Computer Arithmetic

Victor Eijkhout

PCSE 2016

Integers

Ploating point numbers

- Floating point math
- 4 Examples
- More

Numbers in scientific computing

- Integers: ..., -2, -1, 0, 1, 2, ...
- Rational numbers: 1/3, 22/7: not often encountered
- Real numbers $0, 1, -1.5, 2/3, \sqrt{2}, \log 10, \dots$
- Complex numbers $1 + 2i, \sqrt{3} \sqrt{5}i, \dots$

Computers use a finite number of bits to represent numbers, so only a finite number of numbers can be represented, and no irrational numbers (even some rational numbers).

Table of Contents

- Integers
- 2 Floating point numbers
- 3 Floating point math
- 4 Examples
- More

Integers

Scientific computation mostly uses real numbers. Integers are mostly used for array indexing.

16/32/64 bit: short,int,long,long long in C, size not standardized, use sizeof(long) et cetera. (Also unsigned int et cetera)

INTEGER*2/4/8 Fortran

Negative integers

Use of sign bit: typically first bit

$$s \mid i_1 \dots i_n$$

Simplest solution: n>0, $\mathrm{fl}(n)=+1,i_1,\ldots i_{31}$, then $\mathrm{fl}(-n)=-1,i_1,\ldots i_{31}$

Problem: +0 and -0; also impractical in other ways.

Sign bit

bitstring	00 · · · 0	 01 · · · 1	10 · · · 0	 11 · · · 1
as unsigned int	0	 $2^{31}-1$	2^{31}	 $2^{32}-1$
as naive signed	0	 $2^{31}-1$	-0	 $-2^{31}+1$

Shifting

Interpret unsigned number n as n - B

bitstring	00 · · · 0	 01 · · · 1	10 · · · 0	 11 · · · 1
as unsigned int	0	 $2^{31}-1$	2^{31}	 $2^{32}-1$
as shifted int	-2^{31}	 -1	0	 $2^{31}-1$

2's complement

Better solution: if $0 \le n \le 2^{31} - 1$, then $\mathrm{fl}(n) = 0, i_1, \dots, i_{31}$; $1 \le n \le 2^{31}$ then $\mathrm{fl}(-n) = \mathrm{fl}(2^{32} - n)$.

bitstring	00 · · · 0		01 · · · 1	10 · · · 0	 11 · · · 1
as unsigned int	0		$2^{31}-1$	2^{31}	 $2^{32}-1$
as 2's comp. integer	0	• • •	$2^{31}-1$	-2^{31}	 -1

Subtraction in 2's complement

Subtraction m - n is easy.

- Case: m < n. Observe that -n has the bit pattern of $2^{32} n$. Also, $m + (2^{32} n) = 2^{32} (n m)$ where $0 < n m < 2^{31} 1$, so $2^{32} (n m)$ is the 2's complement bit pattern of m n.
- Case: m > n. The bit pattern for -n is $2^{32} n$, so m + (-n) as unsigned is $m + 2^{32} n = 2^{32} + (m n)$. Here m n > 0. The 2^{32} is an overflow bit; ignore.

Table of Contents

- Integers
- Ploating point numbers
- 3 Floating point math
- 4 Examples
- More

Floating point numbers

Analogous to scientific notation $x = 6.022 \cdot 10^{23}$:

$$x = \pm \sum_{i=0}^{t-1} d_i \beta^{-i} \beta^e$$

- sign bit
- ullet eta is the base of the number system
- $0 \le d_i \le \beta 1$ the digits of the *mantissa*: with the *radix point* mantissa $< \beta$
- ullet $e\in [L,U]$ exponent, stored with bias: unsigned int where $\mathrm{fl}(L)=0$

Examples of floating point systems

	β	t	L	U
IEEE single (32 bit)	2	24	-126	127
IEEE double (64 bit)	2	53	-1022	1023
Old Cray 64bit	2	48	-16383	16384
IBM mainframe 32 bit	16	6	-64	63
packed decimal	10	50	-999	999

