

OpenFPGA Tutorial

Tutorial 101: Benchmarking and Architecture Exploration

ORGANIZERS

Architecture Exploration Flow

Objective

Evaluate the impact of different FPGA architecture choices on the given set of benchmarks using OpenFPGA.

Given set of Benchmarks

- 1. **ch_intrinsics**: Memory Init
- 2. diffeq1: Arithmetic Unit
- 3. diffeq2: Arithmetic Unit
- 4. **sha**: Cryptography Unit

More benchmarks are available at openfpga_flow /benchmarks/``

Candidate Architectures

- 1. Homogeneous FPGA architecture
- 2. With 300 tracks/channels
- 3. All wires are length-4
- 4. All architectures have a full crossbar in the CLB

Fracturable Logic Block (FLE)

Arch 1: 6-input LUT

(1× 6-input)

Arch 2: Fracturable LUT

(1× 6-input or 2× 5-input LUT)

More example architecture are available at openfpga_flow/vpr_arch/

Load OpenFPGA Environment

```
echo $OPENFPGA_PATH
source openfpga.sh
list-task  # list all pre-configured tasks
```

Create OpenFPGA Task

```
# create-task <new_task_dir_name> <template_name>
create-task lab1 frac-lut-arch-explore
tree lab1 # To check content of the copied task
```

Content of the task directory

Any directory with **config/task.conf** file is an OpenFPGA task directory

Run OpenFPGA Task

```
# run-task <task_dir_name>
run-task lab1
```

Configuration File Content

General Section

```
[GENERAL]
run_engine=openfpga_shell # default
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr # yosys_vpr or vpr_blif
```

Openfpga_shell Section

[OpenFPGA SHELL]

```
openfpga_shell_template=${PATH:TASK_DIR}/vtr_benchmark_template_script.openfpga openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_aopenfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_vpr_route_chan_width=300
```

- **\${PATH:TASK_DIR}**: Points to the root directory of the task
- **\${PATH:OPENFPGA_PATH}**: Points to the root directory of the OpenFPGA repository

VPR Architecture Section (2 architectures)

```
[ARCHITECTURES]
arch0=${PATH:TASK_DIR}/k6_N10_tileable.xml
arch1=${PATH:TASK_DIR}/k6_frac_N10_tileable.xml
```

• **\${PATH:VPR_ARCH_PATH}**: Points to VPR arch file in the openfpga repository

Benchmark Section (4 benchamarks)

```
[BENCHMARKS]
bench1=${PATH:BENCH_PATH}/vtr_benchmark/ch_intrinsics.v
bench2=${PATH:BENCH_PATH}/vtr_benchmark/diffeq1.v
bench3=${PATH:BENCH_PATH}/vtr_benchmark/diffeq2.v
bench4=${PATH:BENCH_PATH}/vtr_benchmark/sha.v
```

• **\${PATH:BENCH_PATH}**: Points to bencharks in the openfpga repository

Synthesis Parameters

```
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow
# Benchmark top-module name
bench1_top = memset
bench2_top = diffeq_paj_convert
bench3_top = diffeq_f_systemC
bench4_top = sha1
```

run job name format <arch_num>_<top_module>_

Tutorial 101: Benchmarking and Architecture Exploration

Script Parameters Section

```
[SCRIPT_PARAM_]
# empty
```

Post execution result extraction

```
[DEFAULT_PARSE_RESULT_VPR]
01_lut6_use = "lut6 : ([0-9]+)", int
02_lut5_use = "lut5 : ([0-9]+)", int
```

OpenFPGA-Shell Commands

(Similar to the TCL script file of any EDA tool)

Run Directory (after task execution)

```
lab1/
 confiq
   L- task.conf
 - k6 frac N10 tileable.xml
  · k6 N10 tileable.xml
  - vtr benchmark template script.openfpga
  latest
  run001
    --- k6 N10 tileable <<<< bench0
       - diffeq paj convert <<<< bench1
       k6 N10 tileable <<<< arch1
                      <<< bench0
       - memset
       diffeq_paj_convert <<<< bench1
        task result.csv <<<<<<<
```

Analyze Results

name	01_lut6_use	02_lut5_use	clb_blocks	total_wire_length
00_memset_	270		31	2210
01_memset_	46	224	26	2203
00_diffeq_paj_convert_	3540		368	43628
01_diffeq_paj_convert_	1316	2224	275	38642
00_diffeq_f_systemC_	3392		354	37096
01_diffeq_f_systemC_	1215	2177	260	33857
00_sha1_	1616		168	16027
01_sha1_	885	731	154	15182

Architecture XML File Difference

```
Added <mode name="n2_lut5">...</mode>
```

Exercise

- 1. Consider more VTR benchmarks for performance comparison stereovision3, blob_merge, and bgm
- 2. Extend the evaluation metrics and identify number final grid size of the FPGA for each benchmark (*Hint*: look for **"FPGA" sized to"** sentence in *openfpgashell.log* file)

Answer: 03_grid_size = "FPGA sized to(.*) x", str