32 A is singular when its third column w is a combination cu + dv of the first columns. A typical column picture has b outside the plane of u, v, w. A typical row picture has the intersection line of two planes parallel to the third plane. Then no solution.

- **33** w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av. Linearity means: When w is a combination of u and v, then Aw is the same combination of Au and Av.
- 34 $\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ has the solution $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 8 \\ 6 \end{bmatrix}.$
- 35 x = (1, ..., 1) gives $Sx = \text{sum of each row} = 1 + \cdots + 9 = 45$ for Sudoku matrices. 6 row orders (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7. The same 6 permutations of *blocks* of rows produce Sudoku matrices, so $6^4 = 1296$ orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

- **1** Multiply equation 1 by $\ell_{21} = \frac{10}{2} = 5$ and subtract from equation 2 to find 2x + 3y = 1 (unchanged) and -6y = 6. The pivots to circle are 2 and -6.
- **2** -6y = 6 gives y = -1. Then 2x + 3y = 1 gives x = 2. Multiplying the right side (1, 11) by 4 will multiply the solution by 4 to give the new solution (x, y) = (8, -4).
- **3** Subtract $-\frac{1}{2}$ (or add $\frac{1}{2}$) times equation 1. The new second equation is 3y = 3. Then y = 1 and x = 5. If the right side changes sign, so does the solution: (x, y) = (-5, -1).
- **4** Subtract $\ell = \frac{c}{a}$ times equation 1 from equation 2. The new second pivot multiplying y is d (cb/a) or (ad bc)/a. Then y = (ag cf)/(ad bc). Notice the "determinant of A" = ad bc. It must be nonzero for this division.

5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is $2 \cdot 10 = 20$. Then all the points on the line 3x + 2y = 10 are solutions, including (0, 5) and (4, -1). The two lines in the row picture are the same line, containing all solutions.

- 6 Singular system if b=4, because 4x+8y is 2 times 2x+4y. Then g=32 makes the lines 2x+4y=16 and 4x+8y=32 become the *same*: infinitely many solutions like (8,0) and (0,4).
- 7 If a=2 elimination must fail (two parallel lines in the row picture). The equations have no solution. With a=0, elimination will stop for a row exchange. Then 3y=-3 gives y=-1 and 4x+6y=6 gives x=3.
- **8** If k=3 elimination must fail: no solution. If k=-3, elimination gives 0=0 in equation 2: infinitely many solutions. If k=0 a row exchange is needed: one solution.
- **9** On the left side, 6x 4y is 2 times (3x 2y). Therefore we need $b_2 = 2b_1$ on the right side. Then there will be infinitely many solutions (two parallel lines become one single line in the row picture). The column picture has both columns along the same line.
- **10** The equation y=1 comes from elimination (subtract x+y=5 from x+2y=6). Then x=4 and 5x-4y=20-4=c=16.
- 11 (a) Another solution is $\frac{1}{2}(x+X,y+Y,z+Z)$. (b) If 25 planes meet at two points, they meet along the whole line through those two points.
- 12 Elimination leads to this upper triangular system; then comes back substitution.

$$2x+3y+z=8$$
 $x=2$ $y+3z=4$ gives $y=1$ If a zero is at the start of row 2 or row 3, $8z=8$ $z=1$ that avoids a row operation.

13
$$2x-3y=3$$
 $2x-3y=3$ $x=3$ $4x-5y+z=7$ gives $y+z=1$ and $y+z=1$ and $y=1$ $2x-y-3z=5$ $2y+3z=2$ $-5z=0$ $z=0$ Here are steps 1, 2, 3: Subtract 2 \times row 1 from row 2, subtract 1 \times row 1 from row 3, subtract 2 \times row 2 from row 3

14 Subtract 2 times row 1 from row 2 to reach (d-10)y-z=2. Equation (3) is y-z=3. If d=10 exchange rows 2 and 3. If d=11 the system becomes singular.

15 The second pivot position will contain -2 - b. If b = -2 we exchange with row 3. If b = -1 (singular case) the second equation is -y - z = 0. But equation (3) is the same so there is a *line of solutions* (x, y, z) = (1, 1, -1).

Example of
$$0x + 0y + 2z = 4$$
 Exchange $0x + 3y + 4z = 4$

16 (a) 2 exchanges $x + 2y + 2z = 5$ (b) but then $x + 2y + 2z = 5$
 $0x + 3y + 4z = 6$ breakdown $0x + 3y + 4z = 6$

(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

- 17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row 3 and row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.
- **18** Example x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Ax = 0 but almost surely no solution to Ax = b for a random b.
- 19 Row 2 becomes 3y 4z = 5, then row 3 becomes (q + 4)z = t 5. If q = -4 the system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0 which allows infinitely many solutions. Choosing z = 1 the equation 3y 4z = 5 gives y = 3 and equation 1 gives x = -9.
- 20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes form a triangle. This happens if rows 1+2=row 3 on the left side but not the right side: x+y+z=0, x-2y-z=1, 2x-y=4. No parallel planes but still no solution. The three planes in the row picture form a triangular tunnel.
- 21 (a) Pivots $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ in the equations $2x + y = 0, \frac{3}{2}y + z = 0, \frac{4}{3}z + t = 0, \frac{5}{4}t = 5$ after elimination. Back substitution gives t = 4, z = -3, y = 2, x = -1. (b) If the off-diagonal entries change from +1 to -1, the pivots are the same. The solution is (1, 2, 3, 4) instead of (-1, 2, -3, 4).
- **22** The fifth pivot is $\frac{6}{5}$ for both matrices (1's or -1's off the diagonal). The *n*th pivot is $\frac{n+1}{n}$.

23 If ordinary elimination leads to x+y=1 and 2y=3, the original second equation could be $2y+\ell(x+y)=3+\ell$ for any ℓ . Then ℓ will be the multiplier to reach 2y=3, by subtracting ℓ times equation 1 from equation 2.

- **24** Elimination fails on $\begin{bmatrix} a & 2 \\ a & a \end{bmatrix}$ if a = 2 or a = 0. (You could notice that the determinant $a^2 2a$ is zero for a = 2 and a = 0.)
- **25** a=2 (equal columns), a=4 (equal rows), a=0 (zero column).
- 26 Solvable for s=10 (add the two pairs of equations to get a+b+c+d on the left sides, 12 and 2+s on the right sides). So 12 must agree with 2+s, which makes s=10. The four equations for a,b,c,d are **singular!** Two solutions are $\begin{bmatrix} 1 & 3 \\ 1 & 7 \end{bmatrix}$ and $\begin{bmatrix} 0 & 4 \\ 2 & 6 \end{bmatrix}$,

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

- **27** Elimination leaves the diagonal matrix diag(3, 2, 1) in 3x = 3, 2y = 2, z = 2. Then x = 1, y = 1, z = 2.
- **28** A(2,:) = A(2,:) 3 * A(1,:) subtracts 3 times row 1 from row 2.
- 29 The average pivots for rand(3) without row exchanges were $\frac{1}{2}$, 5, 10 in one experiment—but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite! With row exchanges in MATLAB's lu code, the averages .75 and .50 and .365 are much more stable (and should be predictable, also for randn with normal instead of uniform probability distribution for the numbers in A).
- **30** If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.
- 31 Row j of U is a combination of rows $1, \ldots, j$ of A (when there are no row exchanges). If Ax = 0 then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when A is lower triangular.
- **32** The question deals with 100 equations Ax = 0 when A is singular.

- (a) Some linear combination of the 100 rows is the row of 100 zeros.
- (b) Some linear combination of the 100 columns is the column of zeros.
- (c) A very singular matrix has all ones: $A = \mathbf{ones}$ (100). A better example has 99 random rows (or the numbers $1^i, \dots, 100^i$ in those rows). The 100th row could be the sum of the first 99 rows (or any other combination of those rows with no zeros).
- (d) The row picture has 100 planes **meeting along a common line through 0**. The column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66

$$\mathbf{1} \ E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 7 & 1 \end{bmatrix}, \ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

2 $E_{32}E_{21}\boldsymbol{b} = (1, -5, -35)$ but $E_{21}E_{32}\boldsymbol{b} = (1, -5, 0)$. When E_{32} comes first, row 3 feels no effect from row 1.

$$\mathbf{3} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} M = E_{32}E_{31}E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{bmatrix}.$$

Those E's are in the right order to give MA = U.

4 Elimination on column 4:
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{E_{21}} \begin{bmatrix} 1 \\ -4 \\ 0 \end{bmatrix} \xrightarrow{E_{31}} \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix} \xrightarrow{E_{32}} \begin{bmatrix} 1 \\ -4 \\ 10 \end{bmatrix}$$
. The

original Ax = b has become Ux = c = (1, -4, 10). Then back substitution gives $z = -5, y = \frac{1}{2}, x = \frac{1}{2}$. This solves Ax = (1, 0, 0).

5 Changing a_{33} from 7 to 11 will change the third pivot from 5 to 9. Changing a_{33} from 7 to 2 will change the pivot from 5 to *no pivot*.