The TDA2822M is a monolithic integrated circuit in 8 lead Minidip package. It is intended for use as dual audio power amplifier in portable cassette player and radios.

Features

- . Supply Voltage Down to 1.8V
- . Low Crossover Distorsion
- . Low Quiescent Current
- Bridge or Stereo Configuration

8-DIP

1.OUTPUT(1) 2.SUPPLY VOLTAGE 3.OUTPUT(2) 4.GROUND 5.INPUT(2) 6.INPUT(2) 7.INPUT(1) 8.INPUT(1)

Absolute Maximum Ratings

Symbol	Parameter	Value	Unite
Vs	Supply Voltage	16	V
Io	Peak Output Current	1	A
Ptot	Total Power Dissipation at Tamb=50 °C	1	w
	Tcase=50 ° C	1.4	w
Tstg,Tj	Storage and Junction Temperature	-40,+150	·c

Thermal Data

Symbol	Parameter		Value	Unite			
Rthj-amb	Thermal Resistance Junction-ambient	Max.	100	· C/W			
Rthj-case	Thermal Resistance Junction-pin(4)	Max.	70	· C/W			

		T	Min.	7	Max.	Unit
Symbol	Paramete	Test Conditions	MIH.	Тур.	Diece.	, Unit
	test circuit of Figure 1)		1.8		15	V
Vs	Suppy Voltage		1.0	2.7	12	v
Vo	Quiescent Ouput Voltage	Vs=3V	1	1.2		v
		V\$=3 V	 	6	9	mA
Id.	Quiescent Drain Current			100	 	nA
Ib	Input Bias Current	R _r =32Ω Vs=9V		300		mW
Po	Outut Power (each channel)	Vs=6V	90	120		
	(f=1KHz, d=10%)	Vs=4.5V	^*	60		
		Vs=3V	15	20		
		Vs=2V		5		
		$R_L=16\Omega$ Vs=6V	170	220		
		$R_L=8\Omega$ Vs=9V	•••	1000		
		Vs=6V	300	380		
		$R_1=4\Omega$ Vs=6V	450	650		
		Vs=4.5V		· 320		
		Vs=3V		110		
d	Distortion(f=1KHz)	R ₁ =32Ω Po=40mW		0.2		%
	Diblorating 1112=)	$R_I = 16\Omega$ Po=75mW		0.2		%
		R _L =8Ω Po=150mW	1	0.2		%
Gv	Close Loop Voltage Gain	f=1KHz	36	39	41	₫B
Δ Gv	Channel Balance				±l	₫B
Ri	Input Resistance	f=1KHz	100			KΩ
ви	Total Input Noise	Rs=10KΩ B=Curve A		2		μ. V
	Tour Airput 110100	B=22Hz to 22KHz		2.5	1	μV
SVR	Supply Voltage Rejection	f=100Hz, C1=C2=100 µ F		24	30	₫B
Cs	Channel Separation	f=1KHz			50	₫B
BRIDGE	test circuit of Figure 2)					
Vs	Supply Voltage		1.8		15	V
Id	Quiescent Drain Current	R _L =∞	<u> </u>			
Vos	Output Offset Voltage	R ₁ =8Ω				
103	(between the outputs)	1-2		1		
Ιb	Input Bias Current					
Po	Output Bias Current	R ₄ =32Ω Vs=9V	1	1000		mW
		Vs=6V	320	400	1	ļ.
	İ	Vs=4.5V		200		
		Vs=3V	50	65		ĺ
		Vs=2V		. 8		
		R _L =16Ω Vs=9V		2000	1	
		Vs=6V	1	800		1
		Vs=3V		120	ł	
		R _L =8Ω Vs=6V	900	1350	ļ	1
	1	Vs=4.5V		700	ļ	
		Vs=3V	ł	220		İ
		$R_L=4\Omega$ Vs=4.5V		1000		
		Vs=3V	200	350		1
		V _S =2V	 	80	ļ	-
<u>d</u>	Output Power (f=1KHz,d=10%)	Po=0.5W,R _L =8Ω,f=1KHz	<u> </u>	0.2	ļ	%
Gv	Closed Loop Voltage Gain	f=1KHz	l	39	ļ	dB
Ri	Input Resistance	f=1KH2	100	L	ļ	KΩ
e _N	Total Input Noise	Rs=10KΩ B=Curve A		2.5		μ.\
		B=22Hz to 22KHz	<u> </u>	3	ļ	μV
SVR	Supply Voltage Rejection	f=100Hz	<u> </u>	40	ļ	₫B
В	Power Bandwidth (-3dB)	R _L =8Ω ,Po=1W	1	120	1	KH

Schematic Diagram

Figure 1:Test Circuit(Stereo)

Figure 2.Test Circuit (Bridge)

Figure 3. Typical Application in Portable Players

Figure 4.Application in Portable Radio Receivers

Figure 5. Portable Radio Cassette Players

Figure 6.Portable Stereo Radio

Figure 7.Low Cose Application in Portable Players (using only one 100 a F output capacitor)

Figure 8.3V Stereo Cassette Player with Motor Speed Control

Figure 9.Quiescent Current versus Supply Voltage

Figure 11.Output Power versus Supply Voltage (THD=10%,f=1KHz Stereo)

Figure 13.Distorsion versus Output Power (Stereo)

Figure 10.Supply Voltage Rejection versus Frequency

Figure 12.Distorsion versus Output
Power (Stereo)

Figure 14.Output Power versus Supply Voltage (Bridge)

Figure 15.Distorsion versus Output Power (Bridge)

Figure 17.Total Power Dissipation versus Output Power(Bridge)

Figure 19.Total Power Dissipation versus Output Power(Bridge)

Figure 16.Total Power Dissipation versus Output Power (Bridge)

Figure 18.Total Power Dissipation versus Output Power(Bridge)

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn