Estatística Multivariada

Slides de apoio às aulas

Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2018/19

Apresentação da Unidade Curricular

Apresentação da Unidade Curricular

 Objectivo Esta unidade curricular aborda os principais métodos estatísticos de análise de dados multivariados. Em particular, serão abordadas as técnicas de inferência para valores médios multivariados e matrizes de covariância e modelos lineares em populações Gaussianas. Serão também focados métodos de redução da dimensionalidade, de discriminação e classificação de dados (clustering).

Programa:

- Breves revisões (álgebra linear, variáveis e vetores aleatórios e inferência estatística)
- Introdução à estatística multivariada
- 3 Distribuição normal multivariada e distribuição de Whishart
- 4 Inferência sobre médias multivariadas
 - Inferência sobre um vetor de médias
 - 2 Comparação de dois vetores de médias
 - 6 Comparação de $k (k \ge 2)$ vetores de médias
- Inferência sobre matrizes de covariâncias
- Análise da estrutura de covariância
 - 1 Análise em componentes principais
 - Análise em componentes principals
 Análise de correlação canónica
- Análise classificatória e de clustering
 - Análise discriminante
 - Análise de clusters

Método de ensino e material de apoio

- Método de ensino: As aulas de EM assentam numa exposição teórico-prática, com recurso à resolução prática de exercícios (papel-e-lápis) e análise de dados em ambiente R. Softwares a instalar:
 - R (download a partir de https://cran.r-project.org/bin/windows/base/)
 - RStudio (download a partir de https://www.rstudio.com/products/rstudio/download/)
 - MikteX (download a partir de https://miktex.org/download)
 - Versão Java 64 bits
- Material de apoio:
 - Slides de apoio às aulas
 - Texto de apoio (Professor Filipe Marques)
 - Caderno de exercícios (Professor Filipe Marques)

Bibliografia

Base:

 Johnson, R. and Wichern, D. W. (2007), Applied Multivariate Statistical Analysis, 6th Edition, Prentice Hall, New Jersey

Complementar:

- Flury, B. (1997), A First Course in Multivariate Statistics, Springer. New York
- Morrison, D. F. (2004), Multivariate Statistical Methods, 4th Edition, Duxbury Press
- Rencher, A. C. (1998), Multivariate Statistical Inference and Applications, John Wiley & Sons
- Rencher, A. C. and Christensen, W. F. (2012). Methods of Multivariate Analysis, Third Edition, John Wiley & Sons

Avançada:

- Anderson, T. W. (2003), An Introduction to Multivariate Statistical Analysis, 3rd ed., J. Wiley & Sons, New York
- Muirhead, R. J. (1982), Aspects of multivariate statistical theory, Wiley, New York
- Kshirsagar, A. M. (1972). Multivariate Analysis, Dekker, New York

Aplicações em R:

- Everitt et al (2011). An Introduction to Applied Multivariate Analysis with R. Springer
- Zelterman, D. (2015). Applied Multivariate Statistics with R. Springer

Regina Bispo Estatística Multivariada 2018/19 5 / 111

Avaliação

• Frequência:

- Em todas as aulas teórico-práticas serão assinaladas as presenças dos alunos. Os alunos que queiram justificar as suas faltas devem entregar o respetivo comprovativo de justificação no prazo de 5 dias úteis, a contar da data em que ocorreram essas mesmas faltas.
- Só serão admitidos a avaliação na disciplina alunos que tenham um total de presenças superior ou igual a 2/3 das aulas leccionadas durante o semestre
- Esta regra é válida para todos os alunos, com exceção de alunos com o estatuto de trabalhador/estudante, ou qualquer outro reconhecido pelas regras de avaliação da faculdade.

Avaliação contínua:

- A avaliação contínua será feita através de três elementos de avaliação:
 - 1º avaliação Teste a realizar no período de aulas com uma ponderação de 40%. O teste terá a duração de 2h. O teste é classificado numa escala de 0 a 20 valores.
 - 2º avaliação Teste a realizar no período de aulas com uma ponderação de 40%. O teste terá a duração de 2h. O teste é classificado numa escala de 0 a 20 valores.
 - º 3º avaliação Trabalho individual a realizar com o apoio do software R (é valorizado o uso de RMarkdown). O trabalho terá uma ponderação de 20% e será entregue na última aula do semestre. O trabalho é classificado numa escala de 0 a 20 valores.
- O aluno obtém aprovação na disciplina em época normal (avaliação contínua) se as notas dos testes forem superior ou iguais a 7.0 valores e se a média ponderada dos três elementos de avaliação for superior ou igual a 9.5 valores.
- Caso um aluno não compareça a uma das avaliações, esse elemento de avaliação terá nota 0.0 para a classificação final.

Regina Bispo Estatística Multivariada 2018/19 6 / 111

Recurso e melhoria de nota:

- A avaliação da época de recurso (recurso ou melhoria) é feita por exame, numa única data dentro da época de recurso prevista no calendário letivo.
- O exame é classificado numa escala de 0 a 20 valores. O aluno obtém aprovação à cadeira se conseguir nota superior ou igual a 9.5 valores no exame.
- Os alunos que pretenderem realizar o exame de recurso, com vista à melhoria de nota, devem, antecipadamente, requerer essa melhoria junto dos serviços académicos.

Outras notas importantes:

- A inscrição em qualquer prova de avaliação escrita é obrigatória devendo ser feita online através da página no CLIP da disciplina. As inscrições para as diferentes provas são independentes.
- As inscrições para cada teste ou exame deverão ser feitas dentro do prazo assinalado no CLIP.
- É obrigatório que os alunos se façam acompanhar do seu bilhete de identidade e de um caderno de exame para a realização dos testes ou exames.
- As tabelas estatísticas ou outro tipo de material de apoio serão fornecidos pelos professores durante as provas.

