Χ

anikets349@gmail.com >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science for Engineers (course)

Course outline

How does an NPTEL online course work?

Setup Guide

Pre Course Material

Week 0

Week 1

Week 2

Week 3

Week 4

- Optimization for Data Science (unit? unit=56&lesson=57)
- Ounconstrained
 Multivariate
 Optimization
 (unit?
 unit=56&lesson=58)
- UnconstrainedMultivariateOptimization (

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2021-09-01, 23:59 IST.

Assignment submitted on 2021-08-31, 19:40 IST

1) If $f(x)=3x^4-2x^3-3x^2+6$, then the first order necessary condition for either **1** point maxima or minima of f(x) is

$$6x^3 - 3x^2 - 6x = 0$$

$$12x^3 - 6x^2 - 6x = 0$$

$$12x^3 - 9x^2 - 6x = 0$$

None of the above

Yes, the answer is correct. Score: 1

Accepted Answers:

$$12x^3 - 6x^2 - 6x = 0$$

2) For the function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$, which of the following point(s) **1 point** is/are stationary point(s) of f(x)?

✓

$$-rac{1}{2}$$

1

_

Continued) (unit?

unit=56&lesson=59)

Gradient (
Steepest)
Descent (OR)
Learning Rule
(unit?

FAQ (unit? unit=56&lesson=61)

unit=56&lesson=60)

- Week 4
 Feedback
 Form: Data
 Science for
 Engineers
 (unit?
 unit=56&lesson=62)
- Practice: Week 4: Assignment 4 (Non Graded) (assessment? name=123)
- Quiz: Week 4: Assignment 4 (assessment? name=132)
- Week 4: Solutions (unit? unit=56&lesson=140)

Week 5

Week 6

Week 7

Week 8

Text Transcripts

Download Videos

Books

```
\frac{1}{2}
```

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$-\frac{1}{2}$$

1

- 3) For the function $f(x)=3x^4-2x^3-3x^2+6$, the stationary point(s) which maximize(s) the value of f(x) is
 - $-\left(\frac{1}{2}\right)$

 - $\left(\frac{1}{2}\right)$

Yes, the answer is correct.

Score: 1

Accepted Answers:

0

- 4) For the function $f(x)=3x^4-2x^3-3x^2+6$, the stationary point(s) which **1 point** minimize(s) the value of f(x) is
 - $-\left(\frac{1}{2}\right)$
 - 0
 - **~**
 - 1
 - $\left(\frac{1}{2}\right)$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$-\left(\frac{1}{2}\right)$$

- 5) If the objective function, inequality constraints, equality constraints are all linear functions, then the type of optimization problem is:
 - Non- linear problem
 - Quadratic problem

1 point

10000	~ ~ ~ h l ~ ~ ~
_inear	problem

None of the above

Yes, the answer is correct.

Score: 1

Accepted Answers:

Linear problem

6) For any two points x1, and x2 in the range and any $0 < \lambda < 1$, if f(x) is a convex **1 point** function then:

$$f[\lambda x_1 + (1-\lambda)x_2] \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

$$f[\lambda x_1 + (1-\lambda)x_2] \geq \lambda f(x_1) + (1-\lambda)f(x_2)$$

None of the above

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$f[\lambda x_1 + (1-\lambda)x_2] \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

- 7) Consider an optimization function f(x), if x is the decision variable and f is the function to be minimized, then the type of optimization problem is
 - Constrained optimization
 - Unconstrained optimization
 - Discrete optimization
 - None of the above

Yes, the answer is correct.

Score: 1

Accepted Answers:

Unconstrained optimization