

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15040022701

FCC REPORT (WIFI)

Applicant: Sakar International Inc.

Address of Applicant: 195, Carter Drive, Edison, New Jersey 08817 U.S.A

Equipment Under Test (EUT)

Product Name: Mini tablet

Model No.: CAM-4327, CAM-4343, Cam 430

FCC ID: XKK-CAM4302

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Apr., 2015

Date of Test: 09 Apr., to 28 Apr., 2015

Date of report issued: 29 Apr., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description		
00	29 Apr., 2015	Original		

Prepared by: Date: 29 Apr., 2015

Report Clerk

Reviewed by: 29 Apr., 2015

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	TENTS	3
4	TEST	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TEST	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	11
		CONDUCTED OUTPUT POWER	
		OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1 6.7.2	00.1000.000 =00.000	
	· · · · -		
7	TEST	T SETUP PHOTO	68
8	EUT	CONSTRUCTIONAL DETAILS	70

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Sakar International Inc.
Address of Applicant:	195, Carter Drive, Edison, New Jersey 08817 U.S.A
Manufacturer/Factory:	SHUOYING INDUSTRIAL(SHENZHEN)CO.,LTD.
Address of Manufacturer/ Factory:	shuoying Road 1st, Hebei Industry Area, Dalang, Longhua Town, Baoan, Shenzhen, Guangdong, China

5.2 General Description of E.U.T.

5 1 11	Mini and last
Product Name:	Mini tablet
Model No.:	CAM-4327, CAM-4343, Cam 430
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
AC adapter:	Model: WLC050150UU Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 1.5A
Power supply:	Rechargeable Li-ion Battery DC3.7V-1200mAh
Remark:	Item No.: CAM-4327, CAM-4343, Cam 430 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and Color in plastic.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3 2422MHz 6 2437MHz 9 2452MHz								

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15040022701

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed on the table 0.8 meters for below 1GHz, 1.5 meters for above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

	Mode	Data rate		
	802.11b	1Mbps		
802.11g		6Mbps		
	802.11n(H20)	6.5Mbps		
	802.11n(H40)	13.5Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15040022701

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-01-2015	04-01-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Toot Poquiroment:	FCC Part 15 C Section 15.207	7		
Test Requirement:				
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Frequency range (MHz)	Limit (c	BuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5 5-30	56 60	46 50	
	* Decreases with the logarithm		50	
	 a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 			
Test setup:	AUX Equipment E.U Test table/Insulation pla		er — AC power	
	LISN: Line Impedence Stabilizatio Test table height=0.8m	nn ivetwork		
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mini tablet : CAM-4327 EUT Model Test Mode : Wifi Mode Power Rating : AC 120V/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

.emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.154	35.34	0.25	10.78	46.37	65.78	-19.41	QP
2	0.154	21.99	0.25	10.78	33.02	55.78	-22.76	Average
3	0.258	18.44	0.26	10.75	29.45	51.51	-22.06	Average
1 2 3 4 5 6 7 8	0.579	38.61	0.24	10.77	49.62	56.00	-6.38	QP
5	0.621	22.33	0.22	10.77	33.32	46.00	-12.68	Average
6	0.627	40.34	0.22	10.77	51.33	56.00	-4.67	QP
7	0.641	21.33	0.21	10.77	32.31	46.00	-13.69	Average
8	0.654	40.67	0.20	10.77	51.64	56.00	-4.36	QP
9	0.914	14.53	0.21	10.84	25.58	46.00	-20.42	Average
10	1.242	32.42	0.24	10.90	43.56	56.00	-12.44	QP
11	4.900	32.11	0.28	10.85	43.24	56.00	-12.76	QP
12	5.058	14.70	0.28	10.85	25.83	50.00	-24.17	Average