Aula 1

Revisões - Algebra linear

Vetores

• Um vetor $\mathbf{x}_{n\times 1}$, ou simplesmente \mathbf{x} , de n elementos $x_1,...,x_n$ (conjunto de números - ou variáveis - organizados em linhas) representa-se por

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Geometricamente, um vetor com n elementos identifica um ponto num espaço de dimensão n. Os elementos do vetor são as coordenadas do ponto.
- $\mathbf{x}' = (x_1, ..., x_n)$ representa o vetor transposto de \mathbf{x}

Exemplo

$$\mathbf{x} = \begin{bmatrix} 4 \\ 5 \\ -3 \end{bmatrix}$$

$$\mathbf{x}'=(4,5,-3)$$

Código R:

Operações básicas com vetores

• Soma: $z = x + y \Leftrightarrow z_i = x_i + y_i \ (i = 1, ..., n)$

Exemplo

$$\begin{bmatrix} 4 \\ 5 \\ -3 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ -2 \end{bmatrix}$$

Código R:

> matrix(c(4,5,-3),3,1)+matrix(c(1,3,1),3,1)

[,1]

[1,] 5 [2,] 8

[3,] 8

• Produto por um escalar: $c \mathbf{x} = c \times x_i = x_i \times c \ (i = 1, ..., n)$

Exemplo

$$2\begin{bmatrix} 4\\5\\-3 \end{bmatrix} = \begin{bmatrix} 8\\10\\-6 \end{bmatrix}$$

Operações básicas com vetores

Código R:

• Produto interno: $\mathbf{x}'_{1\times n}\mathbf{y}_{n\times 1} = \sum_{i=1}^{n} x_i y_i$

Exemplo

$$\mathbf{x} = \begin{bmatrix} 4 \\ 5 \\ -3 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$x'y = 19$$

Código R:

```
> x<-matrix(c(4,5,-3),3,1)
```

[1,] 19

Comprimento de um vetor

- Os vetores têm propriedades geométricas de comprimento e direção
- O comprimento (ou *norma*) de um vetor é dado por: $\|\mathbf{x}\| = \sqrt{\mathbf{x}'\mathbf{x}} = \sqrt{\sum_{i=1}^n x_i^2}$

Exemplo

$$x' = (4, 5, -3)$$

$$\|\mathbf{x}\| = 7.071$$

- ullet Se ${f x}'{f x}=1$ (norma igual a 1) então o vetor diz-se *normalizado*
- Todo o vetor pode ser normalizado dividindo-o pelo seu comprimento

$$\mathbf{e} = \frac{\mathbf{x}}{\sqrt{\mathbf{x}'\mathbf{x}}}$$

Exemplo

$$\begin{array}{l} e_1 = \\ \frac{4}{\sqrt{4^2 + 5^2 + (-3)^2}} = \\ 0.566 \end{array}$$

$$\begin{array}{l} e_2 = \\ \frac{5}{\sqrt{4^2 + 5^2 + (-3)^2}} = \\ 0.707 \end{array}$$

$$\begin{array}{c} e_3 = \\ \frac{-3}{\sqrt{4^2 + 5^2 + (-3)^2}} = \\ -0.424 \end{array}$$

Código R:

- > x < -c(4,5,-3)
- > round(x/sqrt(sum(x^2)),3)
- [1] 0.566 0.707 -0.424

Direção de um vetor

• O ângulo θ formado por dois vetores x e y ambos de dimensão n é definido por

$$\cos(\theta) = \frac{\mathsf{x}'\mathsf{y}}{\sqrt{\mathsf{x}'\mathsf{x}}\sqrt{\mathsf{y}'\mathsf{y}}}$$

Exemplo

$$\mathbf{x}' = (-1, 5, 2, -2)$$
 $\mathbf{y}' = (4, -3, 0, 1)$ $\cos(\theta) = -0.706 \Leftrightarrow \theta = 135^{\circ}$

$$cos(\theta) = -0.706 \Leftrightarrow \theta = 135^{\circ}$$

Código R:

```
> x1 < -c(-1,5,2,-2)
> y1 < -c(4, -3, 0, 1)
```

 \Rightarrow theta<-round(sum(x1*y1)/(sqrt(sum(x1^2))*sqrt(sum(y1^2))),3)

> theta

```
[1] -0.706
```

> rad2deg <- function(rad) {(rad * 180) / (pi)}

> rad2deg(acos(theta))

[1] 134.9104

Combinação linear de vetores

• \mathbf{x} e \mathbf{y} dizem-se *ortogonais* (geometricamente perpendiculares) se $\mathbf{x'y} = x_1y_1 + ... + x_ny_n = 0$

Exemplo

$$\mathbf{x}' = (2, 5, -6)$$
 $\mathbf{y}' = (1, 2, 2)$ $\mathbf{x}'\mathbf{y} = 0$

- O vetor $c_1x_1 + ... + c_nx_n$ é dito uma combinação linear dos vetores $x_1, ..., x_n$
- x₁,..., x_n, são linearmente dependentes se existirem constantes (c₁,..., c_n)
 não todas nulas, tal que c₁x₁ + ... + c_nx_n = 0, ou seja, um vetor pode ser escrito como combinação linear dos restantes (serão linearmente independentes no caso contrário)

Exemplo

$$\mathbf{x}_1' = (1, 2, 1)$$
 $\mathbf{x}_2' = (1, 0, -1)$ $\mathbf{x}_3' = (1, -2, 1)$

 $c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3=0\Leftrightarrow \mathbf{c}'=(0,0,0)\Rightarrow \text{vetores linearmente independentes}.$

Código R:

- > A<-matrix(c(1,2,1,1,0,-1,1,-2,1),3,3)
- > solve(A,c(0,0,0))

[1] 0 0 0

• Uma matriz $\mathbf{A}_{n \times p}$, ou simplesmente \mathbf{A} (conjunto de números - ou variáveis - organizados numa tabela em linhas e colunas) representa-se por

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1p} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{np} \end{bmatrix} \equiv [a_{ij}] (i = 1, ..., n; j = 1, ..., p)$$

- Uma matriz com n = p diz-se quadrada; se $n \neq p$ a matriz diz-se retangular
- A matriz transposta de $\mathbf{A}_{n \times p}$, representa-se por $\mathbf{A}'_{p \times n}$ e obtem-se trocando as linhas pelas colunas da matriz \mathbf{A}

$$\mathbf{A}' = [a_{ji}] (j = 1, ..., p; i = 1, ..., n)$$

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 5 & 1 \\ 4 & 8 & -2 \end{bmatrix}$$

$$\mathbf{A}' = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 5 & 8 \\ 1 & 1 & -2 \end{bmatrix}$$

```
Código R:
```

```
> A < -matrix(c(3,-2,4,-2,5,8,1,1,-2),3,3)
> A
    [,1] [,2] [,3]
[1.] 3 -2 1
[2,] -2 5 1
[3,] 4 8 -2
> t(A)
    [,1] [,2] [,3]
[1,] 3 -2 4
[2,] -2 5 8
[3,] 1 1 -2
> B < -matrix(c(1,4,2,5,2,2,-5,0,1),3,3)
> B
    [,1] [,2] [,3]
[1,]
    1 5 -5
[2,] 4 2 0
[3,] 2 2 1
> t(B)
    [,1] [,2] [,3]
[1.]
    5 2 2
[2,]
[3,]
    -5 0 1
```

