Convexité

Hamza Ennaji

5 mars 2024

1 Ensembles convexes

Définition 1. Soit $C \subset \mathbb{R}^n$. On dit que C est convexe si pour tout $x, y \in C$ et tout $\lambda \in [0, 1]$, $\lambda x + (1 - \lambda)y \in C$.

Remarque. La définition est équivalent à dire que le ségment $[x, y] \subset C$. La Figures-1 illustre quelques exemples d'ensembles convexes et non-convexes.

Fig. 1 : La Figure-1a des ensembles convexes de \mathbb{R}^2 . Tandis que Figure-1b montre des examples de d'ensembles non convexes.

Exemple (Voir Td). *Voici quelques exemples d'ensembles convexes :*

• Les boules (ouvertes, fermées) :

$$B(a,r) = \{x \in \mathbb{R}^n : ||x-a|| < r\} \text{ et } B(a,r) = \{x \in \mathbb{R}^n : ||x-a|| \le r\}$$

 $avec \ a \in \mathbb{R}^n, r > 0.$

• Les hyperplans :

$$H = \{x \in \mathbb{R}^n : a^T x = b\}, a \in \mathbb{R}^n, b \in \mathbb{R}.$$

• Les demis-plans, les ellipsoïdes etc.

Proposition 1 (Intersection de convexes). *Soient* $C_i \in \mathbb{R}^n$ *avec* $i \in I$, *des ensembles convexes, alors* $C \stackrel{def}{=} \cap_{i \in I} C_i$ *est convexe.*

Preuve 1. Laissée en exercice.

Remarque. Dans la Proposition-1, on remarque que l'ensemble des indices I est quelconque, i.e., possiblement infini.

Le résultat suivant récapitule quelques opérations préservant la convexité.

Théorème 1. 1. Soient C_1, \ldots, C_m des convexes de \mathbb{R}^n et $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$, alors

$$\sum_{i=1}^{m} \lambda_i C_i = \left\{ \sum_{i=1}^{m} \lambda_i x_i : x_i \in C_i, \forall i = 1, \dots, m \right\}$$

est convexe.

2. Soient C_1, \ldots, C_m des convexes de \mathbb{R}^n , alors

$$\prod_{i=1}^{m} C_i = \left\{ (x_1, \dots, x_m) : x_i \in C_i, \ \forall i = 1, \dots, m \right\}$$

est convexe.

3. Si $C \subset \mathbb{R}^n$ est convexe et $A \in \mathbb{R}^{m \times n}$, alors

$$A(C) = \left\{ Ax : x \in C \right\}$$

est convexe.

Définition 2. Soient $x_1, \ldots, x_m \in \mathbb{R}^n$. Une combinaison convexe des x_i est un vecteur de la forme $\sum_{i=1}^m \lambda_i x_i$ avec $\lambda_i \geq 0$ pour tout $i = 1, \ldots, m$ et $\sum_{i=1}^m \lambda_i = 1$. On écrit $\lambda = (\lambda_1, \ldots, \lambda_m) \in \Delta_m$ où

$$\Delta_m = \left\{ \lambda = (\lambda_1, \dots, \lambda_m), \ \lambda_i \geq 0, \ \forall i = 1, \dots, m \ et \ \sum_{i=1}^m \lambda_i = 1 \right\}$$

•

Théorème 2. Soit $C \subset \mathbb{R}^n$ un convexe et $x_1, \ldots, x_m \in C$. Alors pour tout $\lambda \in \Delta_m$ on $a \sum_{i=1}^m \lambda_i x_i \in C$.

Preuve 2. Laissée en exercice.

Définition 3. Soit $S \subset \mathbb{R}^n$. On appelle enveloppe convexe de S, et on note Conv(S) l'ensemble des combinaisons convexes de S:

$$Conv(S) = \Big\{ \sum_{i=1}^{m} \lambda_i x_i : x_i \in S \ \forall i = 1, \dots, m \ et \ \lambda = (\lambda_1, \dots, \lambda_m) \in \Delta_m \Big\}.$$

Remarque. L'enveloppe convexe d'un ensemble S est le plus petit convexe qui le contient : $Si S \subset U$ avec U convexe alors $Conv(S) \subset U$.

