Definition 1. The two reward functions $\mathcal{R}_1: S^{\otimes} \times 2^{E^{\otimes}} \to \mathbb{R}$ and $\mathcal{R}_2: S^{\otimes} \times E^{\otimes} \times S^{\otimes} \to \mathbb{R}$ are defined as follows.

$$\mathcal{R}_1(s^{\otimes}, \pi) = \begin{cases} r_n |\pi| & \text{if } [s^{\otimes}]_q \notin SinkSet, \\ 0 & \text{otherwise,} \end{cases}$$
 (1)

where |E| means number of elements in the set E and r_n is a positive value.

$$\mathcal{R}_{2}(s^{\otimes}, e, s^{\otimes'}) = \begin{cases}
r_{p} & \text{if } \exists i \in \{1, \dots, n\}, \ (s^{\otimes}, e, s^{\otimes'}) \in \bar{F}_{i}^{\otimes}, \\
r_{sink} & \text{if } [s^{\otimes'}]_{q} \in SinkSet, \\
0 & \text{otherwise,}
\end{cases}$$
(2)

where r_p and r_{sink} are the positive and negative value, respectively.

For a Markov chain MC_{SV}^{\otimes} induced by a product MDP D^{\otimes} with a supervisor SV, let $S_{SV}^{\otimes} = T_{SV}^{\otimes} \sqcup R_{SV}^{\otimes 1} \sqcup \ldots \sqcup R_{SV}^{\otimes h}$ be the set of states in MC_{SV}^{\otimes} , where T_{SV}^{\otimes} is the set of transient states and $R_{SV}^{\otimes i}$ is the recurrent class for each $i \in \{1, \ldots, h\}$, and let $R(MC_{SV}^{\otimes})$ be the union of all recurrent classes in MC_{SV}^{\otimes} . Let $\delta_{SV}^{\otimes i}$ be the set of transitions in a recurrent class $R_{SV}^{\otimes i}$, namely $\delta_{SV}^{\otimes i} = \{(s^{\otimes}, e, s^{\otimes'}) \in \delta^{\otimes}; s^{\otimes} \in R_{SV}^{\otimes i}, P_T^{\otimes}(s^{\otimes'}|s^{\otimes}, e) > 0, P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) > 0\}$, and let $P_{SV}^{\otimes}: S_{SV}^{\otimes} \times S_{SV}^{\otimes} \to [0, 1]$ such that $P_{SV}^{\otimes}(s^{\otimes'}|s^{\otimes}) = \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes'}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes}))$ be the transition probability under SV.

Lemma 1. For any supervisor SV and any recurrent class $R_{SV}^{\otimes i}$ in the Markov chain MC_{SV}^{\otimes} , MC_{SV}^{\otimes} satisfies one of the following conditions.

1.
$$\delta_{SV}^{\otimes i} \cap \bar{F}_{j}^{\otimes} \neq \emptyset$$
, $\forall j \in \{1, \dots, n\}$,

2.
$$\delta_{SV}^{\otimes i} \cap \bar{F}_j^{\otimes} = \emptyset$$
, $\forall j \in \{1, \dots, n\}$.

Definition 2. An accepting recurrent class is defined as the recurrent class that has at least one accepting transition in each accepting set \bar{F}_j^{\otimes} with $j \in \{1,\ldots,n\}$. A sink recurrent class is defined as the recurrent class composed of the states S_{sink}^{\otimes} satisfying $[\![s_{sink}^{\otimes}]\!]_q \in SinkSet$ for any $s_{sink}^{\otimes} \in S_{sink}^{\otimes}$.

