See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/24250061

Long-Range Through-Bond Heteronuclear Communication in Platinum Complexes

ARTICLE in INORGANIC CHEMISTRY · MAY 2009

Impact Factor: 4.76 · DOI: 10.1021/ic801940h · Source: PubMed

CITATIONS READS

2

6 AUTHORS, INCLUDING:

Olena Zenkina

University of Ontario Institute of Technology

SEE PROFILE

Linda J.W. Shimon

Weizmann Institute of Science

209 PUBLICATIONS 6,238 CITATIONS

SEE PROFILE

Yael Diskin-Posner

Weizmann Institute of Science

82 PUBLICATIONS 1,727 CITATIONS

SEE PROFILE

Mark A Iron

Weizmann Institute of Science

61 PUBLICATIONS **2,019** CITATIONS

SEE PROFILE

Long-Range Through-Bond Heteronuclear Communication in Platinum **Complexes**

Olena V. Zenkina, Leonid E. Konstantinovski, Linda J. W. Shimon, Yael Diskin-Posner, Mark A. Iron.[‡] and Milko E. van der Boom*,[†]

Departments of Organic Chemistry and Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel

Received October 13, 2008

Four analogous platinum stillbene- and stillbazole-based complexes exhibit unusual long-range heteronuclear spin—spin coupling in solution. Single crystal analysis and NMR experiments show that the ¹⁹F, ³¹P, and ¹⁹⁵Pt nuclei communicate over large distances (0.9-1.3 nm) through bond rather than through space. Spin-spin couplings between ¹⁹⁵Pt and 19 F over seven bonds and between 31 P and 19 F over eight bonds are observed with $^{7}J_{PlF}=2.9$ Hz and $^{8}J_{PF}$ = 11.8 Hz. Remarkably, a very large spin coupling between ¹⁹⁵Pt and ¹⁹F over six bonds ($^6J_{PHF} = 40.1$ Hz) is also observed in a structurally related pyridinium complex. Experimental and gNMR (version 5.0) simulated ¹⁹F(¹H), $^{31}P\{^{1}H\}$, and $^{195}Pt\{^{1}H\}$ spectra of the complexes reveal a three-spin AMY system (A = ^{31}P , M = ^{31}P , Y = ^{19}F) or a five-spin AMY₃ flanked by a four-spin AMXY or a six-spin AMXY₃ system (X = ¹⁹⁵Pt), respectively. Density functional theory calculations at the PBE0/SDD level of theory show a π -conjugated metal—ligand network, which may contribute to the experimentally observed spin-spin interactions.

Introduction

Heteronuclear NMR-active molecular systems that exhibit large spin-spin coupling across a large number of bonds and distances are potential candidates for molecular-based NMR quantum computing.¹⁻⁴ These systems use nuclear spins as quantum bits or "qubits" that communicate via spin-spin coupling.⁵⁻⁷ Despite the tremendous progress in molecular design, relatively few systems have been shown to exhibit large long-range through-bond nuclear spin-spin coupling.⁸⁻¹³ Experimental observations of long-range indirect nuclear spin-spin coupling constants are relatively rare because the coupling constants usually are very small or not observed. Theoretical studies show that long-range through-bond interactions are facilitated by π -conjugation. ^{5,14-17}Coupled homo- and heteronuclear spins can also be through-space interactions resulting from spatial proximity. 18 For example, compounds **I**–**III** (Chart 1) exhibit long-range homonuclear through-space (I, III)⁸ or throughbond (II)^{10,11,17} ¹⁹F-¹⁹F spin couplings. Compound IV shows a long-range through-bond ³¹P-¹H spin coupling. ¹² Hennig et al. recently reported on long-range through-bond ¹H⁻¹⁹F spin coupling in 5-fluoropyrimidine-substituted RNA^{13}

Complexes V-VII (Chart 2) are examples of platinum complexes containing heteronuclear spin systems. 19-21 Through space ¹⁹⁵Pt-¹⁹F coupling is observed in complex

To whom correspondence should be addressed. E-mail: milko.vanderboom@weizmann.ac.il.

Department of Organic Chemistry.

^{*} Department of Chemical Research Support.

⁽¹⁾ Vandersypen, L. M.; Steffen, M.; Breyta, G.; Yannoni, C. S.; Cleve, R.; Chuang, I. L. Phys. Rev. Lett. 2000, 85, 5452.

⁽²⁾ Gershenfeld, N. A.; Chuang, I. L. Science 1997, 275, 350.
(3) Warren, W. S. Science 1997, 277, 1688.

⁽⁴⁾ Marx, R.; Fahmy, A. F.; Myers, J. M.; Bermel, W.; Glaser, S. J. Phys. Rev. A 2000, 62, 012310.

⁽⁵⁾ Gräfenstein, J.; Cremer, D. J. Chem. Phys. 2007, 127, 174704.

⁽⁶⁾ Mawhinney, R. C.; Schreckenbach, G. Magn. Reson. Chem. 2004,

⁽⁷⁾ Biesemans, M.; Martins, J. C.; Jurkschat, K.; Pieper, N.; Seemeyer, S.; Willem, R. Magn. Reson. Chem. 2004, 42, 776.

Alonso, M. A.; Casares, J. A.; Espinet, P.; Martínez-Ilarduya, J. M.; Pérez-Briso, C. Eur. J. Inorg. Chem. 1998, 1745.

Albéniz, A. C.; Casado, A. L.; Espinet, P. Organometallics 1997, 16,

⁽¹⁰⁾ Pogodin, S.; Rae, I. D.; Agranat, I. Eur. J. Org. Chem. 2006, 5059.

⁽¹¹⁾ Krcsmar, L.; Grunenberg, J.; Dix, I.; Jones, P. G.; Ibrom, K.; Ernst, L. Eur. J. Org. Chem. 2005, 5306.

⁽¹²⁾ Gholivand, K.; Ghadimi, S.; Naderimanesh, H.; Forouzanfar, A. Magn. Reson. Chem. 2001, 39, 684.

⁽¹³⁾ Hennig, M.; Munzarová, M. L.; Bermel, W.; Scott, L. G.; Sklenář, V.; Williamson, J. R. J. Am. Chem. Soc. 2006, 128, 5851.

⁽¹⁴⁾ Gräfenstein, J.; Tuttle, T.; Cremer, D. Phys. Chem. Chem. Phys. 2005, 7, 452.

⁽¹⁵⁾ Aucar, G. A. Magn. Reson. Chem. A 2008, 32, 88.

⁽¹⁶⁾ Peruchena, N. M.; Aucar, G. A.; Contreras, R. H. J. Mol. Struct. (Theochem) 1990, 210, 205.

Chart 1. Examples of Compounds Exhibiting Long-Rang Through-Space (I,III)^{8,9} and Through-Bond ¹⁹F-¹⁹F (II) and ³¹P-¹H (IV) Coupling^a

 a Compounds exhibiting long-range homonuclear through-space or through-bond spin couplings. I: $^6J_{\rm FF}=52$ Hz. $^{8.9}$ II: $^{11}J_{\rm FF}=7.3$ Hz. 17 III: $^7J_{\rm FF}=11.0$ Hz. 10,11 IV: $^7J_{\rm PH}=0.4$ Hz. 12

Chart 2. Examples of Platinum Heteronuclear Spin Systems^a

 a The $^{19}\mathrm{F}$ atoms of the unique P*CF₃ moiety of **V** are coupled through-space to $^{195}\mathrm{Pt.}$ V: $J_{\mathrm{PtF}}=11$ Hz. 19 VI: $^5J_{\mathrm{PtF}}=18$ Hz. 21,22 VII: $^4J_{\mathrm{PtSe}}=27$ Hz and $^4J_{\mathrm{PtTe}}=57$ Hz. 20

Chart 3. Complexes 1–4 Showing Unusual Long-Range ¹⁹⁵Pt-¹⁹F and ³¹P-¹⁹F Through-Bond Spin Coupling in Solution (Table 1)

