Sr No.	PhD Statistics
1	In the series 357,363,369, What will be the 10th term?
Alt1	
Alt2	411
Alt3	413
Alt4	417
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Moon: Satellite :: Earth : ?
Alt1	
	Planet
	Solar System
Alt4	Asteroid
	Door is related to Bang in the same way as Chain is related to?
	Thunder
Alt2	Clinch
	Tinkle
Alt4	Clank
4	Select the lettered pair that has the same relationship as the original pair of words:
	Emollient: Soothe
Alt1	Dynamo: Generate
Alt2	Elevation: Level
Alt3	Hurricane: Track
Alt4	Precipitation: Fall
5	Which of the following is the same as Count, List, Weight?
Alt1	Compare
	Sequence
Alt3	Number
Alt4	Measure
	Spot the defective segment from the following:
	The downtrodden
	needs
	to be uplifted
Alt4	on a war footing
7	Choose the meaning of the idiom/phrase from among the options given:
	A close shave
Alt1	a nice glance
	a narrow escape
Alt3	an intimate
Alt4	a triviality

8	Lightning in the same place twice.
Alt1	doesn't hit
Alt2	never strikes
Alt3	never attacks
Alt4	never falls
9	Choose the option closest in meaning to the given word:
	FLIPPANT
Alt1	serious
Alt2	unsteady
	irreverent
Alt4	caustic
10	Choose the antonymous option you consider the best:
10	OBSOLETE
Δl+1	obscure
	hackneyed
	current
AII4	grasp
11	Alach seared 72 marks in subject A. He seared ECO/ marks in subject D and V marks in subject C. Mavimum
11	Akash scored 73 marks in subject A. He scored 56% marks in subject B and X marks in subject C. Maximum
	marks in each subject were 150. The overall percentage marks obtained by Akash in sall te three subjects were
Alia	54%. How many marks did he score in subject C?
Alt1	
Alt2	
Alt3	
Alt4	73
12	A person starts from his house and travels 6 Km towards the West, he then travelled 4 Km towards his left
	and then travels 8 Km towards west and 3 Km towards South. Finally he turns right and travels 5 Km. What is the
	horizontal distance he has travelled from his house ?
	7 Km
	15 Km
Alt3	23 Km
Alt4	19 Km
13	If 1st Jan 2012 is a Tuesday then on which day of the week will 1st Jan 2013 fall ?
Alt1	Wednesday
Alt2	Thursday
Alt3	Friday
Alt4	Saturday
14	One morning after sunrise, Reeta and Kavita were talking to each other face to face at University. If Kavita'
	shadow was exactly to the right of Reeta, which direction was Kavita facing?
Alt1	North
Alt2	South
Alt3	East

Alt4	West
	In an exam every candidate took History (or)Geography(or)both. 74.8%took History and 50.2% took Geography.
	If the Total number of candidates is 1500,how many took History and Geography both?
Alt1	
Alt2	
Alt3	
Alt4	375
16	Which word includes the larger % of Vowels?
Alt1	GOOGLE
Alt2	AMAZON
Alt3	FACE BOOK
Alt4	DOE
17	A= Least prime >24;
	B=Greatest prime <28; Then
Alt1	A>B
Alt2	A <b< th=""></b<>
Alt3	A=B
Alt4	None
18	CL X VIII refers
Alt1	861
Alt2	701
Alt3	168
Alt4	107
19	Which of the following is larger than 3/5 ?
Alt1	
Alt2	39/50
Alt3	7/25
Alt4	59/100
20	Mr. Babu travelled 1200 km by air which formed 2/5 of his trip. One third of the whole trip, he travelled by car
	and the rest of the journey was by train. What was the distance travelled by train?
Alt1	600km
Alt2	700 km
Alt3	800 km
ΔltΔ	900 km

21	If we have a sample of size n from a population of N units, the finite population correction is (a) $\frac{N-1}{N}$ (b) $\frac{n-1}{N}$ (c) $\frac{N-n}{N}$ (d) $\frac{N-n}{n}$
Alt1	A
Alt2	В
Alt3	С
Alt4	D

	Under the proportional allocation, the size of the sample from each stratum is inversely proportional to A: total sample size
	A: total sample size B: size of the stratum
	C: population size
	D: population mean
Alt1	4
Alt2	3
Alt3	
Alt4	

Which of the	following basis distinguishes cluster sampling from stratified sampling?
(i)	Clusters are preferably heterogeneous whereas strata are taken as homogeneous as possible
(ii)	A sample is always drawn from each stratum whereas no sample of elementary units is drawn from clusters
(iii)	Small size clusters are better whereas there is no such restriction for stratum size
	A: (i) & (ii) are True, but (iii) is False
	B: (i) & (iii) are True, but (ii) is False
	C: (i) is True, but (ii) & (iii) is False
	D: (i), (ii) & (iii) are True

Alt1	A
Alt2	В
Alt3	C
Alt4	D

Classification is applicable in case of

(i) Quantitative characters
(ii) Qualitative characters

A: Both (i) & (ii) are True

B: Both (i) & (ii) are False

C: (i) is True, (ii) is False

D: (i) is False, (ii) is True

A semi-logarithmic graph of a series increasing by a constant amount will be

(a) a straight line at angle of 45°

(b) a convex upward curve

(c) a concave upward curve

(d) a convex downward curve

Alt1 A

Alt2 B

Alt3 C

Alt4 D

The estimate of β in the regression equation $Y = \alpha + \beta X + e$ by the method of least squares is

(a) biased
(b) unbiased
(c) consistent
(d) efficient

Alt1	A
Alt2	В
Alt3	С
Alt4	D

Given 7

Given $r_{12} = 0.6$, $r_{13} = 0.5$ and $r_{23} = 0.8$, the value of $r_{12.3}$ is

- (a) 0.4
- (b) 0.72
- (c) 0.38
- (d) 0.47

Alt1 A

Alt2 B

Alt3 C

Alt4 D

Let the equations of the regression lines be expressed as 2X - 3Y = 0 and 4Y - 5X = 8. Then the correlation between X and Y is

- (a) $\sqrt{\frac{15}{8}}$
- (b) $\sqrt{\frac{8}{15}}$
- (c) $\sqrt{\frac{6}{15}}$
- (d) $\sqrt{\frac{1}{15}}$

Alt1	A
Alt2	В
Alt3	С
Alt4	D

The test statistic for testing $H_0: \rho = \rho_0$ with usual notations is

- (a) $Z = \frac{Z_r Z_{\rho_0}}{1/(n-3)}$
- (b) $Z = \frac{Z_r Z_0}{1/(n-3)}$ (c) $Z = \frac{Z_r Z_{\rho_0}}{1/\sqrt{(n-3)}}$
- (d) none of the above

Alt1 A

Alt2 B

Alt3 C

Alt4 D

If there are k groups and each group consists on n observations, the limits of intraclass correlation are

- (d) -1 to 1

Alt1 A

Alt2 B

Alt3 C

Alt4 D

Comment on an Array of void data type

- (a) it can store any data type
- (b) it only stores element of similar data type to first element
- (c) it acquires the data type with the highest precision in it
- (d) you cannot have an array of void data type

Alt1 A

Alt2 B

Alt3 C

32	The elements in the array of the following code are
	$int array[5] = \{5\}$
	(a) 5, 5, 5, 5, 5
	(b) 5, 0, 0, 0, 0
	(c) 5, (garbage), (garbage), (garbage)
	(d) (garbage), (garbage), (garbage), 5
Alt1	A
Alt2	В
Alt3	C
Alt4	
33	
33	Which of the following compute proportions from a contingency table?
	(a) par()
	(b) prop.table()
	(c) anova()
	(d) all of the above
Alt1	A
Alt2	В
Alt3	C
Alt4	D
34	Which of the following evaluate the Normal probability density (with a given mean/SD) at a point?
	(a) dnorm
	(b) rnorm
	(c) pnorm
	(d) rpois
Alt1	
Alt2	В
Alt3	C
Alt4	D

Consider the problem of testing $H_0: \theta = 0$ against $H_1: \theta = \frac{1}{2}$ based on a single observation X from $U(\theta, \theta + 1)$ population. The power of the test "Reject H_0 if $X > \frac{2}{3}$ " is

- (a) $\frac{1}{6}$
- (b) $\frac{5}{6}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$

Alt1 A

Alt2 B

Alt3 C

Alt4

Let $X_1, X_2, ... X_n$ be a random sample from a $Gamma(\alpha, \beta)$ population, where $\beta > 0$ is a known constant. The rejection region of the most powerful test for $H_0: \alpha = 1$ against $H_1: \alpha = 2$ is of the form

(a)
$$\prod_{i=1}^{n} X_i > K$$

(b)
$$\sum_{i=1}^{n} X_i > K$$

(c)
$$\prod_{i=1}^{n} X_i < K$$

(d)
$$\sum_{i=1}^{n} X_i < K$$

Alt1 A

Alt2 B

Alt3 C

Suppose person A and person B draw random sample of sizes 15 and 20 respectively from $N(\mu, \sigma^2)$ for testing $H_0: \mu = 2$ against $H_1: \mu > 2$. In both the cases the observed sample mean and sample variances are same with the values $\overline{x_1} = \overline{x_2} = 1.8$, $s_1 = s_2 = s$. Both of them use usual t-test and state the p-values as p_A and p_B . Then which of the following is correct?

- (a) $p_A > p_B$

- (d) can not infer anything

Alt1	/

Alt2 B

Alt3 C

Alt4 D

Let X be a single observation from a population having an exponential distribution with mean $\frac{1}{2}$. Consider the problem of testing $H_0: \lambda = 2$ against $H_1: \lambda = 4$. For the test with rejection region $X \geq 3$, let α and β denote the probabilities of Type-I and Type-II error respectively. Then

(a)
$$\alpha = e^{-6}$$
 and $\beta = 1 - e^{-12}$

(b)
$$\alpha = e^{-12}$$
 and $\beta = 1 - e^{-6}$
(c) $\alpha = 1 - e^{-12}$ and $\beta = e^{-6}$

(c)
$$\alpha = 1 - e^{-12}$$
 and $\beta = e^{-1}$

(d)
$$\alpha = e^{-6}$$
 and $\beta = e^{-12}$

Alt1

Alt2 B

Alt3 C

Alt4 D

39

The standard chi-squared test for a 2 by 2 contingency table is valid only if

- all the expected frequencies are greater than five A:
- both variables are continuous B:
- at least one variable is from a Normal distribution C:
- D: all the frequencies total will be less than five

Alt1	A
Alt2	В
Alt3	C
Alt4	D

If n_1 and n_2 are large in Mann-Whitney test, the variable U is distributed with variance equal to

(a)
$$\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$$

(b)
$$\frac{n_1 n_2 (n_1 + n_2 - 1)}{12}$$

(c)
$$\frac{n_1 n_2 (n_1 + n_2)}{12}$$

(d)
$$\frac{n_1 n_2 (n_1 n_2 + 1)}{12}$$

Alt1 A

Alt2

Alt3

Alt4

Let X be a discrete random variable with moment generating function $M_X(t) = e^{0.5(e^t - 1)}, t \in \Re$. Then $P(X \leq 1)$ equals

Alt1

Alt2

Alt3

42	Let E and F be two independent events with $P(E \mid F) + P(F \mid E) = 1, P(E \cap F) = \frac{2}{9}$ and $P(F) < P(E)$. Then $P(E)$ equals
	(a) $\frac{1}{3}$
	(b) $\frac{1}{2}$
	(b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$
	(d) $\frac{3}{4}$
Alt1	A
Alt2	В
Alt3	С
Alt4	D
43	X and Y be two independent random variables with $X \sim U(0,2)$ and $Y \sim U(1,3)$. Then $P(X < Y)$ equals $\begin{array}{c} \text{(a)} \ \frac{1}{2} \\ \text{(b)} \ \frac{3}{4} \\ \text{(c)} \ \frac{7}{8} \\ \text{(d)} \ 1 \end{array}$
Alt1	IA

