1. ЛАБОРАТОРНАЯ РАБОТА 1. ЛИНЕЙНЫЕ АЛГОРИТМЫ. ОПЕРАТОРЫ РҮТНОN. ЗНАЧЕНИЯ, ПЕРЕМЕННЫЕ И ТИПЫ ДАННЫХ. ВВОД-ВЫВОД. МАТЕМАТИЧЕСКИЕ ФУНКЦИИ.

1.1. СПРАВОЧНЫЙ МАТЕРИАЛ

Линейный алгоритм – это алгоритм, в котором все действия выполняются в строгом порядке, последовательно, одно за другим.

Программа, реализующая линейный алгоритм, называется программой с линейной структурой. Приступая к разработке программ с линейной структурой, следует учитывать, что:

- программы с линейной структурой являются простейшими и используются, как правило, для реализации простых вычислений по формулам;
- в программах с линейной структурой инструкции выполняются последовательно, одна за другой;
- алгоритм программы с линейной структурой может быть представлен в виде блок-схемы, использующей следующие графические символы (таблица 1).

Таблица 1. Графические символы, используемые для построения блок-схем

Графический	Название и назначение графического символа
символ	Trasbattire it trasta territe i paqui teckoro entingenta
	Начало/конец работы Начало, конец, прерывание процесса обработки данных или выполнения программы
	Данные Перечисляются данные, которые необходимы для работы алгоритма
	Процесс Выполнение операции или группы операций, в результате чего изменяется значение, форма представления или расположение данных Ручной ввод данных
	Ручной ввод данных с клавиатуры Дисплей
	Вывод данных, результатов вычислений, сообщений, запросов к пользователю и пр. на дисплей
	Комментарий Связь между элементами блок-схемы и пояснениями

Операторы Python. В языке Python встречаются операторы 7 типов (таблица 1).

Таблица 1.

Операторы Python

	One	раторы Python	<u> </u>				
Оператор	Название оператора	Пример	Результат вычисления				
	Арифмети	ческие операторы					
+	Сложение	>>>2+3	5				
-	Вычитание	>>>4-1	3				
*	Умножение	>>>4*5	20				
/	Деление	>>>8/4	2				
**	Возведение в степень	>>>2**3	8				
//	Деление без остатка	>>>8//3	2				
%	Деление по модулю (остаток от деления)	>>>12%7 >>>12%6	5 0				
		горы сравнения					
<	Меньше	>>>2<7	True				
>	Больше	>>>2>7	False				
<=	Меньше или равно	>>>3<=3	True				
>=	Больше или равно	>>>3>=3	True				
==	Равно (проверяет равно ли значение слева правому. В случае равенства выдает значение «TRUE»)	>>>6==6	True				
!=	Не равно	>>>6!=6	False				
	Операто	ры присваивания					
=	Присваивание	>>>a=3+8 >>>print(a) ¹	11				
+=	Сложение и присваивание (суммирует значения слева и справа, результат присваивает переменной слева)	>>>a=7 >>>a+=3 >>>print(a)	10				

_

¹ Print(a) - функция **print** () используется для вывода текстовой информации в консоль или на экран.

