FSAB1402: Informatique 2

Algorithmes sur les Listes

Peter Van Roy

Département d'Ingénierie Informatique, UCL

pvr@info.ucl.ac.be

Ce qu'on va voir aujourd'hui

- Résumé des derniers cours
- Techniques de programmation
 - Utilisation de variables non-liées
 - Amélioration de l'efficacité avec un accumulateur
 - Utilisation du type pour construire une fonction récursive
- Algorithme de tri: Mergesort
- Programmer avec plusieurs accumulateurs
 - Programmer avec un état

Suggestions de lecture pour ce cours

- Chapitre 1 (sections 1.4-1.6):
 - Listes et fonctions sur les listes, fonctions correctes
- Chapitre 3 (section 3.4.1):
 - Notation des types
- Chapitre 3 (section 3.4.2):
 - Programmer avec les listes
- Chapitre 3 (section 3.4.3):
 - Les accumulateurs

Résumé des deux derniers cours

Récursion sur les listes

- Définir une fonction {Nth L N} qui renvoie la nième élément de L
- Raisonnement:
 - Si N==1 alors le résultat est L.1
 - Si N>1 alors le résultat est {Nth L.2 N-1}
- Voici la définition complète:

```
fun {Nth L N}
  if N==1 then L.1
  elseif N>1 then
    {Nth L.2 N-1}
  end
end
```

Pattern matching (correspondance des formes)

Voici une fonction avec plusieurs formes:

```
fun {Length Xs}
  case Xs
  of nil then 0
  [] XIXr then 1+{Length Xr}
  [] X1IX2IXr then 2+{Length Xr}
  end
end
```

Comment les formes sont-elles choisies?

- Complexité temporelle et spatiale
- Meilleur cas, pire cas et cas moyen
- Analyse asymptotique
- La notation O
- Les notations Θ , Ω
 - Attention: Θ est plus difficile que O et Ω!
 - O : borne supérieure
 - Ω : borne inférieure
 - Θ : borne inférieure et supérieure
- Complexité temporelle d'un algorithme récursif
- Complexité en moyenne

 Voici une version efficace pour calculer le triangle de Pascal:

```
fun {FastPascal N}
  if N==1 then [1]
  else L in
    L={FastPascal N-1}
    {AddList {ShiftLeft L} {ShiftRight L}}
  end
end
```

- La complexité en temps est O(n²)
- Complexité polynomiale: un polynome en n

Techniques de programmation

Techniques de programmation

- Nous avons déjà vu quelques fonctions récursives sur les listes
- Nous allons maintenant approfondir les techniques de programmation sur les listes
 - Utiliser les variables non-liées pour faciliter la récursion terminale (exemple d'Append)
 - Utiliser un accumulateur pour augmenter l'efficacité d'un algorithme (exemple de Reverse)
 - Utiliser un type pour définir une fonction récursive (exemple de Flatten)

Récursion terminale avec les listes

- Définissons une fonction {Append Xs Ys} qui construit une liste qui est la concaténation de Xs et Ys
 - Le résultat contient les éléments de Xs suivi par les éléments de Ys
- Nous faisons un raisonnement inductif sur le premier argument Xs
 - Si Xs==nil alors le résultat est Ys
 - Si Xs==X|Xr alors le résultat est X|{Append Xr Ys}
- Faites un dessin pour comprendre cette induction!

Exécution d'Append

- {Append [1 2] [a b]}
 - → 1| {Append [2] [a b]}
 - → 1| 2| {Append nil [a b]}
 - \rightarrow 1| 2| [a b]

Voici la définition de Append:

```
fun {Append Xs Ys}
case Xs
of nil then Ys
[] X|Xr then X|{Append Xr Ys}
end
end
```

- Est-ce que cette définition fait la récursion terminale?
- Pour le savoir, il faut la traduire en langage noyau

Voici une traduction naïve de cette définition:

```
proc {Append Xs Ys Zs}
case Xs
of nil then Zs=Ys
[] X|Xr then
local Zr in
{Append Xr Ys Zr}
Zs=X|Zr
end
end
end
```

L'appel récursif n'est pas le dernier appel!

