Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 = (1-i)^2 = 1 - 2i + i^2 =$	2p
	=1-2i-1=-2i	3 p
2.	f(0) = 2016	2p
	$(g \circ f)(0) = g(f(0)) = g(2016) = 0$	3 p
3.	$x^2 - 3x = x - 4 \Leftrightarrow x^2 - 4x + 4 = 0$	3 p
	x=2	2p
4.	Multimea M are 100 de elemente, deci sunt 100 de cazuri posibile	1p
	În mulțimea M sunt 10 pătrate perfecte, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{100} = \frac{10}{100} = \frac{1}{100}$	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{100} = \frac{1}{10}$	2p
5.	Panta unei drepte paralele cu dreapta d este egală cu 3	2p
	Ecuația dreptei care trece prin punctul A și este paralelă cu dreapta d este $y = 3x + 1$	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 4 \cdot \sin \frac{\pi}{6}}{2} = \frac{6 \cdot 4 \cdot \frac{1}{2}}{2} =$	
	$4 + 100 = \frac{6}{6} = \frac{0.4 \cdot 5}{2} =$	3 p
	2 2 2	
	= 6	2p

1.a)	$A(0) = \begin{pmatrix} -1 & -1 \\ 2 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} =$	2p
	=2-(-2)=4	3 p
b)	$A(1+m)+A(1-m) = \begin{pmatrix} 1+m-1 & -1 \\ 2 & 1+m-2 \end{pmatrix} + \begin{pmatrix} 1-m-1 & -1 \\ 2 & 1-m-2 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 4 & -2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 0 & -1 \\ 2 & -1 \end{pmatrix} = 2A(1)$, pentru orice număr real m	2p
c)	$\det(A(m)) = \begin{vmatrix} m-1 & -1 \\ 2 & m-2 \end{vmatrix} = m^2 - 3m + 4$	2p
	Pentru orice număr real m , $m^2 - 3m + 4 \neq 0$, deci matricea $A(m)$ este inversabilă	3 p
2.a)	x * y = -3xy + 9x + 9y - 27 + 3 =	2p
	=-3x(y-3)+9(y-3)+3=-3(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
b)	(x*y)*z = (-3(x-3)(y-3)+3)*z = 9(x-3)(y-3)(z-3)+3	2p
	x*(y*z) = x*(-3(y-3)(z-3)+3) = 9(x-3)(y-3)(z-3)+3=(x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p

c)	$(x*x)*x = 9(x-3)^3 + 3$	2p
	$9(x-3)^3 + 3 = 12 \Leftrightarrow (x-3)^3 = 1 \Leftrightarrow x = 4$	3 p

1.a)	$f'(x) = 3x^2 - \frac{3}{x} =$	3p
	$f'(x) = 3x^{2} - \frac{3}{x} = \frac{3(x^{3} - 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (x^3 - 3\ln x) = +\infty$	2p
	Dreapta de ecuație $x = 0$ este asimptotă verticală la graficul funcției f	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1$	1p
	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1)=1$, obținem $f(x) \ge 1$, pentru orice $x \in (0,+\infty)$	2p
2.a)	$\int_{1}^{2} (x^{2} + 3x + 3) f(x) dx = \int_{1}^{2} (2x + 3) dx = (x^{2} + 3x) \Big _{1}^{2} =$	3р
	=10-4=6	2p
b)	$\mathcal{A} = \int_{0}^{3} f(x) dx = \int_{0}^{3} \frac{2x+3}{x^2+3x+3} dx = \ln(x^2+3x+3) \Big _{0}^{3} =$	3p
	$= \ln 21 - \ln 3 = \ln 7$	2p
c)	$\int_{-1}^{0} f'(x) f(x) dx = \frac{1}{2} f^{2}(x) \Big _{-1}^{0} =$	3р
	$= \frac{1}{2} (f^{2}(0) - f^{2}(-1)) = \frac{1}{2} (1 - 1) = 0$	2p

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_st-nat*

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 1 i. Arătați că $z^2 = -2i$.
- **5p** 2. Calculați $(g \circ f)(0)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 2016 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = x 2016.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x^2-3x} = 3^{x-4}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{1, 2, 3, ..., 100\}$, acesta să fie pătrat perfect.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(0,1). Determinați ecuația dreptei d, care trece prin punctul A și este paralelă cu dreapta de ecuație y = 3x 2016.
- **5p 6.** Determinați aria triunghiului ABC, știind că AB = 6, AC = 4 și $A = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(m) = \begin{pmatrix} m-1 & -1 \\ 2 & m-2 \end{pmatrix}$, unde m este număr real.
- **5p** a) Arătați că $\det(A(0)) = 4$.
- **5p b**) Demonstrați că A(1+m) + A(1-m) = 2A(1), pentru orice număr real m.
- **5p** c) Demonstrați că matricea A(m) este inversabilă, pentru orice număr real m.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = -3xy + 9x + 9y 24.
- **5p** a) Arătați că x * y = -3(x-3)(y-3) + 3, pentru orice numere reale x și y.
- **5p b**) Demonstrați că legea de compoziție "*" este asociativă.
- **5p** c) Determinați numărul real x, pentru care (x*x)*x=12.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^3 3\ln x$.
- **5p a)** Arătați că $f'(x) = \frac{3(x^3 1)}{x}, x \in (0, +\infty).$
- **5p b**) Determinați ecuația asimptotei verticale la graficul funcției f.
- **5p** c) Demonstrați că $f(x) \ge 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x+3}{x^2+3x+3}$.
- **5p** a) Arătați că $\int_{1}^{2} (x^2 + 3x + 3) f(x) dx = 6$.
- **5p b)** Arătați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 3 are aria egală cu $\ln 7$.
- **5p** c) Demonstrați că $\int_{-1}^{0} f'(x) f(x) dx = 0$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_șt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q = \frac{b_4}{b_3} = \frac{10}{5} =$	3p
	= 2	2 p
2.	$x \le 5 \Rightarrow x - 3 \le 2$	2p
	$f(x) \le 2$, deci valoarea maximă a funcției este 2	3 p
3.	$x^2 + 12 = (x+2)^2 \Rightarrow 4x - 8 = 0$	3 p
	x = 2, care verifică ecuația	2p
4.	$C_7^2 = \frac{7!}{2! \cdot 5!} =$	3р
	= 21	2 p
5.	$\frac{y-0}{4-0} = \frac{x-1}{3-1}$	3p
		2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{6}{2 \cdot \frac{\sqrt{3}}{2}}$	3 p
	$=2\sqrt{3}$	2 p

