

Universidad Tecnológica de la Mixteca

Clave DGP: 557524

Maestría en Ciencias de Materiales

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Polímeros Supramoleculares en Solución

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	300511	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Transmitir los avances de la química supramolecular y su estructuración en soluciones surfactantes.

TEMAS Y SUBTEMAS

1. Auto ensambles por enlace de hidrógeno

- 1.1. Construcción de polímeros supramoleculares por enlace de hidrógeno
- 1.2. Cristales líquidos supramoleculares
- 1.3. Polímeros supramoleculares en soluciones isotrópicas
- 1.4. Otros ejemplos de polímeros supramoleculares enlazados por hidrógeno

2. Sistemas supramoleculares monocapas en la interface aire-agua

- 2.1. Capas supramoleculares en superficie acuosa
- 2.2. Interacciones no covalentes
- 2.3. Estructuras discretas y superestructura
- 2.4. Reconocimiento molecular
- 2.5. Capas de Langmuir

3. Capas formadas por fisisorción

- 3.1. Consideraciones termodinámicas y cinéticas de la fisisorción
- 3.2. Sistemas supramoleculares en dos dimensiones
- 3.3. Superficies a base de una red abierta por fisisorción
- 3.4. Reactividad química en monocapas fisisorbidas

4. Sistemas multicapas

4.1. Estrategias de deposición secuencial

- 4.2. Películas polielectrolíticas. Preparación, estructura y propiedades
- 4.3. Ensamble capa por capa en sistemas supramoleculares neutros
- 4.4. Coordinación metal-ligante para crecimiento de la película capa por capa
- 4.5. Preparación de películas compuestas

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico a través de computadora, medios digitales y prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final. Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Supramolecular chemistry at surfaces. Amabilino, David_B. RSC, (2017).
- Self Assembled Supramolecular Architectures: Lyotropic Liquid Crystals Garti N, Somasundaran P, and Mezzenga R. Wiley, (2012).
- 3. Supramolecular Polymers. Alberto Ciferri. CRC Press. (2005).
- 4. Supramolecular Chemistry. Steed J., Atwood J. L., Wiley & Sons, (2013).

Consulta:

- 1. Porous polymers: design, synthesis and applications. Ben Q, Shilun Q, Teng B., RSC (2016).
- Polymeric and self assembled hydrogels: from fundamental understanding to applications. Xian J L; Oren A S. RSC.(2012).
- Physicochemical Behavior and Supramolecular Organization of Polymers. Gargallo L, Radić D. Springer Netherlands. (2009).
- 4. Supramolecular Polymer Networks and Gels, Sebastian S, (eds.) Springer International Publishing. (2015).

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en química, físico-química, química supramolecular, sistemas dispersos y áreas afines.

OIVISION DE ESTUDIOS

Vo.Bo
DR. JOSÉ ANIBAL ARIAS AGUILAR SSE ADO

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO