LXX.—The Vapour Pressures, Specific Volumes, and Critical Constants of Normal Heptane.

By Sydney Young, D.Sc., F.R.S., University College, Bristol.

In previous papers (Trans., 1897, 71, 446; 1895, 67, 1071), the vapour pressures, specific volumes, and critical constants of normal pentane and normal hexane have been given, and it has been pointed out that, whilst the generalisations of Van der Waals regarding "corresponding" pressures, temperatures, and volumes hold good for these substances with a near approach to accuracy, yet the small deviations appear to depend on the molecular weight. Naturally, however, it would be unsafe to generalise from experiments with only two members of a series, and the hope was expressed that it would be possible to obtain data for normal heptane and normal octane.

Dr. Thorpe has very kindly placed his well-known specimen of normal heptane from *Pinus sabiniana* at my disposal, and I am now able to give the data for this paraffin. It will be seen that they are in agreement with the conclusions previously arrived at.

The boiling point of normal heptane is 98.43° , and the sp. gr. at 0° is 0.70048 (Thorpe, Trans., 1880, 37, 213).

Vapour Pressures at Low Temperatures.

The method of Ramsay and Young was employed for pressures up to 160 mm.; for higher pressures up to that of the atmosphere a modified distillation bulb with reflux condenser was used.

Press.	Temp.	Press.	Temp.	Press.	Temp.	Press.	Temp.
9:2 10:6 12:45 15:3 18:15 22:65 28:95 36:15	-3·4° -1·1 +1·2 5·0 8·05 11·7 16·1 20·35	46.05 57.35 71.45 91.0 112.4 136.4 151.7	25.05° 29.65 34.35 40.15 44.95 49.4 51.4	153 · 8 186 · 2 205 · 2 229 · 6 257 · 7 294 · 3 334 · 4	51.95° 56.85 59.4 62.35 65.55 69.2 72.65	382·1 431·2 485·5 547·2 610·7 687·8 762·35	76.5° 80.2 83.8 87.45 91.15 95.15 98.55

The vapour pressures at high temperatures were determined with the pressure apparatus employed in previous researches, and the usual corrections were made.

676 SYDNEY YOUNG: THE VAPOUR PRESSURES, SPECIFIC

The observed pressures (the mean of four readings in each case) together with those read from the curves constructed from the observations at low temperatures, and also the pressures calculated by means of Biot's formula

$$\log p = a + b \ a^t + c \ \beta^t$$

are as follows.

The constants for Biot's formula are—

$$a = 1.145148$$

$$b = 2.431040 \qquad \log b = 0.3857922$$

$$c = -2.517688 \qquad \log c = 0.4010018$$

$$\log a = 0.00053408$$

$$\log \beta = \overline{1}.99596377$$

$$t = t^{\circ}C.$$

Vapour Pressures.

Tempera- ture.	Dynamical method from curve.	Statical method.	Calculated from Biot's formula.	Tempera- ture.	Statical method.	Calculated from Biot's formula.
0° 10 20 30 40 50 60 70 80 90 100 110 120 130 140	11·45 20·50 35·50 58·35 92·05 140·9 208·9 302·3 426·6 588·8 795·2 — —		11·45 20·51 35·16 57·87 91·78 140·74 209·32 302·77 407·26 588·74 794·93 1053·3 1372·1 1759·9 2226·1	150° 160 170 180 190 200 210 220 230 240 250 264 266.85 (Crit.)	2784 3450 4212 5091 6095 7261 8594 10105 11810 13790 15980 18470 19610 20430	2780·4 2433·3 4196·0 5080·9 6101·3 7271·8 8608·6 10130 11857 13811 16020 18511 19595 20399

The critical temperature was taken to be 266.9°, and the critical pressure 20415 mm.

Volumes of a Gram of Liquid.

These were determined in the pressure apparatus: up to 210° the volumes were read directly, but at higher temperatures they were calculated from observations of the volume of vapour, and the total volume of liquid and vapour by the method described in the Transactions (1893, 63, 1200).

VOLUMES, AND CRITICAL CONSTANTS OF NORMAL HEPTANE. 677

The observed and smoothed specific volumes and the molecular volumes calculated from the smoothed specific volumes are given in the following table. From 0° to 100° , the smoothed values have been calculated from Thorpe's table of volumes of normal heptane— $V_0 = 1.00000$ —(loc. cit.).

The molecular weight is taken as 99.79.

