Tema 2

Aritmética modular

2.1 Relaciones de equivalencia

Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina **relación de equivalencia**. Dos elementos relacionados se dicen equivalentes.

Ejemplo 2.2 *Son ejemplos de relaciones de equivalencia:*

- Relación de paralelismo entre rectas del plano.
- La relación de equipotencia entre conjuntos definida por:

A y B equipotentes \Leftrightarrow existe una aplicación biyectiva $f: A \to B$.

• En un conjunto de personas la relación haber nacido el mismo año.

Las relaciones de equivalencia sirven para clasificar los elementos de un conjunto.

Definición 2.3 Sea R una relación de equivalencia sobre un conjunto y sea $a \in A$. El conjunto de todos los elementos relacionados con A se denomina **clase de equivalencia** de a y se denota por [a] o \overline{a} :

$$\bar{a} = [a] = \{x \in A \mid x R a\}$$

Teorema 2.4 Sea R una relación de equivalencia sobre un conjunto y sean a y $b \in A$. Se verifica:

- 1. $\bar{a} = \bar{b} \Leftrightarrow a R b$
- 2. $\bar{a} \neq \bar{b} \Leftrightarrow \bar{a} \cap \bar{b} = \emptyset$

El teorema anterior nos dice que dada una relación de equivalencia en un conjunto A, las clases de equivalencia pertenecientes a A a o son iguales o son disjuntas. Como consecuencia se tiene:

- Todos los elementos de una misma clase son equivalentes entre sí.
- Una clase queda determinada por uno cualquiera de sus elementos, es su representante.

Teorema 2.5 Sea R una relación de equivalencia sobre un conjunto A. Entonces, el conjunto de las clases de equivalencia de R constituye una partición en A. Al conjunto de las clases de equivalencia se le denomina **conjunto cociente** y se designa por A/R.

$$A/R = \{ \bar{a} \mid a \in A \}$$

2.2 Congruencias en Z módulo n

Definición 2.6 (Congruencia módulo n) En el anillo de los números enteros (Z, +, .), dado un número entero positivo n, se define la siguiente relación:

$$a \equiv b \pmod{n} \Leftrightarrow a - b$$
 es múltiplo de n ,

Esta relación es de equivalencia.

Teorema 2.7 La relación de congruencia se puede reescribir como:

 $a \equiv b \pmod{n} \Leftrightarrow el \ resto \ de \ la \ división \ euclídea \ de \ a \ y \ de \ b \ por \ n \ es \ el \ mismo.$

Demostración

Supongamos primero que $a \equiv b \pmod{n}$.

 $a \equiv b \pmod{n}$ \Rightarrow Existe $k \in \mathbb{Z}$ tal que a - b = kn. Al realizar la división euclídea de b por n se tiene: $b = pn + r \pmod{0} \le r < n$. Sustituyendo b en la expresión anterior se tiene que a = (k + p)n + r, con $0 \le r < n$. Se ha obtenido que el resto de la división euclídea de a por n es también r.

Recíprocamente, supongamos el resto de la división euclídea de a y de b por n es el mismo. Esto es, a = qn + r y b = pn + r con $0 \le r < n$

Restando se obtiene a - b = (q - p)n, por tanto a - b múltiplo de n. Lo que significa $a = b \pmod{n}$.

Por tanto, se tienen n clases de equivalencia en el conjunto cociente que suele escribirse en la forma $\mathbb{Z}/n\mathbb{Z}$ o \mathbb{Z}_n , cada una de ellas correspondiente a uno de los posibles restos, es decir, 0, 1, ..., n-1. El conjunto $\{0, 1, ..., n-1\}$ constituyen un sistema de representante de la relación de congruencia módulo n.

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}\$$

2.3 Aritmética modular

En el conjunto \mathbb{Z}_n se definen dos operaciones, suma o producto, de la forma siguiente:

- Si \bar{a} y \bar{b} son dos clases de equivalencia, se define $\bar{a} + \bar{b} = \overline{a + b}$,
- Si \bar{a} y \bar{b} son dos clases de equivalencia, se define $\bar{a}.\bar{b} = \overline{a.b}$.

Teorema 2.8 La operaciones suma y producto en \mathbb{Z}_n definidas anteriormente están bien definidas y dotan a \mathbb{Z}_n de estructura de anillo conmutativo con elemento identidad.

Demostración.

