

Stereolithography

Vat photopolymerization (VP)

- Also known as Stereolithography (SL) and Stereography.
- Earliest form of AM (80's)
- All AM processes which involve solidification of liquids (raw material) are based on photo-polymerization
- Components are produced by a localized photopolymerization process –
 (hardening/curing) by UV/visible light of a bath of liquid resins (monomers, photoinitiators)
- Parts are usually cured up to 80%. Post processing for full hardening.
- Photopolymers were invented in 60's. Widely used in coating, printing, dentistry etc.
- Various VP technologies exist arrangement of their components, such as light source, build platform, curing direction, and resin tank.

VP – Photopolymerization

- Thermoplastic polymers (FDM) have a linear or branched molecular structure.
- In contrast, SL photopolymers (thermosetting polymer) are crosslinked, do not melt and exhibit much less creep and stress relaxation.
- SL photopolymers consists of photoinitiators, stabilizers, liquid monomers etc.
- Once the SL resin is irradiated with UV light, photoinitiators become reactive and react with the liquid monomer to form a polymer chain.
- Subsequent reactions occur to build polymer chain and cross linking occurs → strong covalent bond formation b/w polymer chains

Photopolymerization contd...

- Polymerization is the term used to describe the process of linking small molecules (monomers) into larger molecules (polymers) composed of many monomer units.
- The first SL resins were acrylates based.
 - Weak parts were produced due to shrinkage (5 20 %) and curling issues.
 - Curing of 46% only.
 - Partially cured layer undergoes additional crosslinking under laser irradiation, which leads to additional shrinkage and stresses.
 - Partially cured layer is not inhibited to atmospheric oxygen, i.e, extensive crosslinking.
- Later, epoxide based SL resins were invented.
 - More accurate, stronger and harder.
 - Lesser shrinkage (1–2 %).
 - Slow photospeed and brittleness of the cured parts.
 - Sensitive to humidity, which can inhibit polymerization.
- Most commercial SL resins are epoxides with some acrylate content.

Photopolymerization contd...

Molecular structure of SL monomers

Point-by-point approach

 A fine laser beam forms the contour of the respective cross section on the surface of a resin bath and generates locally the critical energy density that is required for the polymerization and thus the desired solidification.

Point-by-point scanning

SLA printer prints a layer between the build platform and the vat (a & b), raises the platform and resets the liquid using the sweeper (c), and then lowers the part back down to print another layer (d)

Point-by-point approach

- In the two photon approach, photopolymerization occurs at the intersection of two scanning laser beams. Femtosecond laser pulses with a very small spot size are used.
- A very high resolution is possible (sub 100 nm!)

Two-photon approach

Mask projection

- Or layer wise approaches, irradiate entire layers at one time
- DMD (digital micromirror device), an array of several millions of mirrors can be controlled independently to produce mask patterns
- Sub micrometer resolution is possible. Very fast.

Digital Light Processing (DLP)

- 1. Expose resin to UV light.
- 2. The cured part mechanically moved either to separate from the surface of resin vat (for bottom-up systems) or to lower into the resin (for top-down systems) for resin renewal.
- 3. Re-positioning.

Not a continuous process!

Printing speed is restricted to a few millimetres per hour

VP - CLIP

- CLIP (continuous liquid interface production)
 - Patented by Carbon.
 - Oxygen permeable window creates a thin oxygenated resin layer, where polymerization does not occur. Incredible!

Digital Light Synthesis (DLS)

Vat Photopolymerization (VP)

- High Resolution
- Surface finish
- Clear parts possible
- UV degradation (limits life)
- Limited performance (brittle)

Vat Photopolymerization (VP)

Manufacturers

SLA

- 3D systems
- FormLabs

DLP

 Envision Tec (now Desktop Metal)

DLS

Carbon

Materials

Class	Key characteristics
Standard	Smooth surface finishBrittle
Translucent	• Clear
Tough/Durable	ABS-like or PP-like
High Temperature	Useful for injection molding & thermoforming tooling
Dental	BiocompatibleAbrasion resistantHigh cost
Flexible	Rubber-like
Ceramic precursors	Print is followed by pyrolysis

Material Jetting

Material Jetting

- Droplets of feedstock material are selectively deposited.
- A print head, similar to that of an inkjet printer is used.
- Liquid photopolymer materials are deposited drop by drop (spray) for each slice of the model.
- A UV light source, attached on the print head, cures the deposited droplets as it passes over them.
- Print head deposits both the part and the support material.

A schematic representation of material jetting printer

Material Jetting

- High resolution parts are possible.
 Layer thickness ~ 16 µm. Most accurate.
- 100's of nozzles. Nozzle diameter
 70 μm (or less!)
- Multi-material printing is possible.
- Plastic-like, elastomeric materials.
 Wax for investment casting.
- No UV post-processing.
- Applications restricted to color models and ones that are not subject to heavy loads such as molds.
 - Low mechanical and thermal performance of the photopolymer inks.

Material Jetting – Applications

For prototyping

 Most applications, and one of the favourite technologies for cosmetic prototypes (together with vat photopolymerization) because of the high level of detail and surface quality.

For production

- Applications where the product will not be exposed to ambient UV for extended periods (Hearing aids, for example).
- Investment casting patterns.
- For short-run injection molding tools.

Left – part with support. Right – wax ring

Metal part created by material jetting