

## มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี สอบปลายภาคเรียนที่ 1 ปีการศึกษา 2557

วิชา STA 111 Statistics

ภาควิชา คณิตศาสตร์

สอบวันที่ 4 ธันวาคม 2557

เวลา 13.00-16.00 น.

## คำชี้แจง

- 1.ข้อสอบมีทั้งหมด 6 ข้อ จำนวน 10 หน้า รวม 45 คะแนน ให้ทำในข้อสอบ
- 2. อนุญาตให้นำเครื่องคิดเลขตามระเบียบของมหาวิทยาลัยฯเข้าห้องสอบได้
- 3. ห้ามน้ำตำราและเอกสารทุกชนิดเข้าห้องสอบ
- 4. มีตารางสถิติใช้เสร็จให้ส่งคืนพร้อมข้อสอบ
- 5. มีสูตรแนบท้ายข้อสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จแล้ว ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบนี้ได้ผ่านการพิจารณาจากภาควิชาฯแล้ว

อ.วิวัฒน์ สกลสนธิเศรษฐ์

ผู้ออกข้อสอบ

(ผศ.ดร. ธีระเดช เจียรสุขสกุล)

หัวหน้าภาควิชาคณิตศาสตร์

| ชื่อ-นามสกุลรหัส | ภาควิชา |
|------------------|---------|
|------------------|---------|

1.สุมตัวอย่าง 11 หน่วย จากประชากรที่มีการแจกแจงปกติ มีค่าเฉลี่ยเท่ากับ 108 และความแปรบรวนเท่ากับ 20 จงหา

n) 
$$P(\bar{X} < 110)$$

(5 คะแนน)

$$\mathfrak{I}) P(\sum_{i=1}^{11} (X_i - \overline{X})^2 < 64.94)$$

( 5 คะแนน)

2.จากตารางแสดงความต้านทาน (โอห์ม) ของลวดที่ใช้พดสอบ ชนิด A จำนวน 4 เส้น ชนิด B จำนวน 5 เส้น ได้ข้อมูลดังนี้

| ชนิด A | ชนิด B |
|--------|--------|
| 0.143  | 0.140  |
| 0.142  | 0.142  |
| 0.143  | 0.136  |
| 0.137  | 0.138  |
|        | 0.140  |

ถ้า  $\mu_A$  และ  $\mu_B$  เป็นความต้านทานที่แท้จริง ของเส้นลวด ชนิด A และ B ตามลำดับ โดยที่ไม่ทราบค่าความแปรปรวนของ ประชากรทั้ง 2 แต่ทราบว่ามีความแปรปรวนเท่ากัน สมมุติว่าความต้านทาน ทั้ง 2 สุ่มมาจากประชากรที่มีการแจกแจง ปกติ จงหาช่วงความเชื่อมั่น 95% ของ  $\mu_A - \mu_B$ 

(5 คะแนน)

3. สุ่มเลือกตัวอย่างผู้ใหญ่ 400 คน และวัยรุ่น 600 คน ซึ่งชมรายการโทรทัศน์รายการหนึ่ง ปรากฏวา ผู้ใหญ่ 100 คน และ วัยรุ่น 300 คน ชอบรายการนั้น จงหาช่วงความเชื่อมั่น 95% ของความแตกต่างของอัตราส่วนที่ผู้ใหญ่ทั้งหมด และวัยรุ่น ทั้งหมดที่ชมรายการนั้นแล้วชอบ

(5 คะแนน)

| 7  | -   |
|----|-----|
| L  | •   |
| ٠. | - 3 |

| ed .                 | •                      | 9      |
|----------------------|------------------------|--------|
| ชื่อ-นามสกุล         | <i>ና</i> የ <i>አየ</i> ላ | กาคาชา |
| # C PO 144 611 / 611 | V . D1                 |        |

4.สุ่มตัวอย่างคน 4 คน บันทึกน้ำหนัก(หน่วยเป็นป็อนด์)ก่อนงดสูบบุหรี่ แล้วให้งดสูบบุหรี่เป็นเวลา 5 สัปดาห์ จากนั้น บันทึกน้ำหนักอีกครั้ง ปรากฏผลดังนี้

| คนที่ | ก่อนงดสูบบุหรื่ | หลังงดสูบบุหรื่ |
|-------|-----------------|-----------------|
| 1     | 148             | 154             |
| 2     | 176             | 176             |
| 3     | 153             | 151             |
| 4     | 116             | 121             |

สมมุติให้ผลต่างของน้ำหนักมีการแจกแจงปกติโดยประมาณ จงทดสอบสมมุติฐานว่า น้ำหนักจะเพิ่มขึ้นถ้าเลิกสูบบุหรี่ ที่ ระดับนัยสำคัญ 0.05

( 5 คะแนน)

| ط                                                      |                         | <b>-</b>                               |
|--------------------------------------------------------|-------------------------|----------------------------------------|
| ชื่อ-นามสกุล                                           | <u> የ</u> ነጻ <i>የ</i> ጳ | ภาควชา                                 |
| пп мо (4/ 64 (3 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

5. จากข้อมูลต่อไปนี้เป็นเวลานาทีที่ใช้ในการฉายภาพยนตร์แต่ละเรื่องซึ่งจัดโดย 2 บริษัท สมมุติว่าเวลาที่ใช้ในการฉาย ภาพยนตร์มีการแจกแจงปกติ

| บริษัท 1 | บริษัท 2 |
|----------|----------|
| 102      | 81       |
| 86       | 165      |
| 98       | 97       |
| 109      | 134      |
| 92       | 92       |
|          | 87       |
|          | 114      |

จงทดสอบสมมุตฐาน  $\sigma_1^2=\sigma_2^2$  แย้งกับสมมุตฐาน  $\sigma_1^2 
eq \sigma_2^2$  ที่ระดับนัยสำคัญ 0.10

( 10 คะแนน)

| all          | •     | <u> </u>         |
|--------------|-------|------------------|
| 86 101800    | 69.00 | กาดก <b>ส</b> า  |
| ชื่อ-นามสกุล |       | d   197 d II   1 |
|              |       |                  |

6.ผู้ตรวจสอบคนหนึ่งได้ทำการตรวจปริมาณที่ลดลงของผลิตภัณฑ์เคมี เมื่อผ่านเครื่องกลั่นและกรอง แล้วได้บันทึกผลของ ส่วนที่ลดลงเป็นเปอร์เซ็นต์ของสารประกอบ 4 ชนิด ชนิดละ 3 ตัวอย่าง ดังต่อไปนี้

| สารประกอบ |      |      |      |
|-----------|------|------|------|
| 1         | 2.   | 3    | 4    |
| 25.6      | 25.2 | 20.8 | 31.6 |
| 24.3      | 28.6 | 26.7 | 29.8 |
| 27.9      | 24.7 | 22.2 | 34.3 |

จงวิเคราะห์ความแปรปรวน ที่ระดับนัยสำคัญ 0.05

( 10 คะแนน)

## Formula

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \bar{X})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}}{n - 1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n - 1)}$$

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \qquad \text{when } \sigma^{2} \text{ known}$$

$$Z = \frac{\bar{X} - \mu}{S / \sqrt{n}} \qquad \text{when } \sigma^{2} \text{ unknown, } n \ge 30$$

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}, \upsilon = n - 1 \qquad \text{when } \sigma^{2} \text{ unknown, } n < 30$$

$$Z = \frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{(\sigma_{1}^{2} / n_{1}) + (\sigma_{2}^{2} / n_{2})}} \qquad \text{when } \sigma^{2} \text{ unknown, } n < 30$$

$$X^{2} = \frac{(n - 1)S^{2}}{\sigma^{2}}, \upsilon = n - 1$$

$$F = \frac{S_{1}^{2} \cdot \sigma_{2}^{2}}{S_{2}^{2} \cdot \sigma^{2}}, \upsilon_{1} = n_{1} - 1, \upsilon_{2} = n_{2} - 1$$

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad \text{when } \sigma^2 \text{ known}$$

$$\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}} \qquad \text{when } \sigma^2 \text{ unknown, } n \ge 30$$

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}, v = n - 1 \qquad \text{when } \sigma^2 \text{ unknown, } n < 30$$

$$(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ when } \sigma^2, \sigma^2_2 \text{ known}$$

$$(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}} \quad \text{when } \sigma_1^2, \sigma_2^2 \text{ unknown, } n_1, n_2 \ge 30$$

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \cdot s_{\rho} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \cdot s_{\rho} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \ ,$$

$$v = n_1 + n_2 - 2$$
,  $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$  when  $\sigma_1^2, \sigma_2^2$  unknown,  $\sigma_1^2 = \sigma_2^2, n_1, n_2 < 30$ 

when  $\sigma_1^2, \sigma_2^2$  unknown,  $\sigma_1^2 \neq \sigma_2^2$ ,  $n_1, n_2 < 30$ 

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n_1} + \frac{s_2^2}{n_2}},$$

$$U = \frac{\left(\frac{S_1^2 + \frac{S_2^2}{n_1}}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

$$\overline{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < \mu_D < \overline{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}}, \upsilon = n - 1$$

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$\begin{split} &(\hat{p}_{1} - \hat{p}_{2}) - z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}} < p_{1} - p_{2} < (\hat{p}_{1} - \hat{p}_{2}) + z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}} \\ &\frac{(n-1)s^{2}}{\chi_{\alpha/2}^{2}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi_{1-\alpha/2}^{2}}, \upsilon = n-1 \\ &\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{f_{\alpha/2}(\upsilon_{1},\upsilon_{2})} < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{s_{1}^{2}}{s_{2}^{2}} f_{\alpha/2}(\upsilon_{2},\upsilon_{1}), \ \upsilon_{1} = n_{1} - 1, \upsilon_{2} = n_{2} - 1 \end{split}$$

$$&n = \left(\frac{z_{\alpha/2} \cdot \sigma}{e}\right)^{2}, \ n = \frac{z_{\alpha/2}^{2}\hat{p}\hat{q}}{e^{2}}, \ n = \frac{z_{\alpha/2}^{2}}{4e^{2}} \end{split}$$

