TD 1 : Raisonnement et vocabulaire ensembliste

Rédaction, types de raisonnements et vocabulaire ensembliste :

La syntaxe mathématique

Exercice 1. (*)

Vrai ou faux? Justifier.

1.
$$\forall (x,y) \in (\mathbb{R}^*)^2, x < y \Rightarrow \frac{1}{x} > \frac{1}{y}$$
.

2.
$$\forall x \in [0,1], x - x^2 \in \mathbb{N} \Rightarrow x \in \{0,1\}.$$

3.
$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \sin(x) < \sin(y)$$
.

4.
$$\nexists x \in \mathbb{R}^+, x < \sqrt{x}$$
.

5.
$$\forall x \in \mathbb{R}, \ x^2 + x > 0 \Rightarrow x > 0.$$

6.
$$\forall N \in \mathbb{N}^*, \exists n \in \mathbb{N}^*, \sum_{k=0}^n k \ge N.$$

Exercice 2. (**)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. Écrire avec des quantificateurs les propositions suivantes :

- 1. f est périodique.
- 2. f est majorée.
- 3. f est constante.
- 4. f atteint tous les
- réels.
- 5. f est croissante sur \mathbb{R} .
- 6. f prend des valeurs aussi grandes que l'on veut.
- 7. f s'annule au plus une fois
- 8. f admet un point fixe.

Exercice 3. (*)

Donner la négation des assertions suivantes après avoir justifié si elles sont vraies ou fausses.

1.
$$\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$$
.

2.
$$\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y > 0$$
.

3.
$$\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$$
.

4.
$$\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 > x$$
.

Exercice 4. (**)

Montrer que

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \text{ tel que } \left(n \geq N \Rightarrow 2 - \epsilon < \frac{2n+1}{n+2} < 2 + \epsilon \right).$$

Exercice 5. (*)

Écrire en langage mathématique l'ensemble :

- 1. des entiers naturels divisibles par 7.
- 2. des réels qui sont la somme de deux carrés d'entiers.
- 3. des entiers relatifs qui possèdent un antécédent par la fonction $x \mapsto e^x + x$.

Relations ensemblistes

Exercice 6. (**)

Soient E et F deux ensembles, $f: E \to F$.

Démontrer que :

$$\forall A, B \in \mathcal{P}(E) \quad (A \subset B) \Rightarrow (f(A) \subset f(B)),$$

$$\forall A, B \in \mathcal{P}(E) \quad f(A \cap B) \subset f(A) \cap f(B),$$

$$\forall A, B \in \mathcal{P}(E) \quad f(A \cup B) = f(A) \cup f(B),$$

$$\forall A, B \in \mathcal{P}(F)$$
 $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,

$$\forall A \in \mathcal{P}(F)$$
 $f(f^{-1}(A)) \subset A$,

$$\forall A \in \mathcal{P}(E)$$
 $A \subset f^{-1}(f(A)),$

$$\forall A \in \mathcal{P}(F)$$
 $f^{-1}(F \backslash A) = E \backslash f^{-1}(A)$.

Exercice 7. (**)

Soit E un ensemble, A, B et C des parties de E telles que $A \cup B = A \cup C$ et $A \cap B = A \cap C$.

Montrer que B = C.

Exercice 8. (**)

Étudier les inclusions $A \subset B$ et $B \subset A$ pour :

$$A = \left\{ \frac{\epsilon}{k(k+1)} \mid k \in \mathbb{N}^*, \ \epsilon \in \{\pm 1\} \right\}$$
$$B = \left\{ \frac{1}{p} - \frac{1}{q} \mid p, q \in \mathbb{N}^* \right\}$$

Exercice 9. (**)

Soient E un ensemble et $A, B, C \in \mathcal{P}(E)$. Montrer que

- 1. $\overline{A \cap B} \setminus C = (\overline{C} \setminus B) \cup (\overline{A} \setminus C)$.
- 2. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 3. $A \cup B = B \cap C \iff A \subset B \subset C$.

Raisonnement par récurrence

Exercice 10. (*)

1. Montrer que : pour n dans \mathbb{N}^* , la somme des n premiers entiers est donnée par la formule :

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

2. Montrer que : pour n dans \mathbb{N}^* , la somme des n premiers entiers au carré est donnée par la formule :

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

3. Montrons par récurrence :

$$\forall n \in \mathbb{N}^*, \ 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

Exercice 11. (***)

Soit A une partie de \mathbb{N}^* possédant les trois propriétés suivantes :

- $1 \in A$.
- $\forall n \in \mathbb{N}^*, n \in A \Rightarrow 2n \in A.$
- $\forall n \in \mathbb{N}^*, (n+1) \in A \Rightarrow n \in A.$

Démontrer que $A = \mathbb{N}^*$.