Alt2 B

Alt3 C Alt4 D 44

The probability mass function of a random variable X is given by $P(X = x) = k \binom{n}{x}$, $x = 0, 1, \ldots, n$, where k is a constant. The moment generating function $M_X(t)$ is

- (a) $\frac{\left(1+e^t\right)^n}{2^n}$
- (b) $\frac{2^n}{(1+e^t)^n}$
- (c) $\frac{1}{2^n(1+e^t)^n}$
- (d) $2^n (1 + e^t)^n$

Alt1 A

Alt2 E

Alt3 C

Alt4 D

45

Let the probability density function of a random variable X be given by $f(x) = \alpha e^{-x^2 - \beta x}$, $-\infty < x < \infty$. If $E(X) = -\frac{1}{2}$, then

(a)
$$\alpha = \frac{1}{\sqrt{\pi}} e^{-\frac{1}{4}}; \beta = 1$$

(b)
$$\alpha = \frac{1}{\sqrt{\pi}}e^{-\frac{1}{4}}; \beta = -1$$

(c)
$$\alpha = \sqrt{\pi}e^{-\frac{1}{4}}; \beta = 1$$

(d)
$$\alpha = \sqrt{\pi}e^{-\frac{1}{4}}; \beta = -1$$

Alt1 A

Alt2 E

Alt3 C

46

Let $X_1, X_2, \dots X_n$ be a random sample from a population with the probability density function $f_{\theta}(x) = 4e^{-4(x-\theta)}, x > \theta, \theta \in \Re$. If $T_n = \min(X_1, X_2, \dots X_n)$, then

- (a) T_n is unbiased and consistent estimator of θ
- (b) T_n is biased and consistent estimator of θ
- (c) T_n is biased but not consistent estimator of θ
- (d) T_n is neither unbiased nor consistent estimator of θ .

Alt1

Alt2 I

Alt3 C

Alt4 D

47

Let $X_1, X_2, ..., X_n (n > 1)$ be a random sample from a Poisson (θ) population, $\theta > 0$ and $T = \sum_{i=1}^{n} X_i$. Then the UMVUE of θ^2 is

- (a) $\frac{T(T-1)}{n^2}$
- (b) $\frac{T(T-1)}{n(n-1)}$
- (c) $\frac{T(T-1)}{n(n+1)}$
- (d) $\frac{T^2}{n^2}$

Alt1

Alt2 I

Alt3

48

Let $\underline{X}=(X_1,X_2)$ have a bivariate normal distribution with $E(X_1)=E(X_2)=0; E(X_1^2)=E(X_2^2)=1$ and $E(X_1X_2)=\frac{1}{2}$. Then $P(X_1+2X_2>\sqrt{7})$ equals

- (a) 0.1587
- (b) 0.5
- (c) 0.7612
- (d) 0.8413

Alt1

Alt2 B

Alt3 C

Alt4 D

49

The pdf of a random variable X is given by $f(x) = \alpha x^{\alpha-1}, 0 < x < 1, \alpha > 0$. Then the distribution of the random variable $Y = \ln X^{-2\alpha}$ is

- (a) χ_2^2
- (b) $\frac{1}{2}\chi_2^2$
- (c) $2\chi_2^2$
- (d) χ_1^2

Alt1

Alt2 B

Alt3 (

Alt4

50

From the data on marks it is observed that only 25% students got marks less than or equal to 35, 50% students got marks upto 50, but only 25% got marks above 75. Then the marks distribution should be

- (a) symmetric
- (b) negatively skewed
- (c) positively skewed
- (d) information is insufficient.

Alt1 A

Alt2 B

Alt3	C
Alt4	D
51	If the two regression lines between the variables X and Y are perpendicular to each other, then their correlation coefficient is (a) -1 (b) i (c) 0 (d) 1
2114	
Alt1	
Alt2	
Alt3	
Alt4	<u>D</u>
52	If the regression line of Y on X is $Y=23-2X$ and the coefficient of determination is 0.49, then the correlation coefficient is (a) -0.7 (b) -0.49 (c) 0.49 (d) 0.7
Alt1	A
Alt2	
Alt3	
Alt4	D

Let X be a random variable whose probability mass functions $f_0(x)$ (under the null hypothesis H_0) and $f_1(x)$ (under the alternative hypothesis) are given by

X = x	0	1	2	3
$f_0(x)$	0.4	0.3	0.2	0.1
$f_1(x)$	0.1	0.2	0.3	0.4

For testing the null hypothesis $H_0: X \sim f_0$ against the alternative $H_1: X \sim f_1$, consider the test given by: Reject H_0 if $X > \frac{3}{2}$. If $\alpha =$ size of the test and $\beta =$ power of the test, then

(a)
$$\alpha = 0.3; \beta = 0.3$$

(b)
$$\alpha = 0.3; \beta = 0.7$$

(c)
$$\alpha = 0.7; \beta = 0.3$$

(a)
$$\alpha = 0.3$$
; $\beta = 0.3$
(b) $\alpha = 0.3$; $\beta = 0.7$
(c) $\alpha = 0.7$; $\beta = 0.3$
(d) $\alpha = 0.7$; $\beta = 0.7$

Alt2 B

Alt3

Alt4 D

54

Let $X \sim N(0, 1)$, then the distribution of X^2 is

Cauchy A:

B: Normal

D: Chi-Square

Alt1 A

Alt2 B

Alt3 C

Suppose that $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has normal with $(\mu_{2\times 1}, \Sigma_{2\times 2})$ distribution where $\Sigma_{2\times 2}$ is nonsingular. Let $X_3 = -2X_2$. Then which of the following has a singular normal distribution.

(a)
$$\begin{pmatrix} X_1 - 2X_2 \\ X_2 - 2X_3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} X_1 - X_2 - X_3 \\ 2X_1 + 2X_2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} X_1 + X_2 \\ 2X_1 + 2X_3 \end{pmatrix}$$

(d)
$$\begin{pmatrix} X_1 + X_2 + X_3 \\ X_1 + X_2 \end{pmatrix}$$

Alt1

Alt2 B

Alt3

Alt4 D

Let \overline{X} and S be the sample mean vector and sample variance covariance matrix for a random sample of size N drwan from $N_p(\mu, \Sigma), \Sigma > 0$. Then a Hotelling T^2 statistic may be constructed

(a)
$$(N-1)(\overline{X}-\mu)'S^{-1}(\overline{X}-\mu)$$

(b)
$$N(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$

(a)
$$(N-1)(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$

(b) $N(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$
(c) $\frac{1}{N-1}(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$

(d)
$$\frac{1}{N}(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$

Alt1 A

Alt2 B

Alt3 C

 $\mathbf{A} \sim Wishart_p(n, I_p)$ and \mathbf{Y} is a p-component random veloctor. Then $\frac{\mathbf{Y'Y}}{\mathbf{Y'A^{-1}Y}}$ follows

- (a) $\chi^{2}(n-p+1)$ (b) $\frac{p}{n-p+1}F_{p,n-p+1}$ (c) $Beta\left(\frac{n-p+1}{2}, \frac{p}{2}\right)$
- (d) None of the above

Alt1

Alt2 B

Alt3

Alt4

Principal Component Analysis aims at deriving a new set of linearly combined measurements possessing the following properties. Detect which one does not hold.

- (a) Their loading vectors are normalized each.
- (b) Their loading vectors are orthogonal to each other.
- (c) Their variances are in a nondecreasing order.
- (d) Their covariances are negative.

Alt1 A

Alt2 B

Alt3

Alt4

59 If X and Y are two random variables, then

Alt1 $E\{(XY)2\} = E(X2) E(Y2)$

 $Alt2 E\{(XY)2\} = E(X2Y2)$

Alt3 $E\{(XY)2\} \ge E(X2) E(Y2)$

Alt4 $E\{(XY)2\} \le E(X2) E(Y2)$

60 If X^b (n, p) then Y = (n-X) is

Alt1 b (2n, p)

Alt2 b (n, 1-p)

Alt3 b (n, p)

Alt4 b (2n, 1-p)

61 In SRSWOR, the probability that a specified unit is selected at the second draw from a population of size N is

Alt1 1 N	
Alt2 $\frac{1}{N}$	
Alt3 $\frac{1}{N-2}$	
$\frac{1}{\{N(N-1)\}}$	
<u> </u>	

	T1 and T2 are two most efficient estimators with the same variance S2 and the correlation between them is ρ , the variance of (T1 + T2)/2 is equal to
Alt1	S2
Alt2	ρ S2
Alt3	(1+ρ)S2/4
Alt4	(1+ρ)S2/2

For the distribution $f(x;\theta)=1/\theta$; $0 \le x \le \theta$. A sufficient estimator for θ , based on a sample X1, X2, ..., Xn is $\frac{\sum_{i=1}^{n} X_{i}}{n}$ Alt2 $\frac{\sum_{i=1}^{n} X_{i}}{n}$ Alt3 Max (X1, X2, ..., Xn)
Alt4 Min (X1, X2, ..., Xn)

64	If the sample size is large in Wilcoxon's Signed rank test, the statistic T* is distributed with variance
Alt1	n(n-1)(2n-1)/24
Alt2	n(n+1)(2n+1)/24
Alt3	n(2n+1)/12
Alt4	n(n-1)(2n+1)/12

65	In a (23, 22) experiment with 3 replications, the interaction ABC is confounded. The error degrees of freedom in		
	the analysis of variance will be		
Alt1	16		
Alt2	14		

Alt3	12
Alt4	10

66	The total number of Latin squares that can be obtained of order are
Alt1	16
Alt2	12
Alt3	9
Alt4	3

67	Let S ^{\sim} Wp (K, Σ), be a p-variate Wishart distribution. For p=1, W1(K, σ 2) follows	
Alt1	χ_k^2 distribution	
Alt2	[[σ^2 χ]]_k^2 distribution	
Alt3	Snedecor's F-distribution with 1, p degrees of freedom	
Alt4	Non-central χ_k^2 distribution	

68	The regression line of Y on X is Y = $0.95X + 7.25$ and $\overline{Y} = 13.14$, the value of \overline{X} is
Alt1	5.9
Alt2	6.2
Alt3	12.5
Alt4	21.5

б	On the basis of one observation drawn from a distribution with probability density function as $f(x; \theta) = \theta \exp(-\theta x)$, if $0 \le x \le \infty$. The critical region defined by $x \ge 1$ for testing H0: $\theta = 1$ against H1: $\theta = 2$. The probability of type II error, β , is given by
Al	į į
Al	$2\int_{1}^{\infty} 2 \exp(-2x) dx$
Al	$\int_{0}^{1} \exp(-x) dx$
Al	$\int_{0}^{1} 2\exp(-2x) dx$

