The Lightning Network

Julius Wu, Vic Dhand, Zack Dupont, Susheel Palakurthi

What is Bitcoin?

- Currency created in 2009 by Satoshi Nakamoto (pseudonym)
- Peer-to-peer transactions designed to eliminate the need for a financial institution
- 1 Bitcoin = 9440.09 Canadian dollars

What is Blockchain?

- Continuously growing list of records, known as blocks
- Blocks are linked securely using cryptography

Bitcoin Scalability Problem

- 1mb block size limit
- Time to create new blocks
- Maximum number of transactions per second
- The Solution: The Lightning Network

What is the Lightning Network (LN)?

- Proposed by Joseph Poon & Thaddeus Dryja
 - o https://lightning.network/lightning-network-paper.pdf
- Specifications for a payment channel on top of the bitcoin blockchain
- "Layer 2" solution to the Bitcoin scalability problem
- Decentralized, High Volume, Instant Micropayment

Set up a payment channel

Both Bob and the Coffee Shop deposit bitcoin into a Multi-signature address

Reference: Simply Explained - Savjee (Youtube)

Difference between "Centralized", "Decentralized" and "Distributed" network

- Centralized: One node does everything
 - o i.e. bank system
- Decentralized: have multiple "hubs" connecting to multiple nodes.
 - o i.e. Lightning network
- Distributed: nodes are only connected to peers, no hubs or central node.
 - i.e. peer 2 peer projects (blockchain)

Raw Data

- https://shabang.io/
- Updates every 15 min
- Our data was collected March 19, 2018 at 4:38 PM.
- Original data file downloaded: nodes.json, channels.json, stats.json
 - o nodes.json: source, destination, short_channel_id, flag, active, public, last_update, base_fee_millsatoshi, fee_per_millionth, delay
 - o channels.json: nodeid, alias, color, last_timestamp, addresses, port
 - stats.json: height, lightning_node, lightning_channel, segwit_input, total_input,
 lightning_channels_funded
- 843 nodes, 4779 channels, 514312 blockheight (at the time the data was collected)

Data cleaning

- Convert all 3 files from .json into .csv files
- Discard stat.csv (not used for our project)
- Reducing 843 nodes into 381 nodes
 - Subsetting the nodes data with proper IP address (removing data with unknown IP addresses)
 - Eliminating all missing data and encrypted data
- Geo-locate each of the nodeid
 - Converting IP addresses into continent, country, region, city, longitude and latitude coordinates

512256:1573:0

1000

10

- Reformat the data column names and combine based on the nodeid, source and nodeid, target
 - o nodes.csv: source, target, weight (base fee in mill-satoshi)
 - edges.csv: nodeid, alias, latitude, longitude

deac3acc2dbcbe412fe 0371190acfb2e92bd1faa6ce4d12ff248798515a92ac903ac14d31b5172d9b2917

