• špecifické reakcie

 $\begin{array}{ll} \circ & 2HgCl_2 + SnCl_2 = SnCl_4 + \underline{Hg_2Cl_2} \\ & \underline{Hg_2Cl_2} + SnCl_2 = SnCl_4 + \underline{2Hg} \end{array} \qquad \qquad \begin{array}{ll} \text{biela} \otimes \\ \text{čierna} \otimes \end{array}$

dôkazové reakcie pre Hg^{2+} , Hg_2^{2+} a Sn^{2+}

- $\circ \quad \mathcal{C}u^{2+} + (NH_4)_2[Hg(SCN)_4] \overset{ZnSO_4}{\longleftrightarrow} \underline{Cu, Zn[Hg(SCN)_4]} \text{ fialovočierne zmesné }$ kryštáliky
- $Cd^{2+} + cadion S (OH^-, Seignettova sol') =$ červenopomarančová \otimes
- $OBi(NO_3)_3 + nH_2N CS NH_2 = Bi[CS(NH_2)_2]_n(NO_3)_3$ svetložltý O (tiomočovina)
- $\begin{array}{ll} \circ & AsCl_5 + 4NH_4OH = (NH_4)_3AsO_4 + 4HCl + NH_4Cl \\ & (NH_4)_3AsO_4 + MgCl_2 = 2NH_4Cl + \underline{MgNH_4AsO_4} \end{array} \qquad \text{biela} \otimes$

solúcia horečnatá (so solúciou molybdénovou – žltá ⊗)

- o Bettendorfova skúška $As^{3+/5+} + SnCl_2 = As + SnCl_4$
- \circ Marsh-Liebigova skúška $2AsH_3=3H_2+2As$ reakcia As iónov s atomárnym vodíkom a následný termický rozklad vzniká arzénové zrkadlo
- \circ $SbCl_3 + H_2N CS NH_2 =$ žltobiela zrazenina
- $\circ \quad SbCl_3 + Na_2S_2O_3 = Sb_2S_3 \cdot Sb_2O_3$

červená ⊗

 \circ $2HgCl_2 + SnCl_2 = SnCl_4 + 2Hg$

čierna ⊗

schéma delenia katiónov II.B triedy

schéma delenia katiónov II.A triedy

III.trieda katiónov

- Ni^{2+} . Co^{2+} . $Fe^{2+/3+}$. Mn^{2+} . Cr^{3+} . Al^{3+} . Zn^{2+}
- **skupinové činidlo:** sulfid amónny (NH₄)₂S v amoniakálnom prostredí NH₄OH
- poskytujú sulfidy, ktoré sú nerozpustné v alkalickom prostredí
- vodné roztoky sú rôzne sfarbené:
 - o zelené $[Ni(H_2O)_2]^{2+}$, Fe^{2+}
 - o ružové $[Co(H_2O)_6]^{2+}$, Co^{2+}
 - o oranžové $\mathit{Cr}_2\mathit{O}_7^{2-}$
 - o žlté CrO_4^{2-}
 - o modré Cr^{2+}
 - bezfarebné Fe^{3+} , Al^{3+} . Zn^{2+}
- Al^{3+} , Zn^{2+} , Cr^{3+}
 - o amfotérne závisí od pH, v akej forme existujú v roztoku
- reakcie so skupinovým činidlom:
 - o $(NH_4)_2S + 2H_2O = 2NH_4OH + H_2S$ vznikajú tie formy, ktoré sú menej rozpustné
 - o *NiS, CoS* **čierne** ⊗ sulfidov rozpustné len v lúčavke kráľovskej
 - o FeS, Fe_2S_3 čierne \otimes
 - o ZnS biela \otimes
 - o $MnSO_4 + (NH_4)_2S + H_2O = (NH_4)_2SO_4 + \underline{MnS \cdot H_2O}$ ružová \otimes varom = MnS zelená \otimes
 - o vznikajú hydroxidy, keďže hodnota K_s je menšia ako pre zodpovedajúce sulfidy:
 - $2CrCl_3 + 3(NH_4)_2S + 6H_2O = 2Cr(OH)_3 + 6NH_4Cl + 3H_2S$ zelená \otimes
 - $2AlCl_3 + 3(NH_4)_2S + 6H_2O = 2Al(OH)_3 + 6NH_4Cl + 3H_2S$ biela \otimes
- reakcie s KOH (analogicky s NH₄OH):
 - o $NiSO_4 + 2KOH = K_2SO_4 + Ni(OH)_2$ svetlozelená \otimes

o
$$Co(NO_3)_3 + KOH = KNO_3 + Co(OH)NO_3$$
 modrá $\otimes = Co(OH)_2$ ružová \otimes

o
$$FeSO_4 + 2KOH = K_2SO_4 + Fe(OH)_2$$
 biela $\otimes = Fe(OH)_3$ hrdzavá \otimes

o
$$MnSO_4+2KOH=K_2SO_4+\underline{Mn(OH)_2}$$
 biela \otimes
$$Mn(OH)_2+O_2=Mn(OH)_3=MnO_2\cdot xH_2O=MnO(OH)_2$$
 čiernohnedá \otimes

• <u>špecifické reakcie:</u>

o
$$Ni^{2+} + KOH = 2K^+ + Ni(OH)_2$$
 svetlozelená \otimes $Ni(OH)_2 + Br_2 + KOH = 2KBr + 2Ni(OH)_3$ čierna \otimes (ruší Co²⁺)

o
$$Co^{2+} + \alpha \text{-}nitr\'ozo-\beta \text{-}naftol \xrightarrow{NH_4OH}$$
 červenohnedá \otimes (kobalton)

o
$$CoCl_2 + 7KNO_2 + 2CH_3COOH = \underbrace{K_3[Co(NO_2)_6]}_{\mbox{\'elta}} + NO + H_2O + 2CH_3COOK + 2KCl$$

o
$$CoCl_2 + (NH_4)_2[Hg(SCN)_4] \xrightarrow{ZnSO_4} \underline{Zn, Co[Hg(SCN)_4]} + NH_4Cl$$
 modré zmesné kryštáliky

o
$$Fe^{2+} + 2KCN = 2K^+ + \underline{Fe(CN)_2}$$
 svetlohnedá \otimes
$$\underline{Fe(CN)_2} + 4KCN = K_4[\overline{Fe(CN)_6}]$$
 žltý \odot

o
$$Fe^{2+} + K_3[Fe(CN)_6] = \underline{KFe[Fe(CN)_6]} + 2K^+$$
 tmavomodrá \otimes (berlínska modrá)

o
$$FeCl_2 + K_4[Fe(CN)_6] = K_2Fe[Fe(CN)_6] + 2KCl$$
 bielomodrá \otimes

o
$$Fe^{3+} + K_4[Fe(CN)_6] = \underline{KFe[Fe(CN)_6]} + 3K^+$$
 tmavomodrá \otimes (berlínska modrá)

o
$$FeCl_3 + 6KSCN = Fe[Fe(SCN)_6] + 6KCl$$
 červený \odot KSCN sa využíva na dôkaz, že Fe $^{2+}$ sa premenilo na Fe $^{3+}$

o
$$Mn^{2+} \rightarrow MnO_4^-$$
 fialový \odot

zriedené vzorky (aby nevznikol burel), za varu, rušené Cl⁻ (vyzrážanie s AgNO₃)

$$2Mn(NO_3)_2 + 5PbO_2 + 6HNO_3 = 2HMnO_4 + 5Pb(NO_3)_2 + 2H_2O_3$$

$$2MnSO_4 + 5K_2S_2O_8 + 8H_2O = 2HMnO_4 + 5K_2SO_4 + 7H_2SO_4$$

$$2Mn(NO_3)_2 + 5KIO_4 + 3H_2O = 2HMnO_4 + 5KIO_3 + 4HNO_3$$

o
$$ZnSO_4 + (NH_4)_2[Hg(SCN)_4] \xrightarrow{kys.octov\acute{a}} Zn[Hg(SCN)_4] + (NH_4)_2SO_4$$

o
$$Zn^{2+} + ditiz\acute{o}n \xrightarrow{kys.octov\acute{a}}$$
 ružový \odot

o
$$Cr^{3+} \rightarrow Cr^{6+}$$
 (v alkalickom prostredí CrO_4^{2-} v kyslom prostredí $Cr_2O_7^{2-}$)

suchá cesta (tavením):
$$Cr(OH)_3 \rightarrow Cr_2O_3 + Na_2CO_3 + KNO_3 \rightarrow CrO_4^{2-}$$

o
$$K_2CrO_4 + BaCl_2 = 2KCl + \underline{BaCrO_4}$$
 žltá \otimes (nerozpustná v kys. octovej)

o
$$K_2CrO_4 + SrCl_2 = 2KCl + \underline{SrCrO_4}$$
 žltá \otimes (rozpustná v kys. octovej)

o
$$Na_2CrO_4 + BaCl_2 = 2NaCl + BaCrO_4$$
 žltá \otimes

o
$$Na_2CrO_4 + Pb^{2+} = 2Na^+ + \underline{PbCrO_4}$$
 žltá \otimes

o
$$Al^{3+} + alizarín \xrightarrow{kys.octov\acute{a}}$$
 tehlovočervený lak

o
$$Al^{3+}+mor$$
ín $\xrightarrow{kys.octov$ á **zelená** fluorescencia

schéma delenia katiónov III.triedy

IV.trieda katiónov

- Ba^{2+} , Sr^{2+} , Ca^{2+}
- skupinové činidlo: (NH₄)₂CO₃
- plameňové skúšky:
 - \circ Ba^{2+} zelená
 - \circ Sr^{2+} karmínovočervená
 - Ca²⁺ tehlová

reakcie so skupinovým činidlom:

rozpúšťanie
$$BaCO_3$$
 $(CH_3COO)_2Ba$

$$(NH_4)_2CO_3 + BaCl_2 = 2NH_4Cl + BaCO_3$$

$$(CH_3COO)_2BaCO_3 + SrCl_2 = 2NH_4Cl + SrCO_3$$

$$+ CH_3COOH = (CH_3COO)_2SrCO_3$$

$$\circ (NH_4)_2CO_3 + CaCl_2 = 2NH_4Cl + \overline{CaCO_3}$$
 (CH₃COO)₂Ca

reakcie s H₂SO₄:

o
$$H_2SO_4 + BaCl_2 = 2HCl + BaSO_4$$
 biela \otimes (nerozpustná v min. kyseline)

o
$$H_2SO_4 + SrCl_2 = 2HCl + SrSO_4$$
 biela \otimes (rozpustná v min. kyseline)

$$\circ \quad H_2SO_4 + CaCl_2 = 2HCl + CaSO_4 \cdot 2H_2O$$

špecifické reakcie:

$$\circ \quad (COONH_4)_2 + CaCl_2 = (COO)_2Ca \cdot 2H_2O + 2NH_4Cl \quad \text{biela } \otimes$$

o
$$(COONH_4)_2 + SrCl_2 = (COO)_2Sr + 2NH_4Cl$$
 biela \otimes (vzniká pomaly)

$$\circ \quad K_2CrO_4 + CaCl_2 = \emptyset \qquad \qquad C_6O_6Na_2 + CaCl_2 = \emptyset$$

$$K_2CrO_4 + BaCl_2 = 2KCl + BaCrO_4$$
 žitá \otimes (nerozpustná v kys. octovej)

$$\circ K_2CrO_4 + BaCl_2 = 2KCl + \underline{BaCrO_4}$$
 žltá \otimes (nerozpustná v kys. octove

o
$$K_2CrO_4 + SrCl_2 = 2KCl + SrCrO_4$$
 žltá \otimes (rozpustná v kys. octovej)

o
$$C_6O_6Na_2 + BaCl_2 = 2NaCl + C_6O_6Ba$$
 hnedá \otimes (+HCl = červená \otimes)

$$\begin{array}{ccc} \circ & C_6O_6Na_2 + SrCl_2 = 2NaCl + \underline{C_6O_6Sr} & \textbf{hnedá} \otimes (\texttt{+HCl} = \textbf{bezfarebný} \odot) \\ & & CO - CO - \overline{CONa} \\ & & \text{rodizonát sodný:} & & \\ & & & CO - CO - CONa \end{array}$$

$$\circ$$
 $2BaCl_2 + K_2Cr_2O_7 = 2BaCrO_4 + 2KCl + 2HCl$ žltá \otimes

V.trieda katiónov

- $Mg^{2+}, Li^+, Na^+, K^+, NH_4^+$
- nemá skupinové činidlo
- plameňové skúšky:
 - Na⁺ žltá
 - o K⁺ fialová
 - Li⁺ karmínovočervená
- <u>špecifické reakcie:</u>
 - $\circ \quad 2LiCl + Na_2F_2 = 2NaCl + Li_2F_2 \qquad \qquad \text{biela} \otimes$
 - sodný katión sa dokazuje octanom uranilu (v prostredí kys. octovej) sas
 - $\circ KCl + HClO_4 = HCl + KClO_4$ biela \otimes
 - $\circ KCl + C_4H_6O_6 = HCl + C_4H_5O_6K$ biela \otimes
 - $\circ NH_4Cl + NaOH = NaCl + \uparrow NH_3 + H_2O$
 - $\circ \quad NH_4Cl + 2K_2[HgI_4] + 3KOH = NH_4[HgI_4] + HCl + 2H_2O + KI \text{ \"{z}ltohned\'{a}} \otimes$
 - $\circ \quad \mathit{MgCl}_2 + 2\mathit{KOH} = \mathit{Mg(OH)}_2 + 2\mathit{KCl} \qquad \qquad \text{biela} \ \otimes$
 - $Mg(OH)_2 + magnez$ ón = nevädzovomodrá \otimes

Rozdelenie aniónov

Trieda	l.	II.	III.
Skupinové činidlo	$BaCl_2$	$AgNO_3$	bez skupinového činidla
Anióny	SO_4^{2-} , SiF_6^{2-} F^- , CrO_4^{2-} , $Cr_2O_7^{2-}$, SO_3^{2-} , $S_2O_3^{2-}$ PO_4^{3-} , AsO_4^{3-} , CO_3^{2-} , SiO_3^{2-} , BO_2^{-} IO_3^- , AsO_3^-	Cl^-, Br^-, I^- SCN^-, CN^-, S^{2-} BrO_3^- $[Fe(CN)_6]^{4-}$ $[Fe(CN)_6]^{3-}$	NO ₂ -,NO ₃ - ClO ₄ -,ClO ₃ -

I.trieda aniónov

- vznikajú nerozpustné bárnaté soli aniónov, ktoré sa rozpúšťajú v zriedenej HNO₃
- reakcie so skupinovým činidlom:
 - o $Ba^{2+} + anión = príslušná soľ (zrazenina)$
 - väčšinou biele, len CrO_4^{2-} , $Cr_2O_7^{2-}$ žlté
- orientačné skúšky:
 - redukčné vlastnosti
 - pridaním KMnO₄, I₂ dochádza k odfarbeniu roztokov
 - $SO_3^{2-} + I_2 + H_2O = SO_4^{2-} + 2I^- + 2H^+$
 - $S^{2-} + I_2 = S + 2I^{-}$
 - $3I^{-} + MnO_{4}^{-} + 3H_{2}O = MnO(OH)_{2} + \frac{3}{2}I_{2} + 4OH^{-}$
 - o oxidačné vlastnosti
 - pridaním l[−] sa uvoľňuje l₂

- $Cr_2O_7^{2-} + 6I^- + 140H^- = 3I_2 + 2Cr^{3+} + 7H_2O$ červenohnedý \odot
- $10I^- + 2MnO_4^- + 16H^+ = 5I_2 + 2Mn^{2+} + 8H_2O$ $ClO_3^- + 6I^- + 6H^+ = 3I_2 + Cl^- + 3H_2O$
- rozklad aniónov slabých kyselín (pomocou HCl, H₂SO₄, H₂S)
 - $SO_3^{2-} + 2H^+ = H_2O + \uparrow SO_2$
 - $S_2O_3^{2-} + 2H^+ = H_2O + \underline{S} + \uparrow SO_2$
 - $CO_3^{2-} + 2H^+ = H_2O + \uparrow CO_2$
 - $S^{2-} + 2H^+ = \uparrow H_2S$

<u>špecifické reakcie:</u>

$$\circ SO_4^{2-} + Ba^{2+} + KMnO_4 = \underline{(BaSO_4 + KMnO_4)}$$
 ružové kryštáliky
$$\circ SO_3^{2-} + FeCl_3 = \mathbf{\check{c}erven\acute{y}} \odot \xrightarrow{T} \mathbf{bezfarebn\acute{y}} \odot$$

