PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-271281

(43)Date of publication of application: 20.09.2002

(51)Int.Cl.

H04H 1/00 G06F 17/60 G06K 1/12 G06K 7/00 H04J 11/00 H04Q 7/20

H04Q 7/38

(21)Application number : 2001-373449

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

06.12.2001

(72)Inventor: OSHIMA MITSUAKI

HAYASHI KENICHIRO KAGEYAMA TEIJI SAKASHITA SEIJI **ISOGAWA TAKAO**

TAKAYAMA HISASHI

(30)Priority

Priority number : 2000371539

Priority date: 06.12.2000

Priority country: JP

2000371570

06.12.2000

JP

2000403517

28.12.2000

JP

(54) OFDM(ORTHOGONAL FREQUENCY DIVISION MULTIPLEX) SIGNAL TRANSMISSION SYSTEM, MOBILE TERMINAL AND E-COMMERCE SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an e-commerce system, having a simple arrangement which satisfies double requirements of reliability in security and ease of settlement.

SOLUTION: A mobile terminal 501 is provided with a reception part for receiving goods information and services information and a bar code formation part for forming a base code 751, based on the received information. The bar bode 751 formed by the bar code formation part is displayed on a display part, and this bar code 751 is read by a bar bode reader 708 provided in a store terminal 750, etc., thereby carrying out ecommerce transaction. Thus, an e-commerce system. having a simple arrangement which satisfies double requirements of reliability in security and ease of settlement can be realized.

LEGAL STATUS

[Date of request for examination]

01.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-271281 (P2002-271281A)

(43)公開日 平成14年9月20日(2002.9.20)

(51) Int.Cl. ⁷		識別記号	F I	テーマコート*(参考)
H04H	1/00		H04H 1/00	C 5B072
G06F	17/60	302	G06F 17/60	302Z 5K022
		506		506 5K067
		ZEC		ZEC
G06K	1/12		G 0 6 K 1/12	Α
			審査請求 未請求 請求項の数45	OL (全 63 頁) 最終頁に続く

(21)出願番号	特願2001-373449(P2001-373449)	(71)出顧人	000005821 松下電器産業株式会社
(22)出顧日	平成13年12月 6 日(2001.12.6)		大阪府門真市大字門真1006番地
		(72)発明者	大嶋 光昭
(31)優先権主張番号	特願2000-371539(P2000-371539)		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平成12年12月 6 日(2000.12.6)		産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	林 健一郎
(31)優先権主張番号	特願2000-371570 (P2000-371570)		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平成12年12月 6 日 (2000. 12.6)		産業株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	100105050
(31)優先権主張番号	特願2000-403517(P2000-403517)		弁理士 鷲田 公一
(32)優先日	平成12年12月28日(2000, 12, 28)		
(33)優先権主張国	日本 (JP)		
			最終頁に続く

(54) 【発明の名称】 OFDM信号伝送システム、携帯端末および電子商取引システム

(57)【要約】

【課題】 セキュリティの信頼性と決済の容易さを 両立し得る簡易な構成の電子商取引システムを提供する こと。

【解決手段】 携帯端末501に、商品情報やサービス情報を受信する受信部を設けると共に受信した情報に基づいたバーコード751を形成するバーコード形成部を設け、バーコード形成部により形成したバーコード751を表示部に表示し、このバーコード751を店舗端末750等に設けられたバーコード読取装置708で読み取ることで電子商取引を行うようにしたことにより、セキュリティの信頼性と決済の容易さを両立し得る簡易な構成の電子商取引システムを実現できる。

【特許請求の範囲】

٠,

【請求項1】 OFDM変調方式で変調された変調信号を、第1の周波数領域で送信を行う送信局から送信された第1送信信号を受信する第1受信部と第1受信信号を同調する同調部と復調する第1の復調部と出力部とをもつ第1の受信ブロックと、第1の周波数帯とは同一でない第2の周波数帯領域で受信を行う送受信局から送信された、第2送信信号を受信できる第2受信部と第2受信信号を復調する第2復調部とをもつ第2受信ブロックとを有するOFDM信号伝送システムであって、

第2受信信号の中に含まれる前記送受信局の識別情報もしくは/かつ前記第1送信信号を同調もしくは復調の少なくとも一方を行うための情報を受信し、前記情報を用いることにより第1送信信号を同調もしくは復調の少なくとも一方を行うための伝送情報を得て、前記第1復調部において、第1受信信号の同調もしくは復調の少なくとも一方を行うことを特徴とするOFDM信号伝送システム。

【請求項2】 OFDM変調方式で変調された変調信号を、第1の周波数領域で送信を行う送信局から送信された第1送信信号を受信する第1受信部と第1受信信号を同調する同調部と復調する第1の復調部と出力部とをもつ第1の受信ブロックと、第1の周波数帯とは同一でない第2の周波数帯領域で受信を行う送受信局から送信された、第2送信信号を受信できる第2受信部と第2受信信号を復調する第2復調部とをもつ第2受信ブロックとを有するOFDM信号伝送システムであって、

第2受信信号の中に含まれる前記送受信局の識別情報もしくは/かつ前記第1送信信号を同調もしくは/かつ復調するための情報を受信し、前記情報を用いることにより第1送信信号を同調もしくは/かつ復調するための伝送情報を得て、同調部もしくは/かつ前記第1復調部において、第1受信信号の同調もしくは/かつ復調を行うことを特徴とするOFDM信号伝送システム。

【請求項3】 OFDM変調方式で変調された変調信号を、第1の周波数領域で送信を行う送信局から送信された第1送信信号を受信する第1受信部と第1受信信号を同調する同調部と復調する第1の復調部と出力部とをもつ第1の受信ブロックと、第1の周波数帯とは同一でない第2の周波数帯領域で受信を行う送受信局から送信された、第2送信信号を受信できる第2受信部と第2受信信号を復調する第2復調部をもつ第2受信ブロックとを有するOFDM信号伝送システムであって、

第2受信信号の中に含まれる前記送受信局の識別情報もしくは/かつ前記第1送信信号を同調もしくは/かつ復調するための情報を受信し、前記情報を用いることにより第1送信信号を同調もしくは/かつ復調するための伝送情報を得て、同調部もしくは/かつ前記第1復調部において、第1受信信号の同調もしくは/かつ復調を行うとともに、復調したデータをデータ表示部に表示するこ

とを特徴とするOFDM信号伝送システム。

【請求項4】 受信手段と、バーコードを形成するバーコード形成手段と、表示手段とを具備し、前記受信手段が受信したデータから前記バーコード形成手段がバーコードを形成し、前記表示手段が前記形成されたバーコードを表示する携帯端末。

【請求項5】 前記表示手段の近傍位置に設けられバーコード読取装置からの光又は信号を検出する検出手段を、さらに具備する請求項4に記載の携帯端末。

【請求項6】 前記検出手段による検出結果に応じて前記表示手段に表示するバーコードを順次更新する請求項5に記載の携帯端末。

【請求項7】 受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、主表示部と副表示部とを有し当該副表示部に前記バーコードを表示する表示手段と、を具備する携帯端末。

【請求項8】 前記副表示部は、前記主表示部よりも解像度が高くされている請求項7に記載の携帯端末。

【請求項9】 前記主表示部はカラーフィルタ層が形成されていると共に、前記副表示部はカラーフィルタ層が形成されていない請求項7に記載の携帯端末。

【請求項10】 前記副表示部に表示すべきデータを複数個のデータに分け、前記副表示部に複数回に分けてバーコードを表示する請求項7に記載の携帯端末。

【請求項11】 前記主表示部に2次元バーコードを表示する請求項7に記載の携帯端末。

【請求項12】 バーコード表示すべきデータ量又は指示に応じて、前記1次元バーコード及び/又は前記2次元バーコードを適応的に表示する請求項11に記載の携帯端末。

【請求項13】 バーコード表示すべきデータ量又は指示に応じて、各表示部に表示する表示バーコードパターンの更新タイミングを適応的に選定する請求項12に記載の携帯端末。

【請求項14】 副表示部に表示する1次元バーコード と主表示部に表示する2次元バーコードの単位時間当た りの表示情報量が同じとなるように、各バーコードの表 示更新タイミングを選定する請求項11に記載の携帯端 末。

【請求項15】 受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、前記バーコードを表示する表示手段とを具備し、前記表示部に複数回バーコードを表示させる場合、各バーコード表示期間の間に所定期間の無表示期間を挟んで複数回のバーコード表示を行う携帯端末。

【請求項16】 前記バーコード表示期間を前記無表示期間よりも長くなるように選定する請求項15に記載の携帯端末。

【請求項17】 複数の情報それぞれについて複数のバーコードを形成し、各情報を所定の無表示期間を挟みな

がら複数のバーコードで表示すると共に、情報の区切り のバーコード間での無表示期間を各情報内での無表示期 間よりも長くする請求項15に記載の携帯端末。

٠,

【請求項18】 受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、前記バーコードを表示する表示手段とを具備し、前記表示部に複数回バーコードを表示させる場合、バーコードの先頭部で、表示の順序を表す表示順番号及び表示するバーコードの総数を表す表示総数を表示する携帯端末。

【請求項19】 受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、前記バーコードを表示する表示手段と、前記表示手段にバーコードを表示するためのバーコード表示スイッチとを具備し、当該バーコード表示スイッチが操作されたとき、予め設定されたパスワードの入力を要求し、正しいパスワードが入力されなかったときにはバーコードを表示しない携帯端末。

【請求項20】 暗号処理手段をさらに具備し、前記受信手段が受信したデータを前記暗号処理手段が暗号化し、前記暗号処理手段が暗号化したデータから前記バーコード形成手段がバーコードデータを形成し、前記表示手段が前記形成されたバーコードデータを表示する請求項4から請求項19のいずれかに記載の携帯端末。

【請求項21】 無線送信された信号を受信する受信手段と、バーコードを形成するバーコード形成手段と、表示手段と、ローカル無線通信手段とを具備し、前記受信手段が受信したデータの中から、ローカル無線通信手段が受信した識別情報が示すデータを検索し、検索されたデータをバーコードとして前記表示手段に表示する携帯端末。

【請求項22】 携帯端末と、前記携帯端末に商品情報 又はサービス情報を送信する情報送信装置と、電子商取 引情報を管理する流通管理装置とを備え、前記携帯端末 は、前記情報送信装置を介して商品情報又はサービス情 報を受け取ると共に、前記流通管理装置から前記商品情 報又はサービス情報に関する補足情報を受け取る電子商 取引システム。

【請求項23】 前記情報送信装置が送信する前記商品情報又はサービス情報は放送信号であり、前記携帯端末は前記流通管理装置と双方向の通信を行う請求項22に記載の電子商取引システム。

【請求項24】 前記補足情報は、携帯端末又は携帯端 末利用者に適した情報である請求項22に記載の電子商 取引システム。

【請求項25】 携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置を有する店舗端末と、電子商取引情報を管理する流通管理装置とを備え、前記携帯端末は、前記流通管理装置から受け取った商品情報、サービス情報又は商取引に関する情報をバーコードとして表示し、前記バーコード読取装置は、携帯端末に

表示されたバーコードを読み取り、前記店舗端末又は前 記流通管理装置は、バーコード読取装置によって読み取 られたバーコードの情報に基づいて決済を行う電子商取 引システム。

【請求項26】 携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置及び照合装置を有する店舗端末と、無線により商品情報を送信する情報送信装置とを備え、前記情報送信装置は、前記携帯端末及び前記店舗端末の両方に前記商品情報を無線送信し、前記携帯端末は、受信した商品情報に応じたデータをバーコードとして表示部に表示し、前記店舗端末は、前記バーコード読取装置により携帯端末に表示されたバーコードを読み取ると共に、前記照合装置によりバーコード読取装置によって読み取ったバーコードの情報と前記情報送信装置から受け取った商品情報とを照合する電子商取引システム。

【請求項27】 携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置及び照合装置を有する店舗端末と、前記携帯端末に商品情報又はサービス情報を送信する情報送信装置と、電子商取引情報を管理する流通管理装置とを備え、前記携帯端末は、前記情報送信装置から受信した商品情報又は携帯端末利用者が選択した商品に関する情報をバーコードとして表示し、前記バーコード読取装置は、携帯端末に表示されたバーコードを読み取り、前記照合装置は、バーコード読取装置によって読み取ったバーコードの情報と前記流通管理装置によって読み取ったバーコードの情報と前記流通管理装置にならに送された管理情報とを照合すると共に、取引情報を前記流通管理装置に伝送し、前記流通管理装置は、取引情報に基づいて管理情報を変更する電子商取引システム

【請求項28】 前記情報送信装置は、前記携帯端末の位置及び/又は時間に応じた商品情報を前記携帯端末に送信する請求項27に記載の電子商取引システム。

【請求項29】 前記店舗端末は、データベースを有し、前記流通管理装置は、前記携帯端末の利用者が選択した店舗のデータベースに前記携帯端末利用者が選択した商品情報を格納させる請求項27に記載の電子商取引システム。

【請求項30】 前記情報送信装置により前記携帯端末 に送信する商品情報は、電気料金、電話料金、ガス料金 又は水道料金である請求項27に記載の電子商取引シス テム。

【請求項31】 前記携帯端末は、暗号化した前記商品 情報をバーコードとして表示する請求項27に記載の電 子商取引システム。

【請求項32】 携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置を有する店舗端末とを備え、前記携帯端末はブリッジメディアに記憶された情報を読み出す読出部を有し、当該ブリッジメディアに記憶された商品情報を読み出すと共に、当該商品情報に関

する情報をバーコードとして表示部に表示し、前記店舗端末は、前記バーコード読取装置より前記携帯端末に表示されたバーコードを読み取り、読み取った情報に基づいて商取引を行う電子商取引システム。

٠,

【請求項33】 前記ブリッジメディアは暗号処理手段を有し、前記携帯端末は暗号化された商品情報を読み出してバーコード表示する請求項32に記載の電子商取引システム。

【請求項34】 携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置及び照合装置を有する店舗端末と、前記携帯端末に商品情報情報を送信する情報送信装置と、電子商取引情報を管理する流通管理装置とを備え、前記流通管理装置は保持している商品購入プログラム及び商品情報を前記情報送信装置を介して商品購入プログラム及び商品情報に応じて形成した商品関連情報を表示部に表示するとともに、携帯端末利用者が高品関連情報をが一コードとして表示部に表示し、前記バーコード読取装置は、携帯端末に表示されたバーコードを読み取り、前記照合装置は、バーコード読取装置によって読み取ったバーコードの情報と前記流通管理装置から伝送された管理情報とを照合する電子商取引システム。

【請求項35】 バーコードで表示したデータを電子マネーとして使用する電子商取引システム。

【請求項36】 携帯端末と、店舗端末と、流通管理装置とを含む電子商取引システムであって、予め流通管理装置との間で商品又はサービスの購入注文処理を行っておき、携帯端末の利用者が店舗に出向いて決済処理を行う場合に、店舗端末は流通管理装置から予め決済処理に必要な情報を受け取っておき、携帯端末利用者が店舗に出向いた際、決済処理に必要な情報を携帯端末の表示部にバーコードとして表示させ、店舗端末のバーコード読取装置によりバーコードを読み取り、読み取ったバーコードの内容と店舗端末が予め受け取っている決済処理に必要な情報とを照合して決済処理を行う電子商取引システム。

【請求項37】 前記決済処理に必要な情報は、前記携 帯端末と前記流通管理装置との間で購入注文処理を行っ たときの時間情報を含む請求項36に記載の電子商取引 システム。

【請求項38】 携帯端末は決済処理に必要な情報を暗 号化してバーコード表示する請求項36に記載の電子商 取引システム。

【請求項39】 流通管理装置は、決済処理に必要な情報を所定の暗号鍵を用いて暗号化して携帯端末に送信しておき、携帯端末は、暗号化された決済に必要な情報をバーコード表示し、店舗端末は、バーコードから読み取った情報を流通管理装置に送信し、流通管理装置は、店舗端末から受信した情報を所持している暗号鍵により復

号して、決済を認証する請求項36に記載の電子商取引 システム。

【請求項40】 流通管理装置は、決済に必要な情報に 署名データを付加して携帯端末及び店舗端末に送信する 請求項36に記載の電子商取引システム。

【請求項41】 携帯端末及び店舗端末は、互いに無線により直接通信可能とされており、店舗端末は携帯端末の決済後の残高データを無線により書き換える請求項36に記載の電子商取引システム。

【請求項42】 携帯端末と、入場口付近に設けられバーコード読取装置及び照合装置を有する入場管理端末と、前記携帯端末に入場許可情報を送信する情報送信装置とを備え、前記携帯端末は、前記情報送信装置から受信した入場許可情報をバーコードとして表示し、前記入場管理端末は、前記携帯端末に表示されたバーコードの情報に応じて前記入場希望者の入場を許可する入場管理システム。

【請求項43】 前記入場管理端末は、さらに、前記携帯端末と無線通信する通信手段を備え、前記バーコードに加えて前記携帯端末との無線通信情報に応じて前記入場希望者の入場を許可する請求項42に記載の入場管理システム。

【請求項44】 第1の通信端末と、当該第1の通信端末と通信可能でありかつバーコード読取装置を有する第2の通信端末とを含むローカル無線システムであって、前記第1の通信端末の表示部に第1の通信端末の識別情報をバーコードにより表示し、前記第2の通信端末は前記バーコード読取装置により表示されたバーコードを読み取り、複数の通信端末の中から前記識別情報が示す前記第1の通信端末を検索し、前記第1の通信端末と無線通信を行うローカル無線システム。

【請求項45】 前記第1の通信端末が表示する前記バーコードは、2次元バーコードである請求項44に記載のローカル無線システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、地上デジタル放送 に用いられるOFDM信号の伝送システム及び通信を利 用した電子商取引に関する。

[0002]

【従来の技術】近年、衛星、ケーブル、地上等の伝送路を問わず、放送のデジタル化が世界的に進展している。このうち、欧州や日本の地上デジタル放送方式では、直交周波数分割多重(以下、OFDM (Orthogonal Frequency Division Multiplex)) 伝送方式を採用している。

【0003】OFDM伝送方式は、シンボル期間毎に互いに直交する多数のキャリアを伝送する情報によって変調し、それらの変調波を多重して伝送するもので、使用するキャリアの数が多くなると、各々の変調波のシンボ

ル期間が極めて長くなり、マルチパス干渉の影響を受け にくいという特長を有している。

【0004】またOFDM伝送方式においては、シンボル期間毎にガード期間と呼ばれる冗長な期間を設け、シンボル間干渉の発生を防ぐことにより、マルチパス干渉に対する耐性をさらに高めることができる。このような冗長期間を設けることができるのは、OFDM信号のシンボル期間が極めて長く、冗長期間を付加したことによる伝送容量の低下を許容できる範囲に収めることができるためである。

【0005】図48はOFDM信号の構成を示す模式図である。以下では、情報を伝送するために必要な期間を有効シンボル期間、有効シンボル期間にガード期間を加えた全体をシンボル期間と呼ぶ。図中にハッチングで示すように、OFDM信号のガード期間は有効シンボル期間の最後の部分(複写用部分)の信号を巡回的に複写したものとなっている。

【0006】次に図49を用いてガード期間が如何にしてマルチパス干渉に対する耐性を高めるかを説明する。図中の希望波及び遅延波は τ なる時間差をもって到来したOFDM信号を表し、G1、G2はそれぞれ第1番目、第2番目のシンボルのガード期間を表し、S0、S1、S2はそれぞれ第0番目、第1番目、第2番目のシンボルの有効シンボル期間を表す。ここで、図中の期間Aおよび期間Bでは希望波と遅延波とで異なったシンボルが受信されるが、期間Cでは同じ信号が受信される。つまり、時間差 τ がガード期間長よりも短い限り、遅延波によるシンボル間干渉はガード期間内に収められ、希望波の有効シンボル期間には悪影響を及ぼさない。

【0007】OFDM伝送方式を地上デジタル放送用の 伝送方式として採用した場合、このマルチパス干渉に対 する耐性が高いという特長を活かして、単一の周波数に よって中継網を構築するSFN (Single Frequency Net work) を実現することができ、周波数資源の有効利用を 図ることができる。

【0008】図50の(a)は大電力の中継局を用いて大規模なSFNを構築する場合を示し、(b)は小電力の中継局を用いて小規模なSFNを構築する場合を示す。図50の(a)と(b)とを比較すると、(a)の場合の方が中継局1Aと中継局2A磯側との間の距離が大きく、各々の中継局からの放送波が受信点3Aに到来するまでの時間差も大きくなる。従って、図50(a)に示すような大規模SFNを構築する場合の方が、

(b) に示すような小規模SFNを構築する場合に比べて、ガード期間を長くとる必要がある。

【0009】しかしながらガード期間を長くとると、それだけ冗長な時間が増加することになり、如何にOFDM伝送方式のシンボル期間が長いとはいえ、情報量の多い高品位テレビジョン(以下、HDTV (High Definit ion TeleVision))映像を放送するような場合には、伝

送容量の低下が問題となることがある。

【0010】従って、大規模SFNを構築する場合にガード期間による伝送容量の低下を極力低く抑えるためには、シンボル期間を長くとる方が有利である。

【0011】一方、日本の地上デジタル放送方式は、各キャリアの変調方式として差動二相位相シフトキーイング(以下、DQPSK (Differential Quaternary Phase Shift Keying))を採用したり、時間的に隣接するシンボルのデータを時間的に分散させる時間インターリーブを採用したりすることによって、その伝送路特性が時間的に変動するような移動体受信環境においても安定した受信を可能としている。

【0012】この場合、シンボル期間が短い方が伝送路 特性の時間変動の影響を受けにくく、高速な移動でも安 定した受信性能を得ることができる。

【0013】このように、大規模SFNにおいてHDT V映像を放送する場合や、高速に移動する移動体向けへ のサービスを放送する場合等、そのサービス内容によっ て最適なシンボル期間長は異なる。

【0014】このような要求に応えるため、日本の地上デジタル放送方式では、図51に示すように有効シンボル期間長が異なる3種類のモード、及び各々のモードに対して4種類のガード期間比(有効シンボル期間長に対するガード期間長の比率)を用意している。以下ではこの計12種類の組み合わせを伝送モードと呼ぶ。このうち例えば、モード3のガード期間比1/8とモード2のガード期間比1/4とでは、ガード期間長はどちらも等しく 126μ 秒となっている。

【0015】放送事業者の中継局の配置が決まると、各々の中継局からの放送波がサービスエリア内の受信点に到来するまでの時間差の最大値を見積もることができ、その数値から必要なガード期間長が決定される。この数値は各々の中継網毎に異なるため、地域あるいは放送事業者等によってガード期間長及びそれに伴い有効シンボル期間長が異なる可能性がある。

