TỔNG HỢP CÔNG THỨC VECTO HÌNH HỌC LỚP 10

Trên hệ trục tọa độ Oxy cho hai vecto \overrightarrow{u} $x_1; y_1$, \overrightarrow{v} $x_2; y_2$ và các điểm A $x_A; y_A$, B $x_B; y_B$, C $x_C; y_C$, D $x_D; y_D$. Ta sẽ có bảng công thức về hệ thức vecto cần nhớ sau:

1. Hai vecto bằng nhau	Heimote was a bone about the factor of
Tital vocto build imad	Hai vecto u và v bằng nhau được kí hiệu: u = v
	Khi độ dài hai vecto bằng nhau và cùng hướng.
2. Vecto đối của vecto \vec{u}	$\stackrel{ ightarrow}{-u}$
3. Tổng của hai vecto \vec{u} và \vec{v}	$\vec{u} + \vec{v} = x_1 + x_2; y_1 + y_2$
4. Hiệu của hai vecto \vec{u} và \vec{v}	$\overrightarrow{u} - \overrightarrow{v} = x_1 - x_2; y_1 - y_2$
5. Vecto \overrightarrow{AB}	$\overrightarrow{AB} x_B - x_A; y_B - y_A$
6. Quy tắc ba điểm	$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
7. Quy tắc hình bình hành	Với ABCD là hình bình hành, ta có:
	$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$
8. Hiệu hai vecto:	$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$
9. Tích của vecto \vec{u} với một số k	$\vec{ku} = kx_1; kx_2$
	+) Nếu $k > 0$ thì $k\vec{u}$ cùng hướng với \vec{u}
	+) Nếu k < 0 thì k \vec{u} ngược hướng với \vec{u}
10. Hai vecto cùng phương	Hai vecto u và v cùng phương nếu tồn tại một số
	$k \in R$ sao cho $\vec{u} = k\vec{v}$
11. Ba điểm thẳng hàng	Ba điểm A, B, C thẳng hàng nếu tồn tại một số
	$k \in R$ sao cho $\overrightarrow{AB} = k\overrightarrow{AC}$
12. Độ dài vecto \overrightarrow{AB}	$ \overrightarrow{AB} = \sqrt{ x_B - x_A ^2 + y_B - y_A ^2}$

13. Tọa độ trung điểm I của AB	I x_I, y_I , trong đó: $ \begin{cases} x_I = \frac{x_A + x_B}{2} \\ y_I = \frac{y_A + y_B}{2} \end{cases} $
14. G là trọng tâm của tam giác ABC	$G \ x_G, y_G \ , \text{ trong d\'o}: \begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases}$
15. Tích vô hướng của hai vecto \vec{u}	$\overrightarrow{u.v} = x_1.x_2 + y_1.y_2$
và v	$ \vec{u}.\vec{v} = \vec{u} \cdot \vec{v} \cdot \cos \vec{u}, \vec{v}$
16. Góc giữa hai vecto \vec{u} và \vec{v}	$\cos \vec{u}, \vec{v} = \frac{\vec{u}.\vec{v}}{ \vec{u} . \vec{v} } = \frac{x_1.x_2 + y_1.y_2}{\sqrt{x_1^2 + y_1^2}.\sqrt{x_2^2 + y_2^2}}$
17. Hai vecto vuông góc	Hai vecto \vec{u} và \vec{v} vuông góc khi $\vec{u}.\vec{v} = 0$