0.1 函数性态分析综合

命题 0.1

设 $f:(a,b) \to (a,b)$ 满足对任意的 $x,y \in (a,b)$, 当 $x \neq y$ 时, 有 |f(x)-f(y)| < |x-y|. 任取 $x_1 \in (a,b)$, 令 $x_{n+1} = f(x_n), n = 1, 2, \cdots$, 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 收敛.

证明 注意到 $x_1 \in (a,b)$, 假设 $x_k \in (a,b)$, 则 $x_{k+1} = f(x_k) \in (a,b)$, 故由数学归纳法可知 $x_n \in (a,b)$, $\forall n \in \mathbb{N}$. 又由条件可知, 对 $\forall \varepsilon > 0$, 令 $\delta = \varepsilon > 0$, 当 $x, y \in (a,b)$ 且 $0 < |x-y| < \delta$ 时, 有

$$|f(x) - f(y)| < |x - y| < \delta = \varepsilon.$$

故 f 在 (a,b) 上一致连续. 从而 $f \in C(a,b)$, 可以补充定义使 $f \in C[a,b]$. 令 F(x) = f(x) - x, 则 $F \in C[a,b]$. 下面 我们对 F 进行分类讨论.

(1) 若 F 在 (a,b) 上不变号,则由 $F \in C(a,b)$ 可知,F 要么恒大于零,要么恒小于零.不妨设 F 在 (a,b) 上恒大于零,即 f(x) > x, $\forall x \in (a,b)$.从而

$$x_{n+1} = f(x_n) > x_n, \forall n \in \mathbb{N}.$$

即 $\{x_n\}$ 单调递增. 又因为 $x_n \in (a,b), \forall n \in \mathbb{N},$ 所以由单调有界定理可知 $\{x_n\}$ 收敛.

(2) 若 F 在 (a,b) 上变号,则由 $F \in C(a,b)$ 及介值定理可得,存在 $\xi \in (a,b)$,使得 $f(\xi) = \xi$. 若存在 $\xi' \in (a,b)$ 且 $\xi' \neq \xi$,使得 $f(\xi') = \xi'$,则由条件可得到

$$|\xi - \xi'| = |f(\xi) - f(\xi')| < |\xi - \xi'|.$$

显然矛盾! 因此存在唯一的 $\xi \in (a,b)$, 使得 $f(\xi) = \xi$. 从而

$$|x_{n+1} - \xi| = |f(x_n) - f(\xi)| < |x_n - \xi|, \forall n \in \mathbb{N}.$$

于是 $\{|x_n-\xi|\}$ 单调递减且有下界 0, 故由单调有界定理可知 $\lim_{n\to\infty}|x_n-\xi|=A\geqslant 0$ 存在.

- (i) $\exists A = 0 \text{ pt}$, $y = \lim_{n \to \infty} |x_n \xi| = A = 0 \text{ pt}$ $\lim_{n \to \infty} x_n = \xi$.
- (ii) 当 A > 0 时, 若 $\{x_n\}$ 收敛, 则结论已经成立. 若 $\{x_n\}$ 发散, 则由 $x_n \in (a,b)$, $\forall n \in \mathbb{N}$ 及聚点定理可知, $\{x_n\}$ 至少有一个聚点. 若 $\{x_n\}$ 只有一个聚点, 则 $\{x_n\}$ 收敛与假设矛盾! 因此 $\{x_n\}$ 至少有两个聚点. 任取收敛子列 $\{x_{n_k}\} \subset \{x_n\}$, 设 $\lim_{n \to \infty} x_{n_k} = B$, 则

$$A = \lim_{n \to \infty} |x_n - \xi| = \lim_{k \to \infty} |x_{n_k} - \xi| = |B - \xi|.$$

从而 $B = \xi - A$ 或 $\xi + A$. 因此 $\{x_n\}$ 最多有两个聚点 $\xi - A$, $\xi + A \in [a,b]$. 故 $\{x_n\}$ 有且仅有两个聚点 $\xi - A$ 和 $\xi + A$. 进而一定存在收敛子列 $\{x_{n_k}\}$, 使得 $\lim_{k\to\infty} x_{n_k} = \xi - A$. 因为 $\xi - A \neq \xi$ 不是 f 的不动点,而 $\{x_n\}$ 只有两个聚点,所以

$$\lim_{k \to \infty} x_{n_k+1} = \lim_{k \to \infty} f\left(x_{n_k}\right) = f\left(\xi - A\right) \neq \xi - A \Longrightarrow \lim_{k \to \infty} x_{n_k+1} = f(\xi - A) = \xi + A.$$

由

$$\lim_{k\to\infty} x_{n_k} = \xi - A < \xi, \quad \lim_{k\to\infty} x_{n_k+1} = \xi + A > \xi$$

知, 存在 $K \in \mathbb{N}$, 使得 $\forall k > K$, 有 $x_{n_k} < \xi, x_{n_k+1} > \xi$. 又 $\{|x_n - \xi|\}$ 递减趋于 A, 故对 $\forall k > K$ 有

$$A \leq |x_{n_k} - \xi| = \xi - x_{n_k} < \xi - a \Longrightarrow \xi - A > a,$$

$$A \leq |x_{n_{k+1}} - \xi| = x_{n_{k+1}} - \xi < b - \xi \Longrightarrow \xi + A < b.$$

因此 $\xi - A, \xi + A \in (a, b), \xi = f(\xi)$. 再由条件可得

$$A = |\xi - (\xi + A)| = |f(\xi) - f(\xi - A)| < |\xi - (\xi - A)| = A.$$

显然矛盾! 故 A>0 不成立,于是 A=0. 再由 (1) 可得 $\lim_{n\to\infty}x_n=\xi$,即 $\{x_n\}$ 收敛,与假设 $\{x_n\}$ 发散矛盾!

命题 0.2

设 f' 在 $\overline{[0,+\infty)}$ 一致连续且 $\lim_{x\to+\infty} f(x)$ 存在,证明 $\lim_{x\to+\infty} f'(x) = 0$.

