APPENDIX

A. Details of Implementations

We present the details of the flow classification and short flow aggregation algorithm in Algorithm 1 and 2, respectively. The features used for edge pre-clustering and clustering are shown in Table V. And Table VI shows the hyper-parameters used in HyperVision and the recommended values.

Edge	Group	Data	Description
		bool	Denoting short flows with the same source address.
		bool	Denoting short flows with the same source port.
SWC	ਫ਼ਿ	bool	Denoting short flows with the same destination address.
Ĕ	Ĭ	bool	Denoting show flows with the same destination port.
ort	structural	int	The in-degree of the connected source vertex.
S	<u>8</u>	int	The out-degree of the connected source vertex.
ing.		int	The in-degree of the connected destination vertex.
Edge Denoting Short Flows		int	The out-degree of the connected destination vertex.
Ď	statistical	int	The number of flows denoted by the edge.
96		int	The length of the feature sequence associated with the edge.
Ed		int	The sum of packet lengths in the feature sequence.
	sta	int	The mask of protocols in the feature sequence.
		float	The mean of arrival intervals in the feature sequence.
Edge Denoting Long Flows	al	int	The in-degree of the connected source vertex.
	structural	int	The out-degree of the connected source vertex.
		int	The in-degree of the connected destination vertex.
gu		int	The out-degree of the connected destination vertex.
ಗಿ		float	The flow completion time of the denoted long flow.
ii.		float	The packet rate of the denoted long flow.
) enoti	=	int	The number of packets in the denoted long flow.
	iti:	int	The maximum bin size for fitting packet length distribution.
. Se	statistical	int	The length associated with the maximum bin size.
Edg	st	int	The maximum bin size for fitting protocol distribution.
		int	The protocol associated with the maximum bin size.

TABLE VI RECOMMENDED HYPER-PARAMETER CONFIGURATION.

Group	Hyper-Parameter	Description	Value
Graph Construction	PKT_TIMEOUT FLOW_LINE AGG_LINE	Flow completion time threshold. Flow classification threshold. Flow aggregation threshold.	10.0s 15 20
Graph Pre- Processing	ϵ minPoint	DBSCAN hyper-parameters for clustering components and edges.	4×10^{-3} 40
Traffic	K T	K-means hyper-parameter. Loss threshold for malicious traffic.	10 10.0
Detection	$egin{array}{c} lpha \ eta \ \gamma \end{array}$	Balancing the terms in the loss function.	0.1 0.5 1.7

Per-Packet Features	Packet Length	Time Interval	Protocol Type
$ \iint_{\mathcal{F}} \mathcal{D}_{\text{Ideal}}(p, q) dp dq \iint_{\mathcal{F}} \mathcal{D}_{\text{Samp.}}(p, q) dp dq \iint_{\mathcal{F}} \mathcal{D}_{\text{Eve.}}(p, q) dp dq $	1.011 ▼32 .10%	0.918 ▼32 .00%	0.795 ▼32.51 %
$\iint_{\mathcal{F}} \mathcal{D}_{\mathrm{Samp.}}(p,q) \mathrm{d}p \mathrm{d}q$	0.965 ▼35.17 %	0.963 ▼28.66 %	0.800 _{▼32.08} %
$\iint_{\mathcal{F}} \mathcal{D}_{\text{Eve.}}(p,q) dp dq$	0.588 _{▼60.51%}	$0.588_{\blacktriangledown \mathbf{56.44\%}}$	0.588 _{▼50.08%}
$\iint_{\mathbb{T}} \mathcal{D}_{H,V}(p,q) dpdq$	1.489.47.9797	1.350, 25 5107	1.178, 49 1997

(a) Fix q and leave p as variable. (b) Fix p and leave q as variable.

Fig. 20. HyperVision approaches the idealized flow recording mode on information entropy.

TABLE VIII
DETAILS OF MALICIOUS TRAFFIC DATASETS

DETAILS OF MALICIOUS TRAFFIC DATASETS.											
Class		Dataset Label	Description	Att.1	Vic.	B.W. ²	Enc. Ratio				
		Magic.	Magic Hound spyware.	2	479	0.34	0.13%				
	are	Trickster Plankton	Encrypted C&C connections. Pulling components from CDN.	2 3	793 579	0.63 59.2	10.0% 23.8%				
	Spyware	Penetho	Wifi cracking APK spyware.	1	516	3.57	100%				
		Zsone	Multi-round encrypted uploads.	1	479	5.98	93.0%				
ΕΨ		CCleaner	Unwanted software downloads.	4	466	28.1	4.09%				
Malware Related Encrypted Traffic	are	Feiwo Mobidash	Encrypted ad API calls. Periodical statistic ad updates.	3	1.00K 624	19.8 6.08	100% 100%				
g	Adware	WebComp.	WebCompanion click tricker.	3	281	8.38	55.2%				
rybt		Adload	Static resources for PPI adware.	1	280	1.04	1.09%				
Enc	å.	Svpeng Koler	Periodical C&C interactions (10s). Invalid TLS connections.	2 3	403 333	1.21 2.22	1.26%				
g .	Ransom- ware	Ransombo	Executable malware downloads.	5	369	58.6	42.7%				
elat	Ra	WannaL.	Wannalocker delivers components.	2	275	7.49	30.3%				
e R	<u> </u>	Dridex BitCoinM.	Victim locations uploading. Abnormal encrypted channels.	1	429 1.54K	4.10 0.79	100%				
war	Miner	TrojanM.	Long SSL connections to C&C.	3	1.37K	2.39	89.4%				
(Jaj	Σ	CoinM.	Periodical connections to pool.	1	1.40K	0.21	100%				
_		THBot Emotet	Getting C&C server addresses.	4 6	103 1.17K	1.72 1.43	2.71% 68.6%				
	/are	Snojan	Communication to C&C servers. PPI malware downloading.	3	326	8.94	100%				
	Botware	Trickbot	Connecting to alternative C&C.	4	347	0.57	100%				
	"	Mazarbot	Long C&C connections to cloud.	3	409	6.13	30.9%				
_		Sality	A P2P botware.	20	247	2.19	100%				
	ng	CrossfireS.	We use the botnet cluster sizes	100	313	197	100%				
) od	CrossfireM. CrossfireL.	and the ratio of decony servers (HTTPS) in [10].	200 500	313 313	278 503	100% 100%				
affic	Ĕ	LrDoS 0.2	We use the traffic of an encrypted	1	1	5.57	100%				
Ë	Link Flooding	LrDoS 0.5	video application and the settings	1	1	3.25	100%				
Encrypted Flooding Traffic		LrDoS 1.0	in WAN experiments [58]	1	1 2	1.90	100%				
000	SSH Inject	ACK Inj. IPID Inj.	SSH injection via ACK rate-limits. SSH injection via IPID counters.	1	2	1.78 0.28	-				
Ξ	S II	IPID Port	Requires of the SSH injection.	1	1	1.83	-				
pte	Password Cracking	Telnet S.	Telnet servers in AS38635.	1	19	0.63	100%				
cry		Telnet M. Telnet L.	Telnet servers in AS2501. Telnet servers in AS2500.	1 1	43 83	1.70 2.76	100% 100%				
