Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks

David R. Kelley, 1 Jasper Snoek, 2 and John L. Rinn 1

CS273B Presentation 10/19/2016 Amr Mohamed, Wisam Reid, Irán Román

¹Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA;

²School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA

Towards Personalized Medicine

Non-coding DNA and personalized Medicine

Can we relate non-coding DNA with phenotypes?

Non-coding DNA and personalized Medicine

Large surveys indicate that these modifications are statistically related to phenotypes (ENCONDE, 2012)

Taking full advantage of these annotations

Machine Learning identifies DNA interactions

Pinello et al., 2014

Beneviste et al., 2014

Using CNNs to Advance Genomics

lake auvantage of their potential.

"It is essential that [these techniques]

are technically and conceptually

accessible to the researchers who can take advantage of their potential."

Saving the day ...

Deep CNNs

Functional assessment of DNA

Open Source

 Tailored to the Biosciences community

Basset

Benchmarks Using Basset:

- Predict the accessibility of DNA sequences in 164 cell types, as mapped by DNase-seq.
- Learn the relevant sequence motifs and the regulatory logic with which they are combined to determine cell-specific DNA accessibility.

Significance:

- Meaningful, nucleotide-precision measurements.
- Scores that reflect the accessibility difference predicted by the model between two alleles.
- Highly predictive of the causal SNP among sets of linked variants.

The DNase I Hypersensitivity Dataset

Merge of two datasets DNase-Seq datasets from 164 cell types.

DNase-Seq

Methods

Neural Network Architecture

- Convert to one hot code sequence
- 3x [Convolutional layer with PWMs as filters, ReLU, Max Pool]
- 2 standard fully connected layers
- 1 fully connected sigmoid to 164 outputs, representing probabilities for eh cell type.

Data, Loss Function, and Optimizations

- Example dataset: about 2 million examples total
- about 70,000 reserved for testing, another 70,000 for validation

- Cross entropy loss function
- Initialization
- Stochastic gradient descent for all parameters
- RMSprop updates with mini-batches
- Dropout regularization
- Early stopping

Results

Deep CNNs predict genome accessibility

Efficient Prediction using Pretraining

Efficient Prediction using Pretraining

B

	GPU	CPU
Full multi-task	85 h	-
Seeded single-task	18 m	6 h 37 m

Recovery of protein binding motifs

In silico saturation mutagenesis (ISSM) pinpoints nucleotides driving accessibility

Basset predicts greater accessibility changes for likely causal GWAS SNPs

 Genome-wide association studies (GWAS) have uncovered ample noncoding variants associated with physical traits and disease in human populations.

 A set of 7252 non-coding GWAS SNPs associated with auto-immune disease were analyzed with a statistical method called PICS

Basset predicts greater accessibility changes for likely causal GWAS SNPs

Basset predicts greater accessibility changes for likely causal GWAS SNPs

Discussion

- Basset is an open source package to apply deep CNNs to learn DNA sequence activity.
- Effectively learns the complex code of DNA accessibility across many cell types and substantially surpasses the predictive accuracy of the present state of the art.
- NNs trained via stochastic gradient descent scale very well to large data sets, allowing us to learn good parameters within a general and expressive model structure.
- Researcher can learn a cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility with just a single sequencing assay in their cell type of interest

Caveats

- TensorFlow is becoming the standard for Neural Network development and Basset does not use it.
- Only trained on DNase-seq data which doesn't capture epigenetic effects

 Realistically, the results are still a very far away from achieving informing personalized medicine.

Questions?