UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE SOFTWARE

ASIGNATURA:

INTERNET DE LAS COSAS

DOCENTE:

YESSICA ROSAS CUEVA

GRUPO 01:

- Villacis Alvear David
- Tomayquispe Ramos Jorge Luis
- Carlos Augusto Wong Gómez
- Kevin Anderson Gonzalez Cabezas
- Quiroz Pita, Alexander Andrey

Índice

1. Introducción	3
2.Problemática	3
3. Objetivos	
4. Materiales y Componentes	
5. Metodología	
5.1 Diseño del Sistema	4
5.2 Comunicación de Datos	4
5.3 Desarrollo de Software	4
6. Resultados Esperados	4
8. Conclusión	4
9. Simulación Con un SENSOR	5

1. Introducción

En este proyecto, se propone el desarrollo de un sistema basado en ESP32 para la medición y monitoreo en tiempo real de la calidad del aire y la temperatura, permitiendo la recolección de datos para su análisis y toma de decisiones.

2.Problemática

La contaminación del aire y las variaciones de temperatura representan un desafío significativo para la salud humana y el medio ambiente. La exposición prolongada a gases contaminantes puede provocar enfermedades respiratorias y afectar la calidad de vida. Además, los cambios bruscos de temperatura influyen en el bienestar de las personas. Sin embargo, la falta de sistemas accesibles y eficientes para el monitoreo en tiempo real dificulta la toma de decisiones informadas y la implementación de medidas preventivas.

3. Objetivos

- Implementar un sistema de monitoreo ambiental con sensores de calidad del aire y temperatura utilizando ESP32.
- Desarrollar una interfaz de visualización de datos en tiempo real mediante una aplicación web o móvil.
- Integrar conectividad Wi-Fi/Bluetooth para el envío de datos a una plataforma en la nube. MQTT.

4. Materiales y Componentes

- Microcontrolador: ESP32.
- Sensor de Calidad del Aire: MQ-135 o CCS811.
- Sensor de Temperatura y Humedad: DHT22 o BME280.
- Pantalla opcional: OLED SSD1306 para visualización local de datos y SERVO.
- **Módulo de conexión:** Wi-Fi y MQTT para envío de datos.
- Fuente de alimentación: Batería Li-ion con módulo de carga TP4056 (opcional).

5. Metodología

5.1 Diseño del Sistema

Se utilizará el ESP32 como unidad central de procesamiento, que capturará datos de los sensores y los transmitirá a una plataforma de monitoreo.

5.2 Comunicación de Datos

• Wi-Fi/MQTT: Para enviar datos a una plataforma en la nube como Thingspeak, Firebase o un servidor local.

5.3 Desarrollo de Software

- Programación en Arduino IDE o MicroPython.
- Uso de bibliotecas para la integración de sensores y comunicación con la nube.
- Diseño de una interfaz gráfica para la visualización de datos en tiempo real.

6. Resultados Esperados

- Sistema funcional capaz de medir y visualizar la calidad del aire y temperatura en tiempo real.
- Plataforma de monitoreo accesible desde computadoras.
- Posibilidad de expandir el proyecto con alertas por umbrales de contaminación.
- Predicción de datos, se podrá trabajar con análisis de otro país.

7. Cronograma para la implementación

8. Conclusión

Este sistema proporcionará información útil sobre las condiciones ambientales en distintos entornos, lo que permitirá tomar medidas preventivas para mejorar la calidad del aire y monitorear variaciones de temperatura de manera eficiente

9. Simulación Con un SENSOR

