MEDI6215

Southampton

Variant Calling

Bioinformatics, Interpretation, and Data Quality Assurance in Genome Analysis

Will Tapper

7th February 2017

Lecture outline

- Types of genetic variation detected by NGS
- Methodology for variant calling and genotyping
 - Allele counting, heuristic and probabilistic
- Concordance between variant calling software
- Format of Variant Call Files (VCF)
- Evaluation of variant calling as a whole
 - Variant count, overlap with known variation, transition to transversion ratio and heterozygous to homozygous ratio
- Variant quality control
 - Visualisation, hard filtering and variant quality recalibration

Analysis workflow

Types of variants detected by NGS

Deletions and insert size

Variant calling: In principal it is simple

Variant calling software

- Over 15 different variant calling programmes
- 3 main categories: Allele counting, heuristic and probabilistic

Software	Calling method	Metric	Reference	
Bambino	Allele counting	SNP Score	Edmonson MN et al (2011)	
VarScan	Heuristic	Phred	Koboldt D et al (2012)	
GNUMAP	Probabilistic	Phred	Clement NL et al (2009)	
SOAPsnp	Probabilistic	Phred	Li R et al (2009)	
SAMtools	Probabilistic	Phred	Li H et al (2009)	
SNVer	Probabilistic	Phred	Wei Z et al (2011)	
GATK: UnifiedGenotyper	Probabilistic	Phred	DePristo MA et al (2011)	
GATK: HaplotypeCaller	Probabilistic	Phred	DePristo MA et al (2011)	

Variant calling methods

Allele counting

- ➤ Filter (≥Q20), count alleles, heterozygous if 20-80% otherwise homozygous
- Requires ≥20 reads for heterozygotes to have 20-80% alternate allele freq.
- Under-calls heterozygous variants when depth is moderate to low
- Does not consider base quality and no measure of confidence (equally likely)

Heuristic approach

- Based on thresholds for read depth, base quality, variant allele frequency
- Provides a measure of statistical significance
- Robust to outlying data that violate the assumptions of other models

Probabilistic methods (eg Bayesian model)

- Calculate a posterior probability for each genotype based on:
- 1. Prior probability of genotypes (how probable irrespective of the data)
- 2. Likelihood of alleles given the observed read data and base qualities
- 3. Probability of the data under all hypotheses
- Posterior genotype probabilities used to measure of genotype confidence

Southampton

Which variant caller to use?

Which variant-caller to use?

O'Rawe et al 2013, compared 5 variants callers (15 exomes, 120x mean coverage)

Concordance with SNP genotyping arrays

Software	Sensitivity	Specificity	
GATK v1.5	95.3	99.7	
SOAPsnp	94.7	99.8	
SAMtools	94.5	99.6	
SNVer	92.3	99.8	
GNUMAP	86.6	99.6	

- High sensitivity and specificity
- Common SNPs, in regions with little repeat DNA and without extreme GC contents
- Not a true measure of performance because arrays do not represent a personal genome

Number of de novo non-synonymous SNVs detected by all 5 callers

Family 1	2 generation
Child A	241
Child B	211
Child C	102
Child D	242

- ~1-2 per ind. expected (Roach et al 2010)
- 102-242 identified using parents
- 0-6 identified using parents & grandparents
- False -ves in parents

Which variant-caller to use?

Southampton

SNV concordance

- 60% of known SNVs (dbSNP) called by all 5 methods
- 90% were called by GATK and SOAPsnp
- 11% of novel SNVs called by all 5 methods
- 36% were called by GATK and SOAPsnp

Validation of SNVs from GATK and SOAPsnp (n=919)

- 99% of overlapping SNVs were real (312/315)
- 97% of SNV unique to GATK were real (306/315)
- 60% of SNV unique to SOAPsnp were real (174/289)

GATK

GNUMAP

GATK

GNUMAP

SOAPsnp

SO

Genome Med. 2013 Mar 27;5(3):28. doi: 10.1186/gm432.

Which variant-caller to use?

SAMTools

Known

GATK

Indel concordance

- 43% of known indels were called by all 3 methods
- 67% were called by GATK and SOAPsnp
- 5% of **novel** indels were called by all 3 methods
- 13% were called by GATK and SOAPsnp

Validation of indels from GATK and SOAPsnp (n=837)

- 78% of overlapping indels were validated (132/169)
- 54% of indels unique to GATK validated (180/336)
- 45% of indels unique to uSOAPsnp validated (148/332)

Genome Med. 2013 Mar 27;5(3):28. doi: 10.1186/gm432.

Which variant-caller to use?