Theorem 1. Let M^{\otimes} be the product DES corresponding to a DES M and an LTL formula φ . Let \mathcal{R}_1 be a reward function for control patterns. If there exists a supervisor SV satisfying φ and it satisfies that there is no state $s^{\otimes} \in S_{SV}^{\otimes}$ reachable from initial state s_{init}^{\otimes} such that $[\![s^{\otimes}]\!]_q \in SinkSet$, then there exist a discount factor γ^* , a positive reward $r_p^*(\mathcal{R}_1)$ that satisfies $r_p^*(\mathcal{R}_1) >> ||\mathcal{R}_1||_{\infty}$, and a negative reward $r_{sink}^*(r_p,\mathcal{R}_1)$ that satisfies $r_{sink}^*(r_p,\mathcal{R}_1) << -(r_p+||\mathcal{R}_1||_{\infty})$ such that any algorithm that maximizes the expected discounted reward with $\gamma > \gamma^*$, $r_p > r_p^*(\mathcal{R}_1)$, and $r_{sink} < r_{sink}^*(r_p^*,\mathcal{R}_1)$ will find, with probability one, a supervisor satisfying φ and it satisfies that there is no state $s^{\otimes} \in S_{SV}^{\otimes}$ reachable from the initial state s_{init}^{\otimes} such that $[\![s^{\otimes}]\!]_q \in SinkSet$.

Proof. Suppose that there is an algorithym by which an optimal supervisor SV^* is obtained but SV^* does not satisfy the LTL formula φ or there is a state s_{sink}^{\otimes} reachable from the initial state such that $[\![s_{sink}^{\otimes}]\!]_q \in SinkSet$ under SV^* . Then, for any recurrent class $R_{SV^*}^{\otimes i}$ in the Markov chain $MC_{SV^*}^{\otimes}$ and any accepting set \bar{F}_j^{\otimes} of the product DES M^{\otimes} , $\delta_{SV^*,i}^{\otimes} \cap \bar{F}_j^{\otimes} = \emptyset$ holds for the first case by Lemma 1 and there is a recurrent class $R_{SV^*}^{\otimes i}$ such that $s_{sink}^{\otimes} \in R_{SV^*}^{\otimes i}$ for the second case. We consider the two cases.

1. Assume that SV^* does not the LTL formula φ . By the assumption, the system under the supervisor SV^* can only obtain rewards in the set of transient states and rewards regarding sink states. We consider the best scenario in the assumption. Let $p^k(s,s')$ be the probability of going to a state s' in k time steps after leaving the state s, and let $Post(T_{SV^*}^{\otimes})$ be the set of states in recurrent classes that can be transitioned from states in $T_{SV^*}^{\otimes}$ by one event occurrence. Let $R_{SV^*}^{\otimes sink}$ be the union of the states s_{sink}^{\otimes} such that $[s_{sink}^{\otimes}]_q \in SinkSet$. Recall that $r_{sink} < 0$. Thus, for the initial state s_{init}^{\otimes} in the set of transient states, it holds that

$$\begin{split} V^{SV^*}(s_{init}^{\otimes}) &= \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{SV^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \\ &\{ \sum_{s^{\otimes'} \in T_{SV^*}^{\otimes} \cup Post(T_{\pi^*}^{\otimes})} \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes'}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) \mathcal{R}(s^{\otimes}, SV(s^{\otimes}), e, s^{\otimes'}) \\ &+ \sum_{s^{\otimes'} \in R_{SV}^{\otimes sink}} P_{SV}^{\otimes}(s^{\otimes'}|s^{\otimes}) \sum_{l=0}^{\infty} \gamma^l r_{sink} \} \\ &\leq r_p \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) + \sum_{k=0}^{\infty} \gamma^k ||\mathcal{R}_1||_{\infty}. \end{split}$$

By the property of the transient states, for any state s^{\otimes} in $T_{SV^*}^{\otimes}$, there exists a bounded positive value m such that $\sum_{k=0}^{\infty} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \leq \sum_{k=0}^{\infty} p^k(s_{init}^{\otimes}, s^{\otimes}) < m$ [1]. Therefore, there exists a bounded positive value \bar{m} such that $V^{SV^*}(s_{init}^{\otimes}) < \bar{m} + \frac{1}{1-\gamma}||\mathcal{R}_1||_{\infty}$.

