!!! © Copyright 2019 Saad Mneimneh !!!

It's illegal to upload this document to any third party website, including any web site where you have a private account, such as dropbox, google drive, google docs, chegg, coursehero, etc...

CSCI 150 Discrete Mathematics Test I example

Saad Mneimneh, Computer Science, Hunter College of CUNY

Problem 1: As simple as you can make it please

(a) (1 point): What is the 417th term in the following sum:

$$\sum_{i=0}^{2018} (3i+2)$$

(b) (1 point) Find

$$\prod_{i=1}^{0} (1 + \frac{1}{i})$$

(c) (1 point) Is it possible to construct a graph with 5 nodes and the following set of degrees $\{1, 2, 3, 4, 3\}$? If Yes, give one. If No, briefly explain why.

(d) (1 point) What is the coefficient of z^3y^4 in the following product? Hint: Replace 1 + z by x first and use a well-known theorem that we studied.

$$\underbrace{(1+z+y)(1+z+y)\dots(1+z+y)}_{\text{10 times}}$$

(e) (1 point) Amy has 127 books (she reads a lot!). In how many ways can she stack them?

Problem 2: A bumpy way

When a ball is dropped as shown above, it moves either Left or Right upon hitting a bump. Let M be the set of paths that bring the ball on its way down to the exact **middle** of the last row, which is possible since the last row has 2n bumps (an even number).

(b) (2 points) Establish a one-to-one correspondence (bijection) between the set M and a special set of binary strings that you must clearly define.

(c) (2 points) Find |M|.

(d) (2 points) How many paths don't bring the ball to the middle of the last row of bumps?

Problem 3: Proof by contradiction

(3 points) Prove by contradiction that a 4×5 rectangle cannot be covered by quatrominos: <i>Hint</i> : Use the coloring idea from the mouse trap example discussed in class, then identify two types of quatrominos based on color.
a quatromino
Problem 4: Counting stuff
(a) (3 points) In a store, you find 3 kinds of postcards. You have 8 friends and you decide to send each a postcard. In how many ways can you do that?
(b) (3 points) In how many ways can we make a 3-letter word (not necessarily found in the dictionary) if the 3 letters must appear in alphabetical order, and the 3-letters are either all the same or all different?
(c) (3 points) A kid has 10 markers of different colors. Each marker has a cap of the same color, but he lost all
the caps. His mother found only 7 of them, and asked him to close the markers to prevent them from drying. In how many ways can he do that? (Note: it's not my son!)
(d) (3 points) We would like to build a tower by stacking 10 cubes. Cubes come in 3 colors: red, green, and blue.
The only requirement is that from base to top, we have to see all three colors in that order: red, green, blue. How many possible towers can we make? <i>Hint</i> : Think about an equation involving 3 variables.