Chap. 3: Single Stage Network Comparisons

- one way to compare: ability of one network to do connections of another
 - SIMD mode all N PEs active
 - must simulate connection for all PEs
 - count number of inter-PE transfers (dominant factor)
- Lower bound on simulation transfers
 - cannot do simulation in fewer transfers
 - shown by mathematical proof
- Upper bound on simulation transfers
 - can do simulation in this number of transfers (or less)
 - shown by algorithm to do simulation
- Ground rules
 - to simulate i.f. f: DTR of P \rightarrow DTR of f(P), $0 \le P < N$
 - i.f. of network being simulated that takes most time to simulate determines bounds

Lower and Upper Bounds on Network Simulation Times

		PM2I	Cube	Illiac	Shuffle- Exchange
PM2I	lower	1 1	7 6		# -
Cube	lower	<i>m</i>	1		1 + W
Illiac	lower	n/2 n/2	(n/2) + 1	E	2n-4
Shuffle-Exchange	lower	2m - 1 $2m$	(m/2) + 1 m + 1 m + 1	$\frac{-}{2m-1}$	2n - 1

Note: The entries in row a and column b are lower and upper bounds on the time required for network a to simulate network b.

 $cube_{m-1}$:

$$\begin{split} \mathrm{cube}_{m-1}(p_{m-1}...p_1p_0) &= \overline{p}_{m-1}p_{m-2}...p_1p_0 \\ &= \mathrm{PM2}_{\pm(m-1)}(p_{m-1}...p_1p_0) \end{split}$$

$$\therefore cube_{m-1} = PM2_{\pm(m-1)}$$

Lower bound = upper bound = 1

$$\begin{split} \mathrm{cube}_i(p_{m-1}...p_1p_0) &= p_{m-1}...p_{i+1}\bar{p}_ip_{i-1}...p_0 \quad 0 \! \leq \! i \! < \! m \\ \mathrm{PM2}_{+i}(P) &= P \! + \! 2^i \bmod N \quad 0 \leq i < m \\ \mathrm{PM2}_{-i}(P) &= P \! - \! 2^i \bmod N \quad 0 \leq i < m \end{split}$$

Lower bound (0 \leq i < m-1):

$$cube_i \neq PM2_{\pm j}$$
 for any i,j

 \therefore need 2 transfers \rightarrow lower bound = 2

$$cube_i(p_{m-1}...p_1p_0) = p_{m-1}...p_{i+1}\overline{p}_ip_{i-1}...p_0 \quad 0 \! \leq \! i \! < \! m$$

$$PM2_{+i}(P) = P + 2^i \text{ mod } N \qquad 0 \leq i < m$$

$$PM2_{-i}(P) = P-2^i \bmod N \qquad 0 \leq i < m$$

cube_i

Upper bound $(0 \le i < m-1)$:

(S1) $PM2_{+i} [X^m]$

(S2) $PM2_{-(i+1)} [X^{m-(i+1)}0X^{i}]$

Example: i=0, N=8.

to perform cube₀:

(S1) $PM2_{+0}$ [XXX] (dashed line)

(S2) $PM2_{-1}$ [XXO] (solid line)

$$cube_0 (p_2 p_1 p_0) = p_2 p_1 \overline{p}_0$$

For
$$p_0 = 0$$
: $cube_0(p_2p_10) = PM2_{+0}(p_2p_10) = p_2p_11$

For
$$p_0 = 1$$
: $cube_0(p_2p_11) =$

$$PM2_{-1}(PM2_{+0}(p_2p_11)) = PM2_{-1}(p_2p_10+2)$$

$$= p_2p_10$$

$$\begin{split} \text{cube}_i(p_{m-1}...p_1p_0) &= p_{m-1}...p_{i+1}\bar{p}_ip_{i-1}...p_0 \quad 0 \leq i < m \\ PM2_{+i}(P) &= P+2^i \bmod N \quad 0 \leq i < m \\ PM2_{-i}(P) &= P-2^i \bmod N \quad 0 \leq i < m \end{split}$$

 $cube_{i}$

Upper bound (
$$0 \le i < m-1$$
):

(S1)
$$PM2_{+i}$$
 [X^m]

$$(S2)$$
 PM2_(i+1) $[X^{m-(i+1)}0X^{i}]$

Ex.
$$i = 2$$
, $N = 16$, PE $5 \rightarrow \text{cube}_2(5) = 1$
 $PM2_{+2} [XXXX] \quad 5 \rightarrow 9$
 $PM2_{-3} [X0XX] \quad 9 \rightarrow 1$

Correctness proof:

Case 1: PE address of form
$$X^{m-(i+1)}0X^i$$

S1:
$$X^{m-(i+1)}0X^{i} \to X^{m-(i+1)}1X^{i}$$
 (cube_i)

S2: no match

Case 2: PE address of form
$$X^{m-(i+1)}1X^i$$

S1:
$$X^{m-(i+1)}1X^{i} \rightarrow X^{m-(i+1)}0X^{i} + 2^{i+1}$$

S2:
$$X^{m-(i+1)}0X^{i} + 2^{i+1} \rightarrow X^{m-(i+1)}0X^{i}$$
(cube_i)

Upper bound = 2

$$\begin{split} \text{cube}_i(p_{m-1}...p_1p_0) &= p_{m-1}...p_{i+1} \overline{p}_i p_{i-1}...p_0 \quad 0 \! \leq \! i \! < \! m \\ \text{PM2}_{+i}(P) &= P \! + \! 2^i \bmod N \quad 0 \leq i < m \end{split}$$

$$PM2_{-i}(P) = P-2^i \bmod N \qquad 0 \leq i < m$$

PM2I → Illiac

$$\begin{split} \text{Illiac-4 i.f.s (where n} &= \sqrt{N}) \text{:} \\ &\text{Illiac}_{+1}(P) = P+1 \bmod N \\ &\text{Illiac}_{-1}(P) = P-1 \bmod N \\ &\text{Illiac}_{+n}(P) = P+n \bmod N \\ &\text{Illiac}_{-n}(P) = P-n \bmod N \end{split}$$

PM2I - Plus Minus 2ⁱ - 2m i.f.s

$$PM2_{+i}(P) = P+2^{i} \mod N$$
 $PM2_{-1}(P) = P-2^{i} \mod N$
 $0 \le i < m$
 $n = 2^{m/2}$
 $\pm 2^{m/2} = \pm n$

$$\begin{split} & \text{Illiac}_{\pm 1} = \text{PM2}_{\pm 0} \\ & \text{Illiac}_{\pm n} = \text{PM2}_{\pm m/2} \\ & \text{lower bound} = \text{upper bound} = 1 \end{split}$$

