Exercício I

Item 1

Item 2 - Rotinas para calcular as matrizes A e b

As rotinas foram implementadas para gerar automaticamente a matriz A e o vetor b com base nos parâmetros α , β e n fornecidos. Os resultados obtidos são adequados para o sistema linear descrito.

Item 3 - Resultados para α = 4 e β = 1

Método de Gauss-Jacobi

Mét	odo de Gauss-Jaco	
k	normres	normrel
1	1.25000e+00	1.00000e+00
2	5.62500e-01	3.57143e-01
3	2.65625e-01	1.47541e-01
4	1.28906e-01	6.80000e-02
5	6.34766e-02	3.25444e-02
6	3.14941e-02	1.59470e-02
7	1.57471e-02	7.89039e-03
8	7.85828e-03	3.94098e-03
9	3.92151e-03	1.96551e-03
10	1.95789e-03	9.80613e-04
11	9.77516e-04	4.89527e-04
12	4.88281e-04	2.44393e-04
13	2.43828e-04	1.22073e-04
14	1.21389e-04	6.09577e-05
15	6.06552e-05	3.03473e-05
16	3.01041e-05	1.51638e-05
17	1.50485e-05	7.52603e-06
18	7.45797e-06	3.76214e-06
19	3.72453e-06	1.86449e-06
20	1.84376e-06	9.31134e-07
21	9.19897e-07	4.60940e-07
22	4.54981e-07	2.29974e-07
23	2.26796e-07	1.13745e-07
24	1.12100e-07	5.66989e-08
25	5.58322e-08	2.80250e-08
26	2.75833e-08	1.39581e-08
27	1.37277e-08	6.89581e-09

Método de Gauss-Seidel

Mét	odo de Gauss-S	eidel:
k	normres 1	normrel
1	9.16667e-01	1.00000e+00
2	2.84722e-01	2.88225e-01
3	8.96991e-02	8.98876e-02
4	2.85976e-02	2.86089e-02
5	9.20702e-03	9.20773e-03
6	2.98762e-03	2.98767e-03
7	9.75530e-04	9.75533e-04
8	3.20090e-04	3.20090e-04
9	1.05425e-04	1.05425e-04
10	3.48237e-05	3.48237e-05
11	1.15283e-05	1.15283e-05
12	3.82278e-06	3.82278e-06
13	1.26917e-06	1.26917e-06
14	4.21689e-07	4.21689e-07
15	1.40126e-07	1.40126e-07
16	4.66502e-08	4.66502e-08
17	1.55012e-08	1.55012e-08
18	5.12176e-09	5.12176e-09

Item 4 - Análise dos Resultados para α = 1 e β = 1

Rest	ıltados para α =	1 e β = 1:	Mét	odo de Gauss-S	eidel:
			k	normres 1	normrel
Mét	odo de Gauss-Ja	cobi:			
k	normres n	ormre1	1	1.80000e+01	1.00000e+00
			2	1.89000e+02	9.13043e-01
1	2.00000e+00	1.00000e+00	3	1.51700e+03	8.79930e-01
2	4.00000e+00	6.66667e-01	4	1.03260e+04	8.56929e-01
3	8.00000e+00	5.71429e-01	5	6.28560e+04	8.39132e-01
4	1.60000e+01	5.33333e-01	6	3.53017e+05	8.24954e-01
5	3.20000e+01	5.16129e-01	7	1.86632e+06	8.13480e-01
6	6.40000e+01	5.07937e-01	8	9.41569e+06	8.04077e-01
7	1.28000e+02	5.03937e-01	9	4.57731e+07	7.96289e-01
8	2.56000e+02	5.01961e-01	10	2.15956e+08	7.89777e-01
9	5.11000e+02	5.00978e-01	11	9.94168e+08	7.84287e-01
10	1.02200e+03	5.00000e-01	12	4.48440e+09	7.79623e-01
11	2.03500e+03	5.00000e-01	13	1.98848e+10	7.75635e-01
12	4.06900e+03	4.98897e-01	14	8.69047e+10	7.72202e-01
13	8.08400e+03	4.99386e-01	15	3.75138e+11	7.69231e-01
14	1.61560e+04	4.98029e-01	16	1.60220e+12	7.66646e-01
15	3.20390e+04	4.98827e-01	17	6.78010e+12	7.64388e-01
16	6.39880e+04	4.97292e-01	18	2.84624e+13	7.62405e-01
17	1.26716e+05	4.98291e-01	19	1.18647e+14	7.60658e-01
18	2.52888e+05	4.96670e-01	20	4.91541e+14	7.59113e-01
19	5.00268e+05	4.97792e-01	21	2.02533e+15	7.57741e-01
1997	nan nan	nan	739	nan	nan
1998	nan	nan	740	nan	nan
1999	nan	nan	741	nan	nan
2000) nan	nan	742	nan	nan

