INFORMATION RECORDING MEDIUM AND INFORMATION RECORDER

Publication number: JP2000235709
Publication date: 2000-08-29

Inventor: MATSUO TAKESHI

Applicant: MITSUBISHI CHEM CORP

Classification:

- international: C10M107/38; G11B5/725; C10M107/00; G11B5/72; (IPC1-7):

G11B5/725; C10M107/38; C10N20/04; C10N40/18

- european:

Application number: JP19990351542 19991210

Priority number(s): JP19990351542 19991210; JP19980357194 19981216

Report a data error here

Abstract of JP2000235709

PROBLEM TO BE SOLVED: To obtain a high density magnetic recording medium which sufficiently inhibits spin-off even under high-speed rotation at high temperature by using a coating of a lubricant having a certain number average molecular weight or more and containing a small amount of a low molecular weight component whose molecular weight is a specified value or less as a lubricative layer and to obtain a magnetic recorder using the magnetic recording medium. SOLUTION: At least an information recording layer, a protective layer and a lubricative layer are successively laminated on a nonmagnetic substrate to obtain the objective information recording medium. The lubricative layer contains a perfluoro-polyether having a number average molecular weight of >=4,000 and containing 10 wt.% component whose molecular weight is <=3,000.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-235709 (P2000-235709A)

テーマコード(参考)

(43)公開日 平成12年8月29日(2000.8.29)

(51) Int.Cl.7

識別記号

 \mathbf{F} I

G11B 5/725 C 1 0 M 107/38

G11B 5/725 C 1 0 M 107/38 // C10N 20:04

40:18

審査請求 未請求 請求項の数11 OL (全 6 頁)

(21)出願番号

(22)出願日

特願平11-351542

(71)出願人 000005968

三菱化学株式会社

平成11年12月10日(1999.12.10)

東京都千代田区丸の内二丁目5番2号

(31)優先権主張番号 特顧平10-357194

(72)発明者 松尾 武士

(32)優先日

平成10年12月16日(1998.12.16)

岡山県倉敷市潮通三丁目10番地 三菱化学

株式会社水島事業所内 (74)代理人 100103997

(33)優先権主張国 日本 (JP)

弁理士 長谷川 曉司

(54) [発明の名称] 情報記録媒体および情報記録装置

(57)【要約】

【課題】 数平均分子量が一定以上で、かつ特定分子量 以下の低分子量分が少ない潤滑剤被膜を潤滑層として用 いることで、髙温、髙速回転下においてもスピンオフを 十分に抑えた髙密度磁気記録媒体、およびこれを用いた 磁気記録装置を提供する。

【解決する手段】 非磁性基板上に少なくとも情報記録 層、保護層及び潤滑層を順次積層してなる情報記録媒体 であって、潤滑層として数平均分子量が4000以上 で、分子量3000以下の成分が10重量%以下のパー フルオロポリエーテルを含むことを特徴とする情報記録 媒体。

1

【特許請求の範囲】

【請求項1】 非磁性基板上に少なくとも情報記録層、保護層及び潤滑層を順次積層してなる情報記録媒体であって、潤滑層として数平均分子量が4000以上であり、分子量3000以下の成分が10重量%以下のパーフルオロポリエーテルを含むことを特徴とする情報記録*

- - OHTRIDAN

(但し、A、A'はCF、またはC、F、を示し、CF、ここ、F、の数の比が $10:1\sim1:10$ であり、nは $10\sim500$ 、Rは置換されていてもよい炭素数 $1\sim10$ 20の、アルキル基またフルオロアルキル基を示す。) 【請求項3】 パーフルオロボリエーテルが、フルオロアルコールを主体とする抽出溶剤を用いて抽出精製されたものであることを特徴とする請求項1または2 に記載の情報記録媒体。

【請求項4】 フルオロアルコールが $C_2 \sim C_1$ 。の脂肪族フルオロアルコールであることを特徴とする請求項3 に記載の情報記録媒体。

【請求項5】 フルオロアルコールが、トリフルオロエタノール、ヘキサフルオロイソプロパノール、テトラフルオロプロパノール、オクタフルオロペンタノールからなる群より選ばれる少なくとも1種であることを特徴とする請求項3または4に記載の情報記録媒体。

