KKT conditions Background material

Fabian Bastin
fabian.bastin@umontreal.ca
Université de Montréal — CIRRELT — IVADO — Fin-ML

Basic notions

Consider the problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $g_i(x) \leq 0, \ i=1,\ldots,m,$ $h_j(x)=0, \ j=1,\ldots,r.$

The feasible set is

$$\mathcal{X} = \{x \mid g_i(x) \leq 0, i = 1, \dots, m, h_j(x) = 0, j = 1, \dots, r\}.$$

 x^* is a global minimizer of $f(\cdot)$ if $\forall x \in \mathcal{X}$, $f(x^*) \leq f(x)$. x^* is a local minimizer of $f(\cdot)$ if $\exists \epsilon > 0$ such that $\forall x \in \mathcal{B}(x^*, \epsilon) \cap \mathcal{X}$, $f(x^*) \leq f(x)$.

Lagrangian and Lagrangian dual function

We define the Lagrangian as

$$L(x,\lambda,\mu)=f(x)+\sum_{i=1}^m\lambda_ig_i(x)+\sum_{j=1}^r\mu_jh_j(x),$$

and the dual Lagrangian function

$$\mathcal{L}(\lambda,\mu) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x},\lambda,\mu).$$

Lagrange multipliers: equality constraints

Consider the mathematical program

$$\min_{x \in \mathcal{X}} f(x)$$
subject to $g_i(x) = 0, i = 1, ..., m$,

where $\mathcal{X} \subset \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots, m$.

The Lagrangian of this problem is obtained by associating a Lagrange multiplier λ_i to each constraint function g_i :

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x).$$

We can obtain very general conditions under which x^* is an optimal solution to the optimization problem, while only basic assumptions are made over \mathcal{X} and the functions f and g_i , $i=1,\ldots,m$.

Optimality

Theorem

Assume that the Lagrangian associated to the problem

$$\min_{x \in \mathcal{X}} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m,$

has a local minimizer $x^* \in \mathcal{X}$ when the multiplier vector λ is equal to λ^* . If $g_i(x^*) = 0$, i = 1, ..., m, then x^* if a local minimizer of f(x).

Optimality

Proof.

Assume by contradiction that x^* is not a local minimizer of f(x).

Then $\forall \epsilon > 0$, $\exists \overline{x} \in \mathcal{B}(x^*, \epsilon)$ such that $g_i(\overline{x}) = 0$, i = 1, ..., m, and $f(\overline{x}) < f(x^*)$.

Thus, $\forall \lambda$,

$$\sum_{i=1}^m \lambda_i g_i(x^*) = \sum_{i=1}^m \lambda_i g_i(\overline{x}) = 0,$$

and

$$f(\overline{x}) + \sum_{i=1}^{m} \lambda_i g_i(\overline{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*).$$

Taking $\lambda = \lambda^*$, the previous inequality contradicts that x^* is a local minimizer of the Lagrangian when $\lambda = \lambda^*$.

Lagrange multipliers: inequality constraints

Consider the mathematical program

$$\min_{x \in \mathcal{X}} f(x)$$

subject to
$$g_i(x) \leq 0, i = 1, ..., m$$
.

where $\mathcal{X} \subset \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, m$.

Theorem

Assume that the Lagrangian associated to the problem

$$\min_{x \in \mathcal{X}} f(x)$$
s.t. $g_i(x) \le 0, i = 1, ..., m,$

has a local minimum $x^* \in \mathcal{X}$ when the multipliers vector λ is equal to λ^* . If $g_i(x^*) \leq 0$, $\lambda_i^* \geq 0$, and $\lambda_i^* g_i(x^*) = 0$, $i = 1, \ldots, m$, then x^* is a local minimum of f(x).

Lagrange multipliers: inequality constraints

Proof.

As previously, assume by contradiction that x^* is not a local minimizer of f(x). Then $\forall \epsilon > 0$, $\exists \, \overline{x} \in \mathcal{B}(x^*, \epsilon)$ such that $g_i(\overline{x}) \leq 0$, $i = 1, \ldots, m$ and $f(\overline{x}) < f(x^*)$. Therefore, for $\lambda = \lambda^* \geq 0$,

$$\sum_{i=1}^m \lambda_i g_i(\overline{x}) \leq 0 \text{ and } \sum_{i=1}^m \lambda_i g_i(x^*) = 0.$$

Consequently,

$$f(\overline{x}) + \sum_{i=1}^{m} \lambda_i g_i(\overline{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i g_i(x^*),$$

contradicting that x^* is a local minimizer of the Lagrangian when $\lambda = \lambda^*$.

Dual problem

The dual problem is

$$\max_{\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^r} \mathcal{L}(\lambda, \mu)$$
 such that $\lambda \geq 0$.

Important properties:

- The dual problem is always convex, i.e. L is always concave (even if the primal problem is not convex).
- The primal and dual (global) optimal values, f^* and \mathcal{L}^* , always satisfy the weak duality: $f^* \geq \mathcal{L}^*$.
- Strong duality: under some conditions (constraint qualifications), $f^* = \mathcal{L}^*$.

Duality gap

Given a primal feasible solution x and a dual feasible solution (λ, μ) , the quantity $f(x) - \mathcal{L}(\lambda, \mu)$ is called the duality gap between x and (λ, μ) . Note that

$$f(x) - f^* \le f(x) - \mathcal{L}(\lambda, \mu).$$

Therefore, if the duality gap is equal to 0, then x is primal-optimal (and similarly, λ and μ are dual-optimal).

From an algorithmic point of view, if strong duality holds, this provides a stopping criterion: if $f(x) - \mathcal{L}(\lambda, \mu) \leq \epsilon$, then $f(x) - f^* \leq \epsilon$.

Duality gap: local case

We can also define the dual Lagrangian function restricted to the ball $\mathcal{B}(x^*, \epsilon)$:

$$\mathcal{L}_{\mathcal{B}(x^*,\epsilon)}(\lambda,\mu) = \min_{x \in \mathcal{B}(x^*,\epsilon)} L(x,\lambda,\mu).$$

The weak duality still holds locally:

$$\mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)} \leq f(x^*).$$

Under some conditions, the strong duality also holds:

$$\mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)} = f(x^*).$$

Duality gap: local case

Note however that

$$\min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda, \mu) \le \min_{\mathbf{x} \in \mathcal{B}(\mathbf{x}^*, \epsilon)} L(\mathbf{x}, \lambda, \mu)$$

SO

$$\mathcal{L}^* \leq \mathcal{L}^*_{\mathcal{B}(x^*,\epsilon)}$$
.

Therefore, if x^* is a local minimizer and the strong duality locally holds,

$$\mathcal{L}^* \leq f(x^*).$$

The inequality can be strict.

Karush-Kuhn-Tucker (KKT) conditions

Consider
$$f,g_i,h_j\in C^1$$
, $i=1,\ldots,m,\,j=1,\ldots,r$, and the problem
$$\min_{x\in\mathbb{R}^n}\,f(x)$$
 s.t. $g_i(x)\leq 0,\,\,i=1,\ldots,m,$ $h_i(x)=0,\,\,j=1,\ldots,r.$

Karush-Kuhn-Tucker (KKT) conditions:

$$abla_x L(x,\lambda,\mu) = 0$$
 (stationarity)
 $\lambda_i g_i(x) = 0$ (complementarity)
 $g_i(x) \leq 0, \ h_j(x) = 0 \ \forall i,j$ (primal feasibility)
 $\lambda_i \geq 0 \ \forall i$ (dual feasibility)

