```
nama : saila Julia
nim : 20220040082

#import all the dependencies
from keras.layers import Dense,Conv2D,MaxPooling2D,UpSampling2D
from keras import Input, Model
from keras.datasets import fashion_mnist
import numpy as np
import matplotlib.pyplot as plt
```

Then we will build our model and we will provide the number of dimensions that will decide how much the input will be compressed. The lesser the dimension, the more will be the compression.

```
encoding_dim = 15
input_img = Input(shape=(784,))
# encoded representation of input
encoded = Dense(encoding_dim, activation='relu')(input_img)
# decoded representation of code
decoded = Dense(784, activation='sigmoid')(encoded)
# Model which take input image and shows decoded images
autoencoder = Model(input_img, decoded)
```

Then we need to build the encoder model and decoder model separately so that we can easily differentiate between the input and output.

```
# This model shows encoded images
encoder = Model(input_img, encoded)
# Creating a decoder model
encoded_input = Input(shape=(encoding_dim,))
# last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
```

Then we need to compile the model with the ADAM optimizer and cross-entropy loss function fitment.

```
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
```

plt.imshow(x_train[0].reshape(28,28))

<matplotlib.image.AxesImage at 0x7c29669095a0>

$\rightarrow \overline{+}$		1 s	3ms/step	-	loss:	0.3536	-	val_loss:	0.3366
	Epoch 3/30 235/235	. 1c	3mc/stan	_	1000.	0 3313		val loss:	0 3244
	Epoch 4/30	13	311137 3 CCP		1033.	0.5515		va1_1033.	0.5244
	•	. 1.	2ms/ston	_	1000	0 2100	_	val_loss:	0 2169
	Epoch 5/30	13	21113/3 CCP		1033.	0.5150		vai_1033.	0.5100
	235/235	. 1c	2mc/ston	_	1000	0 31/0	_	val loss:	0 3124
	Epoch 6/30	13	21113/3 CEP		1033.	0.5140		vai_1033.	0.3124
		. 1c	2mc/stan	_	1000	0 3078	_	val loss:	a 3a78
	Epoch 7/30	13	21113/3 СЕР		1033.	0.5078		vai_1033.	0.5076
	•	. 1c	3mc/ston	_	1000	0 3056	_	val_loss:	a 3060
	Epoch 8/30	13	эшэ/ эсер		1033.	0.3030		va1_1033.	0.3000
	•	15	3ms/sten	_	loss:	0.3036	_	val_loss:	0.3043
	Epoch 9/30		ээ, э сер		10001				0.00.0
	235/235	- 15	2ms/sten	_	1055.	0.3031	_	val_loss:	0.3034
	Epoch 10/30		,						
	235/235	- 1s	3ms/step	_	loss:	0.3017	_	val_loss:	0.3028
	Epoch 11/30		,						
	·	1 s	4ms/step	_	loss:	0.3004	_	val_loss:	0.3025
	Epoch 12/30		,					_	
	235/235	1s	3ms/step	_	loss:	0.3004	_	val_loss:	0.3022
	Epoch 13/30							_	
	235/235	1 s	2ms/step	-	loss:	0.2999	-	val_loss:	0.3019
	Epoch 14/30							_	
	235/235	1s	3ms/step	-	loss:	0.2998	-	val_loss:	0.3017
	Epoch 15/30								
	235/235	1 s	3ms/step	-	loss:	0.2997	-	val_loss:	0.3015
	Epoch 16/30								
	235/235	1 s	3ms/step	-	loss:	0.2997	-	val_loss:	0.3016
	Epoch 17/30								
	235/235	· 1s	2ms/step	-	loss:	0.2991	-	val_loss:	0.3014
	Epoch 18/30								
		1s	3ms/step	-	loss:	0.2990	-	val_loss:	0.3012
	Epoch 19/30				_				
		1s	2ms/step	-	loss:	0.2991	-	val_loss:	0.3010
	Epoch 20/30	_	_ , ,						
		1s	2ms/step	-	loss:	0.2982	-	val_loss:	0.3008
	Epoch 21/30		2 / . 1			0 2000			0 2000
	235/235 ————————————————————————————————————	15	3ms/step	-	1055:	0.2989	-	val_loss:	0.3008
	Epoch 22/30 235/235 —	. 1.	2mc/cton		1000	0 2001		val loss:	0 2000
	Epoch 23/30	13	21113/3 CEP	-	1055.	0.2551	Ī	vai_1055.	0.3003
	•	. 1c	2mc/cton	_	1000	a 2080	_	val loss:	0 3007
	Epoch 24/30	13	21113/3 ССР		1033.	0.2363		vai_1033.	0.3007
		- 15	2ms/sten	_	loss:	0.2980	_	val_loss:	0.3005
	Epoch 25/30		2э, эсср		1055.	0.2300		·u1_1033.	0.5005
	235/235	- 15	2ms/sten	_	loss:	0.2986	_	val loss:	0.3005
	Epoch 26/30								
	•	1s	3ms/step	_	loss:	0.2982	_	val_loss:	0.3004
	Epoch 27/30								
	235/235	1 s	3ms/step	_	loss:	0.2982	_	val_loss:	0.3003
	Epoch 28/30		•					_	
	235/235	1s	2ms/step	_	loss:	0.2981	_	val_loss:	0.3003
	Epoch 29/30		•						
	235/235 —	1 s	2ms/step	-	loss:	0.2978	-	<pre>val_loss:</pre>	0.3002

