安徽大学 2020-2021 学年第一学期分析化学期末考试试卷 (B 卷)

出卷人: 金葆康

I 选择题 (15小题×1分=15分)	
1.分析化学就其性质而言. 是一门的科学.	
A. 获取物质的物理性质 B. 获取物质的化学性质 C. 获取物质的化学组成与结构信息 D. 获取物质的性质信息	
2.以下各项措施中, 不能减少系统误差的是	
\mathbf{A} . 进行仪器校准 \mathbf{B} . 做对照试验 \mathbf{C} . 增加平行测定次数 \mathbf{D} . 做空白实验	
3.等体积混合 pH=2.00 的 HCl 和 pH=11.00 的 NaOH 溶液所得的溶液 pH 为	
A. 2.35 B. 3.35 C. 4.35 D. 5.35	
4.现有 50.00mL 的某二元酸 H_2B (已知 $c(H_2B)$ =0.1000moL/L). 用0.1000 mol/L NaOH溶液滴定. 在加入 25.00mL NaO 溶液后, pH =4.80; 加入50.00mL NaOH 溶液(即在第一化学计量点)后, pH =7.15, 则 pK_{a_2} =	Н
A. 4.8 B. 9.5 C. 7.2 D. 6.0	
5.用 0.1000 mol/L HCl 滴定等浓度的NH ₃ 溶液至化学计量点时的质子平衡式为	
$\mathbf{A}.[\mathrm{H}^{+}] = [\mathrm{OH}-] + [\mathrm{NH}_{3}] \mathbf{B}.[\mathrm{NH}_{4}{}^{+}] + [\mathrm{H}^{+}] = [\mathrm{OH}-] \mathbf{C}.[\mathrm{H}^{+}] = [\mathrm{OH}-] + [\mathrm{Cl}-] \mathbf{D}.[\mathrm{H}^{+}] + [\mathrm{NH}_{4}{}^{+}] = [\mathrm{OH}-] + [\mathrm{Cl}-] \mathbf{C}.[\mathrm{H}^{+}] = [\mathrm{OH}-] + [\mathrm{Cl}-] + [\mathrm{Cl}-] + [\mathrm{Cl}-] + [\mathrm{Cl}-] + [\mathrm{Cl}-] + [\mathrm{Cl}-]$	-]
6.在 pH=5 的 EDTA 缓冲溶液中, 以 0.02000 mol/L EDTA 滴定同浓度Pb ²⁺ , 化学计量点时,pY=(己知 pH= 时 $\lg \alpha_{\rm Y(H)} = 6.4, \lg K_{\rm PbY} = 1.80)$	=5
A. 6.8 B. 7.2 C. 10.0 D. 13.2	
$7.(1)$ 用 $0.02~{ m mol/L}$ 的 ${ m KMnO_4}$ 溶液滴定 $0.02~{ m mol/L}$ 的 ${ m Fe_2}^+$ 溶液;(2) 用 $0.02~{ m mol/L}$ 的 ${ m KMnO_4}$ 溶液滴定 $0.02~{ m mol/L}$ 的 ${ m Fe_2}^+$ 溶液. 上述两种情况下其滴定突跃为	$/\mathrm{L}$
A. 一样大 B. (1)>(2) C. (1)<(2) D. 无法判断	
8.以下银量法需要采用返滴定方式测定的是	
A. Mohr 法测定Cl ⁻ B. 吸附指示剂法测定Cl ⁻ C. Volhard 法测定Cl ⁻ D. Mohr 法测定Br ⁻	
$9. { m Mohr}$ 法测定 ${ m Cl}^-$ 含量时, 要求介质的 ${ m pH}$ 值在 $6.5{\sim}10$ 范围内, 若 ${ m pH}$ 超出范围, 则会	
A. AgCl 沉淀不完全 B. AgCl 吸附Cl⁻增强 C. Ag₂CrO₄ 沉淀不易形成 D. AgCl 沉淀易胶溶	
$10.{ m Ag_2CrO_4}$ 室温下包和溶解度为 $1.32{ imes}10^{-4}~{ m mol/L}$, 则其 $K_{ m sp}{=}$	
$\mathbf{A.}1.7 \times 10^{-8}$ $\mathbf{B.}9.2 \times 10^{-12}$ $\mathbf{C.}3.5 \times 10^{-8}$ $\mathbf{D.}2.3 \times 10^{-12}$	
11.下列要求中,不属于重量分析对称量形式的要求的是	
A. 相对摩尔质量要大 B. 沉淀颗粒要大 C. 性质稳定 D. 组成要与化学式完全符合	
12.相同质量的 $\mathrm{Fe^{3+}}$ 和 $\mathrm{Cd^{2+}}$ (摩尔质量分别为 55.85 和 112.4), 各用显色剂在同样体积溶液中显色, 用吸光光度法测度 前者用 $\mathrm{2cm}$ 比色皿, 后者用 $\mathrm{1cm}$ 比色皿, 测得的吸光度相同, 则两有色化合物的摩尔吸光系数:	定,
A. 基本相同 B. Fe ³⁺ 约为Cd ²⁺ 的两倍 C. Cd ²⁺ 约为Fe ³⁺ 的两倍 D. Cd ²⁺ 约为Fe ³⁺ 的四倍	

A. 氧化还原反应的完全程度 B. 氧化还原能力的大小 C. 氧化还原反应的方向 D. 氧化还原反应的反应速率

13.电极电势对判断氧化还原反应的性质非常重要, 但它不能判断_____.

