1 Постановка задачи

Моделируется нестационарный процесс в ядерном реакторе в транспортном SP_3 приближении [?]. Динамика нейтронного потока рассматривается в ограниченной выпуклой двухмерной или трехмерной области Ω ($\boldsymbol{x} = \{x_1, ..., x_d\} \in \Omega$, d = 2, 3) с границей $\partial\Omega$. Перенос нейтронов описывается системой уравнений:

$$\frac{1}{v_g} \frac{\partial \phi_{0,g}}{\partial t} - \frac{2}{v_g} \frac{\partial \phi_{2,g}}{\partial t} - \nabla \cdot D_{0,g} \nabla \phi_{0,g} + \Sigma_{r,g} \phi_{0,g} - 2\Sigma_{r,g} \phi_{2,g} =
= (1 - \beta) \chi_{n,g} S_{n,g} + S_{s,g} + \chi_{d,g} S_d,
\frac{9}{v_g} \frac{\partial \phi_{2,g}}{\partial t} - \frac{2}{v_g} \frac{\partial \phi_{0,g}}{\partial t} - \nabla \cdot D_{2,g} \nabla \phi_{2,g} + (5\Sigma_{t,g} + 4\Sigma_{r,g}) \phi_{2,g} - 2\Sigma_{r,g} \phi_{0,g} =
= -2(1 - \beta) \chi_{n,g} S_{n,g} - 2S_{s,g} - 2\chi_{d,g} S_d,$$
(1)

где

$$S_{n,g} = \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \phi_{g'}, \quad S_{s,g} = \sum_{g \neq g'=1}^{G} \Sigma_{s,g' \to g} \phi_{g'}, \quad S_d = \sum_{m=1}^{M} \lambda_m c_m,$$

$$\phi_{0,g} = \phi_g + 2\phi_{2,g}, \quad D_{0,g} = \frac{1}{3\Sigma_{tr,g}}, \quad D_{2,g} = \frac{9}{7\Sigma_{t,g}}, \quad g = 1, 2, ..., G.$$

Здесь G — число групп, $\phi_g(\boldsymbol{x})$ — скалярный поток нейтронов, $\phi_{0,g}(\boldsymbol{x})$ — псевдо 0-й момент углового потока, $\phi_{2,g}(\boldsymbol{x})$ — второй момент углового потока , $\Sigma_{t,g}$ — полное сечение, $\Sigma_{tr,g}$ — транспортное сечение, $\Sigma_{r,g}(\boldsymbol{x})$ — сечение увода, $\Sigma_{s,g'\to g}(\boldsymbol{x})$ — сечение рассеяния, χ_g — спектр нейтронов, $\nu\Sigma_{f,g}(\boldsymbol{x})$ — сечение генерации, c_m — плотность источников запаздывающих нейтронов, λ_m — постоянная распада источников запаздывающих нейтронов, M — число типов запаздывающих нейтронов.

Плотность источников запаздывающих нейтронов описывается уравнениями

$$\frac{\partial c_m}{\partial t} + \lambda_m c_m = \beta_m \sum_{g=1}^G \nu \Sigma_{f,g} \phi_g, \quad m = 1, 2, ..., M,$$
(2)

где β_m — доля запаздывающих нейтронов m типа, причем

$$\beta = \sum_{m=1}^{M} \beta_m.$$

На границе области $\partial\Omega$ ставятся граничные условия Маршака:

$$\begin{bmatrix} J_{0,g}(\boldsymbol{x}) \\ J_{2,g}(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{8} \\ -\frac{3}{8} & \frac{21}{8} \end{bmatrix} \begin{bmatrix} \phi_{0,g}(\boldsymbol{x}) \\ \phi_{2,g}(\boldsymbol{x}) \end{bmatrix}, \quad J_{i,g}(\boldsymbol{x}) = -D_{i,g} \nabla \phi_{i,g}(\boldsymbol{x}), \quad i = 0, 2.$$
 (3)

Рассматривается задача для системы уравнений (1), (2) с краевыми условиями (3), и начальными условиями:

$$\phi_q(\mathbf{x},0) = \phi_q^0(\mathbf{x}), \quad g = 1, 2, ..., G, \quad c_m(\mathbf{x},0) = c_m^0(\mathbf{x}), \quad m = 1, 2, ..., M.$$
 (4)

1.1 Операторная формулировка

Запишем краевую задачу (1)–(4) в операторной форме. Определим векторы решений $\boldsymbol{u}=\{u_1,u_2,\cdots,u_G\},\,u_g=\{\phi_{0,g},\phi_{2,g}\},\,\boldsymbol{c}=\{c_1,c_2,...,c_M\}$ и матрицы

$$V = (\mathbf{v}_{gg'}), \quad \mathbf{v}_{gg'} = \delta_{gg'} \begin{bmatrix} \frac{1}{v_g} & -\frac{2}{v_g} \\ -\frac{2}{v_g} & \frac{9}{v_g} \end{bmatrix}, \quad D = (d_{gg'}), \quad d_{gg'} = \delta_{gg'} \begin{bmatrix} D_{0,g} & 0 \\ 0 & D_{2,g} \end{bmatrix},$$

$$A = (a_{gg'}), \quad a_{gg} = \begin{bmatrix} \Sigma_{r,g} & -2\Sigma_{r,g} \\ -2\Sigma_{r,g} & 5\Sigma_{t,g} + 4\Sigma_{r,g} \end{bmatrix}, \quad a_{gg'} = \begin{bmatrix} -\Sigma_{s,g'\to g} & 2\Sigma_{s,g'\to g} \\ 2\Sigma_{s,g'\to g} & -4\Sigma_{s,g'\to g} \end{bmatrix},$$

$$F = (f_{gg'}), \quad f_{gg'} = \begin{bmatrix} \chi_{n,g}\nu\Sigma_{f,g'} & -2\chi_{n,g}\nu\Sigma_{f,g'} \\ -2\chi_{n,g}\nu\Sigma_{f,g'} & 4\chi_{n,g}\nu\Sigma_{f,g'} \end{bmatrix}, \quad B = (b_{gm}), \quad b_{gm} = \begin{bmatrix} \chi_{d,g}\lambda_{m} \\ -2\chi_{d,g}\lambda_{m} \end{bmatrix},$$

$$\Lambda = (\lambda_{mm'}), \quad \lambda_{mm'} = \delta_{mm'}\lambda_{m}, \quad Q = (q_{mg}) \quad q_{mg} = \beta_{m} \begin{bmatrix} \nu\Sigma_{f,g} \\ -2\nu\Sigma_{f,g} \end{bmatrix},$$

где

$$\delta_{gg'} = \begin{cases} 1, & g = g', \\ 0, & g \neq g', \end{cases}$$

есть символ Кронеккера. Будем работать на множестве векторов u, компоненты которого удовлетворяют граничным условиям (3). С учетом введенных обозначений система уравнений (1), (2) записывается в следующем виде:

$$V\frac{d\mathbf{u}}{dt} - \nabla \cdot D\nabla \mathbf{u} + A\mathbf{u} = (1 - \beta)F\mathbf{u} + B\mathbf{c},$$

$$\frac{d\mathbf{c}}{dt} + \Lambda\mathbf{c} = Q\mathbf{u}.$$
(5)

Без учета запаздывающих нейтронов имеем

$$V\frac{d\boldsymbol{u}}{dt} - \nabla \cdot D\nabla \boldsymbol{u} + A\boldsymbol{u} = F\boldsymbol{u}. \tag{6}$$

Для (5) и (6) рассматривается задача Коши, когда

$$\boldsymbol{u}(0) = \boldsymbol{u}^0, \quad \boldsymbol{c}(0) = \boldsymbol{c}^0,$$
 (7)

где ${m u}^0=\{u^0,u^0_2,...,u^0_G\}$ и ${m c}^0=\{c^0_1,c^0_2,...,c^0_M\}.$

1.2 λ -спектральная задача

Для характеристики динамических процессов в ядерном реакторе, которые описываются задачей Коши (5)-(7), применяются решения некоторых спектральных задач [?, ?, ?]. Обычно рассматривается спектральная задача, которая известна как λ -спектральная задача. Для системы уравнений (6), (7) без учета запаздывающих нейтронов, имеем

$$-\nabla \cdot D\nabla \varphi + A\varphi = \lambda^{(k)} F \varphi. \tag{8}$$

Для характеристики нейтронного поля привлекается минимальное собственное значение, так что

$$k = \frac{1}{\lambda_1^{(k)}}$$

есть эффективный коэффициент размножения. Значение $k=\lambda_1^{(k)}=1$ связано с критическим состоянием реактора, а соответствующая собственная функция $\boldsymbol{\varphi}^{(1)}(\boldsymbol{x})$ есть стационарное решение уравнения (5), (6). При k>1 говорят о надкритическом состоянии реактора, при k<1— о подкритическом состоянии.

2 Численные примеры

2.1 Tect TWIGL 2D

Рассматривается двухмерный транспортный тест [?] для SP₃ метода. Моделирутся 1/4 часть активной зоны, размеры которой составляют 160×160 см. На рисунке 1 показана геометрическая модель активной зоны, где цифрами показаны кассеты различных сортов. Нейтронно-физические константы теста представлены в таблице 1. Среднегрупповые скорости нейтронов в тесте одинаковы для всей среды и составляют $v_1 = 10^7$ см/с и $v_2 = 2 \cdot 10^5$ см/с. Спектр деления для мгновенных и запаздывающих нейтронов также одинаков для всей среды и равен $\chi_1 = 1$ и $\chi_2 = 0$. В тесте представлена одна эффективная группа запаздывающих нейтронов. Эффективная доля запаздывающих нейтронов составляет $\beta = 0.0075$, а постоянная распада предшественников запаздывающих нейтронов $\lambda = 0.08$ с $^{-1}$.

Рис. 1: Геометрическая модель 1/4 активной зоны теста TWIGL-2D.

Таблица 1: Диффузионные константы для теста TWIGL-2D.

Материал	1	2	3
Σ_{t1}	0.2481	0.2481	0.2644
Σ_{t2}	0.9833	0.9833	0.7167
Σ_{a1}	0.01	0.01	0.008
Σ_{a2}	0.15	0.15	0.05
$\Sigma_{s,1\to 2}$	0.01	0.01	0.01
$\Sigma_{s,1\to 1}$	0.2281	0.2281	0.2464
$\Sigma_{s,2\to 2}$	0.8333	0.8333	0.6667
$ u_1 \Sigma_{f1}$	0.007	0.007	0.003
$ u_2\Sigma_{f2}$	0.2	0.2	0.06

В задаче представлены три сценария развития переходного процесса: возмущение скачком TWIGL-S, линейное возмущение TWIGL-R и комбинированное TWIGL-C. Все возмущения происходят в зоне 1. Возмущение скачком инициируется посредством уменьшения теплового сечения деления Σ_{a2} на $0.0035~{\rm cm}^{-1}$ в нулевой момент времени. В случае линейного возмущения Σ_{a2} линейно уменьшается на $0.0035~{\rm cm}^{-1}$ в течение 0.2 секунд. Комбинированное возмущение происходит следующим образом: Σ_{a2} линейно уменьшается на $0.0035~{\rm cm}^{-1}$ в течении 0.2 секунд; в момент времени 0.2 секунд происходит скачкообразное увеличение на $0.00525~{\rm cm}^{-1}$; линейно увеличивается на $0.00175~{\rm cm}^{-1}$ с момента времени 0.2 секунд до 0.4 секунд; скачкообразное уменьшение на $0.0035~{\rm cm}^{-1}$. В комбинированном случае представлены другие параметры для запаздывающих нейтронов: $v_1 = 10^7~{\rm cm/c}$ и $v_2 = 10^5~{\rm cm/c}$; эффективная доля запаздывающих нейтронов составляет $\beta = 0.0064$; постоянная распада предшественников запаздывающих нейтронов $\lambda = 0.08~{\rm c}^{-1}$. Динамическое поведение исследуется на интервале $0 \le t \le 0.5~{\rm c}$ для всех трех случаев.

2.2 Решение λ -спектральной задачи

Результаты расчета теста TWIGL-2D приведены в таблице 2. Здесь приняты следующие обозначения: n — число расчетных ячеек (конечных элементов) на кассету 24x24 в плане; p — порядок конечных элементов; k_{dif} — эффективный коэффициент размножения по диффузионной модели; k_{sp_3} — эффективный коэффициент размножения по транспортной SP_3 модели. На рисунках 2, 3, 4 показаны расчеты нормированных мощностей для трех случаев.

To6	ຸ າ.	Donust moment	10.0.011.070.0	λ -спектральной	родоли
таолица	a 2.	гезультаты	расчета	<i>л</i> -спектральнои	задачи.

\overline{n}	p	$k_{dif}(\gamma = 0.5)$	$k_{dif}(\gamma = 100)$	k_{sp_3}
	1	0.915519	0.913286	0.916144
9	2	0.915519	0.913333	0.916190
	3	0.915419	0.913234	0.916094
	1	0.915486	0.913288	0.916147
36	2	0.915423	0.913238	0.916096
	3	0.915408	0.913223	0.916076
	1	0.915434	0.913245	0.916102
144	2	0.915409	0.913223	0.916076
	3	0.915408	0.913222	0.916073

2.3 Решение α -спектральной задачи

В качестве «эталонного» решения взято решения полученное по модели (диффузионной или транспортной) на мелкой сетке p=3, n=96. Здесь приняты следующие обозначения: $\alpha_{dif}-\alpha$ собственное значение по диффузионной модели; $\alpha_{sp_3}-\alpha$ -собственное значение по SP₃ модели; Δ — абсолютное отклонение от «эталонного» значения.

Без учета запаздывающих нейтронов.

В таблице 3 показаны результаты расчета α -спектральной задачи без учета запаздывающих нейтронов при использовании различных сеток и конечных элементов. В таблице 4 приведены результаты первых десяти собственных значений α -спектральной задачи без учета запаздывающих нейтронов при мелкой сетке p=3, n=96. На рисунках 5, 6, 7 показаны собственные функции для SP_3 модели.

1.2211	1.2558	1.2084	2.3122	2.1287	1.9349	1.6823	0.6592	0.455	0.1888
1.2558	1.2835	1.224	2.3201	2.1154	1.911	1.6551	0.647	0.4461	0.185
1.2084	1.224	1.1651	2.2958	2.079	1.8562	1.5963	0.6215	0.4275	0.177
2.3122	2.3201	2.2958	2.1381	1.9973	1.7574	1.4984	0.5804	0.3982	0.1647
2.1287	2.1154	2.079	1.9973	1.8431	1.6004	1.3536	0.522	0.3574	0.1476
1.9349	1.911	1.8562	1.7574	1.6004	1.3768	1.1581	0.4458	0.3052	0.1261
1.6823	1.6551	1.5963	1.4984	1.3536	1.1581	0.9677	0.3587	0.2439	0.101
0.6592	0.647	0.6215	0.5804	0.522	0.4458	0.3587	0.2785	0.178	0.0739
0.455	0.4461	0.4275	0.3982	0.3574	0.3052	0.2439	0.178	0.1119	0.0467
0.1888	0.185	0.177	0.1647	0.1476	0.1261	0.101	0.0739	0.0467	0.0196

Рис. 2: Нормированная мощность по диффузионной модели при $\gamma=0.5.$

1.2592	1.2939	1.2433	2.3738	2.1771	1.9672	1.6909	0.6469	0.4221	0.1388
1.2939	1.3215	1.2585	2.3803	2.1622	1.9417	1.6626	0.6346	0.4136	0.1359
1.2433	1.2585	1.1964	2.3522	2.1221	1.8835	1.6015	0.6088	0.3959	0.1299
2.3738	2.3803	2.3522	2.1854	2.0341	1.7793	1.4999	0.5673	0.368	0.1206
2.1771	2.1622	2.1221	2.0341	1.8701	1.6143	1.3499	0.5083	0.329	0.1077
1.9672	1.9417	1.8835	1.7793	1.6143	1.3804	1.1477	0.4313	0.279	0.0914
1.6909	1.6626	1.6015	1.4999	1.3499	1.1477	0.9476	0.3429	0.2201	0.0722
0.6469	0.6346	0.6088	0.5673	0.5083	0.4313	0.3429	0.26	0.1565	0.0514
0.4221	0.4136	0.3959	0.368	0.329	0.279	0.2201	0.1565	0.0925	0.0305
0.1388	0.1359	0.1299	0.1206	0.1077	0.0914	0.0722	0.0514	0.0305	0.0101

Рис. 3: Нормированная мощность по диффузионной модели при $\gamma=100.$

1.2091	1.2427	1.2016	2.3113	2.1343	1.9404	1.6839	0.6576	0.4524	0.1883
1.2427	1.2696	1.2168	2.3188	2.121	1.9165	1.6568	0.6455	0.4436	0.1845
1.2016	1.2168	1.1632	2.295	2.0846	1.8617	1.5981	0.6201	0.4251	0.1766
2.3113	2.3188	2.295	2.1438	2.0026	1.7629	1.5002	0.5792	0.396	0.1643
2.1343	2.121	2.0846	2.0026	1.8482	1.6058	1.3556	0.521	0.3555	0.1473
1.9404	1.9165	1.8617	1.7629	1.6058	1.3821	1.1604	0.4452	0.3037	0.1259
1.6839	1.6568	1.5981	1.5002	1.3556	1.1604	0.9678	0.3584	0.2429	0.1009
0.6576	0.6455	0.6201	0.5792	0.521	0.4452	0.3584	0.2775	0.1776	0.074
0.4524	0.4436	0.4251	0.396	0.3555	0.3037	0.2429	0.1776	0.112	0.0469
0.1883	0.1845	0.1766	0.1643	0.1473	0.1259	0.1009	0.074	0.0469	0.0198

Рис. 4: Нормированная мощность по транспортной модели.

Таблица 3: Результаты расчета α -спектральной задачи.

	n	p	$lpha_{dif}$	$lpha_{dif}$	α_{sp_3}
			$(\gamma = 0.5)$	$(\gamma = 100)$	
		1	1086.39	1118.17	1082.17
	9	2	1075.48	1106.20	1070.66
		3	1074.73	1105.38	1069.67
		1	1077.93	1108.89	1073.20
	36	2	1074.77	1105.42	1069.69
		3	1074.66	1105.31	1069.51
		1	1075.52	1106.25	1070.51
]	144	2	1074.66	1105.31	1069.51
		3	1074.65	1105.30	1069.49

Таблица 4: Первые десять собственных значений $\alpha_i=\lambda_i^{(\alpha)}$ при $\underline{p}=3, n=96.$

	1 1		υ <u>ι ι ι</u>
$\frac{1}{i}$	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
1	1074.65 + 0.0i	1105.30 + 0.0i	1069.49 + 0.0i
2	2372.88 + 0.0i	2471.91+0.0i	2350.57+0.0i
3	2627.51+0.0i	2773.17+0.0i	2597.47+0.0i
4	3175.23 + 0.0i	3326.51 + 0.0i	3131.63 + 0.0i
5	3957.45 + 0.0i	4106.06+0.0i	3889.73 + 0.0i
6	4192.97+0.0i	4291.70+0.0i	4119.26+0.0i
7	4362.12+0.0i	4481.13+0.0i	4281.96+0.0i
8	4742.27+0.0i	4777.35+0.0i	4649.39+0.0i
9	5050.62+0.0i	5180.50 + 0.0i	4944.38 + 0.0i
10	5309.81 + 0.0i	5455.79 + 0.0i	5192.20 + 0.0i

Рис. 5: Собственные функции $\phi_1^{(1)},\,\phi_2^{(1)}.$

Рис. 6: Собственные функции $\phi_1^{(2)}, \, \phi_1^{(3)}.$

Рис. 7: Собственные функции $\phi_1^{(4)},\,\phi_1^{(5)}.$

2.4 Решение нестационарной задачи

Представлены исследования различных шагов по времени для всех трех сценариев. В качестве сетки по пространству взят вариант при $n=36,\ p=2,\$ а для эталонного решения взяты результаты на мелкой сетке $n=144,\ p=3,\ \tau=1$ мс.

2.4.1 Сценарий №1

В таблице 5 представлены результаты эталонных решений TWIGL-S при $n=144, p=3, \tau=1$ мс по диффузионной и транспортной моделях. На рисунке 8 показано эталонное решение TWIGL-S по транспортной модели, а на рисунке 9 показаны различия диффузионных эталонных решений относительно транспортного эталонного решения. Далее, на рисунках 10, 11, 12 показаны отличия при различных шагах по времени относительно эталонных решений.

Таблица 5: Различие результатов диффузионного и транспортного расчетов для TWIGL-S.

\overline{t}	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	2.0783	2.0613	2.0898
0.2	2.0961	2.0786	2.1079
0.3	2.1139	2.0959	2.1260
0.4	2.1319	2.1135	2.1442
0.5	2.1500	2.1311	2.1626

Рис. 8: Эталонное решение TWIGL-S по транспортной SP_3 модели.

Рис. 9: Различия решения TWIGL-S по диффузионной модели от транспортной модели.

Рис. 10: Результаты расчета TWIGL-S для различных шагов по времени по диффузионной модели при $\gamma=0.5.$

Рис. 11: Результаты расчета TWIGL-S для различных шагов по времени по диффузионной модели при $\gamma=100.$

Рис. 12: Результаты расчета TWIGL-S для различных шагов по времени по транспортной $\rm sp3$ модели.

2.4.2 Сценарий №2

В таблице 6 представлены результаты эталонных решений TWIGL-R при $n=144, p=3, \tau=1$ мс по диффузионной и транспортной моделях. На рисунке 13 показано эталонное решение TWIGL-R по транспортной модели, а на рисунке 14 показаны различия диффузионных эталонных решений относительно транспортного эталонного решения. Далее, на рисунках 15, 16, 17 показаны отличия при различных шагах по времени относительно эталонных решений.

Таблица 6: Различие результатов диффузионного и транспортного расчетов для TWIGL-R.

t	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3112	1.3083	1.3134
0.2	1.9729	1.9595	1.9826
0.3	2.0921	2.0747	2.1038
0.4	2.1099	2.0921	2.1219
0.5	2.1278	2.1096	2.1401

Рис. 13: Эталонное решение TWIGL-R по транспортной SP_3 модели.

Рис. 14: Различия решения TWIGL-R по диффузионной модели от транспортной модели.

Рис. 15: Результаты расчета TWIGL-R для различных шагов по времени по диффузионной модели при $\gamma=0.5.$

Рис. 16: Результаты расчета TWIGL-R для различных шагов по времени по диффузионной модели при $\gamma=100.$

Рис. 17: Результаты расчета TWIGL-R для различных шагов по времени по транспортной $\rm sp3$ модели.

2.4.3 Сценарий №3

В таблице 7 представлены результаты эталонных решений TWIGL-C при $n=144, p=3, \tau=1$ мс по диффузионной и транспортной моделях. На рисунке 18 показано эталонное решение TWIGL-C по транспортной модели, а на рисунке 19 показаны различия диффузионных эталонных решений относительно транспортного эталонного решения. Далее, на рисунках 20, 21, 22 показаны отличия при различных шагах по времени относительно эталонных решений.

Таблица 7: Различие результатов диффузионного и транспортного расчетов для TWIGL-R.

\overline{t}	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3422	1.3393	1.3402
0.2	2.1457	2.1349	2.1525
0.3	0.7102	0.7118	0.7108
0.4	0.6494	0.6513	0.6498
0.5	1.0023	1.0023	1.0050

Рис. 18: Эталонное решение TWIGL-C по транспортной SP_3 модели.

Рис. 19: Различия решения TWIGL-C по диффузионной модели от транспортной модели.

Рис. 20: Результаты расчета TWIGL-C для различных шагов по времени по диффузионной модели при $\gamma=0.5.$

Рис. 21: Результаты расчета TWIGL-C для различных шагов по времени по диффузионной модели при $\gamma=100.$

Рис. 22: Результаты расчета TWIGL-C для различных шагов по времени по транспортной ${\rm sp3}$ модели.