拿 笔记 本题也有积分版本 (见命题??) 令 $F = \int_0^x f(x) dx$ 就可以将这个积分版本转化为上述命题. 证明 反证, 若 $\lim_{x \to \infty} f'(x) \neq 0$, 则可以不妨设存在 $\delta > 0$, $\{x_n\}_{n=1}^{\infty}$, 使得

$$x_n \to +\infty \, \mathbb{E} f'(x_n) \geqslant \delta, \forall n \in \mathbb{N}.$$

由 f' 在 $[0,+\infty)$ 上一致连续可知, 存在 $\eta > 0$, 使得对 $\forall n \in \mathbb{N}$, 都有

$$f'(x) \ge f'(x_n) - \frac{\delta}{2} \ge \frac{\delta}{2}, \forall x \in [x_n - \eta, x_n + \eta].$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$f(x_n + \eta) - f(x_n) = \int_{x_n}^{x_n + \eta} f'(x) dx \geqslant \int_{x_n}^{x_n + \eta} \frac{\delta}{2} dx = \frac{\delta \eta}{2} > 0, \forall x \in [x_n - \eta, x_n + \eta].$$

令 $n \to \infty$,由 $\lim_{x \to +\infty} f(x)$ 存在可得 $0 \ge \frac{\delta \eta}{2} > 0$,矛盾!故 $\lim_{x \to +\infty} f'(x) = 0$.

命题 0.3 (时滞方程)

设ƒ在ℝ上可微且满足

$$\lim_{x \to +\infty} f'(x) = 1, \quad f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}.$$

证明存在常数 $C \in \mathbb{R}$ 使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

证明 由 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 及 $f \in D(\mathbb{R})$ 可知 $f' \in C(\mathbb{R})$. 对 $\forall x_1 \in \mathbb{R}$, 固定 x_1 , 记

$$A = \{z > x_1 \mid f'(z) = f'(x_1)\}.$$

由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可知

$$\exists x_2 \in (x_1, x_1 + 1) \text{ s.t. } f'(x_1) = f(x_1 + 1) - f(x_1) = f'(x_2).$$

故 $x_2 \in A$, 从而 A 非空. 现在考虑 $y \triangleq \sup A \in (x_1, +\infty)$, 下证 $y = +\infty$. 若 $y < +\infty$, 则存在 $\{z_n'\}_{n=1}^{\infty}$, 使得

$$z'_n \rightarrow y \coprod f'(z'_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z'_n) = f'(y).$$

又由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可得

$$\exists y' \in (y, y+1) \text{ s.t. } f'(y) = f(y+1) - f(y) = f'(y').$$

从而 $y' \in A$ 且 y' > y, 这与 $y = \sup A$ 矛盾! 故 $y = +\infty$. 于是存在 $\{z_n\}_{n=1}^{\infty}$, 使得

$$z_n \to +\infty \coprod f'(z_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 及 $\lim_{x \to +\infty} f'(x) = 1$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z_n) = \lim_{x \to +\infty} f'(x) = 1.$$

因此由 x_1 的任意性得,存在C为常数,使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

例题 **0.1** 设 $f \in C^2(\mathbb{R})$ 满足 $f(1) \leq 0$ 以及

$$\lim_{x \to \infty} [f(x) - |x|] = 0. \tag{12.27}$$

证明: (1) 存在 $\xi \in (1, +\infty)$, 使得 $f'(\xi) > 1$.

(2) 存在 $\eta \in \mathbb{R}$, 使得 $f''(\eta) = 0$.

2

证明 (1) 如果对任何 $x \in (1, +\infty)$, 都有 $f'(x) \le 1$, 那么 $[f(x) - x]' \le 0$ 知 f(x) - x 在 $[1, +\infty)$ 单调递减. 从而

$$-1 \ge f(1) - 1 \ge \lim_{x \to +\infty} [f(x) - x] = \lim_{x \to \infty} [f(x) - |x|] = 0,$$

这就是一个矛盾! 于是我们证明了 (1).

(2) 若对任何 $x \in \mathbb{R}$, 我们有 $f''(x) \neq 0$. 从而 f''(x) 要么恒大于零, 要么恒小于零, 否则由零点存在定理可得矛盾! 任取 $\xi \in \mathbb{R}$.

当 $f''(x) > 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是下凸函数. 由 (1) 和下凸函数切线总是在函数下方, 我们知道

$$f(x) \geqslant f(\xi) + f'(\xi)(x - \xi), \forall x > \xi.$$

于是

$$0 = \lim_{x \to +\infty} [f(x) - x] \geqslant \lim_{x \to +\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) - 1)x] = +\infty,$$

这就是一个矛盾!

当 $f''(x) < 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是上凸函数. 由 (1) 和上凸函数切线总是在函数上方, 我们有

$$f(x) \leqslant f(\xi) + f'(\xi)(x - \xi), \forall x < \xi.$$

于是

$$0 = \lim_{x \to -\infty} [f(x) + x] \le \lim_{x \to -\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) + 1)x] = -\infty,$$

这就是一个矛盾! 因此我们证明了 (2).

例题 0.2 设 f 在 [a,b] 上每一个点极限都存在,证明:f 在 [a,b] 有界.

笔记 极限存在必然局部有界,本题就是说局部有界可以推出在紧集上有界.在大量问题中会有一个公共现象:即局部的性质等价于在所有紧集上的性质.证明的想法就是有限覆盖.

证明 对 $\forall c \in [a,b]$, 由 $\lim_{x \to a} f(x)$ 存在可知, 存在 c 的邻域 U_c 和 M > 0, 使得

$$\sup_{x \in U_c \cap [a,b]} |f(x)| \leqslant M_c.$$

注意 $[a,b] \subset \bigcup_{c \in [a,b]} U_c$, 由有限覆盖定理得, 存在 $c_1, c_2, \cdots, c_n \in [a,b]$, 使得

$$[a,b]\subset\bigcup_{k=1}^n U_{c_k}.$$

故 $\sup_{x \in [a,b]} |f(x)| \leq \max_{1 \leq k \leq n} M_k$.

例题 0.3 设 f 是 $(a, +\infty)$ 有界连续函数, 证明对任何实数 T , 存在数列 $\lim x_n = +\infty$ 使得

$$\lim_{n\to\infty} [f(x_n+T)-f(x_n)]=0.$$

注 因为 $|f(x+T)-f(x)| \ge 0$, 所以

$$0 \leqslant \varliminf_{x \to +\infty} |f(x+T) - f(x)| \leqslant \varlimsup_{x \to +\infty} |f(x+T) - f(x)|.$$

原结论的反面只用考虑 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)|$ 即可. 若 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| = 0$,则一定存在子列 $x_n \to +\infty$,使得结论成立. 因此原结论等价于 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| = 0$.故原结论的反面就是 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| > 0$.

笔记 考虑反证法之后, 再进行定性分析 (画 f(x) 的大致走势图), 就容易找到矛盾.

证明 当 T=0 时, 显然存在这样的数列. 不妨设 T>0, 假设 $\lim_{x\to +\infty} |f(x+T)-f(x)|>0$, 则存在 $\varepsilon_0>0$, X>0, 使得

$$|f(x+T) - f(x)| \ge \varepsilon_0 > 0, \quad \forall x \ge X$$
 (1)

3

令 $g(x) \triangleq f(x+T) - f(x)$, 则若存在 $x_1, x_2 \ge X$, 使得

$$g(x_1) = f(x_1 + T) - f(x_1) \ge \varepsilon_0 > 0, \quad g(x_2) = f(x_2 + T) - f(x_2) \le -\varepsilon_0 < 0.$$

不妨设 $x_1 < x_2$,由g连续及介值定理可知,存在 $x_3 \in (x_1, x_2)$,使得

$$g(x_3) = f(x_3 + T) - f(x_3) = 0$$

与(1) 式矛盾! 故 $g(x) \triangleq f(x+T) - f(x)$ 在 $[X, +\infty)$ 上要么恒大于 ε_0 , 要么恒小于 ε_0 . 于是不妨设

$$f(x+T) - f(x) \geqslant \varepsilon_0, \quad \forall x \geqslant X.$$
 (2)

从而对 $\forall k \in \mathbb{N}$, 当 $x \geqslant X$ 时, 有 x + (k-1)T > X. 于是由(2)式可得

$$f(x+kT) - f(x+(k-1)T) \ge \varepsilon_0, \quad \forall x \ge X.$$

进而对上式求和可得,对 $\forall n \in \mathbb{N}$,都有

$$\sum_{k=1}^{n} [f(x+kT) - f(x+(k-1)T)] = f(x+nT) - f(x) \geqslant n\varepsilon_0, \quad \forall x \geqslant X.$$

任取 $x_0 \ge X$,则

$$f(x_0 + nT) - f(x_0) \ge n\varepsilon_0, \quad \forall n \in \mathbb{N}.$$

令 $n \to \infty$, 得 $\lim_{x \to \infty} f(x) = +\infty$. 这与 f 在 $(a, +\infty)$ 上有界矛盾!

命题 0.4

1. 设 $f_n \in C[a,b]$ 且关于 [a,b] 一致的有

$$\lim_{n\to\infty} f_n(x) = f(x).$$

证明: 对 $\{x_n\} \subset [a,b]$, $\lim_{n\to\infty} x_n = c$, 有

$$\lim_{n \to \infty} f_n(x_n) = f(c).$$

2. 设 $f_n(x): \mathbb{R} \to \mathbb{R}$ 满足对任何 $x_0 \in \mathbb{R}$ 和 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$, $\lim_{n \to \infty} x_n = x_0$, 都有

$$\lim_{n \to \infty} f_n(x_n) = f(x_0),$$

证明: $f \in C(\mathbb{R})$.

证明

1. 由 f_n 一致收敛到 f(x) 可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}$, 使得对 $\forall N \geq N_0$, 当 $n \geq N$ 时, 对 $\forall x \in [a,b]$, 都有

$$|f_n(x) - f_N(x)| < \varepsilon.$$

从而由上式可得

$$|f_n(x_n) - f(c)| \le |f_n(x_n) - f_N(x_n)| + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|$$

$$\le \varepsilon + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|.$$

$$\overline{\lim_{n\to\infty}} |f_n(x_n) - f(c)| \le \varepsilon + |f_N(c) - f(c)|.$$

再令 $N \to +\infty$, 由 $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in [a, b]$ 可知

$$\overline{\lim_{n\to\infty}} |f_n(x_n) - f(c)| \leqslant \varepsilon.$$

 $\diamondsuit \varepsilon \to 0^+, \ \ \overline{\lim_{n \to \infty}} |f_n(x_n) - f(c)| \leqslant 0. \ \ \ \ \ \lim_{n \to \infty} f_n(x_n) = f(c).$

2. 反证, 若 f 在 $x_0 \in \mathbb{R}$ 处不连续,则存在 $\varepsilon_0 > 0$,使得 $\forall m \in \mathbb{N}$,存在 $y_m \in (x_0 - \frac{1}{m}, x_0 + \frac{1}{m})$,使得

$$|f(y_m) - f(x_0)| \geqslant \varepsilon_0. \tag{3}$$

令条件中的 $x_n = y_m, \forall n \in \mathbb{N}$, 从而由条件可知 $\lim_{n \to \infty} |f_n(y_m) - f(y_m)| = 0, m = 1, 2, \cdots$, 故对 $\forall m \in \mathbb{N}$, 存在严格递增的数列 $n_m \to +\infty$, 使得

$$|f_{n_m}(y_m) - f(y_m)| < \frac{\varepsilon_0}{2}. (4)$$

从而由(3)(4)式可知, 对 $\forall m \in \mathbb{N}$, 都有

$$|f(y_{n_m}) - f(x_0)| \geqslant \varepsilon_0, \tag{5}$$

$$|f_{n_m}(y_{n_m}) - f(y_{n_m})| < \frac{\varepsilon_0}{2}. \tag{6}$$

因此由(5)(6)式可得,对 $\forall m \in \mathbb{N}$,都有

$$|f_{n_m}(y_{n_m}) - f(x_0)| \ge |f(y_{n_m}) - f(x_0)| - |f_{n_m}(y_{n_m}) - f(y_{n_m})| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} = \frac{\varepsilon_0}{2}.$$
 (7)

注意到 $y_m \to x_0$, 于是 $y_{n_m} \to x_0$. 从而由已知条件可知 $\lim_{m \to \infty} f_{n_m}(y_{n_m}) = f(x_0)$, 这与(7)式矛盾! 故 $f \in C(\mathbb{R})$.

