23.10.2012 Abgabe: 30.10.2012 10.00 Uhr, Tutorenfach

Aufgabenblatt 1

zur Analysis III

1. Äquivalenz von Metriken

Auf \mathbb{R}^n seien drei verschiedene Normen gegeben durch

$$d(x,y) := |x - y| = \sqrt{\left(\sum_{i=1}^{n} (x_i - y_i)^2\right)},$$

$$\sigma(x,y) := \max_{1 \le i \le n} |x_i - y_i| \qquad , \qquad \varrho(x,y) := \sum_{i=1}^{n} |x_i - y_i|.$$

- (i) Es bezeichnen $B_r^d(x)$, $B_r^{\sigma}(x)$ und $B_r^{\varrho}(x)$ offene Kugeln um $x \in \mathbb{R}^n$ mit Radius r bez. d, σ bzw. ϱ . Finden Sie nur von n abhängige Konstanten C_1 , C_2 , C_3 und C_4 , so dass $B_{C_1r}^{\varrho}(x) \subset B_r^d(x) \subset B_{C_2r}^{\sigma}(x)$ sowie $B_{C_3r}^{\sigma} \subset B_r^d(x) \subset B_{C_4r}^{\varrho}(x)$.
- (ii) Sei $U \subset \mathbb{R}^n$ offen in (\mathbb{R}^n, d) . Zeigen Sie, dass dann U auch offen ist in (\mathbb{R}^n, ϱ) und (\mathbb{R}^n, σ) .
- 2. Vollständigkeit von Funktionräumen

Für $E \subset \mathbb{R}^n$, $E \neq \emptyset$ setzen wir

$$B(E) := \{ f \colon E \to \mathbb{R} : f \text{ ist beschränkt} \}.$$

Ferner definieren wir für zwei Funktionen $f, g: E \to \mathbb{R}$ ihren Abstand

$$d(f,g) := \sup_{x \in E} |f(x) - g(x)|.$$

Zeigen Sie, dass (B(E), d) vollständig ist.

3. Norm und Skalarprodukt

Sei $\langle\cdot,\cdot\rangle\colon X\times X\to\mathbb{R}$ ein inneres Produkt auf einem rellen Vektorraum X. Wir definieren eine Norm auf X gemäß

$$||x|| := \sqrt{\langle x, x \rangle}$$
.

Zeigen Sie:

- (i) $\langle x, y \rangle \leq ||x|| ||y||$ und
- (ii) $||x + y|| \le ||x|| + ||y||$ mit Hilfe von (i).

Betrachte nun den Folgenraum

$$\ell^2 := \left\{ x = (x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sum_{n=1}^{\infty} x_n^2 < \infty \right\}.$$

(iii) Zeigen Sie, dass durch

$$||x|| := \sqrt{\sum_{n=1}^{\infty} x_n^2}$$

eine Norm auf ℓ^2 definiert ist.