Algebraic Geometry I

Nicholas Schwab & Ferdinand Wagner

Wintersemester 2017/18

This text consists of notes on the lecture Algebraic Geometry I, taught at the University of Bonn by Professor Jens Franke in the winter term (Wintersemester) 2017/18.

Please report bugs, typos etc. through the *Issues* feature of github.

Contents

In	troduction	1
1.	Varieties and Schemes 1.1. Introductory definitions	2
	1.1. Introductory definitions	2
	1.2. General properties and sheaf constructions	7
	1.3. Locally ringed spaces	14
	1.4. The structure sheaf and quasi-coherent sheaf of modules on $\operatorname{Spec} R$	33
	1.5. Preschemes and schemes	40
2.	Properties of (pre)schmes and their morphisms	52
	2.1. (Mostly) topological properties	52
	2.1.1. Compactness properties	
	2.1.2. Generic points	
A	. Useful stuff from category theory	5 6
	A.1. Fundamental concepts	56
	A.2. Functors, functor morphisms, and the Yoneda lemma	
	A.3. Products and (co-)equalizers	
	A.4. Fibre products	64

Introduction

The lecture will be an introduction to the language of schemes. The topics include but are not limited to the category of (pre-)schemes, properties of schemes, morphisms of schemes, sheaves of \mathcal{O}_X -modules and cohomology of quasi-coherent sheaves.

Professor Franke said the lecture requires a firm knowledge of commutative algebra and affine and projective varieties. If you are not familiar with this terms you may want to think again about visiting this lecture. If you want to brush up your knowledge about these topics the following literature is recommended:

- Matsumura, H.: Commutative Ring Theory,
- Hartshorne, R.: Algebraic Geometry,
- Mumford, D.: The Red Book of Varieties and Schemes,
- Schwab, N. & Wagner, F.: *Algebra I by Jens Franke* [1]. **Warning!** Somewhere in the middle of this text, the term *irreducible* is redefined as irreducible and closed. So don't let yourself get confused.

Let it be said that the first three recommendations are from Professor Franke while the last one is from the (not so) humble authors of these notes.

1. Varieties and Schemes

1.1. Introductory definitions

Definition 1 (Sheaf and presheaf). A **presheaf** \mathcal{F} of rings on a topological space X associates

- to any open subset $U \subseteq X$ a ring $\mathcal{F}(U)$ called the ring of sections of \mathcal{F} on U
- and to any inclusion of open subsets $V \subseteq U$ a ring homomorphism

$$(-)|_V \colon \mathcal{F}(U) \longrightarrow \mathcal{F}(V)$$

such that $f|_V = f$ for all $f \in \mathcal{F}(V)$ and $(f|_V)|_W = f|_W$ for any inclusion $W \subseteq V \subseteq U$ of open subsets.

Note that while this notation (intentionally) reminds of the restriction of functions, behaves similarly and often the restriction is indeed used for this homomorphism, the elements of the rings $\mathcal{F}(U)$ are not always functions.

A so defined presheaf is furthermore a **sheaf** if additionally, the following condition, called *sheaf axiom*, holds:

For every open covering $U = \bigcup_{i \in I} U_i$ of an open subset $U \subseteq X$ the map

$$\mathcal{F}(U) \longrightarrow \left\{ (f_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i) \mid f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j} \text{ for } i, j \in I \right\}$$
$$f \longmapsto (f|_{U_i})_{i \in I}$$

is bijective.

Remark 1. When $U = \emptyset$ one can take $I = \emptyset$ and obtains $\mathcal{F}(\emptyset) = \{0\}$.

Remark 2. Sheaves of groups, sets, etc. are defined in a similar way. A sheaf of rings \mathcal{R} on X defines two sheaves of groups on X, namely $U \mapsto (\mathcal{R}(U), +)$ and $U \mapsto (\mathcal{R}(U)^{\times}, \cdot)$.

Remark 3. Elements of $\mathcal{R}(U)$ are called *sections*, elements of $\mathcal{R}(X)$ are called *global sections*.

Example 1. Let R be a ring. The sheaf \mathcal{F}_X of R-valued functions on X associates to any open subset $U \subseteq X$ the ring of R-valued functions $f: U \to R$ with the inclusion morphism being the restriction of functions to subsets.

Remark. If \mathcal{G} is any (pre)sheaf on X and $U \subseteq X$ an open subset, we get a sheaf $\mathcal{G}|_U$ on U by $\mathcal{G}|_U(V) = \mathcal{G}(V)$ for the open subsets $V \subseteq U$ equipped with the same restriction morphisms.

Definition 2 (Algebraic prevarieties). Let k be an algebraically closed field. An **algebraic prevariety** over k is a pair (X, \mathcal{O}_X) , where X is an irreducible Noetherian topological space together with a sheaf \mathcal{O}_X of rings on X such that the following property is satisfied.

Any $x \in X$ has an open neighbourhood U such that there is a homeomorphism $U \xrightarrow{\sim} V$ where $V \subseteq k^n$ is a Zariski-closed subset such that φ identifies $\mathcal{O}_X|_U$ with the structure sheaf \mathcal{O}_V of V. That is, if $W \subseteq V$ is open then any k-valued function $f: W \to k$ is regular (i.e. an element of $\mathcal{O}_V(W)$) if and only if

$$g \colon \varphi^{-1}(W) \longrightarrow k$$

 $x \longmapsto f(\varphi(x))$

is an element of $\mathcal{O}_X(\varphi^{-1}(W))$. One denotes $g = \varphi^* f$ in this case.

A morphism of prevarieties $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a continuous map $X \xrightarrow{\varphi} Y$ such that for all $U \subseteq Y$ and $\lambda \in \mathcal{O}_Y(U)$ we have $\varphi^*\lambda \in \mathcal{O}_X(\varphi^{-1}(U))$. As above, $\varphi^*\lambda$ is defined as $(\varphi^*\lambda)(x) = \lambda(\varphi(x))$. In particular, φ^* induces a morphism of sheaves $\varphi^* \colon \mathcal{O}_Y \to \varphi_*\mathcal{O}_X$ (cf. Definition 1.2.2a and Definition 1.2.4).

- **Remark.** (a) In fact, the $V \subseteq k^n$ in the above definition of varieties is even *irreducible*, as V is homeomorphic to an open (and hence irreducible) subset U of the irreducible space X. In particular, V is an *affine algebraic variety* (in the sense of [1, Definition 2.2.1]) and one can think of varieties as irreducible spaces which are locally isomorphic to (or glued together from) affine varieties.
 - (b) The n in the above definition is not required to be constant, not even for a single $x \in X$. In fact, this wouldn't be a sensible thing to ask for, as e.g. $k \subseteq k^1$ and $k \times \{0\} \subseteq k^2$ are isomorphic affine varieties. However, the Krull dimension dim X (in the sense of [1, Definition 2.1.4]) is a well-defined thing and one can show that dim $X = \dim V$ in the above situation (this is a consequence of [1, Theorem 6] and the locality of codimension, cf. [1, Remark 2.1.3]).

Example 2. Let $V \subseteq k^n$ be Zariski-closed, $W \subseteq V$ open. The ring $\mathcal{O}_V(W)$ of regular functions on W is the ring of functions $\lambda \colon W \to k$ such that for any $x \in W$ there is an open neighbourhood Ω of x and polynomials $p, q \in R = k[X_1, \dots, X_n]$ such that q does not vanish on $\Omega \cap W$ and such that we have $\lambda(y) = \frac{p(y)}{q(y)}$ for every $y \in \Omega \cap W$. (cf. [1, Definition 2.2.2]).

The sheaf \mathcal{O}_V defined by $W \mapsto \mathcal{O}_V(W)$ is called the *structure sheaf* on V. If W = V it can be shown that any $f \in \mathcal{O}_V(V)$ can be written as $f = p|_V$ where $p \in R$ (cf. [1, Proposition 2.2.2]).

Example 3. The *projective space* $\mathbb{P}(V)$, where V is a k-vector space, is the set of one-dimensional subspaces of V. Let $\mathbb{P}^n(k) = \mathbb{P}(k^{n+1})$. If $(x_0, \ldots, x_n) \in k^{n+1} \setminus \{0\}$, let $[x_0, \ldots, x_n]$ denote the subspace generated by (x_1, \ldots, x_n) .

Recall that an ideal $I \subseteq R = k[X_0, \ldots, X_n]$ is called *homogenous* if it is generated by homogenous elements (i.e. polynomials in which every monomial has the same total degree). Let I be homogenous, let $V(I) \subseteq \mathbb{P}^n(k)$ be the set of all $[x_0, \ldots, x_n] \in \mathbb{P}^n(k)$ such that $f(x_0, \ldots, x_n)$ vanishes for all $f \in I$. Call a subset $A \subseteq \mathbb{P}^n(k)$ Zariski-closed if there is a homogenous ideal I such that A = V(I). This turns $\mathbb{P}^n(k)$ into an irreducible, n-dimensional, Noetherian topological space.

Let $V \subset \mathbb{P}^n(k)$ be closed, $W \subseteq V$ open and $\lambda \colon W \to k$ any function. We call λ regular on W, or $\lambda \in \mathcal{O}_V(W)$, if any $x \in W$ has an open neighbourhood Ω such that there are two polynomials $p, q \in k[X_0, \ldots, X_n]$ homogenous of the same degree such that $q(y_0, \ldots, y_n) \neq 0$ and

$$\lambda([y_0, \dots, y_n]) = \frac{p(y_0, \dots, y_n)}{q(y_0, \dots, y_n)}$$

for all $[y_0, \ldots, y_n] \in W \cap \Omega$.

The affine space $\mathbb{A}^n(k)$ is just good old k^n equipped with its Zariski topology. Consider the map

$$\mathbb{P}^{n}(k) \setminus V(X_{i}) \xrightarrow{\sim} \mathbb{A}^{n}(k)$$
$$[x_{0}, \dots, x_{n}] \longmapsto \left(\frac{x_{0}}{x_{i}}, \dots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \dots, \frac{x_{n}}{x_{i}}\right).$$

This is a homeomorphism and identifies the structure sheaves with each other. Hence, for any irreducible closed subset $A \subseteq \mathbb{P}^n(k)$ such that $Y := A \cap (\mathbb{P}^n(k) \setminus V(X_i)) \neq \emptyset$, $(Y, \mathcal{O}_A|_Y)$ is isomorphic to an affine algebraic variety. Thus, quasi-projective algebraic varieties (i.e. (U, \mathcal{O}_U) where $U \subseteq \mathbb{P}^n(k)$ is a non-empty open subset of an irreducible closed subset) are algebraic prevarieties in the sense of Definition 2.

Example 3a. When X is prevariety in the sense of Definition 2 and $U \subseteq X$ is open and $U \neq \emptyset$, then $(U, \mathcal{O}_X|_U)$ is a prevariety. Note that any non-empty open subset of an irreducible set is necessarily irreducible as well, so irreducibility of U is not required as an extra condition.

Example 3b. Let X be a prevariety, $A \subseteq X$ irreducible and closed. Then (A, \mathcal{O}_A) is a prevariety, wherein the structure sheaf \mathcal{O}_A is defined as follows: If $W \subseteq A$ is open, let

$$\mathcal{O}_A(W) = \left\{ f \colon W \to k \;\middle|\; \begin{array}{l} \text{every } x \in W \text{ has an open neighbourhood } x \in U \subseteq X \\ \text{and } \varphi \in \mathcal{O}_X(U) \text{ such that } f(y) = \varphi(y) \; \forall y \in U \cap W \end{array} \right\}$$

Then one may check that (A, \mathcal{O}_A) is a prevariety. Note that \mathcal{O}_A is not given by the restriction $\mathcal{O}_{X|A}$ (which is only defined for open subsets $U \subseteq X$ anyway). If one prefers a more functorial definition of \mathcal{O}_A , the following will do: For each open subset $U \subseteq X$, let

$$I(U) = \{ \varphi \in \mathcal{O}_X(U) \mid \varphi \text{ lies in the maximal ideal of } \mathcal{O}_{A,a} \ \forall a \in U \cap A \}$$

(the stalk $\mathcal{O}_{A,a}$ is defined in [1, Definition 2.2.5] or, for arbitrary presheaves, in Definition 1.2.1). Then

$$\mathcal{O}_A(W) = \varinjlim_U \mathcal{O}_X(U)/I(U) ,$$

where the colimit is taken over all open subsets $U \subseteq X$ such that $U \cap A = W$.

Remark. The following conditions on a topological space X are equivalent:

- (a) If $x \neq y$ are points of X, there are open neighbourhoods $V, W \subseteq X$ separating them, i.e. $x \in V, y \in W$ and $V \cap W = \emptyset$. This is the usual definition for X being Hausdorff.
- (b) The diagonal $\Delta = \{(x, x) \mid x \in X\} \subseteq X \times X$ is a closed subset.

(c) If a and b are continuous maps $T \to X$, then their equalizer $K = \{t \in T \mid a(t) = b(t)\}$ is closed in T.

Definition 3 (Variety). Let X be a prevariety over k in the sense of Definitions 2. We call X separated or a variety over k if and only if $\{t \in T \mid a(t) = b(t)\}$ is closed in T whenever a and b are a pair of morphisms of prevarieties $T \stackrel{a}{\Longrightarrow} X$.

Example 4 (Line with two origins). Let n > 0 and $X = (\mathbb{A}^n(k) \setminus \{0\}) \cup \{0_+\} \cup \{0_-\}$. Consider two morphisms $\iota_+, \iota_- \colon \mathbb{A}^n(k) \to X$ defined by

$$\iota_{\pm}(x) = \begin{cases} x & \text{if } x \neq 0\\ 0_{\pm} & \text{if } x = 0 \end{cases}$$

Let $U \subseteq X$ be open iff both $\iota_{+}^{-1}(U)$ and $\iota_{-}^{-1}(U)$ are both open in $\mathbb{A}^{n}(k)$, and let

$$\mathcal{O}_X(U) = \left\{ f \colon U \to k \ \middle| \ \iota_{\pm}^* f = f \iota_{\pm} \in \mathcal{O}_{\mathbb{A}^n(k)} \left(\iota_{\pm}^{-1}(U) \right) \right\}.$$

Then $U_{\pm} = \iota_{\pm}^{-1}(\mathbb{A}^n(k))$ are both open and $\mathbb{A}^n(k) \xrightarrow{\iota_{\pm}} U_{\pm}$ is a homeomorphism identifying the respective structure sheaves. Thus, X is a prevariety, but not a variety in the sense of Definition 3 as we may take $T = \mathbb{A}^n(k) \xrightarrow{\iota_{\pm}} X$ in Definition 3 and obtain $K = \{x \in \mathbb{A}^n(k) \mid \iota_{+}(x) = \iota_{-}(x)\} = \mathbb{A}^n \setminus \{0\}$, which is not closed.

Example 5. (a) Any affine algebraic variety is a variety in the sense of Definition 3.

- (b) In particular, $\mathbb{A}^0 = \{0\}$ is a variety, as is any one-point prevariety.
- (c) Non-empty open and irreducible closed subsets Y of varieties X are varieties

Proof. For part (c) note that the inclusion $Y \stackrel{\iota}{\longrightarrow} X$ (together with $\iota^* \colon \mathcal{O}_X \to \mathcal{O}_Y$) is a morphism of prevarieties, and for a pair $a, b \colon T \to A$ of morphisms of prevarieties we have $\{t \in T \mid a(t) = b(t)\} = \{t \in T \mid (\iota a)(t) = (\iota b)(t)\}$. The latter is closed in T because X is a variety.

For part (a) let $X \subseteq k^n$ be closed and irreducible, $a, b \colon T \to X$ be morphisms of prevarieties and $K = \{t \in T \mid a(t) = b(t)\}$. To show that K is closed in T, it is sufficient to show that any $t \in T$ has a neighbourhood Ω such that $K \cap \Omega$ is closed in Ω . Choosing Ω such that it is isomorphic to an affine algebraic variety, which is possible because T is a prevariety, we may assume without loss of generality that $T \subseteq k^n$ is an affine algebraic variety in (i.e. an irreducible subset of) k^n . Let

$$X_i \colon X \longrightarrow k$$

 $(x_1, \dots, x_n) \longmapsto x_i$

denote the projection to the i^{th} coordinate. Then $X_i \in \mathcal{O}_X(X)$, hence $\alpha_i = a^*X_i$ and $\beta_i = b^*X_i$ are in $\mathcal{O}_T(T)$ and

$$K = \{t \in T \mid \alpha_i(t) = \beta_i(t) \ \forall i\} = \bigcap_{i=1}^n V(\alpha_i - \beta_i) \ . \tag{1}$$

But we proved in Algebra I that $V(\varphi)$ is closed in T whenever T is an affine algebraic variety and $\varphi \in \mathcal{O}_T(T)$ (cf. [1, Proposition 2.2.1]).

Part (b) is trivial from (a).

q.e.d.

Remark. (a) $K \subseteq T$ is closed iff for all $t \in T$ there is an open neighbourhood Ω_t such that $\Omega_t \cap K$ is closed in Ω_t , since

$$T \setminus K = \bigcup_{t \in T} (\Omega_t \setminus (K \cap \Omega_t))$$

is open as a union of open subsets. It is even sufficient to have Ω_t a neighbourhood of t (that is, not necessarily open) as in that case Ω_t contains a suitable open neighbourhood.

(b) It is not sufficient to require this just for all $t \in K$. If only this holds, K is called *locally closed*

Proposition 1. Let X be any prevariety such that for arbitrary $x, y \in X$ there is a common open neighbourhood U of x and y which is affine (that is, isomorphic as a prevariety to an affine variety in some k^n). Then X is a variety.

Proof. Let $a, b \colon T \to X$ as in Definition 3 and $t \in T$ and let $U \subseteq X$ be an affine open subset of X containing both a(t) and b(t). Let $V = a^{-1}(U) \cap b^{-1}(U) \subseteq T$. This is an open subset of T containing t. It is easily seen that $a|_V$ and $b|_V$ are morphisms $V \to U$. By the previous example, $K \cap V = \{t \in U \mid a(t) = b(t)\}$ is closed in V. Because such a neighbourhood can be found for any $t \in T$, K is closed in T by the previous remark. q.e.d.

Corollary 1. Quasi-projective and quasi-affine algebraic varieties are varieties.

Proof. Step 1. Let $X \subseteq k^n$ be irreducible and closed. Recall that for any $f \in \mathcal{O}_X(X) \setminus \{0\}$, $X \setminus V(f)$ is affine: Let $X = V(\mathfrak{p})$ for some prime ideal $\mathfrak{p} \in R = k[X_1, \ldots, X_n]$. We identify $f \in \mathcal{O}_X(X) = R/\mathfrak{p}$ with an arbitrary representative $f \in R$. Now consider the ideal $\mathfrak{q} \subseteq k[X_1, \ldots, X_n, T]$ generated by \mathfrak{p} and $1 - T \cdot f$. One can show that

$$V(\mathfrak{q}) \xrightarrow{\sim} X \setminus V(f)$$
$$(x,t) \longmapsto x$$
$$(x,f(x)^{-1}) \longleftrightarrow x$$

is a homeomorphism topological spaces. Then $V(\mathfrak{q})$ is irreducible (as $X \setminus V(f)$ is), hence an affine variety, which proves that $X \setminus V(f)$ must be affine as well (cf. [1, Proposition 2.2.4]).

Let $U \subseteq X$ be open and $F \subseteq U$ be finite. Let $X \setminus U = V(I)$ with $I \subseteq R$ an ideal. If n = 0, $U = \{0\}$ is affine and we have nothing to prove. Let $n \ge 1$. Because k is infinite, the k-vector space I cannot be the union of its finitely many codimension one subspaces $I_x = \{p \in I \mid p(x) = 0\}$ for $x \in F$. Therefore, there is $p \in I$ such that $F \subseteq X \setminus V(p)$. By our initial remark, $X \setminus V(p)$ is affine. As $p \in I$, $X \setminus V(p) \subseteq U$ and the claim follows.

Step 2. Let $X \subseteq \mathbb{P}^n(k)$ be quasi-projective and let $F \subseteq X$ be finite. We can write

$$F = \left\{ [f_0^{(i)}, \dots, f_n^{(i)}] \mid 1 \le i \le N \right\} .$$

As k^{n+1} is larger than the union of the N codimension one subspaces

$$V_i = \left\{ (\xi_j)_{j=0}^n \mid \sum_{j=0}^n \xi_j f_j^{(i)} = 0 \right\} \quad \text{for } i = 1, \dots, N ,$$

there is a homogenous polynomial $p \neq 0$ of degree 1 such that $p(f_0^{(i)}, \ldots, f_n^{(i)}) \neq 0$ for all $1 \leq i \leq N$. Then $F \subseteq X \setminus V(p)$. But $\mathbb{P}^n(k) \setminus V(p)$ is isomorphic to k^n as this is the case when $p = X_0$ and $\mathrm{GL}_{n+1}(k)$ transitively acts on $k^{n+1} \setminus \{0\}$. Thus, $F \subseteq X \setminus V(p)$ and $X \setminus V(p)$ is isomorphic to a quasi-affine variety. The assertion now follows from Step 1. q.e.d.

Remark. • Let X be a prevariety. If two arbitrary points have a common neighbourhood which is a variety, then X is a variety.

- We have actually seen that arbitrary finite subsets of quasi-projective algebraic varieties have open neighbourhoods which are affine. This is usefull, e.g., when forming quotients by finite groups.
- Hironaka (see Hartshorne for examples of a non-quasi-projective variety) has an example of a variety where there are two points without a common affine neighbourhood.

1.2. General properties and sheaf constructions

Definition 1 (Stalk). Let \mathcal{G} be a presheaf on the topological space X and $x \in X$. Let $\mathcal{G}_x = \varinjlim_U \mathcal{G}(U)$, denote the **stalk** of \mathcal{G} at x, where \varinjlim_U is taken over the open neighbourhoods U of x.

Remark. In general, \varinjlim is the colimit in the target category. For the target categories of abelian groups, sets or rings we have

$$\mathcal{G}_x = \{(U, g) \mid x \in U \text{ open, } g \in \mathcal{G}(U)\} /_{\sim},$$

where $(U,g) \sim (V,h)$ iff there is an open neighbourhood $W \subseteq U \cap V$ of x such that $g|_W = h|_W$.

Example 1. The stalk at x of the structure sheaf of a prevariety X is called the local ring $\mathcal{O}_{X,x}$ of X at x.

Remark. A set \mathcal{B} of open subsets of a topological space X is called a *base* of the topology if every open subset of X may be written as a union of elements of \mathcal{B} . A set of subsets of some set X is the base of a (uniquely determined) topology on X iff the intersection of two arbitrary elements of \mathcal{B} can be written as the union of elements of \mathcal{B} and \mathcal{B} covers X.

Definition 2 (Presheaves defined on a topological base). Let \mathcal{B} be a base of the topology on X. A **presheaf** on \mathcal{B} associates

- a set (group, ring, ...) $\mathcal{G}(U)$ to any $U \in \mathcal{B}$
- and to each inclusion of elements of \mathcal{B} a restriction morphism $(-)|_V : \mathcal{G}(U) \to \mathcal{G}(V)$ such that $\mathcal{G}(U) \xrightarrow{(-)|_U} \mathcal{G}(U)$ equals $\mathrm{id}_{\mathcal{G}(U)}$ and $f|_W = (f|_V)|_W$ for all $f \in \mathcal{G}(U)$ if $W \subseteq V \subseteq U$ is a inclusion of elements of \mathcal{B} .

If \mathcal{G} is a presheaf on \mathcal{B} and $x \in X$ we put $\mathcal{G}_x = \varinjlim_U \mathcal{G}(U)$ where the direct limit (direct limit means the same as colimit) is taken over alle $U \in \mathcal{B}$ containing x.

Remark. Equip \mathcal{B} with partial order \leq where $V \leq U$ iff $V \supseteq U$. Any partially ordered set (\mathfrak{X}, \leq) defines a category in which there is a morphism $X \to Y$ precisely if $X \leq Y$. Then, a presheaf on \mathcal{B} is a functor from (the category made out of) \mathcal{B} and the target category.

Definition 2a. A morphism $\mathcal{G} \xrightarrow{f} \mathcal{H}$ of presheaves on \mathcal{B} is a collection $\mathcal{G}(U) \xrightarrow{f_U} \mathcal{H}(U)$ in the target category such that

$$\mathcal{G}(U) \xrightarrow{(-)|_{V}} \mathcal{G}(V)
f_{U} \downarrow \qquad \qquad \downarrow f_{V}
\mathcal{H}(U) \xrightarrow{(-)|_{V}} \mathcal{H}(V)$$

commutes. We will often write $\mathcal{G}(U) \xrightarrow{f} \mathcal{H}(U)$ instead of $\mathcal{G}(U) \xrightarrow{f_U} \mathcal{H}(U)$.

Fact 1. If $\widetilde{\mathcal{B}} \subseteq \mathcal{B}$ is a smaller base of the same topology there is an obvious restriction $\widetilde{\mathcal{G}} = \mathcal{G}|_{\widetilde{\mathcal{B}}}$. We have a canonical isomorphism

$$\widetilde{\mathcal{G}}_x \stackrel{\sim}{\longrightarrow} \mathcal{G}_x$$

sending $(U,g)/_{\sim} \in \widetilde{\mathcal{G}}_x$ (where $U \in \widetilde{\mathcal{B}}$, $g \in \mathcal{G}(U)$, $x \in U$) to $(U,g)/_{\sim} \in \mathcal{G}_x$. It is easy to see that this is well-defined and an isomorphism.

Definition 3 (Sheafification). Let \mathcal{B} be a topology base on X, \mathcal{G} a presheaf on \mathcal{B} . We define the **sheafification** (German: **Garbifizierung**) \mathcal{G}^{sh} (Professor Franke uses the notation Sheaf(\mathcal{G})) of \mathcal{G} as follows:

$$\mathcal{G}^{\mathrm{sh}}(U) = \left\{ (g_x) \in \prod_{x \in U} \mathcal{G}_x \, \middle| \, \text{for all } y \in U \text{ there are an open neighbourhood } V \in \mathcal{B} \\ \text{and } \gamma \in \mathcal{G}(V) \text{ such that } g_x = (V, \gamma)/_{\sim} \, \forall x \in U \cap V \right\}$$
(*)

Moreover, we define the restriction morphisms via $(g_x)_{x\in U}|_V=(g_x)_{x\in V}$.

Remark. (a) The definition (*) obviously does not change if the coherence condition on its right hand side is replaced by

for every $y \in U$, there are an open neighbourhood V of y in X and $\gamma \in \mathcal{G}(U)$ such that $V \subseteq U$ and $V \in \mathcal{B}$ and such that $g_x = (V, \gamma)/_{\sim}$ for all $x \in V$.

(b) It is easy to see that $\mathcal{H} = \mathcal{G}^{\text{sh}}$ satisfies the sheaf axiom: If $U = \bigcup_{i \in I} U_i$ is an open cover and $g^{(i)} = (g_x^{(i)})_{x \in U_i} \in \mathcal{H}(U_i)$ as on the right hand side of the sheaf axiom, define $g \in \mathcal{H}(U)$ by $g_x = g_x^{(i)}$ where i is chosen such that $x \in U_i$. This depends on x only. It is easy to see that indeed $g \in \mathcal{H}(U)$ and that g this is the only element of $\mathcal{H}(U)$ with $g|_{U_i} = g_i$ for all $i \in I$.

(c) It is easy to see that for every $x \in X$, $\mathcal{G} \to \mathcal{G}_x$ is a functor from the category of presheaves to the respective target category, provided that the colimits occuring in the definition of \mathcal{G}_x exist in that category. Moreover $(-)^{\text{sh}}$ is a functor from the category of presheaves with values in sets, groups, or rings to the respective category of sheaves.

We define a canonical morphism (cf. Definition A.2.2)

$$\Gamma_{\mathcal{G}} \colon \mathcal{G} \longrightarrow \mathcal{G}^{\operatorname{sh}}|_{\mathcal{B}}$$
 $g \in \mathcal{G}(U) \longmapsto (g_x)_{x \in U}$

of presheaves on \mathcal{B} .

Proposition 1. We consider (pre-)sheaves of sets, (abelian) groups or rings.

- (a) The morphism $\mathcal{G}_x \to \mathcal{G}_x^{\mathrm{sh}}$ induced by $\Gamma_{\mathcal{G}}$ is an isomorphism, for arbitrary $x \in X$.
- (b) If \mathcal{G} and \mathcal{H} are presheaves on \mathcal{B} and $\mathcal{G} \xrightarrow{\varphi} \mathcal{H}$ is a morphism between them such that the induced morphism $\mathcal{G}_x \xrightarrow{\varphi_x} \mathcal{H}_x$ is injective (respectively bijective) for arbitrary $x \in X$, then

$$\mathcal{G}^{\operatorname{sh}}(U) \xrightarrow{\varphi_U^{\operatorname{sh}}} \mathcal{H}^{\operatorname{sh}}(U)$$

is injective (respectively bijective) for every open subset U of X.

(c) If $\widetilde{\mathcal{B}} \subseteq \mathcal{B}$ is a topology base then the canonical morphism

$$(\mathcal{G}|_{\widetilde{\mathcal{B}}})^{\mathrm{sh}} \longrightarrow \mathcal{G}^{\mathrm{sh}}$$

(defined using $(\mathcal{G}|_{\widetilde{\mathcal{B}}})_x \xrightarrow{\sim} \mathcal{G}_x$) is an isomorphism.

(d) If \mathcal{B} is closed under intersections and \mathcal{G} satisfies the sheaf axiom for coverings of elements of \mathcal{B} by elements of \mathcal{B} , then

$$\Gamma_{\mathcal{G}} \colon \mathcal{G} \xrightarrow{\sim} \mathcal{G}^{sh}|_{\mathcal{B}}$$
.

Proof. (c) If you think about it for a while, this becomes rather obvious from the definitions.

For part (a), we prove surjectivity first: Let $g \in \mathcal{G}^{\operatorname{sh}}(U)$ and $x \in U$, we need to find an open neighbourhood $V \in \mathcal{B}$ of x and $\gamma \in \mathcal{G}(V)$ such that the images of $\Gamma_{\mathcal{G}}(\gamma) \in \mathcal{G}^{\operatorname{sh}}(V)$ and of g in $\mathcal{G}_x^{\operatorname{sh}}$ coincide. We chose V and γ as on the right hand of (*). As \mathcal{B} is a topology base there is $W \in \mathcal{B}$ such that $x \in W \subseteq U \cap V$. It follows from the definition of $\Gamma_{\mathcal{G}}$ and the coherence condition that $g|_W = \Gamma_{\mathcal{G}}(\gamma)|_W$. Consequently, their images in the stalk at x coincide, as asserted.

