AutoTest 软件使用手册

修改日期:2025/01/02

当前版本:V1.3

Version No.	Description	Date
V1.0	Initial release	2024/01/18
V1.1	Add instrument's function name in custom test	2024/03/25
V1.2	Add saving function in custom test	2024/12/23
V1.3	Add DL3021 and CH347 instruments in custom test	2025/01/02

目录

— .	软件使用须知	4
1)	软件介绍	4
2)	安装后端	4
3)	运行软件	4
二.	Main function 控制	ε
1)	Main function 界面介绍	ε
2)	Main function 选择和启动	ε
3)	Battery lab	7
4)	Custom test	9
5)	Lithium test	21
6)	Jupiter test	21
7)	Natrium test	23
Ξ.	Instrument 控制	26
1)	打开 Instrument 界面	26
2)	Instrument 界面介绍	26
3)	Instrument 连接	27
4)	Instrument 选择和设定	29
5)	Instrument 软复位	29
6)	Instrument 更多功能	30
四.	MCU 控制	32
1)	打开 MCU 界面	32
2)	打开 MCU 界面	32
3)	MCU 连接与断开	33
4)	MCU 功能选择和设定	34
5)	Reg inversion 功能	35

一. 软件使用须知

1) 软件介绍

AutoTest 是一款拥有 GUI、支持多款仪器设备和多种通信协议的自动化测试软件。软件编写的代码种类为python,版本为 3.8.2。

2) 安装后端

使用 AutoTest 软件需要安装底层驱动,驱动为 NI 公司的 NI-VISA,其下载地址为:

https://www.ni.com/zh-cn/support/downloads/drivers/download.ni-visa.html#494653

点击进入下载地址后,点击红色区域内的按钮下载并安装即可。

3) 运行软件

安装 NI-VISA 后, 打开软件文件夹, 点击 AutoTest.exe 运行软件。

二. Main function 控制

1) Main function 界面介绍

Main function 界面共分为五个区域:

- 1. 功能选择区。选择项目和具体功能;
- 2. 配置区。为对应的功能选择 Config、Output 的路径;
- 3. 启动区。开启对应的功能测试;
- 4. 日志区。显示测试中收集的和报错的信息;
- 5. 其它功能区。进入其它功能。

2) Main function 选择和启动

- 1. 点击功能选择区中对应的项目, 跳转到项目中;
- 2. 选择项目中的具体功能, 功能为多选一;
- 3. 分别点击配置区中 Config、Output 的 Folder 按钮,分别为配置文件、结果输出选择对应的文件夹;
- 4. 点击启动区中的 Start 按钮, 开始测试;

- 5. 查看 Main 界面的 log 区,检查测试信息。
- 注 1: 当配置区中没有 Output 的路径时, 会将 Config 的路径替代进去。
- 注 2: 暂不开放启动区中 Stop 按钮的功能。
- 注 3: 开始测试后, Start 按钮将下沉且无法再次点击, 知道测试中断或完成。
- 注 4: 在 Config 中写入的路径中若有多个配置文件,则会以文件名排序的第一个为准。

3) Battery lab

Battery lab 是一项对电池进行充电、放电的测试,并实时记录电池电压、电流和温度三个参数。有一项功能。Battery lab 配置文件类型为 ini。

Battery lab 功能测试参数需要如下:

Config item name	Description
Temperature_Setting_Instrument	设定温度设备名称
Temperature_Setting_Communication	设定温度设备通信方式
Temperature_Measurement_Instrument	测量温度设备名称
Temperature_Measurement_Communication	测量温度设备通信方式

