The systems

have the same solutions:

The systems

have the same solutions:

Let
$$\vec{x} = (x_1, x_2, x_3)$$
.

 \vec{x} a solution of E_1 and $E_2 \Longrightarrow \vec{x}$ a solution of $(E_1 \text{ and})$ $E_1 + E_2$.

The systems

have the same solutions:

Let
$$\vec{x} = (x_1, x_2, x_3)$$
.

 \vec{x} a solution of E_1 and $E_2 \Longrightarrow \vec{x}$ a solution of $(E_1 \text{ and})$ $E_1 + E_2$.

Since
$$E_2 = (E_1 + E_2) - E_1$$
,

 \vec{x} a solution of E_1 and $E_1 + E_2 \Longrightarrow \vec{x}$ a solution of $(E_1 \text{ and})$ E_2

Similarly, the systems

have the same solutions.

Similarly, the systems

have the same solutions.

Psychological step: Stop thinking of x_3 as a variable. Rather, think of it as a **parameter**.

Similarly, the systems

and

$$x_1 - 2x_2 - 7x_3 = -1$$
 E_1
 $x_2 - x_3 = -1$ $E_2 + E_1$
 $x_1 - 9x_3 = -3$ $E_1 + 2(E_2 + E_1)$
 $x_2 - x_3 = -1$ $E_2 + E_1$

have the same solutions.

Psychological step: Stop thinking of x_3 as a variable. Rather, think of it as a **parameter**.

Distinguish variables and the parameter notationally: Set $t = x_3$.

$$x_1 = 9t - 3$$
 $E_1 + 2(E_2 + E_1)$
 $x_2 = t - 1$ $E_2 + E_1$

Conclusion: $(x_1, x_2, x_3) = (9t - 3, t - 1, t)$ is a solution **for all** t.

In particular, the system has infinitely many solutions.

In particular, the system has infinitely many solutions.

Analyze the above argument: All solutions have the form

$$(x_1, x_2, x_3) = (9t - 3, t - 1, t),$$
 (*)

for some t.

In particular, the system has infinitely many solutions.

Analyze the above argument: All solutions have the form

$$(x_1, x_2, x_3) = (9t - 3, t - 1, t),$$
 (*)

for some t.

(*) is called the **general solution** of the system.

