Dekompozycja funkcji boolowskich

(zwana również dekompozycją funkcjonalną)

Rewelacyjna i rewolucyjna metoda syntezy logicznej

Przegapiona przez twórców oprogramowania komercyjnego

Dostępna wyłącznie w oprogramowaniu uniwersyteckim

Dekompozycja funkcjonalna

(Metoda klasyczna: rozdz. 3.5 książka SUL)

Tablicą dekompozycji funkcji f nazywamy macierz dwuwymiarową o kolumnach etykietowanych wartościami zmiennych funkcji f ze zbioru B oraz o wierszach etykietowanych wartościami zmiennych funkcji f ze zbioru A. *Liczbę istotnie różnych kolumn* tej macierzy ze względu na ich zawartość nazywamy ich krotnością i oznaczamy symbolem v(A|B).

B

		/				
	$X_1X_2X_3$ X_4X_5	000	001	•••		
	00	0	1	Elementami macierzy M są wartości, jakie		
$A \prec$	01	1	0	przyjmuje funkcja <i>f</i> na wektorach złożonych z		
	•			odpowiednich etykiet i-tego wiersza i j-tej kolumny.		

Klasyczne twierdzenie o dekompozycji

Niech będzie dana funkcja boolowska f oraz podział zbioru zmiennych wejściowych funkcji f na dwa rozłączne zbiory A i B, to wówczas:

$$f(A,B) = h(g_1(B),..., g_j(B),A) \Leftrightarrow v(A|B) \leq 2^j$$
.

B (bound set), A (free set)

Przykład

B

1	$X_4X_2X_3$ X_4X_5	000	001	010	100	110	101	011	111
	00	1	1	1	1	0	0	0	0
\downarrow	01	0	1	1	1	0	0	0	0
Α	10	0	0	0	0	0	0	0	0
	11	0	0	0	0	1	1	1	0

X ₁	X ₂	x ₃	g ₁	g ₂
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

g ₁ g ₂ x ₄ x ₅	00	01	10	11
0 0	1	1	0	0
0 1	0	1	0	0
1 0	0	0	0	0
1.1	0	0	1	0

Istnieje dekompozycja!

 $f = h(x_4, x_5, g_1(x_1, x_2, x_3), g_2(x_1, x_2, x_3))$

Praktyczne znaczenie dekompozycji

cde a b	000	001	010	011	100	101	110	111
00	1	_	0	1	_	0	1	0
01	_	_	_	_	1	1	_	_
10	_	0	1	0	0	_	0	1
11	0	1	_	_	_	_	_	_
	K0	K1	K2	K3	K4	K5	K6	K7

Istnieje dekompozycja!

 $f = h(a,b,g_1(c,d,e), g_2(c,d,e))$

Przykład trochę trudniejszy

B

cde a b	000	001	010	011	100	101	110	111
00	1	_	0	1	_	0	1	0
01	_	_	_	_	1	1	_	_
10	_	0	1	0	0	_	0	1
11	0	1	_	_	_	_	_	_
	K0	K1	K2	K3	K4	K5	K6	K7

С	d	е	g₁	g,
0	0	0	0	0
0	1	1	0	0
1	0	0	0	0
1	1	0	0	0
0	0	1	0	1
1	0	1	0	1
0	1	0	1	1
1	1	1	1	1

g₁g₂ a b	00	01	11	10
0 0	1	0	0	_
0 1	1	1	_	_
1 0	0	0	1	_
1.1	0	1	_	_

Jak obliczać dekompozycję

Relacja zgodności kolumn

Kolumny $\{k_r, k_s\}$ są zgodne, jeśli nie istnieje wiersz i, dla którego elementy K_{ir} , K_{is} są określone i różne, tzn. odpowiednio: 0, 1 albo 1, 0.

K 1	K2	К3	K4	K5	K6	K7
	ı	0	1	-	Ō	1
	-	-	_	1	1	-
	0	1	0	0	_	0
0	1	-		_		Ó

Relacja zgodności kolumn

Kolumny zgodne można "sklejać"

Relacja zgodności jest zwrotna, symetryczna, ale nie jest przechodnia.

Pary zgodne umożliwiają wyznaczenie maksymalnych zbiorów kolumn zgodnych.

Zbiór K = $\{k_1,...,k_p\}$ nazywamy **maksymalnym zbiorem kolumn zgodnych (maksymalną klasą zgodności),** jeżeli każda para k_i , k_j wzięta z tego zbioru jest zgodna oraz nie istnieje żaden inny zbiór kolumn zgodnych K', zawierający K.

Obliczanie MKZ-ów

Problem obliczania maksymalnych klas zgodnych można sprowadzić do znanego problemu obliczania maksymalnych klik w grafie lub do problemu kolorowania grafu.

Najprostsza metoda polega na łączeniu par kolumn zgodnych w trójki, trójek w czwórki itd.

