Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified. I am also operating under the convention $v_a(b) = \{x \in \mathbb{R} : b-a < x < b+a\}$

Exercise: Prove the following

(a) $\lim_{x\to 2} (3x+4) = 10$

Proof. Choose $\epsilon > 0$. Define $\delta = \epsilon/3 > 0$. Choose a x such that $0 < |x - 2| < \delta$. Note that $-\delta < x - 2 < \delta$ so $2 - \delta < x < 2 + \delta$ or $6 - 3\delta < 3x < 6 + 3\delta$ so $10 - \epsilon < 3x + 4 < 10 + \epsilon$ or $|(3x + 4) - 10| < \epsilon$.

(b) $\lim_{x\to 0} x^3 = 0$

Proof. Choose $\epsilon > 0$. Define $\delta^3 = \epsilon$. Note that $\delta > 0$. Choose a x such that $0 < |x| < \delta$. Note that $-\delta < x < \delta$ so $-\delta^3 < x^3 < \delta^3$ or $|x^3| < \epsilon$.

Exercise: 4.2.1 a,b

(a) Show how Corollary 4.2.4 (ii) follows from the sequential criterion for limits in therm 4.2.3 and the algebraic limit therm.

Proof. Suppose as $x \to c$, $f(x) \to L$ and $g(x) \to M$. Where f and g have domain A. Choose a sequence a_n where $a_n \in A - \{c\}$ and $a_n \to c$. Define h(x) = f(x) + g(x) and define the sequences $f_n = f(a_n)$, $g_n = g(a_n)$, and $h_n = h(a_n)$. Note that $g_n \to M$ and $f_n \to L$. Note that $h_n = g_n + f_n$. by the arithmetic limit therm $h_n \to L + M$. Since a_n was chosen arbitrarily we can say that $h(x) \to L + M$ and $x \to c$.

(b) Prove again from definition.

Proof. Suppose as $x \to c$, $f(x) \to L$ and $g(x) \to M$. Where f and g have domain A. Choose $\epsilon > 0$. There must exist $\delta_1 > 0$ such that for all $0 < |x - c| < \delta_1$, $|f(x) - L| < \epsilon/2$. There must exist $\delta_2 > 0$ such that for all $0 < |x - c| < \delta_2$, $|g(x) - M| < \epsilon/2$. Define h(x) = f(x) + g(x). Define $\delta = \min(\delta_1, \delta_2)$. Choose $0 < |x - c| < \delta$. Note that $0 < |x - c| < \delta_1$ and $0 < |x - c| < \delta_2$ thus $|f(x) - L| < \epsilon/2$ and $|g(x) - M| < \epsilon/2$. Note that $|f(x) - L + g(x) - M| \le |f(x) - L| + |g(x) - M| < \epsilon$ so $|h(x) - (M + L)| < \epsilon$.

Exercise: 4.2.7

Let $g: A \to \mathbb{R}$ and assume f is a bounded function on A, in the since that there exists M > 0 such that f(x) < M for all $x \in A$. Show that if $g(x) \to 0$ as $x \to c$ that $g(x)f(x) \to 0$.

Define h(x) = g(x)f(x). Choose $\epsilon > 0$. There must exist $\delta_0 > 0$ such that for all $0 < |x - c| < \delta_0$, $|g(x)| < \epsilon/M$. Choose x such that $0 < |x - c| < \delta_0$. Note that $|h(x)| = |g(x)||f(x)| < (\epsilon/M)(M) = \epsilon$, thus $h(x) \to 0$ as $x \to c$.

Exercise: 4.2.11

Let $f(x) \le g(x) \le h(x)$ for all x in some common domain A. If as $x \to c$, $f(x) \to L$ and $h(x) \to L$ show that $g(x) \to L$ as well.

Choose a arbitrary sequence $a_n \to c$ in $A - \{c\}$. Define $f_n = f(a_n)$, $g_n = g(a_n)$, and $h_n = h(a_n)$. Note that $f_n \to L$ and $h_n \to L$, and that $f_n \le g_n \le h_n$. By the squeeze therm on sequences $g_n \to L$. Since a_n was chosen arbitrarily we can say that $g(x) \to L$ as $x \to c$.

Exercise: 4.3.1

Define $g(x) = x^3$.

(a) Prove that g(x) is continuous at x = 0.

Proof. Choose $\epsilon > 0$. Define $\delta = \sqrt[3]{\epsilon}$. Choose $|x| < \delta$. Note that $-\delta < x < \delta$ so $-\epsilon < x^3 - 0 < \epsilon$ or $|x^3 - 0| < \epsilon$. Note that $0^3 = 0$.

(b) Prove that g(x) is continuous at $c \neq 0$.

Proof. Choose $c \neq 0$. Choose $\epsilon > 0$. Define $0 < \delta = \min(\sqrt[3]{\epsilon/2}, \epsilon/(9c^2), |c/2|)$. Note that $-c/2 \le \delta \le c/2$. Choose $|x - c| < \delta$. Note that $|x^3 - c^3| < \delta|x^2 + xc + c^2| = \delta|x^2 - 2xc + c^2 + 3xc| \le \delta(|x - c||x - c| + |3xc|) < \delta^3 + |3xc|\delta$. Note that $|x - c| < \delta$, $c - \delta < x < c + \delta$, c/2 < x < 3c/2, $0 < 3c^2/2 < 3xc < 9c^2/2$. Note $|x^3 - c^3| < \delta^3 + \delta 9c^2/2 \le \epsilon/2 + \epsilon/2 = \epsilon$. □

Exercise: 4.3.3

(a) Prove therm 4.3.9.

Proof. Suppose $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$. Suppose g(f(x)) is defined for all $x \in A$. Suppose f is continuous at c and g is continuous at f(c). Choose $\epsilon > 0$. There must exist a $\delta_1 > 0$ such that for all $|y - f(c)| < \delta_1$, $|g(y) - g(f(c))| < \epsilon$. There must exist a $\delta_2 > 0$ such that for all $|x - c| < \delta_2$, $|f(x) - f(c)| < \delta_1$. Choose $|x - c| < \delta_2$. Note that $|f(x) - f(c)| < \delta_1$, and thus $|g(f(x)) - g(f(c))| < \epsilon$.

(b) prove again using sequential characterization.

Proof. Suppose $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$. Suppose g(f(x)) is defined for all $x \in A$. Suppose f is continuous at c and g is continuous at f(c). Choose $a_n \to c$ where $a_n \in A$. Note that $b_n = f(a_n) \in B$ and since f(x) is continuous at x = c, $b_n \to f(c)$. Note that $h_n = g(b_n) = g(f(a_n))$, since g(y) is continuous at y = f(c), $h_n \to g(f(c))$.

Math 401: Homework 6

Exercise: 4.3.5

Prove that if c is a isolated point of A then $f: A \to \mathbb{R}$ is continuous at c.

Proof. Suppose c is a isolated point of A and $f: A \to \mathbb{R}$. Choose $\epsilon > 0$. Since c is a isolated point of A there exists a δ such that $v_{\delta}(c) \cap A = \{c\}$. Choose $x \in A$, $|x - c| < \delta$. Note that there is only one x with this property, thus x = c. Note that $|f(x) - f(c)| = 0 < \epsilon$. \Box

Exercise: 4.3.9

If $h : \mathbb{R} \to \mathbb{R}$ and h is continuous for all \mathbb{R} then $\{x : h(x) = 0\}$ is a closed set.

