偏微分方程数值解法 椭圆型方程求解

刘瑜

March 24, 2017

Outline

椭圆型方程的差分离散格式 两点边值问题 Laplace 方程 Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造 椭圆型方程描述的是平衡问题,属于纯粹的边值问题. 在很多情形中,椭圆型方程是非定常问题的极限情形. 比如描述的问题增加时间维度,即增加时间导数项 ∂t 或 $\partial^2/\partial t^2$,即可转化为时间演化问题. 椭圆型方程的求解方法在抛物型和双曲型方程的求解中亦能用到.

Outline

椭圆型方程的差分离散格式 两点边值问题 Laplace 方程 Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造

考虑两点边值问题

$$\frac{d}{dx}K(x)\frac{dU}{dx} = r(x), \quad 0 < x < L$$

$$U(0) = U_0, U(L) = U_L$$

其中 K(x), r(x) 是可微的,因而上述方程等价为

$$K\frac{d^2U}{dx^2} + \frac{dK}{dx}\frac{dU}{dx} = r$$

Figure: 一维网格节点

对于内点, 采用二阶中心差分离散二阶和一阶导数

$$K_i \frac{U_{i+1} - 2U_i + U_{i-1}}{h^2} + (dK/dx)_i \frac{U_{i+1} - U_{i-1}}{2h} = r_i$$

整理可得

$$\left(\frac{K_i}{h^2} + \frac{dK/dx}{2h}\right) U_{i+1} - 2\frac{K_i}{h^2} U_i + \left(\frac{K_i}{h^2} - \frac{dK/dx}{2h}\right) U_{i-1} = r_i$$

或者, 可以表示为

$$A_i U_{i-1} + B_i U_i + C_i U_{i+1} = D_i, \quad i = 1, 2, \dots, N$$

边界条件处理

Dirichlet 条件:
$$U(0) = U_0, U(L) = U_L$$

$$B_1 U_1 + C_1 U_2 = r_1 - A_1 U_0$$
$$A_N U_{N-1} + B_N U_N = r_N - C_N U_L$$

Neumann 条件: dU/dx(0) = a, dU/dx(L) = b 采用一阶差分近似边界导数

$$\frac{U_1 - U_0}{h} = a, or \quad U_0 = U_1 - ah$$

$$\frac{U_{N+1} - U_N}{h} = b, or \quad U_{N+1} = U_N + hb$$

二阶近似, 分别采用前向、后向差分

$$\frac{-3\,U_0+4\,U_1-\,U_2}{2\,h}\,=\,a\\ \frac{3\,U_{N+1}-4\,U_N+\,U_{N-1}}{2\,h}\,=\,b$$

Shadow node 方法

(1) 节点 N 位于右边界 x = L, 节点 N+1 向边界外延拓一个网格

二阶中心差分格式

$$\frac{U_{N+1}-U_{N-1}}{2h}=b$$

(2) 边界位于 N 和 N+1 节点中间

$$\frac{U_{N+1} - U_N}{h} = b$$

方程和边界条件离散后得到了三对角的线性方程组,对方程组的 求解:

- (1) 直接求逆
- (2) 追赶法 (Thomas 算法)

Outline

椭圆型方程的差分离散格式

两点边值问题

Laplace 方程

Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造

考虑定解问题

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x, y < 1$$

$$u(x,0) = u(0,y) = u(1,y) = 0, u(x,1) = \sin \pi x.$$

五点格式

$$\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{h^2} = 0$$

其截断误差为

$$T_{i,j} = \frac{h^2}{12}(u_{xxxx} + u_{yyyy})|_{i,j} + O(h^4).$$

因此,差分方程的精度为2阶.差分方程可以改写为

$$4u_{i,j} = u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}$$

九点格式

$$\frac{1}{6h^2} [4u_{i+1,j} + 4u_{i-1,j} + 4u_{i,j+1} + 4u_{i,j-1} + u_{i+1,j-1} + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} - 20u_{i,j}] = 0$$

其截断误差为

$$T_{i,j} = \frac{h^2}{12} (u_{xxxx} + 2u_{xxyy} + u_{yyyy})|_{i,j} + O(h^4) = \frac{h^2}{12} \Delta^2 u|_{i,j} + O(h^4).$$

注意到,对于 Laplace 方程

$$\Delta u = 0, \quad \Delta^2 u = 0,$$

因此差分方程的精度为 4 阶. 差分方程可以改写为

$$\begin{aligned} 20u_{i,j} = &4u_{i+1,j} + 4u_{i-1,j} + 4u_{i,j+1} + 4u_{i,j-1} \\ &+ u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} \end{aligned}$$

取网格间距 $\Delta x = \Delta y = h = 1/3$, 由五点格式可以得到如下方程组

$$u_{0,1} + u_{1,0} + u_{2,1} + u_{1,2} - 4u_{1,1} = 0$$

$$u_{1,1} + u_{2,0} + u_{3,1} + u_{2,2} - 4u_{2,1} = 0$$

$$u_{0,2} + u_{1,1} + u_{2,2} + u_{1,3} - 4u_{1,2} = 0$$

$$u_{1,2} + u_{2,1} + u_{3,2} + u_{2,3} - 4u_{2,2} = 0$$

其中边界上的值 $u_{0,1}, u_{1,0}, u_{2,0}, u_{3,1}, u_{0,2}, u_{1,3}, u_{3,2}, u_{2,3}$ 已知. 内部网格点上的值,按照自然排序,记为

 $\mathbf{x} = (u_{1,1}, u_{2,1}, u_{1,2}, u_{22})^T$. 方程组表示为矩阵的形式 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 其

$$\mathbf{P} \mathbf{A} = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} u_{0,1} + u_{1,0} \\ u_{2,0} + u_{3,1} \\ u_{0,2} + u_{1,3} \\ u_{2,3} + u_{3,2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}.$$

由九点格式得到

$$20u_{1,1} - 4(u_{2,1} + u_{1,2}) - u_{2,2} = u_{0,2} + u_{0,0} + u_{2,0} + 4(u_{0,1} + u_{1,0})$$

$$20u_{2,1} - 4(u_{1,1} + u_{2,2}) - u_{1,2} = u_{1,0} + u_{3,0} + u_{3,2} + 4(u_{2,0} + u_{3,1})$$

$$20u_{1,2} - 4(u_{1,1} + u_{2,2}) - u_{2,1} = u_{0,3} + u_{0,1} + u_{2,3} + 4(u_{0,2} + u_{1,3})$$

$$20u_{2,2} - 4(u_{2,1} + u_{1,2}) - u_{1,1} = u_{1,3} + u_{3,1} + u_{3,3} + 4(u_{3,2} + u_{2,3})$$

表示为矩阵形式

$$\mathbf{A} = \begin{bmatrix} 20 & -4 & -4 & -1 \\ -4 & 20 & -1 & -4 \\ -4 & -1 & 20 & -4 \\ -1 & -4 & -4 & 20 \end{bmatrix},$$

$$\mathbf{b} = \begin{bmatrix} u_{0,2} + u_{0,0} + u_{2,0} + 4(u_{0,1} + u_{1,0}) \\ u_{1,0} + u_{3,0} + u_{3,2} + 4(u_{2,0} + u_{3,1}) \\ u_{0,3} + u_{0,1} + u_{2,3} + 4(u_{0,2} + u_{1,3}) \\ u_{1,3} + u_{3,1} + u_{3,3} + 4(u_{3,2} + u_{2,3}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{5\sqrt{3}}{2} \\ \frac{5\sqrt{3}}{2} \end{bmatrix}.$$

计算线性方程组,得到 五点格式的解为: $\mathbf{x} = (\frac{\sqrt{3}}{16}, \frac{\sqrt{3}}{16}, \frac{3\sqrt{3}}{16}, \frac{3\sqrt{3}}{16})^T \approx$ $(0.108253, 0.108253, 0.32476, 0.32476)^T$, 九点格式的解为: $\mathbf{x} = (\frac{25}{154\sqrt{3}}, \frac{25}{154\sqrt{3}}, \frac{40}{77\sqrt{3}}, \frac{40}{77\sqrt{3}})^T \approx$ $(0.0937257, 0.0937257, 0.299922, 0.299922)^T$, 定解问题的精确解为

$$u(x, y) = \frac{\sin \pi x \sinh \pi y}{\sinh \pi}$$

从而 \mathbf{x} 的精确解为 $\mathbf{x} = (\frac{\sqrt{3} \sinh \frac{\pi}{3}}{\sinh \pi}, \frac{\sqrt{3} \sinh \frac{\pi}{3}}{\sinh \pi}, \frac{\sqrt{3} \sinh \frac{\pi}{3}}{\sinh \pi}, \frac{\sqrt{3} \sinh \frac{2\pi}{3}}{\sinh \pi}, \frac{\sqrt{3} \sinh \frac{2\pi}{3}}{\sinh \pi})^T \approx (0.0936885, 0.0936885, 0.299857, 0.299857)^T.$

如果 h=1/4, 由五点格式得到方程组

$$\begin{aligned} u_{0,1} + u_{1,0} + u_{2,1} + u_{1,2} - 4u_{1,1} &= 0 \\ u_{1,1} + u_{2,0} + u_{3,1} + u_{2,2} - 4u_{2,1} &= 0 \\ u_{2,1} + u_{3,0} + u_{4,1} + u_{3,2} - 4u_{3,1} &= 0 \\ u_{0,2} + u_{1,1} + u_{2,2} + u_{1,3} - 4u_{1,2} &= 0 \\ u_{1,2} + u_{2,1} + u_{3,2} + u_{2,3} - 4u_{2,2} &= 0 \\ u_{2,2} + u_{3,1} + u_{4,2} + u_{3,3} - 4u_{3,2} &= 0 \\ u_{0,3} + u_{1,2} + u_{2,3} + u_{1,4} - 4u_{1,3} &= 0 \\ u_{1,3} + u_{2,2} + u_{3,3} + u_{2,4} - 4u_{2,3} &= 0 \\ u_{2,3} + u_{3,2} + u_{4,3} + u_{3,4} - 4u_{3,3} &= 0 \end{aligned}$$

写成矩阵形式

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} u_{0,1} + u_{1,0} \\ u_{2,0} \\ u_{3,0} + u_{4,1} \\ u_{0,2} \\ 0 \\ u_{4,2} \\ u_{0,3} + u_{1,4} \\ u_{2,4} \\ u_{4,3} + u_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{\sqrt{2}}{2} \\ 1 \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1/224(6+5\sqrt{2}) \\ 1/112(5+3\sqrt{2}) \\ 1/224(6+5\sqrt{2}) \\ 1/16(1+\sqrt{2}) \\ 1/16(1+\sqrt{2}) \\ 1/224(22+37\sqrt{2}) \\ 1/112(37+11\sqrt{2}) \\ 1/224(22+37\sqrt{2}) \end{bmatrix}.$$

计算值 $u(1/2,1/2)\approx 0.213388$, 精确解 $u(1/2,1/2)\approx 0.199268$. u(1/4,1/4)=0.058353, $u(1/3,1/3)\approx 2/3u(1/4,1.4)+1/3u(1/2,1/2)=0.110031$

由九点格式得到

$$\begin{aligned} &4(u_{0,1}+u_{1,0}+u_{2,1}+u_{1,2})+u_{0,2}+u_{0,0}+u_{2,0}+u_{2,2}-20u_{1,1}=0\\ &4(u_{1,1}+u_{2,0}+u_{3,1}+u_{2,2})+u_{1,2}+u_{1,0}+u_{3,0}+u_{3,2}-20u_{2,1}=0\\ &4(u_{2,1}+u_{3,0}+u_{4,1}+u_{3,2})+u_{2,2}+u_{2,0}+u_{4,0}+u_{4,2}-20u_{3,1}=0\\ &4(u_{0,2}+u_{1,1}+u_{2,2}+u_{1,3})+u_{0,3}+u_{0,1}+u_{2,1}+u_{2,3}-20u_{1,2}=0\\ &4(u_{1,2}+u_{2,1}+u_{3,2}+u_{2,3})+u_{1,3}+u_{1,1}+u_{3,1}+u_{3,3}-20u_{2,2}=0\\ &4(u_{2,2}+u_{3,1}+u_{4,2}+u_{3,3})+u_{2,3}+u_{2,1}+u_{4,1}+u_{4,3}-20u_{3,2}=0\\ &4(u_{0,3}+u_{1,2}+u_{2,3}+u_{1,4})+u_{0,4}+u_{0,2}+u_{2,2}+u_{2,4}-20u_{1,3}=0\\ &4(u_{1,3}+u_{2,2}+u_{3,3}+u_{2,4})+u_{1,4}+u_{1,2}+u_{3,2}+u_{3,4}-20u_{2,3}=0\\ &4(u_{2,3}+u_{3,2}+u_{4,3}+u_{3,4})+u_{2,4}+u_{2,2}+u_{4,2}+u_{4,4}-20u_{3,3}=0\end{aligned}$$

