In [1]:

```
# Data manipulation
import numpy as np
import pandas as pd
# Plots
# ------
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
plt.style.use('fivethirtyeight')
# Modelling and Forecasting
from sklearn.linear_model import Ridge
#from lightgbm import LGBMRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.ForecasterAutoregMultiOutput import ForecasterAutoregMultiOutput
from skforecast.model_selection import grid_search_forecaster
from skforecast.model_selection import backtesting_forecaster
# Warnings configuration
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
#Importing the dataset
df = pd.read_csv('dataset.csv')
#Checking the dataset first 10 rows
df.head(10)
```

Out[2]:

	Unnamed: 0	demand [MW]	solar_actual [MW]	solar_forecast [MW]	solar_inferred_capacity [MW]	wind_actual [MW]	w
0	2017-01-01 00:00:00+01:00	76345.25	0.00	NaN	5756.44	597.50	
1	2017-01-01 01:00:00+01:00	75437.00	0.00	NaN	5756.44	597.50	
2	2017-01-01 02:00:00+01:00	73368.25	0.00	NaN	5756.44	635.25	
3	2017-01-01 03:00:00+01:00	72116.00	0.00	NaN	5756.44	628.50	
4	2017-01-01 04:00:00+01:00	68593.75	0.00	NaN	5756.44	608.50	
5	2017-01-01 05:00:00+01:00	65865.75	0.00	NaN	5756.44	634.25	
6	2017-01-01 06:00:00+01:00	64856.50	0.00	NaN	5756.44	662.75	
7	2017-01-01 07:00:00+01:00	64406.00	0.00	NaN	5756.44	681.00	
8	2017-01-01 08:00:00+01:00	64462.25	13.75	NaN	5756.44	742.50	
9	2017-01-01 09:00:00+01:00	64828.75	84.00	NaN	5756.44	792.25	
4						•	•

```
In [3]:
```

```
#Checking the dataset columns
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45432 entries, 0 to 45431
Data columns (total 17 columns):
     Column
 #
                                    Non-Null Count
                                                    Dtype
                                    -----
 0
     Unnamed: 0
                                    45432 non-null
                                                    object
 1
     demand [MW]
                                    45429 non-null
                                                    float64
 2
     solar actual [MW]
                                    45413 non-null
                                                    float64
 3
     solar_forecast [MW]
                                   45210 non-null
                                                    float64
 4
     solar_inferred_capacity [MW]
                                   45432 non-null
                                                    float64
 5
     wind_actual [MW]
                                    45413 non-null
                                                    float64
     wind_inferred_capacity [MW]
 6
                                    45432 non-null
                                                   float64
 7
                                    45415 non-null
                                                    float64
     albedo [%]
 8
     cloud_cover [%]
                                    45416 non-null
                                                   float64
 9
                                    45422 non-null float64
     frozen_precipitation [%]
                                    45421 non-null float64
 10
     pressure [Pa]
     radiation [W/m2]
                                    45416 non-null
                                                    float64
 11
 12
    air_tmp [Kelvin]
                                   45422 non-null
                                                    float64
 13
    ground_tmp [Kelvin]
                                   45422 non-null float64
    apparent_tmp [Kelvin]
                                   45422 non-null float64
    wind_direction [angle]
                                   45421 non-null
                                                    float64
                                   45421 non-null float64
 16 wind_speed [m/s]
dtypes: float64(16), object(1)
memory usage: 5.9+ MB
In [4]:
#Rename Columns
df.rename(columns = {'Unnamed: 0':'Date'}, inplace = True)
df.rename(columns = {'demand [MW]':'Y'}, inplace = True)
In [5]:
#Check duplicated
df[df.duplicated(keep=False)]
Out[5]:
          solar_actual solar_forecast solar_inferred_capacity
                                                     wind_actual wind_inferred_capa
  Date
                [MW]
                            [MW]
                                                [MW]
                                                           [MW]
In [6]:
#Drop NA
df = df.dropna(axis=0)
```

