PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/66, 1/18, C12N 1/21, 15/53

(11) International Publication Number:

WO 99/25866

A1 |

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/FI98/00873

(22) International Filing Date:

11 November 1998 (11.11.98)

SE).

(30) Priority Data:

974235

14 November 1997 (14.11.97) FI

Published

With international search report.

(81) Designated States: JP, US, European patent (AT, BE, CH, CY,

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(71)(72) Applicants and Inventors: KORPELA, Matti [FI/FI]; Maijamäentie 13, FIN-21100 Naantali (FI). KARP, Matti [FI/FI]; Kampakatu 1, FIN-20660 Littoinen (FI). KURITTU, Jussi [FI/FI]; Puutarhakatu 16 A 20, FIN-20100 Turku (FI).

(74) Agent: TURUN PATENTTITOIMISTO OY; P.O. Box 99, FIN-20521 Turku (FI).

(54) Title: TETRACYCLINE ASSAY METHOD

(57) Abstract

The invention relates to a method for the determination of a tetracycline in a sample. The method is characterized in that the sample is brought into contact with prokaryotic cells encompassing a DNA vector including a nucleotide sequence encoding a light producing enzyme under transcriptional control of a tetracycline repressor and a tetracycline promoter, detecting the luminescence emitted from the cells, and comparing the emitted luminescence to the luminescence emitted from cells in a control containing no tetracycline. The invention also concerns recombinant prokaryotic cells capable of emitting light in response to the existence of a tetracycline in a sample. Furthermore, the invention relates to novel DNA vectors useful for the construction of said prokaryotic cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	Si	Slovenia
AM	Annenia	FI	Finland	LT.	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV 3	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE .	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	TI	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG .	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	"	
CM	Cameroon	-	Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		*
CÚ	Cuba	KZ	Kazaksian	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

Tetracycline assay method.

FIELD OF THE INVENTION

This invention relates to a method for the determination of a tetracycline in a sample. The invention also concerns recombinant prokaryotic cells capable of emitting light in response to the existence of a tetracycline in a sample. Furthermore, the invention relates to novel DNA vectors useful for the construction of said prokaryotic cells.

10 BACKGROUND OF THE INVENTION

The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference.

15 Whole cells can be used in methods based on the use of living cells or organisms as sensor tools of detection. Many of these methods utilize bacterial or yeast cells. Prokaryotic organisms and especially Escherichia coli bacterium are very well characterized and maps of genes and their sequences at nucleotide level are known. Therefore the behavior of the whole cell sensor can be better understood. Because of this fact it is also possible to develop analyte or group specific sensors utilizing different regulatory regions of genomes and also various microbial strains.

Whole cells can be utilized in biosensors which are devices consisting of 1) a sensor, 2) a recording unit and 3) a possible connector such as fiber optic guide between 1 and 2. The recording unit has several choices of what is the physical background of the measurement. It can be change in heat, conductance, color reaction, changes in fluorescent properties, emission of endogenous light from the sensor cells etc.

Antibiotics used as medicines against microbial invasion are detected from body fluids in order to study the dosage and penetration of the medicine. Often the effective therapeutic range of the antibiotic is rather narrow and the risks of overdosage might be too big. It is also important to measure the presence or concentration of antibiotics from meat and milk due to syndrome of allergic people. In the course of cheese production milk used as starting material should not contain antibiotics due to the fact that cheesemaking bacteria are not able to work on contaminated milk.

10

Conventional tests for the measurement of toxic substances such as antimicrobial agents (antibiotics) are based on the inhibition of growth. Growth inhibition can be followed by monitoring the zone where the growth of microbes is inhibited on a nutrient agar plate around a disk onto which an antibiotic dilution was pipetted. Typical examples of agar diffusion tests are cylindrical, hole or disk methods. The difference in these tests is only restricted in the way the sample is applied on the agar and also the way the bacteria in the test is used. Another means is to follow the metabolism of the test organisms by estimating the intensity of a color reaction which is affected by the inhibitory antibiotic present and comparing it to the uninhibited control (e.g. the commercial products: Delvo TestTM, Brilliant blackreduction test, Charm Farm Test, Charm AIM-96 and Valio T101-test). Since microbiological methods utilize bacteria or their spores it is the sensitivity of the test bacteria which is of utmost importance. Thus far one had to make compromises in the choice of a suitable test strain since great sensitivity against antimicrobial agents and other characteristics needed for the test strain have not been common features for the same strain of bacteria. A major drawback when using microbes in antibiotic residue tests is slow and unsensitive performance. Since in these methods one always controls in a way or other the growth of the tester strain one cannot imagine

the test to be performed in an hour. This is due to the fact that the growth of the microbe is a slow phenomenon even at its fastest mode. Also in many cases microbes are in spores or freeze-dried, the regeneration of which makes the tests even more slow to perform.

5

OBJECT AND SUMMARY OF THE INVENTION

The object of the invention is to provide a novel method of determining a tertracycline in a sample where said method is rapid and selective for tetracyclines, i.e. the method is able to distinguish tetracyclines from other antimicrobial agents.

10

15

According to one aspect of the invention a method for the determination of a tetracycline in a sample is provided, wherein the method is characterized in that

- the sample is brought into contact with prokaryotic cells encompassing a DNA vector including a nucleotide sequence encoding a light producing enzyme under transcriptional control of a tetracycline repressor and a tetracycline promoter,
- detecting the luminescense emitted from the cells, and
- comparing the emitted luminescence to the luminescence emitted from cells in a control containing no tetracycline
- wherein a detectable luminescence higher than a luminescence of the control indicates the presence of tetracycline in the sample.

According to another aspect, the invention concerns a recombinant prokaryotic cell which encompasses a DNA vector including a nucleotide sequence encoding a light producing enzyme, tetracycline repressor and tetracycline promoter.

25

According to yet another aspect, the invention concerns a plasmid which comprises either

- the luxCDABE genes (SEQ ID NO: 3), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from *Tn*10, or
- the insect luciferase gene (SEQ ID NO: 1), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from *Tn*10.

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a shows schematically the method according to this invention, where cells cloned with the plasmid pTetLux1 (SEQ ID NO: 3) are used.

Figure 1b shows schematically the method according to this invention, where cells cloned with the plasmid pTetLuc1 (SEQ ID NO: 1) are used.

Figure 1c shows schematically the production of the luciferase enzyme,

15 Figure 2 shows the plasmid pTetLux1 (SEQ ID NO: 3).

Figure 3 shows the plasmid pTetLuc1 (SEQ ID NO: 1).

Figure 4a shows the production of light (induction factor) versus concentration of tetracycline in samples for three different tetracyclines,

Figure 4b shows the production of light (induction factor) versus concentration of tetracycline in samples for further four different tetracyclines.

25 Figure 5 shows the effect of magnesium ions on the sensitivity of the method according to the invention.

Figure 6 illustrates possibilities of changing the assay window for the method of the invention by adjusting magnesium ion concentration and pH.

Figure 7 shows the induction factor versus tetracycline concentration when using freeze-dried *E. coli* in the determination of tetracycline.

Figure 8 shows a comparison of the assays based on using cells with the plasmid pTetLuc1 (SEQ ID NO: 1) and with the plasmid pTetLux1 (SEQ ID NO: 3).

Figure 9 shows induction factors versus antibiotic concentrations of a pig serum sample (cells *E. coli* K12, pTetLux1).

Figure 10 shows the effect of EDTA in a milk sample assay, and

15 Figure 11 shows the light emission versus time for an assay according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

The term "tetracycline" shall be understood to include any compound covered by the general structure formula

and particularly the specific commercially available compounds listed in the table below.

GENERIC NAME	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆ .
Chlorotetracycline	Cl	ОН	CH ₃	Н	Н	N(CH ₃) ₂
Demethylcholorotetracycline	Cl	ОН	Н	Н	Н	N(CH ₃) ₂
Doxycycline	Н	Н	CH ₃	ОН	Н	N(CH ₃) ₂
Methacycline	Н	CH ₃	Н	ОН	Н	N(CH ₃) ₂
Minocycline	N(CH ₃) ₂	Н	Н	Н	Н	N(CH ₃) ₂
Oxytetracycline	Н	ОН	CH ₃	ОН	Н	N(CH ₃) ₂
Tetracycline	Н	ОН -	CH ₃	Н	н	N(CH ₃) ₂

Furthermore, the term "tetracycline" shall be understood to cover the metabolic and other reformulation/decomposition products thereof.

5

The cells useful in the method of the invention are preferably *Escherichia coli*, which are stored in dried form, e.g. in lyophilized form before their use in the method according to the invention. Also freshly cultivated cells can be used.

According to a preferred embodiment, the DNA vector including a nucleotide sequence encoding a light producing enzyme is a plasmid containing the luxCDABE genes (SEQ ID NO: 3), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from transposon Tn10. Particularly preferable is the plasmid pTetLux1 (SEQ ID NO: 3).

15

According to another preferred embodiment, the DNA vector including a nucleotide sequence encoding a light producing enzyme is a plasmid containing the insect

luciferase gene, tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10. In this case the substrate for insect luciferase reaction, D-luciferin, is added to the mixture of the sample and the cells in order to initiate the luminescence of the cells. The plasmid is preferably pTetLuc1 (SEQ ID NO: 1).

The method according to this invention is useful for the determination of tetracycline in various kinds of samples. As examples can be mentioned milk, fish, meat, infant formula, eggs, honey, vegetables, serum, plasma, whole blood or the like.

The luminescence of the cells is preferably measured using an X-ray or polaroid film, a CCD-camera (Charge Coupled Device), a liquid scintillation counter or, most preferably, a luminometer.

15

10

5

The sensitivity of this analysis method with respect to the tetracycline can be controlled by increasing or decreasing the concentration of divalent metal ions, e.g. magnesium ions, in the mixture of the sample and the cells, by adjusting the pH or by combined adjusting of the divalent metal ion concentration and the pH.

Increasing concentration of magnesium ions decreases the sensitivity and vice versa. Increasing pH will also cause a decreasing sensitivity. The sensitivity of the analysis with respect to the tetracycline can be increased by the use of cells which are especially antibiotic sensitive mutant strains. Chelating agents such as EDTA can be added to further sensitize the sensor system for tetracyclines.

25

Figures 1 show a schematic representation of a method based on specific detection of the presence of tetracyclines using microbial cells cloned with either the plasmid pTetLux1 (SEQ ID NO: 3) (Figure 1a) or with the plasmid pTetLuc1 (SEQ ID

NO: 1) (Figure 1b). The figures show that cells containing either of the plasmids can be triggered to produce light by adding a chemical agent (a tetracycline). Light production is a consequence of tetracycline responsive promoter activation due to removal of the tet-repressor protein (SEQ ID NO: 11) leading to the production of luciferase specific mRNA and luciferase protein (SEQ ID NO: 2, 4-8) itself. The principle is demonstrated in Figure 1c. In case of the usage of full length bacterial luciferase operon (SEQ ID NO: 3) containing luxC, luxD, luxA, luxB and luxE genes (SEQ ID NO: 3) (Figure 1a), one is able to get light emission without addition of any substance. In case of insect (e.g. firefly) luciferase (SEQ ID NO: 2) (Figure 1b), light is emitted only after the addition of D-luciferin. It should be noticed that the triggering of luciferase synthesis and light production commences immediately when the cells are introduced to the inducer molecules (tetracyclines). Therefore there is no need to use dividing cells and hence there is no need to use long cultivation of microbial cells such as the case is with conventional methods.

Therefore, if needed, one can get results in minutes rather than in hours or days

Figure 2a shows the plasmid pTetLux1 (SEQ ID NO: 3), in which the production of bacterial luciferase (SEQ ID NO: 4-8) of *Photorhabdus luminescens* (formerly Xenorhabdus luminescens; the lux-operon structure and the full-length nucleotide sequence of P. luminescens was published in Szittner, R. and Meighen, E. (1990) J. Biol. Chem. 265, 16581-16587) can be switched on by the addition of a chemical agent belonging to the tetracycline family of antimicrobial agents in a cloned E. coli bacterium. SEQ ID NO: 3 shows the nucleotide sequence of the plasmid pTetLux1.

which is the case when conventional methods are used.

This plasmid construct is devised to contain the five genes from *P. luminescens* luciferase operon necessary for the light production without any additions of substrates, i.e. cells cloned with such a construct produce substrates endogenously. By incubating *E. coli* cells containing this plasmid (or any other microbial strain

whereto similar regulation/reporter gene system is incorporated containing the necessary secondary regulatory sequences in the constructs such as correct ribosome binding region, transcriptional termination etc.) in the presence of very small amounts of tetracyclines one is able to obtain light production the intensity of which is proportional to the concentration of tetracycline used.

Any E. coli mutant strain and especially those strains having a mutation in the export/import machinery of the membranes or otherwise leaky character making it possible for large molecules to easily penetrate inside the cell would be beneficial to use in the method described in this invention. Also other gram-negative bacteria such as strains belonging to genus Salmonella, Shigella, Enterobacter, Citrobacter, Klebsiella, Erwinia, Pseudomonas, Serratia as well as gram-positive organisms such as those belonging to genus Bacillus (especially B. subtilis, B. licheniformis, B. pumilus, B. globigii, B. natto, B. amyloliquefaciens as well as B. niger, B. brevis, B. megaterium), Streptomyces, Lactobacillus (especially L. lactis, L. casei) and Streptococcus (especially S. thermophilus, S. cremoris, S. agalactiae) come into question. Especially asporogenic strains of Bacilli or Lactobacilli are suitable.

Figure 3 shows the plasmid pTetLuc1 (SEQ ID NO: 1), in which the production of firefly luciferase (SEQ ID NO: 2) of *Photinus pyralis* (The gene encoding firefly luciferase was originally cloned and sequenced in the middle of the 1980's by DeWet, J. et al. (1987) Mol. Cell. Biol. 7, 725-737) can be switched on by the addition of a chemical agent belonging to the tetracycline family of antimicrobial agents in a cloned *E. coli* bacterium. SEQ ID NO: 1 shows the nucleotide sequence of this plasmid. By incubating *E. coli* cells containing this plasmid (or any other microbial strain whereto similar regulation/reporter gene system is incorporated containing the necessary secondary regulatory sequences in the constructs such as correct ribosome binding region, transcriptional termination etc.) in the presence of

very small amounts of tetracyclines one is able to obtain light production by the addition of D-luciferin, which is the substrate of firefly luciferase. The intensity of light emission is proportional to the concentration of tetracycline used.

- Figures 4a and 4b shows the effect of altogether seven different tetracyclines on the production of light as a function of concentration of each tetracycline. As controls different non-tetracycline antibiotics were included in this study to show that the sensor strain is specific for the tetracyclines. The luminescense was emitted from *E. coli* containing the plasmid pTetLux1 (SEQ ID NO: 3). The detection was made after an incubation of 90 min. All tetracyclines tested behaved in a very similar manner and induction efficiencies were at the same antibiotic concentration area. This makes this sensor even more attractive for analytical use for the determination of the tetracycline group of antibiotics.
- It should be noted that the accumulation of various tetracyclines into microbial cells is very strongly affected by the extracellular concentration of Mg²⁺ ions. Figure 5 shows the effect of increasing concentrations of Mg²⁺ ions on the behavior of *E. coli* cells containing the plasmid pTetLux1 (SEQ ID NO: 3). As can be seen the tetracycline response curve is shifted to the right as a function of increasing concentrations of added Mg²⁺ ions. Thus by increasing the Mg²⁺ ion concentration one is able to decrease the sensitivity of the tetracycline sensor described in this invention. This fact is of great importance in cases where one does not need a high sensitivity of the measurement and where the approximate concentration of the ion is roughly constant and known such as in milk, serum and plasma.

25

The sensitivity can be increased by removing magnesium ions from the assay mixture e.g. by adding a chelating agent forming a complex with magnesium.

Figure 6 shows the possibilities to change the assay window for tetracyclines by adjusting the magnesium ion concentration and by combined adjustment of the magnesium ion concentration and pH.

The sensitivity of the assay can be increased by the use of cells which are especially antibiotic sensitive mutant strains. Hundreds of specific mutations for bacteria are known with which it is possible to study the activity of specific reactions. For instance trace amounts of antibiotics cause visible changes in the metabolism or in the cell membranes of antibiotic sensitive bacterial mutants. Mutations in cell wall structural components or biosynthetic enzymes as well as in transport and efflux proteins such as porins might have an effect on the behavior of each sensor. Using these kinds of mutations one is able to develop tests measuring residual antibiotics from biological material very sensitively. It is also rather simple to transfer new characteristics into bacterial cells by genetic engineering techniques. This phenomenon broadens the applicability of these organisms in tests utilizing whole cell sensor.

Measurement of light emission can be done by using X-ray or polaroid film, using a liquid scintillation counter, a CCD-camera or a luminometer. The CCD-camera is an instrument which is capable of detecting very low levels of light. In the applications of this invention such kind of a device could be used for the detection of tetracycline residues in food material such as vegetables or meat. The detection of light emission could be directly monitored from the surface of the food material sprayed with engineered luminescent bacteria. Either chemiluminescent (such as peroxidase - luminol) or bioluminescent (such as luciferase - luciferin) reactions can be utilized. The luminometric method is performed with the aid of genes encoding either bacterial or beetle luciferases such as those described in the Figures 2 and 4.

