

Produit scalaire (espace) page

Produit scalaire dans l'espace :

a. Définition:

 $\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$ deux vecteurs non nul de l'espace (\mathcal{E}); A et B et C trois points de (\mathcal{E}) tel que : $\vec{\mathbf{u}} = \overrightarrow{\mathbf{AB}}$ et $\vec{v} = \overrightarrow{AC}$; H est la projection de C sur la droite (AB).

Le produit scalaire de \vec{u} et \vec{v} est noté par \vec{u} . \vec{v} ou \overrightarrow{AB} . \overrightarrow{AC} tel que :

 1^{ER} cas le produit scalaire de $\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$ est le nombre: $2^{\text{ième}}$ cas le produit scalaire de $\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$ est le nombre:

$$\mathbf{u}.\mathbf{v} = \mathbf{AB}.\mathbf{AC} = -\mathbf{AB} \times \mathbf{AH}$$

Si
$$\vec{\mathbf{u}} = \vec{\mathbf{0}}$$
 ou $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ on a $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \mathbf{0}$

Remarques:

- $\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = \vec{\mathbf{u}}^2$ est le carré scalaire de $\vec{\mathbf{u}}$ est toujours positif.
- $\sqrt{\vec{u}.\vec{u}} = AB$ est la norme du vecteur \overrightarrow{AB} on note: $||\vec{u}|| = \sqrt{\vec{u}^2} = \sqrt{\vec{u}.\vec{u}} = AB$.
- $\vec{\mathbf{u}} \perp \vec{\mathbf{v}} \Leftrightarrow \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \mathbf{0}$.
- $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \|\vec{\mathbf{u}}\| \times \|\vec{\mathbf{v}}\| \times \cos(\vec{\vec{\mathbf{u}}, \vec{\mathbf{v}}}) \text{ ou } \overrightarrow{\mathbf{AB}} \cdot \overrightarrow{\mathbf{AC}} = \overrightarrow{\mathbf{AB}} \times \mathbf{AC} \times \cos(\overrightarrow{\overline{\mathbf{AB}}, \overrightarrow{\mathbf{AC}}}).$
- $\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$ sont colinéaire) $\Leftrightarrow |\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}| = ||\vec{\mathbf{u}}|| \times ||\vec{\mathbf{v}}||$

Propriétés:

u et v et w trois vecteurs de l'espace (\mathcal{E}) ; $\alpha \in \mathbb{R}$ on a:

- 1. $\vec{\mathbf{u}}^2 = ||\vec{\mathbf{u}}||^2$
- Symétrie du produit scalaire : u.v = v.u.
- Positivité du produit scalaire : $\vec{u} \cdot \vec{u} = \vec{u}^2 \ge 0$.
- Non dégénère : $\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = 0 \Leftrightarrow \mathbf{u} = 0$

$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}$$

- Linéarité du produit scalaire : $\left\{ (\vec{v} + \vec{w}) . \vec{u} = \vec{v} . \vec{u} + \vec{w} . \vec{u} \right\}$ $|\vec{\mathbf{u}} \cdot (\alpha \vec{\mathbf{v}}) = (\alpha \vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} = \alpha (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})$
- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \text{ et } (\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u} \cdot \vec{v} + \vec{v}^2 \text{ et } (\vec{u} + \vec{v})(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2 .$

Produit scalaire (espace) page

d. Application:

Soit ABCD un tétraèdre de faces régulières (chaque face est un triangle équilatéral de coté a pour longueur

ullet Montrer que deux cotés opposés sont orthogonaux (exemple le coté opposé de $bgar{AB}$ est le coté $bgroup{DC}$.

Correction:

On montre que : $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$.

On a:

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB} \times AC\cos(\overrightarrow{AB},\overrightarrow{AC}) = a \times a\cos\frac{\pi}{3} = \frac{a^2}{2}$$
 (1).

$$\overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{AB} \times \overrightarrow{AD} \cos(\overrightarrow{AB}, \overrightarrow{AD}) = a \times a \cos \frac{\pi}{3} = \frac{a^2}{2} (2)$$
.

$$D'où: \overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\left(\overrightarrow{AD} - \overrightarrow{AC}\right)$$

$$= \overrightarrow{AB}.\overrightarrow{AD} - \overrightarrow{AB}.\overrightarrow{AC}$$

$$= \frac{a^2}{2} - \frac{a^2}{2} \quad (\text{d'après } (1) \text{ et } (2)).$$

Donc: $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$

Conclusion: (AB) \perp (CD). (De la même façon on démontre que: $\overrightarrow{BC}.\overrightarrow{AD} = 0$ et $\overrightarrow{AC}.\overrightarrow{BD} = 0$)

Base et repère orthonormé :

a. Rappel:

 $\vec{u}(x,y,z)$ et $\vec{v}(x',y',z')$ et $\vec{w}(x'',y'',z'')$ trois vecteurs de l'espace (\mathcal{E}) rapporté a une base $(\vec{i},\vec{j},\vec{k})$.

