PHYS 128 AL

Lab 1 Mossbauer Effect

MW session

Student: Aether ZHOU

Group member: William HAN, Lucas WATKINS

Table of content

=======================================	=======
Row Data	2
Analysis questions	3
Exercise	6
Error analysis	8
Daily log	10
Conclusions	13

Row data: Background spectrum, we start from this to identify regions of interest, and then block other channels to reduce noise of Mossbauer data.

Absorption spectrum of Fe-57, each peak corresponds to a transition of energy level.

Analysis questions (1,2,3 and 5)

1. Magnetic moment given by https://www-nds.iaea.org/nuclearmoments/

$$mu_{1/2} = 0.0964 * mu_N$$

$$mu_{3/2} = 0.-0.1553 * mu_N$$

$$mu_N = -3.152451 * 10^{-12} [eV/G]$$

Mean [eV]	Half-Width/2 (uncertainty) [eV]	Magnetic Field [Gauss]
-2.39701e-07	1.05602e-08	302091
-1.35757e-07	9.7546e-09	290644
-3.2994e-08	8.44929e-09	234492
4.60977e-08	9.83128e-09	327621
1.49256e-07	9.33953e-09	319546
2.53488e-07	1.04869e-08	319467

The averaged magnetic field is measured to be $2.9897 * 10^5 G$ with uncertainty about 10%. $(3 * 10^5)/(4 * 10^4)$

2. Gaussian fit

Mean [eV] Standard Deviation [eV] Amplitude[Counts]

-2.5546e-07	7.25672e-09	-2.14659e-05
-1.52159e-07	5.70546e-09	-1.25392e-05
-4.88677e-08	4.91007e-09	-7.21061e-06
3.12669e-08	4.30211e-09	-6.65309e-06
1.35871e-07	6.06749e-09	-1.52095e-05
2.42227e-07	6.08498e-09	-2.02773e-05

Standard deviation is similar in both with and without background fitting. Though not obvious from the plot, sigma with no background is smaller than the one with background. Error is larger for peaks with smaller amplitude, which is reasonable, since low peaks are harder to distinguish from the background noise.

3. Lorentzian fit

We propagate the linewidth for absorption peaks to get the true error for the magnetic field.

5. Each channel represents a certain range of wavelengths of EM waves. Around wavelengths that can excite a transition, the gamma ray is absorbed by the target so the detector won't "see" that range of EM waves. Hence, the channels where the data points start declining corresponds to the required energy for transition to happen.

By setting the window on the PHA, we can block a certain range of spectrum that we are not interested in, and hence reduce the background noise.

During Mossbauer mode, one single count indicates the EM waves that get into the detector within a window of 200 micro sec exceeds some threshold value. And within an operational cycle (about 200 milli sec), each count (200 micro sec window) is registered to a distinct channel, so all 1024 channels will be "scanned" during a "pass."

As the radioactive source is driven back and forced, the doppler effect will create a continuous spectrum. Since motion of the source is time related, while channels measure time, they can also be calibrated into velocities that characterize the motion of the source, and can then be converted into energy or wavelength of gamma rays.

According to the manual, the CAD moves at -9.59 mm/s at start of each sweep, which is registered as channel 0, and reaches the positive maximum speed of 10.22 mm/s at middle of

the pass (channel 500). And then decelerate to -9.59 mm/s again and reach the end of the channel (a single pass). So, as we double the window of each channel to 400 micro sec, the information density is increased, and the CAD is expected to complete the double cycle during a single operational cycle.

We expect to see four sets of symmetrical absorption peaks evenly spaced, but the actual data seems weird.

exercise

xercise	128 AL 1200 18 111	
	(:00	PM
5	Moss boner	
Ia	xcsses	- 1-10
-	$\Delta t \sim \tau \sim 0.1 \text{ as}$ $\hbar \leq \delta \tilde{\epsilon} \cdot \Delta t = \Gamma \tau$ $\Delta \tilde{\epsilon} \cdot \sim \Gamma \Rightarrow \frac{\pi}{\epsilon} \qquad \Gamma \approx 6.582 \times 10^{-9} \text{ eV}$	E= hee
-	7 / 1	t= 6.582 × 10
16	E 57 m 2571.	MeVs
100	$R = \frac{(14.4 \text{ keV})^2}{2(57)(931.494 \text{ MeV/c}^2)(c^2)} = 0.0$	0019527 eV
	R = 1.356 × 10-7	
	Lo Partir De Par	121
	Conservation of momentum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· Velocity of nuclous << C non-relativistic	
10	1 2 10-8eV < 10°eV - hyperfine	9
	~ 10 'eV >> 10'eV	
	Not observable expersionally, R>> hyperfine, no	enough prices
2/10	R>) [-> resonant absorption (ZRSP) may	NOT be obse
	THE SPECIAL CONTRACTOR OF THE SPECIAL	
3	Ephonon = Rp OD = 0.0411 eV	
	71/2	
2+a	mis (Erecoil) - Ephonon = 47 0.64MeN	1 1
		1200
46.	IXR < Ephon Mo	
4 C.	Conservation of monomitum	
	E, -8R	
	Quertur voture of welens	

