ME414 - Estatística para Experimentalistas

Estatística Descritiva: Medidas resumo

Prof. Carlos Trucíos ctrucios@unicamp.br ctruciosm.github.io

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas

Aula 4

Medidas de tendência central

Medidas de posição

Medidas de dispersão

Gráficos para variáveis quantitativas

Medidas de associação entre duas variáveis

► Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.

- ► Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- ► Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- ► Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.
 - medidas de tendência central

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.
 - medidas de tendência central
 - medidas de posição

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.
 - medidas de tendência central
 - medidas de posição
 - medidas de dispersão

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.
 - medidas de tendência central
 - medidas de posição
 - medidas de dispersão
 - medidas de associação

- Na última aula vimos tabelas e gráficos para sintetizar/resumir dados qualitativos.
- Imagine agora que temos a variável salário. Como você resumiria os dados dessa variável?
- ► Hoje aprenderemos como sintetizar/resumir dados provenientes de variáveis quantitativas.
 - medidas de tendência central
 - ► medidas de posição
 - medidas de dispersão
 - medidas de associação
 - ► Gráficos: Histograma, Boxplot, scatterplot

▶ É a medida de tendência central mais conhecida.

- É a medida de tendência central mais conhecida.
- ▶ Constitui uma medida da posição central dos dados.

- É a medida de tendência central mais conhecida.
- ▶ Constitui uma medida da posição central dos dados.

- É a medida de tendência central mais conhecida.
- ▶ Constitui uma medida da posição central dos dados.

Média amostral

Sejam as observações x_1, x_2, \ldots, x_n , a média é dada por

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}.$$

Nota: geralmente \bar{x} é utilizado para denotar a média amostral e μ para denotar a média populacional.

Exemplo

A seguinte tabela apresenta as notas finais de 18 alunos de MAD211 da $\mathsf{FACC}/\mathsf{UFRJ}$.

2.1	7	6.7	7	6.5	8.1	9.1	9.3	7.8
5.6	8	9.0	6	7.2	8.8	6.3	9.6	7.7

Exemplo

A seguinte tabela apresenta as notas finais de 18 alunos de MAD211 da FACC/UFRJ.

2.1	7	6.7	7	6.5	8.1	9.1	9.3	7.8
5.6	8	9.0	6	7.2	8.8	6.3	9.6	7.7

Vamos calcular \bar{x}

Exemplo

A seguinte tabela apresenta as notas finais de 18 alunos de MAD211 da FACC/UFRJ.

Vamos calcular \bar{x}

$$\bar{x} = \frac{2.1 + 5.6 + 7 + 8 + 6.7 + 9 \dots + 7.7}{18} = \frac{131.8}{18} = 7.322222$$

▶ Outra medida de tendência central.

- Outra medida de tendência central.
- ▶ É o valor *do meio* quando os valores estão ordenados

- Outra medida de tendência central.
- ▶ É o valor do meio quando os valores estão ordenados
- ▶ Para obter a mediana os valores devem ser ordenados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$, (onde $x_{(i)}$ é a i-ésima observação ordenada)

- Outra medida de tendência central.
- ▶ É o valor do meio quando os valores estão ordenados
- ▶ Para obter a mediana os valores devem ser ordenados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$, (onde $x_{(i)}$ é a i-ésima observação ordenada)
- ► Robusta a observações atípicas.

- Outra medida de tendência central.
- ▶ É o valor do meio quando os valores estão ordenados
- ▶ Para obter a mediana os valores devem ser ordenados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$, (onde $x_{(i)}$ é a i-ésima observação ordenada)
- Robusta a observações atípicas.

- Outra medida de tendência central.
- ▶ É o valor do meio quando os valores estão ordenados
- ▶ Para obter a mediana os valores devem ser ordenados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$, (onde $x_{(i)}$ é a i-ésima observação ordenada)
- Robusta a observações atípicas.

Mediana

$$Mediana(x) = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ for impar} \\ x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}, & \text{se } n \text{ for par.} \end{cases}$$

Exemplo

No conjunto de dados anterior:

2.1	7	6.7	7	6.5	8.1	9.1	9.3	7.8
5.6	8	9.0	6	7.2	8.8	6.3	9.6	7.7

Exemplo

No conjunto de dados anterior:

2.1	7	6.7	7	6.5	8.1	9.1	9.3	7.8
5.6	8	9.0	6	7.2	8.8	6.3	9.6	7.7

Primeiro, ordenamos os dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Exemplo

No conjunto de dados anterior:

2.1	7	6.7	7	6.5	8.1	9.1	9.3	7.8
5.6	8	9.0	6	7.2	8.8	6.3	9.6	7.7

Primeiro, ordenamos os dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Qual o valor do meio?

(...continuação) Exemplo

Como
$$n = 18$$
 (par), a mediana é $Mediana(x) = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}$.

(...continuação) Exemplo

Como
$$n=18$$
 (par), a mediana é $Mediana(x)=\frac{x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}}{2}$.

No nosso caso:

Mediana(x) =
$$\frac{x_{\left(\frac{18}{2}\right)} + x_{\left(\frac{18}{2}+1\right)}}{2} = \frac{x_{\left(9\right)} + x_{\left(10\right)}}{2} = \frac{7.2 + 7.7}{2} = 7.45$$

▶ Outra medida de tendência central

- ▶ Outra medida de tendência central
- ▶ É o valor que ocorre com maior frequência

- Outra medida de tendência central
- ▶ É o valor que ocorre com maior frequência
- ► Podem existir várias modas (nesse caso dizemos que os dados são multimodais)

- Outra medida de tendência central
- ▶ É o valor que ocorre com maior frequência
- ► Podem existir várias modas (nesse caso dizemos que os dados são multimodais)
- Útil também quando trabalhamos com variaveis qualitativas.

- Outra medida de tendência central
- ▶ É o valor que ocorre com maior frequência
- ► Podem existir várias modas (nesse caso dizemos que os dados são multimodais)
- Útil também quando trabalhamos com variaveis qualitativas.

- Outra medida de tendência central
- É o valor que ocorre com maior frequência
- ► Podem existir várias modas (nesse caso dizemos que os dados são multimodais)
- Útil também quando trabalhamos com variaveis qualitativas.

Exemplo

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

temos que o número 7 aparece duas vezes, e todos os outros valores aparecem apenas 1 vez, logo Moda(x) = 7

Medidas de tendência central: Moda

Nos dados do Titanic,

Tabela 6: Distribuição de Frequências das classe da passagem dos passageiros do Titanic.

Freq. absoluta
323
277
709

A moda é 3rd (terceira classe)

Percentil

O k-ésimo percentil (P_k) é um valor tal que pelo menos k% das observações são **menores ou iguais** a esse valor e pelo menos (100 - k)% das observações são **maiores ou iguais** a esse valor.

Percentil

O k-ésimo percentil (P_k) é um valor tal que pelo menos k% das observações são **menores ou iguais** a esse valor e pelo menos (100 - k)% das observações são **maiores ou iguais** a esse valor.

Quartil

- ▶ Às vezes é interessante dividir os dados em quatro partes, de forma que cada parte tenha aproximadamente 25% das observações.
- ▶ Um quartil é um caso particular de um percentil e temos três quartis em total: $Q_1 = P_{25}$, $Q_2 = P_{50}$ (ou mediana) e $Q_3 = P_{75}$

Outras medidas de posição

Como calcula o k-ésimo percentil

- 1. Ordene os dados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$
- 2. Calcule o índice i,

$$i = \left(\frac{k}{100}\right) \times n$$

em que k é o percentil desejado e n é o número e observações

3. Calcular o k-ésimo percentil:

$$P_k = egin{cases} x_{(\lfloor i \rfloor + 1)}, & ext{se } i ext{ n\~ao for inteiro} \ rac{x_{(i)} + x_{(i+1)}}{2}, & ext{se } i ext{ for inteiro}. \end{cases}$$

