MOWNIT

Laboratorium 1 Ćwiczenie 13

Jakub Karbowski

12 marca 2022

Cel ćwiczenia

Przybliżoną wartość pochodnej funkcji f(x) w punkcie x można obliczyć ze wzoru

$$f'(x) \approx f_h'(x) = \frac{f(x+h) - f(x)}{h}$$

Mając zadaną funkcję $f(x) = \sin(x) + \cos(3x)$, należało przeprowadzić analizę wpływu:

- · precyzji liczb zmiennoprzecinkowych,
- oraz wartości h

na dokładność obliczonej pochodnej.

1

Parametry doświadczenia

Język programowania:

· Julia

Sprawdzane wartości:

- x = 1
- $h = 2^{-n}$ (n = 0, 1, 2, ..., 40)
- $h = 1 + 2^{-n}$

Sprawdzane typy:

- Float16
- Float32
- · Float64

Badana funkcja

Rysunek 1: Badana funkcja

Dokładna wartość

Liczymy ręcznie pochodną:

$$f(x) = \sin(x) + \cos(3x)$$

$$f'(x) = \cos(x) - 3\sin(3x)$$

$$f'(1) = \cos(1) - 3\sin(3)$$

$$\approx 0.11694228...$$

Dokładna wartość nie jest liczbą wymierną.

Reprezentacja wyniku

Epsilon maszynowy w okolicy f'(1):

- 1. Float16 $6.104 \cdot 10^{-5}$
- 2. Float32 $7.450581 \cdot 10^{-9}$
- 3. Float64 1.3877787807814457 · 10⁻¹⁷

Wartość f'(1):

- 1. Float16 0.1172
- 2. Float32 0.11694229
- 3. Float64 0.11694228168853815

Zmniejszanie *h*

Rysunek 2: $h \in [0, 0.5]$

Float16 underflow

Rysunek 3: $h \in [0, 0.03]$

Float16 underflow

Rysunek 4: $h \in [0, 0.004]$

Float32 underflow

Rysunek 5: $h \in [0, 10^{-6}]$

Ustabilizowanie Float64

Rysunek 6: $h \in [0, 2 \times 10^{-10}]$

Rysunek 7: $h \in [1, 2]$

Dlaczego?

Rysunek 8: Wizualizacja pochodnej h=1.8

Dlaczego?

Rysunek 9: Wizualizacja pochodnej h = 1.01

Wartości numeryczne

Tabela 1: $h \vee s f'(1)$

h	<i>f_h</i> ′(1) [Float64]	<i>f_h</i> ′(1) [Float32]	f _h '(1) [Float16]
3.05e-5	0.11706539714577957	0.1171875	0.0
1.52e-5	0.11700383928837255	0.12109375	0.0
7.62e-6	0.11697306045971345	0.125	0.0
3.81e-6	0.11695767106721178	0.125	0.0
1.90e-6	0.11694997636368498	0.125	0.0
9.53e-7	0.11694612901192158	0.125	0.0
4.76e-7	0.1169442052487284	0.25	0.0
2.38e-7	0.11694324295967817	0.25	0.0
1.19e-7	0.11694276239722967	0.5	0.0
5.96e-8	0.11694252118468285	0.0	0.0
2.98e-8	0.116942398250103	0.0	NaN
1.49e-8	0.11694233864545822	0.0	NaN
7.45e-9	0.11694231629371643	0.0	NaN

Wartości numeryczne

Tabela 2: h vs f'(1) (c.d.)

h	<i>f_h</i> ′(1) [Float64]	f _h ′(1) [Float32]	f _h '(1) [Float16]
3.72e-9	0.11694228649139404	0.0	NaN
1.86e-9	0.11694222688674927	0.0	NaN
9.31e-10	0.11694216728210449	0.0	NaN
4.65e-10	0.11694216728210449	0.0	NaN
2.32e-10	0.11694192886352539	0.0	NaN
1.16e-10	0.11694145202636719	0.0	NaN
5.82e-11	0.11694145202636719	0.0	NaN
2.91e-11	0.11693954467773438	0.0	NaN
1.45e-11	0.116943359375	0.0	NaN
7.27e-12	0.1169281005859375	0.0	NaN
3.63e-12	0.116943359375	0.0	NaN
1.81e-12	0.11688232421875	0.0	NaN 15
9.09e-13	0.1168212890625	0.0	NaN

15

Float64 underflow

Tabela 3: Float64 underflow

h	h f _h '(1) [Float64]	
7.27e-12	0.1169281005859375	
3.63e-12	0.116943359375	
1.81e-12	0.11688232421875	
9.09e-13	0.1168212890625	
f'(1)	0.11694228168853815	

Dla najmniejszych sprawdzanych wartości h widać oddalenie się od wartości dokładnej f'(1), mimo zmniejszania h. Sugeruje to wystąpienie underflow.

Wnioski

- 1. Nie należy stosować bardzo małych h bez uzasadnienia.
- 2. Należy zwrócić uwagę na kształt funkcji przy doborze h.
- 3. Szersze typy są bezpieczniejsze, ale nie niezawodne.