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	2p
	=1-0=1	3 p
b)	$A(x)A(y) = \begin{pmatrix} 1+x & -x \\ 2x & 1-2x \end{pmatrix} \begin{pmatrix} 1+y & -y \\ 2y & 1-2y \end{pmatrix} = \begin{pmatrix} 1+x+y-xy & -y-x+xy \\ 2x+2y-2xy & 1-2y-2x+2xy \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 1 + (x + y - xy) & -(x + y - xy) \\ 2(x + y - xy) & 1 - 2(x + y - xy) \end{pmatrix} = A(x + y - xy), \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$A(x)A(x) = I_2$ şi, cum $I_2 = A(0)$, obţinem $A(x+x-x^2) = A(0)$	3 p
	$2x - x^2 = 0 \Leftrightarrow x = 0 \text{ sau } x = 2$	2p
2.a)	$x \circ y = 2xy - 6x - 6y + 18 + 3 =$	2p
	=2x(y-3)-6(y-3)+3=2(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
b)	$1 \circ 2 \circ 3 \circ 4 = ((1 \circ 2) \circ 3) \circ 4 =$	3p
	$=3\circ4=3$	2p

c)	$x \circ x = 2(x-3)^2 + 3$, $x \circ x \circ x = 4(x-3)^3 + 3$	2p
	$4(x-3)^3 + 3 = x \Leftrightarrow x = \frac{5}{2} \text{ sau } x = 3 \text{ sau } x = \frac{7}{2}$	3 p

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = x' - (\ln x)' =$	2p
	$=1-\frac{1}{x}=\frac{x-1}{x}, \ x \in (0,+\infty)$	3p
b)	$f''(x) = \frac{1}{x^2}, \ x \in (0, +\infty)$	2p
	$f''(x) > 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este convexă pe intervalul $(0, +\infty)$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1$	1p
	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1)=1$, obținem $f(x) \ge 1$, deci $\ln x \le x-1$, pentru orice $x \in (0,+\infty)$	2p
2.a)	$\int_{0}^{1} (x^{2} + 1) f(x) dx = \int_{0}^{1} (x^{2} + 1) \cdot \frac{1}{x^{2} + 1} dx = \int_{0}^{1} 1 dx = x \Big _{0}^{1} =$	3p
	=1-0=1	2 p
b)	$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1} \frac{x^{2}}{x^{2} + 1} dx = \int_{0}^{1} 1 dx - \int_{0}^{1} \frac{1}{x^{2} + 1} dx =$	2p
	$= x \begin{vmatrix} 1 \\ 0 - \operatorname{arctg} x \end{vmatrix} \begin{vmatrix} 1 \\ 0 = 1 - \operatorname{arctg} 1 = 1 - \frac{\pi}{4}$	3 p
c)	$\int_{n}^{n+1} 2x f(x) dx = \int_{n}^{n+1} \frac{2x}{x^2 + 1} dx = \ln\left(x^2 + 1\right) \left \frac{n+1}{n} = \ln\frac{\left(n+1\right)^2 + 1}{n^2 + 1} \right $	3 p
	$\ln\frac{\left(n+1\right)^2+1}{n^2+1} = \ln 2 \Leftrightarrow n^2 - 2n = 0 \Leftrightarrow n = 0 \text{ sau } n = 2$	2p

Matematică M st-nat

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați rația progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_3=5$ și $b_4=10$.
- **5p** 2. Determinați valoarea maximă a funcției $f:[1,5] \to \mathbb{R}$, f(x) = x 3.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 12} = x + 2$.
- **5p 4.** Determinați numărul submulțimilor cu două elemente ale mulțimii {1, 2, 3, 4, 5, 6, 7}.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,4) și B(1,0). Determinați ecuația dreptei AB.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului ABC, în care AB = 6 și $C = \frac{\pi}{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1+x & -x \\ 2x & 1-2x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Demonstrați că A(x)A(y) = A(x+y-xy), pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale $x, x \ne 1$, pentru care matricea A(x) este egală cu inversa ei.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 2xy 6x 6y + 21$.
- **5p** a) Arătați că $x \circ y = 2(x-3)(y-3)+3$, pentru orice numere reale x și y.
- **5p b)** Arătați că $1 \circ 2 \circ 3 \circ 4 = 3$.
- **5p** c) Determinați numerele reale x, pentru care $x \circ x \circ x = x$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \ln x$.
- **5p a**) Arătați că $f'(x) = \frac{x-1}{x}, x \in (0,+\infty)$.
- **5p b**) Demonstrați că funcția f este convexă pe intervalul $(0,+\infty)$
- **5p** c) Demonstrați că $\ln x \le x 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 1}$.
- **5p a)** Arătați că $\int_{0}^{1} (x^2 + 1) f(x) dx = 1$.
- **5p b**) Demonstrați că $\int_{0}^{1} x^2 f(x) dx = 1 \frac{\pi}{4}$.
- **5p** c) Determinați numerele naturale n, știind că $\int_{n}^{n+1} 2x f(x) dx = \ln 2$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_2 = b_1 \cdot q = 4 \cdot 2 =$	3 p
	= 8	2p
2.	$x_V = 1$	2p
	$y_V = -1$	3 p
3.	$2x+1=5 \Rightarrow 2x=4$	3 p
	x = 2, care verifică ecuația	2p
4.	$C_5^2 = \frac{5!}{2! \cdot 3!} =$	3 p
	=10	2 p
5.	$0 = m \cdot 1 - 2$	3p
	m = 2	2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{\sqrt{2}}{2\sqrt{2}} =$	3р
	$\sin C$ $2 \cdot \frac{\sqrt{2}}{2}$	Эþ
	=1	2p

