Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 094 532 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 25.04.2001 Bulletin 2001/17

(21) Application number: 00911428.1

(22) Date of filing: 28.03.2000

(51) Int. Cl.⁷: **H01M 4/58**, H01M 10/40, H01M 4/04

(86) International application number: PCT/JP00/01915

(87) International publication number:WO 00/60679 (12.10.2000 Gazette 2000/41)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

(30) Priority: 06.04.1999 JP 9940799 28.09.1999 JP 27474699 28.09.1999 JP 27474799

(71) Applicant: Sony Corporation Tokyo 141-0001 (JP) (72) Inventors:

• LI, Guohua, Sony Corp. Tokyo 141-0001 (JP)

 YAMADA, Atsuo, Sony Corp.
 Tokyo 141-0001 (JP)

 Azuma,Hidetoc/o SONY CORPORATION Shinagawa-ku Tokyo 141-0001 (JP)

(74) Representative:
MÜLLER & HOFFMANN Patentanwälte
Innere Wiener Strasse 17
81667 München (DE)

(54) METHOD FOR MANUFACTURING ACTIVE MATERIAL OF POSITIVE PLATE AND METHOD FOR MANUFACTURING NONAQUEOUS ELECTROLYTE SECONDARY CELL

(57) In a method for producing a positive electrode active material including a mixing step of mixing a plurality of substances to give a precursor and a sintering step of sintering and reacting said precursor obtained by said mixing step, in which these substances prove a starting material for synthesis of a compound represented by the general formula $\text{Li}_x M_y \text{PO}_4$ where x is such that $0 < x \le 2$, y is such that $0.8 \le y \le 1.2$ and M includes at lest one of 3d transition metals,, a reducing agent is added in the above mixing step to said precursor to render it possible to prepare a positive electrode active material capable of reversibly and satisfactorily doping/undoping lithium.

FIG.1

EP 1 094 532 A1

Description

Technical Field

[0001] This invention relates to a method for producing a positive electrode active material that is capable of reversibly doping/undoping lithium, and a method for producing a non-aqueous electrolyte secondary battery employing this positive electrode active material.

Background Art

[0002] Recently, with the marked progress in a variety of electronic equipment, researches in a rechargeable secondary battery, as a battery that can be used conveniently and economically for prolonged time, are underway. Typical of the known secondary batteries are a lead battery, an alkali storage battery and a lithium secondary battery.

[0003] Of these secondary batteries, a lithium secondary battery has advantages as to high output and high energy density. The lithium secondary battery is made up at least of positive and negative electrodes, containing active materials capable of reversibly introducing and removing lithium ions, and a non-aqueous electrolyte.

[0004] Currently, LiCoCO₂ is widely exploited as a positive electrode active material of a lithium ion secondary battery having a potential of 4V with respect to the lithium potential. This LiCoCO₂ is of a high energy density and a high voltage and is an ideal positive electrode material in many respects. However, Co is localized in distribution and represents a rare resources, with the result that, if LiCoCO₂ is used as a positive electrode active material, the cost is raised, whilst stable supply is difficult.

[0005] Therefore, development of a electrode active material based on Ni, Mn or Fe, that is abundant in supply and inexpensive, is desirable. For example, LiNiO₂, based on Ni, has a large theoretical capacity and a high discharging potential. However, in a battery employing LiNiO₂, the LiNiO₂ crystal structure collapses with the charging/discharging cycles, so that the discharging capacity is lowered. On the other hand, LiNiO₂ suffers a drawback or poor thermal stability.

[0006] As an Mn-based electrode active material, there is proposed LiMn₂O₄ having a positive spinel structure and a spatial set Fd3m. This LiMn₂O₄ has a high potential of the order of 4V, with respect to the lithium potential, which is equivalent to that of LiCoCO₂. Moreover, the LiMn₂O₄ is a highly promising material since it is easy to synthesize and has a high battery capacity. However, the battery constructed using LiMn₂O₄ is deteriorated in battery capacity since Mn is dissolved in the electrolytic solution with the charging/discharging cycles so that it is insufficient in stability or cycle characteristics.

[0007] On the other hand, such a material having

LiFeO₂ as a basic structure is being researched as an Fe-based electrode active material. Although LiFeO₂ has a structure similar to that of LiCoCO₂ or LiMn₂O₄, it is unstable in structure and difficult to synthesize.

[0008] On the other hand, a compound having an olivinic structure as a positive electrode active material of the lithium secondary battery, such as, for example, a compound represented by the general formula $\text{Li}_x\text{M}_y\text{PO}_4$, where x is such that $0 < x \le 2$, y is such that $0.8 \le y \le 1.2$ and M contains at least one of 3d transition metals (Fe, Mn, Co and Ni), is retained to be a promising material.

[0009] It is proposed in Japanese Laying-Open Patent H-9-171827 to use e.g., LiFePO₄, amongst the compounds represented by the general formula Li_xM_yPO₄, as a positive electrode of a lithium ion battery. This LiFePO₄ has a theoretical capacity as large as 170 mAh/g and contains one Li atom, that can be electrochemically doped/undoped in an initial state, per Fe atom, and hence is a promising material as a positive electrode active material for the lithium ion battery.

[0010] Conventionally, this LiFePO₄ has been synthesized by sintering at a higher temperature of 800°C, under a reducing environment, using a bivalent iron salt, such as iron phosphate Fe₃(PO₄)₂ or iron acetate Fe(CH₃COO)₂, as an Fe source which proves a starting material for synthesis.

[0011] However, Fe²⁺ is sensitive to a trace amount of oxygen contained in a synthesizing atmosphere and is readily oxidized to Fe³⁺. The result is that trivalent iron compounds tend to co-exist in the produced Fe₃(PO₄)₂ to render it difficult to acquire single-phase LiFePO₄.

It is reported in the above Publication that an [0012] actual battery fabricated using the Fe3(PO4)2 synthesized by the above-described synthetic method has an actual capacity only as low as approximately 60 mAh/g to 70 mAh/g. Although the actual capacity of the order of 120 mAh/g is subsequently reported in the Journal of the Electrochemical Society, 144,1188 (1997), it cannot be said that a sufficient capacity has been achieved, in consideration that the theoretical capacity is 170 mAh/g. If is LiFePO₄ is compared to LiMn₂O₄, the former has a volumetric density of 3.6 g/cm3 and an average voltage of 3.4 V, whereas latter has a volumetric density of 4.2 g/cm³ and an average voltage of 3.9 V, with the capacity being 120 mAh/g. So, LiFePO4 is lower than LiMn₂O₄ by approximately 10% in both the voltage and volumetric density. So, for the same capacity of 120 mAh/g, LiFePO₄ is lower than LiMn₂O₄ by not less than 10% and by not less than 20% in weight energy density and in volumetric energy density, respectively. Thus, in order to realize the energy density of LiFePO4 which is of the level equivalent to or higher than LiMn₂O₄, the capacity of 140 mAh/g or higher is required. However, this high capacity has not been realized with LiFePO₄.

[0014] On the other hand, LiFePO₄ obtained by the conventional synthesizing method is lower in electrical