Equity in Care: The effect of socio-economic factors in late cancer diagnosis

Parviz Asoodehfard Elba Gomez Allen Lee Tudor Schlanger

Motivation

What we know:

Early diagnosis and treatment are crucial for survival of cancer patients

What we may have:

Barriers to health access and education may still exist for certain groups

What we want:

Understanding how demographics affect early diagnosis can help create targeted Public Service Announcements to spread awareness

Research Questions

Question 1:

What is the socio-economic profile of the typical individual who is diagnosed late?

Question 2:

What is the impact of socio-economic traits/determinants on late diagnosis?

Question 3:

What is the effect of late diagnosis and socio-economic traits on the survival interval after diagnosis?

Assumptions & Data Cleaning

Sample selection

Restricted to 2010-2014 when cancer diagnostic available

Restricted to patients where stage of cancer identified

Restricted to observations where patients confirmed deceased before 2014

Assumptions & Data Cleaning

Sample selection

Restricted to 2010-2014 when cancer diagnostic available

Restricted to patients where stage of cancer identified

Restricted to observations where patients confirmed deceased before 2014

Resulting sample size: 13,678

Assumptions & Data Cleaning

Sample selection

Restricted to 2010-2014 when cancer diagnostic available

Restricted to patients where stage of cancer identified

Restricted to observations where patients confirmed deceased before 2014

Data assumptions

Census 2006 variables are time-invariant (they stay constant for our sample from 2010-2014)

Census variables are an accurate representation of socio-economic status

Q1.

What is the socio-economic profile of the typical individual who is diagnosed late?

In other words...
Who is the average
Joe who gets
diagnosed late?

Clustering

- **1.** For k = 2, ..., 10
 - i. Train and fit a k-means model on the socio-economic data
 - ii. Compute proportion of late stage diagnoses for each cluster
- 2. Choose *k* to maximize the variance of the calculated proportions between different groups
- 3. Identify cluster with worst proportion of late stage diagnosis
- 4. Use cluster centroid as representative for the group

Typical Profile Late Diagnosis Patient

- Male
- Non-college educated
- Non-immigrant, non-visible minority

Age of diagnosis: 58

- Married
- Family size: 2.5
- Low-income area-based deciles:6
- Region: Ontario

Measuring Impact of Policy Action

Average number of days survived with cancer:

Diagnosed early: 491

Diagnosed late: 270

Q2.

What is the impact of socio-economic traits on late diagnosis?

In other words...
What factors
matter in achieving
early diagnosis?

Logistic Regression: All Cancers

0 = (Diagnosis stage 0, 1, 2) and 1 = (Diagnosis stage 3,4)

	-			
	coef	std err	z	P> z
Age at Diag	-0.0223	0.002	-10.917	0.000
Educational Attainment	0.0088	0.051	0.171	0.864
Immig. Status	-0.0337	0.051	-0.659	0.510
Married	-0.0216	0.075	-0.289	0.773
Separated	0.0882	0.143	0.618	0.537
Single	0.1175	0.105	1.117	0.264
Widowed	-0.0293	0.089	-0.330	0.741
decile_income_High	0.0950	0.047	2.040	0.041
Male	-0.0991	0.055	-1.815	0.070

Logistic Regression: Prostate Cancer

0 = (Diagnosis stage 0, 1, 2) and 1 = (Diagnosis stage 3,4)

=======================================	coef	std err	z	======= P> z
Age at Diag	0.0045	0.006	0.749	0.454
Educational Attainment	-0.3874	0.135	-2.872	0.004
Immig. Status	0.1584	0.135	1.173	0.241
Married	-0.2125	0.216	-0.984	0.325
Separated	0.6081	0.436	1.396	0.163
Single	-0.1747	0.317	-0.551	0.582
Widowed	-0.5094	0.283	-1.800	0.072
decile_income_High	0.1382	0.124	1.113	0.266
Male	-0.1349	0.484	-0.279	0.780

Educational Attainment for Cancer Population

Q3.

What is the effect of late diagnosis and socio- economic traits on the survival interval after diagnosis?

In other words... Who lives longer and why?

Late diagnosis

Univariate regression

		coef	std	err		t	P>	t
const	491	6819	6	160	79	821	о.	999
Late	224	.0619	_	974	21	700	0	000

Multivariate regression

	coef	std err	t	P> t
const	155.7146	7.088	21.967	0.000
Late	-154.7483	7.132	-21.697	0.000
Size Family	3.11/9	2./34	1.140	0.254
Age Diagnostic	-2.0956	0.271	-7.747	0.000

Relevant socio-demographic factors

	coef	std err	t	P> t
College Educated_2	13.7138	6.513	2.106	0.035
Immigrant Dummy_2	26.8721	6.616	4.062	0.000
Marital Status_2.0	3.6338	9.563	0.380	0.704
Marital Status_3.0	-27.2160	16.688	-1.631	0.103
Marital Status_4.0	-20.9218	12.555	-1.666	0.096
Marital Status_5.0	1.4858	11.192	0.133	0.894
Urban Dummy 2.0	0.5913	6.425	0.092	0.927
Income Decile_2	17.4923	5.898	2.966	0.003
Male 2.0	-16.2747	6.381	-2.551	0.011

What is not so important for survival

- Province of diagnosis
- Native status and most visible minorities
- Marital status
- Rural/urban divide

Conclusion

Typical profile:

But **education** is a key factor

Limitations

- Different types of cancers have different characteristics
 - Should do separate analysis for each type of cancer
- Using only demographic data from the 2006 census
 - We expect certain demographic and economic data to change throughout time
- Results may be biased because certain population groups (e.g. Native people) are not being diagnosed at all, so samples are not representative
- Controls for other risky behaviour not included: smoking, alcohol and drug use

Next Steps: Additional Data

Data

- Look at late diagnosis by geographic area (postal-code level)
- Look at immigration status in a more careful way (Longitudinal Immigration Database)
- With a additional census data (e.g. 2016 census), we can get a more holistic view of each patient

Economic Data (TIFF)

- Employment Insurance and Social Assistance data only available for employed population; how does it affect early diagnosis?
 - Can tap on financial burden of care and importance of out of pocket costs

Thank you very much!