Class groups and units of certain number fields

Jianing Li

University of Science and Technology of China

February 3, 2021 / Xi'AN JIAOTONG - LIVERPOOL UNIVERSITY

A complex number is called algebraic if it is a root of some polynomial $f(x) \in \mathbb{Q}[x]$. Let $\overline{\mathbb{Q}}$ denote the set of all algebraic numbers. It is a subfield of \mathbb{C} .

An algebraic number is called an algebraic integer if it is a root of some monic polynomial $f(x) \in \mathbb{Z}[x]$.

Example: $\sqrt{2}$, $\exp(2\pi i/5)$. Non-example: $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$.

Let $\bar{\mathbb{Z}}$ denote the set of all algebraic integers. It is in fact a subring of $\bar{\mathbb{Q}}$.

Let K be a number field, i.e., a finite extension of $\mathbb Q$. Let $\mathcal O_K=K\cap\mathbb Z$ be the ring of (algebraic) integers of K. Such fields and rings occur naturally when solving Diophantine equations.

$$\begin{split} &K=\mathbb{Q}(\sqrt{-5}),\,\mathcal{O}_K=\mathbb{Z}[\sqrt{-5}].\quad \text{Equation: } y^2+5=x^3.\\ &\ln\mathcal{O}_K,\,\text{LHS}=(y+\sqrt{-5})(y-\sqrt{-5}). \end{split}$$

```
K = \mathbb{Q}(\zeta_n), \mathcal{O}_K = \mathbb{Z}[\zeta_n] where \zeta_n = \exp(\frac{2\pi i}{n}) is a primitive root of 1. Fermat's equation: x^n + y^n = z^n \ (n \geq 3). In \mathcal{O}_K, LHS = (x + y)(x + \zeta_n y) \cdots (x + \zeta_n^{n-1} y).
```

A complex number is called algebraic if it is a root of some polynomial $f(x) \in \mathbb{Q}[x]$. Let $\overline{\mathbb{Q}}$ denote the set of all algebraic numbers. It is a subfield of \mathbb{C} .

An algebraic number is called an algebraic integer if it is a root of some monic polynomial $f(x) \in \mathbb{Z}[x]$.

Example: $\sqrt{2}$, $\exp(2\pi i/5)$. Non-example: $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$.

Let $\bar{\mathbb{Z}}$ denote the set of all algebraic integers. It is in fact a subring of $\bar{\mathbb{Q}}.$

Let K be a number field, i.e., a finite extension of $\mathbb Q$. Let $\mathcal O_K=K\cap \bar{\mathbb Z}$ be the ring of (algebraic) integers of K. Such fields and rings occur naturally when solving Diophantine equations.

$$K = \mathbb{Q}(\sqrt{-5}), \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}].$$
 Equation: $y^2 + 5 = x^3$. In \mathcal{O}_K , LHS = $(y + \sqrt{-5})(y - \sqrt{-5})$.

```
K=\mathbb{Q}(\zeta_n),\,\mathcal{O}_K=\mathbb{Z}[\zeta_n] where \zeta_n=\exp(\frac{2\pi i}{n}) is a primitive root of 1. Fermat's equation: x^n+y^n=z^n\ (n\geq 3). In \mathcal{O}_K, LHS =(x+y)(x+\zeta_ny)\cdots(x+\zeta_n^{n-1}y).
```

A complex number is called algebraic if it is a root of some polynomial $f(x) \in \mathbb{Q}[x]$. Let $\bar{\mathbb{Q}}$ denote the set of all algebraic numbers. It is a subfield of \mathbb{C} .

An algebraic number is called an algebraic integer if it is a root of some monic polynomial $f(x) \in \mathbb{Z}[x]$.

Example: $\sqrt{2}$, $\exp(2\pi i/5)$. Non-example: $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$.

