Grammars & Parser Combinators

Haskell and Cryptocurrencies

Dr. Andres Löh, Well-Typed LLP

Dr. Lars Brünjes, IOHK

Dr. Polina Vinogradova, IOHK

2019-01-30

Goals

- Grammars
- Parse trees
- Parser combinators
- The Alternative class

Credits

This lecture is based on Johan Jeuring's lecture on "Languages and Compilers", Utrecht University, 2016-2017.

All errors are of course our own.

Grammars

Alphabets & languages

Alphabet

An alphabet is a finite set of symbols (for example the set of all UTF8-characters, corresponding to the type **Char** in Haskell).

Alphabets & languages

Alphabet

An alphabet is a finite set of symbols (for example the set of all UTF8-characters, corresponding to the type **Char** in Haskell).

Language

A language over an alphabet is a subset of all words/sentences over the alphabet (sequences of symbols from the alphabet).

Example: palindromes

The language PAL of palindromes over the alphabet $\{a, b, c\}$ is defined as follows (ϵ denotes the empty word):

- ϵ is in PAL,
- a, b and c are in PAL,
- If P is in PAL, then aPa, bPb and cPc are also in PAL.

Grammars

Grammars

A grammar is a formalism to describe a language inductively. Grammars consist of rewrite rules, called productions.

A grammar for palindromes

- $P \rightarrow \epsilon$
- $P \rightarrow a$
- $P \rightarrow b$
- $P \rightarrow c$
- $P \rightarrow aPa$
- $P \rightarrow bPb$
- $P \rightarrow CPC$

- The language PAL is defined as follows:
 - ϵ is in PAL,
 - · a, b and c are in PAL,
 - If P is in PAL, then aPa, bPb and cPc are also in PAL.

A grammar for palindromes

- $P \rightarrow \epsilon$
- $P \rightarrow a$
- $P \rightarrow b$
- $P \rightarrow c$
- $P \rightarrow aPa$
- $P \rightarrow bPb$
- $P \rightarrow cPc$

- A grammar consists of multiple productions.
 Productions can be seen as rewrite rules. If the left hand side matches, it can be replaced by the right hand side.
- The grammar uses auxiliary symbols called nonterminals – that are not in the alphabet and hence can't appear in the final word.
- The symbols from the alphabet are also called terminals.

A grammar for palindromes

Starting from a nonterminal, we can apply productions successively until we reach a word of terminals:

$$P \rightarrow \epsilon$$

$$P \rightarrow a$$

$$P \rightarrow b$$

$$P \rightarrow b$$

$$P \rightarrow c$$

$$P \rightarrow aPa$$

$$P \rightarrow bPb$$

$$P \rightarrow aPa$$

$$P \rightarrow bPb$$

 $P \rightarrow cPc$

We call such a sequence a derivation. All words that can be derived from a nonterminal are in the language generated by the nonterminal. The nonterminal is called the start symbol of the language.

Context-free grammars

The grammars we consider are restricted:

 The left hand side of a production always consists of a single nonterminal.

Grammars with this restriction are called context-free.

Remarks about grammars

- · Not all languages can be generated by a grammar.
- Even fewer languages can be generated by a context-free grammar.
- Languages that can be generated by a context-free grammar are called context-free languages.
- Context-free languages are relatively easy to deal with algorithmically, and therefore most programming languages have a context-free syntax.
- · Multiple grammars may generate the same language.

Language of single digits

Dig	\rightarrow	0
Dig	\rightarrow	1
Dig	\rightarrow	2
Dig	\rightarrow	3
Dig	\rightarrow	4

$$\begin{array}{c} \textit{Dig} \rightarrow 5 \\ \textit{Dig} \rightarrow 6 \\ \textit{Dig} \rightarrow 7 \\ \textit{Dig} \rightarrow 8 \\ \textit{Dig} \rightarrow 9 \end{array}$$

Language of single digits

$Dig \rightarrow 5$
Dig $ ightarrow$ 6
Dig $ ightarrow$ 7
Dig $ ightarrow$ 8
Dig $ ightarrow$ 9

Multiple productions for the same nonterminal can be joined:

$$Dig \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$${\it Digs}\,\rightarrow\,\epsilon\,\mid\,{\it Dig}\,{\it Digs}$$

$$\mathrm{Digs} \, o \, \epsilon \mid \mathrm{Dig} \, \mathrm{Digs}$$

This grammar allows sequences with leading zeroes:

$$Digs \Rightarrow Dig \ Digs \Rightarrow Dig \ Digs \Rightarrow Dig \ Dig \ Digs$$

 $\Rightarrow Dig \ Dig \ Dig \ \epsilon \Rightarrow \ldots \Rightarrow 007$

$$\mathrm{Digs}
ightarrow \epsilon \mid \mathrm{Dig} \ \mathrm{Digs}$$

This grammar allows sequences with leading zeroes:

Digs
$$\Rightarrow$$
 Dig Digs \Rightarrow Dig Dig Digs \Rightarrow Dig Dig Digs \Rightarrow Dig Dig Dig $\epsilon \Rightarrow \ldots \Rightarrow 007$

We allow the following star notation on the right hand side of a production to abbreviate zero or more occurences of a symbol:

$$Digs \rightarrow Dig^*$$

$$\mathrm{Digs}
ightarrow \epsilon \mid \mathrm{Dig} \ \mathrm{Digs}$$

This grammar allows sequences with leading zeroes:

Digs ⇒ Dig Digs ⇒ Dig Dig Digs ⇒ Dig Dig Digs ⇒ Dig Dig Dig
$$\epsilon$$
 ⇒ . . . ⇒ 007

We allow the following star notation on the right hand side of a production to abbreviate zero or more occurences of a symbol:

$$Digs \rightarrow Dig^*$$

To disallow leading zeroes, we define non-zero digits:

$$Dig_{nz} \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

 $Nat \rightarrow 0 \mid Dig_{nz} \ Dig^*$

Integers

$$Sign \rightarrow + \mid -$$

$$Int \rightarrow Sign Nat \mid Nat$$

Integers

$$Sign \rightarrow + \mid -$$

$$Int \rightarrow Sign Nat \mid Nat$$

The sign is optional.

Integers

$$Sign \rightarrow + \mid Int \rightarrow Sign Nat \mid Nat$$

The sign is optional.

There is an abbreviation for optional symbols as well:

Int \rightarrow Sign? Nat

Parse Trees

Parse trees

Consider the grammar $S \to a \mid SS$. The word aaa has (at least) the following derivations:

$$S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaa$$
 (1)

$$S \Rightarrow SS \Rightarrow Sa \Rightarrow SSa \Rightarrow aSa \Rightarrow aaa$$
 (2)

Parse trees

Consider the grammar $S \to a \mid SS$. The word aaa has (at least) the following derivations:

$$S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaa$$
 (1)

$$S \Rightarrow SS \Rightarrow Sa \Rightarrow SSa \Rightarrow aSa \Rightarrow aaa$$
 (2)

We can visualize derivations as parse trees:

Ambiguity

- A grammar where every word in the generated language has a unique parse tree is called unambiguous.
- If this is not the case, the grammar is called ambiguous.
- The grammar $S \rightarrow a \mid SS$ is thus ambiguous.
- The semantics (i. e. "meaning") of a language will normally be defined via parse trees. Hence ambiguous grammars can have ambiguous semantics!
- Furthermore, ambiguity can also be bad for the *efficiency* of parsing.

Parsing problem

- Given a grammar G with generated language L(G) and a word S, the parsing problem is to decide whether $S \in L(G)$.
- Furthermore, if $s \in L(G)$, we want evidence (a proof, an explanation) why this is the case, usually in the form of a parse tree.

Parse trees in Haskell

Consider this grammar:

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

The word 1+0+1 has the parse tree

Parse trees in Haskell

Consider this grammar:

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

The word 1+0+1 has the parse tree

How do we best represent such a tree in Haskell?

Parse trees in Haskell (contd.)

Idea

Let us represent nonterminals as datatypes:

- In any node of the parse tree, we have a choice between the productions of the nonterminal in question.
- If we want to build a value of a Haskell datatype, we have a choice between any of that datatype's constructors.

