Calcolo integrale — Scheda di esercizi n. 7 26 Aprile 2022 — Compito n. 00210 — ☐ ☐ ■ ☐ ☐ ☐ ☐ ☐

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxtimes).

Nome:				
Cognomo				
Cognome:				
Matricola:				

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1 A	1B	1C	1D	2A	2B	$^{2}\mathrm{C}$	^{2}D	3A	3B	3C	3D	4A	4B	4C	4D
\mathbf{v}																
\mathbf{F}																
\mathbf{C}																

1) Sia

$$F(t) = 16 \int_{-7\pi}^{t} \cos^2(4x) \, dx \,.$$

- **1A)** La funzione F(t) non è derivabile per qualche t in \mathbb{R} .
- **1B)** La funzione F(t) è crescente su \mathbb{R} .
- **1C**) Si ha F(-28) > 0.
- **1D)** La funzione

$$G(t) = F(t) - 2\sin(4t)\cos(4t) - 8t$$

è costante su \mathbb{R} .

2) Sia

$$F(t) = \int_{-t}^{t} e^{5x^2} dx.$$

- **2A)** La funzione F(t) è derivabile per ogni t in \mathbb{R} .
- **2B)** Si ha F(-2) > 0.
- **2C)** Si ha F(t) + F(-t) = 0 per ogni t in \mathbb{R} .
- **2D)** La funzione F(t) è crescente su \mathbb{R} .

- 3) Dire se le seguenti affermazioni sono vere o false.
- **3A)** La funzione $f(x) = \frac{1}{\sqrt[5]{x}}$ non è integrabile in senso improprio su [0,1].
- **3B)** La funzione $f(x) = \frac{1}{x^4}$ è integrabile in senso improprio su $[1, +\infty)$.
- **3C)** La funzione $f(x) = \frac{1}{\sqrt[5]{x} + x^5}$ non è integrabile in senso improprio su $[0, +\infty)$.
- **3D)** La funzione $f(x) = e^{-7x}$ non è integrabile in senso improprio su \mathbb{R} .
- 4) Dire se le seguenti affermazioni sono vere o false.
- 4A) Si ha

$$\int_0^1 \sin\left(\frac{6}{x}\right) dx < +\infty.$$

4B) Si ha

$$\int_{1}^{+\infty} \ln\left(1 + \frac{7}{x^2}\right) dx = +\infty.$$

4C) Si ha

$$\int_{1}^{+\infty} \sqrt{x} \left(e^{\frac{7}{x}} - 1 \right) dx = +\infty.$$

4D) Si ha

$$\int_6^{+\infty} \frac{\mathrm{e}^{-3x}}{\sqrt{x-6}} \, dx = +\infty \,.$$

$$F(t) = \int_{-1}^{t} \frac{10 + \cos(2x^{2})}{1 + 5x^{2}} dx.$$

- a) Calcolare F(-1) e F'(0). b) Dimostrare che $F(-2) \le 0 \le F(1)$. c) Dimostrare che F(t) è crescente su \mathbb{R} . d) Dimostrare che

$$\int_{-1}^{+\infty} \frac{10 + \cos(2x^2)}{1 + 5x^2} \, dx < +\infty.$$

$$F(t) = \int_0^{4t^2} \cos^2(6x^2) \, dx \,.$$

- a) Calcolare F'(t). b) Dimostrare che la funzione F(t) è crescente su $[0,+\infty)$ e decrescente su $(-\infty,0]$.
- c) Dimostrare che F(t) ha un minimo per t=0.
- d) Dimostrare che

$$\lim_{t \to +\infty} \, \frac{F(t)}{t^3} = 0 \, .$$

Soluzioni del compito 00210

1) Sia

$$F(t) = 16 \int_{-7\pi}^{t} \cos^2(4x) \, dx \,.$$

1A) La funzione F(t) non è derivabile per qualche t in \mathbb{R} .

Falso: Dato che la funzione $x\mapsto 16\cos^2(4x)$ è continua, per il Teorema fondamentale del calcolo integrale la funzione F(t) è derivabile e si ha

(1)
$$F'(t) = 16 \cos^2(4t), \quad \forall t \in \mathbb{R}.$$

1B) La funzione F(t) è crescente su \mathbb{R} .

Vero: Per la (1) si ha

$$F'(t) = 16 \cos^2(4t) \ge 0, \quad \forall t \in \mathbb{R}$$

da cui segue che F(t) è crescente.

1C) Si ha F(-28) > 0.

Falso: Dato che (si veda la domanda 1B) la funzione F(t) è crescente, e dato che $-28 < -7\pi$, si ha

$$F(-28) \le F(-7\pi) = \int_{-7\pi}^{-7\pi} \cos^2(4x) \, dx = 0$$

e quindi $F(-28) \leq 0$.

1D) La funzione

$$G(t) = F(t) - 2\sin(4t)\cos(4t) - 8t$$

è costante su \mathbb{R} .

Vero: Si ha, per la (1),

$$G'(t) = F'(t) - 8\cos^2(4t) + 8\sin^2(4t) - 8 = 16\cos^2(4t) - 8\cos^2(4t) - 8(1-\sin^2(4t)).$$

Ricordando che $1 - \sin^2(4t) = \cos^2(4t)$ si ha

$$G'(t) = 16 \cos^2(4t) - 16 \cos^2(4t) = 0.$$

Dato che $G'(t) \equiv 0$, G(t) è una funzione costante.

$$F(t) = \int_{-t}^{t} e^{5 x^2} dx.$$

Osserviamo che si ha

$$F(t) = \int_{-t}^{t} e^{5x^{2}} dx = \int_{-t}^{0} e^{5x^{2}} dx + \int_{0}^{t} e^{5x^{2}} dx.$$

Per il primo integrale, con il cambio di variabile y = -x, da cui dx = -dy, si ha

$$\int_{-t}^{0} e^{5x^{2}} dx = -\int_{t}^{0} e^{5(-y)^{2}} dy = \int_{0}^{t} e^{5y^{2}} dy,$$

da cui segue che

$$F(t) = \int_{-t}^{t} e^{5x^{2}} dx = \int_{0}^{t} e^{5y^{2}} dy + \int_{0}^{t} e^{5x^{2}} dx.$$

Pertanto

(1)
$$F(t) = 2 \int_0^t e^{5x^2} dx.$$

2A) La funzione F(t) è derivabile per ogni t in \mathbb{R} .

Vero: Dalla (1) segue che F(t) è l'integrale della funzione $x \mapsto 2e^{5x^2}$, che è una funzione continua. Per il Teorema fondamentale del calcolo integrale, la funzione F(t) è derivabile e si ha

(2)
$$F'(t) = 2e^{5t^2}, \quad \forall t \in \mathbb{R}.$$

2B) Si ha F(-2) > 0.

Falso: Per la (1) si ha

$$F(-2) = 2 \int_0^{-2} e^{5x^2} dx$$
.

Dato che si tratta dell'integrale di una funzione positiva su un intervallo percorso nel verso "sbagliato", il risultato è negativo e si ha $F(-2) \le 0$.

2C) Si ha F(t) + F(-t) = 0 per ogni t in \mathbb{R} .

Vero: Osserviamo che si ha, per ogni t in \mathbb{R} , e cambiando il verso di integrazione,

$$F(-t) = \int_{-(-t)}^{-t} e^{5x^2} dx = \int_{t}^{-t} e^{5x^2} dx = -\int_{-t}^{t} e^{5x^2} dx = -F(t),$$

da cui segue che

$$F(t) + F(-t) = 0, \quad \forall t \in \mathbb{R}.$$

2D) La funzione F(t) è crescente su \mathbb{R} .

Vero: Dalla (2) segue che

$$F'(t) = 2e^{5t^2} > 0, \qquad \forall t \in \mathbb{R}$$

e quindi la funzione F(t) è crescente su \mathbb{R} .

