PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-125018

(43) Date of publication of application: 25.04.2003

(51)Int.CI.

H04L 29/06 // HO4N 7/08 HO4N 7/081

(21)Application number: 2001-319293

(71)Applicant: SONY CORP

(22)Date of filing:

17.10.2001

(72)Inventor: KIMIJIMA MASAAKI

(54) TRANSMISSION SYSTEM, DATA TRANSMITTER, DATA RECEIVER, DATA-TRANSMITTING METHOD AND DATA-RECEIVING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To realize an appropriate correspondence on a reception side to a change of a format version.

SOLUTION: A format version of digital data to be transmitted can be managed by a contents list. The format version regarding digital data which is being transmitted as synchronous communication packet data can be recognized on a receiver side through communication by asynchronous communication packet data, and the receiver side can switch a decode processing mode, corresponding to the format version.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-125018 (P2003-125018A)

(43)公開日 平成15年4月25日(2003.4.25)

(51) Int.Cl.7 HO4L 29/06 // H04N 7/08 7/081 識別記号

 \mathbf{F} I

テーマコート*(参考)

H04L 13/00

305C 5C063

H04N 7/08

5K034

審査請求 未請求 請求項の数9 OL (全 15 頁)

(21)出願番号

(22)出願日

特願2001-319293(P2001-319293)

(71)出願人 000002185

ソニー株式会社

平成13年10月17日(2001.10.17)

東京都品川区北品川6丁目7番35号

(72)発明者 君島 匡朗

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100086841

弁理士 脇 篤夫 (外1名)

Fターム(参考) 50063 AB03 AB07 AC01 AC05 AC10

DA07 DA13

5K034 CC02 CC05 J]24

(54) 【発明の名称】 伝送システム、データ送信装置、データ受信装置、データ送信方法、データ受信方法

(57)【要約】

【課題】 フォーマットバージョンの変化への受信側の 適切な対応を実現する。

【解決手段】 送信するデジタルデータのフォーマット バージョンをコンテンツリストで管理できるようにす る。そして同期通信パケットデータとして伝送している デジタルデータに関するフォーマットバージョンを非同 期通信パケットデータによる通信により受信装置側が認 識できるようにし、受信装置側は、それに応じてデコー ド処理モードを切り換えることができるようにする。

and
クの様法
プログ
インフォ
ジョン
1.4
1-42
kC &-
11-

ゲータフォーマットパージョンインフォブロックの集造	data_format_version_info_block	Contents	diam's burnance	- Supplemen	(And of in info block)	INTO_DIDEK_LYPP -AA AAII\GGLG_TOTHER_TOTHER.	dipod abjects	וויים איים יים וויים איים וויים איים יים וויים איים א	data format major version	data format minor varaion
データフォ		Address Offset	400 00	00 01h	00 02h	4EO 00	00 04h	450 00	490 00	1000

2

【特許請求の範囲】

【請求項1】 データ送信装置とデータ受信装置から成る伝送システムにおいて、

上記データ送信装置は、

送受信手段と、

送信可能なデジタルデータについての、少なくともデータフォーマットのバージョン情報を含むリスト情報を生成するリスト生成手段と、

デジタルデータを同期通信パケットデータとして上記送 受信手段により送信させる同期通信処理手段と、

少なくとも上記リスト情報の全部又は一部を非同期通信パケットデータとして上記送受信手段により送信させる ことができる非同期通信処理手段と、

を備え、

上記データ受信装置は、

送受信手段と、

上記送受信手段によって受信された、同期通信パケット データに対してデコード処理を行うデコード手段と、 少なくとも、非同期通信パケットデータとして送信され

少なくとも、非向期通信ハグットナータとして返信されてくる上記リスト情報の全部又は一部を上記送受信手段 20で受信させる非同期通信処理手段と、

上記送受信手段によって受信された非同期通信パケット データとしての上記リスト情報に含まれる上記バージョ ン情報に基づいて、上記デコード手段の処理モードを制 御するバージョン情報対応制御手段と、

を備えたことを特徴とする伝送システム。

【請求項2】 上記リスト生成手段は、送信可能とされている1又は複数のデジタルデータコンテンツの全体に対応する情報として、上記バージョン情報を記述したリスト情報を生成することを特徴とする請求項1に記載の 30 伝送システム。

【請求項3】 上記リスト生成手段は、送信可能とされている1又は複数の個々のデジタルデータコンテンツに対応する情報として、上記バージョン情報を記述したリスト情報を生成することを特徴とする請求項1に記載の伝送システム。

【請求項4】 外部のデータ受信装置との間で同期通信パケット及び非同期通信パケットによる通信が可能な送受信手段と、

送信可能なデジタルデータについての、少なくともデー 40 タフォーマットのバージョン情報を含むリスト情報を生成するリスト生成手段と、

デジタルデータを同期通信パケットデータとして上記送 受信手段により送信させる同期通信処理手段と、

少なくとも上記リスト情報の全部又は一部を非同期通信 パケットデータとして上記送受信手段により送信させる ことができる非同期通信処理手段と、

を備えたことを特徴とするデータ送信装置。

【請求項5】 上記リスト生成手段は、送信可能とされている1又は複数のデジタルデータコンテンツの全体に

対応する情報として、上記バージョン情報を記述したり スト情報を生成することを特徴とする請求項 4 に記載の データ送信装置。

【請求項6】 上記リスト生成手段は、送信可能とされている1又は複数の個々のデジタルデータコンテンツに対応する情報として、上記バージョン情報を記述したリスト情報を生成することを特徴とする請求項4に記載のデータ送信装置。

【請求項7】 外部のデータ送信装置との間で同期通信パケット及び非同期通信パケットによる通信が可能な送受信手段と、

上記送受信手段によって受信された、同期通信パケット データに対してデコード処理を行うデコード手段と、

上記同期通信パケットデータとして受信されるデジタルデータについてのデータフォーマットのバージョン情報を含むリスト情報が、非同期通信パケットデータとして上記データ送信装置から送信されてくる場合に、上記送受信手段で受信させる非同期通信処理手段と、

上記送受信手段によって受信された非同期通信パケット データとしての上記リスト情報に含まれる上記バージョン情報に基づいて、上記デコード手段の処理モードを制 御するバージョン情報対応制御手段と、

を備えたことを特徴とするデータ受信装置。

【請求項8】 同期通信パケット及び非同期通信パケットによる通信が可能に接続されたデータ受信装置に対して

デジタルデータを同期通信パケットデータとして送信 1

上記同期通信パケットデータとして伝送されるデジタルデータのデータフォーマットのバージョン情報を、非同期通信パケットデータとして送信することを特徴とするデータ送信方法。

【請求項9】 同期通信パケット及び非同期通信パケットによる通信が可能に接続されたデータ送信装置から、同期通信パケットデータを受信してデコード処理を行い、デジタルデータを得るとともに、

上記データ送信装置から、非同期通信パケットデータとして受信した、上記同期通信パケットデータによるデジタルデータのフォーマットのバージョン情報に基づいて、上記デコード処理モードを制御することを特徴とするデータ受信方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はデジタルデータを伝送する伝送システム、及びデジタルデータの伝送にかかるデータ送信装置、データ受信装置、データ送信方法、データ受信方法に関するものである。

[0002]

【従来の技術】例えばオーディオデータやビデオデータなど時系列的に連続するデジタルストリームデータとし

てのコンテンツを始めとして各種のデータを伝送する機器やシステムが実用化されている。一般に、オーディオデータやビデオデータでは、各種のデータフォーマットが規定され、またバージョンアップも逐次行われている。例えば光ディスクに記録されるオーディオデータ等についてみれば、CD(Compact Disc)規格、DVD

(Digital Versatile Disc) 規格、SACD (SuperAud io CD) 規格などが知られている。これらはの規格は、それぞれ適宜バージョンアップされている。

