FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Engineering low-valent molybdenum sites in CoMoO₄ nanosheets to boost electrochemical nitrogen-rich wastewater treatment

Yuan Li^{a,1}, Xing Chen^{b,1}, Yu Yu^{a,*}, Kaifu Zhang^a, Yu Cheng^a, Weitao He^a, Qiquan Luo^b, Shan Gao^{a,*}

- ^a School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- b Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

ARTICLE INFO

Keywords: Nitrogen-rich wastewater treatment Nitrate electroreduction Urea oxidation Energy-saving ammonia synthesis Coupling reaction system

ABSTRACT

Electrochemical coupling nitrate-to-ammonia (NO_3^- -to-NH $_3$) with urea oxidation reaction (UOR) is attractive for both energy-saving ammonia synthesis and comprehensive nitrogen-rich wastewater treatment. However, developing the efficient electrocatalyst that simultaneously promotes hydrogenation of NO_3^- and UOR is still challenging. Here, we engineered the porous $COMOO_4$ nanosheets with rich low-valent Mo sites ($MO_{(L)}^-$ COMOO $_4$ x) as a diffunctional electrocatalyst for both NO_3^- -to-NH $_3$ and UOR. The $MO_{(L)}^-$ COMOO $_4$ displayed high Faradaic efficiency (93.33%) and selectivity (91.16%) for NO_3^- -to-NH $_3$ and low potential (1.31 V vs. RHE) at 100 mA cm⁻² toward UOR. Impressively, a low cell voltage of 1.83 V was needed for coupling UOR with NO_3^- -to-NH $_3$ in two-electrode system. Mechanism study revealed that the introduction of low-valent Mo sites in CoMoO $_4$ nanosheets accelerated the activation kinetics and multistep hydrogenation of NO_3^- , and also promoted the reconstruction of active CoOOH species for UOR, resulting the diffunctional catalytic property for NO_3^- -to-NH $_3^-$ and UOR.

1. Introduction

Nitrogen cycle is essential for the biosphere, but the global everincreasing 'active' nitrogen through human activities has led to a serious imbalance in it and then triggered serious water pollution problems [1]. Typically, excess nitrate (NO₃) in surface and groundwater, caused by the overuse of N-containing fertilizers, industrial wastewater discharges and animal manures, has threatened the ecosystem and human health [2,3]. Electrocatalytic technology is an efficient and sustainable way for molecule conversion and energy storage [4-6], but the traditional electrochemical NO₃ removal is 'NO₃ to N2', which can't achieve waste reuse. Proverbially, ammonia (NH3) is one of the reduction products of NO₃ and possesses high economic value [7]. So, electrochemical converting NO₃ contaminant into NH₃ is attractive, which can simultaneously achieve nitrate removal and realize 'turn waste into wealth' [8-10]. However, the complex 8 e coupled 9 H⁺ transfer process urges the rational design of efficient electrocatalysts at the molecular level [11]. Additionally, in view of the high thermodynamic equilibrium potential (1.23 V vs. RHE) and sluggish

reaction kinetics of anodic oxygen evolution reaction (OER) during electrochemical NO_3^- reduction reaction (NO_3^- RR) [12], alternative anodic reaction to OER is desirable to improve the energy efficiency. Urea is another contamination in the wastewater and the thermodynamic equilibrium potential of urea oxidation reaction (UOR, 0.37 V vs. RHE) is much lower than that of OER [13]. Thus, coupling the electrochemical UOR with NO_3^- RR is attractive which can efficiently improve the energy efficiency of both NO_3^- and urea-rich wastewater treatment, simultaneously, realize waste recycle for ammonia synthesis. As well, efficient electrocatalysts for UOR is required. To reduce fabrication cost of catalytic material for coupled UOR and NO_3^- RR, a difunctional electrocatalyst that can be efficient for both NO_3^- to- NH_3^- and UOR is urgently desirable but the development of it is also an arduous task.

Cobalt (Co)-based materials have attracted much attention for electrochemical NO₃RR to NH₃ benefiting from their fascinating electronic structures [14,15]. Impressively, the oxidation-state Co compounds are favorable to the adsorption and activation of NO₃ due to the strong electrostatic interaction with NO₃ [3]. However, for the proton-coupled electron transfer reactions, sufficient active hydrogen supply from water

E-mail addresses: yuyu@ahu.edu.cn (Y. Yu), shangao@ahu.edu.cn (S. Gao).

^{*} Corresponding authors.

¹ These authors contributed equally to this work.

decomposition in non-acidic environment is also crucial for hydrogenation of the intermediates [16,17]. Unfortunately, the oxidation-state Co compounds usually show poor H_2O dissociation ability for sufficient active hydrogen generation [18]. Inspired by the high activity of low-valent molybdenum (Mo)-based materials at the edge for water dissociation [19,20], engineering oxidation-state Co compounds with low-valent Mo sites is expected for the synergetic NO_3 activation and sufficient active hydrogen generation. On the other hand, as a difunctional electrocatalyst for NO_3 -to- NH_3 and UOR, the excellent UOR activity of Co-based material is of equal importance to reduce the energy efficiency. Commonly, the real active species of anodic Co-based materials for oxidation reaction, including the UOR, are the reconstructed high-valent Co compounds [21]. So, more available high-valent Co species could be reconstructed at the oxidative potential for the designed Co-based catalysts is crucial for excellent UOR activity.

Herein, we engineered the porous CoMoO₄ nanosheets with rich lowvalent Mo sites grown on Ni foam (denoted as Mo(L)-CoMoO_{4-x}) as an efficient difunctional electrocatalyst for both UOR and NO₃-to-NH₃. The rich porous structure and oxygen vacancies of CoMoO₄ nanosheets induced the generation of low-valent Mo sites. The introduction of lowvalent Mo sites in CoMoO₄ nanosheets not only accelerated the kinetics of NO₃RR, including the enhanced NO₃ adsorption and the reaction rate, but also promoted the active hydrogen generation and the further hydrogenation of NO₃ to NH₃. Expectedly, the Mo_(L)-CoMoO_{4-x} showed superior performance toward NO3RR with a high Faradaic efficiency (93.33%) and selectivity (91.16%) at -1.1 V vs. Ag/AgCl in 0.1 M Na₂SO₄ with 200 ppm NO₃-N, much better than those of CoMoO₄. Impressively, when the Co-based nanosheets were used for UOR, in situ restructured CoOOH was verified to be the catalytic sites, and more CoOOH restructured in Mo(L)-CoMoO4-x render it exhibited a low potential (1.31 V vs. RHE) at 100 mA cm⁻² toward UOR, surpassing the CoMoO₄ and most reported electrocatalysts. Importantly, the bifunctional $Mo_{(L)}$ -Co MoO_{4-x} electrodes can be assembled into a two-electrode electrolyzer for coupling the UOR with NO3RR, a low cell voltage of 1.83 V was needed to reach the current density of 100 mA cm⁻², and the selectivity of NH₃ can remain over 90% after five cycles.

2. Experimental section

2.1. Material synthesis

2.1.1. Synthesis of $Mo_{(L)}$ -CoMoO_{4-x} nanosheets supported on Ni foam

Before the preparation, Ni foam substrate was sonicated with acetone, 0.3 M HCl aqueous solution, and deionized water for 30 min, respectively, to remove the surface oxide layer and organic molecules. Typically, 0.484 g Na₂MoO₄ and 0.582 g Co(NO₃)₂.6 H₂O were dissolved into 30 mL deionized water under lightly stirring to form a transparent solution. Then, the solution was transferred to the 50 mL of Teflon-lined autoclave, along with the vertical placement of one piece of pre-treated Ni foam, and heated at 160 °C for 6 h. After cooling to room temperature, the CoMo-precursors were collected by washing with water and ethanol several times and then dried in a vacuum drier for 12 h. The final product was calcined at 400 °C for 2 h with heating rate of 2 °C min⁻¹ under H₂/Ar(v/v = 10%/90%) mixed reductive atmosphere, and then naturally cooled to ambient temperature.

