EECS3101 notes (Divide and Conquer, recurrence, master theorem, etc.)

Jerry Wu

Thursday, Jan 26, 2023

Structure of D and C

- Divide Divide the problem into smaller sub problems
- Conquer If the sub problem is small enough, return the solution directly. Else, use recursion.
- Combine Put it all together into the overall solution.

Example :: Segment sum (code on slide 13)

We can split the array into 2 smaller sub arrays for a start. The problem will be considered small enough once each sub array has one element, i.e. low == high, then we return each one individually. If the value is negative, default to 0 since the empty set is also a subset of every set (segment sum of an empty array is always 0).

Recursive analysis of example

Let T(n) be the worst case runtime of the algorithm. The left and right segments are both $T(\frac{n}{2})$. So it is T(n) overall. When analyzing recursive functions, we always assume the base case is true.

The master theorem (formal definition on slide 19)

The function of the following form has a runtime determinable by the master theorem.

$$T(n) = aT(\frac{n}{b}) + f(n)$$

• a is the number of recursive calls.

- \bullet b is the rate at which subproblem size decreases.
- f(n) is the runtime of the non recursive portion of the algorithm.

The master theorem has the following cases::

Case 1::
$$f(n) = O(n^{\log_b(a) - \epsilon}), \epsilon > 0 : T(n) = \Theta(n^{\log_b(a)})$$

Case 2::
$$f(n) = \Theta(n^{\log_b(a)}) : T(n) = \Theta(n^{\log_b(a)} \log(n))$$

Case 3::
$$f(n) = \Omega(n^{\log_b(a)+\epsilon}), \epsilon > 0 : T(n) = \Theta(f(n))$$

According to MT, the segment sum discussed earlier is $\Theta(nlog(n))!$

"I don't care about log. I'm not a math prof."-Larry YL Zhang 2023

"Master theorem is P O W E R"-Larry YL Zhang 2023

"log is very important"-Larry YL hang 2023

Recursion trees (slide 32)

When MT isn't appplicable, we can use the general form::

$$T(n) = \sum_{j=0}^{\log_b(n)-1} a^j f(\frac{n}{b^j}) + \Theta(n^{\log_b(a)})$$

"Try doing this proof yourself. It's good practice."-Larry YL Zhang 2023