Алгебра. Глава 0. Основные понятия.

Д.В.Карпов

2022

- Пусть K множество, элементы которого мы будем называть *числами*. На множестве K определены две операции $+: K \times K \to K$ и $\cdot: K \times K \to K$.
- 1) Ассоциативность + $\forall a,b,c \in \mathcal{K}$ (a+b)+c=a+(b+c).
- 2) Коммутативность + $\forall a,b \in \mathcal{K}$ a+b=b+a.
- 3) Ноль $\exists \ 0 \in K : \ a+0=a$.
- 4) Обратный элемент по $+ \ \, \forall a \in K \ \exists \ (-a) \in K : \ a + (-a) = 0.$
- 5) Дистрибутивность

$$\forall a,b,c \in K \quad (a+b)c = ac+bc \quad \text{ u} \quad a(b+c) = ab+ac.$$

- 6) Ассоциативность $\forall a, b, c \in K \quad (ab)c = a(bc).$
- 7) Коммутативность $\forall a,b \in K \quad ab = ba.$
- 8) Единица · $\exists \ 1 \in K : \quad a \cdot 1 = 1 \cdot a = a$.
- 9) Обратный элемент по

$$\forall a \in K \setminus \{0\} \ \exists \ (a)^{-1} \in K : \ a \cdot (a)^{-1} = (a)^{-1} \cdot a = 1.$$

- Выполнено 1 6: *K кольцо*.
- Выполнено 1-7: K- коммутативное кольцо.
- Выполнено 1 6 и 8: *K кольцо с 1*.
- Выполнено 1 6, 8 и 9 : *K тело*.
- \bullet Выполнено 1-9: K- поле.

Ноль в кольце К единственен.

Доказательство. Пусть есть два ноля: 0_1 и 0_2 . Тогда:

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2.$$

Свойство 2

Для любого $a \in K$, обратный элемент по + единственен.

Доказательство. Пусть есть два обратных элемента по + для $a \in \mathcal{K}$: b_1 и b_2 . Тогда:

$$b_1 = b_1 + 0 = b_1 + (a + b_2) = (b_1 + a) + b_2 = 0 + b_2 = b_2.$$

Свойство 3

$$\forall a \in K \quad -(-a) = a.$$

Доказательство.
$$a = a + ((-a) + (-(-a))) = (a + (-a)) + (-(-a)) = (-(-a)).$$

В кольце не более одной единицы.

Доказательство. Пусть есть две единицы: 1_1 и 1_2 . Тогда:

$$1_1 = 1_1 \cdot 1_2 = 1_2.$$

Определение

Пусть K — кольцо с 1. Элемент $a \in K$ обратимый, если существует $a^{-1} \in K$.

• В поле все ненулевые элементы обратимы.

Свойство 5

Пусть K — кольцо с 1. Тогда для любого $a \in K$ существует не более чем один обратный элемент по \cdot .

Доказательство. Пусть есть два обратных элемента по \cdot для $a \in K$: b_1 и b_2 . Тогда:

$$b_1 = b_1 \cdot 1 = b_1 \cdot (a \cdot b_2) = (b_1 \cdot a) \cdot b_2 = 1 \cdot b_2 = b_2.$$

Свойство 6

Пусть K — кольцо с 1. Тогда для любого обратимого $a \in K$ выполнено $(a^{-1})^{-1} = a$.

Доказательство.
$$a=a\cdot 1=a\cdot (a^{-1}\cdot (a^{-1})^{-1})=$$
 $=(a\cdot a^{-1})\cdot (a^{-1})^{-1}=1\cdot (a^{-1})^{-1}=(a^{-1})\cdot (a^{-1})^{-1}=0$

Алгебра. Глава 0. Основные понятия.

Д.В.Карпов

$$-0 = 0$$
.

Доказательство. Следует из
$$0 + 0 = 0$$
.

Свойство 8

Если K — кольцо с 1, то $1^{-1} = 1$.

Доказательство. Следует из $1 \cdot 1 = 1$.

Определение

• Вычитание — это прибавление обратного элемента по + :

$$a - b := a + (-b).$$

• Деление на обратимый элемент b — это умножение на b^{-1} :

$$\frac{a}{b} := a \cdot b^{-1}$$
.