【0003】なおSACDとは、通常のCD(Compact Disc)におけるオーディオデータよりも高品位なデータとして開発されたものであり、そのデジタルオーディオデータは、サンプリング周波数を例えばCD方式における44.1KHzの16倍という非常に高いサンプリング周波数である2.8224MHzとして $\Delta\Sigma$ 変調された1ビットデータとされる。周波数帯域はDC成分~100KHzの広範囲とされ、ダイナミックレンジはオーディオ帯域全体で120(dB)を実現できるデータフォーマットである。

[0004]

【発明が解決しようとする課題】今、或る送信側の機器から受信側の機器に対して、多様なフォーマットのオーディオデータ等を伝送することを考えた場合、受信側で適切にデコードするには、伝送されてくるデータがどのような規格(データフォーマット)のデータであるかを知ると共に、フォーマットのバージョンを知ることが必要である。

【0005】しかしながら、このようなデータ伝送にお いて、受信側の機器に伝送しているデータのフォーマッ トバージョンを伝える手法は開発されていない。このた 30 め、もし異なるフォーマットバージョンのデータの伝送 を考えた場合、受信装置側が受信したデータを解析して フォーマットバージョンを判別することが必要になる。 このため、各種フォーマットのデータについての伝送シ ステムでは、受信装置側でフォーマットバージョンを正 確に判別することが困難となり、フォーマットのバージ ョンに応じた適切なデコード処理ができなかったり、或 いは解析のためにデコード処理が遅れるということがあ る。また、異なるフォーマットバージョンのデータを連 続的に伝送することも、受信装置側でのデコード処理モ ード(バージョンに応じた処理モード)の切換が困難と なる。さらに受信装置側にはフォーマットバージョンの 解析のための回路部若しくはソフトウエアが必要になる ため、構成上の負担が増大する。

[0006]

【課題を解決するための手段】本発明はこのような状況 に鑑みて、デジタルデータを伝送する場合に、受信側が 伝送データについてのフォーマットバージョンを簡易か つ正確に認識できるようにし、適切なデコード処理を実 行できるようにすることを目的とする。

【0007】このため本発明では、データ送信装置、データ受信装置、及びそのデータ送信装置とデータ受信装置から成る伝送システムを提案する。本発明のデータ送信装置は、データ受信装置との間で同期通信パケット及び非同期通信パケットによる通信が可能な送受信手段と、送信可能なデジタルデータについての、少なくともデータフォーマットのバージョン情報を含むリスト情報を生成するリスト生成手段と、デジタルデータを同期通信パケットデータとして上記送受信手段により送信させる同期通信処理手段と、少なくとも上記リスト情報の全部又は一部を非同期通信パケットデータとして上記送受信手段により送信させることができる非同期通信処理手段とを備える。

【0008】また本発明のデータ受信装置は、データ送信装置との間で同期通信パケット及び非同期通信パケットによる通信が可能な送受信手段と、上記送受信手段によって受信された、同期通信パケットデータに対してデコード処理を行うデコード手段と、上記同期通信パケットデータとして受信されるデジタルデータについてのデータフォーマットのバージョン情報を含むリスト情報が、非同期通信パケットデータとして上記データ送信装置から送信されてくる場合に、上記送受信手段で受信させる非同期通信処理手段と、上記送受信手段によって受信された非同期通信パケットデータとしての上記リスト情報に含まれる上記バージョン情報に基づいて、上記デコード手段の処理モードを制御するバージョン情報対応制御手段とを備える。

【0009】また、上記データ送信装置とデータ受信装置による伝送システムを構築する。

【0010】また上記データ送信装置、或いは伝送システムの場合において、上記リスト生成手段は、送信可能とされている1又は複数のデジタルデータコンテンツの全体に対応する情報として、上記バージョン情報を記述したリスト情報を生成する。或いは上記リスト生成手段は、送信可能とされている1又は複数の個々のデジタルデータコンテンツに対応する情報として、上記バージョン情報を記述したリスト情報を生成する。

【0011】本発明のデータ送信方法は、同期通信パケット及び非同期通信パケットによる通信が可能に接続されたデータ受信装置に対して、デジタルデータを同期通信パケットデータとして送信し、上記同期通信パケットデータとして伝送されるデジタルデータのデータフォーマットのバージョン情報を、非同期通信パケットデータとして送信する。

【0012】本発明のデータ受信方法は、同期通信パケット及び非同期通信パケットによる通信が可能に接続されたデータ送信装置から、同期通信パケットデータを受信してデコード処理を行い、デジタルデータを得るとともに、上記データ送信装置から、非同期通信パケットデータによ

るデジタルデータのフォーマットのバージョン情報に基 づいて、上記デコード処理モードを制御する。

[0013] 即ち本発明では、送信側は、例えばディスク等から再生し送信するデータについて、フォーマットのバージョン情報を含むリスト情報を生成する事で送信するデータのフォーマットバージョンを管理できるようにする。そして同期通信パケットデータとして伝送しているデジタルデータに関するリスト情報(リスト情報に含まれるバージョン情報)を非同期通信パケットデータによる通信により受信装置側が認識できるようにすることで、受信側がフォーマットバージョンに応じて適正なデコード処理を実行できるようにする。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を次の順に説明する。なお実施の形態では I E E E I 3 9 4の伝送フォーマットでオーディオデータを伝送するデータ送信装置とデータ受信装置の例を説明する。

- 1. IEEE1394の伝送フォーマット
- 2. 送信装置及び受信装置
- 3. バージョン情報を含むコンテンツリスト例(1)
- 4. バージョン情報を含むコンテンツリスト例(2)
- 5. バージョン情報を含むコンテンツリスト例(3)
- 6. バージョン情報を含むコンテンツリスト例(4)

7. コンテンツリストの伝送

【0015】1. IEEE1394の伝送フォーマットまずIEEE1394による伝送フォーマットについて説明する。IEEE1394方式のバスラインを用いたネットワークにより、複数台のオーディオ・ビジュアル機器を接続して、その機器間でビデオデータ、オーディオデータ、その他のデータなどを伝送することが実用化されている。IEEE1394方式のバスラインの場合には、ビデオデータやオーディオデータなどの大容量データを伝送するための、同期通信パケットとしてのアイソクロナス伝送チャンネルと、機器制御のためのコマンドなどのデータを伝送するための、非同期通信パケットとしてのアシンクロナス伝送チャンネルとが用意されており、それらのデータを混在させて伝送できるようにしてある。

【0016】 I E E E 1394 方式でのデータ伝送では、例えば図1 に示すように、所定の通信サイクル(例 2 えば 125μ s e c)毎に時分割多重によって行われる。そして、この信号の伝送は、サイクルマスタと呼ばれる機器(I E E E 1394 バス上の任意の1 台の機器)が通信サイクルの開始時であることを示すサイクルスタートパケット C S P をバス上へ送出することにより開始される。なお、サイクルマスタは、バスを構成するケーブルに各機器を接続したとき等に、I E E E 1394 で規定する手順により自動的に決定される。

【0017】1通信サイクル中における通信の形態は、 ビデオデータやオーディオデータなどのリアルタイム性 を必要とするデータを伝送するアイソクロナス伝送(] s o) と、制御コマンドや補助的なデータなどを確実に 伝送するアシンクロナス伝送(Asy)の2種類の伝送 が行われる。各通信サイクル中では、アイソクロナス伝 送用のアイソクロナスパケットI·soが、アシンクロナ ス伝送用のアシンクロナスパケットAsyより先に伝送 される。アイソクロナスパケットIsoの通信が終了し た後、次のサイクルスタートパケットСSPまでの期間 が、アシンクロナスパケットAsyの伝送に使用され る。従って、アシンクロナスパケットAsyが伝送でき る期間は、そのときのアイソクロナスパケット I s o の 伝送チャンネル数により変化する。また、アイソクロナ スパケット Isoは、1通信サイクル毎に予約した帯域 (チャンネル数) が確保される伝送方式であるが、受信 側からの確認は行わない。アシンクロナスパケットAs y で伝送する場合には、受信側からアクノリッジメント (Ack)のデータを返送させて、伝送状態を確認しな がら確実に伝送させる。

【0018】IEEE1394方式のバスラインにおいて、アシンクロナスパケットで伝送される、オーディオ・ビジュアル機器を制御するコマンドの詳細については、[AV/C Digital Interface Command Set General Specification] に開示されている。[AV/C Digital Interface Command Set General Specification]で定義されているAV/Cコマンド[AV/C Command]では、コントロール[Control]、ステイタス[Status]、ノーティファイ[Notify]などのコマンドタイプが定義されており、同じコマンドを用途により使い分けることが可能となっている

【0019】コントロールコマンドは、或る機器が他の機器に対してある動作をするよう命令をする時に伝送されるコマンドである。例えば「プレイ」「ストップ」などの機器動作を命令するコマンドや、或いは後述するインフォブロックやディスクリプタの読出を要求するコマンドなどがある。ステータスコマンドは、或る機器が他の機器に対して動作状態を確認するためのコマンドである。例えば「プレイ状態」「ストップ状態」などの機器動作状態を確認するコマンドである。ノーティファイコマンドは、或る機器が他の機器に対して、何らかの状態変化があった場合に、それを通知するように要求するコマンドである。例えばステイタス変化などを通知させることを要求できる。

【0020】なお、CD(Compact Disc)やDVD(Digital Versatile Disc)、SACD(Super Audio CD)などディスクを用いるAV機器を制御するコマンドの詳細については[AV/C Disc Subunit General Specification]に開示されている。上記[AV/C Digital Interface Command Set General Specification]や、[AV/C Disc Subunit General Specification]は1394 TRADE ASSOCIATIONで公開されている。

R

【0021】また、[AV/C Disc Subunit General Specification]ではステータスディスクリプタの詳細についても定義している。ディスクリプタとは、従来のコマンドで扱える以上のデータ量を機器間で読み書きするために開発された手法であり、特にステータスディスクリプタは、現在の機器の状況を機器間で読み書きするために用いられる。

【0022】[AV/C Disc Subunit General Specification]で定義されているコマンドの一つにディスクステータスコマンドがある。ディスクステータスコマンドは、ステータスディスクリプタの任意の部分が変化した時に通知するよう要求するコマンドである。このコマンドを用いることによって、機器の状態が変化した事を、ディスクステータスコマンドを発行した機器が知ることが出来る。ただし、ステータスディスクリプタには現在伝送中のデジタルオーディオデータの詳細については記述されていない。このため例えばデジタルオーディオデータ受信側の機器がディスクステータスコマンドを発行しても、現在伝送中のオーディオデータのチャンネル数と次に伝送するオーディオデータのチャンネル数が異なった場合などに、その変化(データ形式の変化)を受信側の機器が認識することはできない。

【0023】[AV/C Disc Subunit General Specification]では、コンテンツリスト及びオーディオトラックオブジェクトの詳細についても定義されている。コンテンツリストは、現在AV機器に挿入されているディスクに関する情報を、保持するリスト情報であり、オーディオトラックオブジェクトはディスク内のそれぞれのオーディオトラックに関する情報を保持する情報ユニットである。コンテンツリスト及びオーディオトラックオブジェクトの構造例については後に図3で述べるが、コンテンツリストにはメディアのタイプ、ディスクの残り容量、作成日時、ディスクのタイトル、アーティスト名、ジャンル等の情報が記述されている。またオーディオトラックオブジェクトには作成日時、サイズ、トラックタイトル、アーティスト名、ジャンル等の情報が保持されている。

【0024】なお、従前のコンテンツリストやオーディオトラックオブジェクトにはメディアに書き込まれているデータのフォーマットバージョンの情報を記述するスペースが無いため、この情報を保持する事が出来ない。そこで、詳しくは後述するが本実施の形態では、コンテンツリスト又はオーディオトラックオブジェクトにバージョン情報を記述する構造を提案するものである。

【0025】2. 送信装置及び受信装置

続いて、実施の形態の伝送方式を実現するためのデータ送信装置及びデータ受信装置について説明する。図2は、或る2つの機器が例えば [EEE1394による伝送路3により接続されている場合に、送信装置 [を有する機器(又は回路部)から受信装置2を有する機器(又 50

は回路部)にオーディオデータを伝送するモデルにおいて本発明の実施の形態を示したものである。

【0026】なお、送信装置1としては、例えばディスク、固体メモリによるメモリカード、ハードディスクドライブ(HDD)などの記録媒体から、オーディオデータ、ビデオデータ等のコンテンツを再生して出力できる機器や、所定の伝送路により配信されたコンテンツデータを出力できる機器などが想定される。また受信装置2としては、伝送されてきたオーディオデータを再生出力する再生装置や、所定の記録媒体(ディスク、固体メモリ、テープなど)に記録する記録装置などが想定される。オーディオデータ等のコンテンツデータは、上述したアイソクロナスパケットにより伝送されるものとし、また送信装置1と受信装置2の間は、アシンクロナスパケットにより各種制御用のデータの相互通信が可能とされるものとする。

【0027】図示するように送信装置1は、データソース11、伝送データ生成部12、送受信部13、制御部14、メモリ部15、制御情報処理部16が設けられる。

【0028】データソース11は、オーディオデータ、ビデオデータ等のコンテンツデータとして、各種のデータ形式のデジタルデータを出力する。なお、以下では、オーディオデータの伝送を例にして述べていく。データソース11の具体的な構成は多様な例が考えられ、例えばディスクメディアや固体メモリメディア等の記録媒体に対する再生装置部、ネットワーク通信その他の受信装置部、ハードディスクドライブ等によるサーバ装置部、などが考えられる。どのような装置部であれ、ここでは各種のデータ形式のオーディオデータを出力できるものとされる。

【0029】伝送データ生成部12は、データソース1 1から供給されるオーディオデータストリームについて 所定のブロック化処理を行い、アイソクロナスパケット を形成していく処理を行う。送受信部13は伝送データ 生成部12の出力(アイソクロナスパケット)をIEE E1394バスによる伝送路3に送出する動作を行う。 【0030】制御情報処理部16は、アシンクロナスパ ケットにより送受信されるコマンド等の情報のインター フェース部として所定の処理を行う。例えば受信装置 2 から送信されてきたアシンクロナスパケットデータをデ コードし、制御部14に受け渡す。また制御部14が受 信装置2側に制御用のコマンド/レスポンスデータ等を 送信する場合は、制御部14から指示された送信情報に ついてパケット化処理を行い、アシンクロナスパケット を生成して、送受信部13から伝送路3に送出させる。 メモリ部15は、RAM、ROM、フラッシュメモリな どとしての各種記憶領域を包括的に示しているが、この メモリ部15は制御部14の制御プログラムの格納領 域、制御部14の処理のワーク領域、各種設定値の格納

領域、ディスクリプタ等の格納領域などに用いられる。 【0031】制御部14は、伝送データ生成部12のブロック化処理/アイソクロナスパケット送信処理や、データソース11の動作を制御する。また、アシンクロナスパケットにより通信されるコマンド等の制御用のデータの受信・送信に関する処理を行う。また、データソース11から出力されるコンテンツデータ、つまり受信装置2側に伝送しようとするコンテンツデータについての管理情報(例えばCD方式のディスクにおけるTOCなどの管理情報)を参照し、各コンテンツデータのデータフォーマット(チャンネルフォーマット)等を確認して、ステータスディスクリプタやコンテンツリストを生成し、メモリ部15に格納する。