70	If $X^{N}(0,1)$ and $Y^{N}(5,4)$ are two independent random variables, then the variance of the random variable $Z = 2X$
	+ Y is
Alt1	4
Alt2	6
Alt3	8
Alt4	_ 9
71	A random sample of five observations (3.5, 0.6, 2.7, 0.9, 1.8) drawn from a population with probability density
	function as $f(x)=1/(b-a)$, a <x<b. a="" and="" are<="" b="" estimates="" likelihood="" maximum="" of="" td="" the="" then=""></x<b.>
Alt1	(0.6, 3.5)
Alt2	(0.6, 0.9)
	(1.9, 3.5)
	(2.7, 3.5)
72	Suppose that u ^{\sim} Np (μ , Σ), where μ and Σ are unknown. For testing the null hypothesis H0: $\mu = \mu$ 0 (specified)
	against H1: $\mu \neq \mu 0$, the test statistic used is
	Student's t
Alt2	Hotelling T2
	Mahalanobis D
Alt4	X The second sec
73	. Let S1 $^{\sim}$ Wp (k1, Σ) and S2 $^{\sim}$ Wp (k2, Σ) be independent, where Wp denotes a wishart distribution. Then the
	distribution of S1 + S2 is
Alt1	Wp (K1+K2, Σ)
	Wp (K1+K2, 2Σ)
	W2p (K1+K2, Σ)
	The distribution cannot be defined
74	Let X^N3 (μ , Σ) with μ' = [-3, 1, 4] and Σ = [\blacksquare (1&-2&0@-2&5&0@0&0&2)] which of the following random
	variables are independent?
Alt1	X1 and X2
	(X1, X2) and X3
	(X2, X3) and X1
	X2 and X3
75	If in a Latin square design with "t" treatments, such that row degrees of freedom = column degrees of freedom
	= treatment degrees of freedom = error degrees of freedom, then t is equal to
Alt1	3
Alt2	
Alt3	
Alt4	
7 0 1	

76 In a (35, 32) experiment the total number of interactions that can be confounded are
Alt1 3

Alt2	10
Alt3	13
Alt4	26
	If a stratified random sample of size 45 is to be selected by Neyman allocation from a population with N1=150, N2=350, S_1^2=4,S_2^2=9, then the number of units to be selected from the first stratum is
Alt1	10
Alt2	20
Alt3	25
Alt4	35
78	In simple random sampling, the bias of the ratio estimator $R = \overline{Y} / \overline{X}$ is given by
Alt1	$\frac{\mathbf{cor}(\mathbf{Y},\mathbf{X})}{E(\mathbf{X})}$
Alt2	$\frac{\operatorname{cor}(\widehat{\mathbf{R}}, \overline{\mathbf{X}})}{\operatorname{E}(\overline{\mathbf{X}})}$
Alt3	cor (R, Y) E(X)
Alt4	$= \frac{\operatorname{cor}(\overline{Y}, \overline{X})}{\operatorname{E}(\overline{X})}$
79	The family of parametric distribution which has mean always less than variance
Alt1	Beta distribution
Alt2	Log normal distribution
	Weibull distribution
Alt4	Negative binomial distribution
	Kruskal wallis test with the k treatment and n blocks, which is approximated to chi-square with degrees of
	freedom equal to
Alt1	n-1
Alt2	n-k
Alt3	
Alt4	(n-1) (k-1)
	Let X be a random variable with mean μ and variance $\sigma 2$, the lower bound to P[X- $\mu {\le}4\sigma]$ is
Alt1	0.0625
Δlt2	0.9375

Alt3 1

Alt4 0.2500

82	If (4.5, 7, 2.3, 3, 8, 7.4, 2, 5) is a random sample of size 8 from a population with probability density function a
	$f(x,\theta)=1/2 e^{(- X-\theta)}$; $-\infty, then the maximum likelihood estimate of \theta is$
Alt1	4.50
Alt2	4.75
Alt3	8.00
Alt4	4.90
83	Let X1, X2,, Xn be independently and identically distributed random variables with common Uniform
	distribution U(0,1). Then the distribution of -2∑_(i=1)^n∭log[X_i] is
Alt1	$\chi^2_{(2n)}$
	2
Alt2	$\chi_{(n)}$
Alt3	t2n-1
Alt4	Fn,n
8/1	Let x1, x2,, x25 be a random sample of size n from N(μ , σ 2) and n is large. The relative efficiency of the sam
	median as compared to sample mean is
	3/π
Alt1	
	$2/\pi^2$
Alt3	
Alt4	2/π
1	
	If all frequencies of classes are same, the value of χ^2 is
Alt1	1
Alt2	Zero
Alt3	∞
Alt4	None of the above
86	The probability mass function of a random variable X is
	x : -1 0 1
	p(x): k 2k 2k.
	The value of k is
	THE VALUE OF KIS
Alt1	1/10
Alt2	
Alt3	
Alt4	
	·-
87	While performing analysis of variance, if 10 is added to each of the observation, then the various sum of squa
Alt1	Increased by 10
Alt2	Decreased by 10
	1 -

Alt3

Remains the same

Alt4	Multiplied by 10
88	In a spit plot design, more precision is attained for
Alt1	Main plot treatments
Alt2	Sub plot treatments
Alt3	Block differences
Alt4	All of the above
89	In simple random sampling with replacement, the same sample sampling unit may be included in the sample
Alt1	Only once
Alt2	
	More than once
	None of the above
7	
90	Let X and Y are two independent random variables and follow the Poisson distribution with means $\lambda 1$ and $\lambda 2$
30	respectively, where $\lambda 1 \neq \lambda 2$. Then the conditional distribution of $[X/X+Y]$ is
Δl+1	Binomial
Alt2	
	Discrete Uniform
AIT4	Negative Binomial
91	Let p be the probability that a coin will fall head in a single toss in order to test the hypothesis H0: $p = \frac{1}{2}$ against
	H1: p = 3/4. The coin is tossed five times and H0; is rejected if more than three heads are obtained. The
	probability of type I error is
Alt1	3/16
Alt2	47/128
Alt3	81/128
Alt4	13/16
	From a population of size 5, the total number of possible sample of size 3 using simple random sample with replacement is
Alt1	15
Alt2	60
Alt3	
Alt4	
93	The difference in the mortality experiences of two communities can be done by comparing the values of
Alt1	Crude death rate
Alt2	Age specific death rate
Alt3	
Alt4	Infant mortality rate
AILH	mane moreously race
9/1	If $Y = 3.2X + 58$ and $X = 0.2Y - 8$ are the lines of regression of Y on X and X on Y respectively, then the value of
	correlation coefficient between X and Y is
Alt1	
AILI	0.6

Alt2	0.7
Alt3	0.8
Alt4	0.9
95	In 1993, the sex ratio at birth was 105 males to 100 females in India. Total fertility rate was 3.54. The value of
	Gross reproduction rate is approximately
Alt1	1.73
Alt2	1.81
Alt3	3.37
Alt4	3.85
96	Homogeneity of several variances can be tested by
Alt1	Bartlett's test
Alt2	Fisher's exact test
Alt3	F test
Alt4	t test
97	Generally the estimators obtained by the method of moments as compared to ML estimators are
Alt1	Less efficient
Alt2	
Alt3	Equally efficient
	None of the above
98	In 2n factorial experiment conducted in RBD with r replications the error degrees of freedom would be
	III 21 lascorial experimente conducted in risponitoria circo degrees of recedent would be
Alt1	(2n-1) (r-1)
Alt2	2n (r-1)
Alt3	
	(2n-1) (2n-2)
AIL4	
QΩ	The additivity of analysis of variance model is tested by
	Wilk's λ criterion
	Tukey's test
	Fisher's test
	Duncanr's test
AIL4	Duncaiii 5 (C5)
100	In a 25 factorial experiment the number of 2 factor interactions are
	In a 25 factorial experiment the number of 3 factor interactions are
Alt1	10
Alt2	20
Alt3	5
Alt4	32

PU Ph D Statistics

4	of	4	0	n
	OI		U	U

160 PU 2015 149

The pdf of the three-parameter Weibull reduces to that of the two parameter exponential distributon, when β takes the value:-

- $\beta = 1$
- $\beta > 1$
- $\beta < 1$
- $\beta = 0$

2 of 100

162 PU 2015 149

A one year guarantee is given based on assumption that no more than 10% of the items will be returned. Assuming an exponential distribution, what is the maximum failure rate that can be tolerated?

- 0.1054 per year
- 0.2312 per year
- 0.1465 per year
- 0.1271 per year

3 of 100

130 PU 2015 149

If $X_1, X_2, ..., X_n$ is a random sample from a Uniform distribution over the interval $(0, \theta), \theta > 0$ then the maximum likelihood estimator of θ is the:-

- Median of the sample
- Mean of the sample
- Biggest sample observation
- Smallest sample observation

4 of 100

190 PU_2015_149

If $Y = X\beta + \varepsilon$ where X is $n \times k + 1$ matrix of rank (k+1) < n, then $\hat{\beta} =$

- \square $(XX)^{-1}\sigma^2$
- \square $(XX)^{-1}XY$
- \square (XX)
- \square $(XX)^{-1}$

109	f 100 PU_2015_149 -square distribution is the special type of:-
	Pareto distribution
	Weibull distribution
	Erlang distribution
	Rayleigh distribution
208 The	F 100 PU_2015_149 indirect least square method is applied to estimate the coefficients of the:- simultaneous equations
	reduced form equations
	structural equations
	linear equations
	f 100 PU_2015_149
The	$A = \begin{bmatrix} 1 & 2 & -3 & -2 \\ 1 & 3 & -2 & 0 \\ 3 & 8 & -7 & -2 \\ 2 & 1 & -9 & -10 \end{bmatrix}$ is:-
	4
	3
	2
8 o 128	f 100 PU_2015_149 alid t-test to assess an observed difference between two sample mean value requires:-
(ii) t	both populations are independent. he observations to be sampled from normally distributed parent population. the variance to be the same for both populations.
	(i) and (ii)
	(ii) and (iii)
	(i) and (iii)
	all the three conditions

9 of 100

205 PU_2015_149

Which model leads to get BLUE in estimating the regression model in the presence of heteroscedasticity?

- Two stage regression estimation
- GLS
- MLE
- OLS

10 of 100

126 PU 2015 149

A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test.

- p < 5%
- p > 5%
- Any one of the above three can be true

11 of 100

171 PU_2015_149

Let $y'_{,j}$ be the Total of known values of jth column; y'_{i} be the Total of known values of ith row; $y'_{..}$ be the Total of all (rt-1) known values; 'r' be the number of blocks and 't' be the number of treatments, then the missing plot in R.B.D is x=

$$\qquad \qquad \frac{r.y_{,j}^{\prime} + t.y_{i.}^{\prime} - y_{,.}^{\prime}}{(r-1)(t-1)}$$

$$\frac{r.y'_{,j} - t.y'_{,i} + y'_{,i}}{(r-1)(t-1)}$$

$$r. y'_i + t. y'_i - y'$$

$$\Gamma \frac{r.y'_{.j} + t.y'_{i.} - y'_{..}}{(r+1)(t+1)}$$

12 of 100

123 PU_2015_149

Let	{Xn} be a sequence of random variables. Xn converges almost surely if and only if:-	
	$P(\lim_{n\to\infty} X_n = X) = 1$	
	$P(\lim_{n\to\infty} X_n = X) = 0$	
	$P(\lim_{n\to\infty} X_n \neq X) = a; 0 < a < 1$	
	$P(\lim_{n\to\infty} X_n \neq X) = 1$	
127 If T	of 100 PU_2015_149 ype-I and Type-II errors are kept fixed, then the power of the test increases:-	
	if there is an increase of sample size	
	if the test is unbiased	
	if sample size remains unchanged	
	if there is a decrease of sample size	
	of 100 PU_2015_149	
In K	Coyck model, the closer the value of λ is to 1, the rate of decline in eta_k :-	
	depends on β_k	
	depends on k	
	is faster	
	is slower	
154	of 100 PU_2015_149 I/M/1: ∞/FIFO model, the Average number of customers in the system including the service is equal	
	$\rho / (1-\rho)^2$	
	ρ /(1-ρ)	
	(1-ρ) /ρ	
	$\rho^2/(1-\rho)$	
16 of 100 149 PU_2015_149 In the Usual Queue model (A/B/C: E/F), F stands for:-		
	Number of Service Channels	
	Input/output Processes	
	Queue Capacity	
	Queue Discipline	

