

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26, 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06, 405/06

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/US98/23254

A1

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

08/972,484 18 November 1997 (18.11.97) US 09/055,285 6 April 1998 (06.04.98) US 09/133,434 13 August 1998 (13.08.98) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/972,484 (CIP)
Filed on 18 November 1997 (18.11.97)
US 09/055,285 (CIP)
Filed on 6 April 1998 (06.04.98)
US 09/133,434 (CIP)
Filed on 13 August 1998 (13.08.98)

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). IMAI, Minoru [JP/JP]; Teiiin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP), TSUTSUMI, Takaharu [JP/JP]; Teijin Limited. Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SUDOH, Masaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP), MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka,

Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]; Teijin Limited. Tokyo Research Center, 4-3-2. Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]; Teijin Limited. Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). MOREE, Wilna [NL/US]; CombiChem. Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

- (74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

(57) Abstract

A compound represented by general formula (1), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 – C_6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP– $i\alpha$ and/or MCP–1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

\mathbf{AL}	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
\mathbf{AT}	Austria	FR	France	LU	Luxembourg	ŚN	Senegal
ΑU	Australia	GA	Gabon	LY	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MK	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Ïtaly	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SPECIFICATION

Cyclic Amine Derivatives and Their Use as Drugs

5 Field of the Invention

10

15

20

25

30

35

This invention relates to novel cyclic amine derivatives.

This invention also relates to chemokine receptor antagonists that may be effective as a therapeutic agent and/or preventive agent for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis in which tissue infiltration of blood leukocytes, such as monocytes and lymphocytes, play a major role in the initiation, progression or maintenance of the disease.

Description of related art

Chemokines are a group of inflammatory/immunomodulatory polypeptide factors which have a molecular weight of 6-15 kD and are produced by a variety of cell types, such as macrophages, monocytes, eosinophils, neutrophiles, fibroblasts, vascular endotherial cells, smooth muscle cells, and mast cells, at inflammatory sites. The chemokines can be classified into two major subfamilies, the CXC chemokines (or α -chemokines) and CC chemokines (or β chemokines), by the common location of the four conserved cysteine residues and by the differences in the chromosomal locations of the genes encoding them. The first two cysteines of CXC chemokines are separated by one amino acid and those of CC chemokines are adjacent. For example IL-8 (abbreviation for interleukin-8) is a CXC chemokine, while the CC chemokines include MIP-1lpha/eta (abbreviation for macrophage inflammatory protein- $1\alpha/\beta$), MCP-1 (abbreviation for monocyte chemoattractant protein-1), and RANTES (abbreviation for regulated upon activation, normal T-cell expressed and secreted). There also exist chemokines which do not fall into either chemokine subfamily. They are lymphotactin, which has only two cysteines and defines the C chemokine, and fractalkine that has a chemokine-like domain in the mucin structure in which the first two cysteines are separated by three amino acids and hence defines CX_3C chemokine. These chemokines promote chemotaxis, cell migration, increase the expression of cellular adhesion molecules such as integrins, and cellular adhesion, and are

thought to be the protein factors intimately involved in the adhesion and infiltration of leukocytes into the pathogenic sites in such as inflammatory tissues (for references, see for example, Vaddi, K., et al., The Chemokine Facts Book, Academic Press, 1997; Chemoattractant Ligand and Their Receptors, Horuk, R., Ed., CRC Press, 1996; Ward, G.W., et al., Biochem. J., 1998, 333, 457; Luster, A.D., New Engl. J. Med., 1998, 338, 436; Baggiolini, M., Nature, 1998, 392, 565; Rollins, B.J., Blood, 1997, 90, 909; Alam, R., J. Allergy Clin. Immunol., 1997, 99, 273; Hancock, W.W., Am. J. Pathol., 1996, 148, 681; Taub, D.D., Cytokine & Growth Factor Rev., 1996, 7, 335; Strieter, R.M., et al., J. Immunol., 1996, 156, 3583; Furie, M.B., et al., Am. J. Pathol., 1995, 146, 1287; Schall, T.J., et al., Current Opinion in Immunology, 1994, 6, 865; Edginton, S.M., Biotechnology, 1993, 11, 676).

For example, MTP-lα causes a transient increase in intracellular calcium ion concentration levels and induces migration of T lymphocytes, B lymphocytes (see for example, Taub, D.D., et al., Science, 1993, 260, 355; Schall, T.J., et al., J. Exp. Med., 1993, 177, 1821), and eosinophiles (see for example, Rot, A., et al., J. Exp. Med., 1992, 176, 1489), chemotaxis of natural killer cells (see for example, Maghazachi, A.A., et al., J. Immunol., 1994, 153, 4969), expression of integrins (see for example, Vaddi, K., et al., J. Immunol., 1994, 153, 4721), and osteoclast differentiation (see for example, Kukita, T., et al., Lab. Invest., 1997, 76, 399). MIP-lα also enhances IgE and IgG4 production in B cells (see for example, Kimata, H., et al., J. Exp. Med., 1996, 183, 2397) and inhibits hematopoietic stem cell proliferation (see for example, Mayani, H., et al., Exp. Hematol., 1995, 23, 422; Keller, J.R., et al., Blood, 1994, 84, 2175; Eaves, C.J., et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 12015; Bodine, D.M., et al., Blood, 1991, 78, 914; Broxmeyer, H.E., et al., Blood, 1990, 76, 1110).

With respect to the activity of MIP-1α in vivo and its role in the pathogenesis of disease, it has been reported that it is a pyrogen in rabbits (see for example Davatelis, G., et al., Science, 1989, 243, 1066); that MIP-1α injection into mouse foot pads results in an inflammatory reaction such as infiltration by neutrophils and mononuclear cells (see for example Alam, R., et al., J. Immunol., 1994, 152, 1298); that MIP-1α neutralizing antibody has an inhibitory effect or a therapeutic effect in animal models of granuloma (see for example Lukacs, N.W., et al., J. Exp. Med., 1993, 177, 1551), asthma (see for example Lukacs, N.W., et al., Eur. J. Immunol., 1995, 25, 245; Lukacs, N.W., et al., J. Immunol., 1997, 158, 4398), multiple sclerosis (see for example Karpus,

W.J., et al., J. Immunol., 1995, 155, 5003; Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), idiopathic pulmonary fibrosis (see for example Smith, R.E., et al., J. Immunol., 1994, 153, 4704; Smith, R.E., Biol. Signals, 1996, 5, 223), acute lung injury (see for example Shanley, T.P., et al., J. Immunol., 1995, 154, 4793; Standiford, T.J., et al., J. Immunol., 1995, 155, 1515), and rheumatoid arthritis (see for example Kasama, T., et al., J. Clin. Invest., 1995, 95, 2868); that coxsackie virus induced myocarditis and herpes stromal keratitis are inhibited in mice with a disrupted MIP-1lpha gene (see for example Cook, D.N. et al., Science, 1995, 269, 1583; Tumpey, T.M., et al., J. Virology, 1998, 72, 3705); and that significant expression of MIP-1 α is observed in patients with chronic inflammatory diseases of lung (see for example Standiford, T.J., et al., J. Immunol., 1993, 151, 2852), hypersensitivity pneumonitis (see for example Denis, M., Am. J. Respir. Crit. Care Med., 1995, 151, 164), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1994, 93, 921), infectious meningitis (see for example Lahrtz, F., et al., J. Neuroimmunol., 1998, 85, 33), and chronic inflammation of muscle (see for example Adams, E.M., et al., Proc. Assoc. Am. Physicians, 1997, 109, 275). These studies indicate that MIP-1 α is deeply involved in the local attraction of various subtypes of leukocytes and the initiation, progression and maintenance of resulting inflammatory response.

5

10

15

20

25

30

35

MCP-1 (also known as MCAF (abbreviation for macrophage chemotactic and activating factor) or JE) is a CC chemokine produced by monocytes/macrophages, smooth muscle cells, fibroblasts, and vascular endothelial cells and causes cell migration and cell adhesion of monocytes (see for example Valente, A.J., et al., Biochemistry, 1988, 27, 4162; Matsushima, K., et al., J. Exp. Med., 1989, 169, 1485; Yoshimura, T., et al., J. Immunol., 1989, 142, 1956; Rollins, B.J., et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 3738; Rollins, B.J., et al., Blood, 1991, 78, 1112; Jiang, Y., et al., J. Immunol., 1992, 148, 2423; Vaddi, K., et al., J. Immunol., 1994, 153, 4721), memory T lymphocytes (see for example Carr, M.W., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 3652), T lymphocytes (see for example Loetscher, P., et al., FASEB J., 1994, 8, 1055) and natural killer cells (see for example Loetscher, P., et al., J. Immunol., 1996, 156, 322; Allavena, P., et al., Eur. J. Immunol., 1994, 24, 3233), as well as mediating histamine release by basophils (see for example Alam, R., et al., J. Clin. Invest., 1992, 89, 723; Bischoff, S.C., et al., J. Exp. Med., 1992, 175, 1271; Kuna, P., et al., J. Exp. Med., 1992, 175, 489).

In addition, high expression of MCP-1 has been reported in diseases where accumulation of monocyte/macrophage and/or T cells is thought to be important

in the initiation or progression of diseases, such as atherosclerosis (see for example Hayes, I.M., et al., Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M., et al., Hum. Pathol., 1993, 24, 534; Yla-Herttuala, S., et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 5252; Nelken, N.A., J. Clin. Invest., 1991, 88, 1121), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 5 1992, 90, 772; Akahoshi, T., et al., Arthritis Rheum., 1993, 36, 762; Robinson, E., et al., Clin. Exp. Immunol., 101, 398), nephritis (see for example Noris, M., et al., Lab. Invest., 1995, 73, 804; Wada, T., at al., Kidney Int., 1996, 49, 761; Gesualdo, L., et al., Kidney Int., 1997, 51, 155), nephropathy (see for example Saitoh, A., et al., J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H., 10 et al., J. Leukoc. Biol., 1998, 63, 493), pulmonary fibrosis, pulmonary sarcoidosis (see for example Sugiyama, Y., et al., Internal Medicine, 1997, 36, 856), asthma (see for example Karina, M., et al., J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A.R., et al., Am. J. Respir. Cell Mol. Biol., 1994, 10, 142), 15 multiple sclerosis (see for example McManus, C., et al., J. Neuroimmunol., 1998, 86, 20), psoriasis (see for example Gillitzer, R., et al., J. Invest. Dermatol., 1993, 101, 127), inflammatory bowel disease (see for example Grimm, M.C., et al., J. Leukoc. Biol., 1996, 59, 804; Reinecker, H.C., et al., Gastroenterology, 1995, 106, 40), myocarditis (see for example Seino, Y., et al., Cytokine, 1995, 20 7, 301), endometriosis (see for example Jolicoeur, C., et al., Am. J. Pathol., 1998, 152, 125), intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Human Reproduction, 1998, 13, 1194), congestive heart failure (see for example Aurust, P., et al., Circulation, 1998, 97, 1136), chronic liver disease (see for example Marra, F., et al., Am. J. Pathol., 1998, 152, 423), viral 25meningitis (see for example Lahrtz, F., et al., Eur. J. Immunol., 1997, 27, 2484), Kawasaki disease (see for example Wong, M.; et al., J. Rheumatol., 1997, 24,1179) and sepsis (see for example Salkowski, C.A.; et al., Infect. Immun., 1998, 66, 3569). Furthermore, anti-MCP-1 antibody has been reported to show an inhibitory effect or a therapeutic effect in animal models of rheumatoid arthritis (see 30for example Schimmer, R.C., et al., J. Immunol., 1998, 160, 1466; Schrier, D.J., J. Leukoc. Biol., 1998, 63, 359; Ogata, H., et al., J. Pathol., 1997, 182, 106), multiple sclerosis (see for example Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), nephritis (see for example Lloyd, C.M., et al., J. Exp. Med., 1997, 185, 1371; Wada, T., et al., FASEB J., 1996, 10, 1418), Asthma (see for example 35 Gonzalo, J.-A., et al., J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398), atherosclerosis (see for example Guzman, L.A., et al.,

Circulation, 1993, 88 (suppl.), I-371), delayed type hypersensitivity (see for example Rand, M.L., et al., Am. J. Pathol., 1996, 148, 855), pulmonary hypertension (see for example Kimura, H., et al., Lab. Invest., 1998, 78, 571), and intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Am. J. Obstet. Gynecol., 1998, 179, 438). A peptide antagonist of MCP-1, MCP-1(9-76), has been also reported to inhibit arthritis in the mouse model (see Gong, J.-H., J. Exp. Med., 1997, 186, 131), as well as studies in MCP-1-deficient mice have shown that MCP-1 is essential for monocyte recruitment in vivo (see Lu, B., et al., J. Exp. Med., 1998, 187, 601; Gu, L., et al., Moll. Cell, 1998, 2, 275).

These data indicate that chemokines such as MIP-1 α and MCP-1 attract monocytes and lymphocytes to disease sites and mediate their activation and thus are thought to be intimately involved in the initiation, progression and maintenance of diseases deeply involving monocytes and lymphocytes, such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis (see for example Rovin, B.H., et al., Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C., et al., Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P., et al., Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R.M., et al., Trends Neurosci., 1998, 21, 154; MacDermott, R.P., et al., Inflammatory Bowel Diseases, 1998, 4, 54). Therefore, drugs which inhibit the action of chemokines on target cells may be effective as a therapeutic and/or preventive drug in the diseases.

Genes encoding receptors of specific chemokines have been cloned, and it is now known that these receptors are G protein-coupled seven-transmembrane receptors present on various leukocyte populations. So far, at least five CXC chemokine receptors (CXCR1-CXCR5) and eight CC chemokine receptors (CCR1-CCR8) have been identified. For example IL-8 is a ligand for CXCR1 and CXCR2, MIP-1\alpha is that for CCR1 and CCR5, and MCP-1 is that for CCR2A and CCR2B (for reference, see for example, Holmes, W.E., et al., Science 1991, 253, 1278-1280; Murphy P.M., et al., Science, 253, 1280-1283; Neote, K. et al., Cell, 1993, 72, 415-425; Charo, I.F., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yamagami, S., et al., Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier, C., et al., The Journal of Biological Chemistry, 1995, 270, 16491-16494, Power, C.A., et al., J. Biol. Chem., 1995, 270, 19495-19500; Samson, M., et al.,

Biochemistry, 1996, 35, 3362-3367; Murphy, P.M., Annual Review of Immunology, 1994, 12, 592-633). It has been reported that lung inflammation and granuroma formation are suppressed in CCR1 deficient mice (see Gao, J.-L., et al., J. Exp. Med., 1997, 185, 1959; Gerard, C., et al., J. Clin. Invest., 1997, 100, 2022), and that recruitment of macrophages and formation of atherosclerotic lesion decreased in CCR2-deficient mice (see Boring, L., et al., Nature, 1998, 394, 894; Kuziel, W.A., et al., Proc. Natl. Acad. Sci., USA, 1997, 94, 12053; Kurihara, T., et al., J. Exp. Med., 1997, 186, 1757; Boring, L., et al., J. Clin. Invest., 1997, 100, 2552). Therefore, compound which inhibit the binding of chemokines such as MTP-1α and/or MCP-1 to these receptors, that is, chemokine receptor antagonist, may be useful as drugs which inhibit the action of chemokines such as MTP-1α and/or MCP-1 on the target cells, but there are no drugs known to have such effects.

The cyclic amine derivatives provided by the present invention is quite novel. Recently, it has been reported that the diphenylmethane derivatives 15 (WO9724325; Hesselgesser, J., et al., J. Biol. Chem., 1998, 273, 15687), piperidine derivatives (JP9-249566), imidazobenzodiazepine derivatives (JP9-249570), benzazocine derivatives (JP9-255572), tricyclic compounds with cyclic amino group (WO9804554), phenothiazine derivatives (Bright, C., et al., Bioorg. Med. Chem. Lett., 1998, 8, 771), pieprazine derivatives (WO9744329), 20benzimidazole derivatives (WO9806703), distamycin analogues (Howard, O.M.Z., et al., J. Med. Chem., 1998, 41, 2184), bis-acridine derivatives (WO9830218), spiro-substituted azacycles (WO9825604; WO9825605), substituted aryl (WO9825617), aminoquinoline derivatives (WO9827815), piperazines arylpiperidine derivatives (WO9831364), hexanoic amide derivatives (WO9838167), 25and other small molecules (WO9744329; WO9802151; WO9804554) have antagonistic activity of chemokine receptor, such as CXCR1, CXCR4, CCR1, CCR2, CCR3, and CCR5. However, these compounds differ from the compound of the present invention.

30 Summary of the Invention

5

10

Therefore, it is an object of the present invention to provide small molecule compound which inhibits the binding of chemokines such as MIP-l α and/or MCP-l to their receptors on the target cells.

It is another object of the present invention to establish a method to inhibit the binding to the receptors on the target cells and/or effects on target cells of chemokines such as MIP-1 α and/or MCP-1.

It is an additional object of the present invention to propose a method

for the treatment of diseases for which the binding of chemokines such as MIP-1 α and/or MCP-1 to the receptor on the target cell is one of the causes.

As a result of intensive studies, the present inventors discovered that a cyclic amine derivative having a arylalkyl group, its pharmaceutically acceptable C_1 - C_6 alkyl addition salt or its pharmaceutically acceptable acid addition salt has an excellent activity to inhibit the binding of chemokines such as MIP- 1α and/or MCP-1 and the like to the receptor of a target cell, which has led to the completion of this invention.

That is, the present invention is a compound of the formula (I) below:

10

15

20

25

30

5

$$\begin{array}{c}
R_{2}^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow R^{4} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof (Invention 1),

wherein R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C1-C6 alkyl group, a C3-C8 cycloalkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_2 - alkanoyloxy group, a C_2 - C_3 - alkanoylamino group, a C_2-C_2 N-alkylcarbamoyl group, a C_4-C_6 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3 - C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino

group, a mono $(C_1-C_6$ alkyl) amino group, or a di $(C_1-C_{\S}$ alkyl) amino group, wherein the substituent for the phenyl group, C_3-C_{\S} cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;
k represents an integer of 0-2;
m represents an integer of 2-4;
n represents 0 or 1;

5

15

20

25

30

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_8 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 alkoxycarbonyl group, a C_1 - C_6 alkylsulfonyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

- p represents 0 or 1;
- q represents 0 or 1;
- G is a group represented by -CO-, -SO₂-, -CO-O-, -NR 7 -CO-, -CO-NR 7 -, 35 -NH-CO-NH-, -NH-CS-NH-, -NR 7 -SO₂-, -SO₂-NR 7 -, -NH-CO-O-, or -O-CO-NH-, wherein R 7 is a hydrogen atom or a C₁-C₆ alkyl group, or R 7 taken together with R 5 represents C₂-C₆ alkylene group;

 R^6 is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_6$ alkyl) amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl)\,amino\,\,group,\,\,a\,\,C_1-C_6\,\,(alkylsulfonyl)\,amino\,\,group,\,\,or\,\,a\,\,bis\,(C_1-C_6)$ alkylsulfonyl) amino group, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3 - C_0 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono(C_1-C_6 alkyl) amino group, or a $di(C_1-C_6 \text{ alkyl})$ amino group.

Also the present invention is a method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the above formula (I), a pharmaceutically acceptable acid addition salt thereof, or a pharmaceutically acceptable C_1 - C_{ε} alkyl addition salt thereof (Invention 2).

35

10

15

20

25

30

Here, the compound represented by the above formula (I) have activities to inhibit the binding of chemokines such as MIP- 1α and/or MCP-1 and the like

to the receptor of a target cell and activities to inhibit physiological activities of cells caused by chemokines such as MIP-1 α and/or MCP-1 and the like.

5 Description of the Preferred Embodiments

(1) On Invention 1

10

15

20

25

30

35

In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C1-C6 alkyl group, a C3-C8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_6 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino group, a mono $(C_1-C_{\varepsilon} \text{ alkyl})$ amino group, or a di $(C_1-C_{\varepsilon} \text{ alkyl})$ amino group.

The " C_2 - C_8 cycloalkyl group" for R^1 means a cyclic alkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cycloctyl group, specifically including a cyclopropyl, cyclopentyl, and cyclohexyl group.

The "aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof" for \mathbb{R}^1 is specifically, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl),

thiadiazolyl group and the like, preferably including a thienyl, furyl, pyrrolyl, isoxazolyl, and pyridyl group.

The "condensed ring" for R¹ means a ring obtained by the condensation with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom of a phenyl group or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and/or a nitrogen atom, at any possible sites, suitably and specifically for example, naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, benzoxadiazolyl (benzofurazanyl), and benzothiadiazolyl group.

5

10

15

20

25

30

35

Among them, a phenyl group and an isoxazolyl group can be listed as a preferred specific example for $\mathbb{R}^1.$

The "halogen atom" as a substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 includes a fluorine atom, chlorine atom, bromine atom, and iodine atom, suitably including a fluorine atom, chlorine atom, and bromine atom.

The " C_1 - C_6 alkyl group" as a substituent for R^1 means a C_1 - C_6 straight-chain or a branched alkyl group such as a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl, 1-ethylbutyl group, and the like, suitably specifically including a methyl, ethyl, propyl, and isopropyl group.

The " C_3 - C_8 cycloalkyl group" as a substituent for R^1 is the same as defined for the aforementioned " C_3 - C_8 cycloalkyl group" for R^1 , where the same examples can be given for the preferred specific examples.

The " C_2 - C_6 alkenyl group" as a substituent for R^1 means a C_2 - C_6 straight-chain or a branched alkenyl group such as a vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl, 4-methyl-3-pentenyl group, and the like, suitably specifically including a vinyl and 2-methyl-1-propenyl group.

The " C_1 - C_6 alkoxy group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and oxy group, specifically, for example, a methoxy and ethoxy group.

The " C_1 - C_6 alkylthio group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and thio group, specifically, for example,

11

a methylthio and ethylthio group.

5

10

15

20

25

30

35

The " C_3 - C_5 alkylene group" as a substituent for R^2 means the C_3 - C_5 divalent alkylene group such as a trimethylene, tetramethylene, pentamethylene, and 1-methyltrimethylene group, specifically, for example, a trimethylene and a tetramethylene group.

The "C₂-C₄ alkylenoxy group" as a substituent for R^1 means group consisting of the aforementioned C_2 -C₄ divalent alkylene group and oxy group such as a ethylenoxy (-CH₂CH₂O-), trimethylenoxy (-CH₂CH₂CH₂O-), tetramethylenoxy (-CH₂CH₂CH₂O-), and 1,1-dimethylenoxy (-CH₂C(CH₃)₂O-) group, specifically, for example, a ethylenoxy and trimethylenoxy group.

The " C_1-C_3 alkylenedioxy group" as a substituent for R^1 means group consisting of C_1-C_3 divalent alkylene group and two oxy groups such as a methylenedioxy (-OCH₂O-), ethylenedioxy (-OCH₂CH₂O-), trimethylenedioxy (-OCH₂CH₂O-), and propylenedioxy (-OCH₂CH(CH₃)O-) group, specifically, for example, a methylenedioxy and ethylenedioxy group.

The " C_2 - C_7 alkanoyl group" as a substituent for R^1 means C_2 - C_7 straight-chain or branched alkanoyl group such as an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl, 5-methylhexanoyl group, and the like, where the preferred and specific example includes an acetyl group.

The " C_2 - C_7 alkoxycarbonyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkoxy group and carbonyl group, preferably and specifically for example, a methoxycarbonyl and ethoxycarbonyl group.

The " C_2-C_7 alkanoyloxy group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_7 alkanoyl group and oxy group, specifically, for example, an acetyloxy group.

The " C_2 - C_7 alkanoylamino group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and amino group, specifically, for example, an acetylamino group.

The " C_0-C_7 N-alkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_1-C_6 alkyl group and carbamoyl group, specifically, for example, a N-methylcarbamoyl and N-ethylcarbamoyl group.

The " C_4 - C_9 N-cycloalkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_9 - C_9 cycloalkyl group and carbamoyl group, specifically, for example, a N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl group.

The " C_1 - C_6 alkylsulfonyl group" as a substituent for R^1 means group

consisting of the aforementioned C_1-C_6 alkyl group and sulfonyl group, preferably and specifically, for example, a methylsulfonyl group.

The " C_3 - C_8 (alkoxycarbonyl)methyl group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkoxycarbonyl group and methyl group, preferably and specifically for example, a (methoxycarbonyl)methyl and (ethoxycarbonyl)methyl group.

The "mono(C_1 - C_6 alkyl)amino group" as a substituent for R^1 means amino group substituted with one of the aforementioned C_1 - C_6 alkyl group, preferably and specifically, for example, a methylamino and ethyl amino group.

The "di(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a dimethylamino, diethylamino, and N-ethyl-N-methylamino group.

Among them, a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, and a di $(C_1$ - C_6 alkyl) amino group can be listed as a preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 .

Furthermore above substituent for the phenyl group, C_2 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 are optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group. The halogen atom, C_1 - C_6 alkyl group, and C_2 - C_6 alkoxy group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

30

35

5

10

15

20

25

In the above formula (I), R^2 represents a hydrogen atom, a C_2 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_7 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group.

The C_1 - C_6 alkyl group and C_2 - C_7 alkoxycarbonyl group for R are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_5

cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group as substituents for the C_1 - C_6 alkyl or phenyl group in R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

5

15

25

30

35

Among them, a hydrogen atom is a preferred specific example for R^2 .

In the above formula (I), j represents an integer of 0-2. It is particularly preferred for j to be 0.

In the above formula (I), k represents an integer of 0-2 and m represents an integer of 2-4. It is preferred to use a 2-substituted pyrrolidine in which k is 0 and m is 3, a 3-substituted pyrrolidine in which k is 1 and m is 2, a 3-substituted piperidine in which k is 1 and m is 3, a 4-substituted piperidine in which k is 2 and m is 2, or 3-substituted hexahydroazepine in which k is 1 and m is 4.

n in the above formula (I) represents 0 or 1.

Especially, 3-amidopyrrolidines in which k is 1, m is 2, and n is 0 and 4-(amidomethyl)piperidines in which k is 2, m is 2, and n is 1 can be listed as a particularly preferred example.

 R^2 in the above formula (I) represents a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_7 alkoxy group.

The C_1 - C_6 alkyl group for R^3 is the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^4 , specifically, for example, a methyl, ethyl and propyl group.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group as substituents for the phenyl group, which is a substituent for C_1 - C_6 alkyl group in \mathbb{R}^3 , are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 , and the same examples can be listed as preferred specific examples.

14

Among them, a hydrogen atom is a preferred specific example for R³.

In the above formula (I), R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxy group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkylcarbamoyl group, a C_1 - C_6 alkyl sulfonyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon.

5

10

15

20

25

30

35

The C_1 - C_6 alkyl group for R^4 and R^5 is the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, C_2-C_7 alkanoyl group, C_2-C_7 alkoxycarbonyl group, C_2-C_7 alkanoyloxy group, C_2-C_7 alkanoylamino group, C_2-C_7 N-alkylcarbamoyl group, C_1-C_6 alkylsulfonyl group, mono(C_1-C_6 alkyl) amino group, and di(C_1-C_6 alkyl) amino group as a substituent for the C_1-C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^4 , and the same examples can be listed as preferred specific examples.

The C_3 - C_8 cycloalkyl group and aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof as substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned group for R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group for the substituent for the phenyl group which is substituent for the C_1-C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed

PCT/US98/23254 WO 99/25686

ring in R^1 , and the same examples can be listed as preferred specific examples.

The "3 to 6 membered cyclic hydrocarbon" consisting of R^4 , R^5 , and the adjacent carbon atom includes a cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

Among them, a hydrogen atom and a C_1 - C_6 alkyl group can be listed as a 5 preferred specific example for R4 and R5.

In the above formula (I), p represents 0 or 1, and q represents 0 or 1. It is particularly preferred for both p and q to be 0.

10

15

20

25

30

In the above formula (I), G is a group represented by -CO-, -SO₂-, - $\texttt{CO-O-, -NR}^7-\texttt{CO-, -CO-NR}^7-, -\texttt{NH-CO-NH-, -NH-CS-NH-, -NR}^7-\texttt{SO}_2-, -\texttt{SO}_2-\texttt{NR}^7-, -\texttt{NH-CO-NH-, -NH-CS-NH-, -NR}^7-\texttt{SO}_2-, -\texttt{SO}_2-\texttt{NR}^7-, -\texttt{NH-CO-NH-, -NH-CS-NH-, -NR}^7-\texttt{SO}_2-, -\texttt{SO}_2-\texttt{NR}^7-, -\texttt{NH-CO-NH-, -NH-CS-NH-, -NR}^7-\texttt{SO}_2-, -\texttt{SO}_2-\texttt{NR}^7-, -\texttt{NH-CO-NH-, -NH-CS-NH-, -NH-CS-$ CO-O-, or -O-CO-NH-, wherein R^7 is a hydrogen atom or a C_1 - C_6 alkyl group, or R^7 taken together with R^5 represents a $C_2\text{--}C_5$ alkylene group.

In the above formula, -CO- means a carbonyl group, -SO₂- means a sulfonyl group, and -CS- means a thiocarbonyl group. Preferred G group is specifically, for example, those represented by the formula $-NR^7-CO-$ and -NH-CO-NH-.

The $C_1 - C_6$ alkyl group for R^7 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The " C_2 - C_5 alkylene group" consisting of R^5 and R^7 means C_2 - C_5 straight-chain or branched alkylene group such as a methylene, ethylene, propylene, trimethylene, tetramethylene, 1-methyltrimethylene, pentamethylene group, and the like, suitably and specifically including a ethylene, trimethylene and tetramethylene group.

A hydrogen atom is a preferred specific example for R.

In the above formula (I), R^b is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination 35thereof, to form a condensed ring, and the phenyl group, C_3-C_6 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed

ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_6 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a mono (C_1 - C_6 alkyl) amino group, a di (C_1 - C_6 alkyl) amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis (C_1 - C_6 alkylsulfonyl) amino group.

The C_3 - C_8 cycloalkyl group, aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, and the condensed ring for R^6 are the same as defined for the aforementioned R^1 , and the same examples can be listed as preferred specific examples.

The " C_3 - C_8 cycloalkenyl group" for R^6 means a cyclic alkenyl group such as a cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl group, specifically including a 1-cyclopentenyl and 1-cyclohexenyl group.

Among them, a phenyl group, a furyl group, and a thienyl group can be listed as a preferred specific example for R^{ϵ} .

25

30

35

5

10

15

20

The halogen atom, C_1-C_6 alkyl group, C_2-C_6 alkenyl group, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, C_1-C_3 alkylenedioxy group, C_2-C_7 alkanoyl group, C_2-C_7 alkanoyl group, C_2-C_7 alkanoylamino group, C_2-C_7 alkanoylamino group, C_2-C_7 alkanoylamino group, C_1-C_6 alkylsulfonyl group, mono $(C_1-C_6$ alkyl) amino group, and di $(C_1-C_6$ alkyl) amino group as a substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^6 , and the same examples can be listed as preferred specific examples.

The $C_{\delta}-C_{\delta}$ cycloalkyl group as a substituent for R^{δ} is the same as defined for the aforementioned $C_{\delta}-C_{\delta}$ cycloalkyl group for R^{1} , where the same examples

can be given for the preferred specific examples.

5

10

15

20

25

30

35

The " C_3 - C_8 cycloalkyloxy group" as a substituent for R^6 means group consisting of the aforementioned C_3 - C_8 cycloalkyl group and oxy group, specifically, for example, a cyclopropyloxy, cyclopentyloxy, and cyclohexyloxy group.

The " $N,N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group" as a substituent for R^6 means sulfamoyl group substituted with the same or different two C_1-C_6 alkyl group aforementioned, preferably and specifically, for example, a N,N-dimethylsulfamoyl, N,N-diethylsulfamoyl, and N-ethyl-N-methylsulfamoyl group.

The " C_2 - C_7 (alkoxycarbonyl) amino group" as a substituent for R^6 means group consisting of the aforementioned C_2 - C_7 alkoxycarbonyl group and amino group, specifically, for example, a (methoxycarbonyl) amino and (ethoxycarbonyl) amino group.

The " C_1-C_6 (alkylsulfonyl) amino" group as a substituent for R^6 means group consisting of the aforementioned C_1-C_6 alkylsulfonyl group and amino group, specifically, for example, a (methylsulfonyl) amino group.

The "bis(C_1 - C_6 alkylsulfonyl)amino" group as a substituent for R^6 means amino group substituted with the same or different two C_1 - C_6 alkylsulfonyl group aforementioned, preferably and specifically, for example, a bis(methylsulfonyl)amino group.

Among them, a halogen atom, a mercapto group, a nitro group, a thiocyanato group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a phenyl group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group can be listed as preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 .

Furthermore above substituents for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkyl group, or a di(C_1-C_6 alkyl)amino group, or a di(C_1-C_6 alkyl)amino group.

The halogen atom, C_1-C_{ℓ} alkyl group, C_1-C_{ℓ} alkoxy group, a C_1-C_{ℓ} alkylthio group, mono(C_1-C_{ℓ} alkyl)amino group, and di(C_1-C_{ℓ} alkyl)amino group are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_{ℓ} cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the

same examples can be listed as preferred specific examples.

(2) On Invention 2

5

10

15

20

25

30

The compound represented by the formula (I) above, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_5 alkyl addition salt can be used to prepare a chemokine receptor antagonist preparation of the present invention by formulating the therapeutically effected amount and a carrier and/or diluent into a pharmaceutical composition. Thus, the cyclic amine derivatives shown by the above formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_5 alkyl addition salt can be administered orally or by parenterally, for example, intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The oral administration can be accomplished in the form of tablets, pills, granules, powder, solution, suspension, capsules, etc.

The tablets for example can be prepared using a vehicle such as lactose, starch and crystallized cellulose; binder such as carboxymethylcellulose, methylcellulose, and polyvinylpyrrolidone; disintegrator such as sodium alginate, sodium bicarbonate and sodium lauryl sulfate, etc.

Pills, powder and granule preparations can be prepared by a standard method using the vehicles mentioned above. Solution or suspension can be prepared by a standard method using glycerin ester such as tricaprylin and triacetin or alcohols such as ethanol. Capsules can be made by charging granules, powder or solution in gelatin, etc.

Subcutaneous, intramuscular or intravenous preparations can be prepared as an injection using aqueous or nonaqueous solution. Aqueous solution for example may include isotonic sodium chloride solution. Nonaqueous solutions may include for example, propyleneglycol, polyethyleneglycol, olive oil, ethyl oleate, etc., and optionally, one can add antiseptics and stabilizers. For injection, one can be sterilized by filtration through a bacterial filter or combination of disinfectant.

35

Percutaneous administration may be in the form of an ointment or cream, and ointment can be prepared in the standard manner using fatty oils such as

castor oil and olive oil, or Vaseline, while creams can be made using fatty oils or emulsifying agent such as diethyleneglycol and sorbitan esters of fatty acid.

