$ext{MPSI}$ – Physique-chimie

TD26: Exercices supplémentaires

Exercice 1: Transformateur

On étudie un modèle simplifié du transformateur schématisé sur la figure 1 ci-dessous. Il est constitué d'un matériau magnétique torique d'axe (Oz) à section carrée de côté a et de rayon intérieur R. L'espace est rapporté à la base cylindrique $(\overrightarrow{e}_r, \overrightarrow{e}_\theta, \overrightarrow{e}_z)$ représentée pour un point M quelconque sur le schéma.

Figure 1 – Vue de dessus du transformateur

Le bobinage « primaire », noté C_1 , est un enroulement de N_1 spires autour de ce tore, il est parcouru par un courant d'intensité i_1 . Le bobinage « secondaire », noté C_2 , est un enroulement de N_2 spires autour de ce tore, il est parcouru par un courant d'intensité i_2 .

on admet que dans le tore, le champ magnétique est dirigé dans la direction de $\overrightarrow{e}_{\theta}$.

1. Si les courants i_1 et i_2 sont positifs, le champ magnétique est-il suivant \vec{e}_{θ} ou $-\vec{e}_{\theta}$?

On peut montrer (TSI2) que le champ créé par le circuit C_1 en tout point à l'intérieur du tore est :

$$\vec{B}_1 = \pm \frac{\mu_0 N_1 i_1}{2\pi r} \vec{e}_\theta$$

Le signe + ou - est à choisir en fonction de la réponse à la question précédente. $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{S\,I}$ est la perméabilité magnétique du vide.

- 2. Donner l'unité de μ_0 .
- 3. Donner l'expression du flux magnétique φ du champ magnétique \vec{B}_1 à travers une spire du circuit C_1 sous forme d'une intégrale de surface. On montrera que l'intégrale porte sur les coordonnées r et z et dans ces conditions dS = dr dz.
- 4. Calculer l'intégrale précédente et donner l'expression de φ .
- 5. En déduire le flux total ϕ de \vec{B}_1 à travers les N_1 spires du circuit C_1 .
- 6. Rappeler la définition de l'inductance propre L (ou coefficient d'auto-inductance).
- 7. En déduire que l'inductance propre L_1 du circuit C_1 est donnée par :

$$L_1 = N_1^2 \frac{a\mu_0}{2\pi} \ln\left(\frac{R+a}{R}\right)$$

- 8. Quelle est alors l'expression de l'inductance propre L_2 du circuit C_2 ?
- 9. Rappeler la définition du coefficient d'inductance mutuelle M.
- 10. Montrer que ce coefficient M est donné par :

$$M = N_1 N_2 \frac{a\mu_0}{2\pi} \ln\left(\frac{R+a}{R}\right)$$

- 11. La résistance des bobinages étant négligée, exprimer la tension u_1 aux bornes du primaire en fonction des dérivées par rapport au temps de i_1 et i_2 et des coefficients L_1 et M.
- 12. Faire de même pour la tension u_2 aux bornes du secondaire en fonction des dérivées par rapport au temps de i_1 et i_2 et des coefficients L_2 et M.
- 13. En déduire que l'on a la relation suivante :

$$u_1 = \frac{L_1}{M}u_2 + \frac{M^2 - L_1L_2}{M}\frac{\mathrm{d}i_2}{\mathrm{d}t}.$$

14. Prouver que cette relation se simplifie pour faire apparaître ce que l'on appelle le rapport de transformation défini comme le rapport des tensions du secondaire et du primaire :

$$\frac{u_2}{u_1} = \frac{N_2}{N_1}.$$

- 15. Expliquer alors comment les transformateurs constituent des éléments centraux de la chaîne de transport de l'électricité.
- 16. Que peut-on dire du rendement en puissance entre primaire et secondaire?
- 17. Le fonctionnement d'un transformateur est-il possible pour des signaux continus? Justifiez votre réponse.
- 18. Techniquement les matériaux magnétiques utilisés dans les transformateurs sont réalisés en accolant des feuillets en acier. Quels types de pertes cherche-t-on ainsi à éviter?

Exercice 2 : Oscillateur et induction

Une tige CD de cuivre de masse m et de longueur L est suspendue par ses deux extrémités à deux ressorts identiques de constante de raideur k et de longueur à vide ℓ_0 . Le courant électrique peut circuler à travers les ressorts et le "plafond". On note R la résistance électrique de tout le circuit et on négligera le phénomène d'induction dans les ressorts et d'auto-induction dans le circuit. On appelle g l'accélération de la pesanteur.

Un champ magnétique uniforme et constant \vec{B} est appliqué orthogonalement au plan de la figure.

1. Le système étant au repos, indiquer quelle est la longueur des ressorts.

On placera l'origine de l'axe (Oz) au niveau de la barre lorsqu'elle est à l'équilibre

- 2. Exprimer le flux du champ \vec{B} à travers le circuit en fonction de la longueur ℓ des ressorts, de L et de B. La tige est orientée de C vers D.
- 3. On note z(t) l'altitude de la barre à l'instant t. Exprimer la force électromotrice induite e_{ind} dans la barre en fonction des données du problème et de $\dot{z}(t)$.
- 4. On note i(t) l'intensité du courant électrique parcourant le circuit et orienté dans le sens de C vers D. Calculer la force de Laplace qui s'exerce sur la tige en fonction de i(t), B, L et du vecteur unitaire \vec{e}_z .
- 5. En appliquant le principe fondamental de la dynamique à la barre et en posant $\frac{B^2L^2}{mR}=2\alpha$ et $\frac{2k}{m}=\omega_0^2$. Monter que z(t) vérifie l'équation différentielle :

$$\ddot{z} + 2\alpha\dot{z} + \omega_0^2 z = 0$$

- 6. Exprimer le facteur de qualité Q de l'oscillateur en fonction de ω_0 et α .
- 7. On supposera que $\omega_0^2 \alpha^2 = \gamma^2 > 0$. Quel est le régime obtenu?
- 8. Dans ces conditions, on a $z(t) = A \exp(-\alpha t) \sin(\omega_0 t + \varphi)$. On donne les conditions initiales : z(0) = 0 et $\dot{z}(0) = V_0$. En déduire les expressions de A et φ . Tracer l'allure de z(t).
- 9. Appliquer le théorème de l'énergie cinétique à la barre entre l'instant initial et l'instant $(t \to \infty)$ où la barre s'arrête pour déterminer le travail de la force de Laplace. Sous quelle forme retrouve-t-on ce travail lorsque la barre s'arrête?

2020-2021

MPSI – Physique-chimie

Exercice 3: Une spire dans un champ magnétique (CCP TSI 2006)

Une spire conductrice rectangulaire MNPQ mobile, de côtés de longueur a et b, de masse m, de résistance R et d'inductance négligeable, est en translation dans le plan (0xy) parallèlement à l'axe (Ox) dans le sens des x croissants.

Dans la zone d'espace définie par x > 0 existe un champ magnétique uniforme et égal à $\vec{B} = B\vec{e}_z$ (avec B > 0).

On admet que le champ magnétique est nul en dehors de cette zone, sans se préoccuper du problème lié à la discontinuité de \vec{B} .

On néglige toute force autre que magnétique

À un instant t on notera x(t) l'abscisse du côté MN (de longueur a) de la spire et v(t) sa vitesse.

À l'instant où le côté MN de la spire pénètre dans la zone ou règne le champ magnétique la vitesse de la spire est non nulle et égale à v_0 .

- 1. Décrire qualitativement le phénomène qui se produit lorsque la spire pénètre avec une vitesse non nulle dans la zone où règne le champ magnétique.
- 2. Donner l'expression du flux du champ magnétique à travers la spire en fonction de x. On distinguera clairement trois cas selon les valeurs de x. On indiquera très clairement l'orientation choisie pour la spire.
- 3. En déduire l'expression de la force électromotrice e et du courant i induits dans le cadre en fonction de v(t). On indiquera sur un schéma le sens choisi pour i et e.
- 4. Donner l'expression de la force de Laplace qui s'exerce sur le cadre dans les trois cas précédents.
- 5. Appliquer le PFD à la spire pour déterminer l'équation différentielle satisfaite par v(t).
- 6. En déduire l'équation différentielle satisfaite par v(x), la vitesse de la spire en fonction de son abscisse x. On pourra utiliser le fait que :

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}\,v}{\mathrm{d}\,x}\frac{\mathrm{d}x}{\mathrm{d}t}$$

- 7. Déterminer la vitesse en fonction de x, tracer sur un graphique l'allure de la courbe représentant v(x) pour $-\frac{b}{2} < x < \frac{3b}{2}$.
- 8. À quelle condition la spire conductrice pourra-t-elle entrer totalement dans la zone où règne le champ magnétique?
- 9. On considère que la condition précédente est vérifiée, donner l'expression de la variation ΔE_c d'énergie cinétique de la spire lorsqu'elle entre dans la zone de champ magnétique. Qu'est devenue l'énergie cinétique perdue par la spire.

page 2/2