Temperature_Measurement_Compensation	测量温度设备温度补偿值,单位: ℃
Set_Temperature	温度设定值,单位∶℃
Charge_Instrument	充电设备名称
Charge_Communication	充电设备通信方式
Charge_Voltage	充电电压,单位:mV
Charge_Voltage_Range	充电电压范围,单位: mV
Charge_Current	充电电流,单位: mA
Discharge_Voltage	放电电压,单位:mV
Discharge_Current_1	第一次放电电流,单位: mA
Discharge_Current_2	第二次放电电流,单位: mA
Discharge_Current_3	第三次放电电流,单位: mA
Charge_Voltage_Threshold	充满电时最低电压的阈值,单位: mV
Temperature_Time_Threshold	温度最少保持时长的阈值,单位:s
Relax_Current	休眠时电流,单位:mA
Charge_Time_Threshold	充满电时最少保持时长的阈值,单位:s
Charge_Current_Threshold	充满电时最高电流的阈值,单位: mA
Discharge_Time_Threshold	放电时最多时长的阈值,单位:s
Discharge_Voltage_Threshold_1	放电时判断电池电压的第一个阈值,单位:mV
Discharge_Voltage_Threshold_2	放电时判断电池电压的第二个阈值,单位:mV
Discharge_Voltage_Threshold_3	放电时判断电池电压的第三个阈值,单位:mV
Reset_Time_Threshold	电池等待最长保持时长的阈值,单位: s
Voltage_Judgement_1	第一电压判断阈值,电压<阈值,单位: mV
Voltage_Judgement_2	第二电压判断阈值,电压>阈值,单位: mV
Voltage_Judgement_3	第三电压判断阈值,电压<阈值,单位: mV
Voltage_Judgement_4	第四电压判断阈值,电压<阈值,单位: mV
Voltage_Judgement_5	第五电压判断阈值,电压<阈值,单位: mV
Voltage_Judgement_6	第六电压判断阈值,电压<阈值,单位: mV
Voltage_Judgement_7	第七电压判断阈值,电压<阈值,单位: mV

4) Custom test

Custom test 是一项自定义测试,可以根据用户自己的需求来配置测试项目,目前支持十几种设备的控制和几种单片机的通信。Custom test 支持多项功能,包括步进、循环、条件判断、跳转等。Custom test 配置文件类型为 xlsx。

Custom test 功能配置参数格式如下:

Step	Instrument	Function	Parameter	Time	Condition	Next
Х	xxx	XXX	xxx	XX	xxx	х

如无特殊功能,测试将按照 xlsx 顺序从上到下依次进行。其中功能配置的列含义如下所示:

1. 列含义

● Step:表示该行操作的序列号,类型为 int,不同行之间的序列号不能相同;例:1

● Instrument:表示该行进行操作的设备名称,类型为 string;例: E36312A

● Function:表示该行进行的具体操作,类型为 string 或 none;例: open 或 operate=set_voltage

● Parameter:表示该行进行的具体操作的补充说明、参数设定,类型为 string 或 none;例: Voltage=2;Current=0.1;Channel=1 或 Channel=1

● Time:表示该行进行操作之前的等待时间,类型: float 或 none;例: 0.01

● Condition:表示该行需要进行的条件判断,类型为 string 或 none;例: Voltage>10 或 Time<1

● Next:表示该行完成后需要进行的下一行的序列号,类型为 int 或 string 或 none;例:1

此外, Custom test 包括其它特殊功能以满足用户更多需求, 其中有以下几项:

2. 步进功能

■ 功能介绍:让设备按照想要的参数一步步进行操作。

■ 使用规范:在 Parameter 中,其中一个参数包括下述格式。

■ 格式(例): Voltage=1:2:10 或 Voltage=1:10;Current=1

■ 格式解释:

i. 格式有 xx:yy:zz 或 xx:yy 两种。

ii. xx:yy:zz 中左边代表起始值,中间代表步进值,右边代表终止值。

iii. xx:yy 中左边代表起始值,右边代表终止值。

iv. 若多项参数中有一项参数为步进,则会将其它参数补充到每一步中。

3. 循环功能

- 功能介绍:将多行操作组成一个组,按照顺序优先完成组内操作。
- 使用规范:在 Next 中,填写下述格式的参数。
- 格式 (例): {4,8,11}
- 格式解释:
 - i. 格式为{x,y...}. 个数无上限。
 - ii. 当 Step=x 行操作完成后,下一步直接跳转到 Step=y 行,以此类推。
 - iii. 当循环完成后,会跳回到 Step=x+1 行。
- 其它:循环优先级>步进优先级。当循环中的某一行包含步进功能时,会使步进中的每一步都拥有该循环。