 $\label{eq:formula} For intrarectal \ administration, \ one \ can \ use \ standard \ suppositories \ using \\ 5 \qquad \ \ gelatin \ soft \ capsules, \ etc.$

The cyclic amine derivatives of the present invention, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt is administered at a dose that varies depending on the type of disease, route of administration, age and sex of patient, and severity of disease, but is likely to be 1-500 mg/day in an average adult.

(3) Matter common throughout Invention 1 and Invention 2

Preferred specific examples for the cyclic amine compound in the above formula (I) include compound having each substituent as shown in the following Tables 1.1-1.201.

In the Tables 1.1—1.201, "chirality" means configuration of the asymmetric carbon atom on the cyclic amine. "R" shows that the asymmetric carbon atom has a R configuration, "S" shows that the asymmetric carbon atom has a S configuration, and "-" means racemate or that the compound do not have a asymmetric carbon atom on the nitrogen containing ring.

20

[Table 1.1 - Table 1.201]

10

15

20

Table 1.1

	• • •						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1	CH2−	1	2	0	-	Н	- CH ₂ - N- C-
2	CH-CH2-	1	2	0		н	- CH ₂ - N- C-
3	CHCH ₂ -	1	2	0	-	Н	- CH ₂ -N-C-\(\bigc\)
4	CH-CH ₂ -	1	2	0	-	н	- CH ₂ - N- C-
5	CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃ CF ₃
6	C├ - CH ₂ -	1	2	0	S	H	- CH ₂ - N- C
7	CH2-	1	2	0	S	Н	-CH ₂ -N-C-
8	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
9	CH2-	1	2	0	S	Н	- CH ₂ - N- C- CI
10	C⊢-()-CH₂-	1	2	0	S	Н	-CH₂-N-C-✓
11	C⊢CH₂-	1	2	0	S	Н	O OCH ₃

Table 1.2

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p$ $+\frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
12	CI—CH ₂ -	1	2	0	S	н	$-CH_{2}-NC-$ OCH ₃ OCH ₃
13	с⊢С сн₂-	1	2	0	S	Н	$-CH_2-NC-$
14	C├─ੑੑੑੑੑੑੑੑੑ ` CH ₂ -	1	2	0	S	H	- CH ₂ -N-C-CH ₃
15	CH-CH ₂ -	1	2	0	S	H	- CH ₂ -N-C-CI
16	CH ₂ -	1	2	0	S	Н	- CH ₂ - N- C- OC H ₃
17	CHCH ₂ -	1	2	0	S	н	- CH ₂ -N-C-CI
18	CHC-CH ₂ -	1	2	0	S	Н	- CH ₂ -N-C-CN
19	CH_CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-
20	CH2-	1	2	0	S	Н	- CH ₂ -N-C
21	С⊢√_СН₂-	1	2.	0	S	Н	$-CH_2-NCG$
22	CH-CH ₂ -	1	2	0	S	н	$-CH_2-NC$ F CF_3

Table 1.3

	Βĺ						R ⁴
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
23	CH-CH₂-	1	2	0	S	н	-CH ₂ -N-C- H
24	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
25	C├─ (CH ₂ -	1	2	0	S	Н	$-CH_2-NCC$
26	CHCH ₂ -	1	2	0	S	Н	$-CH_2-NCO_N$
27	CH2-	1	2	0	S	н	- CH ₂ - N C - NO ₂
28	CH2-	1	2	0	S	Н	- CH ₂ -N-C-NO ₂
29	CHCH ₂ -	1	2	0	R	Н	$-CH_2-NC$ CF_3 CF_3
30	СНСН2-	1	2	0	R	Н	$-CH_2-N$ F_3C
31	CH-CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C
32	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
33	CH-CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-CI

Table 1.4

	• •						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
34	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCH ₃
35	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
36	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCH ₃
37	C⊢√CH₂-	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
38	C├─ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
39	CH2-	1	2	0	R	Н	- CH ₂ - N- C1
40	CH-2-	1	2	0	R	Н	- CH ₂ - N- C- OCH ₃
41	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
	CHCH ₂ -						- CH ₂ - N- C-
43	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
44	CH_CH ₂ -	1	2	0	R	Н	$-CH_2-HC$ F CF_3

Table 1.5

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	[*] R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
45	CH_CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-
46	CH-CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
47	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
48	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
49	C├ - CH ₂ -	1	2	0	R	Н	$-CH_{2}-N$ $O_{2}N$
50	CHCH ₂ -	1	2	0	R	Н	- CH ₂ - N- C-
51	CHCH ₂ -	1	2	0	R _.	Н	- CH ₂ -N-C- H
52	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
53	СН-СН2-	1	2	o	R	н	-CH ₂ -N-C-CI
54	С⊢{СН₂-	1	2	0	R	Н	- CH ₂ -N-C
55	CI—⟨CH ₂ -	1	2	0	R	Н	- CH ₂ -N-CI

Table 1.6

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
56	CI—⟨	1	2	0	R	Н	$-CH_2-N$ C H_3C
57	CH2−	1	2.	0	R	Н	$\begin{array}{c} \cdot \\ -CH_2 - N \cdot C \\ H_3C \\ \end{array}$
58	C	1	2	0	R	н	- CH ₂ -N-C-
59	СНСН2-	1	2	0	R	Н	- CH ₂ -N-C
60	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
61	С⊢—СН2-	1	2	0	R	н	- CH ₂ -N-C
62	CH ₂ -	1	2	0	R .	Н	$-CH_2-N$ CH_3
63	CI—(CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C CH_2CH_3
64	CI—CH₂-	1	2	0	R	Н	$-CH_2-NC$
65	C⊢√ CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C-
66	C⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-C-

Table 1.7

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
67	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
68	C├ ─ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
69	C⊢(CH ₂ -	1	2	0	R	н	-CH ₂ -NC-F
70	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
71	CH-CH ₂ -	1	2	0	R	Н	$-CH_2-NC-OCH_3$ H_3CO
72	CHCH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-OCF ₃
73	C⊢-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
74	CI—CH ₂ -	1	2	0	R	Н	$-CH_2-NC-CO_2CH_3$
	CI—CH ₂ -					н	$-CH_2-N$ C F_3C
76	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
							- CH ₂ -N-C-F

Table 1.8

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $G-R^6$
78	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
79	CI€ CH ₂	1	2	0	R	Н	$-CH_{2}-N \stackrel{O}{\leftarrow} -CF_{3}$ $F_{3}C$
80	CI—(CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{Q} CF_3$ F_3C
81	CH_2 -	1	2	0	R	н	- CH ₂ -N-C-CH ₃
82	CI—CH ₂ -	1	2	0	-	- СН ₃	-CH ₂ -N-C-CF ₃
83	C├ ─ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
84	С├─॔_}-СН2-	1	2	0	R	Н	-CH ₂ -N-CNO ₂
85	С├-{}СН₂-	1	2	0	-	Н	-(CH ₂) ₂ -N-C-
86	СН2-	1	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
87	CHCH ₂ -	1	2	0	S	Н	$-(CH_2)_2$ -N-C- CF_3 CF_3 CF_3
88	CI-CH ₂ -	1	2	0	S	Н	-(CH2)2- N- C - F3C

Table 1.9

145.0							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
89	C├ ~ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
90	C├─ੑੑੑੑੑ \ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-
91	C├────────────────────────────────────	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI
92	CH-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C
93	CH-CH ₂ -	1	2	0	S	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
94	C├─ \ CH ₂ -	1	2	0	S	н	$-(CH_2)_2-N-C$ OCH ₃ OCH ₃
95	CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-CF ₃
96	CI—CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CH ₃
97	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C
98	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
99	CH2-	1	2	0	S	Н	$-(CH_2)_2 - N - C - CI$

WO 99/25686

Table 1.10

Compd.	R^1 $(CH_2)_J$	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_q G^-R^6$
100	CHCH2-	1	2	О	S	Н	-(CH ₂) ₂ -N-C-CN
101	CH2 ⁻	1	2	0	S	Н	- (CH ₂) ₂ -N-C-O
102	С⊢ СН₂-	1	2	O	S	н	-(CH ₂) ₂ -N-CF ₃
103	C	1	2	0	S	н	$-(CH_2)_2-N$ C F CF_3
104	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-F ₃
105	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
106	с⊢{_}сн₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
107	C├ ─ CH ₂ -	1	2	0	S	Н	$-(CH_2)_2$ -N-C
108	CHCH ₂ -	1	2	0	S	Н	$-(CH_2)_2 - N - C - O$ $O_2 N$
109	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-NO ₂
110	CH-2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.11

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
111	CH2-	1	2	0	R	Н	$-(CH_2)_2-N-CF_3$ CF_3 CF_3
112	CH2-	1	2	0	R	Н	$-(CH_2)_2$ -N-C- $+$ F ₃ C
113	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-Br
114	CH2-	1	2	0	R	Н	~(CH ₂) ₂ -N-C
115	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
116	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
	C├ - CH ₂ -					Н	-(CH2)2-N-C-OCH3
118	C├ ~ CH ₂ -	1	2	0	R	Н	$-(CH_2)_2-N-C- \bigcirc OCH_3$ OCH_3 OCH_3
119	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-CF ₃
120	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
121	CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C

Table 1.12

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
122	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
123	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
125	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	CHCH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
127	C├ ─ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
128	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-CF ₃
129	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
	CHCH2-						-(CH ₂) ₂ -N-C-OCF ₃
131	CH-CH ₂ -	1	2	0	R .	н	$-(CH_2)_2$ - N- C- F
132	CHCH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - N - C - O_2$ $O_2 N$

Table 1.13

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
133	CI—CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
134	C	1	2	0	R	н	$-(CH_2)_2-N-C$
135	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
136	C├{~~~~~ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
137	C├ ~ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
138	C├ ─ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
139	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CI
140	CI—CH ₂ -	1	2	0	R		$-(CH_2)_2 - NC - H + G - H_3C$
141	CI—CH ₂ -	1	2	0	R	Н	H_3CO O O O O O O O O O
142	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-Br

Table 1.14

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{\overline{P}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
144	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
145	CI-CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - NC - CF_3$
146	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
147	CHCH ₂ -	1	2	0	R	н	$-(CH_2)_2-NC-CH_2CH_3$
148	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CN
149	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
150	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
151	C⊢CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
	CI—CH ₂ -						-(CH ₂) ₂ -N-C-F
153	CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C-F
154	C├ ─ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C

Table 1.15

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
155	CI—(CH ₂ -	1	2	0	R	Н	-(CH2)2-N·COCH3 $+H3CO$
156	CHCH ₂ -	1	2	0	R	Н	-(CH2)2-N C - OCF3
157	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	CH_CH ₂ -	1	2	0	R	Н	$-(CH_2)_2-N_1$ $\stackrel{O}{\leftarrow}$ $-\infty_2CH_3$
159	CH-CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - NC - F$ F_3C
160	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
	С⊢ СН₂-					Н	-(CH ₂) ₂ -N-C-F
162	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
	C⊢ (CH ₂ -					Н	$-(CH_2)_2-NC-CF_3$
164	C⊢ √ CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - NC - CF_3$ F_3C
	CH-2-						-(CH2)2-N C - CH3

Table 1.16

	1.10						
Compd.	R^1 $(CH_2)_j$	ķ	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
166	CI—CH₂-	1	2	0	R	н	$ \begin{array}{c c} (S) & CF_3 \\ -CH-N-C & CF_3 \\ CH_3 & CF_3 \end{array} $
167	C├ ─ CH ₂ -	1	2	0	R	н	(S) -CH-N-C- CH ₃
168	C├ - CH ₂ -	1	2	0	R	н .	(S) Q CI -CHN-C- CH3
169	C├ - CH ₂ -	1	2	0	R	н	(S) -CH-N-C-CI CH ₃
170	C├ - CH ₂ -	1	2	0	R	н	CF_3 CCH CCH_3 CCH_3 CCH_3
171	CH2-	1	2	0	. R	Н	(S) P -CHN-C-CI CH3
172	C⊢(CH ₂ -	1	2	0	·R	н	(S) P -CHN-C- CH3
173	CI—CH₂-	1	2	0	R	н	CH ₃
174	CI—CH₂-	1	2	0	. R	Н	CF ₃ CH ₃ CH ₃
175	C├ ─ CH ₂ -	1	2	0	R	Н	(R) O O O O O O O O O O O O O O O O O O O
176	CI—(CH ₂ -	1	2	0	R	Н	(<i>F</i>)

Table 1.17

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
177	CI—CH ₂ -	1	2	0	R	н	(F) CI -CHN-C-CI CH3
178	CI—CH ₂ -	1	2	0	R	н	(R) O CF ₃ -CH-N-C- F
179	C	1	2	0	R	Н	(A) P -CH-N-C-CI
180	C├─ \ CH ₂ -	1	2	0	R	Н	
181	C├ ─ CH ₂ -	1	2	0	R	Н	(A) -CHN-C-NO ₂ -CHN-C-C-NO ₂ CH ₃
182	CHCH ₂ -	1	2	0	R	н	ÇH ₃ O CF ₃
183	С├──СН2-	1	2	0	R	Н	ÇH₃ O Br - CH+ N- Ü - CH₃
	CI—CH ₂ -						CH ₃ O CI -CH-N-C- I H CH ₃
185	CI—CH ₂ -	1	2	0	R	н	CH3 C CI − CH N C − CI CH3
186	СН-СН2-	1	2	0	R	Н	$ \begin{array}{cccc} & CH_3 & O & CF_3 \\ & CH_1 & CH_3 & & F \end{array} $
187	C	1	2	0	R	Н	CH3 O -CH N-C-CI CH3

Table 1.18

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
188	CH2-	1	2	0	R	Н	CH ₃ O -CH-N-C- CH ₃
189	CI—(CH ₂ -	1	2	0	R	Н	CH ₃ PNO ₂ -CH _N -C-NO ₂ CH ₃
190	CI—(1	2	0	R	н	(F) P CF3 -CHNCH2-S
191	C├ - CH ₂ -	1	2	0	R	Н	CH ₂ -S
192	C├ - CH ₂ -	1	2	0	R	Н	CH ₂ CH ₂
193	CH-CH ₂ -	1	2	0	R	н	(A) -CH-N-C
194	CH_CH2-	1	2	0	R	Н	(F) P CF 3 -CH P CH2 F
195	C	1	2	0	R	Н	(A) -CHN-C-CI CH2-S
196	C├ - CH ₂ -	1	2	0	R	Н	CH ₂
197	CHCH ₂ -	1	2	0	R	Н	
198	CH-2-	1	2	0	R	Н	CH ₂ -CF ₃

Table 1.19

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
199	CI—CH₂-	1	2	0	R	Н	(S) P Br - CH N C CH ₂ - S
200	CH-€-CH ₂ -	1	2	0	R	н	
201	CH2−	1	. 5	0	R	н	(S) -CH-N-C-C-CI CH ₂ -CS
202	CH2−	1	2	0	R	н	(S) P CF ₃ -CH-N-C- F
203	CH2-	1	2	0	R	н	(S) -CHN-C
204	CH2-	1	2	0	R	н	
205	CI— CH ₂ -	1	2	0	R	Н	(S) - CH+N-C- CH ₂ -(S)
206	C⊢————————————————————————————————————	1	2	0	R	Н	(CH ₂) ₂ -G-CH ₃
207	CH—CH₂-	1	2	0	R	н	(S) -CH-N-C H Q (CH ₂) ₂ -G-CH ₃
208	CH ₂ -	1	2	0	R	н	$ \begin{array}{c c} (S) & C \\ -C + N - C - C \\ (C + O) & C + C \end{array} $
209	CH2−	1	2	0	R	н	(S) CI -CH-N-C-CI H O CI (GH ₂) ₂ -S-CH ₃

Table 1.20

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	Ř³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
210	CI—CH ₂ -	1	2	0	R	Н	(S) OF 3 -CH-N-C- H O (CH ₂) ₂ -S-CH ₃ F
211	CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-CI (CH ₂) ₂ -S-CH ₃
212	CH2-	1	2	0	R	Н	(S) (P) (CH ₂) ₂ -\$-CH ₃
213	CH2-	1	2	0	R	н	(S) NO ₂ -CH-N-C- NO ₂ (CH ₂) ₂ -S-CH ₃
214	CI—CH₂-	1	2	0	-	Н	-(CH ₂) ₃ -C
215	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-OCH ₃
216	CI-CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-(S
217	CI-CH ₂ -	1	2	0	-	Н	$-(CH_2)_2$ - C OCH_3 H_3CO
218	CHCH ₂ -	1	2	0	-	Н	$-(CH_2)_2 - CH_3$ H_3C
219	CI-CH ₂ -	1	2	0	-	Н	$-(CH_2)_2 - C \longrightarrow F$ OCH ₃
220	CI—CH ₂ -	1	2	0	-	Н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

145.0							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
221	CH-()-CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	C⊢√CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C
224	CH2-	1	2	0	-	Н	-CH ₂ -\$
225	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
226	CH-2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
227	с⊢ СН₂-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-CI
228	СН2-	1	2	0	-	н	-(CH ₂) ₃ -C-N- OCH ₃
229	C├──	1	2	0	-	н	- CH ₂ -Ç-CH ₂ -C-N CH ₃ CH ₃ CH ₃
230	C├────────────────────────────────────	1	2	0	-	Н	-CH ₂ -CH ₂ -CH ₂ -F
231	C├ - CH₂-	1	2	0	-	Н	-(CH ₂) ₃ -C-N- C-CH ₃

Table 1.22

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
232	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
233	C├ - CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ - C- N- CH ₂ -
234	CH- ()− CH ₂ −	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	C ⊢√ CH ₂ -	1	2	0	-	Н	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CH ₂ - CH ₃
236	CH-2-	1	2	0	-	н .	-CH ₂ -N-S-CH ₃
237	CH2−	1	2	0	-	н	- CH ₂ - N- C- O- CH ₂
238	CHCH ₂ -	1.	2	0	-	н	- CH O C N CI
239	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
240	CH ₂ -	1	2	0	S .	н	-CH ₂ -N-C-CF ₃
241	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.23

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
243	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
246	CI CH ₂ -	1	2	0	S·	Н	-CH ₂ -N-C-CF ₃
247	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
248	H ₃ CQ —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
249	F ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C ————————————————————————————————————	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
251	F-\CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C-CF ₃
252	H ₃ CO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
253	H ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.24

14510							
Compd.	R ¹ R ² (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
254	NO ₂	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
255	O ₂ N —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C- CF ₃
257	CF ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СН ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-
261	F ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
262	Br CH₂−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
263	Br. CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
264	Q-Q-QH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃

Table 1.25

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
265	Br—CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
268	H°C-C-Й——————————————————————————————————	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$ CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C —CH ₂ —	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
273	CN CH ₂ -	. 1	2	0	S	Н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
276	F—————————————————————————————————————	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
277	OH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H₃∞₂C-{}-CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
279	F ₃ CO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-\CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-CH ₂ -CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ − CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
284	CH_CH	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
285	—CH₂-	i	2	0	R	Н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$

Table 1.27

1 4 5 10							
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
287	CI CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
288	CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CH₂− CI	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F_CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	CI CH₂-	1	2 .	0	R	н	-CH ₂ -N-C-CF ₃
293	CI CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
294	H₃CO CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	H ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
297	FCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.28

rabie	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
298	H₃CO-{}-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
299	H ₃ CCH ₂ -	·1	2	0	R	Н	-CH ₂ -N-C-CF ₃
300	NO ₂	1	2	0	R	H	-сн ₂ -N-с-СF ₃
301	O ₂ N —CH ₂ —	1	2	0	R.	Н	-СH ₂ -N-С-СБ ₃
302	O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
303	CF ₃	1	2	0	R	Н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
305	CH₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
306	CI CH₂− CI	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$
308	Br CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$

Table 1.29

142.5							•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
309	Br CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- CF_3$
310	OH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—CH ₂ -	1	2	0	R	· H	-CH ₂ -N-C-CF ₃
312	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
313	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
314	H6C-C-11-()-OH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-S-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C ← CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	· HO-√CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
319	CN CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+ G-R^6$ $+ R^5$
320	NC —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
323	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
324	$H_3 \infty_2 C$ CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
325	F ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
326	F₃CQ —CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
329	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-
330	CI-CH ₂ -	0	3	1	-	Н	- CH ₂ -N-C-

Table 1.31

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
331	CI-CH ₂ -	0	3	1	<u>-</u>	Н	- CH ₂ - N- C- CH ₃
	C⊢√CH₂-					н	$-CH_2-N-C \longrightarrow OCH_3$ $-CH_3$ $-CH_3$ $-CH_3$
333	CH-CH₂-	0	3	1	-	H	-CH ₂ -N-C-\(\bigc\)
334	CH2−	0	3	1	-	Н	$-CH_2-N-C$
335	CH-€ CH₂-	0	3	1	<u>-</u>	н	- CH ₂ - N- C-
336	CH2-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CCH ₂ -	0	3	1	-	Н	-CH ₂ -N-C-
338	CI—€ CH ₂ -	0	3	1	-	Н	- CH ₂ -N-C-
339	СН2-	0	3	1	R	н	-CH ₂ -N-C-CF ₃
340	CI-CH ₂ -	0	3	1	S	н	- CH ₂ - N-C
341	CH-CH ₂ -	0	3	1	-	Н	-(CH ₂) ₂ -N-C-

Table 1.32

Table I	,0 2						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
342	CH-CH ₂ -	0	3	1	-	н	-CHN-C-
343	CH-CH ₂ -	0	3	1	-	н	- CH N- C- H CH(CH ₃) ₂
344	с⊢-{_}-сн₂-	0	3	1	-	н	-CH N-C- H CH ₂ CH(CH ₃) ₂
345	C├ - CH ₂ -	0	3	1	-	Н	-(CH ₂) ₃ -C-
346	CH2-	0	3	1	-	Н	$-(CH_2)_2$ - C
347	C├─(0	3	1	-	н	$-(CH_2)_2 - CH_3$ H_3C
348	C⊢CH₂-	0	3	1	-	Н	-(CH ₂) ₂ -C-CH ₃
349	C⊢√CH₂-	0	3	1	-	Н	$-CH_2 \stackrel{O}{\stackrel{\circ}{\stackrel{\circ}{\sim}}}$ $-CH_3$
350	CHCH ₂ -	Ō	3	1	-	Н	-CH ₂ -N-S-CH ₃
351	CH ₂ -	0	3	1	-	Н	- CH ₂ -N-C-O-CH ₂ -
352	CH_CH2-	0	3	1	-	н	- CH O- C- N- CI

Table 1.33

lable							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
353	CH-CH₂-	1	2	1	-	H	-CH ₂ -N-C-
354	C├ - CH₂-	1	3	0	-	Н	- CH ₂ -N-C-
355	CHZ-	1	3	0	-	н	- CH ₂ -N-CH ₃
356	CH2-	1	3	0	-	н	- CH ₂ -N-C-N
357	CH2−	1	3	0	-	Н	-CH ₂ -N-C
358	CH2−	1	3	0	-	Н	- CH ₂ -N-C-
359	CH2−	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CH2−	1	3	0	-	н	-(CH ₂) ₂ -N-C-\(\text{N-C}\)-NO ₂
							-(CH ₂) ₃ -C-
362	CH	1	3	0	-	н	-(CH ₂) ₃ -C-C-OCH ₃
363	СН-СН2-	1	3	0	-	Н	-(CH ₂) ₃ - C-

Table 1.34

Table I							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
364	CH2 ⁻	1	3	0	-	Н	-(CH2)2-C-OCH3 $H3CO$
365	CI—CH₂-	Í	3	0	-	н	$-(CH_2)_2 - CH_3$ H_3C
366	CH-CH₂-	1	3	0	-	н	-(CH2)2-C - C - CH3
367	CI—CH₂-	1	3	0	-	н	$-(CH_2)_2$ - C - CH_3
368	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-
369	CHCH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	CH2-	1	3	0	-	Н	-(CH2)2-C - C - C(CH2)3CH3
371	CH2-	1	3	0	-	Н	-(GH ₂) ₂ -C-C-S-CH ₃
372	С⊢√СH ₂ -	1	3	0	-	Н	$-CH_2$ - $-S$ - CH_3
373	CHCH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ - C-N-
374	CHCH ₂ -	1	3	0	-	Н .	-(CH2)3-C-N-OCH3

Table 1.35

lable	1.33						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
375	C├-{}-CH₂-	1	3	0	-	Н	-(CH ₂) ₃ - C-N-
376	CH-CH₂-	1	3	0	-	Н	-(CH ₂) ₃ -C-N-CH ₃
377	CH2 ⁻	1	3	0	-	Н	- CH ₂ -C-CH ₂ -C-N-CI
378	CI—CH₂-	1	3	0	-	Н	$-CH_2 CH_2 - C \cdot N - F$
379	CH2 ⁻	1	3	0	-	H	-(CH ₂) ₃ -С-N-С-СН ₃
380	CH2-	1	3	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂ -
381	C├ ~ CH ₂ -	1	3	0	-	Н	- CH ₂ -N-S-CH ₃
382	CH2-	1	3	0	-	Н	- CH ₂ - N- C- O- CH ₂ -
383	C├─ \ CH ₂ -	1	3	0	-	Н	- CH O C N
384	CH-CH ₂ -	2	2	0	-	н	$-CH_2-N-C-$
385	CH-CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-NO ₂

Table 1.3.6

14510							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
386	CH₂-	2	2	0	-	H	-CH2-N-C-
387	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
388	-CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-\(\sigma\)
389	CH ₂ -	2	2	0	-	. н	-CH ₂ -N-C
390	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-CF ₃
391	—CH₂-	2	2	0	-	Н	-CH ₂ -N-C
392	(2	2	0	-	Н	-CH ₂ -N-C
393	—CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
394	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
395	—CH₂-	2	2	0	-	Н	-CH₂-N-C- H
396	CH₂-	2	2	0	-	Н	-CH ₂ -N-C

Table 1.37

i ubic i	.0.						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
397	CH₂-	2	2	0	-	Н	-CH ₂ -N-C
398	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-
399	(2	2	0	-	Н	-(CH ₂) ₂ -N-C-
400		2	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
401	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CF ₃
403	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C
404	CH₂−	2	2	0	-	Н	-(CH ₂) ₂ -N-C-OCF ₃
405	CH₂−	2	2	0	-	Н	$-(CH_2)_2$ $-N$ - C \longrightarrow Br
406	—CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	-	H	-(CH ₂) ₂ -N-C-\Br

Table 1.38

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
408	CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
. 409	CH₂−	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	Н	(S) P -CH-N-C- H H CH ₂ CH(CH ₃) ₂
411	CH ₂ -	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
412	CH₂-	2	2	0	-	н	(S) NO ₂ -CH-N-C- NO ₂ -CH ₂ CH(CH ₃) ₂
413	—CH₂-	2	2	0	-	н .	(5) -CH-N-C- -CH ₂ CH(CH ₃) ₂ -CO ₂ CH ₃
414	—CH₂-	2	2	0	-	н	$ \begin{array}{c c} (S) & CF_3 \\ -CH-N-C- \\ H & CH_2CH(CH_3)_2 \end{array} $
415	CH ₂ -	2	2	0	-	H	$ \begin{array}{c c} (S) & CF_3 \\ -CH-N-C & CF_3 \\ -CH_2CH(CH_3)_2 & F \end{array} $
416	—CH₂-	2	2	0	-	Н	$(S) \qquad \bigcirc C = S$ $-C + - N + C - \bigcirc C$ $C + C + C + C$
417	CH₂-	2	2	0	da.	Н	CH ₂ CH(CH ₃) ₂
418	CH₂-	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.39

i abic i	.00						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
419	CH ₂ -	2	2	0	~	Н	(S) P -CH-N-C
420	CH ₂ -	2	2	0	-	H .	(S) F -CH-N-C-F CH ₂ CH(CH ₃) ₂
421	CH2-	2	2	0	-	Н	(S) CI -CH-N-C
422	CH ₂ -	2	2	0	-	н	(R) -CH-N-C- H CH ₂ CH(CH ₃) ₂
423	CH ₂ -	2	2	0		Н	(R) -CH-N-C -CH ₂ CH(CH ₃) ₂
424	CH ₂ -	2	2	0	-	Н	(<i>H</i>) -CH-N-C
425	CH ₂ -	2	2	0	-	Н	(F) -CH-N-C
426	CH2-	2	2	0	-	Н	(<i>F</i>) - CH-N-C-CF ₃ - CH ₂ CH(CH ₃) ₂
427	CH2-	2	2	0	-	Н	$(R) \cap C = CF_3$ $-CH \cap C = CF_3$ $CH_2CH(CH_3)_2 \cap F$
428	CH ₂ -	2	2	0 .	-	Н	$(R) \qquad \bigcirc OCF_3$ $-CH-N-C- \bigcirc OCF_3$ $-CH_2CH(CH_3)_2$
429	CH₂-	2	2	0	-	н	(<i>H</i>) Br -CH-N-C Br -CH ₂ CH(CH ₃) ₂

Table 1.40

i ubic i	. 7 0						-
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
430	()—CH₂-	2	2	0	-	н	(F) -CH-N-C-CH H CH ₂ CH(CH ₃) ₂
431	CH ₂ -	2	2	0	-	Н	(<i>R</i>) -CH-N-C-Br
432	()—CH₂-	2	2	0	-	н	(<i>F</i>) 0 -CH-N-C
433	CH ₂ -	2	2	0	-	Н	(<i>H</i>)
434	CHCH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-
435	C⊢-{CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-
436	CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-NO ₂
437	CH2-	1	3	1	-	н	$-CH_2-N-C -CO_2CH_3$
438	C⊢CH₂−	1	3	1	-	н	-CH ₂ -N-C-CF ₃
439	CH2−	1	3	1	-	Н	$-CH_2-N-C-$ F
440	CH	1	3	1	-	н	-CH ₂ -N-C-OCF ₃

Table 1.41

iabic	1.71						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
441	C├ - CH₂-	1	3	1	-	н	-CH ₂ -N-C-
442	C⊢√CH₂-	1	3	1	-	н	-CH ₂ -N-C-
443	C├ \ CH ₂ -	1	3	1	-	н	-CH₂-N-C- H
444	с⊢√_СН₂-	1	3	1	-	Н	-CH ₂ -N-C
445	С⊢—————СН₂-	1	3	1	-	Н	-CH ₂ -N-C-CI
446	CH2−	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
447	C ⊢√ CH ₂ -	1	3	1	-	H	-(CH ₂) ₂ -N-C-
448	C├ \ CH ₂ -	1	3	1	- .	H	-(CH ₂) ₂ -N-C-NO ₂
449	С⊢СН2−	1	3	1	- ,	Н	$-(CH_2)_2$ -N-C- \longrightarrow ∞_2 CH ₃
450	CH-2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	C	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	Ř³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
452	C⊢√CH₂−	1	3	1	-	н	-(CH ₂) ₂ -N-C
453	С⊢√СН2-	1	3	†	-	Н	-(CH ₂) ₂ -N-C-
454	С⊢—СН2−	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
455	С⊢√СН₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-Br
456	с⊢СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	СЊ2−	1	3	1		н	-(CH ₂) ₂ -N-C-CI
458	с⊷{Сн₂-	2	2	1	-	Н	- CH ₂ -N-C-
459	C├ \ CH ₂ -	2	2	1	-	н	- CH ₂ - N- CH ₃
460	CHCH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CH ₃
461	CH2-	2	2	1	-	H ·	CF ₃
462	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-

Table 1.43

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
463	CI—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$
464	С⊢√СН2-	2	2	1	-	н	$-CH_{2}-N-C$
465	с⊢СН₂-	2	2	1	-	н	- CH ₂ -N-C-⟨\bigsig^N
466	C⊢—CH₂-	2	2	1	-	н	-CH ₂ -N-C-\(\sigma\)
467	CH-2−	2	2	1	-	н	- CH ₂ -N-C-
468	CH-€-	2	2	1	-	н	- CH ₂ - N- C- N(CH ₃) ₂
469	C⊢(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH ₃
470	CH2−	2	2	1	-	Н	-CH ₂ -N-C-CN
471	CH2-	2	2	1	-	Н	$-CH_2-N$ C CO_2CH_3
472	CH2-	2	2	1	-	Н	- СH ₂ - N С - С - С - С
473	СН2-	2	2	1	-	н	-CH ₂ -N-C- C-CH ₃

Table 1.44

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
474	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
475	C├ - CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CH(CH ₃) ₂
476	CHCH₂-	2	2	1	-	н	- CH ₂ -N-C
477	CH2-	2	2	1	-	н	- CH ₂ -N-C- OCH(CH ₃) ₂
478	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N
479	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
480	C├ ~ CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-O Br
481	с⊢(Сн₂-	2	2	1	-	Н	-CH ₂ -N-C-S
482	C├ - CH ₂ -	2	2	1	-	Н	- CH ₂ - N C - S
483	CHCH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C-S CH ₃
484	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
485	C⊢(CH₂-	Ž	2	1	-	н	- CH ₂ -N-C-CF ₃
486	CH2-	2	2	1	-	н	- CH ₂ -N-C-CN
487	CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C-
488	CH-€-	2	2	1	-	Н	- CH ₂ - N- C- NH ₂
489	CH-2-	2	2	1	-	н	$-CH_2-N+C$ F_3C
490	CH₂-	2	2	1	-	Н	- CH ₂ - N- C
491	C⊢√CH ₂ -	ź	2	1	-	Н	CH ₂ N-C
492	C├ \ CH ₂ -	2	.2	1	-	Н	- CH ₂ -N-C
493	CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
494	CHCH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
495	CH ₂ -	2	2	1	-	H	$-CH_2-N$ C F

Table 1.46

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
496	C CH₂-	2	2	1	-	Н	- CH ₂ - N- C- F
497	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH(CH ₃) ₂
498	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CF ₃
499	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N(CH ₃) ₂
500	CH2−	2	2	1	-	Н	- CH ₂ -N-C
501	CI—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-NO ₂
502	CI—(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-NO ₂
503	C⊢——CH ₂ -	2	2	1	-	Н	- CH ₂ -N-CI
504	CI—CH ₂ -	2	2	1	-	Н	$-CH_2-H$ C OCH_3 OCH_3
505	CI—CH₂−	2	2	1	-	Н	-CH ₂ -N-C-NO ₂
506	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\ NO ₂

Table 1.47

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
507	CI—CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
508	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S
509	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-S
510	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-(CH ₃
511	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-C(CH ₃) ₃
512	C├ \ CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CHCH ₃
513	CI—CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CH ₃
514	CI-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-(CH ₃) ₃
515	Ci—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ OH
51 6	H ₂ N-(-)-CH ₂ -	2	2	1	-	Н .	$-CH_2\text{-}N\text{-}C\text{-}\!$
							−CH ₂ −N−C− H