Append en langage noyau (2)

Voici la vraie traduction de la définition d'Append:

```
proc {Append Xs Ys Zs}
    case Xs
    of nil then Zs=Ys
    [] X|Xr then
        local Zr in
        Zs=X|Zr
        {Append Xr Ys Zr}
        end
    end
end
```

end

- L'appel récursif est le dernier appel!
- On peut faire Zs=X|Zr avant l'appel parce que Zr est une variable qui n'est pas encore liée (un "trou" dans la liste X|Zr)
- Technique: dans la construction de listes, on peut utiliser les variables non-liées pour assurer la récursion terminale

Les accumulateurs avec les listes

La fonction Reverse

- Définissons une fonction qui prend une liste et qui renvoie une liste avec les éléments dans l'ordre inversé
 - {Reverse [1 2 3]} = [3 2 1]
- Voici une définition qui utilise Append:

```
fun {Reverse Xs}
    case Xs
    of nil then nil
    [] X|Xr then {Append {Reverse Xr} [X]}
    end
end
```

- Cette définition fait deux boucles imbriquées
 - Quelles sont ces boucles?

- Xs=[1 2 3 4]
- $X|Xr=[1 \ 2 \ 3 \ 4]$ $\rightarrow X=1, Xr=[2 \ 3 \ 4]$
- {Reverse Xr}=[4 3 2]
- {Append {Reverse Xr} [X]}
 - → {Append [4 3 2] [1]}
 - \rightarrow [4 3 2 1]

Complexité temporelle de Reverse

- La fonction {Reverse Xs} a un temps d'exécution qui est O(n²) avec n=|Xs|
- C'est curieux que le calcul de l'inverse d'une liste de longueur n prend un temps proportionnel au carré de n!
- On peut faire beaucoup mieux en utilisant un accumulateur
 - Notez que notre première définition n'utilise pas d'accumulateur

Reverse avec un accumulateur

- II faut un invariant
- Prenons l'invariant suivant:

$$L = reverse(L_2) ++ L_1$$

- Ici, ++ et reverse sont des fonctions mathématiques
 - ++ fait la concaténation des listes
 - Ce ne sont pas des fonctions écrites en Oz!
 - Rappel: un invariant est une formule mathématique
- Nous avons donc une paire (L_1, L_2)
 - Quelles sont les transitions de cette paire?

- $L_1=[1\ 2\ 3\ 4],\ L_2=nil$
- $L_1=[2\ 3\ 4],\ L_2=[1]$
- L_1 =[3 4], L_2 =[2 1]
- $L_1=[4], L_2=[3\ 2\ 1]$
- L_1 =nil, L_2 =[4 3 2 1]

- Nous avons une paire (L_1, L_2)
- L'état initial est (L,nil)
- La transition est:

$$\bullet \quad (X|L_1,L_2) \Rightarrow (L_1,X|L_2)$$

Ceci est correct parce que si:

$$L = reverse(L_2) + +(X|L_1)$$

alors nous pouvons vérifier que:

$$L = reverse(X|L_2) + +L_1$$

Définition de Reverse avec un accumulateur

Voici la nouvelle définition:

```
fun {Reverse L1 L2}
    case L1
    of nil then L2
    [] X|M1 then {Reverse M1 X|L2}
    end
end
```

- Exemple d'un appel: {Reverse [1 2 3] nil}
- La complexité de cette définition est O(n) avec n=|L1|

Utiliser le type pour la récursion

La fonction Flatten

- Pour compléter le parcours des trois techniques, voici une fonction un peu plus compliquée
- Nous voulons définir la fonction {Flatten Xs} qui prend une liste Xs qui peut contenir des éléments qui sont eux-mêmes des listes, et ainsi de suite, et qui renvoie une liste de tous ces éléments
- Exemple: {Flatten [a [[b]] [c nil d]]} = [a b c d]

Utiliser un type pour définir une fonction

- Pour définir {Flatten Xs}, nous allons d'abord définir le type de l'argument Xs, <NestedList T>
 - En suivant le type, la définition sera simple
- <NestedList T> ::= nil| <NestedList T> '|' <NestedList T>| T '|' <NestedList T>
- Pour que le choix de l'alternatif soit non-ambigu, il faut que T ne soit ni nil ni une liste élémentaire (un "cons")
 - fun {IsCons X} case X of _ | _ then true else false end end
 - fun {IsList X} X==nil orelse {IsCons X} end

 Pour les avertis: faites une version de Flatten qui utilise un accumulateur!