Let $\bar{\mathbb{Z}}$ denote the set of all algebraic integers. It is in fact a subring of $\bar{\mathbb{Q}}.$

Let K be a number field, i.e., a finite extension of $\mathbb Q$. Let $\mathcal O_K=K\cap \bar{\mathbb Z}$ be the ring of (algebraic) integers of K. Such fields and rings occur naturally when solving Diophantine equations.

$$\begin{split} &K=\mathbb{Q}(\sqrt{-5}), \mathcal{O}_K=\mathbb{Z}[\sqrt{-5}]. \quad \text{Equation: } y^2+5=x^3. \\ &\ln \mathcal{O}_K, \text{LHS}=(y+\sqrt{-5})(y-\sqrt{-5}). \end{split}$$

```
K = \mathbb{Q}(\zeta_n), \mathcal{O}_K = \mathbb{Z}[\zeta_n] where \zeta_n = \exp(\frac{2\pi i}{n}) is a primitive root of 1. Fermat's equation: x^n + y^n = z^n \ (n \geq 3). In \mathcal{O}_K, LHS = (x + y)(x + \zeta_n y) \cdots (x + \zeta_n^{n-1} y).
```

A complex number is called algebraic if it is a root of some polynomial $f(x) \in \mathbb{Q}[x]$. Let $\bar{\mathbb{Q}}$ denote the set of all algebraic numbers. It is a subfield of \mathbb{C} .

An algebraic number is called an algebraic integer if it is a root of some monic polynomial $f(x) \in \mathbb{Z}[x]$.

Example: $\sqrt{2}$, $\exp(2\pi i/5)$. Non-example: $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$.

Let $\bar{\mathbb{Z}}$ denote the set of all algebraic integers. It is in fact a subring of $\bar{\mathbb{Q}}.$

Let K be a number field, i.e., a finite extension of $\mathbb Q$. Let $\mathcal O_K=K\cap \bar{\mathbb Z}$ be the ring of (algebraic) integers of K. Such fields and rings occur naturally when solving Diophantine equations.

$$\begin{split} & K = \mathbb{Q}(\sqrt{-5}), \, \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]. \quad \text{Equation: } y^2 + 5 = x^3. \\ & \ln \, \mathcal{O}_K, \, \text{LHS} = (y + \sqrt{-5})(y - \sqrt{-5}). \end{split}$$

 $K=\mathbb{Q}(\zeta_n),\,\mathcal{O}_K=\mathbb{Z}[\zeta_n]$ where $\zeta_n=\exp(rac{2\pi i}{n})$ is a primitive root of 1. Fermat's equation: $x^n+y^n=z^n\ (n\geq 3).$ In \mathcal{O}_K , LHS $=(x+y)(x+\zeta_ny)\cdots(x+\zeta_n^{n-1}y).$

The ring \mathcal{O}_K does not have unique factorization in general. For example, in $\mathbb{Z}[\sqrt{-5}]$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

But every nonzero ideal of \mathcal{O}_K can be written as a product of prime ideals uniquely. For example

6) =
$$(2, 1 + \sqrt{-5})^2(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}).$$

None of the three ideals on the right is principal

How to measure the obstruction from the ring \mathcal{O}_K to a principal ideal domain?

The ring \mathcal{O}_K does not have unique factorization in general. For example, in $\mathbb{Z}[\sqrt{-5}]$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

But every nonzero ideal of \mathcal{O}_K can be written as a product of prime ideals uniquely. For example

$$(6) = (2, 1 + \sqrt{-5})^2 (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}).$$

None of the three ideals on the right is principal.

How to measure the obstruction from the ring \mathcal{O}_K to a principal ideal domain?

