W(s) =

In entrambi i grafici indicare:

- a fianco di ogni punto della spezzata il corrispondente valore (in dB o gradi)
- a fianco di ogni segmento con pendenza non nulla il corrispondente valore di pendenza (in dB/dec o gradi/decade)

Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

secondo appello - 15/07/2024 - A (0)

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Verificare che nome e cognome siano corretti. Scrivere cognome e nome anche su tutti i fogli protocollo
- 2) Bisogna consegnare il testo del compito anche in caso di ritiro
- 3) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 4) Nei conti e nei risultati, i valori numerici <u>**DEVONO**</u> essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 5) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 6) Il tempo a disposizione è di 2 ore

Zona di saturazione

$$I_{DS} = \frac{k_n}{2} (V_{GS} - V_{TN})^2$$

Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} > V_{GS} - V_{TN}$

$$I_{DS} = \frac{k_p}{2} (V_{GS} - V_{TP})^2$$

Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} < V_{GS} - V_{TP}$

Zona lineare o triodo

$$I_{DS} = k_n \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$$

Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} < V_{GS} - V_{TN}$

$$I_{DS} = k_p \left(V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right) V_{DS}$$

Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} > V_{GS} - V_{TP}$

Zona di interdizione

$$I_{DS} = 0$$

$$I_{DS} = 0$$
 Condizioni: $V_{GS} < V_{TN}$ Condizioni: $V_{GS} > V_{TP}$

Modello ai piccoli segnali (in saturazione)

$$g_m = k_n (V_{GS} - V_{TN})$$

$$r_o = \frac{2}{k_n (V_{GS} - V_{TN})^2 \lambda_n}$$

$$g_m = -k_p(V_{GS} - V_{TP})$$

$$r_o = \frac{2}{k_p(V_{GS} - V_{TP})^2 \lambda_p}$$

Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:
 - o $M_1 e M_2$: $k_1 = k_2 = 2mA/V^2$,
 - \circ M₃: k₃ = 1mA/V²,
 - \circ M₄: k₄ = 4mA/V²,
 - V_{TN} = 2V per tutti i MOS
 - \circ M₃ ha λ₃ = 0.01V⁻¹ (trascurare λ per tutti gli altri MOSFET)
- I valori delle resistenze: $R_i = 1k\Omega$, $R_L = 24k\Omega$, $R_D = 8k\Omega$.
- La tensione di alimentazione: V_{DD} = 10V

Dato il circuito in figura, sapendo che la tensione gate-source di M_4 è V_{GS4} = 4V, calcolare:

- 1) Il valore della resistenza R₄ e la corrente attraverso M₄.
- 2) Il punto di polarizzazione di M₁, M₂ e M₃.
- 3) I potenziali dei nodi A, B, C, e D in condizioni DC. (Riportare i valori nello spazio sotto la figura)
- 4) Disegnare il modello ai piccoli segnali e calcolare le transconduttanze di M₁ e M₂.

Dall'analisi ai piccoli segnali, calcolare:

- 5) Le resistenze di ingresso (R_{IN} e di uscita R_{OUT}) come evidenziate nel circuito.
- 6) Il guadagno di tensione di modo differenziale rispetto al segnale $v_1 v_2$.
- 7) Il guadagno di tensione di modo comune
- 8) II CMRR

$$V_A = \dots$$
; $V_D = \dots$; $V_D = \dots$

Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale e un diodo zener ($V_{ON}=0V$ e $V_Z=4V$). Assumendo l'operazionale ideale e $R=10k\Omega$:

- 1. Tracciare la transcaratteristica di v_0 in funzione di v_S e riportarla nel grafico sulla pagina seguente.
- 2. Calcolare la tensione v_0 , la corrente i_D attraverso il diodo e la tensione v_D ai capi del diodo con v_S = -8V.

Assumiamo ora l'operazionale reale con tensione di offset V_{OS} = -20mV, correnti di bias I_{BN} = 1 μ A , I_{BP} = 0.5 μ A e CMRR = 100:

3. Calcolare la tensione di uscita con $v_S = -1V$

A fianco di ciascun punto di spezzamento indicare i valori di tensione v_S e v_O corrispondenti.

A fianco di ciascun segmento indicare il valore della pendenza (dv_O/dv_S) e la regione di funzionamento dei diodi.

Problema 3

DATI: $R_1 = 2k\Omega$, $C_1 = 5\mu F$, $R_2 = 20k\Omega$, $C_2 = 0.5nF$, $R_3 = 1k\Omega$, $C_3 = 1\mu F$, $R_4 = 10k\Omega$, $C_4 = 1nF$ Dato il filtro in figure.

- 1. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 2. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in quarta pagina).

