

UNIVERSIDADE FEDERAL DE ALAGOAS ENGENHARIA DE COMPUTAÇÃO Automação Industrial 2022.1

João Pedro Brito Tomé Mateus Felismino

Relatório do Projeto Final Projeto Sorting Station CLP

Sumário

Sumário	1
1. Descrição textual e esquemática do problema.	2
2. Tabelas de endereçamento, descrições lógicas e tabelas da verdade	5
2.1. Tabela de Endereçamento	5
2.2. Descrições Lógicas	6
2.2.1. Ligar Primeira Esteira:	6
2.2.2. Levantar stop Blade:	6
2.2.3. Iniciar Braço 1:	6
2.2.4. Iniciar Braço 2:	6
2.2.5 .Iniciar Braço 3:	6
2.3. Tabelas Verdade	6
2.3.1. Tabela Verdade Motor Esteira Entrada	6
2.3.2. Tabela Verdade Stop Blade	6
2.3.3. Tabela Verdade Braço 1	6
2.3.4. Tabela Verdade Braço 2	7
2.3.5. Tabela Verdade Braço 3	7
3. Programação do código Ladder no CLP.	8

1. Descrição textual e esquemática do problema.

O projeto foi desenvolvido utilizando do preset "Sorting Station" disponibilizado pelo ambiente de simulação FactoryIO. O problema é composto por uma estação com esteiras, motores e sensores cujo trabalho é separar produtos de acordo com alguma característica detectada por um sensor de visão computacional. A automação desse problema foi feita em linguagem Ladder, utilizando da plataforma TIA Portal v13, software utilizado para desenvolver o código e o PLC Sim v13, software responsável por simular o CLP com o código disponibilizado pelo TIA Portal.

A separação dos produtos neste projeto acontece por meio das cores do produto. Na cena "Sorting Station" há três rampas para onde cada cor de produto deve cair e ser embalado. Existem duas esteiras que transportam os itens, a primeira leva do fornecimento até o Sensor de Visão, ao chegar no sensor, o mesmo retornará um número inteiro que indicará a cor do produto, baseado nesse valor, na segunda esteira (responsável por levar os produtos para suas rampas correspondentes) o CLP irá controlar três braços separadores (cada braço separador é composto por um motor para fazer alavanca e outro motor para a esteira empurrar o item na rampa correspondente). A ordem de separação dos braços para as cores (da direita para a esquerda) é:

- Primeiro Braço: Separa cores azuis;
- Segundo Braço: Separa cores verdes:
- Terceiro Braço: Separa cores cinzas/metal.

Outra possibilidade de separação para este projeto seria a separação pelo tipo do produto, mas este projeto não considerou esse método, apenas cores são separadas via CLP.

Figura 1: Cena "Sorting Station".

Figura 2: Produtos de diferentes cores e tipos do FactoryIO.

O Sensor de Visão detecta esses produto a partir de valores já definidos pelo FactoryIO, a detecção funciona para **Raw Materials**, **Product Lids** e **Product Bases** (que são os tipos dos produtos coloridos) e cores Blue, Green e Metal. Pela documentação do Factory IO, esses são os valores que o Sensor de Visão pode retornar ao se deparar com esses produtos:

Item	All Digital	All Numerical	All ID
	Bit 0 1 2 3	Value	Value
None	0000	0	0
Blue Raw Material	1000	1	ID
Blue Product Lid	0100	2	ID
Blue Product Base	1100	3	ID
Green Raw Material	0010	4	ID
Green Product Lid	1010	5	ID
Green Product Base	0110	6	ID
Metal Raw Material	1110	7	ID
Metal Product Lid	0001	8	ID
Metal Product Base	1001	9	ID

Tabela 1: Valores retornados pelo Vision Sensor.

Para que seja feita a separação dos produtos pelos braços, foi considerado os valores de All Numerical da Tabela 1. Onde 1 <= Azul <= 3, 4 <= Verde <= 6 e 7 <= Metal <= 9.

Figura 3: Exemplo de separação para o primeiro braço (Azul).