To show injectivity define

$$\iota_x \colon \mathcal{G}_x^{\operatorname{sh}} \longrightarrow \mathcal{G}_x$$

$$\left(\begin{array}{c} \operatorname{image of} \\ (g_y)_{y \in U} \in \mathcal{G}^{\operatorname{sh}}(U) \text{ in } \mathcal{G}_x^{\operatorname{sh}} \end{array}\right) \longmapsto g_x \ .$$

It is easy to see that this is well-defined and that it is a left inverse to the map $\mathcal{G}_x \xrightarrow{(\Gamma_{\mathcal{G}})_x} \mathcal{G}_x^{\mathrm{sh}}$ studied. Therefore, $(\Gamma_{\mathcal{G}})_x$ is also injective.

Let's prove (b). The assertion about injectivity is trivial. Let us assume that $\mathcal{G}_x \xrightarrow{\varphi_x} \mathcal{H}_x$ is an isomorphism for arbitrary $x \in X$ and let $h = (h_x)_{x \in U} \in \mathcal{H}^{\mathrm{sh}}(U)$. We put $g = (g_x)_{x \in U} \in \prod_{x \in U} \mathcal{G}_x$ where $g_x = \varphi_x^{-1}(h_x)$. If $g \in \mathcal{G}^{\mathrm{sh}}(U)$ then it is obvious from the definitions that $\varphi_U^{\mathrm{sh}}(g) = h$, proving the bijectivity of $\mathcal{G}^{\mathrm{sh}}(U) \xrightarrow{\varphi_U^{\mathrm{sh}}} \mathcal{H}^{\mathrm{sh}}(U)$.

To verify the coherence condition for g, fix $x \in U$. As h satisfies the coherence condition there are an open neighbourhood $V \in \mathcal{B}$ of x and $\eta \in \mathcal{H}(V)$ such that h_y equals the image of η in \mathcal{H}_y for all $y \in U \cap V$. As the image of η in \mathcal{H}_x is in the image of $\mathcal{G}_x \xrightarrow{\varphi_x} \mathcal{H}_x$, there are a neighbourhood $W \in \mathcal{B}$ of x and $\gamma \in \mathcal{G}(W)$ such that φ_x maps the image $(W, \gamma)/_{\sim}$ of γ in \mathcal{G}_x to the image $(V, \eta)/_{\sim}$ of η in \mathcal{H}_x . By definition of stalks and φ_x , this means that there is an open neighbourhood $\Omega \in \mathcal{B}$ of x such that $\Omega \subseteq V \cap W$ and $\varphi_W(\gamma)|_{\Omega} = \eta|_{\Omega}$. Replacing V by Ω and γ and η by their restrictions to V (which equals Ω now), we may assume that there is $\gamma \in \mathcal{G}(V)$ such that $\varphi(\gamma) = \eta$. For $y \in V$,

$$\varphi_y(g_y) = h_y = (V, \eta)/_{\sim} = (V, \varphi(\gamma))/_{\sim} = \varphi_y((V, \gamma)/_{\sim}).$$

Since φ_y is an isomorphism, this implies $g_y = (V, \gamma)/_{\sim}$. Thus $g \in \mathcal{G}^{\mathrm{sh}}(U)$.

And finally part (d). We first show injectivity of $\mathcal{G}(U) \xrightarrow{\Gamma_{\mathcal{G}}} \mathcal{G}^{\mathrm{sh}}(U)$, for $U \in \mathcal{B}$. Let $g, g' \in \mathcal{G}(U)$ have the same image in $\mathcal{G}^{\mathrm{sh}}(U)$, i.e. for every $x \in U$ their images g_x and g'_x in \mathcal{G}_x coincide. By definition of \mathcal{G}_x , this means that for every $x \in U$ there is an open neighbourhood $V_x \in \mathcal{B}$ of x, such that $g|_{V_x} = g'|_{V_x}$. As the V_x cover U, this implies g = g' by the sheaf axiom.

For surjectivity, let $g = (g_x)_{x \in U} \in \mathcal{G}^{\operatorname{sh}}(U)$. For every $x \in U$ there are, by the coherence condition on the right hand side of (*), an open neighbourhood $V_x \in \mathcal{B}$ and $\gamma^{(x)} \in \mathcal{G}(V_x)$ such that g_y equals the image of $\gamma^{(x)}$ in \mathcal{G}_y for all $y \in U \cap V_x$. Replacing V_x by $U \cap V_x$ and $\gamma^{(x)}$ by its restriction we may assume $V_x \subseteq U$. If $x, \xi \in U$ and $y \in V_x \cap V_\xi$, then the images of $\gamma^{(x)}$ and $\gamma^{(\xi)}$ in \mathcal{G}_y coincide (they are g_y). Thus, the images of $\gamma^{(x)}|_{V_x \cap V_\xi}$ and $\gamma^{(\xi)}|_{V_x \cap V_\xi}$ under $\mathcal{G}(V_x \cap V_\xi) \xrightarrow{\Gamma \mathcal{G}} \mathcal{G}^{\operatorname{sh}}(V_x \cap V_\xi)$ coincide. Consequently, $\gamma^{(x)}|_{V_x \cap V_\xi} = \gamma^{(\xi)}|_{V_x \cap V_\xi}$, as injectivity has already been shown. By the sheaf axiom for \mathcal{G} , there is $\gamma \in \mathcal{G}(U)$ such that $\gamma^{(x)} = \gamma|_{V_x}$ simultaneously for all $x \in U$ (note that in all of this we silently used that \mathcal{B} is closed under intersections). Then

$$g_x = (V_x, \gamma^{(x)})/_{\sim} = (V_x, \gamma|_{V_x})/_{\sim} = (U, \gamma)/_{\sim}$$
 for all $x \in U$.

Thus,
$$\Gamma_{\mathcal{G}}(\gamma) = g$$
.

Corollary 1. The following assertions hold in the categories of sets, (abelian) groups or rings.

(a) If \mathcal{F} is a sheaf of the given type, then any $f \in \mathcal{F}(U)$ is uniquely determined by the family of its images in \mathcal{F}_x for $x \in U$, that is,

$$\mathcal{F}(U) \longrightarrow \prod_{x \in U} \mathcal{F}_x$$
 (1)

is injective. The image of $\mathcal{F}(U)$ under this map is the set of all $(f_x)_{x\in U} \in \prod_{x\in U} \mathcal{F}_x$ such that for every $x\in U$ there are an open neighbourhood V of x and $\varphi\in \mathcal{F}(V)$ such that f_y equals the image φ_y of φ under $\mathcal{F}(U) \to \mathcal{F}_y$ for all $y\in U\cap V$.

- (b) A morphism of sheaves inducing isomorphisms (respectively injective maps) on stalks defines isomorphisms (respectively injective maps) on sections of open subsets.
- (c) If two morphism $\mathcal{F} \stackrel{\alpha}{\Longrightarrow} \mathcal{G}$ define identical maps $\mathcal{F}_x \stackrel{\alpha_x}{\Longrightarrow} \mathcal{G}_x$ for each $x \in X$, then $\alpha = \beta$.
- (d) If $\mathcal{G} \xrightarrow{\alpha} \mathcal{H}$ is a morphism of sheaves such that $\mathcal{G}_x \xrightarrow{\alpha_x} \mathcal{H}_x$ is injective (respectively surjective) for all x, then α is a monomorphism (respectively an epimorphism).
- (e) Let \mathcal{R} be a sheaf of rings on x and $\rho \in \mathcal{R}(U)$, then $\rho \in \mathcal{R}(U)^{\times}$ iff for each $x \in U$ the image ρ_x of ρ in \mathcal{R}_x is in \mathcal{R}_x^{\times} .

Proof. (a) is an immediate consequence of Proposition 1(d).

Part (b) follows from Proposition 1(b) as

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{\alpha} & \mathcal{G}(U) \\
\Gamma_{\mathcal{F}} \downarrow \wr & & \Gamma_{\mathcal{G}} \downarrow \wr \\
\mathcal{F}^{\mathrm{sh}}(U) & \xrightarrow{\alpha} & \mathcal{G}^{\mathrm{sh}}(U)
\end{array}$$

commutes. Here the vertical arrows are isomorphisms by Proposition 1(d).

Part (c) immediately follows from (a).

Part (d) is quite obvious. Let α_x be injective for arbitrary $x \in X$, and let $\mathcal{T} \xrightarrow{\tau} \mathcal{F}$ be morphisms such that $\alpha \tau = \alpha \theta$. Then $\alpha_x \tau_x = \alpha_x \theta_x$ for all $x \in X$. As α_x is an injective map this implies $\tau_x = \theta_x$. By (c) we have $\tau = \theta$. Hence α is a monomorphism.

Let α_x be surjective for arbitrary $x \in X$, and let $\mathcal{F} \xrightarrow{\tau} \mathcal{T}$ be morphisms such that $\tau \alpha = \theta \alpha$. Then $\tau_x \alpha_x = \theta_x \alpha_x$ for all $x \in X$. As α_x is a surjective map this implies $\tau_x = \theta_x$. By (c) we have $\tau = \theta$. Hence α is a epimorphism.

Proving the *only if* part of (e) is quite trivial since $\mathcal{R}(U) \to \mathcal{R}_x$ is a ring homomorphism, thus maps units to units. Conversely, let ρ_x be a unit for every $x \in U$. We consider the morphism $\mathcal{R}|_U \xrightarrow{\rho^*} \mathcal{R}|_U$ (of sheaves of *sets*, multipliying by ρ is no ring homomorphism!). On stalks it defines the map $\mathcal{R}_x \xrightarrow{\rho_x} \mathcal{R}_x$, which is bijective. By (b) it is an isomorphism, hence there is $\sigma \in \mathcal{R}(U)$ such that $\rho \sigma = 1$ and $\rho \in \mathcal{R}(U)^{\times}$.

Fact 2. If \mathcal{F} is a presheaf on \mathcal{B} and $\widetilde{\mathcal{B}} \subseteq \mathcal{B}$ is another topology base, then $(\mathcal{F}|_{\widetilde{\mathcal{B}}})^{\operatorname{sh}} \simeq \mathcal{F}^{\operatorname{sh}}$.

Proof. This is Proposition 1(c) and we proved it there. Ok, actually this doesn't count as a proof, so let's do it now.

By Fact 1, $(\mathcal{F}|_{\widetilde{\mathcal{B}}})_x \xrightarrow{\sim} \mathcal{F}_x$ is an isomorphism for all $x \in X$. It is clear that

$$f = (f_x) \in \prod_{x \in U} \mathcal{F}_x \simeq \prod_{x \in U} (\mathcal{F}|_{\widetilde{\mathcal{B}}})_x$$

satisfying the coherence condition for $(\mathcal{F}|_{\widetilde{\mathcal{B}}})^{\mathrm{sh}}$ also satisfies it for $\mathcal{F}^{\mathrm{sh}}$. Conversely, let f satisfy the coherence condition for $\mathcal{F}^{\mathrm{sh}}$. For every $x \in U$, this means that there is $V \in \mathcal{B}$ and $\varphi \in \mathcal{F}(V)$

such that $\varphi_y = f_y$ for $y \in U \cap V$. As $\widetilde{\mathcal{B}}$ is a topology base there is $W \in \widetilde{\mathcal{B}}$ such that $x \in W \subseteq V$. Let $\widetilde{\varphi} = \varphi|_W$, then $\widetilde{\varphi}_y = f_y$ when $y \in U \cap W$. Hence $f \in (\mathcal{F}|_{\widetilde{\mathcal{B}}})^{\operatorname{sh}}(U)$. q.e.d.

Proposition 2. The following holds for sheaves of sets, rings and (abelian) groups. Let \mathcal{B} be a topology base and \mathcal{F} a presheaf on \mathcal{B} . Any morphism $\mathcal{F} \stackrel{\alpha}{\longrightarrow} \mathcal{G}|_{\mathcal{B}}$, where \mathcal{G} is a sheaf on X, has the form

$$\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\alpha} \mathcal{G}|_{\mathcal{B}} \\
\Gamma_{\mathcal{F}} & & \exists ! \beta|_{\mathcal{B}} \\
\mathcal{F}^{\mathrm{sh}}|_{\mathcal{B}}
\end{array}$$

in which $\mathcal{F}^{\operatorname{sh}} \stackrel{\beta}{\longrightarrow} \mathcal{G}$ is a uniquely determined morphism of sheaves.

Proof. If β is as above then α_x equals

$$\mathcal{F} \xrightarrow{\alpha_x} (\mathcal{G}|_{\mathcal{B}})_x \xrightarrow{\sim} \mathcal{G}_x$$

$$(\Gamma_{\mathcal{F}})_x \xrightarrow{(\beta|_{\mathcal{B}})_x} \xrightarrow{\beta_x} \mathcal{F}_x^{\mathrm{sh}}$$

$$(\mathcal{F}^{\mathrm{sh}}|_{\mathcal{B}})_x \xrightarrow{\sim} \mathcal{F}_x^{\mathrm{sh}}$$

in which also $(\Gamma_{\mathcal{F}})_x$ is an isomorphism by Proposition 1. It follows that β_x is uniquely determined by α_x , hence by α . By Corollary $\mathbf{1}(c)$ this means that β is uniquely determined by α .

To show existence of β we construct it as

$$\mathcal{F}^{\mathrm{sh}} \xrightarrow{\alpha^{\mathrm{sh}}} (\mathcal{G}|_{\mathcal{B}})^{\mathrm{sh}} \xrightarrow{\sim} \mathcal{G}^{\mathrm{sh}} \simeq \mathcal{G}$$

(the first isomorphism follows from Fact 2 and the latter from Proposition 1(d)). It is easily verified that this has the required properties. q.e.d.

Remark 1. By the usual Yoneda-type argument, it is clear that the above universal property characterizes \mathcal{F}^{sh} uniquely up to unique isomorphism. For other target categories the above universal property should be taken as the definition of \mathcal{F}^{sh} . It may or may not exist, but is unique if it does.

Remark 2. Proposition 2 essentially says, that, for \mathcal{F} a presheaf and \mathcal{G} a sheaf of sets, (commutative) rings or (abelian) groups, we have a bijection

$$\operatorname{Hom}_{\operatorname{Shv}(X)}(\mathcal{F}^{\operatorname{sh}},\mathcal{G}) \simeq \operatorname{Hom}_{\operatorname{PreShv}(\mathcal{B})}(\mathcal{F},\mathcal{G}|_{\mathcal{B}}) \ .$$

In other words, $L = (-)^{\mathrm{sh}}$: $\operatorname{PreShv}(\mathcal{B}) \to \operatorname{Shv}(X)$ and $R = (-)|_{\mathcal{B}}$: $\operatorname{Shv}(X) \to \operatorname{PreShv}(\mathcal{B})$ is an adjoint pair of functors.

Definition 4 (Direct image). Let $X \stackrel{f}{\longrightarrow} Y$ be a continuous map and \mathcal{G} a presheaf on X. By $f_*\mathcal{G}$ we denote the presheaf on Y defined by

$$f_*\mathcal{G}(W) = \mathcal{G}(f^{-1}(W))$$

for open subsets $W \subseteq Y$, where the restriction $(-)|_V$ in $f_*\mathcal{G}$ is defined as $(-)|_{f^{-1}(V)}$ in \mathcal{G} . If $\mathcal{F} \xrightarrow{\alpha} \mathcal{G}$ is a morphism of presheaves on X, we define $f_*\alpha \colon f_*\mathcal{F} \to f_*\mathcal{G}$ by

$$f_*\mathcal{F}(W) = \mathcal{F}(f^{-1}(W)) \xrightarrow{\alpha} \mathcal{G}(f^{-1}(W)) = f_*\mathcal{G}(W)$$
.

Fact 3. It is easy to see that the axioms of a presheaf hold for $f_*\mathcal{G}$ that $f_*\alpha$ is indeed a morphism of presheaves, that f_* is a functor and $g_*f_* = (gf)_*$. Also, id_{*} is the identity functor.

Remark. If \mathcal{B}_Y is a topology base for Y and $\mathcal{B}_X \supseteq f^{-1}(\mathcal{B}_Y) = \{f^{-1}(U) \mid U \in \mathcal{B}\}$ (we possibly need to extend $f^{-1}(\mathcal{B}_Y)$ to obtain a topology base of X), then we have $\operatorname{PreShv}(\mathcal{B}_X) \xrightarrow{f_*} \operatorname{PreShv}(\mathcal{B}_X)$ defined in the same way and with similar properties.

Remark 3. Obviously we have a morphism

$$f_x^* \colon (f_* \mathcal{F})_{f(x)} \longrightarrow \mathcal{F}_x$$

$$\left(\begin{array}{c} \text{image of } (W, \varphi), \text{ where} \\ \varphi \in f_* \mathcal{F}(W), \text{ in } (f_* \mathcal{F})_{f(x)} \end{array} \right) \longmapsto \left(\begin{array}{c} \text{image of} \\ (f^{-1}(W), \varphi) \text{ in } \mathcal{F}_x \end{array} \right)$$

$$(2)$$

defined by mapping the image of $(W, \varphi(f_*\mathcal{F})(W))$ in $(f_*\mathcal{F})(W)$ to the image of $(f^{-1}(W), \varphi)$ in \mathcal{F}_x . This is a natural transformation, since

$$(f_*\mathcal{F})_{f(x)} \xrightarrow{(f_*\alpha)_{f(x)}} (f_*\mathcal{G})_{f(x)}$$

$$f_x^* \downarrow \qquad \qquad \downarrow f_x^*$$

$$\mathcal{F}_x \xrightarrow{\alpha_x} \mathcal{G}_x$$

commutes for any morphism $\mathcal{F} \stackrel{\alpha}{\longrightarrow} \mathcal{G}$ of presheaves. Also, the diagram

$$(g_*f_*\mathcal{F})_{g(f(x))} = ((gf)_*\mathcal{F})_{(gf)(x)}$$

$$g_{f(x)}^* \downarrow \qquad \qquad \downarrow (gf)_x^*$$

$$(f_*\mathcal{F})_{f(x)} \xrightarrow{f_x^*} \mathcal{F}_x$$

commutes. And $(f_*\mathcal{F})_{f(x)} \xrightarrow{f^*} \mathcal{F}_x$ equals $\mathrm{id}_{\mathcal{F}_x}$ when $f = \mathrm{id}_X$.

Remark (about f^{\flat}/f^{\sharp}). If $X \xrightarrow{f} Y$ is continuous and \mathcal{G} a presheaf (of sets, (abelian) groups, (commutative) rings) on Y one defines

$$f^{\flat}\mathcal{G}(U) = \varinjlim_{W \supseteq f(U)} \mathcal{G}(W) = \left\{ (W, \gamma) /_{\sim} \left| \begin{array}{c} W \subseteq Y \text{ open, } W \supseteq f(U), \, \gamma \in \mathcal{G}(W) \\ \text{and } (W, \gamma) \sim (V, \eta) \text{ iff there's an open set } \Omega \\ \text{such that } f(U) \subseteq \Omega \subseteq V \cap W \text{ and } \gamma|_{\Omega} = \eta|_{\Omega} \end{array} \right\}$$

Restriction to $V \subseteq U$ maps $(W, \gamma)/_{\sim}$ to $(W, \gamma)/_{\approx}$ where \approx is the equivalence relation for the definition of $f^{\flat}\mathcal{G}(V)$.

Let $f^{\sharp}\mathcal{G} = (f^{\flat}\mathcal{G})^{\operatorname{sh}}$. If turns out that $\operatorname{PreShv}(Y) \xrightarrow{f^{\flat}} \operatorname{PreShv}(X)$ is left-adjoint to $\operatorname{PreShv}(X) \xrightarrow{f_*} \operatorname{PreShv}(Y)$ and $\operatorname{Shv}(Y) \xrightarrow{f^{\sharp} = f^{\flat}(-)^{\operatorname{sh}}} \operatorname{Shv}(X)$ is a left-adjoint functor to $\operatorname{Shv}(X) \xrightarrow{f_*} \operatorname{Shv}(Y)$.

Example 2. (a) If f(U) is open in Y, then $(f^{\flat}\mathcal{G})(U) = \mathcal{G}(f(U))$.

- (b) If f(U) is open for any open subset U (i.e. if f is an open map) then (a) is a complete description of f^{\flat} .
- (c) If $f: X \to \{*\}$ is the projection to the one-point space and the category $Shv(\{*\})$ of sheaves on $\{*\}$ with values in the category \mathcal{A} of sets, abelian groups, rings, etc, is identified with \mathcal{A} and $A \in Ob(\mathcal{A})$, then

$$(f^{\flat}(A))(U) = \begin{cases} A & \text{if } U \neq \emptyset \\ \{0\} & \text{if } U = \emptyset \end{cases}$$
$$(f^{\sharp}(A))(U) = \{ f \colon U \to A \mid f \text{ is locally constant} \} .$$

- (d) If $V \xrightarrow{f} Y$ is the embedding of an open subset then $f^{\flat}\mathcal{G}(U) = \mathcal{G}(U)$ for open $U \subseteq V$. In other words, $f^{\flat}\mathcal{G} = \mathcal{G}|_{V}$ and the sheaf property is preserved. Thus, $f^{\sharp}\mathcal{G} = \mathcal{G}|_{V}$ if \mathcal{G} is a sheaf.
- (e) If $\{x\} \stackrel{\iota}{\longrightarrow} X$ is the inclusion of a point then

$$\iota^{\flat}\mathcal{G}(U) = \begin{cases} \mathcal{G}(\emptyset) & \text{if } U = \emptyset \\ \mathcal{G}_x & \text{if } U = \{x\} \end{cases}$$

which is a sheaf if \mathcal{G} is. Thus, $\iota^{\sharp}\mathcal{G}$ can be identified, under the identification of $Shv(\{x\})$ with \mathcal{A} made in (c), with \mathcal{G}_x .

1.3. Locally ringed spaces

Definition 1 (Ringed space). A **ringed space** is a pair (X, \mathcal{O}_X) consisting of a topological space X and a *structure sheaf* which is a sheaf of rings. A **locally ringed space** is ringed space (X, \mathcal{O}_X) such that for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring, called the *local ring* of X at x. Its maximal ideal is denoted $\mathfrak{m}_{X,x} \subseteq \mathcal{O}_{X,x}$, or sometimes just \mathfrak{m}_x . Finally, let $\mathfrak{K}(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ be the residue field.

Remark 1. Obviously, prevarieties (in the sense of Definition 1.1.2) are locally ringed spaces, $\mathcal{O}_{X,x}$ is the ring of germs of regular functions at x and $\mathfrak{m}_x = \{f \in \mathcal{O}_{X,x} \mid f(x) = 0\}$.

Definition 2 (Morphism of ringed spaces). A morphism of ringed spaces $X \xrightarrow{f} Y$ is a pair (f_{Top}, f^*) where $X \xrightarrow{f_{\text{Top}}} Y$ is a continuous map and $\mathcal{O}_Y \xrightarrow{f^*} (f_{\text{Top}})_* \mathcal{O}_X$ is a morphism of sheaves of rings (the index $_{\text{Top}}$ will be dropped very soon so that $(f_{\text{Top}})_*$ becomes only f_*). We call f_{Top} the topological and f^* the algebraic component of f.

The identity on (X, \mathcal{O}_X) is $\mathrm{id}_{(X, \mathcal{O}_X)} = (\mathrm{id}_X, \mathrm{id}_{\mathcal{O}_X})$. If $Y \stackrel{g}{\longrightarrow} Z$ is another morphism of ringed spaces, the composition gf is given by $(gf)_{\mathrm{Top}} = g_{\mathrm{Top}}f_{\mathrm{Top}}$ and $(gf)^*$ is the composition

$$\mathcal{O}_Z \xrightarrow{g^*} g_* \mathcal{O}_Y \xrightarrow{g_*(f^*)} g_* f_* \mathcal{O}_X = (gf)_* \mathcal{O}_X$$

It is easy to see that this defines a category of ringed spaces.

Remark. Locally ringed spaces will be a subcategory of it, but not a full subcategory.

Remark. As f^{\sharp} is left-adjoint to f_* (to be precise, we're actually considering $(f_{\text{Top}})_*$ and $(f_{\text{Top}})^{\sharp}$), giving $f^* \colon \mathcal{O}_Y \to f_* \mathcal{O}_X$ is equivalent to giving a morphism $f^{\sharp} \mathcal{O}_Y \to \mathcal{O}_X$ which is also denoted by f^* . Using this type of f^* we would still arrive at the same category, up to unique isomorphism of the sets of morphisms. In particular, we have

$$\mathcal{O}_{Y,f_{\mathrm{Top}}(x)} \simeq \iota_{\{f_{\mathrm{Top}}(x)\}}^{\sharp} \mathcal{O}_{Y} = \iota_{\{x\}}^{\sharp} (f^{\sharp} \mathcal{O}_{Y}) \xrightarrow{i_{\{x\}}^{\sharp} f^{*}} \iota_{\{x\}}^{\sharp} \mathcal{O}_{X} \simeq \mathcal{O}_{X,x} .$$

This yields a morphism $\mathcal{O}_{Y,f_{\text{Top}}(x)} \xrightarrow{f^*} \mathcal{O}_{X,x}$. Herein, $\iota_{\{x\}}$ and $\iota_{\{f_{\text{Top}}(x)\}}$ denote the inclusions $\{x\} \hookrightarrow X$ respectively $\{f_{\text{Top}}(x)\} \hookrightarrow Y$. The equality $\iota_{\{f_{\text{Top}}(x)\}}^{\sharp} \mathcal{O}_Y = \iota_{\{x\}}^{\sharp} (f^{\sharp} \mathcal{O}_Y)$ follows from the fact that \mathcal{O}_Y and $f^{\sharp} \mathcal{O}_Y$ have the same stalk at $f_{\text{Top}}(x)$, namely $\mathcal{O}_{Y,f_{\text{Top}}(x)}$ (quite easy to check). The arrow $\iota_{\{x\}}^{\sharp} f^*$ should be read as the functor $\iota_{\{x\}}^{\sharp} \colon \text{Shv}(X) \to \text{Shv}(\{x\})$ applied to the morphism $f^* \colon f^{\sharp} \mathcal{O}_Y \to \mathcal{O}_X$.

This may be described directly in terms of structures occurring in Definition 1:

Definition 2a. For $f: X \to Y$ a morphism of ringed spaces, we define $\mathcal{O}_{Y, f_{\text{Top}}(x)} \xrightarrow{f^*} \mathcal{O}_{X, x}$ as the unique morphism such that

$$\mathcal{O}_{Y}(U) \xrightarrow{f^{*}} f_{*}\mathcal{O}_{X}(U) \ (= \mathcal{O}_{X}(f^{-1}U))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,f_{\text{Top}}(x)} \xrightarrow{f^{*}} \mathcal{O}_{X,x}$$

commutes. We can characterize $\mathcal{O}_{Y,f_{\text{Top}}(x)} \xrightarrow{f^*} \mathcal{O}_{X,x}$ explicitly as the composition

$$\mathcal{O}_{Y,f_{\operatorname{Top}}(x)} \xrightarrow{(f^*)_{f_{\operatorname{Top}}(x)}} (f_*\mathcal{O}_X)_{f_{\operatorname{Top}}(x)} \xrightarrow{(f_{\operatorname{Top}})_x^*} \mathcal{O}_{X,x} .$$

As you might have noticed, the symbol * is massively overloaded and deserves a careful explanation: The left arrow in the above composition means the stalk at $f_{\text{Top}}(x)$ of the algebraic component f^* of f. The right arrow is the kind of morphism of stalks we defined in Remark 1.2.3, (1.2.2).

The symbol * in the index, however, always means the direct image from Definition 1.2.4.

Definition 3 (Vanishing set). Let X be a locally ringed space, $f \in \mathcal{O}_X(U)$, then we define its vanishing set by

$$V(f) = \{x \in U \mid \text{image of } f \text{ under } \mathcal{O}_X(U) \to \mathcal{O}_{X,x} \text{ is in } \mathfrak{m}_x\}.$$

Remark. (a) In view of what was recalled for prevarieties, this extends our previous definition of V(f) in that case.

(b) $V(f) \cap V(g) \subseteq V(f+g)$ (as $\mathfrak{m}_x \subseteq \mathcal{O}_{X,x}$ is an ideal) and $V(fg) = V(f) \cup V(g)$ (as \mathfrak{m}_x is a prime ideal) and $V(f|_W) = V(f) \cap W$ if $W \subseteq U$ is open (pretty obvious).

Fact 1. For $f \in \mathcal{O}_X(U)$, $V(f) \subseteq U$ is closed. When f is nilpotent, V(f) = U.

Proof. Let $x \in U \setminus V(f)$. The image of φ of f in $\mathcal{O}_{X,x}$ has an inverse ψ which is the image of $g \in \mathcal{O}_X(W)$ where W is an open neighbourhood of x. Replacing W by $W \cap U$ and g by $g|_{W \cap U}$ we may assume $W \subseteq U$, and shrinking W further (using the definition of stalk) we may assume $f|_{W} \cdot g = 1$ in $\mathcal{O}_X(W)$. For $g \in W$ the image of $g \in \mathcal{O}_X(Y)$ has an inverse given by $g \in \mathcal{O}_X(Y)$ is open.

If f is nilpotent, say, $f^n = 0$, then $U = V(0) = V(f^n) = \bigcup_{i=1}^n V(f) = V(f)$ by (b) of the previous remark. q.e.d.

Definition 4. (a) Let (R, \mathfrak{m}_R) and (S, \mathfrak{m}_S) be local rings with their respective maximal ideals. A ring homomorphism $R \xrightarrow{\varphi} S$ is **local** iff $\varphi^{-1}(\mathfrak{m}_S) = \mathfrak{m}_R$.

- (b) A morphism of locally ringed spaces is a morphism $X \xrightarrow{f} Y$ of ringed spaces such that X and Y are locally ringed spaces and such that the following equivalent conditions hold
 - (α) For any open subset $U \subseteq Y$ and $\lambda \in \mathcal{O}_Y(U)$ we have $V(f^*\lambda) = f^{-1}(V(\lambda))$.
 - (β) For arbitrary $x \in X$, the ring morphism $\mathcal{O}_{Y,f(x)} \xrightarrow{f^*} \mathcal{O}_{X,x}$ is local in the sense of (a).

Remark. (a) A composition of local ring morphisms is local.

- (b) Note that for a ring morphism $R \xrightarrow{\varphi} S$ where R and S are local, we automatically have that $\varphi^{-1}(\mathfrak{m}_S) \subseteq \mathfrak{m}_R$ as φ maps $R^{\times} = R \setminus \mathfrak{m}_R$ to $S^{\times} = S \setminus \mathfrak{m}_S$. Thus, to verify that φ is local it is only necessary to show $\varphi(\mathfrak{m}_R) \subseteq \mathfrak{m}_S$.
- (c) It is obvious that a composition of morphisms of locally ringed spaces is a morphism of locally ringed spaces. Also, id_X is a morphism of locally ringed spaces. Thus, locally ringed spaces form a subcategory (but not a full subcategory) of the category of ringed spaces.

Proof of Definition 4. We first prove $(\beta) \Rightarrow (\alpha)$. Let (β) hold for given $X \xrightarrow{f} Y$ of ringed spaces, with X and Y locally ringed, then in the situation of (α) we have

$$V(f^*\lambda) = \left\{ x \in f^{-1}(U) \mid (\text{image of } f^*\lambda \text{ in } \mathcal{O}_{X,x}) \in \mathfrak{m}_{X,x} \right\}$$

$$\stackrel{\text{Def. 2a}}{=} \left\{ x \in f^{-1}(U) \mid f^*(\text{image of } \lambda \text{ in } \mathcal{O}_{X,x}) \in \mathfrak{m}_{X,x} \right\}$$

$$\stackrel{(\beta)}{=} \left\{ x \in f^{-1}(U) \mid (\text{image of } \lambda \text{ in } \mathcal{O}_{Y,f(x)}) \in \mathfrak{m}_{Y,f(x)} \right\}$$

$$= \left\{ x \in f^{-1}(U) \mid f(x) \in V(\lambda) \right\}$$

$$= f^{-1}(V(\lambda)).$$

To prove $(\alpha) \Rightarrow (\beta)$, let $x \in X$, y = f(x), $\ell \in \mathfrak{m}_{Y,y}$. We need to show $f^*\ell \in \mathfrak{m}_{X,x}$. There are an open neighbourhood U of y and $\lambda \in \mathcal{O}_Y(U)$ such that ℓ is the image of λ in $\mathcal{O}_{Y,y}$. Then $y \in V(\lambda)$, hence $x \in f^{-1}(V(\lambda)) = V(f^*\lambda)$. Thus $f^*\ell$ is in $\mathfrak{m}_{X,x}$ as it is the image of $f^*\lambda$ in $\mathcal{O}_{X,x}$.

- **Fact 2.** (a) We have $f^{-1}(V(\lambda)) = V(f^*\lambda)$ when f is a morphism of locally ringed spaces.
 - (b) Let $f: X \to Y$ be a morphism in LRS (the category of locally ringed spaces), $x \in X$, y = f(x). Since $f^*(\mathfrak{m}_{Y,y}) \subseteq \mathfrak{m}_{X,x}$, we have a ring morphism of the residue fields

$$\mathfrak{K}(y) \xrightarrow{f^*} \mathfrak{K}(x)$$

induced by $\mathcal{O}_{Y,y} \xrightarrow{f^*} \mathcal{O}_{X,x}$. If $Y \xrightarrow{g} Z$ is another morphism in LRS and z = g(y), then

commutes.

- (c) Let R, S, T be local rings with maximal ideals $\mathfrak{m}_R, \mathfrak{m}_S, \mathfrak{m}_T$ and $R \stackrel{\rho}{\longrightarrow} S \stackrel{\sigma}{\longrightarrow} T$ (not necessarily local) morphism of rings.
 - (i) If ρ and σ are local, then so is $\sigma \rho$.
 - (ii) If $\sigma \rho$ is local, then so is ρ . Note that in the lecture we made the additional but unnecessary assumption that σ must be local as well.
 - (iii) If $\sigma \rho$ is local and ρ is surjective, then σ is local.
- (d) Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be morphisms in the category of ringed spaces, where X,Y,Z are locally ringed.
 - (i) If f and g are morphisms of locally ringed spaces, then so is gf.
 - (ii) If gf is a morphism of locally ringed spaces and $X \xrightarrow{f_{\text{Top}}} Y$ is surjective, then g is a morphism of locally ringed spaces. As in (c), in the lecture we made the unnecessary assumption that f is a morphism of locally ringed spaces as well.
 - (iii) If gf is a morphism of locally ringed spaces and $g^*: \mathcal{O}_{Z,z} \to \mathcal{O}_{Y,y}$ is surjective for all $y \in Y$ and z = g(y), then f is a morphism of locally ringed spaces.

Proof. (a) is just (α) from Definition 4(b). We got it, ok?

Part (b) is immediately follows from the fact that $\mathcal{O}_{Z,z} \xrightarrow{g^*} \mathcal{O}_{Y,y} \xrightarrow{f^*} \mathcal{O}_{X,x}$ equals $\mathcal{O}_{Z,z} \xrightarrow{(gf)^*} \mathcal{O}_{X,x}$ by Remark 1.2.3.

Now about part (c). Point (i) is trivial. For (ii), note that $\sigma^{-1}(\mathfrak{m}_T) \subseteq \mathfrak{m}_S$ by this remark, hence

$$\rho^{-1}(\mathfrak{m}_S) \supseteq \rho^{-1}(\sigma^{-1}(\mathfrak{m}_T)) = (\sigma\rho)^{-1}(\mathfrak{m}_T) = \mathfrak{m}_R$$

since $\sigma \rho$ is local. On the other hand, $\rho^{-1}(\mathfrak{m}_S) \subseteq \mathfrak{m}_R$ (again by this remark), proving $\rho^{-1}(\mathfrak{m}_S) = \mathfrak{m}_R$, that is, ρ is local.

For point (iii), we may assume that S = R/I for some proper ideal $I \subseteq R$. Then $I \subseteq \mathfrak{m}_R$, hence $\mathfrak{m}_R \to \mathfrak{m}_S = \mathfrak{m}_R/I$ is surjective. We thus obtain

$$\sigma(\mathfrak{m}_S) = \sigma(\rho(\mathfrak{m}_R)) \subseteq \mathfrak{m}_T ,$$

the inclusion due to the fact that $\sigma \rho$ is local. This shows that σ is local as well.

Part (e) now reduces to (d) by considering $\mathcal{O}_{Z,z} \xrightarrow{g^*} \mathcal{O}_{Y,y} \xrightarrow{f^*} \mathcal{O}_{X,x}$, where y = f(x), z = g(y). Note that for (ii) we do need the extra condition that $X \xrightarrow{f_{\text{Top}}} Y$ is surjective, otherwise we wouldn't know anything about the $y \notin f_{\text{Top}}(X)$. q.e.d.

Fact 3. If $R \xrightarrow{\varphi} S$ is a surjective ring homomorphism where (R, \mathfrak{m}_R) and (S, \mathfrak{m}_S) are local rings, then φ is local.

Proof. Since φ is surjective, it induces an isomorphism $\overline{\varphi} \colon R/\ker \varphi \xrightarrow{\sim} S$. As local rings are forbidden to be the zero ring, $\ker \varphi$ must be a proper ideal of R and hence contained in \mathfrak{m}_R . Then φ maps \mathfrak{m}_R to $\mathfrak{m}_R/\ker \varphi = \mathfrak{m}_S$.

Example 1. Let $U \subseteq X$ be an open subset, let $\iota: U \to X$ its embedding, where (X, \mathcal{O}_X) is a locally ringed space, and let $\mathcal{O}_U = \mathcal{O}_X|_U$. Let $\iota^* \colon \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V) = \mathcal{O}_X(\iota^{-1}(V))$ be given by $(-)|_{U \cap V} \colon \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V)$. It follows that $\mathcal{O}_{X,x} \xrightarrow{\iota^*} \mathcal{O}_{U,x}$, for $x \in U$, is an isomorphism (the canonical isomorphism $(\mathcal{O}_X|_U)_x \xrightarrow{\sim} \mathcal{O}_{X,x}$), hence local. Hence ι is a morphism in LRS, and

$$\operatorname{Hom}_{\operatorname{LRS}}(T,U) \xrightarrow{\sim} \{g \in \operatorname{Hom}_{\operatorname{LRS}}(T,X) \mid g(T) \subseteq U\}$$

$$f \longmapsto g = \iota f$$
(Fact 5)

Fact 4. If $X \stackrel{\iota}{\longrightarrow} Y$ is a morphism in LRS such that ι_{Top} is an injective map and such that for any $x \in X$, $\iota_x^* \colon \mathcal{O}_{Y,\iota(x)} \to \mathcal{O}_{X,x}$ is surjective, then ι is a monomorphism in LRS.

Proof. It suffices to note that ι_{Top} is a monomorphism of topological spaces and ι^* an epimorphism of sheaves on Y (since it stalk-wise an epimorphism). q.e.d.

Proposition 1. Let $X \stackrel{a}{\Longrightarrow} Y$ be morphisms in LRS. Then an equalizer of these morphisms is given as follows

• Let

$$K = \left\{ x \in X \;\middle|\; \begin{array}{l} a(x) = b(x) \ and \ \Re(y) \stackrel{a^*}{\Longrightarrow} \Re(x) \ (\textit{the morphisms induced} \\ \textit{on the residue fields) coincide, where } y \coloneqq a(x) = b(x) \end{array} \right\} \;,$$

equipped with the subspace topology induced from X.

• Let $\mathcal{O}_{K,[k]} = \operatorname{Coeq}\left(\mathcal{O}_{Y,y} \xrightarrow{a^*} \mathcal{O}_{X,k}\right)$ where y = a(k) = b(k). The square brackets are to indicate that we do not yet know if the pretender stalk $\mathcal{O}_{K,[k]}$ is really the stalk at k of the yet-to-define structure sheaf \mathcal{O}_K (spoiler: it is).

• Let for open $U \subseteq K$

$$\mathcal{O}_{K}(U) = \left\{ (f_{k}) \in \prod_{k \in U} \mathcal{O}_{K,[k]} \middle| \begin{array}{l} \textit{for every } \ell \in U, \textit{ there are an open neighbourhood} \\ \ell \in V \subseteq X \textit{ and } \varphi \in \mathcal{O}_{X}(V) \textit{ such that for every} \\ k \in U \cap V, f_{k} \textit{ is equal to the image of } \varphi \textit{ under} \\ \mathcal{O}_{X}(V) \to \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{array} \right\}$$

The ring operations $* \in \{+, \cdot\}$ on $\mathcal{O}_K(U)$ are defined component-wise via

$$(f_x)_{x \in U} * (g_x)_{x \in U} = (f_x * g_x)_{x \in U}$$
.

• The morphism $K \xrightarrow{\kappa} X$ is given by the inclusion $K \subseteq X$ and $\kappa^* : \mathcal{O}_X \to \kappa_* \mathcal{O}_K$ is defined as follows: For $\varphi \in \mathcal{O}_X(U)$, define

$$\kappa^*(\varphi) = \begin{pmatrix} image \ of \ \varphi \ under \ the \ composition \\ \mathcal{O}_X(U) \to \prod_{x \in U \cap K} \mathcal{O}_{X,x} \to \prod_{x \in (U \cap K)} \mathcal{O}_{K,[x]} \end{pmatrix} \in \mathcal{O}_K(K \cap U) = \kappa_* \mathcal{O}_K(U) \ .$$

Moreover, we have an isomorphism

$$\mathcal{O}_{K,k} \xrightarrow{\sim} \mathcal{O}_{K,[k]}$$
$$(U,(f_{\ell})_{\ell \in U})/_{\sim} \longmapsto f_{k}$$

Proof. The following steps are rather trivial:

- K is a topological space, κ is continuous, $\mathcal{O}_{K,[k]}$ is a local ring (by Fact A.3.1 about coequalizers of local ring morphisms, also see exercise sheet #5), and $\mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]}$ is local (it is, in fact, a quotient projection, i.e. surjective).
- \mathcal{O}_K is a sheaf of rings, $\mathcal{O}_X \xrightarrow{\kappa^*} \kappa_* \mathcal{O}_K$ is a morphism of sheaves of rings.

Step 1. We start proving that $\mathcal{O}_{K,k} \xrightarrow{\sim} \mathcal{O}_{K,[k]}$ is indeed an isomorphism.

To show injectivity of $\mathcal{O}_{K,k} \to \mathcal{O}_{K,[k]}$, let $U \subseteq K$ be an open neighbourhood of k and let $f = (f_{\ell})_{\ell \in U} \in \mathcal{O}_K(U) \subseteq \prod_{\ell \in U} \mathcal{O}_{K,[\ell]}$ be such that f_k vanishes. We have to show that the image if f in $\mathcal{O}_{K,k}$ vanishes. By the coherence condition for sections of \mathcal{O}_K , there are an open neighbourhood V of k in X and $\varphi \in \mathcal{O}_X(V)$ such that

$$f_{\ell} = \begin{pmatrix} \text{image of } \varphi \text{ under} \\ \mathcal{O}_X(V) \to \mathcal{O}_{X,\ell} \to \mathcal{O}_{K,[\ell]} \end{pmatrix} \quad \text{for } \ell \in U \cap V \text{ .}$$

Shrinking U if necessary, we may assume $V \cap K \supseteq U$. Let φ_k be the image of φ in $\mathcal{O}_{X,k}$ and y = a(k) = b(k). By Fact A.3.1 we have $\mathcal{O}_{K,[k]} = \mathcal{O}_{X,k}/I$, where I is the ideal $I = (a^*(v) - b^*(v) \mid v \in \mathcal{O}_{Y,y}) \subseteq \mathcal{O}_{X,k}$. As we assume that f_k vanishes,

$$0 = f_k = (\varphi_k \mod I) \in \mathcal{O}_{K,[k]} = \mathcal{O}_{X,k}/I,$$

hence we have $\rho_1, \ldots, \rho_N \in \mathcal{O}_{X,k}$ and $v_1, \ldots, v_N \in \mathcal{O}_{Y,y}$ such that

$$\varphi_k = \sum_{i=1}^{N} \rho_i (a^*(v_i) - b^*(v_i)) .$$

By the definitions of $\mathcal{O}_{X,k}$ and $\mathcal{O}_{Y,y}$ there are open neighbourhoods W and $\Omega_1, \ldots, \Omega_N$ of k in X and $r_i \in \mathcal{O}_X(\Omega_i)$ such that $\rho_i = (r_i)_k$. Moreover, there are open neighbourhoods $\Theta_1, \ldots, \Theta_N$ of y in Y and $y_i \in \mathcal{O}_Y(\Theta_i)$ satisfying $(y_i)_y = v_i$, such that

$$W \subseteq V \cap \bigcap_{i=1}^{N} \Omega_i \cap \bigcap_{i=1}^{N} \left(a^{-1}(\Theta_i) \cap b^{-1}(\Theta_i) \right)$$

and finally

$$\varphi|_W = \sum_{i=1}^N r_i|_W \cdot (a^*(y_i)|_W - b^*(y_i)|_W).$$

For $\ell \in W \cap K$, φ_{ℓ} is the image of the above expression in $\mathcal{O}_{X,\ell}$, hence

$$\varphi_{\ell} \in \left(a^*(v) - b^*(v) \mid v \in \mathcal{O}_{Y,a(\ell)} = \mathcal{O}_{Y,b(\ell)}\right)_{\mathcal{O}_{X,\ell}}$$

and $f_{\ell} = 0$ as $\mathcal{O}_{K,[\ell]}$ is the quotient of $\mathcal{O}_{X,\ell}$ by the ideal on the right hand side. Thus, $f|_{U \cap W} = 0$, proving the injectivity claim.

Surjectivity is somewhat easier. Let $\gamma \in \mathcal{O}_{K,[k]}$, and choose a preimage $\gamma' \in \mathcal{O}_{X,k}$ of γ under the quotient projection $\mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} = \mathcal{O}_{X,k}/I$. There are an open neighbourhood $k \in V \subseteq X$ and $\varphi \in \mathcal{O}_X(V)$ such that γ' is the image of φ in $\mathcal{O}_{X,k}$. Let $U = V \cap K$ and $f = \kappa^* \varphi \in \kappa_* \mathcal{O}_K(V) = \mathcal{O}_K(V \cap K) \mathcal{O}_K(U)$, then the component f_k of f at k equals

$$f_k = \begin{pmatrix} \text{image of } \varphi \text{ under} \\ \mathcal{O}_X(V) \to \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{pmatrix} = \begin{pmatrix} \text{image of } \gamma' \text{ under} \\ \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{pmatrix} = \gamma ,$$

proving surjectivity.

Hence, (K, \mathcal{O}_K) is a locally ringed space and κ is a morphism of locally ringed spaces. Indeed, κ is a morphism of ringed spaces and $\mathcal{O}_{X,k} \xrightarrow{\kappa^*} \mathcal{O}_{K,k} \simeq \mathcal{O}_{X,k}/I$ is surjective and thus local by Fact 3.

Step 2. We check that $K \xrightarrow{\kappa} X$ equalizes $X \xrightarrow{a} Y$.

The fact that $a\kappa = b\kappa$ is a trivial consequence of the definition of K as far as only the topological component is concerned. For the algebraic component, let $V \subseteq Y$ be open, $U = a^{-1}(V) \cap K = b^{-1}(V) \cap K$ and let $\lambda \in \mathcal{O}_K(V)$. We need to show that $\kappa^* a^* \lambda = \kappa^* b^* \lambda$. Indeed, let y = a(k) = b(k). Using that

$$\mathcal{O}_{Y}(V) \xrightarrow{a^{*}} \mathcal{O}_{X}(a^{-1}V) = a_{*}\mathcal{O}_{X}(V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,y} \xrightarrow{a^{*}} \mathcal{O}_{X,k}$$

commutes (analogously for b) and the fact that $\mathcal{O}_{Y,y} \xrightarrow[b^*]{a^*} \mathcal{O}_{X,k}$ is coequalized by $\mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]}$ we get

$$\begin{split} \kappa^* a^* \lambda &= \left(\begin{array}{c} \operatorname{image \ of \ } a^* \lambda \ \operatorname{under} \\ \mathcal{O}_X(a^{-1}V) \to \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{array} \right)_{k \in U} = \left(\begin{array}{c} \operatorname{image \ of \ } \lambda \ \operatorname{under} \\ \mathcal{O}_Y(V) \to \mathcal{O}_{Y,y} \xrightarrow{a^*} \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{array} \right)_{k \in U} \\ &= \left(\begin{array}{c} \operatorname{image \ of \ } \lambda \ \operatorname{under} \\ \mathcal{O}_Y(V) \to \mathcal{O}_{Y,y} \xrightarrow{b^*} \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{array} \right)_{k \in U} = \left(\begin{array}{c} \operatorname{image \ of \ } b^* \lambda \ \operatorname{under} \\ \mathcal{O}_X(b^{-1}V) \to \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{array} \right)_{k \in U} \\ &= \kappa^* b^* \lambda \ . \end{split}$$

Step 3. The last thing to check is the universal property.

Let $T \xrightarrow{\tau} X$ be a morphism in the category of locally ringed spaces such that $a\tau = b\tau$. For $t \in T$ put $k = \tau(t)$ and we have a(k) = b(k) =: y. Moreover, the compositions of pull-backs on residue fields

$$\mathfrak{K}(y) \xrightarrow{a^*} \mathfrak{K}(k) \xrightarrow{\tau^*} \mathfrak{K}(t)$$

must coincide with

$$\mathfrak{K}(y) \xrightarrow{(a\tau)^* = (b\tau)^*} \mathfrak{K}(t)$$
.

As $\mathfrak{K}(k) \xrightarrow{\tau^*} \mathfrak{K}(t)$ is injective (any ring morphism between fields is injective), it follows that $\mathfrak{K}(y) \xrightarrow[b^*]{a^*} \mathfrak{K}(k)$ coincide. Thus $k \in K$ by definition of K and we obtain a map $T \xrightarrow{\vartheta} K$ such that $\kappa(\vartheta(t)) = \tau(t)$ and $a(\vartheta(t)) = b(\vartheta(t))$ for $t \in T$. This map is continuous because K carries the induced topology with respect to X and for open subsets $V \subseteq X$, $\theta^{-1}(V \cap K) = \tau^{-1}(V)$ is open in T.

Let $U \subseteq K$ be an open subset and $\lambda = (\lambda_k)_{k \in U} \in \mathcal{O}_K(U) \subseteq \prod_{k \in U} \mathcal{O}_{K,[k]}$. For $t \in T$ and $y = a(\vartheta(t)) = b(\vartheta(t))$, the morphism $\mathcal{O}_{X,\vartheta(t)} \xrightarrow{\tau^*} \mathcal{O}_{T,t}$ coequalizes the pair $\mathcal{O}_{Y,y} \xrightarrow[b^*]{a^*} \mathcal{O}_{X,\vartheta(t)}$, hence factors over

$$\mathcal{O}_{X,\vartheta(t)} \longrightarrow \mathcal{O}_{K,[\vartheta(t)]} \stackrel{\widetilde{\tau}_t}{\longrightarrow} \mathcal{O}_{T,t}$$
.

We claim that

$$\widetilde{\tau}^* \lambda = \left(\widetilde{\tau}_t \left(\lambda_{\vartheta(t)} \right) \right)_{t \in \vartheta^{-1} U} \in \prod_{t \in \vartheta^{-1} U} \mathcal{O}_{T,t} \tag{*}$$

belongs to the image of $\mathcal{O}_T(\vartheta^{-1}U)$ in $\prod_{t\in\vartheta^{-1}U}\mathcal{O}_{T,t}$. Believing this for the moment, we finish the rest of the proof. From (*) we obtain a morphism $\vartheta^*\colon \mathcal{O}_K(U)\to \mathcal{O}_T(\vartheta^{-1}U)$ such that the image of $\vartheta^*\lambda$ in $\prod_{t\in\vartheta^{-1}U}\mathcal{O}_{T,t}$ equals $\tilde{\tau}^*\lambda$. It is rather easy to show that $\vartheta^*\colon \mathcal{O}_K\to \vartheta_*\mathcal{O}_T$ is a morphism of sheaves of rings, thus turning ϑ into a morphism of ringed spaces satisfying $\tau=\kappa\vartheta$ (which may be easily checked on stalks). Since $\mathcal{O}_{X,k}\xrightarrow{\kappa^*}\mathcal{O}_{K,k}\simeq \mathcal{O}_{X,k}/I$ is surjective, Fact 2(d)(iii) tells us that ϑ is indeed a morphism of locally ringed spaces.

We need to show that ϑ is unique. As before, the topological component is easy: As $K \xrightarrow{\kappa_{\text{Top}}} X$ is injective, it follows that ϑ_{Top} is uniquely determined by $\tau = \kappa \vartheta$. Now for the algebraic component. As $\mathcal{O}_{X,\kappa(\vartheta(t))} \xrightarrow{\kappa^*} \mathcal{O}_{K,\vartheta(t)} = \mathcal{O}_{K,\tau(t)}$ is surjective, it follows that $\vartheta^* \colon \mathcal{O}_{K,\vartheta(t)} \to \mathcal{O}_{T,t}$ is uniquely determined by τ and the commutativity of

$$\mathcal{O}_{X,\kappa(\vartheta(t))} \xrightarrow{\kappa^*} \mathcal{O}_{K,\tau(t)}$$

$$\uparrow^* \qquad \qquad \downarrow^{\vartheta^*}$$

$$\mathcal{O}_{T,t}$$

which again follows from $\tau = \kappa \vartheta$. As

$$\begin{array}{ccc} \mathcal{O}_K(U) & \stackrel{\vartheta^*}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathcal{O}_T(\vartheta^{-1}U) \\ \downarrow & & \downarrow \\ \prod_{k \in U} \mathcal{O}_{K,k} & \stackrel{\vartheta^*}{-\!\!\!\!-\!\!\!\!-\!\!\!-} \prod_{t \in \vartheta^{-1}U} \mathcal{O}_{T,t} \end{array}$$

commutes, it follows that $\vartheta^* \colon \mathcal{O}_K(U) \to \mathcal{O}_T(\vartheta^{-1}U)$ is also uniquely determined by this condition. Therefore, the algebraic component $\vartheta^* \colon \mathcal{O}_K \to \vartheta_* \mathcal{O}_T$ is also uniquely determined, which proves the universal property.

Step 4. It remains to verify (*), i.e. that the coherence condition characterizing the image of $\mathcal{O}_T(\vartheta^{-1}U)$ in $\prod_{t\in\vartheta^{-1}U}\mathcal{O}_{T,t}$ is satisfied. For this purpose let $z\in\vartheta^{-1}U$. By the coherence condition for $\lambda\in\mathcal{O}_K(U)$, there are an open neighbourhood V of $\kappa(\vartheta(z))=\tau(z)$ in X and $\ell\in\mathcal{O}_X(V)$ such that

$$\lambda_k = \begin{pmatrix} \text{image of } \ell \text{ under} \\ \mathcal{O}_X(V) \to \mathcal{O}_{X,k} \to \mathcal{O}_{K,[k]} \end{pmatrix} \text{ for all } k \in U \cap V .$$

When $t \in \vartheta^{-1}U \cap \tau^{-1}V =: W$ (which is an open neighbourhood of z in T), this may be applied to $k = \vartheta(t) = \tau(t)$ and gives

$$\widetilde{\tau}_t(\lambda_k) = \begin{pmatrix} \text{image of } \tau^* \ell \text{ under} \\ \mathcal{O}_T(\tau^{-1} V) \to \mathcal{O}_T(W) \to \mathcal{O}_{T,t} \end{pmatrix}$$

by the commutativity of

$$\mathcal{O}_{X}(V) \xrightarrow{\tau^{*}} \mathcal{O}_{T}(\tau^{-1}V) = \tau_{*}\mathcal{O}_{T}(V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{X,k} \xrightarrow{\tau^{*}} \mathcal{O}_{T,t}$$

$$\uparrow_{\widetilde{\tau}_{k}}$$

$$\mathcal{O}_{K,k}$$

It follows that

$$\widetilde{\tau}^* \lambda = \begin{pmatrix} \text{image of } \tau^* \ell \text{ under} \\ \mathcal{O}_T(\tau^{-1} V) \to \mathcal{O}_T(W) \to \prod_{t \in W} \mathcal{O}_{T,t} \end{pmatrix}.$$

Since such a neighbourhood W may be found for any $z \in \vartheta^{-1}U$, $\tilde{\tau}^*\lambda$ desires the satisfied coherence condition. q.e.d.

Corollary 1. Let $X \stackrel{f}{\Longrightarrow} Y$ be a pair of morphisms of locally ringed spaces and $K \stackrel{\kappa}{\longrightarrow} X$ be an equalizer of that pair:

- (a) κ is a homeomorphism of K onto a subset of X which is equipped with the induced topology.
- (b) $\kappa^* : \mathcal{O}_{X,\kappa(k)} \to \mathcal{O}_{K,k}$ is surjective for all $k \in K$.
- (c) If $U \subseteq X$ is open, then $\kappa^{-1}(U) \xrightarrow{\kappa|_U} U$ is an equalizer of $U \xrightarrow[q]_U} Y$.

Proof. All of this is rather trivial.

q.e.d.

Remark. If $Y \xrightarrow{j} Z$ is a monomorphism, then the equalizers of jf with jg and of f with g are canonically isomorphic. This holds in any category as the equalizer represents

$$\{\tau \in \operatorname{Hom}(T, X) \mid f\tau = g\tau\} = \{\tau \in \operatorname{Hom}(T, X) \mid jf\tau = jg\tau\}.$$

Fibre products. Our goal now is to characterize fibre products of locally ringed spaces. Let $X \xrightarrow{\xi} S \xrightarrow{v} Y$ be morphisms of locally ringed spaces. For $U \subseteq X$, $V \subseteq Y$, $W \subseteq S$ open subsets in their respective spaces such that $\xi(U) \cup v(V) \subseteq W$ we put

$$\mathcal{R}(U,V;W) := \mathcal{O}_X(U) \otimes_{\mathcal{O}_S(W)} \mathcal{O}_Y(V)$$
 and also $\mathcal{R}(U,V) := \mathcal{R}(U,V;S)$.

For open subsets $\widetilde{U} \subseteq U$, $\widetilde{V} \subseteq V$, and $\widetilde{W} \subseteq W$ we have a ring homomorphism

$$\mathcal{R}(U,V;W) = \mathcal{O}_X \otimes_{\mathcal{O}_S(W)} \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(\widetilde{U}) \otimes_{\mathcal{O}_S(\widetilde{W})} \mathcal{O}_Y(\widetilde{V}) = \mathcal{R}(\widetilde{U},\widetilde{V};\widetilde{W})$$
$$f \otimes g \longmapsto (f|_{\widetilde{U}}) \otimes (g|_{\widetilde{V}})$$

denoted $(-)|_{\widetilde{U},\widetilde{V};\widetilde{W}}$ or $(-)|_{\widetilde{U},\widetilde{V}}$.

Remark. If $U = \widetilde{U}$, $V = \widetilde{V}$ then $(-)|_{U,V;\widetilde{W}} : \mathcal{R}(U,V;W) \to \mathcal{R}(U,V;\widetilde{W})$ is surjective and $\varinjlim \mathcal{R}(U,V;W) = \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}$ where we take the colimit over all triples (U,V;W) such that $x \in U$, $y \in V$ and $s \in W$.

We're now prepared to describe the fibre product $F = X \times_S Y$:

• Underlying set. Set-theoretically, $F = X \times_S Y$ is given by

$$F = X \times_S Y = \left\{ (x, y, \mathfrak{p}) \, \middle| \, \begin{array}{l} x \in X, \, y \in Y \text{ such that } \xi(x) = \upsilon(y) \eqqcolon s \text{ and the} \\ \text{prime ideal } \mathfrak{p} \in \operatorname{Spec} \left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \right) \text{ satisfies} \\ \alpha^{-1}(\mathfrak{p}) = \mathfrak{m}_{X,x} \text{ and } \beta^{-1}(\mathfrak{p}) = \mathfrak{m}_{Y,y} \end{array} \right\}$$

Herein, as usual $\mathfrak{m}_{X,x}$ and $\mathfrak{m}_{Y,y}$ denote the maximal ideals of $\mathcal{O}_{X,x}$ respectively $\mathcal{O}_{Y,y}$ and the morphisms α, β are given by $\alpha(\lambda) = \lambda \otimes 1$ for $\lambda \in \mathcal{O}_{X,x}$ and $\beta(\vartheta) = 1 \otimes \vartheta$ for $\vartheta \in \mathcal{O}_{Y,y}$.

• Topology. The sets of the form

$$\Omega(U, V, \theta) \coloneqq \left\{ (x, y, \mathfrak{p}) \middle| \begin{array}{c} x \in U, y \in V \text{ and } \mathfrak{p} \text{ doesn't contain the} \\ \text{image of } \theta \text{ under } \mathcal{R}(U, V) \to \mathcal{O}_{X, x} \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{Y, y} \end{array} \right\}$$

form a topology base of F (in view of the above-mentioned surjectivity we only need to consider $\mathcal{R}(U,V)$ rather than all $\mathcal{R}(U,V;W)$).

