Visual Computing – Farbe und Farbräume

Yvonne Jung

Farbe

- Was ist Farbe, und wie würden Sie sie speichern?
- Physik: Reflektiertes Licht

Z.B. blaue Farbe absorbiert Licht aller Spektralbereiche außer um 450 nm

Farbe und Wellenlänge

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED S

- Licht ist elektromagnetische Strahlung
- Ausbreitung von Licht in alle Richtungen
 - Erfolgt in Wellen; Energie wird mittels Photonen transportiert
- Licht üblicherweise nicht monochromatisch (einfarbig), sondern wird durch Spektralverteilung $E(\lambda)$ beschrieben
 - Ist Kombination vieler Wellenlängen (→ Spektrum)

Elektromagnetische Strahlung

- Monochromatisches Licht beschrieben durch Angabe von Frequenz f
 - Bzw. Wellenlänge λ
 - Für beide Größen gilt wieder Beziehung $\lambda = \frac{c}{f}$
 - Mit Lichtgeschwindigkeit $c \approx 3 \cdot 10^8 \frac{m}{s}$ im Vakuum

Typische Leuchtdichten

Anmerkungen:

- Raumwinkel erweitert Konzept des Bogenmaßes (Radiant, rad) auf 3D (Steradiant, sr)
 - Flächenstückchen auf Einheitskugel
- Def. Basiseinheit Candela:
 - Lichtstärke einer Strahlungsquelle, die in einer bestimmten Richtung monochromatisches Licht der Vakuum-Wellenlänge 555nm aussendet mit Strahlstärke 1/683 W/sr
- Lichtstärke I gemessen in Candela (Lichtstrom Φ pro Raumwinkel: cd=lm/sr)
- Leuchtdichte (luminance, [cd/m^2]):
 L = dI / (dA · cos(α))
 - Beschreibt Helligkeit von flächenhaften Lichtquellen
- Lichtstrom Φ (luminous flux) bezieht sich auf Auge und berücksichtigt dessen wellenlängenabhängige Empfindlichkeit
 - Wahrgenommene Lichtmenge pro Sekunde ([Φ] = lm)

Menschliches Auge

- Durch Linse gebrochenes Licht fällt ins Auge
 - Brennpunkt ist Ort des schärfsten Sehens
- Lichtenergie umgewandelt in neuronale Reize
 - Netzhaut enthält dazu Stäbchen und Zapfen
 - Höhere Auflösung für Helligkeit als für Farbe
 - Kanten werden besser anhand der Helligkeit erkannt
 - Unterschiedliche Auflösung für verschiedene Farben
 - Besonders schlecht: Blau
 - Farbabhängige Helligkeitsempfindung
 - Grün wirkt heller, blau dunkler
- Verarbeitung der Reize durch Gehirn
 - Farb-/Helligkeitsempfinden auch von Umgebung beeinflusst

Stäbchen und Zapfen (Farbsehen)

- Nachtsehen (skotopisch): Staebchen (R)
 - Rods (Stäbchen) außerhalb Fovea Centralis
 - Kein Farbsehen und geringere Sehschärfe
- Tagsehen (photopisch): Zapfen
 - Hellempfindung der Zapfen im Bereich von 555 nm (gelbgrün) am größten

• Fotometrische Größen durch Gewichtung radiometrischer Größen mit spektraler Hellempfindlichkeitskurve $V(\lambda)$

- Beantwortet, wie hell etwa Tisch erscheint oder Lampe leuchtet
- 10% S-Rezeptoren: Blau
- 48% M-Rezeptoren: Grün
- 42% L-Rezeptoren: Rot

Was ist Farbe?

