漫谈 VoIP 网络中的核心设备-SBC

作者: james.zhu (james.zhu@hiastar.com)

根据 Infonetics 研究报告指出, 托管式 IPPBX 和融合通信市场将以每年至少 20%的增长。由此不难看出, 2016 年 SBC 市场将以大幅度增长。统计数据表明用户需求数量的增加必然带动厂家设备的销售额。SBC 将是一个井喷的市场。

Hosted business VoIP and unified communications service seats more than doubling by 2016

© Infonetics Research, VoIP and UC Services and Subscribers Biannual Worldwide and Regional Market Size, Share, and Forecasts, March 2012.

Top Reasons Enterprises Deploy SIP Trunking

Infonetics Research, SIP Trunking and Enterprise SBC Strategies: North American Enterprise Survey, March 2012

资料来源: http://www.infonetics.com/

SBC 是目前 VoIP 网络中核心的设备,中文意思是会话边界控制器。顾名思义,就是在网络边界处(内网和外网)对会话进行管理的设备。我们提到的会话当然是指 SIP session。

我们将在接下来的章节中简单讨论以下几个方面的内容:

1) SBC 在 VoIP 网络中扮演的是什么角色,通俗来说就是实现什么功能

因为我们一直讨论的是 VoIP 领域中 SBC 核心设备的应用,SBC 本身具有很多功能,包括拓隐藏,呼叫路由管理,防攻击,NAT 穿越,QOS,TDM 接入,B2BUA,语音编码处理,SIP 注册等等功能。从大部分的功能来看,主要的功能还是和 SIP 相关,所以 SBC 的重点还是针对 SIP 会话方面的管理。几个重点讨论的技术点包括: SIP 设备终端之间的通信,安全管理,中继管理。

因此简单来说,SBC 重点负责 SIP 的安全管理当然包括了内部网络的拓扑隐藏,SIP 加密和防攻击等等,另外就是对 SIP 中继进行管理通信,包括不同编码转换,SIP 消息规范化处理。

2) VoIP 中 SBC 设备的需求

VoIP 网络中,通常情况下,如果 VoIP 设备设置在公网或者私网,都会经常遇到网络攻击,恶意注册,IP 地址欺骗,电话盗打的等等安全问题,SBC 支持了多种安全策略,可以非常安全地解决这些问题。以下图例是网络攻击的最常用的 5 种方式:

3) SBC 的重要作用

SBC 在 VoIP 中扮演着非常重要的角色,或者说是其他设备无法替代的角色。通常最重要的角色是防止网络攻击,SBC 可以实现一些防火墙的功能,实现黑白名单过滤检测,SIP 信

令加密,同时设备本身是一个 B2BUA 形式,对内网设备进行了隐藏,不会完全对外网用户 暴露,实现了网络的安全性。

SBC 在 VoIP 网络环境中核心的功能包括:

- 3.1) SIP 消息的规范化。因为在复杂的网络环境中,接入的设备终端可能来自于不同厂家,不同的私有协议标准。SCB 必须对 SIP 消息进行规范化处理,确保其他的通信设备可以互相交换。
- 3.2)编码转换,因为多种设备和终端支持不同的语音编码,而且因为带宽的语音,语音编码传输方式完全不同。其中各种终端设备对编码支持的不一样可能有多种原因,例如厂家的设备暂时还不支持某种编码,或者可能语音编码的许可证费用太贵,或者本身设备的 CPU 性能不能处理一些编码。SBC 需要对来自不同网络的会话进行编码处理,确保双方可以实现互通。

- 3.3) 无论网络带宽如何发展,目前看,带宽仍然是限制 VoIP 发展的重要因素之一,因此为了节省带宽资源,语音传输时不得不使用压缩比比较好的编码,这样,SBC 就需要对编码进行转换处理,确保 IPPBX,或者 UC 可以支持这些编码。
- 3.4)对 NAT 处理, VoIP 网络环境中,绝大部分用户会面对 NAT 问题,通常的解决办法就是使用 VPN 或者防火墙开多余的端口来进行处理。这样的话,网络环境就可能充分暴露在外网的用户面前,导致安全问题。以下图例说明 NAT 状态下,语音数据通信出现的问题。

