KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

TERMODINAMIK

IDEAL GAZ KANUNU

YAVUZ ÇELEBİ

KOCAELİ 2020

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

TERMODINAMIK

IDEAL GAZ KANUNU

YAVUZ ÇELEBİ

Tezin Savunulduğu Tarih: 22.10.2017 / 2017-2018 Güz

ÖNSÖZ VE TEŞEKKÜR

Bu çalışması,macıyla gerçekleştirilmiştir.	tez a
Tez çalışmamda desteğini esirgemeyen, çalışmalarıma yön veren, bana güven yüreklendiren danışmanım sonsuz teşekkürlerimi sunarım.	ien ve
Tez çalışmamın tüm aşamalarında bilgi ve destekleriyle katkıda b hocam teşekkür ediyorum.	oulunan
Tez çalışmamda gösterdiği anlayış ve destek için sayın teşekkür sunarım.	rlerimi
Hayatım boyunca bana güç veren en büyük destekçilerim, her aşamada sıkıntıların mutluluklarımı paylaşan sevgili aileme teşekkürlerimi sunarım.	mı ve
Mayıs – 2018 Yavuz Çeleb	oi

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur. Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde referans edilmiş ve dokümanda belirtilmiştir.

Öğrenci No: 180202309

Adı Soyadı: Yavuz Çelebi

Öğretim Türü: İkinci Öğretim

İÇİNDEKİLER

ONSOZ VE TEŞEKKURi						
İÇİNDEKİLERii						
ŞEKİLLER DİZİNİiii						
TABLOLAR DİZİNİiv						
SİMGELER VE KISALTMALAR DİZİNİv						
ÖZET vii						
ABSTRACT viii						
GİRİŞ						
1. SAYISAL KORUMADA TEMEL KAVRAMLAR 3						
1.1. Ayrık İşaretlerin Fazörel Gösterimi						
1.2. Arıza Tipinin Belirlenmesi						
2. İLETİM HATLARINDA EMPEDANSA DAYALI ARIZA YERİ BULMA						
ALGORİTMALARI 12						
2.1. Tek Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları 13						
2.1.1. Basit reaktans algoritması						
2.1.2. Takagi algoritması						
2.1.3. Geliştirilmiş Takagi algoritması						
2.2. İki Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları 14						
2.1.1. Basit arıza gerilimi eşitliği algoritması						
2.1.2. Asimetrik arıza yeri bulma algoritması						
2.1.3. Negatif bileşenler ile arıza yeri bulma algoritması 16						
2.1.4. Simetrik arıza yeri bulma algoritması						
3. EMPEDANSA DAYALI ARIZA YERİ BULMA ALGORİTMALARININ FARKLI						
TEST SİSTEMLERİNDE UYGULANMASI20						
3.1. Homojen Test Sistemi						
3.2. Homojen Olmayan Test Sistemi						
3.3. Homojen Olmayan Test Sistemi (Orta Uzun Hat Modeli - Pi Eşdeğer Devresi) 28	,					
4. SERİ KAPASİTÖRLÜ İLETİM HATLARINDA ARIZA YERİ TESPİTİ 33						
5. SERİ KAPASİTÖRLÜ İLETİM HATLARI İÇİN PERFORMANSA						
DAYALI ARIZA YERİ BULMA ALGORİTMASI						
5.1. Algoritmanın Temel Arıza Yeri Bulma Algoritmaları İle						
Karşılaştırması41						
5.2. Seri Kapasitörlü İletim Hatlarını Baz Alan Arıza Yeri Bulma Algoritmalarının						
Karşılaştırılması45						
6. SONUÇLAR VE ÖNERİLER48						
KAYNAKLAR53						
EKLER						
KİŞİSEL YAYIN VE ESERLER						
ÖZGECMİS69						

ŞEKİLLER DİZİNİ

Şekil 1.1.	Yinelenen Fourier ifadesi	5
Şekil 1.2.	Simetrili bileşenlerin gösterimi a) pozitif bileşenler b) negatif	
	bileşenler c) sıfır bileşenler	7
Şekil 1.3.	Şebekenin a) pozitif bileşen devresi b) negatif bileşen devresi c)	sıfır bileşen
	devresi	8
Şekil 1.4.	Arıza öncesi, arıza anı ve arıza sonrası durum	9
Şekil 2.1.	İletim hattında arıza eşdeğer devresi	12
Şekil 3.1.	Homojen test sistemi	20
Şekil 3.2.	Homojen olmayan test sistemi	24
Şekil 3.3.	Homojen olmayan test sistemi(pi modeli)	28
Şekil 5.1.	Seri kapasitörlü iletim hattı	37
Şekil 5.2.	Arıza yerinin S barası ve seri kapasitör arasında olma durumu	38
Şekil 5.3.	Performansa dayalı alınan algoritmanın akış diyagramı	41
Şekil 5.4.	Seri kapasitörlü test sistemi	42
Şekil 5.5.	MOV ve seri kapasitörde ki akım değişimi	43

TABLOLAR DİZİNİ

Tablo 1.1.	Arıza tiplerine göre pozitif bileşen empedans eşitlikleri	10
Tablo 3.1.	Homojen test sisteminde farklı uzaklıklardaki çeşitli arıza tipleri	
	için yüzde hata oranları	21
Tablo 3.2.	Homojen test sisteminde farklı arıza dirençlerindeki çeşitli arıza	
	tipleri için yüzde hata oranları	23
Tablo 3.3.	Homojen olmayan test sisteminde farklı uzaklıklardaki çeşitli arıza	
	tipleri için yüzde hata oranları	25
Tablo 3.4.	Homojen olmayan test sisteminde farklı arıza dirençlerindeki çeşitli	
	arıza tipleri için yüzde hata oranları	26
Tablo 3.5.	Homojen olmayan test sisteminde (orta uzun hat modeli - pi	
	eşdeğer devresi) farklı uzaklıklardaki farklı arıza tipleri için yüzde	
	hata oranları	29
Tablo 3.6.	Homojen olmayan pi eşdeğer devreli test sisteminde farklı arıza dirend	çlerindeki
	çeşitli arıza tipleri için yüzde hata oranları	
Tablo 4.1.	Seri kompanzasyonun etkileri ve sonuçları	33
Tablo 4.2.	Seri kompanze edilmiş iletim sistemleri için kullanılan bazı	
	algoritmalar ve özellikleri	
Tablo 5.1.	Test sistemi parametreleri	42
Tablo 5.2.	Test sisteminin simülasyon parametreleri	42
Tablo 5.3.	Test sisteminin farklı uzaklıklardaki çeşitli arıza tipleri için yüzde	
	hata oranları	44
Tablo 5.4.	Test sisteminin farklı arıza dirençlerindeki faz-faz-toprak arıza tipi	
	için yüzde hata oranları	45
Tablo 5.5.	Seri kapasitörü dikkate alan algoritmaların karşılaştırılması	46
Tablo 5.6.	Seri kapasitörü dikkate alan algoritmaların genel özellikleri	47

SIMGELER VE KISALTMALAR DİZİNİ

 $\alpha_{1,2,3}$: Eğim için alınan açı, (°)

φ : Açı, (°) θ : Açı, (rad)

 d_R

 $\begin{array}{lll} d & : & \text{Arıza noktasının referans baraya uzaklığı, (\%)} \\ d_{capS} & : & \text{Seri kapasitörün S barasına uzaklığı, (\%)} \\ d_{capR} & : & \text{Seri kapasitörün R barasına uzaklığı, (\%)} \\ d_{S} & : & \text{Arıza noktasının S barasına uzaklığı, (\%)} \end{array}$

: Arıza noktasının R barasına uzaklığı, (%)

f₀ : İşaretin frekansı, (Hz)
f_S : Örnekleme frekansı, (Hz)
I⁰ : Sıfır bileşen akımı, (A)
I¹ : Pozitif bileşen akımı, (A)
I² : Negatif bilesen akımı, (A)

I_a : a fazı akımı, (A)

I_{ab} : a fazı ve b fazı akımları farkı, (A)

I_b : b fazı akımı, (A)

I_{bc} : b fazı ve c fazı akımları farkı, (A)

I_c : c fazı akımı, (A)

 I_{ca} : c fazı ve a fazı akımları farkı, (A)

 I_{cap} : Seri kapasitör üzerinden geçen akım, (A)

I_F : Arıza noktasından geçen akım, (A)

I_{FR} : Arıza noktasından geçen akımın R barasından gelen kısmı, (A)
 I_{FS} : Arıza noktasından geçen akımın S barasından gelen kısmı, (A)

 I_{once} : Arıza öncesi akım, (A)

 $\begin{array}{lll} I_R & : & R \text{ barasından çıkan akımı, (A)} \\ I_{ref} & : & Alınan referans akım, (A)} \\ I_S & : & S \text{ barasından çıkan akımı, (A)} \\ I_{s"D} & : & S"perpozisyon akımı, (A) \end{array}$