例题 0.4 设 $g \in C(\mathbb{R})$ 且以 T > 0 为周期, 且有

$$f(f(x)) = -x^3 + g(x). (8)$$

证明: 不存在 $f \in C(\mathbb{R})$, 使得(8)式成立.

证明 由连续的周期函数的基本性质可知, 存在 M > 0, 使得 $|g(x)| \leq M$. 反证, 假设存在 $f \in C(\mathbb{R})$, 使得(8)式成立. 则

$$\lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} \left(-x^3 + g(x) \right) = -\infty, \tag{9}$$

$$\lim_{x \to -\infty} f(f(x)) = \lim_{x \to -\infty} \left(-x^3 + g(x) \right) = +\infty. \tag{10}$$

假设 $\lim_{x\to \infty} f(x) = A \in \mathbb{R}$, 则存在 $x_n \to +\infty$, 使得 $f(x_n) \to A$. 从而由(8)式可得

$$f(A) = \lim_{n \to \infty} f(f(x_n)) = \lim_{n \to \infty} (-x_n^3 + g(x_n)) = -\infty.$$

上式显然矛盾! 又因为 $f \in C(\mathbb{R})$, 所以 $\lim_{x \to +\infty} f(x) = +\infty$ 或 $-\infty$. 否则, 当 $x \to +\infty$ 时, f(x) 振荡 (上下极限不相等, 取 K 为上下极限和的一半即可), 则由介值定理可知, 存在 K > 0, $y_n \to +\infty$, 使得 $f(y_n) = K$, $n = 1, 2, \cdots$. 从而由(9)式可知

$$-\infty = \lim_{x \to +\infty} f(f(x)) = \lim_{n \to \infty} f(f(y_n)) = f(K).$$

显然矛盾!

(i) 若 $\lim_{x \to +\infty} f(x) = +\infty$, 则

$$+\infty = \lim_{x \to +\infty} f(x) = f(+\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$

显然矛盾!

(ii) $\not\equiv \lim_{x \to +\infty} f(x) = -\infty$, \mathbb{M}

$$f(-\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$

$$\tag{11}$$

从而对上式两边同时作用 f 可得

$$f(-\infty) = f(f(-\infty)) = \lim_{x \to \infty} [-x^3 + g(x)] = +\infty.$$
 (12)

于是(11)式与(12)式显然矛盾! 综上, $f \in C(\mathbb{R})$ 的解不存在.

例题 0.5

- 1. 设 $f \in C[0, +\infty)$ 是有界的. 若对任何 $r \in \mathbb{R}$, 都有 f(x) = r 在 $[0, +\infty)$ 只有有限个或者无根, 证明: $\lim_{x \to \infty} f(x)$ 存在.
- 2. 设 $f \in C(\mathbb{R})$,n 是一个非 0 正偶数, 使得对任何 $y \in \mathbb{R}$, 都有 $\{x \in \mathbb{R} : f(x) = y\}$ 是 n 元集. 证明: 这样的 f 不存

在.

证明

1. 反证,设 $\lim_{x \to +\infty} f(x)$ 不存在,由 f 有界,可设 $\overline{\lim}_{x \to +\infty} f(x) = A > B = \lim_{x \to +\infty} f(x)$. 任取 $C \in (B, A)$,则由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_1 \ge 0$,使得 $f(x_1) > C$. 又由 $\lim_{x \to +\infty} f(x) = B < C$ 可知,存在 $x_2 > x_1 + 1$,使得 $f(x_2) < C$. 于是再由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_3 > x_2 + 1$,使得 $f(x_3) > C$.又由 $\lim_{x \to +\infty} f(x) = B < C$ 可知,存在 $x_4 > x_3 + 1$,使得 $f(x_4) < C$.依此类推,可得递增数列 $\{x_n\}$,使得

$$x_{n+1} > x_n + 1$$
, $f(x_{2n-1}) > C$, $f(x_{2n}) < C$, $n = 1, 2, \cdots$.

从而由 $f \in C[0, +\infty)$ 及介值定理可得, 对 $\forall n \in \mathbb{N}$, 存在 $y_n \in (x_{2n-1}, x_{2n})$, 使得 $f(y_n) = C$, 矛盾!

2. 设 $x_1 < x_2 < \cdots < x_n$ 是 f 的所有零点,记 $x_0 = -\infty, x_{n+1} = +\infty$,则由 f 的连续性及介值定理可知,f 在 (x_{i-1}, x_i) 上不变号.这里共有 n+1 个区间,现在考虑 (x_{i-1}, x_i) , $i = 2, 3, \cdots, n$,这 n-1 个区间.于是由抽屉原理可知,这 n-1 个区间中必存在 $\frac{n}{2}$ 区间,使 f 在这 $\frac{n}{2}$ 个区间内都同号.

不妨设 f 在这 $\frac{n}{2}$ 个区间内恒大于 0, 记 f 在 $[x_{i-1},x_i]$ 上的最大值记为 $f(m_i) riangleq M_i > 0$, 其中 $m_i \in (x_{i-1},x_i)$, $i = 2,3,\cdots,n$. 由介值定理知, 至少存在 $c_i \in (x_{i-1},m_i)$, $c_i' \in (m_i,x_i)$, 使得

$$f(c_i) = f(c'_i) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0, i = 2, 3, \dots, n.$$

注意到在 (x_0,x_1) , (x_n,x_{n+1}) 上 f 必不同号. 否则, 不妨设在 (x_0,x_1) , (x_n,x_{n+1}) 上 f 恒大于 0, 则由 $f \in C(\mathbb{R})$ 可知, 存在 M>0, 使得 |f(x)| < M, $\forall x \in [x_1,x_{n+1}]$. 从而 $f(x) \geqslant -M$, $\forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}$, f(x) = y 都有根矛盾!