$PM2I \rightarrow Shuffle-Exchange$

Exchange:

exchange
$$(p_{m-1}...p_1p_0) = p_{m-1}...p_1\bar{p}_0$$

= $cube_0(p_{m-1}...p_1p_0)$

because exchange = $cube_0$ can use $PM2I \rightarrow cube_0$

From the PM2I \rightarrow Cube analysis:

lower bound = upper bound = 2

$PM2I \rightarrow Shuffle$

Lower bound:

metric -

distinct integers added to $\{0,1,...,N-1\}$ by execution of i.f.

$$\begin{split} 0 &\leq P < N/2 \quad P = 0 p_{m-2}...p_1 p_0 \\ & \text{shuffle}(P) = p_{m-2}...p_1 p_0 0 = 2 P \\ & \text{shuffle}(P) - P = P \; (\text{adds } 0,1,...,(N/2)-1) \\ N/2 &\leq P < N \quad P = 1 p_{m-2}...p_1 p_0 \\ & \text{shuffle}(P) = p_{m-2}...p_1 p_0 1 = 2 P + 1 \\ & \text{shuffle}(P) - P = P + 1 \\ & (N/2) + 1, \; (N/2) + 2,...,N - 1, \; N (= 0 \; \text{mod } N) \end{split}$$

Total of N-1 distinct integers added

shuffle
$$(p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1}$$

Lower bound:

For PM2I (all arithmetic mod N)

each i.f. executed adds 2ⁱ (or N-2ⁱ) if PE active adds 0 if PE inactive

after y i.f.s executed, at most 2^y different integers added

For PM2I to add N-1 distinct integers: $\lceil \log_2(N-1) \rceil = m$ transfers

Lower bound = m

$$PM2_{+i}(P) = P + 2^i \bmod N \qquad 0 \leq i < m$$

$$PM2_{-i}(P) = P-2^i \bmod N \qquad 0 \leq i < m$$

Upper bound:

The Concept Underlying the PM2I \rightarrow Shuffle Algorithm (N = 8)

\overline{Origin}	Distance					
PE	$Moved\ by$					
Number	$Shuf\!f\!le$		istance Mo	oved by PM	[2]	Total
0 = 000	+0	-	-	_	_	+0
1 = 001	+1	+1	_	_	Beet .	+1
2 = 010	+2	~	+2	-	<u>.</u>	+2
3 = 011	+3	+1	+2	-	-	+3
4 = 100	+5	-	-	+4	+1	+5
5 = 101	+6	+1	-	+-4	+1	+6
6 = 110	+7	-	+2	+4	+1	+7
7 = 111	+0	+1	+2	+4	+1	+0
		$PM2_{+0}$	$PM2_{+1}$	$PM2_{+2}$	PM2 ₊₀	

Note: The distance the data item in the DTR of each PE is moved by the shuffle and by the PM2I network simulating the shuffle is shown.

- 1. Data originally in DTR of PE P moved by $PM2_{+i}$ if $p_i = 1$, i = 0,1,...,m-1
- 2. Data originally in DTR of PE P where $p_{m-1}=1$ moved by $PM2_{+0}$

$$\begin{split} & PM2_{+i}(P) = P + 2^i \text{ mod } N \qquad 0 \leq i < m \\ & \text{shuffle } (p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1} \end{split}$$

Upper bound:

(S1)
$$A \leftarrow DTR [X^{m-1}0]$$

$$(S2)$$
 PM2₊₀ $[X^{m-1}1]$

(S3) for
$$j = 1$$
 until $m-1$ do

$$(S4) \qquad A \stackrel{\text{\tiny 5} \vee \text{\tiny ap}}{\longleftrightarrow} DTR [X^{m-j-1}1X^{j-1}0]$$

(S5)
$$PM2_{+j} [X^{m-1}0]$$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

(S7) DTR
$$\leftarrow$$
 A [X^{m-1}0]

PE (Short hand)

Ex.
$$N = 8$$
, $m = 3$, DTR PE $3 \rightarrow DTR 6$

(S2)
$$PM2_{+0}$$
 [XX1] {DTR 3 \rightarrow DTR 4}

(S4)
$$(j = 1)$$
 [X10] {no match}

(S5)
$$(j = 1) PM2_{+1} [XX0] \{DTR 4 \rightarrow DTR 6\}$$

(S4)
$$(j = 2)$$
 A \longleftrightarrow DTR [1X0] $\{DTR 6 \to A 6\}$

(S5)
$$(j = 2)$$
 [XX0] {data in A register}

(S7) DTR
$$\leftarrow$$
 A [XX0] {A 6 \rightarrow DTR 6}

Algorithm uses m+1 inter-PE transfers and m+1 register-to-register moves

Upper bound = m+1

$$PM2_{+i}(P) = P+2^{i} \mod N$$
 $0 \le i < m$
 $shuffle (p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1}$

Upper bound:

S1) A
$$\leftarrow$$
 DTR [X^{m-1}0]

$$S2) PM2_{+0} [X^{m-1}1]$$

33) for
$$j = 1$$
 until $m-1$ do

(S1)
$$A \leftarrow DTR [X^{m-1}0]$$

(S2) $PM2_{+0} [X^{m-1}1]$
(S3) for $j = 1$ until $m-1$ do
(S4) $A \leftarrow \rightarrow DTR [X^{m-j-1}1X^{j-1}0]$
(S5) $PM2_{+j} [X^{m-1}0]$
(S6) $PM2_{+0} [X^{m-1}0]$
(S7) $DTR \leftarrow A [X^{m-1}0]$

(55)
$$FMZ_{+j} [X^{m-1}0]$$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

(S7) DTR
$$\leftarrow$$
 A [X^{m-1}0]

PM2I - Shuffle Simulation

(N=8)

Exx by S7 S7 DIR	900 100 101 101 110 110
Exxol S6 DTR Contents	90 TO
[XXo] S5 j = 2 DTR Contents	001 101 1101 - III
$ \begin{aligned} & [ix\theta] \\ S4j &= 2 \\ DTR \\ Contents \end{aligned} $	
$\begin{array}{l} \{1 \times 0 \} \\ S4 \ j = 2 \\ A \end{array}$ Contents	000 010 0110
Cxxol $SS j = 1$ DTR $Contents$	011 010 010
Ex103 S4 j = 1 DTR Contents	010
$ \begin{bmatrix} X 103 \\ S 4 j = 1 \\ A \end{bmatrix} $ Contents	000 100 100 1
EXXIJ S2 DTR Contents	001
Exxo1 SI A Contents	000 010 100 1100
Initial DTR Contents	000 001 010 100 100 110 111
PE	000 001 010 100 101 111

Note: It is assumed that initially the DTR of PE P contains the integer P, $0 \le P < 8$.

