

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2017**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
CHIMIE	B / C	Durée de l'épreuve
		3 h
		Date de l'épreuve 22 . 0 g . 2417
		Numéro du candidat

(QC = question de cours [23] ; ANN = application non numérique [18] ; AN = application numérique [19])

I. Préparation d'un bromoalcane (16 points)

- 1. Un monoalcool A saturé et acyclique contient 18,18% (en masse) d'oxygène.
- a. En déterminant la formule brute, vérifier qu'il s'agit d'un alcool en C5. (AN3)
- b. Trouver les formules semi-développées et les noms possibles pour A sachant qu'il est ramifié et chiral. (ANN2)

L'oxydation de A par le dichromate de potassium fournit un composé **B** qui ne réagit pas avec le réactif de Schiff.

- c. Indiquer à quelle fonction chimique B appartient et en déduire la classe et le nom de l'alcool A. (ANN1)
- d. Donner la formule spatiale de l'énantiomère S de A. Justifier en appliquant les règles de nomenclature CIP. (ANN2)
- 2. Par réaction de **A** avec une solution aqueuse concentrée de bromure d'hydrogène (acide bromhydrique), il se forme un bromoalcane noté **C**.
- a. Etablir le mécanisme réactionnel et préciser de quel mécanisme il s'agit. Donner aussi le sigle à deux lettres correspondant. (QC5)
- b. Calculer le volume (en litres) d'acide bromhydrique (c = 10 mol/L) nécessaire pour obtenir 1 tonne du composé **C** si le rendement de la réaction est de 75%. (AN3)

II. Détergents (5 points)

Le stéarate de sodium, dérivé de l'acide stéarique (un acide gras en C18), est obtenu par saponification à partir du tristéarate de glycéryle (appelé aussi stéarine).

- a. Ecrire l'équation de la saponification de la stéarine par l'hydroxyde de sodium. (QC2) Le stéarate de sodium est utilisé depuis longtemps comme savon pour ses propriétés détergentes.
- b. Expliquer l'origine du pouvoir nettoyant de l'ion stéarate, en décrivant brièvement sa particularité structurale et les propriétés tensioactives et émulsifiantes qui en découlent. (QC3)

III. Polymères (19 points)

1. L'acide polylactique (7 P)

L'acide lactique, de formule CH₃-CHOH-COOH, peut servir à synthétiser un polymère biocompatible, l'acide polylactique, qui trouve bon nombre d'applications intéressantes (fabrication d'emballages, sutures en chirurgie, ...).

- a. Expliquer pourquoi la molécule d'acide lactique est capable de donner lieu à une polymérisation. (ANN1) En solution aqueuse, l'acide lactique forme un dimère à chaîne ouverte.
- b. Ecrire l'équation de la réaction entre deux molécules d'acide lactique donnant le dimère (à chaîne ouverte). (ANN2)
- c. Ecrire la formule générale d'une molécule du polymère d'acide polylactique comportant n unités répétitives (mettre l'unité répétitive entre parenthèses). (ANN2)

Industriellement, la synthèse de l'acide polylactique se fait souvent à partir du dimère <u>cyclique</u> obtenu par « double condensation » de deux molécules d'acide lactique.

d. Ecrire l'équation de la réaction correspondante, sachant que le produit est une molécule cyclique dont le cycle comporte six atomes. (ANN2)

2. Polyméthacrylate de méthyle. (12 P)

Le polyméthacrylate de méthyle, mieux connu sous le nom de « PLEXIGLAS », est un polymère à large spectre d'utilisation.

La formule du monomère correspondant, le méthacrylate de méthyle, est donnée ci- $H_2C=$ contre :

$$H_2C = C$$
 CH_3

- a. Donner le nom systématique du méthacrylate de méthyle. (ANN1)
- b. Sa polymérisation peut se faire de façon analogue à celle du styrène. Détailler le mécanisme réactionnel (abréger par R_1 et R_2 les groupements non concernés par la réaction). (ANN1 + QC5)
- c. Le méthacrylate de méthyle est souvent fabriqué à partir d'un composé B obtenu par réaction d'acétone et de cyanure d'hydrogène. Donner le mécanisme réactionnel de cette réaction et dire à quel type de composés B appartient. (QC5)

IV. Dosage d'une solution de méthylamine (20 points)

- 1. Comparer la force basique des amines aliphatiques et expliquer le classement. (QC3)
- 2. Une bouteille de solution commerciale de méthylamine (S_0) affiche un pourcentage massique égal à 40 % et une masse volumique $\rho = 0.9~{\rm g\cdot cm^{-3}}$. Pour vérifier cette indication, on procède à un dosage. La solution S_0 étant trop concentrée, on la dilue 50 fois, en introduisant 1 mL dans une fiole jaugée de 50 mL et en ajoutant de l'eau distillée jusqu'au trait de jauge. 10 mL de cette solution diluée (S_1) sont dosés par une solution d'acide chlorhydrique (C_1).

La courbe représentative enregistrée est donnée ci-dessous.

- a. Déterminer graphiquement le point d'équivalence (P.E.) et le pH au point d'équivalence. (ANN2)
- b. Calculer la concentration molaire de la solution diluée S₁. (AN1)
- c. Déterminer graphiquement le pH au point de demi-équivalence (P.1/2E.). Expliquer et justifier. (ANN2)
- d. Vérifier par le calcul le pH au point d'équivalence. (AN3)
- e. Calculer la concentration molaire de la solution S_0 à partir des indications données sur l'étiquette. Comparer avec la valeur trouvée à partir du dosage et conclure. (AN3)
- f. Calculer le pH après ajout de 28 mL d'acide chlorhydrique. (AN2)
- g. Calculer le volume d'acide chlorhydrique qu'il faut ajouter pour que le pH soit égal à 10. (AN4)