Analisi Matematica 1 - Primo Appello

9 Gennaio 2023

Numero di matricola _ Nome e cognome ____

1. Determinare per quali valori dei parametri $\alpha, \beta > 0$ il seguente integrale di Riemann improprio esiste

$$\int_{2}^{+\infty} \frac{\log(x^{\alpha} + 1) - \log(x^{\beta} - 1)}{\arctan\left(\frac{x}{x^{3} + 1}\right)} dx$$

- a) $\alpha = \beta, \beta > 3$
- b) $\alpha > \beta, \beta > 3$
- c) $\alpha < \beta, \alpha > 3$
- d) $\alpha = \beta, \beta < 3$

2. Determinare per quale valore del parametro $\alpha < 0$ la seguente funzione è continua in x = 0

$$f(x) = \begin{cases} \frac{1 - \cos(\alpha x)}{x^2}, & x < 0\\ e^{1-x}, & x \ge 0 \end{cases}$$

a) \sqrt{e}

b) $-\sqrt{e}$

d) $-\sqrt{2e}$

3. Determinare l'estremo superiore dell'insieme

$$S = \bigcup_{n>1} \left(-\frac{1}{n}, 3 - \frac{1}{n} \right]$$

- a) $\sup(S) = 3$
- b) $\sup(S) = 2$
- c) $\sup(S) = 0$
- d) $\sup(S) = -1$

4. L'insieme delle soluzioni del sistema di equazioni in \mathbb{C}

$$\begin{cases} 2z\overline{z} - \operatorname{Im}(z)^2 + i(z - \overline{z}) - 2(z + \overline{z}) + 6 = 0\\ \operatorname{Im}(z) = 3 \end{cases}$$

è costituito da

- a) l'insieme vuoto
- b) due punti
- c) una retta
- d) un punto

5. Se scriviamo

$$\lim_{x \to 0} f(x) = \ell$$

allora

- a) $\exists \delta > 0 \text{ t.c. } |f(x) \ell| = 0 \ \forall x \text{ t.c. } |x| < \delta$ b) $\forall \delta > 0 \ \exists x, |x| < \delta \text{ t.c. } |f(x) \ell| > 1$ c) $\forall \delta > 0 \ \exists x, |x| < \delta \text{ t.c. } |f(x) \ell| > 0$ d) $\exists \delta > 0 \text{ t.c. } |f(x) \ell| < 1 \ \forall x \text{ t.c. } |x| < \delta$

6. Trovare la soluzione u(t) del problema di Cauchy

$$\begin{cases} 2u'' + 3u' + 4u = 4t^2 + 6t \\ u(0) = -1, \ u'(0) = 1 \end{cases}$$
 (La soluzione particolare ha la forma $at^2 + bt + c$)

- a) $u(t) = -\frac{4}{\sqrt{23}}e^{-3/4t}\cos\left(\frac{\sqrt{23}}{4}t\right) + t^2 1$ b) $u(t) = -\frac{4}{\sqrt{23}}e^{-3/4t}\sin\left(\frac{\sqrt{23}}{4}t\right) + t^2 1$
- c) $u(t) = \frac{4}{\sqrt{23}}e^{-3/4t}\sin\left(\frac{\sqrt{23}}{4}t\right) + t^2 1$
- d) $u(t) = \frac{4}{\sqrt{23}}e^{-3/4t}\cos\left(\frac{\sqrt{23}}{4}t\right) + t^2 1$

7. Determinare lo sviluppo di Taylor centrato in $x_0 = 0$ di $f(x) = \arctan(\cos(x))$ fino al quarto ordine

a) $\frac{\pi}{4} - \frac{x^2}{4} + \frac{x^4}{24} + o(x^4)$

b) $\frac{\pi}{4} + \frac{x^2}{4} + \frac{x^4}{24} + o(x^4)$

c) $\frac{\pi}{4} - \frac{x^2}{4} - \frac{x^4}{24} + o(x^4)$

d) $\frac{\pi}{4} + \frac{x^2}{4} - \frac{x^4}{24} + o(x^4)$

3.	. Determinare il valore del seguente integrale definito				
			$\int_0^{-\log(2)} \frac{1}{1+e^x} dx$		
	a) $\log\left(\frac{4}{3}\right)$	b) $\log\left(\frac{3}{2}\right)$	c) $\log\left(\frac{3}{4}\right)$	d) $\log\left(\frac{2}{3}\right)$	
9.). Sapendo che $u(0) < -1$, determinare una soluzione di				
			$u' = \frac{\sinh(t)}{u+1}$		

a)
$$u(t) = -1 - \sqrt{1 + 2\cosh(t) + c}$$

b) $u(t) = 1 + \sqrt{1 + 2\cosh(t) + c}$
c) $u(t) = -1 + \sqrt{1 + 2\cosh(t) + c}$
d) $u(t) = 1 - \sqrt{1 + 2\cosh(t) + c}$

10. Determinare il comportamento della soluzione u(t) del seguente problema di Cauchy in un intorno di x = 0 $\int_{-\infty}^{\infty} \log(a + t)v'(t) = \sinh(u) = \arctan(\sqrt{t + 1})$

$$\begin{cases} \log(e+t)u'(t) = \sinh(u) - \arctan(\sqrt{t+1}) \\ u(0) = 0 \end{cases}$$

a) crescente e concava

b) crescente e convessa

c) decrescente e concava

d) decrescente e convessa

11. Data la funzione integrale $F \colon [-1,1] \to \mathbb{R}$,

$$F(x) = \int_0^{\arcsin(x)} \frac{1}{1 + \cos(t)} dt \qquad \left(\text{Ricorda: } \cos(\arcsin(x)) = \sqrt{1 - x^2} \right)$$

allora

a) F ammette un massimo globale in x = -1

b) F ammette un minimo globale in x = -1

c) F non ammette massimo e minimo globali

d) F è costante

12. Calcolare

$$\lim_{x\to 0^+} \frac{1}{\log|x|} \int_x^{\pi/2} \frac{1}{\sin(t)} dt$$
 a) 0 b) $-\infty$ c) -1 d) 1

13. Calcolare il limite della successione $(s_n)_n$,

$$s_n = \frac{\sqrt{n}}{\sqrt{5n+1}+\sqrt{n}}$$
 a) $\frac{\sqrt{5}-1}{4}$ b) $\frac{\sqrt{5}-1}{6}$ c) $\frac{\sqrt{5}+1}{6}$ d) $\frac{\sqrt{5}+1}{4}$

14. $P(x) = -x^3 + a_2x^2 + a_1x + a_0$ è un polinomio a coefficienti reali tale che P(0) = 0 e avente come radice $z = 2e^{i\pi/8}$. Allora a_2 è uguale a

a)
$$-2\cos\left(\frac{\pi}{8}\right)$$
 b) $-4\cos\left(\frac{\pi}{8}\right)$

c)
$$2\cos\left(\frac{\pi}{8}\right)$$

d) $4\cos\left(\frac{\pi}{8}\right)$

15. Data una funzione $f: [-1,1] \to \mathbb{R}$ continua e derivabile su (-1,1) tale che f(-1)=f(1), allora

a) esiste
$$\xi \in (-1,1)$$
 tale che $f'(\xi) = 2$

b) esiste
$$\xi \in (-1,1)$$
 tale che $f'(\xi) = -2$

c) esiste
$$\xi \in (-1,1)$$
 tale che $f'(\xi) = 0$

d) esiste
$$\xi \in (-1,1)$$
 tale che $f'(\xi) = 1$