○
$$SO_3^{2-} + FeCl_3 =$$
červený $\odot \xrightarrow{T}$ bezfarebný \odot

o
$$SO_3^{2-} + Na_2[Fe(CN)_5NO] =$$
ružové sfarbenie
*nitroprusid sodn*ý

$$\circ S_2 O_3^{2-} + 2H^+ = H_2 O + S + \uparrow S O_2$$
 žltá \otimes

$$\circ \quad S_2 O_3^{2-} + AgNO_3 = \underline{Ag_2 S_2 O_3} = \underline{Ag_2 S} + H_2 SO_4$$

$$\circ \quad PO_4^{3-} + sol\'ucia \ hore \'cnat\'a(MgCl_2 + NH_4Cl + NH_4OH) = \underline{MgNH_4PO_4} \quad \textbf{biela} \otimes \\ + sol\'ucia \ molybd\'enov\'a = \ \ \textbf{\'zlt\'a} \otimes$$

$$\circ$$
 CrO_4^{2-} , $Cr_2O_7^{2-}+Ag^+=Ag_2CrO_4$ červenohnedá \otimes

II.trieda aniónov

• bárnaté soli rozpustné vo vode, strieborné soli nerozpustné vo vode a zriedenej HNO₃ za studena

• reakcie so skupinovým činidlom:

- o $Ag^+ + anión = príslušná soľ (zrazenina)$
 - Cl^- , SCN^- , $[Fe(CN)_6]^{4-}$ biela ⊗
 - nažltlá ⊗
 - žltá ⊗
 - S²⁻ čierna ⊗ (špecifická)
 - $[Fe(CN)_6]^{3-}$ červenohnedá ⊗

<u>špecifické reakcie:</u>

- o $Fe^{2+} + K_3[Fe(CN)_6] = KFe[Fe(CN)_6] + 2K^+$ tmavomodrá \otimes (berlínska modrá)
- o $Fe^{3+} + K_4[Fe(CN)_6] = KFe[Fe(CN)_6] + 3K^+$ tmavomodrá \otimes (berlínska modrá)
- $2FeCl_3 + 6SCN^- = Fe[Fe(SCN)_6] + 6Cl^-$ červený ⊙
- $Cl^- + Ag^+ = AgCl + 2NH_4OH = [Ag(NH_3)_2]Cl + 2H_2O$ bezfarebný ⊙
- o $Br^- + Cl_2 (chl\acute{o}rov\acute{a}voda) = 2Cl^- + Br_2$ červenohnedá kvapalina
- \circ $2I^- + Cl_2(chl\acute{o}rov\acute{a}voda) = 2Cl^- + I_2$ hnedočervený \odot
- $\circ \quad S^{2-} + AgNO_3 = 2NO_3^- + Ag_2S$
 - pri reakcii s nitroprusidom sodným nestále červenofialové sfrabenie

III.trieda aniónov

- nezrážajú sa ani s Ba²⁺ ani Ag⁺
- špecifické reakcie:
 - o NO₃ krúžková reakcia

- po pridaní kys. sírovej a síranu železnatého, sa na rozhraní roztokov vytvorí tmavohnedý prúžok (adičná hnedá fáza)
- o *NO*₂
 - odfarbuje roztoky KMnO₄
 - s difenylamínom reaguje za vzniku **modrej** ⊗
- $\circ \quad \mathit{ClO}_4^- + \mathit{KCl} = \mathit{KClO}_4 \quad \mathbf{biela} \otimes$

Kvantitatívna analytická chémia

- 1. Gravimetria
- 2. Odmerná analýza
- 3. Inštrumentálne metódy

Gravimetria (vážková analýza)

- váženie reakčného produktu (zrazeniny), kvantitatívne vylúčeného po reakcii analytu so zrážacím činidlom, ktorá sa sušením alebo žíhaním prevedie na zlúčeninu s presne definovaným chemickým zložením
- Schéma:
 - o odváženie vzorky (návažok)
 - o uvedenie vzorky do roztoku
 - o zrážanie
 - izolácia zrazeniny
 - filtrácia, dekantácia, premývanie...
 - o sušenie alebo žíhanie
 - o váženie produktu (vývažok) ±0,5 mg
 - rozdiel 2 po sebe idúcich vážení nesmie byť väčší ako 0,5 mg
 - o vyhodnotenie stanovenie obsahu
- Gravimetrický faktor f_a
 - o pomer atómovej (molekulovej) hmotnosti stanovenej látky k molekulovej hmotnosti izolovanej zlúčeniny vzhľadom na stechiometriu
 - o pre látku A_nB_m :

 - $\%A = \frac{b}{a}f_g.100$
 - a hmotnosť vzorky
 - b hmotnosť vývažku
 - $\mathbf{m}_A = b.f_a$