Лекция № 9: Операционна семантика

Лекция 9

3.3 Операционна семантика на програмите от езика REC

3.3.1 Правила за извод на опростявания

Да напомним, че записът

$$\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$$

означаваще, че τ е терм с обектови променливи, които са сред X_1,\ldots,X_n , и функционални променливи измежду F_1,\ldots,F_k . Тук ще ни интересуват един специален вид термове, в които не участват обектови променливи. Такива термове ще наричаме $\underline{\phi ynkuuonanu \ mepmobe}$ и ще отбелязваме с μ,μ_1,μ_2,\ldots .

Примери: 5,
$$F_1(5)$$
, 5 op $F_1(5)$, if 5 op 10 then $F_1(5)$ else $F_1(F_2(10))$

Определение 3.6. *Опростяване* ще наричаме синтактичен израз от вида

$$\mu \rightarrow c$$

където μ е функционален терм, а c е константа.

Мъглявата (засега) идея, която стои зад израза $\mu \to c$ е, че термът μ се опростява (или се редуцира) до константата c. Разбира се, това опростяване е спрямо фиксирана рекурсивна програма. Всъщност рекурсивните дефиниции от тялото на програмата ще определят правилата за опростяване.

Преди да дадем строгите дефиниции, да обясним с пример защо се интересуваме от функционалните термове и опростяванията. Да разгледаме рекурсивната програма за функцията x!, написана на езика REC:

$$\begin{array}{lll} R: & F(X) & \text{ where} \\ & F(X) = \text{ if } X == 0 & \text{then} & 1 & \text{else} & X.F(X-1) \end{array}$$

Когато искаме да видим какво пресмята тази програма да речем при X=3, тръгваме от функционалния терм F(3) и се опитваме чрез поредица от преобразования да достигнем до резултат, който е число. Преобразованията, които правим, изглеждат така:

$$F(3) \ \to \ 3.F(2) \ \to \ 3.2.F(1) \ \to \ 3.2.1.F(0) \ \to \ 6.$$

Можем да си представяме, че сме опростили функционалния терм F(3) до константата 6 на базата на дефиницията на функционалната променлива F на програмата R. В такъв случай ще казваме, че от R сме извели опростяването $F(3) \rightarrow 6$.

Ако τ е терм, чийто обектови променливи са сред X_1, \ldots, X_n , а ρ_1, \ldots, ρ_n са произволни термове, ще пишем

$$\tau[X_1/\rho_1, \ldots, X_n/\rho_n],$$

за да означим терма, който се получава, когато в τ едновременно се заместят променливите X_1, \ldots, X_n с термовете ρ_1, \ldots, ρ_n съответно. Изразът $\tau[X_1/\rho_1, \ldots, X_n/\rho_n]$ понякога ще съкращаваме до $\tau[\bar{X}/\bar{\rho}]$.

Формалната дефиниция е с индукция по построението на терма τ :

Определение 3.7. Нека τ е терм с обектови променливи измежду X_1, \ldots, X_n , а ρ_1, \ldots, ρ_n са произволни термове. Тогава

- 1) ako $\tau = c$, to $\tau[X_1/\rho_1, \ldots, X_n/\rho_n] = c$;
- 2) ako $\tau = X_i$, to $\tau[X_1/\rho_1, ..., X_n/\rho_n] = \rho_i$;
- 3) ако $\tau = (\tau_1 \ op \ \tau_2)$, то

$$\tau[\bar{X}/\bar{\rho}] = (\tau_1[\bar{X}/\bar{\rho}] \text{ op } \tau_2[\bar{X}/\bar{\rho}]);$$

4) ако $\tau = \mathbf{if} \ \tau_1 \ \mathbf{then} \ \tau_2 \ \mathbf{else} \ \tau_3$, то

$$\tau[\bar{X}/\bar{\rho}] = \text{if } \tau_1[\bar{X}/\bar{\rho}] \text{ then } \tau_2[\bar{X}/\bar{\rho}] \text{ else } \tau_3[\bar{X}/\bar{\rho}];$$

5) ako $\tau = F_i(\tau_1, ..., \tau_m)$, to

$$\tau[\bar{X}/\bar{\rho}] = F_i(\tau_1[\bar{X}/\bar{\rho}], \dots, \tau_m[\bar{X}/\bar{\rho}]).$$

Да разгледаме няколко примера.

Примери. 1) Нека $\tau=F_1(X_1,\ F_1(X_1,X_2)),\ \rho_1=F_2(X_2)$ и $\rho_2=5.$ Тогава

$$\tau[X_1/F_2(X_2), X_2/5)] = F_1(F_2(X_2), F_1(F_2(X_2), 5)).$$

2) Нека $\tau(X_1, X_2) = X_1 + X_2$. Да заместим синтактично променливите X_1 и X_2 с константите 5 и 10, съответно:

$$\tau[X_1/5, X_2/10] = 5 + 10.$$

Нека обърнем внимание, че резултатът от горното заместване е синтактичният израз 5+10. Не го бъркайте със семантичното понятие
стойност на терм. В случая за стойността на терма τ при $X_1=5$ и $X_2=10$ ще бъде

$$\tau(5,10) = 5 + 10 = 15.$$

Ясно е, че ако в $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ заместим променливите X_1,\ldots,X_n с функционалните термове μ_1,\ldots,μ_n , резултатът от заместването

$$\tau[X_1/\mu_1, \ldots, X_n/\mu_n]$$

отново ще е функционален терм. Доказателство на това наблюдение е със съвсем рутинна индукция по построението на терма τ , затова ще го пропуснем.

Сега да фиксираме производна програма R от нашия език REC:

$$au_0(X_1,\ldots,X_n,F_1,\ldots,F_k)$$
 where $F_1(X_1,\ldots,X_{m_1})= au_1(X_1,\ldots,X_{m_1},F_1,\ldots,F_k)$: $F_i(X_1,\ldots,X_{m_i})= au_i(X_1,\ldots,X_{m_i},F_1,\ldots,F_k)$: $F_k(X_1,\ldots,X_{m_k})= au_k(X_1,\ldots,X_{m_k},F_1,\ldots,F_k)$

Определение 3.8. <u>Правила за синтактичен извод по стойност</u> от програмата R:

- (0) $c \to c$ за всяка константа $c \in \mathbb{N}$. (Четем: "c се опростява до c".)
 - (1) Ако $\mu_1 \to c_1, \ \mu_2 \to c_2$ и $c_1 \ op \ c_2 = c,$ то $\mu_1 \ op \ \mu_2 \to c.$

(Ако μ_1 се опростява до c_1 , μ_2 се опростява до c_2 и освен това c_1 ор $c_2=c$, то μ_1 ор μ_2 се опростява до c.)

- (2_t) Ako $\mu_1 \rightarrow c_1, c_1 > 0$ if $\mu_2 \rightarrow c$, to if μ_1 then μ_2 else $\mu_3 \rightarrow c$.
- $(2_{\mathbf{f}})$ Ако $\mu_1 \to 0$ и $\mu_3 \to c$, то **if** μ_1 **then** μ_2 **else** $\mu_3 \to c$.
- (3 $_V$) За всяко $1 \leq i \leq k$: ако $\mu_1 \to c_1, \ldots, \mu_{m_i} \to c_{m_i}$ и $\tau_i[X_1/c_1, \ldots, X_{m_i}/c_{m_i}] \to c$, то $F_i(\mu_1, \ldots, \mu_{m_i}) \to c$.

Да отбележим, че клаузата (0) всъщност е $a\kappa cuoma$, а клаузите $(1), (2_{\mathbf{t}}), (2_{\mathbf{f}})$ и (3_V) са npaвилa. Можем да считаме, че аксиомите също са правила, само че с 0 на брой предпоставки.

