

King Saud University College of Computer and Information Sciences Computer Science Department

		Course Code:		C 227	
		Course Title:		ng Systems	
		Semester:		ng 2015	
		Exercises Cover Sheet:	Mid 2	2 Exam	
		Duration: 9	0 min	_	
Student	t Name:				
Stude	ent ID:				
Student S	ection No.				
	T				T
Tick the Relevant	Compu	ter Science B.Sc. Program ABET S	Student Outcomes	Question No. Relevant Is Hyperlinked	Covering %
	a) Apply k	knowledge of computing and mathematics ap	propriate to the discipline;	•	
	b) Analyze	e a problem, and identify and define	the computing requirements		
		riate to its solution			
		implement and evaluate a computer-based	system, process, component, or		
	progran	n to meet desired needs;			
	d) Functio	on effectively on teams to accomplish a comm	on goal;		
		tanding of professional, ethical, legal, sec	curity, and social issues and		
	respons	ibilities;			
	f) Commu	nicate effectively with a range of audiences;			
	g) Analyze	e the local and global impact of computing on	individuals, organizations and		
	society;	or the total and groom impact or companing on			
		ition of the need for, and an ability to enga	age in, continuing professional		
	develop	ment;			
	i) Use curi	rent techniques, skills, and tools necessary fo	r computing practices.		
	i) Apply r	nathematical foundations, algorithmic prin	ncinles and computer science		
	theory	in the modeling and design of computer-	based systems in a way that		
		trates comprehension of the tradeoffs involv	,		
		lesign and development principles in the conscomplexity;	struction of software systems of		

King Saud University College of Computer and Information Sciences CSC 227: Operating Systems

Spri Mid Date	al Marks: 25 ing 2015-16 lterm Exam II e: 19-April-2016	ID#:		(90 minutes) or Teacher Name:
	ructions:			
	nis exam has 6 pages including the	he title page.		
	o not use pencil.			
	rite clearly and neatly.			
_	tion 1. [10 marks] Select ONLY			
		<u>-1 to 1-15 in the</u>	table	on page2. ONLY THAT TABLE WILL BE
<u>GRA</u>	<u>DED.</u>			
	The feet and the second	C		Which of the following component is NOT
1.	The fork system call returns	10r	2.	shared among different threads of the same
	the child process:			process:
a.	The PID of the parent		a.	code
b.	-1		b.	registers
c.	0		c.	data
d.	1		d.	files
3.	If a thread invokes the exec() s	ystem call:	4.	Which of the following state is shared between the parent process and the child process?
a.	It will replace the entire proce threads	ess including all	a.	Stack
b.	It creates a new process with n	ew threads	c.	Heap
d.	It copies existing process		e.	Shared memory segments
f.	It will rename the existing prod	cess	g.	All the above
	<u> </u>	_		
5.	In a deferred cancellation mode happen to the thread?	e what will	6.	Two types of semaphores are:
a.	It will be cancelled immediatel	У	a.	adding Semaphores and Binary Semaphores
b.	It will continue running until it cancellation point	arrives to	b.	analog Semaphores and Octal Semaphores
c.	It can ignore the cancellation recontinue running to its end	equest and	c.	counting Semaphores and Binary Semaphores
d.	It will be put in the waiting que receives a new signal	eue until it	d.	critical Semaphores and System Semaphores
	-			
7.	Parent may terminate the execuprocesses because of:	ution of children	8.	Semaphore can be used for solving:
a.	the child has exceeded allocate	d resources	a.	Wait & signal
b.	the task assigned to child is no	longer required	b.	Deadlock
c.	the parent is exiting and the OS a child to continue if its parent	S does not allow	c.	Priority
А	any of the above reasons		d	Synchronization

9.	Which of the following is not used for synchronization?
a.	Peterson's Solution
b.	Bankers' algorithm
c.	Mutex Locks
d.	All the above

10.	The context-switch time is:
a.	dependent on the underlying hardware support
b.	overhead
c.	shorter in complex OS and PCB
d.	all the above

