Parallel Programming

Basic Concepts in Parallelism

Big Picture (Part I)

Expressing Parallelism

- Work partitioning
 - Split up work of a single program into parallel tasks

- Can be done:
 - Explicitly / Manually (task/thread parallelism)
 - User explicitly expresses tasks/threads
 - Implicit parallelism:
 - Done automatically by the system (e.g., in data parallelism)
 - User expresses an operation and the system does the rest

Work Partitioning & Scheduling

work partitioning

- split up work into parallel tasks/threads
- (done by user)
- A task is a unit of work
- also called: task/thread decomposition

scheduling

- assign tasks to processors
- (typically done by the system)
- goal: <u>full utilization</u>(no processor is ever idle)

of chunks should be larger than the # of processors

Task/Thread Granularity

Coarse granularity

Fine granularity

Coarse vs Fine granularity

Fine granularity:

- more portable
 (can be executed in machines with more processors)
- better for scheduling
- but: if scheduling overhead is comparable to a single task → overhead dominates

Task granularity guidelines

- As small as possible
- but, significantly bigger than scheduling overhead
 - system designers strive to make overheads small

Scalability

An overloaded concept: e.g., how well a system reacts to increased load, for example, clients in a server

In parallel programming:

- speedup when we increase processors
- what will happen if processors $\rightarrow \infty$
- a program scales linearly → linear speedup

Parallel Performance

Sequential execution time: T₁

Execution time T_p on p CPUs

- $-T_p = T_1/p$ (perfection)
- $-T_p > T_1/p$ (performance loss, what normally happens)
- $-T_p < T_1/p$ (sorcery!)

(parallel) Speedup

(parallel) speedup S_p on p CPUs:

$$S_p = T_1 / T_p$$

- $S_p = p \rightarrow linear speedup (perfection)$
- $S_p sub-linear speedup (performance loss)$
- $S_p > p \rightarrow$ super-linear speedup (sorcery!)
- Efficiency: S_p / p

Absolute versus Relative Speed-up

Relative speedup (Efficiency):

relative improvement from using P execution units.

(Baseline: serialization of the parallel algorithm).

Sometimes there is a better serial algorithm that does not parallelize well.

In these cases it is fairer to use that algorithm for T_1 (absolute speedup). Using an unnecessarily poor baseline artificially inflates speedup and efficiency.

(parallel) speedup graph example

why
$$S_p < p$$
?

- Programs may not contain enough parallelism
 - e.g., some parts of program might be sequential
- overheads introduced by parallelization
 - typically associated with synchronization
- architectural limitations
 - e.g., memory contention

Parallel program:

- sequential part: 20%
- parallel part: 80% (assume it scales linearly)
- $T_1 = 10$

What is T_8 ? What is the speedup S_8 ?

Answer:

Parallel part

80%

Sequential part

20%

•
$$T_1 = 10$$

•
$$T_8 = 3$$

$$S_8 = T_1/T_8 = 10/3 = 3.33$$

Amdahl's Law

...the effort expended on achieving high parallel processing rates is wasted unless it is accompanied by achievements in sequential processing rates of very nearly the same magnitude.

Gene Amdahl

Amdahl's Law – Ingredients

Execution time T_1 of a program falls into two categories:

- Time spent doing non-parallelizable serial work
- Time spent doing parallelizable work

Call these W_{ser} and W_{par} respectively

Amdahl's Law – Ingredients

Given P workers available to do parallelizable work, the times for sequential execution and parallel execution are:

$$T_1 = W_{ser} + W_{par}$$

And this gives a bound on speed-up:

$$T_p \ge W_{ser} + \frac{W_{par}}{P}$$

Amdahl's Law

Plugging these relations into the definition of speedup yields Amdahl's Law:

$$S_p \le \frac{W_{ser} + W_{par}}{W_{ser} + \frac{W_{par}}{P}}$$

Amdahl's Law - Corollary

$$S_p \le \frac{W_{ser} + W_{par}}{W_{ser} + \frac{W_{par}}{P}}$$

If **f** is the non-parallelizable serial fractions of the total work, then the following equalities hold:

$$W_{ser} = \mathbf{f}T_1,$$

$$W_{par} = (1 - \mathbf{f})T_1$$

which gives:

$$S_p \le \frac{1}{f + \frac{1 - f}{P}}$$

What happens if we have infinite workers?

$$S_{\infty} \leq \frac{1}{f}$$

Speedup

Efficiency

Remarks about Amdahl's Law

- It concerns *maximum speedup* (Amdahl was an optimist (or pessimist?))
 - architectural constraints will make factors worse
- But his law is mostly bad news (as it puts a limit on scalability)
- takeaway: all non-parallel parts of a program (no matter how small) can cause problems
- Amdahl's law shows that efforts required to further reduce the fraction of the code that is sequential may pay off in large performance gains.
- Hardware that achieves even a small decrease in the percent of things executed sequentially may be considerably more efficient

An alternative (optimistic) view to Amdahl's Law

Observations:

- consider problem size
- run-time, not problem size, is constant
- more processors allows to solve larger problems in the same time
- parallel part of a program scales with the problem size

f: sequential part (no speedup)

$$W = p(1 - f)T_{wall} + fT_{wall}$$

$$S_p = f + p(1 - f)$$
$$= p - f(p - 1)$$

Amdahl's vs Gustafson's Law

Summary

Parallel speedup

Amdahl's and Gustafson's law

Parallelism: task/thread granularity