PICARRO

Methane Plume Detection With Remote

Sensing

11/1/2022

Remote Sensing

• Remote sensing methane retrieval is a process in which short wave infrared (SWIR) imagery is converted into a theoretical methane concentration.

Aerial (RGB)

Remote Sensing

 We can convert SWIR imagery into methane concentrations by accounting for methane's absorption of different SWIR wavelengths, atmospheric conditions, and satellite/sun orientation.

Literature example of upstream methane plume detected using DOAS

© 2021 Picarro Inc. PICARRO

Remote Sensing

 Picarro has evaluated SWIR imagery data sources and determined that the Worldview 3 satellite is best suited for detecting methane sources of the magnitude found in distribution networks due to its high resolution.

Aerial (RGB)

Raw satellite data: 1 of 8 SWIR bands

Methane Retrieval – DOAS Method

- Differential Optical Absorption Spectroscopy (DOAS)
 - A methane retrieval method
 - Describes the relationship between incident intensity for vertical column and measured intensity after passing through a light path containing an absorber
 - Equations:

$$T_{\text{plume}}(\lambda) \approx \frac{L}{L_{\text{ref}}} = e^{-\text{AMF} \cdot \sigma_{\text{CH}_4} \cdot \Delta \text{XCH}_4}$$

 $\Delta XCH_4 = \frac{-\log(L/L_{ref})}{AMF \cdot \sigma_{CH_4}}$

- -AMF
- Air mass factor
- $-\sigma_{CH4}$ (ppm⁻¹)
 - Methane absorption cross section
- $-\Delta XCH_4 (ppm)$
 - Methane column concentration enhancement
- $-L/L_{ref}$
 - The radiance of the methane sensitive band and the "methane-free" reference band

Methane Retrieval - DOAS

$$T_{\text{plume}}(\lambda) \approx \frac{L}{L_{\text{ref}}} = e^{-\text{AMF} \cdot \sigma_{\text{CH}_4} \cdot \Delta \text{XCH}_4}$$

$$\Delta XCH_4 = \frac{-\log(L/L_{ref})}{AMF \cdot \sigma_{CH_4}}$$

$$au(\lambda) = \sum_{i=1}^{72} \Delta \ \mathrm{VMR}_i \ \mathrm{VCD}_i \ \sigma_{\mathrm{H},i}(\lambda). \hspace{1cm} T(\lambda) = \exp\{-A au(\lambda)\}$$

$$T(\lambda) = \, \exp\{-A\tau(\lambda)\,\}$$

- ΔXCH₄ (ratio)
 - Methane column concentration enhancement
 - The increment produced by the plume from the background methane present in the atmospheric column

Methane Retrieval - DOAS

$$T_{\text{plume}}(\lambda) \approx \frac{L}{L_{\text{ref}}} = e^{-\text{AMF} \cdot \sigma_{\text{CH}_4} \cdot \Delta \text{XCH}_4}$$

- AMF (air mass factor)
 - Translates the slant column density into a vertical column density
 - The ratio between the retrieved slant column (SC) and the atmospheric vertical column (VC): AMF = SC / VC
 - The viewing geometry of the satellite measurement is defined by the solar zenith angle theta and the satellite viewing angle theta_v This defines a geometric air mass factor

$$(\cos^{-1}\theta + \cos^{-1}\theta_{v})$$

$$\Delta XCH_4 = \frac{-\log(L/L_{ref})}{AMF \cdot \sigma_{CH_4}}$$

Methane Retrieval - DOAS

$$T_{\mathrm{plume}}(\lambda) \approx \frac{L}{L_{\mathrm{ref}}} = e^{-\mathrm{AMF} \cdot \sigma_{\mathrm{CH}_4} \cdot \Delta \mathrm{XCH}_4}$$

$$\Delta XCH_4 = \frac{-\log(L/L_{ref})}{AMF \cdot \sigma_{CH_4}}$$

- L/L_{ref}
 - The radiance of the methane sensitive band and the "methane-free" reference band
 - O How much methane absorption occurred?
 - Equivalent to B7/B7_{MLR}
 - § B7 = The 7th band of SWIR wavelengths measured by Worldview 3 (see figure below)
 - § B7_{MLR} = a multi linear regression of B1 B6 for B7
 - § Simple version: L/L_{ref} = B7/B5

- By applying the DOAS methane retrieval algorithm on sample data from Worldview 3 (left) theoretical methane concentrations (right) are generated.
 - Units: ppm-m (parts per million per meter)
 - ppm-m units are needed to describe the concentration along the entire air column (i.e. concentration * air column length)

Aerial

Methane

 Note the variability of methane concentrations in the overall image. The methane concentration image (right) is showing high methane concentration; however, the aerial image (left) tells us that this is a rooftop.

PICARRO

 Can we detect methane plumes of magnitudes found in a distribution network? We can test this by adding a synthetic methane plume to the methane concentration image.

PICARRO

 Can we detect methane plumes of magnitudes found in a distribution network? We can test this by adding a synthetic methane plume to the methane concentration image.

• After adding in the synthetic methane plume we don't see a visible difference.

What happens when we add in a 100 scfh leak?

© 2021 Picarro Inc. Confidential PICARRO

• After adding in the 100 scfh synthetic methane plume we don't see a visible difference.

• After adding in the 100 scfh synthetic methane plume we don't see a visible difference.

© 2021 Picarro Inc. PICARRO

How about a 10,000 scfh leak?

© 2021 Picarro Inc. PICARRO

Picarro Worldview 3 Methane Retrieval vs Literature

Remote Sensing Methane Leak Detection

- The magnitude of leaks which can be detected by Worldview 3 data is on the order of 10,000 scfh.
- Gas distribution networks usually don't have leaks larger than 100 scfh.

Remote Sensing Methane Lower Detection Thresholds

Scientific literature and Chevron LDTs are in line with Picarro's analysis.

Source	Lower Detection Threshold (kg/hr)	Lower Detection Threshold (SCFH)
Chevron ¹	100	6400
Thomas A Fox et al ²	250	16000
Garcia et al ³	< 100*	< 6400
Collins et al ⁴	500	32000

- 1. Chevron Corp., 2022 Methane Report, https://www.chevron.com/-/media/shared-media/documents/chevron-methane-report.pdf
- 2. Thomas A Fox et al 2019 Environ. Res. Lett. 14 053002
- Sánchez-García, E., Gorroño, J., Irakulis-Loitxate, I., Varon, D. J., and Guanter, L.: Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite, Atmos. Meas. Tech., 15, 1657–1674, https://doi.org/10.5194/amt-15-1657-2022, 2022.
- 4. Collins et al Monitoring methane emissions from oil and gas operations Optics Express 24326 Vol. 30, No. 14 / 4 Jul 2022
- * Lowest plume detected was 30 kg/hr; however, this study was not meant to develop a lower detection threshold.

Conclusion

- While Worldview 3 appears to be the best current candidate for methane plume detection in a distribution network, it appears that the pixel level methane concentration variability is too large to detect leaks on the order of ~100 scfh or smaller.
- The current generation of remote sensing instruments do not appear to be viable for leak detection in distribution networks.

© 2021 Picarro Inc.

Confidential

PICARRO