The Mono-jet *t*-channel Simplified Model

Emily (Millie) McDonald, Maria Giulia Ratti, Valerio Ippolito, Elisabetta Barberio

Exotics Plenary Session 20/07/2017

Content

The t-channel Model: Introduction	3
The t-channel Model: Mono-Jet Implementation	6
Split Sample Generation Procedure	7
Split Sample Recombination Procedure	9
Generation Parameters	10
Comparison with SUSY Strong Production	11
Limits for $g = 1$	12
Outstanding Points	13
Backup	14

The *t*-channel Model: Introduction (1/3)

A 't-channel model' was first discussed in the ATLAS/CMS Dark Matter Forum

- → 't-channel model' synonym for 'colored scalar mediator model'
- → Introduces signatures not covered by the conventional *s*-channel models

Ref. arXiv:1507.00966

The t-channel Model: Introduction (2/3)

DMF report model:

$$\mathcal{L}_{\text{int}} = g \sum_{i=1,2} (\phi_{(i),L} \bar{Q}_{(i),L} + \phi_{(i),u,R} \bar{u}_{(i),R} + \phi_{(i),d,R} \bar{d}_{(i),R}) \chi$$

- → Adaptation of model by Papucci et al. in <u>arXiv:1402.2285</u> (MSSM where only the squarks and the neutralino are light)
- \rightarrow LH + RH couplings
- \rightarrow 2 generations of spin-0 mediators, ϕ_{i} , forming color triplets, SU(2) doublets
- → DM-mediator-quark couplings, g
- \rightarrow SM singlet Dirac fermion DM particle, χ
- → Minimal decay widths:

$$\Gamma(\phi_{(i)} \to \bar{u}_{(i)}\chi) = \frac{g_{(i)}^2}{16\pi M_{\phi_{(i)}}^3} (M_{\phi_{(i)}}^2 - m_{u_{(i)}}^2 - m_{\chi}^2) \sqrt{(M_{\phi_{(i)}}^2 - (m_{u_{(i)}} + m_{\chi})^2)(M_{\phi_{(i)}}^2 - (m_{u_{(i)}} - m_{\chi})^2)}$$

Additional models studied in the literature:

- → Coupling to $\phi_{(i),u,R}$ (arXiv:1308.2679) and $\phi_{(i),d,R}$ (arXiv:1402.2285, arXiv:1409.2893)
- → LH coupling only by Bell et al. in arXiv:1307.8120 (also in arXiv:1405.3101)

The *t*-channel Model: Introduction (3/3)

By construction, UFO of Papucci model doesn't include couplings to W bosons

→ Interest from mono-W group prompted move to Bell et al. model

The Bell Model: UFO files

$$\mathcal{L}_{\text{int}} = g \sum_{i=1,2,3} \phi_{(i),L} \bar{Q}_{(i),L} \chi$$

Model is in general a subset of the Papucci model with a few key differences:

- 1. RH coupling switched off
- 2. Coupling to 3rd generation of quarks switched on (fTB \neq 0)
- 3. Coupling to W bosons switched on

Ref. arXiv:1307.8120

- ☐ Compatibility check of models performed by Amelia Brennan with:
 - → fTB = 0 for the Bell Model, RH coupling off for the Papucci Model
 - → Outcomes: models yield the same cross-sections for mono-jet and mono-Z signatures
 - → Full details in ref. link
- Bell model is equivalent to the model by Y. Bai et al. (arXiv:1308.0612)
 - → 'Fermion Portal DM Model' studied by CMS

The t-channel Model: Mono-jet Implementation

The mono-jet group uses the Bell Model with a set of simplifying assumptions:

- \square MFV and therefore $\mathbf{m}_{\mathbf{0}} = \mathbf{M}$
- Leave fTB = 0 and omit $\phi_{(3),L}$ from hard scatter processes
 - → Model aligns better with DMF model
 - → Inclusion of b- and t-quarks requires significant additional work
 - → Already performed some preliminary studies towards future inclusion [link]
- \square Require $m_{\gamma} < M$
 - → Ensures stability of DM particle
- \square Require $m_{\chi}^2 + m_q^2 \le M^2$ and $4m_{\chi}^2/M^2 \le (1 m_q^2/M^2 + m_{\chi}^2/M^2)^2$
 - → Ensures mediator width is always defined

Split Sample Generation Procedure (1/2)

Considerations:

