Clocking

Overview

- Multi-clock designs
- Synchronizers
 - Mesochronous
 - Plesiochronous
 - General-purpose asynchronous clock crossing
 - Single bit
 - Multiple bits
 - Buses
 - FIFOs

Overview Continued

- Static Timing Analysis (STA)
- Clock distribution
- Clock generation

MULTI-CLOCK DESIGNS

References

- Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs
 - Cliff Cummings
 - Has many
 - excellent papers about hardware design
- Digital Systems Engineering, Dally and Poulton, Ch. 10

Scenario

 Passing information from one clock domain to another

Clock Domain

Classification of Clocking Scenarios

- Recognize and know what to do
 - Asynchronous
 - Synchronous
 - Mesochronous
 - Plesiochronous

Asynchronous

- Source signals occur at arbitrary times
- No phase relationship between source and receiver clocks

Synchronous

Salanced Clock Tree Controlled Delay

Mesochronous

Example: GALS

Globally Asynchronous, Locally Synchronous

Mesochronous Synchronizer

A is large enough such that if Data transitions in CKB Keep out then it cannot be transitioning in CKB & Keep Out — could use CKB

Training

Plesiochronous

SONET - Synchronous Optical Network

Plesiochronous Synchronization

Flow Control