Preliminary Amendment
Divisional Application of U.S.S.N. 09/928,126
Attorney Docket No.: ASC-025DV1
Page 12 of 14

MARKED-UP VERSION OF AMENDED TITLE PAGE

PROCESS FOR PRODUCING SEMICONDUCTOR ARTICLE USING GRADED $\mathsf{E}[\mathsf{X}]\mathsf{PITAXIAL} \; \mathsf{GROWTH}$

Preliminary Amendment
Divisional Application of U.S.S.N. 09/928,126
Attorney Docket No.: ASC-025DV1

Page 13 of 14

MARKED-UP VERSION OF AMENDED TITLE AND PARAGRAPH OF SPECIFICATION

Page 2, lines 1-2

PROCESS FOR PRODUCING SEMICONDUCTOR ARTICLE USING GRADED $E[X]PIT\underline{AX}IAL$ GROWTH

Page 1, lines 5-6

This application is a divisional of application Serial No. 09/928,126, filed on August 10, 2001, which claims priority from provisional application Ser[.]ial No. 60/225,666, filed August 16, 2000, now expired, the entire disclosures of which are incorporated by reference herein.

Preliminary Amendment
Divisional Application of U.S.S.N. 09/928,126
Attorney Docket No.: ASC-025DV1

Page 14 of 14

MARKED-UP VERSION OF AMENDED CLAIMS

- 54. (Amended) A semiconductor structure comprising:
 - a [first semiconductor] substrate including an insulator layer;
- a [second]<u>first</u> layer of relaxed $Si_{1-x}Ge_x$ <u>disposed over the insulator layer</u>, wherein x = has a value in the range of 0.1 to 1; and
- a [third] second layer disposed over the substrate, the second layer comprising [at least one of]a material selected from the group consisting of GaAs, AlAs, ZnSe, [and]InGaP, [or]and strained Si_{1-y}Ge_y [wherein $y \neq x$]wherein $y \neq x$]wherein $y \neq x$] wherein $y \neq x$] w
- 55. (Amended) A semiconductor structure comprising:
 - a [first] substrate[comprising monocrystalline silicon substrate];
 - a plurality of layers disposed over the substrate, the layers comprising:
 - a [second layer of]graded $Si_{1-x}Ge_x$ buffer layer, [wherein said] the graded buffer layer having a Ge concentration x, wherein x has a value that [is]increase[d]s from zero to a value y;
 - a [third layer of]first_relaxed [Si_{1-y}Ge_y]layer comprising Si_{1-y}Ge_y; and
 - a [fourth strained or defect] <u>separation</u> layer <u>comprising at least one</u>

 <u>material selected from the group consisting of [comprising either a] strained Si_{1-z}Ge_z [layer] with $z \neq y$, [or other]III-V <u>materials, [or] and II-VI materials [; and]</u></u>

[a fifth relaxed layer comprising either a relaxed Si_{1-w}Ge_w layer where w is close or equal to y, or, when y is equal to 1, at least one of Ge, GaAs, AlAs, ZnSe and InGaP].