ゼミノート #2

Sites and Sheaves

七条彰紀

2018年10月26日

1 Motivation.

scheme, stack 等には以下のような包含関係がある.

最終的にセミナーを通じて我々が定義したいのは algebraic stack であるが、今回はそれよりも定義が簡素な "space" を定義する. 先に space の定義文を示そう.

定義 **1.1** (Space, [1] p.26)

S:: scheme とする. Space over S (or S-space) とは、big etale site over S 上にある、集合の sheaf である.

ここに現れる "big etale site"と "big etale site 上の sheaf"を以下で定義する. さらに sheaf の射について 幾つか定義をすれば、algebraic space まで定義できる.

定義だけでは space の local は性質を調べる手段がないため、次回は「高次版の sheaf の貼り合わせ」と呼べる "Descent theory"を学ぶ.

2 Definitions : Sites.

以下で導入する Grothendieck topology は、「Sheaf を定義するのに必要な位相空間の定義を抽出し、圏論的に一般化したもの」である。X:: toplological space とし、sheaf on X の定義を見なおしてみよう。すると、sheaf on X は次に挙げるもののみを用いて定義されていると分かる。

- 1. X の開部分集合と包含写像が成す圏.
- 2. 開部分集合 $U \subseteq X$ の open covering.
- 3. 同じく U の open covering :: $\{U_i\}_i$ が与えられたときの族 $\{U_i \cap U_j\}_{i,j}$

そこで次のように定義する.

定義 2.1 (Grothendieck Topology)

 ${\bf C}$:: cateogory について、 ${\bf C}$ 上の Grohendieck topology は任意の $X\in {\bf C}$ に ${\bf C}$ の射の集まり $\{X_i\to X\}_{i\in I}$ の集まり (collection of collections) を対応させる Cov で構成される。 さらに、Cov は以下を満たすように要請される。

- (a) $X' \to X$:: iso ならば $\{X' \to X\} \in \text{Cov}(X)$.
- (b) $\{U_i \to U\} \in \text{Cov}(U), V \to U \in \mathbb{C} \text{ kov}, \{U_i \times_U V \to V\} \in \text{Cov}(V).$
- (c) $\{U_i \to U\}_i \in \operatorname{Cov}(U)$ をとり、さらに各 i について $\{V_{i,j} \to U_i\}_j \in \operatorname{Cov}(U_i)$ をとる。この時、合成も Cov に入っている: $\{V_{i,j} \to U_i \to U\}_{i,j} \in \operatorname{Cov}(U)$.

注意 2.2

ここで「集合」ではなく「集まり」という言葉を用いたのは、これらが集合ではない可能性があるからである。この問題(圏論でもしばしば現れる)を取り扱うためには、2 つの解決策がある。1 つ目は Grothendieck の宇宙公理 U を ZFC 公理系に加えた ZFCU 公理系で議論を行うことである。もう 1 つは真のクラスを扱える NBG 公理系で議論を行うことである。

後者の方針を採用する場合は、Grothendieck topology の定義で現れた「集まりの集まり」という言葉に注意が必要である。というのも、たとえ NBG 公理系でも、真のクラスを要素に持つ真のクラスは許されていないからである。この問題を解決するには以下のように Cov を定義すれば良い(以下のように書き換えれば良いという事がわかれば十分なので、実際に以下の定義を採用することはない):

全ての $U \in \mathbb{C}$ について $\mathrm{Cov}(U)$ は codomain が U である射のクラスである.任意の要素 $[V \to U] \in \mathrm{Cov}(U)$ についてこの要素を含む $\mathrm{Cov}(U)$ の部分クラス $\{U_i \to U\}_i \subset \mathrm{Cov}(U)$ が存在し,以下が成立する.(以下略).

Cov の元には大抵,以下の条件が課される.

定義 2.3 ((Jointly) Surjective Family)

ある圏の射の集まり $\{U_i \to U\}_i$ について,

$$\bigsqcup_{i} U_{i} \to U$$

が surjective である時、(同値な条件として、 $\operatorname{im}(U_i \to U)$ の set-theoritic union が U に等しい時、) この集まり $\{U_i \to U\}$ を (jointly) surjective family という.

定義 2.4 (Site)

圏 C と C 上の Grothendieck topology :: Cov の組を site と呼ぶ. site に対し、その部分である圏を the underlying category と呼ぶ. しばしば Cov を略して C のみで site を表す.

定義 2.5 (Localized Site.)

site :: \mathbf{C} と $X \in \mathbf{C}$ について,localized site :: \mathbf{C}/X を以下のように定義する.

 \mathbf{C}/X の underlying category は slice cageory $:: \mathbf{C}/X$ である. したがって対象は \mathbf{C} 内の X への射である. Grothendieck topology $:: \mathbf{Cov}$ は,

$$\{[U_i \to X] \to [U \to X]\}_i \in \text{Cov}([U \to X]) \implies \{U_i \to U\} \in \text{Cov}(U).$$

のように定められる.

定義 2.6 (Diagrams (or Comma Site).)

 Δ :: category, ${\bf C}$:: site, $F:\Delta^{op}\to {\bf C}$:: functor とする. この時 site :: ${\bf C}_F$ を以下のように定める. まず undrelying category は $({\rm id}_{\bf C}\downarrow F)$ である. したがって対象は $X\to F(\delta)$ $(\delta\in\Delta)$ である. Cov は以下のように定める.

$$\left\{ \begin{array}{c} X_i' \xrightarrow{f_i^{\flat}} X \\ \downarrow & \downarrow \\ F(\delta_i) \xrightarrow{F(f_i)} F(\delta) \end{array} \right\} \in \operatorname{Cov}([X \to F(\delta)]) \implies f_i \colon \delta \to \delta_i \ :: \ \text{iso. and} \ \{f_i^{\flat} \colon X_i' \to X\} \in \operatorname{Cov}(X).$$

定義 2.7 (Continuous Functor.)

 \mathbf{C}, \mathbf{C}' :: sites とする. $f: \mathbf{C} \to \mathbf{C}'$:: functor が continuous とは、以下の 2 つが成立すること:

1. 任意の $X \in \mathbb{C}$ と $\{U_i \to X\}_i \in \text{Cov}_{\mathbb{C}}(X)$ について,

$$\{f(U_i) \to f(X)\}_i \in \operatorname{Cov}_{\mathbf{C}'}(f(X))$$

となる.

2. \mathbf{C} の任意の射 $X_1 \to Y, X_2 \to Y$ について、fiber product :: $X_1 \times_Y X_2$ が \mathbf{C} に存在するならば、

$$f(X_1 \times_Y X_2) \cong f(X_1) \times_{f(Y)} f(X_2).$$

注意 2.8

後に示すように, continuous functor はよくあるケースで category of sheaves on site の間の関手を誘導する. これは scheme の間の continuous map \vec{m} category of sheaves on scheme の間の関手 (e.g. inverse image functor, direct image functor) を定めるのと同じである.

3 Examples : Sites.

3.1 Site.

例 **3.1** (Classical topology.)

X:: topological space とし、O(X) を以下のような圏とする.

対象 X の開集合.

射 包含射.

この時, $U \in O(X)$ の covering :: Cov(U) を, U への包含射のみから成る jointly surjective family の集合^{†1} とする.

以上で定まる site :: (O(X), Cov) は通常の topology を Grothendieck topology の枠組の中で再現している.

以下で主に用いるのは、C が slice category :: \mathbf{Sch}/X ($X \in \mathbf{Sch}$) の部分圏であるような site である. $X \in \mathbf{Sch}$ に対して、このような site は underlying category ($\subset \mathbf{Sch}/X$) と Grothendieck topology (Cov) からなるから、以下の図の (a) $U \to X$, (b) $U_i \to U$ がどのようなものであるか定めれば定義できる.

 $^{^{\}dagger 1}$ 包含射の個数は高々 $2^{\# X}$ 以下の濃度なので、family の集まりは集合.

すなわち,以下の未完成な定義文をテンプレートとする,一連の定義文の群がある.

定義 **3.2** (*** site)

X :: scheme について, 圏 \mathbf{C} を以下で定める.

対象 (a) である射 $U \to X$.

射 二つの対象の間の射 $[U \to X] \to [U' \to X]$ は,X-morphism :: $U \to U'$.

 $[U \to X] \in \mathbf{C}$ に対して、 $\mathrm{Cov}(U)$ を (b) である射の集まり $\{U_i \to U\}_i$ であって jointly surjective family であるものの集まりとする.

以上の ${\bf C}$ と Cov からなる site を *** site of X と呼ぶ.

Grothendieck topology の定義から分かるとおり、性質 (b) が stable under base change & composition

であれば、以上のテンプレートは site の定義文と成る.

