Lecture 11 — Autoparallelization

Patrick Lam p.lam@ece.uwaterloo.ca

Department of Electrical and Computer Engineering University of Waterloo

December 2, 2017

Automatic Parallelization of Example Code

Let's try automatic parallelization.

Compiling with solarisstudio and automatic parallelization yields the following:

```
% solarisstudio-cc -03 -xautopar -xloopinfo omp_vector.c
"omp_vector.c", line 5: PARALLELIZED, and serial version generated
"omp_vector.c", line 15: not parallelized, call may be unsafe
```

How will this code compare to our manual efforts? (If you weren't in class, you'll have to try it yourself.)

Note: solarisstudio generates two versions of the code, and decides, at runtime, if the parallel code would be faster.

Example Code to Parallelize

```
#include <stdlib h>
void setup(double *vector, int length) {
    int i:
    for (i = 0; i < length; i++)
        vector[i] += 1.0;
int main()
    double *vector;
    vector = (double*) malloc(sizeof(double)*1024*1024);
    for (int i = 0; i < 1000; i++)
        setup (vector, 1024*1024);
```

Automatic Parallelization of Example Code

Let's try automatic parallelization.

Compiling with solarisstudio and automatic parallelization yields the following:

```
% solarisstudio-cc -03 -xautopar -xloopinfo omp_vector.c
"omp_vector.c", line 5: PARALLELIZED, and serial version generated
"omp_vector.c", line 15: not parallelized, call may be unsafe
```

How will this code compare to our manual efforts? (If you weren't in class, you'll have to try it yourself.)

Note: solarisstudio generates two versions of the code, and decides, at runtime, if the parallel code would be faster.

Under the hood, most parallelization frameworks use ${\tt OpenMP}$, which we'll see next lecture.

For now: you can control the number of threads with the OMP_NUM_THREADS environment variable.

Automatic Parallelization in gcc

gcc (since 4.3) can also auto-parallelize loops. However, there are a few problems:

- It will not tell you which loops it parallelizes (nicely).
- 2 It only operates with a fixed number of threads.
- 3 The profitability metrics are quite simple.
- 4 Only operates in simple cases.

Use the flags -floop-parallelize-all -ftree-parallelize-loops=N where N is the # of threads.

Note: gcc also uses OpenMP but ignores OMP_NUM_THREADS.

Understanding Automatic Parallelization in gcc

Flag -fdump-tree-parloops-details shows what the automatic parallelizations were, but it's quite unreadable.

Instead, you can look at the assembly code to see the parallelizations (obviously, impractical for a large project).

```
% gcc -std=c99 -03 -ftree-parallelize-loops=4 omp_vector_gcc.c -S -o omp_vector_gcc_auto.s
```

The resulting .s file contains the following code:

```
call GOMP_parallel_start
leaq 80(%rsp), %rdi
call setup._loopfn.0
call GOMP_parallel_end
```

Note: gcc also parallelizes main._loopfn.2 and main._loopfn.3, although it looks like it serves little purpose.

Loops That gcc's Automatic Parallelization Can Handle

Single loop:

```
for (i = 0; i < 1000; i++)
x[i] = i + 3;
```

Nested loops with simple dependency:

```
for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
X[i][j] = X[i][j] + Y[i-1][j];
```

Single loop with not-very-simple dependency:

```
for (i = 0; i < 10; i++)
 X[2*i+1] = X[2*i];
```

Loops That gcc's Automatic Parallelization Can't Handle

Single loop with if statement:

```
for (j = 0; j <= 10; j++)
if (j > 5) X[i] = i + 3;
```

Triangle loop:

```
for (i = 0; i < 100; i++)
for (j = i; j < 100; j++)
X[i][j] = 5;
```

Examples from: http://gcc.gnu.org/wiki/AutoparRelated

Summary of Conditions for Automatic Parallelization

From Chapter 10 of Oracle's *Fortran Programming Guide* ¹ translated to C, a loop must:

- have a recognized loop style, e.g., for loops with bounds that don't vary per-iteration;
- have no dependencies between data accessed in loop bodies for each iteration;
- not conditionally change scalar variables read after the loop terminates, or change any scalar variable across iterations; and
- have enough work in the loop body to make parallelization profitable.

http://download.oracle.com/docs/cd/E19205-01/819-5262/index.html

What can we do to parallelize this code?

Option 1:

Option 2:

Option 3:

What can we do to parallelize this code?

Option 1: horizontal ====

■ Create 4 threads; each thread does 1000 iterations on its own sub-array.

Option 2:

Option 3:

What can we do to parallelize this code?

```
Option 1: horizontal ====
```

■ Create 4 threads; each thread does 1000 iterations on its own sub-array.

```
Option 2: bad horizontal ≡≡≡≡
```

■ 1000 times, create 4 threads which each operate once on the sub-array.

Option 3:

What can we do to parallelize this code?

Option 1: horizontal
$$\equiv \equiv \equiv \equiv$$

■ Create 4 threads; each thread does 1000 iterations on its own sub-array.

```
Option 2: bad horizontal ≡≡≡≡
```

■ 1000 times, create 4 threads which each operate once on the sub-array.

```
Option 3: vertical |||| |||| ||||
```

 Create 4 threads; for each element, the owning thread does 1000 iterations on that element.

Manual Parallelization Demo

I'll show a demo of three example PThread parallelizations.

Methodology: compiling with solarisstudio, flags -03 -lpthread.

