Numeri complessi

1. Prime definizioni. Operazioni

Forma algebrica

Il numero complesso z si può rappresentare nella forma algebrica

$$z = a + ib$$

dove a e b sono numeri reali e i è detta unità immaginaria,

a = Re(z) è detta parte reale

b = Im(z) è detto coefficiente della parte immaginaria.

La rappresentazione di z nel piano cartesiano è il punto P(a;b), il piano viene detto piano complesso o di Gauss, vedi fig. 1.

I numeri reali a=a+i0 sono rappresentati da punti (a;0) dell'asse delle ascisse che viene detto **asse reale**.

I numeri ib = 0 + ib sono detti **immaginari puri** e sono rappresentati da punti (0; b) dell'asse delle ordinate che viene detto **asse immaginario**.

In particolare

$$0 = 0 + 0i$$
 $1 = 1 + 0i$ $i = 0 + 1i$ $-i = 0 - 1i$

La distanza $\overline{OP} = \rho = \sqrt{a^2 + b^2}$ è detta **modulo** di z e viene indicata con |z|.

Fig. 1

Fig. 2

L. Mereu – A. Nanni I numeri complessi

Il numero complesso

$$\bar{z}=a-ib$$

è detto **coniugato** di z e ha come rappresentante il punto P'(a; -b) simmetrico di P(a; b) rispetto all'asse x.

Il numero reale $|z_1-z_2|$ rappresenta la distanza tra z_1 e z_2 , vedi fig. 2.

Somma, prodotto, quoziente

Se $z_1 = a + ib$ e $z_2 = c + id$ si definisce loro

• somma il numero complesso

$$z_1 + z_2 = a + c + i(b + d)$$

• **differenza** il numero complesso

$$z_1 - z_2 = a - c + i(b - d)$$

• **prodotto** il numero complesso

$$z_1 \cdot z_2 = ac - bd + i(bc + ad)$$

Dalla definizione di prodotto si ha:

a. $i^2 = -1$

infatti
$$i^2 = (0+i)(0+i) = 0 \cdot 0 - 1 \cdot 1 + i(1 \cdot 0 + 0 \cdot 1) = -1$$

- **b.** $z_1 \cdot \overline{z_1} = a^2 + b^2$
 - quoziente il numero complesso

$$\frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$

Forma trigonometrica

Indicata con ϑ la misura in radianti dell'angolo che il semiasse positivo delle ascisse forma con \overrightarrow{OP} , vedi fig. 3, si ha

$$a = \rho \cos\theta$$
 $b = \rho \sin\theta$

il numero complesso z si scrive in forma polare o trigonometrica

$$z = \rho(\cos\theta + i\sin\theta)$$

 ϑ è detto **anomalia** o **argomento** di z, indicato con arg(z), ed è definito a meno di multipli di 2π .

L. Mereu – A. Nanni I numeri complessi

Fig. 3

Infatti

Se $\; \; \rho_1$, $\vartheta_1 \; \;$ e $\; \; \rho_2$, $\vartheta_2 \; \;$ sono rispettivamente modulo e anomalia di $\; z_1$ e z_2 si ha

Prodotto $z_1 \cdot z_2 = \rho_1 \rho_2 [cos(\vartheta_1 + \vartheta_2) + isin(\vartheta_1 + \vartheta_2)]$

Quoziente $\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} [cos(\vartheta_1 - \vartheta_2) + isin(\vartheta_1 - \vartheta_2)]$

Esercizi

(gli esercizi con asterisco sono avviati)

Somme e prodotti

1.
$$2+3i-(1+i)(3-i)$$

2.
$$3-4i+i(2-i)+(7-2i)(1+i)$$

3.
$$(16+i)(i-4)-2i(4+i)-(2-i)(2+i)$$

4.
$$(1-2i)^2-4i(2+i)^2$$

5.
$$2(i+1)^2 - 4i(i-3)$$

6.
$$(3-i)^2 + (2-4i)(i-2)$$

7.
$$2i(-1+i)^3$$

8.
$$i + i^2 + i^3 + i^4$$

9.
$$i^8 - i^7 + i^4$$

10.
$$i^3(1-i)+i^{27}$$

*11.
$$|3+4i|(1-i)^2-|i|(3+i)(4-i)$$

Quozienti

*12.
$$\frac{4-2i}{-i+1}$$

14.
$$\frac{i+4}{2-3i}$$

16.
$$\frac{5}{1+i}$$

*18.
$$\overline{3-2i}(2i-1)+\frac{7-2i}{3-i}$$

*20.
$$\frac{(1+2i)^4}{i^5+1}$$

*13.
$$\frac{3-2i}{5+i}$$

15.
$$\frac{12i+5}{3+i}$$

17.
$$\frac{1}{i} - \frac{2+i}{i+1}$$

19.
$$\frac{4-i}{2+i} - \frac{7i^3}{i^4+1}$$

21.
$$\frac{12i-5}{(2+3i)^3}$$

Dati i numeri complessi $z_1 \, e \, z_2 \,$ determinare i risultati delle seguenti operazioni :

