

Separability

- Linear separability
 - Data can be separated into classes w/ a linear straight line in the original space.
- Linear non-separable data. (Famous XOR problem.)
 - Separable if use more complex models w/ non-linear decision boundary.
- Xform features so dimension ↑ &or degree ↑ → more linear separable in H-D!!
 - **Visualizing "separability"** in high-D space??

https://www.youtube.com/watch?v=3liCbRZPrZA&feature=youtu.be

Non-Linearly Separable in Low-D \neq Non-Separable in High-D

- Transform features to H-D so you can apply simple linear model...

- $D = \{(x, y)\}\$ $\Rightarrow \hat{y}(x)$ $= \theta_0 + \theta_1 x + \theta_2 x^2 + \dots$ (~linear solution low-D)
- $\Phi(D) = \{([x, x^2, \ldots], y)\} \rightarrow \hat{y}(x) = \theta \times \Phi(D) = \theta_0 + \theta_1 \hat{x}_1 + \theta_2 \hat{x}_2 + \ldots \text{ (linear in H-D)}\}$
- \triangleright The linear separation in $\Phi(x)$ space = a quadratic separation in original space.
 - (x_1, x_2)

- → non-linearly separable.
- (x_1, x_2, x_1x_2) or (x_1, x_2, x_2^2) \rightarrow non-linearly separable.

• (x_1, x_1^2)

- → linearly separable.
- $(\sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2)$ \rightarrow linearly separable in H-D. (i.e. use simple linear model in H-D)

Solution in 6-D = Solution in 2-D

```
X = [0.2 \ 0.2; \ 0.3 \ 0.3; \ -1 \ 3; \ -2 \ -3; \ -8 \ 5; \ 9 \ 9];
Y = [-1 -1 -1 1 1 1]';
XP = [ones(length(X(:,1)), 1), 1.414.*X(:,1), ...
   1.414.*X(:,2), 1.414.*X(:,1).*X(:,2), X(:,1).^2, ...
                         %% xfer data to 6-D
   X(:,2).^2:
ConvStr = {'1', '1.414*x1', '1.414*x2', ...
       '1.414*x1*x2', 'x1^2', 'x2^2'}:
svm = fitcsvm(XP, Y); %% \leftarrow **Linear** SVM
fstr = num2str(svm.Bias);
for i = 1: length(svm.Beta),
  fstr = [fstr '+' ConvStr{i} '*' num2str(svm.Beta(i))];
end
figure, ezplot(fstr, [-12 12 -12 12]) % plot 6-D solution in 2D
hold on, gscatter(X(:,1), X(:, 2), Y, ", ", 20),
hold off, grid on
```


Transformed Features into ∞-space???

- SVM a very good <u>linear</u> classifier, but, many nonlinear datasets. Solutions?
 Collect more "real" features.
 Add more "<u>transformed</u>" features.
- Transform function $x \to \Phi(x)$. /'fai/
 - Add more dimensions, we may find a linear separation in high-D space.
 - Map data to a HD space → <u>linear</u> methods operate in HD space will behave <u>non-linearly</u> in the original input space.

- https://en.wikipedia.org/wiki/Support vector machine
- What transformation is good enough? What dimension is good enough? ∞ ??
 - Too much computation??
 - Where exactly is the "too much" computation?

Dot Product between **EACH Pair** of Training Data

- Objective function:
 - $min_{w,b} C \times \sum_{i=1}^{m} [max(0, (1-y^{(i)}(wx^{(i)}+b))] + \frac{1}{2}||w||^2 = min_w[CE+L].$
- Solve by using Lagrange multiplier α_i for every point *i*:

• Min
$$L_P = \frac{1}{2}||w||^2 - \sum_{i=1}^m [\alpha_i(1-y^{(i)}(wx^{(i)}+b))]$$
 (Primary form)

•
$$\frac{\partial L_P}{\partial w} = 0 \implies w = \sum_{i=1}^m \alpha_i y_i x_i$$
 $\frac{\partial L_P}{\partial b} = 0 \implies \sum_{i=1}^m \alpha_i y_i = 0$ [F1]

- Karush-Kuhn-Tucker (*KKT*) conditions: $\alpha_i \ge 0$ and $[\alpha_i(1-y^{(i)}(wx^{(i)}+b))] = 0$
- Substitute [F1] to primary form we get dual form as:

• Min
$$L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j - \sum_{i=1}^m \alpha_i$$

(Dual form)

- Min $L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(\mathbf{x_i}) \Phi(\mathbf{x_j}) \sum_{i=1}^m \alpha_i$
 - Decision boundary: $wX + b = 0 \implies (\sum_{i=1}^{m} \alpha_i y_i x_i X) + b = 0.$

dot products

$$X1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad X2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

- \Longrightarrow Do we really need to compute $\Phi(x_i)\Phi(x_i)$?
- Do we really need to "physically" reach the ∞-space?

Dot Product = Similarity

- $A^{T}A$ = similarity (dot product) between column vectors of (**normalized**) A.
 - Dot products between every pair of <u>column</u> vectors in two matrices \mathbf{A} and $\mathbf{B} = \mathbf{A}^{\mathsf{T}}\mathbf{B}$.
 - Dot product \rightarrow angle \uparrow , similarity \downarrow . dot product $\uparrow \rightarrow$ angle \downarrow , similarity \uparrow .

$$\hat{y} = \theta^{T} X = \begin{bmatrix} 0 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

= $\begin{bmatrix} 4 & 8 & 12 \end{bmatrix}$.

• **dot products.** (between data pts)

$$X1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad X2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$


```
1.0000
                -0.7071
                 0.7071
b = na' * na
  1.0000
                  -0.7071
          1.0000
                  0.7071
 -0.7071
          0.7071
                  1.0000
acosd(b) =
           90.0000 135.0000
 90,0000
                    45,0000
 135.0000 45.0000
```

Use Kernel Functions

- Define kernel function $K(x_i, x_j)$ to avoid real mapping $\Phi(x_i)$, $\Phi(x_j)$ into high-D.
 - Define a kernel function as $K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$ or $= \langle \Phi(x_i), \Phi(x_j) \rangle$
 - Define a kernel function $K(x_i, x_i)$ as doing dot-product in high-D space.
 - **But**, doing only dot products in the original space w/ other simple ops.
 - Kernel functions are also referred to as *similarity functions*.
- Again, what do we mean $K(x_i, x_i) = \Phi(x_i) \cdot \Phi(x_i)$?
 - 1. During training (i.e. learning)...
 - 2. Whenever we need dot product $\Phi(x_i) \cdot \Phi(x_i)$ in **H-D**...
 - 3. Just compute $K(x_i, x_j)$ in the **original space**.
 - Doing only dot products in the original space w/ other simple ops.
 - NO need to actually perform Φ to H-D→ Xformation exists only "implicitly" (conceptually)
 - Examples???

Kernel Tricks– A Simple Example

- Transform a *D*-dimension original data $x^{(i)}$ into high-dimensional data.
 - Let $A = (a_1, a_2) \rightarrow 2-D$, $\Phi(A) = (a_1^2, a_2^2, \sqrt{2}a_1a_2)$. $\rightarrow 3-D$
 - Let $B = (b_1, b_2)$, $\Phi(A) \cdot \Phi(B)$ requires intensive computation & memory.
 - But, we know $\Phi(A) \cdot \Phi(B) = a_1^2 b_1^2 + a_2^2 b_2^2 + 2a_1 b_1 a_2 b_2 = (a_1 b_1 + a_2 b_2)^2 = (A \cdot B)^2$.
 - In other words, $\Phi(A) \cdot \Phi(B) = (A \cdot B)^2 = K(A, B) = (0 + A \cdot B)^2$. \Rightarrow 2-D
 - Dot product in the *feature space* = dot product in the original space $\underline{\mathbf{w}}/\underline{\mathbf{other}}$ simple $\underline{\mathbf{ops}}$.
 - NO need to actually transform data into high-D and do dot product in high-D.
 - Only need to compute a kernel matrix (Gram matrix) that contains dot products of original vectors.
- So now we can **substantially** increase the # of features for our classifier.
 - How about $\Phi(A) \cdot \Phi(B) = K(A, B) = (C + A \cdot B)^{100} \rightarrow \text{Computations still in 2-D.}$

Kernel Example, 2-D

P5

1764

2304

900

1296

1600

• Original data points $A = (x_1, x_2) \rightarrow 2-D$.

lacksquare dot(A, B)

•
$$\Phi(A) = (x_1^2, x_2^2, \sqrt{2}x_1x_2).$$
 3-D

- $\Phi(A) \cdot \Phi(B) = (0 + A^T B)^2 = (0 + \det(A, B))^2$
 - Gram Matrix

1		, —					
	P1	6	3				
	P2	7	3				
	P3	4	3	-			
	P4	5	3	-			
	P5	6	2				
				_			
		P1	P2	P3	P4 I	P5)
	P1	45	51	33	39	42	
	P2	51	58	37	44	48	
	P3	33	37	25	29	30	K
	P4	39	44	29	34	36	
	P5	42	48	30	36	40	
							\
							\
	P1	36	9	25.4558	3		\
	P2	49	9	29.6985	5		\
•	P3	16	9	16.970	5		\
,	P4	25	9	21.2132	2		
•	P5	36	4	16.9706	5		
		P1	P2	P3	P4	P5	
	D 4 1						. /
	P1	2025	2601	1089	1521	1764	_ /
	P2	2601	3364	1369	1936	2304	_ /
×	P3	1089	1369	625	841	900	
	P4	1521	1936	841	1156	1296	

Kernel Tricks—Another More Complex Example

- Transform a *D*-dimension original data x_i into high-dimensional data.
 - For example, let $A = x_i = (x_1, x_2)$, $\Phi(x^{(i)}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$. $\rightarrow 6-D$
 - After transformation, x has H-D [i.e. $O(D^2)$ -dim], intensive computation and memory.
 - $\Phi(x_i)$ $\Phi(x_i)$ again requires intensive computation and memory.
 - But, we know $\Phi(x_i)$ $\Phi(x_i) = 1 + 2\sum_{d=1}^{D} x_{di} x_{dj} + \sum_{d=1}^{D} x_{di}^2 x_{dj}^2 + 2\sum_{d=1,d}^{D} x_{d2} x_{d1}^{(i)} x_{d2}^{(i)} x_{d2}^{(i)} x_{d2}^{(j)} = (\mathbf{1} + x_i \cdot x_j)^2.$
 - In other words, $\Phi(x^{(i)}) \cdot \Phi(x^{(j)}) = (1 + x_i \cdot x_j)^2 = K(x^{(i)}, x^{(j)}) = (1 + A \cdot B)^2$. \rightarrow 2-D
 - Dot product in the feature space = dot product in the original space w/ other ops.
 - No need to actually transform data into high-*D* and do dot product in high-*D*.
 - Only need to compute a kernel matrix (Gram matrix) that contains dot products of original vectors.
- So now you can **substantially** increase the # of features for your classifier.
 - How about $\Phi(A) \cdot \Phi(B) = K(A, B) = (C + A \cdot B)^{100} \rightarrow \text{Computations still in 2-D.}$

Kernel Example, 6-D

• Original data points $A = (x_1, x_2) \rightarrow 2-D$.

 \mathbf{D} dot(\mathbf{A} , \mathbf{B})

 $\Phi(A) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2) \rightarrow 6-D$

- - Gram Matrix

	P1 P2 P3 P4	0 1 6 9	1 1 1 1			
		P1	P2	P3	P4	
	P1	1	1	1	1	
	P2	1	2	7	10	
	P3	1	7	37	55	
١	P4	1	10	55	82	
	P1	1	0	1.4142	0	1 0
1	P2	1	1.4142	1.4142	1	1 1.4142
1	P3	1	8.4853	1.4142		1 8.4853
/	P4	1	12.7279	1.4142	81	1 12.7279
		P1	P2	P3	P4	/
	P1	4	4	4	4	/
	P2	4	9	64	121	
¥	P3	4	64	1444	3136	
	P4	4	121	3136	6889	

Visiting The ∞-Space

• How about
$$\Phi(x_i) \cdot \Phi(x_j) = K(x_i, x_j) = (C + A^T B)^{100}$$
 \Rightarrow 2-D to ???

- Computations only happen in 2-D.
- How does that **Z**-space look like? **Do we care?** Only exist conceptually.

- How about $\Phi(x_i) \cdot \Phi(x_j) = K(x_i, x_j) = (C + A^T B)^{\bullet \bullet}$ **2-D to ???**
 - Computations only happen in 2-D.
 - How does that **Z**-space look like? **Do we care?** Only exist conceptually.

- Transform a *D*-dimension original data $x^{(i)}$ into ∞ -dimensional data.
 - In other words, $\Phi(x_i) \cdot \Phi(x_j) = (C + x_i^T x_j)^2 = K(x_i, x_j) = (C + A \cdot B)^2$.
 - Dot product in the *feature space* = dot product in the original space $\underline{\mathbf{w}}$ other ops.
 - No need to actually transform data into high-D and do dot product in high-D.
 - Only need to compute a kernel matrix (**Gram matrix**) that contains dot products of original vectors.

Basic Kernel Idea

■ Using a simple <u>linear SVM w/ Kernel</u> in H-D, nonlinear separations can be learned <u>efficiently</u>.

https://en.wikipedia.org/wiki/Support_vector_machine

Kernel in A Short & Plain English

- In machine learning "kernel" is usually used to refer to the kernel trick.
 - A method of using a linear classifier to solve a non-linear problem by ...
 - Mapping the original points into a higher-dimensional space s.t. ...
 - Data points can be separated by a "linear hyperplane" in the H-D space.
 - Kernel maps data to H-D (or ∞ -D), hoping data becomes more easily separated.
 - The mapping, **however**, hardly needs to be computed because of **kernel trick**.
 - Kernel method provides a <u>simple bridge</u> from linearity to non-linearity for algorithms which can be expressed in terms of <u>dot products</u>. (<u>similarity</u>)

What Kind of "Similarity" Functions? Various Kernels

Polynomial Kernel: $K(a, b) = (c + a^{T}b)^{d}$.

 $a1^2 \ b1^2 + 2 \ a1 \ a2 \ b1 \ b2 + 2 \ a1 \ b1 + a2^2 \ b2^2 + 2 \ a2 \ b2 + 1$

- *RBF Kernel*: $K(a, b) = \exp(-||a b||^2) / 2\sigma^2 = e^{\frac{-||a b||^2}{2\sigma^2}}$.
 - Radial Basis Function (next slide).
- Sigmoid-like: $K(a, b) = \tanh(ca^{T}b + h)$

 $for \ i=1:3, \ subplot(2,2,i), \ ezplot(['(1+x1)^{\land'} \ num2str(i)]); \ grid \ on, \ end$

 $for \ i=1:3, \ subplot(2,2,i), \ ezmesh(['(1+x1*x2)^{\wedge'} \ num2str(i)]); \ grid \ on, \ end$

RBF Similarity (Radial Basis Function)

Why RBF is in ∞-D? See Appendix

•
$$K(a, b) = \exp(-||a - b||^2) / 2\sigma^2 = e^{\frac{-||a - b||^2}{2\sigma^2}}$$
.

PDF $\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- σ (SD) can be used as **another** way of **regularization**.
- $\sigma\uparrow$, data similarity $\uparrow \rightarrow$ regularization \uparrow , error (bias) \uparrow , variance \downarrow . $(\sigma\uparrow, 1/\exp(\downarrow) \approx 1)$
- $\sigma \downarrow$, data similarity $\downarrow \rightarrow$ regularization \downarrow , error (bias) \downarrow , variance \uparrow . $(\sigma \downarrow, 1/\exp(\uparrow) \approx 0)$

$$K(a,b) = e^{\frac{-||a-b||^2}{2\sigma^2}}.$$

Sigma = 1

 $\sigma\uparrow$, similarity \uparrow \rightarrow regularization \uparrow , error (bias) \uparrow . $\sigma\downarrow$, similarity \downarrow \rightarrow regularization \downarrow , error (bias) \downarrow .

fitcsvm(X, Y, 'KernelFunction', 'rbf', 'KernelScale', 1, 'BoxConstraint', 1)

SVC(C=1.0, kernel = 'rbf', gamma = 'auto')

$$K(a,b) = e^{\frac{-||a-b||^2}{2\sigma^2}}.$$

$$Sigma = 2$$

 $\sigma\uparrow$, similarity $\uparrow \rightarrow$ regularization \uparrow , error (bias) \uparrow . $\sigma \downarrow$, similarity $\downarrow \rightarrow$ regularization, error (bias).

$$K(a,b) = e^{\frac{-||a-b||^2}{2\sigma^2}}.$$

fitcsvm(X, Y, 'KernelFunction', 'rbf', 'KernelScale', 1, 'BoxConstraint', 1)

SVC(C=1.0, kernel = 'rbf', gamma = 'auto')

© Copyright 2018 by Dr. Chih Lai Page: 19

$$K(a, b) = e^{\frac{-||a-b||^2}{2\sigma^2}}$$
.

$$Sigma = 3$$

 $\sigma\uparrow$, similarity $\uparrow \rightarrow$ regularization \uparrow , error (bias) \uparrow . $\sigma\downarrow$, similarity $\downarrow \rightarrow$ regularization \downarrow , error (bias) \downarrow .

$$K(a,b) = e^{\frac{-||a-b||^2}{2\sigma^2}}.$$

fitcsvm(X, Y, 'KernelFunction', 'rbf', 'KernelScale', 1, 'BoxConstraint', 1)

SVC(C=1.0, kernel = 'rbf', gamma = 'auto')

RBF with Y-Shape Data

- Build an SVM over class 1 and 2.
 - Points in Class 1 are outliers.
 - Decision boundary \approx contour of Y-shape.
 - Note that SVs are in the **Z**-space.
 - SVs concentrate in the protruding part of Y-shape.
 - Can we narrow the decision boundary to be closer to the Y-shape?
 - Do we want do achieve that?
 - Real-world problem?

Why RBF is in ∞-D? See Appendix

Matlab Kernels

■ **'KernelFunction**' under http://www.mathworks.com/help/stats/fitcsvm.html

Value	Description	Formula
'gaussian' Or 'rbf'	Gaussian or Radial Basis Function (RBF) kernel, default for one-class learning	$G(x_1, x_2) = \exp\left(-\ x_1 - x_2\ ^2\right)$
'linear'	Linear kernel, default for two-class learning	$G(x_1, x_2) = x_1' x_2$
'polynomial'	Polynomial kernel. Use 'PolynomialOrder', polyOrder to specify a polynomial kernel of order polyOrder.	$G(x_1, x_2) = (1 + x_1' x_2)^p$

- A polynomial kernel can model **feature conjunctions** up to any order polynomial.
 - i.e. interactive effects of features.
- Radial basis functions allows to pick out hyperspheres.
 - In contrast w/ linear kernel

More RBF Examples

■ Examples of SVM with RBF kernel in the following slides.

Fisher Iris (2-Class)

Page: 24

Fisher Iris (2-Class) RBF with different Cs

■ <u>WHY</u> do we have such weird support vectors?

$$min_{w,b}[CE + L]$$

■ **NOTE** that they are support vectors in the imaginary **Z-space**.

Fisher Iris (3-Class) RBF

 $min_{w,b}[CE + L]$

 $C\uparrow \rightarrow \text{Regularization}\downarrow$

 $\rightarrow w \uparrow \rightarrow M \downarrow \rightarrow Err \downarrow$

→ #SV↓

MPG + Weight, RBF

Polynomial method not working well.

$$min_{w,b}[CE + L]$$

 $C\uparrow \rightarrow \text{Regularization} \downarrow$

 $\rightarrow w \uparrow \rightarrow M \downarrow \rightarrow Err \downarrow$

→ #SV↓

Feature Scaling before Using Kernels

- Feature scaling becomes more important when using kernels.
 - Otherwise, kernel function will make greater values even bigger.
 - New features (i.e. x^3) grow fast from the original features.
 - (age, \$\$), (age², \$\$²), (age³, \$\$³), ... (age³⁰⁰⁰, \$\$³⁰⁰⁰),

•
$$\Phi(x^{(i)}) \bullet \Phi(x^{(j)}) = K(x^{(i)}, x^{(j)}) = (C + A^T B)^{\infty}$$
 $\Phi(A) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$

•
$$K(a, b) = \exp(-\|a - b\|^2) / 2\sigma^2 = e^{\frac{-\|a - b\|^2}{2\sigma^2}} =$$

$$K(x, y) = \exp(-\|x - y\|^2) = \exp(-(x_1 - y_1)^2 - (x_2 - y_2)^2)$$

$$= \exp(-x_1^2 + 2x_1y_1 - y_1^2 - x_2^2 + 2x_2y_2 - y_2^2)$$

$$= \exp(-\|x\|^2) \times \exp(-\|y\|^2) \times \exp(2x^Ty)$$

$$k(x,y) = \exp(-\|x\|^2) \exp(-\|y\|^2) \sum_{n=0}^{\infty} \frac{(2x^Ty)^n}{n!}$$

MPG + Weight, RBF, Same Dataset, Feature Scaling Effects

Kernel Example, 6-D... **Problems???**

• Original data points $A = (x_1, x_2) \rightarrow 2-D$.

 \bullet dot(\boldsymbol{A} , \boldsymbol{B})

 $\Phi(A) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2) \rightarrow 6-D$

- - Gram Matrix

/	P1 P2 P3 P4	0 1 6 9	1 1 1				
		P1	P2	P3	P4		Dot products
	P 1	1	1	1	1	/	Dot products
	P2	1	2	7	10		between
	P3	1	7	37	55	\	EVERY
	P4	1	10	55	82		data pair??
	P1	1	0	1.4142	0	1	0
4	P2	1	1.4142	1.4142	1	1	1.4142
1	P3	1	8.4853	1.4142	36	1	8.4853
	P4	1	12.7279	1.4142	81	1	12.7279
		P1	P2	P3	P4		/
	P1	4	4	4	4	/	/
	P2	4	9	64	121		
×	P3	4	64	1444	3136		
	P4	4	121	3136	6889		

Dot Products Between **EVERY** Pair (although in low-D)?

$$L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(\mathbf{x_i}) \Phi(\mathbf{x_j}) - \sum_{i=1}^m \alpha_i$$

- In other words, when you call SVM with "rbf" or "poly" kernel...
 - Matlab syntax... mdl = fitcsvm(X, Y, 'KernelFunction', 'rbf');
 - A **Gram Matrix** G between **every** pair of points in original space is created.
 - G is the matrix of inner products of <u>all pairs</u> of vectors, i.e. $g_{ij} = v_i^T v_j$.
 - What if you have BIG data w/ huge records, i.e. 100-million. So, $(100\text{-million})^2 = ?$

- Compute Gram Matrix *G* that has similarity / kernel btwn every pair of points?
 - Pass this G to a <u>linear</u> SVM and build a <u>linear</u> model, <u>conceptually</u> in ∞ -D.
- How about build a <u>much smaller</u> Gram Matrix on only <u>landmark points</u>. ??!!

Generating Micro-Clusters First

■ Using faster/cheaper (??) algorithm to generate micro clusters first.

■ Then compute G-Mat = Build L-SVM on the G-Mat = kernel trick

■ Elapsed time of 50 points is 0.522405 seconds.

■ Elapsed time of 378 points is 0.740561 seconds.

 \bullet 50 / 378 = 0.13% data, 0.522405 / 0.740561 = 71% execution time.

speedup = 1.42

Y-Shape Data with **HUGE** Gram Matrix, **Solution???**

- 1. Compute an RBF G-Matrix for all pairs between landmark points X.
- 2. Build a linear SVM S on the G-Matrix.
- 3. Convert each new <u>test</u> point X' to X'' by computing a kernel between X' and X.
- 4. Predict the class of *X*" using linear SVM *S*.

Summary of **Kernel Tricks**

- You can have $\Phi(x^{(i)})$ in **VERY** high dimension.
 - The dot product in that <u>VERY</u> H-D can be done by a *kernel function* in the original dimension.

- Build a Gram matrix that contains similarity (kernel) between pair-wise data points in the original space.
- The (conceptual) dimension of $\Phi(x^{(i)})$ can be \rightarrow (much larger than) # of data points.
- Have SVM learns a linear separation from the Gram matrix.
- So now you can **substantially** increases the # of features for your classifier.

- Kernel can be thought as an "instance-based" method.
 - Remember data (or *landmarks*) rather than remember parameters θ (or w).

SVM One Class Classification

- Matlab fitcsvm() or Sklearn svm.OneClassSVM()
 - An unsupervised method to learn a decision function for novelty detection.
 - Classify new data as how similar or how different to the training set. **kNN**??
 - **Like clustering???** Compare either to *k*-means or *GMM* (Gaussian Mixture Model).
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM
 - http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier_detection.html#sphx-glr-auto-examples-covariance-plot-outlier-detection-py
 - http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

3.5 3.5 2.5 1.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 3.5 1.5 1.5 2.5 3.5 BMM

One-Class SVM Experiments

- sklearn dataset
 - Build **only 1** <u>one</u>-class SVM from ...
 - Data of (one class (majority) + outliers (minority).

- Iris dataset
 - Build 2 one-class SVMs from ...
 - Unbalanced data of (<u>two</u> classes).
 - Compare to 1 two-class SVM.

- Ovarian cancer dataset
 - Build 2 one-class SVMs from ...
 - **Super** unbalanced data of (**two** classes).
 - **4,000**-dimension data.

SVM RBF One Class, NO Kernel Scale

http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html#sphx-glr-auto-examples-svm-plot-oneclass-py

data rng(10) XX = 0.3 * randn(100, 2); X = [XX + 2; XX - 2]; Y = zeros(size(X, 1), 1); XX = 0.3 * randn(20, 2); X_test = [XX + 2; XX - 2]; % Generate outliers a = -4; b = 4; X outliers = (b-a).*rand(20,2) + a;

SVM RBF One Class, NO Kernel Scale

Probability

$W^{T}X$

SVM RBF One Class, **Kernel Scale = 3.5**

http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html#sphx-glr-auto-examples-svm-plot-oneclass-py

SVM RBF One Class, **Kernel Scale = 3.5**

$W^{T}X$

Iris Dataset

SVM / RBF One Class for **Unbalanced** Iris (50 vs. 100) Dataset

- Build model 0 (M0) from data of class 0 (first 50 rows) only.
- Build model 1 (M1) from data of class 1 (100 rows) only.

SVM / RBF One Class for **Unbalanced** Iris (50 vs. 100) Dataset–Cont'd

SVM / RBF for **Unbalanced** Iris (50 vs. 100) Data— One 2-Class SVM

■ Build **ONE** 2-Class model from both classes.

Ovarian Cancer Dataset

Detecting Super Unbalanced Ovarian Cancer Patients (One-Class)

- M0 was trained on healthy patients (C0).
- M1 was trained on ovarian cancer patients (C1).
- Duplicate healthy records couple times to create a skewed dataset
 - Original data, total 261, Cancer = 121 (46%).

Duplicate data, total 3662, Cancer = 121 (3.4%)

Build One 2-Class SVM

■ Build one 2-class SVM model from **ALL** (unbalanced) patients.

Super Unbalanced Ovarian Cancer Patients (1-Class), Kernel Scale = 0.1

Apply One-Class Classification Using Logit??

- Objective Function for Logistic Regression
 - minimize negative log likelihood

$$\frac{-1}{m} \sum_{i=1}^{m} [Y_i log(P_i) + (1 - Y_i) log(1 - P_i)]$$

- Object function for SVM Kernel
 - Min $L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j \sum_{i=1}^m \alpha_i$

(Dual form)

• Min
$$L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(\mathbf{x_i}) \Phi(\mathbf{x_j}) - \sum_{i=1}^m \alpha_i$$

Instance-Based Methods

- **Eager** instance-based learning, like SVM-RBF.
- Lazy instance-based learning. Store past data, NO model construction.
 - Approach $1 \underline{k}$ -nearest neighbor $(\underline{k}NN)$
 - All instances (records) are represented as points in the *n*-D Euclidean space.
 - Assign the majority class of the nearest neighbors to the new (unseen) data.
 - For each query, finding *k*NN can be very time consuming.
 - \blacktriangleright k-nearest neighbors can be far away (very dissimilar) from Q.
 - Approach 2– <u>range query</u>

kNN for Digit Recognition

- Compute distance between each test instance against <u>ALL</u> training data
 - Predict query image based on majority of *k*NN digits. Slow to run.
- Improvements?
 - **Idea 1**: classifying based on distance to the **center** of each class.
 - What is the center of each class?

- **Idea 2**: using smaller samples of the dataset.
- Data Source: https://www.kaggle.com/c/digit-recognizer/data

center of each class

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

Self Organizing Map (SOM)

- Another "better" alternative → Convolutional Neural Network (CNN).
 - Less recognizable patterns. They are no longer centers. They are *features*.

10×10 SOM neurons

© Copyright 2018 by Dr. Chih Lai

Page: 52

Idea 2: Using Smaller Samples from Training Data

Much faster with accuracy tradeoff.

data size used in kNN	Accuracy	Exe Time	
400 (1% of the data)	84%	1sec	
2000 (5% of the data)	91%	20 sec	
5000 (12.5% of the data)	93%	50 sec	
10000 (25% of the data)	95%	2min	

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

Compare kNN Classification Quality to Other Methods

- Computing time is bit longer. But, kNN produce not bad result.
- How about executing time and quality of SVM or SVM+RBF?
- How about advanced NN (i.e. CNN)???

Algorithm	Accuracy (%)
Decision Tree	85
Naïve Bayes	82.55
KNN	96.0
Random Forest	96
MLP ← Regular NN	94

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

■ Some writings are difficult to classify...

2

1

4

4

Issues in kNN, or Instance-Based Learning

- lacktriangle Difficult choosing right k value
 - If *k* is too small, sensitive to noise points
 - If *k* is too large, neighborhood may include points from other classes

- Numeric attributes with different scales.
 - Distance measures may be dominated by one of the attributes
 - Heights of persons vary from 1.5m to 1.8m. \$\$ of persons vary from \$100K to \$100B.
- Binary attributes.

$$R1 = (0 \quad 0 \quad 0)$$

$$R2 = (1 \quad 1 \quad 0)$$

$$R3 = (1 \quad 0 \quad 1)$$

- Categorical attributes. (e.g. diseases, states...)
 - Convert them to dummy variables...
 - That's it??!!
 - Before RBF, we **never** compare distance btwn records.
 - We only derive θ to compute $\theta^T X$.

100000000000

Lazy vs. Eager Learning

- Lazy evaluation
 - kNN or Naïve Bayes (instance-based learner).
 - Less time training but more time predicting need to carry all instances
 - Generalize **beyond** the **current** training data.

- Eager evaluation
 - Decision-tree, logistic, LDA, SVM, SVM RBF (instance-based learner)
 - More time in training but less time in predicting
 - Commit to a fixed / static model.

Reminder

- We discussed many machine learning techniques.
- Try to use all or multiple methods.
- Not only you can compare their performance, but also... WHAT???

MDL-01 2018S, Bank Marketing

Terrence White Ronald E Twite Leela Sowjanya Chippada Ahmad K Lubnani Mowlid Abdillahi Nathan Adams

Ensemble Hard / Soft Voting

Characteristics of Classification Algorithms

SVM

• Speed & memory usage are good w/ few support vectors, poor if too many. Difficult to interpret how SVM classifies data w/ kernels. Easy for linear SVM.

Naive Bayes

• Speed & memory usage are good for simple distributions, but poor for kernel distributions and large data sets.

Nearest Neighbor

• Good predictions in low D, but poor predictions in high D. Need kd-trees for speed. Vars can be either continuous or categorical, not both.

Discriminant Analysis

Accurate when <u>normal dist</u>. Otherwise, accuracy varies.

Algorithm	Predictive Accuracy	Fitting Speed	Prediction Speed	Memory Usage	Easy to Interpret	Handles Categorical Predictors
Trees	Medium	Fast	Fast	Low	Yes	Yes
SVM	High	Medium	*	*	*	No
Naive Bayes	Medium	**	**	**	Yes	Yes
Nearest Neighbor	***	Fast***	Medium	High	No	Yes***
Discriminant Analysis	****	Fast	Fast	Low	Yes	No
Ensembles	See Suggestions for Choosing an Appropriate Ensemble Algorithm and General Characteristics of Ensemble Algorithms					

Appendix

Why RBF $\in \infty$ -Space?

•
$$K(a, b) = \exp(-||a - b||^2) / 2\sigma^2 = e^{\frac{-||a - b||^2}{2\sigma^2}}$$
.

■
$$K(x, y) = \exp(-\|x - y\|^2) = \exp(-(x_1 - y_1)^2 - (x_2 - y_2)^2)$$

$$= \exp(-x_1^2 + 2x_1y_1 - y_1^2 - x_2^2 + 2x_2y_2 - y_2^2)$$

$$= \exp(-\|x\|^2) \times \exp(-\|y\|^2) \times \exp(2x^Ty)$$

$$k(x,y) = \exp(-\|x\|^2) \exp(-\|y\|^2) \sum_{n=0}^{\infty} \frac{(2x^Ty)^n}{n!}$$

- \blacksquare Tylor series for e.
 - Raise x & y to n-dimension, divide it by n-factorial, and sum to infinity.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$