$$\mathbf{A} = \begin{bmatrix} 20 & -4 & 0 & -4 & -1 & 0 & 0 & 0 & 0 \\ -4 & 20 & -4 & -1 & -4 & -1 & 0 & 0 & 0 & 0 \\ 0 & -4 & 20 & 0 & -1 & -4 & 0 & 0 & 0 \\ -4 & -1 & 0 & 20 & -4 & 0 & -4 & -1 & 0 \\ -1 & -4 & -1 & -4 & 20 & -4 & -1 & -4 & -1 \\ 0 & -1 & -4 & 0 & -4 & 20 & 0 & -1 & -4 \\ 0 & 0 & 0 & -4 & -1 & 0 & 20 & -4 & 0 \\ 0 & 0 & 0 & -1 & -4 & -1 & -4 & 20 & -4 \\ 0 & 0 & 0 & 0 & -1 & -4 & 0 & -4 & 20 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 4(u_{0,1} + u_{1,0}) + u_{0,2} + u_{0,0} + u_{2,0} \\ 4u_{2,0} + u_{1,0} + u_{3,0} \\ 4(u_{3,0} + u_{4,1}) + u_{2,0} + u_{4,0} + u_{4,2} \\ 4u_{0,2} + u_{0,3} + u_{0,1} \\ 0 \\ 4u_{4,2} + u_{4,1} + u_{4,3} \\ 4(u_{0,3} + u_{1,4}) + u_{0,4} + u_{0,2} + u_{2,4} \\ 4u_{2,4} + u_{1,4} + u_{3,4} \\ 4(u_{3,4} + u_{4,3}) + u_{2,4} + u_{4,2} + u_{4,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 + 2\sqrt{2} \\ 4 + \sqrt{2} \\ 1 + 2\sqrt{2} \end{bmatrix},$$

$$\mathbf{x} = \begin{bmatrix} (2601 + 1891\sqrt{2})/99176 \\ (3782 + 2601\sqrt{2})/99176 \\ (2601 + 1891\sqrt{2})/99176 \\ (144 + 113\sqrt{2})/2156 \\ (113 + 72\sqrt{2})/1078 \\ (144 + 113\sqrt{2})/2156 \\ (3(4101 + 4583\sqrt{2}))/99176 \\ (3(4101 + 4583\sqrt{2}))/99176 \\ (3(4101 + 4583\sqrt{2}))/99176 \\ (3(4101 + 4583\sqrt{2}))/99176 \end{bmatrix} \approx \begin{bmatrix} 0.0531911 \\ 0.0531911 \\ 0.140912 \\ 0.140912 \\ 0.320108 \\ 0.452701 \\ 0.320108 \end{bmatrix}$$

Table: 五点格式和九点格式精度比较

	5-points scheme	9-points scheme	analytical solution
(0.25,0.25)	0.058353	0.053191	0.0531871
(0.50, 0.25)	0.082523	0.075223	0.0752178
(0.25, 0.50)	0.150888	0.140912	0.1409041
(0.50, 0.50)	0.213388	0.199280	0.1992681
(0.25, 0.75)	0.331812	0.320108	0.3200991
(0.50, 0.75)	0.469253	0.452701	0.4526881

Outline

椭圆型方程的差分离散格式

两点边值问题 Laplace 方程

Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造

考虑定解问题

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y), \quad 0 < x, y < 1$$

$$u(x, 0) = f_1(x), u(x, 1) = f_2(x)$$

$$u(0, y) = g_1(y), u(1, y) = g_2(y).$$

五点格式

$$\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{h^2} = f_{i,j}$$

其截断误差为

$$T_{i,j} = (u_{xx} + u_{yy})|_{i,j} - f_{i,j} + \frac{h^2}{12}(u_{xxxx} + u_{yyyy})|_{i,j} + O(h^4).$$