不妨设 f 在 (x_0, x_1) 上恒小于 0, 在 (x_n, x_{n+1}) 上恒大于 0, 则 f 在 (x_n, x_{n+1}) 上无上界. 否则, 存在 $K > \max_{2 \le i \le n} M_i > 0$, 使得 f(x) < K, $\forall x \in (x_n, x_{n+1})$. 又因为

$$f(x) < 0 < K, \forall x \in (x_0, x_1), \quad f(x) \le \max_{2 \le i \le n} M_i < K, \forall x \in (x_1, x_n).$$

所以 $f(x) < K, \forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}, f(x) = y$ 都有根矛盾!

又 $f(x_n) = 0$, 故至少存在一个 $c \in (x_n, x_{n+1})$, 使得 $f(c) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0$. 综上, 至少有 n+1 个点使得

$$f(x) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0. \ \dot{\mathbf{x}} = \{x \in \mathbb{R} : f(x) = \frac{1}{2} \min_{2 \le i \le n} M_i\} \ \rlap{\rlap{/}{\cancel{=}}} \ n \ 元集矛盾!$$

例题 0.6 设 a,b>1 且 $f:\mathbb{R}\to\mathbb{R}$ 在 x=0 邻域有界. 若

$$f(ax) = b f(x), \quad \forall x \in \mathbb{R}$$

证明:f 在 x = 0 连续.

证明 注意到

$$f(0) = b f(0) \Rightarrow f(0) = 0.$$

由条件可得

$$f(ax) = bf(x) \Rightarrow f(x) = \frac{f(ax)}{b} = \frac{f(a^2x)}{b^2} = \dots = \frac{f(a^nx)}{b^n}, \forall n \in \mathbb{N}.$$
 (13)

因为 f 在 x = 0 邻域有界, 所以存在 $\delta > 0$, 使得

$$|f(x)| \le M, \forall x \in (-\delta, \delta). \tag{14}$$

从而对 $\forall \varepsilon > 0$, 取 $N \in \mathbb{N}$, 使得

$$\frac{M}{h^N} < \varepsilon. ag{15}$$

于是当 $x \in \left(-\frac{\delta}{a^N}, \frac{\delta}{a^N}\right)$ 时, 结合(13)(14)(15)式, 我们有

$$|f(x)| = \left| \frac{f(a^N x)}{b^N} \right| \leqslant \frac{M}{b^N} < \varepsilon.$$

故 $\lim_{x\to 0} f(x) = f(0) = 0$.

例题 0.7 设 $f \in C(\mathbb{R})$ 满足 f(x), $f(x^2)$ 都是周期函数, 证明: f 为常值函数.

证明 由连续周期函数必一致连续可知,f(x), $f(x^2)$ 在 \mathbb{R} 上一致连续. 于是对任意满足 $\lim_{n\to\infty}(x'_n-x''_n)=0$ 的数列 $\{x'_n\}$, $\{x''_n\}$, 都有

$$|f(x'_n) - f(x''_n)|, |f((x'_n)^2) - f((x''_n)^2)| \to 0, \quad n \to \infty.$$
 (16)

设 f(x) 的周期为 T > 0, 则对 $\forall c \in \mathbb{R}$, 取 $x'_n = \sqrt{nT + c}$, $x''_n = \sqrt{nT}$, 显然 $x'_n - x''_n = \frac{c}{\sqrt{nT + c} + \sqrt{nT}} \rightarrow 0$. 从而由 (16) 式可得

$$|f((x_n')^2) - f((x_n'')^2)| = f(nT + c) - f(nT) = f(c) - f(0) \to 0.$$

故 $f(c) = f(0), \forall c \in \mathbb{R}$. 故 f 为常值函数.

例题 0.8 计算函数方程 $f(\log_2 x) = f(\log_3 x) + \log_5 x$ 所有 \mathbb{R} 上的连续解.

→ 筆记 注意到

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5}, x > 0.$$

为了凑裂项的形式, 我们待定

$$f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}, n \in \mathbb{N}.$$

注意到我们有两种选择

$$\frac{\ln a_n}{\ln 2} = \frac{\ln a_{n+1}}{\ln 3}, \quad \frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}.$$

前者公比 $\frac{\ln 3}{\ln 2} > 1$,后者公比 $\frac{\ln 2}{\ln 3} < 1$,为了求和方便我们选取后者.

证明 设 $f \in C(\mathbb{R})$, 对 $\forall x \in \mathbb{R}$, 取 $a_1 = x, \ln a_n = \left(\frac{\ln 2}{\ln 3}\right)^{n-1} \cdot \ln x, n \in \mathbb{N}$. 则 $\lim_{n \to \infty} \ln a_n = 0$. 此时有

$$\frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}, \forall n \in \mathbb{N}.$$

于是由条件可得

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5} \Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}$$
$$\Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_{n+1}}{\ln 2}\right) + \frac{\ln a_n}{\ln 5}, n = 1, 2, \dots$$

因此

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = \sum_{n=1}^{\infty} \frac{\ln a_n}{\ln 5} = \frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}}.$$

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = f\left(\frac{\ln a_1}{\ln 2}\right) - \lim_{n \to \infty} f\left(\frac{\ln a_{n+1}}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 2}\right) - f(0).$$

故

$$\frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}} = f\left(\frac{\ln x}{\ln 2}\right) - f(0) \stackrel{y = \frac{\ln x}{\ln 2}}{\Rightarrow} f(y) = f(0) + \frac{y \ln 2 \ln 3}{\ln 5 \ln \frac{3}{2}}.$$

例题 0.9 设 $n \in \mathbb{N}, f \in \mathbb{C}^{n+2}(\mathbb{R})$ 使得存在 $\theta \in \mathbb{R}$ 满足对任何 $x, h \in \mathbb{R}$ 都有

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \dots + \frac{f^{(n-1)}(x)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(x+\theta h)}{n!}h^n$$

证明: f 是不超过 n+1 次的多项式.