■ Veamos primero que la suma está bien definida: Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$, entonces $a + c \equiv b + d \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow \text{Existe } r \in \mathbb{Z} \text{ tal que } a - b = rn$$

$$c \equiv d \pmod{n} \Rightarrow \text{Existe } s \in \mathbb{Z} \text{ tal que } c - d = sn$$

Sumando se tiene (a + c) - (b + d) = (r + s) n, esto es, $a + c \equiv b + d \pmod{n}$

■ Veamos que el producto está bien definido: Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$, entonces $a \cdot c \equiv b \cdot d \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow \text{Existe } r \in \mathbf{Z} \text{ tal que } a - b = rn \Rightarrow \text{Existe } r \in \mathbf{Z} \text{ tal que } (a - b). c = rnc$$

$$c \equiv d \pmod{n} \Rightarrow \text{Existe } s \in \mathbf{Z} \text{ tal que } c - d = sn \Rightarrow \text{Existe } s \in \mathbf{Z} \text{ tal que } b \cdot (c - d) = bsn$$

Sumando se tiene a.c - bd = (rc - bs) n, esto es, $a.c \equiv b.d \pmod{n}$.

Se deja como ejercicio comprobar las propiedades. $\overline{0}$ es el elemento neutro respecto de la suma, el elemento opuesto de \overline{a} es la clase $\overline{n-a}$ y que el elemento neutro respecto al producto es la clase $\overline{1}$.

Observación 2.9 Restos potenciales

El hecho de que el producto sea una operación bien definida en \mathbb{Z}_n permite calcular los retos potenciales módulo n de las potencias sucesivas de un número dado N.

Si llamamos a estos restos potenciales $r_1, ..., r_k$ módulo n, esto es,

$$N \equiv r_l \pmod{n}, \ldots, N^k \equiv r_k \pmod{n},$$

Se verifica que $N^{k+1} \equiv N N^k \equiv r_l \cdot r_k \pmod{n}$,

Ejemplo 2.10 Los restos potenciales de 6 módulo 11 son:

$$6 \equiv 6 \pmod{11}$$
, $6^2 \equiv 36 \pmod{11} \equiv 3 \pmod{11}$, $6^3 \equiv 6*3 \pmod{11} \equiv 7 \pmod{11}$,

$$6^4 \equiv 6*7 \pmod{11} \equiv 9 \pmod{11}, 6^5 \equiv 6*9 \pmod{11} \equiv 10 \pmod{11},$$

$$6^6 \equiv 6*10 \pmod{11} \equiv 5 \pmod{11}, 6^7 \equiv 6*5 \pmod{11} \equiv 8 \pmod{11},$$

$$6^8 \equiv 6*8 \pmod{11} \equiv 4 \pmod{11}, 6^9 \equiv 6*4 \pmod{11} \equiv 2 \pmod{11},$$

$$6^{10} \equiv 6*2 \pmod{11} \equiv 1 \pmod{11}$$

Se vuelven a repetir.

Ejemplo 2.11 Una aplicación de las congruencias es la obtención de criterios de divisibilidad. Así, por ejemplo, se puede saber si un entero x es divisible por 3 sin realizar la división.

Sea $x = x_n x_{n-1} \dots x_2 x_1 x_0$ un número natural escrito en base diez, es decir,

$$x = x_n \cdot 10^n + x_{n-1} \cdot 10^{n-1} + \dots + x_2 \cdot 10^2 + x_1 \cdot 10 + x_0, y \cdot 0 \le x_i \le 9, \forall i \in \{0, \dots, n\}$$

Como $10 \equiv 1 \pmod{3}$, se tendrá que $x_i.10^i \equiv x_i \pmod{3}$, por tanto,

$$x \equiv \sum_{i=1}^{n} x_i \pmod{3}$$
.

En consecuencia, x es divisible por 3 si, y sólo si, $\sum_{i=1}^{n} x_i$ $0 \pmod{3}$, es decir, la suma de sus cifras es múltiplo de 3.

2.4 Ecuaciones y sistemas de congruencias

2.4.1 Ecuaciones de congruencias

En este apartado se trata de resolver congruencias del tipo $a x \equiv b \pmod{n}$

Proposición 2.12 La congruencia $ax \equiv b \pmod{n}$ tiene solución si, y sólo si, d = mcd(a,n) divide a b. Además, si existe solución, esta es única módulo n/d.

Demostración. Basta observar que la congruencia anterior tiene solución si, y sólo si, la ecuación diofántica ax + ny = b tiene solución. Sabemos que tiene solución si, y sólo si, d = mcd(a, n) divide a b.

Las soluciones de la ecuación diofántica ax + ny = b son de la forma

$$x = x_0 + \frac{n}{d}t$$
$$y = y_0 - \frac{a}{d}t$$

con t cualquier número entero y (x_0, y_0) una solución cualquiera de ax + ny = b.

Todas ellas son congruentes módulo $\frac{n}{d}$. Por tanto la solución es única módulo $\frac{n}{d}$.

Ejemplo 2.13 Resuelve la siguiente congruencia: $10x \equiv 15 \pmod{25}$

mcd(10,25) = 5 y 5 divide a 15, por tanto tiene solución, que es única módulo 25/5 = 5.

La ecuación diofántica que resulta sería: 10 x + 25 y = 15. Una solución particular es (-1,1), por tanto el conjunto de soluciones es x = -1 + 5 t, con t cualquier número entero.

Ejemplo 2.14 Resuelve la siguiente congruencia: $10x \equiv 7 \pmod{25}$

mcd(10,25) = 5 y 5 no divide a 7, por tanto no tiene solución.

2.4.2 Sistemas de congruencias

Veamos qué ocurre si hay varias congruencias

Teorema 2.15 Teorema chino de los restos Sean $m_1,...,m_n$ números enteros positivos coprimos dos a dos, es decir, $mcd(m_i, m_j) = 1$ si $i \neq j$ y sean $b_1, ..., b_n$ enteros cualesquiera. Entonces, el sistema de congruencias

$$x \equiv b_1 \pmod{m_1}, \ldots, x \equiv b_n \pmod{m_n}$$

Posee una única solución entera entre 0 y m_1 m_n -1, es decir, una única solución entera módulo m_1 ... m_n .

Demostración. Sean
$$M=m_1\dots m_n$$
 y $M_k=\frac{M}{m_k}=m_1\dots m_{k-1}m_{k+1}\dots m_n$ para $k=1,\dots,n$.

Puesto que los m_i son coprimos dos a dos, se tiene que $mcd(m_k, M_k) = 1$ y, por tanto, existen enteros t_k y s_k tales que

$$S_k M_k + t_k m_k = 1, k = 1,..., n$$

 $s_k M_k$ es múltiplo de m_j si $j \neq k$ y congruente con 1 módulo m_k . En consecuencia b_k s_k M_k es congruente con 0 módulo m_i si $j \neq k$ y congruente con b_k módulo m_k . Por tanto,

$$b_1 s_1 M_1 + ... + b_n s_n M_n \equiv b_k \pmod{m_k}, \forall k \in 1,...,n$$
.

Consideremos $x = b_1 s_1 M_1 + ... + b_n s_n M_n$, es una solución al sistema dado.

Falta demostrar que es única módulo *M*:

Supongamos que existen dos soluciones, x e y. Restando se tiene que

$$x - y \equiv 0 \pmod{m_k}, \forall k \in 1\{,...,n\}.$$

es decir, x - y es múltiplo de todos los m_k , luego es múltiplo del mínimo común múltiplo de m_1 , $m_2, ..., m_n$ que, al ser coprimos dos a dos es su producto, esto es, M. Por tanto, $x \equiv y \pmod{M}$.

Ejemplo 2.16 Resolver el sistema de congruencias $x \equiv 1 \pmod{2}$, $x \equiv 4 \pmod{7}$, $x \equiv 3 \pmod{11}$

{2, 7, 11} son coprimos. Aplicando el teorema chino de los restos:

$$M = 2*7*11 = 154$$
, $M_1 = 7*11 = 77$, $M_2 = 2*11 = 22$, $M_3 = 2*7 = 14$

 $s_1M_1 + t_1m_1 = 1$, s_1 77 + t_1 2= 1, una solución particular (1,-38), considerar 1*77 = 77,

 $s_2M_2 + t_2m_2 = 1$, $s_1 22 + t_1 7 = 1$, una solución particular (1,-3), considerar 4*22 = 88,

 $s_3M_3 + t_3m_3 = 1$, $s_1 14 + t_1 11 = 1$, una solución particular (4,-5), considerar 3*4*14 = 168,

 $x = 1*77 + 4*22 + 3*4*14 = 77 + 88 + 168 = 333 = 25 \pmod{154}$, solución única módulo 154:

$$x = 25 + 154 t$$
, con t cualquier número entero.

También lo podríamos hacer:

 $x \equiv 1 \pmod{2} \Leftrightarrow x = 1 + 2.t$ para algún t entero

Sustituyendo en $x \equiv 4 \pmod{7}$: $1 + 2.t \equiv 4 \pmod{7} \Leftrightarrow 2.t \equiv 3 \pmod{7}$

Se tiene la ecuación diofántica: 2t + 7y = 3, sus soluciones son t = -9 + 7s para algún s entero.