11.	Which of the following statements is true?
a.	Shared memory is typically faster than message passing.
b.	Message passing is typically faster than shared memory.
c.	Message passing is most useful for exchanging large amounts of data.
d.	Shared

12.	restricts access to a shared variable to only one thread at any given time.
a.	asynchronism
b.	serialization
c.	protection
d.	mutual exclusion

13.	Mutual exclusion can be enforced with a general semaphore whose initial value is:
a.	Greater than 1
b.	Less than 0
c.	Equal 1.
d.	Equal 0

14.	A race condition is when:
a.	several threads try to access the same data concurrently
b.	when several threads try to access and modify the same data concurrently
c.	the outcome of execution does not depend on the order in which instructions are executed
d.	None of the above

15.	occurs when a higher-priority process needs a resource that is currently being
	accessed by a lower-priority process.
a.	Priority inversion
b.	Deadlock
c.	A race condition
d.	A critical section

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
11.	12.	13.	14.	15.					

16. Circle the right answer

Statement	Answer	
a. A binary semaphore takes on numerical values 0 and 1 only	True	False
b. An atomic operation is one that must be executed to completion without interruption.	True	False
c. While a process is blocked on a semaphore's queue, it is in busy waiting.	True	False
d. User-level threads have no kernel support	True	False
e. test and set() instruction requires three operands.	True	False

[0.5+0.5 mark] Give any TWO reasons for why we need process cooperation. [1 mark] Describe in detail THREE different events that would cause an executing process to stop to J and be switched to any other state. [0.5+0.5 mark] How many times does each of the programs below print "Hello"? [int main () { fork(); fork(); fork(); printf("Hello"); fork(); printf("Hello"); fork(); printf("Hello"); Ans: Ans: Ans:		lark j Dapiam the main unferences octiv	een a short-term and long-term scheduler.	
J and be switched to any other state. (a) [0.5 + 0.5 mark] How many times does each of the programs below print "Hello"? int main () {	[0.5	5+0.5 mark] Give any TWO reasons for	why we need process cooperation.	
<pre>int main () { fork(); fork(); fork(); fork(); printf("Hello"); printf("Hello"); fork(); printf("Hello"); fork(); printf("Hello"); }</pre>			ent events that would cause an executing process to	stop ı
	[0.5	<pre>int main () { fork(); fork(); fork();</pre>	<pre>int main () { fork(); printf("Hello "); fork(); printf("Hello "); fork(); printf("Hello ");</pre>	
[1 mark] Inter-process communication (IPC) can be done either by Shared Memory or Message Pas			Ans:	

Question 3. [5 marks]
3-a) [1 mark] Creating an additional thread is considered to have less cost than creating a new process. Why?
3-b) [0.5+0.5 mark] Multithreading can be implemented using different techniques: Many-to-One, One-to-One,
Many-to-Many.
i) What is the disadvantage of the Many-to-One solution?

ii) What is the disadvantage of the One-to-One solution?
3-c) [1 mark] Provide two programming examples in which multithreading provides better performance than a single threaded solution.
single-threaded solution.
3-d) [1 mark] The thread cancellation can be performed using one of the two methods: Asynchronous cancellation
or Deferred cancellation. Explain the difference between these two methods.
3-e) [1 mark] What challenges are offered by multicore programming?

Question 4. [5 marks]
4-a) [1 mark] Briefly describe the characteristics of a complete solution to the critical section problem.
4-b) [1 mark] Explain how deadlock state occurs between two processes.
4-c) [0.5 + 0.5 marks] One of the conditions in critical section solutions is that the operation(s) should be executed atomically? What does it mean? What problem occurs if this condition is violated?
4-d) [1 mark] The critical-section problem could be solved simply in a single-processor by preventing interrupts from occurring while a shared variable was being modified. What problem this technique causes when used in multiprocessor environment?
4-e) [1 mark] Busy waiting means that a process is waiting for a condition to be satisfied in a tight loop without relinquishing the processor. What problem it causes?