1

Versuch 4

1.1 Fragestellung, Messprinzip, Aufbau, Messmittel

1.1.1 Fragestellung

Wir untersuchen was passiert wenn man eine Abtastfrequenz immer weiter der Nyquistfrequenz annähert und über diese hinausgeht.

1.1.2 Messprinzip

Ist wieder der A/D Wandler.

1.1.3 Aufbau

Nun schließen wir einen Sinusgenerator an den Eingang des A/D Wandlers an.

1.1.4 Messmittel

Als Messmittel nutzen wir ein Python Skript, welches uns das Spektrum der eingegebenen Schwingung abbildet.

1.2 Messwerte

Nun stellen wir den Sinusgenerator so ein, dass er eine Frequenz ausgibt, die angefangen bei der halben Nyquist-Frequenz (2000Hz) bis zur doppelten Nyquist-Frequenz (8000Hz) entspricht.

1.3 Auswertung

Abbildung 1.1: 2000 FFT

Abbildung 1.2: 2000 Signal

Abbildung 1.3: 3000 FFT

Abbildung 1.4: 3000 Signal

Abbildung 1.5: 4000 FFT

Abbildung 1.6: 4000 Signal

Abbildung 1.7: 6000 FFT

Abbildung 1.8: 6000 Signal

Abbildung 1.9: 7000 FFT

Abbildung 1.10: 7000 Signal

Abbildung 1.11: 8000 FFT

Abbildung 1.12: 8000 Signal

1.4 Interpretation