L'Hôpital's rule, optimization

November 5th, 2024

Here are some key ideas from sections 4.3 and 4.4.

ullet Suppose f and g are differentiable and g'		
$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}$		
only when $\lim_{x \to a} \frac{f(x)}{g(x)}$ is	in the form	or
Optimization is about finding absolute ex	xtrema. Here are some pointers for op	timization problems.
1. If possible, draw a diagram and ide	ntify given quantities on the diagram.	
2. Assign a variable to the value that is	s to be maximized or minimized, and o	express it in terms of
3. Find the domain of the independent extrema.	t variable and proceed to find the	
* If the domain is an open interval or lendpoints as well. If the absolute extrem	um appears at the value of an open er	
Trig practice:		
Problem 1: (Stewart 4.4) Find two numbers w	hose difference is 100 and whose prod	luct is a minimum.
My Attempt:	Solution:	
Problem 2: (Stewart 4.4) Find two positive nu	 mbers whose product is 100 and whos	se sum is a minimum.
My Attempt:	Solution:	

Problem 3: (Stewart 4.3) Find $\lim_{x\to 1} \frac{\ln x}{\sin \pi x}$.		
My Attempt:	Solution:	
Problem 4: (Stewart 4.3) Rank the following functions in	order of how quickly they grow as $x \to \infty$:	
$y = 2^x$, $y = 3^x$, $y = e^{x/2}$, $y = e^{x/3}$.		
My Attempt:	Solution:	
Problem 5: (Stewart 4.4) A box with a square base and dimensions of the box that minimizes the amount of mate	l open top must have a volume of 32,000 cm ³ . Find the	
My Attempt:	Solution:	

Problem 6: (Stewart 4.3) Find $\lim_{x\to\infty} (xe^{1/x} - x)$.		
My Attempt:	Solution:	
Problem 7: (Stewart 4.4) Find the point on the curve $y = \sqrt{x}$ that is closest to the point $(3,0)$.		
My Attempt:	Solution:	
Challenge problem: Show that of all the isosceles triangle equilateral.	es with a given perimeter, the one with the greatest area is	