EECS 336 Homework 1

Devon Buckingham January 18, 2018

Problem 2

Correctness

We begin with three lemmas to prove the correctness of the algorithm.

Lemma 1. After the k^{th} iteration of the for loop in algorithm \mathbf{A} , $1 \leq k \leq n$, the variable S gives the cumulative sum of all trades up to and including trade k (i.e., $\sum_{i=1}^{k} a_i$).

Proof. We prove by induction.

Base Case: Before the first iteration of the for loop, S is set to 0. The first iteration sets S to $S + a_1 = 0 + a_1 = a_1$.

Inductive step: Assume the lemma holds for k = r. Denote the value of S at the end of iteration r as S_r (i.e., $\sum_{i=1}^r a_i$, by the inductive hypothesis).

Iteration
$$r + 1$$
 sets $S = S_r + a_{r+1} = \sum_{i=1}^r a_i + a_{r+1} = \sum_{i=1}^{r+1} a_i$.

Lemma 2. After the k^{th} iteration of the for loop in algorithm \mathbf{A} , $1 \le k \le n$, the variable MaxS contains the largest value of S yet observed (i.e., the maximal sum of subsequence terms, over the empty subsequence and all subsequences of consecutive trades that start at trade 1 and go up to some $j \le k$.)

Proof. We prove by induction.

Base Case: Before the first iteration of the for loop, MaxS is set to zero. During the first iteration (but prior to updating MaxS), S is updated from 0 to a_1 , as shown in Lemma 1. Then, MaxS is set to the minimum of the current MaxS (0) and the updated value of S (a_1). So, if a_1 is positive, MaxS is set to a_1 , which is indeed the maximal subsequence sum/maximal value of S observed so far. If a_1 is not positive, then MaxS remains at zero, which is also the maximal subsequence sum observed so far (the sum of the empty sequence), or equivalently, the maximal value of S observed so far (the value S held before entering the for loop).

Inductive step: Assume lemma 2 holds for k = r. At iteration r + 1, S will be set to $\sum_{i=1}^{r+1} a_i$, by lemma 1. MaxS will then be set to the maximum of this new S and the current MaxS, which by the inductive hypothesis is equal to the maximal observed value of S up to iteration r. So, by taking the maximum of these two numbers, MaxS will then be set to the new maximal value of S, up to iteration r + 1.

Lemma 3. Let S_q be the value of S after iteration q and $MaxS_q$ be the value of MaxS after iteration q, or 0 if q = 0. After iteration k, MinValue will be equal to $\min_{q} (S_q - MaxS_{q-1}), q \leq k$.

Proof. We prove by induction.

Base Case: In the first iteration, prior to the assignment to MinValue, S is updated to a_1 as described in lemma 1. This quantity corresponds to S_1 . At the assignment to MinValue, MaxS has not yet been updated, so is still equal to zero. This quantity corresponds to $MaxS_0$. The difference of these two quantities is a_1 . This is already the current value of MinValue, so MinValue will be $min(a_1, a_!) = a_1 = S_1 - MaxS_0$. So, the lemma holds in the base case.

Inductive Step: Assume the lemma holds for k = r. In iteration r + 1, the algorithm will set MinValue equal to the minimum of its current value (which is correct for iteration r by the inductive assumption) and $S_{r+1} - MaxS_r = S_{r+1} - MaxS_{(r+1)-1}$. So, MinValue will be set to the new minimal value of $(S_q - MaxS_{q-1})$, $q \le (r+1)$.

We now investigate the quantity that the algorithm is intended to find. This value is given as

$$\min_{s \le t} \sum_{i=s}^{t} a_i$$

where s and t are integers from 1 to n. This expression can be rewritten in

the following manner:

$$\min_{s \le t} \sum_{i=s}^{t} a_i \tag{1}$$

$$\min_{t} \min_{s \le t} \sum_{i=s}^{t} a_i \tag{2}$$

$$\min_{t} \min_{s \le t} \left(\sum_{i=1}^{t} a_i - \sum_{i=1}^{s-1} a_i \right) \tag{3}$$

$$\min_{t} \left(\sum_{i=1}^{t} a_i - \max_{s \le t} \sum_{i=1}^{s-1} a_i \right) \tag{4}$$

Now, consider only the portion of expression (4) that is in parens, and assume t is fixed. Notice that the first summation corresponds to the variable S after iteration t (which the algorithm computes correctly, by lemma 1). Similarly, the second summation corresponds to the value of MaxS after iteration t-1, which, by lemma 2, is also computed correctly. So, the entire quantity in parens corresponds to S-MaxS, as is computed in iteration t of the algorithm. By lemma 3, the algorithm keeps the minimum value this quantity has obtained in MinValue. So, at termination, MinValue will be equal to expression (4).

Running Time

The operations outside the for loop are constant-time assignments. The operations inside the for loop are constant-time arithmetic and assignments. The for loop iterates from 1 to n, performing these constant-time operations. So, the algorithm as a whole is O(n).