a)
$$z_1 + z_2$$

a)
$$z_1 + z_2$$
; b) $\bar{z_1} - 2z_2$; c) $z_1 \cdot z_2$; d) $\frac{z_2}{z_1}$

c)
$$z_1 \cdot z_2$$

d)
$$\frac{z_2}{z_1}$$

22.
$$z_1 = -1 + 2i$$
, $z_2 = 3 - 4i$

23.
$$z_1 = 1 - \sqrt{2}i$$
 , $z_2 = 2\sqrt{2} + i$

Forma trigonometrica dei numeri complessi

Trasformare i seguenti numeri complessi dalla forma algebrica alla forma trigonometrica

24.
$$z = -2i$$

*26.
$$z = 3 + 3i$$

28.
$$z = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

30.
$$z = \sqrt{3}i - 1$$

*32.
$$z = \frac{1}{3+3i}$$

34.
$$z = \frac{4}{\sqrt{3}+i}$$

25.
$$z = 5$$

*27.
$$z = -\sqrt{3} + i$$

*29.
$$z = 2 - 2i$$

31.
$$z = -4 - 4i$$

33.
$$z = \frac{i}{\sqrt{3}+i}$$

35.
$$z = \frac{\sqrt{3}-i}{i}$$

Dati i numeri z_1 e z_2 calcolare $z_1 \cdot z_2$ e $\frac{z_1}{z_2}$, fornire il risultato anche in forma algebrica :

36.
$$z_1 = 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
, $z_2 = \frac{1}{2}\left(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi\right)$

37.
$$z_1 = -4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
, $z_2 = 2\left(\cos\frac{3}{4}\pi + i\sin\frac{3}{4}\pi\right)$

L. Mereu – A. Nanni I numeri complessi

*38.
$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right)$$
, $z_2 = 2 \left(\cos \left(\frac{5}{4} \pi \right) + i \sin \left(\frac{5}{4} \pi \right) \right)$

Soluzioni

1. S.
$$-2 + i$$
; **2. S**. $13 + 3i$; **3. S**. $-68 + 4i$; **4. S**. $13 - 16i$;

5. S.
$$4 + 16i$$
; **6. S.** $8 + 4i$; **7. S.** $-4 + 4i$; **8. S.** 0;

9. S.
$$2 + i$$
; **10. S.** $-2i - 1$;

*11. S.
$$-13 - 11i$$
; $(|3 + 4i| = \sqrt{3^2 + 4^2} = 5, |i| = 1)$;

*12. S.
$$3+i$$
; $\left(\frac{4-2i}{-i+1} = \frac{(4-2i)(1+i)}{(-i+1)(1+i)} = \frac{6+2i}{2} = 3+i\right)$;

*13. S.
$$\frac{1}{2}(1-i)$$
; $(\frac{3-2i}{5+i} = \frac{(3-2i)(5-i)}{(5+i)(5-i)} = \frac{15-3i-10i+2i^2}{25-i^2} = \cdots)$;

14. S.
$$\frac{1}{13}(5+14i)$$
; **15. S.** $\frac{1}{10}(27+31i)$; **16. S.** $\frac{5}{2}(1-i)$; **17. S.** $-\frac{3}{2}-\frac{1}{2}i$

*18. S.
$$-\frac{47}{10} + \frac{41}{10}i$$
; $(\overline{3-2i} = 3 + 2i \text{ pertanto} : (3+2i)(2i-1) + \frac{7-2i}{3-i} = 6i - 3 + 2i^2 - 2i + \frac{(7-2i)(3+i)}{(3-i)(3+i)} = \cdots$);

19. S.
$$\frac{7}{5} + \frac{23}{10}i$$
;

*20. S.
$$-\frac{31}{2} - \frac{17}{2}i$$
; $((1+2i)^4 = [(1+2i)^2]^2 = (-3+4i)^2 = 9-24i-16...)$;

