AYT Fizik Formülleri

İsa Cebir

24.05.2025

Ìς	indekiler			7.5 Minimum Sürtünme Katsayısı 6
1	Hareket 1.1 Hız-Zaman Denklemi 1.2 Konum-Zaman Denklemi 1.3 Zamansız Hız Denklemi	2 2 2 2		7.6 Minimum Açılsal Hız 6 7.7 Eğimli Virajda Maksimum Hız 6 7.8 Açısal Momentum 6 7.9 Eylemsizlik Momenti 6
2	1.4 Serbest Düşmede Yer Değiştirme . Enerji	2 2	8	Kütle Çekimi ve Kepler Kanunları68.1 Kütle Çekim Kuvveti68.2 Periyotlar Kanunu6
	2.1 İş	2 2 2 2 2	9	8.3 Yerçekimi İvmesi
3	Tork ve Denge 3.1 Tork	3 3 3		9.3 Maksimum Hız
4	İtme ve Momentum 4.1 İtme	3 3	10	Modern Fizik710.1 Fotonun Enerjisi710.2 Fotoelektrik Denklemi710.3 De Broglie Denklemi7
5	Elektrik 5.1 Elektriksel Alan	3 3 3 3 4 4 4 4		
6	Manyetizma 6.1 Akım Taşıyan Düz Telde Manyetik Alan	4 4 4 4 5 5 5 5 5 5		
7	Çembersel Hareket7.1 Açısal Hız7.2 Çizgisel Hız7.3 Merkezcil İvme7.4 Merkezcil Kuvvet	5 5 5 6		

1 Hareket

1.1 Hız-Zaman Denklemi

$$\vec{v} = \vec{v}_0 + \vec{a} \cdot t$$

- \vec{v} : Son hiz
- \vec{v}_0 : Başlangıç hızı
- \vec{a} : İvme
- t: Zaman

1.2 Konum-Zaman Denklemi

$$\vec{x} = \vec{x}_0 + \vec{v}_0 \cdot t + \frac{1}{2}\vec{a} \cdot t^2$$

- \vec{x} : Son konum
- \vec{x}_0 : Başlangıç konumu
- \vec{v}_0 : Başlangıç hızı
- \vec{a} : İvme
- t: Zaman

1.3 Zamansız Hız Denklemi

$$v^2 = v_0^2 + 2a \cdot \Delta x$$

- \bullet v: Son hızın büyüklüğü
- \bullet v_0 : Başlangıç hızının büyüklüğü
- a: İvme
- Δx : Yer değiştirme

1.4 Serbest Düşmede Yer Değiştirme

$$h = \frac{1}{2}gt^2$$

- h: Yükseklik
- q: Yerçekimi ivmesi
- t: Zaman

2 Enerji

2.1 İş

$$W = \vec{F} \cdot \vec{d} = Fd \cos \theta$$

- W : İş
- \vec{F} : Kuvvet
- \vec{d} : Yer değiştirme
- \bullet θ : Kuvvet ile yer değiştirme arasındaki açı

2.2 Güç

$$P = \frac{W}{t}$$

- *P* : Güç
- W: Yapılan iş
- t: Zaman

2.3 Kinetik Enerji

$$K = \frac{1}{2}mv^2$$

- K: Kinetik enerji
- m: Kütle
- v: H1z

2.4 Potansiyel Enerji

$$U = mgh$$

- \bullet U: Potansiyel enerji
- m: Kütle
- g: Yerçekimi ivmesi
- h: Yükseklik

2.5 Yay Potansiyeli

$$U = \frac{1}{2}kx^2$$

- \bullet U: Yayın potansiyel enerjisi
- \bullet k: Yay sabiti
- x: Yayın uzama veya sıkışma miktarı

3 Tork ve Denge

3.1 Tork

$$\vec{\tau} = \vec{d} \times \vec{F}$$

- $\vec{\tau}$: Tork
- \bullet \vec{d} : Denge merkezine olan dik uzaklık
- \vec{F} : Kuvvet

