Γεωμετρία Α' Λυκείου

Ανισοτικές σχέσεις

Για να λύσουμε μία άσκηση που αναφέρεται σε γεωμετρικές ανισότητες ας έχουμε υπόψη μας τα παρακάτω:

1. (3.10) Ανισοτικές σχέσεις με εξωτερική και εσωτερική γωνία τριγώνου.

$$\hat{\mathbf{A}}_{\varepsilon\xi} > \hat{\mathbf{\Gamma}}$$
 $\hat{\mathbf{A}}_{\varepsilon\xi} > \hat{\mathbf{B}}$

2. (3.11) Ανισοτικές σχέσεις με πλευρές και γωνίες τριγώνου.

Av
$$\hat{B} > \hat{\Gamma} \Leftrightarrow \beta > \gamma$$
.

3. (3.12) Ανισοτικές σχέσεις με τις πλευρές τριγώνου.

$$|\beta-\gamma|<\alpha<\beta+\gamma.$$

Ερωτήσεις Κατανόησης

- 1. Χαρακτηρίστε ως σωστή (Σ) ή λάθος (Λ) καθεμία από τις επόμενες προτάσεις:
 - i) Η εξωτερική γωνία $\hat{A}_{\varepsilon\xi}$ τριγώνου ΑΒΓ είναι μεγαλύτερη από τη $\hat{\Gamma}$. Σ \square Λ
 - ii) H εξωτερική γωνία $\hat{B}_{\epsilon\xi}$ τριγώνου $AB\Gamma$ είναι μικρότερη από τη $\hat{\Gamma}$. $\square \Sigma$ \triangle Λ
 - iii) Το άθροισμα δύο γωνιών ενός τριγώνου είναι 180°. $\square \Sigma$ Λ
 - iv) $Av \beta > \gamma$ (σε τρίγωνο $AB\Gamma$), τότε $\hat{B} = \hat{\Gamma}$ και αντίστροφα. $\square \Sigma$ Λ
 - ν) Aν β = γ (σε τρίγωνο ABΓ), τότε $\hat{B} = \hat{\Gamma} και αντίστροφα.$ $Σ <math>\square Λ$

2. Για το τρίγωνο του παρακάτω σχήματος ισχύει:

 $\alpha. \alpha < 7$ $\beta. \alpha < 1$ $\beta. \alpha < 7$ $\delta. \alpha < 7$ $\epsilon. 0 < \alpha < 1$

Κυκλώστε το γράμμα της σωστής απάντησης και αιτιολογήστε την απάντησή σας.

3. Υπάρχει τρίγωνο ΑΒΓ με $a = \frac{\gamma}{3}$ και $\beta = \frac{3\gamma}{5}$; Δικαιολογήστε την απάντησή σας.

$$|\alpha - \beta| < \gamma < \alpha + \beta$$

$$\Rightarrow |\frac{3}{3} - \frac{38}{5}| < \gamma < \frac{3}{3} + \frac{33}{5}$$

$$\Rightarrow |\frac{57 - 97}{15}| < \gamma < \frac{57 + 97}{15}$$

$$\Rightarrow |\frac{47}{15} < \gamma < \frac{147}{15}$$

$$\Rightarrow |\frac{47}{15} < \gamma < \frac{147}{15}$$

$$\Rightarrow |47 < \gamma < \frac{147}{15}$$

$$\Rightarrow |47 < 15\gamma < 14\gamma$$

$$\Rightarrow |47 < 15\gamma < 14\gamma$$