-=	Вычитание и присваивание	>>>a=7 >>>a-=3	4	
	присванвание	>>>print(a)		
	Пожатия	>>>a=12		
/=	Деление и	>>>a/=3	4	
	присваивание	>>>print(a)		
	Умножение и	>>>a=5		
=		>>>a=3	15	
	присваивание	>>>print(a)		
	П	>>>a=6		
%=	Деление по модулю	>>>a%=3	0	
	и присваивание	>>>print(a)		
	Возведение в	>>>a=2		
=	степень и	>>>a=3	8	
	присваивание	>>>print(a)	G	
	приованвание	>>>a=7		
//=	Деление с остатком	>>>a//=3	2	
//—	и присваивание	>>>print(a)	2	
	Порина	1 1		
		ские операторы		
ا مسط	И – используется	>>> a = 5 > 5 and $2 > -3$	Eslas	
and	для объединения	>>> print(a)	False	
	нескольких условий	-		
	ИЛИ – используется	5. 5. 2. 2		
or	для проверки		True	
	истинности хотя бы	>>> print(a)		
	одного условия			
	НЕ – используется	>>>a=not(0)		
not	для инвертации	>>> print(a)	True	
	булевых значений	>>> print(u)		
	Операторы	ы принадлежности	_	
	Используются для			
	проверки	>>>животное =		
in	принадлежности	['собака', 'кошка', 'лошадь']	True	
111	последовательности	>>>'собака' іп животное	True	
	(список, строка или	cooaka iii животное		
	кортеж)			
	Используются для	>>>животное =		
m o t !	проверки	['собака','кошка','лошадь']2	Т	
not in	отсутствия в	>>>'попугай' not in	True	
	последовательности	животное		
		ы тождественности		
is		>>> 2 is 10	False	
		= 10 10	- 4100	

-

² Кавычки скобки

	Используются для		
	проверки, являются		
	ли операнды		
is not	одинаковыми	>>> 3 is 3	True
	(занимают ли они		
	одну и ту же		
	позицию в памяти)		

Значения, переменные и типы данных. *Значение* - основное понятие, с которым работает программа. Например: 2, 56.0, 'собака'. Эти значения принадлежат различным *типам данных*. В Python существуют следующие типы данных:

- 1. Числа (Numeric Type):
- **✓ int** целое число;
- ✓ **float** число с плавающей точкой;
- ✓ **complex** − комплексное число.
- 2. Строки (Text Sequence Type):
- ✓ Str.
- 3. Списки (Sequence Type):
- **✓ List** список;
- **✓ Tuple** кортеж;
- ✓ Range диапазон.
- 4. Логические переменные (Boolean Type)/
- **5.** None (неопределенное значение переменной).

Для проверки типа указанного значения можно воспользоваться функцией **type().**

Переменная — это имя, которое ссылается на значение. Имя переменной в языке Python может иметь любую длину, включать латинские буквы и цифры. НО!!! Имя переменной не может начинаться с цифры!!!

Также в качестве имени переменной нельзя использовать зарезервированные слова: False, class, finally, is, return, None, continue, for, lambda, try, True, def, from, nonlocal, while, and, del, global, not, with, as, elif, if, or, yield, Assert, else, import, pass, break, except, in, raise.

Ввод данных и преобразование типов

Ввод данных с клавиатуры осуществляется с помощью встроенной функции input. Формат применения следующий: **str=input("Введите строку")**, т.е. функция input в качестве необязательного параметра принимает строку вывода сообщения перед вводом данных, а результат ввода записывается в виде строки символов в принимающую переменную (в нашем примере это переменная str). Если необходимо ввести целое число – *делается преобразование типов* с помощью функций int(), float() или str(), например:

```
int_var = int(input("Введите целое число: "))
```

Аналогично с вещественным:

```
float var = float(input("Введите вещественное число: "))
```

В общем случае функция int() имеет два аргумента. Первый аргумент – значение, которое нужно преобразовать в целое число, второй аргумент (необязательный) система исчисления в которой задан первый аргумент (может быть от 2 до 36), по умолчанию второй аргумент равен 10. При использовании второго аргумента отличного от 10 — первый аргумент должен быть представлен в виде строки.

Для корректного ввода без ошибок преобразования необходимо использовать цикл и исключение, например, вот так:

```
def getnum():
    while (True):
        try:
        num = int(input("Введите целое число: "))
        return num
    except ValueError:
        print("Вы ввели не число. Повторите ввод")
```

Если строку ввода необходимо разбить на несколько значений используются пробелы и функция split(), которая разбивает строку на лексемы (подстроки), а разделителем по умолчанию служит пробел. Например,

```
a, b, c = input().split()
или так (если вводится три целых числа):
x, y, z = [int(s) for s in input().split()]
```

Для преобразования целых чисел в числа в двоичной, восьмеричной и шестнадцатеричной системы счисления могут использоваться функции bin(), oct(), hex().

