Układy sekwencyjne. Graf przejść. Automat Moore'a i Mealyego. Tablica przejść. Tablica wyjść. Funkcje wzbudzeń.

Data wykonania 6.11.2020

Zadanie 10. Zmodyfikuj licznik z zadania 1 (PTC_lab05a.pdf), tak bay liczył w kodzie Graya.

a. Narysuj graf przejść.

Zdjęcie 1: Graf przejść rewersyjnego układu sekwencyjnego modulo 4.

b. Przedstaw tablicę przejść i zakodowaną tablicę przejść.

		XX		111	X	
		0	61	Q, Qo.	0	1
9000	50	51	93	00	01	10
5,01	91	52	90	01	111	00
9211	52	93	91	1 18	10	101
9,10	93	900	92	1 40	00	11
>	243				0.0	, D, Do

Zdjęcie 2: Tablica przejść i zakodowana tablica przejść

c. Znajdź funkcje wzbudzeń D1 i D0.

Q ₁ Q ₀ X	D ₁	Q, QoXI	Do
000	0	000	1
001	1	001	0
010	1	010	1
011	0	011	0
100	0	100	0
101	1	101	1
110	1	110	0
111	0	1111	1
			11

Zdjęcie 3: Tablice funkcji D1 i D0

Zdjęcie 4: Wyznaczenie skróconych funkcji D1 i D0 metodą tablic Karnaugh

d. Zrealizuj układ korzystając z Logisim i wypróbuj jego działanie.

Zrzut ekranu 1: Realizacja rewersyjnego układu sekwencyjnego modulo 4, liczącego w kodzie Gray'a, w programie Logisim.