

ESSA APRESENTAÇÃO POSSUI QRCODE PARA ACESSAR INFORMAÇÕES ADICIONAIS AOS SLIDES.

Código QR Reader

Código QR

SISTEMAS DE CONTAGEM

one hundred twenty

Período paleolítico cerca de 30.000 a.C. os primeiros sistemas de contagem...

sixty-five

sixty

one hundred

SISTEMAS DE CONTAGEM

- Os sistemas foram evoluindo com o avanço das descobertas e invenções:
 - **10.000 a.C.** : Ferramentas simples feitas com madeira, pedra e ossos começaram a ser utilizadas para contagem.
 - **3.200 a.C.** : O início da escrita permitiu um grande avanço na forma de realizar cálculos.
- Nesse período diversas civilizações criaram muitos sistemas numéricos. Como por exemplo, os sistemas: egípcio, arábico sumério, chinês e romano.

SISTEMAS DE CONTAGEM

- Desde então, a humanidade tenta evoluir os sistemas numéricos e as tecnologias utilizadas para realizar operações numéricas.
- O objetivo dessa evolução sempre teve o foco no aumento da velocidade e da assertividade da técnica de contagem.

PRIMEIROS DISPOSITIVOS MANUAIS

300 a.C.

O ábapo surgiu na Babilônia, sendo conhecido como tábua de Salamis. Até hoje este dispositivo manual é utilizado na China e no Japão.

Wilhelm Schickard (1592- 1635, Alemanha)

- Inventou numerosas máquinas de cálculo astronômicos.
- Schickard é considerado como o primeiro a construir uma máquina de calcular mecânica.
- Morreu acometido de peste em 24 de outubro de 1635.

1623 d.C

A primeira calculadora mecânica foi construída pelo inventor alemão Wilhelm Schickard.

- Esta calculadora realizava as quatro operações básicas.
- O único registro que se tem da arquitetura dessa máquina é uma carta para o astrônomo Johannes Kepler.

Blaise Pascal (1623- 1662, Francês)

- Auxiliou na matemática com o triângulo de Pascal.
- O desenvolvimento de Pascal da teoria da probabilidade foi a sua contribuição mais influente para a matemática.
- Criou a Pascaline, primeira calculadora mecânica, produzida em larga escala

1642 d.C

A outra calculadora mecânica conhecida é a construída pelo matemático francês, **Blaise Pascal**. Chamada de **Pascaline**.

- Esta calculadora foi criada para ajudar o pai de Pascal a calcular os impostos.
- A Pascaline é formada por uma caixa cheia de engrenagens, rodas dentadas e visores.

Gottfried Wilhelm Leibniz (1646- 1716, Alemanha)

- O uso de "função" como um termo matemático foi iniciado por Leibniz, numa carta de 1694.
- Teve contribuições para a estática e a dinâmica, muitas vezes em desacordo com Descartes e Newton.

1673 d.C

A outra calculadora mecânica conhecida é a construída pelo matemático alemão, **Gottfried Wilhelm Leibniz**. Chamada de **Stepped Reckoner**.

- Esta calculadora era similar a Pascoaline, porém realizava operações de multiplicação e divisões.
- A máquina de Leibniz é baseada em rodas dentadas.
- Mas o objetivo dele foi uma máquina capaz de raciocinar.

Charles Babbage (1791- 1871, Londres)

- Originou o conceito de um computador programável.
- Inventor do primeiro computador de uso geral, utilizando apenas partes mecânicas, a máquina analítica.

1821 d.C

Considerado como primeiro computador, a máquina de diferenças finitas foi projetada por **Charles Babbage**.

- Diferente das anteriores, essa calculadora realizava uma série de cálculos numéricos e imprimia resultados em papel.
- Ela realizava os cálculos utilizando o método das diferenças finitas.
- A máquina não chegou a ser construída, devido as limitações.

1834 d.C

Entre a versão 1 e a versão 2 da máquina de diferenças finitas, **Charles Babbage**, desenvolveu a **máquina analítica**.