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : Mini tablet Model : CAM-4327 Test Mode : Wifi Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
MHz	dBu∜			—dBu∀	dBu∇	<u>dB</u>	
0.154	36.06	0.27	10.78	47.11	65.78	-18.67	QP
0.158	18.85	0.27	10.78	29.90	55.56	-25.66	Average
0.202	31.97	0.28	10.76	43.01	63.54	-20.53	QP
0.211	16.66	0.28	10.76	27.70	53.18	-25.48	Average
0.318	15.32	0.26	10.74	26.32	49.75	-23.43	Average
0.630	20.20	0.24	10.77	31.21	46.00	-14.79	Average
0.637	35.61	0.24	10.77	46.62	56.00	-9.38	QP
1.216	27.04	0.25	10.90	38.19	56.00	-17.81	QP
1.781	10.06	0.26	10.95	21.27	46.00	-24.73	Average
3.565	8.98	0.28	10.90	20.16	46.00	-25.84	Average
4.952	26.11	0.30	10.85	37.26	56.00	-18.74	QP
13.127	21.76	0.32	10.91	32.99	60.00	-27.01	QP
	MHz 0.154 0.158 0.202 0.211 0.318 0.630 0.637 1.216 1.781 3.565 4.952	Freq Level MHz dBuV 0.154 36.06 0.158 18.85 0.202 31.97 0.211 16.66 0.318 15.32 0.630 20.20 0.637 35.61 1.216 27.04 1.781 10.06 3.565 8.98 4.952 26.11	Freq Level Factor MHz dBuV dB 0.154 36.06 0.27 0.158 18.85 0.27 0.202 31.97 0.28 0.211 16.66 0.28 0.318 15.32 0.26 0.630 20.20 0.24 0.637 35.61 0.24 1.216 27.04 0.25 1.781 10.06 0.26 3.565 8.98 0.28 4.952 26.11 0.30	Freq Level Factor Loss MHz dBuV dB dB 0.154 36.06 0.27 10.78 0.158 18.85 0.27 10.78 0.202 31.97 0.28 10.76 0.211 16.66 0.28 10.76 0.318 15.32 0.26 10.74 0.630 20.20 0.24 10.77 0.637 35.61 0.24 10.77 1.216 27.04 0.25 10.90 1.781 10.06 0.26 10.95 3.565 8.98 0.28 10.90 4.952 26.11 0.30 10.85	Freq Level Factor Loss Level MHz dBuV dB dB dBuV 0.154 36.06 0.27 10.78 47.11 0.158 18.85 0.27 10.78 29.90 0.202 31.97 0.28 10.76 43.01 0.211 16.66 0.28 10.76 27.70 0.318 15.32 0.26 10.74 26.32 0.630 20.20 0.24 10.77 31.21 0.637 35.61 0.24 10.77 46.62 1.216 27.04 0.25 10.90 38.19 1.781 10.06 0.26 10.95 21.27 3.565 8.98 0.28 10.90 20.16 4.952 26.11 0.30 10.85 37.26	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.154 36.06 0.27 10.78 47.11 65.78 0.158 18.85 0.27 10.78 29.90 55.56 0.202 31.97 0.28 10.76 43.01 63.54 0.211 16.66 0.28 10.76 27.70 53.18 0.318 15.32 0.26 10.74 26.32 49.75 0.630 20.20 0.24 10.77 31.21 46.00 0.637 35.61 0.24 10.77 46.62 56.00 1.216 27.04 0.25 10.90 38.19 56.00 1.781 10.06 0.26 10.95 21.27 46.00 3.565 8.98 0.28 10.90 20.16 46.00 4.952 26.11 0.30 10.85 37.26 56.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dB dBuV dBuV dB dB

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

	Ma	ximum Conduct				
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result	
Lowest	17.08	13.31	12.55	10.68		
Middle	16.78	13.92	12.99	10.85	30.00	Pass
Highest	16.80	14.16	13.05	10.69		

Test plot as follows:

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

- . 011		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.18	16.75	18.04	36.71		
Middle	10.18	16.75	18.04	36.71	>500	Pass
Highest	10.18	16.75	18.04	36.71		

-		99% Occupy		- I		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	15.07	16.59	17.80	36.23		
Middle	15.07	16.59	17.80	36.23	N/A	N/A
Highest	14.99	16.59	17.72	36.23		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T (0)		Power Spec	1: ://ID \	Б		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	6.75	-1.73	-2.84	-6.73		
Middle	6.71	-0.91	-2.40	-7.50	8.00	Pass
Highest	6.80	-0.91	-2.13	-7.36		

Test plot as follows:

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	modulation off						
Receiver setup.	Frequency Detector		RBW	VBW	Remark		
	Above 1GHz Peak		1MHz	3MHz	Peak Value		
	Above 1G112	Peak	1MHz	10Hz	Average Value		
Limit:	Francisco Limit (dD:)//m @2m) Domode						
	Freque	ency i	Limit (dBuV/m @3m) 54.00		Remark Average Value		
	Above 1GHz		74.00		Peak Value		
Test setup:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 227RF EUT : Mini tablet : CAM-4327 Model Test mode : Wifi -b-L Mode