2.1.2. Synthesis of CoMoO₄ nanosheets supported on Ni foam

The above CoMo-precursors were calcined at 400 $^{\circ}$ C for 2 h with heating rate of 2 $^{\circ}$ C min⁻¹ under an oxidative atmosphere, and then naturally cooled to ambient temperature.

2.1.3. Synthesis of CoMoO_{4-x} nanosheets supported on Ni foam

The as-prepared CoMoO₄ nanosheets were calcined at 400 $^{\circ}C$ for 0.5 h with heating rate of 5 $^{\circ}C$ min $^{-1}$ under H₂/Ar (v/v = 5%/95%) mixed gas atmosphere, and then naturally cooled to ambient temperature.

2.2. Catalyst characterization

X-ray diffraction (XRD) patterns were collected using Cu Kα radiation on a Smart Lab 9 kW powder X-ray diffractometer. Before the XRD test, the as-prepared nanosheets was sonicated and collected from the Ni foam. The morphology was characterized by using field-emission scanning electron microscopy (SEM, Hitachi S-4800, 20 kV). Transmission electron microscopy (TEM) and high-resolution TEM images were obtained on a JEM-2100 transmission electron microscope (EOL). X-ray photoelectron spectroscopy (XPS) was measured by an ESCALAB 250Xi spectrometer equipped with an aluminum anode (Al $K\alpha = 1846.6$ eV). The binding energy was determined using the C1 s spectrum at 284.8 eV as a reference. The specific surface area was obtained by the Brunauer-Emmett-Teller (BET) method and measured by using a Micromeritics ASAP 2020 at 77 K with N₂ physical adsorption. ¹H NMR experiments were performed using Bruker 600 MHz, D₂O as deuterium reagent. In situ characterization of the working electrode was performed using a Nicolet iS50 FTIR spectrometer (Thermo Scientific, Warsaw, Poland). Raman spectra were recorded on an Olympus BX40 system with a 50x long working-length objective (HORIBA Scientific, France) instrument with an Nd: YAG laser source of 638 nm.

2.3. Electrochemical measurements

2.3.1. Electrochemical measurements of nitrate reduction reaction

All electrochemical measurements were conducted on a CHI 760E electrochemical workstation. The catalysts grown on Ni foam (1.0 cm \times 1.0 cm), Ag/AgCl electrode, and Pt foil were used as working electrode, reference electrode, and counter electrode, respectively. In a typical Hcell system, 0.1 M Na₂SO₄ solution was evenly dispersed into the cathode and anode chambers, and an additional 200 ppm NO₃-N was added to the cathode chamber. It was necessary to feed the cathode electrolyte with Ar for 30 min to remove the dissolved oxygen before conducting the electrochemical tests. LSV curves were performed with a scan rate of 10 mV s⁻¹ from -0.6 to -1.6 V vs. Ag/AgCl. Then, the chronoamperometry tests were carried out at different potentials for 2 h. The electrochemical active surface area (ECSA) of the sample was calculated from the double layer capacitance (Cdl) according to the following equation: $ECSA = C_{dl} / C_s$, where C_s is the specific capacitance of the sample. To measure the C_{dl}, cyclic voltammetry (CV) tests were performed at different sweep rates from 10 to 50 mV s⁻¹. Consider that the specific capacitance for a flat surface is generally in the range of 20-60 μF cm⁻². We used the value of 40 μF cm⁻² for ECSA calculations.

2.3.2. Electrochemical measurements of urea oxidation reaction

The catalysts grown on Ni foam (1.0 cm \times 1.0 cm), Hg/HgO electrode, and Pt foil were used as working electrode, reference electrode, and counter electrode, respectively. The electrolyte solution consists of 1.0 M KOH and 0.33 M urea. LSV tests were performed from 0.7 to 1.8 V vs. RHE at a scan rate of 10 mV s⁻¹ and with 50% *iR* compensation. All potentials measured are calibrated to a reversible hydrogen electrode (RHE) as Equation Eq. (1):

$$E_{\text{RHE}} = E_{\text{Hg/HgO}} + 0.0591 \times \text{pH} + 0.098$$
 (1)

2.3.3. Electrochemical coupling NO_3^- -to- NH_3 and UOR measurements

For two-electrode electrolysis, $Mo_{(L)}$ -CoMoO_{4-x} electrode is employed as both anode and cathode. 1.0 M KOH with 0.33 M urea was used as anodic electrolyte for UOR and 1.0 M KOH with 200 ppm NO $_3$ -N was used as cathodic electrolyte for nitrate reduction. All experiments are carried out at room temperature.

2.3.4. In situ electrochemical measurements

In situ FTIR tests were performed using a Nicolet iS50 FTIR spectrometer. Typically, 5 mg of catalysts and 20 μ L of Nafion solution were dispersed in 0.3 mL ethanol and 0.2 mL water solution by sonication for

0.5 h. Then the mixed solution was loaded onto the Au-coated Si crystal and dried naturally for further use. All electrochemical tests were measured in $0.1\,M$ Na_2SO_4 electrolyte with $200\,ppm$ NO_3^-N and controlled by a CHI 760E electrochemical workstation.

In situ Raman measurement was carried out by the Raman microscope and electrochemical workstation. The cell was designed by Teflon with a quartz window between the sample and the objective. All electrochemical tests were measured in 0.1 M Na $_2$ SO $_4$ electrolyte with 200 ppm $\,NO_3^-N$ and controlled by a CHI 760E electrochemical workstation.

2.4. Determination of ion concentration

2.4.1. Determination of NO₃-N concentration

Nitrate concentrations were measured following standard methods [22]. 0.1 mL 1 M HCl and 0.01 mL sulfamic acid solution (0.8 wt%) were added into the solution and waited for 20 min to texting. Using a UV-Vis spectrophotometer measured the absorption spectra and recorded the absorption intensities at 220 nm and 275 nm. The final absorbance value was calculated by this equation: $A = A_{220nm} - 2A_{275nm}.$

2.4.2. Determination of NO_2^- -N concentration

Nitrite concentrations were analyzed using the Griess test with slight modification [23]. The color reagent was prepared by dissolving 0.2 g of N-(1-naphthyl) ethylenediamine dihydrochloride, 4.0 g of sulfonamide, and 10 mL $\rm H_3PO_4$ in appropriate deionized water. Then the mixed solution was volumed to be 100 mL with the distilled water. 0.1 mL color reagent was added into the solution and mixed uniformity, and the absorption intensity at a wavelength of 540 nm was recorded after standing for 20 min.

2.4.3. Determination of NH₄⁺-N concentration

The quantity of NH $_3$ product was determined via a colorimetric method using Nessler's reagent [23]. The Nessler's reagent was prepared by dissolving 7 g KI and 10 g HgI $_2$ in 100 mL 4.0 M NaOH solution successively and then the mixed solution was placed in the dark without disturbance for 24 h. Finally, the supernatant liquid was transferred into a Teflon bottle refrigerated for use. For the colorimetric assay, 0.1 mL potassium sodium tartrate solution ($\rho = 500 \text{ g L}^{-1}$) was added and mixed thoroughly, and then 0.1 mL Nessler's reagent was put into the solution. The absorption intensity at a wavelength of 420 nm was recorded after standing for 20 min.

2.5. Calculation of the conversion, selectivity, Faradaic efficiency, and yield

The selectivity of NH₃ was calculated according to Eq. (2)

Selectivity
$$(S_{\text{NH}_3}) = C_{\text{NH}_3} / \Delta C_{\text{NO}_3} \times 100\%$$
 (2)

The Faradaic efficiency of electroreduction of NO_3^- to NH_3 was calculated according to Eq. (3):

Faradaic efficiency (FE) =
$$(8 \text{ F} \times C_{\text{NH}_3} \times V) / (14 \times Q)$$
 (3)

The yield rate of NH_3 was calculated according to Eq. (4):

Yield rate of NH₃ (µmol h⁻¹ cm⁻²) =
$$(C_{\text{NH}_3} \times V)$$
 / (14 $\times t \times s$) (4)

 $\Delta C_{\mathrm{NO_3}}$ -is the concentration difference of NO₃-N (ppm) before and after electrolysis, $C_{\mathrm{NH_3}}$ is the concentration of NH₄⁺-N (ppm), F is the Faradaic constant (96485 C mol⁻¹), Q is the total charge passing the electrode (C), V is the volume of electrolyte in the cathode compartment

(35 mL), t is the electrolysis time (2 h), s is the geometric area of working electrode (1 cm⁻²).