Esto es, x = 1 + 2. t = 1 +

Sustituyendo en $x \equiv 3 \pmod{11}$: $-17 + 14s \equiv 3 \pmod{11} \Leftrightarrow 14s \equiv 20 \pmod{11} \Leftrightarrow 14s \equiv 9 \pmod{11}$

Se tiene la ecuación diofántica: 14s+11z=9, sus soluciones son s=36+11k para algún k entero.

Esto es, x = -17 + 14s = -17 + 14(36+11k) = 487 + 154k para algún k entero.

$$x = 487 + 154k = 25 + 154*3 + 154k = 25 + 154r$$
 para algún r entero.

Ejercicio 2.17 Manteniendo la notación de la demostración del Teorema Chino de los restos, probar que $E_jE_k \equiv 0 \pmod{M}$ si $j \neq k$, siendo $E_k = s_k M_k$. Probar que, para todo entero a, si $a \equiv a_k \pmod{m_k}$, se tiene

$$a \equiv \sum_{k=1}^{m} E_k a_k \pmod{M}$$
.

Ahora, llamemos a los coeficientes a_k coordenadas de a. Probar que si b tiene coordenadas b_k , entonces $a_k \pm b_k$ y $a_k b_k$ son las coordenadas de $a \pm b$ y de ab, respectivamente.

Teorema 2.18 El Teorema Chino de los Restos establece una biyección entre \mathbb{Z}_M y $\mathbb{Z}_{m_1} x \dots x \mathbb{Z}_{m_n}$. Por otro lado, consideremos la aplicación dada por:

$$\psi \colon \mathbb{Z}_M \, \longrightarrow \, \mathbb{Z}_{m_1} x \, \ldots x \, \mathbb{Z}_{m_n}, \ \psi(a) = \ (a_1, \ldots, a_n),$$

Donde los a_k son las coordenadas de a como se han definido en el Ejercicio. El teorema Chino de los Restos nos dice como construir ψ^{-1} .

Por otro lado, recordando que se puede dotar a $\mathbb{Z}_{m_1}x \dots x \mathbb{Z}_{m_n}$ de estructura de anillo definiendo suma y producto componente a componente. Lo que nos dice el ejercicio es que $\psi(a+b)=\psi(a)+\psi(b)$ y $\psi(a\cdot b)=\psi(a)$. $\psi(b)$, es decir, que ψ es un homomorfismo de anillos y, al ser biyectivo, es un isomorfismo de anillos.

En el Teorema Chino de los Restos, se supone que los módulos son siempre coprimos dos a dos. Veamos qué ocurre si los módulos no son necesariamente coprimos dos a dos.

Teorema 2.19 El sistema de congruencias

$$x \equiv b_1 \pmod{m_1}, \ldots, x \equiv b_n \pmod{m_n}$$

tiene solución si, y sólo si, $b_i \equiv b_j \pmod{mcd(m_i, m_j)}$ para todo $i \neq j$. Si existe solución, es única módulo $mcm(m_1, ..., m_n)$.

Demostración.

- Supongamos, en primer lugar, que existe solución del sistema de congruencias. Si x es una solución, $x \equiv b_i \pmod{m_i}$ y $x \equiv b_i \pmod{m_i}$. En consecuencia, $x - b_i$ y $x - b_i$ son múltiplos de m_i y m_i . Por tanto, son múltiplos de mcd (m_i , m_i), de donde se deduce que b_i $\equiv b_i \pmod{mcd(m_i, m_i)}$.
- La unicidad módulo $mcm(m_1,...,m_n)$ se demuestra de forma análoga al teorema Chino de los Restos.
- Falta demostrar que si se verifica la condición del Teorema, entonces tiene solución.

La demostración se basa en la reducción de un par de congruencias a una sola. Supongamos, pues, que debemos resolver

$$x \equiv b_1 \pmod{m_1},$$

 $x \equiv b_2 \pmod{m_2},$

De la primera se obtiene $x = b_1 + tm_1$, para algún $t \in \mathbb{Z}$. Sustituyendo en la segunda, se tiene $b_1 + tm_1 \equiv b_2 \pmod{m_2}$, en consecuencia, $tm_1 \equiv b_2 - b_1 \pmod{m_2}$.

Por hipótesis, $d = mcd(m_1, m_2)$ divide a b_2 - b_1 y se verifica que $mcd(\frac{m_1}{d}, \frac{m_2}{d}) = 1$ divide a $\frac{b_2-b_1}{d}$. En consecuencia, la congruencia

$$t \frac{m_1}{d} \equiv \frac{b_2 - b_1}{d} \left(mod \frac{m_2}{d} \right)$$

tiene solución única módulo m_2/d , la solución será $t \equiv a \pmod{m_2/d}$. Esto es,

$$t=a+t_1$$
 $\frac{m_2}{d}$ para algún $t_1\in \mathbf{Z}$. Sustituyendo esta expresión en $x=b_1+tm_1$, se tiene

$$x = b_1 + am_1 + t_1 \frac{m_1 m_2}{d} = b_1 + am_1 + t_1 mcm(m_1, m_2)$$

En consecuencia, $x \equiv b_1 + am_1 \pmod{mcm (m_1, m_2)}$.

Repitiendo la construcción n -1 veces se obtiene la solución del sistema.

Ejemplo 2.20 Resolver el sistema de congruencias $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, $x \equiv 13 \pmod{20}$

- $mcd(6,10) = 2 \mid 5-3 = 2, mcd(6,20) = 2 \mid 13-5 = 8, mcd(10, 20) = 10 \mid 13-3 = 10, por tanto$ existe solución única módulo mcm(6,10,20) = 60.
- Consideremos primero las ecuaciones $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, mcd(6,10) = 2 que es divisor de 5-3 = 2. Existe solución común.

$$t \frac{m_1}{d} \equiv \frac{b_2 - b_1}{d} \left(mod \frac{m_2}{d} \right), 3t \equiv -1 \pmod{5}, 3t + 5y = -1, \text{ una solución particular } t = -2$$

La solución es $x \equiv b_1 + am_1 \pmod{mcm (m_1, m_2)}, x \equiv 5 - 2*6 \pmod{mcm (6,10)} \equiv -7 \pmod{30} \equiv 23 \pmod{30}$

Ahora hay que considerar las ecuaciones $x \equiv 23 \pmod{30}$ y $x \equiv 13 \pmod{20}$, mcd(10, 20) =10 que es divisor de 23 - 13 = 10

$$t \stackrel{m_1}{d} \equiv \frac{b_2 - b_1}{d} \pmod{\frac{m_2}{d}}, 3t \equiv 1 \pmod{2}, 3t + 2y = 1$$
, una solución particular $t = 7$.

La solución es $x \equiv b_1 + am_1 \pmod{mcm} (m_1, m_2)$, $x \equiv 23$ -7*30 $\pmod{mcm} (30,20) \equiv -187 \pmod{60} \equiv -7 \pmod{60} \equiv 53 \pmod{60}$.

La solución es $x \equiv 53 \pmod{60}$.

2.5 Aplicaciones del cálculo de congruencias: Sistema criptográfico de clave pública RSA.

En esta sección se va a describir un sistema criptográfico que se conoce como RSA. La idea es transmitir mensajes por canales "inseguros" (esto es, accesibles a individuos distintos del emisor y del receptor) sin que puedan ser comprendidos más que por el emisor y el receptor. Esto exige un proceso de codificación del mensaje y su posterior decodificación. Los caracteres del mensaje se traducen a números, se envían números.

Codificación 2.21

- Se eligen dos números primos grandes p y q y se considera n = p.q
- Se elige un número e, con 1 < e < (p-1)(q-1) y mcd(e,(p-1)(q-1))=1
- Se transforma el número entero M, que representa el mensaje a enviar, en C con $C \equiv M^e \pmod{n}$

Descifrado 2.22

El siguiente teorema, que demostraremos más adelante, justifica el descifrado.

Pequeño teorema de Fermat: "Si p es primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$ "

El mensaje se puede recuperar cuando se conoce la clave de descifrado d.

d verifica $de = 1 \pmod{(p-1)(q-1)}$ (Este número d existe)

Se sigue que
$$C^d \equiv (M^e)^d \pmod{n} = M^{ed} \equiv M^{1+k(p-1)(q-1)} \pmod{n} \equiv M(M^{(p-1)})^{k(q-1)} \pmod{n}$$

Al ser n = p.q, se verifica

$$C^d \equiv M(M^{(p-1)})^{k(q-1)} \pmod{p} \equiv M.1 \pmod{p} \equiv M \pmod{p}$$

$$C^d \equiv M(M^{(q-1)})^{k(p-1)} \pmod{q} \equiv M.1 \pmod{q} \equiv M \pmod{q}$$

Al ser C^d solución del sistema de congruencias $x \equiv M \pmod{p}$, $x \equiv M \pmod{q}$. Por el teorema chino de los restos se sigue que la solución, M, es única módulo mcm(p, q) = p.q = n.

Por tanto $C^d \equiv M \pmod{n}$ permite leer el mensaje.