RICOH

RP104x SERIES

150mA ULTRA LOW SUPPLY CURRENT LDO REGULATOR

NO.EA-150-120404

OUTLINE

The RP104x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current and low ON-resistance. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit and a chip enable circuit.

These ICs perform with ultra low supply current (Typ.1.0µA), which prolong the battery life.

Since the packages for these ICs are DFN(PLP)1010-4, SOT-23-5 and SC-82AB (Limited), therefore high density mounting of the ICs on boards is possible.

FEATURES

Supply Current	Typ. 1.0μA
	(Except the current through CE pull down circuit)
Standby Current	Typ. 0.1μA
Dropout Voltage	Тур. 0.24V (Іоит=150mA, Vоит=2.8V)
Temperature-Drift Coefficient of Output Voltage	Typ. ±40ppm/°C
Line Regulation	Typ. 0.02%/V
Output Voltage Accuracy	±0.8%
Packages	DFN(PLP)1010-4, SC-82AB (Limited), SOT-23-5
Input Voltage Range	1.7V to 5.25V
Output Voltage Range	1.2V to 3.3V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be used w	ith this IC 0.1μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

RP104xxx1B Vout Vref Current Limit GND

RP104xxx1D

SELECTION GUIDE

The output voltage, chip enable circuit, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free	
RP104Kxx1*-TR	DFN(PLP)1010-4	10,000 pcs	Yes	Yes	
RP104Qxx1*-TR-FE SC-82AB (Limited)		3,000 pcs	Yes	Yes	
RP104Nxx1*-TR-FE SOT-23-5		3,000 pcs	Yes	Yes	

- xx: The output voltage can be designated in the range from 1.2V(12) to 3.3V(33) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)
- * : CE pin polarity and auto discharge function at off state are options as follows.
 - (B) "H" active, without auto discharge function at off state
 - (C) without chip enable circuit
 - (D) "H" active, with auto discharge function at off state

The products scheduled to be discontinued (be sold to limited customer): "Limited"

These products will be discontinued in the future. You can not select these products newly. We will provide these products to the customer who has been using or has ordered them before. But we recommend changing to other products as soon as possible.

PIN CONFIGURATIONS

• DFN(PLP)1010-4

PIN DESCRIPTIONS

• DFN(PLP)1010-4

Pin No	Symbol	Pin Description				
1	Vоит	Output Pin				
2	GND	Ground Pin				
3	CE / NC	Chip Enable Pin ("H" Active) or No Connection				
4	V _{DD}	Input Pin				

^{*)} Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

• SC-82AB (Limited)

Pin No	Symbol	Pin Description
1	CE / NC	Chip Enable Pin ("H" Active) or No Connection
2	GND	Ground Pin
3	Vоит	Output Pin
4	V _{DD}	Input Pin

• SOT-23-5

Pin No	Symbol	Pin Description
1	V _{DD}	Input Pin
2	GND	Ground Pin
3	CE / NC	Chip Enable Pin ("H" Active) or No Connection
4	NC	No Connection
5	Vouт	Output Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
Vin	Input Voltage	6.0	V	
Vce	Input Voltage (CE Pin)	6.0		
Vоит	Output Voltage	-0.3 to V _{IN} +0.3	V	
Іоит	Output Current	200	mA	
Po	Power Dissipation (DFN(PLP)1010-4)*	400		
	Power Dissipation (SC-82AB)* (Limited)	380	mW	
	Power Dissipation (SOT-23-5)*	420		
Topt	Operating Temperature Range	-40 to 85	°C	
Tstg	Storage Temperature Range	-55 to 125	°C	

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

RP104xxx1B/C/D

 $\label{eq:Vin=SetVout+1V} V_{\text{IN}} = Set \ V_{\text{OUT}} + 1V \ \text{for } V_{\text{OUT}} \ \text{options greater than 1.5V.} \ V_{\text{IN}} = 2.5V \ \text{for } V_{\text{OUT}} \le 1.5V. \\ I_{\text{OUT}} = 1mA, \ C_{\text{IN}} = C_{\text{OUT}} = 0.1 \mu F, \ \text{unless otherwise noted}.$

values indicate $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$, unless otherwise noted.

Topt=25°C

Symbol	Item	Conditions			Min.	Тур.	Max.	Unit
		Topt=25°C		V _{OUT} > 2.0V	×0.992		×1.008	V
Vout	uт Output Voltage			$V_{\text{OUT}} \leq 2.0 V$	-16		+16	mV
V 001	Output Voltage	$-40^{\circ}C \le T_{opt} \le 85^{\circ}C$		V _{OUT} > 2.0V	×0.985		×1.015	V
		— 4 0 C ≤ 10βt.	40°C ≤ 1 opt ≤ 65°C Vouτ ≤		-30		+30	mV
Іоит	Output Current				150			mA
Δ V ουτ/Δ I ουτ	Load Regulation	1mA ≤ Iouт ≤	150mA			10	20	mV
			1.2V ≤	V _{OUT} < 1.5V		0.76	1.05	
			1.5V ≤	V _{OUT} < 1.7V		0.53	0.80	
V _{DIF}	Dropout Voltage	Iо∪т=150mA	1.7V ≤	V _{OUT} < 2.0V		0.44	0.65	V
V DIF	Dropout Voltage	1001-130111	2.0V ≤	2.0V ≤ V _{OUT} < 2.5V		0.34	0.50	V
			2.5V ≤	2.5V ≤ V _{OUT} < 2.8V		0.28	0.40	
			2.8V ≤	$V_{\text{OUT}} \leq 3.3 V$		0.24	0.32	
Iss	Supply Current	Iout=0mA				1.0	1.5	μΑ
Istandby	Standby Current	Vce=0V			0.1	1.0	μΑ	
ΔV out $/\Delta V$ in	Line Regulation	Set Vour+0.5V ≤ Vin ≤ 5.0V			0.02	0.10	%/V	
VIN	Input Voltage*			1.7		5.25	V	
ΔV _{OUT} / ΔTopt	Output Voltage Temperature Coefficient	$-40^{\circ}C \leq Topt \leq 85^{\circ}C$				±40		ppm /°C
Isc	Short Current Limit	Vout=0V				40		mA
I PD	CE Pull-down Current				0.3		μА	
VCEH	CE Input Voltage "H"			1.5			V	
VCEL	CE Input Voltage "L"					0.3	V	
RLOW	Low Output Nch Tr. ON Resistance (of D version)	V _{IN} =4.0V V _{CE} =0V			30		Ω	

All of units are tested and specified under load conditions such that Tj≈Topt=25°C except for Output Voltage Temperature Coefficient.

*) When Input Voltage is 5.5V, the total operational time must be within 500hrs.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATION

(External Components)
C2 0.1μF MURATA: GRM155B31C104KA87B

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $0.1\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

 $\text{C2=Ceramic } 0.1 \mu\text{F}$

Test Circuit for Load Transient Response

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

2) Output Voltage vs. Input Voltage (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

3) Supply Current vs. Input Voltage (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

4) Output Voltage vs. Temperature (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Ιουτ=1mA)

5) Supply Current vs. Temperature (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF)

6) Dropout Voltage vs. Output Current (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

7) Dropout Voltage vs. Set Output Voltage (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

8) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=Ceramic 0.1μF, Topt=25°C)

9) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 0.1μF, Topt=25°C)

10) Input Transient Response (C1=none, IouT=30mA, Topt=25°C)

11) Load Transient Response (C1=Ceramic 0.1μF, Topt=25°C)

RP104x251x

RP104x331x

RP104x121x

RP104x251x VIN=3.5V C2=Ceramic 1.0μF 20 Output Voltage Vour (V) Output Current lour (mA) 10 **Output Current** 1mA ← 10mA -0 2.7 **Output Voltage** 2.5 2.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time t (ms)

RP104x331x V_{IN}=4.3V C2=Ceramic 1.0μF 20 10 (∀E) 100 to the properties of the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time t (ms)

12) Turn On Speed with CE pin (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

Output Voltage Vour (V)

3.5

3.3

3.1

13) Turn Off Speed with CE pin (B Version) (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

14) Turn Off Speed with CE pin (D Version) (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, Topt=25°C)

15) Turn On Speed of C Version (C1=Ceramic 0.1μF, C2=Ceramic 0.1μF, V_{IN}=5.0V, Topt=25°C)

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between IOUT (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature : -40°C to 85°C

RP104x121x V_{IN}=1.7V to 5V C1=C2=Ceramic 0.047µF 1000 100 $\mathsf{ESR}\left(\Omega\right)$ 10 1 0.1 0.01 0 30 60 90 120 150 Output Current IouT (mA)

RP104x331x

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY, LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.

Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre

Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd.

11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,

People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD.
Electronic Devices Company

Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.