Plan

- Review of Last Lecture
- Section 14. Factor Groups (continued)

Yongchang Zhu Short title 2 / 20

Review of Last lecture

Theorem

(**Theorem 14.4** + **Corollary 14.5**) Let G be a group, H be a normal subgroup of G, G/H be the set of all left cosets of H, then (1) the binary operation on G/H given by

$$(aH)(bH) = (ab)H$$

is well-defined.

(2). G/H is a group under the above binary operation.

Yongchang Zhu Short title 3/20

The symbol G/H denotes the set of all left cosets of H.

Example.
$$G = \mathbb{Z}$$
, $H = 6\mathbb{Z}$,

$$\mathbb{Z}/6\mathbb{Z} = \{0+6\mathbb{Z}, \; 1+6\mathbb{Z}, \; 2+6\mathbb{Z}, \; 3+6\mathbb{Z}, \; 4+6\mathbb{Z}, \; 5+6\mathbb{Z}. \; \}$$

$$(4+6\mathbb{Z})+(5+6\mathbb{Z})=(4+5)+6\mathbb{Z}=9+6\mathbb{Z}=3+6\mathbb{Z}$$

We can write

$$\mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbb{Z}/6\mathbb{Z}=\mathbb{Z}_6$$
.

Yongchang Zhu Short title 4 / 20

The group G/H in the Theorem 14.4 is called the **factor group** (or **quotient group**) of G by H.

For every positive integer n, the factor group $\mathbb{Z}/n\mathbb{Z}$ of \mathbb{Z} by $n\mathbb{Z}$ is just \mathbb{Z}_n .

Section 14. Factor Groups (continued)

Theorem

(Theorem 14.9) Let H be a normal subgroup of G. Then $\gamma:G\to G/H$

$$\gamma(a) = aH$$

is a homomorphism with kernel H.

Yongchang Zhu Short title 6/20

Theorem

(Theorem 14.11. The Fundamental Homomorphism Theorem. Let

 $\phi: G \to G'$ be a group homomorphism with kernel $Ker(\phi) = H$. Then (1) $\phi(G)$ is a subgroup of G'.

(2) The map $\mu: G/H \to \phi(G)$ given by

$$\mu(\mathsf{g}\mathsf{H}) = \phi(\mathsf{g})$$

is well-defined and is an isomorphism.

(3) If $\gamma: G \to G/H$ is the homomorphism given by $\gamma(g) = gH$, then $\phi(g) = (\mu \gamma)(g)$ for each $g \in G$.

Yongchang Zhu Short title 7/2

Proof. (1) follows Part (3) of Theorem 13.12 (2). To prove μ is well-defined. Let $g_1H=g_2H$, we want to prove $\phi(g_1)=\phi(g_2)$. The condition $g_1H=g_2H$ implies that $g_1=g_2h$ for some $h\in H$, so

$$\phi(g_1) = \phi(g_2h) = \phi(g_2)\phi(h) = \phi(g_2)e = \phi(g_2)$$

This proves μ is well-defined. It is easy to prove μ is a homomorphism and is onto. It remains to prove μ is one-to-one.

$$Ker(\mu) = \{gH \in G/H \mid \mu(gH) = e'\}$$

= $\{gH \in G/H \mid \phi(g) = e'\}$
= $\{gH \in G/H \mid g \in H\}$
= $\{eH\}$

Short title

is trivial. So Theorem 13.15, μ is one-to-one. (3) is easy.

Yongchang Zhu

8 / 20

Example. Prove that \mathbb{C}^*/U_n is isomorphic to \mathbb{C}^* .

Proof. Let $\phi: \mathbb{C}^* \to \mathbb{C}^*$ be given by $\phi(a) = a^n$. Then ϕ is a homomorphism, because

$$\phi(ab) = (ab)^n = a^n b^n = \phi(a)\phi(b).$$

 ϕ is onto. So

$$\phi(\mathbb{C}^*) = \mathbb{C}^*$$

$$Ker(\phi) = \{a \in \mathbb{C}^* \mid \phi(a) = 1\} = \{a \in \mathbb{C}^* \mid a^n = 1\} = U_n.$$

By Theorem 14.11, \mathbb{C}^*/U_n is isomorphic to \mathbb{C}^* .

