Formale Semantik o3. Mengen und Funktionen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Achtung: Folien in Überarbeitung. Englische Teile sind noch von 2007! Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

Was ist eine Menge?

Eine frei definierbare ungeordnete Sammlung von diskreten Objekten

- Zahlen
- Menschen
- Schuhe
- Wörter
- ...
- nicht unbedingt zweckgebunden
- jedes Objekt maximal einmal in jeder Menge

Das Wesentliche von heute in Partee u.a. (1990: Kapitel 1-4)

Notation und Beispiele für Mengen

Mengendefinition $\{\}$, Elementstatus \in

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - ▶ vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)
 - ▶ vs. N₃ = {'my', 'book'} (Menge von Wörtern)
- möglich, aber ungewöhnlich: N₄ = {'my', book}
- definiert über eine Eigenschaft der Elemente (zwei Notationen):
 M₂ = {x: x is one of the first three letters of the alphabet}
 M₂ = {x|| x is one of the first three letters of the alphabet}
- U: die universelle Menge (alle Objekte)

Identität von Mengen

Zwei Mengen mit exakt den gleichen Elementen sind identisch.

- {a, b, c} = {x: x is one of the first tree letter of the alphabet}
- {x: x is human} = {x: x is from the Earth, a primate but not an ape}

Teilmengen und Obermengen

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

Teilmenge oder Identität ⊆ Obermenge oder Identität ⊇

- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- {a} ⊆ {a,b,c} und {a,b,c} ⊇ {a}
- {a,b,c} ⊆ {a,b,c}
- {a,b,c,d} ⊈ {a,b,c} und {a,b,c} ⊉ {a,b,c,d}
- $\{x: x \text{ is human}\} \subseteq \{x: \text{ is an ape}\}$

Echte Teilmengen und Obermengen

Echte Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist, und die nicht mit M identisch ist.

Echte Teilmenge ⊂ Echte Obermenge ⊃

- $\{a\} \subset \{a, b, c\}$ und $\{a\} \subset \{a, b, c\}$
- $\{a,b,c\}\not\subset\{a,b,c\}$ aber $\{a,b,c\}\subseteq\{a,b,c\}$

Elemente vs. Teilmengen

- Achtung bei Mengen von Mengen
 - ► {{a}}} <u>⊄</u> {a,b,c}
 - ► {{a}} ⊈ {a,b,c}
 - ► {{a}} ∉ {a,b,c}
- für leere Menge {} oder Ø
 - ▶ {} ⊂ jede anderen Menge
 - **▶** {} ∉ {}

Logik mit Mengen, Teilmengen und Elementen

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth E = {x: x is professors of English Linguistics} H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$
- Aber
 - Die Anglistikprofessoren sind zahlreich.
 - N = {x: x is a set with many members}
 - ► Aus $w \in E$ und $E \in N$ folgt nicht $w \in N$
 - Vergleiche: *Herr Webelhuth ist zahlreich.

Potenzmengen (power sets)

Potenzmenge $\wp(\cdot)$ | Für jede Menge M: $\wp(M) = \{X : X \subseteq M\}$

- Beispiel
 - ► M={a,b,c}
 - $\wp(M) = \{\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{\}\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

Vereinigungsmenge und Schnittmenge

Vereinigungsmenge | Für Mengen M und N: $M \cup N = \{x : x \in M \text{ oder } x \in N\}$

Schnittmenge | Für Mengen M und N: $M \cap N = \{x : x \in M \text{ und } x \in N\}$

- Beispiel Vereinigungsmenge
 - $M = \{a, b, c\}$
 - \triangleright $N = \{a, b, d\}$
 - $M \cup N = \{a, b, c, d\}$
- Beispiel Schnittmenge
 - ► $M = \{a, b, c\}$
 - \triangleright N = $\{a, b\}$
 - $ightharpoonup M \cap N = \{a, b\}$

Generalisierte Vereinigungs- und Schnittmenge

```
\bigcup M = \{x : x \in Y \text{ für irgendeine } Y \in M\}\bigcap M = \{x : x \in Y \text{ für jede } Y \in M\}
```

- Beispiel generalisierte Vereinigungsmenge
 - $M = \{\{a\}, \{a,b\}, \{a,b,c\}\}$
 - $\blacktriangleright \bigcup M = \{a, b, c\}$
- Beispiel generalisierte Schnittmenge
 - $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$

Differenzmenge und Komplementmenge

```
Differenzmenge | M - N = \{x : x \in M \text{ and } x \notin N\}
Komplementmenge | M \setminus N = \{x : x \in N \text{ and } x \notin M\}
```