Volumes of a Gram and Molecular Volumes of Liquid.

ture. Observed. From curve. Volumes ture. Observed. From curve. Volumes volumes of the curve. Observed. From curve. Volumes ture. Observed. From curve. Volumes volumes of the curve of the	Temperature.	Volumes of a gram.		Mole-	<i>m</i>	Volumes of a gram.		Mole-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Observed.				Observed.		cular volumes
150 1·7863 1·7862 178·25 266·5 3·5480 3·5480 354·10	10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	1.5000 1.5204 1.5417 1.5613 1.5856 1.6081 1.6327 1.6591 1.6888 1.7176 1.7516	1 4450 1 4629 1 4813 1 5003 1 5200 1 5406 1 5621 1 5846 1 6082 1 6330 1 6591 1 7780 1 7780	144 20 145 98 147 82 149 72 151 68 153 74 155 88 158 13 160 48 162 96 165 56 168 40 171 44 174 74	180 190 200 210 220 230 240 250 260 262 264 265 266 266·5 266·9	1.9126 1.9625 2.0192 2.0867 2.1670 2.2650 2.3940 2.5730 2.7290 2.8950 3.0010 3.1590 3.4400	1.9112 1.9620 2.0195 2.0865 2.1665 2.2655 2.3940 2.5730 2.7290 2.8930 3.0010 3.1590 3.2690 3.4400 3.5480	186·21 190·72 195·79 201·53 208·21 216·20 226·07 238·90 256·80 272·30 288·70 299·50 315·20 326·20 343·30 354·10 425·7*

^{*} By the method of Cailletet and Mathias.

Volumes of a Gram of Saturated Vapour.

Determinations were made with the pressure apparatus and by the sealed tube method (Trans., 1891, 59, 37, and *Phil. Mag.*, 1895).

The results are given in the table below, also the volumes of a gram read from curves constructed by plotting the logarithms of the volumes against the temperatures. The molecular volumes calculated from the smoothed specific volumes are also given.

Volumes	of a	Gram and	Molecular	Volumes	of Saturated	Vanour
T UU COM TOO T	u u	COT COTTO COTOCO	IN OUGO WWW.	V OU WIII COS	or sammanea	ranour.

Temperature.	Pressure	Sealed tu	be method.	From	Molecular volumes.
	apparatus.	I.	II.	curves.	
70°	-	i	697	697	69500
80			516	501	50000
90			381	370	36900
100	_	l —	280	279	27800
110		_	212	213.1	21250
120	_		165	164.8	16450
130	_		128.8	129.0	12870
140		_	102.5	102.3	10210
150			81.8	81.8	8170
160			66.2	66.3	6620
170		54.8	53.9	54.1	5400
180		45.3	44.15	44.6	4450
190		36.9	_	36.8	3675
200		30.3		30.27	3020
210		25.0	-	24.97	2492
220	20.44	20:45	i	20.44	2040
230	16.66	16.66		16.66	1663
240	13.45	13.40	-	13.43	1340
250	10.60	10.53	_	10.57	1055
256	8 .97	8.91		8.95	894
2 60	7.77	7.77		7.77	776
262	7.18	7.165	<u> </u>	7.16	715
264	6.50	6.480	_	6.20	649
265	6.10	_		6.13	612
266	5.60	5.645	-	5.625	561
266.5	5.28	_		5.280	527
266.9		_	_	4.266*	425.7*
(Crit.)	1				
			l		

^{*} By the method of Cailletet and Mathias.

The critical volume of a gram and molecular volume were calculated from the critical density, which was ascertained by the method of Cailletet and Mathias (Compt. rend., 1886, 102, 1202; 1887, 104, 1563; 1892, 115, 35).

The densities of liquid and saturated vapour, the mean densities and those calculated from the formula

$$D_t = 0.3518 - 0.00044t$$

are given below.

VOLUMES, AND CRITICAL CONSTANTS OF NORMAL HEPTANE. 679

	Den	sity.	Mean density.			
Temperature.	Liquid.	Saturated vapour.	Observed.	Calculated.	$\Delta \times 10^4$	
700	0.0100	0.007.4	0.0000	0.0010		
70°	0.6402	0.0014	0.3208	0.3210	-2	
80	0.6311	0.0020	0.3165	0.3166	-1	
90	0.6218	0.0027	0.3122	0.3122	0	
100	0.6124	0.0026	0.3080	0.3078	+2	
110	0.6027	0.0047	0.3037	0.3034	+3	
120	0.5926	0.0061	0.2993	0.2990	+3	
130	0.5821	0.0078	0.2949	0.2946	+3	
140	0.5711	0.0098	0.2904 0.2860	0·2902 0·2858	+2	
150 160	0·5598 0·5481	0·0122 0·0151	0.2816	0.2814	$^{+2}_{+2}$	
170	0.5359	0.0181	0.2772	0.2770	$^{+2}$	
180	0.5232	0.0183	0.2728	0.2726	$^{+2}_{+2}$	
190	0.5096	0.0272	0.2684	0.2682	$^{+2}_{+2}$	
200	0.4952	0.0330	0.2641	0.2638	$^{+2}_{+3}$	
210	0.4793	0.0401	0.2597	0.2594	$^{+3}$	
220	0.4616	0.0489	0.2552	0.2550	$^{+3}$	
230	0.4414	0.0600	0.2507	0.2506	+1	
240	0.4177	0.0745	0.2461	0.2462	-1	
250	0.3877	0.0946	0.2416	0.2418	- 1 - 2	
256	0.3664	0.1117	0.2390	0.2392	$-\frac{2}{2}$	
260	0.3457	0.1287	0.2372	0.2374	- 2	
262	0.3332	0.1396	0.2364	0.2365	- 1	
264	0.3166	0.1538	0.2352	0.2356	-4	
265	0.3059	0.1631	0.2345	0.2352	$-\hat{7}$	
266	0.2907	0.1778	0.2342	0.2348	-6	
266.5	0.2819	0.1895	0.2357	0.2345	$+12^{\circ}$	
266.9		1 2000		0.2344		

