Masking Floating-Point Number Multiplication and Addition of Falcon

Keng-Yu Chen, Jiun-Peng Chen

October 16th, 2024

IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 276–303.

DOI:10.46586/tches.v2024.i2.276-303

Masking Floating-Point Number Multiplication and Addition of Falcon

First- and Higher-order Implementations and Evaluations

Keng-Yu Chen¹ and Jiun-Peng Chen^{1,2}

National Taiwan University, Taipei, Taiwan, r11921066@ntu.edu.tw
Academia Sinica, Taipei, Taiwan, jpchen@ieee.org

[CC24]: Accepted by Cryptographic Hardware and Embedded Systems (CHES) 2024

Table of Contents

- Introduction
- Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

• In 2022, the US National Institute of Standards and Technology (NIST) selected four algorithms for its post-quantum cryptography standardization process.

- In 2022, the US National Institute of Standards and Technology (NIST) selected four algorithms for its post-quantum cryptography standardization process.
- In theory, these algorithms can base their security on problems that are considered still hard given large-scale quantum computing.

- In 2022, the US National Institute of Standards and Technology (NIST) selected four algorithms for its post-quantum cryptography standardization process.
- In theory, these algorithms can base their security on problems that are considered still hard given large-scale quantum computing.
- In practice, the implementations of these algorithms need side-channel countermeasures.

- In 2022, the US National Institute of Standards and Technology (NIST) selected four algorithms for its post-quantum cryptography standardization process.
- In theory, these algorithms can base their security on problems that are considered still hard given large-scale quantum computing.
- In practice, the implementations of these algorithms need side-channel countermeasures.
- There exist attacks on FALCON that have not been addressed (until our paper).

Attacks on FALCON

Figure: A graphical overview of FALCON.Sign.

	Attack	Countermeasure
Pre-image Vector Computation	[KA21; Gue+22]	
Gaussian Sampler over Lattices	[Gue+22; Zha+23]	[Gue+22; Zha+23]

Attacks on FALCON

Figure: A graphical overview of FALCON.Sign.

	Attack	Countermeasure
Pre-image Vector Computation	[KA21; Gue+22]	[This Paper]
Gaussian Sampler over Lattices	[Gue+22; Zha+23]	[Gue+22; Zha+23]

Throughout the presentation, we assume

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

7 / 56

Throughout the presentation, we assume

• For a variable x, the jth bit of x is written as $x^{(j)}$.

Throughout the presentation, we assume

- For a variable x, the jth bit of x is written as $x^{(j)}$.
- The *i*th bit to *j*th bit $(j \ge i)$ of x is represented by $x^{[j:i]}$.

Throughout the presentation, we assume

- For a variable x, the jth bit of x is written as $x^{(j)}$.
- The *i*th bit to *j*th bit $(j \ge i)$ of x is represented by $x^{[j:i]}$.
- A sequence of n variables (x_1, x_2, \dots, x_n) (e.g. shares of variable x) is written as $(x_i)_{1 \le i \le n}$, or simply (x_i) .

Throughout the presentation, we assume

- For a variable x, the jth bit of x is written as $x^{(j)}$.
- The *i*th bit to *j*th bit $(j \ge i)$ of x is represented by $x^{[j:i]}$.
- A sequence of n variables (x_1, x_2, \dots, x_n) (e.g. shares of variable x) is written as $(x_i)_{1 \le i \le n}$, or simply (x_i) .
- For a proposition P, $\llbracket P \rrbracket = 1$ if and only if P is true and 0 if otherwise.

Table of Contents

- Introduction
- Preliminaries
 - FALCON
 - Floating-Point Number Arithmetic
 - Power Analysis and Masking
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

Table of Contents

- Introduction
- Preliminaries
 - FALCON
 - Floating-Point Number Arithmetic
 - Power Analysis and Masking
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

KeyGen

Sign(m)

 $\mathsf{Verify}(\mathsf{m},\, \boldsymbol{s})$

Keng-Yu Chen, Jiun-Peng Chen

KeyGen

Secret Key: Short polynomials $f,g,F,G\in\mathbb{Z}[x]/(x^N+1)$ such that fG-gF=q and

$$\mathbf{B} = \left[\begin{array}{c|c} g & -f \\ \hline G & -F \end{array} \right]$$

Sign(m)

Verify(m, s)

KeyGen

Secret Key: Short polynomials $f, g, F, G \in \mathbb{Z}[x]/(x^N+1)$ such that fG - gF = q and

$$\mathbf{B} = \begin{bmatrix} g & -f \\ \hline G & -F \end{bmatrix}$$

Public Key: Polynomial $h = gf^{-1} \mod q$ and

$$\mathbf{A} = \left[\begin{array}{c|c} 1 & h \end{array} \right]$$

Note that

$$\mathbf{B}\mathbf{A}^T = \mathbf{0} \bmod q$$

Sign(m)

Verify(m, s)

KeyGen

Secret Key: Short polynomials $f,g,F,G\in\mathbb{Z}[x]/(x^N+1)$ such that fG-gF=q and

$$\mathbf{B} = \begin{bmatrix} g & -f \\ \hline G & -F \end{bmatrix}$$

Public Key: Polynomial $h = gf^{-1} \mod q$ and

$$\mathbf{A} = [1 \mid h]$$

Note that

$$\mathbf{B}\mathbf{A}^T = \mathbf{0} \bmod q$$

Sign(m)

A short signature **s** such that

$$\mathbf{sA}^T = H(\mathbf{r} || \mathbf{m}) \bmod q$$

- H: hash function
- r: random salt

Verify(m, s)

KeyGen

Secret Key: Short polynomials $f,g,F,G\in\mathbb{Z}[x]/(x^N+1)$ such that fG-gF=q and

$$\mathbf{B} = \begin{bmatrix} g & -f \\ \hline G & -F \end{bmatrix}$$

Public Key: Polynomial $h = gf^{-1} \mod q$ and

$$\mathbf{A} = [1 \mid h]$$

Note that

$$\mathbf{B}\mathbf{A}^T = \mathbf{0} \bmod q$$

Sign(m)

A short signature **s** such that

$$\mathbf{sA}^T = H(\mathbf{r} || \mathbf{m}) \bmod q$$

- H: hash function
- r: random salt

Verify(m, s)

Check

- **s** is short

To find such a short s, one can first

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

11/56

To find such a short s, one can first

• Compute $c \leftarrow H(r||m)$.

Keng-Yu Chen, Jiun-Peng Chen

- Compute $c \leftarrow H(r||m)$.
- Find a solution $\mathbf{c} \leftarrow [c \mid 0]$ such that $\mathbf{c} \mathbf{A}^T = H(\mathbf{r} || \mathbf{m}) \mod q$.

- Compute $c \leftarrow H(r||m)$.
- Find a solution $\mathbf{c} \leftarrow [c \mid 0]$ such that $\mathbf{c} \mathbf{A}^T = H(\mathbf{r} || \mathbf{m}) \mod q$.
- Compute the pre-image vector $\mathbf{t} \leftarrow \mathbf{c} \mathbf{B}^{-1}$.

- Compute $c \leftarrow H(r||m)$.
- Find a solution $\mathbf{c} \leftarrow [c \mid 0]$ such that $\mathbf{c} \mathbf{A}^T = H(\mathbf{r} \parallel \mathbf{m}) \mod q$.
- Compute the pre-image vector $\mathbf{t} \leftarrow \mathbf{c} \mathbf{B}^{-1}$.
- Apply the nearest plane algorithm (Appendix Nearest-Plane Algorithm) to find a vector z such that (t z)B is short.

- Compute $c \leftarrow H(r||m)$.
- Find a solution $\mathbf{c} \leftarrow [c \mid 0]$ such that $\mathbf{c} \mathbf{A}^T = H(\mathbf{r} \parallel \mathbf{m}) \mod q$.
- Compute the pre-image vector $\mathbf{t} \leftarrow \mathbf{c} \mathbf{B}^{-1}$.
- Apply the nearest plane algorithm (Appendix Nearest-Plane Algorithm) to find a vector \mathbf{z} such that $(\mathbf{t} \mathbf{z})\mathbf{B}$ is short.
- $\mathbf{s} \leftarrow (\mathbf{t} \mathbf{z})\mathbf{B}$. Note that $\mathbf{s}\mathbf{A}^T = H(\mathbf{r}||\mathbf{m}) \bmod q$.

- Compute $c \leftarrow H(r||m)$.
- Find a solution $\mathbf{c} \leftarrow [c \mid 0]$ such that $\mathbf{c} \mathbf{A}^T = H(\mathbf{r} \parallel \mathbf{m}) \mod q$.
- Compute the pre-image vector $\mathbf{t} \leftarrow \mathbf{c} \mathbf{B}^{-1}$.
- Apply the nearest plane algorithm (Appendix Nearest-Plane Algorithm) to find a vector z such that (t z)B is short.
- $\mathbf{s} \leftarrow (\mathbf{t} \mathbf{z})\mathbf{B}$. Note that $\mathbf{s}\mathbf{A}^T = H(\mathbf{r}\|\mathbf{m}) \bmod q$.

Table of Contents

- Introduction
- Preliminaries
 - FALCON
 - Floating-Point Number Arithmetic
 - Power Analysis and Masking
- Masked Floating-Point Number Multiplication and Addition
- 4 Evaluation and Implementation
- Conclusion

Fast-Fourier Transform

The pre-image vector computation includes polynomial multiplications

$$\mathbf{t} = \left[\begin{array}{c|c} c & 0 \end{array} \right] \cdot \mathbf{B}^{-1} = \frac{1}{q} \left[\begin{array}{c|c} c \cdot -F & c \cdot f \end{array} \right]$$

Fast-Fourier Transform

The pre-image vector computation includes polynomial multiplications

$$\mathbf{t} = \left[\begin{array}{c|c} c & 0 \end{array} \right] \cdot \mathbf{B}^{-1} = \frac{1}{q} \left[\begin{array}{c|c} c \cdot -F & c \cdot f \end{array} \right]$$

To speed up, the pre-image vector computation is performed after a Fourier transform:

$$\frac{1}{q} \left[| \mathsf{FFT}(c) \odot \mathsf{FFT}(-F) | | \mathsf{FFT}(c) \odot \mathsf{FFT}(f) | \right]$$

Fast-Fourier Transform

The pre-image vector computation includes polynomial multiplications

$$\mathbf{t} = \left[\begin{array}{c|c} c & 0 \end{array} \right] \cdot \mathbf{B}^{-1} = \frac{1}{q} \left[\begin{array}{c|c} c \cdot -F & c \cdot f \end{array} \right]$$

To speed up, the pre-image vector computation is performed after a Fourier transform:

$$\frac{1}{q} \left[| \mathsf{FFT}(c) \odot \mathsf{FFT}(-F) | | \mathsf{FFT}(c) \odot \mathsf{FFT}(f) | \right]$$

The pre-image vector computation is coefficient-wise complex number multiplications.