Several luminescent bacterial species such as V. harveyi, V. fischeri, P. leiognathi,

P. phosphoreum, Xenorhabdus luminescens etc. exist. Luminescent beetles are for example Luciola mingrelica, Photinus pyralis, Pyrophorus plagiophthalamus, Lampyris noctiluca, Pholas dactylus, etc. Also several eukaryotic species in the sea which luminesce, such as marine ostracod Vargula hilgendorfii, jellyfish Aequorea victoria, batrachoidid fish Porichtys notatus, pempherid fish Parapriacanthus ransonneti etc. exist. Fluorescent reporter proteins such as green fluorescent protein (GFP) or any of its variants could be used in the methods described in this invention (Li, X. et al. (1997) J. Biol. Chem. 272, 28545-28549).

- In this invention high detection sensitivity of the luminescent enzyme labels inside a living cell associated with tetracycline-specific induction of label synthesis is based on the use of optimal concentration of all the reactants inside the cell including the necessary cofactors and accessory enzymes. All luciferase genes from these organisms would presumably work in a similar manner as the two examples shown in this invention. These systems together with enhancers and modulators (wavelength, emission kinetics etc.) of light emission has been described in more detail in Campbell, A. "Chemiluminescence; principles and applications in biology and medicine", Weinheim; Deerfield Beach, Fl.; VCH; Chichester: Horwood, 1988.
- Peroxidases or oxidases can be used together with compounds such as luminol or acridines (for instance lucigenin) to yield luminescent signals suitable for a detection system described here. Enzymatically generated chemiluminescence offers great sensitivity and rapid detection, too, in assays described in this invention.

 Thermally stable dioxetanes (such as AMPPD and Lumigen PPD) can be enzymatically (such as alkaline phosphatase or β-galactosidase) triggered to produce chemiluminescence (Schaap, A.P. et al. (1989) Clin. Chem. 35, 1863-1864). The only difference to the luciferase enzymes would be that these enzymes are capable

of cleaving a man-made substrate which gives light emission (chemiluminescence) and the luciferases cleave natural substrates to produce light (bioluminescence).

- Tetracycline-controlled expression systems are developed to express heterologous proteins in procaryotic and eucaryotic cells for the purpose of production under a tight control of tet-regulatory system (Skerra, A. (1994) Gene 151, 131-135; Gossen, M. and Bujard, H. (1995) US Patent 5,464,758; Lutz, R. and Bujard, H. (1997) Nucleic Acids Res. 25, 1203-1210).
- A method to study various tetracyclines and their mode of action was developed by Chopra et al. (Chopra, I. et al. (1990) Antimicrob. Agents Chemother. 34, 111-116)

 The assay system developed in this study was based on expression of β-galactosidase gene inserted under the control of tetA-gene. The method resulted in less sensitive detection of tetracyclines compared to the invention described here.
- However in order to obtain maximum sensitivities Chopra et al. showed that it was necessary to add cyclic AMP (cAMP) to the medium which is an extremely expensive molecule to be used in routine applications. Furthermore, the method described by Chopra et al. contains a cell disruption stage by sonication in order to assay for the reporter gene activity, β-galactosidase, which step is not practical.
- Instead, the method described in this invention does not contain any cell disruption.

 The activity of luciferase can be measured directly from living cells in real-time and in the case of pTetLux1 (SEQ ID NO: 3) there is no need of addition of any substrates. Therefore, promoter activation due to the presense/absense of tetracycline can be monitored continuously.

25

EXPERIMENTS

As cloning hosts and in antibiotic residue measurements various E. coli MC1061 (cI+, araD139, Δ(ara-leu)7696, lacX74, galU, galK, hsr, hsm, strA) (Casadaban,

M.J. and Cohen, S.N. (1980) J. Mol. Biol. 138, 179-207), BW322 (CGSC, rfa210::Tn10, thi-1, relA1, spoT1, pyrE) and K-12 (M72 Sm^R lacZm-ΔbiouvrB, trpEA2, Nam7Nam53cI857 HI) (Remaut, E. et al. (1981) Gene 15, 81-93) can be used. Especially the strain LH530 (Hirvas, L. et al. (1997) Microbiology 143, 73-81) which has a decreased rate of lipid A biosynthesis. It has proven to be hypersusceptible to many different antibiotics.

Cells were grown on appropriate minimal agar-plates and were kept maximally one month at +4 °C after which new plates were stroked. The strains were kept also in 15% glycerol at -70 °C, where from growth was started through minimal plates. The cells were first cultivated in 5 ml of 2xTY medium (16 g Bacto tryptone, 8 g Yeast extract, 8 g NaCl, H₂O ad 1 l, pH 7.4, with appropriate antibiotic) 10 h at 30 °C in a shaker after which the cultivation was transferred to a bigger volume for 10 h with same medium.

15

Construction of tetracycline-responsive sensor plasmids:

To construct a recombinant DNA vector carrying luciferase genes under the control of a tetracycline responsive elements two new vectors were created. In the first one modified firefly luciferase gene (SEQ ID NO: 1) from vector pBLuc* (Bonin, A.L. et al. (1994) Gene 141, 75-77) was excised by using restriction enzymes XbaI and HinDIII and the 1.7 kb fragment was isolated from LGT-agarose gel and purified using Qiagen gel extraction kit. This DNA-fragment containing the entire Photinus pyralis luciferase gene (SEQ ID NO: 1) was ligated using T4-DNA-ligase enzyme to vector pASK75 (Skerra, A. (1994) Gene 151, 131-135) which was previously restricted with the same restriction enzymes XbaI and HinDIII and calf intestinal phosphatase treated to remove the protruding phosphate groups in order to prevent self-ligation. The resulting ligation mixture was incubated 3 hours at room temperature after which one μl of the mixture was electroporated according to

Dower et al. (Dower, W.J. et al. (1988) Nucleic Acids Res. 16, 6126-6144) into electrocompetent E. coli MC1061 cells. A plasmid was extracted from one of the colonies obtained and checked for the estimated structure by appropriate restriction enzyme digestions and agarose gel electrophoretic techniques. The plasmid obtained was named as pTetLuc1 (SEQ ID NO: 1).

The plasmid containing the luxCDABE genes (SEQ ID NO: 3) of Photorhabdus luminescens under the control of tetracycline responsive element was created as follows: Plasmid pASK75 was cut with restriction enzyme EcoRI and CIP-treated. The linearized plasmid was separated on a LGT-agarose gel electrophoresis and the agarose was removed by using the Qiagen kit. The lux operon was excised with EcoRI from plasmid pCGLS-11 (Frackman, S. et al. (1990) J. Bacteriol. 172, 5767-5773), gel purified as above and ligated to pASK75 by using T4-DNA-ligase at 16 °C overnight. The ligation mixture was electroporated into E. coli MC1061 cells as 15 described above and correct transformants were screened for their ability to produce light (as measured with a BioOrbit 1250 manual luminometer) which production was increased in the presence of 1 µg/ml of tetracycline-HCl. The plasmid was further verified by restriction enzyme digestions and the correct structure was named as pTetLux1 (SEQ ID NO: 3). All the DNA-manipulations were performed according to Sambrook et al., "Molecular Cloning: A laboratory Manual, Cold 20 Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1989.

The vector pASK75 was utilized in the construction of tet-sensor plasmids shown in this invention. The vector pASK75 was originally developed for protein production and purification purposes. It contains a signal sequence for secretion of the recombinant protein into the periplasmic space of *E. coli*. Also a C-terminal fusion between a purification tail, the Strept-tag, was incorporated into the vector to facilitate purification of recombinant protein using streptavidin affinity agarose gel

chromatography. The element controlling recombinant gene expression in the vector is tetA promoter/operator system that allows efficient regulation of the expression, which in Skerra's paper was described for the production and one-step purification of a murine single-chain antibody fragment. The tetA promoter/operator (SEQ ID NO: 9) is controlled by tetR-repressor (SEQ ID NO: 9) which is produced by the corresponding gene (SEQ ID NO: 9). Some of the above mentioned elements were eliminated from the present plasmids due to unnecessary features with respect to this invention.

10 Transfer of the tetracycline sensor vectors to the antibiotic sensitive *E. coli* strain:

Either pTetLux1 (SEQ ID NO: 3) or pTetLuc1 (SEQ ID NO: 1) was transformed into *E. coli* LH530 cells by electroporation as described above. The transformed cells were restreaked on agar plates and kept maximally for 2 weeks at +4 °C after which a new plate was streaked.

Use of the manipulated E. coli in tetracycline determination methods:

Example 1

Freeze-dried E. coli K-12/pTetLux1 were reconstituted with 1.0 ml of L-broth and bacteria were diluted 1:10 with 25 mM MES buffer in M9 minimal medium, pH 6.0. 190 µl bacterial suspension was added to microtiter plate wells containing 10 µl of tetracycline dilutions. The plate was incubated 90 minutes at 37 °C after which the plate was measured with Labsystems Luminoskan luminometer. As seen from Figure 7 the sensitivity of the assay of tetracycline is very high and comparable to that of fresh cells.

Example 2

10

Two different types of sensor DNA vector construct were compared. Strains *E. coli* K-12/pTetLux1 and *E. coli* K-12/pTetLuc1 were cultivated in L-broth media until optical density measured at 600 nm (OD600) was 1.5. The cells were diluted 1 to 50 with 25 mM MES-buffer in M9 minimal medium, pH 6.0 (Sambrook *et al.*, 1989, Cold Spring Harbor Laboratory, Cold Spring Harbor) and 190 µl was added to microtitration plate wells and 10 µl of sample dilution of tetracycline was added. After a 60 min incubation at 37 °C the light emission was measured using a Labsystems Luminoskan luminometer. Figure 8 shows the bioluminescence dose response curve as a function of tetracycline added. As seen from the figure both systems (bacterial and insect luciferase) give roughly equal sensitivity of tetracycline detection.

One is able to use different luciferases instead of bacterial luciferase (SEQ ID NO: 4-8) from *P. luminescens* without losing sensitivity or other performance of the test. Figure 8 shows an analogous measurement to the one in Figure 4b. In the plasmid used in this test (pTetLuc1) the bacterial luciferase was compensated with firefly luciferase (SEQ ID NO: 2) as described in Figure 3. The test was done essentially as with bacterial luciferase except that after the cells had been incubated with or without tetracycline 10 minutes at 37 °C the cells were measured for light production after 15 minutes incubation time at 37 °C by adding 100 µl of solution containing 1 mM D-luciferin, in 0.1 M Na-citrate buffer, pH 5.0. Thereafter light production was measured using a manual luminometer 1250 (LKB-Wallac, Turku, Finland). As can be seen from Figure 8 sensitivity of the method to detect tetracycline hydrochloride is extremely high and comparable to the detection made with bacterial luciferase.

Example 3

A lipemic pig serum was spiked at different concentrations of tetracycline, chlorotetracycline and oxytetracycline. Fresh E. coli K-12/pTetLux1 were diluted 1:50 with 25 mM MES buffer in M9 minimal medium, pH 6.0. 100 µl bacterial suspension was added to microtiter plate wells containing 100 µl of pig serum spiked with different tetracyclines. The plate was incubated 90 minutes at 37 °C after which the plate was measured with Labsystems Luminoskan luminometer. As seen from Figure 9 the sensitivity of the assay of different tetracyclines in pig serum matrix is very high.

10

Example 4

Tetracyclines will form chelate complexes with Ca²⁺ and Mg²⁺ in samples (e.g. milk), and loose their antimicrobial and induction activity in our assay system.

Tetracyclines can be displaced from cation chelates by using strong chelating agents such as EDTA. Figure 10 shows the determination of tetracycline from a milk sample, which is spiked with different concentrations of tetracycline. Different amounts of EDTA were added to milk samples and this kind of displacement of cation-tetracycline complex clearly improved the sensitivity of the assay. In the assay we used freeze-dried *E. coli* K12/pTetLux1 that were reconstituted with L-broth 10 minutes in room temperature before the assay.

Example 5

Figure 11 shows the kinetics of bacterial bioluminescence after exposure of *E. coli* K-12/pTetLux1 to different dilutions of tetracycline antibiotics. The specific induction of tetracycline is very fast and specific light emission is seen already at the 10 minutes measuring point in the assay.

5

It will be appreciated that the methods of the present invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent for the specialist in the field that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: KORPELA, Matti
 - (B) STREET: Maijamaentie 13 (C) CITY: Naantali

 - (E) COUNTRY: Finland
 - (F) POSTAL CODE (ZIP): FIN-21100
 - (A) NAME: KARP, Matti
 - (B) STREET: Kampakatu 1
 - (C) CITY: Kaarina
 - (E) COUNTRY: Finland
 - (F) POSTAL CODE (ZIP): FIN-20660
 - (A) NAME: KURITTU, Jussi
 - (B) STREET: Puutarhakatu 16 A 20
 - (C) CITY: Turku
 - (E) COUNTRY: Finland
 - (F) POSTAL CODE (ZIP): FIN-20100
 - (ii) TITLE OF INVENTION: A NEW ASSAY METHOD
 - (iii) NUMBER OF SEQUENCES: 11
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: FI 974235
 - (B) FILING DATE: 14-NOV-1997
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4846 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Photinus pyralis
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: pTetLucl
 - (viii) POSITION IN GENOME:
 - (A) CHROMOSOME/SEGMENT: Plasmid

720

780

840

(ix) FEATURE:

(A) NAME/KEY: misc_feature	
(B) LOCATION: 13098	
(D) OTHER INFORMATION:/standard name= "Vector pASK75"	
/note= "Part of plasmid originating from vector pAS	K75;
feature description below, SEQ ID 9-11."	
/citation= ([2])	
(ix) FEATURE:	
(A) NAME/KEY: CDS	
(B) LOCATION: 31194768	
(D) OTHER INFORMATION:/product= "Photinus pyralis	
luciferase"	
/citation= ([1])	
(x) PUBLICATION INFORMATION:	
(A) AUTHORS: Bonin.	
(B) TITLE: Photinus pyralis luciferase: vectors that	
contain a modified luc coding sequence allowing	
convenient transfer into other systems	
(C) JOURNAL: Gene (D) VOLUME: 141	
(F) PAGES: 75-77	
(G) DATE: 1994	
(K) RELEVANT RESIDUES IN SEQ ID NO: 1: FROM 3099 TO 4772	
A DESTRUCTION TO THE OPEN MICH.	
(x) PUBLICATION INFORMATION:(A) AUTHORS: Skerra, A	
(R) TITLE Use of the tetracycline promoter for the	
tightly regulated production of a murine antibody	
fragment in Escherichia coli	
(C) JOURNAL: Gene	
(D) VOLUME: 151	
(E) ISSUE: 1-2 (F) PAGES: 131-135	
(G) DATE: 30-DEC-1994	
(K) RELEVANT RESIDUES IN SEQ ID NO: 1: FROM 1 TO 3098	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
(X1) SEQUENCE DESCRIPTION: SEQ ID NO. 1.	
AGCTTGACCT GTGAAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTTT GTCTGCCGTT	60
	120
TACCGCTACT GCGTCACGGA TCTCCACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT	120
GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC	180
GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG	240
	300
GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT	301
TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG	360
TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT	42
ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA	48
AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT	54
TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA	60
CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA	. 66

