1

ANS

- a) P0.B0 (S, 120, 00 20)
- b) P0.B0 (M, 120, 00 80) P3.B0 (I, 120, 00 20)
- c) P3.B0 (M, 120, 00 80)
- d) M: 110 ← 30
 P1.B2 (S, 110, 00 30)
 P0.B2 (S, 110, 00 30)
- e) P0.B1 (M, 105, 00 48) P3.B1 (I, 105, 00 08)
- f) M: 110 ← 30 P0.B2 (M, 130, 00 78)
- g) P3.B2 (M, 130, 00 78)

2

ANS

Processor Request	Activity	A's Cache & Status	B's Cache & Status	Memory x
Core B reads x	Cache read miss		7 (E)	7
Core A reads x	Cache read miss	7(S)	7 (S)	7
Core B writes 2 to x	Write hit, Invalidation for x	7(1)	2 (E)	2
Core A reads x	Cache read miss	2(S)	2 (S)	2
Core B writes 5 to x	Write hit, Invalidation for x	2(1)	5 (E)	5

3

ANS

Processor Request	Activity	A's Cache & Status	B's Cache & Status	Memory x
Core A reads x	Cache read miss	8(E)		8
Core B reads x	Cache read miss	8(S)	8 (S)	8
Core A writes 3 to x	Write hit, Write update for x	3(S)	3 (S)	8
Core A writes 4 to x	Write hit, Write update for x	4(S)	4 (S)	8
Core B reads x	Read hit	4(S)	4 (S)	8

4

ANS

a)

i.

64 processor arranged a as a ring: largest number of communication hops

= 32 → Communication cost

$$= 100 + 10 \times 32$$

=420 ns.

ii.

64 processor arranged as 8x8 processor grid: largest number of communication hops

=14 → communication cost

$$=100 + 10 \times 14$$

=240 ns

iii.

64 processor arranged as a hypercube: largest number of hops

= 6 (log_264) \rightarrow Communication cost

$$= 100 + 10 \times 6$$

= 160 ns

b)

i.

64 processor arranged a as a ring: Worst case CPI

$$=0.75 + (0.2/100) \times 420$$

=1.34 cycles/inst

ii.

64 processor arranged as 8x8 processor grid: Worst Case CPI

$$=0.75 + (0.2/100) \times 240$$

= 0.98 cycles/inst

iii.

64 processor arranged as a hypercube: Worst case CPI

$$=0.75 + (0.2/100) \times 160$$

= 0.82 cycles/inst

The average CPI can be obtained by replacing the largest number of communication hops in the above calculation by \hat{h} , the average numbers of communications hops. That latter number depends on both the topology and the application.