| $H_0$                      | Test Statistic                                                                                   | и                              | Critical region                                            |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------|
| 1.1. $\mu = \mu_0$         |                                                                                                  | $H_1$                          |                                                            |
| $\mu = \mu_0$              | $\sigma^2$ known                                                                                 | $\mu > \mu_0$                  | $z > z_{\alpha}$                                           |
|                            | $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$                                             | $\mu < \mu_0$                  | $z < -z_{\alpha}$                                          |
|                            | $\sigma/\sqrt{n}$                                                                                | $\mu \neq \mu_0$               | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$ |
| 1.2. $\mu = \mu_0$         | $\sigma^2$ unknown, $n \ge 30$                                                                   | $\mu > \mu_0$                  | $z > z_{\alpha}$ .                                         |
|                            | $Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$                                                    | $\mu < \mu_0$                  | $z < -z_{\alpha}$                                          |
|                            | $S/\sqrt{n}$                                                                                     | $\mu \neq \mu_0$               | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$ |
| 1.3. $\mu = \mu_0$         | $\sigma^2$ unknown, $n < 30$                                                                     | $\mu > \mu_0$                  | $t > t_a$                                                  |
|                            | $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$ , $\upsilon = n - 1$                               | $\mu < \mu_0$                  | $t < -t_{\alpha}$                                          |
|                            | $S/\sqrt{n}$                                                                                     | $\mu \neq \mu_0$               | $t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$ |
| 2.1. $\mu_1 - \mu_2 = d_0$ | $\sigma_1^2, \sigma_2^2$ known                                                                   | $\mu_1 - \mu_2 > d_0$          | $z > z_{\alpha}$                                           |
|                            | $(\overline{X}_1 - \overline{X}_2) - d_0$                                                        | $\mu_1 - \mu_2 < d_0$          | $z < -z_a$                                                 |
|                            | $Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$ | $\mu_1 - \mu_2 \neq d_0$       | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$ |
| 2.2. $\mu_1 - \mu_2 = d_0$ |                                                                                                  | $\mu_1 - \mu_2 > d_0$          | $z > z_{\alpha}$                                           |
|                            | $(\overline{X}_1 - \overline{X}_2) - d_0$                                                        | $\mu_1 - \mu_2 < d_0$          | $z < -z_{\alpha}$                                          |
|                            | $Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{(S_1^2/n_1) + (S_2^2/n_2)}}$           | $\mu_{i} - \mu_{2} \neq d_{0}$ | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$ |
| 2.3. $\mu_1 - \mu_2 = d_0$ | $\sigma_1^2, \sigma_2^2$ unknown, $\sigma_1^2 = \sigma_2^2$ ,                                    | $\mu_1 - \mu_2 > d_0$          | $t > t_{\alpha}$                                           |
|                            | $n_1, n_2 < 30$                                                                                  | $\mu_1 - \mu_2 < d_0$          | $t < -t_{\alpha}$                                          |
|                            | $T = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{S_p \sqrt{(1/n_1) + (1/n_2)}}$                         | $\mu_1 - \mu_2 \neq d_0$       | $t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$ |
|                            | •                                                                                                |                                |                                                            |
| ,                          | $\upsilon = n_1 + n_2 - 2$                                                                       |                                |                                                            |
|                            | $S_P = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$                             |                                |                                                            |