【0016】また、中継局によって決定されるガード期間長が例えば前述の 126μ 秒である場合、放送事業者はモード3でガード期間比を1/8とするか、あるいはモード2でガード期間比を1/4とするかを選択することが可能である。このとき、HDTV映像を放送する番組では、伝送容量を稼ぐためにモード3のガード期間比1/8を使用し、移動体向けのサービスを放送する番組では、高速な移動体に対しても安定してサービスを提供するためにモード2のガード期間比1/4を使用するといったように、番組のサービス内容によってこれら二つの伝送モードを切り替えることも可能である。

【0017】さらに放送サービス開始後、中継局の増設によって中継局間距離が縮まり、前述の時間差が小さくなると必要なガード期間長も短くなるが、ガード期間は元々情報の伝送には不要な冗長期間であるため、周波数

資源の有効利用の観点から考えると、当然ガード期間長 も必要最低限な長さに変更される。

【0018】このように有効シンボル期間長とガード期間比の組み合わせで表される伝送モードは、地域あるいは放送事業者によって異なる可能性があるとともに、ある一つの放送事業者に関しても時間的に変化する可能性がある。

【0019】一方、受信側におけるOFDM信号の復調処理は、受信信号から復調に必要な期間のみを切り出し、その信号に対して高速フーリエ変換(以下、FFT (FastFourier Transform))を施すことによって多重伝送されたキャリアを分離した後、各々のキャリアの変調方式に応じた検波処理を行うもので、その処理過程においては有効シンボル期間長及びガード期間比といった伝送モードが必須の情報となる。

【0020】そこで、受信信号の伝送モードが既知でない場合に、受信信号自体から信号処理によって自動的に前述の伝送モード情報を取得する方法が、特許公報第2863747号あるいは特許公報第2879034号等に開示されている。

【0021】これらの文献に開示されている従来技術は、OFDM信号のガード期間が有効シンボル期間の後部の信号を巡回的に複写したものであることを利用して、受信信号と受信信号を想定される有効シンボル期間長だけ遅延した信号との相関を算出し、この相関信号の波形を解析することで、有効シンボル期間長及びガード期間長を判定するものである。

【0022】また従来より、インターネットなどの通信ネットワークを利用した商品の購入など各種の電子商取引が行われている。このような電子商取引では、例えばホームページに取引対象となる商品を掲載する。ユーザは自己の端末からインターネットなどを介し、そのホームページに接続し、購入しようとする商品を選択すると共に、自己を特定するユーザ情報を入力する。

【0023】そしてクレジット番号の入力や、決済期間におけるIDの入力や、代金引換等の決済方法を指定する。ホームページの運用機関(センタ)は、このような入力の完了をもって商品の発注を行い、発注を受けた業者が商品をユーザに届けると共に、指定された決済方法で料金の支払いを受ける。

[0024]

【発明が解決しようとする課題】しかしながら上述した OFDM方式を用いた伝送方式では、一旦OFDM信号 を受信し、その受信信号から伝送モードを判定するた め、ユーザーが所望の情報を選択してからその情報を得 るまでに要する時間に、上記判定のための時間が含まれ ることとなり、ユーザーの要求に即応することができな い。

【0025】また前述のように、放送事業者が番組のサービス内容によって伝送モードを切り替える場合、切り

替え直後には一旦復調処理が破綻してしまい、その状態から再び伝送モードの判定処理に移行し、判定結果が得られてからようやく伝送モード切り替え後の情報を出力することが可能となるため、ユーザーに対する情報の提供が長時間中断される。

【0026】また上述した通信ネットワークを利用した 電子商取引においては、セキュリティの確保や決済の煩 雑さが問題となる。セキュリティの点では、例えばクレ ジットカードを利用した場合には偽造等の不安がある。 また決済の点では、簡単な作業で決済を行おうとすると セキュリティの信頼性が低下する。そしてセキュリティ と決済の容易さを実現しようとすると、システム構成が 大型化する問題がある。

【0027】そこで本発明は、上記の問題を解決し、ユーザーの要求に即応して所望の情報を提供すること、及び放送事業者が番組のサービス内容によって伝送モードを切り替える場合にも、中断することなくユーザーに情報を提供することを可能とするOFDM信号伝送システムを提供することを目的とする。

【0028】また本発明は、セキュリティの信頼性と決済の容易さを両立し得る簡易な構成の電子商取引システムを提供することを目的とする。

[0029]

【課題を解決するための手段】上記の課題を解決するた めに、本発明のOFDM信号伝送システムは、OFDM 変調方式で変調された変調信号を、第1の周波数領域で 送信を行う送信局から送信された第1送信信号を受信す る第1受信部と第1受信信号を同調する同調部と復調す る第1の復調部と出力部とをもつ第1の受信ブロック と、第1の周波数帯とは同一でない第2の周波数帯領域 で受信を行う送受信局から送信された、第2送信信号を 受信できる第2受信部と第2受信信号を復調する第2復 調部とをもつ第2受信ブロックとを有するOFDM信号 伝送システムであって、第2受信信号の中に含まれる前 記送受信局の識別情報もしくは/かつ前記第1送信信号 を同調もしくは復調の少なくとも一方を行うための情報 を受信し、前記情報を用いることにより第1送信信号を 同調もしくは復調の少なくとも一方を行うための伝送情 報を得て、前記第1復調部において、第1受信信号の同 調もしくは復調の少なくとも一方を行う構成を採る。

【0030】本発明のOFDM信号伝送システムは、OFDM変調方式で変調された変調信号を、第1の周波数領域で送信を行う送信局から送信された第1送信信号を受信する第1受信部と第1受信信号を同調する同調部と復調する第1の復調部と出力部とをもつ第1の受信ブロックと、第1の周波数帯とは同一でない第2の周波数帯領域で受信を行う送受信局から送信された、第2送信信号を受信できる第2受信部と第2受信信号を復調する第2復調部とをもつ第2受信ブロックとを有するOFDM信号伝送システムであって、第2受信信号の中に含まれ

る前記送受信局の識別情報もしくは/かつ前記第1送信信号を同調もしくは/かつ復調するための情報を受信し、前記情報を用いることにより第1送信信号を同調もしくは/かつ復調するための伝送情報を得て、同調部もしくは/かつ前記第1復調部において、第1受信信号の同調もしくは/かつ復調を行う構成を採る。

٠,

【0031】本発明のOFDM信号伝送システムは、O FDM変調方式で変調された変調信号を、第1の周波数 領域で送信を行う送信局から送信された第1送信信号を 受信する第1受信部と第1受信信号を同調する同調部と 復調する第1の復調部と出力部とをもつ第1の受信ブロ ックと、第1の周波数帯とは同一でない第2の周波数帯 領域で受信を行う送受信局から送信された、第2送信信 号を受信できる第2受信部と第2受信信号を復調する第 2復調部をもつ第2受信ブロックとを有するOFDM信 号伝送システムであって、第2受信信号の中に含まれる 前記送受信局の識別情報もしくは/かつ前記第1送信信 号を同調もしくは/かつ復調するための情報を受信し、 前記情報を用いることにより第1送信信号を同調もしく は一かつ復調するための伝送情報を得て、同調部もしく は/かつ前記第1復調部において、第1受信信号の同調 もしくは/かつ復調を行うとともに、復調したデータを データ表示部に表示する構成を採る。

【0032】これらの構成により、受信信号を復調する前に、復調に必要な伝送パラメータを得ることができる。

【0033】本発明の携帯端末は、受信手段と、バーコードを形成するバーコード形成手段と、表示手段とを具備し、前記受信手段が受信したデータから前記バーコード形成手段がバーコードを形成し、前記表示手段が前記形成されたバーコードを表示する構成を採る。

【0034】この構成により、受信信号に応じたバーコードを表示できるので、例えば電子商取引に利用すれば、容易に決済を行うことができるようになる。また携帯端末がバーコードを生成するので、バーコード自体を受信する場合に比べ、受信する必要があるデータのサイズが小さくて済む。

【0035】本発明の携帯端末は、前記表示手段の近傍 位置に設けられバーコード読取装置からの光又は信号を 検出する検出手段を、さらに具備する構成を採る。

【0036】この構成により、検出手段の検出結果に連動させてバーコードの表示を切り替えるようにすれば、携帯端末利用者の操作無しに、バーコード読取装置の読み取り動作に好適に連動して自動的にバーコード表示が切り替わるようになる。

【0037】本発明の携帯端末は、前記検出手段による 検出結果に応じて前記表示手段に表示するバーコードを 順次更新する構成を採る。

【0038】この構成により、バーコード読取装置を表示部に当てておくだけで、順次バーコードが更新されて

いくので、複数のバーコードで表される情報を容易に読 み取ることができる。

【0039】本発明の携帯端末は、受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、主表示部と副表示部とを有し当該副表示部に前記バーコードを表示する表示手段と、を具備する構成を採る。

【0040】この構成により、受信信号に応じたバーコードを表示できるので、例えば電子商取引に利用すれば、容易に決済を行うことができるようになる。また副表示部を設け、当該副表示部にバーコードを表示するようにしたので、バーコードが表示されている間でも、主表示部には所望の画像を表示できるので、利便性が良い。

【0041】本発明の携帯端末は、副表示部は、主表示 部よりも解像度が高くされている構成を採る。

【0042】この構成により、詳細なバーを表示できるので、表示面積が小さくても、バーコードによる情報量の減少を抑制できる。

【0043】本発明の携帯端末は、主表示部はカラーフィルタ層が形成されていると共に、副表示部はカラーフィルタ層が形成されていない構成を採る。

【0044】この構成により、副表示部にバーコード読み取りのための光を照射したとき、どの画素を通過した反射光も同じ減衰しか受けないため、高い密度のバーでも誤認識されることが無くなる。

【0045】本発明の携帯端末は、副表示部に表示すべきデータを複数個のデータに分け、副表示部に複数回に分けてバーコードを表示する構成を採る。

【0046】この構成により、バーコードで表示すべき データ量が大きいときに、バーの密度を上げることなく 大容量のデータを複数バーコードで表示できる。この結 果、誤認識なく、大容量の表示バーコードデータを読み 取ることができるようになる。

【0047】本発明の携帯端末は、主表示部に2次元バーコードを表示する構成を採る。

【0048】この構成により、2次元バーコードによる表示データ量は、1次元バーコードによる表示データ量よりも大きいので、例えば副表示部に表示する1次元バーコードでは表示しきれないような、または全て表示するためには長時間かかるような大容量のデータをバーコード表示要求された場合には、選択的に主表示部に2次元バーコードを表示することで、短時間で大容量のデータをバーコード表示できるようになる。

【0049】本発明の携帯端末は、バーコード表示すべきデータ量又は指示に応じて、前記1次元バーコード及び/又は前記2次元バーコードを適応的に表示する構成を採る。

【0050】この構成により、不必要に2次元バーコードを表示せずに、限られた画面を有効利用したバーコー

ド表示ができるようになる。

٠,

【0051】本発明の携帯端末は、バーコード表示すべきデータ量に応じて、副表示部に表示する1次元バーコードと、主表示部に表示する2次元バーコードの表示バーコードパターンの更新タイミングを適応的に選定する構成を採る。

【0052】この構成により、例えば表示すべきデータ量が多いときには2次元バーコードの更新タイミングを速くし、表示すべきデータ量がそれほど多くないときには2次元バーコードの更新タイミングを遅くしまたは更新せずに、1次元バーコードのみを更新するといった処理を行うことにより、データ量に応じたバーコード表示を行うことができるようになる。

【0053】本発明の携帯端末は、副表示部に表示する 1次元バーコードと主表示部に表示する2次元バーコー ドの単位時間当たりの表示情報量が同じとなるように、 各バーコードの表示更新タイミングを選定する構成を採 る。

【0054】この構成により、1次元バーコードも2次元バーコードも単位時間当たりの同じ容量を表示できるようになるので、バーコード読取装置が1次元センサを用いるバーコード読取装置でも、2次元センサを用いるバーコード読取装置でも読み取り可能となる。この結果、どのタイプのバーコード読取装置でも読み取り可能となるので、汎用性を高めることができる。

【0055】本発明の携帯端末は、副表示部及び又は主表示部に複数回バーコードを表示させる場合、各バーコード表示期間の間に所定期間の無表示期間を挟んで複数回のバーコード表示を行う構成を採る。

【0056】この構成により、バーコード読取装置の誤認識を抑制できる。

【0057】本発明の携帯端末は、バーコード表示期間を無表示期間よりも長くなるように選定する構成を採る。

【0058】この構成により、連続して表示される先の バーコードと次のバーコードの間の時間的なクロストー クによる読み取りエラーが大幅に減少される。

【0059】本発明の携帯端末は、複数の情報それぞれについて複数のバーコードを形成し、各情報を所定の無表示期間を挟みながら複数のバーコードで表示すると共に、情報の区切りのバーコード間での無表示期間を各情報内での無表示期間よりも長くする構成を採る。

【0060】この構成により、バーコード読取装置がバーコード読み込み時に無表示期間の時間を測定すれば、各情報の先頭のバーコードを検出できるので、読み取りデータの先頭データの同期検出を容易に行うことができるようになる。

【0061】本発明の携帯端末は、受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、前記バーコードを表示する表示手段とを具備し、前

記表示部に複数回バーコードを表示させる場合、バーコードの先頭部で、表示の順序を表す表示順番号及び表示するバーコードの総数を表す表示総数を表示する構成を 採る。

【0062】この構成により、バーコード読取装置のバーコード読み取り時に、例えば先頭のバーコードではなく、2番目のバーコードしか読み取れなかった場合でも、表示順番号に関連付けてバーコード読取装置に読み取った情報を蓄積しておき、次々と表示順番号を検出して、表示総数分を読み取るまで読み込むことができる。この結果、ランダムなバーコードの部分的な読み込みが可能となるので、全データの読み込み時間を短縮化できる。

【0063】本発明の携帯端末は、受信手段と、受信信号に基づくバーコードを形成するバーコード形成手段と、前記バーコードを表示する表示手段と、前記表示手段にバーコードを表示するためのバーコード表示スイッチを具備し、当該バーコード表示スイッチが操作されたとき、予め設定されたパスワードの入力を要求し、正しいパスワードが入力されなかったときにはバーコードを表示しない構成を採る。

【0064】この構成により、携帯端末の利用者以外の第3者はパスワードを知らないので、例えばこの携帯端末によるバーコード表示を電子商取引の認証として用いた場合の携帯端末の盗難による誤認証を未然に防止できる。

【0065】本発明の携帯端末は、暗号処理手段をさらに具備し、前記受信手段が受信したデータを前記暗号処理手段が暗号化し、前記暗号処理手段が暗号化したデータから前記バーコード形成手段がバーコードデータを形成し、前記表示手段が前記形成されたバーコードデータを表示する構成を採る。

【0066】この構成により、例えば携帯端末の利用者の意志に反して第3者がバーコードを不正に読み取ったとしても、暗号鍵がなければバーコードの情報を復号できないので、セキュリティを向上させることができる。

【0067】本発明の携帯端末は、無線送信された信号を受信する受信手段と、バーコードを形成するバーコード形成手段と、表示手段と、ローカル無線通信手段とを具備し、前記受信手段が受信したデータの中から、ローカル無線通信手段が受信した識別情報が示すデータを検索し、検索されたデータをバーコードとして前記表示手段に表示する構成を採る。

【0068】この構成により、携帯端末の利用者が選択操作しなくても適当なバーコードを表示できるので、例えば電子商取引に利用すれば、容易に決済を行うことができるようになる。

【0069】本発明の電子商取引システムは、携帯端末と、携帯端末に商品情報又はサービス情報を送信する情報送信装置と、電子商取引情報を管理する流通管理装置

とを備え、前記携帯端末は、前記情報送信装置を介して 商品情報又はサービス情報を受け取ると共に、前記流通 管理装置から前記商品情報又はサービス情報に関する補 足情報を受け取る構成を採る。

【0070】この構成により、例えば情報送信装置から 無線により商品の種類や価格と言った一般的な情報を一 方向送信により受け取り、流通管理装置からインターネ ットにより詳細情報を双方向通信により受け取るように すれば、大容量の商品情報又はサービス情報を利便性良 く、有効に受け取ることができるようになる。

【0071】本発明の電子商取引システムは、前記情報送信装置が送信する前記商品情報又はサービス情報は放送信号であり、前記携帯端末は前記流通管理装置と双方向の通信を行う構成を採る。

【0072】本発明の電子商取引システムは、前記補足情報は、携帯端末又は携帯端末利用者に適した情報である構成を採る。

【0073】また本発明の電子商取引システムは、携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置を有する店舗端末と、電子商取引情報を管理する流通管理装置とを備え、前記携帯端末は、前記流通管理装置から受け取った商品情報、サービス情報又は商取引に関する情報をバーコードとして表示し、前記バーコード読取装置は、携帯端末に表示されたバーコードを読み取り、前記店舗端末又は前記流通管理装置は、バーコード読取装置によって読み取られたバーコードの情報に基づいて決済を行う構成を採る。

【0074】本発明の電子商取引システムは、携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置及び照合装置を有する店舗端末と、無線により商品情報を送信する情報送信装置とを備え、前記情報送信装置は、前記携帯端末及び前記店舗端末の両方に前記商品情報を無線送信し、前記携帯端末は、受信した商品情報に応じたデータをバーコードとして表示部に表示し、前記店舗端末は、前記バーコード読取装置により携帯端末に表示されたバーコードを読み取ると共に、前記照合装置によりバーコード読取装置によって読み取ったバーコードの情報と前記情報送信装置から受け取った商品情報とを照合する構成を採る。

【0075】これらの構成により、迅速かつ容易に商取 引ができるようになる。

【0076】本発明の電子商取引システムは、携帯端末と、商品の受け渡しを行う店舗に設けられバーコード読取装置及び照合装置を有する店舗端末と、前記携帯端末に商品情報又はサービス情報を送信する情報送信装置と、電子商取引情報を管理する流通管理装置とを備え、前記携帯端末は、前記情報送信装置から受信した商品情報又は携帯端末利用者が選択した商品に関する情報をバーコードとして表示し、前記バーコード読取装置は、携帯端末に表示されたバーコードを読み取り、前記照合装

置は、バーコード読取装置によって読み取ったバーコードの情報と前記流通管理装置から伝送された管理情報とを照合すると共に、取引情報を前記流通管理装置に伝送し、前記流通管理装置は、取引情報に基づいて管理情報を変更する構成を採る。

【0077】この構成により、携帯端末利用者はどこからでも容易に商品やサービスの購入予約をすることができる。また購入予約データを口頭で伝えたり、紙に印字しなくても、携帯端末の表示部にバーコードで購入予約した商品やサービスを表示し、これを店舗端末のバーコード読取装置で読み取り、照合装置で照合することにより、簡単に商品やサービスを購入することができる。この結果、瞬時に認証ができるので、迅速に商品やサービスを購入できるようになる。

【0078】本発明の電子商取引システムは、情報送信 装置は、携帯端末の位置及び又は時間に応じた商品又は サービス情報を携帯端末に送信する構成を採る。

【0079】この構成により、実際上、携帯端末利用者にとって必要性のある商品やサービス情報を携帯端末に送信できるので、容易に所望の商品やサービスを購入予約できるようになる。

【0080】本発明の電子商取引システムは、店舗端末は、データベースを有し、流通管理装置は、携帯端末の利用者が選択した店舗のデータベースに携帯端末利用者が選択した商品又はサービス情報を格納させる構成を採る。

【0081】この構成により、携帯端末利用者が商品やサービスを購入予約する(選択する)と、その情報が選択した店舗のデータベースに格納されるので、携帯端末利用者が店舗に出向いて商品やサービスを購入する際のバーコードから読み取ったデータを迅速に認証できる。

【0082】本発明の電子商取引システムは、情報送信装置により携帯端末に送信するサービス情報は、電気料金、電話料金、ガス料金又は水道料金である構成を採る。

【0083】この構成により、携帯端末のバーコードには電気料金、電話料金、ガス料金又は水道料金が表示され、これを例えばコンビニエンスストアに設けられた店舗端末で読み取り、これを電気会社、電話会社、ガス会社又は水道会社に設けられた流通管理装置に送出すれば、簡単に上記料金の支払いを行うことができる。

【0084】本発明の電子商取引システムは、携帯端末が、暗号化した商品又はサービス情報をバーコードとして表示する構成を採る。

【0085】この構成により、例えば携帯端末の利用者の意志に反して第3者がバーコードを不正に読み取ったとしても、暗号鍵がなければバーコードの情報を復号できないので、セキュリティを向上させることができる。

【0086】本発明の電子商取引システムは、携帯端末 と、商品の受け渡しを行う店舗に設けられバーコード読 取装置を有する店舗端末とを備え、前記携帯端末はブリッジメディアに記憶された情報を読み出す読出部を有し、当該ブリッジメディアに記憶された商品情報を読み出すと共に、当該商品情報に関する情報をバーコードとして表示部に表示し、前記店舗端末は、前記バーコード読取装置より前記携帯端末に表示されたバーコードを読み取り、読み取った情報に基づいて商取引を行う構成を採る。

٠.

