# Databázové architektury (11)

### DBS: Centralizované

- běží na jednom počítačovém systému
- neinteragují s dalšími počítačovými systémy

#### general-purpose computer system

- o jeden či více CPU a několik ovládacích zařízení
- o propojené přes common bus (poskytuje přístup do sdílené paměti)

#### single-user system

- o např. osobní PC či pracovní stanice
- o většinou jedno či více CPU a jeden či dva pevné disky
- OS může podporovat jen jednoho uživatele

#### multi-user system

- o více disků, více pamětí, více CPU, vícero uživatelů v OS
- o obsluhuje větší množství uživatelů, kteří jsou k systému připojeni přes terminály

#### **DBS: Client-server**

- servery uspokojují požadavky generované v m klientstkých systémech
- výhody nahrazení sálových počítačů sítěmi stanic nebo osobních PC připojených k backendu:
  - o lepší funkce za danou cenu
  - o flexibilita při hledání zdrojů a rozšiřování
  - o lepší UI
  - snadnější údržba

#### Front-end vs. Back-end

rozhraní mezi FE a BE – SQL či API

#### back-end

 spravuje přístupové struktury, vyhodnocuje a optimalizuje dotazy, řízení konkurence a obnovy

#### - front-end

o nástroje typu formuláře, reportovací nástroje, grafická uživatelská rozhraní,...

#### DBS: Paralelní

- skládá se z více procesorů a disků spojených rychlou vnitřní sítí
- coarse-grain (hrubozrná) parallel machine skládá se z menšího množství výkonných CPU
- fine-grain (jemnozrná) parallel machine tisíce menších CPU





- dva hlavní indikátory výkonu:
  - o propustnost množství úloh, které mohou být splněny v daném časovém intervalu
  - o odezva (/latence) jak dlouho trvá dokončit jednu úlohu od jejího odeslání
- speed-up problém o fixní velikosti vykonávaný na malém systému je dán systému, který je
  N-krát větší (efektivnější)
- scale-up zvýšení velikosti jak problému, tak systému
- oboje často sublineární kvůli:
  - o počáteční ceně (cena startu vícera procesů > čas výpočtu)
  - o **rušení** procesy přistupují ke sdíleným zdrojům a soutěží mezi sebou (a čekají)
  - o **zkreslení** větší stupeň paralelizace <del>></del> větší odchylka mezi vykonanými úlohami

#### Architektury propojení

#### - bus

- o komponenty posílají data na (/získávají z) jednoho komunikačního busu
- o nevýhoda neškáluje dobře se zvyšujícím se paralelismem

#### mesh (smíšená topologie)

- o komponenty jsou uspořádány jako nody v mřížce
- o každá komponenta je spojena s vedlejší komponentou
- výhoda lepší škálování (propojení roste s množstvím komponent)
- o nevýhoda může vyžadovat hodně skoků při poslání zprávy nějakému nodu

#### - hyperkostka

- o komponenty jsou očíslovány v binární soustavě
- o jsou na sebe napojené, pokud se jejich binární reprezentace liší přesně v jednom bitu
- o n komponent je napojeneno na log(n) dalších komponent, nejdelší spojení je log(n)
- redukuje komunikační prodlevy



#### Paralelní databázové architektury

#### sdílená paměť

- procesory sdílí společnou paměť
- o efektivní komunikace mezi nimi, ale není moc škálovatelná

#### - sdílený disk

- procesory sdílý společný disk
- o určitý stupeň tolerance chyb (pokud procesor vypadne, jiný vezme jeho úlohu)
- o data jsou sdílena všemi procesory

#### - shared nothing

- o procesory nesdílí ani paměť, ani disk
- komunikují mezi sebou pomocí propojené sítě
- o nevýhoda cena komunikace, přístup k nelokálnímu disku

#### hierarchická

- kombinace předchozích architektur
- o top-level je shared nothing
- o každý node systému může být subsystémem sdílené paměti



#### DBS: Distribuované

- scale-out data jsou distribuována (šířena) přes několik zařízení (nodů)
- data jsou replikována (systém může pracovat, i když node vypadne)

#### - homogenní distribuované DB

- stejný SW/schéma na všech nodech, data se mohou rozdělit mezi nody
- o cílem je poskytnout pohled na jednu DB, skrývaje detaily distribuce

#### heterogenní distribuované DB

- o rozdílný SW/schémata na různých nodech
- o cílem je integrovat existující DB pro poskytnutí užitečné funkcionality

#### Modely distribuce

- **single server** bez distribuce
- sharding rozdělení různých částí dat mezi různé servery (ale může být příliš na jednom)
- master/slave replikace master poskytuje R/W, slave poskytuje čtení (ale bez škálování W)
- **peer-to-peer replikace** všechny repliky mají ekvivalentní váhu (každý node je master)
- častá kombinace shardingu a replikace





sharding = distribution

## master/slave replication



peer-to-peer replication

## Typy dotazů (queries)

- deklarativní
  - o popisujeme požadovaná data, ale ne jak je získáme
  - o např. DRC, TRC
- procedurální
  - o poskytujeme jak získáme chtěná data
  - o např. relační algebra (částečně)
- SQL umožňuje obojí
- **QBE** (Query By Example)
  - o grafický dotazovací jazyk (ze 70. let)
  - o mnoho grafických FE pro DB dnes užívají ideu