Topology

Definition. Let (X, τ_1) and (Y, τ_2) be two topological spaces. The collection $\mathcal{B} = \tau_1 \times \tau_2 = \{u \times v : u \in \tau_1, v \in \tau_2\}$ is a basis for a topology on $X \times Y$. The topology generated by \mathcal{B} is called the **product topology** on $X \times Y$.

Theorem. Let (X, τ) and (Y, σ) be two topological spaces. Let \mathcal{B} be a basis for τ and \mathcal{C} be a basis for σ . Then the collection $\mathcal{D} = \{U \times V : U \in \mathcal{B}, V \in \mathcal{C}\}$ is a basis for the product topology on $X \times Y$.

Result. The product topology on $_at_hb_bR$ $cdot_at_hb_bR$ coincides with the usual topology on $_at_hb_bR^2$