Fig. 2: Exemple d'un ensemble non-convexe et son enveloppe convexe.

2 Fonctions convexes

Dans cette section, on considère un convexe C de \mathbb{R}^n .

Définition 4. On dit qu'une fonction $f: C \to \mathbb{R}$ est convexe si

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
, pour tout $x, y \in C, \lambda \in [0, 1]$.

On dira que f est strictement convexe si

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$
, pour tout $x \neq y \in C, \lambda \in (0, 1)$.

On dira que f est concave si - f est convexe.

Exemple (Voir Td). *Voici quelques examples de fonctions convexes :*

- Les normes : $f(x) = ||x|| sur \mathbb{R}^n$.
- Les fonctions affines : $f(x) = a^T x + b$, $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$.

Fig. 3 : Illustration de l'inégalité de convexité dans la Définition-4

• La fonction $f(x) = -\log(x)$.

D'après la Définition-4, une fonction f est convexe si l'image par f, d'une combinaison convexe de deux points x et y, par f est plus petite que la combinaison convexe des valeurs f(x) et f(y). Cette propriété s'étant à la combinaison convexe de n'importe quel nombre de vecteurs.

Théorème 3 (Inégalité de Jensen). *Soit* $f: C \to \mathbb{R}$ *une fonction convexe. Alors pour tout* $x_1, \ldots, x_m \in C$ *et* $\lambda \in \Delta_m$:

$$f\left(\sum_{i=1}^{m} \lambda_i x_i\right) \le \sum_{i=1}^{m} \lambda_i f(x_i).$$

Preuve 3. Par récurrence. Laissée en exercice.

Le résultat suivant récapitule quelques opérations préservant la convexité de fontions.

Théorème 4. 1. Soit f une fonction convexe sur C et $\alpha \in \mathbb{R}^+$. Alors αf est convexe sur C.

- 2. Soient f_1, \ldots, f_m des fonctions convexes sur C. Alors $\sum_{i=1}^m f_i$ est convexe sur C.
- 3. Soient f_1, \ldots, f_m des fonctions convexes sur C. Alors $f = \sup_{i=1,\ldots,m} f_i$ est convexe sur C.
- 4. Si $f: C \to \mathbb{R}$ est convexe et $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$. Alors f(Ax + b) est convexe sur

$$D=\{y\in\mathbb{R}^m:\,Ay+b\in C\}.$$

3 CARACTÉRISATION DES FONCTIONS CONVEXES DIFFÉRENTIABLES

Fig. 4 : Convexité du la fonction sup de trois fonctions f_1 , f_2 , f_3 .

3 Caractérisation des fonctions convexes différentiables

Théorème 5. Soit $f: C \to \mathbb{R}$ une fonction différentiable. Les propriétés suivantes sont équivalentes

- 1. fest convexe.
- 2. $f(y) \ge f(x) + \nabla f(x)^T (y x)$ pour tout $x, y \in C$.
- 3. Monotonie du gradient : $\left(\nabla f(x) \nabla f(y)\right)^T (y x) \ge 0$ pour tout $x, y \in C$.

Quand la fonction est deux fois différentiable, alors la convexité de f est équivalente au fait que la matrice Hessienne est semi-définie positive.

Théorème 6. Soit f une fonction deux fois différentiable sur un ouvert convexe C de \mathbb{R}^n alors f est convexe si et seulement si $\nabla^2 f(x) \geq 0$ pour tout $x \in C$.

Remarque. Dans le Théorème-6, $\nabla^2 f(x) \ge 0$ est à comprendre dans le sens : $u^T \nabla^2 f(x) u \ge 0$ pour tout vecteur u de \mathbb{R}^n .

