CS5760: Topics in Cryptanalysis

7 July 2025

Lecture 11: Gröbner Bases over Rings

Instructor: Maria Francis Scribe: Gautam Singh

11.1 Gröbner Bases over Principal Ideal Domains (PIDs)

Here, we consider the univariate polynomial ring $\mathbb{Z}(x)$. The ordering in \mathbb{Z} is $a_1 < a_2$ if $|a_1| < |a_2|$ or if $|a_1| = |a_2|$ and a_1 is negative.

Definition 11.1 (Reduction). We say that $f \stackrel{g}{\to} h$ if $lm(g) \mid lm(f)$ and $\exists a, b \in \mathbb{Z}$ such that lc(f) = alc(g) + b where $a \neq 0$ and b < lc(f).

11.2 Strong and Weak Gröbner Basis

Definition 11.2 (Strong Gröbner Basis). A set of polynomials $G = (g_1, \ldots, g_t)$ is a *strong Gröbner basis* for an ideal I if for any $f \in I \setminus \{0\}$, $\exists a, g \in G$ such that $\operatorname{lt}(g) \mid \operatorname{lt}(f)$.

To construct a strong Gröbner basis, we required to construct a G-polynomial in addition to an S-polynomial.

Definition 11.3 (S/G-Polynomial). Let $f, g \in R[x]$. WLOG let lc(f) < lc(g). Let t = lcm(lm(f), lm(g)). Define

$$t_f = \frac{t}{\operatorname{lm}(f)}, \quad t_g = \frac{t}{\operatorname{lm}(g)}.$$
(11.1)

Similarly, let $a = \operatorname{lcm}(\operatorname{lc}(f), \operatorname{lc}(g))$. Define

$$a_f = \frac{a}{\operatorname{lc}(f)}, \quad a_g = \frac{a}{\operatorname{lc}(q)}.$$
 (11.2)

Then, the S polynomial of f and g is defined as

$$S(f,g) = a_f t_f f - a_g t_g g. (11.3)$$

Let $b = \gcd(\operatorname{lc}(f), \operatorname{lc}(g))$. Then, by the Extended Euclidean algorithm, we have $b = b_f \operatorname{lc}(f) + b_g \operatorname{lc}(g)$ for some b_f, b_g . Then, the G-polynomial of f and g is given by

$$G(f,g) = b_f t_f f - b_g t_g g. \tag{11.4}$$

Definition 11.4 (S/G-Pairs). Let $\{f_1, \ldots, f_m\}$ be the set R^m . Let $\alpha, \beta \in R^m$. We assume that $lc(\bar{\alpha}) < lc(\bar{\beta})$. Let $t = lcm(lm(\bar{\alpha}), lm(\bar{\beta}))$. Define

$$t_{\alpha} = \frac{t}{\operatorname{lm}(\bar{\alpha})}, \quad t_{\beta} = \frac{t}{\operatorname{lm}(\bar{\beta})}.$$
 (11.5)

Let $a = \operatorname{lcm}(\operatorname{lc}(\bar{\alpha}), \operatorname{lc}(\bar{\beta}))$. Define

$$a_{\alpha} = \frac{a}{\operatorname{lc}(\bar{\alpha})}, \quad a_{\beta} = \frac{a}{\operatorname{lc}(\bar{\beta})}.$$
 (11.6)

Then, the S-pair of α and β is defined as

$$Spair(\alpha, \beta) = a_{\alpha}t_{\alpha}\alpha - a_{\beta}t_{\beta}\beta. \tag{11.7}$$

Let $b = \gcd(\operatorname{lc}(\bar{\alpha}), \operatorname{lc}(\bar{\beta}))$. Then, the G-pair of α and β is defined as

$$Gpair(\alpha, \beta) = bt_{\alpha}\alpha - bt_{\beta}\beta. \tag{11.8}$$

Definition 11.5 (S-Reduction). Let $\alpha, \beta \in R^m$. We say that β s-reduces to α if $\bar{\beta}$ reduces $\bar{\alpha}$ and $\mathrm{Sig}(\alpha) > \mathrm{Sig}(\beta)$ where $\mathrm{lc}(\bar{\alpha}) = a\mathrm{lc}(\bar{\beta}) + b$ for some $a, b \in R$ where $a \neq 0$ and $b < \mathrm{lc}(\bar{\alpha})$.