A. Phân tích gợi ý

Ký tự dấu cách (space) trong mã ASCII thập phân là 32_{10} , dạng nhị phân 8-bit là 00100000_2 , dạng hex là 20_{16} . Ký tự trong khoảng [a-zA-Z] được biểu diễn dưới bảng sau:

Dec	Hex	Binary	Char	Char	Binary	Hex	Dec
6510	41 ₁₆	010000012	Α	а	011000012	61 ₁₆	9710
66 ₁₀	42 ₁₆	010000102	В	b	011000102	6216	9810
67 ₁₀	43 ₁₆	010000112	С	С	011000112	6316	9910
6810	44 ₁₆	010001002	D	d	011001002	6416	10010
69 ₁₀	45 ₁₆	010001012	E	е	011001012	6516	101 ₁₀
70 ₁₀	4616	010001102	F	f	011001102	66 ₁₆	10210
71 ₁₀	47 ₁₆	010001112	G	g	011001112	6716	10310
72 ₁₀	48 ₁₆	010010002	Н	h	011010002	6816	10410
73 ₁₀	4916	010010012	l	i	011010012	6916	10510
74 ₁₀	4A ₁₆	010010102	J	j	011010102	6A ₁₆	10610
7510	4B ₁₆	010010112	K	k	011010112	6B ₁₆	107 ₁₀
76 ₁₀	4C ₁₆	010011002	L	I	011011002	6C ₁₆	10810
77 ₁₀	4D ₁₆	010011012	М	m	011011012	6D ₁₆	10910
78 ₁₀	4E ₁₆	010011102	N	n	011011102	6E ₁₆	11010
79 ₁₀	4F ₁₆	010011112	0	0	011011112	6F ₁₆	111 ₁₀
8010	5016	010100002	Р	р	011100002	70 ₁₆	11210
81 ₁₀	51 ₁₆	010100012	Q	q	011100012	71 ₁₆	113 ₁₀
82 ₁₀	5216	010100102	R	r	011100102	7216	114 ₁₀
83 ₁₀	5316	010100112	S	S	011100112	7316	115 ₁₀
84 ₁₀	54 ₁₆	010101002	Т	t	011101002	74 ₁₆	116 ₁₀
8510	5516	010101012	U	u	011101012	7516	117 ₁₀
86 ₁₀	5616	010101102	V	V	011101102	76 ₁₆	118 ₁₀
87 ₁₀	57 ₁₆	010101112	W	W	011101112	77 ₁₆	119 ₁₀
8810	5816	010110002	Χ	Х	011110002	78 ₁₆	12010
89 ₁₀	59 ₁₆	010110012	Υ	У	011110012	79 ₁₆	121 ₁₀
9010	5A ₁₆	010110102	Z	Z	011110102	7A ₁₆	122 ₁₀

Khi XOR ký tự 'space' với 'a':

	001000002	(Space)
XOR	011000012	(a)
=	010000012	(A)

Khi XOR ký tự 'space' với 'A':

	001000002	(Space)
XOR	010000012	(A)
=	011000012	(a)

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Điều đặc biệt ở đây là nếu chữ cái thường XOR với space sẽ được kết quả là chữ hoa của nó, và ngược lại nếu chữ cái hoa XOR với space lại được kết quả là chữ cái thường.

Một tính chất khác của XOR: x XOR y XOR y = x.

Giả sử có 2 bản rõ **p1** và **p2** mã hóa với cùng khóa **k.** Khi đó ta có 2 bản mã: **c1** = **p1** ^ **k** và **c2** = **p2** ^ **k**.

$$\Rightarrow$$
 c1 ^ c2 = (p1 ^ k) ^ (p2 ^ k) = p1 ^ p2

Hướng giải mã của chúng ta như sau: lần lượt với các ký tự **c1[i]** và **c2[i]** ta tính **XOR** của chúng. Nếu kết quả là một chữ cái hoa trong alphabet thì trong **p1[i]** và **p2[i]** có thể sẽ có chữ cái đó dạng thường và ký tự space. Giả sử ta có ví dụ sau:

i	0	1	2	3		
p1[i]	01000001 ₂ (A)	00100000 ₂ (space)	01100010 ₂ (b)	00100000 ₂ (space)		
p2[i]	00100000 ₂ (space)	01111000 ₂ (x)	00100000 ₂ (space)	01011001 ₂ (Y)		
k[i]	01001011 ₂ (K)	01101000 ₂ (h)	01101111 ₂ (o)	01100001 ₂ (a)		

Tính c1[i] và c2[i]:

c1[i] = p1[i] ^ k	000010102	010010002	000011012	010000012		
c2[i] = p2[i] ^ k	011010112	000100002	010011112	001110002		
c1[i] ^ c2[i]	01100001 ₂ (a)	01011000 ₂ (X)	01000010 ₂ (B)	01111001 ₂ (y)		

Từ ví dụ trên ta thấy **c1[i] XOR c2[i]** tiết lộ khá nhiều thông tin về bản rõ. Để có thể xác định đâu là ký tự space và đâu là ký tự alphabet, chúng ta sẽ XOR các bản mã với nhau để khôi phục các thông tin, kết hợp với dự đoán các từ có thể xuất hiện.

