

# SAR EVALUATION REPORT

For

# COMERCIALIZADORA MILENIO SA DE CV

Vasco De Quiroga 3900 Office 704, Mexico City 05300

FCC ID: 2ABD2PSPC505

Report Type: Product Type:

Original Report Cosmo 505 (Mobile Phone)

Test Engineer: Wilson Chen

**Report Number:** RSZ131111001-20

**Report Date:** 2014-01-27

Sandy Wang

**Reviewed By:** SAR Engineer

**Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

Gez Wang

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

**Note**: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

| Attestation of Test Results |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|
|                             | Company Name   COMERCIALIZADORA MILENIO SA DE CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |             |
|                             | EUT Description Cosmo 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |             |
| EUT<br>Information          | FCC ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2ABD2PSPC505                                     |             |
|                             | Model Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSPC505                                          |             |
|                             | Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2013-11-26 to 2013-11-28                         |             |
| Frequency                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max. SAR Level(s) Reported                       | Limit(W/Kg) |
| GSM 850                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.209 W/kg 1g Head SAR<br>0.310 W/kg 1g Body SAR |             |
| PCS 1900                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.284 W/kg 1g Head SAR<br>0.670 W/kg 1g Body SAR |             |
| WCDMA850                    | 0.305 W/kg 1g Head SAR<br>0.286 W/kg 1g Body SAR  1. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 1.6         |
| WCDMA1900                   | 0.469 W/kg 1g Head SAR<br>0.531 W/kg 1g Body SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |             |
| Simultaneous                | 0.886 W/kg 1g Head SAR<br>0.879 W/kg 1g Body SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |             |
|                             | ANSI/IEEE C95.1: 2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds,3 kHz to 300 GHz.                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |             |
|                             | ANSI/IEEE C95.3: 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.                                                                                                                                                                                                                                                                                                                                                                  |                                                  |             |
| Applicable<br>Standards     | IEEE1528:'2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques  KDB procedures  KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.  KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets  KDB 865664 D01 SAR Measurement Requirements for 100 MHz to 6 GHz  KDB 941225 D01 SAR Measurement Procedures for 3G Devices-CDMA 2000/EV-Do WCDMA/HSDPA/HSUPA |                                                  |             |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |             |
|                             | KDB 941225 D06 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |             |

Report No: RSZ131111001-20

**Note:** This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in IEEE 1528-2003 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

SAR Evaluation Report 2 of 141

# TABLE OF CONTENTS

| DOCUMENT REVISION HISTORY                                  | 5  |
|------------------------------------------------------------|----|
| EUT DESCRIPTION                                            | 6  |
| TECHNICAL SPECIFICATION                                    | 6  |
| REFERENCE, STANDARDS, AND GUILDELINES                      | 7  |
| SAR LIMITS                                                 |    |
| FACILITIES                                                 |    |
| DESCRIPTION OF TEST SYSTEM                                 |    |
|                                                            |    |
| EQUIPMENT LIST AND CALIBRATION                             |    |
| EQUIPMENTS LIST & CALIBRATION INFORMATION                  |    |
| SAR MEASUREMENT SYSTEM VERIFICATION                        |    |
| Liquid Verification                                        |    |
| SYSTEM ACCURACY VERIFICATIONSAR SYSTEM VALIDATION DATA     |    |
|                                                            |    |
| EUT TEST STRATEGY AND METHODOLOGY                          |    |
| TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR |    |
| CHEEK/TOUCH POSITION<br>EAR/TILT POSITION                  |    |
| TEST POSITION TO BODY-WORN AND OTHER CONFIGURATIONS        |    |
| SAR EVALUATION PROCEDURE                                   |    |
| CONDUCTED OUTPUT POWER MEASUREMENT                         | 34 |
| Provision Applicable                                       |    |
| TEST PROCEDURE                                             | 34 |
| MAXIMUM OUTPUT POWER AMONG PRODUCTION UNITS                |    |
| TEST RESULTS:                                              |    |
| SAR MEASUREMENT RESULTS                                    | 41 |
| SAR TEST DATA                                              | 41 |
| SAR SIMULTANEOUS TRANSMISSION DESCRIPTION                  | 48 |
| EUT SCAN RESULTS                                           | 53 |
| APPENDIX A MEASUREMENT UNCERTAINTY                         |    |
| APPENDIX B – PROBE CALIBRATION CERTIFICATES                |    |
| APPENDIX C DIPOLE CALIBRATION CERTIFICATES                 |    |
| APPENDIX D EUT TEST POSITION PHOTOS                        |    |
| LIQUID DEPTH 15CM                                          |    |
| BODY-WORN FRONT SETUP PHOTO                                |    |
| BODY-WORN BACK SETUP PHOTO                                 |    |
| BODY-WORN LEFT SETUP PHOTO                                 |    |
| BODY-WORN RIGHT SETUP PHOTO                                |    |
| BODY-WORN BOTTOM SETUP PHOTO                               |    |
| LEFT HEAD TOUCH SETUP PHOTOLEFT HEAD TILT SETUP PHOTO      |    |
| RIGHT HEAD TOUCH SETUP PHOTO                               |    |
| RIGHT HEAD TILT SETUP PHOTO                                |    |
| APPENDIX E EUT PHOTOS                                      |    |
| EUT- FRONT VIEW                                            |    |
| EUT – BACK VIEW                                            |    |
|                                                            |    |

| Bay | / Area    | Compliance  | Laboratories | Corp  | (Shenzhen)    |
|-----|-----------|-------------|--------------|-------|---------------|
| Du  | y I II Cu | Compilation | Lacoratories | COIP. | Differization |

| Report No: RSZ131111001-20 |
|----------------------------|
|                            |

| A | PPENDIX F INFORMATIVE REFERENCES | .141 |
|---|----------------------------------|------|
|   | EUT – Cover off View             | .140 |
|   | EUT – BOTTOM VIEW.               |      |
|   | EUT – TOP VIEW                   | 139  |
|   | EUT – RIGHT SIDE VIEW            | .138 |

SAR Evaluation Report

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number   | Description of Revision | Date of Revision |
|-----------------|-----------------|-------------------------|------------------|
| 0               | RSZ131111001-20 | Original Report         | 2014-01-27       |

Report No: RSZ131111001-20

SAR Evaluation Report 5 of 141

# **EUT DESCRIPTION**

This report has been prepared on behalf of *COMERCIALIZADORA MILENIO SA DE CV* and their product, *FCC ID: 2ABD2PSPC505*, Model: *PSPC505* or the EUT (Equipment under Test) as referred to in the rest of this report. The EUT is a *Cosmo 505*.

Report No: RSZ131111001-20

# **Technical Specification**

| Product Type              | Portable                                          |  |
|---------------------------|---------------------------------------------------|--|
| <b>Exposure Category:</b> | Population/Uncontrolled                           |  |
| Antenna Type(s):          | Internal Antennau                                 |  |
| Body-Worn Accessories:    | Headset                                           |  |
| Face-Head Accessories:    | None                                              |  |
| Multi-slot Class:         | Class"12                                          |  |
| Operation Mode:           | GSM Voice, GPRS Data, WCDMA, Wi/Fi and Bluetooth  |  |
|                           | GSM850: 824-849 MHz'(TX); 869-894 MHz'(RX)        |  |
|                           | PCS1900: 1850-1910 MHz'(TX); 1930-1990 MHz'(RX)   |  |
| Engagon ov Ponda          | WCDMA850: 824-849 MHz'(TX); 869-894 MHz'(RX)      |  |
| Frequency Band:           | WCDMA1900: 1850-1910 MHz'(TX); 1930-1990 MHz'(RX) |  |
|                           | Wi/Fi: 2412-2462'MHz *VZ ΠZ+                      |  |
|                           | Bluetooth: 2402-2480'MHz *VZ ΠZ+                  |  |
|                           | GSM850: 31.45 dBm"¾ UO+                           |  |
|                           | PCS1900: 29.18 dBm *1 UO+                         |  |
| Conducted RF Power:       | WCDMA850: 22.24 dBm                               |  |
| Conducted RF Power:       | WCDMA1900: 22.85 dBm                              |  |
|                           | Wi/Fi: 9.61'dBm                                   |  |
|                           | Bluetooth: 9.07 dBm                               |  |
| Dimensions (L*W*H):       | 148 mm (L) × 72 mm (W) × 9 mm (H)                 |  |
| Power Source:             | 3.7 V <sub>DC</sub> 1900 mAh Rechargeable Battery |  |
| Normal Operation:         | Head and Body-worn                                |  |

SAR Evaluation Report 6 of 141

### REFERENCE, STANDARDS, AND GUILDELINES

### FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No: RSZ131111001-20

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

### CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Evaluation Report 7 of 141

### **SAR Limits**

### FCC Limit (1g Tissue)

Report No: RSZ131111001-20

|                                                                  | SAR (W/kg)                                                     |                                                        |  |
|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--|
| EXPOSURE LIMITS                                                  | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |  |
| Spatial Average (averaged over the whole body)                   | 0.08                                                           | 0.4                                                    |  |
| Spatial Peak<br>(averaged over any 1 g of tissue)                | 1.60                                                           | 8.0                                                    |  |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10 g) | 4.0                                                            | 20.0                                                   |  |

### CE Limit (10g Tissue)

|                                                                  | SAR (W/kg)                                                     |                                                        |  |
|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--|
| EXPOSURE LIMITS                                                  | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |  |
| Spatial Average (averaged over the whole body)                   | 0.08                                                           | 0.4                                                    |  |
| Spatial Peak<br>(averaged over any 10 g of tissue)               | 2.0                                                            | 10                                                     |  |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10 g) | 4.0                                                            | 20.0                                                   |  |

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

SAR Evaluation Report 8 of 141

# **FACILITIES**

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Report No: RSZ131111001-20

SAR Evaluation Report 9 of 141

### **DESCRIPTION OF TEST SYSTEM**

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

### **ALSAS-10U System Description**

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

### **Applications**

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

#### **Area Scans**

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.



Report No: RSZ131111001-20

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

### **Zoom Scan (Cube Scan Averaging)**

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

SAR Evaluation Report 10 of 141

### **ALSAS-10U Interpolation and Extrapolation Uncertainty**

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \cdot \left( e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

### **Isotropic E-Field Probe**

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

SAR Evaluation Report 11 of 141

### **Isotropic E-Field Probe Specification**

| Calibration Method                                               | Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cell Above 1 GHz Calibration in air performed in waveguide                              |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sensitivity                                                      | $0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$                                                                                                              |  |
| Dynamic Range                                                    | 0.0005 W/kg to 100 W/kg                                                                                                                                       |  |
| Isotropic Response                                               | Better than 0.1 dB                                                                                                                                            |  |
| Diode Compression Point<br>(DCP)                                 | t Calibration for Specific Frequency                                                                                                                          |  |
| Probe Tip Diameter < 2.9 mm                                      |                                                                                                                                                               |  |
| Sensor Offset                                                    | 1.56 (+/- 0.02 mm)                                                                                                                                            |  |
| Probe Length                                                     | 289 mm                                                                                                                                                        |  |
| Video Bandwidth                                                  | @ 500 Hz: 1 dB<br>@ 1.02 kHz: 3 dB                                                                                                                            |  |
| Boundary Effect Less than 2.1% for distance greater than 0.58 mm |                                                                                                                                                               |  |
| Spatial Resolution                                               | The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe.  The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe |  |

Report No: RSZ131111001-20

### **Boundary Detection Unit and Probe Mounting Device**

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

### **Daq-Paq (Analog to Digital Electronics)**

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from  $5\mu V$  to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

| ADC                      | 12 Bit                                                          |
|--------------------------|-----------------------------------------------------------------|
| Amplifier Range          | 20 mV to 200 mV and 150 mV to 800 mV                            |
| Field Integration        | Local Co-Processor utilizing proprietary integration algorithms |
| Number of Input Channels | 4 in total 3 dedicated and 1 spare                              |
| Communication            | Packet data via RS232                                           |

SAR Evaluation Report 12 of 141

#### **Axis Articulated Robot**

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Report No: RSZ131111001-20



| Robot/Controller Manufacturer | Thermo CRS                        |
|-------------------------------|-----------------------------------|
| Number of Axis                | Six independently controlled axis |
| Positioning Repeatability     | 0.05 mm                           |
| Controller Type               | Single phase Pentium based C500C  |
| Robot Reach                   | 710 mm                            |
| Communication                 | RS232 and LAN compatible          |

#### **ALSAS Universal Workstation**

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

#### **Universal Device Positioner**

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

SAR Evaluation Report 13 of 141



### **Phantom Types**

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

### **APREL SAM Phantoms**

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.



SAR Evaluation Report 14 of 141

#### **APREL Laboratories Universal Phantom**

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.



SAR Evaluation Report 15 of 141

### Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Report No: RSZ131111001-20

| Ingredients         |       | Frequency (MHz) |       |      |       |       |       |      |      |      |
|---------------------|-------|-----------------|-------|------|-------|-------|-------|------|------|------|
| (% by weight)       | 45    | 0               | 83    | 35   | 91    | 15    | 19    | 00   | 24   | 50   |
| Tissue Type         | Head  | Body            | Head  | Body | Head  | Body  | Head  | Body | Head | Body |
| Water               | 38.56 | 51.16           | 41.45 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2 |
| Salt (Nacl)         | 3.95  | 1.49            | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04 |
| Sugar               | 56.32 | 46.78           | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0  |
| HEC                 | 0.98  | 0.52            | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0  |
| Bactericide         | 0.19  | 0.05            | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0  |
| Triton x-100        | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0  |
| DGBE                | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7 |
| Dielectric Constant | 43.42 | 58.0            | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5 |
| Conductivity (s/m)  | 0.85  | 0.83            | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78 |

### Recommended Tissue Dielectric Parameters for Head and Body

| Frequency | Head | Tissue  | Body | Tissue  |
|-----------|------|---------|------|---------|
| (MHz)     | Er   | O'(S/m) | £r   | O (S/m) |
| 150       | 52.3 | 0.76    | 61.9 | 0.80    |
| 300       | 45.3 | 0.87    | 58.2 | 0.92    |
| 450       | 43.5 | 0.87    | 56.7 | 0.94    |
| 835       | 41.5 | 0.90    | 55.2 | 0.97    |
| 900       | 41.5 | 0.97    | 55.0 | 1.05    |
| 915       | 41.5 | 0.98    | 55.0 | 1.06    |
| 1450      | 40.5 | 1.20    | 54.0 | 1.30    |
| 1610      | 40.3 | 1.29    | 53.8 | 1.40    |
| 1800-2000 | 40.0 | 1.40    | 53.3 | 1.52    |
| 2450      | 39.2 | 1.80    | 52.7 | 1.95    |
| 3000      | 38.5 | 2.40    | 52.0 | 2.73    |
| 5800      | 35.3 | 5.27    | 48.2 | 6.00    |

SAR Evaluation Report 16 of 141

# **EQUIPMENT LIST AND CALIBRATION**

# **Equipments List & Calibration Information**

| Equipment                                                   | Model          | Calibration<br>Date | S/N        |
|-------------------------------------------------------------|----------------|---------------------|------------|
| CRS F3 robot                                                | ALS-F3         | N/A                 | RAF0805352 |
| CRS F3 Software                                             | ALS-F3-SW      | N/A                 | N/A        |
| CRS C500C controller                                        | ALS-C500       | N/A                 | RCF0805379 |
| Probe mounting device & Boundary<br>Detection Sensor System | ALS-PMDPS-3    | N/A                 | 120-00270  |
| Universal Work Station                                      | ALS-UWS        | N/A                 | 100-00157  |
| Data Acquisition Package                                    | ALS-DAQ-PAQ-3  | 2013-10-08          | 110-00212  |
| Miniature E-Field Probe                                     | ALS-E-020      | 2013-10-08          | 500-00283  |
| Dipole, 835'MHz                                             | ALS-D-835-S-2  | 2011-08-25          | 180-00558  |
| Dipole, 1900'MHz                                            | ALS-D-1900-S-2 | 2011-08-25          | 210-00710  |
| Dipole Spacer                                               | ALS-DS-U       | N/A                 | 250-00907  |
| Device holder/Positioner                                    | ALS-H-E-SET-2  | N/A                 | 170-00510  |
| Left ear SAM phantom                                        | ALS-P-SAM-L    | N/A                 | 130-00311  |
| Right ear SAM phantom                                       | ALS-P-SAM-R    | N/A                 | 140-00359  |
| UniPhantom                                                  | ALS-P-UP-1     | N/A                 | 150-00413  |
| Simulated Tissue 835 MHz Head                               | ALS-TS-835-H   | Each Time           | 270-01002  |
| Simulated Tissue 835 MHz Body                               | ALS-TS-835-B   | Each Time           | 270-02101  |
| Simulated Tissue 1900 MHz Head                              | ALS-TS-1900-H  | Each Time           | 295-01103  |
| Simulated Tissue 1900 MHz Body                              | ALS-TS-1900-B  | Each Time           | 295-02102  |
| Power Amplifier                                             | 5S1G4          | N/A                 | 71377      |
| Synthesized Sweeper                                         | HP 8341B       | 2013-05-09          | 2624A00116 |
| UNIVERSAL RADIO<br>COMMUNICATION TESTER                     | CMU200         | 2013-11-23          | 106891     |
| EMI Test Receiver                                           | ESCI           | 2013-11-12          | 101120     |

Report No: RSZ131111001-20

SAR Evaluation Report 17 of 141

# SAR MEASUREMENT SYSTEM VERIFICATION

# **Liquid Verification**



Report No: RSZ131111001-20

Liquid Verification Setup Block Diagram

# **Liquid Verification Results**

| Frequency | Liquid | Liquid             | Parameter | Targ               | et Value | _                        | Oelta<br>(%) | Tolerance |
|-----------|--------|--------------------|-----------|--------------------|----------|--------------------------|--------------|-----------|
| requesty  | Type   | $\epsilon_{\rm r}$ | O' (S/m)  | $\epsilon_{\rm r}$ | O'(S/m)  | $\Delta \epsilon_{ m r}$ | ΔΟ (S/m)     | (%)       |
| 824.2     | Head   | 41.46              | 0.90      | 41.50              | 0.90     | -0.097                   | 0.000        | ±5        |
| 824.2     | Body   | 54.24              | 0.95      | 55.20              | 0.97     | -1.734                   | -2.062       | ±5        |
| 826.4     | Head   | 41.28              | 0.89      | 41.50              | 0.90     | -0.535                   | -1.111       | ±5        |
| 820.4     | Body   | 54.26              | 0.96      | 55.20              | 0.97     | -1.705                   | -1.031       | ±5        |
| 836.6     | Head   | 40.58              | 0.91      | 41.50              | 0.90     | -2.211                   | 1.111        | ±5        |
| 830.0     | Body   | 54.32              | 0.97      | 55.20              | 0.97     | -1.603                   | 0.000        | ±5        |
| 846.6     | Head   | 39.96              | 0.90      | 41.50              | 0.90     | -3.701                   | 0.000        | ±5        |
| 840.0     | Body   | 54.38              | 0.99      | 55.20              | 0.97     | -1.478                   | 2.062        | ±5        |
| 040.0     | Head   | 39.81              | 0.90      | 41.50              | 0.90     | -4.068                   | 0.000        | ±5        |
| 848.8     | Body   | 54.40              | 0.99      | 55.20              | 0.97     | -1.450                   | 2.062        | ±5        |
| 1950.2    | Head   | 39.65              | 1.41      | 40.00              | 1.40     | -0.883                   | 0.714        | ±5        |
| 1850.2    | Body   | 50.88              | 1.46      | 53.30              | 1.52     | -4.532                   | -5.921       | ±5        |
| 1952.4    | Head   | 39.70              | 1.41      | 40.00              | 1.40     | -0.756                   | 0.714        | ±5        |
| 1852.4    | Body   | 50.90              | 1.47      | 53.30              | 1.52     | -4.498                   | -3.289       | ±5        |
| 1000.0    | Head   | 39.67              | 1.44      | 40.00              | 1.40     | -0.822                   | 2.857        | ±5        |
| 1880.0    | Body   | 50.85              | 1.50      | 53.30              | 1.52     | -4.590                   | -3.289       | ±5        |
| 1007.6    | Head   | 39.59              | 1.42      | 40.00              | 1.40     | -1.024                   | 1.429        | ±5        |
| 1907.6    | Body   | 50.79              | 1.52      | 53.30              | 1.52     | -4.703                   | 0.000        | ±5        |
| 1909.8    | Head   | 39.51              | 1.42      | 40.00              | 1.40     | -1.237                   | 1.429        | ±5        |
| 1909.8    | Body   | 50.80              | 1.53      | 53.30              | 1.52     | -4.690                   | -1.316       | ±5        |

<sup>\*</sup>Liquid Verification was performed on 2013-11-26.

Please refer to the following tables.

SAR Evaluation Report 18 of 141

|                    | 835 MHz Hea | d       | 8                  | 835 MHz Body |         |  |  |
|--------------------|-------------|---------|--------------------|--------------|---------|--|--|
| Frequency<br>(MHz) | e'          | e"      | Frequency<br>(MHz) | e'           | e''     |  |  |
| 824.0              | 41.4596     | 19.5996 | 824.0              | 54.2429      | 20.7253 |  |  |
| 824.5              | 41.3643     | 19.5467 | 824.5              | 54.2460      | 20.6248 |  |  |
| 825.0              | 41.3343     | 19.4606 | 825.0              | 54.2492      | 20.6373 |  |  |
| 825.5              | 41.3549     | 19.5148 | 825.5              | 54.2523      | 20.6497 |  |  |
| 826.0              | 41.3201     | 19.4270 | 826.0              | 54.2555      | 20.7848 |  |  |
| 826.5              | 41.2779     | 19.4240 | 826.5              | 54.2586      | 20.8485 |  |  |
| 827.0              | 41.3660     | 19.4309 | 827.0              | 54.2617      | 20.7630 |  |  |
| 827.5              | 41.3538     | 19.5138 | 827.5              | 54.2649      | 20.6412 |  |  |
| 828.0              | 41.4725     | 19.5568 | 828.0              | 54.2680      | 20.6757 |  |  |
| 828.5              | 41.4188     | 19.5542 | 828.5              | 54.2712      | 20.6331 |  |  |
| 829.0              | 41.4387     | 19.5831 | 829.0              | 54.2743      | 20.7373 |  |  |
| 829.5              | 41.5139     | 19.5372 | 829.5              | 54.2774      | 20.6801 |  |  |
| 830.0              | 41.3937     | 19.5088 | 830.0              | 54.2806      | 20.5580 |  |  |
| 830.5              | 41.4138     | 19.4970 | 830.5              | 54.2837      | 20.6224 |  |  |
| 831.0              | 41.2695     | 19.5070 | 831.0              | 54.2868      | 20.6076 |  |  |
| 831.5              | 41.2525     | 19.4822 | 831.5              | 54.2900      | 20.8150 |  |  |
| 832.0              | 41.2093     | 19.4320 | 832.0              | 54.2931      | 20.7927 |  |  |
| 832.5              | 41.1154     | 19.4345 | 832.5              | 54.2963      | 20.5694 |  |  |
| 833.0              | 40.8897     | 19.3264 | 833.0              | 54.2994      | 20.5027 |  |  |
| 833.5              | 40.8183     | 19.3324 | 833.5              | 54.3025      | 20.6142 |  |  |
| 834.0              | 40.8110     | 19.4679 | 834.0              | 54.3057      | 20.7661 |  |  |
| 834.5              | 40.7427     | 19.4410 | 834.5              | 54.3088      | 20.6590 |  |  |
| 835.0              | 40.7542     | 19.4535 | 835.0              | 54.3119      | 20.6025 |  |  |
| 835.5              | 40.6362     | 19.4984 | 835.5              | 54.3151      | 20.8502 |  |  |
| 836.0              | 40.6078     | 19.5388 | 836.0              | 54.3182      | 20.8571 |  |  |
| 836.5              | 40.5823     | 19.5465 | 836.5              | 54.3214      | 20.7149 |  |  |
| 837.0              | 40.5489     | 19.5337 | 837.0              | 54.3245      | 20.5420 |  |  |
| 837.5              | 40.4505     | 19.5159 | 837.5              | 54.3276      | 20.5783 |  |  |
| 838.0              | 40.4351     | 19.5079 | 838.0              | 54.3308      | 20.8626 |  |  |
| 838.5              | 40.3239     | 19.4565 | 838.5              | 54.3339      | 20.8778 |  |  |
| 839.0              | 40.3216     | 19.5817 | 839.0              | 54.3371      | 20.7998 |  |  |
| 839.5              | 40.3365     | 19.6087 | 839.5              | 54.3402      | 20.7347 |  |  |
| 840.0              | 40.4776     | 19.6387 | 840.0              | 54.3433      | 20.8019 |  |  |
| 840.5              | 40.4074     | 19.5910 | 840.5              | 54.3465      | 20.8472 |  |  |
| 841.0              | 40.3565     | 19.5706 | 841.0              | 54.3496      | 20.8024 |  |  |
| 841.5              | 40.3537     | 19.4685 | 841.5              | 54.3527      | 20.7391 |  |  |
| 842.0              | 40.2825     | 19.4454 | 842.0              | 54.3559      | 20.9149 |  |  |
| 842.5              | 40.3010     | 19.3391 | 842.5              | 54.3590      | 20.8835 |  |  |
| 843.0              | 40.1849     | 19.2810 | 843.0              | 54.3622      | 20.8439 |  |  |
| 843.5              | 40.2182     | 19.2579 | 843.5              | 54.3653      | 20.7994 |  |  |
| 844.0              | 40.1966     | 19.2229 | 844.0              | 54.3684      | 20.8170 |  |  |
| 844.5              | 40.1972     | 19.2134 | 844.5              | 54.3716      | 20.8429 |  |  |
| 845.0              | 40.1064     | 19.1500 | 845.0              | 54.3747      | 20.7523 |  |  |
| 845.5              | 40.1308     | 19.1881 | 845.5              | 54.3778      | 20.6987 |  |  |
| 846.0              | 39.9764     | 19.1174 | 846.0              | 54.3810      | 20.8717 |  |  |
| 846.5              | 39.9640     | 19.1213 | 846.5              | 54.3841      | 20.9331 |  |  |
| 847.0              | 39.9800     | 19.0564 | 847.0              | 54.3873      | 20.8820 |  |  |
| 847.5              | 39.9616     | 19.0820 | 847.5              | 54.3904      | 20.8023 |  |  |
| 848.0              | 39.9045     | 19.0782 | 848.0              | 54.3935      | 20.8925 |  |  |
| 848.5              | 39.8870     | 19.0958 | 848.5              | 54.3967      | 20.9705 |  |  |
| 849.0              | 39.8117     | 19.0205 | 849.0              | 54.3998      | 20.9707 |  |  |

SAR Evaluation Report 19 of 141

| 1                | 900 MHz Head       | i                  | 1                  | 1900 MHz Body |                    |  |  |
|------------------|--------------------|--------------------|--------------------|---------------|--------------------|--|--|
| Frequency (MHz)  | e'                 | e''                | Frequency<br>(MHz) | e'            | e''                |  |  |
| 1850.0           | 39.6467            | 13.6587            | 1850.0             | 50.8842       | 14.1970            |  |  |
| 1851.2           | 39.6442            | 13.7004            | 1851.2             | 50.8948       | 14.2256            |  |  |
| 1852.4           | 39.6975            | 13.7321            | 1852.4             | 50.9025       | 14.2354            |  |  |
| 1853.6           | 39.6783            | 13.7667            | 1853.6             | 50.9039       | 14.2239            |  |  |
| 1854.8           | 39.6850            | 13.7686            | 1854.8             | 50.9293       | 14.2854            |  |  |
| 1856.0           | 39.6828            | 13.7726            | 1856.0             | 50.9212       | 14.3168            |  |  |
| 1857.2           | 39.6820            | 13.7595            | 1857.2             | 50.9189       | 14.3025            |  |  |
| 1858.4           | 39.7324            | 13.7937            | 1858.4             | 50.9149       | 14.3589            |  |  |
| 1859.6           | 39.7478            | 13.8309            | 1859.6             | 50.8947       | 14.3314            |  |  |
| 1860.8           | 39.7188            | 13.8097            | 1860.8             | 50.9145       | 14.3552            |  |  |
| 1862.0           | 39.7392            | 13.8212            | 1862.0             | 50.9083       | 14.3767            |  |  |
| 1863.2           | 39.7203            | 13.8181            | 1863.2             | 50.8702       | 14.4191            |  |  |
| 1864.4           | 39.7050            | 13.8066            | 1864.4             | 50.9309       | 14.4173            |  |  |
| 1865.6           | 39.6518            | 13.8383            | 1865.6             | 50.8819       | 14.3688            |  |  |
| 1866.8           | 39.6634            | 13.8144            | 1866.8             | 50.8744       | 14.3999            |  |  |
| 1868.0           | 39.6870            | 13.8232            | 1868.0             | 50.8766       | 14.3721            |  |  |
| 1869.2           | 39.6700            | 13.8347            | 1869.2             | 50.8504       | 14.3455            |  |  |
| 1870.4           | 39.6544            | 13.7915            | 1870.4             | 50.8389       | 14.3517            |  |  |
| 1871.6           | 39.6225            | 13.7730            | 1871.6             | 50.8461       | 14.3550            |  |  |
| 1872.8           | 39.6065            | 13.7356            | 1872.8             | 50.8576       | 14.3449            |  |  |
| 1874.0           | 39.5857            | 13.7238            | 1874.0             | 50.8577       | 14.3430            |  |  |
| 1875.2           | 39.6211            | 13.7277            | 1875.2             | 50.8289       | 14.3504            |  |  |
| 1876.4           | 39.6072            | 13.6992            | 1876.4             | 50.8621       | 14.3862            |  |  |
| 1877.6           | 39.6073            | 13.7334            | 1877.6             | 50.8636       | 14.3441            |  |  |
| 1878.8           | 39.6435            | 13.7259            | 1878.8             | 50.8378       | 14.3591            |  |  |
| 1880.0           | 39.6712            | 13.7363            | 1880.0             | 50.8537       | 14.3656            |  |  |
| 1881.2           | 39.6708            | 13.7203            | 1881.2             | 50.8829       | 14.3271            |  |  |
| 1882.4           | 39.6568            | 13.7133            | 1882.4             | 50.8567       | 14.3389            |  |  |
| 1883.6           | 39.6459            | 13.6636            | 1883.6             | 50.8564       | 14.3146            |  |  |
| 1884.8           | 39.6233            | 13.6588            | 1884.8             | 50.8707       | 14.3309            |  |  |
| 1886.0           | 39.6014            | 13.6028            | 1886.0             | 50.8920       | 14.3222            |  |  |
| 1887.2           | 39.6241            | 13.5827            | 1887.2             | 50.9033       | 14.3199            |  |  |
| 1888.4           | 39.6161            | 13.5734            | 1888.4             | 50.8780       | 14.3078            |  |  |
| 1889.6           | 39.6238            | 13.5637            | 1889.6             | 50.8464       | 14.3347            |  |  |
| 1890.8           | 39.6014            | 13.5349            | 1890.8             | 50.7971       | 14.3407            |  |  |
| 1892.0           | 39.5550            | 13.5058            | 1892.0             | 50.7989       | 14.2906            |  |  |
| 1893.2           | 39.5610            | 13.4790            | 1893.2             | 50.7771       | 14.3271            |  |  |
| 1893.2           | 39.5738            | 13.4783            | 1894.4             | 50.7795       | 14.2863            |  |  |
| 1895.6           | 39.5752            | 13.4767            | 1895.6             | 50.7896       | 14.3368            |  |  |
| 1896.8           | 39.5699            | 13.4889            | 1896.8             | 50.8068       | 14.3032            |  |  |
| 1898.0           | 39.5881            | 13.4488            | 1898.0             | 50.7840       | 14.2955            |  |  |
| 1899.2           | 39.5623            | 13.4313            | 1899.2             | 50.7840       | 14.3400            |  |  |
|                  |                    |                    | 1900.4             | 50.8272       |                    |  |  |
| 1900.4<br>1901.6 | 39.5895<br>39.5937 | 13.4682<br>13.4244 | 1900.4             | 50.7923       | 14.3395            |  |  |
| 1901.8           | 39.5937            | 13.3919            | 1901.6             |               | 14.3321<br>14.3562 |  |  |
|                  |                    |                    |                    | 50.7686       |                    |  |  |
| 1904.0           | 39.6064            | 13.4021            | 1904.0             | 50.8251       | 14.3666            |  |  |
| 1905.2           | 39.6090            | 13.3809            | 1905.2             | 50.7958       | 14.3759            |  |  |
| 1906.4           | 39.5860            | 13.4088            | 1906.4             | 50.8100       | 14.3617            |  |  |
| 1907.6           | 39.5902            | 13.4074            | 1907.6             | 50.7935       | 14.3529            |  |  |
| 1908.8           | 39.5815            | 13.3431            | 1908.8             | 50.7875       | 14.3676            |  |  |
| 1910.0           | 39.5050            | 13.3281            | 1910.0             | 50.8000       | 14.4171            |  |  |

SAR Evaluation Report 20 of 141

### **System Accuracy Verification**

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

### **System Verification Setup Block Diagram**



### Probe and dipole antenna List and Detail

| Manufacturer | Description             | Model          | Serial<br>Number | Calibration<br>Date | Calibration Due Date |
|--------------|-------------------------|----------------|------------------|---------------------|----------------------|
| APREL        | Probe                   | ALS-E-020      | 500-00283        | 2013-10-08          | 2014-10-07           |
| APREL        | Dipole antenna(850MHz)  | ALS-D-835-S-2  | 180-00558        | 2011-08-25          | 2014-08-24           |
| APREL        | Dipole antenna(1900MHz) | ALS-D-1900-S-2 | 210-00710        | 2011-08-25          | 2014-08-24           |

### **System Accuracy Check Results**

| Date       | Frequency<br>Band | Liquid Type |    | red SAR<br>(Kg) | Target<br>Value<br>(W/Kg) | Delta<br>(%) | Tolerance (%) |
|------------|-------------------|-------------|----|-----------------|---------------------------|--------------|---------------|
|            | 925               | Head        | 1g | 9.332           | 9.590                     | -2.690       | ±10           |
| 2013-11-26 | 835               | Body        | 1g | 9.782           | 9.684                     | 1.012        | ±10           |
| 2013-11-20 | 1900              | Head        | 1g | 39.680          | 39.648                    | 0.081        | ±10           |
|            | 1900              | Body        | 1g | 40.529          | 39.769                    | 1.911        | ±10           |

<sup>\*</sup>All SAR values are normalized to 1 Watt forward power.

