统计分析与建模

高珍

gaozhen@tongji.edu.cn

• 数据过滤

- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

数据过滤

5 rows

which() \subset()

		<i>□</i>
year <dbl></dbl>	month <dbl></dbl>	
2000	1	
2001	2	
2000	3	
2003	4	
2001	5	

- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

缺失值处理

- 一些特殊的数:
- (1)FLASE (假): 以0计算
- (2)NA (缺失值):参与计算
- (3)NULL: 不参与计算
- (4)NaN: 无意义的数, 比如sqrt(-2)

```
NA == NA
```

[1] NA

NA+8

[1] NA

NA^0

[1] 1

1/NA

[1] NA

1/0

[1] Inf

1/0-1/0

[1] NaN

```
```{r NA}
 x<-c(1,2,3,NA,4);
 mean(x)
 mean(x,na.rm=T)</pre>
```

[1] NA [1] 2.5

#### 缺失值检测

- ①判断x是否缺失值的函数是is.na(x),是返回TRUE,否则返回FALSE。
- ②判断x是否完整的函数是complete.cases(x)。
- ③ summary可以显示每个变量的缺失值数量。
- ④返回数据缺失模式使用mice包中的md.pattern(x)函数。

#### 缺失值处理

对于缺失数据通常有三种方法:

方法1: 当缺失数据较少时直接删除相应样本

方法2: 对缺失数据进行插补

方法3: 使用对缺失数据不敏感的分析方法, 如决策树

```
\``{r NA}
v=c(1,2,3,NA,4,NA,5)
print(v)
v[is.na(v)]=0
print(v)
\``|

[1] 1 2 3 NA 4 NA 5
[1] 1 2 3 0 4 0 5
```

## 缺失值检测

```
``{r kurtosis/skewness}
library(mice)
x=iris
x[sample(1:nrow(x), 6),1] <- NA
#随机在iris数据集第1列生成6行NA
colnames(x)<-c("SL","SW","PL","PW","SP")</pre>
md.pattern(x)
 R Console
 PL
 SW
 PW
 SP
 SL
 0
 144
 6
 0
 0
 0
 0
 6
```



- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

#### 异常值检测

- 异常值(离群点)是指测量数据中的随机错误或偏差,包括错误值或偏离均值的孤立点值。在数据处理中,异常值会极大的影响回归或分类的效果。
- 为了避免异常值造成的损失,需要在数据预处理阶段进行异常值检测。另外,某些情况下,异常值检测也可能是研究的目的,如数据造假的发现、电脑入侵检测等。

## 箱线图检测离群点(boxplot.stats)

在一条数轴上,以数据的上下四分位数(Q1-Q3)为界画一个矩形盒子(中间50%的数据落在盒内);在数据的中位数位置画一条线段为中位线;默认延长线不超过盒长的1.5倍,延长线之外的点认为是异常值(用〇标记)



## 散点图检测离群点(boxplot.stats)

```
``{r outliers-2}
#寻找a为异常值的坐标位置
a<-which(x[,2] %in% boxplot.stats(x[,2])$out)
#寻找b为异常值的坐标位置
b<-which(x[,1] %in% boxplot.stats(x[,1],coef=1.0)$out)
df<-data.frame(x[,1], x[,2])
plot(df) #绘制x, y的散点图
p2<-union(a,b) #寻找变量x或y为异常值的坐标位置
points(df[p2,],col="red",pch="x",cex=2) #标记异常值
``</pre>
```



#### 聚类方法检测异常值





- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

#### 数据去重

- unique()
- duplicated()

```
(1)建立是否重复索引
index<-duplicated(data.set$Ensembl)
index
[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
```

(2)去掉重复行 data.set2<-data.set[!index,]

- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

#### 数据规范

# (1)数据的中心化 scale(data, center=T, scale=F) $x = x - \mu$

# (2)数据的标准化 scale(data, center=T, scale=T) $x = (x - \mu)/\sigma$ scale(data, center=F, scale=T) $x = \frac{x}{\sqrt{\sum x^2/(n-1)}}$

#### (3)小数定标规范化

移动变量的小数点位置来将变量映射到[-1,1] options(digits = 4) #控制输出结果的有效位数