3.2 Kesişen Kuvvet Dengesi

$$\frac{F_1}{\sin \alpha} = \frac{F_2}{\sin \beta} = \frac{F_3}{\sin \gamma}$$

- F_1, F_2, F_3 : Kuvvet büyüklükleri
- α, β, γ : Kuvvetlerin karşılıklı açıları

3.3 Kütle Merkezinin Koordinatları

$$x_{\text{cm}} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n}$$
$$y_{\text{cm}} = \frac{m_1 y_1 + m_2 y_2 + \dots + m_n y_n}{m_1 + m_2 + \dots + m_n}$$

- m_i : *i*-inci kütle
- $x_i, y_i : i$ -inci kütlenin koordinatları
- $x_{\rm cm}, y_{\rm cm}$: Kütle merkezinin koordinatları

4 İtme ve Momentum

4.1 İtme

$$\vec{I} = \vec{F}_{\rm net} \times \Delta t$$

- \vec{I} : İtme
- $\vec{F}_{\rm net}$: Uygulanan kuvvet
- Δt : Geçen zaman

4.2 Çizgisel Momentum

$$\vec{P} = m \cdot \vec{v}$$

- \vec{P} : Çizgisel momentum
- \bullet m: Kütle
- \vec{v} : H_{1Z}

5 Elektrik

5.1 Elektriksel Alan

$$\vec{E} = \frac{\vec{F}}{q}$$

- \vec{E} : Elektriksel alan
- \vec{F} : Elektriksel kuvvet
- q: Test yükü

5.2 Elektriksel Kuvvet

$$\vec{F} = k \frac{q_1 \cdot q_2}{r^2}$$

- \vec{F} : Elektriksel kuvvet
- q_1, q_2 : Yükler
- \bullet r: Yükler arası uzaklık
- k: Coulomb sabiti

5.3 Elektriksel Potansiyel Enerji

$$U = \pm k \frac{q_1 \cdot q_2}{r}$$

- $\bullet~U$: Elektriksel potansiyel enerji
- q_1, q_2 : Yükler
- r: Yükler arası uzaklık
- \bullet k: Coulomb sabiti

5.4 Elektriksel Potansiyel

$$V = \pm k \frac{q}{r}$$

- V: Elektriksel potansiyel
- q: Noktasal yük
- r: Uzaklık
- k: Coulomb sabiti

5.5 Paralel Levhalar Arasında Elektriksel Alan

$$E = \frac{V}{d}$$

- E: Elektriksel alan
- V: Potansiyel farkı
- \bullet d: Levhalar arası mesafe

5.6 Paralel Levhalar Arasında Parçacığa Etki Eden Kuvvet

$$F = q \cdot \frac{V}{d}$$

- \bullet F: Elektriksel kuvvet
- q: Yüklü parçacık
- \bullet V: Potansiyel fark
- \bullet d: Levhalar arası mesafe

5.7 Paralel Levhalar Arasında Kinetik Enerji Değişimi

$$\Delta K = \pm q \Delta V$$

- ΔK : Kinetik enerji değişimi
- q: Yük
- ΔV : Potansiyel farkı

5.8 Kondansatörlerde Yük-Gerilim Bağıntısı

$$q = C \cdot V$$

- q: Yük
- C: Kapasitans (sığa)
- V: Gerilim (potansiyel farkı)

5.9 Sığaç Kapasite Formülü

$$C = \varepsilon \frac{A}{d}$$

- C: Kapasitans (sığa)
- $\bullet \ \varepsilon$: Ortamın elektriksel geçirgenliği
- A: Plaka yüzey alanı
- d: Plaklar arası mesafe

6 Manyetizma

6.1 Akım Taşıyan Düz Telin Oluşturduğu Manyetik Alan

$$B = 2K\frac{i}{d}$$

- B: Manyetik alan şiddeti
- K: Manyetik alan sabiti
- \bullet i: Telden geçen akım
- r: Tele olan uzaklık

