1st -Order Linear Homogeneous systems of DEs: Degenerate Case

In all examples of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (A necessarily square—let's say n-by-n) we have investigated thus far,

- eigenvalues λ_i have had AM = GM, and as a result,
- there has been a fundamental matrix solution $\Phi(t)$ whose columns were $e^{\lambda_j t} \mathbf{v}_j$ for some eigenpair $(\lambda_j, \mathbf{v}_j)$.

So, what happens when some eigenvalue as GM; AM? For instance, in the problem

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
, with $\mathbf{A} = \begin{bmatrix} -5 & -8 & -9 \\ 9 & 16 & 18 \\ -6 & -10 & -11 \end{bmatrix}$,

the characteristic polynomial of A is

$$\det(\mathbf{A} - \lambda \mathbf{I}) = -\lambda^3 + 3\lambda - 2 = -(\lambda + 2)(\lambda - 1)^2,$$

so $\lambda = -2$ is an eigenvalue with AM = 1 and $\lambda = 1$ is an eigenvalue with AM = 2. When you find the null space of $(\mathbf{A} + 2\mathbf{I})$, it must be 1-dimensional since the number of free columns in $\mathbf{A} - \lambda \mathbf{I}$ is stuck between 1 and the algebraic multiplicity of the eigenvalue λ . We find that a basis eigenvector of that null space is $\langle 2, -3, 2 \rangle$. As for the other eigenvalue $\lambda = 1$, all we know going in is that $(\mathbf{A} - \mathbf{I})$ will have either 1 or 2 free columns (i.e., either a 1- or 2-dimensional null space). Indeed,

$$\mathbf{A} - \mathbf{I} = \begin{bmatrix} -6 & -8 & -9 \\ 9 & 15 & 18 \\ -6 & -10 & -12 \end{bmatrix} \quad \text{has RREF} \quad \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 3/2 \\ 0 & 0 & 0 \end{bmatrix},$$

so it has a 1-dimensional null space with basis eigenvector (1, -3, 2). There are no more (linearly independent) eigenpairs to be had. The ones we've found give us solutions

$$e^{-2t}\begin{bmatrix}2\\-3\\2\end{bmatrix}$$
 and $e^t\begin{bmatrix}1\\-3\\2\end{bmatrix}$,

but we need to find one more linearly independent solution to fill out a fundamental matrix

$$\mathbf{\Phi}(t) = \begin{bmatrix} 2e^{-2t} & e^t & \text{a 3rd soln} \\ -3e^{-2t} & -3e^t & \downarrow \\ 2e^{-2t} & 2e^t \end{bmatrix}.$$

We have come as far as we have on the success of guess-and-check: we guessed a function of the form $e^t \mathbf{v}$ might just solve a system $\mathbf{x}' = \mathbf{A}\mathbf{x}$, plugged it in, and found it does if (λ, \mathbf{v}) form an eigenpair. Let us guess, again, that maybe a solution could take the form

$$\mathbf{x}(t) = e^{rt}(\mathbf{u} + t\mathbf{v}),$$
 so that the derivative is $\mathbf{x}'(t) = re^{rt}(\mathbf{u} + t\mathbf{v}) + e^{rt}\mathbf{v} = e^{rt}[(r\mathbf{u} + \mathbf{v}) + t\mathbf{v}].$

Then inserting our guess into x' = Ax gives us

$$e^{rt}[(r\mathbf{u} + \mathbf{v}) + t\mathbf{v}] = \mathbf{A}[e^{rt}(\mathbf{u} + t\mathbf{v})] = e^{rt}(\mathbf{A}\mathbf{u} + t\mathbf{A}\mathbf{v}).$$

After dividing through by e^{rt} we see both sides have a t-term and a constant term. Setting the coefficients of those two terms equal results in two equations:

$$r\mathbf{u} + \mathbf{v} = \mathbf{A}\mathbf{u}$$
 and $r\mathbf{v} = \mathbf{A}\mathbf{v}$.

Note the second of these equations is the eigenvalue-eigenvector equation all over again, while the first can be rearranged to say $\mathbf{v} = \mathbf{A}\mathbf{u} - r\mathbf{u} = (\mathbf{A} - r\mathbf{I})\mathbf{u}$. What this says is that our guess, $\mathbf{x}(t) = e^{rt}(\mathbf{u} + t\mathbf{v})$, can work if

- (r, \mathbf{v}) form an eigenpair of **A**, and
- using this eigenpair (r, \mathbf{v}) , we find a vector \mathbf{u} which solves $(\mathbf{A} r\mathbf{I})\mathbf{u} = \mathbf{v}$.

Now, speaking generally, $(\mathbf{A} - r\mathbf{I})\mathbf{u} = \mathbf{v}$ may be *inconsistent* when (r, \mathbf{v}) forms an eigenpair; in fact, under such conditions it is *usually* inconsistent. However, in the case when the eigenvalue r has GM = 1 and AM > 1, it is consistent, and our guess works given any solution \mathbf{u} . Moreover, our guess, when used to fill out the columns of $\Phi(t)$, contributes a linearly independent column from the others, helping us get a nonzero determinant (Wronskian).

