Web**Assign**CH 5.1 (Homework)

Yinglai Wang MA 265 Spring 2013, section 132, Spring 2013 Instructor: Alexandre Eremenko

**Current Score :** 20 / 20 **Due :** Thursday, March 21 2013 11:40 PM EDT

1. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.002.

Find the length of each vector.

(a) 
$$\begin{bmatrix} 0 \\ -4 \\ 0 \end{bmatrix}$$

 $\checkmark$ 

(b) 
$$\begin{bmatrix} -1 \\ -3 \\ -4 \end{bmatrix}$$

1

(c) 
$$\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$$



**2.** 2/2 points | Previous Answers

KolmanLinAlg9 5.1.006.

Find the distance between  $\bf u$  and  $\bf v$ .

(a) 
$$\mathbf{u} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$
,  $\mathbf{v} = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$ 



(b) 
$$\mathbf{u} = \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$$



CH 5.1 3/17/13 12:24 AM

3. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.008.

Determine all values of c so that each given condition is satisfied. (Enter your answers as a commaseparated list.)

$$||\mathbf{u}|| = 1 \text{ for } \mathbf{u} = \begin{bmatrix} \frac{6}{c} \\ \frac{9}{c} \\ -\frac{2}{c} \end{bmatrix}$$

c =

4. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.010.

For each pair of vectors, find the cosine of the angle  $\theta$  between **u** and **v**.

(a) 
$$\mathbf{u} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$
,  $\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ 



(b) 
$$\mathbf{u} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

## **5.** 2/2 points | Previous Answers

KolmanLinAlg9 5.1.017.

Which of the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
,  $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ,  $\mathbf{v}_3 = \begin{bmatrix} -6 \\ -10 \end{bmatrix}$ ,  $\mathbf{v}_4 = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ ,  $\mathbf{v}_5 = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$ , and  $\mathbf{v}_6 = \begin{bmatrix} -15 \\ 9 \end{bmatrix}$ 

are: (Select all that apply.)

- (a) orthogonal
- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_2$

 $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_3$ 

 $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_5$ 

- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_3$ 
  - $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_4$
  - $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_5$
  - $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_6$
- $\blacksquare$  **v**<sub>4</sub> and **v**<sub>6</sub>

 $\mathbf{v}_3$  and  $\mathbf{v}_5$ 



- (b) in the same direction
- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_2$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_3$
- $\mathbf{v}_3$  and  $\mathbf{v}_5$
- $\square$   $\mathbf{v}_1$  and  $\mathbf{v}_3$   $\square$   $\mathbf{v}_2$  and  $\mathbf{v}_4$
- $\mathbf{v}_3$  and  $\mathbf{v}_6$

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_4$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_5$
- $\blacksquare$   $\mathbf{v}_4$  and  $\mathbf{v}_5$

- $\blacksquare$  **v**<sub>1</sub> and **v**<sub>6</sub>
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_6$  $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_4$
- $\blacksquare$  **v**<sub>5</sub> and **v**<sub>6</sub>



- (c) in opposite directions
- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_2$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_3$

 $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_4$ 

- $\mathbf{0}$   $\mathbf{v}_2$  and  $\mathbf{v}_5$
- $\blacksquare$  **v**<sub>3</sub> and **v**<sub>6</sub>  $\blacksquare$  **v**<sub>4</sub> and **v**<sub>5</sub>

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_5$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_6$
- $\blacksquare$  **v**<sub>4</sub> and **v**<sub>6</sub>

- $\square$   $\mathbf{v}_1$  and  $\mathbf{v}_6$
- $\square$   $\mathbf{v}_3$  and  $\mathbf{v}_4$
- $\square$   $\mathbf{v}_5$  and  $\mathbf{v}_6$

## **6.** 2/2 points | Previous Answers

KolmanLinAlg9 5.1.018.

