

Sequence Listing

<110> Botstein,David

Desnoyers,Luc

Ferrara,Napoleone

Fong,Sherman

Gao,Wei-Qiang

Goddard,Audrey

Gurney,Austin L.

Pan,James

Roy,Margaret Ann

Stewart,Timothy A.

Tumas,Daniel

Watanabe,Colin K.

Wood,William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> P2930R1C2

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150> 60/113,511

<151> 1998-12-22

<150> 60/115,558

<151> 1999-01-12

<150> 60/115,565

<151> 1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

<151> 2000-03-03

<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/32678
<151> 2000-12-01

<140> US 09/866,034
<141> 2001-05-25

<160> 38

<210> 1
<211> 1283
<212> DNA
<213> Homo sapiens

<400> 1
cggaacgcgtg ggaccatac ttgctggct gatccatgca caaggcgaaaa 50
ctgcttaggcc tctgtgcccc ggcttggaaat tcgggtgcggta tggccagctc 100
cgggatgacc cggccggacc cgctcgcaaa taaggtggcc ctggtaacgg 150
cctccaccga cgggatcgcc ttcgccatcg cccggcgaaa ggcccaggac 200
ggggccccatg tggtcgtcag cagccgaaag cagcagaatg tggaccaggc 250
ggtgccacg ctgcagggggg aggggctgag cgtgacgggc accgtgtgcc 300
atgtggggaa ggcggaggac cgggagcgcc tggcggccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaacccttt 400
ctttggaagc ataatggatg tcactgagga ggtgtggac aagactctgg 450
acattaatgt gaaggccccaa gcctgtatga caaaggcagt ggtgccagaa 500
atggagaaac gaggaggcgg ctcagtggtg atcgtgtctt ccatacgac 550
cttcagtcca ttcctggct tcagtcctta caatgtcagt aaaacagcct 600
tgctggcct gaccaagacc ctggccatag agctggccccc aaggaacatt 650
agggtgaact gccttagcacc tggacttatac aagactagct tcagcaggat 700
gctctggatg gacaaggaaa aagaggaaag catgaaagaa accctgcgga 750
taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtcttcctg 800
tgctctgaag atgccagcta catcaactggg gaaacagtgg tggtgggtgg 850
aggaaccccg tcccgccctt gaggaccggg agacagccca caggccagag 900
ttgggctcta gtcctggtg ctgttcctgc attcacccac tggcctttcc 950
cacctctgtt caccttactg ttcacccat caaatcagtt ctggcctgtg 1000
aaaagatcca gccttcctg ccgtcaaggt ggcgtcttac tcgggattcc 1050
tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100
gcctgctgac aaggctgagt ctaccttggc aaagaccaag atattttttc 1150
ctggccact ggtgaatctg aggggtgatg ggagagaagg aacctggagt 1200
ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250
atgcagatga ttgcgcggct ttgaaaaaaaaaaa aaa 1283

<210> 2
<211> 278
<212> PRT
<213> Homo sapiens

<400> 2
Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn
1 5 10 15
Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu
20 25 30
Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45
Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60
Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

Leu Gln Gly Glu Gly Leu Ser Val Thr Gly Thr Val Cys His Val
80 85 90

Gly Lys Ala Glu Asp Arg Glu Arg Leu Val Ala Thr Ala Val Lys
95 100 105

Leu His Gly Gly Ile Asp Ile Leu Val Ser Asn Ala Ala Val Asn
110 115 120

Pro Phe Phe Gly Ser Ile Met Asp Val Thr Glu Glu Val Trp Asp
125 130 135

Lys Thr Leu Asp Ile Asn Val Lys Ala Pro Ala Leu Met Thr Lys
140 145 150

Ala Val Val Pro Glu Met Glu Lys Arg Gly Gly Ser Val Val
155 160 165

Ile Val Ser Ser Ile Ala Ala Phe Ser Pro Ser Pro Gly Phe Ser
170 175 180

Pro Tyr Asn Val Ser Lys Thr Ala Leu Leu Gly Leu Thr Lys Thr
185 190 195

Leu Ala Ile Glu Leu Ala Pro Arg Asn Ile Arg Val Asn Cys Leu
200 205 210

Ala Pro Gly Leu Ile Lys Thr Ser Phe Ser Arg Met Leu Trp Met
215 220 225

Asp Lys Glu Lys Glu Glu Ser Met Lys Glu Thr Leu Arg Ile Arg
230 235 240

Arg Leu Gly Glu Pro Glu Asp Cys Ala Gly Ile Val Ser Phe Leu
245 250 255

Cys Ser Glu Asp Ala Ser Tyr Ile Thr Gly Glu Thr Val Val Val
260 265 270

Gly Gly Gly Thr Pro Ser Arg Leu
275

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 3
gcataatgga tgtcactgag g 21

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 4
agaacaatcc tgctgaaagc tag 23

<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gaaacgagga ggccggctcag tggtgatcggt gtcttccata gcagcc 46

<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens

<400> 6
gcgcgcctgag ctccgcctcc gggcccgata gcggcatcga gagcgcctcc 50
gtcgaggacc aggcggcgca gggggccggc gggcgaaagg aggatgaggg 100
ggcgcagcag ctgctgaccc tgcagaacca ggtggcgccg ctggaggagg 150
agaaccgaga ctttctggct gcgtggagg acgccatggc gcagtacaaa 200
ctgcagagcg accggctgog tgagcagcag gaggagatgg tggaaactgct 250
gctgcggta gagctggtgc ggcaggctg ggggggcctg cggctccctga 300
atggcctgcc tccccgggtcc tttgtgcctc gacctcatac agccccccctg 350
gggggtgccc acgcccattgt gctggcatg gtgcccgcctg cctgcctccc 400
tggagatgaa gttggctctg agcagagggg agagcaggtg acaaattggca 450
gggaggctgg agctgagttg ctgactgagg tgaacaggct gggaaagtggc 500
tcttcagctg cttcagagga ggaagaggag gaggaggagc cgcccaaggcg 550
gaccttacac ctgcgcagaa ataggatcag caactgcagt cagagggcg 600
gggcacgccc agggagtcgt ccagagagga agggcccaga gctttgcctt 650
gaggagttgg atgcagccat tccagggtcc agagcagttg gtgggagcaa 700
ggcccgagtt caggcccccc aggtcccccc tgccacagcc tcagagtggc 750
ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
atgaaggagg agcttattgg cgagctggc cgcacaggaa aggcagctca 850
ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900

cagagcaggt gcggggccgag ctgagtgaag gccagaggca gctgcgggag 950
ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000
gttccgcagg agggtcgtcg cggcccagag ccaggtgcag gtgctgaagg 1050
agaagaagca ggctacggag cggctggtgt cactgtoggc ccagagttag 1100
aagcgactgc aggagctcga gcggAACgtg cagctcatgc ggcagcagca 1150
gggacagctg cagaggcggc ttcgcgagga gacggagcag aagggcgcc 1200
tggaggcaga aatgagcaag cggcagcacc gcgtcaagga gctggagctg 1250
aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300
ggccttccag aggaagaggc gcagtggcag caacggctct gtggtcagcc 1350
tggaacagca gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400
atggagaagg tgctacagca gcggcggcgc ctggaggagc tgggggagga 1450
gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500
agaagacggg gctggagagc aagcgcctga gatccagcca ggcctcaac 1550
gaggacatcg tgcgagtgtc cagccggctg gagcacctgg agaaggagct 1600
gtccgagaag agcgggcagc tgcggcaggg cagcggccag agccagcagc 1650
agatccgegg ggagatcgac agcctgcgcc aggagaagga ctgcgtgtc 1700
aagcagcgcgc tggagatcga cggcaagctg aggcaaggaa gtotgcgtc 1750
ccccgaggag gagcggacgc tgttccagtt ggatgaggcc atcgaggccc 1800
tggatgctgc cattgagttat aagaatgagg ccatcacatg ccggcagcgg 1850
gtgcttcggg cctcagcctc gttgctgtcc cagtgcgaga tgaacctcat 1900
ggccaagctc agctacctct catcctcaga gaccagagcc ctcccttgca 1950
agtattttga caaggtggtg acgctccgag aggacgagca ccagcagcag 2000
attgccttct cgaaactgga gatgcagctg gaggagcagc agaggctgg 2050
gtactggctg gaggtggccc tggagcggca ggcgcctggag atggaccgccc 2100
agctgaccct gcagcagaag gagcacgagc agaacatgca gctgcctctg 2150
cagcagagtc gagaccaccc cggtaaggg tttagcagaca gcaggaggca 2200
gtatgaggcc cgattcaag ctctggagaa ggaactgggc cgttacatgt 2250
ggataaacca ggaactgaaa cagaagctcg gcggtgtgaa cgctgttaggc 2300
cacagcaggg gtggggagaa gaggagcctg tgctcgaggc gcaagacaggc 2350