4. 条件判断功能

- 功能介绍:判断该行是否满足条件,如未满足,则一直重复执行该行,直到满足后跳出。
- 使用规范: 在 Condition 中, 填写下述格式的参数。
- 格式(例): Voltage>=10 或 Voltage<=1,Current>0.1 或(Voltage==1;Current!=0.1),Time<10
- 格式解释:
 - i. 判断类型有<、>、<=、>=、!=共六种。
 - ii. 连接语句','表示与,';'表示或,'()'表示优先判断。
 - iii. 可同时支持最多三个判断。

5. 跳转功能

- 功能介绍:完成该行后,直接跳转到用户想要的一行进行下一步操作。
- 使用规范: 在 **Next** 中, 填写下述格式的参数。
- 格式 (例): 7
- 格式解释:
 - i. 格式为 y。
 - ii. 当 Step=x 行操作完成后,下一步直接跳转到 Step=y 行。完成 Step=y 后,自动跳转到 Step=y+1 行。

6. 保存数据功能

- 功能介绍:保存仪器已测量或者已设定的数据,程序结束后自动按当前时间保存所有数据,保存文件类型为 csv。
- 使用规范:在 Function中,填写 save 命令。
- 格式 (例):

Instrument	Function	Parameter
E36312A	save	Info=measurement_info;
L30312A	Save	Key=Voltage
		Info=measurement_info;
CH341A	Save	Key=Msg;
		Item=data_buf

■ 格式解释:

- i. Instrument 中填写想要保存数据所在的仪器名称。
- ii. Function 中填写 save 命令(固定格式)。
- iii. Parameter 中填写保存数据的相关参数。其中,Info 选择有 test_info/ measurement_info, test_info 表示已设定数据的集合,measurement_info 表示已测量数据的集合。Key 为想要保存的数据名称,例如 Voltage/ Current/ Msg 等。当 Key 中为多个数据的集合时,通过 Item 选择其中一个,例如 data_buf(非必要)。

下表为实验室仪器所有已开发的功能名称:

Instrument name	Function name	Parameter	Description
	open	Communication	连接仪器 Communication=visa
	close		断开仪器
E36312A	prepare		清空记录,允许远程操控
		Channel	设定电压源通道的电压及电流值,单位
	set	Voltage	V, A
		Current	Channel=1 或 2 或 3 或 2+3 或 2 3
	on	Channel	开启通道

			Channel=1 或 2 或 3 或 2+3 或 2 3
	off	Channel	关闭通道 Channel=1 或 2 或 3 或 2+3 或 2 3
	measure	Channel	测量通道的电压和电流
		Channel	Channel=1 或 2 或 3 或 2+3 或 2 3 设定电压源通道的电压,单位 V
	operate=set_voltage	Voltage	Channel=1 或 2 或 3 或 2+3 或 2 3
	operate=set_current	Channel Current	设定电压源通道的电流,单位 A Channel=1 或 2 或 3 或 2+3 或 2 3
	open	Communication	连接仪器 Communication=visa
	close		断开仪器
	prepare		清空记录,允许自动范围,允许远程操 控,电压源模式
	set	Voltage Current	设定电压源通道的电压及电流值,单位 V,A
	on		开启通道
	off		关闭通道
2450	measure		测量通道的电压和电流
	operate=set_voltage	Voltage	设定电压源通道的电压,单位 V
	operate=set_current	Current	设定电压源通道的电流,单位 A
	operate=enter_cc		进入电流源模式
	operate= set_cc_parameter	Current Voltage	设定电流源通道的电流及电压,单位 A,V
	operate= set_cc_current	Current	设定电流源通道的电流,单位 A
	operate= enter_cv_4_wire		进入电压源的四线模式
	operate= enter_cv_2_wire		进入电压源的二线模式
	operate= enter_cc_4_wire		进入电流源的四线模式

