CIRCUITOS DIGITAIS

SISTEMAS NUMÉRICOS

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

Representação de Números Decimais

- Sistema decimal (base 10) → duas regras básicas:
 - Usamos 10 símbolos: 0,1,2,3,4,5,6,7,8 e 9.
 - O valor de cada símbolo depende de sua posição.
 - Exemplo:

$$9845 = 9 \times 10^3 + 8 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

Representação de Números Binários

- □ Sistema binário (base 2) → usamos as mesmas duas regras:
 - 2 símbolos \rightarrow 0 e 1 \rightarrow bits (binary digits)
 - O valor de cada símbolo depende de sua posição.
 - Exemplo:

$$26_{10} = 11010_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

Pesos dos Números Binários

Pesos aumentar da direita para a esquerda

- (LSB *least significante bit*) → bit menos significativo, com peso 2°.
- (MSB most significant bit) → bit mais significativo, com peso 2ⁿ⁻¹, sendo n o tamanho da palavra de bits. (No exemplo exemplo n = 7)

Pesos dos Números Binários

□ CUIDADO → ENDIANNESS

■ Exemplo: 110

Conversão Decimal – Binário

Método da Divisão Sucessiva

- 1. Divide-se o número por 2
- 2. O resto é o bit menos significativo (LSB)
- 3. O quociente (inteiro) é dividido novamente por 2
- 4. O resto é o próximo bit menos significativo
- 5. Repete-se o processo até que o quociente seja 0

Exemplo → Converter 12 para binário

 $\frac{12}{2} = 6$ $\frac{6}{2} = 3$ $\frac{3}{2} = 1$ $\frac{1}{2} = 0$

Resto MSB

Pare quando a parte inteira do quociente for 0.

Representação de Números Binários

 \square Com n bits podemos representar até 2^n números

■
$$n = 5 \rightarrow 2^5 \rightarrow 32 \text{ números (0 a 31)}$$

■
$$n = 6 \rightarrow 2^6 \rightarrow 64 \text{ números (0 a 63)}$$

Parte fracionária

- Pesos da parte fracionária
 - diminuem da esquerda para a direita
 - potência negativa
 - → Exemplo Base 10:

$$1984,56 = 1 \times 10^3 + 9 \times 10^2 + 8 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1} + 6 \times 10^{-2}$$

→ Exemplo Base 2:

$$100,11_2 = 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} =$$

$$= 4 + 0 + 0 + 1/2 + 1/4 =$$

$$= 4 + 0 + 0 + 0,5 + 0,25$$

$$= 4,75_{10}$$

Outras bases

- Podemos usar qualquer base (radix) para nossa representação númerica
 - Por exemplo, podemos usar base 3, 7, 42, etc..
 - Os antigos babilônios utilizavam base 60 e, por isso, temos 60 minutos em uma hora e 360 graus em um círculo.
- □ De todas as bases, além das bases 2 e 10, duas delas são mais importantes: as bases 8 (octal) e 16 (hexadecimal).

Representação de Números base K

■ Base k

- Usamos k símbolos.
- O valor de cada símbolo depende de sua posição.
- Exemplo:

$$D_{3}D_{2}D_{1}D_{0}, D_{-1}D_{-2}D_{-3} = D_{3} \times k^{3} + D_{2} \times k^{2} + D_{1} \times k^{1} + D_{0} \times k^{0} + D_{-1} \times k^{-1} + D_{-2} \times k^{-2} + D_{-3} \times k^{-3}$$

□ Sistema Octal → Base 8

■ Usamos 8 símbolos → 0, 1, 2, 3, 4, 5, 6, 7

Exemplo:

$$171_8 = 1 \times 8^2 + 7 \times 8^1 + 1 \times 8^0$$

$$= 1 \times 64 + 7 \times 8 + 1 \times 1$$

$$= 64 + 56 + 1$$

$$= 121_{10}$$

- □ Fácil conversão Octal ←→ Binário
 - dígito octal → número binário com 3 bits

Bi	nár	io	Digito Octal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Para converter binário para octal agrupa-se os bits de 3 em 3 da direita para a esquerda

■ Exemplos Binário → Octal

Bi	nár	io	Digito Octal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Parte Fracionária

- Binário → Octal
 - Se houver parte fracionária, agrupa-se de 3 em 3 bits a partir da vírgula para a esquerda
 - Exemplo → 10100010,10011

□ Fácil conversão Octal ←→ Binário

Um dígito octal corresponde a um número binário com

3 bits

■ Exemplo Octal → Binário

Binário			Dígito Octal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

□ Sistema Hexadecimal → Base 16

■ Usamos 16 símbolos → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Para converter para decimal:

HEX																
DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Exemplo:

$$FACA_{16} = 15 \times 16^3 + 10 \times 16^2 + 12 \times 16^1 + 10 \times 16^0 = 64202_{10}$$

□ Fácil conversão Hexadecimal ← → Binário

Um dígito hexadecimal corresponde a um número

binário com 4 bits

	Bina	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Para converter binário para hexadecimal agrupa-se os bits de 4 em 4 da direita para a esquerda

■ Exemplos Binário → Hexadec.