B. Tấn công One-Time Pad

Các bản mã bao gồm cả bản mã mục tiêu được chứa trong ciphertexts.txt, mỗi dòng một bản mã.

Ghi các bản mã trên vào cipher_vector bằng đoạn code sau:

```
std::ifstream ciphertexts("One-time pad\\ciphertexts.txt");
if (!ciphertexts.is_open()){
    printf("Error ciphertexts\n");
    return 1;
}

// Get ciphertexts line by line from txt and write to vector
std::string line;
std::vector<std::string> cipher_vector;
while (std::getline(ciphertexts, line)){
    cipher_vector.push_back(line);
}
```

Để XOR các bản mã dạng hexa với nhau, cần chuyển các bản mã về dạng nhị phân và ngược lại. Ta dùng std::bitset để lưu trữ các bản mã dạng nhị phân:

```
// Constant: max bitset size
#define MAXSIZE 1500
// Create new names for std::bitset<N> types
typedef std::bitset<4> bit4_type;
typedef std::bitset<8> bit8_type;
typedef std::bitset<MAXSIZE> bit_max_type;
```

Các hàm để chuyển các bản mã từ hexa sang nhị phân và ngược lại:

```
bit_max_type hexToBit(const std::string &hex_text)
    std::string hex(hex_text);
    for (int i = 1; i < hex.size(); i+=2){</pre>
    std::stringstream ss;
    ss << std::hex << hex;
    std::ostringstream bit_stream;
    std::copy((std::istream_iterator<unsigned int>(ss)), std::istream_iterator<unsigned
int>(), std::ostream_iterator<bit4_type>(bit_stream));
    bit_max_type hex_bitset(bit_stream.str());
    return hex_bitset;
std::string bitToHex(const std::string &bit){
    std::istringstream iss(bit);
    std::ostringstream oss;
    while (iss.good()){
        bit4_type bits;
        iss >> bits;
        oss << std::hex << bits.to_ullong();</pre>
    std::string output = oss.str();
    output.pop_back();
    return output;
```

Các hàm để XOR các bản mã dạng hexa:

```
bit_max_type bitXOR(const bit_max_type &first, const bit_max_type &second)
    return (first ^ second);
std::string hexXORHeadToHead(const std::string& hex1, const std::string& hex2)
    int hex1 length = hex1.length(), hex2 length = hex2.length();
    int diff = hex1 length - hex2 length;
    if (diff >= 0)
       bit_max_type bit1 = hexToBit(hex1), bit2 = hexToBit(hex2);
        if (diff > 0)
           bit2 <<= ((diff) * 4);
       bit_max_type bit1XORbit2 = bitXOR(bit1, bit2);
       std::string output = bitToHex(bit1XORbit2.to string());
        int output_length = output.length();
       output.erase(output.begin(), output.begin() + output_length - hex1_length);
       return output;
    else return hexXORHeadToHead(hex2, hex1);
```

Hàm để chuyển hex char sang dạng thập phân:

```
// Example: 'A' -> 10, 'F' -> 15
int hexValue(const unsigned char &hex_char)
{
    if ('0' <= hex_char && hex_char <= '9')
    {
        return hex_char - '0';
    }
    else if ('a' <= hex_char && hex_char <= 'f')
    {
        return hex_char - 'a' + 10;
    }
    else if ('A' <= hex_char && hex_char <= 'F')
    {
        return hex_char - 'A' + 10;
    }
    else throw std::invalid_argument("Invalid hex digit");
}</pre>
```

Cuối cùng là hàm dùng để chuyển hex string sang dạng ASCII string. Đối với những ký tự không nằm trong bảng chữ cái ta chuyển nó thành '*' để dễ phân biệt.

```
// hexToTextStar: convert hex string to ASCII string
// Replace non-alphabet char to '*'
std::string hexToTextStar(const std::string& input)
{
    const auto len = input.length();
    // If length is odd throw error
    if (len & 1) throw std::invalid_argument("Odd length");
    std::string output;
    output.reserve(len / 2);
    for (std::string::const_iterator p = input.begin(); p != input.end(); p++)
    {
        int c = hexValue(*p);
        p++;
        c = (c << 4) + hexValue(*p);
        output.push_back('|');
        if ((65 <= c && c <= 90) || (97 <= c && c <= 122))
        {
            output.push_back(c);
        }
        else
        {
            output.push_back('+');
        }
    }
    return output;
}</pre>
```

Dùng đoạn mã sau để XOR lần lượt 10 bản mã trước với bản mã cần giải mã và ghi kết quả ra file text:

Kết quả trong file ciphersXORtarget.txt ta được như sau:

Nhìn vào cột [0], ta thấy có 9 ký tự '*' và 1 ký tự 't'. Vậy có khả năng ký tự đầu tiên [0] của bản rõ 9 là space và ký tự đầu tiên của bản rõ mục tiêu là 'T'.