• Le déterminant des vecteurs \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} dans cet ordre est le nombre :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x'' \\ z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$
$$= (xy'z'' - xz'y'') + (-yx'z'' + yz'x'') + (zx'y'' - zy'x'')$$

• \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} sont coplanaires si et seulement si $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0$.

<u>b.</u> Exemple :

 $\vec{u}(1,2,3)$ et $\vec{v}(-2,0,1)$ et $\vec{w}(1,0,3)$ on a:

$$\det(\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}) = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 0 & 0 \\ 3 & 1 & 3 \end{vmatrix} = 1 \begin{vmatrix} 0 & 0 \\ 1 & 3 \end{vmatrix} - 2 \begin{vmatrix} -2 & 1 \\ 1 & 3 \end{vmatrix} + 3 \begin{vmatrix} -2 & 1 \\ 0 & 0 \end{vmatrix} = 1 \times 0 - 2 \times (-7) + 3 \times 0 = 14$$

D'où: $\det(\vec{u}, \vec{v}, \vec{w}) \neq 0$

Conclusion:

Produit scalaire (espace) page

- \vec{u} et \vec{v} et \vec{w} ne sont pas coplanaires donc le triplet $(\vec{u}, \vec{v}, \vec{w})$ est une base de l'espace (\mathcal{E}).
- On prend un point O de l'espace (\mathcal{E}) le quadruplet $(O,\vec{u},\vec{v},\vec{w})$ est un repère de l'espace (\mathcal{E}) .

Technique:

$$\frac{\vec{u} \quad \vec{v} \quad \vec{w} \quad \vec{u} \quad \vec{v} \quad \vec{w} \quad \vec{u} \quad \vec{v} \quad \vec{v}$$

Définitions:

- $(\vec{i}, \vec{j}, \vec{k})$ est une base de l'espace (\mathcal{E}) équivaut à \vec{i} et \vec{j} et \vec{k} ne sont pas coplanaire $(\det(\vec{i}, \vec{j}, \vec{k}) \neq 0)$
- Prenons un point O de l'espace (\mathcal{E}) le quadruplé $(O, \vec{i}, \vec{j}, \vec{k})$ est appelé repère de (\mathcal{E})
- Si $\vec{k} \cdot \vec{j} = \vec{k} \cdot \vec{i} = \vec{j} \cdot \vec{i} = 0$ et $||\vec{j}|| = ||\vec{k}|| = 1$ alors:
 - \Rightarrow la base $(\vec{i}, \vec{j}, \vec{k})$ est une base orthonormée .
 - \diamond le repère $\left(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}}\right)$ est un repère orthonormé.

- Le reste de ce chapitre ; on considère l'espace (\mathcal{E}) est muni d'un repère orthonormé $(O,\vec{i},\vec{j},\vec{k})$.
- On prend $\vec{u}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{v}(x',y',z') = x'\vec{i} + y'\vec{j} + z'\vec{k}$ et M(x,y,z) et $A(x_A,y_A,z_A)$ et $B(x_R, y_R, z_R)$ et $C(x_C, y_C, z_C)$.

Produit scalaire (espace) page

Expression analytique de **u**.v

a. Activité:

- 1. On a : $\vec{u} \cdot \vec{v} = \left(\vec{xi} + y\vec{j} + z\vec{k}\right) \cdot \left(\vec{x'i} + y'\vec{j} + z'\vec{k}\right)$ on utilise la linéarité du produit scalaire donner $\vec{u} \cdot \vec{v}$ en fonction de x et y et z et x' et y' et z'.
- 2. Ecrire $\|\vec{\mathbf{u}}\|$ en fonction de x et y et z.
- 3. Donner la distance $AB = \|\overrightarrow{AB}\|$ en fonction de x_A et y_A et z_A et de x_B et y_B et z_B .
- 4. Donner la propriété.

