Семинар 1 по ЛА
Базис минейного пр-ва
Матрица перехода
Рормулы преобразования коорд-т
векторов

N4,15,

Рано! V_3 - им-во свободных векторов пр-ва, $B = (\vec{e}, = \vec{i}', \vec{e}, = \vec{j}', \vec{e}, = \vec{k}')$ - базик в V_3 , $B' = (\vec{e}, ' = \vec{i}' + \vec{j}', \vec{e}, ' = \vec{i}' - \vec{j}', \vec{e}, ' = -\vec{i}' + 2\vec{j}' - \vec{k}')$, $\vec{x}' = \vec{i}' - 2\vec{j}' + 2\vec{k}'$. ② Halini мар. перехора Теля!.
③ Навы координат \vec{x} в базисе B'.

Зещение.
① Дои-во

Thou-bo.

The sque b $V_3 \Rightarrow V_3$ - pexmephone \Rightarrow \Rightarrow motor organic V_3 cocrous be $y \stackrel{3}{>} beknopob$.

The motor organic V_3 cocrous beknopob above in the square $v_3 \stackrel{\times}{>} beknopob$ above $v_3 \stackrel{\times}{>} beknopob$ above $v_3 \stackrel{\times}{>} beknopob$ $v_3 \stackrel{\times}{>} beknopob$

12) Don-en, 400 berropor E', E', E' men.
negahicumor. Рас. лин. комб. е́, е́, е́, е́з, равнедюб. d, e, + d2 e2 td3=0. Juggrahm Borpaxence que éi my $d_1(\vec{i}+\vec{j})+d_2(\vec{i}-\vec{j})+d_3(-\vec{i}+2\vec{j}-\vec{k})=\vec{0}$ Rpeoplaggeer: $(\alpha_1 + \alpha_2 d_3)i + (\alpha_1 - \alpha_2 + 2\alpha_3)j - \alpha_3 t = 0$ Bekroper i,j, & ospagyens sayuc 6 V3 => rosero ux publicational run. Rocceo. paebra 5. Rongreny $\int d_1 + d_2 - d_3 = 0$ $d_1 - d_2 + 2d_3 = 0$ $-d_3=0$ (ecoory cnocedou), cucrency Recured nongean $\int_{\lambda_2} = 0$ $\int_{\lambda_3} = 0$

Ceres., rozono Tpub. rein. kons. bekropob $\vec{e}_1', \vec{e}_2', \vec{e}_3'$ pabna $\vec{o} \Rightarrow \vec{e}_1', \vec{e}_2', \vec{e}_3'$ rein. rejahic. $y = 0, 2 \Rightarrow \mathcal{B}' = (\vec{e}_1', \vec{e}_2', \vec{e}_3') - dajnic V_3$.

Сканировано с CamScanner

2) Marp. nepexoga
$$T_{B\rightarrow B^{\dagger}}$$
:

$$T_{B\rightarrow B^{\dagger}} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

(3) P-107 npeoop. K-5 beknopob:
$$X = T_{B \to B}, X',$$

ye $X = \begin{pmatrix} x \\ y \end{pmatrix}, X' = \begin{pmatrix} x' \\ y' \end{pmatrix} - \kappaoopg-n \vec{x} on B_4B'.$

My yorobre
$$\Rightarrow X = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
.
Trongrener yp-e omoceur. $X' = \begin{pmatrix} x' \\ z' \end{pmatrix}$:

$$\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 2' \end{pmatrix}.$$

To CNAY, zancic. 6 massurred popure. Deceme CNAY.

Cues.,
$$X' = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ -2 \end{pmatrix}$$
Cues., $X' = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & \frac{1}{2} & \frac{1}{2} \\ 2 & -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$.

II cn. 3 anexwere CAY B woops here
$$\begin{cases} x'+y'-z'=1 & 0 \\ x'-y'+2z'=-2 & 0 \text{ in permission Kakun-hurgers} \\ -z'=2 & 3 \text{ (Haup. no upatheny Repairepa)} \end{cases}$$

$$3gecs sevre perceis negarierobros
(3) \Rightarrow z'=-2$$

$$3ogcsahm b (1) u (2):$$

$$(x'+y'+2=1)$$

$$\int x' + y' + 2 = 1$$

$$\int x' - y' - 4 = -2$$

$$\int x' + y' = -1$$

$$\int x' - y' = 2$$

$$\int x' = \frac{1}{2}$$

$$\int y' = -\frac{3}{2}$$

$$\int y' = -\frac{3}{2}$$

(9-ber:
$$T_{B\to 3'} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\vec{z} = \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} & -\frac{2}{3} & -2 \end{pmatrix}$ B Expure $B!$

Hanucais map. neperaga TB-3B'.

老"

OTK. (3/7)

Rycro V bazuc ?; ; B noboparubaerap

П вокруп і на угол 4 в положит. направлением (т.е. пропов часовод срелки, если смотет из конца б),

(2) вокруп ј на угом ф в положиет. направлении,

Вокруп В на угом 4 в поможит.

Hadri maspunger nepextosa [3-73] bo beex mex cigralex (or i,j, k x i',j',k')

Сканировано с CamScanne

Решение. Рисунок дле осрого у.

The sing $\int_{-\sin \varphi}^{\pi} \int_{-\sin \varphi$

 $\int_{j}^{z} = i = i = \cos(\varphi \cdot j) + \sin(\varphi \cdot k)$ $\int_{j}^{z} = \cos(\varphi \cdot j) + \cos(\varphi \cdot k)$ $\int_{j}^{z} = -\sin(\varphi \cdot j) + \cos(\varphi \cdot k)$

 $\vec{l} = \{ \cos \varphi, \sin \varphi \} \text{ or } \vec{l}, \vec{j} \\
\vec{j}'' = \{ -\sin \varphi, \cos \varphi \} \text{ or } \vec{l}, \vec{j} \\
\vec{l}'' = \cos \varphi \hat{l} + \sin \varphi \hat{j}$ $\vec{l}'' = \cos \varphi \hat{l} + \cos \varphi \hat{j}$ $\vec{l}'' = -\sin \varphi \hat{l} + \cos \varphi \hat{j}$

Rosgress

$$\int_{i}^{i} = \cos\varphi \cdot \vec{i} + \sin\varphi \vec{j}$$

$$\int_{i}^{i} = \sin\varphi \vec{i} + \cos\varphi \vec{j}$$

$$\mathcal{B}' = \vec{E}$$

$$T_{B\rightarrow B'} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 1 \end{pmatrix}$$

$$\kappa - m \quad \vec{z}' \quad \vec{z}' \quad \vec{z}'' \quad \vec$$

Зам. Если поворог на угол ф производитер в огранует. направления, по вместь ф в Т_{ВЭВ}, пессать - ф и исп. чента D3 II (1) 3 agara 1 Brun. Mp-be V3 choognoix beingpob выбран правый оргонериир. базис с, ї, В. From Sague nobopaquelaerap 1) bokpyr i Ha gross 4=45° 6 orphyser. nongr. vague i'j', B', a garen 2) bokpyr j Ha gros y = 240° B nonoxur. na apablerelle, nongr. sague ?", "" Heer was neperceps 3-33" Frajance, Ucnouszyere cb-16 map. nepexaga TB-33" = /B-33"/B'-23". marp repexoga B>B". (3) N4.18.

Дано:

Pn-npocipanciho Boex minoriereolo crenene 2n,

- currena unovb 8 P. 1, t, t2, ..., th-1

f(t) = -3t2+1

- 1) DOK., 470 CERCIENA MENOTORIENES oppagget dayur B Pn (жот базис нау. канонический)
- (2) Halin Koopgeenarri meoroinena f(t) 6 np-be 93.

Rueren.

(1) DOK-60.

1) DOK-ell, 400 enterorneres 1, t, t2, ..., t"1

минесто независения.

Pac. pabencito doit +dit + dit + dit =0 Nok., 400 one Bundimeral rocko gul

Lo=0, d1=0, ..., dn-1=0

elinororieros 1, t, t2,..., t " onpegerenes на IR => pabencilo gorxneo выполневар Угар Typob t=0 =) do-1+d1.0+d2.02+...+dn-1.0"=0 =)

=> d1 =0.

Pabenciho npumer Rug Lit+ Lite + ... + dn this =0

Возошём працую от обемх гастей равенства: $L_1 + 2L_2t + ... + (n-1) L_{n-1}t^{n-2} = 0$ до носл. рав-во должно вып. Vt. Пусь t=0, получен (аналет.)

Дифференции равенство n-1 pgz полугия Смер., 1, t, t², ..., t⁴⁻¹ мин. недата. Тей.

2) choose uncorornen crenence <n borpaxaeras repej org cucreny c nex koop-nu; a₀+a₁t+a₂t²+...+a_{n-1}tⁿ⁻¹.

29 1),2) => 1, t, t2,..., t "-1 sagur B9h.

2) Pac. P3. Thorga 1, t, t2 - Kareoneur. Dayuc B P3.

Pagnoxuer $f(t) = -3t^2 + 1$ no story δ aguag: $f(t) = 1.1 + 0.t - 3t^2 = >$

of flt) unever Koong-27 fl,0,-33.

\$\\\ \partial \begin{aligned} \partial \begin{

(2) Задага. В мин. пр-ве P_3 миногогленов степени < 4 заданог базись $\mathcal{B} = (1, t-2, (t-2)^2, (t-2)^3)$ и $\mathcal{B}' = (1, t+2, (t+2)^2, (t+2)^3)$.

Hadre marpuyy nepexoga or BKB1.

~ N4.27.

Haumu матрицу перехода от канонитеского базиса 1, t, t2 к Eaguey 1, t-to, (t-to).

Решение.

Pac. 2 Sagueca

B=(e0=1, e1=t, e2=t2)

B'=(eo=1, e1=t-to, e2=(t-to)2)

Pazroxuel B'no B:

eo = eo

e1=-til+1:t=-toe0+1e1

 $\vec{e}_2' = (t - to)^2 = t^2 - 2tto + to^2 = to^2 - 2tot + t^2 =$ = to 1-2 to t+1. t2 = to eo-2 to e1+1e2

 $\Rightarrow T_{\mathcal{B} \Rightarrow \mathcal{B}'} = \begin{pmatrix} 1 & -t_0 & t_0^2 \\ 0 & 1 & -2t_0 \\ 0 & 0 & 1 \end{pmatrix}$

N4.28 (y DB)

Hadimu koopguharos uneororiena t^2-t+2 b $\delta ayuce 1, t-1,(t-1)^2$.

Penence.

Icn. Pagnoxurer $f(t)=t^2-t+2$ no crenemen t-1:

f(t)=(t-1+1)2-(t-1+1)+2=(t-1)+2(t-1)+1-(t-1)-1+2= = $(t-1)^2+(t-1)+2=2+(t-1)+(t-1)^2=$ =) f(t) unuser $k-i\pi$ $\{2,1,1\}$ $\{3,1\}$ $\{4,1\}$

Сканировано с CamScanner

Tien. Pazroxueu $f(t)=t^2-t+2$ no crenemen t-1 no popuyue Theenopa; $f(t) = f(1) + \frac{f'(1)}{1!}(t-1) + \frac{f''(1)}{2!}(t-1)^2 + \frac{f''(c)}{3!}(t-1)^3$ f(1)=12-1+2=2 f((+)=2t-1=>f((1)=2.1-1=1 $f''(t) = 2 \Rightarrow f''(1) = 2$ f''(+)=0 u Bce ceeg. npoeghoguere=0. $f(t) = 2 + \frac{1}{1!}(t-1) + \frac{2}{2!}(t-1)^2 = 2 + (t-1) + (t-1)^2$ => f(t)=2,1,13 B sayuce 1,t-1,t-1)2. Mon. No que meorp-e K= Beknopob: X=TB23'X. f(t)=2-t+t2 => f(t)=2,-1,13 & sayurce B=(1,t,t2) Halegéeu f(4)={x',y', z'} B daguce B'=(1,t-1,(t-1)2) Magninga nepexaga of BKB' (cur. N4.27): + = 101-0 $T_{3-33'} = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ Rongrueer yp-e: OTBET: (1) Сканировано с CamScanner

Сканировано с CamScanner