Deep Contextual Word Representations (ELMo)

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark , Kenton Lee , Luke Zettlemoyer

Presented by Debapriyo Majumdar debapriyo@isical.ac.in

Contextual word embeddings

- Word embeddings: learned vector representations
 - Models complex characteristics of syntax and semantics of the words
- Challenge: polysemy
 - Words need different representation depending on the context
 - Example 1:
 - One apple a day keeps the doctor away.
 - iPhone 13 should be the next big launch for Apple.
 - Example 2:
 - It was the last of Olivier's appearances in a Shakespeare play.
 - Let's play football.
- ELMo: Embeddings from Language Models
- Entire input sentence \mapsto embeddings for input token

Related previous works

- Context independent pre-trained Word embeddings
 - Word2Vec (Mikolov et al., 2013)
 - GloVe (Pennington et al., 2014)
- Learning separate vectors for each word sense
 - Neelakantan et al., 2014
- Context-dependent representations
 - Context2vec (Melamud et al., 2016)
 - Bidirectional LSTM to encode the context around a pivot word
 - CoVe (McCann et al., 2017)
 - Two-layer bidirectional LSTM attentional model for translation
 - Use the encoder to provide context to other NLP tasks
 - Entire input sentence → embeddings for input token
 - TagLM (Peters et al., 2017)
 - Previous work by the same leading author

Bidirectional Language Model (biLM)

• Forward language model: given a sequence of N tokens $(t_1, t_2, ..., t_N)$, compute

$$p(t_1, t_2, ..., t_N) = \prod_{k=1}^{n} p(t_k | t_1, t_2, ..., t_{k-1})$$

- Can be learnt by an L-layer forward LSTM
- Backward language model: predict the previous token given the future context

$$p(t_1, t_2, ..., t_N) = \prod_{k=1}^{n} p(t_k | t_{k+1}, t_{k+2}, ..., t_N)$$

An *L*-layer backward LSTM

<u>Bidirectional Language Model (biLM)</u>

- Combine the forward and the backward LMs to construct the **biLM**
- Jointly maximize the log-likelihood:

$$\sum_{k=1}^{N} \left(\log p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overrightarrow{\Theta_{\text{LSTM}}}, \Theta_s) \right) + \left(\log p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overleftarrow{\Theta_{\text{LSTM}}}, \Theta_s) \right)$$

- The forward and backward LSTMs have separate parameters
- The parameters for the input representation and softmax layers are the same

Representation of tokens by ELMo

• The representation for the k-th token t_k

$$R_k = \{ \boldsymbol{x}_k, \overrightarrow{\boldsymbol{h}}_{k,j}, \overleftarrow{\boldsymbol{h}}_{k,j}, j = 1, ..., L \}$$
$$= \{ \boldsymbol{h}_{k,j} | j = 1, ..., L \}.$$

Where $\mathbf{x}_k = \mathbf{h}_{0,j}$ is the input representation

- ELMo embedding: collapse all layers of *R* into a single vector
 - $ELMo_k = E(R_k; \Theta_e)$
 - Task specific weighting of the layers

$$ELMo_k^{\text{task}} = E(R_k; \Theta^{\text{task}}) = \gamma^{\text{task}} \sum_{j=0}^{L} s_j^{\text{task}} \boldsymbol{h}_{k,j}$$

 s_j^{task} are softmax-normalized weights γ^{task} is important for optimization process

ELMo in a supervised NLP task

ELMo can be used as an add-on to any downstream NLP task Output Supervised NLP Task Architecture Input

> For some tasks adding another ELMo at the output improves the results further

Experimental results

- SQuAD dataset
 - About 100K+ crowd-sourced QA pairs
 - Answer is a span in a Wikipedia paragraph
 - Baseline: bidirectional attention flow model (Seo et al., 2017)
 - Improvement after adding ELMo: improves from 81.1% to 85.8%
 - CoVe achieved a 1.8% improvement
- SNLI Corpus
 - Textual entailment: determine whether a hypothesis is true, given a premise
 - About 550K hypothesis/premise pairs
 - Baseline: BiLSTM + matrix attention + local inference + BiLSTM composition
 + pooling (Chen et al., 2017)
 - Improvement after adding ELMo: 0.7% absolute improvement

Results on other tasks

TASK	Previous SOTA		OUR BASELIN	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Improvement on most standard NLP tasks by adding ELMo to a baseline model

Contextual embedding: demonstration

	Source	Nearest Neighbors		
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer		
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended		
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round		
	grounder {}	excellent play.		
	Olivia De Havilland	{} they were actors who had been handed fat roles in		
	signed to do a Broadway	a successful play, and had talent enough to fill the roles		
	<u>play</u> for Garson $\{\dots\}$	competently, with nice understatement.		

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.