П	ıssw	SSH S.	SSH servers in AS9376.	1	35	1.39	100%				
	1 2 2 E	SSH M.	SSH servers in AS2500.	1	257	2.49	100%				
_		SSH L.	SSH servers in AS2501.	1	486	5.53	100%				
		Oracle	TLS padding Oracle.	1	1	3.99	100%				
၁		XSS SSLScan	Xsssniper XSS detection. SSL vulnerabilities detection.	1 1	1 1	31.8 15.0	100% 100%				
affi	Web Attacks	Param.Inj.	Commix parameter injection.	1	1	17.1	100%				
Ţ	∆ tta	Cookie.Inj.	Commix cookie injection.	1	1	39.6	100%				
Wel	ep.	Agent.Inj. WebCVE	Commix agent-based injection. Exploiting CVE-2013-2028.	1 1	1 1	19.7 2.30	100% 100%				
g	🔰	WebShell	Exploiting CVE-2013-2028. Exploiting CVE-2014-6271.	1	1	11.2	100%				
ypt		CSRF	Bolt CSRF detection.	1	1	7.73	100%				
Encrypted Web Traffic		Crawl	A crawler using scrapy.	1	1	29.7	100%				
ш	SMTF	Spam1 Spam50	Spam using SMTP-over-SSL. Encrypted spam with 50 bots.	1 50	1 1	36.2 61.7	100% 100%				
	SS	Spam100	Brute spam using 100 bots.	100	1	88.9	100%				
_		ICMP		1	211K	5.61					
	l ig	NTP	We use the brute force scanning rates identified by darknet	1	99.3K	3.87	-				
	can	SSH	in [11]. We reproduce the	1	205K	5.79	-				
	Š	SQL DNS	scan using Zmap which targets	1 1	112K 198K	3.04 6.61	_				
	Brute Scanning	HTTP	the peers and customers	1	93.7K	2.68	_				
		HTTPS	of AS 2500.	1	209K	4.89	-				
يد	e g	SYN RST	We use the protocol types and	6.50K 32.5K	1 1	11.41 5.79	-				
tac	Source Spoof	UDP	the packet rates in [32].	6.50K	1	54.3	-				
; At	[S	ICMP		3.20K	1	0.13					
Orce	g g	NTP	W d l	650	1	95.8	-				
Ξ	Amplification Attack	DNS CharGen	We use the packet rates and the vulnerable protocols	200	1 1	82.7 175	-				
3rut	plifica Attack	SSDP	observed in [32].	1.30K	1	7.23	-				
E E	mp]	RIPv1	And we use the number of	500	1	7.04	-				
Traditional Brute Force Attack	\Z	Memcache CLDAP	the reflectors in [55].	1.60K 1.30K	1 1	63.5	-				
adit	<u> </u>	Lr. SMTP		1.30K	158K	7.97	-				
Ë	e e	Lr.NetBios	We use the sending rates of	28	444K	17.3	-				
	erat	Lr.Telnet	vulnerable application discovery	156	1.23M	49.0	-				
	uln	Lr.VLC Lr.SNMP	disclosed by a darknet [11]. We estimate the number of scanners	22	352K 110K	20.5 6.51	-				
	Probing Vulnerable Application	Lr.RDP	by the number of visible active	172	1.30M	53.0	-				
	bing Apj	Lr.HTTP	addresses from the vantage	94	640K	38.0	-				
	Pro	Lr.DNS	(i.e., realword measurements) and the size of the darknet.	28 268	428K 1.82M	25.0 63.3	-				
		Lr.ICMP Lr.SSH	and the size of the darkhet.	72	994K	5.63	-				
1	Att o	!	onto the number of attackers and vic	_							

