Can I do X?

MATH 202

April 3, 2024

"The law is reason unaffected by desire."

Aristotle

Everything which is not forbidden is allowed

In the legal system, generally, everything not explicitly forbidden is legal.

- For example, in Kearney, backyard chickens are prohibited by city code, making them illegal,
- but painting your house purple is legal because it's not mentioned in city code.

However, I'm not a lawyer, so . . .

But math is different

- In math, most things not explicitly allowed are forbidden.
- In math, a pretty good answer to the answer to the question "Can I do X?" is "if there is a rule for it, sure; if not, no way."

Exhaustive rules

In algebra, we attempt to enumerate everything that is allowed. If something isn't listed as a rule, likely it's not true.

- The enumeration of rules of exponents in our QRS aims to be exhaustive.
- But algebra tries to condense rules to a minimal set, so sometimes something might be provably true from a set of rules but not explicitly stated.

Can I do ...

Theorem (multiplicative cancellation) We have

$$(\forall a, c \in R_{\neq 0}, c \in R) \left(\frac{ab}{ac} = \frac{b}{c} \right) \equiv True.$$

- In words, this says that a common nonzero *multiplicative* factor in a numerator and denominator can be "canceled."
- Notationally, we write $\frac{ab}{ac} = \frac{b}{c}$.
- Provided that a and c are nonzero, replacing $\frac{ab}{ac}$ by $\frac{b}{c}$ in any statement doesn't change its meaning (or truth value).

Avoiding slang

- The verb "canceled" is mathematical slang—its use is convenient but subject to abuse.
- A problem with slang is that it is often poorly defined and misused. An example of misuse is the **bogus** cancellation:

$$\frac{a+b}{a+c} = \frac{\cancel{a}+b}{\cancel{a}+c} = \frac{b}{c}.$$

Our rule says that a common *multiplicative factor* in the numerator and denominator can be canceled, but in this example, the common term is additive, not multiplicative.

For every means for every

Consider the statement:

$$(\forall a \in R_{\neq 0}) \left(\frac{a+b}{a} = 1+b \right) \equiv \mathsf{True}$$

This statement is false. For instance, if we choose a=2 and b=5, then

$$\left[\frac{2+5}{2} = 1+5\right] \equiv \left[\frac{7}{2} = 6\right] \equiv [7 = 12] \equiv \text{False.}$$

• Checking a special case for a "for every" statement is a powerful way to possibly show that it is false.