1. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-9x - 3} - \sqrt{-7x - 5} = 0$$

- A. $x_1 \in [-1.1, -0.39]$ and $x_2 \in [-0.9, 0.08]$
- B. $x \in [0.84, 1.45]$
- C. $x_1 \in [-0.48, 0.13]$ and $x_2 \in [0.42, 1.28]$
- D. $x \in [-4.15, -3.84]$
- E. All solutions lead to invalid or complex values in the equation.
- 2. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-8x^2 - 25} - \sqrt{-30x} = 0$$

- A. $x_1 \in [0.5, 1.5]$ and $x_2 \in [2.5, 7.5]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [-2.6, 0.8]$ and $x_2 \in [-6.5, 0.5]$
- D. $x \in [0.5, 1.5]$
- E. $x \in [1.3, 2.7]$
- 3. Choose the graph of the equation below.

$$f(x) = -\sqrt{x-6} + 3$$

X

В.

A.

E. None of the above.

4. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt[3]{x+14} - 5$$

B.
$$f(x) = \sqrt[3]{x - 14} - 5$$

C.
$$f(x) = -\sqrt[3]{x+14} - 5$$

D.
$$f(x) = -\sqrt[3]{x - 14} - 5$$

E. None of the above

5. Choose the equation of the function graphed below.

Progress Quiz 9

Fall 2020

A.
$$f(x) = \sqrt[3]{x+12} - 5$$

B.
$$f(x) = -\sqrt[3]{x+12} - 5$$

C.
$$f(x) = -\sqrt[3]{x - 12} - 5$$

D.
$$f(x) = \sqrt[3]{x - 12} - 5$$

E. None of the above

6. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{8x - 2} - \sqrt{6x + 2} = 0$$

A.
$$x_1 \in [-0.66, -0.14]$$
 and $x_2 \in [0, 1.3]$

B.
$$x \in [-0.19, 0.13]$$

C. All solutions lead to invalid or complex values in the equation.

D.
$$x_1 \in [0.06, 0.62]$$
 and $x_2 \in [1.5, 3.2]$

E.
$$x \in [1.83, 2.24]$$

7. What is the domain of the function below?

$$f(x) = \sqrt[4]{8x - 5}$$

A. $[a, \infty)$, where $a \in [-1.2, 0.8]$

8590-6105

Progress Quiz 9

- B. $(-\infty, \infty)$
- C. $(-\infty, a]$, where $a \in [-0.8, 1.1]$
- D. $[a, \infty)$, where $a \in [1.1, 4.8]$
- E. $(-\infty, a]$, where $a \in [1.5, 2.9]$
- 8. What is the domain of the function below?

$$f(x) = \sqrt[5]{7x+4}$$

- A. The domain is $[a, \infty)$, where $a \in [-4.75, -0.75]$
- B. The domain is $[a, \infty)$, where $a \in [-1.57, 2.43]$
- C. The domain is $(-\infty, a]$, where $a \in [-2.6, -0.7]$
- D. The domain is $(-\infty, a]$, where $a \in [-1.2, -0.4]$
- E. $(-\infty, \infty)$
- 9. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{12x^2 - 28} - \sqrt{5x} = 0$$

- A. $x_1 \in [0.7, 1.7]$ and $x_2 \in [-5.25, 2.75]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [1.6, 2.7]$
- D. $x \in [-2.1, -0.6]$
- E. $x_1 \in [-2.1, -0.6]$ and $x_2 \in [-5.25, 2.75]$
- 10. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x - 8} - 5$$

8590-6105

В.

E. None of the above.

8590-6105 Fall 2020