1. Quante sono le soluzioni di $\overline{z}z=|z|,$ con parte immaginaria non nulla

A: 1 B: 2 C: N.A. D: 3 E: Nessuna

2. Il numero complesso $\mathrm{e}^{(\pi\mathrm{e}^{i\pi/2})}$ vale

A: N.A. B: $e^{\pi}(\sin(1) + i\cos(1))$ C: N.E. D: i E: -1

3. La funzione $f(x) =:]0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è

A: continua B: surgettiva C: N.A. D: positiva E: iniettiva

4. Il limite

$$\lim_{x\to 0^-}\frac{\log(x^2)}{\log|x|}$$

vale

A: N.E. B: N.A. C: 1 D: -2 E: 2

5. La retta tangente al grafico di $y(x) = e^{(e^x)} - e$ nel punto $x_0 = 0$ vale $\phi(x) =$

A: x B: 1-x C: N.A. D: $e^{x+e^x}x$ E: ex

6. Il massimo e minimo della funzione $f(x) = x^4 - 2x^2$ su [0, 2] sono

A: $\max = 8$, $\min = -1$ B: $\max = 0$, $\min = -1$ C: N.A. D: entrambi non esistono E: non esiste \max , $\min = 0$

7. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A: R = 3/2 B: N.A. C: R = 3/4 D: R = 0 E: $R = +\infty$

8. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A: 1 B: $-\infty$ C: $\log(1/2)$ D: $\log(2)$ E: N.A.

9. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A: π B: -1/3 C: N.A. D: 0 E: 1/2

10. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : \qquad x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

A: $\{0, N.E., 1, 1.\}$ B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{-1, -1, 1, 1\}$ D: $\{-1, N.E., 1, N.E.\}$ E: N.A.

10 gennaio 2017

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2017

			(Cog	gnon	ne)						(No	me)			(N	ume	ro di	ma	trico	ola)

1	00000
2	00000
3	
4	
5	0000
6	0000
7	0000
8	0000
9	
10	00000

1. La funzione $f(x) =:]0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è A: N.A. B: surgettiva C: positiva D: continua E: iniettiva

2. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : \quad x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

A: N.A. B: $\{0, N.E., 1, 1.\}$ C: $\{-1, -1, 1, 1\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{-1, N.E., 1, N.E.\}$

3. Il massimo e minimo della funzione $f(x)=x^4-2x^2$ su [0,2] sono A: non esiste max, min = 0 B: N.A. C: max = 8, min = -1 D: entrambi non esistono E: max = 0, min = -1

4. Il numero complesso $e^{(\pi e^{i\pi/2})}$ vale

A: -1 B: N.E. C:
$$e^{\pi}(\sin(1) + i\cos(1))$$
 D: i E: N.A.

5. La retta tangente al grafico di $y(x) = e^{(e^x)} - e$ nel punto $x_0 = 0$ vale $\phi(x) = A: 1-x$ B: N.A. C: x D: ex E: $e^{x+e^x}x$

6. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A:
$$1/2$$
 B: $-1/3$ C: 0 D: N.A. E: π

7. Quante sono le soluzioni di $\overline{z}z = |z|$, con parte immaginaria non nulla

8. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A:
$$\log(2)$$
 B: $-\infty$ C: 1 D: N.A. E: $\log(1/2)$

9. Il limite

$$\lim_{x \to 0^-} \frac{\log(x^2)}{\log|x|}$$

vale

A:
$$N.A.$$
 B: 2 C: N.E. D: -2 E: 1

10. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A:
$$R = +\infty$$
 B: $R = 0$ C: $R = 3/2$ D: N.A. E: $R = 3/4$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2017

			(Co	gno	me)				_			(No	me)			-	ume	ı ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. Il limite

$$\lim_{x \to 0^-} \frac{\log(x^2)}{\log|x|}$$

vale

A: N.A. B: -2 C: N.E. D: 1 E: 2

- 2. Quante sono le soluzioni di $\overline{z}z=|z|$, con parte immaginaria non nulla A: N.A. B: 3 C: 1 D: 2 E: Nessuna
- 3. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A: π B: -1/3 C: 1/2 D: N.A. E: 0

4. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A: $R = +\infty$ B: R = 0 C: R = 3/4 D: R = 3/2 E: N.A.