Ricordiamo che si ha

(1)
$$\int_0^1 \frac{dx}{x^{\alpha}} < +\infty \quad \iff \quad \alpha < 1 \,,$$

e che

(2)
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} < +\infty \quad \iff \quad \alpha > 1.$$

3A) La funzione $f(x) = \frac{1}{\sqrt[5]{x}}$ non è integrabile in senso improprio su [0,1].

Falso: Per la (1), con $\alpha = \frac{1}{5} < 1$, la funzione data è integrabile in senso improprio su [0, 1].

3B) La funzione $f(x) = \frac{1}{x^4}$ è integrabile in senso improprio su $[1, +\infty)$.

Vero: Per la (2), con $\alpha = 4 > 1$, la funzione data è integrabile in senso improprio su $[1, +\infty)$.

3C) La funzione $f(x) = \frac{1}{\sqrt[3]{x} + x^5}$ non è integrabile in senso improprio su $[0, +\infty)$.

Falso: Osserviamo che l'integrale è improprio sia in x = 0 che all'infinito. Scriviamo

$$f(x) = \frac{1}{x^{\frac{1}{5}} + x^{5}} = \frac{1}{x^{\frac{1}{5}}} \frac{1}{1 + x^{5 - \frac{1}{5}}} = \frac{1}{x^{\frac{1}{5}}} \frac{1}{1 + x^{\frac{24}{5}}},$$

e

$$f(x) = \frac{1}{x^{\frac{1}{5}} + x^{5}} = \frac{1}{x^{5}} \frac{1}{1 + x^{\frac{1}{5} - 5}} = \frac{1}{x^{5}} \frac{1}{1 + x^{-\frac{24}{5}}},$$

Ora si ha

$$\lim_{x \to 0} \frac{1}{1 + x^{\frac{24}{5}}} = 1 \qquad e \qquad \lim_{x \to +\infty} \frac{1}{1 + x^{-\frac{24}{5}}} = 1.$$

Pertanto, si ha

$$f(x) \approx \frac{1}{x^{\frac{1}{5}}}$$
 per x tendente a 0,

е

$$f(x) \approx \frac{1}{x^5}$$
 per x tendente a $+\infty$.

Per il criterio del confronto asintotico, f(x) è integrabile sia vicino a zero (dato che per la (1) con $\alpha = \frac{1}{5} < 1$ la funzione $\frac{1}{x^{\frac{1}{5}}}$ è integrabile in zero), che all'infinito (dato che per la (2) con $\alpha = 5 > 1$ la funzione $\frac{1}{x^5}$ è integrabile all'infinito), e quindi è integrabile su $[0, +\infty)$.

3D) La funzione $f(x) = e^{-7x}$ non è integrabile in senso improprio su \mathbb{R} .

Vero: Si tratta di vedere se la funzione f(x) è integrabile in senso improprio "a $+\infty$ " e "a $-\infty$ ". A $+\infty$ si ha

$$\int_0^{+\infty} e^{-7x} dx = \lim_{M \to +\infty} \int_0^M e^{-7x} dx = \lim_{M \to +\infty} -\frac{e^{-7x}}{7} \Big|_0^M = \lim_{M \to +\infty} \frac{1 - e^{-7M}}{7} = \frac{1}{7},$$

e quindi la funzione f(x) è integrabile in senso improprio su $[0, +\infty)$. A $-\infty$, invece, si ha

$$\int_{-\infty}^{0} e^{-7x} dx = \lim_{M \to -\infty} \int_{M}^{0} e^{-7x} dx = \lim_{M \to -\infty} \left(-\frac{e^{-7x}}{7} \right)_{M}^{0} = \lim_{M \to -\infty} \frac{e^{-7M} - 1}{7} = +\infty,$$

dato che e^{-7M} diverge, e quindi f(x) non è integrabile in senso improprio su $(-\infty, 0]$. Pertanto, f(x) non è integrabile in senso improprio su \mathbb{R} .

