CROISSANCE EXPONENTIELLE E01

EXERCICE N°1 u(n) en fonction de n (début à 0)

(u(n)) est la suite géométrique de premier terme u(0)=0.25 et de raison r=2.

- 1) Pour tout entier n, exprimer u(n) en fonction de n.
- 2) Calculer les termes u(10), u(17) et u(23).

EXERCICE N°2 u(n) en fonction de n (début à 1)

 (w_n) est la suite géométrique de premier terme $w_1=2$ et de raison r=1,1.

- 1) Pour tout entier n, exprimer w_n en fonction de n.
- 2) Calculer les termes w_{10} , w_{17} et w_{23} .
- 3) W_0 existe-t-il?

EXERCICE N°3 Sens de variation et représentation

- 1) (u(n)) est la suite géométrique de premier terme u(0)=0,1 et de raison r=2. Déterminer le sens de variation de cette suite.
- 2) Représenter graphiquement les quatre premiers termes de cette suite.

EXERCICE N°4 Sens de variation

Préciser la croissance de chacune des ces suites :

- 1) (u_n) est géométrique de raison $r = \frac{5}{4}$ avec $u_0 = 4$
- 2) (v_n) est géométrique de raison $r = \frac{4}{5}$ avec $v_1 = 4$
- 3) $w_0 = 3$ et pour tout entier naturel n, $w_{n+1} = \sqrt{7} w_n$
- 4) $t_1 = 201$ et pour tout $n \in \mathbb{N}^*$ $t_{n+1} = 0.95 t_n$

EXERCICE N°5 Les fonctions exponentielles : prise en main

Soit la fonction f définie pour tout $x \in \mathbb{R}_+$ par : $f(x) = 4 \times 2^x$

- 1) Calculer f(0) et f(3).
- 2) Donner une valeur approchée de f(1,5) à 0,01 près.

EXERCICE N°6 Les fonctions exponentielles : sens de variation

Donner le sens de variation des fonctions f, g, h et k définies respectivement pour tout $x \in \mathbb{R}_+$ par :

1)
$$f(x) = 5 \times 3^x$$
 2) $g(x) = 5 \times 0.9^x$ 3) $h(x) = 3 \times \left(\frac{3}{4}\right)^x$ 4) $k(x) = 6^x$

EXERCICE N°7 Règles de calcul

Écrire les expressions suivantes sous la forme a^x où a est un entier et x un réel.

$$A = 7^{3,1} \times 4^{3,1} \qquad B = 4 \times 2^{-5,7} \qquad C = 7 \times \frac{7^{3,1}}{7^{2,5}}$$

$$D = \frac{6^{4,5}}{2^{4,5}} \qquad E = 9^3 \times (9^{2,5})^2 \qquad F = \frac{17^{5,1}}{17^{4,1} \times 17}$$

EXERCICE N°8 Racine nième

Résoudre dans $[0; +\infty[$ les équations suivantes :

On donnera, si nécessaire, une valeur arrondie à 0,01 près des éventuelles solutions.

1)
$$3x^3 = 81$$
 2) $5x^4 = 100$

EXERCICE N°9 Taux moyen

Un météorologue amateur estime que le niveau de précipitations dans son village a doublé en 10 ans. Calculer l'évolution annuelle moyenne du niveau de précipitations. (On arrondira à 0,01%).

EXERCICE N°10 Déterminer un seuil

On considère la suite (u_n) telle que $u_1 = 10$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = 0.9 \times u_n$

- 1) Exprimer, pour tout $n \in \mathbb{N}^*$, u_n en fonction de n.
- 2) Calculer u_1 et u_8
- 3) Déterminer le rang n, à partir duquel, $u_n < 5$.

CROISSANCE EXPONENTIELLE E01

EXERCICE N°1 u(n) en fonction de n (début à 0)

(u(n)) est la suite géométrique de premier terme u(0)=0.25 et de raison r=2.

- 1) Pour tout entier n, exprimer u(n) en fonction de n.
- 2) Calculer les termes u(10), u(17) et u(23).

EXERCICE N°2 u(n) en fonction de n (début à 1)

 (w_n) est la suite géométrique de premier terme $w_1=2$ et de raison r=1,1.

- 1) Pour tout entier n, exprimer w_n en fonction de n.
- 2) Calculer les termes w_{10} , w_{17} et w_{23} .
- 3) W_0 existe-t-il?

EXERCICE N°3 Sens de variation et représentation

- 1) (u(n)) est la suite géométrique de premier terme u(0)=0,1 et de raison r=2. Déterminer le sens de variation de cette suite.
- 2) Représenter graphiquement les quatre premiers termes de cette suite.

EXERCICE N°4 Sens de variation

Préciser la croissance de chacune des ces suites :

- 1) (u_n) est géométrique de raison $r = \frac{5}{4}$ avec $u_0 = 4$
- 2) (v_n) est géométrique de raison $r = \frac{4}{5}$ avec $v_1 = 4$
- 3) $w_0 = 3$ et pour tout entier naturel n, $w_{n+1} = \sqrt{7} w_n$
- 4) $t_1 = 201$ et pour tout $n \in \mathbb{N}^*$ $t_{n+1} = 0.95 t_n$

EXERCICE N°5 Les fonctions exponentielles : prise en main

Soit la fonction f définie pour tout $x \in \mathbb{R}_+$ par : $f(x) = 4 \times 2^x$

- 1) Calculer f(0) et f(3).
- 2) Donner une valeur approchée de f(1,5) à 0,01 près.

EXERCICE N°6 Les fonctions exponentielles : sens de variation

Donner le sens de variation des fonctions f, g, h et k définies respectivement pour tout $x \in \mathbb{R}_+$ par :

1)
$$f(x) = 5 \times 3^x$$
 2) $g(x) = 5 \times 0.9^x$ 3) $h(x) = 3 \times \left(\frac{3}{4}\right)^x$ 4) $k(x) = 6^x$

EXERCICE N°7 Règles de calcul

Écrire les expressions suivantes sous la forme a^x où a est un entier et x un réel.

$$A = 7^{3,1} \times 4^{3,1} \qquad B = 4 \times 2^{-5,7} \qquad C = 7 \times \frac{7^{3,1}}{7^{2,5}}$$

$$D = \frac{6^{4,5}}{2^{4,5}} \qquad E = 9^3 \times (9^{2,5})^2 \qquad F = \frac{17^{5,1}}{17^{4,1} \times 17}$$

EXERCICE N°8 Racine nième

Résoudre dans $[0; +\infty[$ les équations suivantes :

On donnera, si nécessaire, une valeur arrondie à 0,01 près des éventuelles solutions.

1)
$$3x^3 = 81$$
 2) $5x^4 = 100$

EXERCICE N°9 Taux moyen

Un météorologue amateur estime que le niveau de précipitations dans son village a doublé en 10 ans. Calculer l'évolution annuelle moyenne du niveau de précipitations. (On arrondira à 0,01%).

EXERCICE N°10 Déterminer un seuil

On considère la suite (u_n) telle que $u_1 = 10$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = 0.9 \times u_n$

- 1) Exprimer, pour tout $n \in \mathbb{N}^*$, u_n en fonction de n.
- 2) Calculer u_1 et u_8
- 3) Déterminer le rang n, à partir duquel, $u_n < 5$.