The Malý-Pfeffer integral

https://github.com/TheoKoppenhoefer/integration-theory-VT23

Lund

May 30, 2023

Table of contents

Introduction

Definition of the integral

Uniqueness and linearity

What this integral is good for

Summary

Introduction

Given a suitable set $A \subseteq \mathbb{R}^n$ and suitable $w \colon \mathbb{R}^n \to \mathbb{R}^n$ the divergence theorem states that

$$\int_A \operatorname{Div} w \, d\mathscr{L}^n = \int_{\partial A} w \cdot v_A \, d\mathscr{H}^{n-1}$$

Here $v_A : \partial A \to S^{n-1} \subseteq \mathbb{R}^n$ is the exteriour unit normal and Div denotes the divergence.

- ► Generalising the LHS leads to a formulation involving the Pfeffer integral which is defined in [3].
- ► The Pfeffer (and the Henstock-Kurzweil) integral was generalised in [1] which I call the Malý-Pfeffer integral. It is the topic of this presentation.

Definition of the integral

Definition (essential interiour, exteriour, boundary)

We call the set of density points of A essential interiour int_*A of A. The essential exteriour $\operatorname{ext}_*A=\operatorname{int}_*A^\complement$ is the essential interiour of the complement of A. The essential boundary is given by

$$\partial_* A = \mathbb{R}^n \setminus (\operatorname{int}_* A \cup \operatorname{ext}_* A).$$

Definition (relative perimiter)

We define the relative perimeter of a measurable set E to be

$$P(E, \operatorname{in} A) = \mathscr{H}^{n-1}(\partial_* E \cap \operatorname{int}_* A).$$

where \mathscr{H}^{n-1} denotes the (n-1)-dimensional Hausdorff-measure. For convenience we write

$$P(E) = P(E, \text{in } \mathbb{R}^n)$$
.

Definition (\mathscr{BV} -sets)

A measurable set $A\subseteq\mathbb{R}^n$ is called a \mathscr{BV} -set if $|A|+P(A)<\infty$. We denote by \mathscr{BV} the set of all \mathscr{BV} -sets and by \mathscr{BV}_c the set of all bounded \mathscr{BV} -sets.

Definition (Topology on \mathscr{BV}_c)

We say a sequence $A \colon \mathbb{N} \to \mathscr{BV}_c$ converges to A_* if there exists a compact $K \subseteq \mathbb{R}^n$ such that $A_k \subseteq K$, $\sup_k P(A_k) < \infty$ and $|A_* \triangle A_k| \to 0$ as $k \to \infty$. Here $A \triangle B = (B \setminus A) \sqcup (A \setminus B)$ denotes the symmetric difference.

Definition (Charge)

A function $F \colon \mathscr{BV}_c \to \mathbb{R}$ is called

- ▶ finitely additive if $F(A \sqcup B) = F(A) + F(B)$ for all disjoint $A, B \in \mathscr{BV}_c$.
- ▶ continuous if $A_k \to A_*$ implies that $F(A_k) \to F(A_*)$.
- a charge if it is finitely additive and continuous

Example (Indefinite Lebesgue-Integrals are charges) Let $f \in L^1_{loc}(\mathbb{R}^n)$ then the indefinite integral of f

$$F: A \mapsto \int_A f \, \mathrm{d} \mathscr{L}^n$$

is a charge.

Definition (Charge)

A function $F \colon \mathscr{BV}_c \to \mathbb{R}$ is called

- ▶ finitely additive if $F(A \sqcup B) = F(A) + F(B)$ for all disjoint $A, B \in \mathscr{BV}_c$.
- ▶ continuous if $A_k \to A_*$ implies that $F(A_k) \to F(A_*)$.
- a charge if it is finitely additive and continuous

Example (Fluxes are charges)

For $E \in \mathscr{BV}$ and $w \in C(\operatorname{cl}(E); \mathbb{R}^n)$ we have that the flux of w

$$F: A \mapsto \int_{\partial_*(A \cap E)} w \cdot v_{A \cap E} \, d\mathscr{H}^{n-1}$$

is a charge. Here $v_{A\cap E}\colon \partial_*(A\cap E)\to S^{n-1}\subseteq \mathbb{R}^n$ denotes the outer unit normal.

Definition (Regularity of \mathscr{BV}_c -sets)

For $E \in \mathscr{BV}_c$ we define the regularity

$$r(E) = egin{cases} rac{|E|}{\operatorname{diam}(E)P(E)} & ext{ if } |E| > 0 \\ 0 & ext{ else} \end{cases}$$

Definition (ε -isoperimetric)

We call $E \in \mathscr{BV}_c$ ε -isoperimetric if for all $T \in \mathscr{BV}$

$$\min\{P(E\cap T),P(E\setminus T)\}\leq \frac{P(T,\operatorname{in} E)}{\varepsilon}.$$

Definition (Gauge)

We call a set thin if it is σ -finite w.r.t. \mathscr{H}^{n-1} . A mapping $\delta \colon \mathbb{R}^n \to \mathbb{R}_{>0}$ for which $\{\delta = 0\}$ is thin is called a gauge.

Definition (Partitions)

Let δ be a gauge and $\varepsilon > 0$. We call

$$\mathscr{P} = \{(E_1, x_1), \dots, (E_p, x_p)\}\$$

a partition of the set $\bigcup \mathscr{P} = \bigcup_i E_i$ if $E_i \in \mathscr{BV}_c$ are disjoint sets and $x_i \in \mathbb{R}^n$. A partition is called

- ▶ dyadic if E_i is a dyadic cube and $x_i \in cl(E_i)$ for all i
- \triangleright ε -regular if $r(E_i \cup \{x_i\}) > \varepsilon$ for all i
- ▶ strongly ε -regular if it is ε -regular, E_i is ε -isoperimetric and $x_i \in \operatorname{cl}_* E_i$ for all i
- ▶ δ -fine if $E_i \subseteq B_{\delta(x_i)}(x_i)$ for all i

Definition $(R_*$ -integral)

A function $f\colon \mathbb{R}^n \to \mathbb{R}$ is called R_* -integrable with respect to a charge G if there is a charge F, s.t. for all $\varepsilon>0$ there exists a gauge δ such that

$$\sum_{i=1}^{p} |f(x_i)G(E_i) - F(E_i)| < \varepsilon$$

for each strongly ε -regular δ -fine partition $\{(E_1, x_1), \dots, (E_p, x_p)\}$. We call F an indefinite integral of f with respect to G and write

$$F = (R_*) \int f \, \mathrm{d}G.$$

Uniqueness and linearity

Definition (Nice dyadic cubes)

Let $\sigma \colon \mathrm{cl}(C) \to \mathbb{R}_{>0}$. A dyadic cube C is called nice if there exist a dyadic σ -fine partition of C. A dyadic cube which is not nice is called faulty.

Lemma (Cousin)

All dyadic cubes are nice.

Proof.

Assume a dyadic cube $C=C^1$ is faulty and has diameter r. Then C^1 can be written as the disjoint union $C=\bigsqcup_i C_i$ of dyadic cubes C_i with diameters less than r/2. Since C is faulty at least one of the C_i , say $C^2=C_i$ is also faulty. Inductively we obtain a sequence of nested faulty dyadic cubes C^j with diameters less than $r/2^j$. Thus

$$\bigcap_{j} \operatorname{cl}(C^{j}) = \{x\}$$

for some $x\in \mathrm{cl}(C)$. Let j be s.t. $r/2^j<\sigma(x)$. Then we have that $\mathrm{diam}(C^j)<\sigma(x)$ and $x\in C^j$ so C^j is nice. This is a contradiction.

One uses this to prove the following result

Lemma (Almost covering of a cube)

Let C be a dyadic cube, F be a charge, $\varepsilon > 0$ and δ be a gauge. Then there exists a δ -fine dyadic partition

 $\mathscr{P} = \{(C_1, x_1), \dots, (C_q, x_q)\}$ such that

$$|F|\Big(C\setminus\bigcup\mathscr{P}\Big)<\varepsilon$$
.

Proposition

The integral is unique.

Proof.

Proposition (Linearity of the integral)

Let f_1, f_2 be R_* -integrable and $\alpha \in \mathbb{R}$. Then $f_1 + \alpha f_2$ is also R_* -integrable and

$$(R_*) \int f_1 dG + (R_*) \int \alpha f_2 dG = (R_*) \int f_1 + \alpha f_2 dG.$$

Proof.