 $^{^1}$ Att. and Vic. indicate the number of attackers and victims. 2 B.W. is short for total bandwidth in the unit of Mb/s.

Algorithm 1: Secure flow classification.

```
Input: Per-packet features: PktInfo, the hash table for flow collecting:
         FlowHashTable.
   Output: Classified flows: ShortFlow and LongFlow.
  time_now := PktInfo[0].time, last_check := time_now.
2 for pkt in PktInfo do
       // Aggregate packets into flows.
       if Hash(pkt) not in FlowHashTable then
3
           FlowHashTable adds an entry for pkt.
       FlowHashTable[Hash(pkt)] appends pkt.
       if time_now - last\_check > JUDGE\_INTERVAL then
            for flow in FlowHashTable do
                 // Judge the completion of flows.
                 if time_now - flow[-1].time > PKT_TIMEOUT then
                      // Classify the flow via the number of packets.
                      if flow.size < FLOW_LINE then
                          ShortFlow adds flow
10
11
                          LongFlow adds flow.
12
13
                      FlowHashTable clears the states of flow
            last_check ← time_now. // Record the time of checking.
14
       time_now ← pkt.time. // Update the timer.
```

Algorithm 2: Short flow aggregation.

```
Input: Short flows: ShortFlow.
   Output: Constructed edges: ShortEdge.
  Initialize ProtoHashTable as an empty table.
   // Select candidate protocols for the aggregation.
2 for flow in ShortFlow do
        // Calculate the protocol mask of a short flow.
        flow\_proto := (flow[0].proto|...|...|flow[-1].proto).
        if Hash(flow_proto) not in ProtoHashTable then
         ProtoHashTable adds an entry for flow_proto
        Append flow to ProtoHashTable[Hash(flow_proto)].
   // Perform the source aggregation.
7 for flows in ProtoHashTable with same protocols do
        SrcAddrTable collects the flows with same sources in flows.
        for sflow in SrcAddrTable do
            // The flows can be aggregated and denoted by one edge.
10
             if sflow.size > AGG_LINE then
11
                  edge.features := sflow[0].features
                  edge.source := sflow[0].source
12
                  if an unique destination in sflow then
13
                       // Source and destination aggregation.
                       edge.destination saves the unique destination.
14
                  else
15
                       // Source aggregation only.
16
                       Record each destination in sflow
                  Add the constructed edge to ShortEdge.
                  SrcAddrTable evicts sflow.
18
        DstAddrTable collects flows with same destinations.
19
        Inspect the flows with the same destinations similarly.
20
        // Process short flows which cannot be aggregated.
21
        ShortEdge adds flows in SrcAddrTable and DstAddrTable
```

B. Details of Experiments

1) Details of Datasets: We present the detailed properties of the 80 newly collected datasets in Table VIII, including the number of attackers and victims, the packet rates of attack flows, and the ratios of encrypted traffic. All the datasets are collected and labeled using the same method as MAWI datasets [41] and CIC datasets [72], [73]. Moreover, Table IX shows the performances on existing datasets.

C. Details of Theoretical Analysis

1) Analysis of Event based Mode: Let random variable $I_{\mathrm{Eve.}}$ indicate if the event based mode records an event for a

flow denoted by a random variable sequence, $\langle s_1, s_2, \dots, s_L \rangle$, $L \sim G(q)$. And we assume that the mode can merge repetitive events. First, we obtain the probability distribution of the random variable I_{Eve.}:

$$\mathbb{P}[I_{\text{Eve.}} = 1] = 1 - \mathbb{P}[I_{\text{Eve.}} = 0],$$

$$\mathbb{P}[I_{\text{Eve.}} = 0] = \sum_{l=1}^{\infty} \mathbb{P}[L = l] \cdot \mathbb{P}[I_{\text{Eve.}} = 0 | L = l]$$

$$= \sum_{l=1}^{\infty} (1 - q)^{l-1} \cdot q \cdot (1 - p^{s})^{l}$$

$$= \frac{q(1 - p^{s})}{1 - (1 - q)(1 - p^{s})}.$$
(21)

Then, we obtain the entropy of the random variable $I_{\mathrm{Eve.}}$:

$$\begin{split} \mathcal{H}_{\mathrm{Eve.}} &= \mathcal{H}[I_{\mathrm{Eve.}}] = \\ -\mathbb{P}[I_{\mathrm{Eve.}} &= 0] \ln \mathbb{P}[I_{\mathrm{Eve.}} &= 0] - \mathbb{P}[I_{\mathrm{Eve.}} &= 1] \ln \mathbb{P}[I_{\mathrm{Eve.}} &= 1]. \end{split} \tag{22}$$

We observe that $\frac{\partial \mathcal{H}[\mathrm{I}_{\mathrm{Eve.}}]}{\partial q} \approx 0$ when q>0.5. Thus, we use the second-order taylor series of q to approach $\mathcal{H}_{\mathrm{Eve.}}$:

$$\mathcal{H}_{\text{Eve.}} = \frac{2q(1-p^s)\ln\left[\frac{(p^s-1)q}{p^s(q-1)-q}\right]}{p^s(q-1)-q} = -2\theta\ln\theta,\tag{23}$$

