

## Implicit Surface Reconstruction

• Implicit function from point clouds

Need consistently oriented normals





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)







- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)





- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



- Assign a normal vector **n** at each point cloud
   point **x**
  - Estimate the direction by fitting a local plane
  - Find consistent global orientation by propagation (spanning tree)



## Local Plane Fitting

• For each point  $\mathbf{x}$  in the cloud, pick k nearest neighbors or all points in r-ball:  $\{\mathbf{x}_i \mid ||\mathbf{x}_i - \mathbf{x}|| < r\}$ 

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$$

• Find a plane  $\Pi$  that minimizes the sum of square distances:

$$\min \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_i, \Pi)^2$$



## Local Plane Fitting

• For each point  $\mathbf{x}$  in the cloud, pick k nearest neighbors or all points in r-ball:  $\{\mathbf{x}_i \mid ||\mathbf{x}_i - \mathbf{x}|| < r\}$ 

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$$

• Find a plane  $\Pi$  that minimizes the sum of square distances:

$$\min \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_i, \Pi)^2$$





## Linear Least Squares?





## Linear Least Squares?

• Find a line y = ax + b s.t.

$$\min \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$



• But we would like true orthogonal distances!



## Best Fit with SSD



SSD = sum of squared distances (or differences)



## Principle Component Analysis (PCA)

PCA finds an orthogonal basis that best represents a given data set



• PCA finds the best approximating line/plane/orientation... (in terms of  $\Sigma$  distances<sup>2</sup>)



#### Notations

• Input points:

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$$

 Looking for a (hyper) plane passing through c with normal n s.t.

$$\min_{\mathbf{c},\mathbf{n},\|\mathbf{n}\|=1} \sum_{i=1}^{n} \left( (\mathbf{x}_i - \mathbf{c})^T \mathbf{n} \right)^2$$



#### Notations

Input points:

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$$

• Centroid:

$$\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$



Vectors from the centroid:

$$\mathbf{y}_i = \mathbf{x}_i - \mathbf{m}$$

## Centroid: 0-dim Approximation

• It can be shown that:

$$\mathbf{m} = \underset{\mathbf{c}}{\operatorname{argmin}} \sum_{i=1}^{n} \left( (\mathbf{x}_i - \mathbf{c})^T \mathbf{n} \right)^2$$
 $\mathbf{m} = \underset{\mathbf{c}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{c}\|^2$ 

- m minimizes SSD
- m will be the origin of the (hyper)-plane
- Our problem becomes:





$$\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$



#### Minimize!

$$\min_{\mathbf{n}^T \mathbf{n} = 1} \sum_{i=1}^n (\mathbf{y}_i^T \mathbf{n})^2 = \min_{\mathbf{n}^T \mathbf{n} = 1} \sum_{i=1}^n \mathbf{n}^T \mathbf{y}_i \mathbf{y}_i^T \mathbf{n} =$$

$$\min_{\mathbf{n}^T \mathbf{n} = 1} \mathbf{n}^T \left( \sum_{i=1}^n \mathbf{y}_i \mathbf{y}_i^T \right) \mathbf{n} = \min_{\mathbf{n}^T \mathbf{n} = 1} \mathbf{n}^T \left( \mathbf{Y} \mathbf{Y}^T \right) \mathbf{n}$$

$$\mathbf{Y} = \begin{pmatrix} | & | & | \\ \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_n \\ | & | & | \end{pmatrix}$$



#### Minimize!

$$\min_{\mathbf{n}^T \mathbf{n} = 1} \sum_{i=1}^{n} (\mathbf{y}_i^T \mathbf{n})^2 = \min_{\mathbf{n}^T \mathbf{n} = 1} \sum_{i=1}^{n} \mathbf{n}^T \mathbf{y}_i \mathbf{y}_i^T \mathbf{n} =$$

$$\min_{\mathbf{n}^T \mathbf{n} = 1} \mathbf{n}^T \left( \sum_{i=1}^{n} \mathbf{y}_i \mathbf{y}_i^T \right) \mathbf{n} = \min_{\mathbf{n}^T \mathbf{n} = 1} \mathbf{n}^T \left( \mathbf{Y} \mathbf{Y}^T \right) \mathbf{n}$$

$$\mathbf{Y} = \begin{pmatrix} | & | & | \\ \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_n \\ | & | & | \end{pmatrix}$$



$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n}$$
  $(\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$   
 $\min f(\mathbf{n})$  s.t.  $\mathbf{n}^T \mathbf{n} = 1$ 

Constrained minimization – Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n}$$
  $(\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$ 
 $\min f(\mathbf{n})$   $s.t.$   $\mathbf{n}^T \mathbf{n} = 1$ 