Como calcula o k-ésimo percentil

- 1. Ordene os dados de menor a maior: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$
- 2. Calcule o índice i,

$$i = \left(\frac{k}{100}\right) \times n$$

em que k é o percentil desejado e n é o número e observações

3. Calcular o k-ésimo percentil:

$$P_k = egin{cases} x_{(\lfloor i \rfloor + 1)}, & ext{se } i ext{ n\~ao for inteiro} \ rac{x_{(i)} + x_{(i+1)}}{2}, & ext{se } i ext{ for inteiro}. \end{cases}$$

Provavelmente, você encontrará nos livros ou na internet formas diferentes de calcular os percentis. Não precisa se preocupar, existem vários formas de calcular percentis, só na função quantile() do R existem 9 formas diferentes!

Exemplo

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Vamos calcular $Q_1 = P_{25}$, $Q_2 = P_{50}$ e $Q_3 = P_{75}$

Exemplo

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Vamos calcular
$$Q_1=P_{25}$$
, $Q_2=P_{50}$ e $Q_3=P_{75}$

$$ightharpoonup i_1 = \left(rac{25}{100}
ight) imes 18 = 4.5, ext{ então } Q_1 = P_{25} = x_{(4+1)} = 6.5$$

Exemplo

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Vamos calcular $Q_1=P_{25},\ Q_2=P_{50}$ e $Q_3=P_{75}$

$$i_1 = \left(\frac{25}{100}\right) \times 18 = 4.5$$
, então $Q_1 = P_{25} = x_{(4+1)} = 6.5$

$$i_2 = \left(\frac{50}{100}\right) \times 18 = 9$$
, e então $Q_2 = P_{50} = \frac{x_{(9)} + x_{(10)}}{2} = 7.45$

Exemplo

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

Vamos calcular $Q_1 = P_{25}$, $Q_2 = P_{50}$ e $Q_3 = P_{75}$

$$i_1 = \left(\frac{25}{100}\right) \times 18 = 4.5$$
, então $Q_1 = P_{25} = x_{(4+1)} = 6.5$

$$i_2 = \left(\frac{50}{100}\right) \times 18 = 9$$
, e então $Q_2 = P_{50} = \frac{x_{(9)} + x_{(10)}}{2} = 7.45$

•
$$i_3 = \left(\frac{75}{100}\right) \times 18 = 13.5$$
, então $Q_3 = P_{75} = x_{(13+1)} = 8.8$

Medidas de dispersão

Medidas de dispersão

► As medidas de posição nada nos dizem sobre a variabilidade (dispersão) dos dados

Medidas de dispersão

- As medidas de posição nada nos dizem sobre a variabilidade (dispersão) dos dados
- As medidas de dispersão são um complemento às medidas de posição e juntas nos ajudarão a entender melhor como se comportam nossos dados.

Amplitude

É a medida de dispersão mais simples,

Amplitude =
$$\underbrace{x_{(n)}}_{\text{Máximo}} - \underbrace{x_{(1)}}_{\text{Mínimo}}$$

Amplitude

É a medida de dispersão mais simples,

Amplitude =
$$\underbrace{x_{(n)}}_{\text{Máximo}} - \underbrace{x_{(1)}}_{\text{Mínimo}}$$

Sua vantagem é o simples cálculo mas sua desvantagem é que depende apenas dos 2 valores mais extremos.

Amplitude

É a medida de dispersão mais simples,

Amplitude =
$$\underbrace{x_{(n)}}_{\text{Máximo}} - \underbrace{x_{(1)}}_{\text{Mínimo}}$$

Sua vantagem é o simples cálculo mas sua desvantagem é que depende apenas dos 2 valores mais extremos.

Observações extremas (outliers) afetarão a amplitude!

Amplitude Interquartil (AIQ)

É a diferença entre o terceiro e primeiro quartil,

$$AIQ = Q_3 - Q_1$$

Amplitude Interquartil (AIQ)

É a diferença entre o terceiro e primeiro quartil,

$$AIQ = Q_3 - Q_1$$

Não temos mais os problema da amplitude, mas nada sabemos dos outros 50% das observações.

Exemplo

No nosso conjunto de dados

Temos que $Q_3=8.8$ e $Q_1=6.5$. Então

Exemplo

No nosso conjunto de dados

Temos que $Q_3=8.8$ e $Q_1=6.5$. Então

- Amplitude = x(n) x(1) = 9.6 2.1 = 7.5
- \blacktriangleright $AIQ = Q_3 Q_1 = 8.8 6.5 = 2.3$

▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas

- ▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas
- Seu cálculo utiliza todas as observações

- ▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas
- Seu cálculo utiliza todas as observações
- Baseia-se na diferença (ao quadrado) dos valores observados e sua média.

- ▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas
- Seu cálculo utiliza todas as observações
- Baseia-se na diferença (ao quadrado) dos valores observados e sua média.

- ▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas
- Seu cálculo utiliza todas as observações
- Baseia-se na diferença (ao quadrado) dos valores observados e sua média.

Até agora, não temos feito diferença entre população e amostra. Isto, pois as formulas apresentadas anteriormente são as mesmas independente se as observações são da população ou da amostra.

- ▶ É uma mas das medidas de dispersão mais conhecidas e utilizadas
- Seu cálculo utiliza todas as observações
- Baseia-se na diferença (ao quadrado) dos valores observados e sua média.

Até agora, não temos feito diferença entre população e amostra. Isto, pois as formulas apresentadas anteriormente são as mesmas independente se as observações são da população ou da amostra.

Basicamente, onde tinhamos x_1, x_2, \ldots, x_n com n sendo o tamaho da amostra, teremos x_1, x_2, \ldots, x_N com N sendo o tamanho da população.

Aqui vamos diferenciar entre a variância populacional (σ^2) e a variância amostral (s^2)

Variância populacional

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

em que $\mu=\frac{\sum_{i=1}^N x_i}{N}$ é a média populacional e N é o tamanho (número de elementos) da população.

Aqui vamos diferenciar entre a variância populacional (σ^2) e a variância amostral (s^2)

Variância populacional

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

em que $\mu=\frac{\sum_{i=1}^N x_i}{N}$ é a média populacional e N é o tamanho (número de elementos) da população.

Na prática, dificilmente calculamos a variância populacional.

Variância amostral

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

em que \bar{x} é a media amostral e n é o tamanho da amostra.

Variância amostral

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

em que \bar{x} é a media amostral e n é o tamanho da amostra.

Na prática, utilizamo s^2 para estimar o σ^2 .

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

tinhamos que $\bar{x} = 7.322222$. Vamos calcular s^2 .

No nosso conjunto de dados

tinhamos que $\bar{x} = 7.322222$. Vamos calcular s^2 .

$$s^{2} = \frac{(2.1 - \bar{x})^{2} + (5.6 - \bar{x})^{2} + \dots + (9.6 - \bar{x})^{2}}{18 - 1} = \frac{53.01111}{17} = 3.118301$$

Medidas de dispersão: Desvio Padrão

► A variância não preserva a mesma unidade dos dados originais (lembre-se, elevamos ao quadrado.)

Medidas de dispersão: Desvio Padrão

- ► A variância não preserva a mesma unidade dos dados originais (lembre-se, elevamos ao quadrado.)
- ▶ Para facilitar a compreensão e interpretação, uma medida de dispersão que preserve a mesma unidade dos dados originais é desejada.