<u>b.</u> Propriété :

- Le produit scalaire de \vec{u} et \vec{v} est : $\vec{u} \cdot \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = xx' + yy' + zz'$.
- La norme du vecteur \vec{u} est : $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2 + z^2}$.
- La distance AB est: $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$.

c. Application :

 $\vec{u}(1,2,3)$ et $\vec{v}(5,7,4)$ deux vecteurs et A(1,5,7) et B(2,9,8) deux points de l'espace (\mathcal{E}) .

1. Calculons: $\vec{\mathbf{u}}.\vec{\mathbf{v}}$ et $\|\vec{\mathbf{u}}\|$ et $\|\vec{\mathbf{v}}\|$ et \mathbf{AB} .

Correction: Calculons:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 7 \\ 4 \end{pmatrix} = 1 \times 5 + 2 \times 7 + 3 \times 4 = 31.$$

$$\sqrt{\|\vec{\mathbf{u}}\|} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \text{ et } \|\vec{\mathbf{u}}\| = \sqrt{5^2 + 7^2 + 4^2} = \sqrt{88}.$$

$$\checkmark \quad \text{On a: } \overrightarrow{AB} \begin{pmatrix} 2-1\\9-5\\8-7 \end{pmatrix} = \overrightarrow{AB} \begin{pmatrix} 1\\4\\1 \end{pmatrix} \text{ d'où: } AB = \sqrt{1^2+4^2+1^2} = \sqrt{18} \ .$$

Conclusion: $\vec{u}.\vec{v}=31$ et $\|\vec{u}\|=\sqrt{14}$ et $\|\vec{v}\|=\sqrt{88}$ et $AB=\sqrt{18}$.

Ensemble des points M(x,y,z) tel que : $\overrightarrow{AM}.\overrightarrow{u} = k$ avec $\overrightarrow{u}(a,b,c)$; $(\overrightarrow{u} \neq \overrightarrow{0})$:

a. Propriété:

 $A(x_A,y_A,z_A)$ est un point et $\vec{u}(a,b,c)$ est un vecteur non nul de l'espace (\mathcal{E}) et $k\in\mathbb{R}$ l'ensemble des points M(x,y,z) de l'espace (\mathcal{E}) tel que $\vec{u}.\overrightarrow{AM}=k$ est un plan (P) d'équation de la forme : ax+by+cz+d=0.

Produit scalaire (espace) page

b. Application :

Soient A(1,1,1) et $\vec{u}(0,1,0)$.

1. On détermine (P) ensemble des points M(x,y,z) de l'espace (\mathcal{E}) tel que $\overrightarrow{u}.\overrightarrow{AM} = 0$ Correction :

$$M(x,y,z) \in (P) \Leftrightarrow \overrightarrow{u}.\overrightarrow{AM} = 0$$
On a:
$$\Leftrightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}. \begin{pmatrix} x-1 \\ y-1 \\ z-1 \end{pmatrix} = 0$$

$$\Leftrightarrow 0.(x-1)+1(y-1)+0(z-1)=0$$

 \Leftrightarrow v -1 = 0

Conclusion: ensemble des points M(x,y,z) de (\mathcal{E}) tel que $\overrightarrow{u}.\overrightarrow{AM} = 0$ est le plan d'équation (P): y = 1.

extstyle ext

Q1. Vecteur normal à un plan :

a. Définition :

Tout vecteur \vec{n} non nul sa direction est perpendiculaire au plan (P) s'appelle vecteur normal au plan (P)

b. Remarques:

- ullet $ec{f n}$ est normale au plan ${f P}ig({f A},ec{f u},ec{f v}ig)$ alors $ec{f n}\perpec{f u}$ ullet $ec{f e}$ $ec{f n}\perpec{f v}$.
- Si \vec{n} est normale au plan (P) et passe par A le plan (P) est noté par $P(A,\vec{n})$.

Q2. Ensemble des points M(x,y,z) tel que ax + by + cz + d = 0:

a. Propriété:

L'ensemble des points M(x,y,z) de l'espace (2) qui vérifie ax + by + cz + d = 0 avec $(a,b,c) \neq (0,0,0)$ est le plan et le vecteur non nul n(a,b,c) est un vecteur normal à ce plan .

b. Application :

- Que représente l'ensemble des points M(x,y,z) de l'espace (\mathcal{E}) qui vérifie x+2y-z+4=0. Repense : l'ensemble des points M(x,y,z) de l'espace (\mathcal{E}) est le plan (P) tel que :
 - ✓ le vecteur $\vec{n}(1,2,-1)$ est normal à (P).
 - ✓ le plan (P) passe par le point A(0,0,4).
 - \checkmark donc $(P) = P(A, \vec{n})$.