tcctggaaat gaagatgagc tccacctggc acccgagctt ctctggctgt 2400
ccccctcac tgagggggcc ccccgaccc gggaggagac gcgggacttg 2450
gtccacgctc cgttaccctt gacctggaaa cgctcgagcc tgtgtggta 2500
ggagcagggg tcccccgagg aactgaggca gcgggaggcg gctgagcccc 2550
tggtggggcg ggtgcttct gtgggtgagg caggcctgcc ctggaacttt 2600
gggcctttgt ccaagccccg ggggaactg cgacgagcca gcccgggat 2650
gattgatgtc cgaaaaaacc ccctgttaagc cctcggggca gaccctgcct 2700
tggagggaga ctccgagcct gctgaaaggg gcagctgcct gtttgcttc 2750
tgtgaagggc agtccttacc gcacacccta aatccaggcc ctcatctgta 2800
ccctcaactgg gatcaacaaa tttgggcat ggcccaaag aactggaccc 2850
tcatttaaca aaataatatg caaattccca ccacttactt ccatgaagct 2900
gtggtaccca attgccgcct tgtgtcttgc tcgaatctca ggacaattct 2950
ggtttcaggc gtaaatggat gtgctttagt ttcaagggtt tggccaagaa 3000
tcatcacgaa agggtcggtg gcaaccaggt tgtggttaa atggtcttat 3050
gtatataggg gaaactggga gacttttaga tcttaaaaaaa ccatttaata 3100
aaaaaaaaatc tttgaaggga c 3121

<210> 7

<211> 830

<212> PRT

<213> Homo sapiens

<400> 7

Met	Glu	Gln	Tyr	Lys	Leu	Gln	Ser	Asp	Arg	Leu	Arg	Glu	Gln	Gln
1														15

Glu	Glu	Met	Val	Glu	Leu	Arg	Leu	Arg	Leu	Glu	Leu	Val	Arg	Pro
														30

Gly	Trp	Gly	Gly	Leu	Arg	Leu	Leu	Asn	Gly	Leu	Pro	Pro	Gly	Ser
														45

Phe	Val	Pro	Arg	Pro	His	Thr	Ala	Pro	Leu	Gly	Gly	Ala	His	Ala
														60

His	Val	Leu	Gly	Met	Val	Pro	Pro	Ala	Cys	Leu	Pro	Gly	Asp	Glu
														75

Val	Gly	Ser	Glu	Gln	Arg	Gly	Glu	Gln	Val	Thr	Asn	Gly	Arg	Glu
														90

Ala	Gly	Ala	Glu	Leu	Leu	Thr	Glu	Val	Asn	Arg	Leu	Gly	Ser	Gly
														105

Ser Ser Ala Ala Ser Glu Glu Glu Glu Glu Glu Pro Pro
 110 115 120
 Arg Arg Thr Leu His Leu Arg Arg Asn Arg Ile Ser Asn Cys Ser
 125 130 135
 Gln Arg Ala Gly Ala Arg Pro Gly Ser Leu Pro Glu Arg Lys Gly
 140 145 150
 Pro Glu Leu Cys Leu Glu Glu Leu Asp Ala Ala Ile Pro Gly Ser
 155 160 165
 Arg Ala Val Gly Gly Ser Lys Ala Arg Val Gln Ala Arg Gln Val
 170 175 180
 Pro Pro Ala Thr Ala Ser Glu Trp Arg Leu Ala Gln Ala Gln Gln
 185 190 195
 Lys Ile Arg Glu Leu Ala Ile Asn Ile Arg Met Lys Glu Glu Leu
 200 205 210
 Ile Gly Glu Leu Val Arg Thr Gly Lys Ala Ala Gln Ala Leu Asn
 215 220 225
 Arg Gln His Ser Gln Arg Ile Arg Glu Leu Glu Gln Glu Ala Glu
 230 235 240
 Gln Val Arg Ala Glu Leu Ser Glu Gly Gln Arg Gln Leu Arg Glu
 245 250 255
 Leu Glu Gly Lys Glu Leu Gln Asp Ala Gly Glu Arg Ser Arg Leu
 260 265 270
 Gln Glu Phe Arg Arg Arg Val Ala Ala Gln Ser Gln Val Gln
 275 280 285
 Val Leu Lys Glu Lys Lys Gln Ala Thr Glu Arg Leu Val Ser Leu
 290 295 300
 Ser Ala Gln Ser Glu Lys Arg Leu Gln Glu Leu Glu Arg Asn Val
 305 310 315
 Gln Leu Met Arg Gln Gln Gln Gly Gln Leu Gln Arg Arg Leu Arg
 320 325 330
 Glu Glu Thr Glu Gln Lys Arg Arg Leu Glu Ala Glu Met Ser Lys
 335 340 345
 Arg Gln His Arg Val Lys Glu Leu Glu Leu Lys His Glu Gln Gln
 350 355 360
 Gln Lys Ile Leu Lys Ile Lys Thr Glu Glu Ile Ala Ala Phe Gln
 365 370 375
 Arg Lys Arg Arg Ser Gly Ser Asn Gly Ser Val Val Ser Leu Glu
 380 385 390
 Gln Gln Gln Lys Ile Glu Glu Gln Lys Lys Trp Leu Asp Gln Glu

395	400	405
Met Glu Lys Val Leu Gln Gln Arg Arg Ala	Leu Glu Glu Leu Gly	
410	415	420
Glu Glu Leu His Lys Arg Glu Ala Ile	Leu Ala Lys Lys Glu Ala	
425	430	435
Leu Met Gln Glu Lys Thr Gly Leu Glu Ser	Lys Arg Leu Arg Ser	
440	445	450
Ser Gln Ala Leu Asn Glu Asp Ile Val Arg	Val Ser Ser Arg Leu	
455	460	465
Glu His Leu Glu Lys Glu Leu Ser Glu Lys	Ser Gly Gln Leu Arg	
470	475	480
Gln Gly Ser Ala Gln Ser Gln Gln Ile	Arg Gly Glu Ile Asp	
485	490	495
Ser Leu Arg Gln Glu Lys Asp Ser Leu Leu Lys	Gln Arg Leu Glu	
500	505	510
Ile Asp Gly Lys Leu Arg Gln Gly Ser Leu	Leu Ser Pro Glu Glu	
515	520	525
Glu Arg Thr Leu Phe Gln Leu Asp Glu Ala	Ile Glu Ala Leu Asp	
530	535	540
Ala Ala Ile Glu Tyr Lys Asn Glu Ala Ile	Thr Cys Arg Gln Arg	
545	550	555
Val Leu Arg Ala Ser Ala Ser Leu Leu Ser	Gln Cys Glu Met Asn	
560	565	570
Leu Met Ala Lys Leu Ser Tyr Leu Ser Ser	Ser Glu Thr Arg Ala	
575	580	585
Leu Leu Cys Lys Tyr Phe Asp Lys Val Val	Thr Leu Arg Glu Glu	
590	595	600
Gln His Gln Gln Ile Ala Phe Ser Glu Leu	Glu Met Gln Leu	
605	610	615
Glu Glu Gln Gln Arg Leu Val Tyr Trp	Leu Glu Val Ala Leu Glu	
620	625	630
Arg Gln Arg Leu Glu Met Asp Arg Gln Leu	Thr Leu Gln Gln Lys	
635	640	645
Glu His Glu Gln Asn Met Gln Leu Leu Leu	Gln Ser Arg Asp	
650	655	660
His Leu Gly Glu Gly Leu Ala Asp Ser Arg	Arg Gln Tyr Glu Ala	
665	670	675
Arg Ile Gln Ala Leu Glu Lys Glu Leu Gly	Arg Tyr Met Trp Ile	
680	685	690

Asn Gln Glu Leu Lys Gln Lys Leu Gly Gly Val Asn Ala Val Gly
695 700 705

His Ser Arg Gly Gly Glu Lys Arg Ser Leu Cys Ser Glu Gly Arg
710 715 720

Gln Ala Pro Gly Asn Glu Asp Glu Leu His Leu Ala Pro Glu Leu
725 730 735

Leu Trp Leu Ser Pro Leu Thr Glu Gly Ala Pro Arg Thr Arg Glu
740 745 750

Glu Thr Arg Asp Leu Val His Ala Pro Leu Pro Leu Thr Trp Lys
755 760 765

Arg Ser Ser Leu Cys Gly Glu Glu Gln Gly Ser Pro Glu Glu Leu
770 775 780

Arg Gln Arg Glu Ala Ala Glu Pro Leu Val Gly Arg Val Leu Pro
785 790 795

Val Gly Glu Ala Gly Leu Pro Trp Asn Phe Gly Pro Leu Ser Lys
800 805 810

Pro Arg Arg Glu Leu Arg Arg Ala Ser Pro Gly Met Ile Asp Val
815 820 825

Arg Lys Asn Pro Leu
830

<210> 8
<211> 662
<212> DNA
<213> Homo sapiens

<400> 8
attcccttag agcatcttg gaagcatgag gccacgatgc tgcacatctgg 50
ctcttgtctg ctggataaca gtcttcctcc tccagtgttc aaaaggaact 100
acagacgctc ctgttggctc aggactgtgg ctgtgccagc cgacacccag 150
gtgtggaaac aagatctaca acccttcaga gcagtgcgt tatgtatgt 200
ccatcttate cttaaaggag acccgccgt gtggctccac ctgcaccc 250
tggccctgct ttgagctctg ctgtcccag tctttggcc cccagcagaa 300
gtttcttgtt aagttgaggg ttctggat gaagtctcag tgtcaacttat 350
ctccccatctc ccggagctgt accaggaaca ggaggcacgt cctgtaccca 400
taaaaaacccc aggctccact ggcagacggc agacaagggg agaagagacg 450
aagcagctgg acatcgagaa ctacagttga acttcggaga gaagcaactt 500
gacttcagag ggatggctca atgacatagc tttggagagg agcccgactg 550

ggatggcca gacttcaggga aagaatgcc ttccctgcttc atcccctttc 600
cagctccct tcccgcttag agccactttc atcgcaata aaatccccca 650
catttacat ct 662

<210> 9
<211> 125
<212> PRT
<213> Homo sapiens

<400> 9
Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr
1 5 10 15
Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val
20 25 30
Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn
35 40 45
Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile
50 55 60
Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75
Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln
80 85 90
Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln
95 100 105
Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg
110 115 120
His Val Leu Tyr Pro
125

<210> 10
<211> 1942
<212> DNA
<213> Homo sapiens

<400> 10
cccacgcgtc cggccacgcg tccgggtgcc actcgcgcg cgcccgcgct 50
ccgggcttct cttttccctc cgacgcgcca cggctgcccga gacattccgg 100
ctgcgggttc tggagagctc cccgaacccc tccgcggaga ggagcgaggc 150
ggcgccaggg tggcccccgg ggcgcgcttg gtctcgagaa agcggggacg 200
aggccggagg atgagcgact gagggcgacg cggcactga cgcgagttgg 250
ggcccgact accggcagct gacagcgca tgagcgactc cccagagacg 300
ccctagcccg gtgtgcgcgc caggcgagc gcgcaggtgg ggctggctg 350

ttagtggtcc gccccacgcg ggtcgccggc cggcccagga tgggcgctgg 400
caacccgggc ccgcgcggc cgctgctacc cctgcgcggc ctgcgcggcc 450
ggcgteggc cgcgcgcctg cgctcatgga cggcggtcc cggctggcgg 500
cggcgccccc cggggctgtg aatgcgactc gcccctcgcc cggctcccc 550
gcccgcggc cggccggac gtggtagggg atgcccagct ccactgcgat 600
ggcagttggc gcgctctcca gttccctctt ggtcacctgc tgcctgatgg 650
tggctctgtg cagtccgagc atcccgctgg agaagctggc ccaggcacca 700
gagoagccgg gccaggagaa gcgtgagcac gccactcgcc acggcccg 750
gcgggtgaac gagctcgccgc gcccggcgag ggacgagggc ggcagcggcc 800
gggactggaa gagcaagagc ggccgtggc tcgcccggc tgagccgtgg 850
agcaagctga agcaggcctg ggtctcccag ggccggggcg ccaaggccgg 900
ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950
ccgcagccgc ccaggacgcg attggcccg aactcgccgc cacgcccgg 1000
ccacccgagg agtacgtgta cccggactac cgtggcaagg gctgcgtgga 1050
cgagagcggc ttctgttacg cgatcgaaaa gaagttcgcc cccggcccc 1100
ccgcctgccc gtgcctgtgc accgaggagg ggccgctgtg cgcgcagccc 1150
gagtgcggcga ggctgcaccc gcgcgtcatac cacgtcgaca cgagccagtg 1200
ctgcggcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250
cctatcagac tttggaggag ttctgtgtt ctccatgcga gaggtgtcgc 1300
tgtgaagcca acggtgaggt gctatgcaca gtgtcagcgt gtcccccagac 1350
ggagtgtgtg gaccctgtgt acgaggcctga tcagtgtgtt cccatctgca 1400
aaaatggtcc aaactgcttt gcagaaaccc cggtgatccc tgctggcaga 1450
gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500
cacatggaga atcgagcggc agggcatgtg cacgagacat gaatgcaggg 1550
aaatgttagac gttcccaaga acacaaactc tgacttttc tagaacattt 1600
tactgtatgtg aacattcttag atgactctgg gaactatcag tcaaagaaga 1650
ctttgtatga ggaataatgg aaaattgttg gtactttcc ttttcttgc 1700
aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750
aactttggc ataaaaatct tctctaaata aatgtgttat tttcacagta 1800

agtacacaaa agtacactat tatatatcaa atgtatttct ataatccctc 1850
cattagagag cttatataag tgtttctat agatgcagat taaaaatgct 1900
gtgttgtcaa ccgtcaaaaa aaaaaaaaaa aaaaaaaaaa aa 1942

<210> 11
<211> 325
<212> PRT
<213> Homo sapiens

<400> 11
Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser
1 5 10 15

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser
20 25 30

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp
80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys
95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala
110 115 120

Glu Ala Leu Ala Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu
125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile
155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys
170 175 180

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu
185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln
200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr
215 220 225

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

230	235	240
Cys Glu Ala Asn Gly Glu Val Leu Cys Thr Val Ser Ala Cys Pro		
245	250	255
Gln Thr Glu Cys Val Asp Pro Val Tyr Glu Pro Asp Gln Cys Cys		
260	265	270
Pro Ile Cys Lys Asn Gly Pro Asn Cys Phe Ala Glu Thr Ala Val		
275	280	285
Ile Pro Ala Gly Arg Glu Val Lys Thr Asp Glu Cys Thr Ile Cys		
290	295	300
His Cys Thr Tyr Glu Glu Gly Thr Trp Arg Ile Glu Arg Gln Ala		
305	310	315
Met Cys Thr Arg His Glu Cys Arg Gln Met		
320	325	