Parse trees in Haskell (contd.)

```
data S = Plus D S | Digit D
  deriving Show
data D = Zero | One
  deriving Show
```

- We create constructors (with somewhat meaningful names) for each production.
- Nonterminals on the right hand side of a production turn into constructor arguments.
- Terminals on the right hand side of a production can be dropped – we can reconstruct them.

Concrete and abstract syntax

Both the grammar and the Haskell datatype describe the language.

concrete syntax

$$S \, \rightarrow \, D + S \, \mid \, D$$

$$D \rightarrow 0 \mid 1$$

abstract syntax

Concrete and abstract syntax

Both the grammar and the Haskell datatype describe the language.

concrete syntax

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

abstract syntax

The word 1+0+1 corresponds to the parse tree


```
Plus
One
(Plus
Zero
(Digit One))
```

Semantic functions

concrete syntax

$$S \rightarrow D+S \mid D$$

$$D \rightarrow 0 \mid 1$$

abstract syntax

Starting from the abstract syntax, we can give *meaning/semantics* to a language, possibly in different ways.

Semantic functions

concrete syntax

abstract syntax

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

```
data S = Plus D S | Digit D
data D = Zero | One
```

String representation:

```
printS :: S -> String
printS (Plus d s) = printD d ++ "+" ++ printS s
printS (Digit d) = printD d

printD :: D -> String
printD Zero = "0"
printD One = "1"
```

```
GHCi> printS (Plus One (Plus Zero (Digit One)))
"1+0+1"
```

Semantic functions

concrete syntax

abstract syntax

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

```
data S = Plus D S | Digit D
data D = Zero | One
```

Evaluation:

```
evalS :: S -> Int
evalS (Plus d s) = evalD d + evalS s
evalS (Digit d) = evalD d
evalD :: D -> Int
evalD Zero = 0
evalD One = 1
```

```
GHCi> evalS (Plus One (Plus Zero (Digit One)))
2
```

Parser Combinators

Parser generators

Parser combinators

Parser generators external program

Parser combinators library

Parser generators external program bottom-up algorithm Parser combinators library top-down algorithm

Parser generators
external program
bottom-up algorithm
complex theory

Parser combinators library top-down algorithm simple underlying theory

Parser generators

external program
bottom-up algorithm
complex theory
limited look-ahead
(usually one token)

Parser combinators

library top-down algorithm simple underlying theory unlimited look-ahead (in principle)

Parser generators

external program
bottom-up algorithm
complex theory
limited look-ahead
(usually one token)
only built-in abstractions

Parser combinators

library
top-down algorithm
simple underlying theory
unlimited look-ahead
(in principle)
user-definable abstractions

Parser generators

external program
bottom-up algorithm
complex theory
limited look-ahead
(usually one token)
only built-in abstractions
very fast generated parsers

Parser combinators

library
top-down algorithm
simple underlying theory
unlimited look-ahead
(in principle)
user-definable abstractions
fast (for most constructs)

Parser generators

external program
bottom-up algorithm
complex theory
limited look-ahead
(usually one token)
only built-in abstractions
very fast generated parsers

Parser combinators

library
top-down algorithm
simple underlying theory
unlimited look-ahead
(in principle)
user-definable abstractions
fast (for most constructs)

Both approaches place certain (but different) constraints on the grammars.

Aside: Combinators

- The term combinator denotes a self-contained function in lambda calculus, the formal system that Haskell and other functional programming languages are based upon.
- Parser combinators are thus a set of (small) library functions that can be used to construct parsers.

Lexing and parsing

Often, parsing is split into two phases:

Lexing

In a first phase, whitespace and comments are removed, and the input is organized into a list of tokens – small entities that belong together like keywords, identifiers or operators.

Parsing

In the second phase, an abstract syntax tree is constructed from the list of tokens rather than from the original list of characters.

Lexing and parsing (contd.)

In the world of generators, lexing and parsing are often performed by different generators. For example:

	Haskell	С
Lexer	alex	flex
Parser	happy	yacc / bison

Lexing and parsing (contd.)

