Southern University of Science and Technology Department of Mathematics

MA204: Mathematical Statistics

Tutorial 3: Examples/Solutions

A. Order Statistics

A.1 Definition

Let X_1, \ldots, X_n be a random sample from a population with cdf $F(\cdot)$ and pdf $f(\cdot)$. Then, $X_{(1)} \leq \cdots \leq X_{(n)}$ are called the *order statistics*.

How to understand $X_{(1)} = \min(X_1, \dots, X_n)$?

> x <- rnorm(4, mean=2, sd=0.2)	min(x)
Sample 1: 1.792966 1.935051 2.20	05505 1.717259 1.717259
Sample 2: 1.736903 2.092398 1.95	55097 2.292306 1.736903
Sample 3: 3.100611 2.144726 1.85	55688 1.862706 1.855688
Sample 4: 2.087154 1.733278 2.18	35363 1.823968 1.733278
Sample 5: 1.821756 1.861677 1.78	35434 1.997736 1.785434
Sample 6: 2.209436 1.836078 2.41	13644 1.998032 1.836078
Sample 7: 1.862467 1.938282 2.01	11536 2.223131 1.862467
Sample 8: 1.927599 2.012464 2.00	03386 1.899905 1.899905

A.2 Single order statistic

Let $G_r(x)$ and $g_r(x)$ be the cdf and pdf of the r-th order statistic $X_{(r)}$, respectively. Then

$$G_r(x) = \sum_{i=r}^n \binom{n}{i} F^i(x) [1 - F(x)]^{n-i}$$

$$= \frac{1}{B(r, n-r+1)} \int_0^{F(x)} t^{r-1} (1-t)^{n-r} dt,$$

$$g_r(x) = \frac{n!}{(r-1)!(n-r)!} f(x) F^{r-1}(x) [1 - F(x)]^{n-r}.$$

A.3 Multiple order statistics

Let $g_{r_1,\ldots,r_k}(x_1,\ldots,x_k)$ be the joint pdf of $X_{(r_1)},\ldots,X_{(r_k)}$ $(1\leqslant r_1\leqslant \cdots\leqslant r_k\leqslant n;\ 1\leqslant k\leqslant n),$

$$g_{r_1,\dots,r_k}(x_1,\dots,x_k) = n! \left[\prod_{i=1}^k f(x_i) \right] \cdot \prod_{i=0}^k \left\{ \frac{[F(x_{i+1}) - F(x_i)]^{r_{i+1} - r_i - 1}}{(r_{i+1} - r_i - 1)!} \right\},$$

$$g_{1,\dots,r}(x_1,\dots,x_r) = \frac{n!}{(n-r)!} f(x_1) \cdots f(x_r) [1 - F(x_r)]^{n-r},$$

$$g_{r,s}(x,y) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} f(x) f(y)$$

$$\times F^{r-1}(x) [F(y) - F(x)]^{s-r-1} [1 - F(y)]^{n-s}.$$

Example T3.1: Let X_1, \ldots, X_n be independent exponential r.v.'s and $X_i \sim \text{Exponential}(\lambda_i)$. Show that

- (i) $Y = \min(X_1, \dots, X_n)$ is also an exponential r.v. with parameter $\lambda_1 + \dots + \lambda_n$.
- (ii) For a fixed i, $\Pr(Y = X_i) = \Pr(X_i \leqslant X_j, \forall j = 1, \dots, n; j \neq i) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$.

Solution: (i) Although X_1, \ldots, X_n are independent, they have different distributions, the formula $G_1(\cdot)$ on page 51 of Lecture Notes cannot be applied. Since

$$F_{X_i}(x) = (1 - e^{-\lambda_i x}) \cdot I_{(0,\infty)}(x),$$

we have

$$\Pr(Y \leqslant y) = 1 - \Pr(Y > y)$$

$$= 1 - \Pr(\text{all } X_i > y)$$

$$= 1 - \prod_{i=1}^n \Pr(X_i > y) \text{ (since all } X_i \text{ are independent)}$$

$$= 1 - \prod_{i=1}^n [1 - \Pr(X_i \leqslant y)]$$

$$= 1 - \prod_{i=1}^n [1 - F_{X_i}(y)]$$

$$= 1 - e^{-(\sum_{i=1}^n \lambda_i)y}.$$

Thus, $Y \sim \text{Exponential}(\lambda_1 + \cdots + \lambda_n)$.