```
data=iris[,1]
#summary(data)
data1=scale(data,center=T,scale=F)
#summary(data1)
data2=scale(data,center=F,scale=T)
#summary(data2)
data3=scale(data,center=T,scale=T)
#summary(data3)
par(mfrow=c(2,2))
hist(data,main="origin data",breaks = 20)
hist(data1,main="centered data",breaks = 20)
hist(data2,main="scaled data",breaks = 20)
hist(data3,main="centered & scaled data",breaks = 20)
```







data2



- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

## 数据采样(sample)

```
\`\{r sample\}
set.seed(1234)
data=data.frame(c1=c(1:10),c2=c(11:20))
k=nrow(data)
idx=sample(k,round(0.8*k))
train=data[idx,]
(test=data[-idx,])
\times \times \times
\end{align*}
\[\times \ti
```

	c1 <int></int>	<b>c2</b> <int></int>	
3	3	13	
9	9	19	

2 rows



- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

## 数据排序

#### • sort()

```
```{r srot}
data=data.frame(v1=c(1,3,2,5,4),v2=c('a','c','b','e','d'))
#data frame对象 含有v1,v2两列
data[sort(data$v1,index.return=TRUE)$ix,]
#对data的数据按v1排列,v1须为numeric
```

		v2 <chr></chr>
1	1	a
3	2	b
2	3	c
5	4	d
4	5	e

5 rows

- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

数据向量化

- as.vector()
 - 1. matrix
 - 2. array

```
``{r as.vector}
  (m=matrix(c(1,2,3,4),nrow=2))
  as.vector(m)
``
```

```
[,1] [,2]
[1,] 1 3
[2,] 2 4
[1] 1 2 3 4
```

- unlist()
 - 1. list
 - 2. data frame

unlist simplifies it to produce a vector which contains all the atomic components which occur in x

- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总

table()

```
```{r contingency table}
 (v=sample(letters[1:5],10,replace=TRUE))
 (t=table(v))
 length(t);names(t)

[1] "a" "c" "c" "c" "e" "a" "d" "d" "c" "b"
 v
 a b c d e
 2 1 4 2 1
 [1] 5
 [1] "a" "b" "c" "d" "e"
```

```
```{r contingency_table_2}
 (a<-rep(letters[1:3],each=4))</pre>
 (b<-sample(LETTERS[1:3],12,replace=T))
 (t=table(a,b))
 nrow(t);colnames(t);rownames(t)
 [1] "a" "a" "a" "b" "b" "b" "c" "c" "c" "c"
 [1] "A" "C" "A" "A" "A" "A" "C" "C" "B" "A" "B" "R"
   b
    A B C
  a 3 0 1
  b 2 0 2
  c 1 3 0
[1] 3
[1] "A" "B" "C"
[1] "a" "b" "c"
```


	ID <int></int>	Treatment <fctr></fctr>	Sex <fctr></fctr>	Age <int></int>	Improved <pre><ord></ord></pre>
1	57	Treated	Male	27	Some
2	46	Treated	Male	29	None
3	77	Treated	Male	30	None
4	17	Treated	Male	32	Marked
5	36	Treated	Male	46	Marked
6	23	Treated	Male	58	Marked

```
```{r contingency_table_4}
library(vcd)
(mytable=with(Arthritis,table(Improved)))
prop.table(mytable)
```
```

Improved
None Some Marked
42 14 28
Improved
None Some Marked
0.5000000 0.1666667 0.3333333

```
`{r contingency_table_5}
 (mytable=xtabs(~Treatment+Improved,data=Arthritis))
margin.table(mytable,1)
margin.table(mytable,2)
                                                 Improved
Treatment None Some Marked
  Placebo
                       21
 Treated
           13
Treatment
Placebo Treated
    43
             41
Improved
        Some Marked
 None
    42
                  28
          14
```

```
```{r contingency_table_6}
 (mytable=xtabs(~Treatment+Improved,data=Arthritis))
 prop.table(mytable,1)
 prop.table(mytable,2)
 prop.table(mytable)
 Improved
Treatment None Some Marked
 Placebo
 29
 13
 21
 Treated
 Improved
 Some
Treatment
 None
 Marked
 Placebo 0.6744186 0.1627907 0.1627907
 Treated 0.3170732 0.1707317 0.5121951
 Improved
Treatment
 None
 Some
 Marked
 Placebo 0.6904762 0.5000000 0.2500000
 Treated 0.3095238 0.5000000 0.7500000
 Improved
Treatment
 None
 Some
 Marked
 Placebo 0.34523810 0.08333333 0.08333333
 Treated 0.15476190 0.08333333 0.25000000
```

