

# IVH Projekt - dokumentace

Autor: Roman Janota

Login: xjanot04

Datum: 8. května 2022

# Popis modulů

Projekt obsahuje soubory: anewspaper\_pack.vhd, clkgen.vhd\*, clkgen\_config.vhd\*, column\_entity.vhd, controller\_newspaper.vhd, counter.vhd, fpga.vhd\*, fpga\_inst.vhd\*, fsm\_newspaper.vhd, ROM\_newspaper.vhd, tb\_column.vhd, tb\_controller.vhd, tb\_fsm.vhd, tb\_rom.vhd a tlv\_gp\_ifc.vhd\*. Zdrojové soubory označené "\*" byly přiloženy v kostře a tak zde nebudou popisovány.

#### anewspaper pack.vhd

soubor obsahující definici typu DIRECTION\_T

#### column entity.vhd

tento soubor definuje sloupec jako synchronní prvek a jeho chování při pohybu doleva, či doprava

#### controller newspaper.vhd

ovladač chování, instanciuje entity – led\_clk (časovač pro všechny led diody na displeji fitkitu), col\_clk (časovač pro jednotlivé sloupce displeje), fsm (stavový automat) a rom pamět. Pro instanciaci led\_clk jsem zvolil 12 jako generický parametr. Vypočítal jsem log<sub>2</sub>(FPGA\_freq / (col\_cnt \* FPS)), kde FPGA\_freq je frekvence FPGA na FitKitu, tedy 25 MHz, col\_cnt je počet sloupců, tedy 16 a FPS, tedy počet snímků za sekundu jsem zvolil 120. Vyšlo 13.666, ale při testování mi to přišlo moc pomalé, a proto jsem zvolil o jedno míň, tedy 12 (výpočet výsledné periody níže u counter.vhd). U instanciace col\_clk byl podobný princip, tedy výpočet log<sub>2</sub>(FPGA\_freq / col\_cnt) = 20.575, a proto jsem zvolil konstantu rovnu 20.

Konstrukce for generate je rozdělena na 3 if generate, kde se testuje první sloupec, poslední sloupec a všechny ostatní sloupce.

Dále se zde nachází 2 procesy, první pro vstupy/výstupy stavového automatu a druhý pro asynchronní ROM paměť

#### counter.vhd

počítadlo na čas obsahující generický parametr OUT\_P, který značí, do kolikati budeme počítat ( $2^{OUT_P+1}-1$ )

#### fsm newspaper.vhd

Moorův Stavový automat o 4 stavech – st1\_IDLE, st2\_ROT\_R, st3\_ROT\_L, st4\_ANIM, a 2 výstupech. Nakreslen na následující straně.



# ROM newspaper.vhd

modul obsahující architekturu asynchronní 16x128 ROM paměti

## tb column.vhd

testbench pro sloupce obsahující nastavení počátečního stavu, sepnutí EN po dobu 40 ns, změnu směru zleva doprava, opět změnu počátečního stavu a sepnutí EN.

Ukázka simulace:



Komponenta by se měla chovat správně dle simulace.

# tb\_controller.vhd

testbench pro celý projekt. Ukázka simulace:



Je vidět, že vše nefunguje, jak má. Zejména v určitých časových intervalech se na některých bitech výstupních dat objeví zkrat. Tento jev je způsoben sepnutím časovače pro jednotlivé sloupce a načtení z části neplatných dat do signálu udržující data.

# tb\_fsm.vhd

testbench pro stavový automat. Obsahuje nastavení všech spínačů na 0 a poté jejich postupné sepínání. Ukázka simulace:



I u stavového automatu jde vidět, že nepřepíná výstupný směr ve správný čas. Nastavování výstupu také občas skočí na 0.

## tb rom.vhd

testbench pro paměť ROM. Probíhá zde postupné navyšování adresy v paměti. Ukázka simulace:



Komponenta se chová správně.

# Odkaz na video

https://nextcloud.fit.vutbr.cz/s/yXXTwj4pzaN58Xp

## Poznámky autora

Od zadání jsem se trochu odchýlil hlavně při implementaci paměti ROM a při přiřazování dat z paměti do signálů. Kromě toho bylo zadání dodrženo, až na chybějící animaci a rozšíření nad rámec zadání.