Proof by induction:

Induction hypothesis:

Sum of the w consecutive numbers beginning with 1:
$$Sum(w) = w(w+1)/2$$

Ex. Sum
$$(4) = 1 + 2 + 3 + 4 = 10$$

 $4(4+1)/2 = 10$

Induction variable: w

Basis:
$$w = 1$$
.
 $w(w+1)/2 = 1(1+1)/2 = 1 = Sum(1)$

Induction step:

Assume true for w = y, $1 \le y$.

Show true for w = y+1.

$$w(w+1)/2 = (y+1)((y+1)+1)/2 =$$

$$(y((y+1)+1) + 1((y+1)+1))/2 =$$

$$(y^2+2y+y+2)/2 =$$

$$((y^2+y)/2) + (2y+2)/2 =$$

$$(y(y+1)/2) + (y+1) =$$

$$Sum(y) + (y+1) = Sum(y+1)$$

Notation used in algorithm correctness proof and throughout rest of course:

$$\begin{array}{lll} q_{a/b} = q_a q_{a-1} ... q_{b+1} q_b & a \geq & b \\ q_{m-1/j+1} * 2^{j+1} + q_{j/0} = q_{m-1/j+1} 0^{j+1} + q_{j/0} = q_{m-1/0} \\ q_{m-1/j+1} * 2^{j+1} + q_{j/0} * 2 = q_{m-1/j+1} 0^{j+1} + q_{j/0} 0 \\ \text{When } j = m-1: \\ q_{m-1/j+1} * 2^{j+1} + q_{j/0} * 2 = q_{m-1/0} * 2 \\ \text{Ex. } p_3 p_2 p_1 p_0 = 0111, \ m = 4, \ j = 1 \\ p_{m-1/j+1} * 2^{j+1} + p_{j/0} * 2 = \\ p_{3/2} * 2^2 + p_{1/0} * 2 = \\ p_{3/2} * 2^2 + p_{1/0} * 2 = \\ p_{3} p_2 00 + p_1 p_0 0 = \\ 0100 + 110 = \\ 1010 \end{array}$$

$$Q = q_{2}q_{1}q_{0} \rightarrow q_{2}q_{1}Q = q_{0}*2$$

$$\rightarrow q_{2}Q_{0} + q_{1}q_{0}*2$$

$$\rightarrow q_{2}q_{1}q_{0}*2 = 2Q$$

Upper bound:

(S1)
$$A \leftarrow DTR [X^{m-1}0]$$

(S2)
$$PM2_{+0} [X^{m-1}1]$$

(S3) for
$$j = 1$$
 until $m-1$ do

$$(S4)$$
 A \longleftrightarrow DTR $[X^{m-j-1}1X^{j-1}0]$

(S5)
$$PM2_{+i} [X^{m-1}0]$$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

(S7) DTR
$$\leftarrow$$
 A [X^{m-1}0]

Recall:
$$PM2_{+i}(P) = P+2^i \mod N$$
 $0 \le i < m$

Correctness proof: Assume mod N arithmetic

Induction hypothesis: after S2 (j = 0) or S5 (1
$$\leq$$
 j $<$ m) DTR of Q = $q_{m-1/0} \rightarrow q_{m-1/j+1} * 2^{j+1} + q_{j/0} * 2 = P$ A reg. if $q_j = 0$, DTR if $q_j = 1$

Recall:
$$q_{m-1/j+1} = q_{m-1}...q_{j+2}q_{j+1}$$
 and
$$q_{m-1/j+1} * 2^{j+1} = q_{m-1/j+1}0^{j+1}$$

Basis:

$$j = 0.$$

Case 1:

DTR of
$$q_{m-1/1}0$$
 ($q_0=0$). S1: to A reg. $q_{m-1/1}0 = q_{m-1/1}*2^1 + q_0*2$.

Case 2:

DTR of
$$q_{m-1/1}1$$
 ($q_0=1$). S2: to DTR of $q_{m-1/1}1+1$ = $q_{m-1/1}^2+2=q_{m-1/1}^2+2+q_0^2$.

Upper bound:

(S1)
$$A \leftarrow DTR [X^{m-1}0]$$

(S2)
$$PM2_{+0} [X^{m-1}1]$$

(S3) for
$$j = 1$$
 until $m-1$ do

$$(S4)$$
 A \longleftrightarrow DTR $[X^{m-j-1}1X^{j-1}0]$

$$(S5)$$
 $PM2_{+j} [X^{m-1}0]$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

$$(S7)$$
 DTR \leftarrow A $[X^{m-1}0]$

Induction hypothesis: after S2 (j = 0) or S5 (1 \leq j < m) DTR of Q = $q_{m-1/0} \rightarrow q_{m-1/j+1} *2^{j+1} + q_{j/0} *2 = P$ A reg. if $q_j = 0$, DTR if $q_j = 1$

Induction step: Assume true 101 j = (k-1), show true for j = k

- Case 1: DTR of $q_{m-1/0}$ with $q_{k-1}=0$. From induction hypothesis, when j=(k-1), in A reg. of $P=q_{m-1/k}*2^k+q_{k-1/0}*2$. Now consider j=k.
- (a) $p_k=1$. S4: to DTR of P. S5: to DTR of $P+2^k$. Since $q_{k-1}=0$ and $p_k=1$, $q_k=1$. $(p_k=q_k+q_{k-1})$ $P+2^k=(q_{m-1/k+1}1)^*2^k+q_{k-1/0}^*2+2^k$ $=q_{m-1/k+1}^*2^{k+1}+q_{k-1/0}^*2+2^*2^k$ $=q_{m-1/k+1}^*2^{k+1}+q_{k/0}^*2$
- (b) $p_k=0$. S4 and S5: no change. Since $q_{k-1}=0$ and $p_k=0$, $q_k=0$. $(p_k=q_k+q_{k-1})$ $P=(q_{m-1/k+1}0)^*2^k+q_{k-1/0}^*2$ $=q_{m-1/k+1}^*2^{k+1}+q_{k/0}^*2$

Upper bound:

(S1)
$$A \leftarrow DTR[X^{m-1}0]$$

(S2)
$$PM2_{+0} [X^{m-1}1]$$

(S3) for
$$j = 1$$
 until $m-1$ do

$$(S4)$$
 A \longleftrightarrow DTR $[X^{m-j-1}1X^{j-1}0]$

(S5)
$$PM2_{+j}[X^{m-1}0]$$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

(S7) DTR
$$\leftarrow$$
 A [X^{m-1}0]

Induction hypothesis: after S2 (j = 0) or S5 (1 \leq j \leq m) DTR of Q = $q_{m-1/0} \rightarrow q_{m-1/j+1} *2^{j+1} + q_{j/0} *2 = P$ A reg. if $q_j = 0$, DTR if $q_j = 1$

Case 2:

DTR of $q_{m-1/0}$ with $q_{k-1}=1$.