Yongchang Zhu Short title 9 / 20

Example. Prove that the factor group \mathbb{C}^*/U is isomorphic to $\mathbb{R}_{>0}$.

Sketch of Proof. Consider the homomorphism $\phi:\mathbb{C}^* \to \mathbb{R}_{>0}$ given by

$$\phi(z) = |z|$$

Then apply Theorem 14.11.

Yongchang Zhu Short title 10 / 20

Theorem

(**Theorem 14.13**) Let G be a group and $H \subseteq G$ is a subgroup. Then the following two conditions are equivalent.

- (1) $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.
- (2) H is a normal subgroup.

This theorem was proved when we discussed Section 13.

Yongchang Zhu Short title 11/20

Definition 14.15. An isomorphism $\phi: G \to G$ is called an **automorphism** of G.

Given $g \in G$, $i_g : G \rightarrow G$ given by

$$i_g(x) = gxg^{-1}$$

is an automorphism.

 i_g is called the **inner automorphism of** G by g.

Yongchang Zhu Short title 12 / 20

Example. Find all the homomorphisms $\phi : \mathbb{Z} \to \mathbb{Z}$ and find all the automorphisms from \mathbb{Z} .

Suppose $\phi : \mathbb{Z} \to \mathbb{Z}$ is a homomorphism, we know $\phi(0) = 0$ (Theorem 13.12 (1)). For a positive integer n,

$$\phi(n) = \phi(1 + \dots + 1) \text{ (} n \text{ copies } 1\text{)}$$
$$= \phi(1) + \dots + \phi(1) \text{ (} n \text{ copies } \phi(1)\text{)} = n\phi(1)$$

$$\phi(-n) = -\phi(n) = -n\phi(1)$$

We proved

$$\phi(m) = \phi(1)m$$

for arbitrary $m \in \mathbb{Z}$. $\phi(1)$ can be every integer. (continued next page)

Yongchang Zhu Short title 13/20

For every integer a, we define a map $T_a : \mathbb{Z} \to \mathbb{Z}$ by

$$T_a(m) = am$$

It is easy to prove T_a is a homomorphism. Every homomorphism from $\mathbb Z$ to $\mathbb Z$ itself is T_a for some $a\in\mathbb Z$.

Among all the homomorphisms T_a , T_1 , T_{-1} are the only automorphism of \mathbb{Z} .

$$T_1(a) = a, \quad T_{-1}(a) = -a$$

Yongchang Zhu Short title 14/20

The concept of factor group has a linear algebra analog called factor vector space or quotient vector space.

We take the this opportunity to recall the definition.

We first recall the definition of a vector space over the real number.

Definition of Vector Space. A vector space over real number is a set V with a binary operation + (called the vector addition) and a scalar multiplication that send $k \in \mathbb{R}$ and $v \in V$ to $kv \in V$ such that the following axioms hold

- (1) + is commutative and associative.
- (2) there is a zero vector $0 \in V$ satisfying v + 0 = 0 + v = v for all $v \in V$.
- (3) For every $v \in V$, there exists $-v \in V$ satisfying v + (-v) = 0.
- (4) 1v = v
- (5) For $k_1, k_2 \in \mathbb{R}$, $v \in V$,

$$(k_1k_2)v=k_1(k_2v)$$

(6) For $k_1, k_2 \in \mathbb{R}$, $v \in V$,

$$(k_1 + k_2)v = k_1v + k_2v$$

(7) For $k \in \mathbb{R}$, $v_1, v_2 \in V$,

$$k(v_1 + v_2) = kv_1 + kv_2$$

Yongchang Zhu Short title 16 / 20

The conditions (1) (2) (3) can be combined to one condition: V is an abelian group under +.

A subset S of a vector space V is called a **subspace** if S is non-empty and is closed under + and scalar multiplication.

Every vector space V is an abelian group under +. Every subspace S is a subgroup. Since (V,+) is an abelian subgroup, so S is a normal subgroup of V. We have factor group

$$(V/S, +)$$

An element in V/S is a coset a + S.

Yongchang Zhu Short title 18 / 20

The scalar multiplication on V/S is defined as

$$k(a+S) = ka+S$$

One checks that V/S is a vector space, called the factor space of V by S (or quotient space of V by S).

One can prove if V is finite dimensional, then

$$\dim(V/S) = \dim(V) - \dim(S).$$

Yongchang Zhu Short title 19/20

The end