Lecture 7 - Forecasting with VEC Models

Pedro Valls¹

¹Sao Paulo School of Economics - FGV CEQEF-FGV

July 26, 2024

CENTRO DE ESTUDOS QUANTITATIVOS EM ECONOMIA E FINANÇAS

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Outline

- Introduction
- Spurious regression
- Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- Forecasting in the presence of cointegration
- The effect of stochastic trends on forecast
- Example using simulated series

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Introduction

- Integrated variables can be made stationary by differencing
- However in a multivariate context, there also exists the possibility that linear combinations of integrated variables are stationary, this is the case of cointegration
- Specification of cointegrated processes were implicit in the so-called error correction models proposed by [Davidson et al., 1978].
- Cointegration was introduced in a series of papers by [Granger, 1983], [Granger and Weiss, 1983] and [Engle and Granger, 1987].
- We consider the consequences of cointegration for modelling and forecasting.

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 12 Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Spurious Regression I

• [Granger and Newbold, 1974] considered two unrelated random walks y_{1t} and y_{2t} such that

$$y_{it} = y_{it-1} + \varepsilon_{it}$$
 where $\varepsilon_{it} \sim WN(0, 1)$ $i = 1, 2$ (1)

- and they are independent of each other
- And we regress y_{1t} onto y_{2t} namely:

$$y_{2t} = \beta_0 + \beta_1 y_{1t} + u_t \tag{2}$$

- Simulation evidence reporter by [Granger and Newbold, 1974] featured properties that later were formalized by [Phillips, 1986] in particular:
 - $\widehat{\beta}_1$ does not converge in probability to zero but instead converges in distribution to a non-normal random variable not necessarily centered at zero.

Spurious Regression II

- The usual t-statistics for testing $\beta_1=0$ diverges as $T\to\infty$
- The usual R^2 from the regression converges to unity as $T \to \infty$
- But if we regress

$$d(y_{2t}) = \alpha_0 + \alpha_1 d(y_{1t}) + v_t \tag{3}$$

- simulation evidence
 - $\widehat{\alpha}_1$ converge in probability to zero and the distribution will converges to N(0,1) as $T\to\infty$
 - The usual t-statistics for testing $\beta_1=0$ converges to N(0,1) as $T \to \infty$
 - ullet The usual R^2 from the regression converges to zero as $T o \infty$
- Use the following commands in R
- Sprious Regression

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 12 Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Cointegration and error correction models I

• We can write a VAR(p) in levels of y_t

$$\Phi(L)y_t = \varepsilon_t \quad \text{with} \quad \varepsilon_t \sim NI(0, \Sigma)$$
 (4)

as

$$\Delta y_t = \underbrace{-(I - \Phi_1 - \dots - \Phi_p)}_{\Pi} y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + \varepsilon_t$$
(5)

where

$$\Gamma_i = -(\Phi_{i+1} + \dots + \Phi_p) \tag{6}$$

• When y_t is weakly stationary we know that $|\Phi(z)| = 0$ has all the roots outside the unit circle.

4 m > 4 m >

Cointegration and error correction models II

- In the presence of unit roots i.e. $|\Phi(1)| = 0$ the matrix $\Phi(1) = \Pi$ has reduced rank.
- ullet So the rank of Π will determine if the variables are integrated and cointegrated.
- If the rank is r, with $0 \le r \le m$.
- When r = 0 equation (5) reduces to

$$\Delta y_t = \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + \varepsilon_t \tag{7}$$

and the valid representation is a VAR(p-1) in first differences.

• When r = m all the components of y_t are stationary and the valid representation is (4) a VAR(p) in level

- (ロ) (団) (量) (量) (量) のQの

Cointegration and error correction models III

• When 0 < r < m we can write Π as

$$\Pi = \underset{m \times r}{\alpha} \cdot \underset{r \times m}{\beta'} \tag{8}$$

where β contains the coefficients of the r independent stationary combination of the *m* integrated variables, known as cointegrated vector

$$\beta' y_{t-1} \sim I(0) \tag{9}$$

and α is the load matrix given the importance of each cointegration relationship in each equation.

• In this case we can rewrite (5) in a Vector Error Correction Model (VECM) given by

$$\Delta y_t = -\alpha \beta' y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + \varepsilon_t \qquad (10)$$

Cointegration and error correction models IV

- Some comments about equations (4), (7) and (10)
 - If the components of y_t are non-stationary and we estimate (4) OLS estimates of the coefficients remains consistent but the asymptotic distribution are non-standard.
 - If the components of y_t are non-stationary and co-integrate and we estimate (7) the model is mispecified so OLS will be inconsistent.
 - If the components of y_t are non-stationary and co-integrate and we estimate (4) the estimates are consistent but inefficient

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 12 Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Engle and Granger cointegration test I

