

FIG. 1

FIG. 3

Parameter Symbol Conditions Min Typ Max University Output Common Mode Vem See Figure Below 1575 1675 1775 mV Single Ended Output Impedance Z_{ss} 40 50 60 Ω Differential Input Impedance Mismatch Z_{ss} Z_{ss} 10 100 120 Ω Q40, CML Input Differential Amplitude, p-p Δ VQDO See Figure Below 40 50 600 mV Q40 Input Rise and Fall Time (20% to 80%) t_{ss} , t_{rs} t_{ss} , t_{rs} t_{ss} t_{rs}	Receiver Input and Source Centered Clock Performance	lock Perfo	rmance	i			
Vern See Figure Below 1575 1675 1775 mV	Parameter	Symbol	Conditions	Min	Typ	Max	Units
acdance Z_{sr} A_{co} $A_$	Output Common Mode	Vcm	See Figure Below	1575	1675	1775	mV
Col For Figure Below See	Single Ended Output Impedance	Z_{SE}		40	20	09	G
Amplitude, p-p A VQDO See Figure Below Annylitude, p-p A VQDO See Figure Below A VQDO A VQDO See Figure Below A VQDO A VQDO See Figure Below A VQDO A VQDO See Figure Below A VQD A VQDO See Figure Below A VQD A VQDO See Figure Below A VQD A VQDO A VQD A	Differential Input impedance	Z_d		08	100	120	G
Amplitude, p-p A VQDO See Figure Below 400 500 600 mV 18 n loss* 18 S11 Up to 7.5 GHz 10 A 400 Soc Figure Below 400 600 B 18 A 400 A 400	Input Impedance Mismatch	$Z_{\scriptscriptstyle \mathrm{M}}$				10	%
GHZ GHZ GHZ GHZ GHZ A00 S00 S00 S00 S00 S00 S00 S0		A VQDO	See Figure Below	400	200	009	mV
Noss State Opto 7.5 GHz 10 Hz	Q40 Input Rise and Fall Time (20% to 80%)	t _{кн} , t _{гн}			25	35	šd
Son 20 5 5 5 5 5 5 5 5 5	Differential output return loss*	SII	Up to 7.5 GHz	10	0		фВ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_] '			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:					400
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8:			402		

Margin at 10 Gig = 32 psMargin at 12.5 Gig = 12 ps

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 11

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16C