Általános gráfbejárás: a csúcsok állapotváltozása, a bejárás általános lépései, a bejáráshoz tartozó sorrend ill. az élek osztályozása bejárás után. A BFS és tulajdonságai, legrövidebb utak fájának létezése.

- Általános gárfbejárás: A gráfbejárási algoritmus az inputgráf csúcsait és éleit fedezi fel. Minden csúcs az eléretlen → elért → befejezett állapotokat veszi fel. A bejárás akkor ér véget, amint minden csúcs befejezetté vált.
 - 1. Van elért csúcs. Választunk egyet, mondjuk u-t.
 - (1a) Ha van olyan uv él, amire v eléretlen, akkor v elérté válik.
 - (1b) Ha nincs ilyen uv él, akkor u befejezetté válik.
 - 2. Nincs elért csúcs.
 - (2a) Ha van eléretlen u csúcs, akkor u-t elértté tesszük.
 - (2b) Ha nincs eléretlen csúcs (azaz minden csúcs befejezett), akkor END.

Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

keresztél: minden más él (u és v közt nincs leszármazott viszony).

• Szélességi bejárás (BFS) szabálya:

Az 1. esetben mindig a legkorábban elért u-t választjuk.

Input: G = (V, E) (ir/ir.tatlan) gráf, $(v \in V \text{ gyökérpont}^1)$.

Output:

- (1) A csúcsok elérési és befejezési sorrendje.
- (2) Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

keresztél: minden más él (u és v közt nincs leszármazott viszony).

(3) A bejárás fája: a faélek alkotta részgráf. (A bejárás fája valójában egy gyökereiből kifelé irányított erdő.)

Megf: Irányítatlan esetben az előreél és a visszaél ugyanazt jelenti.

Terminológia: Ha a bejárás fájában u-ból v-be irányított út vezet, akkor u a v őse és v az u leszármazottja. A faél és az előreél tehát ősből leszármazottba, a visszaél leszármazottból ősbe vezet.

A bejárás során kialakul a csúcsok egy elérési ill. egy befejezési sorrendje, továbbá minden csúcshoz feljegyezzük azt is, hogy melyik él mentén értük el (ha van ilyen él). Ez utóbbi élek (faélek) alkotják a bejárás fáját (ami egyrészt irányított, másrészt pedig erdő). A G gráf további uv éle előreél \Rightarrow , ha u a bejárás fájában a v őse, ha u a v leszármazottja, akkor visszaél. Minden más pedig keresztél. (Irányítatlan gráf bejárásakor minden élt oda-vissza irányított élnek tekintünk.)

• A BFS tulajdonságai

Nézzük meg egy **irányított** gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje v_1, v_2, \dots, v_n . Ekkor az alábbiak teljesülnek.

(1) Ha i < j, akkor v_i -t hamarabb fejezük be, mint v_j -t, továbbá v_i gyerekei megelőzik v_j gyerekeit az elérési sorrendben.

Biz: A v_i -t befejezésének pillanatában v_i minden gyereke elért, de v_j -nek még egy gyereke sem az. Ezért v_i gyerekeit a v_i csúcs befejezése után érjük el, majd ezt követően fejezzük be v_i -t.

(2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.

Biz: Ha v_i -t korábban érjük el, mint v_j -t, akkor (1) miatt v_i -t korábban is fejezzük be v_j -nél. Ezért bármely két csúcs sorrendje ugyanaz az elérési sorrendben mint befejezési sorrendben. Tehát az elérési sorrendnek meg kell egyeznie a befejezési sorrenddel.

¹A gyökérben kezdetben elért állapotú, ezért kivétel az általános szabály alól.

(3) Gráfél nem ugorhat át faélt: ha $k < i < j \le l$ és $v_i v_j$ faél, akkor $v_k v_l$ nem lehet gráfél.

Biz: Ha $v_k v_l \in E(G)$, akkor v_l szülője v_k vagy egy v_k -t megelőző csúcs. (1) miatt v_j szülője sem következhet v_k után, vagyis v_i nem lehet v_j szülője.

(4) Nincs előreél. (Irányítatlan eset: csak faél és keresztél van.)

Biz: Indirekt: ha $v_i v_j$ előreél lenne, akkor v_i -ből v_j -be irányított út vezetne a BFS-fában, és $v_i v_j$ ennek a faélekből álló útnak az utolsó élét átugraná.

(5) Ha a BFS-fában k-élű irányított út vezet u-ból v-be, akkor G-ben nincs k-nál kevesebb élű uv-út.

Biz: Ha lenne a BFS fa-beli útnál kevesebb élű út G-ben, akkor lenne olyan gráfél, ami faélt ugrik át.

- (6) A BFS-fa egy legrövidebb utak fája: a BFS-fa v_1 gyökeréből bármely v_i csúcsba vezető faút a G egy legkevesebb élű v_1v_i -útja.
- Legrövidebb utak

Def: Adott G (ir) gráf és $l: E(G) \to \mathbb{R}$ hosszfüggvény esetén egy P út hossza a P éleinek összhossza: $l(P) = \sum_{e \in E(P)} l(e)$.

Az u és v csúcsok távolsága a legrövidebb uv-út hossza: $dist_l(u,v) := \min\{l(P) : P \ uv$ -út} ($\nexists uv$ -út $\Rightarrow dist_l(u,v) = \infty$.) Az l hosszfüggvénye nemnegatív, ha $l(e) \geq 0$ teljesül minden e élre. Az l hosszüggvény konzervatív, ha G-ben \nexists negatív összhosszú ir. kör.

Cél: Legrövidebb út keresése irányított/irányítatlan gráfban.

Megf: Ha l(e) = 1 a G minden e élére, akkor l(P) a P élszáma. Ezért a BFS-fa minden gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből, azaz a szélességi bejárás tekinthető egy legrövidebb utat kereső algoritmusnak is.

Def: Adott G (ir) gráf, $l: E(G) \to \mathbb{R}$ hosszfüggvény és $r \in V(G)$. (r, l)-felső becslés olyan $f: V(G) \to \mathbb{R}$ függvény, ami felülről becsli minden csúcs r-től mért távolságát: $dist_l(r, v) \ge f(v) \forall v \in V(G)$.

Triviális (r, l)-felső becslés: $f(v) = \begin{cases} 0 & v = r \\ \infty & v \neq r \end{cases}$

Pontos (r, l)-felső becslés: $f(v) = dist_l(r, l) \ \forall v \in V(G)$.