1. Multiple sequence alignment

Given the following sequences:

CTATTAATAC

TATTAATAC

CTATTAATC

CATTAATAC

Assume a match score of +1, a gap penalty of -1 and a mismatch score of -1. Suppose we choose the first sequence as the center, use the Star algorithm to construct a multiple sequence alignment.

You may find optimal pair-wise alignment manually or by using your program from last assignment. Also calculate the SP score (sum of pairs) for the multiple sequence alignment.

Answer:

- Sequence 1 → CTATTAATAC
- Sequence 2 → TATTAATAC
- Sequence 3 → CTATTAATC
- Sequence 4 → CATTAATAC

Let's choose Sequence 1 as our center. Since Sequence 1 is chosen as center we will now find optimal pair-wise alignment.

Sequence 1 → CTATTAATAC

Sequence 2 → -TATTAATAC

Score = 8

Sequence 1 → CTATTAATAC

Sequence 2 → CTATTAAT-C

Score = 8

Sequence 1 → CTATTAATAC

Sequence 4 → C-ATTAATAC

Score = 8

So the multiple sequence alignment is:

Sequence 2 → -TATTAATAC

Sequence 1 → CTATTAATAC

Sequence 3 → CTATTAAT-C

Sequence 4 → C-ATTAATAC

SP Scores for Multiple alignment:

Score =
$$8 + 8 + 8 + 6 + 6 + 6$$

Score = 42

2.

a. Construct an alignment of all instances of motifs, and compute the profile and consensus sequence of the motif. (In the event of a "tie", select one nucleotide as a representative for that position)

GAACTCATGGTG
AAAAGCACGGTC
TCAAAGCAAGGC
CCTAATCAGGGC
AAGTATGGACTC
ACTAAGCAGGGT
TCTCACGGCCCA
CCTCGTGGTGGG
TACCGTATGGTT
ACCACTCGTCGA

Answer:

Sequence	Motifs
GAACTCATGGTG	ACTCATGG
AAAAGCACGGTC	AAGCACGG
TCAAAGCAAGGC	AAGCAAGG
CCTAATCAGGGC	AATCAGGG
AAGTATGGACTC	AAGTATGG
ACTAAGCAGGGT	AAGCAGGG
TCTCACGGCCCA	TCTCACGG
CCTCGTGGTGGG	CCTCGTGG
TACCGTATGGTT	CCGTATGG
ACCACTCGTCGA	ACTCGTCG

Profile Matrix:

Consensus sequence: ACGCATGG

b. Compute the entropy score of the motif profile.

Answer:

Entropy score= -∑i=1 toN pi·logpi

Col 1
$$\rightarrow$$
 (0.7log₂0.7) + (0.2log₂0.2) + (0log₂0) + (0.1log₂0.1)
Col 2 \rightarrow (0.5log₂0.5) + (0.5log₂0.5) + (0log₂0) + (0log₂0)
Col 3 \rightarrow (0log₂0) + (0log₂0) + (0.5log₂0.5) + (0.5log₂0.5)
Col 4 \rightarrow (0log₂0) + (0.8log₂0.8) + (0log₂0) + (0.2log₂0.2)
Col 5 \rightarrow (0.8log₂0.8) + (0log₂0) + (0.2log₂0.2) + (0log₂0)
Col 6 \rightarrow (0.1log₂0.1) + (0.2log₂0.2) + (0.2log₂0.2) + (0.5log₂0.5)
Col 7 \rightarrow (0log₂0) + (0.1log₂0.1) + (0.9log₂0.9) + (0log₂0)
Col 8 \rightarrow (0log₂0) + (0log₂0) + (1log₂1) + (0log₂0)

Col 1
$$\rightarrow$$
 ((-0.359) + (-0.464) + (0)+(-0.332)) = -1.155
Col 2 \rightarrow (-0.5) + (-0.5) +(0) +(0) = -1
Col 3 \rightarrow (0)+(0)+(-0.5)+(-0.5) = -1
Col 4 \rightarrow (0) + (-0.257) +(0)+(-0.464) = -0.721
Col5 \rightarrow (-0.257) + (0) + (-0.464) + (0) = -0.721
Col6 \rightarrow (-0.332) + (-0.464) + (-0.464) + (-0.5) = -1.759
Col7 \rightarrow (0) + (-0.332) + (-0.1368) + (0) = -0.4688
Col8 \rightarrow (0) + (0) + (0) + (0) = -0

=6.8248

c. Compute the likelihood ratio of getting "ACTCATGG" according to motif profile vs. a background model of each base having equal probability of 25%.

Answer:

Likelihood ratio= P1/ P2

= 0.0504 (chances of getting **ACTCATGG** for a motif profile)

= (0.25)⁸ (background model of each base having equal probability of 25%)

Hence, Likelihood ratio = P1/ P2
=
$$0.0504 / (0.25)^8$$

= 3303.0144

- 3. Let S= {AAT, ATC, ATG, CAT, GAA, TCA, TGG} be a 3-mer spectrum.
 - a) Show the de Bruijn graph that represents this spectrum.

Answer:

De Bruij graph:

We get **GAATCATGG** as the shortest sequence from above 3-mers.

b) Show all Eulerian paths for this graph, and the assembled sequence each one represents Answer:

4. Programming assignment

OUTPUT:

Motif Length --> 8

DNA[0][20:28]	ggagtcag
DNA[1][7:15]	tgtgtcat
DNA[2][22:30]	tgacacag

DNA[3][26:34]	tgagtcag

DNA[7][20:28]	tgcgtcag
DNA[8][36:44]	tgagtcag
DNA[9][25:33]	tgagtcag
DNA[10][24:32]	ggagtcat
DNA[11][40:48]	tgcgtcag
DNA[12][42:50]	tgattaag
DNA[13][28:36]	tgagtcac
DNA[14][40:48]	tgactcag
a	0.0,0.07,0.8,0.0,0.07,0.07,1.0,0.0
С	0.0,0.0,0.13,0.2,0.0,0.93,0.0,0.13
t	0.87,0.0,0.07,0.13,0.93,0.0,0.0,0.2
g	0.13,0.93,0.0,0.67,0.0,0.0,0.0,0.67
Consensus	tgagtcag
Motif Length> 9	
DNA[0][19:28]	tggagtcag

DNA[1][34:43]	cccagtcag
DNA[2][21:30]	atgacacag
DNA[3][25:34]	gtgagtcag
DNA[4][32:41]	ctaagtcac
DNA[5][31:40]	ctgactcat
DNA[6][17:26]	atgattcag
DNA[7][19:28]	ctgcgtcag
DNA[8][35:44]	ctgagtcag
DNA[9][24:33]	atgagtcag
DNA[10][23:32]	gggagtcat
DNA[11][39:48]	ctgcgtcag
DNA[12][9:18]	gtgactaat
DNA[13][27:36]	gtgagtcac
DNA[14][39:48]	ctgactcag

Ass	ign	m	en	t-	3
പാാ	ıgu	111	CII	L-	J

CS-614	Assignment- 3	Channamallikarjun Rolli
a	0.2,0.0,0.07,0.87,0.0,0.07,0.07,1.0,0.0	
С	0.47,0.07,0.07,0.13,0.27,0.0,0.93,0.0,0.13	
t	0.07,0.8,0.0,0.0,0.07,0.93,0.0,0.0,0.2	
g	0.27,0.13,0.87,0.0,0.67,0.0,0.0,0.0,0.67	
Consensus	ctgagtcag	
Motif Length> 10		
DNA[0][18:28]	ttggagtcag	
DNA[1][5:15]	cctgtgtcat	
DNA[2][20:30]	gatgacacag	
DNA[3][24:34]	tgtgagtcag	
DNA[4][31:41]	gctaagtcac	
DNA[5][30:40]	tctgactcat	
DNA[6][16:26]	aatgattcag	
DNA[7][18:28]	tctgcgtcag	
DNA[8][34:44]	cctgagtcag	0

DNA[9][23:33]	catgagtcag
DNA[10][22:32]	tgggagtcat
DNA[11][38:48]	cctgcgtcag
DNA[12][8:18]	agtgactaat
DNA[13][26:36]	tgtgagtcac
DNA[14][38:48]	tctgactcag
a	0.13,0.2,0.0,0.07,0.8,0.0,0.07,0.07,1.0,0.0
С	0.27,0.47,0.0,0.0,0.13,0.27,0.0,0.93,0.0,0.13
t	0.47,0.07,0.87,0.0,0.07,0.07,0.93,0.0,0.0,0.27
g	0.13,0.27,0.13,0.93,0.0,0.67,0.0,0.0,0.0,0.6
Consensus	tctgagtcag
Motif Length> 11	
DNA[0][17:28]	tttggagtcag
DNA[1][4:15]	tcctgtgtcat

DNA[2][19:30]	ggatgacacag
DNA[3][23:34]	ttgtgagtcag
DNA[4][30:41]	ggctaagtcac
DNA[5][29:40]	ctctgactcat
DNA[6][15:26]	aaatgattcag
DNA[7][17:28]	atctgcgtcag
DNA[8][33:44]	ccctgagtcag
DNA[9][22:33]	gcatgagtcag
DNA[10][21:32]	ttgggagtcat
DNA[11][37:48]	gcctgcgtcag
DNA[12][7:18]	gagtgactaat
DNA[13][25:36]	gtgtgagtcac
DNA[14][37:48]	gtctgactcag
a	0.13,0.13,0.2,0.0,0.07,0.8,0.0,0.07,0.07,1.0,0.0
С	0.13,0.27,0.47,0.0,0.0,0.13,0.27,0.0,0.93,0.0,0.13

t	0.27,0.47,0.07,0.87,0.0,0.07,0.07,0.93,0.0,0.0,0.27
g	0.47,0.13,0.27,0.13,0.93,0.0,0.67,0.0,0.0,0.0,0.6
5.	
Consensus	gtctgagtcag