 $I_{s\ddot{u}p}*$: Süperpozisyon akımının eşleniği, (A)

 R_F : Arıza noktası empedansı, (Ω)

 X_L : Hat empedansının imajiner bileşeni, (Ω) xd'': Senkron makinenin subtransientreaktansı, (pu)

V⁰ : Sıfır bileşen gerilimi, (V) V¹ : Pozitif bileşen gerilimi, (V) V² : Negatif bileşen gerilimi, (V)

V_a : a fazı gerilimi, (V)

 V_{ab} : a fazı ve b fazı gerilimleri farkı, (V)

V_b : b fazı gerilimi, (V)

 V_{bc} : b fazı ve c fazı gerilimleri farkı, (V)

V_c : c fazı gerilimi, (V)

 V_{ca} : c fazı ve a fazı gerilimleri farkı, (V)

V_{cap} : Kapasitör öncesindeki bağlantı noktasının gerilimi, (V)

 $egin{array}{lll} V_R & : & R \ barası (uzak \ bara) \ gerilimi, (V) \ V_{ref} & : & Alınan \ referans \ gerilimi, (V) \end{array}$

V_S : S barası (yakın/referans bara) gerilimi, (V)

V_F : Arıza noktası gerilimi, (V)

 $Z_{\text{Cap-F}}$: Seri kapasitör ile arıza noktası arasındaki empedans, (Ω)

 Z_L : Hat empedansı, (Ω)

 Z_R : R barasından görülen thevenin empedansı, (Ω) Z_S : S barasından görülen thevenin empedansı, (Ω)

Kısaltmalar

AC : AlternativeCurrent (Alternatif Akım)

ANN : ArtificialNeural Networks (Yapay Sinir Ağları)

DDA : DeterministicDifferentialApproach (Deterministik Diferansiyel Yaklaşım)
 FACTS : FlexibleAlternativeCurrentTransmissionSystem (Esnek Alternatif Akım İletim

Sistemi)

IEEE : TheInstitute of ElectricalandElectronicsEngineers (Elektrik ve Elektronik

Mühendisleri Enstitüsü)

Im : İmajiner min : Minimum

MOV : Metal OxideVaristor (Metal Oksit Varistör)PMU : PhasorMeasurementUnit (Fazör Ölçüm Ünitesi)

R : Receiving (Alan)

Re : Reel

S : Sending (Gönderen)

SC : Series Capacitor (Seri Kapasitör)

IDEAL GAZ KANUNU

ÖZET

İdeal gaz sabiti (R), kullanılan birimlere göre değişir. Yukarıda verilen değer (8.3145), SI birimleri için, yani paskal-kübik metre-molar-kelvin için hesaplanmıştır.

İdeal gaz yasası, en çok monatomik gazlar için geçerlidir ve yüksek sıcaklık, alçak basınçlarda daha iyi sonuçlar verir. Bu formül, her gaz molekülünün boyutunu ya da moleküller arası bağları dikkate almadığından, bunları da dikkate alan van der Waals denklemi daha iyi sonuçlar verir.

Anahtar Kelimeler: Mekanizma Tekniği, Paskal Sabiti, Mol Kavramı, Sıcaklık, Basınç

A NEW APPROACH FOR IMPEDANCE BASED FAULT LOCATIONON TRANSMISSION LINES

ABSTRACT

Purpose of this study is to examine impedance based algorithms on transmission lines for fault location and to develop a new algorithm for series compensated lines.

First of all, one and two end basic fault location algorithms are described. At a sample test system, results of the basic fault location algorithms are compared by changing system and fault related parameters. The system parameters consist of the line model and the cases of the system being homogeneous or nonhomogeneous while the fault related parameters are considered as fault type, fault location and fault resistance.

In the series compensated transmission lines, inadequacy of the basic impedance based fault location algorithms and necessity of a new particular fault location algorithmare shown by a simulation. The particular algorithms are analyzed and summarized. Then a new performance based algorithm is developed for the series compensated transmission lines in this thesis.

The developed algorithm iteratively estimates the fault location based on the calculated fault voltage and current using two end measurements and the line parameters, the algorithm can compare all the samples to attain a single outcome with minimal error. On the various test systems, the proposed algorithm is examined with two algorithm type, the basic algorithms and the particular algorithms designed for series compensated lines and the results are compared. The test systems are modeled and analyzed on DigSILENT and the gained current and voltage information is used in MATLAB for coded algorithms.

Keywords: Fault Location Algorithms, Transmission Lines, MOV, PMU, Series Capacitor.