Date: 30 November 2024

CSP 571: DPA – Project Report

Title: Chicago Crime Analysis and Predictive Modeling

Link: https://github.com/tanmayypramanick/Chicago-Crime-Analysis-and-Predictive-Modeling

1. Introduction

Every city faces unique challenges when it comes to crime, and Chicago is no different. This project dives into **Chicago's crime data** to uncover patterns and **predict the type of crime** based on **historical trends**. By leveraging machine learning, the goal is to analyse and forecast crime effectively, supporting public safety efforts and demonstrating how data science can be a powerful tool to tackle real-world urban challenges.

Why This Matters:

- Helps make communities safer by identifying areas prone to specific crimes.
- Shows how machine learning and data science can address urban problems in innovative ways.

2. Data Overview and Preparation

Dataset

The data for this project was sourced from the **Chicago Data Portal** using the **Socrata API**. Due to the large dataset size (over 1.9 GB), we worked with a sampled dataset of **100,000 records**. Each record provided valuable details like crime type, location, date, and additional features like FBI codes and community areas.

Preprocessing Steps

To prepare the dataset for analysis:

1. **Filtered Rare Classes**: Crime types with very few occurrences were removed to ensure consistent model performance.

Date: 30 November 2024

2. **Standardized Numeric Features**: Features like coordinates and community area codes were scaled using **StandardScaler**.

3. **Encoded Categorical Features**: Features such as crime descriptions were encoded with **OneHotEncoder**, resulting in a dataset with **5,000 rows and 20,003 features**.

3. Data Visualization and Exploration

To better understand the dataset and its patterns, we explored the data using visual tools:

Key Insights

1. **Top Crime Types**: Theft and battery were the most frequently reported crimes, as shown in a bar chart.

2. **Geospatial Analysis**: Crimes were mapped to Chicago's community boundaries, revealing clusters of criminal activity in specific neighborhoods.

Visualization Highlights

- A **correlation heatmap** helped identify relationships between community areas and crime types.
- A **crime map overlay** showed which areas were most affected, providing actionable insights for public safety planning.

Key Steps:

- **Dimensionality Reduction:** Applied techniques such as t-SNE, UMAP, and PCA to visualize high-dimensional data.
 - o **PCA**: Highlighted variance across features to reduce noise.
 - t-SNE/UMAP: Clustered data into visually interpretable segments to detect similarities.

Date: 30 November 2024

Unsupervised Learning Techniques:

- K-Means Clustering: Identified crime hotspots based on crime type and location.
- Hierarchical Clustering: Visualized nested groupings of community areas with high crime rates.
- Agglomerative Clustering: Explored subgroup relationships among crime types.

4. Methodology

Date: 30 November 2024

4.1. Model Selection and Cross-Validation

We used the **Random Forest Classifier** as our baseline model because of its accuracy and ability to handle high-dimensional data.

• Cross-Validation: Used StratifiedKFold to ensure balanced splits of the data, achieving a baseline accuracy of 99%.

4.2. Hyperparameter Tuning

To further improve the model, we optimized key parameters such as n_estimators, max_depth, and min_samples_split using **GridSearchCV**.

Best Model Parameters:

o max_depth: None

n_estimators: 50

o min_samples_split: 5

• Validation Accuracy: 99.5%.

5. Results and Insights

Performance

- Overall Accuracy: Achieved 99% accuracy across multiple experiments.
- Misclassifications: Out of 1,000 validation samples, only 5 were misclassified. These typically occurred in closely related crime categories like Stalking being predicted as Assault.

Feature Importance

Analyzing feature importance revealed that FBI codes and community area information were the most influential factors in predicting crime types.

Visualizations

1. A **confusion matrix** showed excellent model performance, with most crimes accurately predicted.

2. A **feature importance chart** highlighted key predictors, helping interpret the model results.

6. Experiments and Improvements

Date: 30 November 2024

Experiment 1: Feature Selection

We used Random Forest to identify and retain the most important features. This reduced noise and improved interpretability while maintaining high accuracy (99.4%).

Classification Report with Feature	o soloction.			
classificación Report With Feature	precision	recall	f1-score	support
ARSON	1.00	1.00	1.00	2
ASSAULT	0.99	1.00	0.99	- 85
BATTERY	1.00	1.00	1.00	202
BURGLARY	1.00	1.00	1.00	46
CRIM SEXUAL ASSAULT	0.00	0.00	0.00	1
CRIMINAL DAMAGE	1.00	1.00	1.00	114
CRIMINAL SEXUAL ASSAULT	0.88	1.00	0.93	7
CRIMINAL TRESPASS	1.00	1.00	1.00	25
DECEPTIVE PRACTICE	1.00	1.00	1.00	75
HOMICIDE	1.00	1.00	1.00	2
INTERFERENCE WITH PUBLIC OFFICER	1.00	0.80	0.89	5
KIDNAPPING	0.00	0.00	0.00	1
LIQUOR LAW VIOLATION	1.00	1.00	1.00	1
MOTOR VEHICLE THEFT	1.00	1.00	1.00	38
NARCOTICS	1.00	1.00	1.00	40
OFFENSE INVOLVING CHILDREN	0.91	0.91	0.91	11
OTHER OFFENSE	0.97	1.00	0.98	61
PROSTITUTION	1.00	1.00	1.00	1
PUBLIC PEACE VIOLATION	0.91	1.00	0.95	10
ROBBERY	1.00	1.00	1.00	34
SEX OFFENSE	1.00	0.75	0.86	4
accuracy			0.99	1000
macro avg	0.86	0.85	0.85	1000
weighted avg	0.99	0.99	0.99	1000

Experiment 2: Regularization

To address potential overfitting:

- 1. **Lasso (L1)** selected only the most relevant features by shrinking irrelevant ones to zero.
- 2. Ridge (L2) reduced overfitting while preserving all features.
- Both models achieved **100% validation accuracy**, showing the effectiveness of regularization techniques.

Date: 30 November 2024

Validation Accuracy (Lasso): 1.00				
Classification Report (Lasso):				
classificación report (casso).	precision	recal1	f1-score	support
	p. cc1515		.1 555. 5	очерог с
ARSON	1.00	1.00	1.00	2
ASSAULT	0.99	1.00	0.99	85
BATTERY	1.00	1.00	1.00	202
BURGLARY	1.00	1.00	1.00	46
CRIM SEXUAL ASSAULT	0.00	0.00	0.00	1
CRIMINAL DAMAGE	1.00	1.00	1.00	114
CRIMINAL SEXUAL ASSAULT	0.88	1.00	0.93	7
CRIMINAL TRESPASS	1.00	1.00	1.00	25
DECEPTIVE PRACTICE	1.00	1.00	1.00	75
HOMICIDE	1.00	1.00	1.00	2
INTERFERENCE WITH PUBLIC OFFICER	1.00	1.00	1.00	5
KIDNAPPING	0.00	0.00	0.00	1
LIQUOR LAW VIOLATION	1.00	1.00	1.00	1
MOTOR VEHICLE THEFT	1.00	1.00	1.00	38
NARCOTICS	1.00	1.00	1.00	40
OFFENSE INVOLVING CHILDREN	1.00	0.91	0.95	11
OTHER OFFENSE	0.97	1.00	0.98	61
PROSTITUTION	1.00	1.00	1.00	1
PUBLIC PEACE VIOLATION	1.00	1.00	1.00	10
ROBBERY	1.00	1.00	1.00	34
SEX OFFENSE	1.00	1.00	1.00	4
accuracy			1.00	1000
macro avg	0.87	0.87	0.87	1000
weighted avg	0.99	1.00	0.99	1000

7. Challenges and Future Work

Challenges

- **High Dimensionality**: Handling over 20,000 features required careful preprocessing and feature selection.
- Class Imbalances: Rare crimes like Stalking or Kidnapping had very few examples, impacting model predictions for those categories.

Future Directions

- **Real-Time Predictions**: Extend the model to analyze incoming crime reports in real time.
- **Temporal Insights**: Incorporate time-based trends (e.g., day vs. night crimes) to improve accuracy.

Date: 30 November 2024

• **Deep Learning Models**: Experiment with neural networks for further performance improvements.

8. Conclusion

This project demonstrated how machine learning can effectively analyze and predict crime patterns in a large urban dataset. The results not only provide actionable insights for public safety but also highlight the power of data science in addressing real-world challenges.

By leveraging crime data, geospatial analysis, and machine learning, we take a step closer to smarter, safer cities.