## Pentagon

By the standard definition, a pentagon is a polygon having five equal sides. However, the pentagon can also be defined as being formed by five evenly spaced points on a circle, with five equal central angles that total four right angles.



Either way, we will need more insight if we wish to construct a pentagon.

Since there are five triangles like  $\triangle QCD$ , the central angles are each 1/5 of the whole circle, or 2/5 of a triangle, 72° in modern notation. By the inscribed angle theorem,  $\angle CAD$  with the same endpoints has one-half the measure, 1/5 of a triangle.

We claim that  $\triangle ACD$  is isosceles, thus, the base angles are twice the vertex angle, in the overall ratio 1:2:2.

Proof.

Since the five triangles like  $\triangle QCD$  have the same central angle and the same arms, they are all congruent by SAS. It follows that the total angles at the vertices  $A, B \dots$ , such as  $\angle BCD$  are all equal and twice the base angles of  $\triangle QCD$  such as  $\angle QCD$ .



Then  $\triangle ABC \cong \triangle AED$  by SAS. By subtraction, the base  $\angle ACD = \angle ADC$  and AC = AD by I.6.

As a result, we have 4/5 of two right angles to be divided equally for the base angles of the isosceles  $\triangle ACD$ .

## IV.10

Euclid shows how to construct such a triangle in IV.10.



Briefly, point C is placed so that AB/AC = AC/BC; D is placed on the circle on center A with radius AB, such that the length BD = AC. We can use the converse of the tangent-secant theorem to show that BD is tangent to the circle containing ACD, and then  $\angle BDC = \angle BAD$ .

Then since  $\triangle ACD$  is isosceles,  $\angle ADC = \angle DAC$ , so  $\angle ADB$  is bisected. But  $\triangle ABD$  is isosceles, so the two equal base angles are each twice the entral angle at A.

## continuation



Going back to the first diagram, we can show that  $\angle CAD$  is one-third the total angle at the vertex A. Since the flanking angles are equal, together AC and AD form three equal angles at vertex A.

*Proof.* We might count fractions of a right angle. Another approach is to use the triangle sum theorem. We showed that the base angles of  $\triangle BAC$  are equal. Let them equal x (red dots). Let the angles like  $\angle CAD$  have measure y (black dots). Then in  $\triangle ABE$  we have 4x + y and in  $\triangle ACD$  we have 3x + 2y. Since these sums are equal, it follows

that x = y.  $\square$ 



As a result, we have that the base angles of  $\triangle ACD$  have the same measure as the central angle QCD in the first figure. We also have that  $\angle A$  plus  $\angle ABD$  is equal to two right angles, so  $AE \parallel BD$ ,  $AB \parallel CE$ , ABXD is a rhombus (parallelogram), and the inner figure is a regular pentagon.

In  $\triangle ACD$ , the ratio of the long sides to the base is the same as the golden ratio or mean, usually called  $\phi$ , as defined by Euclid's construct above.



Go back to the construction of the golden ratio in EII.11. If AE has length 1, then BE = EF has length  $\sqrt{5}$ . AH = AF has length  $\sqrt{5} - 1$ .  $AB/AH = \phi = 2/(\sqrt{5} - 1)$ . Rationalizing the denominator we have

$$\phi = \frac{2}{\sqrt{5} - 1} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} + 1} = \frac{\sqrt{5} + 1}{2}$$



In the figure above  $\triangle PBC \cong \triangle ACD$ . *Proof.*  $\triangle PAB$  is similar to both, and they have equal bases.  $\square$ 

Then the ratio of one-half of BC to PB is 1/2 divided by  $\phi$  or  $1/2\phi$ . This is the cosine of  $\angle PCB = \angle ACD = 72^{\circ}$ , the same as the central

 $\angle CQD$ .

We also have that the length of BE is  $\phi/2$ , but this same length divided by the unit side length gives the cosine of  $\angle ABE = 36^{\circ}$ .

We can use these results to verify the correctness of the next method for construction of a pentagon.



Let the radius AO be 2, bisected at P, so  $AP = \sqrt{5}$ . Bisect  $\angle OPA$ , then  $AQ/OQ = \sqrt{5}$ .

So 
$$AQ + OQ = (1 + \sqrt{5}) \cdot OQ = 2$$
. Thus  $OQ = 1/\phi$ .

 $OQ/OB = 1/2\phi$  and so  $\angle BOA$  is equal to the central angle in a pentagon constructed on this circle.

Finally, draw the right  $\triangle QPR$ .  $OP^2 = 1$  and this is equal to  $OQ \cdot OR$ . Thus OR equals  $\phi$ , which gives  $\phi/2$  as the cosine of  $\angle COR$  which is  $36^{\circ}$ .

We have the following values for cosine:

$$\cos 36 = \frac{\phi}{2} \qquad \cos 72 = \frac{1}{2\phi}$$

We can get more values from the Pythagorean theorem, the definition  $(\phi^2 = \phi + 1)$ , and from the double angle formula. For example:

$$\sin^2 36 = 1 - \frac{\phi^2}{4} = \frac{4 - \phi - 1}{4}$$
$$\sin 36 = \frac{\sqrt{3 - \phi}}{2}$$

and

$$\sin 72 = 2\sin 36\cos 36 = 2\frac{\sqrt{3-\phi}}{2} \cdot \frac{\phi}{2}$$

$$\sin^2 72 = \frac{(3-\phi)(\phi+1)}{4} = \frac{3+2\phi-(\phi+1)}{4}$$

$$= \frac{\phi+2}{4}$$

$$\sin 72 = \sqrt{2+\phi}/2$$

which can be checked

$$\frac{2+\phi}{4} + \frac{1}{4\phi^2} = \frac{2\phi^2 + \phi^3 + 1}{4\phi^2}$$

The numerator is

$$2\phi + 2 + (\phi + 1)\phi + 1 = 4\phi + 4$$

which is equal to the denominator. We satisfy the identity  $\sin^2 \theta + \cos^2 \theta = 1$ .

Of course, now that we know sine and cosine of  $36^{\circ}$  and  $72^{\circ}$ , we also know them for  $18^{\circ}$  and  $54^{\circ}$ .

## radius

Another important question is the radius of the circle that circumscribes the pentagon. Returning to the central angle, observe that



If the side length is s then the half side is s/2 and s/2r is the sine of the central angle,  $\sin 36^\circ$  so the ratio is

$$\frac{s}{r} = 2\sin 36 = \sqrt{3 - \phi} = \sqrt{\frac{5 - \sqrt{5}}{2}}$$