Class groups

An \mathcal{O}_K -submodule J of K is called a **fraction ideal** if $\alpha J \subset \mathcal{O}_K$ is an ideal for some $\alpha \in \mathcal{O}_K \setminus \{0\}$. Put

 $I_K = \{ \text{ all nonzero fractional ideals of } K \}$

 $P_K = \{ \text{ all nonzero principal fractional ideals of } K \}.$

Dedekind proved $I_K \cong \bigoplus_{\mathfrak{p}} \mathfrak{p}^{\mathbb{Z}}$. That is, I_K is a free abelian group whose bases are the prime ideals \mathfrak{p} of \mathcal{O}_K .

The (ideal) class group of K is defined as $\operatorname{Cl}_K := I_K/P_K$

We have an exact sequence

$$1 \to \mathcal{O}_K^{\times} \to K^{\times} \xrightarrow{i} I_K \to \operatorname{Cl}_K \to 1$$
$$i: \alpha \mapsto (\alpha)$$

The class group Cl_K and the unit group \mathcal{O}_K^{\times} are two important invariants of K

Class groups

An \mathcal{O}_K -submodule J of K is called a **fraction ideal** if $\alpha J \subset \mathcal{O}_K$ is an ideal for some $\alpha \in \mathcal{O}_K \setminus \{0\}$. Put

 $I_K = \{ \text{ all nonzero fractional ideals of } K \}$

 $P_K = \{ \text{ all nonzero principal fractional ideals of } K \}.$

Dedekind proved $I_K \cong \bigoplus_{\mathfrak{p}} \mathfrak{p}^{\mathbb{Z}}$. That is, I_K is a free abelian group whose bases are the prime ideals \mathfrak{p} of \mathcal{O}_K .

The (ideal) class group of K is defined as $Cl_K := I_K/P_K$

We have an exact sequence:

$$1 \to \mathcal{O}_K^{\times} \to K^{\times} \xrightarrow{i} I_K \to \operatorname{Cl}_K \to 1$$
$$i : \alpha \mapsto (\alpha)$$

The class group Cl_K and the unit group \mathcal{O}_K^{\times} are two important invariants of K.

Fundamental theorems

Theorem (Dedekind)

 Cl_K is finite for any number field K.

 $\#Cl_K$ is called the **class number** of K, and is usually denoted by h_K . We have $h_K=1$ if and only if \mathcal{O}_K is a principal ideal domain.

Theorem (Dirichlet)

 $\mathcal{O}_{K}^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \times \mathbb{Z}/w\mathbb{Z}$ for some integer d. Here r_1 is the number of real embeddings of K and r_2 is the number of pairs of complex embeddings.

If $K = \mathbb{Q}(\alpha)$ with $f(x) \in \mathbb{Q}[x]$ being the minimal polynomial of α . Then r_1 is the number of real roots of f(x) and r_2 is the number of pairs of non-real roots of f(x).

Example: If $K=\mathbb{Q}(\sqrt{d})$ with $d\in\mathbb{Z}_{>0}$ square-free, then $r_1=2$ and $r_2=0$. We have $\mathcal{O}_K^\times=\varepsilon^\mathbb{Z}\times\{\pm 1\}$ for some ε .

If $K = \mathbb{Q}(\sqrt{-d})$ with $d \in \mathbb{Z}_{>0}$ square-free, then $r_1 = 0$ and $r_2 = 1$. Hence $\#\mathcal{O}_K^{\times}$ is finite

Fundamental theorems

Theorem (Dedekind)

 Cl_K is finite for any number field K.

 $\#Cl_K$ is called the **class number** of K, and is usually denoted by h_K . We have $h_K=1$ if and only if \mathcal{O}_K is a principal ideal domain.

Theorem (Dirichlet)

 $\mathcal{O}_{K}^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \times \mathbb{Z}/w\mathbb{Z}$ for some integer d. Here r_1 is the number of real embeddings of K and r_2 is the number of pairs of complex embeddings.

If $K = \mathbb{Q}(\alpha)$ with $f(x) \in \mathbb{Q}[x]$ being the minimal polynomial of α . Then r_1 is the number of real roots of f(x) and r_2 is the number of pairs of non-real roots of f(x).

