Elementi di Bioinformatica

UniShare

Davide Cozzi @dlcgold

Indice

1	Introduzione								
2	Introduzione alla Bioinformatica								
	2.1 Bit-Parallel	. 3							
	2.1.1 Algoritmo Dömölki/Baeza-Yates	. 4							
	2.2 Algoritmo Karp-Rabin	. 6							

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

Capitolo 2

Introduzione alla Bioinformatica

Un po' di notazione per le stringhe:

• simbolo: T[i]

• stringa: T[1]T[2][n]

• sottostringa: T[i:j]

• **prefisso:** T[:j] = T[1:j] (inclusi gli estremi)

• suffisso: T[i:] = T[i:|T|] (inclusi gli estremi)

• concatenazione: $T_1 \cdot T_2 = T_1 T_2$

In bioinformatica si lavora soprattutto con le stringhe, implementando algoritmi, per esempio, di pattern matching. Nel pattern maching si ha un testo T come input e un pattern P (solitamente di cardinalità minore all'input) da ricercare. Si cerca tutte le occorrenze di P in T. L'algoritmo banale prevede due cicli innestati e ha complessità O(nm) con n lunghezza di T e m lunghezza di P. Il minimo di complessità sarebbe O(n+m) (è il lower bound). Si ragiona anche sulla costante implicita della notazione O-Grande cercando di capire quale sia effettivamente l'algoritmo migliore con la quantità di dati che si deve usare. Bisogna quindi bilanciare pratica e teoria.

2.1 Bit-Parallel

È un algoritmo veloce in pratica ma poco performante a livello teorico, ha complessità O(nm).

```
\begin{aligned} &\text{for } i = 1 \rightarrow n \text{ do} \\ &trovato \leftarrow true \\ &\text{for } j = 1 \rightarrow m \text{ do} \\ &\text{if } T[1+j-1] <> P[j] \text{ then} \\ &trovato \leftarrow false \\ &\text{end if} \\ &\text{end for} \\ &\text{if } trovato \text{ then} \\ &print(i) \\ &\text{end if} \\ &\text{end for} \end{aligned}
```

Questo algoritmo è facilmente eseguibile dall'hardware del pc.

In generale si hanno **algoritmi numerici** che trattano i numeri e gli **algoritmi simbolici** che manipolano testi.

Si hanno poi gli **algoritmi semi-numerici** che trattano i numeri secondo la loro rappresentazione binaria, manipolando quest'ultima con $or \lor$, and $wedge, xor \oplus$, left-shift << e right-shift >>. Ricordiamo che il left shift sposta di k posizioni a sinistra i bit, scartandone k in testa e aggiumgendo altrettanti zeri in coda (lo shift a destra sposta a destra, scarta in coda e aggiunge zeri in testa). Queste sono operazioni bitwise e sono mappate direttamente sull'hardware, rendendo tutto estremamente efficiente.

2.1.1 Algoritmo Dömölki/Baeza-Yates

Questo algoritmo viene anche chiamato algoritmo shift-and o anche bit parallel string matching.

Si definisce in input una stringa T di cardinalità n e un pattern P di cardinalità m.

Si costruisce una matrice M ipotetica, di dimensione $n \times m$, con un indice i per P e uno j per T dove:

$$M(i,j) = 1$$
 sse $P[:i] = T[j-i+1:j], 0 \le i \le m, 0 \le j \le n$

Quindi M(i, j) = 1 sse i primi i caratteri del pattern sono uguali alla sottostring lunga i in posizione j - i + 1 del testo.

Questa matrice è veloce da costruire e si ha:

$$M(m, \cdot) = 1, \ M(0, \cdot) = 1, \ M(\cdot, 0) = 0$$

 $M(i, j) = 1 \ sse \ M(i = 1, j = 1) \ AND \ P[i] = T[j]$

la prima riga saranno tutti 1 $(M(0,\cdot)=1)$ in quanto la stringa vuota c'è sempre mentre la prima colonna saranno tutti 0 $(M(\cdot,0)=0)$ in quanto un testo vuoto non matcha mai con una stringa non vuota.

