Organische Chemie II

Für Studierende der Biologie, der Pharmazeutischen Wissenschaften sowie der Gesundheitswissenschaften und Technologie

2. Semester, FS 2017

Prof. Dr. Carlo Thilgen

Aromaten

Elektrophile Substitution am Aromaten

Diese Unterlagen sind nur für den ETH-internen Gebrauch durch die Studierenden der Vorlesung OC II gedacht. Sie dürfen ohne ausdrückliche schriftliche Genehmigung des Dozenten nicht an Aussenstehende weitergegeben werden.

© Carlo Thilgen, ETH Zürich.

Lernziele

- > Aromatizität und Aromaten (z.T. Wdh. OC I):
 - Die besondere **Stabilisierung** von aromatischen π -e⁻-Systemen: experimentelle Ermittlung der **Resonanzenergie** von Benzol;
 - Benzol: graphische Energieniveauschemakonstruktion nach Frost & Musulin und qualitative Form der Hückel-Molekülorbitale;
 - Die *Hückel*-Regel für Aromatizität: planare konjugierte Monocyclen mit $(4n + 2) \pi$ -e⁻ sind aromatisch;
 - 5- und 6-Ringheterocyclen: welche sind aromatisch? Welche egehören zum aromatischen π -e-Sextett und welche nicht?
- > Allgemeines Reaktivitätsmuster von Aromaten:
 - Thermochemische Betrachtung → im Gegensatz zu Alkenen sind bei Aromaten Substitutionen gegenüber Additionen bevorzugt;
 - Unterscheidung zwischen π -e⁻-reichen (reaktiver als Benzol) und π -e⁻-armen Aromaten (weniger reaktiv als Benzol).

Benzol und Valenzisomere von Benzol

- Prototyp aller aromatischen Verbindungen ist **Benzol** (C_6H_6).
- Für die Molekülformel C₆H₆ wurden zunächst verschiedene Strukturen vorgeschlagen; die meisten davon konnten im Lauf der Zeit synthetisiert werden.

Benzol und Valenzisomere von Benzol

Valenzisomere = Konstitutionsisomere, die durch pericyclische Reaktionen ineinander überführt werden können.

Benzol und Valenzisomere von Benzol

139.0

 ΔH_{f}° [kcal/mol]

(PM3)

104.7

Ermittlung der Resonanzenergie von Benzol aus der exp. Hydrierenthalpie von Cyclohexen

Resonanzenergien von Cyclohexadien, **Cyclohexatrien und Benzol**

π-Molekülorbitale von Benzol

Konstruktion des **Energieniveau-Schemas** nach *Frost* und *Musulin*

MOs

(aus HMO-Theorie)

Cyclisch konjugierte Systeme – Aromatizität

Hückel-Regel

Bei cyclisch konjugierten Systemen (streng genommen: **planaren** [→ parallele p_z-Orbitale!] **konjugierten Monocyclen**) hängt die Stabilisierung durch Resonanz von der Anzahl der beteiligten Elektronen ab:

1. (4n+2) π -Elektronen → aromatisch = besonders stabil ! n = 0, 1, 2, 3, ... d.h. 4n+2 = 2, 6, 10, 14, 18, ...

Cyclisch konjugierte Systeme – Aromatizität

Hückel-Regel

Bei cyclisch konjugierten Systemen (streng genommen: **planaren konjugierten Monocyclen**) hängt die Stabilisierung durch Resonanz von der Anzahl der beteiligten Elektronen ab:

2. 4n π-Elektronen: falls tatsächlich planar & monocyclisch → antiaromatisch = besonders instabil!
Falls möglich, hebt das Molekül die Konjugation durch geometrische Verzerrung auf → nicht-aromatisch = ähnlich stabil wie bei entspr. linearer Konjugation!

$$n = 0, 1, 2, 3, ...$$
 d.h. $4n = 0, 4, 8, 12, 16, ...$

Nicht-aromatisch vs. antiaromatisch

Cyclooctatetraen (COT) nimmt eine **Wannen-Konformation** ein und weicht dadurch der Antiaromatizität aus!

- **Cyclobutadien** selbst ist nur bei 7 K in Ar- [©] Matrix stabil.
- Tetra-tert-butylcyclobutadien wurde hingegen bei 24 °C isoliert:
 - durch eine Rechteck-Verzerrung weicht es der vollen Antiaromatizität aus;
 - dennoch ist es 12-16 kcal/mol weniger stabil als offenkettiges Buta-1,3-dien.

Cyclopentadienid-Ion: 6 π-e⁻ verteilt auf **5 Atomzentren**

nicht cyclisch konjugiert (Konjugation unterbrochen durch sp³-C = Isolator) Durchgehende cycl. Konjugation: 5 parallele p_z -Orbitale mit 6π - e^- *Hückel*-Aromat

Thiophen: 6 π-e⁻ verteilt auf **5** Atomzentren

analog: Furan

Damit die *Hückel*-Regel angewendet werden kann, **müssen alle 5 Zentren sp²-hybridisiert** sein.

→ Nur so erhält man einen Satz von 5 parallelen p₂-Orbitalen.

C. Thilgen, OC II, 4.4.17

Imidazol: 6 π-e⁻ verteilt auf 5 Atomzentren

(zählt nicht für *Hückel*-Regel, da nicht mit p_z anderer Zentren konjugiert)

Pyridin und Pyrimidin: 6 π-e⁻ verteilt auf 6 Atomzentren

Die Bindungsverhältnisse am **Pyridin-N** sind analog zu denen am **Imin-N**.

Die einsamen e⁻-Paare sind *nicht* Teil des π -Systems.

Addition vs. Substitution bei Alkenen: thermochemische Betrachtung

Addition gegenüber Substitution bevorzugt!

Addition	Aufwand: Ertrag: Bilanz:	Br–Br π-Anteil DB 2 x C–Br	+46 kcal/mol +63 kcal/mol -136 kcal/mol
Aufwand:		Br–Br	+46 kcal/mol
Substitution	Ertrag:	C–H C–Br H–Br	+99 kcal/mol -68 kcal/mol -88 kcal/mol
	Bilanz:		-11 kcal/mol

Addition vs. Substitution bei Benzol: thermochemische Betrachtung

Reaktivität von Heteroaromaten bzgl. elektrophiler Substitution

Entscheidender Schritt = Angriff eines Elektrophils auf den Aromaten

→ wird durch hohe e⁻-Dichte an diesem begünstigt.

π-e⁻-Überschuss-Aromaten

5-Ringe mit O, N oder S

Referenz

π-e⁻-Mangel-Aromaten 6-Ringe mit N

nukleophiler (HOMO liegt höher) reaktiver bei S_FAr weniger nukleophil (HOMO liegt tiefer) weniger reaktiv bei S_EAr

Verdeutlichung des π -Überschuss- bzw. π -Mangel-Charakters anhand von Grenzstrukturen

Bsp.: NH-Gruppe im 5-Ring = π -Donor $\rightarrow \pi$ -Überschuss-Aromat

Bsp.: N-Atom im 6-Ring = π/σ -Akzeptor $\rightarrow \pi$ -Mangel-Aromat

Ausgewählte aromatische Carbo- und Heterocyclen

(Benzen)

Naphthalin (Naphthalen)

Anthracen

Phenanthren

Pyridin

Chinolin

Isochinolin

Pyrrol

Indol

Carbazol

Porphin (Stammverb. der Porphyrine)

Ausgewählte aromatische Carbo- und Heterocyclen

Furan

Benzofuran Benzo[*b*]furan

Thiophen

Benzothiophen Benzo[b]thiophen

Pyrazol 1,2-Diazol

Imidazol 1,3-Diazol

Isoxazol 1,2-Oxazol

Oxazol 1,3-Oxazol

Thiazol 1,3-Thiazol

Benzimidazol

Ausgewählte aromatische Carbo- und Heterocyclen

Heterocyclen mit OH- und NH₂-Subtituenten: Hückel-Aromaten oder nicht?

<u>Faustregel</u>: falls eine vernünftige <u>Grenzstruktur</u> einen *Hückel*-Aromaten darstellt, bezeichnet man die Verb. als aromatisch!