【0087】この構成により、迅速かつ容易に商取引ができるようになる。

【0088】本発明の電子商取引システムは、前記ブリッジメディアは暗号処理手段を有し、前記携帯端末は暗号化された商品情報を読み出してバーコード表示する構成を採る。

【0089】本発明の電子商取引システムは、携帯端末 と、商品の受け渡しを行う店舗に設けられバーコード読 取装置及び照合装置を有する店舗端末と、前記携帯端末 に商品情報情報を送信する情報送信装置と、電子商取引 情報を管理する流通管理装置とを備え、前記流通管理装 置は保持している商品購入プログラム及び商品情報を前 記情報送信装置を介して前記携帯端末に送信し、前記携 帯端末は、受信した前記商品購入プログラム及び商品情 報に応じて形成した商品関連情報を表示部に表示すると ともに、携帯端末利用者が表示部に表示された商品関連 情報を参照して選択した商品関連情報をバーコードとし て表示部に表示し、前記バーコード読取装置は、携帯端 末に表示されたバーコードを読み取り、前記照合装置 は、バーコード読取装置によって読み取ったバーコード の情報と前記流通管理装置から伝送された管理情報とを 照合する構成を採る。

【0090】この構成により、携帯端末の利用者は、商品購入プログラムに従って自分の選択に応じて順次形成される商品関連情報(例えば割引された商品価格)を見て、最終的に自分の好きな商品関連情報を選択できる。次にその選択した商品関連情報がバーコードとして表示される。携帯端末利用者は、店舗端末にそれを読み込ませ、その情報が店舗端末がもっている情報と一致すれば商取引が成立する。この結果、情報送信装置への上り回線を使わずに、下り回線のみで電子商取引を完了させることができ、例えば送信機能を有しない携帯テレビにも適用できるようになる。

【0091】本発明の電子商取引システムは、バーコードで表示したデータを電子マネーとして使用する。

【0092】この構成により、バーコードを読み取らせることで容易に決済を行うことができる。

【 O O 9 3 】本発明の電子商取引システムは、携帯端末と、店舗端末と、流通管理装置とを含む電子商取引システムであって、予め流通管理装置との間で商品又はサービスの購入注文処理を行っておき、携帯端末の利用者が店舗に出向いて決済処理を行う場合に、店舗端末は流通

管理装置から予め決済処理に必要な情報を受け取っておき、携帯端末利用者が店舗に出向いた際、決済処理に必要な情報を携帯端末の表示部にバーコードとして表示させ、店舗端末のバーコード読取装置によりバーコードを読み取り、読み取ったバーコードの内容と店舗端末が予め受け取っている決済処理に必要な情報とを照合して決済処理を行う構成を採る。

【0094】この構成により、携帯端末利用者はどこからでも容易に商品やサービスの購入予約をすることができる。また購入予約データを口頭で伝えたり、紙に印字しなくても、携帯端末の表示部にバーコードで購入予約した商品やサービスを表示し、これを店舗端末のバーコード読取装置で読み取り、読み取った情報を店舗端末が流通管理装置から予め受け取っている情報と照合することにより、簡単かつ迅速に決済を行うことができる。

【0095】本発明の電子商取引システムは、決済処理 に必要な情報が、携帯端末と流通管理装置との間で購入 注文処理を行ったときの時間情報を含むようにする。

【0096】この構成により、時間情報は携帯端末と店舗端末のみが共有する情報となり、他の携帯端末による 決済は不可能となるので、電子商取引のセキュリティが向上する。

【0097】本発明の電子商取引システムは、携帯端末が、決済処理に必要な情報を暗号化してバーコード表示するようにする。

【0098】この構成により、例えば携帯端末の利用者の意志に反して第3者がバーコードを不正に読み取ったとしても、暗号鍵がなければバーコードの情報を復号できないので、セキュリティを向上させることができる。

【0099】本発明の電子商取引システムは、流通管理 装置は、決済処理に必要な情報を所定の暗号鍵を用いて 暗号化して携帯端末に送信しておき、携帯端末は、暗号 化された決済に必要な情報をバーコード表示し、店舗端 末は、バーコードから読み取った情報を流通管理装置に 送信し、流通管理装置は、店舗端末から受信した情報を 所持している暗号鍵により復号して、決済を認証する構 成を採る。

【0100】この構成により、決済処理に必要な情報として例えば個人の携帯電話番号やURL等が含まれている場合に、この情報が含まれたバーコードを店舗端末で読み取ったとしても、店舗端末ではこれを復号できないので、個人のプライベートを守ることができるようになる。

【0101】本発明の電子商取引システムは、流通管理 装置が、決済に必要な情報に署名データを付加して携帯 端末及び店舗端末に送信する構成を採る。

【0102】この構成により、署名データが一致しなければ決済を行うことができないので、一段とセキュリティを向上させることができる。

【0103】本発明の電子商取引システムは、携帯端末

及び店舗端末が、互いに無線により直接通信可能とされており、店舗端末が、携帯端末の決済後の残高データを 無線により書き換えるようにする。

【0104】この構成により、迅速に携帯端末の残高データを書き換えることができるようになる。

【0105】本発明の入場管理システムは、入場希望者が所有している携帯端末と、入場口付近に設けられバーコード読取装置及び照合装置を有する入場管理端末と、携帯端末に入場許可情報を送信する情報送信装置とを備え、携帯端末は、情報送信装置から無線受信した入場許可情報をバーコードとして表示し、入場管理端末は、携帯端末に表示されたバーコードの情報に応じて入場希望者の入場を許可する構成を採る。

【0106】この構成により、入場希望者はいつでもどこでも簡単に入場許可チケットに代わる入場許可データを獲得でき、これをバーコード表示し、入場管理端末で読み込むだけで入場許可を得ることができるので、スムーズに所望の場所に入場できるようになる。

【0107】本発明の入場管理システムは、入場管理端末が、さらに、携帯端末と無線通信する通信手段を備え、バーコードに加えて携帯端末との無線通信情報に応じて入場希望者の入場を許可する構成を採る。

【0108】この構成により、例えばバーコードに表示する情報量が大きい場合などに有効となる。

【0109】本発明のローカル無線システムは、第1の通信端末と、当該第1の通信端末と通信可能でありかつバーコード読取装置を有する第2の通信端末とを含むローカル無線システムであって、前記第1の通信端末の表示部に第1の通信端末の識別情報をバーコードにより表示し、前記第2の通信端末は前記バーコード読取装置により表示されたバーコードを読み取り、複数の通信端末の中から前記識別情報が示す前記第1の通信端末を検索し、前記第1の通信端末と無線通信を行う構成を採る。

【0110】この構成により、複数の通信端末の中から 選択的にローカル無線通信を行うことができるようにな る。このときバーコードを表示した通信端末とバーコー ドを読み取った通信端末のみで通信が確立するので、秘 匿性の非常に高いローカル無線通信を行うことができ る。

【0111】本発明のローカル無線システムは、第1の 通信端末が表示するバーコードは、2次元バーコードで ある構成を採る。

[0112]

【発明の実施の形態】以下では本発明の実施の形態について図面を用いて説明する。

【0113】なお、ブロック図中の各々のブロックの動作に必要なクロックや制御信号等は、本発明の動作を説明するために必要なものを除いては、図面が煩雑になるのを避けるために省略している。

【0114】(1)第1の実施の形態

図1は、本発明の第1の実施の形態におけるデジタル放送受信装置10Aの構成を示すブロック図である。

【0115】本実施の形態は、地域あるいは放送事業者等によって伝送モードは異なるが、番組単位というように短時間的に伝送モードは変化しない場合において、主に家庭内等の固定受信環境での利用を想定するものである。

【0116】図1において、アンテナ101は、デジタル放送信号をチューナ102の入力に供給する。このチューナ102は、アンテナ101から供給されたデジタル放送信号からユーザーが所望するチャネルの信号を選択し、無線周波数帯から基底周波数帯に周波数変換するもので、その出力はOFDM復調部103の入力に供給される。OFDM復調部103は、基底周波数帯のデジタル放送信号に対して復調及び誤り訂正等の処理を施すことにより、伝送情報系列を再生するもので、その出力は情報源復号化部104の入力に供給される。

【0117】ここで一般的には、伝送情報系列はMPEG2 (Moving Picture Experts Group 2) のトランスポートストリーム(以下、TS (Transport Stream))といった形式のものであり、その中には高能率符号化(圧縮)された映像情報や音声情報、及びデータ等が多重されている。

【0118】情報源復号化部104は、伝送情報系列を映像情報、音声情報、及びデータに分離し、高能率符号化された映像情報及び音声情報を各々復号した後、出力部105の入力に供給するとともに、データを情報バス110を通じてCPU(Central Processing Unit)107に供給する。出力部105は、復号された映像及び音声、あるいはCPU107からのメッセージ等をユーザーに対して提示するものである。

【0119】入力部106は、ユーザーからの指示を受け、その内容をCPU107に伝達するものである。CPU107は、入力部からのユーザー指示等に基づいて、制御バス109を通じて各ブロックを制御する。またCPU107は、情報バス110を通じて、情報源復号化部104において分離されたデータを受け取ったり、ユーザーへ提示するメッセージ等を出力部105へ出力する。蓄積部108は、本デジタル放送受信装置10Aが動作するために必要な情報を蓄積するものである。

【0120】ここで入力部106は、本デジタル放送受信装置10Aそのものが備えるボタン等のみならず、外部のリモコン等が備えるボタンやリモコンと本体とのインターフェースをも含む。

【0121】図2は、図1におけるOFDM復調部103の内部構成例であり、チューナ102の出力はOFDM復調部103内部の直交検波部1031の入力に供給される。直交検波部1031は、基底帯域のデジタル放送信号を直交検波することにより、同相軸(以下、I

(In phase) 軸)信号と直交軸(以下、Q(Quadrature phase)軸)信号とからなる複素数信号に変換するもので、その出力はガード期間除去部1032は、制御バスインターフェース(I/F)部1037からのガード期間長に関する情報に基づいて、直交検波部1031の出力からガード期間を除去するもので、その出力は高速フーリエ変換(以下、FFT(Fast Fourier Transform))部1033の入力に供給される。

【0122】FFT部1033は、制御バスI/F部1037からの有効シンボル期間長に関する情報に基づいて、ガード期間が除去された信号をFFTすることにより、多重伝送されたキャリアを分離するもので、その出力は検波部1034の第一の入力及び復調情報復号部1036の入力に供給される。

【0123】検波部1034は、第二の入力から供給される復調情報(各々のキャリアの変調方式)に基づいて、第一の入力から供給される各々のキャリアに検波処理を施すもので、その出力は誤り訂正部1035は、第二の入力がら供給される復調情報(時間インターリーブの深さや誤り訂正の符号化率等)に基づいて、第一の入力から供給される検波結果に誤り訂正処理を施すもので、その出力はOFDM復調部103の出力として情報源復号化部104の入力に供給される。

【0124】復調情報復号部1036は、FFT部1033の出力から復調情報を伝送するキャリアを抽出し、それに対して検波/誤り訂正処理を施すことにより、復調情報を復号するもので、その出力は検波部1034及び誤り訂正部1035の第二の入力に供給される。

【0125】制御バスI/F部1037は、制御バス109を通じて伝達されるCPU107からの制御情報を解釈し、ガード期間除去部1032やFFT部1033にガード期間長や有効シンボル期間長に関する伝送モード情報を供給する。

【0126】実際には、検波部1034等のブロックでも動作に必要な制御信号を生成するために伝送モード情報を使用する場合があるが、図2では図が煩雑になるのを避けるために省略している。また、OFDM復調部103が動作するためには、キャリア周波数同期やサンプリング周波数同期、及びシンボル同期やフレーム同期といった同期処理を行なう必要があるが、ここでは同様の理由で省略している。

【0127】ここで日本の地上デジタル放送方式では、 復調情報をTMCC(Transmissionand Modulation Con figuration Control)と呼ばれる信号を用いて伝送して おり、その内容を図3に示す。

【0128】次に、本実施の形態におけるデジタル放送 受信装置の動作について図面を用いて説明する。本デジ タル放送受信装置はその動作状態として、少なくともプ リセットモードと視聴モードとを備える。

【0129】図4は、CPU107の動作を示すフローチャートであり、(a)はプリセットモードにおける動作を示し、(b)は視聴モードにおける動作を示す。

【0130】プリセットモードでは、まず、入力部106より現在地を特定するための情報を取得する(ステップS1)。次に、特定された現在地に対応する選局情報の先頭アドレスA及び情報数nを取得し(ステップS2)、入力部106が備えるボタン0から(n-1)に、選局情報のアドレスAからA+(n-1)を順に割り付ける(ステップS3,S4,S5,S6)。

【0131】ここで、現在地を特定するための情報としては、住所、郵便番号、電話番号等が用いられ、蓄積部108には、それらの情報と各々の地域に対応する選局情報の先頭アドレス及び情報数とを関連付ける情報が予め蓄積されており、CPU107はその情報を参照することにより、現在地に対応する選局情報の先頭アドレス及び情報数を取得することができる。

【0132】視聴モードでは、まず、入力部106よりプリセットモードにおいて選局情報アドレスが割り付けられたボタンjの入力を取得する(ステップS11)。次に、ボタンjに割り付けられたアドレスA+jにアクセスし(ステップS12)、蓄積部108よりアドレスA+jの選局情報を取得する(ステップS13)。そして、チューナ102へ周波数情報Fjを伝達し(ステップS14)、OFDM復調部103へ伝送モード情報Mjを伝達する(ステップS15)。

【0133】図5は、蓄積部108の内容、及び入力部 106が備えるボタンへの割付の一例を示す。図に示す ように各々のアドレスには、選局情報として、周波数情 報及び伝送モード情報が格納されている。

【0134】以上の構成により、本実施の形態の構成によれば、ユーザーが所望の放送局を選択してから、デジタル放送信号を受信し、その受信信号から伝送モードを判定する必要がないため、ユーザーの要求に即応して所望の情報を提供することが可能となる。

【0135】なお以上では、蓄積部108に選局情報を蓄積する方法については特に説明しなかったが、これは製造時等に予め蓄積しておく方法でも良く、選局情報を随時更新する方法でも良い。後者の方法を用いると、放送サービス開始後、中継局の増設によって中継局間距離が縮まり、ガード期間長が変更されるといったように、ある程度長期的な伝送モードの変化に対応することが可能となる。

【0136】また、新たな選局情報を入手する方法としては、デジタル放送信号中の伝送情報系列に選局情報を 多重する方法、別途通信手段を設け通信回線経由で入手 する方法、あるいは記録媒体を介して入手する方法等を 利用することができる。

【0137】(2)第2の実施の形態

図6は、本発明の第2の実施の形態におけるOFDM信号伝送システムの構成を示すブロック図である。図6において、図1と同一の符号を付した構成要素は第1の実施の形態と同じ動作を行う。

٦,

【0138】本実施の形態は、地域あるいは放送事業者等によって伝送モードは異なるが、番組単位というように短時間的に伝送モードは変化しない場合において、主に自動車や携帯等の移動受信環境での利用を想定するものである。

【0139】また本実施の形態は、全地球的測位システム(以下、GPS(Global Positioning System))を用いて現在地を特定する以外は、第1の実施の形態と同様の動作を行うものである。

【0140】図6において、デジタル放送受信装置10 BのGPS用アンテナ111は、GPS衛星20A、2 0B、20Cからの信号をGPS処理部112の入力に 供給する。GPS処理部112は、GPS衛星20A、 20B、20Cからの信号中に含まれる擬似ランダム符 号を用いて各々の衛星からの信号の到来時間を測定する ことにより、各々の衛星との距離を求め、三角測量の原 理に基づいて現在地を特定する。CPU部107は、第 1の実施の形態において説明したプリセットモードにお いて、GPS処理部112が特定した現在地を使用す る

【0141】以上の構成により、本実施の形態の構成によれば、ユーザーが所望の放送局を選択してから、デジタル放送信号を受信し、その受信信号から伝送モードを判定する必要がないため、ユーザーの要求に即応して所望の情報を提供することが可能となることに加え、現在地が刻一刻変化するような移動受信環境においても、GPSを用いることにより常に現在地を特定することができるので、現在地を特定するための情報の入力を、移動に応じて頻繁に行う必要がなくなる。

【0142】(3)第3の実施の形態

図7は、本発明の第3の実施の形態におけるOFDM信号伝送システムの構成を示すブロック図である。図7において、図1と同一の符号を付した構成要素は第1の実施の形態と同じ動作を行う。

【0143】本実施の形態は、第2の実施の形態と同様に、地域あるいは放送事業者等によって伝送モードは異なるが、番組単位というように短時間的に伝送モードは変化しない場合において、主に自動車や携帯等の移動受信環境での利用を想定するものである。

【0144】また本実施の形態は、セル方式による移動 通信システムにおける位置登録機能を用いて現在地を特 定する以外は、第1の実施の形態と同様の動作を行うも のである。

【0145】セル方式による移動無線通信システムとは、サービスエリアを多数のセルと呼ばれる小さなエリアに分割し、それぞれに基地局を設置して、ユーザーの

移動にあわせて追跡接続するシステムである。このシステムでは、ユーザーが複数のセルにまたがって移動するため、移動機がどのセルに存在するかを常に把握している必要がある。また、セルが変わってもスムーズに通信を継続するための欠かせない制御技術として、位置登録機能を備えている。

【0146】位置登録において移動機は、基地局から位置情報を取得し、その情報を自機内に登録するとともに、ネットワークにも通知する。その後、位置変更を検知した場合、移動機は自機内の位置登録を更新するとともに、ネットワークにも通知する。また、移動機の電源オフ後、再び電源をオンにした場合、そのときの基地局からの位置情報を自機内の位置情報と比較し、違う場合は自機内の位置登録を更新するとともに、新しい位置情報をネッワークに通知する。

【0147】図7において、デジタル放送受信装置10 Cの無線通信用アンテナ113は、無線通信基地局30 からの信号を無線通信インターフェース(I/F)部1 14に供給するとともに、無線通信I/F部114から 供給される信号を無線通信基地局30へ放射する。無線 通信I/F部114は無線通信用アンテナ113から供 給される無線通信基地局30からの信号に含まれる位置 情報を抽出し、現在地を特定しその情報をCPU107 に伝達する。CPU部107は、第1の実施の形態にお いて説明したプリセットモードにおいて、無線通信I/ F部114から伝達された現在地情報を使用する。

【0148】以上の構成により、本実施の形態の構成によれば、ユーザーが所望の放送局を選択してから、デジタル放送信号を受信し、その受信信号から伝送モードを判定する必要がないため、ユーザーの要求に即応して所望の情報を提供することが可能となることに加え、現在地が刻一刻変化するような移動受信環境においても、セル方式の移動無線通信における位置登録機能を用いることにより常に現在地を特定することができるので、現在地を特定するための情報の入力を、移動に応じて頻繁に行う必要がなくなる。

【0149】(4)第4の実施の形態

図8は、本発明の第4の実施の形態におけるOFDM信号伝送システムの構成を示すブロック図である。図8において、図1及び図7と同一の符号を付した構成要素は第1の実施の形態及び第3の実施の形態と同じ動作を行う。

【0150】本実施の形態は、地域あるいは放送事業者等によって伝送モードが異なるとともに、番組単位というように短時間的に伝送モードが変化する場合において、主に自動車や携帯等の移動受信環境での利用を想定するものである。

【0151】また本実施の形態は、伝送モード情報を含む番組情報を、放送とは別回線を用いて伝送し、選局時にその情報を使用するものである。

【0152】図8において、番組情報配信センター50は、放送局60から通信回線40を通じて、番組情報を取得/蓄積し、デジタル放送受信装置10Dからの要求にしたがって、前記番組情報を配信する。

【0153】一方、デジタル放送受信装置10Dは、第1から第3の実施の形態とは異なり、動作状態としてプリセットモードを備えることなく、ユーザーの所望する情報を提供することができる。

【0154】図9は、デジタル放送受信装置10D中のCPU107の動作を示すフローチャートである。

【0155】まず、出力部105を通じてユーザーにメニューを提示する(ステップS20)。そしてユーザーがデジタル放送を所望した場合(ステップS21,S23)、無線通信I/F部114及び無線通信用アンテナ113を用いて、番組情報配信センター50への番組情報配信の要求を送信する(ステップS23)。このとき、実施の形態3において説明した位置登録機能を用いて、要求とともに現在地を通知する。

【0156】番組情報配信センター50は、無線通信基地局30及び通信回線40を通じて、デジタル放送受信装置10Dからの配信要求及び現在地を受け取ると、その現在地で受信可能な放送局が提供する番組に関する情報を、通信回線40及び無線通信基地局30を通じて、デジタル放送受信装置10Dへ配信する(ステップS23)。

【0157】デジタル放送受信装置10D中のCPU107は、番組情報配信センター50からの番組情報を、無線通信用アンテナ113及び無線通信I/F部114を通じて取得し、その情報を蓄積部108へ蓄積する(ステップS24)とともに、出力部105を通じて現在地において受信可能な番組リストをユーザーへ提示する(ステップS25)。

【0158】そして、ユーザーが上記リストの中から所望の番組を選択すると(ステップS26)、蓄積部108より、上記番組に対応する選局情報を取得し(ステップS27)、チューナ102へ周波数情報を伝達し(ステップS28)、OFDM復調部103へ伝送モード情報を伝達する(ステップS29)。

【0159】図10は、番組情報の内容の一例を示す。 この例では番組情報として、各々の番組に対して、コン テンツ情報としてタイトル及びジャンルを、選局情報と して周波数情報及び伝送モード情報を、時刻情報として 開始時刻及び終了時刻を含んでいる。

【0160】以上の構成により、本実施の形態の構成によれば、プリセット動作を行うことなく、ユーザーが所望する番組を提供することが可能となることに加え、現在地が刻一刻変化するような移動受信環境においても、セル方式の移動無線通信における位置登録機能を用いることにより常に現在地を特定することができるので、現在地を特定するための情報の入力を、移動に応じて頻繁

に行う必要がなくなる。

【0161】なお、番組情報を現在の番組から、24時間以内あるいは1週間以内のように、ある程度先までの予定を含めて配信するようにし、デジタル放送受信装置10Dがその内容を蓄積部108に蓄積すれば、ユーザーがあらかじめ所望の番組を予約しておき、開始時刻になれば自動的に提示するといった動作も可能となる。

【0162】また、本実施の形態では番組情報として選局情報を番組に対して関連付けることを説明したが、地域あるいは放送事業者等によって伝送モードは異なるが、番組単位というように短時間的に伝送モードは変化しない場合を想定すると、番組情報配信センター50は、選局情報を放送事業者に対して関連付けた情報を配信し、デジタル放送受信装置10Dは、第1から第3の実施の形態と同様に、その情報を入力部106のボタン等に割り付けることも可能である。

【0163】さらに、このような割り付けを行った後、 伝送モードが変化したり、あるいは移動により現在地が 変化した場合には、デジタル放送受信装置10Dは、受 信不可となった旨を出力部105を通じてユーザーに通 知するとともに、再び番組情報配信センター50に情報 の配信を要求し、新たなリストの提示、及び割り付ける 情報の更新を行うことにより、ユーザーに対する利便性 の向上を図ることも可能である。

【0164】(5)第5の実施の形態

第5の実施の形態においては、CPUで構成される伝送情報管理部が行う伝送情報のマネジメントについて説明する。伝送情報の頻度管理、使用後の経過時間等の時間管理、電界強度管理、チャンネルの地域識別サービス内容等の管理と予測や、パターン化した情報による情報圧縮等について詳しく述べる。伝送情報は形態電話の基地局からの送信データもしくは、テレビ放送局からの送信データのいずれかもしくは双方に含まれるが、実施例では携帯電話基地局から送信した場合の例を用いて説明する

【0165】(5-1)全体構成

図11は、テレビ受信型携帯電話501と地上波テレビ局502と携帯基地局503との関係を示す全体図である。地上波テレビ局502からは、下りの一方向である放送信号504が携帯電話501に送られ、この放送信号504の特定チャンネルのデータの1部を部分受信する。また、放送信号504は、固定アンテナ514をもつ固定受信機すなわちデジタルテレビ受信機505にも送られる。

【0166】 (携帯受信) 一方、テレビ受信型携帯電話501は、自分の近傍の1つもしくは、複数の携帯基地局503,503a,503bからの電波である下り信号506,506a,506bを受信するとともに、携帯基地局503,503a,503bのいずれかの1つもしくは複数局へ、上り信号507,507a,507

bを送信する。そして携帯基地局503は携帯制御部510を介して公衆網511に接続される。特定の携帯電話サービス会社においては、サーバー512を介してインターネット513に接続される。

٠.

