

Magnetische Kapazität (Ringkernspule 1)

GRUNDLA-GEN

SCAN ME

LÖSUN-GEN

SCAN ME

Aufgabenstellung

Gegeben ist ein Ferritringkern, welcher gleichmäßig über den Umfang mit N Wicklungen bewickelt ist. Der Kern ist vollständig geschlossen und besitzt keinen Luftspalt.

Außendurchmesser	$D_A = 30 mm$	Innendurchmesser	$D_I = 20 mm$
Kerndicke	$d_K = 5 mm$	Material (Ferrit)	$\mu_r = 400$
Wicklungsanzahl	N = 500	Spulenstrom	$I_S = 0.5 A$

Fragen		
1.	Zeichnen Sie das mechatronische Ersatzschaltbild für den magnetischen Kreis.	
2.	Berechnen Sie die magnetische Kapazität des Ringkernes.	
3.	Wie groß ist die magnetische Spannung (Durchflutung)?	
4.	Wie groß sie die magnetische Flussdichte und die magnetische Feldstärke?	
5.	Wie groß sind Energie und Co-Energie im magnetischen Kondensator?	
6.	Berechnen Sie die elektrische Induktivität der Ringkernspule.	
7.	Wie groß ist die gespeicherte Energie in der Ringkernspule? Vergleichen Sie diese mit der Energie und Co- Energie im magnetischen Kondensator.	