Soma

$$\mathbf{C}_{n\times p}=\mathbf{A}_{n\times p}+\mathbf{B}_{n\times p}\Leftrightarrow c_{ij}=a_{ij}+b_{ij}\ (i=1,...,n;\ j=1,...,p)$$

Exemplo

$$\begin{bmatrix} 3 & -2 & 1 \\ -2 & 5 & 1 \\ 4 & 8 & -2 \end{bmatrix} + \begin{bmatrix} 1 & 5 & -5 \\ 4 & 2 & 0 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 3 & -4 \\ 2 & 7 & 1 \\ 6 & 10 & -1 \end{bmatrix}$$

Código R:

Regina Bispo

• Produto por um escalar:

$$c \mathbf{A}_{n \times p} = \mathbf{A}_{n \times p} c = \mathbf{B}_{n \times p} = \{b_{ij}\} \Leftrightarrow b_{ij} = c \times a_{ij} = a_{ij} \times c \ (i = 1, ..., n; j = 1, ..., p)$$

Exemplo

$$2\begin{bmatrix} 3 & -2 & 1 \\ -2 & 5 & 1 \\ 4 & 8 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -4 & 2 \\ -4 & 10 & 2 \\ 8 & 16 & -4 \end{bmatrix}$$

Código R:

> A

> 2*A

Regina Bispo

Produto matricial:

$$\mathsf{AB}_{n\times m} = \mathsf{A}_{n\times p} \mathsf{B}_{p\times m} \Leftrightarrow c_{ij} = (\mathsf{a}^{\mathsf{linha}}_i)' \times (b^{\mathsf{coluna}}_j) = \sum_{k=1}^p \mathsf{a}_{ik} b_{kj} \, (i=1,...,n; \, j=1,...,m)$$

Exemplo

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 6 & 5 \\ 7 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 6 \\ 3 & 8 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} 13 & 38 \\ 31 & 92 \\ 20 & 64 \\ 13 & 38 \end{bmatrix}$$

Código R:

```
> A<-matrix(c(2,4,7,1,1,6,2,3,3,5,3,2),4,3)
```

- > B<-matrix(c(1,2,3,4,6,8),3,2)
- > A%*%B

2
38
92

[3,] 20 64

[4.] 20 64

Regina Bispo Estatística Multivariada

- O produto matricial n\u00e3o \u00e9 comutativo
- ullet Se f x é um vetor p imes 1, f Ax é uma combinação linear dos elementos coluna da matriz f A
- ullet Se x é um vetor n imes 1, x' $oldsymbol{\mathsf{A}}$ é uma combinação linear dos elementos linha da matriz $oldsymbol{\mathsf{A}}$

Código R:

[1.]

7 -9 14

```
> A < -matrix(c(2,4,7,1,1,6,2,3,3),3,3)
> A
     [,1] [,2] [,3]
[1,] 2 1 2
[2,] 4 1 3
[3,] 7 6 3
> t(x)
     [,1] [,2] [,3]
[1,] 4 5 -3
> A%*%x
     Γ.17
[1,] 7
[2,] 12
[3,] 49
> t(x)%*%A
     [,1] [,2] [,3]
```

• Matriz triangular:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \qquad \qquad \mathbf{A} = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

• Matriz diagonal:

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

Matriz identidade (caso particular):

$$\textbf{I} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

• **Determinante** de uma matriz $\mathbf{A}_{p \times p}$ é o escalar

$$|\mathbf{A}|=a_{11}$$
 se $p=1$ $|\mathbf{A}|=\sum_{j=1}^p a_{1j}|\mathbf{A}_{1j}|(-1)^{1+j}$ se $p>1$

sendo \mathbf{A}_{1j} a matriz $\mathbf{A}_{(p-1)\times(p-1)}$, resultante de eliminar a primeira linha e j-ésima coluna de A

Matriz 2 × 2

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22}(-1)^2 + a_{12}a_{21}(-1)^3 = a_{11}a_{22} - a_{12}a_{21}$$

Matriz 3 × 3

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} (-1)^2 + a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} (-1)^3 + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} (-1)^4$$

Regina Bispo 2018/19 Estatística Multivariada 23 / 111

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 2 & 6 \end{bmatrix}$$

$$|{\bf A}| = 10$$

$$\mathbf{B} = \begin{bmatrix} 3 & 1 & 6 \\ 7 & 4 & 5 \\ 2 & -7 & 1 \end{bmatrix}$$

$$|B| = -222$$

Código R:

- > A<-matrix(c(3,2,4,6),2,2)
- > det(A)
- [1] 10
- > B<-matrix(c(3,7,2,1,4,-7,6,5,1),3,3)
- > det(B)
- [1] -222

• Matriz inversa: ${\bf A}^{-1}$ é matriz inversa de ${\bf A}$ se ${\bf A}^{-1}{\bf A}={\bf A}{\bf A}^{-1}={\bf I}$. Em particular, a inversa de uma matriz 2×2 é dada por

$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 2 & 6 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 0.6 & -0.4 \\ -0.2 & 0.3 \end{bmatrix}$$

Código R:

> solve(A)

- Matriz ortogonal: $\mathbf{A}_{p \times p}$ é matriz ortogonal se $\mathbf{A}\mathbf{A}' = \mathbf{A}'\mathbf{A} = \mathbf{I}$, ou seja, sse $\mathbf{A}' = \mathbf{A}^{-1}$
- Matriz simétrica: $\mathbf{A}' = \mathbf{A} \Leftrightarrow a_{ij} = a_{ji} \ (i = 1, ..., n; j = 1, ..., p)$

• Traço de uma matriz (quadrada)

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 2 & 4 \end{bmatrix}$$

$$tr(\mathbf{A}) = 7$$

Código R:

- > library(psych)
- > A<-matrix(c(3,2,-2,4),2,2)
- > tr(A)

[1] 7

Valores e vetores próprios

• Seja A uma matriz quadrada $p \times p$ e I a matriz identidade com a mesma dimensão. Os escalares $\ell_1, ..., \ell_p$ que satisfazem a equação (*característica*)

$$|\mathbf{A} - \ell \, \mathbf{I}| = 0$$

designam-se por valores próprios da matriz A (raízes características).

• O vetor não-nulo $\mathbf{x}_{p\times 1}$ $(\mathbf{x}_{p\times 1}\neq \mathbf{0}_{p\times 1})$ tal que

$$Ax = \ell x$$

é chamado o **vetor próprio** da matriz ${f A}$ associado ao valor próprio ℓ

• Em regra, toma-se o vetor normalizado, $\mathbf{e}_{p \times 1}$, de comprimento unitário, como o vetor próprio correspondente ao valor próprio ℓ , i.e.,

$$e_i = \frac{x_i}{\sqrt{\mathbf{x}'\mathbf{x}}} (i = 1, ..., p)$$

Note-se que se \mathbf{e} é vetor próprio então $-\mathbf{e}$ também o é (as soluções definem direções).

Regina Bispo Estatística Multivariada 2018/19 27 / 111

Valores e vetores próprios

Exemplo

Considere-se a matriz

$$S = \begin{bmatrix} 2.459 & 1.019 \\ 1.019 & 2.472 \end{bmatrix}$$

Os valores próprios de S são os valores ℓ tal que $|S - \ell I| = 0$:

$$|S - \ell \mathbf{I}| = 0 \Leftrightarrow \begin{vmatrix} 2.459 - \ell & 1.019 \\ 1.019 & 2.472 - \ell \end{vmatrix} = 0 \Leftrightarrow$$

$$(2.459-\ell)(2.472-\ell)-1.019^2=0 \Rightarrow \ell_1=3.485 \wedge \ell_2=1.446$$

Os vetores próprios da matriz S são determinados tal que Sx = ℓ x, sujeito à restrição $\|$ x $\|$ = 1. Para ℓ_1 = 3.484, tem-se

$$\begin{bmatrix} 2.459 & 1.019 \\ 1.019 & 2.472 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3.484 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

com

$$x_1^2 + x_2^2 = 1$$

Resolvendo em ordem a x_1 e x_2 , obtém-se o <u>vetor próprio</u>, associado ao valor próprio ℓ_1 , de elementos $x_1=0.705$ e $x_2=0.709$.

Procedendo da mesma forma para ℓ_2 , obtém-se o segundo vetor próprio de elementos, $x_1 = -0.709$ e $x_2 = 0.705$.

Regina Bispo Estatística Multivariada 2018/19 28 / 111

Valores e vetores próprios

Código R:

```
> S<-matrix(c(2.459,1.019,1.019,2.472),2,2) > S

[,1] [,2]
[1,] 2.459 1.019
[2,] 1.019 2.472
> round(eigen(S)$values,3)
[1] 3.485 1.446
> round(eigen(S)$vectors,3)

[,1] [,2]
[1,] 0.705 -0.709
[2.] 0.709 0.705
```

- Se A_{p×p} for uma matriz simétrica então os seus valores/vetores próprios possuem as seguinte propriedades:
 - Os valores/vetores próprios são sempre reais
 - Vectores próprios associados a valores próprios diferentes são sempre ortogonais

•
$$tr(\mathbf{A}) = \sum_{i=1}^{n} \ell_i e |\mathbf{A}| = \prod_{i=1}^{n} \ell_i$$

Regina Bispo Estatística Multivariada 2018/19 29 / 111

Decomposição espetral

• Uma matriz $\mathbf{A}_{p \times p}$ simétrica pode ser representada usando os seus valores e vetores próprios (ℓ_i, \mathbf{e}_i) através da expressão

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}' = \sum_{j=1}^p \ell_j \mathbf{e}_j \mathbf{e}_j'$$

onde ℓ_j (j=1,...,p) são os valores próprios de ${\bf A},\,{\bf A}=diag(\ell_1,...,\ell_p)$ e ${\bf e}_j$ (j=1,...,p) os vetores próprios normalizados associados aos valores próprios ℓ_j . ${\bf P}$ é uma matriz ortogonal cujas colunas são os vetores próprios normalizados.

Exemplo

Considere-se a matriz simétrica

$$\mathbf{A} = \begin{bmatrix} 2.2 & 0.4 \\ 0.4 & 2.8 \end{bmatrix}$$

Os valores próprios de A são os valores $\ell_1=3$ e $\ell_2=2$

Os vetores próprios normalizados da matriz **A** são $\mathbf{e}_1'=$ (0.447, 0.894) e $\mathbf{e}_2'=$ (-0.894, 0.447), logo

$$\mathbf{A} = \begin{bmatrix} 2.2 & 0.4 \\ 0.4 & 2.8 \end{bmatrix} = 3 \times \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix} \begin{bmatrix} 0.447 & 0.894 \end{bmatrix} + 2 \times \begin{bmatrix} -0.894 \\ 0.447 \end{bmatrix} \begin{bmatrix} -.8940 & 0.447 \end{bmatrix}$$

Regina Bispo Estatística Multivariada 2018/19 30 / 111

Código R:

```
> A<-matrix(c(2.2,0.4,0.4,2.8),2,2)
> A
     [,1] [,2]
[1.] 2.2 0.4
[2,] 0.4 2.8
> round(eigen(A)$values,3)
[1] 3 2
> round(eigen(A)$vectors,3)
      [,1] [,2]
[1,] 0.447 -0.894
[2,] 0.894 0.447
> round(eigen(A)$values[1]*eigen(A)$vectors[,1]%*%
   t(eigen(A)$vectors[,1])+
   eigen(A)$values[2]*eigen(A)$vectors[,2]%*%
   t(eigen(A)$vectors[,2]),1)
     [,1] [,2]
[1.] 2.2 0.4
[2,] 0.4 2.8
```

31 / 111

Matriz definida positiva

- Sejam $\mathbf{A}_{p \times p}$ uma matriz simétrica e \mathbf{x} de dimensão p. Então $\mathbf{x}' \mathbf{A} \mathbf{x}$ designa-se por forma quadrática de \mathbf{A}
- ullet A matriz simétrica ullet é designada por *definida não negativa* se para todo o vetor ullet (ullet ullet ullet

$$x'Ax \ge 0$$

Uma matriz simétrica é definida não negativa sse os valores próprios são todos não negativos.

ullet A matriz simétrica ullet é designada por *definida positiva* se para todo o vetor ullet (ullet \neq ullet)

$$\mathbf{x}'\mathbf{A}\mathbf{x} > 0$$

Uma matriz simétrica é definida positiva sse os valores próprios são todos positivos.