- 3.5)传真和语音检测功能。传真虽然慢慢在实际业务环境中越来越少,但是基本上仍然是企业业务沟通的重要工具,网络中的 T38 传真需要 SBC 支持,因此 SBC 必须可以检测传真音。想象一下,通过外网呼入到企业 IPPBX,如果进入 IVR 或者其他的语音提示系统,用户需要输入 DTMF 进行语音检测,以便进入到其他的业务流程。因此,SBC 必须能够精确地检测语音输入。
- 3.6) 具有良好的性能,性能指标包括 CPU 的处理能力,可拓展性,会话并发处理,逃生,冗余处理,注册数处理。性能方面当然需要根据用户本身网络的环境进行评估,一些重要指标必须注意,例如逃生功能。如果整个 IP 侧的网络出现故障,用户可以通过 TDM 接口进行通信。或者用户需要拨打 119 等紧急呼叫时,用户必须可以接通本地的紧急服务电话系统。
- 3.7)其他的设备无法替代 SBC 在 VoIP 网络中的地位。通常在 VoIP 网络中采用的方法包括: VPN 隧道处理,或者企业防火墙设置。VPN 隧道在同一网络环境中具有配置简单的优势,但是 VPN 隧道技术本身不具有 SIP 会话握手释放和定时器等等相关功能,尤其在企业融合通信或者 IPPBX 的环境下,容易出现连接问题。另外,VPN 隧道不会对 SIP 加密的,解除加密进行处理,SBC 具有这样的功能,本身 SBC 支持了 SRTP 和 TLS。防火墙也存在一些问题,SIP 网络环境中,通常的做法是在防火墙打一个洞,或者开发某些端口来支持 SIP 通信。现实环境中,SIP 的状态保护是非常多样的,还要支持文本通信,即时通讯工具,文件传输等等其他业务,这样可能导致防火墙管理非常开放,失去了防火墙应有的功能,导致安全问题。

4) SBC 对 SIP 业务的管理更加简单

SBC 设备本身具有对 SIP 信令控制的能力,同时支持黑白名单过滤,防止非法用户侵入系统内部。另外无需部署多个设备,一台设备可以解决所有问题。

5) 利用开源软交换来开发 SBC

利用开源平台开发 SBC 图例

目前市场上主流的 SBC 设备厂家相对来说技术实力比较强,同时对底层设备架构性能有充分的了解。硬件设备相对稳定一些。但是目前很多开源的软交换也具备 SBC 的某些功能,例如 openSIPS, kamailio 或者 FreeSWICTH。这些平台本身具有注册,路由,NAT 处理的能力,但是首先这些软交换平台基本都不具有编码转换处理的能力,本身没有对编码的处理,只能对 SIP 消息做规范化处理,其次,几个平台对接的技术难度很高,维护成本高,所以只能部分实现 SBC 功能。如果需要对编码转换进行处理的话,必须借助第三方 DSP处理或者软转码,目前类似的算法基本上都需要通过购买商业许可证来实现。所以严格意义上这样的架构并不是 SBC 的标准设备。

6) SBC 部署类型

目前 SBC 部署支持两种形式:

6.1)设备类型。设备类型支持企业级和运营商级的部署,从 **400** 路到 **2000** 路以上,或者更高级别的处理。

SBC 在企业语音业务中的应用拓扑图

6.2)VMware 平台安装部署 eSBC。这样的方式适合于中小型企业的 IPPBX 对接,SIP 中继对接或者企业融合通信的管理。SBC 是以软件形式安装在企业内部的虚拟机上,可以根据不同配置来支持编码转换,另外一个软编码的局限性在于支持的编码类型非常有限,而且市场上编码类型又不断丰富。编码转换的处理包括软件形式的,很多厂家都有自己的算法,但是并发数量和虚拟机的性能有严格的要求,同时支持的编码类型非常有限。Sangoma 的 eSBC 则通过外置的编码 DSP 设备处理,通过 IP 对接,来对 RTP 流进行处理。这样保证了处理能力,可以根据企业用户的增加适当拓展并发数量,调整编码转换设备的容量。用户通过 ESBC 对接基于云的 IPPBX,例如可以部署 IPPBX 在阿里云,亚马逊云,百度云,然后在本地进行编码处理。

SBC 在 AWS 云平台部署图例

7) SBC 在 VoIP 环境中主要面对的挑战

VoIP 的技术日新月异,笔者不敢轻易断定网络会有什么不可预知的问题。当然,以目前的技术水平和网络环境来看,无论是什么样的设备,什么样的功能,面对的一个主要问题就是网络的稳定性问题,用户网络环境复杂等等问题。这些问题通常是厂家不可预知的问题。这些也都是 VoIP 环境一直面对的难题。比较好的解决办法就是设备端必须支持完善的排查工具,包括 QOS,SIP 消息,语音抓包等等工具,用户可以轻松检查出问题所在,能够快速解决问题,或者反馈问题。

总结,从我们介绍的以上内容中我们不难看出,SBC 设备是目前 VoIP 网络环境中最为可靠的解决方案,具有对 SIP 完整的支持,同时解决了安全问题。一句话,SBC 就是为 SIP 所生!

参考资料:

- 1) http://wiki.sangoma.com/NetBorder-Session-Controller
- 2) http://www.dummies.com/
- 3) http://en.wikipedia.org/wiki/Session border controller
- 4) http://en.wikipedia.org/wiki/Back-to-back user agent
- 5) http://blogs.trilogy-lte.com/post/77427158750/how-webrtc-is-revolutionizing-telephony
- 6) http://www.frafos.com/wp-content/uploads/2012/10/FRAFOS_Underdstanding_SBC.pdf