Floating-Point Number

A complex number is represented by two 64-bit floating-point numbers (FPNs). An FPN is composed of sign bit s, exponent e, and mantissa \tilde{m}

Figure: A 64-bit Floating-Point Number

Floating-Point Number

A complex number is represented by two 64-bit floating-point numbers (FPNs). An FPN is composed of sign bit s, exponent e, and mantissa \tilde{m}

Figure: A 64-bit Floating-Point Number

The value is
$$(-1)^s \cdot 2^{e-1023} \cdot \underbrace{\left(1 + \tilde{m} \cdot 2^{-52}\right)}_{\times 2^{52} = m}$$

Floating-Point Number

A complex number is represented by two 64-bit floating-point numbers (FPNs). An FPN is composed of sign bit s, exponent e, and mantissa \tilde{m}

Figure: A 64-bit Floating-Point Number

The value is
$$(-1)^s \cdot 2^{e-1023} \cdot \underbrace{(1+\tilde{m}\cdot 2^{-52})}_{\times 2^{52}=m}$$

For convenience, we may use (s, e, m) to represent an FPN.

FPN multiplication (FprMul) is proceeded by

FPN addition (FprAdd) is proceeded by

15 / 56

FPN multiplication (FprMul) is proceeded by

Sign bit XOR

FPN addition (FprAdd) is proceeded by

October 16th, 2024

15 / 56

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

FPN addition (FprAdd) is proceeded by

• Making the first operand \geq the second

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result

FPN multiplication (FprMul) is proceeded by

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the mantissa
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result
- Packing and rounding (FPR)

In floating-point arithmetic, when shifted right, the mantissa maintains a sticky bit

 $10010\textcolor{red}{0100} \gg 4 \rightarrow$

In floating-point arithmetic, when shifted right, the mantissa maintains a sticky bit

$$10010\textcolor{red}{0100} \gg 4 \rightarrow 1001 \underbrace{1}_{\text{Sticky}}$$

In floating-point arithmetic, when shifted right, the mantissa maintains a sticky bit

$$10010{\color{red}0100} \gg 4 \rightarrow 1001 \underbrace{1}_{\text{Sticky}}$$

It indicates whether there exists any 1 after the least significant bit.

In floating-point arithmetic, when shifted right, the mantissa maintains a sticky bit

$$100100100 \gg 4 \rightarrow 1001 \underbrace{1}_{\mathsf{Sticky}}$$

It indicates whether there exists any 1 after the least significant bit. In the above example,

sticky bit
$$1 = 0 \vee [(0100) \neq 0] = [(00100) \neq 0]$$

Floating-Point Number Packing and Rounding

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z **Output:** FPN x packed by s, e, z

- 1: $e \leftarrow e + 1076$
- 2: $b \leftarrow \llbracket e < 0 \rrbracket$
- 3: $z \leftarrow z \land (b-1)$
- 4: $b \leftarrow [z \neq 0]$
- 5: $e \leftarrow e \land (-b)$
- 6: $x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$
- 7: $f \leftarrow 0XC8 \gg z^{[3:1]}$
- 8: $x \leftarrow x + f^{(1)}$ {increment if $z^{[3:1]}$ is 011,110 or 111}
- 9: return x

Floating-Point Number Multiplication

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN
$$y = (sy, ey, my)$$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \wedge (-b)$$

13: **return**
$$FPR(s, e, z)$$

Floating-Point Number Addition

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, v, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ey$$

9:
$$b \leftarrow \llbracket c < 60 \rrbracket$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize
$$z$$
, ex to make $z \in [2^{63}, 2^{64})$

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Table of Contents

- Introduction
- Preliminaries
 - FALCON
 - Floating-Point Number Arithmetic
 - Power Analysis and Masking
- Masked Floating-Point Number Multiplication and Addition
- 4 Evaluation and Implementation
- Conclusion

Power Analysis Attacks

Power consumption during the execution of programs depends on intermediate values.

21 / 56

Power Analysis Attacks

- Power consumption during the execution of programs depends on intermediate values.
- Power analysis attacks leverage this fact to find the secret key.

Power Analysis Attacks

- Power consumption during the execution of programs depends on intermediate values.
- Power analysis attacks leverage this fact to find the secret key.

Figure: An Example of a Power Trace

Masking defends against such threats by secret-sharing the sensitive variables.

22 / 56

Masking defends against such threats by secret-sharing the sensitive variables.

• Boolean Masking: A variable x is split into n shares $(x_i)_{1 \le i \le n}$ such that

$$x = \bigoplus_{i=1}^{n} x_i$$

Masking defends against such threats by secret-sharing the sensitive variables.

• Boolean Masking: A variable x is split into n shares $(x_i)_{1 \le i \le n}$ such that

$$x = \bigoplus_{i=1}^{n} x_i$$

• Arithmetic Masking: A variable x is split into n shares $(x_i)_{1 \le i \le n}$ (when stored in a k-bit register) such that

$$x = \sum_{i=1}^{n} x_i \pmod{2^k}$$

• In each run, all x_i 's are randomized so that any n-1 shares of them are independently and uniformly distributed.

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

23 / 56

- In each run, all x_i 's are randomized so that any n-1 shares of them are independently and uniformly distributed.
- All operations need to be operated via shares.

- In each run, all x_i 's are randomized so that any n-1 shares of them are independently and uniformly distributed.
- All operations need to be operated via shares.

For example, if x is a secret variable, the operation $y \leftarrow \operatorname{pt} \oplus x$ will become

$$\begin{cases} y_1 \leftarrow \mathsf{pt} \oplus x_1 \\ y_2 \leftarrow x_2 \end{cases} \quad \mathsf{where} \ x_1, x_2 \ \mathsf{are} \ \mathsf{sampled} \ \mathsf{uniformly} \ \mathsf{such} \ \mathsf{that} \ x_1 \oplus x_2 = x$$

The variables with secret information are splitted into shares.

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
 - Overview of Our Approach
 - Tricks to Removing Branches
- Evaluation and Implementation
- Conclusion

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
 - Overview of Our Approach
 - Tricks to Removing Branches
- Evaluation and Implementation
- Conclusion

An intuitive approach to mask an algorithm:

26 / 56

An intuitive approach to mask an algorithm:

• For operations like \land, \oplus : Boolean masking

An intuitive approach to mask an algorithm:

- For operations like \land, \oplus : Boolean masking
- For operations like $+, \times$: arithmetic masking

An intuitive approach to mask an algorithm:

- For operations like \land, \oplus : Boolean masking
- \bullet For operations like $+,\times:$ arithmetic masking

and use the following gadgets if necessary:

An intuitive approach to mask an algorithm:

- For operations like \land, \oplus : Boolean masking
- ullet For operations like $+, \times$: arithmetic masking

and use the following gadgets if necessary:

• A2B: $(x_i)_{1 \le i \le n} \mapsto (y_i)_{1 \le i \le n}$ such that $\sum_{i=1}^n x_i = \bigoplus_{i=1}^n y_i$

An intuitive approach to mask an algorithm:

- For operations like \land, \oplus : Boolean masking
- For operations like $+, \times$: arithmetic masking

and use the following gadgets if necessary:

- A2B: $(x_i)_{1 \le i \le n} \mapsto (y_i)_{1 \le i \le n}$ such that $\sum_{i=1}^n x_i = \bigoplus_{i=1}^n y_i$
- B2A: $(y_i)_{1 \le i \le n} \mapsto (x_i)_{1 \le i \le n}$ such that $\bigoplus_{i=1}^n y_i = \sum_{i=1}^n x_i$

For example, if x is a secret variable, the operation $y \leftarrow \operatorname{pt} \oplus x$; $z \leftarrow y \times x$ will become

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

For example, if x is a secret variable, the operation $y \leftarrow \operatorname{pt} \oplus x$; $z \leftarrow y \times x$ will become

```
Input: pt, x
```

Output: (z_1, z_2) such that $z_1 + z_2 = (\operatorname{pt} \oplus x) \times x$

- 1: Sample x_1, x_2 uniformly such that $x_1 \oplus x_2 = x$
- 2: $y_1 \leftarrow \mathsf{pt} \oplus x_1$
- 3: $y_2 \leftarrow x_2$
- 4: $(x_1', x_2') \leftarrow B2A((x_1, x_2))$ $// x_1' + x_2' = x_1 \oplus x_2 = x$
- 5: $(y_1', y_2') \leftarrow B2A((y_1, y_2))$ $// y_1' + y_2' = y_1 \oplus y_2 = y_1$
- 6: $z_1 \leftarrow y_1 \times x_1 + y_2 \times x_2$
- 7: $z_2 \leftarrow y_1 \times x_2 + y_2 \times x_1$

However, some operations in floating-point number arithmetic cannot be easily implemented in this way:

However, some operations in floating-point number arithmetic cannot be easily implemented in this way:

- Check whether a secret value is nonzero
 - Given (x_i) , check whether $\bigoplus_{i=1}^n x_i \neq 0$ or $\sum_{i=1}^n x_i \neq 0$

However, some operations in floating-point number arithmetic cannot be easily implemented in this way:

- Check whether a secret value is nonzero
 - Given (x_i) , check whether $\bigoplus_{i=1}^n x_i \neq 0$ or $\sum_{i=1}^n x_i \neq 0$
- Right-shift a secret value by another secret value
 - Given (x_i) and (c_i) , right-shift (x_i) by (c_i)

However, some operations in floating-point number arithmetic cannot be easily implemented in this way:

- Check whether a secret value is nonzero
 - Given (x_i) , check whether $\bigoplus_{i=1}^n x_i \neq 0$ or $\sum_{i=1}^n x_i \neq 0$
- Right-shift a secret value by another secret value
 - Given (x_i) and (c_i) , right-shift (x_i) by (c_i)
- Normalize a secret value to [2⁶³, 2⁶⁴)
 - Given (x_i) , left-shift (x_i) until its 64th bit is set

