- 1. V o F. Justifique.
 - (a) Sea $\mathcal{P} \in \text{Pro}^{\Sigma}$. Entonces Im $\Psi_{\mathcal{P}}^{1,0,\omega} = \text{Im} \left(E_{\#1}^{1,0} \circ (p_1^{2,0}, p_2^{2,0}, C_{\mathcal{P}}^{2,0}) \right)$.
 - (b) Si $f: D \subseteq \omega \to \omega$ es tal que f(x) = x para todo $x \in D$, entonces f es Σ -computable.
 - (c) Sea $f: D \subseteq \omega \to \omega$ una función Σ -computable y sean $a, b \in D$. Sea $g: D \subseteq \omega \to \omega$ definida por g(a) = 0, g(b) = 1 y g(x) = f(x) para $x \in D \{a, b\}$. Entonces g es Σ -computable.
- 2. Dar un programa $Q \in \operatorname{Pro}^{\Sigma_p}$ tal que $\operatorname{Dom}(\Psi_Q^{1,0,\Sigma_p^*}) = \omega$ e $\operatorname{Im}(\Psi_Q^{1,0,\Sigma_p^*})$ sea el conjunto

$$\{\mathcal{P} \in \operatorname{Pro}^{\Sigma_p} \mid \text{hay } n \geq 4 \text{ tal que } n^3 \in \operatorname{Im} \Psi_{\mathcal{P}}^{0,1,\omega} \}.$$

3. Si $S \subseteq \{\$,!\}^*$ es $\{\$,!\}$ -r.e. entonces $T = \{n \in \omega \mid \text{hay } \alpha \in S \text{ tal que } n \text{ divide a } |\alpha|\}$ también es $\{\$,!\}$ -r.e.

Para cada macro usado en (2) y/o (3) dar el predicado o la funcion asociada dependiendo si es un macro de tipo IF o de asignacion.