

# Paper Sharing

Structural Hawkes Processes for Learning Causal Structure from Discrete-Time Event Sequences

Lecturer: Yuxin Wu

2023,8,9

- Many data are recorded in the form of events
  - system logs
  - · social network interactions
  - shopping behaviors
  - browsing behaviors

\* Learning causal structure among event types on multi-type event sequences is an important and challenging task

• Existing methods, such as the multivariate Hawkes processes based methods, mostly boil down to learning the so-called Granger causality

- · a implicit assume: temporal precedence assumption
- —all events are recorded instantaneously and accurately such that the cause event happens strictly prior to its effect event

· a implicit assume: temporal precedence assumption

—all events are recorded instantaneously and accurately such that the cause event happens strictly prior to its effect event



· Limited recording capabilities and storage capacities



 Retaining event's occurred times with high-resolution is expensive or practically impossible



• In many real-world applications, and we usually only can access the corresponding discrete-time event sequences.

• In many real-world applications, and we usually only can access the corresponding discrete-time event sequences.





Typical event sequence in continues-time

Event sequence in discrete-time

Granger-based methods will fail to identify  $v_1 \rightarrow v_2$  in discrete-time

## Two questions

- · In this paper, we aim to answer the following two questions:
- (1) How to design and learn a Hawkes process that leverages the instantaneous effect in discrete time?
- (2) Can we identify the causal relationship in event sequences under the existence of the instantaneous effect?

## Design of Structural Point Processes

#### **Structural counting processes**

A structural counting process is a multivariate counting process  $N^{(\Delta)}$  in discrete-time with the conditional intensity of  $N_v^{(\Delta)}$  for each  $v \in V$  satisfying:

$$\lambda_{v}(k\Delta)\Delta = \mathbb{E}\big[X_{v,k}\big|\mathcal{F}_{(k-1)\Delta} \cup \mathcal{F}_{k\Delta}^{-v}\big]$$
past presence

where  $\mathcal{F}_{(k-1)\Delta} = \bigcup_{0 \le s \le k-1, v \in \mathbf{V}} \mathcal{F}_{s\Delta}^v$  is the filtration with discrete-time in the past and  $\mathcal{F}_{k\Delta}^{-v} \coloneqq \{\mathcal{F}_{k\Delta}^{v'} | v' \in \mathbf{V} \setminus v\}$  is the filtration that except for type-v event.

### Structural Hawkes processes

A structural Hawkes process is a structural counting process such that for each  $v \in V$ , the intensity of  $N_v^{(\Delta)}$  can be written as:

$$\lambda_{v}(k\Delta) = \mu_{v} + \sum_{v \in \mathbf{V}} \sum_{i=1}^{k} \phi_{v',v} \left( (k-i)\Delta \right) X_{v,i},$$

where  $\phi_{v,v}(0) \equiv 0$  ensures the exclusive of type-v event at time  $k\Delta$ , and  $X_{v,i} \coloneqq N_v(i\Delta) - N_v((i-1)\Delta)$  denotes the number of events occurs in time  $[i\Delta, (i-1)\Delta]$ .

# Design of Structural Point Processes



· the similiar application: virus transmition

——people in close contact may experience symptoms on the same day, rather than in strict order

## Learning of Structural Point Processes

#### **Estimation using Minorization-Maximization Algorithm**

By applying Jensen's inequality and obtain the following lower bound:  $Q(\Theta|\Theta^{(j)})$ 

$$=\sum_{v\in\mathbf{V}}\sum_{k=1}^K \left[-\left(\mu_v + \sum_{v'\in\mathbf{V}}\sum_{i=1}^k \phi_{v',v}\left((k-i)\Delta\right)X_{v',i}\right)\Delta\right.\\ \left. + X_{v,k}\left(q_{v,k}^\mu \log\left(\frac{\mu_v}{q_{v,k}^\mu}\right)\right.\\ \left. + \sum_{v'\in\mathbf{V}}\sum_{i=1}^k q_{v,k}^\alpha(v',i)\log\left(\frac{\phi_{v',v}\left((k-i)\Delta\right)X_{v',i}}{q_{v,k}^\alpha(v',i)}\right)\right)\right]$$
 where  $q_{v,k}^\mu = \frac{\mu_v^{(j)}}{\lambda_v^{(j)}(k\Delta)}$  and  $q_{v,k}^\alpha(v',i) = \frac{\phi_{v',v}^{(j)}((k-i)\Delta)X_{v',i}}{\lambda_v^{(j)}(k\Delta)}$ . By setting  $\frac{\partial Q(\Theta|\Theta^{(j)})}{\partial \mu_v} = 0$ ,  $\frac{\partial Q(\Theta|\Theta^{(j)})}{\partial \alpha_{v',v}} = 0$ , we have:

$$\mu_{v}^{(j+1)} = \frac{\sum_{k=1}^{K} X_{v,k} \, q_{v,k}^{\mu}}{K\Delta}$$

$$\alpha_{v',v}^{(j+1)} = \begin{cases} \frac{\sum_{k=1}^{K} \sum_{i=1}^{k} q_{v,k}^{\alpha} (v',i) X_{v,k}}{\sum_{k=1}^{K} \sum_{i=1}^{k} \kappa \left( (k-i)\Delta \right) X_{v',i}\Delta} & v' \neq v \\ \frac{\sum_{k=1}^{K} \sum_{i=1}^{k-1} q_{v,k}^{\alpha} (v',i) X_{v,k}}{\sum_{k=1}^{K} \sum_{i=1}^{k-1} \kappa \left( (k-i)\Delta \right) X_{v',i}\Delta} & v' = v \end{cases}$$

#### Causal discovery using Hill-climb based algorithm

#### Algorithm 1 Learning causal structure using SHP

Input: Data set X
Output:  $G^*, \Theta^*$ 1:  $G' \leftarrow empty \ graph, \mathcal{L}_p^* \leftarrow -\infty$ 2: while  $\mathcal{L}_p^*(G^*, \Theta^*; \mathbf{X}) < \mathcal{L}_p'(G', \Theta'; \mathbf{X}) \ do$ 3:  $G^*, \Theta^* \leftarrow G', \Theta' \ with \ largest \ \mathcal{L}_p'(G', \Theta'; \mathbf{X})$ 

- 4: **for** every  $G' \in \mathcal{V}(G^*)$  **do**
- 5: Update  $\Theta'$  via iteration in Eq. (7)
- 6: Record score  $\mathcal{L}'_p(G', \Theta'; \mathbf{X})$
- 7: end for
- 8: end while
- 9: **return**  $G^*$ ,  $\Theta^*$

## Two questions

- · In this paper, we aim to answer the following two questions:
- (1) How to design and learn a Hawkes process that leverages the instantaneous effect in discrete time?
- (2) Can we identify the causal relationship in event sequences under the existence of the instantaneous effect?

# Identifiability

**Definition 3** (INAR( $\infty$ )). For  $\theta_k \ge 0$ ,  $k \in \mathbb{N}_0$ , let  $\epsilon_t \stackrel{i.i.d.}{\sim} \operatorname{Pois}(\theta_0)$ ,  $t \in \mathbb{N}$ , and  $\xi_i^{(t,k)} \sim \operatorname{Pois}(\theta_k)$ . An Integer-valued autoregressive time series of infinite order (INAR( $\infty$ )) process  $X_t$ ,  $t \in \mathbb{N}$  is defined by

$$X_t = \sum_{k=1}^{\infty} \theta_k \circ X_{t-k} + \epsilon_t$$

where  $\circ$  is a reproduction operator given by  $\theta_k \circ X_{t-k} \equiv \sum_{i=1}^{X_{t-k}} \xi_i^{(t,k)}$  with  $\xi_i^{(t,k)}$  be a sequence of i.i.d. nonnegative integer-valued random variables that depends on the reproduction coefficients  $\theta_k$ ,  $\{\epsilon_t\}_{t\in\mathbb{N}}$  is an i.i.d. integer-valued immigration sequence that are independent of  $\{\xi_i^{(t,k)}\}$ , and  $X_{t-k}$  is independent of  $\epsilon_t$  for all k.

**Theorem 1** (Kirchner (2016)). Let N be a Hawkes process with immigration intensity  $\mu$  and let  $\phi: \mathbb{R} \to \mathbb{R}_0^+$  be a reproduction intensity that is piecewise continuous with  $\phi(t) = 0$ ,  $t \le 0$  and  $\int \phi(t) dt < 1$ . For  $\Delta \in (0, \delta)$ , let  $\left(X_t^{(\Delta)}\right)$  be an INAR( $\infty$ ) sequence with immigration parameter  $\Delta \mu$  and reproduction coefficients  $\Delta \phi(k\Delta)$ ,  $k \in \mathbb{N}$ . From the sequences  $\left(X_t^{(\Delta)}\right)_{\Delta \in (0, \delta)}$ , we define a family of point processes by

$$N^{(\Delta)}(A) := \sum_{k:k\Delta \in A} X_k^{(\Delta)}, \quad A \in \mathcal{B}, \Delta \in (0, \delta),$$

where  $\mathcal{B} := \mathcal{B}(\mathbb{R})$  is the Borel set in  $\mathbb{R}$ . Then, we have that

$$N^{(\Delta)} \stackrel{\mathrm{W}}{\to} N \quad \text{for } \Delta \to 0.$$

# Identifiability

**Definition 4** (Instantaneous causal structure in structural Hawkes process). Let  $\epsilon_{v,t} \stackrel{i.i.d.}{\sim}$  Pois $(\mu_v)$ , and  $\xi_i^{(v',v)} \sim \text{Pois}(\alpha_{v',v})$ . The instantaneous causal structure in the structural Hawkes process consists of a set of equations of the form  $X_{v,t} = \sum_{v' \in \mathbf{V}} \alpha_{v',v} \circ X_{v',t} + \epsilon_v$ ,  $v \in \mathbf{V}$ , where  $\alpha_{v',v} > 0$  for

**Theorem 2**. Let  $X \to Y$  be the correct causal direction that follows

$$Y = \sum_{i=1}^{X} \xi_i + \epsilon$$
,  $X, \xi_i$ , and  $\epsilon$  are independent,

where  $\xi_i \sim \text{Pois}(\alpha_{X,Y})$ ,  $\epsilon \sim \text{Pois}(\mu_Y)$ ,  $X \sim \text{Pois}(\mu_X)$ . Then, there does not exist a backward model that admits the following equation:

$$X = \sum_{i=1}^{Y} \hat{\xi}_i + \hat{\epsilon}, \quad Y, \hat{\xi}_i, \text{ and } \hat{\epsilon} \text{ are independent,}$$

where  $\hat{\xi}_i \sim \text{Pois}(\hat{\alpha}_{Y,X})$ ,  $\hat{\epsilon} \sim \text{Pois}(\hat{\mu}_X)$ ,  $Y \sim \text{Pois}(\hat{\mu}_Y)$ 

**Theorem 3**. With the causal faithfulness assumption and causal sufficiency assumption, the multivariate instantaneous causal structure is identifiable.

# Experiments: Synthetic Data

- **Description**: the author conduct six different control experiments for SHP
- Result: In general, our proposed SHP method outperforms all the baseline methods in all six control experiments.



Figure 3: F1 in the Sensitivity Experiments

# Experiments: Real world Data

- **Description**: the dataset records eight months of alarms that occurred in a real metropolitan cellular network.
- Goal: find the causal structure among eighteen alarms.
- Result: It verifies the effectiveness of SHP in capturing the instantaneous effect.



### Conclusion



Hawkes process + Instantaneous effect = Structural Hawkes Processes