\mathbf{A} . Ni^{2+} 形成了离子缔合物 \mathbf{B} . 溶液酸度降低了 \mathbf{C} . Ni^{2+} 形成的产物质量增大了 \mathbf{D} . Ni^{2+} 形成的产物中引入了疏水是	
A .NI 形成了离了编音物 B . 裕被酸反阵成了 C .NI 形成的 物质量增入了 D .NI 形成的 物平引入了疏水型 15 .对于难溶电解质 MA ,其溶度积为 $K_{\rm sp}$, M 和 A 在溶液中均存在副反应,若其副反应系数分别为 $\alpha_{\rm M}$ 和 $\alpha_{\rm A}$,则非解度可表述为	
$\mathbf{A.}\sqrt{K_{\mathrm{sp}}lpha_{M}} \qquad \mathbf{B.}\sqrt{K_{\mathrm{sp}}lpha_{A}} \qquad \mathbf{C.}\sqrt{K_{\mathrm{sp}}lpha_{M}lpha_{A}} \qquad \mathbf{D.}\sqrt{K_{\mathrm{sp}}rac{lpha_{M}}{lpha_{A}}}$	
II 填空题 (20空×1分=20分)	
16.选择酸碱指示剂的原则是使其变色点的 pH 处于滴定的 范围内, 所以指示剂的 p K_a 越接近 的 pH 值, 结果就越准确.	
$17.Na_2C_2O_4$ 水溶液的质子平衡式为	
18.由于利用化学反应不相同, 滴定分析法可分为,	分析
19.金属离子与 EDTA 的绝对稳定常数越大, 测定时允许的溶液 pH 值就越; 一般情况下, 能准确滴定单一离子的判别式为	^z M
20.在 1mol/L H_2SO_4 溶液中,用 $0.1000mol/L$ Ce^{4+} 标准溶液滴定 0.1000 mol/L Fe^{2+} 时,该滴定的电位突跃系为 到 化学计量点时,电极电位为 已知 $\varphi_{Ce^{4+}/Ce^{3+}}^{\ominus} = 1.44V, \varphi_{Fe^{3+}/Fe^{2+}}^{\ominus} = 0.68V.$	古围
21.KMnO ₄ 在强酸介质下被还原为,在强碱性介质中被还原为	
III 简答题 (5小题×6分=30分)	
22.为什么评价定量分析结果的优劣从精密度和准确度两个方面来衡量?两者是什么关系?如何保证分析方法的准确	度?
23.在滴定分析中常常使用基准物质,何为基准物质?作为基准物质须符合哪些标准?	
24.滴定分析对化学反应有哪些要求?	
25.AgCl 沉淀在 HCl 中的溶解度随 HCl 的浓度增大时先减小随后又增大, 最后超过其在纯水中的溶解度, 这是为什	么?
26.分光光度法是一种重要的定量分析方法, 合理选择参比溶液, 是准确定量分析的前提. 试简要说明, 在测量吸光度如何选择参比溶液?	[时,
IV 计算题 (4小题×10分=40分)	
27.计算下列各溶液的 pH:(1)0.10 mol/L NH ₄ Cl; (2)1 × 10 ⁻⁴ mol/L NaCN. 己知NH ₃ 的 $K_b=1.8\times 10^{-5}$,HCN 的 $K_a=6.2\times 10^{-10}$.	
28.计算 CaC_2O_4 :(1) 在水中的溶解度; (2) 在 0.010 mol/L (NH ₄) $_2C_2O_4$ 溶液中的溶解度. 已知 $K_{CaC_2O_4} = 2.0 \times 10^{-5}$	-9.
29.在pH=10.00的氨性缓冲溶液中,以铬黑T(EBT)为指示剂,用0.0200 mol/L EDTA滴定同浓度的Zn ²⁺ ,计算终点误定 已知 $\lg K_{\rm ZnY} = 16.5, pH=10.00$ 时, $\lg \alpha_{\rm Y(H)} = 0.45, \lg \alpha_{\rm Zn(NH_3)} = 5.0, \lg \alpha_{\rm Zn(OH)} = 2.4, pZn_{\rm ep}(EBT) = 12.2.$	垒.
$30.$ 浓度为 $25.5\mu g/50 mL$ 的 Cu^{2+} 溶液, 用双环己酮草酰二腙光度法进行测量, 于波长 $600 nm$ 处, 用 $2 cm$ 吸收池进行	亍测

定, 测得 T=50.5%, 求摩尔吸光系数 ε 和 Sandel 灵敏度 S. 己知 $M_{\rm Cu}{=}63.5{\rm g/mol.}$