Algorithmes de tri

- Un algorithme de tri prend une liste d'éléments et renvoie une liste avec les mêmes éléments rangés selon un ordre
- Il y a beaucoup d'algorithmes de tri différents
 - Tri par sélection, tri par insertion
 - Mergesort (tri par divisions et fusions récursives)
 - Heapsort (tri par construction de tas ("heap"))
 - Quicksort (tri par partitionnement récursif)

Mergesort

- Cet algorithme peut trier une liste de taille n en un temps maximal de O(n log n)
- L'algorithme peut facilement être programmé dans le modèle déclaratif
- L'algorithme utilise une technique générale appelée "diviser pour régner"
 - Diviser la liste en deux listes
 - Utiliser mergesort récursivement pour trier les deux listes
 - Fusionner les deux listes pour obtenir le résultat

Exemple de Mergesort (1)

- Prenons la liste L=[5 2 6 4 3]
- Diviser L en deux listes:
 - L1=[5 2], L2=[6 4 3]
- Trier chacune des deux listes:
 - S1=[2 5], S2=[3 4 6]
- Fusionner les deux listes S1 et S2:
 - Ceci est la clé de l'algorithme!
 - On peut le faire en traversant chaque liste au maximum une fois (voir dessin sur le tableau)
- Le résultat est la liste triée S=[2 3 4 5 6]

Exemple de Mergesort (2)

Observez comment est faite la récursion!


```
fun {Mergesort Xs}
     case Xs
     of nil then nil
     [] [X] then [X]
     else Ys Zs in
       {Split Xs Ys Zs}
       {Merge {Mergesort Ys} {Mergesort Zs}}
     end
  end
```

Définition de Split

```
proc {Split Xs Ys Zs}
     case Xs
     of nil then Ys=nil Zs=nil
     [] [X] then Ys=Xs Zs=nil
     X1|X2|Xr then Yr Zr in
        Ys=X1|Yr
        Zs=X2|Zr
        {Split Xr Yr Zr}
     end
  end
```



```
fun {Merge Xs Ys}
    case Xs#Ys
    of nil#Ys then Ys
    Xs#nil then Xs
    if X<Y then X|{Merge Xr Ys}
      else Y|{Merge Xs Yr} end
    end
 end
```

Programmer avec des accumulateurs

C'est quoi en fait un accumulateur?

- Un accumulateur peut être vu comme une paire de deux arguments, une entrée et une sortie
- Par exemple, dans la fonction Reverse, nous avons (1) l'argument L2 et (2) le résultat de la fonction:

```
fun {Reverse L1 L2}
... {Reverse M1 X|L2}
end
```

 On voit mieux les deux arguments si on écrit Reverse en langage noyau: (comme toujours, on voit mieux en langage noyau!)
 proc {Reverse M1 XII 2 D2}

... {Reverse M1 X|L2 R2}

end

- L'accumulateur est la paire (L2,R2)
 - L2 est l'entrée, R2 est la sortie

Programmer avec plusieurs accumulateurs

- Nous avons déjà vu comment écrire une fonction avec un seul accumulateur
 - L'accumulateur = un des arguments de la fonction + le résultat de la fonction
 - En langage noyau, on voit bien qu'un accumulateur est une paire de deux arguments, une entrée et une sortie
- Nous avons vu que l'utilisation d'un accumulateur est une bonne idée pour l'efficacité (récursion terminale ⇒ une boucle)
- Maintenant, nous allons voir comment on peut écrire un programme avec plusieurs accumulateurs
 - On verra plus tard que l'utilisation d'accumulateurs n'est rien d'autre que programmer avec un état: chaque accumulateur correspond à une variable à affectation multiple

Programmer avec accumulateurs = programmer avec un état

- L'état d'un programme est l'ensemble de données importantes pour le programme à un instant donné
 - L'état est passé partout dans le programme et transformé successivement pour obtenir un résultat
 - L'état = la valeur de tous les accumulateurs
- L'état S est fait de plusieurs parties, qui sont en fait des accumulateurs:

$$S=(X,Y,Z,...)$$

Pour chaque procédure P, l'entête devient:

Schéma général d'une procédure (1)

 Voici un diagramme qui montre une procédure P avec deux accumulateurs (quels sont ces accumulateurs?)

