# Differential Geometry

#### Module I

Chapter 5: Vector Fields on Surfaces, Orientation

June 14, 2021

#### Vector Fields on Surfaces

## Definition (Vector Field on a surface)

- ▶ *n*-Surface,  $S \subset \mathbb{R}^{n+1}$
- ▶ Vector Field on S,  $\mathbf{X}(p) = (p, X(p)), \forall p \in S$ where  $X : S \to \mathbb{R}^{n+1} \implies X(p) \in \mathbb{R}^{n+1} \implies \mathbf{X}(p) \in \mathbb{R}^{n+1}_p$

### Vector Field on 1-sphere

$$f(x,y) = x^2 + y^2 \text{ and } S = f^{-1}(1) \subset \mathbb{R}^2$$
  
 $\nabla f(a,b) = (a,b,2a,2b) \neq (x,y,0,0), \ \forall (x,y) \in S$ 



### Smooth Vector Field over a Surface

#### Vector Field and Surface

- ▶ *n*-surface,  $S = f^{-1}(c) \subset \mathbb{R}^{n+1}$ where  $f: U \to \mathbb{R}$  and  $\nabla f(p) \neq 0, \ \forall p \in S$
- lacksquare Vector Field,  $\mathbf{X}(p)=(p,X(p))$ , where  $\mathbf{X}(p)\in\mathbb{R}_p^{n+1}$  and
- ▶ Associated function,  $X : S \rightarrow R^{n+1}$

## Definition (Smooth Vector Field over Surface)

**X** on S is **smooth** if the associated function X has a smooth extension to an open set containing S

- ▶  $\exists$  open set  $V, S \subset V \subset U \subset \mathbb{R}^{n+1}$  and
- ▶  $\exists \tilde{X}: V \to R^{n+1}$  is smooth where  $\tilde{X}: V \to R^{n+1}$ ,  $X(p) = \tilde{X}(p)$ ,  $\forall p \in S$

# Unique Integral Curve on Surface

## Theorem (Maximal, Integral Curve on Surface)

- X smooth, tangent vector field on n-surface S
- ▶  $\forall p \in S$
- ▶ ∃ open interval I containing 0 and
- ▶ ∃ parameterised curve  $\alpha: I \rightarrow S$  such that there exists a unique, maximal, integral curve on S through p
  - $ightharpoonup \alpha(0) = p$
  - $\dot{\alpha}(t) = \mathbf{X}(\alpha(t)), \ \forall t \in I$
  - $ightharpoonup eta : \widetilde{I} 
    ightarrow S$  such that  $\widetilde{I} \subset I$  and  $eta(t) = lpha(t), \ orall t \in \widetilde{I}$

# Proof : Maximal, Integral Curve on Surface

- Smooth, Vector Field X on S
  - **X** on S is smooth, then extension  $\tilde{X}$  smooth on open set V
  - S is *n*-surface, then we have open set U such that  $f: U \to \mathbb{R}, \ S = f^{-1}(c) \subset U$ , and  $\nabla f(p) \neq 0, \ \forall p \in S$
- Smooth, Vector Field on an open set W containing S  $W = \{q \in U \cap V : \nabla f(q) \neq 0\}$

$$\mathbf{Y}(q) = \tilde{\mathbf{X}}(q) - \frac{\mathbf{X}(q) \cdot \nabla f(q)}{\|\nabla f(q)\|^2} \nabla f(q), \ \forall q \in W$$

- Maximal Integral Curve  $\alpha$  on  $\mathbf{Y}$  through p (Ref : Chap. 2)  $\alpha: I \to W, \ \dot{\alpha}(t) = \mathbf{Y}(\alpha(t)), \forall t \in I \text{ and } \alpha(0) = p$
- Maximal Integral Curve  $\alpha$  on S through p  $(f \circ \alpha)'(t) = \nabla f(\alpha(t)) \cdot \dot{\alpha}(t) = \nabla f(\alpha(t)) \cdot \mathbf{Y}(\alpha(t)) = 0$   $p \in f^{-1}(c) \implies f(\alpha(0)) = c \implies f \circ \alpha(t) = c$   $\implies \alpha(I) \subset f^{-1}(c) = S \implies \alpha : I \to S$   $\dot{\alpha}(t) = \mathbf{Y}(\alpha(t)) = \mathbf{X}(\alpha(t)) \implies \dot{\alpha}(t) = \mathbf{X}(\alpha(t))$



## Connectedness and Components

## Definition (Connectedness)

Subset S of  $\mathbb{R}^{n+1}$  is connected if for any  $p,q\in S$ , there a continuous function  $\alpha:[a,b]\to S$  such that  $\alpha(a)=p$  and  $\alpha(b)=q$ . That is, there a path connecting any two points.

## Definition (Connected Component)

The equivalence classes of S under connectedness are the connected components of an n-surface, S.

#### Orientation

## Theorem (Oriented *n*-surface)

- ► ∀ connected n-surface, S
- $ightharpoonup \exists$  two unit normal vector fields  $N_1, N_2$  and

#### Proof.

► *n*-surface S  $\implies S = f^{-1}(c), \ f: U \to \mathbb{R}, \ \nabla f(p) \neq 0, \ \forall p \in S$ 

$$\mathbf{N_1}(p) = \frac{\nabla f(p)}{\|\nabla f(p)\|}, \ \forall p \in S$$

- $ightharpoonup N_2(p) = -N_1(p)$



#### Orientation

## Definition (Orientation)

A smooth, unit normal vector field on an n-surface S is an **orientation** of S

## Definition (Oriented Surface)

- ► *n*-surface, *S*
- $\triangleright$  an orientation of S, N

#### Möbius Band is not an *n*-surface

- ▶ Möbius Band, B doesn't have two orientations
- ► There doesn't exists a smooth function f such that  $B = f^{-1}(c), f: U \to \mathbb{R}, \nabla f(p) \neq 0, \forall p \in B$

# Positive Tangent Direction

#### Definition (direction)

A unit vector in  $\mathbb{R}_p^{n+1}$  is a **direction** at p

## Definition (Positive Tangent Direction)

- ► 1-surface/Plane Curve, C
- Orientation, N
- **Positive Tangent Direction** at p is obtained by rotating orientation at p by  $-\pi/2$  in anticlockwise direction.
- ▶ If N(p) = (x, y), then the positive tangent direction at p is T(p) = (-y, x)

#### Positive $\theta$ -Rotation

## Definition (Positive $\theta$ -Rotation)

- ▶ 2-surface, S
- Orientation, N
- Positive  $\theta$ -rotation,  $R_{\theta}: S_p \to S_p$  $R_{\theta}(\mathbf{v}) = \cos \theta \mathbf{v} + \sin \theta \mathbf{N}(p) \times \mathbf{v}$
- $ightharpoonup R_{ heta}$  is the Right-handed rotation about  $\mathbf{N}(p)$  through Angle heta

### Consistent Basis

## Definition (Consistent Basis)

- ▶ 3-surface *S*
- Orientation N
- $ightharpoonup \mathcal{B} = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$  be ordered basis for  $\mathcal{S}_p$
- ightharpoonup Consistent Basis,  $\mathcal{B}$  if

$$\det egin{pmatrix} \mathbf{e_1} \\ \mathbf{e_2} \\ \mathbf{e_3} \\ \mathbf{N}(p) \end{pmatrix}$$
 is positive

Inconsistent basis if determinant is negative.

# Thank You