EEE 202 CIRCUIT THEORY First Midterm, Spring 2014-15

No credits will be given for unjustified answers. Good luck.

Prob. 1: (25 pt.s)

i: (5 pt.s) Find the current i_0 in the following circuit. (If you use node and/or mesh equations, use the notation indicated in the figure).

ii: (5 pt.s) Find the current i_x in the following circuit. (If you use node and/or mesh equations, use the notation indicated in the figure).

iii: (5 pt.s) Consider the following circuit. Assume that op-amp is ideal and operates in the linear region. Find i_0 .

iv: (10 pt.s) Consider the periodic waveform $v_s(t)$ given below. Find its period T, average value V_{avg} and rms value V_{rms} of this signal. Also let $v_0(t)$ be defined as $v_0(t) = \int_0^t v_s(\tau) d\tau$. Find and sketch $v_0(t)$ for one period (i.e. for $0 \le t \le T$), and indicate the relevant values in the sketch.

Prob. 2: (25 pt.s)

i: (12 pt.s) Consider the following circuit. By using NODE analysis, find the node voltages. (Use the notation indicated in the figure).

 $i:(13\ \text{pt.s})$ Consider the following circuit. By using MESH analysis, find the mesh currents. (Use the notation indicated in the figure).

Prob. 3: (25 pt.s)

i: (13 pt.s) Consider the following circuit. Here, R_L is an unknown resistance to be determined. Find the value of R_L so that the power transferred to it is maximum. In this case, find the maximum power delivered to R_L .

ii : Consider the following circuit. By using SUPERPOSITION, find $i_1.$

 ${\tt Prob.~4:(25~pt.s)}$ Consider the following circuit. Assume that all op-amps are ideal and operate in linear region. Let $R_s=1$ $k\Omega$. Find v_0 , ' v_1 , v_2 , i_s , i_1 and i_f as functions of v_s for :

 $i: R_f = \infty.$ $ii: R_f = 40 \ k\Omega.$