Br
$$CF_3$$
 CF_3 Et_3P PEt_3 Et_3P PEt_3 PET_4 PET_4 PET_4 PET_5 PET

V, ¹⁹ whereas through-bond ¹⁹⁵Pt-¹⁹F and ¹⁹⁵Pt-E (E = ⁷⁷Se, ¹²⁵Te) communication is observed in complexes **VI** and **VII**, respectively. ²⁰⁻²²

Herein, we report on the formation of four new stilbene-(Chart 3, 1) and stilbazole-based platinum complexes (2–4) having long-range $^{195}\text{Pt}-^{19}\text{F}$ spin coupling through six (3, 4) and seven bonds (1, 2) and long-range $^{31}\text{P}-^{19}\text{F}$ spin coupling through seven (3, 4) and eight bonds (1, 2). Single-crystal X-ray crystallography analysis and solution NMR studies are consistent with through-bond heteronuclear interactions rather than through-space communication. The experimental and simulated $^{19}\text{F}\{^1\text{H}\}$, $^{31}\text{P}\{^1\text{H}\}$, and $^{195}\text{Pt}\{^1\text{H}\}$ NMR spectra show that these new complexes exhibit either five-spin AMY₃ (1, 2) or three-spin AMY (3, 4) systems flanked by six-spin AMXY₃ (for 1, 2) or four-spin AMXY (for 3, 4) systems with A and M = ^{31}P , X = ^{195}Pt , and Y = ^{19}F resulting from satellites from ^{195}Pt (natural abundance 33.8%). 23

Table 1. Long Range 195 Pt $^{-19}$ F and 31 P $^{-19}$ F Coupling Constants for Complexes $1-4^a$

_	1			
	¹⁹⁵ Pt- ¹⁹ F coupling ^b in Hz	distance (195Pt-19F) in nm	$^{31}P-^{19}F$ coupling ^c in Hz	distance (³¹ P- ¹⁹ F) in nm
1	$^{7}J_{\text{PtF}} = 13.2$	1.1	$^{8}J_{\text{PF}(trans)} = 3.1^{d}$	1.3
2	$^{7}J_{\text{PtF}} = 11.8$	1.1	$^8J_{\text{PF}(trans)} = 2.9^d$	1.3
3	$^{6}J_{PtF} = 11.6$	0.9	$^{7}J_{PF(trans)} = 3.5; ^{7}J_{PF(cis)} = 0.4$	1.1
4	$^{6}J_{\text{PtF}} = 40.1$	0.9	$^{7}J_{\text{PF}(trans)} = 3.2^{d}$	1.1

 a The through-bond distances were estimated from the X-ray structures of complexes 2 and 3. b Determined by both $^{195}\mathrm{Pt}\{^1\mathrm{H}\}$ and $^{19}\mathrm{F}\{^1\mathrm{H}\}$ NMR spectroscopy. c Determined by $^{19}\mathrm{F}\{^1\mathrm{H}\}$ and $^{31}\mathrm{P}\{^1\mathrm{H}\}$ NMR spectroscopy. $^{d\,8}J_{\mathrm{PF}(cis)}$ was not observed.

Experimental Section

Materials and Methods. All reactions were carried out in a N₂-filled M. Braun glovebox with H₂O and O₂ levels <2 ppm. Reagent grade or better solvents were dried, distilled, and degassed before introduction into the glovebox where they were stored over activated 4 Å molecular sieves. Deuterated solvents were purchased from Aldrich and were degassed and stored over 4 Å activated molecular sieves in the glovebox. Reaction flasks were washed with deionized (DI) water followed by acetone, and then oven dried prior to use. Mass spectrometry was carried out using a Micromass Platform LCZ 4000 mass spectrometer. Elemental analyses were performed by H. Kolbe of Mikroanalytisches Laboratorium, Mülheim an der Ruhr, Germany. Ligands 5–8 (Scheme 1) and Pt(PEt₃)₄ were prepared according to published procedures.

Spectroscopic Analysis. The ¹H, ¹³C, ¹⁵N, ¹⁹F, ³¹P, and ¹⁹⁵Pt NMR spectra were recorded at 500.132, 125.77, 50.69, 470.05, 202.46, and 107.52 MHz, respectively, on a Bruker Avance 500 NMR spectrometer. Certain additional NMR experiments were done on a Bruker Avance 400 MHz spectrometer. All chemical shifts (δ) are reported in ppm and all coupling constants (J) in Hz. The ¹H and ¹³C NMR chemical shifts are reported relative to tetramethylsilane. The resonances of the residual protons of the solvent (7.15 ppm benzene, 7.09 ppm toluene, 3.58 and 1.73 ppm tetrahydrofuran, 2.04 ppm acetone) and of the d solvent peaks (128.0 ppm benzene, 20.4 ppm toluene, 67.6 and 25.3 ppm tetrahydrofuran, 29.8 ppm acetone), respectively, were used as the internal standards. ³¹P{¹H} NMR chemical shifts are relative to 85% H₃PO₄ in D₂O. ¹⁹⁵Pt{¹H} NMR chemical shifts were referenced to Na₂PtCl₆ (external standard K₂PtCl₄ in D₂O (1.2 M) at $\delta = -1620$ ppm). 28 ^{15}N NMR chemical shifts were referenced to liquid NH₃. All measurements were carried out at 298 K unless stated otherwise.

⁽¹⁷⁾ Provasi, P. F.; Aucar, G. A.; Sauer, S. P. A. J. Phys. Chem. A 2004, 108, 5393.

⁽¹⁸⁾ Ernst, L.; Ibrom, K. Angew. Chem., Int. Ed. 1995, 34, 1881.

⁽¹⁹⁾ Phillips, I. G.; Ball, R. G.; Cavell, R. G. Inorg. Chem. 1987, 26, 4074.

⁽²⁰⁾ James, E. C.; Jura, M.; Kociok-Köhn, G.; Raithby, P. R.; Sharp, E. L.; Wilson, P. J. *Inorg. Chem.* 2007, 46, 7232.

⁽²¹⁾ Pregosin, P. S. Stud. Inorg. Chem. 1991, 13, 216.

⁽²²⁾ Hopton, F. J.; Rest, A. J.; Rosevear, D. T.; Stone, F. G. A. J. Chem. Soc. 1966, 1326.

⁽²³⁾ CRC Handbook of Chemistry and Physics, 83rd ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2002–2003.

⁽²⁴⁾ Gascoyne, J. M.; Mitchell, P. J.; Phillips, L. J. Chem. Soc., Perkin

⁽²⁵⁾ Yoshida, T.; Matsuda, T.; Otsuka, S. *Inorg. Synth.* **1979**, *19*, 110.

⁽²⁶⁾ Aun, C. E.; Clarkson, T. J.; Happer, D. A. R. J. Chem. Soc., Perkin Trans. 2 1990, 4, 645.

⁽²⁷⁾ Schunn, R. A. Inorg. Chem. 1976, 15, 208.

⁽²⁸⁾ Encyclopedia of Spectroscopy and Spectrometry; Tranter G. E., Holmes J. L., Lindon J. C., Eds.; Academic Press: San Diego, CA, 2000; p 720.

Scheme 1. Room Temperature Reaction of Ligands 5–8 in THF with Pt(PEt₃)₄ Results in Selective η^2 -Coordination of the Central Carbon–Carbon Double Bond to Pt(PEt₃)₂ (1–4)^a

Assignments in the ¹H and ¹³C NMR were made using ¹H{³¹P} and ¹³C-DEPT135 NMR. The 2D ¹⁵N-¹H gsHMBC heteronuclear shift correlation spectra were acquired and processed using standard Bruker software.²⁹

Formation of Complex 1. A solution of Pt(PEt₃)₄ (44.1 mg, 0.066 mmol) in 1 mL of THF was mixed with a solution of E-1-[(2-(4-bromophenyl)ethenyl]-4-(trifluoromethyl)-benzene (5)²⁴ (21.6 mg, 0.066 mmol) in 2 mL of THF at room temperature. Quantitative formation of complex 1 was observed by ³¹P{¹H} NMR spectroscopy after stirring for 20 min. Complex 1 was isolated as a white solid by removing all volatiles under vacuum and by washing the residue with 5 mL of dry pentane. Complex 1 was stored at -30°C as a solid. ¹H NMR (THF- d_8): δ 7.28 (d, 2H, ArH, $^3J_{\rm HH} = 8.0$ Hz), 7.16 (d, 2H, ArH, ${}^{3}J_{\rm HH} = 7.8$ Hz), 7.11 (d, 2H, ArH, ${}^{3}J_{\rm HH} = 7.8$ Hz), 6.95 (d, 2H, ArH, ${}^{3}J_{\rm HH} = 7.6$ Hz), 3.67–3.57 (m, 2H, CH=CH, ${}^{1}J_{PtH} = 52.7 \text{ Hz}$), 1.65 (m, 12H, PC H_2 CH₃), 0.89 (m, 18H, PCH₂CH₃). ¹³C{¹H} NMR (C₆D₆): δ 153.85 (d, C_q, ²J_{PtC} = 42.3 Hz, ${}^{3}J_{PC} = 6.5$ Hz), 147.54 (d, C_q , ${}^{2}J_{PtC} = 40.0$ Hz, ${}^{3}J_{PC} = 6.2$ Hz, ${}^{3}J_{PC} = 2.1$ Hz), 132.10, 130.70 (d, ${}^{5}J_{PC} = 1.9$ Hz), 128.53, 127.19 (d, ${}^{3}J_{PtC} = 20.4 \text{ Hz}$, ${}^{4}J_{PC} = 3.2 \text{ Hz}$), 126.9 (s, C_q), 125.82 (m, C_q , CF_3 , ${}^1J_{CF} = 3.9 \text{ Hz}$), 125.03 (d, ${}^3J_{PtC} = 20.1 \text{ Hz}$, ${}^4J_{PC} = 2.9$ Hz), 124.67 (br), 115.9 (d, C_q , C-Br), 50.97 (d, η^2 -CH=CH, $^1J_{PtC}$ = 208.6, ${}^{2}J_{PC}$ = 34.3 Hz), 50.29 (d, η^{2} -CH=CH, ${}^{1}J_{PtC}$ = 208.5, $^{2}J_{PC} = 32.7 \text{ Hz}$), 20.15 (m, PCH₂CH₃, $^{2}J_{PtC} = 65.7$, $^{1}J_{PC} = 35.0$, ${}^{3}J_{PC} = 3.4 \text{ Hz}$), 8.35 (d, PCH₂CH₃, ${}^{3}J_{PC} = 36.1$, ${}^{2}J_{PC} = 12.4 \text{ Hz}$). ³¹P{¹H} NMR (C₆D₆): AM part of AMY₃ system flanked by AM part of AMXY₃ system, δ_A 13.49 (1P, ${}^2J_{PP} = 44.4$, ${}^1J_{PtP} = 3583.6$, ${}^{8}J_{PF} = 3.1 \text{ Hz}$), $\delta_{M} 12.97 \text{ (1P, } {}^{2}J_{PP} = 44.4, {}^{1}J_{PtP} = 3518.8 \text{ Hz}$). $^{195}Pt\{^1H\}$ NMR (C₆D₆, 107.04 MHz): X part of AMXY₃ system, δ -5086.1 (1Pt, ${}^{1}J_{PPt}$ = 3518.8, ${}^{1}J_{PPt}$ = 3583.5 Hz). ${}^{19}F\{{}^{1}H\}$ NMR (C₆D₆): d, Y part AMY₃ system flanked by Y part of AMXY₃ system, $\delta_{\rm Y}$ -61.03 (3F, ${}^{7}J_{\rm PtF} = 13.2, {}^{8}J_{\rm PF} = 3.1$ Hz). Elemental analysis (%) calcd for C₂₇H₄₀BrF₃P₂Pt: C 42.75, H 5.32. Found: C 42.94, H 5.20.

Formation of Complex 9. A solution of complex 1 (21.5 mg, 0.028 mmol) in 1 mL of THF was loaded into a 5 mm screw-cap NMR tube, which was sealed using Teflon tape and parafilm. The reaction progress was monitored by ³¹P{¹H} NMR spectroscopy showing the formation of complex 9 and concurrent disappearing of the starting material (1). After ~30 min at 58 °C formation of complex 9 became visible, whereas complex 1 disappeared. No intermediates were observed. The reaction was nearly completed in 8 h (\sim 96% conversion). Complex **9** was the only observable product and was isolated (87%) as a light-yellow solid by removing all volatiles under vacuum followed by washing of the residue with 2 mL of cold (-30 °C) pentane. ¹H NMR (C_6D_6): δ 7.67 (d, 2H, ArH, ${}^{3}J_{HH} = 8.3 \text{ Hz}$), 7.60 (d, 2H, ArH, ${}^{3}J_{HH} = 8.4 \text{ Hz}$), 7.39 (d, 2H, ArH, ${}^{3}J_{HH} = 7.9 \text{ Hz}$), 7.27 (d, CH=CH, 1H, ${}^{3}J_{HH} = 16.9 \text{ Hz}$), 7.16 (d, 2H, ArH, ${}^{3}J_{HH} = 8.6 \text{ Hz}$), 7.11 (d, CH=CH, 1H, ${}^{3}J_{HH} =$ 16.1 Hz), 1.74 (m, 12H, PCH₂CH₃), 1.08 (m, 18H, PCH₂CH₃).

¹³C{¹H} NMR (acetone- d_6): δ 145.36 (t, C_q , $^2J_{PC} = 18.45$, $^1J_{PtC} = 945$ Hz), 142.10 (s, C_q), 139.31 (s, $^2J_{PtC} = 38.8$ Hz), 134.45, 132.28 (s, C_q), 131.24 (s, C_q), 126.82 (m, C_q , $^1J_{CF} = 3.5$ Hz, CF₃), 128.27, 128.02, 127.36, 125.36, 15.73 (vt, $^{1+3}J_{PC} = 34.21$, $^2J_{PtC} = 69.5$ Hz), 8.01 (s, $^3J_{PtC} = 25.2$ Hz). $^{31}P\{^1H\}$ NMR (C_6D_6): δ 10.20 (s, 2P, $^1J_{PtP} = 2764.0$ Hz). $^{195}Pt\{^1H\}$ NMR (C_6D_6 , 107.04 MHz): δ -4476.4 (s, 1Pt, $^1J_{PPt} = 2764.4$ Hz). $^{19}F\{^1H\}$ NMR (C_6D_6): δ -62.06 (s). Elemental analysis (%) calcd for $C_{27}H_{40}BrF_3P_2Pt$: C 42.75, H 5.32, Found: C 42.49, H 5.26.