SAR Evaluation Report 21 of 141

#### SAR SYSTEM VALIDATION DATA

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ131111001-20

System Performance Check 835 MHz Head Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz
Serial No. : 180-00558
Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr
Drift Time : 3 min(s)
Power Drift-Start : 9.215 W/kg
Power Drift-Finish
Power Drift (%) : 1.673

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Head Serial No. : 270-01002 Frequency : 835.0 MHz Last Calib. Date : 26-Nov-2013 Temperature : 20.00 °C Ambient Temp. : 21.00 °C Humidity : 56.00 RH% **Epsilon** : 40.75 F/m Sigma : 0.91 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 08-Oct-2013

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 22 of 141

1 gram SAR value : 9.332 W/kg 10 gram SAR value : 5.893 W/kg Area Scan Peak SAR : 9.846 W/kg Zoom Scan Peak SAR : 14.872 W/kg



835 MHz System Validation with Head Tissue

SAR Evaluation Report 23 of 141

### Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ131111001-20

### System Performance Check 835 MHz Body Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz Serial No. : 180-00558 Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 10.125 W/kg

Power Drift-Finish : 10.021 W/kg

Power Drift (%) : -2.446

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Body : 270-02101 Serial No. Frequency : 835.0 MHz Last Calib. Date : 26-Nov-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 54.31 F/m Epsilon Sigma : 0.97 S/m Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 08-Oct-2013

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 24 of 141

1 gram SAR value : 9.782 W/kg 10 gram SAR value : 6.104 W/kg Area Scan Peak SAR : 10.004 W/kg Zoom Scan Peak SAR : 15.718 W/kg



835 MHz System Validation with Body Tissue

SAR Evaluation Report 25 of 141

Report No: RSZ131111001-20

### Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

#### System Performance Check 1900 MHz Head Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz Serial No. : 210-00710 Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 39.296 W/kg

Power Drift-Finish : 39.837 W/kg

Power Drift (%) : 1.377

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : Head Serial No. : 295-01103 : 1900.00 MHz Frequency Last Calib. Date : 26-Nov-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 39.59 F/m Epsilon Sigma : 1.43 S/m Density : 1000.00 kg/cu. M

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 08-Oct-2013

Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 20.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 26 of 141

1 gram SAR value : 39.680 W/kg 10 gram SAR value : 20.406 W/kg Area Scan Peak SAR : 39.839 W/kg Zoom Scan Peak SAR : 72.495 W/kg



1900 MHz System Validation with Head Tissue

SAR Evaluation Report 27 of 141

Report No: RSZ131111001-20

### Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

#### System Performance Check 1900 MHz Body Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz Serial No. : 210-00710 Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 40.704 W/kg

Power Drift-Finish : 40.631 W/kg

Power Drift (%) : -0.179

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : Body Serial No. : 295-02102 : 1900.00 MHz Frequency Last Calib. Date : 26-Nov-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 50.80 F/m Epsilon Sigma : 1.52 S/m Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 08-Oct-2013 Frequency Band : 1900

Frequency Band : 190 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 28 of 141

1 gram SAR value : 40.529 W/kg 10 gram SAR value : 20.766 W/kg Area Scan Peak SAR : 40.816 W/kg Zoom Scan Peak SAR : 74.764 W/kg



1900 MHz System Validation with Body Tissue

SAR Evaluation Report 29 of 141

### **EUT TEST STRATEGY AND METHODOLOGY**

### **Test Positions for Device Operating Next to a Person's Ear**

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:





Report No: RSZ131111001-20

SAR Evaluation Report 30 of 141

#### **Cheek/Touch Position**

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

• When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

Report No: RSZ131111001-20

o (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

### **Cheek / Touch Position**



### **Ear/Tilt Position**

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

SAR Evaluation Report 31 of 141

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

### Ear /Tilt 15° Position



### Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

SAR Evaluation Report 32 of 141

#### **SAR Evaluation Procedure**

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No: RSZ131111001-20

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
  - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
  - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

SAR Evaluation Report 33 of 141

### CONDUCTED OUTPUT POWER MEASUREMENT

### **Provision Applicable**

The measured peak output power should be greater and within 5% than EMI measurement.

### **Test Procedure**

The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation.

Report No: RSZ131111001-20



GSM&3G

### **Maximum Output Power among production units**

|                   | Max Target Power for Production Unit (dBm) |        |       |  |  |  |  |  |
|-------------------|--------------------------------------------|--------|-------|--|--|--|--|--|
| Mode/Band         | Channel                                    |        |       |  |  |  |  |  |
| Mode/Band         | Low                                        | Middle | High  |  |  |  |  |  |
| GSM 850           | 31.50                                      | 31.50  | 31.50 |  |  |  |  |  |
| GPRS 1 slot       | 31.50                                      | 31.50  | 31.50 |  |  |  |  |  |
| GPRS 2 slot       | 28.50                                      | 28.50  | 28.50 |  |  |  |  |  |
| GPRS 3 slot       | 27.50                                      | 27.50  | 27.50 |  |  |  |  |  |
| GPRS 4 slot       | 25.50                                      | 25.50  | 25.50 |  |  |  |  |  |
| PCS 1900          | 29.50                                      | 29.50  | 29.50 |  |  |  |  |  |
| GPRS 1 slot       | 29.50                                      | 29.50  | 29.50 |  |  |  |  |  |
| GPRS 2 slot       | 26.50                                      | 26.50  | 26.50 |  |  |  |  |  |
| GPRS 3 slot       | 25.50                                      | 25.50  | 25.50 |  |  |  |  |  |
| GPRS 4 slot       | 23.50                                      | 23.50  | 23.50 |  |  |  |  |  |
| WCDMA850          | 22.50                                      | 22.50  | 22.50 |  |  |  |  |  |
| WCDMA1900         | 23.00                                      | 23.00  | 23.00 |  |  |  |  |  |
| WiFi 802.11b      | 10.00                                      | 10.00  | 10.00 |  |  |  |  |  |
| WiFi 802.11g      | 10.00                                      | 10.00  | 10.00 |  |  |  |  |  |
| WiFi 802.11n-HT20 | 10.00                                      | 10.00  | 10.00 |  |  |  |  |  |
| Bluetooth         | 10.00                                      | 10.00  | 10.00 |  |  |  |  |  |

SAR Evaluation Report 34 of 141

### **Test Results:**

### **GSM**

| Band     | Frequency | Conducted Peak    | Output Power    |
|----------|-----------|-------------------|-----------------|
| Danu     | (MHz)     | Meas. Power (dBm) | Meas. Power (W) |
|          | 824.2     | 31.44             | 1.393           |
| GSM 850  | 836.6     | 31.45             | 1.396           |
|          | 848.8     | 31.45             | 1.396           |
|          | 1850.2    | 29.18             | 0.828           |
| PCS 1900 | 1880.0    | 29.16             | 0.824           |
|          | 1909.8    | 29.00             | 0.794           |

### **GPRS**

| D J      | Channel | Frequency | RF Peak Output Power (dBm) |        |         |         |  |  |
|----------|---------|-----------|----------------------------|--------|---------|---------|--|--|
| Band     | No.     | (MHz)     | 1 slot                     | 2 slot | 3 slots | 4 slots |  |  |
|          | 128     | 824.2     | 31.42                      | 28.33  | 27.25   | 25.19   |  |  |
| GSM 850  | 190     | 836.6     | 31.44                      | 28.37  | 27.27   | 25.23   |  |  |
|          | 251     | 848.8     | 31.45                      | 28.40  | 27.29   | 25.24   |  |  |
|          | 512     | 1850.2    | 29.14                      | 26.04  | 25.06   | 23.09   |  |  |
| PCS 1900 | 661     | 1880.0    | 29.10                      | 26.02  | 25.05   | 23.05   |  |  |
|          | 810     | 1909.8    | 28.94                      | 25.92  | 24.92   | 22.95   |  |  |

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

| Number of Time slot                                  | 1     | 2     | 3        | 4     |
|------------------------------------------------------|-------|-------|----------|-------|
| Duty Cycle                                           | 1:8   | 1:4   | 1:2.66   | 1:2   |
| Time based Ave. power compared to slotted Ave. power | -9 dB | -6 dB | -4.25 dB | -3 dB |
| Crest Factor                                         | 8     | 4     | 2.66     | 2     |

# The time based average power for GPRS

| Band     | Channel<br>No. | Frequency<br>(MHz) | Time based average Power (dBm) |        |         |         |
|----------|----------------|--------------------|--------------------------------|--------|---------|---------|
|          |                |                    | 1 slot                         | 2 slot | 3 slots | 4 slots |
| GSM 850  | 128            | 824.2              | 22.42                          | 22.33  | 23.00   | 22.19   |
|          | 190            | 836.6              | 22.44                          | 22.37  | 23.02   | 22.23   |
|          | 251            | 848.8              | 22.45                          | 22.40  | 23.04   | 22.24   |
| PCS 1900 | 512            | 1850.2             | 20.14                          | 20.04  | 20.81   | 20.09   |
|          | 661            | 1880.0             | 20.10                          | 20.02  | 20.80   | 20.05   |
|          | 810            | 1909.8             | 19.94                          | 19.92  | 20.67   | 19.95   |

SAR Evaluation Report 35 of 141

#### Note:

1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots.

For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz

Report No: RSZ131111001-20

- 3. For GPRS, 1, 2 timeslots has been activated separately with power level 5(850 MHz band) and 0(1900 MHz band).

#### **WCDMA-Release 99:**

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24"dBm (+1.7/-3.7).

| WCDMA<br>General<br>Settings | Loopback Mode              | Test Mode 1   |
|------------------------------|----------------------------|---------------|
|                              | Rel99 RMC                  | 12.2'kbps RMC |
|                              | Power Control<br>Algorithm | Algorithm2    |
|                              | βс /βd                     | 8/15          |

### Results (12.2'kbps RMC)

| n i        | Frequency | CI INO      | Conducted Output Power |        |  |
|------------|-----------|-------------|------------------------|--------|--|
| Band       | (MHz)     | Channel NO. | (dBm)                  | (Watt) |  |
| WCDMA 850  | 826.4     | 4132        | 21.81                  | 0.152  |  |
|            | 836.6     | 4183        | 22.24                  | 0.167  |  |
|            | 846.6     | 4233        | 21.86                  | 0.153  |  |
| WCDMA 1900 | 1852.4    | 9262        | 22.85                  | 0.193  |  |
|            | 1880.0    | 9400        | 21.83                  | 0.152  |  |
|            | 1907.6    | 9538        | 22.10                  | 0.162  |  |

36 of 141 SAR Evaluation Report

### WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ131111001-20

|                     | Mode                        | HSDPA        | HSDPA  | HSDPA | HSDPA |  |  |  |  |  |
|---------------------|-----------------------------|--------------|--------|-------|-------|--|--|--|--|--|
|                     | Subset                      | 1            | 2      | 3     | 4     |  |  |  |  |  |
|                     | Loopback Mode               | Test Mode 1  | Mode 1 |       |       |  |  |  |  |  |
|                     | Rel99 RMC                   | 12.2kbps RMC |        |       |       |  |  |  |  |  |
|                     | HSDPA FRC                   | H-Set1       |        |       |       |  |  |  |  |  |
|                     | Power Control Algorithm     | Algorithm2   |        |       |       |  |  |  |  |  |
| WCDMA               | c                           | 2/15         | 12/15  | 15/15 | 15/15 |  |  |  |  |  |
| General<br>Settings | d                           | 15/15 15/15  |        | 8/15  | 4/15  |  |  |  |  |  |
| Settings            | d (SF)                      | 64           |        |       |       |  |  |  |  |  |
|                     | c/ d                        | 2/15         | 12/15  | 15/8  | 15/4  |  |  |  |  |  |
|                     | hs                          | 4/15         | 24/15  | 30/15 | 30/15 |  |  |  |  |  |
|                     | MPR(dB)                     | 0            | 0      | 0.5   | 0.5   |  |  |  |  |  |
|                     | $D_{ACK}$                   | 8            |        |       |       |  |  |  |  |  |
|                     | $D_{NAK}$                   | 8            |        |       |       |  |  |  |  |  |
| HSDPA               | $\mathrm{D}_{\mathrm{CQI}}$ | 8            |        |       |       |  |  |  |  |  |
| Specific            | Ack-Nack repetition factor  | 3            |        |       |       |  |  |  |  |  |
| Settings            | CQI Feedback                | 4ms          |        |       |       |  |  |  |  |  |
|                     | CQI Repetition Factor       | 2            |        |       |       |  |  |  |  |  |
|                     | Ahs= hs/ c                  | 30/15        |        |       |       |  |  |  |  |  |

# **Results (HSDPA)**

| Band          | Frequency | Channel NO. | Conducted Output Power (dBm) |          |          |          |  |  |  |
|---------------|-----------|-------------|------------------------------|----------|----------|----------|--|--|--|
| Danu          | (MHz)     | Channel NO. | Subset 1                     | Subset 2 | Subset 3 | Subset 4 |  |  |  |
| WCDMA<br>850  | 826.4     | 4132        | 21.75                        | 21.68    | 21.49    | 21.76    |  |  |  |
|               | 836.6     | 4183        | 22.09                        | 22.10    | 22.12    | 22.14    |  |  |  |
|               | 846.6     | 4233        | 21.50                        | 21.53    | 21.43    | 21.48    |  |  |  |
|               | 1852.4    | 9262        | 21.58                        | 21.62    | 21.54    | 21.66    |  |  |  |
| WCDMA<br>1900 | 1880.0    | 9400        | 21.26                        | 21.21    | 21.29    | 21.32    |  |  |  |
| 1,00          | 1907.6    | 9538        | 21.19                        | 21.34    | 21.21    | 21.08    |  |  |  |