Tautomeren-Gleichgewicht:

→ es kommt darauf an,

Hückel-aromatische GS

welche Form dominiert!

Hückel-aromatisches Tautomer überwiegt stark nicht-aromatisches Tautomer

Gewinnung von Aromaten durch Destillation von Bitumen und Teer

Destillation von Erdöl

Kerosin

Heizöl

Schmieröle

Bitumen (Rückstand)

Auch aus Steinkohlenteer (aus der Koksherstellung) lassen sich Aromaten gewinnen

Teer-Destillation

Siedepunkt

Rohbenzol (≈ 20%)

105 - 120°

Rohtoluol

120 - 170° "Lösungsbenzol" (haupts. Xylole)

170 - 185° Xylol / Phenol

185 - 230°

Naphthalin

230 - 270° "Schweröl"

270 - 340°

"Antracenöl"

Rückstand: Pech → Dachpappe, Bindemittel für Briketts usw.

Lernziele

- ➤ Die elektrophile Substitution am Aromaten (S_EAr):
 - zweistufiger Mechanismus mit geschwindigkeitsbestimmender Bildung eines intermediären Areniumions (= linear konjugiertes Pentadienyl-Carbeniumion);
 - Aromatische Kerne mit einem e⁻-schiebenden/e⁻-ziehenden
 Substituenten sind reaktiver/weniger reaktiv als Benzol bei S_EAr.
- Zweitsubstitution am Aromaten:
 - aktivierende/desaktivierende Wirkung des Erstsubstituenten;
 - dirigierender Effekt: je nachdem, ob der Erstsubstituent ein e-Donor oder e-Akzeptor ist, dirigiert er den Zweisubst. in die ortho-, para- oder aber die meta-Stellung. Der dirigierende Effekt lässt sich aus der elektronischen Stabilisierung/Destabilisierung des Arenium-ZP durch den Erstsubstituenten erklären.

S_FAr - Reaktionsmechanismus

Des-/aktivierende Substituenten am Ring

C. Thilgen, OC II, 4.4.17

Verdeutlichung der Beschleunigung der S_EAr durch π -Donorsubstituenten am Ring

Untersuchung des stabilisierenden Effekts von π -Donoren auf das intermediäre Areniumion als Modell für ÜZ1

S_E**A**r mit Benzol:

S_EAr mit Methoxybenzol (Anisol):

zusätzliche, besonders günstige GS vom Oxocarbenium-Typ

Neben π -Donoren erniedrigen [in geringerem Ausmass] auch σ -Donoren die (+)-Ladungsdichte des Areniumions und beschleunigen dadurch die S_EAr.

Des-/aktivierende Substituenten am Ring und Molekül-Dipolmomente

e⁻-Dichte am Benzolkern **↑** → Aktivierung!

Dipolmomente (Gashase) in Debye [D]. Referenz: Benzol (μ = 0 D). Handbook Phys. Chem., Tab. E-62.

e⁻-Dichte am
Benzolkern

→ Desaktivierung!

Des-/aktivierende Substituenten am Ring

Fallbeispiel

Betrachtete Reaktion:

$$\mathsf{NO}_2^{\bigoplus} \hspace{-0.5cm} \hspace{$$

$$k_{\text{rel.}} = \frac{k_{\text{X}}}{k_{\text{H}}}$$

X:	Substrat:	k _{rel.}	17
н	Benzol	1	Ref.
ОН	Phenol	1000	akti- vierend
CH ₃	Toluol	24	vierend 5
CI	Chlorbenzol	0.03	
COOEt	Ethylbenzoat	0.003	desakti- vierend
NO ₂	Nitrobenzol	7 ·10 ^{−7}	

