

Measurement of sub-Femtonewton Optical Forces in Fluid

High-precision measurements at the thermal limit using a Brownian probe

Lulu Liu Simon Kheifets Vincent Ginis Andrea Di Donato Federico Capasso

Collaborators, Visitors, Funders, PI

Andrea Di Donato

Simon Kheifets

Federico Capasso - PI

Vincent Ginis

what's 1 fN?

optical force of sunlight on single cell

drag on bacterium moving through water

Forces in **Optics**

Biology

AFM is the most commonly used instrument for performing force spectroscopy, but its sensitivity, especially in fluid, is limited

Force Sensitivity: ~ 0.1-1 pN

Thermal fluctuations is a dominant noise source at these scales

$$S_F^{th} = 2\gamma kT$$

Fluctuation-dissipation theorem: Thermal noise scales with drag

Drag in liquid many times drag in air

1. Reduce the thermal limit:

D. Prieve E-L Florin

Replace AFM cantilever with optically trapped microsphere (PFM)

2. Scan focus of optical tweezer to precisely position trapped bead

3. Use light scattered from an evanescent wave to track particle position at ~ 1 ms time scale

$$I(z) = I_0 e^{-\beta z} + C$$

Devised method to directly measure each calibration constant:

(Liu, L. (2014). PNAS)

4. Use another totally internally reflected beam to generate attractive gradient optical force

5. Modulate optical force with chopper and use lockin detection to extract response amplitude & phase

$$\tilde{z}_{tot}(\omega) = \tilde{z}_B(\omega) + \tilde{z}_{ext}(\omega)$$
noise

Response Amplitude: $|\tilde{z}_{ext}(\omega_0)|$

Response Arg $[\tilde{z}_{ext}(\omega_0)]$

Etc.

For more details:

Liu, L., Kheifets, S., Ginis, V., & Capasso, F. (2016). PRL

Measured noise agrees with thermal limit predictions

Measured F(z) agrees quantitatively with Mie Theory predictions

Summary

- > 100x improvement in sensitivity (N/sqrt(Hz))
 over previous methods (including PFM and AFM
 methods)
- First quantitative confirmation of Mie theory for forces from evanescent field.

For continuing work we added another dimension of detection

Discovered some interesting dynamics due to near-surface anisotropy

Paper in progess, come talk to me!