Regina Bispo Estatística Multivariada 2018/19 32 / 111

Matriz inversa (por decomposição espetral)

• A decomposição espetral da matriz $\mathbf{A}_{p \times p}$ permite expressar a matriz inversa em termos dos valores e vetores próprios

$$\mathbf{A}^{-1} = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}' = \sum_{j=1}^{p} \frac{1}{\ell_j} \mathbf{e}_j \mathbf{e}'_j$$

onde $\mathbf{\Lambda}^{-1} = diag(1/\ell_1,...,1/\ell_p)$

Exemplo

$$\mathbf{A}^{-1} = \frac{1}{3} \times \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix} \begin{bmatrix} 0.447 & 0.894 \end{bmatrix} + \frac{1}{2} \times \begin{bmatrix} -0.894 \\ 0.447 \end{bmatrix} \begin{bmatrix} -.894 & 0.447 \end{bmatrix}$$

Código R:

- > round((1/eigen(A)\$values[1])*eigen(A)\$vectors[,1]%*%
 t(eigen(A)\$vectors[,1])+
 (1/eigen(A)\$values[2])*eigen(A)\$vectors[,2]%*%
 t(eigen(A)\$vectors[,2]),3)
 - [,1] [,2]
- [1,] 0.467 -0.067 [2,] -0.067 0.367

Matriz raiz quadrada (por decomposição espetral)

• Permite também definir a matriz raiz-quadrada

$$\mathbf{A}^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}' = \sum_{j=1}^p \sqrt{\ell_j} \mathbf{e}_j \mathbf{e}_j'$$

onde
$$\mathbf{\Lambda}^{1/2} = diag(\sqrt{\ell_1},...,\sqrt{\ell_p})$$

Exemplo

$$\mathbf{A}^{1/2} = \sqrt{3} \times \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix} \begin{bmatrix} 0.447 & 0.894 \end{bmatrix} + \sqrt{2} \times \begin{bmatrix} -0.894 \\ 0.447 \end{bmatrix} \begin{bmatrix} -.8940 & 0.447 \end{bmatrix}$$

Código R:

```
> round(sqrt(eigen(A)$values[1])*eigen(A)$vectors[,1]%*%
   t(eigen(A)$vectors[,1])+
   sqrt(eigen(A)$values[2])*eigen(A)$vectors[,2]%*%
   t(eigen(A)$vectors[,2]),3)
```

[1,] 1.478 0.127 [2,] 0.127 1.668

Regina Bispo Estatística Multivariada

Revisões - Variáveis e vetores aleatórios

Constantes/valores fixos: Letras minúsculas a itálico Exemplos: a. c. l. x. y. z

Variáveis: Letras minúsculas

Exemplos: x, y, z

- Parâmetros (população): Letras gregas minúsculas
 Exemplos: λ, μ, ρ, σ
- Vetores (de números, variáveis ou parâmetros): Letras minúsculas a negrito Exemplos:

$$a \ (a'=(a_1,...,a_n)), \ c \ (c'=(c_1,...,c_n)), \ \ell \ (\ell'=(\ell_1,...,\ell_n))$$

$$x \ (x'=(x_1,...,x_n)), \ y \ (y'=(y_1,...,y_n)), \ z \ (z'=(z_1,...,z_n))$$

$$x \ (x'=(x_1,...,x_n)), \ y \ (y'=(y_1,...,y_n)), \ z \ (z'=(z_1,...,z_n))$$

$$\lambda \ (\lambda'=(\lambda_1,...,\lambda_n)), \ \mu \ (\mu'=(\mu_1,...,\mu_n))$$
 Caso particular:
$$0 \ (0'=(0,...,0))$$

36 / 111

2018/19

Variáveis aleatórias

- Em muitas situações, a análise dos resultados de uma dada experiência aleatória passa pela descrição numérica dos resultados dessa experiência aleatória.
- Porem, o espaço de resultados Ω não é um conjunto numérico \Rightarrow Descrição dos resultados através de valores assumidos por uma **variável** no decurso de uma experiência aleatória.
- Em resumo, pretende-se passar de Ω para \mathbb{R} (ou mais geralmente para \mathbb{R}^n)
- ullet Designa-se por **váriável aleatória** a função x de Ω para $\mathbb R$

$$x:\Omega
ightarrow \mathbb{R}$$

- A lei de probabilidades ou distribuição de uma v.a. x pode ser descrita através de diversas funções: função de distribuição, função massa de probabilidade e função densidade de probabilidade:
 - Função de distribuição: $F(x)=P(x\leq x)$ $(x\in\mathbb{R};\ 0\leq F(x)\leq 1)$ (sendo F(x) diferenciável)
 - No caso de v.a. discretas, função massa de probabilidade: f(x) = P(x = x) verificando as condições $f(x) \ge 0$, $\forall x \in \sum_{x \in \mathbb{K}} f(x) = 1$.
 - No caso de v.a. contínuas, função densidade de probabilidade: $f(x) = \frac{d}{dx}F(x) \Leftrightarrow F(x) = \int_{-\infty}^x f(t)dt$, verificando as condições $f(x) \geq 0$, $\forall x \in \int_{-\infty}^{+\infty} f(x)dx = 1$.

Regina Bispo Estatística Multivariada 2018/19 37 / 111

Exemplo

Seja p(0 a probabilidade de sucesso de uma certa experiência aleatória e <math>x a v.a. que representa o *número de provas necessárias até à ocorrência do primeiro sucesso*. A variável em causa é discreta sendo a sua distribuição de probabilidade (fmp) definida por

$$f(x) = \begin{cases} 1 & 2 & 3 & \dots \\ p & (1-p)p & (1-p)^2p & \dots \end{cases}$$

$$f(x) = \begin{cases} x & x = 0, 1, 2, \dots \\ p_x = p(1-p)^x & \dots \end{cases}$$

É fácil verificar que

•
$$p(1-p)^x \geq 0, \forall x \in \mathbb{N}_0$$

•
$$\sum_{i=1}^{+\infty} p(1-p)^i = \frac{p}{1-(1-p)} = 1$$

A função de distribuição é dada por

$$F(x) = P(x \le x) = \sum_{i=1}^{x} p(1-p)^{i}$$

Variáveis aleatórias contínuas

Exemplo

Suponhamos que sobre um dado segmento de recta (a,b) se escolhe um ponto ao acaso, i.e., tal que a probabilidade de escolha seja independente da posição. A densidade de probabilidade deve ser então considerada constante, i.e.,

$$f(x) = \begin{cases} c & a < x < b \\ 0 & x \le a \text{ ou } x \ge b \end{cases}$$