Medidas de dispersão: Desvio Padrão

- A variância não preserva a mesma unidade dos dados originais (lembre-se, elevamos ao quadrado.)
- ▶ Para facilitar a compreensão e interpretação, uma medida de dispersão que preserve a mesma unidade dos dados originais é desejada.
- Isto é obtido com a raíz quadrada da variância, essa medida de dispersão recebe o nome de Desvio Padrão

Medidas de dispersão: Desvio Padrão

- A variância não preserva a mesma unidade dos dados originais (lembre-se, elevamos ao quadrado.)
- ▶ Para facilitar a compreensão e interpretação, uma medida de dispersão que preserve a mesma unidade dos dados originais é desejada.
- Isto é obtido com a raíz quadrada da variância, essa medida de dispersão recebe o nome de Desvio Padrão

Medidas de dispersão: Desvio Padrão

- ► A variância não preserva a mesma unidade dos dados originais (lembre-se, elevamos ao quadrado.)
- ▶ Para facilitar a compreensão e interpretação, uma medida de dispersão que preserve a mesma unidade dos dados originais é desejada.
- Isto é obtido com a raíz quadrada da variância, essa medida de dispersão recebe o nome de Desvio Padrão

Desvio Padrão

- **D**esvio padrão da população: $\sigma = \sqrt{\sigma^2}$
- Desvio padrão da amostra: $s = \sqrt{s^2}$

Outras medidas de disperão

Desvio absoluto médio (DAM)

$$DAM = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

Coeficiente de variação (CV)

$$CV = \Big(rac{\mathsf{Desvio}\;\mathsf{Padr\~ao}}{\mathsf{M\'edia}} imes 100\Big)\%$$

O CV é interessante pois ele nos diz qual o tamanho do desvio padrão em relação à média.

Outras medidas de disperão

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

tinhamos que $\bar{x} = 7.322222$ e $s^2 = 3.118301$. Vamos calcular o CV.

Outras medidas de disperão

No nosso conjunto de dados

2.1	5.6	6	6.3	6.5	6.7	7.0	7.0	7.2
7.7	7.8	8	8.1	8.8	9.0	9.1	9.3	9.6

tinhamos que $\bar{x}=7.322222$ e $s^2=3.118301$. Vamos calcular o CV.

$$CV = \left(\frac{\mathsf{Desvio}\ \mathsf{Padr\~{a}o}}{\mathsf{M\'{e}dia}} \times 100\right)\% = \left(\frac{\sqrt{3.118301}}{7.322222} \times 100\right)\% = 24.1166\%$$

O desvio padrão é \approx 24.11% do valor da média.

Gráficos para variáveis quantitativas

► Traz informação do valor central, variabilidade, observações extremas e simetria.

- ► Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:

- ► Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:
 - ▶ Medina (*Q*₂)

- ► Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:
 - ► Medina (*Q*₂)
 - ▶ Quartil 1 (*Q*₁)

- Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:
 - ► Medina (*Q*₂)
 - ▶ Quartil 1 (*Q*₁)
 - ▶ Quartil 3 (*Q*₃)

- Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:
 - ▶ Medina (*Q*₂)
 - ▶ Quartil 1 (*Q*₁)
 - ▶ Quartil 3 (*Q*₃)
 - ▶ LS = $Q_3 + 1.5 AIQ$

- Traz informação do valor central, variabilidade, observações extremas e simetria.
- ▶ É contruido utilizando 5 valores:
 - ► Medina (*Q*₂)
 - Quartil 1 (Q_1)
 - ▶ Quartil 3 (*Q*₃)
 - ► LS = $Q_3 + 1.5 \ AIQ$
 - ▶ $LI = Q_1 1.5AIQ$

▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).

- ▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.

- O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

- O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

- ▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

Como calcular?

Procedemos da mesma forma em que construimos as tabelas de frequência para variáveis continuas (Aula 3). Precisaremos formas as classes, definir a amplitude de classe, os limites da classe e a frequência da classe.

- ▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

Como calcular?

