

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. H. Spohn Dr. M. Prähofer

Mathematik für Physiker 3 (Analysis 2)

Sommersemester 2011 Probeklausur

http://www-m5.ma.tum.de/Allgemeines/MA9203_2011S

(27.06.2011)

Aufgaben

1. Krümmung einer Raumkurve

[5 Punkte]

Parametrisieren Sie die Raumkurve $\gamma(t) = \frac{1}{2}e^t(\cos t, \sin t, \sqrt{2}), t \in \mathbb{R}$, auf Bogenlänge, bezeichnet mit $\tilde{\gamma}(s)$, und berechnen Sie dafür die Krümmung $\kappa(s)$.

$$\tilde{\gamma}(s) =$$

$$\kappa(s) =$$

2. Differenzierbarkeit

[6 Punkte]

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x,y) = \frac{x^2y}{x^2+y^2}$ für $(x,y) \neq 0$ und f(0,0) = 0.

- (a) Zeigen Sie, dass f stetig ist und berechnen Sie $\partial_1 f(0)$, $\partial_2 f(0)$.
- (b) Berechnen Sie die Richtungsableitung $\partial_v f(0)$ von f im Ursprung in Richtung des Vektors $v = (v_1, v_2) \in \mathbb{R}^2$, wobei

$$\partial_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$
 für $a \in \mathbb{R}^2$.

(c) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

3. Vektoranalysis

[4 Punkte]

- (a) Seien $F \in C^2(\mathbb{R}^3, \mathbb{R}^3)$ und $f \in C^2(\mathbb{R}^3, \mathbb{R})$. Welche Aussagen sind richtig? \Box div rot F = 0, \Box rot grad f = 0, \Box grad div F = 0, \Box grad rot F = 0
- (b) Sei $F: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch $F(x, y, z) = \frac{1}{2}(x^2, y^2, -z^2)$. Wie lautet $\nabla(\nabla \cdot F) \Delta F$?
 - $\square \quad \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

4. Taylor-Formel

(8 Punkte)

Gegeben sei eine Funktion $g \in C^{\infty}(\mathbb{R}^2)$, die im Ursprung einen kritischen Punkt mit der Hessematrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ besitzt. Weiter gilt

$$g(0) = 2$$
, $\partial_1^3 g(0) = \partial_1^2 \partial_2 g(0) = 1$, $\partial_1 \partial_2^2 g(0) = \partial_2^3 g(0) = 0$.

(a) Wie lautet explizit die Taylorentwicklung bis zur dritten Ordnung von g im Entwicklungspunkt $0 \in \mathbb{R}^2$?

$$g(x,y) = +\mathcal{O}(\|(x,y)\|^4)$$

(b) Sei nun f(x,y) = (-y, x+y). Wie lautet die Taylorentwicklung bis zur zweiten Ordnung von $h = g \circ f$ im Entwicklungspunkt 0 explizit?

$$h(x,y) = +\mathcal{O}(\|(x,y)\|^3)$$

5.	Extrema [8 Punkte]
	Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,
	$f(x,y) := x^3 + y^3 + x^2 + y^2,$
	und die folgenden Punkte in \mathbb{R}^2 ,
	$x_1 = (0,0), x_2 = (0,2/3), x_3 = (-2/3,0), x_4 = (-1,0), x_5 = (-2/3,-2/3).$
	Welche Aussagen sind richtig?
	(a) f besitzt einen kritischen Punkt in
	$\square x_1 \square x_2 \square x_3 \square x_4 \square x_5$ (b) f begittet sing lekeles Marierum in
	(b) f besitzt eine lokales Maximum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$
	(c) f besitzt eine lokales Minimum in
	$\square x_1 \square x_2 \square x_3 \square x_4 \square x_5$
	(d) f besitzt einen Sattelpunkt in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$
c	
υ.	Koordinatentransformationen [10 Punkte] Sei $U = \mathbb{R}^+ \times \mathbb{R}$ und $V = \mathbb{R}^2 \setminus (\mathbb{R}_0^- \times \{0\})$ und $\Phi : U \to V$ die Koordinatentransformation
	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \Phi(\xi_1, \xi_2) = \begin{pmatrix} \xi_1^2 - \xi_2^2 \\ 2\xi_1 \xi_2 \end{pmatrix}.$
	(a) Bestimmen Sie $D\Phi(\xi)$, das normierte lokale Zweibein $e_{\xi_1}(\xi), e_{\xi_2}(\xi)$ und $D\Phi^{-1}(\Phi(\xi))$.
	$D\Phi(\xi) = \qquad \qquad e_1(\xi) =$
	$D\Phi^{-1}(\Phi(\xi)) = e_2(\xi) =$
	(b) Sei $f \in C^{\infty}(U,\mathbb{R})$ und $\tilde{f} = f \circ \Phi^{-1} : V \to \mathbb{R}$. Drücken Sie den Gradienten von \tilde{f} durch Ableitungen von f in der Basis e_{ξ_1}, e_{ξ_2} aus.
	- 31.32
	$\begin{pmatrix} \partial_{x_1} \\ \partial_{x_2} \end{pmatrix} \tilde{f} =$
7.	Implizite Funktionen [7 Punkte]
	Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch
	$f(x, y, z) := x^2 + yz + z^2 - e^z$.
	(a) Zeigen Sie, dass in einer Umgebung des Punktes $(1,0,0)$ eine Funktion $g(x,y)$ existiert, die die Gleichung $f(x,y,z)=0$ nach $z=g(x,y)$ auflöst.
	(b) Wie lautet der Gradient von g im Punkt $(1,0)$?

 $\square \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 0 \\ 2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 \\ 2 \end{pmatrix}$