BCD is tricky: 3 decimal digits in 10 bits

(we will often use $\beta=10$ in the examples, because it's easier to read for humans, but all practical computers use $\beta=2$)

Internal processing in 80 bit

Limitations

Overflow: more than $\beta(1-\beta^{-t+1})\beta^U$ or less than $\beta(1-\beta^{-t+1})\beta^L$

Underflow: numbers less than $\beta^{-t+1} \cdot \beta^L$

Normalized numbers

```
Require first digit in the mantissa to be nonzero. Equivalent: mantissa part 1 \le x_m < \beta
```

Unique representation for each number, (do you see a problem?)

(do you see a problem?)

also: in binary this makes the first digit 1, so we don't need to store that.

With normalized numbers, underflow threshold is $1 \cdot \beta^L$; 'gradual underflow' possible, but usually not efficient.

IEEE 754

sign	exponent	mantissa
s	$e_1 \cdots e_8$	$s_1 \dots s_{23}$
31	30 · · · 23	22 · · · 0

$(e_1 \cdots e_8)$	numerical value
$(0\cdots 0)=0$	$\pm 0.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 01)=1$	$\pm 1.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 010)=2$	$\pm 1.s_1 \cdots s_{23} \times 2^{-125}$
(011111111) = 127	$\pm 1.s_1 \cdots s_{23} \times 2^0$
(10000000) = 128	$\pm 1.s_1 \cdots s_{23} \times 2^1$
(111111110) = 254	$\pm 1.s_1 \cdots s_{23} \times 2^{127}$
(111111111) = 255	$\pm\infty$ if $s_1\cdots s_{23}=0$, otherwise NaN

Table of Contents

- 1 Integers
- 2 Floating point numbers
- Floating point math
- 4 Examples
- More

Representation error

Error between number x and representation \tilde{x} : absolute $x - \tilde{x}$ or $|x - \tilde{x}|$

relative
$$\frac{x-\tilde{x}}{x}$$
 or $\left|\frac{x-\tilde{x}}{x}\right|$

Equivalent:
$$\tilde{x} = x \pm \epsilon \Leftrightarrow |x - \tilde{x}| \le \epsilon \Leftrightarrow \tilde{x} \in [x - \epsilon, x + \epsilon].$$

Also:
$$\tilde{x} = x(1+\epsilon)$$
 often shorthand for $\left|\frac{\tilde{x}-x}{x}\right| \leq \epsilon$

Example

Decimal,
$$t=3$$
 digit mantissa: let $x=1.256$, $\tilde{x}_{\rm round}=1.26$, $\tilde{x}_{\rm truncate}=1.25$

Error in the 4th digit: $|\epsilon| < \beta^{t-1}$ (this example had no exponent, how about if it does?)

Machine precision

Any real number can be represented to a certain precision: $\tilde{x} = x(1+\epsilon)$ where

truncation:
$$\epsilon = \beta^{-t+1}$$

rounding: $\epsilon = \frac{1}{2}\beta^{-t+1}$

This is called *machine precision*: maximum relative error.

32-bit single precision: $mp \approx 10^{-7}$ 64-bit double precision: $mp \approx 10^{-16}$

Maximum attainable accuracy.

Another definition of machine precision: smallest number ϵ such that $1+\epsilon>1.$

Addition

- align exponents
- add mantissas
- 3 adjust exponent to normalize

Example: $1.00 + 2.00 \times 10^{-2} = 1.00 + .02 = 1.02$. This is exact, but what happens with $1.00 + 2.55 \times 10^{-2}$?

