微机原理与接口技术

内存分段管理

华中科技大学 左冬红

微处理器

寄存器(B)

L1 缓存(KB)

L2 缓存(MB)

L3 缓存(MB)

存储总线

缓存(MB)

内存(GB)

I/O 总线

Magnetic (TB) or Flash Disk

多进程存储空间独立

多任务并行, 内存容量不够

装载

软件和数据大到内存 一次装不下

术语

虚拟存储空间

程序访问的地址空间, 由软件指令给出

各个程序的虚拟存储空间都一样

虚拟存储空间大小与地址总线宽度有关

32位地址总线,虚拟存储空间大小为4G

物理存储空间

物理内存地址空间,由CPU地址总线给出

各个程序的物理存储空间互相独立

物理存储空间大小由实际物理内存容量决定

若仅配备1G内存,则物理存储空间为1G

虚拟空间到物理空间映射(一)

分段映射

操作系统将不同进程的地址空间映射到物理地址空间中不同区域,各个进程地址空间连续

物理地址由物理内存区域 起始地址和程序给定偏移 地址形成

分段映射需保存映射的内存区域起始地址

内存分段管理物理地址形成

实模式

段地址寄存器保存映射到的内存区域起始地址

仅应用在Intel微处理器16位机模式下

保护模式

段地址描述符表保存映射到的内存区域起始地址

段地址描述符表保存在内存中,由操作系统维护

应用在Intel微处理器32位及64位机模式下

分段管理实模式

分段管理-保护模式

段寄存器记录第几个表项

段描述符表的起始地址保存在全局描述符表基址寄存器 (GDTR)或全局描述符表(GDT) 中

0		1
••••		••••
界限字节0		界限字节1
段地址字节0		段地址字节1
段地址字节2		访问权限
G D O A	界限	段地址字节3
	高4位	
••••		••••

段描述符表

术语

全局描述符表(GDT)

结构基本一致

局部描述符表(LDT)

全局描述符表首地址保存在全局描述符寄存器 (GDTR)

全局描述符表索引由局部描述符寄存器 (LDTR)或段选择子TI=0时指示

局部描述符表首地址由全局描述符表项指示

局部描述符表索引由段选择子TI=1 时指示

分段管理-保护模式

小结

- •内存分段管理
 - •程序调入内存以进程为单位(粗粒度)
 - •硬件提供寄存器记录段起始地址以及段选择子
 - 硬件实现偏移地址到物理地址的转换
 - 软件维护段描述符表
 - 由装载程序填写段描述符表以及寄存器

下一讲:内存分页管理