Let's see where these operations are:

- Check whether a secret value is nonzero
- Right-shift a secret value by another secret value
- Normalize a secret value to [2⁶³, 2⁶⁴)

FprMul:

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the result
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result
- Packing and rounding (FPR)

Let's see where these operations are:

- Check whether a secret value is nonzero
- Right-shift a secret value by another secret value
- Normalize a secret value to [2⁶³, 2⁶⁴)

FprMul:

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the result
- Packing and rounding (FPR)

- lacktriangle Making the first operand \geq the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result
- Packing and rounding (FPR)

Let's see where these operations are:

- Check whether a secret value is nonzero
- Right-shift a secret value by another secret value
- Normalize a secret value to [2⁶³, 2⁶⁴)

FprMul:

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the result
- 5 Packing and rounding (FPR)

- Making the first operand ≥ the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result
- Solution is a second of the second of the

Let's see where these operations are:

- Check whether a secret value is nonzero
- Right-shift a secret value by another secret value
- Normalize a secret value to [2⁶³, 2⁶⁴)

FprMul:

- Sign bit XOR
- Exponent Addition
- Mantissa Multiplication
- Right-shifting the result
- 5 Packing and rounding (FPR)

- Making the first operand ≥ the second
- Right-shifting the second operand
- Mantissa Addition / Subtraction
- Normalizing the result
- Second Packing and rounding (FPR)

We design novel gadgets for these three operations, including:

We design novel gadgets for these three operations, including:

• SecNonzero: securely check whether a secret value is nonzero

SecNonzero

Given shares (x_i) , output one-bit shares (b_i) such that

$$\left[\left(\bigcup_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i} \quad \text{or} \quad \left[\left(\sum_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i}$$

We design novel gadgets for these three operations, including:

- SecNonzero: securely check whether a secret value is nonzero
- SecFprUrsh: securely right-shift a secret value by another secret value

SecFprUrsh

Given 64-bit shares (x_i) and 6-bit shares (c_i) , output shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_i = \left(\left(\bigoplus_{i=1}^{n} x_i \right) \gg \left(\sum_{i=1}^{n} c_i \bmod 2^6 \right) \right) \vee \left[\left(\bigoplus_{i=1}^{n} x_i^{[c:1]} \neq 0 \right) \right]$$

We design novel gadgets for these three operations, including:

- SecNonzero: securely check whether a secret value is nonzero
- SecFprUrsh: securely right-shift a secret value by another secret value
- SecFprNorm64: securely normalize a secret value to [2⁶³, 2⁶⁴)

SecFprNorm64

Given 64-bit shares (x_i) and 16-bit shares (e_i) , output shares (x_i') and (e_i') such that

if c is the smallest integer such that
$$((\bigoplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$$

then
$$(\bigoplus_{i=1}^n x_i') = ((\bigoplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

Gadgets from Previous Works

Algorithm	Description	Reference
SecAnd	AND of Boolean shares	[ISW03; Bar+16]
SecMult	Multiplication of arithmetic shares	[ISW03; Bar+16]
SecAdd	Addition of Boolean shares	[Cor+15; Bar+18]
A2B	Arithmetic to Boolean conversion	[Sch+19]
B2A	Boolean to arithmetic conversion	[BCZ18]
B2A _{Bit}	One-bit B2A conversion	[Sch+19]
RefreshMasks	t-NI refresh of masks	[Bar+16; BCZ18]
Refresh	t-SNI refresh of masks	[Bar+16]

Table: List of used gadgets in our work

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
 - Overview of Our Approach
 - Tricks to Removing Branches
- Evaluation and Implementation
- Conclusion

33 / 56

Why Removing Branch

• For cryptographic operations, we need constant-time implementations.

Why Removing Branch

- For cryptographic operations, we need constant-time implementations.
- Branch is usually not allowed in a constant-time implementation.
 - Different operations can cause different running times (and power consumption patterns)
 - Branch prediction

If we want to run the following operations:

1: **if**
$$a = 0$$
 then

2:
$$b \leftarrow 0$$

If we want to run the following operations:

1: **if**
$$a = 0$$
 then

2:
$$b \leftarrow 0$$

Suppose a is either 0 or 1, we can write it as

1:
$$b \leftarrow b \wedge (-a)$$

If we want to run the following operations:

1: **if**
$$a = 0$$
 then 2: $b \leftarrow 0$

Suppose a is either 0 or 1, we can write it as

1:
$$b \leftarrow b \wedge (-a)$$

Now, for Boolean-shared values in our design

1:
$$(b_i) \leftarrow \mathsf{SecAnd}((b_i), (-a_i))$$

We utilize that $\bigoplus_{i=1}^n -a_i = -\bigoplus_{i=1}^n a_i = -a$, which is not true for a general k-bit a.

Similarly, for operations

- 1: if a = 1 then
- 2: *b* ← 0

Similarly, for operations

1: **if**
$$a = 1$$
 then

2:
$$b \leftarrow 0$$

Suppose a is either 0 or 1, we can write it as

1:
$$b \leftarrow b \land (\neg(-a))$$

Similarly, for operations

1: **if**
$$a = 1$$
 then

2:
$$b \leftarrow 0$$

Suppose a is either 0 or 1, we can write it as

1:
$$b \leftarrow b \wedge (\neg(-a))$$

For Boolean-shared values.

1:
$$(c_i) \leftarrow (-a_i)$$

1:
$$(c_i) \leftarrow (-a_i)$$

2: $(b_i) \leftarrow \mathsf{SecAnd}((b_i), (\neg c_1, c_2, \cdots, c_n))$

We utilize that $\neg (\bigoplus_{i=1}^n c_i) = (\neg c_1) \oplus (\bigoplus_{i=2}^n c_i)$.

Moreover, for operations,

1: **if** a = 1 **then**

2: $b \leftarrow c$

Moreover, for operations,

1: **if**
$$a = 1$$
 then

2:
$$b \leftarrow c$$

Suppose a is either 0 or 1, we may write it as

1:
$$d \leftarrow b \oplus c$$

1:
$$d \leftarrow b \oplus c$$

2: $b \leftarrow b \oplus (d \land (-a))$

Moreover, for operations,

1: **if**
$$a = 1$$
 then

2:
$$b \leftarrow c$$

Suppose a is either 0 or 1, we may write it as

1:
$$d \leftarrow b \oplus c$$

2:
$$b \leftarrow b \oplus (d \wedge (-a))$$

For Boolean-shared values.

1:
$$(d_i) \leftarrow (b_i \oplus c_i)$$

2:
$$(d_i) \leftarrow \operatorname{SecAnd}((d_i), (-a_i))$$

3:
$$(b_i) \leftarrow (b_i \oplus d_i)$$

Tricks in Masking FPR

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

1: $e \leftarrow e + 1076$

Output: FPN x packed by s, e, z

2: $b \leftarrow \llbracket e < 0 \rrbracket$

3: $z \leftarrow z \land (b-1)$

4: $b \leftarrow [z \neq 0]$

5: $e \leftarrow e \land (-b)$

6: $x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$

7: $f \leftarrow 0XC8 \gg z^{[3:1]}$

8: $x \leftarrow x + f^{(1)}$ {increment if $z^{[3:1]}$ is 011,110 or 111}

9: return x

Tricks in Masking FprMul

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN
$$y = (sy, ey, my)$$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ev - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \wedge (-b)$$

13: **return**
$$FPR(s, e, z)$$

Tricks in Masking FprAdd

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \lor ((1-(-d)^{(64)}) \land x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3, my \leftarrow my \ll 3$$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Utilizing new gadgets and the tricks, we design the following gadgets:

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

Utilizing new gadgets and the tricks, we design the following gadgets:

• SecFPR: Secure FPR by masking.

Utilizing new gadgets and the tricks, we design the following gadgets:

- SecFPR: Secure FPR by masking.
- SecFprMul: Secure FprMul by masking.

Utilizing new gadgets and the tricks, we design the following gadgets:

- SecFPR: Secure FPR by masking.
- SecFprMul: Secure FprMul by masking.
- SecFprAdd: Secure FprAdd by masking.

Utilizing new gadgets and the tricks, we design the following gadgets:

- SecFPR: Secure FPR by masking.
- SecFprMul: Secure FprMul by masking.
- SecFprAdd: Secure FprAdd by masking.

We leave the details of concrete implementations and several tricks for improvements in Appendix – Details of Our Design.

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
 - Security
 - Performance
- Conclusion

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
 - Security
 - Performance
- Conclusion

To theoretically evaluate the security, we consider the probing model [ISW03].

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

43 / 56

To theoretically evaluate the security, we consider the probing model [ISW03].

• The *t*-probing model assumes that an adversary is able to peek any *t* intermediate values in the algorithm.

To theoretically evaluate the security, we consider the probing model [ISW03].

- The *t*-probing model assumes that an adversary is able to peek any *t* intermediate values in the algorithm.
- To be secure in the *t*-probing model (*t*-probing secure), $n \ge t + 1$.

To theoretically evaluate the security, we consider the probing model [ISW03].

- The *t*-probing model assumes that an adversary is able to peek any *t* intermediate values in the algorithm.
- To be secure in the *t*-probing model (*t*-probing secure), $n \ge t + 1$.
- It is complicated to prove *t*-probing security directly, so we apply the concept of *non-interference security*.

t-Non-Interference (t-NI) Security (from [Bar+16])

A gadget is t-Non-Interference (t-NI) secure if every set of t intermediate values can be simulated by no more than t shares of each of its inputs.

44 / 56

t-Non-Interference (t-NI) Security (from [Bar+16])

A gadget is t-Non-Interference (t-NI) secure if every set of t intermediate values can be simulated by no more than t shares of each of its inputs.

t-Strong Non-Interference (*t*-SNI) Security (from [Bar+16])

A gadget is t-Strong-Non-Interference (t-SNI) secure if for every set of t_I internal intermediate values and t_O of its output shares with $t_I + t_O \le t$, they can be simulated by no more than t_I shares of each of its inputs.

Appendix - Examples of Non-Interference Security

Takeaway:

• If a gadget is t-(S)NI secure for t = n - 1, and if any n - 1 input shares are independent to the secret, then the gadget is t-probing secure.