5. Il numero complesso $e^{(\pi e^{i\pi/2})}$ vale

A: $e^{\pi}(\sin(1) + i\cos(1))$ B: i C: -1 D: N.E. E: N.A.

6. Il massimo e minimo della funzione $f(x) = x^4 - 2x^2$ su [0,2] sono

A: non esiste max, min = 0 B: N.A. C: max = 0, min = -1 D: entrambi non esistono E: max = 8, min = -1

7. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

 $\text{A: } \{0, N.E., 1, 1.\} \quad \text{B: } \{-1, N.E., 1, N.E.\} \quad \text{C: } \{-1, -1, 1, 1\} \quad \text{D: N.A.} \quad \text{E: } \{-\infty, N.E., +\infty, N.E.\}$

8. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A: $-\infty$ B: 1 C: $\log(2)$ D: $\log(1/2)$ E: N.A.

- 9. La retta tangente al grafico di $y(x) = e^{(e^x)} e$ nel punto $x_0 = 0$ vale $\phi(x) = A$: ex B: x C: 1-x D: N.A. E: $e^{x+e^x}x$

10. La funzione $f(x) =: [0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è

A: N.A. B: positiva C: iniettiva D: surgettiva E: continua

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2017

(Cognome)											-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A: $-\infty$ B: N.A. C: $\log(2)$ D: 1 E: $\log(1/2)$

2. Il massimo e minimo della funzione $f(x) = x^4 - 2x^2$ su [0, 2] sono A: entrambi non esistono B: non esiste max, min = 0 C: max = 0, min = -1 D: max = 8, min = -1 E: N.A.

3. Quante sono le soluzioni di $\overline{z}z=|z|$, con parte immaginaria non nulla

A: 1 B: 3 C: Nessuna D: N.A. E: 2

4. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A: N.A. B: R = 3/4 C: R = 0 D: R = 3/2 E: $R = +\infty$

5. Il numero complesso $e^{(\pi e^{i\pi/2})}$ vale

A: N.A. B: i C: N.E. D: $e^{\pi}(\sin(1) + i\cos(1))$ E: -1

6. La retta tangente al grafico di $y(x) = e^{(e^x)} - e$ nel punto $x_0 = 0$ vale $\phi(x) =$

A: ex B: 1 - x C: $e^{x + e^x}x$ D: x E: N.A.

7. La funzione $f(x) =:]0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è

A: positiva B: continua C: surgettiva D: iniettiva E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : \qquad x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

A: N.A. B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{-1, N.E., 1, N.E.\}$ D: $\{0, N.E., 1, 1.\}$ E $\{-1, -1, 1, 1\}$

9. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A: π B: 0 C: -1/3 D: 1/2 E: N.A.

10. Il limite

$$\lim_{x \to 0^-} \frac{\log(x^2)}{\log|x|}$$

vale

A: 1 B: N.E. C: 2 D: -2 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2017

			(Co	gno	me)				_			(No	me)				ume	i ma	trice	ola)

1	0000
2	00000
3	00000
4	
5	00000
6	0000
7	00000
8	0000
9	00000
10	0000

1. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A: π B: 0 C: 1/2 D: -1/3 E: N.A.

2. Il numero complesso $e^{(\pi e^{i\pi/2})}$ vale

A: N.E. B: i C: N.A. D: -1 E: $e^{\pi}(\sin(1) + i\cos(1))$

3. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : \quad x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{-1, N.E., 1, N.E.\}$ C: $\{-1, -1, 1, 1\}$ D: N.A. E: $\{0, N.E., 1, 1.\}$

4. La retta tangente al grafico di $y(x) = e^{(e^x)} - e$ nel punto $x_0 = 0$ vale $\phi(x) =$

A: 1-x B: x C: $e^{x+e^x}x$ D: N.A. E: ex

5. Il massimo e minimo della funzione $f(x) = x^4 - 2x^2$ su [0, 2] sono

6. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A: $R = +\infty$ B: R = 0 C: R = 3/4 D: N.A. E: R = 3/2

7. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A: $\log(2)$ B: $\log(1/2)$ C: N.A. D: $-\infty$ E: 1

