- 1. Considerem la forma quadràtica $q: \mathbb{R}^3 \to \mathbb{R}$ definida per q(x,y,z) = 2xy + 2xz + 2yz.
 - (a) Trobeu una base \mathcal{B} de \mathbb{R}^3 tal que la matriu de q en la base \mathcal{B} sigui diagonal.
 - (b) Trobeu un subespai vectorial $F\subseteq\mathbb{R}^3$ de dimensió màxima tal que $q|_F$ sigui definida negativa.
 - (c) Raoneu si existeix algun subespai vectorial $G\subset \mathbb{R}^3$ de dimensió 2 tal que $\,q|_G$ tingui rang 1.
- 2. Donada la forma quadràtica de \mathbb{R}^3 definida per $q(x,y,z)=x^2-4xy+y^2-4yz+2z^2+4xz$, trobeu un subespai F de \mathbb{R}^3 de dimensió 1 i un subespai G de \mathbb{R}^3 de dimensió 2, tals que $q|_F$ sigui definida positiva i $q|_G$ sigui definida negativa.
- **3.** Doneu la classificació afí, trobant una forma reduïda, el rang i l'índex, de les formes quadràtiques següents. Indiqueu si són definides positives, definides negatives o no definides.

De
$$\mathbb{R}^3$$
: $q(x, y, z) = 2x^2 + 5y^2 + 2z^2 - 4xy - 2xz + 4yz$; $q(x, y, z) = -3x^2 + 4xy + 10xz - 4yz$.
De \mathbb{R}^4 : $q(x, y, z, t) = 2xt + 6yz$.

4. Doneu la classificació afí, trobant una forma reduïda, el rang i l'índex, de les formes quadràtiques de \mathbb{R}^n que tenen matrius en bases canòniques:

$$\begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 3 \end{pmatrix}; \begin{pmatrix} 9 & -3 & 0 \\ -3 & 5 & -4 \\ 0 & -4 & 5 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 8 & 11 \\ 3 & 8 & 14 & 20 \\ 4 & 11 & 20 & 30 \end{pmatrix}; \begin{pmatrix} 1 & \sqrt{2} & 0 & 0 \\ \sqrt{2} & 3 & \sqrt{2} & 0 \\ 0 & \sqrt{2} & 3 & \sqrt{2} \\ 0 & 0 & \sqrt{2} & 2 \end{pmatrix}.$$

5. Estudieu per a quins valors de α les matrius següents són definides positives.

$$\begin{pmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{pmatrix} \; ; \; \begin{pmatrix} 1 & 1 & \alpha \\ 1 & 1 & 1 \\ \alpha & 1 & 1 \end{pmatrix}.$$

6. Sigui $q_{\alpha}: \mathbb{R}^4 \to \mathbb{R}$ la forma quadràtica que té matriu associada en la base canònica

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & \alpha & 1 \\ 0 & 1 & 1 & \alpha \end{array}\right).$$

- (a) Classifiqueu q_{α} en funció del paràmetre $\alpha \in \mathbb{R}$. Per a quins valors de α , q_{α} és definida positiva? I definida negativa?
- (b) En el cas $\alpha=0$, doneu subespais F i G de \mathbb{R}^4 de dimensió màxima tals que $q|_F$ sigui definida positiva i $q|_G$ sigui definida negativa.

1