第7章 上下文无关语言的性质

上下文无关语言的泵引理

For every context-free language L

There is an integer n, such that

For every string z in L of length \geq n

There exists $z = \underline{uvwxy}$ such that:

- 1. $|\underline{vwx}| \leq n$.
- |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

注意: v和x至少一个不为空

一个常见的非上下文无关语言: $L_1 = \{0^n1^n2^n \mid n \geq 1\}$

上下文无关语言的判定性质

非空性

给出其上下文无关文法,检验S是否可产生终结符字符串

成员性

动态规划的CYK算法

- Let $w = a_1 ... a_n$.
- We construct an n-by-n triangular array of sets of variables.
- $X_{ij} = \{ \text{variables } A \mid A = > * \underline{a_i} ... \underline{a_i} \}.$
- Induction on j—i+1.
 - o The length of the derived string.
- Finally, ask if S is in X_{1n} .
- **Basis:** $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production}\}.$
- Induction: $X_{ij} = \{A \mid \text{there is a production } A -> BC$ and an integer k, with $i \le k < j$, such that B is in X_{ik} and C is in $X_{k+1,j}$.

有穷性

- The idea is essentially the same as for regular languages.
- Use the pumping lemma constant n.
- If there is a string in the language of length between n and 2n-1, then the language is infinite; otherwise not.

为什么n到2n-1? 泵引理

将这些字符串一个个用CYK算法试

上下文无关语言的封闭性

- CFL's are closed under union, concatenation, and Kleene closure.
- Also, under reversal, homomorphisms and inverse homomorphisms.
- But not under intersection or difference.

前5个用构造文法的方法,∩举反例,差可以转化为∩的形式,所以也不封闭 逆同态是最难的:构造PDA,核心在构造一个缓冲区

- 1. δ' ([q, ϵ], a, X) = {([q, h(a)], X)} for any input symbol α of P' and any stack symbol X.
 - When the buffer is empty, P' can reload it.
- 2. δ' ([q, bw], ϵ , X) contains ([p, w], α) if δ (q, b, X) contains (p, α), where b is either an input symbol of P or ϵ .
 - Simulate P from the buffer.