2. Assume that SV^* satisfies φ but there is a state s_{sink}^{\otimes} reachable from the initial state such that $[\![s_{sink}^{\otimes}]\!]_q \in SinkSet$ under SV^* . By the assumption, there is a recurrent class $R_{SV^*}^{\otimes i}$ reachable from the initial state such that $s_{sink}^{\otimes} \in R_{SV^*}^{\otimes i}$. We consider the best scenario in the assumption. In words, we assume that the system obtains the full possible rewards of \mathcal{R}_1 and r_p in all steps. There exist a number l>0, a state $s_{sink}^{\otimes} \in Post(T_{SV^*}^{\otimes}) \cap R_{SV^*}^{\otimes i}$, and a subset of transient states $\{s_1^{\otimes}, \ldots, s_{l-1}^{\otimes}\} \subset T_{SV^*}^{\otimes}$ such that $p(s_{init}^{\otimes}, s_1^{\otimes}) > 0$, $p(s_i^{\otimes}, s_{i+1}^{\otimes}) > 0$ for $i \in \{1, \ldots, l-2\}$, and $p(s_{l-1}^{\otimes}, s_{sink}^{\otimes}) > 0$ by the property of transient states. By considering only

paths that reach the state $s_{sink}^{\otimes} \in R_{SV^*}^{\otimes i}$ in l steps out of all paths reaching sink recurrent classes, We have

$$V^{SV^*}(s_{init}^{\otimes}) < Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi) \sum_{k=0}^{\infty} \gamma^k (r_p + ||\mathcal{R}_1||_{\infty}) + \gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes}) \sum_{k=0}^{\infty} \gamma^k r_{sink}$$
$$+ Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \not\models \varphi) (r_p + ||\mathcal{R}_1||_{\infty}) \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes})$$
$$< \frac{1}{1 - \gamma} \{ Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi) (r_p + ||\mathcal{R}_1||_{\infty}) + \gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes}) r_{sink} \} + \bar{m}',$$

where \bar{m}' is a constant such that $\bar{m}' > Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \not\models \varphi)(r_p + ||\mathcal{R}_1||_{\infty}) \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes})$ Therefore, if it holds that $r_{sink} \leq -\frac{Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi)}{\gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes})}(r_p + ||\mathcal{R}_1||_{\infty})$, we then have $V^{SV^*}(s_{init}^{\otimes}) < \bar{m}'$ for any $\gamma \in (0, 1)$.

Let \bar{SV} be a supervisor satisfying φ and it satisfies that there is no state $s^{\otimes} \in S_{\bar{SV}}^{\otimes}$ reachable from initial state s_{init}^{\otimes} such that $[\![s^{\otimes}]\!]_q \in SinkSet$. We consider the following two cases.

1. Assume that the initial state s_{init}^{\otimes} is in a recurrent class $R_{S\bar{V}}^{\otimes i}$ for some $i \in \{1, \ldots, h\}$. For any accepting set \bar{F}_j^{\otimes} , $\delta_{S\bar{V}}^{\otimes i} \cap \bar{F}_j^{\otimes} \neq \emptyset$ holds by the definition of $S\bar{V}$. The expected discounted reward for s_{init}^{\otimes} is given by

$$V^{\bar{SV}}(s_{init}^{\otimes}) = \mathbb{E}^{SV}[\sum_{k=0}^{\infty} \gamma^k \mathcal{R}(s_k, \pi_k, e_k, s_{k+1}) | s_0 = s_{init}^{\otimes}]$$
 (3)