5a 56	$u_{N} \approx 3.152 \times 10^{-14} \text{ MoV T}$ Te grandetet U $U = (+0.09064)(\frac{et_{1}}{2m_{p}}) \approx 2.857 \times 10^{-13} \text{ eV/G}$ $U = (-5.714 \times 10^{-8})(m_{p}) \approx V$	
50 5d	SE: -M-1 (-3/2)/(3/2) = 2.857 × 10-8 eV Explifting ~ 10-7 eV < DE narrow enough + Lenter + 1111 2014/32 - MH/32 (2H) My	331
79	A = VE0 ~ 10-7 eV 1 100 200 297.6 97.6 197.6 300 4	
76	250 = 40 Counts 1024 Channols	40
8	93-3	

By Taylor's book

Section 3.6 More About Independent Uncertainties

Uncertainties in Products and Quotients

Suppose that x, \ldots, w are measured with uncertainties $\delta x, \ldots, \delta w$, and the measured values are used to compute

$$q = \frac{x \times \cdots \times z}{u \times \cdots \times w}.$$

If the uncertainties in x, \ldots, w are independent and random, then the fractional uncertainty in q is the sum in quadrature of the original fractional uncertainties,

$$\frac{\delta q}{|q|} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \cdots + \left(\frac{\delta z}{z}\right)^2 + \left(\frac{\delta u}{u}\right)^2 + \cdots + \left(\frac{\delta w}{w}\right)^2}.$$
 (3.18)

In any case, it is never larger than their ordinary sum,

$$\frac{\delta q}{|q|} \le \frac{\delta x}{|x|} + \dots + \frac{\delta z}{|z|} + \frac{\delta u}{|u|} + \dots + \frac{\delta w}{|w|}. \tag{3.19}$$

With percent error of energy shift, one can calculate percent error for magnetic fields.

$\Delta E \ [10^{-9} \ \mathrm{eV}]$	$\Gamma/2 \ [10^{-9} \ {\rm eV}]$	Percent Error [%]
-239.7	10.56	4.41
-135.8	9.75	7.19
-33.0	8.45	25.6
46.1	9.83	21.3
149.3	9.34	6.26
253.5	10.49	4.14

61

Log

Jan.18 W

15:00

We turned the devices on to check softwares (step 1-7 in lab manual)

We need to alter the scale for y-axis (default scale is too large to show the detailed property of the radioactive source)

We figured out that x-axis indicates energy/wavelength/frequency of photon, and y-axis indicates number of photon (cumulative energy)

And we can scroll to alter y-axis

16:00

We put the aluminum sheet in, but didn't get desired data (single peak)

We might misidentified iron foil & aluminum sheet

16:30

We took data for foil, but no desired outcome

Questions

- 1. Which is iron enriched foil and which is aluminum sheet?
- 2. Why is x-axis still channels instead of time in mossbauer mode?
- 3. Which is 14.4 eV peak?
- 4. What's up with oscilloscope / sync out?
- 5. Are we even oscillating?

Jan.18 W

15:00

We turned the devices on to check softwares (step 1-7 in lab manual)

We need to alter the scale for y-axis (default scale is too large to show the detailed property of the radioactive source)

We figured out that x-axis indicates energy/wavelength/frequency of photon, and y-axis indicates number of photon (cumulative energy)

And we can scroll to alter y-axis

16:00

We put the aluminum sheet in, but didn't get desired data (single peak)

We might misidentified iron foil & aluminum sheet

16:30

We took data for foil, but no desired outcome

Questions

- 1. Which is iron enriched foil and which is aluminum sheet?
- 2. Why is x-axis still channels instead of time in mossbauer mode?
- 3. Which is 14.4 eV peak?
- 4. What's up with oscilloscope / sync out?
- 5. Are we even oscillating?

Jan. 23 M 15:00 We finished exercises We start taking data without sheet target 15:20 Taking data with aluminum sheet 15:30
Taking data with iron sheet
We figured out which is the iron sheet and collected mossbauer data
=======================================
Jan. 25 W 13:00 Taking empty comparison data (no target) Taking mossbauer effect data (iron target) Analyzing mossbauer data acquired for jan. 23
Jan. 30 M 13:00 Testing 400 micro sec dwell time Analysis
Feb.2 W

Writing report

12

Conclusions

We measured transition energy of Fe-57 with precision about 10 percent, and studied the hyperfine structure of atoms.

Though our data is subjected to several systematic error (i.e. CAD dead time), we still extract some quantitative properties of Fe-57 atoms with reasonable precision.