- Procedemos da mesma forma em que construimos as tabelas de frequência para variáveis continuas (Aula 3). Precisaremos formas as classes, definir a amplitude de classe, os limites da classe e a frequência da classe.
- ightharpoonup Algumas regras praticas para escolher o número de classes k são:

- ▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

Como calcular?

- ▶ Procedemos da mesma forma em que construimos as tabelas de frequência para variáveis continuas (Aula 3). Precisaremos formas as classes, definir a amplitude de classe, os limites da classe e a frequência da classe.
- ightharpoonup Algumas regras praticas para escolher o número de classes k são:
 - ▶ Sturges: $k = 1 + 3.322 \log(n)$

- ▶ O histograma é um gráfico formado por barras que indicam a frequência dos dados (previamente agrupados em clases).
- ▶ Nos permite ter uma ideia da variabilidade e simetria dos dados.
- ▶ Em geral, nos permite conhecer como os dados estão distribuidos

Como calcular?

- Procedemos da mesma forma em que construimos as tabelas de frequência para variáveis continuas (Aula 3). Precisaremos formas as classes, definir a amplitude de classe, os limites da classe e a frequência da classe.
- ightharpoonup Algumas regras praticas para escolher o número de classes k são:
 - ▶ Sturges: $k = 1 + 3.322 \log(n)$
 - $k = \sqrt{n}$

 Frequentemente estamos interessados na relação de associação entre duas variáveis.

- Frequentemente estamos interessados na relação de associação entre duas variáveis.
- ▶ Nesta seção aprenderemos sobre o gráfico de dispersão e duas medias de associação amplamente utilizadas: covariância e correlação.

- Frequentemente estamos interessados na relação de associação entre duas variáveis.
- ▶ Nesta seção aprenderemos sobre o gráfico de dispersão e duas medias de associação amplamente utilizadas: covariância e correlação.

- Frequentemente estamos interessados na relação de associação entre duas variáveis.
- ▶ Nesta seção aprenderemos sobre o gráfico de dispersão e duas medias de associação amplamente utilizadas: covariância e correlação.

Gráfico de dispersão Bi-dimensional

- ► Também conhecido como *Nuvem de pontos* ou *scatter plot*.
- \blacktriangleright É uma representação gráfica no plano cartesiano dos pares (x, y) em que x e y são os valores observados das duas variáveis em análise.

Figura 1: Gráfico de dispersão (peso X altura) de 507 individuos

Você acha que existe alguma relação de associação entre altura e peso?

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

No conjunto de dados utilizado no gráfico de dispersão temos que $s_{xy} \approx 90.05$. Como interpretar esse valor?

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

No conjunto de dados utilizado no gráfico de dispersão temos que $s_{xv}\approx 90.05$. Como interpretar esse valor?

valores positivos indicam uma relação linear direta (ou positiva)

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

No conjunto de dados utilizado no gráfico de dispersão temos que $s_{xv}\approx 90.05$. Como interpretar esse valor?

- valores positivos indicam uma relação linear direta (ou positiva)
- valores negativos indicam uma relação linear inversa (ou negativa)

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

No conjunto de dados utilizado no gráfico de dispersão temos que $s_{xv} \approx 90.05$. Como interpretar esse valor?

- valores positivos indicam uma relação linear direta (ou positiva)
- valores negativos indicam uma relação linear inversa (ou negativa)
- valores muito proximos de zero indicam que não há nenhuma associação linear entre as variáveis

Sejam X e Y duas variáveis de interesse com $(x_1, y_1), \ldots, (x_n, y_n)$ e os valores observados de X e Y em uma amostra de tamanho n.

Covariância amostral

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

No conjunto de dados utilizado no gráfico de dispersão temos que $s_{xv}\approx 90.05$. Como interpretar esse valor?

