PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-078671

(43) Date of publication of application: 20.03.1995

(51)Int.CI.

H05B 3/14 F02M 31/135

F24H 3/04

(21)Application number: 06-157290

(71)Applicant: NIPPONDENSO CO LTD

(22)Date of filing:

08.07.1994

(72)Inventor: HAYASHI HIDETAKA

NARA AKIO HORI MAKOTO

(54) HEATER DEVICE

(57)Abstract:

PURPOSE: To heat the suction gas of an internal combustion engine effectively.

CONSTITUTION: A heat radiation part is formed in combination of a PTC element 1 having a positive temperature resistance coefficient and a heat radiating block 2 having a passage for the suction gas and fixed in a frame-shaped case 3 made of a heat resistant resin or ceramic, and the case 3 is fixed in a frame- shaped housing 4 made of metal. The housing 4 is fixed in a suction path of an internal combustion engine concerned. Current is fed to the PTC element 1 to allow it to emit heat, and the suction gas having passed the suction path is passed through the passage in the block 2. Thereby the heat of the PTC element 1 is conducted to the block 2 and also to the suction gas passing the passage in the block 2. Because the heat radiation part consisting of these PTC element 1 and block 2 is fixed in the case 3 of heat resistant resin or ceramic, it is possible to suppress conduction of the heat from the radiation part to the housing 4, and the suction gas passing through the heat radiation part can be heated effectively.

LEGAL STATUS

[Date of request for examination]

08.07.1994

[Date of sending the examiner's decision of rejection]

04.08.1998

[Kind of final disposal of application other than the

examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3107708

[Date of registration]

08.09.2000

[Number of appeal against examiner's decision of

10-13966

rejection]

[Date of requesting appeal against examiner's decision 03.09.1998

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-78671

(43)公開日 平成7年(1995)3月20日

(51) Int.Cl.	3
--------------	---

識別記号 庁内整理番号 技術表示箇所

H05B 3/14

A 7715-3K

F 0 2 M 31/135

F 2 4 H 3/04

303 B

F 0 2 M 31/12

FI

301 K

審査請求 有

発明の数1 OL (全 6 頁)

(21)出顯番号

特願平6-157290

(62)分割の表示

特願昭60-247605の分割

(22)出願日

昭和60年(1985)11月4日

(71)出題人 000004260

日本電装株式会社

愛知県刈谷市昭和町1丁目1番地

(72)発明者 林 秀隆

爱知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 奈良 昭夫

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 堀 誠

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(74)代理人 弁理士 碓氷 裕彦

(54) 【発明の名称】 加熱装置

(57)【要約】

【目的】 内燃機関の吸気を効果的に加熱する。

【構成】 正の温度抵抗係数を有するPTC素子1と、 吸気を通過させる通路部を有する放熱ブロック2とを組 合せて放熱部を構成する。この放熱部を耐熱性樹脂又は セラミックよりなる枠状のケース3内に固定し、且つ該 ケース3を枠状の金属製ハウジング4内に固定する。な お、このハウジング4は内燃機関の吸気通路内に固定さ れる。PTC素子1に通電してこのPTC素子1を発熱 させ、内燃機関の吸気路を通った吸気を放熱ブロック2 の通路部を通過させる。これにより PTC 素子1 の熱は 放熱プロック2に伝達され、且つその放熱ブロック2の 通路部を通過する吸気に伝達される。PTC素子1及び 放熱ブロック2からなる放熱部は耐熱性樹脂又はセラミ ックよりなるケース3内に固定されているため、放熱部 の熱が金属製ハウジング4に伝達されるのを抑制するこ とが可能となり、放熱部を通過する吸気を効果的に加熱 することができる。

40

2

【特許請求の範囲】

- (1) 通電により発熱する発熱体と、前記発熱体に熱的に結合され、且つ被加熱媒体を通過させる通路部を有した放熱ブロックと、前記放熱ブロックの前記通路部を開放するようにして、前記放熱ブロック及び前記発熱体より構成された放熱部を収納した耐熱性樹脂又はセラミックよりなるケースと、前記放熱ブロックの前記通路部を開放するようにして前記ケースを内側に固定し、且つ被取り付け部材に固定される金属よりなるハウジングと、を具備したことを特徴とする加熱装置。
- (2) 前記放熱ブロックは、蛇行状に屈曲形成された 複数の放熱フィンと、該複数のフィンの隣合う間に配置 された伝熱プレートと、から構成されており、前記放熱 ブロックは全体として平面が矩形状の形態を有してお り、前記発熱体は、前記放熱ブロックの内、最外側のフィンと該フィンに隣接する内側寄りの他のフィンとの間 に挟持されていることを特徴とする請求項1記載の加熱 装置。
- (3) 前記発熱体と前記フィンとの接触部に少なくとも熱伝導性弾性体を配置したことを特徴とする請求項2 20記載の加熱装置。
- (4) 前記発熱体は、正の温度抵抗係数を有する板状のセラミックより構成されていることを特徴とする請求項1乃至3何れか一つに記載の加熱装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は加熱装置に関するもので ある。