> head(nodes)														
nodeid	alias	color	last_timestamp	addresses.O.type	addresses. 0	.address addresse	s. 0. pc	rt addr	esses.1	.type addresse	es.1.address addresse	s.1.port		
1 03b7d8b6bbaf02239277ed32378d50d29840292b61d516d30057b74044992c93dd	ALIBABA	0066cc	1518572211	ipv4	173.212	. 218. 204	97	35				NA		
2 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0	Nick's LND Node	551a8b	1521501156	ipv4	51	. 6. 89. 26	97	35				NA		
3 03b3b683a829e3ba10c68b9952fc348460f991735859b93deac3acc2dbcbe412fe	neowisard	03b3b6	1520973153					NA				NA		
4 032a16a13ffc9cb7c2e06d99d3c0d57cb140426d1ce80084afd2bef6078fd5c72a	STRANGEWHISPER	032a16	1516675975					NA				NA		
5 03e3d670d86f33181ee7451f14998b376a0d5deba8ab064b4ebe5ad5706f7b112b	CN_Pek_HappyHome	ff0000	1518465126	ipv4	222.12	9.253.32	97	35				NA		
6 023daf469bbf2d5769d7673b66a841bd6d46452a4e20be548c6b11da730e5db575	SILENTROUTE	023daf	1520645230	ipv4	193.2	24.22.11	97	35				NA		
> head(channels)														
source						short_channel_id	flags	active	public	last_update ba	ase_fee_millisatoshi	fee_per_millionth	n del	lay
1 03b7d8b6bbaf02239277ed32378d50d29840292b61d516d30057b74044992c93dd	020d3d5995a973c87	8e3f6e5	f59da54078304c5	37f981d7dcef73367	ecbea0e90e	509070:571:0	1	false	true	1518717986	1000	10)	14
2 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0	02ad411014bb94295	1d30cef	65c6e99aa66f05f	d383d25748f78782f	07f32f8fb2	514269:320:1	1	false	false	NA	NA	NA	4	NA
3 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0	0207481a19a3f51a4	8f134e9	95afa67cfeffdb38	a99b5ad3494a320c4	918aaaf 579	514306:1709:0	1	true	true	1521500944	1000	1	1	L44
4 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0	027ccec61f4bf1faf	b515693	31da6527dc104ec3	613dd4f4050161d89	dd76ab494c	514307:84:1	1	true	true	1521500548	1000	1	1	L44
5 03b3b683a829e3ba10c68b9952fc348460f991735859b93deac3acc2dbcbe412fe	02f6725f9c1c40333	b67faea	a92fd211c183050f	28df32cac3f9d6968	5fe9665432	512239:1154:1	1	true	true	1520972998	1000	10)	14

Lightning Network - World Map (ArcMap)

- Asia (9 nodes), Europe (48 nodes), North America (323 nodes), South America (1 node)
- 307 nodes are in United States of America
 - Michigan has the most nodes, with its city Ann Arbor having 102 nodes

Simple Graph


```
plot(net, layout = layout_randomly, vertex.label = NA, vertex.size = 5, edge.lty = 1,
    edge.color = "brown", axes = TRUE, edge.arrow.mode = 0, frame = TRUE, main = "Simple graph")
```

Fruchterman-Reingold

#Plotting with Fruchterman-Reingold algorithm
13 <- layout_with_fr(net)
plot(net, layout = 13, vertex.label = NA)</pre>

Circle Graph


```
1 <- layout_in_circle(net)
plot(net, layout = 1, vertex.size = 1, edge.lty = 1, edge.color = "brown",
    vertex.color = "blue", axes = TRUE, edge.arrow.mode = 0, frame = TRUE,
    main = "Circle Graph", vertex.label = NA)</pre>
```

Degree of a vertex

degree(netGraph, v = V(netGraph), mode = c("all"), loops = FALSE, normalized = FALSE)

Top 3 Results:

020d3d5995a973c878e3f6e5f59da54078304c537f981d7dcef73367ecbea0e90e	128
02f6725f9c1c40333b67faea92fd211c183050f28df32cac3f9d69685fe9665432	100
021f2cbffc4045ca2d70678ecf8ed75e488290874c9da38074f6d378248337062b	54

Global Clustering coefficient

```
C = \frac{3 \times \text{number of triangles}}{\text{number of connected triplets of vertices}} = \frac{\text{number of closed triplets}}{\text{number of connected triplets of vertices}}.
```

```
> # Clustering coefficient (transitivity of a graph)
> transitivity(netGraph, type = ( "global"), vids = V(netGraph),
+ weights = E(netGraph)$weight, isolates = c("NaN", "zero"))
[1] 0.02839833
```

Betweenness Centrality

$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

```
#Betweenness calculation
betweenness(netGraph, v = V(netGraph), directed = TRUE, weights = E(netGraph)$weight,
            nobigint = TRUE, normalized = FALSE)
```

```
03b7d8b6bbaf02239277ed32378d50d29840292b61d516d30057b74044992c93dd 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0
                                                           0.00000
                                                                                                                               0.00000
0267db6fbe76e1fbae50e27529a330837e9e1f4b9e4c7bbfefd7d6a1b3ffe2b245 026b4f8931fcf87033d0f601ad7e4baa8e93ee74acf313292fd397fd6c27524162
```

- 6.50000
- 03efeea8961f376931a390ed9ae62be116abc1a8abaad6d1998efcc11d63e86526 0207197d1028b8a7edfee28f4e2dc47905333b2c4f9ed40bcd2c7481abe8fb049a
- 1311.23177 0235447c7485ff2b945bac5fbc366d54a87389bab8cacf1b64b26ec01e96bd165a 0323e18348bb2afc29660da8ba06fb1e91fc37a5752301180b8f3afca7f5c49f01 8011,68002 0.00000
- 02c119d2fd2e98a88f50d0d2ee4213255b7b8ec2be3a95f9aabd6afb09dd25b083 03587e75c5928c0bdaae3b100f3edf7211bfd900d08a93f391e7d20fe062eeb37c 4652.37868 0.00000
- 0208b6ec8c4c77cabef8351f92327c13e0b7cc2e3724083669de305e2b395341fe 0226b317ebf63a888838c2900b0e77e45b3ad35c59bdbbd6a8eaba0c0362303cee 0.00000 0.00000 033ac2f9f7ff643c235cc247c521663924aff73b26b38118a6c6821460afcde1b3 02b7060f74b7e04d3d8af97fab20381fcc16f7a33c7e526fa5c9b96afdb288d7d2
- 280, 40898 112,66667 02a90ee457ad397e5e882780b1fa0d109c3b66479d38e7682f5ee75fe995800f8e 03cea3557a68bb4f2845808b937531e8666b16724e1d5f24215d9234efc5a57e7d 0.00000 0.00000
- 0355cf9ce813a343313e1a4844f82c34810619943cb193cbfbead08da15d80fb98 0392e78c508987c97de70b2474493e9b0dbbd0dcad69dec2648d686701da1df44a 0.00000 0325fd957aeaead3635d7593b56c717090f95e7808290216b452e23fb2c0d77d11 02a0f1e7defe594d4f89e056ac45dbc3c2bdb29480270ed11c11040128a4ca6285 0.00000 91.66667
- 0388157a19ed80015b64bf9cd3cbc3c3c4492822341ab7813c7f9c0dbccc08fb26 035ec1f8ea7d376385dfa7c92bd9a0c43e1c88a4058179c3a80ac68abc27dd2389 0.00000 0.00000

Betweenness Centrality

Top 3 Results:

020d3d5995a973c878e3f6e5f59da54078304c537f981d7dcef73367ecbea0e90e					
02f6725f9c1c40333b67faea92fd211c183050f28df32cac3f9d69685fe9665432	21528.95				
021f2cbffc4045ca2d70678ecf8ed75e488290874c9da38074f6d378248337062b	10327.28				

Edge-Betweenness

#Edge-Betweenness calculation
edge_betweenness(netGraph, e = E(netGraph),
directed = TRUE, weights = E(netGraph)\$weight)

$$c_B(e) = \sum_{s,t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$

[1]	255.00000	244.50000	17.00000	697.37519	295.68911	478.69884	94.46862	115.01568	355.10399	191.71221	197.43450
[12]	255.00000	237.62882	209.47108	693.75833	195.65514	104.85244	391.50878	341.19506	285.45280	665.60403	743.75000
[23]	3769.18569	373.61784	134.53611	240.88957	260.01449	86.17338	227.20390	169.88922	481.30000	212.56739	255.00000
[34]	118.10609	653.54573	255.00000	178.01268	255.00000	255.00000	441.96139	197.12019	231.05855	255.00000	255.00000
[45]	86.02857	165.82118	110.30992	173.24931	14.50000	171.00000	70.00000	74.00000	38.16667	255.00000	255.00000
[56]	1.00000	259.63810	87.02857	255.00000	173.69299	219.76997	1.00000	255.00000	255.00000	1025.82372	1052.50058
[67]	91.96941	714.40924	255.00000	108.64591	255.00000	255.00000	319.53492	66.66190	255.00000	255.00000	1.00000
[78]	255.00000	1040.17750	24.44136	145.10837	1223.13495	101.88501	255.00000	255.00000	277.00000	183.00000	616.82497
[89]	147.24525	255.00000	255.00000	35.53096	255.00000	56.00000	68.67621	63.53096	115.76367	25.90000	7.00000
[100]	255.00000	7.00000	543.69701	255.00000	55.83096	255.00000	255.00000	255.00000	315.78333	80.18333	171.03889

