Géométrie et fonctions - DS6

2 points bonus sur les 22 points au total.

1. Géométrie (11 points)

• ABCDEFGH est ub cube de côté 1

• On se place dans le repère
$$\left(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}\right)$$
.

- I est le centre du carré ADHE (le milieu des diagonales de ce carré).
- J est un point du segment [CG].
- Le quadrilatère FMLJ est la section du cube ABCDEFGH avec le plan (FIJ).

Partie A:

Dans cette partie, on a $J\left(1;1;\frac{2}{5}\right)$.

- 1. Justifier que les coordonnées de I sont $I\left(0;\frac{1}{2},\frac{1}{2}\right)$.
- 2. Démontrer que le vecteur \overrightarrow{n} $\begin{pmatrix} -1\\3\\5 \end{pmatrix}$ est un vecteur normal au pan (FIJ).
- 3. Démontrer qu'une équation cartésienne du plan (FIJ) est -x+3y+5z-4=0.
- 4. On note (d) la droite orthogonale au plan (FIJ) passant par B. Déterminer une représentation paramétrique de la droite (d).
- 5. On note R le projeté orthogonal de B sur (FIJ). Démontrer que $R\left(\frac{6}{7},\frac{3}{7},\frac{5}{7}\right)$.
- 6. Calculer, au degré près, une valeur approchée de l'angle \widehat{RBF}

7. Partie B

Dans cette unique question, on considère que le point J(1;1;x) avec $x \in [0;1]$.

Un plan coupant des faces parallèles selon des droites parallèles, on peut en déduire que FMLJ est un parallélogramme.

On admet que $L\left(0;1;\frac{x}{2}\right)$.

Pour quelle(s) valeur(s), si elles existent, de x, le parallélogramme FMLJ est-il un losange ?

2. Fonctions (8 points)

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=rac{1}{2}x^4+x^3-6x^2+7x$.

- 1. Calculer les limites de f en $-\infty$ et en $+\infty$.
- 2. Calculer f'(x), puis f''(x) pour tout réel x.
- 3. Dresser le tableau de signe de f''(x) et en déduire les variations de f'. Donner, sans justication, les valeurs des extrema et les limites.
- 4. En déduire que f' s'annule exactement deux fois sur $\mathbb R$. On notera α la solution pour laquelle on a $\alpha < 0$. En donner la valeur.
- 5. En déduire le signe de f' puis les variations de f.

3. Intersection de plans (3 points)

Déterminer l'intersection des plans : $\mathcal{P}_1: x+2y-1, 5z+5=0$ et $\mathcal{P}_2: 4x+4y-10z+8=0$ On donnera la solution sous forme paramétrique.