Remarque. Jusqu'ici on a travaillé avec des fonctions f à valeurs dans \mathbb{R} . Les fonctions qu'on va rencontrer dans la pratique peuvent prendre des valeurs infinie. Il se trouve que la définition de convexité introduite précédemment marche aussi pour des fonctions à valeurs dans $\mathbb{R} \cup \{+\infty\}$. À cette définition, il faut rajouter les règles suivantes : $\alpha + \infty = \infty$ pour tout $\alpha \in \mathbb{R}$, $\alpha.\infty = \infty$ pour tout $\alpha > 0$ et $0.\infty = 0$. Cela revient à dire que que le domaine de f définie par

$$dom(f) = \{x \in \mathbb{R}^n : f(x) < \infty\},\$$

4 SOUS-ENSEMBLES DE NIVEAU DE FONCTIONS CONVEXES:

est convexe et que $f_{|dom(f)}$ est convexe. L'exemple typique de telles fonctions est l'indicatrice d'un ensemble $S \subset \mathbb{R}^n$ définie par

$$\delta_S(x) = \begin{cases} 0 & \text{si } x \in S, \\ +\infty & \text{sinon,} \end{cases}$$

et on peut démontrer que δ_S est convexe si et seulement si S est convexe.

Exemple (Voir Td). 1. $f(x) = \frac{1}{2}x^T Ax$ avec $A \in S^n$. Montrer que f est convexe si et seulement $si A \in S^n_+$.

2. On appelle fonction support ou d'appui de $S \subset \mathbb{R}^n$ la fonction

$$\sigma_S(x) = \sup_{y \in S} x^T y.$$

Montrer que σ_S est convexe.

3. Soit $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. On définit la conjuguée de f par

$$f^*(x) = \sup_{y} y^T x - f(y).$$

Montrer que f^* est convexe.

4 Sous-ensembles de niveau de fonctions convexes :

Définition 5. Soit $f:S\subset\mathbb{R}^n\to\mathbb{R}$ une fonction. Le sous-ensemble de f de niveau $\alpha\in\mathbb{R}$ est l'ensembles

$$Lev(f,\alpha)=\{x\in S:\, f(x)\leq \alpha\}.$$

On a le résultat suivant

Théorème 7. Soit $f: C \to \mathbb{R}$ une fonction convexe et avec C un ensemble convexe. Alors pour tout $\alpha \in \mathbb{R}$, l'ensembles $Lev(f, \alpha)$ est convexe.

Preuve 4. Laissée en exercice.

Remarque. La réciproque dans le Théorème-7 est fausse comme le montre la fonction $f(x) = \sqrt{|x|}$ (voir Figure-5) qui n'est pas convexe mais dont tout les sous-ensembles de niveau sont convexe. En effet, d'une part, pourt $\alpha < 0$, $\mathbf{Lev}(f, \alpha) = \emptyset$. D'autre part, pour $\alpha \ge 0$, on $\mathbf{Lev}(f, \alpha) = [-\alpha^2, \alpha^2]$ qui est convexe. Une telle fonction est dite quasi-convexe.

Définition 6. Soit $C \subset \mathbb{R}$ un convexe. On dit qu'une fonction $f: C \to \mathbb{R}$ est quasiconvexe si pour tout $\alpha \in \mathbb{R}$, l'ensemble $\mathbf{Lev}(f, \alpha)$ est convexe.

Fig. 5: $f(x) = \sqrt{|x|}$ comme exemple de fonction quasi-convexe.

5 Optimisation convexe

Pour finir ce chapitre, on va dégager quelques propriétés des problèmes d'optimisation convexe. Étant donné un convexe $C \subset \mathbb{R}^n$ et une fonction convexe on considère le problème de minimisation suivant

$$\min_{x \in C} f(x) \tag{1}$$

- 1. On dit que $x^* \in C$ est un minimum local de f sur C s'il existe r > 0 tel que $f(x^*) \le f(y)$ pour tout $y \in C \cap B_f(x^*, r)$.
- 2. On dit que $x^* \in C$ est un minimum global de f sur C si $f(x^*) \leq f(y)$ pour tout $y \in C$.

