Taller de programación sobre matrices y tableros

Laboratorio Algoritmos y Estructura de Datos I

1er Cuatrimestre 2019

That's so 2019

¿Qué es una matriz?

Una matriz, en nuestro contexto, es simplemente un vector de dos dimensiones que tiene el mismo largo en cada uno de sus elementos.

¿Qué es una matriz?

- Una matriz, en nuestro contexto, es simplemente un vector de dos dimensiones que tiene el mismo largo en cada uno de sus elementos.
- ▶ Para declarar una matriz (de enteros) pueden hacer:

```
vector<vector<int> > m;
```

En vez de *int* pueden poner cualquier otro tipo (*string*, *char*, etc).

Importante! : Los '>'que cierran tienen que tener un espacio en el medio, porque sino el compilador piensa que queremos usar el operador >>.

Muchas veces queremos utilizar matrices para representar estructuras como por ejemplo:

Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).

- Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).
- Tableros (de ajedrez, por ejemplo).

- Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).
- Tableros (de ajedrez, por ejemplo).
- Mapas (por ejemplo, en cada casillero guardamos la altura del territorio en esas coordenadas, o la cantidad de personas que viven en una determinada manzana).

- Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).
- Tableros (de ajedrez, por ejemplo).
- Mapas (por ejemplo, en cada casillero guardamos la altura del territorio en esas coordenadas, o la cantidad de personas que viven en una determinada manzana).
- Imágenes.

- Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).
- Tableros (de ajedrez, por ejemplo).
- Mapas (por ejemplo, en cada casillero guardamos la altura del territorio en esas coordenadas, o la cantidad de personas que viven en una determinada manzana).
- Imágenes.
- Series temporales.

- Matrices de verdad (esas de Álgebra que tienen determinante y esas cosas).
- Tableros (de ajedrez, por ejemplo).
- Mapas (por ejemplo, en cada casillero guardamos la altura del territorio en esas coordenadas, o la cantidad de personas que viven en una determinada manzana).
- Imágenes.
- Series temporales.
- Muchísimos etcéteras.

Operaciones (que vamos a necesitar) sobre matrices

Declarar una matriz.

```
vector<vector<int> > m;
```

▶ Inicializar una matriz de m filas × n columnas con ceros.

```
vector<vector<int> > res(m,vector<int>(n));
```

Inicializar una matriz de m filas x n columnas todas con el mismo valor (x).

```
vector<vector<int> > res(m, vector<int>(n,x));
```

Agregar una fila.

```
vector<vector<int> > m;
vector<int> v = {1,2,3}
m.push_back(v);
```

Acceder a un elemento en la posición (i,j).

```
m[i][j]
```

Rotación de Matrices

Dada una matrix mat de $n \times m$ y dos enteros d y a queremos devolver una matrix con las columnas m movidas d veces a la derecha y las filas movidas a veces hacia abajo.

Rotación de Matrices

```
Resolvamos el siguiente problema:
proc rotar (in mat: seq\langle seq\langle \mathbb{Z}\rangle\rangle, in d: \mathbb{Z}, in a: \mathbb{Z}, out res:
seg\langle seg\langle \mathbb{Z}\rangle\rangle) {
   \text{Pre } \{ |mat| > 0 \land (\forall i : \mathbb{Z}) (0 \le i < |mat| \rightarrow_L |mat[i]| = |mat[0]| \}
   |\mathsf{mat}| \land_i 0 \le i < |\mathsf{mat}[i]|) \rightarrow_i \mathsf{res}[i][j] = \mathsf{mat}[(i-a)]
             mod |mat||[(i-d) mod |mat[i]|])))
pred mismaForma (in m1,m2: seq\langle seq\langle \mathbb{Z}\rangle\rangle) {
       |m1| = |m2| \land_i (\forall i : \mathbb{Z}) \ 0 < i < |m1| \rightarrow_i |m1[i]| = |m2[i]|
```

Rotación de Matrices

```
vector<vector<int> > rotar(vector<vector<int> > mat,
                int a, int d) {
    int n = mat.size();
    int m = mat[0].size();
    vector<vector<int> > res(n,vector<int>(m));
    int i = 0:
    while(i < n)  {
        int j = 0;
        while(j < m) {
            res[i][j] = mat[(i-a)%n][(j-d)%m];
            j++;
        i++;
    return res;
```

Matrices y más matrices

Durante la carrera verán más ejercicios de matrices hasta el cansancio en:

- Organización del Computador 2: Verán como aplicar filtro a imágenes (como los de Instagram) pero en lenguaje ASM.
- Algoritmos y Estructuras de Datos 3: Ejercicios sobre grafos, programación dinámica, etc.
- Métodos Numéricos: mejor conocida como "Matrices: la materia" (verán algoritmos sobre matrices como las de Álgebra).

Taller de Matrices

El taller de hoy tiene un enunciado y un archivo comprimido. Dentro del archivo que se que se descarguen desde la página de la materia van a encontrar los siguientes archivos y carpetas:

- ▶ Directorio lib: Con el GTest comprimido que es preciso descomprimir.
- Directorio tests: Con 8 tests, uno por cada ejercicio del taller.
- ejercicios.cpp: Aquí es donde van a volcar sus implementaciones.
- ejercicios.h: headers de las funciones que tienen que implementar.
- main.cpp: Punto de entrada del programa.

Para trabajar, se debe crear el arcivo CMakeList.txt que involucre todos los directorios y archivos del taller. Se puede aprovechar aquel CMakeList.txt del laboratorio 6. Desde el CLION se puede abrir el proyecto con "Open Project".