Example:
$$5.00 \times 10^1 + 5.04 = (5.00 + 0.504) \times 10^1 \rightarrow 5.50 \times 10^1$$

Any error comes from truncating the mantissa: if x is the true sum and \tilde{x} the computed sum, then $\tilde{x}=x(1+\epsilon)$ with $|\epsilon|<10^{-2}$

The 'correctly rounded arithmetic' model

Assumption (enforced by IEEE 754):

The numerical result of an operation is the rounding of the exactly computed result.

$$fl(x_1 \odot x_2) = (x_1 \odot x_2)(1+\epsilon)$$

where $\odot = +, -, *, /$

Note: this holds only for a single operation!

Guard digits

Correctly rounding is not trivial, especially for subtraction.

Example:
$$t = 2, \beta = 10$$
: $1.0 - 9.5 \times 10^{-1}$, exact result $0.05 = 5.0 \times 10^{-2}$.

- Simple approach: $1.0 9.5 \times 10^{-1} = 1.0 0.9 = 0.1 = 1.0 \times 10^{-1}$
- Using 'guard digit':

$$1.0 - 9.5 \times 10^{-1} = 1.0 - 0.95 = 0.05 = 5.0 \times 10^{-2}$$
, exact.

In general 3 extra bits needed.

Associativity

Computate 4 + 6 + 7 in one significant digit.

Evaluation left-to-right gives:

$$\begin{array}{c} (4\cdot 10^0+6\cdot 10^0)+7\cdot 10^0 \Rightarrow 10\cdot 10^0+7\cdot 10^0 & \text{addition} \\ \Rightarrow 1\cdot 10^1+7\cdot 10^0 & \text{rounding} \\ \Rightarrow 1.0\cdot 10^1+0.7\cdot 10^1 & \text{using guard digit} \\ \Rightarrow 1.7\cdot 10^1 \\ \Rightarrow 2\cdot 10^1 & \text{rounding} \end{array}$$

On the other hand, evaluation right-to-left gives:

$$\begin{array}{lll} 4\cdot 10^0 + \left(6\cdot 10^0 + 7\cdot 10^0\right) \Rightarrow 4\cdot 10^0 + 13\cdot 10^0 & \text{addition} \\ & \Rightarrow 4\cdot 10^0 + 1\cdot 10^1 & \text{rounding} \\ & \Rightarrow 0.4\cdot 10^1 + 1.0\cdot 10^1 & \text{using guard digit} \\ & \Rightarrow 1.4\cdot 10^1 \\ & \Rightarrow 1\cdot 10^1 & \text{rounding} \end{array}$$

Error propagation under addition

Let
$$s = x_1 + x_2$$
, and $x = \tilde{s} = \tilde{x}_1 + \tilde{x}_2$ with $\tilde{x}_i = x_i(1 + \epsilon_i)$

$$\tilde{x} = \tilde{s}(1 + \epsilon_3)$$

$$= x_1(1 + \epsilon_1)(1 + \epsilon_3) + x_2(1 + \epsilon_2)(1 + \epsilon_3)$$

$$= x_1 + x_2 + x_1(\epsilon_1 + \epsilon_3) + x_2(\epsilon_2 + \epsilon_3)$$

$$\Rightarrow \tilde{x} = s(1 + 2\epsilon)$$

 \Rightarrow errors are added

Assumptions: all ϵ_i approximately equal size and small;

$$x_i > 0$$

Multiplication

- add exponents
- multiply mantissas
- adjust exponent

Example:

$$.123 \times .567 \times 10^{1} = .069741 \times 10^{1} \rightarrow .69741 \times 10^{0} \rightarrow .697 \times 10^{0}$$

What happens with relative errors?

Table of Contents

- Integers
- 2 Floating point numbers
- Floating point math
- 4 Examples
- More

Subtraction

Correct rounding only applies to a single operation.

Example: $1.24-1.23=0.01 \rightarrow 1. \times 10^{-2}$: result is exact, but only one significant digit.

What if 1.24 = fl(1.244) and 1.23 = fl(1.225)? Correct result 1.9×10^{-2} ; almost 100% error.

