GEOMETRIC ACTIONS OF CLASSICAL GROUPS

Raffaele Rainone

School of Mathematics University of Southampton

July 3, 2013

Algebraic groups

Let k be an algebraically closed field of characteristic $p \ge 0$.

An algebraic group G is an affine algebraic variety, defined over k, with a group structure such that

$$\mu: G \times G \rightarrow G \quad \iota: G \rightarrow G$$

 $(x,y) \mapsto xy \quad x \mapsto x^{-1}$

are morphisms of varieties.

Example

The prototype is the **special linear group**

$$\mathsf{SL}_n(k) = \{A \in \mathcal{M}_n(k) \mid \mathsf{det}(A) = 1\}$$

Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of G on Ω is a morphism of varieties (with the usual properties)

$$\begin{array}{ccc}
G \times \Omega & \to & \Omega \\
(x, \omega) & \mapsto & x.\omega
\end{array}$$

Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of G on Ω is a morphism of varieties (with the usual properties)

$$G \times \Omega \rightarrow \Omega$$
$$(x,\omega) \mapsto x.\omega$$

We can define orbits and stabilisers as usual:

 \bullet orbits are locally closed subsets of Ω , and we can define

$$\dim G.x = \dim \overline{G.x}$$

• for $\omega \in \Omega$, $G_{\omega} \leqslant G$ is closed

Actions of algebraic groups

Let G be an algebraic group and Ω a variety (over k). An action of G on Ω is a morphism of varieties (with the usual properties)

$$G \times \Omega \rightarrow \Omega$$
$$(x,\omega) \mapsto x.\omega$$

We can define orbits and stabilisers as usual:

 \bullet orbits are locally closed subsets of Ω , and we can define

$$\dim G.x = \dim \overline{G.x}$$

• for $\omega \in \Omega$, $G_{\omega} \leqslant G$ is closed

Lemma

Let $H \leqslant G$ be a closed subgroup. Then

- (i) G/H is a (quasi-projective) variety
- (ii) there is a natural (transitive) action $G \times G/H \rightarrow G/H$

Fixed point spaces

Let G be an algebraic group acting on a variety Ω . For any $x \in G$, the fixed point space

$$C_{\Omega}(x) = \{\omega \in \Omega : x.\omega = \omega\} \subseteq \Omega$$

is closed.

Proposition

Let $\Omega = G/H$. Then, for $x \in G$,

$$\dim C_{\Omega}(x) = \left\{ \begin{array}{cc} 0 & \text{if } x^G \cap H = \emptyset \\ \dim \Omega - \dim x^G + \dim(x^G \cap H) & \text{otherwise} \end{array} \right.$$

General aim: given $x \in G$ of prime order, derive bounds on

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega}$$

Classical groups

Let V be an n-dimensional k-vector space.

$$\operatorname{GL}(V) = \operatorname{invertible linear maps} V \to V$$

$$\operatorname{Sp}(V) = \{x \in \operatorname{GL}(V) : \beta(x.u, x.v) = \beta(u, v)\}$$

$$\operatorname{O}(V) = \{x \in \operatorname{GL}(V) : Q(x.u) = Q(u)\}$$

where: β is a symplectic form on VQ is a non-degenerate quadratic form on V.

We write CI(V) for GL(V), Sp(V), O(V)Similarly CI_n for GL_n , Sp_n , O_n

Subgroup structure: geometric subgroups

Let G = CI(V) be a classical group.

We define 5 families of positive-dimension subgroups that arise naturally from the underlying geometry of ${\it V}$

- \mathscr{C}_1 stabilisers of subspaces $U \subset V$
- \mathscr{C}_2 stabilisers of direct sum decompositions

$$V = V_1 \oplus \ldots \oplus V_t$$

- \mathscr{C}_3 stabilisers of totally singular decompositions $V = U \oplus W$, when $G = \operatorname{Sp}(V)$ or $\operatorname{O}(V)$
- \mathscr{C}_4 stabilisers of tensor product decompositions

$$V = V_1 \otimes \ldots \otimes V_t$$

 \mathscr{C}_5 stabiliser of non-degenerate forms on V

Set
$$\mathscr{C}(G) = \bigcup \mathscr{C}_i$$
.

Subgroup structure

Example

 \mathscr{C}_2 Let $G=\operatorname{GL}_n$. Assume $V=V_1\oplus\ldots\oplus V_t$ where dim $V_i=n/t$. Then $H=\operatorname{GL}_{n/t}\wr S_t$, and

$$H^{\circ} = \mathsf{GL}_{n/t} \times \ldots \times \mathsf{GL}_{n/t}$$

 \mathscr{C}_3 Let $G=\operatorname{Sp}_n$. Assume $V=U\oplus W$ where U,W are maximal totally singular subspaces. Then $H=\operatorname{GL}_{n/2}.2$ and

$$H^{\circ} = \left\{ \left(\begin{smallmatrix} A & \\ & A^{-t} \end{smallmatrix} \right) : A \in \mathsf{GL}_{n/2} \right\} \cong \mathsf{GL}_{n/2}$$

Subgroup structure

Example

 \mathscr{C}_2 Let $G=\operatorname{GL}_n$. Assume $V=V_1\oplus\ldots\oplus V_t$ where dim $V_i=n/t$. Then $H=\operatorname{GL}_{n/t}\wr S_t$, and

$$H^{\circ} = \mathsf{GL}_{n/t} \times \ldots \times \mathsf{GL}_{n/t}$$

 \mathscr{C}_3 Let $G=\operatorname{Sp}_n$. Assume $V=U\oplus W$ where U,W are maximal totally singular subspaces. Then $H=\operatorname{GL}_{n/2}.2$ and

$$H^{\circ} = \left\{ \left(\begin{smallmatrix} A \\ & A^{-t} \end{smallmatrix} \right) : A \in \mathsf{GL}_{n/2} \right\} \cong \mathsf{GL}_{n/2}$$

Theorem (Liebeck - Seitz, 1998)

Let G = SL(V), Sp(V) or SO(V) and $H \leq G$ closed and positive dimensional. Then either H is contained in a member of $\mathscr{C}(G)$, or H° is simple and acts irreducibly on V.

Aim

G = CI(V) classical algebraic group

 $H \leqslant G$ closed geometric subgroup

 $\Omega = G/H$

Main aim

Derive bounds on

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega}$$

for all $x \in G$ of prime order.

Further aims

- sharpness, characterisazions?
- "Local bounds": how does the action of x on V influence $f_{\Omega}(x)$?

Background

Let G be a simple algebraic group, $H \leqslant G$ closed. Set $\Omega = G/H$.

Theorem (Lawther, Liebeck, Seitz (2002))

If G exceptional then, for $x \in G$ of prime order,

$$f_{\Omega}(x) \leqslant \delta(G, H, x)$$

Theorem (Burness, 2003)

Either there exists an involution $x \in G$

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega} \geqslant \frac{1}{2} - \epsilon$$

for a small $\epsilon \geqslant 0$, or (G,Ω) is in a short list of known exceptions.

Background

Further motivation arises from finite permutation group.

Let Ω be a finite set and $G \leq \operatorname{Sym}(\Omega)$. For $x \in G$, the fixed point ratio is defined

$$\operatorname{fpr}_{\Omega}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|}$$

If G is transitive with point stabiliser H then

$$\mathsf{fpr}_{\Omega}(x) = \frac{|x^G \cap H|}{|x^G|}$$

Background

Further motivation arises from finite permutation group.

Let Ω be a finite set and $G \leq \operatorname{Sym}(\Omega)$. For $x \in G$, the fixed point ratio is defined

$$\operatorname{fpr}_{\Omega}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|}$$

If G is transitive with point stabiliser H then

$$\operatorname{fpr}_{\Omega}(x) = \frac{|x^G \cap H|}{|x^G|}$$

Bounds on fpr have been studied and applied to a variety of problems, e.g.

- base sizes
- monodromy groups of covering of Riemann surfaces
- (random) generation of simple groups

Fixed point spaces

Let G = CI(V), $H \leqslant G$ closed and $\Omega = G/H$.

Recall, for $x \in H$ fixed,

$$\dim C_{\Omega}(x) = \dim \Omega - \dim x^{G} + \dim(x^{G} \cap H)$$

To compute dim $C_{\Omega}(x)$ we need:

(i) information on the centraliser $C_G(x)$, so

$$\dim x^G = \dim G - \dim C_G(x)$$

(ii) informations on the fusion of H-classes in G, so we can compute $\dim(x^G \cap H)$.

For $x \in GL_n$ we have $x = x_s x_u = x_u x_s$.

For
$$x \in GL_n$$
 we have $x = x_s x_u = x_u x_s$. Up to conjugation, $x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$

For
$$x \in \operatorname{GL}_n$$
 we have $x = x_s x_u = x_u x_s$. Up to conjugation, $x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$

Fact

Let s, s' and u, u' in G = CI(V). Then $s \sim_G s'$, $u \sim_G u'$ if, and only if, they are GL(V)-conjugate (unless p = 2 and u, u' are unipotent).

For
$$x \in \operatorname{GL}_n$$
 we have $x = x_s x_u = x_u x_s$. Up to conjugation,
$$x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_n I_{a_n}], \quad x_u = [J_n^{a_n}, \dots, J_1^{a_1}]$$

Fact

Let s, s' and u, u' in G = CI(V). Then $s \sim_G s'$, $u \sim_G u'$ if, and only if, they are GL(V)-conjugate (unless p = 2 and u, u' are unipotent).

It is well known how to compute dim x^G for unipotent and semisimple elements. For example if $G = GL_n$:

$$\dim x_s^G = n^2 - \sum_{i=1}^n a_i^2$$

$$\dim x_u^G = n^2 - 2 \sum_{1 \le i < j \le n} i a_i a_j - \sum_{i=1}^n i a_i^2$$

Recall: $\dim C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H)$.

