## Theoretische Elektrodynamik

Matthias Vojta

übertragen von Lukas Körber und Friedrich Zahn

Wintersemester 2014/2015

## Inhaltsverzeichnis

| 1 | Mathematische Hilfsmittel             |                                                    | 7  |
|---|---------------------------------------|----------------------------------------------------|----|
|   | 1.1                                   | Skalar- und Vektorfelder                           | 7  |
|   | 1.2                                   | Integrale auf Feldern                              | 7  |
|   | 1.3                                   | Vektorielle Ableitungen und Integrale              | 9  |
|   | 1.4                                   | Differentialoperatoren in krummlinigen Koordinaten | 10 |
|   | 1.5                                   | Fourier-Transformation                             | 11 |
| 2 | Grundbegriffe und Maxwell-Gleichungen |                                                    | 13 |
|   | 2.1                                   | Kräfte und Punktladungen                           | 13 |
|   | 2.2                                   | Ladungs- und Stromdichte, Ladungsverteilung        | 13 |

## **Einleitung**

Gegenstand der Vorlesung ist die (klassische) Theorie der Elektrischen Felder ausgehend von den Maxwell-Gleichungen (1864):

$$\operatorname{div} \mathbf{B} = 0$$

$$\operatorname{rot} \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\varepsilon_0 \text{div } \mathbf{E} = \rho$$

$$\frac{1}{\mu_0} \operatorname{rot} \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mathbf{j}$$

für die Felder **E** und **B** in Abhängigkeit von Ladungs- und Stromverteilung  $\rho(r, t)$  und j(r, t) sollen physikalische Erscheinungen geschildert werden.

Elektrodynamik ist ein Teil des Standartmodells der Teilchenphysik, das einheitlich Teilichen und ihre Wechselwirkungen beschreibt.

Klassische Elektrodynamik ist ein Grenzfall der Quantenelektrodynamik (gültig für kleine Impuls- und Energiebeträge, große Brechungszahlen für Photonen). Sie ist im Einklang mit der der speziellen Relativitätstheorie (c ist implizit in den Maxwell-Gleichungen enthalten). Viele interessante Effekte von Materie können mit klassischer Theorie nicht beschrieben werden.

Zum Beispiel: Wann sind Atome stabil? Wann ist Eisen ferromagnetisch? Warum wird z.B. Blei bei tiefen Temperaturen supraleitend? Für diese Fragen werden Quanteneffekte wichtig.

## **Kapitel 1**

### **Mathematische Hilfsmittel**

Literaturtipp: Mathematischer Einführungskurs Physik

#### 1.1 Skalar- und Vektorfelder

Felder entsprechen Größen, die an jedem Raumpunkt einen bestimmten Wert haben, der zeitabhängig sein kann.

```
1. skalare Felder: \phi = \phi(x, y, z, t)
```

Bsp.: Temperatur, Druck, Ladung, Energie

2. Vektorfelder:  $\mathbf{E} = \mathbf{E}(x, y, z, t)$ 

Bsp.: Geschwindigkeitsverteilung in einem strömenden Gas, Wärmestromdichte

#### 1.2 Integrale auf Feldern

Integrale über skalare Felder werden wie bekannt bebildet; sie sind zu vermeiden.

Integriert man über ein Vektorfeld, spielt die Richtungsinformation eine entscheidende Rolle. Man unterscheidet je nach Dimension des Parameterbereichs von Linien-, Flächen- und Volumenintegralen.

#### a. Linienintegrale

$$\varphi = \int_{C} \mathbf{E}(\mathbf{r}) d\mathbf{r}$$

Wir parametrisieren die Kurve durch  $r = r(\tau)$  und erhalten somit

$$\varphi = \int_{\tau_0}^{\tau_1} \mathbf{E}(\mathbf{r}(\tau)) \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\tau} \mathrm{d}\tau$$

Ein Speziallfall des Linienintegrals ist das sogenannte **geschlossene Linienintegral**, welches durch  $\phi$  gekennzeichnet wird.

#### b. Flächenintegrale

$$\Phi = \iint_{S} \mathbf{B} \cdot d\mathbf{A} \quad \text{mit } d\mathbf{A} = d\mathbf{A} \cdot \mathbf{n}$$

Ganz analog zu **a.** kann die Fläche  $\mathbf{r} = \mathbf{r}(u, v)$  parametrisiert werden. Es ist jedoch beim Bilden der Funktionaldeterminante auf die Richtung des Flächenelements zu achten. Die beiden möglichen Lösungen unterscheiden sich natürlich nur um ein Vorzeichen. Wir erhalten also

$$\Phi = \int_{v_1}^{v_2} \int_{u_1}^{u_2} \mathbf{B}(u, v) \cdot \left( \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du dv$$

Physikalisch lässt sich ein Flächenintegral als sogenannter Fluss interpretieren.