定義 3.3

以上の定義文テンプレートを用いて, (a), (b) と各 site の定義を以下のように対応させる. (a) が "-"とある 箇所は「**Sch**/X の任意の射」を意味する. さらに, "open inclusion"は Zariski 開集合の間にある包含射のことである(したがって small Zariski site の underlying category には Zariski 開集合しか無い).

***	small Zariski	big Zariski	small etale	big etale
(a)	open immersion	_	etale	_
(b)	open immersion	open immersion	etale	etale
* * *	lisse-etale	smooth	fppf	fpqc
(a)	smooth	smooth	-	_
(b)	etale	smooth	flat&locally of finite presentation	flat&quasi-compact

図の再掲:

$$(\mathsf{b}) = \left\{ \begin{array}{c} U_i \\ \downarrow \\ U \end{array} \right\} \in \mathrm{Cov}(U)$$

$$(\mathsf{a}) = \left\{ \begin{array}{c} \mathrm{Cov}(U) \\ \downarrow \\ X \end{array} \right\} \in \mathrm{Obj}(\mathbf{C})$$

注意 3.4

"fppf"は "fidèlement plate de présentation finie" (仏語) すなわち "faithfully flat and of finite presentation" の略である. flat& locally of finite presentation ならば実際にこのように成る. 同様に "fpqc"は "fidèlement plat et quasi-compact" (仏語) すなわち "faithfully flat and quasi-compact"の略である.

定義 3.5*** site of X の記号を以下のように定める.

***	small Zariski	big Zariski	small etale	big etale
名前	Zar(X)	ZAR(X)	$\operatorname{Et}(X)$	$\mathrm{ET}(X)$
* * *	lisse-etale	smooth	fppf	fpqc
名前	Lis- $\mathrm{Et}(X)$	Sm(X)	$\operatorname{Fppf}(X)$	$\operatorname{Fpqc}(X)$

[2] では big Zariski site of X を (Sch/X) $_{Zariski}$ などと書く.

3.2 Continuous Functor.

例 3.6

X,X':: topological space について、O(X),O(X'):: classical site, $f\colon X\to X'$::continuous map とする. この時、 $f^{-1}\colon O(X')\to O(X)$:: continuous functor. (f は必ずしも continuous functor でないことに注意.)

注意 3.7

 $f: \mathbf{C} \to \mathbf{C}'::$ functor between sites が continuous であるための条件を再掲する.

1. 任意の $X \in \mathbb{C}$ と $\{U_i \to X\}_i \in \text{Cov}_{\mathbb{C}}(X)$ について,

$$\{f(U_i) \to f(X)\}_i \in \text{Cov}_{\mathbf{C}'}(f(X))$$

となる.

2. **C** の任意の射 $X_1 \to Y, X_2 \to Y$ について, fiber product :: $X_1 \times_Y X_2$ が **C** に存在するならば,

$$f(X_1 \times_Y X_2) \cong f(X_1) \times_{f(Y)} f(X_2).$$

例と照らし合わせると、1 つめの条件は f^{-1} が開集合を開集合に写すことに対応し、2 つめの条件は f^{-1} が \cap と交換することと対応する.

例 3.8

従属関係

open immersion
$$\implies$$
 etale \implies fppf

があるから、inclusion map :: $\operatorname{Zar}(X) \hookrightarrow \operatorname{ET}(X) \hookrightarrow \operatorname{Fppf}(X)$ はそれぞれ continuous.

例 3.9

flat morphism :: $f: X \to Y$ をとり、f による pullback functor を P_f とする. (TODO: 要確認.)

4 Definitions: Sheaves.

定義 4.1 (Sheaf, Topos, Morphism of Topoi.)

- (i) site :: S 上の presheaf とは、functor :: \mathcal{F} : $S^{op} \to \mathbf{Sets}$ のことである.
- (ii) 射影 $U \times_B V \to U$ を presheaf :: \mathcal{F} で写した射を $\operatorname{res}_U^{U \times_B V}$ と書く.
- (iii) presheaf on S :: $\mathcal F$ が sheaf であるとは、以下の図式が equalizer diagram であるということ.

$$\mathcal{F}(U) \longrightarrow \prod_{i \in I} \mathcal{F}(U_i) \Longrightarrow \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \times_U U_j)$$

ここで右の並行射は $\operatorname{res}_{U_i}^{U_i imes U_j}, \operatorname{res}_{U_j}^{U_i imes U_j}$ である.