	Bina	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F

Parte Fracionária

- □ Binário → Hexadecimal
 - Se houver parte fracionária, agrupa-se de 4 em 4 bits a partir da vírgula para a esquerda
 - Exemplo → 10100010,10011

□ Fácil conversão Hexadecimal ← → Binário

Um dígito hexadecimal corresponde a um número

binário com 4 bits

■ Exemplo Hexadec. → Binário

	Bina	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F

Adição Binária

 A adição de números binários funciona da mesma maneira que para números decimais

Adição Binária

A adição de números binários funciona da mesma maneira que para números decimais

	Resultado	Carry (Vai um)
0 + 0	0	0
0 + 1	1	0
1 + 0	1	0
1 + 1	0	1

Subtração Binária

A subtração de números binários funciona da mesma maneira que para números decimais

Subtração Binária

A subtração de números binários funciona da mesma maneira que para números decimais

borrow (pediu emprestado)

	Resultado	Borrow (Pediu emprestado)
0 - 0	0	0
0 - 1	1	1
1 - 0	1	0
1 - 1	0	0

Multiplicação Binária

 A multiplicação de números binários funciona da mesma maneira que para números decimais

Multiplicação Binária

 A multiplicação de números binários funciona da mesma maneira que para números decimais

a multiplicação de um número de **n** bits por um número de **m** bits requer **n** + **m** bits

				1	1	0	1
		>	(1	0	0	1
				1	1	0	1
			0	0	0	0	
		0	0	0	0		
	1	1	0	1			
0	1	1	1	0	1	0	1

Multiplicação Binária

 A multiplicação de números binários funciona da mesma maneira que para números decimais

a multiplicação de um número de **n** bits por um número de **m** bits requer **n** + **m** bits

		1	1	0	1
>	<	1	0	0	1
		1	1	0	1
	0	0	0	0	
	0	1	1	0	1
0	0	0	0		
0	0	1	1	0	1
1	0	1			
1	1	0	1	0	1

Divisão Binária

A divisão em binário é baseada no algoritmo de deslocar e subtrair.

Representação de binários negativos

Existem várias formas de representar números negativos. Algumas delas são:

■ Sinal-Magnitude

□ Complemento de 1

Complemento de 2

Sinal-Magnitude

- Definimos um tamanho de palavra
- Usamos o MSB para o sinal:
 - 0 representa o sinal positivo +
 - 1 representa o sinal negativo –

- Exemplos: (tamanho de palavra = 8)
- $01010101_{10} = +85_{10}$
- $011111111_2 = +127_{10}$

•
$$11010101_2 = -85_{10}$$

•
$$111111111_2 = -127_{10}$$

Sinal-Magnitude

Representa uma quantidade igual de números positivos e negativos.

- \square Com n bits podemos representar de -(2^{n-1} -1) a (2^{n-1} -1)
 - Exemplo: 8 bits → -127 a +127

- □ Temos dois valores para 0 (-0 e +0)
 - Exemplo: 8 bits → 10000000 e 00000000

- Números positivos → igual sinal-magnitude
- Números negativos → complemento do número positivo correspondente
 - Complemento?

$$\bigcirc 0 \rightarrow 1 e 1 \rightarrow 0$$

■ Exemplo:

$$-+25_{10} = 00011001_2$$

$$\square$$
-25₁₀ = 11100110₂

 Representa uma quantidade igual de números positivos e negativos.

- \square Com n bits podemos representar de -(2ⁿ⁻¹ -1) a (2ⁿ⁻¹-1)
 - Exemplo: 8 bits → -127 a +127

- □ Temos dois valores para 0 (-0 e +0)
 - Exemplo: 8 bits → 11111111 e 00000000

- Números positivos → igual sinal-magnitude e Complemento de 1
- Números negativos → (número negativo em complemento de 1) +1
 - Exemplo:

>
$$+25_{10} = 00011001_2$$

 11100110_2 (complemento de 1)
 $+$ 1
> $+25_{10} = 11100111$ (complemento de 2)

- □ Com n bits podemos representar de -2ⁿ⁻¹ a (2ⁿ⁻¹-1)
 - Exemplo: 8 bits → -128 a +127

- Temos apenas um valor para 0
 - Exemplo: 8 bits → 00000000

□ É o sistema mais usado: adição e a subtração são fáceis

Como se troca de sinal em Compl. de 2?

- 1) Complementar o número $(0 \rightarrow 1 e 1 \leftarrow 0)$
- **2)** Somar 1

Exemplo (palavras de 8 bits):

Adição em Complemento de 2

- Soma Normalmente
- Descarta o carry

$$00000111$$
 7 $+ 00000100$ $+ 4$ 00001011 11

Subtração em Complemento de 2

- Subtração é igual a adição
 - Exemplo: fazer 10 5 é o mesmo que 10 + (-5)

- Soma Normalmente, independente do sinal
- Descarta o carry

$$\begin{array}{c}
00001111 & 15 \\
+ 11111010 & +-6
\end{array}$$
Carry descartado \longrightarrow 1 00001001 9

- □ Palavras de 8 bits
- **□** 31 10
 - 31 → 00011111
 - 10 → 00001010 11110101 (complemento)

■ -10 → 11110110

Overflow

O *overflow* pode ser identificado através da inconsistência do sinal do resultado

SINAL DIFERENTE → OVERFLOW!!

Overflow

O *overflow* pode ser identificado através da inconsistência do sinal do resultado

SINAL DIFERENTE → OVERFLOW!!

Overflow

O *overflow* pode ser identificado através da inconsistência do sinal do resultado

SINAL DIFERENTE → OVERFLOW!!

Ponto Flutuante

■ Representar números inteiros muito grandes → muitos bits

- □ Sistema de numeração de ponto flutuante
 - representado em notação científica normalizada
 - capaz de representar números:
 - muito grandes e muito pequenos sem o aumento do número de bits
 - com parte inteira e fracionária

Representação Binária Ponto Flutuante

Um número de ponto flutuante é representado sempre com o formato de notação científica normalizada

- Exemplos:
 - **1**,28726752672 x 2¹⁰
 - **-**1,7617168781 x 2⁴⁵

Representação Binária Ponto Flutuante

- □ Padrão IEEE 754, de 1985
 - Precisão simples 32 bits
 - Precisão dupla 64 bits
- A base 2 é implícita, e apenas o sinal, a mantissa e o expoente são armazenados
- Número de bits

Precisão	Sinal	Expoente	Mantissa
Simples	1	8	23
Dupla	1	11	52

Representação Binária Ponto Flutuante

- □ Sinal (S)
 - 1 → negativo
 - 0 → positivo
- □ Mantissa → sempre começará por 1 + fração (F)
- Expoente (e)
 - somado com 127 na precisão simples
 - Somado com 1023 na precisão dupla

Precisão simples

■ Fórmula

$$Y = (-1)^{S} (1+F) * 2^{E-127}$$

- Onde
 - \square S \rightarrow sinal
 - □ F → fração
 - E = e +127, onde $-126 \le e \le 127$
- Bits para a precisão simples

 $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3} \ 2^{-4} \ 2^{-5} \ 2^{-6}$

2-22 **2**-23

S	Expoente (E)	Fração (F)
1 bit	8 bits	23 bits

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻² 2⁻²³ 2⁻²² 2⁻²³

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Sinal Expoente (8 bits) Fração (23 bits)

$$S = 1$$
 $E = 127$

$$F = 0.5$$

$$Y = (-1)^{S} (1+F) * 2^{E-127} = (-1)^{1} (1+0.5) * 2^{127-127}$$

$$Y = -1.5$$

$$S = 0$$
 $E = 129$

$$F = 0.25$$

$$Y = (-1)^{S} (1+F) * 2^{E-127} = (-1)^{0} (1+0.25) * 2^{129-127}$$

$$Y = 1.25 \times 2^2 = 5$$

$$Y = 0.75 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} = 3 \times 2^{-2} = (11)_{2} \times 2^{-2} = (1.1)_{2} \times 2^{-1}$$

$$Y = (-1)^{S} (1+F) * 2^{e} \qquad E = e+127$$

$$e = -1$$

$$S = 0 \qquad E = 126 \qquad F = 0.5$$

Sinal Expoente (8 bits)

Fração (23 bits)

Precisão Dupla

■ Fórmula

$$Y = (-1)^{S} (1+F) * 2^{E-1023}$$

- Onde
 - \square S \rightarrow sinal
 - □ F → fração
 - □ E = e + 1023, onde $-1022 \le e \le 1023$
- □ Bits para a precisão dupla

 $2^{10} 2^9 2^8$ • • • $2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6}$ • • •

S	Expoente (E)	Fração (F)
1 bit	11 bits	52 bits

2-51 **2**-52