Circuits séquentiels

La Logique séquentielle

- Contrairement à la logique combinatoire elle permet de mémoriser des états binaires.
 - Principe :

- Pour déterminer l'état présent en sortie, il faut :
 - L'état sur l'entrée
 - L'état passé de la sortie

Deux types de logique séquentielle

Asynchrone:

 Le système mémorise à tout moment l'état présent sur son entrée :

- Applications:
 - Mémoriser un état binaire isolé (bouton poussoir)
 - Utilisé dans les vieux automates câblés.

Deux types de logique séquentielle

Synchrone:

Le système mémorise l'état présent sur son entrée si et seulement si une horloge fournit un signal de

- Applications :
 - Ordinateurs, consoles de jeux
 - Montres électroniques.

Notation des états

- Comment noter un état « E » dans le passé, le présent ou le futur?
 - Notion de signal (en VHDL)

Horloge (Clock)

Horloge: composant passant indéfiniment et régulièrement d'un niveau haut à un niveau bas (succession de 1 et de 0), chaque transition s'appelle un top.

Fréquence = nombre de changement pa	ar seconde en hertz			
Fréquence = 1/période				
Une horloge de 1 hertz a une période d	e 1 seconde			
1 megahertz	1 millisec			
1 gigaHz	1 nanoSec			

Bascules Synchrones/Asynchrones

- Les bascules synchrones : asservies à des impulsions d'horloge et donc insensibles aux bruits entre deux tops
- Les bascules asynchrones, non asservies à une horloge et prenant en compte leurs entrées à tout moment.

Bascule asynchrone : bascule RS

Symbole Européen				Explications	
			· Entrées : R : remise à zéro (Reset) S : mise à un (Set) · Sorties : Q : sortie principale /Q : sortie complémentée		
Table de vérité			Modes de fonctionnement		
R	S	Q(n)	/Q(n)		
0	0	Q(n-1)	/Q(n-1)	État mémoire	
0	1	1	0 -	Mise à 1 (mémorisation)	
1	0	0	1 '	Mise à 0 (mémorisation)	
1	1	??	?? •	→ INTERDIT!	

Bascule RS : chronogramme

Bascule RS avec des portes

Rappel sur le Nand 0 NAND X = 1 1 NAND X = Non X

Technologie NON-OU:

Si
$$R = S = 1$$
 alors $Q = 0$:

$$Q = \overline{R + \overline{Q}} \quad \& \quad \overline{Q} = \overline{S + Q}$$

$$Q(t) = \overline{R + \overline{S + Q(t - 1)}}$$

$$Q(t) = \overline{R} (S + Q(t - 1))$$

Technologie NON-ET:

Si
$$S = R = 1$$
 alors $Q = 1$:

$$Q = \overline{\overline{S}.\overline{Q}}$$
 & $\overline{Q} = \overline{\overline{R}.Q}$

$$Q(t) = \overline{\overline{S}.\overline{\overline{R}.Q(t-1)}}$$

$$Q(t) = S + \overline{R}.Q(t-1)$$

Utilisation d'un RS

Réduire les aléas des circuits

Aléas statiques

La bascule RS mémorise l'état stable précédent pendant l'état transitoire

Bascule RS synchrone

On synchronise les entrées avec les impulsions

Bascule synchrone : bascule D

	Symbole Européen			Explicati			
	Front montant D Q CLK /Q		 Entrées : D : état à mémo CLK : horloge do Sorties : Q : sortie princip /Q : sortie complé 	(Data) chronisation			
1	Table de vérité		Modes de fonctionn				
1		CLK	D	Q(n)	/Q(n)		
		0	X	Q(n-1)	/Q(n-1)	→ État mémoire	
		1	X	Q(n-1)	/Q(n-1)	État mémoire	
		1	0	0	1	Mémorisation d'un ét	0
		1	1	1	0	Mémorisation d'un ét	1

Utilisation d'une bascule D

Registre à 4 bits

Utilisation d'une bascule D

Décaleur à droite

Compteur/diviseur

Une bascule D qui change d'état à chaque top d'horloge

Fig. 5. - Bascule de type D raccordée en diviseur par deux.

Fig. 6. - Chronogramme relatif au fonctionnement du diviseur par 2.

Compteur modulo 4

Modulo 8

FD Primitive: D Flip-Flop

This design element is a D-type flip-flop with data input (D) and data output (Q). The data on the D inputs is loaded into the flip-flop during the Low-to-High clock (C) transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied.

Anti rebond

FD16CE Macro: 16-Bit Data Register with Clock Enable and Asynchronous Clear

This design element is a 16-bit data register with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q) during the Lowto-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is Low, clock transitions are ignored. This register is asynchronously cleared, outputs

w whon nower is applied

z = bit-width - 1

Low, when power is applied.						
	Inp	outs		Outputs		
CLR	CE	Dz : D0	С	Qz : Q0		
1	X	X	X	0		
0	0	Χ	X	No Change		
0	1	Dn	1	Dn		

Bascule synchrone : bascule JK

Symbole Européen					Explications		
J Q K CLK /Q					 Entrées : J : entrée n°1 K : entrée n°2 CLK : horloge de synchronisation Sorties : Q : sortie principale /Q : sortie complémentée 		
	Table de vérité				Modes de fonctionnement		
CLK	J	K	Q(n)	/Q(n)			
X	X	X	Q(n-1)	/Q(n-1)	État mémoire		
1	0	0	Q(n-1)	/Q(n-1)	État mémoire		
1	0	1	0	1	Mémorisation de l'état 0		
1	1	0	1	0	→ Mémorisation de l'état 1		
1	1	1	/Q(n-1)	Q(n-1)	État mémoire complémenté		

Bascule JK avec une D

Bascule JK et D avec RS

Description de machines d'état

Description de circuits séquentiels, où on raisonne en état présent état futur

avec des conditions de transitions.

liens

http://fr.wikipedia.org/wiki/Bascule_(circuit_logique)