- If a gadget is t-(S)NI secure for t = n 1, and if any n 1 input shares are independent to the secret, then the gadget is t-probing secure.
- *t*-SNI is stronger than *t*-NI by definition.

- If a gadget is t-(S)NI secure for t = n 1, and if any n 1 input shares are independent to the secret, then the gadget is t-probing secure.
- *t*-SNI is stronger than *t*-NI by definition.

- If a gadget is t-(S)NI secure for t = n 1, and if any n 1 input shares are independent to the secret, then the gadget is t-probing secure.
- *t*-SNI is stronger than *t*-NI by definition.
- A composition of t-NI gadgets may not be t-NI, so we insert t-SNI gadgets to make it t-NI or t-SNI.

Gadgets in Our Work

Algorithm	Security	Algorithm	Security
SecAnd	t-SNI	SecOr	t-SNI
SecMult	t-SNI	SecNonzero	t-SNI
SecAdd	t-NI	SecFprUrsh	t-SNI
A2B	t-SNI	SecFprNorm64	t-NI
B2A	t-SNI	SecFPR	t-SNI
B2A _{Bit}	t-SNI	SecFprMul	t-SNI
${\sf RefreshMasks}$	t-NI	SecFprAdd	t-SNI
Refresh	t-SNI		

Table: List of gadgets/algorithms in our work with n = t + 1 shares

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

• Set 1: fixed input

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

- Set 1: fixed input
- Set 2: random inputs

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

- Set 1: fixed input
- Set 2: random inputs

The Welch's t-test is then applied.

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

- Set 1: fixed input
- Set 2: random inputs

The Welch's *t*-test is then applied.

$$t=rac{ar{x}_f-ar{x}_r}{\sqrt{rac{s_f^2}{n_f}+rac{s_r^2}{n_r}}}$$

- \bar{x}_f, \bar{x}_r : Sample means.
- s_f^2 , s_r^2 : Sample variances.
- n_f , n_r : Sample sizes.

For practical security validation, we apply the Test Vector Leakage Assessment (TVLA) [GJR+11].

A tester records two sets of traces where

- Set 1: fixed input
- Set 2: random inputs

The Welch's *t*-test is then applied.

$$t=rac{ar{x}_f-ar{x}_r}{\sqrt{rac{s_f^2}{n_f}+rac{s_r^2}{n_r}}}$$

- \bar{x}_f, \bar{x}_r : Sample means.
- s_f^2 , s_r^2 : Sample variances.
- n_f , n_r : Sample sizes.

By convention, the leakage is significant if the *t*-value exceeds ± 4.5 .

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
 - Security
 - Performance
- Conclusion

Performance Evaluation on ARM Cortex-M4

Gadget	Cycle			
Gauget	Unmasked	2 Shares	3 Shares	
FprMul/SecFprMul	308	7134 (23×)	36388 (118×)	
FprAdd/SecFprAdd	487	17154 (35×)	48291 (99×)	

Table: Performance evaluation of SecFprMul and SecFprAdd

Performance Evaluation on Intel-Core i9-12900KF

We also test the time for signing one message on a general-purpose CPU.

Security Level	Unmasked	2 Shares	3 Shares
Falcon-512	246.56	1905.55 (7.7×)	6137.25 (24.9×)
Falcon-1024	501.62	3819.76 (7.6×)	12287.29 (24.5×)

Table: Time (in microseconds) for signing a message on Intel-Core i9-12900KF CPU.

Table of Contents

- Introduction
- 2 Preliminaries
- Masked Floating-Point Number Multiplication and Addition
- Evaluation and Implementation
- Conclusion

In this paper,

Keng-Yu Chen, Jiun-Peng Chen Masking FALCON October 16th, 2024

52 / 56

In this paper,

• We present the first masking scheme for floating-point number multiplication and addition to protect the pre-image vector computation of FALCON.

- We present the first masking scheme for floating-point number multiplication and addition to protect the pre-image vector computation of FALCON.
- We design novel gadgets SecNonzero, SecFprUrsh, and SecFprNorm64.

- We present the first masking scheme for floating-point number multiplication and addition to protect the pre-image vector computation of FALCON.
- We design novel gadgets SecNonzero, SecFprUrsh, and SecFprNorm64.
- All our masked gadgets are proven either t-NI or t-SNI secure.

- We present the first masking scheme for floating-point number multiplication and addition to protect the pre-image vector computation of FALCON.
- We design novel gadgets SecNonzero, SecFprUrsh, and SecFprNorm64.
- All our masked gadgets are proven either t-NI or t-SNI secure.
- Our design pass the TVLA test in 10,000 (for 2-shared) or 100,000 (for 3-shared) traces.

- We present the first masking scheme for floating-point number multiplication and addition to protect the pre-image vector computation of FALCON.
- We design novel gadgets SecNonzero, SecFprUrsh, and SecFprNorm64.
- All our masked gadgets are proven either t-NI or t-SNI secure.
- Our design pass the TVLA test in 10,000 (for 2-shared) or 100,000 (for 3-shared) traces.
- Our countermeasure compared to the unmasked reference implementation is slow.

Thank You

Any question?

Reference I

- [ISW03] Yuval Ishai, Amit Sahai, and David Wagner. "Private Circuits: Securing Hardware against Probing Attacks".
 In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 463–481. DOI: 10.1007/978-3-540-45146-4 27
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206. DOI: 10.1145/1374376.1374407.
- [GJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. "A testing methodology for side-channel resistance validation". In: NIST non-invasive attack testing workshop. Vol. 7, 2011, pp. 115–136.
- [Cor+15] Jean-Sébastien Coron et al. "Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity". In: FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS. Springer, Heidelberg, Mar. 2015, pp. 130–149. DOI: 10.1007/978-3-662-48116-5_7.
- [Bar+16] Gilles Barthe et al. "Strong Non-Interference and Type-Directed Higher-Order Masking". In: ACM CCS 2016. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 116–129. DOI: 10.1145/2976749.2978427.
- [DP16] Léo Ducas and Thomas Prest. "Fast fourier orthogonalization". In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016, pp. 191–198.

Reference II

- [Bar+18] Gilles Barthe et al. "Masking the GLP Lattice-Based Signature Scheme at Any Order". In:

 EUROCRYPT 2018, Part II. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer,
 Heidelberg, Apr. 2018, pp. 354–384. DOI: 10.1007/978-3-319-78375-8_12.
- [BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. "Improved High-Order Conversion From Boolean to Arithmetic Masking". In: IACR TCHES 2018.2 (2018). https://tches.iacr.org/index.php/TCHES/article/view/873, pp. 22-45. ISSN: 2569-2925. DOI: 10.13154/tches.v2018.i2.22-45.
- [Sch+19] Tobias Schneider et al. "Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto". In: PKC 2019, Part II. Ed. by Dongdai Lin and Kazue Sako. Vol. 11443. LNCS. Springer, Heidelberg, Apr. 2019, pp. 534–564. DOI: 10.1007/978-3-030-17259-6_18.
- [KA21] Emre Karabulut and Aydin Aysu. "FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks". In: 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021, pp. 691–696. DOI: 10.1109/DAC18074.2021.9586131.
- [Gue+22] Morgane Guerreau et al. "The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon". In: IACR TCHES 2022.3 (2022), pp. 141–164. DOI: 10.46586/tches.v2022.i3.141–164.

Reference III

- [Zha+23] Shiduo Zhang et al. "Improved Power Analysis Attacks on Falcon". In: EUROCRYPT 2023, Part IV. Ed. by Carmit Hazay and Martijn Stam. Vol. 14007. LNCS. Springer, Heidelberg, Apr. 2023, pp. 565–595. DOI: 10.1007/978-3-031-30634-1_19.
- [CC24] Keng-Yu Chen and Jiun-Peng Chen. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2024.2 (Mar. 2024), pp. 276–303. DOI: 10.46586/tches.v2024.i2.276-303. URL: https://tches.iacr.org/index.php/TCHES/article/view/11428.

Table of Contents

- Appendix Nearest-Plane Algorithm
- 🕜 Appendix Details of Our Design
- 8 Appendix Examples of Non-Interference Security

Randomized Nearest-Plane Algorithm [GPV08]

Randomized Nearest-Plane Algorithm [GPV08]

```
Input: \mathbf{t} = \mathbf{c}\mathbf{B}^{-1}, \mathbf{B} where \mathbf{B} = \tilde{\mathbf{B}}\mathbf{U} is the Gram-Schmidt Orthogonalization, constant \sigma > 0 Output: \mathbf{z} = (z_1, z_2, \cdots, z_{2N})

1: for i = 2N to 1 do

2: t_i' \leftarrow t_i + \sum_{j>i} \mathbf{U}_{ij}(t_j - z_j)

3: \sigma_i \leftarrow \frac{\sigma}{\|\tilde{\mathbf{b}}_i\|} // \tilde{\mathbf{b}}_i is the i-th row vector of \tilde{\mathbf{B}}

4: z_i \leftarrow \$ D_{\mathbb{Z}_i, \sigma_i, t'} // Sample a value z_i from a discrete Gaussian distribution
```

Randomized Nearest-Plane Algorithm [GPV08]

Randomized Nearest-Plane Algorithm [GPV08]

```
Input: \mathbf{t} = \mathbf{c}\mathbf{B}^{-1}, \mathbf{B} where \mathbf{B} = \tilde{\mathbf{B}}\mathbf{U} is the Gram-Schmidt Orthogonalization, constant \sigma > 0 Output: \mathbf{z} = (z_1, z_2, \cdots, z_{2N})
```

- 1: **for** i = 2N **to** 1 **do**
- 2: $t_i' \leftarrow t_i + \sum_{j>i} \mathbf{U}_{ij}(t_j z_j)$
- 3: $\sigma_i \leftarrow \frac{\sigma}{\|\tilde{\mathbf{b}}_i\|}$ // $\tilde{\mathbf{b}}_i$ is the *i*-th row vector of $\tilde{\mathbf{B}}$
- 4: $z_i \leftarrow \mathbb{P} D_{\mathbb{Z},\sigma_i,t'}$ // Sample a value z_i from a discrete Gaussian distribution

Lemma 4.5 in [GPV08]

If
$$\sigma \geq \|\tilde{\mathbf{B}}\| \cdot \omega(\sqrt{\log(N)}) = \max_i \|\tilde{\mathbf{b}}_i\| \cdot \omega(\sqrt{\log(N)})$$
, then $\mathbf{zB} \stackrel{\Delta}{\sim} D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}}$.

Randomized Nearest-Plane Algorithm [GPV08]

Randomized Nearest-Plane Algorithm [GPV08]

```
Input: \mathbf{t} = \mathbf{c}\mathbf{B}^{-1}, \mathbf{B} where \mathbf{B} = \tilde{\mathbf{B}}\mathbf{U} is the Gram-Schmidt Orthogonalization, constant \sigma > 0 Output: \mathbf{z} = (z_1, z_2, \cdots, z_{2N})
```

- 1: **for** i = 2N **to** 1 **do**
- 2: $t_i' \leftarrow t_i + \sum_{i>i} \mathbf{U}_{ij}(t_j z_j)$
- 3: $\sigma_i \leftarrow \frac{\sigma}{\|\tilde{\mathbf{b}}_i\|}$ // $\tilde{\mathbf{b}}_i$ is the *i*-th row vector of $\tilde{\mathbf{B}}$
- 4: $z_i \leftarrow \mathbb{P} D_{\mathbb{Z},\sigma_i,t'}$ // Sample a value z_i from a discrete Gaussian distribution

Lemma 4.5 in [GPV08]

If
$$\sigma \geq \|\tilde{\mathbf{B}}\| \cdot \omega(\sqrt{\log(N)}) = \max_i \|\tilde{\mathbf{b}}_i\| \cdot \omega(\sqrt{\log(N)})$$
, then $\mathbf{zB} \stackrel{\Delta}{\sim} D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}}$.

FALCON uses fast Fourier nearest plane algorithm [DP16] to further speed up.

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- 🕡 Appendix Details of Our Design
 - New Gadgets
 - SecFPR: Secure FPR
 - SecFprMul: Secure FprMul
 - SecFprAdd: Secure FprAdd
- Appendix Examples of Non-Interference Security

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- 🕜 Appendix Details of Our Design
 - New Gadgets
 - SecFPR: Secure FPR
 - SecFprMul: Secure FprMul
 - SecFprAdd: Secure FprAdd
- Appendix Examples of Non-Interference Security

We need a gadget that, given shares (x_i) , can derive one-bit shares (b_i) such that

$$\left[\left[\bigoplus_{i=1}^{n} x_i \neq 0 \right] \right] = \bigoplus_{i=1}^{n} b_i \quad \text{or} \quad \left[\left[\sum_{i=1}^{n} x_i \neq 0 \right] \right] = \bigoplus_{i=1}^{n} b_i$$

We need a gadget that, given shares (x_i) , can derive one-bit shares (b_i) such that

$$\left[\left(\bigoplus_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i} \quad \text{or} \quad \left[\left(\sum_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i}$$

For Boolean shares, our method is by considering OR-ing all the bits.

$$x = 0 \iff x^{(k)} \lor x^{(k-1)} \lor \cdots \lor x^{(1)} = 0$$

We need a gadget that, given shares (x_i) , can derive one-bit shares (b_i) such that

$$\left[\left(\bigoplus_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i} \quad \text{or} \quad \left[\left(\sum_{i=1}^{n} x_{i} \neq 0\right)\right] = \bigoplus_{i=1}^{n} b_{i}$$

For Boolean shares, our method is by considering OR-ing all the bits.

$$x = 0 \iff x^{(k)} \vee x^{(k-1)} \vee \cdots \vee x^{(1)} = 0$$

Now we turn to a gadget for secure OR operations.

SecOr: OR of Boolean Shares

SecOr

Input: Boolean shares $(x_i)_{1 \le i \le n}$ for value x

Input: Boolean shares $(y_i)_{1 \le i \le n}$ for value y

Output: Boolean shares $(z_i)_{1 \le i \le n}$ for value $z = x \lor y$

1:
$$(t_i)_{1 \leq i \leq n} \leftarrow (\neg x_1, x_2, \cdots, x_n)$$

2:
$$(s_i)_{1 \le i \le n} \leftarrow (\neg y_1, y_2, \cdots, y_n)$$

3:
$$(z_i) \leftarrow \mathsf{SecAnd}((s_i), (t_i))$$

4: $z_1 \leftarrow \neg z_1$

5: **return** (z_i)

It applies De Morgan's law and calls the AND algorithm SecAnd of shares as a subroutine.

$$x \vee y = \neg \left[\left(\neg x \right) \wedge \left(\neg y \right) \right]$$

For arithmetic shares, instead of applying an *n*-shared A2B, we consider that

$$\sum_{i=1}^n x_i = 0 \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i = \sum_{i=\frac{n}{2}+1}^n (-x_i) \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i \oplus \sum_{i=\frac{n}{2}+1}^n (-x_i) = 0$$

For arithmetic shares, instead of applying an *n*-shared A2B, we consider that

$$\sum_{i=1}^n x_i = 0 \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i = \sum_{i=\frac{n}{2}+1}^n (-x_i) \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i \oplus \sum_{i=\frac{n}{2}+1}^n (-x_i) = 0$$

So we apply two n/2-shared A2Bs to the first n/2 shares and negative of the second n/2 shares and use the same idea.

For arithmetic shares, instead of applying an *n*-shared A2B, we consider that

$$\sum_{i=1}^n x_i = 0 \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i = \sum_{i=\frac{n}{2}+1}^n (-x_i) \Longleftrightarrow \sum_{i=1}^{\frac{n}{2}} x_i \oplus \sum_{i=\frac{n}{2}+1}^n (-x_i) = 0$$

So we apply two n/2-shared A2Bs to the first n/2 shares and negative of the second n/2 shares and use the same idea.

In this way, we replace one n-shared A2B with two n/2-shared A2Bs, which is usually more efficient.

SecNonzero

Input: Shares $(x_i)_{1 \le i \le n}$ for value x, bitsize

Output: One-bit Boolean shares $(b_i)_{1 \le i \le n}$ where $\bigoplus_i b_i = 0 \Leftrightarrow x = 0$

1: **if** input (x_i) are arithmetic shares **then**

2:
$$(t_i)_{1 \leq i \leq \frac{n}{2}} \leftarrow \mathsf{A2B}((x_i)_{1 \leq i \leq \frac{n}{2}})$$

3:
$$(t_i)_{\frac{n}{2}+1 \le i \le n} \leftarrow A2B((-x_i)_{\frac{n}{2}+1 \le i \le n})$$

4: else

5:
$$(t_i)_{1 \leq i \leq n} \leftarrow (x_i)_{1 \leq i \leq n}$$

6: len
$$\leftarrow$$
 bitsize/2

7: **while** len > 1 **do**

8:
$$(I_i) \leftarrow \mathsf{Refresh}((t_i^{[2\mathsf{len:len}]}), \mathsf{len})$$

9:
$$(r_i) \leftarrow (t_i^{[\text{len}:1]})$$

10:
$$(t_i) \leftarrow SecOr((l_i), (r_i))$$

11:
$$len \leftarrow len \gg 1$$

12: **return** $(t_i^{(1)})$

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_{i} = \left(\left(\bigoplus_{i=1}^{n} x_{i} \right) \gg \left(\sum_{i=1}^{n} c_{i} \bmod 2^{6} \right) \right) \vee \left[\bigoplus_{i=1}^{n} x_{i}^{[c:1]} \neq 0 \right]$$

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_{i} = \left(\left(\bigoplus_{i=1}^{n} x_{i} \right) \gg \left(\sum_{i=1}^{n} c_{i} \bmod 2^{6} \right) \right) \vee \left[\left(\bigoplus_{i=1}^{n} x_{i}^{[c:1]} \neq 0 \right) \right]$$

We observe that

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_{i} = \left(\left(\bigoplus_{i=1}^{n} x_{i} \right) \gg \left(\sum_{i=1}^{n} c_{i} \bmod 2^{6} \right) \right) \vee \left[\left(\bigoplus_{i=1}^{n} x_{i}^{[c:1]} \neq 0 \right) \right]$$

We observe that

• Right-shifting and right-rotating by a value c only differ by the most c significant bits.

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_{i} = \left(\left(\bigoplus_{i=1}^{n} x_{i} \right) \gg \left(\sum_{i=1}^{n} c_{i} \bmod 2^{6} \right) \right) \vee \left[\bigoplus_{i=1}^{n} x_{i}^{[c:1]} \neq 0 \right]$$

We observe that

- Right-shifting and right-rotating by a value c only differ by the most c significant bits.
- Both shifting and rotating can be operated share-wise.

Given 64-bit shares (x_i) and 6-bit (c_i) , we need to derive shares (z_i) such that

$$\bigoplus_{i=1}^{n} z_{i} = \left(\left(\bigoplus_{i=1}^{n} x_{i} \right) \gg \left(\sum_{i=1}^{n} c_{i} \bmod 2^{6} \right) \right) \vee \left[\bigoplus_{i=1}^{n} x_{i}^{[c:1]} \neq 0 \right]$$

We observe that

- Right-shifting and right-rotating by a value c only differ by the most c significant bits.
- Both shifting and rotating can be operated share-wise.
- Right-rotating x by a value c is equal to right-rotating x by a value c mod 64.

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \dots, c_n sequentially.

66 / 56

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \dots, c_n sequentially.

Some high bits are redundant, so we use an index $m = (1 \ll 63)$ to indicate the first meaningful bit of the result.

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \dots, c_n sequentially.

Some high bits are redundant, so we use an index $m = (1 \ll 63)$ to indicate the first meaningful bit of the result. To clear the redundant high bits, consider

$$m':=m\gg c=(\underbrace{0,\cdots,0}_{c\text{ bits}},1,0,\cdots,0)$$

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \dots, c_n sequentially.

Some high bits are redundant, so we use an index $m = (1 \ll 63)$ to indicate the first meaningful bit of the result. To clear the redundant high bits, consider

$$m':=m\gg c=(\underbrace{0,\cdots,0}_{c\text{ bits}},1,0,\cdots,0)$$

$$m'' := m' \oplus (m' \gg 1) \oplus \cdots \oplus (m' \gg 63) = (\underbrace{0, \cdots, 0}_{\mathsf{c}, \mathsf{bits}}, 1, 1, \cdots, 1)$$

Hence, our idea is to right-rotate all (x_i) by c_1, c_2, \dots, c_n sequentially.

