Trabalho Teórico 8

Marco Aurélio Silva de Souza Júnior - 696809

Exercício Resolvido 1:

```
a) 2^{10} = 1024
```

b)
$$lg(1024) = 10$$

c)
$$lg(17) = 4.08746...$$

d)
$$\lceil lg(17) \rceil = 5$$

e)
$$\lfloor lg(17) \rfloor = 4$$

Exercício Resolvido 2:

Exercício Resolvido 3:

```
for (int i = 0; i < n; i++){
  if (i % 2 == 0){
    a--;
    b--;
} else { // Melhor caso: f(n) = n, logo, O(n), Ω(n) e Θ(n)
    C--;</pre>
```

```
} // Pior caso: f(n) = 2n, logo, O(n), \Omega(n) e O(n)
```

Exercício Resolvido 4:

```
for (int i = 3; i < n; i++){
    a--;
} //n - 3 subtrações, logo O(n), Ω(n) e Θ(n)
```

Exercício Resolvido 5:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
// O(lg n), Ω(lg n) e Θ(lg n)
```

Exercício Resolvido 6:

Exercício 1:

Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
void show_minimo_maximo(int arr[], int n) { // n: tamanho do array
  int min, max, cont = 0;
  min = max = arr[cont];

for(cont = 1; cont < n; cont++) {
   if(arr[cont] < min) // n-1 comparacoes
      min = arr[cont]; // pior caso: array em ordem decrescente. n-1 movimentacoes.</pre>
```

```
if(arr[cont] > max) // n-1 comparacoes
    max = arr[cont]; // pior caso: array em ordem crescente. n-1 movimentacoes.
}
printf("Maximo = %i\n\n", max);
printf("Minimo = %i\n\n", min);
}
```

Função de complexidade de tempo: $\theta(n)$.

Exercício Resolvido 10:

Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

Resp.: A primeira opção é mais eficiente por ter custo $\theta(n)$, enquanto a segunda tem custo $\theta(n.lg(n)) + \theta(lg(n))$.

Exercício Resolvido 11:

a), b), c)
$$3n^2+5n+1=\mathrm{O}(n^2)$$
 ou $\mathrm{O}(n^3)$ d), e), f) $3n^2+5n+1=\Omega(n)$ ou $\Omega(n^2)$ g), h), i) $3n^2+5n+1=\Theta(n^2)$

Exercício 3 (slide 69):

Fundamentos de Análise de Algoritmos

Exercício (3)

Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)	Ŧ	V	>	>	\	V	V	V
$f(n) = n \cdot lg(n)$	t-	۴	÷	>	>	>	>	V
f(n) = 5n + 1	F	F	>	>	>	>	>	J
$f(n) = 7n^5 - 3n^2$	ţ.	F	t	ርጉ	t-	F	V	٧
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	٧	V	V
$f(n) = n^5 - 99999n^4$	F	F	F	f	F	f	V	V

Exercício 4:

Exercício (4)

· Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.lg(n))$	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	V	V	F	۴	F	f	F	۴
$f(n) = n \cdot lg(n)$	>	>	>	V	(-	F	۴	F
f(n) = 5n + 1	۷	V	>	lt.	ţ.	۳.	F	F
$f(n) = 7n^5 - 3n^2$	>	V	>	>	>	>	V	f
f(n) = 99n ³ - 1000n ²	V	V	√	>	7	>	F	F
$f(n) = n^5 - 99999n^4$	V	✓	4	V	>	>	V	F

Exercício 5:

Fundamentos de Análise de Algoritmos

Exercício (5)

· Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ(lg n)	Θ (n)	Θ(n.lg(n))	Θ (n²)	Θ (n³)	Θ (n⁵)	Θ(n ²⁰)
f(n) = Ig(n)	t.	F	>	F	f	f	F	F
$f(n) = n \cdot lg(n)$	F	F	F	>	F	E	Ŀ	F
f(n) = 5n + 1	F	۴	V	F	æ	Œ	T.	F
$f(n) = 7n^5 - 3n^2$	t	F	ፒ	£.	F	Œ	V	Ł
$f(n) = 99n^3 - 1000n^2$	F	F	f	ŧ	F	٧	F	F
$f(n) = n^5 - 99999n^4$	F	F	F	Ŀ	F	4	V	F

Exercício 6:

$$f(n)=3n^2-5n-9,\,g(n)=n.lg(n),\,l(n)=n.lg^2(n),\,h(n)=99n^8$$
 a) f(n) + g(n) - h(n) = $\Theta(n^8)$

b)
$$O(f(n) + O(g(n)) - O(h(n)) = O(n^8)$$

c)
$$f(n) \times g(n) = \Theta(n^3 . lg(n))$$

d) g(n) x l(n) + h(n) =
$$\Theta(n^8)$$

e) f(n) x g(n) x I(n) =
$$\Theta(n^4.lg^3(n))$$

f)
$$O(O(O(f(n)))) = O(n^2)$$

Exercício 7:

Sendo $f(n) = |3m^2 + 5m + 1| e$ $g(m) = c \cdot |n^2|$

Para c=1, o gráfico das funções é dado por:

então devemos achar um c, tal que, para $n \ge 0$, exista um m em que $\forall n \ge m$, $g(n) \ge f(n)$.

