VC3SMP85

Zigbee module

Instruction Manual

To prevent damage to the module, be sure to observe the following precautions:

- Supply voltage not more than 3.6V
- Do not modify the module
- Do not wet the module or use the module when your hands are wet
- Do not use the module for applications other than communications
- Do not force the knock on the module
- Welding process ,to prevent electrostatic damage to the module
- While using the module,don't do anything which may cause bodily harm or physical damage

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The device has been evaluated to meet general RF exposure requirement.

To maintain compliance with FCC's RF exposure guidelines, this equipment should be installed and operated with a minimum distance of 20cm between the radiator and your body.

The host label must show "contains FCC ID: 2AINXVC3SMP85"

TABLE OF CONTENTS

1 Description	1
2 Features	1
3 Electrical Specifications	1
4 Functional Block Diagram	2
4.1 SoC	3
4.2 RF_PA	3
4.3 Antenna	3
5 Pin Descriptions	4
6 Module Size	
List of Figures	
Figure 1.1 VC3SMP85 Module	1
Figure 4.1 VC3SMP85 Functional Block Diagram	2
Figure 4.2 VC3SMP85 TX Power Mode Configration Options	3
Figure 5.1 VC3SMP85 Pin Descriptions	4
Figure 6.1 VC3SMP85 Size	6
List of Tables	
Table 3.1 Absolute Maximum Ratings	1
Table 3.2 Operating Conditions	2
Table 3.3 RF Parameter	2
Table 3.4 Other Parameter	2
Table 5.1 Pin Descriptions	4

1 Description

VC3SMP85 have very low power consumption (sleep current1.8µA) ,High Performance ZigBee solution.It uses industry-leading ZigBee Pro Stack——EmberZNet,provides stable and reliable ZigBee network.VC3SMP85 moudle integrated ARM®Cortex-M3 32-bit microprocesso , have extensive memory resources and I / O interfaces,Customers can quickly achieve simple or complex product development.

Figure 1.1.VC3SMP85 Module

2 Features

- 32-bit ARM® Cortex-M3 processor
- Operation at:6, 12 or 24MHz
- +20dB normal mode output power
- 512KB flash, 64KB RAM Memory
- Low deep sleep current ,with retained RAM and GPIO: 1.8μA.Sleep modes seletables
- Single voltage operation:2.1-3.6V with internal 1.8 and 1.25V regulators
- Optional OTA firmware upgrade mode
- AES-128 encryption accelerator
- Flexible ADC, UART/SPI/TWI serial communications
- Temperature range: -40 to +85°C
- Normal mode link budget up to 116dB;configurable up to 120dB

3 Electrical Specifications

Table 3.1. Absolute Maximum Ratings

Parameter	Min	Max	Unit
Regulator input voltage (VDD)	-0.3	+3.6	V
Voltage on any GPIO	-0.3	VDD+0.3	V
Analog, Memory and Core volt-	-0.3	+2.0	V

Rev. 0.0.9

age			
RF Input Power		+5	dBm
Storage temperature	-40	+125	°C

Table 3.2. Operating Conditions

Parameter	Min	Тур	Max	Uint
Supply voltage (VDD)	2.1	3.3	+3.6	V
Operating temperature range	-40	25	+85	°C

Table 3.3.RF Parameter

Parameter	Min	Тур	Max	Unit
Frequency range	2405		2480	MHz
Sensitivity(1%PER ,Boost Mode)	-102		-94	dBm
TX Power		+20	+21	dBm
Frequency tolerance (@25°C)	-96.2		+96.2	kHz

Note : In the open distance test, the transmission distance up to 0.497 mile

Table 3.4.Other Parameter

Parameter	Min	Тур	Min	Unit
Total TX current(+20dBm , Boost Mode)		157.5		mA
Total RX current (Boost Mode)		37.5		mA
Sleep Current		1.6		μΑ

4 Functional Block Diagram

VC3SMP85 with high performance ZigBee SoC and PA Figure 4.1 shows functional block diagram of the VC3SMP85 Module

Figure 4.1.VC3SMP85 Module functional block diagram

Rev. 0.0.9 2/6

4.1 SoC

VC3SMP85 uses Ember's EM3585 chip.The chip integrates RF RF and baseband. The MAC hardware, Hardware capture module, ARM® CortexTM-M3 microprocessor, Large capacity Flash and RAM. Therefore, the chip provides users with a low-cost, high-performance ZigBee solutions.

4.2 RF PA

VC3SMP85 have a fully integrated,PA chips. The PA, LNA, Transmit and Receive switching circuitry, the associated matching network, and the harmonic filter all in a CMOS single-chip device. The chip can not only increase the transmission power amplified output signal can also amplify the input signal reception performance enhancement. Not only meet the IEEE802.15.4 / ZigBee all RF functional requirements, but also has a lower cost, is a cost-effective solution for Zigbee RF.

