Exercise 1. A&F 2.5.1. Evaluate $\oint_{\gamma} f(z)dz$ where γ is the unit circle centered at the origin for the following functions f.

Solution 1.

(a) $f(z) = e^{iz}$. The function f(z) is entire as it is the composition of two entire functions e^w and iz. Its derivative is $f'(z) = ie^{iz}$. By Cauchy's Theorem, this means that for the closed curve γ , we have

$$\oint_{\gamma} e^{iz} dz = 0. \tag{1}$$

(b) $f(z) = e^{z^2}$. Once again f(z) is entire as it is the composition of two entire functions e^w and iz. By Cauchy's Theorem, this means

$$\oint_{\gamma} e^{iz} dz = 0. \tag{2}$$

(c) $f(z) = \frac{1}{z-1/2}$. The function f(z) is analytic except at $z = \frac{1}{2}$ which is contained in γ , so we cannot use Cauchy's theorem. We can instead use the residue theorem. Writing f as its Taylor-Laurent series about $z_0 = \frac{1}{2}$,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - 1/2)^n = 1(z - 1/2)^{-1}.$$
 (3)

Here we can see that $a_n = 0$ for all $n \neq -1$ and $a_{-1} = 1$. Therefore, by the Residue theorem, we have

$$\oint_C f(z)dz = 2\pi i a_{-1} = 2\pi i. \tag{4}$$

(d) $f(z) = \frac{1}{z^2-4}$. The function f(z) is analytic except at z = 2, -2, neither of which are in the contour γ . Since f(z) is analytic on and within γ , we can apply Cauchy's theorem, so that

$$\oint_{\gamma} \frac{1}{z^2 - 4} dz = 0. \tag{5}$$

(e) $f(z) = \frac{1}{2z^2+1}$. This function is analytic except at $z_{\pm} = i\frac{\sqrt{2}}{2}, -i\frac{\sqrt{2}}{2}$ which are contained in the contour γ . We can then write

$$f(z) = \frac{1}{2z^2 + 1} = \frac{1}{2(z - i\frac{\sqrt{2}}{2})(z + i\frac{\sqrt{2}}{2})}.$$
 (6)

We'll now compute the residues at z_{\pm} using the following formula for the residue of f at z_0

$$Res(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$
 (7)

For z_+ , we can compute

$$\operatorname{Res}(f, z_{+}) = \lim_{z \to z_{+}} \left(z - i \frac{\sqrt{2}}{2} \right) f(z) \tag{8}$$

$$= \lim_{z \to z_{+}} \frac{1}{2(z + i\frac{\sqrt{2}}{2})} \tag{9}$$

$$=\frac{1}{2\left(i\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)}\tag{10}$$

$$=\frac{1}{2i\sqrt{2}} = \frac{\sqrt{2}}{4i} \tag{11}$$

Similarly, we can compute the residue at z_{-}

$$\operatorname{Res}(f, z_{-}) = \lim_{z \to z_{-}} \left(z + i \frac{\sqrt{2}}{2} \right) f(z) \tag{12}$$

$$= \lim_{z \to z_{-}} \frac{1}{2(z - i\frac{\sqrt{2}}{2})} \tag{13}$$

$$=\frac{1}{2\left(-i\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)}\tag{14}$$

$$= -\frac{1}{2i\sqrt{2}} = -\frac{\sqrt{2}}{4i} \tag{15}$$

$$= -\operatorname{Res}(f, z_{+}) \tag{16}$$

We can then use the residue theorem to compute the integral of f over γ as follows

$$\oint_C \frac{1}{2z^2 + 1} dz = 2\pi i \left(\text{Res}(f, z_+) + \text{Res}(f, z_-) \right) = 0$$
(17)

(f) $\sqrt{z-4}0 \le \arg z < 2\pi$. With the specification on the argument, this function is analytic with derivative $\frac{1}{z-4}$ except on the real line for x>4. Therefore, the integral of this function over the unit circle is 0 by Cauchy's Theorem since it is analytic within and on the unit circle

$$\oint_{\gamma} \sqrt{z - 4} dz = 0. \tag{18}$$

Exercise 2. A&F 2.5.5. Evaluate the integral

$$\int_0^\infty e^{ix^2} \tag{19}$$

using the contour C(R) which is the closed circular section in the upper half plane with boundary points (0,0),(0,R), and $Re^{i\frac{\pi}{4}}$.

Solution 2. We begin by considering the integral

$$I_R = \oint_{C(R)} e^{iz^2} dz. \tag{20}$$

Since the function $f(x) = e^{iz^2}$ is analytic in the entire complex plane, we have that $I_R = 0$ by Cauchy Theorem. Breaking the contour C(R) into three parts, we see that

$$\oint_{C(R)} e^{iz^2} dz = \int_0^R e^{ix^2} dx + \int_{[Re^{i\frac{\pi}{4}},0]} e^{iz^2} dz + \int_{C_1(R)} e^{iz^2} dz.$$
(21)

Here, the first integral on the righthand side is the integral on the real line from (0, R), the second is the integral on the line from $[Re^{i\frac{\pi}{4}}, 0]$, the third integral is the integral on the circular section between R and $Re^{i\frac{\pi}{4}}$. We'll begin by trying to estimate the third integral. We'll start by working with the contour $C_1(R, \theta_0)$ which is the circular sector between $Re^{i\theta_0}$ and $Re^{i\frac{\pi}{4}}$ which we'll parameterize by the function $\gamma_{R,\theta_0}(t) = Re^{it}$ for $t \in [\theta, \frac{\pi}{4}]$. Then, we can bound the third integral by

$$\left| \int_{C_1(R,\theta_0)} e^{iz^2} dz \right| \le \operatorname{length}(C_1(R,\theta_0)) \cdot \sup_{z \in C_1(R,\theta_0)} \left| e^{iz^2} \right|$$
 (22)

$$= \left(\frac{\pi}{4} - \theta_0\right) \sup_{z \in C_1(R,\theta_0)} \left| e^{iz^2} \right| \tag{23}$$

$$\leq \frac{\pi}{4} \sup_{z \in C_1(R,\theta_0)} \left| e^{iz^2} \right|. \tag{24}$$

Now we'll compute $\sup_{z \in C_1(R,\theta_0)} \left| e^{iz^2} \right|$. Writing $z \in C_1(R,\theta_0)$ in polar exponential form as $z = Re^{i\theta}$ for some $\theta \in [\theta_0, \frac{\pi}{4}]$, we can simplify the exponent of f(z) as

$$iz^{2} = iR^{2}e^{i2\theta} = iR^{2}(\cos 2\theta + i\sin 2\theta) \tag{25}$$

$$= -R^2(\sin 2\theta + i\cos 2\theta). \tag{26}$$

Exponentiating, we can compute |f(z)| as

$$\left| e^{iz^2} \right| = \left| e^{-R^2(\sin 2\theta + i\cos 2\theta)} \right| = \left| e^{-R^2\sin 2\theta} \right| \left| e^{-iR^2\cos 2\theta} \right| \tag{27}$$

$$= \left| e^{-R^2 \sin 2\theta} \right|, \tag{28}$$

where $\left|e^{-iR^2\cos 2\theta}\right| = 1$ since $R^2\cos 2\theta$ is real. Since $\sin(x) > \frac{2x}{\pi}$ on $x \in [0, \frac{\pi}{2}]$, we have that

$$\sup_{z \in C_1(R,\theta_0)} \left| e^{iz^2} \right| \le \sup_{\theta \in [\theta_0, \frac{\pi}{4}]} \left| e^{-R^2 \frac{4\theta}{\pi}} \right| = e^{-R^2 \frac{4\theta_0}{\pi}}.$$
 (29)

We obtain this suprenum since the function $e^{-R^2\frac{4\theta}{\pi}}$ is positive and monotonically decreasing in θ .

Therefore, we can see that

$$\left| \int_{C_1(R,\theta_0)} e^{iz^2} dz \right| \le \frac{\pi}{4} e^{-R^2 \frac{4\theta_0}{\pi}}.$$
 (30)

We can see that since $C_1(R, \theta_0)$ becomes similar to $C_1(R)$ as $\theta_0 \to 0$ then

$$\lim_{R \to \infty} \left| \int_{C_1(R)} f(z) dz \right| = \lim_{R \to \infty} \lim_{\theta_0 \to 0} \left| \int_{C_1(R,\theta_0)} e^{iz^2} dz \right| \le \lim_{R \to \infty} \lim_{\theta_0 \to 0} \frac{\pi}{4} e^{-R^2 \frac{4\theta_0}{\pi}}.$$
 (31)

Since the righthand most function is monotonically decreasing and bounded by 0 in both R and θ_0 , we can re-arrange the limits and show that

$$\lim_{R \to \infty} \left| \int_{C_1(R)} e^{iz^2} dz \right| = \lim_{R \to \infty} \lim_{\theta_0 \to 0} \left| \int_{C_1(R,\theta_0)} e^{iz^2} dz \right| = 0.$$
 (32)

This implies that $\lim_{R\to\infty} \int_{C_1(R)} e^{iz^2} dz = 0$ which we'll use a bit later.

We'll now work on simplifying the integral $\int_{[Re^{i\frac{\pi}{4}},0]}e^{iz^2}dz$. We can immediately see that we can reverse the orientation of this integral and instead parameterize this integral using the curve $\gamma_2(r) = re^{i\frac{\pi}{4}}$ for $r \in [0,R]$. We can then compute

$$\int_{[Re^{i\frac{\pi}{4}},0]} e^{iz^2} dz = -\int_{\gamma_2} e^{iz^2} dz. \tag{33}$$

We can simplify the righthand side by computing that

$$\int_{\gamma_2} e^{iz^2} dz = \int_0^R e^{i\gamma(r)^2} \gamma'(r) dr \tag{34}$$

$$= \int_0^R e^{i(re^{i\pi/4})^2} (e^{i\pi/4}) dr \tag{35}$$

$$=e^{i\pi/4} \int_0^R e^{i(r^2 e^{i\pi/2})} dr$$
 (36)

$$=e^{i\pi/4} \int_0^R e^{i(ir^2)} dr$$
 (37)

$$=e^{i\pi/4}\int_0^R e^{-r^2} dr. (38)$$

Therefore, taking the limit of 21 as R approaches ∞ , we see that $\lim_{R\to\infty}I_R=0$, and therefore

$$0 = \lim_{R \to \infty} \left(\int_{-R}^{R} e^{ix^2} dx - e^{i\pi/4} \int_{0}^{R} e^{-r^2} dr + \int_{C_1(R)} e^{iz^2} dz \right)$$
 (39)

As shown before, the third integral on the righthand side approaches 0 in the limit, so that

$$0 = \lim_{R \to \infty} \left(\int_0^R e^{ix^2} dx - e^{i\pi/4} \int_0^R e^{-r^2} dr \right). \tag{40}$$

To conclude, we'll use the additive property of limits and the fact that $\int_0^\infty e^{-r^2} dr = \frac{\sqrt{\pi}}{2}$. This means that

$$\int_{0}^{\infty} e^{ix^{2}} dx = \lim_{R \to \infty} \int_{0}^{R} e^{ix^{2}} dx = \lim_{R \to \infty} e^{i\pi/4} \int_{0}^{R} e^{-r^{2}} dr$$
 (41)

$$=e^{i\pi/4} \int_0^\infty e^{-r^2} dr$$
 (42)

$$=e^{i\pi/4}\frac{\sqrt{\pi}}{2}.\tag{43}$$

This allows us to conclude that

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \frac{\sqrt{\pi}}{2}.$$
 (44)

Exercise 3. A&F 2.5.6. Evaluate the integral

$$I = \int_{\mathbb{R}} \frac{dx}{x^2 + 1} \tag{45}$$

using the contour C(R) which is the closed semicircle in the upper half plane with endopoints (-R,0) and (0,R).

Solution 3. Throughout, we assume that R > 1 for simplicity. Following the outline of the previous, we can decompose the integral of $f(z) = 1/(z^2 + 1)$ over C(R) as follows

$$\oint_{C(R)} \frac{dz}{z^2 + 1} = \int_{-R}^{R} \frac{dx}{x^2 + 1} + \int_{C_1(R)} \frac{dz}{z^2 + 1}.$$
(46)

Here, $C_1(R)$ represents the rounded section of the upper half circle which we parameter as $\gamma(t) = Re^{i\theta}$ for $\theta \in [0, \pi]$. We can then bound the integral as in the previous problem by

$$\left| \int_{C_1(R)} \frac{dz}{z^2 + 1} \right| \le \pi R \cdot \left(\sup_{z \in C_1(R)} \left| \frac{1}{z^2 + 1} \right| \right) \tag{47}$$

since the curve $C_1(R)$ has length πR . We can compute the suprenum that noting that each $z = Re^{i\theta}$, so that

$$\left| \frac{1}{z^2 + 1} \right| \le \frac{1}{||z^2| - |1||} \tag{48}$$

$$=\frac{1}{||R^2|-1|}\tag{49}$$

$$=\frac{1}{|R^2-1|}\tag{50}$$

by the reverse triagle inequality and the fact that $|z| = |Re^{i\theta}| = |R|$. This shows that

$$\left| \int_{C_1(R)} \frac{dz}{z^2 + 1} \right| \le \frac{\pi R}{|R^2 - 1|}.$$
 (51)