Übersicht: die wichtigsten S_EAr

Elektrophil	Reaktionsbezeichnung	Produkt
Br ⁺	elektrophile Bromierung	Ph-Br
CI+	elektrophile Chlorierung	Ph-Cl
⁺ NO ₂	Nitrierung	Ph-NO ₂
SO ₃ , +SO ₃ H	Sulfonierung	Ph-SO ₃ H
R ⁺	Friedel-Crafts-Alkylierung	Ph-R
+CH ₂ OH	Hydroxymethylierung	Ph-CH ₂ OH
	+ HCl → Chlormethylierung	Ph-CH ₂ Cl
R-C≡O+	Friedel-Crafts-Acylierung	Ph-C(O)-R
H-C≡O+	Gattermann-Koch-Synthese	Ph-CHO
Ar-N+≡N:	Diazokupplung	Ph-N=N-Ar

Halogenierung

Reines Br₂ ist für desaktivierte Aromaten zu wenig elektrophil

→ Aktivierung mit *Lewis*-Säure, z.B. Fe³⁺.

2 Fe + 3 Br₂
$$\longrightarrow$$
 2 FeBr₃
FeBr₃ + Br₂ \longrightarrow Br $\stackrel{\textcircled{+}}{\text{[FeBr_4]}} \bigcirc$

viel elektrophiler als Br₂!

Analog:

- Chlorierung mit Cl₂ bzw. Cl₂/Fe.
- Fluorierungen mit F₂ sind i. d. R. nicht möglich (F₂ zu reaktiv).
- **Iodierungen** benötigen oft einen **Promotor** (I_2 weniger elektrophil als Cl_2 oder Br_2); alternatives Reagenz zu I_2 : $I-Cl = I^{\delta+}-Cl^{\delta-}$.

Halogenierung von Aromaten mit Seitenkette

Bei der Chlorierung oder Bromierung von Aromaten mit einem Alkylrest kann man durch Wahl der Bedingungen das Halogen selektiv am aromatischen Kern oder in der **Seitenkette** (bevorzugt: benzylische Stellung) einführen:

- Bei der Halogenierung am Kern handelt es sich um eine S_EAr, die oft schon bei Raumtemperatur (oder knapp darüber) und in Gegenwart eines **Katalysators** (FeCl₃, FeBr₃) abläuft.
- Bei der Halogenierung in der Seitenkette handelt es sich um eine radikalische Substitution, wobei die Halogenradikale entweder durch Licht (hv) oder thermisch (T^{\uparrow}) , meist unter Zugabe eines Radikalstarters wie DBPO) erzeugt werden.

Eselsbrücke: KKK Kälte, Katalysator, Kern-Halogenierung

 \square Siedehitze, Sonne (hv), Seitenketten-Halogenier.

HBr +
$$\frac{Br_2}{KKK}$$
 $\frac{Br_2}{SSS}$ + HBr + HBr (+ ortho-Prod.)

Nitrierung

Angreifendes Elektrophil ist das Nitronium-Ion (NO_2^+) [alte Bez.: Nitryl-Ion].

Erzeugung des Nitronium-Ions:

• Autoprotolyse von Salpetersäure (HNO_3) [3-4% NO_2^+ in konz. HNO_3]:

2
$$HNO_3$$
 \longrightarrow $H_2NO_3^{\bigoplus} + NO_3^{\bigoplus} \longrightarrow$ \bigoplus $O_2 + NO_3^{\bigoplus} + H_2O$

Zugabe von konz. H₂SO₄ (→ sog. Nitriersäure) ⇒ Gleichgew. wird nach rechts verschoben:

$$HNO_3 + 2 H_2SO_4 \longrightarrow \oplus NO_2 + H_3O + 2 HSO_4$$

. 4

C. Thilgen, OC II, 4.4.17

Nitronium- vs. Nitrit-Ion

Nitronium-Ion NO₂

16 Valenzelektronen; isoelektronisch mit:

oco.

Distickstoffoxid (Lachgas)

Azid-Ion

Vgl. dagegen:

Nitrit-Ion

(Salze der salpetrigen Säure)

sp².

O=N

115°.

O:

()

0 128 pm

18 VE, isoelektron. mit Ozon

Friedel-Crafts-Alkylierung

Alkylhalogenide sind für direkte S_EAr zu wenig elektrophil \rightarrow Aktivierung durch Zugabe von *Lewis*-Säure [kat. Menge], z.B. AlCl₃, SnCl₄, BF₃, ZnCl₂, FeCl₃, TiCl₄.

