

Sacado: Automatic Differentiation Tools for C++ Codes

Eric Phipps

etphipp@sandia.gov

David Gay, Ross Bartlett

Trilinos User Group 2009

SAND 2009-7540C

What is Automatic Differentiation (AD)?

- Technique to compute analytic derivatives without hand-coding the derivative computation
- How does it work -- freshman calculus
 - Computations are composition of simple operations (+, *, sin(), etc...) with known derivatives
 - Derivatives computed line-by-line, combined via chain rule
- Derivatives accurate as original computation
 - No finite-difference truncation errors
- Provides analytic derivatives without the time and effort of hand-coding them

$y = \sin(e^x + x \log x), x = 2$

$x \leftarrow 2$	
$t \leftarrow e^x$	
$u \leftarrow \log x$	
$v \leftarrow xu$	
$w \leftarrow t + v$	
$y \leftarrow \sin w$	

x	$rac{d}{dx}$
2.000	1.000
7.389	7.389
0.301	0.500
0.602	1.301
7.991	8.690
0.991	-1.188

Sacado: AD Tools for C++ Codes

- Sacado implements AD via operator overloading and C++ templating
 - Template your code on scalar type (double --> ScalarT)
 - Instantiate template code on Sacado AD types to get derivatives
 - Expression templates for OO efficiency
- Sacado provides several modes of Automatic Differentiation (AD)
 - Forward (Jacobians, Jacobian-vector products, ...)
 - Reverse (Gradients, Jacobian-transpose-vector products, ...)
 - Taylor (High-order univariate Taylor series)
 - Sacado is itself templated on the scalar type to allow nesting of modes (higher derivatives)
 - Embedded Stochastic Galerkin methods with Stokhos
- Designed for use in large-scale C++ codes
 - Apply AD at "element-level" for dense element derivatives
 - Very successful in Sandia application codes
 - Sacado::FEApp example demonstrates approach
- · Sacado provides other useful utilities
 - Scalar flop counting (Ross Bartlett)
 - Scalar parameter library
 - Template utilities and basic MPL

Simple Sacado Example

```
#include "Sacado.hpp"
// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
 ScalarT r = c*std::log(b+1.)/std::sin(a);
 return r;
int main(int argc, char **argv) {
 double a = std::atan(1.0);
                                                     // pi/4
 double b = 2.0;
 double c = 3.0;
 int num_deriv = 2;
                                                    // Number of independent variables
  // Fad objects
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
 Sacado::Fad::DFad<double> cfad(c);  // Passive variable
Sacado::Fad::DFad<double> rfad;  // Result
 // Compute function
 double r = func(a, b, c);
 // Compute function and derivative with AD
 rfad = func(afad, bfad, cfad);
  // Extract value and derivatives
 double r_ad = rfad.val(); // r
 double drda_ad = rfad.dx(0); // dr/da
 double drdb_ad = rfad.dx(1); // dr/db
```


New Features for Trilinos 10

- Complex variable support
- Teuchos::ScalarTraits support
 - Allows differentiation of generic Teuchos::BLAS implementations
- Vector forward derivative objects
 - Value & derivatives stored contiguously
- Custom forward-mode differentiated BLAS
 - Improved derivative performance for BLAS operations