Necessary conditions

Let x^* be a minimizer of $f(\cdot)$ in $\mathcal{B}(x^*, \epsilon)$, $\epsilon > 0$, and (λ^*, μ^*) be a dual solution if x is restricted to $\mathcal{B}(x^*, \epsilon)$, with a zero duality gap (the strong duality holds). Then

$$f(x^*) = \mathcal{L}_{\mathcal{B}(x^*,\epsilon)}(\lambda^*, \mu^*)$$

$$= \min_{x \in \mathcal{B}(x^*,\epsilon)} \left(f(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{i=1}^r \mu_i^* h_i(x) \right)$$

$$\leq f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{i=1}^r \mu_i^* h_i(x^*)$$

$$\leq f(x^*)$$

Thus, x^* is a minimizer of $L(x, \lambda^*, \mu^*)$ in $\mathcal{B}(x^*, \epsilon)$, and $\nabla_x L(x^*, \lambda^*, \mu^*) = 0$.

We have obtained the stationarity conditions.

Necessary conditions

The previous inequalities also imply $\sum_{i=1}^{m} \lambda_i^* g_i(x^*) = 0$ as $\sum_{i=1}^{m} \lambda_i^* g_i(x^*) \leq 0$, and consequently, $\lambda_i^* g_i(x^*) = 0$, $\forall i$.

This establishes the complementarity conditions.

If x^* is a global minimizer, we can replace $\mathcal{B}(x^*, \epsilon)$ by \mathbb{R}^n .

We can summarize our findings in the theorem below.

Theorem (KKT necessary conditions)

If x^* , (λ^*, μ^*) are primal and dual solutions with a null duality gap, then x^* , (λ^*, μ^*) satisfy the KKT conditions.

Strong duality

The strong duality assumption often plays a key role. How to ensure that it holds?

- Linear programming. It always holds.
- Convex programming. Slater condition: $\exists x$ such that $g_i(x) < 0$, i = 1, ..., m et $h_i(x) = 0$, i = 1, ..., r.
- Nonconvex programming. Constraint qualification hypothesis.
 The most common, while the most restrictive, is the linear independence constraint qualification (LICQ).

Nonconvex programming

Theorem (Necessary conditions)

If x^* is a local solution of

$$\min_{x \in \mathcal{X}} f(x)$$
s.t. $g_i(x) \le 0, i = 1, ..., m$

$$h_i(x) = 0, i = 1, ..., r,$$

where f, g_i et h_i , $i=1,\ldots,m$, $\in C^1$, and a constraint qualification condition holds at x^* , then $\exists (\lambda^*,\mu^*)$ such that the KKT conditions hold at (x^*,λ^*,μ^*) .

Proof.

See Nocedal & Wright, "Numerical Optimization", Section 12.4.

Sufficiency of KKT conditions

If $\exists x^*$, (λ^*, μ^*) satisfying the KKT conditions, then

$$L(\lambda^*, \mu^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{i=1}^r \mu_i^* h_i(x^*) = f(x^*)$$

Thus, the duality gap is null (strong duality).

In the convex case, this implies that x^* and (λ^*, μ^*) are global primal and dual optimal solutions, respectively.

In the nonconvex case, x^* is a local minimizer, not necessarily global, or a saddle point.

Active set

Definition (Active set)

The active set A(x) of the optimization problem

$$\min_{x \in \mathcal{X}} f(x)$$
s.t. $g_i(x) \le 0, i \in \mathcal{I}$

$$h_i(x) = 0, i \in \mathcal{E},$$

in a feasible point x is the index set of the equality constraints and the active inequality constraints at that point:

$$\mathcal{A}(x) = \mathcal{E}U\{i \mid g_i(x) = 0\}$$

LICQ

The most popular constraint qualification is the LICQ.

Definition (LICQ)

Given the point x and the active set A(x), the linear independence constraint qualification (LICQ) holds if the gradients of the active constraints, $\{\nabla_x c_i(x), i \in A(x)\}$, are linearly independent.