Physics of Sports

Lesson 4: Energy and its Measurement Teacher's Guide

Connections:

Previous Lesson	Current Lesson	Next Lesson
Quality Assurance and	Energy and its	Momentum and its
Physics	Measurement	Measurement

	·
Objectives:	To review and apply the law of conservation of energy
	To explain the concept of potential energy and its measurement
	 To explain the concept of kinetic energy and its measurements
	 To explore the ways in which energies seem to 'disappear'
Resources	A ruler
required:	The stencil provided with the activity
	A pair of scissors
	A pencil or marker
	Student's Worksheet Lesson 4
Useful data:	Table dimensions
	• Length = 274 cm
	• Width = 152.5 cm
	 Height = 76 cm
	Net height = 15.25 cm
	The Olympics size ping-pong balls have:
	 Diameter = 4 cm = 0.04 m
	 Wall thickness vary but is approximately 0.04 cm.
	 Mass of the ping-pong ball = 2.7 g = 0.0027 Kg
	Material used: Celluloid (generally)
	Speeds:
	 Rotational speed of the ball, v = 1.0 m/s (average),
	 Linear speed of the ball v= 12 m/s (linear, at tracking limit or the
	maximum speed at which you can still see it moving)
Video(s):	Start by showing a short video clip where the game is played at a high speed:
	https://www.youtube.com/watch?v=46OahVA7GNc
Physics	Kinetic Energy = $\frac{1}{2}mv^2 == \frac{1}{2} \times mass \times (velocity)^2$
Review:	Kinetic Energy = $\frac{-mv}{2}$ = $\frac{-x mass \times (velocity)}{2}$
	Potential Energy = mgh where $g = 10 \text{m/s}^2$ (approximately)
Discussion	The activity starts with some questions:
Questions:	7 7 1
	1. Do you have any idea of the speed of the ball in a real ping-pong game (12
	m/s)?
	2. Do you think the ball is rotating while flying? And if yes, can you estimate its
	rotational speed? (No, not without some special arrangements)
L	

Fun fact	The earliest surviving action game of Tennis on a table is a set made by David
	Foster, patented in England in 1890. Visit the ITTF site,
	http://www.ittf.com/museum/history.html to see some historical paintings and
	photos of the game dating back to 15 th century