<210> 12

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 12

gagggtgcgc tgtgaagcca acgg 24

<210> 13

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 13

cgctcgttcc tccatgtgcc ttcc 24

<210> 14

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 14

gacggagtgt gtggaccctg tgtacgagcc tgatcagtgc tgtcc 45

<210> 15

<211> 1587

<212> DNA

<213> Homo sapiens

<400> 15
cagccacaga cgggtcatga gcgcggattt actgctggcc ctctgggt 50
tcatccccc actgccagga gtgcaggcgc tgctctgcca gtttggaca 100
gttcagcatg tgtggaaagggt gtecgaccta cccccggcaat ggaccctaa 150
gaacaccagc tgcgacagcg gcttgggtg ccaggacacg ttgatgctca 200
ttgagagcgg accccaaagtg agcctggtgc tctccaagggg ctgcacggag 250
gccaaggacc aggagccccg cgtaactgag cacccggatgg gccccggcct 300
ctccctgate tcctacacct tcgtgtgcg ccaggaggac ttctgcaaca 350
acctcgtaa ctccctcccg ctttggccc cacagcccc agcagaccca 400
ggatccctga ggtgcccaagt ctgttgtct atgaaaggct gtgtggaggg 450
gacaacagaa gagatctgcc ccaagggac cacacactgt tatgtggcc 500
tcctcaggct caggggagga ggcattttctt ccaatctgag agtccaggga 550
tgcatgcccc agccagggttgc caacctgctc aatggacac agaaaattgg 600
gccccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650
atcggggac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750
ggagacgctg ctgctcatag attaggact cacatcaacc ctggtgggga 800
caaaaaggctg cagcaactttt gggctcaaa attcccaagaa gaccaccatc 850
cactcagccc ctccctgggtt gcttggcc tcctataaccc acttctgctc 900
ctcgacactg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950
tccctcctca agctgccctt gtcccaggag accggcagtg tcctacctgt 1000
gtgcagcccc ttggAACCTG ttcaagtggc tccccccgaa tgacctgccc 1050
cagggggcc actcattgtt atgatggta cattcatctc tcaggaggtg 1100
ggctgtccac caaatgagc attcagggtc gcgtggccca accttccagc 1150
ttcttgtga accacaccag acaaatcggtt atcttctctg cgcgtgagaa 1200
gcgtgatgtg cagcctcctg cctctcagca tgagggaggt ggggtgagg 1250
gcctggagtc tctcaacttgg ggggtggggc tggcactggc cccagcgctg 1300
tggtggggag tggtttgccc ttctgtctaa ctctattacc cccacgattc 1350
ttcacccgctg ctgaccacccc acactcaacc tccctctgac ctcataaccc 1400
aatggccttg gacaccagat tctttcccat tctgtccatg aatcatttc 1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550
gctgcatgta tctgataata cagaccctgt ccttca 1587

<210> 16
<211> 437
<212> PRT
<213> Homo sapiens

<400> 16
Met Ser Ala Val Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
1 5 10 15
Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30
His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45
Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60
Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75
Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90
Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
95 100 105
Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120
Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
125 130 135
Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
140 145 150
Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
155 160 165
Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met
170 175 180
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
200 205 210
Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
215 220 225
Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val

230	235	240
Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu		
245	250	255
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala		
260	265	270
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val		
275	280	285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn		
290	295	300
Ser Ala Ser Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln		
305	310	315
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln		
320	325	330
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro		
335	340	345
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly		
350	355	360
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln		
365	370	375
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe		
380	385	390
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His		
395	400	405
Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val		
410	415	420
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro		
425	430	435
Ser Cys		

<210> 17
<211> 2387
<212> DNA
<213> Homo sapiens

<400> 17
cgacgatgct acgcgcggcc ggctgcctcc tccggacctc cgtagcgct 50
gccgcggccc tggctgcggc gctgctctcg tcgcttgccc gctgctctct 100
tcttagagccg agggaccggg tggcctcgtc gctcagcccc tatttcggca 150
ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250
gctggtegcc etcattcgcc acggcacccg ctaccccacg gtcaaacaga 300
tccgcaagct gaggcagctg cacgggttgc tgcaggccccg cggtccagg 350
gatggcgggg cttagtagtac cggcagccgc gacctgggtg cagcgctggc 400
cgactggcct ttgtggtacg cgactggat ggacgggcag cttagtagaga 450
agggacggca ggatatgcga cagctggcgc tgcgtctggc ctcgctttc 500
ccggccctt tcagccgtga gaactacggc cgcctgcggc tcatacaccag 550
ttccaagcac cgctgcatgg atagcagcgc cgccttcctg caggggctgt 600
ggcagcacta ccaccctggc ttgecgccgc cggacgtcgc agatatggag 650
tttggacctc caacagttaa tgataaacta atgagattt ttgatcactg 700
tgagaagttt ttaactgaag tagaaaaaaaaa tgctacagct ctttatcacg 750
tggaagcctt caaaaactgga ccagaaatgc agaacatttt aaaaaaagtt 800
gcagctactt tgcaagtgcc agtaaatgat ttaaatgcag atttaattca 850
agtagcctt ttcacctgtt cattgacct ggcaattaaa ggtgttaat 900
ctccttggtg ttagttttt gacatagatg atgaaaggt attagaatat 950
ttaaatgatc tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000
cagtcgatcc agtcgaccc tggcccgag tatcttcag cacttggaca 1050
aagcagttga acagaaacaa aggtctcagc caatttcctc tccagtcato 1100
ctccagtttgc gtcatgcaga gactttctt ccactgctt ctctcatggg 1150
ctacttcaaa gacaaggaac ccctaacagc gtacaattac aaaaaacaaa 1200
tgcatcgaa gttccgaagt ggtctcattt taccttatgc ctgcggaccc 1250
atatttgc tttaccactg tgaaaatgct aagactccta aagaacaatt 1300
ccgagtgcag atgttattaa atgaaaaggt gttaccttgc gtttactcac 1350
aagaaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400
cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450
tacatctgat gaactatgag taactgaaga acattttaa ttcttagga 1500
atctgcaatg agtgattaca tgcttgaat agttaggcaa ttcccttgatt 1550
acaggaagct ttatattac ttgagttttt ctgtctttc acagaaaaac 1600
attgggttcc ttctgggtt tggacatgaa atgtaagaaa agattttca 1650

ctggagcgc tctcttaagg agaaacaaat ctat tagag aaacagctgg 1700
ccctgcaaat gtttacagaa atgaaattct tcctacttat ataagaaatc 1750
tcacactgag atagaattgt gattcataa taacacttga aaagtgctgg 1800
agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850
ggaactttac agattgttct gcagttctct cttctttcc tcaggttagga 1900
cagctctagc attttcttaa tcaggaatat tgtggtaagc tgggagtatc 1950
actctggaag aaagtaacat ctccagatga gaatttggaaa caagaaacag 2000
agtgttgtaa aaggacacct tcactgaagc aagtcggaaa gtacaatgaa 2050
aataaatatt tttggtattt atttatgaaa tatttgaaca tttttcaat 2100
aattccttt tacttctagg aagtctaaa agaccatctt aaattattat 2150
atgtttggac aattagcaac aagtca gtagaaatcg aagttttca 2200
aatccattgc ttagctaact tttcattct gtcacttggc ttgcatttt 2250
atatttcct attatatgaa atgtatctt tggttgggg atttttctt 2300
ctttcttgc aaatagttct gagttctgtc aaatgccgtg aaagtattt 2350
ctataataaa gaaaattttt gtgactttaa aaaaaaaa 2387

<210> 18
<211> 487
<212> PRT
<213> Homo sapiens

<400> 18
Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro
1 5 10 15
Ala Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys
20 25 30
Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro
35 40 45
Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60
Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu
65 70 75
Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly
80 85 90
Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu
95 100 105
His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