21. S.
$$\frac{2}{13} - \frac{3}{13}i$$
;

22. S. a)
$$2-2i$$
; b) $-7+6i$; c) $5+10i$; d) $\frac{-11-2i}{5}$;

23. S. a)
$$1 + 2\sqrt{2} + (1 - \sqrt{2})i$$
; b) $1 - 4\sqrt{2} + (\sqrt{2} - 2)i$; c) $3(\sqrt{2} - i)$; d) $\frac{1}{3}(\sqrt{2} + 5i)$;

24. S.
$$2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right)$$
; **25. S.** $5(\cos 0 + i\sin 0)$;

*26. S.
$$3\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
; (3 + 3 i = $3\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$, se $\begin{cases} \cos\theta = \frac{1}{\sqrt{2}} \\ \sin\theta = \frac{1}{\sqrt{2}} \end{cases}$ allora $\theta = \frac{\pi}{4}$);

*27. S.
$$2\left(\cos\frac{5}{6}\pi + i\sin\frac{5}{6}\pi\right)$$
; $(-\sqrt{3} + i = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$, se $\begin{cases} \cos\vartheta = -\frac{\sqrt{3}}{2} \\ \sin\vartheta = \frac{1}{2} \end{cases}$ allora $\vartheta = \frac{5}{6}\pi$);

28. S.
$$cos\left(-\frac{\pi}{3}\right) + isin\left(-\frac{\pi}{3}\right)$$
;

*29. S.
$$2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right)$$
;

$$(2-2i=2\sqrt{2}\left(rac{\sqrt{2}}{2}-rac{\sqrt{2}}{2}i
ight)$$
 , se $\begin{cases} cos artheta=rac{\sqrt{2}}{2} \\ sin artheta=-rac{\sqrt{2}}{2} \end{cases}$ allora $artheta=-rac{\pi}{4}$);

30. S.
$$2\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$$
; **31. S.** $4\sqrt{2}\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right)$;

*32. S.
$$\frac{\sqrt{2}}{6} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right); \left(\frac{1}{3+3i} = \frac{3-3i}{(3+3i)(3-3i)} = \frac{3-3i}{18} = \frac{\sqrt{2}}{6} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \right) = \cdots \text{ vedi es. 29 } \right);$$

33. S.
$$\frac{1}{2} \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right);$$
 34. S. $2 \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right);$

35. S.
$$2\left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right)$$
;

36. S.
$$z_1 \cdot z_2 = \frac{3}{2}(\cos\pi + i\sin\pi) = -\frac{3}{2}; \frac{z_1}{z_2} = 6\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 3\left(1 - \sqrt{3}i\right);$$

37. S.
$$z_1 \cdot z_2 = -8(\cos\pi + i\sin\pi) = 8;$$
 $\frac{z_1}{z_2} = -2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 2i;$

*38. S.
$$z_1 \cdot z_2 = 2\sqrt{2} \left(\cos \frac{11}{8} \pi + i \sin \frac{11}{8} \pi \right) = -\sqrt{4 - 2\sqrt{2}} - i \sqrt{4 + 2\sqrt{2}}$$
;

$$\frac{z_1}{z_2} = \frac{\sqrt{2}}{2} \left(\cos\left(\frac{7}{8}\pi\right) + i\sin\left(\frac{7}{8}\pi\right) \right) = -\sqrt{\frac{\sqrt{2}+2}{8}} + i\sqrt{\frac{2-\sqrt{2}}{8}};$$

(ricordiamo che $cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2+\sqrt{2}}$, $sin\frac{\pi}{8} = \frac{1}{2}\sqrt{2-\sqrt{2}}$) e

$$\cos\frac{3}{8}\pi = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin\frac{\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$$
, $\sin\frac{3}{8}\pi = \sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$;

il numero $z_1 \cdot z_2$ ha modulo $2\sqrt{2}$ e argomento $\vartheta = \frac{\pi}{8} + \frac{5}{4}\pi = \frac{11}{8}\pi = \pi + \frac{3}{8}\pi...$

il numero $\frac{z_1}{z_2}$ ha modulo $\frac{\sqrt{2}}{2}$ e argomento $\vartheta = \frac{\pi}{8} - \frac{5}{4}\pi = -\frac{9}{8}\pi = -\pi - \frac{\pi}{8}...$);