206 The mod	7 of 100 06 PU_2015_149 The Almon technique of estimating distributed lag model is better than Koyck model because in Koyck model:-			
	explanatory variables exhibit multicollinearity			
prol	the lagged explanatory variable form part of the set of explanatory variables creating estimation blem			
	the number of lags is decided subjectively			
	it is assumed that the beta parameter values decline geometrically			
132	of 100 p PU_2015_149 p esymmetric variance covariance matrix p will have number of distinct covariances. $\frac{p(p+1)}{2}$ $\frac{(p+1)}{2}$			
	$\frac{(p-1)}{2}$			
	$\frac{p(p-1)}{2}$			
209 The	of 100 PU_2015_149 Inearization of a non linear equation is based on the technique of:- Hit or miss method			
	Taylor's series expansion			
	Method of steepest descent			
	Direct search method			
125 Crit	of 100 $^{\circ}$ PU_2015_149 ical region of size α which minimizes β amongst all critical regions of size α is called:-			
	powerful critical region			
	best critical region			
	minimum critical region			
	worst critical region			
147	of 100 'PU_2015_149 ne upper and lower control limits of a process are changed from 3-Sigma units to 2-Sigma units, then Probability of Type I error will remain constant			

0	Nothing related with probability of Type I error Probability of Type I error will decrease Probability of Type I error will increase
	of 100 3 PU_2015_149
Le	et X_1, X_2, \ldots, X_n be a random sample from a Multivariate Normal Population with mean μ and covariance mat
0	efficient statistics consistent estimates sufficient statistics unbiased estimates
163	of 100 as PU_2015_149 be survival function of Gamma distribution with shape parameter γ is:- $S(x) = \frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)}; \gamma > 0, x \ge 0$ $S(x) = 1 + \frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)}; \gamma > 0, x \ge 0$ $S(x) = \Gamma(\gamma)\Gamma_{x}(\gamma); \gamma > 0, x \ge 0$ $S(x) = 1 - \frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)}; \gamma > 0, x \ge 0$
146	of 100 6 PU_2015_149 e control limits of a standardized fraction defectives(p) –chart:- does not vary with samples is a function of the median sample size is a function of the mean sample size varies with samples
201	of 100 1 PU_2015_149 w many rows and columns are available in MS Excel 2007? 256 Columns & 65536 Rows 16834 Columns & 1045876 Rows 265 Columns & 66536 Rows

	16384 Columns & 1048576 Rows		
210 If th	of 100 PU_2015_149 e central line of a c-chart is at 4, then the values of the warning limits are:- 0 and 8 3 and 5 -2 and 10 2 and 6		
	of 100 PU_2015_149		
If i	$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{bmatrix} $ then $ A $ is equal to:-		
	(1+a)(1+b)(1+c) abc (1+a)(1+bc) 1+abc		
172	not necessarily finite		
198	of 100 PU_2015_149 ch of the following is an Operating system? Windows 8 SPSS MS Office STATA		

30 of 100 207 PU_2015_149 In Simultaneous Equation Model (SEM), the endogenous variable in one equation may appear as:-			
	dependent variable in other equation		
	regressand in other equation		
	parameter in other equation		
	regressor in other equation		
150	of 100 PU_2015_149 e frequency of placing order to an item is more, then the risk of running out of stock is:- not effected Equal less more		
32 of 100 188 PU_2015_149 Which of the following is Mallow's p statistic? $\mathbb{C} RSS_p/(s^2-n-2p)$			
	RSS_p/s^2-n+2p		
	$RSS_p/(n-2p)$		
	$RSS_p/s^2 - (n-2p)$		
153	of 100 PU_2015_149 king, Reneging, Priority and Jockeying in Queuing systems refers to:- Service Patterns Input Mechanisms Queue Operational models Customer Behaviour in the queue		
34 of 100 195 PU_2015_149 For what purpose the 'variable view' in IBM SPSS's data editor is used?			
	Defining characteristics of variables.		
	Viewing output from data analysis.		
	Entering data.		
	Writing syntax.		

35	of 100
Two	PU_2015_149 o parallel, identical and independent components have constant failure rate. If it is desired 000)=0.95, find the system MTTF.
	456.3
	546.7
	1784.9
	5926.5
134 Out disti	of 100 PU_2015_149 of the following statements which one is true for a random variable X which has a multivariate normal ribution:-
	a) Linear combination of the components of X are not normally distributed
	b) All subsets of the components of X have a Multivariate Normal distribution
	c) The conditional distributions of the components are multivariate normal
	d) The above statements (b) and (c) both are true
	of 100 PU_2015_149
If	$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ then $E(Y)$, $V(Y)$ are
	$0, \sigma^2 I$
0	$A_{1}+A_{2}\overline{X}$, 0
	A,0
	$A \bar{X}, 0$
197	of 100 PU_2015_149 at is the extension for an SPSS data file?
	.sov
	.sav
	.spv
	.SSV

39 of 100

165 PU_2015_149
Which of the following designs are based on the mathematical models of one way and two way classifications respectively?

LSD,CRD
RBD,LSD

40 of 100

131 PU_2015_149

A sufficient condition for an estimator T_n to be consistent for θ is that:-

Var
$$(T_n)$$
 /E $(T_n) \rightarrow 0$ as $n \rightarrow \infty$

$$E(T_n) \to \theta \& Var(T_n) \to 0 as n \to \infty$$

$$E(T_n) \to \theta \text{ as } n \to \infty$$

41 of 100

152 PU 2015 149

The Term EOQ model in the context of Inventory Modeling is related to:-

42 of 100

175 PU 2015 149

If the population of 100 size is divided in to two stratums with sizes 60 and 40 respectively. If a sample of 20 observations to be drawn from the total population, then what are the sizes of samples from the first and second stratums respectively?

43 of 100

174 PU 2015 149

In simple random sampling with replacement variance of sample mean is equal to:-

$$\square \left(\frac{1}{n+1} - \frac{1}{N-1}\right) s^2$$

$$\square \quad \left(\frac{1}{n} - \frac{1}{N+1}\right) S^2$$

$$\square \left(\frac{1}{N} - \frac{1}{n}\right) S^2$$

122 PU_2015_149

If X has probability density function (p.d.f.) $f(x) = e^{-x}$; x > 0 and $Y = \begin{cases} X & \text{if } X \ge 3 \\ 2X + 3 & \text{if } X < 3 \end{cases}$, then the expected value of Y is:-

- $7 5e^{-3}$
- 5 7e⁻³
- 5 7e⁻⁵
- $7 5e^{-5}$

45 of 100

164 PU_2015_149

In 2² factorial design, the interaction effect AB is defined as:-

- $\sum_{a=0}^{\infty} \frac{1}{2} [(ab) (a) (b) + (1)]$

46 of 100

129 PU_2015_149

If T_n is unbiased and consistent for θ then:-

- T_n^2 is unbiased and consistent for θ^2 .
- T_n^2 is biased but consistent for θ^2 .
- T_n^2 is unbiased but not consistent for θ^2 .
- T_n^2 is biased and not consistent for θ_2 .

47 of 100

203 PU 2015 149

According to Akaike's Information Criterion (AIC) while comparing two or more models, that model is selected which has:-

- AIC value >1
- AIC value <1

	highest AIC value lowest AIC value							
148	of 100 3 PU_2015_149 iich of the following are relevant with respect to convex sets?							
(2)	Union of Two Convex Sets; Intersection of two convex sets; Convex Hull							
	One and Three are true							
	Two and Three are true							
	One and Two are True							
	One, Two and Three are True							
	of 100 7 PU_2015_149							
L	Let $\{X(t)=n\}$ be a stochastic process such that $\Pr\{X(t)=n\}=\frac{(at)^{n-1}}{(1+at)^{n+1}}, n=1,2,$							
]	$\Pr\{X(t) = n\} = \frac{at}{1 + at}$; for n=0, with $E\{X(t)\}=1$ and $V\{X(t)\}=2at+1$, then $\{X(t)\}$ is:							
	Evolutionary Process							
	Markov Process							
	Stationary Process Logarithmic Process							
FO								
	of 100 5 PU_2015_149							
	2x + y - z = 3							
	x + y + z = 1							
The	e solution of $x - 2y - 3z = 4$							
	(0,1,2)							
0	(0,1,2) (-2,1,0) (2,1,0)							

(2,-1,0)

120 The in r	of 100 9 PU_2015_149 e connection between almost sure convergence (a.s), convergence in probability (p) and convergence h mean (m) is:-
	$a.s \Rightarrow m \Rightarrow p$
	$a.s \Rightarrow p; p \Rightarrow m$
	$a.s \Rightarrow p; m \Rightarrow p$
	$m \Rightarrow a.s \Rightarrow p$
121 A n null	of 100 PU_2015_149 on-empty class of subsets of Ω that is closed under countable unions and compliments containing the set Φ is known as:-
	Probability Space
	Sigma Field
	Field
	Sample Space
108	of 100 BPU_2015_149 ich of the following distributions are having the moments without moment generating function?
	Pareto, Exponential and F-distributions
	Pareto, Student-t and F-distributions
	Pareto, Chi square and F-distributions
	Pareto, Weibull and F-distributions
124 A te	of 100 PU_2015_149 PU_5 Post T for which maximum risk under H_0 and H_1 is not more than the maximum risk of any other test T* ler H_0 and H_1 is called:-
	an unbiased test
	an admissible test
	uniformly most powerful test
	minimax test
196 In S	of 100 5 PU_2015_149 6 PSS, how many cases need to appear in one category for chi-square? 2 1
	5

	6
199	of 100 PU_2015_149 ch of the following is a programming language? C & C++ MS Excel SPSS Windows 98
202	of 100 PU_2015_149 range of Durbin-Watson test statistic is:- 0 to 4 2 to 4 0 to 2 4 ± 2
200	PU_2015_149 at is the wizard used to create the tabulation reports in MS EXCEL? Pivot Table Function Cross Tabulation All the above
	of 100 PU_2015_149
	e distribution of a random variable X is symmetric about origin, then the characteristic ction $\phi_{X}(t)$ is:-
	Real One Zero Complex
DU (of 100

173 PU_2015_149
To collect the data from Indian professors settled in various parts of world, the following method of data collection is more optimal in all respects:-

- placing questionnaire in website
- direct observation method
- data collection through email questionnaire
- direct interview method

243 PU 2015 149

Let X_{ij} be the sample observation belong to ith treatment and jth in an experiment of 'k' treatments and 'r' blocks analysis of variance, $\overline{X}_{\bullet \bullet} = \sum_{i=1}^k \sum_{j=1}^r x_{ij} / rk$, $\overline{X}_{\bullet j} = \sum_{i=1}^k x_{ij} / k_{\text{ and }} \overline{X}_{i \bullet} = \sum_{j=1}^r x_{ij} / r_{\text{ then }} \sum_{i=1}^k \sum_{j=1}^r \left(x_{ij} - \overline{x}_{\bullet \bullet} \right)^2$; $\sum_{i=1}^k \left(\overline{x}_{i \bullet} - \overline{x}_{\bullet \bullet} \right)^2$; $\sum_{i=1}^r \left(\overline{x}_{\bullet j} - \overline{x}_{\bullet \bullet} \right)^2$ and $\sum_{i=1}^k \sum_{j=1}^r \left(x_{ij} - \overline{x}_{i \bullet} - \overline{x}_{\bullet j} + \overline{x}_{\bullet \bullet} \right)^2$ are respectively:-

- Treatment Sum of squares, Error sum of squares, Blocks sum of squares and Total sum of squares
- Total sum of squares, Treatment Sum of squares, Blocks sum of squares and Error sum of squares
- Error sum of squares, Total sum of squares, Blocks sum of squares and Treatment Sum of squares
- Blocks sum of squares, Treatment Sum of squares, Total sum of squares and Error sum of squares

62 of 100

246 PU_2015_149

If $V\left(\overline{y}_{st}\right)$ is minimum for fixed total size of the sample size (n) and If n_i = n

$$n(N_i S_i) / \sum_{i=1}^k N_i S_i$$
; $P_i = (N_i / N)$ then $V(\overline{y}_{st})_{Opt} =$

$$\qquad \qquad \mathbb{E} \quad \left(\sum_{i=1}^k p_i S_i \right)^2 - \left(\sum_{i=1}^k p_i S_i^2 \right)$$

$$\square \frac{1}{n} \left(\sum_{i=1}^{k} p_i S_i \right)^2 - \frac{1}{N} \left(\sum_{i=1}^{k} p_i S_i^2 \right)$$

252 PU_2015_149

What is the wizard used to create the tabulation reports in excel?

