Dynamic Sets and Searching

- · Analysis Technique
 - Amortized Analysis // average cost of each operation in the worst case
- Dynamic Sets

// Sets whose membership varies during computation

- → Array Doubling
- > Implementing Stack with array doubling
- Searching

// Exist or not, in where

- → Binary Search Trees
- → Hashing

TECH
Computer Science

Amortized Analysis

- Provides *average* cost of each operation in the worst case for successive operations
- · Aggregate method
 - → show for a sequence of n operations takes worst-case time T(n) in total
 - → In the worst case, the average cost, or amortized cost, per operation is therefore T(n)/n
- Accounting method // spreading a large cost over time
 - → amortized cost = actual cost + accounting cost
 - + assign different accounting cost to different operations
 - ➤ 1. the sum of accounting costs is nonnegative for any legal sequence of operations
 - ➤ 2. to make sure it is feasible to analyze the amortized cost of each operation

Array Doubling

- We don't know how big an array we might need when the computation begins
- If not more room for inserting new elements,
 - allocating a new array that is twice as large as the current array
 - transferring all the elements into the new array
- Let t be the cost of transferring one element
 - suppose inserting the (n+1) element triggers an arraydoubling
 - > cost t*n for this array-doubling operation
 - → cost t*n/2 + t*n/4 + t*n/8 + ... for previous arraydoubling, i.e. cost less than t*n
 - → total cost less than 2t*n
 - → The average cost for each insert operation = 2t

Implementing Stack with array doubling

- Array doubling is used behind the scenes to enlarge the array as necessary
 - → Assuming actual cost of push or pop is 1
 - ≻ when no enlarging of the array occurs
 - the actual cost of push is 1 + t*n
 - ≻ when array doubling is required
 - Accounting scheme, assigning
 - → accounting cost for a push to be 2t
 - ≻ when no enlarging of array occurs
 - \rightarrow accounting cost for push to be -t*n + 2t
 - > when array doubling is required
- The amortized cost of each push operation is 1+2t
- From the time the stack is created, the sum of the accounting cost must never be negative.

Searching: Binary Search Trees

- Binary Search Tree property
 - → A binary tree in which the nodes have keys from an ordered set has the binary search tree property
 - → if the key at each node is greater than all the keys in its left subtree and
 - → less than or equal to all keys in its right subtree
 - → In this case the binary tree is called a binary search tree
- An inorder traversal of a binary search tree produces a sorted list of keys.

Binary Search Trees, e.g.

- Binary Search trees with different degrees of balances
- · Black dots denote empty trees

Binary Search Tree Retrieval

- Element bstSearch(BinTree bst, Key K)
 - → Element found
 - \rightarrow if (bst == nil)
 - ► found = null;
 - **→** else
 - ➤ Element root = root(bst);
 - ➤ If (K == root.kev)
 - found = root;
 - ≻ else if (K < root.key)
 - found = bstSearch (leftSubtree(bst), K);
 - ≻ else
 - found = bstSearch(rightSubtree(bst), K);
 - return found;

Analysis of Binary Search Tree Retrieval

- use the number of internal nodes of the tree that are examined which searching for key
 - → let it be n
- For a long chain tree structure, $\theta(n)$
- For a tree as balanced as possible, $\theta(\lg n)$
- >> The objective is to make the tree as balanced as possible
 - → Technique: Binary Tree Rotations

Hashing to aid searching

- Imagine that we could assign a unique array index to every possible key that could occur in an application.
 - → locating, inserting, deleting elements could be done very easily and quickly
 - → key space is much too large
- The purpose of hashing is to translate (by using hash function) an extremely large key space into a reasonable small range of integers (called hash code).
- Hash Table
 - → an array H on indexes (hash code) 0, ..., h-1
 - → hash function maps a key into an integer in the range 0, ..., h-1
 - → Each entry may contain one or more keys!
 - ➤ Hash function is a many-to-one function

Hash Table, e.g.

- data k: 1055, 1492, 1776, 1812, 1918, and 1945
- · hash function
 - → hashCode(k) = 5k mod 8
- · hashCode: key
 - **→** 0: 1776
 - }1:
 -) 2:
 - **→** 3: 1055
 - → 4: 1492, 1812 // Collision!
 - **→** 5: 1945
 - **→** 6: 1918
 - **→**7:

Handling Collisions: Closed Address Hashing

- H[i] is a linked list
- · hashCode: key
 - **→** 0: -> 1776
 - **→** 1: ->
 - **→** 2: ->
 - **→** 3: ->1055
 - +4: ->1492 -> 1812
 - **→** 5: ->1945
 - **→** 6: ->1918
 - **→**7: ->
- To search a given key K, first compute its hash code, say i, then search through the linked list at H[i], comparing K with the keys of the elements in the list.

Analysis of Closed Address Hashing

- · Searching for a key
- · Basic Operation: comparisons
 - Assume computing a hash code equals a units of comparisons
 - + there are total n elements stored in the table,
 - + each elements is equally likely to be search
- Average number of comparison for an unsuccessful search (after hashing) equal
 - \rightarrow $A_{ii}(n) = n/h$
- Average cost of a successful search
 - → when key i = 1, ..., n, was inserted at the end of a linked list, each linked list had average length given by (i 1)/h
 - ÷ expected number of key comparisons = 1 + comparisons make for inserting an element at the end of a linked list
 - $A_c(n) = 1/n \sum \{i=1 \text{ to } n\} (1 + (i-1)/h) = 1 + n/(2h) + 1/(2h)$

Assuming uniformly distribution of hash code

- hash code for each key in our set is equally likely to be any integer in the range 0, ..., h-1
- If n/h is a constants then
 - → O(1) key comparisons can be achieved, on average, for successful search and unsuccessful search.
- Uniformly distribution of hash code depends on the choice of Hash Function

Choosing a Hash Function

- // for achieve uniformly distribution of hash code
- If the key type is integer
 - hashCode(K) = (a K) mod h
- Choose h as a power of 2, and h >= 8
- Choose a = 8 Floor[h/23] + 5
- If the key type is string of characters, treat them as sequence of integers, k1, k2, k3, ..., kl
 - \rightarrow hashCode(K) = (a^l k1 + a^{l-l} k2 + ...+a kl) mod h
- Use array doubling whenever n/h (called load factor, where n is the number of elements in the table) gets high, say 0.5

Handling Collisions: Open Address Hashing

- is a strategy for storing all elements in the array of the hash table, rather than using linked lists to accommodate collisions
 - if the hash cell corresponding to the hash code is occupied by a different elements,
 - then a sequence of alternative locations for the current element is defined (by rehashing)
- Rehashing by linear probing
 - → rehash(j) = (j+1) mod h
 - → where j is the location most recently probed,
 - → initially j = i, the hash code for K
- · Rehashing by double hashing
 - \rightarrow rehash(j, d) = (j + d) mod h
 - \rightarrow e.g. d = hashIncr(K) = (2K + 1) mod h
 - // computing an odd increment ensures that whole hash table is accessed in the search (provided h is a power of 2)

Open Address Hashing, e.g. Linear probing

- hashCode: key
 → 0: 1776
 - 7 0: 1
 - → 1: → 2:
 - **>** 3: 1055
 - **→** 4: 1492
 - **>** 5: 1945
 - **→** 6: 1918
 - **→** 7:
- Now insert 1812, hashcode(1812) = 4, i.e. i = 4
 - \rightarrow h = 8, initially j = i = 4
 - → rehash(j) = (j+1) mod h
 - \rightarrow rehash(4) = (4+1) mod 8 = 5 // collision again
 - \rightarrow rehash(5) = (5+1) mod 8 = 6 // collision again
 - → ... put in 7

Retrieval and

Deletion under open addressing hashing

- Retrieval procedure imitates the insertion procedure, stop search as soon as emptyCell is encountered.
- Deletion of a key
 - → cannot simply delete the key and assign the cell to emptyCell // cause problem for retrieval procedure
 - → need to assign the cell to a value indicating "obsolete"