Пример организации памяти мультипрограммной ЭВМ (Itanium)

- 1. Виртуальные адресные пространства и регистры регионов
- 2. Преобразование виртуального адреса в физический
- Знать: формат виртуального и физического адреса, общую схему преобразования виртуального адреса в физический с использованием буфера ассоциативной трансляции, механизм защиты памяти по ключам с учетом прав доступа.

1. Виртуальные адресные пространства и регистры регионов

- Виртуальное адресное пространство, определяемое 64-разрядным адресом, делится на восемь виртуальных регионов, каждый из которых имеет объем 2⁶¹ байт.
- Регион выбирается тремя старшими битами виртуального адреса.
- С каждым виртуальным регионом ассоциируется регистр региона (rr0-rr7), который определяет 24-битный идентификатор региона (уникальный номер адресного пространства).

Формат виртуального адреса

Возможна организация 2^{24} виртуальных адресных пространств объемом 2^{61} или одного глобального адресного пространства объемом 2^{85} .

Возможны следующие размеры страниц: 4к, 8к, 16к, 64к, 256к, 1М, 4М, 16М, 64М, 256М.

IA-64 Region Registers

64-bit Address

Processes and Threads

2. Преобразование виртуального адреса в физический

- Процесс преобразования виртуального адреса в физический иллюстрируется на рисунке 2:
 - key ключ защиты памяти (домена);
 - rights права доступа;
 - PPN номер физической страницы;
 - rk0, rk1,... регистры ключей защиты памяти.
- Каждый виртуальный адрес состоит из трех полей: номера виртуального региона (VRN), номера виртуальной страницы (VPN) и адреса объекта на странице (Offset).
- Поле Offset не модифицируется при преобразовании адреса.
- Граница между полями VPN и Offset зависит от размера используемых страниц.

Общая схема преобразования

виртуального адреса в физический

Процесс преобразования

- С помощью битов VRN выбирается один из восьми регистров регионов.
- Далее в буфере ассоциативной трансляции производится поиск строки, в которой совпадают значения полей виртуального номера страницы и идентификатора региона со значениями соответствующих полей, поступающих на вход буфера.
- Если совпадение обнаружено, то номер физической страницы, содержащейся в этой строке буфера, используется для формирования физического адреса.
- Физический адрес образуется путем конкатенации номера физической страницы и адреса объекта на странице.
- Преобразование адреса выполняется с учетом заданного объема страницы, уровня привилегий, прав доступа, ключей защиты памяти.

Virtual Address Translation

Процесс преобразования (продолжение)

- Если строки для требуемой страницы в буфере ассоциативной трансляции нет, то процессор может продолжить поиск в виртуальной хеш-таблице страниц (VHPT). Найденная строка используется для преобразования адреса и обновления содержимого буфера.
- Если требуемой строки нет ни в буфере, ни в хештаблице страниц, то процессор формирует сигнал промаха и для преобразования адреса используется операционная система. После того, как операционная система обновит содержимое TLB или/и VHPT производится рестарт прерванной команды, и выполнение программы продолжается.
- Хеш-таблица страниц является расширением буфера ассоциативной трансляции, находящегося в процессоре. Она размещается в памяти и может быть автоматически просмотрена процессором.

Hardware Accessed Page Table

Защита памяти по ключам

- Используемая защита памяти по ключам предполагает, что с каждой виртуальной страницей ассоциируется уникальный идентификатор защиты домена (некоторой области памяти).
- В регистрах ключей защиты памяти присутствуют все ключи, необходимые процессу. При преобразовании адреса ключ страницы сравнивается со всеми ключами, находящимися в регистрах ключей защиты памяти.
- В случае совпадения ключа страницы с ключом в одном из регистров производится дальнейшее сравнение прав доступа страницы с правами доступа, хранящимися в регистре. При этом используются следующие биты прав доступа: "запрещено чтение", "запрещена запись", "запрещено выполнение".
- Процессор содержит по крайней мере 16 регистров ключей защиты для хранения ключей с разрядностью не менее 18.

Protection: Can I See it? Can I Access it?

Буфер ассоциативной трансляции

- Буфер ассоциативной трансляции состоит из двух буферов: команд ITLB и данных DTLB. В свою очередь каждый из выделенных буферов делится на две секции: регистры трансляции (TR) и кэш-транслятор (CT).
- В системе команд процессора предусмотрены операции для работы с регистрами, используемыми для преобразования адреса и защиты памяти.

Virtual Memory Model: Example

Region 7 - One RID, no key Kernel - protected by Priv. level

i

Region 2 - One RID, protection via multiple keys Shared memory areas

Region 0 - Different RID in each process Unique address spaces for data