```
{r contingency_table_8}
 {r contingency_table_7}
 (mytable=xtabs(~Treatment+Improved,data=Arthritis))
 (mytable=xtabs(~Treatment+Improved,data=Arthritis))
 addmargins(mytable)
 addmargins(prop.table(mytable,1),2)
 addmargins(prop.table(mytable))
 addmargins(prop.table(mytable, 2), 1)
 Improved
 Improved
Treatment None Some Marked
 Treatment None Some Marked
 Placebo
 Placebo
 29
 13
 21
 Treated
 Treated
 13
 21
 Improved
 Improved
Treatment None Some Marked Sum
 Treatment
 None
 Some
 Marked
 Sum
 Placebo
 43
 Placebo 0.6744186 0.1627907 0.1627907 1.0000000
 Treated
 41
 Treated 0.3170732 0.1707317 0.5121951 1.0000000
 42
 28
 Sum
 14
 84
 Improved
 Improved
Treatment
 Some
 Marked
 Sum
 Treatment
 None
 Some
 Marked
 None
 Placebo 0.34523810 0.08333333 0.08333333 0.51190476
 Placebo 0.6904762 0.5000000 0.2500000
 Treated 0.15476190 0.08333333 0.25000000 0.48809524
 Treated 0.3095238 0.5000000 0.7500000
 Sum
 0.50000000 0.16666667 0.33333333 1.00000000
 1.0000000 1.0000000 1.0000000
 Sum
```

- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总



• aggregate(x, by, FUN, ...)





• aggregate(x, by, FUN, ...)

<b>Region</b> <fctr></fctr>	Cold <lgl></lgl>	Population <dbl></dbl>	Income <dbl></dbl>	Illiteracy <dbl></dbl>	Life Exp <dbl></dbl>	Murder <dbl></dbl>	HS Grad <dbl></dbl>	Frost <dbl></dbl>	<b>Area</b> <dbl></dbl>
Northeast	FALSE	8802.8000	4780.400	1.1800000	71.12800	5.580000	52.06000	110.6000	21838.60
South	FALSE	4208.1250	4011.938	1.7375000	69.70625	10.581250	44.34375	64.6250	54605.12
North Central	FALSE	7233.8333	4633.333	0.7833333	70.95667	8.283333	53.36667	120.0000	56736.50
West	FALSE	4582.5714	4550.143	1.2571429	71.70000	6.828571	60.11429	51.0000	91863.71
Northeast	TRUE	1360.5000	4307.500	0.7750000	71.43500	3.650000	56.35000	160.5000	13519.00
North Central	TRUE	2372.1667	4588.833	0.6166667	72.57667	2.266667	55.66667	157.6667	68567.50
West	TRUE	970.1667	4880.500	0.7500000	70.69167	7.666667	64.20000	161.8333	184162.17

#### • aggregate(x, by, FUN, ...)

<b>Group.1</b> <chr></chr>	Group.2 <chr></chr>	<b>v1</b> <dbl></dbl>	<b>v2</b> <dbl></dbl>	&∟ × ×
1	95	5	55	
2	95	7	77	
1	99	5	55	
2	99	NA	NA	
big	damp	3	33	
blue	dry	3	33	
red	red	4	44	
red	wet	1	11	

```
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")</pre>
```

<b>Group.1</b> <fctr></fctr>	<b>Group.2</b> <fctr></fctr>	<b>v1</b> <dbl></dbl>	<b>v2</b> <dbl></dbl>	
1	95	5.0	55.0	
2	95	7.0	77.0	
1	99	5.0	55.0	
2	99	NA	NA	
big	damp	3.0	33.0	
blue	dry	3.0	33.0	
red	red	4.0	44.0	
red	wet	1.0	11.0	
12	NA	9.0	99.0	
NA	NA	7.5	82.5	

1-10 of 10 rows

8 rows

• aggregate(formula, data, FUN, ...)





- 数据过滤
- 缺失值处理
- 异常值处理
- 数据去重
- 数据规范
- 数据采样
- 数据排序
- 数据向量化
- 列联表
- 分组汇总



## Thanks

高 珍 同济大学 计算机科学与技术学院

(gaozhen@tongji.edu.cn)