Сетевой уровень OSI IP-адресация

Ограничения сетей на коммутаторах

- ограничение альтернативных связей
- Слабая (или полная) изолированность отдельных участков сети
- Невозможность фильтрации трафика (кроме полного запрета по МАС-адресу)
- Негибкая одноуровневая система МАСадресации, проблемы с broadcast'ами
- Несовместимость различных протоколов канального уровня (МТU)

Составные сети

- □ Составная сеть (интерсеть, internetwork) совокупность локальных и глобальных сетей, называемых подсетями, составляющими сетями или просто сетями
- Для соединения подсетей используются сетевые устройства сетевого уровня маршрутизаторы (router)

Сетевой уровень

- Сетевой уровень предоставляет функции для передачи отдельных компонентов данных по сети между указанными оконечными устройствами
- Служит для образования единой транспортной системы, объединяющей несколько сетей, в т.ч. использующих различные протоколы нижних уровней, межсетевой адресации и маршрутизации пакетов данных.
- Примеры: IP, ICMP
- Единица данных пакет (packet)

Модель OSI и стек TCP/IP

Модель OSI

Прикладной

Представительский

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Стек ТСР/ІР

Прикладной

FTP, telnet, SNMP, SMTP, HTTP, TFTP

Транспортный

TCP, UDP

Сетевой

IP, ICMP

Уровень сетевых интерфейсов

Протоколы инкапсуляции и преобразования адресов

Протокол IP (Internet Protocol)

- Маршрутизируемый протокол доставки сообщений между узлами составной сети
- Относится к протоколам «best effort»
 - без установления соединения
 - не даёт гарантии надёжной доставки пакета
- Способен выполнять динамическую фрагментацию дейтаграмм при их передаче между сетями с различными максимально допустимыми значениями длины поля данных кадра (МТU)
- IP-пакет состоит из заголовка (от 20 до 60 байт) и поля данных (до 65515 байт) – суммарно до 65 535 байт

Формат IP(v4)-пакета (1)

	биты 0-3	3-7	8-13	14-15	16	-18	19-31
0	Version (IPv4 или IPv6)	IP Header Length [4×Байт]	gth Code point) – тип (CoS) Тotal length – общая длина пакета,				
32	Identification – идентификатор фрагментированного пакета (для сборки)					ags D M	Fragment offset – смещение текущего фрагмента от начала [8×Байт]
64	Time to Live (TTL) – время жизни пакета Protocol (номер вышестоящего протокола по IANA)				Header checksum – контрольная сумма по заголовку		
96	Source IP-address – IP адрес источника						
128	Destination IP-address – IP адрес назначения						
160	Options (только если IHL>5) – дополнительные параметры (тестирование и отладка сети)						
160 (192+)		DATA – данные верхнего уровня					

Фрагментация ІР-пакетов

- Фрагментация деление поля данных исходного пакета (т.е. инкапсулированной дейтаграммы) на части и оформление их в виде пакетов меньшего размера фрагментов
- Фрагментация выполняется при невозможности передать пакет в следующую по маршруту сеть (превышение MTU)
- Сбор исходного пакета осуществляется модулем IP на узле назначения (и никогда на промежуточных маршрутизаторах)
- Сборка пакета осуществляется по значениям IPполей: идентификатор, TTL, флагов DF и MF, смещения

Значения MTU

Технология	МТU, байт
DIX Ethernet (II)	1500
Ethernet 802.3	1492
Token Ring (IBM, 16 Mbps)	17914
Token Ring (802.5, 4 Mbps)	4464
FDDI	4352
X.25	576

Адресация в TCP/IP

- □ Локальные (аппаратные, физические) адреса
 - адресация узлов в пределах локальной сети (MAC) 00a0.173d.bc01
- Сетевые (логические, IP) адреса однозначная идентификация узла в пределах составной сети 192.168.1.1
- Доменные имена символьные идентификаторы узлов www.stankin.ru

IP(v4) адрес

- □ IP-адрес уникальный идентификатор узла в пределах составной TCP/IP-сети
- Представляет собой 32-битное двоичное число, условно разделяемое на 4 октета (байта)
- Состоит из адреса сети (network) и узла (host)

	Сеть			Узел		
Десятичная форма записи		172	16	1	156	
	1	8	9 16	17 24	25 32	
Двоичная форма записи	10	101100	00010000	0000001	10011100	
	128 64	35 16 17 18	128 64 16 8 16 17 18	128 64 16 8 8 4 2	128 64 16 8 16 17	

IP адрес: сеть и узел

- ☐ Деление 32-битного IP-адреса на адрес сети и адрес узла – 2 подхода:
 - 32-битное поле адреса заранее делится на две части фиксированной длины (по классу сети)
 - Произвольное деление (по маске подсети) бесклассовая адресация
- Маска подсети 32-битное двоичное число, использующееся в паре с IP-адресом и содержащее последовательность единиц в тех разрядах, которые должны в IP-адресе интерпретироваться как адрес сети

Классы IP сетей

	1 8	9 15	16 23	24 32		
Class A	0NNNNNNN	ннннннн	ннннннн	ннннннн	0.0.0.0 – 127.255.255.255	
Class B	10NNNNNN	NNNNNN NNNNNNNN I		ннннннн	128.0.0.0 – 191.255.255.255	
Class C	110NNNNN	NNNNNNN	NNNNNNN	ннннннн	192.0.0.0 – 223.255.255.255	
Class D	1110MMMM	Адрес группы multicast			224.0.0.0 – 239.255.255.255	
Class E	1111XXXX	3	Зарезервировано			

Пример:

135.168.39.187 – адрес класса **В** *сеть:* 135.168.0.0 *узел:* 0.0.39.187

Маски подсетей

- Маски подсетей обеспечивают произвольное деление IP-адреса на сеть и узел
- Количество «единиц» в маске соответствует длине адреса сети в битах; количество «нулей» длине адреса узла
- Все «единицы» в маске следуют подряд, начиная со старшего бита

2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹ 2	2º 1	Байт маски
1	1	1	1	1	1	1	1	255
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	0	0	252
1	1	1	1	1	0	0	0	248
1	1	1	1	0	0	0	0	240
1	1	1	0	0	0	0	0	224
1	1	0	0	0	0	0	0	192
1	0	0	0	0	0	0	0	128
0	0	0	0	0	0	0	0	0

Примеры масок:

255.255.0.0 255.192.0.0 128.0.0.0 255.255.252 255.255.224.0 255.192.255.0

Форматы записи ІР-адресов/масок

адрес 192.168.0.1 / 24 маска

- Десятичный с точками (dotted decimal)
 - **192.168.0.1 255.255.255.0**
- Двоичный (бинарный)
- Шестнадцатеричный
 - 0xC0A80001 0xFFFFF00

IP адрес и маска подсети

ІР-адрес

172.16.123.204

Маска

255.255.224.0

	128	64	32	16	8	4	2	1
172	1	0	1	0	1	1	0	0
16	0	0	0	1	0	0	0	0
123	0	1	1	1	1	0	1	1
204	1	1	0	0	1	1	0	0
255	1	1	1	1	1	1	1	1
224	1	1	1	0	0	0	0	0

Структура подсети

172.16.123.204 255.255.224.0

SUBNET (адрес подсети) 00000 00000001 HOSTS 00000 00000010 3 (адреса узлов) 11001011 7105 10101100 00010000 011 11011 11001100 7106 11011 11001101 7107 **HOSTS** (адреса 8190 узлов) 8191 **BROADCAST** $8192=2^{N}$ (широковещательный адрес)

Бесклассовая адресация (CIDR)

Бесклассовая IPадресация (CIDR, Classless inter-domain routing) – метод IPадресации, позволяющий гибко управлять пространством IPадресов, используя маски подсетей

Префикс	Маска	Класс	Адресов
/32	255.255.255	-	1 (20)
/31	255.255.255.254	-	2 (21)
/30	255.255.255.252	-	4 (22)
		•••	•••
/22	255.255.252.0	4C	1024 (210)
/21	255.255.248.0	8C	2048 (211)
/1	128.0.0.0	128A	2 ³¹
/0	0.0.0.0	256A	2 ³²

Пример 1: количество узлов

- Подсеть задана адресом 192.168.1.128 с маской 255.255.255.240. Найти максимальное количество узлов в подсети.
- Общее количество адресов подсети равняется 2^N , где N число бит IP— адреса, относящихся к адресу узла, т.е. число «нулей» в маске подсети
- Маска 255.255.255.240: 28 единиц, 4 нуля
- $2^{N} = 2^{4} = 16$, из которых первый и последний зарезервированы как SUBNET и BROADCAST
- Ответ: 14 узлов

Пример 2: SUBNET/BROADCAST

Даны IP-адрес и маска 172.16.114.159/19. Найти SUBNET и BROADCAST для данной подсети.

- «Единицы» в маске кончаются в 3-ем байте. Запишем этот байт адреса и маски в двоичной форме.
- Найдем границу адресов сети и узла. Для получения адреса SUBNET заполним все

биты адреса узла «нулями», для BROADCAST - «единицами». Левую часть (адрес сети) не меняем.

255.255.

172.16.

172.16.

172.16. 011 11011

111 00000

011 00000

011 11111

Запишем <u>ответ</u> в десятичном виде: SUBNET=172.16.96.0 BROADCAST=172.16.127.255

Пример 3: NETMASK

Даны адреса SUBNET 192.168.16.0 и BROADCAST 192.168.31.255. Определить маску подсети.

- Различия начинаются в 3-ем байте. Запишем его в двоичной форме.
- 192.168.
 0001
 0000
 . 0

 192.168.
 0001
 1111
 . 255

 255.255.
 1111
 0000
 . 0
- Все адреса подсети, включая SUBNET и BROADCAST, имеют общ

BROADCAST, имеют общую часть — адрес сети; битам адреса сети в маске соответствуют единицы. Определим биты адреса сети и запишем маску по границе бит сети и узла.

Запишем ответ в префиксном виде: 20

Пример 4: принадлежность

Определить, входит ли узел с IP-адресом 172.16.156.140 в подсеть 172.16.0.0/17.

Для решения задачи найдем максимально 17 возможный адрес 255 узла в данной подсети (HOSTMAX). Он 17 будет предпоследним, т.е. HOSTMAX=BROADCAST-1

172.16. 0 0000000 . 0 255.255. 1 0000000 . 0 172.16. 0 1111111 . 254

■ HOSTMAX=172.16.127.254. Сравним его с исходным IP=172.16.156.140. Получим, что заданный адрес больше максимального в исходной подсети.

□ Ответ: нет, не входит.

Пример 5: CIDR

- Дан диапазон адресов 172.16.0.0 172.16.112.11. Определить соответствующие CIDR-диапазоны.
- Ищем диапазоны от наибольшего к наименьшему. Первые два байта (172.16) неизменны, поэтому рассматриваем префиксы, начиная с /16

```
■ 172.16.0.0/16 = 172.16.0.0 - 172.16.255.255 - не подходит
```

- 172.16.0.0/17 = 172.16.0.0 172.16.127.255 не подходит
- 172.16.0.0/18 = 172.16.0.0 172.16.63.255 первый диапазон найден
- Оставшийся диапазон: 172.16.64.0 172.16.112.11
 - 172.16.64.0/19 = 172.16.64.0 172.16.95.255 второй диапазон найден
- **172.16.96.0 172.16.112.11**
 - 172.16.96.0/20 = 172.16.96.0 172.16.111.255 третий диапазон
- **172.16.112.0** 172.16.112.11
 - 172.16.112.0/21 = 172.16.112.0 172.16.119.255 не подходит
 - • •
 - 172.16.112.0/29 = 172.16.112.0 172.16.112.7 четвертый диапазон
- **172.16.112.8** 172.16.112.11
 - 172.16.112.8/30 = 172.16.112.8 172.16.112.11 последний диапазон

Пространство ІР-адресов

■ IANA (Internet assigned numbers authority – администрация адресного пространства Интернет) – некоммерческая организация, управляющая пространствами IP-адресов, доменов верхнего уровня, а также параметры прочих протоколов Интернета, http://www.iana.org

- ICANN (Internet corporation for assigned names and numbers)
 головная организация IANA, http://www.icann.org
- Региональные/локальные интернет-регистраторы

Зарезервированные IP-адреса (RFC 5735)

CIDR	Назначение
0.0.0.0/8	broadcast в текущей сети (RFC 1700)
10.0.0.0/8	«приватные» IP-адреса, диапазон A (RFC 1918)
127.0.0.0/8	loopback to localhost
169.254.0.0/16	адреса автоматической настройки при сбое DHCP
172.16.0.0/12	«приватные» IP-адреса, диапазон В (RFC 1918)
192.0.2.0/24	TEST-NET (только для документации)
192.88.99.0/24	преобразование IPv6 в IPv4 (RFC 3068)
192.168.0.0/16	«приватные» IP-адреса, диапазон С (RFC 1918)
198.18.0.0/15	тестирование межсетевых взаимосвязей (RFC 2544)
198.51.100.0/24	TEST-NET-2 (только для документации)
203.0.113.0/24	TEST-NET-3 (только для документации)
224.0.0.0/4	групповые MULTICAST-адреса (RFC 3171)
240.0.0.0/4	адреса, зарезервированные IANA
255.255.255.255/32	ограниченный (limited) broadcast

Private IP

- В автономных сетях могут использоваться любые синтаксически правильные IP-адреса
- RFC 1918 выделяет ряд диапазонов, специально предназначенных для автономных сетей:
 - 10.0.0.0 10.255.255.255 (10.0.0.0/8) одна сеть класса А
 - 172.16.0.0 172.31.255.255 (172.16.0.0/12) 16 сетей класса В
 - 192.168.0.0 192.168.255.255 (192.168.0.0/16) 256 сетей класса С
- Для выхода в Интернет таких узлов необходимо выполнить трансляцию этих «серых» (внутренних) IP-адресов во внешние NAT (network address translation)

Трансляция сетевых адресов

Способы адресации

Unicast – передача сообщения единственному адресату

■ Multicast – передача
 сообщения нескольким адресатам, описываемым общим адресом

 Broadcast – передача сообщения всем доступным адресатам, описываемым общим адресом (широковещательная рассылка)

Broadcast-адреса

- широковещательный адрес условный (не присвоенный никакому узлу сети) адрес для передачи широковещательных сообщений (т.е. сообщений всем узлам сети)
- FF:FF:FF:FF:FF широковещательный МАС-адрес, кадр распространяется в пределах текущего broadcast-домена
- Направленный (directed) broadcast широковещательное сообщение в удалённую подсеть по broadcast-адресу данной подсети (например, 192.168.2.255 для сети 192.168.2.0/24)

Протокол DHCP

- DHCP (dynamic host configuration protocol) протокол удаленной настройки сетевых узлов,
- Обеспечивает удалённое автоматизированное присвоение узлам сети IP-адресов и других настроек
- Режимы работы
 - Ручной жесткое соответствие МАС и IP адресов, задаётся вручную на сервере
 - Автоматический жесткое соответствие МАС и IP адресов,
 задаётся автоматически сервером, бессрочно
 - Динамический адреса выделяются автоматически на ограниченное время (lease duration, срок аренды)

DHCP – принцип работы

- 1. DHCPDISCOVER поиск доступных DHCP серверов
- 2. DHCPOFFER сервер предлагает клиенту адрес
- 3. DHCPREQUEST выбор клиентом одной конфигурации из предложенных, извещение серверов
- DHCPACK подтверждение сервером выбранной конфигурации

Протоколы разрешения адресов

TCP/IP

Link Layer

- ARP (Address resolution protocol) определение локального адреса (например, MAC) по сетевому адресу (например, IP)
- Стандарты **RFC 826** An Ethernet Address Resolution Protocol, Internet Standard **STD37**
- InARP (Inverse address resolution protocol) –
 определение сетевого адреса по локальному
- NDP (Neighbor discovery protocol) для IPv6

ARP-cache

```
192.168.1.230080.48eb.7e60Dynamic192.168.1.10080.5a21.c722Static
```

```
_ 0 X
C:\Windows\system32\cmd.exe
C:\Users\ss.STANKIN>arp -a
Interface: 192.168.1.13 --- Oxb
  Internet Address
                               Physical Address
                                                            Type
dynamic
                               00-18-71-ec-10-d7
00-18-71-ec-0e-6d
00-18-71-ec-11-f1
00-04-61-95-3d-f4
  192.168.1.2
  192.168.1.3
                                                            dynamic
                                                            dynamic
  192.168.1.67
  192.168.1.76
                                                            dynamic
                               1c-6f-65-4b-4c-55
00-50-da-39-4f-80
20-cf-30-9e-e5-58
                                                            dynamic
  192.168.1.85
                                                            dynamic
  192.168.1.99
  192.168.1.103
                                                            dynamic
                               00-04-61-77-79-32
20-cf-30-9e-e5-c4
20-cf-30-9e-e5-b3
  192.168.1.108
                                                            dynamic
                                                            dynamic
  192.168.1.111
  192.168.1.113
                                                            dynamic
  192.168.1.118
                               00-04-61-9c-4a-8a
                                                            dynamic
                               c8-4c-75-76-d6-9b
00-50-bf-4a-55-d1
00-22-15-41-13-63
  192.168.1.122
                                                            dynamic
  192.168.1.135
                                                            dynamic
  192.168.1.209
                                                            dynamic
  192.168.1.255
                                                            static
                               ff-ff-ff-ff-ff
  224.0.0.22
                               01-00-5e-00-00-16
01-00-5e-00-00-fc
                                                            static
  224.0.0.252
                                                            static
                               01-00-5e-40-98-8f
01-00-5e-7f-ff-fa
  239.192.152.143
                                                            static
  239.255.255.250
                                                            static
C:\Users\ss.STANKIN>_
```


ARP – формат пакета

	биты 0-7	8-15	16-31		
0	HTYPE (Hardwa технологии кана 0x0001 для	ального уровня,	PTYPE (Protocol Type – код протокола сетевого уровня, 0 x0008 для IP)		
32	HLEN – длина физ. адреса [Байт]	PLEN – длина лог. адреса [Байт]	OPER (Operation) – код операции (1 – запрос, 2 – ответ)		
64	SHA (Sender hardware address) – физический адрес отправителя				
96	SHA (3	32-48)	SPA (Sender protocol address) – логический адрес отправителя		
128	SPA (1	16-32)	THA (Target hardware address) – физический адрес получателя		
160	THA (16-48)				
192	TPA (Target p	rotocol address) – J	погический адрес получателя		

ARP – принцип работы

	биты 0-7	8-15	16-31		
0	HTYPE	= 0x0001	PTYPE = 0x0008		
32	HLEN = 6	PLEN = 4	OPER = 1		
64	•	SHA (0-31) =	= 0x00E026AF		
96		32-48) = A2D	SPA (0-15) = 0 x AC10		
128	`	6-32) = 302	THA (0-15) = 0x000000		
160	THA (16-32) = 0 x 0000				
192		TPA = 0x	AC100301		

	биты 0-7	8-15	16-31		
0	HTYPE	= 0x0001	PTYPE = 0x0008		
32	HLEN PLEN = 4		OPER = 2		
64		SHA (0-31) :	= 0x08000020		
96	`	32-48) = 1111	SPA (0-15) = 0 x AC10		
128	,	16-32) =)301	THA (0-15) = 0 x E026		
160	THA (16-32) = 0 x AF3A2D				
192		TPA = 0x	AC100302		

172.16.3.2 00e0.26af.3a2d 172.16.3.1 0800.0020.1111

