

Language learning as uncertainty reduction

the effects of prediction error and entropy on generalization and item-learning

Maša Vujović, Michael Ramscar & Elizabeth Wonnacott

University College London
University of Tubingen

Interdisciplinary Advances in Statistical Learning 2019, BCBL Spain

Language is shaped by learning & use

Suffixing more common than prefixing

St Clair et al., 2009; Hupp et al., 2009

Language learning as uncertainty reduction

Prediction error \rightarrow critical for discriminating between informative (predictive) and uninformative cues

(Rescorla, 1968, 1988; Rescorla & Wagner, 1972)

Ramscar et al. (2010): Order matters

Experiment 1: Prediction error in learning morpho-syntax

Artificial language with suffixes or prefixes; affix usage conditioned on critical discriminating features

Suffix condition will be better at generalization than the prefix condition, especially for the low-type frequency features

Affix-by-type-frequency interaction

Experiment 1: Procedure

TRAINING: 15 minutes (16 trials per item)

- Prefix condition: hear affix, then hear noun + see picture
- Suffix condition: hear noun + see picture, then hear affix

TESTING: unseen "fribble" and two labels: one with correct affix, other with wrong affix

- If participants learned the correct discriminating features, they will be able to group the novel item with the correct affix
- Prefix: better for HF than LF items
- Suffix: equally good on both

Experiment 1 Results

Experiment 1 (N = 84)

Stronger effect of type-frequency in the prefix condition

BF = 10.45

Replication (N = 120)

BF = 3.7

Experiment 1 + Replication combined (N=204) BF = 38

The story so far

- Suffix condition better at generalization than prefix condition due to greater prediction error during learning
- Content words can come *after:* prefixes, gendered articles, prenominal adjectives
- Dye et al. (2017; 2018): gendered articles and prenominal adjectives reduce the uncertainty about the upcoming noun (entropy)
- ... making the meanings of the nouns easier to learn (Arnon & Ramscar, 2012)

Prefixes reduce the entropy of nouns

	viltord
ре	deecha
	tombat
	paylig
	koomo
da	wazil
	etkot
	slindot

Prefixes reduce the entropy of nouns

pe	viltord deecha tombat		
	paylig		
	koomo		
da	wazil		
	etkot		
	slindot		

Better learning of affix+noun and noun+picture mappings in the prefix condition than the suffix condition

Experiment 2

- Eight novel words and pictures randomly assigned to one of the two novel affixes
- Random assignment: no obvious semantic or phonological patterns

Catego	ory 1: gε	Category 2: mA	
/tombat g€/	/ku:mo gɛ/	/pIkru m^/	/Etkot m1/
/peIlig g€/	/wazıl gɛ/	/slindot m1/	/di:t∫ə m∧/

Experiment 2 Procedure

Day 1: audio training of affix+noun bigrams

Experiment 2 Results

Experiment 2 (N = 40)

Replication (N = 100)

Prefix condition better than suffix condition (BF = 12.94)

BF = $0.266 \rightarrow$ evidence for the null

Take-home

- Experiment 1 → Strong evidence that learning via prediction error is critical for appropriate generalization
- Experiment 2 → mixed evidence that prefixes reduce entropy (in our paradigm)

Thank you!

