Aurial Carrier Peak Deviation (kHz)

Pilot Detection and DSB Demodulation

$$H 1(s) = \frac{\frac{s}{5 \cdot 23 \cdot x \cdot 2\pi} + 1}{\frac{s}{0.408 \cdot x \cdot 2\pi} + 1} \times \frac{\frac{s}{62 \cdot 5 \cdot x \cdot 2\pi} + 1}{\frac{s}{2.19 \cdot x \cdot 2\pi} + 1}$$

$$H 2(s) = \frac{1 + \left(\frac{s}{20 \cdot 1 \cdot x \cdot 2\pi}\right) \left(\frac{b + 51 \cdot b}{b + 1}\right)}{1 + \left(\frac{s}{20 \cdot 1 \cdot x \cdot 2\pi}\right) \left(\frac{1 + 51}{b + 1}\right)}$$

$$H 3(s) = a$$

$$\left[\left(\frac{2}{7.66 \cdot x \cdot 2\pi}\right)^{2} + \left(\frac{s}{7.31 \cdot x \cdot 2\pi}\right) + 1\right]^{x} \left[\left(\frac{s}{26.9 \cdot x \cdot 2\pi}\right) + 1\right]^{x} \left[\left(\frac{s}{3.92 \cdot x \cdot 2\pi}\right) + 1\right]$$

$$H 5(s) = \frac{a2}{s + a2}$$

$$H 6(s) = \frac{\left(\frac{s}{0.0354 \cdot x \cdot 2\pi}\right)}{\left(\frac{s}{0.0354 \cdot x \cdot 2\pi}\right) + 1\left(\frac{s}{2.09 \cdot x \cdot 2\pi}\right)}$$

$$H 7(s) = \frac{a1}{s + a1}$$

$$H1(z) = \frac{(0.0857 - 0.0696z^{-1})(0.0909 - 0.0076z^{-1})}{(1.0 - 0.9839z^{-1})(1.0 - 0.9167z^{-1})}$$

$$H2(z) = \frac{(103*b+3) - z^{-1}(101*b+1)}{(3*b+103) - z^{-1}(b+101)}$$

$$H3(z) = a$$

$$H4(z) = \frac{0.5715*0.45085*(1-z^{-1})^{3}}{(1.0-2.0*0.5997z^{-1} + 2.0*0.1470z^{-2})(1.0-2.0*0.8242z^{-1} + 2.0*0.3635z^{-2})}$$

$$H5(z) = \frac{0.047^{2}}{1 - 0.99945z^{-1}}$$

$$H6(z) = \frac{0.07959(1-z^{-2})}{1 - 2.0*0.9595z^{-1} + 2.0*0.4595z^{-2}}$$

$$H7(z) = \frac{0.02699^{2}}{1 - 0.9998z^{-1}}$$

The square root calculation is done through the following equation

$$y[0] = 0.66667 * sq_in + 0.354167$$

 $sqrt = coef 12 * (sq_in - y[0] * y[0]) + y[0]$

THE value of sq_in is between 1.0 to 0.25, and coef12 is one of 12 coefficients chosen based on sq_in.

222

F/G. 6

Data Path of the Processor

300

	Г]	Т	1	T	T	T		7				7	_		_					<u>, , , , , , , , , , , , , , , , , , , </u>	_
	description	no operation	mantissa and exponent generation from 40-b register	convert from mantissa and exponent to fixed-point signal	multiplication and subtraction	multiplication and add	micro code do 20-b 1st order IIR filter which is made of 3	mults/multa	micro code does 20-b 2nd order IIR filter which is consisted of 5	multa/mults	micro code does 20b square and 40-b 1st order IIR filter, which is	consisted of 6 mults/multa	halt programe	setup inner loop	setup outer loop	conditional jump	call routine	compare two register value and store 1-b result in status register	micro code does 40-b 1s order IIR filter which is consisted of 6	mults/multa	directly store coded data to register or ram location	
•	cycles	1		1		1	3		5		9		1	1	1	1	1	1	9		1	
	Instruction	don	mant	sigshf	mults	multa	soj		sos		rms		halt	setli	setlo	jmpif	call	cmp	fos2		dload	
	code	o		2	3	4	ر در		9				∞	6	10	11	12	13	14		15	
							\		\ <u>`</u>		ت /										_	
									20)	305											