In [7]:

```
#Checking the dataset size after dropping NA df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 45202 entries, 192 to 45431
Data columns (total 17 columns):

	00_000000000000000000000000000000000000							
#	Column	Non-Null Count	Dtype					
0	Date	45202 non-null	object					
1	Υ	45202 non-null	float64					
2	solar_actual [MW]	45202 non-null	float64					
3	solar_forecast [MW]	45202 non-null	float64					
4	<pre>solar_inferred_capacity [MW]</pre>	45202 non-null	float64					
5	<pre>wind_actual [MW]</pre>	45202 non-null	float64					
6	<pre>wind_inferred_capacity [MW]</pre>	45202 non-null	float64					
7	albedo [%]	45202 non-null	float64					
8	cloud_cover [%]	45202 non-null	float64					
9	<pre>frozen_precipitation [%]</pre>	45202 non-null	float64					
10	pressure [Pa]	45202 non-null	float64					
11	radiation [W/m2]	45202 non-null	float64					
12	air_tmp [Kelvin]	45202 non-null	float64					
13	<pre>ground_tmp [Kelvin]</pre>	45202 non-null	float64					
14	apparent_tmp [Kelvin]	45202 non-null	float64					
15	<pre>wind_direction [angle]</pre>	45202 non-null	float64					
16	<pre>wind_speed [m/s]</pre>	45202 non-null	float64					
<pre>dtypes: float64(16), object(1)</pre>								
memory usage: 6.2+ MB								

In [8]:

```
#Format datetime
df.Date=pd.to_datetime(df.Date,utc=True)

# Sorting data in ascending order by the date
df = df.sort_values(by='Date')

#Set Date as index
df.set_index('Date', inplace=True)
```

In [9]:

df.head(10)

Out[9]:

	Υ	solar_actual [MW]	solar_forecast [MW]	solar_inferred_capacity [MW]	wind_actual [MW]	winc
Date						
2017-01-08 23:00:00+00:00	72921.75	0.00	0.55	5756.44	1151.00	
2017-01-09 00:00:00+00:00	70956.00	0.00	0.55	5756.44	1103.75	
2017-01-09 01:00:00+00:00	68422.50	0.00	0.55	5756.44	1111.00	
2017-01-09 02:00:00+00:00	67520.50	0.00	0.06	5756.44	1165.00	
2017-01-09 03:00:00+00:00	64729.25	0.00	0.06	5756.44	1210.75	
2017-01-09 04:00:00+00:00	63864.50	0.00	0.06	5756.44	1185.25	
2017-01-09 05:00:00+00:00	66086.75	0.00	0.55	5756.44	1168.00	
2017-01-09 06:00:00+00:00	71651.00	0.00	0.55	5756.44	1241.00	
2017-01-09 07:00:00+00:00	78221.25	27.75	17.27	5756.44	1320.00	
2017-01-09 08:00:00+00:00	81002.00	108.25	105.75	5756.44	1389.50	
◀						•

In [10]:

df.describe()

Out[10]:

	Y	solar_actual [MW]	solar_forecast [MW]	solar_inferred_capacity [MW]	wind_actual [MW]	wind_i
count	45202.000000	45202.000000	45202.000000	45202.000000	45202.000000	
mean	53426.420418	1289.892801	1278.937576	8266.976570	3624.040546	
std	11733.759596	1784.932856	1761.382969	1612.296701	2710.513500	
min	29415.000000	0.000000	0.000000	5756.440000	391.000000	
25%	44446.812500	0.000000	0.000000	6864.480000	1590.062500	
50%	51707.625000	176.000000	154.575000	7992.890000	2722.625000	
75%	61565.375000	2272.437500	2332.165000	9595.960000	4936.250000	
max	94587.250000	8511.750000	7900.170000	11244.010000	14475.750000	

<pre>#Checking the df.head(10)</pre>	dataset	first 10 rows				
2017-01-09 04:00:00+00:00	63864.50	0.00	0.06	5756.44	1185.25	1(
2017-01-09 05:00:00+00:00	66086.75	0.00	0.55	5756.44	1168.00	1(
2017-01-09 06:00:00+00:00	71651.00	0.00	0.55	5756.44	1241.00	1(
2017-01-09 07:00:00+00:00	78221.25	27.75	17.27	5756.44	1320.00	1(
2017-01-09 08:00:00+00:00	81002.00	108.25	105.75	5756.44	1389.50	1(🔻
4						•

In [12]:

```
# setting the graph size globally
plt.rcParams['figure.figsize'] = (30,20)

# Visulize 5 years data

df.plot(colormap='Paired', linewidth=2, fontsize=20)
plt.xlabel('Year', fontsize=20)
plt.ylabel('', fontsize=20)
plt.legend(fontsize=18)
plt.show()
```


In [13]:

```
#Add new columns
df['Month'] = df.index.month
df['Weekday'] = df.index.weekday + 1 #in pandas, the day of the week with Monday=0, Sunday=
df['Hour'] = df.index.hour
```

In [14]:

```
# setting the graph size globally
plt.rcParams['figure.figsize'] = (30,20)
```

In [15]:

In [16]:

In [17]:

In [18]:

```
# Pearson Correlation Heatmap
corr_matrix = df.corr(method="pearson")
sns.heatmap(corr_matrix, vmin=-1., vmax=1., annot=True, fmt='.2f', cmap="YlGnBu", cbar=True
plt.title("Pearson Correlation Heatmap")
```

Out[18]:

Text(0.5, 1.0, 'Pearson Correlation Heatmap')

In [19]:

```
# MLR import
```

from sklearn import model_selection, preprocessing, feature_selection, ensemble, linear_mod
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error

In [20]:

```
#Identifiy Y
x = "Y"
```

In [21]:

```
## split data
#df_train, df_test = model_selection.train_test_split(df,
# test_size=0.2)
df_train, df_test= np.split(df, [int(.8 *len(df))])
```

In [22]:

```
## print info
print("X_train shape:", df_train.drop("Y",axis=1).shape, "| X_test shape:", df_test.drop("Y
print("y_train mean:", round(np.mean(df_train["Y"]),2), "| y_test mean:", round(np.mean(df_
print(df_train.shape[1], "features:", df_train.drop("Y",axis=1).columns.to_list())
```

```
X_train shape: (36161, 18) | X_test shape: (9041, 18)
y_train mean: 53475.21 | y_test mean: 53231.27
19 features: ['solar_actual [MW]', 'solar_forecast [MW]', 'solar_inferred_ca
pacity [MW]', 'wind_actual [MW]', 'wind_inferred_capacity [MW]', 'albedo
[%]', 'cloud_cover [%]', 'frozen_precipitation [%]', 'pressure [Pa]', 'radia
tion [W/m2]', 'air_tmp [Kelvin]', 'ground_tmp [Kelvin]', 'apparent_tmp [Kelv
in]', 'wind_direction [angle]', 'wind_speed [m/s]', 'Month', 'Weekday', 'Hou
r']
```

In [23]:

Out[23]:

	solar_actual [MW]	solar_forecast [MW]	solar_inferred_capacity [MW]	wind_actual [MW]	wind_inferred_c
Date					
2017-01-08 23:00:00+00:00	-0.057092	-0.049611	-0.811021	-0.359696	-(
2017-01-09 00:00:00+00:00	-0.057092	-0.049611	-0.811021	-0.371011	-(
2017-01-09 01:00:00+00:00	-0.057092	-0.049611	-0.811021	-0.369275	-(
2017-01-09 02:00:00+00:00	-0.057092	-0.049796	-0.811021	-0.356343	-(
2017-01-09 03:00:00+00:00	-0.057092	-0.049796	-0.811021	-0.345387	-(

In [24]:

```
## Use gradient boosting algorithm calculate importance
## define y value
y = df_train["Y"].values
feature_names = df_train.drop("Y", axis=1).columns.tolist()
## call model
model = ensemble.GradientBoostingRegressor()
## Importance calculation
model.fit(X,y)
importances = model.feature_importances_
## Put in a pandas df
df_importances = pd.DataFrame({"IMPORTANCE":importances,
            "VARIABLE":feature_names}).sort_values("IMPORTANCE",
            ascending=False)
df_importances['cumsum'] = df_importances['IMPORTANCE'].cumsum(axis=0)
df_importances = df_importances.set_index("VARIABLE")
## PLot
fig, ax = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False)
fig.suptitle("Features Importance", fontsize=40)
ax[0].title.set_text('Variables')
df_importances[["IMPORTANCE"]].sort_values(by="IMPORTANCE").plot(
                kind="barh", legend=False, ax=ax[0],fontsize=30).grid(axis="x")
ax[0].set(ylabel="")
ax[1].title.set_text('Cumulative')
df_importances[["cumsum"]].plot(kind="line", linewidth=4,
                                 legend=False, ax=ax[1],fontsize=30)
ax[1].set(xlabel="", xticks=np.arange(len(df_importances)),
          xticklabels=df_importances.index)
plt.xticks(rotation=70)
plt.grid(axis='both')
plt.show()
```


In [25]:

```
#-Use MLR train and test data
X train = df_train[X_names].values
y_train = df_train["Y"].values
X_test = df_test[X_names].values
y_test = df_test["Y"].values
## call model
model = linear_model.LinearRegression()
## K fold validation
scores = []
cv = model_selection.KFold(n_splits=5, shuffle=True)
fig = plt.figure()
i = 1
for train, test in cv.split(X_train, y_train):
   prediction = model.fit(X_train[train],
               y_train[train]).predict(X_train[test])
   true = y_train[test]
   score = metrics.r2_score(true, prediction)
   scores.append(score)
   plt.scatter(prediction, true, lw=2, alpha=0.3,
               label='Fold %d (R2 = %0.2f)' % (i,score))
   i = i+1
plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],
        linestyle='--', lw=2, color='black')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('K-Fold Validation')
plt.legend()
plt.show()
```



```
In [26]:
```

```
## train
model.fit(X_train, y_train)
## test
predicted = model.predict(X_test)
```

In [57]:

MLR

R2 (explained variance): 0.626 Mean Absolute Perc Error ($\Sigma(|y-\text{pred}|/y)/n$): 0.098 Mean Absolute Error ($\Sigma(|y-\text{pred}|/n)$: 5,461

Root Mean Squared Error ($sqrt(\Sigma(y-pred)^2/n)$): 6,883

Max Error: -27,682

In [62]:

```
## Plot predicted vs true
fig, ax = plt.subplots(nrows=1, ncols=2)
from statsmodels.graphics.api import abline_plot
ax[0].scatter(predicted, y_test, color="black")
abline_plot(intercept=0, slope=1, color="red", ax=ax[0])
ax[0].vlines(x=max_pred, ymin=max_true, ymax=max_true-max_error, color='red', linestyle='--
ax[0].grid(True)
ax[0].set(xlabel="Predicted", ylabel="True", title="MLR Predicted vs True")
ax[0].legend()
## Plot predicted vs residuals
ax[1].scatter(predicted, residuals, color="red")
ax[1].vlines(x=max_pred, ymin=0, ymax=max_error, color='black', linestyle='--', alpha=0.7,
ax[1].grid(True)
ax[1].set(xlabel="Predicted", ylabel="Residuals", title="Predicted vs Residuals")
ax[1].hlines(y=0, xmin=np.min(predicted), xmax=np.max(predicted))
ax[1].legend()
plt.show()
```


In [31]:

In [32]:

```
from sklearn import model_selection, preprocessing, feature_selection, ensemble, linear_mod
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
```

```
In [33]:
```

```
#Identifiy Y
x = "Y"
```

In [34]:

In [35]:

```
# Backtest
# ______
metric, predictions = backtesting_forecaster(
                      forecaster = forecaster,
                               = df.Y,
                      ٧
                      initial_train_size = len(df_train),
                              = 24,
                               = 'mean_absolute_error',
                      #metric
                               = 'mean absolute percentage error',
                      metric
                      verbose
                               = True
                   )
   Iraining: 201/-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
```