Schéma général d'une procédure (2)

L'état S de cet exemple contient deux parties:
 S=(X,Y)

• Voici une définition possible de la procédure P:

```
proc {P Xin Xout Yin Yout}
{P1 Xin X1 Yin Y1}
{P2 X1 X2 Y1 Y2}
....
{Pm Xn Xout Yn Yout}
end
```

 Si le nombre d'accumulateurs est plus grand qu'un, comme ici, alors il est plus facile d'utiliser des procédures au lieu des fonctions

Schéma général d'une procédure (3)

 Voici un diagramme qui montre la définition de la procédure P qui a deux accumulateurs

Exemple avec deux accumulateurs

de la pile

- Supposons qu'on dispose d'une machine à pile pour évaluer des expressions arithmétiques
- Par exemple: (1+4)-3
- La machine exécute les instructions suivantes:

push(1) push(4) plus push(3) minus

Compilateur pour machine à pile (1)

- Définissez une procédure qui prend une expression arithmétique, exprimée comme une structure de données, et qui calcule deux résultats: (1) une liste d'instructions pour une machine à pile et (2) un compte du nombre d'instructions
 - L'expression (1+4)-3 est exprimée comme [[1 plus 4] minus 3]
- La procédure a l'entête suivante: proc {ExprCode Expr Cin Cout Nin Nout}
- Il y a deux accumulateurs, C et N:
 - Cin: liste d'instructions initiale
 - Cout: liste d'instructions finale
 - Nin: compte d'instructions initial
 - Nout: compte d'instructions final

Compilateur pour machine à pile (2)


```
proc {ExprCode Expr C0 C N0 N}
      case Expr
      of [E1 plus E2] then C1 N1 in
             C1=plus|C0
             N1=N0+1
             {SeqCode [E2 E1] C1 C N1 N}
      [] [E1 minus E2] then C1 N1 in
             C1=minus|C0
             N1=N0+1
             {SeqCode [E2 E1] C1 C N1 N}
      [] I andthen {IsInt I} then
             C=push(I)|C0
             N = N0 + 1
      end
  end
```

Compilateur pour machine à pile (3)


```
    proc {SeqCode Es C0 C N0 N}
        case Es
        of nil then C=C0 N=N0
        [] E|Er then C1 N1 in
            {ExprCode E C0 C1 N0 N1}
            {SeqCode Er C1 C N1 N}
        end
        end
```


- On peut faire une version de Mergesort qui utilise un accumulateur
- proc {Mergesort1 N S0 S Xs}
 - N est un entier
 - S0 est l'entrée: une liste à trier
 - S est la sortie: le reste de S0 après que les premiers N éléments sont triés
 - Xs est la liste triée des premiers N éléments de S0
- La paire (S0,S) est un accumulateur
- La définition utilise une syntaxe de procédure parce qu'elle a deux sorties, S et Xs


```
fun {Mergesort Xs}
Ys in
   {Mergesort1 {Length Xs} Xs _ Ys}
   Ys
end
```

```
proc {Mergesort1 N S0 S Xs}
 if N==0 then S=S0 Xs=nil
 elseif N==1 then
    case S0 of X|S1 then
     S=S1 Xs=[X]
    end
 else S1 Xs1 Xs2 NI NR in
    NL=N div 2
    NR=N-NL
    {Mergesort1 NL S0 S1 Xs1}
    {Mergesort1 NR S1 S Xs2}
    Xs={Merge Xs1 Xs2}
 end
end
```

Résumé

Résumé

- Techniques de programmation
 - Utilisation d'une variable non-liée pour construire une liste avec l'appel récursif en dernier
 - Utilisation d'un accumulateur pour augmenter l'efficacité
 - Utilisation d'un type pour construire une fonction
- Algorithme de Mergesort
 - Exemple de diviser pour règner
- Programmer avec plusieurs accumulateurs
 - Programmer avec un état qui est passé partout dans un programme
 - Exemple d'un compilateur pour machine à pile