An evaluation of the impact of end-to-end query optimization strategies on energy consumption

Eros Cedeño¹ Ana Aguilera-Faraco² <u>Denisse Muñante</u>³ Jorge Correia¹ Leonel Guerrero¹ and Carlos Sivira¹ <u>Yudith Cardinale</u>⁴

¹Universidad Simón Bolívar, Caracas, Venezuela

²Universidad de Valparaíso, Chile

³ENSIIE & SAMOVAR, Évry, France

⁴Universidad Internacional de Valencia, Spain

The 19th Int. Conf. On Evaluation of Novel
Approaches to Software
Engineering (ENASE'24)

- Context, Problem and Research objectives
- Proposal: Evaluating the impact of end-to-end query optimization strategies on energy consumption
- Results of Study
- Threats to validity, Conclusion and Future work

Eros Cedeño ENASE'2024 April 28-29, 2024 2 / 19

- Context, Problem and Research objectives
- 2 Proposal: Evaluating the impact of end-to-end query optimization strategies on energy consumption
- Results of Study
- 4 Threats to validity, Conclusion and Future work

Eros Cedeño ENASE'2024 April 28-29, 2024 3 / 19

Green Software

Green BY Software: The software helps a system to be more energy friendly. For instance a Smart Home.

Green IN Software: The software itself is able to be energy efficient. It could be integrated to all steps of the software development.

Figure: Green BY software vs Green IN Software

- Energy awareness: the level in which stakeholders are aware about the energy consumption that entails the building and usage of software.
- Energy efficiency: the level in which a software application is able to spend less energy without affecting its functionalities.

Context (2/2)

Evaluation of the energy consumed by Relational Database Systems

- Software applications intensively receive and transfer data by using a Relational Database Management Systems (RDBMS).
- RDBMS are software components that could require a lot of hardware resources querying larges databases.
- Resources are limited and expensive so they must be used wisely.
 However, developers are not aware of the resource impact they cause when building software.

Figure: Energy is expensive

Figure: Applications require more energy every time

Problem and Research objectives

Problem

Studies are traditionally interested in reducing execution time by implementing databases optimizations strategies such as index or compression. However, there are no studies dedicated to analyse the end-to-end (server and client sides) energy impact of these strategies.

Research objectives

Our goal is to increase awareness about the **end-to-end energy impact** of databases optimizations strategies. It can serve as guidelines for supporting developers to choose the strategies that are more energy friendly.

- RQ1: Does the implementation of database optimization strategies affect the energy consumption of client server applications?
- RQ2: Does the addition of database optimization strategies affect the energy consumption of client server applications?

- Context, Problem and Research objectives
- Proposal: Evaluating the impact of end-to-end query optimization strategies on energy consumption
- Results of Study
- 4 Threats to validity, Conclusion and Future work

Eros Cedeño ENASE'2024 April 28-29, 2024 7 / 19

Evaluating the impact of end-to-end query optimization strategies on energy consumption

Design of the Study: Setup

Evaluating the impact of end-to-end query optimization strategies on energy consumption

Design of the Study: Algorithm

```
Require: lstOpt; // base, index, compression, index-compression
   numIterations = 30: // number of iterations
   Ist Queries; // list of queries (22 queries en total)
Ensure: collect metrics for the analysis of energy consumption of a
   client-server application
1: for optimization in lstOpt do
       delete the database if it already exists
       create the database according to the configuration of optimization
       for query in lstQueries do
           for i in numIterations do
6:
              restart the service of database server
7:
              start monitoring tools
              execute query in the database server with the config.
9:
              collect metrics (execution time from client, energy
              consumption from client and server)
10.
               stop monitoring tools
11.
            end for
12:
        end for
13: end for
```

Evaluating the impact of end-to-end query optimization strategies on energy consumption

Juliet: Minimalist and Energy friendly tool, developed in C++

Figure: Juliet Architecture Design

Eros Cedeño ENASE'2024 April 28-29, 2024 10 / 19

- Context, Problem and Research objectives
- 2 Proposal: Evaluating the impact of end-to-end query optimization strategies on energy consumption
- Results of Study
- 4 Threats to validity, Conclusion and Future work

Eros Cedeño ENASE'2024 April 28-29, 2024 11 / 19

RQ1: Does the implementation of database optimization strategies affect the energy consumption of client server applications?

RQ2: Does the addition of database optimization strategies affect the energy consumption of client server applications?

Table: Sample Query Results. AEC: Average of energy consumption. RSEC: Relative standard deviation. DEC: Difference of EC vs Base

Query 22							
	Client			Server			
	AEC	RSEC	%DEC	AEC	RSEC	%DEC	
Base	119.39	0.06	-	4427.2	0.07	-	
Index	16.22	0.07	86.41	1.41	0.19	99.97	
Compression	118.93	0.06	-	4387.18	0.07	-	
Index-Compression	16.26	0.05	86.38	1.2	0.19	99.97	

Eros Cedeño ENASE'2024 April 28-29, 2024 12 / 19

RQ1: Does the implementation of database optimization strategies affect the energy consumption of client server applications?