Table 1.48

, 45.0							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
518	NH ₂ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	○ C-N- CH ₂ -	2	2		-	н	O CF ₃
520	с⊢(сн₂-	2	2	1	-	−сн _з	-CH ₂ -N-C-CF ₃
521	C⊢√_CH₂−	2	2	1	-	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	C├─ \ CH ₂ -	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-O-CF ₃
523	С⊢—СН₂-	2	2	1		-(CH ₂) ₂ CH-	-CH2-N-0-
524	C├ ─ CH ₂ -	2	2	1	-	-CH ₂ CH-	-CH _Z -N-C-
525	CI—(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
526	CH2-	2	2	1	-	Н	-CH ₂ -N-C-(-0)
527	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-_S
528	CI-CH ₂ -	2	2	i	-	Н	$-CH_{2}-N-C$ $F_{3}C$ CH_{3} $F_{3}C$

Table 1.49

Compd. No.	R ¹ (CH ₂)	ķ	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
529	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
530	С⊢√СН₂-	2	2	1	-	Н	-CH ₂ -N-CN
531	CI—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-√S
532	C	2	2	1	-	Н	$-CH_2-N-C-O$ H_3
533	C	2	2	1	-	н	$-CH_2-N-C-10\\H_3C$
534	CH2-	2	2	1	-	н	$-CH_2-N-C-VO_2$ H_3C
535	CI—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-\S H ₃ C-C
536	C	2	2	1	-	н	$-CH_2-N-C-V$ H_3C CH_3
537	C⊢————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_3C $C(CH_3)_3$
538	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C
539	CHCH ₂ -	2	2	1	-	Н	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$
•							

Table 1.50

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
540	CH-€-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C CH_3$
541	C⊢—CH₂-	2	2	1	-	н	$-CH_2-N-C-V$ H_2N
542	C⊢√_CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ CH ₃
543	C├	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
544	CH₂-	2	2	1	-	н .	-CH2-N-C-
545	CI—(CH₂-	2	2	1	-	Н	-сн ₂ -N-с-
546	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
547	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
548	C├ - CH ₂ -	2	2	1	-		-CH₂-N-C-CI
549	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $O_2 N$ CI $O_2 N$
550	С⊢—СН₂-	2	2	1	-		$-CH_2-N-C O_2N$ CI

Table 1.51

lable 1	.5 1						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
551	С⊢√_СН₂-	2	2	1	-	н	$-CH_2-N-C-CH_2$ CH_3
552	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
553	C├ - CH₂-	2	2	i	-	Н	$-CH_2-N-C-CH_2 \xrightarrow{CF_3}$
554	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-H
55 5	с⊢С сн₂-	2	2	1	-	Н	-CH ₂ -N-C-N-H
556	CH2⁻	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
557	CH2-	2	2	1	-	Н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	1	-	Н	-CH _N -C-
559	CH-CH ₂ -	2	2	1	-	Н	-CHNC-CF3
560	CH-CH ₂ -	2	2	1	-	Н	-CH H C CN
561	CH-2-	2	2	1	-	H	-CHNC-Br

Table 1.52

labic							
Compd. No.	R ¹ R ² (CH ₂)j	k	m	n	chirality	Fl ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
562	CH-2-	2	2	1	-	Н	-CH-N-C-CI CH3
563	CI—CH₂-	2	2	i	-	H	$ \begin{array}{ccc} & CF_3 \\ - CH & C \\ & H \\ & CH_3 & F_3C \end{array} $
564	C├ - CH ₂ -	2	2	1		Н	OCH ₂ CH ₃ -CH N C-
565	CI————————————————————————————————————	2	2	1	-	Н	-CHN-C-CF ₃
566	CI—CH₂-	2	2	1	-	Н	-CHNC-CH3
567	CI—CH₂-	2	2	1	-	H [.]	-CHNC-CF ₃
568	CI—CH₂-	2	2	1	-	Н	-CHNC-CF3
569	CH-2-	2	2	1	-	Н	$-CHNC-CF_3$ $-CHNC-F$
570	CI—CH₂-	2	2	1	-	Н	-CHNC-CF ₃ -CHNC-F
571	CI-CH ₂ -	2	2	1	-	Н	-CHNC-CH3)2 -CHNC-CH3
572	CH2−	2	2	1	-	Н	-CHN-CF3

Table 1.53

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
573	CI—CH ₂ -	2	2	1	<u>-</u>	Н	-CHN-C-S
574	CI—⟨}−CH ₂ −	2	2	1	-	Ħ	-CHNC-S H S Br
575	CH_CH ₂ -	2	2.	1	-	н	-CH N-C-(CH ₃) ₃
576	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C-OSCH3
577	CI—CH ₂ -	2	2	1	-	Н	-CH NH C
578	CH2-	2	ż	1	-	н	-CHN-C-S
579	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C-N
580	CH2-	2	2	1	-	н	-CHNC-S CH3
581	CHCH ₂ -	2	2	1	-	н	-CH-N-C-S
582	CHCH ₂ -	2	2	1	-	н .	-CHNC-S
583	CH ₂ -	2	2	1	-	н	-CH-N-CH3

Table 1.54

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G^- R^6$
584	CH ₂ −	2	2	1	-	Н	- CH N C - C - C - C - C - C - C - C - C - C
585	CH-2-	2	2	1	-	н	- CH N C- CN CH ₃
586	CI—CH₂-	2	2	1	-	Н	- CH N C CI
587	CI—CH₂-	2	2	1	-	Н	-CHN-C-CF3 CH3
588	CI—CH₂-	2	2	1	-	н	- CH N C - NH ₂ CH ₃
589	CI—CH₂-	2	2	1	-	н	- CH- N- C- C(CH ₃) ₃ CH ₃
590	CI—CH₂-	2	2	1	-	Н	- CH-N-C- I H CH ₃ - CH(CH ₃) ₂
591	CH2-	2	2	1	-	н	-CHNCH ₃) ₂ -CH ₃
592	CI-CH ₂ -	2	2	1	-	Н	$-CH \stackrel{O}{V} \stackrel{C}{C} \longrightarrow OCH_3$ CH_3
593	CHCH_2-	2	2	1	-	Н	$-CH N C - CH_2OH$ CH_3
594	CH-CH ₂ -	2	2	1	-	Н	- СН И С — ОН СН3

Table 1.55

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	-R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
595	C⊢—CH₂-	2	2	1	-	н	-CHNC-C-C02CH3 CH3
59 6	C	2	2	1	-	н	-CH-N-C-CH3 CH3
597	CI—CH₂-	2	2	1		н	- CH N C - C - CH ₃
598	CH2-	2	2	1	-	н	-CH-N-C-O
599	C├─ \ CH ₂ -	2	2	1		Н	-CH-N-C-N-CH3
600	CH₂-	2	2	1	-	Н	-CHNC-OBr
601	CHCH ₂ -	2	2	1	-	Н .	- CHNC-CH3 CH3
602	CI—()—CH₂-	2	2	1	-	Н	- CH N C N(CH ₃) ₂
603	CHCH ₂ -	2	2	Ţ	-	Н	-CHNC-NH2
604	C├ - CH₂-	2	2	1	-	н	-CH-N-C-() H N CH₃ H
605	CICH ₂ -	2	2	1	-	Н	-CH-N-C-CO

Table 1.56

I GDIC I	0					_	
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	-R³	$-(CH_2)_p + (CH_2)_q G - R^6$
606	CH2-	2	2	1	-	н	-CH-N-C-CS CH3
607	CI	2	2	1	-	Н	-CH-N-C-S CH ₃
608	CH2-	2	2	1	-	Н	-CH-N-C-CH ₃ CH ₃ H ₃ C
609	CH-2-	2	2	1	-	Н	-CH-N-C
610	CH-2-	2	2	1	-	Н	-CHNC-S CH3 OFC CH3
611	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C-C(CH ₃) ₃ -CH ₃ H ₃ C
612	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-CHO
613	C├ - CH ₂ -	2	2	1	-	Н	CH ₃ F ₃ C
614	CHCH ₂ -	2	2	1	-	Н	$-CH-N-C-V-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$
	CH2-						-CH-V-C-NH
616	CH2-	2	2	1	-	Н	-CH-N-C-CN

Table 1.57

Compd.	R ¹ (CH ₂)	k	m	n	chirality	ĪR³	$-(CH_2)_p + (CH_2)_q G - R^6$
617	C ⊢ CH₂-	2	2	1	-	н	-CH-N-C-CF ₃
618	CH-2-	2	2	1		Н	-CH-N-C- H CH(CH ₃) ₂
619	C├ - CH ₂ -	2	2	1	-	Н	CH N C CN - CH N C C H CH(CH ₃) ₂
620	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-Br CH(CH ₃) ₂
621	CH2⁻	2	2	1	-	Н	-CH-N-C-
622	CH2 ⁻	2	2	1	-	Н	- CH-N-C- N(CH ₃) ₂ - CH-N-C- CH(CH ₃) ₂
623	CH2⁻	2	2	1	-	Н	$-CHNC CH(CH_3)_2$
624	CH2-	2	2	1	-	Н	- CH N C NO ₂ - CH N C NO ₂ - CH(CH ₃) ₂
625	CH2-	2	2	1	-	Н	$-CHNCH_3)_2$
626	CH ₂ -	2	2	1	· <u>-</u>	Н	- CH+ N- C- - CH(CH ₃) ₂ CF ₃
627	CI-CH ₂ -	2	2	1	-	Н	$-CHNC-$ $CH(CH_3)_2$ $-CH(CH_3)_2$

Table 1.58

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ř³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_q G^-R^6$
628	CI—⟨CH ₂ -	2	2	1	-	Н	- CH N C CO ₂ CH ₃ - CH (CH ₃) ₂
629	CH-√CH ₂ -	2	2 .	1	-	Н	-CHN-C-CF ₃ -CHN-C-CF ₃ -CH(CH ₃) ₂
630	CH2-	2	2	1	-	Н	- CH N C - OCF ₃ - CH (CH ₃) ₂
631	CH2-	2	2	1	-	н	CH(CH ₃) ₂ CF ₃
632	CH2−	2	2	1	-	н	- CH-N-C- H CH(CH ₃) ₂ CF ₃
633	CI—CH₂-	2	2	1	-	н	-CHNC-CF3 -CH(CH3)2 F
634	CH₂-	2	2	1	-	н	-CH-N-C
635	CH₂-	2	2	1	-	Н	- CH N C - CH (CH ₃) ₂ - CH (CH ₃) ₂ - CH (CH ₃) ₂
636	CHCH ₂ -	2	2	1	-	Н	-CHN-C-CH3 -CH(CH3)2
637	CH2-	2	2	1	-	Н	-CHNC-CF ₃ -CHCH ₃) ₂
638	CH2-	2	2	1	-	Н	-CH NC - CN $CH(CH3)2$
							· ·

Table 1.59

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	Ĥ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
639	C├ - CH ₂ -	2	2	1	-	Н	-CHNCH3)2 $-CHNCH3)2$ $CH(CH3)2$
640	CH2−	2	2	1	-	Н	$-CH N C \longrightarrow OCH_3$ $CH(CH_3)_2$
641	CHCH ₂ -	2	2	1	-	Н	$-CHNC-CO_2CH_3$ $CH(CH_3)_2$
642	CH2-	2	2	1	-	Н	-CH N-C- C- C- C- CH(CH ₃) ₂
643	CH2-	2	2	1	-	н .	$-CHNC-CF_3$ $CH(CH_3)_2$
644	CH2-	2	2	1	-	н	-CHNC-C(CH3)3 $-CH(CH3)2$
645	CH2-	2	2	1	-	н	$ \begin{array}{c} O \\ -CHNC-NH_2 \\ NH_2 \end{array} $ $ CH(CH_3)_2 $
646	CHCH ₂ -	2	2	1	-	Н	O - CH-N-C- - CH ₂ OH CH(CH ₃) ₂
647	Ci-CH ₂ -	2	2	1	-	Н	- CH-N-C-C-CH ₃ CH(CH ₃) ₂
648	CH2-	2	2	1	-	Н	$- \underset{CH(CH_3)_2}{\overset{O}{\vdash}} - CH(CH_3)_2$
649	C├ ─ CH ₂ -	2	2	1	-	Н	- CH N C- OCH(CH ₃) ₂ CH(CH ₃) ₂

Table 1.60

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
650	CI—CH₂-	2	2	1	-	Н	-CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
651	CH-2-	2	2	1	-	Н	CHCH ₃ -CH-N-C-CHCH ₃ -CH(CH ₃) ₂
652	CI—CH₂-	2	2	1	-	Н	$-CH N C - NO_2$ $CH(CH_3)_2$
653	CI—CH₂-	2	2	1	-	H	-CH-N-C
654	CI─CH₂-	2	2	1	-	Н	- CH-N-O-C-CH ₃ - CH-N-O-C-CH ₃ - CH(CH ₃) ₂
655	CH-2−	. 2	2	1	-	Н	-CH-N-C
656	CI—CH₂−	2	2	1	-	H	-CHNC-CS CH(CH ₃) ₂
657	CH-CH ₂ -	2	2	1	-	Н	-CH-N-CS CH(CH ₃) ₂
658	Ci—CH ₂ -	2	2	1	-	Н.	- CH-N-C-NH CH (CH ₃) ₂
659	СН2−	2	2	1	-	Н	-CH-N-C- H CH(CH ₃) ₂ NO ₂
660	CI	2	2	1	-	Н	-CH-N-CN-CN-CH(CH ₃) ₂

Table 1.61

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
661	CHCH ₂ -	2	2	1	-	н	-CH-N-CS H CH(CH ₃) ₂ OCH ₃
662	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C
663	C├ - CH₂-	2	2	1	-	Н	-CHNC-CO CH(CH ₃) ₂
664	CI—CH₂-	2	2	1	-	Н	-CH-N-C
665	CH ₂ -	2	2	1		н	-CH-N-C-S -CH(CH ₃) ₂
666	CI—CH₂-	2	2	1	-	н	-CH-N-C-H ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
667	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ -CH (CH ₃) ₂
668	CHCH_2-	2	2	1	-	Н	-CH-N-C-CH ₃ CH(CH ₃) ₂
669	CHCH ₂ -	2	2	1	-	Н	-CHN-C-N H N CH(CH ₃) ₂ CH ₃
670	CH2-	2	2	1	-	Н	-CH-N-C- H H OBr CH(CH ₃) ₂
671	С⊢Ст}-СН₂-	- 2	2	1	- '	Н	-CH-N-C- H NO ₂ CH(CH ₃) ₂

Table 1.62

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
672	CI—()—CH₂-	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂ H
673	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S C(CH ₃) ₂
674	CH2-	2	2	1	-	Н	-CHNC-S -CH(CH ₃) ₂
675	.CH-€	2	2	1	-	Н	-CH-N-C-S CH ₃
676	CI—CH₂-	2	2	1	-	Н	-CH-N-C-N-CH(CH ₃) ₂ H
677	CH₂-	2	2	1	-	Н	-CH-N-C- H H N-C- CH(CH ₃) ₂ CH ₃
678	CH ₂ -	2	2	1	-	Н	-CH-N-C
679	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S CH(CH ₃) ₂
680	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S Br CH(CH ₃) ₂
681	CH-2-	2	2	1	-	Н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C

Table 1.63

, abic							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - R^6$
683	CH—CH₂-	2	2	1	-	Н	-CHN-C- H CH(CH ₃) ₂ SCH ₃
684	CH-CH₂-	2	2	1	-	Н	-CH-N-C- H S S CH(CH ₃) ₂ CH(CH ₃) ₂
685	CH√_CH₂-	2	2	1	-	н	-CH-N-C
686	CH-2-	2	2	1	-	Н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI—CH₂-	2	2	1	-	Н	-c+ N-c-
688	CI	2	2	1	-	Н	-CH N-C-CF3
689	C├ - CH ₂ -	2	2	1	-	н	-C+ N-C-
690	C├ \ CH ₂ -	2	2	1	-	Н	-CH N-C-Br
691	CI—CH₂-	2	2	1	-	н	-CHN-C-\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\
692	C├ \ CH ₂ -	2	2	1	-	Н	- CH N- C- OCH3
693	CI-CH ₂ -	2	2	1	-	Н	-CHN-C

Table 1.64

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ř ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
694	CI—CH₂-	2	2	1	-	н .	-CHN-C-
695	CI—CH₂-	2	2	1	-	Н	-CHN-C
696	CCH₂-	2	2	1	-	Н	- CH N C OCF3
697	CI—CH₂-	2	2	1	-	Н	-CH-N-C
698	CI-CH ₂ -	2	2	1	-	Н	-CHN-C-N(CH ₃) ₂
699	CI—CH₂-	2	2	1	-	н	-CH N-C- OCH3
700	CH ₂ -	2	2	1	-	Н	-CHN-C
701	CI—CH₂-	2	2	1	-	Н	-CHN-C-C-CH3
702	CI—CH₂-	2	2	1	-	Н	-CHNC-CF3
703	Ci—(CH ₂ -	2	2	1	-	Н	-CH N-C-CH(CH ₃) ₂
							-CHN-C-NO2

Table 1.65

Compd.	R ¹ (CH ₂)	······································	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
No.	R ² (3.12)		171				R ⁵
705	C⊢√_CH₂-	·2	2	1	-	Н -	-CHN-C-S H3C
706	CI—⟨CH₂-	2	2	1	-	Н	-CH-N-C-(STCH3
707	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C-CF3
708	CICH ₂ -	2	2	1	-	Н	-CHN-C-S Br
709	CHCH2-	2	2	1	-	Н	-CHN-C-STSCH3
710	CHCH2-	2	2	1	-	Н	-CHN-C-Br
711	C├ ─ CH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃
712	C├ \ CH ₂ -	2	2	1	-	Н	-CHN-C-ST)
713	CHCH ₂ -	2	2	1	-	н	-CH-N-C
714	CHCH ₂ -	2	2	1	-	н	-CHN-C-N
715	CHCH ₂ -	2	2	1	-	Н	-c+n-c-s

Table 1.66

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
716	C├─ \ _CH ₂ -	2	2	1	-	н	-c+n-c-N H
717	CI-CH ₂ -	2	2	1	-	H [.]	-CH-N-C-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
718	C⊢-{CH₂-	2	2	1	-	Н	-CHNC-NH
719	С⊢{_}СН₂-	2	2	1	-	Н	-c+-v-c
720	CI—(¯)—CH₂-	2	2	1	-	н	-CH-N-C-Q Br
721	C├──CH₂-	2	2	1	-	Н	-CH-N-C-(N) CH3
722	CHCH ₂ -	2	2	1	-	Н	-сн-v-сСн₂он
723	CHCH ₂ -	2	2	1	-	Н	-CHN-C-NH ₂
724	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-(CH3)3
725	CHCH ₂ -	2	2	i	-	Н	-c+n-c
726	CH_CH2-	2	2	1	-	Н	-CH-N-C-CH3

Table 1.67

						•	
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
727	CI—CH₂-	2	2	1	-	Н	-CHNC-C
728	CI-CH ₂ -	2	2	1	-	Н	
729	CH2−	2	2	1	-	Н	-CHNC-NO2
730	CH2-	2	2	1	-	Н	-cH-N-C-
731	CH2-	2	2	1	-	Н	-CH-N-C-CH3
732	с	2	2	1	-	Н	-CH-N-C-CF3
733	С├-СН2-	2	2	1	-	H	-CH-N-C- HO CH(CH ₃) ₂
734	CI—CH ₂ -	2	2	1	-	H	-CHN-C
735	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C-
736	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C- H ₂ N CF ₃
737	CI—CH ₂ -	2	2	1	-	н	-CHN-C

Table 1.68

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
738	CH-{CH ₂ -	2	2	1	<u>-</u>	Н	$-CH-N-C-CO$ H_3C
739	CH-2-	2	2	1	-	Н	-CH-N-CNH
740	CI—(CH ₂ -	2	2	1	-	Н	-CH-N-C
741	CH_CH ₂ -	2	2	1	-	Н	-CHN-C-S
742	CH-2-	2	2	1	-	н	-CH-N-C-US
743	CH2⁻	2	2	1	-	Н	-CHN-C-C
744	CH2-	2	2	1	- ·	H	-CHN-C-CH3
745	CI—CH₂-	2	2	1	-	н	-CHN-C-(CH3)3
746	CI—CH₂-	2	2	1	-	Н	-CHN-C-CH ₃ H ₃ C CH ₃
747	C├ \ CH ₂ -	2	2	1	-	Н	-CH-N-C
748	CH2-	2	2	1	-	Н	-CHN-C-Cs

Table 1.69

Table	1.00						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	ΈR³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - R^6$
749	C⊢√_CH₂−	2	2	1	-	н	-CH-N-CN
750	C⊢CH₂−	2	2	1	-	Н	-CHN-C-O
751	С⊢—СН₂-	2	2	1	-	Н	-CH-N-C-CH ₃ -CH ₂ OH
752	CI—CH₂-	2	2	1	-	н	CF ₃ -CH-N-C-CF ₃ CH ₂ OH CF ₃
753	CI—CH₂-	2	2	1	-	Н	-CH-N-C-CN -CH ₂ OH
754	CH₂-	2	2	1	-	н	-CH-N-C
755	CH-2-	2	2	1	-	Н	-CH-N-C-OCH ₃ -CH ₂ OH
756	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
757	CI-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C-
758	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CO ₂ CH ₃ -CH ₂ OH
759	С⊢СУ-СН₂-	2	2	1	-	Н	$-CHNC-OCF_3$ $-CH_{H}$ $CH_{2}OH$

Table 1.70

Table	1.70						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
760	CH-2-	2	2	1	-	н	-CH-N-C-CF3 CH ₂ OH F
761 ,	C├ - CH₂-	2	2	1	-	н	CF ₃ −CH-N-C− H CH ₂ OH
762	CH2⁻	2	2	1	-	н	-CH-N-C-CF ₃ -CH-N-C-C-CF ₃ -CH ₂ OH
763	CH2−	2	2	1	-	н	-CH-N-C-C
764	C├ - CH ₂ -	2	2	1	-	Н	-CH3 CH3
765	CI—CH ₂ -	2	2	1	-	Н	CH3 P CH3
766	CI-CH ₂ -	2	2	1	-	Н	CH ₃ O CF ₃ CH ₃ O CF ₃
767	CH-2-	2	2	1	-	Н	CH ₃ P S-CH ₃ -C-N-C-S-CH ₃
768	C├───── CH ₂ -	2	2	1	-	Н	CH ₃ P CH ₃ P CH ₃ Br
769	CHCH_2-	2	2	1	-	Н	CH ₃ P CH ₃ P CH ₃ OCF ₃
770	CH $CH_2^ CH_2^-$	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-F H H F

Table 1.71

i abic i	.,,						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
771	CH2−	2	2	1	-	н	CH ₃ CF ₃ -C-N-C-F H CH ₃
772	CI—CH₂-	2	2	1	-	Н	CH ₃ O C-N-C-C-C-CF ₃ CH ₃
773	CI—CH₂-	2	2	1	-	н	CH ₃ O C-N-C- CH ₃ C(CH ₃) ₃
774	CI—CH₂-	2	2	1	-	н	CH ₃ P CH ₃ P SCH ₃ SCH ₃
775	CI—(CH ₂ -	2	2	1	-	н	CH ₃ O CH ₃ -C-N-C-C-C(CH ₃) ₃
776	CI—CH₂-	2	2	1	-	н	-CH3 CH3
777	CH2-	2	2	1	-	н	CH ₃ CF ₃ -C-N-C-CH ₃ CH ₃
778	CI—CH ₂ -	2	2	1	-	н	CH ₃ P NO ₂ -C-N-C-C-CI CH ₃
779	CH2-	2	2	4	-	Н	CH ₃ O CI -C-N-C-C H CH ₃
780	CI-CH ₂ -	2	2	1	-		CH ₂ O NO ₂
781	CH2-	2	2	1	-	н	CH ₃ P -C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

Table 1.72

i abic i							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
782	CH₂-	2	2	1	-	Н	CH ₃ OCH ₃ -C-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
783	CH-√CH₂-	2	2	1	-	Н	CH ₃ O OCH ₂ CH ₃ -C-N-C- H CH ₃
784	C⊢()-CH₂-	2	2	1	-	н	CH ₃ Q -C-N-C-CH ₂ CF ₃ -CH ₃
785	CH-CH₂-	2	2	1	-	н	CH ₃ OCH ₃ -C-N-C-OCH ₃ OCH ₃
786	CH2-	2	2	1	-	Н	H ₂ C—CH ₂
787	C├─ \ CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂
788	CH2-	2	2	1	-	Н .	H ₂ C—CH ₂
789	CI—CH₂-	. 2	2	1	-	Н	-C-N-C-CH ₃
790	C├ \ CH ₂ -	2	2	1	-	Н	$\begin{array}{c} -C - N - C - C \\ H_2 C - C H_2 \end{array}$
791	CHCH ₂ -	2	2	1	-	н	H_2C C C C C C C C C C
792	CH-2-	2	2	1	-	н) / = ⟨

Table 1.73

(CH ₂) _q -G-R ⁶
CF ₃
CF ₃
C-CF ₃
SCH ₃
C(CH ₃) ₃
CH3 CH3
CH ₃
NO ₂
o -c-\tag{H}
OCH ₂ CH ₃
OCH ₂ CH ₃

Table 1.74

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
804	CH-CH₂-	2	2	1	-	н	H ₂ C—CH ₂ CF ₃ CF ₃
805	CH- (CH ₂ -	2	2	1	-	н	H_2 C— CH_2 OCH ₃
806	C├ - CH₂-	2	2	1	-	Н	H ₂ C-CH ₂
807	CI—(CH ₂ -	2	2	1	-	н	-CH-N-C-NH ₂
808	CI—CH₂-	2	2	1	-	н	-CH-N-C
809	CH- (CH ₂ -	2	2	1	-	н	-CH-N-C-NH ₂
810	CH-2-	2	2	1	-	Н	-CH-N-C-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O
811	с⊢ СН₂-	2	2	1	-	Н	-CH-N-C
812	C├─ \ CH ₂ -	2	2	1	-	Н	-CH-N-C-S (CH ₂) ₂ -C-NH ₂ SCH ₃
813	C├─ \ CH ₂ -	2	2	1	-	Н	-CH-N-C-CF ₃ (CH ₂) ₂ -G-NH ₂
814	CH2-	2	2	1	-	н	(CH2)2-C-NH2

Table 1.75

		······································					D4
Compd. No.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
815	CI—CH₂-	2	2	1	-	Н	CF ₃ -CH-N-C- H (CH ₂) ₂ -C-NH ₂ F
816	C⊢—CH₂-	2	2	1	-	Н	O CF3 -CH-N-C- H (CH ₂) ₂ -C-NH ₂
817	C├ - CH₂-	2	2	1	-	Н	O CF3 - CH-N-C-F H (CH ₂) ₂ -C-NH ₂
818	CI—CH₂-	2	2	1	-	Н	-CH-N-C- Sr (CH ₂) ₂ -C-NH ₂
819	C⊢√CH ₂ -	2	2	1	-	Н	- CH- N-C - CF3 - CH- N-C - CF3 (CH ₂) ₂ - C- NH ₂ CF ₃
820	C⊢√CH ₂ -	2	2	1	-	н	$-CH-N-C-\longrightarrow NO_2$ $(CH_2)_2-C-NH_2$
821	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
822	CHCH ₂ -	2	2	1	-	Н	CH ₂ OCH ₃
823	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C
824	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
825	CH2-	2	2	1	•	Н	-CH-N-C-CH3 -CH2OCH3

Table 1.76

. abic .	•						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
826	C├- (_)- CH₂-	2	2	1	-	н	-CH-N-C-CH ₃ CH ₂ OCH ₃
827	C	2	2	1	-	н	-CH-N-C-NH H CH ₂ OCH ₃
828	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
829	CH ₂ -	2	2	1	-	Н	-CH-N-C-CF3 -CH2OCH3 F
830	с⊢СН₂-	2	2	1	-	н	-CH-N-C-F H CH ₂ OCH ₃
831	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C- CH₂OCH3
832	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
833	CHCH2-	2	2	1	-	Н	-CH-N-C
834	CHCH_2-	2	2	1	-	н	-CH-N-C-CF3 CH2OCH3
835	CHCH2-	2	2	1	-	н	-ÇH-N-C- H CH₂OCH₃
836	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃ -CH ₂ OCH ₃

Table 1.77

Table	. 1 1						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
837	C⊢√Ç-CH₂-	2	2	1	-	Н	-CH-N-C-CF3 -CH ₂ OCH ₃
838	CH-CH ₂ -	2	2	1		н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ OCH ₃
839	CH-CH ₂ -	2	2	1	-	Н	$\begin{array}{c c} & & \text{OCH}_3 \\ \hline -\text{CH-N-C} & & \text{OCH}_3 \\ & & \text{H} \\ & \text{CH}_2\text{OCH}_3 & & \text{OCH}_3 \end{array}$
840	CH-2-	2	2	1	-	Н	-(CH ₂) ₃ -C-
841	CI—CH₂-	2	2	1	-	Н	-(CH ₂) ₂ -C-
842	CH-CH₂-	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	CH-() CH₂-	2	2	1	-	Н	$-(CH_2)_2$ - C - CH_3
844	CH-2 ⁻	2	2	1	-	Н	$-(CH_2)_2-C-CH_3$
8 4 5	CH-2-	2	2	1	-	Н	-(CH ₂) ₂ -C
846	CHCH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -C-
847	CHCH ₂ -	2	2	1	-	н	$-(CH_2)_2 - C - CH_3$

Table 1.78

I abic i	1.1 0						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G-R^6$
848	C⊢CH₂-	2	2	1	-	н	$-(CH_2)_2$ $-CH_3$
849	C├ - CH ₂ -	2	2	1	-	н	-(CH2)2-C - OCH3 $H3CO$
850	C⊢√CH₂-	2	2	1	-	н	- CH ₂ - S− CH ₃
851	CH2−	2	2	1	-	н	- CH ₂ - N- C- N- H
852	C├───────────────────────────	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
853	CHCH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- N-
854	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
855	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
856	CICH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-C-CH ₃
857	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	C├ \ CH ₂ -	2	2	1		н	- CH ₂ - N- C- N- OCH ₃
							:

Table 1.79

lable 1	.79						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
859	C├ - CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-CI
860	C├ - CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- N- CN
861	CH-{}CH₂-	2	2	1	-	Н	- CH ₂ - N-C- N-
862	с⊢СН₂-	2	2	1	-	Н	-CH ₂ -N-CH ₃
863	CI—CH₂-	2	2	1	-	Н	- CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	C⊢CH₂-	2	2	· 1	-	Н	- CH ₂ -N-C-N-C-N-C-OCH ₃
865	CH2-	2	2	1	-	н	-CH ₂ -N-S-CH ₃
866	CH2-	2	2	1	-	н	- CH ₂ -N-S-CF ₃
867	CHCH ₂ -	2	2	1	-	н	$-CH_2-N-S \longrightarrow CF_3$ $-CF_3$
							$-CH_2-N-S CH_2CH_3$
869	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

i abic i	.00						
Compd.	R ¹ (CH ₂) _j	k	m	Π	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
870	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-S
871	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-S-(CH ₂) ₃ CH ₃
872	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-
873	СН-СН2-	2	2	1	-	н	- CH ₂ -N-C-O CH ₂
874	CI—CH₂-	2	2	1	-	Н	- CH O- C- N- CI CH3
875	CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-
876	Br—CH₂−	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	Н	- CH ₂ - N C CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
879	O CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
880	0^0 —CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃

Table 1.81

Table	1.0 1						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
881	Br CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
882	OH2-	2	2	1	-	Н	- CH ₂ -N-C-
883	CI CH ₂ -	2	2	1	-	Н	- CH ₂ - N- CF ₃
884	ньс·с-ү——— сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
885	H ₃ C-S-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-CF ₃
888	HOCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
·889 ·	CH ₂ -	2	2	j	-	Н	- CH ₂ -N-C-CF ₃
890	CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C-
891	CI CH₂-	2	2	1	. -	Н	- CH ₂ - N- C-

Table 1.82

lable i	.02						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
892	H ₃ CO CH ₂ -	2	2	1	-	Н	- CH ₂ -N-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
894	HO CH_3 H_3C CH_2 CH_3	2	2	1	-	· н	-CH ₂ -N-C
895	(CH ₂) ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
896	CN CH₂-	2 -	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
898	HO ₂ C-\(\bigc\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	-	Н	- CH ₂ -N-C-
900	H ₃ ∞ ₂ C-√CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
901	O ₂ N CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
902	O_2N O_2N O_2N	2	2	1	-	Н	$-CH_2-NC$

Table 1.83

Table	1.00						
Compd.	R ¹ (CH ₂)	k	m	Π	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
903	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	Н	- CH ₂ - N-C- CF ₃
904	HO CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
907	-CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
908	O CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
909	OH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
910	CI CH₂-	2	2	1	-	Н	-CH ₂ -N-CF ₃
911	CI — CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-		- CH ₂ - N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C-

Table 1.84

lable	1.0 4						
Compd.	H ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
914	CH2O-CH2-	2	2	1	-	Н	- CH ₂ - N- CF ₃
915	OH CHCH ₂ -	2	2	1	-	н	- CH ₂ - N- CF ₃
916	N CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
917	N- CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C CF ₃
918	H ₃ CO ₂ C: CH ₂	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C - CF ₃
920	OCF ₃	2	2	1	-	Н	- CH ₂ - N- C-
921	CH₂-	2	2	1	-	Н	- CH ₂ - N- C-
922	├── CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
923	CI-CH-CH ₂ -CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
924	H ₂ N-C	2	2	1		н	- CH ₂ -N-C-CF ₃

Table 1.85

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
925	H ₂ N-C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	i	-	Н	-CH ₂ -N-C-CF ₃
927	F ₃ CO —CH ₂ -	2	2	1	;	Н	-CH₂-N-C-CF₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CSCH ₂ -	2	2	1	.	Н	-CH₂-N-C-CF3
930	CH ₃	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
	NC —CH₂-					н	-CH ₂ -N-C-CF ₃
932	NO₂ C⊢CH₂−	2	2	1	-	Н	CH ₂ -N-C
933	CH- CH-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
934	~N_CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
935	O ₂ N	2	2	1	-	H	-CH ₂ -N-C-CF ₃

Table 1.86

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	ightharpoonup igh	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
938	CH_CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	Н	-CH _Z -N-C-⟨CF ₃
940	OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
942	C⊢√CH₂-	2	2	1	-	Н	$\begin{array}{c} CF_3 \\ -CHNC \\ H \\ CH(CH_3)_2 \end{array}$
943	C⊢√CH₂-	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
944	C⊢(1	4	0	-	Н	-CH ₂ -N-C-CH ₃
945	CH_CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-\(\sigma\)
946	CI—(CH ₂ -	1	4	0	-	Н	-(CH ₂) ₂ -N-C-\(\bigc\)-NO ₂

Table 1.87

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
947	CH-CH ₂ -	1	4	0	-	н	$-(CH_2)_2-N-C- \longrightarrow OCH_3$
948	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	C├ - CH ₂ -	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂ -
950	C├ - CH₂-	0	4	1	-	н	- СH ₂ - N- С-
951	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
952	CH2-	1	2	0	R	н	-CH ₂ -N-C- N(CH ₃) ₂
953	С⊢√СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\text{N-CH ₃ }\) ₂
954	CI-CH ₂ -	1	2	0	R [.]	н	$-CH_2-N-C-$ H_3C-NH
955		1	2	0	R	H	$-(CH_2)_2-N-C H$ H_3C-NH
956	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
957	CH2-	1	2	0	R	Н	-сн ₂ -N-с

Table 1.88

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
958	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
959	CI—CH₂-	i	2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
961	CHCH2-	1	2	0	R	н	-CH ₂ -N-CH ₃
962	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
963	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-С-С-ОН
964	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\CO ₂ CH ₃
965	CI—CH ₂ —	1	2	0	R	Н	-(CH ₂) _Z -N-C- \ \ \\ \C_2CH_3
966	CI—CH₂-	1	2	0	R	Н	CH ₂ -N-C-CH ₃
967	CH-CH₂-	1	2	0	R	н	$-(CH_2)_2-N-C-C-CH_3$
968	CH2⁻	1	2	0	R	Н	-CH ₂ -N-C-NH

Table 1.89

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
969	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH√_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N(CH ₃) ₂
971	CH-√ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-\(\bigce\)
973	CICH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\(\sigma\)
974	CH2-	1	2	0	R	н	-CH ₂ -N-C-NH ₂
	С⊢СН₂-					н	-(CH ₂) ₂ -N-C-NH ₂
976	C├───────────────────────	1	2	0	R	Н	-CH ₂ -N-C-NH
977	CH-CH ₂ -	1	2	0	R	H	$-(CH_2)_2-N-C-$ NH
							-CH2-N-C-NH
979	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH

Table 1.90

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
980	C├ - CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
981	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	C⊢—CH₂-	1	2	0	R	. н	-CH ₂ -N-C- H (H ₃ C) ₂ N
983	CH-CH ₂ -	i	2	0	R	Н	-(CH ₂) ₂ -N-C- H (H ₃ C) ₂ N
984	CH2-	1	2	0	R	Н	-CH ₂ -N-C
985	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-С-СH ₂ OH
986	CH CH	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
987	CH-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
988	C├ - CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
989	C├─ \ CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-O-CH ₂ -
990	C├─ \ CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-

Table 1.91

Table I	.51						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)^{R^4}_{p}$ $+(CH_2)^{q}_{q}$ $-(CH_2)^{q}_{p}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$ $+(CH_2)^{q}_{q}$
991	СН2-	1	4	0	-	H	-(CH ₂) ₂ -C-
992	C├ ─ CH ₂ -	1	4	0	-	Н	OCH_3 $-(CH_2)_2-C OCH_3$
993	CH-CH₂-	1	4	0	-	н	$-(CH_2)_2$ CH_3 H_3C
994	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-
995	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C
996	CH-CH2-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₃
997	C⊢-(CH ₂ -	2	2	1	-	Н	-CHN-C
998	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C
999	CI—⟨CH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃ -CH-N-C-CH ₂ -CH ₂ CH(CH ₃) ₂
1000	C├────────────────────	2	2	1		Н	O OCH ₃ - CH-N-C- OCH ₃ - CH ₂ CH(CH ₃) ₂
1001	CHCH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C

Table 1.92

rable i	.5 2						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1002	С⊢√СН₂-	2	2	1	-	н	OCF ₃ -CHN-C-CHCH ₃) ₂
1003	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1004	CI—CH₂-	2	2	1	-	н	-CHN-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1005	CI—CH₂-	2	2	1	-	н	$-CHNC-CH_3$ $-CH_2CH(CH_3)_2$ $-CH_3$ $-CH_2CH(CH_3)_2$ $-CH_3$
1006	CI—CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
1007	с⊢СН₂-	2	2	1	-	Н	OCH₂CH3 -CH-N-C- CH2CH3 H CH2CH(CH3)2 OCH2CH3
1008	CH2-	2	2	1	-	Н	-ÇHN-Ç-(CH ₂) ₂ -Ç-NH ₂
1009	CH2-	2	2	1	-	Н	- CH-N-C
1010	CH2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
1011	C-CH ₂ -	2	2	1	-	Н	-CH+N-C-CH ₂ CH ₃ -CH+N-C-CH ₂ CH ₃ -CH ₂) ₂ -C-NH ₂
1012	С⊢С СН2-	2	2	1	-	Н	- CHN-C

WO 99/25686 PCT/US98/23254

Table 1.93

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ή³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - (CH_2)_{q$
1013	С⊢√_СН₂-	2	2	1	-	Н	CH ₂) _Z C-NH ₂ OCH ₃
1014	CI—CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CHN-C
1015	C⊢√CH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CHN-C
1016	CH2−	2	2	0	.	Н	-CH ₂ -N-C-CF ₃
1017	CH2-	2	2	0	-	н	-сн ₂ -N-С-
1018	CH-€T-CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH ₂ -N-C
1019	CH2⁻	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃ -CH ₂ -N-C-CH ₂ CH ₃ OCH ₂ CH ₃
1020	CH2-	2	2	1	-	Н	$-CH_2-N-C OCH_2CH_3$ OCH_3
1021	CH2-	2	2	1	-	Н	-CH ₂ -N-C
1022	CH2-	2	2	1	-	Н	CH3 OCH3
1023	CHCH2-	2	2	1	-	Н	(S) Q CH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃

Table 1.94

labio							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}G-R^6$
1024	С⊢—СН₂-	2	2	1	-	Н	$(S) \qquad \bigcirc CH_3$ $-CH-N-C- \bigcirc CH_3$ $CH_3 \qquad OCH_3$
1025	CH-€-	2	2	1	-	· H	(S) OCH ₂ CH ₃ -CH-N-C
1026	CH2-	2	2	1	-	Н	$(S) \qquad \bigcirc CCH_2CH_3$ $-CH-N-C- \bigcirc -OCH_2CH_3$ $CH_3 \qquad OCH_2CH_3$
1027	CH2-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1028	CH2-	2	2	1	- •	Н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₂ CF ₃ OCH ₂ CF ₃
1029	CH2-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-CH ₃
1030	CH2-	2	2	1	- .	Н	(S) OCF3 -CH-N-C-C
	CHCH ₂ -					Н	(S) OCH ₃ -CH-N-C-C
1032	CH2-	2	2	1	-	Н	(H) OCH3 -CH-N-C- CH3 OCH3
	C├ ~ CH ₂ -						3
1034	C├ (.) CH₂-	2	2	1	-	Н	(H) CH_3 CH_3 OCH_3 OCH_3

Table 1.95

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1035	CHCH ₂ -	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₃
1036	C├ - CH ₂ -	2	2	1	-	н	(H) OCH ₂ CH ₃ $-CH_1C$ OCH ₂ CH ₃ $-CH_3$ OCH ₂ CH ₃
1037	CH2-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C-OCH ₃ CH ₃
1038	CH2 ⁻	2	2	1	-	Н	(F) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CH2−	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C- H CH ₃
1040	CH2−CH2−	2	2	1	-	н	(F) OCF ₃ -CH-N-C
1041	C├ \ CH ₂ -	2	2	1	-	н	(R) OCH ₃ -CH-N-C-CH-CH ₃ CH ₃
1042	CHCH2-	2	2	1	-	н	$-CH_2-N$ H_2N H_2N
1043	CH-2-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1044	CHCH2-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1045	CH_CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N

Table 1.96

,							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1046	CHCH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ CI
1047	CH2-	2	2	1	-	н	$-CH_2-N-C- \begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\l$
. 1048	CH⊋-CH₂-	2	2	1	-	н.	$-CH_{2}-N-C-V-C-V-C-M_{3}$ $+H_{2}N-OCH_{3}$
1049	CH2-	2	2	1	-	Н	-CH ₂ -N-C
1050	CH2-	2	2	1	-	Н	(S) -CH-N-C H CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH₂-	2	2	1	-	н	(S) CH ₂ CH ₃ -CH-N-C
1052	С⊢—СН₂-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1053	C⊢CH₂-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1054	CH-2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C├─()-CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	CHCH ₂ -	2	2	1	-	н	$(S) \qquad \begin{array}{c} OCH_2CF_3 \\ -CH-N-C- \\ H \\ CH_2CH(CH_3)_2 \\ OCH_2CF_3 \end{array}$

Table 1.97

i abie i	.97	_					
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
1057	CHCH ₂ -	2	2	1	-	Н	(R) CH_2CH_3 $CH_2CH(CH_3)_2$
1058	CH-(CH ₂ -	2	2	1	-	Н	(S) OCH ₃ -CH-N-C
1059	CH2-	2	2	1	-	H	(S) OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1060	CH2 ⁻	2	2	1	-	Н	(A) OCH ₂ CH ₃ -CH-N-C
1061	CH2−	2	2	1	-	н .	(F) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH2- ·	2	2	1		Н	(S) OCH ₂ CH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1063	C!(2	2	1	-	Н	(F) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1064	СН-СН2-	2	2	1	-	H	(H) OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1065	C├ - CH ₂ -	2	2	1	-	H	(A) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	CH-CH ₂ -	2	2	1	-	Н	(H) CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1067	с⊢(СН₂-	2	2	1	-	Н	(F) Q OCH ₃ -CHN-C OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃

Table 1.98

Table 1	.98						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1068	CH-{	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H CH ₂ CH(CH ₃) ₂
1069	CH-CH₂-	2	2	1	-	Н	$(R) \qquad \qquad \text{OCH}_2\text{CH}_3$ $-\text{CH-N-C} \qquad \qquad \text{OCH}_2\text{CH}_3$ $+ \qquad \qquad \text{CH}_2\text{CH}(\text{CH}_3)_2 \text{ OCH}_2\text{CH}_3$
1070	CH⊋-	2	2	1	-	Н	CH ₂ OCH ₂
1071	CH ₂ −	2	2	1	-	Н	-CH-N-C
1072	CHCH ₂ -	2	2	4	-	Н	-CH-NC-C(CH ₃) ₃ -CH-NC-C(CH ₃) ₃ -CH-NC-C(CH ₃) ₃
1073	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
1074	CH2-	2	2	1	-	Н	-CH-N-C
1075	C├─ \ CH ₂ -	2	2	1	-	Н	-CH-N-C
1076	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C
- 1077	C├ \ CH ₂ -	2	2	1	-	Н	-CH-N-C-CF ₃ -CH ₂ OCH ₂ -CF ₃
1078	CI—CH ₂ -	2	2	1	-	Н	-CH-NC-CH2OCH2

Table 1.99

Table	.50						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	- R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1079	CHCH ₂ -	2	2	1	-	Н	CH ₂ OCH ₂
1080	CH-CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1081	C├ ─ CH ₂ -	2	2	1	-	н	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃
1082	CI-CH ₂ -	2	2	1	-	н	(S) O O O O O O O O O O O O O O O O O O O
1083	CH2 [−]	2	2	1	-	Н	(R) -CH-N-C CH ₃
1084	CI—CH ₂ -	1	2	0	R	Н	$-CH_2-N$
1085	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1086	CI-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1087	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-N-H
1088	CHCH ₂ _	1	2	0	R	Н	-CH ₂ -N-C-
1089	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-F
					-		

Table 1.100

iable	.100						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} + (CH_2)_{q} - G - R^6$
1090	CH2-	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ CH ₃
1091	CH_CH ₂ -	1	2	0	R	Н	$-CH_{2}CH_{2}-N-CH_{2}-N-CH_{2}$
1092	CH-CH ₂ -	1	2	0	R	Н	$-CH_2CH_2-N-C-$ H_2N
1093	С├──_СН₂-	1	2	0	R	Н	$-CH_2CH_2-N$
1094	CHCH ₂ -	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H
1095	C├─ \ -CH ₂ -	1	2	0	Ŗ	Н	-сн ₂ сн ₂ -ү-с-С
1096	CHCH ₂ -	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CHCH ₂ -	1	2	0	R	Н	-CH2CH2-N-C-OCH2CH
1098	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1099	CH-€	1	2	0	R	н	-CH ₂ -N-C
1100	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.101

Table 1							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1101	CH-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C-CH3
1102	СН-СН2-	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C CH_3$ CH_3
1104	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1105	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1106	H ₃ C-CH ₂ -	1	2	0	R	H .	$-CH_2-N-C$
1107	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-CNO_2$
1108	CH₃ N — CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C Br$ CH_3
1109	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C
							-CH ₂ -N-C-CI
1111	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃

Table 1.102

Table							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1112	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-CNO ₂
1113	CHCH2-	2	2	1	-	н	-CH ₂ -N-C
1114	СНСН2-	2	2	1	-	н	-CH ₂ -N-CF
1115	СНСН	2	2	1	-	н .	-CH ₂ -N-C-CI
1116	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1117	С├-СН₂-	2	2	1	-	Н	-CH ₂ -N-C
1118	N-C-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1119	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1120	H_3CO CH_2 CH_3	1	2	. 0	R	Н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1122	H ₃ Q (H ₃ C) ₂ CH- CH ₂ CH ₂ CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.103

I abic i	.100						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	[*] R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1123	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1124	O ₂ N O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1125	CHCH2-	2	2	1	-	н	O NO ₂ - CH-N-C
1126	CH_CH ₂ -	2	2	1	-	Ħ	- CH-N-C
1127	С⊢С СН₂-	2	2	1	-	Н	-CHNC-NH CH2OCHZ
1128	C├───────────CH ₂ -	2	2	1	-	н	- CH-N-C
1129	C├ \ CH ₂ -	2	2	1	-	Н	-CH-N-O-F CH ₂ OCH ₂
1130	CH2-	2	2	1	-	н	-CH-N-C
1131	CH2-	2	2	1	-	Н	-CH-N-C
1132	CHCH2-	2	2	1	-	. Н	- CH- N-C
1133	H ₃ CO—CH ₂ —	1	2	C) R	н	-CH ₂ -N-C-\(\)

Table 1.104

Table							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1134	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1135	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1140	O_2N O_2N O_2N	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1142	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1143	CH2O - CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1144	H ₃ CQ — CH ₂ — H ₃ CO — CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.105

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1145	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1146	CH ₂ O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	HC-C-H CH2					Н	-CH ₂ -N-C-CF ₃
1148	CH₂ [−]	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ -					H	-CH ₂ -N-C-C-CH ₂ CH ₃
1150	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1151	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C-N-CI
1154	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C-N-CH_3$
							$-CH_2-N-C-O$ F_3C

Table 1.107

lable	1.107						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1167	CH_CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1169	H ₃ C- C- H ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	H N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1171	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1172	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1173	CH2-	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1174	CHCH2-	1	2	0	R	н	$-CH_2-NC-$ H_2N
1175	H₃C-⟨□}-CH₂-	1	2	0	R	н	$-CH_2-N$ CH_3 Br
1176	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1177	H ₃ C-\(\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

Table 1.108

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1178	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1180	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-Br
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-V-OH
1183	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-OCH ₃
	CH ₃ N—CH ₂ - CH ₃					Н	$-CH_2-NC$ H_2N
1185	CH ₃ → CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
	C├ \ _CH ₂ -						-CH ₂ -N-C
1188	C⊢√CH₂-	2	2	1	-	Н	-CH ₂ -N-C-N-OH

Table 1.109

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1189	С├-{}СН₂-	2	2	1	-	Н	$-CH_2-N-C-\bigvee_{H}^{Q}CCH_3$
1190	ССН2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1191	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C F$
1192	CH ₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-√F
1193	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1194	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N$ F_3C CF_3
1195	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-Br
1196	CH ₃ CH ₂ CH ₃	1	2	0	R	· H	-CH ₂ -N-C-NO ₂
1197	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$
1198	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-
	CH ₃ CH ₂ - CH ₃						$-CH_2-N-C- \bigcirc CH_3$
							•

Table 1.110

Tubic .							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1200	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CI
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1203	H₃C-√CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C-C-3
1204	H ₃ CCH ₂ -	1	2	0	R	н -	$-CH_2-N-C$ F_3C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-Вг
1206	H₃C-√CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1207	н₃С —()—СН₂-	1	2	0	R	Н	$-CH_2-N-C F$ CF_3
1208	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C-
1209	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1210	H₃C—()—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CI

Table 1.111

Compd.	R ¹ (CH ₂) _j	k	m	Π	chirality	\mathbb{R}^3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1211	H₃C-{CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	с⊢—СН₂-	2	2	1	-	н	$-CH_2-N-C$ F_3C
1214	с⊷СН₂-	2	2	1	-	н	$-CH_2-N-C$ F CF_3
1215	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-CI
1216	C├ - -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1218	СН2-	1	2	0	R	Н	$-CH_2-N-C$ F CH_3
1219	С⊢√_СН2-	1	2	0	R	Н	-CH ₂ -N-C-CI
1220	с⊢СУ-сн₂-	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1221	с⊢{СН₂-	1	2	0	R	н	$-CH_2-N$ C H_2N

Table 1.112

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q}$
1222	СН2-	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1223	ССН2-	i	2	0	R	Н	-CH ₂ -N-C
1224	С├─(СН2-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1226	H₃CCH₂-	1	2	0	R	н	-CH ₂ -N-C- F
1227	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1229	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
1230	H ₃ C—CH ₂ -	1	2	0	R	Н	-СH ₂ -N-С-√Л СН ₃
	H ₃ C-CH ₂ -					Н	H —
1232	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

Table 1.113

	n1						D4
Compd. No.	R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1233	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1234	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CI
1236	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1237	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1238	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1239	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1240	CH ₃ CH ₃	1	2	0	R		-CH ₂ -N-C
1241	ССН2-	2	2	1	-	Н	$-CH_2-N+C$
1242	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
	C├ \ CH ₂ -						$-CH_2-N-CH_2$

Table 1.114

lable i							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1244	CHCH2-	2	2	1	-	н	$-CH_2-NC-$ H_2N
1245	СН-СН2-	2	2	1	-	Н	$-CH_2-NC$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1246	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
1247	С├──СН₂-	2	2	1	-	Н	-CH ₂ -N-C-S-S-S
1248	C├────────────────────────	2	2	1	-	н	-CH ₂ -N-C-NO ₂
1249	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	que	2	0	R	Н	-CH ₂ -N-C
	CH ₃						-CH ₂ -N-C-NO ₂
1252	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-CCH(CH ₃) ₂
1253	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C-CH(CH ₃) ₂
							-CH ₂ -N-C-CH(CH ₃) ₂

Table 1.115

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1255	СН-СН2-	1	2	0	R	Н	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
1256	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1257	CH₃ CH₂− CH₃	1	2	0	R	н	$-CH_2-N$ H_2N H_2N
1258	H ₃ C	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1259	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1260	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1261	с⊢√_Сн₂-	1	2	0	R	* H	-CH ₂ -N-C-C(CH ₃) ₃
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
1263	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-C(CH_3)_3$ H_3C
1264	C⊢√_CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1265	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

Table 1.116

lable i							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1266	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1267	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1268	CH_CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_3CO
1269	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1270	C├ - CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1271	C├─ੑੑੑੑੑੑੑ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1272	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-OCF ₃
							-CH ₂ -N-C
1274	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
	H ₃ C-CH ₂ -					. Н	-CH ₂ -N-C
1276	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$

Table 1.117

	,						
Compd.	R^1 (CH_2)	k	m	n	chirality	-R³	一(CH ₂) _p
1277	CH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-H-OCF ₃
1278	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1279	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-→Br
1280	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-
1281	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1282	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-H
1283	CHCH2-	2	2	1	-	н	$-CH_{2}-N$ $H_{3}CO$ CI
1284	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- HO
1285	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-HO
1286	H ₃ Ç N(CH ₂) ₃ O	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1287	O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.118

10010							
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1288	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N H_2N
1290	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H H_2N CH_3
1291	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1294	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1295	H ₃ C-(CH ₂ -	i	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCH ₃
1297	H ₃ C-()-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-VOF_3$
1298	H_3CQ H_3CO CH_2 Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.119

lable							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1299	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1301	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-сн ₂ -N-с
1302	H ₃ C CH ₃ H ₃ CO CH ₂	1	2	0	R	Н	-CH ₂ -N-C
1303	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1304	H ₆ CQ CH ₂ O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1306	H₃CCH2Q H₃CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ CQ H ₃ CO—CH ₂ —						-CH ₂ -N-C-CF ₃
1308	CH ₂ -	1	2	0	R	н	$-CH_2-N$
1309	H ₃ CQ H ₃ CO— I	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.120

rable i	.120						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1310	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1311	O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ N_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1317	O ₂ 'N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1318	C⊢√ CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.121

i abic							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1321	с⊢С −СН₂-	1	2	0	R	н	$-CH_2-N-C$ \longrightarrow CI
1322	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	C├ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	2	0	R	Н	-CH2-N-C
1324	C├ ~ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1325	с⊢С}-сн₂-	1	2	0	R	н	-CH2-N-C-
1326	с⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C
1327	с⊢С}-сн₂-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1328	H ₃ C	1	2	0	R	H	-CH ₂ -N-CBr
1329	H ₃ C-\CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ CI
1330	. H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1331	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$

Table 1.122

Compd.	R ¹ (CH ₂)	k	m	n	chirality	ΈR³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1332	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
	CH_3 CH_2 CH_3					Н	-CH₂-N-C-
1336	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N$ C-CH3
1337	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1339	CH ₃ CH ₂ − CH ₃	1	2 ·	0	R	Н	-CH ₂ -N-C
1340	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	Н	-CH ₂ -N-C
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow H_2N$
1342	C⊢√CH₂−	2	2	1	-	Н	-CH₂-N-C- H C- H C- CI

Table 1.123

Table 1							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1343	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1344	CH2-	2	2	1	-	Н	-CH2-N-C-CI
1345	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1346	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1347	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1348	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-S-CH ₃
1350	C⊢√CH₂-	2	2	1	-	Н	-CH ₂ -N-C-S-CH ₃
1351	ССН2-	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1352	H ₃ C-CH ₂ -	1	2	0	R .	Н	- CH3- HN - CH3
1353	CH ₃ CH ₂ − CH ₃						-CH ₂ -M-C-CH ₃

Table 1.124

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1354	C⊢-{}CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1355	CH-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 N
1356	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C H_2N$
1358	CH-CH2-	2	2	1	-	н	$-CH_2-N$ CN H_2N
1359	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-сн ₂ -N-с-
1360	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1361	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H C- OCH ₃
1362	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_{2}-N$ CH_{3} CH_{3} CH_{3}
1364	H₃C-{CH ₂ -	1	2	0	R	н	$-CH_2$ -N-C- CH_3

Table 1.125

I able	.120						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1365	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N-C-\longrightarrow H_3C$
1366	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-\-\-\-\-\
1367	H ₃ C-\(\bigcup_\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
1368	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1369	CHCH2-	1	2	0	R	н	-CH ₂ -N-C- F ₃ CCH ₂ O :
1370	CH2-	1	2	0	R	Н	-CH ₂ -N-C-S Br
1371	CI—⟨□}—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1372	C├ - CH ₂ -	1	2	0	R	Н	-CH2-N-C-
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1374	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1375	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S Br

WO 99/25686 PCT/US98/23254

Table 1.126

iubic .	20						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1376	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1377	H ₃ CCH ₂ -	1	2	0	R	Н	-CH2-N-C-
1378	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ − CH ₃					H	-CH ₂ -N-C
1380	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S Br
1381	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-NC-
1382	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-at2-N-C-
1383	C├ ─ CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$
1384	C├ ~ CH₂-	2	2	1	-		
1385	CH_CH2-	2	2	1	-	H	-CH ₂ -N-C-
1386	C⊢(CH₂-	2	2	1	-	н	-CH2-N+C-

;

WO 99/25686 PCT/US98/23254

Table 1.127

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	-R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1387	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-сн ₂ -м-с
1388	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	$-CH_2-N-C-(CH_3)_3$ $-CH_2-N-C-(CH_3)_3$ $-CH_3$
1389	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-NO
1390	H_3C CH_3 H_3C CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1393	H₃CCH₂—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1394	O_2N H_3C — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1396	H_3C — CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.128

i abic i	2 0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1398	CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1400	C⊢√CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1401	H₃C-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-CI
1402	H₃C-€	1	2	0	R	Н	$-CH_2-N-C-V-CH_3$ $+I_2N OCH_3$
1403	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-NN
1404	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-⟨N
1405	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N
1406	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-сн ₂ - N-С СН ₃
1407	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.129

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	R ⁴ −(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
1409	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$
1410	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1411	C├ ~ _CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₃ C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₃ C-C-NH
1413	CH ₃ CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C-VH H ₃ C-C-NH
1415	C├ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN H H ₂ N
1416	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R		-CH ₂ -N-C-SCN H ₂ N
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCN H H ₂ N
1418	CH2-	2	2	1	-		$-CH_2-N-C$ H_2N SCN
1419	CH2-	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N

Table 1.130

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1420	H ₃ C	1	2	0	R	Н	$-CH_2-N$ H_2N SH
1421	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N SH H_2N
1422	С⊢—СН₂-	2	2	1	-	Н	$-CH_2-N-C H_2N$ H_2N
1423	с⊢(СН₂-	1	2	0	R	Н	-CH ₂ -N-C-
1424	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-
1425	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1426	C⊢√CH₂−	2	2	1	-	H	-CH ₂ -N-C-
1427	C├ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SBr H ₃ C-NH
1428	с⊢СН₂-	2	2	1	-	Н	$-CH_2-N-C (H_3C)_2N$ Br
1429	H ₀ CCH ₂ O-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N C H_2N
1430	O————————————————————————————————————	2	2	1	-	Н	$-CH_2-N$ H_2N

Table 1.131

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1431	н₃ссн₂о-{_}_сн₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
1432	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1433	H₃CCH2O-CH2-	2	2	1	-	н	-CH ₂ -N°C- HN CH ₂ -OCH ₂ CH ₃
1434	H₃CCH2O-CH2-	2	2	1	-	Н	-CH2-N-CH3-OCH3CH3
1435	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1436	(H ₉ C) ₂ CH————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1437	H ₃ C(CH ₂) ₂ O	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1438	H₃CCH₂—⟨¯¯)—CH₂−	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1439	(H ₉ C) ₂ CH————————————————————————————————————	2	2	1	-	Н	$-CH_2-N+C$ H_2N H_2N
1440	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	$-CH_2$ -N-C- \longrightarrow H_2N
1441	H ₃ CS—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.132

. 48.0							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{p + 1}(CH_2)_{q}G-R^6$
1442	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	
1443	(HgC)2CH-CH2-	2	2	1	-	Н	-CH-NC- HN CH2 -CH(CH3)2
1444	H₃C(CH2)2O-{ CH2-	2	2	1	-	Н	-CH ₂ -N-C
1445	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH2-N-C
1446	(H ₃ C) ₂ CH−(2	2	1	-	н	-CH2-N-C
1447	H ₃ C(CH ₂) ₂ O————————————————————————————————————	2	2	1	-	H	-0+2-N-C
1448	H₃CS————CH₂—	2	2	1	-	н	-CH ₂ -N-C- HN CH ₂ -SCH ₃
1449	H3CCH2-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1450	(HgC)2CH-(-)-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.133

, 0.5.0							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1453	н ₃ с(сн ₂) ₂ о-{-}-ан ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1454	H₃CCH 2O CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N
1458	H ₃ CQ HO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1460	H ₃ CQ HO—←CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1461	H ₃ CQ HO—CH ₂ -	2	2	1	-	Н	-CH2-N-C
1462	H ₃ CQ HO—CH ₂ —	2	2	1	•	Н	-CH2-NCC-SBr OCH6 CH2-OH
1463	CHCH_2-	2	1	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.134

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1464	CH-CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-C-C-S
1465	CHCH_2-	2	1	1	-	Н	$-CH_2-N-C$ F_3C
1466	С⊢—СН2-	2	1	1	-	н	-CH ₂ -N-C-\Br
1467	CH_CH2-	2	1	1	-	н	-CH ₂ -N-C-
1468	C├-{	2	1	1	-	н	$-CH_2-N-C-$ NO_2
1469	C├-(CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-CF ₃
1.470	C├ ─ CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C
1471	С⊢СН₂-	2	1	1	-	Н	-CH ₂ -N-CF
1472	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
1473	Br S CH2-	1	2	0	R	н	$-CH_2-N-C-$
1474	CI CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.135

Idaic	1.100						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
1475	CL	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	B CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1477	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1478	Br Q-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1479	CH ₃ -CH ₂ CH ₃	1	2	0	R _.	Н	-CH ₂ -N-C-CF ₃
1480	CH ₃	1	2	0	R	Н	-СH ₂ -N-С-СF ₃
1481	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1482	BF CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1483	H_3C CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1484	Cr S C - CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1485	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S-F

Table 1.136

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1486	H ₃ CCH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCH_3 H_2N
1487	H ₃ C-()-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CI
1488	H ₃ C-CH ₂ -	1	2	0	R	Н	O CH₃ -CH₂-N-C- H
1489	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1491	H₃C-(1	2	0	R	Н	NH ₂ 0 ← 0 −CH ₂ −N ← 0
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C-\(\sigma\)
1493	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -H _C -N
1494	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1495	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C-V N H_3C$
1496	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_{2}-N\cdot C- \bigcirc O$ H_{3} H_{3}

Table 1.137

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1497	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-√
1499	CH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1500	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH₂-N-C-
1501	CH ₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1502	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- F$
1503	CH ₃ CH ₂ — CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	H ₂ N-CH ₂ -						-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1506	C	2	1	1	-	Н	$-CH_2-N-C H_2N$ H_2N
1507	CHCH ₂ -	2	1	1	-	Н	$-CH_2-N-C-$ H_2N

Table 1.138

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G-R^6$
1508	CH2-	2	1	1	-	н	$-CH_2-N-C H_2N$
1509	CH-CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-
1510	CH2-	2	1	1	-	Н	$-CH_2-N-C$ H_2N
1511	CHCH ₂ -	2	. 1	1	-	н	-CH2-N-C-S Br
1512	CH2-	2	1	1	-	н	$-CH_2-N-C$ H_2N
1513	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1514	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1515	HQ H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1516	(H₃CCH₂) ₂ N-√CH₂-	2	2	1	-	Н	$-CH_2-N$ H_2N H_2N Br
1517	HQ . H ₃ CO—CH ₂ -	2	2	1	-	Н	$-CH_2-N+C$ H_2N H_2N
1518	HQ H ₃ CO-CH ₂ -	2	2	1		Н	-CH2-NCCH2 OH
							•

Table 1.139

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1519	HQ H ₃ CO—CH ₂ —	2	2	1	-	H _.	-CH2-N°COCH
1520	Br—CH₂-	1	2	0	R	н	$-CH_2-N$ C Br
1521	H₃CO-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-Br
1522	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1523	H ₃ CQ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-Br
1525	Br——CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-C
1526	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1527	CH₂-	1	2	0	R	Н	$-CH_2-N-C$
1528	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1529	H ₃ CO HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N$

Table 1.140

idbic	1.145						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1530	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C F$
1531	H ₃ CO-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ F
1532	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1535	Br——CH ₂ —	1	2	0	R	Н	-CH ₂ -N-CF
1536	H₃CO-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1537	CH ₂ -	i	2	0	R	Н .	-CH ₂ -N-CF
1538	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1 5 40	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ $+$ F

Table 1.141

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1541	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1542	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ F F
1543	H_3CO H_3CO H_2	1	2	٥	R	н	$-CH_2-N-C F$
1544	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C F$
1545	CI_S→CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1546	H_3CO F F F CH_2-	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ CO———CH ₂ — Br					Н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-CH_3$ H_3C CH_3 CH_3
1549	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ $-CH_3$ $-CH_3$ $-CH_3$
1550	H ₃ C-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-N-CH ₃
1551	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-H-C

Table 1.142

iubic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1552	H ₃ C-(1	2	0	R	Н	-CH ₂ -N-C-
1553	H ₃ C-()-CH ₂ -	1	2	0	R	Н	-045-H-C
1554	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C······
1555	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-\bigvee_{N}^{CH_{3}}$ $-CH_{2}-N-C-\bigvee_{N}^{N}$ $+_{3}C$
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-\bigvee_{N}^{CH_{3}}$
1557	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V_N$ H_3C
1558	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1559	H_3C CH_2	1	2	0	R	Н	$-CH_2-N-C-(CH_3)_3$ $+CH_2-N-C-(CH_3)_3$ $+CH_3-N-C$ $+CH_3-N-C$
1560	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-HC
1561	H ₃ C-_CH ₂ -	1	2	0	R	Н	$-CH_{2}-N C - CH_{3}$ $-CH_{2}-N C - CH_{3}$ $-CH_{3}$ $-CH_{3}$
1562	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C O_2N$ OCH_3

Table 1.143

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1563	H ₃ C-()CH ₂ -	1	2	0	R	н	-cH ₂ -N-C- O-C- N-H ₂
1564	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C- HN -CF3
1565	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1566	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C-$ O_2N OCH_3
1567	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-2 O=C CI
1568	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -1-C
1569	CH_3 CH_2 CH_3	1	2	0	R	Н	-сн₂-Й-с-
1570	H₃CS—CH₂-	2	2	1	-	Н	$-CH_2-NCC-$ H_2N
1571	H3CS-(CH2-	2	2	1	-	Н	-CH2-N-CH2-SCH6
1572	CN-C-CH2-	2	2	1	-	Н	$-CH_2-NC-$
1573	H3CO	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
			•				

Table 1.144

Idbic	••••						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1574	нь с-С	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1575	C	2	2	1	-	н	$-CH_2-N-CH_3$
1576	CH2-	2	2	1	-	Н	-CH ₂ -N-C
1577	HO(CH)2-N-C	2	2	1	-	Н	-CH ₂ -N-C-
1578	H ₃ C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1579	CH ₃ Q N C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O HC− HC− HC− CH₂−	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
1581	CHCH ₂ -	2	2	1	-	Н	-cH ₂ -N-C
1582	C├ \ CH ₂ -	2	2	1	-	Н	HIC-SH
1583	C⊢√CH₂-	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1584	C⊢√CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N

WO 99/25686 PCT/US98/23254

Table 1.145

iabic							
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1585	сн-СН2-	1	2	0	R	н	$-CH_2-N-C N$ Br
1586	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CI
1587	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C-
1588	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1589	H ₃ C-CH ₂ -	1	2	0	R	н *	$-CH_2-N-CF_3$ H_2N
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-NC$ H_2N OCF_3 H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\
1592	H₃C-⟨CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1593	H_3C — CH_2 -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
							$-CH_2-N-C$ H_2N OCF_3 H_2N

Table 1.146

Table 1	.146						
Compd.	R^1 $(CH_2)_i$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1596	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-NC R$ R R R R R R R R R
1597	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
	CH ₃ N − CH ₂ − CH ₃					Н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-сн ₂ -N-С-Ч ₃
1600	C├───────────────────────────	2	2	1	-	Н	$-CH_2-N$ CF_3 H_2N
1601	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N CF_3 H_2N
1602	СНСН₂-	2	2	1	-	Н	-CH ₂ -N-C-S
1603	с⊢СН₂-	2	2	1	-	Н	-CH ₂ -N-C-
1604	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1605	C├─(CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$
1606	C├ - CH₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃

Table 1.147

iable							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
1607	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ SCF ₃
1608	CH ₃ N—CH ₂ — CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1610	CF ₃ P N C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1611	C H C CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1612	H3CO(CH3)2-NC	2	2	1	-	Н	-CH ₂ -N-C
1613	H ₃ CH ₃ P CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1614	F3CS-CH2-	1	2	0	R	н	$-CH_2-N-C-$
1615	F₃CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1616	F ₃ CS—CH ₂ -	2	2	1	-	Н	$-CH_2-NC$ H_2N
1617	F3CS—CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N Br

Table 1.148

labic	1.1.40						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1618	.HQ H₃CO—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-Br
1619	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	, H	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	$-CH_2-N$
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ F CF_3 F
1623	HO(CH₂-	1	2	0	R	Н	$-CH_2-N-C \stackrel{Q}{\longrightarrow}$ $\stackrel{Br}{\longrightarrow}$
1624	HO€	1	2	0	R	H	-CH ₂ -N-C-C-CF ₃
1625	HO-√CH ₂ -	1	2	0	R	Н '	-CH ₂ -N-C-CF ₃
1626	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1628	H₃CS-{	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.149

Table	1.175						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1629	H₃CS-{}CH₂-	1	2	0	R	Н	CH ₂ -N-C-CF ₃
1630	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	Н	-CH ₂ -N-C-CF ₃
1632	$CF_3 \longrightarrow CH_2$	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1634	(H3C)2CH-(-)-CH2-	1	,2	0	R	Н	-CH2-N-C-CF3
1635	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C $C(CH_3)_3$
1636	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃
1637	CH ₃ CH ₂ − CH ₃	1	2	0	R	· н	$-CH_{2}-NC-(CH_{2})_{4}CH_{3}$
1638	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-(CH ₂) ₃ CH ₃
1639	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH2-H-C-OCH2CH3

Table 1.150

Iable	1.130						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1640	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_{2}-N-C$
1641	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH2-N-C-()-OCF2CHCIF
1642	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N-C-N$ O_2N-N
	CH_3 CH_2 CH_3					н	-CH ₂ -N-C-
1644	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-
1645	CI CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1646	Br O CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —()—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$

Table 1.151

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1651	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1652	H ₃ C(CH ₂) ₃ —(2	2	1	-	н	$-CH_2-NC \xrightarrow{O} Br$ H_2N
1653	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	Н	-CH2-N-CH2-CH2)2CH3
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1655	H ₃ C(CH ₂) ₃ —CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N CI
1657	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	Н	-CH2-HCH2-(CH2)2CH6
1658	H ₃ C(CH ₂) ₂ —(T)—CH ₂ —	2	2	1	- -	Н	-CH ₂ -N-C
1659	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N CI
	Вг—СН ₂ -						$-CH_2-N-C-$ H_2N $+ M_2N$ $+ M_2N$
1661	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N

Table 1.152

	•••						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1662	Br{CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1663	Br—⟨¯_}−CH₂−	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1664	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2 - N - C - CF_3$ $-CH_2 - N - C - CF_3$ $+ H_2 N$
1665	H₃CS—CH₂-	2	2	1	-	н	$-CH_2-N$ H_2N OCF_3 H_2N
1666	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1667	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-CBr
1668	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	⁻ H	$-CH_2-N$ - C - F - H_2N
1669	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1670	н₃ссн₂—()—сн₂-	2	2	1	-	Н	$-CH_2-N-C \xrightarrow{0}$ H_2N
1671	н _а ссн ₂ —Сн ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N O
1672	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N

Table 1.153

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1673	н₃ссн₂-{}сн₂-	2	2	1	-	Н	-CH ₂ -N-C
1674	FCH ₂ -	2	2	1	-	H	-CH ₂ -N-CBr
1675	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1676	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1677	FCH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1678	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1680	F-CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N
1681	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$ CF_3
1682	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H
1683	O-HO-CH2-	2	2	1	-	Н	-CH ₂ -N-C-→Br

Table 1.154

Table 1	1.154						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	F3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1684	N-C	2	2	1	-	Н	$-CH_2-NC-F$ H_2N
1685	N+C	2	2	1	-	Н	$-CH_2-N$ C H_2N
1686	N-C-CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1687	N- 0-CH₂-	2	2	7	-	н	$-CH_2-N-C$ H_2N
1688	N+0-CH₂-	2	2	1	-	н	$-CH_2-N$ H_2 H_2 H_2
1689	N-C-()-CH₂-	2	2	1	-	Н	$-CH_2-N$ H_2N
1690	N-C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1691	H C-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1692	H_3C — CH_2	1	2	C) R	н	-CH ₂ -N-C-Br
1693	CH₃ H₃C—CH₂−	1	2	() R	Н	$-CH_2-N-C$ H_2N H_2N
1694	CH ₃ CH ₂ −	1	. 2	. (o R	Н	$-CH_2-NC$ H_2N

Table 1.155

Table 1							
Compd.	R ¹ (CH ₂) -	k	m	n	chirality	- R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1695	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1696	CH ₃ H ₃ C−CH ₂ −	1	2	0	R	н	$-CH_2-N$ H_2N
1697	CH_3 CH_2	1	2	0	R	Н	$-CH_2-N$ H_2N CI H_2N
1698	H_3C CH_3 CH_2	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
1699	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1700	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
1701	H ₂ C=CH—CH ₂ —CH ₂ —	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1702	H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N$ H_2N CF_3 H_2N
1703	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1704	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2N
1705	CI CH2-	1	2	0	R	Н	$-CH_2-N$ H_2N CF_3 H_2N
					•		

Table 1.156

Table 1	.156						
Compd. No.	R^1 $(CH_2)_j$	k r	n	n (chirality	- R ³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
1706	CH ₂ -	1	2	0	R	Н	$-CH_2-N+C-$ $+CH_2-N+C-$ $+CH$
1707	H ₃ CS-CH ₂ -	1	2	0	R	H·	$-CH_2-NCC H_2N$
1708	H₃CCH₂-CH₂-	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
1709	(H3C)2CH-⟨CH2-	. 1	2	0	R	Н	$-CH_2-NC$ H_2N
1710	H ₃ C Br—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ -				R	Н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO————————————————————————————————————	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H₃C HO—CH₂-						-CH ₂ -N-C-CF ₃
1714	HQ	- 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃

Table 1.157

IADIC	1.101						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1717	H ₃ CO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1718	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1719	2 N _ CH₂-	1	2	0	R	н	-сн ₂ -N-с-СF ₃
1720	H3CO-C H3C-CH2- CH3	1	2	0	R	Н	-СH ₂ -N-С-СБ ₃
1721	н₃ссн₂-Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1722	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1723	CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ CF_3
1724	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1726	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N$
1727	O—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F ₃

Table 1.158

Compd.	R ¹ (CH ₂)j-	k	m	Π	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1728	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1729	H_3C- C H_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1730	H ₃ C C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1731	H ₃ CC N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1732	носн₂—Ст₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1734	H ₃ CS—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- F$
1735	H₃CCH₂−√CH₂−	1	2	0	R	Н	-CH ₂ -N-CF
1736	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \bigvee_{F}^{CF_3}$
1737	CH ₃ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C F$ CF_3 F
1738	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-CF

Table 1.159

	1						R ⁴
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1739	(HgC)2CH-{}-CH2-	1	2	0	R	н	-CH ₂ -N-C- H F
1740	-CH ₂ -	1	2	0	R	н	-CH₂-N-C-\Br
1741	H₃CS-()-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-\Br
1742	H₃CCH2CH2-	1	2	0	R	н	-CH ₂ -N-C
1743	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1744	H_3C CH_2	1	2	. 0	R	Н	-CH ₂ -N-CBr
1745	H_3C CH_3 H_3C CH_2	1	2	0	R	Н	-CH ₂ -N-C
1746	(H ₂ C) ₂ CH CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1747	CH ₂ -	1	2	0	R	н	$-CH_2-N-C \xrightarrow{D}^{D}$ H_2N
1748	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-\longrightarrow H_2N$
1749	H_3C-CH_3	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N

Table 1.160

						-	
Compo	d. R^1 (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_q$ $- \frac{1}{4}G - \frac{1}{4}G$
1750	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ OCF ₃ OCF ₃
1751	н₃сѕ–—Сн₂-	1	2	0	·R	H	-CH ₂ -N-C- OCF ₃
1752	н _а ссн ₂ ————————————————————————————————————	1	2	0	R.	н	-CH ₂ -N-C
1753	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1754	СH ₃ Н₃С—СН₂—	1	2	0	R	Н	-CH ₂ -N-C
1755	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N$
	(HgC)2CH-(-)-CH2-					н	$-CH_2-N-C-$
1 75 7	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1758	H_3CO Br Br CH_2	i	2	0	R	Н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-\CH ₂ -	1	2	0	R	н .	-012-NC-
1760	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C$

Table 1.161

Compd.	R^1 (CH ₂) _j -	k	m	n	chirality	. R3	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1761	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH2-H-C-H-C-H-CI
1762	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C HN C1
1763	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C
1764	CH ₂ -	2	2	0	-	Н	-CH2CH2-N-C
1765	CH₂-	2	2	0	-	Н	$(S) \bigcirc \bigcirc$
1766	CH ₂ -	2	2	0	-	Н	(R) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1767	CH2-	1	3	1	-	Н	-CH ₂ -N-C
1768	CH-2-	1	3	1	-	Н	-CH2CH2-N-C
1769	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1771	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C- H (H ₃ C) ₃ C-C+N-C H ₃ C O

Table 1.162

Compd.	R^{2}					-R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-}R^6$
1772	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C H ₃ C H ₃ C
1773	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1774	CH ₃ CH ₂ CH ₃					Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1776	H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1777	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1778	H ₃ C-CH ₂ -				-	Н	$-CH_2-N C - CF_3$ $+ C - CF_3$ $+ C - CF_3$
1779	CH ₂	2	2	1	-	Н	$-CH_2-N$ CF_3 H_2N
1780	Br—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C H_2N$
1781	HO-{	2	2	1	-	Н	$-CH_2-N-C H_2N$
1782	H ₂ C=CH-CH ₂ -	2	2	1	•	Н	$-CH_2-N-C H_2N$

Table 1.163

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	-R3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1783	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1784	CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 H_2 H_3
1785	CH ₃ (CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1786	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1787	CH ₃ (CH ₂) ₂ —————————————————————————————————	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
1788	H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_2-N$ CF_3 H_2N
1789	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1790	C├─ ⟨ _}CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
1791	CHCH2-	1	2	0	S	Н	$-CH_2-N-C-$ H_2 H_2 H_2
1792	CH ₃ -CH ₂	2	2	1	-	Н	$-CH_2-N-C H_2N$
1793	CI—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.164

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1794	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1795	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1796	Br—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1797	HO-(2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
1798	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C +$ H_2N
1799	H ₂ C=C H-CH ₂ -	2	2	1	-	н	$-CH_2-N-C +$ H_2N $+$ F
1800	NC-CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N F F
1801	CH₂−	2	2	1	-	Н	$-CH_2-N$ H_2 H_2 H_2 H_2
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
1803	HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1804	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	،

Table 1.165

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1805	Вг—СН2−	1	2	0	R	н	$-CH_2$ -N-C- \longrightarrow SCF ₃
1806	H₃CO(CH₂-	1	2	0	R	н	$-CH_2-N-C$ SCF_3
1807	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ SCF_3
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ SCF ₃
1809	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1813	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	н	$-CH_2$ $-N$ $-C$
1815	CH ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$

Table 1.166

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1816	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	Н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1818	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1819	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CHF ₂
1820	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-OC HF ₂
1821	HQ H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-C
1822	HO()CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1823	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1824	CH ₂ -	1	2	0	R	, Н	-CH ₂ -N-C-C-C
1825	H3CS-CH2-	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1826	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C

Table 1.167

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1827	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1828	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1829	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1831	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1832	H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-C(CH_3)_3$
1833	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ H ₃ CO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1835	HO- ⟨ }CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1836	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃

Table 1.168

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1838	H₃CS-⟨CH₂-	1	2	0	R	Н	$-CH_2-N-C$
1839	H₃CCH₂—⟨CH₂–	1	2	0	R	н	$-CH_2-N_1C-C(CH_3)_3$
1840	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1841	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1842	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1844	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1845	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1846	H_3 C CH_3 CH_2 -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.169

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	Ħ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1849	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
1850	H₃CCH₂-⟨}-CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
1851	H_3 C- CH_3	1	2	0	R	Н	- CH ₂ -N-C
1852	O-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
1853	H ₃ CQ HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
	H ₃ CCH ₂					н	-CH ₂ -N-C-
1856	H_3 C \longrightarrow C H_3	1	2	0	R	н	-CH ₂ -N-C-
1857	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
1859	H ₃ COCH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N

Table 1.170

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1860	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C H_2N H_2N
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1862	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1863	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1864	H ₃ CS-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-Br
1865	CH ₂ -				R	Н	$-CH_2-N-C$ H_2N H_2N
1866	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1867	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1868	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R		$-CH_2-N-C$ H_2N
1869	Br—√CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$ H_2N
1870	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N^*C$ H_2N

Table 1.171

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1871	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1872	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$
1873	но-{	1	2	0	R	Н	$-CH_2-N-C H_2N$
1874	CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2N
1875	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 N
1876	H ₃ CS-CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N
1877	H₃CCH2——————————————————————————————————	1	2	0	R	н	$-CH_2-N+C$ $H_2 N$
1878	\checkmark						$-CH_2-N-C$ H_2 H_2 N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R		$-CH_2-N$ C H_2 H_2 N
1880	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_{2}-NC-$ H_{2} H_{2} N
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.172

. abic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
1882	Br	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1883	H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2$ -N-C-NO ₂ H_2 N
1884	H ₃ CQ HO————————————————————————————————————	1	2	0	R	H	$-CH_{2}-N-C$ $H_{2}N$ NO_{2} $H_{2}N$
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1886	HO-CH ₂ -	1	2	0	Ŗ	Н	$-CH_2-N-C$ H_2N H_2N
1887	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1888	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 NO_2 H_2
1889	H₃CS-CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 NO_2 H_2
1890	H₃CCH₂—CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 NO_2 H_2
1891	-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$ $H_2 N$ $H_2 N$
1892	H_3 C \longrightarrow C H_2	1	2	0	R .	Н	$-CH_2-N-C$ H_2 H_2 NO_2 H_2

Table 1.173

Compd.	R^1 (CH_2)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1893	CH ₃ H ₃ C CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1894	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2 \xrightarrow{N} C \xrightarrow{NO_2}$ H_2N
1895	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1896	HQ H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3
1897	H₃CS-CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1898	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
1899	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3
1900	H ₃ CQ HO- CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2 H_2 N
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	Н	$-CH_{2}-N+C$ $H_{2}N$ $H_{2}N$ OCF_{3}
1902	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C$ $H_{2}N$ OCF_{3}
1903	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-CH_2$

Table 1.174

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	H	$-CH_2-N-C \longrightarrow H_2N$
1905	CH2−	1	2	0	R	H	$-CH_2-N-C \longrightarrow H_2N$
1906	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
1907	HO-{	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
1908	H3CO-(1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3 H_2N
1910	Br—CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N OCF_3 H_2N
1911	CI—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1912	HO{}CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
1913	$H_3C \longrightarrow CH_2$	2	2	1	-	Н	$-CH_2-NC-$ H_2N
1914	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$

Table 1.175

Compd.	R^{1} (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1915	H ₃ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	$-CH_2-N+C$ H_2N OCF_3 H_2N
1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1918	H ₃ C HO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N OCF_3
1919	CH \longrightarrow CH_2	2	2	1	-	н	-CH ₂ -N-C
1920	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1921	CH_2 NH_2 CH_2	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3
1922	$\operatorname{CH} \stackrel{\operatorname{NH}_2}{\longrightarrow} \operatorname{CH}_2 -$	2	2	1	-	Н	$-CH_2-N$ H_2 H_2 N
1923	Вг—СН2−	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃

Table 1.176

Compd.	R ¹ (CH ₂);	k	m	n	chirality	Ř³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1926	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1927	HO-{CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ SCF_3 $-CH_2-N-C$
1929	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1930	H3CS-CH2-	2	2	1	-	н	CH ₂ -N-C
1931	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	CH ₃	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1934	H_3 C H_3 C H_2 C H_3	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
	O ₂ N-CH ₂ -						-CH ₂ -N-C-SCF ₃
1936	H ₃ C-\CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$

Table 1.177

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1937	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1938	Br(CH ₂ -	2	2	1	-	Н	$-\operatorname{CH}_2\text{-N-C} \xrightarrow{\operatorname{P}} \operatorname{CH}_3$
1939	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C Br$ CH_3
1940	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C CH_3
1941	F—CH ₂ -	2	2	1	-	Н	$-CH_2-HC-$ Br CH_3
1942	HO	2	2	1	-	Н	$-CH_2-N$ C CH_3
1943	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C $-CH_3$
1944	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1945	H3CS-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1946	H₃ССН ₂ ——СН ₂ —	2	2	1	-	Н	$-CH_2-N-C$ \rightarrow CH_3
1947	O—CH₂-	2	2	1	-	Н	$-CH_2-N$ CH_3 CH_3

Table 1.178

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1948	CH ₃ H ₃ C-CH ₂ −	2	2	1	-	Н	$-CH_2-N-C Br$ CH_3
1949	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-S-CH ₃
1950	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1951	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Sr CH ₃
1952	Br—CH ₂ —	2	2	1		Н	-CH ₂ -N-CF
1953	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF
1954	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ \longrightarrow F
1955	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF
1956	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1957	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1958	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF

Table 1.179

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1959	н₃cs-{сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1960	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	CH ₂ -N-C
1961	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1962	CH ₃ CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
1963	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C
1964	0 ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SF
1965	H ₃ C-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
1966	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SF
1967	B	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
1968	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1969	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N

Table 1.180

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1970	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2
1971	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1972	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N
1973	H₃CCH2CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2 N
1974	CH ₃	2	2	1	-	Н	$-CH_2-N-C H_2N$
1975	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1976	H ₃ C————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1977	NC-()-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1978	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1980	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.181

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1981	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1982	NC-√_CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H H_2N
1983	(CH ₃) ₂ CH	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
1984	Br—⟨¯_)—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ $H_2 N$
1985	H₃CO-(CH₂-	2	2	1	-	Н	$-CH_2-N+C H_2N$
1986	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1987	O-√CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1988	CH ₂ -	2	2	1	-	Н	$-CH_2-N+C-$ $H_2 N$
1989	H₃CS-{\rightarrow}CH2-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1990	H₃CCH₂—CH₂−	2	2	1	-	Н	$-CH_2-N-C-$ $H_2 N$
1991	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ CH_2-N H_2 H_2 H_2

Table 1.182

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1992	CH ₃ CH ₂ -	2	2	1	-	Н	$-CH_2-N+C$ $H_2 N$
1993	O ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N+C-$ H_2N
1994	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $H_2 N$
1995	NC-CH2-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1996	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N
1997	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1998	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1999	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2000	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2001	HO- √ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2002	CH ₂ ~	2	2	1	-	н	-CH ₂ -N-C-

Table 1.183

Compd. No.	R^1 (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2003	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2004	H ₃ CS-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$
2005	H ₃ CCH ₂ CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-
2006	CH ₃ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2007	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2008	H ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
2009	NC-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CI
2010	(CH ₃) ₂ CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2011	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-CI
2012	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2013	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.184

Compd. No.	R ¹ (CH ₂) _j	ķ	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2014	HO-{	2	2	1	-	н	-CH ₂ -N-C-Br
2015	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2016	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2017	H₃CS-()-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-Br
2018	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2019	O-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2020	CH ₃	2	2	1	-	Н	-CH ₂ -N-C-Br
2021	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- Br
2022	H ₃ C-\CH ₂ -	2	2	1	-	Н	-CH₂-N-C-SPr
2023	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CShr H
2024	(CH ₃) ₂ C H- CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-

Table 1.185

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2025	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C-Br
2026	F—CH ₂ -	2	2	1	<i>,</i> -	H	-CH ₂ -N-C-
2027	Br—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N H_2N H_2N
2028	H ₃ CO-CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-Br
2029	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SBr
2030	O→CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2031	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
2032	O-√CH ₂ -	2	2	1	÷	H	$-CH_2-N-C \xrightarrow{O} \xrightarrow{Br} H_2N$
2033	H_3C CH_3 CH_2	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
2034	O ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2035	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$ H_2N

Table 1.186

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+ G-R^6$
2036	NC-√CH ₂ -	2	2	1	-	н	$-CH_2-N-C- \longrightarrow_{H_2N}^{Br}$
2037	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	$-CH_2-N+C$ H_2N H_2N H_2N
2038	F-CH ₂ -	2	2	1	-	н :	$-CH_2-N-C-$ H_2N H_2N Br
2039	H ₃ C-(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H CN
2040	H ₃ C	1	2	0	R	Н	-CH2-N-C-CH
2041	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CH-3
2042	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N$ C $H_{3}C$ CH_{3} $H_{3}C$
2043	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CH ₃
2044	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-H ₃

Table 1.187

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2047	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2048	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C
2049	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₃ -CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2051	H ₃ C N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2052	Br CH_2 OCH_2CH_3	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2053	H ₃ CQ CH ₂ O-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2054	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2055	H ₃ CO CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2056	Br, CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2057	Br H ₃ CO—CH ₂ —	2	2	1	-		$-CH_2-N-C \xrightarrow{O} F$ H_2N

Table 1.188

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2058	H ₃ CO OCH ₃ —CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ $+$ H_2N $+$ F
2059	_O-CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2060	H_3CO H_3CO CH_2 CCH_3	2	2	1	-	Ħ	$-CH_2-N-C$ H_2 H_2 H_2
2061	FCH ₃	2	2	1	-	Н	$-CH_2-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2062	H ₃ CO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2063	H_3CQ H_3C CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2 H_2
2064	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O————————————————————————————————————	2	2	1	-	Н	$-CH_{2} \xrightarrow{N} C \xrightarrow{F} F$ $H_{2}N$
2066	OCH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2067	(H ₃ C) ₂ CHCH ₂ —CH ₂ —	2	2	1	-	н	$-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$
2068	CI, F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C F$ H_2N

Table 1.189

					a. sac	•	D4
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-GR^6$
2069	H ₃ C H ₃ CO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2070	Br CH_2 OCH_3	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	Н	$-CH_2-N-C \longrightarrow F$ H_2N
2072	(H ₃ C) ₂ CHO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
2073	CH ₂ Q	2	2	1	-	Н	-CH ₂ -N-C
2074	H ₃ CO CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
2075	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2076	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N-CF$ H_2N
2077	CH ₂ -OH	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2079	CH ₂ Q H ₃ CO-CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.190

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2080	CH ₂ Q H ₃ CO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2081	CI HO—CH ₂ —	2	2	1	· -	н	$-CH_2-N-C$ H_2N
2082	OH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F H_2N
2083	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2084	H ₃ CO HO———————————————————————————————————	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
2085	OH H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2086	CI -CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C- CF ₃ H ₂ N
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2088	(H ₃ CCH ₂) ₂ N-\biggred \biggred -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2089	F-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2090	CH2-	1	2	0	R	Н	$-CH_2-N-C$ H_2N

Table 1.191

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2091	CHCH_2-	2	2	į	-	Н	OCH ₂ CH ₃ -CH-N-C-
2092	СЊ_СН2-	2	2	1	-	н	(F) -CH-NC- H CH ₂ NH
2093	CH-CH ₂ -	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ SCH ₃
2094	CH-2-	2	2	1	-	н	CH2CH3
2095	C├ \ CH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C- L H C(CH ₃) ₃
2096	СН2-	2	2	1	-	Н	CH-N-CH-SCH ₃
2097	CH2-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ -CH ₂ CH ₂ CH ₃
2098	CHCH2-	2	2	1	-	Н	(R O O CH ₂ CH ₃ - CH-N O CH CH ₂ CH
2099	CHCH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃
2100	СН-СН2-	2	2	1	-	Н	CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
2101	C⊢√CH ₂ −	2	2	1	-	Н	CH-N-C

Table 1.192

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2102	C├─ \ CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH+N-C
2103	CH_CH2-	2	2	1	-	Н	() OCH₂CH₃ -CH+N-C- H₃C-CHOCH₂- R
2104	CHCH_2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ -C-OCH ₃ O R
2105	H ₃ CO OH CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2106	H ₃ C OH	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 N
2107	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H H_2 N
2108	CH ₃ CH ₂ -	2	2	1	-	Н	$-CH_2-N$ $-CH_2-N$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
2109	Br Q CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
2110	H ₃ CCH ₂ CH ₂ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2111	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2
2112	Br H ₃ CO————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C

Table 1.193

, 0.0.0							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C-$ F
2114	H_2N H_3C CH_2	2	2	1	-	н	$-CH_2-N-C$
2115	CH	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CHN-C-CHCH ₃ CH(CH ₃) ₂
2116	CH_CH2-	2	2	1	-	Н	(R) (R)
2117	CI—()—CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CHN-C- HN-C- CH ₂ -NH
2118	HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
2119	OH HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2120	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃ H ₂ N
2121	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C- H H ₂ N
2122	CH_CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2123	CH ₂ -NO ₂	1	2	0	Ŗ	Н	$-CH_2-N-C$ H_2N

Table 1.194

Compd.	R^1 (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2124	O ₂ N CI————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2125	O_2N H_3CO —CH ₂ —	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2126	O_2N H_3C — CH_2 —	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2127	CH ₂ -NH ₂	1	2	0	R	Н	$-CH_2-N-C H_2N$
2128	H ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2129	H_2N H_3C — CH_2 —	1	2	0	R	Н	$-CH_2-N-C - $
2130	O'N-CH2-	2	2	1	-	Н	$-CH_2-N-C H_2N$
2131	CH_3 CH_2 CH_3	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2132	H_2N CH_2	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2133	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2134	O CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3

Table 1.195

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ H ₂ N
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 N
2137	CH₃ CH₂−	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
	CH ₃ CH ₂ CH ₃					Н	$-CH_2-N-C-$ H_2 H_2 H_2
2139	H ₃ C CH ₂ -CH ₂ -CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2140	CH ₂ -NH ₂	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2141	H ₂ N HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2 H_2 H_2
2142	H_2N CH CH_2	2	2	1	-	Н	-CH ₂ -N-C
2143	CH ₂ - HN°C-CH ₃	2	2	1	-		•
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2145	H ₂ N HO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- CF ₃

Table 1.196

idoic	1.130						4
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
2146	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2147	Q H ₃ C·C-NH H ₃ CO────────────────────────────────────	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $+CH_2N$ $+CH_2N$
2149	O_2N O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_3 O_4 O_4 O_4 O_4 O_4 O_5 O_5 O_5 O_5 O_6 O_7 O_8	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2150	H ₃ C-C-NH CII	1	2	0	R	Н	$-CH_2-N-CF_3$ H_2N
2151	CH ₂ - HN-C-CH ₃	1	2	0	R	Н	$-CH_2-N$ H_2N CF_3
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$
2153	H_3 C-C-NH H_3 C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2155	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2156	CH ₂ - HN-C-CH ₃	2	2	1	-	Н	$-CH_2-N-C H_2N$ H_2N

PCT/US98/23254

Table 1.197

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2157	CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2158	H ₃ C-NH HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
2159	H_3CO-NH H_3CO-CH_2-	2	2	1	-	Н	$-CH_2-N-C- F$ H_2N
2160	H ₃ C-NH HO———————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
2161	H ₃ C-NH CH2-CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ CF_3 H_2N
2164	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2165	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
2166	€\$-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C\longrightarrow H_2N$
2167	H N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N

Table 1.198

i abie	1.130						
Compd.	R^{2}	k	m	n	chirality	- R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2168	C-OCH ₃ H ₃ C CH ₂ CH ₃				R	н	$-CH_2-N-C H_2N$ CF_3 H_2N
2169	H_3C CH_3 CH_3	1	2	0	R	н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
2170	CI N-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 N
2171	H ₃ C CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 N
2172	H ₃ C CH ₂	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 H_3
2173	S—CH ₂ -CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ C CH ₃ Br CH ₂ -					Н	-CH ₂ -N-C
	$H_3CO \longrightarrow CH_2-$						$-CH_2-NC$ H_2N
2176	H ₃ C - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
2177	H_3C OH CH_2 CH $_2$ OH	1	2	0	R	Н	$-CH_2 - N - CF_3$ $+ H_2N$
2178	H ₃ CO-C + CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N

Table 1.199

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2179	H ₃ C-F, N-, -CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2180	CH ₂) ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2$ H_2 N
2182	H ₃ C CH ₂ -	1	2	0	R	Н	$-CH_2-NCH_{H_2N}$
2183	\$-N N=CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2 H_2 N
2184	\$-N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H H_2N
2185	S-N CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2186	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2187	H ₂ N HO—CH ₂ —	1	2	0	R	Н	$-CH_2-NC$ H_2N CF_3
2188	CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2189	CH ₂ -	1	2	0	R	Н	$-CH_2-N-CF_3$ H_2N

Table 1.200

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2190	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2191	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$ CF_3
2192	S H CH ₂ -	2	2	1	-	Н	$-CH_2-N+C-$ H_2N H_2N
2193	S H CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2$ H_2 N
2194	H ₂ N H ₃ C CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2195	H_2N CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2196	H_3 C-NH H_3 C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ H_2N
2197	H ₃ C-NH H ₃ CO CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ H_2N
2198	H ₃ C-NH CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2
2199	H_3C-NH H_3C-CH_2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2200	H ₃ C-NH CH2-CH2-	2	2	1	-	н	$-CH_2-N+C$ H_2N

Table 1.201

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$
2202	S H CH ₂ -	1	2	0	R	Н	$-CH_2-NC- CF_3$ $+L_2N$
2203	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2$ H_2 N
2204	CH ₃	2	2	1	-	Н	$-CH_2-NC-CF_3$ $+L_2N$
2205	CH ₃	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2206	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2207	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2208	HN-CH ₃	2	2	1	-	Н	-CH ₂ -N-C-S
2209	HN-CH ₃	2	2	1	-	Н	-CH ₂ -N-C-F H H ₂ N

The present invention can also use acid addition salt of the cyclic amine compound where such acids include, for example, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, carbonic acid, and the like, as well as organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid, formic acid, and the like.

Furthermore, the present invention can also use a C_1 - C_6 alkyl addition salt of the cyclic amine compound, such as 1-(4-chlorobenzyl)-1-methyl-4- $[\{N-(3-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ aminomethyl)piperidinium iodide, where such alkyl include, for example, a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl, 1-ethylbutyl, and the like, suitably specifically including, a methyl and ethyl group. As preferred specific examples for counter anion of the ammonium cation, a halide anion such as fluoride, chloride, bromide or iodide can be listed.

The present invention may use racemates and all possible optically active forms of the compound represented by the above formula (I).

20 Compound represented by the above general formula (I) can be synthesized by any of the general preparations given below.

(Preparation 1)

10

15

25

30

A preparation which call for treating one equivalent of a compound represented by the formula (II) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (II)
\end{array}$$

{where R^1 , R^2 , R^3 , j, k, m, and n are the same as defined respectively in the above formula (I)} with 0.1-10 equivalents of a carboxylic acid represented by the formula (III) below:

$$\begin{array}{c} O \\ HO-C-(CH_2)_p \xrightarrow{R^4} (CH_2)_q - G-R^6 \end{array}$$
 (III)

{where R^4 , R^5 , R^6 , G, p, and q are the same as defined respectively in the above formula (I)}, or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid in the above formula (III) include highly reactive carboxylic acid derivatives, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent such as molecular sieve, coupling reagent such as N-ethyl-N'-(3-(DCC), dicyclohexylcarbodiimide 10 dimethylaminopropyl) carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), N-hydroxysuccinimide (HOSu), N-hydroxybenzotriazole (HOBt), benzotriazol-1yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PVBOP®), benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluroniumtetrafluoroborate (TBTU), 15 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium O-(N-succinimidyl)-1,1,3,3-tetramethyluronium (TNTU), tetrafluoroborate tetrafluoroborate (TSTU), bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBroP®), and the like, or base including inorganic salts such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, and the like, amines such 20as triethylamine, diisopropylethylamine, and pyridine, and the like, or polymer (piperidinomethyl) polystyrene, as such bases supported (diethylaminomethyl)polystyrene, poly(4-(morpholinomethyl)polystyrene, vinylpyridine), and the like.

25 (Preparation 2)

5

A preparation which calls for treating 1 equivalent of an alkylating reagent given by the formula (IV) below:

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j \longrightarrow X
\end{array} (IV)$$

{where R^1 , R^2 , and j are the same as defined respectively in the above formula (I)}; X represents a halogen atom, alkylsulfonyloxy group, or arylsulfonyloxy group}, with 0.1-10 equivalents of a compound represented by the formula (V) below:

35

30

$$\begin{array}{c} (C H_2)_k \\ H N \\ (C H_2)_m \end{array} - (C H_2)_n - N - C - (C H_2)_p - \frac{R^4}{R^5} (C H_2)_q - G - R^6 \end{array}$$
 (V)

{where R^5 , R^4 , R^5 , R^6 , G, k, m, n, p, and q are the same as defined respectively in the above formula (I)} either in the absence or presence of solvent.

Such reactions can be more smoothly run if a base similar to that used in the above preparation 1 is present. In addition, the reactions in these preparations can also be promoted by iodide such as potassium iodide, sodium iodide, and the like.

In the above formulas (IV), X represents a halogen atom, alkylsulfonyloxy group, arylsulfonyloxy group. Such halogen atoms include preferably chlorine, bromine, and iodine atoms. Suitable specific examples for the alkylsulfonyloxy groups include methylsulfonyloxy, trifluoromethylsulfonyloxy group, and the like. A preferred specific example for the arylsulfonyloxy group includes a tosyloxy group.

15 (Preparation 3)

5

10

30

A preparation which calls for treating 1 equivalent of an aldehyde represented by the formula (VI) below:

$$R^1$$
 CH₂)_{j-1}-CHO (VI)

20 {where R^1 and R^2 are the same as defined respectively in the above formula (I); γ represents 1 or 2) or the formula (VII) below:

$$R^1$$
-CHO (VII)

(where R^1 is the same as defined in the above formula (I); j represents 0), with 0.1-10 equivalents of a compound represented by the formula (V) either in the absence or presence of solvent under reductive conditions.

Such reactions are in general called reductive amination reactions and such reductive conditions may be generated by catalytic hydrogenation using a catalyst containing a metal such as palladium, platinum, nickel, rhodium, or the like, using complex hydrides, such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the

like, boranes, or electrolytic reduction, and the like.

