$-13.6\,\mathrm{eV}$

- 18 Sirius A is the brightest star in the night sky and is mostly composed of hydrogen.
 - (a) When light from Sirius A passes through the hydrogen in the outer layers of the star, some light is absorbed. This causes electrons in the hydrogen to be excited. The diagram shows an electron being excited from the −3.40 eV level to the −1.50 eV level.

Ground state

The wavelengths of the different colours of visible light are shown in the table below.

violet	blue	green	yellow	orange	red
380–450 nm	450–495 nm	495–570 nm	570–590 nm	590–620 nm	620–750 nm

Deduce the	colour	or the	visible	ngnt tha	t caused	the ele	ectron tr	ansition	snown	ın
the diagram										

(4)

Sirius A is 8.60 light years from Earth. The is received on Earth is $1.17 \times 10^{-7} \text{Wm}^{-2}$.	ntensity of radiation from Sirius	A
Calculate the power of Sirius A.		(4)
	Power of Sirius A =	
When hydrogen gas is excited in the laborate are emitted.	ory, only certain wavelengths of l	light
Explain why.		(2)

(Total for Question 18 = 10 marks)