Therefore, we have that

$$\lim_{R \to \infty} \int_{C_1(R)} \frac{dz}{z^2 + 1} = 0. \tag{52}$$

Next, we'll compute the integral $\oint_{C(R)} \frac{dz}{z^2+1}$ with the residue theorem. Since the contour C(R) only contains the singularity i, we can write the integral as

$$\oint_{C(R)} \frac{dz}{z^2 + 1} = 2\pi i \operatorname{Res}(f, i). \tag{53}$$

We can easily compute this residue as

$$\operatorname{Res}(f, i) = \lim_{z \to i} (z - i) \left(\frac{1}{z^2 + 1}\right) = \lim_{z \to i} \frac{1}{z + i} = \frac{1}{2i}.$$
 (54)

Therefore, we have that

$$\oint_{C(R)} \frac{dz}{z^2 + 1} = 2\pi i \operatorname{Res}(f, i) = \pi.$$
(55)

Now taking the limit as $R \to \infty$, we see that

$$\pi = \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{dx}{x^2 + 1} + \int_{C_1(R)} \frac{dz}{z^2 + 1} \right). \tag{56}$$

Since the rightmost integral vanishes in the limit, we have that

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \pi. \tag{57}$$

Verification by real integration We can verify this using real integration since

$$\int_{-R}^{R} \frac{dx}{x^2 + 1} = \arctan(R) - \arctan(-R). \tag{58}$$

Taking the limit as $R \to \infty$, we see that

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \lim_{R \to \infty} \int_{-R}^{R} \frac{dx}{x^2 + 1} = \lim_{R \to \infty} \left[\arctan(R) - \arctan(-R) \right] = \pi/2 - (-\pi/2) = \pi.$$
(59)

Exercise 4. A&F 3.3.5.

Solution 4. In order to find the coefficients of the Taylor-Laurent Series about 0 of $f(z) = e^{\frac{t}{2}(z-z^{-1})} = \sum_{n \in \mathbb{Z}} a_n z^n$, we use the formula

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\frac{t}{2}(z-z^{-1})}}{z^{n+1}} dz \tag{60}$$

where γ is the unit circle parameterized as $\gamma(\theta) = e^{i\theta}$ for $\theta \in [-\pi, \pi]$. We can then simplify the integral as

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\frac{t}{2}(z-z^{-1})}}{z^{n+1}} dz \tag{61}$$

$$= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(e^{i\theta} - e^{-i\theta})}}{e^{i(n+1)\theta}} \cdot ie^{i\theta} d\theta. \tag{62}$$

We can simplify $e^{i\theta} - e^{-i\theta}$ as $2i\sin\theta$ and combine the terms $e^{i\theta}$ and $e^{i(n+1)\theta}$, so that

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(e^{i\theta} - e^{-i\theta})}}{e^{i(n+1)\theta}} \cdot ie^{i\theta} d\theta = \frac{i}{2\pi i} \int_{-\pi}^{\pi} \frac{e^{\frac{t}{2}(2i\sin\theta)}}{e^{in\theta}} d\theta \tag{63}$$

Combining the top and bottom halves of the integrand and canceling the i in front, we get that

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta. \tag{64}$$

We can further simplify this using $e^{-ix} = \cos x - i \sin x$, which gives us

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n\theta - t\sin\theta) d\theta + \frac{i}{2\pi} \int_{-\pi}^{\pi} \sin(n\theta - t\sin\theta) d\theta.$$
 (65)

The key to the next equality is that $g(\theta) = n\theta - t \sin \theta$ is odd. We show this directly as

$$g(-\theta) = -n\theta - t\sin -\theta = -(n\theta + t\sin -\theta)$$
(66)

$$= -(n\theta - t\sin\theta) \quad (\sin\theta \text{ is odd }) \tag{67}$$

$$= -g(\theta). \tag{68}$$

Therefore, $\cos(g(\theta))$ is even and $\sin(g(\theta))$ is odd due to composition rules for odd and even functions. This means that

$$\int_{-\pi}^{\pi} \cos(n\theta - t\sin\theta)d\theta = 2\int_{0}^{\pi} \cos(n\theta - t\sin\theta)d\theta \tag{69}$$

$$\int_{-\pi}^{\pi} \sin(n\theta - t\sin\theta)d\theta = 0 \tag{70}$$

by integral theorems for even and odd functions. Therefore,

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta = \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta - t\sin\theta) d\theta.$$
 (71)