Manual: PEPICOBayes

Contents

1	Introduction						
2 Abbreviations							
3	PEPICOBayes-Program3.1 Function definition3.2 Pseudocode of the algorithm3.3 Start value for π	3					
4	Results of example.m						
5	Troubleshooting 5.1 Reconstruction is not converged						

1 Introduction

PEPICOBayes is a program for reconstructing the probe spectrum from pump-probe and pump-only photoelectron-photoion coincidence (PEPICO) measurements applying Bayesian probability theory. The theory behind the program is described in reference [1]. The PEPICOBayes program is written in C and executed in Matlab. We offer a simple example Matlab-file to demonstrate the usage of the PEPICOBayes program.

2 Abbreviations

The abbreviations in this manual are similar to the abbreviations used in reference [1].

Abbreviation	Description			
	Symbol that refers to $x \in \{1, 2, \alpha, \beta\}$			
	$1 \cdots$ events due to pump-only laser pulse			
x	$2\cdots$ events due to probe-only laser pulse			
	$\alpha \cdots$ events in the pump-only experiment			
	$\beta \cdots$ events in the pump-probe experiment			
$n^{(x)}$	measured count rates $n^{(x)} = \{n_{\mu\nu}^{(x)}\}$, dimension: $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$			
$q^{(x)}$	Monte Carlo time series of the spectrum $q^{(x)} = \{q_{\mu\nu}^{(x)}\},$			
q^{x}	dimension: $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times N_{\text{sweep}}]$			
$N_{ m run}$	Number of Monte Carlo steps between Monte Carlo measurements			
$N_{ m sweep}$	Number of Monte Carlo measurements			
\mathcal{N}_{μ} $\mathcal{N}_{ u}$	Number of elements in dimension μ			
$\mathcal{N}_{ u}$	Number of elements in dimension ν			
\mathcal{N}_p	Number of measurements			
N_{N_e,N_i}	Number of measurements where N_e electrons and N_i ions were			
N_e,N_i	detected.			
π	Time series of experimental parameters: $\pi = \{\lambda_1, \lambda_2, \xi_i, \xi_e\},\$			
Λ	dimension: $[4 \times N_{\text{sweep}}]$			
λ_x	Mean number of events in x			
ξ_i	Detection probability for ions			
ξ_e	Detection probability for electrons			

3 PEPICOBayes-Program

3.1 Function definition

The function returns four arguments and can be executed with six or eight arguments as input. Arguments seven and eight $(q_0^{(1)})$ and $(q_0^{(2)})$ are start values for the spectra and optional. If no start spectra are passed the algorithm starts with flat spectra.

Input variables:

	Abbreviation	Variable name	Description	
1	$n^{(eta)}$	n_beta	measured pump-probe coincidence spectrum (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
2	$n^{(\alpha)}$	n_alpha	measured pump-only coincidence spectrum (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
3	$N_{ m run}$	Nrun	Number of Monte Carlo steps between measurements	
4	$N_{ m sweep}$	Nsweep	Number of Monte Carlo measurements	
5	parameter	parameter	$ \begin{array}{l} \text{Parameter vector:} \\ \text{parameter := } \{ \sigma_{q^{(1)}}, \sigma_{q^{(\beta)}}, \sigma_{\lambda_1}, \sigma_{\lambda_2}, \sigma_{\xi_i}, \sigma_{\xi_e}, \\ \mathcal{N}_p^{(\beta)}, N_{00}^{(\beta)}, N_{01}^{(\beta)}, N_{02}^{(\beta)}, N_{03}^{(\beta)}, N_{10}^{(\beta)}, N_{11}^{(\beta)}, N_{12}^{(\beta)}, N_{20}^{(\beta)}, N_{21}^{(\beta)}, N_{30}^{(\beta)}, \\ \mathcal{N}_p^{(\alpha)}, N_{00}^{(\alpha)}, N_{01}^{(\alpha)}, N_{02}^{(\alpha)}, N_{03}^{(\alpha)}, N_{10}^{(\alpha)}, N_{11}^{(\alpha)}, N_{12}^{(\alpha)}, N_{20}^{(\alpha)}, N_{21}^{(\alpha)}, N_{30}^{(\alpha)} \} \end{array} $	
6	π_0	Pi0	Start vector of $\pi := \{\lambda_1, \lambda_2, \xi_i, \xi_e\}$	
7	$q_0^{(1)}$		(optional) start values of $q^{(1)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
8	$(optional)$ start values of $q^{(2)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)		(optional) start values of $q^{(2)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	

The size of a Monte Carlo step of variable $T \in \{q^{(1)}, q^{(\beta)}, \lambda_1, \lambda_2, \xi_i, \xi_e\}$ is Gaussian distributed with mean value zero and standard deviation σ_T . σ_T should be adjusted that $p_{\rm acc}$ is at the order of 50% in order to efficiently sample the probability distribution.

