Problem 1.

Exercise Set 6.1

- 25. Let $R_i = \left\{ x \in \mathbb{R} | 1 \le x \le 1 + \frac{1}{i} \right\} = \left[1, 1 + \frac{1}{i} \right]$ for all positive integers i.
 - (a) $\bigcup_{i=1}^{4} R_i = [1, 2]$
 - (b) $\bigcap_{i=1}^{4} R_i = \left[1, \frac{5}{4}\right]$
 - (c) Are R_1, R_2, R_3, \ldots mutually disjoint? Explain. No because they all contain 1.
 - (d) $\bigcup_{i=1}^{n} R_i = [1, 2]$
 - (e) $\bigcap_{i=1}^{n} R_i = \left[1, 1 + \frac{1}{n}\right]$
 - (f) $\bigcup_{i=1}^{\infty} R_i = [1, 2]$
 - $(g) \bigcap_{i=1}^{\infty} R_i = \{1\}$

Problem 2.

Exercise Set 6.1

- 26. Let $R_i = \left\{ x \in \mathbb{R} | 1 < x < 1 + \frac{1}{i} \right\} = \left(1, 1 + \frac{1}{i} \right)$ for all positive integers i.
 - (a) $\bigcup_{i=1}^{4} R_i = (1, 2)$
 - (b) $\bigcap_{i=1}^{4} R_i = \left(1, \frac{5}{4}\right)$
 - (c) Are R_1, R_2, R_3, \ldots mutually disjoint? Explain. No because R_1 and R_2 contain 1.25.
 - (d) $\bigcup_{i=1}^{n} R_i = (1, 2)$
 - (e) $\bigcap_{i=1}^{n} R_i = \left(1, 1 + \frac{1}{n}\right)$
 - (f) $\bigcup_{i=1}^{\infty} R_i = (1, 2)$
 - (g) $\bigcap_{i=1}^{\infty} R_i = \emptyset$

Problem 3.

Exercise Set 6.1

33.

- (a) $\mathscr{P}(\emptyset) = \{\emptyset\}$
- (b) $\mathscr{P}(\mathscr{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}\$
- (c) $\mathscr{P}(\mathscr{P}(\mathscr{P}(\varnothing))) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}\$
- 35. Let $A = \{a, b\}$, $B = \{1, 2\}$, and $C = \{2, 3\}$. Find each of the following sets.
 - (a) $A \times (B \cup C) = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), \}$
 - (b) $(A \times B) \cup (A \times C) = \{(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)\}$
 - (c) $A \times (B \cap C) = \{(a, 2), (b, 2)\}$
 - (d) $(A \times B) \cap (A \times C) = \{(a, 2), (b, 2)\}$

Problem 4.

Exercise Set 6.2

10. For all sets A, B, and C, $(A - B) \cap (C - B) = (A \cap C) - B$

Part 1: $(A-B) \cap (C-B) \subseteq (A \cap C) - B$

Suppose $x \in (A - B) \cap (C - B)$.

Prove $x \in (A \cap C) - B$.

 $x \in (A \cap B^c) \cap (C \cap B^c)$ by set difference law.

 $x \in A \cap C \cap B^c$ by idempotent law.

 $x \in (A \cap C) - B$ by set difference law.

Proof done.

Part 2: $(A \cap C) - B \subseteq (A - B) \cap (C - B)$

Suppose $x \in (A \cap C) - B$.

Prove $x \in (A - B) \cap (C - B)$.

 $x \in (A \cap C) \cap B^c$ by set difference law.

 $x \in A \cap B^c \cap C \cap B^c$ by idempotent law.

 $x \in (A - B) \cap (C - B)$ by set difference law.

Proof done.

Both parts proven therefore $(A - B) \cap (C - B) = (A \cap C) - B$.

Problem 5.

Exercise Set 6.2

19. For all sets A, B, and C, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ **Proof:**

Part 1: $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$

Suppose $x \in A \times (B \cap C)$.

Prove $x \in (A \times B) \cap (A \times C)$.

 $x \in (A \times B) \cap (A \times C)$ by distributive law.

Proof done.

Part 2: $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$

Suppose $x \in (A \times B) \cap (A \times C)$.

Prove $x \in A \times (B \cap C)$.

 $x \in A \times (B \cap C)$ by distributive law.

Proof done.

Both parts proven therefore $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Problem 6.

Exercise Set 6.2

34. For all sets A, B, and C, if $B \cap C \subseteq A$, then $(C - A) \cap (B - A) = \emptyset$ **Proof:**

Let $B \cap C \subseteq A$.

Assume $(C-A) \cap (B-A) \neq \emptyset$.

Suppose $x \in (C - A) \cap (B - A)$.

 $x \in (C \cap B) \cap A^c$ as proven previously.

 $x \in B \cap C$ and $x \in A^c$ by definition of intersection.

Since $B \cap C \subseteq A$, $x \in A$ by definition of subset.

Contradiction because $x \in A$ and $x \notin A \Leftrightarrow x \in A^c$.

Assumption is false therefore if $B \cap C \subseteq A$, then $(C - A) \cap (B - A) = \emptyset$.