(ii) Let
$$Y_i = \min(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$
, $\lambda_{-i} = \sum_{j=1, j \neq i}^n \lambda_j$, and $Z_i = X_i - Y_i$, we have $\Pr(Y = X_i) = \Pr(X_i \leqslant X_j, \forall j \neq i) = \Pr(X_i \leqslant Y_i) = \Pr(Z_i \leqslant 0)$,

and

$$F_{Z_{i}}(z) = \Pr(X_{i} - Y_{i} \leq z)$$

$$= \int_{0}^{\infty} \int_{x-z}^{\infty} f_{X_{i},Y_{i}}(x,y) \, \mathrm{d}y \, \mathrm{d}x \qquad (x - y \leq z \Rightarrow x - z \leq y)$$

$$= \int_{0}^{\infty} \int_{x-z}^{\infty} f_{X_{i}}(x) f_{Y_{i}}(y) \, \mathrm{d}y \, \mathrm{d}x \quad (\text{since } X_{i} \text{ and } Y_{i} \text{ are independent})$$

$$= -\int_{0}^{\infty} \int_{z}^{-\infty} f_{X_{i}}(x) f_{Y_{i}}(x - u) \, \mathrm{d}u \, \mathrm{d}x \quad (\text{let } y = x - u)$$

$$= \int_{-\infty}^{z} \int_{0}^{\infty} f_{X_{i}}(x) f_{Y_{i}}(x - u) \, \mathrm{d}x \, \mathrm{d}u$$

$$= \int_{-\infty}^{z} \int_{0}^{\infty} \lambda_{i} e^{-\lambda_{i}x} \lambda_{-i} e^{-\lambda_{-i}(x - u)} \, \mathrm{d}x \, \mathrm{d}u$$

$$= \int_{-\infty}^{z} \frac{\lambda_{i} \lambda_{-i}}{\lambda_{1} + \dots + \lambda_{n}} e^{\lambda_{-i}u} \, \mathrm{d}u$$

$$= \left[\frac{\lambda_{i}}{\lambda_{1} + \dots + \lambda_{n}} e^{\lambda_{-i}z} \right]_{-\infty}^{z}$$

$$= \frac{\lambda_{i}}{\lambda_{1} + \dots + \lambda_{n}} e^{\lambda_{-i}z}.$$

Therefore, $\Pr(Y = X_i) = \Pr(Z_i \leqslant 0) = F_{Z_i}(0) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$.

B. Convergence in Distribution

B.1 **Definition**

Let the distribution function $F_n(x)$ of the r.v. X_n depends upon n (n = 1, 2, ...). If F(x) is a distribution function of a r.v. X and

$$\lim_{x \to \infty} F_n(x) = F(x), \quad \forall x \text{ s.t. } F(x) \text{ is continuous,}$$

then the sequence of r.v.'s X_1, X_2, \ldots converge in distribution to X and denote as $X_n \xrightarrow{\mathcal{L}} X$.

B.2 **Theorem**

Let X_n , n = 1, 2, ... have a moment generating function M(t; n), $t \in (-h, h)$. If there exists a moment generating function M(t) with respect to the distribution function F(x) such that

$$M(t) = \lim_{n \to \infty} M(t; n), \quad \forall t \in (-h, h),$$

then $X_n \stackrel{\mathrm{L}}{\to} X$.

Example T3.2: Let the sequence of r.v. $X_n \sim N(0, \frac{1}{n})$. Show that $X_n \stackrel{\text{L}}{\to} X$, where the cdf of X is $F(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x < 0 \\ \frac{1}{2}, & \text{if } x = 0 \end{cases}$

Solution: Let $\phi(s) = \exp(-s^2/2)/\sqrt{2\pi}$ denote the pdf of N(0,1), then the cdf of X_n is

$$F_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi/n}} e^{-\frac{t^2}{2/n}} dt = \int_{-\infty}^{\sqrt{n}x} \phi(s) ds$$
 (let $s = \sqrt{n}t$).