• Structure sheaf. Let $\mathcal{O}_{F,[x,y,\mathfrak{p}]} = (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}}$. This pretender stalk eventually will turn out to be the actual stalk of \mathcal{O}_F at (x,y,\mathfrak{p}) . For $\Omega \subseteq F$ open the section of \mathcal{O}_F on Ω is

$$\mathcal{O}_F(\Omega) = \left\{ \lambda = \left(\lambda_{(x,y,\mathfrak{p})} \right)_{(x,y,\mathfrak{p}) \in \Omega} \in \prod_{(x,y,\mathfrak{p}) \in \Omega} \mathcal{O}_{F,[x,y,\mathfrak{p}]} \, \middle| \, \begin{array}{c} \lambda \text{ fulfills the} \\ coherence \ condition \end{array} \right\} \,.$$

The coherence condition says that every $\omega \in \Omega$ has an open neighbourhood $\Omega(U, V, \theta)$ together with an $\ell \in \mathcal{R}(U, V)_{\theta}$ such that for $(x, y, \mathfrak{p}) \in \Omega \cap \Omega(U, V, \theta)$ we have

$$\lambda_{(x,y,\mathfrak{p})} = \left(\begin{array}{c} \text{image of } \ell \text{ under } \mathcal{R}(U,V,\theta) = \left(\mathcal{O}_X(U) \otimes_{\mathcal{O}_S(S)} \mathcal{O}_Y(V) \right)_{\theta} \\ \to \left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \right)_{\theta} \to \left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \right)_{\mathfrak{p}} \end{array} \right) \ .$$

• Projections. We obtain projections $X \stackrel{p}{\longleftarrow} F \stackrel{p}{\longrightarrow} Y$ by $p(x,y,\mathfrak{p}) = x$ and $q(x,y,\mathfrak{p}) = y$. They are continuous, e.g. $p^{-1}(U) = \Omega(U,Y,1)$. For $f \in \mathcal{O}_X(U)$, $g \in \mathcal{O}_Y(V)$ we define the pullbacks p^* , q^* via

$$p^*f = \left(\begin{array}{c} \operatorname{image\ of\ } f \ \operatorname{under} \\ \mathcal{O}_X(U) \to \mathcal{O}_{X,x} \xrightarrow{\alpha} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}} \end{array}\right)_{(x,y,\mathfrak{p}) \in p^{-1}(U)}$$

$$q^*g = \left(\begin{array}{c} \operatorname{image\ of\ } g \ \operatorname{under} \\ \mathcal{O}_Y(V) \to \mathcal{O}_{Y,y} \xrightarrow{\beta} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}} \end{array}\right)_{(x,y,\mathfrak{p}) \in q^{-1}(V)}$$

Proposition 2. The above is the correct description of a fibre product $F = X \times_S Y$ of $X \xrightarrow{\xi} S \xleftarrow{v} Y$. Moreover, the morphism

$$image \ of \ (\lambda_{\omega}) \in \prod_{\omega \in \Omega} \mathcal{O}_{F,[\omega]} \longmapsto \lambda_{(x,y,\mathfrak{p})} \in \mathcal{O}_{F,[x,y,\mathfrak{p}]}$$

is an isomorphism.

Proof. Step 1. First we show that the $\Omega(U,V,\theta)$ form a base of a topology. We have $F=\Omega(X,Y,1)$ and $\emptyset=\Omega(X,Y,0)$ and $\Omega(U,V,\theta)\cap\Omega(\widetilde{U},\widetilde{V},\widetilde{\theta})=\Omega(U\cap\widetilde{U},V\cap\widetilde{V},(\theta|_{\Gamma})\cdot(\widetilde{\theta}_{\Gamma}))$ where $\Gamma=(U\cap\widetilde{U},V\cap\widetilde{V})$ for short. This suffices.

Step 2. Furthermore, \mathcal{O}_F is a sheaf of rings. Let $\lambda = (\lambda_\omega)$ and $\widetilde{\lambda} = (\widetilde{\lambda}_\omega)$ be sections in $\mathcal{O}_F(\Omega)$. We have to show that $\lambda * \widetilde{\lambda} \in \mathcal{O}_F(\Omega)$ for $* \in \{+,\cdot\}$. If $\ell \in \mathcal{R}(U,V)_\theta$ and $\widetilde{\ell} \in \mathcal{R}(\widetilde{U},\widetilde{V})_{\widetilde{\theta}}$ verify the coherence condition for λ respectively $\widetilde{\lambda}$ at $\omega \in \Omega$, then

$$\left(\begin{array}{c} \text{image of } \ell|_{\Gamma} \text{ under} \\ \mathcal{R}(\Gamma)_{\theta|_{\Gamma}} \to \mathcal{R}(\Gamma)_{\theta|_{\Gamma}} \cdot \widetilde{\theta}|_{\Gamma} \end{array}\right) * \left(\begin{array}{c} \text{image of } \widetilde{\ell}|_{\Gamma} \text{ under} \\ \mathcal{R}(\Gamma)_{\theta|_{\Gamma}} \to \mathcal{R}(\Gamma)_{\theta|_{\Gamma}} \cdot \widetilde{\theta}|_{\Gamma} \end{array}\right)$$

verifies the coherence condition for $\lambda * \widetilde{\lambda}$ at ω . Again, Γ denotes $(U \cap \widetilde{U}, V \cap \widetilde{V})$.

Step 3. We prove that the pretender stalks are isomorphic to the actual ones. This time, surjectivity first. Let $\lambda \in \mathcal{O}_{F,[x,y,\mathfrak{p}]} = (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}}$ be given as $\frac{\varphi}{\sigma}$ where φ and σ are elements of this tensor product and $\sigma \notin \mathfrak{p}$. Then there exist open neighbourhoods U of x and V of y as well as elements $f \in \mathcal{R}(U,V)$ and $t \in \mathcal{R}(U,V)$ such that the images of f and t in $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}$ equal φ and σ . Then $\frac{f}{t}$ defines an element of $\mathcal{O}_F(\Omega(U,V,t))$ whose image in $\mathcal{O}_{F,(x,y,\mathfrak{p})}$ is mapped to $\lambda = \frac{\varphi}{\sigma} \in \mathcal{O}_{F,[x,y,\mathfrak{p}]}$.

For injectivity, let $\lambda = (\lambda_{\omega}) \in \mathcal{O}_F(\Omega) \subseteq \prod_{\omega \in \Omega} \mathcal{O}_{F,[\omega]}$ and let $(x,y,\mathfrak{p}) \in \Omega$ such that $\lambda_{x,y,\mathfrak{p}}$ vanishes in $\mathcal{O}_{F,[x,y,\mathfrak{p}]}$. We must show that λ vanishes in some neighbourhood of (x,y,\mathfrak{p}) . By the coherence condition there is an open neighbourhood $\Omega(U,V,\theta)$ of (x,y,\mathfrak{p}) together with $\ell \in \mathcal{R}(U,V)_{\theta}$ such that the image of ℓ under $\mathcal{R}(U,V)_{\theta} \to \mathcal{O}_F(\Omega(U,V,\theta)) \to \mathcal{O}_F(\Omega \cap \Omega(U,V,\theta))$ equals the restriction $\lambda|_{\Omega \cap \Omega(U,V,\theta)}$ of λ to $\Omega \cap \Omega(U,V,\theta)$. Replacing Ω by $\Omega \cap \Omega(U,V,\theta)$ and λ by its restriction, we achieve that lambda itself equals this image. Let $\ell = \frac{n}{\theta}$ with $n \in \mathcal{R}(U,V)$ (we may w.l.o.g. assume the denominator is θ because localizing at an arbitrary power of θ still gives the same localization). Now $0 = \lambda_{(x,y,\mathfrak{p})}$ equals the image of ℓ under

$$\mathcal{R}(U,V)_{\theta} = (\mathcal{O}_X(U) \otimes_{\mathcal{O}_S(S)} \mathcal{O}_Y(V)) \longrightarrow (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}}.$$

Since $\lambda_{(x,y,\mathfrak{p})} = 0$, there is $h \in (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}) \setminus \mathfrak{p}$ such that $n \cdot h = 0$ in $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \simeq \varinjlim_{Q_{S,s}} \mathcal{O}_{X,y} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \simeq \varinjlim_{Q_{S,s}} \mathcal{O}_{X,y} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}$ and that $n \cdot \eta = 0$ in $\mathcal{R}(\widetilde{U},\widetilde{V};W)$. Replacing both η and θ by $\eta \cdot \theta$ as well as U by \widetilde{U} and V by \widetilde{V} , we may assume $U = \widetilde{U}$, $V = \widetilde{V}$ and $\eta = \theta$. Then the image of $\ell = \frac{n}{\theta}$ under $\mathcal{R}(U,V)_{\theta} \to \mathcal{R}(U,V;W)_{\theta}$ vanishes. But the map $\mathcal{R}(U,V)_{\theta} \to \mathcal{O}_{F}(\Omega(U,V,\theta))$ factors over $\mathcal{R}(U,V;W)_{\theta}$ as this is the case for the maps

$$\left(\mathcal{O}_{X}(U) \otimes_{\mathcal{O}_{S}(S)} \mathcal{O}_{Y}(V)\right)_{\theta} \longrightarrow \left(\mathcal{O}_{X,x'} \otimes_{\mathcal{O}_{S,s'}} \mathcal{O}_{Y,y'}\right)_{\theta} \longrightarrow \mathcal{O}_{F,[x',y',\mathfrak{p}']}$$

$$\left(\mathcal{O}_{X}(U) \otimes_{\mathcal{O}_{S}(W)} \mathcal{O}_{Y}(V)\right)_{\theta|_{U,V;W}}$$

(where $s' = \xi(x') = \upsilon(y')$) from which it is made up. It follows that the image of ℓ under this map vanishes and λ als vanishes.

Step 4. We have to show that p and q are morphisms of locally ringed spaces. Only the locality of $\mathcal{O}_{X,x} \xrightarrow{p^*} \mathcal{O}_{F,(x,y,p)}$ (and q^* likewise) is questionable. By the previous step, p^* can be identified with

$$\mathcal{O}_{X,x} \stackrel{lpha}{\longrightarrow} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \longrightarrow \mathcal{O}_{F,[x,y,p]} = (\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y})_{\mathfrak{p}}$$

and this is local since the preimage of the maximal ideal $\mathfrak{p}(\mathcal{O}_{X,x}\otimes_{\mathcal{O}_{S,s}}\mathcal{O}_{Y,y})_{\mathfrak{p}}$ in $\mathcal{O}_{X,x}\otimes_{\mathcal{O}_{S,s}}\mathcal{O}_{Y,y}$ equals \mathfrak{p} and that of \mathfrak{p} under α equals $\alpha^{-1}(\mathfrak{p})=\mathfrak{m}_{X,x}$ by our definition of F as a set. For q^* it's just the same.

Step 5. We show $\xi p = vq$. On the level of points, $\xi(p(x,y,\mathfrak{p})) = \xi(x) = s = v(y) = v(q(x,y,\mathfrak{p}))$, hence the topological components of the involved morphisms have the desired property.

Before we continue, recall the following

Fact. If X is a locally ringed space, $U \subseteq X$ and $f \in \mathcal{O}_X(U)$, then there is a unique dotted arrow making the following diagram commute:

$$\mathcal{O}_X(U) \xrightarrow{} \mathcal{O}_X(U \setminus V(f))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Sketch of a proof. This basically comes down to proving that f is invertible in $\mathcal{O}_X(U \setminus V(f))$. For any $x \in U \setminus V(f)$, the image of x in $\mathcal{O}_{X,x}$ is not in $\mathfrak{m}_{X,x}$, hence invertible. Consequently, there is an open neighbourhood U_x of x (of which we may assume $U_x \subseteq U \setminus V(f)$) and some $g_x \in \mathcal{O}_X(U_x)$ such that $f|_{U_x} \cdot g_x = 1$. Denote $U_{xy} = U_x \cap U_y$, then $g_x|_{U_{xy}} = g_y|_{U_{xy}}$ since $f|_{U_{xy}}$ has a unique inverse in $\mathcal{O}_X(U_{xy})$ if it has any. Now the sheaf axiom does the rest. q.e.d.

Now we show that $\xi p = vq$ holds for the algebraic components: If $W \subseteq S$ is open and $\sigma \in \mathcal{O}_S(W)$, then

$$p^*\xi^*\sigma = \begin{pmatrix} \operatorname{image of } \xi^*\sigma \operatorname{under} \\ \mathcal{O}_X(\xi^{-1}W) \to \mathcal{O}_{X,x} \xrightarrow{\alpha} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to \mathcal{O}_{F,[x,y,\mathfrak{p}]} \end{pmatrix}_{(x,y,\mathfrak{p})\in F \text{ s.t. } x\in \xi^{-1}(W)}$$

$$= \begin{pmatrix} \operatorname{image of } \sigma \operatorname{under} \\ \mathcal{O}_S(W) \to \mathcal{O}_{S,s} \xrightarrow{\xi^*} \mathcal{O}_{X,x} \xrightarrow{\alpha} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to \mathcal{O}_{F,[x,y,\mathfrak{p}]} \end{pmatrix}_{(x,y,\mathfrak{p})\in (\xi p)^{-1}W}$$

$$= \begin{pmatrix} \operatorname{image of } \sigma \operatorname{under} \\ \mathcal{O}_S(W) \to \mathcal{O}_{S,s} \xrightarrow{\upsilon^*} \mathcal{O}_{Y,y} \xrightarrow{\beta} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to \mathcal{O}_{F,[x,y,\mathfrak{p}]} \end{pmatrix}_{(x,y,\mathfrak{p})\in (\upsilon q)^{-1}W}$$

$$= \begin{pmatrix} \operatorname{image of } \upsilon^*\sigma \operatorname{under} \\ \mathcal{O}_Y(\upsilon^{-1}W) \to \mathcal{O}_{Y,y} \xrightarrow{\beta} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \to \mathcal{O}_{F,[x,y,\mathfrak{p}]} \end{pmatrix}_{(x,y,\mathfrak{p})\in (\upsilon q)^{-1}W}$$

$$= a^*\upsilon^*\sigma.$$

Herein, we used that for $t \in \mathcal{O}_{S,s}$, $\alpha(\xi^*t) = \xi^*(t) \otimes 1 = 1 \otimes v^*(t) = \beta(v^*t)$ by the $\mathcal{O}_{S,s}$ -bilinearity of $- \otimes_{\mathcal{O}_{S,s}} -$.

Step 6. We show the universal property. Let $X \stackrel{\tau_X}{\longleftarrow} T \stackrel{\tau_Y}{\longrightarrow} Y$ be morphisms of locally ringed spaces such that $\xi \tau_X = v \tau_Y$. We define a map $T \stackrel{\tau}{\longrightarrow} F$ as follows: For $t \in T$, we put $x = \tau_X(t), y = \tau_Y(t), s = \xi(x) = \xi(\tau_X(t)) = v(\tau_Y(t)) = v(y)$. By the universal property of $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}$ as a cofibre product in the category of rings, there is a unique ring homomorphism τ^* from this ring to $\mathcal{O}_{T,t}$ such that

$$\mathcal{O}_{X,x} \xrightarrow{\alpha} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \\
\tau_X^* \downarrow \qquad \qquad \uparrow^{\beta} \\
\mathcal{O}_{T,t} \xleftarrow{\tau_Y^*} \mathcal{O}_{Y,y}$$
(*)

commutes. It is given by $\tau^*(f \otimes g) = \tau_X^*(f) \cdot \tau_Y^*(g)$. Let $\mathfrak{p} = (\tau^*)^{-1}(\mathfrak{m}_{T,t})$. By the above diagram,

$$\alpha^{-1}(\mathfrak{p}) = \alpha^{-1} \left(\tau^*\right)^{-1}(\mathfrak{m}_{T,t}) = \tau_X^*(\mathfrak{m}_{T,t}) = \mathfrak{m}_{X,x} \; ,$$

as τ_X is a morphism of locally ringed spaces. Similarly, $\beta^{-1}(\mathfrak{p}) = (\mathfrak{m}_{Y,y})$ Thus

$$\tau(t) := (x, y, \mathfrak{p}) \in F$$
.

Clearly, we have $p\tau = \tau_X$ and $q\tau = \tau_Y$ as maps of underlying sets topological spaces. It remains to prove that τ is continuous and a morphism of locally ringed spaces

Continuity of τ . Let $U \subseteq X, V \subseteq Y$ be open and $f \in \mathcal{R}(U, V)$. As the last ring is a cofibre product $\mathcal{O}_X(V) \otimes_{\mathcal{O}_S(S)} \mathcal{O}_Y(V)$, there is a unique ring homomorphism τ^{\sharp} from that ring to $\mathcal{O}_T(\Theta)$, where $\Theta = \tau_X^{-1}(U) \cap \tau_Y^{-1}(Y)$, such that the diagram

$$\mathcal{O}_{X}(U) \xrightarrow{f \mapsto f \otimes 1} \mathcal{R}(U, V)
\tau_{X}^{*} \downarrow \qquad \uparrow_{\tau^{\sharp}} \qquad \uparrow_{g \mapsto 1 \otimes g}
\mathcal{O}_{T}(\Theta) \xleftarrow{\tau_{Y}^{*}} \mathcal{O}_{Y}(V)$$

commutes, and $\tau^{\sharp}(f \otimes g) = \tau_X^*(f) \cdot \tau_Y^*(g)$. Then, for $\lambda \in \mathcal{R}(U, V)$,

$$\tau^{-1}\Omega(U,V,\lambda) = \begin{cases} t \in T \middle| & \tau_X(t) \in U, \ \tau_Y(t) \text{ and the image of } \lambda \text{ in } \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \\ & \text{ (where } s = \xi(\tau_X(t)) = \upsilon(\tau_Y(t))) \text{ is } \notin (\tau^*)^{-1} (\mathfrak{m}_{T,t}) \end{cases}$$

$$= \begin{cases} t \in \Theta \middle| \text{ (image of } \lambda \text{ in } \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}) \notin (\tau^*)^{-1} (\mathfrak{m}_{T,t}) \end{cases}$$

$$= \begin{cases} t \in \Theta \middle| \text{ (image of } \tau^{\sharp} \lambda \text{ in } \mathcal{O}_{T}(\Theta) \longrightarrow \mathcal{O}_{T,t}) \notin \mathfrak{m}_{T,t} \end{cases}$$

$$= \Theta \setminus V(\tau^{\sharp} \lambda) , \qquad (\#)$$

which is open. The transition from the second line to the third line uses the commutativity of the following diagram:

$$\mathcal{R}(U,V) \xrightarrow{\tau^{\sharp}} \mathcal{O}_{T}(\Theta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \xrightarrow{\tau^{*}} \mathcal{O}_{T,t}$$

This can be seen as follows: The element $f \otimes g$ in the upper-left corner $\mathcal{R}(U,V) = \mathcal{O}_X(V) \otimes_{\mathcal{O}_S(S)} \mathcal{O}_Y(V)$ is mapped to via the upper-right corner to

$$\begin{pmatrix} \text{image of } \tau^{\sharp}(f \otimes g) \text{ under} \\ \mathcal{O}_{T}(\theta) \to \mathcal{O}_{T,t} \end{pmatrix} = \begin{pmatrix} \text{image of } \tau_{X}^{*}(f) \cdot \tau_{Y}^{*}(g) \text{ under} \\ \mathcal{O}_{T}(\theta) \to \mathcal{O}_{T,t} \end{pmatrix}$$

$$= \begin{pmatrix} \text{image of } \tau_{X}^{*}(f) \text{ in } \mathcal{O}_{T,t} \end{pmatrix} \cdot \begin{pmatrix} \text{image of } \tau_{Y}^{*}(g) \text{ in } \mathcal{O}_{T,t} \end{pmatrix}$$

$$= \tau_{X}^{*}(\text{image of } f \text{ in } \mathcal{O}_{X,x}) \cdot \tau_{Y}^{*}(\text{image of } g \text{ in } \mathcal{O}_{Y,y})$$

$$= \tau^{*}(\text{image of } f \text{ in } \mathcal{O}_{X,x}) \otimes (\text{image of } g \text{ in } \mathcal{O}_{Y,y}) \end{pmatrix},$$

which is the image of $f \otimes g$ via the lower-left corner. As these pure tensor products generate $\mathcal{R}(U,V)$ as an abelian group, the stated commutativity of the diagram follows.

Definition of the algebraic component τ^* of τ . Fix an open subset $\Omega \subseteq F$. We define $\tau(\varphi)$, where $\varphi = (\varphi_{\omega})_{{\omega} \in \Omega} \in \prod_{{\omega} \in \Omega} \mathcal{O}_{F,[{\omega}]}$ must satisfy the coherence condition for sections of \mathcal{O}_F , to

be the preimage of $(\tau^{\flat}\varphi_{\tau(t)})_{t\in\tau^{-1}(\Omega)}$ under $\mathcal{O}_T(\tau^{-1}\Omega) \to \prod_{t\in\tau^{-1}(\Omega)} \mathcal{O}_{T,t}$. Here, τ^{\flat} is the unique ring homomorphism $\mathcal{O}_{F,[\tau(t)]} \to \mathcal{O}_{T,t}$ making the diagram

$$\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \xrightarrow{\qquad} \left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \right)_{\mathfrak{p}} = \mathcal{O}_{F,[x,y,\mathfrak{p}]}$$

$$\downarrow^{\uparrow} \exists ! \ \tau^{\flat}$$

$$\mathcal{O}_{T,t}$$

commute. It exists by the universal property of localizations, as $\mathfrak{p} = (\tau^*)^{-1}(\mathfrak{m}_{T,t})$. To confirm that $(\tau^{\flat}\varphi_{\tau(t)})_{t\in\tau^{-1}(\Omega)}$ has the coherence condition characterizing the image of $\mathcal{O}_T(\tau^{-1}\Omega)$, let $\widetilde{\Omega} = \Omega(U,V,\lambda)$ be an open neighbourhood in F of $\tau(t)$ such that on $\widetilde{\Omega} \cap \Omega$, φ is given by $f \in R(U,V)_{\lambda}$. By (#), $\tau^{-1}(\widetilde{\Omega}) = (\tau_X^{-1}(V) \cap \tau_Y^{-1}(V)) \setminus V(\tau^{\sharp}(\lambda))$ is an open neighbourhood of t on which $\tau^{\sharp}(g) \cdot \tau^{\sharp}(\lambda)^{-k}$ defines a section of \mathcal{O}_T , where $g \in R(U,V)$ and $k \geq 0$ such that $f = g \cdot \lambda^{-k}$. Then

$$\tau^{\flat}\left(\varphi_{\tau(t)}\right) = \frac{\tau^{*}(g_{\tau(t)})}{\tau^{*}(\lambda_{\tau(t)})^{k}} = \left(\text{image of } \frac{\tau^{\sharp}(g)}{\tau^{\sharp}(\lambda)^{k}} \text{ in } \mathcal{O}_{T,t}\right)$$

for $t, \in \tau^{-1}(\Omega) \cap \tau^{-1}(\widetilde{\Omega})$, using the same equality as in the proof of (#). This completes the description of the algebraic component τ^* of τ . It is clear that it makes τ a morphism of ringed spaces, that $\tau^*p^* = \tau_X^*$ and that $\tau^*q^* = \tau_Y^*$ hold (this follows from the commutativity of the triangles in in (*) and the fact that the map τ^* defined there coincides with the map on stalks induced by the new τ^*).

Locality of $\tau^* : \mathcal{O}_{F,\tau(t)} \to \mathcal{O}_{T,t}$. We have a commutative diagram

$$\mathcal{O}_{F,\tau(t)} \xrightarrow{\tau^{\flat}} \mathcal{O}_{T,t}$$

$$\Diamond | \qquad \qquad \uparrow^{\tau^{\flat}}$$

$$\mathcal{O}_{F,[\tau(t)]} = \left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}\right)_{\mathfrak{p}} \longleftarrow \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} =: \mathcal{L}$$

and τ^{\flat} maps $\mathfrak{p}\mathcal{L}_{\mathfrak{p}}$ to $\mathfrak{m}_{T,t}$ as $\tau^{*}(\mathfrak{p}) \subseteq \mathfrak{m}_{T,t}$ as $\mathfrak{p} = (\tau^{*})^{-1} \mathfrak{m}_{T,t}$ by the definition of T.

Uniqueness of τ . Let $t \in T$, $\tau(t) = (x, y, \mathfrak{p})$, then obviously $x = \tau_X(t)$ and $y = \tau_Y(t)$. In the diagram

the dashed arrow τ^{\flat} is uniquely determined by the co-cartesianess of the lower right corner. Because τ is a morphism of locally ringed spaces, the dotted arrow τ^* must be a local ring morphism, hence

$$(\tau^*)^{-1}(\mathfrak{m}_{T,t}) = \mathfrak{p}\mathcal{O}_{F,[x,y,\mathfrak{p}]} = \mathfrak{p}\left(\mathcal{O}_{X,x}\otimes_{\mathcal{O}_{S,s}}\mathcal{O}_{Y,y}\right)_{\mathfrak{p}}.$$

Since the preimage of this ideal in $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}$ equals \mathfrak{p} and the diagram commutes, $\mathfrak{p} = (\tau^{\flat})^{-1}(\mathfrak{m}_{T,t})$ is uniquely determined. By the universal property of localization, the dotted arrow is also unique. Thus τ^* is unique at stalks, hence unique. q.e.d.

Corollary 2. (a) Let X_{Top} be the topological space underlying X, then the map

$$(X \times_S Y)_{\operatorname{Top}} \longrightarrow X_{\operatorname{Top}} \times_{S_{\operatorname{Top}}} Y_{\operatorname{Top}}$$

(determined by the diagram

via the universal property of fibre products of topological spaces) is surjective.

(b) If $U \subseteq X$, $V \subseteq Y$ and $W \subseteq S$ are open subsets of the respective spaces and $W \supseteq \xi(U) \cup v(V)$ then $p^{-1}(U) \cap q^{-1}(V) \subseteq F$ together with the restrictions of p and q is a fibre product of U and V over W.

Proof. To prove (a), what we need to show is that for all $x \in X_{\text{Top}}$ and $y \in Y_{\text{Top}}$ such that $\xi(x) = v(y) =: s$ there is an appropriate $\mathfrak{p} \in \text{Spec}\left(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y}\right)$ such that $\alpha^{-1}(\mathfrak{p}) = \mathfrak{m}_{X,x}$, $\beta^{-1}(\mathfrak{p}) = \mathfrak{m}_{Y,y}$. Consider the ring homomorphism

$$\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \xrightarrow{\varphi} \mathfrak{K}(x) \otimes_{\mathfrak{K}(s)} \mathfrak{K}(y) = A$$
$$f \otimes g \longmapsto (f \mod \mathfrak{m}_{X,x}) \otimes (g \mod \mathfrak{m}_{Y,y}) .$$

If \mathfrak{m} is any maximal ideal of A, then $\mathfrak{p} = \varphi^{-1}(\mathfrak{m})$ has the required property. Indeed, for instance,

$$(f \otimes 1) \in \mathfrak{p} \quad \Leftrightarrow \quad \varphi(f \otimes 1) \in \mathfrak{m} \quad \Leftrightarrow \quad ((f \mod \mathfrak{m}_{X,x}) \otimes 1) \in \mathfrak{m} .$$

When $f \in \mathfrak{m}_{X,x}$ the right-hand side vanishes, otherwise f and the right-hand side are units.

The part (b) is a straightforward consequence of our explicit construction of fibre products and the surjectivity of $\mathcal{R}(U,V) \to \mathcal{R}(U,V,W)$. q.e.d.

Remark 2. The proof would work with infinitely many factors as well, with some modifications. When S and X_{λ} are preschemes, the fibre product may fail to be a prescheme unless all but finitely many of the morphisms $X_{\lambda} \to S$ are affine.

Definition 5 (Immersive morphisms). A morphism $Y \xrightarrow{v} S$ of locally ringed spaces is called **immersive** if, topologically, v is a homeomorphism onto its image (equipped with the induced topology with respect to S), and for every $y \in Y$ the map $\mathcal{O}_{S,v(y)} \xrightarrow{v^*} \mathcal{O}_{Y,y}$ is surjective.

If $v(Y) \subseteq S$ is a closed subset, v is called a **closed immersion**. If it is open, v is an **open immersion**.

Corollary 3. Let $Y \xrightarrow{v} S$ be a immersive morphism. Then its base change (cf. this remark) $F = X \times_S Y \xrightarrow{\widetilde{v}} X$ is immersive, and its image is $\xi^{-1}(v(Y))$.

Remark. In particular, the base change of a closed immersion is itself closed and likewise the base change of an open immersion is open again.

Proof of Corollary 3. For (x, y, \mathfrak{p}) and s as in the description of F, let $I_s \subseteq \mathcal{O}_{S,s}$ be the kernel of $\mathcal{O}_{S,s} \xrightarrow{v^*} \mathcal{O}_{Y,y}$. Then $\mathcal{O}_{Y,y} \simeq \mathcal{O}_{S,s}/I_s$ (as v^* is assumed surjective), hence

$$\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{Y,y} \simeq \mathcal{O}_{X,x}/(\xi^*(I_s) \cdot \mathcal{O}_{X,x}) =: \mathcal{O}_{X,x}/(I_s \mathcal{O}_{X,x})$$
.

Since $\alpha^{-1}(\mathfrak{p})$ equals $\mathfrak{m}_{X,x}$, we have $\mathfrak{p} \supseteq \mathfrak{m}_{X,x}/(I_s\mathcal{O}_{X,x})$ which must be an equality as the right hand side is the maximal ideal of local ring $\mathcal{O}_{X,x}/(I_s\mathcal{O}_{X,x})$. Thus, \mathfrak{p} and y are uniquely determined by x (y actually because v has to be injective) and $\mathcal{O}_{F,[x,y,\mathfrak{p}]} \simeq \mathcal{O}_{X,x}/(I_s\mathcal{O}_{X,x})$ is a quotient of $\mathcal{O}_{X,x}$ implying surjectivity of ξ^* on stalks. It remains to confirm that the topology is indeed the induced topology. Note that

$$\Omega(U, V, f) = \bigcup_{\lambda \in \Lambda} \Omega(U, V_{\lambda}, f|_{U, V_{\lambda}}) \tag{*}$$

when $V = \bigcup_{\lambda \in \Lambda} V_{\lambda}$. Let $f \in \mathcal{R}(U, V)$, $f = \sum_{i=1}^{n} g_{i} \otimes h_{i}$, $g_{i} \in \mathcal{O}_{X}(U)$, $h_{i} \in \mathcal{O}_{Y}(V)$. As Y carries the induced topology and v^{*} is surjective on stalks, V may be covered by open subsets of the form $V_{\lambda} = Y \cap W_{\lambda}$, $W_{\lambda} \subseteq S$ open, such that there are $\eta_{i,\lambda} \in \mathcal{O}_{S}(W_{\lambda})$ satisfying $h_{i}|_{V_{\lambda}} = v^{*}(\eta_{i,\lambda})$. Then

$$f|_{U,V_{\lambda}} = \sum_{i=1}^{n} g_i \otimes v^*(\eta_{i,\lambda}) = \sum_{i=1}^{n} (\xi^*(\eta_{i,\lambda}) \cdot g_i) \otimes 1 =: \varphi_{\lambda} \otimes 1$$

in $\mathcal{R}(\xi^{-1}(W_{\lambda}) \cap U, V_{\lambda}, W_{\lambda})$. Thus $\Omega(U, V_{\lambda}, f|_{U, V_{\lambda}}) = ((U \cap \xi^{-1}(W_{\lambda}) \setminus V(\varphi_{\lambda})) \cap F$ is open in the induced topology. By (*), $\Omega(U, V, f)$ is open as well. q.e.d.

