MA 8551- ALGEBRA AND NUMBER THEORY

(K CHARUNATHI (ii yr, IT 961819205010

1

The G is a non empty set and * is a binary operation on G, then (G, *) is realled a group if it satisfies the following conditions

1) Closure: For all a, b, c eh, a* (b*c) = (a*b) * c

11) Physociative: For all a, b, c eh, a* (b*c) = (a*b) * c

11) Identity: There exists e eh with a* e = e*a = a

for all a eh

11) Inverse: There exists a eh with a* a = e

for all a eh

2)

To verify s is a group under multiplication.

0	- 1	1
-1	1	-1
1	-1	1

in) S is closed under multiplication
in) S is associative under multiplication
in) I is the identity
iv) inverse of 1 is 1
inverse of -1 is 1

```
3,
```

Let e_1 and e_2 be identities

To prove $e_1 = e_2$ Let e_1 be any element and e_2 be identity $e_1 * e_2 = e_2 * e_1 = e_1 - 0$ Let e_2 be any element and e_1 be identity $e_2 * e_1 = e_1 * e_2 = e_2 - 2$ From $e_1 * e_2 = e_2$ Hence proved.

4)

the the identity of GI.

The ai' and a_z^{-1} be the inverse of a

The prove: $a_1^{-1} = a_z^{-1}$ The a_1^{-1} be the inverse of a, then $a * a_1^{-1} = a_1^{-1} * a = e$ The a_1^{-1} be the inverse of a then $a * a_2^{-1} = a_1^{-1} * a = e$ The a_1^{-1} be the inverse of a then $a * a_2^{-1} = a_1^{-1} * a = e$ Thus, $a_1^{-1} = a_1^{-1} * a = e$

THS: $a_1' = a_1' + e$ $= a_1' + (a + a_2')$ $= (a_1' + a_2) + a_2'$ $= e + a_2'$ $= a_2' = R \cdot H \cdot S \quad \text{Hence proved}$

5,

Assume $(ab)^{-1} = a^{-1}b^{-1}$ Assume $(ab)^{-1} = a^{-1}b^{-1}$ To prove $(ab)^{-1} = ba$

Since
$$G$$
 is a group. $Cab)^{-1} = b^{-1}a^{-1} - O$
 $(ba)^{-1} = a^{-1}b^{-1} - O$
 $(ab)^{-1} = (ba)^{-1}$