Example: If $K=\mathbb{Q}(\sqrt{d})$ with $d\in\mathbb{Z}_{>0}$ square-free, then $r_1=2$ and $r_2=0$. We have $\mathcal{O}_K^\times=\varepsilon^\mathbb{Z}\times\{\pm 1\}$ for some ε .

If $K = \mathbb{Q}(\sqrt{-d})$ with $d \in \mathbb{Z}_{>0}$ square-free, then $r_1 = 0$ and $r_2 = 1$. Hence $\#\mathcal{O}_K^{\times}$ is finite.

More examples

Let
$$K=\mathbb{Q}(\sqrt{-5})$$
. Then $\mathrm{Cl}_K\cong\mathbb{Z}/2\mathbb{Z}$ and $\mathcal{O}_K^\times=\{\pm 1\}$.

Using this, it is not hard to derive that $y^2 + 5 = x^3$ has no \mathbb{Z} -solutions.

Let
$$K=\mathbb{Q}(\sqrt{223})$$
. Then $\mathrm{Cl}_K\cong\mathbb{Z}/3\mathbb{Z}$ and $\mathcal{O}_K^\times=(224+15\sqrt{223})^\mathbb{Z}\times\{\pm 1\}$.

 $x^2-223y^2=-3$ has a $\mathbb Q$ -solutions $x=14/3,\,y=1/3,\,$ but does not have $\mathbb Z$ -solutions. In fact, there exist infinitely many primes p such that $x^2-223y^2=\pm p$ has $\mathbb Q$ -solutions but does not have $\mathbb Z$ -solutions. The reason behind is $h_K=3$.

Before Wiles' complete proof of Fermat's last theorem, the best result is due to Kummer which says that, if an odd prime p does not divide the class number of $\mathbb{Q}(\zeta_p)$, then $x^p+y^p=z^p$ does not have nonzero \mathbb{Z} -solutions. Primes with this property are called regular primes. The first irregular prime is 37. We have $\mathrm{Cl}_{\mathbb{Q}(\zeta_2 \gamma)} \cong \mathbb{Z}/37\mathbb{Z}$. Furthermore,

the 37-Sylow subgroup of
$$\mathrm{Cl}_{\mathbb{Q}(\zeta_{270})}\cong \mathbb{Z}/37^n\mathbb{Z}$$
 for each $n\geq 1$

Open problems

Conjecture (Gauss)

There exists infinitely many square free positive integers d such that the class number of $\mathbb{Q}(\sqrt{d})$ is 1.

Conjecture (Weber class number problem)

The class numbers of
$$\mathbb{Q}_1=\mathbb{Q}(\sqrt{2}), \mathbb{Q}_2=\mathbb{Q}(\sqrt{\sqrt{2}+2}), \mathbb{Q}_3=\mathbb{Q}(\sqrt{\sqrt{\sqrt{2}+2}+2}), \cdots$$
 are all 1.

Write $\mathbb{Q}_{\infty} = \cup \mathbb{Q}_n$. Then $\operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \cong \mathbb{Z}_2$ and \mathbb{Q}_n is the unique subfield of \mathbb{Q}_{∞} of degree 2^n . Here \mathbb{Z}_2 is the ring of 2-adic integers. Nowadays, it is conjectured that, for every prime number p, the p-th layer of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} has class number 1.

An example of Iwasawa's theory

In 1950s, Iwasawa studied the p-class numbers of fields in the cyclotomic \mathbb{Z}_p -towers $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset \mathbb{Q}(\zeta_{p^\infty})$. This forms a \mathbb{Z}_p -extension.

Theorem (Iwasawa-Ferrero-Washington)

Let h_n denote the class number of $\mathbb{Q}(\zeta_{p^n})$. Let $e_n\geq 0$ such that p^{e_n} exactly divides h_n . Then there exists two integers $\lambda,\nu\geq 0$ such that, for sufficiently large n,

$$e_n = \lambda n + \nu$$
.