- Pivot Table Wizard
- Function Wizard
- Cross Tabulation Wizard
- Conditional Formatting

64 of 100

224 PU_2015_149

The mean of non-central F distribution with n₁ and n₂ degrees of freedom and non-centrality parameter λ₁

- $\frac{n_1}{n_2} \frac{n_2 2}{n_1 + \lambda_1}$
- $\begin{array}{c}
 \frac{n_1 + \lambda_1}{n_2 2}
 \end{array}$
- $\begin{array}{c|c}
 & n_2 & n_1 + \lambda_1 \\
 \hline
 & n_1 & n_2 2
 \end{array}$

65 of 100

250 PU_2015_149

The unbiased Estimator of σ^2 for the model, If $Y = X\beta + \varepsilon$ where X is $n \times k + 1$ matrix of $\operatorname{rank}(k+1) < n$

- $\Box \hat{\sigma}^2 = \frac{E(SSE)}{n-k-1}$
- $\hat{C} \quad \hat{\sigma}^2 = \frac{E(SSE)}{k-1}$
- $\hat{\sigma}^2 = \frac{E(SSE)}{n-1}$
- $\hat{C} \quad \hat{\sigma}^2 = \frac{E(SSE)}{n-k+1}$

66 of 100

251 PU_2015_149

Which function is used to compute the compound growth rate using MS EXCEL?

LOGEST

TREND

FORECAST

LINEST

67 of 100

225 PU_2015_149

$$\frac{1}{e}e^{-\frac{x^2}{4}+\frac{x}{2}-1}$$

If the pdf of Normal distribution is given by $f(x) = \pi$, then the mean and variance are:

 \square $\frac{1}{\sqrt{2}}$,2

 \square $(\sqrt{2},\sqrt{2})$

 \square $\left(2,\frac{1}{\sqrt{2}}\right)$

 \Box $\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)$

68 of 100

237 PU_2015_149

Rejectable quality level denotes:-

the best level of in-coming lot quality that consumer is willing to reject

the worst level of in-coming lot quality that consumer is willing to reject

the worst level of in-coming lot quality that consumer is willing to accept

the best level of in-coming lot quality that consumer is willing to accept

69 of 100

245 PU_2015_149

If the population size is 'N' and sample size is 'n', then total number of possible samples that can be obtained through SRSWR and SRSWOR respectively are:-

$$\square \quad n^N; \binom{N}{n+1}$$

$$\mathbb{C}^{N^{n+1}}; \binom{N}{n+1}$$

$$\square$$
 $N^n; \binom{N}{n}$

244 PU_2015_149

Complete the following ANOVA table:

Source of	D.F.	S.S.	M.S.
Blocks	x - 1	90	30
Treatments	×4	У	25
Error	Z	120	10
Total	19	3 (57)	

- C x=4;y=100;z=10
- **□** x=4;y=100;z=12
- x=3,y=100;z=12
- x=4;y=90;z=12

71 of 100

241 PU_2015_149

The exponential failure rates of three components are $0.065 * 10^{-3}$, $0.18 * 10^{-3}$ and $0.96 * 10^{-3}$ per hours. The reliability at 500 hours if these components are connected in series (parallel).

- R(500) = 0.9989 (0.5474)
- R(500) = 0.4412 (0.6342)
- R(500) = 0.6342 (0.4412)
- R(500) = 0.5474 (0.9989)

72 of 100

223 PU 2015 149

If the joint P.M.F. of (X, Y) is $P(x, y) = \frac{e^{-\lambda} \lambda^x p^y (1-p)^{x-y}}{y!(x-y)!}$; $x = 0,1, \dots$; $y=0,1,2,3,\dots$ x;

then the probability mass functions of X given Y and Y given $X P_{Y/X}(y/x)$ and $P_{X/Y}(x/y)$ correspond to:-

- Poisson and Poisson
- Binomial and Binomial

	Binomial and Poisson
	Poisson and Binomial
	of 100 2 PU_2015_149
	the exponential failure rates of three components are $0.065 * 10^{-3}$, $0.18 * 10^{-3}$ and $0.96 * 10^{-3}$ per hours. MTTF of a system if these components are connected in series is:-
0 0 0	350 hrs. 230 hrs. 550 hrs. 830 hrs.
	of 100 7 PU_2015_149
	t $\Pr\{X_n=j/X_{n-1}=j-1\}=p$; $\Pr\{X_n=j/X_{n-1}=j+1\}=q$; where $0 \le p,q \le 1$; $\Pr\{X_n=0/X_{n-1}=0\}=1$; $\{X_n=k/X_{n-1}=k\}=1$; then the above transitions represent:-
0 0 0	Bivariate random walk of a gambler's ruin problem Bivariate random walk of a drunkard Univariate random walk of a drunkard Univariate random walk of a gambler's ruin problem
248	of 100 3 PU_2015_149 'a' and 'b' be two extreme barriers such that Pr{X _n =a/X _{n-1} =a}=1; Pr{X _n =b/X _{n-1} =b}=0 then:- 'a' is absorbing barrier, 'b' is Elastic barrier 'a' is Elastic barrier, 'b' is Reflecting barrier 'b' is Absorbing barrier, 'a' is Reflecting barrier 'a' is Absorbing barrier, 'b' is Reflecting barrier
249	of 100 PU_2015_149 St for randomness can be handling with:- Durbin-Watson Test Bon-Ferromi Test Brensen-Pagen test

	Jensor	n's te	est					
238 Let type the	e; variab	n L	PP ł				able objective function with Maximization type; All the constraints are ≤ ≥0; all constraints are having the non negative sign on its right hand side,	
	The Convex region is bounded, and optimal basic feasible solution does exist in the first quadrant of graph.							
	The Convex region is Unbounded, and it exists in the First quadrant of the graph							
	The Co	onve	ex re	gior	n do	es r	ot exist in any quadrant of the graph.	
	The Co	onve	ex re	gior	n is	bou	nded, and it exists in the second quadrant of the graph.	
236 Idei	of 100 PU_20 ntify the			state	eme	nt as	ssociated with Shewhart control charts.	
	It can p	orov	ide	warr	ning	sigr	nals for impending trouble	
	It can detect shift in process variation							
9	It can detect large shift in process mean							
	It can detect small shift in process mean							
221 A s	of 100 PU_20 et of line			ıtion	ıs in	the	matrix form AX=B if:-	
	A is invertible & its inverse is known.							
	A is non-invertible & its inverse is not known							
	A is non-invertible & its inverse is known.							
	A is invertible & its inverse is not known.							
222	of 100 PU_20	15_	149					
T a	· W -	(3 2	4 5	0	0	0	then $ M $ is:-	
Le	t 1V1 =	٥	2 5	0	6	7	titeit ha is-	
		0	0	4	3	4		
		1	233	350	30 <u>4</u> 8	1		

	60
	64
295	of 100 5 PU_2015_149 bust regression gives an improvement to the least square estimation in the presence of:-
	without outliers
	Censored observation
	truncated observations
	Outliers
275 Wh	of 100 5 PU_2015_149 ich of the following in not true for variable control chart?
	It can be used only for quality characteristics that are measurable
	It is assumed that the underlying quality characteristic is normally distributed
	It can be used even for quality characteristics that are not measurable
	It requires smaller samples to detect an out of control signal
277	of 100 'PU_2015_149 ich of the following statement is true in the case of Pareto chart?
	It helps in identifying assignable causes that contributes to total 20% of the variation in the process
	It is symmetric in shape
	It helps in identifying assignable causes that contributes to total 80% of the variation in the process
	It is not a useful tool in process control
263	of 100 BPU_2015_149 e characteristic function of the Gamma distribution with parameters α and n is:-
	$\left(\frac{1}{\alpha-it}\right)^n$
	$(1-\frac{\alpha it})^n$
	$(1 - \frac{it}{\alpha})^n$ $(1 - \frac{it}{\alpha})^{-n}$
	$(1-\frac{it}{\alpha})^{-n}$
85	of 100

297 PU_2015_149

If a f	air coin is tossed 4 times, then the Mean deviation about Mean of the related probability distribution
IS	1/4
	1
	2/4
	of 100 PU_2015_149
Le	t a linear model $Y_i = X + \sum_{j=1}^k \beta X_j + \varepsilon_i$ for i=1,2,m then ε_i
	$N(x\hat{oldsymbol{eta}},\sigma^2I)$
	$N(0,\sigma^2I)$
	$N(0, \sigma^2 I)$ $N(\mu, \sigma^2)$
	N(0,1)
	of 100
	PU_2015_149 It is the shortcut button used to close a excel worksheet?
	Ctrl + X
	Ctrl + W
	Ctrl + F4
	Alt + F4
	of 100 PU_2015_149
2000	$A_1, A_2,, A_q$ are independently distributed with A_i distributed according to $W(\Sigma, n_i)$ in $A = \sum_{i=1}^q A_i$ is distributed according to:-
	$W(\Sigma, \Sigma n_i)$
	$W(\Sigma/n_{i_*} n_i)$
	$W(\Sigma, 1/n_i)$
	$W(\Sigma/n_i, 1/n_i)$

271 PU_2015_149

Which of the following criteria is considered for finding the sufficient statistic using the Maximum Likelihood Estimator (MLE)?

- Rao & Blackwell
- Chapman & Kolmogorov
- Fisher & Neyman
- Rao & Cramer

90 of 100

290 PU_2015_149

The F-Statistic for H_0 : $\beta_1 = 0$, in a linear model of regression in terms of R^2 is:-

$$\mathbb{C}^{\frac{R^2/n-k-1}{(1-R^2)/k}}$$

$$\frac{\frac{R^2/k}{(1-R^2)/n-k-1}}{(1-R^2)/n-k-1}$$

$$\square \quad \left(\frac{R}{1-R}\right)^2 \frac{(n-k-1)}{k}$$

$$\square \frac{R^2}{1-R^2}$$

91 of 100

261 PU_2015_149

If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{bmatrix}$$
 then $|A|$ is equal to:

	(a-b)(b-c)(c-a)
276	of 100 PU_2015_149 ch among the following is true for Average Outgoing Quality curve?
	It initially decreases, reaches a minimum and then increases
	It initially increases, reaches a maximum and then decreases
	It is always increasing
	It is always decreasing
296 If M equ	PU_2015_149 ean and Variance of Binomial distribution are 4 and 3 respectively, then the mode of the distribution is al to:- 1 4 and 3
	4
	3
274 The are: C	PU_2015_149 linear combination of $C^TX = C_1 X1 + C_2 X_2 + C_3 X_3 + \ldots + C_p X_p$ has mean and variance respectively c μ and $\Sigma c $ c $^1\mu$ and $c^1\Sigma c$ c $^1\mu$ and $c^1\Sigma c$ c $^1\mu$ and $c^1\Sigma c$
280 If the finite	PU_2015_149 e primal problem has 'm' constraints and 'n' unknown variables, all the constraints are ≤ type, It has e optimum basic feasible solution, then:- The dual problem has 'm' Constraints and 'n' unknown variables, the constraints are of ≥ type, the I problem has Infeasible solution
□ dua	The dual problem has 'n' Constraints and 'm' unknown variables, the constraints are of ≥ type, the problem has finite optimum basic feasible solution
☐ dua	The dual problem has 'n' Constraints and 'm' unknown variables, the constraints are of ≤ type, the I problem has Infeasible solution
□ dua	The dual problem has 'm' Constraints and 'n' unknown variables, the constraints are of ≤ type, the problem has Infeasible solution
00	-6.400

273 PU_2015_149

What is the total sample variance for the following sample variance covariance matrix?

$$S = \begin{bmatrix} 3 & -3/2 & 0 \\ -3/2 & 1 & 1/2 \\ 0 & 1/2 & 1 \end{bmatrix}$$

O ,

L 1/5

^{4/3}

97 of 100

262 PU_2015_149

$$B = \begin{bmatrix} 5 & 2 & 2 \\ 3 & 6 & 3 \\ 6 & 6 & 9 \end{bmatrix}$$

The eigen values of the matrix

(3,3,10)

(3,3,14)

(3,2,10)

(2,3,14)

98 of 100

270 PU 2015 149

Which of the following distributions have involvement in median test?

