Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

1/1 point

Given vectors $\mathbf{v}=\begin{bmatrix}5\\-1\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{b_2}=\begin{bmatrix}1\\-1\end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

- $\mathbf{v}_{b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
- $\mathbf{v}_{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} -3\\2 \end{bmatrix}$

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$.

2. Given vectors $\mathbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

1/1 point

- $leftilde{f O}$ ${f v_b} = egin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$
- $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$
- $\bigcirc \mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$
- O $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$

3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

1/1 point

1/1 point

- $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$
- \bullet $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 4/5 \end{bmatrix}$

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$.

4. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.

- $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$
- $\mathbf{v_b} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

 \bigodot correct $\label{eq:correct} \text{The vector } v \text{ is projected onto the vectors } b_1, b_2 \text{ and } b_3.$

5. Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{v}_{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 \bigodot Correct $\label{eq:correct} \mbox{The vector } v \mbox{ is projected onto the vectors } b_1, b_2, b_3 \mbox{ and } b_4.$