Tương tự ở cột [1], ta thấy có 9 '*' và 1 'H'. Ký tự [1] của bản rõ 8 có thể là space và ký tự [1] của bản rõ mục tiêu là 'h'.

Ở cột [2], có 7 ký tự '*' và 2 ký tự 'E', 1 ký tự 'M'. Dựa vào 2 ký tự trước của mục tiêu là 'Th', có thể đây là 'The'.

Ở cột [3], có khá nhiều chữ cái khác nhau và '*'. Có thể dự đoán vị trí tiếp theo trong bản rõ mục tiêu là space: 'The '.

Tương tự ta có bảng dự đoán sau:

[i]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Char	T	h	е	SP	S	е	С	u	е	t	SP	m	е	S	S	а	g	е	SP	i	S	SP	SP	W
[i]	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
		2.5									 	1		5,					_					
Char	h	τ	n	SP	u	S		n	g	SP	а	SP	S	τ	r	е	а	m	SP	С		р	h	е
[i]	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Char	r	SP	SP	n	е	٧	е	r	SP	u	S	е	SP	t	h	е	SP	k	е	у	SP	m	0	r
							•		•		•	•	•	•	•	•		•						

[i]	72	73	74	75	76	77	78	79	80	81	82
Char	е	SP	t	h	а	n	SP	0	n	С	е

Do bản mã hexa có 166 ký tự nên bản rõ chỉ có 83 ký tự. Ta có bản rõ dự đoán như sau:

"The secuet message is Whtn using a stream cipher never use the key more than once"

Có thể sửa lại cho đúng chính tả như sau:

"The secret message is When using a stream cipher never use the key more than once"

Có tới 2 ký tự cách ở sau "is" và "cipher". Để hoàn thiện nốt bản rõ, XOR bản rõ tạm thời với bản mã để tìm khóa:

66396e89c9dbd8cc9874352acd6395102eafce78aa65ed28a07f6bc98d29c50b69b0339a19f8aa401a9c6d708f80c066c76ffef0123148cdd8e802d05ba98777335daefcecd59c433a6b268b60bf4ef03c9a61

XOR khóa này với các bản mã khác ta được:

```
[0]: We can factor the numxer 15 with quantum computer. We can also factor the number 1% \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \
```

Sửa bản rõ [1] như sau: "Euler would probably enjoy that now his theorem becomes a corner stone of crypto – ". XOR bản rõ trên với bản mã sẽ được khóa mới như sau:

66396e89c9dbd8cc9874352acd6395102eafce78aa7fed28a07f6bc98d29c50b69b0339a19f8aa401a9c6 d708f80c066c763fef0123148cdd8e802d05ba98777335daefcecd59c433a6b268b60bf4ef03c9a6151f6 d551f4480c82b2cb24cc5b028aa76eb7b4ab24171ab3cdadb8356f

Các bản rõ thu được sau khi XOR với khóa mới:

```
[0]: We can factor the number 15 with quantum computers. We can also factor the number 1tN2000M0U000NT700200CST0H00 0M0 V
₽�Ya₽₽�>
[1]: Euler would probably enjoy that now his theorem becomes a corner stone of crypto -
��D~,∨2=0��.L22��1Z22�"��cj�
[4]: You don't want to buy a set of car keys from a guy who specializes in stealing carsaCN"DDDO'DT
[5]: There are two types of cryptography - that which will keep secrets safe from your 1(00000Y00000E00 $000E000TT0
MDDH ��Ni5"d5s���5DDD��t DB�*��mq��a���"�w�窈��D+2����5]%��
[7]: We can see the point where the chip is unhappy if a wrong bit is sent and consumes , 🗵
[8]: A (private-key) encryption scheme states 3 algorithms, namely a procedure for gene3000 2M00
SCNAe
BBBUB
[9]: The Concise OxfordDictionary (2006) defines crypto as the art of writing o r sol7® 2N2@20 20[2♦♦n♦♦♦$□20♦⊅50
```

Đến đây bản mã cần tìm đã đầy đủ:

"The secret message is: When using a stream cipher, never use the key more than once"