2.6. Calculational methods

All density functional theory (DFT) calculations were conducted using the Vienna ab initio simulation package (VASP), based on first principles [24,25]. The study utilized the projector augmented wave the Perdew-Burke-Ernzerhof method and exchange-correlation functional, incorporating spin polarization [26–28]. A 15 Å vacuum space was introduced to prevent interactions between adjacent layers. Calculations used a cutoff energy of 450 eV, achieving convergence with tolerances of 10⁻⁵ eV for energy and 0.01 eV Å^{-1} for forces. A gamma-centered (3×3×4) k-point grid was used for Brillouin zone sampling in the bulk. TEM and XRD results determined the lattice parameters of ferromagnetic bulk CoMoO₄ as a = 10.165 Å, b = 9.238 Å, c = 7.003 Å, $\alpha = \gamma = 90.000^{\circ}$, and $\beta = 106.963^{\circ}$, indicating a monoclinic C12/m1 symmetry [29]. In this structure, each Co atom is surrounded by six oxygen atoms, and each Mo atom by four, forming hexahedral and tetrahedral units, respectively. The (001) surface was chosen as the model surface. Hubbard parameters (U) of 4.38 for Mo and 3.32 for Co were consistently applied to address onsite electron correlation in d orbitals across all calculations [29]. The CI-NEB method was employed to identify transition states [30].

The calculation of Gibbs free energy change (ΔG) relies on the computational hydrogen electrode (CHE) model proposed by Nørskov and colleagues [31,32]:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{5}$$

 ΔE , $\Delta E_{\rm ZPE}$, and ΔS refer to the differences in energy, zero-point energy, and vibrational entropy, respectively, between the final and initial surface species for each elementary step of adsorption, desorption, and protonation.

The adsorption energies of NO_3^- ($\Delta G_{^*NO3}$) on $CoMoO_4$ and $Mo_{(L)}$ - $CoMoO_{4-x}$ are determined using the expression below:

$$\Delta G_{*NO3} = G_{NO_3} - G_* - G_{HNO3} + 0.5G_{H2(g)} - \Delta G_{correct}$$
 (6)

Where $\Delta G_{^*NO3}$ and $G_{^*}$ indicate the energies of CoMoO₄ and Mo_(L)-CoMoO_{4-x} with NO $_3^-$ adsorbed, respectively. Meanwhile, $G_{HNO3}(g)$ and $G_{H2}(g)$ denote the energies of gaseous HNO $_3$ and H $_2$ molecules, with a correction factor $\Delta G_{correct}$ of 0.392 eV [33].

3. Results and discussion

3.1. Catalyst preparation and characterization

The porous CoMoO₄ nanosheets with rich low-valent Mo sites grown on Ni foam (Mo_(L)-CoMoO_{4-x}) were successfully fabricated through rapid calcination of the CoMo-precursors in the reductive atmosphere (See details in Experimental section). The schematic of structures of Mo(L)-CoMoO_{4-x} was depicted in Fig. 1a. Scanning electron microscopy (SEM) images of Mo_(L)-CoMoO_{4-x} shows interconnected and ordered nanosheets array structure grown on the substrate with the average thickness of the nanosheets is ~37 nm (Fig. 1b, S1). Then, we can see abundant pores in the two-dimensional $\text{Mo}_{(L)}\text{-CoMoO}_{4\text{-}x}$ nanosheets from the transmission electron microscopy (TEM) images (Fig. 1c, S2). And a typical interplanar lattice fringe of 0.231 nm is observed in the highresolution TEM (HRTEM) image (inset of Fig. 1c), which corresponds to the CoMoO₄ (040) plane. Impressively, the lattice fringe at the edge of the pore is ambiguous, which may be attributed to the formation of lowvalent Mo sites induced by the oxygen vacancies (Ovac). The scanning TEM energy dispersive X-ray spectroscopy (EDS) mapping images (Fig. S3) indicate the existence and uniform distribution of Co, Mo and O in Mo_(L)-CoMoO_{4-x}. For comparison, CoMoO₄ nanosheets were also fabricated through the calcination of the CoMo-precursors in oxidative

Fig. 1. (a) Crystal structure of the $Mo_{(L)}$ -CoMoO_{4-x}. (b) SEM and (c) HRTEM image of $Mo_{(L)}$ -CoMoO_{4-x}. (d) XRD patterns, (e) Raman spectra and (f) Mo 3d XPS spectra of $Mo_{(L)}$ -CoMoO_{4-x} and CoMoO₄.

atmosphere. The analogous morphology of the $CoMoO_4$ nanosheets can be seen from Fig. S4, S5a. But a small number of pores and orderly lattice fringes could be seen in $CoMoO_4$ nanosheets (Fig. S5b). The Brunauer-Emmett-Teller (BET) surface area analysis result indicates that the BET surface area of $Mo_{(L)}$ - $CoMoO_{4-x}$ is

 $39.5 \text{ m}^2 \text{ g}^{-1}$, much larger than that of CoMoO₄ (11.63 m² g⁻¹), further confirming the porous structure of Mo_(L)-CoMoO_{4-x} (Fig. S6). Xray diffraction (XRD) patterns (Fig. 1d) identify the as-prepared nanosheets as monoclinic CoMoO₄ (JCPDS No. 21-0868). Moreover, partial diffraction peaks (marked with pink background) show slight shifts to high angles and broadening in Mo(L)-CoMoO_{4-x} compared to those of CoMoO₄, indicating the existence of O_{vac} and porous structure, respectively [34]. In the Raman spectra (Fig. 1e), the peaks located at 337 and 370 cm⁻¹ are ascribed to asymmetric and symmetric bending modes of the O-Mo-O, respectively, and the symmetric stretching of the Co-O bond locates at 706 cm⁻¹. Moreover, the modes located at 819, 875 and $943~\mathrm{cm}^{-1}$ could be indexed to asymmetric stretching modes of oxygen in binding Co-O-Mo [35]. Notably, the peaks located at 337 and $819~{\rm cm}^{-1}$ in ${\rm Mo_{(L)}}\text{-CoMoO}_{4\text{-x}}$ shifte slightly toward higher wavenumber, confirming the existence of O_{vac} in $Mo_{(L)}$ -CoMoO_{4-x} [36,37]. This is also revealed by O 1 s X-ray photoelectron spectra (XPS) (Fig. S7), in which the binding energy of 531.4 eV could be ascribed to Ovac and the proportion of Ovac in Mo(L)-CoMoO_{4-x} is much higher than that in CoMoO₄ [38]. On account of the abundant pore and O_{vac}, low-valent Mo (Mo⁴⁺) is induced in Mo_(L)-CoMoO_{4-x}, which is revealed by the high-resolution XPS of Mo 3d. As shown in Fig. 1f, except for the normal high-valent Mo⁶⁺ located at 232.2 and 235.3 with a bandgap of 3.1 eV, low-valent Mo (230.3 and 233.6 eV) was also detected in $Mo_{(L)}$ -CoMoO_{4-x}, which did not exist in CoMoO₄ [35]. The binding energies of 796.90, 780.90, 803.0, 786.5 eV in CoMoO₄ were in good agreement with Co^{2+} 2p_{1/2}, 2p_{3/2}, and their satellite peaks, respectively (Fig. S8) [39]. And a slight positive shift of binding energy for Co 2p in $Mo_{(L)}$ -CoMoO_{4-x} indicates slight reduction of Co²⁺. Based on the above analysis, low-valent Mo (Mo^{4+}) was induced in $\text{Mo}_{\text{(L)}}\text{-CoMoO}_{4\text{-x}}$ nanosheets benefited from the abundant pores and oxygen vacancies.

3.2. Electrocatalytic performance for NO₃-to-NH₃

Profited from the low-valent Mo induced by the porous structure and oxygen vacancies, $Mo_{(L)}\text{-}CoMoO_{4\text{-}x}$ nanosheets exhibit outstanding electrochemical NO3-to-NH3 performance. The electrochemical tests were performed in conventional H-cell with different electrolyte compositions under ambient conditions. Firstly, the linear sweep voltammetry (LSV) curves of different electrodes in 0.1 M Na₂SO₄ with and without 200 ppm NO₃-N were shown in Fig. 2a. All of the samples exhibit higher current densities in 0.1 M Na_2SO_4 with NO_3^- addition than those measured in 0.1 M Na₂SO₄ and Mo_(L)-CoMoO_{4-x} shows the maximum current density, indicating the highest activity of Mo(L)-CoMoO_{4-x} for the NO₃RR. To insight the intrinsic catalytic activity of different catalysts, the electrochemical active surface area (ECSA) of the samples were tested (Fig. S9). The the ECSA-normalized LSV curves with 200 ppm NO₃-N were plotted (Fig. S10), and the Mo_(L)-CoMoO_{4-x} still shows larger normalized current density than that of CoMoO4, indicating the better intrinsic activity of Mo(L)-CoMoO_{4-x}. Then, chronoamperometry tests at different potentials were applied to accumulate the reduction products of NO₃, and the concentrations of residual NO₃ and the products were analyzed using the colorimetric methods (See the standard curves in Fig. S11, S12). The production of NH₃ in the electrolytes with and without 200 ppm NO₃-N were first quantified, and very little NH3 can be detected in the electrolytes without NO3, indicating that the production of NH₃

originated from the electroreduction of nitrate (Fig. S13). To ensure the accuracy of colorimetric methods for NH_3 quantification, 1H nuclear magnetic resonance (NMR) spectra were also carried out using maleic acid as internal standard, and the standard curve was depicted based on the signals of standard solutions with gradient concentrations (inset of

Fig. 2. (a) LSV curves of the prepared samples with and without 200 ppm NO_3^2 -N. (b) The 1 H NMR signal after electrocatalytic NO_3^2 RR, insert is the standard curve. (c) FEs of NH₃ and (d) NH₃ yield rates of the prepared samples at different potentials. (e) Chronoamperometry test of $MO_{(L)}$ -CoMoO_{4-x} in the flowing 0.1 M Na_2SO_4 with 200 ppm NO_3^2 -N electrolyte. (f) The selectivity of NH₃ in the electrolyte with different initial NO_3^2 concentrations for $MO_{(L)}$ -CoMoO_{4-x}.

Fig. 2b, S14). The ¹H NMR signal of the post-test electrolyte with 200 ppm NO₃-N were shown in the inset of Fig. 2b and NH₄ vield was quantified to be 156.7 μ mol h⁻¹ cm⁻². In addition, to clarify the source of ammonia and more accurately quantify the produced NH₄⁺, we used K¹⁵NO₃ as the feeding N-source to perform the isotopic labeling NO₃ experiments. ¹H NMR spectra were carried out and the standard curve was depicted based on the signals of standard (15NH₄)₂SO₄ solutions with gradient concentrations (Fig. S15a and inset of Fig. S15b). The ¹H NMR signal of the post-test electrolyte with 200 ppm ¹⁵NO₃-N was shown in Fig. S15b, and the $^{15}\mathrm{NH_4^+}$ yield was quantified to be 157.5 μ mol h⁻¹ cm⁻², which is close to the quantitative results of ¹⁴NH₄ ¹H NMR and colorimetric methods (Fig. S16)[40]. Based on the accurate detection, the Faraday efficiencies (FEs) of NH₃(aq) as well as the NH₃ yield at different potentials over different samples from -0.8 to -1.4 V vs. Ag/AgCl were calculated and showed in Fig. 2c, d. Obviously, Mo(L)--CoMoO_{4-x} always showed the maximum FE and NH₃ yield under the same potential and the highest FE of NH3 over Mo(L)-CoMoO4-x could reach 93.33% at the low potential of -1.1 V vs. Ag/AgCl. This performance is superior to most reported electrocatalysts in the neutral electrolytes (Table S1). Meanwhile, the $Mo_{(L)}$ -CoMoO_{4-x} also exhibited the highest NH₃ partial current densities (j_{Ammonia}), indicating its highest activity for NO3-to-NH3 (Fig. S17). Furthermore, very few NO2 were detected at all potentials (Fig. S18), further demonstrating the high selectivity of Mo_(L)-CoMoO_{4-x}. To evaluate the long-term stability of Mo_(L)-CoMoO_{4-x}, we performed the chronoamperometry tests at -1.1 V vs. Ag/AgCl in the flowing $0.1~M~Na_2SO_4$ with $200~ppm~NO_3^-N$ electrolyte to ensure stable NO₃ supply. As shown in Fig. 2e, the current density can maintain for 60 h and no obvious decline of the FE of NH₃ can be seen, indicating the excellent stability of Mo(1)-CoMoO_{4-x}. Moreover, successive recycling tests at -1.1 V vs. Ag/AgCl for Mo(L)--CoMoO_{4-x} demonstrate that FE and selectivity of NH₃ could maintain well after six cycles (Fig. S19). And the remained nanosheet morphology (Fig. S20) and electronic states of Mo and O (Fig. S21) after the cycling

test further confirm the good stability.

To further evaluate the capability of Mo(L)-CoMoO_{4-x} for NO₃ treatment, the concentration of NO₃-N in the electrolyte was degraded from 400 to 10 ppm, and the chronoamperometry tests were conducted at -1.1 V vs. Ag/AgCl for 2 h. As shown in Fig. 2f, the selectivity of NH₃ showed no obvious decay as the decrease of the NO₃ concentration. Futhermore, the continuous 20 h chronoamperometry tests at -1.1 V vs. Ag/AgCl in the flowing 0.1 M Na₂SO₄ with 10, 200 and 400 ppm NO₃-N electrolyte, respectively, were conducted (Fig. S22). No obvious decay of current density as well as the FE of NH₃ can be seen, suggesting the good application potential of Mo_(L)-CoMoO_{4-x} for NO₃ containing wastewater removal. These reults confirm that the engineering of lowvalent Mo efficiently improve the electrochemical NO3-to-NH3 performance of CoMoO₄. To further confirm the key role of the low-valent Mo, we also fabricated the CoMoO₄ nanosheets with oxygen vacancies but no low-valent Mo (labeled as CoMoO_{4-x}) (Fig. S23, S24) and measured their catalytic performance for NO₃-to-NH₃. As shown in Fig. S25, CoMoO_{4-x} shows the optimal FE (61.42%) of NH₃ at the potential of -1.1 V vs. Ag/ AgCl and highest NH₃ yield of 24.11 µmol h⁻¹ cm⁻² at -1.4 V vs. Ag/ AgCl, little better than those of CoMoO₄ (49.87%, 11.53 µmol h⁻¹ cm⁻²). Based on these results, we further confirm the key role of the lowvalent Mo for improving catalytic performance CoMoO₄.

3.3. Mechanism study of the excellent performance for NO₃-to-NH₃

To understand the origin of the remarkable and enhanced performance of $Mo_{(L)}$ -CoMoO $_{4\text{-}x}$ electrocatalyst for NO_3^-RR , the kinetic study was performed. Firstly, we carried out the Raman spectra of $Mo_{(L)}$ -CoMoO $_{4\text{-}x}$ and CoMoO $_4$ in the electrolytes with NO_3^- to explore the NO_3^- adsorption capacity on the surface. As shown in Fig. 3a, the characteristic peaks located at $1060~\text{cm}^{-1}$ corresponding to the symmetric NO_3^- stretching can be observed [41], and the intensity over on $Mo_{(L)}$ -CoMoO $_{4\text{-}x}$ is obviously stronger than that over CoMoO $_4$, suggesting the

Fig. 3. (a) Raman spectra of the samples in the electrolyte with NO_3^- . (b) pseudo first-order reactions of NO_3^- RR. (c, d) DMPO spin-trapping EPR spectra of the electrolyte with and without NO_3^- . The Bode plots of (e) $MO_{(L)}^-$ CoMoO_{4-x} and (f) CoMoO₄.