110	115	120
Ser Thr Gly Ser Arg Asp Leu Gly Ala Ala	Leu Ala Asp Trp Pro	
125	130	135
Leu Trp Tyr Ala Asp Trp Met Asp Gly Gln	Leu Val Glu Lys Gly	
140	145	150
Arg Gln Asp Met Arg Gln Leu Ala Leu Arg	Leu Ala Ser Leu Phe	
155	160	165
Pro Ala Leu Phe Ser Arg Glu Asn Tyr Gly	Arg Leu Arg Leu Ile	
170	175	180
Thr Ser Ser Lys His Arg Cys Met Asp Ser	Ser Ala Ala Phe Leu	
185	190	195
Gln Gly Leu Trp Gln His Tyr His Pro Gly	Leu Pro Pro Pro Asp	
200	205	210
Val Ala Asp Met Glu Phe Gly Pro Pro	Thr Val Asn Asp Lys Leu	
215	220	225
Met Arg Phe Phe Asp His Cys Glu Lys Phe	Leu Thr Glu Val Glu	
230	235	240
Lys Asn Ala Thr Ala Leu Tyr His Val Glu	Ala Phe Lys Thr Gly	
245	250	255
Pro Glu Met Gln Asn Ile Leu Lys Lys Val	Ala Ala Thr Leu Gln	
260	265	270
Val Pro Val Asn Asp Leu Asn Ala Asp Leu	Ile Gln Val Ala Phe	
275	280	285
Phe Thr Cys Ser Phe Asp Leu Ala Ile Lys	Gly Val Lys Ser Pro	
290	295	300
Trp Cys Asp Val Phe Asp Ile Asp Asp Ala	Lys Val Leu Glu Tyr	
305	310	315
Leu Asn Asp Leu Lys Gln Tyr Trp Lys Arg	Gly Tyr Gly Tyr Thr	
320	325	330
Ile Asn Ser Arg Ser Ser Cys Thr Leu Phe	Gln Asp Ile Phe Gln	
335	340	345
His Leu Asp Lys Ala Val Glu Gln Lys Gln	Arg Ser Gln Pro Ile	
350	355	360
Ser Ser Pro Val Ile Leu Gln Phe Gly His	Ala Glu Thr Leu Leu	
365	370	375
Pro Leu Leu Ser Leu Met Gly Tyr Phe Lys	Asp Lys Glu Pro Leu	
380	385	390
Thr Ala Tyr Asn Tyr Lys Lys Gln Met His	Arg Lys Phe Arg Ser	
395	400	405

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr
410 415 420
His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln
425 430 435
Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu
440 445 450
Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile
455 460 465
Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala
470 475 480
Asn Ser Thr Ser Asp Glu Leu
485

<210> 19
<211> 3554
<212> DNA
<213> Homo sapiens

<400> 19
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgttt tcaggggctg cctgataagg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggta aggaattga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgagaca agtgaccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcagggaga cttggcggtt cgtgcagaaa tactgggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400
cgttgctcga aatgaccgca agggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg acccctgtct gttagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattttt ctttccactt aaactctgaa 650
acaggcactt tggtgttac tgctgttac aaggacgact ctgggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750
agatggaagt ctatgacactg aacattggcg gaattattgg gggggttctg 800
gttgccttg ctgtactggc cctgatcagc ttgggcatct gctgtgcata 850

cagacgtggc tacttcatca acaataaaaca gnatggagaa agttacaaga 900
accaggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtatc tgagaccgc ggtgtggctg 1000
agagcgaca gagcgcacgt gcacataacct ctgcttagaaa ctccgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggtcctaa tctgtttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcat cccggcgaaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctt aaggctctgc 1500
tgatcggtgt tgcagtgtcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgccctgag gaaccctgct tgtccaaacag ggtgtcagga tttaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataacct attttttaa aaaagttcaa cttaaggtag 1850
aagttccaag ctactagtgt taaattggaa aatatacaata attaagagta 1900
ttttacccaa ggaatccctt catgaaagtt tactgtgatg ttccctttct 1950
cacacaagtt ttagcctttt tcacaaggaa actcataactg tctacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagttt agcaatgttg 2050
aaatcagttt gcatcttttcaaaaacc tctcagttt gcttgaact 2100
gcctcttccct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgc 2200
ggcgcccccg ctctagctca ctgttgctc gctgtctgcc aggaggccct 2250
gccatccttg ggccctggca gtggctgtgtt cccagtgagc ttactcactg 2300

tggcccttgc ttcatccagc acagctctca ggtggcact gcagggacac 2350
tggtgtttc catgttagcgt cccagcttg ggctcctgta acagacctct 2400
ttttggttat ggatggctca caaaaataggg cccccaatgc tattttttt 2450
ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctctttgccca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaaacc atgatggagt ggccggccagt ccagccttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaaag cagtttctca attttgactt taaattttc 2750
atccgcccga gacactgctc ccatttgtgg gggacatta gcaacatcac 2800
tcagaaggcct gtgttcttca agagcaggtg ttctcagcct cacatgcct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gcttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg taaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctgggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccacccctg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctcccttctg gttgtcatag tgataggta 3250
gccttattgc cccctcttct tataccctaa aacttctac actagtgcac 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatTTT 3400
aagatatgaa tgtgactcaa gactcgaggg cgatacggagg ctgtgattct 3450
gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaaaa 3550
ccca 3554

<210> 20
<211> 310
<212> PRT
<213> Homo sapiens

<400> 20

Met	Ala	Leu	Arg	Arg	Pro	Pro	Arg	Leu	Arg	Cys	Ala	Arg	Leu	
1					5			10					15	
"														
Pro	Asp	Phe	Phe	Leu	Leu	Leu	Phe	Arg	Gly	Cys	Leu	Ile	Gly	
				20				25					30	
Ala	Val	Asn	Leu	Lys	Ser	Ser	Asn	Arg	Thr	Pro	Val	Val	Gln	Glu
				35				40					45	
Phe	Glu	Ser	Val	Glu	Leu	Ser	Cys	Ile	Ile	Thr	Asp	Ser	Gln	Thr
				50				55					60	
Ser	Asp	Pro	Arg	Ile	Glu	Trp	Lys	Ile	Gln	Asp	Glu	Gln	Thr	
				65				70					75	
Thr	Tyr	Val	Phe	Phe	Asp	Asn	Lys	Ile	Gln	Gly	Asp	Leu	Ala	Gly
				80				85					90	
Arg	Ala	Glu	Ile	Leu	Gly	Lys	Thr	Ser	Leu	Lys	Ile	Trp	Asn	Val
				95				100					105	
Thr	Arg	Arg	Asp	Ser	Ala	Leu	Tyr	Arg	Cys	Glu	Val	Val	Ala	Arg
				110				115					120	
Asn	Asp	Arg	Lys	Glu	Ile	Asp	Glu	Ile	Val	Ile	Glu	Leu	Thr	Val
				125				130					135	
Gln	Val	Lys	Pro	Val	Thr	Pro	Val	Cys	Arg	Val	Pro	Lys	Ala	Val
				140				145					150	
Pro	Val	Gly	Lys	Met	Ala	Thr	Leu	His	Cys	Gln	Glu	Ser	Glu	Gly
				155				160					165	
His	Pro	Arg	Pro	His	Tyr	Ser	Trp	Tyr	Arg	Asn	Asp	Val	Pro	Leu
				170				175					180	
Pro	Thr	Asp	Ser	Arg	Ala	Asn	Pro	Arg	Phe	Arg	Asn	Ser	Ser	Phe
				185				190					195	
His	Leu	Asn	Ser	Glu	Thr	Gly	Thr	Leu	Val	Phe	Thr	Ala	Val	His
				200				205					210	
Lys	Asp	Asp	Ser	Gly	Gln	Tyr	Tyr	Cys	Ile	Ala	Ser	Asn	Asp	Ala
				215				220					225	
Gly	Ser	Ala	Arg	Cys	Glu	Glu	Gln	Glu	Met	Glu	Val	Tyr	Asp	Leu
				230				235					240	
Asn	Ile	Gly	Gly	Ile	Ile	Gly	Gly	Val	Leu	Val	Val	Leu	Ala	Val
				245				250					255	
Leu	Ala	Leu	Ile	Thr	Leu	Gly	Ile	Cys	Cys	Ala	Tyr	Arg	Arg	Gly
				260				265					270	
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
				275				280					285	
Gly	Lys	Pro	Asp	Gly	Val	Asn	Tyr	Ile	Arg	Thr	Asp	Glu	Glu	Gly

