

Corner Points: Basic Idea We should easily recognize the point by looking at intensity values within a small window Shifting the window in any direction should yield a large change in appearance.

Robert Collins CSE-486, Penn Intuitive Way to Understand Harris

Treat gradient vectors as a set of (dx,dy) points with a center of mass defined as being at (0,0).

Fit an ellipse to that set of points via scatter matrix

Analyze ellipse parameters for varying cases...

Robert Collins CSE.486, Penn SHarris Corner Detection Algorithm

1. Compute \boldsymbol{x} and \boldsymbol{y} derivatives of image

 $I_x = G_\sigma^x * I$ $I_y = G_\sigma^y * I$

Compute products of derivatives at every pixel

 $I_{x2} = I_x.I_x \ I_{y2} = I_y.I_y \ I_{xy} = I_x.I_y$

Compute the sums of the products of derivatives at each pixel

 $S_{x2} = G_{\sigma t} * I_{x2} \quad S_{y2} = G_{\sigma t} * I_{y2} \quad S_{xy} = G_{\sigma t} * I_{xy}$

4. Define at each pixel (x,y) the matrix

Define at each pixel (x,y) the matrix

$$H(x,y) = \begin{bmatrix} S_{x2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y2}(x,y) \end{bmatrix}$$

5. Compute the response of the detector at each pixel

 $R = Det(H) - k(Trace(H))^2$

6. Threshold on value of R. Compute nonmax suppression.