better NO_3^- adsorption capacity of $Mo_{(L)}$ -Co MoO_{4-x}^- [42]. Then, during the electrolysis process, the time-dependent concentration variations of different ions over $Mo_{(L)}$ -Co MoO_{4-x} were recorded (Fig. S26) and the reaction kinetics could be deduced. As shown in Fig. 3b, pseudo first-order reactions of NO_3^- RR over $Mo_{(L)}$ -Co MoO_{4-x}^- and Co MoO_4^- are observed [43]. And first reaction order could also be confirmed by the plots of the total current densities at -1.1~V vs. Ag/AgCl against the NO_3^- concentrations (ppm) (Fig. S27) [44]. The apparent reaction rate constant (k_{ap})

calculated through the slope of the linear fitting of $Mo_{(L)}$ -CoMoO_{4-x} is 7.2-fold higher than that of CoMoO₄, indicating the faster reaction rate of Mo_(L)-CoMoO_{4-x} for NO₃ ions activation, which is challenging for most of the reported electrocatalysts [45-47]. Beside the adsorption and activation of NO3, the generation and consumption of active hydrogen (*H) is crucial for the hydrogenation of nitroxide intermediates to NH₃. To evaluate the ability of generated/consumed *H during the NO3RR, we monitored the amounts of *H through operando electron paramagnetic resonance (EPR) using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as an *H trapping reagent [48]. During the electrolysis in the electrolyte without NO₃, the singles of *H with nine typical strong peaks (intensity ratio: 1:1:2:1:2:1:2:1:1) are observed (Fig. 3c), and the intensity of *H single over Mo(L)-CoMoO_{4-x} was much stronger than that of CoMoO₄, suggesting the better ability of Mo_(L)-CoMoO_{4-x} to drive the H₂O dissociation to generate *H. After adding NO₃ in the electrolyte (Fig. 3d), the signal intensity of DMPO-H decreased dramatically over Mo(L)-CoMoO_{4-x} but slightly over CoMoO₄, indicating the faster consumption of the *H on Mo_(L)-CoMoO_{4-x} during NO₃RR process [17,18]. Additionally, the Bode plots (Fig. 3e, f) of Mo_(L)-CoMoO_{4-x} and CoMoO₄ showed that the characteristic peak associated with the adsorption of *H centered at ${\approx}10^0$ Hz emerged at –0.9 V vs. Ag/AgCl over $\text{Mo}_{\text{(L)}}\text{-Co-}$ MoO_{4-x}, lower than that of CoMoO₄ (-1.1 V vs. Ag/AgCl), confirming the better *H generation ability of Mo(L)-CoMoO_{4-x} [49]. And during NO3RR, the peak shifts to high frequencies with increasing applied potentials and a lower phase angle of Mo(L)-CoMoO_{4-x} confirmed the faster charge transfer and hydrogenation rate of NO₃ reduction to NH₃ [50]. These kinetic study results proved that the construction of low-valent Mo sites in $CoMoO_4$ nanosheets could promote the adsorption, activation and hydrogenation of NO_3 to NH_3 .

In addition, we conducted in situ Fourier transform infrared spectrum (FTIR) and Raman to monitor the intermediates during the reduction reaction. The in situ FTIR spectra of Mo_(L)-CoMoO_{4-x} and CoMoO₄ at different potentials from -0.7 to -1.5 V vs. Ag/AgCl were tested. As shown in Fig. 4a, the positive peak located at 1337 cm⁻¹ can be assigned to N-O asymmetric stretching vibration of NO₃ and the weak intensity indicates the consumption of NO₃ [41]. Then, the bands at 1296 and 1557 cm⁻¹ can be assigned to the deoxidation intermediates of *NO2 and *NO, respectively [51]. At the same time, the peaks located at 1100, 1435, 1506, 1539 cm⁻¹ correspond to the protonation intermediates of *NH₂OH, *NH₂, *NH, *HNO, respectively [17,41,52,53], and the produced NH₄ (1456 cm⁻¹) 1 s also detected. The intensities of both deoxidation and protonation intermediates are gradually increased as the potential increased, suggesting Mo_(L)-CoMoO_{4-x} could efficiently promote the activation and protonation of NO₃ and the eventual generation of NH3. In comparison, the same deoxidation and protonation intermediates could be detected on the CoMoO₄ during NO₃RR, but their intensities are much weaker than those of Mo_(L)-CoMoO_{4-x}. Particularly, hydroxylamine (*NH2OH) is the key intermediate for NH2 formation [41], the band intensity of *NH₂OH (located at 1100 cm⁻¹) on CoMoO₄ is distinctly weaker than that on Mo(L)-CoMoO_{4-x}, thus resulting the poor performance for NO₃ to NH₃. Then, in situ Raman spectra at different potentials were shown in Fig. S28. The vibration bands at 1060 cm⁻¹ could be assigned to the symmetric stretching of NO3, and the intermediates of NO₂ (1190 cm⁻¹), HNH (1312 cm⁻¹), NH₃ (1430 cm⁻¹) could also be detected during the NO₃RR electrolysis [41,54,55]. Based on the intermediates detected by in situ FTIR and Raman and many reported works [56–58]. we derived the possible NO₃RR reaction path on the surface of the electrocatalysts as shown in Fig. 4c. The NO3RR process included two steps: deoxygenation reactions ($NO_3^- \rightarrow NO_2^- \rightarrow NO$) and hydrogenation steps (NO \rightarrow HNO \rightarrow H₂NO \rightarrow NH₂OH \rightarrow *NH₂ \rightarrow NH₃). And the schematic diagram of NO₃RR on the surface of Mo_(L)--CoMoO_{4-x} could be depicted in Fig. S29, in which the promoted generation of the key NH_2OH intermediate on $Mo_{(L)}$ -Co MoO_{4-x} showed great

Fig. 4. In situ FT-IR spectra for (a) $MO_{(L)}$ -Co MoO_{4-x} and (b) $CoMoO_4$. (c) NO_3 RR reaction path. Bader charge analyses of $CoMoO_4$ (d) and $Mo_{(L)}$ -Co MoO_{4-x} (e) surfaces. Comparison of the free energy profiles of NO_3 to NO_2 (f) and H_2O dissociation (g) pathways on $CoMoO_4$ and $Mo_{(L)}$ -Co MoO_{4-x} surfaces.

contribution to NO3-to-NH3.

DFT calculations were used to in-deep explore the effect of engineering low-valence Mo in CoMoO₄ on the performance for NO₃RR. The structural model of $CoMoO_4$ and $Mo_{(L)}$ - $CoMoO_{4-x}$ were built and showed in Fig. S30. First, the surface electronic structures of CoMoO₄ and Mo_(L)-CoMoO_{4-x} were studied by combining charge-density difference and Bader analysis. As shown in Figs. 4d, 1.32 electrons lost from Co atom to form Co cation site and 2.6 electrons lost from Mo atom to form Mo cation site in CoMoO₄. After constructing oxygen vacancies in CoMoO₄ (Mo_(L)-CoMoO_{4-x}), the lost electrons number of Co site shows a slight decline to be 1.24, while lost electrons number of Mo site shows a distinct decrease form 2.6-1.5 (Fig. 4e). This difference illustrates that residual electrons derived from oxygen vacancies at pore edge in Mo(L)-CoMoO_{4-x} are more prone to localize at Mo site, thus generating the lowvalent Mo site, and very few electrons are assigned to Co site. The results are also in agreement with the XPS results of Co 2p (Fig. S8) and Mo 3d (Fig. 1f). Then, the active sites (Co and Mo) on CoMoO₄ and Mo_(L)- $CoMoO_{4-x}$ were identified by analyzing their NO_3^- and H_2O adsorption behaviors. For both $CoMoO_4$ and $Mo_{(L)}$ - $CoMoO_{4-x}$, NO_3^- adsorption is spontaneous at Co sites but highly unstable at Mo sites, indicating the adsorption and activation of NO₃ on both CoMoO₄ and Mo_(L)-CoMoO_{4-x} could occur at Co sites. Furthermore, the NO₃ adsorption energy on Mo_(L)-CoMoO_{4-x} (-0.47 eV) is more negative than that on CoMoO₄ (-0.16 eV), suggesting the few electrons localization at Co site caused by the oxygen vacancies promote the adsorption of NO₃ on Mo_(L)-CoMoO₄. $_{\rm x}$ (Fig. S31). In addition, H $_{\rm 2}$ O adsorption sites were also probe. As shown in Fig. S32, the complete coordination of Mo site in $CoMoO_4$ prevents the adsorption of H₂O, thus the H₂O can only absorb at Co site but the adsorption energy is up to 0.6 eV, suggesting the difficult adsorption of H₂O on CoMoO₄. In contrast, the H₂O can spontaneously adsorb at lowvalent Mo site introduced by oxygen vacancies on Mo(L)-CoMoO_{4-x} surface and the adsorption energy is -0.53 eV. This result illustrates that the engineering of low-valent Mo sites provides favorable adsorption site for H₂O, which could generate more *H for NO₃ hydrogenation.