Formation of Complex 2. Pt(PEt₃)₄ (56 mg, 0.083 mmol) was dissolved in 3 mL of dry THF and slowly added to a stirred solution of E-4-[2-(4-trifluoromethyl-phenyl)-ethenyl]-pyridine ($\mathbf{6}$)²⁶ (21 mg, 0.083 mmol) in 2 mL of THF. After stirring at room temperature for 20 min, all volatiles were removed under vacuum, and the residue was washed with 10 mL of pentane. The yellow residue was dissolved in ~1.5 mL of THF, which was followed by dropwise addition of ~9 mL of dry pentane. Slow evaporation of the solvent at room temperature resulted after 6 days in the formation of colorless needle-like crystals of analytically pure complex 2 (75% yield). ¹H NMR (C₆D₆): δ 8.52 (d, 2H, ArH, ³ J_{HH} = 5.4 Hz), 7.36 (d, 2H, ArH, ${}^{3}J_{HH} = 8.1 \text{ Hz}$), 7.02 (d, 2H, ArH, ${}^{3}J_{HH} = 7.8 \text{ Hz}$), 6.87 (d, 2H, ArH, ${}^{3}J_{HH} = 4.5$ Hz), 3.78-3.52 (m, 2H, CH=CH, $^{2}J_{\text{PtH}} = 52.3 \text{ Hz}$), 1.23 (m, 12H, PC H_{2} CH₃), 0.66 (m, 18H, PCH₂CH₃). ¹³C{¹H} NMR (C₆D₆): δ 156.86 (d, C_q, ²J_{PtC} = 40.6, $^{3}J_{PC} = 5.3 \text{ Hz}$), 153.2 (d, C_{q} , $^{2}J_{PtC} = 38.2$, $^{3}J_{PC} = 5.6 \text{ Hz}$), 149.13 (br d, ${}^{5}J_{PC} = 1.9 \text{ Hz}$), 128.59, 125.03 (d, ${}^{3}J_{PtC} = 19.4$, ${}^{4}J_{PC} = 2.9$ Hz), 125.57 (m, C_q , CF_3 , ${}^1J_{FC} = 3.9$ Hz), 124.47 (m), 124.21 (br, C_q), 120.02 (d, ${}^3J_{PtC} = 17.9$, ${}^4J_{PC} = 2.3$ Hz), 49.30 (d, η^2 -CH=CH, $^{1}J_{PtC} = 210$, trans- $^{2}J_{PC} = 32.9$ Hz), 48.74 (d, η^{2} -CH=CH, $^{1}J_{PtC} =$ 205, trans- ${}^{2}J_{PC} = 31.7 \text{ Hz}$), 19.67 (m, PCH₂CH₃, ${}^{2}J_{PtC} = 57.3$, ${}^{1}J_{PC}$ = 22.4, ${}^{4}J_{PC}$ = 3.4 Hz), 8.10 (d, PCH₂CH₃, ${}^{3}J_{PtC}$ = 23.3, ${}^{2}J_{PC}$ = 18.3 Hz). $^{31}P\{^{1}H\}$ NMR (C_6D_6): AM part of AMY₃ system flanked by AM part of AMXY₃ system, δ_A 14.46 (1P, ${}^2J_{PP} = 39.8$, ${}^1J_{PtP} =$ 3591.1 Hz), $\delta_{\rm M}$ 14.09 (1P, ${}^2J_{\rm PP} = 39.8$, ${}^7J_{\rm PF} = 2.9$, ${}^1J_{\rm PtP} = 3539.0$ Hz). ¹⁹⁵Pt{¹H} NMR (C₆D₆, 107.04 MHz): X part of AMXY₃ system, $\delta -5084.3$ (1Pt, ${}^{7}J_{PtF} = 11.8$, ${}^{1}J_{PPt} = 3591.1$, ${}^{1}J_{PPt} = 3538.4$ Hz). ¹⁹F{¹H} NMR (C₆D₆): d, Y part AMY₃ system flanked by Y part of AMXY₃ system, $\delta_{\rm Y}$ -60.97 (3F, ${}^{7}J_{\rm PtF} = 11.8$, ${}^{8}J_{\rm PF} = 2.9$ Hz). ¹⁵N NMR (acetone- d_6): δ 298.0 (s). UV-vis (CH₃CN) $\lambda(\epsilon)$ 318 nm (1.7 \times 10⁴ M⁻¹cm⁻¹). Calcd *m/e*: 680.6, found 681.8. Anal. Calcd for C₂₆H₄₀F₃NP₂Pt: C 45.88, H 5.92. Found: C 45.79, H 5.95.

Formation of Complex 3. Pt(PEt₃)₄ (41.3 mg, 0.062 mmol) was dissolved in 3 mL of dry THF and slowly added to a stirred solution of *E*-4-[2-(4-fluoro-phenyl)-ethenyl]-pyridine (7)²⁶ (12.3 mg, 0.062 mmol) in 2 mL of THF. After stirring at room temperature for 20 min, the volatiles were removed under vacuum, and the residue was washed with 4 mL of pentane. The yellow residue was dissolved in \sim 1.5 mL of THF, which was followed by dropwise addition of \sim 6 mL of dry pentane. Slow evaporation of the solvent at room temperature resulted after 5 days in the formation of colorless needle-like crystals of analytically pure complex 3 (85% yield). 1 H NMR ($^{\circ}$ C₆D₆): δ 8.52 (d, 2H, ArH, 3 J_{HH} = 6.0 Hz), 7.00

^a Compound 1 undergoes selective activation of the aryl-bromide bond to afford complex 9.

⁽²⁹⁾ Von Philipsborn, W.; Müller, R. Angew. Chem., Int. Ed. 1986, 25, 383.

Figure 1. Experimental (upper) and simulated (lower) $^{31}P\{^{1}H\}$, $^{19}F\{^{1}H\}$, and $^{195}Pt\{^{1}H\}$ NMR spectra of complex 1 in acetone- d_6 showing the AMY₃ spin system flanked by AMXY₃ spin system (A, M = ^{31}P , X = ^{195}Pt and Y = ^{195}P). The simulated spectra were obtained with gNMR (version 5.0). 59

(m, 2H, ArH, ${}^{3}J_{HH} = 5.4 \text{ Hz}$), 6.89 (m, 2H, ArH), 6.88 (m, br, 2H, ArH), 3.79-3.52 (m, 2H, CH=CH, ${}^{2}J_{PtH} = 52.8$ Hz), 1.27 (m, 12H, PCH_2CH_3), 0.70 (m, 18H, PCH_2CH_3). ¹³C{¹H} NMR (C₆D₆): δ 160.12 (d, C_q), 157.03 (dd, C_q , ${}^2J_{PtC} = 43.1$, ${}^3J_{PC} = 6.0$, ${}^3J_{PC} = 2.6$ Hz), 144.65 (dd, C_q , ${}^2J_{PtC} = 37.7$, ${}^3J_{PC} = 5.3$, ${}^3J_{PC} = 2.7$ Hz), 149.08 (d, $J_{PC} = 1.7 \text{ Hz}$), 126.45, (d, ${}^{3}J_{PtC} = 27.5$, ${}^{4}J_{PC} = 3.4 \text{ Hz}$), 119.88 (d, ${}^{3}J_{PtC} = 18.6$, ${}^{4}J_{PC} = 2.7$ Hz), 114.02, 114.19, 50.13 (d, η^2 -CH=CH, ${}^1J_{PtC} = 206.1$, $trans^2J_{PC} = 36.6$ Hz), 50.43 (d, η^2 -CH=CH, ${}^{1}J_{PtC} = 205.1$, $trans^{-2}J_{PC} = 36.6$ Hz), 19.7 (dd, PCH₂CH₃, $^{2}J_{PtC} = 50.5$, $^{1}J_{PC} = 16.5$, $^{4}J_{PC} = 2.7$ Hz), 8.10 (d, PCH₂CH₃, $^{2}J_{PC}$ = 2.5, ${}^{3}J_{PtC}$ = 21.2 Hz). ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆): AM part of AMY system flanked by AM part of AMXY system, δ_A 15.28 (1P, $^2J_{PP}$ = 44.3, ${}^{1}J_{PtP}$ = 3639.9 Hz), δ_{M} 14.40 (1P, ${}^{2}J_{PP}$ = 44.3, ${}^{7}J_{PF}$ = 3.5, ${}^{1}J_{\text{PtP}} = 3465.7 \text{ Hz}$). ${}^{195}\text{Pt}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 107.04 MHz): X part of AMXY system, δ_X -5087.3 (1Pt, ${}^6J_{PtF} = 11.6$, ${}^1J_{PPt} = 3639.7$, $^{1}J_{PPt} = 3465.4 \text{ Hz}$). $^{19}F\{^{1}H\}$ NMR (acetone- d_{6}): d, Y part AMY system flanked by Y part of AMXY system, $\delta_{\rm Y}$ –123.30 (1F, $^6J_{\rm PtF}$

= 11.6, $trans^{-7}J_{PF}$ = 3.5, $cis^{-7}J_{PF}$ = 0.4 Hz). ¹⁵N NMR (acetone- d_6): δ 296.3 (s). UV-vis (CH₃CN) $\lambda(\epsilon)$ 307 nm (2.6 × 10⁴ M⁻¹cm⁻¹). Calcd m/e: 630.2, found 631.8. Elemental analysis (%) calcd for C₂₅H₄₀FP₂Pt: C 47.65, H 6.39, N 2.22. Found: C 48.23, H 6.54, N 2.22.

Formation of Complex 4. Pt(PEt₃)₄ (33.2 mg, 0.050 mmol) was dissolved in 3 mL of dry THF and slowly added to a stirred solution of 4-[2-(4-fluoro-phenyl)-ethenyl]-1-methyl-pyridinium iodide ($\mathbf{8}$)²⁶ (17 mg, 0.050 mmol) in 3 mL of THF. After stirring at room temperature for 1 h, the volatiles were removed under vacuum, and the residue was washed with dry pentane (2 × 3 mL). Complex $\mathbf{4}$ was isolated as yellow sticky oil in 95% yield by removing all volatiles under vacuum. ¹H NMR (acetone- d_6), 223 K: δ 7.58 (br, 2H), 7.20 (t, 2H, ArH, $^3J_{\rm HH}$ = 5.9 Hz), 7.02 (t, 2H, ArH, $^3J_{\rm HH}$ = 8.8 Hz), 6.91 (br, 2H, ArH), 4.09 (br, 3H, *N*-CH₃), 4.21–3.60 (m, 2H, CH=CH, $^2J_{\rm PtH}$ = 50.8 Hz), 1.71 (m, 12H, PC H_2 CH₃), 0.88 (m, 18H, PC H_2 CH₃). 13 C{ 1 H} NMR (acetone- d_6), 223 K: δ 163.44

(dd, C_q , br, ${}^2J_{PtC} = 44.5$, ${}^3J_{PC} = 1.6$ Hz), 161.7 (d, C_q), 159.21, 142.52 (dd, C_q , ${}^2J_{PtC} = 29.7$, ${}^3J_{PC} = 6.1$, ${}^3J_{PC} = 2.6$ Hz), 127.07, (m, br, ${}^{4}J_{PC} = 6.1$, ${}^{4}J_{PC} = 2.7$ Hz), 114.36, 114.19, 54.15 (d, η^{2} -CH=CH, ${}^{1}J_{PtC} = 110.5$, $trans^{-2}J_{PC} = 20.9$ Hz), 48.65 (d, η^{2} -CH=CH, ${}^{1}J_{PtC} = 220.8$, $trans^{-2}J_{PC} = 35.6$ Hz), 44.61 (N-CH₃), 18.42-17.48 (m, PCH₂CH₃, ${}^{1}J_{PC} = 61.9$, ${}^{4}J_{PC} = 28.1$ Hz), 8.10 (d, PCH_2CH_3 , $^2J_{PC} = 18.9$, $^3J_{PtC} = 28.4$ Hz). $^{31}P\{^1H\}$ NMR (acetoned₆): AM part of AMY system flanked by AM part of AMXY system, δ_A 15.45 (1P, ${}^2J_{PP} = 22.9$, ${}^1J_{PtP} = 4022.9$ Hz), δ_M 11.74 $(1P, {}^{2}J_{PP} = 22.7, {}^{1}J_{PtP} = 3329.8, {}^{7}J_{PF} = 3.2 \text{ Hz})$. Two isomers were observed by ¹⁹⁵Pt{¹H} NMR spectroscopy. ¹⁹⁵Pt{¹H} NMR (C₆D₆, 107.04 MHz): br ($\omega_{1/2} = 50$ Hz), X part of AMXY system, δ -5005.1 (1Pt, ${}^{1}J_{PPt} = 3329.5$, ${}^{1}J_{PPt} = 4023.1$ Hz; major signal, 70%) and br ($\omega_{1/2} = 50$ Hz), X part of AMXY system, $\delta_{\rm X} - 5007.1$ $(1\text{Pt}, {}^{1}J_{\text{PPt}} = 3329.5, {}^{1}J_{\text{PPt}} = 4023.1 \text{ Hz}; \text{ minor signal, } 30\%). {}^{19}F\{{}^{1}H\}$ NMR (acetone-d₆), 223 K: m, Y part AMY system flanked by Y part of AMXY system, δ_{Y} -121.06 (1F, ${}^{6}J_{PtF} = 40.01$, trans- ${}^{7}J_{PF}$ = 3.2 Hz). ¹⁵N NMR (acetone- d_6): δ 166.2. UV-vis (CH₃CN) $\lambda(\epsilon)$ 399 nm (2.2 \times 10⁴ M⁻¹cm⁻¹). Calcd *m/e*: 772.5, found (M – I⁻) 646.9. Elemental analysis (%) calcd for C₂₆H₄₃FIP₂Pt: C 40.22, H 5.61. Found: C 40.15, H 5.96.

X-ray Analysis of Complex 2. Crystal Data. $C_{26}H_{40}NP_2F_3Pt$, $0.4 \times 0.1 \times 0.1 \text{ mm}^3$, monoclinic, space group P2(1)/c, a=8.921(2) Å, b=11.495(2) Å, c=27.546(6) Å, $\beta=95.54(3)^\circ$, T=120(2)K, V=2811.6 (10) Å 3 , Z=4, Fw = 680.62, Dc = 1.608 Mg·m $^{-3}$, $\mu=5.138$ mm $^{-1}$.

Data Collection and Processing. Nonius KappaCCD diffractometer, Mo K α ($\lambda = 0.71073$ Å), 17459 reflections collected, 6324 independent reflections ($R_{\rm int} = 0.0630$). The data were processed with Denzo-Scalepack.

Solution and Refinement. Structure solved by SHELXS-90,³⁰ full matrix least-squares refinement based on F^2 with SHELXL-97,³⁰ 305 parameters with 0 restraints, final R = 0.0414 (wR = 0.0822) for 6324 reflections with $I > 2\sigma(I)$ and R = 0.0636 (wR = 0.0881) for all data. Goodness of fit on $F^2 = 1.042$, largest electron density peak = 1.858 e·Å⁻³.

X-ray Analysis of Complex 3. Crystal Data. $C_{25}H_{40}NP_2FPt$, $0.3 \times 0.04 \times 0.04$ mm³, triclinic, space group $P\overline{1}$, a=8.6720(2) Å, b=11.2167(5) Å, c=14.6807(6) Å, $\alpha=105.3960(16)^\circ$, $\beta=95.855(2)^\circ$, $\gamma=104.263(2)^\circ$, Z=2, T=120(2) K, V=1312.7 (1) Å³, Fw = 630.60, Dc = 1.595 Mg·m⁻³, $\mu=5.485$ mm⁻¹.

Data Collection and Processing. Nonius KappaCCD diffractometer, Mo K α ($\lambda = 0.71073$ Å), 25780 reflections collected, 5976 independent reflections ($R_{\rm int} = 0.084$). The data were processed with Denzo-Scalepack.

Solution and Refinement. This structure has been solved by SIR-97.³¹ Full matrix least-squares refinement based on F^2 with SHELXL-97,³⁰ 280 parameters with 0 restraints, final R = 0.0361 (wR = 0.0729) for 5354 reflections with $I > 2\sigma(I)$ and R = 0.0511 (wR = 0.0765) for all data. Goodness of fit on $F^2 = 1.015$, largest electron density peak $= 1.814 \text{ e} \cdot \text{Å}^{-3}$.

Computational Details. All calculations were carried out using Gaussian 03 Revision E.01.³² The PBE0 (also known as PBE1PBE or PBEh)³³ hybrid Generalized Gradient Approximation (GGA) DFT exchange-correlation functional was used. PBE0 is the Adamo–Barone hybrid variant of the Perdew–Burke–Ernzerhof (PBE) GGA functional^{34,35} and contains 25% Hartree–Fock exchange.³³ This functional has been shown to yield more reliable properties for transition metals than other conventional exchange-

correlation functionals.³⁶ The SDD basis set RECP (relativistic effective core potential) combination was used. This combines the Huzinaga–Dunning double- ζ basis set³⁷ on lighter elements with the Stuttgart–Dresden basis set RECP combination³⁸ on transition metals. Diffuse functions were added to the fluorine atom as recommended by Martin and co-workers.³⁹ Bulk solvent effects were approximated by single-point energy calculations using a polarizable continuum model (PCM),^{40–43} specifically the integral equation formalism model (IEF-PCM)^{40,41,44,45} with benzene as the solvent as in the experiments.

Results and Discussion

The reaction of an equimolar amount of $Pt(PEt_3)_4$ with ligands $\mathbf{5-8}$ in dry THF at room temperature for ~ 20 min results in the quantitative formation of complexes $\mathbf{1-4}$, respectively, with concurrent generation of 2 equiv of PEt_3 as determined by $^{31}P\{^{1}H\}$ NMR spectroscopy (Scheme 1). Complex $\mathbf{1}$ is unstable in solution at room temperature and converts to the product of aryl—Br oxidative addition (9) ($\sim 60\%$ conversion in 3 days at room temperature). Thermolysis of complex $\mathbf{1}$ in THF at elevated temperatures results in quantitative formation of complex $\mathbf{9}$ within several hours. The η^2 -coordination of the metal center to the carbon—carbon double bond of ligand $\mathbf{5}$ is kinetically favored over activation of the aryl—halide bond. This transformation ($\mathbf{1-9}$) may involve an intramolecular ring-walking process, $^{46-50}$ as we have observed in structurally related Pt, Pd, and Ni com-

- (31) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; C., G.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1994, 27, 435.
- (32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; E., K. J.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
- (33) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
- (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
- (36) Quintal, M. M.; Karton, A.; Iron, M. A.; Boese, A. D.; Martin, J. M. L. J. Phys. Chem. A 2006, 110, 709.
- (37) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory, Schaefer, H. F., III. Ed.; Plenum Press: New York, 1977; pp 1–23.
- (38) Dolg, M. Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; John von Neumann Institute for Computing: Jülich, 2000; Vol. 3, pp 507–540.
- (39) Parthiban, S.; de Oliveira, G.; Martin, J. M. L. J. Phys. Chem. A 2001, 105, 895.
- (40) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
- (41) Mennucci, B.; Tomasi, J. J. Chem. Phys. **1997**, 106, 5151.
- (42) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253.
- (43) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V.; Phys., J. C. J. Chem. Phys. **2002**, 117, 43.
- (44) Mennucci, B.; Cances, E.; Tomasi, J. J. Phys. Chem. 1997, 101, 10506.

Figure 2. (A) ORTEP diagram of complex 2 with thermal ellipsoids set at 50% probability showing the η^2 -coordination of the Pt(PEt₃)₂ group to the carbon—carbon double bond, C(7)—C(8). Hydrogen atoms have been omitted for clarity. The dotted blue lines indicate the intramolecular Pt—F distances. There is partial disorder in the fluorine atoms positions, and only one conformation is shown. Selected bond lengths (Å) and angles (°): Pt(1)—C(7) 2.116(5), Pt(1)—C(8) 2.140(5), Pt(1)—P(2) 2.271(1), Pt(1)—P(3) 2.267(1), C(8)—C(7) 1.472(6), C(8)—C(9) 1.466(7), C(1)—C(7) 1.463(7), C(40)—F(1A) 1.34(1), C(40)—F(3A) 1.36(1), C(40)—F(2) 1.318(7), C(7)—Pt(1)—P(2) 151.43(12), C(7)—Pt(1)—C(8) 40.47(17), C(7)—Pt(1)—P(3) 102.81(12), C(8)—Pt(1)—P(2) 110.97(13), P(2)—Pt(1)—P(3) 105.76(5). (B) Perspective view of the intermolecular Pt—F distances (dotted blue lines) in complex 2. (C) ORTEP diagram of complex 3 with thermal ellipsoids set at 50% probability showing the η^2 -coordination of the Pt(PEt₃)₂ group to the carbon—carbon double bond, C(7)—C(8). Selected bond lengths (Å) and angles (°): Pt(1)—C(7) 2.114(4), Pt(1)—C(8) 2.118(4), Pt(1)—P(2) 2.2750(13), Pt(1)—P(3) 2.2849(12), C(8)—C(7) 1.447(7), C(8)—C(9) 1.472(7), C(1)—C(7) 1.499(7), C(4)—F(1) 1.363(6), C(7)—Pt(1)—P(2) 106.76(14), C(7)—Pt(1)—C(8) 40.00(19), C(7)—Pt(1)—P(3) 150.39(14), C(8)—Pt(1)—P(2) 146.70(13), P(2)—Pt(1)—P(3) 102.78(5). (D) Perspective view of the intermolecular Pt—F distances (dotted blue lines) in complex 3.

plexes.^{47,51,52} The new complexes **1–4** and **9** were isolated (>85% yield) and characterized by ¹H, ¹³C{¹H}, ¹⁹F{¹H}, ³¹P{¹H}, and ¹⁹⁵Pt{¹H} NMR spectroscopy and elemental analysis. ¹H{³¹P} and ¹³C DEPT135 NMR spectroscopy were used for signal assignment. Complexes **2–4** were also characterized by mass spectrometry and UV—vis spectroscopy. In addition, complexes **2** and **3** were characterized by single-crystal X-ray analysis (Figure 2).

The η^2 -coordination of the metal center to the carbon—carbon double bond of ligands **5–8** is apparent from the ¹H and

¹³C{¹H} NMR spectra of the corresponding complexes (1-4). Complexes 1-3 exhibit typical signals at $\delta \sim 3.6$ and δ 50–52 ppm in the respective NMR spectra (see Supporting Information, Figures S1–S4).⁴⁷ The NMR spectra of complex 4 show similar features, but at δ 3.6–4.2 ppm and at δ 48.66 and 54.15 ppm, respectively. The CH units of the η^2 -C=C moieties are inequivalent and are coupled with ¹⁹⁵Pt and with the ³¹P nuclei of both the *cis*- and *trans*-PEt₃ ligands. ⁵³ For complexes 1-3, ${}^{1}J_{PtC} = 202-208$ Hz for both η^{2} -C=C atoms. The ${}^{1}J_{PtC}$ for complex 4 is drastically different for each carbon atom (221 and 111 Hz), indicating enhanced asymmetric binding resulting from the pyridinium moiety. 54,55 This is supported by DFT calculations (vide infra). This asymmetric binding is also expressed in the ³¹P{¹H} NMR spectra of complex 4. The ³¹P{¹H} NMR spectra of complexes 1-4 show a resonance at $\delta \sim 14$ ppm with *cis*- $^{2}J_{PP}$ = 40-44 Hz (1-3) and cis- $^{2}J_{PP}$ = 23 Hz (4) flanked by platinum satellites (${}^{1}J_{PtP} = 3330-4023 \text{ Hz}$). The inequivalent

⁽⁴⁵⁾ Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. (Theochem) 1999,

⁽⁴⁶⁾ Fryzuk, M. D.; Jafarpour, L.; Kerton, F. M.; Love, J. B.; Rettig, S. J. Angew. Chem., Int. Ed. 2000, 39, 767.

⁽⁴⁷⁾ Strawser, D.; Karton, A.; Zenkina, O. V.; Iron, M. A.; Shimon, L. J. W.; Martin, J. M. L.; van der Boom, M. E. J. Am. Chem. Soc. 2005, 127, 9322.

⁽⁴⁸⁾ Stanger, A.; Vollhardt, K. P. C. Organometallics 1992, 11, 317.

⁽⁴⁹⁾ Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542.

⁽⁵⁰⁾ Keane, J. M.; Harman, W. D. Organometallics 2005, 24, 1786.

P atoms of complex 4 exhibit a \sim 700 Hz difference in coupling with the Pt center, whereas the two P atoms of complexes 1–3 have similar Pt couplings. The $^{31}P\{^{1}H\}$ NMR resonances of complex 4 are sharp within the temperature range 223–298 K. However, the ^{1}H and $^{19}F\{^{1}H\}$ NMR spectra were recorded at 223 K because broadened resonances are observed at room temperature. The nature of this line broadening is not clear.