8. La funzione $f(x) =:]0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è

A: positiva B: continua C: N.A. D: iniettiva E: surgettiva

9. Il limite

$$\lim_{x\to 0^-}\frac{\log(x^2)}{\log|x|}$$

vale

A: N.A. B: N.E. C: -2 D: 1 E: 2

10. Quante sono le soluzioni di $\overline{z}z = |z|$, con parte immaginaria non nulla

A: 1 B: 2 C: Nessuna D: 3 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

10 gennaio 2017

			(Co	gno	me)				_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. Il raggio di convergenza della serie di potenze

$$\sum_{n=100}^{+\infty} \frac{(4n)^{n/2}}{(3n)^n} (x-1)^n$$

A: $R = +\infty$ B: R = 3/2 C: R = 3/4 D: R = 0 E: N.A.

2. La funzione $f(x) =:]0,1] \to \mathbb{R}$ definita da $f(x) = x \log(x^2)$ è A: surgettiva B: N.A. C: continua D: positiva E: iniettiva

3. Quante sono le soluzioni di $\overline{z}z=|z|$, con parte immaginaria non nulla

A: 2 B: 1 C: 3 D: N.A. E: Nessuna

4. Il limite

$$\lim_{x\to 0^-}\frac{\log(x^2)}{\log|x|}$$

vale

A: N.E. B: 2 C: N.A. D: -2 E: 1

5. Il numero complesso $\mathrm{e}^{(\pi\mathrm{e}^{i\pi/2})}$ vale

A: N.A. B: N.E. C: -1 D: $e^{\pi}(\sin(1) + i\cos(1))$ E: i

6. La retta tangente al grafico di $y(x)=\mathrm{e}^{(\mathrm{e}^x)}$ – e nel punto $x_0=0$ vale $\phi(x)=$ A: N.A. B: $\mathrm{e}^{x+\mathrm{e}^x}x$ C: 1-x D: x E: e x

7. L'integrale

$$\int_0^{\pi/2} \cos(3x) \, dx$$

vale

A: 1/2 B: π C: -1/3 D: N.A. E: 0

8. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\sin(x)}{|\sin(x)|} : \qquad x \in \mathbb{R}, \ x \neq k\pi \text{ per } k \in \mathbb{Z} \}$$

valgono

A: $\{-1, N.E., 1, N.E.\}$ B: N.A. C: $\{-\infty, N.E., +\infty, N.E.\}$ D: $\{-1, -1, 1, 1\}$ E: $\{0, N.E., 1, 1.\}$

9. Il massimo e minimo della funzione $f(x) = x^4 - 2x^2$ su [0,2] sono

A: $\max = 0$, $\min = -1$ B: non esiste \max , $\min = 0$ C: $\max = 8$, $\min = -1$ D: N.A. E: entrambi non esistono

10. L'integrale

$$\int_{e}^{e^2} \frac{1}{x \log(x)} \, dx$$

vale

A: $\log(2)$ B: $-\infty$ C: 1 D: N.A. E: $\log(1/2)$

10 gennaio 2017

			(Co	gnor	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 gennaio 2017

			(Co	gnor	ne)				_			(No	me)			-	(N	ume	ro di	ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 gennaio 2017

			(Co	gnor	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 gennaio 2017

			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 gennaio 2017

			(Co	gnor	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

10 gennaio 2017

PARTE B

1. a) Dimostrare che

$$f(x) = x \log(x) + \frac{1}{x} > 0,$$
 (1)

per ogni x > 0.

b) Usando anche la (1), se necessario, calcolare

$$G(\alpha) = \int_{\alpha}^{1/\alpha} f(x) dx \qquad \alpha > 0,$$

e discutere il comportamento di $G(\alpha)$ per $\alpha \to 0^+$ e $\alpha \to +\infty$.

Soluzione

Visto che x>0, dimostrare che $x\log(x)+\frac{1}{x}>0$ equivale a dimostrare che $x^2\log(x)+1>0$, ovvero $x^2\log(x)>-1$. Dallo studio della derivata si vede che $x^2\log(x)$ ha un solo punto di minimo in $x=\frac{1}{\sqrt{e}}$, e quindi il minimo di $x^2\log(x)$ vale $-\frac{1}{2e}>-1$. Quindi f(x)>0. Si vede anche facilmente che $\lim_{x\to 0^+}f(x)=\lim_{x\to +\infty}f(x)=+\infty$.

