Option Transfer in Humans

Liyu (Jimmy) Xia, Anne Collins

University of California, Berkeley

Hierarchical human behavior

1. Speed up learning

1. Speed up learning

2. Long-term planning

Hierarchically structured

Hierarchically structured

Hierarchically structured

Hierarchically structured

Flexible transfer

Hierarchically structured

Flexible transfer

Options in Human Learning?

1. Do we learn options (through RL)? Options of options?

Options in Human Learning?

1. Do we learn options (through RL)? Options of options?

2. Can we transfer options? At any level?

Options in Human Learning?

1. Do we learn options (through RL)? Options of options?

2. Can we transfer options? At any level?

3. Does option improve exploration and speed up human learning?

2nd stage shape is random: Rule out pure sequence learning

2nd stage shape is random: Rule out pure sequence learning

2nd stage depends on 1st stage: Option-specific policies

Experimental Design: Block Structure

Unsignaled context: test

- **creation** of two sets of high level options
- reactivation of high-level options in Blocks 3-6

Unsignaled context: test

- creation of two sets of high level options
- reactivation of high-level options in Blocks 3-6

Test

- positive transfer of low-level options
- negative transfer of high-level options

General Behavior: Average Number of Presses

General Behavior: Average Number of Presses

General Behavior: Average Number of Presses

Participants (N = 23) are able to learn the task fairly well.

General Behavior: Zoom in on Blocks 5-8

Participants (N = 23) are able to learn the task fairly well.

Blocks 5-6: Learning saturation (benchmark)

Block 7: First testing block

Block 8: Second testing block

Participants learn and (positive/negative) transfer options.

Participants learn and (positive/negative) transfer options.

Participants learn and (positive/negative) transfer options of options.

Similar choice type analysis for all other transfer effects

Modeling

Modeling

- The Options Framework: Learn option-specific policies through Q-learning

Modeling

- The Options Framework: Learn option-specific policies through Q-learning

- Chinese Restaurant Process (CRP): Cluster hidden contexts to achieve transfer

Modeling: First Stage CRP

Modeling: First Stage CRP

Modeling: First Stage CRP

Context: temporal/block context

Modeling: First Stage HO1-specific Policy (Breakfast)

Modeling: First Stage HO1-specific Policy (Breakfast)

HO1	A1	A2	A3	A4
		g MO1 (C	offee) as	
	a whole			
HO1		HO2		New HO

Modeling: Second Stage CRP

Modeling: Second Stage CRP

Modeling: Second Stage CRP

Context: MO

Modeling: Second Stage LO1-specific Policy (Boil)

Simulation Results

Second stage

Simulation Results

Simulation Results

Summary

 Psy: Behavioral signatures of option learning and transfer (and options of options) through a novel behavioral paradigm.

Summary

- Psy: Behavioral signatures of option learning and transfer (and options of options) through a novel behavioral paradigm.
- 2. Al: The Option Model + CRP is humanlike (when flat RL fails) and enables flexible option transfer at multiple levels.

Human Data

Human Data

Option Model

Option Model

Summary

- Psy: Behavioral signatures of option learning and transfer (and options of options) through a novel behavioral paradigm.
- 2. Al: The Option Model + CRP is humanlike (when flat RL fails) and enables flexible option transfer at multiple levels.
- Three more experiments testing other aspects of options: naturalistic, compositional, etc, and replicating.

Human Data

Human Data

Acknowledgements

CCN Lab PI: Anne Collins

Lab manager: Sarah Master

Undergrad RAs: Katya Brooun Ham Huang Helen Lu Wendy Shi

CCN Lab NIH R01MH119383-01

Contact me: jimmyxia@math.berkeley.edu

RLDM

Block 8 Second Stage Error Type

Negative transfer dominated by the error type predicted by option transfer. Modeling replicates.

Block 7 Second Stage Error Type

More Second Stage Analysis

First press in the second stage: significant (positive/negative) in the first press of the block.

Reaction time: rule out pure sequence learning effects