The clauses $\varphi_1, \ldots, \varphi_n$ are called the premisses of the formal proof and φ is the conclusion.

Here is an example of a proof of $\{p, \neg q\}$ from $\{\neg r, p, \neg r'\}$, $\{r, p\}$ and $\{r', \neg q\}$:

1.
$$\{\neg r, p, \neg r'\};$$
 (premiss)

2.
$$\{r,p\}$$
; (premiss)

3.
$$\{\mathbf{r'}, \neg \mathbf{q}\};$$
 (premiss)

4.
$$\{p, \neg r'\};$$
 (B.R., 2, 1, $a = r$)

5.
$$\{p, \neg q\}$$
. (resolution, 3, 4, $a = r'$)

We sometimes also say derivation (by resolution) of φ instead of formal proof of φ . Here is a derivation of the empty clause from $\{p, \neg q\}, q, \neg p$:

1.
$$\{p, \neg q\}$$
; (premiss)

3.
$$\{\neg p\}$$
; (premiss)

4.
$$\{p\}$$
; (B.R., 2, 1, $a = q$)

5.
$$\square$$
. (B.R., 4, 3, $a = p$)

A derivation of \square from $\varphi_1, \ldots, \varphi_n$ is sometimes also called a *refutation of* $\varphi_1, \ldots, \varphi_n$.

Exercise 147. Starting with the same premisses, find a different proof by resolution of \square .

9.4 Soundness

Like natural deduction, resolution is sound. This section shows that this is indeed the case.

Lemma 148. Let $\varphi \in \{\varphi_1, \dots, \varphi_n\}$. We have that

$$\varphi_1, \dots \varphi_n \models \varphi.$$

Exercise 149. Prove Lemma 148.

Lemma 150. Let C, D be two clauses and let $a \in A$ be a propositional variable. We have that

$$C \cup \{a\}, D \cup \{\neg a\} \models C \vee D.$$

Exercise 151. Prove Lemma 150.

Theorem 152 (Soundness of Resolution). If there is a proof by resolution of φ from $\varphi_1, \ldots, \varphi_n$, then

$$\varphi_1,\ldots,\varphi_n\models\varphi.$$

Proof: Let ψ_1, \ldots, ψ_m be a proof by resolution of φ from $\varphi_1, \ldots, \varphi_n$. We will prove by induction on $i \in \{1, 2, \ldots, m\}$ that

$$\varphi_1, \ldots, \varphi_n \models \psi_i.$$

Let $i \in \{1, 2, \dots, m\}$ be an integer. We assume by the induction hypothesis that

$$\varphi_1, \ldots, \varphi_n \models \psi_l \text{ for any } l \in \{1, 2, \ldots, i-1\}$$

and we prove that

$$\varphi_1, \ldots, \varphi_n \models \psi_i.$$

By the definition of a formal proof by resolution, we must be in one of the following two cases:

1. $\psi_i \in \{\varphi_1, \dots, \varphi_n\}$. In this case we have

$$\varphi_1,\ldots,\varphi_n\models\psi_i$$

by Lemma 148, which is what we had to show.

2. ψ_i was obtained by resolution from ψ_j, ψ_k with $1 \leq j, k < i$. In this case, ψ_j must be of the form $\psi_j = C \cup a$, ψ_k must be of the form $\psi_k = D \cup \{\neg a\}$ and $\psi_i = C \cup D$, where C, D are clauses and $a \in A$ is a propositional variable.

By the induction hypotheses that $\varphi_1, \ldots, \varphi_n \models \psi_j$ and that $\varphi_1, \ldots, \varphi_n \models \psi_k$. Replacing ψ_j and ψ_k as detailed above, we have that

$$\varphi_1, \ldots, \varphi_n \models C \cup \{a\}$$

and that

$$\varphi_1, \dots, \varphi_n \models D \cup \{\neg a\}.$$

We prove that

$$\varphi_1, \ldots, \varphi_n \models C \cup D.$$

Let τ be a model of $\varphi_1, \ldots,$ and φ_n . We have that τ is a model of $C \cup \{a\}$ and of $D \cup \{\neg a\}$ by the semantical consequences above. By Lemma 150, it follows that τ is a model of $C \cup D$. But $\psi_i = C \cup D$ and therefore τ is a model ψ_i . As τ was any model of all of $\varphi_1, \ldots,$ and φ_n , it follows that

$$\varphi_1, \ldots, \varphi_n \models \psi_i,$$

which is what we had to prove.

In both cases, we have established

$$\varphi_1, \ldots, \varphi_n \models \psi_i$$

for all $1 \le i \le m$. As ψ_1, \ldots, ψ_m is a proof of φ , it follows that $\psi_m = \varphi$ and therefore, for i = m, we have

$$\varphi_1, \ldots, \varphi_n \models \varphi,$$

which is what we had to prove.

q.e.d.

9.5 Completeness

A proof system must be sound in order to be of any use (otherwise, we could use it to prove something false).

However, it is also nice when a proof system is complete, in the sense of allowing to prove any true statement.

Unfortunately, resolution is not complete, as shown by the following example:

Theorem 153 (Incompleteness of Resolution). There exist clauses $\varphi_1, \ldots, \varphi_n, \varphi$ such that

$$\varphi_1,\ldots,\varphi_n\models\varphi,$$

but there is no resolution proof of φ from $\varphi_1, \ldots, \varphi_n$.

Proof: Let n = 2, $\varphi_1 = p$, $\varphi_2 = q$ and $\varphi = \{p,q\}$. We clearly have that $p,q = (p \lor q)$, but there is no way to continue the following resolution proof:

$$2. \{q\};$$
 (premiss)

3. ...

because there is no negative literal anywhere. Therefore, only p and q can be derived by resolution from p, q.

However, resolution still has a weaker form of completeness called refutational completeness:

Theorem 154 (Refutational Completness of Resolution). If the CNF formula $\varphi_1 \wedge \ldots \wedge \varphi_n$ is unsatisfiable, then there is a derivation by resolution of \square starting from the clauses $\varphi_1, \varphi_2, \ldots, \varphi_n$.

The proof is beyond the scope of the course, but it is not too complicated in case you want to prove it yourself and I recommend this exercise for the more curious minds among you.