# Propositions and inference

Chapter 5

David Poole and Alan Mackworth

## Propositions

- A proposition is a sentence, written in a language, that has a truth value – it is true or false – in a world. A proposition is built from atomic propositions (atoms) and logical connectives.
- Propositions can be built from simpler propositions using logical connectives.

# Propositional Calculus Syntax

 An atomic proposition – atom – is a symbol, written as sequences of letters, digits, and the underscore (\_) and start with a lower-case letter.

E.g., a,  $ai_is_fun$ ,  $lit_l_1$ ,  $live_outside$ , mimsy, sunny.

- A proposition or logical formula is either
  - an atomic proposition or
  - a compound proposition of the form

where p and q are propositions.

• The operators  $\neg$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ ,  $\leftarrow$ ,  $\leftrightarrow$ , and  $\oplus$  are logical connectives.



# Semantics of the Propositional Calculus

- An interpretation or possible world is an assignment of true or false to each variable.
- An interpretation is defined by function  $\pi$  that maps atoms to  $\{true, false\}$ .
  - If  $\pi(a)$ =true, atom a is true in the interpretation. If  $\pi(a)$ =false, atom a is false in the interpretation.
- Truth of a compound proposition in an interpretation is defined in terms of the truth of its components:

| p     | q     | $\neg p$ | $p \wedge q$ | $p \lor q$ | p 	o q | $p \leftarrow q$ | $p \leftrightarrow q$ | $p \oplus q$ |
|-------|-------|----------|--------------|------------|--------|------------------|-----------------------|--------------|
| true  | true  | false    | true         | true       | true   | true             | true                  | false        |
| true  | false | false    | false        | true       | false  | true             | false                 | true         |
| false | true  | true     | false        | true       | true   | false            | false                 | true         |
| false | false | true     | false        | false      | true   | true             | true                  | false        |

 Propositions can have differenet truth values in different interpretations.



## Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of propositions, proposition g is a logical consequence of KB, written  $KB \models g$ , if g is true in every model of KB.
- That is,  $KB \models g$  if there is no interpretation in which KB is true and g is false.

$$KB = \begin{cases} apple\_eaten \leftarrow bird\_eats\_apple. \\ light\_on \leftarrow night. \\ night. \end{cases}$$

|                       | apple_eaten | bird_eats_apple | $light\_on$ | night | model of <i>KB</i> ? |
|-----------------------|-------------|-----------------|-------------|-------|----------------------|
| $\overline{I_1}$      | true        | true            | true        | true  | -                    |
| $I_2$                 | false       | false           | false       | false |                      |
| <i>I</i> <sub>3</sub> | true        | true            | false       | false |                      |
| <i>I</i> <sub>4</sub> | false       | false           | true        | true  |                      |
| <i>I</i> <sub>5</sub> | true        | false           | true        | true  |                      |

$$KB = \begin{cases} apple\_eaten \leftarrow bird\_eats\_apple. \\ light\_on \leftarrow night. \\ night. \end{cases}$$

|                       | apple_eaten | bird_eats_apple | $light\_on$ | night | model of <i>KB</i> ? |
|-----------------------|-------------|-----------------|-------------|-------|----------------------|
| $\overline{I_1}$      | true        | true            | true        | true  | yes                  |
| $I_2$                 | false       | false           | false       | false | no                   |
| $I_3$                 | true        | true            | false       | false | no                   |
| <i>I</i> <sub>4</sub> | false       | false           | true        | true  | yes                  |
| <i>I</i> <sub>5</sub> | true        | false           | true        | true  | yes                  |

$$KB = \begin{cases} apple\_eaten \leftarrow bird\_eats\_apple. \\ light\_on \leftarrow night. \\ night. \end{cases}$$

|                       | apple_eaten | bird_eats_apple | $light\_on$ | night | model of <i>KB</i> ? |
|-----------------------|-------------|-----------------|-------------|-------|----------------------|
| $I_1$                 | true        | true            | true        | true  | yes                  |
| $I_2$                 | false       | false           | false       | false | no                   |
| <i>I</i> <sub>3</sub> | true        | true            | false       | false | no                   |
| <i>I</i> <sub>4</sub> | false       | false           | true        | true  | yes                  |
| <i>I</i> <sub>5</sub> | true        | false           | true        | true  | yes                  |

Which of apple\_eaten, bird\_eats\_apple, light\_on, night logically follow from KB?