Para que f(x) seja fdp deve ser não negativa e verificar

$$\int_{a}^{b} f(x)dx = 1 \Rightarrow c = \frac{1}{b-a}$$

A função de distribuição é dada por

$$F(x) = \begin{cases} a & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

Valor médio e variância

- Dada uma v.a. x chama-se valor médio, valor esperado ou média e representa-se por E(x), μ_x ou μ a quantidade definida por,
 - no caso discreto,

$$\mu = E(x) = \sum_{i=1}^{n} x_i p_i$$

sendo x uma v.a. com distribuição (x_i, p_i) (i = 1, ..., n)

no caso contínuo,

$$\mu = E(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

sendo x uma v.a. com densidade f(x)

• Dada uma v.a. x chama-se variância e representa-se por Var(x), σ_x^2 ou σ^2 a quantidade definida por

$$\sigma^2 = Var(x) = E[(x - \mu)^2] = E(x^2) - \mu^2$$

Distribuição normal

• Uma variável aleatória contínua, x diz-se ter distribuição gaussiana ou normal com valor médio μ e desvio-padrão σ , i.e., $x \frown N(\mu, \sigma)$, se a sua fdp corresponde a

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \ -\infty < x < +\infty, \ -\infty < \mu < +\infty, \ 0 < \sigma < +\infty$$

• Função densidade de probabilidade:

- Curva unimodal, sendo a moda $x = \mu$ (maximizante da fdp)
- ullet Simétrica em relação ao eixo $x=\mu$
- Pontos de inflexão em $x = \mu \pm \sigma$
- Eixo das abcissas como assimptota

Regina Bispo Estatística Multivariada 2018/19 41 / 111

Distribuição normal

• Uma v.a. z diz-se ser uma gaussiana padrão, normal padrão ou normal reduzida, isto é, uma gaussiana de parâmetros $\mu=0$ (centrada em zero) e $\sigma=1$ (com escala unitária), $z \frown N(0,1)$, se a sua fdp for

$$z \cap N(0,1) \Rightarrow f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, -\infty < z < +\infty$$

• Padronização da gaussiana: $x \frown N(\mu, \sigma) \Rightarrow z = \frac{x - \mu}{\sigma} \frown N(0, 1)$

Regina Bispo Estatística Multivariada 2018/19 42 / 111

Tabela da distribuição da normal padrão

- Tabela da função de distribuição da variável normal padrão:
 - ullet Função de distribuição (Função cumulativa) $\longrightarrow \Phi(z) = P(z \leq z)$
 - Inversa da função de distribuição (Função inversa) $\longrightarrow \Phi^{-1}(p) = z_p \, (0 (quantis da guassiana). Genericamente <math>z_p$ representa o quantil de probabilidade p (ou percentil $p \times 100$) da distribuição normal padrão, tal que $P(z < z_p) = p$

• Note-se que porque a curva é simétrica em relação a z=0, $\Phi(-z)=1-\Phi(z)$

Regina Bispo Estatística Multivariada 2018/19 43 / 111

Tabela da distribuição da normal padrão

Exemplo

$$\Phi(1.96) = P(z \le 1.96) = 0.975$$

 $z_{0.975} = \Phi^{-1}(0.975) = 1.96$, denota o quantil de probabilidade 0.975 da normal padrão

Código R:

> round(pnorm(1.96),3)

[1] 0.975

> round(qnorm(0.975),3)

[1] 1.96

Distribuição Normal

- Alguns teoremas relevantes:
 - **1** Seja $x \frown N(\mu, \sigma)$ e $y = a \pm bx$, então $y \sim N(a \pm b\mu, |b|\sigma)$
 - ② Sejam $x_1 \frown N(\mu_1, \sigma_1)$ e $x_2 \frown N(\mu_2, \sigma_2)$ independentes, então

$$(x_1 \pm x_2) \frown N(\mu_1 \pm \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

3 Generalizando $x_i \sim N(\mu_i, \sigma_i)$ (i = 1...n) independentes, então

$$\sum_{i} X_{i} \frown N\left(\sum_{i} \mu_{i}, \sqrt{\sum_{i} \sigma_{i}^{2}}\right)$$

- **4** Sejam $x_i
 ightharpoonup N(\mu, \sigma)$ n v.a, iid, então $S_n = \sum_i x_i
 ightharpoonup N(n\mu, \sigma\sqrt{n})$
- Teorema Limite Central: Sejam $\{x_1,x_2,...,x_n\}$ variáveis aleatórias independentes e identicamente distribuídas com valor médio μ e variância finita σ^2 e $S_n = \sum_{i=1}^n$ então para $n \to \infty$ tem-se

$$S_n \stackrel{a}{\sim} N\left(n\mu, \sigma\sqrt{n}\right)$$

Distribuição Qui-quadrado

• Para n inteiro positivo a v.a. x ($0 \le x < +\infty$) com fdp

$$f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2 - 1} e^{-y/2} & x > 0 \\ 0 & \text{c.c.} \end{cases}$$

com $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$, t > 0, diz-se ter distribuição qui-quadrado com n graus de liberdade, i.e., $x \sim \chi_n^2$

• Função densidade de probabilidade:

Tabela da distribuição Qui-quadrado

- Tabela da função de distribuição da variável $x \sim \chi_n^2$
 - Função de distribuição (Função cumulativa) $\longrightarrow P(x \leq \chi_n^2)$
 - Inversa da função de distribuição (Função inversa) $\longrightarrow \chi^2_{n,p}$ (quantil de probabilidade p da distribuição χ_n^2)

Exemplo

```
Considere-se a v.a. x \sim \chi_{10}^2
P(x < 5) = 0.109
\chi^2_{10,0,90}=15.987, denota o quantil de probabilidade 0.90 da distribuição \chi^2_{10}
```

Código R:

```
> round(pchisq(5,10),3)
```

[1] 0.109

> round(qchisq(0.90,10),3)

[1] 15.987

Distribuição qui-quadrado

• Alguns teoremas relevantes:

1 Sejam $x_i \frown \chi_{(n_i)}$ (i = 1...p) independentes, então

$$\sum_{i=1}^p x_i \frown \chi^2_{(\sum n_i)}$$

- 2 Seja $z \frown N(0,1)$ então $z^2 \frown \chi_1^2$
- **3** Generalizando, $z_i
 ightharpoonup N(0,1)$ (i=1,...,n) então

$$\sum_{i=1}^n z_i^2 \frown \chi_n^2$$

Distribuição t-Student

• Sejam $z \frown N(0,1)$ e $y \frown \chi^2_n$, então

$$x=\frac{z}{\sqrt{y/n}} \frown t_n$$

- Uma variável aleatória x $(-\infty < x < +\infty)$ cuja distribuição é bem modelada por uma distribuição t-Student, representa-se por $x \frown t_n$ onde n é o número de graus de liberdade (g.l.).
- Função densidade de probabilidade:

2018/19

49 / 111

Tabela da distribuição t-Student

- ullet Tabela da função de distribuição da variável $X \frown t_n$
 - ullet Função de distribuição (Função cumulativa) $\longrightarrow P(x \leq t_n)$
 - Inversa da função de distribuição (Função inversa) $\longrightarrow t_{n,p}$ (quantil de probabilidade p da distribuição t_n)

Exemplo

```
Considere-se a v.a. x \frown t_5
```

$$P(x \le 1) = 0.818$$

 $t_{5,0.90}=1.476$, denota o quantil de probabilidade 0.90 da distribuição t_5

Código R:

> round(pt(1,5),3)

[1] 0.818

> round(qt(0.90,5),3)

Γ1] 1.476

Distribuição F-Snedecor

• Uma variável aleatória x ($0 \le x < +\infty$) tem distribuição F-Snedecor com n (numerador) e d (denominador) graus de liberdade, e representa-se por $x \frown F(n,d)$, se a variável aleatória for tal que

$$x = \frac{y/n}{w/d}$$

onde $y \sim \chi_n^2$ e $w \sim \chi_d^2$ são v.a. independentes.

• Função densidade de probabilidade:

51 / 111

Tabela da distribuição F-Snedecor

- ullet Tabela da função de distribuição da variável $x \frown F_{n,d}$
 - ullet Função de distribuição (Função cumulativa) $\longrightarrow P(x \leq F_{(n,d)})$
 - Inversa da função de distribuição (Função inversa) $\longrightarrow F_{(n,d),p}$ (quantil de probabilidade p da distribuição $F_{(n,d)}$)

Exemplo

```
Considere-se a v.a. x \frown F_{(5,8)}
P(x \le 1) = 0.525
```

 $f_{(5,8),0.90}=2.726$, denota o quantil de probabilidade 0.90 da distribuição $F_{(5,8)}$

Código R:

```
> round(pf(1,5,8),3)
```

[1] 0.525

> round(qf(0.90,5,8),3)

[1] 2.726

Amostra aleatória

- $(x_1, x_2, ..., x_n)$ diz-se uma amostra aleatória de dimensão n se as variáveis são mutuamente independentes e têm a mesma função de distribuição F(x) (cada x_i (i=1,...,n) tem a mesma fdp/fmp f(x))
- x₁, x₂, ..., x_n dizem-se variáveis independentes e identicamente distribuídas, abreviadamente, variáveis iid
- Note-se que uma a.a., tal como definida, não é mais que o *vetor aleatório* $\mathbf{x} = (x_1, x_2, ..., x_n)$
- Atendendo à independência entre as variáveis numa amostra aleatória, a distribuição de probabilidade conjunta do vetor (x₁,...,x_n) pode ser definida como

$$f_{x_1,...,x_n}(x_1,...,x_n) = \prod_{i=1}^n f(x_i)$$

onde $f(x_i)$ (i=1,...,n) representa a função densidade de probabilidade (fdp) da população quando esta é contínua e a função massa de probabilidade (fmp) quando é discreta.

Regina Bispo Estatística Multivariada 2018/19 53 / 111

Função verosimilhança de uma amostra

• Na maioria das situações a fdp/fmp da população é membro de uma família paramérica, isto é, a forma funcional da função depende de um parâmetro ou de um vetor de parâmetros $\theta = (\theta_1, ..., \theta_q)$, tal que

$$f_{x_1,...,x_n}(x_1,...,x_n|\theta) = \prod_{i=1}^n f(x_i|\theta)$$

- A Estatística analisa os resultados de uma amostra aleatória procurando explicar os valores observados em função dos parâmetros que definem a população
- Assim, para um dado ponto amostral fixo, observado, define-se a função verosimilhança de uma amostra, $L(\theta)$, como

$$L(\theta|x_1,...,x_n) = \prod_{i=1}^n f(x_i|\theta)$$

2018/19

54 / 111

Distribuição de probabilidade conjunta

Exemplo

Seja $(x_1,x_2,...,x_n)$ uma a.a. da população Exponencial(eta) (eta>0) com fdp

$$f(x) = \frac{1}{\beta} \exp\{-x/\beta\} (x \ge 0)$$

A fdp conjunta é dada por

$$f(\mathbf{x}) = f(x_1, ..., x_n) = \prod_{i=1}^{n} \frac{1}{\beta} \exp(-x/\beta) = \beta^{-n} \exp\left\{-\sum_{i=1}^{n} x_i/\beta\right\}$$

que <u>fixando</u> β , depende apenas de $(x_1, x_2, ..., x_n)$.

A função verosimilhança é portanto dada por

$$L(\beta) = \beta^{-n} \exp \left\{ -\sum_{i=1}^{n} x_i / \beta \right\}$$

que fixando $(x_1, x_2, ..., x_n)$ depende apenas de β .

2018/19

55 / 111

Revisões - Inferência estatística

Introdução à inferência

- Em regra o objetivo último da análise estatística é inferir sobre a população de estudo com base numa amostra aleatória
- O desconhecimento sobre a população pode ser total, i.e., nada se sabe sobre a sua distribuição de probabilidade
- O desconhecimento sobre a população pode ser apenas parcial, i.e., é conhecida a forma funcional da função de distribuição da população mas não se conhecem os valores do(s) parâmetro(s) que caracterizam a distribuição
- Supondo conhecida a forma geral da distribuição de probabilidade da população, a sua completa especificação implica a *estimação* do(s) parâmetro(s), $\theta \in \Theta$ (sendo Θ o espaço dos parâmetros), que lhe estão associados

Estimação

- A estimação de parâmetros diz-se *pontual*, quando se obtém um só valor para representar θ e *intervalar* quando se pretende encontrar um intervalo de valores para representar θ
- A estimação pontual é um procedimento estatístico que utiliza a informação contida numa amostra para obter um número, ou ponto, que representa o valor do(s) parâmetro(s) que se pretende estimar
- O objetivo principal é portanto o de encontrar uma $\it estimativa$ (função de uma amostra observada) para θ
- A estimativa de θ não é mais do que a realização de uma estatística (função de uma amostra aleatória) a que chamamos estimador (contradomínio definido pelo espaço de parâmetros)

Exemplo

 $x=(x_1,...,x_n)$ é uma realização da a.a. $\mathbf{x}=(x_1,...,x_n)$ onde x_i (i=1,...,n) são v.a. iid.

