Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий Кафедра «Системы автоматики, автоматизированное управление и проектирование»

		КДАЮ 1
Зав	ведую	ощий кафедрой
		А.С. Климов
«	»	2024 г.

БАКАЛАВРСКАЯ РАБОТА

27.03.04 – Управление в технических системах

ЛАБОРАТОРНЫЙ СТЕНД КОНТРОЛЯ МИКРОКЛИМАТА С ВОЗМОЖНОСТЬЮ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

		ст. преподаватель
Руководитель	 06. 2024 г.	П.В. Авласко
Выпускник	 06. 2024 г.	Н.А. Красикова
Нормоконтролер	 06. 2024 г.	ст. преподаватель

РЕФЕРАТ

Бакалаврская работа на тему «Лабораторный стенд контроля микроклимата с возможностью дистанционного управления» содержит 61 страниц текстового документа, 30 иллюстраций, 4 таблицы, 6 приложения, 20 использованных источников.

АВТОМАТИЗАЦИЯ, СИСТЕМА УПРАВЛЕНИЯ, ЛАБОРАТОРНЫЙ СТЕНД

Целью данной работы является создание лабораторного стенда контроля микроклимата с возможностью дистанционного управления.

Задачи, которые решались в ходе выполнения бакалаврской работы:

- анализ аналогов лабораторного стенда контроля микроклимата;
- определение наиболее подходящих технических решений проекта;
- описание принципа работы системы, компонентов и их функций;
- описание программного обеспечения;
- проектирование и разработка стенда, выполнение отладки и тестирования;
- разработка лабораторных работ
- анализ перспектив дальнейшего усовершенствования.

Актуальность оснащения институтов лабораторными стендами играет ключевую роль в обеспечении качественного образования и подготовки специалистов. важно постоянно обновлять и совершенствовать лабораторное обеспечить оборудование, чтобы студентам возможность получить актуальные знания и навыки, соответствующие требованиям современной индустрии и технологий. В результате проделанной работы был реализован лабораторный стенд управления микроклиматом возможностью дистанционного управления.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 Анализ предметной области	6
1.1Обзор существующих технологий и решений	6
1.2 Выбор технологий для проекта	10
1.2.1 Автоматизация системы полива	10
1.2.2 Автоматизация контроля микроклимата	11
1.2.3 Автоматизация освещения	11
1.2.4 Автоматизация управления и дистанционного мониторинга	a12
2 Описание работы системы	13
3 Программное обеспечение для разработки	16
3.1 ASP.net	16
3.2 SQLite	16
3.3 Blazor	17
3.4 MudBlazor	17
3.5 SketchUp	17
3.6 ModbusPoll	18
4 Разработка лабораторного стенда	19
4.1 Аппаратная часть	19
4.1.1 Структура построения аппаратной части	19
4.1.2 Декомпозиция на независимые структуры и масштабирова:	ние 20
4.1.3 Задействованные датчики и устройства	21
4.1.4 Питание лабораторного стенда	22
4.1.5 Описание локальной сети	28
4.2 Программная часть	30
4.2.1 Клиент	31
4.2.2 База данных	34
4.2.2 Modbus Сервер	34
4.3 Техническое описание конструкции стенда	35
5 Методические указания	41
5.1 Изучение протокола Modbus	41
5.1 Работа с микроконтроллером ESP32	
6 Возможности дальнейшего развития	50

51
52
53
55
56
57
58
59
60

ВВЕДЕНИЕ

Образовательные и научные институты нуждаются в оснащении лабораториями, которые позволяют студентам и исследователям получать практические навыки работы с передовыми технологиями управления. Лабораторные стенды являются ключевыми инструментами для реализации учебных программ и проведения научных исследований, предоставляя возможность изучения теоретических концепций на практике и отработки прикладных навыков.

Цель данного дипломного проекта — разработка лабораторного стенда управления микроклиматом с возможностью дистанционного управления. Этот стенд предназначен для учебных, исследовательских и прикладных целей, предоставляя пользователям универсальную платформу для изучения и оптимизации параметров микроклимата. В рамках проекта разработаны аппаратные и программные компоненты стенда, интегрированные в единую систему, способную собирать, обрабатывать и визуализировать данные, а также осуществлять управление исполнительными механизмами.

Оснащение институтов современными лабораторными стендами, такими как разработанный в данном проекте, позволит существенно улучшить качество образовательного процесса, обеспечить высокий уровень подготовки специалистов и внести значительный вклад в развитие науки и технологий.

1 Анализ предметной области

1.1Обзор существующих технологий и решений

В настоящий момент на рынке существует несколько аналогов разрабатываемой системы. Были выбраны 3 проекта и проведен анализ каждого из представленных решений по следующим критериям:

- наличие основных модулей контроля микроклимата;
- образовательные возможности;
- отображение данных;
- дистанционное подключение;
- масштабируемость;
- цена.

Таблица 1 – Основные показатели лабораторных стендов

Название	Робототехнический комплекс НАУРОБО «Умная теплица»	Образовательный набор «Умная теплица IoT M2»	Конструктор СКАРТ «Умная теплица»
1.Основные моду	ли контроля микрок	лимата	
Модуль	+	+	+
управления			
поливом			
Параметры	+	+	-
микроклимата			
внешней среды			
Модуль	+	+	+
вентиляции			
Модуль освещения	+	+	+
Модуль нагрева	+	+	+
Параметры	+	+	+
микроклимата			
внутренней среды			

Продолжение таблицы 1

	Робототехнический	Образовательный	Конструктор
Название	комплекс	набор «Умная	СКАРТ
	НАУРОБО «Умная	теплица ІоТ М2»	«Умная
	теплица»		теплица»
Модуль	-	+	-
мониторинга			
ультрафиолетового			
излучения			
Модуль	-	+	-
мониторинга			
атмосферного			
давления			
Модуль	+	+	+
мониторинга			
влажности почвы			
Веб-камера	+	-	-
2. Образовательные	2. Образовательные возможности		
Интернет вещей	+	+	+
Автоматизация	+	+	+
Работа	+	-	-
в операционных			
системах семейства			
Linux			
Программирование	+	-	-
веб-интерфейсов			
Организации	+	-	-
взаимодействия			
устройств в сетях;			
понимание основ			
клиент-серверных			
технологий и			
НТТР-протокола			

Окончание таблицы 1

Название	Робототехнический комплекс	Образовательный набор «Умная	Конструктор СКАРТ
	НАУРОБО «Умная	теплица ІоТ М2»	«Умная
	теплица»		теплица»
Программирование	JavaScript	C/C++	JavaScript
Электрический	+	+	+
монтаж			
3. Отображение	+	+	+
данных			
4. Дистанционное	+	+	+
подключение			
5.	+	+	-
Масштабируемость			
6. Цена (в рублях)	~ 247 300	~ 99 000	~ 40 000

- Робототехнический комплекс НАУРОБО «Умная теплица» [6].

Основным достоинством комплекса является наличие камеры, позволяющая визуально на дистанции оценить состояние объекта.

Рисунок 1 - Робототехнический комплекс НАУРОБО «Умная теплица»

Из минусов – некоторые платы и ведущие к ним провода находятся снаружи и не защищены, из-за чего есть риск повреждения.

- Образовательный набор «Умная теплица IoT M2» [5].

Достоинством набора служит его небольшие размеры и аккуратный вид. Также плюсом является наличие модуля мониторинга ультрафиолетового излучения. Из минусов простая сборка стенда не отвечает параметрам прочности.

Рисунок 2 - Образовательный набор «Умная теплица IoT M2»

- Конструктор СКАРТ «Умная теплица» [4,3].

Из достоинств данного решения хочется отметить лёгкость сборки и невысокую цену. По функциональным возможностям конструктор уступает двум предшествующим аналогам.

Рисунок 3 - Конструктор СКАРТ «Умная теплица»

Исходя из таблицы 1, были выбраны необходимые модули, которые включены в разработку лабораторного стенда.

1.2 Выбор технологий для проекта

1.2.1 Автоматизация системы полива

Автоматизация полива — это особый технический комплекс, который самостоятельно способен обеспечить равномерный и регулярный полив определенной территории [1].

В умных теплицах используются системы автоматического полива, которые регулируют подачу воды в зависимости от потребностей растений и влажности почвы. Это позволяет оптимизировать расход воды и обеспечить растения необходимым количеством жидкости.

Система полива включает в себя погружной насос, датчик влажности почвы и датчик уровня воды. Благодаря показателям датчика влажности почвы

можно отследить время и продолжительность полива, а датчик уровня воды сигнализирует о том, можно ли включить насос.

Для лабораторного стенда будет реализован капельный полив. Его главные преимущества — это то, что расход воды минимален, несмотря на то, увлажнение более чем достаточное, и при этом обеспечивается равномерная подача воды. Также на поверхности почвы не образовывается корка, что позволяет кислороду спокойно проникать в почву.

1.2.2 Автоматизация контроля микроклимата

С помощью датчиков и специальных систем умных теплиц можно контролировать температуру и влажность воздуха, поддерживая оптимальные условия для роста растений. Это помогает предотвратить перегрев или переохлаждение растений.

Система контроля микроклимата состоит из датчика температуры и влажности, а также из увлажнителя, серводвигателя, вентилятора и элемента Пельтье. Благодаря связки вентилятор и серводвигатель реализовано активное и пассивное проветривание, которое можно комбинировать с охлаждением и нагревом, реализованными элементом Пельтье. Все эти исполнительные устройства опираются на данные об температуре. Включение/Выключение увлажнителя же при вязано к показаниям влажности в термокамере.

1.2.3 Автоматизация освещения

LED-освещение широко применяется в умных теплицах, так как оно эффективно и экономично. Специальные спектры светодиодов могут быть настроены для оптимального фотосинтеза и роста растений.

Освещение стенда реализовано с помощью ARGB - тип подсветки, представляющий собой модернизированную версию RGB, который дает возможность регулировать работу каждого диода по отдельности, что позволяет получить лучшие динамические эффекты и более сложные

цветовые оттенки [2]. Таким образом, для определённых растений и определённых периодов роста объекта можно выставлять разные цветовые спектры и их комбинации. Контролирует уровень освещённости в термокамере — фоторезистор. Благодаря его показаниям, переведёнными в люксы, и настройкам уровня светолюбивости и периода роста растения, будет включаться тот или иной спектр цвета настроенной интенсивности.

1.2.4 Автоматизация управления и дистанционного мониторинга

С использованием специального программного обеспечения умные теплицы могут автоматически регулировать параметры окружающей среды, исходя из заданных параметров. Это позволяет оптимизировать процесс выращивания растений и улучшить урожайность. Также теплица может быть подключена к интернету, что позволяет в режиме реального времени отслеживать и управлять условиями внутри из любой точки мира через специальные мобильные приложения или веб-интерфейсы.

Для управления лабораторным стендом реализовано приложение, отображающее все текущие состояния системы и позволяющее пользователю управлять любыми исполнительными элементами, а также выставлять необходимые параметры для автоматической работы стенда. Все показания с датчиков будут храниться в базе данных и в последующем есть возможность строить графики за определенный период.

По результатам просмотра аналогов разрабатываемого стенда и технологий, применяемых в умных теплицах, помимо главного функционала и требований, было принято решение добавить возможность удобства масштабирования и замены функционала, а также лабораторный стенд должен отвечать показателям удобства и презентабельности.

2 Описание работы системы.

В лабораторном стенде используются чувствительные элементы в виде Они измеряют выходные различных датчиков. параметры регулирования и передают их в информационно-управляющую систему, где в зависимости от установленного режима, пользователь управляет различными действие показателями посредством приведения В тех ИЛИ иных исполнительных элементов или система осуществляет мониторинг в автоматическом режиме и управляет исполнительными параметров элементами системы по заранее установленным алгоритмам [10].

Разработана структурная схема информационно-управляющей системы лабораторного стенда представлена на рисунке 4.

Рисунок 4 - Структурная схема информационно-управляющей системы лабораторного стенда

Определены входные параметры и выходные воздействия информационно-управляющей системы лабораторного стенда.

Входными параметрами являются:

- температура воздуха окружающей среды и в термокамере;
- влажность воздуха окружающей среды и в термокамере;
- уровень освещенности окружающей среды и в термокамере;
- влажность почвы;

- наличие объекта в термокамере;
- уровень жидкости в баке для полива.

Выходными воздействиями являются:

- управление серводвигателями;
- управление вентиляторами;
- управление элементом Пельтье;
- управление лампами;
- управление поливом;
- управление увлажнителем.

На рисунке 5 представлена структурная схема программной архитектуры информационно-управляющей системы лабораторного стенда.

Рисунок 5 - Структурная схема программной архитектуры информационноуправляющей системы лабораторного стенда

В данной архитектуре выделены модуль измерений для считывания данных с датчиков, модуль цифровой обработки для обработки полученных значений с измерительного модуля. Также модуль цифровой обработки передает данные по сети для удаленного мониторинга и управления лабораторным стендом. Модуль выполнения задач выделен для взаимодействия с пользователем и может использоваться для выполнения различных задач при ручном управлении лабораторным стендом.

Блок схема автоматического управления лабораторного стенда представлена в приложении Г.

3 Программное обеспечение для разработки

3.1 ASP.net

ASP.NET (Active Server Pages .NET) - это фреймворк, разработанный компанией Microsoft для создания веб-приложений и веб-сервисов. Он является частью платформы .NET и использует языки программирования С# или VB.NET для разработки. ASP.NET предоставляет инструменты для создания динамических веб-сайтов, включая возможности работы с базами данных, управления сеансами, обеспечения безопасности и многое другое.

Ключевые особенности ASP.NET включают в себя использование модели MVC (Model-View-Controller) для построения приложений, интеграцию с языком программирования С#, поддержку множества требуемых технологий и расширений, а также возможность развертывания приложений на платформе Windows и Linux.

ASP.NET позволяет разработчикам создавать мощные и масштабируемые веб-приложения, обеспечивая удобство и производительность при разработке.

3.2 SQLite

SQLite - это компактная и легковесная система управления базами данных, которая обладает высокой производительностью, надежностью и простотой в использовании. SQLite не требует отдельного серверного процесса и может хранить базы данных в одном файле, что делает его идеальным выбором для мобильных приложений, настольных программ, встраиваемых систем и других приложений, где требуется локальное хранение данных. Он поддерживает стандарт SQL и обладает расширенными возможностями, такими как транзакции, представления, триггеры и многое другое.

3.3 Blazor

Blazor — это фреймворк для создания интерактивных веб-приложений с использованием С# и .NET. Он позволяет разработчикам писать клиентский код на С# и реализовывать его в браузере с помощью WebAssembly или серверной части ASP.NET Core. Blazor предлагает две модели разработки: Blazor Server, где код выполняется на сервере, и Blazor WebAssembly, где приложение запускается в браузере, не требуя постоянного соединения с сервером после загрузки.

Вlazor обладает мощными возможностями, такими как компонентный подход, двустороннее связывание данных, жизненный цикл компонентов, роутинг и многое другое. Он облегчает процесс создания современных вебприложений, а также позволяет разработчикам использовать знакомый язык программирования С# для клиентской и серверной разработки.

3.4 MudBlazor

MudBlazor библиотека ЭТО open-source компонентов пользовательского интерфейса, реализованная на базе Blazor, которая предоставляет набор готовых компонентов для создания веб-приложений с использованием технологии Blazor. Эта библиотека содержит множество функциональных элементов, таких как кнопки, таблицы, формы, модальные значительно упрощает процесс разработки окна, другие, ЧТО интерфейса. MudBlazor также обладает пользовательского хорошей документацией и активным сообществом, что делает ее популярным инструментом для создания Blazor-приложений.

3.5 SketchUp

SketchUp — это программное обеспечение для проектирования 3D-моделей, которое широко используется архитекторами, дизайнерами,

инженерами и другими специалистами. Одним из ключевых преимуществ SketchUp является его простота использования и интуитивно понятный интерфейс, что делает его доступным даже для начинающих пользователей. Кроме того, программа позволяет визуализировать проекты, проводить анализ освещения и теней, а также экспортировать модели в различные форматы для совместной работы и публикации.

3.6 ModbusPoll

ModbusPoll — это программа для тестирования и отладки устройств, использующих протокол Modbus. Программа предоставляет удобный интерфейс для общения с Modbus-устройствами, позволяя пользователям отправлять запросы, получать ответы и анализировать данные.

4 Разработка лабораторного стенда

4.1 Аппаратная часть

4.1.1 Структура построения аппаратной части

Лабораторный стенд отвечает трёхуровневому принципу АСУ ТП, представленному на рисунке 6.

Рисунок 6 - Трёхуровневый принцип АСУ ТП

К нижнему уровню относятся все измерительные и исполнительные элементы проекта.

Средний уровень включает в себя ПЛК. В качестве альтернативы ПЛК в данном проекте выступает микроконтроллер ESP32. OH получает информацию с датчиков о состоянии объекта и выдаёт команды управления, в соответствии запрограммированным алгоритмом управления, cна исполнительные механизмы.

Верхний уровень обеспечивает связь с нижним уровнем, откуда осуществляется сбор данных, а также контроль и мониторинг состояния

объекта. Контроль осуществляется через человеко-машинный интерфейс (HMI – Human Machine Interface), который в проекте представлен Webприложением на компьютере, выводящимся на дисплей.

4.1.2 Декомпозиция на независимые структуры и масштабирование

Каждая из термокамер лабораторного стенд управляется отдельным независимым микроконтроллером (далее МК), который взаимодействует с компьютером посредством протокола Modbus. На рисунке 7 представлена схема взаимодействия подсистем.

Рисунок 7 – Схема взаимодействия подсистем

Каждый МК со своей обвязкой представляет модель «Чёрного ящика» для компьютера, так как внутреннее устройство и механизм работы неважны в рамках его задач.

Благодаря такой обособленности МК вся система обладает свойством масштабирования. При необходимости возможно подключать другие МК, даже находящиеся на удалении, ограничиваясь только количеством адресов и пропускной способностью сети.

Также такое разделение повышает отказоустойчивость системы в целом. Например, если из строя выйдет один МК, система продолжит функционировать с оставшимися.

4.1.3 Задействованные датчики и устройства

Подключение датчиков к микроконтроллеру является ключевым этапом при создании системы мониторинга и управления. Датчики позволяют микроконтроллеру получать данные о различных параметрах окружающей среды или о состоянии самой системы.

Схема подключения датчиков к МК термокамер 1 и 2 приведены в приложении А и Б соответственно.

Перечень и чувствительных и исполнительных элементов и их технические характеристики представлены в таблице 2.

Таблица 2 - Перечень чувствительных и исполнительных элементов

Датчик влажности и	Диапазоны измерений:
температуры АМ2301.	- влажность: 0 ÷ 99,9%;
	- температура: -40 ÷ +80°С;
	2 - 5% точности для влажности и 0,5 °C для температуры;
	Питание: 3,3 - 5,2В.
Датчик влажности	Тип датчика: резистивный;
почвы.	Питание: 3,3-5 В;
	Глубина погружения в почву: до 40 мм;
	Водонепроницаемый сенсорный зонд с высокой
	коррозионной стойкостью.
Инфракрасный датчик	Рабочий диапазон: 2-30 см;
приближения QT30CM.	Питание: 5В;
	Рабочая температура: -10 °C ÷ +60 °C;
	Потребление тока: 20 мА;
	Угол излучения: < 5 град;
	Угол приема: < 10 град.

Продолжение таблицы 2

Бесконтактный датчик	Тип датчика: ёмкостный;
уровня жидкости	Дистанция чувствительности сквозь материал: 0–12 мм;
XKC-Y25-V.	Питание: 3,3 – 24 В;
	Потребляемый ток: до 10 мА;
	Рабочая температура: 0 ÷ 100 °C;
	Рабочий диапазон влажности: 5-100%.
	Класс защиты: IP67.
Фоторезистор GL5528.	Световое сопротивление при 10 люкс: 10-20 кОм;
	Темновое сопротивление при 0 люкс: 1,0 Мом;
	Рабочая температура: от -30 ÷ +70 °C;
	Питание: 3,3В.
Мини-погружной	Питание: 3V - 12V;
водяной насос AD20P-	Рабочая температура: 0 ÷ 75 градусов;
1230C.	Потребляемая мощность: 4,8 Вт;
	Максимальный ток: 400 мА;
	Максимальный поток: 240 л/ч;
	Максимальный высота подъема: 3М;
	Класс водонепроницаемости: IP68 (возможна погружная
	установка).
Адресная светодиодная	Градации яркости на каждый цвет: 256 х 3;
лента ws2812b.	Количество возможных оттенков цвета:16 777 216;
	Питание: 5 В;
	Максимальная потребляемая мощность на 1 м: 18 Ватт;
	Рабочая температура: -20 ÷ +80°C;
	Класс защиты: IP67.
Элемент Пельтье	Питание: 12 В;
TEC1-12715.	Максимальное напряжение питания: 15.2 В;
	Максимальный ток: 15А;
	Потребляемая мощность: 77 Вт;
	Рабочая температура: -30 °C ÷ +70 °C.
Вентилятор.	Питание: 12 В;
	Максимальный ток: 80 мА.

Продолжение таблицы 2

Ультразвуковой	Питание: 3 - 12 В;
увлажнитель воздуха.	Номинальная мощность: 1,5 Вт;
увлажнитель воздуха.	
	Резонансная частота: 108,0 ± 5,0 кГц;
	Мощность распыления: 50 ÷ 100 мл/час.
Сервопривод MG996R	Питание: 4.8 - 7.2 В;
	Рабочий ток: 170 - 1200 мА;
	Угол поворота: до 180°;
	Управление: ШИМ;
	Температура эксплуатации: 0°C ÷ +55°C.
Клапан KYK0518GF	Питание: 5 В.
Сетевой модуль W5500	Питание: 3,3 или 5 В постоянного тока;
TCP/IP	Интерфейс: SPI (MODE 3);
	Сетевые протоколы: TCP/IP: TCP, UDP, ICMP, IPv4, ARP,
	IGMP, PPPoE;
	Сетевые интерфейсы: 10BaseT/100BaseTX Ethernet PHY
	embedded;
	Размер внутреннего буфера ТХ/RX: 32 кБайт;
	Рабочая температура 0 ÷ 70 °C.
ESP32	Процессор: 32-битный процессор Tensilica Xtensa LX6;
	Тактовая частота: 160 или 240 МГц;
	SRAM память: 520 Кб;
	Питание: 5 В;
	Максимальный потребляемый ток: 260 мА.
Orange pi	Процессор: 4-х ядерный 64-битный процессор Cortex-A55,
	частота до 1,8 ГГц;
	Питание: 5 В;
	40-контактный интерфейс функционального расширения;
	Wi-Fi 5+BT 5.0;
	Модуль еММС: 32 ГБ.
4-х канальный модуль	Питание: 5 В;
реле	Максимальное контактное напряжение реле: 250 В
	переменного тока, 30 В постоянного тока;
	Максимальный ток реле: 10А.
	1

Окончание таблицы 2

Драйвер шагового	Питание: 5 – 35 В;
двигателя L298N.	Потребляемый ток встроенной логики: 0-36 мА;
	Рабочий ток драйвера: 2 А;
	Рабочая температура: -25 ÷ +130°C.

4.1.4 Питание лабораторного стенда

В качестве блока питания для стенда был выбран EDR-120-12 в узком корпусе на DIN-рейку. Выходное напряжение и ток равны 12 В и 10А соответственно. Он имеет защиту от короткого замыкания, перегрузок, перенапряжения и перегрева. Номинальная мощность 120 Вт, что на 40% больше от мощности, потребляемой стендом в пик нагрузки. На рисунке 8 представлен блок питания EDR-120-12.

Рисунок 8 - Блок питания EDR-120-12

В проекте также задействованы устройства потребляющие 5 и 9 В. Для получения необходимого вольтажа применены понижающие преобразователи DC-DC XL4016 и DC-DC LM2506, представленные на рисунке 9.

Рисунок 9 - Понижающий преобразователь DC-DC XL4016 (a) и понижающий преобразователь DC-DC LM2506 (б)

Для разграничения питания по термокамерам были сделаны платы питания на 5 и 12 В, представленные на рисунке 10 и 11 соответственно.

Рисунок 10 – Плата питания для подключения устройств на 5 В

Рисунок 11 – Плата питания на 12 и 5 В

Платы оснащены контактными разъёмами стандарта XH2.54, которые требуются для подключения конечного оборудования. Такие платы можно с легкостью перемещать в процессе преобразований инфраструктуры проекта, а также они обладают простотой наращивания системы.

Схема питания лабораторного стенда представлена на рисунке 12.

Рисунок 12 – Схема питания лабораторного стенда

Распределённое питание повышает отказоустойчивость всей системы.

4.1.5 Описание локальной сети

В данной главе рассматривается процесс сетевого подключения лабораторного стенда, который позволяет интегрировать стенд в информационную инфраструктуру, обеспечивая удалённый доступ, мониторинг, управление и обмен данными.

Общая топология локальной сети лабораторного стенда представлена 13.

Рисунок 13 - Общая топология локальной сети лабораторного стенда

Роутер в режиме точки доступа (или Access Point mode) — это режим работы маршрутизатора, при котором он выполняет функцию беспроводной точки доступа (Wi-Fi Access Point), а не маршрутизатора, обеспечивающего маршрутизацию и сетевые функции [18]. В этом режиме роутер подключается к существующей сети и расширяет её, предоставляя возможность устройствам подключаться к сети по Wi-Fi.

Основным плюсом режимам является гибкость в настройке сети — это позволяет легко добавлять новые точки доступа к существующей сети без необходимости изменения конфигурации основного маршрутизатора.

Также роутер выступает DHCP-сервером для устройств стенда. DHCP-сервером (от англ. Dynamic Host Configuration Protocol) называется сервер, который автоматически назначает IP-адреса и другие сетевые параметры устройствам в сети. Эта функция упрощает процесс настройки сети, так как устраняет необходимость вручную настраивать IP-адреса на каждом устройстве.

В таблице 3 представлены устройства, которым назначены статические IP-адреса. Остальным устройствам IP-адрес назначается динамически от DHCP-сервера при включении системы.

Таблица 3 – Статические ІР-адреса

Устройства	ІР-адрес
ESP32_1	192.168.0.105/24
ESP32_2	192.168.0.106/24
Роутер	192.168.0.1/24

Общение между микроконтроллерами и компьютером происходит с помощью протокола Wi-Fi, который даёт гибкость развертывания множества устройств. Такой выбор необходим поддержку ДЛЯ масштабирования системы, так как протокол позволяет подключать множество устройств к одной сети без необходимости сложной кабельной инфраструктуры.

Связь между компьютером и роутером, а также роутером и внешней сетью осуществляет протокол Ethernet. Ключевыми аспектами выбора именно этой технологии стали его широкая совместимость, а также высокая скорость и надёжность.

4.2 Программная часть

Построение программного обеспечения (далее ПО) является одним из ключевых этапов любого проекта. Это процесс, от которого зависит не только качество работы системы, но и ее долгосрочная устойчивость и возможность эффективного масштабирования. В данной главе мы подробно рассмотрим каждый компонент ПО.

Общая схема ПО разрабатываемого проекта представлена на рисунке 14.

Рисунок 14 – Общая архитектура разрабатываемого ПО

ПО построено как клиент-серверная система — это архитектурный подход, в котором функциональность приложения делится на две части: серверную и клиентскую [17]. Клиенты устанавливают соединение с сервером через сеть, отправляют запросы серверу и получают ответы от него. Сервер, в свою очередь, отвечает на запросы клиентов, обрабатывает данные и предоставляет запрошенные ресурсы. Этот подход широко используется в современных вычислительных системах, так как позволяет эффективно организовать взаимодействие между различными компонентами системы, обеспечивая высокую отказоустойчивость и масштабируемость. Такая архитектура часто используется в распределенных системах, где несколько клиентов могут одновременно обращаться к одному серверу для выполнения различных задач.

4.2.1 Клиент

Приложение клиентской стороны реализовано с помощью платформы одностраничных приложений (SPA) для создания интерактивных клиентских веб-приложений с использованием .NET. Blazor WebAssembly (далее Blazor WASM) [7], который не зависит от сервера. Все необходимые файлы среды выполнения и загружаемых сборок могут кэшироваться в браузере и работать без доступа к сети. Выбрана эта технология, так как в проекте имеется статический сервер, на котором и размещены все файлы приложения.

Приложение адаптивно и имеет два режима: для дисплея лабораторного стенда в режиме киоска — ограничения пользователя только одним или несколькими конкретными приложениями для более контролируемого пользовательского опыта — и для телефона/компьютера для дистанционного подключения. Интерфейс разработан с помощью библиотеки компонентов MudBlazor [19].

Приложение имеет 4 страницы с информацией и меню. По умолчанию всегда будет открыта первая страница с параметрами из внешней среды

лабораторного стенда. Благодаря навигационному меню, представленному на рисунке 16, можно перейти на страницы с информацией об микроклимате, поливе и увлажнении, освещении. На страницах, микроклимата, полива и освещённости, благодаря переключателям «Термокамера 1» и «Термокамера 2», можно смотреть и изменять параметры, относящиеся к определённой термокамере.

Если система обнаружит, что уровень воды в баке критически мал, она оповестит пользователя сообщением, которое можно убрать, только нажав кнопку «Понято».

На рисунках 15-17 представлены страница, отвечающая за параметры ламп в термокамерах, меню и предупреждение.

Рисунок 15 – Интерфейс страницы «Лампа»

Рисунок 16 – Интерфейс меню приложения

Рисунок 17 – Интерфейс предупреждения

Приложение масштабируемо. Если будет необходимость присоединить новые микроконтроллеры, достаточно указать IP и ID на новый МСU и на страничке появится новый переключатель «Термокамера 3».

4.2.2 База данных

В качестве системы управления базами данных (далее СУБД) была выбрала встраиваемая однофайловая SQLite, которая позволяет хранить всю базу локально на одном устройстве [20].

Формат базы — один текстовый файл, представленный на рисунке 18. Сервер общается с БД посредством SQL — языка запросов, с помощью которого отдают команды для управления базой данных.

Данные с датчиков хранятся за последние 24 часа, поэтому есть возможность построить графики и провести исследования.

Рисунок 18 – Формат базы данных

4.2.2 Modbus Cepbep

Modbus сервером выступают два МК ESP32, которые собирают всю информацию с датчиков и хранят её в выделенных регистрах. Для работы с

чувствительными и исполнительными элементами, необходимо подключение сторонних библиотек, представленных в таблице 4.

Таблица 4 – Библиотеки, используемые а проекте

Библиотека	Описание
DHT.h	Библиотека предназначена для работы с датчиками
	температуры и влажности DHT 21 (AM2301).
FastLED.h	Библиотека применяется для создания различных эффектов
	на адресной светодиодной ленте.
ESP32Servo.h	Библиотека позволяет управлять работой серводвигателей.
Arduino.h	Библиотека содержит базовый набор функций для работы с
	MK.
WiFi.h	Библиотека применяется для работы с Wi-Fi.

Общение между сервером и Modbus сервером происходит с помощью Modbus TCP — мощным и гибким протоколом для обмена данными в промышленных сетях. Его использование стандартных сетевых протоколов TCP/IP делает его удобным для интеграции и обеспечивает высокую скорость и надёжность передачи данных.

4.3 Техническое описание конструкции стенда

Лабораторный стенд делится на две части: блок управления (далее БУ) и испытательную термокамеру. Блок управления включает в себя место для блока питания, управляющей электроники и отсек бака для полива. Испытательная термокамера разделена на две изолированные части для независимых исследований влияния параметров микроклимата.

На рисунках 19 и 20 представлена трёхмерная модель лабораторного стенда.

Рисунок 19 - Трёхмерная модель лабораторного стенда (вид спереди)

Рисунок 20 - Трёхмерная модель лабораторного стенда (вид сзади)

Каркас сделан из алюминиевых профильных труб — это даёт конструкции лёгкость и прочность. Сверху нанесён грунт для лучшего

закрепления лакокрасочных материалов и акриловая эмаль цвета «Серый туман» - для защиты каркаса от царапин и придания презентабельного вида.

Конструкция стенда в будущем может быть изменена, так как каркас является разборным. Большинство профильных труб можно просто отсоединить, так как они скреплены уголками, распечатанными на 3-д принтере, представленными на рисунке 21.

Рисунок 21 - Трёхмерная модель уголков в SketchUp

Стенки блока управления и пол стенда сделаны из ЛДСП. Ламинированный слой ДСП защищает от проникновения воды. Полная влагоизоляция обеспечивается нанесением герметика на все стыковочные места.

Оставшиеся стенки и двери стенда выполнены из оргстекла. Материал акриловое оргстекло даёт возможность для наблюдения за происходящим в термокамере и БУ, при этом у него высокая прочность и небольшой вес относительно обычного стекла.

Оргстекло крепится к стенду благодаря специальным пазам осуществляемыми алюминиевыми П-профилями, представленными на рисунке 22. При повреждении стенки, её можно будет без усилий заменить.

Рисунок 22 — Вид балки с п-профилем для крепления оргстекла

Вся конструкция лабораторного стенда установлена на 4 ножки, чтобы удобно можно было держать конструкцию при перемещении.

На каждую из термокамер приходится по воздуховоду, представленному на рисунке 23. Воздуховоды распечатаны на 3-д принтере.

Рисунок 23 - Трёхмерная модель воздуховода в SketchUp

Благодаря обратному клапану, воздух из внешней среды не будет проникать внутрь термокамер, что даст более точные показания исследованиям.

Для вывода проводов датчиков и исполнительных элементов из термокамер в БУ реализован клапан, представленный на рисунке 24. Благодаря клапану можно сократить обмен воздуха между термокамерами и БУ. Корпус спроектирован в SketchUp и распечатан на 3-д принтере. Изоляционным материалом выступает резина.

Рисунок 24 — Вид клапана для вывода проводов между термокамерами и БУ

Для каждой из термокамер распечатана угловая труба, по которой поступает увлажнение в случае необходимости. Сам пластик изолирован он воды благодаря защитному лаку. Также в каждую из термокамер проведена трубка, по которой поступает вода для полива.

Все дверцы посажены на рояльные петли, открывающиеся на 360°, благодаря чему можно будет удобно откинуть дверцу и провести манипуляции внутри термокамеры.

5 Методические указания

В данной главе будут рассмотрены методические указания к возможным лабораторным работам для стенда управления микроклиматом, которые помогут студентам и исследователям освоить основные принципы и практические аспекты работы с такими системами.

5.1 Изучение протокола Modbus

Цель: знакомство и изучение протокола Modbus.

Задачи:

- изучение теоретического материала;
- знакомство с программой Modbus Poll;
- подключение к Modbus-серверу;
- получение данных с датчиков и изменение состояния элементов.

Теория

Протокол Modbus

Modbus — это открытый протокол связи, разработанный в 1979 году компанией Modicon (ныне Schneider Electric) для использования в программируемых логических контроллерах. Протокол предназначен для организации связи между промышленными устройствами и системами автоматизации [16].

Типы Modbus:

- Modbus RTU (Remote Terminal Unit): использует бинарную передачу данных и часто применяется в системах на основе последовательных соединений (RS-232, RS-485).
- Modbus ASCII: использует ASCII-коды для передачи данных, также подходит для последовательных соединений, но менее популярен, чем RTU.
- Modbus TCP/IP: использует TCP/IP для передачи данных, что позволяет интегрировать устройства в локальные сети (LAN) и интернет.

В системе Modbus есть главный (Master) и подчиненные (Slave) устройства. Master инициирует обмен данными, а Slaves отвечают на запросы Master. Один Master может взаимодействовать с несколькими Slave.

Преимущества Modbus:

- Интероперабельность: Modbus является стандартом де-факто в промышленной автоматизации, что обеспечивает совместимость между устройствами различных производителей.
- Простота интеграции: простая структура протокола облегчает интеграцию новых устройств и систем.
- Расширяемость: легко адаптируется к новым технологиям и приложениям, включая беспроводные и сетевые решения.

Modbus остается одним из самых популярных протоколов в сфере промышленной автоматизации благодаря своей простоте, надежности и универсальности.

Для получения дополнительной информации можно обратиться к источникам [8].

Программа Modbus Poll

Программа является симулятором мастера в Modbus-сети. Интерфейс Modbus Poll интуитивно понятен. Внешний интерфейс представлен на рисунке 25.

На рисунке 26 можно увидеть подключение к одному из микроконтроллером лабораторного стенда. Каждая строчка отвечает за выделенный регистр, который записывает значение датчика. Справа находится диалоговое окно, которое позволяет изменять значения состояний исполнительных элементов, значения которых записаны в отдельные биты выделенного регистра.

Рисунок 25 - Интерфейс Modbus Poll

Ход работы

Подключитесь к Wi-Fi «SmartGreenhouse».

Откройте программу. Вверху, в меню выберите «connection» → «connect...». Откроется диалоговое окно, представленное на рисунке 32.

Рисунок 26 - Диалоговое окно подключения программы Modbus Poll

Введите IP-адрес «192.168.0.106», чтобы подключиться к микроконтроллеру. Откроется окно с значениями, получаемыми от датчиков.

В меню выберите «Setup» \rightarrow «Read/Write Dedention». В графе «Scan Rate» выставите 1000 ms. Это значение можно изменят, оно показывает раз во сколько времени Modbus Master будет опрашивать Slave.

Руководствуясь приложением Γ , в котором описываются выделенные регистры и значения, которые они хранят, можно определить какая строчка отвечает за тот или иной элемент.

Замечание: значения температуры и влажности передаются умноженные на 10. Это необходимо для исключения потери десятой доли. (Пример: 273 = 27,3 °C). Значения цвета светодиодной ленты передаются в шестнадцатеричной форме.

Для того чтобы изменить состояние объекта, кликните дважды на строчку с значением. Откроется диалоговое окно, представленное на рисунке 27.

Рисунок 27 - Диалоговое окно записи значения

В графе «Value» запишите «1» или «0» и нажмите кнопку «send». После этого состояние исполнительного элемента изменится.

5.1 Работа с микроконтроллером ESP32

Цель: знакомство и работа с микроконтроллером ESP32

Задачи:

- изучение теоретического материала;
- работа с датчиком АМ2301;
- работа с серводвигателем MG996R.

Теория

Микроконтроллер ESP32

ESP32 — это мощный микроконтроллер, разработанный компанией Espressif Systems. Он является наследником популярного ESP8266 и предназначен для использования в проектах Интернета вещей (IoT), а также в разнообразных встраиваемых системах.

Связь и интерфейсы:

- Встроенный Wi-Fi (802.11 b/g/n).
- Встроенный Bluetooth (Classic и BLE).
- Поддержка Ethernet, CAN, UART, SPI, I2C, I2S, и других интерфейсов.

ESP32 совместим с Arduino IDE, что делает его доступным для начинающих разработчиков и позволяет использовать большое количество библиотек Arduino. Для работы в Arduino IDE необходимо установить пакет поддержки через Менеджер плат.

С двух сторон платы расположены контактные гребёнки по 15 пинов с шагом 2,54 мм, что позволяет установить её на макетную плату и подключать к платформе электронные компоненты для прототипирования устройства [11]. Распределение пинов представлено на рисунке 28.

Рисунок 28 — Распределение пинов в микроконтроллере ESP32

Датчик АМ2301

АМ2301 — это цифровой датчик температуры и влажности, который широко используется в различных приложениях, связанных с мониторингом и управлением климатическими условиями. Он известен своей точностью, надежностью и простотой использования.

Основные характеристики АМ2301:

Диапазон измерения температуры:

-40°С до +80°С;

Точность: ± 0.5 °C.

Питание:

Напряжение питания: 3.3-5.5 В;

Потребляемый ток: до 2.5 мА (при измерении).

Полные данные по датчику можно получить по ссылке [12].

Сервопривод MG996R

Сервопривод MG996R — это популярный и мощный сервопривод, широко используемый в робототехнике, моделировании и других приложениях, требующих точного управления углом поворота. Он является улучшенной версией предыдущего MG995, с повышенной точностью и улучшенными характеристиками.

Основные характеристики MG996R:

Рабочее напряжение:

4.8-7.2 B (рекомендуемое питание — 6 B).

Угловой диапазон:

0-180 градусов (стандартное управление).

Полные данные по серводвигателю можно получить по ссылке [13].

Ход работы

Назначение контактов датчика АМ2301:

- 1 контакт (красный) Питание 3.3B 5.2B;
- 2 контакт (желтый) Вывод данных;
- 3 контакт (черный) Питание GND;
- 4 контакт Не используется.

Подключим AM2301 к МК, как показано на рисунке 29. Так же не забываем о подтягивающим резисторе на 4.7 кОм [14].

Рисунок 29 – Подключение датчика АМ2301

Для работы с датчиком AM2301 в Arduino IDE используем библиотеку DHT, которая поддерживает этот датчик.

Установка библиотеки DHT:

Откройте Arduino IDE. Перейдите в Sketch > Include Library > Manage Libraries... Найдите и установите библиотеку DHT sensor library от Adafruit.

Скопируйте код из приложения Д и загрузите на МК. Далее открываем «Последовательный монитор», где можем увидеть показания с датчика.

Для подключения сервопривода используют 3 провода:

1 красный провод – питание (внешний стабилизированный источник питания 4.8-7.2 В);

2 черный провод – к выводу Arduino GND;

3 оранжевый – сигнальный (подключается к цифровому ШИМ выводу контроллера Arduino).

Подключим MG996R к МК, как показано на рисунке 30.

Рисунок 30 – Подключение датчика MG996R

Для управления сервоприводами в Arduino IDE есть стандартная библиотека Servo.h, которая включает в себя функции для установки настроек сервопривода, необходимого угла, считывания состояния. Аналогично с датчиком AM2301 скачиваем необходимую библиотеку.

В приложении Е представлен скетч вращения сервопривода от 0 до 120° с шагом 1° , а затем в обратную сторону.

6 Возможности дальнейшего развития

Разработанный стенд в рамках данного проекта, представляет собой многофункциональную и гибкую платформу, поэтому существует ряд направлений для дальнейшего развития и улучшения стенда, которые могут повысить его функциональность, удобство использования и применимость в различных областях.

Внедрение алгоритмов искусственного интеллекта (ИИ) и машинного обучения (МО) может значительно улучшить функциональность стенда. ИИ может анализировать данные, полученные от датчиков, и предсказывать изменения в параметрах микроклимата, что позволит заранее принимать меры по их коррекции. МО может помочь в разработке адаптивных алгоритмов управления, которые будут учитывать индивидуальные особенности каждого помещения и предпочтения пользователей, обеспечивая более точное и эффективное поддержание микроклимата.

Для повышения точности и надежности системы можно рассмотреть возможность использования более продвинутых датчиков, таких как датчики качества воздуха, ультрафиолетового излучения и уровня СО2.Также возможно добавление новых исполнительных механизмов, таких как автоматические жалюзи и осущители воздуха, что позволит более комплексно управлять микроклиматом.

Безопасность и надежность являются ключевыми аспектами для любой системы управления, поэтому в будущем можно внедрить механизмы защиты от несанкционированного доступа и обеспечить устойчивость системы к отказам. Это может включать использование современных методов шифрования данных, аутентификацию пользователей, а также разработку резервных копий и аварийных сценариев.

Разработанный лабораторный стенд имеет базовый набор датчиков и возможностей, но вся система проектировалась так, чтобы в будущем её можно было масштабировать, изменять и оптимизировать.

ЗАКЛЮЧЕНИЕ

В результате выполнения работы был разработан лабораторный стенд управления микроклиматом с возможностью дистанционного управления. Проанализирована информация по разрабатываемой системе и её аналогах.

Разработана аппаратная часть, включающая схемы подключения, питания и списки выбранных устройств. Создано программное обеспечение, которое обеспечивает сбор данных, их обработку и управление исполнительными механизмами в соответствии с заданными параметрами. Разработан удобный и интуитивно понятный интерфейс для пользователя для управления системой. Также реализована возможность подключения стенда к локальной сети и интернету, что позволяет осуществлять дистанционное управление и мониторинг системы через веб-интерфейс.

Конструкция лабораторного стенда спроектирована в трёхмерном пространстве и затем изготовлена согласно трёхмерной модели.

Проект имеет практическое значение для образовательных и научных учреждений, поэтому были написаны методические указания по лабораторным работам.

В будущем проект может быть дополнен новыми функциями, использованием алгоритмов управления на основе искусственного интеллекта, а также расширением возможностей по сбору и анализу данных.

Проект доступен для скачивания из git-репозитория по ссылке [9].

СПИСОК СОКРАЩЕНИЙ

ASP – (англ. Active Server Pages) «активные серверные страницы»

ARGB – (англ. Addressable Red-Green-Blue) «Адресный Красный-Зелёный-Синий»

DCHP – (англ. Dynamic Host Configuration Protocol) «протокол динамической настройки узла»

GPIO – (англ. General-purpose input/output) «Интерфейс ввода/вывода общего назначения»

HMI – (англ. Human-machine interface) «Человеко-машинный интерфейс»

HTTP – (англ. HyperText Transfer Protocol) «протокол передачи гипертекста»

ID – (англ. Identifier) «опознаватель»

IP – (англ. Internet Protocol) «межсетевой протокол»

LED – (англ. Light-emitting diode) «Светодиод»

MCU - (англ. Micro Controller Unit) «Микроконтроллер»

MVC – (англ. Model-View-Controller) «Модель-Вид-Контроллер»

RGB – (англ. Red-Green-Blue) «Красный-Зелёный-Синий»

SQL – (англ. Structured Query Language) «язык структурированных запросов»

TCP – (англ. Transmission Control Protocol) «протокол управления передачей»

WASM – (англ. WebAssembly) «WebAssembly»

АСУ ТП – Автоматизированная система управления технологическим процессом

БУ – Блок управления

ИИ – Искусственный интеллект

МК – Микроконтроллер

МО – Машинное обучение

ПЛК – Программируемый логический контроллер

ПО – Программное обеспечение

САР – Система автоматического регулирования

СУБД – Система управления базами данных

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1.Арт проект. Путь в автоматизацию // URL: https://inlnk.ru/57YPNy (дата обращения: 19.05.2024)
- 2. Виды RGB-подсветки для компьютера // Man Made Computers URL: https://inlnk.ru/QwzDjP (дата обращения: 15.05.2024)
- 3. Конструкторы СКАРТ умный дом мини-теплица // NanoJam URL: https://nanojam.ru/products/elektronnyi-konstruktor-skart-umnyi-dom-mini-teplitsa#tab=tabDescription (дата обращения: 1.05.2024)
- 4. Конструктор «СКАРТ умная теплица» // skartshop URL: https://l.skartshop.ru/ru/katalog-nashej-produktsii/43-uchebnyj-modul-skart-mini-teplitsa (дата обращения: 1.05.2024)
- 5. Набор «Умная теплица ЙоТик M2» // MGBOT URL: https://mgbot.ru/catalog/obrazovatelnye_nabory_iot/nabor_umnaya_teplitsa_yotik _m2/ (дата обращения: 1.05.2024)
- 6. Роботехнический комплекс НАУРОБО «Умная теплица» // Научные развлечения URL: https://nau-ra.ru/education/education-robototehnika/robotizirovannyy-komplekt-grinhaus-copy/ (дата обращения: 1.05.2024)
- 7. Microsoft Learn // ASP.NET core Blazor URL: https://learn.microsoft.com/ru-ru/aspnet/core/blazor/?view=aspnetcore-8.0 (дата обращения: 1.06.2024)
- 8. Наbr // Программное обеспечение для тестирования и наладки устройств и сетей на базе Modbus URL: https://habr.com/ru/articles/281430/ (дата обращения: 10.06.2024)
- 9. GitHub // SmartGreenhouse URL: https://github.com/Bazilik00/SmartGreenhouse (дата обращения: 15.06.2024)
- 10. Робототехника и искусственный интеллект // Лабораторный стенд управления микроклиматом с возможность дистанционного управления -

