WHAT IS CLAIMED IS:

3

4

signals P(0) to P(K-1).

1	1. A method of generating a non-integer frequency divided clock signal
2	comprising the steps of:
3	a) generating a number K of output signal phases P(0) to P(K-1);
4	b) outputting a present value of an integer index in response to a logic
5	transition of a shift clock signal;
6	c) selecting one of the K output signal phases P(0) to P(K-1) corresponding to
7	the present value of the integer index as a clock output signal using a glitch free clock
8	selector circuit;
9	d) clocking a synchronous divide by N counter with the clock output signal
10	generating the non-integer frequency divided clock signal and the shift clock signal;
11	e) determining when the synchronous divide by N counter has been clocked N
12	times by the clock output signal, wherein the shift clock signal is generated by a
13	transition of the clock output signal following an Nth transition of the clock output
14	signal;
15	f) receiving an integer fractional divisor having a value less than (K-1); and
16	g) adding the value of the integer fractional divisor to the present value of the
17	integer index in a modulo (K-1) adding circuit generating a new present value of the
18	integer index.
1	2. The method of claim 1, wherein the non-integer frequency divided clock
2	signal is used as a feedback clock signal of a phase locked loop circuit having a

multiphase voltage controlled oscillator generating the K of equally phased output

- 1 3. The method of claim 1, wherein the K output signal phases P(0) to P(K-1)
- each have a period T and are progressively phase shifted by an equal amount T/K.

1	4. A circuit for generating a non-integer frequency divided clock signal that is
2	frequency divided from a clock output signal comprising:
3	a multiple phase clock having a number K of output signal phases P(0) to
4	P(K-1);
5	circuitry for outputting a present value M of an integer index in response to a
6	logic transition of a shift clock signal;
7	glitch free clock selector circuitry for selecting one of the K output signal
8	phases P(M) as a clock output signal in response to the present value M of the integer
9	index;
10	a synchronous divide by N counter clocked by the clock output signal thereby
11	generating the frequency divided clock signal and the shift clock signal;
12	circuitry in the divide by N counter for determining when the divide by N
13	counter has been clocked N times by the clock output signal, wherein the shift clock
14	signal is generated by a transition of the clock output signal on a transition following
15	an Nth transition of the clock output signal;
16	circuitry for receiving an integer fractional divisor having a value S having a
17	value less than (K-1); and
18	modulo (K-1) adding circuitry for adding the value S to a value of the integer
19	index generating the present value M.

5.

1

1

2

3

4

The circuit of claim 4, wherein the glitch free clock selector circuitry 6. comprises a K to one Phase multiplexer (MUX) receiving the K clock phase signals and generating a Phase MUX output as P(M), a selected one of the K clock phase

The circuit of claim 4, wherein the non-integer value is (N+S/K).

- signals, in response to a K bit MUX select signal, wherein only one of the K bits is a
- 5 logic one corresponding to the present value M of the integer index.

1	7. The circuit of claim 4, wherein the modulo (K-1) adding circuitry comprises:
2	circuitry for converting S to a K bit phase select signal wherein one of the K
3	bits is a logic one and K corresponds to the value S;
4	a number of K (K to one) Select MUXs, wherein each input of the K Select
5	MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering
6	of the coupling for each of the K Select MUXs is rotationally shifted by one from an
7	adjacent Select MUX; and
8	a K bit register, wherein each register bit stores a state of the output of each of
9	the K Select MUXs in response to the shift clock signal and the outputs of the K bit
10	register form the K bit MUX select signal.
1	8. The circuit of claim 6, wherein the glitch free clock selector circuitry further
2	comprises a logic circuit for generating the clock output signal as a logic combination
3	of the Phase MUX output and a sequential gating signal that depends on a previous
4	state of the clock output signal.
1	9. The circuit of claim 4, wherein the K output signal phases P(0) to P(K-1) each

have a period T and are progressively phase shifted by an equal amount T/K.

2

9 0

10. A phase locked loop circuit for generating a phase clock signal with a frequency that is a non-integer multiple of a reference clock signal comprising:

a multiphase voltage controlled oscillator (MVCO) generating the phase clock signal as one of a number K of output signal phases P(0) to P(K-1) and the frequency of the phase clock signal is controlled by a control voltage;

a phase frequency detector for comparing a frequency divided clock signal to the reference clock signal and generating a phase/frequency error signal;

circuitry for converting the phase/frequency error signal to the control voltage; and

division circuitry for generating the frequency divided clock signal by frequency dividing a selected one P(M) of the K equally phased output signals by a non-integer value, wherein the division circuitry has circuitry for outputting a present value M of an integer index in response to a logic transition of a shift clock signal, glitch free clock selector circuitry for selecting one of the K equally phased output signals P(M) as a clock output signal in response to the present value M of the integer index, a synchronous divide by N counter clocked by the clock output signal thereby generating the frequency divided clock signal and the shift clock signal, circuitry in the divide by N counter for determining when the divide by N counter has been clocked N times by the clock output signal, wherein the shift clock signal is generated by a transition of the clock output signal on a transition following an Nth transition of the clock output signal, circuitry for receiving an integer fractional divisor having a value S having a value less than (K-1), and modulo (K-1) adding circuitry for adding the value S to a value of the integer index generating the present value M.