$$KB = \begin{cases} apple\_eaten \leftarrow bird\_eats\_apple. \\ light\_on \leftarrow night. \\ night. \end{cases}$$

|                       | apple_eaten | bird_eats_apple | $light\_on$ | night | model of <i>KB</i> ? |
|-----------------------|-------------|-----------------|-------------|-------|----------------------|
| $\overline{I_1}$      | true        | true            | true        | true  | yes                  |
| $I_2$                 | false       | false           | false       | false | no                   |
| <i>I</i> <sub>3</sub> | true        | true            | false       | false | no                   |
| <i>I</i> <sub>4</sub> | false       | false           | true        | true  | yes                  |
| <i>I</i> <sub>5</sub> | true        | false           | true        | true  | yes                  |

Which of apple\_eaten, bird\_eats\_apple, light\_on, night logically follow from KB?

$$KB \models light\_on, KB \models night,$$
  
 $KB \not\models apple\_eaten, KB \not\models bird\_eats\_apple$ 



### Human's view of semantics

- Step 1 Begin with a task domain.
- Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
- Step 3 Tell the system knowledge about the domain.
- Step 4 Ask the system questions.
- The system can tell you whether the question is a logical consequence.
- You can interpret the answer with the meaning associated with the atoms.

# Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If  $KB \models g$  then g must be true in the intended interpretation.
- If  $KB \not\models g$  then there is a model of KB in which g is false. This could be the intended interpretation.

# Electrical Environment



### Role of semantics

#### In computer:

```
light2\_broken \leftarrow power\_in\_w\_3
\land sw\_3\_up \land unlit\_light2.
sw\_3\_up.
power\_in\_w\_3 \leftarrow power\_in\_p\_1.
unlit\_light2.
power\_in\_p\_1.
```

#### In user's mind:

- light2\_broken: light #2
   is broken
- sw\_3\_up: switch 3 is up
- power\_in\_w\_3: there is power in wire 3
- unlit\_light2: light #2 isn't lit
- power\_in\_p\_1: outlet p\_1 has power

#### Conclusion: *light2\_broken*

- The computer doesn't know the meaning of the symbols
- The user can interpret symbols using their meaning



## Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
  - an atom or
  - ▶ the form  $b_1 \wedge b_2$  where  $b_1$  and  $b_2$  are bodies.
- A definite clause is either
  - an atomic fact: an atom or
  - ightharpoonup a rule: of the form  $h \leftarrow b$  where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

- A knowledge base or logic program is a set of definite clauses.
- A qeury is a body that is asked of a knowledge base.

# Representing the Electrical Environment

 $light_{-}l_{1}$ .

 $light_{-}l_{2}$ .

 $down_{-}s_{1}$ .

 $up_{-}s_{2}$ .

*up\_s*<sub>3</sub>.

 $ok_{-}l_{1}$ .

 $ok_{-}l_{2}$ .

 $ok_-cb_1$ .

 $ok_-cb_2$ .

live\_outside.

$$lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}$$

$$live_{-}w_0 \leftarrow live_{-}w_1 \wedge up_{-}s_2$$
.

$$live_{-}w_0 \leftarrow live_{-}w_2 \wedge down_{-}s_2$$
.

$$live_{-}w_1 \leftarrow live_{-}w_3 \wedge up_{-}s_1$$
.

$$live_{-}w_{2} \leftarrow live_{-}w_{3} \wedge down_{-}s_{1}$$
.

$$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}$$
.

$$live_{-}w_4 \leftarrow live_{-}w_3 \wedge up_{-}s_3$$
.

$$live_p_1 \leftarrow live_w_3$$
.

$$live_{-}w_3 \leftarrow live_{-}w_5 \wedge ok_{-}cb_1$$
.

$$live_-p_2 \leftarrow live_-w_6$$
.

$$live_{-}w_6 \leftarrow live_{-}w_5 \wedge ok_{-}cb_2$$
.

$$live\_w_5 \leftarrow live\_outside$$
.



### **Proofs**

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure,  $KB \vdash g$  means g can be derived from knowledge base KB.
- Recall  $KB \models g$  means g is true in all models of KB.
- A proof procedure is sound if  $KB \vdash g$  implies  $KB \models g$ .
  - If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if  $KB \models g$  implies  $KB \vdash g$ .
  - A complete proof procedure can produce all results.

## Bottom-up Proof Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land ... \land b_m$ " is a clause in the knowledge base, and each  $b_i$  has been derived, then h can be derived.

This is forward chaining on this clause.

(An atomic fact is treated as a clause with empty body (m = 0).)

## Bottom-up proof procedure

```
KB \vdash g \text{ if } g \in C \text{ at the end of this procedure:}
C := \{\};
\textbf{repeat}
\textbf{select} \text{ clause "} h \leftarrow b_1 \land \ldots \land b_m \text{" in } KB \text{ such that } b_i \in C \text{ for all } i, \text{ and } h \notin C;
C := C \cup \{h\}
```

until no more clauses can be selected.

# Example

$$a \leftarrow b \land c$$
.

$$a \leftarrow e \wedge f$$
.

$$b \leftarrow f \wedge k$$
.

$$c \leftarrow e$$
.

$$d \leftarrow k$$
.

e.

$$f \leftarrow j \land e$$
.

$$f \leftarrow c$$
.

$$j \leftarrow c$$
.



# Soundness of bottom-up proof procedure

#### If $KB \vdash g$ then $KB \models g$ .

- Suppose there is a g such that  $KB \vdash g$  and  $KB \not\models g$ .
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
   Suppose h isn't true in model I of KB.
- $\bullet$  h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each  $b_i$  is in C, and so true in I.

h is false in I (by assumption)

So this clause is false in 1.

Therefore I isn't a model of KB.

 $\bullet$  Contradiction. Therefore there cannot be such a g.



### Fixed Point

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let I be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB.

Proof: suppose  $h \leftarrow b_1 \land \ldots \land b_m$  in KB is false in I.

Then h is false and each  $b_i$  is true in I.

Thus h can be added to C.

Contradiction to C being the fixed point.

I is called a Minimal Model.

# Completeness

#### If $KB \models g$ then $KB \vdash g$ .

- Suppose  $KB \models g$ . Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus  $KB \vdash g$ .

# Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

$$yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$$

The SLD Resolution of this answer clause on atom  $a_i$  with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land \cdots \land b_p \land a_{i+1} \land \cdots \land a_m.$$

An atomic fact in the knowledge base is considered as a clause where p=0.



#### Derivations

- An answer is an answer clause with m=0. That is, it is the answer clause  $yes \leftarrow$ .
- A derivation of query " $q_1 \wedge ... \wedge q_k$ " from KB is a sequence of answer clauses  $\gamma_0, \gamma_1, ..., \gamma_n$  such that
  - $ightharpoonup \gamma_0$  is the answer clause  $yes \leftarrow q_1 \wedge \ldots \wedge q_k$
  - $ightharpoonup \gamma_i$  is obtained by resolving  $\gamma_{i-1}$  with a clause in KB
  - $ightharpoonup \gamma_n$  is an answer.

# Top-down definite clause interpreter

```
To solve the query ?q_1 \wedge \ldots \wedge q_k:

ac := "yes \leftarrow q_1 \wedge \ldots \wedge q_k"

repeat

select atom a_i from the body of ac

choose clause C from KB with a_i as head

replace a_i in the body of ac by the body of C

until ac is an answer.
```

#### Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. "select"
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

# Example: successful derivation

$$a \leftarrow b \land c$$
.  $a \leftarrow e \land f$ .  $b \leftarrow f \land k$ .  $c \leftarrow e$ .  $d \leftarrow k$ .  $e$ .  $f \leftarrow j \land e$ .  $f \leftarrow c$ .  $j \leftarrow c$ .

Query: ?a

$$\gamma_0$$
:  $yes \leftarrow a$   $\gamma_4$ :  $yes \leftarrow e$   $\gamma_1$ :  $yes \leftarrow e \land f$   $\gamma_5$ :  $yes \leftarrow f$   $\gamma_3$ :  $yes \leftarrow c$ 

# Example: failing derivation

$$a \leftarrow b \land c$$
.  $a \leftarrow e \land f$ .  $b \leftarrow f \land k$ .  $c \leftarrow e$ .  $d \leftarrow k$ .  $e$ .  $f \leftarrow j \land e$ .  $f \leftarrow c$ .  $j \leftarrow c$ .

Query: ?a

$$\gamma_0$$
:  $yes \leftarrow a$   $\gamma_4$ :  $yes \leftarrow e \land k \land c$   
 $\gamma_1$ :  $yes \leftarrow b \land c$   $\gamma_5$ :  $yes \leftarrow k \land c$   
 $\gamma_2$ :  $yes \leftarrow f \land k \land c$   
 $\gamma_3$ :  $yes \leftarrow c \land k \land c$ 

# Search Graph for SLD Resolution



$$a \leftarrow b \land c$$
.  $a \leftarrow g$ .  
 $a \leftarrow h$ .  $b \leftarrow j$ .  
 $b \leftarrow k$ .  $d \leftarrow m$ .  
 $d \leftarrow p$ .  $f \leftarrow m$ .  
 $sf \leftarrow p$ .  $g \leftarrow m$ .  
 $g \leftarrow f$ .  $k \leftarrow m$ .  
 $h \leftarrow m$ .

 $?a \wedge d$