Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Operational analysis:

Queueing Networks

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Analytical models conceptual model

Analytical models

Queueing network (QN) modelling is a particular approach to computer system (CS) modeling in which the CS is represented as a network of queues which is evaluated analitically

- Many analists experienced doubts on its accuracy
- A series of assumptions:
 - ✓ the system is modeled by a *stationary stochastic process*;
 - ✓ jobs are stochastically independent;
 - √job steps from device to device follow a *Markov chain*;
 - √ the system is in stochastic equilibrium;
 - ✓ the service time requirements at each device conform to an exponential distribution;
 - √ the system is ergodic, i.e. long-term time averages converge to the values computed for stochastic equilibrium

Prof. Vittoria de Nitto Personè

2

Analytical models

Analytical models

Some of these concepts are difficult and cannot be proved to hold by observing the system in a $\underline{\text{finite time period}}$ Most can be disproved empirically

- ✓ parameters change over time
- √jobs are dependent
- ✓ systems are observable only for short periods

√...

Prof. Vittoria de Nitto Personè

3

3

Analytical models

Analytical models

In applying or validating the results of Markovian QN theory, analists substituted *operational* values for stochastic parameters

directly measured

The Markovian QN equations are also valid among operational variables

They hold under different assumptions and apply to a large class of real systems¹

BUZEN, J.P. "Operational analysis: the key to the new generation of performance prediction tools," in Proc. IEEE COMPCON, 1976, IEEE, New York.

DENNING, P. J.; AND BUZEN, J. P. "Operational analysis of queueing networks," in Proc. Third Int. Symp. Computer Performance Modeling, Measurement, and Evaluation, 1977, North-Holland Publ. Co., Amsterdam, The Netherlands.

Prof. Vittoria de Nitto Personè

4

Operational Analysis

Operational Analysis

Three operational principles:

- All quantities should be precisely measurable and all assumptions should be directly testable
- 2. The system must be flow balanced
- 3. The devices must be homogeneous,

i.e., the routing must be independent of queue lengths (qI) the mean service time at a given device must not depend on qI of other devices

the same mathematical equations

but the operational assumptions can be tested

much more confidence and understanding of the QN technology

Prof. Vittoria de Nitto Personè

5

Operational Analysis

Analytical models Operational analysis

Def.

Hypotheses whose veracity can be established beyond doubt by measurement will be called *operationally testable*

Operational analysis provides a rigorous mathematical discipline for studying CS performance based solely on operationally testable hypotheses

two basic components:

a system (real or hypothetical)

a (finite) time period

the observation period

Prof. Vittoria de Nitto Personè

6

Analytical models Operational analysis

Operational Analysis

According to the operational approach, let us consider

Basic quantities

- T the length of the observation period (op)
- ${\it A}$ the number of arrivals during op
- B the total amount of time during which the system is busy $B \le T$ during op
- C the number of completions during op

Prof. Vittoria de Nitto Personè

7

7

Multi Resources Systems

- urces Systems
- a collection of servers, working together for incoming requests
- homogeneous servers

1

Data centers Server farm

What is the minimum number of servers needed to guarantee that only a small fraction of jobs are delayed?

Is a single central queue superior to having a queue at each server?

Prof. Vittoria de Nitto Personè

Operational Analysis

Queueing Networks

If the system is *open*, X_0 is known and N varies as jobs enter or leave the system

An analysis of an open system assumes that X_0 is known and seeks to characterize the distribution of N

If the system is closed the number of jobs N is fixed

An analysis of a closed system begins with N given and seeks to determine the resulting X_0 along the OUT/IN path

Queue lengths and response times at the devices may be sought in both cases

Prof. Vittoria de Nitto Personè

12

Operational analysis

Queueing Networks

The system is measured for an op of T seconds, the following data are collected for each device $i=1,\,2,\,...K$

- A_i the number of arrivals;
- B_i total busy time, during which $n_i > 0$
- C_{ij} number of times a job requests service at device j immediately after completing a service request at device i; note that it is possible $C_{ii} > 0$.

If we treat the "outside world" as device "0", we can define also

 A_{0j} number of jobs whose first service request is for device j;

 $C_{i\theta}$ number of jobs whose last service request is for device i.

Prof. Vittoria de Nitto Personè

15

15

Operational analysis

Operational Equations

$$X_j = \sum_{i=0}^K X_i p_{ij}$$
 Job Flow Balance equations

$$\begin{cases} V_0 = 1 \\ V_j = p_{0\,j} + \sum_{i=1}^K V_i p_{ij} \end{cases}$$
 Visit Ratio equations

Prof. Vittoria de Nitto Personè

17

17

Operational analysis

Operational Equations

$$U_i = X_i S_i$$
 Utilization Law

$$\overline{n}_i = X_i R_i$$
 Little's Law

$$X_0 = \sum_{i=0}^{K} X_i p_{i0}$$
 Output Flow Law

$$K_{i} = X_{i}K_{i}$$
 Extres Law
$$X_{0} = \sum_{i=0}^{K} X_{i}p_{i0} \quad \text{Output Flow Law}$$

$$R = \sum_{i=1}^{K} V_{i}R_{i} \quad \text{General Response Time Law}$$

$$R = M/X_0 - Z$$
 Interactive Response Time Formula (Assumes flow balance)

Prof. Vittoria de Nitto Personè

18

