

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Miércoles 17 de noviembre de 2004 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

8804-6107 15 páginas

-	7		-	Tabla perió	periód	dica							4	w	9	7	0
1 H 1,01				Número atómico	atómico												2 He 4,00
3 Li 6,94	4 Be 9,01			Eremento Masa atómica	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,31		•									13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
55 Cs 132,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															
		÷-	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

1. Considere la siguiente ecuación.

$$2C_4H_{10}(g)+13O_2(g) \rightarrow 8CO_2(g)+10H_2O(l)$$

¿Cuántos moles de CO₂(g) se producen en la combustión completa de 58 g de butano, C₄H₁₀(g)?

- A. 4
- B. 8
- C. 12
- D. 16
- 2. Se hacen reaccionar 6,0 moles de Fe₂O₃(s) con 9,0 moles de carbono en un horno de cuba de acuerdo con la siguiente ecuación.

$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$

¿Cuál es el reactivo limitante y en consecuencia el rendimiento teórico de hierro?

	Reactivo limitante	Rendimiento teórico de hierro
A.	Fe_2O_3	6,0 mol
B.	Fe ₂ O ₃	12,0 mol
C.	carbono	9,0 mol
D.	carbono	6,0 mol

3. ¿Qué volumen de HCl (aq) de concentración 0,500 mol dm⁻³ se requiere para reaccionar completamente con 10,0 g de carbonato de calcio de acuerdo con la siguiente ecuación?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- A. $100 \, \text{cm}^3$
- B. 200 cm³
- C. 300 cm³
- D. 400 cm^3

- **4.** Una muestra del elemento Z contiene 60% de ^{69}Z y 40% de ^{71}Z . ¿Cuál es la masa atómica relativa del elemento Z en esta muestra?
 - A. 69,2
 - B. 69,8
 - C. 70,0
 - D. 70,2
- 5. ¿Qué ion sufrirá mayor deflexión en un espectrómetro de masas?
 - A. $^{16}O^{+}$
 - B. ${}^{16}O^{2+}$
 - C. ${}^{18}O^{2+}$
 - D. $(^{16}O^{18}O)^{+}$
- **6.** El rubidio es un elemento que se encuentra en el mismo grupo de la tabla periódica que el litio y el sodio. Es probable que sea un metal que tenga
 - A. elevado punto de fusión y reaccione lentamente con el agua.
 - B. elevado punto de fusión y reaccione vigorosamente con el agua.
 - C. punto de fusión bajo y reaccione vigorosamente con el agua.
 - D. punto de fusión bajo y reaccione lentamente con el agua.
- 7. Cuando las siguientes especies se disponen de forma **creciente** respecto de sus radios, ¿cuál es el orden correcto?
 - A. Cl^- , Ar, K^+
 - B. K^+ , Ar, Cl^-
 - C. Cl^-, K^+, Ar
 - D. Ar, Cl^-, K^+

8. El ion cianuro, CN^- , forma dos iones complejos con los iones hierro. Las fórmulas de estos iones son $[Fe(CN)_6]^{4-}$ y $[Fe(CN)_6]^{3-}$. ¿Cuál es el estado de oxidación del hierro en los dos iones complejos?

	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻
A.	-4	-3
B.	+2	+3
C.	+3	+2
D.	-3	-4

- 9. ¿Qué molécula es lineal?
 - A. SO_2
 - B. H_2S
 - C. CO₂
 - D. Cl₂O
- 10. ¿Por qué el punto de ebullición del PH₃ es menor que el del NH₃?
 - A. El PH₃ es no polar mientras que el NH₃ es polar.
 - B. El PH₃ no forma enlaces de hidrógeno mientras que el NH₃ forma enlaces de hidrógeno.
 - C. Las fuerzas de Van der Waals en el PH_3 son más débiles que en el NH_3 .
 - D. La masa molar del PH_3 es mayor que la del NH_3 .

- 11. ¿Qué molécula es no polar?
 - A. H₂CO
 - B. CHCl₃
 - C. NF₃
 - D. SO₃
- **12.** El ion NO₃ tiene forma trigonal plana y el NH₃ tiene forma de pirámide trigonal. ¿Cuál es la hibridación aproximada del N en cada una de estas especies?

	N en el NO ₃	N en el NH ₃
A.	sp^2	sp^3
B.	sp^2	sp ²
C.	sp^3	sp^2
D.	sp ³	sp ³

- **13.** Considere los siguientes enunciados.
 - I. En el CO_3^{2-} , todos los enlaces carbono-oxígeno tienen la misma longitud.
 - II. En el CH₃COOH, todos los enlaces carbono-oxígeno tienen la misma longitud.
 - III. En el CH₃COO⁻, todos los enlaces carbono-oxígeno tienen la misma longitud.

¿Qué enunciados son correctos?

- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

- **14.** La temperatura de 2,0 dm³ de un gas ideal, expresada en Kelvin, se duplica y su presión se aumenta cuatro veces. ¿Cuál es el volumen final del gas?
 - A. $1,0 \text{ dm}^3$
 - B. $2,0 \text{ dm}^3$
 - C. $3,0 \text{ dm}^3$
 - D. 4,0 dm³
- **15.** Considere las siguientes ecuaciones.

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{\Theta} = -602 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$$
 $\Delta H^{\Theta} = -242 \text{ kJ}$

¿Cuál es el valor de ΔH^{Θ} (expresado en kJ) para la siguiente reacción?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

- A. -844
- B. -360
- C. +360
- D. +844
- 16. ¿Para cuál de los siguientes procesos el signo de la variación de entalpía es diferente al de los otros tres?
 - A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - B. $Na(g) \rightarrow Na^+(g) + e^-$
 - C. $CO_2(s) \rightarrow CO_2(g)$
 - D. $2Cl(g) \rightarrow Cl_2(g)$

- 17. Volúmenes iguales de dos soluciones de HCl(aq) y $H_2SO_4(aq)$ de la misma concentración se neutralizaron completamente por separado con NaOH(aq). El calor desprendido fue X kJ e Y kJ respectivamente. ¿Qué enunciado es correcto?
 - A. X = Y
 - B. Y = 2X
 - C. X = 2Y
 - D. Y = 3X
- 18. La variación de entalpía, ΔH^{\ominus} , para una reacción química es de $-10 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ y la variación de entropía, ΔS^{\ominus} , es de $-10 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$ a 27 °C. ¿Cuál es el valor de ΔG^{\ominus} (expresado en J) para esta reacción?
 - A. -260
 - B. -7000
 - C. -9730
 - D. -13000
- 19. ¿Por qué la velocidad de una reacción dada aumenta cuando las concentraciones de los reactivos aumentan?
 - A. Porque la frecuencia de las colisiones moleculares aumenta.
 - B. Porque la energía de activación aumenta.
 - C. Porque la energía cinética media de las moléculas aumenta.
 - D. Porque la constante de velocidad aumenta.

- **20.** Considere los siguientes enunciados.
 - I. La constante de velocidad aumenta al aumentar la temperatura.
 - II. El aumento de temperatura provoca una disminución de la energía de activación de la reacción.
 - III. El término A en la ecuación de Arrhenius ($k = Ae^{\frac{-E_a}{RT}}$) se relaciona con las necesidades energéticas de las colisiones.

¿Qué enunciado(s) es(son) correcto(s)?

- A. Sólo I
- B. Sólo II
- C. Sólo I y III
- D. Sólo II y III
- 21. Para la reacción química

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

se ha propuesto el siguiente mecanismo de reacción.

$$NO(g) + NO(g) \rightleftharpoons N_2O_2(g)$$
 rápida
 $N_2O_2(g) + O_2(g) \rightarrow 2NO_2(g)$ lenta

¿Cuál será la ecuación de velocidad para esta reacción?

- A. $velocidad = k[NO][O_2]$
- B. $velocidad = k[NO]^2$
- C. velocidad = $k[N_2O_2][O_2]$
- D. velocidad = $k[NO]^2[O_2]$

22. ¿Qué sucederá si se deja que el CO₂(g) escape de la siguiente mezcla de reacción en equilibrio?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. El pH disminuirá.
- B. El pH aumentará.
- C. El pH se mantendrá constante.
- D. El pH alcanzará el valor cero.

23. El valor de la constante de equilibrio para la reacción

$$2HI(g) \rightleftharpoons H_{2}(g) + I_{3}(g)$$

es 0,25 a 440 °C . ¿Cuál será el valor de la constante de equilibrio para la siguiente reacción a la misma temperatura?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

- A. 0,25
- B. 0,50
- C. 2,0
- D. 4,0

24. Considere el siguiente equilibrio para el ácido carbónico en solución 0,10 mol dm⁻³.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$$

¿Qué especie se halla en mayor concentración?

- A. $H_2CO_3(aq)$
- B. $H^+(aq)$
- C. $HCO_3^-(aq)$
- D. CO_3^{2-} (aq)

- **25.** El valor de la constante de disociación de un ácido débil HA es 1.0×10^{-5} mol dm⁻³. ¿Cuál es el pH de una solución acuosa de HA de concentración 0.10 mol dm⁻³?
 - A. 2
 - B. 3
 - C. 5
 - D. 6
- **26.** ¿Qué mezcla producirá una solución tampón (buffer) al disolverse en 1,0 dm³ de agua?
 - A. 0,50 moles de CH₃COOH y 0,50 moles de NaOH
 - B. 0,50 moles de CH₃COOH y 0,25 moles de NaOH
 - C. 0,50 moles de CH₃COOH y 1,00 moles de NaOH
 - D. 0,50 moles de CH₃COOH y 0,25 moles de Ba (OH)₂
- 27. ¿Qué compuesto tiene mayor pH cuando se lo disuelve en solución acuosa?
 - A. NaCl
 - B. Na₂CO₃
 - C. NH₄Cl
 - D. NH₄NO₃
- **28.** ¿En qué reacción el H₂PO₄ (aq) actúa como base de Brønsted-Lowry?
 - A. $H_2PO_4^-(aq) + NH_3(aq) \rightarrow HPO_4^{2-}(aq) + NH_4^+(aq)$
 - B. $H_2PO_4^-(aq) + OH^-(aq) \rightarrow HPO_4^{2-}(aq) + H_2O(1)$
 - C. $H_2PO_4^-(aq) + C_2H_5NH_2(aq) \rightarrow HPO_4^{2-}(aq) + C_2H_5NH_3^+(aq)$
 - $D. \qquad H_2PO_4^-(aq) + CH_3COOH(aq) \ \rightarrow H_3PO_4^-(aq) + CH_3COO^-(aq)$

29. Considere la siguiente reacción.

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(l) \rightarrow Sn^{2+}(aq) + HSO_4^-(aq) + 3H^+(aq)$$

¿Qué enunciado es correcto?