【0032】送信装置1がアイソクロナスパケットにより送信するデジタルオーディオデータに関する情報として、メモリ部15に格納されるステータスディスクリプタやコンテンツリストは、図3に示すような構造のデータである。なお、ディスクスクリプタの一種としてのステータスディスクリプタは、現在の機器の状況を示す各種情報をメモリ部15に格納したデータ群であり、例えば他の機器からの要求に応じて所要の情報を送信できるものである。また「リスト」「オブジェクト」はディスクリプタの階層構造を実現するための構造とされている。

【0033】ステータスディスクリプタは、図3(a)のように、ステータスディスクリプタとしてのIDやデータサイズなどの基本情報を含むヘッダを有したうえで、それぞれが実際の各種ステータスを示す情報としての所要数の情報ブロック(インフォメーションブロック(インフォブロック))から構成される。どのような内容のインフォブロックが設けられるかは機器やメディアの種別や送信データ種別などに応じて決められる。

【0034】 コンテンツリストは、図3(b) のよう に、コンテンツリストとしてのIDやデータサイズなど の基本情報を含むヘッダを有したうえで、それぞれが実 際の各種ステータスを示す情報としての所要数の情報ブ ロック(インフォメーションブロック(インフォブロッ ク)) や、所要数のオーディオトラックオブジェクトと から構成される。この場合も、どのような内容のインフ ォブロックが設けられるかはコンテンツデータ/メディ アの種別などに応じて決められる。またオーディオトラ ックオブジェクトは、例えばデータソース11から送信 できる各コンテンツデータのそれぞれに対応して形成さ れる。例えばデータソース11がディスク再生部の場合 は、装填されるCD、SACD、DVDに収録されてい る楽曲(トラック)毎に対応して形成される。つまりC DのTOCなどの管理情報に基づいて判別される、楽曲 等のコンテンツ単位での各種属性その他の情報を配する データ群である。このオーディオトラックオブジェクト は、1又は複数のインフォブロックで構成される。

[0035] 図2において、受信装置2は、送受信部31、伝送パケットデコード部32、データデコード部33、制御部34、制御情報処理部35を備える。

[0036] 受信装置2において、送受信部31は、伝送路3から供給されるアイソクロナスパケットデータを受信して取り込む動作を行う。またアシンクロナスパケットによるコマンド等のデータの送受信を行う。

【0037】伝送パケットデコード部32は、受信され たアイソクロナスパケットのデータについてパケットデ コード処理を行い、各ブロック内に配されている各チャ ンネルのオーディオデータを抽出する処理や、抽出した データのバッファリングを行う。データデコード部33 は、伝送パケットデコード部32で抽出された、或るデ ータフォーマット及びバージョンのオーディオデータに ついて復号処理を行い、所要のデータ形態で出力する。 【0038】制御情報処理部35は、アシンクロナスパ ケットにより送受信されるコマンド等の情報のインター フェース部として所定の処理を行う。例えば送信装置1 から送信されてきたアシンクロナスパケットデータをデ コードし、制御部34に受け渡す。また制御部34が送 信装置1側に制御用のコマンド/レスポンスデータ等を 送信する場合は、制御部34から指示された送信情報に ついてパケット化処理を行い、アシンクロナスパケット を生成して、送受信部31から伝送路3に送出させる。 [0039] 制御部34は、伝送パケットデコード部3 2のデコード処理や、データデコード部33のデコード 処理動作を制御する。特に、伝送パケットデコード部3 2及びデータデコード部33に対しては、受信されるオ ーディオデータのデータ属性や、さらにはデータフォー マット及びそのバージョンに応じて、それに適合したデ コード処理が行われるように処理方式(フォーマットバ ージョンに応じた処理モード)を切換制御する。例えば 制御部34は、受信されたオーディオデータのサンプリ ング周波数、圧縮方式/量子化ビット数、チャンネル 数、スピーカ配置などのデータ属性を判別し、またフォ ーマットバージョンを判別し、それに応じて伝送パケッ トデコード部32やデータデコード部33を制御し、デ ータの属性やフォーマットバージョン等に応じたデコー ド処理やチャンネル分配を制御する。また制御部34 は、アシンクロナスパケットにより通信されるコマンド 等の制御用のデータの受信・送信に関する処理を行う。 【0040】また、伝送パケットデコード部32及び/ 又はデータデコード部33に対するデコード処理モード の切換のためには、送信されてくるオーディオデータの フォーマットバージョンを判別する必要があるが、この 判別は、後述するようにアシンクロナスパケットにより 通信されるコマンド/レスポンス等に基づいて行う。例 えば送信装置からアシンクロナスパケットで送信されて くるコマンド或いはレスポンスによって、現在伝送され

ているオーディオデータについてのフォーマットバージ

ョン(コンテンツリストの内容として記録されているバージョン情報)を判別する。或いは伝送されているオーディオデータのフォーマットバージョンの変化を判別する。フォーマットバージョンの変化を検知した場合、制御部34は伝送パケットデコード部32及び/又はデータデコード部33のデコード処理モードの切換制御を行うことになる。

【0041】なお、データデコード部33がどのようなデータにまでデコードを行うかは、受信装置2としての機器の種別や出力先の機器又は回路部の種別による。例えば受信装置2がディスク等のメディアへの記録装置とされる場合は、記録処理系が扱うことができるデータフォーマットまでデコードを行う。また例えば後段の回路部においてアナログ信号に変換され、増幅されてスピーカシステムから出力される場合は、リニアPCMオーディオデータにまで復号すればよい。

【0042】3. バージョン情報を含むコンテンツリスト例(1)

本実施の形態においては、送信装置1側は伝送するデータ、つまりデータソース11から出力可能なコンテンツデータについてのコンテンツリストに、フォーマットバージョンの情報(バージョン情報)を付加するようにするものである。コンテンツリストにバージョン情報が記録されることで、アシンクロナス通信によってコンテンツリストの情報を受信装置側に提供すれば、受信装置側がアイソクロナスパケットとして送信されてくるデータのフォーマットバージョンを認識できるものとなる。

【0043】以下では、コンテンツリストにバージョン情報を記述する4とおりの例を述べる。なお、フォーマットバージョンの情報は、例えばCD, SACD, DVD等のディスクについては、そのディスクの管理情報において記録されている。従って、以下の各例では、TOC等の管理情報から読み出したフォーマットバージョンの情報を、コンテンツリストにおけるバージョン情報として記述するものとなる。

【0044】また、以下説明していくバージョン情報を含むコンテンツリスト(又はコンテンツリストに含まれるインフォブロックやオーディオトラックオブジェクト)については、データソース11から送出可能とされる全てのコンテンツ(楽曲等のトラック)について、予め制御部14が生成して記憶させても良いし、或るコンテンツの送信の際に、そのコンテンツについて制御部14が生成して、メモリ部15でインフォブロックやオーディオトラックオブジェクトの書換又は追加を行うようにしても良い。例えばデータソースがSACD等のメディアに対する再生装置部である場合は、メディアが装填された時点で、制御部14がメディアの管理情報に基づいて、収録されている各コンテンツに対応してコンテンツリストを生成することが考えられる。

【0045】まずコンテンツリスト例(1)として、図 50

3(b)に示したコンテンツリスト内のインフォブロックにバージョン情報を記述する手法を述べる。即ち、図3(b)のようにコンテンツリストを構成する1つのインフォブロック(オーディオトラックオブジェクトとは別のインフォブロック)として、図4のようなデータフォーマットバージョンインフォブロック[data_format_version_info_block]を定義する。なお、以後の説明において「h」を付した数値は16進表記のものである。