(Preparation 4)

10

15

20

A preparation which call for treating one equivalent of a compound 5 represented by the formula (VIII) below:

$$\begin{array}{c}
R_{1}^{1} \longrightarrow (CH_{2})_{j} \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} \longrightarrow ($$

(where R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)) with 0.1-10 equivalents of a carboxylic acid or sulfonic acid represented by the formula (IX) below:

$$HO-A-R^6$$
 (IX)

{where R⁶ is the same as defined in the above formulas (I); "A" represents a carbonyl group or sulfonyl group), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid or sulfonic acid in the above formula (IX) include highly reactive carboxylic acid or sulfonic acid derivative, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

25 (Preparation 5)

A preparation which calls for treating 1 equivalent of a compound represented by the above formula (VIII) with 0.1-10 equivalents of a isocyanate or isothiocyanate represented by the formula (X) below:

$$Z=C=N-R^6 \tag{X}$$

(where R^{ϵ} is the same as defined in the above formulas (I)); Z represents a oxygen atom or sulfur atom), either in the absence or presence of solvent.

(Preparation 6)

5

15

20

25

30

A preparation which calls for treating 1 equivalent of a compound represented by the formula (XI) below:

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
 R^{2}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{h} \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{n} - N - C \\
 (CH_{2})_{n} - N - C \\
 (CH_{2})_{p}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{q} - A - OH \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{q} - A - OH \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{q} - A - OH \\
 (CH_{2})_{m}
\end{array}$$

{where R^1 , R^2 , R^3 , R^4 , R^5 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)}; "A" represents a carbonyl group or sulfonyl group} with 0.1-10 equivalents of an amine represented by the formula (XII) below:

$$R^{6}-NH_{2} \tag{XII}$$

{where R^6 is the same as defined in the above formula (I)}, either in the absence or the presence of solvent.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

If the substrates submitted to each of the above preparations contains a substituent which reacts under each reaction condition or is thought to adversely affect the reaction in general in synthetic organic chemistry, that functional group can be protected by a known suitable protecting group followed by the reaction of the above preparations and deprotection using a known procedure to obtain the desired compound.

Furthermore, a compound of the present invention can be prepared by the further conversion of the substituent(s) of the compound, prepared with the above preparations 1-6, using known reactions which are usually used in synthetic organic chemistry, such as alkylation, acylation, reduction, and so on.

Each of the above preparations may use solvents for the reaction such as halogenated hydrocarbons such as dichloromethane, chloroform, and the like, aromatic hydrocarbons such as benzene, toluene, and the like, ethers such as diethyl ether, tetrahydrofuran, and the like, esters such as ethyl acetate, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, acetonitrile, and the like, alcohols such as methanol, ethanol, isopropyl alcohol, and the like.

The reaction temperature in either of the preparations should be in the range of -78 °C - +150 °C, preferably 0 °C - 100 °C. After completion of the reaction, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired cyclic amine compound represented by the above formula (I). These can be converted into pharmaceutically acceptable acid addition salt or C_1 - C_6 alkyl addition salt by the usual method.

10 Potential Industrial Utilities

5

15

20

The chemokine receptor antagonist, which contain the cyclic amine compound, its pharmaceutically acceptable acid addition salt or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt of this invention, which inhibits chemokines such as MIP-l α and/or MCP-l and the like from action on target cells, are useful as therapeutic agents and/or preventive preparation for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, sepsis, and the like, in which tissue infiltration of blood monocytes, lymphocytes, and the like plays a major role in the initiation, progression, and maintenance of the disease.

Examples

10

15

20

25

The present invention is now specifically described by the following examples. However, the present invention is not limited to these compounds described in these examples. Compound numbers in these examples represent numbers attached to these compounds listed as suitable specific examples in Tables 1.1-1.201.

Reference Example 1: Preparation of 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride.

4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and ${}^4\mathrm{Pr}_2\mathrm{NEt}$ (6.67 g, 51.6 mmol) were added to a solution of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81 g, 25.8 mmol) in DMF (50 mL). The reaction mixture was stirred at 70 °C for 15 h and the solvent was removed under reduced pressure. Recrystallization (CH₃CN, 50 mL) provided the desired material, 3-(tert-butoxycarbonyl)amino-1-(4-chlorobenzyl)pyrrolidine as a pale yellow solid (6.43 g, 80.2%): ${}^1\mathrm{H}$ NMR (CDCl₃, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); The purity was determined by RPLC/MS (98%); ESI/MS m/e 311.0 (M*+H, C₁₆H₂₄ClN₂O₂).

A solution of 3-(tert-butoxycarbonyl) amino-1-(4-chlorobenzyl) pyrrolidine (6.38 g, 20.5 mmol) in CH₃OH (80 mL) was treated with 1 N HCl-Et₂O (100 mL) and was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford a solid which was purified by recrystallization (1:2 CH₃OH-CH₃CN, 150 mL) to give 3-amino-1-(4-chlorobenzyl) pyrrolidine dihydrochloride as a white powder (4.939 g, 84.9%): 1 H NMR (d_{6} -DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M⁺+H, C₁₁H₁₆ClN₂).

30 Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were also prepared pursuant to the above method using the corresponding reactant respectively. The products showed the same 1H NMR with that of the racemate.

35 Example 1: Preparation of 3-(N-Benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1).

N-Benzoylglycine (9.9 mg, 0.055 mmol), 3-ethyl-1-{3-(dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (10.5 mg) and 1-

hydroxybenzotriazole hydrate (HOBt) (7.4 mg) were added to a solution of 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (14.2 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through a PTFE membrane filter, the solvent was removed under reduced pressure to afford 3-(N-benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 1) as a pale yellow oil (17.7 mg, 95%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 372.0 (M'+H, $C_{20}H_{22}ClN_3O_2$).

10 Examples 2-32.

The compounds of this invention were synthesized pursuant to methods of Example 1 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 2.

15 Table 2

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2	2	C21 H24 C1 N3 O2	386	16.4	85
Example 3	3	C19 H21 Cl N4 O2	373	18.7	100
Example 4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
Example 5	82	C22 H23 Cl F3 N3 O2	454	5.6	11
Example 6	85	C21 H24 Cl N3 O2	386	22.6	59
Example 7	86	C21 H23 Cl N4 O4	431	21.2	98
Example 8	214	C22 H25 Cl N2 O2	385	23.9	62
Example 9	215	C23 H27 Cl N2 O3	415	17.4	84
Example 10	216	C20 H23 C1 N2 O2 S	391	21.6	quant
Example 11	217	C23 H27 C1 N2 O4	431	15.3	66
Example 12	218	C23 H27 Cl N2 O2	399	12.8	64
Example 13	219	C22 H24 Cl F N2 O3	419	18.1	86
Example 14	220	C22 H25 Cl N2 O2	385	16.4	85
Example 15	221	C21 H23 C1 N2 O2	371	14.9	80
Example 16	222	C21 H22 C12 N2 O2	405	13.3	65
Example 17	223	C25 H31 Cl N2 O3	443	18.4*	63
Example 18	224	C20 H23 C1 N2 O3 S	407	11.2	28
Example 19	225	C22 H26 C1 N3 O2	400	22.7	quant
Example 20	226	C23 H28 Cl N3 O3	430	21.0	98
Example 21	227	C22 H25 C12 N3 O2	434	21.9	100
Example 22	228	C23 H28 Cl N3 O3	430	20.8	97

Example 23	229	C25 H32 C1 N3 O2	462	25.4	quant
Example 24	230	C26 H31 Cl F N3 O2	472	26.0	quant
Example 25	231	C24 H28 C1 N3 O3	442	30.3*	quant
Example 26	232	C22 H32 C1 N3 O2	406	3,9	19
Example 27	233	C23 H28 C1 N3 O2	414	8.5	41
Example 28	234	C22 H27 Cl N4 O2	415	7.3	35
Example 29	235	C24 H29 Cl2 N3 O2	462	9.0	39
Example 30	236	C25 H29 Cl N4 O3 S	501	17.4	69
Example 31	237	C21 H24 C1 N3 O3	402	14.2	71
Example 32	238	C21 H23 C12 N3 O3	436	23.4	quant

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 2: Preparation of $(R)-3-\{N-(text-Butoxycarbonyl)\ glycyl\}$ amino-1-(4-chlorobenzyl) pyrrolidine.

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol), 2 N NaOH solution (80 mL), and ethyl acetate (80 mL) was shaken, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (80 mL x 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to give free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

A solution of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol) in CH_2Cl_2 (80 mL) was treated with Et_3N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (2.16 g, 16 mmol). After the reaction mixture was stirred at 25 °C for 16 h, 2 N NaOH solution (80 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layer was washed with water (100 mL x 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired (R)-3- $\{N$ -(tert-butoxycarbonyl)glycyl)amino-1- $\{A$ -chlorobenzyl)pyrrolidine (5.40 g, 92%).

Reference Example 3: Preparation of (R)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine.

To a solution of $(R)-3-\{N-(tert-butoxycarbonyl)\,glycyl\}$ amino-l-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol) in methanol (60 mL) was added 4 N HCl in dioxane (38 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N NaOH solution (80 mL) was added. The mixture was extracted with dichloromethane (80 mL x 3), and the combined

```
extracts were dried over sodium sulfate and concentrated. Column chromatography (SiO<sub>2</sub>, AcOEt/EtOH/Et<sub>3</sub>N = 90/5/5) gave (R)-3-(glycyl) amino-1-(4-chlorobenzyl) pyrrolidine (3.374 g, 86%): ^{1}H NMR (CDCl<sub>3</sub>, 270 MHz) \delta 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br. s, 1 H).
```

Other 3-acylamino-1-(4-chlorobenzyl)pyrrolidines were also synthesized pursuant to methods of Reference Example 2 and 3 using the corresponding reactants respectively.

- (S)-1-(4-Chlorobenzy1)-3-(glycylamino) pyrrolidine: 3.45 g, 79% (2 steps).
- (R)-3-(β -Alanylamino)-1-(4-chlorobenzyl)pyrrolidine: 3.79 g, 85% (2 steps).
- 15 (S)-3-(β -Alanylamino-)1-(4-chlorobenzyl)pyrrolidine: 3.72 g, 86% (2 steps).
 - (R) -3-{(S)-Alanylamino}-1-(4-chlorobenzyl)pyrrolidine: 368 mg, 65% (2 steps).
 - $(R)-3-\{(R)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 425 mg, 75% (2
- 20 steps).

10

- $(R)-3-\{(2S)-2-A\min o-3-thienyl propanoyl) amino-1-(4-chlorobenzyl) pyrrolidine: 566 mg, 78% (2 steps).$
 - $(R)-3-\{(2R)-2-Amino-3-thienylpropanoyl\}$ amino-1-(4-
- chlorobenzyl)pyrrolidine: 585 mg, 81% (2 steps).
- 25 (R)-3-(2-Amino-2-methylpropanoyl)amino-1-(4-chlorobenzyl)pyrrolidine: 404 mg, 66% (2 steps).
 - $(R) 3 \{ (2S) 2 Amino 4 (methylsulfonyl) \ butanoyl \} \ amino 1 (4 chlorobenzyl) \ pyrrolidine: 535 \ mg, 72\% \ (2 \ steps).$
- Furthermore (R)-3-(glycylamino)-1-(4-methylbenzyl)pyrrolidine, (R)-1-(4-bromobenzyl)-3-(glycylamino)pyrrolidine, (R)-1-(2,4-dimethylbenzyl)-3-(glycylamino)pyrrolidine, and (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine were also synthesized pursuant to methods of Reference Example 1, 2 and 3 using the corresponding reactants respectively.
- 35 (R) -3-(Glycylamino)-1-(4-methylbenzyl)pyrrolidine: 4.65 g, 62% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.
 - $(R)-1-(4-{\rm Bromobenzy1})-3-({\rm glycylamino}) \ {\rm pyrrolidine} \colon \ 2.55 \ {\rm g, \ 68\$ \ yield}$ from $(R)-3-{\rm amino}-1-(4-{\rm bromobenzy1}) \ {\rm pyrrolidine} \colon \ ^1{\rm H} \ \ {\rm NMR} \ \ ({\rm CDCl_2}, \ 270 \ \ {\rm MHz}) \ \ \delta$

1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H).

(R)-1-(2,4-Dimethylbenzyl)-3-(glycylamino) pyrrolidine: 1.56 g, 58% yield from 3-{(tert-butoxycarbonyl)amino)} pyrrolidine; ¹H NMR (CDCl₃, 270 MHz) δ 1.55-1.78 (m, 3 H), 2.30(s, 3 H), 2.23-2.31 (m, 2 H), 2.33(s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30 (s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97 (s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H).

(R)-1-(3,5-Dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine:
3.14 q, 45% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.

Example 33: Preparation of (S)-3-[N-{3,5-Bis(trifluoromethyl)benzoyl}glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 5).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of (S)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give (S)-3-[N-{3,5-bis(trifluoromethyl)benzoyl}glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 5) (14.4 mg, 57%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 508.0 (M*+H, $C_{12}H_{20}C1F_6N_3O_2$).

Examples 34-239.

The compounds of this invention were synthesized pursuant to methods of Example 33 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 3.

Table 3

35

30

5

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 34	5	$C_{22}H_{2}$, $C1F_6N_3O_2$	508.0	14.4	57

Example 35	6	$C_{21}H_{21}C1F_3N_3O_2$	440.0	17.0	77
Example 36	7	C20H21BrClN3O2	450.0	17.7	79
Example 37	8	$C_{20}H_{21}ClFN_3O_2$	390.0	12.7	65
Example 38	9	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	39.0	quant
Example 39	10	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	23.5	quant
Example 40	11	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	22.4	quant
Example 41	12	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	15.9	74
Example 42	13	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	13.1	60
Example 43	14	C ₂₁ H ₂₄ C1N ₃ O ₂	386.0	16.4	85
Example 44	15	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.7	77
Example 45	16	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	28.2	quant
Example 46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	quant
Example 47	18	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.8	quant
Example 48	19	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	16.3	78
Example 49	20	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	24.9	guant
Example 50	21	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.9	78
Example 51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
Example 52	23	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	15.4	67
Example 53	24	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	20.7	91
Example 54	25	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	18.5	81
Example 55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	quant
Example 56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
Example 57	28	C20H21ClN4O4	417.0	6.8	33
Example 58	29	$C_{22}H_{20}ClF_6N_3O_2$	508.0	20.8	82
Example 59	30	C21H21ClF3N3O2	440.0	15.2	69
Example 60	31	C26H21BrClN3O2	450.0	15.6	69
Example 61	32	C20H21ClFN3O2	390.0	11.8	61
Example 62	33	C20H20Cl3N3O2	440.0	15.8	72
Example 63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	quant
Example 64	35	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	56.1	quant
Example 65	36	C ₂₂ H ₂₆ C1N ₃ O ₄	432.5	37.6	quant
Example 66	37	$C_{21}H_{21}ClF_3N_3O_2$	440.0	12.6	57
Example 67	38	$C_{21}H_{24}ClN_3O_2$	386.0	12.3	64
Example 68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
Example 69	40	$C_{21}H_{24}ClN_3O_2$	402.0	11.6	58
Example 70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
Example 71	42	$C_{21}H_{21}ClN_4O_2$	397.5	22.4	quant
Example 72	43	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	30.1	quant
Example 73	44	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.4	59
Example 74	45	$C_{21}H_{20}ClF_4N_3O_2$	458.0	13.2	58

Example 75	46	$C_{21}H_{20}ClF_4N_3O_2$	458.0	14.4	63
Example 76	47	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	16.4	72
Example 77	48	$C_{21}H_{20}ClF_4N_3O_2$	458	16.5	72
Example 78	49	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	12.5	60
Example 79	50	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	26.3	quant
Example 80	51	C20H21BrClN3O2	450.0	8.6	38
Example 81	52	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.5	4.1	21
Example 82	53	$C_{20}H_{21}Cl_2N_3O_2$	406.0	5.4	27
Example 83	54	$C_{26}H_{20}Cl_3N_3O_2$	440.0	8.8	40
Example 84	55	C20H20BrCl4N3O2	440.0	7.7	35
Example 85	56	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	4.8	25
Example 86	57	$C_{22}H_{26}ClN_3O_4$	429.5	4.9	23
Example 87	58	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	4.1	20
Example 88	59	C20H21BrClN3O2	452.0	3.5	16
Example 89	60	C26H26ClN3O2	448.5	7.3	33
Example 90	61	$C_{21}H_{21}ClF_3N_3O_2$	440.0	7.1	32
Example 91	62	C21H24ClN3O2	386.0	10.4	54
Example 92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	30
Example 93	64	C ₂₁ H ₂₁ ClN ₄ O ₂	397.0	7.0	35
Example 94	65	C24H24ClN3O2	422.0	7.7	36
Example 95	66	C ₂₄ H ₂₄ ClN ₃ O ₂	422.0	6.3	30
Example 96	67	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	4.7	23
Example 97	68	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.8	38
Example 98	69	$C_{20}H_{20}C1F_2N_3O_2$	408.0	7.3	36
Example 99	70	$C_{20}H_{20}ClF_2N_3O_2$	408.0	9.1	45
Example 100	71	C ₂₂ H ₂₆ ClN ₃ O ₄	429.0	5.6	26
Example 101	72	$C_{21}H_{21}ClF_3N_3O_2$	456.0	6.2	27
Example 102	73	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.5	16.8	74
Example 103	74	C ₂₂ H ₂₄ ClN ₃ O ₄	430.0	16.4	76
Example 104	75	$C_{21}H_{20}ClF_4N_3O_2$	458.0	16.1	70
Example 105	76	$C_{21}H_{20}C1F_4N_3O_2$	458.0	17.0	74
Example 106	77	$C_{20}H_{16}C1F_3N_3O_2$	426.0	16.2	76
Example 107	78	$C_{20}H_{19}C1F_3N_3O_2$	426.0	18.0	85
Example 108	79	$C_{22}H_{20}ClF_6N_3O_2$	508.0	18.8	74
Example 109	80	$C_{22}H_{20}C1F_6N_3O_2$	508.0	16.4	65
Example 110	81	$C_{22}H_{26}ClN_3O_2$	400.0	13.9	70
Example 111	83	C20H21ClN4O4	417.0	16.0	77
Example 112	84	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.6	quant
Example 113	87	$C_{23}H_{22}ClF_6N_3O_2$	522.0	17.5	67
Example 114	88	$C_{22}H_{23}ClF_3N_3O_2$	454.0	13.9	61

Example 115	89	C21H23BrClN3O2	466.0	15.4	66
Example 116	90	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	10.7	53
Example 117	91	$C_{21}H_{22}Cl_5N_3O_2$	456.0	13.7	60
Example 118	92	$C_{22}H_{26}ClN_3O_3$	416.0	38.4	quant
Example 119	93	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	25.2	quant
Example 120	94	C ₂₃ H ₂₃ ClN ₃ O ₄	446.0	16.5	74
Example 121	95	$C_{22}H_{23}ClF_3N_3O_2$	454.0	16.3	72
Example 122	96	$C_{22}H_{26}ClN_3O_2$	400.5	16.7	84
Example 123	97	$C_{21}H_{23}Cl_2N_3O_2$	420.0	11.2	53
Example 124	98	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	11.8	57
Example 125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65
Example 126	100	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	9.5	46
Example 127	101	C22H24C1N3O4	430.5	13.2	61
Example 128	102	C22H22ClF4N3O2	472.0	13.1	56
Example 129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	quant
Example 130	104	C22H22ClF4N3O2	472.0	22.8	97
Example 131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
Example 132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₅	470.0	27.4	quant
Example 133	107	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.5	78
Example 134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
Example 135	109	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	23.9	quant
Example 136	110	C21H23ClN4O4	431.0	24.4	quant
Example 137	111	C23H22ClF6N3O2	522.0	9.5	36
Example 138	112	$C_{22}H_{23}ClF_3N_3O_2$	454.0	3.9	17
Example 139	113	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.5	32
Example 140	114	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.0	6.1	30
Example 141	115	$C_{21}H_{22}Cl_3N_3O_2$	456.0	6.6	29
Example 142	116	C22H26ClN3O3	416.0	4.8	23
Example 143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
Example 144	118	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	24.6	quant
Example 145	119	$C_{22}H_{23}ClF_3N_3O_2$	454.0	5.2	23
Example 146	120	$C_{22}H_{26}ClN_3O_2$	400.5	4.4	22
Example 147	121	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	7.8	37
Example 148	122	$C_{22}H_{26}ClN_3O_2$	416.5	14.1	68
Example 149	123	$C_{21}H_{22}Cl_3N_3O_2$	454.0	5.4	24
Example 150	124	C22H2;ClN4O2	411.0	34.0	quant
Example 151	125	C22H24C1N3O4	430.5	32.0	quant
Example 152	126	$C_{22}H_{22}C1F_4N_3O_2$	472.0	4.6	19
Example 153	127	$C_{22}H_{22}ClF_4N_3O_2$	472.0	10.4	44
Example 154	128	C22H22ClF4N3O2	472.0	7.3	31

Example 155	129	$C_{22}H_{22}ClF_4N_3O_2$	472.0	13.5	57
Example 156	130	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₃	470.0	15.1	64
Example 157	131	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	8.6	36
Example 158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
Example 159	133	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	32.0	quant
Example 160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
Example 161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
Example 162	136	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.0	13.7	68
Example 163	137	$C_{21}H_{23}Cl_2N_3O_2$	420.5	14.6	69
Example 164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78
Example 165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
Example 166	140	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	15.0	75
Example 167	141	C23H28ClN3O4	443.5	13.9	62
Example 168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
Example 169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
Example 170	144	C ₂₇ H ₂₈ ClN ₃ O ₂	462.0	17.6	76
Example 171	145	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.0	71
Example 172	146	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.9	75
Example 173	147	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.2	78
Example 174	148	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	14.9	73
Example 175	149	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	17.1	78
Example 176	150	C25H26ClN3O2	436.0	13.1	60
Example 177	151	$C_{21}H_{22}ClF_2N_3O_2$	422.0	14.8	70
Example 178	152	$C_{21}H_{22}ClF_2N_3O_2$	422.0	15.3	73
Example 179	153	C21H22ClF2N3O2	422.0	15.3	73
Example 180	154	$C_{21}H_{22}ClF_2N_3O_2$	422.0	16.4	78
Example 181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
Example 182	156	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.5	12.6	54
Example 183	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	85
Example 184	158	$C_{23}H_{26}ClN_3O_4$	444.0	17.4	78
Example 185	159	$C_{22}H_{22}C1F_4N_3O_2$	472.0	18.4	78
Example 186	160	$C_{22}H_{22}ClF_4N_3O_2$	472.0	19.6	83
Example 187	161	$C_{21}H_{21}Cl F_3N_3O_2$	440.0	17.0	77
Example 188	162	$C_{21}H_{21}ClF_3N_3O_2$	440.0	17.1	78
Example 189	163	$C_{23}H_{22}ClF_{\epsilon}N_3O_2$	522.0	20.8	80
Example 190	164	$C_{23}H_{22}ClF_6N_3O_2$	522.0	2.7	10
Example 191	165	C23H28ClN3O2	414.0	16.4	79
Example 192	166	$C_{22}H_{23}ClF_3N_3O_2$	454.0	8.6	38
Example 193	167	C21H23BrClN3O2	464.0	11.6	50
Example 194	168	$C_{21}H_{23}Cl_2N_3O_2$	420.0	11.5	55

Example 195	169	$C_{21}H_{22}C1_3N_3O_2$	454.0	10.0	44
Example 196	170	$C_{22}H_{22}C1F_4N_3O_2$	472.0	10.4	4 4
Example 197	171	$C_{21}H_{23}Cl_2N_3O_2$	420.0	8.9	42
Example 198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
Example 199	173	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	14.6	68
Example 200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
Example 201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
Example 202	176	$C_{21}H_{23}Cl_2N_3O_2$	420.0	12.7	60
Example 203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58
Example 204	178	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	12.9	55
Example 205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
Example 206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	quant
Example 207	181	C ₂₁ H ₂₅ ClN ₄ O ₄	431.0	1.0	1
Example 208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
Example 209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
Example 210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16,3	75
Example 211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
Example 212	186	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486.0	16.5	68
Example 213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
Example 214	188	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.0	70
Example 215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
Example 216	190	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	17.7	66
Example 217	191	C25H25BrClN3O2S	546.0	20.4	75
Example 218	192	$C_{25}H_{25}Cl_2N_3O_2S$	502.0	16.9	67
Example 219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
Example 220	194	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	19.4	70
Example 221	195	$C_{25}H_{25}Cl_2N_3O_2S$	502.0	19.1	76
Example 222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
Example 223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
Example 224	198	$C_{26}H_{25}ClF_3N_3O_2S$	536.0	13.9	52
Example 225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
Example 226	200	$C_{25}H_{25}Cl_2N_3O_2S$	502.0	15.6	62
Example 227	201	$C_{25}H_{24}Cl_3N_3O_2S$	536.0	17.3	61
Example 228	202	C26H24ClF4N3O2S	554.0	15.4	56
Example 229	203	$C_{25}H_{25}Cl_2N_3O_2S$	502.0	13.5	54
Example 230	204	$C_{25}H_{26}C1N_3O_2S$	468.0	13.7	59
Example 231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
Example 232	206	C ₂₄ H ₂₇ C1F ₃ N ₃ O ₄ S	546.0	10.0	37
Example 233	207	C ₂₃ H ₂ -BrClN ₃ O ₄ S	558.0	17.1	61
Example 234	208	C ₂₃ H ₂₅ Cl ₂ N ₃ O ₄ S	512.0	17.0	66

Example 235	209	$C_{23}H_{28}C1_5N_3O_4S$	546.0	7.3	27
Example 236	210	$C_{24}H_{26}ClF_4N_3O_4S$	564.0	19.2	68
Example 237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
Example 238	212	C ₂₃ H ₂₈ ClN ₃ O ₄ S	478.0	13,7	57
Example 239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

Example 240: Preparation of $(R)-3-[N-\{3-Fluoro-5-(trifluoromethyl)benzoyl\}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191).$

A solution of 3-fluoro-5-(trifluoromethyl) benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino) pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (R)-3-[N-{3-fluoro-5-(trifluoromethyl) benzoyl) glycyl] amino-1-(3,5-dimethylisoxazol-4-ylmethyl) pyrrolidine (Compound No. 1191) (19.5 mg, 88%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 443.2 (M+H, C₂₀H₂₂F₄N₄O₃).

Examples 241-265.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 240 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 4.

Table 4

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
Example 242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
Example 243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
Example 244	1195	C19 H23 Br N4 O3	435.1	16.8	77
Example 245	1196	C19 H23 N5 O5	402.2	16.2	81
Example 246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
Example 247	1198	C19 H23 Cl N4 O3	391.0	16.5	84
Example 248	1199	C20 H26 N4 O3	371.0	16.1	87

Example 249	1200	C19 H22 C12 N4 O3	425.0	18.0	85
Example 250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
Example 251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
Example 252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
Example 253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
Example 254	1205	C21 H24 Br N3 O2	430.0	17.5	81
Example 255	1206	C21 H24 N4 O4	397.0	16.2	82
Example 256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
Example 257	1208	C21 H24 Cl N3 O2	386.0	15.8	82
Example 258	1209	C22 H27 N3 O2	366.0	15.7	86
Example 259	1210	C21 H23 C12 N3 O2	420.0	17.8	85
Example 260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
Example 261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
Example 262	1213	C24 H24 Cl F6 N3 O2	536.2	24.0	90
Example 263	1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
Example 264	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 266: Preparation of $(R)-1-(4-\text{Chlorobenzy1})-3-[\{N-\{4-(dimethylamino)benzoy1\}]$ amino pyrrolidine (Compound No. 952).

A solution of (R)-1-(4-chlorobenzy1)-3-(glycylamino)pyrrolidine (13.8 mg, 0.052 mmol) in CHCl₃ (2 mL) was treated with Et₃N (0.021 mL, 0.15 mmol), 4-(dimethylamino)benzoic acid (10 mg, 0.061 mmol), EDCI (10.2 mg, 0.053 mmol) and HOBt (7.5 mg, 0.055 mmol). The reaction mixture was stirred at room temperature for 16 h. The solution was washed with 2 N aqueous NaOH solution (2 mL x 2) and brine (2 mL), and dried by filtration through a PTFE membrane using CH_2Cl_2 (3 mL). Concentration afforded the desired material (compound No. 952) (24.9 mg, quant): The purity was determined by RPLC/MS (91%); ESI/MS m/e 415.0 (M*+H, $C_{22}H_{27}ClN_4O_2$).

Examples 267-347.

5

10

The compounds of this invention were synthesized pursuant to methods of Example 266 using the corresponding reactant respectively. Solid-phase extraction (VarianTM SCX column) or chromatography (HPLC-C₁₈), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 5.

20 Table 5

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 267	951	C22 H24 Cl N3 O4	430.0	26.3	quant
Example 268	953	C23 H29 Cl N4 O2	429.0	28.8	quant
Example 269	954	C21 H25 Cl N4 O2	401.0	27.9	quant
Example 270	955	C22 H27 Cl N4 O2	415.0	26.8	quant
Example 271	956	C21 H24 Cl N3 O3	402.0	10.3	51
Example 272	957	C20 H22 Cl N3 O3	388.0	1.4	7
Example 273	958	C21 H24 Cl N3 O3	402.5	1.2	6
Example 274	959	C22 H25 C1 N4 O3	429.5	4.7	22
Example 275	960	C23 H27 C1 N4 O3	443.0	10.9	49
Example 276	961	C21 H25 Cl N4 O2	401.0	28.4	quant
Example 277	962	C22 H27 C1 N4 O2	415.0	24.9	quant
Example 278	963	C21 H24 C1 N3 O3	402.0	4.4	22
Example 279	964	C22 H24 C1 N3 O4	430.0	29.5	quant
Example 280	965	C23 H26 C1 N3 O4	444.0	27.2	quant
Example 281	966	C22 H24 C1 N3 O3	414.0	27.0	quant
Example 282	967	C23 H26 Cl N3 O3	428.0	27.0	quant
Example 283	968	C22 H23 C1 N4 O2	411.0	21.4	quant
Example 284	969	C23 H25 Cl N4 O2	425.0	27.6	quant
Example 285	970	C22 H27 Cl N4 O2	415.0	28.6	quant
Example 286	971	C23 H29 C1 N4 O2	429.0	27.9	quant
Example 287	972	C20 H23 C1 N4 O2	387.0	26.2	quant
Example 288	973	C21 H25 Cl N4 O2	401.0	26.8	quant
Example 289	974	C20 H23 C1 N4 O2	387.0	26.6	quant
Example 290	975	C21 H25 Cl N4 O2	401.0	28.2	quant
Example 291	976	C22 H23 C1 N4 O2	411.0	29.2	quant
Example 292	977	C23 H25 Cl N4 O2	425.0	29.5	quant
Example 293		C20 H21 C1 N6 O2	413.0	2.2	11
Example 294	979	C21 H23 Cl N6 O2	427.0	10.2	48
Example 295	980	C22 H25 Cl N4 O3	429.0	28.8	quant
Example 296	i	C23 H27 C1 N4 O3	443.0	11.9	54
Example 297		C22 H27 Cl N4 O2	415.0	27.4	quant
Example 298		C23 H29 Cl N4 O2	429.5	28.1	quant
Example 299		C21 H24 Cl N3 O3	402.0	27.7	quant
Example 300	i	C22 H26 Cl N3 O3	416.0	28.6	quant
Example 301		C21 H28 N4 O4	401	15.5*	38
Example 302		C21 H28 N4 O3	385	10.9*	28
Example 303	I	C21 H25 F3 N4 O3	439	17.3*	39
Example 304	1152	C21 H24 F N5 O3	415	12.7*	30

Example 305	1153	C21 H24 C1 N5 O3	430	17.5*	41
Example 306	1154	C22 H27 N5 O3	410	20.6+	50
Example 307	1155	C19 H23 F3 N4 O4	429	13.8*	32
Example 308	1156	C21 H30 N4 O4	403	17.7*	43
Example 309	1157	C18 H24 N4 O3 52	409	12.6*	30
Example 310	1158	C19 H23 C12 N5 O3	440	16.9*	38
Example 311	1159	C22 H31 N5 O6	462	38.6*	85
Example 312	1160	C20 H26 Br N5 O3	464	20.4	45
Example 313	1289	C20 H27 N5 O4	403	5.8*	14
Example 314	1290	C21 H29 N5 O3	400	6.9*	17
Example 315	1291	C24 H28 N4 O2	405	22.4	68
Example 316	1292	C22 H27 Br N4 O2	461	23.8	15
Example 317	1293	C22 H23 F4 N3 O2	438	20.9	59
Example 318	1294	C22 H23 F4 N3 O2	438	20.8	59
Example 319	1295	C23 H31 N3 O3	398	17.5	54
Example 320	1296	C20 H25 N3 O2 S2	404	18.8	58
Example 321	1297	C21 H24 F3 N3 O3	424	18.1	53
Example 322	1388	C21 H32 N6 O3	417	7.4*	24
Example 323	1389	C19 H22 N6 O4	399	15.2	48
Example 324	1401	C23 H25 C1 N4 O2	425	8.3*	16
Example 325	1402	C24 H32 N4 O5	457	8.3*	15
Example 326	1403	C20 H24 N4 O2	353	14.8	52
Example 327	1404	C20 H24 N4 O2	353	17.0	60
Example 328	1405	C21 H26 N4 O2 S	399	17.3	54
Example 329	1407	C22 H28 N4 O2 S	413	19.1	57
Example 330	1410	C19 H24 N4 O3	357	9.7*	59
Example 331	1769	C22 H26 C1 F3 N4 O5	519	11.6*	20
Example 332	1770	C26 H28 C12 N6 O4	559	13.1*	21
Example 333	1771	C26 H37 N5 O4	484	12.7*	23
Example 334	1772	C28 H39 N5 O4	510	5.5*	9
Example 335	1773	C28 H37 N5 O4	509	6.2*	11
Example 336	1774	C28 H34 N6 O6	551	13.6*	22
Example 337	2039	C19 H24 N4 O2	341	5.2*	14
Example 338	2040	C22 H27 N3 O4	398	2.0*	5
Example 339	2041	C23 H29 N3 O3	396	6.2*	15
Example 340	2042	C25 H37 N3 O2	413	2.6*	6
Example 341	2043	C24 H31 N3 O2	394	6.8*	17
Example 342	2044	C25 H28 N4 O4	449	8.7*	16
Example 343	2045	C26 H29 Cl N6 O4	525	11.4*	19
Example 344	2046	C27 H32 N6 O4	505	7.7*	13

Example 345	2047	C28 H32 N4 O4	489	10.0*	18
Example 346	2048	С28 Н37 N5 О5	524	3.7*	6
Example 347	2049	C28 H37 N5 O4	509	5.3*	9

^{*}Yield of TFA salt.

5

10

15

20

Example 348: Preparation of (R)-1-(4-Chlorobenzyl)-3-[{N-(2-amino-5-chlorobenzoyl)glycyl}amino]pyrrolidine (Compound No. 1084).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in CHCl₃ (2 mL) was treated with 2-amino-5-chlorobenzoic acid (0.060 mmol) and diisopropylcarbodiimide (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3- $\{N$ -(2-amino-5-chlorobenzoyl)glycyl)amino]pyrrolidine (Compound No. 1084) (12.7 mg, 60%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 421.0 (M⁺+H, C₂₀H₂₂Cl₂N₄O₂).

Examples 349-361.

The compounds of this invention were synthesized pursuant to methods of Example 348 using the corresponding reactant respectively. If the starting amine remained, treatment with isocyanatomethylated polystyrene (50 mg) in CHCl $_3$ (1 mL) at room temperature, filtration and concentration afforded the desired material. The ESI/MS data and yields are summarized in Table 6.

Table 6

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
Example 350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
Example 351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
Example 352	1088	$C_{18}H_{20}ClN_3O_3$	362.0	12.9	71
Example 353	1089	C ₂₂ H ₂₂ ClFN ₄ O ₂	429.0	16.0	75
Example 354	1090	$C_{22}H_{26}C1N_3O_3$	416.0	15.8	76
Example 355	1091	$C_{21}H_{24}Cl_2N_4O_2$	435.0	10.9	50
Example 356	1092	C ₂₁ H ₂₄ C1N ₅ O ₄	446.0	7.9	35
Example 357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
Example 358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
Example 359	1095	$C_{19}H_{22}ClN_3O_5$	376.0	13.5	72
Example 360	1096	C ₂₃ H ₂₄ C1FN ₄ O ₂	443.0	11.8	53

			120.0	1 5 1	7.0
Example 361	1097	CoaHogClNaOa	430.0	15.1	70
Twampre our		-2326	-		

Example 362: Preparation of $(R)-1-(4-Chlorobenzyl)-3-[\{N-(3-bromo-4-methylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 1098).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-1-(4-\text{chlorobenzyl})-3-[\{N-(3-\text{bromo-}4-\text{methylbenzoyl})\text{glycyl}\}$ amino]pyrrolidine (Compound No. 1098) (11.6 mg, 50%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 466.0 $(C_{21}H_{23}\text{BrClN}_3O_2)$.

15 Examples 363-572.

5

10

25

The compounds of this invention weré synthesized pursuant to methods of Example 362 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 7.

20 The following 3 compounds were obtained as byproduct of Compound Nos. 1415, 1416, and 1417, respectively.

1419: 7.9 mg, 38% yield; ESI/MS m/e 419.0 ($C_{20}H_{23}ClN_4O_2S$).

1420: 7.1 mg, 36% yield; ESI/MS m/e 399.2 ($C_{21}H_{26}N_4O_2S$).

1421: 7.4 mg, 37% yield; ESI/MS m/e 404.2 (C₁₉H₂₅N5O3S).

Tab

Table 7

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 363	1099	$C_{20}H_{20}BrClFN_3O_2$	470.0	3.1	13
Example 364	1100	$C_{20}H_{26}Cl_2FN_3O_2$	424.0	3.1	15
Example 365	1101	C ₂₁ H ₂₅ ClIN ₃ O ₂	512.0	12.5	49
Example 366	1102	$C_{21}H_{23}ClN_4O_4$	431.2	7.7	36
Example 367	1103	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	13.8	62
Example 368	1104	C ₂₁ H ₂₃ BrFN ₃ O ₂	450.0	16.5	74
Example 369	1105	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	14.7	73
Example 370	1106	C ₂₂ H ₂₆ IN ₃ O ₂	492.0	18.5	75

Example 371	1107	$C_{22}H_{26}N_4O_4$	411.2	15.2	74
Example 372	1108	$C_{20}H_{25}BrN_4O_3$	449.0	12.8	57
Example 373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
Example 374	1110	$C_{19}H_{22}C1FN_4O_{\bar{3}}$	409.2	14.4	70
Example 375	1111	C ₂₀ H ₂₅ IN ₄ O ₃	497.0	17.9	72
Example 376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
Example 377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
Example 378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 379	1115	$C_{22}H_{24}Cl_2FN_3O_2$	452.2	18.6	82
Example 380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
Example 381	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
Example 382	1171	C ₂₁ H ₂₅ BrClN ₃ O ₂	466.0	4.9	21
Example 383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75
Example 384	1173	C ₂₃ H ₂₅ ClN ₄ O ₃	441.2	22.8	quant
Example 385	1174	C ₂₀ H ₂₂ C1FN ₄ O ₂	405.2	21.4	quant
Example 386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15.8	71
Example 387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
Example 388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
Example 389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
Example 390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
Example 391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	quant
Example 392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
Example 393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
Example 394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
Example 395	1184	C ₁₆ H ₂₄ FN ₅ O ₃	390.0	20.0	quant
Example 396	1185	C ₁ eH ₂₄ N ₆ O ₅	417.2	18.2	87
Example 397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
Example 398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 399	1188	$C_{24}H_{27}ClN_4O_3$	455.2	17.2	76
Example 400	1189	C ₂₅ H ₂₅ ClN ₄ O ₃	469.2	21.1	90
Example 401	1190	$C_{22}H_{26}ClFN_4O_2$	433.2	20.4	94
Example 402	1217	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	38.5	81
Example 403	1218	$C_{21}H_{23}ClFN_3O_2$	404.2	35.6	88
Example 404	1219	$C_{21}H_{25}Cl_2N_3O_2$	420.0	3.7	9
Example 405	1220	C ₂₀ H ₂₂ ClIN ₄ O ₂	513.0	53.0	quant
Example 406	1221	$C_{20}H_{21}C1F_{2}N_{4}O_{2}$	423.0	38.7	92
Example 407	1222	C_{1} $_{2}$ $_{3}$ $C1N_{4}O_{2}$	375.2	33.6	90
Example 408	1223	C26H26ClN3O2S	496.0	43.7	88
Example 409	1224	C ₂₀ H ₂₁ ClN ₄ O ₅	433.0	40.6	94
Example 410	1225	$C_{22}H_{23}C1F_3N_3O_2$	454.2	18.4	41

				17 1	
Example 411	1226	C ₂₂ H ₂₆ FN ₃ O ₂	384.0	17.1	45
Example 412	1227	$C_{22}H_{26}ClN_3O_2$	400.2	17.5	4 4
Example 413	1228	$C_{21}H_{25}IN_4O_2$	493.0	23.3	47
Example 414	1229	$C_{21}H_{24}F_2N_4O_2$	403.2	18.4	46
Example 415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
Example 416	1231	$C_{27}H_{29}N_3O_2S$	476.0	20.9	88
Example 417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
Example 418	1233	$C_{20}H_{22}C1F_3N_4O_3$	459.0	19.4	85
Example 419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
Example 420	1235	$C_{20}H_{25}ClN_4O_3$	405.2	18.7	92
Example 421	1236	$C_{1c}H_{24}IN_5O_3$	498.0	23.9	96
Example 422	1237	$C_{19}H_{23}F_2N_5O_3$	408.2	19.0	93
Example 423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
Example 424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
Example 425	1240	$C_{19}H_{23}N_5O_6$	418.0	19.9	95
Example 426	1241	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	22.5	90
Example 427	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
Example 428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 430	1245	$C_{22}H_{25}ClF_2N_4O_2$	451.0	21.3	94
Example 431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
Example 432	1247	C28H30ClN3O2S	524.0	24.7	91
Example 433	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
Example 434	1249	C20 H20 C12 N4 O4	451.0	7.4	33
Example 435	1250	C21 H23 C1 N4 O4	431.2	15.5	72
Example 436	1251	C19 H22 Cl N5 O5	436.0	22.9	quant
Example 437	1252	C23 H28 Cl N3 O2	414.2	17.9	86
Example 438	1253	C24 H31 N3 O2	394.2	15.8	80
Example 439	1254	C22 H30 N4 O3	399.2	17.3	87
Example 440	1255	C20 H22 Br Cl N4 O2	467.0	21.3	91
Example 441	1256	C21 H25 Br N4 O2	445.0	20.7	93
Example 442	1257	C19 H24 Br N5 O3	450.0	21.8	97
Example 443	1258	C21 H25 C1 N4 O2	401.2	18.1	90
Example 444	1259	C19 H24 Cl N5 O3	406.0	20.1	99
Example 445	1260	C23 H29 N3 O3	396.2	16.8	85
Example 446	1261	C23 H30 Cl N3 O3	432.2	19.8	92
Example 447	1262	C24 H33 N3 O3	412.2	17.4	85
Example 448	1263	C22 H32 N4 O4	417.2	18.7	90
Example 449	1264	C25 H26 C1 N3 O3	452.2	29.1	quant
Example 450	1265	C26 H29 N3 O3	432.2	18.1	84
	J		<u> </u>	<u> </u>	1

		1 100 0		- 55
				88
1267	1			83
1268	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	1		80
1269	$C_{20}H_{21}BrClN_3O_3$	468.0	19.2	82
1270	$C_{20}H_{21}Cl_2N_3O_3$	422.2	17.3	82
1271	C ₂₀ H ₂₀ ClFN ₄ O ₄	435.0	17.1	79
1272	$C_{24}H_{25}F_3N_4O_3$	475.2	21.7	91
1273	$C_{22}H_{26}C1N_3O_3$	416.2	17.8	86
1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
1275	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87
1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
1278	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
1280	C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
1282	C ₂₅ H ₂₆ Cl F ₃ N ₄ O ₃	523.2	25.0	96
1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
1322	$C_{21}H_{23}Cl_2N_3O_2$	420.0	10.5	50
1323	C20H20Cl2IN3O2	532.0	7.1	27
1324	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	22.2	quant
1325	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	22.2	93
1326	C20H21ClIN3O3	514.0	26.9	quant
1327	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	24.2	quant
1328	$C_{21}H_{23}BrClN_3O_2$	466.0	23.1	99
1329	$C_{22}H_{26}ClN_3O_2$	400.2	16.4	82
1330	$C_{21}H_{23}ClIN_3O_2$	512.2	20.8	81
1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	quant
1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
1333	C ₂₁ H ₂₄ IN ₃ O ₃	494.0	25.3	quant
1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	quant
1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	quant
1336	C ₂₀ H ₂₅ C1N ₄ O ₃	405.2	18.5	91
1337	C ₁₉ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	quant
	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	quant
	C ₁ 5H ₂₃ IN ₄ O ₄	499.0	28.2	quant
	1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1334 1335 1336 1337 1338 1339	1267	1267	1267 C23H22C1F3N4O3

	7247	la u v o	386.0	20.5	quant
Example 491	1341	C ₂₀ H ₂₆ N ₄ O ₄	514.0	27.2	
Example 492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂			quant 95
Example 493	1343	$C_{23}H_{27}Cl_2N_3O_2$	448.0	21.4	
Example 494	1344	$C_{22}H_{24}Cl_2IN_3O_2$	560.0	27.0	96
Example 495	1345	$C_{23}H_{28}C1N_3O_3$	430.2	23.8	quant
Example 496	1346	$C_{22}H_{25}CliN_3O_3$	542.0	29.4	quant
Example 497	1347	$C_{19}H_{22}ClN_3O_2S$	392.0	16.9	43
Example 498	1348	$C_{20}H_{25}N_3O_ZS$	372.2	6.9	19
Example 499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
Example 500	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	62
Example 501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
Example 502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
Example 503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
Example 504	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
Example 505	1355	C21 H22 C1 N5 O2	412.0	25.5	quant
Example 506	1356	C22 H25 N5 O2	392.0	16.5	84
Example 507	1357	C20 H24 N6 O3	397.2	19.9	quant
Example 508	1358	C23 H26 Cl N5 O2	440.2	21.8	99
Example 509	1368	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	18.4	78
Example 510	1369	C24H24ClF6IN3O4	568.0	24.1	85
Example 511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
Example 512	1371	C26H26ClN3O4S	512.2	22.1	86
Example 513	1372	C ₂₆ H ₂₆ ClN ₃ O ₂	448.0	19.1	85
Example 514	1373	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.2	16.2	71
Example 515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
Example 516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
Example 517		C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
Example 518	1377	C ₂₇ H ₂ 9N ₃ O ₂	428.2	18.1	85
Example 519		C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	17.3	75
Example 520	1379	C ₂₃ H ₂₆ F ₆ IN ₄ O ₅	553.2	21.0	76
Example 521		C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
Example 522	1381	C ₂₅ H ₂ eN ₄ O ₅ S	497.0	18.4	74
Example 523	<u> </u>	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
Example 524		C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
Example 525	i	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 526	<u> </u>	C ₂₈ H ₃₀ C1N ₃ O ₄ S	540.2	. 23.8	88
Example 527		C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
Example 528		C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
Example 529	<u>i</u>	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
Example 530	i	C ₂₁ H ₂₆ ClN ₅ O ₄	448.0	1.1	5
Evanibre 220	1 111	2/1/0			<u> </u>

	2414	IC II CI NO	491.0	0.8 i	3
Example 531	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	444.0	6.8	31
Example 532	1415	$C_{21}H_{22}CIN_5O_2S$			23
Example 533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	
Example 534	1417		C ₂₀ H ₂₄ N ₆ O ₃ S 429.2		21
Example 535	1418	$C_{23}H_{26}ClN_5O_2S$	472.0	10.4	44
Example 536	1423	C27 H26 C1 N3 O3	476.0	23.9	quant
Example 537	1424	C27 H29 N3 O4 S	456.2	28.0	quant
Example 538	1425	C26 H28 N4 O4	461.2	22.3	97
Example 539	1426	C29 H30 Cl N3 O3	504.2	26.8	quant
Example 540	1583	C21 H22 C1 F3 N4 O2	455.0	14.6	64
Example 541	1584	C21 H22 Cl F3 N4 O3	471.0	17.4	74
Example 542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
Example 543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
Example 544	1587	C26 H26 Cl N3 O3	464.0	15.4	66
Example 545	1588	C20 H23 Cl N4 O2	387.0	14.8	77
Example 546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
Example 547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
Example 548	1591	C20 H23 Br N4 O2	433.0	15.4	71
Example 549	1592	C20 H23 C1 N4 O2	387.0	15.6	81
Example 550	1593	C27 H29 N3 O3	444.2	14.8	67
Example 551	1594	C20 H24 F3 N5 O3 ·	440.2	16.2	74
Example 552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
Example 553	1596	C18 H22 Br N5 O3	436.0	15.6	72
Example 554	1597	C18 H22 C1 N5 O3	391.8	14.4	73
Example 555	1598	C25 H28 N4 O4	449.2	15.9	71
Example 556	1599	C19 H25 N5 O3	372.2	15.8	85
Example 557	1606	C21 H21 C1 F3 N3 O2 S	472.0	17.0	72
Example 558	1607	C21 H21 Cl F3 N3 O2 S	452.2	15.3	68
Example 559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
Example 560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
Example 561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
Example 562	1	C20 H21 Br F2 N4 O2	469.0	15.1	65
Example 563	<u> </u>	C20 H22 Br Cl N4 O2	467.0	14.5	62
Example 564		C20 H23 Br2 N3 O3	514	7.3	28
Example 565		C22 H26 F2 N4 O2	417	16.2	78
Example 566	i	C22 H27 F N4 O2	399	21.8	quant
Example 567		C22 H27 Br N4 O2	459	24.5	quant
Example 568		C22 H27 I N4 O2	507	27.4	quant
Example 569	i	C22 H27 Cl N4 O2	415	22.1	quant
Example 570	i	C23 H27 F3 N4 O3	465	24.3	quant
	<u> </u>				1

Example 571	1699	C23 H27 F3	N4 O2	449	25.3	quant
Example 572	1700	C22 H25 Br	Cl N3 O2	480	17.8	74

For example, Compound No. **1583** showed the following NMR spectra: 1 H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H).

5

10

15

20

25

trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (2.93 g, 6.66 mmol) and Pd(OH)₂ in 5% HCO₂H/methanol (70 mL) was stirred at 60 °C for 3 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 2N aqueous NaOH solution (100 mL) and the mixture was extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, AcOEt/MeOH/Et₃N = 85/10/5-60/30/5) gave (S)-3-[N-{3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (1.70 g, 81%) as an oil: 1 H NMR (CDCl₃, 270 MHz) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 and 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M'+H, Cl4H16F3N3O₂).

(R)-3-[N-{3-(Trifluoromethyl)benzoyl}glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 1.49 g, 68%; The product showed the same $^{1}{\rm H}$ NMR and ESI/MS with those of (S)-isomer.

 $(R)-3-[N-\{2-Amino-5-\{trifluoromethyl\}benzoyl\}glycyl]aminopyrrolidine $$ was also prepared pursuant to the above method using the corresponding reactant: $$ 316 mg, 93\%; ESI/MS m/e 331.2 (M^++H, C_{14}H_1,F_3N_4O_2).$

30 $(R) - 3 - [N - \{2 - \{tert - Butoxycarbonylamino\} - 5 - \{trifluoromethoxy\} benzoyl\} glycyl] aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: quant; <math>^1H$ NMR (CDCl₃, 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H).

Example 573: Preparation of (R) -3 - [(N - (2 - (tert-Butoxycarbonylamino) - (2 - (tert-Butoxycarbonylamino) - (3 - (2 - (tert-Butoxycarbonylamino) - (3 - (1 - (tert-Butoxycarbonylamino) - (3 - (tert-Butoxycarbonylamino) - (3 - (tert-Butoxycarbonylamino) - (4 - (tert-Butoxyca5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine.

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (5.0 g, 18.7 mmol) in dichloromethane (100 mL) was treated with Et_3N (2.9 mL, 20.5 mmol), 2-(tert-butoxycarbonylamino)-5-(trifluoromethyl)benzoic acid (6.27 g, 20.5 mmol), EDCI (3.9 g, 20.5 mmol) and HOBt (2.8 g, 20.5 mmol). The reaction mixture was stirred at room temperature overnight. To the reaction mixture was added 2 N aqueous NaOH solution (80 mL) and the mixture was extracted with dichloromethane. The extract was dried over anhydrous Na₂SO₄, filtered, and 10 evaporated. Column chromatography (SiO_2 , hexane/ethyl acetate = 1/1-1/4) $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5$ afforded trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (9.41 g, 91%) as a white amorphous solid: ESI/MS m/e 555.2 (M $^{+}$ +H, C₂₆H₃₀ClF₃N₄O₄).

15

25

30

35

5

Preparation of $(R) -3 - [{N - (2 - (text -$ Example 5: Reference butoxycarbonylamino) -5-trifluoromethylbenzoyl) glycyl) amino]pyrrolidine.

 $(R) -3 - [\{N-(2-(tert-butoxycarbonylamino) -5$ of Α mixture trifluoromethylbenzoyl)glycyl)amino]-1-(4-chlorobenzyl)pyrrolidine (6.3 g, 11.4 mmol), $Pd(OH)_2$ (1.68 g), HCO_2H (3.7 mL), and methanol (80 mL) was stirred 20 at 50 °C overnight. After the mixture was cooled to room temperature, the Pd catalyst was filtered off through Celite and the filtrate was concentrated. Column chromatography (SiO₂, AcOEt, AcOEt/MeOH = 5/1-4/1) gave (R)-3-[{N-1}] (2-(tert-butoxycarbonylamino)-5-

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (4.42 g, 90%) as a white solid: ^{1}H NMR (CDCl₃, 400 MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5 H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H).

(S)-1-Benzyl-3-[N-{3-574: Preparation of Example (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (Compound No. 239).

 $(S) - 3 - [N - \{3$ of solution (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (0.060 mmol) in CH₅CN (1.1 mL) and (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 30 mg) were added to a solution of benzyl bromide (0.050 mmol) in CH_3CN (0.4 mL). The reaction mixture was stirred at 45 °C for 5 h. After the mixture was cooled to room temperature, the resin was removed by filtration and the filtrate was concentrated. The residue was resolved in CH_3CN (1.0 mL) and phenyl isocyanate (0.008 mL, 0.05

mmol) was added. The mixture was stirred at room temperature for 1 h, loaded onto Varian^{TN} SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (S)-1-benzyl-3-[N-{3-(trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (compound No. **239**) (9.0 mg, 44%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 406.0 (M⁺+H, C₂₁H₂₂F₃N₃O₂).

Example 575: Preparation of $(R)-1-(4-Butylbenzyl)-3-[\{N-(3-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 1648).$

(trifluoromethyl) benzoyl} glycyl] aminopyrrolidine (0.050 mmol), 4-butylbenzaldehyde (0.18 mmol), NaBH₃CN (0.23 mmol), and methanol (1.85 mL) was added acetic acid (0.060 mL). The reaction mixture was stirred at 60 °C for 12 h. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-1-(4-butylbenzyl)-3-[\{N-(3-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 1648) (20.6 mg, 89%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 462.2 (M*+H, C₂₅H₃₀F₃N₃O₂).$

20

25

5

10

15

Examples 576-738.

The compounds of this invention were synthesized pursuant to methods of Examples 574or 575 using the corresponding reactant respectively. Preparative TLC or chromatography (HPLC- $C_{1\epsilon}$), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 8.

Table 8

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 576	240	$C_{21}H_{21}F_4N_3O_2$	424.0	10.2	48
Example 577	241	$C_{21}H_{21}C1F_3N_3O_2$	440.0	12.1	55
Example 578	242	$C_{21}H_{22}Cl_2F_3N_3O_2$	474.0	13.9	59
Example 579	243	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	13.8	58
Example 580	244	$C_{27}H_{24}F_3N_3O_2$	420.0	13.1	62
Example 581	245	$C_{21}H_{21}F_4N_3O_2$	424.0	11.9	56
Example 582	246	$C_{21}H_{21}ClF_3N_3O_2$	440.0	8.5	39
Example 583	247	$C_{21}H_{29}Cl_2F_3N_3O_2$	474.0	10.5	44
Example 584	248	C ₂₂ H ₂₄ CF ₃ N ₂ O ₃	436.0	11.0	51

Example 585	249	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	12.8	54
Example 586	250	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.0	52
Example 587	251	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	13.5	64
Example 588	252	C ₂₂ H ₂₄ F ₃ N ₃ O ₅	436.0	11.8	54
Example 589	253	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
Example 590	254	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	2.4	10
Example 591	255	$C_{21}H_{21}F_5N_4O_4$	451.0	12.2	54
Example 592	256	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	11.4	51
Example 593	257	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	11.1	47
Example 594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
Example 595	259	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	6.4	31
Example 596	260	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	12.1	51
Example 597	261	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	13.6	57
Example 598	262	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	15.2	63
Example 599	263	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	14.5	60
Example 600	264	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	9.3	37
Example 601	265	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	11.6	48
Example 602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
Example 603	267	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	10.3	47
Example 604	268	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	6.3	27
Example 605	269	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	8.0	33
Example 606		C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	8.9	38
Example 607	271	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	6.1	28
Example 608	272	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	13.6	59
Example 609	273	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.6	59
Example 610	274	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	7.7	36
Example 611	275	C ₂₂ H ₂₁ F' ₃ N ₄ O ₂	431.0	12.7	59
Example 612	276	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	11.7	53
Example 613		C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	9.5	39
Example 614	278	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	13.0	56
Example 615		C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	10.4	42
Example 616	280	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	12.0	49
Example 617	281	$C_{22}H_{22}F_3N_3O_4$	450.0	4.9	22
Example 618	282	$C_{25}H_{30}F_3N_3O_2$	462.0	12.0	52
Example 619	283	$C_{20}H_{23}F_3N_4O_3$	425.0	8.1	38
Example 620	284	$C_{27}H_{25}C1F_5N_3O_2$	516.0	4.8	19
Example 621	285	$C_{21}H_{22}F_3N_3O_2$	406.0	4.8	24
Example 622	286	$C_{21}H_{21}F_4N_3O_2$	424.0	4.5	21
Example 623	287	$C_{21}H_{21}C1F_3N_3O_2$	440.0	5.8	26
Example 624	288	$C_{21}H_{20}C1_2F_3N_3O_0$	474.0	8.1	34

_					
Example 625	289	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	8.0	34
Example 626	290	$C_{22}H_{24}F_3N_3O_2$	420.0	6.0	29
Example 627	291	$C_{21}H_{21}F_4N_3O_2$	424.0	6.2	29
Example 628	292	$C_{21}H_{21}ClF_3N_3O_2$	440.0	4.5	20
Example 629	293	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	5.1	22
Example 630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	19
Example 631	295	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	6.0	25
Example 632	296	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	4.3	21
Example 633	297	$C_{21}H_{21}F_4N_3O_2$	424.0	8.2	39
Example 634	298	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	12.2	56
Example 635	299	$C_{22}H_{24}F_3N_3O_2$	420.0	8.1	39
Example 636	300	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	13.7	57
Example 637	301	$C_{21}H_{21}F_3N_4O_4$	451.0	15.1	67
Example 638	302	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	16.6	74
Example 639	303	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	12.6	53
Example 640	304	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	14.5	61
Example 641	305	$C_{22}H_{23}C1F_3N_3O_2$	420.0	8.4	37
Example 642	306	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.5	57
Example 643	307	$C_{22}H_{21}C1F_6N_3O_2$	474.0	3.7	16
Example 644	308	$C_{21}H_{21}BrF_3N_3O_3$	484.0	7.2	30
Example 645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
Example 646	310	C ₂₇ H ₂₆ F ₃ N ₅ O ₃	498.0	4.2	17
Example 647	311	$C_{21}H_{21}BrF_3N_3O_2$	484.0	6.3	26
Example 648	312	C22H22F3N3O4	450.0	2.4	11
Example 649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
Example 650	314	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	5,0	22
Example 651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
Example 652	316	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	3,3	14
Example 653	317	C ₂₁ H ₂₆ F ₅ N ₃ O ₂	442.0	4.5	20
Example 654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
Example 655	319	$C_{22}H_{21}F_3N_4O_2$	431.0	6.5	30
Example 656	320	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.2	66
Example 657	321	C22H21F3N4O2	431.0	14.9	69
Example 658	322	C ₂₁ H ₂₁ F ₅ N ₃ O ₂	442.0	13.6	62
Example 659	323	$C_{27}H_{26}F_3N_3O_2$	482.0	3.9	16
Example 660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
Example 661	325	C ₂₂ H ₂₁ F ₆ N ₅ O ₅	490.0	16.1	66
Example 662	326	C ₂₂ H ₂₁ F ₆ N ₃ O ₅	490.0	13.6	56
Example 663		C22H22F3N3O4	450.0	5.4	24
Example 664		C ₂₅ H ₃ ; F ₅ N ₃ O ₂	462.0	10.9	47

	1007	1004 WOD TO NO OF	496	12.6	53
Example 705	1301	C24 H28 F3 N3 O5			
Example 706	1302	C24 H28 F3 N3 O3	464	24.5	quant
Example 707	1303	C23 H25 Br F3 N3 O4	544	22.2	86
Example 708	1304	C29 H30 F3 N3 O4	542	28.6	quant
Example 709	1305	C26 H26 F3 N3 O3	486	35.4	quant
Example 710	1306	C24 H28 F3 N3 O4	480	8.1	35
Example 711	1307	C23 H26 F3 N3 O5	482	27.9	quant
Example 712	1308	C23 H24 F3 N3 O3	448	5.9	28
Example 713	1309	C23 H25 F3 I N3 O4	592	24.0	85
Example 714	1310	C22 H24 F3 N3 O4	452	3.4	16
Example 715	1311	C22 H22 F3 N3 O4	450	3.4	16
Example 716	1312	C21 H21 F3 I N3 O2	532	18.1	72
Example 717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
Example 718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
Example 719	1315	C20 H22 F3 N3 O3	410	13.6	70
Example 720	1316	C22 H20 C1 F6 N3 O2	508	18.6	77
Example 721	1317	C21 H20 Cl F3 N4 O4	485	17.0	74
Example 722	1318	C21 H20 Cl F4 N3 O2	458	17.0	78
Example 723	1319	C21 H20 Cl F4 N3 O2	458	17.6	81
Example 724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
Example 725	1390	C26 H32 F3 N3 O2	476	16.1	51
Example 726	1391	C23 H26 F3 N3 O2	434	20.0	76
Example 727	1392	C22 H23 C1 F3 N3 O2	454	20.0	67
Example 728	1393	C23 H26 F3 N3 O2	434	20.1	70
Example 729	1394	C22 H23 F3 N4 O4	465	18.4	60
Example 730	1395	C23 H24 F3 N3 O2	432	21.4	75
Example 731	1396	C26 H26 F3 N3 O2	470	20.4	66
Example 732	1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
Example 733		C22 H22 Cl2 F3 N3 O2	488	10.8	47
Example 734	1399	C22 H22 C12 F3 N3 O2	488	9.4	40
Example 735	1400	C22 H23 Cl F3 N3 O2	454	19.1	88
Example 736	1614	C22 H21 F6 N3 S	506.0	24.2	96
Example 737	2050	C20 H22 F3 N3 O2 S	426	6.0	30
Example 738	2051	C21 H23 F3 N4 O2	421	6.5	32
Example 735 Example 736 Example 737	1400 1614 2050	C22 H23 C1 F3 N3 O2 C22 H21 F6 N3 S C20 H22 F3 N3 O2 S	454 506.0 426	19.1 24.2 6.0	96 30

^{*}Yield of TFA salt.

Examples 739-748.

The compounds of this invention were synthesized pursuant to methods of $\,\,$ Example 738 using the corresponding reactant respectively. Preparative TLC,

if needed, afforded the desired material. The .ESI/MS data and yields are summarized in Table 9.

Table 9

5

10

15

20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield(%)
Example 739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
Example 740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
Example 741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
Example 742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
Example 743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
Example 744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
Example 745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
Example 746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
Example 747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5
Example 748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

Example 749: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-methoxybenzyl)pyrrolidine (Compound No. 1896).

 $(R) - 3 - [N - \{2 - (tert-butoxycarbonylamino) - 5$ of mixture То (trifluoromethoxy)benzoyl)glycyl]aminopyrrolidine (0.050 mmol), 3-hydroxy-4-methoxybenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in ${
m CH_3OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane and the solution was stirred overnight at room temperature. $(R) - 3 - [\{N - (2 - amino - 5 - amino$ preparative TLC gave Concentration and trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-

methoxybenzyl)pyrrolidine (Compound No. 1896) (9.1 mg, 38%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 483 (M^+ +H, $C_{22}H_{25}F_3N_4O_5$).

Examples 750-757.

The compounds of this invention were synthesized pursuant to methods of 25 Example 749 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 10.

Table 10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
Example 751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
Example 752	1899	C24 H29 F3 N4 O3	479	14.4	60.2
Example 753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
Example 754	1901	C24 H29 F3 N4 O3	479	14.5	60.6
Example 755	1902	C23 H25 F3 N4 O4	479	12.0	50.2
Example 756	1915	C23 H27 F3 N4 O5	467.2	2.5	6.7
Example 757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9

Example 758: Preparation of (R)-3-[{N-(2-Amino-5-5) (trifluoromethyl)benzoyl)glycyl}amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701).

A mixture of $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) \operatorname{benzoyl}\} \operatorname{amino}]$ pyrrolidine $(0.050 \operatorname{mmol})$, $4-\operatorname{vinylbenzyl}$ chloride $(9.9 \operatorname{mg}, 0.065 \operatorname{mmol})$, piperidinomethylpolystyrene $(60 \operatorname{mg})$, acetonitrile $(1.0 \operatorname{mL})$ and chloroform $(0.30 \operatorname{mL})$ was stirred at 50 °C for 12 h. The reaction mixture was cooled, loaded onto Varian SCX column and washed with CH₃OH $(15 \operatorname{mL})$. Product was eluted using 2 N NH₃ in CH₃OH $(5 \operatorname{mL})$ and concentrated to afford $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) \operatorname{benzoyl}) \operatorname{glycyl}\} \operatorname{amino}]-1-(4-\operatorname{vinylbenzyl})$ pyrrolidine (Compound No. 1701) $(19.6 \operatorname{mg}, 88\%)$: The purity was determined by RPLC/MS (92%); ESI/MS m/e 547.2 $(M^*+H, C_{23}H_{25}C1F_3N_4O_2)$.

Examples 759-762

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 758 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 11.

Table 11

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
Example 760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
Example 761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
Example 762	1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38

Example 763: Preparation of (R)-3-[{N-(2-Amino-5-(trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905).

mixture of $(R)-3-[\{N-(2-amino-5-$ Α (0.050 mmol), 2,4-(trifluoromethoxy)benzoyl)glycyl)amino]pyrrolidine dichlorobenzyl chloride (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 °C for 12 h. The reaction mixture was cooled, loaded onto $Varian^{TM}$ SCX column and washed with 50% $CHCl_3/CH_3OH$ (10 mL) and CH_3OH (10 mL). Product was eluted using 2 N NH $_3$ in ${
m CH_3OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. TLC afforded $(R) -3 - [\{N - (2 - amino - 5 - amino$ preparative Concentration and (trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905) (17.6 mg, 70%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 505 (M T +H, $C_{21}H_{21}Cl_{2}F_{3}N_{4}O_{3}$).

Examples 764-770

The compounds of this invention were synthesized pursuant to methods of Example 763 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 12.

Table 12

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 764	1906	C22 H23 F3 N4 O5	481	9.4	39.1
Example 765	1907	C21 H23 F3 N4 O4	453	7.5	33.2
Example 766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
Example 767	2180	C22 H24 C1 F3 N4 O2	469	1.3	26
Example 768	2181	C23 H25 F3 N6 O3	491	4.3	52
Example 769	2182	C19 H22 F3 N5 O2 S	442	7.0	51
Example 770	1909	C23 H25 F3 N4 O3	463	8.7	37.6

25

30

5

10

15

Example 771: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921).

A mixture of $(R) -3 - [\{N - (2-amino-5-4)\}]$

trifluoromethoxybenzoyl)glycyl}amino]pyrrolidine (0.050 mmol), 4-chloro-2-

nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 °C. The reaction mixture was cooled, loaded onto Varian SCX column and washed with 50% CHCl₃/CH₃OH (10 mL) and CH₃OH (10 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H₂ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded (R)-3-[{N-(2-amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921) (2.2 mg, 6%): The purity was determined by RPLC/MS (81%); ESI/MS m/e 486.2 (M+H, C₂₁H₂₃ClF₃N₅O₃).

Example 772: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120).

of $(R) -3 - [\{N - (2 - (tert-butoxycarbonylamino) -5 -$ To a mixture trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 4-bromo-2fluorobenzaldehyde (0.15 mmol), methanol (1.5 mL), and acetic acid (0.016 mL) was added $NaBH_3CN$ (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH3OH (5 mL x 2). Product was eluted off using 2 N $\mathrm{NH_3}$ in $\mathrm{CH_3OH}$ (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature for 5 h and concentrated. The residue was dissolved in methanol, loaded onto Varian TM SCX column, and washed with CH3OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_2$ OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate (0.5 mL), loaded onto Varian ™ Si column, eluted off using ethyl acetate/methanol = 5:1 (6 mL), and $(R) -3 - [{N - (2-amino-5$ afford to concentrated trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120) (16.0 mg, 31%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 517.0 $(M^++H, C_{21}H_{21}BrF_4N_4O_2)$.

Examples 773-793.

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 772 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 13.

	Compound	Molecular Formula	ESI/MS	Yield	Yield
	No.		m/e	(mg)	(%)
Example 773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
Example 774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
Example 775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
Example 776	2086	C21 H22 C1 F3 N4 O3	471.0	4.6	20
Example 777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
Example 778	2088	C25 H32 F3 N5 O2	492.2	5.9	24
Example 779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
Example 780	2090	C27 H27 F3 N4 O3	513.2	8.0	31
Example 781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
Example 782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
Example 783	2121	C22 H25 F3 N4 O4	467.0	1.2	2
Example 784	2122	C21 H21 C1 F4 N4 O2	472.9	13.1	28
Example 785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
Example 786	2124	C21 H21 C1 F3 N5 O4	500.1	15.6	62
Example 787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
Example 788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
Example 789	2137	C22 H24 Cl F3 N4 O2	469.2	2.6	11
Example 790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
Example 791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
Example 792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
Example 793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

Example 794: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175).

5

10

15

 $(R) - 3 - [\{N - (2 - \text{Amino} - 5 - \text{trifluoromethylbenzoyl}) \, \text{glycyl}\} \, \text{amino}] \, \text{pyrrolidine} \\ (17.2 \, \text{mg}, \, 0.04 \, \text{mmol}) \, \text{was dissolved in THF (1 \, \text{mL})} \, \text{and 2, 4-dimethoxy-5-pyrimidine} \\ \text{carboxaldehyde} \, (6.7 \, \text{mg}, \, 0.04 \, \text{mmol}) \, \text{was} \, \text{added} \, \, \text{followed} \, \text{by sodium} \\ \text{triacetoxyborohydride} \, (12.7 \, \text{mg}, \, 0.06 \, \text{mmol}) \, \text{and glacial acetic acid} \, (2.4 \, \text{mg}, \, 0.04 \, \text{mmol}). \\ \text{The mixture was stirred at room temperature for 24 h and evaporated.} \\ \text{The residue was then dissolved in dichloromethane} \, (1 \, \text{mL}) \, \text{and washed with 1 N} \\ \text{NaOH solution} \, (1 \, \text{mL}) \, . \, \text{The organic phase was recovered and evaporated then treated} \\ \text{with 25$\% trifluoroacetic acid in dichloromethane} \, (1 \, \text{mL}) \, \text{for 1 h at room temperature} \\ \text{and evaporated}. \, \text{The residue was purified using LC/MS to afford} \, (R) - 3 - [\{N - (2 - \text{amino} - 5 - \text{trifluoromethylbenzoyl}) \, \text{glycyl}\} \, \text{amino}] - 1 - (2, 4 - \text{dimethoxypyrimidin} - 5 - \text{ylmethyl}) \, \text{pyrrolidine} \, (\text{Compound No. 2175}) \, (18.6 \, \text{mg}, \, 78\%) \colon \text{The purity was} \\ \text{determined by RPLC/MS} \, (98\%) ; \, \text{ESI/MS m/e 483} \, (\text{M}^4 + \text{H}, \, \text{C}_{21}\text{H}_{25}\text{F}_3\text{N}_5\text{O}_4) \, .} \\ \end{aligned}$

Examples 795-803.

The compounds of this invention were synthesized pursuant to methods of Example 794 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 14.

5

10

15

20

Table 14

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 795	2165	C18 H21 F3 N6 O2	411	2.0	27
Example 796	2166	C18 H20 F3 N5 O2 S	428	9.9	66
Example 797	2167	C24 H25 F3 N6 O2	487	15.1	73
Example 798	2169	C24 H29 F3 N4 O2	463	1.2	24
Example 799	2170	C26 H25 Cl F3 N5 O2	520	6.0	40
Example 800	2171	C19 H23 F3 N6 O2	425	16.8	88
Example 801	2174	C23 H24 Br F3 N4 O2 S2	591	5.3	53
Example 802	2178	C25 H28 F3 N5 O4	518	5.4	62
Example 803	2179	C25 H28 F3 N5 O3	502	6.3	60

Example 804: Preparation of (R)-1-(2-Amino-4,5-

methylenedioxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2127).

A mixture of $(R)-3-[\{N-(2-a\min no-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine (30.5 mg), 10% Pd-activated carbone (6 mg), and methanol (3 mL) was stirred under a hydrogen atmosphere at room temperature for 10 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. Solid phase extraction (Bond ElutTM SI, 20% methanol/AcOEt) afforded <math>(R)-1-(2-a\min no-4,5-methylenedioxybenzyl)-3-[\{N-(2-a\min no-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 2127) (21.9 mg, 76%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 480.1 (M+H, <math>C_{22}H_{24}F_{3}N_{5}O_{4}$).

Examples 805 and 806.

The compounds of this invention were synthesized pursuant to methods of 25 Example 804 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 15.

Table 15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
Example 806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

Example 807: Preparation of $(R)-1-(3-A\min o-4-chlorobenzy1)-3-[(N-(2-a\min o-5-trifluoromethylbenzoy1)glycyl)amino]pyrrolidine (Compound No. 2132).$

mixture of $(R)-3-[\{N-(2-\min o-5-\max o-5-\mu o-5-$

15

10

5

Example 808: Preparation of (R)-1-(2-Amino-4,5-methylenedioxybenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.150 mmol), 4,5-methylenedioxy-2-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian™ SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4,5-methylenedioxy-2-$

30 nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), and methanol (3.0 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The Pd catalyst was filtered off, and the filtrate was concentrated to afford $(R)-1-(2-\min o-4,5-\mathrm{methylenedioxybenzyl})-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine$

(87.1 mg, quant.): Any remarkable by-products were not detected in TLC.

 $(R) - 1 - (3 - Amino - 4 - methoxybenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine and <math display="block">(R) - 1 - (3 - amino - 4 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl) - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl] - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl] - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl] - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzyl] - 3 - [\{N - (2 - (tert - butoxycarbonylamino) - 6 - methylbenzylamino) - 6 - methylbenzylamino) - 6 - methylbenzylamino -$

5

10

15

20

25

30

35

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine were also synthesized pursuant to methods of Example 808 using the corresponding reactant respectively.

 $(R) -1 - (3 - A\min no - 4 - methoxybenzyl) -3 - [\{N - (2 - (tert - butoxycarbonylamino) - 5 - trifluoromethylbenzoyl)glycyl)amino]pyrrolidine: 101 mg, quant.; Any remarkable by-products were not detected in TLC.$

 $(R)-1-(3-a\min no-4-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine: 97.2 mg, quant.; Any remarkable by-products were not detected in TLC.$

Example 809: Preparation of (R)-1-(3-Amino-4-chlorobenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

To a mixture of (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.150 mmol), 4-chloro-3-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₂ in CH₃OH and concentrated to afford (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated to afford <math>(R)-1-(3-a\min o-4-chlorobenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (89.7 mg, quant.): Any remarkable by-products were not detected in TLC.$

Example 810: Preparation of (R)-1-(3-Amino-4-hydroxybenzyl)3-[(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2187).

A solution of $(R)-1-(3-amino-4-hydroxybenzyl)-3-\{\{N-(2-(tert-1)amino-4-hydroxybenzyl)\}\}$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in 4 N HCl in dioxane (2.0 mL) was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH, and eluted off using 2 N NH₃ in CH₃OH. Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187) (9.6 mg, 59%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 452.3 (M⁺+H, C₂₁H₂₄F₃N₅O₃).

Example 811: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133).

a mixture of $(R)-1-(3-amino-4-chlorobenzyl)-3-[{N-(2-(text$ butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine $(44.9 \, \mathrm{mg})$, methanol $(0.95 \, \mathrm{mL})$, acetic acid $(0.05 \, \mathrm{mL})$, and 37% aqueous HCHO solution (0.15 mL) was added NaBH $_3$ CN (38 mg). The reaction mixture was stirred at 50 $^{\circ}$ C overnight. The mixture was cooled to room temperature and evaporated. To the residue was added 2 N aqueous NaOH solution and ethyl acetate, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried and concentrated, and the residue was loaded onto $Varian^{TM}$ SCX column and washed with CH_3OH . Product was eluted off using 2 N NH $_3$ in CH $_5$ OH and concentrated. The residue was dissolved in 50% conc. HCl/dioxane and the solution was stirred at room temperature for 1 h. The reaction mixture was adjusted to pH 10 with 5 N aqueous NaOH solution and extracted with ethyl acetate (2 times). The combined extracts were dried over Na2SO4, filtered, and evaporated. Preparative TLC (SiO_2 , 20% MeOH/AcOEt) gave (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133). (10.9 mg, 28%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 498.3 (M^{\dagger} +H, $C_{23}H_{2}$ -ClF₃N₈O₂).

Examples 812-814.

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 811 using the corresponding reactant respectively. The ESI/MS data and vields are summarized in Table 16.

Table 16

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 812	2134	$C_{24}H_{28}F_3N_5O_4$	508.4	19.0	50
Example 813	2135	$C_{24}H_{30}F_3N_5O_3$	494.4	21.8	50
Example 814	2136	$C_{24}H_{30}F_3N_5O_2$	478.4	29.2	69

Example 815: Preparation of (R)-3-[{N=(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158).

To a mixture of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ amino] pyrrolidine (27.3 mg, 0.049 mmol), 37% HCHO solution (4.0 mg, 0.049 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (9.2 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated.

10

15

20

25

30

The resulting material was dissolved in methanol (1 mL) and 4 N HCl in dioxane (1.0 mL) was added. The solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto VarianTM SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158) (4.3 mg, 19%): The purity was determined by RPLC/MS (71%); ESI/MS m/e 480.3 (M*+H, C₂₂H₂₆F₃N₅O₃).

Example 816: Preparation of (R)-1-(3-Acetylamino-4-methoxybenzyl)-3-[$\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 2152).$

To a solution of $(R)-1-(3-\text{amino-}4-\text{methoxybenzy1})-3-[\{N-(2-(\text{text-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl}\}\text{glycyl}\}\text{amino}]$ pyrrolidine (50.5 mg) in pyridine (1 mL) was added acetic anhydride (1 mL). The reaction mixture was stirred at room temperature overnight and methanol was added. The mixture was evaporated, and 1 N NaOH solution was added. The mixture was extracted with ethyl acetate and the organic layer was concentrated. Preparative TLC gave $(R)-1-(3-\text{acetylamino-}4-\text{methoxybenzy1})-3-[\{N-(2-(\text{text-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ amino]pyrrolidine.

The resulting $(R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-(tert-index))}-$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine was dissolved in 50% 6 N hydrochloric acid in dioxane and the solution was stirred at room temperature for 2 h. The mixture was adjusted to pH 10 with 5 M NaOH solution, and extracted with ethyl acetate. The organic layer was evaporated and preparative TLC (SiO_2 , AcOEt/MeOH = 4:1) afforded (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2152) (3.7 mg, 8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 508.3 (M+H,

10

 $C_{24}H_{28}F_3N_5O_4$).

5

Examples 817-819.

The compounds of this invention were synthesized pursuant to methods of Example 816 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 17.

15

25

30

Table 17

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 817	2150	C23H25C1F3N5O3	512.3	3.8	9
Example 818	2151	C24H26F3N5O5	522.2	3.1	8
Example 819	2153	C24H28F3N5O3	492.3	4.3	10

Example 820: Preparation of (R)-3-[{N-(2-Amino-5-20 trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189).

A solution of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (20 mg), prepared pursuant to methods of Example 808, in THF (2 mL) was treated with triethyl orthoformate (0.020 mL, 3.3 eq) and pyridinium p-toluenesulphonate (1.2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO_2 , AcOEt/MeOH =

4:1) to afford (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189) (0.5 mg, 3%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 462.3 (M $^+$ +H, $C_{22}H_{22}F_3N_5O_3$).

Example 821: Preparation of (R) -3-[$\{N-(2-Amino-5-trifluoromethylbenzoy1)$ glycyl $\}$ amino]-1-(benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183).

5

10

15

20

25

30

35

To a mixture of 5-(hydroxymethyl) benzo[c] thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1- (benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183) (11.5 mg, 48%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 479.2 (M⁴+H, C₂₁H₂₁F₃N₆O₂S).

Reference Example 6: Preparation of $4-[{N-(1-(9-1)^2+1)^2+1}]$ fuluorenylmethoxycarbonyl) pyrrolidin-3-yl) carbamoylmethyl aminomethyl = 3-methoxyphenyloxymethyl-polystyrene.

To a solution of (R)-1-(9-fuluorenylmethoxycarbonyl)-3-glycylamino-pyrrolidine hydrochloride (4.38 g, 10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_2 , and methanol, and dried to afford the desired material (2.73 g).

Examples 822-912: General Procedure for Solid-Phase Synthesis of 3-Aminopyrrolidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{pyrrolidin-}3-\text{yl})\text{ carbamoylmethyl}\}$ aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (400 mg, 0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH_2Cl_2 , and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH(OAc) $_3$ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH $_3$ OH, 10% diisopropylethylamine in DMF, DMF, CH $_2$ Cl $_2$, and CH $_3$ OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH $_2$ Cl $_2$ and CH $_3$ OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian TM SCX column and washed with CH $_3$ OH (15 mL). Product was eluted using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 18.

20

15

5

10

Table 18

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 822	1805	C21 H21 Br F3 N3 O2 S	516	13.3	76
Example 823	1806	C22 H24 F3 N3 O3 S	468	12.8	81
Example 824	1807	C22 H24 F3 N3 O4 S	484	13.7	83
Example 825	1808	C22 H24 F3 N3 O4 S	484	14.9	91
Example 826	1809	C21 H22 F3 N3 O3 S	454	12.9	84
Example 827	1810	C22 H22 F3 N3 O4 S	482	12.9	79
Example 828	1811	C24 H26 F3 N3 O2 S	478	12.9	79
Example 829	1812	C22 H24 F3 N3 O2 S2	484	5.3	32
Example 830	1813	C23 H26 F3 N3 O2 S	466	12.8	81
Example 831	1814	C23 H24 F3 N3 O3 S	480	9.7	59
Example 832	1815	C23 H26 F3 N3 O2 S	466	12.7	80
Example 833	1816	C24 H28 F3 N3 O2 S	480	14.4	88
Example 834	1817	C25 H30 F3 N3 O2 S	494	14.1	84
Example 835	1818	C21 H22 Br F2 N3 O3	482	13.4	82
Example 836	1819	C22 H25 F2 N3 O4	434	11.7	79

Example 837	1820	C22 H25 F2 N3 O5	450	11.8	77
Example 838	1821	C22 H25 F2 N3 O5	450	13.3	87
Example 839	1822	C21 H23 F2 N3 O4	420	11.9	83
Example 840	1823	C22 H23 F2 N3 O5	448	11.9	78
Example 841	1824	C24 H27 F2 N3 O3	444	9.1	60
Example 842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
Example 842 Example 843	1826	C23 H27 F2 N3 O3	432	10.8	74
	1827	C23 H27 F2 N3 O3	446	12.7	84
Example 844		C23 H27 F2 N3 O4	432	11.7	80
Example 845	1828	C24 H29 F2 N3 O3	446	14.3	94
Example 846	1829			10.0	66
Example 847	1830	C24 H29 F2 N3 O3	446	ļ	
Example 848	1831	C22 H28 Br N3 O3	462	4.8	31
Example 849	1832	C23 H31 N3 O4	414	10.4	74
Example 850	1833	C23 H31 N3 O5	430	12.1	83
Example 851	1834	C23 H31 N3 O5	430	12.0	82
Example 852	1835	C22 H29 N3 O4	400	7.9	58
Example 853		C23 H29 N3 O5	428	11.1	76
Example 854	1837	C25 H33 N3 O3	424	13.3	92
Example 855	1838	C23 H31 N3 O3 S	430	8.7	60
Example 856	1839	C24 H33 N3 O3	412	11.3	81
Example 857	1840	C24 H31 N3 O4	426	12.9	89
Example 858	1841	C24 H33 N3 O3	413	12.8	91
Example 859	1842	C25 H35 N3 O3	426	8.7	60
Example 860	1843	C25 H35 N3 O3	426	12.2	84
Example 861	1844	C26 H37 N3 O3	440	11.3	76
Example 862	1845	C31 H37 Br N4 O2	577	6.4	30
Example 863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
Example 864	1847	C25 H31 F2 N3 O3	460	12.2	78
Example 865	1848	C27 H29 N3 O4	460	6.1	39
Example 866	1849	C29 H31 N3 O2	454	15.1	98
Example 867	1850	C28 H31 N3 O2	442	12.7	85
Example 868	1851	C28 H31 N3 O2	442	14.3	95
Example 869	1852	C28 H29 N3 O3	456	3.4	22
Example 870		C27 H29 N3 O6 S	524	15.4	87
Example 871		C29 H31 N3 O4 S	518	15.8	90
Example 872	I	C28 H31 N3 O4 S	506	17.0	99
Example 873		C28 H31 N3 O4 S	506	3.0	17
Example 874		C28 H29 N3 O5 S	520	10.0	57
Example 875		C20 H22 Br2 N4 O2	511	9.3*	37
Example 876	i	C21 H25 Br N4 O3	461	6.7*	29
DAGRIPTE 070	L			<u> </u>	

Example 877	1860	C21 H25 Br N4 O4	477	9.5*	40
Example 878	1861	C21 H25 Br N4 O4	477	10.0*	42
Example 879	1862	C20 H23 Br N4 O3	447	7.8*	34
Example 880	1863	C21 H23 Br N4 O4	475	3.4*	14
Example 881	1864	C21 H25 Br N4 O2 S	477	3.9*	16
Example 882	1865	C22 H25 Br N4 O3	473	6.4*	27
Example 883	1866	C23 H29 Br N4 O2	472	7.0*	29
Example 884	1867	C23 H29 Br N4 O2	473	7.6*	32
Example 885	1868	C24 H31 Br N4 O2	487	9.1*	37
Example 886	1869	C20 H22 Br I N4 O2	557	8.9*	33
Example 887	1870	C21 H25 I N4 O3	509	9.2*	37
Example 888	1871	C21 H25 I N4 O4	525	6.3*	25
Example 889	1872	C21 H25 I N4 O4	525	5.9*	23
Example 890	1873	C20 H23 I N4 O3	495	7.7*	31
Example 891	1874	C21 H23 I N4 O4	523	8.2*	32
Example 892	1875	C23 H27 I N4 O2	519	6.7*	26
Example 893	1876	C21 H25 I N4 O2	525	4.3*	17
Example 894	1877	C22 H27 I N4 O2	507	7.9*	32
Example 895	1878	C22 H25 I N4 O3	521	8.4*	33
Example 896	1879	C23 H29 I N4 O2	521	8.2*	32
Example 897	1880	C23 H29 I N4 O2	521	8.1*	32
Example 898	1881	C24 H31 I N4 O2	535	8.6*	33
Example 899	1882	C20 H22 Br N5 O4	476	5.3*	22
Example 900	1883	C21 H25 N5 O5	428	5.7*	26
Example 901	1884	C21 H25 N5 O6	444	8.2*	36
Example 902	1885	C21 H25 N5 O6	444	5.0*	22
Example 903	1886	C20 H23 N5 O5	414	8.7*	40
Example 904	1887	C21 H23 N5 O6	442	7.8*	34
Example 905	1888	C23 H27 N5 O4	438	5.6*	25
Example 906		C21 H25 N5 O4 S	444	13.2*	58
Example 907	1890	C22 H27 N5 O4	426	11.3*	51
Example 908	1891	C22 H25 N5 O5	440	7.4*	33
Example 909	1892	C22 H27 N5 O4	426	5.5*	25
Example 910	1893	C23 H29 N5 O4	440	5.7*	25
Example 911	1894	C23 H29 N5 O4	440	9.4*	41
Example 912	1895	C24 H31 N5 O4	455	8.5*	37

^{*}Yield of TFA salt.

Reference Example 7: Preparation of 2-Carbamoyl-1-(4-

chlorobenzyl)pyrrolidine.

A solution of *dl*-prolinamide hydrochloride (2.5 g, 21.8 mmol) in CH_3CN (35 mL) was treated with Et_3N (7.45 mL) and 4-chlorobenzyl chloride (3.88 g, 24.1 mmol). The reaction mixture was stirred at 70 °C for 4 h and then at 25 °C for 16 h. The resulting mixture was diluted with CH_2Cl_2 (20 mL) and was washed with water (3 x 30 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 1% $CH_3OH-CH_2Cl_2$) afforded 2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine (5.21 g, 81%).

10 Reference Example 8: Preparation of 2-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine was dissolved in 1M BH₃-THF (9.4 mL) and heated to 70 °C. After 16 h and 25 h, additional 0.5 equiv. of 1M BH₃-THF were added. After 40 h, 1 N aqueous HCl solution (14 mL) was added and the reaction was heated to reflux for 3 h, 3 N aqueous HCl solution (6 mL) was added and the reaction was heated for an additional 3 h. The reaction mixture was cooled to 25 °C, basicified with 4 N aqueous NaOH solution and extracted with CH_2Cl_2 (4 x 15 mL). Chromatography (SiO₂, 8:1:1 4 PrOH-H₂O-NH₄OH) afforded 2-(aminomethy1)-1-(4-chlorobenzy1)pyrrolidine (1.21 g, 86%).

20

25

15

5

Optically active (S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine and (R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine were also prepared pursuant to the above method using the corresponding reactant respectively.

(S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine: ¹H NMR (CDCl₃, 400 MHz) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, J = 13.2 Hz, 1 H), 3.93 (d, J = 13.2 Hz, 1 H), 7.20-7.40 (m, 4 H).

(R) -2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine showed the same ^{1}H NMR with that of (S)-isomer.

30

35

Example 913: Preparation of 2-((N-benzoylleucyl)aminomethyl}-1-(4-chlorobenzyl)pyrrolidine (Compound No. 344).

A solution of 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (22.5 mg, 0.10 mmol) and dl-benzoylleucine (0.12 mmol) in CHCl₃ (1 mL) was treated with EDCI (23 mg). HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 2-{(N-benzoylleucyl)aminomethyl}-1-(4-

chlorobenzyl)pyrrolidine (compound No. 344) (74 mg, quant) : The purity was determined by RPLC/MS (85%); ESI/MS m/e 442 (M^t+H , $C_{25}H_{32}ClN_3O_2$).

Examples 914-935.

The compounds of this invention were synthesized pursuant to methods of Example 913 using the corresponding reactant respectively. Chromatography, if needed, (HPLC- C_{18} , $CH_3CN/H_2O/TFA$) afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 19 and compound No. **339** and **340** showed the following 1H NMR spectra respectively.

10

5

Table 19

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 914	330	C21 H24 C1 N3 O2	386	75*	quant
Example 915	331	C22 H26 Cl N3 O2	400	44*	70
Example 916	332	C24 H30 C1 N3 O5	476	57	quant
Example 917	333	C20 H23 Cl N4 O2	387	40	quant
Example 918	334	C22 H26 Cl N3 O2	400	68	quant
Example 919	335	C21 H23 C1 N4 O4	431	73	quant
Example 920	336	C22 H23 C1 F3 N3 O2	454	75	quant
Example 921	337	C22 H26 Cl N3 O2	400	68	quant
Example 922	338	C22 H26 Cl N3 O2	400	70	quant
Example 923	341	C22 H26 Cl N3 O2	400	80*	quant
Example 924	342	C22 H26 C1 N3 O2	400	68	quant
Example 925	343	C24 H30 Cl N3 O2	428	63	quant
Example 926	345	C23 H27 Cl N2 O2	399	68*	quant
Example 927	346	C23 H26 Cl F N2 O3	433	51	quant
Example 928	347	C24 H29 C1 N2 O2	413	47	quant
Example 929	348	C23 H27 C1 N2 O2	399	26	quant
Example 930	349	C21 H25 C1 N2 O3 S	421	42	quant
Example 931	350	C26 H33 Cl N2 O3	457	12.4	54
Example 932	351	C22 H26 Cl N3 O3	416	34	81
Example 933	352	C22 H25 C12 N3 O3	450	51	quant

^{*}Yield of TFA salt.

¹⁵ Example 934. Compound No. 339: 82%; 1 H NMR (CDCl₃) δ 1.52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d,

J = 13.1 Hz, 1 H), 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H).

Example 935. Compound No. **340**: 68%; ¹H NMR (CDCl₃) δ 1.55-1.73 (m, 4 H), 1.86-1.97 (m, 1 H), 2.12-2.21 (m, 1 H), 2.67-2.76 (m, 1 H), 2.86-2.93 (m, 1 H), 3.14-3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52-3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09-4.21 (m, 2 H), 7.00-7.07 (m, 1 H), 7.12-7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10-8.25 (m, 2 H).

10

15

20

Reference Example 9: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

To a mixture of 4-carboxy-1-(4-chlorobenzyl)pyrrolidin-2-one (5.05 g, 20 mmol), EDCI (2.85 g, 22 mmol), HOBt (2.97 g, 22 mmol) and dichloromethane (100 mL) was added 0.5 M ammonia in dioxane (60 mL, 30 mmol). The reaction mixture was stirred at room temperature for 15 h and washed with 2N HCl (3 times) and 2 N NaOH aqueous solution (100 mL x 4). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to afford 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.49 g) as a colorless solid.

To a solution of 3-carbamoy1-1-(4-chlorobenzyl)pyrrolidin-2-one (1.45 g) in THF (15 mL) was added 1.0 N BH $_3$ in THF (25 mL). The reaction mixture was stirred at 65 °C for 15 h. After cooling to room temperature, the solvent was removed under reduced pressure. Water (30 mL) and conc. HCl (10 mL) were added and the mixture was stirred at 100 °C for 2 h and room temperature for 1 h. 2 N NaOH aqueous solution (100 mL) was added and the mixture was extracted with AcOEt (50 mL x 3). The combined organic layers were dried over K_2CO_3 , filtered and concentrated. Column chromatography (SiO $_2$, 15% CH $_3OH$ -5% Et $_3N$ in CH $_2Cl_2$) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 19%) as a colorless oil.

30

35

25

Reference Example 10: Preparation of 1-(4-Chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine.

A mixture of 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 3.8 mmol), Et₃N (5.7 mmol), N-tert-butoxycarbonylglycine (704 mg), EDCI (594 mg), HOBt (673 mg), and dichloromethane (20 mL) was stirred at room temperature for 15 h. Dichloromethane (50 mL) was added and the solution was washed with 2 N NaOH solution (50 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated to afford 3-[{N-(tert-butoxycarbonyl)glycyl}aminomethyl]-1-(4-

chlorobenzyl)pyrrolidine (1.31 g, 90%).

To a solution of $3-[\{N-(tert-butoxycarbonyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (804 mg, 2.11 mmol) in methanol (10 mL) was added 4 N HCl in dioxane (5 mL). The solution was stirred at room temperature for 3.5 h. The reaction mixture was concentrated and 1 N NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate and concentrated to give desired <math>1-(4-chlorobenzyl)-3-\{(glycylamino)methyl\}pyrrolidine (599 mg, 1008): The purity was determined by RPLC/MS (100%); ESI/MS m/e 282.2 (M+H, <math>C_{14}H_{20}ClN_3O$).

10

15

5

Example 936: Preparation of 3-[{N-(3-Trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463).

A solution of 3-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (0.2 mL) was added to a mixture of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (60 mg) in chloroform (0.2 mL) and dichloromethane (1 mL). After the reaction mixture was stirred at room temperature for 2.5 h, methanol (0.30 mL) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (3-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463) (22.4 mg, 99%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 454.2 (MT+H, C₂₂H₂₂ClF₃N₃O₂).

25

20

Examples 937-944.

The compounds of this invention were synthesized pursuant to methods of Example 936 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 20.

30

Table 20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 937	1464	C22 H23 Cl F3 N3 O3	470.0	21.0	89
Example 938	1465	C23 H22 Cl F6 N3 O2	522.0	24.5	94
Example 939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
Example 940	1467	C21 II23 C12 N3 O2	420.0	19.6	93

Example 941	1468	C21 H23 C1 N4 O4	431.2	19.5	91
Example 942	1469	C22 H22 Cl F4 N3 O2	472:0	21.8	92
Example 943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
Example 944	1471	C21 H22 Cl F2 N3 O2	422.0	20.9	99

Example 945: Preparation of $3-[\{N-(2-A\min o-4,5-difluorobenzoyl\}]-1-(4-chlorobenzoyl)$ pyrrolidine (Compound No. 1506).

A solution of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.05 mL) was treated with 2-amino-4,5-difluorobenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 19 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (10 mL) and CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $3-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506) (22.0 mg, quant): The purity was determined by RPLC/MS (92%); ESI/MS m/e 437 (C₂₁H₂₃ClF₂N₄O₂).$

Examples 946-952.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Example 945 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 21.

m-bl-

Table 21

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 946	1506	C21 24 Br Cl N4 O2	481	20.6	86
Example 947	1507	C21 H24 F C1 N4 O2	419	21.7	quant
Example 948	1509	C27 H28 Cl N3 O2	462	26.5	quant
Example 949	1510	C21 H24 Cl I N4 O2	527	22.0	84
Example 950	1511	C19 H21 Br Cl N3 O2 S	472	23.7	quant
Example 951	1512	C21 H24 Cl2 N4 O2	435	22.3	quant
Example 952	1513	C27 H28 Cl N3 O4 S	526	24.6	94

Reference Example 11: Preparation of 1-(4-Chlorobenzyl) nipecotic acid.
4-Chlorobenzyl chloride (6.42 g, 39.9 mmol) and Pr₂NEt (7.74 g, 40.0 mmol)

were added to a solution of ethyl nipecotate (6.29 g, 40.0 mmol) in CH₃CN (15 mL). The reaction mixture was stirred at 70 °C for 1.5 h. The solvent was removed under reduced pressure. Saturated aqueous NaHCO₃ (50 mL) was added to the residue and the mixture was extracted with EtOAc (100 mL). The organic phase was washed with saturated aqueous NaHCO₃ and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford ethyl 1-(4-chlorobenzyl) nipecotate as a red yellow oil (11.025 g, 97.8%) used without further purification. The purity was determined by RPLC/MS (97%); ESI/MS m/e 382.2 (M⁺+H, C₁₅H₅₁ClNO₂).

5

10

15

20

25

30

35

A solution of LiOH (1.66 g) in H_2O (25 mL) was added to the solution of ethyl 1-(4-chlorobenzyl) nipecotate in THF (60 mL) and CH₃OH (20 mL). The reaction mixture was stirred at room temperature for 15 h. The solvent was removed under reduced pressure to afford an amorphous solid which was purified by column chromatography (SiO₂, 50% CH₃OH-CH₂Cl₂) to yield 1-(4-chlorobenzyl) nipecotic acid (9.75 g, 98.2%) as a pale yellow amorphous solid. The purity was determined by RPLC/MS (>95%); ESI/MS m/e 254.0 (M*+H, C₁₃H₁₇ClNO₂).

Reference Example 12: Preparation of 1-(4-Chlorobenzyl)-3-{(text-butoxycarbonyl)amino}piperidine.

A solution of 1-(4-chlorobenzyl)nipecotic acid (7.06 g, 27.8 mmol) in tBuOH (500 mL) was treated with Et₃N (3.38 g) and activated 3 Å molecular sieves (30 g). Diphenylphosphoryl azide (8.58 g) was added, and the reaction mixture was warmed at reflux for 18 h. The mixture was cooled and the solvent was reflux for 18 h. The mixture was cooled and the solvent was remove under vacuum. The residue was dissolved in EtOAc (500 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (2 x 100 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated in vacuo. Chromatography (SiO₂, 25% EtOAc-hexane) afforded 1-(4-chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine (2.95 g, 32.6%) as a white crystalline solid: 1H NMR (CDCl₃, 300 MHz) δ 1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 1 H), 7.3 (br, 4 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 269.2 (M*+H-56, Cl₁₇H₂₆ClN₂O₃).

Reference Example 13: Preparation of 3-Amino-1-(4-chlorobenzyl)piperidine.

A solution of $1-(4-\text{chlorobenzyl})-3-\{(\text{tert-butoxycarbonyl}) \text{ amino}\}$ piperidine (2.55 g, 7.85 mmol) in CH₂OH (25 mL) was treated with 1 N HCl-Et₂O (50 mL). The reaction mixture was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford 3-amino-l-(4-chlorobenzyl) piperidine dihydrochloride as an amorphous solid (2.49 g, quant).

The purity was determined by RPLC/MS (>95%),; ESI/MS m/e 225.2 (M^{\dagger} +H, $C_{12}H_{18}ClN_2$).

Example 953: Preparation of 1-(4-Chlorobenzyl)-3-[{N-(3-methylbenzoyl)glycyl}amino]piperidine (Compound No. 355).

N-(3-Methylbenzoyl)glycine (10.6 mg, 0.055 mmol), EDCI (10.5 mg) and 1-hydroxybenzotriazole hydrate (7.4 mg) were added to a solution of 1-(4-chlorobenzyl)-3-aminopiperidine dihydrochloride (14.9 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(4-chlorobenzyl)-3-[{N-(3-methylbenzoyl)glycyl}amino]piperidine (compound No. 355) as a pale yellow oil (17.4 mg, 87%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 400.0 (M*+H, $C_{22}H_{26}ClN_3O_2$).

15 Examples 954-982.

The compounds of this invention were synthesized pursuant to methods of Example 953 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 22 and compound No. 358 showed the following ¹H NMR spectra.

20

5

10

Table 22

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (ह)
Example 954	354	C21 H24 C1 N3 O2	386	16.1	83
Example 955	356	C20 H23 C1 N4 O2	387	19.4	100
Example 956	357	C22 H26 C1 N3 O2	400	16.8	84
Example 957	359	C22 H26 C1 N3 O2	400	8.9	17
Example 958	360	C22 H25 Cl N4 O4	445	25.6	quant
Example 959	361	C23 H27 C1 N2 O2	399	15.5	29
Example 960	362	C24 H29 Cl N2 O3	429	12.4	58
Example 961	363	C21 H25 C1 N2 O2 S	405	22.2	quant
Example 962	364	C24 H29 C1 N2 O4	445	20.7	93
Example 963	365	C24 H29 Cl N2 O2	413	15.6	75
Example 964	366	C23 H26 Cl F N2 O3	433	21.6	100
Example 965	367	C23 H27 C1 N2 O2	399	11.9	60
Example 966	368	C22 H25 C1 N2 O2	385	16.0	83
Example 967	369	C22 H24 C12 N2 O2	419	13.9	60
Example 968	370	C26 H33 C1 N2 O3	457	15.9	54