10. SHAFTS

SHAFT: A Shaft is a cylindrical machine element which is used to support the transmission elements for the transmission of power. Shafts are made of ductile material.

Power Transmitting Elements: 1) Gear, 2) Sprocket, 3) Pully

TYPES OF SHAFT			
Stationary Shaft	Rotating Shaft		
1. Axle: Shaft At rest. Subjected to bending. Zero	1. Counter Shaft: Opposite Direction Motion		
Twisting.	2. Jack Shaft:		
	3. Spindly: Short in length.		

SHAFTS SUBJECTED TO DIFFERENT LOADS:

Loading Condition	Solid Shaft	Hollow Shaft
Axial Loading	$\sigma_a = \frac{F}{(\pi/4)d^2}$	$\sigma_a = \frac{F}{(\pi/4)(d_o^2 - d_i^2)}$
Bending Moment	$\sigma_b = \frac{32 M}{\pi d^3}$	$\sigma_b = \frac{32 M}{\pi d_o^3 (1 - K^4)}, K = \frac{d_i}{d_o}$
Twisting Moment	$\tau = \frac{16T}{\pi d^3}$	$\tau = \frac{16 T}{\pi d_o^3 (1 - K^4)}, K = \frac{d_i}{d_o}$
Where, d = Shaft Diameter	d_o = Outer Diameter of Shaft	d_i = Inner Diameter of Shaft

DESIGN OF SHAFT

UNI-DIRECTIONAL LOADING			
Pure Normal Stress Condition Design	Pure Shear Stress Condition Design		
$\max\{\sigma_a, \sigma_b, \sigma_a \pm \sigma_b\} = \sigma_{yt}/FOS$	$\tau = \tau_{yt}/FOS$		
BI-DIRECTIONAL LOADING			

1. Strength Based Design:

 $\sigma_x = \sigma_a$ (Axial) or σ_b (Bending) or $\sigma_a \pm \sigma_b$ (Combined) And $\tau_{xy} = \tau$

MPST	MSST	DET
$\max\{\sigma_1, \sigma_2, \sigma_3\} = \sigma_{yt}/FOS$	$\max\{\tau_{12}, \tau_{23}, \tau_{31}\} = \tau_{yt}/FOS$	$\sqrt{\sigma_x^2 + 3\tau_{xy}^2} = \sigma_{yt}/FOS$
$M_{eq} = \frac{1}{2} \Big[M + \sqrt{M^2 + T^2} \Big]$	$T_{eq} = \sqrt{M^2 + T^2}$	

Stiffness Based Design:

$$\theta \leq \theta_{permissible}$$
, where, $\theta = \frac{TL}{GJ}$

ASME THEORY:

For No Keys,
$$\tau_{yt} = 0.3 \ \sigma_{yt}, for \ Ductile \ material$$

$$T_{eq} = \sqrt{(K_b \ M)^2 + (K_t T)^2}$$

$$K_b \ \text{and} \ K_t \ \text{represents combined shock and fatigue load factors in bending and twisting.}$$
 For No Keys,
$$\tau_{yt} = 0.3 \ \sigma_{yt}, for \ Ductile \ material$$
 For No Keys,
$$\tau_{yt} = 0.18 \ \sigma_{ut}, for \ Brittle \ material$$
 For No Keys,
$$\tau_{yt} = \tau_{yt \ With \ Keys}$$