Para c→+∞, a distância A será 0 e m = 0

De modo analogo, quanto major for a patência de n em g(n), menor será a distância Δ e mais próximo de θ será a m.

Assim, percebemos que f(n)= O(n), onde x 72.

Per outro Lado, se g(n): c·ml, nunca haverá um c que fará a função g(n) dominar assintoticamente f(n), Logo f(n) não é O(n).

Exercício 8:

Sendo
$$g(n)=3n^2+5n+1$$
 e $f(n)=n^2$, se c=0 e m=0, $\forall n\geq m, |g(n)|\geq c.|f(n)|$

Sendo
$$g(n)=3n^2+5n+1$$
 e $f(n)=n$, se c=0 e m=0, $\forall n\geq m$, $|g(n)|\geq c.|f(n)|$ Sendo $g(n)=3n^2+5n+1$ e $f(n)=n^3$, se c=0 e m=0, $\forall n\geq m$, $|g(n)|\geq c.|f(n)|$

Se c > 0, analogamente à explicação do exercício 7, a distância Δ será menor à medida que c aumenta, nunca havendo uma situação em que f(n) se torna limite assintótico inferior para q(n).

Exercício 9:

Sendo
$$g(n)=3n^2+5n+1$$
 e $f(n)=n^2$, se $c_1=0, c_2=1, m=0$, $orall n\geq m$, $c_1.f(n)< g(n)< c_2.f(n)$

g(n) não é $\Theta(n)$ pois, f(n)=n nunca será limite assintótico de g(n). Analogamente, g(n) não é $\Theta(n^3)$.

Exercício 10:

Faça um resumo sobre Teoria da Complexidade, Classes de Problemas P, NP e NP-Completo. Use LaTeX e siga o modelo de artigos da SBC (sem abstract, resumo e seções) com no máximo duas página

Exercício Resolvido 12:

Função de complexidade:

Pior caso: f(n)=2+(n-2) movimentações, f(n)=1+2(n-2) comparações. Melhor caso: f(n)=2 movimentações, f(n)=n-1 comparações.

Complexidade:

Pior caso: $\Theta(n)$ movimentações e $\Theta(n)$ comparações. Melhor caso: $\Theta(1)$ movimentações e $\Theta(n)$ comparações.

Exercício Resolvido 13:

```
Pior caso: f(n)=n+2 , \Theta(n).
Melhor caso: f(n)=n+1 , \Theta(n).
```

Exercício Resolvido 14:

```
Pior caso = melhor caso = f(n) = n(2n+1), \Theta(n^2).
```

Exercício Resolvido 15:

```
Pior caso = melhor caso = f(n) = n.lg(n) + n, \Theta(n.lg(n))
```

Exercício 11:

```
void sistemaMonitoramento() {
  if (telefone() == true && luz() == true){
    alarme(0);
} else {
    alarme(1);
```

```
}
for (int i = 2; i < n; i++){
   if (sensor(i- 2) == true){
      alarme (i - 2);
   } else if (camera(i- 2) == true){
      alarme (i - 2 + n);
}
}
</pre>
```

Alarme: f(n) = n - 1, $\Theta(n)$.

Telefone e luz: f(n)=1, $\Theta(1)$.

Sensor e câmera: f(n) = n - 2, $\Theta(n)$.

Exercício 12:

```
for(int i = 0; i < n; i++) {
  array[i] = array[i+1];
  tmp = array[i];
}</pre>
```

Operação relevante: movimentação de array.

complexidade: f(n) = 2.n, $\Theta(n)$.

Exercício Resolvido 16:

	Constante	Linear	Polinomial	Exponencial
3n		×		
1	×			
(3/2)n		×		
2n³			×	
2 ⁿ				×
3n ²			X	
1000	X			
(3/2) ⁿ				×

Exercício Resolvido 17:

$$f_6(n) = 1$$

$$f_2(n)=n$$

$$f_1(n)=n^2$$

$$f_5(n)=n^3$$

$$f_4(n) = (3/2)^n$$

$$f_3(n)=2^n$$

Exercício Resolvido 18:

$$f_6(n) = 64$$

$$f_3(n) = log_8(n)$$

$$f_2(n)=lg(n)$$

$$f_9(n)=4n$$

$$f_1(n) = n.log_6(n)$$

$$f_5(n) = n.lg(n)$$

$$f_4(n) = 8n^2$$

$$f_7(n) = 6n^3$$

$$f_8(n) = 8^{2n}$$

Exercício Resolvido 19:

$$n+30 \longleftrightarrow 3n-1$$

$$n^2+2n-10 \longleftrightarrow n^2+3n$$

$$n^3.3n \longleftrightarrow n^4$$

$$lg(n) \longleftrightarrow lg(2n)$$

Exercício 13:

Executando-se n pesquisas, o custo disto seria $\Theta(n^2)$, assim, seria mais vantajoso ordenar e executar a pesquisa binária para um custo de $\theta(n.lg(n)) + \theta(lg(n))$.