

Tìm kiếm cục bộ

Từ Minh Phương

Bộ môn: KHMT

Ví dụ

Thiết kế mạch

Ví dụ

Lập kế hoạch, thời khoá biểu, bài toán "một triệu con hậu", .v.v.

Tại sao lại tìm kiếm cục bộ?

- Bài toán tối ưu hoá tổ hợp (tối ưu hoá rời rạc):
 - Tìm trạng thái tối ưu: cực đại hoá hoặc cực tiểu hoá hàm mục tiêu
 - Không gian trạng thái rất lớn
 - Không thể dùng các phương pháp tìm kiếm đã học để xem xét toàn bộ không gian trạng thái (NP đầy đủ)
 - Không tồn tại thuật toán cho phép tìm lời giải tốt nhất và có độ phức tạp tính toán nhỏ
 - Có thể chấp nhận những lời giải tương đối tốt

Ý tưởng

- Khác với bài toán tìm kiếm thông thường, chỉ quan trọng trạng thái đích, không quan trọng đường đi
- Mỗi trạng thái tương ứng với một lời giải (chưa tối ưu)
- cải thiện dần (iterative improvement) lời giải bằng cách xuất phát từ một trạng thái sau đó thay đổi để chuyển sang trạng thái có hàm mục tiêu tốt hơn
- Thay đổi trạng thái bằng cách thực hiện các chuyển động (trạng thái nhận được từ một trạng thái n bằng cách thực hiện các chuyển động gọi là hàng xóm của n)

Ví dụ: n con hậu

Phát biểu bài toán

- Không gian trạng thái X
- Hàm mục tiêu Obj: $X \rightarrow \Re$
- N(x) xác định các "hàng xóm" của x
- Tìm trạng thái x* sao cho Obj(x*) là nhỏ nhất hoặc lớn nhất

Thuật toán leo đổi (hill climbing)

- Là một họ các thuật toán
- Xem xét tập hàng xóm của trạng thái hiện thời và lựa chọn trạng thái tốt hơn trạng thái hiện thời

Minh hoạ

Thuật toán leo đổi

Giả sử cần tìm trạng thái có hàm mục tiêu lớn nhất

- 1. Chọn ngẫu nhiên trạng thái *x*
- 2. Gọi Y là tập các trạng thái hàng xóm của x
- 3. Nếu $\forall y_i \in Y$: Obj $(y_i) <$ Obj (x) thì Kết thúc và trả lại x là kết quả
- 4. $x \leftarrow y_i$, trong đó $i = \operatorname{argmax}_i(\operatorname{Obj}(y_i))$
- 5. Go to 2

Phiên bản này có tên là "Di chuyển sang trạng thái tốt nhất" (Best-improvement search)

Ví dụ

Ví dụ 8 con hậu

a)

b)

h= số đôi hậu đe dọa lẫn nhau

- a) trạng thái với h=17 và và giá trị h cho các hàng xóm
- b) một trạng thái với cực trị địa phương (h=1) www.ptit.edu.vn

Đặc điểm

- Rất đơn giản, dễ lập trình
- Không tốn bộ nhớ (không phải ghi nhớ các trạng thái)
- Dễ bị lời giải tối ưu cục bộ (cực trị địa phương)
- Việc lựa chọn chuyển động rất quan trọng, không có quy tắc chung
 - Nếu có quá nhiều chuyển động: sinh ra quá nhiều hàng xóm
 -> mất nhiều thời gian lựa chọn phương án tốt nhất
 - Nếu quá ít chuyển động: rất dễ bị cực trị địa phương

Ví dụ cực trị địa phương

goal

	1	2
3	4	5
6	7	8

Leo đổi ngẫu nhiên

- Leo đồi ngẫu nhiên = randomized hill climbing
- Tên gọi khác: "trạng thái đầu tiên tốt hơn"
- Lựa chọn ngẫu nhiên một trạng thái hàng xóm, chuyển sang trạng thái hàng xóm nếu trạng thái này tốt hơn. Kết thúc khi nào hết kiên nhẫn

Thuật toán

- 1. Chọn ngẫu nhiên trạng thái *x*
- 2. Gọi Y là tập các trạng thái hàng xóm của x
- 3. Chọn ngẫu nhiên $y_i \in Y$
- 4. Nếu Obj (y_i) < Obj (x) thì

$$x \leftarrow y_i$$

5. Go to 2 nếu chưa hết kiên nhẫn

Vấn đề:

- -tiêu chuẩn kết thúc thế nào
- -So sánh với thuật toán trước ra sao

Ví dụ: bài toán người bán hàng

Trạng thái: đường đi qua tất cả các điểm, không có điểm nào bị đi qua quá 1 lần

Chuyển động: đổi 2, ..., đổi k

Ví dụ: bài toán người bán hàng

Trạng thái: đường đi qua tất cả các điểm, không có điểm nào bị đi qua quá 1 lần

Chuyển động: đổi 2, ..., đổi k

So sánh các kiểu chuyển động

- k càng lớn thì số lượng hàng xóm sinh ra càng nhiều -> lựa chọn hàng xóm tốt nhất lâu hơn
- đổi_3 tốt hơn nhiều so với đổi_2
- đổi_4 không tốt hơn nhiều so với đổi_3 nhưng phức tạp hơn nhiều

Thuật toán tôi thép

- Simulated annealing
- Là phiên bản khái quát hoá của leo đồi ngẫu nhiên
- Mục tiêu: tránh cực trị địa phương
- Nguyên tắc chung: chấp nhận những trạng thái kém hơn trạng thái hiện thời với một xác suất p.

Lựa chọn xác suất p

- p là xác suất thuật toán chấp nhận chuyển sang trạng thái kém hơn hiện thời
- Lựa chọn p thế nào:
 - cho p giảm theo thời gian $p \sim 1/t$
 - giảm p nếu ∆(x,y) = Obj(y) Obj(x) tăng, trong đó
 x là trạng thái hiện thời, y là hàng xóm của x

Cụ thể là: nếu
$$\Delta(x,y) < 0$$
 thì $p = 1$
nếu $\Delta(x,y) \ge 0$ thì $p = e^{-\Delta(x,y)}$

Thuật toán tôi thép

SA(X, Obj, N, m, x, C)

Đầu vào: số bước lặp m

trạng thái bắt đầu x (chọn ngẫu nhiên)

sơ đồ làm lạnh C

Đầu ra: trạng thái tốt nhất x*

Khởi tạo: $x^* = x$

For i = 1 to m

1. chọn ngẫu nhiên $y \in N(x)$

- a) $tinh \Delta(x,y) = Obj(y) Obj(x)$
- b) if $\Delta(x,y) < 0$ then p = 1
- c) else $p = e^{-\Delta(x,y)/T}$
- d) if rand[0,1] x \leftarrow y if $Obj(x) < Obj(x^*)$ then $x^* \leftarrow x$
- 2. giảm T theo sơ đồ C

Ý nghĩa T

Sơ đồ làm lạnh C: $T_{t+1} = T_0 \alpha^{t/l}$, trong đó T0 > 0, $l \in (0,1)$, $1 \le t \le m$

Ý nghĩa T

- T lớn: chấp nhận bất cứ trạng thái nào -> chuyển động ngẫu nhiên (random walk)
- T nhỏ: leo đồi ngẫu nhiên

Các yếu tố ảnh hưởng tới SA

- Lựa chọn chuyển động
- Lựa chọn hàm đánh giá
- Lựa chọn sơ đồ "tôi thép"

Ví dụ: thiết kế mạch

Ví dụ: lựa chọn chuyển động

vẽ các ràng buộc theo lớp dưới dạng đồ thị (mũi tên có nghĩa là "phải nằm trên")

Xếp các dây vào cùng một rãnh == chập các nút.

www.ptit.edu.vn

29

Ví dụ: hàm mục tiêu

- Mục tiêu đặt ra giảm độ rộng w của kênh
- Lựa chọn hàm mục tiêu khác

$$c = w^2 + \lambda_p \cdot p^2 + \lambda_u \cdot u$$

p là giới hạn dưới kích thước đồ thì sau khi chập các nút u là mức độ chênh lệch khi ghép các rãnh

Nhận xét chung

- Không có cơ sở lý thuyết rõ ràng
- Thường cho kết quả tốt hơn leo đồi (ít bị cực trị địa phương)
- Việc lựa chọn tham số phụ thuộc vào bài toán cu thể