Output variables:

	Abbreviation Variable name		Description
1	$q^{(1)}$	q1_timeseries	Time series of $q^{(1)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times N_{\text{sweep}}]$)
2	$q^{(2)}$	$q2_timeseries$	Time series of $q^{(2)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times \mathcal{N}_{\text{sweep}}]$)
3	π	Pi	Time series of π (dimension [4 x N_{sweep}])
4	$p_{ m acc}$	p_acc	Vector of acceptance rates with 6 entries: $p_{\rm acc}(1)$: Acceptance rate of λ_1 $p_{\rm acc}(2)$: Acceptance rate of λ_2 $p_{\rm acc}(3)$: Acceptance rate of ξ_i $p_{\rm acc}(4)$: Acceptance rate of ξ_e $p_{\rm acc}(5)$: Acceptance rate of $q^{(1)}$ $p_{\rm acc}(6)$: Acceptance rate of $q^{(\beta)}$

Note that the first entry in the time series is the start value of the corresponding variable.

3.2 Pseudocode of the algorithm

A Metropolis Hastings Monte Carlo algorithm is used to sample the probability distribution for $q^{(1)}$, $q^{(2)}$ and π . The algorithm samples λ_{β} and $q^{(\beta)}$ instead of λ_2 and $q^{(2)}$ because it is computationally less expensive.

```
PEPICOBayes(n^{(\beta)}, n^{(\alpha)}, N_{\text{run}}, N_{\text{sweep}}, \text{ parameter}, \pi_0, q_0^{(1)}, q_0^{(2)})
    read all input variables
    compute q^{(\beta)} and \lambda_{\beta} = \lambda_1 + \lambda_2
    for k < N_{\rm sweep}
         for i < N_{\rm run}
             suggest Monte Carlo step in \lambda_1, \lambda_{\beta}, \xi_e, \xi_i, q^{(1)} or q^{(\beta)}
             compute Monte Carlo step probability
             if update is accepted
                  overwrite corresponding variable with the new value
             else
                  do nothing
             end
         \mathbf{end}
         compute q^{(2)} and \lambda_2
         copy \lambda_1, \lambda_2, \xi_e, \xi_i, q^{(1)} and q^{(2)} into output variables at Monte Carlo time k
    end
end
```

3.3 Start value for π

The start values of π can for example be approximated by the formula given by Stert et. al. [2]. In summary this means solving the following equation for λ

$$\frac{N_e N_i}{\lambda \mathcal{N}_p} \left(1 + \lambda \left(1 - \frac{N_e}{\lambda \mathcal{N}_p} \right) \left(1 - \frac{N_i}{\lambda \mathcal{N}_p} \right) \right) e^{-\lambda \left(1 - \left(1 - \frac{N_e}{\lambda \mathcal{N}_p} \right) \left(1 - \frac{N_i}{\lambda \mathcal{N}_p} \right) \right)} \approx N_{11} \tag{1}$$

and insert the resulting λ into

$$\xi_e \approx \frac{N_e}{\lambda \mathcal{N}_p} \tag{2}$$

$$\xi_i \approx \frac{N_i}{\lambda \mathcal{N}_p} \tag{3}$$

 N_{11} is the total number of measured coincidencies and N_e and N_i are the total number of detected electrons and ions, respectively.

4 Results of example.m

In the example two ion types $(\mathcal{N}_{\mu} = 2)$ and seven different electron flight times $(\mathcal{N}_{\nu} = 2)$ were detected.

The result of the converged Monte Carlo computation for the example data should look like figure 3. Converged time series are shown in figure 1 and 2 for demonstration purposes. Check for correlations by evaluating the autocorrelation function or with techniques like jackknife or binning.

Figure 1: Time series of $q^{(2)}$.

Figure 2: Time series of π . The real values are $\lambda_1 = 0.2$, $\lambda_2 = 0.6$, $\xi_i = 0.75$, $\xi_e = 0.75$.

Figure 3: Reconstructed spectrum $q^{(2)}$.

5 Troubleshooting

5.1 Reconstruction is not converged

If the result is not converged the last entry of the time series of $q^{(1)}$, $q^{(2)}$ and π can be used as start parameter for a new calculation. Extend the Monte Carlo chain until the desired results are converged.

5.2 C file in MATLAB

In the downloaded folder are pre-compiled c files (tested with Windows7, Windows10 and Debian 8.9 - MATLAB version 2013a, 2016b). If the pre-compiled files dont work see https://de.mathworks.com/help/matlab/matlab_external/what-you-need-to-build-mex-files.html, follow the instructions and compile the c file on your computer.

References

- [1] M. Rumetshofer, P. Heim, B. Thaler, W.E. Ernst, M Koch, and W. von der Linden. Analysis of femtosecond time-resolved photoelectron-photoion coincidence measurements applying bayesian probability theory.
- [2] V. Stert, W. Radloff, C.P. Schulz, and I.V. Hertel. Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons. *The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics*, 5(1):97–106, 1999.