Proof technique similar to Case 1.

Upper bound:

(S1)
$$A \leftarrow DTR [X^{m-1}0]$$

$$(S2)$$
 PM2₊₀ $[X^{m-1}1]$

(S3) for
$$j = 1$$
 until $m-1$ do

(S4)
$$A \leftarrow \rightarrow DTR [X^{m-j-1}1X^{j-1}0]$$

(S5) $PM2_{+j} [X^{m-1}0]$

(S5)
$$PM2_{+i} [X^{m-1}0]$$

(S6)
$$PM2_{+0} [X^{m-1}0]$$

$$(S7)$$
 DTR \leftarrow A $[X^{m-1}0]$

Induction hypothesis: after S2 (j = 0) or S5 (1
$$\leq$$
 j \leq m) DTR of Q = $q_{m-1/0} \rightarrow q_{m-1/j+1} *2^{j+1} + q_{j/0} *2 = P$ A reg. if $q_i = 0$, DTR if $q_i = 1$

When
$$j=m-1$$
, DTR of $Q \rightarrow Q^*2$, A if $q_{m-1}=0$, DTR if $q_{m-1}=1$.

Case 1: DTR data
$$(q_{m-1}=1)$$

S6:DTR of
$$Q^*2 \rightarrow Q^*2 + 1$$

$$q_{m-1}=1 \rightarrow shuffle(Q) = 2*Q + 1$$
.

S7:no change

Case 2: A data
$$(q_{m-1}=0)$$

S6:no change

S7:A reg. of
$$Q^*2 \rightarrow DTR$$
 of Q^*2

$$q_{m-1} = 0 \rightarrow \text{shuffle}(Q) = 2*Q$$

$$PM2_{+i}(P) = P + 2^{i} \mod N \qquad 0 \le i < m$$

shuffle
$$(p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1}$$

$$PM2_{\pm (m-1)}$$
:

$$\mathrm{PM2}_{\pm(m-1)}(p_{m-1/0}) = \overline{p}_{m-1}p_{m-2/0} = \mathrm{cube}_{m-1}(p_{m-1/0})$$

... $PM2_{\pm(m-1)} = cube_{m-1}$ (did this for $PM2I \rightarrow Cube$) lower bound = upper bound = 1

$$PM2_{+i}(P) = P + 2^i \mod N \qquad 0 \le i < m$$

$$PM2_{-i}(P) = P-2^i \mod N \qquad 0 \le i < m$$

$$cube_{i}(p_{m-1}...p_{1}p_{0}) = p_{m-1}...p_{i+1}\overline{p}_{i}p_{i-1}...p_{0} \quad 0 \leq i < m$$

Lower bound $(0 \le i < m-1)$:

Hamming distance H(a,b) = # bit positions a and b differ

$$\begin{array}{l} H(a, cube_i(a)) = 1 \\ H(1^m, PM2_{+i}(1^m)) = H(1^m, 0^{m-i}1^i) = m-i \\ H(0^m, PM2_{-i}(0^m)) = H(0^m, 1^{m-i}0^i) = m-i \\ Cube \ needs \ m-i \ transfers \ to \ do \ PM2_{\pm i} \\ When \ i = 0, \ need \ m \ transfers \\ \therefore \ lower \ bound = m \end{array}$$

$$\begin{split} &PM2_{+i}(P) = P + 2^i \ mod \ N \qquad 0 \leq i < m \\ &PM2_{-i}(P) = P - 2^i \ mod \ N \qquad 0 \leq i < m \\ &cube_i(p_{m-1}...p_1p_0) = p_{m-1}...p_{i+1} \overline{p}_i p_{i-1}...p_0 \qquad 0 \leq i < m \end{split}$$

Upper bound $(0 \le i < m-1)$:

For PM2_{+i} (PM2_{-i} is similar)

(S1) for
$$j = m-1$$
 step -1 to i do cube_i $[X^{m-j}1^{j-i}X^i]$

Ex. i=1, N=16, m=4, DTR PE 3 to
$$PM2_{+i}(3) = 5$$

$$j=3: cube_3 [X11X]$$
 no change $(3=0011)$
 $j=2: cube_2 [XX1X]$ $3 \rightarrow 7$ $(0011 \rightarrow 0111)$
 $j=1: cube_1 [XXXX]$ $7 \rightarrow 5$ $(0111 \rightarrow 0101)$

Algorithm uses m—i inter-PE transfers, m when i=0.

Upper bound = m

$$\begin{aligned} \text{cube}_{i}(p_{m-1}...p_{1}p_{0}) &= p_{m-1}...p_{i+1}\overline{p}_{i}p_{i-1}...p_{0} & 0 \leq i < m \\ \text{PM2}_{+i}(P) &= P + 2^{i} \mod N & 0 \leq i < m \\ \text{PM2}_{-i}(P) &= P - 2^{i} \mod N & 0 \leq i < m \end{aligned}$$

Upper bound $(0 \le i < m-1)$:

$$\begin{array}{c} \mathrm{for}\; j = m-1\; \mathrm{step}\; -1\; \mathrm{to}\; i\; do \\ \mathrm{cube}_{j}\; \left[X^{m-j} 1 \left(j-i\right) X^{i}\right] \end{array}$$

Correctness proof: $P = p_{m-1/0}$ where $p_{k+i-1/i} = 1^{1/2}$

Case 1: $p_i = 0$ (k = 0).

No match for $m-1 \ge j > i$.

When j=i, S1: $P = p_{m-1/i+1}0p_{i-1/0} \rightarrow p_{m-1/i+1}1p_{i-1/0} = PM2_{+i}(P)$

No match for $m-1 \ge j \ge i+k+1$

When $i+k \ge j \ge i$, match, execute cube_j.

$$\begin{split} P &= p_{m-1/i+k+1} 0 \, 1^k p_{i-1/0} \to p_{m-1/i+k+1} \overline{0} \, \overline{1}^k p_{i-1/0} \\ &= p_{m-1/i+k+1} 1 \, 0^k p_{i-1/0} = PM2_{+i}(P) \end{split}$$

$$\mathrm{cube}_{i}(p_{m-1}...p_{1}p_{0}) = p_{m-1}...p_{i+1}\overline{p}_{i}p_{i-1}...p_{0} \quad 0 \! \leq \! i \! < \! m$$

$$PM2_{+i}(P) = P+2^i \mod N$$
 $0 \le i < m$

$$PM2_{-i}(P) = P-2^i \mod N$$
 $0 \le i < m$

 $Cube \to Illiac$

Follows from Cube \rightarrow PM2I and PM2I \rightarrow Illiac.

