Efficient estimation under non-monotone missingness by design

August 15, 2023

Introduction

Main Problem

3 Discussion

Projection: High level concept

- Let $\hat{\theta}_0$ be an unbiased estimator of θ .
- Let $\Lambda = \left\{\hat{b}; E(\hat{b}) = 0\right\}$ be a space of all unbiased estimators of zero.
- We consider the following class of unbiased estimators of θ :

$$\hat{\theta}_b = \hat{\theta}_0 - \hat{b} \tag{1}$$

where $\hat{b} \in \Lambda$.

• The optimal estimator among the class in (1) is

$$\hat{\theta}_{\mathrm{opt}} = \hat{\theta}_{0} - \hat{b}^{*}$$

where \hat{b}^* satisfies

- $\mathbf{0} \ \hat{b}^* \in \Lambda$
- ② $Cov(\hat{\theta}_0 \hat{b}^*, \hat{b}) = 0$ for all $\hat{b} \in \Lambda$.
- The \hat{b}^* satisfying the above two conditions is often called the projection of $\hat{\theta}_0$ onto Λ and is denoted as $\hat{b}^* = \Pi(\hat{\theta}_0 \mid \Lambda)$.

Justification

We wish to prove

$$V\left(\hat{\theta}_0 - \hat{b}\right) \ge V\left(\hat{\theta}_0 - \hat{b}^*\right). \tag{2}$$

Note that

$$V\left(\hat{\theta}_{0} - \hat{b}\right) = V\left(\hat{\theta}_{0} - \hat{b}^{*}\right) + V\left(\hat{b} - \hat{b}^{*}\right) + 2Cov\left(\hat{\theta}_{0} - \hat{b}^{*}, \hat{b} - \hat{b}^{*}\right)$$

and the covariance term is zero by the definition of \hat{b}^* .

• Thus, (2) is proved.

Basic Setup

- $U = \{1, ..., N\}$: finite population
- Let $(x_i, y_i, \pi_i) \sim F$ for some F (unknown) for $i \in U$.
- Generate $I_i \sim \pi_i$ independently for $i \in U$
- Observe (π_i, y_i) only when $I_i = 1$
- *x_i* observed throughout the finite population.
- We are interested in estimating $\theta = E(Y)$, for example, from the sample.
- The Horvitz-Thompson estimator $\hat{\theta}_{\mathrm{HT}} = N^{-1} \sum_{i=1}^{N} I_i w_i y_i$ is design unbiased for θ , where $w_i = \pi_i^{-1}$, but it is not necessarily efficient.

Class of estimators

We consider the following class of estimators

$$\hat{\theta}_b = \hat{\theta}_{HT} - \frac{1}{N} \sum_{i=1}^N \left\{ \frac{I_i}{\pi_i} - 1 \right\} b(x_i)$$
 (3)

where $b \in \mathcal{L}^2 = \{b(x); \int b(x)^2 dF(x) < \infty\}.$

- Note that $\hat{\theta}_b$ is unbiased for θ for all $b \in \mathcal{L}^2$. Thus, $\{\hat{\theta}_b; b \in \mathcal{L}^2\}$ is a class of unbiased estimators of θ .
- Goal: Find the optimal $b^* \in \mathcal{L}^2$ among the class in (3).

Theorem'

• The variance of $\hat{\theta}_b$ is

$$V\left(\hat{\theta}_{b}\right) = V\left(N^{-1}\sum_{i=1}^{N}y_{i}\right) + E\left\{\frac{1}{N^{2}}\sum_{i=1}^{N}\left(w_{i}-1\right)\left(y_{i}-b(x_{i})\right)^{2}\right\}$$

where $w_i = \pi_i^{-1}$.

• Result: The optimal b^* minimizing the variance of $\hat{\theta}_b$ is

$$b^*(x) = \frac{E\{(W-1)Y \mid x\}}{E\{(W-1) \mid x\}}.$$
 (4)

• $\hat{\theta}_{b^*}$ is the projection of $\hat{\theta}_{\mathrm{HT}}$ onto $\Lambda = \left\{ N^{-1} \sum_{i=1}^{N} \left(\pi_i^{-1} I_i - 1 \right) b(x_i) \right\}.$

Graphical illustration in \mathbb{R}^3 : $b^* = \Pi\left(\hat{ heta}_0 \mid \Lambda ight)$

Check

We can check

$$Cov\left\{\hat{\theta}_{\mathrm{HT}}-N^{-1}\sum_{i=1}^{N}\left(\pi_{i}^{-1}I_{i}-1\right)b^{*}(x_{i}),N^{-1}\sum_{i=1}^{N}\left(\pi_{i}^{-1}I_{i}-1\right)b(x_{i})\right\}$$

is zero for all b(x).