For each path $\rho = s_0 \pi_0 e_0 s_1 \dots s_i \pi_i e_i s_{i+1} \dots \in S(2^E E S)^{\omega}$, the stopping time \hat{k} of first returning to the initial state is defined as $\hat{k}(\rho) = \min\{i | s_i = s_0\}$. We consider the worst scenario in this case. It holds that

$$\begin{split} V^{\bar{SV}}(s_{init}^{\otimes}) > & \mathbb{E}^{\bar{SV}}[\gamma^{\hat{k}-1}r_p + \gamma^{\hat{k}-1}V^{\bar{SV}}(s_{init}^{\otimes})|s_0 = s_{init}^{\otimes}] \\ \geq & \gamma^{\mathbb{E}^{\bar{SV}}[\hat{k}-1|s_0 = s_{init}^{\otimes}]}r_p + \gamma^{\mathbb{E}^{\bar{SV}}[\hat{k}-1|s_0 = s_{init}^{\otimes}]}V^{\bar{SV}}(s_{init}^{\otimes}). \end{split}$$

Thus,

$$\begin{split} V^{\bar{SV}}(s_{init}^{\otimes}) > & \frac{\gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_0=s_{init}^{\otimes}]}r_p}{1-\gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_0=s_{init}^{\otimes}]}} \\ > & \frac{\gamma^{\hat{K}-1}r_p}{1-\gamma^{\hat{K}-1}}, \end{split}$$

where the second inequality holds since it holds that $\mathbb{E}^{\bar{SV}}[\gamma^{\hat{k}}|s_0 = s_{init}^{\otimes}] \geq \gamma^{\mathbb{E}^{SV}[\hat{k}|s_0 = s_{init}^{\otimes}]}$ by Jensen's inequality, $\hat{K} = \lceil \mathbb{E}^{\bar{SV}}[\hat{k}|s_0 = s_{init}^{\otimes}] \rceil$, and the fourth inequality holds since it holds that $\gamma^{\hat{K}} < \gamma^{\mathbb{E}^{\bar{SV}}[\hat{k}|s_0 = s_{init}^{\otimes}]}$ and $\frac{1}{1-\gamma^{\hat{K}}} < \frac{1}{1-\gamma^{\mathbb{E}^{\bar{SV}}[\hat{k}|s_0 = s_{init}^{\otimes}]}}$ for any $\gamma \in (0,1)$. We set r_p^*, r_{sink}^* , and γ^* to satisfy $\frac{\gamma^{\hat{K}-1}}{1-\gamma^{\hat{K}-1}}r_p^* > \frac{1}{1-\gamma}||\mathcal{R}_1||_{\infty}$ for any $\gamma \in (0,1), r_{sink}^* \leq -\frac{Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes}) = \varphi}{\gamma^{l}p^{l}(s_{init}^{\otimes}, s_{sink}^{\otimes})}(r_p^* + ||\mathcal{R}_1||_{\infty})$ for any $\gamma \in (0,1)$, and $\frac{\gamma^{*\hat{K}-1}}{1-\gamma^{*\hat{K}-1}}r_p^* - \frac{1}{1-\gamma^*}||\mathcal{R}_1||_{\infty} > m$ for any m > 0, respectively. Therefore, for any bounded reward function \mathcal{R}_1 , any positive value $r_p > r_p^*$, any negative value $r_{sink} < r_{sink}^*$, any discount factor $\gamma \in (\gamma^*, 1)$, we then have $V^{\bar{SV}}(s_{init}^{\otimes}) > V^{SV^*}(s_{init}^{\otimes})$ since for $m = \max\{\bar{m}, \bar{m}'\}$, we have

$$V^{\bar{SV}}(s_{init}^{\otimes}) - V^{SV^*}(s_{init}^{\otimes}) > \frac{\gamma^{\hat{K}-1}}{1 - \gamma^{\hat{K}-1}} r_p - (m + \frac{1}{1 - \gamma} ||\mathcal{R}_1||_{\infty})$$

$$= (\frac{\gamma^{\hat{K}-1}}{1 - \gamma^{\hat{K}-1}} r_p - \frac{1}{1 - \gamma} ||\mathcal{R}_1||_{\infty}) - m$$

by the settings of γ^* , r_p^* , and r_{sink}^* , we have

$$V^{\bar{SV}}(s_{init}^{\otimes}) - V^{SV^*}(s_{init}^{\otimes}) > 0$$

$$\tag{4}$$

2. Assume that the initial state s_{init}^{\otimes} is in the set of transient states T_{SV}^{\otimes} , $P_{SV}^{M^{\otimes}}$ ($s_{init}^{\otimes} \models \varphi$) > 0 holds by the definition of SV. For a recurrent class $R_{SV}^{\otimes i}$ such that $\delta_{SV,i}^{\otimes} \cap \bar{F}_{j}^{\otimes} \neq \emptyset$ for each accepting set \bar{F}_{j}^{\otimes} , there exist a number l' > 0, a state \hat{s}^{\otimes} in $Post(T_{SV}^{\otimes}) \cap R_{SV}^{\otimes i}$, and a subset of transient states $\{s_{1}^{\otimes}, \dots, s_{l'-1}^{\otimes}\} \subset T_{SV}^{\otimes}$ such that $p(s_{init}^{\otimes}, s_{1}^{\otimes}) > 0$, $p(s_{i}^{\otimes}, s_{i+1}^{\otimes}) > 0$ for $i \in \{1, \dots, l'-2\}$, and $p(s_{l'-1}^{\otimes}, \hat{s}^{\otimes}) > 0$ by the property of transient states. Hence, it holds that $p'(s_{init}^{\otimes}, \hat{s}^{\otimes}) > 0$ for the state \hat{s}^{\otimes} . For each path $\rho = s_{0}\pi_{0}e_{0}s_{1}\dots s_{i}\pi_{i}e_{i}s_{i+1}\dots \in S(2^{E}ES)^{\omega}$, the stopping time \hat{k} of first returning to of first returning to the state \hat{s}^{\otimes} is defined as $\hat{k}(\rho) = \min_{i}\{i > l'|s_{i} = \hat{s}^{\otimes}\}$. Thus, by ignoring positive rewards in T_{SV}^{\otimes} , we have

$$\begin{split} V^{S\bar{V}}(s_{init}^{\otimes}) = & \mathbb{E}^{SV}[\sum_{k=0}^{\infty} \gamma^{k} \mathcal{R}(s_{k}, \bar{SV}(s_{k}), e_{k}, s_{k+1}) | s_{0} = s_{init}^{\otimes}] \\ \geq & \mathbb{E}^{SV}[\gamma^{l} \sum_{k=0}^{\infty} \gamma^{k} \mathcal{R}(s_{k+l}, \bar{SV}(s_{k+l}), e_{k+l}, s_{k+l+1}) | s_{0} = s_{init}^{\otimes}] \\ \geq & \gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \mathbb{E}^{\bar{SV}}[\gamma^{\hat{k}-1} r_{p} + \gamma^{\hat{k}-1} V^{\bar{SV}}(\hat{s}^{\otimes}) | s_{l'} = \hat{s}^{\otimes}] \\ \geq & \gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \{ \gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_{l'}=\hat{s}^{\otimes}]} r_{p} + \gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_{l'}=\hat{s}^{\otimes}]} V^{\bar{SV}}(\hat{s}^{\otimes}) \}. \end{split}$$

As with the case 1, we have

$$V^{\bar{SV}}(s_{init}^{\otimes}) \ge \gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \frac{\gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_{l'}=\hat{s}^{\otimes}]} r_p}{1 - \gamma^{\mathbb{E}^{SV}[\hat{k}-1|s_{l'}=\hat{s}^{\otimes}]}}$$

$$> \gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \frac{\gamma^{\hat{K}-1} r_p}{1 - \gamma^{\hat{K}-1}}$$

$$(5)$$

where the third inequality holds since it holds that $\mathbb{E}^{SV}[\hat{\gamma}^{\hat{k}}|s_{l'}=\hat{s}^{\otimes}] \geq \gamma^{\mathbb{E}^{SV}[\hat{k}|s_{l'}=\hat{s}^{\otimes}]}$ by Jensen's inequality, $\hat{K}=[\mathbb{E}^{SV}[\hat{k}|s_{l'}=\hat{s}^{\otimes}]]$, and the fifth inequality holds since it holds that $\gamma^{\hat{K}}<\gamma^{\mathbb{E}^{SV}[\hat{k}|s_{l'}=\hat{s}^{\otimes}]}$ and $\frac{1}{1-\gamma^{\hat{K}}}<\frac{1}{1-\gamma^{\mathbb{E}^{SV}[\hat{k}|s_{l'}=\hat{s}^{\otimes}]}}$ for any $\gamma\in(0,1)$. We set r_p^* , r_{sink}^* , and γ^* to satisfy $\gamma^{l'}p^{l'}(s_{init}^{\otimes},\hat{s}^{\otimes})\frac{\gamma^{\hat{K}-1}}{1-\gamma^{\hat{K}-1}}r_p^*>\frac{1}{1-\gamma}||\mathcal{R}_1||_{\infty}$ for any $\gamma\in(0,1)$, $r_{sink}^*\leq -\frac{Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes}|\mathbb{E}^{\varphi})}{\gamma^lp^l(s_{init}^{\otimes},s_{sink}^{\otimes})}(r_p^*+||\mathcal{R}_1||_{\infty})$ for any $\gamma\in(0,1)$, and $\gamma^{l'}p^{l'}(s_{init}^{\otimes},\hat{s}^{\otimes})\frac{\gamma^{*\hat{K}-1}}{1-\gamma^{*\hat{K}-1}}r_p^*-\frac{1}{1-\gamma^*}||\mathcal{R}_1||_{\infty}>m$ for any m>0, respectively. Therefore, for the reward function \mathcal{R}_1 , any positive value $r_p>r_p^*$, any negative value $r_{sink}< r_{sink}^*$, any discount factor $\gamma\in(\gamma^*,1)$, we have

$$\begin{split} V^{\bar{SV}}(s_{init}^{\otimes}) - V^{SV^*}(s_{init}^{\otimes}) > & \gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \frac{\gamma^{\hat{K}-1}}{1 - \gamma^{\hat{K}-1}} r_p - (m + \frac{1}{1 - \gamma} ||\mathcal{R}_1||_{\infty}) \\ = & (\gamma^{l'} p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \frac{\gamma^{\hat{K}-1}}{1 - \gamma^{\hat{K}-1}} r_p - \frac{1}{1 - \gamma} ||\mathcal{R}_1||_{\infty}) - m \end{split}$$

by the settings of γ^* , r_p^* , and r_{sink}^* , we have

$$V^{\bar{SV}}(s_{init}^{\otimes}) - V^{SV^*}(s_{init}^{\otimes}) > 0$$

$$\tag{6}$$

The results contradict the optimality assumption of SV^*

References

- [1] R. Durrett, *Essentials of Stochastic Processes*, 2nd Edition. ser. Springer texts in statistics. New York; London; Springer, 2012.
- [2] L. Breuer, "Introduction to Stochastic Processes," [Online]. Available: https://www.kent.ac.uk/smsas/personal/lb209/files/sp07.pdf
- [3] S.M. Ross, Stochastic Processes, 2nd Edition. University of California, Wiley, 1995.
- [4] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, "Convergence results for single-step on-policy reinforcement learning algorithms" *Machine Learning*, vol. 38, no. 3, pp. 287–308, 1998.

[5] J. Kretínský, T. Meggendorfer, S. Sickert, "Owl: A library for ω -words, automata, and LTL," in *Proc. 16th International Symposium on Automated Technology for Verification and Analysis*, 2018, pp. 543–550.