因此,差分方程的精度为2阶.差分方程可以改写为

$$u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} = h^2 f_{i,j}$$

九点格式

$$\frac{1}{6h^2} [4u_{i+1,j} + 4u_{i-1,j} + 4u_{i,j+1} + 4u_{i,j-1} + u_{i+1,j-1} + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} - 20u_{i,j}] = f_{i,j}$$

其截断误差为

$$T_{i,j} = (u_{xx} + u_{yy})|_{i,j} - f_{i,j} + \frac{h^2}{12}(u_{xxxx} + 2u_{xxyy} + u_{yyyy})|_{i,j} + O(h^4).$$

注意到,若 f 是调谐函数,即 $\Delta f = 0$,则

$$\Delta^2 u = \Delta f = 0,$$

因此差分方程的精度为 4 阶, 否则只有二阶精度. 差分方程可以 改写为

$$4(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} - 20u_{i,j} = 6h^2 f_{i,j}$$

构造如下的差分格式

$$\frac{1}{6h^2} \left[4(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j+1} + u_{i+1,j+1} - 20u_{i,j} \right]
= f_{i,j} + \frac{h^2}{12} \Delta f(x_i, y_j)$$

用五点差分格式离散 $\Delta f(x_i,y_j)$,则差分方程具有四阶精度. 差分方程为

$$4(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) + u_{i-1,j-1} + u_{i-1,j+1}$$

$$+ u_{i+1,j-1} + u_{i+1,j+1} - 20u_{i,j}$$

$$= \frac{h^2}{2} (f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1} + 8f_{i,j})$$

由五点差分格式离散具有 Dirichlet 边界条件的 Possion 方程得到的线性方程组为

$$\mathbf{A}_5\mathbf{x} = \mathbf{b}_5$$

其中

$$\mathbf{A}_{5} = \begin{bmatrix} T & -I & & & \\ -I & T & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & -I & T & -I \\ & & & -I & T \end{bmatrix}.$$

由九点差分格式离散具有 Dirichlet 边界条件的 Possion 方程得到的线性方程组为

$$\mathbf{A}_9\mathbf{x} = \mathbf{b}_9$$

其中

$$\mathbf{A}_9 = egin{bmatrix} T_1 & -T_2 & & & & & \ -T_2 & T_1 & -T_2 & & & & \ & \ddots & \ddots & \ddots & & \ & & -T_2 & T_1 & -T_2 \ & & & -T_2 & T_1 \end{bmatrix}.$$

Outline

椭圆型方程的差分离散格式 两点边值问题 Laplace 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造

Jacobi 迭代

(1) 将线性方程组

$$\sum_{i=1}^{n} a_{ij} x_j = b_i \quad i = 1, 2, \dots, n,$$

改写为

$$x_i = \frac{1}{a_{ii}} \left(\sum_{j=1, j \neq i}^{n} -a_{ij}x_j + b_i \right) \quad i = 1, 2, \dots, n$$

- (2) 任意选择一组初始近似值 $x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)}$, 作为方程的第 0 次近似解.
- (3) 依次使 $k = 1, 2, 3, \cdots$, 用公式

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(\sum_{j=1, j \neq i}^n -a_{ij} x_j^{(k-1)} + b_i \right) \quad i = 1, 2, \dots, n$$

求出方程的第 k 次近似解, 直至满足

$$\max_{1\leq i\leq n}|x_i^{(k)}-x_i^{(k-1)}|<\epsilon$$

其中 ϵ 是预先给定的允许误差.

