Raychem

SiBar Thyristor Surge Protectors

New SA and SC series thyristor products for overvoltage protection

Sibar thyristor surge protectors provide transient voltage protection for telecommunications applications.

Raychem introduces its new SA and SC series of thyristor surge protectors designed to protect sensitive telecommunications equipment from the hazards caused by lightning, power contact, and power induction. These devices have high surge capability to protect against transient faults and high off-state impedance, rendering them transparent during normal system operation.

SiBar thyristor surge protectors are designed specifically for telecommunications and computer telephony applications, including:

- Modems
- Fax machines
- PBX systems
- Phones
- POS systems
- Analog and digital linecards
- Other customer premise and network equipment requiring protection

Features

- Bidirectional transient voltage protection
- High off-state impedance
- Low on-state voltage
- High surge capability
- Glass-passivated junctions
- Short-circuit failure mode
- Surface-mount technology

Benefits

- Effective protection for sensitive telecom electronics
- Low leakage current
- Low power dissipation
- Fast, reliable operation
- · No wear-out mechanisms
- Helps designers meet worldwide telecom standards
- · Reduced warranty and service costs
- Easy installation; tape and reel per EIA 481 standards

Fundamentals of thyristor surge protection devices

SiBar thyristor surge protectors are bidirectional silicon devices that fold back in the presence of transient overvoltage faults. When the breakover voltage of a SiBar device is exceeded, the device switches from high to low impedance to protect sensitive downstream equipment from harmful voltage surges. The device remains latched in a low-impedance state until the current decreases below the hold current, at which point the device returns to its high-impedance state.

SiBar devices may be used in conjunction with PolySwitch resettable fuses in telecommunications applications, including network equipment, customer premise equipment, and primary protectors. Proper selection of both devices can provide reliable and cost-effective self-resetting overvoltage and overcurrent protection. These devices allow designers to meet worldwide telecommunications standards and to lower equipment-service and warranty costs.

Note: For more information on PolySwitch resettable fuses for overcurrent protection, please contact your local Raychem representative or visit our Web site (www.raychem.com/go/circuitprotection).

Typical applications

Problem/solution

Industry standards and customer specifications require telecommunications equipment designers to protect against the harmful effects of power cross. power induction, and lightning surges. These hazards can travel through the network and local loop, resulting in equipment damage and loss of service.

A SiBar thyristor surge protector, either by itself or properly coordinated with a PolySwitch overcurrent device, will assist in protecting against these faults, minimizing equipment damage and improving customer satisfaction.

Customer premise equipment (CPE)

SiBar devices have been designed to assist customer premise equipment manufacturers meet the stringent requirements of FCC Part 68, UL1459/UL1950 3rd Edition, UL497A, and ITU-T Recommendation K.21.

Examples of customer premise equipment include:

- PBX systems
- Key telephone systems
- Modems
- Phone sets
- POS equipment
- Surge strips with communication ports

Network equipment

SiBar devices have been designed to assist network equipment manufacturers meet the stringent requirements of Bellcore GR-1089, ITU-T Recommendation K.17. and ITU-T Recommendation K.20.

Examples of network equipment include:

- Analog and digital linecards
- Base stations
- Meter monitoring systems
- Multiplex/pairgain systems
- · Remote terminal units
- Repeaters

Customer premise equipment protected with SiBar and PolySwitch devices

Ungrounded

Grounded

Symbol key:

Z SiBar thyristor surge protector (transient voltage protector)

PolySwitch resettable fuse (overcurrent protection device)

Network equipment protected with SiBar and PolySwitch devices

Grounded

Note:

T-R SiBar thyristor is optional: refer to SiBar application notes (www.raychem/com/go/circuitprotection) for details.

Electrical characteristics (25°C, unless otherwise specified)

	Part	V _{DM} max.	V _{BO} max.	I _H min.	V _⊤ max.	C₁ typ.	I _{TSM} min.	FCC			Bellcore		ITU
	number	(V)	(V)	(mA)	(V)	(pF)	(A)	9x720 μ s	10x560 μ s	10x160 μs	10x1000 μs	2x10 μs	5x310 μ s
New	TVB270SC	270	370	175	5.0	50	60	-	-	-	100	500	-
New	TVB200SC	200	320	175	5.0	50	60	-	-	-	100	500	-
New	TVB170SC	170	265	175	5.0	50	60	-	-	-	100	500	-
New	TVB270SA	270	370	175	5.0	20	22	50	70	100	50	-	90
New	TVB200SA	200	320	175	5.0	20	22	50	70	100	50	-	90
New	TVB170SA	170	265	175	5.0	20	22	50	70	100	50	-	90
	TVB330-050	240	380	200	5.0	20	22	50	70	100	50	50	90
	TVB280-050	215	325	200	5.0	20	22	50	70	100	50	50	90
	TVB230-050	165	265	200	5.0	20	22	50	70	100	50	50	90
	Notes	(1)	(2)		(3)	(4)	(5)	(5)	(5)	(5)	(5)	(5)	

Notes:

- $1.V_{\text{DM}}$ measured per UL497B pulse requirements; max. off-state leakage current (I_{DM}) = 5 μ A.
- 2. Measured at a typical breakover current (I_{BO})= 230 mA.
- 3. C_1 measured at f = 1 MHz, 50-V_{DC} bias, 1 V_{RMS}.
- 4. Peak on-state surge current (60 Hz, one cycle).
- Refer to application notes (www.raychem.com/go/circuitprotection) for further details.

Electrical characteristics (25°C, unless otherwise specified)

				New	New
Parameter	Symbol	Unit	TVBxxx-050	TVBxxxSA	TVBxxxSC
Peak on-state surge current (60 Hz, one cycle)	I _{TSM}	А	22	22	60
Critical rate-of-rise of on-state current (max. 2 x 10- μ s waveform, I _{sc} = 120 A)	di/dt	A/µs	150	150	250
Critical rate-of-rise of off-state voltage (linear waveform, $V_D = Rated V_{BO}$, $T_i = 25$ °C)	dv/dt	V/µs	2000	2000	2000
Storage temperature		°C	-65 to 150	-65 to 150	-65 to 150
Operating temperature		°C	-40 to 125	-40 to 125	-40 to 125
Junction temperature		°C	175	175	175

Selection guide

Follow these steps to select the proper SiBar thyristor surge protectors for your application:

- 1. Define the operating parameters for the circuit:
 - Maximum ambient operating temperature
 - Maximum system operating current
 - Maximum operating voltage (DC bias + peak ringing voltage)
 - Maximum fault current
 - System voltage damage threshold
- Select a SiBar device with an off-state voltage rating (V_{DM}) above the maximum operating voltage and a peak pulse current rating above the maximum fault current.
- 3. Verify that the minimum hold current of the device is above the maximum short-circuit current of the system.
- Verify that the maximum breakover voltage of the device is below the system damage threshold.
- Verify that the circuit's ambient operating temperatures are within the SiBar device's operating temperature range.
- Verify that the SiBar device's dimensions fit the application's space considerations.
- 7. Independently evaluate and test the suitability and performance of the SiBar device in the application.

Voltage-current characteristics

The voltage-current (V-I) is useful in depicting the electrical characteristics of the SiBar thyristor surge protectors in relation to each other.

Symbol	Parameter	Definition
V_{B0}	Breakover voltage	Maximum voltage across the device at breakdown measured under a specified voltage and current rate of rise.
I _{BO}	Breakover current	Instantaneous current flowing at the breakover voltage (V _{B0).}
I _H	Hold current	Minimum current required to maintain the device in the on-state condition.
I _T	On-state current	Current through the device in the on-state condition.
$\overline{V_T}$	On-state voltage	Voltage across the device in the on-state condition at a specified current (I _T)
$\overline{V_{DM}}$	Maximum off-state voltage	Maximum DC voltage that can be applied to the device while maintaining it in the off-state condition.
I _{DM}	Off-state current	Maximum DC value of current that results from the application of the maximum off-state voltage.
I _{PP}	Peak pulse current	Rated peak pulse current of specified amplitude and waveshape that may be applied without damage.
di/dt, dv/dt	Critical rate of rise of on-state current and voltage	Maximum current and voltage rate of rise the device can withstand without damage.

Typical electrical characteristics vs. temperature

Typical electrical characteristics vs. temperature (continued)

Product dimensions (millimeters/*inches*)

SiBar SA and SC devices are offered in industrystandard "SMB" device packages for easy installation.

All devices are bidirectional and may be oriented in either direction during installation.

А		В		С		D*	
min.	max.	min.	max.	min.	max.	min.	max.
4.06 <i>(0.160)</i>	4.57 (0.180)	3.30 <i>(0.130)</i>	3.81 <i>(0.150)</i>	1.90 <i>(0.075)</i>	2.41 <i>(0.095)</i>	1.96 <i>(0.077)</i>	2.11 (0.083)

Н		J		K		Р	S	
min.	max.	min.	max.	min.	max.	ref.	min.	max.
0.051 (0.002)	0.152 <i>(0.006)</i>	0.15 (0.006)	0.30 (0.012)	0.76 (0.030)	1.27 (0.050)	0.51 (0.020)	5.21 <i>(0.205)</i>	5.59 (0.220)

^{*}D dimension is measured within dimension P.

Note that the SA and SC series does not have a polarity mark.

Recommended pad layout

The dimensions in the table below provide the recommended pad layout for each SiBar device.

C
2.743 (0.108)

Part marking system

Device code	Part number*
REBD	TVB270SC
RDBD	TVB200SC
RCBD	TVB170SC
REBB	TVB270SA
RDBB	TVB200SA
RCBB	TVB170SA

Ordering information

Devices per reel*	2,500 pieces
Standard box quantity	10,000 pieces
Aproximate box weight	3.5 lb

 $^{^{\}star}$ Supplied in embossed tape and reel format per EIA 481-1 standards.

WARNING!

- Operation beyond maximum ratings or improper use may result in device damage.
- These devices are intended for protection against occasional overvoltage fault conditions and should not be used when repeated fault conditions are anticipated.

Important: All information, including illustrations, is believed to be reliable. Users, however, should independently evaluate the suitability of each product for their application. Raychem makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use. Raychem's only obligations are those in the Raychem Standard Terms and Conditions of Sale for this product, and in no case will Raychem or its distributors be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of the product. Specifications are subject to change without notice. In addition, Raychem reserves the right to make changes—without notification to Buyer—to processing or materials that do not affect compliance with any applicable specification.

PolySwitch and SiBar are trademarks of Raychem Corporation.

Electronics OEM Components Division

Worldwide Headquarters Raychem Corporation

300 Constitution Drive Menlo Park, CA 94025-1164 Tel (800) 227-7040 (650) 361-6900 Fax (800) 611-2323 (650) 361-5579

www.raychem.com/go/circuitprotection

Asia Headquarters K.K. Raychem 1-12-17 Eda-nishi Aoba-Ku, Yokohama 225 Japan Tel (81) 45/972-7100 Fax (81) 45/972-1862 Europe Headquarters Raychem Limited Faraday Road

Dorcan, Swindon Wiltshire SN3 5HH United Kingdom Tel (44) 1793 528171 Fax (44) 1793 572516

^{*}Refer to Circuit Protection Databook for TVBXXX-050 marking information