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

•	## E		Antenna				Limit	Over		
	rreq	rever	Factor	Loss	ractor	rever	Line	Limit	Kemark	
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		-
	2390.000 2390.000	77070707070					74.00 54.00		Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 227RF Condition

Pro

EUT Mini tablet : CAM-4327 : Wifi -b-L Mode Model Test mode Power Rating : AC120/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 227RF

: Mini tablet : CAM-4327 EUT Model : Wifi -b-H Mode Test mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

Ellen			Antenna Factor						
	MHz	dBu∜	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	dB	(manuscript)
1 2	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 227RF Condition

Pro EUT : Mini tablet : CAM-4327 : Wifi -b-H Mode Model Test mode Power Rating: AC120/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK:

MAK	к :								
	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	21.79	27.52	6.85	0.00	56.16	74.00	-17.84	Peak
2	2483,500	10.31	27.52	6.85	0.00	44.68	54.00	-9.32	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro : 227RF

EUT : Mini tablet
Model : CAM-4327
Test mode : Wifi -G-L Mode
Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK :

Freq		Antenna Factor				Limit Line			
MHz	dBu∇	—dB/m	dB	dB	dBuV/m	dBuV/m	dB		
2390.000 2390.000			6.63 6.63				-10.58 -8.53	Peak Average	

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 227RF EUT : Mini tablet

: CAM-4327 : Wifi -G-L Mode Model Test mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: MT REMARK :

nn :	Read	Antenna	Cable	Preamn		Limit	Over	
Freq		Factor						Remark
MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
2390.000 2390.000			7.707.70			74.00		Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 227RF Pro EUT : Mini tablet

Model : CAM-4327

Test mode : Wifi -G-H Mode

Power Rating : AC120/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

ייייייייייייייייייייייייייייייייייייייי	3 (7)		Antenna Factor					Over Limit	Remark	
-	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBu√/m	dB		-
	2483.500									
2	2483.500	10.44	27. 52	6.85	0.00	44.81	54.00	-9.19	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 227RF

EUT : Mini tablet : CAM-4327 : Wifi -G-H Mode Model Test mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

an,	T.								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBu∜/m	<u>dB</u>	
	2483.500	31.06	27.52	6.85	0.00	65.43	74.00	-8.57	Peak
	2483, 500	14.96	27, 52	6, 85	0.00	49, 33	54,00	-4.67	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 227RF

EUT : Mini tablet : CAM-4327 Model Test mode : Wifi -N20-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

шис	B (2)		Antenna Factor			Limit Line		Remark	
1	MHz	−dBuV		 <u>d</u> B	dBuV/m	dBuV/m	ā		+
	2390.000 2390.000				59.42 44.12				

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 227RF

EUT : Mini tablet Model : CAM-4327 Test mode : Wifi -N20-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

TALL										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
į.	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2390.000	30.94	27.58	6.63	0.00	65.15	74.00	-8.85	Peak	
	2390,000	12 21	27 58	6 63	0.00	46.42	54 00	-7.58	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: 227RF Pro EUT

: Mini tablet : CAM-4327 Model

Test mode : Wifi -N20-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

	8 21		Antenna Factor						
1	MHz	dBu∀	dB/m	 <u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500			(F. 17 (17 L) T. 17 (17 L)	57.60 43.70			Peak Average	

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC_PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 227RF Pro EUT : Mini tablet
Model : CAM-4327
Test mode : Wifi -N20-H Mode
Power Rating : AC120/6552

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: REMARK :

		Antenna Factor					Over Limit	
MHz	dBu₹	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	 -
2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

227RF Pro EUT

: Mini tablet : CAM-4327 : Wifi -N40-L Mode Model

Test mode

Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

т.		Read	Antenna	Cable	Preamn		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level			Remark	
	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		-
	2390.000	25.65	27.58	6.63	0.00	59.86	74.00	-14.14	Peak	
	2390.000	10.34	27.58	6.63	0.00	44.55	54.00	-9.45	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 227RF Pro : Mini tablet : CAM-4327 EUT Model

: Wifi -N40-L Mode Test mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT REMARK :

Lilutio	E 17:		Antenna Factor				Limit Line		Remark	
-	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
1 2	2390.000 2390.000						74.00 54.00		Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 227RF EUT : Mini tablet : CAM-4327 : Wifi -N40-H Mode Model Test mode Power Rating : AC120/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: MT REMARK :

ДΓ									
			Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m		dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	2483.500	774700000000000000000000000000000000000			0.00	(그리겠다구 그 영급하다고		
	2483.500	9. 711	71.07	0.00	11. 1111	43.00	94. UU	-10.43	average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 227RF Pro EUT : Mini tablet Model : CAM-4327 Test mode : Wifi -N40-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: MT REMARK

MK	. :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
7	MHz	dBu∀	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500	28.84	27.52	6.85	0.00	63.21	74.00	-10.79	Peak	
1	2483, 500	13, 00	27, 52	6, 85	0.00	47.37	54,00	-6.63	Average	

Remark:

1

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 21.APR.2015 08:16:54

30MHz~25GHz

Middle channel

Date: 21.APR.2015 08:18:01

30MHz~25GHz

Highest channel

Date: 21.APR.2015 08:22:06

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 21.APR.2015 08:26:08

30MHz~25GHz

Middle channel

Date: 21.APR.2015 08:23:34

30MHz~25GHz

Highest channel

Date: 21.APR.2015 08:20:41

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 21.APR.2015 08:27:44

30MHz~25GHz

Middle channel

Date: 21.APR.2015 08:29:35

30MHz~25GHz

Highest channel

Date: 21.APR.2015 08:31:46

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 21.APR.2015 08:43:52

30MHz~25GHz

Middle channel

Date: 21.APR.2015 08:45:01

30MHz~25GHz

Highest channel

Date: 21.APR.2015 08:51:35

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20)13						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
. toootto. cotap.	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Above 1GHz Peak 1MHz 3MHz						
	Above 1GHz Peak 1MHz 10Hz Average Value							
Limit:								
	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88MHz 40.0 Quasi-peak Value							
	88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz 46.0 Quasi-peak Value							
	960MHz-	1GHZ	54.0		Quasi-peak Value			
	Above 1	GHz	54.0 74.0		Average Value			
Test Procedure:	1. The EUT w	as placed on t			Peak Value e 0.8 meters for			
	below 1GH meter camposition of 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the respective Specified E. If the emission of the EUT have 10dB	z, 1.5 meters to ber. The table the highest rack ras set 3 meters thich was mount a height is varied to determine to the asurement. Uspected emister the antennal the rota table maximum read ceiver system and width with sion level of the would be reported to the would be reported to the would be reported to the terminal the rota table maximum read the rota table	for above 1G was rotated diation. It is away from the firm one the maximum all polarizations was turned was turned was turned was set to P Maximum He EUT in peasing could butted. Otherwise to the country of the count	the interfer op of a variate meter to for a value of the ons of the automatic meters of the ons of the automatic meters of the ons of the automatic meters of the one	he ground at a 3 s to determine the rence-receiving able-height antenna our meters above he field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Pro EUT : 227RF : Mini tablet : CAM-4327 Model Test mode : Wifi Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor						Remark	
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>		-
1	85.898	55.38	10.60	0.89	29.59	37.28	40.00	-2.72	QP	
2	102.001	56.15	12.97	0.98	29.51	40.59	43.50	-2.91	QP	
2	191.745	46.39	10.56	1.37	28.89	29.43	43.50	-14.07	QP	
4	483.910	46.61	16.20	2.36	28.93	36.24	46.00	-9.76	QP	
4 5	556.774	51.52	17.67	2.55	29.08	42.66	46.00	-3.34	QP	
6	631.688	48.84	18.57	2.73	28.84	41.30	46.00	-4.70	QP	

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 227RF Condition

Pro EUT : Mini tablet Model : CAM-4327 Test mode : Wifi Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBu∜/m	dBuV/m	B	
1	102.360	51.34	12.92	0.98	29.51	35.73	43.50	-7.77	QP
2	210.048	42.22	10.87	1.43	28.77	25.75	43.50	-17.75	QP
1 2 3	408.946	48.53	15.27	2.14	28.80	37.14	46.00	-8.86	QP
4 5	483.910	52.07	16.20	2.36	28.93	41.70	46.00	-4.30	QP
5	556.774	53.17	17.67	2.55	29.08	44.31	46.00	-1.69	QP
6	631.688	49.66	18.57	2.73	28.84	42.12	46.00	-3.88	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Pea	ık			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	51.64	31.53	8.90	40.24	51.83	74.00	-22.17	Vertical		
4824.00	51.89	31.53	8.90	40.24	52.08	74.00	-21.92	Horizontal		
Test mode: 8	02.11b		Test channel: Lowest			Remark: Ave	erage	age		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4004.00	40.05	04.50	8.90	40.24	43.44	54.00	-10.56	Vertical		
4824.00	43.25	31.53	0.90	40.24	45.44	54.00	-10.50	Vertical		

