[5] # Dependencies and Setup import pandas as pd import nummpy as np # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student data to load = "Resources/students complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student data = pd.read csv(student data to load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) -----ModuleNotFoundError Traceback (most recent call last) <ipython-input-5-efae349c28dd> in <module> 1 # Dependencies and Setup ---> 2 import pandas as pd 3 import nummpy as np 5 # File to Load (Remember to Change These) ModuleNotFoundError: No module named 'pandas' [-] ## District Summary * Calculate the total number of schools

* Calculate the total number of students

* Calculate the total budget

- * Calculate the average math score
- * Calculate the average reading score
- * Calculate the percentage of students with a passing math score (70 or greater)
- * Calculate the percentage of students with a passing reading score (70 or greater)
- * Calculate the percentage of students who passed math **and** reading (% Overall Passing)
- * Create a dataframe to hold the above results
- * Optional: give the displayed data cleaner formatting

[5]

	Total School s	Total Studen ts	Total Budget	Average Math Score	Average Reading Score	% Passin g Math	% Passing Reading	% Overall Passing
0	15	39,170	\$24,649 ,428.00	78.985371	81.87784	74.980 853	85.80546 3	65.17232 6

[-]

School Summary

[-]

- * Create an overview table that summarizes key metrics about each school, including:
 - * School Name
 - * School Type
 - * Total Students
 - * Total School Budget
 - * Per Student Budget
 - * Average Math Score
 - * Average Reading Score
 - * % Passing Math

```
* % Passing Reading
  * % Overall Passing (The percentage of students that passed math **and** reading.)
* Create a dataframe to hold the above results
[6]
len(school data complete['school name'].unique())
school data complete['school name].unique
school_data_complete['student ID'].unique
school_data['Budget'].sum()
school_data_complete['school_name], 'budget']].drop_duplicates()
school_data_complete['math_score'].mean()
school_data_complete['reading_score'].mean()
len(school_data_complete[school_data_complete['math_score'].>=70])/num_students
(len(school data complete[school data complete['math score'].>=70) &
(school_data_complete['reading_score']>=70])/
num students
averages=school_data_complete.groupby('school_name')[['math_score',reading_score']].
mean()
averages
averages=averages.reset index()
```

```
school Data=school Data.reset index()
school_data['budget]/('school_data')
school_data['per student budget']=school_data['budget']/school_data['size']
school_Data=school_data.set_index('school_name')
school_data=pd.merge(school_data,averages)
1=[]
if school_data_complete['math_score']>=70:
   1.append(1)
ELSE:
    1.appemd(0)
school_data_complete['math_dummy']=1
school_data_complete['math_dummy']=np.where(school_data_complete['math_score']>=70,1
,0)
math_passing=school_data_complete.groupby('school_name',as_index=false)['math_dummy'
].sum()
math_passing_df=school_data_complete[school_data_complete['math_score']>=70]
math_passing_df=math_passing_df.groupby('school_name',as_index=false)['school_name']
.count()
```

```
pd.merge(school Data,math passing df)
school data=pd.merge(school Data,math passing)
school_data['percent_passing math']=school_Data['math_dummy']/school_Data['size']
school_Data=school_Data.rename(columns={'percent passing':'percent passing math'})
school_Data=school_Data.drop('math_dummy',axis=1)
school_Data
bins = [0, 999, 1999, 9999999999]
group name = ["Small (<1000)", "Medium (1000-2000)", "Large (>2000)"]
all_df['size_bins'] = pd.cut(all_df['size'], bins, labels = group_name)
#group by spending
by_size = all_df.groupby('size_bins')
#calculations
avg_math = by_size['math_score'].mean()
avg_read = by_size['math_score'].mean()
pass math = all df[allScores by School Type df['math score'] >=
70].groupby('size_bins')['Student ID'].count()/by_size
['Student ID'].count()
pass_read = all_df[all_df['reading_score'] >= 70].groupby('size_bins')['Student
ID'].count()/by_size['Student ID'].count()
```

```
overall = all_df[(all_df['reading_score'] >= 70) & (all_df['math_score'] >=
70)].groupby('size_bins')['Student ID'].count
()/by_size['Student ID'].count()
# df build
scores_by_size = pd.DataFrame({
    "Average Math Score": avg_math,
    "Average Reading Score": avg read,
    '% Passing Math': pass_math,
    '% Passing Reading': pass read,
    "Overall Passing Rate": overall
})
#reorder columns
scores_by_size = scores_by_size[[
    "Average Math Score",
    "Average Reading Score",
    '% Passing Math',
    '% Passing Reading',
   "Overall Passing Rate"
11
Group SUMMARY
#groups by school
school = all_df.set_index('school').groupby(['school'])
types = school df.set index('school')['type']