考虑 Possion 方程的五点差分格式

$$u_{ii} = \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - h^2 f_{i,j}}{4}$$

Jacobi 迭代公式表示为

$$u_{ij}^{(k+1)} = \frac{u_{i+1,j}^{(k)} + u_{i-1,j}^{(k)} + u_{i,j+1}^{(k)} + u_{i,j-1}^{(k)} - h^2 f_{i,j}}{4}$$

对于前例中的 Laplace 方程, 用 Jacobi 迭代求解

$$u_{11}^{(k+1)} = \frac{u_{21}^{(k)} + u_{12}^{(k)} + u_{01} + u_{10}}{4}$$

$$u_{21}^{(k+1)} = \frac{u_{11}^{(k)} + u_{22}^{(k)} + u_{20} + u_{31}}{4}$$

$$u_{12}^{(k+1)} = \frac{u_{22}^{(k)} + u_{11}^{(k)} + u_{13} + u_{02}}{4}$$

$$u_{22}^{(k+1)} = \frac{u_{12}^{(k)} + u_{21}^{(k)} + u_{23} + u_{32}}{4}$$

取初始估计值 $(u_{11}^{(0)}, u_{21}^{(0)}, u_{12}^{(0)}, u_{22}^{(0)})^T = (0, 0, 0, 0)^T$.

Table: Jacobi 迭代过程

k	u_{11}	u_{22}
0	0	0
1	0	0.216506
2	0.0541266	0.270633
3	0.0811899	0.297696
4	0.0947215	0.311228
5	0.101487	0.321377
6	0.106562	0.323068
7	0.107407	0.323914
8	0.10783	0.324337
9	0.108042	0.324548
10	0.108147	0.324654
11	0.1082	0.324707
12	0.108227	0.324746

Gauss-Seidel 迭代

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} + b_i \right) \quad i = 1, 2, \dots, n$$

Table: Gauss-Seidel 迭代过程

k	u_{11}	u_{21}	u_{12}	u_{22}
0	0	0	0	0
1	0	0	0.216506	0.270633
2	0.0541266	0.0811899	0.297696	0.311228
3	0.0947215	0.101487	0.317994	0.321377
4	0.10487	0.106562	0.323068	0.323914
5	0.107407	0.10783	0.324337	0.324548
6	0.108042	0.108147	0.324654	0.324707
7	0.1082	0.108227	0.324733	0.324746
8	0.10824	0.108247	0.324753	0.324756
9	0.10825	0.108252	0.324758	0.324759
10	0.108252	0.108253	0.324759	0.324759
11	0.108253	0.108253	0.324759	0.324759
12	0.108253	0.108253	0.32476	0.32476
13	0.108253	0.108253	0.32476	0.32476

Successive Over Relaxiation, SOR

$$x_i^{(k)} = \omega \frac{1}{a_{ii}} \left(-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} + b_i \right) + (1 - \omega) x_i^{k-1}$$

其中 ω 为松弛因子, $1 < \omega < 2$.

Table: SOR 迭代过程 ($\omega = 1.071796770$)

k	u_{11}	u_{21}	u_{12}	u_{22}
0	0	0	0	0
1	0	0	0.232051	0.294229
2	0.0621778	0.0954988	0.310889	0.319817
3	0.104427	0.106819	0.323406	0.324368
4	0.107781	0.108125	0.324625	0.324717
5	0.108217	0.108241	0.324748	0.324756
6	0.10825	0.108252	0.324759	0.324759
7	0.108253	0.108253	0.324759	0.32476
8	0.108253	0.108253	0.32476	0.32476

Table: 迭代方法比较,n=2, $\epsilon=1$ E-12

方法	迭代次数
Jacobi	39
G-S	21
SOR	13

问题

- (1) 在什么情况下, 迭代解能够逼近精确解 (迭代法的收敛性)?
- (2) 迭代法的收敛速度取决于什么?

Outline

椭圆型方程的差分离散格式 两点边值问题 Laplace 方程 Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

A 是 $n \times n$ 方阵.

- ▶ 矩阵分裂 A = M N, M^{-1} 存在.
- $\mathbf{\hat{r}} \mathbf{H} = \mathbf{M}^{-1} \mathbf{N}, \ \mathbf{d} = \mathbf{M}^{-1} \mathbf{b}.$
- ▶ 对于任意初值 $\mathbf{x}(0)_{n\times 1}$, 构造线性迭代

$$\mathbf{x}^{(k+1)} = \mathbf{H}\mathbf{x}^{(k)} + \mathbf{d}, \quad k = 1, 2, \cdots.$$

▶ 如果 ρ(**H**) < 1, 则 **A** 非奇异, 且

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x} = \mathbf{A}^{-1} \mathbf{b} \quad \forall \mathbf{x}(0)$$

Proof.