Example: If p = 37, then $\lambda = 1$ and $\nu = 0$.

Class groups of Kummer towers

Let p and q be two distinct prime numbers.

Let $K_{n,m}=\mathbb{Q}(\sqrt[p^N]{q},\zeta_{2p^m})$. Then $\mathrm{Gal}(K_{\infty,\infty}/K)\cong\mathbb{Z}_p\rtimes\mathbb{Z}_p^{\times}$, where $K_{\infty,\infty}=\cup K_{n,m}$. Let $h_{n,m}$ denote the class number of $K_{n,m}$. Let $A_{n,m}$ denote the p-Sylow subgroup of the class group of $K_{n,m}$.

Theorem (L-Ouyang-Xu-Zhang 2019)

(1)Assume p is an odd regular prime. If q is a primitive root moduluo p^2 , then $p \nmid h_{n,m}$ for $n, m \ge 0$.

(2)Assume p = 2.

If $q \equiv 3 \mod 8$, then $h_{n,m}$ is odd for n, m > 0.

If $q \equiv 5 \mod 8$, then $h_{n,0}$ and $h_{1,m}$ are odd for $n, m \ge 0$, and $2 \parallel h_{n,m}$ for $n \ge 2$ and $m \ge 1$.

If $q \equiv 7 \mod 16$, then $A_{n,0} \cong \mathbb{Z}/2\mathbb{Z}$ and $A_{n,1} \cong (\mathbb{Z}/2\mathbb{Z})^2$ for $n \geq 2$.

Remarks:

- (1) Gauss' genus theory implies that 2 does not divides $h_{1,0} = h_{\mathbb{Q}(\sqrt{q})}$;
- (2) Parry in 1980s studied the 2-divisibility of $h_{2,0} = h_{\mathbb{Q}(\sqrt[4]{q})}$;
- (3) It seems that the class number of $K_{n,0} = \mathbb{Q}(\sqrt[2^n]{q})$ is not studied before, even for a single $n \geq 3$.

Units and p-adic regulators

Let $q\equiv 7 \mod 16$ be a prime so that 2 splits in K. Let η be a fundamental unit of F, so that $\mathcal{O}_F^\times=\eta^\mathbb{Z}\times\{\pm 1\}$.

By properly choosing the fundamental unit η , the following power series converges in the local field F_w and it is called the *w*-adic regulator of F.

$$\log_{W}(\eta) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (\eta - 1)^{n} \in F_{W}.$$

Similarly, we can define the w^* -adic regulator of F.

Theorem (Coates-L-Li 2020)

Assume $q\equiv 7\mod 16$ is a prime. We assume w is ramified in F/K. Then, if η is a fundamental unit of F, we have

$$\operatorname{ord}_{W}(\log_{W}(\eta)) = 2, \ \operatorname{ord}_{W^{*}}(\log_{W^{*}}(\eta)) = 3.$$

Class field theory

Theorem

Let H be the maximal unramified abelian extension of K. Then there is a canonical isomorphism

$$Cl_K \cong Gal(H/K)$$
.

H is called the Hilbert class field of K.

Example: The Hilbert class field of $\mathbb{Q}(\sqrt{-5})$ is $\mathbb{Q}(\sqrt{-5},\sqrt{-1})$.

A cohomology interpretation of class groups

$$\operatorname{Cl}_{K} \cong \operatorname{Ker} H^{1}(G_{K}, \bar{\mathbb{Z}}^{\times}) \to \prod_{v} H^{1}(G_{v}, \bar{\mathcal{O}}_{v}^{\times}).$$

Arithmetic of certain elliptic curves

Assume $q \equiv 7 \mod 16$ is a prime. Let H be the Hilbert class field of $K = \mathbb{Q}(\sqrt{-q})$.

