Escrete

1) Trovare la juntione de autoporrelasione dei che segnali

- 2) Calcolare energia e potenza del segnale ×(+)= 2 sinc²(Bt) sin(20Bt)
- 3) Calcolare la densità spettrale di potenza dei segnalie x(t) = sgn(t) $x(t) = \sum_{n=-\infty}^{\infty} A \operatorname{vect}\left(\frac{t-nT_0}{T}\right)$
- 4) Calcolare la clensité spettvale chi energia dei seguali $x(t) = e^{-t/\tau} u(t)$ $x(t) = -sgn(t) rect(t/\tau)$
- 5) Un segnale x(t) la cui densità spettrale cle potensu si può approssimave come costante pari ad $A = 10^8 \text{ V}^2\text{Hz}$ su un intervallo molto ampio cle prequenze è posto all'ingresso di un sistema lineave stazionevio con visposta impulsiva $h(t) = \frac{1}{T} \operatorname{rect}\left(\frac{t-7/2}{T}\right)$ con $T = 1\mu s$. Calcolare il valore efficace dell'uscita
- 6) Un segnula X(t) con potenza $P_X = 10^{-3}v^2$ ha funzione di autocorrelazione $R_X(z) = K e^{-|z|/T_0}$ con $T_0 = 1\mu S$. Il segnule è filtrato con un filtro passa-basso ideale con banda B = 2KHz. (alcolare la potenza del segnule in vecita
- 7) Un segnale x(t) con densità spettrale di potenza $Sx(t) = Kf^2 \operatorname{rect}(f/(2fm))]$ è posto all'ingresso di un integratore $[y(t) = \frac{1}{T} \int_{-\infty}^{t} x(\tau) d\tau]$ Calcolare il rapporto yet /xet. e la junzione $Ry(\tau)$
- 8) Un segnale x(t) con junzione di autocorrelazione Rx(z)=Ae-12/10 viene elaborato da due sistemi lineari stazionari in caseata. Il primo determina l'uscita y(t)=x(t)+ To dx(t)/dt. Il secondo è un filtro passa-basso ideale con banda B*. Calcolare il valore efficace del segnale z(t) in us vita