PAT 451/551 INTERACTIVE MEDIA DESIGNI

ENCODERS

ROTATION SENSING

Rotary encoder

- Sequence of logic transitions
- Count number of transitions: tell how far you've traveled

Benefits?

Problems?

ROTATION SENSING

Benefits

- Can be non-contact
- Can turn infinitely
- In practice, can be very high resolution, depending on technology

Drawbacks

- Can never know absolute position
- With just 1 emitter/detector, we can't tell which direction we're turning
- Finite resolution
- Missed detections -> drift

2 signals with a 90° phase offset allow us to sense direction

QUADRATURE ENCODERS (INCREMENTAL ENCODERS)

Form Factors / Technologies

- Can be optical, magnetic, mechanical
- Can be prepackaged / DIY

Applications

- Position control in robotics / automation
 - CNC Machines, laser cutters, manufacturing robots
- Speed Control in motorized systems
- Consumer electronics
 - Volume knob
 - MIDI controllers

QUADRATURE ENCODERS (INCREMENTAL ENCODERS)

DIY with reflective optical sensor

Automotive volume knob

Manufactured wheel with stock LED/phototransistors

Linear configuration to position laser cutter

Inside a ball mouse

MIDI controller with LED feedback

Schematic illustration of a mechanical encoder

Animation of a mechanical encoder

2 square wave signals, 90° out of phase

Basic operation:

- Read signal A
- If A goes from Low to High
 - Read Signal B
 - If B is High, moved 1 tick CW
 - If B is Low, moved 1 tick CCW

MECHANICAL ENCODER

Options:

Detents

Counts per revolution

Switch

EXAMPLES

Arduino programs

See also:

http://www.arduino.cc/playground/Main/RotaryEncoders