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = \frac{\partial}{\partial \mathbf{n}} f(\mathbf{n}) - \lambda \frac{\partial}{\partial \mathbf{n}} (\mathbf{n}^T \mathbf{n} - 1)$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{n}^T \mathbf{n} - 1$$

$$\frac{\partial}{\partial \mathbf{n}} f(\mathbf{n}) - \lambda \frac{\partial}{\partial \mathbf{n}} (\mathbf{n}^T \mathbf{n} - 1) = (\mathbf{S} + \mathbf{S}^T) \mathbf{n} - \lambda (\mathbf{I} + \mathbf{I}^T) \mathbf{n} = 2\mathbf{S} \mathbf{n} - 2\lambda \mathbf{n}$$





Constrained minimization – Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n}$$
  $(\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$   
 $\min f(\mathbf{n})$   $s.t.$   $\mathbf{n}^T \mathbf{n} = 1$ 

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = 0 \iff \mathbf{S}\mathbf{n} = \lambda \mathbf{n}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \iff \mathbf{n}^T \mathbf{n} = 1$$



Constrained minimization – Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n}$$
  $(\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$   
 $\min f(\mathbf{n})$  s.t.  $\mathbf{n}^T \mathbf{n} = 1$ 

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$





What can be said about **n** ??

• Constrained minimization – Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n}$$
  $(\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$   
 $\min f(\mathbf{n})$  s.t.  $\mathbf{n}^T \mathbf{n} = 1$ 

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$



$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = 0 \iff \mathbf{S}\mathbf{n} = \lambda \mathbf{n}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \iff \mathbf{n}^T \mathbf{n} = 1$$

**n** is the eigenvector of **S** with the smallest eigenvalue



## Summary – Best Fitting Plane Recipe

- Input:  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$
- Compute centroid = plane origin  $\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$
- Compute scatter matrix  $\mathbf{S} = \mathbf{Y}\mathbf{Y}^T$   $\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_n)$   $\mathbf{y}_i = \mathbf{x}_i \mathbf{m}$
- The plane normal **n** is the eigenvector of **S** with the smallest eigenvalue

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} \mathbf{V}^T$$

#### What does the Scatter Matrix do?

• Let's look at a line l through the center of mass  $\mathbf{m}$  with direction vector  $\mathbf{v}$ , and project our points  $\mathbf{x}_i$  onto it. The variance of the projected points  $\mathbf{x}'_i$  is:

$$\operatorname{var}(\mathbf{x}_{1}, \dots \mathbf{x}_{n}; \mathbf{v}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i}' - \mathbf{m}\|^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|(\mathbf{m} + \mathbf{v}^{T} \mathbf{y}_{i}) - \mathbf{m}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i}^{T} \mathbf{v})^{2} = \frac{1}{n} \mathbf{v}^{T} \mathbf{S} \mathbf{v}$$

Original set

Small variance

Large variance



### What does the Scatter Matrix do?

• The scatter matrix measures the variance of our data points along the direction  ${\bf v}$ 

$$\operatorname{var}(\mathbf{x}_{1}, \dots \mathbf{x}_{n}; \mathbf{v}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i}' - \mathbf{m}\|^{2} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|(\mathbf{m} + \mathbf{v}^{T} \mathbf{y}_{i}) - \mathbf{m}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i}^{T} \mathbf{v})^{2} = \frac{1}{n} \mathbf{v}^{T} \mathbf{S} \mathbf{v}$$



Original set





Large variance



## Principal Components

- Eigenvectors of **S** that correspond to big eigenvalues are the directions in which the data has strong components (= large variance).
- If the eigenvalues are more or less the same there is no preferable direction.

$$\mathbf{S} = \mathbf{V} egin{pmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_d \end{pmatrix} \mathbf{V}^T$$

## Principal Components



- There's no preferable direction
- S looks like this:

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix} \mathbf{V}^T$$

Any vector is an eigenvector



- There's a clear preferable direction
- S looks like this:

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda & \\ & \mu \end{pmatrix} \mathbf{V}^T$$

•  $\mu$  is close to zero, much smaller than  $\lambda$ 



## Normal Orientation

- PCA may return arbitrarily oriented eigenvectors
- Wish to orient consistently
- Neighboring points should have similar normals







## Normal Orientation

- Build graph connecting neighboring points
  - Edge (i,j) exists if  $\mathbf{x}_i \in kNN(\mathbf{x}_j)$  or  $\mathbf{x}_j \in kNN(\mathbf{x}_i)$
- Propagate normal orientation through graph
  - For neighbors  $\mathbf{x}_i$ ,  $\mathbf{x}_j$ : Flip  $\mathbf{n}_j$  if  $\mathbf{n}_i^T \mathbf{n}_j < 0$
  - Fails at sharp edges/corners
- Propagate along "safe" paths (parallel tangent planes)
  - Minimum spanning tree with angle-based edge weights  $w_{ij} = 1 |\mathbf{n}_i^T \mathbf{n}_j|$

"Surface reconstruction from unorganized points", Hoppe et al., SIGGRAPH 1992 <a href="http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf">http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf</a>