	operate= enter_cc_2_wire		进入电流源的二线模式
	operate= enter_cr_4_wire		进入电阻源的四线模式
	operate= enter_cr_2_wire		进入电阻源的二线模式
	anan	Communication	连接仪器
	open	Communication	Communication=visa
	close		断开仪器
	prepare		清空记录,允许自动范围,允许远程操 控,电压源模式
		Channel	设定电压源通道的电压及电流值,单位
	set	Voltage	V, A
		Current	Channel=1 或 2
		Channal	开启通道
	on	Channel	Channel=1 或 2
		Channel	关闭通道
	off		Channel=1 或 2
		Channel	测量通道的电压和电流
B2912A	measure		Channel=1 或 2
		Channel	设定电压源通道的电压,单位 V
	operate=set_voltage	Voltage	Channel=1 或 2
		Channel	设定电压源通道的电流,单位 A
	operate=set_current	Current	Channel=1 或 2
		Channal	测量通道的电压
	operate=measure_voltage	Channel	Channel=1 或 2
	anavata antar as	Cheminal	进入电流源模式
	operate=enter_cc	Channel	Channel=1 或 2
		Channel	设定电流源通道的电流及电压,单位
	operate= set_cc_parameter	Current	A, V
		Voltage	Channel=1 或 2
	operate= set_cc_current	Channel	设定电流源通道的电流,单位 A

		Current	Channel=1 或 2
	operate= set_speed	Speed	设定测量速度 单位 PLC(1PLC=16.67ms)
	operate=set_cv_voltage_range	Channel Range	设定电压源通道的电压范围,单位 V Channel=1 或 2
	open	Communication	连接仪器 Communication=visa
	close		断开仪器
	prepare		清空记录
	measure		测量通道的电压和电流
	operate= measure_one	Option	测量通道的某项 Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
DMM7510	operate=set_one_speed	Option Speed	设定测量速度,单位 PLC (1PLC=16.67ms) Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
	operate=set_one_average_count	Option Count	设定多次测量结果合一 Count=1~100 Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
	operate=set_one_average	Option	设定是否开启平均化测量结果

		Flag	Flag=ON 或 1 或 OFF 或 0
			Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
			设定是否开启自动测量范围
	operate=set_one_autorange	Option Flag	Flag=ON 或 1 或 OFF 或 0 Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
			设定是否开启自动归0校准
			Flag=ON 或 1 或 OFF 或 0
	operate=set_one_autozero	Option Flag	Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
			设定选择输入阻抗
	operate=set_one_impedance	Option Choice	Flag=AUTO 或 MOHM10 Option= Voltage 或 Resistance 或 Current 或 Temperature 或 Voltage_Ratio 或 Voltage_AC 或 Fresistance 或 Continuity 或 Diode 或 Frequency 或 Current_AC 或 Capacitance 或 Period 或 Voltage_DIG 或 Current_DIG
	open	Communication	连接仪器
IT8811/			Communication=visa
DL3021	close		断开仪器
	prepare		清空记录,允许远程操控

	on		开启通道
	off		关闭通道
	measure		测量通道的电压和电流
	operate=enter_cv		进入 CV 模式
	operate=enter_cc		进入 CC 模式
	operate=enter_cr		进入 CR 模式
	operate=enter_cw		进入 CW 模式
	operate=set_cv_voltage	Voltage	设定 CV 模式下的电压,单位 V
	operate=set_cv_current	Current	设定 CV 模式下的电流,单位 A
	operate=set_cc_voltage	Voltage	设定 CC 模式下的电压,单位 V
	operate=set_cc_current	Current	设定 CC 模式下的电流,单位 A
	operate=set_cr_voltage	Voltage	设定 CR 模式下的电压,单位 V
	operate=set_cr_resistance	Resistance	设定 CR 模式下的电阻,单位Ω
	operate=set_cw_voltage	Voltage	设定 CW 模式下的电压,单位 V
	operate=set_cw_power	Power	设定 CW 模式下的功耗,单位 W
	operate=measure_voltage		测量通道的电压
	operate=measure_current		测量通道的电流
	operate=measure_power		测量通道的功耗
			连接仪器
	open	Communication	Communication=visa
	close		断开仪器
	prepare		清空记录,允许远程操控
DP932/		Channel	
DP832/ DP932U	set	Voltage	V, A
		Current	Channel=1 或 2 或 3
		Changel	开启通道
	on	Channel	Channel=1 或 2 或 3
	off	Channel	关闭通道

			Channel=1 或 2 或 3
	measure	Channel	测量通道的电压和电流
		Channel	Channel=1 或 2 或 3
		Channel	设定电压源通道的电压,单位 V
	operate=set_voltage	Voltage	Channel=1 或 2 或 3
	operate=set_current	Channel	设定电压源通道的电流,单位 A
	operate-set_current	Current	Channel=1 或 2 或 3
	onen	Communication	连接仪器
	open	Communication	Communication=rtu 或 tcp
	close		断开仪器
	prepare		允许温度控制,允许湿度控制
	set	Temperature	设定温度和湿度,单位℃,%
	Set	Humidity	次是温汉·用亚汉,一世 0,76
DHT260	on		开启
	off		关闭
	measure		测量温度和湿度
	operate=set_temp	Temperature	设定温度,单位℃
	operate=set_hum	Humidity	设定湿度,单位%
	operate=measure_temp	Temperature	测量温度
	operatemeasure_hum	Humidity	测量湿度
	onen	Communication	连接仪器
	open	Communication	Communication=rtu
DL11B	close		断开仪器
	prepare		温度分辨率为 0.1℃
	measure		测量温度
MAX32760/	onen	Communication	连接仪器
F413ZH/	open	Communication	Communication=serial
F413CH	close		断开仪器

	prepare		清空记录
			仪器软复位
	operate=Reset Msg	Msg	Msg={}
			I2C 写入
			Msg={
			'bus_num':x, 'i2c_address':xx, 'data_buf':xxx, 'frequency':x
			}
	operate=I2C_write	Msg	注释:
	operate-12c_write	IVISE	'bus_num': 设备识别号
			'i2c_address': I2C 从地址
			'data_buf':寄存器地址+寄存器值,形 式:[0Xab, 0xcd]
			'frequency': I2C速率, 1=100k; 2=400k; 3=1M
			I2C 读取
			Msg={
			'bus_num':x, 'i2c_address':xx, 'data_buf':xxx, 'frequency':x, 'rx_size':x
			}
			注释:
	operate=I2C_read	Msg	'bus_num': 设备识别号
			'i2c_address': I2C 从地址
			'data_buf':寄存器地址+寄存器值,形 式:[0Xab, 0xcd]
			'frequency': I2C 速率,1=100k; 2=400k; 3=1M
			'rx_size': 回读个数
			GPIO 写入
	operate=GPIO_write	Msg	Msg={
			'gpio_num':x, 'set_value':x

	Т	I	
			>→ ±× ·
			注释:
			'gpio_num': GPIO 序号
			'set_value':设定 GPIO 高/低,1=高;0= 低
			GPIO 读取
			Msg={
			'gpio_num':x, 'get_value':x
	operate=GPIO_read	Msg	}
	operate-drio_read	ivisg	注释:
			'gpio_num': GPIO 序号
			''get_value ': 获取 GPIO 高/低,1=高; 0=低
	operate=SPI_read		SPI 写入/读取
			Msg={
			'bus_num':x, 'cfg':x, 'data_buf':xxx, 'size':x, 'fstb':x, 'cpol':x, 'cpha':x, 'freq':x, 'cspol':x
			}
			注释:
			'bus_num': 设备识别号
			'cfg': 配置 SPI 标志, 1=配置; 0=不配置
		Msg	'data_buf':寄存器地址+寄存器值,引 式:[0Xab, 0xcd]
			'size':数据大小,默认为 1
			'fstb':数据顺序,0=LSB; 1=MSB
			'cpol': 极性, 0=低, 1=高
			'cpha': 相位: 0=first; 1=second
			'freq': SPI 速率,0=24M; 1=12M; 2=6M; 3=3M; 4=1.5M; 5=750k; 6=375k; 7=187.5k
			'cspol': CS 极性,0=低,1=高

			连接仪器
	open	Communication	Communication=ch
	close		断开仪器
			I2C 写入
			Msg={
			'bus_num':x, 'i2c_address':xx, 'data_buf':xxx, 'frequency':x
			}
	operate=12C write	Mea	注释:
	operate=I2C_write	Msg	'bus_num':设备识别号,默认为 0
			'i2c_address': I2C 从地址
	CH341A/		'data_buf':寄存器地址+寄存器值,形 式:[0Xab, 0xcd]
CH341A/			'frequency': I2C 速率,1=100k; 2=400k; 3=4=750k; 5=20k
CH347			I2C 读取
			Msg={
			'bus_num':x, 'i2c_address':xx, 'data_buf':xxx, 'frequency':x, 'rx_size':x
			}
			注释:
	operate=I2C_read	Msg	'bus_num':设备识别号,默认为 0
			'i2c_address': I2C 从地址
			'data_buf':寄存器地址+寄存器值,形 式:[0Xab, 0xcd]
			'frequency': I2C 速率,1=100k; 2=400k; 3=4=750k; 5=20k
			'rx_size':回读个数
	operate=SPI_read	Msg	SPI 写入/读取
	Sperate-Str_Tead	14132	Msg={

	'bus_num':x , 'data_buf':xxx , 'fstb':x, 'cpol':x, 'cpha':x, 'freq':x, 'cspol':x
	}
	注释:
	'bus_num':设备识别号,默认为 0
	'data_buf': 寄存器地址+寄存器值,形 式: [0Xab, 0xcd]
	'fstb':数据顺序,0=LSB; 1=MSB
	'cpol': 极性, 0=低, 1=高
	'cpha': 相位: 0=first; 1=second
	'freq': SPI 速率, 0=60M; 1=30M; 2=15M; 3=7.5M; 4=3.75M; 5=1.875M; 6=937.5k; 7=468.75k 'cspol': CS 片选, 0=CS0; 1=CS1

5) Lithium test

Lithium test 是一项针对 Lithium 项目芯片的测试。Lithium test 配置文件类型为 ini。(待更新)

6) Jupiter test

Jupiter test 是一项针对 Jupiter 项目芯片的测试。有三项功能,**Ramp**,**Ramp multi**,**Noise**。Jupiter test 配置文件类型均为 ini。

1. Ramp

Ramp 是针对 Jupiter 单颗芯片的 INL 测试,其功能测试参数需要如下:

Config item name	Description
Temperature_Setting_Instrument	设定温度设备名称
Temperature_Setting_Communication	设定温度设备通信方式
Temperature_Setting_Flag	设定温度设备开关标志
Power_Instrument	电源设备名称

Power_Communication	电源设备通信方式
Power_Setting_Flag	电源设备开关标志
ADC_Setting_Instrument	ADC 输出设备名称
ADC_Setting_Communication	ADC 输出设备通信方式
ADC_Setting_Flag	ADC 输出设备开关标志
ADC_Measurement_Instrument	ADC 测量设备名称
ADC_Measurement_Communication	ADC 测量设备通信方式
ADC_Measurement_Flag	ADC 测量设备开关标志
Control_Instrument	MCU 设备名称
Control_Communication	MCU 设备通信方式
Control_Setting_Flag	MCU 设备开关标志
Set_Temperature	设定温度值,单位: ℃
Power_Voltage_1	电源设备第一个电压设定值,单位: V
Power_Current_1	电源设备第一个电流设定值,单位: A
Power_Channel_1	电源设备第一个通道设定值
Power_Voltage_2	电源设备第二个电压设定值,单位: V
Power_Current_2	电源设备第二个电流设定值,单位: A
Power_Channel_2	电源设备第二个通道设定值
Power_Voltage_3	电源设备第三个电压设定值,单位: V
Power_Current_3	电源设备第三个电流设定值,单位: A
Power_Channel_3	电源设备第三个通道设定值
Temperature_Time_Threshold	温度保持时长最短阈值,单位: s
Start_Voltage	ADC 输出起始电压值,单位:V
Step_Voltage	ADC 输出步进电压值,单位: V
End_Voltage	ADC 输出终止电压值,单位: V
Start_Current	ADC 输出电流值,单位:A
Reg_Bus_Number	MCU 输出管脚序号
Reg_Slave	I2C Slave 地址
	I

Reg_Address	I2C Reg 地址
Measurement_Period	测量周期等待时长,单位: s
Retest_Time	每次测量重复操作次数
Data_Average_Flag	单次测量数据合并标志

2. Ramp multi

Ramp multi 是针对 Jupiter 1~4 颗芯片的 INL 测试,可根据需求同时测量 1~4 颗芯片的 INL 数据。其功能测试参数与 Ramp 相同,只需要在 Reg_Slave 参数中写入多颗芯片的 Slave 地址即可。

3. Noise

Noise 是针对 Jupiter 1~4 颗芯片的 Noise 测试,可根据需求同时测量 1~4 颗芯片的 noise 数据。其功能测试参数与 **Ramp** 相同,只需要在 **Reg_Slave** 参数中写入多颗芯片的 Slave 地址即可。

7) Natrium test

Jupiter test 是一项针对 Jupiter 项目芯片的测试。有三项功能,**Ramp**,**Noise,Temperature**。Jupiter test 配置文件类型均为 ini。

1. Ramp

Ramp 是针对 Natrium 单颗芯片的 INL 测试,其功能测试参数与 Jupiter Ramp 相同。

2. Noise

Noise 是针对 Natrium 单颗芯片的 noise 测试,其功能测试参数与 Jupiter Ramp 相同。

3. Temperature

Temperature 是针对 Natrium 单颗芯片的 PTAT 测试,其功能测试参数与 Jupiter 大致相同,仅有几项区别,如下所示(增加项标记为蓝色,减少项标记为红色):

Config item name	Description	
Temperature_Setting_Instrument	设定温度设备名称	
Temperature_Setting_Communication	设定温度设备通信方式	
Temperature_Setting_Flag	设定温度设备开关标志	
Power_Instrument	电源设备名称	
Power_Communication	电源设备通信方式	
Power_Setting_Flag	电源设备开关标志	
ADC_Setting_Instrument	ADC 输出设备名称	

ADC_Setting_Communication	ADC 输出设备通信方式
ADC_Setting_Flag	ADC 输出设备开关标志
ADC_Measurement_Instrument	ADC 测量设备名称
ADC_Measurement_Communication	ADC 测量设备通信方式
ADC_Measurement_Flag	ADC 测量设备开关标志
Control_Instrument	MCU 设备名称
Control_Communication	MCU 设备通信方式
Control_Setting_Flag	MCU 设备开关标志
Set_Temperature	设定温度值,单位: ℃
Power_Voltage_1	电源设备第一个电压设定值,单位: V
Power_Current_1	电源设备第一个电流设定值,单位: A
Power_Channel_1	电源设备第一个通道设定值
Power_Voltage_2	电源设备第二个电压设定值,单位: V
Power_Current_2	电源设备第二个电流设定值,单位: A
Power_Channel_2	电源设备第二个通道设定值
Power_Voltage_3	电源设备第三个电压设定值,单位: V
Power_Current_3	电源设备第三个电流设定值,单位: A
Power_Channel_3	电源设备第三个通道设定值
Temperature_Time_Threshold	温度保持时长最短阈值,单位: s
Start_Temperature	起始温度设定值,单位: ℃
Step_Temperature	步进温度设定值,单位: ℃
End_Temperature	终止温度设定值,单位: ℃
Start_Voltage	ADC 输出起始电压值,单位: V
Step_Voltage	ADC 输出步进电压值,单位: V
End_Voltage	ADC 输出终止电压值,单位: V
Start_Current	ADC 输出电流值,单位:A
Reg_Bus_Number	MCU 输出管脚序号
Reg_Slave	I2C Slave 地址

Reg_Address	I2C Reg 地址
Measurement_Period	测量周期等待时长,单位: s
Retest_Time	每次测量重复操作次数
Data_Average_Flag	单次测量数据合并标志

三. Instrument 控制

1) 打开 Instrument 界面

- 1. 点击左上角 Debug 按钮;
- 2. 点击 **Instrument** 按钮,进入 Instrument control 界面。

2) Instrument 界面介绍

Instrument 界面共分为三个区域:

- 1. 型号选择区。选择 instrument 型号、通信方式,进行连接;
- 2. 功能选择区。选择对应 instrument 具体功能,设定相应参数;
- 3. 功能设定区。实施选择的 instrument 型号和功能,以及对 instrument 进行软复位。

3) Instrument 连接

打开 Autotest 软件后,需对 instrument 进行首次连接,才可进行操作。步骤如下:

- 1. 打开 Device 下拉列表,选择想要控制的 instrument;
- 2. 打开 Protocol 下拉列表,选择 instrument 的通信方式;
- 3. 点击 Open device 按钮,与 instrument 进行连接;
- 4. 查看 Main 界面的 log 区,确认 instrument 连接成功。

各 instrument 支持的通信方式如下:

Instrument name	Protocol type
E36312A	
DMM7510	
2450	
B2912A	Visa
DP832	V130
DG1062Z	
DP932	
IT8811	
DHT260	Tcp/Rtu
DL11B	Rtu
2400(无设备)	Visa

4) Instrument 选择和设定

通过 Device 下拉列表选择 instrument 后,会自动跳转到对应 instrument 的功能区,可选择功能和设定参数。步骤如下:

- 1. 打开 **Device** 下拉列表,选择想要控制的 instrument;
- 2. 选择功能选择区中的某项功能,进入该功能的参数设定页面;
- 3. 根据该功能的介绍和参数数目,写入想要的参数;
- 4. 点击功能设定区中的 **Set func** 按钮,控制 instrument 完成该功能;
- 5. 查看 Main 界面的 log 区,确认 instrument 操作已完成。

5) Instrument 软复位

支持对 instrument 进行软复位,去除之前对 instrument 的各项设定。步骤如下:

- 1. 打开 Device 下拉列表,选择想要控制的 instrument;
- 2. 点击功能设定区中的 **RST** 按钮,对 instrument 进行软复位;

6) Instrument 更多功能

支持对 instrument 更多功能的操作。步骤如下:

- 1. 打开 **Device** 下拉列表,选择想要控制的 instrument;
- 2. 点击功能选择区中的 Self defined 页面,进入自定义界面中;
- 3. 根据需求写入想要的命令,只用写入一行;
- 4. 点击功能设定区中的 **Set func** 按钮,控制 instrument 完成该功能;
- 注 1: 写入的命令格式由当前通信方式决定。
- 注 2: Query = Write + Read

四. MCU 控制

1) 打开 MCU 界面

- 1. 点击左上角 Debug 按钮;
- 2. 点击 **MCU** 按钮,进入 MCU control 界面。

2) 打开 MCU 界面

MCU 界面共分为三个区域:

- 1. 型号选择区。选择 MCU 型号, 进行连接, 断开连接;
- 2. 功能选择区。选择对应 MCU 具体功能,设定相应参数;
- 3. 功能设定区。实施选择的 MCU 型号和功能,以及其它功能。

3) MCU 连接与断开

打开 Autotest 软件后,需对 MCU 进行首次连接,才可进行操作。步骤如下:

- 1. 打开 Device 下拉列表,选择想要控制的 MCU;
- 2. 点击 **Open device** 按钮,与 MCU 进行连接;
- 3. 查看 Main 界面的 log 区,确认 MCU 连接成功。

MCU 连接成功后,可以断开连接。步骤如下:

- 1. 打开 Device 下拉列表,选择想要控制的 MCU;
- 2. 点击 Close device 按钮, 断开 MCU 连接;
- 3. 查看 Main 界面的 log 区,确认 MCU 断开成功。

4) MCU 功能选择和设定

MCU 成功连接后,可根据需求选择功能并设定参数。步骤如下:

- 1. 打开 Device 下拉列表,选择想要控制的 MCU;
- 2. 选择功能选择区中的某项功能,进入该功能的参数设定页面;
- 3. 根据该功能的介绍和参数数目,写入想要的参数;
- 4. 点击功能设定区中的 Write 或 Read 按钮, 控制 MCU 完成该功能;
- 5. 查看 Main 界面的 log 区,确认 MCU 操作已完成。

注 1: 选择 RST 功能时, Write 或 Read 操作结果相同。

5) Reg inversion 功能

MCU 支持数据大小端变化功能,点击功能设定区中的 Reg inversion 按钮,将改变数据大小端。