1.a)	$A(2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} =$	2p
	=0-1=-1	3 p
b)	$A(a) + A(-a) = \begin{pmatrix} 2-a & 1 \\ 1 & 2-a \end{pmatrix} + \begin{pmatrix} 2+a & 1 \\ 1 & 2+a \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2 p
c)	$A(x)A(x) = \begin{pmatrix} x^2 - 4x + 5 & 4 - 2x \\ 4 - 2x & x^2 - 4x + 5 \end{pmatrix}, \ 2A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3 p
	$\begin{cases} x^2 - 4x + 5 = 2 \\ 4 - 2x = 2 \end{cases}$, de unde obţinem $x = 1$	2 p
2.a)	$f(-1) = (-1)^3 - 4 \cdot (-1)^2 + m \cdot (-1) + 4 = -m - 1$	2 p
	$f(1) = 1^3 - 4 \cdot 1^2 + m \cdot 1 + 4 = m + 1 \Rightarrow f(-1) + f(1) = -m - 1 + m + 1 = 0$, pentru orice număr real m	3p
b)	$m = -1 \Rightarrow f(-1) = f(1) = 0$	3p
	$X-1$ divide f și $X+1$ divide f , deci polinomul f se divide cu polinomul X^2-1	2 p

c)	$x_1 + x_2 + x_3 = 4$, $x_1x_2 + x_2x_3 + x_3x_1 = m \Rightarrow x_1^2 + x_2^2 + x_3^2 = 16 - 2m$	3 p
	Cum $x_1 x_2 x_3 = -4$ și $x_1^2 + x_2^2 + x_3^2 - \frac{4(x_1 x_2 + x_2 x_3 + x_3 x_1)}{x_1 x_2 x_3} = 16 - 2m - \frac{4m}{-4} = 16 - m$, obținem $m = 16$	2 p

1.a)	$f'(x) = \frac{(2x-1)(x-1) - (x^2 - x + 1)}{(x-1)^2} =$	3р
	$= \frac{x^2 - 2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}, \ x \in (1, +\infty)$	2p
b)	f(2)=3, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 3$	3 p
c)	$f'(x) > 0$, pentru orice $x \in (2, +\infty) \Rightarrow f$ este strict crescătoare pe $(2, +\infty)$	2p
	Cum $2 < e < 3$ și $f(3) = \frac{7}{2}$, obținem $f(e) < \frac{7}{2}$	3p
2.a)	$\int_{1}^{2} x^{2} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3р
	$=e^2-e=e(e-1)$	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$, pentru orice $x \in (0, +\infty)$	2p
	$F''(x) = \frac{e^x(x-2)}{x^3} \ge 0$, pentru orice $x \in [2, +\infty)$, deci funcția F este convexă pe $[2, +\infty)$	3p
c)	$\mathcal{A} = \int_{1}^{2} \left f(x) \right dx = \int_{1}^{2} \frac{e^{x}}{x^{2}} dx$	2p
	Cum $x \ge 1 \Rightarrow x^2 \ge 1 \Rightarrow \frac{1}{x^2} \le 1$, obţinem $\frac{e^x}{x^2} \le e^x$, deci $\mathcal{A} \le \int_1^2 e^x dx$, adică $\mathcal{A} \le e(e-1)$	3р

Matematică *M_st-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p** | **1.** Determinați al doilea termen al progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=4$ și rația q=2.
- **5p** 2. Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(2x+1) = \log_3 5$.
- **5p 4.** Determinați numărul submulțimilor cu două elemente ale mulțimii $\{0, 1, 2, 3, 4\}$.
- **5p** | **5.** Determinați numărul real m, știind că punctul M(1,0) aparține dreptei de ecuație y = mx 2.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului ABC, în care $AB = \sqrt{2}$ și $C = \frac{\pi}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 2-a & 1 \\ 1 & 2-a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2)) = -1$.
- **5p b**) Demonstrați că A(a) + A(-a) = 2A(0), pentru orice număr real a.
- **5p** c) Determinați numărul real x, știind că A(x)A(x) = 2A(1).
 - **2.** Se consideră polinomul $f = X^3 4X^2 + mX + 4$, unde *m* este număr real.
- **5p** | a) Arătați că f(-1) + f(1) = 0, pentru orice număr real m.
- **5p b)** Pentru m = -1, arătați că polinomul f se divide cu polinomul $X^2 1$.
- **5p** c) Determinați numărul real m, știind că $x_1^2 + x_2^2 + x_3^2 4\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 0$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 x + 1}{x 1}$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-2)}{(x-1)^2}, x \in (1,+\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(e) < \frac{7}{2}$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{e^x}{x^2}$.
- **5p** a) Arătați că $\int_{1}^{2} x^2 f(x) dx = e(e-1)$.
- **5p b**) Demonstrați că orice primitivă a funcției f este convexă pe intervalul $[2,+\infty)$.
- **5p** c) Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = 2 are aria mai mică sau egală cu e(e-1).