Определение

- Пусть $K \subset L$, причем оба они кольца с одними и теми же операциями + и \cdot . Тогда K подкольцо L, а L надкольцо K.
- ullet Пусть $K\subset L$, причем оба они поля с одними и теми же операциями + и \cdot . Тогда K подполе L, а L надполе K.

Пусть L — кольцо, $K\subset L$. Пусть выполнены следующие условия:

 1° Замкнутость по $+ \forall a, b \in K$ $a+b \in K$.

 2° Замкнутость по $\cdot \forall a, b \in K$ $a \cdot b \in K$.

 3° Существование обратного элемента по + \forall $a \in K$ \exists - $a \in K$.

Тогда K — кольцо, а значит, подкольцо L. Если L — коммутативно, то K тоже.

Доказательство. • Условия 1° и 2° означают, что + и \cdot корректно определены в K.

• Ассоциативность и коммутативность +, ассоциативность \cdot , коммутативность \cdot (если есть) наследуются из L.

Рассмотрим любой элемент $a \in K$. Тогда $-a \in K$, а значит $a - a = 0 \in K$.

Пусть L — поле, $K\subset L$. Пусть выполнены следующие условия:

 1° Замкнутость по $+ \forall a, b \in K$ $a+b \in K$.

 2° Замкнутость по \cdot \forall $a,b \in K$ $a \cdot b \in K$.

 3° Существование обратного элемента по + \forall $a \in K$ \exists - $a \in K$.

4° Существование обратного элемента по ∀ а ∈ K, а \neq 0, ∃ (a) $^{-1}$ ∈ K.

Тогда К — поле, а значит, подполе L.

Доказательство. • По Лемме 1, K — коммутативное подкольцо L.

• Остается проверить существование 1 в К.

Рассмотрим любой ненулевой элемент $a\in K$. Тогда $a^{-1}\in K$, а значит, $a\cdot a^{-1}=1\in K$.

Определение

ullet Пусть K, L- кольца. Отображение f:K o L называется гомоморфизмом, если $\forall a, b \in K$:

$$f(a+b)=f(a)+f(b)$$
 u $f(ab)=f(a)f(b)$.

Ядро гомоморфизма f — это $Ker(f) = \{x \in K : f(x) = 0\}$.

Образ гомоморфизма f — это

$$\operatorname{Im}(f) = \{ y \in L : \exists x \in K : f(x) = y \}.$$

Свойство 1

Если $f: K \to L$ гомоморфизм, то $f(0_K) = 0_L$.

Доказательство.
$$f(0_K) = f(0_K + 0_K) = f(0_K) + f(0_K)$$
. Вычитая из левой и правой частей $f(0_K)$, получаем $f(0_K) = 0_L$.

Свойство 2

Если $f:K\to L$ гомоморфизм, то f(-a)=-f(a).

Вычитая из левой и правой частей
$$f(a)$$
, получаем $-f(a)=f(-a)$.

Доказательство. $0_I = f(0_K) = f(a + (-a)) = f(a) + f(-a)$.

Тогда:

1) $\operatorname{Ker}(f)$ — подкольцо K.

2) Im(f) — подкольцо L.

Доказательство. Достаточно проверить условия из Леммы 1.

- 1) Пусть $a, b \in \mathrm{Ker}(f)$. Тогда f(a+b) = f(a) + f(b) = 0 + 0 = 0, следовательно,
- $a + b \in \mathrm{Ker}(f)$. • $f(ab) = f(a)f(b) = 0 \cdot 0 = 0$, следовательно, $ab \in \mathrm{Ker}(f)$.
- $f(-a) = -f(a) = -0_L = 0_L$.
- 2) ullet Пусть $y, y' \in \text{Im}(f)$, а $x, x' \in K$ таковы, что f(x) = y и f(x') = y'.
- ullet Тогда $y+y'=f(x)+f(x')=f(x+x')\in {
 m Im}(f)$ и $y\cdot y'=f(x)\cdot f(x')\in {
 m Im}(f).$
- $-y = -f(x) = f(-x) \in \operatorname{Im}(f)$.