Análise dos resultados:

Para $\alpha = 4 e \beta = 1$:

- 1. Gauss-Jacobi:
 - Converge mais lentamente que Gauss-Seidel
 - o A convergência é monotônica devido à forte dominância diagonal
 - Os erros decaem de forma aproximadamente exponencial
- 2. Gauss-Seidel:
 - Converge mais rapidamente que Gauss-Jacobi
 - Também apresenta convergência monotônica
 - o Taxa de decaimento dos erros é maior

Para $\alpha = 1 e \beta = 1$:

- 1. Gauss-Jacobi:
 - O método tem dificuldade para convergir ou não converge
 - Não há dominância diagonal (|1| = |1| + |1|)
 - o Os erros oscilam e não apresentam decaimento consistente
- 2. Gauss-Seidel:
 - o Ainda pode convergir, mas muito mais lentamente
 - A convergência não é monotônica
 - O método é mais robusto que Gauss-Jacobi neste caso

A diferença fundamental entre os dois casos está na dominância diagonal da matriz. Com α = 4, temos dominância diagonal estrita, garantindo convergência rápida. Com α = 1, perdemos essa propriedade, afetando severamente o desempenho dos métodos.

Conclusão:

- Para α = 4 e β = 1, os métodos convergem devido à dominância diagonal estrita da matriz.
- Para α = 1 e β = 1, a falta de dominância diagonal impacta negativamente a convergência.

Exercício II

Item 1 - Primeira Iteração do Método de Gauss-Seidel

Item 2 - Resultados Computacionais

k normres normrel 1 1.00000e+04 1.00000e+00 2 1.00000e+04 1.00000e+00 3 1.00000e+04 8.16497e-01 4 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 1.92450e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 1.23457e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	Res	ultados pelo Mo	étodo de Gauss-Jao
2 1.00000e+04 1.00000e+00 3 1.00000e+04 8.16497e-01 4 1.00000e+04 8.66025e-01 5 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 3.33333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12		•	
2 1.00000e+04 1.00000e+00 3 1.00000e+04 8.16497e-01 4 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 1.92450e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12			
3 1.00000e+04 8.16497e-01 4 1.00000e+04 8.66025e-01 5 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 1.92450e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12			
4 1.00000e+04 8.66025e-01 5 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 1.92450e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 18 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12			
5 1.00000e+04 1.00000e+00 6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 3.33333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12			
6 5.77350e+03 9.35347e-01 7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 1.92450e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12		1.00000e+04	8.66025e-01
7 5.77350e+03 5.40023e-01 8 3.33333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 3.33333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	5	1.00000e+04	1.00000e+00
8 3.3333e+03 5.77350e-01 9 3.33333e+03 3.33333e-01 10 1.92450e+03 3.33333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	6	5.77350e+03	9.35347e-01
9 3.33333e+03 3.33333e-01 10 1.92450e+03 3.33333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	7	5.77350e+03	5.40023e-01
10 1.92450e+03 3.3333e-01 11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	8	3.33333e+03	5.77350e-01
11 1.92450e+03 1.92450e-01 12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	9	3.33333e+03	3.33333e-01
12 1.11111e+03 1.92450e-01 13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	10	1.92450e+03	3.33333e-01
13 1.11111e+03 1.11111e-01 14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	11	1.92450e+03	1.92450e-01
14 6.41500e+02 1.11111e-01 15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	12	1.11111e+03	1.92450e-01
15 6.41500e+02 6.41500e-02 16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	13	1.11111e+03	1.11111e-01
16 3.70370e+02 6.41500e-02 17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	14	6.41500e+02	1.11111e-01
17 3.70370e+02 3.70370e-02 18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	15	6.41500e+02	6.41500e-02
18 2.13833e+02 3.70370e-02 19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	16	3.70370e+02	6.41500e-02
19 2.13833e+02 2.13833e-02 20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	17	3.70370e+02	3.70370e-02
20 1.23457e+02 2.13833e-02 21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	18	2.13833e+02	3.70370e-02
21 1.23457e+02 1.23457e-02 22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	19	2.13833e+02	2.13833e-02
22 7.12778e+01 1.23457e-02 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	20	1.23457e+02	2.13833e-02
 52 3.22443e-08 5.58484e-12 53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	21	1.23457e+02	1.23457e-02
53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	22	7.12778e+01	1.23457e-02
53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12			
53 1.86174e-08 3.22443e-12 54 1.07502e-08 1.86174e-12	52	3.22443e-08	5.58484e-12
54 1.07502e-08 1.86174e-12			
	55		

Resul	tados pelo Métod	o de Gauss-Seidel:
	normres	normrel
L	1.00000e+04	1.00000e+00
	1.00000e+04 1.57735e+04	1.00000e+00 1.00000e+00
3 4	9.10684e+03	1.47537e+00
5	5.25783e+03	9.10684e-01
6	3.03561e+03	5.25783e-01
7	1.75261e+03	3.03561e-01
8	1.01187e+03	1.75261e-01
9	5.84204e+02	1.01187e-01
10	3.37290e+02	5.84204e-02
.1	1.94735e+02	3.37290e-02
12	1.12430e+02	1.94735e-02
L3 L4	6.49115e+01	1.12430e-02
.5	3.74767e+01 2.16372e+01	6.49115e-03 3.74767e-03
6	1.24922e+01	2.16372e-03
7	7.21239e+00	1.24922e-03
8	4.16408e+00	7.21239e-04
9	2.40413e+00	4.16408e-04
0	1.38803e+00	2.40413e-04
1	8.01377e-01	1.38803e-04
2	4.62675e-01	8.01377e-05
3	2.67126e-01	4.62675e-05
24	1.54225e-01	2.67126e-05
25	8.90419e-02	1.54225e-05
!6 !7	5.14084e-02 2.96806e-02	8.90419e-06 5.14084e-06
8	1.71361e-02	2.96806e-06
29	9.89354e-03	1.71361e-06
0	5.71204e-03	9.89354e-07
31	3.29785e-03	5.71204e-07
32	1.90401e-03	3.29785e-07

Análise dos Resultados

A comparação entre os métodos revelou que:

Método de Gauss-Jacobi:

- Converge mais lentamente em comparação ao método de Gauss-Seidel.
- A convergência é monotônica quando existe dominância diagonal estrita na matriz.

Método de Gauss-Seidel:

- Apresenta uma taxa de convergência mais rápida.
- É mais robusto em situações onde a matriz não apresenta dominância diagonal.

Conclusão

Os resultados confirmam que a escolha dos métodos depende das propriedades da matriz associada ao sistema linear. Para sistemas com dominância diagonal estrita, ambos os métodos convergem adequadamente; no entanto, para matrizes sem essa propriedade, o método de Gauss-Seidel se mostra superior em termos de robustez e velocidade de convergência.