L4: Building Direct Link Networks II

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

- Encoding
 - Encoding bits onto transmission medium
- **□** Framing
 - Delineating sequence of bits into messages
- **□** Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

Things Can Go Wrong ...

■ How does a receiver know that a frame contains error?

Error Detection

- □ Detect that the received contains error
- □ How?

Error Detection

9/2/2015

Additional Data for Error Detection

Error Detection Code

- Two Examples
 - Two-dimensional parity
 - Cyclic redundancy code

Parity Check

- □ Append a parity bit to each character
- Even parity
 - Set the parity bit as either 0 or 1 such that the number of 1's in the character is <u>EVEN</u>
- □ Odd parity
 - Set the parity bit as either 0 or 1 such that the number of 1's in the character is ODD

Two-Dimensional Parity

- □ Assume event parity is used
- Parity carried out on both directions
- Each byte has a parity bit
 - Even number of 1's: 1 → parity bit
- Each frame has a parity byte
 - Event number of 1's: 1 → corresponding bit in parity byte

9/2/2015

CSCI 445 - Fall 2015

Exercise L4-1

□ Q1: Sending the following message over a link

HELO

determine its two-dimensional parity bits and byte.

Assume using the ASCII code (**not** the Extended ASCII).

- Q2: In above case, show an example of received "frame" (i.e., data // parity bits and byte) that has detectable error. Include both data bits and parity bits and byte.
- Q3: Show an example of received "frame" (i.e., data // parity bits and byte) that has non-detectable error.

How Good is Two-Dimensional Parity?

- What types of errors does it catch?
 - Any 1-bit error? 2-bit error? 3-bit error? 4-bit error? ...
- How much extra data are needed to detect errors?
- How efficient is the algorithms to compute the EDC and detect errors?

Cyclic Redundant Check (1)

- Error checking code
 - Add k bits of redundant data to an n-bit message
- Quality of the error detection code
 - Low redundancy: k << n
 - High probability of detecting errors
 - Can be implemented efficiently
- Polynomial Code: Cyclic Redundant Check (CRC)
- □ Sender sends message M to receiver
 - Generate a bit string P: M // E
 - How does sender generate E?
 - How does receiver verifies if error?

Cyclic Redundant Check (2)

- \blacksquare Represent *n*-bit string as *n*-1 degree polynomial
 - Bit position as power of each term
 - \blacksquare Digital signal: coefficients are either θ or 1
 - Bit string: 11011 as $M(x) = 1 x^4 + 1 x^3 + 0 x^2 + 1 x^1 + 1 x^0 = x^4 + x^3 + x + 1$
- \square Sender and receiver agrees on a divisor polynomial C(x)
 - \blacksquare Digital signal: coefficients are either θ or 1
 - Degree of C(x): k
 - Example: $C(x) = x^3 + x^2 + 1$ and k = 3

Cyclic Redundant Check (3)

- □ Algorithm generating M//E
 - Left shift M by k bits
 - Example
 - 11011 becomes 11011000
 - New polynomial: $T(x) = M(x)x^k$
 - Get remainder of T(x)/C(x)
 - Example: $(x^4 + x^3 + x + 1)x^3/(x^3 + x^2 + 1)$
 - Result must be 0 or 1: modular 2 arithmetic \rightarrow "-" = XOR
 - Quotient: $X^4 + 1$
 - Remainder: $R(x) = x^2 + 1$
 - \blacksquare Subtract R(x) from T(x)
 - Example

•
$$(x^4 + x^3 + x + 1)x^3 - (x^2 + 1) = x^7 + x^6 + x^4 + x^3 + x^2 + 1$$

- The result is M//E
- Send the result to receiver

Previous Example Using Shift and XOR

□ Message: 11011000

□ Divisor: 1101

Cyclic Redundant Check (4)

- □ Algorithm verifying received message
 - \blacksquare Message represented as polynomial T(x)
 - \blacksquare Calculate remainder of T(x) / C(x)
 - If the remainder is not 0, an error
 - Otherwise, no errors detected

Cyclic Redundant Check (5)

- Quality of CRC
 - Algorithm efficiency
 - □ Shift and XOR
 - Redundancy
 - \Box Depends on C(x)
 - Error detection probability
 - \Box Depends on C(x)
- □ Common CRC Polynomials
 - CRC-8: 1 0000 0111
 - CRC-10: 110 0011 0011
 - CRC-32: used in Ethernet

Exercise L4-2

□ Q1: Sending the following data (two bytes in hexadecimal numbers) over a link

24 A1

determine the "frame" (data // CRC) to be transmit using CRC-8 (divisor = x^8+x^2+x+1)

- □ Q2: In above case, show an example of received frame (data // CRC) that contains a detectable error.
- □ Q3: Show an example of received frame that has non-detectable error.