So, our **modified algorithm** for solving x' = Ax is this:

- Solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$ for the eigenvalues λ of \mathbf{A} .
- For each eigenvalue λ , find a *basis* of null $(\mathbf{A} \lambda \mathbf{I})$. Any vector \mathbf{v} in this basis is an eigenvector of \mathbf{A} corresponding to λ , and the vector function $e^{\lambda t}\mathbf{v}$ contributes favorably to the general solution in the sense that it can be a column of $\mathbf{\Phi}(t)$ linearly independent with other similarly-formed columns.
- When λ has GM = 1 (so null $(\mathbf{A} \lambda \mathbf{I})$ has dimension 1, and only one basis vector \mathbf{v}), and AM > 2, find one (any) solution of $(\mathbf{A} \lambda \mathbf{I})\mathbf{u} = \mathbf{v}$ and obtain another solution (another column of $\mathbf{\Phi}(t)$, linearly independent from the others) as $e^{\lambda t}(\mathbf{u} + t\mathbf{v})$.

For most situations, the algorithm above will generate enough columns for the matrix $\Phi(t)$ to make it square. Most, but not all. We have not described a sufficiently-complete algorithm to produce a square matrix $\Phi(t)$ when some eigenvalue has $AM \geqslant 3$. Such situations are rare enough, we will leave them as "for further investigation on your own sometime."

 $^{^{1}}$ If $2 \leq GM < AM$, then the equation $(A - \lambda I)u = v$ is consistent when you start with the *right sort* of eigenvector v corresponding to λ ; not just any eigenvector v will do. That situation is more complicated, and we will not explore it as a class this semester.

So, let us return to the system of 1st-order DEs (the example above)

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
, with $\mathbf{A} = \begin{bmatrix} -5 & -8 & -9 \\ 9 & 16 & 18 \\ -6 & -10 & -11 \end{bmatrix}$.

We learned that A has

eigenvalue
$$(-2)$$
 (AM = 1) with basis eigenvector $\begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$,

and

eigenvalue 1 (AM = 2, GM = 1) with basis eigenvector
$$\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$$
,

and these eigenpairs generated two columns for $\Phi(t)$. Our algorithm indicates we should find ${\bf u}$ satisfying

$$(\mathbf{A} - \mathbf{I})\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}.$$

We do this using Gaussian elimination: the augmented matrix

$$\begin{bmatrix} -6 & -8 & -9 & 1 \\ 9 & 15 & 18 & -3 \\ -6 & -10 & -12 & 2 \end{bmatrix} \quad \text{has RREF} \quad \begin{bmatrix} 1 & 0 & -1/2 & 1/2 \\ 0 & 1 & 3/2 & -1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We see the 3rd column, corresponding to u_3 in the vector $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, is free. This implies there are infinitely many solutions \mathbf{u} . But, as we *need just one more column* for $\mathbf{\Phi}(t)$, we exercise this freedom in *choosing a value* for u_3 . When we choose $u_3 = 0$, the solution becomes $\mathbf{u} = \langle 1/2, -1/2, 0 \rangle$. If we choose $u_3 = 1$, then $\mathbf{u} = \langle 1, -2, 1 \rangle$. Either is fine to use, as both do what is required. Using the second one of these, our corresponding solution, which we will use as the third column in $\mathbf{\Phi}(t)$, is

$$e^{t} \left(\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \right) = e^{t} \begin{bmatrix} 1+t \\ -2-3t \\ 1+2t \end{bmatrix}.$$

From this, we have general solution

$$\mathbf{x}_{h}(t) = \begin{bmatrix} 2e^{-2t} & e^{t} & e^{t}(1+t) \\ -3e^{-2t} & -3e^{t} & -e^{t}(2+3t) \\ 2e^{-2t} & 2e^{t} & e^{t}(1+2t) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = c_{1}e^{-2t} \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix} + c_{2}e^{t} \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + c_{3}e^{t} \begin{bmatrix} 1+t \\ -2-3t \\ 1+2t \end{bmatrix}.$$

Further investigations?

- 1. Once we had sufficiently many columns/solutions to make a square fundamental matrix $\Phi(t)$ above, there were still 3! = 6 different orderings for those three columns. Why are all equally useful?
- 2. Suppose my example problem had come with the initial condition $\mathbf{x}(0) = \langle 5, -8, 6 \rangle$. Starting from the general solution above, determine constants $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$ which produce the solution of the IVP.

Then, explore what would have happened if we had used a different choice of \mathbf{u} , say, $\mathbf{u} = \langle 1/2, -1/2, 0 \rangle$. Find the corresponding fundamental matrix $\mathbf{\Phi}(t)$ for *this* choice of \mathbf{u} , then use it to find the solution of the same IVP. Convince yourself that, while $\mathbf{\Phi}(t)$ and \mathbf{c} have changed, the resulting answer is the same, as the Existence/Uniqueness says it should be. Can you see how the change in \mathbf{c} offsets the change in $\mathbf{\Phi}(t)$?

3. We have explored the conditions on r, \mathbf{u} , and \mathbf{v} that, when met, make

$$e^{rt} (\mathbf{u} + t\mathbf{v})$$

a solution of x' = Ax. Consider expressions of the form

$$e^{rt}\left(\mathbf{w}+t\mathbf{u}+\frac{t^2}{2!}\mathbf{v}\right).$$

What conditions on r, \mathbf{w} , \mathbf{u} , and \mathbf{v} would make it a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$? What conditions on r, \mathbf{z} , \mathbf{w} , \mathbf{u} , and \mathbf{v} make

$$e^{rt}\left(\mathbf{z}+t\mathbf{w}+\frac{t^2}{2!}\mathbf{u}+\frac{t^3}{3!}\mathbf{v}\right)$$

into a solution?