#### c. Volumenintegrale

$$Q = \iiint_{G} dV \cdot \rho(\mathbf{r}) = \iiint_{G} d^{3} \mathbf{r} \cdot \rho(\mathbf{r}) =$$

Beim Volumenintegral wird wiederum (nicht wie beim Flächenintegral) das Vorzeichen des Volumenelements vernachlässigt, da physikalisch die *Richtung* des Volumens nur sehr selten wirklich von Bedeutung ist. Mit entsprechender Parametrisierung  $\mathbf{r} = \mathbf{r}(u, v, w)$  ergibt sich

$$q = \int_{u_1}^{u_2} \int_{v_1}^{v_2} \int_{u_1}^{u_2} \rho(u, v, w) \cdot \left| \frac{\partial \mathbf{r}}{\partial u} \cdot \left( \frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial w} \right) \right| du dv dw$$

#### 9

#### 1.3 Vektorielle Ableitungen und Integrale

#### a. Gradient

Der Gradient grad  $\phi$  eines Skalarfeldes beschreibt dessen Änderung und steht senkrecht auf den Äquipotentialflächen (oder allgemeiner: Niveaumengen). Der Gradient lässt sich durch den Nabla-Operator ausdrücken und lautet in karthesischen Koordinaten:

$$\nabla = \frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z$$

Wichtig ist, dass  $\nabla$  ein vektorieller Differenzialoperator ist. Er folgt Ableitungsregeln, wie etwa der Kettenregel, und  $\nabla \phi$  verhält sich unter Koordinatentransformation wie ein Vektor.

Andere Schreibweisen:  $\frac{\partial}{\partial r}$ ,  $\partial_r$ ,  $\nabla_r$ 

#### Beispiele:

$$\nabla |\mathbf{r}| = \frac{\mathbf{r}}{|\mathbf{r}|} = \mathbf{e}_r$$
$$\nabla \frac{1}{|\mathbf{r}|} = -\frac{1}{r^2} \mathbf{e}_r$$

#### b. Divergenz (Quellenstärke eines Vektorfeldes)

Die Divergenz div  $\mathbf{E} = \nabla \cdot \mathbf{E}$  ist ein Skalar unter Koordinatentransformation und kann als **lokale Quellenstärke** interpretiert werden. Häufig benötigt man auch den Laplace-Operator, der die *zweite Ableitung* repräsentiert.

$$div\ grad\ \phi = \nabla^2 \phi = \Delta \phi$$

#### Beispiele:

div 
$$r = 3$$
 (Anzahl der Dimensionen)  
div  $(\phi \mathbf{A}) = \nabla \cdot (\phi \mathbf{A}) = \mathbf{A}(\nabla \phi) + \phi(\nabla \mathbf{A}) = \mathbf{A} \cdot \operatorname{grad} \phi + \phi \cdot \operatorname{div} \mathbf{A}$ 

#### **c. Rotation** (Wirbelstärke eines Vektorfeldes)

Die Rotation rot  $\mathbf{B} = \nabla \times \mathbf{B}$ 

$$\nabla \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x & B_y & B_z \end{vmatrix}$$

kann als **lokale Wirbelstärke** verstanden werden. Ihr Komponenten lassen sich auch als

$$(\nabla \times \mathbf{B})_i = \sum_{i,k} \epsilon_{ijk} \cdot \frac{\partial}{\partial x_j} \cdot \mathbf{B}_k$$

darstellen wobei  $\epsilon_{ijk}$  der total antisymetrische Tensor 3. Stufe ist.

#### Beispiele:

$$\mathbf{v} = \mathbf{\omega} \times \mathbf{r} \implies \nabla \times \mathbf{v} = 2\mathbf{\omega}$$
  
 $\nabla \times \mathbf{r} = 0$ 

#### d. Gauss'scher Satz

$$\iiint\limits_{V} \operatorname{div} \mathbf{E} \cdot d\mathbf{V} = \iint\limits_{\partial V} \mathbf{E} \cdot d\mathbf{A}$$

Der Satz von Gauss verknüpft Eigenschaften im Inneren eines Volumens mit dem Verhalten auf dem Rand.

#### e. Green'scher Satz

$$\int_{V} (\phi \Delta \psi - \psi \Delta \phi) dV = \oint_{\partial V} (\phi \nabla \psi - \psi \nabla \phi) d\mathbf{A}$$

#### f. Stokes'scher Satz

$$\iint_{S} \operatorname{rot} \mathbf{B} \cdot d\mathbf{A} = \oint_{\partial A} \mathbf{B} \cdot d\mathbf{r}$$

Analog zu Gauss'schen Satz verknüft der Satz von Stokes das Verhalten eines Feldes auf einer Fläche mit dem auf dem Rand der Fläche. Für geschlossene Flächen gilt

$$\oint_{S=\partial V} \operatorname{rot} \mathbf{B} \cdot d\mathbf{A} = 0$$

## 1.4 Differentialoperatoren in krummlinigen Koordinaten

Karthesische / Kugel-/Zylinderkoordinaten sind hier wichtig.

#### 1.5. FOURIER-TRANSFORMATION

11

z.B: 
$$\nabla_x \psi = \partial_x \psi \boldsymbol{e}_x + \partial_y \psi \boldsymbol{e}_y + \partial_z \psi \boldsymbol{e}_z$$

$$\nabla_{\theta} \psi = \frac{\partial}{\partial r} \psi \boldsymbol{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \psi \boldsymbol{e}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \psi \boldsymbol{e}_{\phi}$$

Generell:  $(\nabla \psi)_u \equiv (\nabla \psi) \boldsymbol{e}_u = \frac{1}{g_u} \frac{\partial \psi}{\partial u} \text{ mit } g_u = |\frac{\partial \psi}{\partial u}|$ 

#### 1.5 Fourier-Transformation

$$\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(t) e^{i\omega t} d\omega$$

Verallgemeinert auf *n* Dimensionen ergibt sich:

$$\tilde{f}(\mathbf{k}) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{-\infty}^{\infty} f(\mathbf{r}) e^{-i\mathbf{k}\mathbf{r}} d^n r$$

#### a. Differentiation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} i\omega \tilde{f}(\omega) e^{i\omega t} \mathrm{d}\omega$$

#### b. Faltung

$$(f * g)(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t - s)g(s)ds$$

$$\widetilde{(f * g)}(\omega) = \widetilde{f}(\omega)\widetilde{g}(\omega)$$

#### c. Rechenregeln

$$f'(t) \leftrightarrow i\omega \tilde{f}(\omega)$$

$$-itf(t) \leftrightarrow \tilde{f}'(\omega)$$

$$f(t+a) \leftrightarrow e^{i\omega a} \tilde{f}(\omega)$$

$$e^{i\omega t} f(t) \leftrightarrow \tilde{f}(\omega-a)$$

$$f(at) \leftrightarrow \frac{1}{|a|} \tilde{f}\left(\frac{\omega}{a}\right)$$

$$f^*(t) \leftrightarrow \tilde{f}^*(\omega)$$

$$\tilde{f}(t) \leftrightarrow f(-t)$$

## **Kapitel 2**

# Grundbegriffe und Maxwell-Gleichungen

#### 2.1 Kräfte und Punktladungen

Aus der Erfahrung ergibt sich für eine Ruhende Ladung

$$\mathbf{F}(\mathbf{r},t) = \mathbf{Q} \cdot \mathbf{E}(\mathbf{r},t) \tag{2.1}$$

Dabei ist Q eine Körpereigenschaft und **E** eine Eigenschaft, die die Umwelt charakterisiert. Über den Vergleich der Kraft auf zwei Körper  $\mathbf{F}_1(\mathbf{r},t) = \frac{Q_1}{Q_2}\mathbf{F}_2(\mathbf{r},t)$  lässt sich so eine Einheit für die Ladung definieren.

Bei bewegten Ladungen beobachten wir etwas anderes. Die Kraft hat hier die Form

$$\mathbf{F} = \mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B}) \tag{2.2}$$

#### 2.2 Ladungs- und Stromdichte, Ladungsverteilung

Über eine Ladung in einem Volumenelement lässt sich der Begriff der Ladungsdichte definieren.

$$\rho(\mathbf{r},t) = \frac{\mathrm{dQ}}{\mathrm{dV}} \tag{2.3}$$

Eine Ladungsänderung nennen wir schließlich den elektrischen Strom.

$$-\mathbf{I} := \dot{\mathbf{Q}} = \frac{\mathbf{d}}{\mathbf{d}t} \int_{\mathbf{V}} \rho(\mathbf{r}, t) d\mathbf{V} = \int_{\mathbf{V}} \frac{\partial \rho}{\partial t} d\mathbf{V}$$
 (2.4)