[0002]

【従来の技術】従来この種の加熱装置としては、例えば 30 特開昭56-160786号公報に記載されたものがある。これは、正の抵抗温度係数を有する板状のセラミック発熱体と通路部を有する放熱プロックとを組合せて、これらを熱的に結合して一体化し、この一体化された放熱部を金属よりなる枠体内に固定した構造である。

[0003]

【発明が解決しようとする課題】しかし、上記従来例によれば、放熱部の熱が金属製の枠体に逃げやすく、従って熱効率が悪いという難点がある。本発明は、放熱部の断熱を図って上述の難点を解消しようとするものである。

[0004]

【課題を解決するための手段】本発明は、上記の点に鑑み、通電により発熱する発熱体と、前記発熱体に熱的に結合され、且つ被加熱媒体を通過させる通路部を有した放熱ブロックと、前記放熱ブロックの前記通路部を開放するようにして前記放熱ブロック及び前記発熱体よりなる放熱部を収納した耐熱性樹脂又はセラミックよりなるケースと、前記放熱ブロックの前記通路部を開放するようにして前記ケースを内側に固定し、且つ被取り付け部50

材に固定される金属よりなるハウジングと、を具備した という技術的手段を採用するものである。

[0005]

【作用】本発明によれば、耐熱性樹脂又はセラミックよりなるケースの介在により、発熱体及び放熱ブロックからなる放熱部の熱が金属製のハウジングに伝達されるのを防止することができる。

[0006]

【発明の効果】従って、本発明においては、放熱部の熱 10 を、放熱ブロックの通路部を流れる被加熱媒体に効果的 に伝達することができ、該被加熱媒体の加熱効果を高め ることができる。

[0007]

【実施例】以下本発明を図に示す実施例に基づいて詳細に説明する。図1は本発明の一実施例であるディーゼル機関用吸気加熱装置の構成を示す正面図で、図2は図1のA-A断面図、図3は図1のB-B断面図である。これら図において、1は厚さ2㎜の矩形平板状に形成された4枚のPTC素子で2枚づつ1組にして2列に配列されている。該PTC素子1は通電により発熱するものであり、チタン酸バリウム(BaTiO3)系セラミック焼結体等の温度の上昇とともにその電気抵抗が著しく増大する正の温度抵抗係数を有する材料により構成されている。

【0008】2は平面矩形態の放熱ブロックで、該放熱ブロック2は、銅又はアルミニウムからなる蛇行状の放熱フィン2aと、該放熱フィン2aの両側の屈曲端部に半田付接合された銅又はアルミニウムからなる平板状のプレート2bとから構成されている。この半田付接合により放熱ブロックはPTC素子1と熱的に結合することになる。

【0009】放熱ブロック2の放熱フィン2aの蛇行部の間には被加熱媒体としての吸気を通過させる通路部が図示の如く形成してある。なお、放熱ブロック2の放熱フィン2aの表面には、図3に示す如く、吸気流れ方向Aに対して垂直方向に切り起こしたルーバ2'aが設けてあり、熱伝導面積が増大するように構成してある。上記放熱ブロック2は3列配置してあって、その3列配置の両側に上記PTC素子1が配置してある。そして、該PTC素子1の両外側には各1列の放熱ブロック2が配置してある。なお、PTC素子1の両外側に配置された放熱ブロック2のプレート2bとPTC素子1との間に位置するようにして、熱及び電気伝導性弾性体であるグラファイトフィラー層1aが該PTC素子1の表面に焼付け形成してある(図4参照)。

【0010】ここにおいて、図1から明らかなように、2列のPTC素子1の対向間に配置された3列の内側放熱ブロック2と、該PTC素子1の反対側の1列の外側放熱ブロック2との通路部開口面積の関係は、内側放熱ブロック2の複数の通路部の総開口面積は各外側放熱ブロック2の複数の通路部の各総開口面積よりも大きく設

10

30

定されている。これは、図1から理解されるように、内 側放熱ブロック2と外側放熱ブロック2における各放熱 フィン2aの屈曲幅寸法は略同じであって、しかも内側 放熱ブロック2の放熱フィン2aの累計屈曲幅が外側放 熱ブロック2の放熱フィン2aの屈曲幅よりも寸法的に 大きく設定されているためである。因みに、内側放熱ブ ロック2の放熱フィン2aの累計屈曲幅は外側放熱ブロ ック2の放熱フィン2aの屈曲幅の約3倍程度となって

【0011】3はPPS等の耐熱性樹脂又はセラミック からなるケースであり、図2及び図3に示すように、平 面長方形の箱体の一側面を取り除いた形状を有する下ケ ース3aと、断面し字型のカバー3bとを組み合わせた 箱状の形状である。又、該ケース3の内、図1における 紙面と垂直方向の面は、上記放熱ブロックに形成された 通路部を開放するように放熱部の外周囲とその中間部を 架橋する中心部を残して開口3cが形成されていて全体 として枠状の形状を有している。

【0012】PTC素子1と放熱ブロック2とから構成 される放熱部は、上記ケース3内に収納されている。な 20 お、放熱部は図1から明らかなように、平面略四角形状 である。4はアルミニウム製のハウジングであり、枠状 の形状を有している。該ハウジング4の内側には上記ケ ース3が収納され、ハウジング4の一側面4aとケース 3のカバー3bの側面3' bとの間に形成された空間4 b内には、広がる方向に復元力が付与されたU字状のバ ネ5が配置されている。該バネ5の復元力によって、ケ ース3 bの側面3' bを押圧し、該側面3' bと、これ と対向する下ケース3aの端面3'aとの間でPTC素 子1及び放熱ブロック2を一括して押圧、固定してい

【0013】ハウジング4の開口部4cの一端側には上 記放熱部を支持する支持部4 e が形成されており、該支 持部4 eに上記放熱部は上記ケース3を介して支持され ている。上記3列配置の内側放熱ブロック2の内の一つ の伝熱プレート2bからは下ケース3aの図示しない切 欠きを通してプラス側ターミナル2cが引き出されてい る。該ターミナル2cは下ケース3aの枠部3dの側面 に沿って屈曲され、該ターミナル2cは該屈曲部にてボ ルト6a及びナット6bにより上記枠部3d及びインシ 40 ュレータリング6cを介してハウジング4に電気的に絶 縁固定されている。なお、この結果、下ケース3aはそ の枠部3 dを介してハウジング4に固定されることにな る。

【0014】又、1列配置の外側放熱ブロック2の最外 側の伝熱プレート2bからは、上記ターミナル2cと反 対方向に位置した各々マイナス側ターミナル2dが下ケ ース3aの外側に引き出されている。該ターミナル2d は下ケース3aの棚部3e上に載置され、小ネジ7を介 してハウジング4に固定され、ハウジング4に電気的に 50 接続されている。

【0015】8はカバー3bをハウジング4に固定する ためのクリップであり、該クリップ8は図1及び図3か ら明白なように上ケース3bの凸部3fをハウジング4 の支持部4 d上に載置した状態で該凸部3 f の上部から 嵌着してある。このクリップ8によりケース3は図1の 紙面方向に固定される。このように、カバー3bをハウ ジング4に固定することにより、上記放熱部はハウジン グ4の支持部4eと該カバー3bとの間で挟持されるこ とになり、この結果放熱部がその被加熱媒体通過方向に 対して動いてハウジング4から脱落しないようになっい る。従って、カバー3bは放熱部の動きを規制する規制 手段を構成している。

4

【0016】図5は、上記構成からなる吸気加熱装置1 0をディーゼルエンジンの吸気系に取り付けた状態を示 すものである。加熱装置10のハウジング4は、エンジ ン11とエアクリーナ12との間のインテークマニホー ルド部13を、該加熱装置10の放熱部が横断する状 態、即ち吸気流れ方向が図3の矢印A方向と一致するよ うに取り付けられ、吸気が温められるよう構成されてい る。なお、図中、14はエンジンのピストン、15はシ リンダ室、16は吸排気弁、17は燃料噴射ノズルであ

【0017】次に、作動について説明する。図示しない バッテリーより供給された電流はプラス側ターミナル2 cに入り、内側放熱プロック2を通してPTC素子1を 厚さ方向に流れ、外側放熱ブロック2を経てマイナス側 ターミナル2 dに到り、小ネジ7を介してハウジング4 にアースされる。以上の経路を介して電流が流れてPT C素子1が発熱し、この熱は放熱ブロック2に伝導され る。一方、吸気は放熱フィン2aの間に形成された通路 部を流れて熱を受けて温められる。

【0018】ここで、本実施例においては、上述の構成 を具備しているから、次に説明する作用を有している。 即ち、

①放熱部が、耐熱性樹脂又はセラミックよりなるケース 3を介して金属ハウジング4に固定されているから、放 熱部の熱がハウジング4に伝達するのをケース3で遮断 することができ、放熱部の熱を吸気に効果的に伝達する ことが可能となる。

【0019】②放熱部の内側放熱ブロック2に設けられ たターミナル2cの自由端をハウジング4の内壁に沿っ て略U字状に屈曲し、該自由端をハウジング4の内壁に 固定したから、該ターミナル2 cの屈曲形状により該タ ーミナル2cにバネ性を付与することができ、ターミナ ル2cを確実にハウジング4に固定できるとともに、該 バネ性によりハウジング4内に放熱部を保持できる。