290

295

300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310

<210> 21

<211> 3437

<212> DNA

<213> Homo sapiens

<400> 21

caggaccagg tcttcctacg ctggagcagc ggggagacag ccaccatgca 50
catcctcgta gtcacatgcca tggtgatcct gctgacgctg ggcccgccctc 100
gagccgacga cagcgagttc caggcgctgc tggacatctg gtttccggag 150
gagaagccac tgcccacccgc cttcctggta gacacatogg aggaggcgct 200
gctgcttcct gactggctga agctgcgcatt gatccgttct gaggtgtctcc 250
gcctgggtgga cgccgcctg caggacctgg agccgcagca gctgctgtg 300
ttcgtgcagt cgtttggcat ccccggtgtcc agcatgagca aactcctcca 350
gttcctggac caggcagtgg cccacgaccc ccagactctg gagcagaaca 400
tcatggacaa gaattacatg gcccacctgg tggaggttcca gcatgagcgc 450
ggccgcctccg gaggccagac ttccactcc ttgctcacag cctccctgcc 500
gccccggccga gacagcacag aggcacccaa accaaagagc agcccgagac 550
agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgtg 600
ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgctcag 650
cccgacccct cggtgtggaga gctccagtcc ccgcggccgtg gcccctggccc 700
tgcagcagggc cctggggccag gagctggccc gctcgatcca gggcagcccc 750
gaggtgccgg gcatcacggc gcgtgtcctg caggccctcg ccaccctgt 800
cagctccccca cacggcggtg ccctgggtat gtccatgcac cgttagccact 850
tcctggcctg cccgctgtg cgcctgtct gccagttacca gctgtgtgtg 900
ccacaggaca ccggcttc tcgtcttc ctgaagggtgc tcctgcagat 950
gctgcagtgg ctggacagcc ctggcgtgga gggcggggccc ctgcgggcac 1000
agctcaggat gcttgccagc caggcctcag ccgggcgcag gctcagtgtat 1050
gtgcgagggg ggctcctgcg cctggccgag gcccggccct tccgtcagga 1100
cctggaggtg gtcagctcca ccgtccgtgc cgtcatcgcc accctgaggt 1150
ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtccctccag 1200

gggctgatcg aggtgaggc cccccacactg gaggagctgc tgactgcatt 1250
cttctctgcc actgcggatg ctgcctccccc gtttccagcc tctaagcccg 1300
tttgtgttgtt gagctccctg ctgctgcagg aggaggagcc cctggctggg 1350
ggaaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400
ctcgtcaggc ctccctagtgg actggctgga aatgctggac cccgaggtgg 1450
tcagcagctg ccccgacactg cagctcagggc tgctcttctc cggaggaag 1500
ggcaaaggc aggcccaggt gccctcggtt cgtccctacc tcctgaccct 1550
cttcacgcat cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600
tgctggcaa gagccggaa cagaggttcg acccctctgc ctctctggac 1650
ttcctctggg cctgcatcca ttttctcgc atctggcagg ggccggacca 1700
gcccaccccg cagaagccgc gggaggagct ggtgctgcgg gtccaggcc 1750
cgagctcat cagcctggtg gagctgatcc tggccgaggc ggagacgcgg 1800
agccaggacg gggacacacgc cgccctgcagc ctcatccagg cccggctgcc 1850
cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggta 1900
cgagcacact gtcaggctgc atccagcagt ggggagacag cgtgctggga 1950
aggcgctgcc gagaccttct cctgcagctc tacctacagc ggccggagct 2000
gcgggtgccc gtgcctgagg tcctactgca cagcgaaggg gctgccagca 2050
gcagcgtctg caagctggac ggactcatcc accgcttcat cacgctcctt 2100
gcggacacca gcgactcccg ggcttggag aaccgagggg cgatgccag 2150
catggcctgc cgaaagctgg cggggcgc cccgctgctg ctgctcaggc 2200
acctgcccatt gatcgccgcg ctccctgcacg gcccaccca cctcaacttc 2250
caggagttcc ggcagcagaa ccacctgagc tgcttctgc acgtgctggg 2300
cctgctggag ctgctgcagc cgacgtgtt ccgcagcgag caccaggggg 2350
cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400
aagtccccc gccatctggc tgccctcatc aacaagtttgc tgcaatttt 2450
ccataagtac attacctaca atgccccacg agccatctcc ttccctgcaga 2500
agcacgccga cccgctccac gacctgtct tcgacaacag tgacctggtg 2550
atgctgaaat ccctccttgc agggctcagc ctgcccagca gggacgacag 2600
gaccgaccga ggccctggacg aagagggcga ggaggagagc tcagccggct 2650

ccttgcacct ggtcagcgtc tccctgttca cccctctgac cgccggccgag 2700
atggccccct acatgaaacg gctttcccg ggccaaacgg tggaggatct 2750
gctggaggtt ctgagtgaca tagacgagat gtcccgccgg agacccgaga 2800
tcctgagctt cttctcgacc aacctgcagc ggctgatgag ctccggccgag 2850
gagtgttgcc gcaacctcgc cttagcctg gccctgcgct ccatgcagaa 2900
cagccccage attgcagccg ctttcctgcc cacgttcatg tactgcctgg 2950
gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000
tacgtctcc tgtgccaaga gcacgcggct gtgctgctcc accgggcctt 3050
cctggggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100
ccctgaggat cctgcataatg gaggccgtga tgtgagcctg tggcagccga 3150
ccccctcca agccccggcc cgtcccgatcc ccggggatcc tcgaggcaaa 3200
gcccaggaag cgtggcggtt gctggctgtt ccgaggaggt gagggcgccg 3250
agccctgagg ccaggcaggg ccaggagcaa tactccgagc cctggggtgg 3300
ctccggcccg gccgctggca tcagggcccg tccagcaagc cctcattcac 3350
cttctgggcc acagccctgc cgccgagccg cgatcccc cgggcatggc 3400
ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met His Ile Leu Val Val His Ala Met Val Ile Leu Leu Thr Leu			
1	5	10	15

