Chapter 1

The Real and Complex Number Systems

1.1 Sets

Definition 1.1 (Set, Member, Empty Set, Nonempty Set, Subset, Proper Subset, Equal Sets)

- If A is any set (whose elements may be numbers or any other objects), we write $x \in A$ to indicate that x is a member (or an element) of A. If x is not a member of A, we write: $x \notin A$.
- The set which contains no element will be called the **empty set**. If a set has at least one element, it is called **nonempty**.
- If A and B are sets, and if every element of A is an element of B, we say that A is
 a subset of B, and write A ⊆ B, or B ⊇ A. If, in addition, there is an element of
 B which is not in A, then A is said to be a proper subset of B.
- If $A \subseteq B$ and $B \subseteq A$, we write A = B. Otherwise $A \neq B$.

Definition 1.2 The set of all rational numbers will be denoted by Q.

1.2 Ordered Sets

Definition 1.3 Let S be a set. An **order** on S is a realtion, denoted by <, with the following two properties:

(i) If $x \in S$ and $y \in S$ then only one of the statements

$$x < y,$$
 $x = y,$ $y < x$

is true.

(ii) If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 1.4 An **ordered set** is a set S in which an order is defined.

Definition 1.5 Successes S is an ordered set, and $E \subseteq S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is **bounded above**, and call β an **upper bound** of E. If there exists a $\gamma \in S$ such that $x \geq \gamma$ for every $x \in E$, we say that E is **bounded below**, and call γ an **lower bound** of E.

Definition 1.6 Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the **least upper bound** of E or the **supremum** of E, and we write

$$\alpha = \sup E$$
.

Suppose there exists an $\beta \in S$ with the following properties:

- (i) β is an lower bound of E.
- (ii) If $\gamma > \beta$ then γ is not an lower bound of E.

Then α is called the **greatest lower bound** of E or the **infimum** of E, and we write

$$\beta = \inf E$$
.

Definition 1.7 An **ordered set** S is said to have the **least-upper-bound property** if the following is true: If $E \subseteq S$, E is not empty, and E is bounded above, then $\sup E$ exists in S.

Theorem 1.1 Suppose S is an ordered set with the least-upper-bound property, $B \subseteq S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S, and $\alpha = \inf B$. In particular, $\inf B$ exists in S.

1.3 Fields

Definition 1.8 A field is a set F with two operations, called **addition** and **multiplication**, which satisfy the following so-called "field axioms" (A), (M) and (D):

- (A) Axioms for addition
 - (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
 - (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
 - (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
 - (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
 - (A5) To every $x \in F$ corresponds an element $-x \in F$ such that

$$x + (-x) = 0.$$

- (M) Axioms for multiplication
 - (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
 - (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.
 - (M3) Multiplication is associative: (xy)z = x(yz) for all $x, y, z \in F$.
 - (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
 - (M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x \cdot \frac{1}{x} = 1.$$

(D) The distributive law

$$x(y+z) = xy + xz$$

holds for all $x, y, z \in F$.

Proposition 1.1 The axioms for addition imply the following statements:

- (a) If x + y = x + z then y = z.
- (b) If x + y = x then y = 0.
- (c) If x + y = 0 then y = -x.

(d)
$$-(-x) = x$$
.

Proposition 1.2 The axioms for multiplication imply the following statements:

(a) If $x \neq 0$ and xy = xz then y = z.

- (b) If $x \neq 0$ and xy = x then y = 1.
- (c) If $x \neq 0$ and xy = 1 then y = 1/x.
- (d) If $x \neq 0$ then 1/(1/x) = x.

Proposition 1.3 The field axioms imply the following statements for any $x, y, z \in F$:

- (a) 0x = 0.
- (b) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.
- (c) (-x)y = -(xy) = x(-y).
- (d) (-x)(-y) = xy.

Definition 1.9 An ordered field is a field F which is also an ordered set, such that

- (i) x + y < x + z if $x, y, z \in F$ and y < z.
- (ii) xy > 0 if $x \in F, y \in F, x > 0$, and y > 0.

If x > 0, we call x **positive**; if x < 0, x is **negative**.

Proposition 1.4 The following statements are true in every ordered field:

- (a) If x > 0 then -x < 0, and vice versa.
- (b) If x > 0 and y < z then xy < xz.
- (c) If x < 0 and y < z then xy > xz.
- (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
- (e) If 0 < x < y then 0 < 1/y < 1/x.

1.4 The Real Field

Theorem 1.2 There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

Theorem 1.3 (Archimedean Property and Density of Q)

(a) If $x \in R, y \in R$, and x > 0, then there is a positive integer n such that

$$nx > y$$
.