AAAAGGAAGA GTATGAGTAT TCAACATTTC CGTGTCGCCC TTATTCCCTT TTTTGCGGCA

TTTTGCCTTC CTGTTTTTGC TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT

CAGTTGGGTG CACGAGTGGG TTACATCGAA CTGGATCTCA ACAGCGGTAA GATCCTTGAG

AGTTTTCGCC CCGAAGAACG	TTTTCCAATG	ATGAGCACTT	TTAAAGTTCT	GCTATGTGGC	900
GCGGTATTAT CCCGTATTGA	CGCCGGGCAA	GAGCAACTCG	GTCGCCGCAT	ACACTATTCT	960
CAGAATGACT TGGTTGAGTA	CTCACCAGTC	ACAGAAAAGC	ATCTTACGGA	TGGCATGACA	1020
GTAAGAGAAT TATGCAGTGC	TGCCATAACC	ATGAGTGATA	ACACTGCGGC	CAACTTACTT	1080
CTGACAACGA TCGGAGGACC	GAAGGAGCTA	ACCGCTTTTT	TGCACAACAT	GGGGGATCAT	1140
GTAACTCGCC TTGATCGTTG	GGAACCGGAG	CTGAATGAAG	CCATACCAAA	CGACGAGCGT	1200
GACACCACGA TGCCTGTAGC	AATGGCAACA	ACGTTGCGCA	AACTATTAAC	TGGCGAACTA	1260
CTTACTCTAG CTTCCCGGCA	ACAATTGATA	GACTGGATGG	AGGCGGATAA	AGTTGCAGGA	1320
CCACTTCTGC GCTCGGCCCT	TCCGGCTGGC	TGGTTTATTG	CTGATAAATC	TGGAGCCGGT	1380
GAGCGTGGCT CTCGCGGTAT	CATTGCAGCA	CTGGGGCCAG	ATGGTAAGCC	CTCCCGTATC	1440
GTAGTTATCT ACACGACGGG	GAGTCAGGCA	ACTATGGATG	AACGAAATAG	ACAGATCGCT	1500
GAGATAGGTG CCTCACTGAT	TAAGCATTGG	TAGGAATTAA	TGATGTCTCG	TTTAGATAAA	1560
AGTAAAGTGA TTAACAGCGC	ATTAGAGCTG	CTTAATGAGG	TCGGAATCGA	AGGTTTAACA	1620
ACCCGTAAAC TCGCCCAGAA	GCTAGGTGTA	GAGCAGCCTA	CATTGTATTG	GCATGTAAAA	1680
AATAAGCGGG CTTTGCTCGA	CGCCTTAGCC	ATTGAGATGT	TAGATAGGCA	CCATACTCAC	1740
TTTTGCCCTT TAGAAGGGGA	AAGCTGGCAA	GATTTTTTAC	GTAATAACGC	TAAAAGTTTT	1800
AGATGTGCTT TACTAAGTCA	TCGCGATGGA	GCAAAAGTAC	ATTTAGGTAC	ACGGCCTACA	1860
GAAAAACAGT ATGAAACTCT	CGAAAATCAA	TTAGCCTTTT	TATGCCAACA	AGGTTTTTCA	1920
CTAGAGAATG CATTATATGC	ACTCAGCGCA	GTGGGGCATT	TTACTTTAGG	TTGCGTATTG	1980
GAAGATCAAG AGCATCAAGT	CGCTAAAGAA	GAAAGGGAAA	CACCTACTAC	TGATAGTATG	2040
CCGCCATTAT TACGACAAGC	TATCGAATTA	TTTGATCACC	AAGGTGCAGA	GCCAGCCTTC	2100
TTATTCGGCC TTGAATTGAT	CATATGCGGA	TTAGAAAAAC	AACTTAAATG	TGAAAGTGGG	2160
TCTTAAAAGC AGCATAACCT	TTTTCCGTGA	TGGTAACTTC	ACTAGTTTAA	AAGGATCTAG	2220
GTGAAGATCC TTTTTGATAA	TCTCATGACC	AAAATCCCTT	AACGTGAGTT	TTCGTTCCAC	2280
TGAGCGTCAG ACCCCGTAGA	AAAGATCAAA	GGATCTTCTT	GAGATCCTTT	TTTTCTGCGC	2340
GTAATCTGCT GCTTGCAAAC	AAAAAAACCA	CCGCTACCAG	CGGTGGTTTG	TTTGCCGGAT	2400
CAAGAGCTAC CAACTCTTTT	TCCGAAGGTA	ACTGGCTTCA	GCAGAGCGCA	GATACCAAAT	2460
ACTGTCCTTC TAGTGTAGCC	GTAGTTAGGC	CACCACTTCA	AGAACTCTGT	AGCACCGCCT	2520
ACATACCTCG CTCTGCTAAT	CCTGTTACCA	GTGGCTGCTG	CCAGTGGCGA	TAAGTCGTGT	2580
CTTACCGGGT TGGACTCAAG	ACGATAGTTA	CCGGATAAGG	CGCAGCGGTC	GGGCTGAACG	2640
GGGGGTTCGT GCACACAGCC	CAGCTTGGAG	CGAACGACCT	ACACCGAACT	GAGATACCTA	2700
CAGCGTGAGC TATGAGAAAG	CGCCACGCTT	CCCGAAGGGA	GAAAGGCGGA	CAGGTATCCG	2760
GTAAGCGGCA GGGTCGGAAC	AGGAGAGCGC	ACGAGGGAGC	TTCCAGGGGG	AAACGCCTGG	2820
TATCTTTATA GTCCTGTCGG	GTTTCGCCAC	CTCTGACTTG	AGCGTCGATT	TTTGTGATGC	2880

TCGT	CAGG	GG G	GCGG	AGCC	T AT	GGAA	AAAC	GCC	AGCA	ACG	CGGC	CTTT	TT A	.CGGT	TCCTG		2940
GCCI	TTTG	CT G	GCCT	TTTG	C TO	ACAT	GACC	CGA	CACC	ATC	GAAT	'GGCC	AG A	TGAT	TAATT	•	3000
CCTA	ATTI	TT G	TTGA	CACI	TA	TCAT	TGAT	' AGA	GTTA	TTT	TACC	ACTO	CC T	'ATCA	GTGAT		3060 .
AGAG	AAAA	GT G	AAAT	'GAAT	'A GI	TCGA	CAAA	LAA .	CTAC	AAC	TAGI	GGAT	cc c	CCGT	'ACC		3118
ATG Met 1	GAA Glu	GAC Asp	GCC Ala	AAA Lys 5	AAC Asn	ATA Ile	AAG Lys	AAA Lys	GGC Gly 10	CCG Pro	GCG Ala	CCA Pro	TTC Phe	TAT Tyr 15	CCG Pro		3166
CTA Leu	GAG Glu	GAT Asp	GGA Gly 20	ACC Thr	GCT Ala	GGA Gly	GAG Glu	CAA Gln 25	CTG Leu	CAT His	AAG Lys	GCT Ala	ATG Met 30	AAG Lys	AGA Arg	* 4	3214
TAC Tyr	GCC Ala	CTG Leu 35	GTT Val	CCT Pro	GGA Gly	ACA Thr	ATT Ile 40	GCT Ala	TTT Phe	ACA Thr	GAT Asp	GCA Ala 45	CAT	ATC Ile	GAG Glu		3262
GTG Val	AAC Asn 50	ATC Ile	ACG Thr	TAC Tyr	GCG Ala	GAA Glu 55	TAC Tyr	TTC Phe	GAA Glu	ATG Met	TCC Ser 60	GTT Val	CGG Arg	TTG Leu	GCA Ala		3310
GAA Glu 65	GCT Ala	ATG Met	AAA Lys	CGA Arg	TAT Tyr 70	GGG Gly	CTG Leu	AAT Asn	ACA Thr	AAT Asn 75	CAC His	AGA Arg	ATC Ile	GTC Val	GTA Val 80	٠.	3358
TGC Cys	AGT Ser	GAA Glu	AAC Asn	TCT Ser 85	CTT Leu	CAA Gln	TTC Phe	TTT Phe	ATG Met 90	CCG Pro	GTG Val	TTG Leu	GGC	GCG Ala 95	TTA Leu	٠	3406
TTT Phe	ATC Ile	GGA Gly	GTT Val 100	GCA Ala	GTT Val	GCG Ala	CCC Pro	GCG Ala 105	AAC Asn	GAC Asp	ATT Ile	TAT Tyr	AAT Asn 110	GAA Glu	CGT Arg		3454
GAA Glu	TTG Leu	CTC Leu 115	AAC Asn	AGT Ser	ATG Met	AAC Asn	ATT Ile 120	TCG Ser	CAG Gln	CCT Pro	ACC Thr	GTA Val 125	Val	TTT Phe	GTT Val		3502
TCC Ser	AAA Lys 130	AAG Lys	GGG Gly	TTG Leu	CAA Gln	AAA Lys 135	ATT	TTG Leu	AAC Asn	GTG Val	CAA Gln 140	AAA Lys	AAA Lys	TTA Leu	CCA Pro		3550
ATA Ile 145	ATC Ile	CAG Gln	AAA Lys	ATT	ATT Ile 150	ATC Ile	ATG Met	GAT Asp	TCT Ser	AAA Lys 155	Thr	GAT Asp	TAC Tyr	CAG Gln	GGA Gly 160		3598
TTT Phe	CAG Gln	TCG Ser	ATG Met	TAC Tyr 165	ACG Thr	TTC Phe	GTC Val	ACA Thr	TCT Ser 170	His	CTA Leu	CCT Pro	CCC Pro	GGT Gly 175	TTT Phe		3646
AAT Asn	GAA Glu	TAC Tyr	GAT Asp 180	Phe	GTA Val	CCA Pro	GAG Glu	TCC Ser 185	TTT Phe	GAT Asp	CGT Arg	GAC Asp	AAA Lys 190	ACA Thr	ATT Ile		3694
GCA Ala	Leu	ATA Ile 195	ATG Met	AAC Asn	TCC	TCT Ser	GGA Gly 200	Ser	ACT Thr	GGG	TTA Leu	CCT Pro 205	AAG Lys	GGT Gly	GTG Val	•	3742
GCC Ala	CTT Leu 210	Pro	CAT	AGA Arg	ACT Thr	GCC Ala 215	TGC Cys	GTC Val	AGA Arg	TTC Phe	TCG Ser 220	CAT His	GCC Ala	AGA Arg	GAT Asp		3790
CCT Pro 225	Ile	TTT Phe	GGC	AAT Asn	CAA Gln 230	Ile	ATT	CCG	GAT Asp	ACT Thr 235	Ala	ATT	TTA Leu	AGT Ser	GTT Val 240		3838

GTT Val	Pro CCA	TTC Phe	CAT His	CAC His 245	GGT Gly	TTT Phe	GGA Gly	ATG Met	TTT Phe 250	ACT Thr	ACA Thr	CTC Leu	GGA Gly	TAT Tyr 255	TTG Leu		3886
ATA Ile	TGT Cys	GGA Gly	TTT Phe 260	CGA Arg	GTC Val	GTC Val	TTA Leu	ATG Met 265	TAT Tyr	AGA Arg	TTT Phe	GAA Glu	GAA Glu 270	GAG Glu	CTG Leu	,	3934
TTT Phe	TTA Leu	CGA Arg 275	TCC Ser	CTT Leu	CAG Gln	GAT Asp	TAC Tyr 280	AAA Lys	ATT Ile	CAA Gln	AGT Ser	GCG Ala 285	TTG Leu	CTA Leu	GTA Val		3982
												ATT Ile					4030
GAT Asp 305	TTA Leu	TCT Ser	AAT Asn	TTA Leu	CAC His 310	GAA Glu	ATT Ile	GCT Ala	TCT Ser	GGG Gly 315	GGC Gly	GCA Ala	CCT Pro	CTT Leu	TCG Ser 320		4078
												CTT Leu					4126
CGA Arg	CAA Gln	GGA Gly	TAT Tyr 340	GGG Gly	CTC Leu	ACT Thr	GAG Glu	ACT Thr 345	ACA Thr	TCA Ser	GCT Ala	ATT	CTG Leu 350	ATT Ile	ACA Thr		4174
CCC Pro	GAG Glu	GGG Gly 355	GAT Asp	GAT Asp	AAA Lys	CCG Pro	GGC Gly 360	GCG Ala	GTC Val	GGT Gly	AAA Lys	GTT Val 365	GTT Val	CCA Pro	TTT Phe	**	4222
TTT Phe	GAA Glu 370	GCG Ala	AAG Lys	GTT Val	GTG Val	GAT Asp 375	CTG Leu	GAT Asp	ACC Thr	GGG Gly	AAA Lys 380	ACG Thr	CTG Leu	GGC Gly	GTT Val		4270
												ATT Ile					4318
TAT Tyr	GTA Val	AAC Asn	AAT Asn	CCG Pro 405	GAA Glu	GCG Ala	ACC Thr	AAC Asn	GCC Ala 410	TTG Leu	ATT	GAC Asp	AAG Lys	GAT Asp 415	GGA Gly		4366
												GAC Asp			TTC Phe		4414
												AAA Lys 445					4462
GTG Val	GCC Ala 450	Pro	GCT Ala	GAA Glu	TTG Leu	GAG Glu 455	TCG Ser	ATA Ile	TTG Leu	TTA Leu	CAA Gln 460	CAC His	CCC	AAC Asn	ATC Ile		4510
TTC Phe 465	Asp	GCG Ala	GGC	GTG Val	GCA Ala 470	Gly	CTŤ Leu	CCC Pro	GAC Asp	GAT Asp 475	Asp	GCC Ala	GGT Gly	GAA Glu	CTT Leu 480		4558
					Val					Lys		ATG Met					4606
GAG Glu	ATC	GTG Val	GAT Asp 500	Tyr	GTC Val	GCC Ala	AGT Ser	CAA Gln 505	GTA Val	ACA	ACC Thr	GCC Ala	AAA Lys 510	Lys	TTG Leu		4654

CGC Arg	GGA Gly	GGA Gly 515	GTT Val	GTG Val	TTT Phe	GTG Val	GAC Asp 520	GAA Glu	GTA Val	CCG Pro	AAA Lys	GGT Gly 525	CTT Leu	ACC Thr	GGA Gly		4702
AAA Lys	CTC Leu 530	GAC Asp	GCA Ala	AGA Arg	AAA Lys	ATC Ile 535	Arg	GAG Glu	ATC Ile	CTC Leu	ATA Ile 540	AAG Lys	GCC Ala	AAG Lys	AAG Lys		4750
	GGA Gly					TAAA	ATGI	CAA (CTGT?	ATTC!	AG CO	GATGA	\ÇGA)	A			4798
ATTO	CTTAC	CT A	TTGT	'AATA	C TO	CTAGO	GGGG	TGO	CAGG	TTA	CGA	TATCA	Ä		. *		4846
(2)	INFO	RMAT	CION	FOR	SEQ	ID 1	10: 2	2:									
	((A	EQUE L) LE B) TY D) TO	NGTI PE:	4: 5: amir	o an	nino cid		_	,	- 1 .			-			
			ECUL QUENC					SEQ :	ID NO	D: 2	•						· ·
Met 1	Glu	Asp	Ala	Lys 5	Asn	Ile	Lys	Lys	Gly 10	Pro	Ala	Pro	Phe	Tyr 15			
Leu	Glu	Asp	Gly 20	Thr	Ala	Gly	Glu	Gln 25	Leu	His	Lys	Ala	Met 30	Lys	Arg		
Тут	Ala	Leu 35	Val	Pro	Gly	Thr	Ile 40	Ala	Phe	Thr	Asp	Ala 45	His	Ile	Glu		
Val	Asn 50	Ile	Thr	Tyr	Ala	Glu 55	Tyr	Phe	Glu	Met	Ser 60	Val	Arg	Leu	Ala		
Glu 65		Met	Lys	Arg	Tyr 70	Gly	Leu	Asn	Thr	Asn 75	His	Arg	Ile	Val	Val 80		
Cys	Ser	Glu	Asn	Ser 85	Leu	Gln	Phe	Phe	Met 90	Pro	Val	Leu	Gly	Ala 95	Leu		*
Phe	Ile	Gly	Val 100	Ala	Val	Ala	Pro	Ala 105		Asp	Ile	Tyr	Asn 110	Glu	Arg		
Glu	Leu	Leu 115		Ser	Met	Asn	Ile 120		Gln	Pro	Thr	Val 125	Val	Phe	Val		•
Ser	Lys 130	Lys	Gly	Leu	Gln	Lys 135		Leu	Asn	Val	Gln 140	Lys	Lys	Leu	Pro	* *	
Ile 145		Gln	Lys	Ile	Ile 150		Met	Asp	Ser	Lys 155		Asp	Tyr	Gln	Gly 160		:
Phe	Gln	Ser	Met	Tyr 165		Phe	Val	Thr	Ser 170	His	Leu	Pro	Pro	Gly 175	Phe		·
Asn	Glu	Tyr	Asp 180	Phe	Val	Pro	Glu	Ser 185		Asp	Arg	Asp	Lys 190	Thr	Ile		
Ala	Leu	Ile 195		Asn	Ser	Ser	Gly 200		Thr	Gly	Leu	205	Lys	Gly	/ Val		
Ala	Leu 210		His	Arg	Thr	Ala 215		Val	. Arg	Ph∈	Ser 220	His	Ala	Arg	, Asp	, e	

	Pro 225	Ile	Phe	Gly	Asn	Gln 230	Ile	Ile	Pro	Asp	Thr 235	Ala	TIE	ren	Ser	240
•	Val	Pro	Phe	His	His 245	Gly	Phe	Gly	Met	Phe 250	Thr	Thr	Leu	Gly	Tyr 255	Leu
	Ile	Суѕ	Gly	Phe 260	Arg	Val	Val	Leu	Met 265	Tyr	Arg	Phe	Glju	Glu 270	Glu	Leu
	Phe	Leu	Arg 275	Ser	Leu	Gln	Asp	Tyr 280	Lys	Ile	Gln	Ser	Ala 285	Leu	Leu	Val
	Pro	Thr 290	Leu	Phe	Ser	Phe	Phe 295	Ala	Lys	Ser	Thr	Leu 300	Ile	Asp	Lys	Tyr
	Asp 305	Leu	Ser	Asn	Leu	His 310	Glu	Ile	Ala	Ser	Gly 315	Gly	Ala	Pro	Leu	Ser 320
	Lys	Glu	Val	Gly	Glu 325	Ala	Val	Ala	Lys	Arg 330	Phe	His	Leu	Pro	Gly 335	Ile
	Arg	Gl'n	Gly	Tyr 340	Gly	Leu	Thr	Glu	Thr 345	Thr	Ser	Ala	Ile	Leu 350	Ile	Thr
	Pro	Glu	Gly 355	Asp	Asp	Lys	Pro	Gly 360	Ala	Val	Gly	Lys	Val 365	Val	Pro	Phe
	Phe	Glu 370	Ala	Lys	Val	Val	Asp 375	Leu	Asp	Thr	Gly	Lys 380	Thr	Leu	Gly	Val
	Asn 385	Gln	Arg	Gly	Glu	Leu 390	Cys	Val	Arg	Gly	Pro 395	Met	Ile	Met	Ser	Gly 400
	Tyr	Val	Asn	Asn	Pro 405	Glu	Ala	Thr	Asn	Ala 410	Leu	Ile	Asp	Lys	Asp 415	Gly
	Trp	Leu	His	Ser 420	Gly	Asp	Ile	Ala	Tyr 425	Trp	Ąsp	Glu	Asp	Glu 430	His	Phe
	Pḥe	Ile	Val 435	Asp	Arg	Leu	Lys	Ser 440	Leu	Ile	Lys	Tyr	Lys 445	Gly	Tyr	Gln
	Val	Ala 450	Pro	Ala	Glu	Leu	Glu 455	Ser	Ile	Leu	Leu	Gln 460	His	Pro	Asn	Ile
	Phe 465		Ala	Gly	Val	Ala 470	Gly	Leu	Pro	Asp	Asp 475	Asp	Ala	Gly	Glu	Leu 480
	Pro	Ala	Ala	Val	Val 485	Val	Leu	Glu	His	Gly 490	Lys	Thr	Met	Thr	Glu 495	Lys
	Glu	Ile	Val	Asp 500		Val	Ala	Ser	Gln 505		Thr	Thr	Ala	Lys 510	Lys	Leu
	Arg	Gly	Gly 515		Val	Phe	Val	Asp 520		Val	Pro	Lys	Gly 525		Thr	Gly
	Lys	Leu 530		Ala	Arg	Lys	Ile 535		Glu	Ile	Leu	11e 540	Lys	Ala	Lys	Lys
	Gly 545		Lys	Ser	Lys	Leu 550								• •		

```
(2) INFORMATION FOR SEQ ID NO: 3:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 10220 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: double
          (D) TOPOLOGY: circular
   (ii) MOLECULE TYPE: DNA (genomic)
  (iii) HYPOTHETICAL: NO
   (iv) ANTI-SENSE: NO
   (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Photorhabdus luminescens
   (vii) IMMEDIATE SOURCE:
          (B) CLONE: pTetLux1
   (ix) FEATURE:
          (A) NAME/KEY: misc_feature
          (B) LOCATION: join(1...3190, 10140...10220)
          (D) OTHER INFORMATION:/standard_name= "vector pASK75"
                 /note= "Parts of plasmid originating from vector pASK75;
                 feature description below, SEQ ID NO: 9-11."
                 /citation= ([2])
    (ix) FEATURE:
         (A) NAME/KEY: CDS
          (B) LOCATION: 3634..5082
          (D) OTHER INFORMATION:/product= "Lux C"
                /citation= ([1])
    (ix) FEATURE:
         (A) NAME/KEY: CDS
          (B) LOCATION:5097..6017
          (D) OTHER INFORMATION:/product= "Lux D"
                 /citation= ([1])
    (ix) FEATURE:
          (A) NAME/KEY: CDS
          (B) LOCATION: 6069..7148
          (D) OTHER INFORMATION:/product= "Lux A"
                /citation= ([1])
    (ix) FEATURE:
          (A) NAME/KEY: CDS
          (B) LOCATION: 7166..8146
          (D) OTHER INFORMATION:/product= "Lux B"
                /citation= ([1])
    (ix) FEATURE:
          (A) NAME/KEY: CDS
          (B) LOCATION: 8256..9437
          (D) OTHER INFORMATION:/product= "Lux E"
                 /citation= ([1])
    (x) PUBLICATION INFORMATION:
          (A) AUTHORS: Frackman,
          (B) TITLE: Cloning, organization and expression of the
                 bioluminescence genes of Xenorhabdus
                 lumiminescenss
          (C) JOURNAL: J. Bacteriol.
          (D) VOLUME: 172
```

(K) RELEVANT RESIDUES IN SEQ ID NO: 3: FROM 3191 TO 10139

(F) PAGES: 5767-5773 (G) DATE: 1990

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: Skerra, A
- (B) TITLE: Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli

 (C) JOURNAL: Gene
 (D) VOLUME: 151
 (E) ISSUE: 1-2
 (F) PAGES: 131-135
 (G) DATE: 30-DEC-1994

- (K) RELEVANT RESIDUES IN SEQ ID NO: 3: FROM 1 TO 3190

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AGCTTGACCT	GTGAAGTGAA	AAATGGCGCA	CATTGTGCGA	CATTTTTTTT	GTCTGCCGTT	60
TACCGCTACT	GCGTCACGGA	TCTCCACGCG	CCCTGTAGCG	GCGCATTAAG	CGCGGCGGGT	120
GTGGTGGTTA	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCTTTC	180
GCTTTCTTCC	CTTCCTTTCT	CGCCACGTTC	GCCGGCTTTC	CCCGTCAAGC	TCTAAATCGG	240
GGGCTCCCTT	TAGGGTTCCG	ATTTAGTGCT	TTACGGCACC	TCGACCCCAA	AAAACTTGAT	300
TAGGGTGATG	GTTCACGTAG	TGGGCCATCG	CCCTGATAGA	CGGTTTTTCG	CCCTTTGACG	360
TTGGAGTCCA	CGTTCTTTAA	TAGTGGACTC	TTGTTCCAAA	CTGGAACAAC	ACTCAACCCT	420
ATCTCGGTCT	ATTCTTTTGA	TTTATAAGGG	ATTITGCCGA	TTTCGGCCTA	TTGGTTAAAA	480
AATGAGCTGA	TTTAACAAAA	ATTTAACGCG	AATTTTAACA	AAATATTAAC	GCTTACAATT	540
TCAGGTGGCA	CTTTTCGGGG	AAATGTGCGC	GGAACCCCTA	TTTGTTTATT	TTTCTAAATA	600
CATTCAAATA	TGTATCCGCT	CATGAGACAA	TAACCCTGAT	AAATGCTTCA	ATAATATTGA	660
AAAAGGAAGA	GTATGAGTAT	TCAACATTTC	CGTGTCGCCC	TTATTCCCTT	TTTTGCGGCA	720
TTTTGCCTTC	CTGTTTTTGC	TCACCCAGAA	ACGCTGGTGA	AAGTAAAAGA	TGCTGAAGAT	780
CAGTTGGGTG	CACGAGTGGG	TTACATCGAA	CTGGATCTCA	ACAGCGGTAA	GATCCTTGAG	840
AGTTTTCGCC	CCGAAGAACG	TTTTCCAATG	ATGAGCACTT	TTAAAGTTCT	GCTATGTGGC	900
GCGGTATTAT	CCCGTATTGA	CGCCGGGCAA	GAGCAACTCG	GTCGCCGCAT	ACACTATTCT	960
CAGAATGACT	TGGTTGAGTA	CTCACCAGTC	ACAGAAAAGC	ATCTTACGGA	TGGCATGACA	1020
GTAAGAGAAT	TATGCAGTGC	TGCCATAACC	ATGAGTGATA	ACACTGCGGC	CAACTTACTT	1080
CTGACAACGA	TCGGAGGACC	GAAGGAGCTA	ACCGCTTTTT	TGCACAACAT	GGGGGATCAT	1140
GTAACTCGCC	TTGATCGTTG	GGAACCGGAG	CTGAATGAAG	CCATACCAAA	CGACGAGCGT	1200
GACACCACGA	TGCCTGTAGC	AATGGCAACA	ACGTTGCGCA	AACTATTAAC	TGGCGAACTA	1260
CTTACTCTAG	CTTCCCGGCA	ACAATTGATA	GACTGGATGG	AGGCGGATAA	AGTTGCAGGA	1320
CCACTTCTGC	GCTCGGCCCT	TCCGGCTGGC	TGGTTTATTG	CTGATAAATC	TGGAGCCGGT	1380
GAGCGTGGCT	CTCGCGGTAT	CATTGCAGCA	CTGGGGCCAG	ATGGTAAGCC	CTCCCGTATC	1440
GTAGTTATCT	ACACGACGGG	GAGTCAGGCA	ACTATGGATG	AACGAAATAG	ACAGATCGCT	1500
GAGATAGGTG	CCTCACTGAT	TAAGCATTGG	TAGGAATTAA	TGATGTCTCG	TTTAGATAAA	1560

AGTAAAGTGA TTAACAGCG(ATTAGAGCTG	CTTAATGAGG	TCGGAATCGA	AGGTTTAACA	1620
ACCCGTAAAC TCGCCCAGAI	A GCTAGGTGTA	GAGCAGCCTA	CATTGTATTG	GCATGTAAAA	1680
AATAAGCGGG CTTTGCTCG	A CGCCTTAGCC	ATTGAGATGT	TAGATAGGCA	CCATACTCAC	1740
TTTTGCCCTT TAGAAGGGG	A AAGCTGGCAA	GATTTTTTAC	GTAATAACGC	TAAAAGTTTT	1800
AGATGTGCTT TACTAAGTC	A TCGCGATGGA	GCAAAAGTAC	ATTTAGGTAC	ACGGCCTACA	1860
GAAAAACAGT ATGAAACTC	r cgaaaatcaa	TTAGCCTTTT	TATGCCAACA	AGGTTTTTCA	1920
CTAGAGAATG CATTATATG	C ACTCAGCGCA	GTGGGGCATT	TTACTTTAGG	TTGCGTATTG	1980
GAAGATCAAG AGCATCAAG	r cgctaaagaa	GAAAGGGAAA	CACCTACTAC	TGATAGTATG	2040
CCGCCATTAT TACGACAAG	C TATCGAATTA	TTTGATCACC	AAGGTGCAGA	GCCAGCCTTC	2100
TTATTCGGCC TTGAATTGA	T CATATGCGGA	TTAGAAAAAC	AACTTAAATG	TGAAAGTGGG	2160
TCTTAAAAGC AGCATAACC	T TTTTCCGTGA	TGGTAACTTC	ACTAGTTTAA	AAGGATCTAG	2220
GTGAAGATCC TTTTTGATA	A TCTCATGACC	AAAATCCCTT	AACGTGAGTT	TTCGTTCCAC	2280
TGAGCGTCAG ACCCCGTAG	A AAAGATCAAA	GGATCTTCTT	GAGATCCTTT	TTTTCTGCGC	2340
GTAATCTGCT GCTTGCAAA	C AAAAAAACCA	CCGCTACCAG	CGGTGGTTTG	TTTGCCGGAT	2400
CAAGAGCTAC CAACTCTTT	T TCCGAAGGT	ACTGGCTTCA	GCAGAGCGCA	GATACCAAAT	2460
ACTGTCCTTC TAGTGTAGC	C GTAGTTAGG	CACCACTTCA	AGAACTCTGT	AGCACCGCCT	2520
ACATACCTCG CTCTGCTAA	T CCTGTTACC	GTGGCTGCTG	CCAGTGGCGA	TAAGTCGTGT	2580
CTTACCGGGT TGGACTCA	G ACGATAGTT	CCGGATAAGG	CGCAGCGGTC	GGGCTGAACG	2640
GGGGGTTCGT GCACACAG	C CAGCTTGGA	G CGAACGACCT	ACACCGAACT	GAGATACCTA	2700
CAGCGTGAGC TATGAGAAA	G CGCCACGCT	r cccgaaggga	GAAAGGCGGA	CAGGTATCCG	2760
GTAAGCGGCA GGGTCGGA	AC AGGAGAGCG	C ACGAGGGAGC	TTCCAGGGG	AAACGCCTGG	2820
TATCTTTATA GTCCTGTCC	G GTTTCGCCA	C CTCTGACTTG	AGCGTCGATT	TTTGTGATGC	2880
TCGTCAGGGG GGCGGAGCC	T ATGGAAAAA	C GCCAGCAACO	CGGCCTTTT	ACGGTTCCTG	2940
GCCTTTTGCT GGCCTTTT	C TCACATGAC	C CGACACCATO	GAATGGCCA	ATGATTAATT	3000
CCTAATTTTT GTTGACAC	C TATCATTGA	T AGAGTTATT	TACCACTCC	TATCAGTGAT	3060
AGAGAAAAGT GAAATGAA	TA GTTCGACAA	A AATCTAGATA	A ACGAGGGCA	A AAAATGAAAA	3120
AGACAGCTAT CGCGATTG	CA GTGGCACTG	G CTGGTTTCG	TACCGTAGC	G CAGGCCTGAG	3180
ACCAGAATTC TTCTTTAG	AA ATCTGCCGG	T AAAAATTAG	A TTGCTATTC	A ATCTATTTCT	3240
ATCGGTATTT GTGAAATA	AT ACTCAGGAT	A ATAATTTAC	A TAAATATTA	T CACGCATTAG	3300
AGAAGAGCAT GACTTTTT	та атттаааст	T TTCATTAAC	A AATCTTGTT	G ATATGAAAAT	3360
TTTCCTTTGC TATTTTAA	CA GATATTAAA	A CGGGAATAG	G CGTTATATT	G ACGATCCATT	3420
CAGTTAGATT AAAAACCT	TG AGCAGAAAA	TATTATATT TA	T ATCATAATT	A TGACGAAAGT	3480
TACAGGCCAG GAACCACG	TA GTCAGAATO	T GATTTTCTA	T ATATTTGTT	A TTTACATCGT	3540
CATACACAA AAATATAA	CA AGCAAGTGT	T GGTACGACC	A GTTCGCAAG	A TAGTTAAACA	3600

GCAACTTAAG TTGAAAT	IAC CCCCATTAAA TO	GG ATG GCA AAT ATG Met Ala Asn Met	
		F GAA ATC TTT CCC G l Glu Ile Phe Pro G 570	
		r GAT AAT AGT GTT T y Asp Asn Ser Val T 585	
ATA TTG AAT GAC TC Ile Leu Asn Asp Se 590	r CAT GTA AAA AAG r His Val Lys Ası 595	C ATT ATT GAT TGT A n Ile Ile Asp Cys A 600	AT GGA AAT 3798 sn Gly Asn 605
	u His Asn Ile Va	C AAT TTT CTC TAT A l Asn Phe Leu Tyr T 615	
CAA AGA TGG AAA AA Gln Arg Trp Lys As 625	r GAA GAA TAC TCA n Glu Glu Tyr Sei 630	A AGA CGC AGG ACA T r Arg Arg Arg Thr T 0 6	AC ATT CGT 3894 yr Ile Arg 35
		A GAA GAA ATG GCT A r Glu Glu Met Ala L 650	
		T TCT AAA GGC GGC C s Ser Lys Gly Gly L 665	
		C CAT ATC ATG GAT G g His Ile Met Asp G 680	
	r Tyr Val Arg Ala	T TTT CCG AAA GGT A a Phe Pro Lys Gly L 695	
		A TCT GGG ATC ATG T u Ser Gly Ile Met S 0 7	
		T ATT ATA AAA ACA T s lle lle Lys Thr S 730	
GAT CCT TTT ACC GC Asp Pro Phe Thr Al 735	T AAT GCA TTA GC a Asn Ala Leu Al 740	G TTA AGT TTT ATT G a Leu Ser Phe Ile A 745	AT GTA GAC 4230 sp Val Asp
CCT AAT CAT CCG AT Pro Asn His Pro II 750	A ACG CGC TCT TT e Thr Arg Ser Le 755	A TCT GTT ATA TAT T u Ser Val Ile Tyr T 760	GG CCC CAC 4278 rp Pro His 765
CAA GGT GAT ACA TO Gln Gly Asp Thr Se 77	r Leu Ala Lys Gl	A ATT ATG CGA CAT G u Ile Met Arg His A 775	CG GAT GTT 4326 la Asp Val 780
		G ATT AAT TGG GCG G a lle Asn Trp Ala V 0 7	
		A TTT GGT TCT AAA A s Phe Gly Ser Lys L 810	

TGC Cys	ATT Ile 815	ATC Ile	GAT Asp	AAT Asn	CCT Pro	GTT Val 820	GAT Asp	TTG Leu	ACG Thr	TCC Ser	GCA Ala 825	GCG Ala	ACA Thr	GGT Gly	GCG Ala	447	0
GCT Ala 830	CAT His	GAT Asp	GTT Val	TGT Cys	TTT Phe 835	TAC Tyr	GAT Asp	CAG Gln	CGA Arg	GCT Ala 840	TGT Cys	TTT Phe	TCT Ser	GCC Ala	CAA Gln 845	451	.8
AAC Asn	ATA Ile	TAT Tyr	TAC Tyr	ATG Met 850	GGA Gly	AAT Asn	CAT His	TAT Tyr	GAG Glu 855	GAA Glu	TTT Phe	AAG Lys	TTA Leu	GCG Ala 860	Leu	456	6
ATA Ile	GAA Glu	AAA Lys	CTT Leu 865	AAT Asn	CTA Leu	TAT Tyr	GCG Ala	CAT His 870	ATA Ile	TTA Leu	CCG Pro	AAT Asn	GCC Ala 875	AAA Lys	AAA Lys	461	
GAT Asp	TTT Phe	GAT Asp 880	GAA Glu	AAG Lys	GCG Ala	GCC Ala	TAT Tyr 885	TCT	TTA Leu	GTT Val	CAA Gln	AAA Lys 890	GAA Glu	AGC Ser	TTG Leu	466	52
TTT Phe	GCT Ala 895	GGA Gly	TTA Leu	AAA Lys	GTA Val	GAG Glu 900	GTG Val	GAT Asp	ATT	CAT His	CAA Gln 905	Arg	TGG Trp	ATG Met	ATT Ile	471	10
ATT Ile 910	Glu	TCA Ser	AAT Asn	GCA Ala	GGT Gly 915	GTG Val	GAA Glu	TTT Phe	AAT Asn	CAA Gln 920	CCA Pro	CTT Leu	GGC	AGA Arg	TGT Cys 925	475	58
GTG Val	TAC	CTT	CAT His	CAC His 930	Val	GAT Asp	AAT Asn	ATT Ile	GAG Glu 935	CAA Gln	ATA Ile	TTG Leu	CCT Pro	TAT Tyr 940	vai	480	06
CAA Glr	AAA Lys	AAT Asn	AAG Lys 945	ACG	CAA Gln	ACC Thr	ATA Ile	TCT Ser 950	Ile	TTT Phe	CCT	TGG Trp	GAG Glu 955	TCA	TCA Ser	48	54
TTT Phe	AAA Lys	TAT Tyr 960	Arg	GAT Asp	GCG Ala	TTA Leu	GCA Ala 965	Leu	AAA Lys	GGT Gly	GCG Ala	GAA Glu 970	Arg	ATT	GTA Val	49	02
GA# Glu	GCA Ala 975	Gly	ATG Met	AAT Asn	AAC Asn	ATA Ile 980	Phe	CGA Arg	GTT Val	GGT Gly	GGA Gly 985	Ser	CAT His	GAC Asp	GGA Gly	49	50
ATO Met	Arg	CCG Pro	TTG Leu	CAA Gln	CGA Arg 995	Leu	GTG Val	ACA Thr	TAT Tyr	ATT Ile 100	Ser	CAT	GAA Glu	AGG	CCA Pro 1005	49	98
TC:	AAC ASI	TAT Tyr	ACG	GCT Ala	Lys	GAT Asp	GTI Val	GCG Ala	GTT Val 101	GIU	ATA	A GAA e Glu	CAG Gln	ACT Thr 102	CGA Arg	50	46
TT(Pho	CTC e Leu	GAA 1 Glu	GAA Glu 102	Asp	AAC Lys	TTC Phe	CTI	GTA Val	Phe	GTC Val	CCA Pro	A TAP	YAGO	TAA		50	92
AA	Me	rG GZ et GI	AA AA lu As	AT GA	AA TO Lu Se	A AF er Ly 5	A TA	AT AM	AA AC	ır II	C GZ e As	AC CA	AC GT	T AT	T TGT le Cys 15		.41
GT Va	T GAZ	A GG/ u Gly	A AAT Y Asi	AAA Lys 20	s Lys	A ATT	CAT	r GT s Val	r TGC l Trr	GII	A ACC	G CTO	CCA Pro	GAZ GCI GI	A GAA 1 Glu)	51	189
AA As	C AG n Se	C CC r Pro	A AAG b Ly:	s Arg	A AA(g Ly:	G AA' s Ası	r GCC	C AT	e Ile	T ATT	r GCC	G TC' a Se:	r GG: r Gl: 4!	y Pne	r GCC e Ala	52	237

CGC Arg	AGG Arg	ATG Met 50	GAT Asp	CAT. His	TTT Phe	GCT Ala	GGT Gly 55	CTG Leu	GCG Ala	GAA Glu	TAT Tyr	TTA Leu 60	TCG Ser	CGG Arg	AAT Asn	5285
GGA Gly	TTT Phe 65	CAT His	GTG Val.	ATC Ile	CGC Arg	TAT Tyr 70	GAT Asp	TCG Ser	CTT Leu	CAC His	CAC His 75	GTT Val	GGA Gly	TTG Leu	AGT Ser	5333
TCA Ser 80	Gly	ACA Thr	ATT Ile	GAT Asp	GAA Glu 85	TTT Phe	ACA Thr	ATG Met	TCT Ser	ATA Ile 90	GGA Gly	AAG Lys	CAG Gln	AGC Ser	TTG Leu 95	5381
TTA Leu	Ala	GTG Val	GTT Val	GAT Asp 100	TGG Trp	TTA Leu	ACT Thr	ACA Thr	CGA Arg 105	AAA Lys	ATA Ile	AAT Asn	AAC Asn	TTC Phe 110	GGT	5429
ATG Met	TTG Leu	GCT Ala	TCA Ser 115	AGC Ser	TTA Leu	TCT Ser	GCG Ala	CGG Arg 120	ATA Ile	GCT Ala	TAT Tyr	GCA Ala	AGC Ser 125	CTA Leu	TCT	5477
GAA Glu	ATC Ile	AAT Asn 130	GCT Ala	TCG Ser	TTT Phe	TTA Leu	ATC Ile 135	ACC Thr	GCA Ala	GTC Val	GGT Gly	GTT Val 140	GTT Val	AAC Asn	TTA Leu	5525
AGA Arg	TAT Tyr 145	Ser	CTT Leu	GAA Glu	AGA Arg	GCT Ala 150	Leu	GGG Gly	TTT Phe	GAT Asp	TAT Tyr 155	CTC Leu	AGT Ser	CTA Leu	CCC Pro	5573
ATT Ile 160	Asn	GAA Glu	TTG Leu	CCG Pro	GAT Asp 165	AAT Asn	CTA Leu	GAT Asp	TTT Phe	GAA Glu 170	GGC Gly	CAT	AAA Lys	TTG Leu	GGT Gly 175	5621
GCT Ala	GAA Glu	GTC Val	TTT	GCG Ala 180	AGA Arg	GAT Asp	TGT Cys	CTT Leu	GAT Asp 185	TTT Phe	GGT Gly	TGG Trp	Glu	GAT Asp 190	TTA Leu	5669
GCT Ala	TCT Ser	ACA Thr	ATT Ile 195	AAT Asn	AAC Asn	ATG Met	ATG Met	TAT Tyr 200	Leu	GAT Asp	ATA Ile	CCG Pro	TTT Phe 205	ATT Ile	GCT	5717
TTI Phe	ACT Thr	GCA Ala 210		AAC Asn	GAT Asp	AAT Asn	TGG Trp 215	Val	AAG Lys	CAA Gln	GAT Asp	GAA Glu 220	Val	ATC Ile	ACA Thr	5765
TTO	TTA Leu 225	TCA Ser	AAT	ATT	CGT Arg	AGT Ser 230	AAT Asn	CGA Arg	TGC Cys	AAG Lys	ATA Ile 235	Tyr	TCT Ser	TTG Leu	TTA Leu	5813
GGA Gly 240	Ser	TCG Ser	CAT His	GAC Asp	TTG Leu 245	AGT Ser	GAA Glu	AAT Asn	TTA Leu	GTG Val 250	Val	CTG Leu	CGC Arg	AAT Asn	TTT Phe 255	5861
TAT Tyr	CAA Gln	TCG Ser	GTT Val	ACG Thr 260	Lys	GCC Ala	GCT Ala	ATC	GCG Ala 265	Met	GAT Asp	AAT Asn	GAT Asp	CAT His 270	Leu	5909
GAT Asi	ATT Ile	GAT Asp	GTT Val 275	Asp	ATT	ACT Thr	GAA Glu	CCG Pro 280	Ser	TTT	GAA Glu	CAT His	TTA Leu 285	Thr	ATT	 5957
GCC Ala	ACA Thr	GTC Val 290	Asn	GAA Glu	CGC Arg	CGA Arg	ATG Met 295	Arg	ATT Ile	GAG Glu	ATT Ile	GAA Glu 300	. Asn	CAA Gln	GCA Ala	6005
		Lev	TCT Ser		AATC	TAT	TGAG	ATAT	TC I	'ATCA	CTCA	IA AI	'AGCA	ATAT	· ·	6057

AAGGACTCTC T ATO	AAA TTT GGA Lys Phe Gly	AAC TTT TTG Asn Phe Leu 5	CTT ACA TAC CAA Leu Thr Tyr Gln 10	CCT CCC 6107 Pro Pro
CAA TTT TCT CAA Gln Phe Ser Gln 15	ACA GAG GTA A Thr Glu Val M 20	TG AAA CGT I Met Lys Arg L	TG GTT AAA TTA eu Val Lys Leu 25	GGT CGC 6155 Gly Arg
ATC TCT GAG GAG Ile Ser Glu Glu 30	TGT GGT TTT G Cys Gly Phe A 35	SAT ACC GTA T Asp Thr Val T	GG TTA CTG GAG TP Leu Leu Glu 40	CAT CAT 6203 His His 45
TTC ACG GAG TTT Phe Thr Glu Phe	GGT TTG CTT G Gly Leu Leu G 50	GT AAC CCT T Gly Asn Pro T 55	AT GTC GCT GCT Yr Val Ala Ala	GCA TAT 6251 Ala Tyr 60
TTA CTT GGC GCG Leu Leu Gly Ala 65	ACT AAA AAA T Thr Lys Lys L	TTG AAT GTA G Leu Asn Val G 70	GGA ACT GCC GCT Gly Thr Ala Ala 75	ATT GTT 6299 Ile Val
CTT CCC ACA GCC Leu Pro Thr Ala 80	CAT CCA GTA C His Pro Val A	CGC CAA CTT G Arg Gln Leu G 85	SAA GAT GTG AAT Slu Asp Val Asn 90	TTA TTG 6347 Leu Leu
GAT CAA ATG TCA Asp Gln Met Ser 95	AAA GGA CGA T Lys Gly Arg E 100	TTT CGG TTT C Phe Arg Phe C	GGT ATT TGC CGA Gly Ile Cys Arg 105	GGG CTT 6395 Gly Leu
TAC AAC AAG GAC Tyr Asn Lys Asp 110	TTT CGC GTA T Phe Arg Val I 115	Phe Gly Thr A	GAT ATG AAT AAC Asp Met Asn Asn 120	AGT CGC 6443 Ser Arg 125
GCC TTA GCG GAA Ala Leu Ala Glu	TGC TGG TAC C Cys Trp Tyr C 130	GGG CTG ATA A Gly Leu Ile I 135	AAG AAT GGC ATG Lys Asn Gly Met	ACA GAG 6491 Thr Glu 140
GGA TAT ATG GAA Gly Tyr Met Glu 145	Ala Asp Asn (GAA CAT ATC A Glu His Ile I 150	AAG TTC CAT AAG Lys Phe His Lys 155	GTA AAA 6539 Val Lys
GTA AAC CCC GCG Val Asn Pro Ala 160	Ala Tyr Ser 1	AGA GGT GGC (Arg Gly Gly 1 165	GCA CCG GTT TAT Ala Pro Val Tyr 170	GTG GTG 6587 Val Val
GCT GAA TCA GCT Ala Glu Ser Ala 175	TCG ACG ACT (Ser Thr Thr (180	GAG TGG GCT (Glu Trp Ala i	GCT CAA TTT GGC Ala Gln Phe Gly 185	CTA CCG 6635 Leu Pro
ATG ATA TTA AGT Met Ile Leu Ser 190	TGG ATT ATA I	Asn Thr Asn (GAA AAG AAA GCA Glu Lys Lys Ala 200	CAA CTT 6683 Gln Leu 205
GAG CTT TAT AAT Glu Leu Tyr Asn	GAA GTG GCT (Glu Val Ala (210	CAA GAA TAT (Gln Glu Tyr (215	GGG CAC GAT ATT Gly His Asp Ile	CAT AAT 6731 His Asn 220
ATC GAC CAT TGC Ile Asp His Cys 225	Leu Ser Tyr	ATA ACA TCT lle Thr Ser 230	GTA GAT CAT GAC Val Asp His Asp 235	TCA ATT 6779 Ser Ile
AAA GCG AAA GAG Lys Ala Lys Glu 240	Ile Cys Arg	AAA TTT CTG Lys Phe Leu 245	GGG CAT TGG TAT Gly His Trp Tyr 250	GAT TCT 6827 Asp Ser
TAT GTG AAT GCT Tyr Val Asn Ala 255	ACG ACT ATT Thr Thr Ile 260	TTT GAT GAT Phe Asp Asp	TCA GAC CAA ACA Ser Asp Gln Thr 265	AGA GGT 6875 Arg Gly

TAT Tyr 270	GAT Asp	TTC Phe	AAT Asn	AAA Lys	GGG Gly 275	CAG Gln	TGG Trp	CGT Arg	GAC Asp	TTT Phe 280	GTA Val	TTA Leu	AAA Lys	GGA Gly	CAT His 285	6923
AAA Lys	GAT Asp	ACT Thr	AAT Asn	CGC Arg 290	CGT Arg	ATT Ile	GAT Asp	TAC Tyr	AGT Ser 295	TAC Tyr	GAA Glu	ATC Ile	AAT Asn	CCC Pro 300	GTG Val	6971
GGA Gly	ACG Thr	CCG Pro	CAG Gln 305	GAA Glu	TGT Cys	ATT Ile	GAC Asp	ATA Ile 310	ATT Ile	CAA Gln	AAA Lys	GAC Asp	ATT Ile 315	GAT Asp	GCT Ala	7019
ACA Thr	GGA Gly	ATA Ile 320	TCA Ser	AAT Asn	ATT Ile	TGT Cys	TGT Cys 325	GGA Gly	TTT Phe	GAA Glu	GCT Ala	AAT Asn 330	GGA Gly	ACA Thr	GTA Val	7067
GAĆ Asp	GAA Glu 335	ATT Ile	ATT Ile	GCT Ala	TCC Ser	ATG Met 340	AAG Lys	CTC Leu	TTC Phe	CAG Gln	TCT Ser 345	GAT Asp	GTC Val	ATG Met	CCA Pro	7115
	CTT Leu										TAGO	CTAAC	GA (GAAA(AA	7165
ATG Met 1	AAA Lys	TTT Phe	GGA Gly	TTG Leu 5	TTC Phe	TTC Phe	CTT Leu	AAC Asn	TTC Phe 10	ATC Ile	AAT Asn	TCA Ser	ACA Thr	ACT Thr 15	GTT Val	7213
CAA Gln	GAA Glu	CAA Gln	AGT Ser 20	ATA Ile	GTT Val	CGC Arg	ATG Met	CAG Gln 25	GAA Glu	ATA Ile	ACG Thr	GAG Glu	TAT Tyr 30	GTT Val	GAT Asp	7261
AAG Lys	TTG Leu	AAT Asn 35	TTT Phe	GAA Glu	CAG Gln	ATT Ile	TTA Leu 40	GTG Val	TAT Tyr	GAA Glu	AAT Asn	CAT His 45	TTT Phe	TCA Ser	GAT Asp	7309
AAT Asn	GGT Gly 50	GTT Val	GTC Val	GGC Gly	GCT Ala	CCT Pro 55	CTG Leu	ACT Thr	GTT Val	TCT Ser	GGT Gly 60	TTT Phe	CTG Leu	CTC Leu	GGT Gly	7357
TTA Leu 65	Thr	GAG Glu	AAA Lys	ATT Ile	AAA Lys 70	ATT	GGT Gly	TCA Ser	TTA Leu	AAT Asn 75	CAC His	ATC Ile	ATT Ile	ACA Thr	ACT Thr 80	7405
CAT His	CAT His	CCT Pro	GTC Val	GCC Ala 85	Ile	GCG Ala	GAG Glu	GAA Glu	GCT Ala 90	TGC Cys	TTA Leu	TTG Leu	GAT Asp	CAG Gln 95	TTA Leu	7453
AGT Ser	GAA Glu	GGG	AGA Arg 100	Phe	ATT	TTA Leu	GGG	TTT Phe 105	Ser	GAT Asp	TGC Cys	GAA Glu	AAA Lys 110	AAA Lys	GAT Asp	7501
GAA Glu	ATG Met	CAT His 115	TTT Phe	TTT Phe	AAT	CGC Arg	CCG Pro 120	Val	GAA Glu	TAT	CAA Gln	CAG Gln 125	Gln	CTA Leu	TTT	7549
GAA Glu	GAG Glu 130	Cys	TAT Tyr	GAA Glu	ATC	ATT Ile 135	Asn	GAT Asp	GCT Ala	TTA Leu	ACA Thr 140	ACA Thr	GGC Gly	TAT Tyr	TGT Cys	7597
AAT Asn 145	Pro	GAT Asp	AAC Asn	GAT Asp	TTT Phe 150	Tyr	AGC Ser	TTC Phe	CCT	AAA Lys 155	Ile	TCT	GTA Val	AAT Asn	CCC Pro 160	7645
CAT His	GCT Ala	TAT Tyr	ACG Thr	CCA Pro	Gly	GGA Gly	CCT	CGG	AAA Lys 170	Tyr	GTA Val	ACA Thr	GCA Ala	ACC Thr 175	AGT Ser	7693

CAT His	CAT His	ATT Ile	GTT Val 180	GAG Glu	TGG Trp	GCG Ala	GCC Ala	AAA Lys 185	AAA Lys	GGT Gly	ATT Ile	CCT Pro	CTC Leu 190	ATC Ile	TTT Phe	7741
AAG Lys	TGG Trp	GAT Asp 195	GAT Asp	TCT Ser	AAT Asn	GAT Asp	GTT Val 200	AGA Arg	TAT Tyr	GAA Glu	TAT Tyr	GCT Ala 205	GAA Glu	AGA Arg	TAT	7789
AAA Lys	GCC Ala 210	GTT Val	GCG Ala	GAT Asp	AAA Lys	TAT Tyr 215	GAC Asp	GTT Val	GAC Asp	CTA Leu	TCA Ser 220	GAG Glu	ATA Ile	GAC Asp	CAT His	7837
CAG Gln 225	TTA Leu	ATG Met	ATA Ile	TTA Leu	GTT Val 230	AAC Asn	TAT Tyr	AAC Asn	GAA Glu	GAT Asp 235	AGT Ser	AAT Asn	AAA Lys	GCT Ala	AAA Lys 240	7885
CAA Gln	GAG Glu	ACG Thr	CGT Arg	GCÁ Ala 245	TTT Phe	ATT	AGT Ser	GAT Asp	TAT Tyr 250	GTT Val	CTT	GAA Glu	ATG Met	CAC His 255	CCT Pro	7933
AAT Asn	GAA Glu	AAT Asn	TTC Phe 260	GAA Glu	AAT Asn	AAA Lys	CTT Leu	GAA Glu 265	GAA Glu	ATA Ile	ATT	GCA Ala	GAA Glu 270	AAC Asn	GCT Ala	7981
GTC Val	GGA Gly	AAT Asn 275	TAT Tyr	ACG Thr	GAG Glu	TGT Cys	ATA Ile 280	ACT Thr	GCG Ala	GCT Ala	AAG Lys	TTG Leu 285	Ala	ATT Ile	GAA Glu	8029
AAG Lys	TGT Cys 290	Gly	GCG Ala	AAA Lys	Ser	GTA Val 295	TTG Leu	CTG Leu	TCC Ser	TTT	GAA Glu 300	Pro	ATG Met	AAT Asn	GAT Asp	8077
TTG Leu 305	ATG Met	AGC Ser	CAA Gln	AAA Lys	AAT Asn 310	Val	ATC Ile	AAT Asn	ATT	GTT Val 315	Asp	GAT Asp	AAT Asn	ATT	AAG Lys 320	8125
AAG Lys	TAC	CAC His	Met	GAA Glu 325	Tyr	ACC Thr	TAA	TAGA	TTT	CGAG	TTGC	AG C	GAGG	CGGC	A	8176
AGT	GAAC	GAA	TCCC	CAGG	AG C	ATAG	ATAA	C TA	TGTG	ACTG	GGG	TGAG	TGA	AAGC	AGCCAA	8236
CAA	\AGCA	GCA	GCTT	GAAA	G AT Me	G AA t Ly 1	G GG s Gl	T AT y Il	A AA e Ly	A GA s Gl 5	G TA u Ty	T GA	C AG	r se	T GCT r Ala 0	8288
GCC Ala	ATA a Ile	CTT Leu	TCT Ser 15	Asn	ATT	ATC	TTC Lev	ı Arç	Ser	Lys	ACA Thr	. GTŽ	Met 25	. Thi	TCA Ser	8336
TAT Ty1	r GTI r Val	GAT Asp 30	Lys	CAA Gln	GAA Glu	ATT	ACA Thr	Ala	AGC Ser	TCA Ser	GAI Glu	A ATT	ASL	GAT Asp	TTG Leu	8384
AT.	r TTT e Phe 45	Ser	AGC Ser	GAT Asp	CCA Pro	TTA Let	ı Val	TGC L Trp	TC?	TAC Tyz	GAC Asi 5:	D GT	G CAC	G GAA n Glu	AAA 1 Lys	8432
ATO	e Arg	A AAC	AAA Lys	CTI Lev	GTC 1 Val 65	Lei	GA:	r GCZ o Ala	A TT	CG: Arg	g Ası	r CAS	r TAI	r AAZ c Lys	A CAT B His 75	8480
TG Cy	T CG/ s Arg	A GAM	A TAT	CGT Arg	g His	TAC Ty:	TG'	r CAG	G GCA n Ala	a Hli	C AA	A GT	A GA' l As	GA(P Asi 9(C AAT p Asn O	8528

ATT Ile	ACG Thr	GAA Glu	ATT Ile 95	GAT Asp	GAC Asp	ATA Ile	CCT Pro	GTA Val 100	TTC Phe	CCA Pro	ACA Thr	TCG Ser	GTT Val 105	TTT Phe	AAG Lys	8576
	ACT Thr															8624
ACC Thr	AGT Ser 125	AGC Ser	GGC Gly	ACG Thr	AAT Asn	GGT Gly 130	TTA Leu	AAA Lys	AGT Ser	CAG Gln	GTG Val 135	GCG Ala	CGT Arg	GAC Asp	AGA Arg	8672
TTA Leu 140	AGT Ser	ATT Ile	GAG Glu	AGA Arg	CTC Leu 145	TTA Leu	GGC Gly	TCT Ser	GTG Val	AGT Ser 150	TAT Tyr	GGC	ATG Met	AAA Lys	TAT Tyr 155	8720
	GGT Gly															8768
	AGA Arg											_				8816
	GAA Glu															8864
	TTT Phe 205															8912
	GAT Asp													_		8960
CAT His	TAT Tyr	ATG Met	AAA Lys	GAT Asp 240	AAA Lys	AAA Lys	ATC Ile	TCA Ser	TTT Phe 245	Ser	GGA Gly	GAT Asp	AAA Lys	AGC Ser 250	CTT Leu	9008
	ATC Ile														CTG Leu	9056
	CGT Arg															9104
	ATT Ile 285															9152
TGT Cys 300	TTC Phe	TTT Phe	GAG Glu	GAT Asp	GAA Glu 305	ATG Met	CAG Gln	CGT Arg	AAA Lys	CAT His 310	GTT Val	CCG Pro	CCG Pro	TGG Trp	GTA Val 315	9200
	GCG Ala															9248
ACG Thr	CCG Pro	GGG Gly	TTG Leu 335	ATG Met	AGT Ser	TAT Tyr	ATG Met	GAT Asp 340	GCG Ala	TCA Ser	GCA Ala	ACC Thr	AGT Ser 345	TAT Tyr	CCA Pro	9296
GCA Ala	TTT Phe	ATT Ile 350	GTT Val	ACC Thr	GAT Asp	GAT Asp	GTC Val 355	GGG Gly	ATA Ile	ATT Ile	AGC Ser	AGA Arg 360	GAA Glu	TAT Tyr	GGT Gly	9344

AAG TAT CCC GC Lys Tyr Pro Gl 365	GC GTG CTC GTT GAA A ly Val Leu Val Glu I 370	le Leu Arg	CGC GTC AAT ACG AGG Arg Val Asn Thr Arg 375	9392
ACG CAG AAA GO Thr Gln Lys Gl 380	GG TGT GCT TTA AGC T ly Cys Ala Leu Ser L 385	TA ACC GAA eu Thr Glu 390	GCG TTT GAT AGT Ala Phe Asp Ser	9437
TGATATCCTT TGO	CCTAATTG TAAGTGGAAT	GCTTGCGTTA	TATAAATCTG AATGACATCT	9497
ACACTTTACA AA	ATTCTCCA AAACATCCAC	ATTTGGGTAC	TTGATAGAGG TTTATGGGGT	9557
TGGCTTAACA TTC	GTTCTCAT TGTTATTATT	GGCTCAAAGC	AAAAGGAGAT AACATGAAAA	9617
AATTGGCAGT TAT	TGCTTGCA TTGGGAATGA	TTAGCTTTGG	TGCAATGGCA GTTGATGGGT	9677
ATAAAGATGC AA	AGTTTGGC ATGACAGAAG	AAGAGTTTCT	TTCGAAGAGG TTATGTGATT	9737
TTGAAAAATT TG	AGGGAGAT TCTCGAATAG	AAGAAGTATC	ACTTTATTCA TGTTCTGACT	9797
TTTCGTTTGC TA	ACAAAAAG CGTGAAGCAA	TGGCATTTTT	TTTAAATGGG AAATTTAAAA	9857
GATTAGAGAT TA	ATATTGGC AGACTTGTGA	AGCCAGTAAG	CAAATCGTTA ACGAAAAAGT	9917
ACGGAGATGG AT	CATCGTAT CCATCAAAAG	AAGAATTTGA	GAACGCGCTA AAATACAATG	9977
GAACTATGTC TA	TAGGTTAT GATAATAATA	CGGTATTAGT	TGATATACAT ATAATATGTG	10037
GCAAAGAAGG CA'	TAGAAACC AGTCAACTGA	TTTATACGAG	TCCAGATGTT TATACGCTCC	10097
CAGATTTCGG AG	AAAAAATC CAGGAATTAA	AGGGATTAAA	GGAATTCGAG CTCGGTACCC	10157
GGGGATCCCT CG	AGGTCGAC CTGCAGGCAG	CGCTTGGCGT	CACCCGCAGT TCGGTGGTTA	10217
ATA				10220

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 483 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Asn Met Thr Lys Lys Ile Ser Phe Ile Ile Asn Gly Gln Val 1 5 10 15

Glu Ile Phe Pro Glu Ser Asp Asp Leu Val Gln Ser Ile Asn Phe Gly 20 25 30

Ile Ile Asp Cys Asn Gly Asn Asn Glu Leu Arg Leu His Asn Ile Val 50 60

Asn Phe Leu Tyr Thr Val Gly Gln Arg Trp Lys Asn Glu Glu Tyr Ser 65 70 75 80

Arg Arg Arg Thr Tyr Ile Arg Asp Leu Lys Lys Tyr Met Gly Tyr Ser 85 90 95

Glu Glu Met Ala Lys Leu Glu Ala Asn Trp Ile Ser Met Ile Leu Cys 100 105 110

Ser	Lys	Gly 115	Gly	Leu	Tyr	Asp	Val 120	Val	Glu	Asn	Glu	Leu 125	Gly	Ser	Arg
His	Ile 130	Met	Asp	Glu	Trp	Leu 135	Pro	Gln	Asp	Glu	Ser 140	Tyr	Val	Arg	Ala
Phe 145	Pro	Lys	Gly	Lys	Ser 150	Val	His	Leu	Leu	Ala 155	Gly	Asn	Val	Pro	Leu 160
Ser	Gly	Ile	Met	Ser 165	Ile	Leu	Arg	Ala	Ile 170	Leú	Thr	Lys	Asn	Gln 175	Cys
Ile	Ile	Lys	Thr 180	Ser	Ser	Thr	Asp	Pro 185	Phe	Thr	Ala	Asn	Ala 190	Leu	Ala
Leu	Ser	Phe 195	Ile	Asp	Val	Asp	Pro 200	Asn	His	Pro	Ile	Thr 205	Arg	Ser	Leu
Ser	Val 210	Ile	Tyr	Trp	Pro	His 215	Gln	Gly	Asp	Thr	Ser 220	Leu	Ala	Lys	Glu
Ile 225	Met	Arg	His	Ala	Asp 230		Ile	Val	Ala	Trp 235	Gly	Gly	Pro	Asp	Ala 240
Ile	Asn	Trp	Ala	Val 245	Glu	His	Ala	Pro	Ser 250	Tyr	Ala	Asp	Val	Ile 255	Lys
Phe	Gly	Ser	Lys 260	Lys	Ser	Leu	Cys	11e 265	Ile	Asp	Asn	Pro	Val 270	Asp	Leu
Thr		Ala 275	Ala	Thr	Gly	Ala	Ala 280	His	Asp	Val	Cys	Phe 285	Tyr	Asp	Gln
Arg	Ala 290	Cys	Phe	Ser	Ala	Gln 295	Asn	Ile	Tyr	Tyr	Met 300	Gly	Asn	His	Tyr
Glu 305	Glu	Phe	Lys	Leu	Ala 310	Leu	Ile	Glu	Lys	Leu 315	Asn	Leu	Tyr	Ala	His 320
Ile	Leu	Pro	Asn	Ala 325	Lys	Lys	Asp	Phe	Asp 330	Glu	Lys	Ala	Ala	Tyr 335	Ser
Leu	Val	Gln	Lys 340	Glu	Ser	Leu	Phe	Ala 345	Gly	Leu	Lys	Val	Glu 350	Val	Asp
Ile	His	Gln 355	Arg	Trp	Met	Ile	Ile 360	Glu	Ser	Asn	Ala	Gly 365	Val	Glu	Phe
Asn	Gln 370	Pro	Leu	Gly	Arg	Cys 375	Val	Tyr	Leu	His	His 380	Val	Asp	Asn	Ile
Glu 385	Gln	Ile	Leu	Pro	Tyr 390	Val	Gln	Lys	Asn	Lys 395	Thr	Gln	Thr	Ile	Ser 400
Ile	Phe	Pro	Trp	Glu 405	Ser	Ser	Phe	Lys	Tyr 410	Arg	Asp	Ala	Leu	Ala 415	Leu
Lys	Gly	Ala	Glu 420	Arg	Ile	Val	Glu	Ala 425		Met	Asn	Asn	Ile 430	Phe	Arg
Val	Gly	Gly 435	Ser	His	Asp	Gly	Met 440	Arg	Pro	Leu	Gln	Arg 445	Leu	Val	Thr
Tyr	Ile 450	Ser	His	Glu	Arg	Pro 455	Ser	Asn	Tyr	Thr	Ala 460	Lys	Asp	Val	Ala
Val 465	Glu	Ile	Glu	Gln	Thr 470	Arg	Phe	Leu	Glu	Glu 475	Asp	Lys	Phe	Leu	Val 480

Phe Val Pro

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 307 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Glu Asn Glu Ser Lys Tyr Lys Thr Ile Asp His Val Ile Cys Val 1 5 10

Glu Gly Asn Lys Lys Ile His Val Trp Glu Thr Leu Pro Glu Glu Asn 20 25 30

Ser Pro Lys Arg Lys Asn Ala Ile Ile Ile Ala Ser Gly Phe Ala Arg 35 40 45

Arg Met Asp His Phe Ala Gly Leu Ala Glu Tyr Leu Ser Arg Asn Gly 50 60

Phe His Val Ile Arg Tyr Asp Ser Leu His His Val Gly Leu Ser Ser 65 70 75 80

Gly Thr Ile Asp Glu Phe Thr Met Ser Ile Gly Lys Gln Ser Leu Leu 85 90 95

Ala Val Val Asp Trp Leu Thr Thr Arg Lys Ile Asn Asn Phe Gly Met 100 105 110

Leu Ala Ser Ser Leu Ser Ala Arg Ile Ala Tyr Ala Ser Leu Ser Glu 115 120 125

Ile Asn Ala Ser Phe Leu Ile Thr Ala Val Gly Val Val Asn Leu Arg 130 135 140

Tyr Ser Leu Glu Arg Ala Leu Gly Phe Asp Tyr Leu Ser Leu Pro Ile 145 150 155 160

Asn Glu Leu Pro Asp Asn Leu Asp Phe Glu Gly His Lys Leu Gly Ala 165 170 175

Glu Val Phe Ala Arg Asp Cys Leu Asp Phe Gly Trp Glu Asp Leu Ala 180 185 190

Ser Thr Ile Asn Asn Met Met Tyr Leu Asp Ile Pro Phe Ile Ala Phe 195 200 205

Thr Ala Asn Asn Asp Asn Trp Val Lys Gln Asp Glu Val Ile Thr Leu 210 215 220

Leu Ser Asn Ile Arg Ser Asn Arg Cys Lys Ile Tyr Ser Leu Leu Gly 225 230 235 240

Ser Ser His Asp Leu Ser Glu Asn Leu Val Val Leu Arg Asn Phe Tyr 245 250 255

Gln Ser Val Thr Lys Ala Ala Ile Ala Met Asp Asn Asp His Leu Asp 260 265 270

Ile Asp Val Asp Ile Thr Glu Pro Ser Phe Glu His Leu Thr Ile Ala 275 280 285

Thr Val Asn Glu Arg Arg Met Arg Ile Glu Ile Glu Asn Gln Ala Ile 290 295 300

Ser Leu Ser 305

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Lys Phe Gly Asn Phe Leu Leu Thr Tyr Gln Pro Pro Gln Phe Ser 1 10 15

Gln Thr Glu Val Met Lys Arg Leu Val Lys Leu Gly Arg Ile Ser Glu 20 25 30

Glu Cys Gly Phe Asp Thr Val Trp Leu Leu Glu His His Phe Thr Glu 35 40 45

Phe Gly Leu Leu Gly Asn Pro Tyr Val Ala Ala Ala Tyr Leu Leu Gly 50 60

Ala Thr Lys Lys Leu Asn Val Gly Thr Ala Ala Ile Val Leu Pro Thr
65 70 75 80

Ala His Pro Val Arg Gln Leu Glu Asp Val Asn Leu Leu Asp Gln Met 85 90 95

Ser Lys Gly Arg Phe Arg Phe Gly Ile Cys Arg Gly Leu Tyr Asn Lys

Asp Phe Arg Val Phe Gly Thr Asp Met Asn Asn Ser Arg Ala Leu Ala 115 120 125

Glu Cys Trp Tyr Gly Leu Ile Lys Asn Gly Met Thr Glu Gly Tyr Met 130 $$135\$

Glu Ala Asp Asn Glu His Ile Lys Phe His Lys Val Lys Val Asn Pro 145 150 155 160

Ala Ala Tyr Ser Arg Gly Gly Ala Pro Val Tyr Val Val Ala Glu Ser 165 170 175

Ala Ser Thr Thr Glu Trp Ala Ala Gln Phe Gly Leu Pro Met Ile Leu 180 $$185\$

Ser Trp Ile Ile Asn Thr Asn Glu Lys Lys Ala Gln Leu Glu Leu Tyr 195 200 205

Asn Glu Val Ala Gln Glu Tyr Gly His Asp Ile His Asn Ile Asp His 210 215 220

Cys Leu Ser Tyr Ile Thr Ser Val Asp His Asp Ser Ile Lys Ala Lys 225 230 235

Glu Ile Cys Arg Lys Phe Leu Gly His Trp Tyr Asp Ser Tyr Val Asn 245 250 255

Ala Thr Thr Ile Phe Asp Asp Ser Asp Gln Thr Arg Gly Tyr Asp Phe 260 265 270

Asn Lys Gly Gln Trp Arg Asp Phe Val Leu Lys Gly His Lys Asp Thr 275 280 285

Asn Arg Arg Ile Asp Tyr Ser Tyr Glu Ile Asn Pro Val Gly Thr Pro 290 295 300

Gln Glu Cys Ile Asp Ile Ile Gln Lys Asp Ile Asp Ala Thr Gly Ile 305 310 315 320

Ser Asn Ile Cys Cys Gly Phe Glu Ala Asn Gly Thr Val Asp Glu Ile 325 330 335

Ile Ala Ser Met Lys Leu Phe Gln Ser Asp Val Met Pro Phe Leu Lys 340 345 350

Glu Lys Gln Arg Ser Leu Leu Tyr 355 360

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 327 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Lys Phe Gly Leu Phe Phe Leu Asn Phe Ile Asn Ser Thr Thr Val

Gln Glu Gln Ser Ile Val Arg Met Gln Glu Ile Thr Glu Tyr Val Asp

Lys Leu Asn Phe Glu Gln Ile Leu Val Tyr Glu Asn His Phe Ser Asp 35 40 45

Asn Gly Val Val Gly Ala Pro Leu Thr Val Ser Gly Phe Leu Leu Gly 50 60

Leu Thr Glu Lys Ile Lys Ile Gly Ser Leu Asn His Ile Ile Thr Thr 65 70 75 80

His His Pro Val Ala Ile Ala Glu Glu Ala Cys Leu Leu Asp Gln Leu 85 90 95

Ser Glu Gly Arg Phe Ile Leu Gly Phe Ser Asp Cys Glu Lys Lys Asp 100 105 110

Glu Met His Phe Phe Asn Arg Pro Val Glu Tyr Gln Gln Gln Leu Phe 115 120 125

Glu Glu Cys Tyr Glu Ile Ile Asn Asp Ala Leu Thr Thr Gly Tyr Cys 130 135 140

Asn Pro Asp Asn Asp Phe Tyr Ser Phe Pro Lys Ile Ser Val Asn Pro 145 150 150 160

His Ala Tyr Thr Pro Gly Gly Pro Arg Lys Tyr Val Thr Ala Thr Ser 165 170 175

His His Ile Val Glu Trp Ala Ala Lys Lys Gly Ile Pro Leu Ile Phe 180 185 190

Lys Trp Asp Asp Ser Asn Asp Val Arg Tyr Glu Tyr Ala Glu Arg Tyr
195 200 205

Lys Ala Val Ala Asp Lys Tyr Asp Val Asp Leu Ser Glu Ile Asp His 210 215 220

Gln Leu Met Ile Leu Val Asn Tyr Asn Glu Asp Ser Asn Lys Ala Lys 225 230 235 240

Gln Glu Thr Arg Ala Phe Ile Ser Asp Tyr Val Leu Glu Met His Pro 245 250 255

Asn Glu Asn Phe Glu Asn Lys Leu Glu Glu Ile Ile Ala Glu Asn Ala 260 265 270

Val Gly Asn Tyr Thr Glu Cys Ile Thr Ala Ala Lys Leu Ala Ile Glu 275 280 285

Lys Cys Gly Ala Lys Ser Val Leu Leu Ser Phe Glu Pro Met Asn Asp 290 295 300

Leu Met Ser Gln Lys Asn Val Ile Asn Ile Val Asp Asp Asn Ile Lys 305 310 315 320

Lys Tyr His Met Glu Tyr Thr 325

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Lys Gly Ile Lys Glu Tyr Asp Ser Ser Ala Ala Ile Leu Ser Asn 1 5 10 15

Ile Ile Leu Arg Ser Lys Thr Gly Met Thr Ser Tyr Val Asp Lys Gln 20 25 30

Glu Ile Thr Ala Ser Ser Glu Ile Asp Asp Leu Ile Phe Ser Ser Asp 35 40 45

Pro Leu Val Trp Ser Tyr Asp Glu Gln Glu Lys Ile Arg Lys Lys Leu 50 55 60

Val Leu Asp Ala Phe Arg Asn His Tyr Lys His Cys Arg Glu Tyr Arg 65 70 75 80

His Tyr Cys Gln Ala His Lys Val Asp Asp Asn Ile Thr Glu Ile Asp 85 90 95

Asp Ile Pro Val Phe Pro Thr Ser Val Phe Lys Phe Thr Arg Leu Leu 100 105 110

Thr Ser Gln Glu Asn Glu Ile Glu Ser Trp Phe Thr Ser Ser Gly Thr 115 120 125

Asn Gly Leu Lys Ser Gln Val Ala Arg Asp Arg Leu Ser Ile Glu Arg 130 135 140

Leu Leu Gly Ser Val Ser Tyr Gly Met Lys Tyr Val Gly Ser Trp Phe 145 150 150 160

Asp His Gln Ile Glu Leu Val Asn Leu Gly Pro Asp Arg Phe Asn Ala 165 170 175

- His Asn Ile Trp Phe Lys Tyr Val Met Ser Leu Val Glu Leu Leu Tyr 180 185 190
- Pro Thr Thr Phe Thr Val Thr Glu Glu Arg Ile Asp Phe Val Lys Thr
- Leu Asn Ser Leu Glu Arg Ile Lys Asn Gln Gly Lys Asp Leu Cys Leu 210 215 220
- Ile Gly Ser Pro Tyr Phe Ile Tyr Leu Leu Cys His Tyr Met Lys Asp 225 230 235
- Lys Lys Ile Ser Phe Ser Gly Asp Lys Ser Leu Tyr Ile Ile Thr Gly 245 250 255
- Gly Gly Trp Lys Ser Tyr Glu Lys Glu Ser Leu Lys Arg Asp Asp Phe 260 265
- Asn His Leu Leu Phe Asp Thr Phe Asn Leu Ser Asp Ile Ser Gln Ile 275 280 285
- Arg Asp Ile Phe Asn Gln Val Glu Leu Asn Thr Cys Phe Phe Glu Asp 290 295 300
- Glu Met Gln Arg Lys His Val Pro Pro Trp Val Tyr Ala Arg Ala Leu 305 310 315
- Asp Pro Glu Thr Leu Lys Pro Val Pro Asp Gly Thr Pro Gly Leu Met 325 330 335
- Ser Tyr Met Asp Ala Ser Ala Thr Ser Tyr Pro Ala Phe Ile Val Thr 340 345
- Asp Asp Val Gly Ile Ile Ser Arg Glu Tyr Gly Lys Tyr Pro Gly Val 355 360 365
- Leu Val Glu Ile Leu Arg Arg Val Asn Thr Arg Thr Gln Lys Gly Cys 370 380
- Ala Leu Ser Leu Thr Glu Ala Phe Asp Ser 385
- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3098 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)

 - - (ix) FEATURE:
 - (A) NAME/KEY: promoter
 - (B) LOCATION: 542..672

(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:6731530 (D) OTHER INFORMATION:/product= "beta-la" /citation=([1]) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:15432163 (D) OTHER INFORMATION:/product= "tetR" /citation=([1]) (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:27132950 (D) OTHER INFORMATION:/function= "ORI" /label= ORI /citation=([1]) (ix) FEATURE: (A) NAME/KEY: promoter (B) LOCATION:27132950 (D) OTHER INFORMATION:/function= "p tetA promoter" /citation=([1]) (x) FEATURE: (A) NAME/KEY: promoter (B) LOCATION:19763073 (D) OTHER INFORMATION:/function= "p tetA promoter" /citation=([1]) (x) FUBLICATION INFORMATION: (A) ADTHORS: Skerta, A (B) TITLE: Use of the tetracycline promoter for the tothly regulated production of a murine antibody fragment in Escherichia coli (C) JOUNGE: 15-2 (F) PAGES: 131-135 (G) DATE: 30-DEC-1994 (K) RELEVANT RESIDUES IN SEQ ID NO: 9: FROM 1 TO 3098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: AGCTTGACT GTGAAGTGAA AAATGGGGCA CATTGTGCGA CATTTTTTTT GTCTGCCGTT TACCGCTACT GCGTCACGGA TCTCCACGGG CCCTGTAGGG CCCTAGCGCC CGCTCCTTTC TACCGCTACT GCGTCACGGA TCTCCACGGG CCCTGTAGGG CCCTAGCGCC CGCTCCTTTC GCGTGGTTA CGCGCAGGGT GACCGCTACA CTTGCCAGGG CCCTAGCGCC CGCTCCTTTC GCGTGGTAA GGGGCAGGT GACCGCTACA CTTGCCAGGG CCCTAGCGCC CGCTCCTTTC GGGGTGCAC CGTTCTTCTT CGCCACGGTC GCCGGGTTTC CCCGTCAAGC TCTAAATCGG GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TACCGCACC TCGACCCCAA AAAACTTGAT TAGGGTGAGT GTCACGTAG TGGGCCATCG CCCTGATAGA CTCTAAACCGC GGGCTCCTT TAGGGTTCG ATTTATGTGCT TTACGGCACC TCGAACCAAC ACTCAACCCT ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA AATGAGCTGA TTTAACAAAA ATTTAACGG AATTTTAACA AAATATTAAC GCTTACAATT TCAGGTGGCA CTTTTTCGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA AATAGAGCTGA TTTACAGAAA AATTTAACGG GAACCCCTA TTTGTTTATT TTTCTAAATA TCAGGTGGCA CTTTTTCGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT CATGAGACAA ATACCCTGAT AAATGTTAA GCGAACAAC ACTTACAACT TACAGGTGGAAAAACAAC ACTCAACCCTAACCAAC AAAACTGGAAC AATTTACCGC AAAAGGAAAAACAAC ACTCAAACCAAC ACTCAAACCAAC ACTCAAACCAAC		•	
(A) NAME/KEY: CDS (B) LOCATION:15432163 (D) OTHER INFORMATION:/product= "tetR" /citation= ([1]) (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION:27132950 (D) OTHER INFORMATION:/function= "ORI" /label= ORI /citation= ([1]) (ix) FEATURE: (A) NAME/KEY: promoter (B) LOCATION:29763073 (D) OTHER INFORMATION:/function= "p tetA promoter" /citation= ([1]) (x) PUBLICATION INFORMATION: (A) AUTHORS: Skerra, A (B) TITLE: Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli (C) JOUNNAL: Gene (D) VOLUME: 151 (E) ISSUE: 1-2 (F) PAGES: 131-135 (G) DATE: 30-DEC-1994 (K) RELEVANT RESIDUES IN SEQ ID NO: 9: FROM 1 TO 3098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: AGCTTGACCT GTGRAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTT GTCTGCCGTT ACCGCTACT GCGTCACGGA TCTCCACGGC CCCTGTGCG CCCTAGGCC CGCTCCTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTC CCCGTCAAGC TCTAAATCGG CGGGTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTCACGTAG TGGGCCATCA CTTGCCGAA CATTTTTCG CCCTTTGACG GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 301 TAGGGTGATG GTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG ATTGGAGTCAA CGTTCTTTTAA TAGTGGACT TTTTCCAAAA CAGCACAACAA CACCAACCCT ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCGAA CTGGAACAAC ACTCAACCCT ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTACCAA CTGGAACAAC ACTCAACCCT ATCTCGGTCA ATTCTTTTGA TTTATAAGGG ATTTTACCAA AAATATTAAC GCTTACAATT TCAGGGTGGA CTTTTCGGGG AAATGTACCG GGAACCCCTA TTTGTTTATT TTTCTAAATA AATGAGGCTGA TTTAACAAAA ATTTAACGCG GAACCCCTA TTTGTTTATT TTTCTAAATA AATGAGGTGAA TATTACTCGCT CATGAGACAA TAACCCTGAAT AAAATGTTTAA TAGTGGACAA TAACCCTGAAT AAAATATTAAC GCTTACAATT TCAGGTGGAA CATTTCCGGG AAATGTACCG GGAACCCCTA TTTGTTTATT TTTCTAAATATTGA AAAAGGAAAA TGTAACCGCT CATGAGACAA TAACCCTGAAT AAAATGTTTCA ATAATATTGA AAAAAGGAAAA TATTAACGCT CATGAGACAA TAACCCTGAAT AAAATGTTTCA ATAATATTGA AAAAAGGAAAA TATTAACCGCT CATGAGACAA TAACCCTGAAT AAAATGTTTCA ATAATATTGA AAAAAGGAAAAA TATTAACGCG GAACCCCTA TTTGTTTATT TTTCTAAATATTGA AAAAAGGAAA	(A (B	A) NAME/KEY: CDS B) LOCATION:6731530 D) OTHER INFORMATION:/product= "beta-la"	
(A) NAME/KEY: misc_feature (B) LOCATION:2713.2950 (D) OTHER INFORMATION:/function= "ORI"	(A (B	A) NAME/KEY: CDS B) LOCATION:15432163 D) OTHER INFORMATION:/product= "tetR"	
(ix) FEATURE: (A) NAME/KEY: promoter (B) LOCATION:29763073 (D) OTHER INFORMATION: function= "p tetA promoter" /citation= ([1]) (x) PUBLICATION INFORMATION: (A) AUTHORS: Skerra, A (B) TITLE: Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli (C) JOURNAL: Gene (D) VOLUME: 151 (E) ISSUE: 1-2 (F) PAGES: 131-135 (G) DATE: 30-DEC-1994 (K) RELEVANT RESIDUES IN SEQ ID NO: 9: FROM 1 TO 3098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: AGCTTGACCT GTGAAGTGAA AAATGGCGGA CATTGTGCGA CATTTTTTTT GTCTGCCGTT TACCGCTACT GCGTCACGGA TCTCCACGGG CCCTGTAGCG CCCTAGAGC CGGCGGGGT TGGGTGGTTA CGCGCACGGT GACCGCTACA CTTGCCAGGG CCCTAGAGC CGGCCGGGT GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT TAGGGTGATG GTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT TAGGGTGATG GTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG ATCTCGGTCT ATTCTTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAAA AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTAAAATA CAATCAAATA TGTATCCGCT CATGAGACAA TAACCCCTGAT AAATATTAAC GCTTAAATATGA AAAAGGAGAA ATT AAG AAT ATT CAÂ CAT TCC CGT GTC CCC CTT ATT CCC Met Ser Ile Gin His Phe Arg Val Ala Leu Ile Pro	(A (B	A) NAME/KEY: misc_feature B) LOCATION:27132950 D) OTHER INFORMATION:/function= "ORI" /label= ORI	
(A) NAME/KEY: promoter (B) LOCATION:29763073 (D) OTHER INFORMATION:/function= "p tetA promoter"	, (-) 		
(A) AUTHORS: Skerra, A (B) TITLE: Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli (C) JOURNAL: Gene (D) VOLUME: 151 (E) ISSUE: 1-2 (F) PAGES: 131-135 (G) DATE: 30-DEC-1994 (K) RELEVANT RESIDUES IN SEQ ID NO: 9: FROM 1 TO 3098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: AGCTTGACCT GTGAAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTTT GTCTGCCGTT 60 TACCGGTACT GCGTCACGGA TCTCCACGGG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT 120 GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 240 GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTTAT TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708	(A (B	A) NAME/KEY: promoter B) LOCATION:29763073 D) OTHER INFORMATION:/function= "p tetA promoter"	
(D) VOLUME: 151 (E) ISSUE: 1-2 (F) PAGES: 131-135 (G) DATE: 30-DEC-1994 (K) RELEVANT RESIDUES IN SEQ ID NO: 9: FROM 1 TO 3098 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: AGCTTGACCT GTGAAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTT GTCTGCCGTT 60 TACCGCTACT GCGTCACGGA TCTCCACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT 120 GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 240 GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	(A (B	A) AUTHORS: Skerra, A B) TITLE: Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli	
AGCTTGACCT GTGAAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTT GTCTGCCGTT TACCGCTACT GCGTCACGGA TCTCCACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT 120 GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 240 GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	(D (E (F	D) VOLUME: 151 E) ISSUE: 1-2 F) PAGES: 131-135 G) DATE: 30-DEC-1994	
TACCGCTACT GCGTCACGGA TCTCCACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG GGGCTCCCTT TAGGGGTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708	(xi) SEQ	QUENCE DESCRIPTION: SEQ ID NO: 9:	
GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC 180 GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 240 GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	AGCTTGACCT G	GTGAAGTGAA AAATGGCGCA CATTGTGCGA CATTTTTTTT GTCTGCCGTT	60
GCTTTCTTCC CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 240 GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	TACCGCTACT G	GCGTCACGGA TCTCCACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT	120
GGGCTCCCTT TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT 300 TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	GTGGTGGTTA C	CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC	- 180
TAGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG 360 TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	GCTTTCTTCC C	CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG	240
TTGGAGTCCA CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT 420 ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	GGGCTCCCTT T	TAGGGTTCCG ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT	300
ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA 480 AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	TAGGGTGATG C	GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG	360
AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT 540 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	TTGGAGTCCA C	CGTTCTTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT	420
TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA 600 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	ATCTCGGTCT A	ATTCTTTGA TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA	480
CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 660 AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC 708 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	AATGAGCTGA T	TTTAACAAAA ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT	540
AAAAGGAAGA GT ATG AGT ATT CAÄ CAT TTC CGT GTC GCC CTT ATT CCC Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro 708	TCAGGTGGCA (CTTTTCGGGG AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA	600
Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	CATTCAAATA T	TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA	660
	AAAAGGAAGA (Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro	708

