# システム評価法確立 スキーマとベンチマーク・ プラットフォーム整備の現状

2013/01/21 野村@東工大

#### 目次

- ベンチマークメタデータスキーマ
  - 我々は何を記録するのか
- ・ベンチマークデータ
  - どの性能指標をどう測るのか
    - その性能指標、どれぐらい信用できる?
- ・ 今後の予定



#### アプリベンチマークの目的

- アプリの性能モデルを立てたときに、実際にそれが成り立っていることを確認する
  - 乖離している場合、どういう離れ方をしているか
    - モデルが不十分で考慮していないパラメータがある
    - 何らかの性能劣化要因がある
- 例: SCALE3ミニアプリのカーネル部分の性能モデル
  - FLOPS = システムのメモリバンド幅 / 実効B/F

目標関数

カタログスペック

実測 → How?

– 例えばScalasca+PAPIでメモリアクセス(最外キャッシュミス)とFP演算を計測すれば測れる

# ベンチマークメタデータのスキーマ 我々は何を記録するのか(1)

- ・ 以下の内容を記録し、データベース化する
  - 環境の基礎的なデータ
    - システム名、CPUスペック、ノード数、ノード内CPU数、メモリ容量、アクセラレータ(有無、性能)、キャッシュ階層、ディスク・ファイルシステム、ネットワーク(規格、トポロジ、バンド幅)
  - ベンチマーク実行時の実行環境データ
    - 計測日、コンパイラ、コンパイルオプション、MPIライブラリ
    - コードのチューニングの有無
  - ベンチマークの規模
    - ・ 入力データ、ノード数、プロセス配置(ノード内、ノード間)
  - ベンチマークの結果
    - 性能値(実行時間)、Flops、実効B/F、電力

# ベンチマークメタデータのスキーマ 我々は何を記録するのか(2)

- 記録は多次元のマトリックス状になる
  - マシンの差
  - アプリケーション
  - データサイズ、入力の種類
  - 並列数
  - 性能指標(Time, Flops, Power, I/O, NW...)
- 切り出してVisualizeするツールが必要
  - 任意の面で切ってCSV/Excel/Matlabを吐くような

#### 結果をVisualizeすると何が見えるのか

- 例: Roofline Model
  - 横軸にB/F, 縦軸にFlopsのグラフ
  - メモリバウンドか、計算バウンドか



# ベンチマークデータ どういう性能指標をどう収集するか(1)

- 性能情報はベンチマークデータとしても、アプリ 最適化のための情報としても重要
- ・メモリアクセス
  - 字面上
    - ソースコード解析ツールが利用可能? (交渉中)
  - 実際のアドレス・アクセス数
    - PIN(佐藤先生(JAIST)のフロントエンドあり)で拾える
      - W/Rの別、命令アドレス、データアドレス
      - これを整理するとアクセスパターンやワーキングセットがわかる
  - 実際のキャッシュミス数
    - PAPIその他のカウンタから計測、B/Fはこれで論じないと無意味

# ベンチマークデータ どういう性能指標をどう収集するか(2)

- 浮動小数点演算数
  - PAPIによる計測 → 信頼性はどれぐらいか?
    - ・ 前回のデモ時: あまり正確ではなかった
    - PAPIで取得できるFPのカウンタにはあまり意味のない値を出すものがある(次ページ)
    - FPカウンタに限らず、PAPIによる性能計測では、値の 妥当性検証が必要
  - 字面上の計測
    - ソースコード解析して演算数を測るツールが存在