Вывод данных

Встроенная функция для вывода на экран имеет следующий формат:

```
print(obj1, obj2, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Здесь:
```

• obj1, obj2, ... — объект/объекты которые необходимо вывести;

- **sep** разделитель между объектами. В качестве своего значения можно передавать строку или None (по умолчанию пробел " ");
- end символ в конце строки (по умолчанию перенос строки \n);
- file file-like объект [поток] (по умолчанию sys.stdout);
- **flush** принудительный сброс потока [работает с версии Python 3.3] (по умолчанию False).

```
Например, следующая функция выведет на экран строку:

Меркурий, Венера, Земля, Марс!

print('Меркурий', 'Венера', 'Земля', 'Марс', sep=', ', end='!')
```

Форматированный вывод данных

Для вывода на экран значений в отформатированном виде используется три способа:

- 1) старый стиль(метод), основанный на форматировании шаблонов строк, как в языке С;
- 2) новый метод с использованием функции format();
- 3) f-строки.

Форматирование в старом стиле предполагает вывод на экран в виде: "строкаформата" % (значениедлявывода1, зн2,...)

В строке формата используются следующие шаблоны:

%d	Целое число
%f	Вещественное число
% s	Строка
%с	Символ
%e	Число в научном формате, в виде мантиссы и порядка

Также внутри строки могут использоваться управляющие символы, вот некоторые из них:

\n	(newline) перевод каретки на следующую строку
\r	(return) перевод каретки на в начало текущей строки
\t	(tab) табуляция (отступ, красная строка, 8 пробелов)
\b	(backspace) перевод каретки на один символ назад с удалением символа
\\	Позволяет записать символ обратного слеша.

\'	Позволяет записать один символ апострофа.
\"	Позволяет записать один символ кавычки.
\xhh	Шестнадцатеричный код символа (две шестнадцатеричные цифры hh).
\000	Восьмеричный код символа (три восьмеричные цифры 000).
\0	Символ Null.
\N{id}	ID (идентификатор) символа в базе данных Юникода, или, проще говоря, его название в таблице Юникода.
\uhhhh	Шестнадцатеричный код 16-битного символа Юникода (символ кодируемый двумя байтами).
•	Шестнадцатеричный код 32-битного символа Юникода (символ кодируемый четырьмя байтами).

В строке формата могут указываться дополнительные параметры:

%ширина_поля.число_знаков_после_запятой

Например,

```
print("Число:%15.5f" % (12.12345656))
```

Результат:

```
012345123456789012345 <- номер позиции на экране
```

Число: 12.12346

```
print("%.4f, %.2f" % (1.33334, 153*0.43))
#1.3333, 65.79
print("%f, %f" % (1.33334, 153*0.43))
#1.333340, 65.790000
print(153*0.43)
#65.78999999999999
```

Еще пример табличного вывода:

```
print("%5d%7d" % (10, 235))
print("%5d%7d" % (1000, 50))
```

Результат:

10 235 1000 50

Если нужно выровнять по левому полю добавляется знак «-»:

```
print("%-5d%7d" % (10, 235))
print("%-5d%7d" % (1000, 50))
```

Результат:

10 235 1000 50 **Математические функции.** Для доступа к большинству математических функций, необходимо импортировать **модуль (math):**

Объект модуля содержит функции, переменные и константы, определенные в модуле. Для доступа к функциям используется формат «точечной нотации». Указывается имя модуля и имя функции через точку. Например, чтобы вычислить десятичный логарифм, код программы будет выглядеть следующим образом:

Перечень основных математических функций Python представлен в таблице.

