Aproximaciones y errores

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

I Semestre 2018

Contenido

- Aproximaciones y errores
 - Aproximaciones
 - Errores
 - Ejemplo
- 2 Errores de redondeo
 - Números codificados con coma fija
 - Números codificados con coma flotante

Aproximaciones y errores

Aproximación

- Modelo matemático aproxima comportamiento real
- Método numérico aproxima solución analítica
- Discrepancia entre objeto y su aproximación \equiv error
- Si se desconoce objeto ⇒ aproximar error

Aproximaciones

Cifras significativas

- Procesos de medición tienen precisión limitada
- Cifras significativas:
 - Indican confiabilidad de un valor numérico
 - Igual a número de dígitos obtenidos con certeza, más uno estimado
- Los métodos numéricos aproximan resultados
 ⇒ debe especificarse cuántas cifras significativas son válidas
- Números irracionales $(\pi, e, \sqrt{2})$ sin representación exacta \Rightarrow redondeo a número específico de cifras significativas

Exactitud y precisión

- Exactitud: qué tan cercano está el valor medido o calculado de valor verdadero (Sesgo o bias)
- Precisión (o incertidumbre): qué tanto se dispersan las mediciones alrededor del valor medido o calculado (Varianza)

Exactitud y precisión

Definiciones de error

Dos tipos principales

- truncamiento: aproximaciones de un procedimiento matemático exacto
- redondeo: representaciones numéricas con cifras significativas limitadas

Error verdadero

• Error verdadero *E_t*:

$$E_t$$
 = valor verdadero — valor aproximado

- calculable solo si se cuenta con el valor verdadero
- (De otro modo debe aproximarse y es error aproximado)
- Ignora orden de magnitud de valor estimado

Error relativo verdadero

 El error relativo fraccional verdadero considera orden de magnitud de valor estimado:

$$E_{
m rel} = rac{E_{
m t}}{
m valor \ verdadero} = rac{
m valor \ verdadero}{
m valor \ verdadero}$$
 $= 1 - rac{
m valor \ aproximado}{
m valor \ verdadero}$

• El error relativo porcentual verdadero está dado por

$$\epsilon_t = E_{\rm rel} \times 100 \%$$

Error porcentual aproximado

• Si **no** se cuenta con el valor verdadero, entonces el error se normaliza con respecto al mismo valor aproximado:

$$\epsilon_{\it a} = rac{{
m error ~aproximado}}{{
m valor ~aproximado}} imes 100 \, \%$$

Error porcentual aproximado

 Si no se cuenta con el valor verdadero, entonces el error se normaliza con respecto al mismo valor aproximado:

$$\epsilon_{\it a} = rac{{
m error \ aproximado}}{{
m valor \ aproximado}} imes 100 \, \%$$

 Reto real: ¿cómo estimar el error si no se cuenta con el valor verdadero?

Error porcentual aproximado

 Si no se cuenta con el valor verdadero, entonces el error se normaliza con respecto al mismo valor aproximado:

$$\epsilon_{\it a} = {{
m error aproximado} \over {
m valor aproximado}} imes 100 \%$$

- Reto real: ¿cómo estimar el error si no se cuenta con el valor verdadero?
- En métodos iterativos se utiliza:

$$\epsilon_{\it a} = \frac{\rm aproximación~actual-aproximación~anterior}{\rm aproximación~actual} \times 100\,\%$$

y los métodos se iteran mientras $|\epsilon_{\it a}|>\epsilon_{\it s}$

Umbral de Scarborough

Si se elige

$$\epsilon_s = (0, 5 \times 10^{2-n}) \%$$

entonces el resultado será correcto en *al menos n* cifras significativas

Ejemplo: Estimación de error en métodos iterativos

(1)

Ejemplo

Utilice la representación en serie de e^{x} para estimar el valor de $e^{0.5}$ y los errores relativos porcentual verdadero y aproximado al agregar términos hasta que se alcancen al menos tres cifras significativas correctas.

Ejemplo: Estimación de error en métodos iterativos

Solución:

La serie de potencias que representa a e^x es

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Para alcanzar tres cifras significativas se elige:

$$\epsilon_s = (0.5 \times 10^{2-3}) \% = 0.05 \%$$

P. Alvarado

(3)

Considerando N términos, la aproximación de e^x será:

$$e^x \approx f_N(x) = \sum_{k=0}^{N-1} \frac{x^k}{k!}$$

Ejemplo: Estimación de error en métodos iterativos

entonces

$$\epsilon_{a} = \frac{\text{aproximación actual-aproximación anterior}}{\text{aproximación actual}} \times 100 \%$$

$$= \frac{\sum\limits_{k=0}^{N-1} \frac{x^{k}}{k!} - \sum\limits_{k=0}^{N-2} \frac{x^{k}}{k!}}{\sum\limits_{k=0}^{N-1} \frac{x^{k}}{k!}} \times 100 \%$$

$$= \frac{x^{N-1}}{(N-1)! \sum\limits_{k=0}^{N-1} \frac{x^{k}}{k!}} \times 100 \%$$

Ejemplo: Estimación de error en métodos iterativos

Con x = 0,5 y $e^{0,5} \approx 1,64872127070013$ se tiene

N	$f_N(x)$	ϵ_t	ϵ_{a}
1	1	39,3469340287367%	
2	1,50000000000	9,0204010431050%	33,3333333333333 %
3	1,62500000000	1,4387677966971 %	7,6923076923077%
4	1,64583333333	0,1751622556291%	1,2658227848101 %
5	1,64843750000	0,0172115629956 %	0,1579778830964%
6	1,64869791667	0,0014164937322%	0,0157952930027 %
7	1,64871961806	0,0001002379603 %	0,0013162570913 %
8	1,64872116815	0,0000062196909%	0,0000940182753%

Tarea 1

Tarea 1

Programas para estimación de errores en el cálculo de funciones y operaciones simples.

Representaciones numéricas

Números codificados con coma fija Números codificados con coma flotante

Coma fija

Números codificados con coma fija

Las representaciones con **coma fija** son posicionales, donde el peso de cada bit en la representación es constante.

Número de N bits:

$$b_{N-1}$$
 ... b_5 b_4 b_3 b_2 b_1 b_0
 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
 2^{N-1} ... 2^5 2^4 2^3 2^2 2^1 2^0
MSB

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

• El rango representable es entonces desde 0 hasta $2^N - 1$.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

- El rango representable es entonces desde 0 hasta $2^N 1$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

- El rango representable es entonces desde 0 hasta $2^N 1$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-1} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-1}

Ejemplo

Encuentre el equivalente decimal del número binario

 $(10100101)_2$

Solución: El número de 8 bits

$$x = (10100101)_2$$

es equivalente al número en base 10

$$x = 1 \times 2^7 + 1 \times 2^5 + 1 \times 2^2 + 1 \times 2^0$$

= 128 + 32 + 4 + 1
= 165 (= 1 \times 10^2 + 6 \times 10 + 5)

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

• El rango representable es entonces desde 0 hasta $(2^N - 1)/M$.

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

- El rango representable es entonces desde 0 hasta $(2^N 1)/M$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a 1/M.

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

- El rango representable es entonces desde 0 hasta $(2^N 1)/M$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a 1/M.
- El dígito b_{N-1} es el más significativo (MSB, most significant bit) y tiene un peso relativo de $2^{N-1}/M$.

Ejemplo

Encuentre el equivalente decimal del número binario

 $(10, 100101)_2$

Solución: El número de 8 bits

$$x = (10, 100101)_2$$

es equivalente al número en base 10

$$x = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-4} + 1 \times 2^{-6}$$

$$= 2 + \frac{1}{2} + \frac{1}{16} + \frac{1}{64}$$

$$= \frac{128 + 32 + 4 + 1}{64} = \frac{1}{64}165$$

$$= 2,578125 \quad (= 2 \times 10^{0} + 5 \times 10^{-1} + 7 \times 10^{-2} + \dots)$$

- En este caso se tiene M=64, con dos bits en la parte entera y 6 en la parte fraccionaria
- Nóte que $M = 2^f$ con f el número de bits en la parte fraccionaria

 La representación de N bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1}-1$.

 La representación de N bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

• El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.

 La representación de N bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-2} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-2} .

• La representación de *N* bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-2} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-2} .
- El último bit b_{N-1} codifica al signo.

Sumas con complemento a dos

• El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.

Sumas con complemento a dos

- El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.
- Es posible sumar varios números con signo, y siempre que el resultado final se encuentre en el rango de representación, es irrelevante si resultados intermedios producen desbordamiento.

Sumas con complemento a dos

- El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.
- Es posible sumar varios números con signo, y siempre que el resultado final se encuentre en el rango de representación, es irrelevante si resultados intermedios producen desbordamiento.
- Por ejemplo, supóngase que se debe hacer la secuencia de operaciones 2 + 3 - 2 con números de 3 bits. La secuencia de adiciones es entonces

$$(x_i)_{10}$$
 $(x_i)_2$ $(\sum x_i)_2$ $(\sum x_i)_{10}$
 2_{10} 010 010 2_{10}
 3_{10} 011 101 -3_{10}
 -2_{10} 110 011 3_{10}

donde el resultado intermedio 5 fue representado por el número -3, sin afectar el resultado final.

Coma fija con signo

 La representación de N bits de un número con signo en complemento a dos está dada por

$$x = \frac{1}{M} \left(-b_{N-1} 2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n \right)$$

con la constante de normalización M elegida usualmente como 2^m .

Coma fija con signo

 La representación de N bits de un número con signo en complemento a dos está dada por

$$x = \frac{1}{M} \left(-b_{N-1} 2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n \right)$$

con la constante de normalización M elegida usualmente como 2^m .

• El rango representable será entonces desde $-2^{N-1}/M$ hasta $(2^{N-1}-1)/M$.

Ejemplo

Encuentre la representación binaria del número decimal x = -3,125 con cinco bits para la parte fraccionaria y tres bits para la parte entera utilizando coma fija con complemento a dos.

Solución:

Con f = 5 bits para la parte fraccionaria se obtiene

$$M = 2^f = 32$$

por lo que el número entero a convertir es

$$32 \times -3, 125 = -100$$

y finalmente
$$-100 = -128 + (16 + 8 + 4) = (10011100)_2$$

El caso fraccionario

• Un caso frecuentemente utilizado permite representar números de valor absoluto igual o inferior a uno empleando $M=2^{N-1}$ con lo que se obtiene

$$x = -b_{N-1} + \sum_{n=0}^{N-2} b_n 2^{n-N+1}$$

Coma flotante

Números codificados con coma flotante

- La representación en coma flotante permite ampliar el rango de representación numérica.
- La separación entre dos números adyacentes es variable: pequeña para números pequeños, grande para números grandes.
- Las representaciones de 32 y 64 bits más frecuentemente utilizadas han sido estandarizadas por la IEEE (estándar 754 en su versión original de 1985 y su más reciente versión de 2008).

Codificación según IEEE 754

Un número codificado con el estándar consiste en

- un bit de signo s,
- el exponente e con E bits y
- ullet la mantisa m normalizada (fraccionaria) de M bits,

y se codifica como

s Exponente e Mantisa m

Codificación según IEEE 754

Un número codificado con el estándar consiste en

- un bit de signo s,
- el exponente e con E bits y
- la mantisa *m* normalizada (fraccionaria) de *M* bits,

y se codifica como

s Exponente e Mantisa m

De forma algebraica, el número representado es

$$x = (-1)^s \times (1, m) \times 2^{e-\text{bias}}$$

con

bias =
$$2^{E-1} - 1$$

Equivalencia decimal de número en coma flotante

Nótese que la mantisa se completa con un 1 bit *oculto* (en el sentido de que no se indica explícitamente en la representación), mientras que los bits especificados en la mantisa representan solo la parte fraccionaria.

Ejemplo

Indique cuál es la representación en coma flotante del número $10,125_{10}$ en un formato de 14 bits que utiliza E=6 bits y M=7 bits.

Solución:

Primero, el bias está dado por

bias =
$$2^{E-1} - 1 = 2^5 - 1 = 31$$

y para la mantisa

$$10,125_{10} = 1010,0010_2 = 1,0100010_2 \times 2^3$$

El exponente corregido se obtiene con

$$e = 3 + bias = 34_{10} = 100010_2$$

Finalmente, la representación del número es:

s	Exponente e	Mantisa <i>m</i>
0	1000102	01000102

Ejemplo

Encuentre qué número decimal es representado por el código de coma flotante con E=6 bits y M=7 bits:

S	Exponente e	Mantisa <i>m</i>
1	0111102	10000002

Solución:

El número representado está dado por

$$-1\times 1, 1000000_2\times 2^{30-\mathsf{bias}} = -1, 1_2\times 2^{-1} = -0, 11_2 = -0, 75_{10}$$

Estándar de coma flotante IEEE 754-2008

	Simple	Doble
Ancho de palabra	32	64
Mantisa	23	52
Exponente	8	11
Bias	127	1023
Rango	$2^{128} \approx 3,4 \times 10^{38}$	$2^{1024}\approx 1,8\times 10^{308}$

Algunos números especiales en precisión simple

Nombre	s	е	m	Hex
			1111	FFFFFFF
-NaN (Quiet)	1	11 11	:	:
			$10 \dots 01$	FFC00001 _H
			0111	$FFBFFFFF_H$
-NaN (Signal)	1	11 11	:	Ė
			00 01	FF800001 _H
$-\infty$	1	1111	0000	FF800000 _H
-0	1	0000	0000	80000000 _H
+0	0	0000	0000	00000000 _H
$+\infty$	0	1111	0000	7F800000 _H
			0001	7F800001 _H
+NaN (Signal)	0	11 11	:	:
			$01 \dots 11$	$7FBFFFFF_H$
			10 01	7FC00000 _H
+NaN (Quiet)	0	1111	:	:
			11 11	7FFFFFFF _H

Algunos números especiales en precisión doble

Nombre	s	е	т	Hex
			1111	FFFFFFFFFFFFF _H
-NaN (Quiet)	1	1111	÷	:
			$10 \dots 01$	FFC0000000000001 _H
			01 11	FFF7FFFFFFFFFFH
-NaN (Signal)	1	1111	:	:
			$00 \dots 01$	FFF8000000000001 _H
$-\infty$	1	$11 \dots 11$	0000	FFF000000000000000
-0	1	0000	0000	H00000000000000000
+0	0	0000	0000	000000000000000000H
$+\infty$	0	$11 \dots 11$	0000	7FF000000000000000
			$00 \dots 01$	7FF0000000000001 _H
+NaN (Signal)	0	11 11	:	:
			0111	7FF7FFFFFFFFFF
			$10 \dots 01$	7FF80000000000000 _H
+NaN (Quiet)	0	1111	÷	:
			11 11	7FFFFFFFFFFFFFH

Error de redondeo

Se produce al utilizar representaciones numéricas incapaces de representar todas las cifras significativas del número a representar. Se produce porque

- El rango de cantidades representables es limitado.
 Fuera del rango representable ocurre el error de desbordamiento (overflow)
- Número finito de números representables en un rango.
 Al utilizar el número representable más cercano se produce el error de cuantificación. Este número se puede asignar por redondeo o por corte.
- Con coma flotante, intervalo Δx entre números aumenta conforme los números crecen en magnitud

• En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon & del formato se define como el menor número que cumple con

$$\mathscr{E} \geq \frac{|\Delta x|}{|x|}$$

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon & del formato se define como el menor número que cumple con

$$\mathscr{E} \geq \frac{|\Delta x|}{|x|}$$

Si se utiliza redondeo

$$\frac{\mathscr{E}}{2} \ge \frac{|\Delta x|}{|x|}$$

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon $\mathscr E$ del formato se define como el menor número que cumple con

$$\mathscr{E} \geq \frac{|\Delta x|}{|x|}$$

Si se utiliza redondeo

$$\frac{\mathscr{E}}{2} \ge \frac{|\Delta x|}{|x|}$$

• En general se cumple $\mathscr{E} = 2^{1-M}$ donde M es el número de bits de la mantisa.

Información sobre tipos en C++

- STL (Standard Template Library)
- imits>
- std::numeric_limits<float>::epsilon()
- std::numeric_limits<double>::max()
- Ver ejemplo eps.cpp $(M_{\text{float}} = 23, M_{\text{double}} = 52)$

Información sobre tipos en C++

- STL (Standard Template Library)
- imits>
- std::numeric_limits<float>::epsilon()
- std::numeric_limits<double>::max()
- Ver ejemplo eps.cpp $(M_{\text{float}} = 23, M_{\text{double}} = 52)$
- ¿Por qué resultado da $\mathscr{E} = 2^{-M}$ y no $\mathscr{E} = 2^{1-M}$?

Resumen

- Aproximaciones y errores
 - Aproximaciones
 - Errores
 - Ejemplo
- 2 Errores de redondeo
 - Números codificados con coma fija
 - Números codificados con coma flotante

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2018 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica