Zadanie 6. Niech $\boldsymbol{x}(t), \boldsymbol{y}(t)$ będzie rozwiązaniem układu

$$\frac{dx}{dt} = y + x^2, \quad \frac{dy}{dt} = x + y^2.$$

Udowodnij, że jeżeli $x(t_0) \neq y(t_0)$ dla pewnego t_0 , to $x(t) \neq y(t)$ dla wszystkich $t \in \mathbb{R}$.

$$\int x' = y + x^2$$

$$y' = y + y^2$$

zat: x(to) ≠ y(to) dla pewnego to teza: YteR x(t) ≠ y(t)

weight lezony na

prostej y=x $x' = y + x^2 = y + y^2$ $y' = x + y^2 = y + y^2$ ten sam

pryrost

y' = x + y^2 = y + y^2

pryrost

wiec te punkty zostanoz na

prostej

trajentorie sig nie precinajoz, więc jau ws zacznie poza, to nigdy nie wejdzie now prostą