- A. El H₂SO₃ es el agente reductor porque se reduce.
- B. El H₂SO₃ es el agente reductor porque se oxida.
- C. El ion Sn⁴⁺ es el agente oxidante porque se oxida.
- D. El ion Sn⁴⁺ es el agente reductor porque se oxida.
- **30.** ¿Qué sucede en el electrodo positivo de una celda voltaica y de una celda electrolítica?

	Celda voltaica	Celda electrolítica
A.	Reducción	Oxidación
B.	Oxidación	Reducción
C.	Oxidación	Oxidación
D.	Reducción	Reducción

31. Considere las siguientes reacciones.

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\Theta} = +0.34 \text{ V}$

$$Mg^{2+}(aq) + 2e^- \rightleftharpoons Mg(s)$$
 $E^{\Theta} = -2.36 \text{ V}$

$$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$
 $E^{\Theta} = -0.76 \text{ V}$

¿Qué enunciado es correcto?

- A. El Cu²⁺ (aq) oxidará al Mg(s) y al Zn(s).
- B. El Zn(s) reducirá al $Cu^{2+}(aq)$ y al $Mg^{2+}(aq)$.
- C. El Mg^{2+} (aq) oxidará al Cu(s) y al Zn(s).
- $D. \hspace{0.5cm} \text{El Cu (s) reducirá al } Mg^{2+} \text{(aq) y al } Zn^{2+} \text{(aq)} \, .$

32. Considere los potenciales de electrodo estándar de las siguientes reacciones.

$$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$$
 -0,75 V
 $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ -0,40 V

¿Cuál es el valor del potencial de celda (expresado en V) para la siguiente reacción?

$$2Cr(s) + 3Cd^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Cd(s)$$

- A. -0.35
- B. -1,15
- C. +0.30
- D. +0.35

33. Se electrolizaron soluciones acuosas de diferente concentración de NaCl usando electrodos de platino. ¿Cuál es el producto **principal** que se obtiene en el electrodo positivo en cada caso?

	NaCl (aq) de concentración 0,001 mol dm ⁻³	NaCl (aq) de concentración 1,0 mol dm ⁻³
A.	H_2	Na
B.	H_2	H_2
C.	O_2	Cl ₂
D.	Cl ₂	O_2

- **34.** ¿Cuál de los siguientes compuestos tiene menor punto de ebullición?
 - A. CH₃CH₂CH(CH₃)CH₃
 - B. $(CH_3)_4C$
 - C. CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂OCH₂CH₃

- **35.** ¿Qué especie presentará actividad óptica?
 - A. 1-cloropentano
 - B. 3-cloropentano
 - C. 1-cloro-2-metilpentano
 - D. 2-cloro-2-metilpentano
- **36.** ¿Qué tipo de reacción representa la siguiente ecuación?

$$CH_2=CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$$

- A. sustitución
- B. condensación
- C. reducción
- D. adición
- **37.** Considere los siguientes compuestos.
 - I. CH₃CH₂CH(OH)CH₃
 - II. CH₃CH(CH₃)CH₂OH
 - III. (CH₃)₃COH

Los compuestos se tratan separadamente con solución ácida de dicromato(VI) de potasio. ¿Cuáles producirán el cambio de color de anaranjado a verde?

- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

- **38.** ¿Qué compuesto reacciona más rápidamente por medio de un mecanismo $S_N 1$?
 - A. $(CH_3)_3CC1$
 - B. CH₃CH₂CH₂CH₂Br
 - C. $(CH_3)_3CBr$
 - D. CH₃CH₂CH₂CH₂Cl
- **39.** ¿Qué compuesto presenta tres ambientes diferentes para los átomos de hidrógeno en el espectro de ¹H RMN ?
 - A. CH₃CH₂CH₃
 - B. CH₂OHCH₂OH
 - C. CH₃CH₂CH₂OH
 - D. CH₃CH(OH)CH₃
- **40.** ¿Qué enunciado sobre la estructura del benceno es correcto?
 - A. El espectro de ¹H RMN del benceno presenta seis ambientes diferentes para los átomos de H.
 - B. La molécula del benceno es simétrica, plana y tiene tres enlaces simples y tres enlaces dobles.
 - C. La variación de entalpía para la hidrogenación del benceno es menos exotérmica que la del ciclohexatrieno.
 - D. El benceno sufre reacciones de adición con mayor facilidad que reacciones de sustitución.