Название	Описание
math.ceil(a)	Округление до ближайшего большего целого числа.
math.cmp(a,b)	-1 если a < b, 0 если a == b, или 1, если a > b
math.e	e = 2,718281
math.exp(x)	e ^x
math.fabs(a)	Модуль числа (в отличие от встроенной функции abs, fabs возвращает всегда вещественное число).
math.factorial(a)	Факториал числа.
math.floor(a)	Округление вниз, до ближайшего меньшего целого.
math.fmod(a,b)	Остаток от деления а на b. В отличие от встроенной функции нахождения остатка, всегда возвращает вещественное число.
math.fsum(a1,a2,,an)	Возвращает сумму чисел из списка.
math.log(a,[основание])	Натуральный логарифм. Если указать доп. параметр основание, то вычисляет соответствующий логарифм.
math.log10(a)	Десятичный логарифм.
math.log2(a)	Логарифм по основанию 2.
math.max(a,b,c,)	Находит максимальное среди чисел.
math.min(a,b,c,)	Находит минимальное среди чисел.
math.pow(a,b)	Возведение в степень (а).
math.round(a)	Округление (требует уточнения).
math.sqrt(a)	Извлечение квадратного корня.

1.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Правительство гарантирует, что инфляция в новом году составит р% в месяц. Какой рост цен ожидаем за год? (Формула сложных процентов: $S = \left[\left(1 + \frac{p}{100} \right)^{12} - 1 \right] \cdot 100\%$.

Решение:

Для ввода исходной информации р% воспользуемся функцией **input()**. В скобках указываем сообщение для ввода. Команда input() по умолчанию воспринимает входные данные как строку символов. Поэтому, чтобы ввести целочисленное значение (число с плавающей точкой), следует указать тип данных int() или float().

```
import math
math
p=int(input("Ввведите темп инфляции за месяц: "))
S=((1+p/100)**12-1)*100
print('Годовой темп инфляции составит: ', S, '%')
```

Для вывода используем функцию **print**(). В команде print() через запятую можно задавать вывод нескольких элементов, причем текстовые значения задаются в кавычках. Результат расчета и вывода:

Пример 2. Вычислить значение функции в заданных точках и округлить результат до тысячных:

$$z = \ln \left| \lg x - \sqrt{\left| \cos x - e^x \right|} \cdot \arcsin \left| tg \frac{\left| ax - b \right|}{\sin |x|} + b \right|$$
, где $a = 0.126$, $b = 0.842$, $x = 0.34$

Решение:

Для упрощения, введем дополнительные переменные и присвоим им значения математических функций.

Пример 3. Необходимо разработать блок-схему линейного алгоритма для вычисления выражения, определяемого соотношением

$$z = 2^{-x} \cdot \sqrt{x + \sqrt[4]{|y|}} \cdot \sqrt{e^{x - 1/\sin x}}$$

Решение.

Анализ задачи показывает, что вычисление выражения по этой формуле можно упростить, если это выражение представить в виде трех сомножителей: z = a1 * a2 * a3;

где
$$a1 = 2^{-x}$$
 – первый сомножитель; $a2 = \sqrt{x + \sqrt[4]{y}}$ – второй сомножитель; $a3 = \sqrt{e^{x-1/\sin x}}$ – третий сомножитель.

Таким образом, линейный алгоритм для вычисления выражения по формуле z представим в виде, как показано на рисунке 1.

Рисунок 1. Линейный алгоритм решения задачи

Как видно на рисунке 1 алгоритм включает следующие девять блоков:

- 1) начало;
- 2) данные (переменные x, y, z, a1, a2, a3);
- 3) дисплей (приглашение ввести значение переменной х);
- 4) ручной ввод данных (ввод значения переменной х с клавиатуры);
- 5) дисплей (приглашение ввести значение переменной у);
- 6) ручной ввод данных (ввод значения переменной у с клавиатуры);
- 7) процесс (вычисление значения вспомогательных переменных a1, a2, a3 и искомой переменной z);
- 8) дисплей (вывод на дисплей результатов расчетов значения искомой переменной z);
 - 9) конец.

