Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Fresnelsche Formeln und Polarisation

Praktikant: Michael Lohmann

Versuchspartner: Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 06.03.2015

Eingegangen am:

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung	3
5	Diskussion	3
Lit	Literatur	

1 Einleitung

Für zahlreiche technische Anwendungen wie [lp2]

2 Theorie

3 Durchführung

Für den Versuch wird eine optische Schiene wie in Abb. ?? verwendet, welche sich am Anfang gerade auf 0° befindet. Nachdem die Quecksilberdampflampe angeschaltet wurde und die Intensität ausreicht, kann nun begonnen werden, den Strahlengang einzustellen. Die sich auf der Schiene befindenden Linsen müssen zunächst ohne das Prisma so abgestimmt werden, dass das (nahc dem Filter grüne) Lichtbündel scharf in dem Okular erkennbar ist. Dafür werden Polarisator und Analysator so eingestellt, dass sie alles Licht durchlassen. Um die Polarisationsrichtung korrekt einzustellen wird nun das Nicol-Prisma auf den Drehteller gestellt. Die Standfläche ist dabei so ausgerichtet, dass die optische Achse vertikal zur Strahlrichtung liegt. Ohne den Analysator im Strahlengang wird nun der Polarisator auf maximalen Durchlass gestellt. Für die erste Messung wird nun der Polarisator so eingestellt, dass keine Helligkeit mehr sichtbar ist (was einer Polarisation parallel zur Einfallsebene entspricht) und dann um 45° verdreht. Nun wird das Nicol-Prisma durch ein Glasprisma ersetzt, welches in der 0°-Lage der Schiene genau im und parallel zum Strahlengang steht. Auf den Drehtellern befinden sich zumeist schon Markierungen, welche dadurch überprüft werden können, dass der Strahl bis zu einer Auslenkung von 90° der optischen Schiene durch das Okular sichtbar sein muss. Um nun den Reflektionskoeffizienten zu vermessen wird nun der Analysator erneut in den Strahlengang gestellt. Er wird nun, während die Schiene in je 5°-Schritten weiter gestellt wird, in die Position gestellt, dass kein Licht mehr durchgelassen wird. Die beiden Winkel werden notiert.

Zur Ermittlung des Brewster-Winkels werden nun der Polarisator wieder um 45° zurück gedreht und der Analysator entfernt. Dann wird der Auslenkwinkel der Schiene gesucht, bei welcher die geringste Intensität zu sehen ist. Hierbei empfielt es sich,

4 Auswertung

5 Diskussion

Literatur

[lp2] Lehrportal der Universität Göttingen. https://lp.uni-goettingen.de/get/text/4330.