- (iv) Site :: $S \perp \mathcal{O}$, 圏 $\mathbf{C}(=\mathbf{Sets}, \mathrm{Rings}, \mathrm{AbGrp}, \dots)$ への presheaf の圏を $\mathbf{PSh}(S, \mathbf{C})$, sheaf の圏を $\mathbf{Sh}(S, \mathbf{C})$ と書く. $\mathbf{C} = \mathbf{Sets}$ の場合は略して $\mathbf{Sh}(S)$, $\mathbf{PSh}(S)$ と書く.
- (v) morphism of shaeves :: $\mathcal{F} \to \mathcal{F}'$ とは、natural transformation のことである.

- (vi) T :: category が topos であるとは、category of sheaves of sets on a site と圏同値であるということである。
- (vii) T,T' :: topoi とする. morphism of topoi :: $f:T\to T'$ とは、以下の 3 つの射 (2 functor and 1 isomorphism.) からなる.

$$f_*: T \to T', \quad f^*: T' \to T, \quad \phi: \operatorname{Hom}_T(f^*(-), -) \xrightarrow{\cong} \operatorname{Hom}_{T'}(-.f_*(-)).$$

注意 4.2

上で定義した sheaf of sets と同様に、sheaf of abelian groups, sheaf of rings、... が定義できる. これらはそれぞれ sheaf of sets の圏 :: Sh(C, Sets) における abelian group objects, ring objects、... と定義される.

注意 4.3

"Topos"はギリシャ語で「場 (place)」を意味する. ギリシャ語なので複数形は "topoi".

X:: scheme について,X に関する topos を X_{et}, X_{ET}, \ldots などと書く.著者(例えば [2])によってはこれらの記号を \mathbf{Sch}/X を underlying catgory とする site に用いる.しかし "Grothendieck's insight is that the basic object of study is the topos, not the site." (M.Olsson "Stacks") というということから,topos に site より簡単な記号を与えるのは理解できることである.

定義 4.4 (Direct Image Functor.)

 $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, $F \in \mathbf{PSh}(\mathbf{C})$ について

$$f_*F(-) := F(f(-))$$

とおくと, $f_*F \in \mathbf{PSh}(\mathbf{C}')$ が得られる. f :: continuous functor ならば, $\mathcal{F} \in \mathbf{Sh}(\mathbf{C})$ に対し同様にして $f_*\mathcal{F} \in \mathbf{Sh}(\mathbf{C}')$ が得られる.

定義 4.5 (Ringed Topos.)

- (i) T:: topos と T の ring object:: Λ を合わせて ringed topos と呼ぶ.
- (ii) morphism of ringed topoi :: $(f, f^{\#}): (T, \Lambda) \to (T', \Lambda')$ $\exists x, f$
 - morphism of topoi :: $f = (f_*, f^*, \phi) : T \to T' \succeq$,
 - morphism of ring in T' :: $f^\#:\Lambda'\to f_*\Lambda$ の組である.

5 Examples: Sheaves.

例 5.1

X:: scheme と、 \mathbf{Sch}/X の部分圏を underlying category とする site :: $\mathbf{C}(e.g. \text{ small/big Zariski site})$ について、 $\underline{X}(-) = \mathrm{Hom}_{\mathbf{C}}(-,X)$ で functor :: $\underline{X}: \mathbf{C} \to \mathbf{Sets}$ を定める. この時、 $\underline{X}::$ presheaf on \mathbf{C} . 特に、後に示すとおり、fppf toplogy より荒い位相 (e.g. Zariski, smooth, etale, ...) で sheaf となる.

例 5.2 (Constant (Pre)sheaf.)

C:: site とし、以下のように presheaf on C:: \mathcal{F} を定める.

$$\mathcal{F} \colon \emptyset \neq U \mapsto \mathbb{R}, \qquad \emptyset \mapsto \{0\}.$$

constant presheaf on a scheme が sheaf でないのと全く同じ理由で、この $\mathcal F$ は sheaf でない. 具体的には $U\in \mathbf C$ が連結でない scheme ならば、 $U_1\sqcup U_2=U$ なる covering を取ると、定義にある diagram が equalizer diagram にならない.

例 5.3

S:: scheme について、 \mathbf{Sch}/S 上の presheaf を

$$\mathcal{O}_S \colon [X \to S] \mapsto \Gamma(X, \mathcal{O}_X)$$

で定める. この sheaf は "structure sheaf of S" と呼ばれ, $\underline{\mathbb{A}^1_S}$ と同型.

参考文献

- [1] Toms L.Gmez. Algebraic stacks. https://arxiv.org/abs/math/9911199v1, 1999.
- [2] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.