O processo se inicia com o pressionamento do botão Start no CLP do Factory IO e é interrompido com o botão Stop. O Botão Reset zera os contadores de caixas (Metal, Verde e Azul).

Figura 4: CLP no Factory IO.

Tabelas de endereçamento, descrições lógicas e tabelas da verdade 2.1. Tabela de Endereçamento

Artifact	Data Type	I/O Type	Address
Start Light	bool	Input/Output	%Q1.1
Motor Esteira Entrada	bool	Output	%Q0.0
Stop Blade	bool	Output	%Q0.1
Esteira Saída	bool	Output	%Q0.2
Sensor	Dint	Input	%ID30
Memória Timer1	bool	Input/Output	%Q1.4
Sensor Saida	bool	Input	%Q0.0
Timer1	data	Input	%DB1
Braço 1	bool	Output	%Q0.3
Esteira Braço 1	bool	Output	%Q0.4
Memória Timer2	bool	Input/Output	%Q1.5
Braço 2	bool	Output	%Q0.5
Esteira Braço 2	bool	Output	%Q0.6
Memória Timer3	bool	Input/Output	%Q1.6
Braço 3	bool	Output	%Q0.7
Esteira Braço 3	bool	Output	%Q1.0
Start	bool	Input	%I0.1
Stop	bool	Input/Output	%10.3
Stop Light	bool	Input/Output	%Q1.3
Reset	bool	Input	%10.2
IEC_COUNT_0_DB	data	Input	%DB5
IEC_COUNT_1_DB	data	Input	%DB6
IEC_COUNT_2_DB	data	Input	%DB7
Saida Contador 1	bool	Output	%Q2.1
Saida Contador 2	bool	Output	%Q2.2
Saida Contador 3	bool	Output	%Q2.3
Contador 1 (Azul)	Dint	Output	%QD30

Contador 2 (Verde)	Dint	Output	%QD34
Contador 3 (Metal)	Dint	Output	%QD38

2.2. Descrições Lógicas

2.2.1. Ligar Primeira Esteira:

Start_Light = Motor_Esteira_Entrada

2.2.2. Levantar stop Blade:

Not Start_Light = Stop_Blade

2.2.3. Iniciar Braço 1:

Sensor < 4 && Memória_Timer 1 && Timer_1 = Braço_1

2.2.4. Iniciar Braço 2:

Sensor > 3 && Sensor < 7 && Memória_Timer_2 && Timer_2 = Braço_2

2.2.5 .Iniciar Braço 3:

Sensor > 6 && Sensor < 10 && Memória_Timer_3 && Timer_2 = Braço_3

2.3. Tabelas Verdade

2.3.1. Tabela Verdade Motor Esteira Entrada

Start_Light	Motor_Esteira_Entrada	
0	0	
1	1	

2.3.2. Tabela Verdade Stop Blade

Not Start_Light	Stop_Blade	
0	1	
1	0	

2.3.3. Tabela Verdade Braço 1

Sensor < 4	Memória_Timer_1	Timer_1	Braço_1
0	0	0	0
0	0	1	0
0	1	0	0

0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

2.3.4. Tabela Verdade Braço 2

Sensor > 3	Sensor < 7	Memória_Timer_2	Timer_2	Braço_2
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

2.3.5. Tabela Verdade Braço 3

Sensor > 6	Sensor < 10	Memória_Timer_3	Timer_3	Braço_3
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0

0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

3. Programação do código Ladder no CLP.

A programação/projeto do TIA Portal, a cena do FactoryIO e um vídeo do funcionamento está contida no github:

https://github.com/joaopedrobritot/Projeto-Automacao.


```
Network 8: Ligar Luz dos botões
   %10.1
                       %10.3
                                                                                 %Q1.1
   "Start"
                      "Stop"
                                                                              "Start Light"
   %Q1.1
"Start Light"
                       %10.1
   %Q1.3
                                                                                 %Q1.3
"Stop Light"
                      "Start"
                                                                              "Stop Light"
   %10.3
   "Stop"
    ╢
```