# sum students by school
student_school = all_df.groupby("school")['Student ID'].count()
# school budget
```

```
school budget = school df.set index('school')['budget']
#student budget
student budget =
school df.set index('school')['budget']/school df.set index('school')['size']
#avg scores by school
avg math = school['math score'].mean()
avg_read = school['reading_score'].mean()
# % passing scores
pass math = all df[all df['math score'] >= 70].groupby('school')['Student
ID'].count()/student school
pass_read = all_df[all_df['reading_score'] >= 70].groupby('school')['Student
ID'].count()/student_school
overall = all df[(all df['reading score'] >= 70) & (all df['math score'] >=
70)].groupby('school')['Student ID'].count()/
student_school
school summary = pd.DataFrame({
    "School Type": types,
    "Total Students": student school,
    "Per Student Budget": student budget,
    "Total School Budget": school_budget,
    "Average Math Score": avg_math,
    "Average Reading Score": avg_read,
    '% Passing Math': pass math,
    '% Passing Reading': pass_read,
    "Overall Passing Rate": overall
})
```

```
#munging
school summary = school summary[['School Type',
                          'Total Students',
                          'Total School Budget',
                          'Per Student Budget',
                        'Average Math Score',
                          'Average Reading Score',
                          '% Passing Math',
                          '% Passing Reading',
                          'Overall Passing Rate']]
#formatting
school_summary.style.format({'Total Students': '{:,}',
                          "Total School Budget": "${:,}",
                          "Per Student Budget": "${:.0f}",
                          'Average Math Score': "{:.1f}",
                          'Average Reading Score': "{:.1f}",
                          "% Passing Math": "{:.1%}",
                          "% Passing Reading": "{:.1%}",
                          "Overall Passing Rate": "{:.1%}"})
scores_by_size.index.name = "Total Students"
scores_by_size = scores_by_size.reindex(group_name)
#formating
scores_by_size.style.format({'Average Math Score': '{:.1f}',
                              'Average Reading Score': '{:.1f}',
                              '% Passing Math': '{:.1%}',
                              '% Passing Reading':'{:.1%}',
                              'Overall Passing Rate': '{:.1%}'})
by_type = all_df.groupby("type")
#calculations
avg_math = by_type['math_score'].mean()
avg read = by type['math score'].mean()
```

```
pass_math = all_df[all_df['math_score'] >= 70].groupby('type')['Student
ID'].count()/by_type['Student ID'].count()
pass_read = all_df[all_df['reading_score'] >= 70].groupby('type')['Student
ID'].count()/by_type['Student ID'].count()
overall = all_df[(all_df['reading_score'] >= 70) & (all_df['math_score'] >=
70)].groupby('type')['Student ID'].count()/
by_type['Student ID'].count()
# df build
scores_by_type = pd.DataFrame({
    "Average Math Score": avg_math,
    "Average Reading Score": avg read,
    '% Passing Math': pass math,
    '% Passing Reading': pass read,
    "Overall Passing Rate": overall})
#reorder columns
scores_by_type = scores_by_type[[
    "Average Math Score",
    "Average Reading Score",
    '% Passing Math',
    '% Passing Reading',
    "Overall Passing Rate"
11
scores_by_type.index.name = "Type of School"
#formating
scores_by_type.style.format({'Average Math Score': '{:.1f}',
                              'Average Reading Score': '{:.1f}',
                              '% Passing Math': '{:.1%}',
                              '% Passing Reading':'{:.1%}',
                              'Overall Passing Rate': '{:.1%}'})
```

Schools under 2000 students have much higher passing rates than those with student populations above 2000. A comparison

of 95 to 75%. The same phenomenon is seen with high and low per student spending brackets and district versus charter schools.

File "<ipython-input-6-6bc48cla6c89>", line 3
 school_data_complete['school_name].nunique

Top Performing Schools (By % Overall Passing)

• Sort and display the top five performing schools by % overall passing.

	Sch ool Typ e	Tota 1 Stud ents	Total School Budget	Per Studen t Budget	Averag e Math Score	Average Reading Score	% Pass ing Math	Passin g Readin g	% Overal 1 Passin g
Cabrera High School	Cha rte r		\$1,081, 356.00	\$582.0 0	83.061 895	83.97578 0	94.1 3347 7	97.039 828	91.334 769

Thomas High School	Cha rte r		\$1,043, 130.00	\$638.0 0	83.418 349	83.84893	93.2 7217 1	97.308 869	90.948
Griffin High School	Cha rte r	1468	\$917,50 0.00	\$625.0 0	83.351 499	83.81675 7	93.3 9237 1	97.138 965	90.599 455
Wilson High School	Cha rte r		\$1,319, 574.00	\$578.0 0	83.274 201	83.98948	93.8 6771 8	96.539 641	90.582
Pena High School	Cha rte r		\$585,85 8.00	\$609.0 0	83.839 917	84.04469	94.5 9459 5	95.945 946	90.540