SAR Evaluation Report 37 of 141

# WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ131111001-20

|                               | Mode                             | HSUPA                                                                            | HSUPA                                         | HSUPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HSUPA | HSUPA                     |  |  |  |  |
|-------------------------------|----------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|--|--|--|--|
|                               | Subset                           | 1                                                                                | 2                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     | 5                         |  |  |  |  |
|                               | Loopback Mode                    | Test Mod                                                                         | e 1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | Rel99 RMC                        | 12.2kbps RMC                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | HSDPA FRC                        | H-Set1                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | HSUPA Test                       | HSUPA Loopback                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | Power Control Algorithm          | Algorithm                                                                        | Algorithm2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
| WCDMA                         | c                                | 11/15                                                                            | 6/15                                          | 15/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/15  | 15/15                     |  |  |  |  |
| General<br>Settings           | d                                | 15/15                                                                            | 15/15                                         | 9/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15/15 | 0                         |  |  |  |  |
| Settings                      | œ                                | 209/225                                                                          | 12/15                                         | 30/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/15  | 5/15                      |  |  |  |  |
|                               | c/ d                             | 11/15                                                                            | 6/15                                          | 15/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/15  | -                         |  |  |  |  |
|                               | hs                               | 22/15                                                                            | 12/15                                         | 30/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/15  | 5/15                      |  |  |  |  |
|                               | CM(dB)                           | 1.0                                                                              | 3.0                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0   | 1.0                       |  |  |  |  |
|                               | MPR(dB)                          | 0                                                                                | 2                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | 0                         |  |  |  |  |
|                               | DACK                             | 8                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | DNAK                             | 8                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
| HSDPA                         | DCQI                             | 8                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
| Specific                      | Ack-Nack repetition factor       | 3                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
| Settings                      | CQI Feedback                     | 4ms                                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | CQI Repetition Factor            | 2                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |  |  |  |  |
|                               | Ahs= hs/ c                       | 30/15                                                                            | <b>T</b>                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     | _                         |  |  |  |  |
|                               | DE-DPCCH                         | 6                                                                                | 8                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     | 7                         |  |  |  |  |
|                               | DHARQ                            | 0                                                                                | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 0                         |  |  |  |  |
|                               | AG Index                         | 20                                                                               | 12                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17    | 21                        |  |  |  |  |
|                               | ETFCI                            | 75                                                                               | 67                                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71    | 81                        |  |  |  |  |
|                               | Associated Max UL Data Rate kbps | 242.1                                                                            | 174.9                                         | 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 205.8 | 308.9                     |  |  |  |  |
| HSUPA<br>Specific<br>Settings | Reference E_FCls                 | E-TFCI 1 E-TFCI P E-TFCI 6 E-TFCI 7 E-TFCI 7 E-TFCI 7 E-TFCI 7 E-TFCI P E-TFCI P | O 4<br>7<br>O 18<br>1<br>O23<br>5<br>O26<br>1 | E-TFCI   E-T |       | 0 4<br>0 18<br>023<br>026 |  |  |  |  |

SAR Evaluation Report 38 of 141

# **Results (HSUPA)**

| Dand          | Frequency | Channel |          | Conducte | d Output Pow | ver (dBm) |          |
|---------------|-----------|---------|----------|----------|--------------|-----------|----------|
| Band          | (MHz)     | NO.     | Subset 1 | Subset 2 | Subset 3     | Subset 4  | Subset 5 |
| W. G.D. L.    | 826.4     | 4132    | 21.21    | 21.19    | 21.23        | 21.17     | 21.08    |
| WCDMA<br>850  | 836.6     | 4183    | 21.20    | 21.15    | 21.21        | 21.23     | 21.14    |
|               | 846.6     | 4233    | 20.18    | 20.15    | 20.22        | 20.19     | 20.24    |
|               | 1852.4    | 9262    | 21.45    | 21.41    | 21.52        | 21.49     | 21.56    |
| WCDMA<br>1900 | 1880.0    | 9400    | 20.42    | 20.41    | 20.45        | 20.35     | 20.38    |
|               | 1907.6    | 9538    | 20.27    | 20.21    | 20.31        | 20.34     | 20.28    |

Report No: RSZ131111001-20

#### Note:

- 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 3. KDB 941225 D01-Body SAR is not required for HSUPA when the maximum average output of each RF channel with HSUPA active is less than ¼ dB higher than measured without HSUPA using 12.2kbps RMC and the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

#### **Bluetooth**

| Mode         | Channel frequency (MHz) | Reading power (dBm) | Power output (mw) | Limit (mw) |
|--------------|-------------------------|---------------------|-------------------|------------|
|              | (Low)2402               | 8.52                | 7.112             | 1000       |
| BDR(GFSK)    | (Middle)2441            | 9.07                | 8.072             | 1000       |
|              | (High)2480              | 8.52                | 7.112             | 1000       |
|              | (Low)2402               | 6.48                | 4.446             | 1000       |
| EDR(4-DQPSK) | (Middle)2441            | 6.96                | 4.966             | 1000       |
|              | (High)2480              | 6.75                | 4.732             | 1000       |
|              | (Low)2402               | 6.44                | 4.406             | 1000       |
| EDR-8DPSK    | (Middle)2441            | 6.93                | 4.932             | 1000       |
|              | (High)2480              | 6.78                | 4.764             | 1000       |

SAR Evaluation Report 39 of 141

| Band         | Frequency | Conducted Output Power |       |  |  |  |  |
|--------------|-----------|------------------------|-------|--|--|--|--|
| Danu         | (MHz)     | (dBm)                  | (mw)  |  |  |  |  |
|              | 2412      | 9.20                   | 8.318 |  |  |  |  |
| 802.11b      | 2437      | 9.16                   | 8.241 |  |  |  |  |
|              | 2462      | 9.52                   | 8.954 |  |  |  |  |
|              | 2412      | 9.46                   | 8.831 |  |  |  |  |
| 802.11g      | 2437      | 9.51                   | 8.933 |  |  |  |  |
|              | 2462      | 9.61                   | 9.141 |  |  |  |  |
|              | 2412      | 9.39                   | 8.690 |  |  |  |  |
| 802.11n-HT20 | 2437      | 9.50                   | 8.913 |  |  |  |  |
|              | 2462      | 9.52                   | 8.954 |  |  |  |  |

Report No: RSZ131111001-20

# Note:

- The output power was tested under data rate 1'Mbps for 802.11b, 6'Mbps for 802.11g, 6.5'Mbps for 802.11n-J V20.
   KDB248227-SAR is not required for 802.11g/802.11n channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

**SAR Evaluation Report** 40 of 141

# SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

# **SAR Test Data**

# **Environmental Conditions**

| Temperature:       | 21-24          |
|--------------------|----------------|
| Relative Humidity: | 50-53 %        |
| ATM Pressure:      | 1001-1002 mbar |

<sup>\*</sup> Testing was performed by Wilson Chen on 2013-11-26 to 2013-11-28.

### **GSM 850:**

| EUT                       | Frequency ( | MHz)  | Test | Power        | Max.<br>Meas. | Max.<br>Rated | FCC              | 1g SAR (V    | V/Kg)         |
|---------------------------|-------------|-------|------|--------------|---------------|---------------|------------------|--------------|---------------|
| Position                  | Channel     | MHz   | Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
|                           | 128(Low)    | 824.2 | GSM  | /            | /             | /             | /                | /            | /             |
| Left Head Cheek           | 190(Middle) | 836.6 | GSM  | 0.267        | 31.45         | 31.50         | 1.012            | 0.112        | 0.113         |
|                           | 251(High)   | 848.8 | GSM  | /            | /             | /             | /                | /            | /             |
|                           | 128(Low)    | 824.2 | GSM  | /            | /             | /             | /                | /            | /             |
| Left Head Tilt            | 190(Middle) | 836.6 | GSM  | -1.834       | 31.45         | 31.50         | 1.012            | 0.056        | 0.057         |
|                           | 251(High)   | 848.8 | GSM  | /            | /             | /             | /                | /            | /             |
|                           | 128(Low)    | 824.2 | GSM  | 0.798        | 31.44         | 31.50         | 1.014            | 0.110        | 0.112         |
| Right Head Cheek          | 190(Middle) | 836.6 | GSM  | 2.492        | 31.45         | 31.50         | 1.012            | 0.207        | 0.209         |
|                           | 251(High)   | 848.8 | GSM  | -0.713       | 31.45         | 31.50         | 1.012            | 0.172        | 0.174         |
|                           | 128(Low)    | 824.2 | GSM  | /            | /             | /             | /                | /            | /             |
| Right Head Tilt           | 190(Middle) | 836.6 | GSM  | -3.942       | 31.45         | 31.50         | 1.012            | 0.105        | 0.106         |
|                           | 251(High)   | 848.8 | GSM  | /            | /             | /             | /                | /            | /             |
|                           | 128(Low)    | 824.2 | GSM  | /            | /             | /             | /                | /            | /             |
| Body-Front-Headset (10mm) | 190(Middle) | 836.6 | GSM  | -3.509       | 31.45         | 31.50         | 1.012            | 0.114        | 0.115         |
| (1,1111)                  | 251(High)   | 848.8 | GSM  | /            | /             | /             | /                | /            | /             |
|                           | 128(Low)    | 824.2 | GSM  | /            | /             | /             | /                | /            | /             |
| Body-Back-Headset (10mm)  | 190(Middle) | 836.6 | GSM  | 0.844        | 31.45         | 31.50         | 1.012            | 0.257        | 0.260         |
| (= 0)                     | 251(High)   | 848.8 | GSM  | /            | /             | /             | /                | /            | /             |

Report No: RSZ131111001-20

SAR Evaluation Report 41 of 141

#### **PCS Band:**

| EUT                       | Frequency ( | (MHz)  | Tost         | Power        | Max.<br>Meas. | Max.<br>Rated | FCC              | 1g SAR (V    | V/Kg)         |
|---------------------------|-------------|--------|--------------|--------------|---------------|---------------|------------------|--------------|---------------|
| Position                  | Channel     | MHz    | Test<br>Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
| Left Head Cheek           | 512(Low)    | 1850.2 | GSM          | -2.016       | 29.18         | 29.50         | 1.076            | 0.197        | 0.212         |
|                           | 661(Middle) | 1880.0 | GSM          | 0.217        | 29.16         | 29.50         | 1.081            | 0.178        | 0.192         |
|                           | 810(High)   | 1909.8 | GSM          | 0.000        | 29.00         | 29.50         | 1.122            | 0.253        | 0.284         |
|                           | 512(Low)    | 1850.2 | GSM          | /            | /             | /             | /                | /            | /             |
| Left Head Tilt            | 661(Middle) | 1880.0 | GSM          | -3.121       | 29.16         | 29.50         | 1.081            | 0.053        | 0.057         |
|                           | 810(High)   | 1909.8 | GSM          | /            | /             | /             | /                | /            | /             |
|                           | 512(Low)    | 1850.2 | GSM          | /            | /             | /             | /                | /            | /             |
| Right Head Cheek          | 661(Middle) | 1880.0 | GSM          | 4.152        | 29.16         | 29.50         | 1.081            | 0.146        | 0.158         |
|                           | 810(High)   | 1909.8 | GSM          | /            | /             | /             | /                | /            | /             |
|                           | 512(Low)    | 1850.2 | GSM          | /            | /             | /             | /                | /            | /             |
| Right Head Tilt           | 661(Middle) | 1880.0 | GSM          | 3.943        | 29.16         | 29.50         | 1.081            | 0.101        | 0.109         |
|                           | 810(High)   | 1909.8 | GSM          | /            | /             | /             | /                | /            | /             |
|                           | 512(Low)    | 1850.2 | GSM          | /            | /             | /             | /                | /            | /             |
| Body-Front-Headset (10mm) | 661(Middle) | 1880.0 | GSM          | -3.636       | 29.16         | 29.50         | 1.081            | 0.369        | 0.399         |
| (1,1111)                  | 810(High)   | 1909.8 | GSM          | /            | /             | /             | /                | /            | /             |
|                           | 512(Low)    | 1850.2 | GSM          | /            | /             | /             | /                | /            | /             |
| Body-Back-Headset (10mm)  | 661(Middle) | 1880.0 | GSM          | 4.310        | 29.16         | 29.50         | 1.081            | 0.230        | 0.249         |
| (1011111)                 | 810(High)   | 1909.8 | GSM          | /            | /             | /             | /                | /            | /             |

Report No: RSZ131111001-20

- When the 1-g SAR is ≤ 0.8W/Kg, testing for other channels are optional.
   The EUT transmit and receive through the same GSM antenna while testing SAR.
   When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Evaluation Report 42 of 141

#### **WCDMA 850**

| EUT              | Frequenc | y (MHz) |           | Power        | Max.<br>Meas. | Max.<br>Rated | FCC              | 1g SAR (V    | V/Kg)         |
|------------------|----------|---------|-----------|--------------|---------------|---------------|------------------|--------------|---------------|
| Position         | Channel  | MHz     | Test Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
|                  | 4132     | 826.4   | WCDMA 850 | 1.051        | 21.81         | 22.50         | 1.172            | 0.240        | 0.281         |
| Left Head Cheek  | 4183     | 836.6   | WCDMA 850 | 0.204        | 22.24         | 22.50         | 1.062            | 0.194        | 0.206         |
|                  | 4233     | 846.6   | WCDMA 850 | -0.641       | 21.86         | 22.50         | 1.159            | 0.263        | 0.305         |
|                  | 4132     | 826.4   | WCDMA 850 | /            | /             | /             | /                | /            | /             |
| Left Head Tilt   | 4183     | 836.6   | WCDMA 850 | 2.181        | 22.24         | 22.50         | 1.062            | 0.140        | 0.149         |
|                  | 4233     | 846.6   | WCDMA 850 | /            | /             | /             | /                | /            | /             |
|                  | 4132     | 826.4   | WCDMA 850 | /            | /             | /             | /                | /            | /             |
| Right Head Cheek | 4183     | 836.6   | WCDMA 850 | -1.076       | 22.24         | 22.50         | 1.062            | 0.152        | 0.161         |
|                  | 4233     | 846.6   | WCDMA 850 | /            | /             | /             | /                | /            | /             |
|                  | 4132     | 826.4   | WCDMA 850 | /            | /             | /             | /                | /            | /             |
| Right Head Tilt  | 4183     | 836.6   | WCDMA 850 | -2.314       | 22.24         | 22.50         | 1.062            | 0.089        | 0.094         |
|                  | 4233     | 846.6   | WCDMA 850 | /            | /             | /             | /                | /            | /             |

Report No: RSZ131111001-20

### **WCDMA1900**

| EUT              | Frequenc | y (MHz) |           | Power        | Max.<br>Meas. | Max.<br>Rated | FCC              | 1g SAR (V    | V/Kg)         |
|------------------|----------|---------|-----------|--------------|---------------|---------------|------------------|--------------|---------------|
| Position         | Channel  | MHz     | Test Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
|                  | 9262     | 1852.4  | WCDMA1900 | 1.711        | 22.85         | 23.00         | 1.035            | 0.453        | 0.469         |
| Left Head Cheek  | 9400     | 1880.0  | WCDMA1900 | -1.560       | 21.83         | 23.00         | 1.309            | 0.261        | 0.342         |
|                  | 9538     | 1907.6  | WCDMA1900 | -1.261       | 22.10         | 23.00         | 1.230            | 0.240        | 0.295         |
|                  | 9262     | 1852.4  | WCDMA1900 | 3.125        | 22.85         | 23.00         | 1.035            | 0.040        | 0.041         |
| Left Head Tilt   | 9400     | 1880.0  | WCDMA1900 | /            | /             | /             | /                | /            | /             |
|                  | 9538     | 1907.6  | WCDMA1900 | /            | /             | /             | /                | /            | /             |
|                  | 9262     | 1852.4  | WCDMA1900 | -2.564       | 22.85         | 23.00         | 1.035            | 0.254        | 0.263         |
| Right Head Cheek | 9400     | 1880.0  | WCDMA1900 | /            | /             | /             | /                | /            | /             |
|                  | 9538     | 1907.6  | WCDMA1900 | /            | /             | /             | /                | /            | /             |
|                  | 9262     | 1852.4  | WCDMA1900 | 1.301        | 22.85         | 23.00         | 1.035            | 0.041        | 0.042         |
| Right Head Tilt  | 9400     | 1880.0  | WCDMA1900 | /            | /             | /             | /                | /            | /             |
|                  | 9538     | 1907.6  | WCDMA1900 | /            | /             | /             | /                | /            | /             |

#### Note:

- 1. When the 1-g SAR is  $\leq$  0.8W/Kg, testing for other channels are optional.
- 2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.
- 3. KDB 941225 D01-Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

SAR Evaluation Report 43 of 141

4. KDB 941225 D01-Body SAR is not required for HSUPA when the maximum average output of each RF channel with HSUPA active is less than ½ dB higher than measured without HSUPA using 12.2kbps RMC and the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

Report No: RSZ131111001-20

5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

# **Mobile Hot-Spot Test Result**

The DUT is capable of functioning as a WiFi to Cellular Mobile hotspot. Additional SAR testing was performed according to KDB 941225 D06. Testing was performed with a separation of 1cm between the DUT and the flat phantom. The DUT was positioned for SAR tests with the front and back surfaces facing the phantom, and also with the edges facing the phantom in which the transmitting antenna is <2.5 cm from the edge. Each transmit band was utilized for SAR testing. The tested mode has been selected within each band that exhibits the highest time average output power.

