el estado de oxidación en compuestos binarios e hidróxidos.

¿Qué ocurre si el alumno responde anhídrido nitroso a la pregunta por el nombre de N_2O_3 ?

La respuesta será incorrecta. Esta forma de nombrar al trióxido de dinitrógeno u óxido de nitrógeno(III) es anticuada y no figura en las recomendaciones de la IUPAC (2005). No se pueden nombrar los óxidos no metálicos como anhídridos.

¿Qué ocurre si el alumno nombra H_2SO_3 como ácido trioxosulfúrico(IV) o al $Fe_2(SO_4)_3$ como tetraoxosulfato(VI) de hierro(III)?

El alumno ha utilizado la nomenclatura de Stock para nombrar los compuestos y la respuesta será dada por incorrecta. No figura en las recomendaciones de la IUPAC (2005).

¿Se darían por válidos los siguientes nombres: (i) arseniuro, (ii) arseniato, (iii) pentóxido y (iv) oro (III)?

Estos casos se consideran errores gramaticales por lo que **el corrector no aplicaría penalización**. En los dos primeros casos (i, ii) se están derivando raíces equivocadas de los nombres de los elementos. En (iii) se está usando un prefijo multiplicador y no se debe omitir ninguna letra (solo se puede hacer en monóxido). Por último, en (iv), No se debe dejar espacio antes de abrir el paréntesis para los números romanos que indican el estado de oxidación.

Error leve	Correcto
arseniuro	arsenuro
antimoniuro	antimonuro
seleniuro	selenuro
teleniuro	telururo
arseniato	arsenato
antimoniato	antimonato
pentóxido	pentaóxido
oro (III)	oro(III)

¿Y para el H_3O^+ ? ¿se acepta ion hidronio, en las pruebas de acceso de este curso, o, por el contrario solo se considerarán válidos los nombres oxonio y oxidanio?

Para el H_3O^+ la IUPAC recomienda oxidanio y oxonio, pero no hidronio. Sin embargo, si en un problema de ácido/base un alumno/a lo nombra como hidronio **no habrá penalización**.

REDACCIÓN DEL EXAMEN POR PARTE DE LA PONENCIA

Según leo en el Libro Rojo de la IUPAC (Nomenclatura de los compuestos inorgánicos) se aceptan varios sistemas de Nomenclatura, algunos me parecen demasiado complejos para los alumnos de ESO y Bachillerato. ¿La Ponencia utilizará cualquiera de estos sistemas?

No, la Ponencia utilizará la nomenclatura sistemática de composición o estequiométrica (con prefijos multiplicadores o números romanos para expresar el número de oxidación) excepto en los casos de oxoácidos y oxosales para los que se utilizarán nombres tradicionales aceptados por la IUPAC en las recomendaciones del 2005, pero los correctores darán por correcto el uso de cualquiera de los sistemas de nomenclatura aceptados por la IUPAC.

¿Podrá aparecer en la prueba de química el nombre dihidroxidooxidoazufre o dihidrogeno(trioxidosulfato) para nombrar H₂SO₃?

No, se utilizará el nombre vulgar aceptado por la IUPAC ácido sulfuroso.

Observo que los nombres sistemáticos recomendados por la IUPAC para nombrar H₂O y NH₃ son oxidano y azano, respectivamente ¿La Ponencia podría utilizar estos nombres en la redacción de los exámenes?

No, la Ponencia utilizará los nombres agua y amoniaco, que son nombres tradicionales aceptados por la IUPAC.

Por otro lado hay que aclarar que la IUPAC solo recomienda usar oxidano y azano para referirse a los derivados del H_2O y NH_3 (nota b, Tabla IR 6-1 del Libro Rojo de la IUPAC).

(En aplicación de la Ley Orgánica 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como de la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda referencia a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo, por lo tanto, la posibilidad de referirse tanto a mujeres como a hombres).