- SNVs are more reliably called than indels
- Improve overall calling accuracy by using a combination of callers
- But... this increases cost and turnaround time
- Consensus approach used to create benchmarks (eg Illumina Platinum Genomes)
- Popitsch et al 2016: Overlap between variant calling software depends mainly on genomic context rather than the sequencing data
- Suggests that the genome can be split into regions that can and cannot be reliably genotyped by a single method
- Hard to call regions have low sequence complexity
- False +ve variant calls are mainly due to PCR and alignment errors
- Exclude or flag unreliable regions or use a combination of variant callers in hard to call areas

Southampton Southampton

In practice

- Setup pipelines using SAMtools, GATK UnifiedGenotyper and GATK HaplotypeCaller for germline variation
- VarScan to identify somatic mutations from paired tumour and normal samples

Software	Calling method Metric		Reference	
VarScan	Heuristic	Phred	Koboldt D et al (2012)	
SAMtools	Probabilistic	Phred	Li H et al (2009)	
GATK: UnifiedGenotyper	Probabilistic	Phred	DePristo MA et al (2011)	
GATK: HaplotypeCaller	Probabilistic	Phred	DePristo MA et al (2011)	

GATK HaplotypeCaller

Step 1: Use a sliding window to identify regions with significant evidence for variation relative to the reference genome

Southampton Southampton

GATK HaplotypeCaller

Step 2: Make all plausible haplotypes in active region using a De Bruijn-like graph Identify variant sites by realigning each haplotype against reference

GATK HaplotypeCaller

Step 3: Pairwise alignment of each read against each haplotype using PairHMM

This produces a matrix of likelihoods of haplotypes given the read data

Marginalise likelihoods to give likelihood of alleles per read for each variant

GATK HaplotypeCaller

Step 4: For each variant, calculate the posterior likelihood of each genotype given the read data

The most likely genotype is used as the genotype call

GATK HaplotypeCaller

Variant call files (VCF)

##filefo	rmat=VCF	Fv4.1					
## •	QUA	L: Q	uali	ty score	e for the ALT assertion (variant or not?) fro	m Bayesi	an model
## •	• GT : Genotype, variant sites only (0/1, 1/1) no reference homozygotes (0/0)						O/0)
# # # #	AD: A	Allel	ic d	epth, ni	umber of reads with reference and alternate	te allele	
##	DP: [Dept	th, t	otal nui	mber of reads		
##	GQ:	Gen	otyp	oe quali	ty. Phred-scaled confidence that genotype	is correc	t, derived
# # # #	from	the	ger	notype	PL, maximum of 99		
##	PL: P	hre	d sc	aled ge	notype likelihoods for ref. hom (0/0), het (0/1), alt.	hom (1/1)
##	Most	like	ely g	enotyp	e has Q score = 0 and the other are scaled	relative t	o this
##INFO	= <id=m0 =<id=m0 =<id=q0 =<id=re< td=""><td>QRank O,Num</td><td>Sum, ber=1</td><td>Sum</td><td>Total Mapping Quality Zero Reads: > fiption="2-score From Wilcoxon rank sum test of A ="Variant Confidence/Quality by Depth"> Float.Description="2-score from Wilcoxon rank sum test</td><td></td><td></td></id=re<></id=q0 </id=m0 </id=m0 	QRank O,Num	Sum, ber=1	Sum	Total Mapping Quality Zero Reads: > fiption="2-score From Wilcoxon rank sum test of A ="Variant Confidence/Quality by Depth"> Float.Description="2-score from Wilcoxon rank sum test		
##refere	edGenotyp nce=file:// n= <id=1< td=""><td>//galax</td><td>y/data</td><td>/hg_g1k_k</td><td>otyper input_file=[/galaxy-repl/main/scratch/tmp-gatk-Jdfa d_index/hg_g1k_v37.fa mblv=b37></td><td></td><td></td></id=1<>	//galax	y/data	/hg_g1k_k	otyper input_file=[/galaxy-repl/main/scratch/tmp-gatk-Jdfa d_index/hg_g1k_v37.fa mblv=b37>		
CHROM	POS	REF	ALT	QUAL	INFO	FORMAT	SAMPLE-A
20	66370	G	Α	691.96	AC=1;AF=0.5;AN=2;BaseQRankSum=1.1;DP=43;Dels=0;	GT:AD:DP:	0/1 20,23 43
					FS=0;HRun=0;HaplotypeScore=1;MQ=60;MQ0=0;	GQ:PL	99 722,0,612
					MQRankSum=-0.4;QD=16.09;ReadPosRankSum=-1.7		
20	68749	Т	С	1009.13	AC=2;AF=1;AN=2;DP=30;Dels=0;FS=0;HRun=0;	GT:AD:DP:	1/1 0,30 30:
					HaplotypeScore=0:MQ=60.00:MQ0=0:QD=33.64	GQ:PL	87.25 1042.87.0

Genomic variant call files (gVCF)

- Southampton
- Records all variant and non-variant sites (block) and gives call confidence
- Information on all sites is used for subsequent multi-sample analysis

Single or multi-sample variant calling?

- In multi-sample calling, read info from all samples is combined
- Better discrimination between real and false +ve variants
- Multi-sample calling has higher genotype call accuracy

Adjust expectations according to ethnicity

Heterozygosity of X chromosome

O 10%

Deviation in variant evaluation metrics

- After accounting for ethnicity, deviation from expected values may indicate problems with data or analysis BUT they could also reflect the underlying biology
- Too few variants may suggest low coverage
- Low TiTv ratio: suggests callset has more false positives
- Excess heterozygosity could be due to sample contamination or recent admixture
- Low heterozygosity could occur due to parental relatedness, large deletions, chromosomal loss or acquired uniparental disomy (both chromosomes from one parent)

Southampton

Quality control of variants:

Southampton

Variant quality control

- Use QC metrics in VCF file to remove or flag artifactual variants
- 1) Hard filtering
 - Apply lenient thresholds to quality metrics
- 2) Visualize aligned data (BAM)
 - Assess QC metrics and sequence context
- 3) Variant quality recalibration
 - Generate a model from quality metrics that is used to recalculate QUAL scores
 - Requires a list of known/real variants and data from 30+ exomes

GATK Unified Genotyper

CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO					
20	61098		С	т	409		AC=1;AF=0.50;AN=2;BaseQRankSum=2.404;DP=28;Dels=0.00;FS=4.154;HRun=1;HaplotypeScore=0.0000;					
20	01036	•			403	•	MQ=60.00;MQ0=0;MQRankSum=-0.601;QD=14.60;ReadPosRankSum=0.134					
20	80655		٨	G	778		AC=2;AF=1.00;AN=2;DP=21;Dels=0.00;FS=0.000;HRun=0;HaplotypeScore=0.0000;					
20 80033		•	•	•	•	•	•	^	4	//0	•	MQ=60.00;MQ0=0;QD=37.05

Some recommendations for hard filtering

Quality metric	SNV	Indels
QD: Variant quality / depth (QUAL/DP)	< 2	< 2
FS: Strand bias	FS > 60	FS > 200
ReadPosRankSum: Tail bias	< -8	< -20
BaseQRankSum: Base quality bias	< -2	?
MQRankSum: Mapping bias	< -12.5	NA
HaplotypeScore: Consistency with ≤2 haplotypes	> 13	NA

- QD: Confidence should increase with increasing depth
- FS: Is the distribution reads mapping to +ve and -ve strand similar for ref and alt alleles?
- ReadPosRankSum: Are alt bases located evenly throughout reads?
- BaseQRankSum: Artefact if reads with alt. allele have lower base quality than ref allele?
- MQRankSum: Is average mapping quality similar for ref and alt alleles?
- HaplotypeScore: Probability that the reads in a window around the variant can be explained by at most two haplotypes

Variant quality recalibration (GATK)

- Recalculate variant probability and use it to generate a highly accurate call set
- Takes overlap between known variants (HapMap and dbSNP) and raw variants and models their distribution relative to QC parameters to create clusters
- Clusters used to assign VQSLOD score (log odds ratio of being a true variant versus false under Gaussian model) requires data from >30 samples (GATK)

Variant quality recalibration (GATK)

DePristo et al. (2011)

Summary

- Three categories of variant caller (counting, heuristic, probabilistic), probability methods are most commonly used, heuristic can be good for outliers
- The output is a list of in-silico variants (VCF file) which have a range of quality scores and a number of false positives
- The overlap between variant calling software is modest (<90% for SNVs and <67% for indels). Real variants are more likely to be concordant but many unique-to-caller variants have also been validated</p>
- The best solution is to use multiple variant callers and multi-sample calling
- The calling process should be evaluated using: variant density, overlap with known variants, het:Hom ratio, transition:transversion ratio and these tests need to consider ethnicity
- Potential false positives can be flagged or excluded by hard filtering or variant quality recalibration
- Evidence for variant calls should be checked, positive and negative calls should be carefully interpreted especially for indels which are more error prone

Variant quality scores

Variant quality scores

Variant quality scores

Postzygotic mutation in PIK3CA: - only present in a proportion of cells (mosaic)
 - low alternate allele frequency

Lessons learned

- The Megalencephaly-capillary malformation (MCAP) example is unusual case but it demonstrates some important points:
- 1) Know the QUAL threshold used to filter VCFs
- 2) Set the QUAL threshold according to mutation type
- 3) If causal variants are not detected the QUAL threshold can be reduced but this will introduce more false positives
- 4) Use different programs to call germline and somatic mutations