Redukując zbiory mniejsze zawarte w większych oblicza Maksymalne Klasy Zgodności

Metoda bezpośrednia

Pary zgodne:

Przykład - obliczanie klas zgodności

Pary zgodne:

0,3

0,4

0,6

cde a b	000	001	010	011	100	101	110	111
00	1	_	0	1	_	0	1	0
01	-	_	_	_	1	1	_	_
10	-	0	1	0	0	_	0	1
11	0	1	_	_	_	_	_	_
	K0	K 1	K2	К3	K4	K5	K6	K 7

1,3

1,4

1,5

1,6

2,5

2,7

K0, K1 sprzeczna

3,4

3,6

K0, K2 sprzeczna

4,5

K0, K3 zgodna

4,6

K0, K4 zgodna

5,7

Maksymalne klasy zgodności:

Przykład – obliczanie klas zgodności

Z rodziny MKZ wybieramy minimalną liczbę klas (lub podklas) pokrywającą zbiór wszystkich kolumn.

Sklejanie kolumn – funkcja h

cde	000	001	010	011	100	101	110	111
00	1	=	0	1		9	1	0
01	_	_	_	-	1	1	-	_
10	_	Û		0	0	_	0	1
11	0	1		-	=	Ξ	=	=
	KO	Kī	K2	K3	K 4	K5	K5	K 7

{K0,K3	,K4,K6	} {	<1,K	{K2,K7}		
	g_1g_2	00	01	11	10	
	00	1	0	0	1	
	01	1	1	-	1	
	10	0	0	1	ı	
	11	0	1	_	-	

Nowe kodowanie kolumn – funkcja g

cde	000	001	010	011	100	101	110	111
00	W.		9	1	-	0	W	0
01	_	-	_	_	4	4	-	_
10	_	0	1	0	0	_	0	1
11	0	W	_	_	_	_	_	_
	90))3/2	K 2	КЗ	K 4	11/3 5/12	K6	K7

g ₁ g ₂	00	01	11	10
00	1	0	0	-
01	-1	4	_	-
10	0	0	1	-
11	0	1	_	-

С	d	е	g₁	g ₂
0	0	0	0	0
0	1	1	0	0
1	0	0	0	0
	1	0	0	0
0	Ð	1	Ð	
	Ū	1	0	
0	1	0	1	
		1		

Co uzyskaliśmy

Opis funkcji g i h tablicami prawdy wystarczy dla realizacji w strukturach FPGA

Ale funkcje g i h można obliczyć jawnie...

czyli po procesie dekompozycji można je minimalizować

uzyskując w rezultacie ...

...strukturę na bramkach

Przykład – funkcje g₁ i g₂

	al											
c	d 0	e	g ₁	g ₂		е	0	1		е	0	1
0	1	1	0	0		cd				cd		\vdash
1	0	0	0	0		00	0	0		00	0	1
1	1	0	0	0		01	1	0		01	1	0
0	0	1	0	1		44			7	44		
1	0	1	0	1		11	0			11	0	ı
0	1	0	1	1		10	0	0		10	0	1
1	1	1	1_	1	J			'	•			-
					_	$g_1 = \overline{c}$	d e +c	de		$g_2 = \overline{c}d$	e #ce	#de

Przykład – funkcja h

g_1g_2 ab	00	01	11	10
00	1	0	0	-
01 _	1	1	-	_
11	0	1	<u>-</u>	-
10	0	0	1	

Uwaga: Przestawiliśmy wiersze

$$h = \overline{a}\overline{g}_2 + bg_2 + ag_1$$

Jak usprawnić obliczanie MKZ?

W metodzie dekompozycji jednym z najważniejszych algorytmów jest algorytm obliczania maksymalnych klas zgodności

Czy nie można stosowanej do tej pory metody bezpośredniej zastąpić czymś skuteczniejszym?

Jak usprawnić obliczanie MKZ?

W celu sprawniejszego obliczania MKZ wprowadzimy dwie nowe metody:

- a) metodę wg par zgodnych
- b) metodę wg par sprzecznych

Algorytm MKZ wg par zgodnych

$$R_j = \{ e_i \mid i < j \text{ oraz } (e_i, e_j) \in E \}$$

$$RKZ_k$$
 RKZ_{k+1} $KZ \in RKZ_k$

- a) $R_{k+1} = \phi$, RKZ_{k+1} jest powiększana o klasę $KZ = \{k+1\}$
- b) $KZ \cap R_{k+1} = \phi$, KZ bez zmian
- c) $KZ \cap R_{k+1} \neq \emptyset$, $KZ' = KZ \cap R_{k+1} \cup \{k+1\}$

Przykład

$$R_i = \{ e_i \mid i < j \text{ oraz } (e_i, e_j) \in E \}$$

$$R_1 = \phi$$

$$R_2 = 1$$

$$R_3 = 1.2$$

$$R_4 = 2$$

$$R_5 = 1,2,3$$

$$R_6 = 3.4$$

a)
$$R_{k+1} = \phi$$
, RKZ_{k+1} jest powiększana o klasę $KZ = \{k+1\}$

b)
$$KZ \cap R_{k+1} = \phi$$
, KZ bez zmian

c)
$$KZ \cap R_{k+1} \neq \emptyset$$
, $KZ' = KZ \cap R_{k+1} \cup \{k+1\}$

$$R_1 = \emptyset$$
 {1}
 $R_2 = 1$ {1,2}
 $R_3 = 1,2$ {1,2,3}
 $R_4 = 2$ {2,4}, {1,2,3}
 $R_5 = 1,2,3$ {2,6}, {1,2,3,5}, {2,4} Rodzina MKZ
 $R_6 = 3,4$ {3,6}, {4,6}, {1,2,3,5}, {2,4}