(Gross) There is an elliptic curve A defined over H, with complex multiplication by \mathcal{O}_K , minimal discriminant $(-q^3)$, and which is a \mathbb{Q} -curve in the sense that it is isogenous to all of its conjugates. Let $B = \operatorname{Res}_K^H A$. Then B is an h_K -dimensional abelian variety defined over K. We have $B(K) \cong A(H)$ as abelian groups.

Example

If q=7, then A is defined by the Weierstrass equation $y^2+xy=x^3-x^2-2x-1$ and we have B=A as $h_K=1$.

Theorem (Coates-L-Li 2020)

Let K_{∞} be the unique \mathbb{Z}_2 -extension of K unramified outside \mathfrak{p} . Let $D=K(\sqrt{-1})$ and $D_{\infty}=DK_{\infty}$. Let $J=DF=\mathbb{Q}(\sqrt[4]{-q},\sqrt{-1})$. Assume $q\equiv 7\mod 16$ is a prime. Then $\dim_{\mathbb{Q}}B(K_{\infty})\otimes\mathbb{Q}=0$ and

$$\dim_{\mathbb{O}} B(D) \otimes \mathbb{Q} = \dim_{\mathbb{O}} B(D_{\infty}) = \dim_{\mathbb{O}} B(J) \otimes \mathbb{Q} = \dim_{\mathbb{O}} B(J_{\infty}) \otimes \mathbb{Q} = 2h_{K}$$

The proof of this theorem heavily relies on our results on units of $F = \mathbb{Q}(\sqrt[4]{-q})$.

Arithmetic of certain elliptic curves

Assume $q \equiv 7 \mod 16$ is a prime. Let H be the Hilbert class field of $K = \mathbb{Q}(\sqrt{-q})$.

(Gross) There is an elliptic curve A defined over H, with complex multiplication by \mathcal{O}_K , minimal discriminant $(-q^3)$, and which is a \mathbb{Q} -curve in the sense that it is isogenous to all of its conjugates. Let $B = \operatorname{Res}_K^H A$. Then B is an h_K -dimensional abelian variety defined over K. We have $B(K) \cong A(H)$ as abelian groups.

Example

If q=7, then A is defined by the Weierstrass equation $y^2+xy=x^3-x^2-2x-1$ and we have B=A as $h_K=1$.

Theorem (Coates-L-Li 2020)

Let K_{∞} be the unique \mathbb{Z}_2 -extension of K unramified outside \mathfrak{p} . Let $D=K(\sqrt{-1})$ and $D_{\infty}=DK_{\infty}$. Let $J=DF=\mathbb{Q}(\sqrt[4]{-q},\sqrt{-1})$. Assume $q\equiv 7\mod 16$ is a prime. Then $\dim_{\mathbb{Q}}B(K_{\infty})\otimes\mathbb{Q}=0$ and

$$\dim_{\mathbb{Q}} B(D) \otimes \mathbb{Q} = \dim_{\mathbb{Q}} B(D_{\infty}) = \dim_{\mathbb{Q}} B(J) \otimes \mathbb{Q} = \dim_{\mathbb{Q}} B(J_{\infty}) \otimes \mathbb{Q} = 2h_{K}.$$

The proof of this theorem heavily relies on our results on units of $F = \mathbb{Q}(\sqrt[4]{-q})$.

The Tate-Shafarevich group

The Tate-Shafarevich group of B/L is defined by

$$\coprod (B/L) = \mathrm{Ker} \quad (H^1(\mathrm{Gal}(\bar{L}/L), B(\bar{L})) \to \prod_V H^1(\mathrm{Gal}(\bar{L}_V/L_V), B(\bar{L}_V))),$$

Theorem (Coates-L-Li 2020)

Assume $q\equiv 7\mod 16$ is a prime. Then $\coprod (B/D_\infty)(\mathfrak{P})=0$ where \mathfrak{P} is a certain prime of the complex multiplication ring of B lying above 2.

Questions and Remarks

Thanks for your attention!