Synthèses inorganiques

Agrégation 2020

Exemples de composés inorganiques

Synthèse de l'oxalatofer (III) $[Fe(C_2O_4)_3]^{3-}$

$$Fe^{3+}_{(aq)} + 3C_2O_4^{2-}_{(aq)} = [Fe(C_2O_4)_3]^{3-}$$

Historique de la synthèse de l'eau de Javel

1770

Scheele

 $HCl_{(aq)} + MnO_{2(s)} => Gaz$ Vert

1790

Bertholet

Propriétés décolorantes

Préconise l'emploi en solution pour le blanchiment (eau de chlore)

1810

Gay-Lussac et Davy

Identifient ce gaz vert : le

« dichlore »

Eau de chlore:

-Chlore peu soluble dans l'eau

-Libère du dichlore, toxique

Solution:
Dissolution de
Cl_{2(g)} dans une
solution alcaline
d'hydroxyde

1822

Labarnaque

Propriétés désinfectantes de l'eau de Javel Et
aujourd'hui
comment
est
synthétisé
l'eau de
Javel ?

Électrosynthèse de l'eau de Javel

Durée de l'électrolyse : 3 minutes

Dangers de l'eau de Javel

HYPOCHLORITE DE SODIUM EN SOLUTION ≥ 5 % CL ACTIF

Danger

H314 - Provoque des brûlures de la peau et des lésions oculaires graves

H400 - Très toxique pour les organismes aquatiques

EUH 031 - Au contact d'un acide, dégage un gaz toxique

Nota : Les conseils de prudence P sont sélectionnés selon les critères de l'annexe 1 du réglement

CE n° 1272/2008.

231-668-3

Dangerosité du chlore et de ses dérivés d'après INRS

http://www.inrs.fr/publications/bdd/fichetox/

Synthèse industrielle (Cellule à membrane)

Dosage indirect des ions hypochlorite par le thiosulfate de sodium

Valéry PRÉVOST, Bernard RICHOUX et al. Physique Chimie, Terminale S enseignement spécifique. Nathan, 2012.

Exemple de complexe

- Ion hexaaquacuivre (II) [Cu(H₂O)₆]²⁺;
- Cation central : Cu²⁺;
- Ligands: H₂O.

Exemple de ligands

Orthophénanthroline

 $[Fe(ophen)_3]^{2+}$: ion triorthophénanthroline fer (II)

Éthylènediaminetétraacétique (EDTA)

Mise en évidence expérimentale de la structure des complexes

Solution d'AgCl_(aq) saturée

Solution d'AgCl_(aq) saturée

Mise en évidence expérimentale de la structure des complexes

Solution d'AgCl_(aq) saturée à laquelle on a ajouté quelques gouttes de NH3(aq) concentré

Solution d'AgCl saturée à laquelle on a ajouté quelques gouttes de NH4NO3 (aq) concentré

Synthèse du trisoxalatoferrate (III) $[Fe(C_2O_4)_3]^{3-1}$

$$Fe^{3+}_{(aq)} + 3C_2O_4^{2-}_{(aq)} = [Fe(C_2O_4)_3]^{3-}$$

Essorage sous pression réduite

Rendement de la synthèse du trisoxalatoferrate (III) $[Fe(C_2O_4)_3]^{3-}$

	$FeCl_3,6H_2O + 3K_2C_2O_4,H_2O \rightarrow K_3[Fe(C_2O_4)_3],3H_2O + 3KCl$				6H ₂ O
Etat initial					
	$n_0 = \frac{m}{M} = 7,4.10^{-3}$	$n_0' = \frac{m'}{M_I} = 2,5.10^{-2}$	0	0	excès
	M	<i>M </i>			
Intermédiaire	n ₀ -x	n ₀ '-3x	X	3x	excès
Final	0	2,8.10 ⁻³	7,4.10 ⁻³	2,22.10 ⁻²	excès

g

Masse initiale:

m_{hydraté}=

Séchage à 110°C

Masse après séchage:

Pourcentage massique en eau expérimental:

$$\frac{m_{hydraté} - m_{deshydraté}}{m_{hydraté}} =$$
%

Pourcentage massique en eau théorique:

$$\frac{3.M(H_2O)}{M_{composé}} = \frac{3*18}{491} = 11,0\%$$

L'Hémoglobine

Hémoglobine Hème Porphyrine

Hème et transport du dioxygène