【0046】このデータフォーマットバージョンインフ オブロックは、例えば8バイトの構成とされ、先頭2バ イトがコンパウンドレングス[compound_length]とされ る。このコンパウンドレングスは、当該インフォブロッ クにおける残りのバイト数を示すことで、当該インフォ ブロックの範囲を指定する。このデータフォーマットバ ージョンインフォブロックの場合、コンパウンドレング ス=6バイトとなる。また続く2バイトでインフォブロ ックタイプ[info_block_type]が示される。この場合、 インフォブロックタイプのコード値により、このインフ ォブロックがデータフォーマットバージョンインフォブ ロックである事が示される。続く2バイトはプライマリ フィールドレングス[primary_fields_length]とされ る。プライマリフィールドレングスは、当該インフォブ ロックにおける残りのバイト数、つまり、インフォブロ ックにおいて提示したい実データを配したフィールドの バイト数が示される。このデータフォーマットバージョ ンインフォブロックの場合、プライマリフィールドレン グス=2バイトとなる。

【0047】なお、以上の6バイト、つまりコンパウンドレングス、インフォブロックタイプ、プライマリフィールドレングスは、各種インフォブロックにおいて共通の構造とされ、従って今回定義するデータフォーマットバージョンインフォブロックにおいても採用される構造となっている。

【0048】続く、データフォーマットメジャーバージョン[data_format_major_version]においてはフォーマット上位バージョンを示す値が記述され、データフォーマットマイナーバージョン[data_format_minor_version]ではフォーマット下位バージョンを示す値が記述される。

【0049】このようなデータフォーマットバージョンインフォブロックを定義し、コンテンツリストの1つのインフォブロックとすることで、コンテンツリストにバージョン情報を記述できるようになる。

【0050】4. バージョン情報を含むコンテンツリスト例(2)

コンテンツリスト例(2)は、図3(b)に示すオーディオトラックオブジェクト内にバージョン情報を記述する例である。

【0051】図3(b)で説明したように、オーディオトラックオブジェクトは、複数のインフォブロックの集

_type]と、所定バイト数のSACDスペシフィックタイプインフォメーション $[SACD_specific_type_information]$ の組が1つの実情報のブロックIBとされ、1又は複数のブロックIBが設けられる事で必要な各種情報が記述される。

合体として構成される。従って、そのオーディオトラックオブジェクト内の1つのインフォブロックとして、バージョン情報を記述するインフォブロックを含めればよい。即ち上記図4で説明した構造のデータフォーマットバージョンインフォブロックを、オーディオトラックオブジェクト内のインフォブロックとして記述すればよいものである。

【0052】オーディオトラックオブジェクトは、デー タソース11から出力可能な各コンテンツに対応して設 けられる。即ち1つのオーディオトラックオブジェクト は1つのコンテンツ(楽曲等)に対応している。そして オーディオトラックオブジェクト内のインフォブロック としてデータフォーマットバージョンインフォブロック を記述するようにすれば、コンテンツリストには、各コ ンテンツに対応した情報としてバージョン情報を記述で きるものとなる。従って、データソース11に異なるフ ォーマットバージョンのコンテンツが混在しているよう な場合は、このようにオーディオトラックオブジェクト 内にバージョン情報を記述できるようにすることが好適 となる。例えば複数種類のフォーマットバージョンのコ 20 ンテンツが混在するように収録されたSACD等のディ スクをデータソース11で再生する場合などにも、コン テンツ毎にバージョン情報が記述されることが好適とな る。

【0053】5. バージョン情報を含むコンテンツリスト例(3)

コンテンツリスト例(3)も、図3(b)に示すオーディオトラックオブジェクト内にバージョン情報を記述する例である。この例は、オーディオトラックオブジェクト内のインフォブロックとして、メディアスペシフィックインフォブロック[media_specific_info_block]にバージョン情報を記述する手法である。

【0054】オーディオトラックオブジェクトに含まれるインフォブロックとして、メディアスペシフィックインフォブロックを拡張し、データフォーマットバージョンを記述する。メディアスペシフィックインフォブロックに記述する例として、SACDスペシフィックインフォブロックを用いる。[AV/C Disc Media Type Specification _ SACD 1.0]に記述されているSACD 5のようにする。なお、[AV/C Disc Media Type Specification _ SACD 1.0]は1394 TRADE ASSOCIATIONで公開されている

【0055】SACDスペシフィックインフォブロックも、先頭から2バイトづつでコンパウンドレングス[compound_length]、インフォブロックタイプ[info_block_type]、プライマリフィールドレングス[primary_fields_length]が示される。そして当該インフォブロックの実データが、7バイト目以降に所要数記述される。即ち1バイトのSACDスペシフィックタイプ[SACD_specific 50

【0056】SACDスペシフィックタイプの定義は図 6に示される。SACDスペシフィックタイプの1バイ ト値が「00h」であれば、その意味はラウドスピーカ コンフィグ[Loudspeaker_config]とされる。即ち続くS ACDスペシフィックタイプインフォメーションにおい てスピーカ設定情報(配置情報)が示されるものとな る。SACDスペシフィックタイプの1バイト値が「О 1 h」であれば、その意味はトラックモード、トラック フラグ[Track Mode, Track Flag]とされる。即ち続くS ACDスペシフィックタイプインフォメーションにおい てトラックモード/フラグ情報が示されるものとなる。 【0057】SACDスペシフィックタイプの1バイト 値が「02h」であれば、その意味はSACDフォーマ ットバージョン[SACD Format Version]とされる。即ち 続くSACDスペシフィックタイプインフォメーション においてバージョン情報が示されるものとなる。この場 合、SACDスペシフィックタイプインフォメーション としては2バイト用いられ、図7のようにバージョン情 報が記述される。即ち、メジャーバージョン[major_ver sion]においてはフォーマット上位バージョンを示す値 が記述され、マイナーバージョン[minor_version]では フォーマット下位バージョンを示す値が記述される。

【0058】このようにSACDスペシフィックインフォブロックを用いることによっても、オーディオトラックオブジェクト内にバージョン情報を記述することが可能となる。またオーディオトラックオブジェクト内であることから、この例の場合も、コンテンツリストにおいて、データソース11から出力できる各コンテンツに対応した情報としてバージョン情報を記述できるものとなる。なお、SACDスペシフィックインフォブロックは、SACDフォーマットに限定的に対応するインフォブロックとして規定されている。従って、SACDスペシフィックインフォブロックを用いる例は、例えばデータソース11から出力可能なコンテンツがSACDフォーマットのデータである場合に限定される。

【0059】6. バージョン情報を含むコンテンツリスト例(4)

コンテンツリスト例(4)も、図3(b)に示すオーディオトラックオブジェクト内にバージョン情報を記述する例である。この例は、オーディオトラックオブジェクト内のインフォブロックとしてオーディオレコーディングパラメーターズインフォブロック[audio_recording_parameters_info_block]にバージョン情報を記述する手法である。

[0060] [AV/C Disc Subunit General Specificati

on]に記述されているオーディオレコーディングパラメーターズインフォブロックを図8のように拡張し、データフォーマットバージョンを記述する。オーディオレコーディングパラメーターズインフォブロックも、先頭から2バイトづつでコンパウンドレングス[compound_length]、インフォブロックタイプ[info_block_type]、プライマリフィールドレングス[primary_fields_length]が示される。

【0061】続く1バイトにはオーディオレコーディングサンプルレート[audio_recording_sample_rate]としてオーディオデータのサンプリング周波数を示す値が記述される。続く1バイトにはオーディオレコーディングサンプルサイズ[audio_recording_sample_size]としてサンプリングに使うビット数を示す値が記述される。続く1バイトにはオーディオコンプレッションモード[audio_compression_mode]としてオーディオデータの圧縮方式を示す値が記述される。続く1バイトにはオーディオレコーディングチャンネルモード[audio_recording_channel_mode]として、チャンネル数を示す値が記述される。

【0062】これらに続いて2バイトが追加され、バージョン情報が記述される。即ち、データフォーマットメジャーバージョン[data_format_major_version]においてはフォーマット上位バージョンを示す値が記述され、データフォーマットマイナーバージョン[data_format_minor_version]ではフォーマット下位バージョンを示す値が記述される。

【0063】このようにオーディオレコーディングパラメーターズインフォブロックを用いることによっても、オーディオトラックオブジェクト内にバージョン情報を記述することが可能となる。またオーディオトラックオブジェクト内であることから、この例の場合も、コンテンツリストにおいて、データソース11から出力できる各コンテンツに対応した情報としてバージョン情報を記述できるものとなる。

【0064】7. コンテンツリストの伝送

以上の各手法のように、送信装置1ではコンテンツリストにバージョン情報を記述することで、伝送するデジタルデータ(コンテンツ)についてのフォーマットバージョンを管理できるものとなる。そして当該コンテンツリストの情報を受信装置2に送信すれば、受信装置側で伝送データについてのフォーマットバージョンを認識できるものとなる。このコンテンツリストの情報の伝送は、アシンクロナスパケット伝送によるコマンド/レスポンスによって行われる。IEEE1394による伝送路3で行なわれる送信装置1と受信装置2の間でのコンテンツリストの情報の伝送方式としては各種の例が考えられる。以下、送信装置1から受信装置2に対してデジタルオーディオデータをアイソクロナスパケットにより伝送する際の、送信装置1と受信装置2の間でのアシンクロ

ナスパケットによる制御用のコマンド等の情報の通信方式の例を述べていく。

【0065】図9に、アシンクロナスパケットによる通信動作例を示す。この図9の通信動作は、アイソクロナスパケットにより送信装置1から受信装置2に対してオーディオデータの伝送が行われている期間に行われる。メモリ部15に格納されているコンテンツリストについては、受信装置2がリード要求を示すコントロールコマンドCLーCMDを送信装置1に対して発行することで、受け取ることができる。この場合のコントロールコマンドCLーCMDは、ディスクリプタとしてのコンテンツリスト全体のリード要求としての「リードディスクリプタコントロールコマンド」か、又はコンテンツリスト内の特定のインフォブロックを指定して要求する「リードインフォブロックコントロールコマンド」として発行される。

【0066】即ち受信装置2の制御部34は、「リード ディスクリプタコントロールコマンド」又は「リードイ ンフォブロックコントロールコマンド」を発行して、制 御情報処理部35,送受信部31を介して、アシンクロ ナスパケットにより送信装置1に送信する。送信装置1 では、送受信部13,制御情報処理部16を介して制御 部14が「リードディスクリプタコントロールコマン ド」又は「リードインフォブロックコントロールコマン ド」を受け取ると、指定された情報、即ちコンテンツリ スト全体、もしくはコンテンツリスト内の指定された特 定のインフォブロック(この場合上記例で述べたよう に、バージョン情報を記述したインフォブロック)の情 報をメモリ部15から読み出し、コントロールコマンド CL-CMDに対するレスポンスRESを発行する。即 ち、現在伝送中のコンテンツにかかるバージョン情報を 含むスポンスRESを発行して、制御情報処理部16、 送受信部13を介して、アシンクロナスパケットにより 受信装置2に送信する。受信装置2では、送受信部3 1,制御情報処理部35を介して制御部34が、当該レ スポンスRESを受け取ることで、現在アイソクロナス パケットで受信しているデジタルオーディオデータにつ いてのフォーマットバージョンを確認できる。

【0067】従って、オーディオデータ伝送中においては、図9に示すように、定期的に受信装置2がコンテンツリストもしくはコンテンツリスト内のインフォブロックに対するリード要求としてのコントロールコマンドCL-CMDを発行し、レスポンスを受け取ることで、常に、受信しているデジタルオーディオデータのフォーマットバージョンを把握できるものとなる。そして制御部34では、逐次このようにして受信するデジタルオーディオデータのフォーマットバージョンを確認しており、その変化があった場合は、伝送パケットデコード部32及び/又はデータデコード部33の処理モードを、判別したフォーマットバージョンに応じた処理モードに切り

換える。

【0068】このように、受信装置2では、定期的(或いは不定期でも良いがなるべく頻繁に)にコンテンツリストの全部又は一部の情報を取り込むことで、受信しているデジタルオーディオデータについてフォーマットバージョンを判別できるため、実際に受信したオーディオデータのフォーマットバージョンを確認せずにバージョンの変化を知ることができる。従って、受信装置2は受信したデータを解析する必要が無くなり、その処理に必要な回路又はソフトウエアが不要になる。

【0069】続いて他の通信方式として、図10にノー ティファイコマンドを使用する例を示す。上述したよう にノーティファイコマンドは機器の状態が変化した時に 通知するよう命令する時に用いられるコマンドである。 【0070】この図10の通信動作は、アイソクロナス パケットにより送信装置1から受信装置2に対してオー ディオデータの伝送が行われる期間の開始時点から行わ れる。即ち受信装置2は、送信装置1からのデジタルオ ーディオデータの伝送が開始される際(或いはその直前 など) に、送信装置1に対してノーティファイコマンド NF-CMDを発行する。これは、伝送しているオーデ ィオデータについてフォーマットバージョンの変化があ った際に通知を要求するコマンドとなる。なお、ノーテ ィファイコマンドでは、変化の際の通知タイミング(ノ ーティファイタイム;例えば変化前のXmsecなど) も指定できるものとする。

【0071】受信装置2の制御部34はフォーマットバージョンに関するノーティファイコマンドを発行し、制御情報処理部35,送受信部31を介して、アシンクロナスパケットにより送信装置1に送信させる。そして送 30信装置1では、送受信部13,制御情報処理部16を介して制御部14がノーティファイコマンドを受け取ると、当該コマンドに対するレスポンスRESを返すことになる。これはコマンド対応可能か否かを受信装置2に通知するレスポンスである。

【0072】その後、送信装置1の制御部14は、アイソクロナスパケットで伝送しているデジタルオーディオデータについて、フォーマットバージョンの変化を監視する。送出するコンテンツのフォーマットバージョンはコンテンツリストから確認できる。そして制御部14はデータソース11からどのようなコンテンツを送出させているか把握しているため、連続して送出される2つのコンテンツが異なるフォーマットバージョンのものである場合は、そのコンテンツの変化タイミングにより、送信しているデジタルオーディオデータのフォーマットバージョンの変化タイミングを把握できる。そして、ブォージョンの変化タイミングを把握できる。そして、フォーマットバージョンについて変化が発生する場合は、ノーティファイコマンドで指定されたノーティファイタイムに応じたタイミング(変化のXmsec前)に、変化通知NFを送信する。

18

【0073】例えばノーティファイタイムが300msecとされている場合において、フォーマットバージョンの変化がある場合には、その変化の300msec前に、フォーマットバージョンの変化通知NFを発行する。この変化通知NFは、制御情報処理部16、送受信部13を介して、アシンクロナスパケットにより受信装置2に送信される。ただし、ユーザーの指示(例えばCD再生装置等のデータソースに対する頭出しアクセスなど)により、伝送しているデジタルオーディオデータについて突然フォーマットバージョンの変化が発生した場合、その変化した時点で通知を行う事とする。

【0074】受信装置2では、送受信部31,制御情報処理部35を介して制御部34が、当該変化通知NFを受け取ることで、現在アイソクロナスパケットで受信しているデジタルオーディオデータについて、例えば300msec後にフォーマットバージョンが変化することを確認できる。