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	k			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	55.21	31.58	8.98	40.15	55.62	74.00	-18.38	Vertical		
4874.00	53.51	31.58	8.98	40.15	53.92	74.00	-20.08	Horizontal		
Test mode: 80	02.11b		Test char	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	46.28	31.58	8.98	40.15	46.69	54.00	-7.31	Vertical		
4874.00	44.75	31.58	8.98	40.15	45.16	54.00	-8.84	Horizontal		

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	55.94	31.69	9.08	40.03	56.68	74.00	-17.32	Vertical		
4924.00	57.30	31.69	9.08	40.03	58.04	74.00	-15.96	Horizontal		
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	age		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	46.79	31.69	9.08	40.03	47.53	54.00	-6.47	Vertical		
4924.00	48.68	31.69	9.08	40.03	49.42	54.00	-4.58	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Pea	k			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	50.84	31.53	8.90	40.24	51.03	74.00	-22.97	Vertical		
4824.00	51.04	31.53	8.90	40.24	51.23	74.00	-22.77	Horizontal		
Test mode: 80	02.11g		Test char	Test channel: Lowest			rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	43.28	31.53	8.90	40.24	43.47	54.00	-10.53	Vertical		
4824.00	41.78	31.53	8.90	40.24	41.97	54.00	-12.03	Horizontal		

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	54.85	31.58	8.98	40.15	55.26	74.00	-18.74	Vertical
4874.00	52.94	31.58	8.98	40.15	53.35	74.00	-20.65	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.78	31.58	8.98	40.15	46.19	54.00	-7.81	Vertical
4874.00	43.96	31.58	8.98	40.15	44.37	54.00	-9.63	Horizontal

Test mode: 802.11g			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	56.21	31.69	9.08	40.03	56.95	74.00	-17.05	Vertical	
4924.00	56.64	31.69	9.08	40.03	57.38	74.00	-16.62	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	47.21	31.69	9.08	40.03	47.95	54.00	-6.05	Vertical	
4924.00	47.75	31.69	9.08	40.03	48.49	54.00	-5.51	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	49.85	31.53	8.90	40.24	50.04	74.00	-23.96	Vertical
4824.00	50.26	31.53	8.90	40.24	50.45	74.00	-23.55	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.12	31.53	8.90	40.24	44.31	54.00	-9.69	Vertical
4824.00	41.95	31.53	8.90	40.24	42.14	54.00	-11.86	Horizontal

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.21	31.58	8.98	40.15	55.62	74.00	-18.38	Vertical
4874.00	52.80	31.58	8.98	40.15	53.21	74.00	-20.79	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.74	31.58	8.98	40.15	46.15	54.00	-7.85	Vertical
4874.00	42.46	31.58	8.98	40.15	42.87	54.00	-11.13	Horizontal

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	57.42	31.69	9.08	40.03	58.16	74.00	-15.84	Vertical
4924.00	57.31	31.69	9.08	40.03	58.05	74.00	-15.95	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.15	31.69	9.08	40.03	48.89	54.00	-5.11	Vertical
4924.00	48.03	31.69	9.08	40.03	48.77	54.00	-5.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	48.49	31.53	8.90	40.24	48.68	74.00	-25.32	Vertical
4844.00	48.78	31.53	8.90	40.24	48.97	74.00	-25.03	Horizontal
Test mode: 8	02.11n(H40)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	45.96	31.53	8.90	40.24	46.15	54.00	-7.85	Vertical
4844.00	42.51	31.53	8.90	40.24	42.70	54.00	-11.30	Horizontal

Test mode: 802.11n(H40)			Test char	Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	56.32	31.58	8.98	40.15	56.73	74.00	-17.27	Vertical	
4874.00	52.17	31.58	8.98	40.15	52.58	74.00	-21.42	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	43.64	31.58	8.98	40.15	44.05	54.00	-9.95	Vertical	
4874.00	40.46	31.58	8.98	40.15	40.87	54.00	-13.13	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	56.78	31.69	9.08	40.03	57.52	74.00	-16.48	Vertical
4904.00	57.01	31.69	9.08	40.03	57.75	74.00	-16.25	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	48.23	31.69	9.08	40.03	48.97	54.00	-5.03	Vertical
4904.00	47.77	31.69	9.08	40.03	48.51	54.00	-5.49	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.