$D \rightarrow K^+K^-\pi^+\pi^-$ analysis at LHCb and BESIII

Martin Tat

Oxford LHCb

21st February 2022

Outline

- LHCb
 - Summary of LHCb analysis status
- 2 BESIII
 - ullet Previously: Measurement of CP even fraction F_+
 - $K_S\omega$ CP even tag using sPlot
 - F_+ measurement with $K_S\pi\pi$ tag
- Summary

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 GGSZ+GLW analysis at LHCb

$$B^{\pm} \to (K^{+}K^{-}\pi^{+}\pi^{-})_{D}h^{\pm}$$

GGSZ+GLW analysis at LHCb

Summary of LHCb analysis status

- Previously on γ measurement in $B^{\pm} \to Dh^{\pm}$, $D \to K^+K^-\pi^+\pi^-$:
 - Model-independent binned GGSZ and inclusive GLW analysis
 - 2 Initial ANA note draft circulated in November
 - First round of comments received and replies have been sent back
 - No further comments from 2/3 reviewers
 - Still waiting for the last reply
 - 4 All systematics studies finished
 - $oldsymbol{0}$ Potential problem: s_i sign might be wrong

sign problem

- Amplitude model gives us: $A(\Phi) = \sum_k a_k S_k(\Phi)$
- Flavour-tagged LHCb data measures: $|A(\Phi)|^2$
- Cannot measure absolute sign of a_k phase

Resonance	LHCb model phase (rad)	CLEO model (rad)
$D^0 \to [\phi(1020)\rho^0]_{L=0}$	0 (fixed)	0 (fixed)
$D^0 o K_1(1400)^+ K^-$	1.05	-1.79
$D^0 o K_1(1270)^+ K^-$	2.02	-2.56

- BESIII data needed to determine this sign!
- Reconstruct $KK\pi\pi$ vs $K_{S,L}\pi\pi$ double tags:

$$M_{i,j} \propto \left(K_i K_{-j}' + K_{-i} K_j' - 2 \sqrt{K_i K_{-i} K_j' K_{-j}'} (c_i c_j' + s_i s_j')\right)$$

$D \rightarrow K^+K^-\pi^+\pi^-$ strong-phase analysis as BESIII

$$D \rightarrow K^+K^-\pi^+\pi^-$$

strong-phase analysis as BESIII

Previously: Measurement of CP even fraction F_+

- BESIII: e^+e^- collider at $\psi(3770) o D^0 ar{D^0}$ threshold
- ullet Reconstruct signal mode $D o KK\pi\pi$ and a tag mode D o f
- Signal mode is quantum correlated with tag mode
- Measure BF with CP even/odd tags to determine F_+

$$\mathsf{BF}(\mathsf{KK}\pi\pi|f) = \mathsf{BF}(\mathsf{KK}\pi\pi) imes ig(1 - \lambda_{\mathrm{CP}}(2F_+ - 1)ig)$$

F₊ measurement with CP tags

$K_S\omega$ CP even tag using sPlot

- $D \to K_S \omega$ is CP odd
- CP-even contamination from non-resonant $D o K_S \pi \pi \pi^0$
 - $F_+(K_S\pi\pi\pi^0) = 0.238 \pm 0.012 \pm 0.012$ from CLEO

Figure 2: $D \rightarrow K_S \pi \pi \pi^0 D$ mass (beam constrained)

$K_S\omega$ CP even tag using sPlot

- Strategy:
 - **1** From D mass fit, remove non- $K_S\pi\pi\pi^0$ background using sPlot
 - 2 Fit $\pi\pi\pi^0$ invariant mass to obtain $K_S\omega$ yield

Figure 3: $\pi\pi\pi^0$ invariant mass in $D \to K_S\pi\pi\pi^0$

F_+ measurement with $K_S\pi\pi$ tag

• With $K_S\pi\pi$, increase sensitivity through binning of $K_S\pi\pi$ phase space

$$M_i \propto \left(K_i + K_{-i} - 2\sqrt{K_i K_{-i}} c_i (2F_+ - 1)\right)$$

• Problem: $KK\pi\pi$ reconstruction efficiency is too low \rightarrow Low yields!

ullet Likely explanation: Softer kaons o Kaons get stuck inside tracker

F_+ measurement with $K_S\pi\pi$ tag

- Solution: Partially reconstructed $KK\pi\pi$
- Strategy:
 - **1** Reconstruct $D \rightarrow K_S \pi \pi$
 - 2 Require 3 remaining good tracks consistent with $K\pi\pi$
 - Use missing mass to reconstruct missing kaon

Mode	Inclusive yield	Double tag efficiency
$K_S\pi\pi$ (fully reconstructed)	67.2	6.63 ± 0.04
$K_S\pi\pi$ (partially reconstructed)	85.9	6.50 ± 0.03
$K_L\pi\pi$ (partially reconstructed)	176.9	7.29 ± 0.04

Partially reconstructed $KK\pi\pi$ vs $K_S\pi\pi$

- Main challenge with partially reconstructed $KK\pi\pi$: $K\pi\pi\pi\pi^0$
- Require no π^0 candidates

Figure 4: $KK\pi\pi$ vs $K_S\pi\pi$

F_+ measurement with $K_S\pi\pi$ tag

 \bullet Combine fully and partially reconstructed $\textit{KK}\pi\pi$ vs $\textit{K}_{\textit{S}}\pi\pi$ to fit for \textit{F}_{+}

$KK\pi\pi$ vs $K_S\pi\pi$ double tag yields

Combination of F_+ measurements

Measurement of CP even fraction F_+ in $D \rightarrow KK\pi\pi$

Next step: Include $K_L\pi\pi$ as well

- Irreducible background from $K_S\pi\pi$ with $K_S\to\pi^0\pi^0$
- $K_S\pi\pi$ has opposite quantum correlation which must be accounted for $KK\pi\pi$ vs $K_I\pi\pi$ double tag fit

Summary

- LHCb $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ GGSZ+GLW analysis:
 - 2/3 reviewers have no further comments, waiting for final reply
 - Sign of s_i must be resolved
- BESIII $D \to K^+ K^- \pi^+ \pi^-$ strong-phase analysis:
 - $K_S\omega$ tag added to F_+ combination using sPlot
 - Partially reconstructed $KK\pi\pi$ vs $K_S\pi\pi$ shows promising results
 - F_+ measurement performed in $KK\pi\pi$ vs $K_S\pi\pi$ binned analysis
 - Next steps:
 - Perform F_+ measurement with $K_L\pi\pi$
 - Add CP tags $K_L \pi^0 \pi^0$, $K_L \omega$ to F_+ combination

Thank you!