Q3. Ensemble des points M(x,y,z) tel que $\vec{n} \cdot \overrightarrow{AM} = 0$:

Produit scalaire (espace) page

a. Propriété:

 $\vec{n}(a,b,c) \neq \vec{0}$ est un vecteur non nul et $A(x_A,y_A,z_A)$ est un point de l'espace (\mathcal{E}).

L'ensemble des points M(x,y,z) de l'espace (\mathcal{E}) qui vérifie : $\overrightarrow{AM.n} = 0$ est le plan (P) qui passe par \overrightarrow{A} et le vecteur \overrightarrow{n} est un vecteur normal à ce plan $(\overrightarrow{c.a.d.}, P(A, \overrightarrow{n}))$.

Le plan (P) a pour équation cartésienne de la forme ax + by + cz + d = 0 avec $d = -(ax_A + by_A + cz_A)$

b. Application:

On détermine une équation cartésienne du plan (P) passant par le point A(2,1,-3) et $\vec{n}(1,1,2)$ est un vecteur normal à (P).

Soit M(x,y,z) un point de l'espace (\mathcal{E}) .

On a: $M(x,y,z) \in (P) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{n} = 0$

$$\Leftrightarrow \begin{pmatrix} x-2 \\ y-1 \\ z+3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 0$$
$$\Leftrightarrow (x-2) \times 1 + (y-1) \times 1 + (z+3) \times 2 = 0$$
$$\Leftrightarrow x+y+2z+3=0$$

Conclusion: équation cartésienne de (P) est (P): x+y+2z+3=0.

<u>c.</u> Propriété :

tout plan $P(A, \vec{n}(a,b,c))$ a pour équation cartésienne de la forme ax + by + cz + d = 0 la réciproque avec $(a,b,c) \neq (0,0,0)$.

d. Preuve:

On montre que : le vecteur $\vec{n}(a,b,c)$ est normal à ce plan (P) .

On a: $M(x,y,z) \in (P) \Leftrightarrow ax + by + cz + d = 0$; (1)

$$A(x_0, y_0, z_0) \in (P) \Leftrightarrow ax_0 + by_0 + cz_0 + d = 0$$
; (2)

La différence entre (1) et (2) on obtient :

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \Leftrightarrow \begin{pmatrix} x-x_0\\ y-y_0\\ z-z_0 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = 0$$
$$\Leftrightarrow \overrightarrow{AM}.\overrightarrow{n}=0$$
$$\Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n}$$

D'où : n(a,b,c) est normal à ce plan .

Produit scalaire (espace) page

e. Application :

1. On donne l'équation du plan $P(O, \vec{i}, \vec{j})$ et le point A(0,0,m) avec $m \in \mathbb{R}$.

1ère méthode :

 $M(x,y,z) \in (P) \Leftrightarrow \overrightarrow{AM} \text{ et } \overrightarrow{i} \text{ et } \overrightarrow{j} \text{ sont coplanaires}$ $\Leftrightarrow \det(\overrightarrow{AM},\overrightarrow{i},\overrightarrow{j}) = 0$

$$\begin{vmatrix} x-0 & 1 & 0 \\ y-0 & 0 & 1 \\ z-m & 0 & 0 \end{vmatrix} = 0$$

$$\Leftrightarrow x \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} - y \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + (z-m) \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$\Leftrightarrow 0 - 0 + (z-m) = 0$$

$$\Leftrightarrow z - m = 0$$

Conclusion : équation du plan $P(O, \vec{i}, \vec{j})$ est $P(O, \vec{i}, \vec{j})$: z = m.

2ième méthode:

Puis que le repère est orthonormé donc $\vec{k}(0,0,1)$ est normal au plan $P(O,\vec{i},\vec{j})$ donc équation de $P(O,\vec{i},\vec{j})$ est de la forme $0 \times x + 0 \times y + 1 \times z + d = 0$ ou encore z + d = 0

On sait que: $A(0,0,m) \in P(O,\vec{i},\vec{j}) \Leftrightarrow m+d=0$ donc d=-m.

Conclusion: équation du plan $P(O, \vec{i}, \vec{j})$ est $P(O, \vec{i}, \vec{j})$: z = m.