Examenul de bacalaureat național 2016

Proba E. c)

Matematică M șt-nat

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_1 \cdot q^4 = 48 \text{ si } b_1 \cdot q^7 = 384 \Rightarrow q = 2$	3p
	$b_1 = 3$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 7x + 6 = 0 \Leftrightarrow x_1 = 1$ şi $x_2 = 6$, deci graficul funcției f intersectează axa	3p
	Ox în punctele $(1,0)$ și $(6,0)$	
	Distanța dintre punctele de intersecție a graficului funcției f cu axa Ox este egală cu 5	2 p
3.	$\left(2^{5}\right)^{x} = 2^{4} \cdot 2^{x} \Leftrightarrow 5x = 4 + x$	3p
	x = 1	2p
4.	Mulțimea {1, 2, 3, 4, 5} are 5 elemente, deci sunt 5 cazuri posibile	1p
	În mulțimea $\{1,2,3,4,5\}$ sunt 2 numere care verifică egalitatea, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	2p
5.	$\frac{a+1}{6} = \frac{a-1}{2} \Leftrightarrow 2a+2 = 6a-6$	3p
	a=2	2p
6.	$(2\sin x + \cos x)^2 = 4\sin^2 x + 4\sin x \cos x + \cos^2 x$	2p
	$(\sin x + 2\cos x)^2 = \sin^2 x + 4\sin x \cos x + 4\cos^2 x \Rightarrow (2\sin x + \cos x)^2 + (\sin x + 2\cos x)^2 - 4\sin 2x = 5(\sin^2 x + \cos^2 x) + 8\sin x \cos x - 4\cdot 2\sin x \cos x = 5, \text{ pentru orice număr real } x$	3 p

1.a)	$2A = \begin{pmatrix} 2 & 4 \\ 8 & 2 \end{pmatrix}, \det(2A) = \begin{vmatrix} 2 & 4 \\ 8 & 2 \end{vmatrix} =$	3p
	$= 2 \cdot 2 - 4 \cdot 8 = 4 - 32 = -28$	2p
b)	$A+2B = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2x \\ 2y & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2+2x \\ 4+2y & 1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 2+2x \\ 4+2y & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow x = -1 \text{ si } y = -2$	3р
c)	$AB = \begin{pmatrix} 2y & x \\ y & 4x \end{pmatrix}, BA = \begin{pmatrix} 4x & x \\ y & 2y \end{pmatrix}$	2p
	$AB = BA \Leftrightarrow y = 2x$, deci det $B = \begin{vmatrix} 0 & x \\ 2x & 0 \end{vmatrix} = -2x^2 \le 0$, pentru orice număr real x	3p

2.a)	$(-1) \circ 1 = 3 \cdot (-1) \cdot 1 + 3 \cdot (-1) + 3 \cdot 1 + 2 =$	3p
	=-3-3+3+2=-1	2p
b)	$3x^2 + 3x + 3x + 2 = x \Leftrightarrow 3x^2 + 5x + 2 = 0$	3 p
	$x_1 = -\frac{2}{3}$ și $x_2 = -1$	2p
c)	$3ab+3a+3b+3-1=8 \Leftrightarrow (a+1)(b+1)=3$	3 p
	Cum a și b sunt numere întregi, obținem $(-4,-2)$, $(-2,-4)$, $(0,2)$ și $(2,0)$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (x-2)'e^x + (x-2)(e^x)' =$	2p
		-
	$=e^{x}+(x-2)e^{x}=(x-1)e^{x}, x \in \mathbb{R}$	3 p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x - 2)e^x = \lim_{x \to -\infty} \frac{x - 2}{e^{-x}} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f''(x) = xe^x$, $f''(x) = 0 \Leftrightarrow x = 0$	2p
	$f''(x) \le 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f'$ este descrescătoare pe $(-\infty, 0]$	1p
	$f''(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f'$ este crescătoare pe $[0, +\infty) \Rightarrow f'(x) \ge f'(0) = -1$, pentru orice număr real x	2p
2.a)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{2} 2x dx = x^{2} \Big _{1}^{2} =$	3p
	=4-1=3	2p
b)	$F'(x) = (x^2 + \ln x + 2016)' = 2x + \frac{1}{x} =$	2p
	$=\frac{2x^2+1}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	3p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(\frac{2x^{2} + 1}{x}\right)^{2} dx = \pi \int_{1}^{2} \left(4x^{2} + 4 + \frac{1}{x^{2}}\right) dx =$	2p
	$= \pi \left(\frac{4x^3}{3} + 4x - \frac{1}{x} \right) \Big _{1}^{2} = \frac{83\pi}{6} < 14\pi$	3 p

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M st-nat*

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați primul termen al progresiei geometrice $(b_n)_{n>1}$, știind că $b_5 = 48$ și $b_8 = 384$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 7x + 6$. Determinați distanța dintre punctele de intersecție a graficului funcției f cu axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $32^x = 16 \cdot 2^x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr natural n din mulțimea $\{1, 2, 3, 4, 5\}$, acesta să verifice egalitatea $n^2 5n + 6 = 0$.
- **5p** | **5.** Determinați numărul real a, știind că vectorii $\vec{u} = (a+1)\vec{i} + (a-1)\vec{j}$ și $\vec{v} = 6\vec{i} + 2\vec{j}$ sunt coliniari.
- **5p 6.** Arătați că $(2\sin x + \cos x)^2 + (\sin x + 2\cos x)^2 4\sin 2x = 5$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix}$, unde x și y sunt numere reale.
- 5p a) Arătați că det(2A) = -28.
- **5p b)** Determinați numerele reale x și y, știind că $A + 2B = I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Dacă AB = BA, arătați că det $B \le 0$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 3xy + 3x + 3y + 2$.
- $5\mathbf{p} \mid \mathbf{a}$) Arătați că $(-1) \circ 1 = -1$.
- $\mathbf{5p} \mid \mathbf{b}$) Rezolvați în mulțimea numerelor reale ecuația $x \circ x = x$.
- **5p** c) Determinați perechile (a,b) de numerele întregi, știind că $a \circ b = 8$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-2)e^x$.
- **5p** a) Arătați că $f'(x) = (x-1)e^x$, $x \in \mathbb{R}$.
- **5p b)** Determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $f'(x) \ge -1$, pentru orice număr real x.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x^2+1}{x}$.
- **5p** a) Arătați că $\int_{1}^{2} \left(f(x) \frac{1}{x} \right) dx = 3.$
- **5p** b) Demonstrați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = x^2 + \ln x + 2016$ este o primitivă a funcției f.
- **5p** c) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, g(x) = f(x) este mai mic decât 14π .