【0075】そして制御部34では、このようにして変化通知NFによりXmsec後の変化を確認したら、Xmsecの期間に伝送パケットデコード部32、データデコード部33の処理モードの切換を準備し、受信しているデジタルオーディオデータについての実際のフォーマットバージョンの変化があった際に、デコード処理モードを切り替えさせる。

【0076】なお、上記変化通知NFは、ノーティファイコマンドによって指定されたノーティファイオブジェクトとしてのフォーマットバージョンについての変化を通知するものであり、変化後のフォーマットバージョン自体を通知するものではない。従って、受信装置2では、次にどのようなフォーマットバージョンに変化するかを判別しなければならない。この実際のフォーマットバージョンの判別に関しては、例えば次の①②③のような手法が考えられる。

【0077】① 受信装置2が受信データ自体を解析し てフォーマットバージョンを判別する。受信装置2が受 信されたデジタルオーディオデータを解析してフォーマ ットバージョンを判別することは、従来の手法と同様で あり、当然ながらそのための回路又はソフトウエアが必 要になる。但し、本例の場合は、変化通知NFにより、 例えば300msec後などというように、実際にフォ ーマットバージョンが変化するタイミングを認識でき る。このため、フォーマットバージョンの変化までの期 間に、フォーマットバージョン判別の為の処理の準備が でき、しかもフォーマットバージョンの変化があった際 に、直ぐに判別処理を行うことができる。例えば準備と しては、判別処理に必要な初期設定処理、バッファ空間 の確保などを実行できる。従って、判別処理自体は従来 と同様であっても、実質的には従来より迅速に判別を完 了でき、これによって迅速にデコード処理モードの切換 が可能となる。

【0078】② 送信装置1に対してフォーマットバー ジョンの情報を要求する。上記のように変化通知NFに より、例えば300msec後などというように、実際 にフォーマットバージョンが変化するタイミングを認識 できる。このため、フォーマットバージョンの変化まで の期間として、送信装置1に対してフォーマットバージ ョンの情報を要求することができる。フォーマットバー ジョンの情報の要求は、上述したようにリードディスク リプタコントロールコマンドや、リードインフォブロッ クコントロールコマンドにより、バージョン情報を有す るコンテンツリスト又はコンテンツリスト内の特定のイ ンフォブロックの情報を要求すればよい。これによっ て、フォーマットバージョンの変化の直前に、次のフォ ーマットバージョンを判別でき、受信されるデジタルオ ーディオデータのフォーマットバージョンが変化した時 点で適切にデコード処理モードを切り換えることが可能

【0079】③ 変化通知NFとしてフォーマットバージョンの情報も含むデータ構造を設定する。上記変化通知NFにおいて、単にフォーマットバージョンの変化の 20 通知だけでなく、変化後のフォーマットバージョンの情報も含むようにすれば、受信装置2ではフォーマットバージョンの変化の直前に、次のフォーマットバージョンを判別でき、受信されるデジタルオーディオデータのフォーマットバージョンが変化した時点で適切にデコード処理モードを切り換えることが可能となる。

【0080】このように受信装置2では、ノーティファイコマンドを発行することで、変化通知NFにより受信しているデジタルオーディオデータについてフォーマットバージョンの変化を認識できる。特にノーティファイタイムを指定することで、所定時間前に変化を認識できる。これによって受信装置2では、バッファなど受信データを一時的に保存する空間をあらかじめ確保する事や、フォーマットバージョンの変化に伴う処理形態の切り替えを適正タイミングで行うことができ、デジタルオーディオデータを受信してからデコード処理するまでの時間差を最小限にする事が可能となる。

【0081】次に更に他の通信方式として、図11により、送信装置1からのコントロールコマンドを発行することでバージョン情報を受信装置2に通知する例を説明する。図11にアシンクロナスパケットによる通信動作を示す。この図11の通信動作は、アイソクロナスパケットにより送信装置1から受信装置2に対してオーディオデータの伝送が行われる期間内に行われる。

【0082】この場合、送信装置1の制御部14は、アイソクロナスパケットで伝送しているデジタルオーディオデータについて、フォーマットバージョンの変化を監視している。制御部14はデータソース11からどのようなコンテンツを送出させているか把握しているため、連続して送出される2つのコンテンツが異なるフォーマ

ットバージョンのものである場合は、そのコンテンツの変化タイミングにより、送信しているデジタルオーディオデータのフォーマットバージョンの変化タイミングを把握できる。

【0083】そして、フォーマットバージョンが変化する場合は、その変化のタイミングで、所定のコントロールコマンドCLーCMDを発行する。このコントロールコマンドは、例えばフォーマットバージョンの変化を通知するコマンドとする。そしてこのコントロールコマンドCLーCMDは、制御情報処理部16、送受信部13を介して、アシンクロナスパケットにより受信装置2に送信される。またこのとき、制御部14は、アイソクロナスパケットによるデジタルオーディオデータの伝送を一時的に中断させる。

【0084】受信装置2では、当該コントロールコマンドCLーCMDによってデジタルオーディオデータについてのフォーマットバージョンの変化を認識できる。しかも、デジタルオーディオデータの伝送が一時的に中断されるため、その期間に、変化するフォーマットバージョンに対応するデコード処理方式の切換を実行できる。そして受信装置2では、新たなフォーマットバージョンのデータを受け入れ可能となった時点で送信装置1に対しレスポンスRESを発行する。送信装置1の制御部14は、レスポンスRESを受信したことに応じて、デジタルオーディオデータの伝送を再開させる。

【0085】このようなコントロールコマンドCL-CMDによって受信装置2は受信しているデジタルオーディオデータについてのフォーマットバージョンの変化を認識でき、これに応じて、変化したフォーマットバージョンに対応するデコード処理モードの切換を実行できる。

【0086】ところで、この場合のコントロールコマンドは、少なくともフォーマットバージョンの変化を通知するものとすると、それだけでは受信装置2側が変化後のフォーマットバージョンを認識することはできない。従って受信装置2では、次にどのようなフォーマットバージョンに変化するかを判別しなければならない。この実際のデータ形式の判別に関しては、例えば上記①②③として説明した手法とほぼ同様に、次の①′②′③′のような手法が考えられる。

【0087】① 受信装置 2 が受信データ自体を解析してフォーマットバージョンを判別する。上記①と同様に受信装置 2 が受信されたデジタルオーディオデータを解析してフォーマットバージョンを判別する。但しこの例の場合は、コントロールコマンド発行時点でデジタルオーディオデータの伝送が中断される。このため、この中断期間にフォーマットバージョン判別の為の処理の準備(判別処理に必要な初期設定処理、バッファ空間の確保など)ができ、デジタルオーディオデータの伝送再開後、直ぐに判別処理を行うことができる。これによって

22

21

迅速にデコード処理モードの切換が可能となる。

【0088】② 送信装置1に対してフォーマットバージョンの情報を要求する。デジタルオーディオデータの伝送中断期間に、送信装置1に対してフォーマットバージョンの情報を要求することができる。即ちリードディスクリプタコントロールコマンドや、リードインフォブロックコントロールコマンドにより、バージョン情報を有するコンテンツリストもしくは特定のインフォブロックの情報を要求すればよい。これによって、フォーマットバージョンの変化の前に、次のフォーマットバージョンを判別でき、デコード処理モードの切換も実行できる。従ってデジタルオーディオデータの伝送再開後は、既にフォーマットバージョンの変化に対応した状態となっているため、全く処理の遅れはない。

【0089】③ コントロールコマンドとしてフォーマットバージョンの情報も含むデータ構造を設定する。上記コントロールコマンドの構造として、単にフォーマットバージョンの変化の通知だけでなく、変化後のフォーマットバージョンを示すバージョン情報も含むようにすれば、受信装置2では伝送中断期間中に、次のフォーマットバージョンを判別でき、デコード処理モードの切り換えも完了できる。従ってデジタルオーディオデータの伝送再開後は、既にフォーマットバージョンの変化に対応した状態となっているため、全く処理の遅れはない。

