Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №6

з дисципліни «Алгоритми і структури даних»

Виконав:

Перевірила:

студент групи ІМ-43

Молчанова А. А.

Олексійчук Станіслав Юрійович

номер у списку групи: 23

Постановка задачі

1. Задано двовимірний масив (матрицю) цілих чисел A[m,n] або A[n,n], де m та n – натуральні числа (константи), що визначають розміри двовимірного масиву. Виконати сортування цього масиву або заданої за варіантом його частини у заданому порядку заданим алгоритмом (методом).

Сортування повинно бути виконано безпосередньо у двовимірному масиві «на тому ж місці», тобто без перезаписування масиву та/або його будь-якої частини до інших одно- або двовимірних масивів, а також без використання спискових структур даних.

- 2. Розміри матриці та п взяти самостійно у межах від 7 до 10.
- 3. При тестуванні програми необхідно підбирати такі вхідні набори початкових значеннь матриці, щоб можна було легко відстежити коректність виконання сортування і ця коректність була б протестована для всіх можливих випадків. З метою тестування дозволяється використовувати матриці меншого розміру.

Варіант № 23:

Задано двовимірний масив (матрицю) цілих чисел А[m,n]. Відсортувати окремо кожен стовпчик масиву алгоритмом №1 методу вставки (з лінійним пошуком зліва) за незменшенням.

Текст програми

Для виконування цієї лабораторної було використано програму для матриці (двовимірного масиву), а саме з розмірами 10х8 (10 рядків і 8 стовпців). Ось приклад програми:

```
#include <stdio.h>
#include <stdlib.h>
#define SIZE 10
#define LENGTH 8
void print_array(int matrix[SIZE][LENGTH]){
   for (int row = 0; row < SIZE; row++) {</pre>
       for (int column = 0; column < LENGTH; column++) {</pre>
           printf("%d\t", matrix[row][column]);
       }
       printf("\n");
   }
   printf("\n-----
----\n\n");
}
int main()
{
   int row;
   int column;
   int index;
   int additional_index;
   int another_index;
   int element;
```

```
int matrix[SIZE][LENGTH] = {
               95, -10, 50, -16,
       { -99.
                                      32,
                                           14, -25 },
                   -15.
                          50, -21,
                                           18,
                                                38 },
       { -56.
               81.
                                      19,
       { -23,
               63,
                    -36,
                                      -5,
                                           30, 0 },
                          50,
                               10,
       { 0,
               42,
                    -44,
                          50,
                              23,
                                      14,
                                           42, -11 },
          11,
               29,
                    -58,
                          50,
                              23,
                                      -7,
                                          52, 5 },
       {
          32, 10,
                   -78,
                          50, -39,
                                      40,
                                            58, -11 },
       { 70,
                5, -83,
                          50,
                              35,
                                      -2,
                                           69, 15 },
                          50, -10,
       { 87,
                4, -90,
                                      25,
                                           75, -8 },
                3, -95,
       { 97,
                          50,
                               10,
                                      25,
                                           82, 1 },
       { 98,
                3, -98,
                         50, -6,
                                      25,
                                           93, 2}
   };
   print_array(matrix);
   for (column = 0; column < LENGTH; column++) {</pre>
       for (index = 1; index < SIZE; index++) {</pre>
           element = matrix[index][column];
           additional_index = 0;
           while (matrix[additional_index][column] < element) {</pre>
               additional_index++;
           }
                 (another_index
                                      index - 1; another_index
                                                                      >=
additional_index; another_index--) {
               matrix[another_index
                                                     1][column]
                                          +
matrix[another_index][column];
           }
           matrix[additional_index][column] = element;
       }
   }
```

```
print_array(matrix);
return 0;
}
```

Результати тестування програми

Для наглядності тестування кожен стовпець відсортовано по-своєму (нумерацію стовпців позначатиму індексами):

- 1) Відсортований (0, 6 стовпці);
- 2) Обернено відсортований (1, 2 стовпці);
- 3) Відсортований за незменшенням і незбільшенням константа (3 стовпець);
- 4) Невідсортований (4, 5, 7 стовпці).

-99	95	-10	50	-16	32	14	-25
-56	81	-15	50	-21	19	18	38
-23	63	-36	50	10	-5	30	Θ
0	42	-44	50	23	14	42	-11
11	29	-58	50	23	-7	52	5
32	10	-78	50	-39	40	58	-11
70	5	-83	50	35	-2	69	15
87	4	-90	50	-10	25	75	-8
97	3	-95	50	10	25	82	1
98	3	-98	50	-6	25	93	2

Початкова матриця

	_				_			
-99	3	-98	50	-39	-7	14	-25	
-56	3	-95	50	-21	-5	18	-11	
-23	4	-90	50	-16	-2	30	-11	
0	5	-83	50	-10	14	42	-8	
11	10	-78	50	-6	19	52	Θ	
32	29	-58	50	10	25	58	1	
70	42	-44	50	10	25	69	2	
87	63	-36	50	23	25	75	5	
97	81	-15	50	23	32	82	15	
98	95	-10	50	35	40	93	38	

Відсортована матриця

–99 −56	95 81	−10 −15	50 50	−16 −21	32 19	14 18	-25 38	
-23	63	-36	50	10	-5	30	0	
0	42	-44	50	23	14	42	-11	
11	29	-58	50	23	-7	52	5	
32	10	-78	50	-39	40	58	-11	
70	5	-83	50	35	-2	69	15	
87	4	-90	50	-10	25	75	-8	
97	3	-95	50	10	25	82	1	
98	3	-98	50	-6	25	93	2	
								_
-99	3	-98	50	-39	-7	14	-25	
-56	3	-95	50	-21	-5	18	-11	
-23	4	-90	50	-16	-2	30	-11	
Θ	5	-83	50	-10	14	42	-8	
11	10	-78	50	-6	19	52	Θ	
32	29	-58	50	10	25	58	1	
70	42	-44	50	10	25	69	2	
87	63	-36	50	23	25	75	5	
97	81	-15	50	23	32	82	15	
98	95	-10	50	35	40	93	38	
								_
December 1 0 (0.0)								
Process returned 0 (0x0) execution time : 0.150 s								
Press any key to continue.								

Загальний вигляд результату

Висновок: я зрозумів, що таке сортування, суть різних алгоритмів сортування, наприклад, вставкою, вибором, обміном, швидкого сортування, бульбашкового тощо; зрозумів, що найбільше алгоритми сортування використовуються в базах даних; навчився використовувати алгоритм сортування на тому самому місці— сортування вставкою з лінійним пошуком зліва для сортування стовпців, використовуючи двовимірний масив; зрозумів переваги та недоліки кожного алгоритму, де вони можуть використовуватися та який з них бажано найчастіше використовувати для своїх цілей.