- [Engle and Granger, 1987] suggest the following two-stage procedure to test cointegration.
 - First estimate by OLS the regression:

$$y_{1t} = \beta_2 y_{2t} + \dots + \beta_m y_{mt} + \epsilon_t \tag{11}$$

- Second test whether ϵ_t has a unit root.
 - If it does there is no cointegration
 - If it does not then the variables are cointegrated.
- The critical values for the test of unit root are different from the Dickey & Fuller Test (see [MacKinnon, 1991] or [MacKinnon, 1996])

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Johansen cointegration test I

- In order to apply the Johansen procedure we need the additional assumption that the VAR error are normally distributed
- It is a sequentially tests for the following hypotheses:

$$\begin{array}{cccc} & H_0 & H_1 \\ (1) & r = 0 & r = 1 \\ (2) & r \le 1 & r = 2 \\ (3) & r \le 2 & r = 3 \\ \vdots & \vdots & \vdots \\ (m-1) & r \le m-1 & r = m \end{array}$$

- Two test statistics are use:
 - a. the trace test; and
 - b. the maximum eigenvalue test

both with an asymptotic \aleph^2 distribution.

Johansen cointegration test II

- The cointegration coefficients and the loading are not uniquely identified.
- ullet We have to impose a priori restrictions on the coefficients of lpha and eta
- For example it can be shown that if

$$\beta' = \begin{bmatrix} I \\ r \times r \end{bmatrix} \tag{12}$$

ullet then lpha and \widetilde{eta} are exactly identified

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 12 Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

MA representation of cointegrated processes I

• A stationary process admits a $MA(\infty)$ representation

$$\Delta y_t = C(L)\varepsilon_t \tag{13}$$

and using the same steps as in [Beveridge and Nelson, 1981] decomposition we have

$$y_t = C(1) \sum_{j=1}^{t} \varepsilon_t + \underbrace{C^*(L)\varepsilon_t}_{TC_t}$$
(14)

where PC_t and TC_t stand for permanent and transitory components respectively and we have the following relationship between (13) and (14)

$$C(L) = C^*(L)(I - L) + C(1)$$
(15)

MA representation of cointegrated processes II

- The presence of cointegration imposes constrains on C(1).
- Given that

$$\beta' y_t \sim I(0) \tag{16}$$

it must be that

$$\beta'C(1) = 0 \tag{17}$$

as stationary variables should not be influenced by stochastic trends.

- From (17) C(1) is singular and has rank m-r.
- The singularity of C(1) implies that the long-run covariance of Δy_t

$$C(1)\Sigma C'(1) \tag{18}$$

is singular and has rank m-r.

• From (10) and defining the $m \times (m-r)$ matrices of rank m-r β_{\perp} and α_{\perp} such that

MA representation of cointegrated processes III

- $\alpha'_{\perp}\alpha = 0$, $\beta'_{\perp}\beta = 0$.
- $rank(\alpha, \alpha_{\perp}) = n$ and $rank(\beta, \beta_{\perp}) = n$
- $(\alpha'_{\perp}\Gamma(1)\beta_{\perp})^{-1}$ exists where $\Gamma(1)=I_m-\sum\limits_{i=1}^{p-1}\Gamma_i$
- $\bullet \ \beta_\perp (\alpha'_\perp \Gamma(1)\beta_\perp)^{-1} \alpha'_\perp + \alpha' (\alpha'_\perp \Gamma(1)\beta_\perp)^{-1} \beta' = I_m$
- From (10) and defining the $m \times (m-r)$ matrices of rank m-r, β_{\perp} and α_{\perp} such that
 - A necessary and sufficient condition for $\beta' y_t$ to be I(0) is that

$$\alpha'_{\perp}\Gamma(1)\beta_{\perp}$$

has full rank

• the BN decomposition is given by (14) where

$$C(1) = \beta_{\perp} (\alpha_{\perp}' \Gamma(1) \beta_{\perp})^{-1} \alpha_{\perp}'$$
(19)

MA representation of cointegrated processes IV

Notice that

$$\beta' C(1) = \beta' \beta_{\perp} (\alpha'_{\perp} \Gamma(1) \beta_{\perp})^{-1} \alpha'_{\perp} = 0$$
 (20)

$$C(1)\alpha = \beta_{\perp}(\alpha'_{\perp}\Gamma(1)\beta_{\perp})^{-1}\alpha'_{\perp}\alpha = 0$$
 (21)

- From (10) and defining the $m \times (m-r)$ matrices of rank m-r, β_{\perp} and α_{\perp} such that
 - \bullet The common trends in y_t are extracted using

$$PC_{t} = C(1) \sum_{j=1}^{t} \varepsilon_{t}$$

$$= \beta_{\perp} (\alpha'_{\perp} \Gamma(1) \beta_{\perp})^{-1} \alpha'_{\perp} \sum_{j=1}^{t} \varepsilon_{t}$$

$$= \xi \alpha'_{\perp} \sum_{j=1}^{t} \varepsilon_{t}$$
(22)

