Chapter 3

Vector Spaces and Subspaces

3.1 Spaces of Vectors

3.1.1 Definition of Vector Space and Subspace

1. Space

The space \mathbb{R}^n consists of all vectors \mathbf{v} with n components of real numbers. The space \mathbb{C}^n consists of all vectors \mathbf{v} with n components of complex numbers.

2. Subspace

A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements: If \forall vectors \mathbf{v}_1 and \mathbf{v}_2 are in the subspace and \forall $\alpha_1, \alpha_2 \in \mathbb{R}$, then the linear combination $\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2$ is in the subspace.

3.1.2 Properties of Vector Space and Subspace

- 1. Every space and subspace contains the zero vector.
- 2. Lines through the origin are also subspaces.

3. Closure Property

If \forall vectors \mathbf{v}_1 and \mathbf{v}_2 are in a vector space or subspace and $\forall \alpha_1, \alpha_2 \in \mathbb{R}$, then the linear combination $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ must stay in this vector space or subspace.

3.1.3 Special Vector Spaces

1. **M**

The vector space of all real 2 by 2 matrices.

2. **F**

The vector space of all real functions f(x).

3. **P** or P_n

The vector space that consists of all polynomials

$$a_0 + a_1 x + \dots + a_n x^n$$

of degree n.

4. **Z**

The vector space that consists only of a zero vector.

3.2 Independence, Basis, Rank and Dimension

3.2.1 Definition of Independence, Basis, Rank and Dimension

1. Linear Independence

The sequence of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is linearly independent if the only combination that gives the zero vector is

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$$
.

2. Basis

A set of vectors spans a space if their linear combinations fill the space. A basis for a vector space is a sequence of vectors with two properties:

- (1) The basis vectors are linearly independent;
- (2) The basis vectors span the space.

3. Rank

 \forall matrix A, the rank of A is the number of pivots, which is denoted by the number r.

4. Dimension

The dimension of a space is the number of vectors in every basis.

3.2.2 The Conclusion of Linear Independence and Dimension

- 1. \forall matrix A, the columns of A are linearly independent when the only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.
- 2. $\forall m, n \in \mathbb{N}^+$, any set of n vectors in \mathbb{R}^m must be linearly dependent if n > m.
- 3. $\forall m, n \in \mathbb{N}^+$, if $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m$ and $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_n$ are both bases for the same vector space, then m = n.

3.3 Solutions to Ax = 0 and Ax = b

3.3.1 The Special Solution to Ax = 0

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \text{ for the equation } A\mathbf{x} = \mathbf{0} \text{ where } A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

suppose that $x_{p_1}, x_{p_2}, \cdots, x_{p_r}$ are pivots; $x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}$ are free variables $(1 \le p_1 < p_2 < \cdots < p_r \le n; 1 \le q_1 < q_2 < \cdots < q_{n-r} \le n; 1 \le r \le n; p_1, p_2, \cdots, p_r, q_1, q_2, \cdots, q_{n-r}, r \in \mathbb{N}^+)$. If we apply Gauss-Jordan Elimination to the matrix A, the pivots can be expressed as a function of free functions.

$$x_{p_1} = f_1(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$x_{p_2} = f_2(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$\vdots$$

$$x_{p_r} = f_r(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}).$$

A series of *n*-dimensional vectors: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}$ are the solutions to $A\mathbf{x} = \mathbf{0}$. $\forall \ 1 \leq i \leq n-r, 1 \leq j \leq n$ and $i, j \in \mathbb{N}^+$, the *j*-th component of \mathbf{x}_i is the value of x_j given by assigning 1 to the x_i and assigning other free valuables to the 0. The special solution to $A\mathbf{x} = \mathbf{0}$ is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}$:

$$\mathbf{x}_n = x_{q_1} \mathbf{x}_1 + x_{q_2} \mathbf{x}_2 + \cdots + x_{q_{n-r}} \mathbf{x}_{n-r},$$

where $x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}} \in \mathbb{R}$.

3.3.2 The Complete Solution to Ax = b

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \text{ for the solvable equation } A\mathbf{x} = \mathbf{0} \text{ where } A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

suppose that $x_{p_1}, x_{p_2}, \cdots, x_{p_r}$ are pivots; $x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}$ are free variables $(1 \leq p_1 < p_2 < \cdots < p_r \leq n; 1 \leq q_1 < q_2 < \cdots < q_{n-r} \leq n; 1 \leq r \leq n; p_1, p_2, \cdots, p_r, q_1, q_2, \cdots, q_{n-r}, r \in \mathbb{N}^+)$. If we apply Gauss-Jordan Elimination to the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ to get $\begin{bmatrix} R & \mathbf{d} \end{bmatrix}$, where the matrix R is the RREF (Reduced Row Echelon Form) of the matrix A. The pivots can be expressed as a function of free functions.

$$x_{p_1} = d_1 + f_1(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$x_{p_2} = d_2 + f_2(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$\vdots$$

$$x_{p_r} = d_r + f_r(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}).$$

The complete solution to $A\mathbf{x} = \mathbf{b}$ is divided into two parts: The particular solution \mathbf{x}_p to $A\mathbf{x}_p = \mathbf{b}$ and the special solution \mathbf{x}_n to $A\mathbf{x}_n = \mathbf{0}$.

- 1. \mathbf{x}_p is a n-dimensional vector. $\forall \ 1 \le i \le n-r, 1 \le j \le n$ and $i, j \in \mathbb{N}^+$, the j-th component of \mathbf{x}_p is the value of x_j given by assigning 0 to all free valuables.
- 2. \mathbf{x}_n is a n-dimensional vector. A series of n-dimensional vectors: $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{n-r}$ are the solutions to $A\mathbf{x} = \mathbf{0}$. $\forall \ 1 \le i \le n-r, \ 1 \le j \le n$ and $i, j \in \mathbb{N}^+$, the j-th component of \mathbf{x}_i is the value of x_j given by assigning 1 to the x_i and assigning other free valuables to the 0. The special solution to $A\mathbf{x} = \mathbf{0}$ is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{n-r}$:

$$\mathbf{x}_n = x_{q_1}\mathbf{x}_1 + x_{q_2}\mathbf{x}_2 + \dots + x_{q_{n-r}}\mathbf{x}_{n-r},$$

where $x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}} \in \mathbb{R}$.

Therefore, the complete solution to $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n.$$

3.4 Linear Equations and The Rank r

Size Relationship of r, m, n	A	The number of solutions	
		$A\mathbf{x} = 0$	$A\mathbf{x} = \mathbf{b}$
r = m = n	Square and invertible	1	1
r = m < n	Short and wide	∞	∞
r = n < m	Tall and thin	1	0 (R has 0 = b)
			1 (R has no 0 = b)
r < m = n	Square	8	0 (R has 0 = b) $\infty (R \text{ has no } 0 = b)$
r < m < n	Short and wide		
r < n < m	Tall and thin		

For the matrix A, we move the pivots to the left side and move the free variables to the right side. Then we apply Gauss-Jordan Elimination to the matrix A to get its RREF (Reduced Row Echelon Form) R of the matrix A. The shapes of R related to the rank r are shown as follows:

1.
$$r = m = n$$

$$R = [I]$$
.

2.
$$r = m < n$$

$$R = \begin{bmatrix} I & F \end{bmatrix}$$
.

3.
$$r = n < m$$

$$R = \begin{bmatrix} I \\ \mathbf{0} \end{bmatrix}.$$

4.
$$r < m, r < n$$

$$R = \begin{bmatrix} I & F \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

3.5 Four Subspaces of Matrices

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} - & \mathbf{r}_1 & - \\ - & \mathbf{r}_2 & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{r}_m & - \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & \cdots & | \end{bmatrix}$$

and its transpose

3.5.1 Definition of Four Subspaces of A

1. Row Space

The column space of A consists of all linear combinations of $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$, which is denoted by $C(A^T)$. It is a subspace of \mathbf{R}^n .

2. Column Space

The column space of A consists of all linear combinations of $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$, which is denoted by C(A). It is a subspace of \mathbf{R}^m .

3. Nullspace

The nullspace of A consists of solutions to $A\mathbf{x} = \mathbf{0}$, which is denoted by N(A). It is a subspace of \mathbf{R}^n .

4. Left Nullspace

The nullspace of A consists of solutions to $A^{T}\mathbf{x} = \mathbf{0}$, which is denoted by $N(A^{T})$. It is a subspace of \mathbf{R}^{m} .

3.5.2 Full Column Rank and Full Row Rank

1. Every $m \times n$ matrix A with full column rank (r = n) has all these properties:

- (1) All columns of A are piovot columns;
- (2) There are no free variables or special solutions;
- (3) The nullspace N(A) contains only the zero vector $\mathbf{x} = \mathbf{0}$;
- (4) If $A\mathbf{x} = \mathbf{b}$ has a solution, then it has only one solution.
- 2. Every $m \times n$ matrix A with full row rank (r = m) has all these properties:
 - (1) All rows of A are piovot rows, and R has no zero rows;
 - (2) The column space is the whole space \mathbb{R}^m ;
 - (3) The nullspace N(A) contains n r = m r special solutions;
 - (4) $A\mathbf{x} = \mathbf{b}$ has a solution for every right side \mathbf{b} .

3.5.3 Fundamental Theorem of Linear Algebra, Part 1

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \text{ suppose that the rank of } A \text{ is } r \ (1 \leq r \leq \min\{m, n\}).$ The column space C(A) and row space $C(A^T)$ both have dimension r. The nullspace N(A) has dimension r. The left nullspace $N(A^T)$ has dimension r.