DELAY PROGRAM:

MVI B, FF 7T

L1: DCR B 4T

JNZ L1 10T/7T

HLT 5T

Delay count: FF LENGTH OF DELAY

COUNT: 8 BIT

CALCULATION:

 $FF_{H} = 255_{10}$

TOTAL T-STATE OF LOOP: (4+10)=14T

LOOP WILL ROTATE 254 TIMES

COMPLETE LOOP T STATE:

254*14=3556T

AT 255TH CYCLE THE LOOP T STATE:

(4+7)=11T

OUTSIDE LOOP T STATE: 7+5=12T

COMPLETE PROGRAM T STATE:

3556+11+12=3579T

CLOCK FREQUENCY OF 8085: 3MHz

TIME PERIOD OF CLOCK: .333Micro

Second

So delay amount: (3579*.333)=1191 Micro Second

O. CALCULATE THE DELAY AMOUNT.

C.F=2MHz

MVI B, AB 7T

L1: DCR B 4T

JNZ L1 10T/7T

HLT 5T

Delay count: AB, LENGTH OF DELAY

COUNT: 8 BIT

CALCULATION:

 $AB_{H} = 171_{10}$

TOTAL T-STATE OF LOOP: (4+10)=14T

LOOP WILL ROTATE 170 TIMES

COMPLETE LOOP T STATE:

170*14=2380T

AT 171TH CYCLE THE LOOP T STATE:

(4+7)=11T

OUTSIDE LOOP T STATE: 7+5=12T

COMPLETE PROGRAM T STATE:

2380+11+12=2403T

CLOCK FREQUENCY OF 8085: 2MHz

TIME PERIOD OF CLOCK: .5Micro

Second

So delay amount: (2403*.5)=1201.5

Micro Second

WCROPROCESSOR APPLICATIONS Delay Subroutine Using Register Pair

3.2.2			
PROGRAM	Mnemonics	Operands	Comments
Label	LXI	D, FFFF	Get FFFF in register pair D-E.
	DCX	D	Decrement count.
LOOP	* MOV	A, D	Move content of register D to accumulator.
	ORA	E	Check if D and E are zero.
	JNZ	LOOP	If D-E is not zero, jump to LOOP.
	RET		Return to main program.

States required for each instruction of the above program are:

Instruction		States
LXI	D	10
DCX	D	6
MOV	A, D	4
ORA	E	4
JNZ		7/10
RET		10

If the count in register pair D-E is N the total number of states are:

States =
$$10 + N(6 + 4 + 4) + (N-1) \times 10 + 1 \times 7 + 10$$

= $24 N + 17$

Delay = $(24 \text{ N} + 17) \times \text{ time for one state.}$

Maximum delay will occur when count N = FFF hex

= 65,535 decimal.

Maximum delay =
$$(24 \times 65,535 + 17) \times 320 \times 10^{-9}$$
 second

= 20.97664 milliseconds.

This delay subroutine is given in the monitor program of 8085 microprocessor-kits. The count in register pair D-E is to be stored by the programmer. From DCX D to RET of the programmer. From DCX D to RET of the program are stored in the monitor program, the memory location being 03BC to One can call the delay subroutine as shown below:

Get count = 5000H LXI D, 5000H Call DELAY

5000H is a typical count value desired by the programmer. One can take any count CALL between 0000-FFFF as required. If the required delay is of a few milliseconds to delay subbedelay subroutine given in monitor's program may be called. For greater delay one write his write his own delay subroutine as discussed in subsequent subsections. 153 -

etates for the execution of each instruction of the program are as follows:

The states for the extensions	How many times the instruction is executed	States
MVI B, 10 H LOOP I MVI C, 78H LOOP II DCR C JNZ LOOP II	120×16	7×1 7×16 $4 \times 120 \times 16$ $10 \times (120 - 1) \times 16 + 7 \times 16$
+ 7×		10 × 1

= 27182 sates

Delay time = $27182 \times 320 \times 10^{-9}$ second = 8.6912 milliseconds.

Toget maximum delay using two registers both registers B and C are loaded by FF. Total number of states for the maximum delay is

Delay time = $914954 \times 320 \times 10^{-9}$ second

= 0.29278528 second.

= 0.293 second (approximately).

The approximate delay time is calculated as follows:

States for incl. 1 :- the program are: