光栅衍射

刘若涵 自 05 2020011126 单三晚 L 组 18 号

1 数据处理

1.1 i = 0 时,测定光栅常数和光波波长

光栅编号: 18 $\Delta_{\chi}=1$ ' 入射光方位 $\varphi_{10}=243^{\circ}57$ ' $\varphi_{20}=63^{\circ}57$ '

波长 (nm)	黄 1		黄 2		绿 546.1		紫	
衍射光谱级次 m	3		3		3		3	
游标	I	II	I	II	I	II	I	II
左侧衍射光方位 ϕ_{z}	275°20'	95°20'	273°13'	95°12'	273°20'	93°20'	267°01'	87°02'
右侧衍射光方位 $oldsymbol{arphi}_{oldsymbol{a}}$	212°29'	32°31'	212°35'	32°36'	214°27'	34°29'	220°48'	40°50'
$2\varphi_m = \varphi_{\underline{x}} - \varphi_{\underline{z}}$	62°51'	62°49'	62°38'	62°36'	58°53'	58°51'	46°13'	46°12'
$\overline{2arphi_m}$	62°50'		62°37'		58°52'		46°13'	
$arphi_m$	31°25'		31°19'		29°26'		23°06'	

光线正入射时有 $dsin \varphi_m = m \lambda$

(1) 求光栅常数 d

已知绿光波长 $\lambda = 546.1 nm$, 三级谱线衍射角 $\varphi_m = 29^{\circ}26'$

则
$$d = \frac{m\lambda}{\sin\varphi_m} = \frac{3 \times 546.1 nm}{\sin(29^\circ 26')} = 3333.9 nm$$

得
$$\Delta_d = \frac{2\pi}{60 \times 180 \times tan(29^{\circ}26')} \times 3333.9 = 3.4nm$$

则
$$d = (3333.9 \pm 3.4)nm$$

则 $\lambda = (579.3 \pm 0.8) nm$

(2) 求波长较长的黄光波长

波长较长的黄光三级谱线衍射角 $\varphi_m = 31^{\circ}25'$

則
$$\lambda = \frac{dsin\varphi_m}{m} = \frac{3333.9nm \times sin(31^{\circ}25')}{3} = 579.3nm$$
又由 $\frac{\Delta_{\lambda}}{\lambda} = \sqrt{(\frac{\partial ln\lambda}{\partial d})^2 \Delta d^2 + (\frac{\partial ln\lambda}{\partial \varphi_m})^2 \Delta \varphi_m^2} = \sqrt{(\frac{\Delta_d}{d})^2 + (\frac{1}{tan\varphi_m})^2 \Delta \varphi_m^2}, \quad \Delta \varphi_m = 2\Delta_{\chi} = 2'$
得 $\Delta_{\lambda} = 579.3 \times \sqrt{(\frac{3.4}{3333.9})^2 + (\frac{1}{tan(31^{\circ}25')})^2 (\frac{2\pi}{60 \times 180})^2} = 0.8nm$

对比标准值 $\lambda_{kr} = 579.1nm$

相对偏差
$$E = \frac{579.3 - 579.1}{579.1} \times 100\% = 0.035\%$$
,很小,测量结果准确。

(3) 求波长较短的黄光波长

波长较短的黄光三级谱线衍射角 $\varphi_m = 31^{\circ}19'$

则
$$\lambda = \frac{dsin\varphi_m}{m} = \frac{3333.9nm \times sin(31^{\circ}19')}{3} = 577.61nm$$

$$\mathbb{X} \pm \frac{\Delta_{\lambda}}{\lambda} = \sqrt{(\frac{\partial \ln \lambda}{\partial d})^2 \Delta d^2 + (\frac{\partial \ln \lambda}{\partial \varphi_m})^2 \Delta \varphi_m^2} = \sqrt{(\frac{\Delta_d}{d})^2 + (\frac{1}{\tan \varphi_m})^2 \Delta \varphi_m^2}, \quad \Delta \varphi_m = 2\Delta_{\chi \chi} = 2'$$

得
$$\Delta_{\lambda} = 577.61 \times \sqrt{(\frac{3.4}{3333.9})^2 + (\frac{1}{tan(31^{\circ}19')})^2(\frac{2\pi}{60 \times 180})^2} = 0.81nm$$

则 $\lambda = (577.61 \pm 0.81)$ nm

对比标准值 $\lambda_{kr} = 577.0nm$

相对偏差 $E = \frac{577.6 - 577.0}{577.0} \times 100\% = 0.10\%$,很小,测量结果准确。

(2) 求紫光波长

紫光三级谱线衍射角 $\varphi_m = 23^{\circ}06'$

则
$$\lambda = \frac{dsin\varphi_m}{m} = \frac{3333.9nm \times sin(23^{\circ}06')}{3} = 436.0nm$$

$$\mathbb{X} \pm \frac{\Delta_{\lambda}}{\lambda} = \sqrt{(\frac{\partial ln\lambda}{\partial d})^2 \Delta d^2 + (\frac{\partial ln\lambda}{\partial \varphi_m})^2 \Delta \varphi_m^2} = \sqrt{(\frac{\Delta_d}{d})^2 + (\frac{1}{tan\varphi_m})^2 \Delta \varphi_m^2}, \quad \Delta \varphi_m = 2\Delta_{\chi \chi} = 2\Delta_{\chi} = 2\Delta_$$

得
$$\Delta_{\lambda} = 436.0 \times \sqrt{(\frac{3.4}{3333.9})^2 + (\frac{1}{tan(23^{\circ}06')})^2 (\frac{2\pi}{60 \times 180})^2} = 0.7nm$$

则 $\lambda = (436.0 \pm 0.7) nm$

对比标准值 $\lambda_{kr} = 435.8nm$

相对偏差 $E = \frac{436.0 - 435.8}{435.8} \times 100\% = 0.046\%$,很小,测量结果准确。

1.2 $i = 15^{\circ}0'$ 时,测量波长较短的黄线的波长

光栅编号: 18 $\Delta_{\chi} = 1$ ' 光栅平面法线方位 $\varphi_{1n} = 244^{\circ}25$ ' $\varphi_{2n} = 64^{\circ}25$ '

	游标	入射光方位 φ_0	入射角 i	Ī	ī
	I	259°25'	15°00'	15°00'	
	II	79°25'	15°00'		
光谱级次 m	游标	左侧衍射光方	衍射角 $oldsymbol{arphi}_{mar{z}}$	$\overline{arphi_{mar{Z}}}$	同(异)侧

		位 $\pmb{arphi}_{\dot{\mathcal{E}}}$			
3	I	295°30'	51°05'	51°04'	异
	II	115°28'	51°03'		
光谱级次 m	游标	右侧衍射光方	衍射角 $oldsymbol{arphi}_{mar{d}}$	$\overline{oldsymbol{arphi}_{mar{A}}}$	同(异)侧
		位 $oldsymbol{arphi}_{ar{A}}$			
3	I	229°18'	15°07'	15°06'	冏
	II	49°20'	15°05'		

$$d(sin\varphi_m \pm sin \, i) = m\lambda$$

左衍射光位于入射光异侧,
$$\lambda_{\underline{x}} = \frac{d(sin\phi_{m\underline{x}} \cdot sin\,i)}{m} = \frac{3333.9nm \times [sin(51^{\circ}04') - sin(15^{\circ}00')]}{3} = 576.82nm$$

右衍射光位于入射光同侧, $\lambda_{\underline{a}} = \frac{d(sin\phi_{m\underline{x}} + sin\,i)}{m} = \frac{3333.9nm \times [sin(15^{\circ}06') \cdot sin(15^{\circ}00')]}{3} = 577.12nm$
得 $\lambda = \frac{\lambda_{\underline{x}} + \lambda_{\underline{a}}}{2} = 576.97nm$ • **有效数字**

与标准值 $\lambda_{sr}=577.0nm$ 十分接近,测量结果准确。 相对偏差

1.3 用最小偏向角法测定波长较长的黄线的波长

	游标	入射光方位 φ_0	光栅平面法向	入射角 i	对称后光栅平
			$arphi_{1n}$		面法向 $oldsymbol{arphi}_{2n}$
	I	259°42'	244°25'	15°17'	274°59'
	II	79°42'	64°25'	15°17'	94°59'
光谱级次 m	游标	谱线方位 $oldsymbol{arphi}_1$	对称后谱线方	$2\delta = \varphi_2 - \varphi_1$	$\bar{\delta}$
			位 $oldsymbol{arphi}_2$		
3	I	229°27'	289°56'	60°29'	30°14'
	II	49°28'	109°55′	60°27'	

$$\pm 2dsin\frac{\delta}{2} = m\lambda$$

得
$$\lambda = \frac{2dsin\frac{\delta}{2}}{m} = \frac{2 \times 3333.9nm \times sin(\frac{30^{\circ}14'}{2})}{3} = 579.6nm$$

与标准值 $\lambda_{sr} = 579.1nm$ 接近,测量结果准确。 相对偏差

(1) i=0 时,测定光栅常数和光波波长

			• /
光栅编号:	Δt =	 _入射光方位の10=243°57′	p20 = 63 57

波长 (nm)	黄	1 6	7	2	54	6.1	1	ř
衍射光谱级次 m		3		3	7	3		3
游标	1	11	1	II	I	11	1	11
左侧衍射光方位φκ	275'13'	95121	27520	95201	27320	93'20'	26701	87°02'
右侧衍射光方位pe	21235	32'36"	2/2029	3231	2427	3429'	22048	40°50'
$2\varphi_{m} = \varphi_{\xi_{i}} - \varphi_{\xi_{i}}$	62°38'	62.36	62 51	62'49'	28,23,	58°51′	46'13'	46 12
2φ _m	62	'37'	62	50'	78	°52′	4	5°13'
φ_{π}	31	19'	31	15'	29	26'	100	06'

入y」= 577.61nm 入y=577.71nm d= 3333.87nm 入p = 436.00 nm (2) i=15°0′ 时,测量波长较短的黄线的波长

光栅编号: 18 光栅平面法线方位φι_π = 244°25′ φ_{2π} = 14°25′

	游标	入射光方位go	入射角i		i
	I	>59°25'	15000	10	00'
	II	79°25′	1500'] 15	06
光谱级次 m	游标	左侧衍射光方位φ,	衍射角φ, ε	$\overline{arphi}_{m^{T_{\!$	同(异)
	I	295°30'	5105'	-1°.4'	12,
3	M	115°28'	5103'	51°04'	异
光谱级次 m	游标	右侧衍射光方位φα	衍射角φωι	\overline{arphi}_{mfi}	问 (异. 侧
3	I	229°18′	15:07'		
	II	Q9°20'	15.05,	15006'	同

λ = 576.82 nm

λ = 577.12 mm

ও)	游标 I I	>敏光方位40 259°42' 79°42'	光捌行面法向Pin 244°25′ 64°25′	入射系i 15°17′ 15°17′	科明面法分化か 2月459~ 94839~
光谱级发m	游标	语赋论的		P2-P1	<u>8</u>
3	1	229027	289°56'	60'29'	8 30°14′
	I	49°28'	109055'	6027	

λ= 579.62 nm

1074 mr. 4.6