Some high bits are redundant, so we use an index $m = (1 \ll 63)$ to indicate the first meaningful bit of the result. To clear the redundant high bits, consider

$$m':=m\gg c=(\underbrace{0,\cdots,0}_{c \text{ bits}},1,0,\cdots,0)$$

$$m'' := m' \oplus (m' \gg 1) \oplus \cdots \oplus (m' \gg 63) = (\underbrace{0, \cdots, 0}_{\text{c bits}}, 1, 1, \cdots, 1)$$

By an AND operation with m'', we can clear useless bits. Moreover, these redundant bits actually form the sticky bit.

SecFprUrsh

```
Input: 64-bit Boolean shares (x_i)_{1 \le i \le n}
                                                                    7: len \leftarrow 1
                                                                    8: while len < 32 do
Input: 6-bit arithmetic shares (c_i)_{1 \le i \le n}
Output: Boolean shares (z_i)_{1 \le i \le n} for value
                                                                   9: (m_i) \leftarrow (m_i \oplus (m_i \gg \text{len}))
     z = x \gg c with the sticky bit preserved
                                                                   10: len \leftarrow len \ll 1
 1: (m_i)_{1 \le i \le n} \leftarrow ((1 \ll 63), 0, \cdots, 0)
                                                                   11: (y_i) \leftarrow \mathsf{SecAnd}((x_i), (m_i))
 2: for i = 1 to n do
                                                                  12: (z_i) \leftarrow (v_i \oplus x_i \oplus v_i^{(1)})
        Right-rotate (x_i) by c_i
                                                                  13: (b_i) \leftarrow SecNonzero((z_i))
        (x_i) \leftarrow \mathsf{RefreshMasks}((x_i))
                                                                  14: (z_i) \leftarrow (v_i^{[64:2]} \vee b_i)
        Right-rotate (m_i) by c_i
                                                                   15: return (z_i)
        (m_i) \leftarrow \mathsf{RefreshMasks}((m_i))
```

Given 64-bit shares (x_i) and 16-bit shares (e_i) , we need to derive new (x_i') and (e_i') such that if c is the smallest integer such that $((\oplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$

then
$$(\bigoplus_{i=1}^n x_i') = ((\bigoplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

Given 64-bit shares (x_i) and 16-bit shares (e_i) , we need to derive new (x_i') and (e_i') such that if c is the smallest integer such that $((\oplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$

then
$$(\bigoplus_{i=1}^n x_i') = ((\bigoplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

We can repeatedly check whether $(x_i^{(64)}) = 0$, conditionally shift by 1 bit, and then decrease (e_i) by $[(x_i^{(64)}) = 0]$.

Given 64-bit shares (x_i) and 16-bit shares (e_i) , we need to derive new (x_i') and (e_i') such that if c is the smallest integer such that $((\oplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$

then
$$(\oplus_{i=1}^n x_i') = ((\oplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

We can repeatedly check whether $(x_i^{(64)}) = 0$, conditionally shift by 1 bit, and then decrease (e_i) by $[(x_i^{(64)}) = 0]$.

To improve efficiency, we consider sequentially checking $x^{[64:64-2^j]}=0$ for $j=5,4,\cdots,0$.

Given 64-bit shares (x_i) and 16-bit shares (e_i) , we need to derive new (x_i') and (e_i') such that if c is the smallest integer such that $((\bigoplus_{i=1}^n x_i) \ll c) \in [2^{63}, 2^{64})$

then
$$(\oplus_{i=1}^n x_i') = ((\oplus_{i=1}^n x_i) \ll c)$$
 and $\sum_{i=1}^n e_i' = (\sum_{i=1}^n e_i) - c$

We can repeatedly check whether $(x_i^{(64)}) = 0$, conditionally shift by 1 bit, and then decrease (e_i) by $[(x_i^{(64)}) = 0]$.

To improve efficiency, we consider sequentially checking $x^{[64:64-2^j]}=0$ for $j=5,4,\cdots,0$. In addition, we first decrease (e_i) by 63 and later add $[(x_i^{[64:64-2^j]}) \neq 0] \cdot 2^j$ to it.

SecFprNorm64

```
Input: 64-bit Boolean shares (x_i)_{1 \le i \le n}
Input: 16-bit arithmetic shares (e_i)_{1 \le i \le n}
Output: Normalized (x_i)_{1 \le i \le n} in [2^{6\overline{3}}, \overline{2}^{64}) and (e_i)_{1 \le i \le n} with shift added
 1: e_1 \leftarrow e_1 - 63
 2: for i = 5 to 0 do
 3: (t_i) \leftarrow (x_i \oplus (x_i \ll 2^j))
 4: (n_i) \leftarrow (x_i \gg (64 - 2^j))
 5: (b_i) \leftarrow \text{SecNonzero}((n_i))
 6: (b_i') \leftarrow (-b_i)
 7: (t_i) \leftarrow \operatorname{SecAnd}((t_i), (\neg b'_1, b'_2, \dots, b'_n))
 8: (x_i) \leftarrow (x_i \oplus t_i)
 9: (b_i) \leftarrow B2A_{Bit}((b_i))
      (e_i) \leftarrow (e_i + (b_i \ll i))
10:
11: return (x_i), (e_i)
```

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- 🕡 Appendix Details of Our Design
 - New Gadgets
 - SecFPR: Secure FPR
 - SecFprMul: Secure FprMul
 - SecFprAdd: Secure FprAdd
- Appendix Examples of Non-Interference Security

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow \llbracket e < 0 \rrbracket$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \land (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

We now show how we mask the floating-point number rounding and packing algorithm FPR.

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow \llbracket e < 0 \rrbracket$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \wedge (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

Recall that FPR is the last subroutine of FprMul and FprAdd.

By our masking design of FprMul and FprAdd, (s_i) is Boolean-masked, (e_i) is 16-bit arithmetic-masked, and (z_i) is Boolean-masked.

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

- 1: $e \leftarrow e + 1076$
- 2: $b \leftarrow \llbracket e < 0 \rrbracket$
- 3: $z \leftarrow z \land (b-1)$
- 4: $b \leftarrow [z \neq 0]$
- 5: $e \leftarrow e \wedge (-b)$
- 6: $x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$
- 7: $f \leftarrow 0XC8 \gg z^{[3:1]}$
- 8: $x \leftarrow x + f^{(1)}$
- 9: return

This is by adding to any one share.

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z **Output:** FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow \llbracket e < 0 \rrbracket$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \wedge (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

This is equivalent to

1: **if**
$$e < 0$$
 then

2:
$$z \leftarrow 0$$

and is done by an A2B, taking the MSB, and the simple trick.

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow \llbracket e < 0 \rrbracket$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \land (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

This is done by SecNonzero and the simple trick.

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z **Output:** FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow [e < 0]$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \wedge (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

Shift, OR, and a SecAdd. We add (e_i) and the 55th bit of (z_i) in advance instead of adding (e_i) to a 64-bit value. That is, use a 16-bit SecAdd to save a 64-bit SecAdd

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z **Output:** FPN x packed by s, e, z

- 1: $e \leftarrow e + 1076$
- 2: $b \leftarrow \llbracket e < 0 \rrbracket$
- 3: $z \leftarrow z \land (b-1)$
- 4: $b \leftarrow [z \neq 0]$
- 5: $e \leftarrow e \wedge (-b)$
- 6: $x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$
- 7: $f \leftarrow 0XC8 \gg z^{[3:1]}$
- 8: $x \leftarrow x + f^{(1)}$
- 9: return

If the least 3 bits of (z_i) are 011, 110, and 111, $f^{(1)} = 1$. We OR $(z_i^{(1)})$ and $(z_i^{(3)})$ by SecOr, and then AND $(z_i^{(2)})$ by SecAnd. The result is then added to (x_i) by SecAdd.

SecFPR: Secure FPR

FPR

Input: Sign bit s, exponent e, and 55-bit mantissa z

Output: FPN x packed by s, e, z

1:
$$e \leftarrow e + 1076$$

2:
$$b \leftarrow \llbracket e < 0 \rrbracket$$

3:
$$z \leftarrow z \land (b-1)$$

4:
$$b \leftarrow [z \neq 0]$$

5:
$$e \leftarrow e \land (-b)$$

6:
$$x \leftarrow ((s \ll 63) \lor (z \gg 2)) + e \ll 52$$

7:
$$f \leftarrow 0XC8 \gg z^{[3:1]}$$

8:
$$x \leftarrow x + f^{(1)}$$

9: return

Done.

The returned value is a 64-bit Boolean-masked (x_i) .

SecFPR: Secure FPR

SecFPR

```
Input: 1-bit Boolean shares (s_i)_{1 \le i \le n}
Input: 16-bit arithmetic shares (e_i)_{1 \le i \le n}
Input: 55-bit Boolean shares (z_i)_{1 \le i \le n}
Output: Boolean shares (x_i)_{1 \le i \le n}
1: e_1 \leftarrow e_1 + 1076
2: (e_i) \leftarrow A2B((e_i))
3: (b_i) \leftarrow (-e_i^{(16)})
4: (z_i) \leftarrow SecAnd((z_i), (\neg b_1, b_2, \cdots, b_n))
5: (e_i) \leftarrow SecAnd((e_i), (-z_i^{(55)}))
```

```
6: (e_i) \leftarrow \text{SecAdd}((e_i), (z_i^{(55)}))
 7: (e_i) \leftarrow \text{Refresh}((e_i))
 8: (s_i) \leftarrow \text{Refresh}((s_i))
 9: (x_i) \leftarrow ((s_i^{(1)} \ll 63) \vee (e_i^{[11:1]} \ll
      52) \vee (z_i^{[54:3]})
10: (f_i) \leftarrow SecOr(Refresh(z_i^{(1)}), (z_i^{(3)}))
11: (f_i) \leftarrow \text{SecAnd}((f_i), (z_i^{(2)}))
12: (x_i) \leftarrow \mathsf{SecAdd}((x_i), (f_i))
13: return (x_i)
```

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- 🕡 Appendix Details of Our Design
 - New Gadgets
 - SecFPR: Secure FPR
 - SecFprMul: Secure FprMul
 - SecFprAdd: Secure FprAdd
- Oppendix Examples of Non-Interference Security

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN
$$y = (sy, ey, my)$$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \wedge by$$

12:
$$z \leftarrow z \land (-b)$$

13: **return** FPR(s, e, z)

We show how we mask the floating-point number multiplication algorithm FprMul.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN $y = (sy, ey, my)$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \wedge (-b)$$

13: **return**
$$FPR(s, e, z)$$

We assume (sx_i) and (sy_i) are Boolean shares, (ex_i) and (ey_i) are 16-bit arithmetic shares, and (mx_i) and (my_i) are 128-bit arithmetic shares, which can load the product of two 53-bit values.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN
$$y = (sy, ey, my)$$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ev - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5.
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7.
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \wedge (-b)$$

13: **return** FPR(s, e, z)

These can be operated share-wise.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN
$$y = (sy, ey, my)$$

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \land (-b)$$

13: **return**
$$FPR(s, e, z)$$

This is done by SecMult. For further operations, we then apply an A2B to turn them to Boolean shares.

FprMul

Input: FPN x = (sx, ex, mx)**Input:** FPN y = (sy, ey, my)

Output: FPN product of x and v

1: $s \leftarrow sx \oplus sy$

2: $e \leftarrow ex + ey - 2100$

3: $z \leftarrow mx \times my$

4: $b \leftarrow [z^{[50:1]} \neq 0]$

5: $z \leftarrow z^{[106:51]} \lor b$

6: $z' \leftarrow (z \gg 1) \lor z^{(1)}$

7: $w \leftarrow z^{(106)}$

8: $z \leftarrow z \oplus (z \oplus z') \wedge (-w)$

9: $e \leftarrow e + w$

10: $bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$

11: $b \leftarrow bx \wedge by$

12: $z \leftarrow z \land (-b)$

13: **return** FPR(s, e, z)

Conditional shift by 50 bits and 51 bits, depending on $z^{(106)}$, while preserving the sticky bit. These can be done by SecNonzero and SecOr.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$
Input: FPN $y = (sy, ey, my)$
Output: FPN product of x and y
1: $s \leftarrow sx \oplus sy$
2: $e \leftarrow ex + ey - 2100$
3: $z \leftarrow mx \times my$
4: $b \leftarrow [z^{[50:1]} \neq 0]$
5: $z \leftarrow z^{[106:51]} \vee b$
6: $z' \leftarrow (z \gg 1) \vee z^{(1)}$
7: $w \leftarrow z^{(106)}$
8: $z \leftarrow z \oplus (z \oplus z') \wedge (-w)$
9: $e \leftarrow e + w$
10: $bx \leftarrow [ex \neq 0]$, $by \leftarrow [ey \neq 0]$
11: $b \leftarrow bx \wedge by$
12: $z \leftarrow z \wedge (-b)$
13: **return** FPR(s, e, z)

We observe that we can save one SecOr.

- When shifted by 50 bits, we OR the last bit with $z^{[50:1]}$.
- When shifted by 51 bits, we OR the last bit with $z^{[51:1]}$.

We can simply OR the the last bit with $z^{[51:1]}$, regardless of the conditional shift result.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN y = (sy, ey, my)

Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ev - 2100$$

3:
$$z \leftarrow mx \times my$$

4:
$$b \leftarrow [z^{[50:1]} \neq 0]$$

5:
$$z \leftarrow z^{[106:51]} \lor b$$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7.
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12:
$$z \leftarrow z \wedge (-b)$$

13: **return** FPR(s, e, z)

This is by adding to any share.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$
Input: FPN $y = (sy, ey, my)$
Output: FPN product of x and y

1: $s \leftarrow sx \oplus sy$
2: $e \leftarrow ex + ey - 2100$
3: $z \leftarrow mx \times my$
4: $b \leftarrow [[z^{[50:1]} \neq 0]]$
5: $z \leftarrow z^{[106:51]} \lor b$
6: $z' \leftarrow (z \gg 1) \lor z^{(1)}$
7: $w \leftarrow z^{(106)}$
8: $z \leftarrow z \oplus (z \oplus z') \land (-w)$
9: $e \leftarrow e + w$
10: $bx \leftarrow [[ex \neq 0]], by \leftarrow [[ey \neq 0]]$
11: $b \leftarrow bx \land by$
12: $z \leftarrow z \land (-b)$
13: return FPR (s, e, z)

This is by SecNonzero and SecAnd, and applying the tricks.

FprMul

Input: FPN
$$x = (sx, ex, mx)$$

Input: FPN $y = (sy, ey, my)$
Output: FPN product of x and y

1:
$$s \leftarrow sx \oplus sy$$

2:
$$e \leftarrow ex + ey - 2100$$

3:
$$z \leftarrow mx \times my$$

4: $b \leftarrow [z^{[50:1]} \neq 0]$
5: $z \leftarrow z^{[106:51]} \lor b$

6:
$$z' \leftarrow (z \gg 1) \lor z^{(1)}$$

7:
$$w \leftarrow z^{(106)}$$

8:
$$z \leftarrow z \oplus (z \oplus z') \wedge (-w)$$

9:
$$e \leftarrow e + w$$

10:
$$bx \leftarrow [ex \neq 0], by \leftarrow [ey \neq 0]$$

11:
$$b \leftarrow bx \land by$$

12: $z \leftarrow z \land (-b)$

13: return FPR(s, e, z)

Now it calls FPR to return a 64-bit Boolean-masked FPN

SecFprMul

```
8: (w_i) \leftarrow (p_i^{(106)})
Input: Shares (sx_i)_{1 \le i \le n}, (ex_i)_{1 \le i \le n}, (mx_i)_{1 \le i \le n}
Input: Shares (sy_i)_{1 \le i \le n}, (ey_i)_{1 \le i \le n}, (my_i)_{1 \le i \le n}
                                                                                  9: (z_i) \leftarrow \text{SecAnd}((z_i), \text{Refresh}((-w_i)))
Output: Boolean shares for the FPN product.
                                                                                 10: (z_i) \leftarrow (z_i' \oplus z_i)
                                                                                 11: (z_i) \leftarrow SecOr((z_i), (b_i))
 1: (s_i) \leftarrow (sx_i \oplus sv_i)
 2: (e_i) \leftarrow (ex_1 + ev_1 - 2100, ex_2 + ev_2, \cdots)
                                                                                 12: (w_i) \leftarrow B2A_{Bit}((w_i))
 3: (p_i) \leftarrow \text{SecMult}((mx_i), (my_i))
                                                                                 13: (e_i) \leftarrow (e_i + w_i)
 4: (p_i) \leftarrow A2B((p_i))
                                                                                 14: (bx_i) \leftarrow SecNonzero((ex_i))
 5: (b_i) \leftarrow \text{SecNonzero}((p_i^{[51:1]}))
                                                                                 15: (bv_i) \leftarrow SecNonzero((ev_i))
                                                                                 16: (d_i) \leftarrow \mathsf{SecAnd}((bx_i), (by_i))
 6: (z_i) \leftarrow (p_i^{[105:51]})
                                                                                 17: (z_i) \leftarrow \text{SecAnd}((z_i), (-d_i^{(1)}))
 7: (z'_i) \leftarrow (p_i^{[105:51]} \oplus p_i^{[106:52]})
                                                                                 18: return SecFPR((s_i), (e_i), (z_i))
```

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- 🕜 Appendix Details of Our Design
 - New Gadgets
 - SecFPR: Secure FPR
 - SecFprMul: Secure FprMul
 - SecFprAdd: Secure FprAdd
- Appendix Examples of Non-Interference Security

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

We show how we mask the floating-point number addition algorithm FprAdd.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my)from x, y, respectively.

6: $mx \leftarrow mx \ll 3$, $my \leftarrow my \ll 3$

7: $ex \leftarrow ex - 1078$, $ey \leftarrow ey - 1078$

8: $c \leftarrow ex - ev$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee [my^{[c:1]} \neq 0]$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

By the output of SecFprMul, we assume the input shares (x_i) and (y_i) are 64-bit Boolean-masked FPNs

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ey$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

The subtraction of two Boolean-masked values can be operated by considering $x^{[63:1]} - y^{[63:1]} = x^{[63:1]} + (\neg y^{[63:1]}) + 1$, which takes two SecAdds.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

6:
$$mx \leftarrow mx \ll 3, my \leftarrow my \ll 3$$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ey$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

But since we only need $(x^{[63:1]} - y^{[63:1]})^{(64)}$, we only compute $x^{[63:1]} + (\neg y^{[63:1]})$ and then check the boundary conditions. This saves us one SecAdd.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \lor ((1-(-d)^{(64)}) \land x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ey$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee [my^{[c:1]} \neq 0]$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

That is,
$$[u-v<0] = [u+(\neg v)<0] \oplus [u+(\neg v)=-1] \oplus [u+(\neg v)=2^{63}-1]$$

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, v \leftarrow v \oplus m$$

6: $mx \leftarrow mx \ll 3$, $my \leftarrow my \ll 3$

$$0: mx \leftarrow mx \ll 3, my \leftarrow my \ll 3$$

7:
$$ex \leftarrow ex - 1078, ey \leftarrow ey - 1078$$

8:
$$c \leftarrow ex - ey$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \llbracket my^{[c:1]} \neq 0 \rrbracket$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return** FPR(sx, ex, z)

Moreover, we apply
$$u + (\neg v) \neq -1 \Leftrightarrow \neg(u + (\neg v)) \neq 0$$
 and $u + (\neg v) \neq 2^{63} - 1 \Leftrightarrow (u + (\neg v)) \oplus (1 \ll 63) \neq -1 \Leftrightarrow \neg((u + (\neg v)) \oplus (1 \ll 63)) \neq 0$

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, v \leftarrow v \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee [my^{[c:1]} \neq 0]$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Therefore, these operations can be computed by SecNonzero, SecAnd, and SecOr.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078, ey \leftarrow ey - 1078$$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Share-wise operations, two B2As to convert (ex_i) and (ey_i) to arithmetic shares, and subtractions to any shares.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, v \leftarrow v \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

Subtraction to any share of c by 60 and an A2B to get the MSB of c. Then apply the tricks.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

This is by our gadget SecFprUrsh.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

A share-wise operation.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - y^{[63:1]}$$

2: $cs \leftarrow d^{(64)} \lor ((1 - (-d)^{(64)}) \land x^{(64)})$

3:
$$m \leftarrow (x \oplus y) \wedge (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my)from x, y, respectively.

