Data Structures and Algorithms

Khazhak Galstyan

Who am I

Khazhak Galstyan

- Yerevan State University B.S. in Informatics and Applied Mathematics
- Currently doing M.S. (Discrete Mathematics and Theoretical Informatics)
- Worked @ CodeSignal, SuperAnnotate, Huawei
- o Researcher @ YerevaNN

What will you learn (hopefully)

Analyse algorithms

O How well does an algorithm perform? Is it fast? Is it correct? Provable?

Design algorithms

O Algorithm design is in the foundation of any programming-related problem and patterns, paradigms and data structures discussed in this class will help you solve algorithmic problems in the future.

Talk about algorithms

• We'll develop technical language and tools to communicate about data structures and algorithms with partners in crime.

What will you have to do

- Homeworks 1 to 3 hour homeworks after each class
- Quizzes 2 2-hour quizzes after classes 5 and 10.

Our Class Overview

Session 1: Complexity Analysis and a beautiful example

First Problem: Multiplication!

Multiplication: The Problem

Input: Two non-negative integers (x and y)

Output: Their product $(x \cdot y)$

$$453 \times 86 = 38958$$

Multiplication: Elementary School Approach

The Algorithm*: Compute all partial products and sum them all up accordingly.

* This is an ugly way to describe an algorithm. Avoid any possible vagueness in an algorithm description.

Multiplication: Elementary School Approach

45385327687532875567463874566

× 87734659827649875623498576387

45385327687532875567463874566 87734659827649875623498576387

n digits

45385327687532875567463874566 × 87734659827649875623498576387

n digits

How many **single digit operations** are performed?

45385327687532875567463874566 × 87734659827649875623498576387

n digits

How many **single digit operations** are performed?

Computing **n** partial products (at most **n** single digit multiplications and **n** additions each) = $\sim 2n^2$ ops

Summing up all partial products = $\sim 2n^2$ ops

45385327687532875567463874566

87734659827649875623498576387

n digits

How many **single digit operations** are performed?

~4n² ops!

Computing **n** partial products (at most **n** single digit multiplications and **n** additions each) = $\sim 2n^2$ ops

Summing up all partial products = $\sim 2n^2$ ops

Can We Do Better?

Which one looks better to you?

- $4n^2 + 100$
- 0.01n³
- 200n

Can We Do Better?

Which one looks better to you?

Can We Do Better?

Which one looks better to you?

Asymptotic Analysis

Asymptotic Analysis

We want to measure how algorithms performance/running time/number of operations grows with the growth of the input size. And we want that measure to be **independent** of hardware, programming language, cpu optimizations, etc.

Asymptotic Analysis: Big-O Notation

- We'll use O(·) notation.
 - \circ We'll define this $O(\cdot)$ mathematically in the following lectures.
 - We'll say that elementary school multiplication algorithm runs in $O(n^2)$ time.
 - \circ Informally if function is O(n²) it means it "grows like" n².
 - It ignores constant factors and lower order terms.

So Can We Multiply **Asymptotically** Faster?

Divide and Conquer!

Divide and Conquer

Our first algorithm design paradigm. The main idea:

- 1. Break up the problem into several similar smaller subproblems
- 2. Solve them recursively
- 3. Combine the results

Original problem: multiply two 4 digit numbers

Subproblems:

Original problem: multiply two 4 digit numbers

Subproblems:

Original problem: multiply two 4 digit numbers

Subproblems:

$$[x_1, x_2, ...x_n] * [y_1, y_2, ...y_n] =$$

$$(a * 10^{n/2} + b) * (c * 10^{n/2} + d) =$$

$$10^n * a * c + 10^{n/2} * (a * d + b * c) + b * d$$

where:

$$a = [x_1, x_2, ... x_{n/2}] c = [y_1, y_2, ... y_{n/2}]$$

$$b = [x_{n/2+1}, x_{n/2+2}, ... x_n] d = [y_{n/2+1}, y_{n/2+2}, ... x_n]$$

Original problem: multiply two 4 digit numbers

Subproblems:

$$[x_1, x_2, ...x_n] * [y_1, y_2, ...y_n] =$$

$$(a * 10^{n/2} + b) * (c * 10^{n/2} + d) =$$

$$10^n * a * c + 10^{n/2} * (a * d + b * c) + b * d$$

So we have four n/2 digit problems instead of one n digit problem.