Summary

- □ A frame can be corrupted
 - Error detection
- Error detection not 100% reliable! protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction
- □ FYI: error handling in general
- □ Q: How to make the link appear to be reliable despite errors?
 - Reliable transmission

Error Handling: Geometrical Perspective

- □ This discussion is informational
- □ Q: why can an Error Detection Code (EDC) detect a certain number of bit errors, and why can not the EDC detect some other number of bit errors?
 - Recall discussion on two dimensional parity code
 - 1-bit error, 2-bit error, 3-bit error, 4, 5, 6???
 - answered on case-by-case basis
- □ Q: Is there systematic way to deal with this problem?

Error Handling (1)

- □ Error handling
 - Unit of data sent: code words
 - Original data mapped to sequence of code words
 - Send the code words
 - Receiver recovers original data from the received code words
 - Original message m bits \rightarrow m + k = n bits message \rightarrow n bit code word
 - What are the lengths of the error detection codes studied?

Error Handling (2)

- **□** Hamming distance
 - # of bit positions in which two code words differ
 - h(10001001, 10110001) = 3
- \square M \rightarrow M//K: m \rightarrow m + k
 - \blacksquare # of total possible bit strings: $2^{(n+k)}$
 - $k \ll (m + k)$
- Example code words
 - Message size 2: m = 2
 - 1 bit parity bit: k = 1
 - $2^{(m+k)} = 2^3 = 8$
 - Possible code words: 000, 011, 101, 110
 - **#** # = 4
 - \blacksquare Minimum distance of any pair = 2

10001001 10110001

00111000

Error Handling (3)

- □ Detect 1 bit errors
- □ Cannot detect any 2-bit errors
- □ Distance of the code is 2
- □ d+1 distance code words
 - No d bit difference leads to a valid code
 - detect d errors

Error Handling (4)

- Correct d errors, need distance 2d + 1 code words
 - After d errors, the closest code word remains the correct one.
 - Code words 5 = 2x2+1
 - **00000 00000**
 - **0**00000 111111
 - **111111 00000**
 - **111111 11111**
 - □ Correct at most 2 errors

Error Handling (5)

- □ Observation
 - \blacksquare 2d + 1 distance code \rightarrow correct d errors
 - \blacksquare 2d + 1 distance code \rightarrow detect 2d errors
- Error correction codes generally more redundant
- Error correction or error detection?
 - Error detection example: m + k with error rate r
 - \square N (m + k) + r N (m + k) with error correction
 - Error correction example: m + K with error rate r and K >> k
 - \square N (m + K)
 - N (m + k) + r N (m + k) N (m + K) = N k + r N (m + k) NK = N (r + rm + rk) N K = N (r + rm + rk K)
 - r + rm + rk K > 0? r + rm + rk K < 0?

Two-Dimensional Parity Code as Error Correction Code (1)

Two-Dimensional Parity Code as Error Correction Code (2)

- □ Assuming even parity, is there any bit error?
- Assuming 2 bit error, where are the errors?

Two-Dimensional Parity Code as Error Correction Code (3)

Two-Dimensional Parity Code as Error Correction Code (4)

- How many bit errors can two-dimensional parity code correct?
 - 1-bit error?
 - 2-bit error?
 - • • • •
- \square Flip 1 bit \rightarrow 3 bits are flipped
 - Minimum distance is $3 = 2 \times 1 + 1$
 - Then?

Summary

- □ A frame can be corrupted
 - Error detection and correction
- Error detection not 100% reliable! protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction
- □ Q: How to make the link appear to be reliable despite errors?
 - Reliable transmission