Bottom Performing Schools (By % Overall Passing)

Sort and display the five worst-performing schools by % overall passing.
 11]

	Sch ool Typ e	Tota 1 Stud ents	Total School Budget	Per Studen t Budget	Averag e Math Score	Average Reading Score	% Pass ing Math	Passin g Readin g	% Overal 1 Passin g
Rodrigue z High School	Dis tri ct		\$2,547, 363.00	\$637.0 0	76.842 711	80.74468	66.3 6659 2	80.220 055	52.988 247
Figueroa High School	Dis tri ct		\$1,884, 411.00	\$639.0 0	76.711 767	81.15802	65.9 8847 1	80.739 234	53.204 476
Huang High School	Dis tri ct		\$1,910, 635.00	\$655.0 0	76.629 414	81.18272	65.6 8392 2	81.316 421	53.513 884

Hernande z High School	Dis tri ct	\$3,022, 020.00	\$652.0 0	77.289 752	80.93441	66.7 5296 7	80.862 999	53.527 508
Johnson High School	Dis tri ct	\$3,094, 650.00	\$650.0 0	77.072 464	80.96639	66.0 5755 1	81.222 432	53.539 172

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

[12]

	9th	10th	11th	12th
Bailey High School	77.08367 6	76.99677 2		
Cabrera High School	83.09469 7	83.15450 6	82.76556 0	83.27748
Figueroa High School	76.40303 7	76.53997 4	76.88434 4	77.15136 9
Ford High School	77.36134 5	77.67231 6	76.91805 8	76.17996 3
Griffin High School	82.04401	84.22906	83.84210	83.35616
Hernandez High School		77.33740 8	77.13602 9	77.18656 7

Holden High School	83.78740	83.42982	85.00000	82.85542
Huang High School	77.02725 1	75.90873 5	76.44660 2	77.22564 1
Johnson High School	77.18785 7	76.69111 7	77.49165	76.86324 8
Pena High School	83.62545	83.37200	84.32812	84.12154
Rodriguez High School	76.85996 6	76.61250 0	76.39562 6	77.69074 8
Shelton High School	83.42075	82.91741	83.38349	83.77897 6
Thomas High School	83.59002	83.08788	83.49879	83.49704
Wilson High School	83.08557	83.72442	83.19532 6	83.03579
Wright High School	83.26470	84.01028 8	83.83678	83.64498

Reading Score by Grade

• Perform the same operations as above for reading scores
[13]

	9th	10th	11th	12th
Bailey High School			80.94564 3	

Cabrera High School	83.67613 6	84.25321 9	83.78838	84.28795 8
Figueroa High School	81.19859	81.40891	80.64033	81.38486
Ford High School	80.63265	81.26271	80.40364	80.66233
Griffin High School	83.36919	83.70689 7	84.28808	84.01369 9
Hernandez High School		80.66014 7	81.39614	80.85714
Holden High School	83.67716 5	83.32456	83.81553	84.69879 5
Huang High School	81.29028 4	81.51238 6	81.41747	80.30598
Johnson High School	81.26071	80.77343	80.61602 7	81.22756 4
Pena High School	83.80727	83.61200 0	84.33593	84.59116
Rodriguez High School	80.99312	80.62980 8	80.86481	80.37642
Shelton High School	84.12264	83.44196	84.37378	82.78167
Thomas High School	83.72885 0	84.25415	83.58554	83.83136
Wilson High School	83.93977	84.02145	83.76460	84.31767

Wright High School 83.83333 83.81275 84.15632 84.07317

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - O Average Math Score
 - Average Reading Score
 - o % Passing Math
 - 0 % Passing Reading
 - Overall Passing Rate (Average of the above two)

[18]

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	
Spending Ranges (Per Student)					
<\$585	83.46	83.93	93.46	96.61	90.37
\$585-630	81.90	83.16	87.13	92.72	81.42
\$630-645	78.52	81.62	73.48	84.39	62.86
\$645-680	77.00	81.03	66.16	81.13	53.53

Scores by School Size

• Perform the same operations as above, based on school size.

[22]

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Size					
Small (<1000)	83.821598	83.929843	93.550225	96.099437	89.883853
Medium (1000-2000)	83.374684	83.864438	93.599695	96.790680	90.621535
Large (2000-5000)	77.746417	81.344493	69.963361	82.766634	58.286003

Scores by School Type

Perform the same operations as above, based on school type[24]

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	90.432244
Distric t	76.956733	80.966636	66.548453	80.799062	53.672208

[-]