Chronic Kidney Decease

- 1. Problem statement: Prediction of chronic kidney decease from given dataset.
 - (Machine learning-supervised learning-classification)
- 2. Dataset details: Number of Columns-25 & Number of Rows-399.
- 3. Data preprocessing performed for column name rbc, pc, pcc, ba.
- 4. Machine learning algorithms for classification using random forest produce good results.

[[45 0] [2 73]]	precision	recall	f1-score	support
0 1	0.96 1.00	1.00 0.97	0.98 0.99	45 75
accuracy macro avg weighted avg	0.98 0.98	0.99 0.98	0.98 0.98 0.98	120 120 120
0.98340188014 0.99970370370				

5. Other classification algorithm research values:

a. <u>Decision Tree:</u>

Fitting 3 fol [[44 1] [3 72]]	ds for each	of 12 can	didates, to	otalling 36 fits
	precision	recall	f1-score	support
0	0.94	0.98	0.96	45
1	0.99	0.96	0.97	75
accuracy			0.97	120
macro avg	0.96	0.97	0.96	120
weighted avg	0.97	0.97	0.97	120
0.9668037602820211 0.968888888888889				

b. Random Forest:

[[45 0] [2 73]]				
	precision	recall	f1-score	support
0	0.96	1.00	0.98	45
1	1.00	0.97	0.99	75
accuracy			0.98	120
macro avg	0.98	0.99	0.98	120
weighted avg	0.98	0.98	0.98	120
0.00340400044	14.04.05			
0.98340188014				
0.99970370370	37038			

c. Logistic Regression:

Fitting 3 folds for each of 4 candidates, totalling 12 fits [[43 2]					
[0 75]]					
	precision	recall	f1-score	support	
0	1.00	0.96	0.98	45	
1	0.97	1.00	0.99	75	
accuracy			0.98	120	
macro avg	0.99	0.98	0.98	120	
weighted avg	0.98	0.98	0.98	120	
0.9832535885167464					
0.99733333333	33334				

d. Naïve Bayes:

Fitting 3 folds for each of 1 candidates, totalling 3 fits [[45 0] [2 73]]						
	precision	recall	f1-score	support		
0	0.96	1.00	0.98	45		
1	1.00	0.97	0.99	75		
accuracy			0.98	120		
macro avg	0.98	0.99	0.98	120		
weighted avg	0.98	0.98	0.98	120		
0.98340188014 1.0	10106					

e. K Nearest neighbors:

Fitting 3 fol [[41 4] [22 53]]	ds for each	of 4 cand	idates, tot	talling 12 fits
	precision	recall	f1-score	support
0	0.65	0.91	0.76	45
1	0.93	0.71	0.80	75
accuracy			0.78	120
macro avg	0.79	0.81	0.78	120
weighted avg	0.83	0.78	0.79	120
0.78661616161614 0.8558518518518519				

f. Support vector machine:

[[44 1] [1 74]]	precision	recall	f1-score	support
	precision	recarr	11-30016	заррог с
9	0.98	0.98	0.98	45
1	0.99	0.99	0.99	75
accuracy			0.98	120
macro avg	0.98	0.98	0.98	120
weighted avg	0.98	0.98	0.98	120
0.9833333333	333335			
0.9985185185	185185			

6. Final Model analysis:

The trained model's development indicated that the Random Forest algorithm delivered the best performance across all parameters.

- It predicts a 98% total model performance.
- Type I error in the confusion matrix is 0, and Type II error is 2. Here, type I error has
 a lower value compared to type II error, which suggests that predicting chronic renal
 disease is accurate.
- A slight increase or decrease in recall and precision values. Only F1 score is taken into consideration for the best outcome.
- The ROC value for this problem is 0.9997, or almost 1, indicating that the random forest algorithm is effective.