

Indian Institute of Technology Kharagpur

World Wide Web - Part II

Lecture 12: World wide web - Part II

On completion, the student will be able to:

- Design a skeletal web server for responding to basic HTTP queries.
- Explain the roles of proxy servers, and network address translators.
- Explain the various ways in which a network address translator can work.

How a Web Server Works?

Requirements of a Web Server

Simple requirements:

- Able to accept HTTP requests, and respond to them.
- Support for GET and HEAD, possibly also POST.
- > Able to handle server-side scripts.
 - Executables residing on the server.
 - They get executed when specified.
 - Their output sent back to the client; typically as a HTML page.

Directory Structure

- When a web server is installed:
 - >A http root directory gets created.
 - For example, "/home/httpd"
 - There is a directory under the http root that acts as the http home directory.
 - For example, "/home/httpd/docs"
 - There is a directory under the http root under which all the CGI and other scripts are to be stored.
 - For example, "/home/cgi-bin"
 - Server-side exec permission provided

Directory Structure (contd.)

Default Web Page

- There is a default web page that gets returned by the server if no explicit document path is specified.
 - index.htm or index.html.
 - Any other name can also be specified through server script configuration.
- Can be accessed as:

GET www.xyz.com HTTP/1.0

How are Scripts Handled?

- Server-side scripts
 - A file that is to be executed by the server, and the output sent back to the client.
- How does the server know?
 - >Two ways:
 - GET command with a "?".
 - POST command.

GET Command with a "?"

- Consider an example HTTP command:
 GET /cgi-bin/xyz.pl ? roll=1234 & sex=M
- What happens?
 - Server identifies the "?" following the GET.
 - Identifies xyz.pl as a program to be executed.
 - Allows the xyz.com program to read the values present in the string following the "?".
 - How, to be discussed later
 - The output generated by the xyz.com program is sent back to the client.

POST Command

- Works similar to get.
- Differences:
 - The name-value pairs are present as data following the header lines and a blank line.
 - ► Not limited by the maximum size of a string (as in GET).
 - The executable program can read the data values.
 - How, to be discussed later.

POST Command :: Example

POST /cgi-bin/myscript.cgi HTTP/1.0

From: isg@hotmail.com

User-Agent: HTTPTool/1.0

Content-Type: application/x-www-form-

urlencoded

Content-Length: 32

Roll = 1234 & Sex = M & Age = 20

Points to Note

- The executable program that runs on the server can be written in any language.
 - Shell script (C shell, bourne shell, etc.)
 - **Perl**
 - **>ASP**
 - **PHP**
 - C, Java (requires servlet support)
 - Necessary support for executing must be there in the server.
 - For example, ASP can run under IIS but not under Apache.

Proxy Server

Introduction

- What is a proxy server?
 - Acts on behalf of other clients, and presents requests from other clients to a server.
 - Acts as a server while talking with a client, and as a client while talking with a server.
- Commonly used HTTP proxy server:
 - > Squid
 - available on all platforms.

Where it is located?

Functions of a HTTP Proxy

- Request forwarding
 - **▶**Primary function.
 - > Acts as a rudimentary firewall.
- Access control
 - > Allow or deny accesses, based on
 - Contents
 - Location
- Cache management
 - Efficient utilization of bandwidth.
 - Faster access.

Network Address Translator (NAT)

What is NAT?

- Allows a single device (router or a dedicated box) to act as an agent between the Internet (public network) and a local (private) network.
 - Tries to address the IP address distribution problem.
 - ►RFC 1631.
 - ➤ Only one unique IP address is required to represent an entire group of computers.
 - > Several variations possible.

Where does NAT reside?

Various Forms of NAT

Static NAT

- ► Used to map an unregistered IP address to a registered IP address.
- One-to-one mapping.
 - N registered addresses for N machines.

Dynamic NAT

- Used to map an unregistered IP address to a registered IP address.
 - From a given pool of registered IP addresses.
- Addresses are assigned dynamically.
 - Any number of internal computers.
 - A limit N to the number communicating at a time.

Various Forms of NAT (contd.)

Overloading

- >A special form of dynamic NAT.
- Used to map multiple unregistered IP addresses to a single registered IP address by using different ports.
 - Also called port address translation (PAT).
 - Each computer on the private network gets translated to the same IP address, but with a different port number assignment.
- **≻Widely used.**

NAT Overloading

- Utilizes the multiplexing feature of TCP/IP stack.
 - A computer maintains several concurrent connections with a remote computer, using different port numbers.
- The header of an IP packet contains:
 - Source IP address (32 bit)
 - Source port number (16 bit)
 - Destination IP address (32 bit)
 - Destination port number (16 bit)
 - The combination of above four elements define a TCP/IP connection.

Notations:

- Stub domain: the internal or the private network.
- Address translation table (ATT): maintained by router/NAT for address and port mapping.
- Easy to implement dynamic NAT.
 - Address translation table need only contain IP address mappings.
 - Private to public, and vice versa.
 - No port numbers needed.

How NAT overloading works?

The scenario:

- Internal network has non-routable IP addresses.
- ►NAT-enabled router contains a registered IP address assigned by IANA.
- An internal host X tries to connect to, say, an outside Web server.
- The router receives the packet from X.

The router will now:

- Save IP address and port number from X's packet to an ATT.
- In the packet, replace the IP address with the router's IP address.
- Replace the port number with a port number from the ATT (look for match). For new connection, generate a unique port number.

- When a packet comes back.
 - Its destination port is used to search ATT.
 - Source IP address and port numbers can be obtained.
 - Addresses changed accordingly.

►The ATT looks like:

Source Computer	Source IP address	Source port number	NAT IP address	NAT port number
A	10.5.17.112	500	203.11.16.5	1
В	10.5.17.85	75	203.11.16.5	2
С	10.23.10.5	2480	203.11.16.5	3
D	10.22.5.118	1120	203.11.16.5	4

Capability Limit of a NAT

- Maximum number of concurrent translations:
 - Mainly determined by the size of the memory to store the ATT.
 - Typical entry in the ATT takes about 160 bits.
 - ► Memory size of 8 Mbyte will support about

 $8 \times 1024 \times 1024 \times 8 / 160 = 4,19,000$ concurrent translations.

Which addresses to use inside?

- Private address classes.
 - Set aside by IANA an non-routable.
 - These addresses are considered unregistered.
 - ➤ Routers discard these addresses, if used as destination.
 - A packet from a host with a private unregistered address can reach a registered destination host, but not the reverse.

The Private Address Classes

- Class A (one)
 - **10.0.0.0** to 10.255.255.255
- Class B (sixteen)
 - **172.16.0.0** to 172.31.255.255
- Class C (256)
 - **192.168.0.0** to 192.168.255.255

Other Benefits of NAT

- Use of NAT automatically creates a firewall between the internal and external networks.
 - ►NAT will only allow connections that has originated from within the internal network.
 - An outside host cannot initiate a connection with an internal host.
- Inbound mapping requires static NAT.

Is NAT a Proxy Server?

- The answer is "NO".
 - ► NAT is transparent to both source and destination hosts. But a proxy server is not transparent.
 - ►NAT is a layer 3 (network) protocol. In contrast, a proxy server works at layer 4 (transport) or higher.

End of Lecture 12