Which of the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 15 \\ -1 \\ 4 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 4 \\ 32 \\ -7 \end{bmatrix}, \ \mathbf{v}_{4} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{8} \end{bmatrix}, \ \mathbf{v}_{5} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -2 \end{bmatrix}, \ \text{and} \ \mathbf{v}_{6} = \begin{bmatrix} -\frac{4}{5} \\ -\frac{32}{5} \\ \frac{7}{5} \end{bmatrix}$$

are: (Select all that apply.)

- (a) orthogonal

- $\mathbf{V}_2$  and  $\mathbf{V}_3$
- ${f v}_1$  and  ${f v}_3$   ${f \Box}$   ${f v}_2$  and  ${f v}_4$

- $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_6$

- $\square$   $\mathbf{v}_1$  and  $\mathbf{v}_5$   $\boxed{\mathbf{v}}_2$  and  $\mathbf{v}_6$
- $\blacksquare$  **v**<sub>4</sub> and **v**<sub>6</sub>

- $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_4$



- (b) in the same direction
- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_2$
- $\square$   $\mathbf{v}_2$  and  $\mathbf{v}_3$
- $\square$   $\mathbf{v}_1$  and  $\mathbf{v}_3$   $\square$   $\mathbf{v}_2$  and  $\mathbf{v}_4$ 
  - $\square$   $\mathbf{v}_2$  and  $\mathbf{v}_5$
- $\mathbf{v}_3$  and  $\mathbf{v}_6$  $\blacksquare$  **v**<sub>4</sub> and **v**<sub>5</sub>

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_4$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_6$
- $\blacksquare$  **v**<sub>4</sub> and **v**<sub>6</sub>

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_6$
- $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_4$
- $\mathbf{v}_5$  and  $\mathbf{v}_6$



- (c) in opposite directions
- $\mathbf{v}_1$  and  $\mathbf{v}_2$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_3$
- $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_5$

- $\square$   $\mathbf{v}_1$  and  $\mathbf{v}_3$   $\square$   $\mathbf{v}_2$  and  $\mathbf{v}_4$
- $\mathbf{V}_3$  and  $\mathbf{V}_6$

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_4$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_5$
- $\blacksquare$   $\mathbf{v}_4$  and  $\mathbf{v}_5$

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_5$
- $\blacksquare$   $\mathbf{v}_2$  and  $\mathbf{v}_6$  $\blacksquare$   $\mathbf{v}_3$  and  $\mathbf{v}_4$
- $\blacksquare$  **v**<sub>4</sub> and **v**<sub>6</sub>  $\blacksquare$  **v**<sub>5</sub> and **v**<sub>6</sub>

- $\blacksquare$   $\mathbf{v}_1$  and  $\mathbf{v}_6$
- 7. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.025.

Find c so that the vector  $\mathbf{v} = \begin{bmatrix} 4 \\ c \\ 3 \end{bmatrix}$  is orthogonal to  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ .

8. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.026.

If possible, find a, b, and c so that  $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$  is orthogonal to both  $\mathbf{w} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$  and  $\mathbf{x} = \begin{bmatrix} 1 \\ -6 \\ 1 \end{bmatrix}$ . (If there is no solution, enter NO SOLUTION.)

$$(a,\,b,\,c)=\bigg(\hspace{1cm}\checkmark\hspace{1cm}\bigg)$$

9. 2/2 points | Previous Answers

KolmanLinAlg9 5.1.027.

If possible, find a and b so that  $\mathbf{v} = \begin{bmatrix} a \\ b \\ 3 \end{bmatrix}$  is orthogonal to both  $\mathbf{w} = \begin{bmatrix} 6 \\ 1 \\ 1 \end{bmatrix}$  and  $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ . (If there is no solution, enter NO SOLUTION.)



10.2/2 points | Previous Answers

KolmanLinAlg9 5.1.028.

Find c so that the vectors  $\begin{bmatrix} c \\ 5 \end{bmatrix}$  and  $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$  are parallel.

c = 5/3