4) Dire se le seguenti affermazioni sono vere o false.

Ricordiamo il criterio del confronto asintotico per integrali impropri: se f(x) e g(x) sono due funzioni tali che

(1)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L \in (0, +\infty),$$

allora

$$\int_{x_0} f(x) dx < +\infty \quad \iff \quad \int_{x_0} g(x) dx < +\infty.$$

Se, invece f(x) e g(x) sono due funzioni tali che

(2)
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L \in (0, +\infty),$$

allora

$$\int_{-\infty}^{+\infty} f(x) \, dx < +\infty \quad \iff \quad \int_{-\infty}^{+\infty} g(x) \, dx < +\infty \, .$$

Un criterio analogo vale a $-\infty$.

4A) Si ha

$$\int_0^1 \sin\left(\frac{6}{x}\right) dx < +\infty.$$

Falso: Dato che

$$\lim_{x \to 0} \frac{\sin(\frac{6}{x})}{\frac{6}{x}} = 1,$$

per la (1) si ha

$$\int_0^1 \sin\left(\frac{6}{x}\right) dx < +\infty \quad \iff \quad \int_0^1 \frac{6}{x} dx < +\infty.$$

Dato che l'ultimo integrale è infinito (si tratta dell'integrale di $\frac{1}{x^{\alpha}}$ con $\alpha = 1$), anche l'integrale richiesto è infinito.

4B) Si ha

$$\int_{1}^{+\infty} \ln\left(1 + \frac{7}{x^2}\right) dx = +\infty.$$

Falso: Dato che

$$\lim_{x\to+\infty}\,\frac{\ln(1+\frac{7}{x^2})}{\frac{7}{x^2}}=1\,,$$

per la (2) si ha

$$\int_1^{+\infty} \, \ln \left(1 + \frac{7}{x^2} \right) dx < +\infty \quad \iff \quad \int_1^{+\infty} \, \frac{7}{x^2} \, dx < +\infty \, .$$

Dato che l'ultimo integrale è finito (essendo l'integrale di $\frac{1}{x^{\alpha}}$ con $\alpha=2>1$), anche l'integrale di partenza è finito.

4C) Si ha

$$\int_{1}^{+\infty} \sqrt{x} \left(e^{\frac{7}{x}} - 1 \right) dx = +\infty.$$

Vero: Dato che

$$\lim_{x \to +\infty} \frac{e^{\frac{7}{x}} - 1}{\frac{7}{x}} = 1,$$

si ha

$$\int_{1}^{+\infty} \sqrt{x} \left(e^{\frac{7}{x}} - 1 \right) dx < +\infty \quad \iff \quad \int_{1}^{+\infty} \sqrt{x} \frac{7}{x} dx < +\infty.$$

L'ultimo integrale è infinito (essendo, dopo aver semplificato le potenze, l'integrale di $\frac{1}{x^{\alpha}}$ con $\alpha = \frac{1}{2} < 1$), e quindi l'integrale di partenza è infinito.

4D) Si ha

$$\int_6^{+\infty} \frac{e^{-3x}}{\sqrt{x-6}} dx = +\infty.$$

Falso: L'integrale è improprio sia in $x_0 = 6$ che a più infinito. Dato che si ha

$$0 \le \frac{e^{-3x}}{\sqrt{x-6}} \le \frac{1}{\sqrt{x-6}}, \quad \forall x \ge 6,$$

per il criterio del confronto si ha che

$$\int_6^7 \frac{dx}{\sqrt{x-6}} < +\infty \quad \Longrightarrow \quad \int_6^7 \frac{\mathrm{e}^{-3\,x}}{\sqrt{x-6}} \, dx < +\infty \,.$$

Siccome il primo integrale è finito (con il cambio di variabile y=x-6 diventa l'integrale tra 0 e 1 di $\frac{1}{y^{\alpha}}$ con $\alpha=\frac{1}{2}<1$), si ha

