FDI data analysis

Wireframe

FDI_DATA

Required libraries:

1. Pandas

2. Matplotlib

#import libs

import pandas as pd import
numpy as np import seaborn as
sns import matplotlib.pyplot as
plt

Retriving dataset of FDI

```
df=pd.read_csv('/Users/shashankpatil/Desktop/pan/FDI_India.csv')
df1=pd.read_csv('/Users/shashankpatil/Desktop/pan/FDI.csv')
df.head(10)
```

2002-03	\	Sector	2000-01	2001-02
0	\		RGICAL IN	DUSTRIES
36.61 1 10.06		MINING	1.32	6.52
2 59.11		POWER	89.42	757.44
3		NON-CON	VENTIONAL 0.00	ENERGY
1.70 4		COAL PR	ODUCTION	0.00
0.00			UTAN & MU	RAL GAS
56.78		9.35		
6		-	AND STEA	
0.00				

7						CTRICAL GE	OTHER THAN NERATORS)
0.0	0				0.00	0.00	
8						CTRICAL EQUATE 65.7	
34.	71						
9						PUTER SOFT	
					HARI	DWARE 22	8.39 419.39
314	.24						
	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09 2	2009-10
201	0-11 \						
0			149.13	169.94	1175.75	959.94	419.88
1	1098. 23.48		7 40	6 62	111 36	34.16	174 40
_	79.51		7.40	0.02	444.50	34.10	1/4.40
2			72.69	157.15	988.68	907.66	1271.79
	1271.						
3	4.14 214.4	1.27	1.35	2.44	58.82	125.88	622.52
4			9.14	1.30	14.08	0.22	0.00
_	0.00						
5		102.78	12.09	87.71	1405.04	349.29	265.53
6	556.4		0 00	2 21	1 [1	0.00	2 06
6	0.04 0.63	0.54	0.00	3.31	1.51	0.00	3.96
7		2.66	0.74	25.57	40.53	74.88	39.50
166	.44						
8		97.40	39.50	76.85	653.74	417.35	728.27
	.90	0 505 0			1000 05	- 1510 01	0.00
9	368.3 779.8		J 1359 . 97	7 2613.33	3 1382.25	5 1543.34	871.86
	119.0	Τ.					
	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17 ()
1786.14 1466.23 567.63 359.34 456.31 1440.18							
1	142.65	57.89	12.73	684.39	520.67	55.75	
2	1652.38	535.68	1066.08	707.04	868.80	1112.98	
3	452.17	1106.52	414.25	615.95	776.51	783.57	4 0.00
		2.96				2029.98	
						79 20.05	
	1.33		53.91 7	313.75	184.60	212.78	230.70
0		286.88	101 01	EE 4 00	444	0000 55	
8		195.87					
9	796.35	485.96	1126.27	2296.04	5904.36	3651.71	
dfl.head()							

	FY year		Sector	FDI
0	2000-01	METALLURGICAL	INDUSTRIES	22.69
1	2001-02	METALLURGICAL	INDUSTRIES	14.14
2	2002-03	METALLURGICAL	INDUSTRIES	36.61
3	2003-04	METALLURGICAL	INDUSTRIES	8.11
4	2004-05	METALLURGICAL	INDUSTRIES	200.38

Descriptive statistics of the Dataset

df.describe()

ar • acc	31120()				
count mean std min 25% 50% 75% max	2000-01 63.000000 37.757302 112.227860 0.000000 0.000000 4.030000 23.510000 832.070000	44.830000	1.010000 6 36.555000 38	63.000000 34.727778 67.653735 0.000000 0.215000 0 6.370000 9 8.660000 43	2004-05 \ 63.000000 51.090317 101.934873 0.000000 .715000 .090000 .205000 .900000
\ count	2005-06 63.00000	2006-07 0 63.000000	2007-08 63.000000	2008-09 63.000000	2009-10 63.000000
mean	87.932540	198.281905	390.085714	498.348571	410.069524
std	206.436967	686.783115	1026.249935	1134.649040	926.814626
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.230000	4.160000	9.950000	11.950000	7.880000
50%	22.620000	25.820000	58.820000	84.880000	69.740000
75%	63.855000	108.325000	279.270000	383.320000	341.595000
max	1359.970000	4713.780000	6986.170000	6183.490000	5466.130000
\ count	2010-11 63.00000	2011-12 0 63.000000	2012-13 63.000000	2013-14 63.000000	2014-15 63.000000
mean	339.413810	557.472698	355.930000	385.703492	490.959841
std	627.141139	1031.474056	778.091368	658.429944	837.787060
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	8.430000	22.720000	15.115000	16.610000	33.800000

```
50% 58.070000 129.360000 95.410000 113.780000 177.220000
75%
      304.280000 593.525000 288.025000 473.060000 595.390000
      3296.090000 5215.980000 4832.980000 3982.890000 4443.260000
max
          2015-16
                     2016-17
       63.000000
                   63.000000
count
      634.936349 690.131111 std
mean
1335.307706 1411.965354 min
0.000000
           0.000000 25%
30.000000
           19.905000
50%
       159.130000 110.860000
75%
      519.070000 741.220000
      6889.460000 8684.070000
max
df1.describe()
              FDT
count 1071.000000
      309.982250
mean
      819.037233
std
        0.000000
min
        3.140000
25%
50%
       37.940000
75%
      213.740000
     8684.070000
max
df.columns
Index(['Sector', '2000-01', '2001-02', '2002-03', '2003-04', '200405',
      '2005-06', '2006-07', '2007-08', '2008-09', '2009-10', '2010-
11',
      '2011-12', '2012-13', '2013-14', '2014-15', '2015-16', '2016-
17'],
     dtype='object')
df.set index('Sector', inplace=True)
Visaulization of the FDI dataset
df.plot(figsize=(15,5))
<AxesSubplot:xlabel='Sector'>
```


Overall FDI from Financial year 2000-2016

```
df1.groupby('FY year').sum().plot(figsize=(20,5))
plt.title('Overall FDI investment from FY 2000 TO 2016')
plt.xlabel('FY year') plt.ylabel('FDI') plt.show()
```


Top 5 Investment Sectors by FDI

```
df_trans = df.transpose()
df_trans.sum().sort_values()[-5:].plot(figsize=(20,10),kind='bar',
title ='top 10 investments by FDIs')

<AxesSubplot:title={'center':'top 10 investments by FDIs'},
xlabel='Sector'>
```


Detailed FDI year on year for the top 5 best performing sector

```
plt.subplot(1, 5, 1)
df.loc['SERVICES SECTOR (Fin.,Banking,Insurance,Non
Fin/Business,Outsourcing,R&D,Courier,Tech. Testing and Analysis,
Other)'].plot(kind='bar',figsize=(30,6))
plt.title('FDI for service sector')
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 2)
df.loc['TELECOMMUNICATIONS'].plot(kind='bar',title='FDI for Computer
software and hardware',figsize=(40,5)) plt.xlabel('FY year')
plt.ylabel('FDI') plt.subplot(1, 5, 3)
df.loc['COMPUTER SOFTWARE & HARDWARE'].plot(kind='bar',title='FDI for
```

```
Computer software and hardware', figsize=(40,5))
plt.xlabel('FY year') plt.ylabel('FDI')
plt.subplot(1, 5, 4)
df.loc['CONSTRUCTION DEVELOPMENT: Townships, housing, built-up
infrastructure and construction-development
projects'].plot(kind='bar',title='FDI for
Construction', figsize=(30,6))
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 5)
df.loc['CONSTRUCTION (INFRASTRUCTURE)
ACTIVITIES'].plot(kind='bar',title='FDI for
Construction', figsize=(30,6))
plt.xlabel('FY year')
plt.ylabel('FDI')
Text(0, 0.5, 'FDI')
                                   2000-0
2001-0
2001-0
2003-0
2008-0
2008-0
2008-0
2008-0
2008-1
2010-1
2011-1
2011-1
2011-1
2011-1
2011-1
2011-1
2011-1
2011-1
```

FDI overall growth of the best performing Sector from FY 2000-2016

```
df.loc['SERVICES SECTOR (Fin., Banking, Insurance, Non
Fin/Business, Outsourcing, R&D, Courier, Tech. Testing and Analysis,
Other)'].plot(figsize=(20,5))
plt.xlabel('FY year')
plt.ylabel('FDI') plt.show()
```

2010-11

2012-13

2014-15

2016-17

Visualizing the correlation among sectors

2002-03

2000

2000-01

```
corr = df_trans.corr()
plt.matshow(corr)
<matplotlib.image.AxesImage at 0x7fde4962a700>
```

2004-05

2006-07

###Top 10 correlated sectors

```
def get_redundant_pairs(df): pairs_to_drop =
       cols = df.columns for i in range (0,
set()
df.shape[1]):
                     for j in range (0, i+1):
pairs to drop.add((cols[i], cols[j]))
pairs to drop
def get top abs correlations (df, n=5):
au corr = df.corr().abs().unstack()
labels to drop = get redundant pairs(df)
au corr =
au corr.drop(labels=labels to drop).sort values(ascending=False)
return au corr[0:n]
print("Top Absolute Correlations")
get top abs correlations(df trans, 10)
Top Absolute Correlations
Sector
                                                   Sector
MISCELLANEOUS MECHANICAL & ENGINEERING INDUSTRIES
                                                   DEFENCE INDUSTRIES
0.958449
SUGAR
                                                   CONSTRUCTION
(INFRASTRUCTURE) ACTIVITIES 0.937258
ELECTRICAL EQUIPMENTS
                                                   TEXTILES (INCLUDING
DYED, PRINTED)
                        0.926705
MEDICAL AND SURGICAL APPLIANCES
                                                   TEXTILES (INCLUDING
```

DYED, PRINTED) 0.919642 SEA TRANSPORT

SEA TRANSPORT RETAIL TRADING

0.918936

DYE-STUFFS DIAMOND, GOLD

ORNAMENTS 0.916723

AIR TRANSPORT (INCLUDING AIR FREIGHT) CONSTRUCTION

(INFRASTRUCTURE) ACTIVITIES 0.916622

FERMENTATION INDUSTRIES FOOD PROCESSING

INDUSTRIES 0.910990

ELECTRICAL EQUIPMENTS GLUE AND GELATIN

0.908833

MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS GLASS

0.908687

dtype: float64

###Plotting the correlated sector

```
abs_corr = get_top_abs_correlations(df_trans,10)
plt.rcParams['figure.figsize'] = [25, 5] for i in range(10):
plt.plot(df.loc[abs_corr.index[i][0]], label = abs_corr.index[i][0])
plt.plot(df.loc[abs_corr.index[i][1]], label = abs_corr.index[i][1])
plt.title(f'Correleation between {abs_corr.index[i][0]} and
{abs_corr.index[i][1]}')
plt.legend()
plt.show()
```


150 - 100 - 2001-02 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2006-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17

Lets look at the 3 most correlated years

```
abs_corr = get_top_abs_correlations(df,3) abs_corr for
i in range(3):
plt.plot(df_trans.loc[abs_corr.index[i][0]], label =
abs_corr.index[i][0])
  plt.plot(df_trans.loc[abs_corr.index[i][1]], label =
abs_corr.index[i][1])
  plt.title(f'Correleation between {abs_corr.index[i][0]} and
{abs_corr.index[i][1]}')
plt.legend()
plt.show()
```