Calcoliamo per parti $\int_{\alpha}^{1/\alpha} x \log(x) dx$. Si ha

$$\int_{\alpha}^{1/\alpha} x \log(x) dx = \left[\frac{x^2}{2} \log(x) \right]_{\alpha}^{1/\alpha} - \int_{\alpha}^{1/\alpha} \frac{x}{2} dx = \left[\frac{x^2}{2} \log(x) - \frac{x^2}{4} \right]_{\alpha}^{1/\alpha}$$

Quindi

$$G(\alpha) = \int_{\alpha}^{1/\alpha} x \log(x) + \frac{1}{x} dx = \left[\frac{x^2}{2} \log(x) - \frac{x^2}{4} + \log(x) \right]_{\alpha}^{1/\alpha}$$

$$= \frac{1}{2\alpha^2} \log\left(\frac{1}{\alpha}\right) - \frac{1}{4\alpha^2} + \log\left(\frac{1}{\alpha}\right) - \frac{\alpha^2}{2} \log(\alpha) + \frac{\alpha^2}{4} - \log(\alpha)$$

$$= \left(\frac{1}{2\alpha^2} + \frac{\alpha^2}{2}\right) \log\left(\frac{1}{\alpha}\right) + \frac{1}{4} \left(\alpha^2 - \frac{1}{\alpha^2}\right) + \log\left(\frac{1}{\alpha^2}\right).$$

Poiché $\lim_{x\to 0^+} f(x) = \lim_{x\to +\infty} f(x) = +\infty$ abbiamo che

$$\int_0^1 f(x)dx = \int_1^\infty f(x)dx = \int_0^\infty f(x)dx = +\infty.$$

Allora si vede facilmente che

$$\lim_{\alpha \to 0^+} G(\alpha) = \int_0^\infty f(x) dx = +\infty$$

е

$$\lim_{\alpha \to \infty} G(\alpha) = \int_{\infty}^{0} f(x)dx = -\int_{0}^{\infty} f(x)dx = -\infty.$$

2. Risolvere il problema di Cauchy con il parametro $\beta \in \mathbb{R}$

$$\begin{cases} y''(t) - 2y(t) = 0, \\ y(0) = 1, \\ y'(0) = \beta, \end{cases}$$

e determinare se esistono $\beta \in \mathbb{R}$ tali per cui la soluzione soddisfi $\int_0^{+\infty} |y(t)| dt < +\infty$.

Soluzione

Il polinomio associato all'equazione differenziale è $\lambda^2-2=0,$ quindi la soluzione dell'equazione è

$$y(x) = Ae^{\sqrt{2}x} + Be^{-\sqrt{2}x}$$

con A, B da scegliere con il dato iniziale, ovvero

$$\begin{cases} y(0) = A + B = 1 \\ y'(0) = \sqrt{2}A - \sqrt{2}B = \beta \end{cases}$$

quindi la soluzione è

$$y(x) = \left(\frac{1}{2} + \beta \frac{\sqrt{2}}{4}\right) e^{\sqrt{2}x} + \left(\frac{1}{2} - \beta \frac{\sqrt{2}}{4}\right) e^{-\sqrt{2}x}$$

Perché la funzione sia integrabile su $[0, +\infty)$ è necessario che il coefficiente di $e^{\sqrt{2}x}$ sia zero, quindi $\beta = -\sqrt{2}$. In tal caso

$$\int_{0}^{\infty} |y(x)| dx = \int_{0}^{\infty} e^{-\sqrt{2}x} dx = \frac{\sqrt{2}}{2}.$$

3. a) Studiare, al variare del parametro reale $\lambda > -1$, il comportamento del seguente integrale (eventualmente calcolandolo esplicitamente)

$$\int_{1}^{+\infty} \frac{1}{x^2 + \lambda} \, dx$$

b) Studiare il caso $\lambda \leq -1$.