- Physikalische Sicht
 - Spektralfarben = "Regenbogenfarben" (eine Wellenlänge)
 - Frequenz f in Hz bzw. Wellenlänge λ zw. 380 u. 780 nm
 - Rest: Überlagerung mehrerer Frequenzen (reale Farben entsprechen Frequenzspektrum)
- Physiologische Sicht
 - Jeder Farbeindruck (Farbvalenz) durch Mischung aus max. 3 Grundgrößen eindeutig reproduzierbar (1. Grassmansches Gesetz, 1853)
 - Visueller Apparat: Drei Primärvalenzen entsprechend der drei Zapfentypen
 - Metamerie
 - Zwei Farbreize sind gleich, falls Erregungszustände der Farbzapfen gleich sind (können durch unterschiedliche Spektren erzeugt werden)
- Psychologische Sicht
 - Rot z.B. bedeutet in unserem Kulturkreis Anhalten, Gefahr, Fehler, Alarm, Hitze

Rechnen mit Farben

- Farben als Vektoren eines 3D-Vektorraumes auffassbar
 - Vektoren des Farbraums heißen Farbvalenzen (Farbeindruck)
 - Lassen sich aus drei Primärvalenzen zusammensetzen.
 - → Hirn wertet Reizantwort der drei Farbrezeptoren aus
 - Länge des Vektors heißt Farbwert (Maß für Leuchtdichte L)
 - Richtung bestimmt Farbart
- Primärvalenzen: drei linear unabhängige Basisvektoren
 - Linear unabhängig: keine Primärvalenz darstellbar durch Mischen der anderen
 - Mit Farbvalenzen kann man wie mit Vektoren rechnen
 - Eigenschaften: Linearität, Additivität...
 - Damit Umrechnung der Darstellung bzgl. verschiedener Primärvalenztripel möglich (Basiswechsel)
 - Erlaubt Umrechnung zwischen verschiedenen Farbmodellen

Darstellung in Farbtafel

h_da

- Spektralfarben auf Bogen
 - Rot-Blau-Mischung auf Purpurlinie
- Ordnungsprinzip
 - Mischfarben liegen auf Verbindungsgeraden
 - Farbtafel berücksichtigt nicht Luminanz (Helligkeit)
 - Dreieck umschließt mögliche Mischfarben aus 3 Primärvalenzen (innere Farbmischung)
 - Gleichung auf Basis der (zunächst beliebigen, aber i.d.R. technisch gegeben) Primärvalenzen R, G, B
 - F = rR + gG + bB
 - Farbwerte r, g, b durch Experiment gewonnen
 - Werden verändert, bis Farbton getroffen wird

Farbmodell RGB

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

- Mischung von farbigem Licht
 - Grundfarben Rot, Grün, Blau (technisches Farbmodell)
 - Additive Farbmischung
 - Innere Farbmischung (Koeffizienten immer positiv)
 - Projektion der Primärvalenzen auf dieselbe Fläche
- Einsatzgebiete
 - Wiedergabe über Monitor
 - Valenzen durch Leuchtstoffe bestimmt
 - Aufnahme mit Kamera
 - Valenzen durch Farbfilter bestimmt
- 3D-Farbraum mit kartesischen Koordinaten
 - Mischung entspricht vektorieller Addition

RGB-Farbraum

- 3D-Farbraum Koordinatenwerte liegen zwischen 0 und 1 (bei float) bzw. 0 bis 255 (uint8_t)
- Farbe auf der Oberfläche des Würfels oder im Inneren
- Farbe wird durch einen 3D Vektor beschrieben: Farbe = [r, g, b]^t
 - Beispiel: Rot = $(1, 0, 0)^{t}$
 - Ursprung (geringste Helligkeit): Schwarz (0, 0, 0)^t
 - Maximale Helligkeit?
- Zusammensetzung einer Farbe durch additive Farbmischung
 - Gelb = Rot + Grün = $(1,0,0)^t + (0,1,0)^t = (1,1,0)^t$
 - Blasses Gelb $\approx (0.5, 0.5, 0)^{t}$
 - Weiß = Rot + Grün + Blau = (1,1,1)^t
 - Magenta = $(1,0,1)^t$
 - Mausgrau $\approx (0.42, 0.42, 0.42)^t \odot$