The olefinic carbons in complex **2** are unusually complex in the ¹³C{¹H} spectra (see Supporting Information, Figures S1–S4). This results from the non-first-order nature of the spectrum and has been observed in related compounds.^{54,55} This is discussed in detail in the accompanying Supporting Information.

The $^{31}P\{^{1}H\}$ NMR spectrum of complex **9** exhibits one sharp singlet at δ 10.2 ppm flanked by ^{195}Pt satellites as a result of symmetrical equivalence. The observed $^{195}Pt-^{31}P$ coupling, $^{1}J_{PtP}=2764$ Hz, is typical of two mutually *trans* phosphorus atoms bound to a Pt(II) center. 47,53 The $^{13}C\{^{1}H\}$ NMR spectrum of complex **9** lacks the resonance of the $C_{aryl}-Br$ moeity. Instead a new triplet resonance with platinum satellites is observed at δ 145.36 ppm with $^{2}J_{PC}=18.5$ Hz and $^{1}J_{PtC}=945$ Hz, indicating the presence of a σ -bound $Pt-C_{ipso}$ moeity coupled by two magnetically equivalent phosphorus atoms. 56 It is noteworthy that van Koten reported a series of stilbenoid-pincer complexes akin to complex **9** in which the chemical shift of the Pt(II) nucleus was affected by *para* substituents over 11 bonds. 57,58

For complexes 1 and 2, nearly identical five-spin AMY₃ systems flanked by six-spin AMXY₃ systems are observed by $^{19}F\{^1H\},\,^{31}P\{^1H\},$ and $^{195}Pt\{^1H\}$ NMR spectroscopy (A, $M = {}^{31}P$, $X = {}^{195}Pt$ and $Y = {}^{19}F$). These NMR spectra were simulated with gNMR (version 5.0)⁵⁹ and were in very good agreement with the experimental data (Figure 1). Unusually large, long-range couplings between the ¹⁹⁵Pt and ¹⁹F nuclei were observed with $^{7}J_{\text{PtF}} = 13.2 \text{ Hz}$ (1) and 11.8 Hz (2) (Table 1). The $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectra show long-range $^{31}P^{-19}F$ spin coupling of ~ 3 Hz through eight bonds. The heteronuclear spin coupling is remarkable if one considers the distances. The estimated through-bond distances between the 195 Pt and 19 F nuclei are ~ 1.1 nm, and the distances between the ^{31}P and ^{19}F nuclei are ~ 1.3 nm. A homonuclear spin coupling over 11 bonds, $^{11}J_{\text{FF}} = 7.3$ Hz, with an internuclear distance of 1.4 nm, has been observed for a fully conjugated difluoropolyyne (Chart 1, II).¹⁷

For complexes 1 and 2, no spectral changes were observed by varying: (i) the solvent polarity (acetone vs benzene), (ii)

the concentration by a magnitude of order (2.8–28 mM), or (iii) the temperature (270 K vs 298 K). These experimental observations indicate that the long-range ¹⁹⁵Pt-¹⁹F interactions involve through-bond rather than through-space spin—spin coupling, which is confirmed by X-ray analysis of complex **2** (Figure 2). Through space coupling can be observed if two nuclei are very close together and one of these nuclei has a nonbonding pair of electrons that can interact with the second nucleus. However, in our case, the nuclei are too far apart.

Three-spin AMY systems flanked by four-spin AMXY systems are observed for complexes 3 and 4 by ¹⁹F{¹H}, $^{31}P\{^{1}H\}$, and $^{195}Pt\{^{1}H\}$ NMR spectroscopy (A, M = ^{31}P , X = ¹⁹⁵Pt, and Y = ¹⁹F). Calculated spectra are nearly identical with the experimental spectra, supporting the assigned spin system (Figure 3). The NMR spectra of complex 3 are temperature independent (270-298 K), whereas for complex 4 some broadening is observed at room temperature in the ¹H and ¹⁹F{¹H} NMR spectra. As for complexes 1 and 2, the spectral data of complexes 3 and 4 are also solvent (acetone- d_6 vs benzene- d_6) and concentration (2.8–28 mM, 3 and 6.5-30 mM, 4) independent, suggesting through-bond spin-spin interactions. Large long-range coupling through six bonds between ¹⁹⁵Pt and ¹⁹F is observed by both ¹⁹⁵Pt{ ¹H} and $^{19}F\{^{1}H\}$ NMR spectroscopy with $^{6}J_{PtF} = 11.6$ Hz. Furthermore, ³¹P-¹⁹F interactions with both PEt₃ ligands $(trans^{-7}J_{PF} = 3.5 \text{ Hz and } cis^{-7}J_{PF} = 0.4 \text{ Hz})$ were observed by ¹⁹F{¹H} NMR spectroscopy. No ³¹P-¹⁹F spin interactions with the analogous nickel and palladium complexes were observed by us due to a relatively large line width in the ¹⁹F{ ¹H} and ³¹P{ ¹H} NMR spectra. For example, the singlet resonance of the aryl-F moiety of the nickel complex in acetone has a half line width, $\omega_{1/2}$, of \sim 6 Hz in the range 253-298 K. Measurements at lower temperatures were hampered due to solubility problems.

Colorless crystals of complexes **2** and **3** were obtained upon slow evaporation of THF-pentane solutions under a nitrogen atmosphere at room temperature. The X-ray analyses unambiguously confirm the spectroscopically observed η^2 -coordination of the metal center to the carbon-carbon double bonds of ligands **6** and **7** (Figure 2). The π -backdonation from the electron-rich Pt center to the π^* antibonding orbitals of the carbon-carbon double bond results in bond lengthening (i.e., C(7)—C(8) = 1.472(6) for **2** and 1.447(7) Å for **3**). For comparison, the length of the carbon-carbon double bond of *trans*-1,2-bis(4-pyridyl)ethylene is 1.333 Å.⁵⁴ Complexes **2** and **3** exhibit a nearly planar geometry around the metal center, which is in a plane containing a C=C moiety, and the

⁽⁵¹⁾ Zenkina, O. V.; Karton, A.; Freeman, D.; Shimon, L. J. W.; Martin, J. M. L.; van der Boom, M. E. *Inorg. Chem.* 2008, 47, 5114.

⁽⁵²⁾ Zenkina, O. V.; Konstantinovski, L.; Freeman, D.; Shimon, L. J. W.; van der Boom, M. E. *Inorg. Chem.* 2008, 47, 3815.

⁽⁵³⁾ Still, B. M.; Kumar, P. G. A.; Aldrich-Wright, J. R.; Price, W. S. Chem. Soc. Rev. 2007, 36, 665.

⁽⁵⁴⁾ Asaro, F.; Lenarda, M.; Pellizer, G.; Storaro, L. Spectrochim. Acta Part A 2000, 56A, 2167.

⁽⁵⁵⁾ Lenarda, M.; Ganzerla, R.; Lisini, A.; Graziani, M.; Boschi, T. Transition Met. Chem. 1981, 6, 199.

⁽⁵⁶⁾ Terheijden, J.; van Koten, G.; Muller, F.; Grove, D. M.; Vrieze, K.; Nielsen, E.; Stam, C. H. J. Organomet. Chem. 1986, 315, 401.

⁽⁵⁷⁾ Batema, G. D.; Lutz, M.; Spek, A. L.; van Walree, C. A.; de Mello Donegá, C.; Meijerink, A.; Havenith, R. W. A.; Perez-Moreno, J.; Clays, K.; Büchel, M.; van Dijken, A.; Bryce, D. L.; van Klink, G. P. M.; van Koten, G. Organometallics 2008, 27, 1690.

⁽⁵⁸⁾ Batema, G. D.; van de Westelaken, K. T. L.; Guerra, J.; Lutz, M.; Spek, A. L.; van Walree, C. A.; de Mello Donegá, C.; Meijerink, A.; van Klink, G. P. M.; van Koten, G. Eur. J. Inorg. Chem. 2007, 1422.

