Contenus	Capacité attendue	Commentaire
Modèle d'architecture séquentielle (Von Neumann)	C5.2 : Dérouler l'exécution d'une séquence d'instructions simples du type langage machine.	

op0	op1 op2	mnémonique	instruction à réaliser
0	addr	LDA	copie le mot mémoire d'adresse <i>addr</i> dans le registre A
1	addr	LDB	copie le mot mémoire d'adresse <i>addr</i> dans le registre B
2	addr	STR	copie le contenu du registre R dans le mot mémoire d'adresse <i>addr</i>
3		_	opérations arithmétiques et logiques
3	0 0	ADD	ajoute les valeurs des registres A et B, produit le résultat dans R
3	0 1	SUB	soustrait la valeur du registre B à celle du registre A, produit le résultat dans R
3	• •	etc.	
3	99	NOP	ne fait rien
4	rs rd	MOV	copie la valeur du registre source <i>rs</i> dans le registre destination <i>rd</i>
5	addr	JMP	branche en <i>addr</i> (PC reçoit la valeur <i>addr</i>)
6	addr	JPP	branche en <i>addr</i> si la valeur du registre R est strictement positive

Valeur	Registre
0	A
1	В
2	R

op0	op1 op2	mnémonique	instruction à réaliser
7	addr		copie la valeur de PC dans la case mémoire SP; décrémente SP; copie <i>addr</i> dans PC
3	98	RET	incrémente SP ; copie la valeur de la case mémoire SP dans PC

op0	op1 op2	mnémonique	instruction à réaliser
3	9 7	PSH	copie la valeur de R dans la case mémoire SP ; décrémente SP
3	9 6	POP	incrémente SP ; copie la valeur de la case mémoire SP dans R
3	8 d	SSP	copie la valeur de R dans la case mémoire SP + <i>d</i>
3	7 d	GSP	copie la valeur de la case mémoire $SP + d$ dans R