### Hot spot-GPRS (Frequency Band: 835)

| EUT                  | Frequency ( | (MHz) | Test | Power        | Max.<br>Meas. | Max.<br>Rated | FCC              | 1g SAR (V    | V/Kg)         |
|----------------------|-------------|-------|------|--------------|---------------|---------------|------------------|--------------|---------------|
| Position             | Channel     | MHz   | Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
|                      | 128(Low)    | 824.2 | GPRS | /            | /             | /             | /                | /            | /             |
| Body-Front<br>(10mm) | 190(Middle) | 836.6 | GPRS | -1.213       | 27.27         | 27.50         | 1.054            | 0.177        | 0.187         |
| (********)           | 251(High)   | 848.8 | GPRS | /            | /             | /             | /                | /            | /             |
|                      | 128(Low)    | 824.2 | GPRS | /            | /             | /             | /                | /            | /             |
| Body-Back<br>(10mm)  | 190(Middle) | 836.6 | GPRS | -4.651       | 27.27         | 27.50         | 1.054            | 0.294        | 0.310         |
| (                    | 251(High)   | 848.8 | GPRS | /            | /             | /             | /                | /            | /             |
|                      | 128(Low)    | 824.2 | GPRS | /            | /             | /             | /                | /            | /             |
| Body-Left (10mm)     | 190(Middle) | 836.6 | GPRS | 3.629        | 27.27         | 27.50         | 1.054            | 0.048        | 0.051         |
|                      | 251(High)   | 848.8 | GPRS | /            | /             | /             | /                | /            | /             |
|                      | 128(Low)    | 824.2 | GPRS | /            | /             | /             | /                | /            | /             |
| Body-Right (10mm)    | 190(Middle) | 836.6 | GPRS | 2.197        | 27.27         | 27.50         | 1.054            | 0.097        | 0.102         |
|                      | 251(High)   | 848.8 | GPRS | /            | /             | /             | /                | /            | /             |
|                      | 128(Low)    | 824.2 | GPRS | /            | /             | /             | /                | /            | /             |
| Body-Bottom (10mm)   | 190(Middle) | 836.6 | GPRS | 0.015        | 27.27         | 27.50         | 1.054            | 0.001        | 0.001         |
|                      | 251(High)   | 848.8 | GPRS | /            | /             | /             | /                | /            | /             |

#### Note:

- 1 .When the 1-g SAR is  $\leq$  0.8W/Kg, testing for other channels are optional.
- 2. The EUT is a Capability Class B mobile phone which can be attached to both GPRS and GSM services.
- 3. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.
- 4. The EUT transmit and receive through the same GSM antenna while testing SAR.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Evaluation Report 44 of 141

# Hot spot-GPRS (Frequency Band: 1900)

| EUT                   | Frequency ( | (MHz)  | Test | Power        | Max.<br>Meas. | Max.<br>Rated | FCC                                                 | 1g SAR (V    | V/Kg)         |
|-----------------------|-------------|--------|------|--------------|---------------|---------------|-----------------------------------------------------|--------------|---------------|
| Position              | Channel     | MHz    | Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor                                    | Meas.<br>SAR | Scaled<br>SAR |
|                       | 512(Low)    | 1850.2 | GPRS | /            | /             | /             | /                                                   | /            | /             |
| Body-Front (10mm)     | 661(Middle) | 1880.0 | GPRS | -1.606       | 25.05         | 25.50         | 1.109                                               | 0.328        | 0.364         |
| (======)              | 810(High)   | 1909.8 | GPRS | /            | /             | /             | /                                                   | /            | /             |
|                       | 512(Low)    | 1850.2 | GPRS | /            | /             | /             | /                                                   | /            | /             |
| Body-Back<br>(10mm)   | 661(Middle) | 1880.0 | GPRS | -1.818       | 25.05         | 25.50         | 1.109                                               | 0.604        | 0.670         |
|                       | 810(High)   | 1909.8 | GPRS | /            | /             | /             | /                                                   | /            | /             |
|                       | 512(Low)    | 1850.2 | GPRS | /            | /             | /             | /                                                   | /            | /             |
| Body-Left (10mm)      | 661(Middle) | 1880.0 | GPRS | -2.309       | 25.05         | 25.50         | 1.109                                               | 0.082        | 0.091         |
|                       | 810(High)   | 1909.8 | GPRS | /            | /             | /             | Scaled Factor  / 1.109  / 1.109  / / 1.109  / / / / | /            | /             |
|                       | 512(Low)    | 1850.2 | GPRS | /            | /             | /             | /                                                   | /            | /             |
| Body-Right (10mm)     | 661(Middle) | 1880.0 | GPRS | 4.614        | 25.05         | 25.50         | 1.109                                               | 0.043        | 0.048         |
|                       | 810(High)   | 1909.8 | GPRS | /            | /             | /             | /                                                   | /            | /             |
|                       | 512(Low)    | 1850.2 | GPRS | /            | /             | /             | /                                                   | /            | /             |
| Body-Bottom<br>(10mm) | 661(Middle) | 1880.0 | GPRS | -2.153       | 25.05         | 25.50         | 1.109                                               | 0.186        | 0.206         |
| ,                     | 810(High)   | 1909.8 | GPRS | /            | /             | /             | /                                                   | /            | /             |

Report No: RSZ131111001-20

- 1 .When the 1-g SAR is  $\leq$  0.8W/Kg, testing for other channels are optional.

- When the 1-g SAR is ≤ 0.8 w/kg, testing for other channels are optional.
   The EUT is a Capability Class B mobile phone which can be attached to both GPRS and GSM services.
   The Multi-slot Classes of EUT is Class12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.
   The EUT transmit and receive through the same GSM antenna while testing SAR.
   When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Evaluation Report 45 of 141

# **Hot Spot-WCDMA850**

| EUT                   | Frequenc | ey (MHz) |           | Power        | Max.<br>Meas. | Max.              | FCC :            | lg SAR (V    | V/Kg)         |
|-----------------------|----------|----------|-----------|--------------|---------------|-------------------|------------------|--------------|---------------|
| Position              | Channel  | MHz      | Test Mode | Drift<br>(%) | Power (dBm)   | Power             | Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR |
|                       | 4132     | 826.4    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
| Body-Front<br>(10mm)  | 4183     | 836.6    | WCDMA850  | -1.739       | 22.24         | 22.50             | 1.062            | 0.161        | 0.171         |
| (= =====)             | 4233     | 846.6    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
|                       | 4132     | 826.4    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
| Body-Back<br>(10mm)   | 4183     | 836.6    | WCDMA850  | -2.827       | 22.24         | 22.50             | 1.062            | 0.269        | 0.286         |
|                       | 4233     | 846.6    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
|                       | 4132     | 826.4    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
| Body-Left (10mm)      | 4183     | 836.6    | WCDMA850  | 0.160        | 22.24         | 22.50             | 1.062            | 0.220        | 0.234         |
|                       | 4233     | 846.6    | WCDMA850  | /            | /             | Rated Power (dBm) | /                | /            |               |
|                       | 4132     | 826.4    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
| Body-Right (10mm)     | 4183     | 836.6    | WCDMA850  | 4.807        | 22.24         | 22.50             | 1.062            | 0.218        | 0.231         |
| ,                     | 4233     | 846.6    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
|                       | 9262     | 826.4    | WCDMA850  | /            | /             | /                 | /                | /            | /             |
| Body-Bottom<br>(10mm) | 9400     | 836.6    | WCDMA850  | 1.162        | 22.24         | 22.50             | 1.062            | 0.010        | 0.011         |
|                       | 9538     | 846.6    | WCDMA850  | /            | /             | /                 | /                | /            | /             |

Report No: RSZ131111001-20

# Hot Spot-WCDMA1900

| EUT                | Frequenc | ey (MHz) |           | Power        | Max.<br>Meas. | Max.<br>Rated | FCC 1                                 | lg SAR (V    | W/Kg)         |
|--------------------|----------|----------|-----------|--------------|---------------|---------------|---------------------------------------|--------------|---------------|
| Position           | Channel  | MHz      | Test Mode | Drift<br>(%) | Power (dBm)   | Power (dBm)   | Scaled<br>Factor                      | Meas.<br>SAR | Scaled<br>SAR |
|                    | 9262     | 1852.4   | WCDMA1900 | 3.956        | 22.85         | 23.00         | 1.035                                 | 0.422        | 0.437         |
| Body-Front (10mm)  | 9400     | 1880.0   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| (1011111)          | 9538     | 1907.6   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| _                  | 9262     | 1852.4   | WCDMA1900 | -3.046       | 22.85         | 23.00         | 1.035                                 | 0.469        | 0.485         |
| Body-Back (10mm)   | 9400     | 1880.0   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| (Tollill)          | 9538     | 1907.6   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
|                    | 9262     | 1852.4   | WCDMA1900 | -2.273       | 22.85         | 23.00         | 1.035                                 | 0.124        | 0.128         |
| Body-Left (10mm)   | 9400     | 1880.0   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| (*******)          | 9538     | 1907.6   | WCDMA1900 | /            | /             | /             | Scaled Factor 1.035 / 1.035 / 1.035 / | /            | /             |
|                    | 9262     | 1852.4   | WCDMA1900 | 3.628        | 22.85         | 23.00         | 1.035                                 | 0.042        | 0.043         |
| Body-Right (10mm)  | 9400     | 1880.0   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| (*******)          | 9538     | 1907.6   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
|                    | 9262     | 1852.4   | WCDMA1900 | 1.345        | 22.85         | 23.00         | 1.035                                 | 0.513        | 0.531         |
| Body-Bottom (10mm) | 9400     | 1880.0   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |
| ( - /              | 9538     | 1907.6   | WCDMA1900 | /            | /             | /             | /                                     | /            | /             |

SAR Evaluation Report 46 of 141

#### Note:

- 1. When the 1-g SAR is  $\leq$  0.8W/Kg, testing for other channels are optional.
- 2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.

Report No: RSZ131111001-20

- 3. KDB 941225 D01-Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 4. KDB 941225 D01-Body SAR is not required for HSUPA when the maximum average output of each RF channel with HSUPA active is less than ¼ dB higher than measured without HSUPA using 12.2kbps RMC and the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

SAR Evaluation Report 47 of 141

# SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

# KDB 447498D01 General RF Exposure Guidance v05

Stand-alone and simultaneous SAR evaluation for a cell phone with multiple transmitters is base on the antennas distance of each radio.



BT, WiFi, GSM and 3G Antenna Location

Report No: RSZ131111001-20

#### **Antenna Information:**

| Description of Simultaneo | ous Transmit Cap | abilities    | Antonnos Distonos (mm) |  |
|---------------------------|------------------|--------------|------------------------|--|
| Transmitter Combination   | Simultaneous?    | Hotspot?     | Antennas Distance (mm) |  |
| GSM + GPRS                | ×                | ×            | 0                      |  |
| GSM + WCDMA               | ×                | ×            | 0                      |  |
| GSM + Bluetooth           | √                | ×            | 132                    |  |
| GSM + WiFi                | $\checkmark$     | $\checkmark$ | 132                    |  |
| GPRS + WCDMA              | ×                | ×            | 0                      |  |
| GPRS + Bluetooth          | √                | ×            | 132                    |  |
| GPRS + WiFi               | $\sqrt{}$        | $\sqrt{}$    | 132                    |  |
| WCDMA + Bluetooth         | √                | ×            | 132                    |  |
| WCDMA + WiFI              | V                | √            | 132                    |  |

SAR Evaluation Report 48 of 141

#### **Standalone SAR test exclusion considerations**

#### Head Position:

| Mode       | Frequency (MHz) | P <sub>avg</sub> (dBm) | P <sub>avg</sub> (mW) | Distance (mm) | Calculated value | Threshold (1-g) | SAR Test<br>Exclusion |
|------------|-----------------|------------------------|-----------------------|---------------|------------------|-----------------|-----------------------|
| GSM850     | 850             | 22.45                  | 175.792               | 0             | 32.4             | 3.0             | No                    |
| PCS1900    | 1900            | 20.18                  | 104.232               | 0             | 28.7             | 3.0             | No                    |
| WCDMSA850  | 850             | 22.24                  | 167.494               | 0             | 30.9             | 3.0             | No                    |
| WCDMSA1900 | 1900            | 22.85                  | 192.752               | 0             | 53.1             | 3.0             | No                    |
| Bluetooth  | 2450            | 9.07                   | 8.072                 | 0             | 2.5              | 3.0             | Yes                   |
| WiFi       | 2450            | 9.61                   | 9.141                 | 0             | 2.9              | 3.0             | Yes                   |

Report No: RSZ131111001-20

# **Body Position:**

| Mode       | Frequency<br>(MHz) | P <sub>avg</sub> (dBm) | P <sub>avg</sub> (mW) | Distance (mm) | Calculated value | Threshold (1-g) | SAR Test<br>Exclusion |
|------------|--------------------|------------------------|-----------------------|---------------|------------------|-----------------|-----------------------|
| GSM850     | 850                | 23.04                  | 201.372               | 10            | 18.6             | 3.0             | No                    |
| PCS1900    | 1900               | 20.81                  | 120.504               | 10            | 16.6             | 3.0             | No                    |
| WCDMSA850  | 850                | 22.24                  | 167.494               | 10            | 15.4             | 3.0             | No                    |
| WCDMSA1900 | 1900               | 22.85                  | 192.752               | 10            | 26.6             | 3.0             | No                    |
| Bluetooth  | 2450               | 9.07                   | 8.072                 | 10            | 1.3              | 3.0             | Yes                   |
| WiFi       | 2450               | 9.61                   | 9.141                 | 10            | 1.4              | 3.0             | Yes                   |

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances*  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR Evaluation Report 49 of 141

# **Simultaneous SAR test exclusion considerations:**

# GSM with BT:

| Mode    | Position           | -     | ed SAR<br>/kg) | ΣSAR      |  |  |
|---------|--------------------|-------|----------------|-----------|--|--|
|         | 2 02 02 02         | GSM   | ВТ             | '''*W/kg+ |  |  |
|         | Left Head Cheek    | 0.113 | 0.417          | 0.530     |  |  |
|         | Left Head Tile     | 0.057 | 0.417          | 0.474     |  |  |
| CCMOSO  | Right Head Cheek   | 0.209 | 0.417          | 0.626     |  |  |
| GSM850  | Right Head Tilt    | 0.106 | 0.417          | 0.523     |  |  |
|         | Body-Headset-Front | 0.115 | 0.209          | 0.324     |  |  |
|         | Body-Headset-Back  | 0.257 | 0.209          | 0.469     |  |  |
|         | Left Head Cheek    | 0.284 | 0.417          | 0.701     |  |  |
|         | Left Head Tile     | 0.057 | 0.417          | 0.474     |  |  |
| PCS1900 | Right Head Cheek   | 0.158 | 0.417          | 0.575     |  |  |
| PCS1900 | Right Head Tilt    | 0.109 | 0.417          | 0.526     |  |  |
|         | Body-Headset-Front | 0.399 | 0.209          | 0.608     |  |  |
|         | Body-Headset-Back  | 0.249 | 0.209          | 0.458     |  |  |

Report No: RSZ131111001-20

# WCDMA with BT:

| Mode      | Position           | Reporte<br>(W/ |                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΣSAR      |
|-----------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.50 0.5  |                    | WCDMA          | BT                                                                                                                                                                                                                                                                                                                                                                                                                                           | '''*W/kg+ |
|           | Left Head Cheek    | 0.305          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.722     |
|           | Left Head Tile     | 0.149          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.566     |
| WCDMA 050 | Right Head Cheek   | 0.161          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.578     |
| WCDMA 850 | Right Head Tilt    | 0.094          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.511     |
|           | Body-Headset-Front | 0.171          | 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.380     |
|           | Body-Headset-Back  | 0.286          | (W/kg)         ZSAR           CDMA         BT          305         0.417           0.417         0.566          161         0.417           0.94         0.417           0.171         0.209           0.286         0.209           0.417         0.458           0.41         0.417           0.263         0.417           0.458           0.42         0.417           0.437         0.680           0.437         0.209           0.646 | 0.495     |
|           | Left Head Cheek    | 0.469          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.886     |
|           | Left Head Tile     | 0.041          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.458     |
| WCDMA     | Right Head Cheek   | 0.263          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.680     |
| 1900      | Right Head Tilt    | 0.042          | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.459     |
|           | Body-Headset-Front | 0.437          | 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.646     |
|           | Body-Headset-Back  | 0.485          | 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.694     |

SAR Evaluation Report 50 of 141

# GSM with Wi/Fi:

| Mode    | Position           | -     | ed SAR<br>/kg) | ΣSAR      |  |
|---------|--------------------|-------|----------------|-----------|--|
|         |                    | GSM   | WiFi           | '''*W/kg+ |  |
|         | Left Head Cheek    | 0.113 | 0.417          | 0.530     |  |
|         | Left Head Tile     | 0.057 | 0.417          | 0.474     |  |
| CCMOSO  | Right Head Cheek   | 0.209 | 0.417          | 0.626     |  |
| GSM850  | Right Head Tilt    | 0.106 | 0.417          | 0.523     |  |
|         | Body-Headset-Front | 0.115 | 0.209          | 0.324     |  |
|         | Body-Headset-Back  | 0.260 | 0.209          | 0.469     |  |
|         | Left Head Cheek    | 0.284 | 0.417          | 0.701     |  |
|         | Left Head Tile     | 0.057 | 0.417          | 0.474     |  |
| DCC1000 | Right Head Cheek   | 0.158 | 0.417          | 0.575     |  |
| PCS1900 | Right Head Tilt    | 0.109 | 0.417          | 0.526     |  |
|         | Body-Headset-Front | 0.399 | 0.209          | 0.608     |  |
|         | Body-Headset-Back  | 0.249 | 0.209          | 0.458     |  |

Report No: RSZ131111001-20

# WCDMA with Wi/Fi:

| Mode      | Position           | Reporte<br>(W/ |       | ΣSAR      |
|-----------|--------------------|----------------|-------|-----------|
| 5.5000    |                    | WCDMA          | WiFi  | '''*W/kg+ |
|           | Left Head Cheek    | 0.305          | 0.417 | 0.722     |
|           | Left Head Tile     | 0.149          | 0.417 | 0.566     |
| WCDMA 850 | Right Head Cheek   | 0.161          | 0.417 | 0.578     |
| WCDMA 830 | Right Head Tilt    | 0.094          | 0.417 | 0.511     |
|           | Body-Headset-Front | 0.171          | 0.209 | 0.380     |
|           | Body-Headset-Back  | 0.286          | 0.209 | 0.495     |
|           | Left Head Cheek    | 0.469          | 0.417 | 0.886     |
|           | Left Head Tile     | 0.041          | 0.417 | 0.458     |
| WCDMA     | Right Head Cheek   | 0.263          | 0.417 | 0.680     |
| 1900      | Right Head Tilt    | 0.042          | 0.417 | 0.459     |
|           | Body-Headset-Front | 0.437          | 0.209 | 0.646     |
|           | Body-Headset-Back  | 0.485          | 0.209 | 0.694     |

| Mode           | Frequency<br>(GHz) | Distance (mm) | P <sub>avg</sub> (dBm) | P <sub>avg</sub> (mW) | Estimated 1-g (W/kg) |
|----------------|--------------------|---------------|------------------------|-----------------------|----------------------|
| Bluetooth Head | 2.45               | 0             | 10                     | 10.000                | 0.417                |
| Bluetooth Body | 2.45               | 10            | 10                     | 10.000                | 0.209                |
| WiFi Head      | 2.45               | 0             | 10                     | 10.000                | 0.417                |
| WiFi Body      | 2.45               | 10            | 10                     | 10.000                | 0.209                |

SAR Evaluation Report 51 of 141

#### Note:

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[ $\sqrt{f(GHz)/x}$ ] W/kg for test separation distances  $\leq 50$  mm;

Report No: RSZ131111001-20

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion

#### **Conclusion:**

**ΣSAR < 1.6 W/kg** therefore simultaneous transmission SAR with Volume Scans is **not** required.

# Hotspot:

| F                 | <b>Evaluations for</b>     | Simultaneous      | SAR, Mobile       | Hot Spot Posit     | tions               |                     |  |  |
|-------------------|----------------------------|-------------------|-------------------|--------------------|---------------------|---------------------|--|--|
| Test Position     | Body-Front (1.0cm)         | Body-Back (1.0cm) | Body-Left (1.0cm) | Body-Right (1.0cm) | Body-Bottom (1.0cm) | Body-Top<br>(1.0cm) |  |  |
| Mode              | Stand Alone 1-g SAR (W/Kg) |                   |                   |                    |                     |                     |  |  |
| GSM 850           | 0.187                      | 0.310             | 0.051             | 0.102              | 0.001               | /                   |  |  |
| PCS 1900          | 0.364                      | 0.670             | 0.091             | 0.048              | 0.206               | /                   |  |  |
| WCDMA850          | 0.171                      | 0.286             | 0.234             | 0.231              | 0.011               | /                   |  |  |
| WCDMA 1900        | 0.437                      | 0.485             | 0.128             | 0.143              | 0.531               | /                   |  |  |
| WiFi              | 0.209                      | 0.209             | 0.209             | /                  | /                   | /                   |  |  |
|                   |                            |                   | ∑1-g S <i>A</i>   | AR'(W/Kg)          |                     |                     |  |  |
| GSM850 + WiFi     | 0.396                      | 0.519             | 0.260             | /                  | /                   | /                   |  |  |
| PCS 1900 + WiFi   | 0.573                      | 0.879             | 0.300             | /                  | /                   | /                   |  |  |
| WCDMA850 + WiFi   | 0.380                      | 0.495             | 0.443             | /                  | /                   | /                   |  |  |
| WCDMA 1900 + WiFi | 0.646                      | 0.694             | 0.337             | /                  | /                   | /                   |  |  |

#### Note:

If the sum of the 1g SAR measured for the simultaneously transmitting antennas is less than the SAR limit, SAR measurement for simultaneous transmission is not required.

SAR Evaluation Report 52 of 141

#### **EUT SCAN RESULTS**

# Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

# **Left Head Cheek (836.6 MHz Middle Channel)**

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : 0.267

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.112 W/kg 10 gram SAR value : 0.076 W/kg Area Scan Peak SAR : 0.134 W/kg Zoom Scan Peak SAR : 0.300 W/kg

Plot 1#



SAR Evaluation Report 53 of 141

### Left Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.002 W/kg Power Drift-Finish : 0.002 W/kg Power Drift (%) : -1.834

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 8 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.056 W/kg 10 gram SAR value : 0.029 W/kg Area Scan Peak SAR : 0.052 W/kg Zoom Scan Peak SAR : 0.100 W/kg

Plot 2#



SAR Evaluation Report 54 of 141

### Right Head Cheek (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.000 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : 0.798

Tissue Data

 Type
 : Head

 Frequency
 : 824.2 MHz

 Epsilon
 : 41.46 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 8 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.110 W/kg 10 gram SAR value : 0.075 W/kg Area Scan Peak SAR : 0.121 W/kg Zoom Scan Peak SAR : 0.220 W/kg

Plot 3#



SAR Evaluation Report 55 of 141

# Report No: RSZ131111001-20

# Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

### Right Head Cheek (836.6 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.006 W/kg Power Drift-Finish : 0.006 W/kg Power Drift (%) : 2.492

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.207 W/kg 10 gram SAR value : 0.188 W/kg Area Scan Peak SAR : 0.217 W/kg Zoom Scan Peak SAR : 0.420 W/kg

Plot 4#



SAR Evaluation Report 56 of 141

# Report No: RSZ131111001-20

#### Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

# Right Head Cheek (848.8 MHz High Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -0.713

Tissue Data

 Type
 : Head

 Frequency
 : 848.8 MHz

 Epsilon
 : 39.81 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 8 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.172 W/kg 10 gram SAR value : 0.121 W/kg Area Scan Peak SAR : 0.178 W/kg Zoom Scan Peak SAR : 0.230 W/kg

#### Plot 5#



SAR Evaluation Report 57 of 141

# Right Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.014 W/kg Power Drift-Finish : 0.013 W/kg Power Drift (%) : -3.942

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 8 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.105 W/kg 10 gram SAR value : 0.060 W/kg Area Scan Peak SAR : 0.130 W/kg Zoom Scan Peak SAR : 0.210 W/kg

#### Plot 6#



SAR Evaluation Report 58 of 141

### **Body-worn Front-Headset (836.6 MHz Middle Channel)**

Measurement Data

Test mode : GSM Crest Factor : 8

Scan Type: : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.114 W/kg Power Drift-Finish : 0.110 W/kg Power Drift (%) : -3.509

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.114 W/kg 10 gram SAR value : 0.036 W/kg Area Scan Peak SAR : 0.164 W/kg Zoom Scan Peak SAR : 0.300 W/kg

Plot 7#



SAR Evaluation Report 59 of 141

### **Body-worn Back-Headset (836.6 MHz Middle Channel)**

Measurement Data

Test mode : GSM Crest Factor : 8 Scan Type : : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.241 W/kg Power Drift-Finish : 0.243 W/kg Power Drift (%) : 0.844

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.257 W/kg 10 gram SAR value : 0.117 W/kg Area Scan Peak SAR : 0.287 W/kg Zoom Scan Peak SAR : 0.350 W/kg

#### Plot 8#

Report No: RSZ131111001-20



SAR Evaluation Report 60 of 141

# Report No: RSZ131111001-20

# Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

### Left Head Cheek (1850.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.003 W/kg Power Drift-Finish : 0.003 W/kg Power Drift (%) : -2.016

Tissue Data

 Type
 : Head

 Frequency
 : 1850.2 MHz

 Epsilon
 : 39.65 F/m

 Sigma
 : 1.41 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.197 W/kg 10 gram SAR value : 0.107 W/kg Area Scan Peak SAR : 0.231 W/kg Zoom Scan Peak SAR : 0.420 W/kg

#### Plot 9#



SAR Evaluation Report 61 of 141

### Left Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : 0.217

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.178 W/kg 10 gram SAR value : 0.114 W/kg Area Scan Peak SAR : 0.246 W/kg Zoom Scan Peak SAR : 0.390 W/kg

#### **Plot 10#**



SAR Evaluation Report 62 of 141

### Left Head Cheek (1909.8 MHz High Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.000 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : 0.000

Tissue Data

 Type
 : Head

 Frequency
 : 1909.8 MHz

 Epsilon
 : 39.51 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.253 W/kg 10 gram SAR value : 0.167 W/kg Area Scan Peak SAR : 0.400 W/kg Zoom Scan Peak SAR : 0.550 W/kg

#### **Plot 11#**



SAR Evaluation Report 63 of 141

### Left Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.013 W/kg Power Drift-Finish : 0.012 W/kg Power Drift (%) : -3.121

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.053 W/kg 10 gram SAR value : 0.027 W/kg Area Scan Peak SAR : 0.081 W/kg Zoom Scan Peak SAR : 0.070 W/kg

**Plot 12#** 



SAR Evaluation Report 64 of 141

# Right Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.004 W/kg Power Drift-Finish : 0.005 W/kg Power Drift (%) : 4.152

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.146 W/kg 10 gram SAR value : 0.074 W/kg Area Scan Peak SAR : 0.201 W/kg Zoom Scan Peak SAR : 0.430 W/kg

**Plot 13#** 



SAR Evaluation Report 65 of 141

### Right Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.039 W/kg Power Drift-Finish : 0.041 W/kg Power Drift (%) : 3.943

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.101 W/kg 10 gram SAR value : 0.063 W/kg Area Scan Peak SAR : 0.108 W/kg Zoom Scan Peak SAR : 0.340 W/kg

#### **Plot 14#**



SAR Evaluation Report 66 of 141

### **Body-worn Front-Headset (1880.0 MHz Middle Channel)**

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.110 W/kg Power Drift-Finish : 0.106 W/kg Power Drift (%) : -3.636

Tissue Data

 Type
 : Body

 Frequency
 : 1880.0 MHz

 Epsilon
 : 50.85 F/m

 Sigma
 : 1.50 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.369 W/kg 10 gram SAR value : 0.173 W/kg Area Scan Peak SAR : 0.445 W/kg Zoom Scan Peak SAR : 0.820 W/kg

#### **Plot 15#**



SAR Evaluation Report 67 of 141

### **Body-worn Back- Headset (1880.0 MHz Middle Channel)**

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.116 W/kg Power Drift-Finish : 0.121 W/kg Power Drift (%) : 4.310

Tissue Data

 Type
 : Body

 Frequency
 : 1880.0 MHz

 Epsilon
 : 50.85 F/m

 Sigma
 : 1.50 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.230 W/kg 10 gram SAR value : 0.113 W/kg Area Scan Peak SAR : 0.251 W/kg Zoom Scan Peak SAR : 0.450 W/kg

#### **Plot 16#**



SAR Evaluation Report 68 of 141

### WCDMA850; Left Head Cheek (826.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : 1.051

Tissue Data

 Type
 : Head

 Frequency
 : 826.4 MHz

 Epsilon
 : 41.28 F/m

 Sigma
 : 0.89 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.240 W/kg 10 gram SAR value : 0.181 W/kg Area Scan Peak SAR : 0.250 W/kg Zoom Scan Peak SAR : 0.350 W/kg

#### **Plot 17#**



SAR Evaluation Report 69 of 141

### WCDMA850; Left Head Cheek (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.000 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : 0.204

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.194 W/kg 10 gram SAR value : 0.100 W/kg Area Scan Peak SAR : 0.219 W/kg Zoom Scan Peak SAR : 0.300 W/kg

#### **Plot 18#**



SAR Evaluation Report 70 of 141

### WCDMA850; Left Head Cheek (846.6 MHz High Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : -0.641

Tissue Data

 Type
 : Head

 Frequency
 : 846.6 MHz

 Epsilon
 : 39.96 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.263 W/kg 10 gram SAR value : 0.192 W/kg Area Scan Peak SAR : 0.297 W/kg Zoom Scan Peak SAR : 0.380 W/kg

#### **Plot 19#**



SAR Evaluation Report 71 of 141

### WCDMA850; Left Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.016 W/kg Power Drift (%) : 2.181

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.140 W/kg 10 gram SAR value : 0.096 W/kg Area Scan Peak SAR : 0.143 W/kg Zoom Scan Peak SAR : 0.200 W/kg

#### **Plot 20#**



SAR Evaluation Report 72 of 141

#### WCDMA850; Right Head Cheek (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.011 W/kg Power Drift-Finish : 0.011 W/kg Power Drift (%) : -1.076

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 1
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.152 W/kg 10 gram SAR value : 0.106 W/kg Area Scan Peak SAR : 0.158 W/kg Zoom Scan Peak SAR : 0.252 W/kg

#### **Plot 21#**



SAR Evaluation Report 73 of 141

#### WCDMA850; Right Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.014 W/kg Power Drift (%) : -2.314

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 40.58 F/m

 Sigma
 : 0.91 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.089 W/kg 10 gram SAR value : 0.063 W/kg Area Scan Peak SAR : 0.093 W/kg Zoom Scan Peak SAR : 0.170 W/kg

**Plot 22#** 



SAR Evaluation Report 74 of 141

#### WCDMA1900; Left Head Cheek (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.009 W/kg Power Drift-Finish : 0.009 W/kg Power Drift (%) : 1.711

Tissue Data

 Type
 : Head

 Frequency
 : 1852.4 MHz

 Epsilon
 : 39.70 F/m

 Sigma
 : 1.41 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.453 W/kg 10 gram SAR value : 0.256 W/kg Area Scan Peak SAR : 0.485 W/kg Zoom Scan Peak SAR : 0.830 W/kg

**Plot 23#** 



SAR Evaluation Report 75 of 141

#### WCDMA1900; Left Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : -1.560

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.261 W/kg 10 gram SAR value : 0.170 W/kg Area Scan Peak SAR : 0.255 W/kg Zoom Scan Peak SAR : 0.450 W/kg

**Plot 24#** 



SAR Evaluation Report 76 of 141

#### WCDMA1900; Left Head Cheek (1907.6 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.002 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -1.261

Tissue Data

 Type
 : Head

 Frequency
 : 1907.6 MHz

 Epsilon
 : 39.59 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.240 W/kg 10 gram SAR value : 0.119 W/kg Area Scan Peak SAR : 0.279 W/kg Zoom Scan Peak SAR : 0.420 W/kg

**Plot 25#** 



SAR Evaluation Report 77 of 141

#### WCDMA1900; Left Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.032 W/kg Power Drift-Finish : 0.033 W/kg Power Drift (%) : 3.125

