STAT 534 - Lecture 22: Key

Hypothesis Tests for CSR

- With a spatial point process, a single realization from the underlying point process is observed.
- Hypothesis tests and Monte Carlo simulation procedures allow testing for departures from Complete Spatial Randomness (CSR).
- Devise and implement a Monte Carlo-based test for CSR. First detail your test statistic and implementation, then assess the results with the four data sets from Lecture 21.

G and F Functions

- One way to describe a spatial point process, is to consider the probability of being a certain distance from a point or similarly, the number of points expected in a distance from a point.
- Define Num(s,d;S) as the number of points from S in a circle of diameter d from point s.
- Then we can compute the probability that more than one point exists with a distance d of an observed point.

$$E_{\boldsymbol{S}}\left(\sum_{\boldsymbol{s}_i \in \boldsymbol{S}} 1(Num(\boldsymbol{s}_i), d; \boldsymbol{S}) > 0\right) = \lambda |\boldsymbol{D}| P(Num_d(\boldsymbol{s}, d; \boldsymbol{S}) > 0)$$

- The term $P(Num_d(\mathbf{s}, d; \mathbf{S}) > 0$ is referred to as G(d). G(d) increases in d.
- The G(d) function is similar to a CDF of the **nearest neighbor** distance
- A similar statistic is the F(d) function. Whereas G(d) is centered at the observed s_i , F(d) is defined at any arbitrary point. Hence this is a CDF for empty space.
- QUESTION: Assume a CSR Poisson process with constant intensity λ , calculate F(d) or G(d) (they are the same).

•	Discuss how to create an empirical estimate of $\hat{G}(d)$, given a realization of a point process.
•	With bounded area, edge correction procedures are necessary. Hence, consider
	$\hat{G}(d) = \frac{\sum_{i} 1(d_i \le d < b_i)}{\sum_{i} 1(d < b_i)},$
	where b_i is the distance from s_i to the edge and d_i is the distance to the nearest neighbor of s_i .
•	The empirical estimates of G or H can be compared with G or F using a QQ-plot.
•	Discuss: What would be the implications of shorter tails or longer tails than expected under CSR?
	$shorter\ tail = clustering/attraction,\ longer\ tail = inhibition/repulsion$
•	Describe a natural process that might cluster and another than might repel