3ième méthode:

Puis que le repère est orthonormé donc $\vec{k}(0,0,1)$ est normal au plan $P(\vec{O},\vec{i},\vec{j})$

$$\begin{split} M\!\left(x,y,z\right) &\in \left(P\right) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{k} = 0 \\ &\Leftrightarrow \begin{pmatrix} x-0 \\ y-0 \\ z-m \end{pmatrix}. \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \\ &\Leftrightarrow \left(x-0\right) \times 0 + \left(y-0\right) \times 0 + \left(z-m\right) \times 1 = 0 \\ &\Leftrightarrow z-m = 0 \end{split}$$

Conclusion : équation du plan $P(O, \vec{i}, \vec{j})$ est $P(O, \vec{i}, \vec{j})$: z = m.

VI.

Distance d'un point à un plan :

a. Définition:

- (P) est un plan et A est un point de l'espace (E) et H est la projection orthogonale de A sur le plan
- (P) la distance du point A au plan (P) est AH et on note AH = d(A,(P)).

Produit scalaire (espace) page

b. Exemple:

Propriété:

(P) est un plan et $A(x_{_{A}},y_{_{A}},z_{_{A}})$ est un point de l'espace (\mathcal{E}) tel que (P) a pour équation

$$(P) : ax + by + cz + d = 0.$$

La distance du point A au plan (P) est AH = $d(A_1(P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$.

Preuve: <u>d.</u>

On considère $H(x_H, y_H, z_H)$ H est la projection orthogonale de A sur le plan (P).

• On sait que : le vecteur $\vec{n}(a,b,c)$ est normal à ce plan (P) ($\vec{n}\perp (P)$) (1)

• H est la projection orthogonale de A sur le plan (P) donc $\overrightarrow{AH} \perp$ (P). (2)

• $\mathbf{H} \in (\mathbf{P}) \Leftrightarrow \mathbf{a}\mathbf{x}_{\mathbf{H}} + \mathbf{b}\mathbf{y}_{\mathbf{H}} + \mathbf{c}\mathbf{z}_{\mathbf{H}} + \mathbf{d} = \mathbf{0}$; $\mathbf{donc} : \mathbf{a}\mathbf{x}_{\mathbf{H}} + \mathbf{b}\mathbf{y}_{\mathbf{H}} + \mathbf{c}\mathbf{z}_{\mathbf{H}} = -\mathbf{d}$.

• D'après (1) et (2) on obtient \vec{n} et \overrightarrow{AH} sont colinéaires, d'où $\left|\cos\left(\overrightarrow{AH},\vec{n}\right)\right|=1$ et

$$|\overrightarrow{AH}.\overrightarrow{n}| = AH ||\overrightarrow{n}|| \cos(\overrightarrow{\overrightarrow{AH},\overrightarrow{n}})| = AH ||\overrightarrow{n}|| \text{ on obtient } |\overrightarrow{AH}.\overrightarrow{n}| = AH ||\overrightarrow{n}||$$
 (4)

• D'autre part : le produit scalaire est :

$$\overrightarrow{AH.n} = \begin{pmatrix} x_H - x_A \\ y_H - y_A \\ z_H - z_A \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$= a(x_H - x_A) + b(y_H - y_A) + c(z_H - z_A)$$

$$= ax_A + by_A + cz_A - \left(\underbrace{ax_H + by_H + cz_H}_{-d}\right)$$

$$= ax_A + by_A + cz_A + d$$

$$\overrightarrow{D'où} : |\overrightarrow{AH.n}| = |ax_A + by_A + cz_A + d| \quad (3)$$

 $\overrightarrow{\mathbf{D'où}} : |\overrightarrow{\mathbf{AH.n}}| = |\mathbf{ax}_{\mathbf{A}} + \mathbf{by}_{\mathbf{A}} + \mathbf{cz}_{\mathbf{A}} + \mathbf{d}| \quad (3)$

D'après (3) et (4) on obtient $\mathbf{AH} \| \vec{\mathbf{n}} \| = |\mathbf{ax}_{\mathbf{A}} + \mathbf{by}_{\mathbf{A}} + \mathbf{cz}_{\mathbf{A}} + \mathbf{d}|$. D'où: $\mathbf{AH} = \frac{|\mathbf{ax}_{\mathbf{A}} + \mathbf{by}_{\mathbf{A}} + \mathbf{cz}_{\mathbf{A}} + \mathbf{d}|}{\|\vec{\mathbf{n}}\|}$.

Produit scalaire (espace) page

Application: <u>e.</u>

On considère le plan d'équation (P)x+3y-5z+1=0.

1. Est –ce que : $A(1,1,1) \in (P)$

On a: $(P)1+3\times1-5\times1+1=4-5+1=0$ d'où : $A(1,1,1)\in(P)$

2. Donner la distance d(A,(P))

1ère méthode:

✓ Puis que $A(1,1,1) \in (P)$ donc la projection orthogonale de A sur le plan (P) est A = HDonc AH = AA = 0 donc d(A,(P)) = 0.

Conclusion: la distance d(A,(P)) = 0.

2ième méthode:

On applique la propriété :

$$AH = d(A,(P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}} = \left| \frac{1 + 3 \times 1 - 5 \times 1 + 1 = 4 - 5 + 1}{\sqrt{1^2 + 3^2 + (-5)^2}} \right| = \left| \frac{0}{35} \right| = 0$$

Conclusion: la distance d(A,(P)) = 0

VII. Parallélisme et orthogonalité des droites et des plans :

Q1. Parallélisme et orthogonalité de deux plans :

Propriétés :

$$(P_1): ax + by + cz + d = 0$$
 et $(P_2): a'x + b'y + c'z + d' = 0$

- $(P_2) \| (P_1) \Leftrightarrow (\overrightarrow{\mathbf{n}} \text{ et } \overrightarrow{\mathbf{n'}} \text{ sont colinéaires}) \qquad (P_2) \| (P_1) \Leftrightarrow \overrightarrow{\mathbf{n'}} = \alpha \overrightarrow{\mathbf{n}} \qquad (P_2) \perp (P_1) \Leftrightarrow \overrightarrow{\mathbf{n'}} \cdot \overrightarrow{\mathbf{n}} = \mathbf{0}$
- $(P_2) \| (P_1) \Leftrightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} (\text{non nuls})$

$$(\mathbf{P}_2) \| (\mathbf{P}_1) \Leftrightarrow \Delta_{\mathbf{x}} = \Delta_{\mathbf{y}} = \Delta_{\mathbf{z}} = 0 (\mathbf{n} \cdot \mathbf{e} \cdot \mathbf{n})$$

Q2. Parallélisme et orthogonalité d'une droite et un plan :

 $P(B, \vec{n})$ et $D(A, \vec{u})$ et (P): ax + by + cz + d = 0

- $(D) \parallel (P) \Leftrightarrow \vec{u}.\vec{n} = 0$
- $(D)\perp(P)\Leftrightarrow (\vec{n} \text{ et } \vec{u} \text{ sont colinéaires})$

(D)

Produit scalaire (espace) page

VIII. Etude analytique du sphère :

01. Sphère:

a. Définition :

 Ω est un point donné de l'espace (\mathcal{E}) et R>0 l'ensemble des points M(x,y,z) de l'espace (\mathcal{E}) tel que $\Omega M=R$ s'appelle le sphère de centre Ω et de rayon R on note (S) ou $S(\Omega,R)$.

02. Equation cartésienne d'une sphère :

a. Définition propriété :

Equation cartésienne de $(S) = S(\Omega(a,b,c),r)$ est : $M(x,y,z) \in (S) \Leftrightarrow \Omega M = R$ ou $(x-a)^2 + (y-a)^2 + (z-a)^2 = R^2$ ou bien : $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ avec $d = a^2 + b^2 + c^2 - R^2$

<u>b.</u> Application :

On donne l'équation cartésienne du sphère S(O(0,0,0),1)

on a:
$$(x-0)^2 + (y-0)^2 + (z-0)^2 = 1^2 \Leftrightarrow x^2 + y^2 + z^2 = 1$$
.

Conclusion : l'équation cartésienne du sphère S(O(0,0,0),1) est $x^2+y^2+z^2=1$.

 ${f Q3}_{f e}$ Equation cartésienne du sphère déterminé par un diamètre ${f [AB]}$.

a. Définition :

Ω est le milieu de [AB]; [AB] est un diamètre du sphère (S).

On dit la sphère de diamètre $\begin{bmatrix} AB \end{bmatrix}$ on note $\begin{pmatrix} S \end{pmatrix}$ ou $S_{[AB]}$.

Produit scalaire (espace) page

b. Propriété :

Equation cartésienne de $S_{[AB]}$ est : $M(x,y,z) \in S_{[AB]} \Leftrightarrow \overline{MA}.\overline{MB} = 0$ ou bien $(x-x_A)(x-x_B)+(y-y_A)(y-y_B)+(z-z_A)(z-z_B)=0$.

c. Preuve:

Soit I le milieu de [AB] (centre du sphère (S).

On a:
$$\overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow (\overrightarrow{MI} + \overrightarrow{IA})(\overrightarrow{MI} + \overrightarrow{IB}) = 0$$

 $\Leftrightarrow \overrightarrow{MI}^2 + \overrightarrow{MI}.\overrightarrow{IB} + \overrightarrow{IA}.\overrightarrow{MI} + \overrightarrow{IA}.\overrightarrow{IB} = 0$
 $\Leftrightarrow \overrightarrow{MI}^2 + \overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB}) + \overrightarrow{IA}.(-\overrightarrow{IA}) = 0$
 $\Leftrightarrow \overrightarrow{MI}^2 + \overrightarrow{MI}.\overrightarrow{0} - \overrightarrow{IA}^2 = 0$
 $\Leftrightarrow \overrightarrow{MI}^2 = \overrightarrow{IA}^2$
 $\Leftrightarrow \overrightarrow{MI} = \overrightarrow{IA}$
 $\Leftrightarrow \overrightarrow{M} \in S_{(I,r=IA)}$

 $\begin{array}{c} \textbf{Conclusion: l'ensemble des points } \mathbf{M}\left(x,y,z\right) \text{ de l'espace } \left(\mathscr{E}\right) \text{ qui vérifie } \overline{\mathbf{MA.MB}} = \mathbf{0} \text{ c'est le sphère } \left(S\right) \text{ de } \\ \\ \textbf{centre I le milieu de } \left[\mathbf{AB}\right] \text{ et de rayon } \mathbf{r} = \mathbf{IA} = \frac{\mathbf{AB}}{2} \text{ ou encore le sphère } \mathbf{S}_{[AB]} \text{ de diamètre } \left[\mathbf{AB}\right]. \\ \end{array}$

d. Exemple: Soient A(0,1,0) et B(0,-1,0) deux points de l'espace (\mathcal{E}).

On détermine l'équation cartésienne du sphère $S_{[AB]}$:

$$\begin{split} M\Big(x,y,z\Big) \in S_{[AB]} & \iff \overrightarrow{MA}.\overrightarrow{MB} = 0 \ ; \ \left(ou \ \overrightarrow{AM}.\overrightarrow{BM} = 0\right) \\ & \iff \begin{pmatrix} x \\ y-1 \\ z \end{pmatrix}. \begin{pmatrix} x \\ y+1 \\ z \end{pmatrix} = 0 \\ & \iff x^2+y^2+z^2=1 \end{split}$$

Conclusion : l'équation cartésienne du sphère $S_{[AB]}$ est $S_{[AB]}$: $x^2 + y^2 + z^2 = 1$.

Q4. L'ensemble des M(x,y,z) de l'espace (\mathcal{E}) tel que $x^2 + y^2 + z^2 + ax + by + cz + d = 0$:

Propriété :

L'ensemble des M(x,y,z) de l'espace (\mathcal{E}) tel que $x^2+y^2+z^2+ax+by+cz+d=0$ avec a et b et c et d de \mathbb{R} on pose $A=a^2+b^2+c^2-4d$ est :

•
$$(E) = \emptyset$$
 si $A < 0$.

• (E) =
$$\left\{ \Omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right) \right\}$$
 si A = 0.

• Le Sphère (E) =
$$S\left(\Omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right), R = \frac{\sqrt{A}}{2}\right)$$
 si $A > 0$.

Produit scalaire (espace) page

Positions relatives d'une sphère et un plan :

Q1. Positions et les schémas et théorème:

a. Intersection d'un plan (P) et une sphère (S)

b. Théorème

 $3^{\text{ième}} \text{ CAS} : \mathbf{d} = \Omega \mathbf{H} < \mathbf{R} \text{ on a } (\mathbf{P}) \cap (\mathbf{S}) = (\mathbf{C})$

(P) coupe (S) suivant le cercle de centre H et de rayon $R_C = \sqrt{R_S^2 - d^2}$ $R_C = r$ et $R_S = R$ $2^{\text{ième}} \text{ CAS} : \mathbf{d} = \Omega \mathbf{H} = \mathbf{R} \text{ on}$ $\mathbf{a} (\mathbf{P}) \cap (\mathbf{S}) = \{\mathbf{H}\} (\mathbf{P}) \text{ et}$