Определение 3.9. <u>Правила за синтактичен извод по име</u> от програмата R:

- (0) $c \to c$ за всяка константа $c \in \mathbb{N}$.
- (1) Ako $\mu_1 \to c_1, \ \mu_2 \to c_2$ и $c_1 \ op \ c_2 = c,$ то $\mu_1 \ op \ \mu_2 \to c.$
- (2_t) Ako $\mu_1 \rightarrow c_1, c_1 > 0$ и $\mu_2 \rightarrow c,$ To **if** μ_1 **then** μ_2 **else** $\mu_3 \rightarrow c.$
- $(2_{\mathbf{f}})$ Ако $\mu_1 \to 0$ и $\mu_3 \to c$, то **if** μ_1 **then** μ_2 **else** $\mu_3 \to c$.
- (3_N) За всяко $1 \le i \le k$: ако $\tau_i[X_1/\mu_1, \dots, X_{m_i}/\mu_{m_i}] \to c$, то $F_i(\mu_1, \dots, \mu_{m_i}) \to c$.

Правилата $(0), (1), (2_t)$ и (2_f) са общи за двете системи за извод. Освен това те са едни и същи за всяка програма. Последните правила (3_V) и (3_N) вече зависят от конкретната програма R. При тях е и разликата между двете системи за извод. Правило (3_V) изисква параметрите да имат $\underline{cmoйнocmu}$, преди да бъдат подадени на съответната подпрограма, докато при правило (3_N) подаваме директно техните \underline{umeha} — термовете μ_1, \ldots, μ_{m_i} .

Горните правила могат да се запишат и по следния по-прегледен начин:

$$\frac{c \rightarrow c}{c \rightarrow c} \quad (0)$$

$$\frac{\mu_{1} \rightarrow c_{1}, \quad \mu_{2} \rightarrow c_{2}, \quad c_{1} \text{ op } c_{2} = c}{\mu_{1} \text{ op } \mu_{2} \rightarrow c} \quad (1)$$

$$\frac{\mu_{1} \rightarrow c_{1}, \quad c_{1} > 0, \quad \mu_{2} \rightarrow c}{\text{if } \mu_{1} \text{ then } \mu_{2} \text{ else } \mu_{3} \rightarrow c} \quad (2_{\mathbf{t}})$$

$$\frac{\mu_{1} \rightarrow 0, \quad \mu_{3} \rightarrow c}{\text{if } \mu_{1} \text{ then } \mu_{2} \text{ else } \mu_{3} \rightarrow c} \quad (2_{\mathbf{f}})$$

$$\frac{\mu_{1} \rightarrow c_{1}, \quad \dots, \quad \mu_{m_{i}} \rightarrow c_{m_{i}}, \quad \tau_{i}[X_{1}/c_{1}, \dots, X_{m_{i}}/c_{m_{i}}] \rightarrow c}{F_{i}(\mu_{1}, \dots, \mu_{m_{i}}) \rightarrow c} \quad (3_{V})$$

$$\frac{\tau_{i}[X_{1}/\mu_{1}, \dots, X_{m_{i}}/\mu_{m_{i}}] \rightarrow c}{F_{i}(\mu_{1}, \dots, \mu_{m_{i}}) \rightarrow c} \quad (3_{N})$$

<u>Пример.</u> Ако $\mu_1 \to 5$ и $\mu_2 \to 10$, то понеже 5+10=15, можем да твърдим на базата на правило (1), че $\mu_1 + \mu_2 \to 15$. Схематично:

$$\frac{\mu_1 \to 5, \quad \mu_2 \to 10, \quad 5 + 10 = 15}{\mu_1 + \mu_2 \to 15} \tag{1}$$

3.3.2 Как дефинираме $O_V(R)$ и $O_N(R)$?

Вече сме в състояние да дефинираме функциите $O_V(R)$ и $O_N(R)$ — операционната семантика по стойност и по име на програмата R. За целта въвеждаме няколко последни синтактични понятия.

Отново си мислим фиксирана производна програма R от езика REC:

$$\begin{split} &\tau_0(X_1,\ldots,X_n,F_1,\ldots,F_k) &\quad \text{where} \\ &F_1(X_1,\ldots,X_{m_1}) = \tau_1(X_1,\ldots,X_{m_1},F_1,\ldots,F_k) \\ &\vdots \\ &F_i(X_1,\ldots,X_{m_i}) = \tau_i(X_1,\ldots,X_{m_i},F_1,\ldots,F_k) \\ &\vdots \\ &F_k(X_1,\ldots,X_{m_k}) = \tau_k(X_1,\ldots,X_{m_k},F_1,\ldots,F_k) \end{split}$$

 $\underline{\textit{Извод по стойност}}$ от програмата R ще наричаме редицата от опростявания

$$\mu_1 \rightarrow c_1, \quad \mu_2 \rightarrow c_2, \ldots, \mu_l \rightarrow c_l,$$

където всяко опростяване $\mu_i \to c_i$ е или аксиома, или се получава от $npe \partial u u n u$ опростявания $\mu_j \to c_j$, j < i, на базата на някое от правилата $(1), (2_{\mathbf{t}}), (2_{\mathbf{f}})$ и (3_V) .

Дължината l на тази редица ще наричаме <u>дължина на извода</u>. Ясно е, че ако дължината на извода е 1, то $\mu_1 \to c_1$ е аксиома и следователно $\mu_1 = c_1$.

Определение 3.10. Ще казваме, че от *om R се извежда по стойност* опростяването $\mu \to c$ и ще пишем

$$R \vdash_V \mu \rightarrow c$$

ако съществува извод по стойност $\mu_1 \to c_1, \ldots, \mu_l \to c_l,$ чийто последен член $\mu_l \to c_l$ е точно опростяването $\mu \to c.$

Аналогично въвеждаме и uзвод по ume от R: това отново е редица от опростявания

$$\mu_1 \rightarrow c_1, \quad \mu_2 \rightarrow c_2, \ldots, \mu_l \rightarrow c_l,$$

където всяко $\mu_i \to c_i$ е или аксиома, или се получава от <u>предишни</u> опростявания $\mu_j \to c_j, j < i$, на базата на някое от правилата $(1), (2_{\mathbf{t}}), (2_{\mathbf{f}})$ и (3_N) .

Определение 3.11. Ще казваме, че от $om\ R$ се извежда по име опростяването $\mu \to c$ и ще пишем

$$R \vdash_N \mu \rightarrow c,$$

ако съществува извод по име $\mu_1 \to c_1, \ldots, \mu_l \to c_l,$ чийто последен член е опростяването $\mu \to c$.

Определение 3.12. Операционна семантика по стойност на програмата R е функцията $O_V(R): \mathbb{N}^n \longrightarrow \mathbb{N}$, която се дефинира с еквивалентността:

$$O_V(R)(c_1,\ldots,c_n) \simeq d \iff R \vdash_V \tau_0[X_1/c_1,\ldots,X_n/c_n] \to d \quad (3.7)$$

за всички $c_1, \ldots, c_n, d \in \mathbb{N}$.

Аналогично определяме и другата операционна семантика на R:

Определение 3.13. Операционна семантика по име на програмата R е функцията $O_N(R)$: $\mathbb{N}^n \longrightarrow \mathbb{N}$, която се дефинира с еквивалентността:

$$O_N(R)(c_1,\ldots,c_n) \simeq d \iff R \vdash_N \tau_0[X_1/c_1,\ldots,X_n/c_n] \to d$$

за всички $c_1, \ldots, c_n, d \in \mathbb{N}$.

Да обърнем специално внимание, че в горните определения c_1, \ldots, c_n и d имат различен смисъл. Вляво те означават числа, а вдясно — константи, които участват в синтактично заместване. Разбира се, от контекста е съвсем ясно в какъв смисъл се употребяват те.

Операционните семантики, които въведохме, са от тип <u>"big step semantics".</u> Характерното при тях е, че детайлите по извода не са уточнени и системата за извод е недетерминирана. Следователно че теоретично е възможно да бъдат изведени опростяванията

$$R \vdash_V \tau_0[X_1/c_1, \ldots, X_n/c_n] \to d$$
 и $R \vdash_V \tau_0[X_1/c_1, \ldots, X_n/c_n] \to e$,

като $d \neq e$, което означава, че $O_V(R)$ няма да е еднозначна функция. В следващия раздел ще покажем, че за всяка програма R

$$O_V(R) \subseteq D_V(R)$$
 и $O_N(R) \subseteq D_N(R)$,

откъдето, в частност, ще следва, че $O_V(R)$ и $O_N(R)$ са еднозначни функции, тъй като $D_V(R)$ и $D_N(R)$ очевидно са такива.

3.3.3 Доказателство на включването $O_V(R) \subseteq O_N(R)$

Тук ще покажем включването $O_V(R) \subseteq O_N(R)$ или преразказано: <u>всичко, което се извежда по стойност, се извежда и по име.</u> Но първо да отбележим един очевиден факт, който формулираме като лема, на която ще се позоваваме многократно. Лемата ще изкажем за изводимостта по име.

Лема 3.1. Нека $R \vdash_N \mu \to c$ с дължина на извода l. Тогава:

- 0) Ако μ е константа, то $\mu = c$.
- 1) Ако μ е от вида μ_1 ор μ_2 , то съществуват константи c_1 и c_2 , такива че $npe \partial u \ mosa$ от R са били изведени по име опростяванията $\mu_1 \to c_1$ и $\mu_2 \to c_2$, и освен това c_1 ор $c_2 = c$. Тук под " $npe \partial u \ mosa$ " имаме предвид, че ecsko от тези две опростявания е имало дължина на извода, по-малка от l. Същата уговорка ще важи и за следващите подточки.
- 2) Ако μ е от вида **if** μ_1 **then** μ_2 **else** μ_3 , то е вярно едно от двете: преди това от R са били изведени по име опростяванията $\mu_1 \to c_1$ за някое $c_1 > 0$ и $\mu_2 \to c$ или преди това от R са били изведени по име $\mu_1 \to 0$ и $\mu_3 \to c$.
- 3) Ако μ е от вида $F_i(\mu_1,...,\mu_{m_i})$, то преди това от R е било изведено по име опростяването $\tau_i[X_1/\mu_1,...,X_{m_i}/\mu_{m_i}] \to c$.

Разбира се, такова твърдение е в сила и за изводимостта по стойност. Единствената разлика е в последния пункт 3), който изглежда така:

3) Ако μ е от вида $F_i(\mu_1,...,\mu_{m_i})$, то за някои константи $c_1,...,c_{m_i}$ преди това от R са били изведени по стойност опростяванията $\mu_1 \to c_1, \ldots, \mu_{m_i} \to c_{m_i}$ и $\tau_i[X_1/\mu_1,\ldots,X_{m_i}/\mu_{m_i}] \to c$.

Доказателство. Доказателството е съвсем очевидно от вида на правилата, но за да стане съвсем ясно, ще разгледаме първите два случая.

- 1) Ако μ е константа, то единственият начин да имаме $R \vdash_N \mu \to c$ е като сме използвали правилото (0) от Дефиниция 3.9, защото опростяванията $\mu \to c$, които стоят "под чертата" на останалите правила (1), $(2_{\mathbf{t}})$, $(2_{\mathbf{f}})$ и (3_N) се отнасят за термове μ , които очевидно не са константи. Но правилото (0) казва, че са изводими само опростявания от вида $c \to c$, и следователно $\mu = c$.
- 2) Ако μ е от вида μ_1 ор μ_2 , отново единственият начин от R да бъде изведено по име опростяването μ_1 ор $\mu_2 \to c$ е като се приложи правилото (1) от Дефиниция 3.9, защото само при него под чертата стои опростяване от този вид. Но правило (1) казва, че опростяването μ_1 ор $\mu_2 \to c$ може да бъде изведено само ако преди това са били изведени $\mu_1 \to c_1$ и $\mu_2 \to c_2$ за някои c_1 и c_2 , такива че c_1 ор $c_2 = c$.

Сега се насочваме към доказателството на едно спомагателно твърдение, известно като Лема за симулацията. Чрез тази лема в края на този раздел лесно ще изведем важното включване $O_V(R) \subseteq O_N(R)$.

Лема 3.2. (**Лема за симулацията**) Нека $\rho(Y_1, \ldots, Y_n, F_1, \ldots, F_k)$ е произволен терм. Нека още μ_1, \ldots, μ_n са функционални термове, c_1, \ldots, c_n са константи и за тях е дадено, че

$$R \vdash_N \mu_1 \to c_1, \ldots, R \vdash_N \mu_n \to c_n.$$

Тогава

$$R \vdash_N \rho[Y_1/c_1, \dots, Y_n/c_n] \to d \implies R \vdash_N \rho[Y_1/\mu_1, \dots, Y_n/\mu_n] \to d.$$
 (3.8) (6e3 доказателство)

Доказателство. Нека $R \vdash_N \rho[Y_1/c_1, \dots, Y_n/c_n] \to d$. Ще разсъждаваме с пълна индукция по дължината l на извода на това опростяване, за да докажем, че $R \vdash_N \rho[Y_1/\mu_1, \dots, Y_n/\mu_n] \to d$.

Фиксираме произволно $l \geq 1$ и приемаме, че за всички изводи по име на опростявания от вида $\rho_0[Y_1/c_1,\ldots,Y_n/c_n] \to d$ с дължина, по-малка от l, твърдението е вярно. Ще го докажем и за l. Разглеждаме различните възможности за терма ρ :

1) ρ е константата c. Тогава

$$ho[Y_1/c_1, \dots, Y_n/c_n] = c$$
 и $ho[Y_1/\mu_1, \dots, Y_n/\mu_n] = c$

и тогава импликацията (3.8) е очевидна.

2) ρ е обектовата променлива Y_i . Тогава $\rho[Y_1/c_1,\ldots,Y_n/c_n] \stackrel{\text{деф}}{=} c_i$. Ние имаме, че

$$R \vdash_N \underbrace{\rho[Y_1/c_1,\ldots,Y_n/c_n]}_{c_i} \to d,$$

или все едно, $R \vdash_N c_i \to d$, и значи $c_i = d$. Но по условие $R \vdash_N \mu_i \to c_i$, откъдето веднага получаваме $R \vdash_N \mu_i \to d$. Но това е точно условието $R \vdash_N \underbrace{\rho[Y_1/\mu_1, \dots, Y_n/\mu_n]}_{\mu_i} \to d$, което искаме да покажем в този случай,

защото
$$\rho[Y_1/\mu_1, \dots, Y_n/\mu_n] = \mu_i$$
.

3) ρ е от вида ρ_1 ор ρ_2 . Тогава

$$\rho[Y_1/c_1,\ldots,Y_n/c_n] \stackrel{\text{dep}}{=} \rho_1[Y_1/c_1,\ldots,Y_n/c_n] \text{ op } \rho_2[Y_1/c_1,\ldots,Y_n/c_n].$$

В този случай условието $R \vdash_N \rho[Y_1/c_1,\ldots,Y_n/c_n] \to d$ се преписватака:

$$R \vdash_N \underbrace{\rho_1[Y_1/c_1,\ldots,Y_n/c_n]}_{\nu_1} op \underbrace{\rho_2[Y_1/c_1,\ldots,Y_n/c_n]}_{\nu_2} \rightarrow d.$$

Съгласно Лема 3.1, ще съществуват константи d_1 и d_2 , такива че d_1 ор $d_2=d$ и

$$R \vdash_N \rho_1[Y_1/c_1,\ldots,Y_n/c_n] \rightarrow d_1 \quad \text{if} \quad R \vdash_N \rho_2[Y_1/c_1,\ldots,Y_n/c_n] \rightarrow d_2,$$

като тези изводи са с дължина, по-малка от l. Тогава съгласно индуктивната хипотеза:

$$R \vdash_N \rho_1[Y_1/\mu_1, \dots, Y_n/\mu_n] \rightarrow d_1 \quad \text{if} \quad R \vdash_N \rho_2[Y_1/\mu_1, \dots, Y_n/\mu_n] \rightarrow d_2.$$

$$R \vdash_N \rho_1[Y_1/\mu_1, \dots, Y_n/\mu_n] \text{ op } \rho_2[Y_1/\mu_1, \dots, Y_n/\mu_n] \rightarrow d,$$

