20 Accumulation Areas and Distances

Damiam Alfaro

January 1 2024

1 First Part: Areas as Riemann Sums

Goal: Approximate areas using many rectangles with small bases.

Motivation: Understand meaningfully how the areas of some regions may be approximated by summing the areas of rectangles based on the particular regions.

When using the **Right sum evaluation points** we use an asterisk * on the top-right side of each rectangle approached in the graph. E.g If we are approaching a graph with four rectangles from using right sum evaluations [0,1] that means that:

$$x_1^* = \frac{1}{4} \ x_2^* = \frac{2}{4} \ x_3^* = \frac{3}{4} \ x_4^* = \frac{4}{4}$$

Those are the lengths of the rectangles, to get the area we do A = hl. From the aforementioned example, we are using the graph of $f(x) = x^2$, therefore the height of each rectangle is:

Height =
$$f(x_1^*) = f(\frac{1}{4}) = \frac{1}{4}^2 = \frac{1}{16}$$

Base = $\Delta x = \frac{1}{4}$
Area $x_1^* = (\frac{1}{16})(\frac{1}{4}) = \frac{1}{64}$

The base Δx is found by finding the difference between the right endpoint and left point of each interval (rectangle), however, in this case every base of every rectangle is the same.

For x_2^*

Height =
$$f(x_2^*) = f(\frac{2}{4}) = \frac{2}{4}^2 = \frac{1}{4}$$

Base = $\Delta x = \frac{1}{4}$
Area $x_2^* = (\frac{1}{4})(\frac{1}{4}) = \frac{1}{16}$

For x_3^*

Height =
$$f(x_3^*) = f(\frac{3}{4}) = \frac{3}{4}^2 = \frac{9}{16}$$

Base = $\Delta x = \frac{1}{4}$
Area $x_3^* = (\frac{9}{16})(\frac{1}{4}) = \frac{9}{64}$

Lastly, for x_4^*

Height =
$$f(x_4^*) = f(\frac{4}{4}) = \frac{4}{4}^2 = 1$$

Base = $\Delta x = \frac{1}{4}$
Area $x_4^* = (1)(\frac{1}{4}) = \frac{1}{4}$

Therefore, we end up with the sum:

$$R_4 = A_1 + A_2 + A_3 + A_4$$

$$R_4 = \frac{1}{64} + \frac{4}{64} + \frac{9}{64} + \frac{16}{64}$$

$$R_4 = 0.46875$$

Here R_4 stands for **Right Riemann sum** with n = 4, four rectangles.

$$R_n = \frac{1}{6} \left(1 + \frac{1}{n} \right) + \left(2 + \frac{1}{n} \right)$$

Where n is the number of rectangles approached.

We can also use the **Left Points** yielding **Riemann Left Sum** where we will approach a graph using the left corner of each rectangle. Using the same example aforementioned we would have:

$$L_4 = \text{Left Riemann Sum}$$
 $x_1^* = \frac{0}{4} \ x_2^* = \frac{1}{4} \ x_3^* = \frac{2}{4} \ x_4^* = \frac{3}{4}$

This will give an underestimating result because all of the rectangles will be below the function. Therefore, we can also do **Midpoints** yielding **Riemann Midpoint Sum**

$$M_4 = \text{Midpoint Riemann Sum}$$

 $x_1^* = \frac{1}{8} x_2^* = \frac{3}{8} x_3^* = \frac{5}{8} x_4^* = \frac{7}{8}$

Basically you can do it in any random part of the interval (rectangle).

$$x_1^* \in [x_0, x_1]$$
$$x_2^* \in [x_1, x_2]$$
$$x_3^* \in [x_2, x_3]$$
$$x_4^* \in [x_3, x_4]$$

Using summation notation we can write Riemann sums for arbitrary n as

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

And assuming f is non-negative and continuous on [a, b]m the area A under the graph of f and above the x-axis for x from a to b is:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$$
$$\Delta x = \frac{b-a}{n}$$

2 Second Part: Areas and Distances

Motivation: Frequent applicability of computing areas of oddly shaped figures. Computation of distance traveled with non-constant velocity.

Goal: Understand how to use Riemann Sums to approximate areas and distances.

$$[-1,3]$$

$$n = 2$$

$$q(v) = 3v^3 + 5$$

$$\Delta v = \frac{3 - (-1)}{2} = 2$$

a) Left end point approximations

$$2[-3 + 5(3^3) + 5] = 20$$

b) Right end point approximations

$$2[8+3(3^3)+5] = 188$$

c) Midpoint approximations

$$2[5+3(2)^3+5] = 68$$

Distances: Another application of Riemann Sums is the computation of distances. We have a simple formula for distance when velocity is constant over a period of time. I.e a product

Distance = velocity x (change in time)

$$d = v_{constant} * \Delta t$$

Suppose an object moves at a constant velocity v_1 for a period of time Δt_1 and a constant velocity v_2 over a different period of time Δt_2 , the total distance is:

$$d = d_1 + d_2$$
$$d = v_1 \Delta t_1 + v_2 \Delta t_2$$

E.g. For example, if one drives at 30mph for 2 hours and then 75 mph for 3 hours, the total distance traveled is:

$$d = d_1 + d_2$$

$$d = v_1 \Delta t_1 + v_2 \Delta t_2$$

$$d = (30)(2) + (75)(3) = 285$$

If one then drove at 20mph for another hour, the total is

$$d = d_1 + d_2 + d_3$$

$$d = v_1 \Delta t_1 + v_2 \Delta t_2 + v_3 \Delta t_3$$

$$d = (30)(2) + (75)(3) + (20)(1) = 305$$

Math is the solution to all problems. The arduous task is to find and interpret real-life attributes into mathematical variables and form the equation.

-Damiam Alfaro, Fragments