 $\begin{array}{c} \text{lower bound} = \text{upper bound} = \text{m} \\ \\ \text{(to simulate Illiac}_{\pm 1}) \end{array}$

Cube \rightarrow Shuffle-Exchange

Exchange:

exchange
$$(p_{m-1/0}) = p_{m-1/1}\overline{p}_0 = \text{cube}_0(p_{m-1/0})$$

lower bound = upper bound = 1

Lower bound:

shuffle
$$(0^{m-(j+1)}10^j) = 0^{m-(j+2)}10^{j+1}$$

Value of bit position j changes.

Occurs \forall j when shuffle executed.

The shuffle changes all m bit positions in set of PE addresses.

Cube can only change one at a time.

... Must take Cube at least m inter-PE transfers.

Lower bound = m

$$\begin{split} & \text{shuffle}(p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1} \\ & \text{cube}_i(p_{m-1}...p_1p_0) = p_{m-1}...p_{i+1}\overline{p}_ip_{i-1}...p_0 \quad 0 \! \leq \! i \! < \! m \end{split}$$

```
(S1) where ADDR(m-1) = ADDR(0)
do A \leftarrow DTR [X<sup>m</sup>]
elsewhere cube<sub>0</sub> [X<sup>m</sup>]
```

(S2) for j = 1 to m-1 do

(S3) where $ADDR(j) \neq ADDR(j-1)$ do $A \leftarrow \rightarrow DTR[X^m]$

(S4) cube_j $[X^m]$

Correctness proof: After S1 DTR from PE $P = p_{m-1/0} \rightarrow p_{m-1/1}p_{m-1}$; in A if $p_{m-1} = p_0$, in DTR if $p_{m-1} \neq p_0$. All data in PEs where ADDR(m-1) = ADDR(0).

Induction hypothesis: after cube_j in S4, DTR P \rightarrow $p_{m-1/j+1}p_{j-1/0}p_{m-1}$ (lo-order j+1 bits shuffled); in A if $p_j = p_{j-1}$, in DTR if $p_j \neq p_{j-1}$. (ADDR (p))

Basis: j = 1.

Case 1: A and DTR of PE where ADDR(1) = ADDR(0). $(P_{1} - P_{1})$ (a) A: from P, where $p_{m-1} = p_{0}$ (S1). $p_{m-1/1}p_{m-1} = p_{m-1/2}p_{0}p_{m-1}$ since $p_{1} = ADDR(1) = ADDR(0) = p_{m-1} = p_{0}$, (b) DTR: from P, where $p_{m-1} \neq p_{0}$ (S1). (S4) DTR $p_{m-1/1}p_{m-1} \rightarrow DTR$ $p_{m-1/2}\bar{p}_{1}p_{m-1} = p_{m-1/2}p_{0}p_{m-1}$ since $\bar{p}_{1} = \overline{ADDR(1)} = \overline{ADDR(0)} = \bar{p}_{m-1} = p_{0}$.

Case 2: A and DTR of PE where ADDR(1) \neq ADDR(0). Proof technique similar to Case 1.

- (S2) for j = 1 to m-1 do
- (S3) where $ADDR(j) \neq ADDR(j-1)$ do $A \leftarrow \rightarrow DTR[X^m]$
- (S4) $\operatorname{cube}_{j}[X^{m}]$
- Induction hypothesis: after cube_j in S4, DTR P \rightarrow $p_{m-1/j+1}p_{j-1/0}p_{m-1}$ (lo-order j+1 bits shuffled); in A if $p_j = p_{j-1}$, in DTR if $p_j \neq p_{j-1}$. ADR $(m \cdot l) = \bigcap_{j \in \mathbb{N}} P_j = P_j$
- Induction step: Assume true for j=i, show true for j=i+1
- Case 2: A and DTR of PE where ADDR(i+1) \neq ADDR(i).
 - (a) from P, where $p_i = p_{i-1}$, in A of $p_{m-1/i+1}p_{i-1/0}p_{m-1} = P'(I.h.)$. When j = i+1, (S3) \rightarrow DTR of P', (S4) \rightarrow DTR of $p_{m-1/i+2}\bar{p}_{i+1}p_{i-1/0}p_{m-1} =$

 $\begin{array}{l} p_{m-1/i+2}p_{i/0}p_{m-1} \ \mathrm{since} \ \overline{p}_{i+1} = \overline{\mathrm{ADDR}(i+1)} = \mathrm{ADDR}(i) \\ = p_{i-1} = p_i. \end{array}$

(b) from P, where $p_i \neq p_{i-1}$, in DTR of $p_{m-1/i+1}p_{i-1/0}p_{m-1} = P'$ (I.h.). When j = i+1, (S3) \rightarrow A of $P' = p_{m-1/i+1}p_{i-1/0}p_{m-1} = p_{m-1/i+2}p_{i/0}p_{m-1}$

since $p_{i+1} = ADDR(i+1) = \overline{ADDR(i)} = \overline{p}_{i-1} = p_i$.

Case 1: A and DTR of PE where ADDR(i+1) = ADDR(i). Proof technique similar to Case 2.

- (S2) for j = 1 to m-1 do
- (S3) where $ADDR(j) \neq ADDR(j-1)$ do $A \leftarrow \rightarrow DTR[X^m]$
- (S4) $cube_j [X^m]$
- (S5) where ADDR(m-1) = ADDR(0)do $DTR \leftarrow A[X^m]$
- Induction hypothesis: after cube_j in S4, DTR P \rightarrow $p_{m-1/j+1}p_{j-1/0}p_{m-1}$ (lo-order j+1 bits shuffled); in A if $p_j = p_{j-1}$, in DTR if $p_j \neq p_{j-1}$; for $j \leq m-2$
- When j = m-2: DTR PE $P = p_{m-1/0}$ $\rightarrow p_{m-1}p_{m-3/0}p_{m-1}$; in A if $p_{m-2} = p_{m-3}$, in DTR if $p_{m-2} \neq p_{m-3}$.

j = m-1:

- Case 1: A and DTR of PE where ADDR(m-1) = ADDR(m-2). (Still consider a all (m-1) = all (o))
 - (a) A: from P, where $p_{m-2} = p_{m-3}$, in A of $p_{m-1}p_{m-3}/0p_{m-1} = P'$. (S5) \rightarrow DTR of P' = $p_{m-1}p_{m-3}/0p_{m-1} = p_{m-2}/0p_{m-1}$ since $p_{m-1} = ADDR(m-1) = ADDR(m-2) = p_{m-3} = p_{m-2}$.
 - (b) DTR: from P, where $p_{m-2} \neq p_{m-3}$, in DTR of $p_{m-1}p_{m-3/0}p_{m-1}$. (S4) $\to \overline{p}_{m-1}p_{m-3/0}p_{m-1} = p_{m-2/0}p_{m-1}$ since $\overline{p}_{m-1} = \overline{ADDR(m-1)} = \overline{ADDR(m-2)} = \overline{p}_{m-3} = p_{m-2}$.

