1. LIMITS

LIMIT EXISTS: $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$

CONTINUITY: A real valued function f(x) is said to be continuous at x = a, if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$

DIFFERENTIABILITY: A function f(x) is said to be differentiable at x = a, if $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists.

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} \Leftrightarrow Left Slop = Right Slop \Leftrightarrow \lim_{h \to 0^+} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0^-} \frac{f(a + h) - f(a)}{h}$$

If f(x) and g(x) are two continuous/differentiable functions, then

- 1. $f(x) \pm g(x)$
- 2. f(x) * g(x)
- 3. $\frac{f(x)}{g(x)}$, where $g(x) \neq 0$

Are also continuous/differentiable functions.

INDETERMINANT FORMS:

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 * \infty, \infty - \infty, 1^{\infty}, 0^{0}, \infty^{\infty}, \infty^{0}, \mathbf{0}^{\infty}$$

L'HOSPITAL RULE:

If $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$ and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = L$. If $\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a} g(x) = \infty$ and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

- L'Hospital rule is a general method for evaluating the indeterminant forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$.
- L'Hospital rule can also be applied to other indeterminant forms by converting in to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ using appropriate algebraic transformations.

If $\lim_{x \to a} f(x)^{g(x)}$ is of 1^{∞} then, $\lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x)[f(x)-1]}$

STANDARD LIMITS:

$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$	$\lim_{x \to a} \frac{e^{mx} - 1}{x} = m$
$\lim_{x \to a} \frac{a^x - 1}{x} = \log a$	$\lim_{x \to a} \left(1 - \frac{a}{x} \right)^x = e^a$

If f(x) and g(x) are polynomial of degrees "m" and "n" respectively, $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} x^{m-n}$.

LIMITS OF FUNCTION OF TWO VARIABLE:

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along C_1 and If $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along C_2 , where $L_1 \neq L_2$ then $\lim_{(x,y)\to(a,b)} f(x,y) \text{ does not exists.}$

CONTINUITY OF TWO VARIABLE:

A function f(x, y) of two variables is called continuous at (a, b), if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$.