The critical constants are thus found to be-

Temperature 266.9°.

Pressure 20415 mm.

Density 0.2344. Volume of a gram 4.266 c.c. Molecular volume 425.7.

It is noticeable that the critical densities of the four paraffins so far investigated are nearly identical; they are

Isopentane	0.2344
Normal pentane	0.2324
Normal hexane	0.2343
Normal heptane	0.2344

The absolute temperatures and the molecular volumes of liquid and saturated vapour were read from the curves at a series of pressures "corresponding" with those given in previous papers: from these data the ratios of the temperatures and volumes to the critical constants were calculated, also the ratios of the actual to the theoritical densities of saturated vapour.

Ratio of pressure		Absolute	Molecular	volume.	Abs.	37.1 1:	Vol. sat.	Density
to critical pressure.	Pressure.		Liquid.	Satur- ated vapour.	Abs. crit.	Vol. liq. Crit. vol.	vap. Crit. vol.	Theor. density.
0.001474	20.1	290·0°	145.44		0.50710	0.9416		
0.001474		303.7	145.44		0.5371°	0.3416		
0.002949		319.2	147.94		0.5625 0.5912	0.3475	_	
0.011795		336.75	150.94 154.58		0.6237	0.3631	_	
0.022411		355.2	158.68	46700	0.6579	0.3727	109.6	1.033
0.044232		377.25	164.02	24780	0.6987	0.3853	58.2	1.048
0.088465		404.0	171.78	12580	0.7483	0.4035	29.5	1.105
0.14744	3010	426.75	179.62	7570	0.7904	0.4219	17.8	1.164
0.20642	4214	420 73	186.21	5403	0.8205	0.4374	12.7	1.209
0.29488	6020	462.15	195.29	3729	0.8560	0.4587	8.76	1.279
0.44232	9030	485.85	210.36	2353	0.8999	0.4941	5.53	1.421
0.58978	12040	504.0	227.17	1626	0.9335	0.5336	3.82	1.600
0.73721	15050	518.75	248.18	1172	0.9608	0.5830	2.75	1.827
0.82568	16860	526.5	265.25	964	0.9752	0.6230	2.26	2.013
0.88465	18060	531.3	280.91	827	0.9841	0.6598	1.95	2.210
0.94363	19260	535.75	304.76	691	0.9923	0.7159	1.62	2.500
0.97313	19870	537.95	325.21	614	0.9964	0.7646	1.44	2.741
1.00000	20415	539.9	425.7	425.7	1.0000	1.0000	1.00	3.860
_ 00000			120	120	1 3000	1 0000	100	5 550

The influence of the molecular weight of the normal paraffins will be fully discussed when the data for normal octane have been obtained; meanwhile, it may be pointed out that, as with the ethereal salts, the ratios of the absolute temperatures (boiling points) at corresponding pressures to the absolute critical temperatures show a small but decided increase with rise of molecular weight. No definite relation between the volume ratios and the molecular weights of the ethereal salts could be traced, but in the case of the three normal paraffins so far studied, it appears that the ratios of the volumes of saturated vapour to the critical volumes, and of the actual to the theoretical critical densities, also increase with rise of molecular weight, whilst the ratios of the volume of liquid to the critical volume diminish slightly.

In the table below are given the ratios of the actual to the theoretical densities at the critical points and the other ratios at a single "reduced" pressure.

	Normal	Normal	Normal
	pentane.	hexane.	heptane.
Actual critical density. Theoretical critical density.	3.765	3.827	3.860

Ratio of Pressure to Critical Pressure = 0.14744.

Absolute temperature. Absolute critical temperature.	0.7769	0.7831	0.7904
Volume of liquid. Critical volume.	0.4245	0.4234	0.4219
Volume of saturated vapour. Critical volume.	17:0	17.6	17.8