证明 对 $\forall x, h \in \mathbb{R}$, 由 Taylor 公式可知

$$f^{(n)}(x+\theta h) = f^{(n)}(x) + f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2.$$

再结合条件可得

$$f(x+h) = \sum_{j=0}^{n-1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n)}(x+\theta h)}{n!} h^n$$

$$= \sum_{j=0}^{n} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2}{n!} h^n,$$
(17)

由 Taylor 公式可知

$$f(x+h) = \sum_{i=0}^{n+1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+2)}(\eta)}{(n+2)!} h^{n+2}.$$
 (18)

比较(17)式和(18)式得

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = \left[\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} - \frac{f^{(n+2)}(\eta)}{(n+2)!}\right] h. \tag{19}$$

当 $\theta = \frac{1}{n+1}$ 时, 我们有

$$\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} = \frac{f^{(n+2)}(\eta)}{(n+2)!}$$

对上式令 $h \to 0$, 则 $\xi, \eta \to x$, 故此时就有

$$\frac{f^{(n+2)}(x)}{2n!(n+1)^2} = \frac{f^{(n+2)}(x)}{(n+2)!} \Rightarrow f^{(n+2)}(x) = 0.$$

当 $\theta \neq \frac{1}{n+1}$ 时, 对(19)式令 $h \to 0$, 则 $\xi, \eta \to x$, 故此时就有

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = 0 \Rightarrow f^{(n+1)}(x) = 0.$$

因此, 无论如何都有 f 是不超过 n+1 次的多项式.

例题 0.10

1. 设

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad n = 1, 2, \dots$$
 (20)

- 证明多项式 P_n 的全部根都是实数且分布在 (-1,1). 2. 设 $g(x) = e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$, 证明 g 是只有实根的多项式.
- 笔记 本题第1问叫做 Legendre(勒让德) 多项式, 第2问叫做 Hermite 多项式. 第2问用 Rolle 定理时注意无穷远 点也会提供零点.

证明

- 1. 显然 P_n 是 n 次多项式, 且 ± 1 是 $\frac{\mathrm{d}^k}{\mathrm{d} x^k} (x^2 1)^n$ 的 n k 重根 $(0 \le k \le n)$. 由 Rolle 定理可知, $\frac{\mathrm{d}}{\mathrm{d} x} (x^2 1)^n$ 在 (-1,1) 有一个实根. 于是再由 Rolle 定理可知, $\frac{d^2}{dx^2}(x^2-1)^n$ 在 (-1,1) 有两个不同实根. 反复利用 Rolle 定理可 得, $\frac{d^n}{dx^n}(x^2-1)^n$ 在 (-1,1) 有 n 个不同实根. 而 n 次多项式有且仅有 n 个根, 故 P_n 的全部根都是实数且分布
- 2. 设 $\frac{\mathrm{d}^k}{\mathrm{d} v^k} (e^{-x^2}) = P_k(x) e^{-x^2}, P_k$ 是 k 次多项式, $k \in \mathbb{N}$, 显然 $P_0(x) = 1$, 于是

$$\frac{d^{k+1}}{dx^{k+1}}(e^{-x^2}) = [P'_k(x) - 2xP_k(x)]e^{-x^2}.$$

令 $P_{k+1}(x) = P_k'(x) - 2xP_k(x)$, 则由 P_k 是 k 次多项式可知 $P_{k+1}(x)$ 是 k+1 次多项式. 故由数学归纳法可知 $\frac{\mathrm{d}^n}{\mathrm{d}x^n}(e^{-x^2}) = P_n(x)e^{-x^2}, \quad P_n \in \mathbb{R}[x], \quad n \in \mathbb{N}.$

因此 $g(x) = e^{-x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2}) = P_n(x)$ 是 n 次多项式 $(n \in \mathbb{N})$. 显然 $P_1(x) = -2x$ 只有一个实根 x = 0. 设 P_k 是有 k 个不同实根的多项式, 这 k 个根为

$$x_1 < x_2 < \cdots < x_k$$
.

从而这 k 个根也是 $P_k(x)e^{-x^2}$ 的根. 由 Rolle 定理可知

$$P_{k+1}(x) = e^{-x^2} \frac{d^k}{dx^k} (e^{-x^2}) = e^{-x^2} \frac{d}{dx} (P_k(x)e^{-x^2})$$

在 $(x_{j-1},x_j),j=2,3,\cdots,k$ 有实根. 而 $\lim_{x\to\pm\infty}P_k(x)e^{-x^2}=0$, 故由加强的 Rolle 中值定理可知 $P_{k+1}(x)$ 在 $(-\infty,x_1)$, $(x_k,+\infty)$ 上还各有一个实根. 因此 $P_{k+1}(x)$ 有 k+1 个根. 故由数学归纳法可知 $P_n(x)$ 有 n 个实根 $(n \in \mathbb{N})$. 又因为 $g(x) = P_n(x)$ 是 n 次多项式, 而 n 次多项式有且仅有 n 个根, 所以 $g(x) = P_n(x)$ 是只有实根的 多项式.

例题 **0.11** 设 f 是直线上的非常值连续周期函数. 若 $g \in C(\mathbb{R})$ 且 $\overline{\lim_{x \to +\infty}} \frac{|g(x)|}{x} = +\infty$, 证明: $f \circ g$ 不是周期函数.

笔记 $\overline{\lim}$ $|g(x+\delta)-g(x)|=+\infty$. 的证明类似函数 Stolz 定理的证明. 实际上就是利用了上极限版的函数 Stolz 定 理, 只不过我们之前并没有写出这个定理.

证明 若 $f \circ g$ 是周期函数,则由连续周期函数必一致连续可知 $f \circ g$ 在 \mathbb{R} 上一致连续. 设 f 的周期为 T > 0, 记 $a \triangleq \max f - \min f > 0$, 则存在 $\delta > 0$, 使

$$|f(g(x)) - f(g(y))| < a, \forall |x - y| \le \delta.$$
(21)

先证 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| = +\infty$. 若 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| \neq +\infty$, 则存在 A > 0, 使 $|g(x+\delta) - g(x)| \leqslant A$, $\forall x \geqslant 0$. 对 $x \in [n\delta, (n+1)\delta), n \in \mathbb{N}$, 我们有

$$\left|\frac{g(x)}{x}\right| \leqslant \frac{|g(x-n\delta)|}{n\delta} + \sum_{k=0}^{n-1} \left|\frac{g(x-k\delta) - g(x-(k+1)\delta)}{n\delta}\right| \leqslant \frac{1}{n\delta} \sup_{x \in [0,\delta]} |g(x)| + \frac{A}{\delta}.$$

故 $\overline{\lim}_{x \to +\infty} \left| \frac{g(x)}{x} \right| \leqslant \frac{A}{\delta}$ 矛盾! 因此 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| = +\infty$. 于是存在 $x_0 \in \mathbb{R}$, 使得 $|g(x_0+\delta) - g(x_0)| \geqslant T$. 由介值 定理可知, 存在 $s,t \in [x_0,x_0+\delta]$, 使得 $f(g(s)) = \max f$, $f(g(t)) = \min f$. 从而由 (21) 式可知

$$a = |f(g(s)) - f(g(t))| < a$$

矛盾! 故 $f \circ g$ 不是周期函数 ($f \circ g$ 甚至不是一致连续函数).

例题 0.12 设 F(x) 是 $[0,+\infty)$ 上的单调递减函数, 且

$$\lim_{x \to +\infty} F(x) = 0, \quad \lim_{n \to +\infty} \int_0^{+\infty} F(t) \sin \frac{t}{n} dt = 0.$$
 (22)

证明:

(i)

$$\lim_{x \to +\infty} x F(x) = 0; \tag{23}$$

(ii)

$$\lim_{x \to 0} \int_0^{+\infty} F(t) \sin(xt) dt = 0. \tag{24}$$

证明

(i) 由(22)知 F 非负. 由 A-D 判别法知本题涉及的积分都收敛. 注意到

$$\int_0^\infty F(t)\sin(tx)dt = \frac{1}{x}\int_0^\infty F\left(\frac{u}{x}\right)\sin u du = \frac{1}{x}\sum_{k=0}^\infty \int_{2k\pi}^{(2k+2)\pi} F\left(\frac{u}{x}\right)\sin u du$$

$$\begin{split} &=\frac{1}{x}\sum_{k=0}^{\infty}\left[\int_{2k\pi}^{(2k+1)\pi}F\left(\frac{u}{x}\right)\sin u\mathrm{d}u+\int_{(2k+1)\pi}^{(2k+2)\pi}F\left(\frac{u}{x}\right)\sin u\mathrm{d}u\right]\\ &=\frac{1}{x}\sum_{k=0}^{\infty}\left[\int_{2k\pi}^{(2k+1)\pi}F\left(\frac{u}{x}\right)\sin u\mathrm{d}u-\int_{2k\pi}^{(2k+1)\pi}F\left(\frac{u+\pi}{x}\right)\sin u\mathrm{d}u\right]\\ &=\frac{1}{x}\sum_{k=0}^{\infty}\int_{2k\pi}^{(2k+1)\pi}\left[F\left(\frac{u}{x}\right)-F\left(\frac{u+\pi}{x}\right)\right]\sin u\mathrm{d}u\\ &\geqslant\frac{1}{x}\int_{0}^{\pi}\left[F\left(\frac{u}{x}\right)-F\left(\frac{u+\pi}{x}\right)\right]\sin u\mathrm{d}u=\frac{1}{x}\int_{0}^{2\pi}F\left(\frac{u}{x}\right)\sin u\mathrm{d}u\geqslant0, \end{split}$$

以及

$$\int_0^\infty F(t)\sin(tx)dt = \frac{1}{x}\int_0^\infty F\left(\frac{u}{x}\right)\sin u du = \frac{1}{x}\int_0^\pi F\left(\frac{u}{x}\right)\sin u du + \frac{1}{x}\sum_{k=0}^\infty \int_{(2k+1)\pi}^{(2k+3)\pi} F\left(\frac{u}{x}\right)\sin u du$$

$$= \frac{1}{x}\int_0^\pi F\left(\frac{u}{x}\right)\sin u du + \frac{1}{x}\sum_{k=0}^\infty \left[\int_{(2k+1)\pi}^{(2k+2)\pi} F\left(\frac{u}{x}\right)\sin u du + \int_{(2k+2)\pi}^{(2k+3)\pi} F\left(\frac{u}{x}\right)\sin u du\right]$$

$$= \frac{1}{x}\int_0^\pi F\left(\frac{u}{x}\right)\sin u du + \frac{1}{x}\sum_{k=0}^\infty \left[\int_{(2k+1)\pi}^{(2k+2)\pi} F\left(\frac{u}{x}\right)\sin u du - \int_{(2k+1)\pi}^{(2k+2)\pi} F\left(\frac{u+\pi}{x}\right)\sin u du\right]$$

$$= \frac{1}{x}\int_0^\pi F\left(\frac{u}{x}\right)\sin u du + \frac{1}{x}\sum_{k=0}^\infty \int_{(2k+1)\pi}^{(2k+2)\pi} \left[F\left(\frac{u}{x}\right) - F\left(\frac{u+\pi}{x}\right)\right]\sin u du$$

$$\leqslant \frac{1}{x}\int_0^\pi F\left(\frac{u}{x}\right)\sin u du.$$

从而

$$0 \leqslant \int_0^{2\pi} \frac{F\left(\frac{t}{x}\right)\sin t}{x} dt \leqslant \int_0^{\infty} F(t)\sin(tx)dt = \int_0^{\infty} \frac{F\left(\frac{t}{x}\right)\sin t}{x} dt \leqslant \int_0^{\pi} \frac{F\left(\frac{t}{x}\right)\sin t}{x} dt. \tag{25}$$

上式取 $x = \frac{1}{n}$ 并结合

$$\int_{0}^{+\infty} F(t) \sin \frac{t}{n} dt \ge n \int_{0}^{2\pi} F(nu) \sin u du \xrightarrow{\square \square \square} n \int_{0}^{\pi} [F(nu) - F(2\pi n - nu)] \sin u du$$

$$\ge n \int_{0}^{\frac{\pi}{2}} [F(nu) - F(2\pi n - nu)] \sin u du \ge n \int_{0}^{\frac{\pi}{2}} \left[F\left(\frac{\pi n}{2}\right) - F\left(\frac{3\pi n}{2}\right) \right] \sin u du$$

$$= n \left[F\left(\frac{\pi n}{2}\right) - F\left(\frac{3\pi n}{2}\right) \right] \ge 0,$$

和(22)知

$$\lim_{n \to +\infty} n \left[F\left(\frac{\pi n}{2}\right) - F\left(\frac{3\pi n}{2}\right) \right] = 0.$$

现在对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$ 使得对任何 $n \geqslant N$ 都有

$$n\left[F\left(\frac{\pi n}{2}\right) - F\left(\frac{3\pi n}{2}\right)\right] \leqslant \varepsilon. \tag{26}$$

当正整数 k 充分大, 我们考虑

$$b_n \triangleq k3^{n-1} \left[F\left(\frac{\pi k3^{n-1}}{2}\right) - F\left(\frac{\pi k3^n}{2}\right) \right] \leqslant \varepsilon,$$

则利用 $\lim_{x \to +\infty} F(x) = 0$ 和(26)得

$$0 \leqslant kF\left(\frac{k\pi}{2}\right) = k\sum_{n=1}^{\infty} \left[F\left(\frac{\pi k3^{n-1}}{2}\right) - F\left(\frac{\pi k3^n}{2}\right) \right] = \sum_{n=1}^{\infty} \frac{b_n}{3^{n-1}} \leqslant \varepsilon \sum_{n=1}^{\infty} \frac{1}{3^{n-1}} = \frac{3}{2}\varepsilon.$$

现在我们有 $\lim_{k\to +\infty} kF\left(\frac{k\pi}{2}\right)=0$. 对 $x\in [0,+\infty)$, 存在唯一的 $k\in\mathbb{N}$ 使得 $x\in\left[\frac{k\pi}{2},\frac{k+1}{2}\pi\right)$, 于是

$$0 \leqslant xF(x) \leqslant \frac{(k+1)\pi}{2}F\left(\frac{k\pi}{2}\right) \to 0, k \to +\infty,$$

因此我们证明了(23).

(ii) 我们由(25)知

$$\int_{0}^{\infty} F(t)\sin(tx)dt \ge 0 \Rightarrow \lim_{x \to 0^{+}} \int_{0}^{\infty} F(t)\sin(tx)dt \ge 0,$$
(27)

以及对任何 $\eta > 0$, 我们有

$$\begin{split} \overline{\lim}_{x \to 0^+} \int_0^\infty F(t) \sin(tx) \mathrm{d}t &\leqslant \overline{\lim}_{x \to 0^+} \int_0^\pi \frac{t}{x} F\left(\frac{t}{x}\right) \cdot \frac{\sin t}{t} \mathrm{d}t \\ &\leqslant \overline{\lim}_{x \to 0^+} \int_0^\eta \frac{t}{x} F\left(\frac{t}{x}\right) \cdot \frac{\sin t}{t} \mathrm{d}t + \overline{\lim}_{x \to 0^+} \int_\eta^\pi \frac{t}{x} F\left(\frac{t}{x}\right) \cdot \frac{\sin t}{t} \mathrm{d}t \\ &\leqslant \sup_{y \in [0, +\infty)} y F(y) \cdot \int_0^\eta \frac{\sin t}{t} \mathrm{d}t + \overline{\lim}_{x \to 0^+} \sup_{y \in \left[\frac{\eta}{x}, \frac{\pi}{x}\right]} y F(y) \cdot \int_0^\pi \frac{\sin t}{t} \mathrm{d}t \\ &= \sup_{y \in [0, +\infty)} y F(y) \cdot \int_0^\eta \frac{\sin t}{t} \mathrm{d}t, \end{split}$$

这里最后一个等号用到了(23). 由 n 任意性得

$$\overline{\lim}_{x \to 0^+} \int_0^\infty F(t) \sin(tx) dt \leqslant 0.$$

结合(27)即得(24).

例题 0.13 设 f(x) 是 $(-\infty, +\infty)$ 上具有连续导数的非负函数,且存在 M>0 使得对任意的 $x,y\in (-\infty, +\infty)$,有

$$|f'(x) - f'(y)| \leqslant M|x - y|.$$

证明: 对于任意实数 x, 恒有 $(f'(x))^2 \leq 2M f(x)$.

证明 对 $\forall x \in \mathbb{R}$, 固定 x. 由 $f \ge 0$ 可得, 对 $\forall h > 0$, 有

$$\int_{x-h}^{x} [f'(x) - f'(t)] dt = f'(x)h - [f(x) - f(x-h)] \geqslant f'(x)h - f(x).$$

又由条件可得,对 $\forall h > 0$,有

$$\int_{x-h}^{x} |f'(x) - f'(t)| dt \leqslant M \int_{x-h}^{x} |x - t| dt = \frac{M}{2} h^{2}.$$

于是对 $\forall h > 0$, 有

$$f'(x)h - f(x) \le \int_{x-h}^{x} [f'(x) - f'(t)] dt \le \int_{x-h}^{x} |f'(x) - f'(t)| dt \le \frac{M}{2} h^2.$$

故对 $\forall h > 0$, 都有

$$\frac{M}{2}h^2 - f'(x)h + f(x) \geqslant 0.$$

因此

$$\Delta = (f'(x))^2 - 2M f(x) \leqslant 0 \iff (f'(x))^2 \leqslant 2M f(x).$$

再由 x 的任意性可知结论成立.