Lecture 18: The Method of Images, Introduction to Magnetism

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

- Method of Images
- 2 Electricity and Magnetism

Secondary of the sec

Method of Images

Given a charge configuration above an infinite grounded PEC plane may be replaced by the charge configuration itself, its image, and an equipotential surface in place of the conducting plane.

Method of Images

In electric field: == E++E-

$$\frac{\rho_{l}}{E} = \frac{\rho_{v}}{E}$$

$$\frac{1}{4}$$

(x,+h,+(5-12))

a equipotential plane

Electrostatics Recap

=	-Qh,	2T S	TP2+h2]3/2/2dlf
---	------	------	-----------------

Attribute	Electrostatics
Fields	E [V/m] =
Flux densities	D [C/m ²]
Sources	Stationary charges or current densities $ ho_{v s l}$
Constitutive parameter(s)	ϵ [F/m] and σ [S/m]
Constitutive relations	$oldsymbol{D} = \epsilon oldsymbol{E}$, $oldsymbol{J} = \sigma oldsymbol{E}$
Divergence relation	$\mathbf{\nabla} \cdot \mathbf{D} = \rho_v$
Curl relation	$\mathbf{\nabla} \times \mathbf{E} = 0$
Surface integral relation	$\oint_S oldsymbol{D} \cdot doldsymbol{s} = Q$
Contour integral relation	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$
Circuit components	$oldsymbol{\widetilde{C}}$ and R
Force on a charge	$oldsymbol{F} = q oldsymbol{E}$

Preview of Magnetostatics

Attribute	Electrostatics	Magnetostatics
Fields	E [V/m]	H [A/m]
Flux densities	D [C/m 2]	${f B} \; {\sf Wb/m^2}$
Sources	Stationary charges or	Steady (DC)
	charge densities $ ho_{v s l}$	currents $oldsymbol{J}$
Constitutive parameter(s)	ϵ [F/m] and σ [S/m]	μ [H/m]
Constitutive relations	$D = \epsilon E, J = \sigma E$	$m{B} = \mu m{H}$
Divergence relation	$\mathbf{\nabla} \cdot \mathbf{D} = ho_v$	$\nabla \cdot \boldsymbol{B} = 0$
Curl relation	$\mathbf{\nabla} \times \mathbf{E} = 0$	$oldsymbol{ abla} imesoldsymbol{H}=oldsymbol{J}$
Surface integral relation	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$
Contour integral relation	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = I$
Circuit components	$oldsymbol{\widetilde{C}}$ and R	\widetilde{L} (inductance)
Force on a charge	$oldsymbol{F} = qoldsymbol{E}$	Next!

Force Relations

Electric force

$$\boldsymbol{F}_e = q\boldsymbol{E}$$

Magnetic force

$$F_m = q\mathbf{u} \times \mathbf{B}$$