UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autor: Adrián Aguilera Moreno

Autómatas y Lenguajes Formales

Tarea 3

1. Diseña una máquina de Turing que reconozca el lenguaje

$$\{\alpha\alpha\alpha|\alpha\in\in\{a,b\}^*\}$$

A continuación se diseña una máquina de Turing que cumple los requerimientos:

$$\vdash (,,\rightarrow) | (,,\rightarrow) | (,,\rightarrow) \dashv$$

$$\vdash (a,a,\rightarrow) | (a,a,\rightarrow) | (a,a,\rightarrow) | (a,a,\rightarrow) | (a,a,\rightarrow) \dashv$$

de esta manera se acepta la división de la cadena original en tres cadenas y la máquina de Turing verifica que estos segmentos sean los mismos. \Box

2. Demuestra (sin utilizar el teorema de Rice) que el conjunto

$$REG = \{ \langle M \rangle | L(M) \text{ es regular} \}$$

no es recursivamente enumerable y tampoco lo es su complemento. Sugerencia: \emptyset y Σ^* son regulares.

Desmotración: Analicemos 2 posibles casos:

1. [REG no es r.e.] Para este caso realicemos la reducción

$$\sim HP \leq_m REG$$

como consecuencia de lo anterior se tiene que existe una función computable σ , tal que si

$$\langle M \rangle \# \langle \alpha \rangle \in \sim HP \Leftrightarrow \sigma (\langle M \rangle \# \langle \alpha \rangle) \in REG$$

entonces, definimos a σ como

1: $\sigma(M, \alpha)$ computable

Input: $M \in TM$ y $\alpha \in \Sigma^*$.

Output: Una $M' \in TM$ que simula a M.

- 1 Sea $M'(\beta)$: simulación de $M(\alpha)$;
- 2 if $\beta = 0^n 1^n$ then
- 3 | termina y acepta;
- 4 end
- 5 termina y rechaza;
- 6 return M';

ahora, analicemos dos posibles casos:

 \Rightarrow) En este caso, si M no se detiene con la cadena α , tenemos entonces

$$\langle M \rangle \# \langle \alpha \rangle \in \sim HP \implies M'$$
 solo puede recibir a la cadena $\alpha = \emptyset$.
 $\Rightarrow L(M') = \emptyset \in REG$.

de lo anterior se cumple la ida de la demostración.

←) En este caso particular, procedamos por contrapositiva, esto es

$$\begin{split} \langle M \rangle \# \langle \alpha \rangle \not \in & \sim HP \quad \Rightarrow \quad M \text{ se detiene con } \alpha. \\ & \Rightarrow \quad \text{por } \sigma \text{ y la línea 2 del algoritmo, } \beta = 0^n 1^n. \\ & \Rightarrow \quad L(M') = \{0^n 1^n\} \not \in REG. \end{split}$$

la última implicación se sigue del **Lema del Bombeo** [demostración hecha en clase]. Como tomamos la contrapositiva, esto es equivalente a

$$\sigma\left(\langle M \rangle \# \langle \alpha \rangle\right) \in REG \Rightarrow \langle M \rangle \# \langle \alpha \rangle \in \sim HP.$$

del análisis anterior podemos concluir que

$$\sim HP \leq_m REG$$

son reducibles. Como $\sim HP$ no es semidecidible, y esto a su vez implica que no es recursivamente enumerable. Entonces REG no es recursivamente enumerable.

2. [$\sim REG$ no es r.e.] Para este caso realicemos la reducción

$$\sim HP \leq_m \sim REG$$

de esto se sigue que, existe una función computable δ tal que

$$\langle M \rangle \# \langle \alpha \rangle \in \sim HP \Leftrightarrow \delta (\langle M \rangle \# \langle \alpha \rangle) \in \sim REG$$

entonces, definimos δ tal que

2: $\delta(M,\alpha)$ computable

Input: $M \in TM \text{ y } \alpha \in \Sigma^*$.

Output: Una $M' \in TM$ que simula a M.

- 1 Sea $M'(\beta)$;
- 2 if $\beta = 0^n 1^n$ then
- **3** termina y acepta;
- 4 end
- $\mathbf{5}$ simulación de $M(\alpha)$;
- 6 termina y rechaza;
- 7 return M';

ahora, analicemos dos posibles casos:

 \Rightarrow) En este caso, si M no se detiene con la cadena α , tenemos entonces

$$\begin{split} \langle M \rangle \# \langle \alpha \rangle \in & \sim HP \quad \Rightarrow \quad \beta = 0^n 1^n. \\ & \Rightarrow \quad L(M') = \{0^n 1^n\} \notin REG \\ & \Rightarrow \quad L(M') \in & \sim REG. \end{split}$$

la penúltima implicación se sigue del Lema del Bombeo [demostración hecha en clase].

←) En este caso particular, procedamos por contrapositiva, esto es

$$\begin{split} \langle M \rangle \# \langle \alpha \rangle \in \ HP & \Rightarrow \quad M \text{ se detiene con } \alpha. \\ & \Rightarrow \quad \text{por } \sigma \text{ y las líneas 5 y 6 del algoritmo aceptan } \Sigma^*. \\ & \Rightarrow \quad L(M') \in REG. \end{split}$$

Como tomamos la contrapositiva, esto es equivalente a

$$\sigma(\langle M \rangle \# \langle \alpha \rangle) \in \sim REG \Rightarrow \langle M \rangle \# \langle \alpha \rangle \in \sim HP.$$

del análisis anterior podemos concluir que

$$\sim HP \leq_m \sim REG$$

son reducibles. Como $\sim HP$ no es semidecidible, y esto a su vez implica que no es recursivamente enumerable. Entonces $\sim REG$ no es recursivamente enumerable.

3. Demuestra ahora que REG no es ni siquiera recursivamente enumerable por medio de uno de los teoremas de Rice.

Demostración: Por el 2^{do} teorema de Rice tenemos que para una propiedad no trivial de lenguajes recursivamente enumerables NO monótona, la propiedad no es siquiera semidecidible.

Recordemos que, con refrente a la clasificación de propiedades monótonas, la propiedad de ser regular no es monótona. De lo anterior y por el 2^{do} teorema de Rice, se sigue que REG no es siquiera semidecidible.

Sabemos que una propiedad es semidecidible si y sólo si es recursivamente enumerable. Como REG no es siquiera semidecidible, concluimos por transatividad que

 \therefore REG no es siguiera recursivamente enumerable.

4. Demuestra que los lenguajes decidibles son cerrados bajo unión y concatenación.

Demostración: Para este ejercicio, analicemos dos posibles casos:

Cerradura bajo unión:

Sean dos lenguajes cualesquiera L,L' decidibles, y M,M' máquinas de Turing totales tales que

$$L(M) = L$$
 y $L(M') = L'$

tomemos un elemento en

$$x \in L \cup L'$$

y observemos que $x \in L$ o $x \in L'$, si $x \in L$ entonces esta en un lenguaje decidible y por tanto x es decidible. Si $x \in L'$, entonces esta en un lenguaje decidible y nuevamente x es decidible.

: {Lenguajes decidibles} son cerrados bajo unión.

 \blacksquare Sean dos lenguajes cualesquiera L,L' decidibles, y M,M' máquinas de Turing totales tales que

$$L(M) = L$$
 y $L(M') = L'$

tomemos

$$x \in L$$
 y $x' \in L'$

y notemos que $xx' \in LL'$, pero xx' es una cadena aceptada por $N \in TM$ tal que N es de dos cintas donde una de las cintas es la simulación de M y otra cinta es M', entonces basta con recorrer y aceptar x con la primer cinta, caso análogo con x' pero con la segunda cinta. Luego, N(xx'), como N corresponde a dos cintas que previamente sabiamos que generaban un lenguaje decidible, entonces podemos concluir que xx' son parte de un lenguaje decidible y como

$$xx' \in LL'$$

entonces, LL' es decidible.