【0090】このように、送信装置1からのコントロールコマンドを受信装置2に対して発行することで受信装置2がデジタルオーディオデータについてフォーマットバージョンの変化及びフォーマットバージョンを認識できる。これによって受信装置2では、バッファなど受信データを一時的に保存する空間をあらかじめ確保する事や、変化に伴うデコード処理の切り替えを予め実行するなどして、デジタルオーディオデータを受信してからデコード処理するまでの時間差を最小限にする事が可能となる。特にコントロールコマンド発行と共にデジタルオーディオデータの伝送が中断され、受信装置2からの受け入れ可能である事を示すレスポンスに応じて再開することで、受信装置2では完全にデータ形式の変化に対する用意をととのえることができる。

【0091】なお、送信装置1は、フォーマットバージ 40ョンの変化より所定時間前(例えば300msec前)などに、コントロールコマンドを送信しても良い。但しその場合は、受信装置2がそのことを予め認識していることが必要である。そしてこのように、フォーマットバージョンの変化より前の時点で変化を通知できるのであれば、上記したデジタルオーディオデータの伝送の中断、再開は必要ではない。

【0092】例えば以上のような各種の通信方式で、受信装置2は、伝送されてくるデジタルオーディオデータについてのフォーマットバージョンの変化に対応できる

ものとなる。なお、以上の例は、アシンクロナスパケットによるデジタルオーディオデータの伝送中に、バージョン情報を通信するものとしたが、デジタルオーディオデータの伝送前などに、予めコンテンツリストの情報を受信装置2側に送信するような手法も考えられる。

[0093]以上、実施の形態を説明してきたが、本発明はさらに多様な構成例が考えられ、多様な機器に導入できるものである。また、上記例では送信側と受信側は有線としてのIEEE1394方式の伝送路3による伝送システムとしたが、同期通信パケットと非同期通信パケットを混在伝送できる他の伝送規格によるものでもよい。また衛星通信、無線電話通信、赤外線伝送などの無線伝送システムに本発明を適用できることはもちろんである。また同期通信パケットで伝送するデジタルデータは、オーディオデータに限らず、ビデオデータなどの他の種のデータの伝送にも応用できる。

[0094]

[発明の効果] 以上の説明からわかるように本発明で は、送信装置側は、例えばディスク等から再生し送信す るデータについて、フォーマットのバージョン情報を含 むリスト情報を生成するようにする。このため、送信装 置側は送信するデータについてのフォーマットバージョ ンを管理できるものとなる。また同期通信パケットデー タとして伝送しているデジタルデータに関するリスト情 報(リスト情報に含まれるバージョン情報)を非同期通 信パケットデータによる通信により受信装置側が認識で きるようにしている。このため受信装置側は、常に受信 しているデジタルデータ自体を解析してデータのフォー マットバージョンを監視していなくてもよく、従って、 受信装置側では、同期通信パケットで受信したデジタル データを解析する回路又はソフトウエアが不要になると ともに、データのフォーマットバージョンに応じて適切 なデコード処理を行うことができる。もちろん解析処理 によるデコードの遅れも解消できる。

【0095】また、送信装置側が、例えばディスク等の メディアから再生するコンテンツを伝送する場合などに おいて、送信する可能性のある(例えばディスクに収録 された)全てのコンテンツが同じフォーマットバージョ ンであれば、リスト生成手段は、送信可能とされている 1又は複数のデジタルデータコンテンツの全体に対応す る情報として、上記バージョン情報を記述したリスト情 報を生成することが好適である。特にこのようなリスト 情報を受信装置側に提供することで、受信装置側は伝送 されてくるデータのフォーマットバージョンを予め、或 いは随時確認できる。さらにリスト生成手段が、送信す る可能性のある各々のコンテンツについてのフォーマッ トバージョン情報を含むリスト情報を生成するようにす れば、多様なフォーマットバージョンのコンテンツを連 続的に送信する場合に好適である。また、例えばディス ク等のメディアに、多様なフォーマットバージョンのコ

ンテンツを収録してデータ伝送に供することにも好適となる。さらには送信装置側でネットワーク等からダウンロードしてHDD(ハードディスクドライブ)など格納しているような場合などであって、伝送可能なコンテンツとして多様なフォーマットバージョンのコンテンツが混在しているような場合にも好適となる。

【0096】そしてこれらのことにより、データ伝送の信頼性の向上を容易に実現できるものとなる。

【図面の簡単な説明】

【図1】IEEE1394による伝送フォーマットの説 10 明図である。

【図2】実施の形態の送信装置及び受信装置のブロック図である。

【図3】実施の形態のステータスディスクリプタ及びコンテンツリストの説明図である。

【図4】実施の形態のデータフォーマットバージョンインフォブロックの説明図である。

【図5】実施の形態のSACDスペシフィックインフォブロックの説明図である。

【図6】実施の形態のSACDスペシフィックタイプ値の定義の説明図である。

【図7】実施の形態のSACDスペシフィックタイプインフォメーションの説明図である。

【図8】実施の形態のオーディオレコーディングパラメーターズインフォブロックの説明図である。

【図9】実施の形態のアシンクロナスパケット通信例の 説明図である。

【図10】実施の形態のアシンクロナスパケット通信例 の説明図である。

【図11】実施の形態のアシンクロナスパケット通信例 の説明図である。

【符号の説明】

1 送信装置、2 受信装置、3 伝送路、11 データソース、12 伝送データ生成部、13 送信部、14 制御部、15 メモリ部、16 制御情報処理部、31 受信部、32 伝送パケットデコード部、33 データデコード部、34 制御部、35 制御情報処理部

[図1]

[図9]

(a)

(b)

ステータス ディスクリプタ

ヘッダ]
Info Block	
Info Block	_
Info Block	_
:	
	_

コンテンツ リスト

[図4]

データフォーマットパージョンインフォブロックの構造

	data_format_version_info_block
Address Offset	Contents
00 00h	compound_length
00 01h	
00 02h	info_block_type =XX XXh(data_format_version_info_block)
00 03h	11110_01001_0177
00 04h	primary_fields_length
00 05h	
00 06h	data_format_major_version
00 07h	data_format_minor_version

[図5]

SACD スペシフィクインフォブロックの構造

	SACD_specific_info_block
Address Offset	Contents
00 00h	cospound_I ength
00 O1h	
00 02h	info_block_type =XX XXh(SACO_specific_info_block)
00 03h	
00 04h	primary_fields_length
00 05h	
00 06h	SACD_specific_type
_	SACD_specific_type_information
	•
	•

[図7]

[SACD_specific_type_information (SACD_specific_type=02h)]の定義

address_offset	msb	Isb
OD OOh	Major_Version	
00 01h	Hinor_Version	

[図10]

【図11】

[図6]

[SAGD_specific_type]の値の定義

	SACD_specific_type	
Value	Meaning	
00h	Loudspeaker_Config	
01h	Track_Node, Track_Flag	
02h	SACD_Format_version	
all other values	Reserved for future specification	

[図8]

拡張したオーディオレコーディングパラメーターズインフェブロックの構造

	audio_recording_parameters_info_block
Address Offset	Contents
00 00h	compound_length
00 01h	
00 02h	
00 03h	info_block_type =80 07h(audio_recording_parameters_info_block)
00 04h	
00 05h	primary_fields_length
00 06h	audio_recording_sample_rate
00 07h	audio_recording_sample_size
00 08h	audio_compression_node
00 09h	audio_recording_channel_mode
00 OAh	data_format_major_version
00 OBh	data_format_minor_version

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

U BLACK BURDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox