Problem

Give an example of an NL-complete context-free language.

Step-by-step solution

Step 1 of 3

The statement of Ginsburg theorem state that, "Suppose G is used to generate a language L(G) where G is defined as a reducible context free grammar. Then $|L(G) \cap \{0,1\}^n|_{\text{will show a polynomial behavior in }}^n$ if and only if for each non-terminal z, l(z) and r(z) are commutative".

Comment

Step 2 of 3

Now, suppose $M \subseteq \{0,1\}^*$ be a language which is context free and exponential in size. The above context free language shows a NP-complete behavior.

- To perform this, suppose, D is defined as a reduced-free grammar for M. Here, M_n will not be in polynomial of n because M consists an exponential size.
- Now from the above given theorem, it can be said that there exists a nonterminal and for each non-terminal Z, l(Z) and r(Z) are **commutative**.

Comment

Step 3 of 3

Consider, l(Z) (where, $a_1, a_2 \in l(Z)$) is not showing the commutative property and $a_1, a_2 \neq a_2, a_1$. Hence, there exists a position k such that $(a_1, a_2)_k = 0$ and $(a_2, a_1)_k = 1$.

- As from the above explanation, there exists $(b_1,b_2) \in \{0,1\}^*$ in such a way that $Z \succ^* a_1 Z b_1$ and $Z \succ^* a_2 Z b_2$. An arbitrary 1s and 0s can be generated at the position $k \cdot |a_1 a_2| + i$ for any k, by applying either $Z \succ^* a_1 a_2 Z b_2 b_1$ or $Z \succ^* a_2 a_1 Z b_1 b_2$, k times.
- Now, to reach Z from M_0 , user can use $M_0 \succ^* aZb$. Again, to acquire a word in $\left\{0,1\right\}^*$ for some $x,y,w \subseteq \left\{0,1\right\}^*$, $Z \succ^* w$ can be used.
- $\text{ Hence from the above discussion, } I \coloneqq \big\{ |\,x\,| + k \cdot |\,a_1 a_2\,| + i : 0 \le k \le n 1 \big\}_{\text{ is of size }} n \text{ can be obtained if } N \text{ is set as } N \coloneqq \big\{ |\,x\,| + |\,y\,| + |\,w\,| + n \big(|\,a_1 a_2\,| + |\,b_1 b_2\,| \big) \big\}_{\text{and also }} I \text{ can be shattered by } M_N \,.$
- All the calculations (which are done above) take a time in O(n) and N is linier in n and it is already known that S-SAT is NP-hard and $S-SAT \in NP$. Hence, it shows NP-complete behavior.

Hence the above explanation shows, the context free language $\ ^{M}\subseteq\left\{ 0,1\right\} ^{*}$ is $\ ^{NP-complete}$.

Comment