

Quantum Cellular Automata

Presentation for G53NSC Non-Standard Computation

Jiří Kremser (jxk19u) Ondřej Božek (oxb09u)

Outline

- Classical Cellular Automata
- Wolfram classes
- Conway's Game of Life
- Reversible Cellular Automata
- Quantum Cellular Automata
- QCA History
- LQCA
- Partitioned QCA
- Quantum-Dot CA

a) Intuitively

- n-dimensional grid of cells
- each cell has neighbourhood
- each cell is in one state
- local rules
- configuration = state of all cells
- example 1-d CA

Example of 1-d CA Iteration 1

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 1

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 2

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 3

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 4

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 5

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 6

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 7

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 8

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 9

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 10

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 11

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 12

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 13

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 14

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 15

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration 16

Neighbourhood: 1 cell on the left and right side

Example of 1-d CA Iteration ~300

Sierpiński triangle (fractal)

Neighbourhood: 1 cell on the left and right side

b) Formally

- 4-tuple (C, Σ, N, f)
- C n-dimensional grid of cells
- Σ set of possible states
- N neighbourhood scheme (all possible)
- f local transition function of type $\Sigma^{N} \to \Sigma$
- Σ^C configuration
- f => F global transition function of type $\Sigma^{C} \rightarrow \Sigma^{C}$

Rules

Rule for 1-d CA with simple neighbourhood

- 2⁸ combinations → 1 byte for each set of rules
- Classification of rules to classes with respect to complexity
- Wolfram classes

Wolfram classes

- Class1 stable
- Class2 periodic patterns
- Class3 chaos
- Class4 "on the edge of chaos"
- "Rule 110" and Conway's Game of Life

Game of Life

- The most famous CA
- 2 dimensions → configuration = 2d array
- 2 states: live or dead
- Neighbourhood made of 8 adjacent cells
- Rules:
 - A dead cell comes to life if it has exactly three living cells in its neighbourhood.
 - A cell remains living if it has two or three living cells in its neighbourhood.
 - A cell dies otherwise. (on overpopulation or loneliness)

Game of Life

- GoL patterns
- demo
- Turing complete (TM as GoL)

"Breeder": creates "Gosper's Glider Guns"

"GGG" shoots "gliders"

Reversible Cellular Automata

- Local & global transition function
- CA is reversible iff F is bijection
- Garden of Eden configurations (without predecessor)
- Orphan pattern

discovered by R. Banks in 1971

- cellular automata are themselves physicslike models of computation
- seems natural to study quantum extensions of CA
- principle of computation is in quantum cells interaction
- reduced need for environment interaction, and so is possibility of decoherence
- no need to address each cell (Qbit) separately

QCA - History

- 1965 the first example of a quantum cellular automata was Feyman's "quantum checkerboard"
- 1988 Grossing and Zeilinger attempted to introduce the concept of quantum cellular automata
- 1990 Norm Marglous described Parallel Quantum Computation.
- 1995 the first successful model of one dimensional quantum cellular automata was introduced by John Watrous.

What is QCA?

- not only generally accepted QCA model
- main common signs of various QCA definitions:
 - d-dimensional lattice of identical finitedimensional quantum systems
 - finite set of states
 - finite neighbourhood scheme of single cell
 - set of local transition functions
 - global evolution function represents the discrete time evolution of strictly finite cell lattice

LQCA (1)

- 1-dimensional QCA defined by John Watrous
- first QCA researched in depth
- 4-tuple A = (Σ, q, N, δ) , where (with $q\Sigma = \{q\} \cup \Sigma$):
 - Σ is a finite set of symbols ("the alphabet", possible basic states each cell may take);
 - q is a symbol such that q ∉ Σ ("the quiescent symbol", special state for empty cells);
 - N is a set of n successive signed integers ("the neighbourhood", telling which cell is next to whom);
 - δ: H(qΣ)n → HqΣ is a function from super-positions of n symbols words to super-positions of one symbol words ("the local transition function",the way a cell interacts with its neighbours).

LQCA (2)

- homogenous and synchronous application of transition function gives rise to global evolution Δ
- \(\Delta\) must be unitary in order to have physically acceptable model of computation
- unitarity of global evolution function is really non-trivially related to the definition of the transition function δ
- LQCA is too loose formalism
- Pablo Arrighi managed to algebraically characterize unitary LQCA by adding constraints into the model

Partitioned QCA (2)

- restricted LQCA
- avoids non-unitary global evolution funciton ∆
- each cell in lattice is partitioned in to three sub-cells
- next state depends only on the states of the left sub-cell of the right neighbour, the middle sub-cell of the cell itself, and the right sub-cell of the left neighbour

Partitioned QCA (2)

 It was shown that any Quantum Turing Machine can be simulated by PQCA with constant slowdown and every PQCA can be simulated by QTM with linear slowdown.

Quantum-Dot CA

- classical CA implemented in quantum mechanical structures
- cell consists of four quantum dots forming a square
- ectrons can tunnel between dots
- Coulomb repulsion will force them to dots on opposite corners
- ground states representing zero and one

Quantum-Dot CA

Basic circuits:

Wire

NOT gate

Majority gate

Majority gate

Inputs	C	A	В	Output	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	
Output	=	A	ANI) B if C == 0	
		A	OR	B if C == 1	

Conclusion

- concept of Quantum Cellular Automata is currently in its early phase
- many of important definitions missing or appeared most recently
- many interesting discoveries can be expected in near future
- QCA formalism seems as promising framework for building robust and scalable quantum computers
- Quantum Dot Cellular Automata seems like suitable replacement for current CMOS technology

38

Thank you

(Demo)

Q&A