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.040 W/kg 10 gram SAR value : 0.020 W/kg Area Scan Peak SAR : 0.056 W/kg Zoom Scan Peak SAR : 0.090 W/kg

#### **Plot 26#**



SAR Evaluation Report 78 of 141

# WCDMA1900; Right Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.039 W/kg Power Drift-Finish : 0.038W/kg Power Drift (%) : -2.564

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.254 W/kg 10 gram SAR value : 0.187 W/kg Area Scan Peak SAR : 0.258 W/kg Zoom Scan Peak SAR : 0.320 W/kg

**Plot 27#** 



SAR Evaluation Report 79 of 141

#### WCDMA1900; Right Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x9x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.034 W/kg Power Drift-Finish : 0.034 W/kg Power Drift (%) : 1.301

Tissue Data

 Type
 : Head

 Frequency
 : 1880.0 MHz

 Epsilon
 : 39.67 F/m

 Sigma
 : 1.44 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.041 W/kg 10 gram SAR value : 0.022 W/kg Area Scan Peak SAR : 0.052 W/kg Zoom Scan Peak SAR : 0.094 W/kg

#### **Plot 28#**



SAR Evaluation Report 80 of 141

#### Hot Spot: Body-Front (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.165 W/kg Power Drift-Finish : 0.163 W/kg Power Drift (%) : -1.213

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 2.67
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.177 W/kg 10 gram SAR value : 0.119 W/kg Area Scan Peak SAR : 0.181 W/kg Zoom Scan Peak SAR : 0.290 W/kg

#### **Plot 29#**



SAR Evaluation Report 81 of 141

Report No: RSZ131111001-20

# Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

#### Hot Spot: Body-Back (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.254 W/kg Power Drift-Finish : 0.242 W/kg Power Drift (%) : -4.651

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.67 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.294 W/kg 10 gram SAR value : 0.183 W/kg Area Scan Peak SAR : 0.291 W/kg Zoom Scan Peak SAR : 0.410 W/kg

#### **Plot 30#**



SAR Evaluation Report 82 of 141

#### Hot Spot: Body-Left (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.005 W/kg Power Drift-Finish : 0.006 W/kg Power Drift (%) : 3.629

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.67 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.048 W/kg 10 gram SAR value : 0.023 W/kg Area Scan Peak SAR : 0.063 W/kg Zoom Scan Peak SAR : 0.120 W/kg

**Plot 31#** 



SAR Evaluation Report 83 of 141

# Hot Spot: Body-Right (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.019 W/kg Power Drift-Finish : 0.020 W/kg Power Drift (%) : 2.197

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.67 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.097 W/kg 10 gram SAR value : 0.036 W/kg Area Scan Peak SAR : 0.105 W/kg Zoom Scan Peak SAR : 0.140 W/kg

**Plot 32#** 



SAR Evaluation Report 84 of 141

#### Hot Spot: Body-Bottom (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : : Complete

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.000 W/kg Power Drift (%) : 0.015

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.67 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.001 W/kg 10 gram SAR value : 0.001 W/kg Area Scan Peak SAR : 0.003 W/kg Zoom Scan Peak SAR : 0.005 W/kg

**Plot 33#** 

Report No: RSZ131111001-20



SAR Evaluation Report 85 of 141

#### Hot Spot: Body-Front (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.249 W/kg Power Drift-Finish : 0.245 W/kg Power Drift (%) : -1.606

Tissue Data

Type : Body

 Frequency
 : 1880.00 MHz

 Epsilon
 : 50.85 F/m

 Sigma
 : 1.50 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.67 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.328 W/kg 10 gram SAR value : 0.151 W/kg Area Scan Peak SAR : 0.345 W/kg Zoom Scan Peak SAR : 0.670 W/kg

#### **Plot 34#**



SAR Evaluation Report 86 of 141

#### Hot Spot: Body-Back (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.364 W/kg Power Drift-Finish : 0.357 W/kg Power Drift (%) : -1.818

Tissue Data

Type : Body

 Frequency
 : 1880.00 MHz

 Epsilon
 : 50.85 F/m

 Sigma
 : 1.50 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.67 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.604 W/kg 10 gram SAR value : 0.358 W/kg Area Scan Peak SAR : 0.621 W/kg Zoom Scan Peak SAR : 0.830 W/kg

**Plot 35#** 



SAR Evaluation Report 87 of 141

# Hot Spot: Body-Left (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.055 W/kg Power Drift-Finish : 0.053 W/kg Power Drift (%) : -2.309

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 50.85 F/m
Sigma : 1.50 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.67 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.082 W/kg 10 gram SAR value : 0.041 W/kg Area Scan Peak SAR : 0.063 W/kg Zoom Scan Peak SAR : 0.140 W/kg

#### **Plot 36#**



SAR Evaluation Report 88 of 141

# Hot Spot: Body-Right (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.014 W/kg Power Drift-Finish : 0.015 W/kg Power Drift (%) : 4.614

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 50.85 F/m
Sigma : 1.50 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.67 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.043 W/kg 10 gram SAR value : 0.025 W/kg Area Scan Peak SAR : 0.056 W/kg Zoom Scan Peak SAR : 0.100 W/kg

#### **Plot 37#**

Report No: RSZ131111001-20



SAR Evaluation Report 89 of 141

# Hot Spot: Body-Bottom (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.67 Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.194 W/kg Power Drift-Finish : 0.189 W/kg Power Drift (%) : -2.153

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 50.85 F/m
Sigma : 1.50 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.67 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.186 W/kg 10 gram SAR value : 0.077 W/kg Area Scan Peak SAR : 0.204 W/kg Zoom Scan Peak SAR : 0.411 W/kg

#### **Plot 38#**



SAR Evaluation Report 90 of 141

# Hot Spot: WCDMA850; Body-Front (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.115 W/kg Power Drift-Finish : 0.113 W/kg Power Drift (%) : -1.739

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.161 W/kg 10 gram SAR value : 0.100 W/kg Area Scan Peak SAR : 0.163 W/kg Zoom Scan Peak SAR : 0.210 W/kg

#### **Plot 39#**



SAR Evaluation Report 91 of 141

# Hot Spot: WCDMA850; Body-Back (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.283 W/kg Power Drift-Finish : 0.275 W/kg Power Drift (%) : -2.827

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.269 W/kg 10 gram SAR value : 0.176 W/kg Area Scan Peak SAR : 0.323 W/kg Zoom Scan Peak SAR : 0.420 W/kg

#### **Plot 40#**



SAR Evaluation Report 92 of 141

# Hot Spot: WCDMA850; Body-Left (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.065 W/kg Power Drift-Finish : 0.065 W/kg Power Drift (%) : 0.160

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.220 W/kg 10 gram SAR value : 0.146 W/kg Area Scan Peak SAR : 0.225 W/kg Zoom Scan Peak SAR : 0.370 W/kg

**Plot 41#** 



SAR Evaluation Report 93 of 141

# Hot Spot: WCDMA850; Body-Right (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.131 W/kg Power Drift-Finish : 0.137 W/kg Power Drift (%) : 4.807

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.218 W/kg 10 gram SAR value : 0.153 W/kg Area Scan Peak SAR : 0.218 W/kg Zoom Scan Peak SAR : 0.350 W/kg

**Plot 42#** 



SAR Evaluation Report 94 of 141

# Hot Spot: WCDMA850; Body-Bottom (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : 1.162

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 54.32 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency : 835
Duty Cycle Factor : 1
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.010 W/kg 10 gram SAR value : 0.009 W/kg Area Scan Peak SAR : 0.011 W/kg Zoom Scan Peak SAR : 0.000 W/kg

**Plot 43**#



SAR Evaluation Report 95 of 141

# Hot Spot: WCDMA1900; Body-Front (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.278 W/kg Power Drift-Finish : 0.289 W/kg Power Drift (%) : 3.956

Tissue Data

 Type
 : Body

 Frequency
 : 1852.4MHz

 Epsilon
 : 50.90 F/m

 Sigma
 : 1.47 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.422 W/kg 10 gram SAR value : 0.232 W/kg Area Scan Peak SAR : 0.497 W/kg Zoom Scan Peak SAR : 0.840 W/kg

#### **Plot 44#**



SAR Evaluation Report 96 of 141

# Hot Spot: WCDMA1900; Body-Back (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 9x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.394 W/kg Power Drift-Finish : 0.382W/kg Power Drift (%) : -3.046

Tissue Data

 Type
 : Body

 Frequency
 : 1852.4 MHz

 Epsilon
 : 50.90 F/m

 Sigma
 : 1.47 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)2$ 

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.469 W/kg 10 gram SAR value : 0.246 W/kg Area Scan Peak SAR : 0.429 W/kg Zoom Scan Peak SAR : 0.990 W/kg

**Plot 45#** 



SAR Evaluation Report 97 of 141

#### Hot Spot: WCDMA1900; Body-Left (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.132 W/kg Power Drift-Finish : 0.129 W/kg Power Drift (%) : -2.273

Tissue Data

 Type
 : Body

 Frequency
 : 1852.4 MHz

 Epsilon
 : 50.90 F/m

 Sigma
 : 1.47 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.124 W/kg 10 gram SAR value : 0.063 W/kg Area Scan Peak SAR : 0.159 W/kg Zoom Scan Peak SAR : 0.320 W/kg

#### **Plot 46#**



SAR Evaluation Report 98 of 141

# Hot Spot: WCDMA1900; Body-Right (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.055 W/kg Power Drift-Finish : 0.057 W/kg Power Drift (%) : 3.628

Tissue Data

 Type
 : Body

 Frequency
 : 1852.4 MHz

 Epsilon
 : 50.90 F/m

 Sigma
 : 1.47 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.042 W/kg 10 gram SAR value : 0.030 W/kg Area Scan Peak SAR : 0.084 W/kg Zoom Scan Peak SAR : 0.100 W/kg

**Plot 47#** 



SAR Evaluation Report 99 of 141

# Hot Spot: WCDMA1900; Body-Bottom (1852.4 MHz Low Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.449 W/kg Power Drift-Finish : 0.455 W/kg Power Drift (%) : 1.345

Tissue Data

 Type
 : Body

 Frequency
 : 1852.4 MHz

 Epsilon
 : 50.90 F/m

 Sigma
 : 1.47 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 1.20  $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.513 W/kg 10 gram SAR value : 0.219 W/kg Area Scan Peak SAR : 0.668 W/kg Zoom Scan Peak SAR : 0.990 W/kg

#### **Plot 48#**



SAR Evaluation Report 100 of 141

# APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Report No: RSZ131111001-20

# Measurement Uncertainty for 300MHz to 3GHz

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup> (1-g) | c <sub>i</sub> <sup>1</sup> (10-g) | Standard<br>Uncertainty<br>(1-g) % | Standard<br>Uncertainty<br>(10-g) % |  |  |  |  |
|--------------------------------------------------|--------------------|-----------------------------|------------|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------|--|--|--|--|
| Measurement System                               |                    |                             |            |                                   |                                    |                                    |                                     |  |  |  |  |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                 | 1                                  | 3.5                                | 3.5                                 |  |  |  |  |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | $(1-cp)^{1/2}$                    | (1-cp) <sup>1</sup>                | 1.5                                | 1.5                                 |  |  |  |  |
| Hemispherical Isotropy                           | 10.9               | rectangular                 | $\sqrt{3}$ | √ср                               | √ср                                | 4.4                                | 4.4                                 |  |  |  |  |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 0.6                                | 0.6                                 |  |  |  |  |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 2.7                                | 2.7                                 |  |  |  |  |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 0.6                                | 0.6                                 |  |  |  |  |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                 | 1                                  | 1.0                                | 1.0                                 |  |  |  |  |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 0.5                                | 0.5                                 |  |  |  |  |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 1.0                                | 1.0                                 |  |  |  |  |
| RF Ambient Condition -Noise                      | 0.006              | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 0.003                              | 0.003                               |  |  |  |  |
| RF Ambient Condition -<br>Reflections            | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 1.7                                | 1.7                                 |  |  |  |  |
| Probe Positioner Mech.<br>Restrictions           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 0.2                                | 0.2                                 |  |  |  |  |
|                                                  |                    | Res                         | triction   |                                   |                                    |                                    |                                     |  |  |  |  |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 1.7                                | 1.7                                 |  |  |  |  |
| Extrapolation and<br>Integration                 | 3.7                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 2.1                                | 2.1                                 |  |  |  |  |
| Test Sample Positioning                          | 0.023              | normal                      | 1          | 1                                 | 1                                  | 0.023                              | 0.023                               |  |  |  |  |
| Device Holder<br>Uncertainty                     | 6.215              | normal                      | 1          | 1                                 | 1                                  | 6.215                              | 6.215                               |  |  |  |  |
| Drift of Output Power                            | 4.627              | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 2.67                               | 2.67                                |  |  |  |  |
|                                                  |                    | Phantor                     | n and Setu | ıp                                |                                    |                                    |                                     |  |  |  |  |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                 | 1                                  | 2.0                                | 2.0                                 |  |  |  |  |
| Liquid<br>Conductivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                               | 0.5                                | 2.0                                | 1.4                                 |  |  |  |  |
| Liquid<br>Conductivity(meas.)                    | 1.938              | normal                      | 1          | 0.7                               | 0.5                                | 1.36                               | 0.97                                |  |  |  |  |
| Liquid<br>Permittivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                               | 0.5                                | 1.7                                | 1.4                                 |  |  |  |  |
| Liquid<br>Permittivity(meas.)                    | 3.093              | normal                      | 1          | 0.6                               | 0.5                                | 1.86                               | 1.55                                |  |  |  |  |
| Combined Uncertainty                             |                    | RSS                         |            |                                   |                                    | 10.78                              | 10.55                               |  |  |  |  |
| Expanded uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                   |                                    | 21.56                              | 21.10                               |  |  |  |  |

SAR Evaluation Report 101 of 141

# APPENDIX B – PROBE CALIBRATION CERTIFICATES

#### NCL CALIBRATION LABORATORIES

Report No: RSZ131111001-20

Calibration File No.: PC-1537

Task No: BACL-5745

# CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

> Equipment: Miniature Isotropic RF Probe Record of Calibration Head and Body Manufacturer: APREL Laboratories Model No.: E-020

Serial No.: 500-00283

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole Project No: BACL-5745

Calibrated: 8<sup>th</sup> October 2013 Released on: 8<sup>th</sup> October 2013

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By: Art Brennan, Quality Manager

NCL CALIBRATION LABORATORIES

 Subs 102, 303 Terry Fox Dr.
 Division of APREL Lab.

 OTTAWA, ONTARIO
 TEL: (813) 435-8308

 CANADA K2K 3J1
 FAX: (813) 435-8308

102 of 141 SAR Evaluation Report

Division of APREL Inc.

#### Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Report No: RSZ131111001-20

#### Calibration Method

Probes are calibrated using the following methods.

#### <1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

#### >1000MHz

Waveguide\* method to determine sensitivity in air and tissue

"Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

#### References

- IEEE Standard 1528
  - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1
  - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- o IEC 62209-2
  - Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Page 2 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 103 of 141

Division of APREL Inc.

#### Conditions

Probe 500-00283 was a recalibration.

Ambient Temperature of the Laboratory:  $22 \,^{\circ}\text{C}$  +/-  $1.5 \,^{\circ}\text{C}$  Temperature of the Tissue:  $21 \,^{\circ}\text{C}$  +/-  $1.5 \,^{\circ}\text{C}$  Relative Humidity:  $< 60 \,^{\circ}$ 

#### **Primary Measurement Standards**

 Instrument
 Serial Number
 Cal due date

 Tektronix USB Power Meter
 11C940
 May 14, 2015

 Signal Generator HP 83640B
 3844A00689
 Feb 12, 2015

#### Secondary Measurement Standards

Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015

#### Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy.

Art Brennan, Quality Manager

Dan Brooks, Test Engineer

Page 3 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 104 of 141

Division of APREL Inc.

**Probe Summary** 

Probe Type: E-Field Probe E020

Serial Number: 500-00283

Frequency: As presented on page 5

 Sensor Offset:
 1.56

 Sensor Length:
 2.5

Tip Enclosure: Composite\*

Tip Diameter: < 2.9 mm

Tip Length: 55 mm

Total Length: 289 mm

\*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Diode Compression Point: 95 mV

SAR Evaluation Report 105 of 141

Page 4 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

# NCL Calibration Laboratories Division of APREL Inc.

Calibration for Tissue (Head H. Body B)

| Frequency | Tissue<br>Type | Measured<br>Epsilon | Measured<br>Sigma | Standard<br>Uncertainty<br>(%) | Calibration<br>Frequency<br>Range<br>(MHz) | Conversion<br>Factor |
|-----------|----------------|---------------------|-------------------|--------------------------------|--------------------------------------------|----------------------|
| 450 H     | Head           | 44.29               | 0.86              | 3.5                            | ±50                                        | 5.7                  |
| 450 B     | Body           | 56.6                | 0.94              | 3.5                            | ±50                                        | 5.8                  |
| 750 H     | Head           | 42.7                | 0.85              | 3.5                            | ±50                                        | 5.6                  |
| 750 B     | Body           | 56.6                | 0.94              | 3.5                            | ±50                                        | 5.5                  |
| 835 H     | Head           | 42.35               | 0.938             | 3.5                            | ±50                                        | 5.9                  |
| 835 B     | Body           | 56.65               | 1.018             | 3.5                            | ±50                                        | 5.9                  |
| 900 H     | Head           | x                   | х                 | X                              | X                                          | x                    |
| 900 B     | Body           | x                   | х                 | X                              | X                                          | x                    |
| 1450 H    | Head           | X                   | X                 | X                              | X                                          | х                    |
| 1450 B    | Body           | X                   | X                 | X                              | X                                          | X                    |
| 1500 H    | Head           | X                   | X                 | X                              | Х                                          | Х                    |
| 1500 B    | Body           | X                   | X                 | Х                              | Х                                          | Х                    |
| 1640 H    | Head           | X                   | X                 | X                              | X                                          | ×                    |
| 1640 B    | Body           | X                   | X                 | X                              | X                                          | X                    |
| 1750 H    | Head           | 38.51               | 1.36              | 3.5                            | ±75                                        | 5.4                  |
| 1750 B    | Body           | 51.79               | 1.53              | 3.5                            | ±75                                        | 5.3                  |
| 1800 H    | Head           | 38.26               | 1.41              | 3.5                            | ±75                                        | 5.0                  |
| 1800 B    | Body           | 51.61               | 1.58              | 3.5                            | ±75                                        | 5.0                  |
| 1900 H    | Head           | 38.03               | 1.36              | 3.5                            | ±75                                        | 4.8                  |
| 1900 B    | Body           | 53.13               | 1.58              | 3.5                            | ±75                                        | 4.5                  |
| 2000 H    | Head           | X                   | Х                 | X                              | ×                                          | X                    |
| 2000 B    | Body           | X                   | X                 | X                              | X                                          | X                    |
| 2100 H    | Head           | X                   | Х                 | X                              | X                                          | X                    |
| 2100 B    | Body           | Х                   | X                 | X                              | X                                          | X                    |
| 2300 H    | Head           | X                   | X                 | X                              | X                                          | Х                    |
| 2300 B    | Body           | X                   | X                 | X                              | X                                          | X                    |
| 2450 H    | Head           | 37.64               | 1.88              | 3.5                            | ±75                                        | 4.9                  |
| 2450B     | Body           | 50.7                | 2.03              | 3.5                            | ±75                                        | 4.3                  |
| 2600 H    | Head           | X                   | X                 | X                              | X                                          | X                    |
| 2600 B    | Body           | X                   | X                 | X                              | X                                          | ×                    |
| 3000 H    | Head           | ×                   | X                 | X                              | X                                          | X                    |
| 3000 B    | Body           | ×                   | X                 | X                              | X                                          | ×                    |
| 3600 H    | Head           | X                   | X                 | X                              | X                                          | ×                    |
| 3600 B    | Body           | X                   | X                 | X                              | X                                          | X                    |
| 5250 H    | Head           | 34.65               | 4.8               | 3.5                            | ±100                                       | 2.7                  |
| 5250 B    | Body           | 47.6                | 5.3               | 3.5                            | ±100                                       | 2.6                  |
| 5600 H    | Head           | 33.2                | 5.15              | 3.5                            | ±100                                       | 2.5                  |
| 5600 B    | Body           | 45.21               | 5.57              | 3.5                            | ±100                                       | 2.2                  |
| 5800 H    | Head           | 32.72               | 5.38              | 3.5                            | ±100                                       | 3.2                  |
| 5800 B    | Body           | 44.28               | 6.04              | 3.5                            | ±100                                       | 2.5                  |

Page 5 of 10This page has been reviewed for content and attested to on Page 2 of this document.

106 of 141 **SAR Evaluation Report** 

Division of APREL Inc.

#### **Boundary Effect:**

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Report No: RSZ131111001-20

#### Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

#### **DAQ-PAQ Contribution**

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of  $5\,\mathrm{M}\Omega$ .

Page 6 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 107 of 141

Division of APREL Inc.

# Receiving Pattern Air



Page 7 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 108 of 141

Division of APREL Inc.

# Isotropy Error Air





Isotropicity Tissue:

0.10 dB

Page 8 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 109 of 141

Division of APREL Inc.

# **Dynamic Range**



Page 9 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

**SAR Evaluation Report** 110 of 141

Division of APREL Inc.

#### Video Bandwidth

#### **Probe Frequency Characteristics**



Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

#### **Test Equipment**

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2013.

Page 10 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 111 of 141

#### APPENDIX C DIPOLE CALIBRATION CERTIFICATES

#### NCL CALIBRATION LABORATORIES

Report No: RSZ131111001-20

Calibration File No: DC-1327 Project Number: BAC-dipole-cal-5618

#### CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole(Head and Body)

Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz Serial No: 180-00558

Customer: Bay Area Compliance Laboratory

Calibrated: 25<sup>th</sup> August 2011 Released on: 25<sup>th</sup> August 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

iute 102, 303 Terry Fox Dr. Division of APREL Lab. Kanata, ONTARIO TEL. (613) 435-8300 CANADA K2K 3J1 FAX: (613)435-8306

112 of 141 SAR Evaluation Report

Division of APREL Laboratories.

#### Conditions

Dipole 180-00558 was received in good condition and a re-calibration.

22 °C +/- 0.5°C Ambient Temperature of the Laboratory: 21 °C +/- 0.5°C Temperature of the Tissue:

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Report No: RSZ131111001-20

Stuart Nicol

C. Teodorian

**Primary Measurement Standards** Instrument

Power meter Anritsu MA2408A Power Sensor Anritsu MA2481D Attenuator HP 8495A (70dB) 1 Network Analyzer Agilent E5071C Secondary Measurement Standards

Signal Generator Agilent E4438C

Serial Number 245025437

Nov.4, 2011 103555 Nov 4, 2011 944A10711 Aug.8, 2012 1334746J Feb. 8, 2012

Cal due date

-506 MY55182336 June 7, 2012

This page has been reviewed for content and attested to by signature within this document.

113 of 141 SAR Evaluation Report

#### **Calibration Results Summary**

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

Length: 162.2 mm Height: 89.4 mm

**Electrical Specification** 

| Tissue | Frequency | SWR:     | Return Loss | Impedance |
|--------|-----------|----------|-------------|-----------|
| Head   | 835 MHz   | 1.0417 U | -35.395dB   | 49.020 Ω  |
| Body   | 835 MHz   | 1.1177 U | -25.424dB   | 55.435 Ω  |

#### System Validation Results

| I | Tissue | Frequency | 1 Gram | 10 Gram | Peak   |
|---|--------|-----------|--------|---------|--------|
| Ī | Head   | 835 MHz   | 9.590  | 6.003   | 15.013 |
| I | Body   | 835 MHz   | 9.684  | 6.263   | 14.23  |



This page has been reviewed for content and attested to by signature within this document.

114 of 141 **SAR Evaluation Report** 

3

Report No: RSZ131111001-20

Division of APREL Laboratories.

#### Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00558. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

#### References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

#### Conditions

Dipole 180-00558 was new taken from stock.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 20 °C +/- 0.5 °C

#### Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

 Mechanical
 1%

 Positioning Error
 1.22%

 Electrical
 1.7%

 Tissue
 2.2%

 Dipole Validation
 2.2%

TOTAL 8.32% (16.64% K=2)

4

Report No: RSZ131111001-20

This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 115 of 141

#### **Dipole Calibration Results**

#### **Mechanical Verification**

| APREL    | APREL   | Measured | Measured |
|----------|---------|----------|----------|
| Length   | Height  | Length   | Height   |
| 161.0 mm | 89.8 mm | 162.2 mm | 89.4 mm  |

| Tissue Type | Return Loss: | SWR:     | Impedance: |
|-------------|--------------|----------|------------|
| Head        | -35,395 dB   | 1.0417 U | 49.020Ω    |
| Body        | -25.454 dB   | 1.1177 U | 55.435Ω    |

#### **Tissue Validation**

|                    | Dielectric constant, ε <sub>r</sub> | Conductivity, o [S/m] |
|--------------------|-------------------------------------|-----------------------|
| Head Tissue 835MHz | 41.78                               | 0.92                  |
| Body Tissue 835MHz | 56.37                               | 0.95                  |

This page has been reviewed for content and attested to by signature within this document.

116 of 141 **SAR Evaluation Report** 

The Following Graphs are the results as displayed on the Vector Network Analyzer.

#### S11 Parameter Return Loss





This page has been reviewed for content and attested to by signature within this document.

6

**SAR Evaluation Report** 117 of 141

#### SWR





This page has been reviewed for content and attested to by signature within this document.

118 of 141 **SAR Evaluation Report** 

#### **Smith Chart Dipole Impedance**





This page has been reviewed for content and attested to by signature within this document.

119 of 141 **SAR Evaluation Report** 

#### **Test Equipment**

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2011.

This page has been reviewed for content and attested to by signature within this document.

Report No: RSZ131111001-20

# 835MHz Dipole Calibration By BACL at 2013-12-20

#### **Mechanical Verification**

| APREL Length | APREL Height | Measured Length | Measured Height |
|--------------|--------------|-----------------|-----------------|
| 161.0 mm     | 89.8 mm      | 161.1 mm        | 89.7 mm         |

| Tissue Type | Measured Return Loss | Measured Impedance |
|-------------|----------------------|--------------------|
| Head        | -33.135 dB           | 51.898 Ω           |
| Body        | -25.362 dB           | $50.604~\Omega$    |

# **Test Graphs:**

Head Tissue

Return Loss:







# Body Tissue

Return Loss:

# CAL MFL. 10g HRO 10 GEF 8 GE 8 GEF 8 GE AND GEF 8 GEF

#### Impedance:



SAR Evaluation Report 121 of 141

#### **NCL CALIBRATION LABORATORIES**

Report No: RSZ131111001-20

Calibration File No: DC-1331 Project Number: BAC-dipole -cal-5615

# CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole (Head & Body)

Manufacturer: APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1900 MHz Serial No: 210-00710

Customer: Bay Area Compliance Laboratory

Calibrated: 25<sup>th</sup> August, 2011 Released on: 25<sup>th</sup> August, 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. Division of APREL Lab.
Kanata, ONTARIO TEL. (613) 435-6300
CANADA K2K 3J1 FAX: (613)435-8306

122 of 141 SAR Evaluation Report

Division of APREL Laboratories.

#### Conditions

Dipole 210-00710 was received in good condition and was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards Instrument

Power meter Anritsu MA2408A
Power Sensor Anritsu MA2481D
Attenuator HP 8495A (70dB) 1
Network Analyzer Agilent E5071C
Secondary Measurement Standards

Signal Generator Agilent E4438C

 Serial Number
 Cal due date

 245025437
 Nov.4, 2011

 103555
 Nov 4, 2011

 944A10711
 Aug.8, 2012

944A10711 Aug.8, 2012 1334746J Feb. 8, 2012

-506 MY55182336 June 7, 2012

This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 123 of 141

Division of APREL Laboratories.

#### **Calibration Results Summary**

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

**Length:** 67.1 mm **Height:** 38.9 mm

**Electrical Specification** 

| Tissue | Frequency | SWR:     | Return Loss | Impedance |
|--------|-----------|----------|-------------|-----------|
| Head   | 1900MHz   | 1.0417 U | -35.395dB   | 49.020 Ω  |
| Body   | 1900MHz   | 1.1177 U | -25.424dB   | 55.435 Ω  |

#### System Validation Results

| Tissue | Frequency | 1 Gram | 10 Gram | Peak   |
|--------|-----------|--------|---------|--------|
| Head   | 1900 MHz  | 39.648 | 20.311  | 73.365 |
| Body   | 1900 MHz  | 39.769 | 20.176  | 75.866 |



This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 124 of 141

Division of APREL Laboratories.

#### Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00710. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

#### References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless

#### Conditions

Dipole 210-00710 was new taken from stock.

Communications Devices: Experimental Techniques"

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C

#### Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

 Mechanical
 1%

 Positioning Error
 1.22%

 Electrical
 1.7%

 Tissue
 2.2%

 Dipole Validation
 2.2%

TOTAL 8.32% (16.64% K=2)

4

Report No: RSZ131111001-20

This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 125 of 141

Division of APREL Laboratories.

# **Dipole Calibration Results**

#### Mechanical Verification

| APREL   | APREL   | Measured | Measured |
|---------|---------|----------|----------|
| Length  | Height  | Length   | Height   |
| 68.0 mm | 39.5 mm | 67.1mm   | 38.9 mm  |

#### Electrical Validation

| Tissue Type | Return Loss: | SWR:     | Impedance: |
|-------------|--------------|----------|------------|
| Head        | -29.360 dB   | 1.0732 U | 47.869 Ω   |
| Body        | -22.799 dB   | 1.1566 U | 48.022 Ω   |

#### Tissue Validation

|                     | Dielectric constant, ε <sub>r</sub> | Conductivity, o [S/m] |
|---------------------|-------------------------------------|-----------------------|
| Head Tissue 1900MHz | 38.4                                | 1.43                  |
| Body Tissue 1900MHz | 51.87                               | 1.59                  |

This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 126 of 141

Division of APREL Laboratories.

The Following Graphs are the results as displayed on the Vector Network Analyzer.

#### S11 Parameter Return Loss





This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 127 of 141

Division of APREL Laboratories.

#### SWR

#### Head



#### Body



This page has been reviewed for content and attested to by signature within this document.

SAR Evaluation Report 128 of 141

Division of APREL Laboratories.

# Smith Chart Dipole Impedance

#### Head



#### Body



This page has been reviewed for content and attested to by signature within this document.

8

SAR Evaluation Report 129 of 141

# Division of APREL Laboratories.

**Test Equipment** 

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2011

This page has been reviewed for content and attested to by signature within this document.

9

Report No: RSZ131111001-20

# 1900MHz Dipole Calibration By BACL at 2013-12-20

#### **Mechanical Verification**

| APREL Length | APREL Height | Measured Length | Measured Height |
|--------------|--------------|-----------------|-----------------|
| 68.0 mm      | 39.4 mm      | 68.3 mm         | 39.2 mm         |

| Tissue Type | Measured Return Loss | Measured Impedance |
|-------------|----------------------|--------------------|
| Head        | -28.083 dB           | 47.477 Ω           |
| Body        | -22.022 dB           | 48.076 Ω           |

#### Test Graphs:

Head Tissue

Return Loss:



# Impedance:



### **Body Tissue**

Return Loss:



# Impedance:



SAR Evaluation Report 131 of 141

# APPENDIX D EUT TEST POSITION PHOTOS





**Body-worn Front Setup Photo** 



SAR Evaluation Report 132 of 141

# **Body-worn Back Setup Photo**



**Body-worn Left Setup Photo** 



SAR Evaluation Report 133 of 141

# **Body-worn Right Setup Photo**



**Body-worn Bottom Setup Photo** 



SAR Evaluation Report 134 of 141

# **Left Head Touch Setup Photo**



**Left Head Tilt Setup Photo** 



SAR Evaluation Report 135 of 141

# **Right Head Touch Setup Photo**



**Right Head Tilt Setup Photo** 



SAR Evaluation Report 136 of 141

# **APPENDIX E EUT PHOTOS**





**EUT – Back View** 



SAR Evaluation Report 137 of 141

**EUT – Left Side View** 



**EUT – Right Side View** 



SAR Evaluation Report 138 of 141

**EUT – Top View** 



**EUT – Bottom View** 



SAR Evaluation Report 139 of 141

**EUT - Cover off View** 



SAR Evaluation Report 140 of 141

#### APPENDIX F INFORMATIVE REFERENCES

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.

Report No: RSZ131111001-20

- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-\_eld scanning system for dosimetricPage 141 of 141 assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM \_ 97, Dubrovnik, October 15 {17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

\*\*\*\*\* END OF REPORT \*\*\*\*\*

SAR Evaluation Report 141 of 141