Matematică *M_şt-nat*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(a_1+9r) = a_1+4r+a_1+5r+36 \Leftrightarrow 9r=36$	3р
	r = 4	2 p
2.	$x^2 + 3x - 1 = x - 1 \Leftrightarrow x^2 + 2x = 0$	3 p
	x = -2 sau $x = 0$	2p
3.	$\log_2 \frac{(x-1)(x^2-1)}{x+1} = 4 \Rightarrow (x-1)^2 = 16$	3 p
	x = -3 sau $x = 5$, care verifică ecuația	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 9 numere cu cifra unităților zero, 4 numere cu cifra zecilor cinci și cifra unităților număr par nenul și 4 numere cu cifra unităților cinci și cifra zecilor număr par, deci sunt 17 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{17}{90}$	2p
5.	$A(1,1), B(1,4) \Rightarrow AB \parallel Oy$ şi $A(1,1), C(5,1) \Rightarrow AC \parallel Ox$, deci $\triangle ABC$ este dreptunghic în A	2p
	Centrul cercului circumscris $\triangle ABC$ este mijlocul laturii BC și are coordonatele $\left(3,\frac{5}{2}\right)$	3 p
6.	$1 + \cos 2x = 2\cos^2 x$	2p
	$1 - \cos 2x = 2\sin^2 x \Rightarrow \frac{1 + \cos 2x}{1 - \cos 2x} = \frac{2\cos^2 x}{2\sin^2 x} = \operatorname{ctg}^2 x, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	3 p

1.a)	$M(0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 0 & -1 & 1 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 3 + (-2) + 0 - 0 - (-1) - 2 = 0$	3p 2p
b)	$2M(x)-M(-x) = \begin{vmatrix} 4 & 6 & 2 \\ 2x & 4x-2 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 3 & 1 \\ -x & -2x-1 & 1 \end{vmatrix} =$	3p
	$= \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3x & 6x - 1 & 1 \end{pmatrix} = M(3x), \text{ pentru orice număr real } x$	2p

c)	$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ n & 2n-1 & 1 \\ n^2 & 2n^2-1 & 1 \end{vmatrix} = n(n-1), \text{ deci } \mathcal{A}_{\Delta OAB} = \frac{1}{2} \Delta = \frac{n(n-1)}{2}$	3p
	Cum pentru orice număr natural n , $n \ge 2$, numerele $n-1$ și n sunt consecutive, produsul lor este număr par, deci $\mathcal{A}_{\Delta OAB}$ este număr natural	2p
2.a)	$1 \circ \frac{1}{3} = 6 \cdot 1 \cdot \frac{1}{3} - 2 \cdot 1 - 2 \cdot \frac{1}{3} + 1 =$	2p
	$=\frac{1}{3}$	3p
b)	$x \circ e = 6xe - 2x - 2e + 1 = 6ex - 2e - 2x + 1 = e \circ x$, pentru orice număr real x	2p
	$x \circ e = x \Leftrightarrow (3x-1)(2e-1) = 0$, pentru orice număr real x , deci $e = \frac{1}{2}$ este elementul neutru al legii de compoziție " \circ "	3 p
c)	$x \circ \frac{1}{3} = \frac{1}{3} \circ y = \frac{1}{3}$, pentru x și y numere reale	2p
	$\frac{1}{1008} \circ \frac{2}{1008} \circ \frac{3}{1008} \circ \dots \circ \frac{2016}{1008} = \left(\frac{1}{1008} \circ \frac{2}{1008} \circ \dots \circ \frac{335}{1008}\right) \circ \frac{1}{3} \circ \left(\frac{337}{1008} \circ \frac{338}{1008} \circ \dots \circ \frac{2016}{1008}\right) = \frac{1}{3}$	3 p

1.a)	$f'(x) = \frac{1 \cdot (x^4 + 3) - x \cdot 4x^3}{(x^4 + 3)^2} = \frac{3(1 - x^4)}{(x^4 + 3)^2} =$	3р
	$= -\frac{3(x^4 - 1)}{(x^4 + 3)^2} = -\frac{3(x - 1)(x + 1)(x^2 + 1)}{(x^4 + 3)^2}, \ x \in \mathbb{R}$	2p
b)	$f(0) = 0, f'(0) = \frac{1}{3}$	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0)$, adică $y = \frac{1}{3}x$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	1p
	$x \in (-\infty, -1] \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $(-\infty, -1]$; $x \in [-1, 1] \Rightarrow f'(x) \ge 0$, deci f crescătoare pe $[-1, 1]$ și $x \in [1, +\infty) \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $[1, +\infty)$	1p
	Cum $\lim_{x \to -\infty} f(x) = 0$, $f(-1) = -\frac{1}{4}$, $f(1) = \frac{1}{4}$ și $\lim_{x \to +\infty} f(x) = 0$, obținem $-\frac{1}{4} \le f(x) \le \frac{1}{4}$, pentru orice $x \in \mathbb{R}$	3р
2.a)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x - 2x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 2$, deci $F(x) = (x-1)e^x - 2x + 2$	2 p
b)	$\int_{0}^{1} \left(x^{2} e^{x} - 2x \right) dx = x^{2} e^{x} \begin{vmatrix} 1 & -1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 0$	3p
	=e-3	2p
c)	$\int_{1}^{x} f(t)dt = F(x) - F(1) = (x - 1)(e^{x} - 2)$	3 p
	$(x-1)(e^x-2)=0 \Leftrightarrow x=1 \text{ sau } x=\ln 2$	2 p

Examenul de bacalaureat național 2016

Proba E. c)