- Пусть $f: K \to L$ гомоморфизм колец.
- \bullet Если f инъекция, то f мономорфизм.
- \bullet Если f сюръекция (то есть, $\mathrm{Im}(f)=L$), то f—эпиморфизм.
- Если f биекция, то f изоморфизм.
- Изоморфизм = мономорфизм + эпиморфизм.

Пусть $f: K \to L$ — гомоморфизм колец. Тогда f мономорфизм, если и только если $Ker(f) = \{0\}$.

Доказательство. \Rightarrow • Если f — мономорфизм, то f инъекция.

- Пусть $a \in \text{Ker}(f)$. Из f(a) = 0 = f(0) следует, что a = 0(так как f — инъекция).
- \leftarrow Пусть f(a) = f(b). Тогда f(a b) = f(a) f(b) = 0.
- \bullet Значит, $a b \in \mathrm{Ker}(f) = \{0\}$, откуда a = b. Таким образом, f — инъекция, а значит, мономорфизм.

изоморфизм колец. Доказательство. • Достаточно доказать, что f^{-1} —

гомоморфизм (так как отображение, обратное к биекции биекция).

- Рассмотрим любые $a, b \in L$.
- \bullet Пусть $w = f^{-1}(a+b) f^{-1}(a) f^{-1}(b)$. Так как fгомоморфизм, имеем

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b)) = a+b-a-b = 0.$$

- Из (f(w) = 0 = f(0)) и того, что f биекция, следует w = 0.
- Следовательно, $f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$.
- Пусть $z = f^{-1}(ab) f^{-1}(a)f^{-1}(b)$. Так как fгомоморфизм, имеем

$$f(z) = f(f^{-1}(ab)) - f(f^{-1}(a)) \cdot f(f^{-1}(b)) = ab - ab = 0.$$

 \bullet Из f(z) = 0 = f(0) и того, что f — биекция, следует z = 0. Следовательно, $f^{-1}(ab) = f^{-1}(a) \cdot f^{-1}(b)$.

Теорема 0

— отношение эквивалентности на множестве всех колец.

Доказательство. • Рефлексивность очевидна: тождественное отображение $id: K \to K$ (заданное формулой id(x) = x для всех $x \in K$) очевидно, является изоморфизмом.

- Симметричность доказана в Лемме 5.
- Докажем транзитивность. Пусть K, L, M кольца, $K \simeq L$ и $L \simeq M$.
- ullet Тогда существуют изморфизмы f:K o L и g:L o M. Докажем, что их композиция $g \cdot f : K \to M$ (заданная правилом gf(a) := g(f(a))) также является изоморфизмом.
- Композиция биекций g и f, очевидно, является биекцией.
- Проверим, что gf гомоморфизм колец: gf(a+b) = g(f(a+b)) = g(f(a)+f(b)) = g(f(a))+g(f(b)) =gf(a) + gf(b);

$$gf(ab) = g(f(ab)) = g(f(a) \cdot f(b)) = g(f(a)) \cdot g(f(b)) =$$

$$gf(a) \cdot gf(b).$$

Определение

Пусть K — коммутативное кольцо. Множество $I \subset K$ — идеал в K, если I — подкольцо K и выполнено следующее условие:

$$\forall x \in K \text{ u } \forall a \in I \qquad ax \in I.$$

ullet В любом кольце K есть два "неинетересных" идеала: это $\{0\}$ и K.

Лемма 6

Пусть K — коммутативное кольцо, $I \subset K$. Пусть выполнены следующие условия:

- 1° Замкнутость по $+ \forall a, b \in I$ $a+b \in I$.
- $2^{\circ} \exists$ обратного элемента по $+ \forall a \in I \quad \exists (-a) \in I.$
- 3° Замкнутость по \cdot на элементы K $\forall x \in K$ и $\forall a \in I$ \qquad $ax \in I$ Тогда I идеал в K.

Доказательство. • По Лемме 1, I — подкольцо K.

ullet Теперь по условию 3° несложно понять, что I — идеал.

Пусть K — коммутативное кольцо, $\varphi: K \to L$ — гомоморфизм колец. Тогда $\ker(\varphi)$ — идеал в K.

Доказательство. • По Лемме 3, $\ker(\varphi)$ — подкольцо K.