Lognormal, Binomial and Normal

Geometric, Exponential and Normal

Hypergeometric, Normal and Chi square

Poisson, Beta and Power series

99 of 100

292 PU 2015 149

From which Excel ribbon, we can place header and footer for a excel document?

Data

View View

Insert

Page Layout

100	of 100								
294	294 PU_2015_149								
Wh	en error terms across time series data are inter-correlated, it is known as:-								
	cross correlation								
	spatial auto correlation								
	serial correlation								
	cross autocorrelation								

Examination: Ph.D. Statistics
Section 1 - Section 1
Question No.1 4.00 Bookmark □
Let {Xn} be a strictly decreasing sequence of positive random variables, and suppose that Xn converges to zero in probability. Which of the
following are also true: © Xn converges to some positive quantity
© Xn converges almost surely
C Xn converges everywhere
C Xn converges in distribution
Question No.2 4.00 Bookmark ✓
Let N(t) be a Poisson process with constant intensity function on R. What is the covariance of N(s) and N(t)?
$^{\circ}$ $\lambda(s-t)$, if $(t < s)$
$^{\circ}$ λ s, if s <t< td=""></t<>
$^{\circ}$ $\lambda(t-s)$, if s <t< td=""></t<>
$^{\circ}$ $\lambda(s+t)$
A(BTC)
Question No.3
Bookmark ✓ The trend equation correspond to 1981 as the origin is Y = 148.8 +7.2 X. The monthly trend equation if X unit = 1 year and Y = annual demand is
O Y = 148.8 + 0.6X
O Y = 148.8 + 0.05X
O Y = 12.4 + 0.05X O Y = 12.4 + 0.6X
6 T 12.4 · 0.0X
Question No.4
Bookmark ☐ The following statements given in respect of Maximum Likelihood Estimation (MLE):
I. MLE's are always unique. II. MLE's are not necessarily unbiased.
III. MLE's satisfies invariance property, provided the transformation is one-to-one.
Which of the above are correct? Only II and III are correct
© All are correct
Only I and III are correct
Only I and II are correct
Question No.5
Bookmark
If the percent of trend for a year in a time series is greater than 100%, it indicates that C The actual time series value lies above the trend line and the relative cyclical residual is positive
The actual time series value lies above the trend line and the relative cyclical residual is negative
The actual time series value lies below the trend line and the relative cyclical residual is positive
 The actual time series value lies below the trend line and the relative cyclical residual is negative
Question No.6 4.00 Bookmark
Regression modelling is a statistical framework for developing a mathematical equation that describes how
One response and one or more explanatory variables are related
 One explanatory and one or more response variables are related Several explanatory and several response variables response are related
C All of these are correct.

Change the hest synonym of the italicized word

4.00 Bookmark □

Oncode the best symbigin of the flahetzed word. Dr. Elango is in the habit of using <i>obsolete</i> words.	
© simple	
○ difficult ○ wrong	
O outdated	
Question No.8	4.00
Book	kmark □
Let θ be an unknown parameter and T_1 be an unbiased estimator of θ . If $V(T_1) \le V(T_2)$, where T_2	
to beany other unbiased estimator, then T_1 is known as:	
Minimum variance unbiased estimator	
Unbiased, consistent and minimum variance estimator Consistent and efficient estimator	
O Unbiased and efficient estimator	
Question No.9	4.00
	mark ▽
© process is not capable and needs improvement	
© process is capable and repeatable	
O process is capable but may not be repeatable O none of the above	
Question No.10	4.00
Book	kmark □
Study the following information carefully and answer the question below it Lakshman passes through seven lanes to reach his school. He finds that 'Truth lane' is between his house and 'Lie lane'. The third lane from	hio
school is 'Karma lane'. 'Dharma lane' is immediately before the 'Yog lane'. He passes 'Salvation lane' at the end, 'Lie lane' is between 'Truth lane' and 'Dharma lane', the sixth lane from his house is 'Devotion lane'.	
If Lakshman's house, each lane and his school are equidistant and he takes 2 minutes to pass one lane, then how long will he take to reach school from his house?	
C 13 minutes	
C 14 minutes C 16 minutes	
© 15 minutes	
Question No.11	4.00
	mark 🗆
© set them down	
○ put them down ○ put them up	
© set them up	
Question No.12	4.00
Book This is the school where I studied till class 5.	mark 🔽
The underlined word is a © adjective	
© pronoun	
© adverb	
© preposition	
Question No.13 Book	4.00 kmark □
A single equation econometric model of the demand for a product is a equation in which the quantity demanded of the product	
anvariable C definitional, endogeneous	
C structural, endogeneous	
definitional, exogeneousstructural, exogeneous	

Question No 14

Bookmark [

Δ	pessimistic	decision	making	criterion is	
$\overline{}$	pessimisuc	uccision	making	CITICITION	

- Equally likely
- Maximax
- Maximin
- Decision making under certainty

Question No.15

Bookmark [

The special case of Birth-Death process with $\lambda_n = n\lambda$ is called the _____process

- C Poisson
- Yule-Furry
- Immigration
- C Linear growth

Question No.16 4.00

Bookmark 🗸

If n = 15, $\sum x = 480$, $\sum x^2$, then the standard deviation of y = 5x - 10 is

- O 112.88
- C 47.56
- O 100
- 0 96.82

Question No.17 4.00

Bookmark 🔽

Let $X_1, X_2,...$ be iid Poisson (λ) random variables. If $S_n = \sum_{k=1}^n X_k$. If $\lambda = 1$ and n = 64, then

The value of $P\{50 < S_n < 80\}$ is approximately

- 0.9348
- 0.7884
- 0.7329
- 0.8321

Question No.18 4.00

Bookmark [

Let N be number of units in a population. After the selection of one unit from the population, every k^{th} (k < n) unit is selected to obtain a sample of size n. Let ρ be the interclass correlation between the units of the same systematic sample. If $\rho = 1$, then the relative precision of the systematic sample with simple random sampling is:

- a function of N only
- a function of N and k only
- C a function of N and n only
- $\ensuremath{\text{\fontfamily{\footnote\f$

Question No.19 4.00

Bookmark [

Given the following statements about a one parameter exponential family of distribution:

- I. It always admits sufficient statistics.
- II. The moment estimator θ based on sufficient statistics is CAN for θ .
- III. The asymptotic variance attains CRLB.

Which of the above are correct:

- Only I and II are correct
- Only II and III are correctOnly I and III are correct
- All are correct

Question No.20	4.00
If V be a collection of vectors, then V is said to be subspace, if	Bookmark ✓
C V is closed under scalar multiplication C V is closed under multiplication	
C V is closed under multiplication	
C V is closed under addition and scalar multiplication	
Question No.21	4.00
	Bookmark ✓
The probability of extinction for a linear growth process with birth rate equal to death rate is © 0	
o 1	
O 1/2	
C less than one	
Question No.22	4.00
Let X and Y be two random variableshaving a joint density function f(x, y). Then to obtain the density of U = X+Y, the Jacobian of transfer	Bookmark rmation
is: C Either -1 or 1	
0.5	
0 1	
o -1	
Question No.23	4.00
The test for variance which is not robust against deviations from normality	Bookmark 🔽
C Chi-Square test	
C Z-test C Bartlett's test	
C F-test	
Overfirm No 24	4.00
Question No.24	4.00 Bookmark
In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, ABE Which one of the following gives confounded interactions?	, ACE.
C ADE, ABCD, BCE	
C ABC, ADE, DCBE	
C ACE, ABD, BCDE C ABC, ACE, BCDE	
Question No.25	4.00 Bookmark
If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and time,	
slope estimate is equal to: C the natural logarithm of the square root of the rate of growth	
C the natural logarithm of the rate of growth	
the linear trend the natural logarithm of one plue the rate of growth	
C the natural logarithm of one plus the rate of growth	
Question No.26	4.00 Bookmark
Being awarded the Best Singer in 2010 marked a in her life.	DOOKINALK [
C milestone	
C yardstick C sign-post	
© memorial	

	Admission Agl
Question No.27	4.00
	Bookmark 🗸
(1) (2) (3) (4)	
0.1	
0.4	
C 3 C 2	
U Z	
Question No.28	4.00
	Bookmark 🗆
Statement: Apart from it's entertainment value of Television, it's educational value cannot be ignored Assumptions:	
I. People take Television to be the means of entertainment only.	
II. The educational value of Television is not realized properly	
C If only assumption I is implicit	
Of fineither I nor II is implicit	
C If only assumption II is implicit	
○ If both I and II are implicit	
Question No.29	4.00
	Bookmark □
The measure of Kurtosis of t-distribution is	
° 3(n-2)	
$\frac{1}{n+4}$	
$ \begin{array}{c} c \\ n-2 \\ n-3 \end{array} $ $ \begin{array}{c} c \\ 3(n-2) \\ n-4 \end{array} $ $ \begin{array}{c} c \\ n+2 \\ \end{array} $	
° n-2	
$\frac{n-3}{n-3}$	- Transport
<i>II 3</i>	
° 3(n-2)	
n-4	
0 n+2	
$\frac{n+2}{n}$	
n+4	
Question No.30	4.00
	Bookmark 🖂
Economic forecasts require	
Accurate estimates of the coefficients of structural coefficients	
 forecasts of future values of exogeneous variables appropriate theoretical models 	
C appropriate theoretical models C all of the above	
on the above	
Question No.31	4.00
Study the following information carefully and answer the question below it	Bookmark ✓
Study the following information carefully and answer the question below it	

The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday.

- (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised.
- (ii) Motivation should be organised immediately after Assessment Centre.
- (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion
- (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion

Which of the following information is not required for the above lecture arrangements?

