Announcements for Wednesday, 20NOV2024

- Next Week: Changes in Designation of Class Days
 - There WILL be recitations next week
 - Monday, 25NOV2024, is Monday Classes
 - Tuesday, 26NOV2024, is *Thursday Classes*
 - Wednesday, 27NOV2024, is *Friday Classes*
- Thanksgiving Break
 - Thursday, 28NOV2024 Sunday, 01DEC2024
 - No classes for the entire university
- Students requiring ODS accommodations for Exam 3 and the Final Exam
 - Monday, 25NOV2024, is the deadline to submit requests for final exams and all remaining exams for the Fall semester
- **RE-OPENED:** Week 10 Homework Assignments available on eLearning
 - Graded and Timed Quiz 10 "Reactions in aqueous solution" due tonight at 6:00 PM (EST)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Chapter 10: Gases

Some questions we'll try to answer

- How and why do gases behave fundamentally different than solids and liquids?
- What is gas pressure caused by and how can it be measured?
- What parameters can be used to describe a gaseous system and how do these parameters relate mathematically to one another?
- What does it mean for a gas to behave ideally?
- How are the properties of a gaseous mixture determined and related to one another?
- How does the Kinetic Molecular Theory account for the properties and behaviors of gases?
- What does temperature actually measure?
- On what does the speed of a gas particle depend?
- How do real gases behave?

RECALL FROM CHAPTER 1: Classifying Matter by State

 based on the strength of interactions that occur between particles making up the substance at a given temperature

 stronger interactions = less space, less mobility, more rigidity, more condensed state

 changing temperature can change the state

Gases – General Properties

- occupy volume of their container
- lots of empty space between particles
- highly compressible
- lots of mobility
- individual particles interact very little with each other

important *interrelated* properties that completely specify a gaseous system:

- 1. pressure (P)
- 2. volume (V)
- 3. amount/moles of gas (n)
- 4. temperature (T)

constant motion
© 2018 Pearson Education, Inc.

Gas Pressure

- force (F) exerted by gas particles per unit area (A)
 - $P = \frac{F}{A}$
 - proportional to force and inversely proportional to area
 - force resulting from collisions of gas particles with a surface and/or walls of a container
- anything that increases the frequency and/or force of collisions will cause an increase in gas pressure
 - decreased volume
 - increased speed of particles
 - increased gas amount...

Pressure Units

• in SI base units:
$$P = \frac{Force}{Area} = \frac{N}{m^2} = pascal (Pa)$$

 torr, atmosphere (atm), bar, millimeters of mercury (mmHg), kilopascal (kPa), pounds per square inch (psi)

$$1.00 \text{ atm} = 760 \text{ mmHg} = 760 \text{ torr}$$

= 1.013 bar = 101.325 kPa = 14.7 psi

Measuring Atmospheric Pressure

- barometer = instrument used for measuring atmospheric pressure (i.e., barometric pressure)
 - inverted tube filled with mercury submerged in a pool of mercury exposed to the atmosphere
 - atmosphere exerts a pressure on the pool of mercury forcing the mercury column to rise in the tube
- $P_{column} = P_{atm}$
 - the atmosphere exerts a pressure equal to pressure exerted by a column of mercury 760 mm tall
- 1 atm = 760 mmHg

© 2018 Pearson Education, Inc.

Measuring Gas Pressure in the Laboratory

- manometer = U-shaped tube containing mercury used for measuring gas pressure
 - one end open to the atmosphere, the other end is attached to the gas sample

 pressure of gas sample balanced by pressure of the atmosphere and pressure of mercury column

Measuring Gas Pressure in the Laboratory (continued)

Try This

• If the barometric pressure is 751.5 mmHg, what is the pressure, in atm, of the gas sample shown in each illustration?