【0167】(固定局受信)前述のように、家庭用テレビのように感度の高い固定アンテナ514をもつデジタルテレビのテレビ受信器505でも受信する場合は、前述の部分放送の受信ではなく特定のチャンネルの中の全部のデータを受信する。一部のテレビ受信機505は電話回線を介して地域の固定電話局515に接続され、公衆網511を介してインターネット513に接続可能である。

【0168】前述のデジタルテレビ放送を携帯電話501で受信する場合と、固定されたテレビ受信機505で受信する場合とでは受信条件に大きな違いがある。テレビ受信型携帯電話501で受信する場合は、受信機が移動する点である。前述のSFN(Single Frequency Network)のチャンネル放送を受信する場合、図12に示すように受信機が次々と移動し、次の放送局のサービスエリアへ移っても全く同じ情報をもつ同じ周波数のテレビ電波を受信するため、テレビ受信に支障はなく、移動してもシームレスに受信できるため、問題は起こらない。【0169】しかし、SFNでないチャンネルの放送を受信するおり、

【0169】しかし、SFNでないチャンネルの放送を受信する場合は、受信機がポジション1(図12)からポジション5まで移動する過程において、従来の方法ではポジション2からポジション3の間のある地点で、電界強度低下のため第1テレビ局502の電波が受信できなくなる。

【0170】そこでテレビ受信型携帯電話の使用者はチューナで周波数を切り替え、放送しているチャンネルを探そうと操作を試みる。ようやく第2テレビ局502aの存在を知り、受信しようとする。しかし放送がデジタルテレビ放送の場合、アナログ放送と違い周波数を合わせただけでは受信できない。ガードタイムやエラー符号化ゲイン等の伝送情報のパラメータを一致させないと、物理層を受信できない。このため、従来方式のテレビ受信型携帯電話の場合は、パラメータを色々と変更して、総あたり方式でどのパラメータが適しているかを探そうとする。

【0171】パラメータは数十種類から数千種類の組み合せがある。このため、パラメータマッチングに時間を要する。受信信号の第1階層の復調情報を得た後は、第2以上の階層を復調できるので情報を得ることが可能となる。このようにパラメータ決定に時間を費やすため、周波数を含めるとこの間、例えば数秒から最大~十数秒間テレビ受信信号の出力ができなくなる。受信できたチャンネルが使用者の所望するサービスを放送していなかった場合は、別のチャンネルに切り換えて好みのサービスのチャンネルを探すことになる。この場合も同様にパラメータの決定に時間を費やすため、さらに余分に時間

が必要となる。

【0172】本発明では、携帯基地局503の下り信号506の中から少なくとも基地局IDを受信し、基地局IDから位置情報を得たり、位置情報からテレビ放送の変調信号を復調するためのパラメータを含む伝送情報を得て復調する。もしくは、予め携帯電話に記録された対応リストである伝送情報管理データベースを用いて得られた基地局IDに対応する、地域のテレビ放送局の伝送情報を読み出すことにより、チャンネルの復調時の手順をスキップできる。従って、チャンネルの受信時間やチャンネルの切り替え時間を短縮することができる。

【0173】ここで図13に携帯電話の基地局503の 構成を示す。携帯基地局アンテナ516と基地局送受信 回路517とATM (Asynchronous Transmission Mod e) 等で回線接続されたRNC (Radio Network Control ler) と呼ばれる通信制御部518と、バックボーン5 19で接続されたPDSL (パナソニック デジタルソ フト ラボレタリ) 520とを有する。これらは携帯電 話の通信において必要なブロックである。

【0174】携帯基地局503からは図14に示すようなデータが発信される。すなわち、図14(a)の送信データの待ち受けモード時の基本情報である携帯電話用データ522や、図14(b)の通話モード時の基本情報である携帯電話用データ523には、基地局ID521又は基地局番号521が含まれる。従って基地局IDは全ての携帯電話のサービスエリアで受信可能であり、この基地局IDはテレビ受信用の補助情報として使用できる。

【0175】また、本発明に対応している基地局503 はテレビ受信に必要なテレビ受信用の伝送情報データ524の一部もしくは全部を送信する。これらの伝送情報 は、テレビ放送信号の中に他の放送局の伝送情報を送信 してもよい。この場合、一旦テレビ受信に成功すると他 局の伝送情報を入手できるので、基地局送信と同様の効 果が得られる。しかしテレビ受信が一旦中断すると基地 局の情報が必要となる。

【0176】(5-2)第1,第2伝送情報の説明 図14のテレビ受信用データ524を説明する。図15 はこのテレビ受信用データの具体的な内容をOFDM方式の日本のデジタルテレビ放送規格であるISDB-T 規格に準じて示した図である。DVB規格等のOFDM 方式のテレビ放送規格も同様のパラメータをもつ。

【0177】図14(a)は携帯電話の待ち受けモード時の送信データであり、第1の耐性の強いチャンネルを用い、携帯電話用データ522、すなわち基地局を識別するための基地局ID521と、空いている携帯電話用の通信チャンネルのデータを送信する。前述のように本発明に対応した携帯基地局では、これに加えて、デジタルテレビ放送の同調復調に必要なテレビ受信用データ524を送信する。

【0178】テレビ受信用データ524には、現在送信中のテレビ放送局のチャンネルを示す送信情報528が含まれる。送信情報528には、現在放送中の全チャンネルのチャンネルIDが含まれる。送信中のチャンネル527は、固定受信局のみならず、電車や自動車においても受信され、利用される。Tモード携帯電話向け専用なら部分放送をサービス中の放送局のチャンネルIDに限定すれば、情報量を減らす効果がある。

【0179】1つの例としてISDB-T規格の場合を示す。図16(a)に示すように、6MHz又は8MHzの1つの放送帯域で、同じ伝送耐性で高解像度のテレビ放送であるHD放送1チャンネル又は、通常解像度のテレビ放送であるSD放送4~5チャンネルの放送データ528を送るので、送信中のチャンネル527でよい。

【0180】しかし、実施の形態では、図16(b)のように、13セグメントのうち、1つもしくは2つの特定の部分セグメント529を、他の一般セグメント530より耐性を強くする。例えば、変調方式を一般セグメントには64QAMを用いるのに対し、特定の部分セグメントにはQPSKを用いたり、FFTサイズを前者には8Kを用いるのに対して後者には2Kを用いる等のパラメータを変えて情報伝送効率を下げて耐性を強くする。

【0181】この階層型放送を本実施の形態では"部分 伝送"もしくは"部分放送"と呼ぶ。部分セグメント529は耐性が強いパラメータで放送されているため、携 帯電話のアンテナ531(図17)のような小型のアンテナでも受信できる。一方で、部分放送の場合使用周波 数帯が狭くかつ伝送効率が下がるため伝送データ容量は数百Mbpsから約1Mbps強となり大巾に減る。

【0182】しかし携帯電話のようなモバイル機器の場合、表示画面が1インチから数インチで小さいことと数 十Kbpsから数百Kbpsのような低い伝送レートで 圧縮効率がよいMPEG4やウェーブレット方式を採用 することにより視聴に支障のない画質の画面を提供する ことが可能である。

【0183】また、図16(c)のように単独の1セグメント532や3つのセグメントを用いたデータ放送がISDB-Tで定義されているがこれらも"部分伝送"と同様、携帯受信に適している。本明細書ではこれらのデータ放送も"部分伝送"に含めて呼ぶ。

【0184】図14に戻り、送信情報528の中には、このような移動体受信する携帯電話向けに上述の部分伝送中のチャンネル533のデータが含まれる。放送中のチャンネル番号(以下chと略す)は各国で割り当てられた周波数帯を示すだけである。例えば15chを放送している地域からお互いに干渉しない分だけ離れた別の地域では、別の放送局が15chつまり同一のチャンネルつまり同一の周波数を用い全く別の放送をサービスし

ている。

【0185】携帯電話におけるテレビ受信においては移動するため両者を識別する必要がある。そこで、同一cho放送局を識別するための識別情報 534 を付加する。このことにより、始めて各々の放送局を特定できる。例えば、同じ15ch でも地域Aの前者を15-1 ch と定義し、地域Bの後者を15-2ch と定義する。

【0186】このように同一周波数で地域別に異なる放送局を識別できる識別子を付加して各放送局のチャンネルを定義すれば、同じ周波数帯つまりチャンネルを用いる地域の異なる放送局を互いに識別できる。このため同じチャンネルの放送局の誤認による誤まった伝送パラメータの設定による誤動作を防ぐことができる。

【0187】また本発明に対応した基地局はチャンネル毎の電界強度情報535を送信する。この情報を受信機側で管理することにより電界の強いチャンネルグループから優先度を高くして受信チャンネルを選択することができるため、より安定した受信が可能である。

【0188】次に復調するのに必要な伝送情報について 図14,図15を用いて詳しく述べる。第1伝送情報5 26は、図15又は図14に示すように送信するチャン ネルを示す送信周波数536,部分放送識別子550, FFTサイズ537,シンボル時間とガードインターバ ルとの期間の比率を示すガード比538,放送アンテナ の送信電力539が含まれる。

【0189】図15に示すように第1伝送情報526により各種パラメータが放送信号や復調する前に判る。このため1回目のパラメータ設定で、OFDMやPSKでの階層伝送の第1層のデータが復調される。同時に第2層を復調するための復調情報541、例えばISDBーT規格のTMCCデータやDVB規格のTPSデータ等を第1層から復調したデータから取得できる。この復調情報によりすべてのデータを復調することができる。

【0190】携帯電話や自動車用途のような移動体受信の場合、複数の放送局のサービスエリアを移動するため第1伝送情報526のパラメータが頻繁に変わる。第1伝送情報のパラメータが判らない場合、総当り方式で全パラメーターを設定し、復調を試みるしかない。第1伝送情報の組み合せはISDB-T規格の場合で12通りの組み合せがあるため、第1層のパラメータを確定するのに最大12回の設定を行う必要がある。このため受信データの出力まで時間を要するが、本発明により瞬時に第1層のデータを再生できるという効果がある。

【0191】この第1層のデータには、第2層以降の階層信号の復調やエラー訂正に必要なパラメータ等が含まれる復調情報541が含まれるので、第1層を復調する第1ステップの後に、復調情報541を復調する第2ステップと、復調情報からパラメータを取り出す第3ステップ以上の3つのステップを経ると、第2層の場合は復

調情報541を用いて復調できる。

١,

【0192】しかし、前述のようにモバイル用途では頻繁に伝送情報のパラメータが変わる。もしこの第2層の復調情報541を事前に知ることができれば、全ての伝送パラメータが入手できるため、さらに高速にデータを復調できる。この、高速化された方式について図14,図15を用いて説明する。図14(a)は待ち受けモード時に携帯基地局から第1伝送情報5250双方を送信する方式である。

【0193】効果の説明を先に述べる。待ち受けモード時に伝送情報を基地局から送信してくる。このため、上り回線をもたない、つまり送信機能をもたないPDSのような携帯端末や携帯テレビでも、この情報を受信することができるので、初受信時もしくはチャンネル変更時の受信時間が大巾に短縮されるという効果がある。

【0194】また携帯電話のような送信機能をもつ機器においても日本等の国では電車内や病院内において携帯電話の送信が禁止されているが、そのような場所においてもスイッチで"Tモード"に切りかえておけば送信することなしに伝送情報を受信し入手できるので、携帯電話の放送受信の利用機会が増える。

【0195】また、携帯電話使用禁止エリアに入る前に Tモードスイッチをオンにすると基地局もしくは、基地 局経由で放送局に自分のエリアと利用時間帯と携帯端末 IDと呼び出しデータを受信する放送局の放送局IDと を送信する。すると携帯に電話がかかってきた時、放送 局経由で放送信号の中に自分の携帯端末IDを送信して くれるので、自分に電話がかかってきたことが検知さ れ、震動モーター等により、本人に通知されるため、殆 んど携帯電話の送信なしに、受信通知がなされるという ページングの効果もある。

【0196】本発明の呼び出し方式を含むTモードにおいては、強い送信用の電波が発信されないため、総合的に携帯電話の送信電波の発信が残り人体への影響を小さくできる効果がある。

【0197】伝送情報のパラメータをパターン化して管理し、情報を圧縮する方法について述べる。図14

(a)の第2伝送情報に戻ると、第2伝送情報525には、変調方式551,符号化率552,時間インターリーブ長553のパラメーターが入っており、各チャンネル毎に各パラメータは異なる。具体例を述べると図15の下半分に示すように、ISDBーT規格の場合、変調方式551として、DQPSK,16QAM,64QAMの3通り、エラー訂正用のビタビ等の符号化率552は5通り、時間インターリーブ長553は4通りあり、第2伝送情報のパラメータは60通りの組み合せがある。

【 0 1 9 8 】 第 1 伝送情報のパラメータは、 1 2 通りで 部分放送識別子 5 5 0 を含めると 2 4 の組み合せがある ため全部で、 6 0 × 2 4 = 1 4 4 0 通りの組み合せが考 えられる。これを図15の右下にチャンネル毎のパラメータ設定例として示す。しかし、実際のデジタルテレビ放送においては放送局の作業が複雑化するので各放送局はこのうちの特定のパラメータを選ぶと予想できるのでパラメータはパターン化できる。

【0199】そこで、図17のブロック図と、図18のデータベースリストに示すように伝送情報管理部556は第1伝送情報526の頻度の高い順に例えば16ヶ選び、第1パターン番号554を選び、伝送情報データベースメモリ557に記録しておく。第2伝送情報525も同様にして16通り、つまり4bitのパラメータを選び、データベース559を含むメモリ557に記録しておく。

【0200】こうすると各放送局には、16×16通り = 8 b i t、つまり1バイトのデータで伝送情報の全パラメータが表現できるため、パターンがこの範囲に収まれば特定の国の中の1000局分でも伝送情報の記録には1KBのメモリー容量の消費でよい。このためメモリ容量の少ない携帯電話においてメモリ容量の消費を削減できるという効果がある。

【0201】頻度演算と頻度管理は伝送情報管理部556が行い、位置検出部558において放送局の位置を判断し、放送局毎に管理することにより、パラメータのヒット率は高くなる。この伝送情報管理システムの動作ステップについては後で詳しく述べる。

【0202】次世代の携帯電話の主流となるW-CDM A(Wideband Code Division Multiple Access)方式の場合、日本等のアジアや欧米の国で、同一の携帯電話を用いて通話することができるようになる。図17に示すように本発明のTモード携帯電話501は国検出部560をもつ。例えば、日本の使用者が欧州や米国に移動した場合、基地局IDの中の国識別情報から国が変わったことが検知できる。この検知信号は伝送情報管理部556に通知されるので、その国の放送規格に合わせての周波数変更や伝送パラメータ、例えば、QPSKやQAMの変調方式やFFTサイズやガード期間化符号化率等の変更を行うことにより、海外でも海外の放送規格のパラメータで送信された放送が受信できる。

【0203】(5-3)携帯電話の説明

図17のTモード携帯電話501のブロック図を用いて、携帯電話による伝送情報を含む下り信号の復調について説明する。アンテナ531から受信した信号は共用器561により分離され、フロントエンド562、フィルタ563によりフィルタされ、復調器564により復調される。次にA/Dコンバータ565によりデジタル信号とされ、CDMA信号の拡散信号を戻す逆拡散部566において同期部567の同期信号に基づき、拡散されていたデータが復元される。この信号は検波部568により検波され、データデコーダ569によりビタビ復号され、出力制御部570を経て音声デコーダ571に

より音声信号とされる。

٦,

【0204】次に切換部572によりスピーカ573に出力されるか、もしくは低域信号を通過させるLPF574を通してイヤホン端子575に出力される。このイヤホン端子にイヤホン576を接続することにより、使用者は受信した音声信号を聞くことができる。本発明ではこのイヤホン576のコード577は、テレビ等の放送の受信用アンテナとして兼用して用いることにより感度を高めている。

【0205】受信された放送信号は、図17に示すようにテレビ受信部578の切換部579により携帯用アンテナ531で受信された信号とイヤホンコードで受信した信号とで切換えられる。この場合、信号レベル比較部588により比較し放送電波の受信信号の強い方、もしくはC/N値が高い方もしくはエラーレートの低い方を選択し切換えて出力するので、ダイバシティアンテナのように最適な受信信号が得られる。チューナ580において周波数制御部581により特定のチャンネルの周波数の信号に同調させ、復調部582において復調制御部583より、復調に必要な第1伝送情報や第2伝送情報のパラメータ(図15)を受け取り復調する。このOFDMの復調の方法は前に詳しく述べたので省略する。

【0206】復調された信号はエラー訂正部584において、図15に示すようなビタビ等のエラー訂正パラメーターを用いて、元の信号を復元される。出力部586より出力制御部570を介して映像デコーダ587によりMPGE4やWavelet等の信号を映像信号にデコードし、表示回路589を介して表示部590に映像を表示させる。また放送信号の中に含まれるデータ信号は処理され、出力制御部570から副表示回路591により副表示部592に表示される。このフローは次の実施の形態で説明する。

【0207】図17の携帯電話の送信時の動作を説明すると、使用者の音声はマイク594より電気信号に変換され音声デコーダ595で圧縮され、チャンネルコーデック596に入力される。一方、使用者がキーボード593を用いてキー入力したデータの方は出力制御部570で処理され、処理された結果のうち、基地局へ送信する必要のあるデータはチャンネルコーデック596へ入力される。

【0208】このコーデックされた出力信号は1次変調器597によりQPSK等に変調され、拡散部598により周波数帯上に拡散され、ROF599を介してD/Aコンバーター600により、アナログ信号とされ、発振器603をもつ変調器601でさらに変調される。この変調信号は発振器604とミキサー602において混合されパワーアンプ605により増巾されて共用器561を通り、アンテナ531より送信される。以上がTモード携帯電話501の送信部606の動作である。

【0209】このように、携帯電話基地局503から送

信される基地局IDや放送の受信に必要な受信情報や復調情報をTモード携帯電話501の受信部607で受信し、これらのデータをテレビ受信部578の伝送情報管理部556へ送る。そして伝送情報データーベース559等のメモリ557のデータを用いて受信データを加工、もしくはそのまま用いて、周波数制御部581のデータにより、チャンネルの周波数の同調を行う。次に復調制御部583からの復調制御信号により、最適パラメータの設定による瞬時の復調、復号化制御部585によるエラー訂正の最適符号化率の設定により、最短の時間で復調されるため、テレビ放送や音楽放送やデータ放送の内容が瞬時に表示されるという著しい効果がある。

【0210】なお、この効果だけでよいなら図17の送信部606は必要ない。このため、一般の携帯型テレビの場合、本発明の受信部607の追加や伝送情報管理部556を含むテレビ受信部578の構成を採用するだけで同様の効果が得られる。

【0211】なお、図14(a),(b)に示すように第1伝送情報526と第2伝送情報525を携帯基地局の送信電波を用いて伝送する例を示したが、前述のように各テレビ放送もしくは部分放送のデータ領域にその地域で受信可能な他の放送局のチャンネル番号等の送信情報528や第1伝送情報526や第2伝送情報525を送信してもよい。

【0212】この場合、図17の下のブロック図の携帯受信機501側のテレビ受信部578で特定のチャンネルを受信している場合は、出力部586から他局の伝送情報が出力される。そのチャンネルのデータの中に、その地域で受信可能な他局のチャンネルの送信情報528(図14)やそれらのチャンネルに関する第1伝送情報526や第2伝送情報525が含まれている。この伝送情報を図17の出力部586より取り出し、そのチャンネルの伝送情報を加えて伝送情報管理部556に入力すれば、伝送情報データベース559に記録される。

【0213】特定のチャンネルの放送局の番組受信中に他のチャンネルに切り換える場合は、この他局のチャンネルの受信情報を伝送情報データベース559から取り出し、伝送情報管理部556が各部の各パラメータを各々設定し、同調、復調、エラー訂正を行うので1回目のパラメータ設定で、他局のチャンネルを出力部586より出力できる。

【0214】このためパラメータを知らない場合に比べると他チャンネルへ切り替え時の時間を大巾に短縮できるという効果がある。この場合、現在の放送サービスエリア内の放送局の伝送情報だけでなく、隣接するサービスエリアの放送局の伝送情報を送信することにより、移動受信がより確実となる。

【0215】この場合、特定の放送局IDの放送局の放送サービスエリアに対応する基地局サービスエリアをもつ基地局IDを対応ずけて送る。このデータを受信機が

伝送情報データベース(DB)559に記録する。その後、受信が中断しかつ、移動しても基地局IDがわかれば伝送情報が判明し、復調可能となる。

【0216】ただし、大きく移動した後の初回の受信時には、その地区の受信用のパラメータが全くわからない。このようにテレビ放送の受信を中断しかつ移動した場合は、携帯電話の基地局の伝送情報が必要となる。

【0217】ここで復調する場合の3つの方法を述べる。まず、第1の方法を述べる。第1の方法は、最も簡単な構成の図17のテレビ受信部578しかもたない場合を想定し、総あたり式にパラメータを変える方法である。この第1の方法は、低価格の携帯テレビやPDCに適している。

【0218】第2の方法は、本発明の図17の受信部507を追加する方法である。これにより携帯基地局のIDを受信することができるようになる。本発明では伝送情報管理部556があるので基地局IDからサービス中の放送局がわかる。伝送情報管理部556は、この基地局IDと時間情報部610からの時刻をもとに伝送情報データベース559から基地局IDと現在の時刻に対応する放送局の放送時刻の伝送情報を検索し、該当チャンネルの対応する日時の伝送情報のパラメータをチューナ580、復調部582、エラー訂正部584に送ることにより、移動後でも瞬時に所望のチャンネルの出力を行う。チャンネル変更の場合は、放送信号からダウンロードもしくは受信する伝送情報を用いる。

【0219】この今述べた第2の方法は、全く携帯基地局とは無関係であるので、放送以外の通信インフラを必要としないという効果がある。また第2の方法は、携帯基地局を利用するが、基地局IDしか使わないので、既存の携帯基地局設備を変更する必要がないという効果がある。本発明の伝送情報送信方式が採用されたとしても、携帯基地局の数は世界中で数万局以上あるため、除々に対応が進んでゆくと予想される。その対応の過程においては、対応してない基地局が多く存在し、その地域においては上述の第2の方法が有効でかつ現実的である。

【0220】この上述の第2の方法と第3の方法である基地局から伝送情報を受け取る完全対応方式とを、図17の構成で切り替えるためには、基地局ID検出部611が携帯受信信号に基地局IDのみで伝送情報が含まれていないことを検知し、この検知信号を伝送情報管理部556に送る。基地局IDを用いて伝送情報データベース557から基地局IDに対応する放送局の伝送情報を検索し、もしあれば、パラメータを設定することにより放送信号受信する。もしなければ総あたり式にパラメータ設定値を変更して復調する。移動した後の第1回目の放送の受信は時間がかかるが、一旦放送が受信できると他局の伝送情報がダウンロードできるため、チャンネルを切り替えても受信信号の出力は瞬時にできる。

【0221】この場合、携帯電話の上り回線で特定のWebサイト等へ接続し、その地区の伝送情報の送信を要求し、下り回線で伝送情報をダウンロードしても同様の効果が得られる。

【0222】 (5-4) 携帯基地局の説明

次に図13を用いて携帯基地局503の側の構成と動作を説明する。まず全体の構成を述べる。図13の携帯基地局503は携帯電話アンテナ516と送受信回路517とを有し、通信制御部518と専用の通信回路でATM等で接続されている。各地域にある複数の通信制御部518,518a,518bは、伝送容量の大きなバックボーン回線519を介して携帯電話会社564のPDSL520に接続され集中的に制御される。

【0223】次に本発明のテレビ等の放送受信に必要な 伝送情報を送出する機能を付加した構成を述べる。携帯 電話用アンテナ516の近傍には、放送受信アンテナ551が設置されており、その地域の放送電波を受信し放 送受信部550において受信信号増巾部620において 増巾し、チューナ580で同調する。その信号は直交検 波部1031を介してガード期間除去部1032, FF T1033, 検波部1034, 誤り訂正部1035を経 てデジタルデータとして出力される。この部分の動作は 図2を用いて既に説明しているので省略する。

【0224】この復調を各チャンネル毎に絶えず行うことにより、同調や復調に必要な最適パラメータの伝送情報を得ることができる。これらのパラメータの一部又は全部を図13の放送受信情報抽出部542が抽出して、放送受信情報付加部547に送出し、その後、送信部621により増巾されて図14(a)(b)に示すように携帯電話の送信信号に混合される。次に基地局アンテナ516からTモード携帯電話に送信されて、テレビ等の放送の同調・復調情報として用いられる。

【0225】次に伝送情報抽出部542の動作を説明す る。まず狭い地域用の情報ブロックである送信情報抽出 部543ではまず、増巾部620の出力から増巾率と信 号レベルをみて、電界強度5352を求める。この電界 強度と距離を演算し、放送局の送信電力539Zを得 る。チュナー部580からは、現在送信中のチャンネル 5272と部分放送中のチャンネル550と送信周波数 536 Zを得る。ガード期間除去部1032からはガー ド比538Zを得る。FFT部1033からはFFTサ イズ537乙が得られる。復調情報復号部1036から は変調方式551、ビタビ等の符号化率552、時間イ ンターリーブ長553が得られる。以上のパラメータの 中から送信情報抽出部543のパラメータを送信情報付 加部548に送り、送信アンプ625により増巾して本 発明のTモード携帯電話向けに携帯電話用アンテナ51 6を介して送信する。第1伝送情報抽出部545及び第 2伝送情報抽出部546で構成される広い地域用の情報 ブロックである伝送情報抽出部544で抽出されたパラ

メータは、それぞれ伝送情報付加部549の第1伝送情報部526Z、第2伝送情報部525Zに送られる。次に送信アンプ621を介してTモード携帯電話向けに送信されるか、もしくは一旦通信制御部518の番組情報を送るための放送用伝送情報処理部560に送られてから、携帯基地局503に送られる。

【0226】また放送局563は、番組情報送信部562をもち、番組情報と伝送情報を回線を介して放送伝送情報処理部560に送り携帯基地局503を介して、Tモード携帯電話に送信し、番組情報や伝送情報をダウンロードさせることを可能とする。この場合番組情報はサービスエリア内の複数の基地局に全てに同じ内容を送り、伝送情報は基地局ID毎にもしくは放送サービスエリアに対応する基地局IDグループ毎に異なる内容を送る。

【0227】以上のようにして、携帯基地局毎に携帯用アンテナの近傍にテレビ放送受信アンテナ551を設け、伝送情報のパラメータを各チャンネル毎に得ることにより、本発明の伝送情報受信が基地局単独で可能となる。このため、システムがローカルサイドで完結するためシステム構成が簡単になるという効果が得られる。

【0228】(5-5) 伝送情報マネジメントシステム 伝送情報管理システムの動作モードは複数あるが、各々 のモードを図面を用いて説明する。

【0229】(5-5-1) パラメータの設定まず、図19のフローチャート図を用いて第1の方法を説明する。まずステップ650aでTモード携帯電話もしくは、PDA,携帯型テレビのモデル機器の電源スイッチ(SW) が入る。ステップ650bでまず、携帯基地局の下り回線を受信する待ち受けモードに設定される。ステップ650cで下り回線の信号の中の制御情報の中の基地局ID521(図14)を取得する、もしくは/かつメモリ557(図17)に記録する。ステップ650dで下り信号の中に、テレビ等の放送の送信情報528(図14)もしくはかつ第1伝送情報526のデータがあるか、もしくは、上記2つの情報の存在を示するがあるか、もしくは、上記2つの情報の存在を示す。10eに進み、Noならステップ650jに進み、3つのフラグを立ててステップ650kへ進む。

【0230】ステップ650dに戻ると、Yesならステップ650eに進み、送信情報528もしくは/かつ第1伝送情報526を取得もしくはかつメモリ557への記録を行う。ステップ650fで下り信号の中に、第2伝送情報525もしくはその存在を示す識別子があるかをチェックする。"No"ならステップ650iで"2"のフラグをつけてステップ650kへ進む。"Yes"ならステップ650gで第2伝送情報を下り回線のデータ中から取得もしくは、取得しメモリ557への記録を行う。ステップ650kでテレビ等の放送の受信を開始せ

よとの命令、つまり Tモードの命令を受けると、ステップ 650 mで使用者が前回受信した時に用いた伝送情報のパラメータを用いて受信するかを判断する。使用者の入力がない場合、伝送情報管理部 556 (図 17) が判断する。伝送情報データベース 559 の中のデータをみて、時間管理を用いて前回その放送局を受信した時間から一定時間以上経過していない場合、もしくは、前回受信した時と同じ基地局 ID521 (図 14) である場合は"Yes"へ進み、そうでない場合は"No"へ進みステップ 651a へ進む。Yesの場合はステップ 650 nへ進み前回の送信パラメータで同一チャンネルを受信設定し、受信してみる。受信に成功すれば、Yesのステップ 650 pに進み受信を開始する。Noならば図 200 ステップ 651a へ進む。

【0231】ステップ651aでフラグが"1"又は "2"なら少なくとも送信情報と第1伝送情報は入手し ていると判断できるので、ステップ651bで送信情報 528の受信可能なチャンネルを画面上に表示電界強度 群別にメニュー画面として表示する。受信機が T モード 携帯電話の場合は、図14の第1伝送情報526の中の 部分伝送識別子550をみて、受信可能でかつ部分伝送 を行っているチャンネルの信号のみを表示部590(図 17)に表示させる。図13の番組情報送信部562の データを受信した場合は、各チャンネルの番組情報を同 時に表示することにより、使用者の番組選択がさらに容 易になるという効果がある。ステップ651cで使用者 がキーボード等で特定チャンネルの受信命令を入力した 場合、ステップ651dへ進みフラグ=1がYesなら ステップ651fへ進み、Noならフラグ=2であり、 第2伝送情報は入手できていないためステップ651e へ進む。ステップ651eでは、上記特定チャンネルを 送信情報と第1伝送情報を用いて、同調と復調を行い第 1階層のデータを得てその中にある復調情報を得て、第 2伝送情報を得て、ステップ651fへ進む。ステップ 651fでは送信情報もしくは/かつ第1伝送情報もく しは/かつ第2伝送情報を用いて特定チャンネルの第1 階層と第2階層以上の全てのデータを復調し、ステップ 651g, 651f, 651w, 651y, 651zO 処理の後、図21のステップ652aへ進む。図20の ステップ651aに戻ると、"No"の場合フラグが "3"であるための基地局 I D しか情報は基地局から得 られないと判断できる。この場合はステップ651hで は該当基地局IDの現在の時間帯用の送信情報を含む伝 送情報が伝送情報データベース559 (図17) にある かをチェックする。"Yes"ならステップ651iで その基地局IDに対応する伝送情報を取得しておく。ス テップ651jで特定のチャンネルの受信命令を受けた 場合、ステップ651kへ進み、第2伝送情報があるか をみる。"Yes"ならステップ651fへ進み、その パラメータを用いて第1階層と第2階層以上を復調す

る。"No"の場合は、ステップ651eに進み第1階層の復調情報を再生する。以下のステップは後述するのでここでの説明は省略する。

【0232】さて、ステップ651hに戻り、結果が "No"の場合、ステップ651mに進み特定チャンネ ルの受信命令を使用者等から受けた場合、ステップ65 1 n で携帯電話が上り回線発信禁止モードもしくは、マ ナーモードもしくは、"Tモード" (放送受信専用モー ド) になっているかを確認する。"No"であればステ ップ651pに進み、電話で送信データを入手する命令 を使用者もくしは伝送情報管理部556(図17)から 受けた場合つまり "Yes" の場合はステップ651q に進む。ステップ651qでは上り回線で携帯回線経由 で特定のデータベース(DB)又は、URLのサーバー に接続し、ステップ651rで該当する基地局IDの地 域に対応する放送受信用の伝送情報もしくは/かつ番組 情報を入手、もしくはダウンロードしステップ651s で入手した伝送情報もしくは/かつ番組情報を伝送情報 データベース559を追加記録もしくは更新記録し、ス テップ651kに戻る。

【0233】ステップ651nに戻り、結果が"No"の場合、つまり上り回線送信禁止モードの場合は、ステップ651tに進み、その特定チャンネルの周波数に同調させ、第1伝送情報526のパラメータとして伝送情報データベース559の中の使用頻度管理テーブル609(図18)を検索する。そして該当チャンネルーIDの中で頻度情報の高いものを選択し、各部のパラメータを設定してもしくは設定値を変更して復調を行う。ステップ651uで復調ができたかを確認し、"No"ならステップ651tでパラメータを、次に頻度の高いものに変更して復調を試みる。復調可能つまり"Yes"ならステップ651vで第1階層を復調し、復調情報を得てステップ651fに進み復帰する。

【0234】図20のステップ651fで、第1伝送情 報と第2伝送情報を用いて受信信号を復調し、ステップ 651gで受信データの出力や表示を行い、ステップ6 51wで、この出力や表示が一定時間継続されたことを 確認すると、つまり "Yes" の場合のみ、ステップ 6 51 yで、図18の使用頻度管理テーブル609のその チャンネルーIDの第1・第2伝送情報の頻度情報を増 加方向に更新する。ステップ651zでは、該当チャン ネルIDの最新伝送パラメータの値を用いて最新使用時 間管理テーブル613(図18)の最新パラメータ61 4のデータを更新する。前回の最新パラメータ614が 次新パラメータ615に移動し、前回の次新パラメータ 615の欄のデータが次次新パラメータの欄に図中矢印 のように移動し、次次新パラメータが最新であった場合 は最新パラメータ614に昇格する。こうして使用時間 の最も若い、つまり最新のパラメータ優先モードに設定 しておけば、図19のステップ650mで最新のパラメ

ータを使用するため、特定のパターンのパラメータしか 使わない放送局の受信には適している季節もしくは年度 毎に伝送パラメータを変更する放送局の場合は、この時 間管理モードが適している。放送局毎に時間管理モード と頻度管理モードを設定すればさらに効果的である。次 に携帯電話の移動に伴い図21のステップ652aへ進 te

【0235】(5-5-2)放送チャンネルの切り替え 図21を用いて、携帯電話の移動に伴なう放送チャンネ ルの切り替え方法を述べる。

【0236】携帯電話の移動に伴い基地局が変わるた め、ステップ652aでは基地局IDが変わる。本発明 ではステップ652bに示すような電界強度管理プログ ラムを用いて、最適な電界強度の放送チャンネルが受信 できる。テレビ局の例を用いて説明するが実際はテレビ 放送と音楽放送とデータ放送を含む。このいずれの放送 にも適用できる。ステップ652bでは、各テレビ局の 送信アンテナの位置情報と基地局の位置から両者間の距 離を求める方法を示す。携帯電話は、図17に示すよう に位置検出部558をもっている。特にW-CDMA方 式の場合、3つの基地局を同時に受信できることと、受 信地で最適パワーになるようにパワーコントロールを行 っているため、図14に示したパワー制御情報611に より、携帯電話と基地局との相対位置を3角測量法等の 演算により求めることができる。基地局と各々の放送ア ンテナとの位置関係がわかれば、各々の放送アンテナと 携帯電話の距離が正確にわかる。おおよその距離でよい なら基地局と放送アンテナの距離でよい。図14の電界 強度535のデータには、基地局における各々の放送局 の電界強度が含まれている。おおよその値でよいならこ の電界強度のデータでよい。

【0237】ステップ652bの第2項では、図17の電界強度管理部612において基地局IDの変化とともに、各放送局の電界強度535の移動前のデータと移動後のデータを演算処理により比較することにより、移動に従い電界強度の強くなった放送局である電界増加放送局群と電界強度の弱くなった電界減少放送局群と電界強度の変わらない電界維持放送局群の3つのグループに分類する。

【0238】次のステップ652cにおいては、現在受信中の現放送局電界強度が第1の一定値以下になった場合("Yes"の場合)はステップ652dに進み、

"No"の場合はステップ652aに戻る。ステップ652dで現放送局が電界減少放送局群でない("No")場合、ステップ652bに戻りYesの場合はステップ652eで現放送局の番組内容を示す識別子であるサービスIDと同じサービスIDつまり、同じサービス内容の別の新放送局があるかをチェックし、Noならステップ652iに進み、Yesなら次のステップ652fで、その新放送局の電界強度が、第2の一定値以上

の(Yes)場合、ステップ652hにジャンプし、
"No"の場合、次のステップ652gで新放送局の電
界強度が現放送局より強くかつ電界増加放送局群でない
("No")場合、ステップ652iへジャンプし、Yesの場合、次のステップ652hで、同じサービスIDの新放送局の間で最も電界強度が高い新放送局にチャンネルの切り替えを始め、図22のステップ653aへ進む。

【0239】さて、いくつかのステップのジャンプ先であるステップ652iでは、現放送局と同じサービスIDつまり同じ番組内容の新放送局がその地域に存在しないことを意味する。従って使用者の受けているチャンネルを、サービス内容の異なる別のチャンネルに変更しる必要がある。ステップ652iで"チャンネル変更してよいか"の表示を出し、ステップ652jで使用者が"了承"の命令を入力した場合、もしくは"了承"のデフォルト値が設定されている場合は、ステップ652kへ進む。ステップ652kで新放送局の選別を開始し、ステップ652mで電界強度が一定値以上かをチェックし、Noならステップ652kへ戻り、Yesならステップ652kへ戻り、Noならステップ652pへ進む。

【0240】ステップ652pで伝送情報管理DBの中の使用頻度管理テーブル609(図18)の中の新放送局のチャンネルーIDに対する頻度情報を検索し、使用頻度の高い新放送局を探す。ない("No"の)場合ステップ652kから652pを繰り返し、探し出せた場合(Yesの場合)ステップ652qへ進み、使用頻度の最も高い新放送局を受信し、図22のステップ653aへ進む。移動しても本発明の電界強度管理プログラムにより、最も電界強度の強いチャンネルを選択するので常に最適な受信状態で放送サービスを受信できる。

【0241】 (5-5-3) シームレスなチャンネル切り替え

図22では、新放送局の伝送情報を放送受信信号経由でもしくは、サーバーからもしくは基地局から携帯回線経由の2つの回線を切りかえて取得する方法を具体的なフローチャートを用いて述べる。ステップ653aでは新放送局の第1・第2伝送情報を基地局だけからではなく放送受信信号からも得る。まず、ステップ653bではなでラグ=1かどうかをみる。Yesなら基地局から全ての伝送情報が得られるのでステップ653jへ進む。Noならステップ653cへ進み、ステップ653cで現在では地域に対応する新放送チャンネル,他チャンネルの送信号の中にその基地局IDもしくは地域コードに対応する新放送チャンネル,他チャンネルの送信報528(図14)、第1・第2伝送情報526,525があるかをみる。Yesなら次のステップ653dに進み、その伝送情報を取得し、必要に応じて伝送情報 DBに記録してステップ653jと進み、その新放送局

の第1・第2伝送情報を用いて、ガードインターバル期 間中に現チャンネルから新チャンネルへ切り替える。こ の場合送信情報と第1と第2の伝送情報が復調前はわか っているので、第1階層を復調するステップを省いて瞬 時にガードインターバル期間中の短い時間中に切り替わ る。このことにより、データ受信が中断することなし に、つまりシームレスにチャンネルが切り替わるという 著しい効果がある。ステップ653kで第1と第2の伝 送情報に基づき新チャンネルを復調し、ステップ653 mで新チャンネルのデータを出力もしくは/かつ表示 し、ステップ653nで新チャンネルを一定時間以上出 力しているかをチェックする。Noならチェックを続 け、Yesならステップ653pで新チャンネルおよ び、チャンネルーIDに対する第1伝送情報と第2伝送 情報の使用頻度情報を増加させて、使用頻度テーブル6 09を更新する。同時に最新使用時間管理テーブル61 3 (図18) の最新時間情報を更新する。

【0242】ステップ653c(図22)に戻り、結果がNoの場合ステップ653fで携帯回線で送信情報、伝送情報を得るかを表示部に表示することにより使用者に聞き、Yesならステップ653gで情報入手先のアドレスもしくはURLを上り回線で送信する。次にステップ653hで基地局IDと希望チャンネルを送信し、ステップ653iで特定チャンネルの送信情報、第1と第2の伝送情報と番組のサービスIDを受信し、伝送情報DBへ記録する。そしてステップ653jへ進み、同じステップをたどる。

【0243】さて、ステップ653fで結果がNoo場合、ステップ653gでチャンネルを切り替え、送信情報がないなら送信チャンネルをサーチし探し出し、他のチャンネルに切り替える。ステップ653fで第1伝送情報もない場合、ステップ653rで第1伝送情報を試行錯誤して求め、第1階層を復調し復調情報を得て第2階層を復調し、ステップ653sでOKなら先に述べたステップ653mへ進む。Noならステップ<math>653rを繰り返す。

【0244】以上の手順により受信している地域の基地局が、本発明に対応しておらず基地局IDしか受信できない場合でも、各局の放送受信信号の中に他局の基地局IDに対応する各々の送信情報や第1伝送情報や第2伝送情報やサービスIDが含まれているためシームレスに新放送局へ切り替わるという効果がある。また以上のサービスがない場合でも携帯回線経由でサーバーから入手できるため、いかなる場合も伝送情報が入手でき、シームレスチャンネル切り替えが可能となる。

【 0 2 4 5 】 (5 - 5 - 4) 基地局がサービス中の放送 チャンネル番号を通知する場合

図23では、各放送局の同一チャンネルで異なる放送局 に地域識別IDを付与することによる手順と効果を述べ る。ステップ654aで基地局が放送局のチャンネル番 号と放送局地域識別 I Dもしくは、放送局固有 I Dを送信する。ステップ 6 5 4 b で携帯電話はこれらの情報を受信し、ステップ 6 5 4 c で実質的に放送局の固有 I D になるかをチェックし、"Yes"ならステップ 6 5 4 d へ進み、チャンネル (n) の受信命令を待つ。命令がきた場合、ステップ 6 5 4 e で伝送情報 D B をみてその放送局の伝送情報があるかをチェックし、あれば図 2 4 のステップ 6 5 5 a に進む。"No"ならステップ 6 5 4 d に戻り、実質的な固有 I D でないため、同一チャンネルの中で最新のもしくは、最も使用頻度の高い伝送情報をもつチャンネル I D の伝送情報を用いてこのチャンネルを同調・復調する。

【0246】(5-5-5)頻度管理テーブルの更新図24では、頻度管理テーブル609(図18)を各々のチャンネルID毎にもつ場合の頻度管理と頻度管理データの頻度情報もしくは優先度の更新方法について述べる。

【0247】ステップ655aで、Ch (n) の第1階 層を第1伝送情報を用いて受信可能かをみる。Noなら ステップ655tに進み、n=0とし、続くステップ6 55uでn=n+1とし、第1伝送情報の優先度n番目 のパラメータを用いて復調可能かをみる(ステップ65 6 a)。 Y e s ならステップ 6 5 6 b へ進み、一定時間 以上受信を継続しているかをチェックする。Yesなら このn番目の第1伝送情報もしくは第1伝送パターンの 頻度情報610を増やす(ステップ656c)。ステッ プ656bの結果がNoなら、ステップ656cをスキ ップする。ステップ656dではn-1番目の頻度情報 がこのn番目の頻度情報より小さい(Yes)の場合、 ステップ656eでn番目とn-1番目の優先順位を変 える。そしてステップ655bへ進む。さて、ステップ 656 a に戻り結果が "No" の場合は、ステップ 65 6gに進みnがn (LAST) より大きくなるまで、第 1 伝送情報のパラメータを変更して復調を試み、Yes なら上述のステップ656bに進むが、n(LAST) 以上になると、ステップ656hで第1伝送情報のパラ メータを復調できるまで変更する。ステップ656iで 復調して受信を一定時間以上継続した場合、ステップ6 56jでn (LAST) 番目の頻度情報が一定値以下の 場合、ステップ656kでこの伝送情報をn(LAS T)番目の第1伝送情報のデータとして頻度管理テーブ ルを更新する。もしくは、最新使用時間管理テーブル6 13の最新データ614として、他のデータを含めて更 新する。そして、前述のステップ6564へ進む。

【0248】さて、ステップ655aに戻り結果がYesの場合、ステップ655bに進み、n=0を設定しステップ655dでnに1を加えたものをnとし、ステップ655eで図18の使用頻度管理テーブル609もしくは、最新使用時間管理テーブル613の第n番目の使用頻度もしくは最新使用度の高い優先情報を用いて復調

を試みる。復調つまりYesならステップ655fで一定時間以上受信したかをチェックし、ステップ655fでYesならステップ655gで使用頻度管理テーブル6090n番目の第2伝送情報の頻度情報を増やすか、最新使用時間管理テーブル6130n番目の第2伝送情報を最新ランク6140欄に記録し、他のパラメーターの最新度のランクを1つずつ下げる。ステップ655hでn-1番目の頻度情報よりn番目の頻度情報が高い場合、ステップ655iで両者の順序を入れかえる。そしてステップ655kで放送信号を受信する。

【0249】ここでステップ655eに戻り、結果がN oの場合ステップ655mで、nが最後の値を越えてい なければ前述のステップ655dに再び戻り、越えてい ればステップ655nで第1階層を復調して復調情報の 中の第2伝送情報を入手し、第2階層を復調する。ステ ップ655pで一定時間以上受信した場合は、ステップ 655qで最新時間管理モードの場合は、このパラメー タを最新ランク614に記録し、他の最新度を下げる。 頻度管理の場合はnの最後の頻度情報が一定値以下であ れば、ステップ655rでこのパラメータをnの最後の パラメータと置き換え更新記録する。一定値以下でなけ ればステップ655kで放送信号を受信する。以上のよ うに、頻度管理モードの場合は各放送局の伝送情報が頻 度管理できるので、放送局の伝送パラメータの種類が多 い場合は効果的である。また最新使用時間管理モードの 場合は、伝送情報を年度毎とか季毎のように長期間のサ イクルで変更する放送局の場合効果的である。また、伝 送パラメータの種類が少ない場合も効果的である。以上 の方法により伝送情報のヒット率がより高くなるという 効果がある。

【0250】図25は、前述と同じ方法でステップ657iで放送局IDを基地局IDと関連づけて伝送情報管理データベースに登録する。そしてステップ657jで伝送パラメータが図18に示すように特定のパターン、第1パターン番号554や第2パターン番号555のようにパターン化して、ステップ657kで登録することにより、登録データ容量を大巾に削減できるという効果がある。

【0251】(6)第6の実施の形態

携帯電話501を用いて行う新しいビジネスモデルの実施の形態を述べる。図26は、本ビジネスモデルのビジネスフロー図である。

【0252】(6-1)携帯電話

まず本実施の形態で用いられる携帯電話について説明する。図27は本発明の表示部をもつ携帯電話501の正面図で、表示部590は副表示部592をもっている。図27(a)はメニュー画面表示時の表示部590の状態、図27(b)はバーコード表示モード、略してBCモード時の表示部590の状態を示す。BCモードにおいては副表示部592にはバーコードが表示されてい

る。

【0253】図28は表示部590がカラー表示機能をもつ場合の本発明の表示素子の画像701の配置を示す。境界線702の上半分は図28(b)に示すように、RGBの3色のカラーフィルターが順次水平方向に配置されている。従って1つのピクセルを表現するのに、水平方向に3つの素子700を必要とする。Lを素子間ピッチとすると3Lのピッチとなる。従来のカラー表示素子でバーコードのバー703を表示しようとすると、バー703,703a,703bのように3L以上のピッチとなり、図28(d)に示す詳細なバーコードのバー704,704a,704b,704cは表示できない。

【0254】特に図30に示すように通常、バーコードリーダー708は発光部710の光源709として、赤色レーザーや赤色光を使うため、図29(a)の横断面図に示すRフィルター705は透過するが、波長の短いGフィルター706,Bフィルター707はフィルタ効果で透過量が著しく減る。このため、赤色の光源をもつバーコードリーダーで安定して読むには3L以上にバーのピッチを荒くする必要があり、特に携帯電話のように表示部が小さい場合、バーコード表示をしようとすると情報量が極端に減ってしまう。

【0255】本発明では、表示部590の一部に副表示部592を設けることにより、精細なバー704(図28(d))を表示可能としている。図28(c)のように境界線702の下半分のカラーフィルタ層は、透明フィルターで構成されているのでバーコードの白黒表示が可能で、垂直方向は100 μ mのピッチであるが水平方向の画素ピッチLは、現状の技術を用いた場合30 μ m程度に構成できる。従って、図28(d)に示すようにピッチ30 μ mの詳細なバーコードが表示できるため、小さな表示部でも大きなデータのバーコード表示ができる。

【0256】図29の横断面図(a),(b)は、図28のA-A'部とB-B'部の断面における本発明の構造を各々示したものである。まず、図29(a)のカラー表示部724においては下から反射板713,偏光板714,ガラス基板715と構成され、ガラス基板715上にトランジスタ716と電極717が形成され、上のガラス板721の内側にはカラーフィルタ720とITO719が形成され、外側には偏光板722が形成されている。

【0257】上のガラス板721と下のガラス基板715の間には液晶材料718が注入されている。外部からの入射光711a,711b,711cは偏光板722で偏光となり、液晶718を通り反射板713で反射し、再び液晶718を通り偏光板722を通って反射光712a,712b,712cとなる。液晶への印加電圧を変化させることにより偏光角を制御し反射光712

の強度をコントロールする。

【0258】この時、白色光の入射光の場合はカラーフィルタ部720で吸収することにより、RGBの反射光を発生させる。しかし、バーコードリーダー708のように光源が赤色光の場合は、Rフィルタ705では吸収が起こらないので反射される。しかし、Gフィルタ706では吸収が増え、Bフィルタ707では殆んど吸収されてしまう。従ってバーコードを表示しようとするとBフィルタ707部やGフィルタ706部をバーと誤認識する可能性がある。

【0259】本発明では、一枚の表示素子のガラス基板715を用いて副表示部592の部分では、図29

(b) に示すようにカラーフィルタ層720を有しない透明層723で構成している。このため、入射光711が赤色光である場合、どの画素素子700を通過した反射光712も同じ減衰しか受けないため、副表示部592にバーコードを表示することにより、高い密度のバーでも誤認識がない。このため、大きな容量のバーコードが表示できるという効果が得られる。

【0260】この場合、図28に示すように主表示部であるカラー表示部と副表示部592と同じ巾の素子700を使う。少なくとも白黒部の素子の横と縦の比を、図28の素子700に示すように横を1とすると縦の比を2以上にとることにより、カラー表示部と副表示部で同じ表示素子を使える。単に副表示部の領域のみ色フィルタのかわりに透明材料を用いるだけでよいため、工程の増加も1工程で済む。ITO層719を厚くすることにより、透明層723を形成すれば工程を増やさないで製造することができる。このように量産が容易となる。

【0261】電子決済システム等に本発明の表示素子を 用いるには、3~4ヶのバーコードの表示を必要とす る。3~4回バーコードを手動で表示させようとすると 手間がかかるのと処理時間が多くなる。

【0262】これを改善するため、本発明の表示装置では、図27に示すように副表示部592の近傍に光検知部725を設けバーコードリーダーの光を検知している。バーコードリーダー708の発光部710の光源709には、通常赤色光が用いられる。図31に示すようにこの光を光検知部725が検知する。外乱光と読み取り光を区別するため、光検知部725の光入力窓727には赤色のみを通す色フィルタ726が取り付けられている。このフィルタにより外乱となる光ノイズを減らすことができる。検出信号は、光強度測定部728と光入力時間測定部729により測定され、分離部730により連続信号検出部731とパルス信号検出部732に入力され、バーコード表示制御部733により新たなバーコード表示更新され表示回路734により、副表示部592のバーコード表示が更新される。

【0263】この手順を図32のフローチャートを用いて説明する。ステップ661aでバーコードの表示を開

始し、ステップ611bでn=0,ステップ661cでn=1を加算し、ステップ661dでn番目のバーコードを表示する。ステップ661eで光検知部725がバーコードリーダーの読み取り光を検出するとステップ661fで、連続照射型バーコードリーダーの光かどうかチェックするために一定値I1以上の光量が一定時間t1以上入射しているかをチェックする。ここでYesならバーコードリーダーの光と判断し、ステップ661hでnが最終値でないかをチェックし、Yesなら終了し、Noならステップ661cに戻りnを1つインクリメントして、n番目つまり次のバーコードを副表示部592(図31)に表示する。

【0264】ステップ661fに戻り、結果がNoの場合はステップ661gでスキャン型バーコードリーダーの照射がなかったかを調べる。特定の光量I2以上で、t1>t2なる一定時間以下の短いパルス信号が一定回数のn1回以上検知され、ステップ661jで一定時間t3(t2<t3)経過した場合はスキャン型バーコードリーダーの読み取りがあったと判断し、ステップ661kでk0でなかったらステップ661k1で終了し、最終値でなかったらステップ661k1でなかったらステップ661k2でなかったらステップ661k3にでれたりリメントする。こうして、バーコードリーダーが読み取り光を照射して、k1秒後に次々と新しいバーコードが自動的に表示され、使用者はバーコード更新のための操作をする必要がない。

【0265】(6-2)全体ビジネスモデルの説明図26は、Tモード携帯電話501を用いた認証購入,商品受取り、決済のビジネスモデルのビジネスフロー図を示す。まずステップ660aで放送局502が放送電波を用いて、PC用のHTMLや放送用のBMLやモバイル用のJAVA(R)のようなWeb記述言語を用いて記述されたプログラムである商品購入処理ソフトや商品データを携帯電話501へ送信する。

【0266】使用者は、商品購入ソフトを用いてサーバー上にWebサイトを構成し、商品購入のためのホームページを開設している。またステップ660bで使用者は、仮想商店740を選択し、携帯電話の上り回線507を用いて、携帯電話会社サーバー742,インターネット741,通信制御部743,仮想商店サーバー744を介して仮想商店740にアクセスする。

【0267】ステップ660cで携帯基地局503から下り回線506で商品情報と標準価格情報を送信する。ステップ660dで使用者が商品やサービスやチケットを選択し、発注情報を上り回線507で仮想商店740へ送信する。ステップ660eで決済方法や価格,割り引きクーポンの情報が使用者へ送られてくる。

【0268】ステップ660fで利用者が価格割り引き クーポンとともに店頭決済つまり、コンビニストアのよ うな現実の商店において、認証と代金の支払いや決済と 商品の受けとりを行う方法を選択し、仮想商品nへ利用 者の携帯電話番号とともに上り回線で送信する。

【0269】ステップ660gで仮想商店740は価格割り引きクーポンを確認した後、割り引き後の価格を演算で求め、商品情報と割り引き後の価格とを使用者の携帯電話番号を関連づけて暗号化した登録番号を、下り回線506もしくはEメールで使用者にさらに暗号化して送信する。ステップ660hで携帯電話501の登録番号メモリ747に、n番目の登録番号として受信したと登録番号が登録される。

【0270】システムの処理が終るとステップ660iで使用者746は、自分が指定したコンビニ店等の実際の商店748へ携帯電話とともに移動する。ステップ660jでBCモードに切り替えれ番目の登録番号、商品ID、割り引き後の価格等のmヶのデータをm回バーコードで副表示部592に順番をおって表示する準備をし、まず最初のバーコードを表示しておく。

【0271】ステップ660kで現実商店748の従業 員がPOS端末750に接続されたバーコードリーダー 708で、表示部590の副表示部592に表示された バーコード751を読み取る。

【0272】読み取り光に応じて携帯電話501は、検知部725の検出信号に応じてバーコードをm回変更して表示する。もしくは、図39や図40に示すように携帯電話501は一定時間おきにmヶのバーコードを次々と表示する。ステップ660mでバーコードリーダー708はmヶのバーコードをよみとった段階で、そのデータを決済会社900経由で仮想商店740に送る。

【0273】ステップ660nで仮想商店は登録番号,携帯ID,商品ID,割引価格等を照合してOKならステップ660pで決済会社900経由で割引価格,商品ID等の情報をPOS端末750に送る。ステップ660qでPOS端末750では割引価格をクレジットカード等で決済し、決済が完了後商品を使用者に渡す。

【0274】 (6-3) 詳細なシステム

図33を用いて、図26を詳しく説明する。クライアント800を含む携帯電話501からサーバー801に購入注文が出される。サーバー801はSIMカード803等のブリッジメディアに記録された携帯電話番号804やユーザーID805,支払い情報,出荷情報,位置情報816をクライアント800から携帯電話回線を介して受けた後、クライアントのこのイベント管理のための割り当てIDを割り当てる。

【0275】この割り当てIDを、カスタマデータベース812に記録された購入者情報と関連付け、クライアントIDカスタマテーブル809,カスタマデータベース812に記録する。そして、位置情報816に近い現実商店748とユーザーの自宅や会社に近い現実商店748を現実商店データベース813より選び出し、近隣の現実店舗748の近隣商店情報819を得る。

【0276】これらの情報と商品の割り当て ID806

を特定し、商品の注文ボタンを含むHTML文書を携帯電話回線経由でクライアント800に送る。クライアント800は割り当てID806をメモリ802にストアし、HTML文書を表示部590に表示する。

【0277】サーバーは同時に近隣商店情報819の商店748の在庫データベース815をみて商品の在庫状況をチェックし、在庫のある商店を選択する。また、時間情報817を用いて、クーポンIDを発行し、クーポン管理データベース820に登録する。ユーザーが近隣商店情報819から特定の現実商店748を選択し、特定の商品の発注ボタンを選択して入力すると、この情報は携帯電話回線経由でサーバー801に送られる。

【0278】サーバー801は、特定の商品の購入要求を受けて、クライアント800の携帯電話番号804もしくは/かつユーザーID805等のクライアントID814とクライアントIDカスタマテーブル809を用いて、関連づけられたカスタマデータベース812や在庫データベース810や注文データベース811や購入情報を、割り当てID806を用いて結合する。選択された商品を情報と割り当てID806に関連する情報とクーポン管理データベース820に基づいて割引率を用いて算出された商品金額823、クーポンの有効期限や購入の有効期限情報、商品ID824やクーポン割引率825をユーザーが選択した現実商店748へ送付し、POS端末750の購入データベース822に蓄積される。

【0279】消費者が現実商店748に出向き携帯電話501の購入商品を選択し、BCモードスイッチを押すと、本発明の循環型バーコード表示が表示部590になされ、バーコードリーダー708で読み取られ、少なくとも割り当てID806が読み取られる。次にメモリの中の購入データベース822から商品金額823とクーポン割引率825をとり出し、購入金額が算出され、POS端末750に表示され、代金決済とともに商品が手渡される。決済がクレジットカードの場合は通信で行われる。

【0280】このシステムでは購入時に、通信回路を介さなくてもチェックが可能であるため、瞬時に認証ができるため迅速に処理できる。行列ができるようなコンビニ店の決済や劇場の入口のチケット発行において有効である。予め、携帯電話で代金決済手続が済んでいれば、全く時間がかからないため多数のユーザーを処理できる。

【0281】(6-4)実際の電子商取引

次に上述したビジネスモデルを用いた実際の商取引の例を説明する。この商品の例として予約が必要な航空券のチケット等を考える。現在の航空券等の予約システムでは電話やパソコン等で予約して登録番号をもらい、利用者が窓口に行き、登録番号を従業員に口頭もしくは用紙で通知する。そして、従業員が手入力等で登録番号を入

力し、センターが確認してから代金を支払い航空券を受けとるが、本発明により携帯電話501でどこでも購入予約ができ、データを口頭で伝えたり紙に印字しなくても携帯電話501の表示部590にバーコードで、認証番号や登録番号が表示される。

【0282】本発明では、図26で説明したのと同じ手順で携帯電話でチケットを入手できる。まず、航空券や音楽会の切符のチケット販売のn番目の仮想商店740にアクセスし、まず航空券もしくはチケットの商品を選択する(ステップ660b)。特定日の特定時間の特定の行き先と、通路側等の席の属性情報等の航空券に対する要望情報を仮想商店740に送る。チケットの場合は、特定の公演の特定日の特定時間の情報もしくは、特定時間の特定場所の特定の範囲内の希望料金を送る。

【0283】ステップ660cでは、仮想商店740から商品情報を送ってくる。航空券の場合は、希望日時の希望行き先の空席のあるフライトの航空券情報を料金の安い順から送ってきて、最終的に携帯電話501の表示部590に図27(C)のように表示される。

【0284】つまり、リストの1番目には最も安い料金である99ドルのフライトのフライトNo.と出発時間、場合により到着予定時間と好みの座席の空席の総数、例えば25席の表示もしくは、"14B"のように利用者の好みに最も近い空席の座席番号を表示する。 n番目にはn番目に安い料金の航空券を表示する。映画やミュージカル、遊園地等のチケットの場合は、同様にして同じ内容の公演やアトラクションに対して料金の安い順、近い順、好みの順に表示する。

【0285】遊園地の場合には、入場チケット購入後、各施設の予約券又は予約権利を取得することができる。この場合は、図34及び図27(E)に示すように、まず携帯電話501はセンターからアトラクションやレストランの空き状況の情報を受けて、予約可能な入場時刻の早い順にアトラクションやレストランのリストを作成し表示部590に表示する。

【0286】携帯電話回線を使う場合にはセンターに要求を出してからセンターから空き状況の情報をもらう。 データ放送の場合は一方向性なのでセンターはカルーセル方式で空き状況や予約可能情報を何回も繰り返しデータ放送で送る。ユーザーはカルーセルのデータの中から好みのアトラクションの情報を選択して取得し表示する。

【0287】具体的な表示を、図27(E)に示す。まず、"Cable car"つまりアトラクション名と"11:30"つまり予約時間と、No.の"14"つまり残っている予約可能な人数と、Area "A"つまり残っている予約可能な人数と、Area "A"つまり遊園地内のアトラクションの位置を表示する。表示リストの順は、入場時刻の早い順もしくは、上に述べた遊園地内のアトラクションの位置とユーザーの携帯電話501のGPSシステムや、基地局からの基地局ID等の

位置情報や方位センサー等の位置検出部558(図33)からの位置情報816を比較する。これにより携帯電話501に近いアトラクション又は公演を検索し、近い順に表示することで、使用者は近いアトラクションの選択が容易となる。レストランの場合は料金の安い順にリストを作成し、表示する。時間が早い場合はディスカウントした料金を一定時間表示する。

【0288】この手順を図34のフローチャートのステップ827a,827bに示す。ステップ827cで携帯電話501からインターネットにより遊園地の仮想商店のホームページに接続しその日のアトラクションやレストランの情報を得る。その中から、特定のアトラクションをユーザーが選択し、ステップ827dで予約処理モードに入ると、ユーザーが持っている入場券のチケット832(図26)のID番号と場合によりチケット832に書いてあるパスワードを携帯電話501に手等により入力する(ステップ827e)。家族等のチケットがある場合は、複数個のIDとパスワードを入力する。

【0289】ステップ827fでこれらのチケットIDと携帯端末IDとアトラクションIDがセンターに送信される。アトラクション予約の場合はセンターでは、このチケットIDに対して前回発行した予約券が有効時間内かをタイマーを見てチェックする。この場合何らかの条件により、特定のチケットIDの現在の利用権が有効でない場合は特定のチケットIDに対して利用禁止フラグがセンターのデータベースにたつため利用は禁止される(ステップ827g)。もし有効時間内であれば、予約

【0290】この時点ではチケット発行機より遠い場所にあるため発券できないので、具体的には認証番号つまり仮チケット情報を発行し暗号化して携帯電話501に送信し、携帯電話501ではこの情報をメモリー802(図33)に保存する(ステップ827k)。具体的には予約したアトラクションの名称、開始時間、場所、認証情報等を記憶する。携帯電話501では前述の開始時間情報に基づき、開始時間の一定時間前になると携帯電話501のスピーカーや振動部を駆動することにより利用者に通知し会場に向かうことを促す。

券もしくは仮チケットを発行する。

【0291】その後ユーザーは、入力した場所から移動してアトラクションの入口にある入場ゲート装置828もしくはチケット発行機829に到達する。携帯電話501側では予約券の発行もしくは入場許可処理モードに入る。一定時間以上経っているか、予約指定時間の範囲外であれば、利用禁止フラグが立つため、ステップ827kや827pの処理は受け付けられない(ステップ827j)。

【0292】図26の予約券発行機829や入場ゲート 装置828の磁気読みとり方式や光学読取り方式や無線 IC方式のカードリーダー831により、チケット83 2のチケットIDが読み取られる(ステップ827 k) .

【0293】ステップ827mでそのチケットIDに対応して携帯電話501の電話番号等の装置IDがセンターのデータベースに登録されているかをチェックし、登録されている場合は、ステップ827qにジャンプする。登録されている場合は携帯端末の認定チェックは省略されチケットをカードリーダー831に挿入するだけでよい。

【0294】さて、登録されていない場合は、携帯端末にバーコード等により認証番号を表示させる。表示する情報量が多い場合は認証番号のかわりに、ブルートゥースとバーコード表示の両方を用いる。通信用の相互認証用のトークンやID情報を携帯端末501の表示部590に図27(b)のように表示する。このバーコードをバーコードリーダー708(図33)で読み取らせることにより相互認証、通信用のトークンやID情報を得る。一次元バーコードの場合は一次元センサーのバーコードリーダー708、二次元バーコードリーダーの場合はビデオカメラのような二次元センサーのバーコードリーダーを用いる。

【0295】その後ブルートゥース経由で携帯電話50 1からチケット発行機829(図26)等に情報を送受 信することにより、特定のPOS端末750と特定の携 帯電話501の間で確実な通信を行うことができ、誤作 動や不正を防ぐことができる(ステップ827n)。

【0296】入口では入場者が列をなしており、ブルートゥースや無線LAN等の通信のサービス領域内に複数の携帯端末が存在するため、どの端末と交信しているのかを特定することが難しい。本発明では入口にいる1台の携帯端末の表示部のバーコードのトークン等の相互通信用のパラメーターを読み取り、そのパラメーターで相互に交信する。このことにより、通信相手を1台に特定することができるので、セキュリティを大巾に上げることができ誤動作を防ぐことができる。

【0297】592a(図27)に示すように、トークンに加えて暗号通信用の大容量の暗号鍵を、表示容量が大きい二次元バーコードで送り、互いにこの暗号鍵で無線交信することによりセキュリティの高い通信が可能となる。ブルートゥースの例を示したが、無線LANのIEEE802.11a.11bでも同様の効果が得られる

【0298】さて、ステップ827pでは、バーコードリーダー708により認証番号をよみとり、図26では仮想商店740で示すセンターが照合して認証番号の演算結果が正しいと判断した場合は、ステップ827rの許可モードに進む。ステップ827tで入場許可モードの場合は、図26の入場用ゲート830を開けることにより、ユーザーはアトラクションやコンサートや公演の会場に入場することができる(ステップ827u)。そして、そのアトラクションの終了後、先頭のステップ8

27aに次のアトラクションリストを要求する。

【0299】さて、ステップ827rに戻り予約チケット発行モードの場合は、ステップ827sで予約チケットをチケット発行機829より発行し、ユーザーは現実の予約チケット832を受けることができ、予約時間になると予約チケットをカードリーダー831に挿入することにより入場ゲートを通過することができる。このとき不正に二回入場できないようにそのアトラクションの入場禁止フラグをONにする。その後、ステップ827rでセンターは一定時間、元のチケットIDに関して新たな認証番号や予約券の発行を中止して、同一時間に2枚以上の予約チケットを発行しないようにする。前述の予約の利用禁止フラグを立ててもよい。

【0300】遊園地の場合、一回退場して再入場するときに本人の認証に紫外線インク等を使って一時退場した個人を認証する。しかし本発明のバーコード表示を用いると認証が可能となる。入場時にそのチケットIDの入場禁止フラグをONにする。一時退場するときには携帯端末を持っている利用者の場合チケットからチケットIDを読みとり、携帯端末のIDをバーコードで表示させバーコードリーダーで読み取り、入場禁止フラグをOFFにする。再入場の時は同様にしてチケットIDと携帯端末のIDを読み取り、入場禁止フラグをチェックする。

【0301】正規利用の場合、チケットIDと携帯端末IDは一致しかつ入場禁止フラグはOFFのため再入場は許可され、入場ゲート装置828はゲートを開ける。入場後入場禁止フラグをONにすれば不正入場は防止される。この場合、物理的なチケットを用いないで、携帯端末のバーコード表示だけでも仮想的な電子チケットが実現できる。

【0302】前述の入場システムでは事前に電子チケットをWEBで購入して認証IDを取得し、メモリーに保存し、入場時に認証IDをバーコードで表示し入場禁止フラグをONにする。退場時に携帯端末の認証IDを読み取り入場禁止フラグをOFFにし再入場時には認証IDを読み取り入場禁止フラグをONにすれば不正は防げる。

【0303】以上の方法では、予約チケットの入手権利が何処でも手に入る。このため、従来のようにアトラクションの会場まで行かなくても入手できるという効果がある。ステップ827eではチケットのIDとパスワードを1回登録すれば携帯端末501のメモリ802(図30)に記憶されるため、2度目の入力は要らない。また、1回ステップ827n,827pで携帯端末の本体認証を行う、もしくは固定端末で本体認証を行うと、後はチケットIDだけで認証できる。この結果、同一日あれば別のアトラクションでも2回目の入場時は入口でバーコードをよみとる必要がないため、携帯端末で予約して入口又は予約チケット発行機で入場チケットをよみとってもらうだけで、入場もしくは予約チケットを入手できるという効果がある。

【0304】以上遊園地や公演の場合の例を示したが、 航空券の場合でも携帯端末で予約して空港のゲートでバ ーコードを読み取らせて座席券を入手することや、バー コードを読み取らせて直接ゲートから搭乗することも同 様にして可能である。

【0305】(6-5)バーコードの表示方法1次に本発明の電子商取引に用いられるバーコードの表示方法の具体例について説明する。図27(b)では同じデータを1つの二次元バーコード592aと一次元バーコード592の二種類で表示している。まずデータが小さい時は二次元バーコード592aと一次元バーコード592は表示パターンを変えない。

【0306】次にデータがすこし大きい場合は、二次元バーコード592aは表示パターンを変えず、一次元バーコード592はデータ内容の異なる複数の表示パターンを時分割で循環的に表示することにより、結果的に二次元バーコードと等価の大きなデータを表示させる。

【0307】データがもっと大きい場合は、二次元バーコード592aは少ない回数ではあるが表示パターンを変え、一次元バーコード592はより多くの回数、複数の表示パターンを時分割で循環的に表示することにより大きなデータを表示する。これにより暗号化により表示データ量が増大した場合でも、迅速にバーコード表示を行うことができる。

【0308】このことにより、まず、一次元バーコードも二次元バーコードも同じ容量を同時に表示できる。従ってバーコードリーダー708(図26)が一次元センサーを用いる一次元バーコードリーダーでもビデオカメラ等の二次元センサーを用いる二次元バーコードリーダーでも読み取り可能となるため、互換性が得られる。どのタイプのバーコードリーダーでも読み取りができるという効果がある。また複数回、一次元バーコードもしくは二次元バーコードを表示することにより、より大きなデータを表示できるという効果がある。なお一次元バーコードと二次元バーコードを同時に複数回表示させる例を示したが、それぞれ一次元バーコードもしくは二次元バーコードの一方を単独で複数回表示させても表示容量を大きくする同様の効果がある。

【0309】低額の商品の場合は登録番号だけで認証できるので殆んどの用途は1回の表示で充分である。データ量が多くてバーコードを複数回表示させる必要がある場合でも、本発明では自動的に複数のバーコードが1つずつ表示されるので、使用者はバーコードリーダー708に携帯電話501の表示部590をかざすだけで迅速に認証処理が行われるため、従来に比べて認証手順が省けるため利便性が向上するという効果が得られる。

【0310】なお、白黒表示の表示部590をもつ携帯電話の場合は、水平方向のピッチが50 μ m以下なら高密度のバーコードを画面のどの部分でも表示できる。図28(c)のように、アスペクト比を2:1以上に取る

ことにより、図35に示すように文字表示とともに高密度のバーコード751,751a,751b,751c を複数個表示できる。このため画面を変えずに商店で認証と商品IDや割引価格等の表示が可能となる。このため1度の表示で全ての処理が完了する。

【0311】(6-6)下り回線による電子認証 次に図26に戻り、図面下部に下り回線のみで上り回線 の送信なしで処理する、つまり放送のTモードだけで可 能な電子認証方式を示す。

【0312】まず、ステップ660aで放送局502から商品購入ソフトや商品データを送信しダウンロードさせる点は同じである。ステップ662aで携帯電話501の使用者746は仮想商店740を選択する。ステップ662bでは特定の商店の商店購入ソフトと商品データを用いて、商品やサービスの価格情報が表示される。ステップ662cでは使用者746が表示された商品の中から特定の商品を選択する。ステップ662dで商品購入ソフトにより料金と決済方法が表示される。ステップ662eでその商品に割引等の特典を含むクーポン情報がある場合は、ステップ662fで割り引き後の価格を表示する。

【0313】ステップ662gで使用者746がその商品購入を選択した場合に、かつクーポンがある場合は、そのクーポンの有効期間内に発行もしくは使用可能であるクーポン登録番号を登録番号メモリ部に登録する。ステップ662hで店頭決済を選択した場合でかつステップ662iでデータ送信が不要な場合、ステップ662jで商品購入の日付、価格、クーポンのある場合はその登録番号と割引価格をBCモードメモリ部に記録する。

【0314】ステップ660iに戻り、利用者が店頭へ移動し、ステップ660jで携帯番号や商品IDやクーポン登録番号や割引後の価格等をバーコード751で携帯電話501の表示部590に表示する。そしてステップ660kでバーコードリーダー708でデータが読みこまれて、POS端末経由で認証されると代金を支払う。もしクーポンがある場合、割引き価格で商品を入手できる。

【0315】この方法では一切、携帯電話の送信を行わないで電子認証購入システムを完了できるという効果がある。この方法の場合、携帯電話の回路は不要であるため携帯テレビに本発明の表示方法を組み合せてもこのビジネスモデルを実現できる。一般の家庭テレビでもこの方式によりクーポン登録番号等を入手し、テレビからブルートゥース等の無線回線でBCモード付携帯電話501に登録データを送ることにより、その携帯電話を商店にもってゆき、航空券やチケット等の商品を購入することも可能である。

【0316】 (6-7) バーコードモードによる商品・サービスの購入例

次にBCモードで商品・サービスを購入する手順を具体

例を用いて説明する。図36,図37はサービス購入のフローチャート図である。ステップ663aでデータ放送"CDE"を受信し、ステップ663bで商品購入メニューの画面664aを表示させる。ステップ663cでメニュー番号の中から例として2を選択した場合、ステップ663dでメニュー番号2の第1画面664bが表示され、図で示すようにクーポンの特典情報が表示され、図で示すようにクーポンを選択すると、ステップ663e2でクーポン登録番号が購入プログラムが発行もしくは、発行センターで発行される。ステップ663fでクーポン登録番号をプログラムもしくは、下り回線で受け取り、ステップ663gでクーポン登録番号を商品IDとともに登録番号メモリに記録する。

【0317】次にステップ663hでメニューnの第2 画面を画面664cに示すように表示する。画面664 cには、基本料金とクーポン使用時の割引料金の双方が 表示される。ステップ663iで決済の方法の指示があった場合、ステップ663jで、画面664dのように 例えばBC-4番のような登録管理番号を表示し、登録 番号メモリ部に記録するとともにクーポン登録番号と割 引金額と商品IDを登録番号メモリ部に記録する。

【0318】図37のステップ665aでBCモードスイッチ(SW)736(図27)がONになると、ステップ665bに進み画面666aに示すように、BCモード登録管理番号の全ての登録データをよみ出しデータの1部をリストとして表示する。ステップ665cでm(例えば3番)の登録管理番号のデータを選択した場合、画面666bのバーコードが表示されていない画面が表示される。

【0319】ここでステップ665dで図27(b)に示すBCモードSW736を押すと、BCモードがONとなりステップ665fでnがインクリメントされる。ステップ665gでn番目のバーコードが表示される。1番目の場合、画面666bのように、そしてステップ665hで光検知部725(図27)が読み取り光を検知した場合、ステップ665kへ進み、nが最後の値でないならステップ665fに戻り、nをインクリメントする。さて、ステップ665hがNOの場合でもステップ665iへ進み、BCモードSW736をONにすることにより、ステップ665kへ進み、nをインクリメントし、次のバーコードを表示する。

【0320】この場合、一定時間ごとにバーコードをサイクリックし絶えず1番,2番,3番,4番と表示しても効率は悪いが、時間をかけて全てのバーコードを読み取ってくれる。

【0321】画面666cはn=2の時、画面666dはnが最後の値の時を表示し、nが最後になるとステップ665bに戻り表面666aを表示する。

【0322】本発明により、従来口頭や紙やクレジットカードで行っていた認証を携帯電話の表示部をバーコードリーダーで読むだけでよいため利便性が向上する。

【0323】(6-8)携帯テレビ受信機への適用 図38を用いて携帯の送受信機能をもたない携帯テレビ 受信機753に、本発明の表示装置を用いた場合の例を 示す。携帯テレビ受信機753は、図33のブロック図 の構成から携帯電話の送受信部を省いた構成をとってい るので、ブロック図は省略する。図38(a)のように 携帯テレビ受信機753は、表示部590と副表示部5 92をもっている。またBC(バーコード)モードSW 736を備えてバーコード751の表示が可能である。

【0324】図38(b)のBC表示のフローチャートを用いて、データ放送の契約料の支払い手順を述べる。基本的には図36,図37のフローチャートと同じである。事前にデータ放送CDEから料金決済プログラムと機器IDに対応した支払い金額情報をデータ放送経由でダウンロードしておく。図26の下半分を用いて説明したように、放送受信のみで電子購入処理は可能である。従って途中の説明を省略し、支払いの事前データの準備が揃った段階から説明を始める。

【0325】まず図38(b)のステップ668aにおいて、BCモードSW736が押されてONとなり、メニュー画面が出てi番目のメニューを選択(ステップ668b)するとステップ668cでn=0、ステップ668dでnがインクリメントされて第nのBCが表示される(ステップ668e)。画面668はn=1の場合を示し、POS読み取りコード:2436番のデータがバーコード751の形式で表示されている。

【0326】ステップ668fで一定時間未満だと、ステップ668dに戻りnをインクリメントして次のバーコードを表示し、ステップ668fで一定時間が経過しかつステップ668gでnが最後になった場合つまり全てのバーコードの表示を完了すると、ステップ668hに進み、何番目のサイクルかをみてm回以下ならステップ668nに進み、1番目から最後の番号までバーコードの1サイクル分を表示し、mサイクル終った段階でステップ668iに進み、使用者が完了したことを入力するまでバーコードを表示し続け、完了命令が来るとBCの表示を終了する(ステップ668j)。

【0327】図38の方式は受信機だけで構成できるため、本発明のバーコード表示方式をより広い用途にまで拡げることができる。例えば、電気料金の支払いでもこの受信端末をコンビニエンスストアに持っていき、バーコードリーダーで読み取るだけで代金や加入者番号や支払い月度等が入力され、代金支払いとともに電子決済により電力会社に料金支払いが通知される。本発明ではこれまでの支払い手順のいくつかが省略されるので支払いが省力化される。

【0328】 (6-9) バーコードの表示方法2

図39は図38(b)で説明したバーコードの具体的な 表示方法を示す。まず図39(a)を用いて説明する。 図38 (b) のステップ668eで無表示状態の副表示 部に第1のバーコード751aや752a (図39) を ステップ668 f でT1時間表示する。ステップ668 gでnが最後でなければステップ668kで無表示75 7aを表示する。ステップ668mでT1より短い一定 時間T2表示すると、ステップ668d,668eで2 番目のバーコード 751bや752bをT1時間 (ステ ップ668f)表示し、無表示757bをT2時間(ス テップ668m) 表示する。最後のn番目のバーコード 751を表示し終わると、ステップ668hでm回目の サイクル以内であれば、ステップ668nで無表示75 7 zをT2より長いT3時間の無表示期間754表示し (ステップ668p)、再び第1のバーコード1をT1 の期間755a表示する。これをm回繰り返す。

【0329】バーコード751aもしくはバーコード752aのいずれかを単独で表示してもよい。また、バーコード751aとバーコード752aを図のように同時に表示してもよい。同時に同じ内容のデータをバーコード751aと752aの両方で表示すると、一次元のバーコードリーダでも二次元のバーコードリーダのいずれでも読めるという効果がある。この場合は、図39

(a) のようにバーコード751aと752aはn個のパターンを表示させるが、二次元バーコードの場合は表示データ量が大きいためnより少ないK個のパターンを表示させる。但し、n>Kとする。このことにより、バーコード752の表示時間はT10K/n倍の表示時間となるため、バーコードの認識がより確実になる。

【0330】図39(b)に示すように、サイクルの最初だけ無表示757zを設け、残りはバーコード751a, 751b, 751cの間に無表示を設けなくすることにより、表示を速くすることもできる。

【0331】ここで本発明では、無表示期間756a,756b,756cを設けたことにより、バーコードリーダーの誤認識を少なくすることができる。一般的にバーコードリーダーには、レーザースキャンや手走査や二次元センサといった走査型があり、主流である。もし、走査中にバーコードの表示が急に変わると、例えば前半分はバーコード1が読まれ、後半分はバーコード2が読まれ、全く違ったバーコードが読まれてしまうことになる。もちろんエラー訂正で多くは排除できるが、完全にエラーを除去することは難しい。またエラーによるリトライで読み取りに時間を要する。

【0332】本発明のように、バーコード1の表示期間 とバーコード2の表示期間の間に無表示期間756をT 1>T2となるように設けることにより、バーコード1と バーコード2の間の時間的なクロストークによる読み取りエラーを大巾に減少させることができる。また、各サイクルの始めに無表示757zをT3(T3>T2)の間

表示させる。すると読み込み時にバーコードリーダーが時間を測定することにより、先頭のバーコード1;75 1aを検出できるので読み取りデータの先頭データの同期検出が容易にできるという効果がある。この場合、無表示画面として黒画面と白画面が考えられる。白画面の方が信号がなくなるのでノイズの面から効果的である。

【0333】また、図40のように最初にスタートコードが含まれたバーコード751a、752aを入れることにより、先頭の同期検出ができるため、データ読み取りが速くかつ確実になるという効果がある。この場合は、図40に示すように各バーコード間の無表示期間T2は全て同じでもよい。

【0334】また、バーコード751a、752aの先頭部やバーコード751a、752aの特定部もしくは変調データの先頭部に循環型表示時の表示の順序を示す表示順番号759と表示総数760を表示する。このことにより、バーコードリーダーの読み取り時に、先頭のバーコードではなく、たまたま部分的に2番目の表示である751bしか読み取れなかった場合でも、表示順番号759を関連づけてバーコードリーダーに情報を蓄積しておき、次々と表示順番号759をみて、表示総数760分を読み取るまで読み込むことができる。

【0335】この方式によりランダムなバーコードの部分的な読み込みが可能となるため全データの読み込み時間が早くなるという効果がある。この場合の、各々のバーコード表示のデータ構造762は、図40に示すようになっている。すなわち同期表示761、表示順番号759、表示総数760、データ764、終了表示763の各データがこの順序で配列されている。

【0336】さて、全数のバーコードの読み込みが完了すると通常のバーコードリーダー708(図26)は終了を知らせるブザー音を発生する。この終了音を図17に示すマイク594で入力させ検知回路で検知するとよみ取り終了がわかるので、一定時間後に終了状態を画面や点滅ランプで表示するとともにスピーカ573を用いて終了のブザー音を鳴らせて、使用者間746に音声と表示で通知する。そして、一定時間後循環型のバーコード表示の動作を終了する。

【0337】図41(a)(b)(c)にバーコードの 反射光量と検出信号を示す。図40で説明したように、 無表示は白表示と黒表示の2種類あるが、図39の白表 示に換えて黒表示の無表示758を表示した場合を、図41(a)に示す。図41(b)に示すように、バーコードの無表示時には信号はなくなる。従来行われている バーコード読み取り作業において手作業で複数のバーコードを読む場合、商品タグからバーコードリーダーを離すと反射光が戻ってこなくなるため、反射検出検出信号はなくなる。

【0338】図41の表示方法であると、あたかもこの 無表示期間765の間はバーコードリーダーを離した状 態もしくは、バーコード表示がない状態と同様、信号レベルが低くなる。このため通常のバーコードリーダーは無表示期間765の後の信号を次の新たなバーコードと認識して読み取ることが容易となる。この方法により、本発明の複数のバーコードを循環的に表示しても問題なく読み取り、印刷バーコード読み取り用のバーコードリーダーでの読み取り時の互換性が高くなるという効果がある。

【0339】この方法は、光検知部725を設けなくてもT1をバーコードリーダーに合わせ最適化することにより確実にバーコードが読み取れる。使用者はPOS端末で認定する直前にBCスイッチを押すと、バーコードの表示サイクルが数十回行なわれ、バーコードリーダーを表示部にあてるだけでデータが読み取られる。読み取りが終わるとPOS端末がブザー音等で完了を知らせてくれるので、使用者はBCスイッチを押しバーコードの連続表示を止めればよい。後はPOS端末に表示される代金を支払うことにより、商品やサービスがクーポン割引価格で購入できる。

【0340】本発明の携帯電話を用いて購入する場合、例えば宝石のように高額の商品を買う時は、認証データをセンターに送った後その携帯電話の電話番号もしくは URLへ認証センターが電話やパケット通信を行い、その携帯電話に着信音で通知させたり新たに認証センターから送られた認証コードをバーコードで表示させる。このバーコードをバーコードリーダーで読み取り再び認証センターへ送り、再び認証することにより高いセキュリティの認証と決済を実現できる。

【0341】この携帯電話の盗難に関しては、BCスイッチを押すとパスワードが要求され、パスワードが間違っているとバーコード表示サイクルに入らないようにする。この処理により携帯電話の盗難による誤認証を防げる。従って現在のクレジットカードシステムに比べると、はるかに高いセキュリティを実現できる。

【0342】本発明と同じような効果をもつ認証方式は別の方式を用いて提案されているが、いずれもPOS端末に新しい装置を付加導入する必要がある。しかし本発明では世界中の多くの商店に現在設置されている一般型のバーコードリーダーで読みとれる。このため、従来の商店の装置等のインフラストラクチャーを全く変えずに実現できる。このため経済的な効果が高い。また使用者は商店においてBCモードスイッチを押すだけでよく、従来のような余分な操作や入力が要らないため認証や決済時の手順が簡略化するため省力化され、利便性が著しく向上する。

【0343】本発明の液晶素子のバーコード読み取りを 安定化するための液晶表示素子の特性面での最適化条件 を述べる。本発明の表示部は、バーコードリーダーで読 み取られるため、いくつかの素子に必要な条件がある。 まず、ピッチ間隔:Lである。印刷の場合通常バーコー ドを印字するには、水平方向に100dpi以上の印字密度が必要である。これをピッチ間隔に換算すると 250μ mであるから、水平方向のピッチ間隔Lは $L>250\mu$ m以下で作成することにより、読み取り可能なバーコード表示が実現できる。

【0344】また、コントラスト比の最適条件を述べる。用紙印刷の場合OD値(OpticalDensity)値が定義されている。バーコード印字に必要な一般の印字用紙のOD値は、 $0.7\sim1.6$ とされている。つまり、OD値>0.7が最適条件である。OD値は対数表記であるので、OD値をコントラスト比に換算するとコントラスト比=4つまり、本発明の液晶表示素子をバーコードリーダーで正確に読み取らせる場合、反射値でみた場合、コントラスト比が4以上に設定すればよい。以上から本発明の表示素子は、水平方向の画素ピッチL< 250μ m、反射時のコントラスト比CR>402つの条件の範囲に設定する。これにより、読み取り時に安定して読むことができる。

【0345】反射膜のないバックライト方式の完全な透過型液晶素子の場合は、バーコード読み取りは困難である。しかし、本発明を部分的に反射膜を設けた、もしくは、半透過型の反射膜を設けた液晶表示素子に適用することにより、バーコードリーダーで読み取ることができる。この場合の条件は、反射光でみた場合、CR>4に設定することによりバーコードリーダーで安定して読むことができる。

【0346】(6-10)電子マネーへの適用また、上述した方法を携帯電話を用いた電子マネーに適用することもできる。以下、図33を用いて説明する。この場合、セキュリティを上げるため、バーコードとして表示するデータを時間情報とともに、スマートカード(例えば、SIMカード)803の中に入っている暗号鍵を用いて暗号化し、バーコードデータを生成して表示する。この暗号化されたバーコードをバーコードリーダー708で読み取り、POS端末750の中にある復号鍵で復号化する。この方法であると本人から不正に入手したバーコードを複製して表示して決済しようとしても、時間が経過しており時間情報が一致しないためセキュリティが保たれる。

【0347】また暗号鍵は交換可能なSIM-ICの中にあるため、万が一暗号鍵の情報が漏れ、セキュリティが破られたとしても、SIMカード803を交換するだけでよいので、セキュリティが保たれる。また、バーコード表示用のデータを、SIMカード803の中の暗号化回路により暗号化して、表示回路部へ出力しバーコード表示することによりセキュリティが上げられる。また、バーコード表示用のデータの一部または全体を、サーバー801の暗号鍵で暗号化した上でこのデータを携帯電話501で受信するようにしても良い。この場合、

携帯電話501はこの暗号データを得てバーコード表示する。POS端末750で読み取り、サーバー801へ送る。サーバー801の復号鍵で復号し、認証することによりセキュリティをさらに上げることができる。

【0348】電子マネーに適用した場合は、サーバー801から相互認証通信を行い、例えば100ドルの電子マネーの金額を、携帯電話501のメモリ802にダウンロードする。この電子マネーを使用する場合は、現実商店へ移動する。商品の購入金額が20ドルの場合、使用者がこの携帯のBCモードスイッチを押し、電子マネーモードのバーコード表示をさせる。この時に表示されるバーコードには、電子マネーのサービスIDとサービス会社IDと残高金額と、携帯電話IDもしくはユーザーIDとが含まれる。

【0349】ここで図42に、本実施の形態による電子マネーのデータ構造及びバーコードで表示される電子マネーのデータ構造を示す。図42(a)に示すように、電子マネーのデータ構造は、電子マネーの種類を表すIDとしてサービスIDやサービス会社IDが用いられている。そして残高金額、携帯電話IDもしくはユーザーIDに加えて、セキュリティ用の認証IDとして、サーバによる署名データが付加される。

【0350】これにより、サーバ801の公開鍵による 署名データによって、電子マネーを示すデータの改ざん を防止することができる。

【0351】この電子マネーデータが携帯端末の表示部に表示される際には、スマートカードの暗号鍵によって暗号化が施される。そして図42(b)に示すように、上記データに加えて時間情報が付加されてバーコードとして表示される。このバーコードで表示された電子マネーデータは、上述したようにPOS端末で復号化される。

【0352】商店のPOS端末750に、携帯電話50 1の本発明のバーコードを読み取らせると、購入金額が 小額の場合、POS端末750は、読み取ったバーコー ドデータを復号鍵で復号化し、残高金額が購入金額以上 であれば決済し、残高金額から購入金額を差し引いた新 しい残高金額をインターネットと携帯電話回線の下り回 線経由で携帯電話501に送り、携帯電話501の残高 金額データを書き替える。

【0353】この下り回線のデータはブルートゥースや無線LAN等の通信方法を用いてPOS端末750から携帯電話501に直接送ってもよい。さらに上りデータもブルートゥース等を使ってもよい。この場合、通信認証用のトークン等のID情報や通信用の暗号鍵情報を携帯端末の表示部にバーコードで表示することによりトークンを用いた通信の相互認証用に用いることにより携帯端末と固定端末とがお互いに特定できるので、複数の端末が存在しても、バーコード認証できた1台の端末に通信が特定できる。従って、携帯端末と固定端末との間の通