MA representation of cointegrated processes V

where
$$\xi = eta_\perp (lpha_\perp' \Gamma(1) eta_\perp)^{-1}$$

• The common trends are the linear combinations

$$\alpha_{\perp}' \sum_{j=1}^{t} \varepsilon_t \tag{23}$$

- We can estimate both PC_t in (22) and the stochastic trends in (23) from the estimated VECM parameters and residuals
- ullet Other authors suggested permanent components that directly depend on y_t
- For example [Gonzalo and Granger, 1995], denoted by GG proposed

$$PC_{GGt} = \alpha'_{\perp} y_t \tag{24}$$

while [Johansen, 1995], denoted by J, proposed

$$PC_{Jt} = \beta'_{\perp} y_t \tag{25}$$

4014914717

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
 - Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Example using simulated series I

Use the following commands in R simulated VEC

Figure: 7.9.1

Example using simulated series II

Dependent Variable: Z Method: Least Squares Date: 11/05/18 Time: 09:04 Sample: 101 600 Included observations: 500

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-15.19438	0.521170	-29.15435	0.0000
W	-0.781675	0.020377	-38.36033	0.0000
R-squared	0.747146	Mean depend	fent var	-29,44014
Adjusted R-squared	0.746638	S.D. depende	ent var	16,24381
S.E. of regression	8.176334	Akaike info cr	iterion	7.044357
Sum squared resid	33292.51	Schwarz crite	rion	7.061215
Log likelihood	-1759.089	Hannan-Quin	in criter.	7.050972
F-statistic	1471.515	Durbin-Watso	n stat	0.025929
Prob(F-statistic)	0.000000			

Example using simulated series III

Date: 11/05/18 Time: 09:04 Sample: 101 600 Included observations: 500

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.982	0.982	485.03	0.000
1	(8)	2	0.966	0.035	954.89	0.000
1	100	3	0.950	0.006	1410.2	0.000
1	100	4	0.933	-0.028	1850.5	0.00
1	100	5	0.916	-0.021	2275.6	0.00
	(1):	6	0.899	-0.004	2685.9	0.00
1	00	7	0.882	0.012	3082.4	0.00
1	0	8	0.864	-0.069	3463.3	0.00
	100	9	0.845	-0.027	3828.5	0.00
1	110	10	0.827	0.007	4179.0	0.00
	100	11	0.808	-0.029	4514.3	0.00
1	10	12	0.792	0.070	4837.0	0.00

F-statistic Obs*R-squared	7358.918	Prob. F(2,496 Prob. Chi-Sor	0	0.0000
CON-M-ademed	403.0950	Pitta Uni-oq	Jane(2)	0.0000
Test Equation				
Dependent Variable: R				
Method Least Squares				
Date: 11/05/18 Time:	09.04			
Sample: 101 600 Included observations:				
Presample missing va		A.ala aat ta aan		
priesarigie misserig va	ne radden rear	0050 0410/76		
Variable	Coefficient	Std. Error	1-Statistic	Prob.
Variable C	-0.002426	0.094292	-0.025725	Prob. 0.9795
C W	-0.002426 -0.001015	0.094292 0.003687	-0.025725 -0.275167	0.9795
C W RESID(-1)	-0.002426 -0.001015 0.955355	0.094292 0.003687 0.044914	-0.025725 -0.275167 21.27092	0.9795 0.7833 0.0000
C W	-0.002426 -0.001015	0.094292 0.003687	-0.025725 -0.275167	0.9795
C W RESID(-1) RESID(-2)	-0.002426 -0.001015 0.965365 0.030316	0.094292 0.003697 0.044914 0.044972 Mean depend	-0.025725 -0.275167 21.27092 0.674116	0.9795 0.7833 0.0000 0.5006
C W RESID(-1) RESID(-2) R-squared Adjusted R-squared	-0.002426 -0.001015 0.955365 0.030316 0.967398 0.967201	0.094292 0.003687 0.044914 0.044972 Mean depends 5.D. depends	-0.025725 -0.275167 -0.275167 -21.27092 -0.674116 Sent var	0.9795 0.7833 0.0000 0.5006 -1.77E-14 8.168133
C W RESID(-1) RESID(-2) R-squared R-squared S.E. of regression	-0.002426 -0.001015 0.965365 0.030316	0.094292 0.003687 0.044914 0.044972 Mean depend S.D. depends Akaike info cr	-0.025725 -0.275167 -0.275167 -21.27092 -0.674116 Sent var int var iterion	0.9795 0.7833 0.0000 0.5006 -1.77E-14 8.168133 3.628972
C W RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of repression S.E. of repression	0.002426 -0.001015 0.965366 0.090316 0.967398 0.967201 1.479292 1085.399	0.094292 0.003687 0.044914 0.044972 Mean depend S.D. depends Akaite info or Schwarz offe	-0.025725 -0.275167 -0.275167 -21.27092 -0.674116 tent var int var intention rion	0.9795 0.7833 0.0000 0.5006 -1.77E-1- 8.168133 3.62867 3.62867
C W RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log Skethood	0.002426 -0.001015 0.965366 0.090316 0.967398 0.967291 1.479292 1085.399 -933.2430	0.094292 0.005987 0.044914 0.044972 Mean depend S.D. depends Akallo info Schwarz orite Hannan-Quir	-0.025725 -0.275167 -0.275167 -21.27092 -0.674116 tent var int var	0.9795 0.7833 0.0000 0.5006 -1.77E-14 8.168133 3.62887 3.62887 3.642203
C W RESID(-1) RESID(-2) R-squared R-squared S.E. of regression	0.002426 -0.001015 0.965366 0.090316 0.967398 0.967201 1.479292 1085.399	0.094292 0.003687 0.044914 0.044972 Mean depend S.D. depends Akaite info or Schwarz offe	-0.025725 -0.275167 -0.275167 -21.27092 -0.674116 tent var int var	0.9795 0.7833 0.0000 0.5006 -1.77E-1- 8.168133 3.62867 3.62867

