Maшинное обучение (Machine Learning) Неопределенность и калибровка в машинном обучении

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

Aleatoric uncertainty

- Aleatoric uncertainty (AU) стохастическая неопределенность представляет собой объективную случайность, присущую задаче.
- Примеры перекрытие классов, шум данных, разброс, неизвестные факторы.
- Она же вариабельность, изменчивость.
- AU принципиально неустранима и не зависит от познающего субъекта.

Методы калибровки

Aleatoric uncertainty (пример)

- Типичный пример подбрасывание монеты: процесс генерации данных в экспериментах такого типа имеет стохастический компонент, который не может быть уменьшен какой-либо дополнительной информацией.
- Следовательно, даже лучшая модель этого процесса сможет дать только вероятности двух возможных исходов, орла и решки, но не даст однозначного ответа.

Aleatoric uncertainty в машинном обучении

- В MO AU интерпретируется как неопределенность из-за неоднозначности или шума в данных.
- В задаче классификации это означает наличие перекрывающихся классов.
- AU HE может быть уменьшена наблюдением большего числа примеров из одного источника, а только добавлением допол-ных признаков, улучшением качества признаков и другими процедурами, делающими классы разделимыми.
- Увеличение данных не приводит к снижению AU.
- В медицинских моделях часто сталкиваемся с определенной степенью AU, так как у нас нет полной информации для предсказания будущих событий.

Aleatoric uncertainty (иллюстрация)

область 1 - имеется перекрытие классов

- Epistemic uncertainty (EU)эпистемическая неопределенность обусловлен фактором субъективным недостаточностью (неполнотой, неточностью, неоднозначностью) имеющихся знаний о свойствах изучаемого объекта.
- EU можно интерпретировать как неопределенность из-за отсутствия знаний об оптимальной модели, вызванное отсутствием данных наблюдения.
- EU высока в регионах, где отсутствуют обучающие данные.

Epistemic uncertainty (пример)

- Эпистемическую неопределенность можно разделить на
 - неопределенность в отношении параметров модели
 - неопределенность в отношении структуры модели (или класса гипотез).
- Ее можно устранить путем наблюдения большего количества данных, поэтому ее также называют уменьшаемой неопределенностью.
- Пока о пациенте не известно ничего важного, врач не будет знать истинного диагноза. Собирая все больше и больше информации в виде медицинских анализов и т. д., это незнание будет исчезать шаг за шагом.

Epistemic uncertainty в машинном обучении (иллюстрация)

2 - неопределенность из-за отсутствия знаний об оптимальной модели (разделяющей функции).

Методы калибровки

Два типа неопределенности (пример)

- AU разброс наблюдаемых данных о модели, которая является хорошим приближением к истинной модели в области, в которой мы наблюдали данные.
- ullet EU модель становится худшим приближением к истинной функции по мере того, как мы удаляемся от наблюдаемых данных при >1

Два типа неопределенности (еще пример)

Классификация (симплекс) и регрессия (квадрат)

- 1 AU и EU низкие (достоверные прогнозы с низкой дисперсией)
- 2 AU высока, EU низка (предсказания концентрируются вокруг центра симплекса или областей с большой дисперсией)
- 3 AU и EU высоки

Пример с монетой (1)

- Последовательность экспериментов Бернулли: монета с неизвестной вер-тью орла $p \in [0;1]$ подбрасывается много раз и после броска задача в том, чтобы предсказать исход следующего броска.
- Предсказание следующего исхода является неопределенным:
 - вначале это EU, т.к. о *p* ничего не известно;
 - с течением времени о *p* узнаем все больше и больше, так что EU становится все меньше;
 - в пределе бесконечного объема выборки EU полностью исчезнет, так как *р* можно оценить по частоте событий с произвольной точностью;
 - оставшаяся неопределенность AU.

Пример с монетой (2)

• После N испытании и K "орлов" функция правдоподобия

$$L(p) = \binom{N}{K} \cdot p^K \cdot (1-p)^{N-K}.$$

• Неопределенность двух типов (средняя по большому кол-ву повторений) в зависимости от N.

Пример с монетой (3)

- Чем ближе p к 1/2, тем медленнее исчезает EU и тем больше AU, которая в конечном итоге остается.
- Случай p=1/2 особенный, так как он соответствует "полной неопределенности". Вначале полностью EU становится полностью AU при $N \to \infty$.
- Важно, общая величина неопределенности не уменьшается (кривая AU медленно сходится к 1): даже точное знание *p* не помогает предсказать исход следующего испытания.
- Для $p \neq 1/2$ иначе, так как даже приблизительное знание p поможет сделать лучше, чем случайное угадывание.

Достоверность предсказания (1)

- Классификация: есть обучающие данные (\mathbf{X}, \mathbf{y}) , $\mathbf{x}_i \in \mathbf{X}$ вектор признаков, $y_i \in \mathbf{Y}$ класс.
- Цель: найти функцию $\psi(\mathbf{X})$ (классификатор, модель), которая отображает новый пример \mathbf{x}_0 в оценку \widehat{y}_0 , т.е. оценить y_0 для \mathbf{x}_0 с учетом $\psi(\mathbf{X})$ из обучающих данных \mathbf{X} .
- ullet Для ${f x}_0$ оцениваем достоверность предсказания как

$$C(\widehat{y}_0 = y_0 \mid \mathbf{x}_0, \psi(\mathbf{x}_0), \mathbf{X}) = \widehat{p}_0,$$

где \widehat{p}_0 - оценка достоверности предсказания \widehat{y}_0 .

Достоверность предсказания (2)

ullet Для ${f x}_0$ оцениваем достоверность предсказания как

$$C(\widehat{y}_0 = y_0 \mid \mathbf{x}_0, \psi(\mathbf{x}_0), \mathbf{X}) = \widehat{p}_0,$$

где $\widehat{p_0}$ - оценка достоверности предсказания $\widehat{y_0}$.

- Модель оценивания достоверности учитывает насколько информативными являются обучающие данные при попытке классифицировать пример \mathbf{x}_0 . Пример учета этого ядро $K(\mathbf{x}_0, \mathbf{X})$ как мера сходства между точкой \mathbf{x}_0 и \mathbf{X} .
- Если \mathbf{x}_0 не похож на то, что было в \mathbf{X} , мы не можем быть уверены в \widehat{y}_0 .

Калибровка (1)

- Калибровка модели оценки достоверности C это степень, с которой оценки соответствуют эмпирической точности классификатора, т.е. если модель C оценивает вероятность в 75%, это должно быть правильным примерно в 75% случаев.
- Модель C идеально калибрована, если это верно для всех оцениваемых вероятностей, $p \in [0,1]$. Если это не так, то мы говорим, что модель либо слишком достоверна (over-confident), либо недостаточно достоверна (under-confident): т.е. если модель C оказывается верной реже, чем \widehat{p}_0 , то говорят, что она over-confident, и наоборот.
- Формально:

$$\Pr\left(\widehat{y}_i = y_i \mid \widehat{p}_i = p_i\right) = p \in [0, 1].$$

Калибровка (2)

• Т.к. истинная вероятность является неизвестной случайной величиной, обычно невозможно точно ее вычислить, поэтому стандартный метод заключается в преобразовании непрерывного доверительного пространства в набор из n дискретных интервалов, B_n (например, [0,5,0,6,0,7,0,8,0,9,1.]) и сравнении средней оценки достоверности \overline{p} каждого интервала с эмпирической точностью интервала, т.е.

$$Acc(B_n) = \frac{1}{|B_n|} \sum_{i \in B_n} \delta_{\widehat{y}_i, y_i},$$

где

$$\delta_{\widehat{y}_i, y_i} = \left\{egin{array}{ll} 1, & \widehat{y}_i = y_i, \ 0, & ext{иначе,} \end{array}
ight. \quad \mathcal{C}(B_n) = rac{1}{|B_n|} \sum_{i \in B_n} \overline{p}_i$$

Калибровка (3)

- Модель C идеально калибрована, если $C(B_n) = Acc(B_n)$ для каждого B_n .
- Показатель ошибки калибровки: ожидаемая ошибка калибровки (*ECE*). Эта метрика измеряет разницу между прогнозируемыми оценками достоверности и эмпирической точностью каждого интервала. Эти остатки затем объединяются в сумму, взвешенную по количеству баллов в каждой ячейке:

$$ECE = \frac{1}{N} \sum_{i=1}^{n} |C(B_i) - Acc(B_i)| \cdot |B_i|$$

Кривые достоверности (1)

- Кривая достоверности (надежности) визуальный метод, позволяющий определить, откалибрована ли наша модель.
- Разбиваем [0; 1] на интервалы (пусть 0.1).
- Пусть есть 5 примеров в первом интервале, т. е. есть 5 точек (0.05, 0.05, 0.02, 0.01, 0.02), чей диапазон предсказания модели лежит между 0 и 0.1.
- По оси X откладываем среднее значение этих прогнозов, т.е. 0.03, а по оси Y откладываем эмпирические вероятности, т.е. $Acc(B_1)$. Если из 5 точек для одной точки $\delta_{\widehat{y_i},y_i}=1$, то $Acc(B_1)=1/5$. Следовательно, координаты нашей первой точки равны (0.03,0.2).

Кривые достоверности (2)

- Повторяем процедуру для всех интервалов и соединяем точки, чтобы сформировать линию.
- Сравниваем с линией y = x и оценивам калибровку:
 - когда точки находятся выше этой линии, модель занижает истинную вероятность,
 - если ниже линии, модель завышает истинную вероятность.

 Модель слишком достоверна примерно до 0.6, а затем недостаточно достоверна после 0.8.

- Все неоткалиброванные прогнозы \widehat{p}_i делятся на интервалы $B_1,...,B_M$.
- Каждому интервалу присваивается калиброванная оценка θ_m , т.е., если \widehat{p}_i ставится в соответствие B_m , то $\widehat{q}_i = \theta_m$.
- Во время тестирования, если предсказание \widehat{p}_{te} попадает в B_m , то откалиброванное предсказание $\widehat{q}_{te}=\theta_m$.
- Точнее, для подходящего выбора M сначала определяем границы интервалов $0=a_1\leq a_2\leq ...\leq a_M+1=1$, где B_m определяется интервалом $(a_m,a_m+1]$.

Гистограммный метод для бинарной классификации (2)

• Значения θ_i выбираются так, чтобы минимизировать квадратичные потери по интервалам:

$$\min_{\theta_1,\ldots,\theta_M} \sum_{m=1}^M \sum_{i=1}^n \mathbf{1} \left(a_m \leq \widehat{p}_i < a_m + 1 \right) \left(\theta_m - y_i \right)^2.$$

• При фиксированных границах интервалов решение приводит к θ_m , которые соответствуют среднему количеству "правильных" примеров класса в интервале B_m .

Изотонная регрессия для бинарной классификации

- Идея найти кусочно-постоянную функцию f: $\widehat{q}_i = f(\widehat{p}_i)$ или минимизировать потери $\sum_{i=1}^n (f(\widehat{p}_i) y_i)^2$.
- Это соответствует

$$\min_{\substack{M \\ a_1, \dots, a_{M+1} \\ a_1, \dots, a_{M+1}}} \sum_{m=1}^{M} \sum_{i=1}^{n} \mathbf{1} \left(a_m \leq \widehat{p}_i < a_m + 1 \right) \left(\theta_m - y_i \right)^2.$$

при ограничениях

$$0 = a_1 \le a_2 \le ... \le a_{M+1} = 1,$$

 $\theta_1 \le \theta_2 \le ... \le \theta_M.$

• Здесь $\theta_1, ..., \theta_M$ - значения функции f

Масштабирование Платта (Platt et al., 1999)

- Параметрический подход к калибровке, в отличие от других подходов.
- Невероятностные предсказания классификатора используются в качестве признаков модели логистической регрессии, которая обучается на тестовом наборе для получения вероятностей.
- В нейронных сетях масштабирование Платта определяет скалярные параметры $a,b\in\mathbb{R}$ и выдает $\widehat{q}_i=\sigma(az_i+b)$ в качестве калиброванной вероятности, где $z_i\in\mathbb{R}$ невероятностный выход сети.

Гистограммный метод (обобщение на K>2)

- Один из способов обобщения рассматривать задачу как K задача "один против всех".
- ullet Для k=1,...,K формируем задачу бинарной калибровки, где метка ${f 1}(y_i=k)$ и предсказанная вероятность

$$\sigma_{Soft \max}(\mathbf{z}_i)^{(k)} = \frac{\exp(z_i^{(k)})}{\sum_{j=1}^K \exp(z_i^{(j)})}.$$

• Это дает нам K калибровочных моделей, каждая для определенного класса. При тестирования мы получаем ненормированный вектор вероятностей $[\widehat{q}_i^{(1)},...,\widehat{q}_i^{(K)}]$, $\widehat{q}_i^{(k)}$ - калиброванная вероятность для класса k.

Гистограммный метод (обобщение на K>2)

- Это дает нам K калибровочных моделей, каждая для определенного класса. При тестирования мы получаем ненормированный вектор вероятностей $[\widehat{q}_i^{(1)},...,\widehat{q}_i^{(K)}]$, $\widehat{q}_i^{(k)}$ калиброванная вероятность для класса k.
- Предсказание нового класса \widehat{y}_i' argmax вектора, а новая вероятность \widehat{q}_i' максимальное значение вектора, нормализованного делением на $\widehat{q}_i^{(1)} + ... + \widehat{q}_i^{(K)}$.
- Это обобщение может быть применено к другим методам

Масштабирование температуры

- Простейшее обобщение масштабирования Платта
- Использует один скалярный параметр (температура) ${\cal T}>0$ для всех классов.
- Если дан вектор \mathbf{z}_i , новое доверительное предсказание равно

$$\widehat{q}_i = \sigma_{Soft \, max} (\mathbf{z}_i / T)^{(k)}.$$

- ullet Если $T o\infty$, то $\widehat{q}_i o 1/K$. Если T=1, то $\widehat{q}_i=\widehat{p}_i$. Если T o 0, то $\widehat{q}_i=1$.
- Т.к. параметр T не изменяет максимум функции softmax, предсказание класса \widehat{y}'_i остается неизменным, т.е., масштабирование температуры не влияет на точность модели.

Вопросы

?