- Cancellation leads to loss of precision
- subsequent operations with this result are inaccurate
- this can not be fixed with guard digits and such
- ullet \Rightarrow avoid subtracting numbers that are likely close.

ABC-formula

Example: $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ suppose b > 0 and $b^2 \gg 4ac$ then the '+' solution will be inaccurate Better: compute $x_- = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ and use $x_+ \cdot x_- = -c/a$.

Serious example

Evaluate $\Sigma_{n=1}^{10000}\frac{1}{n^2}=1.644834$ in 6 digits: machine precision is 10^{-6} in single precision

First term is 1, so partial sums are \geq 1, so $1/n^2 < 10^{-6}$ gets ignored, \Rightarrow last 7000 terms (or more) are ignored, \Rightarrow sum is 1.644725: 4 correct digits

Solution: sum in reverse order; exact result in single precision Why? Consider ratio of two terms:

$$\frac{n^2}{(n-1)^2} = \frac{n^2}{n^2 - 2n + 1} = \frac{1}{1 - 2/n + 1/n^2} \approx 1 + \frac{2}{n}$$

with aligned exponents:

$$n-1$$
: $.00 \cdot \cdot \cdot 0$ $10 \cdot \cdot \cdot 00$
 n : $.00 \cdot \cdot \cdot 0$ $10 \cdot \cdot \cdot 01$ $0 \cdot \cdot \cdot 0$
 $k = \log(n/2)$ positions

The last digit in the smaller number is not lost if $n < 2/\epsilon$

Victor Eijkhout

Another serious example

Previous example was due to finite representation; this example is more due to algorithm itself.

Consider
$$y_n = \int_0^1 \frac{x^n}{x-5} dx = \frac{1}{n} - 5y_{n-1}$$
 (monotonically decreasing) $y_0 = \ln 6 - \ln 5$.

In 3 decimal digits:

$y_0 = \ln 6 - \ln 5 = .182 322 \times 10^1 \dots$ 1.82	
$y_1 = .900 \times 10^{-1} \tag{884}$	
$y_2 = .500 \times 10^{-1} \tag{0580}$	
$y_3 = .830 \times 10^{-1}$ going up? .0431	
$y_4 =165$ negative? .0343	

Reason? Define error as $\tilde{y}_n = y_n + \epsilon_n$, then

$$\tilde{y}_n = 1/n - 5\tilde{y}_{n-1} = 1/n + 5n_{n-1} + 5\epsilon_{n-1} = y_n + 5\epsilon_{n-1}$$

so $\epsilon_n \geq 5\epsilon_{n-1}$: exponential growth.

Stability of linear system solving

Problem: solve Ax = b, where b inexact.

$$A(x + \Delta x) = b + \Delta b.$$

Since Ax = b, we get $A\Delta x = \Delta b$. From this,

$$\left\{ \begin{array}{ll}
Ax &= b \\
\Delta x &= A^{-1} \Delta b
\end{array} \right\} \Rightarrow \left\{ \begin{array}{ll}
\|A\| \|x\| &\geq \|b\| \\
\|\Delta x\| &\leq \|A^{-1}\| \|\Delta b\|
\end{array} \right.$$

$$\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \|A\| \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|}$$

'Condition number'. Attainable accuracy depends on matrix properties

Consequences of roundoff

Multiplication and addition are not associative: problems for parallel computations.

Operations with "same" outcomes are not equally stable: matrix inversion is unstable, elimination is stable

Table of Contents

- 1 Integers
- 2 Floating point numbers
- 3 Floating point math
- 4 Examples
- More

Complex numbers

Two real numbers: real and imaginary part.

Storage:

- Store real/imaginary adjacent: easy to pass address of one number
- Store array of real, then array of imaginary. Better for stride 1 access if only real parts are needed. Other considerations.

Other arithmetic systems

Some compilers support higher precisions.

Arbitrary precision: GMPlib

Interval arithmetic