【0020】③内側放熱ブロック2の複数の通路部の総 開口面積を各外側放熱ブロック2の複数の通路部の各総 開口面積に比較して大きく設定したため、該内側放熱ブ

6

ロック2の通路部に対する吸気の通過量が多くなる。この結果、PTC素子1が発する熱は効果的に内側放熱プロック2を介して吸気に伝達されるため、該PTC素子1が自己制御温度に達することがなく、PTC素子1の発熱性が阻害されることはない。即ち、一般的に通路における流体の流量分布はその通路の中心が多く端に近づくほど少なくなる山状の分布となる。このため、本実施例の加熱装置において、その放熱部の中心部、換言すれば内側放熱プロック2に多くの吸気が流れるようにすれば、内側放熱プロック2が効率よく放熱するため、PT 10 C素子1の発熱効率が向上する。

【0021】②放熱部をハウジング4の支持部4eとカバー3bとの間に挟持したから、放熱部がハウジング4の内側から外側へ飛び出すのを回避できる。図6にエンジンクランキング前の吸気予熱特性について示す。従来の金属線を用いた吸気加熱装置においては約14秒程度の予熱時間(エンジンクランキング前の装置への通電時間)を必要としたが、本実施例の装置ではPTC素子1の温度立ち上がり特性が早いため、3~5秒の予熱時間で済むことがわかる。

【0022】なお、このとき室温は-25℃、電源電圧は24Vであり、予熱時間を短縮するためには、電流を大きくする必要があり、本実施例ではリレー容量等を考慮して150AとなるようにPTC素子1の抵抗を調整している。図7はエンジンクランキング後の吸気加熱時(アフターヒート時)を含めた熱効率を示す特性図である。なお、ここで熱効率とは実際に消費された電力に対し空気の昇温に使われた熱量の割合で表したものである。図7に示す如く、金属線装置に比べて本実施例の装置は初期の立ち上がり時の効率、定常状態での効率の何30れにおいても優れている。これはPTC素子1を使用することにより、即熱性に優れるとともに該素子自体が比較的低温度で吸気加熱を行うため、ヒートロスが少ないためである。

【0023】図8は装置の熱効率測定に用いた測定ベンチを示すもので、温風路20の膨脹部20aには吸気加熱装置10が配設され、該装置10の下流40cmの位置が温度測定点である。なお、21は送風用ブロデ、22、23は圧力損失測定用及び流量測定用マノメータであり、24、25は装置及びブロア駆動用の直流及び交40流電源である。

【0024】本発明は上記の実施例に限定されず、以下の如く種々の変形が可能である。

(1) グラファイトフィラー層 1 a は伝熱プレート 2 b の表面あるいは P T C 素子 1 の表面の凹凸による熱及び電気的接触不良を改善するものであるから、伝熱プレート 2 b の屈曲部、即ち押圧面にのみ設けてもよいし、又 P T C 素子 1 及び伝熱プレート 2 b の両方に設けてもよい。

【0025】(2) グラファイトフィラー層1aに代えて、カーボン又は金属の粉体や繊維を分散複合化させた耐熱性ゴム材のシート等を採用しても勿論よい。

- 10 (3) 放熱ブロック2の蛇行状のフィン2aに代えてハニカム状の金属製フィン、多孔質金属製のフィンを用いてもよい。
 - (4) 内側放熱ブロック2は3列に組み合わせて互いに押圧するように構成したが、押圧だけではなく伝熱プレート2bの押圧面間で半田付接合してもよく、又3列の放熱ブロックを一体の1つの放熱ブロックで構成しても勿論よい。

【0026】(5) 放熱ブロック2とPTC素子1とをバネ5で押圧する構成に代えてケース3にネジ止めする等 20 の方法により固定、押圧してもよい。

(6) 放熱フィン2aに設けたルーバ2 aは省略してもよい。

【図面の簡単な説明】

【図1】本発明の一実施例を示す正面図である。

【図2】図1のA-A断面図である。

【図3】図1のB-B断面図である。

【図4】図1の放熱ブロックを示す部分拡大図である。

【図5】加熱装置の取り付け場所の一例を示す模式図である。

0 【図6】加熱装置の吸気加熱特性を示す特性図である。

【図7】加熱装置の吸気加熱特性を示す特性図である。

【図8】 測定ベンチの構成を示す模式図である。

【符号の説明】

1 PTC素子

1a グラファイトシート層

2 放熱ブロック

2a 放熱フィン

2 b 伝熱プレート

3 ケース

3a 下ケース

3b カバー

4 ハウジング

【図8】