- Пусть $a \in \ker(\varphi)$ и $x \in K$. Тогда $\varphi(ax) = \varphi(a) \cdot \varphi(x) = 0 \cdot \varphi(x) = 0$, а значит, $ax \in \ker(\varphi)$
- По Лемме 6, $\ker(\varphi)$ идеал в K.

Лемма 8

Пусть K — коммутативное кольцо с 1, I — идеал в K, а $x \in I$ — обратимый элемент кольца K. Тогда I = K.

Доказательство. • Так как $x^{-1} \in K$ и $x \in I$, мы имеем $1 = x \cdot x^{-1} \in I$

 $\bullet \ \forall y \in K$ имеем $y = y \cdot 1 \in I$. Значит, I = K.

Следствие 1

Пусть K — поле, а I — идеал в K. Тогда I = K или I = $\{0\}$.

Доказательство. • Предположим, что $I \neq \{0\}$. Тогда $\exists a \in I$, $a \neq 0$. Так как a — обратимый элемент (как все ненулевые элементы поля), I = K по Лемме 8.

Следствие 2

Пусть K — поле, L — кольцо, a $f:K\to L$ — гомоморфизм колец. Тогда либо ${\rm Im}(f)=\{0\}$, либо f — мономорфизм.

Доказательство. • По Лемме 7 $\ker(f)$ — идеал в поле K.

- ullet Тогда по Следствию 1 либо $\ker(f)=K$, либо $\ker(f)=\{0\}$.
- Если $\ker(f) = K$, то $\operatorname{Im}(f) = \{0\}$.
- Если $\ker(f) = \{0\}$, то f мономорфизм.

Определение

Пусть K — коммутативное кольцо, $M \subset K$. Тогда $\langle M \rangle := \{ m_1 x_1 + \dots + m_s x_s : m_1, \dots, m_s \in M, x_1, \dots, x_s \in K \} -$ идеал, порожденный множеством M (здесь количество элементов s не фиксировано и может быть любым натуральным числом).

- ullet Идеал, порожденный M множество всех линейных комбинаций элементов из M.
- Определение. Пусть K коммутативное кольцо.
- 1) Пусть $m \in K$. Тогда $mK = \{mx : x \in K\}$ главный идеал.
- 2) Если все идеалы в кольце K главные, то K кольцо

Пусть K — коммутативное кольцо, $M \subset K$. Тогда $\langle M \rangle$ — идеал в K.

Доказательство. • Нужно проверить условия из Леммы 6.

- Пусть $a,b \in \langle M \rangle$. Тогда существуют такие $m_1,\ldots,m_s \in M,\ a_1,\ldots,a_s,b_1,\ldots,b_s \in K,$ что $a=a_1m_1+\cdots+a_sm_s$ и $b=b_1m_1+\cdots+b_sm_s$ (можно считать, что a и b- линейные комбинации одних и тех же элементов M, при необходимости добавив слагаемые с нулевыми коэффициентами).
- $\bullet -a = (-a_1)m_1 + \cdots + (-a_s)m_s \in \langle M \rangle.$
- ullet Тогда $a+b=(a_1+b_1)m_1+\cdots+(a_s+b_s)m_s\in\langle M
 angle.$
- ullet Для любого $x\in K$, $ax=(a_1x)m_1+\cdots+(a_sx)m_s\in \langle M
 angle.$
- ullet Условия Леммы 6 проверены, а значит, $\langle M \rangle$ идеал в K

Д. В. Карпов

ullet Пусть K — коммутативное кольцо, I — идеал в K.

Определение

Пусть $a,b\in K$. Тогда $a\equiv_I b$ (или, что то же самое, $a\equiv b\pmod{I}$), если и только если $a-b\in I$.

Лемма 10

 $\equiv_{\rm I}$ — отношение эквивалентности (то есть, рефлексивно, симметрично и транзитивно).

Доказательство. \bullet $a \equiv_I a$, так как $a-a=0 \in I$.

- ullet Если $a\equiv_I b$, то $a-b\in I$. Значит, $b-a\in I$, откуда $b\equiv_I a$.
- Если $a \equiv_I b$ и $b \equiv_I c$, то $a b, b c \in I$. Значит, $a c = (a b) + (b c) \in I$, откуда $a \equiv_I c$.