- Essa máquina possuía muitas das estruturas lógicas dos computadores modernos.
- Pela primeira vez uma máquina podia controlar a execução dos cálculos por meio de cartões perfurados.

1834 d.CDemonstração da **máquina analítica de Babbage**.

1847 a 1849 d.C

Considerado o fracasso do primeiro projeto, **Charles Babbage** se dedicou a máquina de diferenças finitas 2.

- Essa versão usava três vezes menos peças.
- Mas essa máquina também não foi concluída, pois Babbage tinha problemas pessoais com o engenheiro do projeto.

1847 a 1849 d.C

Demonstração da máquina de diferenças infinitas 2.

- As calculadoras supriam algumas necessidades de cálculos matemáticos.
- Porém o governo e grandes empresas precisavam de uma máquina que os auxiliassem em aplicações mais sofisticadas e abrangentes.
- Essas operações só foram possíveis com a construção de computadores de maior capacidade de processamento e de armazenamento, conhecidos como mainframes ou computadores de grande porte.

Sir William Thomson (1824 - 1907, Londres)

- Considerado um líder nas ciências físicas do século XIX, realizou contribuições na análise matemática da eletricidade e termodinâmica.
- Desenvolveu a escala Kelvin.
- Recebeu o título de Barão Kelvin em homenagem a escala de temperatura absoluta.

1872 d.C

O primeiro computador de grande porte foi criado na Inglaterra pelo Sir William Thomson, que mais tarde virou

Lord Kelvin.

- Chamado de máquina de predição de ondas, tinha a função de prever a altura das ondas da maré.
- Os resultados eram demonstrados por meio de gráficos.

Herman Hollerith (1860 - 1929, Estados Unidos)

- Principal impulsionador do leitor de cartões perfurados, instrumento essencial para a entrada de informação para os computadores da época.
- Um dos fundadores da IBM.
- Precursor do processamento de dados.

1872 d.C

Herman Hollerith inventou e construiu uma máquina para tabulação de cartões perfurados, conhecida como **máquina de Hollerith**.

- Essa máquina era capaz de detectar os locais das perfurações nos cartões.
- Foi utilizada para processar dados do censo americano.

Howard Aiken (1900 - 1973, Estados Unidos)

- Foi o engenheiro principal no desenvolvimento do computador Harvard Mark I da IBM.
- Em 1964 Aiken recebeu o prêmio Harry H. Goode Memorial Award, e em 1970 a Medalha Edison IEEE, por "contribuições aos computadores".

1944 d.C

Howard Aiken construiu o computador ASCC (*Automatic Sequence Controlled Calculator*).

- Chamado de Mark I, era baseado em relés mecânicos e ocupava uma sala inteira.
- Ele conseguia realizar 3 operações de soma ou subtração por segundo.
- O cálculo de logaritmo de um número demorava cerca de um minuto.
- Rapidamente ficou obsoleto com o desenvolvimento das válvulas.

1944 d.C Howard Aiken construiu o computador ASCC (*Automatic Sequence Controlled Calculator*).

1945 d.C

O ENIAC (*Eletronic Numerical Integrator and Computer*), foi finalizado sendo o primeiro computador eletrônico digital de propósito geral.

- Foi desenvolvido no Estados Unidos pela Universidade da Pensilvânia e utilizado pela primeira vez em 1945 para cálculos balísticos na segunda guerra mundial.
- Pesava cerca de 30 toneladas, tinha 19.000 válvulas e ocupava uma sala de 500 metros quadrados.
- A programação do ENIAC era realizada conectando e desconectando manualmente cerca de 6.000 cabos.

1945 d.C

O ENIAC (*Eletronic Numerical Integrator and Computer*), foi finalizado sendo o primeiro computador eletrônico digital de propósito geral.

1945 d.C

O ENIAC (*Eletronic Numerical Integrator and Computer*), foi finalizado sendo o primeiro computador eletrônico digital de propósito geral.

- A tarefa de programação do ENIAC era complexa e enfadonha.
- Poderia ser melhorada se os programas pudessem ser armazenados.
- O conceito de programas armazenados foi desenvolvido basicamente ao mesmo tempo por Von Neumann e Alan Turing.
- Von Neumann publicou em 1945 a idéia para um novo computador chamado EDVAC (Electronic Discrete Variable Computer).

