

Abstract Algebra

$\mathcal{A}bstract\ \mathcal{A}lgebra$

作者: Peknt

组织:清疏大学

时间: March 23, 2024

版本: 1.1

作者联系方式: QQ2499032096

前言

参考书

- 近世代数引论, 冯克勤, 李尚志, 章璞
- 近世代数 300 题, 冯克勤, 章璞
- 伽罗瓦理论—天才的激情,章璞
- Abstract Algebra, Dummit, Foote

参考资料

- 南开大学徐彬斌抽象代数讲义
- 上海交通大学章璞课程 PPT
- 南开大学凯淼淼抽象代数 note

目录

第1章 群论

1.1 群的概念

定义 1.1 (群)

设G是带有二元运算·的非空集合。如果 (G,\cdot) 具有下述三条性质:

- (G1) 结合律: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$
- (G2) 存在单位元:存在 $e \in G$,使得 $e \cdot a = a \cdot e = a, \forall a \in G$
- (G3) 每个元均有逆元: 对任意 $a \in G$, 存在 $b \in G$, 使得 $a \cdot b = b \cdot a = e$

则称 (G,\cdot) 是一个群 (Group)

 $\dot{\mathbf{L}}$ 开始时,我们用 (G,\cdot) 表示一个群,以后当二元运算不言自明时,我们就简单地称G 是群。如果不引起混乱, 今后我们常将运算符号·省略不写。例如将 $a \cdot b$ 简写成ab

例题 1.1 我们称集合 A 到自身的一个双射为 A 上的一个置换,集合 A 上的所有置换记为 S(A),可知 S(A) 关于 映射的复合构成群。

定义 1.2 (半群和含幺半群)

如果 (G,\cdot) 满足 (G1), 则称 G 是半群 (semigroup)。

如果 (G, \cdot) 满足 (G1) 和 (G2), 则称 G 是含幺半群 (monoid)。

定义 1.3 (阿贝尔群)

设 (G,\cdot) 是群。若 $ab=ba, \forall a,b\in G$,则称 (G,\cdot) 为交换群,又称为阿贝尔群,或 Abel 群。

命题 1.1

- (1) 存在半群 S, S 中有左幺元, 但没有右幺元。
- (2) 若一个半群 S 中既有左幺元,又有右幺元,S 是否一定为含幺半群?

解(1)考虑 $S=\{egin{pmatrix} a & b \ 0 & 0 \end{pmatrix} \mid a,b\in R\}$ 关于矩阵乘法构成的半群,则易见其有无穷多左幺元 $\begin{pmatrix} 1 & c \ 0 & 0 \end{pmatrix}$ 其中 $c\in R$, 而容易验证其没有右幺元。

(2) 设S 有左幺元 e_1 , 右幺元 e_2 , 则有 $e_1 = e_1 \cdot e_2 = e_2$, 从而左右幺元相等, 故有唯一元素为左幺元和右 幺元, 从而为含幺半群。

命题 1.2

- (1) 存在含幺半群 S 及 $a \in S$, a 存在左逆元, 但不存在右逆元。
- (2) 若含幺半群 S 中元素既有左逆元,又有右逆元,则 a 一定是可逆元。

 $\mathbf{M}(1)$ 记 M(N) 为 N 的所有变换组成的含幺半群,其中元素 f 定义为

$$f(n) = n + 1, \forall n \in N$$

考虑 $g_k(n)=egin{cases} n-1,n\geq 1\\ k,n=0 \end{cases}$ 从而对任意 $k\in N$ 有 $g_kf(n)=n$,从而 g_k 为左逆元,故有无穷多左逆元。但是

若存在右逆元 h, 则 f(h(0)) = 0, 即 h(0) + 1 = 0, 即 h(0) = -1, 矛盾, 所以不存在。(2) 设 ba = ac = e, 则 有 b = be = b(ac) = (ba)c = ec = c, 得证

性质[群的简单性质]

(1)G 的单位元是唯一的 (用 e 表示 G 的单位元)

证 设 $e \rightarrow e'$ 都是 G 的单位元,则 e = ee' = e

(2)G 中任意元 a 的逆元是唯一的 (今后用 a^{-1} 表示 a 的逆元)

证 设 b 和 c 都 是 a 的 逆元,则 c = ec = (ba)c = b(ac) = be = b

(3) 穿脱原理: $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G, 以及 (a^{-1})^{-1} = a, \forall a \in G$

证 由
$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$$
 以及
$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

知 $(ab)^{-1} = b^{-1}a^{-1}$,类似可证 $(a^{-1})^{-1} = a$

(4) 左消去律: 即,由 ab = ac 可推出 b = c。右消去律: 即,由 ba = ca 可推出 b = c

证 由 ab = ac 知 $a^{-1}(ab) = a^{-1}(ac)$,由此即得 $(a^{-1}a)b = (a^{-1}a)c$,即 eb = ec,即 b = c。同理,可证右消去律。

定义 1.4 (有限群的群表)

考虑一个有限群 $G = \{a_1, \dots, a_n\}$ 我们将 G 中元素两两相乘的结果列出 ((i, j) 位置上为 $a_i a_i)$

a_1a_1	a_1a_2	 a_1a_n
a_2a_1	a_2a_2	 a_2a_n
$a_n a_1$	$a_n a_2$	 $a_n a_n$

命题 1.3

一个有限群 G 交换当切仅当相应的群表对称

在一个半群 G 中,一个元 $e_l \in G$ 称为 G 的左幺元,如果 $e_l g = g, \forall g \in G$

设半群 G 有左幺元 e_l ,称元 $a \in G$ (相对于 e_l) 有左逆元,如果存在 $a_l^{-1} \in G$ 使得 $a_l^{-1}a = e_l$,将 a_l^{-1} 称为 a 的左逆元

命题 1.4 (群的单边定义)

设G是半群,则G是群当且仅当G有左幺元,且任一元均有左逆元

证明 必要性显然,只需证明充分性。

先证 g 的左逆元有性质 $gg_l^{-1} = e_l$,有

$$\begin{split} gg_l^{-1} &= e_l(gg_l^{-1}) \\ &= ((g_l^{-1})_l^{-1}g_l^{-1})gg_l^{-1} \\ &= (g_l^{-1})_l^{-1}(g_l^{-1}g)g_l^{-1} \\ &= (g_l^{-1})_l^{-1}e_lg_l^{-1} \\ &= (g_l^{-1})_l^{-1}g_l^{-1} \\ &= e_l \end{split}$$

现在证明 e_l 也是 G 的右幺元,从而 e_l 是 G 的单位元。对任一元 g,由 $gg_l^{-1}=e_l$ 知

$$ge_l = g(g_l^{-1}g) = (gg_l^{-1})g = e_lg = g$$

即, e_1 也是G的右幺元。

最后,由性质 $gg_l^{-1}=e_l$ 知 g 的左逆元 g_l^{-1} 也是 g 的逆元。根据定义,G 是群。

命题 1.5

- (1) 上述命题改为右幺元和右逆元也成立。
- (2) 若改为一左一右,则命题不再成立。

命题 1.6 (有限半群成群的充要条件)

设 (G,\cdot) 是有限半群,则 (G,\cdot) 是群当且仅当 (G,\cdot) 满足左消去律和右消去律。

证明 必要性显然,只需证明充分性。

设 (G,\cdot) 是满足左消去律和右消去律的有限半群。取 $a\in G$,考虑 G 的子集 $Ga:=\{ga\mid g\in G\}$,用 |Ga| 表示 Ga 中元素的个数。由右消去律知,|Ga|=|G|。因为 G 是有限集合,所以 Ga=G。于是存在 $e\in G$ 使得 ea=a。

下证 $e \neq G$ 的左单位元。对任意 $x \in G$,由左消去律知 aG = G,故存在 $y \in G$ 使得 x = ay。于是

$$ex = e(ay) = (ea)y = ay = x$$

则 e 是 G 的左单位元

再证任意元 $x \in G$ 均有左逆元,由 Gx = G 知存在 $y \in G$ 使得

$$yx = e$$

即,x有左逆元y

根据群的单边定义, (G,\cdot) 是群。

命题 1.7 (含幺半群生成群)

设S是含幺半群,记U(S)为S中可逆元全体,则U(S)构成群。

1.2 子群与陪集

第2章 环论

第3章 模论

第4章 域论

第5章 Galois 理论