- URL: https://aesfu.ru/local/conference/_docs/2023/RAI-23_print.pdf (дата обращения: 15.06.2024)
- 11. AmperMarket // Плата ESP32 URL: https://ampermarket.kz/arduino/esp32-wi-fi-bluetooth/ (дата обращения: 3.06.2024)
- 12. Temperature and humidity module // AM2301 Product Manual URL: https://www.haoyuelectronics.com/Attachment/AM2301/AM2301.pdf (дата обращения: 15.05.2024)
- 13. GMG996R // High Torque Metal Gear Dual Ball Bearing Servo URL: https://www.electronicoscaldas.com/datasheet/MG996R_Tower-Pro.pdf (дата обращения: 11.05.2024)
- 14. RobotChip // Подключение датчика AM2301 к Arduino URL: https://robotchip.ru/podklyucheniya-datchika-am2301-k-arduino/ (дата обращения: 15.06.2024)
- 15. 3d-DiY // Сервопривод MG995 URL: https://3d-diy.ru/wiki/arduino-mechanics/servo-mg995/ (дата обращения: 12.06.2024)
- 16. Wirenboard // Протокол Modbus URL: https://wirenboard.com/wiki/Modbus (дата обращения: 4.04.2024)
- 17. ServerGate // Клиент-серверная архитектура URL: https://servergate.ru/articles/klient-servernaya-arkhitektura/ (дата обращения: 2.05.2024)
- 18. Wifi // Чем отличаются точка доступа и poyrep? URL: https://wifi.kz/articles/chem-otlichayutsya-tochka-dostupa-i-router/ (дата обращения: 12.05.2024)
- 19. MudBlazor URL: https://mudblazor.com/ (дата обращения: 10.06.2024)
- 20. SkillFactory Media // SQLite URL: https://blog.skillfactory.ru/glossary/sqlite/ (дата обращения: 15.06.2024)

ПРИЛОЖЕНИЕ А

Схема подключения датчиков к МК термокамеры 1

приложение Б

Схема подключения датчиков к МК термокамеры 2

ПРИЛОЖЕНИЕ В

Список выделенных Modbus регистров под значения получаемые

МК

```
#pragma once
#define INDEX STATE 7
#define INDEX HASPLANT 8
#define INDEX TEMPERATURE OUTSIDE 9
#define INDEX HUMIDITY OUTSIDE 10
#define INDEX_LiGHT_OUTSIDE 11
#define INDEX_LEVEL_WATER 12
#define INDEX SYNCHRONIZED_LEVEL_WATER 13
#define INDEX MAX PUMP POWER TICKS 14
uint16_t memory [1000];
#define REGISTERS memory
#define REGISTER_TEMPERATURE memory[0]
#define REGISTER HUMIDITY memory[1]
#define REGISTER_SOIL memory[3]
#define REGISTER RGB COLOR memory[4]
#define REGISTER_RGB_BRIGHTNESS memory[5]
#define REGISTER LIGHT memory[6]
#define REGISTER_STATE memory[INDEX_STATE]
#define REGISTER HASPLANT memory[INDEX HASPLANT]
#define REGISTER_TEMPERATURE_OUTSIDE
memory[INDEX TEMPERATURE OUTSIDE]
#define REGISTER_HUMIDITY_OUTSIDE
memory[INDEX HUMIDITY OUTSIDE]
#define REGISTER_LIGHT_OUTSIDE memory[INDEX_LiGHT_OUTSIDE]
#define REGISTER LEVEL WATER memory[INDEX LEVEL WATER]
#define
REGISTER SYNCHRONIZED LEVEL WATER memory[INDEX SYNCHRO
NIZED_LEVEL_WATER]
#define
REGISTER MAX PUMP POWER TICKS memory[INDEX MAX PUMP PO
WER_TICKS]
#define BIT_STATE_RGB_POWER 0
#define BIT_STATE_RGB_MODE 1
#define BIT_STATE_FAN 2
#define BIT STATE HUMIDIFIER 3
#define BIT_STATE_PUMP 4
```

#define BIT STATE SERVO 5

приложение г

Блок схема автоматического управления лабораторного стенда

приложение д

Код программы для работы с датчиком АМ2301

```
#include <dhtnew.h>
                      // Подключаем библиотеку
                         // Указываем цифровой пин
DHTNEW mySensor(5);
               // Переменная для хранения показаний влажности
byte H;
float T;
               // Переменная для хранения показаний температуры
void setup()
Serial.begin(115200);
                          // Открываем последовательную связь на скорости
9600
mySensor.setSuppressError(true);
void loop()
if (millis() - mySensor.lastRead() > 2000) // Считываем показания раз в 2 с
 int errcode = mySensor.read();
 T = mySensor.getTemperature();
 H = mySensor.getHumidity();
 Serial.print("Humidity: ");
                                     // Выводим текст
 Serial.print(H);
                                 // Выводим показания влажности
 Serial.print(" %\t");
                                  // Выводим текст
 Serial.print("Temperature: ");
                                      // Выводим текст
 Serial.print(T);
                                // Выводим показания температуры
 Serial.println(" *C ");
                                   // Выводим текст
}
```

ПРИЛОЖЕНИЕ Е

Код программы для работы с серводвигателем MG995

```
// подключение библиотеки Servo
#include <Servo.h>
// создать объект servo
Servo servo1;
// пин для подключения сервопривода
const int pin_servo=9;
// макс значение угла поворота
const int angle_max=120;
// для хранения текущей позиции сервопривода
int angle = 0;
// для хранения направления 1 или -1
dir=1;
void setup() {
  // подключить управление сервоприводом к пину pin servo
  servo1.attach(pin_servo);
void loop() {
  for(;;) {
   // команда установки положения сервопривода
   servo1.write(angle);
   // время на перемещение сервопривода
   delay(15);
   //
   if(angle==0)
     dir=1;
   else if(angle==angle_max)
     dir=-1;
   angle=angle+dir;
```