Problem: Produkt Ph–R ist nukleophiler als Ausgangsmaterial PhH
 → Weiterreaktion von Ph–R → Produktgemische!

Hydroxymethylierung

- Hydroxymethylierung \rightarrow Herstellung von **Benzylalkoholen** (ArCH₂OH).
- Elektrophil ist protonierter Formaldehyd.
- Stark aktivierte Aromaten → elektrophile Kraft von unprotoniertem
 H₂C=O reicht aus (→ Reaktion kann im Basischen durchgeführt werden).

Chlormethylierung

Mögliche Folgereaktion der Hydroxymethylierung:

Protonierung der OH-Gruppe \rightarrow gute Abgangsgruppe \rightarrow weitere $S_{F}Ar$ mit Benzylrest als Elektrophil (= Friedel-Crafts-Alkyl.)

- Verwendung von HCl → Substitution der protonierten OH-Gruppe mit Cl- $(S_N 2) \rightarrow chlormethylierter Aromat (Chlormethylierung,$ *Blanc*-Reakt.).
- Auch andere Nukleophile können ggf. die OH-Gruppe substituieren.

Friedel-Crafts-Acylierung

- Angreifendes Elektrophil = Acyliumion, gebildet durch Aktivierung eines Carbonsäurechlorids mit Lewis-Säure (AlCl₃).
- **Produkt** = acylierter Aromat = **aromatisches Keton**.
- Produkt ist desaktiviert gegenüber Ausgangsmaterial durch σ und π -Akzeptor-Effekt der C=O-Gruppe \rightarrow saubere Mono-Acylierung!

Struktur von Acylium-Ionen

Kristallstruktur von Propanoyliumtetrachlorogallat

$$d(C \equiv O) = 1.102(5) \text{ pm}$$

 $\alpha = 178.6(5)^{\circ}$

Raumgruppe: P2₁/c

M. G. Davlieva, S. V. Lindeman, I. S. Neretin, J. K. Kochi; *New J. Chem.* 2004, *28*, 1568.

C. Thilgen, OC II, 4.4.17

Friedel-Crafts-Acylierung

Als Elektrophile werden statt Säurechloride häufig auch Säureanhydride eingesetzt:

C. Thilgen, OC II, 4.4.17

Kolbe-Schmitt-Synthese

- CO₂ = schwaches Elektrophil !
- Reagiert aber mit stark aktivierten Aromaten.
- Die Reaktion wird meist unter hohem Druck ausgeführt.

Natriumphenolat stark aktivierter Aromat

C. Thilgen, OC II, 4.4.17

Sulfonierung

- Angreifendes Elektrophil = Schwefeltrioxid (SO₃) bzw. dessen protonierte
 Form SO₃H⁺.
- Entsteht z.T. durch **Autoprotolyse von konz. Schwefelsäure**. Noch wirksamer: **Oleum** = Lösung von SO_3 in konz. H_2SO_4 .

Benzolsulfonsäure

Die **Sulfonierung ist reversibel**: Erhitzen von Ar–SO₃H mit verd. wässr. Säure \rightarrow Ar–H (Ersatz von -SO₃H durch –H).

Aryldiazoniumionen als Elektrophile

- Bei 0-5 °C sind <u>aromatische</u> <u>Diazoniumionen</u> wg. **Konjugation mit aromatischem Kern** einigermassen stabil bzgl. N_2 -Abspaltung. (N_2 = hervorragende Abgangsgruppe).
- Erzeugung: Umsetzung von aromat. Aminen (Anilinen) mit salpetriger Säure (HNO₂).

$$NaNO_2 + HCI \longrightarrow HNO_2 + NaCI$$

salpetrige Säure ist nicht sehr stabil, wird *in situ* hergestellt

NH₂

$$\begin{array}{c}
& \text{NaNO}_2, 2 \text{ HCI} \\
& - \text{NaCI}, -2 \text{ H}_2\text{O}
\end{array}$$

$$\begin{array}{c}
& \text{Phenyldiazoniumchlorid} \\
& \text{Phenyldiazoniumchlorid}$$

Azokupplung mit Aryldiazoniumionen

Aryldiazoniumionen reagieren als schwache Elektrophile mit stark aktivierten Aromaten zu Azoverbindungen (Entd.: A. Kekulé).

