

Instituto Tecnológico de Ensenada

Docente: Guillermo Alejandro Chávez Sánchez

Materia: Estructura de Datos

Título del trabajo: Práctica de Laboratorio: Manejo de Matrices en C

Elaborado por: Rosa Santos Meza

No. Control: 24761148

Ensenada Baja California a 6 de octubre de 2025

Durante la realización de esta práctica, los principales desafíos fueron:

1. Manejo de dimensiones en C:

Algunas funciones necesitan saber la cantidad de filas y columnas reales de la matriz. Inicialmente intenté declarar matrices con tamaños fijos en las funciones, pero al usar las transpuestas o sub matrices, el compilador marcaba errores. La solución fue usar un tamaño máximo (#define MAX 10) y pasar siempre las dimensiones reales como parámetros.

2. Validación de entradas del usuario:

Para los ejercicios que requieren ingreso manual, necesité validar que el usuario ingresara números enteros. Esto se manejó con scanf y comprobando el valor del retorno.

3. Operaciones con matrices cuadradas y no cuadradas:

Algunos ejercicios requieren que la matriz sea cuadrada(diagonales) y otros no (transpuesta). Fue importante adaptar funciones como mostrar Matriz para ser flexibles.

4. Modularidad y organización:

Inicialmente intenté hacer los ejercicios en main, pero era confuso y poco legible. Separar cada ejercicio en funciones individuales facilitó la lectura, depuración y reutilización del código.

5. Uso de números aleatorios y reproducibilidad:

Deccidí usar(time(NULL)) para generar números aleatorios distintos en cada ejecución. Esto me permitió probar los programas con distintos datos y validar los resultados de suma, promedio, máximo, mínimo.

Descripción de la práctica

El objetivo de esta práctica fue reforzar los conocimientos sobre matrices en C, incluyendo su declaración, inicialización, recorridos con ciclos anidados y operaciones básicas. Se realizaron ejercicios que incluyen:

- 1. Inicialización de matrices.
- 2. Llenado manual de matrices.
- 3. Contar números pares e impares.
- 4. Calcular suma y promedio de los elementos.
- 5. Encontrar valores máximo y mínimo.
- 6. Sumar filas y columnas.
- 7. Suma de matrices.
- 8. Resta de matrices.
- 9. Multiplicación de matrices.
- 10. Matriz transpuesta.
- 11. Diagonal principal y secundaria.
- 12. Buscar elementos específicos en la matriz.

Todos los ejercicios fueron implementados de manera modular, utilizando funciones separadas para cada operación, validando entradas de usuario y utilizando números aleatorios en los casos que correspondía.

Conclusión:

La práctica ayudó a consolidar los conceptos de matrices en C, manejo de ciclos anidados, funciones, validación de datos y operaciones como

suma, resta, multiplicación y transposición. También fortaleció la organización modular del código, haciendo que cada ejercicio sea independiente y fácil de probar.

Además, se reforzó la importancia de planificar la estructura del programa y de utilizar funciones reutilizables para mantener el código limpio, legible y fácil de mantener.

Capturas de cada uno de los 12 códigos.

Código fuente compilado