Quindi la matrice avrà 1 solo se i primi caratteri del pattern P[i] sono uguali alla porzione di testo = T[j-i+1:j]. Ma in posizione M(i-1,j-1) mi accorgo che ho 1 se ho un match anche con un carattere in meno di P e T. Qindi se M(i-1,j-1)=0 lo sarà anche M(i,j). Se invece M(i-1,j-1)=1 devo controllare solo il carattere P[i] e T[j] e vedere se P[i]=T[j]. Ovvero, avendo P=assi e T=apassi si avrebbe (omettendo la prima riga e la prima colonna in quanto banali):

	j	1	2 p 0 0 0	3	4	5	6
i		a	p	a	\mathbf{S}	\mathbf{S}	i
1	a	1	0	1	0	0	0
2	\mathbf{S}	0	0	0	1	0	0
3	\mathbf{S}	0	0	0	0	1	0
4	i	0	0	0	0	0	1

Con un automa non deterministico che accetta una stringa terminante con P sarebbe:

La matrice la costruisco con due cicli e controllo solo l'ultima riga. Non si ha un guadagno a livello di complessità, dato che rimane O(nm), ma grazie all'architettura a 64 bit della cpu. Infatti con una word della cpu posso memorizzare una colonna intera, in quanto vista come numero binario. Ora lavoro in parallelo su più bit, con un algoritmo **bit-parallel**, facendo ogni volta 64 confronti tra binari. In questo modo crolla la costante moltiplicativa nell'O-grande.

Ma come passo da una colonna C[j] a una C[j-1]? Con questi step:

- la colonna C[j] corrisponde al right shift della colonna C[j-1]
- aggiungo 1 in prima posizione per compensare lo shift

• faccio l'AND con U[T[j]], che è un array binario lungo come il pattern dove ho un binario con 1 se è il carattere di riferimento:

• ragiono sul word size ω in caso di pattern più grandi di 64bit.

ottengo:

$$C[j] = ((C[j-1]) \times 1) | (1 \cdot (\omega - 1) \cdot U[T[j]])$$

Conoscendo una colonna della matrice voglio calcolare la successiva. Quindi M[i,j] = M[i-1,j-1] AND P[i] = T[j] (per esempio, M[1,j] = TRUE AND (p[i] = T[j])), cioè conta solo il confronto dei caratteri.

Ogni 1 nell'ultima riga corrisponde ad un'occorrenza.

Questo algoritmo ha il vantaggio di non avere branch if/else, però si ha ul limite nella lunghezza del pattern (64 bit) pattern e l'uso di più word comporta il riporto sulla colonna seguente, fattore che si complica all'aumentare della lunghezza del pattern, soprattutto se arbitraria.

2.2 Algoritmo Karp-Rabin

Vediamo un altro algoritmo di pattern matching che sfrutta una codifica binaria e che, pur non risultando sempre corretto, è estremamente più veloce, viene infatti eseguito in tempo lineare.

Uso un alfabeto binario e devo fare il match di due stringhe con ciascuna la sua codifica $H(S) = \sum_{i=1}^{|S|} 2^{i-1} H(S[i])$. Ad ogni carattere di una string si associa un numero nel range $[0, 2^{m-1}]$. Praticamente si usano due funzioni hash che trasformano una stringa in un decimale rappresentate in binario (ogni numero intero è facilmnete rappresentabile come somma di potenze di 2 e quindi in binario). Viene quindi facile paragonare le due fingerprints. Mi muovo sul testo T mediante finestre di ampiezza m pari a quella del pattern e controllo il fingerprint di quella porzione con quella del pattern. Inoltre il fingerprint di una finestra è facilmente calcolabile da quello della precedente. Per farlo elimino il contributo del carattere della finestra precedente e includo l'unico aggiunto dalla finestra successiva, in quanto mi sposto di 1:

$$H(T[i+1:i+m]) = \frac{H(T[i:i+m-1])T[i]}{2} + 2^{m-1}T[i+m]$$

Essendo il primo carattere quello meno pesante viene rimosso ad ogni spostamento sfruttando la divisione per due per lo shift