On a le résultat suivant :

Théorème 8. Soit $f: C \to \mathbb{R}$ une fonction convexe définie sur un convexe C. Soit $x^* \in C$ est un minimum local de f sur C. Alors x^* est un minimum global de f sur C

Preuve 5. Soit x^* un minimum local de f sur C, il existe alors r > 0 tel que $f(x^*) \le f(x)$ pour tout $y \in C$ avec $||x^* - x|| \le r$. Pour montre que $f(x^*) \le f(y)$ pour tout $y \in C \setminus \{x^*\}$, on considère un $\bar{x} = (1 - t)x^* + ty$ pour un certain $t \in (0, 1]$ de telle façon que $||\bar{x} - x^*|| \le r$. On peut prendre par exemple $t = r/||x^* - y||$. Comme x^* est minimum local, il sent suit, par convexité de f

$$f(x^*) \leq f(\bar{x}) = f(ty + (1-t)x^*) \leq tf(y) + (1-t)f(x^*),$$

soit $tf(x^*) \le tf(y)$ et donc $f(x^*) \le f(y)$.

De même on démontre que

Théorème 9. Soit $f: C \to \mathbb{R}$ une fonction strictement convexe définie sur un convexe C. Soit $x^* \in C$ est un minimum local de f sur C. Alors x^* est un minimum global stricte de f sur C.

Notation. On note par argmin f(x) (des fois S) l'ensemble des minimiseurs de f, i.e., les solutions de (1).

Théorème 10. Soit $f: C \to \mathbb{R}$ une fonction convexe, alors S est convexe. Si de f est strictement convexe, alors S contient au plus un élément.

Preuve 6. Si $S = \emptyset$, rient à démontrer. Sinon, soient $x, y \in S$ et $\lambda \in [0, 1]$. Alors

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda f^* + (1 - \lambda)f^* = f^*.$$

Ce qui prouve la convexité. Sinon, on peut remarquer que $S = \{x : f(x) \le f^*\} \cap C$. Maintenant, si f est strictement convexe et supposons qu'il existe $x, y \in S$ avec $x \ne y$. Par convexité de C on a $\frac{1}{2}x + \frac{1}{2}y \in C$ et par convexité de f:

$$f\left(\frac{1}{2}x + \frac{1}{2}y\right) < \frac{1}{2}(x) + \frac{1}{2}f(y) = f^*,$$

cela contredit le fait que f^* est la valeur optimale.

Fig. 6: Projection orthogonale.

5.1 Projection orthogonale

Soit $C \subset \mathbb{R}^n$ un convexe fermé.

Définition 7. L'opérateur de projection orthogonale sur C est l'application $P_C : \mathbb{R}^n \to C$ qui à $x \in \mathbb{R}^n$ associe

$$P_C(x) = \underset{y \in C}{\operatorname{argmin}} \|y - x\|^2$$
 (2)

On a le résultat (admis pour l'instant)

Théorème 11 (Premier théorème de la projection). *Soit C un convexe fermé non vide. Alors* (2) *admet une unique solution.*

Le résultat suivant donne une caractérisation géométrique de la projection.

Théorème 12 (Deuxième théorème de la projection). *Soit C un convexe fermé non vide et* $x \in \mathbb{R}^n$. *Alors* $z = P_C(x)$ *si et seulement si* $(x - z)^T(y - z) \le 0$ *pour tout* $y \in C$.

Le Théorème-12 affirme que pour $x \in \mathbb{R}^n$ quelconque, l'angle entre $x - P_C(x)$ et $y - P_C(x)$, avec $y \in C$, est supérieur à $\pi/2$. Cela est illustré dans la Figure-6.