Neural Network Methods for Signals in Engineering and Physical Sciences

Introduction

Model

Neural Network Methods

for

Data Signals in Engineering and Physical Sciences

Introduction - Model

Input: signal, multiple signals, time-dependent, stationary

Model: function of the input

Output: signal, multiple signals, time-dependent, stationary.

Special outputs: input characteristic - class, score.

Introduction - Model

Examples of Models

- Continuous/Discrete Time Linear Time-Invariant System
 - Convolution, Transform
- Non LTI (Nonlinear Transforms)
- Fitting Data (Regression)
- Score/Class Assignment (Classification)

System, Algorithm, Pipeline

Learned vs. Fixed Model

Fixed Model

Data-Processing and Analysis

Discrete Fourier Transform

Learned Model

Machine/Deep Learning

$$egin{array}{c} x_n \ \hline \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ \hline \end{array}$$

Machine Learning – Learning an Optimal Model for Data

- H expression can be completely unknown (hard)
- H expression can fixed with unknown parameters (easier)
- H can be updated through (machine) learning: optimization/ training
- Deep Learning is a subset Machine Learning

Machine Learning Main Challenge

Learn From the Data an Optimal Model for the Data

Learning: Model Training, Validation and Testing

"Classical" Machine Learning Methods

- Various Models
- Data, Task -> Model (Data and Task Dependent)
- Constraints on Data
- Transform Data to Different Signals (features)

"Classical" Machine Learning Methods

Additional Challenges

- Robustness to Imperfect Data
- Scalable with Data

Neural Networks (ANN/DNN)

Model: Network of nodes (neurons) and connections (weights)
Learning: Optimization of Connections (Deep Learning /Back Propagation)

Deep Learning

Artificial Neural Networks (ANN)

Navigation

Digits Reader

Digits Reader 2013

Multi Person Detection and Tracking

Speech Understanding

Autonomous Driving

A3D3 Datasets/Tasks

Particle Physics

Gravitational Waves

Multi-Messenger Astrophysics

Recordings from Neurons

Neural Networks / DL

"Deep Learning is the new electricity"

Andrew Ng

Next Lecture: Learning from the Brain