GERAÇÕES DOS COMPUTADORES

Geração	Datas aproximadas	Tecnologia	Velocidade típica (operações por segundo)
1	1946 – 1957	Válvula	40.000
2	1958 – 1964	Transistor	200.000
3	1965 – 1971	Integração em escala pequena e média	1.000.000
4	1972 – 1977	Integração em escala grande	10.000.000
5	1978 – 1991	Integração em escala muito grande	100.000.000
6	1991-	Integração em escala ultragrande	1.000.000.000

SEGUNDA GERAÇÃO DE COMPUTADORES

- A IBM começou a comercializar computadores com a tecnologia de transistores, em 1950.
- O uso de transistores é uma das principais características dessa geração de computadores.
- Começou o uso de unidades lógicas e aritméticas e unidades de controle mais complexas, o uso de linguagens de programação de alto nível e a disponibilidade do software de sistema com o computador.
- O multiplexador escalona o acesso à memória da CPU e dos canais de dados, permitindo que esses dispositivos atuem independentemente.

SEGUNDA GERAÇÃO DE COMPUTADORES

IBM 7090

TERCEIRA GERAÇÃO DE COMPUTADORES

- Em 1958, chegou a realização que revolucionou a eletrônica e iniciou a era da microeletrônica: a invenção do circuito integrado, que define a terceira geração de computadores.
- Microeletrônica significa literalmente "pequena eletrônica".
- Desde os primórdios da eletrônica digital e da indústria da computação, tem havido uma tendência persistente e consistente em direção à redução no tamanho dos circuitos eletrônicos digitais.

TERCEIRA GERAÇÃO DE COMPUTADORES

(b) Célula de memória

Arquitetura de computadores 36

LEI DE MOORE

- A lei de Moore, foi proposta por Gordon Moore, cofundador da Intel, em 1965 (Moore, 1965f).
- Moore observou que o número de transistores que poderia ser colocado em um único chip estava dobrando a cada ano e preveu corretamente que esse ritmo continuaria no futuro próximo.
- Para a surpresa de muitos, incluindo Moore, o ritmo continuou ano após ano e década após década.
- O ritmo diminuiu para dobrar a cada 18 meses na década de 1970, mas sustentou essa taxa desde então.

LEI DE MOORE

CONSEQUÊNCIAS DA LEI DE MOORE

- O custo de um chip permaneceu praticamente inalterado durante esse período de rápido crescimento em densidade.
- Como os elementos lógicos e da memória são colocados muito próximos em chips mais densamente empacotados, a extensão do caminho elétrico é encurtada, aumentando a velocidade de operação.
- O computador torna-se menor, fazendo com que seja mais conveniente colocá-lo em diversos ambientes.
- As interconexões no circuito integrado são muito mais confiáveis do que as conexões de solda. Com mais circuitos em cada chip, existem menos conexões entre chips.

GERAÇÕES POSTERIORES DE COMPUTADORES

Arquitetura de computadores 40

GERAÇÕES POSTERIORES DE COMPUTADORES

REFERÊNCIAS

STALLINGS, William. **Arquitetura e organização de computadores: projeto para o desempenho**. 8 ed. São Paulo: Prentice Hall: Person Education, 2010. 624 p. ISBN 9788576055648.

TANENBAUM, Andrew S. **Organização estruturada de computadores**. 5. ed São Paulo: Pearson Prentice Hall, 2007. 449 p. ISBN 9788576050674.

VÍDEOS

Demonstração do funcionamento da máquina analítica de Babbage [Disponível em https://youtu.be/LE2gECwwx8g]

Demonstração do funcionamento da máquina de diferenças infinitas 2

[Disponível em https://youtu.be/BlbQsKpq3Ak]

ENIAC: O primeiro processador eletrônico

[Disponível em https://youtu.be/6X2B8Z DCo0]

Qual a diferença entre o i3, i5 e i7?

[Disponível em https://youtu.be/eBhMRI0Z-EQ]