We write $F_i=(R_*)\int f_i\,\mathrm{d}G$. then we have that for all $\varepsilon>0$ there exist gauges δ_i such that

$$\sum_{j} |f_i(x_j)G(E_j) - F_i(E_j)| < \varepsilon$$

for each strongly ε -regular δ_i -fine partition $\{(E_1,x_1),\ldots,(E_p,x_p)\}$. Since the space of charges is a linear space we have that also $F_1+\alpha F_2$ is a charge. If we now set $\delta=\min_i \delta_i$ then we obtain that

$$\sum_{j} |(f_{1} + \alpha f_{2})(x_{j})G(E_{j}) - (F_{1} + \alpha F_{2})(E_{j})|
\leq \sum_{j} |f_{1}(x_{j})G(E_{j}) - F_{1}(E_{j})| + |\alpha| \sum_{j} |f_{2}(x_{j})G(E_{j}) - F_{2}(E_{j})|
\leq (1 + |\alpha|)\varepsilon$$

for every strongly ε -regular δ -fine partition $\{(E_1, x_1), \dots, (E_p, x_p)\}$. Thus $f_1 + \alpha f_2$ is integrable with integral $F_1 + \alpha F_2$.

What this integral is good for

Proposition (Generalisation of the Lebesgue integral on \mathbb{R}^n)

Each Lebesgue-integrable function is also R_* -integrable and the integrals coincide.

Proof.

See [1, Proposition 3.5].

Proposition (Generalisation of the Henstock-Kurzweil integral on \mathbb{R})

A function $f: \mathbb{R} \to \mathbb{R}$ is Henstock-Kurzweil integrable on a compact $A \subseteq \mathbb{R}$ iff it is R_* -integrable and the two integrals coincide on A.

Proof.

See [1, Proposition 3.6].

Definition (Admissable sets)

We call a set admissible if $\mathrm{int}_*A\subseteq A\subseteq \mathrm{cl}_*A$ and ∂A is compact. The set of admissible \mathscr{BV} -sets is denoted by \mathscr{ABV} .

Proposition (Generalisation of the Pfeffer-Integral on \mathbb{R}^n)

Let $A \in \mathscr{ABV}$. Then each Pfeffer-integrable function is also R_* -integrable and the integrals coincide on A.

Theorem (Divergence theorem)

Let $A \in \mathscr{ABV}$, $S \subseteq A$ a thin set and $w \in C(\operatorname{cl}(A); \mathbb{R}^n)$ a continuous vector field which is point-wise Lipschitz on $A \setminus S$. Then $\operatorname{Div} w$ is R_* -integrable and

$$(R_*)\int_A \operatorname{Div} w \, \mathrm{d} \mathscr{L}^n = \int_{\partial_* A} w \cdot v_A \, \mathrm{d} \mathscr{H}^{n-1}$$

where $V_A: \partial_* A \to S^{n-1} \subseteq \mathbb{R}^n$ is the unit normal to A.

Summary

- ightharpoonup The construction is very similar to that of the Henstock-Kurzweil integral and involves δ -fine partitions where δ is a gauge
- One can prove that the integral is unique (using Cousin's Lemma and an 'almost covering Lemma')
- The R_* -integral generalises the Pfeffer and the Lebesgue integral on \mathbb{R}^n
- lacktriangle It generalises the Henstock-Kurzweil integral on ${\mathbb R}$
- One can formulate a very general version of the divergence theorem for this integral

Main source

[1] J. Malý and W. F. Pfeffer, "Henstock-Kurzweil integral on BV sets," *Math. Bohem.*, vol. 141, no. 2, pp. 217–237, 2016, ISSN: 0862-7959. DOI: 10.21136/MB.2016.16. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.21136/MB.2016.16.

Other sources I

- [2] D. L. Cohn, *Measure theory*, Second, ser. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, 2013, pp. xxi+457, ISBN: 978-1-4614-6955-1; 978-1-4614-6956-8. DOI: 10.1007/978-1-4614-6956-8. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1007/978-1-4614-6956-8.
- [3] W. F. Pfeffer, "The Gauss-Green theorem," *Adv. Math.*, vol. 87, no. 1, pp. 93–147, 1991, ISSN: 0001-8708. DOI: 10.1016/0001-8708(91)90063-D. [Online]. Available: https://doi.org/10.1016/0001-8708(91)90063-D.
- [4] —, "A Riemann type definition of a variational integral,"

 Proc. Amer. Math. Soc., vol. 114, no. 1, pp. 99–106, 1992,

 ISSN: 0002-9939. DOI: 10.2307/2159788. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.2307/2159788.

Other sources II

- [5] —, Derivation and integration, ser. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001, vol. 140, pp. xvi+266, ISBN: 0-521-79268-1. DOI: 10.1017/CB09780511574764. [Online]. Available: https://doiorg.ludwig.lub.lu.se/10.1017/CB09780511574764.
- [6] integration-theory-VT23, Github repository to the project. Online, 2023. [Online]. Available: https://github.com/TheoKoppenhoefer/integration-theory-VT23.

Thank you for your attention.