Katherine Beine

- 1. (a) Let $q_1, ..., q_n, ...$ be a list of distinct rational numbers. Consider $\bigcap_{n=1}^{n=\infty} A_n = 0$. Based on the proof for part b, $\mathbf{Q} \{q_n\} = 0$ does not create a contradiction because both \mathbf{Q} and all $\{q_n\}$ are countable. So there is no contradiction when the infinite intersection of all the countable stuff is empty.
- (b) In the reals, $x_1, ..., x_n, ...$ is a countable list of distinct real numbers, and the collection of all x_n is countable. If some $B_n \neq 0$, then any $b \in B_n$ will be in any B_k where $k \leq n$. Thus, if $\bigcap_{n=1}^{n=\infty} B_n = 0$, some $B_k = 0$. So suppose $B_k = 0$. Then $\mathbf{R} \{x_k\} = 0$, so $\{x_k\} = \mathbf{R}$. However, \mathbf{R} is uncountable and all $\{x_n\}$ are countable, so this is a contradiction. Therefore $\bigcap_{n=1}^{n=\infty} B_n \neq 0$.
- 2. Let A be obstructive in **R**. Let $x \in \mathbf{R}$, and let $N_r(x)$ be a neighborhood of x with r > 0. Consider $y \in N_r(x), y \neq x$. Then because A is obstructive in **R**, there is some $a \in A$ such that x < a < y. Then $a \in N_r(x)$ and $a \neq x$ so x is a limit point of A. Thus A is thick in **R**.

Now let A be thick in **R**. Let x, y \in **R** be given. WLOG, let x < y. Consider $N_r(x)$ where r = d(x, y). Because x is a limit point of A, there is some point, $a \in N_r(x)$ such that $a \neq x, a \in A$. Thus x < a < y. Thus A is obstructive in X. QED

3. Attempt to establish an equivalence relation from J to B where $b_N \in B$

if
$$b_N = \sum$$

Then for $N \ge 2$, $b_N = a_1 \times b_1 + a_2 \times (-\sqrt{b_2}) + ...$ and $b_N = a_1 \times b_1 + a_2 \times (\sqrt{b_2}) + ...$ Thus $J \to B$ is not a 1-1 function, so B is not countable. QED

- 4. Let M be a nonempty set bounded in R^k , and let $\delta > 0$ be given. Then because M is bounded, M is a subset of some k-cell, call it K. Then K is compact. Construct an open cover of K by letting $G = \{G_x | G_x = N_{\delta}(x), x \in R^k\}$. Because K is compact, there is a finite subcover, $\{\bigcup G_x\}$, of G over K, and because M is a subset of K, M is a subset of $\{\bigcup G_x\}$. QED
- 5. Let M be a nonempty set bounded in X. Let X be a metric space and let $\delta > 0$ be given. Since X is a metric space, \overline{M} is closed in X. Consider M'. Let $\mathbf{x} \in \mathbf{M}$ '. Then $\mathbf{d}(\mathbf{x},\mathbf{m}) < \mathbf{r}$ where $\mathbf{m} \neq \mathbf{x}$, $\mathbf{m} \in \mathbf{M}$, and $\mathbf{m} \in N_r(x)$ for all $\mathbf{r} > 0$. Since M is bounded in X, there exists some N such that $\mathbf{d}(\mathbf{p},\mathbf{x}) \leq \mathbf{N}$ for all $\mathbf{p} \in \mathbf{M}$. Thus $\mathbf{d}(\mathbf{p},\mathbf{m}) \leq \mathbf{d}(\mathbf{p},\mathbf{x}) + \mathbf{d}(\mathbf{x},\mathbf{m}) = \mathbf{N} + \mathbf{r}$. Therefore \overline{M} is also bounded in X. Since \overline{M} is closed and bounded, it is compact in X. Construct an open cover of \overline{M} , $\mathbf{G} = \{G_x | G_x = N_\delta(x), x \in R^k\}$. Then because \overline{M} is compact, and $\mathbf{M} \subseteq \overline{M}$, there is a finite subcover of G over \overline{M} which also covers M. QED
- 6. Let K be some open subset of **R**. Consider G, a collection of disjoint open sets, g, in **R**. Suppose $\bigcup_{g \in G} g = K$. Then $K^c = \bigcap_{g \in G} g^c$.
- 7. Let A and B be nonempty, disjoint, open sets. Assume for contradiction that

A \bigcup B is connected. Then either A $\bigcap \overline{B}$ is nonempty or B $\bigcap \overline{A}$ is nonempty. WLOG, consider $x \in A \cap \overline{B}$. Then $x \in A$ and $x \in \overline{B}$. Since A is open, there is some neighborhood, $N_r(x) \subset A$ (r>0). Since A and B are disjoint, this neighborhood contains no points of B. Therefore $x \notin B$ ' and since $x \notin B$, $x \notin \overline{B}$. Thus $x \notin A \cap \overline{B}$. =><= So A and B must not be connected. QED

- 8. Let K be compact in X where X is a metric space. Let $n \in Z^+$ be given. Let $G_n = \{N_r(x)|g \in X, r=1/n\}$. Then any G_n is an open cover of K, because if $k \in K$, $k \in X$, so any $N_r(k) \in G_n$ contains k, for any n. Since K is compact, there is a finite subcover of G_n over K. QED
- 9. Let A and B be nonempty sets in an ordered space, S. Let $x = \sup A$ and $y = \inf B$, and let $a \le b$ for all $a \in A$ and all $b \in B$. Suppose for contradiction that x > y. WLOG, consider x. Since x > y and $y \le b \in B$, there are two cases: $y < x \le b$ or $y \le b \le x$ ($x \ne y$). Let $y < x \le b$ (for all $b \in B$). Then by definition of infimum, inf B = x. This contradicts the assumption that inf B = y, $y \ne x$. Now consider $y \le b \le x$. Then there are two cases, b < x for all $b \in B$, or $c \le x \le d$ for some arbitrary c and d in B. Let b < x for all b in B. Then $a \le b < x$ for all a in A and all b in B, so by definition of supremum, sup A is some b. This contradicts the assumption that $\sup A = x$. Now consider $c \le x \le d$. Then because $\inf B = y$, $y \le c$. Since $y \ne x$, either y = c < x or $y < c \le x$. Let y = c. Then since c < x and $c \ge a$ for all a in A, $\sup A = c = y$, which contradicts the assumption that $\sup A = x$. Now that I've dispensed with the last of these pesky cases, I have proved that $\sup A \le \inf B$. QED