Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Models for networks

Sparsity

Number of edges

Empirical study: Ask Ubuntu [1]

Empirical study: UCI social network [1]

Exchangeable models

A sequence of random variables $X_1, X_2, ...$ is *exchangeable* if for a finite permutation σ ,

$$X_{\sigma(1)}, X_{\sigma(2)}, \dots$$

has the same distribution as the original sequence.

Exchangeable models tend to lead to tractable inference.

Beta Neutral-to-the-left Model [2]

- 1. Generate arrival times $1 = T_1 < T_2 < T_3 < \dots$ in any way.
- 2. Conditioned on arrival times, generate ends of edges sequentially:

Why a paper on sampling and inference for BNTL models?

Sampling and inference

Why a paper on sampling and inference for BNTL models?

- ► Inference is notoriously difficult for *non-exchangeable* structures
- ► Need to identify *exchangeable substructures* for tractable inference

Exchangeable substructure

Neutrality

At each step n+1 not corresponding to an arrival time, sample end of edge from discrete distribution

$$P_{n+1} = \left(\frac{d_{1,n} - \alpha}{n - K\alpha}, \dots, \frac{d_{K,n} - \alpha}{n - K\alpha}\right).$$

Equivalently (see paper and [2]), can sample from

$$\tilde{P}_K = \left(\tilde{P}_{1,K}, \dots, \tilde{P}_{K,K}\right)$$

where
$$\frac{\tilde{P}_{j,K}}{\sum_{i=1}^{j}\tilde{P}_{i,K}} = \Psi_{j} \sim \mathsf{Beta}(1-\alpha,\, T_{j}-1-(j-1)\alpha) \;.$$

 $\Psi_i \perp \!\!\! \perp \!\!\! \Psi_j$ for all $i \neq j$. These independent increments are called *neutral-to-the-left* and yield a factorized joint probability.

Gibbs structure

The joint probability has Gibbs structure

$$P(\operatorname{graph}|T_1,T_2,...) = \prod_{j \in \operatorname{vertices}} P(\operatorname{choose} j \ d_j - 1 \ \operatorname{times} \ \operatorname{out} \ \operatorname{of} \ T - T_j \ \operatorname{trials} \)$$

- $ightharpoonup d_j = \text{degree of vertex } j$
- ightharpoonup T = final time
- ▶ T_j = arrival time of vertex j

Gibbs sampler

Variable	Gibbs sampling scheme		
Model variables	Analytic using Gibbs structure		
Arrival times	Update each arrival time separately		
Arrival order	Initialise in descending degree order use M-H with adjacent swap proposal		

Experiments

► Gibbs: parameter recovery

► Gibbs: scalability

▶ Point estimation with massive graphs

Parameter recovery

► Synthetic data

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	$\textbf{-2637.0}\pm\textbf{0.1}$
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	0.043 ± 0.003	$\textbf{-2382.6}\pm\textbf{0.2}$

Scalability

- ► Runtime linear in #edges
- ► Most expensive Gibbs update is for arrival times

MLEs for real data

Ask Ubuntu

- ► Pitman-Yor (edge exchangeable) misspecified
- ▶ Non-exchangeable BNTL provide better fit

Conclusion

- ▶ BNTL models are *flexible*
- ▶ Inference was challenging due to non-exchangeability

Conclusion

- ▶ BNTL models are flexible
- ▶ Inference was challenging due to non-exchangeability
- ▶ BNTL models are *tractable* due to exchangeable substructure

Thank you

- Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.