# Stochastic Methods for Global Optimization

### Gaëtan Serré

École Normale Supérieure de Paris-Saclay, Centre Borelli, Team MLMDA



# Global optimization

Branch of mathematics who aim to find the global optima of an arbitrary function over a compact set. Also sometimes reffered as **non-convex op-timization**. This is a very hard problem and there is no general solution.

$$f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$$
 
$$x \in \underset{x \in \Omega}{\operatorname{argmin}} f(x),$$

We focus on sequential and stochastic global optimization methods:

Algorithm 1: Sequential Stochastic Global Optimization Method

#### Input:

 $f:\Omega\to\mathbb{R}$ , the objective function.

#### Output:

 $\hat{x}$ , an approximation of a minimizer of f.

#### for i in 1...N do

 $x_i \sim d_{\theta}$  Sample a point w.r.t. a distribution d parametrized by  $\theta$ .  $\theta = F(x_1, ..., x_i, f(x_1), ..., f(x_i))$  Update  $\theta$  using the previous points and their evaluations.

#### end for

return argmin  $f(x_i)$ 

Return the best point found.

Lipschitz continuity commonly assumed to design consistent methods.

## The need for randomness

- Emergence of deep learning  $\Rightarrow$  resurgence of nonsmooth Lipschitz optimization (nonsmooth components, e.g. ReLU)
- Recent negative results for deterministic methods [1]
- M. I. Jordan and others [2] raises this fundamental question:

What is the role of randomization in dimension-free nonsmooth nonconvex optimization?

**Theorem** (Necessity of randomness). For any  $0 < \Delta$ ,  $0 < \kappa$ ,  $3 \le d$ ,  $N \le d-2$ , and any deterministic first-order algorithm  $\mathcal{A}$ , there exists a  $\kappa$ -Lipschitz function  $f: \Omega \to \mathbb{R}$  such that  $f(x_0) - \inf_{x \in \Omega} f(x) \le \Delta$  for which any of the N first iterates produced by  $\mathcal{A}$  applied to f is not a  $(\delta, \varepsilon)$ -Goldstein stationary point of f, for any  $\delta < \frac{\Delta}{\kappa}$  and  $\varepsilon < \frac{\kappa}{252}$ .

Randomness is necessary to achieve good performance on arbitrary Lipschitz functions.

# Some stochastic methods

#### LIPO [3]

- Constructs upper bound and uses it to sample from an uniform distribution
- Adaptative version estimating the Lipschitz constant: Adalipo
- Both **consistent** over the class of Lipschitz functions

# CMA-ES [4]

- Efficient method. Samples points from moving Gaussian distribution.
- Not consistent



Figure 1: An example of upper bound constructed by Lipo. The set of point  $\Omega_{\kappa,t}$  is the set of potential maximizers.



Figure 2: Movement of SBS' particles on the Ackley function.

#### SBS

- We propose the *Stein Boltzmann Sampling* method [5].
- Flow-based method. Samples from the **Boltzmann distribution**.
- Consistent over the class of Lipschitz functions
- Theory:
  - → Multiple domains e.g. functional analysis, measure theory, flow theory

**Theorem.** Let k be a symmetric positive definite kernel,  $\mathcal{H}$  the associated RKHS, and  $\mu$  a measure such that  $\mu \ll \lambda$ . The following integral operator is a mapping in  $\mathcal{H}$ :

$$T_k:L^2_{\mu(\Omega)}\to \mathcal{H}$$
 
$$f\mapsto \int_{\Omega} k(x,\cdot)f(x)\,\mathrm{d}\mu(x).$$

→ Some results formalized using Lean

```
class RKHS {E F : Type*} [RCLike F] (H : Set (E \rightarrow F))
[NormedAddCommGroup H] [InnerProductSpace F H] where
k : E \rightarrow E \rightarrow F
memb : \forall (x : E), k x \in H
repro : \forall f, (hf : f \in H) \rightarrow \forall (x : E),
    f x = inner (\langlef, hf\rangle : H) \langlek x, memb x\rangle
```

- Easely adaptable for sampling in complex manifolds



Figure 3: Sampling over a curve w.r.t. a Gaussian distribution using SVGD.

<sup>[1]</sup> G. Kornowski and O. Shamir, "Oracle complexity in nonsmooth nonconvex optimization," 2021.

<sup>[2]</sup> M. I. Jordan and others, "Deterministic Nonsmooth Nonconvex Optimization." 2023.

<sup>[3]</sup> C. Malherbe and N. Vayatis, "Global Optimization of Lipschitz Functions," 2017.

N. Hansen and A. Ostermeier, "Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation," 1996.

<sup>[5]</sup> G. Serré, A. Kalogeratos, and N. Vayatis, "Stein Boltzmann Sampling: A Variational Approach for Global Optimization." 2024.