• The covariance term can be written as

(Cov) =
$$N^{-2}E\left\{\sum_{i=1}^{N}(w_i-1)(y_i-b^*(x_i))b(x_i)\right\}$$

= $N^{-2}E\left[\sum_{i=1}^{N}E\left\{(w_i-1)y_i\mid x_i\right\}b(x_i)\right]$
 $-N^{-2}E\left[E\left\{(w_i-1)\mid x_i\right\}b^*(x_i)b(x_i)\right]$
= 0

for $b^*(x)$ in (4).

Remark

If the sampling design is non-informative, then we have

$$E(W_iY_i\mid x_i)=E(W_i\mid x_i)E(Y_i\mid x_i)$$

and

$$b^*(x) = \frac{E\{(W-1)Y \mid x\}}{E\{(W-1) \mid x\}} = E(Y \mid x)$$

• The optimality of regression estimator is based on the assumption that the sampling mechanism is non-informative.

Introduction

2 Main Problem

3 Discussion

Motivating Toy Example (3 items)

Table: Case 1: Monotone missingness

Sample	X	Y_1	<i>Y</i> ₂	R_1	R_2
A_{11}	√	√	√	1	1
A_{10}	✓	✓		1	0
A_{00}	✓			0	0

Table: Case 2: Non-monotone missingness

Sample	X	Y_1	<i>Y</i> ₂	R_1	R_2
A_{11}	√	√	√	1	1
A_{10}	✓	✓		1	0
A_{01}	✓		✓	0	1
A_{00}	✓			0	0

Note: R_t is the second-phase sampling indicator function of Y_t .

Basic setup

- $A = A_{11} \cup A_{10} \cup A_{01} \cup A_{00}$: index set of the original sample (representative of the population). We can view A as the index set of the first-phase sample.
- For simplicity, we will assume that A is selected by SRS.
- Define $L = (X, Y_1, Y_2)$ and

$$\pi_{ab}(L) = P(R_1 = a, R_2 = b \mid L).$$

- We assume for now that $\pi_{ab}(L)$ is known.
- We are interested in estimating $\theta = E\{g(L)\}$ from the observed data.
- A direct HT estimator of θ is

$$\hat{\theta}_{\mathrm{HT}} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}R_{2i}}{\pi_{11}(L_i)} g(L_i).$$

Case 1: Efficient estimation under monotone missingness

- Under monotone missingness, we have three-phase sampling structure:
 - **1** Baseline sample: $A_{11} \cup A_{10} \cup A_{00}$, observe x
 - ② $R_1 = 1$ sample: $A_{11} \cup A_{10}$, observe (x, y_1)
 - **3** $R_2 = 1$ sample: A_{11} , observe (x, y_1, y_2)
- Conditional inclusion probability is non-informative sampling
 - **1** Baseline sample: $\pi_i = n/N$
 - **2** $R_1 = 1$ sample: $P(R_1 = 1 \mid X) := \pi_{1+}(X)$
 - **3** $R_2 = 1$ sample: $P(R_2 = 1 \mid R_1 = 1, X, Y_1) := \pi_{1|1}(X, Y_1)$

Class of estimators

Consider

$$\hat{\theta}_{b} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}R_{2i}}{\pi_{11}(x_{i}, y_{1i})} g(x_{i}, y_{1i}, y_{2i}) - \frac{1}{n} \sum_{i=1}^{n} \left(\frac{R_{1i}}{\pi_{1+}(x_{i})} - 1 \right) b_{1}(x_{i})$$

$$- \frac{1}{n} \sum_{i=1}^{n} \left\{ \left(\frac{R_{2i}}{\pi_{1|1}(x_{i}, y_{1i})} - 1 \right) \frac{R_{1i}}{\pi_{1+}(x_{i})} b_{2}(x_{i}, y_{1i}) \right\}$$

where $g_i = g(x_i, y_{1i}, y_{2i})$.

• Note that $\hat{\theta}_b$ is unbiased for $\theta = E\{g(X, Y_1, Y_2)\}$ regardless of the choice of b_1 and b_2 .

Main Result (under monotone missingness)

• Using the projection result, the efficient estimator of $\theta = E\{g(X, Y_1, Y_2)\}\$ is

$$\hat{\theta}_{\text{eff}} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}R_{2i}}{\pi_{11}(X_{i}, Y_{1i})} g(X_{i}, Y_{1i}, Y_{2i})$$

$$- \frac{1}{n} \sum_{i=1}^{n} \left(\frac{R_{1i}}{\pi_{1+}(X_{i})} - 1 \right) b_{1}^{*}(X_{i})$$

$$- \frac{1}{n} \sum_{i=1}^{n} \left(\frac{R_{1i}R_{2i}}{\pi_{11}(X_{i}, Y_{1i})} - \frac{R_{1i}}{\pi_{1+}(X_{i})} \right) b_{2}^{*}(X_{i}, Y_{1i}),$$
(5)

where

$$b_1^*(X) = E\{g(X, Y_1, Y_2) \mid X\}$$

$$b_2^*(X, Y_1) = E\{g(X, Y_1, Y_2) \mid X, Y_1\}.$$

• We need a working outcome model to compute $b_1^*(x)$ and $b_2^*(x,y_1)$.

Remark

We can express

$$\hat{\theta}_{\text{eff}} = \frac{1}{n} \sum_{i=1}^{n} b_{1}^{*}(X_{i})$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}}{\pi_{1+}(X_{i})} \left\{ b_{2}^{*}(X_{i}, Y_{1i}) - b_{1}^{*}(X_{i}) \right\}$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}R_{2i}}{\pi_{11}(X_{i}, Y_{1i})} \left\{ g(X_{i}, Y_{1i}, Y_{2i}) - b_{2}^{*}(X_{i}, Y_{1i}) \right\},$$
(6)

where

$$b_1^*(X) = E\{g(X, Y_1, Y_2) \mid X\}$$

 $b_2^*(X, Y_1) = E\{g(X, Y_1, Y_2) \mid X, Y_1\}.$

• This is the usual three-phase (sampling) regression estimator.

Case 2: Non-monotone missingness

- Idea: Let's consider a regression-type estimator in (6) in the context of nonmonotone missingness.
- May use

$$\hat{\theta}_{a,b} = \frac{1}{n} \sum_{i=1}^{n} E(g_i \mid X_i)
+ \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}}{\pi_{1+}(X_i)} \left\{ b_2(X_i, Y_{1i}) - E(g_i \mid X_i) \right\}
+ \frac{1}{n} \sum_{i=1}^{n} \frac{R_{2i}}{\pi_{2+}(X_i)} \left\{ a_2(X_i, Y_{2i}) - E(g_i \mid X_i) \right\}
+ \frac{1}{n} \sum_{i=1}^{n} \frac{R_{1i}R_{2i}}{\pi_{11}(X_i)} \left\{ g_i - b_2(X_i, Y_{1i}) - a_2(X_i, Y_{2i}) + E(g_i \mid X_i) \right\}.$$
(7)

- Note that (7) is design-unbiased as long as the selection probabilities are correct. (We may assume that the sampling mechanism depends only on X.)
- Best choice of $a_2(\cdot)$ and $b_2(\cdot)$ will improve the efficiency.
- One choice is

$$a_2^*(X, Y_2) = E(g \mid X, Y_2)$$
 (8)

and

$$b_2^*(X, Y_1) = E(g \mid X, Y_1)$$
 (9)

under the outcome regression model.

Introduction

Main Problem

3 Discussion

Research Questions (to be solved by Caleb)

- **①** Does the choice in (8) and (9) minimize the variance among the class of unbiased estimators $\hat{\theta}_{a,b}$ in (7)?
 - If yes, prove it.
 - If no, find out the optimal choice.
- Once the optimal estimator is found in the class in (7), can we construct mass imputation to implement the optimal estimation?
- **3** How can we generalize the result to multiple times (T > 2) and apply it to NRI?