| U                              | Test Statistic                                                                                               |                              | Critical region                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------|
| H <sub>0</sub>                 |                                                                                                              | $H_1$ $\mu_1 - \mu_2 > d_0$  | Critical region                                                                 |
| $\mu_1 - \mu_2 = \mu_0$        | $\sigma_1^2, \sigma_2^2$ unknown, $\sigma_1^2 \neq \sigma_2^2$ .                                             |                              | 1                                                                               |
|                                | $n_1, n_2 < 30$                                                                                              | $\mu_1 - \mu_2 < d_0$        |                                                                                 |
|                                | $T = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{(S_1^2/n_1) + (S_2^2/n_2)}}$                                 | $\mu_1 - \mu_2 \neq d_0.$    | $t < -t_{\underline{\alpha}}$ and $t > t_{\underline{\alpha}}$                  |
|                                | ,                                                                                                            |                              |                                                                                 |
|                                | $\left(S_1^2/n_1 + S_2^2/n_2\right)^2$                                                                       |                              |                                                                                 |
|                                | $U = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\left(S_1^2/n_1\right)^2 + \left(S_2^2/n_2\right)^2}$       |                              |                                                                                 |
|                                | $n_1 - 1$ $n_2 - 1$                                                                                          |                              |                                                                                 |
| 2.5. $\mu_D = d_0$             | Pair Observation, $n < 30$                                                                                   | $\mu_{\nu} > d_{0}$          | $t > t_{\alpha}$                                                                |
|                                | $T = \frac{\overline{D} - d_0}{S_D / \sqrt{n}}, \upsilon = n - 1$                                            | $\mu_D < d_0$                | $t < -t_{\alpha}$                                                               |
|                                |                                                                                                              | $\mu_D \neq d_0$             | $t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$                      |
| 3.1. $p = p_0$                 | n ≥ 30                                                                                                       | $p > p_0$                    | $z>z_{ca}$                                                                      |
|                                | $Z = \frac{X - np_0}{\sqrt{np_0q_0}}$                                                                        | $p < p_0$                    | $z < -z_{\alpha}$                                                               |
|                                | $\sqrt{np_0q_0}$                                                                                             | $p \neq p_0$                 | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$                      |
| 3.2. $p = p_0$                 | n < 30                                                                                                       | $p > p_0$                    | $X \ge x$                                                                       |
|                                | $X \sim b(x; n, p_0)$                                                                                        | $p < p_0$                    | $X \leq x$                                                                      |
|                                |                                                                                                              | $p \neq p_0$                 | $X \le x$ if $x < np_0$ or                                                      |
|                                |                                                                                                              |                              | $X \ge x$ if $x > np_0$                                                         |
| 4.1. $p_1 - p_2 = 0$ .         | $n_1, n_2 \ge 30$                                                                                            | $p_1 - p_2 > 0$              | $z > z_{\alpha}$                                                                |
|                                | $\hat{P}_1 - \hat{P}_2$                                                                                      | $p_1 - p_2 < 0$              | $z < -z_{\alpha}$                                                               |
|                                | $Z = \frac{\hat{P}_{1} - \hat{P}_{2}}{\sqrt{\hat{P}\hat{Q}(1/n_{1} + 1/n_{2})}}$                             | $p_1 - p_2 \neq 0$           | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$                      |
|                                | $\hat{P}_1 = \frac{X_1}{n_1},  \hat{P}_2 = \frac{X_2}{n_2}$                                                  |                              |                                                                                 |
|                                | $\hat{P} = \frac{X_1 + X_2}{n_1 + n_2}$                                                                      |                              |                                                                                 |
| $4.2. \ p_1 - p_2 = d_0$       | $n_1, n_2 \ge 30$                                                                                            | $p_1 - p_2 > d_0$            | $z > z_{\alpha}$                                                                |
| and $d_0 \neq 0$               | $(\hat{P}_1 - \hat{P}_2) - d_0$                                                                              | $p_1 - p_2 < d_0$            | $z < -z_{\alpha}$                                                               |
|                                | $Z = \frac{(\hat{P}_1 - \hat{P}_2) - d_0}{\sqrt{(\hat{P}_1 \hat{Q}_1 / n_1) + (\hat{P}_2 \hat{Q}_2 / n_2)}}$ | $p_1 - p_2 \neq d_0$         | $z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$                      |
| $5. \ \sigma^2 = \sigma_0^2$   | $\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$                                                                     | $\sigma^2 > \sigma_0^2$      | $\chi^2 > \chi^2_{\alpha}$                                                      |
|                                | 1                                                                                                            | $\sigma^2 < \sigma_0^2$      | $\chi^2 < \chi^2_{1-\alpha}$                                                    |
|                                | $\upsilon = n - 1$                                                                                           | $\sigma^2 \neq \sigma_0^2$   | $\chi^2 < \chi^2_{1-\frac{\alpha}{2}}$ and $\chi^2 > \chi^2_{\frac{\alpha}{2}}$ |
| $6. \ \sigma_1^2 = \sigma_2^2$ | $F = \frac{S_1^2}{S_2^2}$                                                                                    | $\sigma_1^2 > \sigma_2^2$    | $f > f_{\alpha}$                                                                |
|                                | $S_2^2$                                                                                                      | $\sigma_1^2 < \sigma_2^2$    | $f < f_{1-\alpha}$                                                              |
|                                | $v_1 = n_1 - 1, v_2 = n_2 - 1$                                                                               | $\sigma_1^2 \neq \sigma_2^2$ | $f < f_{1-\frac{\alpha}{2}}$ and $f > f_{\frac{\alpha}{2}}$                     |
|                                |                                                                                                              |                              |                                                                                 |

 $SST = \sum_{j=1}^{K} \sum_{i=1}^{m} x_{i,j}^{2} - \frac{T_{i,j}^{2}}{m_{K}}, SSTR = \frac{\sum_{j=1}^{K} T_{i,j}^{2}}{m} - \frac{T_{i,j}^{2}}{m_{K}}, SSE = SST - SSTR$   $MSTR = \frac{SSTR}{K-1}, MSE = \frac{SSE}{K(M-1)}$