- Azoverbindungen mit ausgedehntem konjugiertem π -System (*Chromophor*), möglichst an einem Ende mit e-Donor, am anderen mit e⁻-Akzeptor substituiert (\rightarrow sog. *Push-Pull-Chromophor*) \rightarrow starke Absorption von sichtbarem Licht → Farbstoffe (hier: *Azofarbstoffe*).
- Farbstoffe erscheinen in der Komplementärfarbe des absorbierten Lichts.

Azofarbstoffe

lipophil

Ethylorange (pH-Indikator)

hydrophil

Sudanschwarz B (Neptunschwarz™)

Zweitsubstitution am Aromaten

- Einführung eines 2. Substituenten in den Benzolkern: Bildung des Areniumions ist nicht nur geschw.-best., sondern auch produktbest. → bestimmt die Regioselektivität (*ortho*, *meta*, *para*).
- Angriff des Elektrophils erfolgt bevorzugt (= am schnellsten) so, dass das stabilste Arenium-ZP gebildet wird, weil dann nach Hammond auch der davorliegende ÜZ am energieärmsten ist.

Oxocarbenium-Typ

ortho- oder para-Angriff gebildet!

Zweitsubstitution am Aromaten

MO-Bild. Stabilisierender π -Donor-Effekt: nur falls ψ_3 an der Verknüpfungsstelle zum Donor einen Orbitalkoeffizienten $\neq 0$ aufweist kommt es zur WW mit π -Donorsubst.

→ ortho- und para-Stellung! Knotenebenen: E LUMO = ψ_3 C. Thilgen, OC II, 4.4.17 2p (C) ψ_2 Ψ1 o- oder p-methoxysubst. Areniumion Pentadienylkation- (\pm) \oplus Fragment

• π - und σ -Akzeptoren als Erstsubstituenten sind *meta*-dirigierend !

Zweitsubstitution meta weniger ungünstig

Zweitsubstitution *ortho* (analog *para*)

besonders **un**günstige GS mit 2 benachbarten (+)-Ladungen stabilstes Arenium-Ion wird bei *meta*-Angriff gebildet!

Zweitsubstitution: dirigierender Effekt des **Erstsubstituenten** ÜZ₁ $\Delta \Delta G_1^{\dagger meta/para} = 2 \text{ kcal/mol}$ $\Delta \Delta G_1^{\ddagger para/ortho} = 0.4 \text{ kcal/mol}$ $\ddot{U}Z_2$ Auf der einfachen Nicht Produktstabilität, sondern Basis dieser $\Delta \Delta G^{\dagger}_{1}$ -Werte sind massgebend Diskussion ist keine für Mengenverhältnis o-/m-/p-! Aussage mögl. betr. o-/p-Verhältnis. Arenium-NO₂ ortho 67% ÜZ₁: OCH₃ geschwindigkeits- & NO_2 produktbestimmend meta 2% OCH₃ + H+ + NO₂+ *para* 31%

OCH₃

Zweitsubstitution: ortho-/para-Verhältnis u.A. durch sterische Effekte beeinflusst

Aber auch subtilere elektronische Faktoren beeinflussen das *o-/p-*Verhältnis!

sterische Hinderung

	R =	-Ме	–Et	– <i>i</i> Pr	<i>−t</i> Bu
Witrierung	0	61 %	46 %	28 %	10 %
	m	2 %	3 %	4 %	7 %
	p	37 %	51 %	68 %	83 %
Bromierund	O	18 %	13 %	8 %	0 %
	m	0 %	0 %	0 %	0 %
	p	82 %	87 %	92 %	100 %

Das reaktivere Elektrophil (NO₂+) ist weniger selektiv!

Allg. gültiges Reaktivitäts-/Selektivitätsprinzip!

Zweitsubstitution: des-/aktivierende und dirigierende Effekte des Erstsubstituenten

Erstsubstituent	Тур	aktivie- rend	desakti- vierend	<i>o-l p</i> -dirigierend	<i>m</i> -dirigierend	
Alkyl (σ), Aryl (π)	Donor	✓		✓		17
O-, OH, OR	π-Donor	//		✓		OC II 4417
OAc	π-Donor	✓		✓		Thilden O
NH ₂ , NR ₂	π-Donor	//		✓		L
NHAc	π-Donor	✓		✓		
SH, SR	π-Donor	✓		✓		
Halogen (Spezialfall)	π-Donor/ σ-Akzeptor		σ-Effekt massgeben d!	π-Effekt massgebend!		52

Zweitsubstitution: des-/aktivierende und dirigierende Effekte des Erstsubstituenten

Erstsubstituent	Тур	aktivie- rend	desakti- vierend	<i>o-l p</i> - dirigierend	<i>m</i> -dirigierend
H ₃ N ⁺ , R ₃ N ⁺	σ-Akzeptor		//		✓
CF ₃	σ-Akzeptor		✓		✓
CHO, C(=0)R	π-Akzeptor		✓		✓
CO ₂ H, CO ₂ R	π-Akzeptor		✓		✓
SO ₃ H	π-Akzeptor		✓		✓
SO ₂ R	π-Akzeptor		✓		✓
C≡N	π-Akzeptor		✓		✓
NO ₂	π-Akzeptor		✓		✓

Nitroverbindungen als vielseitige Synthesezwischenprodukte

C. Thilgen, OC II, 4.4.17

Ein paar Naturstoffe mit aromatischen Einheiten

Aminosäuren

HO Tyrosin

Alkaloide

Nikotin Pyridinalkaloide

Papaverin Isochinolinalkaloide

Terpene

p-Cymol

Calamenen

Carnosinsäure aus Rosmarin

Ein paar Vitamine mit aromatischen Einheiten

Naturstoffe mit aromatischen Einheiten – Phenylpropanoide

- Struktur: Benzolkern + Kette aus drei C-Atomen, häufig mit den Gruppen
 -OH und -OMe am Aromaten.
- Viele Phenylpropanoide werden als Sekundärmetaboliten von Pflanzen und Mikroorganismen über den Shikimisäure-Biosyntheseweg (s. späteres Kap. der OC II) mit Phenylalanin als Zwischenprodukt gebildet.
- Sie sind häufig Bestandteil von ätherischen Ölen und stellen die Mehrzahl der natürlich vorkommenden phenolischen Naturstoffe bzw. ihrer Vorstufen dar.

Zimtsäuren:

Phenylpropanoide

Zimtaldehyde, Monolignole und Phenylpropene:

Cumarine und Flavonoide:

C. Thilgen, OC II, 4.4.17

Bakelit

Die sauer katalysierte Polykondensation von Phenol und Formaldehyd durch **Hydroxymethylierung** und anschl. *Friedel-Crafts*-Alkylierung liefert vernetzte Makromoleküle:

Bakelit

- Der erste vollsynthetische, industriell produzierte Kunststoff, 1905 von dem belgischen Chemiker *Leo Hendrik Baekeland* entwickelt.
- **Duroplast** auf der Basis von Phenol und Formaldehyd (**Phenoplast**). Formteile aus diesem Kunststoff werden durch Formpressen und Aushärten eines Phenolharz-Füllstoff-Gemisches in einer beheizten Form hergestellt.

4.4.17

Knacknuss

Wie würden Sie ausgehend von Erdgas, Erdöl und einem weiteren organischen Reagenz in einer mehrstufigen Reaktionssequenz folgendes Molekül herstellen?

Tipp: Aus Erdgas isolieren Sie Propan, aus Erdöl Benzol ...

<u>N.b.</u> Zu Knacknüssen wird keine schriftliche Lösung verteilt. Sie sind aber herzlich eingeladen, Ihre Lösungsvorschläge zunächst untereinander, in der Vorlesungspause mit CT oder in den Übungsstunden mit den Assistierenden zu diskutieren.

