1

2

3

1

2

Attorney Docket No.: 26530.23 (IDR-464/5)

WHAT IS CLAIMED IS:

1	 A method for balancing a workload for a plurality of processors in
2	a multiple processor computer system, the system designed for processing a
3	plurality of packets from a plurality of connections, the method comprising:
4	assigning a packet to a hash bucket determined by performing a
5	predetermined hash function; and
6	queuing the hash bucket to a processor so that the workload of all the
7	processors are balanced,
8	wherein the hash function relates to a predetermined number of hash
9	buckets, and wherein a plurality of packets from different connections can be
10	assigned to the same hash bucket.

- 2. The method of claim 1 wherein the step of assigning includes a step of using a source address, source port, destination address, and destination port parameters from the header section of the packet to identify the hash bucket.
- 3. The method of claim 1 wherein the hash function is designed to assign a plurality of packets from a connection to the same hash bucket.
- 1 4. The method of claim 1 further comprising monitoring the workload 2 of each processor involved in the system.

1	5. The method of claim 1 wherein the step of queuing further		
2	includes:		
3	identifying statistically a percentage of capacity usage for each processor;		
4	obtaining imbalance distribution index for each processor from the		
5	identified percentage of capacity usage;		
6	distributing the hash buckets in proportion to the imbalance distribution		
7	index and in reverse proportion to a total imbalance index,		
8	wherein the total imbalance index is a summation of all obtained		
9	imbalance distribution indexes.		
1	6. The method of claim 1 wherein the step of queuing further includes		
2	a step of applying a queuing model for packets in the hash bucket to assure that		
3	packets from a particular connection do not unduly occupy the processor for an		
4	undesirable time period.		
1	7. A computer program for balancing workload for a plurality of		
2	processors in a multiple processor computer system, the system designed for		
3	processing a plurality of packets from a plurality of connections, the computer		
4	program comprising:		
5	means for assigning a packet to a hash bucket determined by performing a		
6	predetermined hash function; and		
7	means for queuing the hash bucket to a processor so that the workload of		
8	all the processors are balanced,		
9	wherein the hash function has a predetermined number of hash buckets,		
10	and wherein a plurality of packets from different connections can be assigned to		
11	the same hash bucket.		

1	8.	The computer program of claim 7 wherein the means for assigning
2	includes mea	ans for using a source address, source port, destination address, and
3	destination p	port parameters from the header section of the packet to identify the
4	hash bucket.	
1	9.	The computer program of claim 7 wherein the hash function is
2	designed to	assign a plurality of packets from a connection to the same hash
3	bucket.	
1	10.	The computer program of claim 7 further comprising means for
2	monitoring t	the workload of each processor involved in the system.
_		
1	11.	The computer program of claim 7 wherein the means for queuing
2	further inclu	des means for:
3	identi	fying statistically a percentage of capacity usage for each processor;
4	obtair	ning imbalance distribution index for each processor from the
5	identified pe	ercentage of capacity usage;
6	distri	buting the hash buckets in proportion to the imbalance distribution
7	index and in	reverse proportion to a total imbalance index,
8	where	ein the total imbalance index is a summation of all obtained
9	imbalance d	istribution indexes.
1	12.	The computer program of claim 7 wherein the means for queuing
		ides means for applying a queuing model for packets in the hash
2		
3		sure that packets from a particular connection do not unduly occupy
4	the processo	r for an undesirable time period.

1	13. A method for processing a plurality of connections with a plurality of		
2	timer threads by a plurality of computer processors in a multiple processor		
3	computer system, the method comprising:		
4	providing a plurality of hash buckets related to a hash function;		
5	mapping a connection to one of the hash buckets; and		
6	assigning each hash bucket to a processor timer thread based on a		
7	workload thereof so that the processor only processes the connection mapped to		
8	the assigned hash bucket,		
9	wherein a plurality of timer threads for the computer processors thus		
10	process a plurality of connections simultaneously.		
1	14. The method of claim 13 further comprising monitoring the		
2	workload of the each processor.		
1	15. The weather deaf elector 12 wherein the stop of manning is based on four		
1	15. The method of claim 13 wherein the step of mapping is based on four		
2	connection parameters, which are local address, local port, remote address, and		
3	remote port.		

1	16. A computer program for processing a plurality of connections with a
2	plurality of timer threads by a plurality of computer processors in a multiple
3	processor computer system, the program comprising:
4	a plurality of hash buckets related to a predetermined hash function;
5	means for mapping a connection to one of the hash buckets; and
6	means for assigning each hash bucket to a processor timer thread based on
7	a workload thereof so that the processor only processes the connection mapped
8	to the assigned hash bucket,
9	wherein a plurality of timer threads for the computer processors thus
10	process a plurality of connections simultaneously.
1	17. The program of claim 16 further comprising means for monitoring
2	the workload of the each processor.
1	18. The program of claim 16 wherein the means for mapping is based
2	on four connection parameters, which are local address, local port, remote
3	address, and remote port.