

Présentation

Déterminer la complexité temporel d'un algorithme en disposant de son code source

Par régression linéaire

Dans un temps convenable

Plusieurs exécutions de l'algorithme pour des tailles d'entrées différentes

- → Collecte du temps d'exécution pour chacune des entrées
- → Construction du tableau permettant la régression

Réalisation d'une première régression linéaire

- → Méthode des moindres carrés
- → Si impossibilité de conclure, application de la seconde approche

Réalisation d'une régression par classe de complexité

- → Calcul de l'erreur (la somme des carrés des écarts aux points connus)
- → Détermination de la classe de complexité

Résultats

Résultats obtenus pour le tri à bulle

Régression	O(Log)	O(N)	O(N^2)	O(N ³)
Erreur	29280.9	9225.85	146.96	1772.99
Indicateur	19824%	6177%	0%	1106%

Étude de codes étudiants posté sur caséine

→ En fonction des codes soumis, déterminer la complexité de nouvelles soumissions

Approche par machine learning

→ Permettre de distinguer les classes en log(n)

Intégrer le code sur caséine

→ Déterminer la complexité des codes soumis par les étudiants, ce qui pourrait amener un nouveau critère d' évaluation

Merci de votre attention, si vous avez des questions n'hésitez pas