信の確実性と安全性と迅速性が向上する。また暗号通信 により情報のセキュリティを上げることができる。

【0354】金額が高額の場合は、上述の携帯電話501に回線経由で送ったデータに、認証データを加え、携帯電話501にバーコード表示させる。このデータをバーコードスキャナーで読み取りPOS端末750でこの認証データを検証し、認証した結果を確認して決済を完了させる。この方法により、一段とセキュリティを向上させることができる。

【0355】電子マネーの決済処理において、POS端末750は、まず、バーコードが示すサービスIDから、電子マネー、商品購入クーポン、切符購入等のサービス種類を特定する。次に、バーコードが示すサービス会社ID(サービス会社のURL(Uniform Resource Locator)であっても良い)からサービス会社を特定し、必要に応じて通信回線やインターネットを介してサービス会社のURL等に接続する。

【0356】POS端末750は、残高金額が購入金額 以上である場合、バーコードが示す残高金額から購入金 額を差し引いた新しい残高金額をセンターに送り、携帯 電話の回線を経由して携帯電話501に新しい残高金額 を送る。

【0357】そして携帯電話501は、SIMカード803内のメモリの残高金額データを新しい残高金額データを書き替える。同時に残高金額データを画面に通常の文字とバーコードの双方で表示し、使用者に知らせる。同時にブザー音で使用者に残高金額の変更を通知する。このようにして、電子マネーの使用が行われる。

【0358】この場合、POS端末750は、読み取ったバーコードデータを復号鍵で復号化し、署名データを検証して、さらに、残高金額が購入金額以上である場合、復号化したバーコードデータと残高金額から購入金額を差し引いた新しい残高金額とをサーバー801へ送る。サーバー801は、残高金額を更新し、さらに、署名データを更新して、これをインターネットと携帯電話回線の下り回線経由で携帯電話を送り、携帯電話501の電子マネーデータを書き替える。

【0359】このシステムでは、既存のPOS端末750と携帯電話501のハードウェアを変えずに電子マネーシステムを構築できるので、投資が必要ないという効果がある。また、既存のバーコードリーダーやPOS端末750を使えるので、使用範囲が広く利便性が高い。

【0360】また、この場合、使用者不在中に携帯電話501のバーコードのデータが読み取られて不正使用される可能性があるが、もし不正使用しても、不正が行われた時点で携帯電話に新しい残高金額が文字で表示され、さらに、ブザー音が鳴るため、不正使用を発見できる。

【0361】また、1回目のバーコード表示時に携帯電話番号や携帯電話のメールアドレスを読み込ませた場

合、上に述べた残額だけでなく認証データを携帯電話回線で送り、携帯電話にバーコード表示させる。これをバーコードリーダー708で読み取り認証をすることにより、他の携帯電話での不正使用を妨げる。

【0362】また、個人のプライバシーの問題を避けるため、個人の携帯電話番号やURLは暗号化してバーコード表示させる。そして、通信回線でセンターに送りセンターで復号して、携帯電話番号やURLを得る構成にして、POS端末750では復号できないシステム構成にする。この構成により個人のプライバシーを守ることができる。

【0363】(6-11)ローカル無線通信の適用 図43に、本発明をローカル無線通信に適用する場合の 携帯電話501の構成を示す。図43では、図7との対 応部分には同一符号を付して示し、その詳細な説明は省 略する。この実施の形態では、サービス端末90が上述したPOS端末750であり、POS端末750から携帯電話501への下り回線データ及び上り回線データをブルートゥースにより伝送することにより、ローカル無線通信を実現する場合について説明する。

【0364】下り回線データ及び上り回線データをブルートゥース等のローカル無線通信を使い、バーコード表示を個人認証用に用いると迅速性が向上する。この場合、サーバーと携帯電話501間のデータ通信はPOS端末750を介して行われる。この場合、POS端末750を介して行われる。この場合、POS端末750が複数存在する場合には、携帯電話105は特定のPOS端末750と通信セッションを確立する必要があるが、携帯電話105にローカル無線通信(例えば、ブルートゥース)における携帯電話のデバイスアドレスをバーコードで表示し、それを読み取ったPOS端末750との間で、選択的にローカル無線通信による通信セッションを確立するようにしても良い。

【0365】図44(a)、(b)は、それぞれ、バーコードによって選択的にローカル無線通信による通信セッションの確立を行う携帯電話とPOS端末750の処理のフロー図である。図44(a)において、携帯電話105のデバイスアドレスを示すバーコードを表示する。次に、ステップ2faに進み、ローカル無線通信による接続要求の受信を待つ。ローカル無線通信による接続要求が受信された場合には、ステップ3faへ進み、接続を要求したデバイス(POS端末750)とローカル無線通信による通信セッションを確立する。

【0366】一方、この時、POS端末750は、まず、ステップ1fbで、携帯電話105に表示されたバーコードを読み取り、ステップ2fbで読み取ったバーコードが示すデバイスアドレスが示すデバイスを検索する。次に、ステップ3fbで、検索したデバイス(携帯端末105)に対して、ローカル無線通信による接続要求を送信し、ステップ4fbで、そのデバイス(携帯電話10

5) とローカル無線通信による通信セッションを確立する。

【0367】また、ステップ2faにおいて、偶然、他のデバイスから接続要求があり、間違って通信セッションが確立されてしまうのを防ぐため、携帯電話のデバイスアドレスと共に、乱数をセッションIDとしてバーコードで表示するようにしても良い。

【0368】図45(a)、(b)は、それぞれ、この場合の携帯電話105とPOS端末750の処理のフロー図である。図45(a)において、携帯電話105は、まず、ステップ1gaで、セッションIDとして乱数 Aを生成し、ステップ2gaで、携帯電話105のデバイスアドレスと乱数Aを示すバーコードを生成し、表示する。次に、ステップ3gaに進み、ローカル無線通信による接続要求の受信を待つ。ローカル無線通信による接続要求の中に含まれる乱数と乱数Aとを照合し、一致した場合にはステップ5gaへ進み、接続を要求したデバイス(POS端末750)とローカル無線通信による通信セッションを確立する。一致しなかった場合にはステップ3gaへ戻り、他のデバイスからのローカル無線通信による接続要求の受信を待つ。

【0369】一方、この時、POS端末750は、まず、ステップ1gbで、携帯電話105に表示されたバーコードを読み取り、ステップ2gbで読み取ったバーコードが示すデバイスアドレスが示すデバイスを検索する。次に、ステップ3gbで、検索したデバイス(携帯端末105)に対して、ローカル無線通信による接続要求を送信し、ステップ4gbで、そのデバイス(携帯電話105)とローカル無線通信による通信セッションを確立する。この際、POS端末750は、ステップ3gbにおいて、読み取ったバーコードに含まれていた乱数をセッションIDとして接続要求の中に含めて送信する。

【0370】このように、携帯電話105のデバイスアドレスと共に、乱数をセッションIDとしてバーコードで表示するようにすることにより、携帯電話105は、ローカル無線通信をしようとするPOS端末750と、確実に通信セッションを確立することが出来る。

【0371】以上のようにして、POS端末750が複数存在する場合でも、携帯電話105は特定のPOS端末750と通信セッションを確立することができる。

【0372】次にローカル無線通信でバーコードを自動表示する場合の携帯電話105の処理手順を、図46を用いて説明する。携帯電話はステップ1adでPOS端末750からクーポンの種類を表す識別情報を受信する。ここで携帯電話105がPOS端末750から受信するデータは、図47に示すように構成されている。すなわちクーポンのデータ構造は、サービスID及びサービス会社IDからなるクーポンの種類の識別情報と、クーポンの登録番号でなる個々のクーポンを示すIDと、

商品IDと、割引後の価格からなる。

【0373】携帯電話105はステップ2adにおいて、受信したクーポンの種類の識別情報に対応するクーポンを検索する。実際上、携帯電話105は、図43に示すCPU107が蓄積部108に格納されているクーポンの情報とステップ1adで受信したクーポン情報とを比較し、一致するものがあった場合にはステップ3adに移ってクーポンの情報を2次元バーコードで表示する。

【0374】なお、本発明は、上述した実施の形態に限定されず、種々変更して実施することが可能である。

[0375]

【発明の効果】以上の説明のように、本発明のOFDM 信号伝送システムによれば、ユーザーが所望の放送局を選択してから、デジタル放送信号を受信し、その受信信号から伝送モードを判定する必要がないため、ユーザーの要求に即応して所望の情報を提供することが可能となる。また現在地が刻一刻変化するような移動受信環境においても、セル方式の移動無線通信における位置登録機能を用いることにより常に現在地を特定することができるので、現在地を特定するための情報の入力を、移動に応じて頻繁に行う必要がなくなる。

【0376】また本発明の電子商取引システムによれば、携帯端末に、商品情報やサービス情報を受信する受信部を設けると共に受信した情報に基づいたバーコードを形成するバーコード形成部を設け、バーコード形成部により形成したバーコードを表示部に表示し、このバーコードを店舗端末等に設けられたバーコード読取装置で読み取ることで電子商取引を行うようにしたことにより、セキュリティの信頼性と決済の容易さを両立し得る簡易な構成の電子商取引システムを実現できる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態におけるデジタル放送受信装置の構成を示すブロック図

【図2】図1のOFDM復調部の内部構成例を示すブロック図

【図3】TMCC情報の内容を示す図

【図4】図1におけるCPUのプリセットモード及び視聴モードを示すフローチャート

【図5】図1における蓄積部の内容を示す図

【図6】本発明の第2の実施の形態におけるOFDM信号伝送システムの構成を示すブロック図

【図7】本発明の第3の実施の形態におけるOFDM伝送システムの構成を示すブロック図

【図8】本発明の第4の実施の形態におけるOFDM伝送システムの構成を示すブロック図

【図9】図8のCPUの動作を示すフローチャート

【図10】番組情報の内容を示す図

【図11】本発明の第5の実施の形態におけるTモード 携帯電話システムの全体構成図 【図12】 Tモード携帯電話の移動と複数のサービスエリアの関係を示す図

【図13】第5の実施の形態における携帯基地局の構成 を示すブロック図

【図14】待ち受けモード時及び通信コード時の受信データを示す図

【図15】送信情報と伝送情報の内容を示す図

【図16】通常の放送局、部分放送を行う放送局、及び データ放送専用局の帯域図

【図17】 Tモード携帯電話の構成を示すブロック図

【図18】伝送情報のパターンテーブルと頻度管理と時間管理テーブルを示す図

【図19】送信情報と第1、第2伝送情報を入手する手順のフローチャート

【図20】伝送情報をパターン情報化する手順のフロー チャート

【図21】電界強度管理方式の伝送情報の入手する手順のフローチャート

【図22】頻度管理方法の伝送情報を入手する手順のフローチャート

【図23】送信情報と第1、第2伝送情報を入手する手順のフローチャート

【図24】送信情報と第1、第2伝送情報を入手する手順のフローチャート

【図25】伝送情報をパターン情報化する手順のフロー チャート

【図26】本発明の第6の実施の形態における携帯電話 と仮想商店と実在商店との認証手順を示す図

【図27】第6の実施の形態における携帯電話の各モードでの画面の状態を示す図

【図28】主表示部及び副表示部の表示ピッチ及び画素 を示す図

【図29】図28の表示素子のA-A'面、及びB-B'面の断面図

【図30】バーコード読取装置の説明に供する図

【図31】光検知部と表示部の構成を示すブロック図

【図32】表示部の表示の手順を示すフローチャート

【図33】サーバーとクライアントと現実商店の構成を 示す図

【図34】入場処理手順を示すフローチャート

【図35】携帯電話のメニュー画面、及びバーコードモード時の画面を示す図

【図36】携帯電話の画面表示のフローチャート

【図37】携帯電話の画面表示のフローチャート

【図38】携帯機器のバーコード表示の説明に供する図

【図39】所定間隔をもって各バーコードを表示する場合及びデータの先頭のみ間隔をもってバーコードを表示する場合のバーコード画面表示のタイミングチャート

【図40】バーコード画面表示のタイミングチャート

【図41】実施の形態でのバーコードからの反射光の検

出の説明に供する図

【図42】電子マネーのデータ構造を示す図

【図43】ローカル通信でバーコードを自動表示する場合の携帯電話の構成を示すブロック図

【図44】バーコードによって選択的にローカル無線通信による通信セッションの確立を行う携帯電話及びPO S端末の処理手順を示すフローチャート

【図45】乱数をセッションIDとしてバーコードで表示してローカル無線通信による通信セッションの確立を行う携帯電話及びPOS端末の処理手順を示すフローチャート

【図46】ローカル通信でバーコードを自動表示する場合の携帯電話の処理手順を示すフローチャート

【図47】ローカル通信でバーコードを自動表示する場合のクーポンのデータ構造を示す図

【図48】従来のOFDM信号の構成を示す模式図

【図49】ガード期間の効果の説明に供する模式図

【図50】SFNの構成を示す模式図

【図51】地上デジタル放送方式における各モードの有効シンボル期間長に対するガード期間長の比率を示す図 【符号の説明】

10 デジタル放送受信装置

101 アンテナ

102 チューナ

103 OFDM復調部

104 情報源復号化部

105 出力部

106 入力部

107 CPU

108 蓄積部

109 制御バス

110 情報バス

501 テレビ受信型携帯電話 (Tモード携帯電話)

502 地上波テレビ局

503 携帯基地局

504 放送信号

505 固定受信機

506 下り信号 (携帯基地局からの送信信号)

507 上り信号 (携帯電話からの送信信号)

510 携帯制御部

5 1 1 公衆網

512 サーバー

513 インターネット

5 1 4 固定アンテナ

515 固定電話局(有線電話用)

516 携帯基地局アンテナ

517 基地局送受信回路

518 通信制御部 (RNC)

519 バックボーン

520 PDSL

521	基地局ID
5 2 2	携帯電話用データ
5 2 3	携帯電話用データ
524	テレビ受信用データ
5 2 5	テレビ受信用データ
5 2 6	送信情報
5 2 7	送信中のチャンネル
5 2 8	放送データ
5 2 9	部分セグメント
5 3 0	一般セグメント
5 3 1	携帯電話のアンテナ
5 3 2	1セグメント
5 3 3	部分伝送中のチャンネル
5 3 4	同一チャンネルの放送局の識別情報
5 3 5	チャンネルの電界強度情報
5 3 6	送信周波数
5 3 7	FFTサイズ
5 3 8	ガード比
5 3 9	送信電力
5 4 0	放送局のアンテナの送信電力
5 4 1	復調情報
5 5 0	部分放送識別子
5 5 1	変調方式
5 5 2	符号化率
5 5 3	時間インターリーブ長
5 5 4	第1パターン番号
5 5 5	第2パターン番号
5 5 6	伝送情報管理部
5 5 7	(伝送情報)データベースメモリ
5 5 8	位置検出部
5 5 9	伝送情報データベース
560	国検出部
561	共用器
562	フロントエンド
563	フィルタ
5 6 4	復調器

565 A/Dコンバータ

5 6 6逆拡散部5 6 7同期部5 6 8検波部

5 7	9		切換部
5 7	9	a	信号比較部
5 8	0		チューナ
5 8	1		周波数制御部
			復調部
5 8	3		復調制御部
			エラー訂正部
5 8	5		符号化制御部
			出力部
			映像デコーダ
			信号レベル比較部
5 8	9		表示回路
5 9	_		表示部
			副表示回路
			副表示部
			キーボード
5 9			マイク
			音声デコーダ
			チャンネルコーディック
			1 次変調器
5 9	8		拡散部
5 9			ROF
6 0	0		D/A
			変調器
			ミキサ
6 0	3		発振器
6 0	_		発振器
-			パワーアンプ
			送信部
6 0			受信部
			データ処理部
			使用頻度管理テーブル
			頻度情報
	1		パワー制御情報
	2		電界強度管理部
			使用時間管理テーブル
6 1			最新パラメータ
6 1			次新パラメータ
6 1			次次新パラメータ
6 2			増巾部
6 2			送信部
6 2			受信部
7 C			画素素子
7 C			画素
7 C			境界線
7 C			バー (荒い)
7 C			バー(精細)
7 0			•
7 C			
7 C	7		Bフィルタ

- 708 バーコードリーダー
- 709 発光部
- 710 光源
- 711 入射光
- 712 反射光
- 713 反射板
- 7 1 4 偏光板
- 715 ガラス基板
- 716 トランジスタ
- 717 電極
- 718 液晶
- 719 ITO
- 720 カラーフィルタ層
- 721 ガラス板
- 722 偏光板
- 723 透明層
- 724 カラー表示部
- 725 光検知部
- 726 カラーフィルタ
- 727 入射窓
- 728 光強度測定部
- 729 光入力時間測定部
- 730 分離部
- 731 連続信号検出部
- 732 パルス信号検出部
- 733 バーコード表示制御部
- 734 表示回路
- 735 タイマー
- 736 BCモードスイッチ
- 740 仮想商店
- 741 インターネット
- 742 携帯電話会社
- 743 通信制御部
- 744 サーバー
- 745 仮想商店群
- 746 使用者
- 747 登録番号メモリ
- 748 商店 (現実の)
- 749 従業員
- 750 POS端末

- 751 バーコード
- 752 バーコード (二次元)
- 753 携帯テレビ受信機
- 754 無表示期間
- 755 表示期間
- 756 無表示期間
- 757 無表示
- 758 無表示(黒)
- 759 表示順番号
- 760 表示総数
- 761 同期表示
- 762 終了表示
- 763 データ構造
- 764 データ
- 765 無表示期間
- 801 サーバーシステム
- 802 メモリ
- 803 SIMカード (Subscriber Ide
- nti fication Module)
- 804 携帯電話番号
- 805 ユーザーID
- 806 割り当てID
- 807 Webページ
- 808 サーバエンジン
- 809 クライアントIDテーブル
- 815 在庫データベース
- 816 位置情報
- 817 近隣商店情報
- 818 時間情報
- 819 クーポンID
- 820 クーポン管理データベース
- 821 有効期限情報
- 822 メモリ (購入データベース)
- 823 商品金額
- 824 商品ID
- 825 クーポン割引率
- 826 ブラウザ
- 900 決済会社

【図47】

個々のクーボンを示すID

ケーボンの種類の識別情報

【図1】

【図2】

【図10】

番組情報の内容

コンテン	ツ竹報	選馬	時報	時刻情報			
タイトル	ジャンル	周波数情報	伝送モード情報	開始時刻	終了時刻		
000	スポーツ	F0	мо	Ts0	Te0		
×××	ドラマ	F1	M1	Ts1	Te1		
ΔΔΔ	音楽	F2	M2	Ts2	Te2		
•	:	:		:			
•	•	•		•	:		

【図3】

【図23】

	TMCC情報							
ピット割り当て	設 明							
B20~B21	システム説明							
B22~B25	伝送パラメ	一夕切り替え指標						
B26	聚急養報放	送用起動フラグ						
B27		部分受信フラグ						
B28~B40	カレント情報	A階層伝送パラメータ情報						
B41~B53		B階層伝送パラメータ情報						
B54~B66		C階層伝送パラメータ情報						
B67		部分受信フラグ						
B68~B80		A階層伝送パラメータ情報						
B81~B93	ネクスト情報	B階層伝送パラメータ情報						
B94~B106		C階層伝送パラメータ情報						
B107~B121	IJ	ザーブ						

伝送パラメータ情報

説明	ピット数
キャリア変調方式	3
量み込み符号化率	3
インターリーブ長	3
セグメント数	4

【図4】

【図5】

【図6】

【図12】

【図7】

【図8】

【図11】

【図13】

33

【図14】

【図15】

【図16】

【図17】

【図18】

£59	_			· · · · · ·	1			r	1		r		1	
919	71.4	次次都			7	→ 14-1		į						
6118	最新使用時間管理于-	次新	Ī			1-1-								
	使用時	*	1-4-1			_								
614	/ 是新	/ 最新	14-1		→ 1 - 7									
88_	-	類度情報	9.0			0.3								
		新 SHD SHD	£-3			149								
	F-7.1	頻度情報	80		0.5									
010	使用頻度管理テーブル	第2 Ch-1D	24-2		1									
·-	使用	を発音	1.5						1					
		유 등	7	26-1										
-525		被使螺 合用 使						,						
/	1	時間インタリーブ長	0.25	0.5	0.125	0.5								
	第2伝送情報	パタ 一ン 変調方式 符号化率 番号	1/2	5/6	2/3	2/3								
-	(B)	於調方式	DQPSK	840AM	16QAM	DOPSK	840AM							
555	※2	ペン島	-	2	6	4	ည	•		•	·	92	=	₽
		使用頻度												
226	s情報	部分放送 禁別子	1	0	-	-								
	第1伝送情報	扩子比	1/8	1/32	1/16	1/16								
		FFT #4%	Ж	4K	æ	¥								
755	振	かつ番	1	8	က	4		•	•		·	18	(18
		Aターン 番号 の倒										16×16 通り		8bit

【図19】

【図22】

【図29】

٠,

【図20】

【図21】

【図31】

【図26】

【図33】

【図32】

【図34】

【図38】

【図35】

【図36】

【図42】

(a) 電子マネーのデータ構造

(b) バーコードで表示される電子マネーのデータ構造

スマートカードで暗号鍵による暗号化 (POS端末側で復号化される)

【図37】

【図39】

3

【図40】

【図41】

【図43】

【図44】

【図49】

4

【図45】

【図48】

【図50】

								·					
モード		1	l		2				3				
有効シンボル 期間長(µ秒)		252				504				1008			
カード期間比	1/32	1/18	1/8	1/4	1/32	1/16	1/8	1/4	1/32	1/16	1/8	1/4	
カード期間長 (µ秒)	7.875	15.75	31.5	63	15.75	31.5	63	126	31.5	63	126	252	

フロントページの続き

(51) Int. Cl.	7 識別記号		FΙ		ナーマコー	、(参考)
G 0 6 K	7/00		G 0 6 K	7/00	U	
H04 J	11/00		H 0 4 J	11/00	Z	
H 0 4 Q	7/20		H 0 4 Q	7/04	Z	
	7/38		H 0 4 B	7/26	109M	
(72)発明者	影山 定司		(72)発明者	五十川 孝夫		
	大阪府門真市大字門真1006番地	松下電器		大阪府門真市ス	大字門真1006番地	松下電器
	産業株式会社内			産業株式会社内	7	
(72)発明者	坂下 誠司		(72)発明者	高山 久		
	大阪府門真市大字門真1006番地	松下電器		大阪府門真市ス	大字門真1006番地	松下電器
	産業株式会社内			産業株式会社P	5	

Fターム(参考) 5B072 BB00 CC24

5KO22 DD01 DD13 DD17 DD33

5K067 AA21 BB04 BB21 DD17 DD51

EE02 EE10 EE16 FF02 FF23

FF25 HH11 HH22 HH32 HH36

JJ61 JJ71 JJ76