Exercice 12. (*)

- 1. On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0 = 0$, $u_1 = 1$ et pour tout $n \in \mathbb{N}$: $u_{n+2} = 5u_{n+1} 6u_n$. Montrer que pour tout $n \in \mathbb{N}$: $u_n = 3^n 2^n$.
- 2. On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0=0,\ u_1=0,\ u_2=2\ \text{et pour tout }n\in\mathbb{N}$ $u_{n+3}=3u_{n+2}-3u_{n+1}+u_n.$ Montrer que pour tout $n\in\mathbb{N}$: $u_n=n(n-1).$

Exercice 13. (*)

On note $(u_n)n \in \mathbb{N}$ la suite définie par $u_0 = 3$ et pour tout $n \in \mathbb{N} : u_{n+1} = u_n^2 - u_n$.

Montrer que pour tout $n \in \mathbb{N} : u_n \ge 3 \times 2^n$.

Exercice 14. (**)

Soit la suite $(x_n)_{n \in \mathbb{N}}$ définie par $x_0 = 4$ et $x_{n+1} = \frac{2x_n^2 - 3}{x_n + 2}$.

- 1. Montrer que : $\forall n \in \mathbb{N} \quad x_n > 3$.
- 2. Montrer que : $\forall n \in \mathbb{N} \quad x_{n+1} 3 > \frac{3}{2}(x_n 3)$.
- 3. Montrer que : $\forall n \in \mathbb{N} \quad x_n \geqslant \left(\frac{3}{2}\right)^n + 3$.
- 4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente?

Exercice 15. (**)

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=3$ et pour tout $n\geq 1$, $u_{n+1}=\frac{2}{n}\sum_{k=1}^n u_k$. Démontrer que, pour tout $n\in\mathbb{N}^*$, on a $u_n=3n$.

Exercice 16. (**)

Démontrer que tout entier $n \ge 1$ peut s'écrire comme somme de puissances de 2 toutes distinctes.

Exercice 17. (**)

Soit X un ensemble. Pour $f \in \mathcal{F}(X, X)$, on définit $f^0 = id$ et par récurrence pour $n \in \mathbb{N}$ $f^{n+1} = f^n \circ f$.

- 1. Montrer que $(\forall n \in \mathbb{N}, f^{n+1} = f \circ f^n)$.
- 2. Montrer que si f est bijective alors $(\forall n \in \mathbb{N}, (f^{-1})^n = (f^n)^{-1}).$

Raisonnement par l'absurde

Exercice 18. (*)

Montrer que $\frac{\ln(7)}{\ln(2)}$ est un irrationnel.

Exercice 19. (*)

Démontrer que si vous rangez (n+1) paires de chaussettes dans n tiroirs distincts, alors il y a au moins un tiroir contenant au moins 2 paires de chaussettes.

Exercice 20. (*)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de l'ensemble \mathbb{N} dans lui-même. On définit une application f de \mathbb{N} dans \mathbb{N} en posant $f(n) = f_n(n) + 1$.

Démontrer qu'il n'existe aucun $p \in \mathbb{N}$ tel que $f = f_p$.

Exercice 21. (**)

Démontrer que l'équation $9x^5 - 12x^4 + 6x - 5 = 0$ n'admet pas de solution entière.

Exercice 22. (**)

- 1. Montrer qu'il existe une infinité de nombres premiers.
- 2. Montrer qu'il existe une infinité de nombres premiers de la forme 4k + 3.
- 3. Montrer qu'il existe une infinité de nombres premiers de la forme 6k + 5.

Exercice 23. (***)

- 1. Exprimer $\cos((n+1)^{\circ})$ en fonction de $\cos(n^{\circ})$, $\cos(1^{\circ})$ et $\cos((n-1)^{\circ})$.
- 2. Démontrer que cos(1°) est irrationnel.

injectivité, surjectivité et bijectivité

Exercice 24. (*)

Soit $f: [1, +\infty[\to [0, +\infty[$ telle que $f(x) = x^2 - 1.$ f est-elle bijective?

Exercice 25. (**)

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1. $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$
- 2. $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$
- 3. $h: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x+y, x-y)$
- 4. $k: \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x+1}{x-1}$

Exercice 26. (***)

Soit E un ensemble et $f: E \to E$. Montrer que f est injective si, et seulement si, pour toutes parties A et B de E, $f(A \cap B) = f(A) \cap f(B)$.

Exercice 27. (**)

Montrer que

$$f: \mathbb{N}^2 \longrightarrow \mathbb{N}^*, (m,n) \longmapsto 2^m(2n+1)$$

est bijective

Exercice 28. (***)

Soit $f: E \longrightarrow F$, $g: E \longrightarrow G$. On définit

$$\forall x \in E, \ h(x) = (f(x), g(x))$$

- 1. Montrer que si f ou g est injective, alors h est injective
- 2. On suppose f et g surjective. h est-elle surjective?