Typically, NO₃ electroreduction to NH₃ involves a multielectron/ proton transfer process, in which the rate-determining step is the reduction of NO_3^- to NO_2^- [3,59,60]. The Gibbs free energy changes of NO_3^- to NO_2^- pathways on $CoMoO_4$ and $Mo_{(L)}$ -CoMoO_{4-x} were further assessed. As shown in Fig. 4f, the spontaneously adsorbed NO₃ requires energy for further hydrogenation to form *NO2OH intermediate, and the construction of low-valent Mo lowers the free energy required to form *NO₂OH from 0.25 eV to 0.10 eV, suggesting the thermodynamically favorable activation of NO₃ on Mo_(L)-CoMoO_{4-x}. Moreover, the free changes of H₂O molecule dissociation on CoMoO₄ and Mo_(L)-CoMoO_{4-x} were calculated and showed in Fig. 4g and S33. The activation energy of H₂O molecule on Mo_(L)-CoMoO_{4-x} to form the transition state (TS) is 0.66 eV, much lower than that on CoMoO₄ (1.0 eV). And the further dissociation of TS to surface-adsorbed *H and *OH species easier on Mo_(L)-CoMoO_{4-x} is easier. Thus, more active *H could be generated on Mo_(L)-CoMoO_{4-x}, which could have more opportunities to combine with nitrogen-containing intermediates, further promoting ammonia synthesis. All these theoretical results confirm that the construction of low-valent Mo sites in CoMoO4 can promote the adsorption and activation of NO3 at the adjacent Co sites, meanwhile, enhance H2O adsorption and dissociation to generate active *H for the further hydrogenation of NO₃ to NH₃.

3.4. Electrocatalytic performance for UOR and the coupling reaction

Except for NO_3^-RR , the prepared $Mo_{(L)}$ - $CoMoO_{4\cdot x}$ was also exploited as anodic catalyst for urea oxidation reaction (UOR) to more comprehensively treat the wastewater. Typically, 1.0 M KOH solution containing 0.33 M urea was used as the electrolyte. For comparison, the performances of $CoMoO_4$ and NF were also recorded. As demonstrated in Fig. 5a, the $Mo_{(L)}$ - $CoMoO_{4\cdot x}$ electrocatalyst shows the most active polarization curve with a high increase in current density and a low potential of 1.31 V vs. RHE at the current density of 100 mA cm^{-2} , which is much lower than those of $CoMoO_4$ (1.43 V vs. RHE) and NF

Fig. 5. (a) LSV curves of the prepared samples in 1.0 M KOH with 0.33 M urea electrolyte. (b) Schematic illustration of coupling the anodic UOR with the cathodic NO_3^-RR . (c) The polarization curves of the difunctional materials in 1.0 M KOH with and without NO_3^- and urea. (d) The selectivity of NH_3 for $Mo_{(L)}^-COMOO_{4-x}$ at -1.7 V. In situ Raman spectra of $Mo_{(L)}^-COMOO_{4-x}$ (e) and $COMOO_4$ (f) during UOR at different potentials.

(1.72 V vs. RHE), suggesting the good activity of $Mo_{(L)}$ -CoMoO_{4-x} for UOR. Furthermore, this excellent UOR performance of $Mo_{(L)}$ -CoMoO_{4-x} is also superior to most reported UOR electrocatalysts (Table S2). Profiting from the excellent UOR performance, we coupled the anodic UOR with the cathodic NO $_3$ RR to assemble the two-electrode electrolyzer to improve the energy efficiency of N-containing wastewater treatment (Fig. 5b). The polarization curves of the different electrocatalysts in 1.0 M KOH with and without NO $_3$ and urea were recorded in Fig. 5c. The $Mo_{(L)}$ -CoMoO_{4-x} exhibited the largest current density at the present of both NO $_3$ and urea and the current density could reach to 100 mA cm $^{-2}$ under a low potential of -1.83 V. And the selectivity of NH $_3$ could retain over 90% at wide potential from -1.4 to -1.9 V (Fig. S34). Additionally, no apparent decrease of the selectivity of NH $_3$ is observed after five cycle runs at -1.7 V, indicating the excellent

durability (Fig. 5d). The low cell voltage and good stability of $Mo_{(L)}$ -CoMoO_{4-x} for the coupling electrolysis suggested its great potential for practical application of N-containing wastewater treatment. To further unravel the good activity of $Mo_{(L)}$ -CoMoO_{4-x} for UOR, in situ Raman test was carried out. As shown in Fig. 5e, three typical bands at 341, 809, 933 cm⁻¹ were assigned to the O-Mo-O and Co-O-Mo in $Mo_{(L)}$ -CoMoO_{4-x}, respectively. And their intensities decreased gradually with increasing potential from 1.0 to 1.4 V vs. RHE. Meanwhile, two characteristic peaks located at 473 and 553 cm⁻², which could be assigned to the E_g and $A_{1\,g}$ of CoOOH, respectively [61,62], were detected and the intensities

increased gradually with increasing potential, suggesting the evolution of $Mo_{(L)}$ -CoMoO_{4-x} to the active CoOOH during UOR. This reconstruction phenomenon could also be observed in the Raman spectra of CoMoO₄ (Fig. 5f), but the intensity of the restructured CoOOH

signal was much weaker than that of $Mo_{(L)}$ -CoMoO $_{4\cdot x}$. The compared Raman results revealed that the excellent UOR activity of $Mo_{(L)}$ -CoMoO $_{4\cdot x}$ could be attributed to the construction of low-valent Mo in $CoMoO_4$ could efficiently promote the generation of active CoOOH for LIOR

4. Conclusion

In summary, we have exploited a difunctional electrocatalyst of porous CoMoO₄ nanosheets with rich low-valent Mo sites grown on Ni foam for both NO3 and urea-contained wastewater treatment. The lowvalent Mo sites induced by the rich pores and oxygen vacancies in $CoMoO_4$ nanosheets promote the adsorption and activation of NO_3^- at the adjacent Co sites for the accelerated reaction NO₃RR, meanwhile, enhance H₂O adsorption and dissociation to generate active *H for the generation of the key NH₂OH intermediate of NO₃ to NH₃. As expected, the Mo_(L)-CoMoO_{4-x} showed superior performance toward NO₃RR with a high Faradaic efficiency (93.33%) and selectivity (91.16%) at -1.1 V vs. Ag/AgCl in 0.1 M Na₂SO₄ with 200 ppm NO₃-N, much better than those of CoMoO₄. In addition, more active CoOOH could be restructured in Mo(1)-CoMoO_{4-x} render it also exhibited excellent UOR activity with an ultralow potential (1.31 V vs. RHE) at 100 mA cm⁻², surpassing the CoMoO₄ and most reported electrocatalysts. Additionally, the bifunctional Mo_(L)-CoMoO_{4-x} electrodes can be assembled into a two-electrode electrolyzer for coupling the UOR with NO3RR, and a low cell voltage of -1.83 V was needed to reach the current density of 100 mA cm⁻², and the selectivity of NH3 can remain over 90% after five cycles. This work provides a novel and economic strategy for nitrogen-rich wastewater treatment and opens an avenue to design efficient difunctional electrocatalysts for electrochemical UOR and NO₃-to-NH₃.