 $ar{x}$ (função da amostra observada) é uma estimativa para μ , i.e., é uma realização da estatística $ar{x} = \sum_i x_i/n$ (função de uma amostra aleatória)

 s^2 (função da amostra observada) é uma realização da estatística $s^2=\sum_i (x_i-\bar{x})^2/(n-1)$ (função de uma amostra aleatória)

 $\bar{\mathbf{x}}$ e \mathbf{s}^2 são estimadores de μ e σ^2 respetivamente.

Regina Bispo Estatística Multivariada 2018/19 58 / 111

Estimação

 Variáveis aleatórias definidas em função de um estimador e do parâmetro, cuja distribuição não depende de nenhum parâmetro desconhecido designam-se por variáveis fulcrais (ou pivot)

Exemplo

Seja $(x_1,...,x_n)$ v.a. iid da população $N(\mu,\sigma)$. Então

$$\frac{\bar{x}-\mu}{s/\sqrt{n}} \frown t_{(n-1)}$$

$$\frac{(n-1)s^2}{\sigma^2} \frown \chi_{n-1}^2$$

- As variáveis fulcrais são usadas para construir estimadores intervalares
- Um estimador intervalar de um parâmetro θ desconhecido é im intervalo aleatório que, com uma certa probabilidade de cobertura $1-\alpha$, contem/captura o parâmetro θ

Exemplo

$$\left(\bar{x}-t_{(n-1);1-\alpha/2}\frac{s}{\sqrt{n}};\bar{x}+t_{(n-1);1-\alpha/2}\frac{s}{\sqrt{n}}\right)$$

Testes de hipóteses

• Genericamente, um **testes de hipóteses** é um conjunto de procedimentos estatísticos que visam determinar se certas afirmações (hipóteses), feitas sobre uma população (ou mais do que uma) são ou não suportadas pelos dados de uma amostra concreta.

• Elementos de um teste de hipóteses:

- 1 Hipóteses: Hipótese nula (H_0) e Hipótese alternativa (H_1)
- Estatística do teste
- $oldsymbol{\circ}$ Definição da região de rejeição (ou região crítica) e decisão sobre H_0

- Hipótese estatística é toda a proposição feita acerca da(s) população(ções) em estudo.
- Num teste de hipóteses têm-se 2 hipóteses: uma que acreditamos ser verdadeira Hipótese Nula — e a sua contrária — Hipótese Alternativa.
- O objectivo final dum teste estatístico é decidir acerca da plausibilidade das hipóteses formuladas
- Na formulação das hipóteses, deve ter-se em conta que:
 - O teste é constituído por duas hipóteses complementares, a hipótese nula, H₀ e a hipótese alternativa, H₁;
 - H₀ é admitida como verdadeira ao longo do procedimento (sob H₀);
 - \odot Existindo evidências contra H_0 diz-se que se rejeita a favor de H_1 ;
 - As hipóteses nula e alternativa são sempre complementares e no seu conjunto estabelecem o universo de possibilidades.

Regina Bispo Estatística Multivariada 2018/19 61 / 111

Estatística do teste

- Depois de formuladas as hipóteses, coloca-se a questão "Como decidir acerca da plausibilidade da hipótese colocada?"
- O processo de decisão vai basear-se numa estatística estatística do teste (genericamente $T \equiv T(\mathbf{x})$)— para a qual se conhece a respectiva distribuição amostral, função dos dados e que sob H_0 não depende de parâmetros desconhecidos.
- Esta estatística, que é calculada admitindo que H₀ é verdadeira e tendo por os valores observados, vai permitir testar a plausibilidade das hipótese.

Exemplo

Suponha-se um teste ao valor médio — Hipóteses: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ Neste caso, o parâmetro em análise é o valor médio. Recorde que, numa população onde $x \frown N(\mu, \sigma)$ (σ desconhecido), a estatística \bar{x} (estimador de μ) tem distribuição t_{n-1} :

$$\frac{\bar{x}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

Logo, atendendo ao valor médio fixado em H_0 , i.e. para $\mu=\mu_0$, e para uma amostra concreta é possível calcular a estatística $\frac{\bar{x}-\mu}{S/\sqrt{n}}$.

Região crítica (ou região de rejeição)

- A decisão sobre a plausibilidade das hipóteses formuladas vai basear-se no conhecimento da distribuição de probabilidade da estatística de teste, sob H₀.
- Os valores mais extremos da estatística são aqueles cuja probabilidade de ocorrência é menor e, portanto, correspondem aos valores para os quais se considera improvável a validade da hipótese nula. Constituem por isso a região crítica ou região de rejeição
- Considere-se $H_0: \theta \leq \theta_0$ vs. $H_1:: \theta > \theta_0$. A hipótese H_0 é rejeitada sse $T > c_\alpha$, sendo este um teste de nível α , com $P(T > c_\alpha) = \alpha$ sob H_0
- Considere-se $H_0: \theta \geq \theta_0$ vs. $H_1:: \theta < \theta_0$. A hipótese H_0 é rejeitada sse $T < c_\alpha$, sendo este um teste de nível α , com $P(T < c_\alpha) = \alpha$ sob H_0
- Considere-se $H_0: \theta=\theta_0$ vs. $H_1:: \theta\neq\theta_0$. A hipótese H_0 é rejeitada sse $|T|>c_{\alpha/2}$, sendo este um teste de nível α , com $P(|T|>c_{\alpha/2})=\alpha/2$ sob H_0

Regina Bispo Estatística Multivariada 2018/19 63 / 111

Exemplo

Nma amostra de 16 indivíduos com glaucoma de ângulo aberto registaram-se as idades dos pacientes:

```
62 62 68 48 51 60 51 57 57 41 62 50 53 34 62 61
```

- a) Podemos concluir que a idade média da população a partir da qual a amostra é 60 anos? (lpha=0.01).
- b) Calcule o IC da idade média desta população a 95%.

Código R:

> idade<-c(62, 62, 68, 48, 51, 60, 51, 57, 57, 41, 62, 50, 53, 34, 62, 61)