#After training, you need to provide the input and you can plot the results using the following code :

```
encoded_img = encoder.predict(x_test)
decoded_img = decoder.predict(encoded_img)
plt.figure(figsize=(20, 4))
for i in range(5):
    # Display original
    ax = plt.subplot(2, 5, i + 1)
    plt.imshow(x_test[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # Display reconstruction
    ax = plt.subplot(2, 5, i + 1 + 5)
    plt.imshow(decoded_img[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
\overline{\mathbf{T}}
     313/313 -
                                  - 0s 1ms/step
     313/313
                                   0s 1ms/step
```

Deep CNN Autoencoder:

Since the input here is images, it does make more sense to use a Convolutional Neural network or CNN. The encoder will be made up of a stack of Conv2D and max-pooling layer and the decoder will have a stack of Conv2D and Upsampling Layer.

```
from tensorflow.keras.models import Sequential
model = Sequential()
# encoder network
model.add(Conv2D(30, 3, activation= 'relu', padding='same', input_shape = (28,28,1)))
model.add(MaxPooling2D(2, padding= 'same'))
model.add(Conv2D(15, 3, activation= 'relu', padding='same'))
model.add(MaxPooling2D(2, padding= 'same'))
#decoder network
model.add(Conv2D(15, 3, activation= 'relu', padding='same'))
model.add(UpSampling2D(2))
model.add(Conv2D(30, 3, activation= 'relu', padding='same'))
model.add(UpSampling2D(2))
model.add(Conv2D(1,3,activation='sigmoid', padding= 'same')) # output layer
model.compile(optimizer= 'adam', loss = 'binary_crossentropy')
model.summary()
```

/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 30)	300
max_pooling2d (MaxPooling2D)	(None, 14, 14, 30)	0
conv2d_1 (Conv2D)	(None, 14, 14, 15)	4,065
max_pooling2d_1 (MaxPooling2D)	(None, 7, 7, 15)	0
conv2d_2 (Conv2D)	(None, 7, 7, 15)	2,040
up_sampling2d (UpSampling2D)	(None, 14, 14, 15)	0
conv2d_3 (Conv2D)	(None, 14, 14, 30)	4,080
up_sampling2d_1 (UpSampling2D)	(None, 28, 28, 30)	0
conv2d_4 (Conv2D)	(None, 28, 28, 1)	271

Total params: 10,756 (42.02 KB)
Trainable params: 10,756 (42.02 KB)

```
469/469
                            - 9s 10ms/step - loss: 0.3612 - val loss: 0.2808
Epoch 2/10
469/469 -
                            - 5s 5ms/step - loss: 0.2762 - val loss: 0.2745
Epoch 3/10
469/469 -
                           - 2s 4ms/step - loss: 0.2713 - val_loss: 0.2714
Epoch 4/10
469/469 -
                            - 3s 5ms/step - loss: 0.2687 - val_loss: 0.2700
Epoch 5/10
469/469
                            - 3s 5ms/step - loss: 0.2664 - val_loss: 0.2669
Epoch 6/10
                            - 2s 5ms/step - loss: 0.2641 - val loss: 0.2651
469/469
Epoch 7/10
469/469 -
                            - 2s 5ms/step - loss: 0.2631 - val_loss: 0.2637
Epoch 8/10
469/469
                            - 2s 4ms/step - loss: 0.2608 - val loss: 0.2626
Epoch 9/10
469/469
                            - 2s 4ms/step - loss: 0.2604 - val_loss: 0.2617
Epoch 10/10
                            - 2s 4ms/step - loss: 0.2598 - val_loss: 0.2611
<keras.src.callbacks.history.History at 0x7c292b917700>
```

```
pred = model.predict(x test)
plt.figure(figsize=(20, 4))
for i in range(5):
    # Display original
    ax = plt.subplot(2, 5, i + 1)
    plt.imshow(x_test[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # Display reconstruction
    ax = plt.subplot(2, 5, i + 1 + 5)
    plt.imshow(pred[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
```


Denoising Autoencoder Now we will see how the model performs with noise in the image. What we mean by noise is blurry images, changing the color of the images, or even white markers on the image.

```
noise_factor = 0.7
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

plt.figure(figsize=(20, 2))
for i in range(1, 5 + 1):
    ax = plt.subplot(1, 5, i)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
```



```
# Add Gaussian noise to the images
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0, scale=1, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0, scale=1, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0.0, 1.0)
x_test_noisy = np.clip(x_test_noisy, 0.0, 1.0)

plt.figure(figsize=(20, 2))
for i in range(1, 5 + 1):
    ax = plt.subplot(1, 5, i)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
```



```
model = Sequential()
# encoder network
model.add(Conv2D(35, 3, activation= 'relu', padding='same', input_shape = (28,28,1)))
model.add(MaxPooling2D(2, padding= 'same'))
model.add(Conv2D(25, 3, activation= 'relu', padding='same'))
```

```
model.add(MaxPooling2D(2, padding= 'same'))
#decoder network
model.add(Conv2D(25, 3, activation= 'relu', padding='same'))
model.add(UpSampling2D(2))
model.add(Conv2D(35, 3, activation= 'relu', padding='same'))
model.add(UpSampling2D(2))
model.add(Conv2D(1,3,activation='sigmoid', padding= 'same')) # output layer
model.compile(optimizer= 'adam', loss = 'binary_crossentropy')
model.fit(x_train_noisy, x_train,
                 epochs=5,
                batch_size=128,
                 validation_data=(x_test_noisy, x_test))
    Epoch 1/5
                                 — 9s 11ms/step - loss: 0.3843 - val_loss: 0.3117
     469/469
     Epoch 2/5
     469/469 -
                                 — 5s 6ms/step - loss: 0.3076 - val_loss: 0.3063
     Epoch 3/5
     469/469
                                 - 5s 5ms/step - loss: 0.3031 - val_loss: 0.3035
     Epoch 4/5
                                  - 3s 5ms/step - loss: 0.3012 - val_loss: 0.3022
     469/469 -
     Epoch 5/5
                                 - 5s 6ms/step - loss: 0.2992 - val_loss: 0.3002
     469/469 -
     <keras.src.callbacks.history.History at 0x7c292c6cfe20>
pred = model.predict(x_test_noisy)
plt.figure(figsize=(20, 4))
for i in range(5):
    # Display original
    ax = plt.subplot(2, 5, i + 1)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # Display reconstruction
    ax = plt.subplot(2, 5, i + 1 + 5)
    plt.imshow(pred[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

→ 313/313 -
                                  - 1s 2ms/step
```