(3)
$$\int_{6}^{7} \frac{e^{-3x}}{\sqrt{x-6}} \, dx < +\infty.$$

Si ha poi

$$0 \le \frac{e^{-3x}}{\sqrt{x-6}} \le e^{-3x}, \quad \forall x \ge 7,$$

e quindi, sempre per il criterio del confronto si ha

$$\int_{7}^{+\infty} e^{-3x} dx < +\infty \quad \Longrightarrow \quad \int_{7}^{+\infty} \frac{e^{-3x}}{\sqrt{x-6}} dx < +\infty.$$

Il primo integrale è finito dato che

$$\int_{7}^{+\infty} e^{-3x} dx = \lim_{M \to +\infty} \int_{7}^{M} e^{-3x} dx = \lim_{M \to +\infty} -\frac{e^{-3x}}{3} \Big|_{7}^{M} = \lim_{M \to +\infty} \frac{e^{-21} - e^{-3M}}{3} = \frac{e^{-21}}{3},$$

e quindi

$$\int_{7}^{+\infty} \frac{\mathrm{e}^{-3x}}{\sqrt{x-6}} \, dx < +\infty \,.$$

Mettendo insieme la (3) e la (4) si ha

$$\int_6^{+\infty} \frac{\mathrm{e}^{-3x}}{\sqrt{x-6}} \, dx < +\infty \,.$$

$$F(t) = \int_{-1}^{t} \frac{10 + \cos(2x^2)}{1 + 5x^2} dx.$$

- a) Calcolare F(-1) e F'(0).
- **b)** Dimostrare che $F(-2) \le 0 \le F(1)$.
- c) Dimostrare che F(t) è crescente su \mathbb{R} .
- d) Dimostrare che

$$\int_{-1}^{+\infty} \frac{10 + \cos(2x^2)}{1 + 5x^2} \, dx < +\infty.$$

Soluzione:

a) Si ha

$$F(-1) = \int_{-1}^{-1} \frac{10 + \cos(2x^2)}{1 + 5x^2} dx = 0.$$

Inoltre, dato che la funzione integranda è continua, per il Teorema fondamentale del calcolo integrale si ha

(1)
$$F'(t) = \frac{10 + \cos(2t^2)}{1 + 5t^2} \qquad \forall t \in \mathbb{R},$$

da cui segue che

$$F'(0) = \frac{10 + \cos(2 \cdot 0^2)}{1 + 5 \cdot 0^2} = \frac{10 + 1}{1 + 0} = 11.$$

b) Dato che

$$\cos(2x^2) \ge -1 \qquad \forall x \in \mathbb{R} \,,$$

si ha

$$\frac{10 + \cos(2\,x^2)}{1 + 5\,x^2} \ge \frac{10 - 1}{1 + 5\,x^2} = \frac{9}{1 + 5\,x^2} \ge 0 \qquad \forall x \in \mathbb{R} \,.$$

Ne segue pertanto che

$$F(1) = \int_{-1}^{1} \frac{10 + \cos(2x^2)}{1 + 5x^2} dx \ge 0,$$

essendo l'integrale di una funzione positiva sull'intervallo [-1,1]; inoltre

$$F(-2) = \int_{-1}^{-2} \frac{10 + \cos(2x^2)}{1 + 5x^2} dx \le 0,$$

essendo l'integrale di una funzione positiva su un intervallo orientato nel verso opposto (si va da -1 a -2).

c) Combinando (1) e (2) si ha

$$F'(t) = \frac{10 + \cos(2t^2)}{1 + 5t^2} \ge 0 \quad \forall t \in \mathbb{R},$$

e quindi la funzione F(t) è crescente.