La sottostringa è uguale al pattern solo se le fingerprint lo sono:

$$T[i:i+m-1] = P \Leftrightarrow H(T[i:i+m-1]) = H(P)$$

Per estendere la codifica binaria in k caratteri avrò la finestra che si sposta di k con la divisione per k anziché per 2.

Si ha il problema della lunghezza del pattern in quanto ho un 2^{m-1} che fa esplodere l'algoritmo perché usa un numero di bit grandissimo. Si ricorda che un'operazione "costa 1" solo se sono piccoli i numeri in gioco, nel nostro caso il costo diventa proporzionale al numero di bit coinvolti. La soluzione di Karp-Rabin è di continuare con la logica di sopra ma solo con numeri piccoli, cambiando la definizione di fingerprint prendendo il resto di quanto sopra con un numero primo p:

$$H(T[i+1:i+m]) = \left(\frac{H(T[i:i+m-1])T[i]}{2} + 2^{m-1}T[i+m]\right) \mod p$$

ma in questo modo la fingerprint non è più iniettiva, con la possibilità che più stringhe abbiano la stessa fingerprint e di conseguenza si avranno degli errori. Si ha che $2^{m-1}T[i+m]$ viene calcolato iterativamente facendo mod p ad ogni passo. Si può quindi avere una sottostringa di T con lo stesso fingerprint del pattern che però non è uguale al pattern, è un **falso positivo**. Non si possono tuttaavia avere falsi negativi, quindi tutte le occorrenze sono trovate con la possibilità di trovare occorrenze false in più:

$$H(T[i:i+m-1]) \mod p = H(P) \mod p \Leftarrow T[i:i+m-1] = P$$

Se il numero primo p è scelto a caso minore di un certo I so che l'errore è minore di $O(\frac{nm}{I})$.

Vogliamo sfruttare però che si hanno solo falsi positivi e provare ad eseguire l'algoritmo con due p diverse, le vere occorrenze saranno trovate da entrambe mentre i falsi positivi probabilmente no. Itero quindi su k numeri primi e il risultato sarà l'intersezione di tutte le k iterazioni dell'algoritmo, riducendo moltissimo le probabilità di avere un risultato errato. Paghiamo quindi un incremento di un prodotto k delle operazioni (diventa O(k(n+m))) per ridurre esponenzialmente le chances di errore.

Proponiamo una versione semplificata dell'algoritmo (lunghezza del testo = n e del pattern = m):

```
function RabinKarp(text, pattern)

patternHash \leftarrow hash(pattern[1:m])

for i \leftarrow 1 to n - m + 1 do

textHash \leftarrow hash(text[i:i+m-1])

if textHash = patternHash then

if text[i:i+m-1] = pattern[1:m] then

return(i)

end if

end if

end for

return(NotFound)

end function
```

È quindi un algoritmo probabilistico in quanto i p sono scelti a caso. Ci sono due categorie di algoritmi probabilistici:

- 1. Monte Carlo, come Karp-Rabin, veloci ma non sempre corretti
- 2. Las Vegas, sempre corretti ma non sempre veloci, come per esempio il quicksort con pivot random (dove il caso migliore è un pivot che è l'elemento mediano mentre il peggiore è che il pivot sia un estremo, portando l'algoritmo ad essere quadratico).

È possibile rendere Karp-Rabin un algoritmo della categoria Las Vegas controllando tutti i falsi positivi (anche se non è una procedura utlizzata).