- Only (i)
- Only (ii)
- Only (iii)
- C All are required

Question No.32	4.00
The goodness of fit of the fitted regression model can be checked from the value of	Bookmark 🗆
© Residual sum of squares.	
Coefficient of determination	
© Regression coefficient	
Coefficient of correlation	
Question No.33	4.00
Question no.53	Bookmark
$\begin{bmatrix} 2 & -2 & -4 \end{bmatrix}$	
If $A = \begin{bmatrix} -1 & 3 & 4 \end{bmatrix}$ is an idempotent matrix, then the value of x is	
If $A = \begin{bmatrix} -1 & 3 & 4 \\ 1 & -2 & x \end{bmatrix}$ is an idempotent matrix, then the value of x is	
O -1	
O -3	
○ -5	
O 3	
Overting No 04	1.00
Question No.34	4.00 Bookmark
In many situations managers resort to sampling to draw some conclusions about a population. Which of the following is not an	
sampling over a census?	V
 Sampling usually provides information quicker than a census A study of sample is usually cheaper than a census 	
The conclusions obtained from sampling are more accurate than census.	
C In destructive testing sampling is the only available course	
Question No.35	4.00
	Bookmark
Correct the error in the italicized part of the sentence by choosing the most appropriate options	
Job was a tiny man, barely five feet tall, with a spright walk © spright walk	
© a sprightly walking	
© spright walkingly	
C a sprightly walk	
Question No.36	4.00
Question No.50	4.00 Bookmark □
In decision making underthere are several possible outcomes for each alternative, and the decision maker known	
probability occurrence of each outcome: C Risk	
C Probability	
C Certainty	
O Utility	
Question No.37	4.00
Question (Question)	Bookmark
The equations 2x+5=5, x+3y=5, x-2y=0 have number of solutions	
O one	
C zero	
© many	
·	
Question No.38	4.00
Select the Pair that best respresents the relationship that is given in the question:	Bookmark 🗆
Explore : Discover	
C Tree : Wood	
○ Think : Relate ○ Research : Learn	
© Books : Knowledge	
· ···•	
Question No.39	4.00
	Bookmark 🗸

$^{\circ} \beta_{11}(n_1 + n_2)$	
$^{\circ}F_{(n_1,n_2)}$	
$\Gamma(n_1+n_2)$	
$ \stackrel{\cap}{\beta_1(n_1+n_2)} \circ \beta_1(n_1+n_2) $	
$p_1(n_1 + n_2)$	
Question No.40	4.00
	Bookmark 🗆
Let X be a random variable with probability generating function (pgf), P(S). Then the pgf of 2X+1 is © SP(S)	
o P(S)/S	
○ S/P(S) ○ SP(S2)	
Question No.41	4.00
The UCL and LCL of a basic mean chart is given as 12 and 8 respectively. If variance of the process is given as 16, then what is the	Bookmark ✓
size of the process?	Campio
C 28 C 18	
o 36	
C 25	
Question No.42	4.00
	Bookmark
Given that a and b are real numbers, let $f(a,b) = ab$ and let $g(a) = a^2 + 2$. What is $f(3,g(3))$?	
Given that a and b are real numbers, let $f(a,b) = ab$ and let $g(a) = a^2 + 2$. What is $f(3,g(3))$? \bigcirc 33 \bigcirc 38	
C 33 C 38 C 27	
C 33 C 38	
C 33 C 38 C 27	Bookmark 4.00
Crumb : Bread ::	Bookmark □
○ 33 ○ 38 ○ 27 ○ 30	Bookmark 4.00
Crumb: Bread:	Bookmark 4.00
0 33 0 38 0 27 0 30 Question No.43 Crumb: Bread:: 0 Tea: Cup 0 Flower: Vase	Bookmark 4.00
Crumb: Bread:	4.00 Bookmark
C 33 C 38 C 27 C 30 Question No.43 Crumb: Bread:: C Tea: Cup Flower: Vase Splinter: Wood Water: Bucket Question No.44 Suppose an absent minded officer puts four letters in 4 addressed envelopes. What is the probability that he will misplace every letters.	4.00 Bookmark 4.00 Bookmark 4.00
C 33 C 38 C 27 C 30 Crumb: Bread: C Tea: Cup Flower: Vase Splinter: Wood Water: Bucket C Water: Bucket C 19/24 C 19/24	4.00 Bookmark 4.00 Bookmark 4.00
Crumb : Bread ::	4.00 Bookmark 4.00 Bookmark 4.00
C 33 C 38 C 27 C 30 Question No.43 Crumb : Bread ::	4.00 Bookmark 4.00 Bookmark 4.00
Crumb : Bread ::	4.00 Bookmark 4.00 Bookmark 4.00 4.00
Crumb: Bread: Crumb: Bread: Tea: Cup Flower: Vase Splinter: Wood Water: Bucket Question No.44 Suppose an absent minded officer puts four letters in 4 addressed envelopes. What is the probability that he will misplace every letter 3/8 19/24 3/8 5/24 5/8	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
C 33 C 38 C 27 C 30 Question No.43 Crumb: Bread:: C Tea: Cup Flower: Vase Splinter: Wood Water: Bucket Question No.44 Suppose an absent minded officer puts four letters in 4 addressed envelopes. What is the probability that he will misplace every letted and specific split is the probability that he will misplace every letted and split is the probability that he will misplace	4.00 Bookmark 4.00 Bookmark 4.00 4.00
Cuestion No.43 Crumb: Bread:: Tea: Cup Flower: Vase Splinter: Wood Water: Bucket Question No.44 Suppose an absent minded officer puts four letters in 4 addressed envelopes. What is the probability that he will misplace every letter 19/24 3/8 5/24 5/8 Question No.45	4.00 Bookmark 4.00 Bookmark 4.00 4.00
C 33 C 38 C 27 C 30 Question No.43 Crumb: Bread:: C Tea: Cup Flower: Vase Splinter: Wood Water: Bucket Question No.44 Suppose an absent minded officer puts four letters in 4 addressed envelopes. What is the probability that he will misplace every letted and specific split is the probability that he will misplace every letted and split is the probability that he will misplace	4.00 Bookmark 4.00 Bookmark 4.00 4.00

U 49

O 30

Question No.46 4.00

Bookmark

Choose the best synonym of the italicized word.

Children of excessively indulgent parents often become very recalcitrant.

- insolent
- o indolent
- disobedient
- C dependent

Question No.47 4.00

The ratio of number of replication required in CRD and RBD for the same amount of information is

- C 5:4
- O 3:5
- O 5:3
- 0 3:2

Question No.48 4.00

Bookmark [

Bookmark [

Let $X_1, X_2, ... X_n$ be iid with $f(x) = \theta x^{\theta - 1}, 0 < x < 1, \theta > 0$. Then the Cramer-Rao Lower Bound for estimating θ is

 $\circ n\theta$

- 0 0
- r
- 0 0
- n
- $\frac{\theta^2}{n^2}$

Question No.49 4.00

Bookmark [

Let T be CAN for θ so that $T \sim AN(\theta, \sigma_{\tau}^2(\theta)/a_n^2)$ and let Ψ be a differentiable function such

that $\frac{d\psi}{d\theta}$ is continuous and non vanishing then $\Psi(T)$ is CAN for $\Psi(\theta)$ with asymptotic

variance:

$$^{\rm C} \left(\frac{d\psi}{d\theta}\right)^2 \frac{\sigma_{\tau}^4(\theta)}{a_n^4}$$

$$\left(\frac{d\psi}{d\theta}\right)^2 a_n^2 \sigma_\tau^2(\theta)$$

$$^{\rm C} \left(\frac{d\psi}{d\theta}\right)^2 \frac{\sigma_{\tau}^2(\theta)}{a_n^2}$$

$$^{\rm C} \left(\frac{d\psi}{d\theta}\right)^2 \sigma_{\tau}^2(\theta)$$

Question No.50

Postified compling plans are designed to appure	Bookmark
Rectified sampling plans are designed to answer C Rejected lots	
C Small lots	
C Accepted lots	
C Subgroup lots	
Overtien No E4	4.00
Question No.51	4.00 Bookmark
If $X \sim Poisson(4)$ and $Y \sim Poisson(3)$, and X and Y are independent. What is the value of	
E[X (X+Y)], if $n = 10$?	
C 6.23 C 4.23	
o 5.71	
C 5.32	
Question No.52	4.00
	Bookmark 🔽
The quadratic form $6x_1^2 + 3x_2^2 + 14x_3^2 + 4x_2x_3 + 18x_1x_3 + 4x_1x_2$ is	
C Positive semi definite	
C Negative semi definite	
© Negative definite	A
© Positive definite	7
Question No.53	4.00
Based on the information given answer the following question.	Bookmark
1. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours.	There are
two couples. 2. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.	
3. Chartered Accountant likes green colour and his wife is a teacher.	
 Manisha is the mother-in-law of Sunita and she likes orange colour. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour. 	
6. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour.	
What is the profession of Sunita?	
© Teacher	
© Principal	
Chartered Accountant	
C Cannot be determined	
Question No.54	4.00
Question No.54	Bookmark □
What assumptions does ANCOVA have that ANOVA does not?	-
C Homoscedasticity	
C Homogeneity of variance	
C Homogeneity of regression slopesC Homogeneity of sample size	
Tiomogenetty of sample size	
Question No.55	4.00
	Bookmark
A set of logical and mathematical operations performed in a specific sequence is called:	
C Complete enumeration C Algorithm	
C Objective	
C Diagnostic analysis	
Question No.56	4.00
Consider the following statements:	Bookmark 🗆
I. A complete class of decision rules contains only admissible decision rules	
II. A minimal complete class of decision rule contains only admissible decision rules III. A minimal complete class of decision rule is always complete	
Which of the above is correct?	

	Admission Agl
○ Uniy Lis correct	
© Both II and III is correct	
O only II is correct	
○ Both I and II is correct.	
Overtion No 57	4.00
Question No.57	4.00 Bookmark
The probability distribution function which is not a member of exponential family but satisfies monotonic likelihood ratio prope	erty is
C Hypergeometric	
C Poisson C Binomial	
© Normal	
The state of the s	
Question No.58	4.00 Bookmark □
Lots are defined as bad quality, if the proportion of defectives are greater than a specified number known as	BOOKIIIAIK [
o AOQ	
O LTPD	
C AOQL	
O ATI	
Question No.59	4.00
Statement: Ten Candidates, who were on the waiting list could finally be admitted to the course.	Bookmark □
Assumptions:	
I. A large of number of candidates were on the waiting list.	
II. Wait listed candidates do not ordinarily get admission. © If neither I nor II is implicit	
Olf only assumption lis implicit	
O If only assumption II is implicit	
୍ର If both I and II are implicit	
Question No.60	4.00 Bookmark □
If X and Y are two independent non negative integer valued random variables such that P(X=k)>0 & P(Y=k)>0 for k=0, 1, 2,	
distribution of X/X+Y is binomial, then C X is Binomial and Y is Poisson	
C Both X and Y are Binomial	
C Both X and Y are Poisson	
C X is Poisson and Y is Binomial	
Question No.61	4.00
William distribution in a consensition of	Bookmark 🗆
Wishart distribution is a generalization of © t-distribution	
© Normal distribution	
© Beta distribution	
C Chi-square distribution	
Question No.62	4.00
QUESTION NO.02	4.00 Bookmark
Which of the following techniques yields a simple random sample?	
C Choosing volunteers from an introductory psychology class to participate	
© Numbering all the elements of a sampling frame and then using a random number table to pick cases from the table.	
© Listing the individuals by ethnic group and choosing a proportion from within each ethnic group at random.	
 Randomly selecting schools, and then sampling everyone within the school. 	