- Beispiel Differenzmenge
 - $ightharpoonup M = \{a, b, c\}$
 - \triangleright $N = \{a \}$
 - ► $M N = \{b, c\}$
- Beispiel Komplementmenge
 - ▶ $0 = \{a, b, c, k\}$
 - $ightharpoonup M \setminus O = \{k\}$
- Universelles Komplement
 - die universelle Menge | U={x: x is an object}
 - $M' = \{x : x \in U \text{ and } x \not\in M\}$

Triviale Identitäten

```
Idempotenz M \cup M = M

M \cap M = M

Kommutativität M \cup N = N \cup M

M \cap N = N \cap M

Assoziativität (M \cup N) \cup O = M \cup (N \cup O)

(M \cap N) \cap O = M \cap (N \cap O)

Distributivität M \cup (N \cap O) = (M \cup N) \cap (M \cup O)
```

Interessante Identitäten

Komplementgesetze

- $M \cup \emptyset = M$
- M'' = M
- $M \cap M' = \emptyset$
- $X \cap U = U$

DeMorgan

- $(M \cup N)' = M' \cap X'$
- DeMorgen begegnet uns in der Logik wieder.

How to define an ordered pair

- ...without introducing ordered tuples as a new primitive
- take $S=\{\{a\},\{a,b\}\}$
- we write: $(a, b) = \{\{a\}, \{a, b\}\}$
- · orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$
- first and second coordinate of the tuple

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | | x \in S_1 \text{ and } y \in S_2 \}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}
- for $S \times S \times \cdots$: n-fold products $S^n = {\vec{s} || s_i \in S \text{ for } 1 \le i \le n}$

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- $a \in A$ and $b \in B$: $R \subseteq A \times B$, R is from A (domain) to B (range)
- R from A to A is in A

Complement, inverse

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - Arr R' = all pairs $\langle b,a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.
 - ▶ R^{-1} = all pairs $\langle b, a \rangle$ where a is the teacher of b: Herr Schäfer is the inverse-teacher of Herr Webelhuth.

Functions

- A function F from A to B is a relation s.t. for every $a \in A$ there is exactly on tuple $\langle a, b \rangle \in A \times B$ s.t. a is the first coordinate.
- partial function from A to B: for some $a \in A$ there is no tuple $\langle a,b \rangle \in A \times B$, F is not defined for some a

Injection, surjection, bijection

- B the range of F, F is **into** B
- F from A to B is **onto (a surjection)** B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is **one-to-one (an injection)** iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_i \rangle \in F$
- one-to-one, onto, and total function: correspondence (bijection)

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$
- the compound function can be empty, it will be total if both A and B are bijections.

Reflexivity

	if	(ex.)
reflexive	for every $a \in A$: $\langle a, a \rangle \in R$	is as heavy as
irreflexive non-reflexive	for every $a \in A$: $\langle a, a \rangle \not\in R$ for some $a \in A$: $\langle a, a \rangle \not\in R$	A: physical objects is the father of has hurt

Symmetry

	if	(ex.)
symmetric	for every $\langle a,b\rangle\in R$:	has the same car as
	$\langle b,a \rangle \in R$	
asymmetric	for every $\langle a,b \rangle \in R$:	has a different car than
	$\langle b,a \rangle \not\in R$	
non-symmetric	for some $\langle a,b \rangle \in R$:	is the sister of
	$\langle b,a \rangle \not \in R$	
anti-symmetric	for every $\langle a,b \rangle \in R$: $a=b$	beats oneself
		not every human does

Transitivity

	if	(ex.)
transitive	if $\langle a,b \rangle \in R$ and $\langle b,c \rangle \in R$	is to the left of
	then $\langle a,c \rangle \in R$	
intransitive	the above is never the case	is the father of
non-transitive	the above is sometimes not the case	likes

Connectedness

	if	(ex.)
connected	for every $a, b \in A$, $a \neq b$:	>
	either $\langle a,b\rangle\in R$ or $\langle b,a\rangle\in R$	(A: the natural numbers)
non-connected	for some $a, b \in A$ the above is not the case	likes

Equivalence relations

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes:
 A = {a, b, c, d}, for example P_{A1} = {{a, b}, {c}, {d}}
- not {{a}, {b, c}} or {{a, b}, {b, c}, {d}}

Defining ordering relations

An ordering relation R in A is ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order
- ≥

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element
- well-ordering: total order, every subset has a least element

<u>Lit</u>eratur I

Partee, Barbara, Alice ter Meulen & Robert E. Wall. 1990. Mathematical methods in linguistics. Dordrecht: Kluwer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.