

UNIVERSIDAD MARIANA FACULTAD DE INGENIERIA PROGRAMA: INGENIERÍA DE SISTEMAS

	Asignatura	Semestre	Corte	Docente		
ELECTRÓNICA DIGITAL		6	2	José Javier Villalba Romero		
No. Lab	Nombre laborate	Lugar		Fecha	Duración	
3	Introducción al manejo digitales con Arduino	de salidas	Laboratorio Electrónica Alvernia			3 horas
Tema	Introducción al manejo digitales con Arduino	de salidas	Sub tema		ejo de salidas di splay de segmer	

Objetivo general		Competencias esperadas		
Implementar un contador digital con Arduino		Identifica la construcción de programas con Arduino		
	2	Construye un circuito electrónico que implementa un contador digital de 0 a 9.		
	3	Usa los Arduino para identificar señales digitales.		

Figura No. 1 Circuito Display de 7 segmentos

- **1.** El estudiante identifica previamente la distribución de pines del Display de 7 segmentos de ánodo común e i8mplementa el circuito en Proteus. Figura No. 1.
- 2. Una vez implementado el circuito se debe escribir el código en Arduino y generar el .hex para ser cargado por Proteus.
 - // Programa que controla el conteo hasta nueve de // un Display de 7 Segmentos

```
// Elaboró: José Javier Villalba Romero
// Fecha: Mayo 2016
const int a = 2;
const int b = 3:
const int c = 4;
const int d = 5:
const int e = 6;
const int f = 7:
const int q = 8;
int i;
//**********
void setup()
   pinMode(a,OUTPUT);
   pinMode(b,OUTPUT):
   pinMode(c,OUTPUT);
   pinMode(d,OUTPUT);
   pinMode(e,OUTPUT);
   pinMode(f,OUTPUT);
   pinMode(g,OUTPUT);
void loop()
  for(i=0; i<=9;i++)
    { prender(i);
      delay(1000);
// Este procedimiento permite recibir el valor a representar en *
// el display de 7 segmentos y lo valida en cada caso y enciende*
// los leds respectivos
                    **********
void prender(int X)
      switch (X){
       case 1:
         digitalWrite(a,HIGH);
         digitalWrite(b,LOW);
         digitalWrite(c,LOW);
         digitalWrite(d,HIGH);
         digitalWrite(e,HIGH);
         digitalWrite(f,HIGH);
         digitalWrite(g,HIGH);
         break:
       case 2:
```

```
digitalWrite(a,LOW);
  digitalWrite(b,LOW);
  digitalWrite(c,HIGH);
  digitalWrite(d,LOW);
  digitalWrite(e,LOW);
  digitalWrite(f,HIGH);
  digitalWrite(g,LOW);
  break:
 case 3:
  digitalWrite(a,LOW);
  digitalWrite(b,LOW);
  digitalWrite(c,LOW);
  digitalWrite(d,LOW);
  digitalWrite(e,HIGH);
  digitalWrite(f,HIGH);
  digitalWrite(g,LOW);
  break:
case 4:
  digitalWrite(a.HIGH):
  digitalWrite(b,LOW);
  digitalWrite(c,LOW);
  digitalWrite(d,HIGH);
  digitalWrite(e,HIGH);
  digitalWrite(f,LOW);
  digitalWrite(g,LOW);
  break:
case 5:
  digitalWrite(a,LOW);
  digitalWrite(b,HIGH);
  digitalWrite(c,LOW);
  digitalWrite(d,LOW);
  digitalWrite(e,HIGH);
  digitalWrite(f,LOW);
  digitalWrite(g,LOW);
  break;
 case 6:
  digitalWrite(a,LOW);
  digitalWrite(b,HIGH);
  digitalWrite(c,LOW);
  digitalWrite(d,LOW);
  digitalWrite(e,LOW);
  digitalWrite(f,LOW);
  digitalWrite(g,LOW);
  break;
 case 7:
  digitalWrite(a,LOW);
  digitalWrite(b,LOW);
  digitalWrite(c,LOW);
  digitalWrite(d,HIGH);
  digitalWrite(e,HIGH);
```

```
digitalWrite(f,HIGH);
            digitalWrite(g,HIGH);
            break;
           case 8:
            digitalWrite(a,LOW);
            digitalWrite(b,LOW);
            digitalWrite(c,LOW);
            digitalWrite(d,LOW);
            digitalWrite(e,LOW);
            digitalWrite(f,LOW);
            digitalWrite(g,LOW);
            break:
           case 9:
            digitalWrite(a,LOW);
            digitalWrite(b,LOW);
            digitalWrite(c,LOW);
            digitalWrite(d,LOW);
            digitalWrite(e,HIGH);
            digitalWrite(f,LOW);
            digitalWrite(g,LOW);
            break:
           default:
            digitalWrite(a,LOW);
            digitalWrite(b,LOW);
            digitalWrite(c,LOW);
            digitalWrite(d,LOW);
            digitalWrite(e,LOW);
            digitalWrite(f,LOW);
            digitalWrite(g,HIGH);
            break;}
      }
3. Después de simular el circuito se debe montar en la protoboard el circuito y evaluar su
```

Después de simular el circuito se debe montar en la protoboard el circuito y evaluar su funcionamiento.