Flower categorisation

Executive Summary

Abstract: The main purpose of this project is for flower image classification using transfer learning. The study of flower classification is an important aspect due to its complex environment for extracting features, similarity of features in many species, changing features in the life of a flower having etc. An accurate classification is considered as a novel work since many classification algorithms are still newly presented.

Goal

Implementation of a deep learning convolution neural network to classify 5 main flower categories.

We do this by achieving the following objectives:

1. Accurately detect flower images given the accuracy achieved below.

Result comparison

Researchers	Year	Algorithms	Dataset	Accurac y
DiahHarnoni et.al	2013	MSRM	300	79.33%
Fadzilah et.al	2014	Neural Network	180	
TanakornTia y et.al	2014	Hu's seven and K-Nearest Neighbor Algorithm	32	80%
Shubra Aich	2015	Manifold Mapping	Oxford 17	40%
Yuanyuan Liu	2016	Conventional Neural Network	Oxford 102	84.02%
S Krishnaveni et.al	2017	SVM	500	83%
S Krishnaveni et.al	2017	RFT	500	57%
Xiaolng Xia et.al	2017	Inception V3	Oxford 17	95%
Xiaolng Xia et.al	2017	Inception V3	Oxford 102	94%
Wei liu et.al	2017	Fusion Descriptor and SVM	Oxford 17	86.17%

Source: International Journal of Electrical Electronics & Computer Science Engineering (Special Issue - NCCT-2018 | E-ISSN: 2348-2273 | P-ISSN: 2454-1222 February, 2018.)

*Data source:

https://storage.googleapis.com/download.tensorflow.org/example images/flow
er photos.tgz

Approach

Transfer Learning Mobile Net (70% accuracy)

```
[14] # TODO: Build and train your network.
    URL = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4"
    feature_extractor = hub.KerasLayer(URL, input_shape=(image_size, image_size,3))

[15] feature_extractor.trainable = False

[16] layer_neurons = [650, 330, 250]
    dropout_rate = 0.2
    model = tf.keras.Sequential()
    model.add(feature_extractor)

    #for neurons in layer_neurons:
    # model.add(tf.keras.layers.Dense(neurons, activation = 'relu'))
    # model.add(tf.keras.layers.Dropout(dropout_rate))

    model.add(tf.keras.layers.Dense(102, activation = 'softmax'))
    model.summary()
```

VGG16 (70% accuracy)

```
from tensorflow.keras.applications.vgg16 import VGG16

base_model = VGG16(input_shape = (224, 224, 3), # Shape of our images include_top = False, # Leave out the last fully connected layer weights = 'imagenet')

for layer in base_model.layers:
    layer.trainable = False

layer_neurons = [650, 330, 250]

dropout_rate = 0.2

model = tf.keras.Sequential()

model.add(feature_extractor)

#for neurons in layer_neurons:
# model.add(tf.keras.layers.Dense(neurons, activation = 'relu'))
# model.add(tf.keras.layers.Dropout(dropout_rate))

model.add(tf.keras.layers.Dense(102, activation = 'softmax'))
model.summary()
```

Performance and Results

The first graph are the results from MobileNet while the second graph are results from VGG16

Project: Deep Learning TensorFlow (2022.01. opencampus)

Done by: John Kimani