

Summary

- Overall length: 8' 1"
- Nose cone diameter: 6"
- Nosecone length (ogive): 18"
- Payload section diameter: 6"
- Payload section length: 24"
- Booster section diameter: 4"
- Booster section length: 4'
- Motor size: Aerotech L1150 motor
- CG: 39.7" from rear
- CP: 25.7" from rear
- Stability margin: 2.34 cal

Materials

- Main body
 - BlueTube
- Nose cone
 - Upper-half polycarbonate
 - To facilitate camera viewing through the nose cone, as required by our payload experiment.
 - Lower-half fiberglass
- Fins
 - Fiberglass with carbon fiber reinforcement
- Motor Mount Tube
 - Phenolic
 - Wood centering rings

Booster Section

OpenRocket Diagram

Payload

Target Detection and Upright Landing

- Detect and differentiate ground targets with camera mounted in nose cone
- Deploy landing legs
 - Simultaneously deploy three parachutes

Payload

Target Detection and Upright Landing

- Legs mounted within airframe wall, pin-closure
 - Spring-loaded hinge
 - Alternative: gas-spring deployment

PHASE	EVENT
1	Ignition.
2	Powered flight.
3	Coasting.
4	Drogue parachute deployed at an apogee of 5,567 ft. AGL.
5	Main parachute deployed at an altitude of 1,000 ft. AGL.
6	Camera in the nosecone of the rocket begins target spotting.
7	Payload section deploys itself from rocket and deploys its legs and three parachutes.
8	All sections of the rocket land with a KE under 75 ft-lbf.

Recovery

Avionics Bay

Calculating Parachute Sizes

Drogue Parachute

- Optimally main parachute opens with a velocity around 50mph or 73.333 ft/s
- Equation for terminal velocity
- \circ 24" diameter elliptical parachute with $C_d = 1.5$

$$V_{Terminal} = \sqrt{\frac{(2m_{total}g)}{\rho C_1 A_1}}$$

Main Parachute

- Payload will detach before rocket lands
- \circ KE=(0.5)mv² and heaviest component's mass \rightarrow must land slower than 20.501 ft/s
- Increase safety margin → land with about 15 ft/s
- Equate force of gravity to force of drag $m_{total(w/o\ payload)}g = \frac{1}{2}\rho v_{max}^2 C_1 A_1 + \frac{1}{2}\rho v_{max}^2 C_2 A_2$
- \circ 72" diameter toroidal parachute with $C_d = 2.2$

Payload Parachute

- 3 parachutes for stabilization
- \circ KE=(0.5)mv² and mass \rightarrow must land slower than 22.552 ft/s ft/s \rightarrow safety margin of 15 ft/s
- \circ 42" diameter elliptical parachute with $C_d = 1.5$

Calculating Final KE

- Avionics Bay and Booster
 - Terminal velocity equations → land at a velocity of 13.988 ft/s
 - Kinetic Energy equations
 - Avionics bay lands with 12.416 ft-lbf
 - Booster lands with 34.918 ft-lbf
- Payload
 - Lands at a velocity of 13.578 ft/s
 - Kinetic Energy equations
 - Payload lands with 27.1856 ft-lbf

Safety

We make sure the team follows codes and regulations, and maintains safety, throughout construction, testing, assembly, and launch.

- Teaching/reinforcing proper safety protocols
- Maintaining MSDS, and explaining relevant information in them
- Maintaining team procedures and hazard analyses

Safety

Mentor duties:

- Supporting the team (or multiple teams) throughout the project year
- Individual owner of the rocket for liability purposes
- Must travel with the team to launch week
- Designated for purchase, store, transport, and use of rocket motors and energetic devices

Requirement Compliance Plan

- Have complied with all design requirements
- Delegation of responsibility for complying with requirements distributed among multiple team leads
- Redundancy: When possible, use both verification by test or analysis and by demonstration or inspection
- Track progress of verifications throughout year (Completed, In Progress, Planned, Not Started)
- Team Derived Requirements: Must meet/adhere to in order to declare project success