Ciclo Lectivo: 2017

TP Nº 2 - Funciones de varias variables

Trabajo realizado por el Profesor Ing. Pablo J. Garcia y la JTP Ing. Erika A. Sacchi, bajo la supervisión del Coordinador de Cátedra Ing. Jorge Disandro

1. Temario

- Dominio de funciones de varias variables
- Superficies
- Curvas de nivel
- Superficies de nivel

2. Resumen teórico

Función de 2 variables

Sea $D \ C \ R^2$. Una función de dos variables es una correspondencia que asocia a cada par $(x,y) \in D$ un único número real f(x,y). D es el dominio de f.

Notación: $f: D \to R$, dada por z = f(x, y)

Gráfica de una función de dos variables, es una superficie en ${\ensuremath{\mathsf{R}}}^3$ dada por

$$S = \{(x, y, f(x, y)) \in R^3 / (x, y) \in D\}$$

Curva de nivel k es el conjunto de todos los puntos del dominio de f para los cuales f toma el valor k.

$$C_k = \{(x, y) \in D / f(x, y) = k\}$$

Función de 3 variables

Sea D C R^3 . Una función de dos variables es una correspondencia que asocia a cada terna $(x,y,z) \in D$ un único número real f(x,y,z). D es el dominio de f.

Notación:

$$f: D \to R$$
, dada por $w = f(x, y, z)$

Superficie de nivel k es el conjunto de todos los puntos del dominio de f para los cuales f toma el valor k.

$$S_k = \{(x, y, z) \in D / f(x, y) = k\}$$

Función de n variables

Sea $D C R^n$. Una función de n variables es una correspondencia que asocia a cada n-upla $(x_1, x_2, ..., x_n) \in D$ un único número real $f(x_1, x_2, ..., x_n)$. D es el dominio de f.

Notación: $f: D \to R$, dada por $w = f(x_1, x_2, ..., x_n)$

Repasar

Curvas Cónicas

Curva		Parábola p → Dist. vértice al foco → Dist. vértice a directriz	Elipse $2a \rightarrow \text{Long. eje mayor}$ $2b \rightarrow \text{Long. eje menor}$ $2c \rightarrow \text{Dist. entre focos}$ $c^2 = a^2 - b^2$	Hipérbola $2a \rightarrow \text{Long. eje transverso}$ $2b \rightarrow \text{Long. eje conjugado}$ $2c \rightarrow \text{Dist. entre focos}$ $c^2 = a^2 + b^2$
Ec. Ord. con centro en el origen	El eje focal es el eje y	$x^{2} = 4p y$ Directriz: $y + p = 0$, Foco: $F(0, p)$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ Focos: $F(0, c), F'(0, -c)$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Focos: $F(0,c), F'(0,-c)$
Ec. Ord. con centro fuera del origen	Eje focal paralelo al eje x	$(y-k)^2 = 4p(x-h)$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$
Ec. Ord. con centro fuera del origen	Eje focal paralelo al eje y	$(x-h)^2 = 4p(y-k)$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	$-\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$
Longitud del lado recto		4 p	2 b ² /a	$2b^{2}/a$
Excentricidad		e = 1	e = c/a < 1	e = c/a > 1

Supericies Cuádricas.

TABLA 1 Gráficas de superficies cuádricas

Superficie	Ecuación	Superficie	Ecuación
Elipsoide	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Todas las trazas son elipses. Si $a = b = c$, la elipsoide es una esfera.	Cono	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales en los planos $x = k$ y $y = k$ son hipérbolas si $k \neq 0$ pero son pares de rectas si $k = 0$.
Paraboloide elíptico	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales son parábolas. La variable elevada a la primera potencia indica el eje del paraboloide.	Hiperboloide de una hoja	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Las trazas verticales son elipses. Las trazas verticales son hipérbolas. El eje de simetría corresponde a la variable cuyo coeficiente es negativo.
Paraboloide hiperbólico	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Las trazas horizontales son hipérbolas. Las trazas verticales son parábolas Se ilustra el caso donde $c < 0$.	Hiperboloide de dos hojas	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Las trazas horizontales en $z = k$ son elipses si $k > c$ o $k < -c$. Las trazas verticales son hipérbolas. Los dos signos menos indican dos hojas.

3. Ejercicios resueltos

Dado que el contenido fundamental de este trabajo práctico se feriere a representación de superficies en el espacio, no se incluyen ejercicios resueltos sino que se dejan los mismos para su discusión en la clase práctica.

4. Ejercicios propuestos

 Determinar y graficar el dominio de las siguientes funciones. Describir el recorrido de las mismas.

a)
$$f(x,y) = 4x^2 + 9y^2$$

b)
$$f(x,y) = ln(4-x-y)$$

c)
$$f(x,y) = \frac{1}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{2}{x^2 - y^2}$$

e)
$$f(x,y) = \frac{1}{\ln(6x + 4y - 3)}$$

f)
$$f(x,y) = arc sin (5x - 3y)$$

g)
$$z = \sqrt{25 - x^2 - y^2}$$

2. Representar gráficamente las siguientes superficies

a)
$$6x + 3y + 4z = 24$$

b)
$$6x + 4z = 24$$

c)
$$4z = 12 - 3y^2$$

d)
$$x^2 + (z-2)^2 = 4$$

e)
$$4x^2 + 6y^2 = 1$$

f)
$$z = e^x$$

g)
$$z = y - x^2$$

3. Describir y graficar las curvas de nivel de la función para el valor indicado

a)
$$z = xy$$
 para $z = 1$, $z = -1$, $z = 2$, $z = -2$, $z = 3$, $z = -3$

b)
$$z = y - x^2$$
 para $z = -1,0,1,2,3$

c)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
 para $K = -1, K = 1$

d)
$$f(x,y) = 9 - x^2 - y^2$$
; $z = 0, 2, 4, 6, y$ 8

- e) Sea f(x,y) = y. $arctg\ x$, encuentre una ecuación para la curva de nivel de f que pasa por el punto P(1,4)
- 4. Dibujar la superficie de nivel para el valor indicado

a)
$$w = x^2 + 4y^2 + 9z^2$$
 para $w = 1, 2, 3$

b)
$$f(x,y) = ln(x^2 + y^2 + z^2)$$
 para $w = 1$

Universidad Tecnológica Nacional Facultad Regional La Plata Cátedra: Análisis Matemático II TP Nº 2 - Ciclo Lectivo: 2017

- c) $f(x,y,z) = z \sqrt{x^2 + y^2}$; w = -1, 0, 1, 2
- d) Sea $f(x,y)=x^2+4y^2-z^2$, encuentre una ecuación para la superficie de nivel de f que pasa por el punto P(2,-1,3)

5. Bibliografía

- Cálculo con Geometría Analítica, de Earl W. Swokowski
- Cálculo de varias variables. Trascendentes tempranas, de James Stewart.
- Cálculo y Geometría Analítica, de Roland E. Larson, Robert P. Hostetler y Bruce H. Edwawrds.
- El Cálculo, de Louis Leithold.