6: $mx \leftarrow mx \ll 3$, $my \leftarrow my \ll 3$

7: $ex \leftarrow ex - 1078$, $ey \leftarrow ey - 1078$

8: $c \leftarrow ex - ev$

9: $b \leftarrow [c < 60]$

10: $mv \leftarrow mv \land (-b)$

11: $my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$

12: $s \leftarrow sx \oplus sy$

13: $z \leftarrow mx + (-1)^s my$

14: Normalize z, ex to make the 64th bit of z set

15: $z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$

16: $ex \leftarrow ex + 9$

17: **return** FPR(sx, ex, z)

Use the tricks with $my + (my \oplus (-my)) \wedge -s$, where $-my = (\neg my) + 1$ is derived by an SecAdd. Then add the result to mx

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \lor ((1-(-d)^{(64)}) \land x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, v \leftarrow v \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

This is by our gadget SecFprNorm64.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \lor ((1-(-d)^{(64)}) \land x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, y \leftarrow y \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: **return**
$$FPR(sx, ex, z)$$

A share-wise operation and a SecNonzero. Add 9 to any share of ex.

FprAdd

Input: FPNs x and y

Output: FPN sum of x and y

1:
$$d \leftarrow x^{[63:1]} - v^{[63:1]}$$

2:
$$cs \leftarrow d^{(64)} \vee ((1-(-d)^{(64)}) \wedge x^{(64)})$$

3:
$$m \leftarrow (x \oplus y) \land (-cs)$$

4:
$$x \leftarrow x \oplus m, v \leftarrow v \oplus m$$

5: Extract (sx, ex, mx) and (sy, ey, my) from x, y, respectively.

6:
$$mx \leftarrow mx \ll 3$$
, $my \leftarrow my \ll 3$

7:
$$ex \leftarrow ex - 1078$$
, $ey \leftarrow ey - 1078$

8:
$$c \leftarrow ex - ev$$

9:
$$b \leftarrow [c < 60]$$

10:
$$my \leftarrow my \land (-b)$$

11:
$$my \leftarrow (my \gg c) \vee \lceil my^{[c:1]} \neq 0 \rceil$$

12:
$$s \leftarrow sx \oplus sy$$

13:
$$z \leftarrow mx + (-1)^s my$$

14: Normalize z, ex to make the 64th bit of z set

15:
$$z \leftarrow (z \gg 9) \vee [z^{[9:1]} \neq 0]$$

16:
$$ex \leftarrow ex + 9$$

17: return
$$FPR(sx, ex, z)$$

Finally, it calls FPR to return a 64-bit Boolean-masked FPN.

SecFprAdd

```
Input: Boolean shares (x_i)_{1 \le i \le n}
                                                                                            14: (c_i) \leftarrow (ex_i - ev_i)
Input: Boolean shares (v_i)_{1 \le i \le n}
                                                                                            15: (c_1) \leftarrow A2B((c_1 - 60, c_2, \dots, c_n))
Output: Boolean shares for the FPN sum
                                                                                            16: (my_i) \leftarrow \text{SecAnd}((my_i), (-(c_i'^{(16)})))
1: (xm_i) \leftarrow (x_i^{[63:1]})
                                                                                            17: (mv_i) \leftarrow SecFprUrsh((mv_i), (c_i^{[6:1]}))
2: (ym_i) \leftarrow (\neg y_1^{[63:1]}, y_2^{[63:1]}, \cdots, y_n^{[63:1]})
                                                                                            18: (mv_1') \leftarrow (\neg mv_1, mv_2, \cdots, mv_n)
 3: (d_i) \leftarrow \text{SecAdd}((xm_i), (vm_i))
                                                                                            19: (my') \leftarrow \text{SecAdd}((my'), (1, 0, \dots, 0))
 4: (b_i) \leftarrow \text{SecNonzero}(\neg d_1, d_2, \cdots, d_n)
                                                                                            20: (s_i) \leftarrow (-(sx_i \oplus sy_i))
 5: (b'_1) \leftarrow \text{SecNonzero}(\neg (d_1 \oplus (1 \ll 63)), d_2, \cdots, d_n)
                                                                                            21: (mv_i) \leftarrow \text{Refresh}((mv_i))
 6: (cs_i) \leftarrow \text{SecAnd}((\neg b_1, b_2, \cdots, b_n), (x_i^{(64)}))
                                                                                            22: (my_i') \leftarrow \text{SecAnd}((my_i \oplus my_i'), (s_i))
                                                                                            23: (mv_i) \leftarrow (mv_i \oplus mv_i')
 7: (cs_i) \leftarrow SecOr((cs_i), (d_i^{(64)} \oplus b_i \oplus b_i'))
                                                                                            24: (z_i) \leftarrow \text{SecAdd}((mx_i), (my_i))
 8: (m_i) \leftarrow \text{SecAnd}((x_i \oplus y_i), (-cs_i))
                                                                                            25: (z_i), (ex_i) \leftarrow SecFprNorm64((z_i), (ex_i))
 9: (x_i) \leftarrow (x_i \oplus m_i), (v_i) \leftarrow (v_i \oplus m_i)
                                                                                            26: (b_i) \leftarrow SecNonzero((z_i^{[10:1]}))
10: Extract (sx_i), (ex_i), (mx_i) and (sy_i), (ey_i), (my_i) from
                                                                                            27: (z_i) \leftarrow (z_i \gg 9)
      (x_i) and (y_i), respectively.
                                                                                            28: (z_i^{(1)}) \leftarrow (b_i)
11: (mx_i) \leftarrow (mx_i \ll 3), (my_i) \leftarrow (my_i \ll 3)
12: (ex_i) \leftarrow B2A((ex_i)), (ev_i) \leftarrow B2A((ev_i))
                                                                                            29: ex_1 \leftarrow ex_1 + 9
                                                                                            30: return SecFPR(Refresh((sx_i)), (ex_i), (z_i))
13: ex_1 \leftarrow ex_1 - 1078, ev_1 \leftarrow ev_1 - 1078.
```

Table of Contents

- 6 Appendix Nearest-Plane Algorithm
- Appendix Details of Our Design
- 8 Appendix Examples of Non-Interference Security

XOR of Boolean Shares

Input: (x_i) where $x = x_1 \oplus \cdots \oplus x_n$, (y_i) where $y = y_1 \oplus \cdots \oplus y_n$

Output: (z_i) where $x \oplus y = z_1 \oplus \cdots \oplus z_n$

1: **for** i = 1 to n **do**

2: $z_i \leftarrow x_i \oplus y_i$

XOR of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \oplus y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \oplus y_i
```

• Intermediate Variables: (z_i) .

XOR of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \oplus y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \oplus y_i
```

- Intermediate Variables: (z_i) .
- Simulator: For any probing set $\{z_i \mid i \in I\}$ of size |I| = t, let the simulation set be $\{x_i \mid i \in I\}$, $\{y_i \mid i \in I\}$. The simulator receives the simulation set and outputs $\{(x_i \oplus y_i) \mid i \in I\}$.

XOR of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \oplus y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \oplus y_i
```

- Intermediate Variables: (z_i) .
- Simulator: For any probing set $\{z_i \mid i \in I\}$ of size |I| = t, let the simulation set be $\{x_i \mid i \in I\}$, $\{y_i \mid i \in I\}$. The simulator receives the simulation set and outputs $\{(x_i \oplus y_i) \mid i \in I\}$.
- Distribution of the probing set is identical to the distribution of the simulator's output $\{(x_i \oplus y_i) \mid i \in I\}$.

XOR of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \oplus y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \oplus y_i
```

- Intermediate Variables: (z_i) .
- Simulator: For any probing set $\{z_i \mid i \in I\}$ of size |I| = t, let the simulation set be $\{x_i \mid i \in I\}$, $\{y_i \mid i \in I\}$. The simulator receives the simulation set and outputs $\{(x_i \oplus y_i) \mid i \in I\}$.
- Distribution of the probing set is identical to the distribution of the simulator's output $\{(x_i \oplus y_i) \mid i \in I\}$.
- The size of the simulation set for each input is $|I| \le t$, no more than the probing set.

XOR of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \oplus y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \oplus y_i
```

- Intermediate Variables: (z_i) .
- Simulator: For any probing set $\{z_i \mid i \in I\}$ of size |I| = t, let the simulation set be $\{x_i \mid i \in I\}$, $\{y_i \mid i \in I\}$. The simulator receives the simulation set and outputs $\{(x_i \oplus y_i) \mid i \in I\}$.
- Distribution of the probing set is identical to the distribution of the simulator's output $\{(x_i \oplus y_i) \mid i \in I\}$.
- The size of the simulation set for each input is $|I| \leq t$, no more than the probing set.

Therefore, this gadget is t-NI secure for any t.

AND of Boolean Shares

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n Output: (z_i) where x \wedge y = z_1 \oplus \cdots \oplus z_n
```

- 1: Initialize all z_i to 0.
- 2: **for** i = 1 to n **do**
- 3: **for** j = 1 to n **do**
- 4: $z_i \leftarrow z_i \oplus (x_i \wedge y_j)$

AND of Boolean Shares

Input: (x_i) where $x = x_1 \oplus \cdots \oplus x_n$, (y_i) where $y = y_1 \oplus \cdots \oplus y_n$ **Output:** (z_i) where $x \land y = z_1 \oplus \cdots \oplus z_n$

1: Initialize all z_i to 0.

2: **for** i = 1 to n **do**

3: **for** j = 1 to n **do**

4: $z_i \leftarrow z_i \oplus (x_i \wedge y_j)$

This gadget is not even 1-NI. If the adversary probes the intermediate value

$$(x_1 \wedge y_1) \oplus (x_1 \wedge y_2)$$

One cannot simulate this without knowing x_1 (1 share of x) and y_1, y_2 (2 shares of y).

t-Strong-Non-Interference - Example (SecAnd)

SecAnd

```
Input: (x_i) where x = x_1 \oplus \cdots \oplus x_n, (y_i) where y = y_1 \oplus \cdots \oplus y_n

Output: (z_i) where x \wedge y = z_1 \oplus \cdots \oplus z_n

1: for i = 1 to n do

2: z_i \leftarrow x_i \wedge y_i

3: for i = 1 to n do

4: for j = i + 1 to n do

5: r \leftarrow \$ \{0, 1\}^k

6: z_i \leftarrow z_i \oplus ((x_i \wedge y_j \oplus r) \oplus x_j \wedge y_i)

7: z_j \leftarrow z_j \oplus r
```

This gadget is t-NI. It is actually also t-SNI.