#### 姫野ベンチにおける各種FPカウンタの値

~papi\_native\_avail イベントの採取例~

|                                      | 「-02」オプション        |                    | 「-03 -xHost」オプション |                   |
|--------------------------------------|-------------------|--------------------|-------------------|-------------------|
|                                      | 単精度版              | 倍精度版               | 単精度版              | 倍精度版              |
| ログ-TIME[s]                           | 14                | 34                 | 14                | 27                |
| ログ-MFLOPS                            | 4, 118            | 1, 615             | 3, 927            | 2, 073            |
| PAPIF_flops (MFLOPS)                 | 18, 700           | 18, 510            | 18, 711           | 18, 650           |
| プログラム中で計算される演算数(単 or 倍)              | 55, 716, 020, 000 | 55, 716, 020, 000  | 55, 716, 020, 000 | 55, 716, 020, 000 |
| (papi_native_avail イベント)             |                   |                    |                   |                   |
| FP_COMP_OPS_EXE:SSE_SINGLE_PRECISION | 16, 742, 390, 000 | 0                  | 17, 761, 350, 000 | 0                 |
| FP_COMP_OPS_EXE:SSE_DOUBLE_PRECISION | 0                 | 35, 637, 460, 000  | 0                 | 31, 867, 180, 000 |
| FP_COMP_OPS_EXE:SSE_FP_PACKED        | 15, 169, 740, 000 | 34, 961, 360, 000  | 14, 365, 210, 000 | 30, 268, 690, 000 |
| FP_COMP_OPS_EXE:SSE_FP_SCALAR        | 1, 572, 644, 000  | 676, 102, 100      | 3, 396, 137, 000  | 1, 598, 487, 000  |
| FP_COMP_OPS_EXE:X87                  | 10                | 9                  | 9                 | 21                |
| FP_COMP_OPS_EXE:MMX                  | 0                 | 0                  | 0                 | 0                 |
| FP_COMP_OPS_EXE:SSE_FP               | 16, 741, 150, 000 | 35, 633, 900, 000  | 17, 756, 580, 000 | 31, 857, 360, 000 |
| FP_COMP_OPS_EXE:SSE2_INTEGER         | 7, 208            | 20, 529            | 12, 055           | 17, 625           |
| SSEX_UOPS_RETIRED:PACKED_SINGLE      | 26, 256, 410, 000 | 774, 192, 000      | 25, 610, 440, 000 | 22, 287, 050, 000 |
| SSEX_UOPS_RETIRED:PACKED_DOUBLE      | 0                 | 27, 528, 980, 000  | 0                 | 27, 090, 260, 000 |
| SSEX_UOPS_RETIRED:SCALAR_SINGLE      | 3, 424, 161, 000  | 0                  | 6, 676, 573, 000  | 0                 |
| SSEX_UOPS_RETIRED:SCALAR_DOUBLE      | 796, 772, 800     | 48, 257, 970, 000  | 385, 483, 200     | 5, 017, 759, 000  |
| INST_RETIRED:X87                     | 3                 | 3                  | 3                 | 3                 |
| INST_RETIRED:MMX                     | 0                 | 0                  | 0                 | 0                 |
| INST_RETIRED: ANY_P                  | 39, 685, 980, 000 | 94, 328, 630, 000  | 39, 573, 730, 000 | 68, 784, 220, 000 |
| INST_RETIRED:TOTAL_CYCLES            | 42, 530, 280, 000 | 126, 116, 900, 000 | 45, 956, 840, 000 | 87, 849, 760, 000 |
| (papi_avail イベント)                    |                   |                    |                   |                   |
| PAPI_FP_INS                          | 16, 742, 830, 000 | 35, 650, 540, 000  | 17, 762, 180, 000 | 31, 866, 210, 000 |
| PAPI_FP_OPS                          | 16, 742, 830, 000 | 35, 650, 540, 000  | 17, 762, 180, 000 | 31, 866, 210, 000 |
| PAPI_SP_OPS                          | 62, 246, 790, 000 | 104, 842, 600, 000 | 60, 847, 480, 000 | 90, 719, 180, 000 |
| PAPI_DP_OPS                          | 15, 168, 520, 000 | 70, 571, 150, 000  | 14, 362, 890, 000 | 62, 077, 790, 000 |
| PAPI_VEC_SP                          | 15, 175, 060, 000 | 34, 956, 320, 000  | 14, 364, 840, 000 | 30, 255, 290, 000 |
| PAPI_VEC_DP                          | 15, 175, 060, 000 | 34, 956, 320, 000  | 14, 364, 840, 000 | 30, 255, 290, 000 |
| PAPI_TOT_CYC                         | 42, 696, 990, 000 | 110, 171, 100, 000 | 45, 242, 480, 000 | 84, 507, 190, 000 |

# ベンチマークデータ どういう性能指標をどう収集するか(3)

- Network
  - Communcation Matrix (VapirTrace)
  - 通信命令数
  - -通信バイト数
  - デモ(MARBLE, 4ノード実行ですが)
- I/O
  - TAUによるI/O計測
  - POSIX I/Oについて、1回あたりのI/Oサイズ分布と I/O命令総数をファイルごとに計測可能

#### 今後の東エ大グループの予定

#### • 年度内:

- 性能変数の確定・計測手法のドキュメント化
- 頂いたアプリのTSUBAMEを用いた大規模実行ベンチマーク
  - 先週の資源量見積もりアンケートに ご協力いただきありがとうございました

#### • 来年度

- アプリケーションの性能モデル確立
- ベンチマークデータリポジトリの整備
  - ・ 任意の軸における切り出し・可視化機構の実装
- ベンチマークデータの取得
  - OpenACC?