Definition 6 (Sheaf of modules). Let \mathcal{R} be a sheaf of rings on X. A **sheaf of modules** over \mathcal{R} , or simply an \mathcal{R} -module, is a sheaf \mathcal{M} of abelian groups on X with multiplications

$$\mathcal{R}(U) \times \mathcal{M}(U) \longrightarrow \mathcal{M}(U)$$

giving $\mathcal{M}(U)$ the structure of an $\mathcal{R}(U)$ -module and such that $(\rho \cdot \mu)|_V = (\rho|_V) \cdot (\mu|_V)$ when $V \subseteq U$ is an inclusion open subsets and $\rho \in \mathcal{R}(U)$, $\mu \in \mathcal{M}(U)$.

In the case where $\mathcal{M}(U) \subseteq \mathcal{R}(U)$ is an ideal in that ring and the module operations respectively $(-)|_V$ are the restrictions of the ring operations in $\mathcal{R}(U)$ respectively of $(-)|_V$ for \mathcal{R} to $\mathcal{M}(U)$, we call \mathcal{M} a **sheaf of ideals** in \mathcal{R} .

Proposition 3. If $(\mathcal{I}_{[x]})_{x \in X}$ is a family of ideals in the stalks \mathcal{R}_x , then the following conditions are equivalent.

- (a) There is a sheaf of ideals \mathcal{I} on X such that $\mathcal{I}_{[x]}$ equals the (isomorphic) image \mathcal{I}_x in \mathcal{R}_x .
- (b) For every $x \in X$, every $\iota \in \mathcal{I}_{[x]}$ is the image of some $i \in \mathcal{R}(U)$ for some open neighbourhood U of x, such that the image of i in \mathcal{R}_y lies in $\mathcal{I}_{[y]}$ for all $y \in U$.

In this case \mathcal{I} is determined uniquely.

Proof. The implication $(a) \Rightarrow (b)$ is easy. If $\mathcal{I} \subseteq \mathcal{R}$ is such a sheaf of ideals and $\iota \in \mathcal{I}_{[x]}$ for some $x \in X$, choose an open neighbourhood U of x a preimage $i \in \mathcal{I}(U)$ of $\iota \in \mathcal{I}_{[x]} = \mathcal{I}_x$. Then the image of i in \mathcal{R}_y lies in $\mathcal{I}_y = \mathcal{I}_{[y]}$ for all $y \in U$.

Conversely, suppose that (b) is fulfilled. We construct a sheaf \mathcal{I} via

$$\mathcal{I}(U) = \left\{ (\iota_x) \in \prod_{x \in U} \mathcal{I}_{[x]} \, \middle| \, \begin{array}{c} \text{for all } y \in U \text{ there are an open neighbourhood } V \text{ of } y \\ \text{and } i \in \mathcal{R}(U) \text{ such that } \iota_x = (\text{image of } i \text{ in } \mathcal{R}_x) \, \forall x \in U \cap V \end{array} \right\} \, .$$

The ideal operations are defined in the obvious (stalk-wise) way. It's straightforward to check that they are compatible with the imposed coherence condition and that \mathcal{I} is indeed a sheaf of ideals in \mathcal{R} . For $x \in X$ and $\iota \in \mathcal{I}_{[x]}$, the open neighbourhood U of x and $i \in \mathcal{R}(U)$ guaranteed by (b) provide a preimage of ι in $\mathcal{I}(U)$, i.e. $i \in \mathcal{I}(U)$ and the image of i in \mathcal{R}_x is ι . Hence, $\mathcal{I}_{[x]} \subseteq \mathcal{I}_x$ for all $x \in X$. Conversely, if $(\iota_x) \in \mathcal{I}(U)$, then the image of (ι_x) in \mathcal{R}_x is ι_x (by an argument like Proposition 1.2.1(a)), proving $\mathcal{I}_x \subseteq \mathcal{I}_{[x]}$.

Uniqueness of \mathcal{I} (if it exists at all) follows from the fact that a sheaf can be recovered from its stalks, a special case of Proposition 1.2.1(d). q.e.d.

Corollary.
$$U = \{x \in X \mid \mathcal{I}_{[x]} = \mathcal{R}_x\}$$
 is open in X .

Proposition 4. For a locally ringed space X, let two immersions $K_1 \xrightarrow{\kappa_1} X \xleftarrow{\kappa_2} K_2$ be called equivalent (write $\kappa_1 \sim \kappa_2$) if there is an isomorphism $K_1 \xrightarrow{\iota} K_2$ of locally ringed spaces such that $\kappa_2 \iota = \kappa_1$. Then there is a bijection

$$\left\{ closed\ immersions\ K \stackrel{\kappa}{\longrightarrow} X \right\} /_{\sim} \stackrel{\sim}{\longrightarrow} \left\{ sheaves\ of\ ideals\ \mathcal{I} \subseteq \mathcal{O}_X \right\}$$
$$\left(K \stackrel{\kappa}{\longrightarrow} X \right) /_{\sim} \longmapsto \mathcal{I} = \ker\left(\mathcal{O}_X \stackrel{\kappa^*}{\longrightarrow} \kappa_* \mathcal{O}_K \right).$$

If $K \xrightarrow{\kappa} X$ belongs to the sheaf of ideals \mathcal{I} ,

$$\operatorname{Hom}_{\operatorname{LRS}}(T,K) \xrightarrow{\sim} \left\{ g \in \operatorname{Hom}_{\operatorname{LRS}}(T,X) \;\middle|\; \mathcal{I} \subseteq \ker \left(\mathcal{O}_X \xrightarrow{g^*} g_* \mathcal{O}_T \right) \right\}$$

is bijective for any test object T.

Remark. When X is a prescheme, K will fail to be a prescheme unless \mathcal{I} is quasi-coherent.

Proof. The following proof is quite sketchy, because lots of technical details have been outsourced to exercise sheet #8. Let $\mathcal{I} \subseteq \mathcal{O}_x$ be a sheaf of ideals. We put

$$K = \{ x \in X \mid \mathcal{I}_x \subsetneq \mathcal{O}_{X,x} \} \stackrel{\kappa}{\longrightarrow} X ,$$

which is closed in X by the last corollary, and equip it with the induced topology with respect to X. We define pretender stalks

$$\mathcal{O}_{K,[x]} = \mathcal{O}_{X,x}/\mathcal{I}_x$$

and construct a sheaf \mathcal{O}_K from it as we have seen several times before: The ring of sections $\mathcal{O}_K(U)$ consists of those families $(f_x)_{x\in U}\in \prod_{x\in U}\mathcal{O}_{K,[x]}$ such that for every $x\in U$ there exist an open neighbourhood V of x in X and $\varphi\in\mathcal{O}_X(V)$ such that for every $y\in U\cap V$, f_y equals the image of φ under

$$\mathcal{O}_X(V) \longrightarrow \mathcal{O}_{X,y} \longrightarrow \mathcal{O}_{K,[y]}$$
 (*)

In an argument similar to the proof of Proposition 1 one shows $\mathcal{O}_{K,x} \xrightarrow{\sim} \mathcal{O}_{K,[x]}$.

Let $\mathcal{O}_X \xrightarrow{\kappa^*} \kappa_* \mathcal{O}_K$ send

$$f \in \mathcal{O}_X(V) \longmapsto \left(\text{image of } f \text{ under } (*)\right)_{y \in V \cap K} \in \mathcal{O}_K(V \cap K) = \mathcal{O}_K(\kappa^{-1}V) = \kappa_* \mathcal{O}_K(V) .$$

It is easy to see that this makes K a locally ringed space and κ a closed immersion. It is also easy to see that the claimed description of $\operatorname{Hom}_{LRS}(T,K)$ holds, and that $\mathcal{I} = \ker (\mathcal{O}_X \xrightarrow{\kappa^*} \kappa_* \mathcal{O}_K)$.

If $L \xrightarrow{\lambda} K$ is another closed immersion satisfying $\mathcal{I} = \ker (\mathcal{O}_X \xrightarrow{\lambda^*} \lambda_* \mathcal{O}_L)$, then, by the description of $\operatorname{Hom}_{LRS}(T,K)$, we have a morphism $L \xrightarrow{\iota} K$ such that $\lambda = \kappa \iota$. The image of L in X coincides with K because it equals $\{x \in X \mid (\lambda_* \mathcal{O}_L)_x \neq 0\} = \{x \in X \mid \mathcal{I}_x \subsetneq \mathcal{O}_{X,x}\}$. Indeed, if x is not in the image of L, then it has some open neighbourhood not contained in the image of L, as λ is a closed immersion, hence the stalk of $\lambda_* \mathcal{O}_L$ at x has to be 0. Conversely, if x is in that image, then $(\lambda_* \mathcal{O}_L)_x$ contains 1, proving it can't be 0. Since both sets carry the induced topology, ι is a homeomorphism. For $\ell \in L$ and $x = \lambda(\ell)$ we have a commutative diagram

$$\mathcal{O}_{X,x} \overset{\kappa^*}{\underbrace{\bigvee_{\lambda^*}}} \mathcal{O}_{K,x} \simeq \mathcal{O}_{K,[x]}$$

where the two slanted arrows are surjections with kernel \mathcal{I}_x . It follows that the right vertical arrow ι^* is an isomorphism, and ι induces isomorphisms on stalks in addition to being a homeomorphism. It is thus an isomorphism and $(K \xrightarrow{\kappa} X)$ is equivalent to $(L \xrightarrow{\lambda} X)$. q.e.d.

Definition 7. If $X \stackrel{f}{\longrightarrow} Y$ is a morphism of ringed spaces and \mathcal{M} an \mathcal{O}_X -module, we equip $f_*\mathcal{M}$ with the following structure of an \mathcal{O}_Y -module. $f_*\mathcal{M}$ is an $f_*\mathcal{O}_X$ -module using multiplications

$$(f_*\mathcal{O}_X)(V)\times (f_*\mathcal{M})(U)=\mathcal{O}_X(f^{-1}(V))\times \mathcal{M}(f^{-1}(V))\stackrel{\cdot}{\longrightarrow} \mathcal{M}(f^{-1}(V))=(f_*\mathcal{M})(V)$$

and the morphism $\mathcal{O}_Y \xrightarrow{f^*} f_* \mathcal{O}_X$ of sheaves of rings does the rest.

Fact 5. Let X be a locally ringed space and $U \subseteq X$ open and $f \in \mathcal{O}_X(U)$. Then there are uniquely determined morphisms

$$\mathcal{O}_X(U)_f \longrightarrow \mathcal{O}_X(U \setminus V(f))$$
, and $\mathcal{M}(U)_f \longrightarrow \mathcal{M}(U \setminus V(f))$ (1)

for any \mathcal{O}_X -module \mathcal{M} .

Proof. Use the universal property of localization and these happy little diagrams

$$\mathcal{O}_X(U) \longrightarrow \mathcal{O}_X(U \setminus V(f)) \qquad \qquad \mathcal{M}_X(U) \longrightarrow \mathcal{M}_X(U \setminus V(f))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

For \mathcal{O}_X , we already proved this in this unnamed fact. The case of \mathcal{M} can be immediately deduced from this, as $\mathcal{M}(U)_f = \mathcal{M}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U)_f$. q.e.d.

1.4. The structure sheaf and quasi-coherent sheaf of modules on $\operatorname{Spec} R$

Let R be a ring, $\mathcal{B} = \{\operatorname{Spec} R \setminus V(f) \mid f \in R\}$. This is a topology base of $\operatorname{Spec} R$ equipped with the Zariski-topology. Moreover, \mathcal{B} is closed under intersection since $(\operatorname{Spec} R \setminus V(f)) \cap (\operatorname{Spec} R \setminus V(g)) = \operatorname{Spec} R \setminus V(fg)$. The localization R_f depends, up to unique isomorphism of R-algebras, only on $(\operatorname{Spec} R) \setminus V(f)$. To see this, we claim that when $\operatorname{Spec} R \setminus V(g) \subseteq \operatorname{Spec} R \setminus V(f)$ there is a unique homomorphism $R_f \to R_g$ of R-algebras. In fact, $V(g) \supseteq V(f)$ implies $g \in \sqrt{(f)} = \bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p}$ which shows that some power of g is divisible by f and so f is a unit in R_g . The universal property of localization thus establishes our claim.

From these considerations, we have a presheaf of rings on $\mathcal B$ via

$$\operatorname{Spec} R \setminus V(f) \longmapsto R_f . \tag{1}$$

If M is an R-module, we have a similar presheaf (of abelian groups or of modules over the former presheaf of rings)

$$\operatorname{Spec} R \setminus V(f) \longmapsto M_f \tag{2}$$

Definition 1. Let $\mathcal{O}_{\operatorname{Spec} R}$ and \widetilde{M} be the sheafifications of these presheaves (1), (2) on \mathcal{B} .

Remark. Note that the stalks of the presheaves are easily calculated: The stalk of (1) at \mathfrak{p} is

$$\varinjlim_{f\not\in\mathfrak{p}}\,R_f\stackrel{\sim}{\longrightarrow} R_{\mathfrak{p}}$$

(the $f \notin \mathfrak{p}$ are ordered by divisibility) while the stalk of (2) is $M_{\mathfrak{p}}$. Thus

$$\mathcal{O}_{\operatorname{Spec} R}(U) \simeq \left\{ (r_{\mathfrak{p}})_{\mathfrak{p} \in U} \in \prod_{\mathfrak{p} \in U} R_{\mathfrak{p}} \middle| \begin{array}{c} \text{every prime ideal } \mathfrak{q} \in U \text{ has an open neighbourhood} \\ \operatorname{Spec} R \setminus V(f) \text{ and a } \rho \in R_f \text{ such that, for all } \mathfrak{p} \in U, \\ r_{\mathfrak{p}} \text{ equals the image of } \rho \text{ under } R_f \to R_{\mathfrak{p}} \end{array} \right\}$$

$$\widetilde{M}(U) \simeq \left\{ (m_{\mathfrak{p}})_{\mathfrak{p} \in U} \in \prod_{\mathfrak{p} \in U} M_{\mathfrak{p}} \middle| \text{ the analogous coherence condition} \right\}$$

by our construction of the sheafification in Definition 1.2.3. Moreover, by Proposition 1.2.1(a), $\mathcal{O}_{\operatorname{Spec} R,\mathfrak{p}} \simeq R_{\mathfrak{p}}$ and $(\widetilde{M}_{\mathfrak{p}}) \simeq M_{\mathfrak{p}}$.

Fact 1. The restricted sheaf $\mathcal{O}_{\operatorname{Spec} R}|_{\operatorname{Spec} R\setminus V(f)}$ is isomorphic to $\mathcal{O}_{\operatorname{Spec} R_f}$ under the identification $\operatorname{Spec} R_f \xrightarrow{\sim} \operatorname{Spec} R\setminus V(f)$ sending $\mathfrak{q}\in\operatorname{Spec} R_f$ to its preimage in R and $\mathfrak{p}\in\operatorname{Spec} R$ to $\mathfrak{q}=\mathfrak{p}R_f$. In the following conditions we identify $\operatorname{Spec} R_f$ with $\operatorname{Spec} R\setminus V(f)$, for the sake of convenience.

Proposition 1. The maps $R \to \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R)$ and $M \to \widetilde{M}(\operatorname{Spec} R)$, sending r and m (which are global sections of the in (1) and (2) defined presheaves) to their images in the sheafifications, are isomorphisms.

Remark. By the previous fact in its analogue $\widetilde{M}|_{\operatorname{Spec} R_f} \simeq \widetilde{M}_f$, we also have

$$\mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R \setminus V(f)) \xrightarrow{\sim} R_f$$

$$\widetilde{M}(\operatorname{Spec} R \setminus V(f)) \xrightarrow{\sim} M_f.$$

However our proof of Proposition 1 will yield this directly.

Proof. We show that the presheaves $\operatorname{Spec} R_f \mapsto R_f$ or $\operatorname{Spec} M_f \mapsto M_f$ satisfy the sheaf axiom for covers of elements of $\mathcal{B} = \{\operatorname{Spec} R_f \mid f \in R\}$ by elements of \mathcal{B} . Having established this, the claim follows from Proposition 1.2.1(d) (note that \mathcal{B} is closed under intersections as we pointed out at the beginning of the section). If $\operatorname{Spec} R_f = \bigcup_{\lambda \in \Lambda} \operatorname{Spec} R_{g_\lambda}$ is a cover of $\operatorname{Spec} R_f$, we may replace R by R_f so it's enough to consider covers of $\operatorname{Spec} R$ only.

The following Lemma 1 deals with the case of finite covers. The case of arbitrary covers will then be deduced from this special case in a more general setting in Lemma 2. q.e.d.

Lemma 1. For every finite cover $\operatorname{Spec} R = \bigcup_{i=1}^n \operatorname{Spec} R_{f_i}$ we have

$$R \xrightarrow{\sim} \left\{ (r_i)_{i=1}^n \in \prod_{i=1}^n R_{f_i} \mid \text{ the images of } r_i \text{ and } r_j \text{ in } R_{f_i f_j} \text{ coincide} \right\}$$

$$M \xrightarrow{\sim} \left\{ (m_i)_{i=1}^n \in \prod_{i=1}^n M_{f_i} \mid \text{ the images of } m_i \text{ and } m_j \text{ in } M_{f_i f_j} \text{ coincide} \right\}$$

Proof. The first assertion being the special case M=R of the second, we prove the second. For injectivity, assume that m is in the kernel of this map. Then m must be killed be the localizations, hence there are $k_i \geq 0$ such that $f_i^{k_i} m_i = 0$ for all $i \leq n$. Since $\emptyset = \bigcap_{i=1}^n V(f_i) = \bigcap_{i=1}^n V(f_i^{k_i}) = V(f_1^{k_1}, \ldots, f_n^{k_n})$ it follows that there are $g_i \in R$ such that $\sum_{i=1}^n f_i^{k_i} g_i = 1$ in R. Then

$$0 = \sum_{i=1}^{n} f_i^{k_i} g_i \cdot m = 1 \cdot m = m .$$

To prove surjectivity, let $(m_i)_{i=1}^n$ be an element of the right-hand side and $m_i = \mu_i f_i^{-k_i}$ for some $\mu_i \in M$ and $k_i \geq 0$. We may always choose $k_i \geq 1$ (or arbitrarily large). Replacing f_i by $f_i^{k_i}$ then doesn't change the localization R_{f_i}), hence we may assume $m_i = \mu_i f_i^{-1}$. If the tuple $(m_i)_{i=1}^n = (\mu_i f_i^{-1})_{i=1}^n$ is in the right-hand side, then the images of $\mu_i f_i^{-1}$ and $\mu_j f_j^{-1}$

in $M_{f_i f_j}$ coincide, i.e. there are $k_{i,j} \geq 0$ such that $(f_i f_j)^{k_{i,j}} (f_i \mu_j - f_j \mu_i) = 0$ in M. Putting $k = \max\{k_{i,j} \mid 1 \leq i < j \leq n\}$ we have

$$f_i^{k+1} f_j^k \mu_j = f_i^k f_j^{k+1} \mu_i$$

in M or $\tilde{f}_i \tilde{\mu}_j = \tilde{f}_j \tilde{\mu}_i$ where $\tilde{f}_i = f_i^{k+1}$, $\tilde{f}_j = f_j^{k+1}$, $\tilde{\mu}_i = f_i^k \mu_i$, $\tilde{\mu}_j = f_j^k \mu_j$ satisfy $R_{\tilde{f}_i} \simeq R_{f_i}$ and $\mu_i f_i^{-1} = \tilde{\mu}_i \tilde{f}_i^{-1}$ in $M_{f_i} \simeq M_{\tilde{f}_i}$. Thus we may assume $f_i \mu_j = f_j \mu_i$ in M. As in the injectivity step there are $g_i \in R$ such that $\sum_{i=1}^n f_i g_i = 1$. Let $m = \sum_{i=1}^n g_i \mu_i$, then

$$f_j m = \sum_{i=1}^n g_i f_j \mu_i = \sum_{i=1}^n g_i f_i \mu_j = \mu_j$$
.

Thus m_j is the image of m in M_{f_j} .

q.e.d.

Lemma 2. Let \mathcal{B} be a topology base of any topological space X which is closed under intersection and \mathcal{F} a presheaf on \mathcal{B} . If the elements of \mathcal{B} are quasi-compact and \mathcal{F} satisfies the sheaf axiom for finite covers of elements of \mathcal{B} by elements of \mathcal{B} , then it also satisfies the sheaf axiom for arbitrary covers of elements of \mathcal{B} by elements of \mathcal{B} .

Proof. Let $U \in \mathcal{B}$ be covered by $U = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ with $U_{\lambda} \in \mathcal{B}$. As U is quasi-compact, there are $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that $U = \bigcup_{i=1}^n U_{\lambda_i}$. By the assumptions $\mathcal{F}(U) \to \prod_{i=1}^n \mathcal{F}(U_{\lambda_i})$, $f \mapsto (f|_{U_{\lambda_i}})_{i=1}^n$ is injective. Hence so is $\mathcal{F}(U) \to \prod_{\lambda \in \Lambda} \mathcal{F}(U_{\lambda})$, $f \mapsto (f|_{U_{\lambda}})_{\lambda \in \Lambda}$.

For surjectivity, let $(f_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in U} \mathcal{F}(U_{\lambda})$ such that $f_{\lambda}|_{U_{\lambda,\vartheta}} = f_{\vartheta}|_{U_{\lambda,\vartheta}}$ where we put $U_{\lambda,\vartheta} = U_{\lambda} \cap U_{\vartheta}$ for short. As the sheaf axiom holds for finite covers, there is $f \in \mathcal{F}(U)$ such that $f|_{U_{\lambda_i}} = f_{\lambda_i}$. We claim that $f|_{\lambda} = f_{\lambda}$. Indeed,

$$(f|_{U_{\lambda}})|_{U_{\lambda,\lambda_i}} = (f|_{U_{\lambda_i}})|_{U_{\lambda,\lambda_i}} = f_{\lambda_i}|_{U_{\lambda,\lambda_i}} = f_{\lambda}|_{U_{\lambda,\lambda_i}}.$$

As $U_{\lambda} = \bigcup_{i=1}^{n} (U_{\lambda} \cap U_{\lambda_{i}})$ the map $\mathcal{F}(U_{\lambda}) \to \prod_{i=1}^{n} \mathcal{F}(U_{\lambda} \cap U_{\lambda_{i}})$, $f \mapsto (f|_{U_{\lambda,\lambda_{i}}})_{i=1}^{n}$ is injective by our assumptions. This implies $f|_{U_{\lambda}} = f_{\lambda}$ as stated. q.e.d.

Remark. Another way to apply the principle of the proof of Lemma 1 is to use the fact that when $\bigcap_{i=1}^{n} V(f_i) = \emptyset$ the Koszul complex $K((f_1, \ldots, f_n), M)$

$$0 \longrightarrow M \longrightarrow \bigoplus_{1 \le i \le n} M \longrightarrow \bigoplus_{1 \le i < j \le n} M \longrightarrow \bigoplus_{1 \le i < j < k \le n} M \longrightarrow \cdots$$

$$m \longmapsto (f_i m)_{i=1}^n \qquad (m_{i,j})_{i < j} \longmapsto (f_k m_{i,j} + f_i m_{j,k} - f_j m_{i,k})_{i < j < k}$$

$$(m_i)_{i=1}^n \longmapsto (f_i m_i - f_j m_j)_{i < j}$$

is contracted by $(g_i)_{i=1}^n$ such that $\sum_{i=1}^n g_i f_i = 1$ via

$$(m_i)_{i=1}^n \longmapsto \sum_{i=1}^n g_i m_i , \quad (m_{i,j})_{i < j} \longmapsto \left(\sum_{j=1}^n g_j m_{i,j}\right)_{i=1}^n , \quad \dots$$

(where $m_{i,j} = -m_{j,i}$ if i > j and $m_{i,i} = 0$). But if \mathcal{U} denotes the cover Spec $R = \bigcup_{i=1}^n \operatorname{Spec} R_{f_i}$ then

$$0 \longrightarrow M \longrightarrow \check{C}^{\bullet} \Big(\mathcal{U}, \text{the presheaf giving } \widetilde{M} \Big) \stackrel{\sim}{\longleftarrow} \varinjlim_{k \in \mathbb{N}} K \Big((f_1^k, \dots, f_n^k), M \Big)$$

which is the argument used in EGA to show Proposition 1 and the vanishing of higher cohomologies (if anyone of you who is proficient in sheaf and Koszul cohomology notices that part of the above doesn't make any sense, please tell us).

Example 1. (a) When $\operatorname{nil}(R) \in \mathfrak{m}$ -Spec R (this is Frankespeak for "R has only one prime ideal"), $\mathcal{O}_{\operatorname{Spec} R}$ is already uniquely described by

$$\mathcal{O}_{\operatorname{Spec} R}(U) = \begin{cases} R & \text{if } U = \operatorname{Spec} R \\ 0 & \text{if } U = \emptyset \end{cases}$$
.

(b) When R is a a principal ideal domain (or more generally, a Dedekind domain with finite class group Pic R, as in this case $\mathfrak{p}^{\#\operatorname{Pic} R}=(\pi)$ is a principal ideal for every prime ideal \mathfrak{p} and $V(\mathfrak{p})=V(\pi)$), the same is done by

$$\mathcal{O}_{\operatorname{Spec} R}(U) = \left(\operatorname{Spec} R \setminus V(f)\right) = \begin{cases} R_f & \text{if } U = \operatorname{Spec} R \setminus V(f) \\ 0 & \text{if } U = \emptyset \end{cases}.$$

Remark 1. Proposition 1 would have failed if we had defined $\mathcal{O}_{\operatorname{Spec} R}$ as a sheaf of functions $\mathfrak{p} \to k(\mathfrak{p})$ as R may have nilpotent elements.

Proposition 2. If R is a ring and X a locally ringed space, we have a canonical bijection:

$$\operatorname{Hom}_{\operatorname{LRS}}(X,\operatorname{Spec} R) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Ring}}(R,\mathcal{O}_X(X))$$
$$(X \xrightarrow{\xi} \operatorname{Spec} R) \longmapsto \left(R \xrightarrow{\sim} \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) \xrightarrow{\xi^*} \mathcal{O}_X(X)\right)$$

Remark. Thus, Ring^{op} $\xrightarrow{\text{Spec}(-)}$ LRS is right-adjoint to LRS $\xrightarrow{\mathcal{O}_{-}(-)}$ Ring^{op}.

Proof of Proposition 2. Let $X \xrightarrow{f} \operatorname{Spec} R$ be a morphism in LRS. We want to show that it is uniquely determined by the composition

$$\varphi \colon R \xrightarrow{\sim} (\mathcal{O}_{\operatorname{Spec} R})(\operatorname{Spec} R) \xrightarrow{f^*} \mathcal{O}_X(X) = \mathcal{O}_X(f^{-1}(\operatorname{Spec} R)) = f_*\mathcal{O}_X(\operatorname{Spec} R)$$
.

Let $x \in X$, $\mathfrak{p} = f(x)$. We have a commutative diagram

$$R \xrightarrow{\sim} \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) \xrightarrow{f^*} \mathcal{O}_X(X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$R_{\mathfrak{p}} \xrightarrow{\sim} \mathcal{O}_{\operatorname{Spec} R, \mathfrak{p}} \xrightarrow{f^*} \mathcal{O}_{X, x}$$

As the arrow $\mathcal{O}_{\operatorname{Spec} R,\mathfrak{p}} \to \mathcal{O}_{X,x}$ is local and the preimages of the maximal ideal $\mathfrak{m}_{X,x}$ of $\mathcal{O}_{X,x}$ in $R_{\mathfrak{p}}$ and R are $\mathfrak{p}R_{\mathfrak{p}}$ and \mathfrak{p} , the prime ideal \mathfrak{p} is uniquely determined as the preimage of $\mathfrak{m}_{X,x} \subseteq \mathcal{O}_{X,x}$ under $R \stackrel{\varphi}{\longrightarrow} \mathcal{O}_{X}(X) \to \mathcal{O}_{X,x}$. By the universal property of the localization $R \to R_{\mathfrak{p}}$, the arrow $\mathcal{O}_{\operatorname{Spec} R,\mathfrak{p}} \to \mathcal{O}_{X,x}$ is also uniquely determined by φ and the commutativity of the diagram. Thus, for all $x \in X$, the maps $\mathcal{O}_{\operatorname{Spec} R,f(x)} \stackrel{f^*}{\longrightarrow} \mathcal{O}_{X,x}$ are uniquely determined by φ . It follows by the following fact that f is uniquely determined.

Fact 2. If $X \stackrel{a}{\Longrightarrow} Y$ are morphisms in LRS such that a(x) = b(x) for all points in $x \in X$ and such that $\mathcal{O}_{Y,a(x)} = \mathcal{O}_{Y,b(x)} \stackrel{a^*}{\Longrightarrow} \mathcal{O}_{X,x}$ coincide for all $x \in X$, then a = b.

Proof. It is only necessary to show this for the pull-backs of $v \in \mathcal{O}_Y(U)$ under a^* and b^* , for $U \subseteq Y$ open. But the images of a^*v and b^*v in $\mathcal{O}_{X,x}$, for $x \in f^{-1}U$, coincide with the images under v under v

Corollary 1. If $X \xrightarrow{\iota} Y$ is a morphism in LRS such that ι is injective on points and such that $\mathcal{O}_{Y,\iota(x)} \xrightarrow{\iota^*} \mathcal{O}_{X,x}$ is surjective, then ι is a monomorphism.

