K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATION

29th June, 2020 Numericals

- 1. For the circuit shown in Figure 1, plot
 - a) Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms
 - b) VTC curve

Given: $V_{in}(t)=10V_{p-p}$ sinusoidal signal with frequency 5000 Hz Use constant voltage model i.e. $V_{D,on}=0.7$ V, $V_B=1$ V, $R_1=1k\Omega$

Figure 1: Clipper circuit

Solution:

$$V_{in} = V_m sin\omega t = 5sin(2\pi 5000t) = 5sin(10000\pi t)$$

Assuming a constant voltage model for D_1

Case 1: If
$$V_{in} > (V_{D,on} - V_B)$$

i.e.
$$V_{in} > (0.7 - 1)$$

i.e.
$$V_{in} > (-0.3)$$

The diode D_1 is ON, hence Circuit 1 reduces to Circuit 2.

Figure 2: Circuit 2

Applying KVL,

$$V_{in} - V_{D,on} + V_B - V_{out} = 0$$

$$\therefore V_{out} = V_{in} - (V_{D,on} - V_B)$$

$$\therefore V_{out} = 5 - (0.7 - 1) = 5.3 \text{ V}$$

... Output tracks input, but with a shift $(V_{D,on} - V_B)$

Case 2: If
$$V_{in} < (V_{D,on} - V_B)$$

i.e
$$V_{in} < (0.7 - 1)$$

i.e
$$V_{in} < (-0.3)$$

The diode D_1 is OFF, hence the circuit reduces to Circuit 3.

Figure 3: Circuit 3

In Circuit 3, we can observe that $V_{out} = 0 \text{ V}$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 4: Circuit schematic

The input and output waveforms are shown in Figure 5.

Figure 5: Input and output waveforms

The VTC curve is given below in Figure 6.

Figure 6: VTC curve

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Level of clipped voltage	0.3 V	0.3280 V

Table 1: Table 1

2. For the circuit shown in Figure 7, plot input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $V_{in}(t) = 20V_{p-p}$ square wave signal with frequency 1000 Hz and D_1 is a silicon diode

Figure 7: Clipper circuit

Figure 8: Input signal

Solution:

The given diode D_1 is a silicon diode, $\therefore V_{D,on} = 0.7 \text{ V}$

$$V_{in} = 20V_{p-p}, \therefore V_m = 10 \text{ V}$$

Case 1: When $V_{in} > (V_{D,on} - V_B)$

i.e. when $V_{in} > (0.7V)$, the diode D_1 is ON(because the anode voltage of the diode which is connected to V_{in} is greater than cathode voltage by 0.7, hence the diode will turn on)

... When $V_{in} > 0.7 \text{ V}$, D_1 turns ON and the clipper circuit reduces to Circuit 4. Applying KVL,

$$V_{in} - V_{D,on} - (I \times R_1) - (I \times R_2) = 0$$

$$\therefore I = \frac{V_{in} - V_{D,on}}{R_1 + R_2}$$

Figure 9: Circuit 4

$$\therefore I \times R_2 = V_{out} = \frac{V_{in} - V_{D,on}}{R_1 + R_2} \times R_2$$
$$\therefore V_{out} = \frac{10 - 0.7}{1.2k + 2.2k} \times 1.2k$$

$$\therefore V_{out} = \frac{10 - 0.7}{1.2k + 2.2k} \times 1.2k$$

$$\therefore V_{out} = 3.283 \text{ V}$$

Case 2: When $V_{in} < V_{D,on}$

i.e. when $V_{in} < 0.7$, the diode D_1 will be OFF

Hence the clipper circuit reduces to Circuit 5.

Figure 10: Circuit 5

In Circuit 5, we can observe that $V_{out}=0~\mathrm{V}$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 11: Circuit schematic

The input and output waveforms are shown in Figure 12.

Figure 12: Input and output waveforms

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Level of clipped voltage	3.283 V	3.30647 V

Table 2: Table 2

3. For the circuit shown in Figure 1, plot input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $V_{in}(t) = 40V_{p-p}$ sinusoidal wave of frequency 1000 Hz $C_1 = 10\mu F$ and $R_1 = 10k\Omega$ Diode D_1 is silicon diode, i.e. $V_{D,on} = 0.7$ V, $V_B = 10$ V DC

Figure 13: Clamper circuit

Figure 14: Input signal

Solution:

Since the given diode D_1 is a silicon diode, $\therefore V_{D,on} = 0.7 \text{ V}$

Given: $V_{in} = 40V_{p-p}$, $\therefore V_m = 20 \text{ V}$

Operation:

a) During negative half cycle, D_1 is ON.

When $V_{in} < (-V_{D,on} + V_B)$, i.e. (-0.7 + 10) V, i.e. 9.3 V, Figure 13 reduces to Figure 15.

Figure 15: When diode D_1 is ON

Here,
$$V_{out} = -V_{D,on} - V_B = -0.7 - 10$$

$$\therefore V_{out} = -10.7 \text{ V}$$

b) At the same time, voltage across capacitor V_C changes to $-V_m$ Applying KVL,

$$V_{in} - V_C - V_{D,on} + V_B = 0$$

$$\therefore V_C = V_{in} + V_{D,on} + V_B$$
 (for negative half cycle)

$$\therefore V_C = -V_m + V_{D,on} + V_B = -9.3 \text{ V}$$

c) During positive half cycle, diode D_1 is OFF for the entire positive half cycle, hence Figure 13 reduces to Figure 16.

Figure 16: When diode D_1 is OFF

During positive half cycle, capacitor C_1 holds the charge $V_C = -9.3$ V and acts as a battery.

Applying KVL,

$$V_{in} - V_C - V_{out} = 0$$

$$\therefore V_{out} = V_{in} - V_C$$

$$\therefore V_{out} = 20 - (-9.3) = 29.3 \text{ V}$$
 (for positive half cycle)

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 17: Circuit schematic

The input and output waveforms are shown in Figure 18.

Figure 18: Input and output waveforms

The output waveform is shifted above the axis, hence the circuit is a biased positive clamper.

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Positive clamping voltage level	29.3 V	29.18114 V
Negative clamping voltage level	-10.7 V	-10.76083 V

Table 3: Table 3