```
Validation: 2021-05-10 05:00:00+00:00 -- 2021-05-11 04:00:00+00:00
Data partition in fold: 75
    Training:
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
    Validation: 2021-05-11 05:00:00+00:00 -- 2021-05-12 04:00:00+00:00
Data partition in fold: 76
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
    Training:
    Validation: 2021-05-12 05:00:00+00:00 -- 2021-05-13 04:00:00+00:00
Data partition in fold: 77
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
    Training:
    Validation: 2021-05-13 05:00:00+00:00 -- 2021-05-14 04:00:00+00:00
Data partition in fold: 78
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
    Validation: 2021-05-14 05:00:00+00:00 -- 2021-05-15 04:00:00+00:00
Data partition in fold: 79
    Training:
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
   Validation: 2021-05-15 05:00:00+00:00 -- 2021-05-16 04:00:00+00:00
Data partition in fold: 80
                2017-01-08 23:00:00+00:00 -- 2021-02-25 04:00:00+00:00
    Training:
    Validation: 2021-05-16 05:00:00+00:00 -- 2021-05-17 04:00:00+00:00
```

In [36]:

```
#Add index
predictions = predictions.set_index(df_test.index)
```

In [46]:

In [56]:

```
# ## Kpi
print('Autoregressive')
print('-----')
print("R2 (explained variance):", round(metrics.r2_score(df_test["Y"], predictions), 3))
print("Mean Absolute Error (Σ|y-pred|/n):", "{:,.000f}".format(metrics.mean_absolute_error(print("Root Mean Squared Error (sqrt(Σ(y-pred)^2/n)):", "{:,.000f}".format(np.sqrt(metrics.print(f'Mean Absolute Perc Error : {metric}')
```

Autoregressive

R2 (explained variance): 0.829

Mean Absolute Error $(\Sigma|y\text{-pred}|/n)$: 3,674

Root Mean Squared Error ($sqrt(\Sigma(y-pred)^2/n)$): 4,653

Mean Absolute Perc Error: 0.07106777102246506

In [39]:

```
#-----
#Support Bector Regressor
ft_train, ft_test= np.split(df, [int(.8 *len(df))])
lb_train, lb_test= np.split(df.Y, [int(.8 *len(df))])
```

In [40]:

```
import numpy as np
np.random.seed(seed=5)
from sklearn.svm import SVR
from sklearn.pipeline import make_pipeline
```

In [41]:

```
# Train the model using the training sets for c=10 and e=0.4
regr = SVR(C=10, epsilon=0.4)
regr.fit(ft_train, lb_train)
# Make predictions using the testing set
lb_pred = regr.predict(ft_test)
```

In [42]:

```
#predicted output values for test inputs
pred = lb_pred
# output values from the test set
test = lb_test

#Transefer test to 2d dataframe and add index
pred = pd. DataFrame(pred, columns=['pred'])
```

In [47]:

In [45]:

```
from sklearn.metrics import r2_score, mean_absolute_error
from sklearn.metrics import mean_squared_error
from math import sqrt

print('Support Vector Regressor')
print('-----')

print('Accuracy : {}'.format(regr.score(ft_test, lb_test)))

MAE = mean_absolute_error(test, pred)
print('MAE : {}'.format(round(MAE, 2)))

MSE = mean_squared_error(test, pred)
print('MSE : {}'.format(round(MSE, 2)))

RMSE = sqrt(MSE)
print('RMSE : %f' % RMSE)

R2_SCORE=r2_score(test, pred)
print('R2_SCORE : %f' % R2_SCORE)
```

Support Vector Regressor

Accuracy : 0.800956018073169

MAE : 4032.66 MSE : 25194626.09 RMSE : 5019.424876 R2_SCORE : 0.800956

In [48]:

```
#KNeighborsRegressor
target = pd.DataFrame(df['Y'])
labels = pd.DataFrame(df.drop('Y', axis=1 ))
#Check data status
print(labels.info())
# performing PCA on the dataset - simplifying the data dimentionality but retians the trend
from sklearn.decomposition import PCA
pca = PCA(n_components=17)
pca.fit(labels)
data = pca.transform(labels)
# view shape of thefeatures and labels
print(data.shape, labels.shape)
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 45202 entries, 2017-01-08 23:00:00+00:00 to 2022-03-08 22:00:
00+00:00
Data columns (total 18 columns):
 #
    Column
                                   Non-Null Count Dtype
    _____
                                   -----
    solar actual [MW]
                                   45202 non-null float64
 0
 1
    solar forecast [MW]
                                   45202 non-null float64
     solar_inferred_capacity [MW]
 2
                                  45202 non-null float64
 3
    wind_actual [MW]
                                   45202 non-null float64
 4
    wind_inferred_capacity [MW]
                                   45202 non-null float64
 5
    albedo [%]
                                   45202 non-null float64
 6
    cloud cover [%]
                                   45202 non-null float64
 7
    frozen_precipitation [%]
                                   45202 non-null float64
 8
    pressure [Pa]
                                   45202 non-null float64
 9
    radiation [W/m2]
                                   45202 non-null float64
 10
    air_tmp [Kelvin]
                                   45202 non-null float64
    ground tmp [Kelvin]
                                   45202 non-null float64
 12
    apparent_tmp [Kelvin]
                                   45202 non-null float64
                                   45202 non-null
 13
    wind direction [angle]
                                                   float64
 14 wind_speed [m/s]
                                   45202 non-null float64
 15 Month
                                   45202 non-null
                                                   int64
 16 Weekday
                                   45202 non-null
                                                   int64
    Hour
                                   45202 non-null
                                                   int64
dtypes: float64(15), int64(3)
memory usage: 7.6 MB
None
(45202, 17) (45202, 18)
```

In [50]:

```
from sklearn.model_selection import train_test_split
#Split train and test
ft_train, ft_test, lb_train, lb_test = train_test_split(data , target, test_size=0.20, rand
print(ft_train.shape,ft_test.shape)
```

(36161, 17) (9041, 17)

In [52]:

```
from sklearn.neighbors import KNeighborsRegressor

# checking the accuracy while looping throught the neighbors count from 1 to 6
for n in range(1,6):
    knn = KNeighborsRegressor(n_neighbors = n)
    knn.fit(ft_train, lb_train)
    lb_pred = knn.predict(ft_test)
    print('KNeighborsRegressor: n = {} , Accuracy is: {}'.format(n,knn.score(ft_test, lb_te))

#predicted output values for test inputs
pred = lb_pred
# output values from the test set
test = lb_test

print('KNeighborsRegressor')
print('------')
```

```
KNeighborsRegressor: n=1 , Accuracy is: 0.5766530500832607 KNeighborsRegressor: n=2 , Accuracy is: 0.6497238125094578 KNeighborsRegressor: n=3 , Accuracy is: 0.6637257652856906 KNeighborsRegressor: n=4 , Accuracy is: 0.6687391639391983 KNeighborsRegressor: n=5 , Accuracy is: 0.6688536266183445 KNeighborsRegressor
```

In [55]:

```
# initialising the regressor for n=2
knn = KNeighborsRegressor(n_neighbors = 2)
# applying the model for the test values
knn.fit(ft_train, lb_train)
# predicting the out put values for test inputs
lb_pred = knn.predict(ft_test)
print('KNeighborsRegressor')
print('----')
print('Accuracy : {}'.format(knn.score(ft_test, lb_test)))
MAE = mean_absolute_error(test, pred)
print('MAE : {}'.format(round(MAE, 2)))
MSE = mean_squared_error(test, pred)
print('MSE : {}'.format(round(MSE, 2)))
RMSE = sqrt(MSE)
print('RMSE : %f' % RMSE)
R2_SCORE=r2_score(test, pred)
print('R2_SCORE : %f' % R2_SCORE)
```

KNeighborsRegressor

Accuracy: 0.6497238125094578

MAE : 5089.49

MSE : 45933791.64 RMSE : 6777.447281 R2_SCORE : 0.668854