

BQD-024

BOOSTER MAGNET REPORT

Results		
Date	09/05/2016	
Hour	11:47:32	
Temperature [°C]	23.6	
Number of Measurements	17	
Main Coil Current [A]	(31.9652 ± 0.0005)	
Trim Coil Current [A]	(0 ± 0)	
Integrated Gradient [T]	(-5.30048 ± 0.00004)	
	E-1	
Magnet Center Offset X [μm] - (< ±160.0)	(-11.0 ± 0.1)	
Magnet Center Offset Y [μm] - (< ±160.0)	(-39.4 ± 0.4)	
Roll [mrad] - (< ±0.8)	(-3.7 ± 0.2) x E-1	
Electric Parameters		
Indutance [mH]	3.743	
Voltage [V]	0.2758	
Resistance [m Ω]	27.58	
Main Coil Number of Turns	27.5	

n	Normalized Normal Multipoles x=17.5 mm [T.m ⁽²⁻ⁿ⁾]	Normalized Skew Multipoles x=17.5 mm [T.m ⁽²⁻ⁿ⁾]
1 (dipole)	(-6.28 ± 0.07) x E-4	(-2.25 ± 0.02) x E-3
2 (quadrupole)	(1.000000 ± 0.000008)	(-7.4 ± 0.1) x E-4
3 (sextupole)	(1.51 ± 0.06) x E-4	(-6.6 ± 0.2) x E-4
4	(5.5 ± 0.9) x E-5	(6 ± 2) x E-5
5	(3.8 ± 15.4) x E-6	(6 ± 1) x E-5
6	(-4.64 ± 0.01) x E-3	(-8.10 ± 238.81) x E-7
7	(5 ± 2) x E-5	(8 ± 2) x E-5
8	(-6 ± 2) x E-5	(-3 ± 2) x E-5
9	(-2 ± 2) x E-5	(8.4 ± 10.7) x E-6
10	(1.21 ± 0.03) x E-3	(-2 ± 2) x E-5
11	(8.2 ± 24.5) x E-6	(4 ± 4) x E-5
12	(-5 ± 2) x E-5	(1 ± 2) x E-5
13	(-4 ± 2) x E-5	(-2 ± 2) x E-5
14	(-7 ± 2) x E-5	(-9.0 ± 23.5) x E-6
15	(-3 ± 3) x E-5	(6 ± 4) x E-5

