GP by hands

Prof. J. Morlier

Matrix view of Gaussian Process

Example

$$y \sim N(0,K)$$

$$k(x,x') = \sigma_f^2 \exp\left[-\frac{(x-x')^2}{2l^2}\right] + \sigma_n \delta(x,x') \qquad \delta(x,x') = \begin{cases} 1, & x = x' \\ 0, & x \neq x' \end{cases}$$

$$K = \begin{bmatrix} k(x_1,x_1) & k(x_1,x_2) & \cdots & k(x_1,x_n) \\ k(x_2,x_1) & k(x_2,x_2) & \cdots & k(x_2,x_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_n,x_1) & k(x_n,x_2) & \cdots & k(x_n,x_n) \end{bmatrix}$$

$$K_* = [k(x_*,x_1) & k(x_*,x_2) & \cdots & k(x_*,x_n)] \qquad K_{**} = k(x_*,x_*)$$

$$\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K & K_*^{\mathrm{T}} \\ K_* & K_{**} \end{bmatrix}\right)$$

$$y_* | \mathbf{y} \sim \mathcal{N}(K_*K^{-1}\mathbf{y}, K_{**} - K_*K^{-1}K_*^{\mathrm{T}})$$

$$\bar{y}_* = K_*K^{-1}\mathbf{y} \quad \text{var}(y_*) = K_{**} - K_*K^{-1}K_*^{\mathrm{T}}$$

Gaussian Processes for Regression A Quick Introduction, M.Ebden, August 2008.

Step by step: $l=1=\theta_1$, $\sigma_f = \operatorname{sqrt}(0.3) = \theta_2$

Inputs Table: The given *X* values.

Pairwise Differences: A matrix of $(x - x')^2$.

Exponential Term: Computing $\exp(-(x-x')^2/l^2)$.

$$k(x,x') = \theta_1^2 \exp\left(-\frac{(x-x')^2}{2\theta_2^2}\right)$$
$$\theta = [\theta_1; \theta_2]$$

Inputs Table: The given *X* values.

Pairwise Differences: A matrix of $(x - x')^2$.

Exponential Term: Computing $\exp(-(x-x')^2/l^2)$.

Index		X values
	1	-1,5
	2	-1
	3	-0,75
	4	-0,4
	5	-0,25
	6	0

X = np.array([-1.5, -1, -0.75, -0.4, -0.25, 0]) I = 1 # Length scale $sig_f = 3^{**}(1/4) \text{ # Since sigma}_f^2 = sqrt(3)$

Inputs Table: The given *X* values.

Pairwise Differences: A matrix of $(x - x')^2$.

Exponential Term: Computing $\exp(-(x-x')^2/l^2)$.

						_
(x-x')^2	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5	0	0,25	0,5625	1,21	1,5625	2,25
-1	0,25	0	0,0625	0,36	0,5625	1
-0,75	0,5625	0,0625	0	0,1225	0,25	0,5625
-0,4	1,21	0,36	0,1225	0	0,0225	0,16
-0,25	1,5625	0,5625	0,25	0,0225	0	0,0625
0	2,25	1	0,5625	0,16	0,0625	0

Inputs Table: The given *X* values.

Pairwise Differences: A matrix of $(x - x')^2$.

```
pairwise_diffs = np.zeros((len(X), len(X)))
exp_terms = np.zeros((len(X), len(X)))

for i in range(len(X)):
    for j in range(len(X)):
        pairwise_diffs[i, j] = (X[i] - X[j]) ** 2
        exp_terms[i, j] = np.exp(-pairwise_diffs[i, j] / (I ** 2))

final kernel = (sig f ** 2) * exp_terms
```

Exponential Term: Computing $\exp(-(x-x')^2/l^2)$.

exp(-(x-x')^2/l^2)	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5	1	0,778801	0,569783	0,298197	0,209611	0,105399
-1	0,778801	1	0,939413	0,697676	0,569783	0,367879
-0,75	0,569783	0,939413	1	0,884706	0,778801	0,569783
-0,4	0,298197	0,697676	0,884706	1	0,977751	0,852144
-0,25	0,209611	0,569783	0,778801	0,977751	1	0,939413
0	0,105399	0,367879	0,569783	0,852144	0,939413	1

Inputs Table: The given *X* values.

Pairwise Differences: A matrix of $(x - x')^2$.