11. The phase locked loop circuit of claim 10, wherein the non-integer multiple has a value (N+S/K).

1	12. The phase locked loop circuit of claim 10, wherein the glitch free clock
2	selector circuitry comprises a K to one Phase multiplexer (MUX) receiving the K
3	clock phase signals and generating a Phase MUX output as P(M), a selected one of
4	the K clock phase signals, in response to a K bit MUX select signal, wherein only one
5	of the K bits is a logic one corresponding to the present value M of the integer index.
1	13. The phase locked loop circuit of claim 10, wherein the modulo (K-1) adding
2	circuitry comprises:
3	circuitry for converting S to a K bit phase select signal wherein one of the K
4	bits is a logic one and K corresponds to the value S;

a number of K (K to one) Select MUXs, wherein each input of the K Select MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering of the coupling for each of the K Select MUXs is rotationally shifted by one from an adjacent Select MUX; and

a K bit register, wherein each register bit stores a state of the output of each of the K Select MUXs in response to the shift clock signal and the outputs of the K bit register form the K bit MUX select signal.

- 14. The phase locked loop circuit of claim 12, wherein the glitch free clock selector circuitry further comprises a logic circuit for generating the clock output signal as a logic combination of the Phase MUX output and a sequential gating signal that depends on a previous state of the clock output signal.
- 1 15. The phase locked loop circuit of claim 10, wherein the K output signal phases P(0) to P(K-1) each have a period T and are progressively phase shifted by an equal amount T/K.

1	16. A data processing system comprising:
2	a central processing unit (CPU) clocked by a CPU clock signal;
3	a random access memory (RAM);
4	a read only memory (ROM);
5	an I/O adapter;
6	a bus system coupling said CPU to said ROM, said communications adapter,
7	said I/O adapter, and said RAM, wherein the CPU clock signal is generated by phase
8	locked loop circuitry as a non-integer multiple of a reference clock signal, the phase
9	locked loop circuitry having a multiphase voltage controlled oscillator (MVCO)
10	generating the CPU clock signal as one of a number K of output signal phases P(0) to
11	P(K-1) and the frequency of the CPU clock signal is controlled by a control voltage;
12	a phase frequency detector for comparing a frequency divided clock signal to
13	the reference clock signal and generating a phase/frequency error signal;
14	circuitry for converting the phase/frequency error signal to the control voltage;
15	and
16	division circuitry for generating the frequency divided clock signal by
17	frequency dividing a selected one P(M) of the K equally phased output signals by a
18	non-integer value, wherein the division circuitry has circuitry for outputting a present
19	value M of an integer index in response to a logic transition of a shift clock signal,
20	glitch free clock selector circuitry for selecting one of the K equally phased output
21	signals P(M) as a clock output signal in response to the present value M of the integer
22	index, a synchronous divide by N counter clocked by the clock output signal thereby
23	generating the frequency divided clock signal and the shift clock signal, circuitry in
24	the divide by N counter for determining when the divide by N counter has been
25	clocked N times by the clock output signal, wherein the shift clock signal is generated
26	by a transition of the clock output signal on a transition following an Nth transition of

the clock output signal, circuitry for receiving an integer fractional divisor having a value S having a value less than (K-1), and modulo (K-1) adding circuitry for adding the value S to a value of the integer index generating the present value M.

- 17. The data processing system of claim 16, wherein the glitch free clock selector circuitry comprises a K to one Phase multiplexer (MUX) receiving the K clock phase signals and generating a Phase MUX output as P(M), a selected one of the K clock phase signals, in response to a K bit MUX select signal, wherein only one of the K bits is a logic one corresponding to the present value M of the integer index.
- 18. The data processing system of claim 16, wherein the modulo (K-1) adding circuitry comprises:

circuitry for converting S to a K bit phase select signal wherein one of the K bits is a logic one and K corresponds to the value S;

a number of K (K to one) Select MUXs, wherein each input of the K Select MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering of the coupling for each of the K Select MUXs is rotationally shifted by one from an adjacent Select MUX; and

a K bit register, wherein each register bit stores a state of the output of each of the K Select MUXs in response to the shift clock signal and the outputs of the K bit register form the K bit MUX select signal.

19. The data processing system of claim 17, wherein the glitch free clock selector circuitry further comprises a logic circuit for generating the clock output signal as a logic combination of the Phase MUX output and a sequential gating signal that depends on a previous state of the clock output signal.

- 1 20. The data processing system of claim 16, wherein the K output signal phases
- P(0) to P(K-1) each have a period T and are progressively phase shifted by an equal
- amount T/K.