Contents

1	Probability		
	1.1 Convergence	3	
2	Parametric Models	7	

Chapter 1

Probability

1.1 Convergence

1. Convergence in probability.

$$T_n \xrightarrow{\mathbb{P}} T \iff \mathbb{P}(|T_n - T| \ge \epsilon) \xrightarrow[n \to \infty]{} 0 \quad \forall \epsilon > 0$$

2. Almost surely convergence.

$$T_n \xrightarrow{\text{a.s.}} T \iff \mathbb{P}(\{\omega \mid T_n(\omega) \to T(\omega)\}) = 1$$

3. Convergence in distribution.

$$T_n \xrightarrow{(d)} T \iff \mathbb{P}(T_n \le x) \xrightarrow[n \to \infty]{} \mathbb{P}(T \le x)$$

for all x at which F_T is continuous.

4. \mathcal{L}^p Convergence.

$$T_n \xrightarrow{:^{\checkmark}} T \iff \mathbb{E}[|T_n - T|^p] \xrightarrow[n \to \infty]{} 0$$
 (1.1)

For $p \geq 1$.

Theorem 1.1 (Weak/Strong law of large numbers). Let X_1, \ldots, X_n be i.i.d. with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$ both finite. Then

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{\mathbb{P}/\text{a.s.}} \mu$$

Theorem 1.2 (Central limit theorem). Let X_1, \ldots, X_n be i.i.d with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$ both finite. Then

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \xrightarrow[n \to \infty]{(d)} N(0,1)$$

Theorem 1.3 (Hoeffding inequality). Let X_1, \ldots, X_n be i.i.d with $\mu = \mathbb{E}[X]$, $X \in [a, b]$ then for all $\epsilon > 0$

$$\mathbb{P}(|\bar{X}_n - \mu| \ge \epsilon) \le 2e^{-\frac{2n\epsilon^2}{(b-a)^2}}$$

4 1. Probability

Proposition 1.4. The followings are equivalent

1. $T_n \xrightarrow{(d)} T$.

2. $\mathbb{E}[f(T_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[f(T)]$ for all continuous and bounded f.

3.
$$\mathbb{E}\left[e^{ixT_n}\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[e^{ixT}\right] \text{ for all } x.$$

Proposition 1.5. We have the following relationships

$$T_n \xrightarrow{\mathrm{a.s.}} T \implies T_n \xrightarrow{\mathbb{P}} T \implies T_n \xrightarrow{(d)} T$$

and

$$T_n \xrightarrow{L^1} T \implies T_n \xrightarrow{\mathbb{P}} T$$

and

$$T_n \xrightarrow{L^p} T \implies T_n \xrightarrow{L^q} T, \quad \forall q \le p$$

Proposition 1.6. Let f be a continuous function then

$$T_n \xrightarrow{\text{a.s.}/\mathbb{P}/(d)} T \implies f(T_n) \xrightarrow{\text{a.s.}/\mathbb{P}/(d)} f(T)$$

Proposition 1.7. If $U_n \xrightarrow{\text{a.s.}/\mathbb{P}} U$ and $V_n \xrightarrow{\text{a.s.}/\mathbb{P}} V$ then

1.

$$U_n + V_n \xrightarrow{\text{a.s.}/\mathbb{P}} U + V$$

2.

$$U_n V_n \xrightarrow{\text{a.s.}/\mathbb{P}} UV$$

3.

$$\frac{U_n}{V_n} \xrightarrow{\text{a.s.}/\mathbb{P}} \frac{U}{V}, \quad V \neq 0 \text{ a. s.}$$

These propositions hold for convergence in distribution if the pair $(U_n, V_n) \xrightarrow{(d)} (U, V)$.

Theorem 1.8 (Slutsky's theorem). Let X_n, Y_n be a sequence of random variable such that

$$X_n \xrightarrow{(d)} X \qquad Y_n \xrightarrow{\mathbb{P}} c$$

where c is a constant then $(X_n, Y_n) \xrightarrow{(d)} (X, c)$. In particular

$$X_n + Y_n \xrightarrow{(d)} X + c, \quad X_n Y_n \xrightarrow{(d)} cX$$

Theorem 1.9 (Delta method). Let X_n be a sequence of random variable such that

$$\sqrt{n}(X_n - \mu) \xrightarrow{(d)} N(0, \sigma^2)$$

where μ and σ are finite valued constants. Then for any function g that $g'(\mu)$ exists and is non-zero

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{(d)} N(0, \sigma^2(g'(\mu)^2))$$

1.1 Convergence 5

Proof. By Taylor's polynomial, there exists μ^* between X_n and μ such that

$$g(X_n) - g(\mu) = (X_n - \mu)g'(\mu^*)$$

then since $g'(\mu^*)$ convergers in probability – because of weak law of large number, continuity of g', and continuous mapping theorem – to $g'(\mu)$, by Slutsky's theorem

$$\sqrt{n}(X_n - \mu)g'(\mu^*) \xrightarrow{(d)} N(0, \sigma^2(g'(\mu))^2)$$

which proves the Delta method.

6 1. Probability

Chapter 2

Parametric Models