Example using simulated series IV

			t-Statusic	Prob."
Augmented Dickey-Full-	or head adadastic		-2.05T355	0.0373
Test critical values:	196 level		-2.599904	
	5% level		-1.941459	
	10% level		-1.616273	
*MacKinnon (1995) one Regmented Dickey-Feb				
Method Least Squares Date: 11/05/18 Time: 0 Sample (adjusted): 192	9:04 600			
Method Least Squares Date: 11/05/18 Time: 0 Sample (adjusted): 192	9:04 600		1-Statistic	Prob.
Method Least Squares Date: 11/05/19 Time: 0 Sample (adjusted): 192 Included observations:	9:04 600 499 after adjus	tneris	1-Statistic -2.067356	Prob. 0.0390
Mathod: Least Squares Date: 1105/19 Time: 0 Barrelle (adjusted): 122 included obsenations: Variable RES_SPURIOUS(-1)	0:04 600 499 after adjus Coefficient	Streets 985 Error 0.007195	-2.057356	
Method: Least Squares Date: 1100/19 Time: 0 Sample (agusted): 132 included observations: Variable RES_SPURIOUS(-1) R-squared Adusted R-squared	0:04 500 459 after adjust Coefficient -0.014878 0.007508 0.007508	Std. Error 0.007195 Mean depen 8.D. depend	-2.057356 dent var ent var	0.0390 -0.05114 1.31559
Method: Least Squares Date: 1106/19 Time: 0 Barripe (adjusted; 132 included observations: Variable RES_SPURIOUS(-1) R-squared Adjusted R-squared SE, of regression	0:04 6:00 6:00 6:00 after argur Coefficient -0.014879 0.007000 0.007300 1.318072	Std. Error 8:007195 Bean depend Alaska info	-2.057356 dent var ent var otterion	0.0390 -0.05114 1.31559 2.30141
RES_SPURIOUS(-1) R-squared Adjusted R-squared SE_of regression Sum squared resid	0:04 600 499 after adjust Coefficient -0.014878 0.007508 0.007508 1310972 955.8871	Streets Std Error B007196 Mean depen S.D. depend Alaska info	-2.057356 deat var ent var otterion prion	0.0390 -0.05114 1.31559 2.39141 3.39999
Method: Least Squares Date: 1106/19 Time: 0 Barripe (adjusted; 132 included observations: Variable RES_SPURIOUS(-1) R-squared Adjusted R-squared SE, of regression	0:04 6:00 6:00 6:00 after argur Coefficient -0.014879 0.007000 0.007300 1.318072	Std. Error 8:007195 Bean depend Alaska info	-2.057356 deat var ent var otterion prion	0.0090

F-statistic Obs*R-squared	11288.06 477.9561	Prob. F(1,497 Prob. Chi-Squ		0.0000
Test Equation: Dependent Variable: Ri Method: Least Squares Date: 11/05/18 Time: Sample (adjusted): 10: Included observations:	09:04 2 600	rimarile		
0000000				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable C			t-Statistic	Prob. 0.2198
	Coefficient	Std. Error		0.2198
C RESID*2(-1)	Coefficient 1.340202	Std. Error 1.090778	1.228666 106.2453	
C RESID*2(-1)	Coefficient 1.340202 0.976105	Std. Error 1.090778 0.009187	1.228666 105.2453 entivar	0.2198 0.0000 66.25579
C RESID*2(-1) R-squared Adjusted R-squared	Coefficient 1.340202 0.976105 0.957828	Std. Error 1.090778 0.009187 Mean depend	1.228666 106.2453 lent var nt var	0.2198
С	Coefficient 1.340202 0.976105 0.957828 0.957743	Std. Error 1.090778 0.009187 Mean depend S.D. depende	1.228666 106.2453 ent var nt var terion	0.2198 0.0000 66.25576 98.19145
C RESID*2(-1) R-squared Adjusted R-squared S.E. of regression	1.340202 0.976105 0.957828 0.957743 20.18472	Std. Error 1.090778 0.009187 Mean depend S.D. depende Akaike info cri	1.228666 106.2453 entivar ntivar terion ion	0.2198 0.0000 66.25579 98.19149 8.851729
C RESID*2(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid	Coefficient 1.340202 0.976105 0.957928 0.957743 20.18472 202489.2	Std. Error 1.090778 0.009187 Mean depend S.D. depende Acalke info cri Schwarz criter	1.228666 106.2453 ent var nt var terion ion n criter.	0.2198 0.0000 66.25576 98.19146 8.851725 8.868613

Example using simulated series V

F-statistic	25.03014	Prob. F/2.497	2	0.0000
Obs*R-squared	45.75390	Prob. Chi-Sor	1879(2)	0.0000
Scaled explained SS	49,43220	Prob. Chi-Sq	Jare(2)	0.0000
Test Equation: Dependent Variable: R Method: Least Squares Date: 11/05/18 Time: Sample: 101.600 Included observations:	09:04			
Variable	Coefficient	Std. Empr	1-Statistic	Prob.
С	105,9238	6.971600	15.19361	0.0000
W42	0.030848	0.018589	4.349281	0.0000
			5.658708	0.0000
W	-5.090419	0.894271	-0.000710	
W	-5.090419 0.091508	0.894271 Mean depend		68.58502
W R-squared Adjusted R-squared	0.091508	Mean depend	lant var int var	98.35891
W R-squared Adjusted R-squared S.E. of regression	0.091508	Mean depend S.D. depende Alcake info cr	tent var int var terion	68.58502 98.3689 11.92938
W R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.091508	Mean depend S.D. depende Alcales info or Schwarz crite	Sent var int var Berion rion	98.3689 11.92938 11.95464
W R-squared Adjusted R-squared Surfregression Surfregressid Log likelihood	0.091508 0.087852 93.94855 4385695 -2979.339	Mean depend S.D. depende Alaike info or Schwarz orte Hannan-Quin	tent var int var Berion rion in criter.	98.3589 11.92935 11.9546 11.93825
W R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.091508 0.087852 93.94855 4385595	Mean depend S.D. depende Alcales info or Schwarz crite	tent var int var Berion rion in criter.	98.3689 11.92938 11.95464

Dependent Variable: Y Method: Least Squares Date: 11/05/18 Time: Sample: 101 600 Included observations:	09:04			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.072796	0.119112	-0.611160	0.5414
X	0.992715	0.007413	133.9165	0.0000
R-squared	0.972981	Mean depend	ient var	-14.23798
Adjusted R-squared	0.972927	S.D. depende	ent var	7.442292
S.E. of regression	1.224546	Akaike info cr	iterion	3.247009
Sum squared resid	746.7570	Schwarz crite	rion	3.263867
Log likelihood	-809.7522	Hannan-Quir	in criter.	3.253624
F-statistic	17933.64	Durbin-Watso	on stat	0.864215
Prob(F-statistic)	0.000000			

Example using simulated series VI

Date: 11/05/18 Time: 09:04 Sample: 101 600 Included observations: 500

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.567	0.567	161.57	0.000
1	(8)	2	0.301	-0.030	207.22	0.000
1 🖽	(b)	3	0.176	0.026	222.93	0.000
18	(8)	4	0.124	0.029	230.68	0.000
10	100	5	0.067	-0.025	232.95	0.000
10	(i)	6	0.048	0.021	234.13	0.000
111	1 (0)	7	0.019	-0.023	234.32	0.001
300	1 (6)	8	-0.016	-0.032	234.45	0.001
111	(8)	9	0.005	0.045	234.46	0.000
10	100	10	0.018	0.005	234.63	0.001
10	(8)	11	0.045	0.042	235.66	0.000
10	1 di	12	0.000	-0.065	235 66	0.000

Example using simulated series VII

F-statistic Obs*R-squared	118.9739 162.1013	Prob. F(2,496 Prob. Chi-Sqi) Jare(2)	0.0000
Test Equation:				
Dependent Variable: R	ESID			
Method: Least Squares				
Date: 11/05/18 Time: I	99:04			
Sample: 101 600				
Included observations:				
Presample missing val	ue lagged resi	duals set to zer	0.	
Variable	Coefficient	Std. Error	1-Statistic	Prob.
c	-0.100255	0.098728	-1.015469	0.310-
×	-0.006930		-1.126318	
	0.584431	0.005152	13.03551	
×				0.0000
X RESID(-1)	0.584431	0.044830	13.03551 -0.516556	0.000 0.000 0.605 -2.60E-1
X RESID(-1) RESID(-2)	0.584431 -0.023327	0.044830 0.045150 Mean depend 8.D. depends	13.03661 -0.516656 lent var int var	0.000
X RESID(-1) RESID(-2)	0.584431 -0.023327 0.324203	0.044830 0.045150 Mean depend	13.03661 -0.516656 lent var int var	0.000 0.605 -2.60E-1
X RESID(-1) RESID(-2) R-squared Adjusted R-squared	0.584431 -0.023327 0.324203 0.320115	0.044830 0.045150 Mean depend 8.D. depends	13.03661 -0.516656 fent var int var iterion	0.000 0.605 -2.60E-1 1.22331
X RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression	0.584431 -0.023327 0.324203 0.320115 1.006688	0.044830 0.045150 Mean depend 8.D. depende Akaika info cr	13,03661 -0.516656 fent var int var iterion rion	0.000 0.605 -2.60E-1 1.22331 2.86314 2.89586
RESID(-1) RESID(-2) R-squared Adjusted R-squared SE_of regression Sum squared resid	0.584431 -0.023327 0.324203 0.320115 1.006888 504.6584	0.045150 0.045150 Mean depend 9.D. dependo Akaike info cr Schwarz crite	13,03561 -0.516556 fent var int var iterion rion in criter.	0.000 0.605 -2.60E-1 1.22331 2.86314

