Теортест-1 (Вариант 69)

Тема – определенный интеграл

Задача 1

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если $c \in [a, b]$ и f интегрируема на [a, c] и на (c, b], то f интегрируема и на [a, b];
- 2. Если |f| интегрируема на [a,b], то f тоже интегрируема на [a,b];
- 3. Если f > 0 и интегрируема на [a, b], то 1/f тоже интегрируема на [a, b];
- 4. Если $[c,d] \subset [a,b]$ и f интегрируема на [c,d], то f интегрируема и на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 2. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 3. $2 \int f'(x) \sqrt{x} dx = 2 \sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$
- 4. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) = f(b) = 1;
- 2. f непрерывна в точке a и f(a) = 1;
- 3. f непрерывна на [a, b] и f(a + b) = 1;
- 4. f > 0 на [a, b];

Задача 4

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-9; 90];
- 2. [-9; 100];
- 3. [-2; 20];
- 4. [0; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. при движении площадь не меняется;
- 2. $S(A) = S(A \cap B) + S(A \setminus B)$;
- 3. площадь A всегда неотрицательна;
- 4. площадь графика интегрируемой функции равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 2. Длины противоположных путей равны;
- 3. Гладкая кривая это кривая, все параметризации которой гладкие;
- 4. Длина любой кривой конечна;
- 5. Любая кривая имеет бесконечно много различных параметризаций;

Задача 7

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F непрерывна на [a, b];
- 2. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. $\int_a^b f(x)dx = F(b) F(a);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau, \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 3. $\forall \tau \colon s_{\tau} < S_{\tau}$;
- 4. $\forall \tau \; \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x}{x^2-1}$;
- 2. $\frac{x^4}{(x^5+1)^3}$;
- 3. $\frac{2x+1}{x^2(x+1)^2}$;
- 4. $\frac{x^4}{x^2-1}$;

Задача 10

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u' + C;
- 2. udt = dv;
- 3. u' = v + C;
- 4. vdt = du;