```
In [26]: import pandas as pd
  import seaborn as sns
  import plotly.express as px

import matplotlib.pyplot as plt

In [27]: import plotly.io as pio
  pio.renderers.default = "plotly_mimetype+notebook"
```

Matplotlib

For this excercise, we have written the following code to load the stock dataset built into plotly express.

```
In [28]: stocks = px.data.stocks()
    stocks.head()
```

Out[28]:		date	GOOG	AAPL	AMZN	FB	NFLX	MSFT
	0	2018-01-01	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
	1	2018-01-08	1.018172	1.011943	1.061881	0.959968	1.053526	1.015988
	2	2018-01-15	1.032008	1.019771	1.053240	0.970243	1.049860	1.020524
	3	2018-01-22	1.066783	0.980057	1.140676	1.016858	1.307681	1.066561
	4	2018-01-29	1.008773	0.917143	1.163374	1.018357	1.273537	1.040708

Question 1:

Select a stock and create a suitable plot for it. Make sure the plot is readable with relevant information, such as date, values.

```
In [29]:
    import matplotlib.ticker as ticker
    x = stocks['date']
    y = stocks['GOOG']
    fig, ax = plt.subplots(figsize=(15,9))
    ax.xaxis.set_major_locator(ticker.MultipleLocator(14))
    ax.plot(x,y)
    # set title
    ax.set_title('Google stock')
    # horizontal axis
    ax.set_xlabel('date')
    # vertical axis
    ax.set_ylabel('stock value')
    plt.show()
```


In [4]: # YOUR CODE HERE

Question 2:

You've already plot data from one stock. It is possible to plot multiples of them to support comparison. To highlight different lines, customise line styles, markers, colors and include a legend to the plot.

```
In [38]:
         x = stocks['date']
         y = stocks['GOOG']
         z=stocks['AAPL']
         c=stocks['AMZN']
         d=stocks['FB']
         e=stocks['NFLX']
         w=stocks['MSFT']
         fig, ax = plt.subplots(figsize=(15,9))
         ax.xaxis.set major locator(ticker.MultipleLocator(14))
         ax.plot(x,y, color='green',label='GOOG')
         ax.plot(x,z,label='AAPL')
         ax.plot(x,c,label='AMZN')
         ax.plot(x,d,label='FB')
         ax.plot(x,e,label='NFLX')
         ax.plot(x,w,label='MSFT')
          # set title
         ax.set title('Google stock')
          # horizontal axis
         ax.set xlabel('date')
          # vertical axis
         ax.set ylabel('stock value')
         ax.legend()
         plt.show()
```


Seaborn

First, load the tips dataset

```
In [39]: tips = sns.load_dataset('tips')
tips.head()
```

Out[39]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

Question 3:

Let's explore this dataset. Pose a question and create a plot that support drawing answers for your question.

Some possible questions:

• Are there differences between male and female when it comes to giving tips?

• What attribute correlate the most with tip?

```
In [96]: #Are there differences between day of weeks when it comes to giving tips?
    # day
    sns.scatterplot(x='day', y='tip', data=tips,hue='day')
    plt.show()
```


Yes, tipping is more on weekends than on weekdays.

Plotly Express

Question 4:

Redo the above exercises (challenges 2 & 3) with plotly express. Create diagrams which you can interact with.

The stocks dataset

Hints:

• Turn stocks dataframe into a structure that can be picked up easily with plotly express

```
In [63]:
# YOUR CODE HERE
df = px.data.stocks()
fig = px.line(df, x="date", y=["GOOG","AAPL","FB","AMZN","NFLX","MSFT"])
fig.show()
```

The tips dataset

```
In [97]: # YOUR CODE HERE
fig = px.scatter(tips, x="day", y=["tip"],color='day')
fig.show()
```

Question 5:

Recreate the barplot below that shows the population of different continents for the year 2007.

Hints:

- Extract the 2007 year data from the dataframe. You have to process the data accordingly
- use plotly bar
- Add different colors for different continents
- Sort the order of the continent for the visualisation. Use axis layout setting
- Add text to each bar that represents the population

```
In [12]: #load data
    df = px.data.gapminder()
    df.head()
```

```
Out[12]:
               country continent year lifeExp
                                                   pop gdpPercap iso_alpha iso_num
                                              8425333 779.445314
          0 Afghanistan
                            Asia 1952
                                       28.801
                                                                       AFG
                                                                                  4
          1 Afghanistan
                            Asia 1957
                                       30.332 9240934 820.853030
                                                                       AFG
                                                                                  4
          2 Afghanistan
                            Asia 1962 31.997 10267083 853.100710
                                                                       AFG
                                                                                  4
          3 Afghanistan
                            Asia 1967 34.020 11537966 836.197138
                                                                       AFG
                                                                                  4
          4 Afghanistan
                            Asia 1972 36.088 13079460 739.981106
                                                                       AFG
                                                                                  4
```

```
In [93]: # YOUR CODE HERE

df = px.data.gapminder()

df_2007 = df.query('year==2007')

df_new = df_2007.groupby('continent').sum()

df_new.sort_values("pop", ascending=False,inplace=True)

#fig.update_xaxes(categoryorder='array', categoryarray= ['Asia','Africa','Americas','Europe fig = px.bar(df_new, x="pop", y=df_new.index, color=df_new.index, orientation='h')

fig.show()
```

	year	lifeExp	pop	gdpPercap	iso num	
continent					_	
Africa	104364	2849.914	929539692	160629.695446	23859	
Americas	50175	1840.203	898871184	275075.790634	9843	
Asia	66231	2334.040	3811953827	411609.886714	13354	
Europe	60210	2329.458	586098529	751634.449078	12829	
Oceania	4014	161.439	24549947	59620.376550	590	
	year	lifeExp	pop	gdpPercap	iso_num	
continent						
Asia	66231	2334.040	3811953827	411609.886714	13354	
Africa	104364	2849.914	929539692	160629.695446	23859	
Americas	50175	1840.203	898871184	275075.790634	9843	
Europe	60210	2329.458	586098529	751634.449078	12829	
Oceania	4014	161.439	24549947	59620.376550	590	