

Vulnerability of Grassland Systems in Europe to Climate Change

Gianni BELLOCCHI

Grassland Research Ecosystem Unit - French National Institute for Agricultural Research Clermont-Ferrand, France

Workshop on "Livestock and Climate Change"

30-31 October 2014 Budapest (Hungary)

Grassland ecosystems

In EU-27...

... they are run by ~5.4 millions of farmers

... they provide the feed basis of 78 million herbivores, producing ~25% of milk and meat (Peyraud, 2013)

Climate change impacts on grasslands

Adaptations to climate change impacts / 1

Impacts Adaptations

Start of grass growing season

Nitrogen input

Evolution of yearly productivity of a grassland

(Durand et al., 2010)

Soil water balance

Adaptations to climate change impacts / 2

The uncertainty cascade

Range of emission and socioeconomic pathways (after 2050, projections vary with pathways)

Range of climate models and downscaling techniques (e.g. anomalies, weather types, quantiles)

Range of impact models (further uncertainties: soil, vegetation, management)

Ensemble of models to assess local impacts and adaptation responses

Systemic approach to grassland vulnerability

Modelling

Inputs (climate, soil, management)

Initial values

Parameters

PaSim SPACSYS AnnuGrow

STICS EPIC ARMOSA Biome-BGC MuSo LpJmL CARAIB ORCHIDEE

Grassland specific

Crop generic

Dynamic global vegetation

Vulnerability indicators exposure, sensitivity, adaptive capacity

(Lardy et al., 2014)

Impact projections in France / 1

New opportunities for annual forage production with risks of forage losses in summer (and risks of milk production losses in summer-autumn)

Impact projections in France / 2

Vulnerability to climate change

" IPCC definition (IPCC 3rd AR)

The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes

Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system is **exposed**, its **sensitivity** and its **adaptive capacity**

Conceptualisation of vulnerability for climate change research

The definition accounts for the *long-term nature of the climate problem* (by including the adaptive capacity) and for the *heterogeneity and complexity of the hazard* (by including an exposure factor)

Vulnerability assessment

Exposure metrics

Indicator	Quantile	Metric	
Dry spell length	25%	Maximum number of consecutive dry days in a year	
Number of heat waves	75%	No. of >six consecutive days when $T_{max} > T_{max}$ (baseline) + 3 °C	
Aridity index	25%	$? = \frac{1}{2} \cdot \left(\frac{?}{?} + 10 + 12 \cdot \frac{?}{?} + 10 \right) $ $ b < 5: extreme aridity b > 59: strong humidity $	

(Confalonieri et al., 2010)

(Bellocchi et al., 2012; Lardy et al., 2013)

Sensitivity metrics

Category	Output
Productivity	Gross primary production
Carbon stocks	Total soil carbon
Nitrogen fluxes	Nitrogen leaching

Exposure to aridity

Difference between the mean values of the aridity index (b,) calculated for years of P2 (2011-2060) and P1 (1961-2010) with b < 25th percentile, as represented by the scenario A1B.

Sensitivity to aridity

PaSim-simulated grasslands: average values of gross primary productivity (kg C m^{-2}) for years experiencing conditions of aridity ($b < 25^{th}$ percentile).

Vulnerability metrics

Index	Equation	Comments
Proportional vulnerability	$?_{?} = \frac{?}{?}$	Proportion of vulnerable years in a series of years
Vulnerability gap		Mean deficit in vulnerable years
Vulnerability severity	$?_{?} = \frac{1}{?} \cdot ? \left(?_{?} - \frac{?_{?}}{?_{?}}\right)^{?}$	As V_1 , with more weight given to the most vulnerable years
Most vulnerable individual		Distance to threshold of the most vulnerable year
Luers-based index	$?_{?} = ? \left(\frac{\delta?_{?}}{?_{?}} \right)$	Explicit account of the sensitivity of the system

Luers-based metric: vulnerability maps in Europe

Adaptive capacity

New vulnerability maps...

Management

nitrogen fertiliser

Vuln-Indices: software to assess vulnerability to climate change

References / 1

Bellocchi, G., Lardy, R., Soussana, J.-F., 2012. Report on methodology of vulnerability analysis. AnimalChange D5.2.

Boe, J., 2007. Changement global et cycle hydrologique : Une étude de régionalisation sur la France. PhD thesis, University Paul Sabatier - Toulouse III, Toulouse (in French)

Confalonieri, R., Bellocchi, G., Donatelli, M., 2010. A software component to compute agro-meteorological indicators. Environmental Modelling and Software 25, 1485-1486.

Durand, J.-L., Bernard, F., Lardy, R. and Graux, A.-I., 2010. Changement climatique et prairie: l'essentiel des impacts. In: Brisson, N. and Levrault, F. (Eds.), Changement climatique, agriculture et forêt en France: simulations d'impacts sur les principales espèces. Le livre vert du projet CLIMATOR (2007-2010). ADEME, Angers, France, pp. 181-190. (in French)

Graux, A.-I., Bellocchi, G., Lardy, R., Soussana, J.-F., 2013. Ensemble modelling of climate change risks and opportunities for managed grasslands in France. Agricultural and Forest Meteorology 170, 114-131.

IPCC (Intergovernmental Panel on Climate Change), 2001. Climate change 2001: impacts, adaptation, and vulnerability. Third Assessment Report of the IPCC. University Press, Cambridge, United Kingdom, p. 1042.

Lardy, R., 2013. Calcul intensif pour l'évaluation de la vulnérabilité en utilisant une approche d'Ingénierie Dirigée par les Modèles. Application à la vulnérabilité des prairies au changement climatique sous contraintes de plans d'expériences. PhD thesis, Blaise Pascal University, Clermont-Ferrand, France, p. 258. (in French)

References / 2

Lardy, R., Bellocchi, G., Martin, R., 2014. Vuln-Indices: software to assess vulnerability to climate change. Computers and Electronics in Agriculture, submitted.

Lardy, R., Martin, R., Bellocchi, G., 2013. Numerical methods for project vulnerability analyses with guidelines for use. AnimalChange D15.3.

Metzger, M.J., Rounsevell, M.D.A., Acosta-Michlik, L., Leemans, R., Schröter, D., 2006. The vulnerability of ecosystem services to land use change. Agriculture, Ecosystems and Environment 114, 69-85.

Peyraud, J.-L., 2013. Réforme de la PAC et prairies permanentes. Dans : La PAC a 50 ans : le bel âge ? Colloque organisé par Institut National de la Recherche Agronomique dans le cadre du Salon International de l'Agriculture, 26 February 2013, Paris. (in French)

Rivington, M., Matthews, K.B., Buchan, K., Miller, D.G., Bellocchi, G., Russell, G., 2013. Climate change impacts and adaptation scope for agriculture indicated by agrometeorological metrics. Agricultural Systems 114, 15-31.

Theau, J.P., Piquet, M., Granet, J., Nureau, D., Farruggia, A., 2010. Améliorer la qualité des foins par un meilleur ajustement de la date de fauche au stade de développement des espèces dominantes de la parcelle. http://www.rmt-prairies.fr/IMG/pdf/outils_proposes_INRA_AGIR_TOULOUSE.pdf

An integration of mitigation and adaptation options for sustainable livestock production under climate change

Thank you!