so that $\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} \int_{-\infty}^{\sqrt{n}x} \phi(s) \, \mathrm{d}s$

$$= \int_{-\infty}^{\lim_{n \to \infty} \sqrt{n}x} \phi(s) \, ds$$

$$= \begin{cases} \int_{-\infty}^{\infty} \phi(s) \, ds = 1, & \text{if } x > 0, \\ \int_{-\infty}^{-\infty} \phi(s) \, ds = 0, & \text{if } x < 0, \\ \int_{-\infty}^{0} \phi(s) \, ds = \frac{1}{2}, & \text{if } x = 0 \end{cases}$$

$$= F(x).$$

Therefore, $X_n \stackrel{\mathcal{L}}{\to} X$.

C. Central Limit Theorem (CLT)

If X_1, \ldots, X_n be a sequence of i.i.d. r.v.'s with the mean μ and the variance σ^2 , then the r.v. $\sqrt{n}(\overline{X}_n - \mu)/\sigma$ has a standard normal limiting distribution, where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

i.e.,
$$\sqrt{n}(\overline{X}_n - \mu)/\sigma \stackrel{L}{\to} N(0,1)$$
.

Example T3.3: Let X follow a negative binomial distribution, denoted by $X \sim \text{NBinomial}$ (20, 0.7). (i) Exactly calculate the value of $\Pr(X = 12)$. (ii) Approximately calculate $\Pr(X = 12)$ by the Central Limit Theorem.

Solution: (i) The pmf of $X \sim \text{NBinomial}(r, p)$ is

$$\Pr(X = x) = {x + r - 1 \choose x} p^r (1 - p)^x, \qquad x = 0, 1, 2, \dots$$

where E(X) = r(1-p)/p and $Var(X) = r(1-p)/p^2$. We directly compute

$$Pr(X = 12) = {12 + 20 - 1 \choose 12} \times 0.7^{20} \times 0.3^{12} = 0.0598.$$

(ii) Now,

$$E(X) = \frac{20 \times (1 - 0.7)}{0.7} = 8.5714$$
 and $Var(X) = \frac{20 \times (1 - 0.7)}{0.7^2} = 12.2449$.

By CLT,

$$\frac{X - E(X)}{\sqrt{\operatorname{Var}(X)}} \xrightarrow{\mathcal{L}} Z \sim N(0, 1).$$

We obtain

$$Pr(X = 12) = P(12 - 0.5 < X < 12 + 0.5)$$

$$= Pr\left(\frac{11.5 - 8.5714}{\sqrt{12.2449}} < \frac{X - 8.5714}{\sqrt{12.2449}} < \frac{12.5 - 8.5714}{\sqrt{12.2449}}\right)$$

$$= Pr(0.8369 < Z < 1.1227)$$

$$= \Phi(1.1227) - \Phi(0.8369)$$

$$= 0.8692 - 0.7987 = 0.0705.$$

The error is 0.0705 - 0.0598 = 0.0107. And the percentage error is

$$\frac{0.0107}{0.0598} = 17.87\%.$$

Example T3.4: Let $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(0.03)$, i = 1, ..., 50 and $Y = \sum_{i=1}^{50} X_i$. Calculate $\Pr(Y \geqslant 3)$.

Solution: $E(X_i) = 0.03$ and $Var(X_i) = 0.03$. By CLT,

$$Z = \sqrt{n} \cdot \frac{\overline{X} - E(X_i)}{\sqrt{\text{Var}(X_i)}}$$

$$= \sqrt{50} \cdot \frac{Y/50 - 0.03}{\sqrt{0.03}}$$

$$= \frac{Y - 50 \times 0.03}{\sqrt{50 \times 0.03}}$$

$$= \frac{Y - 1.5}{\sqrt{1.5}} \stackrel{\text{L}}{\to} N(0, 1).$$

Therefore,

$$\Pr(Y \geqslant 3) = \Pr\left(Z = \frac{Y - 1.5}{\sqrt{1.5}} \geqslant \frac{3 - 1.5}{\sqrt{1.5}}\right)$$
$$= 1 - \Pr(Z < 1.224745)$$
$$= 1 - \Phi(1.224745)$$
$$= 1 - 0.8896643$$
$$= 0.1103357.$$