

ARTIFICIAL INTELLIGENCE AND NATIONAL SECURITY: ETHICS IN ACTION

MARCH 25, 4:30 PM

FOUNDERS GREAT HALL, HAVERFORD COLLEGE

How does the US Department of State use Artificial Intelligence to support analysis and national security? What are the ethical concerns involved in that practice, and how are they mitigated? How is AI, as a tool, enhancing security and safety while policymakers and administrators make critical decisions about how and where it will be deployed? What vital decisions will be considered over the years to come?

Join a Haverfordian conversation with leading experts in this area.

Speakers

JOHN SILSON '02,
DIRECTOR OF THE US DEPARTMENT
OF STATE CENTER FOR ANALYTICS

SORELLE FRIEDLER
SHIBULAL FAMILY PROFESSOR
OF COMPUTER SCIENCE

Types of Data

Remember!
Data in the same column need to be the same type and comparable.

	NUMERICAL	CATEGORICAL
Definition	Value from fixed scale	Value from fixed inventory
Ordering	Yes	Doesn't have to be
Differences	Meaningful	Might not be different

Terminology

- Individuals
 - those whose features are recorded
 - individual observations
 - o rows
- Variables
 - features or attributes of those individuals
 - these can vary across individuals
 - o columns

firstName	lastName	tel	building	officeNumber	faculty?
Alyssa	Pivirotto	7917	Carpenter	A4	N
Alice	McGrath	7916	Carpenter	A5	N

- Define Goal and Audience
- 2. Understand and Prepare the Data
- 3. Choose the Right Visualization Type
- 4. Select the Right Tool
- 5. Design & Refine

Why does this matter?

Let's think through an example with COVID-19 data. How might you want to visualize this data for (1) the public or (2) policy makers or scientists.

Examples:

- John's Hopkins COVID-19 Dashboard
- Estimation of Excess Deaths Associated with COVID-19

- 1. Define Goal and Audience
- 2. Understand and Prepare the Data
- 3. Choose the Right Visualization Type
- 4. Select the Right Tool
- 5. Design & Refine

audible_uncleaned.csv (12.07 MB)

Detail Compact Column

About this file

This file does not have a description yet.

△ name =	∆ author =	△ narrator =	∆ time =	△ releasedate =	△ language =	∆ stars =	∆ price =
82767 unique values	48374 unique values	Narratedby:anony 1% Narratedby:矢島雅 1% Other (85581) 98%	2284 unique values	5058 unique values	English 71% german 9% Other (17310) 20%	Not rated yet 83% 5 out of 5 stars1 ra 4% Other (11333) 13%	586.00 6% 668.00 5% Other (77694) 89%
Geronimo Stilton #11 & #12	Writtenby:GeronimoSt ilton	Narratedby:BillLobel y	2 hrs and 20 mins	04-08-08	English	5 out of 5 stars34 ratings	468.00
The Burning Maze	Writtenby:RickRiorda n	Narratedby:RobbieDay mond	13 hrs and 8 mins	01-05-18	English	4.5 out of 5 stars41 ratings	820.00
The Deep End	Writtenby:JeffKinney	Narratedby:DanRussel	2 hrs and 3 mins	06-11-20	English	4.5 out of 5 stars38 ratings	410.00
Daughter of the Deep	Writtenby:RickRiorda n	Narratedby:SoneelaNa nkani	11 hrs and 16 mins	05-10-21	English	4.5 out of 5 stars12 ratings	615.00
The Lightning Thief: Percy Jackson, Book 1	Writtenby:RickRiorda n	Narratedby:JesseBern stein	10 hrs	13-01-10	English	4.5 out of 5 stars181 ratings	820.00
The Hunger Games: Special Edition	Writtenby:SuzanneCol lins	Narratedby:TatianaMa slany	10 hrs and 35 mins	30-10-18	English	5 out of 5 stars72 ratings	656.00
Quest for the Diamond Sword	Writtenby:WinterMorg an	Narratedby:LukeDanie ls	2 hrs and 23 mins	25-11-14	English	5 out of 5 stars11 ratings	233.00
The Dark Prophecy	Writtenby:RickRiorda n	Narratedby:RobbieDay mond	12 hrs and 32 mins	02-05-17	English	5 out of 5 stars50 ratings	820.00
Merlin Mission Collection	Writtenby:MaryPopeOs borne	Narratedby:MaryPopeO sborne	10 hrs and 56 mins	02-05-17	English	5 out of 5 stars5 ratings	1,256.00
The Tyrant's Tomb	Writtenby:RickRiorda n	Narratedby:RobbieDay mond	13 hrs and 22 mins	24-09-19	English	5 out of 5 stars58 ratings	820.00

- 1. Define Goal and Audience
- 2. Understand and Prepare the Data
- 3. Choose the Right Visualization Type
- 4. Select the Right Tool
- 5. Design & Refine

R datacamp

The Data Visualization Cheat Sheet

Learn Data Visualization online at www.DataCamp.com

How to use this cheat sheet

Use this cheat sheet for inspiration when making your next data visualizations. For more data visualization cheat sheets, check out our cheat sheets repository here.

Part-to-whole charts

Pie chart

One of the most common ways to show part to whole data. It is also commonly used with percentages

USE CASES

- 1. Voting preference by age group
- 2. Market share of cloud providers

Donut pie chart

The donut pie chart is a variant of the pie chart, the difference being it has a hole in the center for readability

USE CASES

- 1. Android OS market share 1. Average monthly temperatures 2. Monthly sales by channel across the year
 - 2. Departments with the highest amount of attrition over time

data trends.

USE CASES

Heat maps

Stacked column chart

Best to compare subcategories within categorical data. Can also be used to compare percentages

USE CASES

- 1. Quarterly sales per region
- 2. Total car sales by producer

Treemap charts

2D rectangles whose size is proportional to the value being measured and can be used to display hierarchically structured data

USE CASES

- 1. Grocery sales count with categories
- 2. Stock price comparison by industry and company

Capture a trend

Line chart

The most straightforward way to capture how a numeric variable is changing over time

USE CASES

- 2. Energy consumption in kWh over time
- 3. Google searches over time

Multi-line chart

Captures multiple numeric variables over time. It can include multiple axes allowing comparison of different units and scale ranges

USE CASES

- 1. Revenue in \$ over time 1. Apple vs Amazon stocks over time
 - 2. Lebron vs Steph Curry searches over time
 - 3. Bitcoin vs Ethereum price

Area chart

Shows how a numeric value progresses by shading the area between line and the x-axis

USE CASES

- 1. Total sales over time 2. Active users over time

Stacked area chart

Most commonly used variation of area charts, the best use is to track the breakdown of a numeric value by subgroups

USE CASES

- 1. Active users over time bu seament
- 2. Total revenue over time by countru

Spline chart

Smoothened version of a line chart. It differs in that data points are connected with smoothed curves to account for missing values, as opposed to straight lines

USE CASES

- 1. Electricity consumption over

Visualize a single value

Cards are great for showing and tracking KPIs in dashboards or presentations

USE CASES

sales dashboard

promotion

- 1. Revenue to date on a 2. Total sign-ups after a
- 2. CO2 emissions over time

Table chart

Best to be used on small

USE CASES

datasets, it displays tabular

This chart is often used in executive dashboard reports to show relevant KPIs

Gauge chart

USE CASES

- 1. Account executive 1. NPS scores leaderboards 2. Revenue to target
- 2. Registrations per webinar

Heatmaps are two-dimensional charts

that use color shading to represent

Capture distributions

Histogram

Shows the distribution of a variable. It converts numerical data into bins as columns. The x-axis shows the range, and the y-axis

USE CASES

1. Distribution of salaries in an organization

represents the frequency

Shows the distribution of a variable using 5 key summary statisticsminimum, first quartile, median, third quartile, and

USE CASES

- 2. Time spent reading across readers
- 2. Distribution of height in one cohort

A variation of the box plot. It also shows the full distribution of the data alongside summary statistics

USE CASES

Violin plot

- 1. Gas efficiency of vehicles 1. Time spent in restaurants across age groups 2. Length of pill effects by

USE CASES

Density plot

1. Distribution of price of hotel listings

Visualizes a distribution bu

using smoothing to allow

better capture the

smoother distributions and

distribution shape of the data

2. Comparing NPS scores by customer segment

Visualize relationships

One of the easiest charts to read which helps in quick comparison of categorical data. One axis contains categories and the other axis represents values

Column chart

Also known as a vertical bar chart, where the categories are placed on the x-axis. These are preferred over bar charts for short labels, date ranges, or negatives in values

Scatter plot

Most commonly used chart when observing the relationship between two variables, It is especially useful for quickly surfacing potential correlations

Connected scatterplot

A hybrid between a scatter plot and a line plot, the scatter dots are connected with a line

Bubble chart

Often used to visualize data points with 3 dimensions, namely visualized on the xaxis, y-axis, and with the size of the bubble. It tries to show relations between data points

Word cloud chart

A convenient visualization for visualizing the most prevalent words that appear in a text

Visualize a flow

Useful for representing flows in systems. This flow can be any measurable quantity

Chord chart

Useful for presenting weighted relationships or flows between nodes. Especially useful for highlighting the dominant or important flows

Network chart

Similar to a graph, it consists of nodes and interconnected edges. It illustrates how different items have relationship with each other

Learn Data Skills Online at www.DataCamp.com

Line Graphs

- Uses:
 - Trends
 - Especially for looking at chronological trends!
- Things to consider: Multiple lines Time intervals

 - Truncating axes
- Examples:

 O Census Data
 - Monthly sales revenue

Let's look at indicators of world environmental health example.

DEMO

Scatter Plots

Uses:

- Relationship between two numerical variables
- Things to Consider:
 - Trendline
 - Overplotting consider size and transparency
 - Correlation does not equal causation
- Examples:
 - Parent Height to Child Height
 - Budget versus revenue

Popularity of the first name Walker

correlates with

Old Dominion Freight Line's stock price (ODFL)

- ◆--- Babies of all sexes born in the US named Walker · Source: US Social Security Administration
- Opening price of Old Dominion Freight Line (ODFL) on the first trading day of the year · Source: LSEG Analytics (Refinitiv)

2002-2022, r=0.992, r²=0.985, p<0.01 · tylervigen.com/spurious/correlation/2159

Bar Charts

Graph 1. Mean Growth Difference with Respect to Control Plants

Type of Basil

• Uses:

- Comparing discrete categories (categorical data)
- Ranking or magnitudes

• Things to Consider:

- Bars should start at zero truncate carefully!
- Horizontal or vertical

Examples:

- Student test scores by subject
- Mean growth by plant type

Histograms

- Uses:
 - Understanding how values are distributed
 - Identifying skewness, gaps, unusual patterns
- Things to Consider:
 - Bin sizes are very important!
- Examples:
 - Housing prices in an area
 - Revenue of business in NY state

Box Plot

Uses:

- Comparing distributions across groups
- Identifying outliers and the spread of the data
- Things to Consider:
 - Moderate sample sizes too few wouldn't be informative
 - Outliers
- Examples:
 - Comparing test scores across sections of a class

Heat Maps

- Uses:
 - Showing relationships between multiple variables
 - Matrices
- Things to consider:
 - Color theme very important here!
 - Correlation does not equal causation
- Examples:
 - Website visits per day

	Average Visits by Day of Week / Hour of Day						
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
0	1.1	1.2	2.9	2.4	1.8	3.0	1.6
1	0.7	2.0	1.5	2.1	2.2	2.6	1.3
2	0.5	2.1	1.7	1.5	2.8	2.2	0.9
3	0.3	3.1	1.8	1.8	1.8	2.2	0.5
4	0.5	1.7	2.8	1.7	2.0	1.6	0.8
5	0.5	2.3	2.8	1.7	2.8	2.5	1.6
6	1.8	2.6	2.2	2.5	2.7	2.2	1.4
7	0.8	2.6	3.0	2.8	3.0	3.3	1.7
8	0.9	3.8	3.8	3.9	3.8	6.1	1.0
9	1.0	5.6	5.4	4.6	6.6	7.6	2.1
10 g	1.2	7.0	12.1	5.9	6.2	9.4	2.1
<u></u>	1.7	5.2	10.3	5.9	6.4	8.1	1.5
Hour of Day	1.2	5.9	6.2	4.8	6.9	5.8	1.5
우 13	1.1	6.1	6.1	5.8	12.2	6.1	1.1
14	1.5	4.7	7.0	7.1	7.4	5.4	1.2
15	1.3	5.5	7.4	7.0	8.2	7.4	1.2
16	1.5	5.6	6.6	7.4	6.8	6.5	1.2
17	1.5	4.3	4.8	7.3	6.9	4.1	1.4
18	1.4	3.7	4.9	3.5	6.3	3.2	1.0
19	1.7	2.4	2.6	4.5	4.2	1.8	1.4
20	2.2	2.4	2.2	3.0	3.9	1.8	1.6
21	2.5	2.1	3.1	3.5	3.1	1.7	1.6
22	1.9	2.6	2.8	3.9	3.2	1.9	0.9
23	2.1	1.5	2.5	2.8	3.2	2.0	1.3

Comparing Bar Charts and Histograms

	BAR CHART	HISTOGRAM
Type of Data	Categorical Variables	Numerical variables
Axis	1 categorical & 1 numerical	Both numerical axes
Width of Bars	Arbitrary but Equal	To scale with no gaps
Height of Bar	Proportional to percent of individuals	Density of bar
Area of Bar	N/A	Proportional to percent of individuals

How to pick the visualization type?

Title	Author	Description
Chart Chooser	Ann K Emery	(interactive) Small/Focused collection with commentary and resources. See her design process.
The Data Visualization Catalogue	Severino Ribecca	(interactive) Large collection of all visualizations, plus description, details "anatomy", similar charts, and relevant software/tools
Data Viz Project	ferdio	(interactive) Large collection of all visualizations with filters by data structure
from Data to Viz	Yan Holtz & Conor Healy	(interactive) Medium collection of graph types with filters by data structure or purpose, and links to R and Python galleries.
Chartopedia	AnyChart JS Library	(interactive) Includes example with complete html, css, data, and javscript
Chart Chooser	Tableau	(interactive) Includes downloadable Tableau workbook and instructions
Visual Vocabulary	Financial Times	Nice poster with a well-organized large collection. Web page has resources and translations. The poster that inspired it cannot be seen well without purchase. See examples in Tableau
Chart Chooser	Kagen Quiballo	A small collection of the most popular charts organized by name and goal, with links to videos about creating in Tableau and Excel.
Chooser for Trends	MetaPraxix	Focused collection with typical challenges for trends.
Infographic Taxonomy	Frederik Ruys, Vizualism	Matrix for infographics that express a combination of the questions Who, When, Where, What, How, and How Much.
Qualitative Chart Chooser	Stephanie Evergreen	Matrix of non-typical chart types and purposes (i.e., no bar charts)
SWD Chart Guide	Storytelling with Data	Standard chart types with descriptions and tips for creating.
Visualization Universe	Adioma	Medium collection showing popularity with links to related terms and the Wikipedia page.

- 1. Define Goal and Audience
- 2. Understand and Prepare the Data
- 3. Choose the Right Visualization Type
- 4. Select the Right Tool
- 5. Design & Refine

Software

- Non-coding Tools
 - Excel and Google Sheets
- Coding Tools
 - Python: Matplotlib, Plotly, Seaborn
 - R: ggplot2
- Online Tools
 - Tableau (https://public.tableau.com/app/discover) Free!
 - Power BI
 - D3.js (https://d3js.org/)

- 1. Define Goal and Audience
- 2. Understand and Prepare the Data
- 3. Choose the Right Visualization Type
- 4. Select the Right Tool
- 5. Design & Refine

Area Principle

Keep in mind! Areas should be proportional to the values that they represent.

If we want to show an increase between two items, we should NOT increase in both dimensions.

Principles to keep in mind

- Color Theory and Accessibility
 - Use contrasting colors
 - Keep accessibility in mind
 - Lots of tools out there: <u>https://coolinfographics.com/color-pickers</u>
- Tufte's Principles
 - Graphical Integrity
 - Chart Junk
 - Documentation
 - Context