Определение

Bычет по модулю идеала I — это класс эквивалентности по \equiv_I .

ullet Различные вычеты не пересекаются. Кольцо K разбито на вычеты.

Факторкольцо

- Для $a \in K$ вычет, состоящий из элементов кольца, сравнимых с a, как правило, будем обозначать через \overline{a} .
- ullet Из определения следует, что $\overline{a}=a+I=\{a+x\,:\,x\in I\}.$

Определение

- ullet Пусть K коммутативное кольцо, I идеал в K. Φ акторкольцо $K/I:=\{\overline{a}:a\in K\}.$
- $\overline{a} + \overline{b} := \overline{a+b};$ $\overline{a} \cdot \overline{b} := \overline{ab}.$

Лемма 11

+ и \cdot в K/I определены корректно.

Доказательство. • Пусть $a \equiv_I a'$, то есть, $\overline{a} = \overline{a'}$. Это означает, что $a - a' \in I$. Докажем, что от замены a на a' результат + и \cdot не изменится:

$$\overline{a}+\overline{b}=\overline{a'}+\overline{b}\iff a+b\equiv_I a'+b\iff a+b-(a'+b)=a-a'\in I;$$

$$\overline{a} \cdot \overline{b} = \overline{a'} \cdot \overline{b} \iff ab \equiv_I a'b \iff$$

 $ab - (a'b) = (a - a')b \in I \iff a - a' \in I.$

$$a \in I$$
.

Теорема 1

- ullet K/I c определенными выше + u \cdot коммутативное кольцо.
- ullet Если K кольцо с 1, то K/I тоже. Если при этом $a\in K$ обратимый элемент в K, то \overline{a} обратимый в K/I.

Доказательство. • Так как $\overline{a}+\overline{b}=\overline{a+b}$, из ассоциативности и коммутативности + в K следует ассоциативность и коммутативность + в K/I.

- Так как $\overline{a} \cdot \overline{b} = \overline{ab}$, из ассоциативности и коммутативности умножения в K следует ассоциативность и коммутативность умножения в K/I.
- Дистрибутивность:

$$\overline{a}(\overline{b}+\overline{c})=a(b+c)=\overline{ab+ac}=\overline{a}\cdot\overline{b}+\overline{a}\cdot\overline{c}.$$

- Ноль это $\overline{0}$.
- ullet Обратный по сложению: $-\overline{a}:=\overline{-a}$.
- ullet Единица: если $1\in K$, то $\overline{1}$ единица в K/I.
- ullet Если $a\in K$ обратимый, то $(\overline{a})^{-1}:=\overline{a^{-1}}$ обратный в K/I.

Д. В. Карпов

Пусть K, L — коммутативные кольца, $f: K \to L$ — гомоморфизм. Тогда $K/\mathrm{Ker}(f) \simeq \mathrm{Im}(f)$. Более того, отображение $\overline{f}: K/\mathrm{Ker}(f) \to \mathrm{Im}(f)$, заданное формулой $\overline{f}(\overline{x}) := f(x)$, является изоморфизмом колец.

Доказательство. • Докажем корректность определения f. Пусть $\overline{x} = \overline{y}$. Тогда $x - y \in \mathrm{Ker}(f)$, а значит, f(x) = f(y) + f(x - y) = f(y) + 0 = f(y).

- ullet Теперь ясно, что \overline{f} гомоморфизм:
- $\overline{f}(\overline{x} + \overline{y}) = \overline{f}(\overline{x} + \overline{y}) = f(x + y) = f(x) + f(y) = \overline{f}(\overline{x}) + \overline{f}(\overline{y});$ $\overline{f}(\overline{x} \cdot \overline{y}) = \overline{f}(\overline{x} \cdot \overline{y}) = f(xy) = f(x)f(y) = \overline{f}(\overline{x}) \cdot \overline{f}(\overline{y}).$
- ullet Очевидно, \overline{f} сюръекция: $\forall y \in \mathrm{Im}(f) \; \exists x \in K$ такой, что y = f(x). Тогда и $y = \overline{f}(\overline{x})$.
- ullet Пусть $\overline{a}\in \mathrm{Ker}(\overline{f})$. Тогда $0=\overline{f}(\overline{a})=f(a)$, а значит, $a\in \mathrm{Ker}(f)$, откуда следует $\overline{a}=\overline{0}$. Следовательно, $\mathrm{Ker}(\overline{f})=\{\overline{0}\}.$
- ullet Таким образом, \overline{f} изоморфизм, а значит, $K/\mathrm{Ker}(f)\simeq\mathrm{Im}(f).$