RGB-Monitor

- Farbe durch additive Mischung der Farben Rot, Grün, Blau
 - Schwarz = (0,0,0)
 - Weiß = (255,255,255) *
 - R = (255,0,0), G = (0,255,0), B=(0,0,255)
- Jeder Rasterpunkt besteht aus drei Bildpunkten
 - Beschränkte Ortsauflösung des Auges führt zur Wahrnehmung als ein Farbreiz
- Pixel besteht aus RGB-Tripel
 - Pro Komponente i.d.R. 8 Bit (unsigned char), damit 28 = 256 Stufen
 - 24 Bit, d.h. insgesamt 256³ (ca. 16 Mio.) mögl. Farbkombinationen

* bzw. (1.f, 1.f, 1.f), falls auf [0, 1] (und damit Float-Werte) normiert

Spektralvalenzkurve

Übung 1

- Das Bild wurde je in einen Rot-, Grün- und Blaukanal zerlegt
 - Welche Farbe hat der Schriftzug "EVERGLADES"?
 - Welche Farben haben der Himmel, die Sonne und der Vogel?

Was sagen Farbwerte von Fotos aus?

- Dreidimensionale Bewertung von Lichtspektren durch sog. Sensorantwortkurve d. Kamera
 - Antwortkurven geräteabhängig, RGB-Werte verschiedener Kameras daher nicht miteinander vergleichbar
 - Nicht identisch zur menschl. Farbwahrnehmung
 - Zur Normierung Umrechnen in Farbsystem wie XYZ, das theor. alle Farben darstellen kann

CIE XYZ

Farb-Gamut

- Gamut: Menge aller Farben, die Gerät (Monitor,
 Drucker, Kamera...) darstellen bzw. aufzeichnen kann
 - Bereich im Farbraum, der mit Gerät durch innere Farbmischung verfügbar ist
 - Innerhalb Spektralvalenzkurve
- Nicht alle Geräte können gleiche Farben darstellen
 - Farben erscheinen auf verschiedenen Geräten unterschiedlich
 - Drucker hat i.d.R. kleineren Farbraum als Monitor
 - Software, die dafür sorgt, dass Bildschirmfarben möglichst äquivalent gedruckt werden, heißt Farbmanagementsystem

Farbmodell CMY(K)

- Mischung von Farbstoffen (Farbfiltern)
 - Grundfarben: Cyan, Magenta, Yellow (u. ggfs. blacK)
- Subtraktive Farbmischung
 - Beleuchtung mit weißem Licht
 - Cyan absorbiert R, reflektiert G und B
 - Magenta absorbiert G, reflektiert R und B
 - Yellow absorbiert B, reflektiert R und G
- Mischung von CMY ergibt (fast) Schwarz
 - Schwarz als 4. Grundfarbe wegen Unsauberkeit
- Einsatzgebiet: Wiedergabe über Drucker
 - Probleme: geringere Farbsättigung als Bildschirm, schlechtere Dosierbarkeit
 - Weißes Papier reflektiert bei guter Qualität i.A. alle Farben
- Zum RGB-Würfel komplementäres Modell
 - $(R,G,B) = (1.f, 1.f, 1.f)^* (C,M,Y)$
 - $(C,M,Y) = (1.f, 1.f, 1.f)^* (R,G,B)$
 - Komplementärfarben: Farben, die sich im RGB-Farbwürfel gegenüber liegen

Bei CMYK-Modell wird schwarz (black) als vierte Komponente hinzugefügt, womit Kontraste verbessert werden

Schwarz = $(1,1,1)^{t}_{CMY} = (0,0,0,1)^{t}_{CMYK}$

* bzw. (255,255,255), falls

nicht auf [0, 1] normiert

RGB und CMY im Vergleich

Licht fügt Farbanteile hinzu:

- Bsp.: drei Lampen leuchten im Dunkeln je in rot, grün, blau
- Addition von Farbspektren

Pigmente entfernen Farbanteile:

- Bsp.: Farbe gelb, cyan, magenta auf weißes Papier pinseln
- Multiplikation von Farbspektren

$$\left[\begin{array}{c} C \\ M \\ Y \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] - \left[\begin{array}{c} R \\ G \\ B \end{array}\right]$$

$$\left[\begin{array}{c} R \\ G \\ B \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] - \left[\begin{array}{c} C \\ M \\ Y \end{array}\right]$$

The RGB Cube

The CMY Cube

Konvertierung in Graustufen

- Extraktion der Helligkeitsinformation
 - Ansatz: gleichmäßige Mittelung über RGB-Anteile
 - L = (R + G + B) / 3

Besser angepasst: Y = 0.299 R + 0.587 G + 0.114 B

Farbmodell YIQ

- Farbbeschreibung durch
 - Luminanz Y (Leuchtdichte, Helligkeit)
 - Entspricht unterschiedlicher Hellempfindung
 - Chrominanz I, Q (Farbart)
 - Auge bei I empfindlicher als bei Q (→ Bandbreite sparen)
 - Umrechnung von RGB nach YIQ:

$$\begin{pmatrix} y \\ i \\ q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{pmatrix} \begin{pmatrix} r \\ g \\ b \end{pmatrix}$$

- Ursprünglich Grundlage des NTSC-Systems
 - Farb- und S/W-Fernsehen bleiben kompatibel
 - Luminanz enthält S/W-Information, Chrominanz enthält Farbinformation

Übung 2

- Wieviel Videospeicher benötigt man zur Repräsentation des Framebuffer-Inhalts bei einer Auflösung von 1920 × 1080 Pixel in RGB-Farben (bei 8 Bit pro Farbkanal)?
 - RGBA hat zusätzlich noch einen Alpha-Kanal zum Speichern von Transparenz-Werten.
 Wieviel Speicher benötigt man hier?
 - Angabe jeweils in Mebibyte (1 MiB = $1024 \text{ KiB} = 1024 \times 1024 \text{ Byte} = 2^{20} \text{ Byte}$)
- Wie viele Intensitätsstufen lassen sich bei Graustufenbildern pro Pixel darstellen?
- Welche Bedeutung kommt Y (bei YIQ) zu?
- Stellen Sie die Farbe Gelb je in RGB, CMY und YIQ dar!
 - Durch welchen Graustufenwert (8 Bit Integer / unsigned char) wird Gelb dargestellt?

Wahrnehmungsorientierte Modelle

- Hardwareorientierte Farbmodelle (RGB/RGBA, CMY/CMYK) eignen sich nicht zur wahrnehmungsorientierten Modellierung von Farben
- Wir beurteilen Farben nach Farbigkeit (Chrominanz) und Helligkeit (Intensität)
- Basierend darauf wurde YCbCr-Farbmodell (europäisches PAL-System) genau wie YIQ-Modell für die Fernsehtechnik entwickelt
 - Ziel war es, aus Farbbildern schnell vernünftige Grauwertbilder zu erzeugen
 - Wird auch heutzutage noch für JPEG- und MPEG-Komprimierung verwendet
- HSV-Farbmodell hat Ziel, die menschliche Farbwahrnehmung abzubilden
- Dabei wird zwischen folgenden Farbeigenschaften unterschieden:
 - Farbton (Teil der Chrominanz)
 - Sättigung (Teil der Chrominanz, der den "Weiß-Anteil" der Farbe beschreibt: Rosa hat z.B. eine geringe Sättigung, Signalrot eine hohe Sättigung)
 - Helligkeit

Farbmodell HSV/HSB

- Grundgrößen:
 - Hue (Farbton)
 - Saturation (Sättigung)
 - Value/Brightness (Dunkelstufe)
- Projektion des RGB-Farbwürfels entlang
 Verbindungslinie Weiß-Schwarz (→ Sechseck)
 - Rand des Sechsecks: Werte für H
 - Abstand von Mittelpunkt: Wert für S
 - Achse der Pyramide: Intensität V
- Anwendungsorientiert
 - Ähnlich zu HSL (aber nur einfacher Kegel)
 - Intuitivere Farbselektion als bei RGB

Hue-Saturation-Value Hexcone

Farbraumkonvertierung

• Umrechnungsalgorithmus RGB \rightarrow HSV (Input: $R, G, B \in [0, 1]$)

```
    V = max(R, G, B);
        m = min(R, G, B);
        d = V - m;
    S = (V == m) ? 0 : d / V;
    if (V == m) H = 0;
        else if (V == R) H = 60 * (0 + (G - B) / d);
        else if (V == G) H = 60 * (2 + (B - R) / d);
        else if (V == B) H = 60 * (4 + (R - G) / d);
    if (H < 0) H += 360;</li>
```

• Umrechnungsbeispiele (Output: $H \in [0^{\circ}, 360^{\circ}[; S, V \in [0, 1])$

```
Schwarz<sub>RGB</sub>: (0, 0, 0) \rightarrow (0, 0, 0)

Weiß<sub>RGB</sub>: (1, 1, 1) \rightarrow (0, 0, 1)

Gelb<sub>RGB</sub>: (1, 1, 0) \rightarrow (60, 1, 1)
```


Einschub: Farbmodell HSL

Anwendungsorientiert

- (1) Farbton/Hue als Winkel
 - Dominante Farbe (Winkel zwischen 0 u. 360° auf Farbkreis)
- (2) Helligkeit/Luminance (0..1)
 - Dunkel- oder Hellgrad einer Farbe (Lightness)

- (3) Sättigung/Saturation (0..1)
 - Hochgesättigte Farben haben keinen oder kaum Weißanteil

• Umrechnungsalgorithmus RGB → HSL

```
1. V, m, d und H wie bei HSV
```

```
2. L = (V + m) / 2;
```

3.
$$S = (V == m) ? 0 : d / (1 - abs(V + m - 1));$$

Farbinterpolation (RGB vs. HSV)

- RGB-Parametrierung für Wahrnehmung nicht linear
 - Kleine Distanzen im RGB-Farbwürfel können große oder auch kaum sichtbare Unterschiede aufweisen
 - HSV im Unterschied zu RGB wahrnehmungsorientiert
 - Problem: Lineare Interpolation liefert bei RGB und HSV je unterschiedliche Ergebnisse

Beispiel

- Mittlerer Wert linear in RGB interpoliert und umgerechnet
 - RGB: (80, 120, 40); (120, 180, 100); (160, 240, 160)
 - HSV: (90, 0.6667, 0.4706);
 (105, 0.4444, 0.7059);
 (120, 0.3333, 0.9412)
- Mittlerer Wert in HSV interpoliert
 - (105, 0.5, 0.7059)

 → entspricht RGB (113, 180, 90) ≠ (120, 180, 100)

Übung 3 (Zerlegung in HSV-Kanäle)

Geben Sie an, welches Grauwertbild welchen HSV-Kanal abbildet!

Farbbild

Zerlegung des Farbbildes in die drei Kanäle des HSV-Modells

Sättigung (S):

Da Hintergrund im Farbbild grau ist, d.h. Ungesättigt (schwarz) Helligkeit (V):

Sieht aus wie das Bild nur in Graustufen Farbe (H):

Im Rotbereich sieht man den Übergang 0 zu 360 Grad

CIELab-Farbraum

- Wahrnehmungsorientierter, geräteneutraler Farbraum
- Teilt Farbinformation ein in:
 - L* = Helligkeit (0 = Schwarz, 100 = Weiß)
 - a* = Rot Grün (-128 = Grün, +127 = Rot)
 - b* = Gelb Blau (-128 = Blau, +127 = Gelb)
- Vorteil des CIELab-Farbraums:
 Je geringer der geometrische Abstand zwischen zwei Farbpunkten ist, desto ähnlicher sind sich die Farben
 - Dieses Verhältnis von Länge zur Wahrnehmung ist bei CIELab linear (im Gegensatz z.B. zum CIE XYZ-Raum)