1.3. ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

- 1. Изучить руководство к лабораторной работе.
- 2. Нарисовать блок-схемы алгоритмов для примеров 1, 2.
- 3. Написать и отладить программы из примеров 1, 2.
- 4. Написать программу для блок-схемы алгоритма в примере 3.
- 5. Разработать алгоритмы и написать программы согласно заданиям по вариантам. Задания и варианты приведены ниже. В каждом варианте 4 задания.
- 6. Подготовить отчет. В отчет включить блок-схемы для всех задач и окончательный рабочий код всех программ, а также скриншоты выполнения для каждой программы. Всего 7 задач: 3 задачи общие из примеров и 4 задачи индивидуальные по варианту.

1.4. ВАРИАНТЫ ЗАДАНИЙ

№ задачи	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7	Вариант 8	Вариант 9	Вариант 10	Вариант 11	Вариант 12	Вариант 13	Вариант 14	Вариант 15	Вариант 16	Вариант 17	Вариант 18	Вариант 19	Вариант 20
1.	*							*				*							*	
2.		*							*				*					*		
3.			*					*		*				*						
4.				*					*		*				*					
5.	*				*							*				*				
6.		*				*							*				*			
7.			*				*							*				*		
8.				*				*							*				*	
9.					*				*							*				*
10.	*					*				*							*			
11.		*					*				*							*		
12.			*									*				*			*	
13.				*									*				*			*
14.					*					*				*				*		
15.						*					*				*				*	
16.					*		*									*				*
17.	*							*				*					*			
18.		*				*			*				*							
19.			*	_			*			*				*						
20.				*							*				*					*

Варианты после 20 повторяются в циклическом порядке

1.5. ЗАДАЧИ ДЛЯ ВАРИАНТОВ

- 1. Вычислить периметр и площадь прямоугольного треугольника по заданным длинам двух катетов а и b.
- 2. Заданы координаты трех вершин треугольника (х1, у1), (х2, у2), (х3, у3). Найти его периметр и площадь.
- 3. Вычислить длину окружности и площадь круга одного и того же заданного радиуса R.
- 4. Даны два числа. Найти среднее арифметическое кубов этих чисел и среднее геометрическое модулей этих чисел.
- 5. Вычислить расстояние между двумя точками с данными координатами (x1, y1) и (x2, y2).
- 6. Даны два действительных числа х и у. Вычислить их сумму, разность, произведение и частное.
- 7. Дана длина ребра куба. Найти площадь грани, площадь полной поверхности и объем этого куба.
- 8. Дана сторона равностороннего треугольника. Найти площадь этого треугольника, его высоты, радиусы вписанной и описанной окружностей.
- 9. Известна длина окружности. Найти площадь круга, ограниченного этой окружностью.
- 10. Найти площадь равнобедренной трапеции с основаниями а и b и углом α при большем основании а.
- 11. Найти площадь треугольника, две стороны которого равны а и b, а угол между этими сторонами равен g.
- 12. Три сопротивления R1, R2, R3 соединены параллельно. Найдите сопротивление соединения.
- 13. Составить программу вычисления объема цилиндра и конуса, которые имеют одинаковую высоту H и одинаковый радиус основания R.
- 14. Даны два действительных числа. Найти среднее арифметическое этих чисел и среднее геометрическое их модулей.
- 15. Определить время падения камня на поверхности земли с высоты h.
- 16. Дана сторона равностороннего треугольника. Найти площадь этого треугольника.
- 17. Определить силу притяжения F между телами массы m1 и m2, находящимся на расстоянии г друг от друга. Результат округлить до 2-х знаков после запятой.
- 18. Известны первый и пятый члены арифметической прогрессии. Найти величину члена прогрессии с номером N и сумму N членов.
- 19. Вычислите и выведите на экран примерное число прожитых человеком дней (без учёта високосных лет), если в году 365 дней, а год рождения и текущий год запрашиваются у пользователя вашей программы.
- 20. Напишите программу, вычисляющую какую сумму денег нужно платить за электроэнергию, если у пользователя программы запрашивается количество КВт электроэнергии, которое было израсходовано за расчётный месяц, и какова плата за 1 КВт электроэнергии.