- valores positivos indicam uma relação linear direta (ou positiva)
- valores negativos indicam uma relação linear inversa (ou negativa)
- valores muito proximos de zero indicam que não há nenhuma associação linear entre as variáveis
- $ightharpoonup s_{XV} = s_{VX}$

No exemplo anterior vimos que $s_{xy} \approx 90.05$ o que implica uma relação positiva, mas *quão forte é essa relação?*

- No exemplo anterior vimos que $s_{xy} \approx 90.05$ o que implica uma relação positiva, mas *quão forte é essa relação?*
- ▶ Para responder essa pergunta precisamos de algum valor de referência para saber se a relação é forte ou não.

- No exemplo anterior vimos que $s_{xy} \approx 90.05$ o que implica uma relação positiva, mas *quão forte é essa relação?*
- ▶ Para responder essa pergunta precisamos de algum valor de referência para saber se a relação é forte ou não.
- ▶ Além disso, o valor da covariância depende das unidades de medida (por exemplo, se utizarmos a altura em metros e não em centímetros teremos que $s_{xy} \approx 0.9$)

Coeficiente de correlação de Pearson

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

em que

- $ightharpoonup s_{xy}$ é a covariância amostral entre x e y,
- ▶ s_x é o desvio padrão de x e
- $ightharpoonup s_y$ é o desvio padrão de y.

Coeficiente de correlação de Pearson

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

em que

- $ightharpoonup s_{xy}$ é a covariância amostral entre x e y,
- ▶ s_x é o desvio padrão de x e
- $ightharpoonup s_y$ é o desvio padrão de y.

Propriedades

$$ightharpoonup r_{xy} = r_{yx}$$

Coeficiente de correlação de Pearson

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

em que

- $ightharpoonup s_{xy}$ é a covariância amostral entre x e y,
- $ightharpoonup s_x$ é o desvio padrão de x e
- $ightharpoonup s_y$ é o desvio padrão de y.

Propriedades

- $ightharpoonup r_{xy} = r_{yx}$
- $-1 \le r_{xy} \le 1$

Exemplo

No conjunto de dados utilizado no gráfico de dispersão temos que $r_{xy} \approx 0.72$.

Exemplo

- No conjunto de dados utilizado no gráfico de dispersão temos que $r_{xy} \approx 0.72$.
- Como 0.72 é positivo e proximo de 1, dizemos que a relação entre é x e y é positiva (ou direta) e que esta relação é forte

Exemplo

- No conjunto de dados utilizado no gráfico de dispersão temos que $r_{xy} \approx 0.72$.
- Como 0.72 é positivo e proximo de 1, dizemos que a relação entre é x e y é positiva (ou direta) e que esta relação é forte

Exemplo

- No conjunto de dados utilizado no gráfico de dispersão temos que $r_{xy} \approx 0.72$.
- Como 0.72 é positivo e proximo de 1, dizemos que a relação entre é x e y é positiva (ou direta) e que esta relação é forte

Na próxima aula utilizaremos um conjunto de dados real e faremos, com ajuda do R, um pouco de análise exploratória de dados utilizando o visto até aqui.

Outros coeficientes de correlação

- O coeficiente de correlação de Pearson é util quando as duas variáveis de interesse são continuas.
- Contudo, às vezes queremos calcular a correlação entre outros tipos de variáveis. Para isto, existem outros coeficientes de correlação.
 - Coeficiente de correlação de Spearman (recomendado quando os dados estão em escala ordinal)
 - Coeficiente de correlação de Kendall (recomendado quando os dados estão em escala ordinal)
 - Coeficiente de contingência (se usa quando as duas variáveis estão em escala nomial)
 - ► Etc.

Leituras recomendadas

- Anderson, D. R; Sweeney, D. J.; e Williams, T. A. (2008). Estatística Aplicada à Administração e Economia. 2ed. Cengage Learning. Cap 3
- ► Freund, J. E.; Perles, B. M. (2014). *Modern elementary statistics*. 12ed. Pearson College Division. **Chapter 2 3**
- Morettin, P. A; Bussab, W. O (2004). Estatística Básica. 5ed. Saraiva.
 Cap 3