

11 February 2025 - Norway Life Science 2025

The coming era of predictive medicine

Patrick Schwab, Senior Director and Head of Biomedical AI, GSK

Co-authors: Frederik Träuble, Lachlan Stuart, Andreas Georgiou, Pascal Notin (Harvard), Arash Mehrjou, Ron Schwessinger, Mathieu Chevalley, Kim Branson, Bernhard Schölkopf (Max Planck Institute), Cornelia van Duijn (Oxford), Debora Marks (Harvard)

The good: drug development works for society

FDA approved therapies for lung cancer over time

Mechlorethamine Hydrochloride

Candidate chemical warfare agent research

Mobocertinib

NSCLC with EGFR exon 20 insertion w/ progression after platinum therapy

Innovative medicines play a crucial role in enabling humans to live longer, healthier lives.

The bad: we are doing less, with (exponentially) more

"Eroom's law": Exponential drop in R&D productivity.

- Failure is the norm: Probability of success
 for a new medicine is ~5.5%
- Median cost of a new drug is \$1.1 billion
- Trend stable for decades with recent reversal (potentially) due to increasing personalization and molecular/genetic evidence.

What do we know works?

Population-scale Biobanks – Variation in Genetic Background (>100'000 people)

Higher probability of approval (EU/US)

Targeted Biomarkers supporting Therapy 2x (immune) to 8x (oncology) higher probability of trial success

A causal & targeted link between disease of interest and a molecular mechanism substantially improves our chances of successful translation.

What if we could predict whole-organism mechanisms based on individual biological backgrounds?

Towards a generative model of biomedical mechanisms

The central dogma - (simplified) information flow in biology

Natural experiments offer unique view on mechanisms

... however, the human genome spans 3 billion base pairs ...

If your genome were a library, it would encompass

6'000 books with 250 pages each.

a single letter misses the whole (your!) story

Phenformer - a multi-scale genetic language model to read whole genomes

Phenformer reads genome to explain <u>how</u> disease comes to be

Incredibly, Phenformer explains presentations we do not fully understand Clinically, psoriasis patients face 3x risk of fatty liver disease. Not known why.

Using Phenformer as a personalised, whole-genome risk predictor considerably enhances predictive accuracy & generalisability

When embedding whole genomes using Phenformer, we obtain a map of mechanistic subtypes with putatively* different underlying mechanisms

* as evidenced by significant (p<0.05) differences in comorbidity rates

Summary

- Emerging class of generative models of mechanisms hold potential to enable understanding of how diseases come to be
- Such models are capable of interpreting the vast biological background of single individuals
- Using large compute (18 GPU months), Phenformer processes 3 billion base pairs and predicts for 6'000+ tissues and cell types
- Individualised understanding of what and how biological change happens could enable hyper-targeted therapy in the future

The coming era of predictive medicine

Frederik Träuble, Lachlan Stuart, Andreas Georgiou, Pascal Notin (Harvard), Arash Mehrjou, Ron Schwessinger, Mathieu Chevalley, Kim Branson, Bernhard Schölkopf (Max Planck Institute), Cornelia van Duijn (Oxford), Debora Marks (Harvard)

"Multi-megabase scale genome interpretation with genetic language models." available at: https://arxiv.org/abs/2501.07737

We are hiring: software engineers, AI/ML scientists, internships, ...

the team

Following the <sequence-cell-expression-phenotype> paths enables generation of potential disease-associated mechanisms

- We find many expected results e.g. fibroblasts/psoriasis
- ... but, strikingly, Phenformer also
 substantiates many yet-unexplained
 clinical findings
 - e.g. liver-involvement in
 psoriasis which to-date lacks
 mechanistic understanding (psoriasis
 pts are 2x higher risk for liver disease)
 - ... & many more surprising findings (optic nerve in COPD, appendix/nails in T1D)!

Benchmarking cell & tissue ID demonstrates leading performance compared to SOTA methods vs. literature-reported associations

On same test data, Phenformer significantly outperforms existing PRS methods for risk prediction, while maintaining transportability

