Floating Point

CS2011: Introduction to Computer Systems Lecture 5 (2.4)

Floating Point

- Background: Fractional binary numbers
- **■**IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value

Representation

$$53/4 = 23/4$$

$$= 4 + 1 + 1/2 + 1/4$$

$$27/8 = 23/8$$

$$10.111_2$$

$$= 2 + 1/2 + 1/4 + 1/8$$

$$1.0111_2$$

$$= 1 + 1/4 + 1/8 + 1/16$$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - **•** 1/3 0.01010101[01]...₂
 - 1/5 0.001100110011[0011]...₂
 - **1/10** 0.000110011[0011]...₂

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point

- **■**Background: Fractional binary numbers
- **■**IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

■IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Example:

 $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

 $(-1)^{s} M 2^{E}$

- Sign bit s determines whether number is negative or positive
- Significand/Mantissa M normally a fractional value in range [1.0,2.0].
- **Exponent** *E* weights value by power of two

Encoding

- MSB S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac

Precision options

■Single precision: 32 bits

≈ 7 decimal digits, $10^{\pm 38}$

S	ехр	frac
1	8-bits	23-bits

- **■**Double precision: 64 bits
 - ≈ 16 decimal digits, 10±308

Other formats: half precision, quad precision

Three "kinds" of floating point numbers

"Normalized" Values

$$v = (-1)^s M 2^E$$

- ■When: exp \neq 000...0 and exp \neq 111...1 (28 1 = 255 in single precision and 2¹¹ 1 = 2047 in double precision)
- **Exponent E** coded as a *biased* value: $E = \exp Bias$
 - exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: k = 8, Bias = 127 (exp: 1...254, E: -126...127)
 - **Double precision**: k = 11, Bias = 1023 (**exp**: 1...2046, **E: -1022...1023**)
- ■Significand M coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field $f(0 \le f \le 1)$ M = 1 + f
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when $frac=111...1 (M = 2.0 \epsilon)$
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^{s} M 2^{E}$$

$$E = \exp - Bias$$

```
■ Value: float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

Significand

$$M = 1.101101101_2$$

frac = $101101101101_0000000000_2$

Exponent

$$E = 13$$
 $Bias = 127$
 $exp = 140 = 10001100_{2}$

Result:

 0
 10001100
 11011011011010000000000

 s
 exp
 frac

Denormalized Values

$$V = (-1)^{s} M 2^{E}$$

$$E = 1 - Bias$$

- ■Helps us represent value 0 since normalized format always has M >= 1 and represent numbers that are very close to 0.0
- **Condition:** exp = 000...0
- **■**Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac f M = f
- **Exponent value:** E = 1 Bias (instead of exp Bias) (why?)

Normalized = *Smallest number* is 1.0×2^{-126}

- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value 0.0
 - Note distinct values: +0.0 and −0.0 (why?) does not account for sign bit the two zeros are considered different in some ways and same in others under IEEE floating-point format
 - $exp = 000...0, frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced (spaced evenly near 0.0)
 - Gradual underflow property

Special Values

- \blacksquare Condition: exp = 111...1
- \blacksquare Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive $(+\infty)$ and negative $(-\infty)$
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- \blacksquare Case: exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - When result of an operation is not real number of infinity
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$ Imaginary number

float: 0xC0A00000

 $v = (-1)^{s} M 2^{E}$ $E = \exp - Bias$

$$Bias = 2^{k-1} - 1 = 127$$

binary:

23-bits

$$M =$$

$$v = (-1)^s M 2^E =$$

He	t De	Binar
	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
0 1 2 3 4 5 6 7 8	1 2 3 4 5 6 7	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
A B C D	11	1011
С	12	1100
	13	1101
E	14	1110
F	15	1111

 $v = (-1)^{s} M 2^{E}$ $E = \exp - Bias$

float: 0xC0A00000

1 8-bits 23-bits

E =

S =

M = 1.

 $v = (-1)^s M 2^E =$

He	+ _0	Einary
No	O.	6 ,
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	0 1 2 3 4 5 6 7 8	0101
6	6	0110
7	7	0111
8	8	1000
9		1000 1001 1010 1011 1100
A	10	1010
В	11	1011
С	12	1100
0 1 2 3 4 5 6 7 8 9 A B C D E	10 11 12 13 14 15	TIOT
E	14	1110
F	15	1111

float: 0xC0A00000

$$v = (-1)^{s} M 2^{E}$$

$$E = \exp - Bias$$

$$Bias = 2^{k-1} - 1 = 127$$

 1
 1000 0001
 010 0000 0000 0000 0000 0000

 1
 8-bits
 23-bits

 $E = \exp - Bias = 129 - 127 = 2$ (decimal)

S = **1** -> negative number

M = 1.010 0000 0000 0000 0000 0000= 1 + 1/4 = 1.25

 $V = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$

		ime ary
He	, Oe,	Einary
0	0	0000
0 1 2 3 4 5 6 7 8	1 2 3 4 5 6	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
A B C D	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

 $\begin{vmatrix} \mathbf{V} = (-1)^{s} \mathbf{M} 2^{E} \\ \mathbf{E} = \mathbf{1} - \mathbf{Bias} \end{vmatrix}$

float: 0x001C0000

binary: 0000 0000 1100 0000 0000 0000 0000

1 8-bits 23-bits

E =

S =

M = 0.

 $v = (-1)^s M 2^E =$

He	t De	Einary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	0 1 2 3 4 5 6 7 8	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
0 1 2 3 4 5 6 7 8 9 A B C D	13	1101
E	10 11 12 13 14 15	1000 1001 1010 1011 1100 1101 1110
F	15	1111

float: 0x001C0000

$$\mathbf{v} = (-1)^{\mathrm{s}} \mathbf{M} 2^{\mathbf{E}}$$
$$\mathbf{E} = \mathbf{1} - \mathbf{Bias}$$

$$Bias = 2^{k-1} - 1 = 127$$

binary: 0000 0000 1100 0000 0000 0000 0000

$$E = 1 - Bias = 1 - 127 = -126$$
 (decimal)

S = **0** -> positive number

$$M = 0.001 \ 1100 \ 0000 \ 0000 \ 0000 \ 0000$$

$$= 1/8 + 1/16 + 1/32 = 7/32 = 7*2^{-5}$$

$$V = (-1)^s M 2^E = (-1)^0 * 7*2^{-5} * 2^{-126} = 7*2^{-131}$$

≈ 2.571393892 X 10⁻³⁹

		the oni.
He	be.	Einary
0 1 2 3 4 5 6 7 8	0	0000
1	0 1 2 3 4 5 6 7 8	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10 11	1010
В		1011
B C D	12	1100
D	13	1101
E	14	1110
F	15	1111
<u> </u>	•	

Visualization: Floating Point Encodings

Floating Point

- **■**Background: Fractional binary numbers
- **■**IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Distribution of Values

■6-bit IEEE-like hypothetical format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

■Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

■6-bit IEEE-like hypothetical format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

- Denormalized (equispaced spaced evenly near 0)
- Normalized (*not* equispaced)

Tiny Floating Point Example

■8-bit Hypothetical Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exp, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

 $v = (-1)^s M 2^E$

Dynamic Range (s=0 only)

by name range (5-0 omy)						no	orm: $E = \exp - Bias$		
	s	exp	frac	E	Value				enorm: $E = 1 - Bias$
	0	0000	000	-6	0				
	0	0000	001	-6	1/8*1/64	=	1/5	12	closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64	=	2/5	12	$(-1)^{0}(0+1/4)*2^{-6}$
	0	0000	110	-6	6/8*1/64	=	6/5	12	
	0	0000	111	-6	7/8*1/64	=	7/5	12	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/5	12	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/5	12	$(-1)^{0}(1+1/8)*2^{-6}$
	•••								
	0	0110	110	-1	14/8*1/2	=	14/	16	
N	0	0110	111	-1	15/8*1/2	=	15/	16	closest to 1 below
Normalized numbers	0	0111	000	0	8/8*1	=	1		
ilullibers	0	0111	001	0	9/8*1	=	9/8		closest to 1 above
	0	0111	010	0	10/8*1	=	10/	8	
	•••								
	0	1110	110	7	14/8*128	=	224		
	0	1110	111	7	15/8*128	=	240		largest norm
	0	1111	000	n/a	inf				

Note: As floating point numbers increase, bit patterns also show an increase (similar to unsigned int)

Interesting Numbers

{single,double}

Description	ехр	frac	Numeric Value
-------------	-----	------	---------------

■ Smallest Pos. Denorm.
$$00...00 \quad 00...01 \quad 2^{-\{23,52\}} \times 2^{-\{126,1022\}}$$

• Single
$$\approx 1.4 \times 10^{-45}$$

■ Double
$$\approx 4.9 \times 10^{-324}$$

Largest Denormalized 00...00 11...11 (1.0 – ε) x
$$2^{-\{126,1022\}}$$

- Single $\approx 1.18 \times 10^{-38}$
- Double $\approx 2.2 \times 10^{-308}$

Just larger than largest denormalized

Largest Normalized
$$11...10$$
 $11...11$ $(2.0 - ε) x 2{127,1023}$

- Single $\approx 3.4 \times 10^{38}$
- Double $\approx 1.8 \times 10^{308}$

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point

- **■**Background: Fractional binary numbers
- **■**IEEE floating point standard: Definition
- **Example** and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\blacksquare x +_f y = Round(x + y)$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

■Basic idea

- First compute exact result (say $x +_f y$ or $x \times_f y$)
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1 ₩	\$1 ₩	\$1 ψ	\$2 ψ	-\$1↑
Round down (-∞)	\$1 ₩	\$1₩	\$1 \	\$2 \	-\$2₩
Round up (+∞)	\$2 ^	\$2 ^	\$2 ^	\$3 ^	-\$1↑
Nearest Even* (default)	\$1 ₩	\$2 ^	\$2 ^	\$2 \	- \$2 ↓

^{*}Round to nearest, but if half-way in-between then round to nearest even

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
 - C99 has support for rounding mode management
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half wav—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.0 <mark>0</mark> 2	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

Rounding In Hardware

1.BBGRXXX

Round to nearest 1/8

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Fraction	GRS	Incr?	Rounded
1.0000000	000	N	1.000
1.1010000	100	N	1.101
1.0001000	010	N	1.000
1.0011000	11 0	Y	1.010
1.0001010	011	Y	1.001
1.1111100	1 <mark>1</mark> 1	Y	10.000

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign *s*: *s1* ^ *s2*
 - Significand *M*: *M1* x *M2*
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Suppose a frac f of 3 bits

4 bit significand:
$$1.010*2^2 \times 1.110*2^3 = 10.0011*2^5$$

= $1.00011*2^6 = 1.001*2^6$

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - ■Assume *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E1*

Fixing

- ■If $M \ge 2$, shift M right, increment E
- ■if M < 1, shift M left k positions, decrement E by k
- ■Overflow if *E* out of range
- Round M to fit frac precision

Get binary points lined up

Suppose a frac f of 3 bits

$$1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}$$

= $10.0110 * 2^{3} = 1.00110 * 2^{4} = 1.010 * 2^{4}$

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

Sum of two FP will always be FP, but may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Yes

Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

Monotonicity

 \bullet a > b \Rightarrow a+c > b+c?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

Yes

- Multiplication of two FP will always be FP, but may generate infinity or NaN
- Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- \bullet 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

Monotonicity

Almost

 $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$

Floating Point

- **■**Background: Fractional binary numbers
- **■**IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- ■Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

■Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will lose precision and round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

Summary

- IEEE Floating Point has clear mathematical properties
- ■Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- ■Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

s exp