Вычисление определённого интеграла.

1. Вычислить интеграл как предел интегральной суммы:

$$a)\int_{1}^{2}x^{3}dx; \quad b)\int_{0}^{1}e^{x}dx.$$

2. Вычислите предел:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{k^2 + n^2}.$$

3. Вычислите интегралы:

a)
$$\int_{1}^{2} \ln x dx$$
; b) $\int_{e}^{e^{2}} \frac{1}{x \ln x} dx$; c) $\int_{-2\sqrt{3}}^{2} \frac{dx}{(4+x^{2})^{2}}$;
d) $\int_{0}^{2\pi} \frac{1}{2-\sin x} dx$; e) $\int_{-3}^{3} \sin x \cdot e^{-x^{2}} dx$; f) $\int_{0.1}^{10} \frac{\ln x}{1+x^{2}} dx$.

4. Найти площадь фигуры, ограниченной кривыми:

a)
$$y = \frac{1}{x}$$
, $y = 0$, $x = a$, $x = b$, $0 < a \le b$;
b) $y = |x^3|e^{-x^2}$, $y = 0$, $|x| = a$, $a > 0$;
c) $x^2 + y^2 = 2$, $y^2 = 2x - 1$ $x \ge 1/2$;
d) $y = \ln(x+6)$, $y = 3\ln x$, $x = 0$, $y = 0$.

Домашнее задание

1. Вычислить интеграл как предел интегральной суммы:

$$a)\int\limits_{1}^{2}rac{1}{x^{2}}dx;\quad b)\int\limits_{1}^{e}\ln xdx.$$

2. Вычислите пределы:

a)
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{k(n-k)}, \quad b) \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right).$$

3. Вычислите интегралы:

a)
$$\int_{0}^{2\pi} \sin^{4}x dx$$
; b) $\int_{0}^{1} \frac{x^{2}}{1+x^{6}} dx$; c) $\int_{\pi/4}^{\pi/3} \frac{x}{\sin^{2}x} dx$;
d) $\int_{0}^{\sqrt{3}} x \arctan x dx$; e) $\int_{1/3}^{3} \frac{\arctan x}{x^{2}-x+1} dx$; f) $\int_{0}^{2\pi} \frac{dx}{4+\cos^{2}x} dx$.

4. Найти площадь фигуры, ограниченной кривыми:

a)
$$y = 6x^2 - 6x + 1$$
, $y = \cos \pi x$, $0 \le x \le 1/2$;
b) $y = x^2/2$, $y = 1/(1+x^2)$;
c) $x^2 + y^2 = 4$, $2y = x^2$, $2y \ge x^2$;
d) $y = x^2$, $y = x^2 + x - 1$, $y = 5x/2$, $y \le x^2$;
e) $y^2 = \sin^2 x \cos x$, $-\pi/2 \le x \le \pi/2$.

Задачи для самостоятельного решения

1. Вычислите пределы:

a)
$$\lim_{n \to \infty} \sqrt[2^n]{\prod_{k=1}^{2^n} \left(1 + \frac{k}{2^n}\right)};$$
 b) $\lim_{n \to \infty} \sum_{k=1}^{n-1} \left(1 + \frac{k}{n}\right) \sin \frac{k\pi}{n^2}.$

2. Выяснить, какой интеграл больше:

a)
$$\int_{0}^{\pi/2} \frac{\sin x}{x} dx$$
 unu $\int_{0}^{\pi} \frac{\sin x}{x} dx$; b) $\int_{0}^{1} e^{-x} \sin x dx$ unu $\int_{0}^{1} e^{-x^{2}} \sin x dx$.

3. Доказать неравенства:

$$a) \ 0 < \int_{0}^{\pi} \frac{\sin x}{\sqrt[5]{x^{2} + 2}} dx < \frac{\pi}{\sqrt[5]{2}}; \quad b) \ \frac{\sqrt{2}}{3} < \int_{-1}^{1} \frac{\cos x}{2 + x^{2}} dx < 1;$$

$$c) \ \frac{1}{10\sqrt{2}} < \int_{0}^{1} \frac{x^{9}}{\sqrt{1 + x}} dx < \frac{1}{10}; \quad d) \ 1 - \frac{1}{n} < \int_{0}^{1} e^{-x^{n}} dx < 1;$$

$$e) \ \sin 1 < \int_{-1}^{1} \frac{\cos x}{1 + x^{2}} dx < 2 \sin 1; \quad f) \ \frac{2}{\pi} < \int_{0}^{1} e^{-x^{n}} dx < 1;$$

- 4. Построить функцию:
 - ullet Не интегрируемую на отрезке, чей квадрат интегрируем на отрезке;
 - Непрерывную в точке, но не интегрируемую ни на одном отрезке, содержащем эту точку.
- 5. Доказать, что для любой непрерывной на отрезке [0;1] функции выполняются равенства:

a)
$$\int_{0}^{\pi/2} f(\sin x) dx = \int_{0}^{\pi/2} f(\cos x) dx;$$
 b) $\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) dx.$

Используя результат, полученный в пункте a), вычислите $\int_{0}^{\pi/2} \ln(\sin x) dx$.

6. Вычислите интегралы:

a)
$$\int_{0}^{1} \arccos x dx$$
; b) $\int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx$; c) $\int_{0}^{\sqrt{3}} x \arctan x dx$;
d) $\int_{1}^{2} \frac{e^{1/x^{2}}}{x^{3}} dx$; e) $\int_{0}^{\pi/2} \frac{1}{1 + \sin x + \cos x} dx$; f) $\int_{0}^{e} \sin \ln x dx$;
g) $\int_{0}^{2\pi} \frac{1}{\sin^{6} x + \cos^{6} x} dx$; h) $\int_{0}^{1} x \arctan^{2} x dx$.

7. Найти площадь фигуры, ограниченной кривыми:

a)
$$y = \frac{a^2}{\sqrt{a^2 - x^2}}$$
, $y = 2a$, $a > 0$;
b) $y = \tan x$, $y = \frac{2}{3}\cos x$, $x = 0$;
c) $y = \sin^3 x + \cos^3 x$, $y = 0$, $-\pi/4 \le x \le \pi/4$;
d) $x = y^2(y - 1)$ $x = 0$;
e) $\sqrt{x} + \sqrt{y} = 2$ $x = y^2$, $y = 0$;
f) $a^4y^2 = (a^2 - x^2)^3$.

8. Используя рекуррентное соотношение для вычисления I_n , вычислите интеграл

$$I_n = \int_{0}^{\pi/2} \sin^n x dx, \quad n \in \mathbb{N}.$$