Spatially continuous identification of beta diversity hotspots using species distribution models

Gabriel Dansereau^{1,2,3} Timothée Poisot^{1,2,3,4} Pierre Legendre^{1,3}

¹Département de sciences biologiques, Université de Montréal

²BIOS²

³Quebec Center for Biodiversity Science

⁴Groupe de recherche interuniversitaire en limnologie et environnement aquatique

10th Annual QCBS Symposium December 19, 2019

Suggestion

Bring together 2 elements:

- 1. Identification of beta diversity hotspots
- 2. Species distribution modelling (SDM) on continuous scales

While we're at it...

Beta diversity

Community composition, not turnover

"Variation in species composition among sites within a geographical region of interest" (Legendre et al. 2005)

Local contribution to beta diversity (LCBD)

Highlights exceptional species compositions

"Comparative indicators of the ecological uniqueness of sites in terms of community composition" (Legendre & De Caceres, 2013)

Why continuous scales?

Original LCBD example (Legendre & De Caceres, 2013)

Why continuous scales?

- ▶ Online data on extended scales is increasingly accessible
- ► Potential for novel ecological insights

Relevance

Novel ecological insights

- ► Tool for poorly sampled regions, or with sparse sampling
- ▶ Identification of conservation targets

Combination with IPCC climate change scenarios

- ► Model beta diversity changes
- ► Identify sites with significant changes
- ⇒ Insight-oriented approach, exploratory analyses

Occurrence data

- ▶ Data from the eBird Basic Dataset
- ▶ All species of Warblers (Parulidae family) in North America

eBird

Environmental data

- ▶ 2 climates variables : mean annual temperature, mean annual precipitation
- ▶ 10 land cover variables : bare, crops, grass, moss, shrub, snow, tree, urban, permanent water, seasonal water

Methods - BIOCLIM model

Species richness - Raw data

Species richness - SDM results

LCBD values - SDM results

LCBD-richness relationship

LCBD-richness relationship

LCBD-richness relationship

Spatially continuous identification of beta-diversity hotspots using species distribution modelling

Icon credits

"Icon made by Pixel perfect from www.flaticon.com"

Appendix

Single species example - SDM with threshold

Single species example - SDM without threshold

LCBD - Raw data (with Hellinger transformation)

Figure 1: LCBD values relative to maximum value based on the raw data after Hellinger transformation