【請求項6】 潤滑層の膜厚が0.1~10nmである ことを特徴とする請求項1乃至5のいずれかに記載の情 報記録媒体。

【請求項7】 保護層がアモルファスカーボン膜である ことを特徴とする請求項1乃至6のいずれかに記載の情 報記録媒体。

【請求項8】 非磁性基板がガラス基板であることを特徴とする請求項1乃至7のいずれかに記載の情報記録媒体

【請求項9】 情報記録媒体が磁気記録媒体であることを特徴とする請求項1乃至8のいずれかに記載の情報記録媒体。

【請求項10】 少なくとも、ディスク状である請求項1万至9のいずれかに記載の情報記録媒体、該情報記録媒体を回転稼働させるための回転手段、情報記録/再生の為のヘッドを有し、情報記録/再生時の情報記録媒体の回転数が10000[rpm]以上である情報記録装 40置。

【請求項11】 情報記録/再生の為のヘッドがフライングヘッドであり、飛行高度が50nm以下であることを特徴とする請求項10に記載の情報記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は情報記録媒体とこれを用いた情報記録装置、特に、磁気記録媒体及び磁気記録装置に存し、特にその潤滑層に於いて特定のパーフルオロボリエーテルを用いることにより、耐久性、耐ヘッ 50

*媒体。

【請求項2】 パーフルオロポリエーテルが下記一般式(I)で表されるものであることを特徴とする請求項1 に記載の情報記録媒体。

【化1】

 $HO-R-O-(A-O-A'-O)_{n}-R-OH$ (1)

ド吸着性に優れた情報記録媒体およびこれを用いた情報 記録装置に存する。

[0002]

【従来の技術】情報産業等で利用される高記録密度の情 報記録媒体として磁気記録媒体があり、この代表的な例 であるディスク状磁気記録媒体(以下、単にディスクと いうことがある。) は通常、磁気記録層として磁性金属 またはその合金をめっきや蒸着またはスパッタリング等 によって非磁性基板上に積層して製造される。現在、一 般に使用されている磁気記録媒体は、ドライブ停止時に は情報記録/再生ヘッド(以下、単にヘッドということ がある。) が記録媒体に接触し、駆動時にはヘッドが記 録媒体上を浮上して情報の記録/再生を行なうという、 フライングヘッドを用いたコンタクト・スタート・スト ップ(CSS)方式や、ドライブ停止時にはヘッドがデ ィスクの外にある格納スペースへ退避(アンロード)す るランプロード方式などが採用されている。例えばCS S方式においては、実際の使用時においてヘッドと磁気 記録媒体とが高速で接触摺動することにより、またラン プロード方式ではディスクへへッドをロードする際やデ ィスクからアンロードする際にヘッドの飛行髙さが不安 定となり、磁気記録媒体表面と強く衝突する場合がある ので、その際に磁気記録媒体表面が摩耗損傷を受けた り、磁気特性の劣化を起こすという問題がある。

【0003】とのような欠点を解決する方法として、磁 性層上に保護層や潤滑層を設けることによって接触摺動 の際の静/動摩擦を極力低減させ、耐摩耗性(CSS特 性)を向上させることが実用化している。潤滑層として は、一般的に、液体潤滑剤であるパーフルオロポリエー テル類を磁気記録媒体表面に塗布することにより形成さ せる方法が知られている。通常、市販されているパーフ ルオロポリエーテル類は、分子量が数百~数万と広い範 囲の分子量分布を有するものであり、一般的に数平均分 子量が2000~4000のものが用いられているが、 この場合の分子量分布も相当広いものである。近年、高 湿環境下でのCSS特性を上げるために、髙分子量(重 量平均分子量5000~30000(数平均分子量では 4000以上のもの))のパーフルオロポリエーテルを 用いる方法が提案されている(特開平5-166170 号公報等)。しかし、この場合の分子量分布も当然に広 いものである。

[0004]

【発明が解決しようとする課題】近年、記録/再生速度

を上げるためにディスクの回転速度がより高速化する方 向にある。これに対応して、ディスクとヘッドの摩擦係 数を低減するため、及びディスク表面保護のために前述 のような潤滑層を設ける等の改良が提案されてはいる が、高速回転中では潤滑剤が飛散し、また潤滑層膜厚が 減少するスピンオフという問題等が知られている。この スピンオフによってディスク表面の潤滑性能は徐々に低 下し、ヘッドによるディスクの破損(ヘッドクラッシ ュ)等が生ずる原因となる。またより高速回転化が進む ことにより、回転モーター等からの発熱が増し、ドライ 10 ブが高温になる。高温になることにより、よりスピンオ フが進むという状況にある。