PA chips require proper use. The PC5, PC6 should be set ALT_OUT(PUSH/PULL), Through these two pins to control PA chips, transmit and receive switching channels. In order to improve RF performance, software should set the EMBER_TX_POWER_MODE_BOOST by emberSetTxPowerMode() (EmberZNet API) ,using TX Power Model. In order to avoid damage to the PA chip,during use input power must less than or equal 0dBm.

Note: When generating code using Ember Desktop, EMBER_AF_TX_POWER_MODE of the macro definition is used to set this parameter. In Desktop configuration options, as follows:

Figure 4.2.VC3SMP85 TX Power Mode Configration Options

4.3 Antenna

VC3SMP85 default connection board PCB antenna.

Rev. 0.0.9 3/6

5 Pin Description

Figure 5.1.VC3SMP85 pin descriptions

Table 5.1.pin descriptions

Pin#	Signal	Direction	Description
1, 2, 12, 31, 33	GND		
3	PC5	I/O	GPIO
	TX_ACTIVE	0	Output high level in TX mode
4	RESET	1	Low voltage reset
5	PC6	I/O	GPIO
	nTX_ACTIVE	0	Output low level in TX mode
6	PC7	I/O	GPIO
7	PA7	I/O	GPIO
8	PB3	I/O	GPIO
	SC1nCTS	1	CTS of UART
	SC1SCLK	I/O	Clock line of SPI
	TIM2C3	I/O	Timer 2 channel 3 input/output
9	PB4	I/O	GPIO
	TIM2C4	I/O	Timer 2channel 4 input/output
	SC1nRTS	0	RTS of UART
	SC1nSSEL	1	SPI Slave Select
10	PA0	I/O	GPIO
	TIM2C1	I/O	Timer2 channel 1 input/output
	SC2MOSI	I/O	SPI host output、slave input
11	PA1	I/O	GPIO
	TIM2C3	I/O	Timer 2 cahnne 3 input/output

Rev. 0.0.9 4/6

	SC2MISO I/	/O	SPI host input、slave output	
13	VDD -		Power supply (2.1——3.6V)	
14		/O	GPIO	
		/O	Timer 2 channel 4 input/output	
	SC2SCLK I/	/O	Clock line of SPI	
	SC2SCL I/	/O	Clock line of cerial controller	
15		/O	GPIO	
	SC2SSEL I		SPI Slave Select	
	TIM2C2	/O	Timer2 channel 2 input/output	
16	PA4 I/	/O	GPIO	
		Analog input	Analog input channel 4	
17		/O	GPIO	
	ADC5	Analog input	Analog input channel 5	
	nBootMode I		When the chip enable, start Bootloade control pin	
18	PA6	/O	GPIO	
	TIM1C3	/O	Timer 1 channel 3 input/output	
19	PB1 I/	/O	GPIO	
	SC1MISO C)	SPI slave output	
	SC1MOSI C)	SPI host output	
	SC1SDA I/	/O	Date cable of serial communications	
	SC1TXD C)	TX interface of UART	
	TIM2C1	/O	Timer2 channel 1 input/output	
20	PB2	/O	GPIO	
	SC1MISO I		SPI host input	
	SC1MOSI I		SPI slave input	
	SC1SCL I	/O	Clock line of serial communications	
	SC1RXD I		Rx interface of UART	
	TIM2C2	/O	Timer2 channel 2 input/output	
21	SWCLK I/	/O	Clock line of SWD interface	
	JTCK I		Clock line of JTAG interface	
22	PC2	/O	GPIO	
23	PC3	/O	GPIO	
24	PC4	/O	GPIO	
	SWDIO I/	/O	Date cable of SWD interface	
25	PB0	/O	GPIO	
	IRQA I		External interrupt sources A	
	VREF I	/O	Input/output of ADC reference level	
	TIM1CLK I		External clock input of Timer 1	
26	PC1 I/	/O	GPIO	
	ADC3		Analog input channel 3	
27	PC0 I/	/O	GPIO	
28	PB7	/O	GPIO	

Rev. 0.0.9 5 / 6

	ADC2	Analog input	Analog input channel 2
29	PB6	I/O	GPIO
	ADC1	Analog input	Analog input channel 1
	TIM1C1	I/O	Timer1 channel 1 input/output
30	PB5	I/O	GPIO
	ADC0	Analog input	Analog input channel 0
	TIM2CLK	1	External clock input of Timer2
32	RF Out	I/O	Input of external antenna

6 Module Size

Figure6.1 VC3SMP85 Size (mm)

Rev. 0.0.9 6 / 6