(S2) for
$$j = 1$$
 to $m-1$ do

(S3) where
$$ADDR(j) \neq ADDR(j-1)$$

do $A \leftarrow \rightarrow DTR[X^m]$

(S4) $cube_j [X^m]$

(S5) where
$$ADDR(m-1) = ADDR(0)$$

do $DTR \leftarrow A[X^m]$

Induction hypothesis: after cube_j in S4, DTR P \rightarrow $p_{m-1/j+1}p_{j-1/0}p_{m-1}$ (lo-order j+1 bits shuffled); in A if $p_j = p_{j-1}$, in DTR if $p_j \neq p_{j-1}$.

When
$$j = m-2$$
: DTR PE $P = p_{m-1/0}$
 $\rightarrow p_{m-1}p_{m-3/0}p_{m-1}$; in A if $p_{m-2} = p_{m-3}$, in DTR if $p_{m-2} \neq p_{m-3}$.

j = m-1:

Case 2: A and DTR of PE where ADDR $(m-1) \neq$ ADDR(m-2). Proof technique similar to Case 1.

Upper bound:

(S1) where
$$ADDR(m-1) = ADDR(0)$$

do $A \leftarrow DTR[X^m]$
elsewhere $cube_0[X^m]$

(S2) for
$$j = 1$$
 to $m-1$ do

(S3) where
$$ADDR(j) \neq ADDR(j-1)$$

do $A \leftarrow \rightarrow DTR[X^m]$

$$(S4)$$
 $cube_j [X^m]$

(S5) where
$$ADDR(m-1) = ADDR(0)$$

do $DTR \leftarrow A[X^m]$

Ex.
$$N = 8$$
, $m = 3$, DTR PE $3 \rightarrow DTR 6$

(S1) elsewhere cube₀ [XXX] {DTR
$$3 \rightarrow DTR 2$$
}

(S3)
$$(j = 1) A \leftarrow \rightarrow DTR [XXX] \{DTR 2 \rightarrow A 2\}$$

(S4)
$$(j = 1)$$
 cube₁ [XXX] {data in A register}

(S3)
$$(j = 2) \land \leftarrow \rightarrow DTR [XXX] \{\land 2 \rightarrow DTR 2\}$$

(S4)
$$(j = 2)$$
 cube₂ [XXX] {DTR 2 \rightarrow DTR 6}

Algorithm uses m inter-PE transfers, m+1 "where" statements, and m+1 register-to-register moves

Upper bound = m

$$\begin{split} & \text{shuffle}(p_{m-1}...p_1p_0) = p_{m-2}p_{m-3}...p_1p_0p_{m-1} \\ & \text{cube}_i(p_{m-1}...p_1p_0) = p_{m-1}...p_{i+1}\overline{p}_ip_{i-1}...p_0 \quad 0 \! \leq \! i \! < \! m \end{split}$$

(S1) where ADDR(m-1) = ADDR(0) do A
$$\leftarrow$$
 DTR [X^m] elsewhere cube₀ [X^m]

(S2) for
$$j = 1$$
 to $m-1$ do

S3) where ADDR(j)
$$\neq$$
 ADDR(j-1)
do A $\leftarrow \rightarrow$ DTR [X^m]

$$(S4)$$
 cube_i $[X^m]$

(S5) where
$$ADDR(m-1) = ADDR(0)$$

do $DTR \leftarrow A [X^m]$

Cube — Shuffle Simulation (N = 8)

SS DTR Contents	000 000
S4j = 2 DTR $Contents$	100 100 101 011 011
$S3 \ j = 2$ DTR Contents	010 011 011 001 100 100
S3 j = 2 A Contents	000
S4 j = 1 DTR $Contents$	010 011 001 011 001 100 101
S3 j = 1 DTR $Contents$	011 010 110 101 101
S3 j = 1 A Contents	000 000
SI DTR Contents	001 011 001 100 100 110 110
SI A Contents	000 010 010 010 1011
Initial DTR Contents	000 001 011 100 110 110
PE	000 001 010 110 111

Note: It is assumed that initially the DTR of PE P contains the integer P, $0 \le P < 8$.

Illiac \rightarrow PM2I

Lower bound:

Let d(a,b) = |a-b| and j = (m/2)-1. $2^{j} = n/2$ and $d(0,PM2_{+j}(0)) = n/2$.

 $d(a,Illiac_{\pm n}(a)) = n$, so to move n/2 with $Illiac_{\pm n}$ need 1 + (n/2) steps

 $d(a,Illiac_{\pm 1}(a)) = 1$, so n/2 steps required

Illiac \rightarrow PM2I

Upper bound:

 $PM2_{+i}$ for $0 \le i < m/2$ ($PM2_{-i}$ similar):

(S1) for j = 1 to 2^i do $Illiac_{+1} [X^m]$

Ex. N = 16, m = 4, i = 1, DTR PE $0 \rightarrow DTR 2$

(S1) j = 1 [XXXX] {DTR $0 \rightarrow DTR 1$ }

(S1) j = 2 [XXXX] {DTR 1 \rightarrow DTR 2}

Algorithm uses 2^{i} transfers n/2 transfers when i = (m/2)-1

Correctness proof:

Let $(Illiac_{+1})^j$ mean execute $Illiac_{+1}$ j times $(Illiac_{+1})^{2^i}(a) = a + 2^i \mod N = PM2_{+i}(a)$

$$PM2_{+(m/2)-1} = +2^{(m/2)-1} = +n/2$$

Illiac \rightarrow PM2I

Upper bound:

$$PM2_{+i}$$
 for $m/2 \le i < m$ ($PM2_{-i}$ similar):

(S1) for
$$j = 1$$
 to $2^{i}/n$ do $Illiac_{+n} [X^{m}]$

Ex. N = 16, m = 4, n = 4, i = 3,
DTR PE 0
$$\rightarrow$$
 DTR 8

(S1)
$$j = 1$$
 [XXXX] {DTR $0 \rightarrow DTR 4$ }

$$(\stackrel{\circ}{S2})$$
 j = 2 [XXXX] {DTR 4 \rightarrow DTR 8}

Algorithm uses $2^{i}/n$ transfers n/2 transfers when i = m-1

Correctness proof:

$$(Illiac_{+n})^{2^{i}/n}(a) = a + (n * (2^{i}/n)) \mod N$$

= $a + 2^{i} \mod N = PM2_{+i}(a)$

$$PM2_{+m/2} = +2^{m/2} = +n$$

Lower bound:

Let
$$d(a,b) = |a-b|$$
 and $j = (m/2)-1$.