where $\theta = \frac{\zeta}{n}$, $\zeta = q - qp^s$, and $\eta = q - p^s(q-1)$. Similarly, we obtain the expected data scale $\mathcal{L}_{\mathrm{Eve.}}$ and the information density $\mathcal{D}_{\text{Eve.}}$:

$$\mathcal{L}_{\text{Eve.}} = \mathbb{P}[I_{\text{Eve.}} = 1] = \frac{p^s}{p^s(1-q)+q} = -\frac{p^s}{\eta},$$

$$\mathcal{D}_{\text{Eve.}} = \frac{\mathcal{H}_{\text{Eve.}}}{\mathcal{L}_{\text{Eve.}}} = \frac{2\zeta}{p^s} \cdot \ln \theta.$$
(24)

Here, we complete the analysis for the event based mode.

2) Analysis of Sampling based Mode: We use X_{Samp} to denote the random variable to be recorded as the flow information in the sampling based mode which is the sum of the observed per-packet features denoted by the random variable sequence. We can obtain the distribution of X_{Samp} . as follows:

$$X_{\text{Samp.}} = \sum_{i=1}^{L} s_i, \quad s_i \sim B(s, p) \Rightarrow X_{\text{Samp.}} \sim B(Ls, p).$$
 (25)

The amount of the information recorded by the sampling based mode is the Shannon entropy of X_{Samp} . We decompose the entropy as conditional entropy and mutual information:

$$\mathcal{H}_{\text{Samp.}} = \mathcal{H}[X_{\text{Samp.}}]$$

$$= \mathcal{H}[X_{\text{Samp.}}|L] + \mathcal{I}(X_{\text{Samp.}};L).$$
(26)

We assume that the mutual information between the sequence length L and the accumulative statistic $X_{\text{Samp.}}$ is close to zero. It implies the impossibility of inferring the statistic from the length of the packet sequence. Then we obtain a lower bound of the entropy as an estimation which is verified to be a tight bound via numerical analysis:

$$\begin{cases} \mathcal{H}_{\text{Samp.}} = \mathcal{H}[X_{\text{Samp.}}|L] &= \sum_{l=1}^{\infty} \mathbb{P}[L=l] \cdot \mathcal{H}[X_{\text{Samp.}}|L=l] \\ \mathcal{H}[X_{\text{Samp.}}|L=l] &= \frac{1}{2} \ln 2\pi e l s p (1-p), \end{cases}$$

$$\Rightarrow \mathcal{H}_{\text{Samp.}} = \frac{1}{2} \ln 2\pi e s p (1-p) + \frac{q}{2} \sum_{l=1}^{\infty} (1-q)^{l-1} \ln l. \quad (27)$$

Method	Metric	Kitsune Datastes						CIC-IDS2017				CIC-DDoS2019				
		Mirai	Fuzz.	OS Scan	SSL DoS	SYN DoS	SSDP F.	Average	Tue.	Wed.	Thu.	Fri.	Average	Day1	Day2	Average
Jaqen	AUC	0.7452	0.9999	0.9998	0.9997	0.9965	0.9145	0.9426	/ 2	/	/	/	/	0.9988	0.9986	0.9987
	F1	0.5170	0.9999	0.9998	0.9762	0.9951	0.9406	0.9048	/	/	/	/	/	0.9508	0.9620	0.9564
FlowLens	AUC	0.7818	0.9257	0.9809	0.9582	0.9999	0.9655	0.9353	0.9547	0.8876	0.8117	0.9484	0.9006	0.9909	0.8869	0.9389
	F1	0.3714	0.9543	0.8225	0.9295	0.8600	0.9706	0.8180	0.9193	0.8822	0.8148	0.8713	0.8719	0.8974	0.9337	0.9155
Whisper	AUC	0.9992	0.8294	0.9896	0.9998	0.9328	0.9887	0.9566	0.8101	0.7343	0.7677	0.7311	0.7608	-	-	-
	F1	0.8490	0.9531	0.9258	0.9778	0.8470	0.9792	0.9220	0.5077	0.6434	0.4915	0.5770	0.5549	-	-	-
Kitsune	AUC	0.9885	0.9986	0.9998	0.9275	0.9886	0.9946	0.9829	0.6891	0.4841	0.8091	0.9069	0.7223	-	-	-
	F1	0.9364	0.9710	0.9978	0.6006	0.5015	0.9695	0.8295	0.4745	0.3402	0.3745	0.5347	0.4310	-	-	-
DeepLog	AUC	0.8935	0.9457	0.9814	0.8106	0.9560	0.9999	0.9312	_ 1	-	-	-	-	-	-	-
	F1	0.8183	0.9281	0.9405	0.8106	0.9509	0.9943	0.9071	-	-	-	-	-	-	-	-
H.V.	AUC	0.9901	0.9999	0.9996	0.9914	0.9931	0.9587	0.9888	0.9970	0.9896	0.9420	0.9984	0.9818	0.9999	0.9999	0.9999
	F1	0.9974	0.9999	0.9999	0.9978	0.9979	0.9721	0.9942	0.9737	0.9679	0.9010	0.9676	0.9526	0.9997	0.9931	0.9964

We highlight the best accuracy in • and the worst accuracy in •. And we mark - when an unsupervised method lacks benign traffic for training.

² Backslash means that Jaqen is designed to detect only volumetric attacks.

We observed that the second-order taylor series can accurately approach the second term of the entropy:

$$\mathcal{H}_{\text{Samp.}} = \frac{1}{2} \ln 2\pi esp(1-p) + \frac{\ln 2}{2} q(1-q).$$
 (28)

Finally, we obtain the expected data scale and the information density similar to the analysis for the event based mode and complete the analysis for the sampling based mode.

3) Analysis of Graph based Mode in HyperVision: Hyper-Vision applies different recording strategies for short and long flows, i.e., when L > K it extracts the histogram for long flow feature distribution fitting, and when $L \leq K$ it records detailed per-packet features and aggregates short flows. Let $\mathcal{X}_{\mathrm{H.V.}}$ denote the random set of the recorded information. For short flows, all the random variables are collected in $\mathcal{X}_{\mathrm{H.V.}}$. For long flows, $\mathcal{X}_{\mathrm{H.V.}}$ collects s counters of the histogram for each state on the state diagram of the DTMC. First, we decompose the entropy of the graph based recording mode as the terms for short and long flows:

$$\mathcal{H}_{\text{H.V.}} = \mathcal{H}[\mathcal{X}_{\text{H.V.}}|L] = \sum_{l=1}^{\infty} \mathbb{P}[L=l] \cdot \mathcal{H}[\mathcal{X}_{\text{H.V.}}|L=l]$$

$$= \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{S}}|L] + \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{L}}|L]$$

$$\begin{cases} \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{S}}|L] &= \sum_{l=1}^{K} \mathbb{P}[L=l] \cdot \mathcal{H}[\mathcal{X}_{\text{H.V.}}|L=l] \\ \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{L}}|L] &= \sum_{l=K+1}^{\infty} \mathbb{P}[L=l] \cdot \mathcal{H}[\mathcal{X}_{\text{H.V.}}|L=l]. \end{cases}$$
(29)

Short Flow Information. HyperVision records detailed perpacket feature sequences for short flows which is the same as the brute recording in the idealized mode. Thus, the increasing rate of information equals the entropy rate of the DTMC:

$$\mathcal{H}[\mathcal{X}_{\text{H.V.}}|L=l] = l \cdot \mathcal{H}[\mathcal{G}], \tag{30}$$

$$\mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{S}}|L] = \sum_{l=1}^{K} \mathbb{P}[L=l] \cdot l \cdot \mathcal{H}[\mathcal{G}]$$

$$= q \cdot \mathcal{H}[\mathcal{G}] \cdot \sum_{l=1}^{K} (1-q)^{l-1} \cdot l \tag{31}$$

$$= \frac{1 - (Kq+1)(1-q)^{K}}{q} \cdot \mathcal{H}[\mathcal{G}].$$

Long Flow Information. When L > K, the random set collects the counters for distribution fitting. When the DTMC

has s states, the histogram has s counters v_1, v_2, \ldots, v_s , i.e., $\mathcal{X}_{\text{H.V.}} = \{v_1, v_2, \ldots, v_s\}$. We assume that the counters are independent:

$$v_i = \sum_{j=1}^{L} \delta_j, \qquad \delta_j = \begin{cases} 1, & \text{if } s_j \text{ is the } i^{\text{th}} \text{ state} \\ 0, & \text{else.} \end{cases}$$
 (32)

We observe that $\langle v_1, v_2, \dots, v_s \rangle$ is a binomial process:

$$v_i \sim B(L, \mathbb{P}[s_i = i])$$

$$\sim B(L, C_s^i p^i (1 - p)^{s - i}). \tag{33}$$

To obtain the closed-form solution, we use $\frac{(sp)^i e^{-sp}}{i!}$ as an estimation of $C_s^i p^i (1-p)^{s-i}$. Moreover, the length of the perpacket feature sequence of a long flow is relatively large which implies v_i approaches a Poisson distribution:

$$v_i \sim \pi(L \cdot \mathbb{P}[s_i = i])$$

$$\sim \pi(\lambda_i), \quad \lambda_i = \frac{(sp)^i e^{-sp}}{i!}.$$
(34)

Basing on the distribution of the collected counters, we obtain the entropy of the random set:

$$\begin{cases}
\mathcal{H}[v_i|L=l] &= \frac{1}{2}\ln 2\pi e l \frac{(sp)^i e^{-sp}}{i!} \\
\mathcal{H}[\mathcal{X}_{\mathrm{H.V.}}^{\mathrm{L}}|L=l] &= \sum_{i=1}^{s} \mathcal{H}[v_i|L=l],
\end{cases}$$
(35)

$$\begin{split} \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{L}}|L] &= \sum_{l=K+1}^{\infty} \mathbb{P}[L=l] \cdot \mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{L}}|L=l] \\ &= \sum_{l=K+1}^{\infty} q(1-q)^{l-1} \cdot \sum_{i=1}^{s} \frac{1}{2} \ln 2\pi e l \frac{(sp)^{i} e^{-sp}}{i!} \\ &= \frac{(1-q)^{K}}{2} [s \ln 2\pi e + \frac{s(s+1)}{2} \ln sp \\ &- sp^{2} - \sum_{i=1}^{s} \ln i!] + \frac{qs}{2} [\sum_{l=K+1}^{\infty} (1-q)^{l-1} \ln l]. \end{split}$$

The assumption of q>0.5 implies $K^{\rm th}$ order taylor series can accurately approach the last term in (35). Moreover, we utilize the quadric term of s in the taylor series of $\sum_{i=1}^{s} \ln i!$ to approach the entropy of long flows (γ is Euler–Mascheroni constant):

$$\mathcal{H}[\mathcal{X}_{\text{H.V.}}^{\text{L}}|L] = \frac{1}{4}s(1-q)^{K}[(1+s)\ln ps + 2\ln 2\pi e + 2q\ln K - 2s(1+p+\gamma)].$$
(36)

Finally, we take (31) and (36) in (29) and complete the analysis for the entropy of the graph based recording mode. Similarly, we obtain the expected data scale by analyzing the conditions of short and long flows separately:

$$\mathcal{L}_{\text{H.V.}} = \mathbb{E}[\mathcal{L}_{\text{H.V.}}^{\text{S}}|L] + \mathbb{E}[\mathcal{L}_{\text{H.V.}}^{\text{L}}|L]$$

$$= \sum_{l=1}^{K} \mathbb{P}[L=l] \cdot \frac{L}{C} + \sum_{l=K+1}^{\infty} s \cdot \mathbb{P}[L=l]$$

$$= s(1-q)^{K} + \frac{1 - (Kq+1)(1-q)^{K}}{Cq},$$
(37)

where C is the average number of flows denoted by an edge associated with short flows. Also, we obtain the expected information density by its definition: $\mathcal{D}_{\mathrm{H.V.}} = \mathcal{H}_{\mathrm{H.V.}}/\mathcal{L}_{\mathrm{H.V.}}$ and complete the analysis for the graph based recording mode used by HyperVision.