- \bullet Пусть K коммутативное кольцо без делителей ноля (то есть, если $a, b \in K$ и ab = 0, то a = 0 или b = 0).
 - Обозначим через M множество всех дробей $\frac{a}{b}$, где $a, b \in K$, $b \neq 0$.
 - Пусть $\frac{a}{b} \sim \frac{c}{d} \iff ad = bc$.

$$\frac{0}{b} \sim \frac{c}{d} \iff c = 0.$$

Доказательство. \Leftarrow . Если c=0, то $0 \cdot d=0=b \cdot 0$.

$$\Rightarrow$$
. $\frac{0}{b}\sim\frac{c}{d}\Rightarrow 0=0\cdot d=bc$. Так как по определению $b\neq 0$, а делителей 0 в K нет, $c=0$.

Свойство 2

$$\frac{a}{a} \sim \frac{c}{d} \iff c = d.$$

Доказательство. Очевидно,
$$a \neq 0$$
. Следовательно, $\frac{a}{a} \sim \frac{c}{d} \iff ad = ac \iff a(d-c) = 0 \iff d-c = 0 \iff c = d$.

Свойство 3

Сокращение дроби. $\frac{a}{b} \sim \frac{ac}{bc}$ при $c \neq 0$.

Доказательство. abc - bac = 0.

 \sim — отношение эквиваленности.

Доказательство. • Рефлексивность очевидна.

• Симметричность.

$$\frac{a}{b} \sim \frac{c}{d} \iff ad = bc \iff cb = da \iff \frac{c}{d} \sim \frac{a}{b}.$$

- ullet Транзитивность. Если $rac{a}{b}\simrac{c}{d}$ и $rac{c}{d}\simrac{e}{f}$, то ad=bc и cf=de.
- ullet Если хотя бы одно из a,c,e равно 0, то по Свойству 1 равны и два других. Тогда $\frac{a}{b}\sim \frac{e}{f}$.
- Пусть $0 \notin \{a, c, e\}$. Тогда перемножим полученные равенства и сократим на $cd \neq 0$:

$$adcf = bcde \Rightarrow af = be \Rightarrow \frac{a}{b} \sim \frac{e}{f}.$$

Определение

Поле частных F коммутативного кольца K без делителей ноля состоит из классов эквивалентности дробей. Мы будем обозначать класс эквивалентности дроби $\frac{a}{b}$ в точности так же, как саму эту дробь.

Сложение: $\frac{a}{b} + \frac{c}{d} := \frac{ad+bc}{bd}$.

Умножение: $\frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd}$.

Свойство 4

$$\frac{a}{d} + \frac{c}{d} = \frac{a+c}{d}$$
.

Доказательство. $\frac{a}{d}+\frac{c}{d}=\frac{ad+cd}{d^2}=\frac{a+c}{d}$ по Свойству 3.

Сложение и умножение в поле частных определены корректно, то есть, результат не зависит от замены дроби на эквивалентную

Доказательство. • Достаточно доказать, что при замене первой дроби $\frac{a}{b}$ на эквивалентную дробь $\frac{a'}{b'}$ результат сложения и умножения не изменится. Отметим, что ab'=a'b.

• Сложение (мы можем сократить на d^2 , так как $d \neq 0$):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \sim \frac{a'}{b'} + \frac{c}{d} = \frac{a'd + b'c}{b'd} \iff$$

$$(ad + bc)b'd = (a'd + b'c)bd \iff adb'd + bcb'd = a'dbd + b'cbd$$

$$\iff ab'd^2 = a'bd^2 \iff ab' = a'b.$$

• Умножение. Если c=0, утверждение следует из Свойства 1. Иначе можно сокращать на cd:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \sim \frac{a'}{b'} \cdot \frac{c}{d} = \frac{a'c}{b'd} \iff acb'd = a'cbd \iff ab' = a'b.$$

Теорема 3

Поле частных F коммутативного кольца K без делителей ноля — поле.

Доказательство. Коммутативность сложения и умножения очевидно следуют из аналогичных свойств в K.

Ассоциативность сложения.

$$\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{ad + bc}{bd} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}.$$

В каждом из слагаемых три сомножителя, один числитель и два знаменателя других дробей. Легко понять, что при другом порядке сложения будет то же самое.

Ноль. Дроби вида $\frac{0}{b}$ ($b \in K$, $b \neq 0$) образуют класс эквивалентности по Свойству 1. Несложно проверить, что это класс и будет 0 в поле частных: $\frac{0}{b} + \frac{c}{d} = \frac{bc}{bd} = \frac{c}{d}$.

Обратный элемент по +. Положим $-(\frac{a}{b}):=\frac{-a}{b}$.

Проверка: $\frac{-a}{b} + \frac{a}{b} = \frac{0}{b^2} = 0$.

$$\left(\frac{a}{b}\cdot\frac{c}{d}\right)\cdot\frac{e}{f} = \frac{ac}{bd}\cdot\frac{e}{f} = \frac{ace}{bdf}.$$

Легко понять, что при другом порядке умножения будет то же самое.

Дистрибутивность.

$$\left(\frac{a}{b} + \frac{c}{d}\right) \cdot \frac{e}{f} = \frac{ad + bc}{bd} \cdot \frac{e}{f} = \frac{ade + bce}{bdf} = \frac{ade}{bdf} + \frac{bce}{bdf} = \frac{ae}{bf} + \frac{ce}{df}$$

(последний переход верен по Свойству 3).

Единица. В качестве 1 подойдет класс эквивалентности дробей вида $\frac{a}{a}$, где $a \neq 0$.

Обратный элемент по умножению. Для дроби $\frac{a}{b}$, где $a \neq 0$

положим
$$\left(\frac{a}{b}\right)^{-1} := \frac{b}{a}$$
.

Проверка:
$$\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = 1$$
 по определению.

Пусть K — коммутативное кольцо с 1 без делителей 0, а F — его поле частных. Тогда отображение $\varphi:K\to F$, заданное формулой $\varphi(a)=\frac{a}{1}$ — мономорфизм колец.

Доказательство. • Проверим, что φ — гомоморфизм колец. Пусть $a,b\in K$.

- $\varphi(a) + \varphi(b) = \frac{a}{1} + \frac{b}{1} = \frac{a \cdot 1 + b \cdot 1}{1 \cdot 1} = \frac{a + b}{1} = \varphi(a + b).$
- $\varphi(a)\varphi(b) = \frac{a}{1} \cdot \frac{b}{1} = \frac{ab}{1 \cdot 1} = \varphi(ab).$
- ullet Пусть $a\in \mathrm{Ker}(arphi)$. Тогда $0=arphi(a)=rac{a}{1}\iff a=0.$
- ullet Далее мы будем отождествлять число $a\in K$ с дробью $rac{a}{1}\in F$ и считать, что $K\subset F$.

Определение

Пусть K — поле.

ullet Положим $\underline{k}:=\underbrace{1+1+\cdots+1}_{k}$ для $k\in\mathbb{N}$ и $\underline{k}:=-(\underbrace{1+1+\cdots+1}_{-k})$ для отрицательных $k\in\mathbb{Z}$, а также $\underline{0}=0$.

- ullet Если существует такие $k\in\mathbb{N}$, что $\underline{k}=0$, то характеристика поля $\mathrm{char}(K)$ равна наименьшему из таких чисел.
- ullet Если же таких натуральных чисел нет, то считается, что $\mathrm{char}(\mathcal{K})=0.$

- \bullet Несложно проверить, что $\underline{a} + \underline{b} = \underline{a+b}$.
- Раскрыв скобки по дистрибутивности, можно убедиться в том, что $\underline{a} \cdot \underline{b} = \underline{ab}$.

Пусть K — поле и $\mathrm{char}(K)=p \neq 0$. Тогда $p \in \mathbb{P}$.

Доказательство. ullet Пусть p=ab, где 1 < a < p и 1 < b < p.

