Points to Remember

If numerator > denominator, the answer will be greater than
 1.

If numerator < denominator, the answer will be less than 1.

Example: 8/7 will be greater than 7/8

This is because,

8/7 > 1, where 7/8 < 1.

If Column A is 5√25 and
 Column B is √620

How to find this, its simple (square the values)

Column A	Column B
(5 ²)(25)	620
625	620

Therefore, column A is greater.

X% of Y is equal to Y% of XFor example :

- \rightarrow 20% of 5 is equal to 5% of 20
- \rightarrow 122% of 15 = 15% of 122
- \rightarrow 16 $\frac{2}{3}$ % of 40 = 40% of 16 $\frac{2}{3}$

Find the S.D for 1,1,1,1 or a series of same numbers.

S.D for a series of same numbers is "Zero".

This is because, there is no deviation between numbers.

For example: If Column A is 1/2+5/3+21/5+1/8 and
 Column B is 21/5+1/3+1/8

Instead of taking L.C.M and solving

First look at the numbers and find whether column A and Column B have same numbers.

If yes eliminate those numbers.

Then, Column A	Column B
1/2+5/3	1/3

Now its simpler to solve

If n is a positive integer, then

$$n^{(n+1)} > (n + 1)^n$$
, for $n > 3$

For Example : Column A → 18¹⁷/17¹⁸

Column B → 17¹⁸/18¹⁷

column A	Column B
18 ¹⁷ /17 ¹⁸	17 ¹⁸ / 18 ¹⁷
Numerator < Denominator	Numerator > Denominator
Hence 18 ¹⁷ /17 ¹⁸ < 1	Hence 17 ¹⁸ / 18 ¹⁷ >1

Hence B is the choice.

Important Formulae

1.
$$(x + y)^2 = x^2 + 2xy + y^2$$

2.
$$(x-y)^2 = x^2 - 2xy + y^2$$

3.
$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

4.
$$(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

5.
$$x^2 - y^2 = (x + y) (x - y)$$

6.
$$x^3 - y^3 = (x - y) (x^2 + xy + y^2)$$

7.
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

Points to remember

 If a quadratic equation is given in the question, say ax²+bx+c=0 and the option given is (px -r₁)(qx-r₂)

Then, check if a = (pq), $b = (qr_1 + pr_2)$ and $c = (r_1r_2)$

Note 1: consider sign for r_1, r_2 and r_3

Likewise for a cubic equation

$$ax^3 - bx^2 + cx - d = 0$$
,
the option given is $(px-r_1)(qx-r_2)(sx-r_3)$

Then, check if
$$a = (pqs)$$
, $b = (qsr_1 + psr_2 + pqr_3)$, $d = (r_1r_2r_3)$

Note 1: consider sign for r_1, r_2 and r_3

Example 1:
$$12x^2 + 2x - 2$$

Options (i) $(4x - 2)(3x+1)$

(ii)
$$(4x + 2)(3x-1)$$

(iii)
$$(12x - 3)(x+1)$$

(iv)
$$(4x - 1)(3x+1)$$

Solution:

$$a = 12$$
, $b = 2$, $c = -2$

First lets find, which options will give us the value of c, when their constants are multiplied.(c = - 2)

option (i) it is (-2)(+1) = -2; option (ii) it is (+2)(-1) = -2

option (iii) it is (-3)(+1) = -3; option (iv) it is (-1)(+1) = -1

From this we can eliminate, option (iii) and option (iv)

Now lets find, which option satisfies the value of a (a = 12) a = (pq)

Option 1 : a = (4)(3) = 12

Option 2 : a = (4)(3) = 12

Here, we cannot eliminate any option because both the options satisfies the condition.

Lets check, for the value of b (b= 2)

 $b = (qr_1 + pr_2)$

Option 1 : b = [(3)(-2) + (4)(1)] = -6 + 4 = -2

Option 2: b = [(3)(2) + (4)(-1)] = 6 - 4 = 2

Therefore option 1 is eliminated.

Hence, answer is option 2

option (i) (x+1)(x+2)(x+3)
(ii) (2x+3)(x+3)²
(iii) (x-1)(x-2)(x+3)
(iv) (x-1)(x-2)(x-3)

Solution: Product of the constants must be equal to +6 option (i) it is +6; option (ii) it is +27; option (iii) it is +6 option (iv) it is -6

Hence we can eliminate option (ii) and option (iv)

Now lets check for $b = (qsr_1 + psr_2 + pqr_3)$

b must be equal to + 6

Option 1 : b= +6

Option 2:b=0

Hence, eliminating the option (iii), the answer for this question is option (i)

Solution:

If θ is the angle between the sides of length 3 and 5.

The range of θ is 0° - 90°

If the angle the two arms is 0° , then the length If the angle is 0° of the third arm is (5-3) = 2.

If the angle the two arms is 90°, then the length of the third arm (by hypotenuse theorem) is $\sqrt{(5^2 + 3^2)} = \sqrt{34}$

If the angle is 90°

Hence the range of third side is 2 to $\sqrt{34}$.