University of Dhaka CSE 3113: Microprocessor and Assembly Language Lab Lab Exam Date: 01.07.2025

1.	Write an assembly program that calls a function string_length to find the length of a string and
	stores the result in memory.

2. Write an assembly program that calls a function **remove_first** that takes an array and its length and removes the first element of the array.

Input:

R0 = array base address, R1 = length

3. Write an assembly program that calls a function **remove_last** that takes an array and its length and removes the last element of a list.

Inputs:

R0 = array base address, R1 = length

4. Write an assembly program that calls a function **sum_avg** that takes an array and its length, returns the **sum** of all elements in R3 and the **average** in R4.

Input:

R0 = array base address, R1 = length

5. Write an assembly program that calls a function **find_min_max** that takes an array and its length and returns minimum in R3, maximum in R4

Input:

R0 = array base address, R1 = length

6. Write an assembly program that calls a function **array_ascend** that takes an array of **n** numbers and arranges the array in ascending order.

7. Write an assembly program that calls a function, reverse_array, which takes an array and its length, and reverses a 32-bit integer array in memory. $arr[] = \{1, 2, 3, 4\} \rightarrow arr[] = \{4, 3, 2, 1\}$

Input:

R0 = array base address, R1 = length

8. Write an assembly program that calls a function **swap_array** that takes an array and its length and swaps elements using a two-pointer technique: start and end.

Input:

R0 = array base address, R1 = length

9. Write an assembly program that calls a function **odd_even** that takes an array and its length, and counts how many even and odd numbers exist in a given array.

Output:

R0 = number of even numbers, R1 = number of odd numbers

10. Write an assembly program that calls a function **merge_array** that takes two sorted arrays and their respective lengths and merges them into a third array (sorted).

Input:

Output:

R0 = total elements in result

11. Write an assembly program that calls a function **rotate_k** that takes an array, its length and k (rotation offset) and rotates the array left by k positions.

Input:

$$R0 = base$$
, $R1 = length$, $R2 = K$ (rotation offset)

Example:

$$arr = [1, 2, 3, 4, 5], k = 2 \rightarrow [3, 4, 5, 1, 2]$$