【0005】とれらの現象を回避するために、平均分子 量の高い潤滑剤を用いることは有効であるが、パーフル オロポリエーテル類は上述のように分子量分布が広く、 単に平均分子量のみを上げただけでは、スピンオフを抑 制するには不十分である。一方、パーフルオロボリエー テル類の精製法として、低分子量分をアルコール等の有 機溶剤で抽出する方法が提案されている(特開平5-2 オロポリエーテルを精製することによって、分子量の比 較的小さい部分を除去し、数平均分子量を2500以上 とすることが記載されている。しかし、この方法ではア ルコールやケトン類での精製であるために、その溶解性 から考えて分子量1000~3000の低分子量(比較) 的高めの低分子量分) のものを取り除くことは殆んど不 可能である。

[0006]

【課題を解決するための手段】上述した現状を鑑み、本 発明者が鋭意検討した結果、数平均分子量がある程度以 30 I) ~ (IV) のいずれかの構造を有するものであり、特 上のパーフルオロポリエーテルを潤滑剤とする場合、分 子量が1000以下のものを除去しただけでは不十分で あり、比較的高めの低分子量分である分子量3000以 下のものを除去するととによって、高速回転下において*

$$-(A-O-A'-O)_{n}-$$

【0010】(A, A' はCF, またはC, F, を示 し、nは1以上の整数を示す。)

(式中、p, gは1以上の整数を示す)

【0012】また、これらの末端(基)としては、水素 原子、水酸基、置換されていてもよいアルキル基、フル オロアルキル基、芳香族基等が挙げられる。具体的に ★

$$HO-R-O-(A-O-A'-O)_{n}-R-OH$$
 (I)

【0014】(但し、A、A'はCF、またはC、F、 を示し、CF, :C, F, の数の比が10:1~1:1 O、好ましくは2:1~1:2であり、nは10~50 0、Rは例えば、水酸基などの置換基で置換されていて もよい、炭素数1~20の、アルキル基またはフルオロ アルキル基を示す。)で示されるものが好ましい。Rの 50 オロアルコールによって溶剤抽出精製することにより用

* も潤滑層のスピンオフを抑え、潤滑効果に優れた情報記 録媒体となることを見出し、本発明を完成させた。

【0007】本発明の要旨は、非磁性基板上に少なくと も情報記録層、保護層及び潤滑層を順次積層してなる情 報記録媒体であって、潤滑層として数平均分子量が40 00以上であり、分子量3000以下の成分が10重量 %以下であるパーフルオロボリエーテルを含む潤滑層を 設けることを特徴とする情報記録媒体及びこれを用いた 情報記録装置に存する。

[0008]

【発明の実施の形態】以下、本発明につき更に詳細に説 明する本発明の潤滑層は、パーフルオロポリエーテルに より形成されるが、場合により、少量の任意成分を混合 してもよい。パーフルオロポリエーテルの数平均分子量 は4000以上、好ましくは4500以上、更に好まし くは5500である。一方、この数平均分子量が低い場 合には、髙温髙速回転下においては顕著なスピンオフが 生じ、また、高すぎる場合には、潤滑剤が高粘度となり 情報記録媒体に用いた際に媒体の耐久性が低下すること ▶4066号公報等)。上記特許の実施例ではパーフル 20 がある。本発明に用いるパーフルオロポリエーテルにお いては、分子量3000以下の低分子量成分の割合を1 0重量%以下、好ましくは5重量%以下とする必要があ る。この低分子量成分が多い場合には、スピンオフを十 分に防止することができないので、この含有量はできる だけ少ない方が望ましい。このような低分子量分の少な いパーフルオロボリエーテルは後述するように、特定の 溶剤を用いて粗なパーフルオロボリエーテルを精製する ことにより得られる。本発明に用いるパーフルオロポリ エーテルとしては、例えば、主骨格として、下記式(I に、下記式 (II) が好ましい。

> [0009] [化2]

> > (II)

(IV)

% (0011) [化3]

(III)

40★は、例えば、下記一般式(1)

[0013]

【化4】

具体例としては-CF、CH、-、-CF、CH、OC H, CH (OH) CH, - CF, CH, (OCH, CH,)。- (m:1~20) 等が特に好ましい。

【0015】また、本発明で用いるパーフルオロポリエ ーテルは、通常、粗なパーフルオロポリエーテルをフル いることができる。フルオロアルコールとしては例え ば、トリフルオロエタノール、ヘキサフルオロイソプロ パノール、テトラフルオロプロパノール、オクタフルオ ロベンタノール等のC、~C1。脂肪族フルオロアルコー ルが挙げられる。とのようなフルオロアルコールによる 抽出精製によって分子量3000以下の低分子量成分を 効率よく取り除くことができる。なお、エタノールなど のアルコールでは分子量1000~3000低分子量 分を除去することはできない。さらに抽出能を上げるた めに、粗なパーフルオロポリエーテルの溶解度が10w 10 t%以上の溶剤をフルオロアルコールと併用するのが好 ましい。との溶剤としてはフロン、代替フロン(例えば HFE-7100、HFE-7200 (3M社製)、V ertrel XF(Dupon社製)、AK225 (旭ガラス社製))等が上げられる。溶剤抽出において は、粗なパーフルオロボリエーテルに対し、1~20倍 量の抽出溶剤を用いて行うのが一般的である。また、こ の抽出操作を繰り返すことは、より低分子量成分の重量 比率を下げることが可能になるので好ましい。また、抽 出操作の温度は抽出溶剤の常圧における沸点以下の温度 20

【0016】本発明における潤滑剤は、25℃において 液体である。この潤滑剤の情報記録媒体表面への塗布 は、通常、バーフルオロボリエーテル潤滑剤を溶解した 溶液に、非磁性基板上に情報記録層、保護層を順次積層 した情報記録媒体を浸漬することにより行われるが、こ の情報記録媒体表面に該溶液をしみこませたテープ等 を、必要に応じて荷重をかけて接触させて被膜を形成す る方法や情報記録媒体表面でパッドを回転させながら添 着させる方法、または蒸着法やスプレー法などを用いる ことができる。塗布する際の溶液の濃度は、潤滑剤化合 物の種類により、また溶媒の種類により異なるが、通 常、溶液中濃度として0.1~5g/1で用いられる。 【0017】また、潤滑剤と該情報記録媒体表面(保護 層)との親和力を髙めるため、塗布後に40~200℃ 程度の熱処理等を施すのが好ましい。潤滑層の膜厚は 0. 1~10nmが好ましく、中でも0. 5~5nm、 特に1~3 n mが好ましい。本発明は光記録媒体、磁気 記録媒体等の情報記録媒体に関するもので、特に磁気記 録媒体が好ましい。本発明に関して、代表して磁気記録 40 媒体について以下に述べる。本発明の磁気記録媒体にお ける基板としては、アルミニウム合金基板、ガラス基板 またはケイ素基板等が好適に使用されるが、銅、チタン 等のその他の金属基板、カーボン基板、セラミック基板 または樹脂基板を使用することも出来る。基板は通常、 円盤状であるが、例えばカード状であってもよい。

【0018】基板は通常、鏡面加工(ボリッシュ加工)を施してから順次磁性層等を積層する。必要に応じて下地層(例えばNi-P下地層)を設けた後に下地層の表面を鏡面加工してもよい。表面組まば、Raで5nm以

下、特に1nm以下が好ましい。また、ヘッドがディスクに吸着することを防ぐため、基板全面に軽度の機械的テキスチャを施して高さの低い突起を形成したり、またはレーザ光の照射により突起を形成すること等が好まし

【0020】さらには、基板または下地層と磁気記録層との間に、Cr層、Cu層などの中間層を設けるのが好ましい。中間層の厚さは、通常1~50nm、好ましくは1~20nmである。磁気記録層の表面には保護層が設けられる。保護層は、カーボン膜、水素化カーボン膜、TiC、SiC等の炭化物膜、SiN、TiN等の窒化膜、SiO、Al2O3、ZrO等の酸化物膜などで構成され、蒸着、スパッタ、プラズマCVD、イオンプレーティング、湿式法等の方法により形成される。また、例えばスパッタとプラズマCVDを用いて2層以上の保護層としてもよい。保護層としては、アモルファスカーボン膜または水素化カーボン膜等の炭素質保護膜が特に好ましい。膜厚は1~50nm、特に1~10nmが好ましい。