where:

$$a = [x_1, x_2, ... x_{n/2}] c = [y_1, y_2, ... y_{n/2}]$$

$$b = [x_{n/2+1}, x_{n/2+2}, ... x_n] d = [y_{n/2+1}, y_{n/2+2}, ... x_n]$$

Divide and Conquer: Multiplication Pseudocode

```
multiply(x, y):
   n = length of x
   if n == 1:
      return x * y
   a, b = split x
   c, d = split y
   ad = multiply(a, d)
   ac = multiply(a, c)
   bc = multiply(b, c)
   bd = multiply(b, d)
```

*For simplicity reasons here we assume that the length n is a power of 2.

return $10^{n} * ac + 10^{n/2} * (ad + bc) + bd$

- How many single digit multiplications does this algorithm perform?
 - Recursion tree! (first for two 4-digit numbers)

- How many single digit multiplications does this algorithm perform?
 - Recursion tree! (first for two 4-digit numbers)

- How many single digit multiplications does this algorithm perform?
 - Recursion tree! (first for two 4-digit numbers)
 - 0 16!

Now let's try to generalize, draw the recursion tree for n digit numbers.

Now let's try to generalize, draw the recursion tree for n digit numbers.

Now let's try to generalize, draw the recursion tree for n digit numbers.

Now let's try to generalize, draw the recursion tree for n digit numbers.

- So divide and conquer does at least O(n²) operations, like our elementary-school algorithm did.
- What do we do?

 So divide and conquer does at least O(n²) operations, like our elementary-school algorithm did.

- What do we do?
 - Karatsuba algorithm!!

* photo from his wikipedia article

Original problem: multiply two 4 digit numbers

Subproblems:

```
[x_1, x_2, ...x_n] * [y_1, y_2, ...y_n] =
(a * 10^{n/2} + b) * (c * 10^{n/2} + d) =
10^n * a * c + 10^{n/2} * (a * d + b * c) + b * d
```

Original problem: multiply two 4 digit numbers

Subproblems:

$$[x_1, x_2, ...x_n] * [y_1, y_2, ...y_n] =$$

$$(a * 10^{n/2} + b) * (c * 10^{n/2} + d) =$$

$$10^n * a * c + 10^{n/2} * (a * d + b * c) + b * d$$

Here we divide $(a^*d + b^*c)$ into two subproblems, but we don't actually need a^*d and b^*c separately.

What we can note: (a * d + b * c) = (a + b) * (c + d) - a * c - b * d

As we have a * c and b * d computed, we only need (a + b) * (c + d)!

So instead of computing these:

It's enough to compute these:

ac ac 1
ad bd 2
bc (a+b)*(c+d) 3

So instead of computing these:

It's enough to compute these:

ac ac bd ad (a+b)*(c+d)3 bc bd $10^{n} * a * c + 10^{n/2} * (a * d + b * c) + b * d$

So instead of computing these:

It's enough to compute these:

ac ac * important note (a+b) and (c+d) still 2 bd ad have n/2 digits, so it's still a half-sized problem. (a+b)*(c+d)3 bc bd $10^{n} * a * c + 10^{n/2} * (a * d + b * c) + b * d$

Recursion Tree: First Attempt

This is recursion tree for our first attempt.

For Karatsuba algorithm we will **cut the branching factor from 4 to 3!**

Recursion Tree: Karatsuba Multiplication

Recursion Tree: Karatsuba Multiplication

level 0: 1 problem of size n

level 1: 3 problems of size n/2

level t: 3^t problem of size n/2^t

level log(n): ____ problems of size 1

$$3^{\log(n)} = n^{\log(3)} = n^{1.58496...}$$

Recursion Tree: Karatsuba Multiplication

level 0: 1 problem of size n

level 1: 3 problems of size n/2

level t: 3^t problem of size n/2^t

level log(n): n~1.6 problems of size 1

$$3^{\log(n)} = n^{\log(3)} = n^{1.58496...}$$

Recap

- You'll learn how to analyze, design and talk about algorithms.
- We looked at some Divide and Conquer.
- Karatsuba Algorithm.
- Analyzing algorithm runtimes asymptotically.