$$2^{j} = 2^{(m/2)-1} = +n/2$$

$$d(0, cube_i(0)) = n/2$$

Need at least (n/2) + 1 Illiac transfers

From Illiac \rightarrow PM2I, only way $0 \rightarrow n/2$ in < (n/2)+1 steps is $(Illiac_{+1})^{n/2}$

$$cube_j(n/2) = 0$$

No subsequence of $(Illiac_{+1})^{n/2}$ can do.

i. To do cube_j(0) and cube_j(n/2) need at least (n/2)+1

Upper bound:

For cube_i $0 \le i \le (m/2)-2$

(S1)
$$A \leftarrow DTR [X^{m-(i+1)}1X^i]$$

(S2) for
$$j = 1$$
 to 2^i do Illiac₊₁ [X^m]

(S3)
$$A \longleftrightarrow DTR [X^{m-(i+1)}1X^i]$$

(S4) for
$$j = 1$$
 to 2^i do $Illiac_{-1} [X^m]$

(S5) DTR
$$\leftarrow$$
 A [$X^{m-(i+1)}1X^i$]

Ex. N = 16, m = 4, i = 0, DTR PE $3 \rightarrow DTR 2$

(S1)
$$A \leftarrow DTR [XXX1] \{DTR 3 \rightarrow A 3\}$$

(S3) DTR
$$\leftarrow$$
 A [XXX1] {A 3 \rightarrow DTR 3}

(S4)
$$(\text{Illiac}_{-1})^1 \{ \text{DTR } 3 \rightarrow \text{DTR } 2 \}$$

Algorithm uses $2*2^{i}$ inter-PE transfers n/2 inter-PE transfers when i = (m/2)-2 3 register-to-register moves

For cube_i $0 \le i \le (m/2)-2$

- (S1) A \leftarrow DTR $[X^{m-(i+1)}1X^i]$
- (S2) for j = 1 to 2^i do $Illiac_{+1} [X^m]$
- (S3) $A \longleftrightarrow DTR [X^{m-(i+1)}1X^i]$
- (S4) for j = 1 to 2^i do Illiac₋₁ [X^m]
- (S5) DTR \leftarrow A [X^{m-(i+1)}1Xⁱ]

Correctness proof:

Case 1: DTR data originally in PEP, $p_i = 0$.

- (S1) no match.
- (S2) $P \rightarrow P+2^{i} = cube_{i}(P)$
- (S3) DTR of $cube_i(P) \rightarrow A$ of $cube_i(P)$
- (S4) no change
- (S5) A of $cube_i(P) \rightarrow DTR$ of $cube_i(P)$

Case 2: DTR data originally in PEP, $p_i = 1$

- (S1) DTR of $P \rightarrow A$ of P
- (S2) no change
- (S3) A of $P \rightarrow DTR$ of P
- (S4) $P \rightarrow P-2^{i} = \text{cube}_{i}(P)$
- (S5) no change

Upper bound:

 $cube_{(m/2)-1}$

(S1) for j = 1 to n/2 do $Illiac_{+1} [X^m]$

(S2) $Illiac_{-n} [X^{m/2}0X^{(m/2)-1}]$

Ex. N = 16, m = 4, n = 4, cube₁

DTR PE 3 to DTR 1

(S1) $(\text{Illiac}_{+1})^{4/2} [\text{XXXX}] \{ \text{DTR 3} \rightarrow \text{DTR 5} \}$

(S2) Illiac₋₄ [XX0X] {DTR 5 \rightarrow DTR 1}

Algorithm uses (n/2)+1 inter-PE transfers

Correctness proof:

Follows from PM2I \rightarrow Cube and Illiac \rightarrow PM2I

Illiac \rightarrow Cube

Upper bound:

For cube_i $m/2 \le i \le m-2$

(S1)
$$A \leftarrow DTR [X^{m-(i+1)}1X^i]$$

(S2) for
$$j = 1$$
 to $2^i/n$ do Illiac_{+n} [X^m]

(S3)
$$A \longleftrightarrow DTR [X^{m-(i+1)}1X^i]$$

(S4) for
$$j = 1$$
 to $2^i/n$ do Illiac_{-n} [X^m]

(S5) DTR
$$\leftarrow$$
 A [$X^{m-(i+1)}1X^i$]

Ex. N = 16, m = 4, i = 2, DTR PE
$$3 \rightarrow DTR 7$$

(S2)
$$(Illiac_{+4})^1 \{DTR 3 \rightarrow DTR 7\}$$

(S3)
$$A \leftarrow DTR [X1XX] \{DTR 7 \rightarrow A 7\}$$

(S5) DTR
$$\leftarrow$$
 A [X1XX] {A7 \rightarrow DTR 7}

Algorithm uses
$$2*(2^i/n)$$
 inter-PE transfers $n/2$ inter-PE transfers when $i=m-2$ register-to-register moves

Upper bound:

For $cube_{m-1}$:

Use Illiac \rightarrow PM2I since cube_{m-1} \equiv PM2_{±(m-1)}

Algorithm uses n/2 inter-PE transfers

$$(\mathrm{Illiac}_{+n})^{n/2} = +n*(n/2) = +N/2 = 2^{m-1}$$

Illiac \rightarrow Shuffle-Exchange

Exchange: $exchange = cube_0$ so use $Illiac \rightarrow cube_0$ lower bound = upper bound = 2

Illiac → Shuffle

Lower bound: 2(n-2)

Upper bound: use PM2I \rightarrow shuffle and Illiac \rightarrow PM2I

$$(S1')$$
 A \leftarrow DTR $[X^{m-1}0]$

$$(S2')$$
 Illiac₊₁ $[X^{m-1}1]$ $\{PM2_{+0} [X^{m-1}1]\}$

(S3') for
$$j = 1$$
 to $(m/2)-1$ do

$$(S4') \qquad A \longleftrightarrow DTR [X^{m-j-1}1X^{j-1}0]$$

(S5') for
$$i = 1$$
 to 2^{j} do $Illiac_{+1} [X^{m}]$
$$\{PM2_{+j} [X^{m-1}0] \ 1 \le j < m/2\}$$

$$(S3'')$$
 for $j = m/2$ to $m-1$ do

(S4") A
$$\longleftrightarrow$$
 DTR [X^{m-j-1}1X^{j-1}0]

(S5") for
$$i = 1$$
 to $2^{j}/n$ do Illiac_{+n} [X^m]

$$\{PM2_{+j}\ [X^{m-1}0]\ m/2 \leq j < m\}$$

$$(S6')$$
 Illiac₊₁ $[X^{m-1}0]$ $\{PM2_{+0} [X^{m-1}0]\}$

$$(S7')$$
 DTR \leftarrow A $[X^{m-1}0]$

Illiac → Shuffle

$$(S2')$$
 Illiac₊₁ $[X^{m-1}1]$ $\{PM2_{+0} [X^{m-1}1]\}$

(S3') for
$$j = 1$$
 to $(m/2)-1$ do

$$(S4') \qquad A \longleftrightarrow DTR [X^{m-j-1}1X^{j-1}0]$$

(S5') for
$$i = 1$$
 to 2^{j} do Illiac₊₁ [X^m]
$$\{PM2_{+j} [X^{m-1}0] \ 0 \le j < m/2\}$$

$$(S3'')$$
 for $j = m/2$ to $m-1$ do

$$(S4'') A \longleftrightarrow DTR [X^{m-j-1}1X^{j-1}0]$$

(S5") for
$$i = 1$$
 to $2^{j}/n$ do Illiac_{+n} [X^m]

$$\{PM2_{+j} \ [X^{m-1}0] \ m/2 \le j < m\}$$

$$(S6')$$
 Illiac₊₁ $[X^{m-1}0]$ $\{PM2_{+0} [X^{m-1}0]\}$

Algorithm complexity:

inter-PE transfers -S2': 1, and S6': 1.

S5':
$$\sum_{j=1}^{(m/2)-1} 2^{j} = 2^{m/2} - 2 = n-2$$

S5":
$$\sum_{j=m/2}^{m-1} 2^{j}/n = \sum_{j=m/2}^{m-1} 2^{j-(m/2)} = \sum_{i=0}^{m/2-1} 2^{i} = n-1$$

2n-1 inter-PE data transfers (total)

n+1 register-to-register moves

Shuffle-Exchange \rightarrow PM2I

Lower bound:

$$PM2_{+i}(1^m) = 0^{m-i}1^i$$
 $0 \le i < m$ $1^m \to 0^{m-i}1^i$

1 in or rotated to 0th position, mapped to 0 (by exchange), then shuffled to (m-1)st position; need at least m-1 shuffles.

to change m—i 1's to 0's need at least m—i exchanges

need at least 2m-1-i transfers

for i = 0, need at least 2m-1 transfers west

PM2_{-i} is similar

Shuffle-Exchange → PM2I

Upper bound:

$$PM2_{+i} 0 \le i < m (PM2_{-i} similar)$$

(S1) for
$$j = m-1$$
 step -1 to i do

(S2) shuffle
$$[X^m]$$

(S3) exchange
$$[1^{j-i}X^{m-(j-i)}]$$

(S4) for
$$j = i-1$$
 step -1 to 0 do shuffle $[X^m]$

Ex. N = 8, m = 3, i = 1, DTR PE
$$3 \rightarrow DTR 5$$

(S2) (j=2) shuffle [XXX] {DTR
$$3 \rightarrow DTR 6$$
}

(S3) (j=2) exchange [1XX] {DTR 6
$$\rightarrow$$
 DTR 7}

(S2) (j=1) shuffle [XXX] {DTR
$$7 \rightarrow DTR 7$$
}

(S3)
$$(j=1)$$
 exchange [XXX] {DTR 7 \rightarrow DTR 6}

(S4) (j=0) shuffle [XXX] {DTR
$$6 \rightarrow DTR 5$$
}

Algorithm uses m shuffles

m-i exchanges

Total of 2m inter-PE transfers when i = 0

Shuffle-Exchange \rightarrow PM2I

Upper bound:

$$PM2_{+i}$$
 $0 \le i < m (PM2_{-i} similar)$

(S1) for
$$j = m-1$$
 step -1 to i do

(S2) shuffle
$$[X^m]$$

(S3) exchange
$$[1^{j-i}X^{m-(j-i)}]$$

(S4) for
$$j = i-1$$
 step -1 to 0 do shuffle $[X^m]$

Correctness proof:

Induction hypothesis: after S2 and S3 executed,

$$P = p_{m-1/0}$$
 is mapped to

$$p_{j-1/i}p_{i-1/0}^{'}p_{m-1/j}^{'}$$
 where $p_{m-1/0}^{'}=P+2^{i}\ mod\ N$

Prove by induction on j

When
$$j=i,\,P\rightarrow p_{i-1/0}^{\,\prime}p_{m-1/i}^{\,\prime}$$

S4:
$$p'_{i-1/0}p'_{m-1/i} \rightarrow p'_{m-1/0} = PM2_{+i}(P)$$

Shuffle-Exchange \rightarrow Cube

Lower bound: * cube_{m-1} $(10^{m-3}11) = 0^{m-2}11$

- need at least one exchange
- need at least one shuffle to move 1 out of p_{m-1} position
- must have at least m-1 shuffles or else 1 in p_1 position will move into $p_{m-1/2}$ position
- 1 exchange and m-1 shuffles not enough
 - shuffle^{m-1}(exchange($10^{m-3}11$)) = $010^{m-3}1$
 - exchange not first, 1 in p_0 position moved to p_{m-1} position by shuffles
- i. need at least m+1 transfers

Shuffle-Exchange → Cube

Upper bound:

 $cube_0 = exchange$

 $cube_i 0 < i < m$:

- (S1) for j = 1 to m-i do shuffle $[X^m]$
- (S2) exchange [X^m]
- (S3) for j = 1 to i do shuffle $[X^m]$

Ex. N = 8, m = 3, i = 1, DTR PE $3 \rightarrow DTR 1$

- (S1) (j=1) shuffle [XXX] {DTR $3 \rightarrow DTR 6$ }
- (S1) (j=2) shuffle [XXX] {DTR 6 \rightarrow DTR 5}
- (S2) exchange [XXX] {DTR $5 \rightarrow$ DTR 4}
- (S3) (j=1) shuffle [XXX] {DTR $4 \rightarrow DTR 1$ }

Algorithm uses m+1 inter-PE transfers

Shuffle-Exchange \rightarrow Cube

Upper bound:

 $cube_i \ 0 < i < m$:

- (S1) for j = 1 to m-i do shuffle $[X^m]$
- (S2) exchange [X^m]
- (S3) for j = 1 to i do shuffle $[X^m]$

Correctness proof:

$$\begin{split} \text{shuffle}^{m-i}(p_{m-1/0}) &= p_{i-1/0} p_{m-1/i} \\ \text{exchange}(p_{i-1/0} p_{m-1/i}) &= p_{i-1/0} p_{m-1/i+1} \overline{p}_i \\ \text{shuffle}^i(p_{i-1/0} p_{m-1/i+1} \overline{p}_i) &= p_{m-1/i+1} \overline{p}_i p_{i-1/0} \\ &= \text{cube}_i(p_{m-1/0}) \end{split}$$

Shuffle-Exchange \rightarrow Illiac

Follows from Shuffle-Exchange \rightarrow PM2I and PM2I \rightarrow Illiac

Lower bound = 2m-1

 $Upper\ bound=2m$