(b) If $x \in R, y \in R$, and x < y, then there is a $p \in Q$ such that

$$x .$$

Theorem 1.4 For every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$. This number y is written $\sqrt[n]{x}$ or $x^{1/n}$.

Corollary 1.1 If a and b are positive real numbers and n is a positive integer, then

$$(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}.$$

1.5 The Extended Real Number System

Definition 1.10 The extended real number system consists of the real field R and two symbols, $+\infty$ and $-\infty$. We preserve order in R, and define

$$-\infty < x < +\infty$$

for every $x \in R$. $+\infty$ is an upper bound of every subset of the extended real number system, and that every nonempty subset has a least upper bound. There are three conventions:

(a) If x is real then

$$x + \infty = +\infty,$$
 $x - \infty = -\infty,$ $\frac{x}{+\infty} = \frac{x}{-\infty} = 0.$

- (b) If x > 0 then $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$.
- (c) If x < 0 then $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = +\infty$.

1.6 The Complex Field

Definition 1.11 A **complex number** is an ordered pair (a,b) of real numbers. "Ordered" means that (a,b) and (b,a) are regarded as distinct if $a \neq b$. Let x = (a,b), y = (c,d) be two complex numbers. We write x = y if and only if a = c and b = d. We define

$$x + y = (a + c, b + d),$$
 $xy = (ac - bd, ad + bc).$

Theorem 1.5 These definitions of addition and multiplication turn the set of all complex numbers into a field, with (0,0) and (1,0) in the role of 0 and 1.

Theorem 1.6 For any real numbers a and b we have

$$(a,0) + (b,0) = (a+b,0),$$
 $(a,0)(b,0) = (ab,0).$

Definition 1.12 i = (0, 1).

Theorem 1.7 $i^2 = -1$.

Theorem 1.8 If a and b are real, then (a, b) = a + bi.

Definition 1.13 If a, b are real and z = a + bi, then the complex number $\overline{z} = a - bi$ is called the **conjugate** of z. The numbers a and b are **real part** and **imaginary part** of z, respectively. We shall occassionally write

$$a = \operatorname{Re}(z), \qquad b = \operatorname{Im}(z).$$

Theorem 1.9 If z and w are complex, then

- (a) $\overline{z+w} = \overline{z} + \overline{w}$,
- (b) $\overline{zw} = \overline{z} \cdot \overline{w}$,
- (c) $z + \overline{z} = 2 \operatorname{Re}(z), \ z \overline{z} = 2i \operatorname{Im}(z),$
- (d) $z\overline{z}$ is real and positive (except when z=0).

Definition 1.14 If z is a complex number, its **absolute value** |z| is the non-negative square root of $z\overline{z}$; that is $|z| = (z\overline{z})^{1/2}$.

Theorem 1.10 Let z and w be complex numbers. Then

(a)
$$|z| > 0$$
 unless $z = 0$, $|0| = 0$,

(b)
$$|\overline{z}| = |z|$$
,

(c)
$$|zw| = |z| |w|$$
,

(d)
$$|\operatorname{Re}(z)| \le |z|$$
,

(e)
$$|z+w| \le |z| + |w|$$
.

Theorem 1.11 (Cauchy–Schwarz Inequality) If a_1, \dots, a_n and b_1, \dots, b_n are complex numbers, then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

1.7 Euclidean Spaces

Definition 1.15 For each positive integer k, let R^k be the set of all ordered k-tuples

$$\mathbf{x} = (x_1, x_2, \cdots, x_k),$$

where x_1, x_2, \dots, x_k are real numbers, called the **coordinates** of **x**. The elements of R^k are called points, or vectors, especially when k > 1.

• Addition of vectors

If $\mathbf{y} = (y_1, y_2, \dots, y_k)$ and if α is a real number, put

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_1 + y_1, \cdots, x_k + y_k)$$

so that $\mathbf{x} + \mathbf{y} \in \mathbb{R}^k$.

• Multiplication of a vector by a real number (a scalar)

$$\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \cdots, \alpha x_k)$$

so that $\alpha \mathbf{x} \in \mathbb{R}^k$.

These two operations make R^k into a vector space over the real field.

• Inner product (or scalar product) of vectors

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{k} x_i y_i.$$

• Norm of a vector

$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^{k} x_i^2}.$$

The structure now defined (the vector space \mathbb{R}^k with the above inner product and norm) is called Eulidean k-space.

Theorem 1.12 Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$, and α is real. Then

- (a) $|\mathbf{x}| \ge 0$;
- (b) $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = \mathbf{0}$;

- (c) $|\alpha \mathbf{x}| = |\alpha| |\mathbf{x}|;$
- $(d) |\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|;$
- (e) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$;
- $(f) |\mathbf{x} \mathbf{z}| \leq |\mathbf{x} \mathbf{y}| + |\mathbf{y} \mathbf{z}|.$