In the world of generators, lexing and parsing are often performed by different generators. For example:

	Haskell	С
Lexer	alex	flex
Parser	happy	yacc / bison

With parser combinators, there are different options:

- · Use only one phase,
- use the same parser combinators for both phases,
- use dedicated lexer combinators for lexing,
- · use a hand-writen special-purpose lexer,
- · combine a lexer-generator with parser combinators.

Choosing the right parser type

What Haskell type should a parser have?

First attempt: predicate on strings

```
type Parser = String -> Bool
```

We can write simple parsers with this type:

```
digit :: Parser
digit [c] = c `elem` "0123456789"
digit otherwise = False
```

```
eof :: Parser
eof = null
```

First attempt: predicate on strings

```
type Parser = String -> Bool
```

We can write simple parsers with this type:

```
digit :: Parser
digit [c] = c `elem` "0123456789"
digit otherwise = False
```

```
eof :: Parser
eof = null
```

Problem

We can't combine parsers of this type! How would we for example use digit to write a parser for two digits?

```
type Parser = String -> Maybe String
```

```
type Parser = String -> Maybe String
```

Now we can sequence parsers:

```
combine :: Parser -> Parser -> Parser
combine p1 p2 s = do
   s' <- p1 s
   p2 s'</pre>
```

```
GHCi> digit "Athens"
Nothing
GHCi> digit "123"
Just "23"
GHCi> (digit `combine` digit) "123"
Just "3"
```

```
type Parser = String -> Maybe String
```

Let's define a parser for letters, too:

```
type Parser = String -> Maybe String
```

Or better, let's abstract the common pattern:

```
digit = satisfy (`elem`"0123456789")
```

```
letter = satisfy
  (`elem` ['a' .. 'z'] ++ ['A' .. 'Z'])
```

```
type Parser = String -> Maybe String
```

Using satisfy, we can define a parser for a specific character:

```
char :: Char -> Parser
char c = satisfy (== c)
```

```
GHCi> char 'x' "xyz"

Just "yz"
```

```
type Parser = String -> Maybe String
```

We can even define the *-combinator, called many in Haskell:

```
many :: Parser -> Parser
many p s = case p s of
  Nothing -> Just s
  Just s' -> many p s'
```

```
GHCi> many letter "123"

Just "123"

GHCi> many letter "abc123"

Just "123"
```

type Parser = String -> Maybe String

GHCi> (many letter `combine` char 'a') "xyzab"
Nothing

Problem

But what about the grammar $S \to letter^*$ a? With this type for parsers, we only ever get at most one result, but we need to consider *all* possible results to handle cases like these.

```
type Parser = String -> [String]
```

```
eof :: Parser
eof [] = [[]]
eof (_:_) = []
```

We define digit, letter and char as before in terms of satisfy.

```
type Parser = String -> [String]
```

```
combine :: Parser -> Parser -> Parser
combine p q s = do
   s' <- p s
   q s'</pre>
```

(Same code, but now in the list-monad!)

```
many :: Parser -> Parser
many p s = s : combine p (many p) s
```

```
GHCi> many letter "abc123" ["abc123", "bc123", "c123", "123"]
```

```
type Parser = String -> [String]
```

This solves our problem with the previous attempt:

```
GHCi> (many letter `combine` char 'a') "xyzab"
["b"]
```

```
type Parser = String -> [String]
```

With this definition for parsers, we can choose between parsers:

```
choose :: Parser -> Parser -> Parser choose p q s = p s ++ q s
```

```
GHCi> (letter `choose` digit) "abc"
["bc"]
GHCi> (letter `choose` digit) "123"
["23"]
```

Problem

There is still one big problem with our definition: We only know whether a given word belongs to the language or not, but we don't get a parse tree or other result.

Let's fix that!

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

We want to make **Parser** an instance of several typeclasses, hence we wrap it in a **newtype**.

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

```
digit, letter :: Parser Char
digit = satisfy (`elem`"0123456789")
letter = satisfy
  (`elem` ['a' .. 'z'] ++ ['A' .. 'Z'])
```

```
eof :: Parser ()
eof = Parser $ \ s -> case s of
[] -> [((), [])]
(_:_) -> []
```

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

What about char? We could define.

```
char c = satisfy (== c)
```

But then char would produce a parser of type

Parser Char, where it seems more natural to give the result the type

Parser () instead.

We need to be able to change the result type!

char :: Char -> Parser ()

char c = const () <\$> satisfy (== c)

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}

Let's make Parser an instance of Functor!

instance Functor Parser where

fmap :: (a -> b) -> Parser a -> Parser b

fmap f p = Parser $ \ s ->

[(f a, s') | (a, s') <- runParser p s]</pre>
```

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

What about sequencing? - What type should

```
Parser a `combine` Parser b
```

have?

```
Parser (a, b)?
```

That's awkward! - Let's instead make Parser an instance of Applicative!

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

```
instance Applicative Parser where
  pure :: a -> Parser a
  pure a = Parser $\s -> [(a, s)]
 (<*>) :: Parser (a -> b) -> Parser a -> Parser b
 p < *> q = Parser $ \setminus s -> do
   (f, s') <- runParser p s
   (a, s'') <- runParser q s'
   return (f a, s'')
```

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

The **Functor** and **Applicative** instances immediately give us other useful combinators:

```
(<$) :: a -> Parser b -> Parser a
(<*) :: Parser a -> Parser b -> Parser a
(*>) :: Parser a -> Parser b -> Parser b
```

These are useful when we don't care about some of the intermediate results:

```
char :: Char -> Parser ()
char c = () <$ satisfy (== c)</pre>
```

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

What about choice? – There is a suitable typeclass for this in **Control.Applicative**, too, that we haven't seen yet:

```
class Applicative f => Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
```

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

With **Alternative**, we get some useful combinators from the base libraries for free:

```
many, some :: Alternative f => f a -> f [a]
```

(many means "zero or more occurences", the *-operator, some means "one or more occurences".)

Furthermore, we get

```
optional :: Alternative f => f a -> f (Maybe a)
```

for optional values.

```
newtype Parser a = Parser
{runParser :: String -> [(a, String)]}
```

instance Alternative Parser where empty :: Parser a empty = Parser \$ const [] (<|>) :: Parser a -> Parser a -> Parser a p <|> q = Parser \$ \ s -> runParser p s ++ runParser q s

Example parser

$$S \rightarrow D+S \mid D$$
$$D \rightarrow 0 \mid 1$$

```
data S = Plus D S | Digit D
data D = Zero | One
```

```
parseD :: Parser D
parseD = Zero <$ char '0'
    <|> One <$ char '1'</pre>
```

Example parser

```
S \rightarrow D+S \mid DD \rightarrow \mathbf{0} \mid \mathbf{1}
```

```
data S = Plus D S | Digit D
data D = Zero | One
```

```
GHCi> runParser parseS "1+0+1"
[ (Plus One (Plus Zero (Digit One)), "")
, (Plus One (Digit Zero), "+1")
, (Digit One, "+0+1")]
```

```
GHCi> runParser (parseS <* eof) "1+0+1"
[(Plus One (Plus Zero (Digit One)), "")]</pre>
```

Fifth and final attempt: Other token types

In order to handle other tokens besides characters, we can do one more generalization:

```
newtype Parser t a = Parser
{runParser :: [t] -> [(a, [t])]}
```

Fifth and final attempt: Other token types

In order to handle other tokens besides characters, we can do one more generalization:

```
newtype Parser t a = Parser
{runParser :: [t] -> [(a, [t])]}
```

```
eof :: Parser t ()
eof = Parser $ \ ts -> case ts of
[]     -> [((), [])]
  (_ : _) -> []
```

The Functor, Applicative and Alternative instances can easily be generalized to this setting.

Fifth and final attempt: Other token types

In order to handle other tokens besides characters, we can do one more generalization:

```
newtype Parser t a = Parser
{runParser :: [t] -> [(a, [t])]}
```

And we can generalize **char** to an analoguous function **token** that works on all tokens types (which can be compared for equality):

```
token :: Eq t => t -> Parser t ()
token t = () <$ satisfy (== t)</pre>
```