Proof. Suppose $h: \mathbb{R} \to \mathbb{R}$ and h is continuous for all \mathbb{R} . Suppose $\{x: h(x) = 0\}$ is not a closed set. Since $H = \{x: h(x) = 0\}$ is not a closed set there must be a limit point l of H where $l \notin H$. Consider the set a_n where $a_1 \in v_1(l) \cap H - \{l\}$, note that $v_{\epsilon}(l) \cap H - \{l\} \neq \emptyset$ for any $\epsilon > 0$. And $a_n \in v_{|a_{n-1}-l|/2}(l) \cap H - \{l\}$. Note that $-1/2^{n-1} + l \leq a_n \leq 1/2^{n-1} + l$ by construction and thus $a_n \to l$ by the squeeze therm. Define $h_n = h(a_n)$. Note that $a_n \in H$ thus $h_n = 0$. Since h(x) is continuous and $a_n \to l$ and $h_n \to 0$ we can say that h(l) = 0. Therefore $l \in H$, a contradiction. □

Exercise: 10

a) Show that a continuous function on all of \mathbb{R} that equals zero on the rational numbers must be the zero function.

Proof. Suppose H is closed set where $\mathbb{Q} \subseteq H \subseteq \mathbb{R}$. Choose $a \in \mathbb{R}$. Choose $\epsilon > 0$. Note that there exist a rational q such that $a < q < a + \epsilon$, by the density of the rationals. Note that $q \in H - \{a\}$ and that $q \in v_{\epsilon}(a)$, therefore a is a limit point of H and since H is closed $a \in H$ thus $\mathbb{R} \subseteq H$ and so $H = \mathbb{R}$.

Suppose $h : \mathbb{R} \to \mathbb{R}$ that equals zero on the rational numbers and h is continuous for all \mathbb{R} . From the previous proof $H = \{x : h(x) = 0\}$ is a closed set. Note that H is closed set where $\mathbb{Q} \subseteq H \subseteq \mathbb{R}$. Conclude $H = \mathbb{R}$, h(x) = 0 for all $x \in \mathbb{R}$.

b) Suppose f and g are two continuous functions on the real numbers. Is it true that if f(q) = g(q) for all $q \in Q$, then f and g are the same function? Yes.

Proof. Suppose f and g are two continuous functions on the real numbers where f(q) = g(q) for all $q \in \mathbb{Q}$. Suppose $F = f(l) \neq g(l) = G$ for some $l \in \mathbb{R}$. Define $\epsilon = |F - G|/2 > 0$. There must exist a δ_1 such that for all $|x - l| < \delta_1$, $|f(x) - F| < \epsilon$. There must exist a δ_2 such that for all $|x - l| < \delta_2$, $|g(x) - G| < \epsilon$. Define $\delta = \min(\delta_1, \delta_2)$. Note that there exists a rational q such that $l - \delta < q < l + \delta$. Note that $|g(q) - G| < \epsilon$ and that $|f(q) - F| < \epsilon$, also note that f(q) = g(q). Note that $2\epsilon = |F - G| = |g(q) - G + F - f(q)| \le |g(q) - G| + |F - f(q)| < 2\epsilon$, a contradiction we conclude the negation of our supposition, that f(l) = g(l) for all $l \in \mathbb{R}$.

Math 401: Homework 6

Exercise: 4.2.9

For infinite limits we replace the arbitrarily small $\epsilon > 0$ with the arbitrarily large M > 0.

(W) (Hand this one in to David.)

(a) Prove $\lim_{x\to 0} 1/x^2 = \infty$

Proof. Choose M > 0. Noting that $\sqrt{M} > 0$ there must exist a δ such that $1/\delta < \sqrt{M}$. Choose x such that $0 < |x| < \delta$. This means that $0 < x^2 < \delta^2 < 1/M$, so $1/x^2 > M$. \square

(b) I would define $\lim_{x\to\infty} f(x) = L$ as for any $\epsilon > 0$ there exists a M such that if x > M, $|f(x) - L| < \epsilon$. Show that $\lim_{x\to\infty} 1/x = 0$.

Proof. Choose $\epsilon > 0$. There must exist a M > 0 such that $1/M < \epsilon$. Choose x > M. Note that x > M > 0 means that $|1/x| = 1/x < 1/M < \epsilon$.

(c) Define $\lim_{x\to\infty} f(x) = \infty$ as for any K>0 there exists a M such that if x>M, f(x)>K. As a example $\lim_{x\to\infty} x=\infty$.