Question No.63

Bookmark [

Let T be an estimator based on a sample $X_1, X_2, ..., X_n$ from a distribution with parameter $\theta.$ Then T is a consistent estimator of θ if:

- $^{\circ} P\{T-\theta > \epsilon\} = 0$, for all $\epsilon > 0$
- $P\{|T-\theta| > \epsilon\} = 0$
- $\lim_{n\to\infty} P\{T-\theta<\epsilon\}=0$, for all $\epsilon>0$
- $\lim_{n\to\infty} P\{|T-\theta| > \epsilon\} = 0$, for all $\epsilon > 0$

Question No.64 4.00

Bookmark [

Suppose X is a Gamma distribution with pdf:

is a Gamma distribution with pdf:
$$f(x) = \frac{1}{\theta^{\beta} \Gamma(\beta)} x^{\beta-1} e^{-x/\theta}, x \ge 0, \theta, \beta > 0$$
The oment estimator of β is
$$\frac{m_1^2}{m_1^2}$$

The moment estimator of β is

$$\frac{m_{1}^{'2}}{m_{2}^{'}-m_{1}^{'}}$$

$$C \frac{m_1}{m_2' - m_1'}$$

$$C = \frac{m_1^{2}}{m_1^{2}}$$

$$C \frac{m_1'}{m_2 - m_2'^2}$$

Question No.65 4.00

Every sequence {Xn} of independent random variables with uniformly bounded variances obeys

- O SLLN
- O WLLN
- C Borel-Cantelli lemma
- Cauchy's criterion

Question No.66 4.00

Bookmark [

Bookmark [

Let $X_1, X_2, ..., X_n$ be 'n' independent random variables. Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ...,$ b_n be real numbers such that none of which equals zero. If $\sum_{i=1}^n a_i X_i$ and $\sum_{i=1}^n b_i X_i$ are independent, then

- o all the variables are normally distributed
- o the variables need not be normally distributed
- o some of the variables are normally distributed
- o all the variables are uniformly distributed

Question No.67 4.00

Bookmark [

In the following Transition Probability Matrix, identify the closed class, when the state

space is S={1, 2, 3, 4} and P =
$$\begin{bmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 1/6 & 3/6 & 2/6 & 0 \end{bmatrix}$$

- (2,3)
- C {1,2}
- (1,4)
- O {2,4}

Question No.68 4.00

Bookmark
An inspection of 10 samples of size 400 each from 10 lots revealed the following defective units: 17, 15, 14, 26, 9, 4, 19, 12, 9, 15 The upper control limit for number of defective is:

- O 23.32
- C 25.03
- O 21.45
- C 18.95

Question No.69 4.00

Bookmark

If $\{N(t), t \ge 0\}$ is a Poisson process, then $X(t) = M(t + L) \uparrow N(t)$, where L is positive constant is ______stationary.

- evolutionary
- covariance
- strongly
- weakly

Question No.70 4.00 Bookmark □

The AQL of a process is

- O the highest fraction defective that is unacceptable to the customer
- O the lowest fraction defective that is unacceptable to the customer
- C the lowest fraction defective that is acceptable to the customer
- O the highest fraction defective that is acceptable to the customer

Question No.71 4.00

Let $\{X_n\}$ be any sequence of random variables, then for the sequence of $\{X_n\}$ to satisfy the Weak Law of Large Numbers, the condition for $Y_n = \frac{1}{n} \sum_k X_k$ that $E\left\{\frac{Y_n^2}{1+Y_n^2}\right\} \to 0$ as

- Neither necessary nor Sufficient condition
- Necessary and sufficient condition
- Necessary condition
- Sufficient condition

Question No.72 4.00

Bookmark [

If the responses for treatments in a factorial experiment with factors A and B each at 2 levels from 3 replications are $a_0b_0 = 18$, $a_1b_0 = 17$, $a_0b_1 = 25$ and $a_1b_1 = 30$, the sum of squares for interaction AB equal to

- o 675
- 0 3
- 0 4
- 0 6

Question No.73 4.00

Bookmark [

If the periodicity of the state J, $d_J = GCD \{n:p_{JJ}^{(n)}>0\}$ is equal to unity then state J is known as:

- Absorbing
- Periodic
- Aperiodic
- Closed

Question No.74

Bookmark 🗀

If after performing a student-test for comparison of means, we obtain p=0.0256, then

- we reject H0 and accept H1
- we cannot decide
- o we accept H0
- o we reject H1

Question No.75

Bookmark [

If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is

- C 64%
- 0.80%
- 80%
- O.64%

Question No.76 4.00

Bookmark [

Which one of the following allocation procedures can be used when no other information except the total number of units in the stratum is given?

- C Equal Allocation
- C Proportional Allocation
- Optimum Allocation
- Neyman Allocation

Question No.77 4.00

Bookmark |

Given that $X_1, X_2, ... X_n$ be iid with $U(0,\theta)$ and $\hat{\theta} = X_{(n)}$. Which of the following is TRUE?

 $\stackrel{\circ}{\theta}$ is consistent and not Asymptotically Normal

Admission	Aglasem
110111111111111	119140011

- $\hat{\theta}$ is consistent and Asymptotically Normal
- $\hat{\theta}$ is not consistent and unbiased
- $\hat{\theta}$ is consistent and unbiased

Question No.78 4.00

Bookmark [

If (X, Y) has a Bivariate Normal with parameters $\mu_1,\,\mu_2,\,\sigma_1{}^2,\,\sigma_2{}^2$ and $\rho,$ then Var(Y/X=x)

$$\sigma_{2}^{2}(1-\rho^{2})$$

$$\sigma_2^2 \rho^2$$

$$^{\circ} \sigma_1^2 (1 - \rho^2)$$

$$^{\circ}$$
 $\sigma_1^2 \rho^2$

Question No.79 4.00 Bookmark [

For $S^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{(n-1)}$, an unbiased estimate of the variance of the sample mean in random sampling with replacement is given by

$$c_{s^2}$$

$$\frac{s^2(N-n)}{N}$$

$$C \frac{s^2}{n-1}$$

$$O S^2$$

Question No.80 4.00

Bookmark |

Variance of the estimate of the population mean (\bar{y}_{st}) is minimum for fixed total size of the sample 'n 'if:

$$oldsymbol{n_i} \propto N_i S_i$$

$$O_{n_i} \propto N_i$$

$$c n_i \propto n_i S_i$$
.

Question No.81	4.00 Bookmark
With the usual notations, find p for a binomial random variable X, if n = 6 and if 9 P (X=1) = P(X=2). © 18/23	
© 9/14	
© 19/27 © 12/15	
Question No.82	4.00 Bookmark □
In the analysis of RBD with b blocks and v treatments, the error degrees of freedom are \circ v(b-1)	
○ b(v-1) ○ b(v+1)	
© (b-1)(v-1)	
Question No.83	4.00
	Bookmark
Let X be a random variable having the probability function:	
$f(x,\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, x = 0,1,2,,n.$	
If $d(x) = \frac{x}{n}$, then the risk function $R(\theta, d)$ under squared error loss function is:	
$\circ_{\underline{\theta^2}}$	
n	
$^{\circ}$ $\frac{\theta(1-\theta)}{2}$	
$\circ \frac{n}{\theta(\theta+1)}$	
n.	
$\frac{C}{n}$	
Question No.84	4.00 Bookmark
What can be said about the following data? 15, 17, 21, 25, 30, 36, 41 © No such statement can be made	
○ Data is positively skewed○ Data is negatively skewed	
○ Data is symmetric	
Question No.85	4.00 Bookmark □
Which of the following is an example of ordinal variable? © Nationality	Bookinair (
○ Caste	
○ Date of Birth ○ Annual income	
Question No.86	4.00
Let there be 'n' pedestrians on the side walk at time 't', then the probability of any one of them would leave in the interval (t, t+h) is g	Bookmark ☐ iven by
0 O(h)	
$\Pi \mu \Pi + O(\Pi)$	
° nμh	

° µh	
Question No.87 Bookmark	4.00
Let $\{X_n, Y_n\}$, n=1,2,, be a sequence of random variables. Then $ X_n-Y_n \xrightarrow{p} 0$ and	
$Y_n \xrightarrow{L} Y$ implies $Y_n \xrightarrow{L} X$	
$\circ X_n \xrightarrow{\iota} X$	
$ \begin{array}{ccc} C & X_n Y_n & \xrightarrow{\iota} Y \\ C & X_n & \xrightarrow{\iota} Y \end{array} $	
	_
Bookmark	4.00
Consider the following statements: I. Least square estimators are unbiased for all general linear models II. Under fairly general conditions, the estimates obtained by method of moments will have asymptotically normal distribution for large n.	
Ill. The minimum chi-square estimators are not necessarily consistent. Which of the above are correct?	
Only I and II are correct Only II and III are correct	
Only I and Ill are correct	
	4.00
Bookmark She studies very hard for the exams, ?	
O does she? O doesn't she?	
O is it? O isn't it?	
	4.00
Bookmark If A+B means A is daughter of B,	
A-B means A is husband of B A × B means A is brother of B	
From the statement A × B × C × D, which of the following statement is not necessarily true? © D is brother of C	
O A, B, C are male	
C B is the brother of A C C is the brother of A	
	4.00
Bookmark Nidhi walks 10 metres in front and 10 metres to the right. Then every time turning to her left, she walks 5, 15 and 15 metres respectively. How far is Nidhi now from her starting point?	. [
O 10 metres O 5 metres	
O 15 metres	
© None of the above	
Overetion No 00	
Question No.92 Bookmark	4.00

A can finish a work in 18 days and B can do the same work in half the time taken by A. Then, working together, what part of the same work they
can finish in a day? © 0 1/6
C 0 1/2
○ 0 1/8
○ 0 1/4
Question No.93 4.00
Bookmark ☐ Choose the best antonym of the italicized word.
The deliberate suavity of Olaf's behavior made the emotions of the audience volatile.
C politeness
C stupidity C impetuosity
© pleasantness
Question No.94 4.00 Bookmark □
BOOKINAIK _
Let X_1, X_2, X_n be a random sample from a density $f(x; \theta)$. If $T = l(X_1, X_2, X_n)$ is a
complete sufficient statistic and $S' = s(t)$, a function of T, is an unbiased estimator of $\tau(\theta)$, S' is an UMVUE of $\tau(\theta)$. The above result is due to
© Rao-blackwell Theorem
O Basu's Theorem
C Lehmann-Scheffe Thereom
Neyman Factorization Theorem
Question No.95
Bookmark
Suppose a random variable U has a Uniform distribution in the interval (0, 1) and let X= -2 log U. Then the probability density function of X is
$f(x) = \frac{1}{2}$, if $x \in (0, 2)$
$f(x) = \exp(-x), \text{ if } x > 0$
$f(x) = 2\exp(-2x), \text{ if } x > 0$
$f(x) = \frac{1}{2} \exp(-x/2), \text{ if } x > 0$
1(A) 72 cap (122); 11 A V
Question No.96
Bookmark ☐ Which of the following is false with regard to the Simplex method of solving Linear Programming problems?
C It involves an iterative procedure for arriving at the optimal solution
Slack variables are used to represent the unused resources
C Slack variables make zero contribution towards the objective to be achieved
C The Zj – Cj values indicate the variable to leave solution
Question No.97 4.00
Bookmark □
Let $X_{(1)}, X_{(2)},, X_{(r)}$ be a Type-II censored sample when n independent and identical items are
put on life test. Define $D_i = (n-i+1)(X_{(i)} - X_{(i-1)}), X_{(0)} = 0.i = 1,2,,r$. Then which of the
following is TRUE?
C D _i 's are dependant exponential random variables
© D _i 's are independent exponential random variables
C D _i 's are dependant random variables
$^{\circ}$ D_i 's are iid life time random variables

Question No.98

Bookmark [

The distribution of test scores in a class is given as follows:

Number of students	Number of correct answers
10	36 to 40
16	32 to 35
12	28 to 31
14	26 to 27
8	00 to 25

What percentage of the class answered 32 or more questions correctly?

- 0 43.3
- O 26
- C 20
- C 32.5

Question No.99 4.00

Bookmark [

In calculation of control limits ' σ ' can be estimated in 2 ways as

$$\hat{\sigma}=rac{\sigma}{c_2}$$
 , $\hat{\sigma}=rac{ar{x}}{d_2}$

$$\hat{\sigma} = \frac{\bar{R}}{d_1}, \hat{\sigma} = \frac{\bar{\sigma}}{c_1}$$

$$\hat{\sigma} = \frac{\bar{R}}{d_2}$$
 , $\hat{\sigma} = \frac{\bar{\sigma}}{c_2}$

$$\hat{\sigma}=rac{d_2}{ar{R}}$$
 , $\hat{\sigma}=rac{c_2}{\sigma}$

Question No.100

4.00

Bookmark [

Find the odd one out?

- © Deduction
- C Deposit
- Withdrawal
- C Debit