Skill Mastery Quiz 10

Communicating in Math (MTH 210-01) Winter 2020

Name:

S1-3 Let $A = \{0, 1, 2, 3, \{4\}\}$. Fill in a correct symbol (from \in , \subset , \subseteq , =, \neq) for each of the following.

- 1. $\{4\}$ ___A As usual, there's more than one answer, in this case I'd choose \in since $\{4\}$ is one of the 5 elements of A.
- 2. $\{2\}$ ____A More than one answer, I'd choose \subset or \subseteq .
- 3. $\{1,2,3\}$ ___A I'd choose \subseteq

S2-3 Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ be the universal set. Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 3\}$.

- 1. Find $A \cap B$. $A \cap B = \emptyset$ since they have no elements in common
- 2. Find A^C . $A^c = \{1, 3, 5, 7, 9\}$, everything that is in U but not in A
- 3. Find A B. $A B = \{2, 4, 6, 8, 10\}$. In this case A B = A since A and B have nothing in common.
- 4. Find $A \cup B$. $A \cup B = \{1, 2, 3, 4, 6, 8, 10\}$

S3-2 Let $R^* = \{x \in \mathbb{R} : x \ge 0\}$. Let $s : \mathbb{R}^* \to \mathbb{R}^*$ be defined by $f(x) = x^2$.

- 1. State the domain, codomain of f. (Clearly state which one is which.) The domain is R^* and the codomain is R^* , note these are both given in the definition of the function. The range in this case is also R^* since the graph shows all nonnegative real numbers are outputs.
- 2. Find the image(s) of 3 under f. $f(3) = 3^2 = 9$, so the image of 3 under f is 9
- 3. Find the preimage(s) of 4. Solve f(x) = 4 and take the ones that are in the domain. In this case the only preimage is 2 (since -2 is not in the domain).

- S4-1 Let A and B be sets. Carefully complete the definitions of the following terms. (Note: "no collisions" and "range=codomain" are helpful ways to think about these, but they are NOT the definitions.)
 - 1. A function $f: A \to B$ is injective provided that... for all $x, y \in A$ if $x \neq y$ then $f(x) \neq f(y)$
 - 2. A function $f:A\to B$ is surjective provided that... for all $y\in B$, there exists $x\in A$ such that f(x)=y
 - 3. A function $f: A \to B$ is bijective provided that... f is both injective and surjective

- S6-1 Let $r, s \in \mathbb{Z}$ and $n \in \mathbb{N}$. State the definitions of the following:
 - $-r \mid s$ (for nonzero r) there exists an integer k such that rk = s.
 - $-r \equiv s \pmod{n}$. $n \mid r s$

Give an example of integers a and b such that $a \equiv b \pmod{15}$ and b < 0. a = 10 and b = -5 then $10 \equiv -5 \pmod{15}$ since $15 \mid 10 = (-5)$. There are lots of answers to this question though!