The Grothendieck monoid of an extriangulated category.

Haruhisa Enomoto
(Osaka Metropolitan Univ.)
joint work with Shunya Saito
(Nagoya Univ.)

Overview		
Categories	Monoids	
catelian cat tri cat extriangulated cat.	The Grothendieck monoid M(E)	
in ET quotient"	monoid quotient M(e) ->> M(e)/M(N)	
2. Intermediate subcats	monoid localization	

Table of contents

- · Preliminaries
 - . Monoids (quotient, localization)
 - . ET cat.
- · Main result
 - 1. ET quotient v.s. monoid quotient
 - 2. Intermediate subcets
 v.s. monoid localization

- · Monoid = commutative monoid (M, + 0)
- · monoid hom f: M -> M': preserves + & O

Example

- · I abelian group, · N:= Zzo
- · M, N: monoid ⇒ M⊕N: monoid

H B M

Z D N

Monoid quotient Def M: a monoid, NEM: a submonoid. Then a monoid quotient M To Mis a menoid how such that (1) $\pi(N) = 0$ (2) Y M 4: monoid hom with P(N)=0, equal "modulo 11" My exists!

Define x = y for $x, y \in M$ $: \iff \exists n_1, n_2 \in N, x + n_1 = y + n_2$ Then $M \longrightarrow M = gives a monoid quotient.$

Monoid quotient

Example

m: abelian grp, L ≤ M: subgroup

ms M/L = M/L (usual quotient grp)

- $\circ \quad \mathbb{N} \oplus \mathbb{N} \longrightarrow \mathbb{N} \oplus \mathbb{N}$
- $0 \quad \text{M/3M} = \{\bar{0}, \bar{1}, \bar{2}\} = \text{M/3M} \qquad \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \\ \end{array}$

Monoid localization (com. ring, localization) Def M: a monoid, S & M: a submonoid. Then a monoid localization M > Ms is a monoid hom s.t. (3a sus) +a=0) (1) $\forall s \in S$ P(s) $\in M_S$: invertible (2) & M P M': monoid how st. Uses ess): inv. s i monoid hom.

Prop M_S exists! $(m_1, s_1) \sim (m_2, s_2)$ $\Rightarrow \exists s \in S, m_1 + s_2 + s = m_2 + s_1 + s$ m - s

Monoid localization

Example

o M: abelian group

$$\Rightarrow \forall s$$
, $M_S = M$.

$$\bullet \quad \mathbb{M} \oplus \mathbb{M} = \mathbb{Z} \oplus \mathbb{M}$$

Extriangulated category (ET cat) short exact seg Similar (exact)

Similar (exact)

Similar (exact) $e: abelian cod \longrightarrow f o \rightarrow x \rightarrow y \rightarrow z \rightarrow o'$ $f: tri cod \longrightarrow f x \rightarrow y \rightarrow z \rightarrow x ci)$ triangle Def [Nakaoka-Palu 2019] ": (=) " (C : additive cat, together with { x → Y → Z }: the class of Conflations

Example	conflations	
abelian (exact) cat	short exact seg	
tri. cod	triangle	
ext-closed sub of tri coet	C1 → C2 → C3→ : trì, C; € E	

Grothendieck monoid of ET ad

Def E: ET cat.

The Grothendieck monoid M(E) is a monoid with

generators: [X] for X = E

relations: UX-1Y-Z: confl,

[Y]=[X]+[Z]

Similarly, we have the Grothendieck group $K_0(P)$.

Prop $K_0(P) \cong q_P M(P)$: group compl.