RQ2: Does the addition of database optimization strategies affect the energy consumption of client server applications?

Table: Sample Query Results. AEC: Average of energy consumption. RSEC: Relative standard deviation. DEC: Difference of EC vs Base

Query 17							
	Client			Server			
	AEC	RSEC	%DEC	AEC	RSEC	%DEC	
Base	43.78	0.08	-	393.82	0.03	-	
Index	22.74	0.09	48.06	241.73	0.01	38.62	
Compression	23.76	0.08	45.73	265.73	0.02	32.53	
Index-Compression	23.39	0.10	46.56	238.51	0.02	39.44	

Eros Cedeño ENASE'2024 April 28-29, 2024 13 / 19

RQ1 and RQ2

RQ1

- The **index** strategy reduce between [1.15, 103.17] J for the client side energy consumption, whilst for the **compression** was [1.28, 20.02] J.
- For the server side, the **index** strategy reduce between [1.66, 4425.79] J, whilst the **compression** reduced between [1.21, 128.08] J.

Conclusion: I > C

RQ2

• For the index-compression strategy the reduction of the energy consumption was between [0.92, 86.38] J for the client side, whilst for the server side was between [1.33, 4426] J. These values are similar to the values obtained for the index strategy.

Conclusion: $I + C \equiv I$

Eros Cedeño ENASE'2024 April 28-29, 2024 14 / 19

Some Exceptions:

Query 05							
	Client			Server			
	AEC	RSEC	%DEC	AEC	RSEC	%DEC	
Base	18.78	0.13	-	21.43	0.06	-	
Index	18.32	0.11	-	26.50	0.07	-23.68	
Compression	18.12	0.12	-	18.18	0.1	15.13	
Index-Compression	19.14	0.11	-	25.04	0.08	-16.84	

```
SELECT n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
```

FROM customer, orders, lineitem, supplier, nation, region

WHERE $c_cust key = o_cust key$

AND l_orderkey = o_orderkey

AND $I_suppkey = s_suppkey$

AND c_nationkey = s_nationkey

AND $s_nationkey = n_nationkey$

AND n_regionkey = r_regionkey

AND $r_name = 'ASIA'$

AND o_orderdate $\geq date '1993 - 01 - 01'$

 $extbf{AND}o_orderdate < date '1993 - 01 - 01' + interval '1' year$

GROUP BY n_name

ORDER BY revenue DESC

LIMIT 1;

- 1 Context, Problem and Research objectives
- 2 Proposal: Evaluating the impact of end-to-end query optimization strategies on energy consumption
- Results of Study
- 4 Threats to validity, Conclusion and Future work

Eros Cedeño ENASE'2024 April 28-29, 2024 16 / 19

Threats to validity, Conclusion and Future work (1/2)

Threats to validity

- Internal validity: Juliet could introduce bias.
- Construct validity: Same computer used for running the client and server.
- External validity: Benchmarking limited to 22 specific queries, our results cannot be generalized.

Conclusion

- Indexation tends to be more effective than data compression to reduce the energy consumed by the execution of the majority of the queries (16/22 queries). The addition of indexation and compression does not lead to a better result comparing with indexation.
- More experiments are needed to understand the reason of why some queries do not follow this tendency: i) 3/22 queries increase energy consumption, and ii) 3/22 queries do not show any effect.

Eros Cedeño ENASE'2024 April 28-29, 2024 17 / 19

Threats to validity, Conclusion and Future work (2/2)

Future work

- Run new experiments in a real distributed software architecture.
- Run new experiments over other RDBMS and NoSQL datasets.
- Classify the queries according their complexity, responses time and size to run new experiments.
- Consider the trade-off of energy consumption of database optimization strategies with other resources such as CPU, I/O usage, and memory.
- Run new experiments to compare Juliet with other tools like Scaphandre or PowerAPI.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ りへの

Eros Cedeño ENASE'2024 April 28-29, 2024 18 / 19

Thank you!

16-10216@usb.ve

This work has been partially supported by the STIC AmSud project: "GreenSE4IoT - Towards Energy-efficient Software for Distributed Systems" [STIC-AMSUD 22-STIC-04], and has been partially carried out at the Energy4Climate Interdisciplinary Center (E4C) of IP Paris and École des Ponts ParisTech, which is in part supported by 3rd Programme d'Investissements d'Avenir [ANR-18-EUR-0006-02].

1 | 1 | 1 | 2 |

Eros Cedeño ENASE'2024 April 28-29, 2024 19 / 19