VLSI PROJECT SMART HOME

3/1/2022

PROPOSED TO: SANDRA WAHEED

Done by:

Name	Sec	B.N.
Menna Allah Ahmed Ali	2	30
Nada Elsayed Mohamed	2	33
Raghad Khaled AbdElhay	/ 1	31
Reem Emad Ramadan	1	34

WORK OVERVIEW

We have done many scenarios until we have reached the best design for the overall equation:

1. combined56lfElse

This is the chosen design.

Moore Finite State Machine is used

We combined the states 5(heater) and state 6(cooler) together

pre-synthesis combined56lfElse

post-synthesis combined56lfElse

2. combined56

This design has same idea as *Combined56lfElse* but here we used Case When instead of Else If which differs in all aspects(area-slack-power).

Combined56lfElse gives better overall result over combined56 because When Case has big mux

When case hardware

If Else hardware

These two figures show Case when has less area but gives low slack and vice versa for the if else

So case has better area but worse slack so gives less time while if else has bigger area with better slack.

So briefly combined56_ifelse is best than combine_56; why?

because combined56_ifelse uses smaller multiplexers each one does its process in a small time and they all parallel so the total arrival time, in the end, is smaller than one big mux does all process.

the trade-off here was time vs area and power; but why do we choose the time?

cause the overall equation spots on time; because time has the larger value between all other values so even it scaled to 30% and area scaled to 50% but still time has the bigger value

3. combined56TriBuffer

Instead of using muxes in *Combined56*, we implemented tristate buffers to put signals with 0s in signals and Zs in other states, we imagined that it will have less area but this wasn't achieved

4. combined56 v1

Instead of using two processes in *Combined56*, we used one process to see if it would give better effect but it wasn't

5. separate56

We separated states 5(heater) and 6(cooler), each as an independent state, this wasn't efficient as it costs more hardware while they are both related to temperature, so it was better to combine them.

6. separate56lfElse

This design has same idea as *separate56* but here we used Else If instead of Case When which differs in aspects (area -power) but slack is not better so still its overall wasn't better than *combined56lfElse*

7. keep_H_C_value

We still using Moore and states 5 and 6 are combined as one sensor but we keep the values of heater and cooler however the state is, don't put high impedance(Z) on them. They are only changed at states 5 and 6 if they need to be changed.

8. Keep_H_C_valueIfElse

This design has same idea as *Keep_H_C_value* but here we used Else If instead of Case When seeking for better result and its overall was better than *Keep_H_C_value* but still not better than *combined56lfElse*

9. Mealy

All previous designs were using Moore, we tried to use Mealy here but it gives very big area and very small slack so subsequently it gives worst overall value.

STATISTICS FOR ALL DESIGNS

Best design is highlighted

Overall is calculated using the following equation:

 $0.5*Movable\ Cell\ Area\ in\ squm+0.3*(clock\ period\ in\ ps-worst\ case\ slack\ in\ ps)+0.2*total\ power\ in\ uw$

Clock Period = 1500 ps

Design Name	Movable Area (squm)	Worst Slack (ps)	Total Power (uW)	Overall
combined56	60	469.2	113.894569	362.0189137
combined56lfElse	68	<mark>521.9</mark>	<mark>146.587</mark>	356.7474
combined56TriBuffer	75	336.5	157.07912	417.965824
combined56_v1	66	225.7	151.430786	445.57615719999995
Mealy	80	20.7	226.08139	529.006278
keep_H_C_value	70	467.5	101.418640	365.033728
keep_H_C_value_ifElse	69	540.9	142.133652	350.6567304
separate56	72	459.2	154.296753	379.0993506
seperate56lfElse	66	456.7	142.144745	374.418949

ALL FOLLOWING IS FOR COMBINED56IFELSE DESIGN

DESIGN SCHEMA

SCHEMATIC OF THE DESIGN AFTER SYNTHESIS

CHIP SCHEMATIC

Chip before routing

Chip after routing

Routing only

synthesis reports

design.rpt

Report Physical info:			
	-+	+	
	Area (squm) Leakage (uW)		
	combined56 ifelse	-	
Total Instances		68	1.537
Macros	9		0.000
Pads	9	91	0.000
Phys	0	9	0.000
Blackboxes	9	9	0.000
Cells	58	68	1.537
Buffers	0		0.000
Inverters	7	4	0.100
Clock-Gates	9	9	0.000
Combinational	48	51	1.199
Latches	0	9	0.000
FlipFlops	3	14	0.237
Single-Bit FF	3	14	0.237
Multi-Bit FF	0	9	0.000
Clock-Gated	0	1	
Bits	3	14	0.237
Load-Enabled	0	1	
Clock-Gated	0	1	
Tristate Pin Count	0	1	
Physical Info	Placed	1	
Chip Size (mm x mm)	0.072 x 0.072	5113	
Fixed Cell Area	1 1	9	
Phys Only	0	9	
Placeable Area	1 1	128	
Movable Cell Area	1 1	68	
Utilization (%)	53	1	
Chip Utilization (%)	53	1	
Total Wire Length (mm	0.794	1	
Longest Wire (mm)	0.037	1	
Average Wire (mm)	0.036	1	
	-++	+	

power.rpt

warning: No library characterized for (process = 1.00 voltage = 0.85 temperature = 25.00) can be found in the database for power domain '/PD_TOP' [NL-174] Report Power (instances with prefix '*' are included in total) :