1. DM-mediator-quark vertices allow for simultaneous FS partons with different hard scales

Events with $p_T(FS parton) < matching scale vetoed$

- ightharpoonup Problematic when $M \approx m_{\chi}$ and φ produced on-shell
- 2. Without including any additional jets, ISR is suppressed for the inclusive process pp > $\chi\chi + \{0, 1, 2\}j$
 - \rightarrow Hard ISR important when $\Delta m = M m_{\gamma}$ is small

Split Sample Generation Procedure (2/2)

Treatment:

Split sample generation for each mass and coupling point according to the number of on-shell mediators in the MadGraph process:

- 1. $\varphi \varphi + \{0, 1, 2\}j$
- 2. $\varphi \chi + \{0, 1, 2\}j$ \$ med
- 3. $\chi\chi + \{0, 1, 2\}j$ \$ med
 - \Box Decay of mediators performed by Pythia (assume 100% BR for $\phi \rightarrow q\chi$)

Note: Following Papucci et al, we neglect interference

Adapted from Papucci et al., ref. arXiv:1402.2285

Split Sample Recombination Procedure

Omitting on-shell mediators in samples 2 and 3 removes the phase space $M \pm \Gamma*BWcutoff$

- → Require Γ *BWcutoff ≤ O(50 GeV)
 - \Box For narrow Γ, BWcutoff = 15
 - □ For points with $50/\Gamma$ < 1, BW cutoff capped at 1

For broad Γ , a narrow BW cutoff leads to event duplication among the samples - accounted for as follows:

1. Assume mediator is well-modelled by a Breit-Wigner propagator:

$$BW(x) = \frac{1}{\pi \Gamma/2 \left(1 + \left(\frac{x - x_0}{\Gamma/2}\right)^2\right)}$$

2. Scale samples 1 and 2 by the factors w^2 and w respectively, where:

$$\mathbf{w} = \frac{\int_{I} BW(x)dx}{\int_{-\infty}^{\infty} BW(x)dx}$$

with
$$I \equiv [M - \Gamma * BWcutoff, M + \Gamma * BWcutoff]$$

3. Weight samples by cross-sections and add together

Adapted from ref. arXiv:1402.2285

Additional documentation in Section 3.2.1 and Appendix C of mono-jet internal note

Generation Parameters

MadGraph setup:

- MadGraph5 v2.3.3
- □ Exclude photons and EW/Higgs bosons
 - → Save on computation time/resources
 - → Added diagrams yields correction of < 8 % but increase computation time by ~80%
- □ NNPDF23 PDF
- □ CKKW-L merging scheme
- \Box ktDurham = M/8 when both FS mediators on-shell and 30 GeV otherwise
 - → Studied impact on different values and combinations of ktDurham values [link]
 - \rightarrow Best values yield minimal variation in kinematics, σ , and A when varied by 0.5 or 2
 - → Optimisation achieved for the quoted merging scales in (non-)compressed regions
 - → Systematic uncertainty added to account for any inconsistencies
- □ 100 GeV MET filter

Pythia setup:

- Pythia8.212
- \Box nJetMax = 2
- □ A14 NNPDF23LO tune

Full details of validation studies listed on mono-jet twiki [link]

Comparison with SUSY Strong Production

Sub-sample 1 resembles closely direct squark production with RH squarks switched off

- → DM ⇔ neutralino -
- → Mediator ⇔ squark
- → Squarks couple to 1 flavor of quark

Performed a comparison of cross-sections/kinematics for different values of g [link]

- → Sub-sample 1 recovers MSSM crosssections for g=0.1
- → MSSM kinematics recovered for a range of couplings
- → For larger g, the other sub-samples become more important

Setting g = 1:

- → Distinguishes the *t*-channel model from SUSY squark production
- → Interesting in terms of relic density

Fig: Kinematics comparison for sub-sample 1 (L) and sub-sample 2 (R)

Limits for g = 1

Mediator masses of \sim 1.65 TeV are excluded for light DM. For $m_{\chi} \simeq M$, masses up to 500 GeV are excluded

Note:

- This limit plot generated with initial set of mass points [link] (extended set nearly complete [link])
- \Box For the 1 σ band on the observed limit, only the uncertainty on the PDF and scale are included

Outstanding Points

- ☐ Full set of replies to draft 1 comments (in particular Dave Charlton's comments) on the *t*-channel now being finalised
- □ t-channel introduction and signal simulation sections rephrased to better encapsulate the complexity of the model and generation procedure
- Appendix C of the internal note has been updated wrt the Exotics-circulated version, now includes:
 - → Additional details on the *t*-channel generation procedure and validation
 - \rightarrow Full set of *t*-channel studies performed