【0021】上述してきた磁気記録媒体において、特に磁気ディスクの場合には、少なくともこのディスクと、それを回転稼働させるための回転手段、及び情報記録/再生の為のフライングヘッドを有する磁気記録装置とすることでスピンオフ特性に優れたものを提供することができる。この磁気記録装置においては、高速回転下、特に10000[rpm]以上である場合、その効果は顕著である。また、フライングヘッドの飛行高度が50nm以下、特に30nm以下とすることで効果が顕著となり、高記録密度のディスクを有する磁気記録装置に好遊である。なお、本発明の記録媒体は例えば、相変化型光磁気記録媒体、CD-Rの様な色素を用いた光記録媒体、その他ニアフィールド技術による膜面入射形の光磁気記録媒体などの磁気記録媒体以外の情報記録媒体としても適用することができる。

[0022]

【実施例】次に、実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例によって限定されるものではない。 実施例1

先述の一般式 (I) において、R=CF2 CH2、A. A' におけるCF2 とC2 F4 の数の比は1:1でnは21、数平均分子量が4000であるパーフルオロボリ

面を鏡面加工してもよい。表面粗さは、Raで5nm以 50 エーテル100gにトリフルオロエタノール500ml

を加え、撹拌した。との溶液を室温で放置し完全に2層 に分離した後、下層を分離した。この下層にトリフルオ ロエタノール500m1を加え、再び撹拌し、1回目と 同様に下層を分離し、続いてこの下層を真空ポンプによ り、5mmHgの減圧下12~24時間乾燥を行い、低 分子分を取り除いた潤滑剤を得た。

【0023】とのようにして得られた潤滑剤の数平均分 子量 (Mn) は19F NMRを測定し、主鎖のCF₂、 C, F, のピークとCF, CH, OHのピークの比から (Mw) については、GPCにより求め、分子量300 0以下の低分子量分の重量%を求めた。磁気ディスク は、表面の平均粗さがRa: lnmの直径3.5インチ*

*のアルミニウム合金製基板上に、スパッタリング法によ りクロム下地層(厚さ20nm)、コバルト合金磁性層 (厚さ30nm)を形成し、次に保護層としてカーボン 膜を15nmの厚さに形成した。このカーボン膜上に、 上記のように作製した潤滑剤を含有する溶液(溶媒にH FE-7200 (3M製) を用いた) を用い浸漬法によ り膜を形成した後、100℃で焼成処理を行い、均一な 膜を形成した。得られたディスクを用いて、スピンオフ 試験を行った。試験はディスクを、90℃2R.H.の 計算し求めた。また、分子量分布および重量平均分子量 10 環境下、10000rpmで14日間回転を続け、その 前後での潤滑剤の減膜を測定した。結果を表1に記す。 [0024]

【表1】

			944	•			
	Mo Mw		分子量8000以下の	初期膜厚	Spin-off後	滅膜厚	減膜率
			₺ののw t %	(nm)	の膜厚(nm)	(mn)	(%)
実施例1	4700	5500	8 %	1.7	1.6	-0.1	- 6 %
				1.8	1.6	-0.2	-11%
実施例2	5800	6800	4 %	2. 2	2.1	-0.1	- 5 %
実施例3	4100	4400	5 %	1.5	1.3	-0.2	-13%
実施例4	5900	6800	1 %	1.6	1.5	-0.1	- 6 %
比較例1	2600	3000	64%	1.8	1.2	-0.6	- 33%
比較例2	1800	3600	50%	2.0	1.5	-0.5	- 25%
比較例3	3900	4800	23%	2. 3	1.6	-0.7	- 30%
比較例 4	4500	5400	12%	1.9	1.4	-0.5	- 26%

【0025】実施例2

抽出溶剤としてトリフルオロエタノール300mlにH FE-7200を100m1加えたものを用い、実施例 1と同様の方法で、溶媒抽出を2回繰り返し行い、潤滑 剤を得た。この潤滑剤を実施例 1 と同様に磁気ディスク トに膜を形成した。スピンオフ試験の結果を表 1 に示

【0026】実施例3、4

実施例1の原料として用いたパーフルオロボリエーテル について、二酸化炭素を用いた超臨界流体抽出により分 画を行い実施例3、4の潤滑剤を得た。方法について は、文献 "Tailoring performanc e properties of perfluoro polyethers via supercriti cal fluid fractionation", H. Schonemann, P. Gallagher-Wetmore, V. Krukonis, Proc. 3 rd. Internat. Symp. Supercri t. Fluids, 3 (1994) 375-380に従 い作成した。得られた潤滑剤を用いて、実施例1と同様 にディスクを作成し、評価した。結果を表1に示す。