Lag Length: 0 (Autom)							
			1-Statistic	P100.7			
Augmented Dicker-Fu			-11.69294	0.0000			
Test offical values:	156 fevel		-2.569934				
	5% level		-1.041459				
	10% level		-1.616273				
Dependent Variable: 0 Method: Least Square	9	on					
Dependent Variable: D	(RES_REG) 5 99.04 (2.500						
Dependent Variable: 0 Method: Loost Square Date: 11/05/18 Time: Sample (adjusted): 10	(RES_REG) 5 99.04 (2.500		1-StateSc	Prob			
Dependent Valuatie: 0 Method: Least Square Date: 11/05/18 Time: Sample (adjusted): 10 Included observations	(RES_REG) 5 99.04 (2.990 (.499.after adju	strients	5-Statutic -11.69294	Prob. 0.0000			
Dependent Variable: 0 Method: Lead Square Date: 11/05/18 Time: Sample (adjusted: 15 Industed observations Variable RES_MEG(-1) R-squared	0(RES_REG) 5 98.54 25.500 : 499 after adjus Coefficient -0.431958 0.215404	Streets 584 Error 0.039942 Mean depen	-11.60294 Sent var	0.0000			
Dependent Variable: 0 Method: Lead Sousie Method: Lead Sousie Method: Mills Time. Sample (adjusted): 16 Indiaded observations Variable RES_REG(-1) R-squared Adjusted R-squared	0(RES_REG) 5 99:04 2:000 : 499 after adjus Coefficient -0:431956 0:215404	Stat Error 0.039942 Mean depen	-11.69294 Sent var	0.0000 -0.002764 1.138373			
Dependent Variable: 0 Method: Lood Square Method: 1007/18 Times Sample (adjusted): 10 Industed observations Variable RES_MEGI-1) R-squared Adjusted R-squared Squared Squared	(RES_REG) 5 92.04 2.009 : 499.after adjust -0.431956 0.215404 1.000342	Std Error 0.036942 Mean depend Acadis into o	-11.69294 Sent var Int var Basion	0.0000 -0.002764 1.138371 2.85649-			
Dependent Variable C Method: Load Square Date: 11/02/19 Three Sample (adjusted): Ni Noused coloration Variable RES_REG-1) R-squared Adjusted R-squared SE. of regression Sum squared resid	(RES_REG) 5 90 04 2 000 499 after adjust Coefficient -0.431956 0.215404 1.20342 596 3432	Streets Std Error 0.036942 Mean depen S.D. depend Availte info or Schwarz crite	-11.69294 Sentivar ontivar starion elon	0.0000 -0.002764 1.138373 2.85649- 2.864938			
Dependent Variable: 0 Method: Lood Square Method: 1007/18 Times Sample (adjusted): 10 Industed observations Variable RES_MEGI-1) R-squared Adjusted R-squared Squared Squared	(RES_REG) 5 92.04 2.009 : 499.after adjust -0.431956 0.215404 1.000342	Std Error 0.036942 Mean depend Acadis into o	-11.69294 Sentivar ontivar starion elon	0.0000 -0.002764 1.138371 2.85649-			

Example using simulated series VIII

F-statistic Obs*R-squared	40.67933 37.75296	Prob. F(1,497 Prob. Chi-Squ		0.0000
Test Equation: Dependent Variable: Ro Method: Least Squares Date: 11/05/18 Time: Sample (adjusted): 100 Included observations:	09.04 2 600	tments		
20.00	Coefficient	1000000	3/13/2//	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	1.086027		1-Statistic 9.984474	
				0.0000 0.0000
С	1.086027	0.108772 0.043103 Mean depend	9.984474 6.378035 entvar	0.0000
C RESID*2(-1)	1.086027 0.274914	0.108772 0.043103	9.984474 6.378035 entvar	0.0000
C RESID*2(-1)	1.086027 0.274914 0.075657	0.108772 0.043103 Mean depend	9.984474 6.378035 lent var nt var	0.0000
C RESID*2(-1) R-squared Adjusted R-squared	1.086027 0.274914 0.075657 0.073797	0.108772 0.043103 Mean depend S.D. depende	9.984474 6.378035 lent var nt var terion	0.000 0.000 1.49649 2.03537 4.18657
C RESID*2(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log litelihood	1,086027 0,274914 0,075657 0,073797 1,958835 1907,007 -1042,551	0.108772 0.043103 Mean depend S.D. depende Aksike info or Schwarz crite Hannan-Quin	9.984474 6.378035 lent var nt var terion tion n criter.	0.0000 0.0000 1.49649 2.03537 4.18857 4.20346 4.19320
C RESID*2(-1) R-squared Agusted R-squared SE. of regression Sum squared resid	1,086027 0,274914 0,075657 0,073797 1,958835 1907,007	0.108772 0.043103 Mean depend S.D. depende Akaike info or Schwarz criter	9.984474 6.378035 lent var nt var terion tion n criter.	0.000 0.000 1.49649 2.03537 4.18857 4.20346

F-statistic	3.031216	Prob. F(2,497		0.0490
Obs*R-squared	6.025527	Prob. Chi-Sq.		0.0480
Scaled explained SS	5.534536	Prob. Chi-Sq	Jare(2)	0.052
Test Equation Dependent Variable: R				
Method: Least Squares				
Date: 11/05/18 Time: Sample: 101 600	09:04			
bortuted observations:	500			
nobsed coseniatoris.	500			
Variable	Coefficient	Std. Error	1-Statistic	Prob.
C	1,239392	0.319089	3.884068	
372	-0.003172	0.001580	-2.007289	0.000
				0.0453
X*2 X	-0.003172	0.001580 0.047784 Mean depend	-2.007289 -1.574012 tent.var	
X ¹ 2 X R-squared Adjusted R-squared	-0.003172 -0.075213 0.012051 0.008075	0.001580 0.047784 Mean depend 8.D. depends	-2.007289 -1.574012 tent var	0.0453 0.116 1.49351- 2.03443
X ¹ 2 X R-squared Adjusted R-squared S.E. of regression	-0.003172 -0.075213 0.012051 0.008075 2.026199	0.001580 0.047784 Mean depend 8.D. depende Akaika info or	-2.007289 -1.574012 tent var int var iterion	0.0453 0.116 1.49351- 2.03443 4.256183
X R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.003172 -0.075213 0.012051 0.008075 2.026199 2040.425	0.001580 0.047784 Mean depend S.D. dependo Akalke info or Schwarz crite	-2.007289 -1.574012 tent var int var iterion	0.0453 0.116 1.49351- 2.03443 4.25618; 4.28147
X ² 2 X R-squared Adjusted R-squared 8.E. of regrassion Sum squared resid Log Modificad	-0.003172 -0.075213 0.012051 0.008075 2.026199 2040.425 -1061.046	0.001580 0.047784 Mean depend S.D. depends Akaika info or Schwarz crite Hannan-Quir	-2.007289 -1.574012 tent var int var itenion nion in criter.	0.0451 0.116 1.49351 2.03443 4.25618 4.28147 4.26610
372	-0.003172 -0.075213 0.012051 0.008075 2.026199 2040.425	0.001580 0.047784 Mean depend S.D. dependo Akalke info or Schwarz crite	-2.007289 -1.574012 tent var int var itenion nion in criter.	0.0453 0.116 1.49351- 2.03443 4.256183

Example using simulated series IX

Figure: Engle-Granger Cointegration

```
| Table | Tabl
```

Example using simulated series X

Figure: Johansen's Test

Example using simulated series XI

Figure: VEC estimation

Example using simulated series XII

Figure: B-N Decomposition

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Forecasting in the presence of cointegration

• We use the VECM representation (10) where r and the unkown parameters are replaced by their ML estimates, i.e.

$$\Delta \widehat{y}_{T+h} = -\widehat{\alpha}\widehat{\beta}'\widehat{y}_{T+h-1} + \widehat{\Gamma}_1 \Delta \widehat{y}_{T+h-1} + \dots + \widehat{\Gamma}_{p-1} \Delta \widehat{y}_{T+h-p+1}$$
 (26)

- for $h = 1, \dots, H$ where as usual forecast values on the right hand side are replaced by actual realizations when available.
- Forecast for the level can be obtained as

$$\widehat{y}_{T+h} = \widehat{y}_T + \Delta \widehat{y}_{T+1} + \dots + \Delta \widehat{y}_{T+h}$$
 (27)

• [Clements and Hendry, 1998] present detailed Monte Carlo experiment to rank the forecasts from ECMs and VAR in differences and levels, finding that in general the ECM forecasts should be preferred, as long as there is not substancial model mis-specification.