Matematică M st-nat

Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați rația progresiei aritmetice $(a_n)_{n>1}$, știind că $2a_{10} = a_5 + a_6 + 36$.
- **5p** 2. Determinați abscisele punctelor de intersecție a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 3x 1$ cu dreapta de ecuație y = x 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2 \frac{x-1}{x+1} + \log_2 (x^2-1) = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă produsul cifrelor divizibil cu 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(1,4) și C(5,1). Determinați coordonatele centrului cercului circumscris triunghiului ABC.
- **5p 6.** Arătați că $\frac{1+\cos 2x}{1-\cos 2x} = \operatorname{ctg}^2 x$, pentru orice $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $M(x) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ x & 2x-1 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați $\det(M(0))$.
- **5p b**) Demonstrați că 2M(x) M(-x) = M(3x), pentru orice număr real x.
- **5p** c) În reperul cartezian xOy se consideră punctele O(0,0), A(n,2n-1) și $B(n^2,2n^2-1)$, unde n este număr natural, $n \ge 2$. Demonstrați că aria triunghiului OAB este număr natural.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 6xy 2x 2y + 1$.
- **5p** a) Calculați $1 \circ \frac{1}{3}$.
- **5p b**) Determinați elementul neutru al legii de compoziție "o".
- **5p** c) Calculați $\frac{1}{1008} \circ \frac{2}{1008} \circ \frac{3}{1008} \circ \dots \circ \frac{2016}{1008}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^4 + 3}$.
- **5p** a) Arătați că $f'(x) = -\frac{3(x-1)(x+1)(x^2+1)}{(x^4+3)^2}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că $-\frac{1}{4} \le f(x) \le \frac{1}{4}$, pentru orice număr real x.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x 2$.
- **5p a**) Determinați primitiva F a funcției f, pentru care F(1) = 0.
- **5p b)** Calculați $\int_{0}^{1} x f(x) dx$.
- **5p** c) Determinați numerele reale x, știind că $\int_{1}^{x} f(t) dt = 0$.

Matematică *M_şt-nat*

Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = i(1+i)^2 = 2i^2 =$	2p
	=-2, deci partea reală a numărului complex z este egală cu -2	3 p
2.	$-\frac{m^2-4}{4} = -1 \Leftrightarrow m^2 - 8 = 0$	3 p
	$m = -2\sqrt{2} \text{ sau } m = 2\sqrt{2}$	2p
3.	$2^{2x} + 3 \cdot 2^x - 4 = 0 \Leftrightarrow (2^x - 1)(2^x + 4) = 0$	3 p
	Deoarece $2^x > 0$, soluția ecuației este $x = 0$	2 p
4.	5, 15, 25,, 2005 și 2015 sunt numerele din mulțimea <i>M</i> care sunt divizibile cu 5 și nu sunt divizibile cu 10	2p
	În mulțimea <i>M</i> sunt 202 numere care sunt divizibile cu 5 și nu sunt divizibile cu 10	3 p
5.	Punctul B este mijlocul segmentului MC	2p
	$\overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{AM} + \overrightarrow{AC} \right) \Rightarrow \overrightarrow{AM} = 2\overrightarrow{AB} - \overrightarrow{AC}$	3p
6.	$2\sin x \cos x = \sin x \Leftrightarrow \sin x (2\cos x - 1) = 0$	2p
	Cum $x \in [0, \pi]$, obţinem $x = 0$, $x = \frac{\pi}{3}$ sau $x = \pi$	3 p

SUBIECTUL al II-lea

 $\begin{vmatrix} 1 & 1 & 1 \\ 2015 & 2016 & 2016 \end{vmatrix} \Rightarrow \det(A(2016)) = \begin{vmatrix} 1 & 1 \\ 2015 & 2016 \end{vmatrix}$ 1.a) 2016 = 2p 2015^2 2016^2 2016^2 =0**3**p $\det(A(x)) = \begin{vmatrix} 1 & 1 & 1 \\ 2015 & 2016 & x \\ 2015^2 & 2016^2 & x^2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 2015 - x & 2016 - x & x \\ 2015^2 - x^2 & 2016^2 - x^2 & x^2 \end{vmatrix} =$ b) 2p $= (2015 - x)(2016 - x) \begin{vmatrix} 1 & 1 \\ 2015 + x & 2016 + x \end{vmatrix} = (2015 - x)(2016 - x), \text{ pentru orice număr real } x$ **3**p $\det(A(x)) = x^2 - (2015 + 2016)x + 2015 \cdot 2016$ c) 2p $\det(A(x))$ are valoarea minimă pentru $x = \frac{4031}{2}$ 3p

(30 de puncte)