Exkurs: Spektralwertkurven

- Farbwerte der Spektralfarben heißen Spektralwerte
 - Spektralwertkurven geben Betrag der drei Primärvalenzen an, der nötig ist, alle Wellenlängen des sichtbaren Spektrums zu erzeugen
 - Problem: aus Primärvalenzen (R = 700nm, G = 546nm, B = 435nm) sollen alle reinen Spektralfarben gemischt werden
- Spektralwertkurven enthalten dabei negative Farbwerte
 - Farben im Bereich 500 nm nur durch Subtraktion des Rotanteils erzeugbar (nicht durch additives Mischen)
 - Farbgleichheit lässt sich nur herstellen, wenn man zur gegebenen Farbvalenz Primärvalenzen hinzumischt
 - \rightarrow Äußere Farbmischung: F + rR = gG + bB \rightarrow F = -rR + gG + bB
 - RGB-Modell kann solche Farben technisch nicht darstellen.

Exkurs: CIE-Normvalenzsystem

- Von Commission Internationale de l'Éclairage (CIE)
 1931 vorgeschlagen
 - Definiert hypothetische Primärvalenzen X, Y, Z mit nur positiven Spektralwertkurven
- Modelliert menschliche Farbwahrnehmung
 - Spektrale Empfindlichkeit der L-, M- u. S-Zapfen
 - Normspektralwerte $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$
 - Beschreibt sämtliche physikalisch möglichen Farbreize C durch XYZ-Farbvalenzen
 - C = X X + Y Y + Z Z
 - Vorteil: geräteunabhängiger Farbraum
 - Grundlage praktisch aller colorimetrischen Farbräume

$$X = k \cdot \int_{380 \, nm}^{780 \, nm} \varphi_{\lambda} \cdot \bar{x}(\lambda) \, d\lambda$$

$$Y = k \cdot \int_{380 \, nm}^{780 \, nm} \varphi_{\lambda} \cdot \bar{y}(\lambda) \, d\lambda$$

$$Z = k \cdot \int_{380 \, nm}^{780 \, nm} \varphi_{\lambda} \cdot \bar{z}(\lambda) \, d\lambda$$

Exkurs: CIE-Normvalenzsystem

- Tristimulus-System
 - CIE-Primärvalenzen X, Y u. Z spannen Bereich auf, der alle wahrnehmbaren Farben enthält
 - Behebt Problem der Subtraktion
 - Alle sichtbaren Farben hiermit durch innere Farbmischung darstellbar
- Virtualität der Primärvalenzen
 - X, Y, Z außerhalb Spektralfarblinie
 - Damit nicht darstellbar, sondern rein virtuelle Rechengrößen
 - Technisch nicht realisierbar!

Exkurs: Farbmodell XYZ

Baryzentrische Koordinaten dienen zur Definition eines Punktes im Bezug auf eine Strecke, ein Dreieck, einen

Der Punkt wird dabei als Linearkombination dargestellt

Tetraeder oder allgemeiner einen Simplex

• Jede Farbe C als Linearkombination der drei Primärvalenzen (Basisvektoren) darstellbar

$$C = xX + yY + zZ$$

Normierte, baryzentrische Darstellung:

$$x + y + z = 1$$
, mit $x, y, z \ge 0$

• Projektion auf des 3D-Farbraums auf Ebene (2D-Darstellung über (x, y) möglich)

$$x = \frac{X}{X+Y+Z}$$
$$y = \frac{Y}{X+Y+Z}$$

- Helligkeit / Luminanz Y (> 0) nicht enthalten
 - Erweiterung zu Farbraum xyY

Vielen Dank!

Noch Fragen?