https://arxiv.org/pdf/2112.10752.pdf

Stable diffusion based on this! https://github.com/CompVis/stable-diffusion

Background

Decomposing image formation process into sequential application of denoising autoencoders (diffusion), image synthesis

Guiding mechanism to control image generation process without retraining

Currently

- Large likelihood based models (ARM) in autoregressive transformers, billions of parameters -> low resolution
 - mode covering behavior makes them spend excessive amounts of capacity modeling imperceptible details -> High computational cost
- Also likelihood: VAE and flow based sample quality is worse than GANs but can render multi modal
- GAN confined to data with limited variability due to adversarial learning not easily scaling to model complex, multi modal distributions
- Democratizing High Resolution Image Synthesis for DMs
 - Diffusion probabilistic models are also likelihood based models
 - No mode collapse and instability in GANs
 - Parameter sharing so doesn't need billions of parameters
 - Training in pixel space is hard because high computational cost
- Two stage image synthesis which combines the strengths of different methods into more efficient and performant models
 - VQ- VAE: autoregressive to learn prior in latent space
 - VQGANs: first stage with adversarial and perceptual objective to scale autoregressive transformer
 - Computationally expensive scaling

Idea (Latent Diffusion Models)

Training in pixel space is expensive and requires sequential evaluation

- Perceptual compression: removes high frequency details and a bit of semantic variation
 - Theirs is lower dimensional than data space
 - Do not need to rely on excessive spatial compressions
 - Efficient image generation with single network pass as a result
 - o "Universal autoencoding stage": reuse for multiple DM trainings
 - Perceptual loss + patch based adversarial objective
 - Confined to image manifold by enforcing local realism and avoid blurriness introduced by relying solely on pixel space losses
 - KL regularization to avoid high variance latent spaces
 - Mild compression with 2D latent space (previous used 1D, ignored spatial structure)

- Semantic compression: Generative model learns semantic and conceptual composition of data
 - Connects transformers to DM's Unet backbone
 - Denoising Unet with transformers (combine conditioning info with noisy latent space)
- Find a perceptually equivalent but computationally more suitable space (latent)
- Latent space instead with pre trained autoencoders
 - Complexity reduction and detail preservation -> better visual fidelity (focus on semantics)
 - Does not require delicate weighting of reconstruction (autoencoding) and generative (diffusion) abilities
- Prior work needs to learn encoder/ decoder and score based prior Cross attention layers for general conditioning inputs (text, bounding boxes) + synthesis can be possible in a convolutional manner

Explicit separation of compressive from generative learning phase

- Autoencoding model which learns a space perceptually equivalent to image space but reduced complexity
- Exploit inductive bias of DMs (UNet architecture): effective for data with spatial structure and alleviate need for compression

Isn't VQ regularized latent space the 1D space?

 LDMs in VQ latent space achieve better sample quality even though reconstruction quality is worse

Tasks

Image inpainting

- Class conditioned image synthesis
- Text to image, super resolution, etc.

Limitations

- Still require sequential sampling but does reduce computational requirements
- Use of LDMs questionable when high precision is required
 - o Table 5 (section 4.4)