2.a)	$A \cdot A = \begin{pmatrix} (-1) \cdot (-1) + (-1) \cdot 1 & (-1) \cdot (-1) + (-1) \cdot 1 \\ 1 \cdot (-1) + 1 \cdot 1 & 1 \cdot (-1) + 1 \cdot 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	2p
b)	$X(a) \cdot X(b) = (I_2 + aA)(I_2 + bA) = I_2 + (a+b)A + abA \cdot A =$	3p
	$X(a) \cdot X(b) = (I_2 + aA)(I_2 + bA) = I_2 + (a+b)A + abA \cdot A =$ $= I_2 + (a+b)A = X(a+b), \text{ pentru orice numere reale } a \text{ si } b$	2p
c)	M = X((-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4) = X(4)	2p
	Cum $X(4) \cdot X(-4) = X(0) = I_2$, inversa matricei M este matricea $X(-4) = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{mx^2 + 4x - m}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \left(m(x+1) + \frac{4x}{x - 1} \right) =$	3p
	$=+\infty$, deci dreapta de ecuație $x=1$ este asimptotă verticală la graficul funcției f , pentru	2 p
	orice număr real <i>m</i>	1
b)	$y = 3$ este asimptotă orizontală la graficul funcției $g \Rightarrow \lim_{x \to +\infty} g(x) = 3$	2p
	Cum $\lim_{x \to +\infty} \frac{mx^2 + 4x - m}{x(x-1)} = m$, obţinem $m = 3$	3 p
c)	$\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = \lim_{x \to 2} \frac{\frac{-x^2 + 4x + 1}{x - 1} - 5}{x - 2} = \lim_{x \to 2} \frac{-x^2 - x + 6}{(x - 1)(x - 2)} =$	2 p
	$= \lim_{x \to 2} \frac{-x - 3}{x - 1} = -5$	3 p
2.a)	$f\left(-1\right) = -\frac{1}{2}$	2p
	$f(4) = 2 \Rightarrow f(-1) \cdot f(4) = -1$	3 p
b)	$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \lim_{\substack{x \to 2 \\ x < 2}} \left(\frac{x}{2} + 2a\right) = 1 + 2a, \lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (ax + \log_2 x) = 2a + 1 \text{ și } f(2) = 2a + 1,$ $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (ax + \log_2 x) = 2a + 1 \text{ și } f(2) = 2a + 1,$ $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (ax + \log_2 x) = 2a + 1 \text{ și } f(2) = 2a + 1,$ $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (ax + \log_2 x) = 2a + 1 \text{ și } f(2) = 2a + 1,$	3p
	Cum, pentru orice număr real a , funcția f este continuă pe $(-\infty,2)$ și pe $(2,+\infty)$, obținem că f este continuă pe $\mathbb R$	2p
c)	$f(-1)\cdot f(4) = \left(-\frac{1}{2} + 2a\right)(4a+2) = (4a-1)(2a+1)$	2p
	Deoarece f este continuă și pentru orice $a \in \left(-\frac{1}{2}, \frac{1}{4}\right)$ avem $f(-1) \cdot f(4) < 0$, ecuația $f(x) = 0$ are cel puțin o soluție în intervalul $(-1,4)$	3 p

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_şt-nat*

Clasa a XI-a

Simulare

(30 de puncte)

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

- **5p 1.** Determinați partea reală a numărului complex $z = i(1+i)^2$.
- **5p** 2. Determinați numerele reale m, știind că imaginea funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx + 1$ este intervalul $[-1, +\infty)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{2x} + 2^{x+1} = 4 2^x$.
- **5p 4.** Determinați numărul elementelor mulțimii $M = \{1, 2, 3, ..., 2016\}$ care sunt divizibile cu 5 și nu sunt divizibile cu 10.
- **5p** | **5.** Se consideră triunghiul ABC și punctul M astfel încât $\overrightarrow{CM} = 2\overrightarrow{BM}$. Arătați că $\overrightarrow{AM} = 2\overrightarrow{AB} \overrightarrow{AC}$.
- **5p** | **6.** Determinați numerele reale $x \in [0, \pi]$, pentru care $\sin 2x = \sin x$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & 1 & 1 \\ 2015 & 2016 & x \\ 2015^2 & 2016^2 & x^2 \end{pmatrix}$, unde x este număr real.
- **5p a**) Calculați $\det(A(2016))$.
- **5p b**) Demonstrați că $\det(A(x)) = (2015 x)(2016 x)$, pentru orice număr real x.
- **5p** c) Determinați numărul real x pentru care det(A(x)) are valoarea minimă.
 - **2.** Se consideră matricele $A = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $X(a) = I_2 + aA$, unde a este număr real.
- **5p** a) Calculați $A \cdot A$
- **5p b**) Demonstrați că $X(a) \cdot X(b) = X(a+b)$, pentru orice numere reale $a \neq b$.
- **5p** c) Determinați inversa matricei $M = X(-3) \cdot X(-2) \cdot X(-1) \cdot X(0) \cdot X(1) \cdot X(2) \cdot X(3) \cdot X(4)$.

- 1. Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\frac{mx^2+4x-m}{x-1}$, unde m este număr real.
- **5p** a) Arătați că dreapta de ecuație x = 1 este asimptotă verticală la graficul funcției f, pentru orice număr real m.
- **5p b)** Determinați numărul real m, pentru care dreapta de ecuație y=3 este asimptotă orizontală la graficul funcției $g:(1,+\infty) \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$.
- **5p** c) Pentru m = -1, calculați $\lim_{x \to 2} \frac{f(x) 5}{x 2}$
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \frac{x}{2} + 2a, & x < 2 \\ ax + \log_2 x, & x \ge 2 \end{cases}$, unde a este număr real.
- **5p** a) Pentru a = 0, calculați $f(-1) \cdot f(4)$.
- **5p b**) Demonstrați că funcția f este continuă pe \mathbb{R} , pentru orice număr real a .
- **5p** c) Demonstrați că, dacă $a \in \left(-\frac{1}{2}, \frac{1}{4}\right)$, ecuația f(x) = 0 are cel puțin o soluție în intervalul (-1, 4).

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 01

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{5} + 2)^2 = 9 + 4\sqrt{5}$ $9 + 4\sqrt{5} - 4\sqrt{5} = 9$	3p
	$9 + 4\sqrt{5} - 4\sqrt{5} = 9$	2p
2.	$f(m) = 4 \Rightarrow m + 2 = 4$	3 p
	m=2	2p
3.	$x^2 + 9 = 25 \Rightarrow x^2 - 16 = 0$	2p
	x = -4 sau $x = 4$, care verifică ecuația	3 p
4.	Mulțimea M are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea M sunt 4 numere divizibile cu 2, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{4}{1}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{9}$	2 p
5.	$\frac{a-1}{2} = \frac{-3}{-6}$	3р
	2 –6	op
	a=2	2p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{\sqrt{3}}{2}$	2p
	$\sin 2x = 2\sin x \cos x = 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$	3p