- \bullet Тогда $\underline{a} \cdot \underline{b} = \underline{ab} = \underline{p} = 0.$
- Так как K поле, отсюда следует, что хотя бы одно из чисел \underline{a} и \underline{b} равно 0, что противоречит определению характеристики поля.

Теорема 4

Пусть К — поле.

- 1) Если $\operatorname{char}(K) = p \in \mathbb{P}$, то отображение $\varphi : \mathbb{Z}/p\mathbb{Z} \to K$, заданное формулой $\varphi(\overline{m}) = \underline{m}$ (для $m \in \mathbb{Z}$) мономорфизм полей. В частности, K имеет подполе $\mathbb{Z}/p\mathbb{Z}$.
- 2) Если $\operatorname{char}(K)=0$, то отображение $\varphi:\mathbb{Q}\to K$, заданное формулой $\varphi(\frac{a}{b})=\frac{a}{\underline{b}}$ (для $a,b\in\mathbb{Z},\ b\neq 0$)— мономорфизм полей. В частности, K имеет подполе \mathbb{Q} .

Доказательство. 1) Отображение $\psi: \mathbb{Z} \to K$, заданное формулой $\psi(m) := \underline{m}$, очевидно, является гомоморфизмом колец.

- ullet ker $(\psi)=\{m\in\mathbb{Z}\ :\ \underline{m}=0\}$ идеал в \mathbb{Z} . НУО, ker $(\psi)=q\mathbb{Z}$.
- ullet Тогда $\underline{m}=0\iff m\ \dot{}\ q$, то есть, $\mathrm{char}(K)=q$. Значит, q=p и $\mathrm{ker}(\psi)=p\mathbb{Z}$.
- ullet По Теореме 2 (о гомоморфизме колец), отображение $\overline{\psi}: \mathbb{Z}/p\mathbb{Z} o K$, заданное формулой $\overline{\psi}(\overline{m}) = \underline{m}$ изоморфизм между $\mathbb{Z}/p\mathbb{Z}$ и $\mathrm{Im}(\psi)$ подполем K.

- 2) В этом случае $\forall m \in \mathbb{N} \ \underline{m} \neq 0$, то есть, $\operatorname{char}(K) = 0$.
- ullet Определим отображение $arphi:\mathbb{Q} o K$ формулой $arphi(rac{a}{b}):=rac{a}{b}$ (при b
 eq 0).
- ullet Проверим корректность. Пусть $\frac{a}{b}=\frac{c}{d}\iff ad=bc$ (здесь $b,d\neq 0$).
- ullet Тогда по дистрибутивности в поле K имеем

$$\underline{a} \cdot \underline{d} = \underline{b} \cdot \underline{c} \iff \frac{\underline{a}}{\underline{b}} = \frac{\underline{c}}{\underline{d}}.$$

- ullet Проверим, что arphi гомоморфизм:
 - $\varphi(\frac{a}{b}) \cdot \varphi(\frac{c}{d}) = \frac{\underline{a}}{\underline{b}} \cdot \frac{\underline{c}}{\underline{d}} = \frac{\underline{a} \cdot \underline{c}}{\underline{b} \cdot \underline{d}} = \varphi(\frac{ac}{bd}) = \varphi(\frac{a}{b} \cdot \frac{c}{d}).$

•
$$\varphi(\frac{a}{b}) + \varphi(\frac{c}{d}) = \frac{\underline{a}}{\underline{b}} + \frac{\underline{c}}{\underline{d}} = \frac{\underline{a} \cdot \underline{d} + \underline{b} \cdot \underline{c}}{\underline{b} \cdot \underline{d}} = \varphi(\frac{\underline{ad} + \underline{bc}}{\underline{bd}}) = \varphi(\frac{\underline{a}}{\underline{b}} + \frac{\underline{c}}{\underline{d}}).$$

- ullet Так как \mathbb{Q} поле и arphi принимает не только нулевые значения, $\ker(arphi)=\{0\}.$
- ullet Значит, $\operatorname{Im}(arphi)$ подполе K, изоморфное $\mathbb Q$.

Следствие 3

Все поля из $p\in\mathbb{P}$ элементов изоморфны $\mathbb{Z}/p\mathbb{Z}.$

Д.В.Карпов

Материалы курса можно найти вот здесь:

logic.pdmi.ras.ru/~dvk/ITMO/Algebra