Grotherdieck monoid

(2)

Example

- o $\Lambda: f.d.$ alg with $|\Lambda| = n$. Then $\dim: M(mod \Lambda) \xrightarrow{\sim} N^n$
- o $\mathcal{T}: tri cost. ma M(\mathcal{T}) \xrightarrow{\sim} K_0(\mathcal{T})$!

$$(\bigcirc) \forall x \in T, x \to 0 \to x \cap J \to : tri$$

$$\sim (x) + [x \cap J] = 0 \quad \text{in} \quad M(T)$$

$$\therefore M(T) \quad \text{is an abelian grp}$$

$$\therefore K_0(T) = gp M(T) = M(T)$$

Grothendieck monoid: "Categorification" · A: abelian cat. Db(A): the bounded derived not ~> ob (A): natural inclusion $M(A) \longrightarrow M(D^{b}(A)) = K_{0}(D^{b}(A))$ group conpl. > KD(X) 8P M(×)

In this sense, $A \hookrightarrow b^b(A)$ "categorifies" group compl. $M(A) \longrightarrow Ko(A)$.

ET quotient [Nakaoka-Ogawa-Sakai 2021] Def C: ET cat, NEC: ext-closed sub. an ET quotient e a sw is an ET function a which is universal satisfying R(N) = 0Thm [NOS] There's a sufficient condition (*) s.t. exists. Example (xc) is satisfied for: e A: abelian cat, X = A: Serve subcat, ~ Serre quotient 9 J: tri cat, NST: thick suboot, ~ T/N : Verdier gustient

ET quotients v.s. monoid quotients Assume E: ET cod. N = E: satisfies (*) NCL, E a, e/w Thm ([E-Saito]

(1) M(E) M(E) M(E) induces M(~) >>> M(e)/Im M(L) (2) This can be applied to ci) Serve guotient of abellan cat (ii) Verdier quotient of thi cast. (iii) e: Frobenius exact cet, N:= {projs } \longrightarrow $e_N = e$: stable cook.

ET quotients v.s. monoid quotients.

Example \circ $\Lambda: f.d. alg with 2 simples$ <math>M(-) \mathcal{E} Fix $S_1 \longrightarrow \mathsf{mod} \Lambda \longrightarrow \mathsf{mod} \Lambda$

Cor If NEE satisfies (x), then

Ko(N) -> ko(E) -> ko(E/N) -> D

: exact seg of abelian groups

Intermediate subcat: Example

Q:
$$1 \leftarrow 2$$
, $A = mod kQ$
 $O^{b}(A)$: -..

ع	M(E)	invertible eleus.
<u>_</u> = <u>A</u>	M & M	0 & 0
	Z_	

Intermediate subcat: Example

Intermediate subcoat

Def A: abelian ast, $D^b(X)$: the bounded derived act. e c Db(A) is an intermediate subcost (2) E < Db(x): closed under direct summands and extensions (ms ET corf)

Thus $e \in O^b(A)$: an intermediate subject $e \in C^b(A)$ and $e \in C^b(A)$: a torsion-free class

s. E. $e = F(i) * A = \{x \in D^b(A) \mid H^{0,1} = 0, H^1(x) \in F_i\}$

In M(fin+xd), He = fr, [F] is invertible

((1) F - 10 - Fri]: confl. - 1F] + [Frin] = 0,

localization Intermediate subcot v.s. monoid A: abelian cot, F = A: torslan-free class. M C Fri7* X: inclusion Thm 2 [E-Saito] M(#) (人士四十)人 Induces >M(A) (M=:= {[F3|FE#}) $A = mod + (1 \leftarrow 2 \leftarrow 3)$ = add f 1, ? 3 … と= チャッス MONON ((1,0,0)) = ZOZOZON. Then M(Y) =

Rem X: abelian cost.

Then any monoid localization of M(A)
comes from intermediate subcat.

 $X \subseteq M(M)$: any submonoid $M(M)_X \cong M(M)_{X}$ where $(X)_{face}$: the smallest face of M(M) containing X $\int Saito's talk$

R Serve subrot (m torsion-free)

 $\frac{1}{2} \quad M(A)_{x} = M(A)_{(x)_{face}} \cong M(A$

Summary Monoids Categories The Grothendieck Cabelian cat tri cat (=T) extriangulated cat. monoid M(E) monoid quotient

M(e) ->> M(e)/M(N) ET quotient monoid localization 2. Intermediate subcats $\mu(A) \longrightarrow \mu(A)_{M}$ A*[1] F CD A