d) Si tratta di dimostrare che la funzione

$$f(x) = \frac{10 + \cos(2x^2)}{1 + 5x^2}$$

è integrabile in senso improprio su $[-1, +\infty)$. Dato che

$$\cos(2x^2) \le 1 \qquad \forall x \in \mathbb{R} \,,$$

si ha

$$0 \le \frac{10 + \cos(2x^2)}{1 + 5x^2} \le \frac{11}{1 + 5x^2}.$$

Pertanto, per il criterio del confronto, si ha

(3)
$$\int_{-1}^{+\infty} \frac{11}{1+5x^2} dx < +\infty \implies \int_{-1}^{+\infty} \frac{10 + \cos(2x^2)}{1+5x^2} dx < +\infty.$$

Osserviamo ora che

$$\int_{-1}^{+\infty} \frac{11}{1+5x^2} dx = \int_{-1}^{1} \frac{11}{1+5x^2} dx + \int_{1}^{+\infty} \frac{11}{1+5x^2} dx.$$

Il primo integrale è finito (si tratta dell'integrale di una funzione continua su un intervallo limitato); quanto al secondo, si ha

$$\int_{1}^{+\infty}\,\frac{11}{1+5\,x^2}\,dx \leq \int_{1}^{+\infty}\,\frac{11}{5\,x^2}\,dx = \frac{11}{5}\,\int_{1}^{+\infty}\,\frac{dx}{x^2} < +\infty\,,$$

dato che la funzione integranda è della forma $\frac{1}{x^{\alpha}},$ con $\alpha=2>1.$ Pertanto

$$\int_{-1}^{+\infty} \, \frac{11}{1+5\,x^2} \, dx < +\infty \,,$$

e, per la (3), la funzione f(x) è integrabile in senso improprio su $[-1, +\infty)$.

$$F(t) = \int_0^{4t^2} \cos^2(6x^2) \, dx \,.$$

- a) Calcolare F'(t).
- b) Dimostrare che la funzione F(t) è crescente su $[0, +\infty)$ e decrescente su $(-\infty, 0]$.
- c) Dimostrare che F(t) ha un minimo per t=0.
- d) Dimostrare che

$$\lim_{t \to +\infty} \frac{F(t)}{t^3} = 0.$$

Soluzione:

a) Definiamo

$$G(s) = \int_0^s \cos^2(6 x^2) \, dx \,.$$

Dato che la funzione $x \mapsto \cos^2(6x^2)$ è continua, per il Teorema fondamentale del calcolo integrale si ha che G(s) è derivabile, con

(1)
$$G'(s) = \cos^2(6 s^2) \qquad \forall s \in \mathbb{R}.$$

Osserviamo ora che $F(t) = G(4t^2)$; pertanto, per la formula di derivazione delle funzioni composte, si ha, per la (1),

(2)
$$F'(t) = G'(4t^2) [4t^2]' = 8t \cos^2(96t^2).$$

b) Dato che $\cos^2(96\,t^4) \ge 0$ per ogni t in \mathbb{R} , dalla (2) si ha che $F'(t) \ge 0$ per ogni $t \ge 0$, e che $F'(t) \le 0$ per ogni $t \le 0$; ne segue che la funzione F(t) è crescente su $[0, +\infty)$ e decrescente su $(-\infty, 0]$, come richiesto.

c) Dato che F'(0) = 0 e che la derivata di F(t) è negativa per t < 0 e positiva per t > 0, il punto t = 0 è di minimo per F(t).

d) Dato che $0 \le \cos^2(6x^2) \le 1$ per ogni x in \mathbb{R} , per la monotonia dell'integrale si ha

$$0 \le F(t) = \int_0^{4t^2} \cos^2(6x^2) \, dx \le \int_0^{4t^2} 1 \, dx = 4t^2 \,,$$

da cui segue che

$$0 \le \frac{F(t)}{t^3} \le \frac{4t^2}{t^3} = \frac{4}{t}.$$

Pertanto,

$$0 \le \lim_{t \to +\infty} \frac{F(t)}{t^3} \le \lim_{t \to +\infty} \frac{4}{t} = 0,$$

e la tesi segue dal teorema dei carabinieri.