Backup

JobOptions Content

	MadGraph Generated Processes	dm = chi chi~	
Sample 1	pp > med med / etab etabbar etat etatbar a h z w+ w- pp > j med med / etab etabbar etat etatbar a h z w+ w- pp > j j med med / etab etabbar etat etatbar a h z w+ w-		
Sample 2	pp > dm med / etab etabbar etat etatbar a h z w+ w- \$med pp > j dm med / etab etabbar etat etatbar a h z w+ w- \$med pp > j j dm med / etab etabbar etat etatbar a h z w+ w- \$med	Merging:mayRemoveDecayProducts = on for sub-samples 1 and 2	
Sample 3	pp > chi chi~ / etab etabbar etat etatbar a h z w+ w- \$med pp > j chi chi~ / etab etabbar etat etatbar a h z w+ w- \$med pp > jj chi chi~ / etab etabbar etat etatbar a h z w+ w- \$med	 → Omits resonance decay products from the hard process → Omits mediators from Pythia-internal jet clustering 	
	algorithms		
Sample 1	Sample 1 'pp>{etad,9000006}{etad~,-9000006}{etau,9000007}{etau~,-9000007} {etas,9000008}{etas~,-9000008} {etac,9000009}{etac~,-9000009}'		
'pp>{chi,1000022}{chi~,-1000022}{etad,9000006}{etad~,-9000006} Sample 2			
Sample 3 'pp>{chi,1000022}{chi~,-1000022}'			

Validation of Generation Procedure cont.

Validation of merging scales

- ☐ Tested CKKW-L merging between MadGraph and Pythia
- ☐ Check two possible strategies:
 - 1. Mediator mass related scale, e.g. Mmed/4, Mmed/8
 - 2. Jet pt related scale, e.g. analysis-jet-pt-cut/2
- ☐ Best strategy is the one which yields:
 - 1. Minimal variation in MET and leading-/sub-leading jet p_T distributions when the ktDurham value is varied by a factor 0.5 or 2
 - 2. Minimal variation in the cross-section and acceptances
- Studies performed in two regimes:
 - 1. Compressed case: $m_{\chi} = 450 \text{ GeV}$, M = 500 GeV
 - 2. Non-compressed case: $m_{\chi} = 100 \text{ GeV}$, M = 2 TeV
- Outcomes:
 - \rightarrow ktDurham = M/8 yields smallest variation in relevant parameters for sub-sample 1 but significant deviation in sample 3
 - → ktDurham = 15 GeV yields large variation in sub-sample 1 but avoids unwanted structure in sub-samples 2 and 3
 - → ktDurham = 30 GeV yields same result as 15 GeV for sub-samples 2 and 3 and is favoured by most DM search analyses
 - → Optimisation achieved for non-uniform merging scales (*M*/8 for sub-sample 1, 30 GeV for sub-samples 2 and 3)

Validation of Generation Procedure cont.

Impact of splitting samples/omitting interference terms:

"However we checked in explicit cases, using analytic formulae, that this introduces up to O(30%) deviations in the rates..." - Papucci et al.

Checks by Caterina Doglioni and Maria Giulia Ratti:

→ Average impact on cross-section is 10-35% at MadGraph level

m_{γ} =500, M=550 g=1 xsec (pb)	m _γ =1, <i>M</i> =1000 g=1 xsec (pb)	m _γ =1, <i>M</i> =200 g=1 xsec (pb)
bw_weight	bw_weight	bw_weight
sl 1,056 0,958	sl 0,045 0,717	sl 234,220 0,964
s2 0,639 0,979	s2 0,141 0,847	s2 124,360 0,982
s3 0,035 1,000	s3 0,082 1,000	s3 5,893 1,000
sum (bw_w included) 1,672	sum (bw_w included) 0,233	sum (bw_w included) 353,813
s nom 1,101	snom 0,273	snom 325,210
diff -34%	diff 17%	diff -8%

→ Take deviation from NWA as a rough idea of interference: for a 30% uncert., signal limits change by roughly 5%

ml_M1500	ml_M2000
exp limit on mu: 0.45 -> 0.55	
obs limit on mu: 0.66 -> 0.86	obs limit on mu: 1.68 -> 2.09