EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Solução Tampão

- 1) Definição
- 2) Preparação e funcionamento
- 3) Cálculo do pH de um tampão
- 4) Relação entre a concentração do sal e do ácido do tampão x pH desejado.
- 5) Bicarbonato de sódio

PROFESSOR: THÉ

LIÇÃO: **110**

Solução tampão (Buffer, em inglês) **DEFINIÇÃO**

Compare os dois sistemas abaixo: um formado de água pura mais algumas substâncias dissolvidas. Em cada um deles são adicionadas algumas gotas de ácido clorídrico.

O que ocorrerá com o pH?

No sistema I o pH abaixou sensivelmente. No sistema II o pH **quase** permaneceu constante O sistema II é uma solução tampão

SOLUÇÃO TAMPÃO

É uma solução que mantêm o pul profitamente constante ao receber pequenas quantidades de ácidos ou bases

PREPARAÇÃO E FUNCIONAMENTO

O que há dentro de uma solução tampão?

A solução tampão pode ser obtida de diversas maneiras

- 1° Ácido fraco + sal do ácido fraco
- 2° Base fraca + sal da base fraca

1° CASO: Ácido fraco + sal do ácido fraco

LEMBRANDO:

- O ÁCIDO FRACO É POUCO IONIZADO
- O SAL É TOTALMENTE DISSOCIADO

FUNCIONAMENTO DO TAMPÃO

a) Adição de ácido (entrada de íons H⁺)

Na chegada de íons H⁺, entra em ação o íon acetato Ac⁻, que captura prontamente o H⁺ introduzido, formando HAC associado

(O equilíbrio desloca-se para a esquerda: $HAc \leftarrow H^+ + Ac^-$)

b) Adição da base (entrada de íons OH⁻)

Na entrada de íons

OH⁻ entra em ação o

íon H⁺, que captura
prontamente o OH⁻
introduzido formando
água (deslocando o
equilíbrio para a
direita).

 $H^+ + OH^- \rightarrow HOH$

CONCLUSÃO

Na adição de ácido (H⁺): os íons H⁺ adicionados não aumentam a acidez da solução porque os íons Ac⁻ não os deixam livres.

Na adição de base (OH⁻): os íons он-adicionados não aumentam a basicidade da solução porque íons H⁺ o transformam em água.

2° CASO: Base fraca e sal da base fraca

a) Adição de ácido (entrada de íons H⁺)

Os íons **OH**⁻ presentes reagem com os íons **H**⁺ introduzidos.

$$\left[\mathsf{H}^+_{\left(\mathsf{introduzido}\right)} + \mathsf{OH}^-_{\left(\mathsf{tamp\~{a}o}\right)}
ightarrow \mathsf{HOH}
ight]$$

b) Adição de base (entrada de íons \mathbf{OH}^-)

O EQUILÍBRIO SE DESLOCA PARA ESQUERDA

$$NH_4OH \leftarrow OH_{(introduzido)}^- + NH_{4(tampão)}^+$$

É lógico que a entrada continuada de ácido (ou base) consome todos os íons do tampão, destruindo sua capacidade de manter o pH praticamente inalterado.

CÁLCULO DO pH DE UM TAMPÃO

3) Cálculo do pH de um tampão

EXEMPLO - 1

Qual o pH de uma solução tampão? Considere o tampão constituído de:

| Ácido acético: 0,1 mol/L | Acetato de sódio: 0,2 mol/L |

$$K_a(HAc]$$
)=1,8.10⁻⁵; log 2=0,3; log 3=0,48

RESOLUÇÃO

	HAc ⇌	H +	- Ac ⁻	
ı	0,1	0	0	
R	Х	Х	Х	
E	0,1-x	Х	x +0,2	

$$\mathbf{K_a} = \frac{\mathbf{H}^+ \mathbf{Ac}^-}{\mathbf{Ac}}$$

$$1,8.10^{-5} = \frac{(x)(x+0,2)}{(0,1-x)}$$

$$\mathbf{x} = \frac{1.8.10^{-5} \cdot 10^{-1}}{2.10^{-1}} \therefore \mathbf{x} = 0.9.10^{-5}$$

$$\mathbf{pH} = -(\log 9.10^{-6}) = \boxed{5.04}$$

EXEMPLO - 2

Qual o pH de uma solução tampão formada por $\mathbf{NH_4OH}$ 0,1 \mathbf{M} e $\mathbf{NH_4CI}$ 0,1 \mathbf{M} .

$$\begin{array}{c} \textbf{NH}_4\textbf{CI} \xrightarrow{\textbf{dissoc.}} \textbf{NH}_4^+ + \textbf{CI}^- \\ \textbf{NH}_4\textbf{OH} & \rightleftharpoons \textbf{NH}_4^+ + \textbf{OH}^- \\ \textbf{K}_{\textbf{b}} = 1,8.10^{-5} \\ \textbf{log 2} = 0,3 \hspace{3mm} ; \hspace{3mm} \textbf{log 3} = 0,48 \end{array}$$

RESOLUÇÃO

	$NH_4OH \rightleftharpoons NH_4^+ + OH^-$				
1	0,1	0	0		
R	х	х	Х		
E	0,1- x	x+0,1	Х		
Sur at 500+ 31-					

$$\mathbf{K_b} = \frac{\begin{bmatrix} \mathbf{NH_4}^+ \end{bmatrix} \begin{bmatrix} \mathbf{OH}^- \end{bmatrix}}{\begin{bmatrix} \mathbf{NH_4OH} \end{bmatrix}}$$

$$1,8.10^{-5} = \frac{\left(\cancel{x} + 0,1\right)(\cancel{x})}{\left(0,1-\cancel{x}\right)}$$

$$1,8.10^{-5} = \frac{(0,1)(x)}{(0,1)}$$

$$x = 1,8.10^{-5} = [OH^-]$$

$$pOH = -(log 1, 8.10^{-5}) = 4,74 : pH = 9,26$$

Concentração do sal/ácido do tampão x

pH desejado

Considere o tampão HAC — NaAc

$$\begin{aligned} \mathbf{HAc} & \rightleftharpoons & \mathbf{H}^{+} & + \mathbf{Ac}^{-} \\ \mathbf{NaAc} & \rightarrow & \mathbf{Na}^{+} & + \boxed{\mathbf{Ac}^{-}} \end{aligned}$$

 $oxed{\mathbf{A}\mathbf{c}^{-}}$ do sal em geral é muito maior que $oxed{\mathbf{A}\mathbf{c}^{-}}$ do ácido.

$$\mathbf{K_a} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{A}\mathbf{c}^-\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{s}\mathbf{a}\mathbf{I}\right]}{\left[\mathbf{\acute{a}cido}\right]}$$

Daí na maioria dos tampões:

Misturam-se quantidades mais ou menos iguais do sal e do ácido fraco. A variação dessas quantidades pode ser ajustada para se obter um pH específico.

Escolha do ácido fraco (ou da base fraca) de um tampão.

Para um tampão de pH = X escolhe-se um ácido cuja a constante é próximo de 10^{-x} .

$$K(HA) = 10^{-8}$$

$$\mathbf{K}\big(\mathbf{H}\mathbf{A}\big) \!=\! \frac{\left[\mathbf{H}^{\!+}\right]\!\!\left[\mathbf{A}^{\!-}\right]}{\left[\mathbf{H}\mathbf{A}\right]} \to \left[\mathbf{H}^{\!+}\right] \!=\! \mathbf{K}_{\mathbf{a}}$$

$$pH = pK_a$$

$$pH = -(log 10^{-8}) = 8$$

EXEMPLO - 3

Uma solução tampão é sempre preparada quando se deseja realizar alguma experiência em pH constante. Suponhamos então que se deseja uma solução tampão de pH=7, com as seguintes substâncias.

$$\begin{split} &\text{\'acido} = \text{\'acido carb\^onico} \left(\text{H}_2 \text{CO}_3 \right) \quad \text{K}_{\text{a}} = 4,4.10^{-7} \\ &\text{Sal} = \text{Bicarbonato de s\'adio} \left(\text{NaHCO}_3 \right) \end{split}$$

Qual deve ser a proporção das concentrações do sal e do ácido para se conseguir o tampão de pH=7.

1)
$$pH = 7 : [H^-] = 10^{-7} mol/L$$

2) Dissociação do sal (concentração M₁)

3) Equilíbrio do ácido carbônico (concentração M₂)

	$H_2CO_3 \rightarrow$	→ H ⁺ +	HCO ₃
ı	M ₂	0	0
R	х	х	Х
E	$\underbrace{\mathbf{M}_{2} - \mathbf{x}}_{\cong \mathbf{M}_{2}}$	х	$\underbrace{\mathbf{x} + \mathbf{M}_1}_{\cong \mathbf{M}_1}$

$$\mathbf{K_a} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{HCO}_3^-\right]}{\left[\mathbf{H_2CO}_3\right]}$$

$$4,4.10^{-7} = \frac{10^{-7} \cdot \mathbf{M}_1}{\mathbf{M}_2}$$

$$4,4 = \frac{\mathbf{M}_1}{\mathbf{M}_2}$$
 concentração do sal concentração do ácido

$$\frac{[\text{sal}]}{[\text{ácido}]} = 4,4 \quad \therefore \quad \boxed{[\text{sal}] = 4,4 \, [\text{ácido}]}$$

A concentração do sal na solução tampão deve ser 4,4 vezes maior que a do ácido.