Simplex method

13 January 2021 10:58

(Eg. Product mix Problem Caraphical method eg. 2.)

Max
$$Z = 6x_1 + 5x_2$$

S.t.
 $x_1 + x_2 \le 5$
 $3x_1 + 2x_2 \le 12$
 x_1, x_2, x_0

Solution Converting the Siven LPP into

$$Z = 6 \times_{1} + 5 \times_{2} + 0 \times_{3} + 0 \times_{4}$$

$$S \cdot f \cdot \qquad Slack$$

$$x_{1} + x_{2} + x_{3} = 5 \quad \text{variables}$$

$$3 \times_{1} + 2 \times_{2} + x_{4} = 12 \quad \text{for } \leq$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \quad \text{constraints.}$$

Rewiting objective function Z-6x, -5 > (2 +0 x2 +0 > (4 = 0

Initial Simplex table

Variable (x)							
$\frac{1}{1} = \frac{1}{2} = \frac{1}$	Basic Naviable	21 (4	حل بـ	عدع '	×4	RHS	1
1)363	Zrow	-6	-5	0	6	61	
200 1 12 12/3=4	1 >13×	**	1	1	0	5-	5/1=5
	R2 366	3	2	0	J	12	12/3 = 4

Initial Basic Feasible Solution is
$$(IBFS) \overline{Z=0}$$

$$2=5 \times 1=0 \times 1$$

Basic Variables X3, X4 (appearing under hon Basic Variables X1, X2 column

Basis = { Set of Laric Variables}

= { x3, x45

Entering Variable

Oct enter the Lasis, Since its Z-vow.

Leaving variable

X4 leaves the basis, Since the ratio br/cr is minimum.

Pivot Element

Intersection of entering Variable Coloumn and leaving Variable now in callet Pivot.

Here Pivot element in 3. we have to make Pivot element as I and all other elements in that Coloumn as o.

This is shown in next iteration.

Iteration 1

Basic Variable	24)(2 (Y	>1 <u>3</u>	Σų	Solution (RHS)	E.	[Ratio
Zmw	0~	7	5	2	24	_	to token
别义	D	1/3	J	-3	1	1/1/2 = 3	(470)
R. 36	1-	2/3	ő	, %	4-1	4/ = 6 2/3	R2 = R2/3.

Trough work:

Entering Variable

The most regative loefficient in 2 now is -1 and corresponds to Hamiable X2.

.. Xz enten the Lanis

Leaving Variable

The min-ratio is 3 and Gordspunks to variable 23.

.: X3 leaves the basis.

Pivot element is 13.
Making Pivot element as 1 and
other elements in that 6 hours or

Zero, Therahim: 2

	esil aiakle	31	>1, 1	33	24	RHS Col-	by/	
-	z ~~~	0	0	3	1	27		· - ·
R1	X2_/	0	_]	3	-1	3		$R_1' = R_1 \times 3$
P2	oc //	\ \ \	v	-2	1 /	2		

[Rrush work:

> All coefficient in Z-m is non negative (Zd).

. . Oppmally main is reached Stop steration

Optimal Sola is

1) OPhimality Condition 111 Z- now Coefficient are hon negative? then optimum is reached.

2) Feasility Condition

- The leaving Variable is the non regaline valio with Shictly Positive denminator. ((~ >0)