基于李宏毅's lecture, there are several scenarios training stuck:

- 1. Get stuck on
- 1) local min or max
- 2) Saddle point

The above could use a) gradient, 2) hessian to detect

- 2. When get stuck on, deep valley local min can not jump out, there are 2 methods:
- 1) small batch size, to add noise. So it could jump out.

Also small batch size could introduce better test accuracy, which means less overfitting

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima https://arxiv.org/abs/1609.04836

# Small Batch v.s. Large Batch

• Small batch is better on testing data?



# Small Batch v.s. Large Batch

# • Small batch is better on testing data?

|                | Name  | Network Type            | Data set                              |
|----------------|-------|-------------------------|---------------------------------------|
| SB = 256       | $F_1$ | Fully Connected         | MNIST (LeCun et al., 1998a)           |
|                | $F_2$ | Fully Connected         | TIMIT (Garofolo et al., 1993)         |
| 1.0            | $C_1$ | (Shallow) Convolutional | CIFAR-10 (Krizhevsky & Hinton, 2009)  |
| LB =           | $C_2$ | (Deep) Convolutional    | CIFAR-10                              |
| 0.1 x data set | $C_3$ | (Shallow) Convolutional | CIFAR-100 (Krizhevsky & Hinton, 2009) |
|                | $C_4$ | (Deep) Convolutional    | CIFAR-100                             |

|                  | Training Accuracy    |                      | Testing Accuracy     |                      |
|------------------|----------------------|----------------------|----------------------|----------------------|
| Name             | SB                   | LB                   | SB                   | LB                   |
| $\overline{F_1}$ | $99.66\% \pm 0.05\%$ | $99.92\% \pm 0.01\%$ | $98.03\% \pm 0.07\%$ | $97.81\% \pm 0.07\%$ |
| $F_2$            | $99.99\% \pm 0.03\%$ | $98.35\% \pm 2.08\%$ | $64.02\% \pm 0.2\%$  | $59.45\% \pm 1.05\%$ |
| $C_1$            | $99.89\% \pm 0.02\%$ | $99.66\% \pm 0.2\%$  | $80.04\% \pm 0.12\%$ | $77.26\% \pm 0.42\%$ |
| $C_2$            | $99.99\% \pm 0.04\%$ | $99.99\% \pm 0.01\%$ | $89.24\% \pm 0.12\%$ | $87.26\% \pm 0.07\%$ |
| $C_3$            | $99.56\% \pm 0.44\%$ | $99.88\% \pm 0.30\%$ | $49.58\% \pm 0.39\%$ | $46.45\% \pm 0.43\%$ |
| $\overline{C_4}$ | $99.10\% \pm 1.23\%$ | $99.57\% \pm 1.84\%$ | $63.08\% \pm 0.5\%$  | $57.81\% \pm 0.17\%$ |
|                  | 15:30 / 30:5         | 3                    | CC                   | 🌣 🖪 🗆 []             |

### 2) Adaptive learning rate

## Without Adaptive Learning Rate



# Learning Rate Scheduling

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$$



#### Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.





# Learning Rate Scheduling

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$$



#### **Learning Rate Decay**

After the training goes, we are close to the destination, so we reduce the learning rate.



#### Warm Up

Increase and then decrease?

At the beginning, the estimate of  $\sigma_i^t$  has large variance.

Please refer to RAdam https://arxiv.org/abs/1908.03265

# Summary of Optimization

#### (Vanilla) Gradient Descent

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \eta \boldsymbol{g}_{i}^{t}$$

Various Improvements

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta^t}{\sigma_i^t} \boldsymbol{m}_i^t \cdots \text{Momentum: weighted sum of the previous gradients} \\ \text{Consider direction} \\ \text{root mean square of the gradients} \\ \text{only magnitude} \\ \boldsymbol{1}^t \boldsymbol$$

#### 3) loss function



4) activation function, please check activation V0.py in this GitHub repository

## 5) normalization, e.g., bn

# Changing Landscape



## Question:

Whether to put normalization before or after activation function?

#### Ans:

Either way

### **Considering Deep Learning**



#### Batch normalization



Internal Covariate Shift?

Batch normalization make a and a' have similar statistics.

# Why is Internal Covariate Shift a Problem?

- 1. Training Instability: As the input distribution to a layer changes, the layer's parameters (e.g., weights) may no longer be optimal, requiring constant readjustment. This can lead to slower convergence or even training divergence.
- **2. Vanishing/Exploding Gradients**: Shifting distributions can exacerbate gradient issues, especially in deep networks, making it harder for gradients to propagate effectively.
- **3. Hyperparameter Sensitivity**: Models become more sensitive to learning rates and other hyperparameters, as they must compensate for the shifting distributions.

Details please check internal\_covariate\_shift0 in this repository.

| #                                  |       |
|------------------------------------|-------|
| #llm training, why loss curve中有尖刺? | 请举例说明 |
| #                                  |       |

在训练大语言模型(LLM)时,损失曲线(loss curve)中出现尖刺(spikes)通常是由于训练过程中的某些不稳定性或异常情况导致的。这些尖刺表现为损失值在某些训练步骤突然显著增加,随后可能迅速下降或继续波动。以下是一些常见原因及举例说明:

#### 1. 学习率过高

- 原因: 学习率设置过高可能导致模型参数更新幅度过大,跳过损失函数的局部最优解,进入高损失区域。
- 举例:假设你在训练一个基于Transformer的LLM,使用Adam优化器,初始学习率设为1e-3。如果学习率过高,模型可能在某些batch上更新过大,导致损失突然从0.5激增到5.0,随后可能回落。
- 解决方法:降低学习率(如从1e-3到1e-4),或使用学习率调度器(如线性衰减或 余弦退火)平滑参数更新。

## 2. 数据质量问题

- 原因:训练数据中可能存在噪声、错误标签或异常样本(如格式错误的文本、极长的序列等),导致模型在处理这些样本时损失激增。
- 举例:在训练一个中文对话模型时,数据集中混杂了一段包含乱码或无关语言(如 HTML代码)的样本。模型在处理这部分数据时,预测分布与目标分布差异巨大,损失值从0.3突增到10.0。
- 解决方法:进行数据预处理,过滤掉异常样本或对输入序列长度进行截断。

## 3. 梯度爆炸

• 原因: 梯度在反向传播时变得过大,导致参数更新异常,进而引起损失尖刺。这在深层网络(如Transformer)中较为常见,尤其是在训练初期。

- 举例:在训练一个多层Transformer模型时,某一层的梯度范数突然达到1e5量级, 参数更新后损失从0.4暴增到20.0。
- 解决方法:使用梯度裁剪(gradient clipping),将梯度范数限制在某个阈值(如 1.0)。此外,梯度累积或混合精度训练也可缓解此问题。

#### 4. 模型架构或初始化问题

- 原因:模型初始化不当(如权重分布方差过大)或架构设计问题(如残差连接缺失)可能导致训练不稳定,引起损失尖刺。
- 举例:在训练一个自定义的LLM时,如果未正确初始化注意力层权重,模型可能在某些batch上产生不稳定的输出,导致损失从0.6激增到15.0。
- 解决方法:采用标准初始化方法(如Xavier或He初始化),或参考已验证的架构(如LLaMA)。

#### 5. 优化器或超参数问题

- 原因: 优化器配置不当(如动量参数设置不合理)或batch size过小可能导致损失波动剧烈。
- 举例:使用SGD优化器训练LLM时,batch size设为8,样本间方差较大,导致某些batch的损失从0.5突增到8.0。
- 解决方法: 增大batch size(如果硬件允许),或使用更稳定的优化器(如 AdamW)。

### 6. 对抗性样本或分布偏移

- 原因:训练数据分布在某些batch中发生显著变化(如从短文本切换到长文档), 模型难以适应,导致损失尖刺。
- 举例:在微调一个预训练LLM时,输入数据从短对话切换到长篇文章,模型未适应长序列的注意力机制,损失从0.2激增到7.0。
- 解决方法:对数据进行分桶(按长度分组),或逐步增加序列长度进行训练。

## 可视化示例

假设你在训练一个中文LLM, 损失曲线如下(假设为1000个训练步骤):

- 正常情况: 损失从2.0平滑下降到0.3。
- 尖刺情况: 在第200步, 损失从0.5突增到10.0, 随后回落至0.4。这种尖刺可能由上述任一原因引起。

如果需要可视化损失曲线,可以提供具体数据,我可以为你生成一个Chart.js格式的折线 图展示损失尖刺。

#### 总结

损失曲线中的尖刺通常由学习率、数据质量、梯度爆炸、模型初始化、优化器配置或数据 分布变化引起。解决方法包括调整超参数、清洗数据、使用梯度裁剪等。建议监控训练过 程中的梯度范数、损失分布和样本质量,以快速定位问题。