分裂
$$\mathbf{A} = \mathbf{M} - \mathbf{N} = \mathbf{M}(\mathbf{I} - \mathbf{H}),$$

 $\rho(\mathbf{H}) < 1$, 因此 $(\mathbf{I} - \mathbf{H})^{-1}$ 存在, 故 \mathbf{A} 非奇异.

$$\mathbf{x}^{(k)} = \mathbf{H}^{(k)}\mathbf{x}(0) + (\mathbf{I} + \mathbf{H} + \mathbf{H}^2 + \dots + \mathbf{H}^{k-1})\mathbf{d}$$

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = (\mathbf{I} - \mathbf{H})^{-1}\mathbf{d} = (\mathbf{I} - \mathbf{H})^{-1}\mathbf{M}^{-1}\mathbf{b} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{x}$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

$$\mathbf{x}^{(k+1)} = \mathbf{H}\mathbf{x}^{(k)} + \mathbf{d}$$

由上式

$$\mathbf{x} - \mathbf{x}^{(k+1)} = \mathbf{x} - \mathbf{x}^{(k)} + (\mathbf{I} - \mathbf{H})\mathbf{x}^{(k)} - \mathbf{M}^{-1}\mathbf{A}\mathbf{x}$$

因为 $\mathbf{M}^{-1}\mathbf{A} = (\mathbf{I} - \mathbf{H})$

$$\mathbf{x} - \mathbf{x}^{(k+1)} = \mathbf{H}(\mathbf{x} - \mathbf{x}^{(k)})$$

记
$$\mathbf{x} - \mathbf{x}^{(k)} = \mathbf{e}^{(k)}$$

$$\mathbf{e}^{(k+1)} = \mathbf{H}\mathbf{e}^{(k)}$$

 $\mathbf{H} = \mathbf{M}^{-1}\mathbf{N}$ 称为迭代矩阵.

若 $\rho(\mathbf{H}) < 1$, 则

$$\frac{\mathbf{e}^{(k+m)}}{\mathbf{e}^{(k)}} \approx \rho(\mathbf{H})^m$$

因此,误差下降 10^{-q} ,近似需要 $m = -\frac{q}{\log_{10} \rho(\mathbf{H})}$ 次迭代. 平均收敛速度

$$R(\mathbf{H}^k) = -\frac{1}{k} \log_{10} \|\mathbf{H}\|$$

渐近收敛速度

$$\lim_{k \to \infty} R(\mathbf{H}^k) = -\log_{10} \rho(\mathbf{H}) \triangleq R_{\infty}(\mathbf{H})$$

今由迭代矩阵 $\mathbf{H}_1, \mathbf{H}_2$. 若 $\rho(\mathbf{H}_1) < \rho(\mathbf{H}_2) < 1$,则渐近收敛速度 $R_{\infty}(\mathbf{H}_1) > R_{\infty}(\mathbf{H}_2)$.

Outline

椭圆型方程的差分离散格式 两点边值问题 Laplace 方程 Possion 方程

线性方程组的迭代解法 简单迭代算法

基本迭代法理论分析 基本理论 基本迭代法构造 矩阵 A 分裂为

$$A = L + D + U$$

Jacobi 迭代的分裂矩阵

$$M = D$$
, $N = -(L + U)$

Jacobi 迭代表示为矩阵形式

$$\mathbf{x}^{(k+1)} = -D^{-1}(L+U)\mathbf{x}^{(k)} + D^{-1}\mathbf{b}$$

迭代矩阵
$$H = -D^{-1}(L + U)$$

Gauss-Seidel 迭代的分裂矩阵

$$M = D + L$$
, $N = -U$

Gauss-Seidel 迭代表示为矩阵形式

$$\mathbf{x}^{(k+1)} = -(D+L)^{-1} U \mathbf{x}^{(k)} + (D+L)^{-1} \mathbf{b}$$

迭代矩阵
$$H = -(D+L)^{-1}U$$

SOR 迭代的分裂矩阵

$$M = D/\omega + L$$
, $N = \left(\frac{1}{\omega} - 1\right)D - U$

SOR 迭代表示为矩阵形式

$$\mathbf{x}^{(k+1)} = (I + \omega D^{-1}L)^{-1}[(1 - \omega)I - \omega D^{-1}U]\mathbf{x}^{(k)} + (I + \omega D^{-1}L)^{-1}\omega D^{-1}\mathbf{b}$$