TTT Phe	TTT Phe	GCG Ala	GCA Ala 410	TTT Phe	TGC Cys	CTT Leu	CCT Pro	GTT Val 415	TTT Phe	GCT Ala	CAC His	CCA Pro	GAA Glu 420	Thr	CTG Leu		756
GTG Val	AAA Lys	GTA Val 425	AAA Lys	GAT Asp	GCT Ala	GAA Glu	GAT Asp 430	CAG Gln	TTG Leu	GGT Gly	GCA Ala	CGA Arg 435	GTG Val	GGT Gly	TAC Tyr		804
ATC Ile	GAA Glu 440	CTG Leu	GAT Asp	CTC Leu	AAC Asn	AGC Ser 445	GGT Gly	AAG Lys	ATC Ile	CTT Leu	GAG Glu 450	AGT Ser	TTT Phe	CGC Arg	CCC Pro		852
GAA Glu 455	GAA Glu	CGT Arg	TTT Phe	CCA Pro	ATG Met 460	ATG Met	AGC Ser	ACT Thr	TTT Phe	AAA Lys 465	GTT Val	CTG Leu	CTA Leu	Cya	GGC Gly 470	٠	900
GCG Ala	GTA Val	TTA Leu	TCC Ser	CGT Arg 475	ATT Ile	GAC Asp	GCC Ala	GGG Gly	CAA Gln 480	GAG Glu	CAA Gln	CTC Leu	GGT Gly	CGC Arg 485	CGC Arg		948
ATA Ile	CAC His	TAT Tyr	TCT Ser 490	CAG Gln	AAT Asn	GAC Asp	TTG Leu	GTT Val 495	GAG Glu	TAC Tyr	TCA Ser	CCA Pro	GTC Val 500	ACA Thr	GAA Glu		996
AAG Lys	CAT His	CTT Leu 505	ACG Thr	GAT Asp	GGC Gly	ATG Met	ACA Thr 510	GTA Val	AGA Arg	GAA Glu	TTA Leu	TGC Cys 515	AGT Ser	GCT Ala	GCC Ala		1044
ATA Ile	ACC Thr 520	Met	AGT Ser	GAT Asp	AAC Asn	ACT Thr 525	GCG Ala	GCC Ala	AAC Asn	TTA Leu	CTT Leu 530	CTG Leu	ACA Thr	ACG Thr	ATC Ile		1092
GGA Gly 535	Gly	CCG Pro	AAG Lys	GAG Glu	CTA Leu 540	ACC Thr	GCT Ala	TTT Phe	TTG Leu	CAC His 545	AAC Asn	ATG Met	GGG Gly	GAT Asp	CAT His 550		1140
GTA Val	ACT Thr	CGC Arg	CTT	GAT Asp 555	Arg	TGG Trp	GAA Glu	CCG Pro	GAG Glu 560	CTG Leu	AAT Asn	GAA Glu	Ala	ATA Ile 565	CCA Pro		1188
AAC Asn	GAC Asp	GAG Glu	CGT Arg 570	Asp	ACC Thr	ACG Thr	ATG Met	CCT Pro 575	Val	GCA Ala	ATG Met	GCA Ala	ACA Thr 580	Thr	TTG Leu		1236
CGC Arg	AAA Lys	CTA Leu 585	Leu	ACT	GGC	GAA Glu	CTA Leu 590	Leu	ACT Thr	CTA Leu	GCT Ala	TCC Ser 595	Arg	CAA Gln	CAA Gln		1284
TTG Lev	ATA Ile	Asp	TGG Trp	ATG Met	GAG Glu	GCG Ala 605	Asp	AAA Lys	GTT Val	GCA Ala	GGA Gly 610	Pro	CTT	CTG Leu	CGC		1332
TCC Ser 615	Ala	CTI Leu	CCG Pro	GCT Ala	GGC Gly 620	Trp	TTT	ATT	GCT Ala	GAT Asp 625	Lys	TCT Ser	GGA Gly	GCC	GGT Gly 630		1380
GAC Glu	G CGT	GGC GGC	' Ser	CGC Arg	, Gly	ATC	ATT	GCA Ala	GCA Ala 640	Lev	GGG Gly	CCA	GAT Asp	GGT Gly 645	AAG Lys		1428
CCC	TCC Ser	C CGT	ATC 11e 650	val	GTT Val	ATC	TAC Tyr	ACC Thr 655	Thr	GGG Gly	AGT Ser	CAG Glr	GCA Ala 660	Thr	ATG Met		1476
GA? Ası	r GAZ	A CGA 1 Arg 665	j Asr	AGA Arg	A CAC	ATC	GCT Ala 670	ı Glı	ATA	GGI Gly	GCC Ala	TCA Ser 675	Leu	ATI Ile	AAG Lys		1524

CAT His		TAGO	TAAE	PAA T	rg an Me	rG TC et Se 1	er Ar	T TI	ra GA eu As	T AASP Ly	AA AC	er Ly	AA G: /s Va	al II	rT Le LO		1572
AAC Asn	AGC Ser	GCA Ala	TTA Leu	GAG Glu 15	CTG Leu	CTT Leu	AAT Asn	GAG Glu	GTC Val 20	GGA Gly	ATC Ile	GAA Glu	GGT Gly	TTA Leu 25	ACA Thr		1620
ACC Thr	CGT Arg	AAA Lys	CTC Leu 30	GCC Ala	CAG Gln	AAG Lys	CTA Leu	GGT Gly 35	GTA Val	GAG Glu	CAG Gln	CCT Pro	ACA Thr 40	TTG Leu	TAT Tyr		1668
TGG Trp	CAT His	GTA Val 45	AAA Lys	AAT Asn	AAG Lys	CGG Arg	GCT Ala 50	TTG Leu	CTC Leu	GAC Asp	GCC Ala	TTA Leu 55	GCC Ala	ATT Ile	GAG Glu		1716
ATG Met	TTA Leu 60	GAT Asp	AGG Arg	CAC	CAT His	ACT Thr 65	CAC His	TTT Phe	TGC Cys	CCT Pro	TTA Leu 70	GAA Glu	GGG Gly	GAA Glu	AGC Ser		1764
						AAT Asn										•)	1812
CTA Leu	AGT Ser	CAT	CGC Arg	GAT Asp 95	GGA Gly	GCA Ala	AAA Lys	GTA Val	CAT His 100	TTA Leu	GGT Gly	ACA Thr	CGG Arg	CCT Pro 105	ACA Thr		1860
						CTC Leu	Glu							Cys			1908
						AAT Asn											1956
CAT	TTT Phe 140	ACT Thr	TTA Leu	GGT Gly	TGC Cys	GTA Val 145	TTG Leu	GAA Glu	GAT Asp	CAA Gln	GAG Glu 150	CAT His	CAA Gln	GTC Val	GCT Ala		2004
	Glu					CCT					Met					· · · · · · · · · · · · · · · · · · ·	2052
CGA Arg	CAA Gln	GCT Ala	ATC Ile	GAA Glu 175	TTA Leu	TTT Phe	GAT Asp	CAC His	CAA Gln 180	GGT Gly	GCA Ala	GAG Glu	CCA Pro	GCC Ala 185	TTC Phe		2100
TTA Leu	TTC Phe	GGC Gly	CTT Leu 190	Glu	TTG Leu	ATC Ile	ATA Ile	TGC Cys 195	GGA Gly	TTA Leu	GAA Glu	AAA Lys	CAA Gln 200	CTT Leu	AAA Lys		2148
		AGT Ser 205	Gly			AAGC	AGC .	AATA	CCTT	TT T	CCGT	GATG	G TA	ACTT	CACT		2203
AGT	TTAA	AAG	GATC	TAGG	TG A	AGAT	CCTT	T TT	GATA	ATCT	CAT	GACC.	AAA .	ATCC	CTTAA	С	2263
GTG	AGTT	TTC	GTTC	CACT	GA G	CGTC	AGAC	c cc	GTAG.	AAAA	GAT	CAAA	GGA	TCTT	CTTGA	G	2323
ATC	CTTT	TTT	TCTG	CGCG	TA A	TCTG	CTGC	T TG	CAAA	CAAA	AAA	ACCA	CCG	CTAC	CAGCG	G .	2383
TGG	TTTG	TTT	GCCG	GATO	AA G	AGCT	ACCA	A CT	CTTT	TTCC	GAA	GGTA	ACT	GGCT	TCAGC	A	2443
GAG	CGCA	GAT	ACCA	ATA	CT G	TCCT	TCTA	G TG	TAGC	CGTA	GTT	AGGC	CAC	CACT	TCAAG	A	2503
ACT	CTGT	AGC	ACCG	CCTA	CA T	ACCT	CGCT	C TG	CTAA	TCCT	GTT	ACCA	GTG	GCTG	CTGCC	A	2563

GTGGCGATAA	GTCGTGTCTT	ACCGGGTTGG	ACTCAAGACG	ATAGTTACCG	GATAAGGCGC	2623
AGCGGTCGGG	CTGAACGGGG	GGTTCGTGCA.	CACAGCCCAG	CTTGGAGCGA	ACGACCTACA	2683
CCGAACTGAG	ATACCTACAG	CGTGAGCTAT	GAGAAAGCGC	CACGCTTCCC	GAAGGGAGAA	2743
AGGCGGACAG	GTATCCGGTA	AGCGGCAGGG	TCGGAACAGG	AGAGCGCACG	AGGGAGCTTC	2803
CAGGGGGAAA	CGCCTGGTAT	CTTTATAGTC	CTGTCGGGTT	TCGCCACCTC	TGACTTGAGC	2863
GTCGATTTTT	GTGATGCTCG	TCAGGGGGC	GGAGCCTATG	GAAAAACGĊC	AGCAACGCGG	2923
CCTTTTTACG	GTTCCTGGCC	TTTTGCTGGC	CTTTTGCTCA	CATGACCCGA	CACCATCGAA	2983
TGGCCAGATG	ATTAATTČCT	AATTTTTGTT	GACACTCTAT	CATTGATAGA	GTTATTTTAC	3043
CACTCCCTAT	CAGTGATAGA	GAAAAGTGAA	ATGAATAGTT	CGACAAAAAT	CTAGA	3098

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175

Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220

Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240

Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255

Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270

Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 275 280 285

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Ser Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu
1 5 10 15

Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln 20 25 30

Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys 35 40 45

Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His 50 55 60

Thr His Phe Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu Arg 65 70 75 80

Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly 85 90 95

Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr 100 105 110

Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu 115 120 125

Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys 130 135 140

Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr 145 150 155 160

Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu 165 170 175

Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu 180 185

Ile Ile Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser 195 200 205

CLAIMS

- 1. A method for the determination of a tetracycline in a sample <u>characterized</u> in that
- the sample is brought into contact with prokaryotic cells encompassing a DNA
 vector including a nucleotide sequence encoding a light producing enzyme under transcriptional control of a tetracycline repressor and a tetracycline promoter,
 - detecting the luminescense emitted from the cells, and
 - comparing the emitted luminescence to the luminescence emitted from cells in a control containing no tetracycline
- o wherein a detectable luminescence higher than a luminescence of the control indicates the presence of tetracycline in the sample.
 - 2. The method according to claim 1 characterized in that the cells are Escherichia coli.

15

3. The method according to claim 1 or 2 <u>characterized</u> in that the DNA vector is a plasmid containing the luxCDABE genes (SEQ ID NO: 3), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10.

20

- 4. The method according to claim 3 <u>characterized</u> in that the DNA vector is the plasmid pTetLux1 (SEQ ID NO: 3).
- 5. The method according to claim 1 or 2 characterized in that
- the DNA vector is a plasmid containing the insect luciferase gene (SEQ ID NO: 1), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10, and that

- D-luciferin is added to the mixture of the sample and the cells in order to initiate the luminescence of the cells.
- 6. The method according to claim 5 <u>characterized</u> in that the DNA vector is the plasmid pTetLuc1 (SEQ ID NO: 1).
 - 7. The method according to any of the claims 1 6 <u>characterized</u> in that the sensitivity of the analysis with respect to the tetracycline is controlled by
 - increasing or decreasing the concentration of divalent metal ions, e.g.
- 10 magnesium ions, or
 - adjusting the pH, or
 - combined adjusting of the divalent metal ion concentration and the pH.
- 8. The method according to any of the claims 1 6 <u>characterized</u> in that the sensitivity of the analysis with respect to the tetracycline derivative is increased by the use of cells which are especially antibiotic sensitive mutant strains.
- The method according to any of the claims 1 8 <u>characterized</u> in that the luminescence is measured using an X-ray or polaroid film, a CCD-camera, a liquid
 scintillation counter or a luminometer.
 - 10. The method according to any of the claims 1 9 <u>characterized</u> in that the sample to be analyzed is milk, fish, meat, infant formula, eggs, honey, vegetables, serum, plasma, whole blood or the like.
 - 11. A recombinant prokaryotic cell <u>characterized</u> in that it encompasses a DNA vector including a nucleotide sequence encoding a light producing enzyme, tetracycline repressor and tetracycline promoter.

25

- 12. The cell according to claim 11 <u>characterized</u> in that the DNA vector is a plasmid containing either
- the luxCDABE genes (SEQ ID NO: 3), tetracycline repressor (TetR) (SEQ ID
- 5 NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10, or
 - the insect luciferase gene (SEQ ID NO: 1), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from *Tn*10.
 - 13. The cell according to claim 11 or 12 characterized in that it is Escherichia coli.
 - 14. The cell according to claim 12, 13 or 14, <u>characterized</u> in that it is in dried form, e.g. in lyophilized form.
 - 15. A plasmid characterized in that it comprises either
- the luxCDABE genes (SEQ ID NO: 3), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10, or
 the insect luciferase gene (SEQ ID NO: 1), tetracycline repressor (TetR) (SEQ ID NO: 11) and tetracycline promotor (TetA) (SEQ ID NO: 9) from Tn10.
- 20 16. A plasmid according to claim 15 characterized in that it is pTetLux1 (SEQ ID NO: 3) or pTetLuc1 (SEQ ID NO: 1).

10

FIG. 1b

A. No Protein Expression

B. Protein Expression

FIG. 2

FIG. 3

FIG. 4b

BUSDOCID: -MIO DOSESSERALI

IG. 6

Induction Factor

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI 98/00873 A. CLASSIFICATION OF SUBJECT MATTER IPC6: C120 1/66, C120 1/18, C12N 1/21, C12N 15/53 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC6: C12Q, C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE.DK.FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, EPODOC, PAJ, MEDLINE, BIOSIS, CA C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 1-16 Nucleic Acids Research, Volume 25, No 6, March 1997, Rolf Lutz et al, "Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements", page 1203 - page 1210, See the entire article 1-16 WO 9303179 A1 (BIO-TECHNICAL RESOURCES), A 18 February 1993 (18.02.93), See esp. page 10, line 14-25 See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing cate or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive "E" erlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone document of particular relevance: the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 27 -02- 1999 17 February 1999 Authorized officer Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Hampus Rystedt

Telephone No. + 46 8 782 25 00

Facsimile No. + 46 8 666 02 86

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 98/00873

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Dialog Information Service, File 155, Medline, Dialog accession no. 08106145, Medline accession no. 95129845, Skerra A: "Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli", Gene (NETHERLANDS) Dec 30 1994, 151 (1-2) p131-5	1-16
	v v v v v v v v v v v v v v v v v v v	
-		
		* .
		*
-(
*		
.		

- INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/FI 98/00873

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9303179 A1	18/02/93	AU 2422792 A CA 2114103 A EP 0597984 A JP 6509712 T US 5571722 A US 5612184 A	02/03/93 18/02/93 25/05/94 02/11/94 05/11/96 18/03/97

THIS PAGE BLANK (USPTO)