Introduction to Statistical Learning and Application CC1: Simple Linear Regression

Razan MHANNA

STATIFY team, Inria centre at the University Grenoble Alpes LEMASSON/CHRISTEN team, Grenoble Institute of Neurosciences GIN

30 January 2024

Contents

- Course Information
- What is Simple Linear Regression?
- Types of Linear Regression Models
- Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- Ocefficient of Determination r^2

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- Ocefficient of Determination r^2
- Residual Analysis

Course Information

- This is the complementary course of "Introduction to Statistical Learning and Applications" given to students from ENSIMAG and UGA by Professor Pedro Rodrigues.
- The classes will be given on Tuesdays from 11h30 to 13h at IM2AG, room F319.
- The materials used will be made available in this page https://github.com/ISLA-Grenoble/2024-complementary.

- Course Information
- What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- 7 Coefficient of Determination r^2
- Residual Analysis

 Bazan MHANNA

What is Simple Linear Regression?

- Simple Linear Regression is a method used to fit the best straight line between a set of data points,
- After a graph is properly scaled, the data points must "look" like they would fit a straight line, not a parabola, or any other shape,
- The line is used as a model in order to predict a variable y from another variable x. A regression line must involve 2 variables,
- Finding the "best-fit" line is the goal of simple linear regression.

What is Simple Linear Regression?

Input, predictive or Independent varible x: this the variable whose value that is believed to influence the value of another variable, **Output, Response or Dependent variable y**: this is the variable whose value that is believed to be influenced by the value of another variable.

Best-fit Line: represents our model. It is the line that best-fits our data points. The line represents the best estimate of the y value for every given input of x,

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- \bigcirc Coefficient of Determination r^2
- Residual Analysis

 Bazan MHANNA

Types of Linear Regression Models

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- 7 Coefficient of Determination r^2
- Residual Analysis

Model equation

The simple linear regression equation provides an estimate of the population regression line.

The individual random error e_i have a mean of zero.

Assumptions of Regression

Use the acronym LINE

- Linearity: the underlying relationship between X and Y is linear,
- Independence of errors: error values are statistically independent,
- Normality of errors: error values are normally distributed for any given value of X,
- Equal Variance (homoscedasticity)! The probability distribution of the errors has constant variance.

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- 6 Estimation of the parameters by least squares
- \bigcirc Coefficient of Determination r^2
- Residual Analysis

 Bazan MHANNA

Measures of variation

- SST= total sum of squarres
 Measures the variation of the Y_i values around their mean.
- SSR= regression sum of squares
 Explained variation attributable to the relationshiop between X and Y.
- SSE= error sum of squarres
 Variation attributable to factors other than the relationship between
 X and Y.

Measures of variation

15/28

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- \bigcirc Coefficient of Determination r^2
- Residual Analysis

 Razan MHANNA

Least Squarres Method

 b_0 and b_1 are obtained by finding the values of b_0 and b_1 that minimize the sum of the squarred differences between y and \hat{y} min $\sum (y_i - \hat{y}_i)^2 = \min \sum (y_i - (b_0 + b_1 x_i))^2$

- b_0 is the estimated average value of Y when the value of X is zero,
- b₁ is the estimated change in the average value of Y as a result of a one-unit change in X.

Example

A real estate agent wishes to examine the relationship between the selling price of a home and its size measured in square feet.

A random sample of 10 houses is selected. The dependent variable Y is the house price in \$1000s. The independent variable X is the surface in squarre feet.

House Price Square feet
245 1400
312 1600
279 1700
308 1875
199 1100
219 1550
405 2350
324 2450
319 1425
255 1700

Example

houseprice=98.24833 + 0.10977 square feet Predict the price for a house with 2000 square feet: 98.25 + 0.1098(2000)=317.85.

The predicted price for a house with 2000 square feet is 317,850 dollars.

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- 6 Estimation of the parameters by least squares
- Ocefficient of Determination r^2
- Residual Analysis

 Razan MHANNA

Coefficient of Determination r^2

The coefficient of determination is the portion of total variation in the dependent variable that is explained by variation in the independent variable. It is also called r-squared and is denoted as r^2 $r^2 = \frac{SSR}{SST} = \frac{regressionsumofsquares}{totalsumofsquares}$

r² = 0

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Note that r^2 values range b/w 0 and 1.

Examples of Approximate values

Coefficient of Determination r^2

- Measures the goodness "fit" of the model,
- Assesses the usefulness or predictive value of the model,
- Is interpreted as the proportion of variability of the observed values of Y explained by the regression of Y on X.
- E.g. R^2 =71.9%, almost 72 % of the variation in house prices is explained by the regression on their surface.

[]

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

where SSE= error sum of squares and n=sample size.

• The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data, i.e. S_{YX} = \$41.33k is moderately small relative to house prices in the \$200 - \$300k range.

- Course Information
- What is Simple Linear Regression?
- Types of Linear Regression Models
- Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- \bigcirc Coefficient of Determination r^2

Residual Analysis

The residual for observation i e_i is the difference between the observed and predicted data.

Check the assumptions of regression by examining the residuals

- Examine the linearity assumption,
- Evaluate the independence assumption,
- Evaluate normal distribution assumption assumption,
- Examine for constant variance for all levels of X.

- Course Information
- 2 What is Simple Linear Regression?
- Types of Linear Regression Models
- 4 Model Equation
- Measure of variation
- Estimation of the parameters by least squares
- Ocefficient of Determination r^2
- Residual Analysis

Questions

- Define the following: regression, regression model, dependent variable.
- Having that SST=SSR+SSE, what is the best case scenario and the worst? Explain.
- What does the coefficient of determination r² mean.
- What does residual analysis mean?
- Under what conditions is the linear regression model reliable?