Unsigned Addition

- The sum of two nonnegative integers x and y such that
 0 <= x, y < 2^w
- may require w+1 bits to represent.

Principle: Unsigned Addition

For x and y such that $0 \le x$, $y < 2^w$:

$$x +_{w}^{u} y = \begin{cases} x + y, & x + y < 2^{w} \text{ Normal} \\ x + y - 2^{w}, & 2^{w} \le x + y < 2^{w+1} \text{ Overflow} \end{cases}$$
 (2.11)

• The normal case preserves the value of **x** + **y**

- The overflow case has the effect of decrementing this sum by 2^w.
 - In the case of overflow, the sum will be mod-ed by 2^w

Principle: Detecting Overflow of Unsigned Addition

The computation of a sum s = x + y has overflowed
 if and only if s < x (or s < y)

```
1 // Practice Problem 2.27
2 
3 // Determine whether arguments can be added without overflow.
4 // Should return 1 if arguments x and y can be added without causing overflow.
5 
6 int uadd_ok (unsigned x, unsigned y) {
7    return ((unsigned) x + y) >= x;
8 }
```

Principle: Usigned Negation

For any number x such that $0 \le x < 2^w$, its w-bit unsigned negation $-\frac{u}{w}x$ is given by the following:

$$-\frac{u}{w}x = \begin{cases} x, & x = 0\\ 2^w - x, & x > 0 \end{cases}$$
 (2.12)

Two's Complement Addition

Principle: Two's Complement Addition

For integer values x and y in the range $-2^{w-1} \le x$, $y \le 2^{w-1} - 1$:

$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w}, & 2^{w-1} \le x + y & \text{Positive overflow} \\ x + y, & -2^{w-1} \le x + y < 2^{w-1} & \text{Normal} \\ x + y + 2^{w}, & x + y < -2^{w-1} & \text{Negative overflow} \end{cases}$$
(2.13)

- if addition goes over and causes extra bit to be required, truncate the newest bit
- this has different effects in different cases

Cases:

- 1. x+y is less than TMin: negative overflow
 - a. effect of truncation is to add 2^w to the sum
- 2. x+y is between TMin and 0: normal
- 3. x+y is between 0 and TMax: normal
- 4. x+y exceeds TMax: positive overflow
 - a. effect of truncation is to subtract 2^w from the sum

- the w-bit two's-complement sum of two numbers has the exact same bit-level representation as the unsigned sum
 - most computers use the same machine instruction to perform either usigned or signed addition

Two's Complement Addition Examples

x	у	x + y	x + 4y	Case
8	-5	-13	3	1
[1000]	[1011]	[10011]	[0011]	
-8	-8	-16	0	1
[1000]	[1000]	[10000]	[0000]	
-8	5	-3	~ " -3	2
[1000]	[0101]	[11101]	[1101]*;	
2	5	7	7	3
[0010]	[0101]	[00111]	[0111]	
5	5	10	-6	4
[0101]	[0101]	[01010]	[1010]	

Principle: Detecting Overflow in Two's Complement Addition

- For values of x and y from TMin to TMax, inclusive:
 - \circ let s = x + y
- The computation of s had positive overflow IFF
 - x > 0 AND y > 0 BUT s <= 0
- The computation of s had negative overflow IFF
 - \circ x < 0 AND y < 0 BUT s >= 0

With a 4-bit word size, addition can have a negative overflow when x+y < -8 and a positive overflow when x + y >= 8

```
1 // Practice Problem 2.30
2
3 // Determine whether arguments can be added without overflow.
4 // Should return 1 if arguments x and y can be added without causing overflow.
5
6 int tadd_ok (int x, int y) {
7    int result = x + y;
8    int neg_over = x < 0 && y < 0 && result >= 0;
9    int pos_over = x > 0 && y > 0 && result <= 0;
10    return !neg_over && !pos_over;
11 }</pre>
```

Principle: Two's Complement Negation

For x in the range $TMin_w \le x \le TMax_w$, its two's-complement negation $-\frac{t}{w}x$ is given by the formula

$$-\frac{1}{w}x = \begin{cases} TMin_w, & x = TMin_w \\ -x, & x > TMin_w \end{cases}$$
 (2.15)

Two's Complement Multiplication

- The result of multiplying w-bit x and y together could require as many as 2w bits to represent in two's-complement form.
- Signed multiplication is gnerally performed in C by truncating the left w bits from the 2w-bit result.

Principle: Two's Complement Multiplication

For x and y such that $TMin_w^* \le x$, $y \le TMax_w$:

$$x *_{w}^{t} y = U2T_{w}((x \cdot y) \mod 2^{w})$$
 (2.17)