1- Determine bias points in the following circuits. In which of the following circuits, the base current can be neglected?

$$\beta = 100, |V_{BE,ON}| = 0.7V, |V_{CE,sat}| = 0.2V$$

| 100 | 100

KVL @M: -5.9 - 231c -0.7 - 1c +10 = 0

$$1.231_{C} = 3.4 \rightarrow 1_{C} = 2.7$$

2- Calculate the input resistance (R_i) as well as the voltage gain $(A_v = v_o/v_i)$ in the circuit shown below.

3- In the following circuit, calculate the voltage gain ($A_v = v_o/v_i$), input resistance (R_{in}) and the output resistance (R_{out}).

DC:
$$\frac{12v}{80u_{T}} = \frac{9}{10} = \frac{9}{10}$$

- 4- In the following circuit,
 - a) Determine the bias points of the transistors. Assume $R_E = 0$.
 - b) Calculate the maximum value of R_E for which Q_1 remains in the active region.

$$\begin{cases} V_{CC} = 16V \\ R_C = 0.1k\Omega \\ R_B = 1.5M\Omega \\ \left| V_{CE,sat} \right| = 0.2V \\ \left| V_{BE,on} \right| = 0.7V \\ \beta_1 = 160 \\ \beta_2 = 200 \end{cases}$$

5- In the circuit shown below, the transistors are the same. Determine the bias points.

6- Calculate the voltage gain, input resistance and output resistance of the following scheme.

7- In the following circuit, the voltage gain and the DC voltage drop on R_C is -48 V/V and 3 V, respectively. Determine R_C .

8- In the following circuit,

- a) Calculate the voltage gain ($V_{BE,ON}=0.7V$).
- b) Determine the output voltage (v_o) swing.
- c) Modify R_1 in order to maximize the output voltage swing.

swing () = 9 (b The kylom: $1i_C + v_{CE} + i_C = 0$ v_{CE} v_{CE} 1cm -= 1ca = 2.1 mA $1_{CM+} = \frac{v_{CEQ} - v_{CE,Sat}}{R_{AC}} = \frac{18.7 - 0.2}{2} = 9.25$ swingsics = minsiem+ icm- = 2.1mA vo = 1 kic → swing(vo) = 1/8 wing() = 2.1 v √

$$| c_{\alpha} | c_$$