We are left to prove surjectivity. Let $R \xrightarrow{\varphi} \mathcal{O}_X(X)$ be given. We put

$$f(x) = \{ r \in R \mid x \in V(\varphi(r)) \} . \tag{*}$$

Note that f(x) is a prime ideal as it's the preimage of $\mathfrak{m}_{X,x} \subseteq \mathcal{O}_{X,x}$ under $R \xrightarrow{\varphi} \mathcal{O}_X(X) \to \mathcal{O}_{X,x}$. As before, let \mathcal{B} be the topology base {Spec $R_{\lambda} \mid \lambda \in R$ } of Spec R. If $U \in \mathcal{B}$, we have a morphism

$$f^* \colon \mathcal{O}_{\operatorname{Spec} R}(U) \simeq R_{\lambda} \xrightarrow{\varphi} \mathcal{O}_X(X)_{\varphi(\lambda)} \xrightarrow{(1.3.1)} \mathcal{O}_X(X \setminus V(\varphi(\lambda))) = \mathcal{O}_X(f^{-1}U)$$

defining a homomorphism of presheaves on \mathcal{B} with target $f_*\mathcal{O}_X|_{\mathcal{B}}$. Sheafifying gives

$$f^* \colon \mathcal{O}_{\operatorname{Spec} R} \simeq (\mathcal{O}_{\operatorname{Spec} R}|_{\mathcal{B}})^{\operatorname{sh}} \longrightarrow (f_*\mathcal{O}_X|_{\mathcal{B}})^{\operatorname{sh}} \simeq f_*\mathcal{O}_X .$$

In particular, for $\lambda = 1$, we have that $R \simeq \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) \xrightarrow{f^*} \mathcal{O}_X(X)$ equals φ . The morphism induced on stalks by f is thus uniquely determined morphism $R_{\mathfrak{p}} \to \mathcal{O}_{X,x}$ (where $\mathfrak{p} = f(x)$) such that

$$R \xrightarrow{\varphi} \mathcal{O}_X(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_{\mathfrak{p}} \longrightarrow \mathcal{O}_{X,k}$$

commutes. $R \to R_{\mathfrak{p}}$ equals the map. By (*), the morphism $R \xrightarrow{\varphi} \mathcal{O}_X(X) \to \mathcal{O}_{X,x}$ maps \mathfrak{p} to $\mathfrak{m}_{X,x}$, hence $R_{\mathfrak{p}} \to \mathcal{O}_{X,x}$ maps $\mathfrak{p} \cdot R_{\mathfrak{p}}$ to $\mathfrak{m}_{X,x}$ and therefore is local. Thus f is a morphism of locally ringed spaces.

Remark. In particular, for $X = \operatorname{Spec} S$ any ring morphism $R \xrightarrow{\varphi} S$ defines a morphism of locally ringed spaces

$$\operatorname{Spec} \varphi \colon \operatorname{Spec} S \longrightarrow \operatorname{Spec} R$$

$$(\operatorname{Spec} \varphi)(\mathfrak{q}) = \varphi^{-1} \mathfrak{q} \in \operatorname{Spec} R , \quad (\operatorname{Spec} \varphi)^* \left(\frac{r}{f}\right) = \frac{\varphi(r)}{\varphi(f)} \in S_{\varphi(f)} \simeq \mathcal{O}_{\operatorname{Spec} S}(\operatorname{Spec} S_f)$$
(3)

(with $\mathfrak{q} \in \operatorname{Spec} S$ and $\frac{r}{f} \in R_f$) turning Spec to a covariant functor from Ring^{op} to LRS which is right-adjoint to the global sections functor.

Corollary 2. Spec \mathbb{Z} is a final object in LRS. The unique morphism $X \to \operatorname{Spec} \mathbb{Z}$ in LRS sends any $x \in X$ to the ideal in \mathbb{Z} generated by the characteristic of the residue field $\mathfrak{K}(x)$ and any fraction $\frac{a}{b} \in \mathcal{O}_{\operatorname{Spec} \mathbb{Z}}(\mathbb{Z}_b)$ to $\frac{a}{b} \in \mathcal{O}_X(X \setminus V(b))$.

Corollary 3. If $R \stackrel{a}{\Longrightarrow} S$ is a pair of ring homomorphisms and $I \subseteq S$ denotes the ideal $I = (a(r) - b(r) \mid r \in R)_S$ then

$$\operatorname{Spec} S/I \xrightarrow{\operatorname{Spec} \pi} \operatorname{Spec} S$$

 $(\pi \text{ denoting the projection } S \to S/I) \text{ is an equalizer of }$

$$\operatorname{Spec} S \xrightarrow{\operatorname{Spec} a} \operatorname{Spec} R$$
.

Proof. Right-adjoint functors preserve arbitrary limits, in particular, equalizers. q.e.d.

Corollary 4. Let R be a ring, A and B be R-algebras, and let

$$A \xrightarrow{\alpha} A \otimes_R B \xleftarrow{\beta} B$$

given by $\alpha(a) = a \otimes 1$ and $\beta(b) = 1 \otimes b$. Then

$$\begin{array}{ccc} \operatorname{Spec} (A \otimes_R B) \xrightarrow{\operatorname{Spec} \beta} \operatorname{Spec} B \\ & & \downarrow \\ & \operatorname{Spec} A \xrightarrow{} \operatorname{Spec} R \end{array}$$

is a fibre product of Spec A with Spec B over Spec R in LRS.

Proof. This follows from the fact that $A \otimes_R B$ is a cofibre product of A with B over R hence a fibre product in Ring^{op} and the right-adjoint functor Spec(-) preserves arbitrary limits, in particular, fibre products. q.e.d.

Proposition 3. Let M be an R-module and \mathcal{N} an $\mathcal{O}_{\operatorname{Spec} R}$ -module, then we have a canonical bijection

$$\operatorname{Hom}_{\mathcal{O}_{\operatorname{Spec} R}}\left(\widetilde{M}, \mathcal{N}\right) \longrightarrow \operatorname{Hom}_{R}\left(M, \mathcal{N}(\operatorname{Spec} R)\right)$$

sending $\widetilde{M} \stackrel{f}{\longrightarrow} \mathcal{N}$ to the composition

$$\varphi \colon M \simeq \widetilde{M}(\operatorname{Spec} R) \xrightarrow{f} \mathcal{N}(\operatorname{Spec} R)$$
.

Proof. If f and φ are as above, then we have a commutative diagram

$$M \simeq \widetilde{M}(\operatorname{Spec} R) \xrightarrow{\varphi} \mathcal{N}(\operatorname{Spec} R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_{\mathfrak{p}} \simeq \widetilde{M}_{\mathfrak{p}} \xrightarrow{f} \mathcal{N}_{\mathfrak{p}}$$

in which the lower horizontal arrow is, in view of the universal property of $M \to M_{\mathfrak{p}}$, uniquely determined by φ . Therefore, the morphism induced by f on stalks, and hence f itself, are uniquely determined by φ .

If conversely φ is given and \mathcal{B} denotes the topology base $\{\operatorname{Spec} R_{\lambda} \mid \lambda \in R\}$ as before, we have for any such $U = \operatorname{Spec} R_{\lambda}$ a unique morphism $M_{\lambda} \to \mathcal{N}(U)$ given as the composition

$$M_{\lambda} \xrightarrow{\varphi} \mathcal{N}(\operatorname{Spec} R)_{\lambda} \longrightarrow \mathcal{N}(U)$$
.

Sheafifying gives

$$\widetilde{M} = (\operatorname{Spec} R_{\lambda} \mapsto M_{\lambda})^{\operatorname{sh}} \longrightarrow (\mathcal{N}|_{\mathcal{B}})^{\operatorname{sh}} \simeq \mathcal{N}$$

which induces φ on global sections.

q.e.d.

Definition 2 (Quasi-coherence). Let $X = \operatorname{Spec} R$. An \mathcal{O}_X -module \mathcal{M} is called **quasi-coherent** if it satisfies the following equivalent conditions:

- (a) $\mathcal{M} \simeq \widetilde{M}$ for some R-module M.
- (b) The morphism $\mathcal{M}(X)_{\lambda} \xrightarrow{(1.3.1)} \mathcal{M}(X \setminus V(\lambda))$ is an isomorphism for all $\lambda \in R$.
- (c) The canonical morphism $\widetilde{M} \stackrel{c}{\longrightarrow} \mathcal{M}$ (with $M = \mathcal{M}(X)$) associated by Proposition 3 to id_M is an isomorphism.

A Franke lecture is no Franke lecture without a definition being proved.

Proof. For $(a) \Rightarrow (b)$ note that $\widetilde{M}(X \setminus V(\lambda)) \stackrel{\sim}{\longleftarrow} M_{\lambda}$ by Proposition 1 and its first remark.

Our construction and (b) imply that c induces an isomorphism on sections on any element of the topology base \mathcal{B} , hence everywhere. This shows $(b) \Rightarrow (c)$.

The last implication $(c) \Rightarrow (a)$ is obvious. q.e.d.

Corollary 5. There is a canonical bijection from the quasi-coherent ideals \mathcal{J} on $X = \operatorname{Spec} R$ to the ideals $I \subseteq R$ by

$$\left\{ \begin{array}{l} \textit{quasi-coherent sheafs of} \\ \textit{ideals } \mathcal{J} \textit{ on } X = \operatorname{Spec} R \end{array} \right\} \overset{\sim}{\longrightarrow} \left\{ \textit{ideals } I \subseteq R \right\}$$

$$\mathcal{J} \longmapsto \mathcal{J}(X) \subseteq \mathcal{O}_X(X) \simeq R$$

$$\left(\begin{array}{l} \textit{image of } \widetilde{I} \textit{ under} \\ \widetilde{I} \to \widetilde{R} \simeq \mathcal{O}_X \end{array} \right) \longleftrightarrow I \ .$$

1.5. Preschemes and schemes

Definition 1 (Preschemes. YAY, FINALLY!). A locally ringend space X is a **prescheme** if every $x \in X$ has an open neighbourhood U such that the locally ringed space $(U, \mathcal{O}_X|_U)$ is isomorphic to Spec R in LRS, for some ring R.

The category of preschemes is a full subcategory of LRS, i.e. every morphism of locally ringed spaces between two preschemes is a morphism of preschemes.

Example 1. For every ring R, Spec R is a prescheme.

Example 2. If X is a prescheme and $U \subseteq X$ an open subset, $(U, \mathcal{O}_X|_U)$ is a prescheme (called an *open subprescheme* of X). This follows from Fact 1.

Example. The empty set is a prescheme and is the initial object in both PreSch, the category of preschemes, and LRS.

Definition 2 (Affine prescheme). A prescheme X is called **affine** if $X \simeq \operatorname{Spec} R$ in LRS, for some ring R. An open subset $U \subseteq X$ is called *affine* if $(U, \mathcal{O}_X|_U)$ is an affine prescheme.

Remark. By Proposition 1.4.2 X is affine iff $X \to \operatorname{Spec} R$ (with $R = \mathcal{O}_X(X)$, the morphism being the one associated to id_R by that proposition) is an isomorphism.

Remark. By well-known facts, Spec R is quasi-compact. Hence, any affine open subset is quasi-compact. Schemes will be preschemes with an additional separation condition implying but not equivalent to the proper the intersection of two affine open subsets is affine, hence quasi-compact. Also, recall the well-known fact that $\{\operatorname{Spec} R \setminus V(f)\}$ is a topology base on $\operatorname{Spec} R$ consisting of affine open subsets.

Fact 1. (a) The affine open subsets of a prescheme X form a topology base on X.

(b) More precisely if $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ is a cover of X by affine open subsets U_{λ} , then

$$\{U_{\lambda} \setminus V(f) \mid \lambda \in \Lambda, f \in \mathcal{O}_X(U_{\lambda})\}\$$

is a topology base on X consisting of affine open subsets.

Remark. In particular, if $U \subseteq X$ is open, if can be covered by affine open subsets of X.

Proof of Fact 1. It is sufficient to show the second part. Let $V \subseteq X$ be open. As the sets $\{\operatorname{Spec} R \setminus V(g) \mid g \in R\}$ form a topology base on $\operatorname{Spec} R$, we have

$$V \cap U_{\lambda} = \bigcup_{\xi \in \Xi_{\lambda}} U_{\lambda} \setminus V(f_{\lambda,\xi}) ,$$

for some indexing sets Ξ_{λ} and $f_{\lambda,\xi} \in \mathcal{O}_X(U_{\lambda})$. Then

$$V = \bigcup_{\lambda \in \Lambda} V \cap U_{\lambda} = \bigcup_{\lambda \in \Lambda} \bigcup_{\xi \in \Xi_{\lambda}} U_{\lambda} \setminus V(f_{\lambda,\xi}) ,$$

proving that V can be covered by elements of the above set.

q.e.d.

Definition 3 (Quasi-compact). A prescheme X is called **quasi-compact** if it satisfies the following equivalent criteria:

- (a) The topological Space X is quasi-compact.
- (b) X may be covered by finitely many affine open subsets.
- (c) X may be covered by finitely many quasi-compact open subsets.

A prescheme X is called **quasi-separated**, if it satisfies the following equivalent conditions:

- (d) The intersection of two affine open subsets is quasi-compact.
- (e) The intersection of two quasi-compact subsets is quasi-compact.
- (f) X has a topology base \mathcal{B} such that the intersection of two elements of \mathcal{B} is quasi-compact.

Aaand another definition demanding to be proved. The union U of finitely many quasi-compact open subsets U_1, \ldots, U_n of a topological space X is again quasi-compact. Indeed, for any cover $U = \bigcup_{\lambda \in \Lambda} V_{\lambda}$ by open subsets, each $U_i = \bigcup_{\lambda \in \Lambda} U_i \cap V_{\lambda}$ has a finite subcover $U_i = \bigcup_{j=1}^{n_i} U_i \cap V_{\lambda_{i,j}}$ and all these finite subcovers give us a finite subcover $U = \bigcup_{i=1}^{n_i} \bigcup_{j=1}^{n_i} U_{\lambda_{i,j}}$.

So (a) implies (b) definition of quasi-compactness and Fact 1, (b) implies (c) since Spec R is quasi-compact and (c) implies (a) by the above considerations.

We obtain $(e) \Rightarrow (d)$ since affine open subsets are quasi-compact and $(d) \Rightarrow (f)$ by Fact 1. To see that (f) implies (e), let \mathcal{B} be as in (f) and V and W be quasi-compact open subsets. Then $V = \bigcup_{i=1}^m B_i$, $W = \bigcup_{j=1}^n C_j$ with B_i , $C_j \in \mathcal{B}$. Then $V \cap W = \bigcup_{i=1}^m \bigcup_{j=1}^n B_i \cap C_j$ is quasi-compact since all $B_i \cap C_j$ are quasi-compact by assumption. q.e.d.

Fact 2. (a) Spec R is quasi-compact and quasi-separated.

(b) Suppose that $Y \to X$ is a morphism of preschemes which is a homeomorphism onto a closed subset of X carrying the induced topology. Then X being quasi-compact implies Y being quasi-compact, and X being quasi-separated implies Y being quasi-separated.

Proof. The assertions about quasi-compactness are well-known. For quasi-separatedness in (a), we take $\mathcal{B} = \{ \operatorname{Spec} R_f \mid f \in R \}$, whose elements are quasi-compact and which is closed under intersection, hence Definition 3(f) applies. For (b) take $\mathcal{B} = \{ V \cap Y \mid V \subseteq X \text{ affine} \}$. q.e.d.

Proposition 1. Let X be a prescheme, \mathcal{M} an \mathcal{O}_X -module. The following conditions are equivalent:

- (a) X may be covered by affine open subsets U such that $\mathcal{M}|_U$ is quasi-coherent.
- (b) X has a topology base consisting of affine open subsets U such that $\mathcal{M}|_U$ is quasi-coherent.
- (c) When $U \subseteq X$ is open and quasi-compact, the morphism

$$\mathcal{M}(U)_{\lambda} \xrightarrow{(1.3.1)} \mathcal{M}(U \setminus V(\lambda))$$
 (*)

is injective for all $\lambda \in \mathcal{O}_X(U)$. It is bijective when U is open, quasi-compact and quasi-separated.

(d) (*) is bijective when U is open, quasi-compact and quasi-separated.

- (e) (*) is bijective when U is affine open.
- (f) For arbitrary affine open U, $\mathcal{M}|_U$ is quasi-coherent.

Proof. Assume (a). Recall that $\widetilde{M}|_{\operatorname{Spec} R_f} \simeq \widetilde{M}_f$ for M an R-module and $f \in R$. In particular, when $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ is a cover with U_{λ} affine and $\mathcal{M}|_{U_{\lambda}}$ quasi-coherent, then $\mathcal{M}|_{U_{\lambda} \setminus V(f)}$ is quasi-coherent. By Fact 1(b), (b) follows.

Now let (b) be given. Let \mathcal{B} be a topology base of affine open subsets such that $\mathcal{M}|_U$ is quasi-coherent when $U \in \mathcal{B}$. By Definition 1.4.2(b), (*) is an isomorphism for $U \in \mathcal{B}$. Now let U be a quasi-compact open subset, $f \in \mathcal{O}_X(U)$, $m = \mu f^{-s} \in \mathcal{M}(U)_f$ (with $\mu \in \mathcal{M}(U)$ and $s \geq 0$) such that the image of m under (*) vanishes. Then $\mu|_{U \setminus V(f)} = 0$. As U is quasi-compact it can be represented $U = \bigcup_{i=1}^n U_i$ with $U_i \in \mathcal{B}$. As (*) is bijective for U_i , we have $k_i \in \mathbb{N}$ such that $f^{k_i}\mu|_{U_i} = 0$ in $\mathcal{M}(V_i)$. Let $k = \max_{i=1,\ldots,n} k_i$, then $f^k\mu|_{U_i} = 0$, hence $f^k\mu = 0$ in $\mathcal{M}(U)$ as \mathcal{M} is a sheaf. Thus, $m = \mu f^{-s} \in \mathcal{M}(U)_f$ is zero, which shows injectivity.

To show the asserted bijectivity, let \mathcal{B} be as before, $U \subseteq X$ be open, quasi-compact and quasi-separated, and let $m \in \mathcal{M}(U \setminus V(f))$ be given. As before we have $U = \bigcup_{i=1}^n U_i$ with $U_i \in \mathcal{B}$. As (*) is an isomorphism on U_i and there are only finitely many U_i , we find $\mu_i \in \mathcal{M}(U_i)$ and an exponent $k \geq 0$ such that $m|_{U_i \setminus V(f)} = \mu_i f^{-k}$. For brevity, denote $U_{i,j} = U_i \cap U_j$. Let $\mu_{i,j} = \mu_i|_{U_{i,j}} - \mu_j|_{U_{i,j}}$, then $\mu_{i,j}|_{U_{i,j} \setminus V(f)} = 0$. As U is quasi-separated and the U_i are affine, this implies $f^{\ell_{i,j}}\mu_{i,j} = 0$ in $\mathcal{M}(U_{i,j})$ (for some exponents $\ell_{i,j} \geq 0$) by the injectivity step, which applies here since $U_{i,j}$ is quasi-compact by Definition 3(d). Taking $\ell = \max_{i,j} \ell_{i,j}$ we have $f^{\ell}\mu_i|_{U_{i,j}} = f^{\ell}\mu_j|_{U_{i,j}}$ and replacing k by $k + \ell$ and μ_i by $f^{\ell}\mu_i$, we achieve $\mu_i|_{U_{i,j}} = \mu_j|_{U_{i,j}}$. As \mathcal{M} is a sheaf, there is $\mu \in \mathcal{M}(U)$ such that $\mu|_{U_i} = \mu_i$. Then $(\mu f^{-k})|_{U \setminus V(f)} = m$ as the restriction of the left hand side to $U_i \setminus V(f)$ equals $\mu_i f^{-k} = m|_{U_i \setminus V(f)}$.

The hard work being done, (c) trivially implies (d). We obtain (d) \Rightarrow (e) by Fact 2(a), (e) \Rightarrow (f) by Definition 1.4.2(b) and (f) \Rightarrow (a) by Definition 1.

Corollary 1. The morphism $\mathcal{O}_X(U)_{\lambda} \xrightarrow{(1.3.1)} \mathcal{O}_X(U \setminus V(\lambda))$ is injective when U is quasi-compact and bijective, when V is quasi-compact and quasi-separated.

Corollary 2. When U is quasi-compact and $\lambda \in \mathcal{O}_X(U)$ such that $V(\lambda) = U$ then λ is nilpotent. (Vice versa, we clearly have V(f) = U when λ is nilpotent, even when U is not quasi-compact.)

Proof. By Corollary 1. $\mathcal{O}_Y(U) \to \mathcal{O}_Y(\emptyset)$ is injective, hence $\mathcal{O}_Y(U)$, is the zero ring and λ

Proof. By Corollary 1, $\mathcal{O}_X(U)_{\lambda} \to \mathcal{O}_X(\emptyset)$ is injective, hence $\mathcal{O}_X(U)_{\lambda}$ is the zero ring and λ must be nilpotent. q.e.d.

Definition 4 (Quasi-coherence). Let X be a prescheme. An \mathcal{O}_X -module is called **quasi-coherent**, if it satisfies the equivalent conditions of Proposition 1.

Fact 3. If $\mathcal{M} \xrightarrow{\mu} \mathcal{N}$ is a morphism of \mathcal{O}_X -modules, with \mathcal{M} and \mathcal{N} quasi-coherent, then $\ker(\mu)$ is quasi-coherent.

Proof. Let $U \subseteq X$ be affine open. As \mathcal{M} and \mathcal{N} are quasi-coherent, there are $\mathcal{O}_X(U)$ -modules M and N such that $\mathcal{M}|_U = \widetilde{M}$, $\mathcal{N}|_U = \widetilde{N}$. By Proposition 1.4.3, $\mathcal{M}|_U \stackrel{\mu}{\longrightarrow} \mathcal{N}|_U$ corresponds to a morphism $M \stackrel{\mu_U}{\longrightarrow} N$. If intuition is worth anything in this world, we should have $\ker(\mu)|_U = \widetilde{P}$ with $P = \ker(\mu_U)$. Indeed, it's enough to check that \widetilde{P} has the right stalks and it has, as

 $P_{\mathfrak{p}} = \ker \left(M_{\mathfrak{p}} \xrightarrow{\mu_{U}} N_{\mathfrak{p}} \right) = \ker(\mu)_{\mathfrak{p}}$, using that localization is an exact functor and thus preserves kernels.

Example. \mathcal{O}_X is quasi-coherent.

Definition 5. Let $X \xrightarrow{f} Y$ be a morphism between preschemes. We say that f is

- (a) a **closed embedding** if it is a *closed immersion* in the sense of Definition 1.3.5.
- (b) quasi-compact when it satisfies the following equivalent conditions:
 - (α) When $U \subseteq Y$ is affine, $f^{-1}(U)$ is quasi-compact.
 - (β) When U is quasi-compact, $f^{-1}(U)$ is quasi-compact.
 - (γ) Y has a topology base \mathcal{B} such that $f^{-1}(U)$ is quasi-compact for $U \in \mathcal{B}$.
- (c) quasi-separated if the preimage of any affine open subset of Y is quasi-separated (two more equivalent conditions are given in Lemma 2.1.1).

Remark. (a) The equivalence of the three conditions in (b) can be seen via $(\beta) \Rightarrow (\alpha) \Rightarrow (\gamma) \Rightarrow (\beta)$ as in the proof of Definition 3 (which actually is a special case of this).

- (b) X is quasi-separated iff for any quasi-compact open subset U the embedding $U \hookrightarrow X$ is quasi-compact (preimages in this case are just intersections with U and we obtain Definition 3(e)).
- (c) Open embeddings are quasi-separated for trivial reasons.

Proposition 2. (a) A closed embedding of preschemes is quasi-compact and quasi-separated.

(b) Let $X \xrightarrow{f} Y$ be a morphism of preschemes which is quasi-compact and quasi-separated and \mathcal{M} a quasi-coherent \mathcal{O}_X -module, then $f_*\mathcal{M}$ is a quasi-coherent \mathcal{O}_Y -module.

Proof. Part (a) follows from Fact 2.

For (b) take $U \subseteq Y$ affine. Then (*) for $f_*\mathcal{M}$ and U is an isomorphism by the diagram

$$(f_*\mathcal{M}(U))_{\lambda} \xrightarrow{(*)} f_*\mathcal{M}(U \setminus V(\lambda))$$

$$\parallel \qquad \qquad \parallel$$

$$\mathcal{M}(f^{-1}U)_{\lambda} \xrightarrow{\sim} \mathcal{M}(f^{-1}U \setminus V(f^*\lambda))$$

in which the lower horizontal arrow is an isomorphism by Proposition 1(d) because \mathcal{M} is quasi-coherent and $f^{-1}U$ is quasi-compact and quasi-separated by the assumptions on f. q.e.d.

Proposition 3. Let X be a prescheme and K a locally ringed space and $K \xrightarrow{\iota} X$ a closed immersion in the sense of Definition 1.3.5. Then K is a prescheme if and only if the sheaf of ideals $\mathcal{J} = \ker (\mathcal{O}_X \xrightarrow{\iota^*} \iota_* \mathcal{O}_K)$ associated to ι by Proposition 1.3.4 is quasi-coherent.

Proof. Let K be a prescheme. By Proposition 2 and Fact 3, \mathcal{J} is quasi-coherent.

Conversely, let \mathcal{J} be quasi-coherent. As the correspondence between K and \mathcal{J} is compatible with restriction to open subsets (being a closed immersion, being a kernel, and quasi-coherence are all local properties), it is sufficient to show that K is a prescheme, when X is affine. In this case $(X = \operatorname{Spec} R)$, any quasi-coherent $\mathcal{J} \subseteq \mathcal{O}_X$ has the from $\mathcal{J} = \widetilde{I}$. But $\operatorname{Spec} R/I \to \operatorname{Spec} R$ is a closed embedding and our correspondence associates \widetilde{I} to ι . Thus, $K \simeq \operatorname{Spec}(R/I)$ is affine in this case.

Definition 6. A closed subprescheme of a prescheme X is an equivalence class of closed immersions $K \stackrel{i}{\hookrightarrow} X$ of preschemes K, where two such closed immersions $K \stackrel{i}{\hookrightarrow} X$ and $L \stackrel{j}{\hookrightarrow} X$ are considered equivalent iff there is an isomorphism $K \stackrel{\sim}{\iota} L$ such that $i = j\iota$.

Remark 1. The isomorphism above is unique as i and j are monomorphisms.

Corollary 3. (a) For a prescheme X, there is a one-to-one correspondence

$$\left\{ closed \ subpreschemes \ K \stackrel{i}{\longleftrightarrow} X \right\} \stackrel{\sim}{\longrightarrow} \left\{ quasi-coherent \ sheaves \ of \ ideals \ \mathcal{J} \subseteq \mathcal{O}_X \right\}$$
$$\left(K \stackrel{i}{\longleftrightarrow} X \right) \longmapsto \ker \left(\mathcal{O}_X \stackrel{i^*}{\longrightarrow} i_* \mathcal{O}_K \right) .$$

(b) Any closed subprescheme of an affine scheme is affine.

Proof. Part (a) follows from Proposition 3 and Proposition 1.3.4.

Part (b). On Spec R, every quasi-coherent sheaf of ideals is of the form \widetilde{I} for an ideal $I \subseteq R$, corresponding to Spec $(R/I) \to \operatorname{Spec} R$.

Corollary 4. For any prescheme X and any ring R, the following map is bijective:

$$\operatorname{Hom}_{\operatorname{Ring}}\left(R,\mathcal{O}_{X}(X)\right) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{PreSch}}(X,\operatorname{Spec} R)$$
$$\left(R \simeq \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) \xrightarrow{f^{*}} \mathcal{O}_{X}(X)\right) \longleftrightarrow \left(X \xrightarrow{f} \operatorname{Spec} R\right)$$

Proof. This is a special case of Proposition 1.4.2.

q.e.d.

Corollary 5. Spec \mathbb{Z} is a final object in the category of preschemes.

Corollary 6. (a) The category of preschemes has equalizers.

(b) If $Y \xrightarrow{v} Z$ is a monomorphism (e.q. an open/closed/arbitrary immersion), then

$$\operatorname{Eq}\left(X \overset{a}{\underset{b}{\Longrightarrow}} Y\right) \simeq \operatorname{Eq}\left(X \overset{va}{\underset{vb}{\Longrightarrow}} Z\right).$$

(c) If $U \subseteq X$ is open and $X \stackrel{a}{\Longrightarrow} Y$ a pair of morphisms of preschemes, then

$$\operatorname{Eq}\left(U \xrightarrow[h]{a|_{U}} Y\right) = \operatorname{Eq}\left(X \xrightarrow[h]{a} Y\right) \cap U.$$

(d) If $R \stackrel{\alpha}{\Longrightarrow} S$ are morphisms of rings, then

$$\operatorname{Eq}\left(\operatorname{Spec} S \xrightarrow{\operatorname{Spec} \alpha} \operatorname{Spec} R\right) \simeq \operatorname{Spec}\left(\operatorname{Coeq}\left(R \xrightarrow{\alpha} S\right)\right).$$

(e) The morphism $\operatorname{Eq}\left(X \xrightarrow{a} Y\right) \to X$ is immersive.

Proof. Part (b) is true in any category an can be easily proved by abstract nonsense.

Part (c) follows from our explicit construction of equalizers in LRS in Proposition 1.3.1 as long as only equalizers in LRS are concerned. That the occurring equalizers are indeed preschemes will follow from the proof of (a). Part (d) is a consequence of Proposition 1.4.2 and the fact that $\operatorname{Spec}(-)$ is a contravariant functor.

Together, (b), (c) (that is, what we proved of it so far) and (d) imply (a). Indeed, let $E \subseteq X$ be the equalizer of $X \stackrel{a}{\Longrightarrow} Y$ in the category of locally ringed spaces, where X and Y are preschemes; we need to show that E is a prescheme as well. Let $x \in E$. Choose an affine open neighbourhood V of a(x) = b(x) in Y and an affine open neighbourhood of $U \subseteq a^{-1}(V) \cap b^{-1}(V)$ of x in X. Then

$$\operatorname{Eq}\left(U \xrightarrow[b]{a|_U} V\right) = \operatorname{Eq}\left(U \xrightarrow[b]{a|_U} Y\right) = \operatorname{Eq}\left(X \xrightarrow[b]{a} Y\right) \cap U$$

in which the first equality follows from (b) and the fact that $V \hookrightarrow Y$ is a monomorphism, whereas the second equality is due to (c). By (d), the left-hand side is an affine prescheme, thus providing us with an affine open neighbourhood of x in E.