Gly Pro Pro Arg Ala Asp Asp Ser Glu Phe Gln Ala Leu Leu Asp		
20	25	30

Ile Trp Phe Pro Glu Glu Lys Pro Leu Pro Thr Ala Phe Leu Val		
35	40	45

Asp Thr Ser Glu Glu Ala Leu Leu Leu Pro Asp Trp Leu Lys Leu		
50	55	60

Arg Met Ile Arg Ser Glu Val Leu Arg Leu Val Asp Ala Ala Leu		
65	70	75

Gln Asp Leu Glu Pro Gln Gln Leu Leu Leu Phe Val Gln Ser Phe		
80	85	90

Gly Ile Pro Val Ser Ser Met Ser Lys Leu Leu Gln Phe Leu Asp		
95	100	105

Gln Ala Val Ala His Asp Pro Gln Thr Leu Glu Gln Asn Ile Met
 110 115 120
 Asp Lys Asn Tyr Met Ala His Leu Val Glu Val Gln His Glu Arg
 125 130 135
 Gly Ala Ser Gly Gly Gln Thr Phe His Ser Leu Leu Thr Ala Ser
 140 145 150
 Leu Pro Pro Arg Arg Asp Ser Thr Glu Ala Pro Lys Pro Lys Ser
 155 160 165
 Ser Pro Glu Gln Pro Ile Gly Gln Gly Arg Ile Arg Val Gly Thr
 170 175 180
 Gln Leu Arg Val Leu Gly Pro Glu Asp Asp Leu Ala Gly Met Phe
 185 190 195
 Leu Gln Ile Phe Pro Leu Ser Pro Asp Pro Arg Trp Gln Ser Ser
 200 205 210
 Ser Pro Arg Pro Val Ala Leu Ala Leu Gln Gln Ala Leu Gly Gln
 215 220 225
 Glu Leu Ala Arg Val Val Gln Gly Ser Pro Glu Val Pro Gly Ile
 230 235 240
 Thr Val Arg Val Leu Gln Ala Leu Ala Thr Leu Leu Ser Ser Pro
 245 250 255
 His Gly Gly Ala Leu Val Met Ser Met His Arg Ser His Phe Leu
 260 265 270
 Ala Cys Pro Leu Leu Arg Gln Leu Cys Gln Tyr Gln Arg Cys Val
 275 280 285
 Pro Gln Asp Thr Gly Phe Ser Ser Leu Phe Leu Lys Val Leu Leu
 290 295 300
 Gln Met Leu Gln Trp Leu Asp Ser Pro Gly Val Glu Gly Gly Pro
 305 310 315
 Leu Arg Ala Gln Leu Arg Met Leu Ala Ser Gln Ala Ser Ala Gly
 320 325 330
 Arg Arg Leu Ser Asp Val Arg Gly Gly Leu Leu Arg Leu Ala Glu
 335 340 345
 Ala Leu Ala Phe Arg Gln Asp Leu Glu Val Val Ser Ser Thr Val
 350 355 360
 Arg Ala Val Ile Ala Thr Leu Arg Ser Gly Glu Gln Cys Ser Val
 365 370 375
 Glu Pro Asp Leu Ile Ser Lys Val Leu Gln Gly Leu Ile Glu Val
 380 385 390
 Arg Ser Pro His Leu Glu Glu Leu Leu Thr Ala Phe Phe Ser Ala

395	400	405
Thr Ala Asp Ala Ala Ser Pro Phe Pro Ala Cys Lys Pro Val Val		
410	415	420
Val Val Ser Ser Leu Leu Leu Gln Glu Glu Glu Pro Leu Ala Gly		
425	430	435
Gly Lys Pro Gly Ala Asp Gly Gly Ser Leu Glu Ala Val Arg Leu		
440	445	450
Gly Pro Ser Ser Gly Leu Leu Val Asp Trp Leu Glu Met Leu Asp		
455	460	465
Pro Glu Val Val Ser Ser Cys Pro Asp Leu Gln Leu Arg Leu Leu		
470	475	480
Phe Ser Arg Arg Lys Gly Lys Gly Gln Ala Gln Val Pro Ser Phe		
485	490	495
Arg Pro Tyr Leu Leu Thr Leu Phe Thr His Gln Ser Ser Trp Pro		
500	505	510
Thr Leu His Gln Cys Ile Arg Val Leu Leu Gly Lys Ser Arg Glu		
515	520	525
Gln Arg Phe Asp Pro Ser Ala Ser Leu Asp Phe Leu Trp Ala Cys		
530	535	540
Ile His Val Pro Arg Ile Trp Gln Gly Arg Asp Gln Arg Thr Pro		
545	550	555
Gln Lys Arg Arg Glu Glu Leu Val Leu Arg Val Gln Gly Pro Glu		
560	565	570
Leu Ile Ser Leu Val Glu Leu Ile Leu Ala Glu Ala Glu Thr Arg		
575	580	585
Ser Gln Asp Gly Asp Thr Ala Ala Cys Ser Leu Ile Gln Ala Arg		
590	595	600
Leu Pro Leu Leu Leu Ser Cys Cys Cys Gly Asp Asp Glu Ser Val		
605	610	615
Arg Lys Val Thr Glu His Leu Ser Gly Cys Ile Gln Gln Trp Gly		
620	625	630
Asp Ser Val Leu Gly Arg Arg Cys Arg Asp Leu Leu Leu Gln Leu		
635	640	645
Tyr Leu Gln Arg Pro Glu Leu Arg Val Pro Val Pro Glu Val Leu		
650	655	660
Leu His Ser Glu Gly Ala Ala Ser Ser Ser Val Cys Lys Leu Asp		
665	670	675
Gly Leu Ile His Arg Phe Ile Thr Leu Leu Ala Asp Thr Ser Asp		
680	685	690

Ser Arg Ala Leu Glu Asn Arg Gly Ala Asp Ala Ser Met Ala Cys
 695 700 705
 Arg Lys Leu Ala Val Ala His Pro Leu Leu Leu Leu Arg His Leu
 710 715 720
 Pro Met Ile Ala Ala Leu Leu His Gly Arg Thr His Leu Asn Phe
 725 730 735
 Gln Glu Phe Arg Gln Gln Asn His Leu Ser Cys Phe Leu His Val
 740 745 750
 Leu Gly Leu Leu Glu Leu Leu Gln Pro His Val Phe Arg Ser Glu
 755 760 765
 His Gln Gly Ala Leu Trp Asp Cys Leu Leu Ser Phe Ile Arg Leu
 770 775 780
 Leu Leu Asn Tyr Arg Lys Ser Ser Arg His Leu Ala Ala Phe Ile
 785 790 795
 Asn Lys Phe Val Gln Phe Ile His Lys Tyr Ile Thr Tyr Asn Ala
 800 805 810
 Pro Ala Ala Ile Ser Phe Leu Gln Lys His Ala Asp Pro Leu His
 815 820 825
 Asp Leu Ser Phe Asp Asn Ser Asp Leu Val Met Leu Lys Ser Leu
 830 835 840
 Leu Ala Gly Leu Ser Leu Pro Ser Arg Asp Asp Arg Thr Asp Arg
 845 850 855
 Gly Leu Asp Glu Glu Gly Glu Glu Ser Ser Ala Gly Ser Leu
 860 865 870
 Pro Leu Val Ser Val Ser Leu Phe Thr Pro Leu Thr Ala Ala Glu
 875 880 885
 Met Ala Pro Tyr Met Lys Arg Leu Ser Arg Gly Gln Thr Val Glu
 890 895 900
 Asp Leu Leu Glu Val Leu Ser Asp Ile Asp Glu Met Ser Arg Arg
 905 910 915
 Arg Pro Glu Ile Leu Ser Phe Phe Ser Thr Asn Leu Gln Arg Leu
 920 925 930
 Met Ser Ser Ala Glu Glu Cys Cys Arg Asn Leu Ala Phe Ser Leu
 935 940 945
 Ala Leu Arg Ser Met Gln Asn Ser Pro Ser Ile Ala Ala Ala Phe
 950 955 960
 Leu Pro Thr Phe Met Tyr Cys Leu Gly Ser Gln Asp Phe Glu Val
 965 970 975
 Val Gln Thr Ala Leu Arg Asn Leu Pro Glu Tyr Ala Leu Leu Cys

980	985	990
Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly		
995	1000	1005
Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu		
1010	1015	1020
Arg Ile Leu His Met Glu Ala Val Met		
1025		

<210> 23
<211> 2186
<212> DNA
<213> Homo sapiens

<400> 23
ccgggcccatttgcggc cccgcggcgcc cccgcgcgc acccgaggag 50
atgaggctcc gcaatggcac ctccctgacg ctgtgtctct tctgcctgtg 100
cgccttccttc tgcgtgtccctt ggtacgcggc actcagcgcc cagaaaggcg 150
acgttgttggaa cgtttaccagg cgggagttcc tggcgctgctcgatcggttg 200
cacgcagctg agcaggagag cctcaagcgc tccaaggagc tcaacctgg 250
gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300
gagacggcaa tcgcacactgg ggccgcctaa cagaggaccc cegattgaag 350
ccgtggAACG gtcacacccg gcacgtgtcg cacctgcggcc ccttccca 400
tcacactgcca cacctgttgg ccaaggagag cagtctgcag cccgcggc 450
gcgtggccca gggccgcacc ggagtgtcgg tggatggatggcatcccgagc 500
gtgcggcgcc aggtgcactc gtacactgact gacactctgc actcgctcat 550
ctccgagctg agccgcagg agaaggagga ctgcgtcatac gtgggtgtga 600
tcgcccagac tgactcacag tacacttcgg cagtacaca gaacatcaag 650
gcattgttcc ccacggagat ccattctggg ctccctggagg tcatctcacc 700
ctccccccac ttctaccctg acttctcccg cctccgagag tcctttgggg 750
accccaagga gagagtcaagg tggaggacca aacagaacct cgattactgc 800
ttcctcatga tgtacgcgcgttccaaaggc atctactacg tgtagctgg 850
ggatgacatc gtggccaaaggc ccaactaccc gggcaccatg aagaactttg 900
cactgcagca gccttcagag gactggatga tcctggagtt ctcccgctg 950
ggcttcatttg gtaagatgtt caagtcgctg gacctgagcc tgattgtaga 1000
gttcatttctc atgttctacc gggacaagcc catcgactgg ctccctggacc 1050

atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100
gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctttcca 1150
gcacgtggc actcaactct cgctggctgg caagatccag aaactgaagg 1200
acaaaagactt tggaaagcag gcgcgtcgga aggagcatgt gaacccgcca 1250
gcagaggtga gcacgagcct gaagacatac cagcaattca ccctggagaa 1300
agcctacctg cgcgaggact tcttctggc ctccacccct gccgcggggg 1350
acttcatccg ctcccgcttc ttccaacctc taagactgga gcggttctc 1400
ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450
tgtggaggtg ctgcgcctcg acaaccctca gtcagacaag gaggccctgc 1500
aggagggccg caccgcacc ctccggtaacc ctcggagccc cgacggctac 1550
ctccagatcg gctccttcta caagggagtg gcagagggag aggtggaccc 1600
agccttcggc cctctggaag cactgcgcct ctgcgtccag acggactccc 1650
ctgtgtgggt gattctgagc gagatcttcc tgaaaaaggc cgactaagct 1700
gcgggcttct gagggtaccc tgtggccagc cctgaageccc acatttctgg 1750
gggtgtcgcc actgcccgtcc cggaggggcc agatacggcc cggcccaaag 1800
ggttctgcct ggcgtcgccc ttggggccgc ctggggtccg ccgtggccc 1850
ggaggcccta ggagctggtg ctgccccgc cggccgggccc gggaggagg 1900
caggcggccc ccacactgtg cctgaggccc ggaaccgttc gcacccggcc 1950
tgccccagtc aggccgtttt agaagagctt ttacttggc gcccggcgtc 2000
tctggcgca acactggaat gcatatacta ctttatgtgc tgtttttttt 2050
attcttggat acatttgatt tttcacgtt agtccacata tacttctata 2100
agagcgtgac ttgtataaaa gggtaatga agaaaaaaaaaaaaaaa 2150
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa 2186

<210> 24
<211> 548
<212> PRT
<213> Homo sapiens

<400> 24
Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Leu Phe Cys
1 5 10 15
Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

Gln Lys Gly Asp Val Val Asp Val Tyr Gln Arg Glu Phe Leu Ala
 35 40 45
 Leu Arg Asp Arg Leu His Ala Ala Glu Gln Glu Ser Leu Lys Arg
 50 55 60
 Ser Lys Glu Leu Asn Leu Val Leu Asp Glu Ile Lys Arg Ala Val
 65 70 75
 Ser Glu Arg Gln Ala Leu Arg Asp Gly Asp Gly Asn Arg Thr Trp
 80 85 90
 Gly Arg Leu Thr Glu Asp Pro Arg Leu Lys Pro Trp Asn Gly Ser
 95 100 105
 His Arg His Val Leu His Leu Pro Thr Val Phe His His Leu Pro
 110 115 120
 His Leu Leu Ala Lys Glu Ser Ser Leu Gln Pro Ala Val Arg Val
 125 130 135
 Gly Gln Gly Arg Thr Gly Val Ser Val Val Met Gly Ile Pro Ser
 140 145 150
 Val Arg Arg Glu Val His Ser Tyr Leu Thr Asp Thr Leu His Ser
 155 160 165
 Leu Ile Ser Glu Leu Ser Pro Gln Glu Lys Glu Asp Ser Val Ile
 170 175 180
 Val Val Leu Ile Ala Glu Thr Asp Ser Gln Tyr Thr Ser Ala Val
 185 190 195
 Thr Glu Asn Ile Lys Ala Leu Phe Pro Thr Glu Ile His Ser Gly
 200 205 210
 Leu Leu Glu Val Ile Ser Pro Ser Pro His Phe Tyr Pro Asp Phe
 215 220 225
 Ser Arg Leu Arg Glu Ser Phe Gly Asp Pro Lys Glu Arg Val Arg
 230 235 240
 Trp Arg Thr Lys Gln Asn Leu Asp Tyr Cys Phe Leu Met Met Tyr
 245 250 255
 Ala Gln Ser Lys Gly Ile Tyr Tyr Val Gln Leu Glu Asp Asp Ile
 260 265 270
 Val Ala Lys Pro Asn Tyr Leu Ser Thr Met Lys Asn Phe Ala Leu
 275 280 285
 Gln Gln Pro Ser Glu Asp Trp Met Ile Leu Glu Phe Ser Gln Leu
 290 295 300
 Gly Phe Ile Gly Lys Met Phe Lys Ser Leu Asp Leu Ser Leu Ile
 305 310 315
 Val Glu Phe Ile Leu Met Phe Tyr Arg Asp Lys Pro Ile Asp Trp

320	325	330
Leu Leu Asp His Ile Leu Trp Val Lys Val Cys Asn Pro Glu Lys		
335	340	345
Asp Ala Lys His Cys Asp Arg Gln Lys Ala Asn Leu Arg Ile Arg		
350	355	360
Phe Lys Pro Ser Leu Phe Gln His Val Gly Thr His Ser Ser Leu		
365	370	375
Ala Gly Lys Ile Gln Lys Leu Lys Asp Lys Asp Phe Gly Lys Gln		
380	385	390
Ala Leu Arg Lys Glu His Val Asn Pro Pro Ala Glu Val Ser Thr		
395	400	405
Ser Leu Lys Thr Tyr Gln His Phe Thr Leu Glu Lys Ala Tyr Leu		
410	415	420
Arg Glu Asp Phe Phe Trp Ala Phe Thr Pro Ala Ala Gly Asp Phe		
425	430	435
Ile Arg Phe Arg Phe Phe Gln Pro Leu Arg Leu Glu Arg Phe Phe		
440	445	450
Phe Arg Ser Gly Asn Ile Glu His Pro Glu Asp Lys Leu Phe Asn		
455	460	465
Thr Ser Val Glu Val Leu Pro Phe Asp Asn Pro Gln Ser Asp Lys		
470	475	480
Glu Ala Leu Gln Glu Gly Arg Thr Ala Thr Leu Arg Tyr Pro Arg		
485	490	495
Ser Pro Asp Gly Tyr Leu Gln Ile Gly Ser Phe Tyr Lys Gly Val		
500	505	510
Ala Glu Gly Glu Val Asp Pro Ala Phe Gly Pro Leu Glu Ala Leu		
515	520	525
Arg Leu Ser Ile Gln Thr Asp Ser Pro Val Trp Val Ile Leu Ser		
530	535	540
Glu Ile Phe Leu Lys Lys Ala Asp		
545		

<210> 25

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 25

tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 26
cagggaaacag ctatgaccac ctgcacacct gcaaattccat t 41

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 27
actcgggatt cctgctgtt 19

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 28
aggcctttac ccaaggccac aac 23

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 29
ggcctgtcct gtgttctca 19

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 30
tcccaccact tacttccatg aa 22

<210> 31
<211> 25
<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 31
ctgtggtacc caattgccgc ctttgt 25

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 32
attgtcctga gattcgagca aga 23

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 33
gtccagcaag ccctcatt 18

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 34
cttctgggcc acagccctgc 20

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 35
cagttcaggt cgtttcattc a 21

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 36
ccagtcaggc cgttttaga 19

<210> 37

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 37
cgggcgccc agtaaaagct c 21

<210> 38

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 38
cataaagtag tatatgcatt ccagtgtt 28