

The State of SSL in the World

Michael Boman Omegapoint

OWASP

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

Who am I?

- Consultant at Omegapoint (Stockholm)
- **■** Penetration Tester
- Incident Handler
- **■** Course Instructor
 - ▶ Secure Development
 - Security Testing

A little background

- Lacked a good tool to perform OWASP-CM-001 tests (Testing for SSL-TLS, OWASP Testing Guide)
 - Couldn't find any that suited my requirements
 - Free, Runs locally, Works on Windows
- Wrote SSLAudit in Perl (GPL)
 - http://code.google.com/p/sslaudit/
 - ▶ No longer maintained

A little background (2)

- Re-write SSLAudit or port SSLScan?
 - http://sourceforge.net/projects/sslscan/
- Ported SSLScan to Windows (GPL)
 - http://code.google.com/p/sslscan-win/
- **■** Enhanced SSLScan
 - ▶ Renegotiation tests
 - ► Enhanced XML output format
 - ▶ Refactored output code

Demo

SSLSCAN IN ACTION, SINGLE INSTANCE

Why scan a lot of HTTPS servers?

- I noticed that some organizations that you would think would have good security failed miserable on the HTTPS configuration
- Was it a fluke? What differs organizations with good HTTPS settings with those with not-sogood or insecure settings?
 - ▶ Money? Popularity? Industry?

First large scan attempt

- Single instance with a large collection of hosts
- Took forever and was not that stable
 - ▶ Could not easily resume failed scan process

Second large scan attempt

- Multiple instances with a handful of targets each
- Much better performance, but still takes long time to complete the scan
- Still could not easily resume failed scan process
 - ▶ But I didn't need to start from beginning, just the failed batch

Third large scan attempt

- Using Amazon AWS
 - ▶ SQS to keep track of jobs
 - ▶ S3 to store results
- Multiple instances scanning one target each
- Easy to resume failed jobs
- Still taking a long time to perform the scan...

Forth large scan attempt

- Added Amazon EC2 to the mix
 - Now I have theoretically unlimited servers to scan from
- Can scan the required dataset within a few days without problem

Forth large scan design

Forth large scan design


```
- 0
[screen 0: bash] root@domU-12-31-39-00-88-36:~/distributed-sslscan
$VAR1 = 'alexa,6801,www.one.lv';
$VAR1 = 'alexa, 6268, www.topwpthemes.com';
$VAR1 = 'alexa, 6891, www.sat1.de';
$VAR1 = 'alexa,6412,www.rawabetvb.com';
$VAR1 = 'alexa, 6401, www.richptc.com';
$VAR1 = 'alexa, 6892, www.ets.org';
$VAR1 = 'alexa,6696,www.rwa2an.net';
$VAR1 = 'alexa, 6781, www.articleclick.com';
$VAR1 = 'alexa,6357,www.el-ahly.com';
$VAR1 = 'alexa,6367,www.micronichefinder.com';
$VAR1 = 'alexa, 6759, www.espalwii.com';
$VAR1 = 'alexa, 6373, www.patoghfa.com';
$VAR1 = 'alexa, 6762, www.u8881.com';
$VAR1 = 'alexa, 6764, www.bignews.biz';
$VAR1 = 'alexa,6530, www.clipartof.com';
$VAR1 = 'alexa,6499,www.burnews.com';
```

Demo

SSLSCAN ON AMAZON EC2

The Question

- What are the key factors for a good HTTPS configuration?
 - ▶ Money?
 - ▶ Popularity?
 - ▶ Industry?

So what did I find?

THE NUMBERS...

Data details

- Alexa list from 18 Apr 2010
- Fortune 500 (2010)
- Data aquired 26 Apr 2010

HOW MANY OF THE TESTED SERVERS SUPPORTS SSL/TLS TO BEGIN WITH?

Fortune 500

Alexa 10k

PROTOCOL SUPPORT

Fortune 500

Alexa 10k

Fortune 500

Alexa 10k

Fortune 500

Alexa 10k

INSECURE KEY EXCHANGE

Fortune 500

No Key Exchange Authentication (%)

Alexa 10k

No Key Exchange Authentication (%)

KEY LENGTHS

NO ENCRYPTION (0 BIT KEY)

Fortune 500

Alexa 10k

WEAK ENCRYPTION (1-127 BIT KEY)

Fortune 500

Alexa 10k

Weak Encryption (%)

MEDIUM ENCRYPTION (128-255 BIT KEY)

Fortune 500

Alexa 10k

STRONG ENCRYPTION (>=256 BIT KEY)

Fortune 500

Alexa 10k

SESSION RENEGOTIATION

Fortune 500

Secure Renegotation Settings (%)

Alexa 10k

Secure Renegotation Settings (%)

16 Organizations are on both lists

FORTUNE 500 VS ALEXA 500

Money vs. Popularity: HTTPS enabled?

Money vs. Popularity: SSLv2 enabled? (= bad)

Money vs. Popularity: 0-bit keys being enabled?(=bad)

Money vs. Popularity: Weak keys being enabled?(=bad)

Money vs. Popularity: No auth kx being enabled?(=bad)

Money vs. Popularity: Secure Session Renegotation?

HTTPS Support (%)

No Encryption (%)

No Encryption (%)

Commercial Banks

Conclusion

- What the data told me is that
 - ▶ Money (Fortune) seems to have something to do with HTTPS being enabled
 - ▶ Popularity (Alexa) seems to be they key to enable HTTPS securely
 - ▶ There is no obvious real trend in what kind of industry a company is in and their HTTPS security settings, but it seems more likely the company is doing business over the webb the more likely they offer HTTPS on their website

What's next?

■ Deeper investigation into the Swedish market in co-operation with .SE (The Internet Infrastructure Foundation – the guys responsible for .SE TLD)

Questions and Answers

- Research website:
 - http://sslresearch.michaelboman.org
 - Raw data, documentation, scripts and tools

- **■** Contact information:
 - owasp2010@michaelboman.org
 - www.michaelboman.org
- References:
 - http://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)

