1. Let w(t) be a piecewise continuous complex-valued function defined over an interval $a \le t \le b$. Prove that $\left| \int_a^b w(t) dt \right| \le \int_a^b |w(t)| dt$.

Note that,

$$\int_{a}^{b} |w(t)|dt \ge \max\left(\int_{a}^{b} w(t)dt, \int_{a}^{b} -w(t)dt\right)$$
$$= \max\left(\int_{a}^{b} w(t)dt, -\int_{a}^{b} w(t)dt\right) = \left|\int_{a}^{b} w(t)dt\right|$$

2. Let \mathcal{C} be a contour with length L and f(z) continuous on \mathcal{C} . Let M be a real number such that $|f(z)| \leq M$ on all point on \mathcal{C} . Prove that $\left| \int_{\mathcal{C}} f(z) dz \right| \leq ML$.

For $a \leq x \leq b$, let w(t) be a parameterization of \mathcal{C} .

Rewrite $L = \int_a^b |w'(t)| dt$, then,

$$\left| \int_{\mathcal{C}} f(z)dz \right| = \left| \int_{a}^{b} f(w(t))w'(t)dt \right|$$

$$\leq \int_{a}^{b} |f(w(t))w'(t)|dt$$

$$= \int_{a}^{b} |f(w(t))||w'(t)|dt$$

$$\leq \int_{a}^{b} M|w'(t)|dt = M \int_{a}^{b} |w'(t)|dt = ML$$

3. Let f be a function analytic inside and on a positively oriented circle \mathcal{C}_R , centered at z_0 with radius R. Let M_R denote the maximum value of |f(z)| on \mathcal{C}_R . Prove that $|f^{(n)}(z_0)| \leq \frac{n!M_R}{R^n}$ for $n \in \mathbb{N}$.

For any z inside C_R , $|z-z_0| \leq R$. Using the Cauchy integration formula, we have that

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \int_{\mathcal{C}_R} \frac{f(z)}{(z - z_0)^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} \int_{\mathcal{C}_R} \frac{|f(z)|}{|(z - z_0)^{n+1}|} dz$$

$$\leq \frac{n! M_R}{2\pi} \int_{\mathcal{C}_R} |z - z_0|^{-n-1} dz$$

The integral $\int_{\mathcal{C}_R} |z-z_0|^{-n-1} dz$ is of the function $g(z) = |z-z_0|^{-n-1}$ over \mathcal{C}_R , which has the length $L = 2\pi R$, so from part 2, $\int_{\mathcal{C}_R} |z-z_0|^{-n-1} dz \leq 2\pi R R^{-n-1} = 2\pi R^{-n}$.

Put this back in, we have $|f^{(n)}(z_0)| \leq \frac{n! M_R}{R^n}$. \square