EX a) $\ln(\theta) = \iint_{\mathbb{R}^{n}} f(X_{i}, \theta) = (2\pi)^{-n} \iint_{\mathbb{R}^{n}} X_{i-\frac{1}{2}} e^{-\frac{1}{2n}} \sum_{i=1}^{n} e^{-\frac{1}{2n}} \sum_{i=1$ $\log L_{n}(\theta) = -\frac{1}{2} \left[\log (2\pi) - \frac{3}{2} \sum_{i} \log X_{i} - \frac{1}{20} \sum_{i} X_{i} + \frac{n}{0} - \frac{1}{2} \sum_{i} X_{i}^{2} \right]$ $\frac{d}{d\theta} \log \ln(\theta) = \frac{1}{\theta^3} \sum_{i=1}^{\infty} \chi_i - \frac{\eta_i}{\theta^2} \sqrt{\frac{1}{2}} = 0$ $\frac{d^2}{d\theta} \log \ln(\theta) = -\frac{3}{\theta^4} \sum_{i} + \frac{2n^i}{\theta^3} = -\frac{3n \times n}{\sqrt{4}} + \frac{2n}{\sqrt{3}}$ $= -\frac{\lambda^{2}}{\sqrt{2}} < 0 \quad \wedge$ a) On = Xn is ME for O. 6) $E[\theta_n] = E[X_n] = 0 \Rightarrow \hat{\theta}_n$ unbiased $Var(\hat{Q}_n) = \frac{1}{n} Var(X_i) = \frac{6^3}{n}$ $I_{n}(\Theta) = Var\left(\hat{l}_{n}(X_{n}; \Theta)\right) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{i}\sum_{j}(A_{i}(X_{n}; \Theta)) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{j}\sum_{i}(A_{i}(X_{n}; \Theta)) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{i}\sum_{j}(A_{i}(X_{n}; \Theta)) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{i}\sum_{j}(A_{i}(X_{n}; \Theta)) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{i}\sum_{j}(A_{i}(X_{n}; \Theta)) = Var\left(\frac{1}{4}\sum_{i}(A_{i}-A_{i}) = \frac{1}{4}\sum_{i}\sum_{j}(A_{i}-A_{i}) = \frac{1}{4}\sum_{j}(A_{i}-A_{i}) = \frac{1}{4}\sum_{j}(A$

Cranér - Rao: Every unbiased estimator T of θ satisfies $Var(T) \ge \frac{1}{2n(\theta)} = \frac{\theta^2}{n}$ \Rightarrow x_n is MULE for θ .

Ex2:
a)
$$L_{n}(\theta) = 3^{n}\theta^{2n} \cdot \prod_{i=1}^{n} \chi_{i}^{-1} \cdot \prod_{i=1}^{n} I_{(\theta),\infty}(x_{i})$$

 $\chi_{i} > \theta = 3^{n}\theta^{2n} \cdot \prod_{i=1}^{n} \chi_{i}^{-1} \cdot \prod_{i=1}^{n} I_{(\theta),\infty}(x_{i})$
 $\theta \leq \chi_{i}$ for all i $u(\chi_{n}) \theta^{2n} I_{(0)} \cdot \chi_{(n)}(\theta)$
 $\theta \leq \chi_{i}$ for all i $u(\chi_{n}) \theta^{2n} I_{(0)} \cdot \chi_{(n)}(\theta)$
 $\theta \leq \chi_{i}$ for all i $u(\chi_{n}) \chi_{(n)}(\theta)$
 $\theta \leq \chi_{i}$ for all i $u(\chi_{n}) \chi_{(n)}(\theta)$
 $\theta \leq \chi_{(n)$

So
$$X_{in}$$
 is a nufficient statistic X_{in} is not a function of $X_{(i)}$.

Rao- There is an estimator that makes \widehat{O}_{HOM} made inadmissible.

Ex3:

a) X_{in} , X_{in} in \widehat{O}_{Hom} framma (X_{in}) \widehat{O}_{Hom} \widehat{O}_{Hom}

$$\mathbb{E}[X_i] = \frac{2+\theta}{2} = 1+\frac{\theta}{2}, \quad X_n \xrightarrow{P} \mathbb{E}[X_i] \quad (UN)$$

$$\Rightarrow \quad |Q| X_n \xrightarrow{P} |Q| \mathbb{E}[X_i] = |Q| (1+\frac{\theta}{2}) = g(\theta)$$

b) CLT:
$$\sqrt{n} \left(\frac{1}{2} - \left(1 + \frac{9}{2} \right) \right) \xrightarrow{d} N(0, \frac{1}{2} N(0)) \sqrt{\frac{1}{2}}$$

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{1}$$

$$= N((g(1+\frac{9}{2}), \frac{g'(1+\frac{9}{2})^2}{(2n[1+\frac{9}{2})^2})$$