Recall: $\dim C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H)$.

In general it is hard to compute $\dim(x^G \cap H)$, but the following result is useful:

Theorem (Guralnick, 2007)

If H° is reductive then

$$x^G \cap H = x_1^H \cup \ldots \cup x_m^H$$

for some m. Thus $\dim(x^G \cap H) = \max_i \{\dim x_i^H\}$.

Example

Let
$$G = GL_{18}$$
, $H = GL_6 \wr S_3$ and $p = 3$. Set $\Omega = G/H$, thus $\dim \Omega = 18^2 - 3 \cdot 6^2 = 216$. Let

$$x = [J_3^2, J_2^3, J_1^6], \ \dim x^G = 174$$

Then $x^G \cap H = x^G \cap H^\circ$ and $x^G \cap H = \bigcup_{i=1}^4 x_i^H$ where

$$x_1 = [J_3^2 \mid J_2^2, J_1^2 \mid J_2, J_1^4], \ \ x_2 = [J_3^2 \mid J_2^3 \mid J_1^6],$$

$$x_3 = [J_3, J_2, J_1 \mid J_3, J_2, J_1 \mid J_2, J_1^4], \ x_4 = [J_3, J_2, J_1 \mid J_3, J_1^3 \mid J_2^2, J_1^2]$$

and

$$\dim x_1^H = 46$$
, $\dim x_2^H = 42$, $\dim x_3^H = 54$, $\dim x_4^H = 52$

Thus $\dim(x^G \cap H) = 54$. Therefore $f_{\Omega}(x) = \frac{4}{9} > \frac{1}{3}$.

Main result: Global bounds

Recall that $H \in \mathscr{C}_2 \cup \mathscr{C}_3$ is a stabiliser of a decomposition $V = V_1 \oplus \ldots \oplus V_t$.

Theorem (R., 2013)

Let $G=Cl_n$ and $H\in \mathscr{C}_2\cup \mathscr{C}_3$. Set $\Omega=G/H$ and fix $x\in H$ of prime order r. Then

$$\frac{1}{r} - \epsilon \leqslant f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega} \leqslant 1 - \frac{1}{n}$$

where

$$\epsilon = \begin{cases} 0 & r = p \\ \frac{1}{r} & p \neq r > n \\ \frac{rt^2}{4n^2(t-1)} & p \neq r \leqslant n \end{cases}$$

Main result: Global bounds

Let G = CI(V) and $H \in \mathscr{C}_2 \cup \mathscr{C}_3$. Set $\Omega = G/H$.

Let $M = \max_{x \in G \setminus Z(G)} \{ f_{\Omega}(x) \}.$

Theorem (R., 2013)

Let r be a prime. Then either

- (i) there exists $x \in G$ of order r such that $f_{\Omega}(x) = M$; or,
- (ii) (G, H) belong to a short list of known exceptions.

For example, if $G = GL_n$ and $H = GL_1 \wr S_n$ then

$$f_{\Omega}(x) = M = 1 - \frac{2}{n} + \frac{1}{n(n-1)}$$

if, and only if, $x = [1, -I_{n-1}]$ or $[J_2, J_1^{n-2}]$.

Main result: Local bounds

For $x \in Cl(V)$, we define $\nu(x)$ to be the co-dimension of the largest eigenspace of x. For example, if

$$x = [J_n^{a_n}, \dots, J_1^{a_1}]$$

then
$$\nu(x) = n - \sum_{i=1}^{n} a_i$$
.

Main result: Local bounds

For $x \in Cl(V)$, we define $\nu(x)$ to be the co-dimension of the largest eigenspace of x. For example, if

$$x = [J_n^{a_n}, \dots, J_1^{a_1}]$$

then $\nu(x) = n - \sum_{i=1}^{n} a_i$.

Theorem (R., 2013)

Let G = CI(V) and $H \in \mathscr{C}_2 \cup \mathscr{C}_3$. Let $x \in G$ of prime order r, with $\nu(x) = s$. Then

$$1 - \frac{s(2n-s)}{n(n-2)} - \frac{4}{n} \leqslant f_{\Omega}(x) \leqslant 1 - \frac{s}{n} + \frac{1}{n}$$

Questions & open problems

- 1. Let G = CI(V) and $H \in \mathscr{C}_2$.
- (i) Let $x \in H^{\circ}$ be unipotent. Can we find an explicit formula for $\dim(x^{G} \cap H^{\circ})$?
- (ii) Derive local lower bounds on $f_{\Omega}(x)$ for $x \in G$ unipotent with $\nu(x) = s$.
- (iii) Can we give an exact formula for $f_{\Omega}(x)$ when $x \in G$ is an involution?
- 2. Same analysis for \mathscr{C}_4 subgroups (stabilisers of $V=V_1\otimes V_2$ or $V=\bigotimes_{i=1}^t V_i$).
- 3. Explore applications (e.g. derive bounds on fpr's for finite groups of Lie type, etc).

THANK YOU!