Assalan Ahmed Khatyan

SP19-BSSE-0019

BM

Assignment # 04

OR

QN0#1

 $\chi_1 + \chi_2 + \chi_3 = 7$ $2\chi_1 - 2\chi_2 + \chi_3 \ge 10$ $\chi_1, \chi_2, \chi_3 \ge 0$

(a)

Max Z = 2x,+3x2-5x3 USING BIG M METHOD

Standard form:

$$x_{1}+x_{2}+x_{3}+\alpha_{1}=7$$

 $2x_{1}-2x_{2}+x_{3}-S_{1}+\alpha_{2}=10$
 $x_{1},x_{2},x_{3}\geq0$
 $\alpha_{1},\alpha_{2}\geq0$
 $S_{1}\geq0$

Max Z = 2x, +3x2-5x3-Ma, -Ma2

BV	χ_1	×a	X 3	SI	a,	aa	RHS	
2	-2	-3	5	0	100	100	0	-
a_{i}	1	1	1	D	1	0	7	1
$a_{\mathbf{z}}$	2	-2	1	-1	0	1	10	
· .	1						40 0 00 1	

	1							
BV	XI	χ ₂	χ_3	81	a_1	a_2	RHS	MR
\overline{z}	-302	97	- 195	100	0	0	-1700	
ail	1	1	1	0	1	0	7	7
	2 .		1	-1	D	1	10	5

X, is Entering a z is leaving

BV	2(1	χa	X 3	Si	a,		RHS	A THEORET AND ADMINISTRATION OF THE PARTY.
Z	D	O	29/4	1/4	205/2	3994	15	
ત્ર	0	1	1/4	1/4	1/2	-44	1	
χı	1	0	3/4	-1/4	1/2	1/4	6	K W =
	The state of the s				Ast	Francisco Tomore		

$$Z = 15$$
 $6, 1, 0, \frac{1}{4}, \frac{205}{205}$
 $(6, 1, 0, \frac{1}{4}, \frac{205}{2}, \frac{399}{4})$

Verification:

$$Z = 2x_1 + 3x_2 - 5x_3$$

 $15 = 2(6) + 3(1) - 5(0)$
 $15 = 15$
verified

(6)

Min Z = 2x, +3x2-5x3 (Two-Phase Method)

Standard Porm:

$$\chi_{1} + \chi_{2} + \chi_{3} + \alpha_{1} = 7$$

$$2\chi_{1} - 2\chi_{2} + \chi_{3} - S_{1} + \alpha_{2} = 10$$

$$\chi_{1}, \chi_{2}, \chi_{3} \ge 0$$

$$\alpha_{1}, \alpha_{2} \ge 0$$

$$S_{1} \ge 0$$

Phase #01Min $Z = \alpha_1 + \alpha_2$

BV	×	X2	χ_3		a,		RHS
Z	0	0	0	0	-1	- 1	0
a_1	1	1	1	0	1	0	7
α_{2}	2	-2	1	-1	0	1	10
1						3	

		1							
	BV	×ı	Xa	χ_3	S,	a_{i}	a_{2}	RHS	MR
	Z	3	-1	2	-1	0	0	17	
	a_i	1	1	1	0	1	0	7	7
←	a_2	2	-2	1	-1	0	1	10	5

X, is Entering as is leaving

			1		3 1			r		
	BV	χ_{l}	Xa	χ_3	SI	a	az	RHS	MR	
, j	Z	0	2	1/2	1/2	0	-3/2	2		Ha is Entering
-	a	0	a	W2	1/2	1	-1/2	2	1	a, is leaving
	2(1	1	-1	1/2	-1/2	0	1/2	5	_	

BV	Hi	χa	χ_3	SI	a_1	aa	RHS	MR
Z	0	0	0	0	-1	-1	0	11
×2	0	1	14	1/4	1/2	-1/4	1	
んり	1	0	3/4	-44	42	1/4	6	

Phase #02

	\	毒				
BN	メリ	χa	X3	Si	RHS	MR
Z	-2	-3	5	0	0	-2
Xa	0	1	1/4	1/4	1	*
×	1	0	3/4	-1/4	6	
	111					

	BV	ત્રા	Ha	23	Sı	RHS	
-	abla	0	-3	13/2	-1/2	12	
	χa		1	1/4	1/4	1	
	χı	1	D	3/4	-1/4	6	

Bv	メ i	xa	χ ₃	Sı	RHS
2	0	0	29/4	1/4	15
X2	0	1	1/4	1/4	1
X1		0	3/4	-1/4	C
	nager occupation and the second			V	

$$Z = 15$$
 $(6,1,0,1/4)$

verification:

$$Z = 2(\chi_1) + 3\chi_2 - 5\chi_3$$

15 = 2(6)+3(1)-5(0)
15 = 15
verified

QN0#2

Max Z = 2x1+2x2+4x3

 $2\chi_{1} + \chi_{2} + \chi_{3} \leq 2$ $3\chi_{1} + 4\chi_{2} + 2\chi_{3} \geq 10$ $\chi_{1}, \chi_{2}, \chi_{3} \geq 0$

By using Big M Method.

Standard form:

$$2x_{1} + x_{2} + x_{3} + S_{1} = 2$$

 $3x_{1} + 4x_{2} + 2x_{3} - S_{2} + Q_{1} = 10$
 $x_{1}, x_{2}, x_{3} \ge 0$
 $S_{1}, S_{2} \ge 0$
 $Q_{1} \ge 0$

Man Z = 2x, +2x2+4x3-Ma,

E	31	χ_1	χ_{2}	χ_3	S,	S_{2}	a_{i}	RHS
7	Z	-2	-2	-4	0	0	100	0
9	1	a	1	1	1	0	0	2
Q	1	3	4	2	0	-1	1	10

		,	↓						
	BV	XI						RHS	MR
	Z	-302	-402	-204	0	100	0	-1000	
4	- B1	2	1	1	1	0	0	2	2
	α_1	3	4	2	D	-1	1	10	5/2
	2	7.					a , i	e jedica	

X2 is Entering S, is leaving

	BV	XI	Xa	χ ₃	S,	Sa	a,	RHS	MR
***********	Z	SOL	0	198	402	100	0	-196	
X2		a	1	1	1	0	0	2	
(a_1	-5	0	-2	402 1 -4	-1	1	2	

Infeasible Solution, Solution is not possible.