整理后

$$\mathbf{x}^{(k+1)} = (D/\omega + L)^{-1}[(\omega^{-1} - 1)D - U]\mathbf{x}^{(k)} + (I + \omega D^{-1}L)^{-1}\omega D^{-1}\mathbf{b}$$

迭代矩阵 $H = (D/\omega + L)^{-1}[(\omega^{-1} - 1)D - U]$

迭代法的收敛性

Theorem

若 A 严格对角占优,则 Jacobi 迭代和 Gauss-Seidel 迭代对任意的初值都收敛.

Theorem SOR 迭代矩阵满足

$$\rho(H_{SOR}) \ge |\omega - 1|$$

从而 SOR 迭代收敛的一个必要条件是

$$0 < \omega < 2$$

Theorem

若 A 对称正定,则 SOR 迭代当且仅当 $0 < \omega < 2$ 时收敛.

当 $\omega=1$ 时,SOR 迭代即为 Gauss-Seidel 迭代,因此当 A 正定,Gauss-Seidel 迭代收敛.

Laplace 方程五点差分格式

五点差分格式离散 Laplace 得到的线性方程组的 $A_{n^2 \times n^2}$ 是正定矩阵.

Jacobi 迭代的迭代矩阵的谱半径

$$\rho(H_J) = \cos(\pi h)$$

Gauss-Seidel 迭代的迭代矩阵谱半径

$$\rho(H_{GS}) = \cos^2(\pi h)$$

SOR 迭代的迭代矩阵的最优谱半径

$$\rho(H_{SOR}) = \frac{1 - \sin(\pi h)}{1 + \sin(\pi h)}$$

当松弛因子

$$\omega_{opt} = 1 + \rho(H_{SOR})$$

取得.

以上格式中 h = 1/(n+1)

$$R \rho(\mathbf{H}_J)$$

$$-D^{-1}(L+U)\mathbf{x} = \lambda \mathbf{x}$$

整理得到

$$[\lambda D + (L + U)]x = 0$$

因为是采用五点格式, 上式写成分量形式

$$4\lambda x_{i,j} + (-x_{i,j-1} - x_i - 1, j - x_{i+1,j} - x_{i,j+1}) = 0$$

上式为差分方程,用分离变量法求其特征值. 令 $x_{i,j} = y_i z_j$,代入上式

$$4\lambda y_i z_j - y_i (z_{j-1} + z_{j+1}) = z_j (y_{i+1} + y_{i-1})$$

方程两边同除以 $y_i z_j$, 得到

$$\frac{y_{i-1} + y_{i+1}}{y_i} = 4\lambda - \frac{z_{j-1} + z_{j+1}}{z_j} = \mu$$

$$y_{i-1} + y_{i+1} = \mu y_i$$

 $z_{j-1} + z_{j+1} = (4\lambda - \mu)z_j$

$$\begin{bmatrix} 0 & 1 & & & & & \\ 1 & 0 & 1 & & & & \\ & 1 & 0 & 1 & & & \\ & & \ddots & \ddots & \ddots & \ddots \\ & & 1 & 0 & 1 \\ & & & 1 & 0 \end{bmatrix} \mathbf{Y} = \mu \mathbf{Y}$$

可求得 $\mu = 2\cos s\pi h$. 同样可得 $(4\lambda - \mu) = 2\cos s\pi h$ 故

$$\lambda = \cos s\pi h$$
, $s = 1, 2, \dots, n-1$

从而 $\rho(H_J) = \cos(\pi h)$.

对于前例当 n=99 时,用三种迭代法进行了计算.

Table: 迭代方法比较, n = 99, $\epsilon = 1E-12$

方法	迭代次数
Jacobi	46164
G-S	23180
$SOR(\omega = 1.9391)$	533

SOR 迭代法仅在特殊情形下才能求得最佳松弛因子. 对于一般的 线性方程组, 需要通过试验获得较好的收敛速率.