DNA Sequencing techniques

- 1. The "Sanger" Technique
- 2. 2nd generation sequencing (Illumina ™,
 454 ™, Solid™)

3. 3rd generation sequencing (Pacific Bio, Oxford Nanopore)

"Sanger" DNA sequencing

Based on two components

- Electrophoresis on polyacrylamide gel
- Use of dideoxyribonucleotides (ddNTPs)

Sanger DNA sequencing: Principles

3 major differences with a « normal » PCR:

- 1. One single primer (oligonucleotide)
- 2. Robust ADN polymerase (ex : Sequenase)
- 3. NTP mix → dNTPs (large quantity) and ddNTPs (at lower concentration)

Sanger sequencing: Mechanism

Single-stranded Template = Strand that will be read

Radioactive "Sanger" sequencing: Mechanism

Radioactive "Sanger" DNA sequencing: Mechanism

- Each reaction will show the position of the complementary <u>dideoxyribo</u>nucleotides along the strand
- The upper part of the gel represents the extremity of ...
 - ? of the template
 - ? of the strand that has been synthetised

Fluorescent "Sanger" sequencing: Mechanism

- •Mechanism = the same
- •The ddNTPs are labeled with different fluorophores (NOT the dNTPs!)
- •Automation! → **DNA "sequencer"**

Alternatives to Sanger sequencing?

2nd generation DNA sequencing

- Pyrosequencing (454™)
- Polony sequencing (PCR colonies) (Illumina™)

3rd generation sequencing (Not yet in the market) mostly based on single molecule sequencing

Pyrosequencing (454 ™)

Based on Total DNA sequencing

Follows 4 major steps

- 1. Break Total DNA (or cDNA) in small fragments
- 2. Ligate adapters to each newly produced fragment
- 3. Amplification of fragments by PCR
- 4. Parallel sequencing of each newly produced fragment **by luminescence** (Pyro)

How to prepare a 454 ™ library

1. Break Total DNA (or cDNA) → Produce small fragments

A. DNA Extraction

B. Nebulization (or Sonication)

Pyrosequencing (454 ™)

2. Adaptater's ligation

B. Two adapters are ligated and denatured

The adapters **Primer Primer Biotin** В. **DNA fragment**

Attachment on streptavidin beads

Emulsion PCR

Fragments with adapters
+
Streptavidin beads

One fragment per bead

Mixed in a solution that contains Water, Oil, and all the reagents necessary to perform a PCR reaction

Water will form bubbles → PCR MICROREACTORS

Emulsion PCR

Each fragment is amplified on each bead (within each bubble)

Results in the cloning of millions of fragments, all attached on the same bead!

Pyrosequencing

The beads are added into "micro-wells"

One bead per well!

The different beads (i.e. the differents fragments) will be sequenced in parallel

Pyrosequencing: process

Pyrosequençing: process

The DNA polymerase incorporates one complementary nucleotide to the fragments attached to one one bead

→ Release of <u>bi-phosphate</u>

The bi-phosphate is used by the Sulfurylase to produce l'ATP

The Luciferase uses ATP to produce LIGHT (PYRO)

Pyrosequencing: process

The Apyrase degrades the nucleotides that have not been incorporated

The cycle continues, one nucleotide at a time!

The luminescent signal will be proportional to the number of nucleotides that have been incorporated

Pyrosequencing requires highly specialized instrumentation

Genome sequencer GS10 (Roche)

Utility of Pyrosequencing:

- 1. Whole genome "de-novo" sequencing
 - 2. Genome re-sequencing
- 3. Transcriptome sequencing
 - 4. Parallel genotyping

PCR colony sequencing (Illumina™)

Based on sequencing of **total DNA**, fragmented *a priori*

Also requires the ligation of specific adapters

Sequencing done on a solid surface

PCR colony sequencing (Illumina™)

- 6 major steps
- 1. Total DNA (or cDNA) broken into very small fragments
- 2. Double Ligation of adapters to each, newly produced fragment
- 3. Selection of fragments with a specific size (200bp)
- 4. Fragments attached on a solid surface
- 5. Solid-phase PCR → production of PCR colonies (polonies)
- 6. Fragment denaturation and sequencing by fluorescence

Illumina™ library production

- 1. Total DNA (or cDNA) broken into small fragments
- A. DNA extraction

B. Nebulization (or Sonication)

Illumina™ library production

2. Ligation of "UNIVERSAL" Illumina adapters

3. Ligated fragments of a certain size are selected selected

A B

4. Addition of **2 new adapters** by <u>PCR</u>

New adapters added by PCR

Attachment of fragments on solid surface (Glass)

Illumina™ Sequencing

Primer for sequencing

Polymerase

T G
A T CTA C
A C G G T
A T T A C
G C A

Clusters amplifies the Fluorescent signal

Illumina™sequencing

One color for each nucleotide incorporated in the different "clusters"

Requires highly specific equipment, reagents and software

Comparing sequencing technologies that are readily available

"Sanger" sequencing:

- → Maximum sequence length = 1000 nucleotides
- → One single DNA fragment sequenced at a time
- → Requires prior knowledge of the sequence to design primers

Pyrosequencing (454™):

- → Maximum sequence length = 400-600 nucleotides
- → Hundreds of thousands of fragments sequenced in parallel
- → Useful to sequence large chunks of the genome or trascriptomes
- → Doesn't require prior knowledge about the genome sequence, content and structure

PCR Colony sequencing (Illumina™):

- → Maximum sequence length = 100 nucleotides
- → Millions of fragments sequenced in parallel
- → Useful to sequence large chunks of the genome or trascriptomes
- → Doesn't require prior knowledge about the genome sequence, content and structure

Other available Technologies...

SOLID™ sequencing (Sequencing by Oligonucleotide Ligation and Detection - Applied Biosystems):

- → Library production = in-between 454 and Illumina
- → Very "special" way of sequencing each fragment
- → Unique way of reading the sequencing results.

HELICOS™ sequencing:

- → No PCR involved!
- → True, single DNA molecule sequencing. Each fragment is directly sequenced in parallel, without the need to clone it

3rd (4th??) generation DNA sequencing

Pacific Biosiences

- → Single molecule DNA sequencing
- →One DNA molecule + One polymerase!

Oxford Nanopore

- → Single molecule DNA sequencing
- →One DNA molecule + One polymerase!

Genome Assembly

Shotgun method

The « Shotgun » method and vector library

Complete genome: 2 Mb (very small)

DNA broken into 1.0-2.0 kb fragments

Insertion into plasmids

Random sequencing of clones with universal primers

Library including overlapping clones

Sequence assembly

- The different sequences obtained have to be assembled into larger fragments
- → We use the « overlap » in sequence between different clones

Genome assembly – the contigs

- The assembly of sequence fragments into contigs is done using bioinformatics (in silico)
- Contigs = same concept for all sequencing technologies

Genome assembly – the contigs

Contig 1 = 13Kb = region X of the genome

Contig 2 = 50 kb = region Y of the genome

Why the contigs dont include entire chromosomes?

- Some regions are absent from our library they have not been included in the vector (probability)
- 2. Some regions are highly repeated (99% of the cases) = PUBLIC ENEMY NUMBER ONE (...for assemblers!)

Repeated regions create identical contigs!

Software for assemblies don't know where to place them

Many regions are repeated in TANDEM → even worse than normal repetitions!

1. PCR → with all possible combinations of primers

- 2. Clone and sequence much longer regions of the genome

 → Increase the probability that a repeated region is already included in the clone
- > Increase the chances of having an overlap

Contig 1 = 13kb = region X of the genome Contig 2 = 50 kb = region Y of the genome

= 2 kpbs = not long enough to link the contigs *in silico*

- 2. Clone and sequence much longer regions of the genome

 → Increase the probability that a repeated region is already included in the clone
- → Increase the chances of having an overlap

Contig 1 = 13kb

Contig 2 = 50 kb

= region X of the genome = region Y of the genome

Genome assembly and short reads (454 ™, Illumina ™)

3. Paired-Ends or Mate-Pairs:

→ Gives information on the physical distance between **2 sequences** of 2nd génération (454 ou Illumina)

The different fragments are "tagged" and sequenced from both extremities.

→ Distance between the sequences obtained is known, because we select fragments of a given size before sequencing (ex: 200pbs)

Closing a sequence gap

Fragments from different types of libraries (plasmid, bacteriophage, 454, Illumina, etc....)

Genome assembly and short reads (454 ™, Illumina ™)

2000 PCRs later... (+ analyses in silico)

Complexity of the assembly

Genomic Survey of the Non-Cultivatable Opportunistic Human Pathogen, *Enterocytozoon bieneusi*

Donna E. Akiyoshi^{1.9}*, Hilary G. Morrison^{2.9}, Shi Lei¹, Xiaochuan Feng¹, Quanshun Zhang¹, Nicolas Corradi⁵, Harriet Mayanja³, James K. Tumwine⁴, Patrick J. Keeling⁵, Louis M. Weiss⁶, Saul Tzipori¹

Research

Open Access

Draft genome sequence of the *Daphnia* pathogen *Octosporea bayeri*: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions

Nicolas Corradi*, Karen L Haag^{†‡}, Jean-François Pombert*, Dieter Ebert^{*†} and Patrick J Keeling^{**}

ARTICLE

Received 1 Jun 2010 | Accepted 25 Aug 2010 | Published xx xxx 2010

DOI: 10.1038/ncomms1082

The <u>complete sequence</u> of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis

Nicolas Corradi^{1,*,†}, Jean-François Pombert^{1,*}, Laurent Farinelli², Elizabeth S. Didier³ & Patrick J. Keeling¹