(S) sont tangents en H avec $(H\Omega) \perp (P)$

 $1^{ER} CAS : d = \Omega H > R$ on a $(P) \cap (S) = \emptyset$

(P) et (S) son disjoints

a. Remarques:

- H est la projection de Ω sur (P) et $d = \Omega H = d(\Omega, (P)) = \frac{\left|ax_{\Omega} + by_{\Omega} + cz_{\Omega} + d\right|}{\sqrt{a^2 + b^2 + c^2}}$.
- on détermine H par l'intersection du plan (P) et la droite (D) perpendiculaire au plan passant par Ω
- Vecteur normal \vec{n} au plan (P) est un vecteur directeur de la droite (D).

02. Equation du plan tangent à une sphère :

a. Théorème:

par un point A quelconque d'une sphère (S) il existe un et un seul plan (Q) tangente au sphère (S) au point A . l'équation de (Q) est : $M \in (Q) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{AQ} = 0$

Produit scalaire (espace) page

Rositions relatives d'une sphère et une droite :

Q1. Positions et les schémas et théorème :

a. Intersection d'une droite	(\mathbf{D})) et une sphère ((S))
------------------------------	----------------	-------------------	-----	---

3 ^{ième} CAS:	2 ^{ième} CAS	1 ^{ER} CAS:

b. théorème

3 ième	CAS:	(\mathbf{D})	\cap	(S)	\ = {	A.B	Ļ
J	CAD.	ועו	/I I/	U			г

$$2^{i \text{ème } CAS / (D) \cap (S) = \{H\}$$

$$1^{ER} CAS : (D) \cap (S) = \emptyset$$

- (D) coupe (S) en deux points A et B
 (Deux points mais pas le segment [AB])
- (D) et (S) sont tangents en H avec $(H\Omega) \perp (D)$
- (P) et (S) son disjoints

CONDITION: $\mathbf{d} = \Omega \mathbf{H} < \mathbf{R}$

CONDITION:
$$\mathbf{d} = \mathbf{\Omega}\mathbf{H} = \mathbf{R}$$

CONDITION:
$$\mathbf{d} = \Omega \mathbf{H} > \mathbf{R}$$

- H est la projection de Ω sur (D).
- Si $(D) = D(K, \vec{u})$ on a $d = \Omega H = \frac{\|\vec{K}\Omega \wedge \vec{u}\|}{\|\vec{u}\|}$ (voir chapitre produit vectoriel).
- Si $\vec{\mathbf{u}} = \mathbf{x}\vec{\mathbf{i}} + \mathbf{y}\vec{\mathbf{j}} + \mathbf{z}\vec{\mathbf{k}}$ et $\vec{\mathbf{v}} = \mathbf{x}'\vec{\mathbf{i}} + \mathbf{y}'\vec{\mathbf{j}} + \mathbf{z}'\vec{\mathbf{k}}$.

on a:

$$\vec{\mathbf{u}} \wedge \vec{\mathbf{v}} = \left(\vec{\mathbf{x}} + \vec{\mathbf{y}} + \vec{\mathbf{j}} + \vec{\mathbf{z}} \vec{\mathbf{k}}\right) \wedge \left(\vec{\mathbf{x}} + \vec{\mathbf{i}} + \vec{\mathbf{y}} + \vec{\mathbf{j}} + \vec{\mathbf{z}} + \vec{\mathbf{k}}\right)$$

$$\left(\vec{\mathbf{x}}\right) \quad \left(\vec{\mathbf{x}}\right)$$

REMARQUES

$$= \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} \wedge \begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{pmatrix}$$

$$= \Delta_{\mathbf{x}} \mathbf{i} - \Delta_{\mathbf{y}} \mathbf{j} + \Delta_{\mathbf{z}} \mathbf{k} = \begin{vmatrix} \mathbf{y} & \mathbf{y'} \\ \mathbf{z} & \mathbf{z'} \end{vmatrix} \mathbf{i} - \begin{vmatrix} \mathbf{x} & \mathbf{x'} \\ \mathbf{z} & \mathbf{z'} \end{vmatrix} \mathbf{j} + \begin{vmatrix} \mathbf{x} & \mathbf{x'} \\ \mathbf{v} & \mathbf{v'} \end{vmatrix} \mathbf{k}$$

• Exemple:
$$\overrightarrow{AM} \wedge \overrightarrow{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} \overrightarrow{k} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$$