⁽⁵⁹⁾ Rummey, J. M.; Boyce, M. C. J. Chem. Educ. 2004, 81, 762.

⁽⁶⁰⁾ Patel, B. P.; Crabtree, R. H. J. Am. Chem. Soc. 1996, 118, 13105.

⁽⁶¹⁾ Peris, E.; Lee, J. C.; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1994, 2573.

⁽⁶²⁾ Mallory, F. B.; Luzik, E. D.; Mallory, C. W.; Carroll, P. J. J. Org. Chem. 1992, 57, 366.

⁽⁶³⁾ Barchi, J. J., Jr.; Jeong, L. S.; Siddiqui, M. A.; Marquez, V. E. J. Biochem. Biophys. Methods 1997, 34, 11.

Figure 3. Experimental (upper) and simulated (lower) ³¹P{¹H}, ¹⁹F{¹H}, and ¹⁹⁵Pt{¹H}, NMR spectra of complex 3 in acetone-d₆ showing the AMY spin system flanked with AMXY spin system (A, M = 31 P, Y = 19 F, and X = 195 Pt). The simulated spectra were obtained with gNMR (version 5.0).

two PEt₃ ligands with angles P(2)—Pt(1)—P(3) = $105.76(6)^{\circ}$ (2) and $102.78(5)^{\circ}$ (3), and C(7)—Pt(1)— $C(8) = 40.47(17)^{\circ}$ (2) and 40.00(19)° (3). These features are characteristic of Pt(0)-olefin complexes. 47,64,65 There is no common plane between the two aromatic rings. The arene

the arene carbon-carbon bond lengths of free ligand 6 are in the range of 1.324-1.391 Å.66 The pyridyl and phenyl groups are twisted with respect to each other with angles of 28.61° (2) and 35.61° (3). Importantly, the intramolecular Pt···F distances, 7.08-7.66 Å (2) and 6.87 Å

carbon-carbon bond lengths are in the expected range of

1.332-1.412 Å (**2**) and 1.337-1.410 Å (**3**). For example,

⁽⁶⁴⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: New York, 1987.

⁽⁶⁵⁾ Astruc, D. Organometallic Chemistry and Catalysis; Springer: New York, 2007.

⁽⁶⁶⁾ Annoni, E.; Pizzotti, M.; Ugo, R.; Quici, S.; Morotti, R.; Casati, N.; Macchi, P. Inorg. Chim. Acta 2006, 359, 3029.

Figure 4. Calculated HOMO (left) and LUMO (right) of complexes 3 (top) and 4 (bottom) in benzene. Atomic color scheme: F - light blue, P - orange, Pt - teal, C - gray, H - white, N - dark blue.

(3), and intermolecular Pt···F distances, 5.79–7.31 Å (2) and 6.11 Å (3), are much larger than the sum of the van der Waals radii of F (1.47 Å) and Pt (1.75 Å).²³ Apparently, these distances are too large to permit any through-space coupling.

Complexes 3 and 4 were examined computationally using density functional theory (DFT) at the PBE0/SDD level of theory (see Experimental Section for full details). The calculated structure of 3 is in reasonable agreement with the obtained experimental X-ray crystallography structure (see Supporting information, Table S1). For example, the calculated C=C bond distance of 1.468 Å is close to the experimentally observed value of 1.447 Å. The Pt-C distances of 2.119 and 2.126 Å are similar to the values, 2.114 and 2.118 Å, measured by X-ray. Likewise, the 6.898 Å distance between the Pt and F atoms is very close to the distance, 6.877 Å, in the crystal, especially noting how far apart the two centers are. The HOMO and LUMO of complexes 3 and 4 in benzene as determined by DFT are presented in Figure 4. We noted the conjugation between the platinum, phosphorus, and fluorine centers, which is essential for through-bond spin coupling.^{8–12}

If one compares the experimental NMR spectra of complexes **3** and **4** (see Supporting Information, Table S1), there are two major differences. First, the long-range $^6J_{\text{PtF}}$ coupling increases nearly 4-fold (11.6 versus 40.0 Hz). Second, in complex **4** the two olefinic carbons are substantially different. In both complexes, the bond lengths of the central C=C unit and of the fluorophenyl group are similar. However, upon methylation, the pyridinium ring acquires an alternating C-C, C=C, and C-N structure. The ^1H NMR spectra show a shift of ~ 1 ppm to δ 7.58 ppm for the ortho protons of the pyridinium group. Likewise, significant shifts

are observed by ¹³C{¹H} NMR spectroscopy in the aromatic region. Furthermore, the exocyclic bond is considerably shorter (1.433 Å in 4 compared to 1.478 Å in 3). This, in part, explains why the two olefinic carbons become different in the NMR spectra. As observed both in the X-ray and in the DFT calculations, quarternization of the pyridine moiety diminishes the size of the conjugated system. This in turn increases the conjugation in complex 4 between the platinum and fluorine centers and, thereby, increases the coupling constant between them. The relatively simple conjugation model presented here offers some insight in the long-range couplings. However, coupling constants depend on many variables.⁵

Summary and Conclusions

Four new platinum complexes (1–4) have been identified that exhibit unusually large long-range $^{195}\text{Pt}-^{19}\text{F}$ and $^{31}\text{P}-^{19}\text{F}$ spin—spin interactions in solution (Table 1). These heteronuclear interactions are independent of temperature, solvent, and concentration, and this is indicative of through-bond spin—spin coupling. The X-ray-derived molecular structures of complexes 2 and 3 confirm the through-bond coupling as the large intra- and intermolecular distances (>5.7 Å) between the ^{19}F and ^{195}Pt or ^{31}P nuclei rule out through-space interactions. The spin—spin couplings are readily observable regardless of the long internuclear distances (>0.9 nm) between the metal center and the ligand. Apparently, the π -conjugated system of the stilbene (5) and stilbazole (6–8) ligands provides optimal conditions for spin—spin coupling between the NMR active nuclei, which is in agreement with

experimental²⁰ and theoretical studies.^{5,17,67} Long-range ${}^6J_{\rm FF}$ coupling in perfluorostyrenes was observed back in the 1960s. 68 Apparently, the interaction between the nuclei is hardly affected by the arylBr (1) or the pyridine (2, 3) moieties. However, quaternization of the pyridine group of complex 3 resulted in a significant enhancement of the spin coupling between the platinum and fluorine atoms over six bonds by about half an order of magnitude (${}^{6}J_{PtF} = 11.6, 3$ vs ${}^{6}J_{\text{PtF}} = 40.1$ Hz, 4). The very good correlation between the simulated and experimental multinuclear NMR spectra of complexes 1-4 provides strong support for the presence of the five-spin AMY₃ (1, 2) and three-spin AMY (3, 4) systems flanked by the six-spin AMXY₃ (1, 2) and fourspin AMXY (3, 4) systems, respectively. 69 The straightfor-

ward preparation of these well-defined coordination complexes and the versatile molecular structure of stilbene, stilbazole, and related ligands may make these systems ideal for applications involving heteronuclear communication.

Acknowledgment. This research was supported by the Helen and Martin Kimmel Center for Molecular Design, the German-Israel Foundation (GIF), and the G. M. J. Schmidt Minerva Center.

Supporting Information Available: The Figure S1–S4, Table S1, crystallographic data (CIF) for complexes 2 and 3, computed (DFT) Cartesian coordinates of complexes 3 and 4, and a discussion on the complex coupling in the olefinic region of the ¹³C{¹H} NMR spectra of complex 2. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801940H

⁽⁶⁷⁾ Barfield, M. J. Chem. Phys. 1968, 48, 4463.

⁽⁶⁸⁾ Callander, D. D.; Coe, P. L.; Matough, M. F. S.; Mooney, E. F.; Uff, A. J.; Winson, P. H. Chem. Commun. 1966, 22, 820.

⁽⁶⁹⁾ For an example of a heteronuclear spin system supported by simulation of NMR spectra, see: Fryzuk, M. D.; Haddad, T. S. J. Am. Chem. Soc. 1988, 110, 8263.