Closeness Centrality

```
03b7d8b6bbaf02239277ed32378d50d29840292b61d516d30057b74044992c93dd 0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0
                                                      4.977259e-07
                                                                                                                          6.907031e-06
0267db6fbe76e1fbae50e27529a330837e9e1f4b9e4c7bbfefd7d6a1b3ffe2b245 026b4f8931fcf87033d0f601ad7e4baa8e93ee74acf313292fd397fd6c27524162
                                                      6.907031e-06
                                                                                                                          4.723398e-07
03efeea8961f376931a390ed9ae62be116abc1a8abaad6d1998efcc11d63e86526_0207197d1028b8a7edfee28f4e2dc47905333b2c4f9ed40bcd2c7481abe8fb049a
                                                      5.131284e-07
0235447c7485ff2b945bac5fbc366d54a87389bab8cacf1b64b26ec01e96bd165a 0323e18348bb2afc29660da8ba06fb1e91fc37a5752301180b8f3afca7f5c49f01
                                                      5.698132e-07
                                                                                                                          6.907031e-06
02c119d2fd2e98a88f50d0d2ee4213255b7b8ec2be3a95f9aabd6afb09dd25b083 03587e75c5928c0bdaae3b100f3edf7211bfd900d08a93f391e7d20fe062eeb37c
                                                      5.376570e-07
                                                                                                                          4.870453e-07
0208b6ec8c4c77cabef8351f92327c13e0b7cc2e3724083669de305e2b395341fe 0226b317ebf63a888838c2900b0e77e45b3ad35c59bdbbd6a8eaba0c0362303cee
                                                      6.907031e-06
                                                                                                                          6.907031e-06
033ac2f9f7ff643c235cc247c521663924aff73b26b38118a6c6821460afcde1b3 02b7060f74b7e04d3d8af97fab20381fcc16f7a33c7e526fa5c9b96afdb288d7d2
                                                                                                                          5.196995e-07
                                                      5.073278e-07
02a90ee457ad397e5e882780b1fa0d109c3b66479d38e7682f5ee75fe995800f8e 03cea3557a68bb4f2845808b937531e8666b16724e1d5f24215d9234efc5a57e7d
                                                      4.915853e-07
                                                                                                                          4.984451e-07
0355cf9ce813a343313e1a4844f82c34810619943cb193cbfbead08da15d80fb98 0392e78c508987c97de70b2474493e9b0dbbd0dcad69dec2648d686701da1df44a
                                                      6.907031e-06
                                                                                                                          6.877579e-06
0325fd957aeaead3635d7593b56c717090f95e7808290216b452e23fb2c0d77d11 02a0f1e7defe594d4f89e056ac45dbc3c2bdb29480270ed11c11040128a4ca6285
                                                      6.907031e-06
                                                                                                                          5.042318e-07
0388157a19ed80015b64bf9cd3cbc3c3c4492822341ab7813c7f9c0dbccc08fb26 035ec1f8ea7d376385dfa7c92bd9a0c43e1c88a4058179c3a80ac68abc27dd2389
                                                      4.977259e-07
                                                                                                                          6.907031e-06
```

Closeness Centrality

Top 3 Results:

0330c464cb2be97cd4ca5057b192a2be3c775a5f0356aced805769cb8790b879c0	6.91E-06
0267db6fbe76e1fbae50e27529a330837e9e1f4b9e4c7bbfefd7d6a1b3ffe2b245	6.91E-06
0323e18348bb2afc29660da8ba06fb1e91fc37a5752301180b8f3afca7f5c49f01	6.91E-06

Conclusion

Lightning Network DDoS Sends 20% of Nodes Down

Lightning Network (LN) nodes faced a Distributed Denial of Service (DDoS) attack yesterday that sent offline around 200 nodes, down from around 1,050 to 870.

"Lightning nodes are getting DDOS'ed, rumor is that someone from the 2x effort known as "BitPico" has taken credit for this.