Algorytm MKZ wg par sprzecznych

Zapisać pary sprzeczne w postaci koniunkcji dwuskładnikowych sum

Koniunkcję dwuskładnikowych sum przekształcić do minimalnego wyrażenia boolowskiego typu suma iloczynów

Wtedy MKZ są uzupełnieniami zbiorów reprezentowanych przez składniki iloczynowe tego wyrażenia

Ten sam przykład

Pary zgodne

E: 1,2

1,3

1,5

2,3

2,4

2,5

3,5

3,6

4,6

Pary sprzeczne

1,4

1,6

2,6

3,4

4,5

5,6

Przykład...

Pary sprzeczne:

$$(k1, k4), (k1, k6), (k2, k6), (k3, k4), (k4, k5), (k5, k6)$$

Obliczamy wyrażenie boolowskie typu "koniunkcja sum":

$$(k1 + k4)(k1 + k6)(k2 + k6)(k3 + k4)(k4 + k5)(k5 + k6) =$$

Porządkujemy:

Przekształcamy wyrażenie do postaci "suma iloczynów":

T P W

k4k6 + k1k2k4k5 + k1k3k5k6 + k1k2k3k5

Przykład...

Klasy zgodne uzyskamy odejmując od zbioru {k1,...,k6}, zbiory tych ki, które występują w jednym składniku wyrażenia typu "suma iloczynów"

$$\{k1,..., k6\} - \{k4, k6\} = \{k1, k2, k3, k5\}$$

 $\{k1,...,k6\} - \{k1, k2, k4, k5\} = \{k3, k6\}$
 $\{k1,...,k6\} - \{k1, k3, k5, k6\} = \{k2, k4\}$
 $\{k1,...,k6\} - \{k1, k2, k3, k5\} = \{k4, k6\}$

Warto umiejętnie dobierać metodę...

Pary zgodne:

$$(1,2)$$
, $(1,3)$, $(1,4)$, $(1,5)$, $(1,6)$, $(1,7)$, $(2,3)$, $(2,5)$, $(2,6)$, $(2,7)$, $(3,4)$, $(3,5)$, $(3,6)$, $(3,8)$, $(4,6)$, $(4,7)$, $(4,8)$, $(5,6)$, $(5,7)$, $(5,8)$, $(6,7)$, $(6,8)$, $(7,8)$,

Pary sprzeczne:

$$(1,8)$$
 $(2,4)$ $(2,8)$ $(3,7)$ $(4,5)$

Wybór metody jest oczywisty!

W poszukiwaniu innych metod...

W obliczaniu kolumn, które można "skleić" znajdują zastosowanie algorytmy kolorowania grafu.

Wierzchołki grafu reprezentują kolumny tablicy dekompozycji.

Niezgodne pary kolumn łączy się krawędziami.

Graf niezgodności:

Pary niezgodne:

$$(k_i, k_j)$$

$$(k_i, k_s)$$

$$(k_l, k_r)$$

Przykład...

Pary zgodne: Pary sprzeczne:

0,3
0,4
0,6
1,3
1,4
1,5
1,6
2,5
2,7
3,4
3,6
4,5

4,6

5,7

0,1
0,2
0,5
0,7
1,2
1,7
2,3
2,4
2,6
3,5
3,7
4,7
5,6
6,7

Graf zgodności - przykład

$$(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (2,3), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,8), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), (6,7), (6,8), (7,8), \\S_1$$

$$MKZ1 = {S_1, S_2, S_5, S_6, S_7}$$

$$MKZ2 = \{S_1, S_4, S_6, S_7\}$$

$$MKZ3 = \{S_5, S_6, S_7, S_8\}$$

$$MKZ4 = \{S_4, S_6, S_7, S_8\}$$

MKZ5 =
$$\{S_3, S_5, S_6, S_8\}$$

MKZ6 =
$$\{S_3, S_4, S_6, S_8\}$$

$$MKZ7 = \{S_1, S_2, S_3, S_5, S_6\}$$

$$MKZ8 = {S_1, S_3, S_4, S_6}$$

Jak zauważyć rozwiązanie z grafu zgodności!

Graf niezgodności - przykład

$$(S_2, S_4)$$

$$(S_2, S_8)$$

$$(S_3, S_7)$$

$$(S_4, S_5)$$

Teraz łatwiej!

MKZ1 =
$$\{S_1, S_2, S_5, S_6, S_7\}$$

MKZ6 =
$$\{S_3, S_4, S_6, S_8\}$$

 S_6

 S_3

Zadanie domowe

Warto przeczytać rozdział 2 z książki SUL.

Są tam inne przykłady obliczania MKZ.

...a dla treningu można obliczyć zadanie 2 str. 39