

Duration: 90 mins.



Max.Marks: 50

## LNMHT/B.Tech/C/IC/2018-19/ODD/MTH213/MT

## The LNM Institute of Information Technology, Jaipur Mathematics-III Mid Term

| Name: Mayank Roll No.: 17DCS606                                                                                                                                                                                   |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| NOTE: You should attempt all questions. Your writing should be legible and neat. Marks awarded ar next to the question. Start a new question on a new page and answer all its parts in the same                   |           |
| Please make an index showing the question number and page number on the front page of your answer sheet                                                                                                           |           |
| following format.                                                                                                                                                                                                 |           |
| Question No. Page No.                                                                                                                                                                                             |           |
| Tage No.                                                                                                                                                                                                          |           |
|                                                                                                                                                                                                                   | F41       |
| 1. (a) For any two complex numbers $z_1$ and $z_2$ , prove that $ z_1 + z_2  \le  z_1  +  z_2 $ .                                                                                                                 | [4]       |
| Find all the fifth roots of 32 and locate them geometrically.                                                                                                                                                     | [4]       |
| 2. (a) Let $f(z) = x^3 + i(1-y)^3$ . Find all the points where the function is differentiable. Also find the derest at all those points. For which value of $z$ , $f(z)$ is analytic?                             |           |
| at all those points. For which value of $z$ , $f(z)$ is analytic?  Let $u(x,y) = 2x(1-y)$ . Show that $u(x,y)$ is harmonic in some domain and find its harmonic con [4]                                           | jugates.  |
| 7 [4]                                                                                                                                                                                                             |           |
| Write all possible Laurent series expansion of $f(z) = \frac{1}{(z-1)^2(z-3)}$ in powers of $(z-1)$ .                                                                                                             | [5]       |
| For any two complex numbers $z_1$ and $z_2$ , prove that                                                                                                                                                          |           |
| $2\sin z_1\cos z_2 = \sin(z_1+z_2) + \sin(z_1-z_2).$                                                                                                                                                              |           |
|                                                                                                                                                                                                                   | [2]       |
| 4. (a) Using Cauchy integral formula, evaluate the contour integrals $\int_C \frac{1}{(z^2+4)^2} dz$ , where C is the circle                                                                                      | z-i =2    |
| in positive directions.                                                                                                                                                                                           | [3]       |
| (b) Find all the singular points of $f(z) = \frac{\text{Log}(z+2)}{(z-4)(z-5)}$ . Classify them as non-isolated, isolated, poles, re-                                                                             | movable   |
| and essential singularity.                                                                                                                                                                                        | [3]       |
| 5. (a) Suppose $f(z)$ is an entire function such that and $ f(z)  \leq  z $ . Using Cauchy's inequality p                                                                                                         | rove that |
| f'(z)  is bounded. Then prove that $f'(z)$ is constant. If $f(1) = 1$ and $f(i) = 2$ , Read $f(z)$ .  (b) If $f(z)$ is real-valued and analytic function defined on a domain, then prove that $f(z)$ is constant. | [4]       |
|                                                                                                                                                                                                                   | ant. [3]  |
| 6. (a) Using M-L Inequality, find an upper bound of                                                                                                                                                               |           |
| $\left \oint_C \frac{z^2 e^{(z+1)}}{z+1} dz\right $                                                                                                                                                               |           |
| where C is the circle $ z =4$ .                                                                                                                                                                                   | [4]       |
| where C is the circle $ z  = 4$ .  (b) Find the radius of convergence of the series                                                                                                                               | ידו       |
|                                                                                                                                                                                                                   |           |
| $\sum_{i=1}^{\infty}\frac{(z-4-3i)^k}{5^{2k}}$                                                                                                                                                                    |           |
| k=0                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                   | [3]       |
| Find $\int_C ze^{-\frac{1}{(z-2)}}$ where C is any positively oriented closed contour with $z=2$ inside it.                                                                                                       |           |
| Evaluate $\int_0^{2\pi} \frac{1}{(2+\cos\theta)^2} d\theta$ .                                                                                                                                                     | [3]       |
| $J_0 = (2 + \cos \theta)^2 u v$                                                                                                                                                                                   | [5]       |
|                                                                                                                                                                                                                   |           |
| 1                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                   |           |