For (e), note by our explicit construction in Proposition 1.3.1 the considered morphism of preschemes is a homeomorphism onto the subset

$$K = \left\{ x \in X \mid a(x) = b(x) =: y \text{ and } \mathfrak{K}(y) \xrightarrow{a^*} \mathfrak{K}(x) \text{ coincide} \right\} \subseteq X \tag{*}$$

and induces surjections on stalks of the structure sheaf.

q.e.d.

Corollary 7. (a) The category of preschemes has fibre products.

(b) Let the diagram

$$\begin{array}{ccc} X \times_S Y & \xrightarrow{p_Y} & Y \\ \downarrow^{p_X} & & \downarrow^{v} \\ X & \xrightarrow{\xi} & S \end{array}$$

be a fibre product in PreSch. If $U \subseteq X$, $V \subseteq Y$ and $W \subseteq S$ are open subsets, then

$$U\times_W V=p_X^{-1}(U)\cap p_Y^{-1}(V)\subseteq X\times_S Y\;.$$

(c) Spec $A \times_{\operatorname{Spec} R} \operatorname{Spec} B \simeq \operatorname{Spec}(A \otimes_R B)$.

(d) If $S \to T$ is a monomorphism, then $X \times_S Y \simeq X \times_T Y$.

Proof. Assertion (d) again holds in any category and admits a pure abstract nonsense proof.

Part (b) follows from Proposition 1.3.2(b) except for the fact that the involved fibre products are preschemes, which will follow from the proof of (a). Part (c) follows from Corollary 1.4.4 and together, (b), (c) and (d) imply (a) by a technical argument as in the proof of Corollary 6. q.e.d.

Definition 7. Let S be a prescheme. The category of S-preschemes has morphisms $X \stackrel{\xi}{\longrightarrow} S$ of preschemes as objects and diagrams

as morphisms. Compositions are given by

and the identity on $X \xrightarrow{\xi} S$ is id_X .

Remark. (a) This is a special case of the *comma category* construction, cf. this remark.

- (b) Products in the category of S-preschemes (which has $S \xrightarrow{\mathrm{id}_S} S$ as a final object) are given by $X \times_S Y$.
- (c) The category of Spec \mathbb{Z} -preschemes is canonically isomorphic to the category of preschemes.

Definition 8. A class \mathcal{C} of morphisms in the category of preschemes is called

(a) stable (or closed) under base-change if in any fibre product diagram

$$\begin{array}{ccc} X \times_Y Y' \xrightarrow{\xi'} Y' \\ \downarrow^{\upsilon'} & \downarrow^{\upsilon} \\ X \xrightarrow{\xi} Y \end{array}$$

we have $\xi' \in \mathcal{C}$ if $\xi \in \mathcal{C}$.

- (b) base-local if for a morphism $X \xrightarrow{\xi} Y$ the following conditions are equivalent:
 - $(\alpha) \xi \in \mathcal{C}.$
 - (β) For any open subset $U \subseteq Y$ the morphism $\xi^{-1}(U) \to U$ is $\in \mathcal{C}$.

 (γ) Y may be covered by open subsets U such that $\xi^{-1}(U) \to U$ is $\in \mathcal{C}$.

Fact 4. The classes \mathcal{C} of open or closed or general immersions (homeomorphisms onto their images and surjective on stalks) are closed under composition, stable under base-change and base-local. Moreover, they have the following cancellation property: $ij \in \mathcal{C}$ and $i \in \mathcal{C}$ implies $j \in \mathcal{C}$.

Proof. Closedness under composition holds because homeomorphisms work that way and compositions of surjections are surjective. Stability under base-change follows from Corollary 1.3.3. Base-locality is clear as both being a homeomorphism and being surjective on stalks are local properties. Finally, the cancellation property is due to the fact that if ij and i are homeomorphisms onto their image, then so is j, and if the morphisms j^*i^* and i^* induced on stalks are surjective, then so is j^* .

Fact 5. For a pair $X \stackrel{a}{\Longrightarrow} Y$ of morphisms of preschemes, the morphism $\operatorname{Eq}\left(X \stackrel{a}{\Longrightarrow} Y\right) \to X$ is immersive and its image is locally closed. It is a closed immersion if and only if the above set K (described in (*)) is closed.

When Y has the property that arbitrary points $x, y \in Y$ have a common affine neighbourhood (this is e.g. the case when Y is affine), then K is always closed.

Proof. With the possible exception of local closedness and the last assertion, this follows from our construction of equalizers in Proposition 1.3.1.

Let $x \in X$ and suppose that $W \subseteq Y$ is an affine open neighbourhood of a(x) and b(x). We claim that x has an open neighbourhood U (namely $U = a^{-1}(W) \cap b^{-1}(W)$) such that $K \cap U$ is closed in U. This implies local closedness (if $x \in K$, take any affine open neighbourhood W of a(x) = b(x)) and also the other assertion, cf. this remark. To show the claim about U, note that

$$K \cap U = \bigcap_{\lambda \in \mathcal{O}_Y(W)} V(a^* \lambda |_W - b^* \lambda |_W)$$

by our description of K.

q.e.d.

Fact 6. For any morphism $X \xrightarrow{f} Y$ of preschemes, the following conditions are equivalent:

- (a) For every morphism pair $T \stackrel{a}{\Longrightarrow} X$ such that fa = fb, the equalizer $\operatorname{Eq}\left(T \stackrel{a}{\Longrightarrow} X\right)$ is a closed subprescheme of T.
- (b) For $T \stackrel{a}{\Longrightarrow} X$ as in (a), Eq $\left(T \stackrel{a}{\Longrightarrow} X\right)$ is a closed subset of T.
- (c) The conditions (a) or (b) hold when T is affine.

Proof. $(a) \Leftrightarrow (b)$ follows from Fact 5. The implication $(a) \Rightarrow (c)$ is trivial. It remains to show $(c) \Rightarrow (a)$. Let T be an arbitrary prescheme, $T \xrightarrow{a \atop b} X$ a pair of morphisms and K the subset of T on which Eq $\left(T \xrightarrow{a \atop b} X\right)$ maps homeomorphically. By Corollary 6(c) and the assumption, $K \cap U$ is closed in U for any affine open $U \subseteq T$. As the affine open subsets cover T, this shows that K is closed.

Definition 9. (a) A morphism of preschemes is called **separated** if it satisfies the equivalent conditions from Fact 6.

(b) A prescheme X is **separated** (or a **scheme**) if the morphism $X \to \operatorname{Spec} \mathbb{Z}$ is separated; in other words, if $\operatorname{Eq}\left(T \xrightarrow{a \atop b} X\right)$ is always closed in T for T a prescheme.

Remark. Maybe Grothendieck should have dropped the *pre*fix *pre* and rather have used the term *scheme* instead of *prescheme* in the first place, and indeed, in *pre*sent days, this other notation is *pre*dominating. However, Prefessor Franke *pre*sumably *pre*fers Grothendieck's *pre*existing terminology.

Fact 7. (a) Any monomorphism (e.g. open/closed/arbitrary immersions) of preschemes is separated.

- (b) If gf is separated, then so is f. In particular, any morphism between schemes is separated.
- (c) The class of separated morphisms is closed under composition and stable under base change.
- (d) A morphism $X \xrightarrow{f} Y$ is separated iff the embedding of the diagonal

$$\Delta = \text{image of } X \xrightarrow{(\text{id}_X, \text{id}_X)} X \times_Y X$$

is a closed immersion.

Proof. Part (a) is obvious: If $X \xrightarrow{f} Y$ is a monomorphism and $T \xrightarrow{a} X$ are such that fa = fb, then a = b and the equalizer under consideration equals T. Part (b) is also trivial, as any $T \xrightarrow{a} X$ such that fa = fb also satisfies gfa = gfb.

Let's prove (d). If f is separated, then $\Delta = \operatorname{Eq}\left(X \times_Y X \xrightarrow{p_1} X\right) \hookrightarrow X \times_Y X$ is a closed immersion. Conversely, if Δ is closed and $T \xrightarrow[b]{a} X$ is such that fa = fb, then we have a morphism $\tau \colon T \xrightarrow{(a,b)} X \times_Y X$ and

$$K = \operatorname{Eq}\left(T \xrightarrow{a \atop b} X\right) \simeq T \times_{X \times_Y X} \Delta$$
.

The morphism $K \hookrightarrow T$ is thus a base change of $\Delta \hookrightarrow X \times_Y X$ and hence a closed embedding by base change stability (Fact 4).

Now for (c). For closednesss under composition, consider $X \xrightarrow{f} Y \xrightarrow{g} Z$ with f, g separated. Let $T \xrightarrow{a} X$ such that gfa = gfb. Then $K = \text{Eq}\left(T \xrightarrow{fa} Y\right)$ is a closed subprescheme of T as g is separated and

$$\operatorname{Eq}\left(T \stackrel{a}{\underset{b}{\Longrightarrow}} X\right) \simeq \operatorname{Eq}\left(K \longrightarrow T \stackrel{a}{\underset{b}{\Longrightarrow}} X\right)$$

is a closed subprescheme of K as f is separated. And finally closedness under base change. Consider a cocartesian square (i.e. a fibre product diagram)

$$X \times_S Y = X' \xrightarrow{\xi'} Y'$$

$$\downarrow^{v'} \qquad \qquad \downarrow^{v}$$

$$X \xrightarrow{\xi} Y$$

in which ξ is separated. If $T \stackrel{a}{\Longrightarrow} X'$ is such that $\xi'a = \xi'b$, then

$$\operatorname{Eq}\left(T \stackrel{a}{\Longrightarrow} X'\right) \simeq \operatorname{Eq}\left(T \stackrel{v'a}{\Longrightarrow} X\right)$$

by the universal property of the fibre product. As ξ is separated, this is a closed subprescheme of T.

Fact 8. For a prescheme X the following conditions are equivalent:

- (a) X is a scheme.
- (b) For every pair, $T \stackrel{a}{\Longrightarrow} X$ the equalizer $K = \text{Eq}\left(T \stackrel{a}{\Longrightarrow} X\right)$ is a closed subprescheme of T.
- (c) Under the same assumptions, K is a closed subset of T.
- (d) The same, under the additional assumption that T is affine.
- (e) $X \xrightarrow{(\mathrm{id}_X,\mathrm{id}_X)} X \times X$ is a closed embedding.

Proof. The equivalence of (a), (b), (c) and (d) follows from Definition 9 and Fact 6. As Spec \mathbb{Z} is the final object in the category of preschemes, $X \times X = X \times_{\operatorname{Spec} \mathbb{Z}} X$ and by Fact 7(d) we have that (e) is equivalent to the others.

- **Fact 9.** (a) Every affine prescheme is a scheme. More general, if for any two points of a prescheme X there is an affine open subset of X containing both of them, then X is a scheme.
 - (b) The class of schemes is closed under forming equalizers of pair of morphisms and fibre products.
 - (c) Every open or closed subprescheme of a scheme is a scheme.
 - (d) If X is a scheme, any morphism $X \to Y$ of preschemes is separated.

Proof. Part (a) immediately follows from Fact 5 and Fact 8(c). The point (d) follows from Fact 7(b). Indeed, as Spec \mathbb{Z} is a final object, the composition $X \stackrel{f}{\longrightarrow} Y \to \operatorname{Spec} \mathbb{Z}$ equals the uniquely determined morphism $X \to \operatorname{Spec} \mathbb{Z}$, hence is separated, hence so is f.

Let's prove (b). If X, Y and S are schemes then any morphism $X \to S$ is separated by (d), hence, by base change stability, its base-change $X \times_S Y \to Y$ is separated as well, as is $X \times_S Y \to Y \to \operatorname{Spec} \mathbb{Z}$ by closedness under composition (cf. Fact 7(c)). Thus $X \times_S Y$ is scheme.

If X is a scheme and $X \stackrel{a}{\Longrightarrow} Y$ a pair of morphisms, then $K = \text{Eq}\left(X \stackrel{a}{\Longrightarrow} Y\right) \to X$ is a monomorphism, hence separated by Fact 7(a), and $K \to X \to \text{Spec } \mathbb{Z}$ is separated by closedness under composition (cf. Fact 7(c)). This proves (b).

If $Y \hookrightarrow X$ is any immersion, it is a monomorphism, hence separated and $Y \hookrightarrow X \to \operatorname{Spec} \mathbb{Z}$ is separated by closedness under composition (cf. Fact 7(c)), proving (c).

q.e.d.

Proposition 4. The intersection of two affine open subsets of a scheme is affine.

Remark. In particular, schemes are quasi-separated.

Proof of Proposition 4. Let $U, V \subseteq X$ be affine open subsets of a scheme X. By Corollary 1.3.2, their product $U \times V$ equals $p^{-1}(U) \cap q^{-1}(V) \subseteq X \times X$ (where $X \times X \stackrel{p}{\Longrightarrow} X$ are the projections to the factors) and is affine by Corollary 1.4.4. The diagonal $\Delta = \text{image of } X \stackrel{(\text{id}_X, \text{id}_X)}{\longrightarrow} X \times X$ is closed by Fact 8(e) and isomorphic to X, as $\Delta \stackrel{p|_{\Delta}=q|_{\Delta}}{\longrightarrow} X$ is inverse to $X \to \Delta$. Then $\Delta \cap (U \times V)$ is affine as a closed subprescheme of the affine scheme $U \times V$ by Corollary 3. Then its preimage under the isomorphism $X \stackrel{\sim}{\longrightarrow} \Delta$

$$p|_{\Delta}(\Delta \cap (U \times V)) = p|_{\Delta}(\Delta \cap p^{-1}(U) \cap q^{-1}(V))$$
$$= p|_{\Delta}(\Delta \cap p^{-1}(U)) \cap q|_{\Delta}(\Delta \cap q^{-1}(V)) = U \cap V$$

is affine as well, as we wanted to show.

q.e.d.

Fact 10. For a morphism $X \xrightarrow{f} Y$ of preschemes, the following conditions are equivalent:

- (a) f is separated.
- (b) If $U \subseteq Y$ is an open subset which is scheme, then $f^{-1}(U)$ is a scheme.
- (c) It is possible to cover Y by open subsets U which are schemes such that $f^{-1}(U)$ is a scheme.
- (d) Y may be covered by open subsets U such that $f^{-1}(U)$ is a scheme.

Proof. (a) implies (b), since for U as in (b), $f^{-1}(U) \to U$ is separated by Fact 7(c) as it is the base change of f by $U \to Y$. Thus $f^{-1}(U) \to U \to \operatorname{Spec} \mathbb{Z}$ is separated.

The implication from (b) to (c) is trivial, as Y may be covered by affine open subsets. The implication $(c) \Rightarrow (d)$ is even more trivial.

Finally let's prove $(d) \Rightarrow (a)$. Let $T \stackrel{a}{\Longrightarrow} X$ be such that fa = fb. If $Y = \bigcup_{i \in I} U_i$ is a covering by open subsets such that $f^{-1}(U_i)$ is a scheme, then $V_i = a^{-1}f^{-1}(U_i) = b^{-1}f^{-1}(U_i)$ form an open cover of T, and

$$\operatorname{Eq}(a,b) \cap V_i = \operatorname{Eq}\left(V_i \xrightarrow[b]{a|_{V_i}} f^{-1}(U_i)\right)$$

(the equality follows from Corollary 6(c)) is closed in V_i as $f^{-1}(U_i)$ is a scheme. By an argument like in this remark, this shows that Eq(a, b) is closed in T, i.e. f is separated. q.e.d.

Proposition 5. Any section (i.e. right-inverse) s of a separated morphism is a closed embedding.

Proof. Let $X \xrightarrow{f} S$ be separated and $S \xrightarrow{s} X$ be such that $fs = \mathrm{id}_{S}$. Then $S \xrightarrow{s} X$ equals $\mathrm{Eq}\left(X \xrightarrow{a} X\right) \to X$ where $a = \mathrm{id}_{X}$ and b = sf. Indeed, if $T \xrightarrow{g} X$ is a morphism of preschemes such that ag = bg then $g = ag = bg = s\gamma$ with $\gamma = fg$. Thus, $g = s\gamma$ factors over s. Moreover, if γ is such that $g = s\gamma$, then $\gamma = fs\gamma = fg$ is unique, proving our claim that $S = \mathrm{Eq}(a,b)$.

Now fa = f = fsf = fb. Thus, by Fact 6(a) and separatedness of f, $S \xrightarrow{s} X$ is a closed immersion.

Proposition 6 (Graph of a morphism). For a morphism of S-preschemes

with v separated, the graph $\Gamma_f \colon X \xrightarrow{(\mathrm{id}_X, f)} X \times_S Y$ is a closed immersion.

Proof. In fact, Γ_f is a section of the projection $X \times_S Y \to X$ which is a base change of v, thus separated. q.e.d.

2. Properties of (pre)schmes and their morphisms

2.1. (Mostly) topological properties

2.1.1. Compactness properties

Fact 1. For a morphism $X \xrightarrow{f} Y$ of preschemes, the following conditions are equivalent

- (a) For any affine open $U \subseteq X$, $f^{-1}(U)$ is quasi-compact
- (b) For any quasi-compact open $U \subseteq Y$, $f^{-1}(U)$ is quasi-compact.
- (c) The open subsets $U \subseteq Y$ such that $f^{-1}(U)$ is quasi-compact form a topology base.
- (d) X may be covered by affine open subsets such that $f^{-1}(U)$ is quasi-compact.

Proof. The equivalence of (a), (b), and (c) was proved in Definition 1.5.5(b). It is easy to see that (b) implies (d). Assuming (d), if $U \subseteq Y$ is affine and $f^{-1}(U)$ is quasi-compact, then for $\lambda \in \mathcal{O}_Y(U)$, we have $f^{-1}(U \setminus V(\lambda)) = f^{-1}(U) \setminus V(f^*\lambda)$ being quasi-compact by Fact 2. By Fact 1.5.1(b), such $U \setminus V(\lambda)$ form a topology base. q.e.d.

Definition 1 (Quasi-compact morphism). A morphism with these properties is called **quasi-compact**.

Fact 2. If X is a quasi-compact prescheme and $f \in \mathcal{O}_X(X)$ then $X \setminus V(f)$ is quasi-compact.

Proof. If X is affine, say $X = \operatorname{Spec} R$, then $X \setminus V(f) \simeq \operatorname{Spec} R_f$ is affine, thus quasi-compact. If X is quasi-compact, $X = \bigcup_{i=1}^n U_i$ with U_i affine. Then $X \setminus V(f) = \bigcup_{i=1}^n (U_i \setminus V(f))$ is a finite union of quasi-compact open subsets, thus quasi-compact.

Fact 3. The class of quasi-compact morphisms is base-local (cf. Definition 1.5.8(b)) and closed under composition and base change.

Proof. Closedness under composition is obvious from Fact 1(a) and base-locality is obvious from Fact 1(c). Closedness under base-change may, by base-locality, be reduced to the case $X \xrightarrow{f} Y$ where Y is affine and the base change is along $\tilde{Y} \to Y$ with \tilde{Y} affine. In this case, $X = f^{-1}(Y)$ is quasi-compact, hence $X = \bigcup_{i=1}^{n} X_i$ with $X_i \subseteq X$ is affine open and $X \times_Y \tilde{Y} = \bigcup_{i=1}^{n} \tilde{X}_i$ in which the factors $\tilde{X}_i = X_i \times_Y \tilde{Y}$ are affine (as was seen in Corollary 1.4.4) and thus quasi-compact.

Denote by \widetilde{f} the base change $X \times_Y \widetilde{Y} \xrightarrow{\widetilde{f}} \widetilde{Y}$ of f. By the following Fact 4, the restriction $\widetilde{X}_i \to \widetilde{Y}$ is quasi-compact. When $U \subseteq Y$ is a quasi-compact open subset this means that

 $\widetilde{f}^{-1}(U) \cap \widetilde{X}_i = (\widetilde{f}|_{\widetilde{X}_i})^{-1}(U)$ is quasi-compact and $\widetilde{f}^{-1}(U)$, being the finite union of these subsets, is quasi-compact as well. q.e.d.

Fact 4. Let X be quasi-compact and Y affine, any morphism $X \to Y$ is quasi-compact.

Proof. By Fact 2, $f^{-1}(Y \setminus V(\lambda)) = X \setminus V(f^*\lambda)$ is quasi-compact, for $\lambda \in \mathcal{O}_Y(Y)$. As such $Y \setminus V(\lambda)$ form a topology base on Y, Fact 1(c) may be applied. q.e.d.

Proposition 1. When X is quasi-compact, every closed subset $\emptyset \subsetneq Y \subseteq X$ contains a closed point.

Proof. Induction on the minimal number of affine open subsets of X needed to cover Y. When that number is 1, we may assume X to be affine, e.g. $X = \operatorname{Spec} R$, Y = V(I) with $I \subseteq R$ as $Y \neq \emptyset$. Then I is contained in some maximal ideal \mathfrak{m} of R and $\{\mathfrak{m}\} = V(\mathfrak{m})$ is closed and $\mathfrak{m} \in V(I)$.

Let $(U_i)_{i=1}^n$ be affine open subsets covering X and the assertion hold for closed subsets of X which may be covered by fewer than n affine open subsets of X. If $Y \subseteq U_1$ we are in the previous situation, otherwise $\tilde{Y} = Y \setminus U_1$ is a non-empty closed subset of Y which can be covered by n-1 affine open subsets and thus contains a closed point. q.e.d.

Example 1. In $X = \operatorname{Spec}(k[X_i \mid i \in \mathbb{N}])$, the open subset $X \setminus \{m\}$ with $\mathfrak{m} = (X_i \mid i \in \mathbb{N})$ fails to be quasi-compact as $X \setminus \{\mathfrak{m}\} = \bigcup_{i=1}^{\infty} X \setminus V(X_i)$ has no finite subcover. Then $X \setminus \{\mathfrak{m}\} \to X$ is a morphism which fails to be quasi-compact.

Lemma 1. For a morphism $X \to Y$ of preschemes, the following conditions are equivalent:

- (a) For any affine open subset $U \subseteq Y$, $f^{-1}(U)$ is quasi-separated.
- (b) For any quasi-separated open subset $U \subseteq Y$, $f^{-1}(U)$ is quasi-separated.
- (c) The diagonal $X \xrightarrow{\Delta = (\mathrm{id}_X, \mathrm{id}_X)} X \times_Y X$ is a quasi-compact morphism.

Proof. Let's start proving $(a)\Rightarrow (b)$. Let (a) be satisfied and $U\subseteq Y$ be quasi-separated, we have to show that $f^{-1}(U)$ is quasi-separated. Without losing generality we may assume U=Y is quasi-separated and have to show that X is quasi-separated, i.e. for two arbitrary quasi-compact open subsets V and W of X, $V\cap W$ is quasi-compact. We claim that it is sufficient to show this when f(V) and f(W) are contained in affine open subsets Ω and Θ of Y. Indeed, every $x\in V$ has some affine open neighbourhood $V_x\subseteq V$ with $f(V_x)\subseteq \Omega_x$ where $\Omega_x\subseteq Y$ is affine. Similarly, every $x\in W$ has a neighbourhood $W_x\subseteq W$ such that $f(W_x)\subseteq \Theta_x$ which is affine. Then for every $x\in V$ and $\xi\in W$, $V_x\cap W_\xi$ is quasi-compact by the special case we have yet to prove, and by quasi-compactness of V,W there are $x_i\in V$, $\xi_j\in W$ such that $V=\bigcup_{i=1}^m V_{x_i}$ and $W=\bigcup_{j=1}^n W_{x_j}$. Then

$$V \cap W = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} (V_{x_i} \cap W_{\xi_j})$$

is quasi-compact.

Now, if $f(V) \subseteq \Omega$ and $f(W) \subseteq \Theta$ are as above, then $\Omega \cap \Theta$ is quasi-compact as Y is quasi-separated. Since open subsets of that form form a topology base on Ω , $\Omega \cap \Theta = \bigcup_{i=1}^{m} (\Omega \setminus V(\omega_i))$ with $\omega_i \in \mathcal{O}_Y(\Omega)$ and

$$\Omega \cap \Theta = \bigcup_{i=1}^{n} (\Theta \setminus V(\vartheta_j))$$

with $\vartheta_j \in \mathcal{O}_Y(\Theta)$. Then $V \setminus V(f^*\omega_i)$ and $W \setminus V(f^*\vartheta_j)$ are quasi-compact by Fact 2 and have image contained in Ω , and $f^{-1}(\Omega)$ is quasi-separated (since we are assuming (a)), hence

$$(V \setminus V(f^*\omega_i)) \cap (W \setminus V(f^*\vartheta_j))$$

is quasi-compact, and so is their finite union $V \cap W$. This implies (b).

Now assume (c) for showing that $(c) \Rightarrow (b)$. Let Δ be quasi-compact. If $U \subseteq Y$ is affine and V and W are affine open subsets of $f^{-1}(U)$, $V \times_Y W = V \times_U W$ as $U \to Y$ is monic (Corollary 1.5.7(c)). As U, V, and W are affine, so is $V \times_U W$ by Corollary 1.4.4. But $V \cap W$ equals $\Delta^{-1}(V \times_Y W)$ (by an argument like in the proof of Proposition 1.5.4) which is quasi-compact as Δ is a quasi-compact morphism. This shows (b).

We show that $(a) \Rightarrow (c)$. Consider (a) to be true. Let $V, W \subseteq X$ be affine open subsets of X such that $f(V) \cup f(W) \subseteq U$ where $U \subseteq Y$ is affine. Note that such $V \times_U W = V \times_Y W$ cover $X \times_Y X$. As quasi-compactness of morphisms is a base-local property, it suffices to show that $\Delta^{-1}(V \times_Y W) \to V \times_Y W$ is quasi-compact. This however, follows from Fact 4 as $\Delta^{-1}(V \times_Y W) = V \cap W$ is quasi-compact by our assumption and $V \times_Y W = V \times_U W$ is affine. This implies (c).

Ah right, and $(b) \Rightarrow (a)$ is trivial, closing the circle.

q.e.d.

Definition 2 (Quasi-separated morphisms). Such morphisms are called **quasi-separated**.

Fact 5. Any separated morphism is quasi-separated. The class of quasi-separated morphisms is base-local and closed under base change, composition, and fibre products.

Proof. For the first assertion note that Lemma 1(c) holds as any closed immersion is quasi-compact. The closedness under composition follows from condition (b) of Lemma 1. Base-locality follows from Lemma 1(c), since quasi-compactness of morphisms is base-local, for $U \subseteq Y$ open and $X_U = f^{-1}(U)$ the $X_U \times_U X_U$ are open subsets of $X \times_Y X$ and $\Delta^{-1}(X_U \times_U X_U) = X_U$. Closedness under base change is also a consequence of Lemma 1(c) as, for $\widetilde{Y} \to Y$ and $\widetilde{X} = X \times_Y \widetilde{Y}$ we have that

$$\widetilde{X} \xrightarrow{\widetilde{\Delta} = \left(\operatorname{id}_{\widetilde{X}}, \operatorname{id}_{\widetilde{X}}\right)} \widetilde{X} \times_{\widetilde{V}} \widetilde{X}$$

is a base change of $X \stackrel{\Delta}{\longrightarrow} X \times_Y X$ with respect to $\widetilde{X} \times_{\widetilde{Y}} \widetilde{X} \to X \times_Y X$ and quasi-compactness is stable under base change (Fact 3).

2.1.2. Generic points

Fact 6. Let X be any topological space, $x \in X$, then $\overline{\{x\}}$ is irreducible.

Definition 3 (Generic point). Let $Z \subseteq X$ be closed. A **generic point** of Z is any $\eta_Z \in Z$ such that $\overline{\{\eta_Z\}} = Z$.

Remark. By Fact 6, Z must be irreducible.

Fact 7. A topological space is T_0 (or Kolmogorov) iff any irreducible closed subset of X has at most one generic point.

Definition 4 (Sober space). A topological space is called **sober** if any irreducible closed subset has precisely one generic point (which is often denoted by n_Z).

Remark. Ever sober space is T_0 and every T_2 (Hausdorff) space is sober. There exist spaces which are sober but not T_1 and spaces which are T_1 but not sober.

Fact 8. For a topological space X, the following are equivalent:

- (a) X is sober.
- (b) Any open subset U of X is sober.
- (c) X may be covered by open subsets which are sober.

Proof. The implications $(b) \Rightarrow (a)$ and $(a) \Rightarrow (c)$ are trivial. Let's prove $(c) \Rightarrow (b)$. Let $X = \bigcup_{i \in I} U_i$ be an open cover by sober subsets and $U \subseteq X$ open. Let $Z \subseteq U$ be irreducible closed and $i \in I$ such that $U_i \cap Z \neq 0$. Let $\eta_{Z \cap U_i}$ be the unique generic point of $Z \cap U_i$ (which is an open subset of Z and thus irreducible again). Then the closure of $\eta_{Z \cap U_i}$ in U equals Z as $Z \cap U_i \subseteq Z$ is a nonempty open subset and thus dense, Z being irreducible. Conversely, if η_Z is a generic point of Z, then $\eta_Z \in U_i$ (as otherwise $\overline{\{\eta_Z\}} \subseteq Z \setminus U_i$) and the closure of η_Z in U_i equals $Z \cap U_i$, hence $\eta_Z = \eta_{Z \cap U_i}$.

Fact 9. The underlying topological space of any prescheme is sober.

Proof. By Fact 8(c), it is enough to show that Spec R is sober for any ring R. Any irreducible closed subset of Spec R has the form $V(\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec} R$ and \mathfrak{p} is a generic point. q.e.d.

Theorem 1 (M. Hochster). A topological space X is isomorphic to the spectrum of some ring R iff X is quasi-compact, quasi-separated, sober and the quasi-compact subsets form a topology base.

A. Useful stuff from category theory

A.1. Fundamental concepts

Definition 1 (Category). A category \mathcal{A} is a class $Ob(\mathcal{A})$ of *objects* of \mathcal{A} together with:

- (a) For two arbitrary $X, Y \in \text{Ob}(\mathcal{A})$, a set $\text{Hom}_{\mathcal{A}}(X, Y)$ of morphisms from X to Y in \mathcal{A} .
- (b) For $X, Y, Z \in Ob(A)$, a map

$$\operatorname{Hom}_{\mathcal{A}}(X,Y) \times \operatorname{Hom}_{\mathcal{A}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(X,Z)$$

 $(f,g) \longmapsto g \circ f$

called the *composition of morphisms* in A.

The following assumptions must be satisfied:

- (i) If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ are morphisms in A, then $h \circ (g \circ f) = (h \circ g) \circ f$.
- (ii) For any $A \in \mathrm{Ob}(\mathcal{A})$ there is a unique morphism $A \xrightarrow{\mathrm{id}_A} A$ in $\mathrm{Hom}_{\mathcal{A}}(A,A)$ such that $\mathrm{id}_A \circ f = f$ and $g \circ \mathrm{id}_A = g$ for any $f \in \mathrm{Hom}_{\mathcal{A}}(B,A)$ and any $g \in \mathrm{Hom}_{\mathcal{A}}(A,C)$ for arbitrary $B, C \in \mathrm{Ob}(\mathcal{A})$.
- **Example 1.** The category Set of sets where Ob(A) is the class of sets, $Hom_A(X, Y)$ is the set of maps from X to Y and the composition of morphism is the composition of maps.
 - The category Grp of groups where $\mathrm{Ob}(\mathcal{A})$ is the class of groups, $\mathrm{Hom}_{\mathcal{A}}(X,Y)$ is the set of group morphisms from X to Y and the composition of morphisms is the composition of maps.
 - The categories of rings Ring, commutative rings Ab and abelian groups Ab are all defined similarly.
 - The topological spaces with the continuous maps Top.
 - The Banach spaces with bounded (continuous) maps.
 - The k-vector spaces with k-linear maps $Vect_K$ or R-modules with R-linear maps R-Mod.

A category is called *small* if its class of objects is a set.

Definition 2. Let \mathcal{A} and \mathcal{B} be categories. We call \mathcal{B}

• a subcategory of \mathcal{A} if $\mathrm{Ob}(\mathcal{B}) \subseteq \mathrm{Ob}(\mathcal{A})$ and $\mathrm{Hom}_{\mathcal{B}}(X,Y) \subseteq \mathrm{Hom}_{\mathcal{A}}(X,Y)$ and for arbitrary objects X,Y of \mathcal{B} , the identity id_X of X in \mathcal{A} is a morphism in $\mathrm{Hom}_{\mathcal{B}}(X,X)$.

- a full subcategory of \mathcal{A} if additionally $\operatorname{Hom}_{\mathcal{A}}(X,Y) = \operatorname{Hom}_{\mathcal{B}}(X,Y)$ for arbitrary objects $X,Y \in \operatorname{Ob}(\mathcal{B})$.
- an **equivalent subcategory** of \mathcal{A} if it is a full subcategory and every object $X \in \mathrm{Ob}(\mathcal{A})$ is isomorphic to some $Y \in \mathrm{Ob}(\mathcal{B})$ (where a morphism $X \xrightarrow{f} Y$ is an isomorphism iff there is a (unique) $Y \xrightarrow{g} X$ such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$.

A further example is the category of prevarieties (with morphisms according to Definition 1.1.2) and its full subcategory of varieties, containing all varieties as objects.

A.2. Functors, functor morphisms, and the Yoneda lemma

Definition 1. A (covariant) functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ consists of the following data:

- a map $F : \mathrm{Ob}(\mathcal{A}) \to \mathrm{Ob}(\mathcal{B})$,
- for $X, Y \in \mathrm{Ob}(\mathcal{A})$ a map $F \colon \mathrm{Hom}_{\mathcal{A}}(X, Y) \to \mathrm{Hom}_{\mathcal{B}}(FX, FY)$ such that $F(\mathrm{id}_X) = \mathrm{id}_{FX}$ whenever $X \in \mathrm{Ob}(\mathcal{A})$ and $F(\psi\varphi) = F(\psi)F(\varphi)$ when $X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z$ are morphisms in \mathcal{A} .

A functor is called faithful if $F : \operatorname{Hom}_{\mathcal{A}}(X,Y) \to \operatorname{Hom}_{\mathcal{B}}(FX,FY)$ is injective and fully faithful if it's bijective.

Professor Franke would like to draw a line here. We hope, this one will do: ______.

Example. We have forgetful functors like $\operatorname{Vect}_k \to \operatorname{Ab}$ or $\operatorname{Ab} \to \operatorname{Set}$. These functors are faithful (at least for the two examples).

Remark. • If $\mathcal{A} \xrightarrow{F}$ Set is a faithful functor, then any morphism f such that Ff is injective (respectively surjective) then f is a monomorphism (respectively epismorphism).

- In the categories of sets or R-modules, f is a monomorphism (epimorphism) iff f is injective (surjective).
- ullet In the category of Banach spaces and bounded linear maps, f is a epimorphism iff its image is dense.
- The map from a domain to its field of quotients is an epimorphism in the category of rings.

Definition 2 (Canonical morphism). Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ be functors. A **functor morphism** or **canonical morphism** from F to G is a collection of morphisms $F(A) \xrightarrow{\varphi_A} G(A)$, for all $A \in \operatorname{Ob} \mathcal{A}$ such that the diagram

$$F(A) \xrightarrow{\varphi_A} G(A)$$

$$F(\alpha) \downarrow \qquad \qquad \downarrow G(\alpha)$$

$$F(B) \xrightarrow{\varphi_B} G(B)$$

commutes for arbitrary morphisms $A \xrightarrow{\alpha} \mathcal{B}$ in \mathcal{A} . The functors $\mathcal{A} \xrightarrow{F} \mathcal{B}$ as objects with canonical morphisms as morphisms thus form a category, the *functor category* Funct(\mathcal{A}, \mathcal{B}). Also cf. [1, page 26].

Definition 3 (Adjoint functors). Let \mathcal{A} and \mathcal{B} be categories. An adjoint pair of functors

$$\mathcal{A} \stackrel{L}{ \stackrel{}{ \rightleftharpoons} } \mathcal{B}$$

is a pair of functors of the specified type together with an isomorphism

$$\operatorname{Hom}_{\mathcal{B}}(LX,Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{A}}(X,RY)$$

which in functorial in X and Y. We may say that L is left-adjoined to R and that R is right adjoined to L. By Yoneda-style arguments, RY is uniquely determined (up to unique morphism) by L (and Y) if it exists, and LX is uniquely determined by R (and X) if it exists.

Definition 4. (a) If \mathcal{A} is a category, its **opposite** or **dual category** \mathcal{A}^{op} is defined by $\text{Ob}(\mathcal{A}^{\text{op}}) = \text{Ob}(\mathcal{A})$ and $\text{Hom}_{\mathcal{A}^{\text{op}}}(X,Y) = \text{Hom}_{\mathcal{A}}(Y,X)$.

(b) A contravariant functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ is a functor $\mathcal{A}^{\mathrm{op}} \to \mathcal{B}$. In other words, it consists of maps $\mathrm{Ob}(\mathcal{A}) \xrightarrow{F} \mathrm{Ob}(\mathcal{B})$ and $\mathrm{Hom}_{\mathcal{A}}(X,Y) \xrightarrow{F} \mathrm{Hom}_{\mathcal{B}}(FY,FX)$ such that $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$ and $F(\beta\alpha) = F(\alpha)F(\beta)$ where $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$ are composable morphisms in \mathcal{A} .

Remark. • Equivalently, a contravariant functor $\mathcal{A} \to \mathcal{B}$ is a covariant functor $\mathcal{A} \to \mathcal{B}^{op}$.

• The map $V \to V^*$ (to the dual vector space) on the category of vector spaces over some fixed field k is an example.

Lemma 1 (Yoneda lemma for covariant functors). For any $M \in \text{Ob } \mathcal{A}$, the map $\text{Cov}_M(X) = \text{Hom}_{\mathcal{A}}(M,X)$ defines a covariant functor $\text{Cov}_M = \text{Hom}_{\mathcal{A}}(M,-) \colon \mathcal{A} \to \text{Set}$ and

$$\operatorname{Hom}_{\mathcal{A}}(M,N) \xrightarrow{\mathcal{Y}} \operatorname{Hom}_{\operatorname{Funct}(\mathcal{A},\operatorname{Set})}(\operatorname{Cov}_N,\operatorname{Cov}_M),$$

is bijective. The image $\mathcal{Y}(M \xrightarrow{\mu} N)$ of $\mu \in \operatorname{Hom}_{\mathcal{A}}(M,N)$ under the Yoneda map \mathcal{Y} maps $N \xrightarrow{\xi} X$ to $M \xrightarrow{\mu} N \xrightarrow{\xi} X$.

Lemma 2 (Yoneda lemma, contravariant case). For any $M \in \text{Ob } \mathcal{A}$, $\text{Con}_M(X) = \text{Hom}_{\mathcal{A}}(X, M)$ defines a contravariant functor $\text{Con}_M = \text{Hom}_{\mathcal{A}}(-, M) \colon \mathcal{A} \to \text{Set}$ and

$$\operatorname{Hom}_{\mathcal{A}}(M,N) \xrightarrow{\mathcal{Y}} \operatorname{Hom}_{\operatorname{Funct}(\mathcal{A}^{\operatorname{op}},\operatorname{Set})}(\operatorname{Con}_M,\operatorname{Con}_N)$$

is bijective. The image $\mathcal{Y}(M \xrightarrow{\mu} N)$ of $\mu \in \operatorname{Hom}_{\mathcal{A}}(M, N)$ under the Yoneda map \mathcal{Y} maps $X \xrightarrow{\xi} M \in \operatorname{Con}_{M}(X)$ to $X \xrightarrow{\xi} M \xrightarrow{\mu} N \in \operatorname{Con}_{N}(X)$.

- **Definition 5.** (a) We say that a functor $\mathcal{A} \xrightarrow{F} \operatorname{Set}$ is **representable** if there is a functor-isomorphism $F \simeq \operatorname{Cov}_M$, i.e. $F(X) \simeq \operatorname{Hom}_{\mathcal{A}}(M,X)$ for all $X \in \operatorname{Ob} \mathcal{A}$. In this case, we say that M represents F. The Yoneda-Lemma shows that M is unique up to unique isomorphism.
 - (b) We say that a contravariant functor $\mathcal{A} \xrightarrow{F} \operatorname{Set}$ is **representable** iff $F \simeq \operatorname{Con}_M$ for some $M \in \operatorname{Ob} \mathcal{A}$ in which case we say that M represents F.

Remark. (a) For instance, LX exists in Definition 3 iff the covariant functor

$$\operatorname{Hom}_{\mathcal{A}}(X, R(-)) \colon \mathcal{B} \longrightarrow \operatorname{Set}$$

 $Y \longmapsto \operatorname{Hom}_{\mathcal{A}}(X, RY)$

is representable.

(b) In the above Definition 3, RY exists iff

$$\operatorname{Hom}_{\mathcal{B}}(L(-),Y) \colon \mathcal{A}^{\operatorname{op}} \longrightarrow \operatorname{Set}$$

$$X \longmapsto \operatorname{Hom}_{\mathcal{B}}(LX,Y)$$

is representable.

(c) Many important constructions in algebraic topology (classifying spaces) and algebraic geometry (Moduli space, Picard/Hilbert schemes) amount to representing certain functors.

Lemma 3 (Yoneda Lemma, 3rd try or something). Let $\operatorname{Hom}_{\operatorname{Funct}(\mathcal{A},\mathcal{B})}(F,G)$ denote the "class" of functor-morphisms between covariant functors $\mathcal{A} \stackrel{F}{\Longrightarrow} \mathcal{B}$.

(a) The Yoneda map

$$\mathcal{Y} \colon \operatorname{Hom}_{\operatorname{Funct}(\mathcal{A},\operatorname{Set})}(\operatorname{Cov}_M, F) \longrightarrow F(M)$$

$$\alpha \longmapsto \alpha_M(\operatorname{id}_M)$$

$$F(-)(\mu) = \alpha \longleftrightarrow \mu$$

is bijective. Herein, $\alpha = F(-)(\mu)$ should be read as follows: A morphism $(M \xrightarrow{\xi} X) \in \operatorname{Cov}_M(X)$ induces a morphism $F(M) \xrightarrow{F(\xi)} F(X)$. Evaluating at $\mu \in F(M)$, we get an element $F(\xi)(\mu) \in F(X)$. Now, $\operatorname{Cov}_M \xrightarrow{\alpha} F$ is given by

$$\alpha_X \colon \operatorname{Cov}_M(X) \longrightarrow F(X)$$

 $\xi \longmapsto F(\xi)(\mu) \ .$

(b) The Yoneda map

$$\mathcal{Y} \colon \operatorname{Hom}_{\operatorname{Funct}(\mathcal{A}^{\operatorname{op}},\operatorname{Set})}(\operatorname{Con}_M, F) \longrightarrow F(M)$$

$$\alpha \longmapsto \alpha_M(\operatorname{id}_M)$$

$$F(-)(\mu) = \alpha \longleftrightarrow \mu$$

is bijective. Herein, $\alpha = F(-)(\mu)$ should be read as follows: A morphism $(X \xrightarrow{\xi} M) \in \operatorname{Con}_M(X)$ induces a morphism $F(M) \xrightarrow{F(\xi)} F(X)$ (remember that this time F is contravariant). Evaluating at $\mu \in F(M)$, we get an element $F(\xi)(\mu) \in F(X)$. Now, $\operatorname{Con}_M \xrightarrow{\alpha} F$ is given by

$$\alpha_X \colon \operatorname{Con}_M(X) \longrightarrow F(X)$$

 $\xi \longmapsto F(\xi)(\mu)$.

Proof. We prove only (a), (b) being the dual assertion. The well-definedness of \mapsto is obvious. For \leftarrow is is necessary to show that α is a natural transformation. For this, let $X \stackrel{\nu}{\longrightarrow} Y$ be a morphism in \mathcal{A} and $\xi \in \text{Cov}_M(X)$, we have to show that

$$\begin{array}{ccc} \operatorname{Cov}_M(X) & \xrightarrow{\alpha_X} & F(X) \\ \operatorname{Cov}_M(\nu) & & & \downarrow F(\nu) \\ & \operatorname{Cov}_M(Y) & \xrightarrow{\alpha_Y} & F(Y) \end{array}$$

commutes. Let $M \xrightarrow{\xi} X$. As F is a functor and $M \xrightarrow{\xi} X \xrightarrow{\nu} Y$, we have $F(\nu)F(\xi) = F(\nu\xi)$. Also, $Cov_M(\nu)(\xi) = \nu\xi \in Cov_M(Y)$. Hence,

$$F(\nu)(\alpha_X(\xi)) = F(\nu)F(\xi)(\mu) = F(\nu\xi)(\mu) = F(\operatorname{Cov}_M(\nu)(\xi))(\mu) = \alpha_Y(\operatorname{Cov}_M(\nu)(\xi))$$

and that's exactly what we wanted to show.

To show that the maps are inverse to each other first look at $\mu \in F(M)$ and its image $\alpha \in \operatorname{Hom}_{\operatorname{Funct}(\mathcal{A},\operatorname{Set})}(\operatorname{Cov}_M, F)$. Then we have $\alpha_M(\operatorname{id}_M) = F(\operatorname{id}_M)(\mu) = \operatorname{id}_{F(M)}(\mu) = \mu$. Conversely, let $\beta \colon \operatorname{Cov}_M \to F$ be a natural transformation and $\mu = \beta_M(\operatorname{id}_M)$ and let α be defined by μ as above. Let $M \xrightarrow{\xi} X$. As β is a natural transformation, the diagram

$$\begin{array}{ccc}
\operatorname{Cov}_{M}(M) & \xrightarrow{\beta_{M}} & F(X) \\
\operatorname{Cov}_{M}(\xi) \downarrow & & \downarrow F(\xi) \\
\operatorname{Cov}_{M}(X) & \xrightarrow{\beta_{X}} & F(Y)
\end{array}$$

commutes, i.e. $F(\xi)\beta_M = \beta_X \operatorname{Cov}_M(\xi)$. Hence,

$$\alpha_X(\xi) = F(\xi)(\mu) = F(\xi)(\beta_M(\mathrm{id}_M)) = \beta_X(\mathrm{Cov}_M(\xi)(\mathrm{id}_M)) = \beta_X(\xi) ,$$

and thus $\alpha = \beta$, as we wanted to show.

q.e.d.

Putting $F = \text{Cov}_N$ respectively $F = \text{Con}_N$ we obtain the above special cases.

A.3. Products and (co-)equalizers

Our goal is to formulate a notion of *sheaf* that allows to define sheafs for arbitrary target categories. Recall that the sheaf axiom (this one) requires

$$\mathcal{G}(U) \longrightarrow \left\{ (g_i)_{i \in I} \in \prod_{i \in I} \mathcal{G}(U_i) \mid g_i|_{U_{i,j}} = g_j|_{U_{i,j}} \ \forall i, j \in I \right\}$$
 (*)

to be bijective (i.e. an isomorphism) for any open cover $U = \bigcup_{i \in I} \mathcal{G}(U_i)$, where we set $U_{i,j} = U_i \cap U_j$ for convenience.

Definition 1 (Products). A **product** of objects $(A_i)_{i\in I}$ of \mathcal{A} is an object $\prod_{i\in I} A_i$ together with morphisms $\prod_{i\in I} A_i \xrightarrow{\pi_i} A_i$ for each $i\in I$ such that the following universal property holds:

If $T \in \text{Ob}(\mathcal{A})$ comes with morphisms $T \xrightarrow{\tau_i} A_i$ for each $i \in I$, then there is a unique morhism $T \xrightarrow{\exists! f} \prod_{i \in I} A_i$ such that $\tau_i = \pi_i \circ f$.

In other words, $\prod_{i \in I} A_i = \varprojlim_{i \in I} A_i$ is the *limiting cone* over the trivial diagram consisting only of the A_i without any arrows.

Note that nobody ever guaranteed that products exist in general.

Remark. (a) Compare this to e.g. the universal property of localizations where the universal object is on the left – here it is on the right.

- (b) In the case of sets, (abelian) groups, R-modules, and rings, one can take $\prod_{i \in I} A_i$ to be the set-theoretic product equipped with the respective product structure and the set-theoretic projections $\prod_{i \in I} A_i \xrightarrow{\pi_i} A_i$, $\pi_i((a_j)_{j \in I}) = a_i$.
- (c) The above definition characterizes $\prod_{i \in I} A_i$ up to unique isomorphism: If the T above satisfies the same universal property, then f is an isomorphism.
- (d) If $I = \emptyset$, the empty product is the *final object*, i.e. an object $F \in \mathrm{Ob}(\mathcal{A})$ such that for any $T \in \mathrm{Ob}(\mathcal{A})$ there is precisely one morphism $T \to F$ in \mathcal{A} . We have the following dual notion: I (now an object and no indexing set anymore) is called *initial object* if $\mathrm{Hom}_{\mathcal{A}}(I,T)$ has precisely one element for each $T \in \mathrm{Ob}(\mathcal{A})$.

Remark. In Set, \emptyset is the only initial object and the one-point sets are the final objects. For the *abelian* categories R-Mod, the canonical morphisms from the (only) initial to the (only) final object is an isomorphism.

Let X be a topological space. A presheaf on X with values in A is a map associating

- to each open subset $U \subseteq X$ an object $\mathcal{G}(U) \in \mathrm{Ob}(\mathcal{A})$
- and to each inclusion $V \subseteq U$ a morphism $(-)|_{V}^{U} \in \operatorname{Hom}_{\mathcal{A}}(\mathcal{G}(U), \mathcal{G}(V))$ which equals $\operatorname{id}_{\mathcal{G}(U)}$ if U = V and such that $(-)|_{W}^{U} = (-)|_{W}^{V} \circ (-)|_{V}^{U}$ whenever $W \subseteq V \subseteq U$ is an inclusion of open sets.

To formulate the sheaf axiom, it is convenient to assume that $\prod_{i \in I} \mathcal{G}(U_i)$ exists, i.e. that \mathcal{A} has arbitrary products.

Recall our convention that $U_{i,j} = U_i \cap U_j$. There are unique morphisms

$$\alpha, \beta \colon \prod_{i \in I} \mathcal{G}(U_i) \longrightarrow \prod_{(i,j) \in I \times I} \mathcal{G}(U_{i,j})$$

characterized by $\pi_{ij} \circ \alpha = (-)|_{U_{i,j}}^{U_i} \circ \pi_i$ and $\pi_{ij} \circ \beta = (-)|_{U_{i,j}}^{U_j} \circ \pi_j$, where $\prod_{i \in I} \mathcal{G}(U_i) \xrightarrow{\pi_i} \mathcal{G}(U_i)$ and $\prod_{(i,j) \in I \times I} \mathcal{G}(U_{i,j}) \xrightarrow{\pi_{ij}} \mathcal{G}(U_{i,j})$ are the morphisms defining the product structure.

In the example of presheaves of sets, rings, etc. we have

$$\alpha((g_i)_{i \in I}) = (g_i|_{U_{i,j}})_{(i,j) \in I \times I} \quad \text{and} \quad \beta((g_i)_{i \in I}) = (g_j|_{U_{i,j}})_{(i,j) \in I \times I} ,$$

such that (*) is the "largest subobject on which α and β coincide".

Definition 2 (Equalizer). Let $A \stackrel{\alpha}{\Longrightarrow} B$ be a pair of morphisms. An **equalizer** of this pair is an object $E \in \text{Ob}(\mathcal{A})$ together with a morphism $E \stackrel{\varepsilon}{\longrightarrow} A$ such that $\alpha \varepsilon = \beta \varepsilon$ and such that the following universal property holds:

If $T \xrightarrow{\tau} A$ is any morphism in A such that $\alpha \tau = \beta \tau$, then there's a unique $T \xrightarrow{t} E$ such that the following diagram commutes.

In other words, E is the *limit* over the diagram $A \stackrel{\alpha}{\Longrightarrow} B$.

Remark. (a) By the usual Yoneda argument one sees that the universal property characterizes E up to unique isomorphism.

(b) The sheaf axiom for presheaves with values in an arbitrary category with products now translates into the condition that $\mathcal{G}(U) \to \prod_{i \in I} \mathcal{G}(U_i)$ is, for any open cover $U = \bigcup_{i \in I} U_i$, an equalizer of the above pair of morphisms $\prod_{i \in I} \mathcal{G}(U_i) \stackrel{\alpha}{\Longrightarrow} \prod_{(i,j) \in I \times I} \mathcal{G}(U_{i,j})$.

By merging the universal properties, the notion of a sheaf can be generalized to arbitrary target categories.

(c) For sets, abelian groups etc. the equalizer is

$$\operatorname{Eq}\left(A \xrightarrow{\alpha \atop \beta} B\right) = \{a \in A \mid \alpha(a) = \beta(a)\} .$$

(d) For the abelian category R-Mod,

$$\ker\left(M \xrightarrow{f} N\right) = \operatorname{Eq}\left(M \xrightarrow{g} N\right) \quad \text{and} \quad \operatorname{Eq}\left(M \xrightarrow{g} N\right) = \ker\left(M \xrightarrow{f-g} N\right).$$

Definition 3 (Mono- and epimorphism). Let \mathcal{A} be a category, $X \xrightarrow{f} Y$ a morphism in \mathcal{A} . We say that f is **monomorphism** (**epimorphism**) if for any object T and any pair $T \xrightarrow{\alpha} X$ (respectively $Y \xrightarrow{\beta} T$) with $f\alpha = f\beta$ (respectively $\alpha f = \beta f$) we get $\alpha = \beta$.

Definition 4 (Coequalizer). Moreover, $Y \xrightarrow{c} C$ is a **coequalizer** in \mathcal{A} (of $X \xrightarrow{a} Y$) iff $C^{\mathrm{op}} \xrightarrow{c^{\mathrm{op}}} X^{\mathrm{op}}$ is an equalizer of $Y^{\mathrm{op}} \xrightarrow[b^{\mathrm{op}}]{a^{\mathrm{op}}} X^{\mathrm{op}}$ in $\mathcal{A}^{\mathrm{op}}$. In other words,

$$\operatorname{Hom}_{\mathcal{A}}(C,T) \xrightarrow{\sim} \{g \in \operatorname{Hom}_{\mathcal{A}}(Y,T) \mid ga = gb\}$$

$$f \longmapsto fc$$

must be bijective. In even more other words C is a coequalizer iff it fulfills the following universal property:

If $Y \xrightarrow{\tau} T$ is any morphism in \mathcal{A} such that $\tau a = \tau b$, then there's a unique $C \xrightarrow{t} T$ such that the following diagram commutes.

In yet another other words, C is the *colimit* below the diagram $X \stackrel{a}{\Longrightarrow} Y$.

Fact 1. Let $A \stackrel{\alpha}{\Longrightarrow} B$ be a ring morphism. Then a coequalizer is given by B/I where I is the ideal generated by $\{\alpha(a) - \beta(a) \mid a \in A\}$. When A, B are local rings and α, β local ring morphisms, this is a local ring iff α and β induce the same morphism on the residue fields, and $\{0\}$ otherwise.

Let us denote this by Coeq $\left(A \stackrel{\alpha}{\underset{\beta}{\Longrightarrow}} B\right)$.

Proof. Let $C = B/I \stackrel{\pi}{\longleftarrow} B$. Obviously, $\pi \alpha = \pi \beta$. Let $B \stackrel{t}{\longrightarrow} T$ be a ring homomorphism such that $t\alpha = t\beta$. Then $t(\alpha(a) - \beta(a)) = 0$ hence $\{\alpha(a) - \beta(a) \mid a \in A\} \subseteq \ker(t)$ hence $I \subseteq \ker(t)$ as $\ker(t)$ is an ideal, and t has a unique representation as $t = \tau \pi$ for $C \stackrel{\tau}{\longrightarrow} T$, by the universal property of the quotient ring.

The second assertion is also easy: Denote the maximal ideals by \mathfrak{m}_A and \mathfrak{m}_B , then I is a proper ideal iff $\alpha(a) - \beta(a) \in \mathfrak{m}_B$ for all $a \in A$, i.e. if the induced morphisms $\mathfrak{K}(\mathfrak{m}_A) \stackrel{\alpha}{\Longrightarrow} \mathfrak{K}(\mathfrak{m}_B)$ coincide. In this case, B/I is local with maximal ideal \mathfrak{m}_B/I , and $\{0\}$ otherwise.

A.4. Fibre products

Definition 1 (Fibre product). Given morphisms $X \xrightarrow{\xi} S \xleftarrow{v} Y$ in some category \mathcal{A} , a **fibre product** of X with Y over S is an object $P \in \mathrm{Ob}(\mathcal{A})$ with morphisms $X \xleftarrow{p} P \xrightarrow{q} Y$ satisfying $\xi p = vq$ and enjoying the following universal property:

Whenever $T \in \text{Ob}(\mathcal{A})$ comes with morphisms $X \stackrel{\tau_X}{\longleftarrow} T \xrightarrow{\tau_Y} Y$ such that $\xi \tau_X = v \tau_Y$, then there is a unique morphism $T \xrightarrow{t} P$ such that the below diagram commutes.

That is, in terms of limits, P is the limit over the diagram $X \xrightarrow{\xi} S \xleftarrow{v} Y$.

Often we will write $P = X \times_S Y$. By the typical Yoneda-style argument the fibre product is unique up to unique isomorphism.

Remark. (a) In other words, P must represent the functor

$$T \longmapsto \{(\tau_X, \tau_Y) \in \operatorname{Hom}_{\mathcal{A}}(T, X) \times \operatorname{Hom}_{\mathcal{A}}(T, Y) \mid \xi \tau_X = v \tau_Y\}$$
 (1)

- (b) If S = F is a final object, then the equality $\xi \tau_X = \upsilon \tau_Y$ is automatic and we obtain $X \times_F Y = X \times Y$.
- (c) If S is arbitrary and $X \stackrel{\pi_X}{\longleftarrow} X \times Y \stackrel{\pi_Y}{\longrightarrow} Y$ is a product of X and Y in \mathcal{A} then

$$\operatorname{Eq}\left(X\times Y\stackrel{\xi\pi_X}{\Longrightarrow}S\right)\simeq X\times_SY.$$

(d) Let the comma category $\mathcal{A} \to S$ (or \mathcal{A}/S) be the category whose objects are pairs (X, ξ) with $X \in \mathrm{Ob}(\mathcal{A})$ an object and $X \xrightarrow{\xi} S$ a morphism in \mathcal{A} , and where a morphism $(X, \xi) \xrightarrow{f} (Y, v)$ is a morphism $X \xrightarrow{f} Y$ in \mathcal{A} such that we have $vf = \xi$, i.e.

commutes. Then $X \times_S Y$ is the product of (X, ξ) and (Y, v) in $\mathcal{A} \to S$.

- (e) Fibre products with any (possibly cardinal) number of factors can be defined in the same way or as products in $A \to S$.
- (f) The smallest square in the diagram above illustrating the universal property of fibre products is called *cartesian* if P is a fibre product. If is also often useful to think of p as morphism such that the fibre $p^{-1}(x)$ is isomorphic to $v^{-1}(\xi(x))$. Then one prefers a terminology

$$P \xrightarrow{\xi'} Y$$

$$v' \downarrow \qquad \qquad \downarrow v$$

$$X \xrightarrow{\xi} S$$

and calls v' a base change of v with respect to ξ and likewise ξ' a base change of ξ with respect to v.

(g) In a number of easy cases (sets, (abelian) groups, (commutative) rings, topological spaces) fibre products may be constructed as

$$X \times_S Y = \{(x, y) \in X \times Y \mid \xi(x) = \upsilon(y)\},\$$

equipped with component-wise operations $(x, y) \circ (\widetilde{x}, \widetilde{y}) = (x \circ \widetilde{x}, y \circ \widetilde{y})$ and (possibly) the induced topology from $X \times Y$.

Definition 2 (Cofibre product). A dual fibre product or cofibre product or also push-out of morphisms $X \leftarrow B \rightarrow Y$ in some category \mathcal{A} is a commutative diagram

$$B \xrightarrow{\qquad} Y$$

$$\downarrow \qquad \qquad \downarrow k$$

$$X \xrightarrow{\qquad j \qquad} P$$

enjoying the universal property for such diagrams, that is:

Whenever $T \in \mathrm{Ob}(\mathcal{A})$ comes with morphisms $X \to T \leftarrow Y$ such that the left of the below diagrams commutes, there is a unique (dashed) morphism $P \to T$ in the right diagram making it commute.

In colimited language, P is the *colimit* below the diagram $X \leftarrow B \rightarrow Y$.

Example 1. Let R be a ring, A and B be R-algebras. Then their tensor product $A \otimes_R B$ over R has a unique ring structure such that $(a \otimes b) \cdot (\alpha \otimes \beta) = (a \cdot \alpha) \otimes (b \cdot \beta)$. Then $A \to A \otimes_R \leftarrow B$ sending $a \in A$ to $a \otimes 1$ and $b \in B$ to $1 \otimes b$ are ring morphisms such that

$$R \xrightarrow{B} B$$

$$\downarrow b \mapsto 1 \otimes b$$

$$A \xrightarrow{a \mapsto a \otimes 1} A \otimes_{R} B$$

is cocartesian in the category of rings, i.e. a cofibre product of A and B over R.

Bibliography