Exercise 2: Crops

Exercise 2: Crops

This data comes from a sample of farms from three counties in Iowa. We want to know how the factors of the county and whether the farmer is related to the landlord of the farmland is related to the total crop yield of the farms.

Part A

Firstly, we perform a two-way ANOVA on the Count, Related and Crops columns, which gives

```
anova(county_related_anova)
```

```
## Analysis of Variance Table
##
## Response: Crops
##
                  Df
                         Sum Sq Mean Sq F value Pr(>F)
                        2378957 2378957
                                         0.4113 0.5274
## Related
                    1
## County
                    2
                        8841441 4420721
                                         0.7644 0.4766
## Related:County
                   2
                        1497573
                                 748786
                                         0.1295 0.8792
## Residuals
                  24 138805865 5783578
```

The p-value here is given by the Pr(>F) column. For the Related and County factors separately, the p-value is not below 0.05, which means that a linear relation between these factors and the crop yield cannot be conclusively established. This is also true for the interaction between County and Related. As the two-way ANOVA assumes the data is normally distributed, we have to asses the normality of the data.

The left Q-Q plot of the residuals of the ANOVA places the point in roughly a straight line, which implies that this data is normally distributed.

The right plot shows how the spread of the residuals is roughly equal for all values. This implies that the underlying data is normally distributed.

```
summary(county_related_anova)
```

```
##
## Call:
## lm(formula = Crops ~ Related * County, data = crops_frame)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3120.4 -1744.7
                   -176.9
                            2064.2
                                    4806.6
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      6700.0
                                 1075.5
                                          6.230 1.94e-06 ***
## Related1
                      -362.0
                                 1521.0
                                         -0.238
                                                    0.814
## County2
                        93.0
                                 1521.0
                                          0.061
                                                    0.952
## County3
                       851.2
                                 1521.0
                                          0.560
                                                    0.581
## Related1:County2
                      -820.6
                                        -0.381
                                                    0.706
                                 2151.0
## Related1:County3
                       217.0
                                 2151.0
                                          0.101
                                                   0.920
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2405 on 24 degrees of freedom
## Multiple R-squared: 0.08393,
                                    Adjusted R-squared:
## F-statistic: 0.4398 on 5 and 24 DF, p-value: 0.8163
```

This summary shows that the average farm in county 1 of which the farmer is not related to the landlord is 6700. The average for a farmer in county 3 would then be

```
6700.0 + 851.0
```

[1] 7551

This seems plausible.

Part B

```
size_anova <- lm(Crops ~ Size, data = crops_frame)
ancova_county_lm <- lm(Crops ~ Size + County, data = crops_frame)
ancova_related_lm <- lm(Crops ~ Size + Related, data = crops_frame)</pre>
```

Now we want to take the size of the farm into account.

```
drop1(ancova_county_lm, test = "F")
```

```
## Single term deletions
##
## Model:
## Crops ~ Size + County
##
         Df Sum of Sq
                            RSS
                                   AIC F value
                                                  Pr(>F)
                        31187313 423.63
## <none>
## Size
          1 111495081 142682394 467.25 92.9504 4.513e-10 ***
               767179 31954491 420.36 0.3198
## County
                                                  0.7291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
summary(ancova_county_lm)
##
## Call:
## lm(formula = Crops ~ Size + County, data = crops_frame)
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                         Max
            -609.7
                    -157.8
                              897.1
                                     1970.5
##
  -2411.8
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            701.699
                                      0.905
## (Intercept) 635.337
                                                0.374
## Size
                 31.976
                              3.317
                                      9.641 4.51e-10 ***
## County2
                328.624
                            494.359
                                      0.665
                                                0.512
## County3
                348.950
                            493.878
                                      0.707
                                                0.486
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1095 on 26 degrees of freedom
## Multiple R-squared: 0.7942, Adjusted R-squared: 0.7704
## F-statistic: 33.44 on 3 and 26 DF, p-value: 4.477e-09
This ANCOVA shows that the size of the farm is strongly correlated with the yield of a farm, which can be
seen in the low p-value of 4.5 \cdot 10^{-10}. The county does no appear to have a significant effect here, as the
p-value is to high. The data for the size and related status looks similar:
drop1(ancova_related_lm, test = "F")
## Single term deletions
##
## Model:
## Crops ~ Size + Related
##
           Df Sum of Sq
                               RSS
                                      AIC F value
                                                       Pr(>F)
                          30573906 421.03
## <none>
            1 118570972 149144879 466.58 104.7107 8.646e-11 ***
## Related
                1380585 31954491 420.36
                                             1.2192
                                                       0.2793
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(ancova_related_lm)
##
## Call:
## lm(formula = Crops ~ Size + Related, data = crops_frame)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
  -2410.4 -765.2
                      -47.1
                                     2292.6
##
                              618.2
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1092.777
                            640.632
                                      1.706
                                               0.0995 .
## Size
                 31.884
                              3.116
                                     10.233 8.65e-11 ***
## Related1
               -429.286
                            388.785
                                     -1.104
                                               0.2793
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1064 on 27 degrees of freedom
## Multiple R-squared: 0.7982, Adjusted R-squared: 0.7833
## F-statistic: 53.41 on 2 and 27 DF, p-value: 4.128e-10
```

While the correlation between crop yield and farm size is significant, the related status does not appear to have an effect. These results lead us to conclude that the effect of county and relation on the influence of size is negligible.

As ANCOVA assumes that the underlying data is normally distributed, we will have to check for normality. Both of the above residual plots show no obvious correlation in the variance of the residuals, which implies a normal distribution.

Q plots above show the points roughly in a straight line. This implies that the underlying data is normally distributed.

The Q-

Part C