清华大学本科生考试试题专用纸

	期末考试课程	概率论与数理统计	(A 卷)	2022年6月13日
	学号:	姓名:	班级:	
一. 垻	真空题(27 分,每空 3 分,	将计算结果直接写在	<u>横线</u> 上)	
(1)	设 A, B 相互独立, P(A) =	$= 0.5$, $P(A \cup B) = 0.75$	$, \mathbb{M} P(A-B)$	=
(2)	设X服从Poisson分布,	$\coprod P(X \le 1) = 4P(X = 2)$	2),则 <i>P(X ></i>	EX)=
(3)	将一枚均匀硬币重复掷70	λ 次,用 X 和 Y 分别表	示出现正面和	出现反面的次数,则
	E(XY)=			
(4)	设 $\xi \sim U[0,5]$,则二次方	程 $x^2 + \xi x + \frac{\xi}{4} + \frac{1}{2} = 0$ 有	实根的概率 =	•
(5)	随机变量 X 服从几何分布	节 $Ge(p)$,则 $P(X=202)$	24 X > 2021) =	•
(6)	设 $X_{1,},\cdots,X_{100}$ 为来自总体	N(μ,1)的一个样本,i	己 $ar{X},S^2$ 为其样	本均值与样本方差,则方差
	$D(S^2) = \underline{\hspace{1cm}},$	。又若考虑检验问题	$\mathbf{E}:\ H_0:\mu=$	$1 \leftrightarrow H_1: \mu \neq 1$,取拒绝域为
	$W = \{(x_1, \dots, x_{100}) : \overline{x}$	$-1 \geq c$ },则该检验的	势函数 g(μ)	= •
(7)	设 X_1, X_2, \cdots, X_n 为取	自总体 $X \sim N(\mu, \sigma^2)$)的一个样本,	$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 为其样本方
	差,记 $Y = n(\frac{\bar{X} - \mu}{S})^2$	² ,则 <i>Y</i> ~。	。(写出分布类	之型与参数)
(8)	设独立随机变量 X 和 Y 的	的特征函数分别为 $arphi_{\scriptscriptstyle X}(heta$	$Q) = e^{i\theta - \frac{1}{2}\theta^2} \pi \varphi_1$	$L(\theta) = e^{-i\theta - \frac{5}{2}\theta^2}$,则 $Z = 2X + Y$ 的概
	率密度函数 f _z (z)=	o		
ᅼ.	(13 分) 连续做某项试验	,每次试验只有成功和	失败两种结果	$\frac{1}{2}$,而且第 $k+1$ 次试验的结果只与
				概率为 $2/3$; 当第 k 次试验失败
	第 k + 1 次试验成功的概率		战验成功的概≥	ጆ为 1/3 。
	试求第2次试验成功的概		· ••••	
	在已知第3次试验成功的 用 <i>X</i> 表示首次获得成功时			学 ;
(3)	用 4 农小目仍须特风为中	101 风亚八致,风水 Λ	叫似乎刀仰。	

- 三. (15 分) 设随机变量 X 服从参数为 $\lambda>0$ (λ 待定) 的指数分布, F(x) 为其分布函数,若已知 $F(2\ln 2)=\frac{1}{2}$
- (1) 试确定参数 λ , 并求 $P(X EX > \sqrt{DX})$;
- (2) 设 $P(\eta = 1) = \frac{1}{3}$, $P(\eta = 2) = \frac{2}{3}$, 且 η 与X独立,求 $P(\eta X > 2)$;
- (3)若随机变量 X_1, X_2, \cdots, X_n 相互独立,且均与 X同分布,试问 $\frac{1}{n} \sum_{i=1}^n e^{\frac{X_i}{2EX_i}}$ 依概率收敛到多少?说明你的理由。
- 四. (20 分)设 $X \sim U[0,1]$,且在 $\{X = x\}$ 的条件下, $Y \sim U[0,x]$ ($x \in [0,1]$);
 - (1) 试求(X,Y)的联合概率密度函数f(x,y);
 - (2) 试求 Cov(X,Y);
 - (3) 试求 $P(X+Y \le 1)$ 以及 $E(X \mid X+Y \le 1)$;
- (4) 求 $Z = \frac{Y}{X}$ 的概率密度函数 $f_Z(z)$ 。
- 五. (25分) 设 X_1, \dots, X_n 是总体X 的一个样本,X 的概率密度函数为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$
 其中 $\theta > 0$ 为未知参数。

- (1) 试求 $Y \triangleq -\ln X$ 的概率密度函数;
- (2) 试问 $T \triangleq -\sum_{i=1}^{n} \ln X_i$ 是否为 θ 的充分统计量? 为什么?
- (2) 试求 θ 的极大似然估计量 $\hat{\theta}_{MLE}$;
- (4) $\frac{1}{\hat{\theta}_{MLE}}$ 是否为 $\frac{1}{\theta}$ 有效估计和 UMVUE? 请给出理由;
- (5) 试证明 $2\theta T \sim \chi^2(2n)$, 并由此给出参数 θ 的置信水平为 $1-\alpha$ 的等尾置信区间。