Soluzione

Se $\lambda > 0$ allora con la sostituzione $s = x/\sqrt{\lambda}$ l'integrale è convergente e si ha

$$\int_{1}^{\infty} \frac{1}{x^2 + \lambda} dx = \left[\frac{1}{\sqrt{\lambda}} \arctan\left(\frac{x}{\sqrt{\lambda}}\right) \right]_{1}^{\infty} = \frac{1}{\sqrt{\lambda}} \left(\frac{\pi}{2} - \arctan\left(\frac{1}{\sqrt{\lambda}}\right) \right).$$

Per $\lambda = 0$ si ottiene

$$\int_{1}^{\infty} x^{-2} dx = \left[-\frac{1}{x} \right]_{1}^{\infty} = 1.$$

Se $\lambda < 0$ poniamo $\lambda = -\alpha^2$ per comodità.

Abbiamo

$$\frac{1}{x^2 - \alpha^2} = \frac{1}{(x - \alpha)(x + \alpha)} = \frac{1}{2\alpha} \left(\frac{1}{(x - \alpha)} - \frac{1}{(x + \alpha)} \right).$$

Se $-1 < \lambda < 0$ allora $\alpha = \sqrt{-\lambda} < 1$ e abbiamo

$$\int_{1}^{\infty} \frac{1}{x^{2} - \alpha^{2}} dx = \frac{1}{2\alpha} \int_{1}^{\infty} \left(\frac{1}{(x - \alpha)} - \frac{1}{(x + \alpha)} \right) dx = \frac{1}{2\alpha} \left[\log \left| \frac{x - \alpha}{x + \alpha} \right| \right]_{1}^{\infty}$$
$$= -\frac{1}{2\alpha} \log \left(\frac{1 - \alpha}{1 + \alpha} \right) = \frac{1}{2\alpha} \log \left(\frac{1 + \alpha}{1 - \alpha} \right),$$

quindi

$$\int_{1}^{\infty} \frac{1}{x^2 + \lambda} dx = \frac{1}{2\sqrt{-\lambda}} \log \left(\frac{1 + \sqrt{-\lambda}}{1 - \sqrt{-\lambda}} \right).$$

Nel caso in cui $\lambda \leq -1$, abbiamo $\alpha \geq 1$ allora la funzione $\frac{1}{(x-\alpha)}$ diverge per $x=\alpha$, e, visto che l'andamento vicino α è di primo grado, allora l'integrale diverge. Quindi per $\lambda \leq -1$ la funzione $\frac{1}{x^2+\lambda}$ non integrabile su $[1,+\infty)$.

- 4. a) La funzione $f(x) = \cos(x) + \cos(\sqrt{2}x)$ è periodica?
 - b) Esiste un T>0 tale che la funzione di classe $g(x)\in C^1(\mathbb{R})$ definita da $g(x)=\cos(x^2)$ è periodica di periodo T.

Soluzione

Dato che f(0) = 2, se la funzione fosse periodica ci dovrebbe essere T > 0 tale che f(T) = 2, ma dato che il coseno è sempre minore o uguale a 1, ciò accade solo se $\cos(T) = \cos(\sqrt{2}T) = 1$. Ricordando che il coseno vale 1 se e solo se l'argomento vale $2k\pi$, con $k \in \mathbb{N}$ si ottiene che

$$T = 2m\pi$$
 $\sqrt{2}T = 2n\pi$ per qualche $m, n \in \mathbb{N}$.

Da questo si ricava che

$$T = 2m\pi$$
 $T = \sqrt{2}n\pi$ per qualche $m, n \in \mathbb{N}$,

e dunque uguagliando si ha $2m\pi = \sqrt{2}n\pi$ per qualche $m, n \in \mathbb{N}$, che implicherebbe

$$\frac{n}{m} = \sqrt{2}$$
 per qualche $m, n \in \mathbb{N}$,

che non è possibile.

Per il caso b), è sufficiente derivare g(x). Si ottiene $g'(x) = -2x\sin(x^2)$, che non è periodica (ad esempio perché i massimi locali hanno valori crescenti per x > 0). Ma se g(x) fosse T-periodica, lo dovrebbe essere anche la sua derivata. Quindi, non esiste T tale che g(x) sia T-periodica.