STAT 207: Final Project

~ Sarah Michalec - Jada Giddens - Armeen Sultan - Trish Qiu ~

Motivation and Introduction

Research Introduction

- Identity identification and facial recognition
- Equally high accuracy for positives and negative

Research Goals

- Primary
 - Build predictive model to predict gender
- Secondary
 - Yield reliable interpretive insights
 - Describe relationship of variables

Dataset Discussion

Dataset Source

- Retrieved from Kaggle on April 17th, 2024
- Author Jifry Issadeen
- Explanatory variables
 - o 2 Numerical:
 - forehead_width_cm
 - forehead_height_cm
 - o 5 Categorical:
 - long_hair
 - nose_wide
 - nose_long
 - lips_thin,
 - distance_nose_to_lip_long

Data Cleaning

- No implicit or explicit missing values
- No outliers
- Categorical variable counts all >50
- Overall, no rows dropped
 - Model representative of entire dataset

Dataset

	long_hair	forehead_width_cm	forehead_height_cm	nose_wide	nose_long	lips_thin	distance_nose_to_lip_long	gender
0	1	11.8	6.1	1	0	1	1	Male
1	0	14.0	5.4	0	0	1	0	Female
2	0	11.8	6.3	1	1	1	1	Male
3	0	14.4	6.1	0	1	1	1	Male
4	1	13.5	5.9	0	0	0	0	Female
5	1	13.0	6.8	1	1	1	1	Male
6	1	15.3	6.2	1	1	1	0	Male
7	0	13.0	5.2	0	0	0	0	Female
8	1	11.9	5.4	1	0	1	1	Female
9	1	12.1	5.4	0	0	0	0	Female

Descriptive Analytics

- Long_hair variable has weak association with response and other explanatory variables.
- Doesn't mean that the variable will under or overfit the model

Descriptive Analytics

- Slope or stretch of the simple logistic model differs
- An interaction term will be made for each pair with an interaction to effectively model the relation between these the explanatory variables and response variable.
- Log likelihood values
 - Full_model : -368.206
 - Full_model w/ interaction terms: -363.150

Best Model Discussion

- Tried Lasso, Ridge, Elastic Net Regression
 - 0.996231, 0.996396, 0.996231
 - Ridge model highest AUC

```
gender = rac{1}{ egin{pmatrix} -0.00073589 \ +0.0041852 (\, \mathrm{long\; hair}) \ -0.06137687 (\, \mathrm{forehead\; width\; cm}) \ -0.04974995 (\, \mathrm{forehead\; height\; cm}) \ -0.14924822 (\, \mathrm{nose\; wide}) \ -0.14499015 (\, \mathrm{nose\; long}) \ -0.14275644 (\, \mathrm{lips\; thin}) \ -0.14630999 (\, \mathrm{distance\; nose\; to\; lip\; long}) \ \end{pmatrix}
```

- No slopes zeroed out
 - long_hair lowest slope
- Probability Threshold: 0.48
 - > FPR: 5%
 - o TPR: 99%
- Multicollinearity
 - Numerical: none
 - Categorical: present
 - Numerical/Categorical: minor
- Cannot interpret slopes
 - Multicollinearity
 - Slope interactions

Conclusion

- Would recommend our model
 - → High AUC → implies good fit
- Shortcomings
 - Multicollinearity
 - Slope interactions
- Future work
 - Eliminate multicollinearity and slope interactions
 - Test different datasets
 - More explanatory variables

References

Glover, E. (2024, February 23). Facial Recognition Technology, explained. Built In. https://builtin.com/articles/facial-recognition-technology-explained#:~:text=Facial%20recognition%20is%20a%20technology.of%20known%20faces%20or%20templates.

Najibi, A. (2020, October 26). Racial discrimination in face recognition technology. Science in the News. https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/