6.2 Bobin İçindeki Manyetik Alan

$$B = K \cdot \frac{4\pi Ni}{\ell}$$

- \bullet B: Manyetik alan şiddeti
- K: Manyetik alan sabiti
- \bullet i: Telden geçen akım
- ℓ : Sarım uzunluğu
- N: Sarım sayısı

6.3 Akım Taşıyan Tele Manyetik Alanda Etki Eden Kuvvet

$$F = B \cdot i \cdot L \cdot \sin \theta$$

- \bullet F: Manyetik kuvvet
- i: Akım
- \bullet L: Telin uzunluğu
- B: Manyetik alan
- θ : Akım yönü ile manyetik alan arasındaki açı

6.4 Manyetik Alan İçinde Hareket Eden Yüklü Parçacığa Etki Eden Kuvvet

$$F = q \cdot v \cdot B \cdot \sin \theta$$

- F: Manyetik kuvvet
- *q* : Yük
- v: Parçacığın hızı
- B: Manyetik alan
- θ: Hız vektörü ile manyetik alan arasındaki açı

6.5 Manyetik Alanda Çekilen Telin Uçları Arasında Oluşan İndüksiyon Elektromotor Kuvveti

$$\mathcal{E} = B \cdot L \cdot v$$

- \mathcal{E} : İndüksiyon elektromotor kuvveti (emk)
- B: Manyetik alan
- \bullet L: Tel uzunluğu
- v: Telin çekilme hızı

6.6 Manyetik Alanda Döndürülen Bir Telin Uçları Arasında Oluşan İndüksiyon Elektromotor Kuvveti

$$\mathcal{E} = \frac{B\omega\ell^2}{2} \qquad \mathcal{E} = \frac{Bv\ell}{2}$$

- \mathcal{E} : İndüksiyon emk
- N: Sarım sayısı
- B: Manyetik alan
- \bullet A: Alan
- $\bullet \ \omega$, v: Açısal veya çizgisel hız
- t: Zaman

6.7 Manyetik Akı

$$\Phi = B \cdot A \cdot \cos \theta$$

- Φ : Manyetik akı
- B: Manyetik alan
- *A* : Alan
- θ : Yüzey normali ile manyetik alan arasındaki acı

6.8 Alternatif Akımda Etkin Değer

$$I_{\rm etkin} = \frac{I_{\rm maks}}{\sqrt{2}}, \quad V_{\rm etkin} = \frac{V_{\rm maks}}{\sqrt{2}}$$

- I_{etkin} : Etkin akım
- I_{maks} : Maksimum akım
- V_{etkin} : Etkin gerilim
- V_{maks} : Maksimum gerilim

6.9 Bobinin İndüktif Reaktansı

$$X_L = 2\pi f L$$

- X_L : Bobinin indüktif reaktansı
- f: Frekans
- \bullet L: Bobinin endüktansı

6.10 Sığacın Kapasitif Reaktansı

$$X_C = \frac{1}{2\pi f C}$$

- X_C : Sığacın kapasitif reaktansı
- f: Frekans
- \bullet C: Kapasitans

6.11 Transformatörler

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{i_2}{i_1}$$

- N_1, N_2 : Primer ve sekonder sarım sayıları
- V_1, V_2 : Primer ve sekonder gerilimler
- i_1, i_2 : Primer ve sekonder akımlar

7 Cembersel Hareket

7.1 Açısal Hız

$$\omega = 2\pi f$$

- ω : Açısal hız
- f: Frekans

7.2 Çizgisel Hız

$$v = 2\pi f r$$

- v: Çizgisel hız
- r: Yarıçap
- f: Frekans

7.3 Merkezcil İvme

$$a = \frac{v^2}{r} \qquad a = \omega^2 \cdot r$$

- a: Merkezcil ivme
- v: Çizgisel hız
- ω : Açılsal hız
- r: Yarıçap

7.4 Merkezcil Kuvvet

 $F = \frac{mv^2}{r}$

 \bullet F: Merkezcil kuvvet

• m: Kütle

• v: Çizgisel hız

• r: Yarıçap

7.5 Minimum Sürtünme Katsayısı (Savrulmama)

$$k_{\min} = \frac{\omega^2 r}{g}$$

• μ_{\min} : Minimum sürtünme katsayısı

• v: Açısal hız

 \bullet r: Dönme yarıçapı

• q: Yerçekimi ivmesi

7.6 Minimum Açısal Hız (Savrulmama)

$$\omega_{\min} = \sqrt{\frac{kg}{r}}$$

• ω_{\min} : Minimum açısal hız

• g: Yerçekimi ivmesi

• r: Yarıçap

7.7 Eğimli Virajda Maksimum Hız

$$v_{\rm max} = \sqrt{gr \tan \alpha}$$

• v_{max} : Maksimum hız

• g: Yerçekimi ivmesi

• r: Yarıçap

• α : Eğim açısı

7.8 Açısal Momentum

$$L = m \cdot v \cdot r$$

 \bullet L: Açısal momentum

 \bullet m: Kütle

• v: Hiz

• r: Yarıçap

7.9 Eylemsizlik Momenti

$$I = m \cdot r^2$$

 \bullet I: Eylemsizlik momenti

 \bullet m: Kütle

• r: Yarıçap

8 Kütle Çekimi ve Kepler Kanunları

8.1 Kütle Çekim Kuvveti

$$F = G \frac{m_1 \cdot m_2}{r^2}$$

 \bullet F: Kütleler arasındaki çekim kuvveti

 \bullet G: Evrensel çekim sabiti

• m_1, m_2 : Kütleler

• r: Kütleler arası uzaklık

8.2 Periyotlar Kanunu

$$\frac{r^3}{T^2} = \text{Sabit}$$

• r: Yörüngenin yarıçapı

 \bullet T: Dolanım periyodu

8.3 Yerçekimi İvmesi

$$g = G \frac{m}{r^2}$$

• g: Yerçekimi ivmesi

• G: Evrensel çekim sabiti

• m: Dünya'nın (ya da gökcisminin) kütlesi

 \bullet r: Merkezden olan uzaklık

AYT Fizik Formülleri İsa Cebir

9 Basit Harmonik Hareket

Hızın Uzanıma Bağlı 9.1Değişimi

$$v = \omega \sqrt{R^2 - x^2}$$

- v: Anlık hız
- ω : Açısal frekans
- R: Maksimum genlik (uzanım)
- x: Anlık uzanım

İvmenin Uzanıma Bağlı Değişimi

$$a = -\omega^2 x$$

- a: Anlık ivme
- ω : Açısal frekans
- x: Anlık uzanım

Maksimum Hız 9.3

$$v_{\rm max} = \omega R$$

- v_{max} : Maksimum hız
- ω : Açısal frekans
- R: Genlik

9.4 Maksimum İvme

$$a_{\text{max}} = \omega^2 R$$

- a_{\max} : Maksimum ivme
- ω : Açısal frekans
- R: Genlik

Basit Sarkaçta Periyot

$$T = 2\pi \sqrt{\frac{L}{g}}$$

- \bullet T: Periyot
- \bullet L: Sarkaç uzunluğu
- g: Yerçekimi ivmesi

9.6 Yaylı Sarkaçta Periyot

$$T = 2\pi \sqrt{\frac{m}{k}}$$

- \bullet T: Periyot
- m: Kütle
- k: Yay sabiti

Modern Fizik 10

10.1Fotonun Enerjisi

$$E = h \cdot f = \frac{hc}{\lambda}$$

- \bullet E: Fotonun enerjisi
- h: Planck sabiti
- f: Frekans
- λ : Dalga boyu
- c: Işık hızı

Fotoelektrik Denklemi 10.2

$$E_g = E_0 + E_{e^-}$$

- E_g : Gelen fotonun enerjisi
- E_0 : Metalin eşik enerjisi
- E_{e^-} : Saçılan elektronun kinetik enerjisi

De Broglie Denklemi 10.3

$$\lambda = \frac{h}{P}$$

- λ : Parçacığın dalga boyu
- h: Planck sabiti
- P: Momentum