Exponential Term: Computing $\exp(-(x-x')^2/l^2)$.

sigma_f^2 exp(-(x-x')^2/l^2)	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5	1,732051	1,348923	0,986893	0,516493	0,363058	0,182557
-1	1,348923	1,732051	1,627111	1,208411	0,986893	0,637186
-0,75	0,986893	1,627111	1,732051	1,532356	1,348923	0,986893
-0,4	0,516493	1,208411	1,532356	1,732051	1,693515	1,475956
-0,25	0,363058	0,986893	1,348923	1,693515	1,732051	1,627111
0	0,182557	0,637186	0,986893	1,475956	1,627111	1,732051

estimation ICA IA CNRS: machine learning - deep learning

$$K = \begin{bmatrix} 1.70 & 1.42 & 1.21 & 0.87 & 0.72 & 0.51 \\ 1.42 & 1.70 & 1.56 & 1.34 & 1.21 & 0.97 \\ 1.21 & 1.56 & 1.70 & 1.51 & 1.42 & 1.21 \\ 0.87 & 1.34 & 1.51 & 1.70 & 1.59 & 1.48 \\ 0.72 & 1.21 & 1.42 & 1.59 & 1.70 & 1.56 \\ 0.51 & 0.97 & 1.21 & 1.48 & 1.56 & 1.70 \end{bmatrix}$$

$$K_{**} = 1.70 \quad K_{*} = \begin{bmatrix} 0.38 & 0.79 & 1.03 & 1.35 & 1.46 & 1.58 \end{bmatrix}$$

$$\bar{y}_{*} = 0.95 \quad \text{var}(y_{*}) = 0.21$$

http://htmlpreview.github.io/?https://github.com/jomorlier/mdocourse/blob/master/GP_Tutorial/GP_Tutorial.html

Index		X values
	1	-1,5
	2	-1
	3	-0,75
	4	-0,4
	5	-0,25
	6	0

(x-x')^2	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5						
-1						
-0,75						
-0,4						
-0,25						
0						

exp(-(x-x')^2/l^2)	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5						
-1						
-0,75						
-0,4						
-0,25						
0						

choose I, sigma_f						
sigma_f^2 exp(-(x-x')^2/I^2)	-1,5	-1	-0,75	-0,4	-0,25	0
-1,5						
-1						
-0,75						
-0,4						
-0,25						
0						

$$K = egin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \ dots & dots & \ddots & dots \ k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \end{bmatrix}$$

X values	Yvalues
-1,5	-1,6
-1	-1,1
-0,75	-0,4
-0,4	0,2
-0,25	0,6
0	1

Index	X* values
1	-1,2
2	-0,9
3	0,75

INTERPOLATION
INTERPOLATION

$$K_* = [k(x_*, x_1) \quad k(x_*, x_2) \quad \cdots \quad k(x_*, x_n)]$$

$$K_{**} = k(x_*, x_*)$$

choose I, sigma_f						
sigma_f^2 exp	-1,2	-0,9	0,75			
-1,2						
-0,9						
0,75						

$$egin{bmatrix} \left[egin{array}{ccc} \mathbf{y} \ y_* \end{array}
ight] \sim \mathcal{N}\left(m{0}, \left[egin{array}{ccc} K & K_*^{\mathrm{T}} \ K_* & K_{**} \end{array}
ight]
ight) & y_* | \mathbf{y} \sim \mathcal{N}(K_* K^{-1} \mathbf{y}, K_{**} - K_* K^{-1} K_*^{\mathrm{T}}) \end{pmatrix}$$

Problem of inv(K) when K is large, or too close point → ill conditionned Solution? Partitioned Inverse

$${ar y}_*=K_*K^{-1}{f y}$$

$$var(y_*) = K_{**} - K_* K^{-1} K_*^{\mathrm{T}}$$

Optimizing Marginal Likelihood (ML)

$$\mathsf{ML} = log(p(y|X,\theta)) = -\frac{1}{2}y^{T}K^{-1}y - \frac{1}{2}log|K| - \frac{n}{2}log(2\pi)$$

It is a combination of data-fit term, a complexity penalty term and a normalization term

$$k(x, x') = \theta_1^2 \exp(-\frac{(x - x')^2}{2\theta_2^2})$$

Only two hyperparameters:

- \rightarrow The lengthscale θ_2 or ℓ determines the length of the 'wiggles' in your function.
- \rightarrow The output variance ${\theta_1}^2 or \ \sigma^2$ determines the average distance of your function away from its mean. It's just a scale factor.
 - A third hyperparameter $\, heta_3\,\,or\,\,\sigma_n^2\,$ is often used (noise) $GP(0, K + \sigma_n^2 I)$