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1 - 0\cdot 0 = 1$	3 p
b)	$A(x)A(y) = \begin{pmatrix} 1+3x & 2x \\ -6x & 1-4x \end{pmatrix} \begin{pmatrix} 1+3y & 2y \\ -6y & 1-4y \end{pmatrix} = \begin{pmatrix} 1+3x+3y-3xy & 2x+2y-2xy \\ -6x-6y+6xy & 1-4x-4y+4xy \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1+3(x+y-xy) & 2(x+y-xy) \\ -6(x+y-xy) & 1-4(x+y-xy) \end{pmatrix} = A(x+y-xy), \text{ pentru orice numere reale } x \text{ §i } y$	2p
c)	$A(2^{x} + 2^{x} - 2^{x} \cdot 2^{x}) = A(1) \Leftrightarrow 2^{x} + 2^{x} - 2^{x} \cdot 2^{x} = 1$	3p
	$\left(2^x - 1\right)^2 = 0 \iff x = 0$	2p
2.a)	$f(-1) = (-1)^3 - (-1)^2 + a \cdot (-1) + 2 = -a$	2p
	$f(1) = 1^3 - 1^2 + a \cdot 1 + 2 = a + 2 \Rightarrow f(-1) + f(1) = -a + a + 2 = 2$, pentru orice număr real a	3p
b)	Restul împărțirii polinomului f la polinomul $X^2 - 2X + 2$ este aX	3p
	Polinomul f este divizibil cu polinomul $X^2 - 2X + 2 \Leftrightarrow a = 0$	2p

c)	$x_1 + x_2 + x_3 = 1$, $x_1x_2 + x_2x_3 + x_1x_3 = a \Rightarrow x_1^2 + x_2^2 + x_3^2 = 1 - 2a$	3 p
	$x_1^3 + x_2^3 + x_3^3 = (x_1^2 + x_2^2 + x_3^2) - a(x_1 + x_2 + x_3) - 6 = 1 - 2a - a - 6 = -3a - 5$	1p
	$x_1^3 + x_2^3 + x_3^3 + 3(x_1x_2 + x_2x_3 + x_1x_3) = -3a - 5 + 3a = -5$, pentru orice număr real a	1p

1.a)	$f'(x) = \frac{(2x+2)(x-3) - (x^2 + 2x - 11)}{(x-3)^2} =$	3 p
	$=\frac{x^2-6x+5}{(x-3)^2} = \frac{(x-1)(x-5)}{(x-3)^2}, \ x \in (3,+\infty)$	2 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 2x - 11}{x(x - 3)} = 1$	2 p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{x^2 + 2x - 11 - x^2 + 3x}{x - 3} = \lim_{x \to +\infty} \frac{5x - 11}{x - 3} = 5, \text{ deci dreapta de ecuație}$ $y = x + 5 \text{ este asimptotă oblică spre } +\infty \text{ la graficul funcției } f$	3 p
c)		2
	$f'(x) < 0$, pentru orice $x \in (3,5) \Rightarrow f$ este strict descrescătoare pe $(3,5)$	3 p
	Cum $3 < \pi < 4$ și $f(4) = 13$, obținem $f(\pi) > 13$	2p
2.a)	$\int_{0}^{1} \frac{1}{e^{x}} f(x) dx = \int_{0}^{1} (3x+1) dx =$	2p
	$= \left(\frac{3x^2}{2} + x\right) \Big _0^1 = \frac{3}{2} + 1 = \frac{5}{2}$	3 p
b)	$F'(x) = (3x+m)'e^x + (3x+m)(e^x)' = 3e^x + (3x+m)e^x = (3x+m+3)e^x$	3 p
	$F'(x) = f(x) \Leftrightarrow (3x + m + 3)e^x = (3x + 1)e^x$, pentru orice număr real x, deci $m = -2$	2p
c)	$\int_{0}^{a} (3x+1)e^{x} dx = (3x-2)e^{x} \Big _{0}^{a} = (3a-2)e^{a} + 2$	2p
	$(3a-2)e^a + 2 = 3a \Leftrightarrow (3a-2)(e^a-1) = 0$ şi, cum a este număr real nenul, obținem $a = \frac{2}{3}$	3p

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M st-nat*

Varianta 01

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că $(\sqrt{5} + 2)^2 4\sqrt{5} = 9$.
- **5p** 2. Determinați numărul real m, știind că punctul M(m,4) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_4(x^2+9) = \log_4 25$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să fie divizibil cu 2.
- **5p** | **5.** Determinați numărul real a, pentru care vectorii $\vec{u} = (a-1)\vec{i} 3\vec{j}$ și $\vec{v} = 2\vec{i} 6\vec{j}$ sunt coliniari.
- **5p 6.** Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{1}{2}$, arătați că $\sin 2x = \frac{\sqrt{3}}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1+3x & 2x \\ -6x & 1-4x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = 1$
- **5p b**) Demonstrați că A(x)A(y) = A(x+y-xy), pentru orice numere reale x și y.
- **5p** c) Determinați numărul real x, știind că $A(2^x)A(2^x) = A(1)$.
 - **2.** Se consideră polinomul $f = X^3 X^2 + aX + 2$, unde a este număr real.
- **5p** a) Arătați că f(-1) + f(1) = 2, pentru orice număr real a.
- **5p b**) Determinați numărul real a, pentru care polinomul f este divizibil cu polinomul $X^2 2X + 2$.
- **5p** c) Demonstrați că $x_1^3 + x_2^3 + x_3^3 + 3x_1x_2 + 3x_2x_3 + 3x_1x_3 = -5$, pentru orice număr real a, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f:(3,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 + 2x 11}{x-3}$.
- **5p** a) Arătați că $f'(x) = \frac{(x-1)(x-5)}{(x-3)^2}, x \in (3,+\infty).$
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p c**) Demonstrați că $f(\pi) > 13$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (3x+1)e^x$.
- **5p** a) Arătați că $\int_0^1 \frac{1}{e^x} f(x) dx = \frac{5}{2}$.
- **5p b)** Determinați numărul real m, pentru care funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = (3x + m)e^x$ este o primitivă a funcției f.
- **5p** c) Determinați numărul real nenul a, știind că $\int_{0}^{a} f(x) dx = 3a$.