CRediT authorship contribution statement

Shan Gao: Funding acquisition. Qiquan Luo: Investigation. Weitao He: Data curation. Xing Chen: Investigation. Yu Cheng: Investigation. Kaifu Zhang: Data curation. Yu Yu: Writing – review & editing, Writing – original draft, Data curation, Conceptualization. Yuan Li: Funding acquisition, Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

No data was used for the research described in the article.

Acknowledgements

This work was financially supported by the research start-up fund from Anhui University (S020118002/060, S020318008/015, S020318008/016), Higher Education Natural Science Foundation of Anhui Province (K120433064) and National Natural Science Foundation of China (U1832189, 22205002).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.124150.

References

- [1] H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle, Chem. Soc. Rev. 51 (2022) 2710–2758.
- [2] P.H. Van Langevelde, I. Katsounaros, M.T.M. Koper, Electrocatalytic nitrate reduction for sustainable ammonia production, Joule 5 (2021) 290–294.
- [3] S.H. Han, H.J. Li, T.L. Li, F.P. Chen, R. Yang, Y.F. Yu, B. Zhang, Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism, Nat. Catal. 6 (2023) 402–414.
- [4] Y.P. Zhai, B.W. Zhang, S.Y. Zhang, Y. Liu, B.Y. Wang, K. Zhang, G.I.N. Waterhouse, T.R. Zhang, S.Y. Lu, Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis, Adv. Energy Mater. 12 (2022) 2103426.
- [5] H.Q. Song, J.K. Yu, Z.Y. Tang, B. Yang, S.Y. Lu, Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting, Adv. Energy Mater. 12 (2022) 2102573.
- [6] H.Q. Song, M. Wu, Z.Y. Tang, J.S. Tse, B. Yang, S.Y. Lu, Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production, Angew. Chem. Int. Ed. 60 (2021) 7234–7244.
- [7] Z.M. Song, Y. Liu, Y.Z. Zhong, Q. Guo, J. Zeng, Z.G. Geng, Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect, Adv. Mater. 34 (2022) 2204306.
- enrichment effect, Adv. Mater. 34 (2022) 2204306.

 [8] Y.F. Ren, F.G. Tian, L.M. Jin, Y. Wang, J.P. Yang, S.J. You, Y.B. Liu, Fluidic MXene electrode functionalized with iron single atoms for selective electrocatalytic nitrate transformation to ammonia. Environ. Sci. Technol. 57 (2023) 10458–10466.
- [9] R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z. D. Huang, C. Peng, C.Y. Zhi, Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells, Nat. Commun. 14 (2023) 8036.
- [10] A. Zhang, Y.X. Liang, H. Zhang, Z.G. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis, Chem. Soc. Rev. 50 (2021) 9817–9844.
- [11] E. Murphy, Y.C. Liu, I. Matanovic, M. Rüscher, Y. Huang, A. Ly, S. Guo, W.J. Zang, X.X. Yan, A. Martini, Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites, Nat. Commun. 14 (2023) 4554.
- [12] X. Zheng, J. Yang, P. Li, Z. Jiang, P. Zhu, Q. Wang, J. Wu, E. Zhang, W. Sun, S. Dou, D. Wang, Y. Li, Dual-atom support boosts nickel-catalyzed urea electrooxidation, Angew. Chem. Int. Ed. 62 (2023) e202217449.
- [13] X.T. Gao, S. Zhang, P.T. Wang, M. Jaroniec, Y. Zheng, S.Z. Qiao, Urea catalytic oxidation for energy and environmental applications, Chem. Soc. Rev. 53 (2024) 1552–1591.
- [14] L. Fang, S. Wang, S. Lu, F.J. Yin, Y.J. Dai, L. Chang, H. Liu, Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides, Chem. Eng. J. 461 (2023) 108864.
- [15] S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature 529 (2016) 68–71.
- [16] Y.F. Ren, S.J. You, Y. Wang, J.P. Yang, Y.B. Liu, Bioinspired tandem electrode for selective electrocatalytic synthesis of ammonia from aqueous nitrate, Environ. Sci. Technol. 58 (2024) 2144–2152.
- [17] G.K. Zhang, X.T. Li, K. Chen, Y.L. Guo, D.W. Ma, K. Chu, Tandem electrocatalytic nitrate reduction to ammonia on MBenes, Angew. Chem. Int. Ed. 62 (2023) e202300054.
- [18] K. Fan, W.F. Xie, J.Z. Li, Y.N. Sun, P.C. Xu, Y. Tang, Z.H. Li, M.F. Shao, Active hydrogen boosts electrochemical nitrate reduction to ammonia, Nat. Commun. 13 (2022) 7958.
- [19] Y. Zhou, Y.M. Wang, D.Q. Kong, Q.Q. Zhao, L. Zhao, J.L. Zhang, X.M. Chen, Y.A. Li, Y. Xu, C. Meng, Revealing the reactant mediation role of low-valence Mo for accelerated urea-assisted water splitting, Adv. Funct. Mater. 33 (2023) 2210656.
- [20] H.J. Liu, S. Zhang, Y.M. Chai, B. Dong, Ligand modulation of active sites to promote cobalt-doped 1T-MoS₂ electrocatalytic hydrogen evolution in alkaline media, Angew. Chem. Int. Ed. 62 (2023) e202313845.
- [21] Y.K. Bai, Y. Wu, X.C. Zhou, Y.F. Ye, K.Q. Nie, Jo Wang, M. Xie, Z.X. Zhang, Z.J. Liu, T. Cheng, Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution, Nat. Commun. 13 (2022) 6004
- [22] F.Y. Chen, Z.Y. Wu, S. Gupta, D.J. Rivera, S.V. Lambeets, S. Pecaut, J.Y.T. Kim, P. Zhu, Y.Z. Finfrock, D.M. Meira, Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst, Nat. Nanotechnol. 17 (2022) 759–767.
- [23] Y.T. Wang, Y.F. Yu, R.R. Jia, C. Zhang, B. Zhang, Electrochemical synthesis of nitric acid from air and ammonia through waste utilization, Natl. Sci. Rev. 6 (2019) 730–738.
- [24] G. Kresse, J. Furthmüller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
- [25] G. Kresse, J. Furthmüller, Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
- [26] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979.
- [27] B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals, Phys. Rev. B 59 (1999) 7413–7421.
- [28] M.Q. He, X. Chen, Y.N. Zhou, C. Xu, X.X. Li, Q.Q. Luo, J.L. Yang, A first-principles study of regulating spin states of MoSi₂N₄ supported single-atom catalysts via doping strategy for enhancing electrochemical nitrogen fixation activity, J. Phys. Chem. Lett. 14 (2023) 7100–7107.

- [29] S.P. Geng, L.M. Chen, H.X. Chen, Y. Wang, Z.B. Ding, D.D. Cai, S.Q. Song, Revealing the electrocatalytic mechanism of layered crystalline CoMoO₄ for water splitting: a theoretical study from facet selecting to active site engineering, Chin. J. Catal. 50 (2023) 334–342.
- [30] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
- [31] J.A. Gauthier, C.F. Dickens, L.D. Chen, A.D. Doyle, J.K. Nørskov, Solvation effects for oxygen evolution reaction catalysis on IrO₂(110), J. Phys. Chem. C. 121 (2017) 11455–11463.
- [32] X.Y. Zhu, M.Q. He, X. Chen, Y.A. Zhou, C. Xu, X.X. Li, Q.Q. Luo, J.L. Yang, First-principles insights into tungsten semicarbide-based single-atom catalysts: single-atom migration and mechanisms in oxygen reduction, J. Phys. Chem. Lett. 15 (2024) 2815–2824.
- [33] S.J. Guo, K. Heck, S. Kasiraju, H.F. Qian, Z. Zhao, L.C. Grabow, J.T. Miller, M. S. Wong, Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts, ACS Catal. 8 (2018) 503–515.
- [34] R.R. Zhang, L. Pan, B.B. Guo, Z.F. Huang, Z.X. Chen, L. Wang, X.W. Zhang, Z. Y. Guo, W. Xu, K.P. Loh, Tracking the role of defect types in Co₃O₄ structural evolution and active motifs during oxygen evolution reaction, J. Am. Chem. Soc. 145 (2023) 2271–2281.
- [35] H.B. Xiao, K. Chi, H.X. Yin, X.J. Zhou, P.X. Lei, P.Z. Liu, J.K. Fang, X.H. Li, S. L. Yuan, Z. Zhang, Excess activity tuned by distorted tetrahedron in CoMoO₄ for oxygen evolution, Energy Environ. Sci. (2023) e12495.
- [36] Z. Tang, Y.J. Li, K.X. Zhang, X.X. Wang, S.Y. Wang, Y.F. Sun, H.Y. Zhang, S.Y. Li, J. R. Wang, X.Y. Gao, Interfacial hydrogen spillover on Pd-TiO₂ with oxygen vacancies promotes formate electrooxidation, ACS Energy Lett. 8 (2023) 3945–3954.
- [37] Y. Wang, R. Yang, Y.J. Ding, B. Zhang, H. Li, B. Bai, M.R. Li, Y. Cui, J.P. Xiao, Z. S. Wu, Unraveling oxygen vacancy site mechanism of Rh-doped RuO₂ catalyst for long-lasting acidic water oxidation, Nat. Commun. 14 (2023) 1412.
- [38] Y. Qi, B.W. Liu, X.Q. Qiu, X.Z. Zeng, Z.C. Luo, W.D. Wu, Y.C. Liu, L.H. Chen, X. H. Zu, H.F. Dong, Simultaneous oxidative cleavage of lignin and reduction of furfural via efficient electrocatalysis by P-doped CoMoO₄, Adv. Mater. 35 (2023) 2208284.
- [39] D.Y. Li, R. Xiang, F. Yu, J.S. Zeng, Y. Zhang, W.C. Zhou, L.L. Liao, Y. Zhang, D. S. Tang, H.Q. Zhou, Situ regulating cobalt/iron oxide-oxyhydroxide exchange by dynamic iron incorporation for robust oxygen evolution at large current density, Adv. Mater. (2023) 2305685.
- [40] Y.T. Wang, H.J. Li, W. Zhou, X. Zhang, B. Zhang, Y.F. Yu, Structurally disordered RuO₂ nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia, Angew. Chem. Int. Ed. 134 (2022) e202202604.
- [41] J.Y. Fang, Q.Z. Zheng, Y.Y. Lou, K.M. Zhao, S.N. Hu, G. Li, O. Akdim, X.Y. Huang, S.G. Sun, Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature, Nat. Commun. 13 (2022) 7899.
- [42] L.R. Mi, Q.H. Huo, J.Y. Cao, X.B. Chen, H.P. Yang, Q. Hu, C.X. He, Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a "two-in-one" flow cell electrolyzer, Adv. Energy Mater. 12 (2022) 2202247
- [43] R. Mao, C. Huang, X. Zhao, M. Ma, J.H. Qu, Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: kinetics, mechanism, and toxicity assessment, Appl. Catal. B Environ. 241 (2019) 120–129.
- [44] W.H. He, J. Zhang, S. Dieckhöfer, S. Varhade, A.C. Brix, A. Lielpetere, S. Seisel, J.R. C. Junqueira, W. Schulmann, Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia, Nat. Commun. 13 (2022) 1129.
- [45] Q.N. Song, M. Li, X.S. Hou, J.C. Li, Z.J. Dong, S. Zhang, L. Yang, X. Liu, Anchored Fe atoms for NO bond activation to boost electrocatalytic nitrate reduction at low concentrations, Appl. Catal. B Environ. 317 (2022) 121721.

- [46] M. Liu, Z.H. Lu, L.H. Yang, R.M. Gao, X.Y. Zhang, Y.J. Wang, Y.H. Wang, Co-N bond promotes the H* pathway for the electrocatalytic reduction of nitrate (NO₃RR) to ammonia, J. Environ. Chem. Eng. 11 (2023) 109718.
- [47] R. Chauhan, V.C. Srivastava, Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO₂ anode and iron cathode, Chem. Eng. J. 386 (2020) 122065.
- [48] J. Li, G.M. Zhan, J.H. Yang, F.J. Quan, C.L. Mao, Y. Liu, B. Wang, F.C. Lei, L.J. Li, A. W. Chan, Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters, J. Am. Chem. Soc. 142 (2020) 7036–7046.
- [49] R.X. Ge, Y. Wang, Z.Z. Li, M. Xu, S.M. Xu, H. Zhou, K.Y. Ji, F.G. Chen, J.H. Zhou, H. Duan, Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst, Angew. Chem. Int. Ed. 134 (2022) e202200211.
- [50] H. Guo, M.Y. Li, Y.T. Yang, R. Luo, W. Liu, F.Y. Zhang, C. Tang, G.D. Yang, Y. Zhou, Self-supported Pd nanorod arrays for high-efficient nitrate electroreduction to ammonia, Small 19 (2023) 2207743.
- [51] G.K. Zhang, F.Z. Wang, K. Chen, Jl Kang, K. Chu, Atomically dispersed Sn confined in FeS₂ for nitrate-to-ammonia electroreduction, Adv. Funct. Mater. 34 (2023) 2305372.
- [52] Y.L. Wang, H.B. Yin, F. Dong, X.G. Zhao, Y.K. Qu, L.X. Wang, Y. Peng, D.S. Wang, W. Fang, J.H. Li, N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia, Small 19 (2023) 2207695
- [53] J. Zhou, S.H. Han, R. Yang, T.L. Li, W.B. Li, Y.T. Wang, Y.F. Yu, B. Zhang, Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites, Angew. Chem. Int. Ed. 62 (2023) e202305184.
- [54] W.S. Gao, K.F. Xie, J. Xie, X.M. Wang, H. Zhang, S.Q. Chen, H. Wang, Z.L. Li, C. Li, Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia, Adv. Mater. 35 (2023) 2202952.
- [55] R.D. Zhao, Q.Y. Yan, L.H. Yu, T. Yan, X.Y. Zhu, Z.Y. Zhao, L. Liu, J.Y. Xi, A Bi-Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction towards ammonia by nearly 100%, Adv. Mater. 35 (2023) 2306633.
- [56] X.F. Cheng, J.H. He, H.Q. Ji, H.Y. Zhang, Q. Cao, W.J. Sun, C.L. Yan, J.M. Lu, Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia, Adv. Mater. 34 (2022) 2205767.
- [57] Y.T. Wang, C.H. Wang, M.Y. Li, Y.F. Yu, B. Zhang, Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges, Chem. Soc. Rev. 50 (2021) 6720–6733.
- [58] Y.T. Wang, W. Zhou, R.R. Jia, Y.F. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem. Int. Ed. 59 (2020) 5350–5354.
- [59] Y.G. Bu, C. Wang, W.K. Zhang, X.H. Yang, J. Ding, G.D. Gao, Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. 62 (2023) e202217337.
- [60] E. Murphy, Y.C. Liu, I. Matanovic, M. Rüscher, Y. Huang, A. Ly, S.Y. Guo, W. J. Zang, X.X. Yan, A. Martini, J. Timoshenko, B.R. Cuenya, I.V. Zenyuk, X.Q. Pan, E.D. Spoerke, P. Atanassov, Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites, Nat. Commun. 14 (2023) 4554
- [61] H.X. Yin, H.B. Xiao, R.M. Qin, J. Chen, F. Tan, W. Zhang, J. Zhao, L. Zeng, Y.F. Hu, F. Pan, P.X. Lei, S.L. Yuan, L.H. Qian, Y.Q. Su, Z. Zhang, Lattice strain mediated reversible reconstruction in CoMoO₄·0.69H₂O for intermittent oxygen evolution, ACS Appl. Mater. Interfaces 15 (2023) 20100–20109.
- [62] H.B. Xiao, K. Chi, H.X. Yin, X.J. Zhou, P.X. Lei, P.Z. Liu, J.K. Fang, X.H. Li, S. L. Yuan, Z. Zhang, Y.Q. Su, J.J. Guo, L.H. Qian, Excess activity tuned by distorted tetrahedron in CoMoO₄ for oxygen evolution, Energy Environ. Mater. (2023) e12495