	+	+	+	+	
	Instance	Internal Power(uw)	Switching Power(uw)	Leakage Power(uw)	Total Power(uw)
	+	+	+	+	
	*state_reg[2]	1.957324	10.207888	0.079112	12.244324
	*state_reg[1]	2.211625	11.522768	0.079112	
	*state_reg[0]	2.586482	8.104404	0.079112	10.769998
	*i_0_0_0	0.274646	1.781972	0.021200	2.077817
	*i_0_0_1	0.451280	2.247871	0.026832	2.725983
	*i_0_0_2	0.122470	0.786647	0.021200	0.930317
	*i_0_0_3		0.882597	0.026832	
	*i_0_0_4	0.457787	2.608953	0.021200	3.087940
	*i_0_0_5	0.102919	0.860898	0.021200	0.985016
	*i_0_0_6	0.427156	0.321039	0.021200	0.769395
	*i_0_0_7	0.661561	0.896709	0.034566	1.592836
	*i_0_0_8	0.441136	0.585723	0.021200	1.048058
	*i_0_0_9	0.670947	0.974232	0.027858	1.673037
	*i_0_0_10	0.277417	0.324623	0.032601	0.634642
	*i_0_0_11	0.569586	0.925564	0.027858	1.523009
	*i_0_0_12		0.913637	0.017393	1.508048
	*i_0_0_13		0.692029	0.022619	
	*i_0_0_14	0.651717	0.608611	0.034026	1.294355
	*i_0_0_15		0.628325	0.022039	
	*i_0_0_16	0.636351	0.866163	0.027858	1.530372
	*i_0_0_17		0.726867	0.022619	1.272388
	*i_0_0_18		0.898769	0.022619	
	*i_0_0_19	0.453690	1.882601	0.021200	2.357491
	*i_0_0_20	0.594893	3.189688	0.021200	3.805780
	*i_0_0_21	0.477128	0.298464	0.027858	0.803450
	*i_0_0_22		0.781512	0.022039	1.480262
	*i_0_0_23		0.750171	0.022619	
	*i_0_0_24	0.560371	0.917620	0.027858	1.505850
	*i_0_0_25		0.874056	0.018105	
	*i_0_0_26	0.359140	0.616738	0.018105	0.993983
	*i_0_0_27		0.736928 0.740835	0.018105	
	*i_0_0_28		0.686054	0.017393	
	*i_0_0_29 *i_0_0_30		0.800621	0.026832 0.027858	1.160222 1.478437
	*i_0_0_30 *i_0_0_31		2.774698	0.036441	
33	1.1_0_0_31	0.0223//	2.774030	0.030441	3.033/10
6	*i_0_0_32	0.34148	1 0.2168	68 0.02	7858 0.58620
		0.41423			2612 0.936566
		0.42272			1200 2.22937
		0.55910			4026 1.29807
		0.42271			4566 1.530899
		0.37122			7393 3.24973
		0.83245		0.03	5928 2.27146
3	*i_0_0_39	0.38948	6 1.3686	0.02	7858 1.78535
1	*i_0_0_40	0.14553	2 0.8817	0.02	1200 1.04843
5	*i_0_0_41	0.17619	8 0.6163	82 0.01	7393 0.80997
5	*i_0_0_42	1.03855	4 3.7459	65 0.02	7858 4.81237
7	*i_0_0_43	1.18701	8 1.1031	.67 0.02	5066 2.31525
3	*i_0_0_44	0.70458	2 0.6288	89 0.02	4415 1.35788
	*i_0_0_45	0.97848			7858 6.86818
	*i_0_0_46	0.50223			6832 1.15855
	*i_0_0_47	0.54952			8105 1.21949
	*i_0_0_48				4353 3.87503
		0.92841			
	*i_0_0_49	1.02913			4353 2.50120
	*i_0_0_50	0.84587			4353 5.21753
	*i_0_0_51	0.28728			4353 4.55786
	*i_0_0_52	0.24546			4353 4.29020
	*i_0_0_53	0.21733	7 3.2308	95 0.01	4353 3.46258
8	*i_0_0_54	1.03579	6 1.370	55 0.01	4353 2.42050
9		l	1	I	
_					
	*TOTAL	35.97707	0 109.0735	40 1.53	6510 146.58711

Path.rpt

Report Path Groups:					
	Path Group	Weight C	ritical Wo	orst lack(ps)	
1	default		0.0	1083.0	
2	[I2R	1.000	0.0	521.9	
3	120	1.000	0.0	ill>	
4	R20	1.000	0.0	810.4	
	-+	+-			