Which manual option performs better?

Comparing Parallelization Results

How does autoparallelization compare to manual parallelization?

Case Study 2: Multiplying a Matrix by a Vector

Let's see how automatic parallelization does on a more complicated program (could we parallelize this?):

Reminder:
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \\ 32 \end{bmatrix}$$

Case Study: Automatic Parallelization, Attempt 1

Well, based on our knowledge, we could parallelize the outer loop.

Let's see what solarisstudio will do for us...

```
% solarisstudio-cc -xautopar -xloopinfo -03 -c fploop.c

"fploop.c", line 5: not parallelized, not a recognized for loop

"fploop.c", line 8: not parallelized, not a recognized for loop
```

...it refuses to do anything, guesses?

Case Study: Automatic Parallelization, Attempt 2

■ The loop bounds are not constant, since one of the variables may alias row or col, even though int ≠ double.

So, let's add restrict to row and col and see what happens...

```
% solarisstudio-cc -03 -xautopar -xloopinfo -c fploop.c
"fploop.c", line 5: not parallelized, unsafe dependence
"fploop.c", line 8: not parallelized, unsafe dependence
```

Now it recognizes the loop, but still won't parallelize it. Why?

Case Study: Automatic Parallelization, Attempt 3

■ out might alias mat or vec, which would make this unsafe

Let's add another restrict to out:

```
% solarisstudio—cc —03 —xautopar —xloopinfo —c fploop.c
"fploop.c", line 5: PARALLELIZED, and serial version
generated
"fploop.c", line 8: not parallelized, unsafe dependence
```

Now, we can get the outer loop to parallelize.

■ Parallelizing the outer loop is almost always better than inner loops, and usually it's a waste to do both, so we're done.

Note: We can parallelize the inner loop as well (it's similar to Assignment 1). We'll see that solarisstudio can do it automatically.

Lingering Questions about Runtimes

What happened here?

```
horizontal good:
create 4 threads to do 1000 iterations on sub-arrays.
horizontal bad:
1000 times, create 4 threads to iterate on sub-array.
vertical:
create 4 threads, handle 1 element at a time.
```

Last year, perf stat -r 5 gave following task-clocks (in seconds):

	H good	H bad	V	auto
gcc, no opt	2.794	2.953	2.799	
gcc, -03	0.588	1.490	0.980	
solaris, no opt	3.175	3.291	2.966	
solaris, -xO4	0.494	1.453	2.739	0.688

Runtimes—Why?

Observations:

- Good runs had 5 to 7 cpu-migrations; bad had 4000.
- # cycles varied from 2B to 9.7B (no opt).
- Branch misses varied from 8k to 208k.

- Reductions combine input data into a smaller (summary) set.
- We'll see a more complete definition when we touch on functional programming.
- Simplest instance: computing the sum of an array.

Consider the following code:

```
double sum (double *array, int length)
{
   double total = 0;
   for (int i = 0; i < length; i++)
        total += array[i];
   return total;
}</pre>
```

Can we parallelize this?

Reduction Problems

Barriers to parallelization:

- value of total depends on previous iterations;
- addition is actually non-associative for floating-point values (is this a problem?)

Recall that "associative" means:

$$a + (b + c) = (a + b) + c$$
.

n this case, the program probably isn't sensitive to rounding, but you should always consider if an operation is associative.

Reduction Problems

Barriers to parallelization:

- value of total depends on previous iterations;
- addition is actually non-associative for floating-point values (is this a problem?)

Recall that "associative" means:

$$a + (b + c) = (a + b) + c$$
.

In this case, the program probably isn't sensitive to rounding, but you should always consider if an operation is associative.

Automatic Parallelization via Reduction

If we compile the program with solarisstudio and add the flag -xreduction, it will parallelize the code:

```
% solarisstudio-cc -xautopar -xloopinfo -xreduction -03 -c sum.c
"sum.c", line 5: PARALLELIZED, reduction, and serial version
generated
```

Note: If we try to do the reduction on fploop.c with restricts added, we'll get the following:

```
% solarisstudio-cc -03 -xautopar -xloopinfo -xreduction -c fploop.c "fploop.c", line 5: PARALLELIZED, and serial version generated "fploop.c", line 8: not parallelized, not profitable
```

ECE 459 Winter 2018 22 / 2

Dealing with Function Calls

- A general function could have arbitary side effects.
- Production compilers tend to avoid parallelizing any loops with function calls.

Some built-in functions, like sin(), are "pure", have no side effects, and are safe to parallelize.

Note: this is why functional languages are nice for parallel programming: impurity is visible in type signatures.

Dealing with Function Calls in solarisstudio

- For solarisstudio you can use the -xbuiltin flag to make the compiler use its whitelist of "pure" functions.
- The compiler can then parallelize a loop which uses sin() (you shouldn't replace built-in functions with your own if you use this option).

Other options which may work:

- 1 Crank up the optimization level (-x04).
- **2** Explicitly tell the compiler to inline certain functions (-xinline=, or use the inline keyword).

ECE 459 Winter 2018 24 / 25

Summary of Automatic Parallelization

To help the compiler, we can:

- use restrict (make a restricted copy); and,
- make sure that loop bounds are constant (temporary variables).

Some compilers automatically create different versions for the alias-free case and the (parallelized) aliased case.

At runtime, the program runs the aliased case if correct.

ECE 459 Winter 2018 25/2!