OOP 2

On va faire des BlendShapes.

Les fichiers fournis contiennent:

- une simple classe Vector3 servant à représenter un point dans l'espace, avec des propriétés x, y et z ainsi qu'une méthode str
- un main (le point d'entrée du programme)

Echauffement

- Exécuter le programme pour s'assurer qu'il dit bien bonjour
- Dans la fonction main, déclarer une variable zero représentant un point aux coordonnées (0,0,0)
- Déclarer une variable ten représentant un point aux coordonnées (10,10,10)

BlendShape

1 - Class BlendShape

- Déclarer une class BlendShape
- Ajouter un constructeur qui prend trois paramètres:
 - o name, son nom
 - origin, un point de base sans déformation
 - o target, un point après déformation maximale
- Ajouter trois propriétés, name, origin et target renvoyant respectivement le nom, le point sans déformation et le point après déformation maximale

2 - Interpolation linéaire

a) Clamp01

Dans la class BlendShape:

- Déclarer une méthode clamp01, prenant un paramètre value
- Implémenter la méthode clamp01 pour faire en sorte qu'elle renvoie value clampé entre 0 et 1 (c'est-à-dire que ce qui est renvoyé doit toujours être entre 0 et 1, même si value est négatif ou plus grand que 1)

Astuce: Python possède une fonction min(a, b) renvoyant la plus petite valeur entre a et b.

min(1, 2.5) ou min(1, 4.75) renverront toujours 1.

min(1, 0.5) renverra 0.5.

min(1, -2.5) renverra -2.5.

Python dispose également de la fonction max(a, b), renvoyant la plus grande des deux valeurs. max(0, b) renverra toujours un nombre positif.

b) LerpValue

Nous avons désormais une méthode clamp01 sous la main, qu'on peut appeler avec self.clamp01(value). Je dis ça au hasard.

Toujours dans la class BlendShape:

- Déclarer une méthode lerpValue prenant trois paramètres, a, b et factor
- Implémenter lerpValue:
 - Clamper factor entre 0 et 1
 - o Calculer l'interpolation linéaire entre a et b par factor (voir formule plus bas)
 - Renvoyer la valeur calculée

```
L'interpolation linéaire entre deux nombres A et B se calcule comme suit : value = (F * B) + ((1-F) * A) où F est compris entre 0 et 1
```

c) Lerp

Nous avons désormais lerpValue qui permet de calculer l'interpolation linéaire entre deux nombres, ce qui peut être fort utile. Peut-être. On sait pas.

- Déclarer une méthode lerp prenant un paramètre factor
- Implémenter lerp :
 - Calculer une valeur lerp_x étant l'interpolation linéaire entre les propriétés x de origin et de target par
 - Faire de même pour calculer lerp_y et lerp_z sur les composantes y et z respectivement
 - o Construire un nouveau Vector3 avec les valeurs interpolées
 - Renvoyer ce Vector3

3 - Tests

Dans la fonction main :

- Déclarer une variable blend_shape appelée "Super BlendShape" avec pour origine zero et pour cible ten
- interpoler blend_shape avec une valeur de 0.5 et vérifier qu'on obtient un point en (5,5,5)
- interpoler blend_shape avec une valeur de 0 et vérifier qu'on obtient un point en (0,0,0)
- interpoler blend_shape avec une valeur de 1 et vérifier qu'on obtient un point en (10,10,10)
- interpoler blend_shape avec une valeur de 1200 et vérifier qu'on obtient un point en (10,10,10)
- Bravo