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 12 Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

The effect of stochastic trends on forecast I

- Let us start from the $MA(\infty)$ representation (13).
- Assuming $\varepsilon_i = 0$, $j \le 0$ and $y_0 = 0$ we can rewrite (13) as

$$y_t = \sum_{i=1}^t \sum_{j=0}^{t-i} C_j \varepsilon_i \tag{28}$$

and

$$y_{T+h} = \sum_{i=1}^{T+h} \sum_{j=0}^{T+h-i} C_j \varepsilon_i$$

$$= \sum_{i=1}^{T} \sum_{j=0}^{T+h-i} C_j \varepsilon_i + \sum_{j=T+1}^{T+h} \sum_{j=0}^{T+h-i} C_j \varepsilon_i$$
 (29)

The effect of stochastic trends on forecast II

Thus

$$\widehat{y}_{T+h} = E(y_{T+h}|y_T) = \sum_{i=1}^{T} \sum_{j=0}^{T+h-i} C_j \varepsilon_i$$
 (30)

Given that

$$\lim_{h \to \infty} \sum_{j=0}^{T+h-i} C_j = C(1)$$
 (31)

 \bullet and if the C_i decay repidly, we can write

$$\sum_{j=0}^{T+h-i} C_j \approx C(1) \tag{32}$$

and

$$\widehat{y}_{T+h} \approx C(1) \sum_{i=1}^{T} \varepsilon_i \tag{33}$$

The effect of stochastic trends on forecast III

- so that, at least for long horizons *h* the forecasts are driven by the stochastic trends.
- Note that

$$\beta' \hat{y}_{T+h} \approx \beta' C(1) \sum_{i=1}^{T} \varepsilon_i = 0$$
 (34)

- so that for long horizon forecasts are tied together by the presence of cointegration among the variables.
- From (29) and (30) we have

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h} = \sum_{i=T+1}^{T+h} \sum_{j=0}^{T+h-i} C_j \varepsilon_i = \sum_{i=1}^{h} \sum_{j=0}^{h-i} C_j \varepsilon_{T+i}$$
 (35)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

The effect of stochastic trends on forecast IV

and

$$Var(e_{T+h}) = \sum_{i=1}^{h} \left[\left(\sum_{j=0}^{h-i} C_j \right) \Sigma \left(\sum_{j=0}^{h-i} C_j' \right) \right]$$
 (36)

- The variance of the forecasts for the levels grows with the forecast horizon, while $\lim_{h\to\infty} \frac{Var(e_{T+h})}{h}$ converges to a well defined matrix.
- Finally $\lim_{h\to\infty} Var(\beta'e_{T+h})$ converges to a proper matrix.

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
 - Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Example using simulated series

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Example using simulated series

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- 15 Reference

Example using simulated series

- Outline
- 2 Introduction
- Spurious Regression
- 4 Cointegration and error correction models
- Engle and Granger cointegration tes
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- 15 Reference

Example using simulated series

Aula7_2020

- Outline
- 2 Introduction
- Spurious Regression
- Cointegration and error correction models
- Engle and Granger cointegration test
- Johansen cointegration test
- MA representation of cointegrated processes
- Example using simulated series
- 9 Forecasting in the presence of cointegration
- 10 The effect of stochastic trends on forecast
- Example using simulated series
- Example using simulated series
- Example using simulated series
- 14 Example using simulated series
- Reference

Reference I

Beveridge, S. and Nelson, Charles, R. (1981).

A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of business cycle.

Journal of Monetary Economics, 7:151–174.

Clements, M. P. and Hendry, D. F. (1998). Forecasting Economic Time Series. Cambridge University Press.

Davidson, J. E. H., Hendry, D. F., Srba, F., and Yeo, S. (1978). Econometric modelling of the aggregate time-series relationship between consumers' expenditure and income in the united kingdom. *Economic Journal*, 88:661–692.

Reference II

Engle, R. F. and Granger, C. W. J. (1987).

Co-integration and error correction: Representation, estimation, and testing.

Econometrica, 55(2):251-276.

Gonzalo, J. and Granger, C. W. J. (1995). Estimation of common long-memory components in cointegrated systems.

Journal of Business & Economic Statistics, 13(1):27–35.

Granger, C. W. J. (1983).

Co-integrated variables and error-correcting models.

Technical Report 93-13, UCSD.

Granger, C. W. J. and Newbold, P. (1974).

Spurious regressions in econometrics.

Journal of Econometrics, 2(2):111-120.

Reference III

Johansen, S. (1995).

Likelihood-based Inference in Cointegrated Vector Autoregressive Models.

Oxford University Press.

MacKinnon, J. G. (1991).

Critical values for cointegration tests.

In Engle, R. F. and Granger, C. W. J., editors, *Long-Run Economic Relationships*, pages 267–276. Oxford University Press.

Reference IV

MacKinnon, J. G. (1996).

Numerical distribution functions for unit root and cointegration tests.

Journal of Applied Econometrics, 11(6):601–618.

Phillips, P. C. B. (1986).

Understanding spurious regressions in econometrics.

Journal of Econometrics, 33:311–340.