Modern Multivariate Statistical Techniques

Jinhong Du,15338039 April 30, 2018

Content

1. For any split of τ into τ_L and τ_R ,

$$R^{re}(au) \geq R^{re}(au_L) + R^{re}(au_R)$$

with equality if $\underset{k}{\arg\max} p(k|\tau) = \underset{k}{\arg\max} p(k|\tau_L) = \underset{k}{\arg\max} p(k|\tau_R).$

Proof.

Denote by τ_L and τ_R the left daughter-node and right daughter-node, respectively, emanating from a (parent) node τ .

 $r(\tau)$ is the resubstitution estimate of the misclassification rate $R^{re}(\tau)$ of an observation in node τ .

 $p(k|\tau)$ is an estimate of $\mathbb{P}\{X \in \prod_k | \tau\}$, the conditional probability that an observation X is in \prod_k given that it falls into node τ .

 $p(\tau)$ is the proportion of all observations that fall into node τ .

•.•

$$egin{aligned} r(au) &= 1 - \max_k p(k| au) \ r(au_L) &= 1 - \max_k p(k| au_L) \ r(au_R) &= 1 - \max_k p(k| au_R) \ R^{re}(au) &= r(au)p(au) \ &= r(au)[p(au_L) + p(au_R)] \ R^{re}(au_L) &= r(au_L)p(au_L) \ R^{re}(au_R) &= r(au_R)p(au_R) \end{aligned}$$

∴.

$$\begin{split} R^{re}(\tau) - R^{re}(\tau_L) - R^{re}(\tau_R) &= [r(\tau) - r(\tau_L)]p(\tau_L) + [r(\tau) - r(\tau_R)]p(\tau_R) \\ &= [\max_k p(k|\tau_L) - \max_k p(k|\tau)]p(\tau_L) + [\max_k p(k|\tau_R) - \max_k p(k|\tau)]p(\tau_R) \end{split}$$

 \cdot

$$p(k|\tau) = \frac{p(\tau_L)p(k|\tau_L) + p(\tau_R)p(k|\tau_R)}{p(\tau)}$$

$$\max_k p(k|\tau) \le \frac{p(\tau_L)}{p(\tau)} \max_k p(k|\tau_L) + \frac{p(\tau_R)}{p(\tau)} \max_k p(k|\tau_R)$$
(1)

∴.

$$R^{re}(au) - R^{re}(au_L) - R^{re}(au_R) \geq rac{p(au_R)p(au_L)}{p(au)} [\max_k p(k| au_L) - \max_k p(k| au_R)] \ + rac{p(au_R)p(au_L)}{p(au)} [\max_k p(k| au_R) - \max_k p(k| au_L)]$$

The equality holds if $\underset{k}{\arg\max} p(k|\tau) = \underset{k}{\arg\max} p(k|\tau_L) = \underset{k}{\arg\max} p(k|\tau_R)$ from (1).

2. Show that the entropy function of $p(1|r), \dots, p(K|r)$,

$$i(r) = \phi(p(1|r), \dots, p(K|r))$$
$$= -\sum_{k=1}^{K} p(k|r) \log p(k|r)$$

is maximized at $(\frac{1}{K}, \dots, \frac{1}{K})$.

Proof.

Assume that $x \log x|_{x=0} = 0$.

•:•

$$f(x) = x \log x,$$
 $x \in [0, 1]$
 $f'(x) = \log x + 1,$ $x \in [0, 1]$
 $f''(x) = \frac{1}{x} \ge 0,$ $x \in [0, 1]$

 \therefore f(x) is a convex function on [0,1]

٠.

$$\sum_{k=1}^{K} p(k|r) = 1$$

: from Jensen Inequlity,

$$\begin{split} f\left(\frac{1}{K}\sum_{k=1}^{K}p(k|r)\right) & \leq \frac{1}{K}\sum_{k=1}^{K}f(p(k|r)) \\ f\left(\frac{1}{K}\right) & \leq -\frac{1}{K}i(r) \end{split}$$

∴.

$$\begin{split} i(r) & \leq -f\left(\frac{1}{K}\right) \\ & = -\frac{1}{K}\log\frac{1}{K} \\ & = \frac{1}{K}\log K \end{split}$$

The equality holds when $p(1|r) = \cdots = p(K|r) = \frac{1}{K}$.