Raisonnement par contraposée

Exercice 29. (*)

Montrer que : si n^2 est impair, alors n est impair.

Exercice 30. (**)

Soit $a \in \mathbb{R}$. Montrer que

$$\forall \epsilon > 0, \ |a| \le \epsilon \implies a = 0.$$

Exercice 31. (*)

Écrire les contraposées des implications suivantes. Sont-elles vraies ou fausses?

- 1. Pour tous réels x et y, si xy = 0 alors (x = 0 ou y = 0).
- 2. Si ABC est un triangle rectangle en A, alors $BC^2 = AB^2 + AC^2$.
- 3. $\forall n \in \mathbb{N} \ n \text{ pair} \Rightarrow n \text{ non premier.}$

Exercice 32. (**)

Soit $n \in \mathbb{N}^*$. Montrer que:

Si l'entier $(n^2 - 1)$ n'est pas divisible par 8, alors l'entier n est pair.

Raisonnement par analyse-synthèse

Exercice 33. (**)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application vérifiant :

$$\forall (x,y,z) \in \mathbb{R}^3, \ \frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}.$$

Montrer qu'il existe un unique couple $(a,b) \in \mathbb{R}^2$ tel que pour tout $x \in \mathbb{R}$, f(x) = ax + b.

Exercice 34. (**)

Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer qu'existe un unique couple (p,i) de fonctions de \mathbb{R} dans \mathbb{R} vérifiant les conditions suivantes :

- p est paire, i est impaire.
- f = p + i.

Exercice 35. (**)

Trouver les fonctions f de \mathbb{R} dans \mathbb{R} dérivables de dérivée continue telles que :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Exercice 36. (*)

Déterminer l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ pour lesquelles :

$$\forall (x,y) \in \mathbb{R}^2 , f(y-f(x)) = 2-x-y.$$

Exercice 37. (***)

On cherche toutes les isométries de \mathbb{R} , i.e. toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ pour lesquelles :

$$\forall (x,y) \in \mathbb{R}^2 : |f(x) - f(y)| = |x - y|$$

Indication: Soit f une isométrie.

On note δ la fonction $x \mapsto f(x) - f(0)$ sur \mathbb{R} . Montrer, en étudiant la quantité $(f(x) - f(y))^2$, que pour tous $x, y \in \mathbb{R}$, $\delta(x)\delta(y) = xy$.

Exercice 38. (**)

On note \mathscr{A} l'ensemble des fonctions affines et \mathscr{B} l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables pour lesquelles f(0) = f'(0) = 0. Montrer par analyse-synthèse que toute fonction dérivable de \mathbb{R} dans \mathbb{R} est la somme, d'une et une seule manière, d'une fonction de \mathscr{A} et d'une fonction de \mathscr{B} .

Exercice 39. (***)

Soit une fonctions f de \mathbb{R} dans \mathbb{R} continue telle que :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

- 1. Calculer f(0) et montrer que f est impaire.
- 2. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, calculer f(nx) en fonction de n et f(x).
- 3. Soit a = f(1). Montrer que

$$\forall x \in \mathbb{Q}, \ f(x) = ax.$$

- 4. Expliquer pourquoi tout nombre réel est limite d'une suite de nombres rationnels.
- 5. Conclure.

Compléments sur les nombres réels

Exercice 40. (*)

Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$

et

$$\min(x,y) = \frac{x+y-|x-y|}{2}.$$

Trouver une formule pour $\max(x, y, z)$.

Exercice 41. (*)

Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n \mid n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Exercice 42. (**)

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r \times x \notin \mathbb{Q}$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$,
- 3. En déduire : entre deux nombres rationnels distincts il y a toujours un nombre irrationnel.
- 4. En déduire que l'ensemble des nombres irrationnels est dense dans l'ensemble des nombres réels.

Exercice 43. (**)

Soit A et B deux parties bornées de $\mathbb R$ non vide.

Vrai ou faux?

- 1. $A \subset B \Rightarrow \sup A \leqslant \sup B$,
- 2. $A \subset B \Rightarrow \inf A \leqslant \inf B$,
- 3. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 4. $\sup(A+B) < \sup A + \sup B$,
- 5. $\sup(-A) = -\inf A$,
- 6. $\sup A + \inf B \leq \sup (A + B)$.

Exercice 44. (**)

Soit x un réel.

1. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par

$$u_n = \frac{E(x) + E(2x) + \ldots + E(nx)}{n^2}.$$

Donner un encadrement simple de $n^2 \times u_n$.

- 2. En déduire que (u_n) converge et calculer sa limite.
- 3. En déduire que \mathbb{Q} est dense dans \mathbb{R} .