【0027】比較例1~4

表1に示した数平均分子量、分子量3000以下の成分 の重量比を有するパーフルオロポリエーテル潤滑剤を用 いて実施例1と同様に磁気ディスク上に膜を形成した。 スピンオフ試験の結果を表1に示す。表1に示した結果 の様に、平均分子量が低い比較例1、2、3や、平均分 子量が4500と高いが分子量3000以下のものの重 量分率が12%と高い比較例4では0.5mm以上の減 膜が見られ、減膜率でも25%以上と信頼性に不満のあ る結果であった。これに対し、低分子量分を取り除いた 40 平均分子量が高い実施例1~4では減膜厚が0.1~ 0. 2 n m と非常に小さく、高温、高速回転下でも十分 な信頼性が得られることがわかった。このようにスピン オフを抑えるためには平均分子量を上げるだけでなく、 分子量分布の低分子量分の量を減らすことが重要である

【0028】実施例1、比較例2の潤滑剤を用いて、耐 久性の評価を行った。直径3.5インチのアルミニウム 合金製ディスク基板上に、メッキ法によりNiP層を1 Oμm形成し、表面の平均粗さがRa:lnmとなるよ 50 うに研磨しついでバルスレーザーを回転しているディス

10

クの半径17mmから19mmの部分にかけて照射し、 突起を形成させた。突起高さは19mmであった。その 後、スパッタリング法によりクロム下地層、コバルト合 金磁性層を実施例1と同様に形成し、次にスパッタリン グにより保護層としてカーボン膜を13mmの厚さに形 成した。とのカーボン膜上に、パーフルオロポリエーテ ル潤滑剤を実施例1と同様の溶液として用い、浸漬法に より膜を形成し、120℃で焼成処理を行い、1.4m mの均一な潤滑層を形成した。 *を用いて、65℃10%R.H.の高温低湿の環境下に おいて回転数10000rpmでCSS試験を行った。 また、一部については、80℃80%R.H.の高温高 湿の環境下に4日間放置した後に、同様にCSS試験を 行った。ヘッドには表面にCVD法により設けられたカ ーボンでコートされたものを用い押し付け圧力2.5g として初回、及び2000回時にディスクとヘッドと の間の摩擦力を測定した。結果を表2に示す。

[0030]

【表2】

【0029】上述の製造方法によって得られたディスク*10

表 一 2

潤滑剤	Mo Mw		8000以下の	高温高湿下	CSS結果	初回の	20000 回の	
			w t %	放置	·	摩擦力	摩擦力	
実施例1	4700	5500	8 %	なし	20000回 PASS	1.2g	1.1g	
	4700	5500	8 %	あり	20000回 PASS	1.5g	1.6g	
比較例 2	1800	3600	5 0 %	なし	10000 回でHead Crash	1.4g	-	
	1800	3600	5 0 % .	あり	1000 回でHead Crash	1.4g		

【0031】以上の結果から、実施例においては、摩耗に厳しい高温低湿下においても、20000回のCSSを問題なく終了し(PASS)し、摩擦力の上昇はほとんど観察されなかった。また、高温高湿下に放置したものについても、若干の摩擦力の上昇はあるものの、問題なく20000回のCSSを終了した。それに対して、従来用いられてきた様な、Mnは小さいが低分子量の含有量が多い潤滑剤を用いた比較例では、10000回でHeadとの接触でDisk表面の摩耗が極度に進行するため、Head Crashを起こしてしまうことが 30わかる。この現象は、高温高湿下に放置したものについては特に悪化し、1000回でHead Crashを

起としてしまった。とのように、10000rpmの様な高速回転下においては、潤滑剤の飛散が抑えられる実施例の様な潤滑剤の優位性は明らかである。

[0032]

【発明の効果】本発明によれば、数平均分子量が4000以上と大きく、かつ分子量3000以下の低分子量成分が10重量%以下の潤滑剤を潤滑層に用いることにより、高温、高速回転下においてもスピンオフを十分に抑えることができる。またこのような潤滑剤では、フルオロアルコールで溶媒抽出する事により分子量3000以下の低分子量成分を取り除くことで、容易に製造することができる。