което в случая е точно $R \vdash_N \rho[Y_1/\mu_1,\ldots,Y_n/\mu_n] \ o \ d.$

- 4) ρ е от вида **if** ρ_1 **then** ρ_2 **else** ρ_3 . Този случай се разглежда аналогично на предишния.
- 5) ρ е от вида $F_i(\rho_1, \dots, \rho_{m_i})$. В този случай от дефиницията за синтактично заместваме имаме:

$$F_i(\rho_1,\ldots,\rho_{m_i})[Y_1/c_1,\ldots,Y_n/c_n] = F_i(\rho_1[Y_1/c_1,\ldots,Y_n/c_n],\ldots,\rho_{m_i}[Y_1/c_1,\ldots,Y_n/c_n]).$$

Нека за по-кратко терма вдясно съкратим до $F_i(\rho_1[\bar{Y}/\bar{c}],\dots,\rho_{m_i}[\bar{Y}/\bar{c}])$. Тук имаме дадено, че

$$R \vdash_N F_i(\underbrace{\rho_1[\bar{Y}/\bar{c}]}_{\nu_1}, \dots, \underbrace{\rho_{m_i}[\bar{Y}/\bar{c}]}_{\nu_{m_i}}) \rightarrow d.$$

Ако си представим за момент аргументите на F_i като някакви термове $\nu_1, \ldots, \nu_{m_i},$ то ще имаме

$$R \vdash_N F_i(\nu_1, \dots, \nu_{m_i}) \rightarrow d.$$

Прилагайки отново $\mathcal{Л}ema$ 3.1, можем да твърдим, че това е станало, защото $npe\partial u$ mosa (т.е. за no-manko от l стъпки) е било изведено опростяването

$$R \vdash_N \tau_i[X_1/\nu_1, \dots, X_{m_i}/\nu_{m_i}] \to d.$$

Но

$$\tau_{i}[X_{1}/\nu_{1}, \dots, X_{m_{i}}/\nu_{m_{i}}] = \tau_{i}[X_{1}/\rho_{1}[\bar{Y}/\bar{c}], \dots, X_{m_{i}}/\rho_{m_{i}}[\bar{Y}/\bar{c}]]$$
$$= \tau_{i}[X_{1}/\rho_{1}, \dots, X_{m_{i}}/\rho_{m_{i}}][\bar{Y}/\bar{c}].$$

Значи всъщност имаме, че

$$R \vdash_N \tau_i[X_1/\rho_1,\ldots,X_{m_i}/\rho_{m_i}][\bar{Y}/\bar{c}] \rightarrow d$$

и този извод е направен за по-малко от l стъпки. Тогава от индуктивната хипотеза получаваме

$$R \vdash_N \tau_i[X_1/\rho_1,\ldots,X_{m_i}/\rho_{m_i}][\bar{Y}/\bar{\mu}] \rightarrow d,$$

или все едно.

$$R \vdash_N \tau_i[X_1/\underbrace{\rho_1[\bar{Y}/\bar{\mu}]}_{\mu_1^*}, \dots, X_{m_i}/\underbrace{\rho_{m_i}[\bar{Y}/\bar{\mu}]}_{\mu_{m_i}^*}] \rightarrow d.$$

Щом имаме горната изводимост, значи можем да приложим правилото (3_N) от от Дефиниция 3.9. Така получаваме

$$R \vdash_N F_i(\underbrace{\rho_1[\bar{Y}/\bar{\mu}]}_{\mu_1^*}, \dots, \underbrace{\rho_{m_i}[\bar{Y}/\bar{\mu}]}_{\mu_{m_i}^*}) \rightarrow d,$$

или все едно,

$$R \vdash_N F_i(\rho_1, \dots, \rho_{m_i})[\bar{Y}/\bar{\mu}] \rightarrow d.$$

Но $F_i(\rho_1,\ldots,\rho_{m_i})$ беше нашето ρ , следователно

$$R \vdash_N \rho[\bar{Y}/\bar{\mu}] \rightarrow d.$$

Вече сме в състояние да докажем обещаното по-горе важно твърдение:

Теорема 3.1. За всяка рекурсивна програма R

$$O_V(R) \subseteq O_N(R)$$

 $O_V(R)\subseteq O_N(R).$ (без доказателство) Доказателство. Вземаме произволна програма R. Трябва да покажем, че за произволни c_1, \ldots, c_n, c е вярна импликацията:

$$R \vdash_V \tau_0[X_1/c_1, \ldots, X_n/c_n] \to c \implies R \vdash_N \tau_0[X_1/c_1, \ldots, X_n/c_n] \to c.$$

Ясно е, че ще ни се наложи да покажем по-общата импликация

$$R \vdash_V \mu \to c \implies R \vdash_N \mu \to c$$
 (3.9)

за всеки функционален терм μ .

Отново разсъждаваме с пълна индукция по дължината l на извода по стойност на опростяването $\mu \rightarrow c$.

Приемаме, че за всички изводи с дължина, по-малка от l, е в сила условието (3.9) (и това е вярно за произволни опростявания $\mu \to c$).

Нека сега $R \vdash_V \mu \rightarrow c$ с дължина на извода l. Разглеждаме различните възможности за функционалния терм μ .

- 1) μ е константата d. Тогава $R \vdash_V \mu \to c$ ще означава $R \vdash_V d \to c$ и следователно d=c. Тогава очевидно $R \vdash_N d \to c$.
- 2) μ е обектова променлива. Този случай е невъзможен, защото μ е $\phi y n \kappa u u o n a n e n$ терм.
- 3) μ е от вида μ_1 ор μ_2 . Тогава даденото ни $R \vdash_V \mu \to c$ означава

$$R \vdash_V \mu_1 \ op \ \mu_2 \rightarrow c.$$

Оттук по $\ensuremath{\mathit{Лема}}$ 3.1 получаваме, че с дължина по-малка от l са били изведени

$$R \vdash_V \mu_1 \rightarrow c_1$$
 и $R \vdash_V \mu_2 \rightarrow c_2$

за някои c_1 и c_2 , такива че c_1 op $c_2 = c$. Сега по индукционната хипотеза ще имаме

$$R \vdash_N \mu_1 \rightarrow c_1 \quad \text{if} \quad R \vdash_N \mu_2 \rightarrow c_2,$$

което заедно с факта, че c_1 *op* $c_2=c$ по правилото за извод (1) ни дава $R \vdash_N \mu \to c$.

- 4) μ е от вида **if** μ_1 **then** μ_2 **else** μ_3 . Разсъждаваме начин, много подобен на горния.
- 5) μ е от вида $F_i(\mu_1,\ldots,\mu_{m_i})$. Това е случаят, в който ще се възползваме от лемата за симулацията. Имаме, че

$$R \vdash_V F_i(\mu_1, \ldots, \mu_{m_i}) \rightarrow c$$

за l стъпки. Това означава, че преди това за по-малко от l стъпки трябва да сме извели опростяванията от условията над чертата на правило (3_V)

$$R \vdash_V \mu_1 \to c_1, \ldots, R \vdash_V \mu_{m_i} \to c_{m_i} \quad \text{if} \quad R \vdash_V \tau_i[X_1/c_1, \ldots, X_{m_i}/c_{m_i}] \to c.$$

Прилагаме индуктивната хипотеза и получаваме

$$R \vdash_N \mu_1 \to c_1, \ldots, R \vdash_N \mu_{m_i} \to c_{m_i} \quad \text{if} \quad R \vdash_N \tau_i[X_1/c_1, \ldots, X_{m_i}/c_{m_i}] \to c.$$

Сега вече можем да приложим Лемата за симулацията. Така ще получим

$$R \vdash_N \tau_i[X_1/\mu_1,\ldots,X_{m_i}/\mu_{m_i}] \to c.$$

Прилагайки правилото за извод (3_N) , получаваме окончателно

$$R \vdash_N F_i(\mu_1, \dots, \mu_{m_i}) \to c$$
, T.e. $R \vdash_N \mu \to c$.