Gly Gly Arg Arg Xas Phe 20

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: smino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (%i) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Asp Pro Gly Tyr Thr Pro Gly

- (2) INFORMATION FOR SEC ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTE: 10 amino actos
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOSY: linear
 - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a
 - (xi) SEQUENCE DESCRIPTION: 550 10 NO:131:

Xas Xsa Gly Phe Thr Gly Pro Glo Phe Tyr

- (2) IMPORMATION FOR SEQ 10 NO:132:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDMESS:
 - (D) TOPOLOGY: linear
 - (Lx) FEATURE:
- (D) OTHER INFORMATION: /note: "The Third Residue Can Be Either a Glm or Lem*
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xas Pro Xas Val Thr Als Tyr Als Gly

(2) IMPORMATION FOR SEQ ID NO:133:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: smine acid
 - (C) STRANDEDMESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Xas Xaa Xaa Glu Lys Pro Phe Leu Arg

- (2) INFORMATION FOR SEQ ID NO:134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (8) TYPE; amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Xee Asp Ser Glo Lys Ser Ale Thr Ile Lys Vol Thr Asp Ale Ser

- (2) IMPORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEWGTH: 15 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDMESS: (D) TOPOLXXY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Als Gly Asp Thr Xsa Ile Tyr Ile Val Gly Asn Leu Thr Als Asp

- (2) INFORMATION FOR SEQ ID NO:136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid (C) STRANDEDMESS:

 - (D) TOFOLOGY: linear

146

(xi)	SEQUENCE	DESCRIPTION:	SEQ	30	80:1	36	
------	----------	--------------	-----	----	------	----	--

Ala Pro Glu Ser Gly Ala Gly Leo Gly Giy Thr Val Gin Ala Gly 1 10 10

- (2) INFORMATION FOR SEQ ID NO:137:
 - (4) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 smino acids
 - (B) TYPE: amino acid
 - (C) STRANDEONESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

X28 Tyr Ile Ala Tyr Xee Thr Thr Ala Gly Ile Val Pro Gly Lys Ile 1 5 15

Asn Val His Leg Vai 20

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 base pairs
 - (8) TYPE: nucleic sold
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (WAA) SEQUENCE DESCRIPTION: SEQ ID NO:138:

GCANCGCTOT	CGTGGCCTTT	GCGGTGATCG	arracecere	CCTGGCCCTG	goggrageog	60
TCACCATCCG	accgaccgcg	GCCTCAAAAC	COGTAGAGGG	ACACCAAAAC	GCCCAGGCAG	120
GGAAGTTCAT	SCCSTTSTIG	CCGACGCAAC	AGCAGGCSCC	SSTCCCCCCC	cercoscees	180
ATGATOCOAC	CSCTSGATTC	CAGGGGGGCA	CCATTCCGGC	TGTACAGAAC	stsetscese	240
GCCCGGGTAC	CTCACCCCCC	GYGGGYGGGA	CCCCGGCTTC	GCCFGCGCCC	GAAGCGCCGG	300
COSTGCCCGG	TETTSTOCCT	sceecooroc	CAMPOOCEGT	CCCGATCATC	ATTOCCCCGT	360
TCCCSGGTTG	SCASCCTSGA	ATOCCGACCA	TCCCCACCGC	ACCOCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	COCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCCCCC	GACCACGCCC	GTGACCACGC	COCCAACGAC	GCCGCCGACC	ACCCCCCTGA	540
CCACGCCACC	AACGACCGTC	SCCCCGACGA	COSPCSCOOL	GACGACGGTC	SCTCCGACCA	600
OCSTOSCCCC	GACCACGGTC	GCTCCAGCCA	CCGCCACGOC	GACGACCGTC	GCTCCGCAGC	860

PCT/US97/18293

CGACGCAGCA	GOCCACOCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCOTOG	720
CCCCGCAGAC	GGTGGCGCCC	GCTCCGCAGC	CCCCCTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCSCCGCT	TCACTACGGT	COGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882
(2) INFORM	ETTON EDS SE	00 IO NO:139	See			

with the set in addite.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 815 base pairs

 - (B) TYPE: nucleic soid (C) STRANDEDNESS: single
 - (0) TOPOLOGY: linear
- (11) MOLECULE TYPE: DMA (genomic)

(%i) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CCATCAACCA	ACCGCTCGCG	ccoccoocsc	COCCOGRATCO	accereaces	CCACGCCCGC	60
coereceree	ggracececa	TYGOCGCCGT	oscoccerc	GCCGCCGADD	SCCTGGGTGC	120
CTAGGGCGCT	STTACCOCCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCOCCGA	180
TSSCSCCSTT	8008008808	GCACCGTTGC	CACCETTECC	ACCETTECCA	CCCTTCCCGA	240
CCAGCCACCC	SCUSCUACCA	CCGGGCACCGC	00000000000	CCCACCOCCG	GCGTGCCCCT	300
TOUTGUCCEST	ACCGCCGGCA	ccccccrrcc	CGCCGTCACC	GCCGACGGAA	CTACCGGGGG	360
Accessors	ccccccccccc	COSCOCGCAC	CGCCATTCCC	ACCOCCOTCA	coscossars	420
GGAGTGCCGC	GATTAGGGCA	CTGACCGGGG	CAROCAGOGC	AASTACTOTO	SSTCACCGAG	480
CACTICCAGA	CGACACCACA	GCACGGGGTT	STOSSOSSAC	TOOGTGAAAT	GCCAGCCGAT	540
AGCGGCTAGC	TOTOGOCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
COCCCGAAG	GAGGCGCTGA	actoggogyy	GAGCCGATCG	SCSATCGGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	COGGTGTCMA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCGCG	720
ACNOTEGICS	GGGTGGCCTG	TTACGCCGTT	STCRTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TOCACCACGC	OTTOCGTCAG	crear			915

(2) INFORMATION FOR SEQ ID NO(140)

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECOLE TYPE: DNA (genomic)

WO 98/16646

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	140:		
ACCASOCSOC GECTGAGGTC TCAGATCAGA GAGTCTCC	og acticacogos	CCGGTTCAGC	60
CITCTCCCAG AACAACTGCT GAAGATCCTC GCCCGCGA	aa caggogotga	TTTGACGCTC	120
TATGACCOGT TGAACGACGA GATCATCCGG CAGATTGA	TA TOSCACOGOT	GGGCTARCAG	180
GTGCGCAAGA TGGTGCASCT GTATGTCTOS GACTCCOY	ot ogogbatcag	CTTTGCCGAC	240
GGCCGGGTGA TCGTGTGGAG CGAGGAGCTC GGCGAGAG	CC AGTATOCGAI	CCACACGCTG	300
GACGGCATCA CGCTGTTTGG GCGGCCGACG ATGACAAC	sc cetteriest	TGAGATGCTC	360
AAGOSTGAGO GOGACATOCA GOTOTTCACG ACCGACGGO	OC ACTACCAGGG	CCGGATCTCA	420
ACACCOGACG TGTCATACGC GCCGCGGCTC CGTCAGCA	es Troaccecac	CGACGATOCT	480
SCSTTCTSCC TSTCSTTAAS CAAGCSGRTC STCTCGAGG	SA AGATOOYGAA	TCACCAGGCC	540
TTGATTCGGG CACACACGTU GGGGCAAGAC GTTGCTGAG	BA GCATCCGCAC	GATGAAGCAC	600
TOSCIGGOOI GGGIOGATOS ATOGGGOTOC CIGGOGGAC	FT TGAACGGGTT	CCACGCASAT	660
GCCGCAAAGG CATACTTCAC CGCGCTGGGG CATCTCGTC	IC CCCAGGAGTT	CSCATTUCAG	720
GECCUCTURA CTCGGCCGCC GTTGGACGCU TTCAACTCC	GA TEGTCACCCT	CGGCTATTCG	780
CTGCTGTACA AGAACATCAT AGGGGGGATC GAGCGTCAC	CA GCCTGAACGC	STATATOGGT	840
TTCCTACACC AGGATTCACG AGGGCACGCA ACGTCTCGI	ng occaantorg	CACGAGCTCC	900
GCTGAAACCS CTSGCCGGCT SCTCAGTGCC CSTACGTAX	e coorecec	CAGGCCGGCC	960
OGCCGCCGA ATACCAGCAG ATCGGACAGC GAATTGCCG	C CCAGCOSGTT	GSAGCCGTSC	1020
ATACCCCCG CACACTCACC GGCAGCGAAC AGGCCTGGC	IA COSTOGEOGC	GCCGGTGTCC	1080
SUSTICIACIT OGACACUSCO CATCACSTAG IGACACSTO	a ecoceaciic	CATTOCCTCC	1140
OTICOGCACG AG			1152
(2) INFORMATION FOR SEQ ID NO:141:			
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 655 base pairs (B) TYPE: reclaic acid (C) STRANGEOMESS: single (D) TOPOLOGY: linear			

(ii) MOLECULE TYPE: ONA (genomic)

(83)	SEQUENCE DES	CRIFTION: S	SQ ID MO:14:	3.1		
cregreece	A TTCGGCAGGS	TOTACTTGCC	GGTGGTGTAN	SCCSCATGAG	TGCCGACGAC	€(
CAGCAATGO	S GCAACAGCAC	GEATCCCGGT	CAACGACGCC	ACCCGGTCCA	CSTOGGGGAT	120

cosoroasar	CCGCCCTGGG	COCCTCTTTC	OTTGGCCAGG	GTCATCCCAC	GTGTTTCCGC	180
corgarrec	COCCATTATO	ccoocococc	acerceece	GCCGGTATGG	CCGAANGTCG	246
ATCAGCACAC	CCGAGATACG	GGTCTGTGCA	ACCITITICA	GCGTCGCGCG	OGGCAGCTIC	300
GCCGGCAATT	CTACTAGCGA	GAAGTOTGGC	CCGATACGGA	TOTGACCGAR	STOSCTSOGG	360
TOCAOCCCAC	CCTCATTGGC	GATGGCGCCG	ACGATGGCGC	CTGGACCGAT	CTTGTGCCGC	420
TTGCCGACGG	CGACGCGGTA	GGTGGTCAAG	TCCGGTCTAC	GCTTGGGCCCT	TTSCGGACGG	480
TOCOGREGOT	GGTCGCGGTT	GOSOCGOGAA	AGCGGCGGGT	CGGGTGCCAT	CAGGAATGCC	540
TCACCGCCGC	GOCACTECAC	OSCCASTOCC	GCGGCGATGT	CASCCATOGG	GACATCATGC	600
TOGEGTTCAT	ACTCCTCGAC	CAGTCGGCSG	AACAGCTCGA	TTCCCCGGACC	SCCCA	655
(2) INFORM	ATION FOR SE	10 10 NO:141) g			
(i) S	EQUENCE CHAP	ACTEBLSTICS	} x			

- (A) LENGTH: 267 amino acids
- (B) TYPE: amino acid (C) STRANDEDNESS: aingle
- (0) TOFOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Asn Ala Val Val Ala Pho Ala Val Ile Gly Phe Ala Ser Leo Ala Val

Als Vsl Ala Val Thr lie Arg Pro Thr Ala Ala Ser Lys Pro Val Glu

Gly Nis Ole Ast Ala Gle Pro Gly Lys Pho Mot Pro Lee Lee Fro Thr 40

Gin Gin Gin Ala Pro Val Pro Pro Pro Pro Pro Asp Asp Pro Thr Ala

Gly Phe Gin Gly Gly Thr Ile Pro Ala Val Cln Asn Val Val Pro Arg

Pro Gly Thr Ser Pro Gly Val Gly Gly The Pro Ala Ser Pro Ala Pro

Glu Ala Pro Ala Val Pro Gly Val Val Pro Ala Pro Val Pro Ile Pro

Val Pro Ila Ila Ila Pro Pro Bhe Pro Gly Trp Glo Pro Gly Met Pro 115

The lie Pro The Ala Pro Pro The The Pro Val The The See Ala The

The Pro Pro The The Pro Pro The The Pro Val The The Pro Pro The

150 1.55 145 -1.60The Pro Pro The The Pro Val The The Pro Pro The The Pro Pro The 165 176 175 The Pro Val The The Pro Pro The The Val Ala Pro The The Val Ala 185 Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro 200 Als Tor Als Thr Pro Tor Thr Val Als Pro Gin Pro Thr Gin Gin Pro Thr Gin Gio Pro Thr Gin Gle Met Pro Thr Gin Gin Gin Thr Val Als 230 238 Pro Gin Thr Val Ala Pro Ala Pro Gin Pro Pro Ser Gly Gly Arg Asn 250 Gly Sex Gly Gly Gly Asp Les Phe Gly Gly Phe

(Z) INFORMATION FOR SEC ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 174 amino acids
 - (B) TYPE: amino soid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

lle Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Bro Pro Sør Pro

Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro

Ser Pro Pro The Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu

Ala Gly Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro

Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr

Ser Mis Pro Pro Arg Pro Pro Ala Pro Pro Ala Pro Pro Ala Pro Pro

Ala Cys Pro The Val Pro Val Fro Pro Ala Pro Pro Lou Pro Pro Ser 105

Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro 115 120

151

Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Cly Ser Ala Ala 110 130 140

Arg Ala Lee Thr Gly Ala Thr Sor Ala Ser Thr Leo Gly His Arg Ala 145 - 150 - 158

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165

- (Z) INFORMATION FOR SEQ ID NO:144;
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (#4) SEQUENCE DESCRIPTION: SEQ ID NO: 144:
 - Gin Pro Pro Ala Glu Val Ser Asp Glo Arg Val Ser Gly Leu Thr Gly i 10 15
 - Als Val Gin Pro Ser Pro Arg The The Als Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg

- (2) INFORMATION FOR SEQ ID NO:145:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (0) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: poptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:
 - Arg Ale Asp Ser Ale Gly Cys Thr Cys Arg Trp Cys Xas Pro His Glu 1 5 15
 - Cys Arg Arg Pro Ala Met Arg Gin Gln His Gly Ser Arg Ser Thr Thr 20 25 30
 - Fro Pro Cly Pro Arg Cly Arg Ser Ala Arg Val Arg Pro Cly Arg Leo 35 40
 - Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala 50 50
 - Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp 65 70 75 80

152

Gin His The Arg Asp The Gly Leo Cys Lys Leo Phe Glo Arg Arg Ale 85 96 98

Gly Gln Leo Arg Arg Gln Phe Tyr 100

- (2) IMPORMATION FOR SEQ ID NO:146:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 53 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "PCR primer"
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GGATCCATAT GOGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

- (2) IMPORMATION FOR SEQ ID NO:147:
 - (4) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: mocleic sold
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic soid
 - (A) DESCRIPTION: /desc ~ "PCR Primer"
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosia
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.147:

CCFGAATICA GGCCTCGGTT GCGCCGGCCT CATCTYGAAC GA

8.2

- (2) INFORMATION FOR SEC ID NO:148:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH:)1 base pairs
 - (8) TYPE: mucleic acid
 - (C) STRANDEONESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc "PCR Primer"
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis

	(mi)	SEQUENCE DESCRIPTION: SEQ TO NO:148:	
GGA	rccre	SCA GESTSGARAS CASSGAROSGE T	31
(2)	INFC	PRMATION FOR SEQ ID NO:149:	
	(\$ \$	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: Linear	
	(11)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(vi)	ORIGINAL SOURCE: (A) OBGANISM: Mycobacterium tuberculosis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:149:	
crc	TGAAT	TO AGCGCTGGAA ATCGTCGGGA T	31
(2)	INFO	AMATION FOR SEQ 10 NO:150:	
	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nocloic acid (C) STRANUEDMESS: single (D) TOPCLOSY: linear	
	(ii)	MOLECULE TYPE; other nucleic scid (A) DESCRIPTION: /desc - "PCR primer"	
	(aŢ)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosia	
	(x3)	SEQUENCE DESCRIPTION: SEQ ID NO:150:	
GGAT	eccas	DE CTEACATCAA GACCGATGCC OCT	33
(2)	INEO	SMATION FOR SEQ ID NO.151:	
	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: cocleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(yi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobscterium tuberculosis	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

GAG	AGAA	TTC	TOM	IAAGC	ec z	rtt	CGAC	g ac	ia.							33
(2)	INE	ORMA	aros	# #YOF	SEÇ	err (Nosi	523								
	ţi	{ * *	A) 1 B) 1 C) 8	ice c leng: TPE: TRAD TRAD	M: 1 nuc DEDS	.993 Leic 1838:	base aci sin	pai d	. 202							
	(ii) 280	LECT	LE I	YFE	DES	. (ge	esem i	.0)							
	ívi			al s Boar			obac	teri	:328 t	uber	oulo	sis				
	(ix	1		e: ame/ ocat				73								
	(xi) SE	QUEN	CE D	escr	IPTI	ON:	SEÇ	ID 8	0:15	Ž:					
TGTI	CTT	toa :	casa	acco	TG G	TOGA	GGAA	G 68	COCA	CCGA	ACA	scre	TTC	TOCT	cacasa	60
AGCA	vrec	XGA :	AACO	acco	ca t	ACGT	aaaa	g gr	CTGT	caac	GGA	carc	AAG	GACG	CCAAGC	120
eces	iaaa'	rro :	aaga	SCAC	ag a	aagg	Tate	G C	GTG . Val . 1	AAA . Lys	ATT : Ile :	ogr Arg	TTG Leo S	CAT . His	ACG Thr	172
crq Leu	rrg Leo	OCC Ala 10	GTG Val	TTG Len	acc Thr	GCT Ala	900 Ala 15	occ Pro	CTG Leu	CTG Len	CTA Leu	OCA Ala 20	gco Ala	gcs Ala	GGC Gly	220
TGT Cys	GGC Gly 25	TCS Ser	AAA Lys	CCA Pro	CCG Pro	AGC Ser 30	GGT	TOS Sex	CCT Pro	GAA Glu	ACG Thr 35	GGC Gly	occ Ala	ecc	GCC Ala	268
GGT Gly 40	ACT Thr	GTC Val	scs Ala	ACT Thr	ACC Thr 45	occ Pro	GCG Ala	TCG Ser	TUG Ser	CCS Pxo SS	GTG Val	ACC Thr	TTG Leo	GCG Ala	GAG Glu 55	316
ACC Thr	GGT Gly	AGC Ser	ACG Thr	CTG Leu 80	2950	Fyr	Exo	Len	TTC Phe 65	#200	CTG Leu	TGG Trp	sar sly	006 Pro 70	GCC Als	364
TTT - Phe	CAC Bis	GAG Glu	AGG Arg 75	TAT Tyr	CCG Fro	AAC Asn	erc Val	acs Thr	ATC Ile	acc The	GCT Ala	CAG Gln	GGC Gly 85	ACC Thr	set Gly	\$32
er:	GGT Gly	SCC Als 90	GIY	ATC Ile	GCG Ala	CAG Gln	SCC Ala 95	OCC Ala	occ Ala	Gly GGG	ACG Thr	GTC Val 188	AAC Axn	ATT Ile	GGC Gly	\$6 0
83.33 P	TCC Ser 105	gac Asp	ecc Ala	TAT Tyr	CTG Leu	TCG Ser 110	GAA Glu	oct Gly	GAT Asp	ATG Not	SCC Ala 115	gcg Ala	CAC His	AAG Lys	GGG Gly	508
org : Leu : L20	ATG Met	AAC Asn	ATC Ile	GCG Ala	CTA Leo 125	GCC Ala	ATC Ile	TCC Ser	GCT Ala	CAG Gin 130	CAG Gln	GTC GTC	AAC Asn	TAC Tyr	AAC Asn 135	356

Les	ecc Pro	GGA Gly	ere Val	AGC Ser 180	GAG Glu	CAC Bis	cro	AAG Lys	CTG les 145	AAC Asn	GGA Gly	AAA Lys	GTC Val	CTG Leu 150	Ala	604
GCC Ala	ATG Mot	TAC Tyr	CAG Gla 155	GGC	ACC Thr	ATC Ile	AAA Lys	ACC Thr 160	¥.6%	GAC Asp	GAC Asp	CCS Pro	CAG Gln 165	ATC Tie	GCT Ala	692
gcg Als	CTC Leo	AAC Ass 170	CCC Pro	613 600	ors Val	AAC Asn	CTS Leu 175	CCC Pro	GGC Gly	ACC Thr	scs Ala	GTA Val 180	GTT Val	ccc Pro	CTG Leu	700
CAC His	CGC Arg 185	roc 3er	GAC Asp	GGG Gly	TCC Ser	GGT Gly 190	GAC Asp	ACC Thr	TTC Pbs	TTG	TTC Phe 195	ACC The	CAG Gln	TAC Tyr	CTG Leu	748
TCC Ser 200	AAG Lys	CAA Gin	CAT Asp	CCC Pro	GAG Glu 205	GGC Gly	TGG Trp	SSC	aag Lys	TOG Ser 310	CCC Ero	GGC Gly	TTC Fhe	GGC Gly	ACC Thr 215	796
ACC Thr	GTC Val	gac Asp	TTC Phe	003 8x0 228	oce Ala	GTG Val	CCS Pro	GGT Gly	GCG Ala 225	CTG Leu	GGT Gly	GAG Glu	AAC Ass	66C 61y 230	AAC Aso	844
ggc Gly	GGC Gly	ATG Met	GTG Val 235	acc Thr	GGT Gly	TGC Cys	GCC Ala	GAC Glo 240	ACA The	CCG Pro	egy egy	TGC Cyn	GTG Val 245	SOC Ala	TAT Tyr	892
ATC lle	GGC Gly	ATC Ile 250	acc Ser	TTC Phe	CTC Leu	CAC Asp	C&G Gln 255	GCC Ala	agt Sør	CAA Gln	CGG Arg	GGA Gly 260	CTC Leu	GGC Gly	GAG Glu	940
GCC Ala	CAA Gln 265	CTA Leu	SSC Sly	AAT Aan	AGC Ser	TCT Ser 270	GGC Gly	AAT Asn	TTC Phe	TTG Leo	TTG Leu 275	CCC Pro	GAC Asp	GCG Ala	CAA Glo	988
AGC Ser 280	ATT	CAG Gla	GCC Ala	GCG Ala	ocg Ala 285	SCT Als	66C Gly	TTC Phe	GCA Ala	TCG Ser 290	AAA Lys	ACC Thr	CCG Pro	scs Ala	AAC Asn 295	1036
CAG Gla	GCG Ala	ATT Ile	TCG Ser	ATG Met 300	ATC Ile	GAC Asp	egg Gly	CCC Pro	GCC Ala 305	006 Fro	GAC Asp	GGC Gly	TAC Tyx	CCG Pro 310	ATC Ile	1084
ATC Ile	AAC Asn	TAC Tyx	GAG Glo 315	TAC Tyr	GCC Ala	ATC Lle	GTC Val	AAC Asn 320	aac asa	CGG Arg	CAA Gin	AAG Lys	GAC Asp 325	GCC Ala	occ Ala	1132
ACC Thr	GCG Ala	CAG Gla 330	ACC Thr	TTG Leu	CAG Gln	GCA Ala	TTT Phe 335	CTG Leu	CAC His	TGG Trp	GCG Ala	ATC lle 340	ACC Thr	GAC Asp	Giy Giy	1180
AAC Asn	AAG Lys 345	occ Ala	TCG Sex	TTC Phe	CTC Lev	GAC Asp 350	CAG Gln	GTT Val	CAT His	TTC Pho	CAG Gln 355	CCG Pro	cra Lea	CCG Pro	CCC Pro	1228
GCG Ala 360	GTG Val	GTG Vøl	aag Lys	Loui	TCT Ser 365	GAC Asp	GCG Ala	TTG	ATC lie	SCS Ala 370	ACC Thr	att Ile	TCC . Ser	agc Ser		1273
TAGO	CTC	rr s	IACCA	CCAC	6 00	ACAG	CAAC	CTC	cgrc	GGG	CCAT	cess	CT S	CTTT	googa	1333

GCATGCTGGC	COSTGCCGGT	GRAGTOSSCC	6CGCTRGCCC	GGCCATCCGG	TOOTTGGGTG	1393
GGATAGGTGC	GGTGATCCCG	CTGCTTGCGC	TOGTCTTGGT	cercorcorc	CTGGTCATCG	1453
AGGCGATGGG	TGCGATCAGG	CTCAACGGGT	TGCATTTCTT	CACCGCCACC	GAATGGAATC	1513
CAGGCAACAC	CTACGGCGAA	ACCOTTGTCA	OCGAOGCSTC	GCCCATCCGG	TOGGOGGCTA	1573
CTACEGGGGC	TTSCCGCTGA	TOGTOGGGAC	GCTGGCGACC	TOSSCARTOS	CCCTGATCAT	1633
ceceerecce	GTCTCTGTAG	GAGCGGCGCT	GGTGATCGTG	GAACGGCTGC	CGAAACGGTT	1693
GGCCGAGGCT	GTGGGAATAG	TCCTGGAATT	GCTOGCCGGA	ATCCCCAGCG	TGGTCGTCGG	1783
TTTGTGGGGG	GCAATGACGT	TOGGGCCGTT	CATCGCTCAT	CACATCGCTC	CGGTGATCGC	1813
TCACAACGCT	CCCGATCTGC	COGTOCTGAA	CTACTTGCGC	GGCGWCCCOX6	GCAACGGGGA	1073
GGGCATGTTG	GTGTCCGGTC	TGGTGTTGGC	GGTGATGGTC	STTCCCATTA	TOSCCACCAC	1933
CACTCATGAC	CTGTTOCGGC	AGGTGCCGGT	GTTGCCCCGG	GAGGGCGCGA	TCCCGGAATTC	1993

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 374 amino acida
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ 10 NO:153:
- Val Lys Ile Arg Leu Bis Thr Leu Leu Ala Vel Leu Thr Ala Ala Pro I 10 15
- Leu Leu Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30
- Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
- Ser Pro Val Thr Lou Ala Glu Thr Gly Ser Thr Lou Lou Tyr Pro Lou 50 55 60
- Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80
- The Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95
- Ala Gly Thr Val Aso Fle Gly Ala Ser Asp Ala Tyr Leo Ser Glo Gly 100 105 110
- Asp Met Ala Ala Hix Lys Gly Leu Met Aon Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu Ris Leu Lys 130 - 135 - 140

157

Leu Asn Gly Lys Vol Leu Ala Ala Met Tyr Glo Gly Thr Ile Lys Thr Trp Asp Asp Pro Gin Ile Als Als Leo Asp Pro Gly Val Asp Leo Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr Phe Leu Phe Thr Cln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 200 Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly Als Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 238 The Pro Sly Cys Val Ala Tyr Ile Sly lle Ser Phe Leu Asp Sln Ala 288 Ser Gin Arg Gly Leu Gly Giu Ala Gin Leu Gly Asn Ser Ser Gly Asn Pho Leo Leo Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe 288 Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro Als Pro Asp Gly Tyr Pro Ile Ile Ast Tyr Glu Tyr Ale Ile Vel Ast Asn Arg Gin Lys Asp Ala Ala Thr Ala Gin Thr Leu Gin Ala Pha Leu 330 Sis Trp Ala Ile Thr Asp Gly Asn Lys Ala Sor Phe Leu Asp Glm Val Bis Phe Gib Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Aia Leu 360 The Ala Thr The Ser Ser

- (2) INFORMATION FOR SEQ ID NO:154:
 - (1) SEQUENCE CHARACTERISTICS: (A) LENGTS: 1993 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDMESS: single

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

AGCATGCGGA	AACCOCCCGA	TACGTCGCCG	GACTUTCUU	GGACGTCAA	GACGCCAAGC	120
GCGGAAATTG	AAGAGCACAS	AAAGGTATGG	CGTGAAAATT	OGTTEGCATA	CGCTGTTGGC	180
CGTGTTGACC	GCTGCGCCGC	TOCTOCTAGE	MOCOGCOGGGC	TSTGGCTCGA	HACCACCGAG	240
COSTICCCCT	GAAACGGCCG	ccsscscss	TACTGTCGCG	ACTACCCCC	carcarcaca	300
GGTGACGTTG	OCOGAGACCO	GTAGCACGCT	GCTCTACCCG	CTGTTCAACC	Torogamee	360
GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	GATCACOGCT	CAGGGCACCO	CTTCTGGTGC	420
COCCATCOCO	cassecsecs	CCCCGACGGT	CAACATTOOG	GCCTCCGACG	CCTATCTGTC	480
GGAAGGTGAT	NTGGCCGCGC	ACAAGGGGCT	GATGAACATC	GCGCTAGCCS	TOPOCOCTOA	540
GCAGGTCAAC	TACARCOTOC	COSSASTGAS	CGACCACCTC	AAGCTGAACG	GAAAAGTOOT	600
GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	CTGGGAGGAC	CCGCAGATCG	CTGCGCTCAA	660
coccescors	AACCTGCCCG	GCACCGCGGT	ACTICCECTS	CACCXXTCCG	ACGGGTCCGG	720
TGACACCTTC	TTGTTCACCC	AGTACCTGTC	CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	780
GOOOGGCTTC	GGCACCACCG	rogacticco	oscooracca	screcectes	GTGAGAACGG	840
CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	GACACCGGGG	TGCGTGGCCT	ATATOGGCAT	900
CASCTTCCTC	GACCAGGCCA	GTCAACGGGG	ACTOSSCGAG	GCCCAACTAG	GCAATAGCTC	960
TSSCAATTIC	TTGTTGCCCG	ACGCCCAAAG	CATTCAGGCC	ocqqcqcctc	GCTTCGCATC	1020
GAARACCCCG	SCGAACCAGG	CGATTTCGAT	GATCGACEGG	ccosccccss	ACCCCTACCC	1086
GATCATCAAC	TACGAGTACG	CCATCGTCRA	CAACCGGGGAA	AAGGACGCCG	CCACOGCGCA	1140
GACCTTOCAG	CCATTTCTOC	ACTGGGCGAT	CACCGACGGC	AACAAGGCCY	CGTTOCTCGA	1200
CCACCTTCAT	TTCCAGCCGC	TGCCGCCCGC	GGTGGTGAAG	TTGTCTGACG	CCTTGATCGC	1260
GACGATTTCC	AGCTAGCCTC	GTTGACCACC	ACGCGACAGC	AACCTCCGTC	CCCCCATCEC	1320
GCTGCTTTGC	GGAGCATOCT	GCCCCGTGCC	GOTGAAGTOG	GCCGCGCTSG	CCCGGCCATC	1380
COSTCCTTCC	STGGGATAGG	TGCGGTGATC	cosorgores	CSCTSGTCTT	GGTGCTGGTG	1440
GTGCTGGTCA	TOGAGGOGAT	SSCTSCSATC	AGGCTCAACG	COTTOCATTT	CTTCACCGCC	1500
ACCGAATGGA	ATCCAGGCAA	CACCTACGGC	GAARCCOTTG	TCACCGACGC	STOSCCCATC	1560
CUSTOSSOS	CTACTACGGG	GOSTTSCCGC	TGATCGTCGG	GACGCTGGCG	ACCTCGGCAA	1620
TOGOCOCTGAT	CATCGCGGTG	CCGGTCTCTG	TAGGAGCGGC	GCTGGTGATC	GTGGAACOGC	1680
TOCCOMMICS	erroscccas	GCTGTGGGAA	TAGTCCTCGA	ATTOCTOCCC	GGAATCCCCA	1740
GCGTGGTCGT	CGGYTTGT99	GGGGCAATGA	COTTCGGCCC	GTTCATCGCT	CATCACATOS	1800
CTCCGGTGAT	OGCTCACAAC	GCTCCCGATG	recession	GAACTACTTG	CSCSSGGACC	1860
CGGGCAACGG	GGAGGGCATG	TTOOTGTCCG	orcrosror:	gocogreato	GTCGTTCCCA	1920

TTATCGCCAC CACCACTCAT GACCTCTTCC GGCAGGTGCC GGTGTTGCCC CGGGAGGGCG 1980
CGATCGGGAA TTC 1993

- (2) INFORMATION FOR SEQ ID NO: 155:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amine acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:
 - Met Lys lie Arg Leu His Thr Leu hen Ale Val Len Thr Ale Ale Pro 1 5 10 15
 - Lou Lou Ala Ala Ala Gly Cys Gly Ser Lys Dro Pro Ser Gly Ser 20 25 30
 - Fro Giv Thr Gly Ala Gly Ala Giy Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
 - Ser Pro Vel Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60
 - Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 70 75
 - Ilo The Ala Gln Cly The Gly Ser Gly Ala Gly 11e Ala Gln Ala Ala 85 90 95
 - Ala Gly Thr Val Ash Ile Gly Ala Ser Asp Ala Tyr Leo Ser Glo Gly 100 105 110
 - Asp Met Ala Ala Bis Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
 - Ala Gin Gin Vai Asn Tyr Asn Lec Pro Gly Val Ser Glo His Leo Lys 130 140
 - leu Asn Gly Lys Vol Len Als Als Met Tyr Gln Gly Thr ile Lys Thr 145 - 150 - 155 - 160
 - Trp Asp Asp Pro Gin Ile Ala Ala Leu Asn Pro Gly Vel Asn Leu Pro 185 170 175
 - Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190
 - Phe Leu Phe Thr Glo Tyr Leu Ser Lys Glo Asp Pro Glu Gly Trp Gly 195 200 205
 - Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Als Val Pro Gly 210 220
 - Ala bew Gly Glo Asn Gly Asn Gly Gly Met Val Thr Gly Cys Als Glu 225 230 230 235

160

Thr	Pro	Gly	Cys	Val 245	Ala	Tyr	II.	Gly	11e 250	Sex	Phe	leu	Asp	Gln 288	Ala
Ser	Gln	Ārģ	Gly 260	Leu	Gly	Slu	Als	61n 2 6 5	Leo	Gly	Asn	Ser	Ser 270	Gly	Aso
Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe
Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Tle	Ser	Met 300	Ile	Asp	Gly	Pro
81a 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyx	Ala	Ile	Val	Asn 320
Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gin	Ala	Phe 335	Leu
His	Trp	Ala	11e 340	The	Asp	Gly		Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Val
His	Pbæ	Gln 355	Pro	Lesis	Pro	Fro	Ala 360	Vai	Val	Lya		Ser 365	Asp	Ala	Leo
	Als 370	Thx	Ile	Sec	Ser										

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1777 base pairs
 (B) TYPE: sucleic soid
 (C) STBANDEDWEDS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GGTCTTGACC	ACCACCTOGG	TGTCGAAGTC	GGTGCCCGGGA	TTGAAGTCCA	GOTACTCGTG	60
CCTCGGGCGG	GCGARACAAT	AGCGACAAGC	atgcgagcag	CCGCCCTAGC	CETTGACEST	120
GTAGCGAAAC	GGCAACGCGG	CCCCCTTGGG	CACCTTETTC	AGCGCTGATT	TGCACAACAC	180
CTCGTGGAAG	GTGATGCCGT	CCAATTOTGG	CGCGCGBACG	CYGCGGACCA	GGCCGATCCG	240
CTGCAACCCS	GCAGCGCCCG	TCCTCAACGO	GCATCCCGTT	CACCGCGACG	correceses	300
CCCAACGCAT	ACCRTTATTC	GAACAACCGT	TCTATACTTT	GTCAACGCTG	GCCGCTACCG	360
AGCGCCGCAC	AGGATOTGAT	ATGCCATCTC	TGCCCGCACA	GACAGGAGCC	acceptate	420
ACAGCATTCG	GCGTCGAGCC	CTACCGGCAG	CCGAAGTACC	TAGAAATCGC	CSSGRAGOSC	480
ATGGCGTATA	TOGACGAAGG	CAAGGGTGAC	SCCATOGROT	TTCACCACGG	CAACCOCACG	540
TOSTOTTACT	TSTGGCGCAA	CATCATGOCG	CACTTGGAAG	oscrosseca	@CT@GTGGCC	600

161

TOCGATCTGA	TCGCGATCCG	COCCTCGGAC	AACCTCAGCC	CATCGGGGACC	COACCOCTAT	660
AGCTATGGCG	ASCAACGAGA	CTTTTTGTTC	GCGCTCTGGG	ATGOSCTOSA	CCTCSGCSAC	720
CACGTGGTAC	Testecteca	CGACTGGGGC	TOSSOGCTOS	GCTTCGACTG	GCCTAACCAG	780
CATOGOGACO	GAGTGCAGGG	GAYCCCCTTC	ATGGAAGCGA	TOSTCACOO	GATGACGTGC	840
SCSGACTGGC	CGCCGGCCGT	GCGGGGGTGTC	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCAATGCCCT	TGGAGCACAA	CATCTTTGTC	GAACGGGTGC	Teoccassec	GATCCTGCGA	960
CACCTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGGCCAT	TOGTGAACGG	CCCCCACCAC	1020
CGTCGCCCCA	COTTOTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CCCCCACCTC	1080
STCSCSTTSS	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATCAACGCCG	AGOCCGGCGC	GATCATCACC	GGCCGCATCC	STGACTATGT	CAGGAGCTGG	1200
CCCAACCAGA	CCGARATCAC	AGTGCCCGGC	GTGCATTTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTCGTATCGT	GGGCCGGCCCC	TCGGCAGCAT	CGGCGACCTS	GGAGCGCTCT	CATTTCACGA	1320
GACCAAGAAT	GTGATTTCCG	GCSAAGGCGG	OSCOCTECTT	GTCAACTCAT	AAGACTTCCT	1380
GCTCCGGGGCA	GAGATTCTCA	GGGAAAAGGG	CACCAATCGC	AGCCGCTTCC	TTCCCAACGA	1440
COTCGACAAA	TATACGTGGC	ACGACAAACC	TOTTCCTATT	TGCCCAGCGA	AFTAGTOGOT	1500
GCCTTTCTAT	GGGCTCAGTT	CGAGGAAGCC	GASCOSSATCA	CGCGTATCCG	ATTOGACCTA	1560
TGGAACCOCT	ATCETGAAAG	CTTCGRATCA	TTGGANCAGE	SCSSCTCCT	GCGCCGTCCG	1620
ATCATCCCAC	acceptere	TCACAACGCC	CACATGTACT	ACCUTOTTACT	AGCGCCCAGC	1680
GCCGATCGGG	AGGAGGTGCT	GGCGCGTCTG	ACGAGCGAAG	GTATAGGCGC	GGTCTTTCAT	1740
TACGTGCCGC	TTCACGATTC	GOOGGOOGGG	COTOSOT			3777

(2) INFORMATION FOR SEQ ID NO:157:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 324 base pairs
 - (B) TYPE: macleic acid
 - (C) STRANDEDNESS; single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

GAGATTGAAT	COTACCGGTC	TOOTTAGOGG	CTCCGTCCCG	TGRATOCOCA	TATCACGCAC	60
GGCCATGTTC	TGCCTGTCGA	correspond	ATGCCCCGGAC	GTTGGTAAAC	OCAGGGTTTG	120
ATCAGTAATT	CCGGGGGACG	GTTGCGGGGAA	GGCGGCCAGG	ATGTGCGTGA	GCCCCGGCGC	180
ceccatacca	CNORCONCCC	CIGGAIGCIC	AGCCCCGGTG	CGGCGACGTA	SCCASCSTT	240

162

accoccrere	GTCCACAGTG	GTACTCCGGT	GACGACGCGG	ceceerecer	GOGTGAAGAC	300
CGTGACCGAC	GCCGCCGATT	CAGA				324
(2) INFORM	ATION FOR S	5Q ID NO:154	3:			
* * * * ***	AA					

(i) SEQUENCE CHARACTERISTICS:

(A) LEWSTB: 1338 base pairs (B) TYPE: nucleic scid (C) STRABCESNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158;

GOGGTACCGC	CGCGTTGCGC	TGGCWCGGGA	CCTGTACGAC	CTGAACCACT	TCGCCTCGCG	60
ABCGATTGAC	GAACCGCTCS	TGCGGCGGCT	grocerocro	AAGGTGTGGG	GTGATGTCGT	120
CGATGACCGG	OGCGGGGACCC	GGCCACYACO	COTCGAAGAC	GTCCTCGCCG	CCCGCAGCGA	180
GCACGACTTC	CASCOCCBACT	CGATCGGCST	OCTGACCCGT	CCTGTCGCTA	rescretere	240
GCAAGCTCSC	STTCGGAAGC	GATTTGCCTT	CCTCACTGAC	CTCGACGCCG	ACGAGCAGCG	300
@TOGGCCGCC	TGCGACGAAC	GCCACCGCCG	CGAASTGGAG	AACGCGCTGG	CSGTGCTGCG	360
STCCTGATCA	ACCTSCCGGC	SATCSTSCCG	TTCCGCTGGC	ACCGTTGCGG	CTGGACGCGG	430
CTGAATCGAC	TAGATGAGAS	CACTTGGGCA	CGAATCOSSC	TSTGGTGGTG	AGCAAGACAC	\$ 80
GAGTACTOTC	AFCACTATTG	CATCCACTOG	ATGACCGCCC	TSATTCAGCA	GGACCAATGG	540
AACTGCCCCGG	GGCAAAACGT	CTCGGAGATG	ATOSSCSTOD	CCTCGGAACC	CTGCGGTGCT	600
GGCGTCATTC	GGACATOGGT	COGGCTCGCS	GGATOSTGGT	GACGCCAGCG	CTGAAGGAGT	669
GGAGCGCGGC	GGTGCACGCG	crocrocaco	GCCGGCAGAC	GGTGCTGCTC	COTAAGGCCG	720
GGATYCEGEGA	GAAGCGCTTC	GAGGTGGCGG	CCCACGAGTY	CTTCTTGTTC	CCGACGGTCG	780
COCACAGCCA	CGCCGAGCGG	STTOSCCOCG	AGCACCGCGA	OCTGCTGGGC	0009066666	840
CCGACAGCAC	CSACGACTET	GTGCTACTCC	AGGCCGCXGC	GAAAGTTGTT	GCCGCACTGC	900
COSTTAACCG	CCCAGAGGGT	CTGGACGCCA	TCGAGGATCT	GCACATOTES	ACCGCCGAGT	960
CSCTCCGCCC	OGACCEGETE	GACTTTCGGC	CCAAGCACAA	ACTGGCCGTC	TYGGYGGYCY	1820
CGGCGATCCC	GCTGGCCGAG	CCGGTCCGGC	TOGCGOCTAG	SCCCGAGTAC	GGCGGTTGCA	1080
CCACCTOGGY	GCAGCTGCOG	GTGACGCCGA	COPPORTOR C	CCCGGTGCAC	GACGAGGCCG	1140
CCCTGCCCGA	GGTCGCCGCC	CGGGTCCGCG	ACCCCCTCCC	TTGACTGGGC	GGCATCGCTT	1200
GGGTCTGAGC	TGTACGCCCA	GTCGGCGCTG	CGAGTGATCT	GCTGTCGGTT	CGGTCCCTGC	1260
TGGCGTCAAT	TGACGGCGCG	GGCAACAGCA	GCATTOSCCC	CGCCATCCTC	cececeeces	1320

GCGCCCACCG CTACAACC	1338
(2) INFORMATION FOR SEQ ID NO:159:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 321 base pairs (B) TYPE: nocleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
CC99CGCAC CGGCGGCACC GGCGGTACCC SCGCCAACGG CGCTGACGCC GCTGCTGTGG	60
TGGGCTTCGG CGCGAACGGC GACCCTGGCT TCGCTGGCGG CAAAGGCGGT AACGCCGGAA	120
TAGGTGGGCC CGCGGTGACA GGCGGGGGTCG CCGGCGACGG CGCCACCGGC GGCAAAGGTG	180
GCACCGGCGG TGCCGGCGGC GCCGGCAACG ACGCGGCAG CACCGGCAAT CCCGGCGGTA	240
ACCCCCCCA COSCOCCATO SCOSCOCCO SCOSCOCCO COSCOCCCO SCOACCCCCA	300
ACSSEGGCA TOCCGGCAAC C	321
(i) SEQUENCE CHARACTERISTICS: (A) LENGTS: 492 base pairs (B) TYPE: pucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 18 NO:160:	
GAAGACCCGG CCCCGCCATA TOGATCGGCT CGCCGACTAC TTTCGCCGAA CGTGCACGCG	60
GCGGCGTCGG GCTGATCATC ACCGGTGGCT ACGCGCCCAA CCGCACCGGA TGGCTGCTGC	120
OSTTOGOCTO OGRACTOSTO ACTTOGGOGO ARGODOGROS GCACOGOCGA AFCACCAGGG	180
COGTOCACUA TECGGOTGUB ARGATECTGO TGCABATOOT GCACGCCGGA CGCTACGCCT	240
ACCACCCACT TGCGGTCAGC GCCTCGCCGA TCAAGGCGCC GATCACCCCG TTTCGTCCGC	300
SAGCACTATO GOCTOSCOGO GTOSAAGOGA COATOSCOGA TITOMOCOGO TSCOCGCAGT	360
TOGCCCGCGA TGCCGGCTAC GACGGCGTCG AAATCATGGG CAGCGAAGGG TATCTGCTCA	420
ATCASTICUT GGOGOOGOGO ACCAACAAGO GCACCGACTU GTGGGGGGGG ACACCGGCCA	480
ACCSTOSCOG GT	492
(2) INFORMATION FOR SEQ ID MO:161:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

Pho Ala Gin Sis let Val Glo Gly Asp Ala Val Glo Leo Trp Arg Ala 1 5 10

Asn Ala Ala Asp Gin Ala Asp Pro Leu Gin Pro Gly Ser Ala Arg Arg 20 25 30

Gin Arg Ala Ser Arg Ser Pro Arg Arg Leu Ala Gly Pro Asn Ala Tyr 35 40 45

His Tyr Ser Asn Aso Arg Ser lle Leu Cyz Gln Arg Trp Pro Leu Pro 50 55 60

Ser Ala Ala Glo Asp Val Ile Cys Bis Leu Cys Pro His Arg Glo Glu 65 70 75 75

Pro Gly Leo Met Thr Ala Phe Gly Val Glu Pro Tyr Gly Gln Pro Lys 85 90 95

Tyr Leu Glu Ile Ala Gly Lys Arg Met Ala Tyr Ile Asp Glu Gly Lys 100 105 110

Gly Asp Ala Ile Val Phe Gln Bis Gly Asn Pro Thr Ser Ser Tyr Leo 115 120 120

Trp Arg Aso The Met Pro His Lou Glu Gly Leu Gly Arg Leu Val Aia 130 140

Cys Asp Leu Ile Gly Met Gly Ala Ser Asp Lys Leu Ser Pro Ser Gly 145 150 155

Pro Asp Arg Tyr Sor Tyr Cly Slo Gin Arg Asp Pho Leu Pho Ala Leu 165 170

Trp Asp Ala Leo Asp Leo Gly Asp Bis Val Val Leo Val Leo His Asp 185 190

Trp Gly Ser Ala Lee Gly Phe Asp Trp Ala Aan Gln His Arg Asp Arg 195 205

Val Gin Gly Ile Ala Phe Met Glu Ala Ile Val Thr Pro Met Thr Trp 210 220

Ala Asp Trp Pro Pro Ala Val Arg Gly Val She Gln Gly Phe Arg Sor 225 - 230 - 240

Pro Sin Siy Siy Pro Set Ala Les Gis Bis Asn Ile Phe Val Giy Arg 245 256 256

Val Leu Pro Gly Ala IIa Lau Arg Glo Leu Ser Asp Glu Glu Met Asm 260 270

- His Tyr Arg Arg Bro Phe Vel Aen Gly Gly Gly Asp Arg Arg Pro Thr 280 Leu Ser Trp Fro Arg Ash Leu Pro Ile Asp Gly Glu Pro Ala Glu Val Val Ala Leu Val Asn Glu Tyr Arg Ser Trp Lou Glu Glu Thr Asp Met Pro Lys Leu Phe lie Asn Ala Glu Pro Gly Ala lie lie Thr Gly Arg 330 lle Arg Asp Tyr Val Arg Ser Trp Pro Asn Gln Thr Glu 11e Thr $v_{lpha 1}$ Pro Gly Val His Phe Val Gln Glu Asp Ser Asp Gly Val Val Ser Trp Ala Gly Ala Arg Gin Bia Arg Arg Pro Gly Ser Ala Leo Ila Ser Arg Asp Gin Glu Cys Asp Phe Arg Arg Arg Arg Pro Ala Cys Gin Leu Ile Arg Leu Pro Ala Pro Gly Arg Asp Ser Gln Gly Lys Gly His Gln \$Q5 Ser Gin Pro Lea Pro Ser Gin Ary Gly Arg Gin He Tyr Val Ala Gly Gin Arg Ser Ser Tyr Leu Pro Ser Gin Leo Val Ala Ala Phe Leo Trp Ala Gin Phe Glu Gin Ala Glu Arg Ile Thr Arg Ile Arg Leu Asp Leu 488 Trp Ass Arg Tyr Sis Glw Ser Fhe Glu Ser Les Glo Glo Arg Sly Lew Low Ary Arg Pro Ile Ile Fro Gla Gly Cys Ser His Asa Ale His Met Tyr Tyr Val Leo Leo Ala Pro Ser Ala Asp Arg Glo Glo Val Leo Ala And Leu Thr Sex Clo Gly 11e Gly Ale Val Phe Sis Tyr Val Pro Leu 520 His Asp Ser Pro Ala Gly Arg Arg
- (2) INFORMATION FOR SEQ ID NO:162:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino soids
 - (B) TYPE: amino soid
 - (C) STRANDEONESS:
 - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162: Ash Glu Ser Ala Pro Arg Ser Pro Met Leu Pro Ser Ala Arg Pro Arg Tyr Asp Ala Ile Ala Val Leu Leu Asn Glu Met His Ala Gly Bis Cys Asp The Gly Lea Val Gly Pro Ala Pro Asp Tle Val Thr Asp Ala Ala Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Pho Arg His Val Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu Gly Gly Leu Thr Val Asp Trp Lys Val Ser Trp Fro Arg Gln Arg Gly Ala Thr Val Lev Ala Ala Val His Glu Trp Pro Pro lie Val Val Mis Pho beu Yal Ala Glu Lou Sor Gln Asp Arg Pro Gly Cln His Pro Pho Asp Dys Asp Val Val Leo Gln Arg Sis Trp Leo Als Leo Arg Arg Ser 135 Glu Thr Leu Glu His Thr Pro His Gly Arg Arg Pro Vat Arg Pro Arg Eis Arg Gly Asp Asp Arg Phe His Glu Arg Asp Pro Leo His Sex Val Ala Met Leu Val Sør Pro Val Glu Ala Glu Arg Arg Ala Pro Val Val Clo Bis Gln Tyr His Val Val Ala Glu Val Glu Arg Ile Pro Glu Arg Glu Gla Lys Val Ser Leu Leu Ala Ile Ala Ile Ala Val Gly Ser Arg Trp Ala Giu Lon Val Arg Arg Ala His Pro Aop Gin Tie Ala Giy His Gin Pro Ala Gin Pro Pbe Gin Val Arg His Asp Val Ala Pro Gin Val 250
- Phe Val Asp Tie Arg His Ala Leu Pro Gly Asp Phe 275

Arg Arg Arg Sly Val Ala Val Leo Lys Asp Asp Cly Val Thr Loo Ala

- (2) INFORMATION FOR SEQ ID NO:163:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 264 base pairs

167

(%) TYPE: bucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16):		
ATGAACATGT CGTCGGTGGT GGGTCGCAAG GCCTTTGCGC GATTCGCC	GG CTACTCCTCC	60
SCRATGCACG CGATCGCCGG TTTCTCCGAT GCGTTGCGCC AAGAGCTG	CG GGGTAGCGGA	120
ATCGCCGTCT CGGTGATCCA CCCGGCGCTG ACCCAGACAC CGCTGTTG	SC CAACSTONAC	180
CCCGCCGACA TGCCGCCGCC GTTTCGCAGC CTCACGCCCA TTCCCGTT	CA CTSSSTOSCS	240
GCAGCGGTGC TTGACCGTST GGCG		264
(2) INFORMATION FOR SEQ 10 NO:164:		
(i) SEQUENCE CHARACTERISTICS: (A) LEBGTH: 1171 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ 10 NO:166:		
TAGTOGGCGA OGATGACGTO GOGGTUCAGG COGACCGCTT CAAGCACC	MG COCGACCACG	60
AAGCCGGTGC GATCCTTACC CGCGAAGCAG TGGGTGAGCA CCGGGCGT	DD GGCGGCAAGC	120
AGTGTGACGA CACGATGTAG COCGCGCTGT GCTCCATTGC GCGTTGGG	AA TTGGCGATAC	1.80
TOSTOSSTCA TSTAGOSST SCCCCOTCA TTTATOSACT SSCTSGAT	TO GOOGGACTOS	240
COSTIGGACC CSICATISCI TASCASCCIC TIGAATSCGC TIICGISC	GG CGCTGAGTCG	300
POSSCOTCAT CATOSSCEAS STOSSGGRAC SSCAGCASGT SCACSTOR	AT SCOUTCOGGA	360
ACCOSTOCTS GACCGUSSCS SSCAACCTOC COSSACSACC SCASSTOO	SC AACSTCOGTS	420
ATCCCCAGCC GGCGCAGCGT TGCCCCTCGT GCUSAATTCG GCACGAGC	CT GGCGAGCCAC	480
CGGOCATCAC CAASCAACGC TTGCCCAGTA COGATCGTCA CTTOCGCA	TC CGGCAGACCA	546
ATCTCCTCGC CGCCCATCST CAGATCCCSC TCGTGCGTTG ACAAGAAC	occasatot	800
GCCAGCGGGT ATCGGAGATT GAACCGCGCA CGCAGTTCTT CAATCGCT	o contractor	660
ACTATTOCCA CTTTCCGGCG GTCGCGGTAY TCAGCRAGCA TGCGAGTC	PC GACGAACTOS	720

COCCACGTAR COCACGGCGT AGCTCCCGGC GTGACGCGGA GGRYCGGCGG GTGATCTTTG

COSCCACSOT COTAGOCGIT SATOLACCSC TICSCSCITC CSSCBSSSGAS GCCGATCAGC

780

TTATOGACOT OGGOGTATGO CDACGOCAAG CTGGGGGGGGT TCGTCGAGGT CAAGAACTCC	900
ACCATOGGCA COGGCACCAA GGTGCCGCAC CTGACCTACG TCGGCGACGC CGACATOGGC	960
GAGTACASCA ACATOGOCGO CTCCAGCGTS TTCSTCAACT ACGACGGTAC CTCCAAACOG	1020
OCCACCACOG TOGGTTOGCA OGTACGGACC GOGTCCGACA CCATCTTCGT GGCCCCAGTA	1080
ACCATCEGCE ACESCECTA TACCEGGECC GECACASTOS TECGGGACGA TETCCCGCCE	1140
GGGGCGCTGG CAGTGTCGGC GGGTCCGCAA C	1171
(2) INTORMATION FOR SEQ ID NO:165:	
(1) SPQUENCE CHARACTERISTICS: (A) LENGTH: 227 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ IN NO. 165:	
GCAAAGGCCG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	***
ACGOCGOCCA AGGOGGOACC GGCGGCACCG GCGGCAACGC CGGCGCCGGC GGCACCAGCT	60
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGCCGGTGA CGGCGGGGGTC GGCGGGAAGG	120
GUGGAAROGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGGGGGC GGCGGCAACG	180
	227
(2) INFORMATION FOR SEQ ID NO: 166:	
(i) SEQUENCE CRARACTERISTICS: (A) LENGTH: 304 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:	
COTOGOCACO ATGGGCOGGC AGGGCGGFAG CGGTGCCCCC GGCTCYACCC CAGGCGCCAA	60
GGGCGCCCAC GGCTTCACTC CAACCAGCGG CGGCGACGGC GGCGACGGCG GCAACGGCGG	120
CAACTCCCAA CTSSTCGOCG GCAACGGCOG CGACGGCOGC AATGGCGGCA ACGGCGGCAG	180
CGCCGGCACG GGCGGCACG GCGGCCGCGG CGGCGACGGC GCGTTTGCTG GCATGAGTGC	240
OCCOPOTATION ACCOPANCE ASSOCIATE SOCIEDADA PROPERTIES AND PROPERTIES AND CONTROL ACCORDING ASSOCIATION	300
DRAC CONTROL C	304

(2) INFORMATION FOR SEQ ID NO:167:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1439 base pairs
(B) TYPE: nucleic soid
(C) STRANDEDRESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

GTGGGACGCT	GCCGAGGCTG	TATAACAAGG	ACAACATOGA	CCAGCGCOGG	CTCGGTGAGC	60
TGATGGAGGT	ATTTAACAGT	OCCCCCTTCA	GCCGGCAGGG	CGAGCACOGC	SCCCOGGATO	120
TGATGGGTGA	GGTCTACGAA	TACTFCCTCG	GCAATTTCGC	TOGOGOGGAA	GOGAAGCGGG	180
GTGGCGAGTT	CTTTACCCCG	CCCAGCGTGG	TCAAGGTGAT	CUTGGAGGTG	CTGGAGCCGT	240
CGAGTGGGGG	GGTGTATGAC	COSTOCTECS	GTTCCCGAGG	CATGTTTGTG	CAGACOGAGA	300
AGTTCATCTA	CGAACACGAC	GOCGATCCGA	AGGATGTCTC	GATCTATGGC	CAGGARAGCA	360
TTCAGGAGAC	CTGGCGGATG	GCGAAGATGA	ACCTCGCCAT	CCACGGCATC	GACAACAAGG	420
GGCTCGGCGC	CCGATGGAGT	GATACCTTCS	OCCGCGACCA	GCACCCGGAC	GTGCAGATGG	480
ACTACGTGAT	GOCCAATCCG	CCGTTCAACA	TCAAAGACTG	GCCCCGCAAC	CAGGAAGACC	546
CACGCTGGCG	CTTCUGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAGCACA	600
TOCTGTACAA	CTTGGGGGGG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
COTCGRACTO	CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	COTOGAGGCG	GATTTEGTTT	726
CCTGCATGGT	COCCETACCC	ACCCASCTST	TOOGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GCTTTTTCGC	CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCGG	TGCGGGCAGG	840
TGCTGTTCAT	CGACGCTOST	GAACTGGGCG	ACCTAGTGGA	CCGGGCCGAG	COGGCOCTGA	900
CCAACGAGGA	GATCGTCCCC	atcggggata	CCTTCCACGC	GAGCACGACC	ACCECCAACG	960
coogciicogo	restroccese	GGTAATGGGG	CONCERGECT	CAACGGCGCG	scoccaracte	1020
6CGGGGCCGG	COGCAACGOG	GGTGTCGCCG	SCGTGTCCTT	COGCAACGCT	GTGGGCGGCG	1080
ACGGCGGCAA	CGGCGGCAAC	GGCGGCCACG	GCCGCGACGG	CACGACGGGC	00000000000	1140
GCAAGGGCGG	CAACGGCNGC	AGCGGTGCCG	CCAGCGGCTC	AGGCGTCGTC	AACGTCACCG	1200
CCGGCCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACUGCTOC	SCGGGGCGCCC	1260
SCHECCAGGE	csarscesec	GECASCOCCO	GCAACGGCGG	CCACGGCGGC	GOTGCCACCG	1320
GCCGCCCCAG	COSCARGGGC	GGCAACGGCA	CCAGOGGTCC	COCCAGCGGG	TCAGGCGTCA	1390
TCAACGTCAC	CUCCUSCOCAC	GGCGGCAACG	GCGGCAATGC	CCGCAACOOC	GGCAACEGO	1439
704 Thromoser	ON SOME DAYS OF	978 - 9780, 18975 - 9775	6.5			

(2) INFORMATION FOR SEQ ID NO:168:

WO 98/16646

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 329 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
GEGCCGGCGG GGCCGGATTT TCTCGTGCCT TGATTGTCGC TGGGGATAAC GGCGGTGATG	60
GT99TAACGG CGGGATG9GC GGGGTGGCG GGGCTGGCGG CCCGGGCGGC	120
TGATCASCUT SCTSSSCSGC CAAGGCCCCCS SCGGGGCCGGC GGGGACCGGC GGGGCCGGCG	180
CTETTEGOES TGACCGCGGG GCCGGCGGCC CCGCCAACCA GGCCTTCAAC GCAGGTGCCG	240
GOGGGGCCGG CGGCCTGATC AGCCTGCTGG GCGGCCAAGG CCCCGGCCGGG GCCGGCCGGGA	300
CCGGCGGGGGC CGGCGGTGTT GGCGGTGAC	329
(2) INFORMATION FOR SEQ 10 NO:168:	
(A) LENGTH: 80 base pairs (B) TYPE: nocleic acid (C) STBANDEONESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169: GCAACGGTGG CAACGGCGOC ACCACCACCA COSTGGGGGAT GGCCGGGGGT AACTGTGGTG	800
CCSCSGSCT GATCGCCAAC	60
(2) INFORMATION FOR SEQ ID NO:170:	86
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GODOTGTGTC GCACTCACAC CGCCGCATTC GCCGACGTTG GCCGCCCAAT ATCCAGCTCA	6.0
AGGCCTACTA CTTACCCTCC GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA	120
TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTOG COCGGCTCGG GCAGGATCCG	180

171

* c û	
CCCCGGCGCA CFTCCCGCGC CAAGCGGCCT CATCGCTCCG AACGGCGGCG ATCCTGTGAG	240
CACAACTGAT GGCGCGCAAC GAGATTCOTC CAATTGTCAA GCCGTGTTCG ACCGCAGGGA	386
OCGGTTATAC GTATGTCAAC CTATGTCACT CGCAAGAACC GGCATAACGA TCCCGTGATC	360
COCCCACAGC CCACGAGTGC ARGACCGTTA CA	39%
(2) INFORMATION FOR SEQ ID NO:171:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 535 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE OBSCRIPTION: SEQ ID NO:171:	
ACCOGCOCCA CCGGCGGCAC CGGGTTCUCC GGTGGCGCCG GCGGGGCCGG CGGGCAGGGC	60
GETATCASCO OTOCOGGOGG CACCAACESC TCTGGTGGCG CTGGCGGCAC CGGCGGACAA	120
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1.80
GCCCCCCC GCGCACCGC CGGAGCGGCC GGAGCCGGCG GGGCCGGTGG CGCCATCGGT	240
ACCGCCGCA COGCCGCCC SCTSGCCASC STCGCTAACG CCGCGATCGG CCCTACCGGC	300
GGTACGGGTG GTGTCGGTGG TGCTGGTGGT GCAGGTGCGG CTGCGGCCGC TGGCAGCAGC	360
GCTACCGGTG GCGCCGGGTT OGCCGGCGGC GCCGGCGGAG AAGGCGGACC GGOCGGCAAC	420
AGUGGTGTGG GEGGEACEAA CGGCTCCGGE GGCGCCGGCG GTGCAGGCGG CAAGGGCGGC	480
ACCOGACCTG COGCCCCCTC CGCCCCCCAC AACCCCACCG STGCTGGTTT CCCCC	535
(2) INFORMATION FOR SEQ ID NO:172:	
(1) SEQUENCE CHARACTERISTICS; (A) LENGTH: 690 base pairs (B) TYPE: nucleic scid (C) STRANDEONESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 10 NO:172:	
CCGACGTOGO OGGGGGGATA OGGGGGTCAC CGACTACTAC ATCATODGCA CCGAGAATOG	60
GCCGCTGCTG CAACCGCTGC GGGCGGTGCC GGTCATCGGA GAICCGCTGG CCGACCTGAT	120
CCASCOGAAC CTGAAGGTGA TOGTCAACCT GGGCTACGGC GACCOGAACT ACGGGTACTC	180

GACGAGCTAC GCCGATGTGC GAACGCCGTT CGCGCTGTGG CCGAACGTGC CGCCTCAGGT 248

172

CATCOCCGAT GCCCTGGCCG CCGGAACACA AGAAGGCATC CTTGACTTCA CCGCCGACCT	300
GCAGGUGCTG TEOGUGCAAC OGOTCACGCT COOGCAGATC CAGCTGCCGC AACCOGCCGA	360
TOTOGREGOCO GOGOTGOCOS COGCACOSAC GOOGOCOGAS GTOCTGAACA CECTOGOCAS	420
GATCATCTCA ACCAACTACG CCGTCCTGCT GCCCACCGTG GACATCGCCC TCGCCTGGTC	480
ACCACCCTOC CGCTGTACAC CACCCAACTO TTCGTCAGGC AACTCGCTGC GGGCAATCTG	540
ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCGTAGGTT TAGGCACGAT CGATAGCGGG	600
CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG	860
CCTCGTCACC TRACGGATTC CCGACGGCAT	690
(2) INFORMATION FOR SEQ IS NO:173:	
(A) DENOTH: 407 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
ACGOTGACGG COGTACTGGC OGCOCCCACG GCGGCAACGG CGGGGAATCCC GGGTGGCTCT	يطوروني
TGGGCACAGC CGGGGGTGGC GGCAACGGTS GCGCCGGCAG CACCGGTACT GCAGGTGGCG	60
COTOTOGGGG CACOSSOGGC GACGSCOGGA COSSOGGGG TOGGGGGCCTG TYAATGGGCG	120
COGGOGGGGG COGGCACGGT GGCACTGGGG GCGCGGGGGG TOCCGGTGTC GACGGTGGGG	180
GOSCOSCOG GOCOGOCOGG GCCGGCOGCA ACGGCGGCGCCC CGGGGGTCAA GCCGCCCTGC	240
	300
TGTTCGGGCG CGGCGGCACC GGCGGAGCCG GCGCCTACGG CGGCGATGGC GOTGGCGGCG	360
GTGACGGCTT CGACGGCACG ATGCCCGGCC TGCGTGGTAC CGGTGGC	407
(2) INFORMATION FOR SEQ ID NO:174: (i) SEQUENCE CHARACTERISTICS: (A) LENGTS: 468 base pairs (B) TYPE: oucleic acid (C) STRANDEDNESS: single (O) TOPOLOGY: linear	

 (*i) SEQUENCE DESCRIPTION: SEQ ID NO:174;

 GATCOGTCAG CGCATCOCCC TCGGCCGCAA GCGATTCCGC GGTCTCACCG AAGAACATCG
 60

 TGCACGCCGC GGCGCGGGACC AGCCCGCTGC GCTGCGGGGCGC GTCGAACGCC TCCAGCAGGC
 120

ACASCCASTC CTTSGCGCCC TECGAGGCGA ACACGTCGGT GTCACCGGTG TAGATCGCCG	180
GGATGCCCGC CTCCGCCAAC GCATTCCGGC ACGCCCGCGC GTCTTTGTGA TGCTCGACGA	240
TCACCGCGAT GTCT9CGCCC ACCACGGCCC GCCCGGCGAA GGTGCCCCCG CTGGCCAGTA	300
GOGCOGOGAC GTOGGOGGOC AGGTÖGTÖGG BEATGTGCOG BOSCAGOGCT COGGOGGGGAC	360
GCCCGAAAAA CGACCCCTCA CCCAGCTSGG TCCCGCTGGC ATATCCCTTG CCGTCCTGGC	420
CGATATTEGA CECCCATECT CCGACCGCST ACAGGCCBGC CACCACCS	469
(2) INFORMATION FOR SEQ ID NO:175:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 219 base pairs (B) TYFE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ to NO:175;	
GGTGGTAACS GCGGCCASGG TGGCATCGGC GGCGCCGGCU ACAGAGGCGC CGACGGCGCC	60
SOCCCCAATS CTAACGGCSC AAACGGCSAG AACGGCGGTA GCGCTGGTAA CGGTGGCBAC	120
GGCGGCGCCG GCGGCAATGG CGGCGCGGGCGCC GGCAACGCGC AGGCGGCCGG GTACACCGAC	180
GGCGCCACGG GCACCGGCGG CGACGGCGGC AACGGCGGC	319
(2) INFORMATION FOR SEQ ID NO:176:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 494 base pairs (B) TYPE: necleic acid (C) STRANDEDNESS: single (D) TOPCLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:	
TASCTCCSGC GASGGCGGCA ASSGCSGCGA COSTSGCCAC GGCGGTGACG SCGTCGGCGG	60
CAACAGTTCC GTCACCCAAG GCGGCAGCGG CGGTGGCGGC GCGCGGGGGG GCGCCGGCGG	120
CAGCGGCTTT TTCGGCGGCA AGGGCGGCTT CGGCGGCGAC GGCGGTCAGG GCGGCCCCAA	180
OGGCOGUCUT ACCUTOGCA COGTGGCCGG TEGCGGCGGC AACGGCGGTG TCGGCGGCCG	240
GGCCGCCGAC GGCCTCTTTG CCGGTGCCGG CGGCCAGGGC GGCCTCDGTG GGCAGGGCGG	300
CAATGGCGGC GGCTCCACCS GCGGCAACGG CGGCCTTGGC GGCGCGGGCG GTGGCGGAGG	360
CAACGCCCCG GCTCGTGCCG AATCCGGGCT GACCATGCAC AGCGCGGCCA AGTTCOCTGC	420

CATCGCATCA GGCGCCTACT GCCCCGAACA CCTGGAACAT CACCCGAGTT AGCGGCCCGC	480
ATTTCCTGAT CACC	494
(2) INFORMATION FOR SEQ ID NO:177:	
(1) SEQUENCE CHARACTERISTICS; (A) LENGTH: 220 base pairs (B) TYPE: obcleto acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:	
GGGCCGGTGG TGCCGCGGGC CASCTCTTCA SCCCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TYPGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC A00TCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
SCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220
(2) INFORMATION FOR SEQ ID NO:178:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 388 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:	
ATGGCGGCAA CGGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TTCCAACGGC	60
AGGCAGGGTG GTGCCGGCGG CCAAGGCGGC CAAGGCGGCC TGGGCGGGGC AAGCACCACC	120
RGATOSSCOT AGCOGCACCO SOGRAAGOOD ATOCAACASG OGACGATGOO GCOTTOOFFG	180
DOGUGTIGGA OCAGGCCGGC ATCACCIACG CIGACCCAGG CCACGCCATA ACGGUCGCCA	240
AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC	300
PGGACTACAA TCCCGGGCTG ACCATGGACA GCGCGGCCAA STTCGCTGCC ATCGCATCAG	360
ROGOGTACTO COCCGARCAC CTGGARCA	388
(2) INFORMATION FOR SEQ ID NO:179;	
(1) SEQUENCE CHARACTERISTICS: (A) LEEGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANGEDMESS: single	

(mi)	SEQUENCE DES	CRIPTION: SI	Q ID No:17:	9:0		
GCAAAGGCG	s caccegosss	GCCGGCATGA	ACAGCCTCGA	occorroca	GCCGCCCAAG	60
Aceccocc	A AGGCCGCACC	GGCGGCACCG	ocoscaacsc	cesceceee	SSCACCAGCT	120
TCACCCAAG	G CGCCGACGGC	AACGCCGGCA	ACGGCGGTGA	csccssssrc	GGCGGCAACG	180
GCGGAAACO	g cograaceec	GCAGAGAACA	CCACCACCGC	ceccaccacc	ACCACAGGGG	240
GCGACGGCG	g goodgaaaaa	GCCGGCGGAA	CCGGCGGGAAC	COOCSGAGCC	GCCGGCACCG	300
GCACCGGCG	G CCAACAAGGC	AACGGCGGCA	ACGGCGGCAC	CGGCGGCAAA	GGCGGCACCG	360
GCGGCGACG	s TSCACTCTCA	GGCAGCACCG	GTGGTGCCGG			4.00
(2) INSON	MATION FOR SI	SQ ID MO:186);			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 538 base pairs
- (8) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

SCCAACGGCG GCAACGGCGG CATCGCCGGC ATTGGGCGGC AACGGCGTTC CGCGACGGCC 683 AGCOCCAACO GCGGCCAACG GCGGCAGCGG COCCAACGGC GCAACGCCG GCATGGGGCGG 120 CAACAGCOSC ACOGGCAGOS GOGACOGGCOS TOCOGGCOGG AACGGCGGGCO CGGCGGGCAC 180 GONCONCACO GOCOGOGACO GCGGCCTCAC COSTACTGGC GGCACCGGCC GCAGCGGTGG 240 CACCGGCGGT GACCGCGGTA MCGGCGGCAA CGGAGCAGAT AACACCGCAA ACATGACTGC 300 SCASSCESSC SSTSACGSYG SCAACGGCGG CGACOSTGGC TYCGGCGGCG GGGCCGGGGC 360 CONCERCENT OFFITGACOS CTOREGOCAA OSGCACUGGC GGSCAAGGCG GCCCCGGCGG 420 CGATGGCGGC AACGGGGCGA TCGGCGGCCA CCGCCCACTC ACTGACGACC CCGGGGGCAA 480 CGGCGGCACC GGCGGCAACG GCGGCACCGC CGGCACCGC GGCGGGGCA TCGGCAGC 338

(2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 239 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRAMDEDNESS: single
 - (0) TOPOLOGY: linear

176

(2)	(i) SE	QUENCE D	NSCRIPTION: 8	8Q IB NO:18:	l a		
669000	istss	ngcogogo	SC CASCTOTTCA	GCGCCGGAGG	ococcaest	GCCCTTGGGG	60
TTGGCC	GCAC	oggogggc	AG GGTGGGGGTG	SCORTSCORE	agcogocogo	GCCGACGCCC	120
CCGCCX	MGCAC	AGGTOTAA	od ggtggtaddg	GCTTCGCTGG	oggggggggg	SSCSTCSSCS	180
GCCACC	acces	CAACGCCA	rt googgoggca	TCAAOSSCTC	COSTOGRACC	GGCGGCACC	239
(2) ID	FORMA	CTION FOR	SEQ ID NO:18.	2:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 995 base pairs (B) TYPE: hucleic acid (C) STRANDERMESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID WO:182:

AGCAGCGCTA	ccoergacec	CGGGTTCGCC	GGCSSCGCCG	GCGGAGAAGG	COSABOSOSC	60
GGCAACAGCG	GTGTGGGCGG	CACCAACGGC	Toosgogggg	CCGGCGGTGC	ASSCUSCARG	120
980GGCACCG	GAGGTGCCGG	CGGGTCCGGC	GCGGACAACC	CCACCGGTGC	TGGTTTCSCC	180
GETGGCGGCG	GOGGOACAGG	TGGCGCGGCC	GEORGOEGGG	GGGCCGGCGG	GGCGACCGGT	240
ACCGGCGGCA	cossesses	reressesses	ACCGGTAGTG	CAGGCATCOO	coosseesse	300
GCCCGCGGCG	GTGACGGCGG	CGATGGGGCC	AGCGGTCTCG	GCCTGGGGCCT	CTCCGGCTTT	360
GACGCCGGCC	AAGGCGGCCA	AGGCGGGGCC	GGCGGCAGCG	ccaacaccaa	CGGCATCAAC	420
9666006606	GGGCCGGCGG	CAACGGCGGC	GACGGCGGGG	ACGGOGCAAC	CGGTGCCGCA	480
SSTCTCSSCS	ACAACGGCGG	GGTCGGCGGT	SACSSTEGGG	CCGGTGGCGC	CCCCGGCAAC	540
GGCGGCAACG	COGGOGTCOG	CCTGACAGCC	AASSCCGGCG	ACGGCGGCGC	CGCGGGCAAT	600
OGCOGGRACO	gagaaaaaaa	CCCTCCTGGC	ssescesses	ACAACAATTT	CAACGGCGGC	660
CASSSTEGTS	COGGCGGCCA	AGGCGGCCAA	GGCGGCTTGG	GCOGGGCAAG	CACCACCTGA	720
TOSCCCTASC	CGCACCCGGG	AAAGCCGATC	CAACAGGCGA	CEATGCCGCC	TTCCTTGCCG	780
COTTGGACCA	GCCCCCCATC	ACCTACGCTG	ACCCAGGCCA	CECCATAACE	GCCGCCAAGG	840
CCATCTCTCC	GCTGTGTGCT	AACCCCCTAA	CAGGTCTACA	GCTGGTCGCG	GACCTGCGGG	900
AATACAATCC	CGGGCTGACC	ATGGACAGGG	COSCCAAGTT	OSCTGCCATC	GCATCAGGCG	960
CGTACTGCCC	CGAACACCTG	GAACA				985

(2) INFORMATION FOR SEQ ID NO.183:

177

(i) SEQUENCE CHARACTERISTICS:
(A) LEMGTH: 2138 base pairs
(B) TYPE: bucleic acid
(C) STRANDEUNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

COOCACCACC	ATCCCTACCC	cecescance	GCAGCTGCCG	ATTOSCOOSS	TTTCCCCACC	60
CGACGAAAGC	COCTACCAGA	TESCOCTECC	GAAGTAGGCC	GATCCGTTCC	CGATGOCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCITICAGE	TTAGCGACGF	TAATGGCTAT	180
AGCACTAAGG	ASGATGATCC	GATATGACGC	AGTOGCAGAC	COTCACGGTC	CATCAGCAAG	240
AGATTTTGAA	CAGGGCCAAC	GAGGTGCAGG	cccccaresc	GGACCCACCS	ACTGATGTCC	300
CCATCACACC	STSCGAACTS	ACGCCGCCTA	AAAACGCCGC	CCBACAGOTG	GTATTGTCCG	360
CCGACAACAT	GOGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GOGGCAGCGT	CTGGCGACCT	\$ 20
CCCTCCCCAA	CCCCCCAAS	GCGTATGGCG	AGGTTGATGA	GGAGGCTGCC	accoccorno	480
ACAACGACGG	CGAAGGAACT	STOCAGGCAG	AATOGGCCGG	GCCCGTCGGA	GCGCACAGTT	540
CSGCCGAACT	AACCGATACG	OCGAGGGTGG	OCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GOGACCAAGG	CGCATCGCTC	GCGCACTTTG	666
COCATOGGTG	GAACACTTTC	AACCTGACGC	TGCAAGGCGA	CSTCAAGCGG	TTCCXGGGGT	720
TTGACAACTO	GGAAGGCCAT	GOGGCTACCG	CTTGCGAGGC	TTCGCTCGAY	CAACAACGGC	780
AATGGATACT	CCACATGGCC	AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATGTCG	840
CGCAGCTGCA	COTOTOCCCT	AGGCCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGGCTCG	900
AACGGCTTTA	CCCSGAAAAC	CCTTCGGGCC	GCCACCAAAT	TCTCCCGGTG	TACGCGGAST	968
ATCAGCAGAG	STOGGAGAAS	GTGCTGACCG	AATACAACAA	CARGGCAGCC	CTGGAACCGG	1020
TAMACCOGGC	GAAGCCTCCC	CCCGCCATCA	AGATCGACOC	occcoscer	CCGCAAGAGC	1080
AGGGATTGAT	CCCTGGCTTC	CTGATGCCGC	CGTCTGACXX	CTCCGGTGTG	ACTOCOGGYA	1140
CCGGGATGCC	AGCCGCACCG	ATSSTTCCGC	CTACCGGATC	occessiosi	GGCCTCCCGG	1200
CTGACACGGC	GGCGCAGCTG	ACGTCGGCTG	GOCGGGAAGC	CECAGOGOYG	TOGGGGGAACG	1260
TGGCGGTCAA	AGCGGCATCS	CTCGGTGGCG	DEXXODADETE	cosceroccc	TOGGOGGGG	1320
TGGGATCCCC	CATCGGGGGG	GCCGAATCGG	TOCGGCCCGC	TOGCOCTOOT	GACATTGCCC	1380
GCTTAGGCCA	GGGAAGGGCC	accescosecs	CCGCGCTGGG	occasarse	ATGGGAATGC	1440
CGATEGGTEC	COCCCATCAG	GGACAAGGGG	GOCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500

accassocsct	CTACACCGAG	GATCGGGCAT	GONOCGAGGO	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTOG	AAGTGAGCAT	GGACGAATTG	GACCCGCATG	TOSCCCGGGC	1620
GTTGACGCTG	gCggCgCgCg	TTCASTCSSC	CCTAGACGGG	ACCCTCARIC	AGATGAACAA	1680
OGGATOCTIC	CGCCCCACCG	ACGRACOCCA	GACCGTCGAA	GTGACGATCA	ATGGGGAGCA	1746
GTGGCTCACC	GGCCTGCGCA	TCGAAGATGG	TTTOCTGAAG	AAGCTGGGTC	CCGAGGCGGT	1800
GGCTCAGCGG	GTCAACGAGG	OGCTGCACAA	TGCGCAGGCC	ococcerece	CSTATAACGA	1860
escaseasse.	GAGCAGCTGA	CCCCTGCGTT	ATCGCCCATG	TCCCGCGCGA	TGAACGAAGG	1920
aatggcctaa	GCCCATTGTT	GCGGTGGTAG	CGACTACGCA	CCGAATGAGC	OCCOCAATOC	1980
99TCATTCAS	CGCGCCCGAC	ACGGCGTGAG	TACGCATTGT	CAATGTTTTG	ACATOGATOG	2040
BOOGGGTTCG	GAGGGCCCCA	TAGTCCTGGT	CGCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GOTTCOGTTA	CCCTCCTTAA	TTATGACGTC	CSTTACCA			2138

(2) INFORMATION FOR SEQ ID NO:184;

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (8) TYPE: amino acid
 - (C) STRANCEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

Met 1	The	Gln	Ser	Gla S	Thr	Val	Thr	Val	Asp 10	Gln	Gin	Gla	Tle	Leu 15	Ase
Arg	Ala	Asn	Glu 20	Vai	Slu	Ala	Fro	Met 25	Ala	Asp	Pro	Pro	Thr 30	Asp	Val
Pro	Ile	Thr 35	Pro	Cys	Glu	Leu	Thr 40	Ala	Ala	Lys	naK	Ala 45	Ala	Gln	Qin
Leu	Val 50	Leu	Ser	Ala	Asp	Asn 55	Met.	Arg	Slu	Tyr	Leu 60	Ala	Ala	Gly	Ala
Lys 65	Glu	Ang	Gla	Arg	Leu 70	Ala	The	Sex	lea	Arg 75	Asa	Als	Ala	Lys	Ala 80
Тух	Giy	Gla	Val	Asp 85	Glu	Glu	Ala	Ala	Thr 90	Als	Leu	Asp	Asn	A0p 95	Gly
Glu	Gly	Thr	Val 100	Gi.n	Ala	Slo	Sex	Ala 105	Gãy	Rla	Val	Giy	Gly 110	Asp	Sex
Ser	Äla	61u 115	Len	The	Asp	The	Pro 120	Arg	Val	Ala	Thr	Ala 125	Gly	Glu	Pro

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Lou Glu Thr Gly Asp

140

Gln 145	Giy	Ala	Ser	Leu	Ala 150	His	Pho	Ala	Asp	Gly 155	Trp	Asn	Thr	Phe	Asn 160
Leo	Thr	Leu	Gan	Gly 165	Asp	Val	Lys	Arg	Phe 170		Gly	Pho	Asp	Asn 175	Trp
Glu	Gly	Asp	Ala 180	Ala	Thr	Ala	Cys	Glu 185	Ala	ser	Leu.	Asp	61n 190	Gln	Arg
Gln	Trp	11e 195	Leu	His	Met	Ala	Lys 200	Leu	Ser	Ala	Als	Met 205	Ala	Lys	Gln
Ala	Gln 210	Tyr	Val	Ala	Gln	Leu 215	Mis	Val	Trp	Ala	Arg 220	Arg	Glu	His	Pro
Thr 225	Tyr	Glu	Asp	lle	Val 230	Gly	leu	Glu	Arg	Leu 235	Tyr	Als	Glu	Asn	240
Ser	Ala	Arg	Asp	Gln 245	ïl⊛	Leu	Pro	Val	Tyr 250	Ala	Glu	Tyr	Glo	Gln 255	Arg
Ser	Glu	Lys	Val 260	Len	Thr	Giu	Tyr	Asn 265	Asn	Lys	Ala	Ala	Leu 270	Glu	Pro
val	Asn.	Pro 275	Pro	Lys	Pgo	Pro	Pro 280	Ala	Ils	Lys	Ile	Азр 285	Pro	Pro	Pro
Pro	Pro 290	Gin	Gla	Ola	Gly	Leu 295	Ile	Pro	Gly	Phe	Leo 300	Met	Pro	Pro	Ser
Asp 305	Gly	Sex	Gly	Val	Thx 310	\$****	Gly	Tier	Sly	Met 315	Pro	Ala	Ala	Pro	Met 320
Val	Pro	Pro	Thr	Gly 325	Ser	Pro	Gly	GLy	Gly 330	Essis	Exo	Ala	Asp	Thr 335	Als
Ala	Gln	Leu	Thr 340	Ser	Ala	Cly	Arg	Glu 345	Ala	Ala	Ala	bes	Ser 350	Gly	Asp
Val.	Ala	Val 355	Lys	Ala	Ala	Sex.	Leau 360	Gly	Gly	Sly	Gly	Gly 365	Sly	Gly	Val
Pro	Ser 370	Ala	Fro	Lena	Gly	30r 375	Ala	Ilm	Gly	Gly	Ala 380	Glu	Ser	Val	Arg
Fro 385	Als	ary	Ala	Gly	390	Ile	Ala	Gly	Leu	GLy 395	Gln	Gly	Axg	Ala	Gly 400
Gly	Gly	Als	Als	1.00 405	Sly	Gly	Gl.y	Sly	Met 410	Gly	Met.	Pro	rem	Gly 415	Ala
Ala	nis	Sin	Gly 420	Gin	Gly	Gly	Ala	125 125	Sor	leys	Gly	Ser	61n 430	Gln	Glu
Aap	Glu	Ala 435	Les	Tyr	Thr	Giu	Asp 440	Arg	Ala	Txp	Thr	61u 845	Ala	Val	lle
Gly	Asn 450	Arg	Arg	Arg	Gln	Asp 455	Ser	Lys	Glu	Ser	Lys 460				

⁽²⁾ IMFORMATION FOR SEQ ID NO:185:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (8) TYFE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:
- Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro
- Asp Arg Gly Ser Gln Arg Arg Arg Arg Sis Pro Ala Ala Ser Thr Ala
- Thr Glu Arg Cyc Arg Phe Asp Arg His Val Ala Arg Gln Arg Cyc Gly
- Pho Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala
- The The Arg Arg See Gly Arg Arg Ash His Arg Cys Gly Trp His Pro 65 70 75 80
- Gly The Gly Ser Sis The Gly Ala Val Arg Arg Arg Sis Gle Glu Ala
- Arg Asp Gin Ser Leu beu beu Arg Arg Arg Gly Arg Val Asp Leu Asp
- Gly Gly Gly Arg Leo Arg Arg Val Tyr Arg Phe Glo Gly Cys Leo Val
- Val Val Phe Gly Gin Hix Lou Leu Arg Pro Leu Leu lie Leu Arg Val 138
- Sie Arg Glu Asn Leo Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro
- Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro
- Ris Val Gin Lau Arg Asp Ile Lau Ser Lou Leu Gly Bis Arg Ser Ala
- Gin Phe Siy His Val Glu Tyr Pro Leu Pro Leu Leu Ile Gin Arg Ber 200
- Leo Ala Ser Gly Ser Arg lie Ala Phe Pro Val Val Lys Pro Pro Glo
- Pro Leu Asp Val Ala Leu Glo Arg Glo Val Glu Sex Val Pro Pro Ile 233
- Arg Lys Val Arg Glo Arg Cys Ala Leu Val Ala Arg Fhe Glo Leo Pro
- Cys Arg Phe Phe Glu lle His Glu Val Gly Phe Thr Gly Arg Gly His

181

260 265 276

Pro Arg Arg Ile Gly 278

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 192 amino acids (B) TYPE: amino soid

 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

Arg Val Ala Ala Ser Phe Ile Asp Trp Les Asp Ser Pro Asp Ser Pro

Leu Asp Pro Ser Leu Val Ser Ser Leo Leu Asn Ala Val Ser Cys Gly

Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Asn Gly Ser Arg

Trp for Ser Met Pro Ser Gly The Arg Pro Gly Pro Arg Arg Ala Thr

Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ils Pro Ser Arg Arg

Ser Val Ala Pro Arg Ala Glu Pha Gly Thr Arg Lea Ala Ser Sis Arg

Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Ala Ser

Gly Arg Pro lie Ser Ser Pro Pro Ile Val Arg Ser Arg Ser Cys Val

Asp bys Asn Gly Arg Arg Cys Als Ser Gly Tyr Arg Arg Leo Asn Arg 130 140

Als Arg Ser Ser Ser Ile Als Als Arg Cys Arg Thr Ile Gly Thr Phe

Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro 165 176 170

Sis Val Thr Sis Cly Val Ale Pro Cly Val Thr Arg Arg Ila Cly Gly

(2) IMPORMATION FOR SEQ ID NO:187:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTS: 196 amino acida
- (S) TYPE: smino acid
- (C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187;

Gin Glu Arg Pro Gin Met Cys Gin Arg Val Ser Glu Ile Glu Pro Arg 1 10 15

The Gin The Phe Aso Arg Cys Ala Lou Pro His Tyr Trp His Phe Pro 20 30

Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro 35 40 45

Arg Asn Pro Arg Arg Set Ser Arg Arg Asp Ala Glu Asp Arg Arg Val

lie Phe Ala Ala Thr Les Val Ala Val Asp Pro Pro Leu Arg Gly Ala 65 70 75 80

Gly Gly Glu Ala Asp Glo Leu Ile Asp Leu Gly Val Cys Arg Arg Glo 85 90 95

Als Gly Arg Val Arg Arg Gly Gin Glu Leu His His Arg His Arg His 100 105 110

Gin Gly Ala Ala Pro Asp Leo Arg Arg Arg Arg Arg Arg Val 115 120 125

Old Gin Sis Arg Arg Leu Glm Arg Val Arg Gin Leu Arg Arg Tyr Val 130 140

Gln Thr Ala His His Arg Arg Pho Ala Arg Thr Asp Arg Val Arg Ris 145 150 150

Bis Vel Arg Gly Pro Ser Asn Bis Arg Arg Arg Arg Val Tyr Arg Gly 165 170 175

Ary His Ser Gly Ala Sly Gly Cys Pro Ala Gly Gly Ala Gly Ser Val

Cly Gly Ser Ala 195

(2) INFORMATION FOR SEQ ID NO:188:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: smino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ 10 NO.108:

Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr

1				5					10					15	
Ser	Thr	Aan	Ala 20	Pro	Ser	Letu	Fro	26r 25	Ala	Tyr	Ala	Glu	Val 30	Asp	Lys
Leu	Ile	Gly 35	Leu	Pro	Ala	Gly	Thr 40	Ala	bys	Arg	Tep	Tie 45	Asn	Gly	Tyr
Glu	Arg S0	Sly	Gly	Lys	Asp	Ris 55	Fro	Pro	lle	Len	Arg 60	Val	The	Pro	Gly
Ala 65	The	Pro	Trp	val	Thr 70	Top	Gly	Glu	Phe	Val 75	Glu	The	Arg	Met	Leu 80
Ala	Gla	Tyr	Arg	Asp 85	Arg	Arg	Lys	val	Pro 90	Ile	Val	Arg	Gln	Arg 95	Ala
Ala	Lle	Glu	Glu 100	Leu	Axg	Ala	Arg	Phe 105	Aao.	Leu	Arg	Tyr	Pro 110	E-6813	Ala
His	Leu	Arg 115	Fra	Phe	Les	Sex	Thr 120	Bis	Glu	Arg	Asp	125	Thr	Met	Gly
Gly	61.u 130	Glu	Ile	Gly	ž _{are} sz	8ro 135	Asp	Ais	Glu	Val	Thr 140	Me	Arg	Per	Gly
01m 145	Alæ	lea	Less	Gly	Asp 150	Ala	Ärg	Tep	Len	Ala 155	Ser	Len	Val.	Pro	Asn 160
Ser	Ala	årg	Gly	Ala 165	Thr	leu	Arg	Ārg	Leu 170	gly	Ile	The	Ąsp	Val 175	Ala
Asp	heu	Arg	89r 186	Sex	Arg	Sla	Val	Ala 185	Ārņ	Arg	Gly	Pro	Gly 190	Arg	Val
Pro	Asp	61y 195	Ile	Asp	Val	Ris	200 200	Leu	Exc	Phe	PYO	Asp 205	Leu	Ala	Asp
Asp	Asp 210	Ala	Aap	Asp	Ser	Ala 215	Pro	His	Sla	Thr	Ala 220	Phe	Lys	Arg	Leu
leu 225	Thr	Asn	Asp	Gly	Ser 230	Asn	Gly	Glu	Ser	Gly 235	Glu	Ser	Ser	Gla	Ser 240
Tle	Asn	Asp	Ala	Ala 245	Thr	Arg	Tyr	Met	Thr 250	Asp	Glu	Tyr	Arg	Gln 255	Phe
Pro	Thr	Arg	Asn 260	Sly	Alæ	Gln	Arg	Ala 265	Len	His	Arg	Val	Val 270	The	Leu
Lesti	Ala	Ala 275	Gly	Arg	Pro	Val	Leu 280	Thr	Sis	Суя	Pho	Ala 285	Gly	Lys	Asp
Arg	Thr 290	Gly	Phe	Val	Val	Ala 295	Leu	Val	Len	Glu	Ala 300	Val	Gly	Leu	Asp
Arg 305	Äsp	Val	Tle	Val	Ala 310	aşp.									

- (2) INFORMATION FOR SEQ ID NO:189:
 - (1) SEQUENCE CHARACTERISTICS:

184

- (A) LEMGTH: 2072 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTCGTGCCGA	TYCGGCACGA	corgagoago	CCAAGGGGCC	GTTCGGCGAA	GTCATCGAGG	60
CATTOGCCGA	cossersec	GGCAAGGGTA	AGCAAATCAA	CACCACGCTG	AACAGOCTGT	120
CCCACCCCTT	GAACGCCTTC	AATGAGGGCC	GCGGCGACTT	CTTCCCCCTG	GTACGCAGCC	180
TGGCGCTATT	COTCARCOCO	CTACATCAGG	ACGACCAACA	GTTCGTCGCG	TTGAACAAGA	240
ACCTTGCGGA	GTTCACCGAC	AGGTTGACCC	ACTCCGATGC	GGACCTGTCG	AACSCCATCC	300
AGCARTTOGA	CAGCTTGCTC	GCCGTCGCCC	SCCCSTTCTT	CECCAAGAAC	CGCGAGGTGC	360
TGACGCATGA	CCTCAATAAT	CTCGCGACCG	TGACCACCAC	GTTGCTGCAS	CCCGATCCGT	420
TGGATGGGTT	GGAGACOSTC	CEGCACATOR	TCCCGACGCT	GGCGGCGAAC	ATTAACCAGC	480
TTTACCATCC	GACACACGGT	GGCGTGGTGT	CGCTTTCCGC	GTTCACGAAT	TTOGOCAACO	540
CGRTGGRGTT	CATCTGCAGC	TOGATTOAGG	COGGTAGCCG	OCTCGGTTAT	CAAGAGTOGG	600
CCGAACTCTG	TECGCAGTAT	CYGGCGCCAG	TCCTCGATGC	GATCAAGTTC	ASCIACTITC	660
CSTTCGGCCT	GAACGIGGOO	AGCACOSCCT	CGACACTGCC	TARAGAGATC	GCGTACTOCG	720
AGCCCCGCTT	GCAGCCGCCC	AACGGGTACA	AGGACACCAC	garacccase	ATCTGGGTGC	780
CCGATACGCC	GTTGTCACAC	CGCAACACGC	AGCCCGGTTG	GGTGGTGGCA	CCCGCGATGC	840
AAGGGGTTCA	GGTGGGACCG	ATCACGCAGG	GTTTGCTGAC	GCCGGAGTCC	CTGGCCGAAC	900
TCATGGGTGG	TOCOGATATO	SCCCCTCCGT	CGTCAGGGCT	SCAAACOCCG	CCCGGACCCC	960
CGAATGCGTA	CGACGAGTAC	ccccrecrec	CSCCGATCSS	TTTACAGGCC	CCACAGGTGC	1020
CGATACCACC	GOCGCCTCCT	GEGCCCGACG	TAATOOOGG	TCCGGTGCCA	COGGTOTTGG	3080
CGGCGATCGT	GTTCCCAAGA	SATOSCOCGS	CAGCSTCGGA	AAACTTCGAC	TACATGGGCC	1140
TOTTOTTOOT	GTOGCOSGGC	CIGCCGACCI	TOCTOTTOGG	GGTGTCATCT	AGODOCGCCC	1200
GTGGAACGAT	GGCCGATCGG	CACGTGTTGA	TACCGGCGGAT	CACCOGCCTG	GCCTTGATCG	1260
CGGCATTCGT	CGCACATTCG	TGGTACCGCA	CAGAACATCC	GCTCATAGAC	ATGCGCTTGT	1320
TCCAGAACCG	AGOGGTCGCG	CAGGOCAACA	TGACGATGAC	GGTGCTCTCC	CTORRECTET	1380
TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TOCAGCAAGT	GTTGCACCAA	TCACCGATGC	1440
AATCGGGGGT	GCATATCATC	CCACAGGGCC	TOSSTGCCAT	GCTGGCGATG	CCGATCGCCG	1500
GAGCGATGAT	GGACCGACGG	GGACCGGCCA	AGATCGTGCT	GGTTGGGATC	ATGCTGATCG	1560

WO 98/16646

185

PCT/US97/18293

GAGCACCUTT	GCTATCCGCA	TGACUTCTGC	TT			2072
TAGTGGTCTC	GACGCTGATC	CCCSCGGCAT	TOCTGOOGRA	ACAGCAGGCT	AGTCATCGAA	2040
CCCAACTSCT	GCATGACCTT	TCGCACGCCT	ACGCGGTGGT	ATTCGTGATA	GOGACCGCCC	1980
geseesses	esesseses	GTTGACCCTT	CCTCCCTACC	GCGCCAAACC	AACTTCGCGG	1920
agttcaatca	CASCGAAATC	ATCCCTACTC	CAAAGAAAGT	COCACTOACC	CCAGAGAGTG	1860
TCAACCAGCA	GGTGGGCCGGT	TCGATAGGGA	CCGCACTGAT	GYCGGYGCTG	CTCACCTACC	1800
GGGCGGCAGT	GCAGACCCTS	OCCCCACATC	AGATOGOTOG	CCGTTCGACG	CTCATCAGCS	1740
TGCCGACCBG	GCTGGCAATC	ATGGGCATGG	GCATGGGCTG	crocargars	CCACTGTCCG	1680
CTGCGGGGTT	GGGCACCTTC	SCCTTTGGTG	TOGOGOGGGA	AGCGGACTAC	TYACOCATTC	1.620

(2) INFORMATION FOR SEQ ID NO:190:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1923 base pairs (B) TYPE: quoleic acid (C) STRANDEDNESS: single (D) TOPGLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TCACCCCGGA	GAAGTCGTTC	CTCGACGACC	TOGACATOGA	CTCGCTGTCG	ATGGTCGAGA	60
TCGCCGTGCA	GACCGAGGAC	AAGTACGGCG	TCAAGATCCC	CGACGAGGAC	crescoegre	120
TGCGTACCGT	CGGTGACGTT	groscoraca	TOCAGAAGCT	CGAGGAAGAA	AACCCGCAGG	180
CSOCTCAGGC	crrcccccc	ABGATTGAGT	CGGAGAACCC	CGATGCGGCA	CGAGCAGATC	240
GSTGCGTTTC	ACCCACATEG	CAAGCTCGAG	ACGCCCGTCG	TOOTOTTGCA	COCTCAGCCA	300
GGTTGGCGTG	TOSCOSCOTT	CCAGCAAGTG	TTCCCACCAC	ACGANGGGAC	OCTOGGGAAA	360
GGTGACTGAT	CCGCGGACCA	CATAGTCGAT	GCCACCGTGG	CTGACAATTG	cecceserec	420
GASTTGGCGG	GGGCCGAATT	GCGGCATTOC	GYCGAAGGCC	ASCSSATOOC	99090000000	480
CGGCGTGGCT	GGTGTTTTGG	GOCGCOGGAT	SCCCACGACG	AGRACGACGA	TGGCGGCGAT	540
GAACAGCGCC	ACKKUBATCA	CGACCAGUAG	ATTTCCCACG	CATACCUTCT	CGTACCSCTG	600
CCCCCCCCTT	GGTCGATCGG	TCGCATATOG	ATGGCGCCGT	TTRACGTARC	ASCTTTCGCG	660
GGACCGGGGG	TCACAACGGG	CGAGTTGTCC	GGCCGGGAAC	CCSGCAGGTC	ressesses	720
TCACCCCAGC	TCACTGGTGC	ACCATCCOOG	TOTOGGTGAG	CSTSCAACTC	ÄÄÄCACACTC	780
AACGGCAACG	GTTTCTCAGG	TCACCAGCTC	AACCTCGACC	COCAATCGCT	CGTACGTTTC	840
GACCGOSCGC	AGGTCGCGAG	TCAGCAGCTT	TGCGCCGGCA	SCTTTCSCCS	TGAAGCOGAC	900

186

CAGGGCATCG	TAGGTTGCGC	CACCOGTSAC	ATCOTOCTCG	GCGAGGTGGT	OGGTCAAGCC	960
SCGATATGAG	CAGGCATCCA	GTGCCAGGTA	STTSCTGGAG	GTGATGTCCG	CCAAGTAGGC	1020
GTGGACGGCA	ACAGGGGCAA	TACGATGCGG	CGGTGGTAGC	OGGGTCAAGA	CCGAATAGGT	1080
TTCCACAGCC	GCGTGCGCGA	TOAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CGGCGGCCTC	1140
GTGCCCTTCG	TGCCAGGTCG	CGAATOOGGC	AACCAGCACC	CTCGTGTCTG	GTGCGATCAC	1200
CGCCGTGTGC	CATCGAGOGT	TTCCCGAACG	ATTTCGTCGG	TCAACGGGGG	CAGGGGGACGT	1260
TCTGGCCGTG	OGAOGAGAAC	CGASCCTTCC	CGAACGAGTT	CGACACCGGT	CGGGGCCGGC	1320
TCBATCTCGA	TOCGCCCCATC	GEGETEGETS	ATCTCCACCT	SGTOSTTOCC	GCGCAAGCCA	1380
aggogaraga	GAATCCGCTT	GGGAAYCACC	AGACGTCCTG	CGACATCGAT	GGTTGTTCGC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCGTGTC	CTOCOCGGGA	TGTCGGGACG	1500
ATCCGCTAGC	GTATCGAACG	ATTGTTTCGG	AAATGGCTGA	GGGAGCGTGC	GGTGCGGGTG	1560
ATGGGTGTCG	ATCCCGGGTT	GACCCGATGC	GGGCTGTCGC	TCATCGAGAG	TGGGCGTGGT	1620
CGGCAGCTCA	CCGCGCTGGA	TGTCGACGTG	GTGCGCACAC	CCTCGGATGC	GGCCTTGGCG	1690
CAGCGCCTGT	TEGCCATCAS	CGATGCCGTC	GASCACTGGC	TGGACACCCA	TCATCCGGAG	1740
GTGGTGGCTA	TOGAACGGGT	STICICICAS	CTCAACSTSA	CCACGGTGAT	GGGCACCGCG	1800
CMBCCCGGCG	GOGTGATCGC	coroccesce	GCCAAACGTG	STSTCSACST	CCATTTCCAT	1860
ACCCCCAGCG	AGGTCAAGGC	GGCGGTCACT	GGCAACGGTT	OUGUAGACAA	GOCTCAGGTC	1920
ACC						1923

(2) INFORMATION FOR SEQ ID NO:191:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTA: 1055 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEONESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID No:191:

CIGGCGTGCC	AGTGTCACCG	GCGATATGAC	GECGGCATTC	ANTTTCGCOG	CCCCCCCCGGA	60
CCCGTCGCCA	COCANTOTEG	ACCACCCGGT	COSTCAATIG	CCGAAGGTCG	CCANGTGCGT	120
GCCCAATGTG	STSCTSSSTT	TCTTGAACGA	AGGCCTGCCG	TATCGGGTGC	CCTACCCCCA	180
AACAACGCCA	STOCAGGAAT	ccssrcccsc	GCGGCCGATT	COCAGONGCA	TOTGOTAGGO	240
GGGGATGGTT	CAGACGEAAC	OGTTGGCTAG	GTCGASACCC	goscosogg	COCTOCACGG	300
GCTCATGGCA	GCGAAATTAG	AAAACCCGGG	ATATTGTCOG	COGATTGTCA	TACGATGCTG	360

187

AGTGCTTGG	GGTTCCTCTT	TAGCCATTGA	STOTOGATST	GTTGAGACCC	TOGCCTTGGAA	420
GGGGACAACG	Tecttrecc	TOTTGGTCCG	cerrrecese	COGACGOGGT	GGTGGCGAAA	480
COSSCTGASI	COCCAATCCT	cccccccrrq	TCGGTTCCGC	TCAGCTGGGG	ACTGGCTGTG	540
CCACCOGATO	S ATTATGACCA	CTGGGCGCCCT	GCGCCGGAGG	ACCCCCCCCA	TOTOGATOTO	600
CAGGCGGGCC	AAGGGGGGGA	OGCAGAGGCC	SCGGCCATGG	ACGAGTGGGA	TGAGTGCCAG	660
GCGTGGAAC	agroogrooc	GGAGAACGCT	GAACCCCCGCT	TTGAGGTGCC	ACGGAGTAGC	720
AGCASCGTG	TTCCGCATTC	TCCGGCGGCC	GGCTAGGAGA	GGGGGCGCAG	ACTGTCGTTA	789
TTTGACCAGI	GATOSGOSGT	CTCGGTGTTC	ccsosseccs	CTATGACAAC	ACTCAATCTC	840
CATGACAAGI	TACAGGTATT	AGGTCCAGGT	TCAACAAGGA	GACAGGCAAC	AFGGCAACAC	900
GTTTTATCAC	GGATCCOCAC	GCGATGCGGG	ACATGGCGGG	COSTITICAS	GTGCACGCCC	960
AGACGGTGGF	. GGACGAGGCT	CGCCGGATGT	GGGCGTCCGC	GCAAAACATC	TOGGONGOGG	1020
OCTOGACTOC	CATGGCCGAG	GOGACCTOGO	TAGAC			1055

(2) IMPORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 359 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEONESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

60	GTGGCGTGTG	CGCACTGGCC	CCGCCTCGAC	TOOGCOGGGG	GTTGGCATAC	cccccrccrr
120	ATOCACCTCG	CCTCGCAATC	TOUGAGATCA	CGCCGAACCA	CCACCGGGAT	TCCGGGCTGA
180	CTTGGTATAG	CCTGCATCAC	TOCCACAGOS	cooccoccarc	CACCCAGCCA	CCCACCTCCT
240	ACCOGGACGG	CCACCTGGTT	TACTOGCCCA	GAAGTTGTAG	CCAGCCGCAG	acerasaeca
300	GAAAACCAGA	ASTTGACCOS	CCGCCGAGGT	CGGCATGTCG	SGCTGAAGGT	GAGAAGTTCA
359	ATAGGTCAG	CENCECCECE	ACGACAAACC	CCCGGGGCCAC	GOTOCTOSSS	TOCTOCHGCA
						e se s

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEONESS: single
 - (D) TOPOLOGY: linear

	(×i)	SEÇ	DENC	e de	SCRI	PTIO	N: S	EQ I	O NO	:193	8. 2.					
AACG	GGGC	CG T	gggc	acce	c rc	CTCT	AAGG	GCT	cros	TTG	GYCG	CATG	aa G	Tacr	GGAA	Ģ
GATG	CATC	rr s	GCAG	attc	c ca	CCAG	AGCA	AAA	CAGC	cac	TAGT	CCTA	or c	CGAG	rcac	C .
CGCA	aagt	rc c	tcga	ataa	c to	CGTA	aaas	GAG	esec	AAA	coss	STCT	cc r	TCGC	TAAG	Ċ.
TGCG	COCCCBARCO ACTICAGGIT COOGGACTOO TIGACCITCCA GACCGATTCC TTOBAGIGGC															
TGAT	TGATCGGTTC GCCGCGCTGG CGCGAATCCG CCGCCGAGCG GGGTGATGTC AACCCAGTGG															
GTGG	PTGGCCTGGA AGAGGTGCTC TACGAGCTGT CTCCGATCGA GGACTTCTCC															
(2)	(2) INFORMATION FOR SEQ ID NO:194:															
	(i) SECHENCE CHARACTERISTICS: (A) LENGTH: 679 smino acids (B) TYPE: smino acid (C) STRANGEDNESS: (D) TOPOLOGY: linear															
	(xi)	SEQ	JENC	e de:	SCRI	PTIO	s: si	e i	0 80	:194	š					
	Gla	Gln	Pro	Lys	©ly S	Pro	Phe	Sly	Glu	Val 10	ILs	Glo	Als	Pho	Ala 15	Asgr
	Gly	læu	Ala	Gly 20	Lys	Gly	Lys	Gla	Ile 25	Asn	The	Thr	leu	Asn 30	Ser	Leo
	Ser	Glm	Ala 35	les	Asn	Ala	Less.	Asn 46	Glu	Gly	Arg	Gly	Asp 45	Phe	Phe	Ala
	Vəl	Val 50	Arg	Ser	Leu	Ala	Leu 55	Phe	Val	Asn	Ala	Leu 60	8is	Gla	Asp	Asp
	Sln 65	Sin	Phe	Val	Ala	Leu 70	Äsn	Lys	Asn	Leu	Ala 75	Glu	Phe	Thr	Asp	Arq 80
	Leu	Thr	Nis	Ser	Asp 85	Ala	Asp	Leu	Ser	Asn 90	Ala	He	Gln	Gln	Phe 95	Asp
	Ser	Leu	Leu	Ala 100	Val	Als	Arg	Pro	Phe 105	Phe	Ala	Lys	Asn	Arg 110	Glu	Val
	Leu	Thr	Sis 115	Asp	Val	Asn	Asn	Leu 120	Ala	The	Val	Thr	Thr 125	Thr	Leu	Leu
	Gin	Pro 130	asp	Pro	Leu	Asp	Gly 135	Leu	Giu	Thr	Val	Leu 140	Sia	lle	Phe	Pro
	Thx 145	Leu	Ala	Ala	Asn	Ile 150	Asn	Gla	Leu	Tys	8is 155	Bro	Phx	His	Gly	61y 160
	Val	Vall.	Ser	Leu	Ser 165	Ala	Phe	Thr	Asn	Phe 170	Ala	Asn	Pro	Met	Glu 175	Phe

Tle	Cys	ser	Ser 180	Ile	Gln	Ala	Gly	Ser 185	Ārģ	žæti	Gly	Tyx	Gla 190		Ser
Ala	Glu	leu 195	Сув	Ala	Olo	Tyr	Leu 200	Als	Pæo	Val	Lenix	Asp 205	Ala	lle	Lys
Phe	Asn 210	Tyx	Phe	Pro	Phe	Gly 215	Letu	Asn	Val	Ala	8er 220	That	Ala	Sex	The
Len 225	Pro	Lys	Glu	Ilm	Ala 230	Tyr	Ser	alu	Pro	Arg 235	Leb	Gln	Fro	Pro	Asn 240
Gly	Tyr	Lys	Asp	Thr 245	Thr	Val	Pro	Gly	Ila 250	Tep	Val	Pro	Äsp	Thr 255	Pro
Leo	Ser	His	Arg 260	Asn	Thr	Gln	Pro	61y 265	Trp	Val	Val	Ala	Pro 270	Gly	Mes
Gin	G.i.y	Vai 275	Gln	Va.i.	Gly	Pro	11e 280	Thr	Gln	Gly	Leu	100 285	Thr	Pro	Glu
Ser	les 290	Ala	6.1.vi	Lea	Net	Gly 295	Gly	Pro	Asp	Lle	Ala 300	Pro	Pro	Ser	Ser
G1y 305	Lea	Sin	The	Pro	Pro 310	Gly	Ero	Pxx	Asn	Ala 315	Tyx	Asp	Glu	Tyr	Pro 320
Val	Leu	Pro	Pro	Ile 325	Gly	Leu	Gln	Ala	Fro 330	Sln	Val	Fro	ĭle	Pro 335	Pro
Pro	Pro	Pro	Gly 340	Pro	Asp	Val	Ile	Pro 345	Sly	Pro	Val	Pro	Pro 350	Val	Leu
Ala	Ala	11e 355	Val	Phe	Pro	Arg	Asp 360	Arg	Pro	Ala	Als	Ser 365	Glu	.Aen	Phe
Asp	Tyr 370	Met	Gly	L® u	Leu.	Leu 375	Leu	šer	Bro	Gly	Leu 380	Ala	The	Pho	Lea
Pho 385	Gly	Val	Ser	Ser	Ser 390	Pro	Als	Arg	Gly	Thr 395	Met	Ala	Asp	Arg	His 400
Val	Leau	lle	Pro	Ala 405	lle	The	Gly	Lasta	Ala 410	Leu	Ile	Ala	Als	Phe 415	Val
Ala	His	Sex	Trp 420	Tyr	Arg	Thr	Glu	Nis 425	Pro	Leu	Ile	Asp	Met 430	Arg	Leu
Phe	Gin	Asn 435	Arg	Ala	Val	Ala	Gin 440	Ala	Asn	Met	The	Met 445	Ther	Val	Les
Ser	Lens 450	Gly	Leu	Phe	Gly	Ser 455	Phe	Len	Les	Leo	800	Ser	Tyr	Eans	alo
Gln 465	Va.L	Lea	His	Gln	9ax 470	Pro	Met	Olin	Ser	Gly 475	val	His	Ile	lle	9ro 480
Gln	Gly	Leu	@IY	Ala 465	Met	Len	Ala	Met	Pro 490	11.6	Ala	Gly	Ala	Met 495	Met.
Asp	Arg	Arg	Gly 500	Pxo	Ala	Lys	Ilæ	Val. 505	Leu	Val.	Gly	Ile	Met 510	Leu	He

Ala Ala Gly Leo Gly Thr Phe Ala Phe Gly Vol Ala Arg Gln Ata Asp 520 Tyr Leu Pro Ile Leu Pro Thr Gly Leu Ala Ile Met Gly Met Gly Met Gly Cys Ser Met Met Pro Leo Ser Gly Ala Ala Val Gln Thr Leo Ala 550 888 Pro Nis Gin Ile Als Arg Gly Ser Thr Leu Ile Ser Val Asn Gln Gln Val Gly Gly Ser Ile Gly Thr Ala Lon Met Ser Val Len Len Thr Tyr 585 Gin the Asn His Ser Giu Ile Ile Ala Thr Ala bys bys Val Ala Leu 600 Thr Pro Glu Ser Gly Ala Gly Arg Gly Ala Ala Val Asp Pro Ser Ser Les Pro Arg Glo Thr Aso Phe Ala Ale Glo Les Les Asp Les Ger 630 Ris Ala Tyr Ala Val Val Phe Val Ile Ala Thr Ala Leo Val Val Ser Thr Leu Ile Pro Ala Ale Phe Leu Pro Lys Gln Gin Ala Ser His Arg 665

Arg Ala Pro Les Les Ser Ala 675

(2) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEONESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID MO:195:

The Pro Glu Lys Ser Phe Val Asp Asp Les Asp Ele Asp Ser Les Ger 1 10 15

Met Val Gio Ile Ala Val Gio The Gio Asp Lys Tyr Giy Val Lys Ile 20 25 30

Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala 35 46

Tyr lie Gin Lys Lou Giu Giu Asn Pro Glu Ala Ala Gin Aia Leu 50 60

Arg Ala Lyo Tie Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg 65 70 75 80 Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Len Ala 85 90 95

Arg Ser Als Arg Leu Als Cys Arg Arg Leu Pro Ala Ser Val Pro Thr 100 105 110

The Arg Arg Asp Pro Arg Glu Arg 115 120

- (2) INFORMATION FOR SEQ ID NO:196:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 89 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

 - Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser 20 25 30
 - Tie Ala Glu Gly Arg Gin Val Arg Ala Gln Cys Gly Ala Gly Phe Leu 35 40 45
 - Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 60
 - Pro Gly Ile Arg Ser Arg Als Als Asp Ser Gln Arg His Leu Leu Als 65 70 75 80

Gly Asp Gly Ser Asp Val Thr Val Gly 95

- (2) INFORMATION FOR SEQ ID NO:197:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANCEONESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197;
 - Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala I 10 15
 - Val Ala Cys Val Arg Ala Asp Nis Arg Asp Arg Arg Thr Ile Arg Asp 20 25 30

- His Leu Ala Met Ile Sie Leu Ala Glo Leu Vel Thr Gin Pro Pro Gly
 35 40 45
- Gly Val Arg Glo Arg Lou His His Leu Gly Tiv Ala Val Ala Pro Glo 50 55 60
- Bro Glo Glo Val Val Val Leo Ala Sis Mis Leo Val Thr Gly Thr Gly 65 70 75 80
- Gin Val Gin Gly Giv Arg His Val Ala Ala Sin Val Val App pro 95
- Glu Asn Gln Ile Leo Arg Gln Val Leo Gly Pro Ala Pro His Asp Lye 100 110

Pro Asp Ala Gly Ile Gly Gls 115

- (2) INFORMATION FOR SEQ ID NO:198;
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMSTH: 116 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:
 - Arg Als Arg Gly His Arg Ser Ser Lys Gly Ser Arg Trp Ser His Glz 1 10 15
 - Val Lau Glo Gly Cys Ile Leo Ala Asp Ser Arg Gln Ser Lys Thr Ala 20 25 30
 - Als Ser Pro Ser Pro Ser Ang Pro Gin Ser Ser Ser Asn Asn Ser Val 35 45
 - Pro Gly Ala Pro Asn Arg Val Ser Phe Ala Lys Leu Arg Glu Pro Leu 50 55 55
 - Glu Val Pro Gly Lou Lau Asp Val Gln Thr Asp Ser Phe Glu Trp Lou 65 70 75 80
 - The Sty Sor Pro Arg Trp Arg Stu Ser Ala Ala Stu Arg Sty Asp Val
 - Asn Pro Val Gly Gly Leb Glo Glo Val Leu Tyr Glo Leu Ser Pro Ile 188 - 188

Glu Asp The Ser

- (2) INFORMATION FOR SEQ ID SO:189:
 - (%) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDWESS: single

193

(D) TOPOLOGY: linear

(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO:19	9:		
TOCTACGCAG	CAATCGCTTT	GGTGACAGAT	GTGGATGCCG	GCGTCGCTGC	TGGCGATGGC	60
GTGAAAGCCG	CCGACGTSTT	CGCCGCATTC	GGGGAGAACA	TOGANCTUCT	CAAAAGGCTG	120
GTGCGGGGCCG	CCATCGATOS	ggrogcogac	GAGCGCACET	GCACGCACTG	TCAACACCAC	180
GCCGGTGTTC	CGTTGCCGTT	CGAGCTGCCA	TGAGGGTGCT	CCTCACCGCC	ccscccscr	240
TCATCGGGTC	GCGCGTGGAT	GCGGCGTTAC	GGGCTGCGGG	TCACGACGTG	GTGGGCGTCG	300
ACCCCCTCCT	8000800808	CACGGGGCCAA	ACCOGGTGCT	GCCACCGGGC	TGCCAGCGGG	360
TOSACSTOCS	CGACGCCAGC	occesseccc	corrorrosc	COSTSTCGAT	CTOSTGTGTC	420
ACCAGGGGGG	CATGGTGGGT	GCCGGCGTCA	ACGCCGCCGA	CSCACCCCCC	TATGGCGGCC	480
ACAACGATTT	OGCCACCACG	GTGCTGCT66	CGCAGATGTT	caccaccass	GTCCGCCGTT	540
TGGTGCTGGC	GTGGTCHATG	STGSTTTACS	SSCASSGGGG	CTATGACTGT	CCCCAGCATG	600
GACCGGTCGA	cccccreccs	CGGCGGGGGAG	CCGACCTGGA	CAATOGGGTC	TTCGAGCACC	880
GTTGCCCGGG	GTGCGGCGAG	CCAGTCATCT	GGCAATTSGT	CCACGAAGAT	GCCCCGTTGC	720
SCCCSCGCAG	CCTGTACGCG	GCAGCAAGAC	OSCGCAGGAG	CACTACUCCC	TGGCGTGGTC	780
GGRAACGAAT	goosgreeg	TGGTGGCGTT	G			811

(2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 966 base pairs
 - (8) TYPE: rucleic acid
 - (C) STRANDEONESS: single
 - (D) TOPOLOGY: linear

(zi) SEQUENCE DESCRIPTION: SEQ 10 NO:200:

STOCCGCGAT	GTGGCCGAGC	ATGACTTTOG	GCAACACCOG	COTAGTAGTC	GRAGATATOS	60
GACTTTGTGG	roccsgrage	GGGATAGAGC	ACCTSTCSSC	STISSICAGO	GTCACCCGTT	120
GCTCGGACGC	CGAACCCATG	CTTTCAACGT	AGCUTGTCGS	TCACACAAGT	CGCGAGCGTA	180
ACGTCACGGT	CABATATOGO	GTGGAATTTC	GCCGTGACGT	recoercoes	GACAATCAAG	240
GCATACTCAC	TTACATGOGA	GCCATTTGGA	CGGGTTCGAT	CGCCTTCGGG	CTGGTGAACG	300
TOCOGGTCRA	GGTGTACAGC	GCTACCGCAG	ACCACGACAT	CAGGTTCCAC	CAGGTGCACG	360

194

CCAACGACAA	COGREGORATE	CGGTACAAGC	CCCTCTCCCGA	GGCGFGTGGC	GAGGTGGTCG	420
ACTACCGCGA	TCTTGCCCGG	OCCTACGACT	CCGGCGACGG	CCAAATGGTG	GCGATCACCG	480
ACGACGACAT	CGCCAGCTTG	CCTGAAGAAC	GCAGCCGGGA	GATCGAGGTG	TTGGASTTCG	540
Topococcae	COACOTOGAC	COMMISSION	TCGACCGCAG	CTACTTTTTS	GAGCCTGATT	600
CGAAGTCGTC	GAAATCGTAT	GTGCTGCTGG	CTAAGACACT	COCCEMENCE	GACCGGATGG	660
CGATCGTGGA	TOGOCCCACC	SSCCSTGAAT	GCAGGAAAAA	TANGAGCCGC	TATOCACAAT	720
TCGGCGTCGA	GCTCGGCTAC	CACAAACGGT	AGAACGATCC	AGACATTCCC	CACCTGAAGT	780
GCGGCGCTAT	ACAACCCCCT	CTGCCCGATT	ATCAAACGCA	AAATACGCTT	ACTCATGCCA	840
Toggogorgo	TCACCOSATS	CGACGTTTTT	SCCACSCFCC	ACCGCCTGCC	SCSCSACCTC	900
AAGTGGGCAT	GCATCCCACC	CGTTCCCGGA	AACOSSTTOC	GGCGGGTCGC	CTCATCSCTT	960
CATCCT						966

(2) INFORMATION FOR SEQ ID NO:201:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 2367 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

60	TTGCCCCCCGT	GTTTGCGCCC	CGTTACCOCC	CCASCGCCCAC	GGCAATACOG	COGCACCGCC
120	CYGGCGTTGC	SCCAAAAGTA	AGTTOTCATO	CCCCCGATGG	occeccecco	TSOCSOCCOT
180	GCCCCACCGA	GACTOCACCG	CASCCCCCCC	CCGTCACCGC	ccccrrcccq	CACCOGGAGCC
240	CCACCCTTGC	SCCGCTGGCG	CCATCAACAT	ccaccarrec	GCCACCUTTG	creeseses
300	COSGAGCCAC	CGAGCTGCCG	CGACACCAAG	OCCACCCOGC	ACCERCTOCE	CACCCACGCC
360	TGAAACGTCG	CGGGTCTTCG	CACCAGCCAC	ACCGCCCAGA	TACGCCACCO	CATCACCACC
420	CCGCCATCCC	AACGCCGGCG	ccccxccccc	TTACCCCCAA	ACCRCCGCCC	COGTOCCACC
480	ccsscscccc	CAACAACCCG	CGTTGCCGAA	COSTIGCCGC	gccerrecce	accassacca
540	CTGCCGCCCT	GCCAAGGCCG	ORCCGCCGAC	stacasass	asasaasas	corrected
600	TCTGGGCTGT	TSCCTCGGGG	CATCSGSTIC	CCCCCGACCA	ACCACCCTTG	TOCCGCCATC
660	GCGCCGTCAC	ccccccara	TTCCCCCCGG	TTGCCGCCGC	GATGCCAGCG	CARACCTOGO
720	AGCAACCCGC	ATCACCGAAT	CETTECOSCC	CCGGCGCCAC	ACCOGOGOGA	CACCGATACC
780	GCGGCACTGG	GCCGCCGGAG	CGCCACCGTC	Gerececers	ATTGCCGCCA	CEGCCCCACC

CAGCCCCCTT	ACCACCGAAA	CCGCCGCTAC	CACCOSTAGA	GCTGGCAGTG	GCGATGTGTA	840
CGAAAGCGCC	GCCTCCGGCG	CCCCCCCTAC	CACCCCCACT	GCCGGCGGCT	ACACCGTCGG	900
ACCOSTTECC	ACCATCACCG	CCAAAGGCGC	TOSCRATGTO	SCCCTGCGCG	ACTOOGOOST	960
CCCCCCCCTT	accaccaacos	COACCECTORS	COCCECTACC	GCCGTCACCA	CCCCCACCCC	1020
CGGTGGCCTT	GCCCGAGCCT	GCCGTCGCGG	TGGCACCGTC	GCCGCCGGTG	CCACCOGTCG	1080
@CSTGCCGGC	AGTGCCATGG	CCGCCCGTGC	CGCCGTCGCC	GCCGGTTTGA	TCACCGATGC	1140
CCGACACATC	TOCCOCCCCTC	TOCCCGGTGC	TOSCOCCOCO	GCCGGGGGTG	GGATTGACCC	1200
CGTTTGCCCC	GGCGAGGCCG	gegeegeegg	TACCACCOGC	GCCGCCATGG	CCGARCAGCC	1260
CGGCGTTGCC	GCCGTTACCG	OCOGCACCUC	CGATGCCTGC	GGOCACGCTG	GTGCCGCCGA	1320
CACCGCCGTT	SCOSCOGTTG	OCCCACAAOC	ACCCCCCGTT	CCCACCGGCA	ccaccaaaca	1380
COCCOGTACC	ACCOGCCCCG	ccsrracese	CGTTGCCGAT	CARCCCGGCC	GOSCOTOGGE	1440
TGCCGCCGGT	TTGACCGAAC	CCGCCAGCCG	CCCCCTTGCC	ACCGTTGCCA	AACAGCAACC	1500
CGCCGGCCGC	GCCAGGCTGC	COSSGTCCCS	TOCOSTOGGC	@CCGTTTCCG	ATCAACGGGC	1960
GCCCCAAAAG	caccressrs	GGGGCATTCA	CCGCACCCAG	CAGACTOCGC	TCAACAGCGG	1620
CTTCAGTGCT	GGCATACCGA	cccacacaca	CASTCAACGC	CTGCACAAAC	TGCTCGTGAA	1680
ACGCTGCCAC	CTGTACGCTG	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCG	AACAACCCCG	1740
CAATOGOOGO	CGACACTICA	TCCCCACCCG	CAGCCACCAC	TTCCGTCGTC	GGGATOGCOS	1800
COGCCGCATT	Accedesere	ACCTGCGAAC	CAATAGTCGA	TAAATOCAAA	GCCGCAGTTG	1860
CCAGCAGCTG	ossostosco	ATCACCAAGG	ACACCTOGCA	CCTCCGGATA	CCCCATATCG	1920
CCCCACCGTG	TOCOCAGOGG	OCACGTGACC	TTTGGTCGCT	GGCTGGC66C	CCTGACTATG	1980
GCCGCGACGG	cccrcarrar	GATTOSCOCC	GOCCECCASC	TTGTTGCGCG	AGTTGAAGAC	2940
GGGAGGACAG	OCCGAGCTTG	GTGTAGACGT	GGGTCAAGTG	SCRATGCACG	GTCCGCGGCC	2100
AGATGAATAG	GOGGACGCCG	ATCTCCTTGT	TCCTCAGTCC	CTCACCGACC	AGTAGAGCCA	2160
CCTCAAGCTC	TGTCGGTGTC	AACGCGCCCC	AGCCACTTOT	CRESCOTTEC	CETGCACCGC	2220
GGCCTCGTTG	COCSTACSCS	ATCUCCTCAT	CGATCGATAA	CGCAGTTCCT	TOGGOOCAGE	2288
Catostogaa	CTCSCTSTCA	CCCATGGATT	TTCGAAGGGT	SSCTAGOGAC	GAGTTACAGC	2340
CCGCCTGGTA	GATOCOGAAG	COGACCG				2367

(2) INFORMATION SON SEQ ID NO:202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid

 - (C) STRANGEDNESS: (D) TOPOLOGY: Linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:
- Gin Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cya Ala Thr Val
- Gly Ala Gly Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala
- Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Gla Ser Ala Ala Ser
- Gly Ala Ala Aha Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro 50 60
- Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp
- Ser Ale Yel Ale Ale Yel Ale Ale Ale Ale Thr Gly Ser Gly Gly Thr
- Ale Vel Thr Thr Gly Thr Ale Gly Gly Leu Ale Arg Ale Cys Arg Arg 100 100
- Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala
- Met Ala Ala Arg Ala Ala Val Ala Ala Giy Leu Ile Thr Asp Ala Giy
- His lie Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Als Gly Arg Gly
- Ile Asp Pro Val Cys Pro Gly Glo Ala Gly Ala Ala Gly Thr Thr Gly
- Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Vel Thr Ala Arg Thr 185
- Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala
- Val Ala Pro Gin Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala
- Gly The The Gly Pro Ala Val Ala Ala Val Ala Asp Gin Pro Gly Arg
- Ala Ser Ala Ala Ala Gly Leo Thr Glo Pro Ala Ser Arg Ala Val Ala
- The Val Ala Lys Glo Glo Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys 265
- Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ale Pro Glo Lys Arg Leo
- Gly Gly Arg Ile Sis Arg Thr Gln Gln Thr Pro Lea Asn Ser Gly Phe 295

305	Ala	Gly	Ile	Pro	Thr 310	Arg	Gly	Arg	Ser	61n 315	Ārģ	Leu	His	ioys	Leu 320
Leu	Val	Буз	Arg	Cys 325	His	Leu	Tyr	Ala	91e 330	Arg	Leu	Ile	Leu	Pro 335	Ser
Met.	Gly	Pro	Glu 340	Gin	Pro	Arg	Asn	Arg 346	Arg	Arg	His		Ile 350	Gly	Ser
Arg	Ser	His 355	His	Phe	Arg	Arg	Arg 360	Asp	Arg	Arg	Gly	Arg 365	lle	Ser	Arg
Ala	8is 370	Leu	Arg	Thr	Asn	Ser 375	Arg								

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2852 base pairs (B) TYPE: oucleic acid (C) STRANDEUNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ 10 NO:203:

GGCCAAAACG	CCCCGGCGAT	CCCCCCCACC	GAGGCCCCCT	ACGACCAGAT	GTGGGCCCAG	60
GACGTGGCGG	CGATGTTTGG	CTACCATGCC	GGGGCTTGGG	csscostere	GGCGTTGACA	1.20
CCGTTCGGCC	AGGCGCTGCC	GACCGTGGCG	00C0GCGGTG	COCTOCTORS	ceceeccec	180
GCTCAGGTGA	CCACGCGGGT	CTTCCGCAAC	CYGGGCTTOG	CGAACGTCCS	CGAGGGCAAC	240
STCCSCAACS	GTAATGTCCG	GAACTTCAAT	CTOGGCTCGG	CCAACATOGG	CAACGGCAAC	300
ATCGGCAGCG	GCBACATOOG	CACCTCCAAC	ATCGGGTTTG	GCAACGTQGG	TOCTGGGTTG	360
ACCGCAGCGC	TGAACAACAT	CSGTTTCCCC	AACACCOOCA	SCARCARCAT	CGGGTTTGGC	420
AACACCGGCA	GCAACAACAT	cocorrecce	AATACCGGAG	ACGGCAACCG	AGGTATCGGG	480
CTCACGGGTA	GCGGTTTGTT	GGGGTTCGGC	GGCCYGAACT	CGGGCACCGG	CAACATOSST	540
CTĠTTCAACT	OGGGCACCGG	AAACSTCGGC	ATCOGCABCT	COCCTACCGG	GAACTGGGGC	600
ATTOGCAACT	CGGGCAACAG	CTACAACACC	GGTTTTGGCA	ACTOCGGOGA	CGCCAACACG	660
SSCTTCTTCA	ACTCCGGAAT	AGCCAACACC	GGCGTCGGCA	ACGXXXXXAA	CTACAACACC	720
GGTAGCTACA	ACCCGGGGAA	CAGCAATACC	GOCOGCTICA	ACATOGGCCA	STACAACACS	786
GGCTACCTGA	ACAGCGGCAA	CTACAACACC	GGCTTGCCAA	ACTCCGGCAA	TGTCAACACC	840
SGCSCCTTCA	TTACTGGCAA	CTTCAACAAC	GGCTTCTTGT	GCCGCCGCCGA	CCACCAAGGC	900
CTGATTTTCG	SGAGCCCCCG	CTTCTTCAAC	TOGACCAGTG	COCCGTCGTC	GGGATICTEC	960

AACAGCGGTG	CCGGTAGCGC	GTCCGGCTTC	CYGAACTCCS	OTOCCAACAA	TTCTGGCTTC	1020
TTCAACTCTT	CGTCGGGGGC	CATCOSTAAC	TCCGGCCTGG	CAAACGCGGG	CGTGCTGGTA	1080
reseccitca	TCAACTCGGG	CAACACCCGTA	TOGGGTTTGT	TCAACATGAG	censenece	1340
ATCACAACGC	CGGCCTTGAT	cresserre	TTCBACACC	GAAGCAACAT	GTCGGGATTT	1200
TTCGGTGGCC	CACCGCTCTT	CAATCTCGGC	CTGGCAAACC	GGGGGGTGGT	GAACATTOTO	1260
GCCARCGCCA	ACATOSSONA	TTACAACATT	CTCCCCACCC	GARACETCES	TGACTTCAAC	1320
ATCCTTOSCA	OCCOCCAACCT	CGGCAGCCAA	AACATCTTGG	GCAGCGGCAA	CETCGGCAGC	1380
TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCG	GTTCCGGAAG	CCTGGGAAAC	1440
TACAACATCG	GATCCGGAAA	CCTCGGGATC	TACAACATOS	CTTTTGGAAA	CGTCGCCGAC	1500
TACAACGTCG	GCTTCGCCAA	CGCCSGCGAC	TTCAACCAAG	GCTTTGCCAA	CACCGGCAAC	1580
AACAACATCG	GGTTCGCCAA	CACCGGCAAC	AACAACATOG	SCATCOOSCT	OTCCGGCGAC	1620
NACCAGCAGG	GCTTCAATAT	TGCTAGCGGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTOGG	GCACCARTAR	CSTTGSCATC	TTCAACGCGG	GCACCGGAAA	COTCOGCATC	1740
SCAAACTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCOGCATC	1800
CTCRATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GOGACTTORA	CACGGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGGGGGC	TTCAACGTCG	GTAACACCAA	CACCESCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCEGCAGC	TATAACCCCC	GTGACACCAA	CACCOCCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCSSCSCT	TTCGACACGG	GCCACTTCAA	CARTGGCTTC	2040
TTGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCCGTCAC	CACTCCATTC	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCIT	CCCCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCCACCETT	TTCCCCCCAAA	CCTTCFATCT	GAGCCCTTTG	2220
recercince	GOCCGGTCAA	TCTCAGOGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCTC	2280
ACCATCOGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TOGGTGCTCT	GGAGAGCCCC	2340
ACGATTACCT	TOOTCARGAT	CGATCCGGCG	ccssscarcs	GAAATTCCGAC	CACCAACCCC	2400
TOSTCOSCOT	TOTTCAACTO	GGGCACCGGT	GGCACATCTO	GCTTCCAAAA	cerescese	. 2460
GGCAGTTCAG	SCOTCTSSAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGGCG	AACCTGGGCA	ACTOCOTATO	GCCCTTTTC	2580
AACACCAGTA	COGTGAACCT	CTCCACGCCC	GCCAATUTCT	CSCCCCTCAA	CAACATCGGC	2640
ACCARCCTOT	ccsacstatt	cogcogracs	ACCGGGACGA	TTTTCAACGC	GGGCCTTGCC	2700
AACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TOSTSCOONA	TTCCCCCACGA	GTTAGATACG	2760
GTTTCAACAA	TCATATCCCC	grrrrocgoc	AGTGCATCAG	ACGRATCGAA	CCCGGGAAGC	2820

GTAAGCGAAT AAACCGAATG GCGGCCTGTC AT

- (2) INFORMATION FOR SEQ ID NO: 204:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 943 amino acids
 - (B) TYPE: amino acid
 - $\langle C \rangle$ STRANDEONESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:
 - Gly Gln Asn Als Pro Als Ile Als Als Thr Glo Alz Als Tyr Asp Gln I 5 15
 - Mot Trp Ala Clo Asp Val Ala Ala Mot Phe Gly Tyr His Ala Gly Ala 20
 - Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gin Ala Leu Pro Thr 35 40 45
 - Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gla Val Thr 50 60
 - Thr Arg Val Pho Arg Asn Leo Gly Leo Ald Asn Val Arg Glo Gly Aso 65 70 75 80
 - Val Arg Aso Gly Aso Val Arg Aso Phe Aso Leo Gly Ser Ala Aso Ile 85 90 95
 - Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly 100 105 110
 - Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn ile Gly 115 120 125
 - Pho Gly Aso Thr Gly Ser Aso Aso lie Gly Phe Gly Aso Thr Gly Ser 130 140
 - Aso Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Ash Arg Gly Ile Gly 145 - 150 - 155 - 160
 - Leu Thr Gly Ser Gly Leo Leu Gly Phe Gly Gly Leo Asn Ser Gly Thr 185 170 175
 - Gly Asn lle Gly Let Phe Aon Ser Gly Thr Gly Asn Val Gly Ile Gly 185 198
 - Ash Ser Gly Thr Gly Ash Trp Gly Ile Gly Ash Ser Gly Ash Ser Tyr 195 200 205
 - Aso Thr Gly Fne Gly Aso Ser Gly Asp Ala Aso Thr Gly Phe Fhe Aso 210 220
 - Ser Gly Tie Ala Aso Thr Gly Vol Gly Aso Ala Gly Aso Tyr Aso Thr 225 230 235 240
 - Gly Ser Tyr Asn Pro Gly Asn Ser Asn Thr Gly Gly Phe Asn Met Gly

200

245 230 259 Gin Tyr Asn Thr Gly Tyr beu Asn Ser Gly Asn Tyr Asn Thr Gly Leu Ala Aso Ser Gly Aso Val Aso Thr Gly Ala Phe Ile Thr Gly Aso Phe 280 Asn Asn Gly Phe Leu Trp Arg Gly Asp Ris Gln Gly Leu Ile Phe Gly Ser Pro Gly Phe Phe Asn Ser Thr Ser Als Pro Ser Ser Gly Phe Phe Asn Ser Gly Ala Gly Sør Ala Ser Gly Phe Leo Asn Ser Gly Ala Asn Asn Ser Gly Phe Phe Asn Ser Ser Ser Gly Ala Tle Gly Asn Ser Gly Leu Ala Asn Ala Gly Val Leu Val Ser Gly Val Ile Asn Ser Gly Asn Thr Val Ser Gly Lou Phe Aan Met Ser Lou Val Ala Ile Thr Thr Pro Ala Leu Ile Ser Gly Phe Phe Aon Thr Gly Sor Asm Met Ser Gly Phe 390 395 Phe Gly Gly Pro Pro Val Phe Asn Leu Gly Leu Ala Asn Arg Gly Val Val Asn Ile Lew Cly Asn Ala Asn Ile Gly Asn Tyr Asn Ile Len Gly Ser Gly Asn Val Gly Asp Phe Asn Ile Leu Gly Ser Gly Asn Leu Gly Ser Gin Asn Tie Leu Gly Ser Gly Asn Val Gly Ser Phe Asn Ile Gly Ser Gly Asn The Gly Val Phe Asn Val Gly Ser Gly Ser Leo Gly Asn Tyr Asn Tie Gly Ser Gly Asn Leo Gly Tie Tyr Asn Tie Gly Phe Gly TASH Val Gly Asp Tyr Ash Val Gly Phe Gly Ash Als Gly Asp Phe Ash Gir Gly Phe Ala Ash Thr Gly Ash Ash Ash Ile Gly Phe Ala Ash Thr Gly Asn Asn Asn Ile Gly Ile Gly Les Ser Gly Asp Asn Gln Gln Gly 535 Phe Aso The Ala Ser Gly Trp Aso Ser Gly Thr Gly Aso Ser Gly Leu Phe Asn Sex Gly Thr Asn Asn Vol Gly He Phe Asn Ale Gly Thr Gly 570

201

Asn Val Gly Ile Ala Asn Ser Gly Thr Gly Asn Txp Gly Ile Gly Asn Pro Gly Thr Asp Ass Thr Gly Ile Let Asn Ala Gly Sex Tyr Asn Thr Gly lie Leu Aon Ala Gly Asp Phe Aon Thr Gly Phe Tyr Aon Thr Gly 613 Ser Tyr Asn Thr Gly Gly Phe Aon Val Gly Asn Thr Asn Thr Gly Asn Phe Asn Val Gly Asp Thr Asn Thr Gly Ser Tyr Asn Pro Gly Asp Thr Asn Thr Gly Phe Phe Asn Pro Gly Asn Val Asn Thr Gly Ala Phe Asp 688 Thr Gly Asp The Asn Asn Gly Phe Leu Val Ala Gly Asp Asn Glo Gly Gin lie Ala Tie Asp Leu Ser Val Thr Thr Pro Phe Tie Pro lie Asn 698 Glu Gin Mot Val Ils Asp Val Bis Asn Val Wet Thr Phe Gly Gly Asn 715 Met Ile Thr Val Thr Glo Ala Ser Thr Val Phe Pro Glo Thr Phe Tyr Lou Sor Gly Lou Phe Phe Phe Gly Pro Val Asn Lou Ser Ala Ser Thr 745 Leo Thr Vel Bro Thr lie Thr Leo Thr lie Gly Gly Pro Thr Val Thr Vai Pro Ile Ser Ile Val Gly Ala Lou Glu Ser Arg Thr Ile Thr Phe Lea Lys Ile Asp Pro Ala Pro Gly Ile Gly Asa Ser Thr The Asa Pro Ser Ser Gly Phe Phe Ash Ser Gly Thr Gly Gly Thr Ser Gly Phe Glo Aso Val Gly Gly Ser Ser Gly Val Trp Aso Ser Gly Les Ser Ser 828 Ale The Oly Aso Ser Gly Phe Gin Aso Lea Gly Ser Lea Gin Ser Gly Trp Ala Ass Lou Gly Asn Ser Val Ser Gly Phe Foe Ass Thr Ser Thr Val Asn Leu Ser Thr Pro Ala Asn Val Ser Gly Leu Asn Asn Ile Gly 870 Thr Aon Leu Ser Gly Vol Phe Arg Gly Pro Thr Gly Thr lie Phe Aon

Alm Gly Let Ale Ash Let Gly Gin Let Ash Ile Gly Ser Ala Ser Cys

903

	Arg	île	Arg 915	His	Gla	Læns	Asp	Thr 920	Val.	Ser	Thr	Ile	Ila 925	Ser	Alæ	Phe	
	Cys	61y 930	Ser	Ala	Ser	Asp	61a 935	Ser	Åss	Ero	Gly	Ser 940	Val.	Ser	Slo		
(2)	INFO	rmat:	OM 3	FOR 1	eg i	O NO):20!	5 t									
	(1)	(B) (C)	LEN TYI STI	votu: Pe: t Rapoi	ARACI : 53 : 53 : 53 : 53 : 53 : 53 : 53 : 53	base ic s (S: s	s pa: scid sing)	irs									
	(xi)	SEQU	ENC	ore	CRIE	TION	ł: 52	SQ II) 80:	205:	;						
GGA	TCCAT	ar go	xgcc/	etcai	CAI	CATC	MTC	A001	PSATK	XA C	atci	TCG(88 AV	30			83
(8)	INFC	XMAT1	ON F	OR S	KO I	o w	1:206	ži									
	(2)	(B) (C)	LES TYP STP	GTH: E: n LANDE	RACT 42 DOCLE DNES	base ic a S: s	pai cid ingl	X8									
	(xi)	SEQU	ENCE	: DES	CRIP	TION	: SE	Ø II) NO:	206:							
CCIN	gaatto	ia gg	cere	COTT	906	ccss	ccr	CATC	777GA	AC G	ia.						4.2
(2)	IMPOF	MATI	ON 8	or s	eq i	D 190	:207	;									
		(8) (C)	LEN TYP STR	CTA: E: a Ande	RACT 31 ocie DMES Y: 1	base ic a S: s	pai cid ingl	rs									
	(xi)	SEQU	ENCE	PES	CRIP	TION	: SE	Q ID	: XO:	207:							
GGAS	PCCTGC	A 60	CTCG	AAAC	CAC	CGAG	cee	T.									33
(2)	INFOR	Pati	on b	08 3	eq I	D NO	: 208	r E									
	(i.)	(8) (0)	LEN TYP STR	GT#: Z: n ANOE	RACT: 31 Octo OMES: Y: 1:	base ic a 8: s	pai cid ingl	rs									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	33
(2) INFORMATION FOR SEQ ID NO:209:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: necleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GGATOCAGOG CTGAGATGAA GAOOGATGCO GCT	33
(2) INFORMATION FOR SEQ ID NO:210:	
(i) SEQUENCE CEABACTERISTICS: (A) LENGTH: 36 base peixs (B) TYPE: nucleic acid (C) STBANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 18 NO:230: GGATATCTGC AGAATTCAGG TTTAAAGCCC AFTTGCGA	38
(2) INFORMATION FOR SEQ ID NO:211:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(21) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION TOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid	

204

$\{C_i\}$	STRANDEDME	:88 t	single
(3)	TOPOLOGY:	line	38.80

(%i) SEQUENCE DESCRIPTION: SEQ ID NO:212: CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCGG

37

(2) INFORMATION FOR SEQ 10 NO:213:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7676 base pairs
- (B) TYPE: sucleic acid
- (C) STRANDEDMESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ 10 No:213:

	rcccgaatcc	GROGOGGOOT	GTAGCGGCGC	ATTAAGCOCG	occorrance	TOGTTACGCG	60	
į	CAGOGTGACC	GCTACACTTG	CCAGCGCCCT	AGCGCCCGCT	CCTTTOGCTT	TCTTOCCTTC	120	
-	CTTTCTCGCC	ACCTTOSCCG	GCTTTCCCCG	TCBAGCTCTA	AATCGGGGGC	TCCCTTTAGG	180	
ş	STTCCGAFTT	AGTOCTTTAC	GGCACCTCGA	CCCCAAAAAA	CTTGATTAGG	GTGATGGTTC	240	
	ACGTAGTOGG	CCATCGCCCT	CATACACGGT	TTTTCCCCCT	TTGACGTTGG	AGTCCACGTT	300	
-	otttaatagt	GGACTCTTGT	TOCARACTOS	AACAACACTC	AMOOCIATOT	CGGTCTATTC	365	
	PTTTCATTTA	TAAGGGATTT	TOCCGATTTC	SSCCTATIOS	TTÄÄÄÄÄÄÄTG	AGCTGATTTA	420	
è	ACAAAAATTT	AACGCGAATT	TTAACAAAAT	ATTAACGTTT	ACARTTTCAG	GTGGCACTTT	480	
	roggggaaat	GTGCGCGGAA	CCCCTATTTG	TTFATTTTTC	TAAATACATT	CAAATATGTA	540	
	rccscrcars	AATTAATTCT	TAGAAAAACT	CATCOACCAT	CAAATGAAAC	TGCAATTTAT	600	
č	FCATATCAGG	ATTATCAATA	CCATATTTTT	GAAAAAGCCG	TTTCTGTSAT	GAAGGAGAAA	660	
į	ACTCACCGAG	GCAGTTCCAT	AGGATGGCAA	GATCCTGGTA	rosstorses	ATTOCGAÇTO	720	
3	STOCAACATO	AATACAACCT	ATTAATTTCU	CCTCGTCAAA	AATAAGGTTA	TCAAGTGAGA	780	
į	VATCACCATG	AGTGACGACT	GAATOOGGTG	AGARTOOCAR	AAGTTTATGC	ATTICTTICC	840	
· ·	AGACTTGTTC	AACAGGCCAG	CCATTACGCT	CGTCATCAAA	ATCACTCCCA	TCAACCAAAC	900	
Ş	IGTTATTCAT	TOGTGATTGC	GCCTGAGCGA	GACGAAATAC	GCGATCGCTG	TTAAAAGGAC	960	
į	VATTACAAAC	AGGAATCGAA	TOCAACCGGC	GCAGGAACAC	TECCAGCGCA	TCAACAATAT	1020	
•	ettcacctga	ATCAGGATAT	TCTTCTAATA	CCTGGAATGC	TGTTTTCCCG	GGGATCGCAG	1080	
5	Costgagtaa	CCATGCATCA	TCAGGAGTAC	SCATAAAATG	CTTGATGGTC	GGAAGAGGCA	1140	

TAAATTCCGT	CAGCCASTIT	AGTCTGACCA	TOTOATOTGT	AACATCATTG	GCAACGCTAC	1200
CTTTGCCATG	TTTCAGAAAC	AACTCTGGCG	CATCGGGGTT	CCCATACAAT	CGATAGATIG	1260
TOGOSCOTGA	TTGCCCGACA	TTATCGCGAG	CCCATTTATA	COCATATAAS	TCAGCATCCA	1320
TOTTCGAATT	TAATOSCGGC	CTAGAGCAAG	ACSTTTCCCG	TTGAATATOG	CTCATAACAC	1390
CCCTTGTATT	ACTGTTTATG	TAAGCAGACA	OTTTTATIGT	TCATGACCAA	AATOCCTTAA	1440
CGEGAGTTTT	CGTTCCACTG	ACCCTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTOA	1500
GATCCTTTTT	TTCTGCGCGT	AATCIGCIGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	1560
GTGGTTTGTT	TSCCSGATCA	AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC	TGOCTTCACC	1820
AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GUGTAGCCGT	ACTTAGGCCA	CCACTTCAAG	1680
AACTCTGTAG	CACCGCCTAC	ATACCTCCCT	CYGCYAATCC	TOTTACCAGT	gactactacc	1740
AGTGGCGATA	ACTCCTCTCT	TACOGGGTTG	GACTCAAGAC	GATASTTACC	GGATAAGGCG	1800
CASCOSTOSS	OCTOAACGGG	GGGTTCGTGC	ACACAGCOCA	CCTTGGAGCG	AACGACCTAC	1.860
ACCGAACTGA	GATACCTACA	OCCTGAGCTA	TGAGAAAGCO	CCACCCTTCC	CGAAGGGAGA	1920
AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	1980
CCAGGGGGAA	ACGCCTGGTA	TOTTTATAGT	CCTGTCGGGT	TTOSCCACCT	CTGACTTGAG	2040
CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CSGASCCTAT	GGAAAAACGC	CAGCAACGCG	2100
GCCTTTTTAC	GETTCCTGGC	CTTTTGCTGG	CCTTTTCCTC	ACATGTTCTT	TCCTGCGTTA	2160
rccccrgarr	CTGTGGATAA	CCSTATTACC	GCCTTTGAGT	GAGCTGATAC	CSCTOSCOSC	2220
AGCCGAACGA	COGAGOSCAG	CGACTCACTO	ACCUAGGAAG	CGGAAGAGCG	COTGATGCGG	\$580
TATTTTCTCC	TTACGCATCT	GTGCGGTATT	TCACACCGCA	TATATOGTGC	ACTCTCAGTA	2340
CAATCTGCTC	TGATGCCGCA	TAGTTAAGCC	AGTATACACT	CCGCTATCGC	TACGTGACTG	2409
GGTUATGGCT	GCGCCCCGAC	ACCCGCCAAC	ACCCCCTGAC	GCGCCCTGAC	GGGCTTGTCT	2460
GCTCCCGGCA	TOCOCTTACA	GACAACCIGT	GACCETETEC	GGGAGCTGCA	TGTGTCAGAG	2520
STTTTCACCS	TCATCACCGA	AACGCGCGAG	SCASCTGCCC	TAAAGCTCAT	CAGCGTGGTC	2580
GTGAAGCGAT	TCACAGATGT	CTGCCTGTTC	ATCCGCGTCC	agctcgttga	GTTTCTCCAG	2640
AAGCGTTAAT	GTCTGGCTTC	TOATAAAGCG	GUCCATGTTA	AGCCCGGTTT	TTTCCTGTTT	2700
OGTCACTGAT	GCCTCCGTGT	AAGGGGGATT	TOTOTTCATO	occotaatga	TACCGATGAA	2760
ACGAGAGAGG	ATGCTCACGA	TACGGGTTAC	TGATGATGAA	CATGOCCGGT	TACTGGAACG	2820
TTGTGAGGGT	AAACAACTGG	COSTATOGAT	GOSOCGGGAC	CAGAGAAAA	TCACTCAGGG	2880
TCARTGCCAG	CCCTTCGTTA	ATACAGATGT	AGGTGTTCCA	CAGGGTAGCC	AGCAGCATCC	2940
TGCGATGCAG	ATOCGGAACA	TAATGGTGCA	GGGCGCTGAC	TTCCGCGTTT	CCAGACTTTA	3000

CGAAACACGG	AAACCGAAGA	CCATTCATGT	TOTTGCTCAG	arcealases	TTTTGCAGCA	3060
GCAGTCGCTT	CACGTTCGCT	COCOTATOGG				
CCCCCACCCT	AGCCGGGTCC	TCRACGACAG				3120
						3180
	ATAATGGCCT	SCTTCTCGCC		GTGGCGGGAC		3240
GGCTTGAGCG		AGATTCCGAA		GACAGOCCGA		3300
GCTCCAGCGA	AAGCGGTCCT	CCCCCAAAAT	GACCCAGAGC	GCTGCCOSCA	cerorecerae	3360
GASTTGCATS	ATAARGAAGA	CAGTCATAAG	TGCGGCGACG	ATAGTCATGC	CCCGCGCCCA	3420
CCGGAAGGAG	CTGACTGSST	TGAAGGCTCT	CAAGGGCATC	SSTOSAGATO	CCGGTGCCTA	3480
ATGAGTGAGC	TRACTTACAT	TAATTGCGTT	GOGOTOROTG	CCCCCTTTCC	ACTCGGGAAA	3540
CCTGTCGTGC	CAGCTGCATT	ARTGRATCGG	CCAACGOGOG	GGGAGAGGCG	GTTTGCGTAT	3600
TOGGCCCCAG	GGTGGTTTTT	CTTTTCACCA	STGAGACCOG	CAACAGCTGA	TTGCCCTTCA	3660
CCGCCTGGCC	CTGAGAGAGT	TGCAGCAAGC	GGTCCACGCT	GETTTGCCCC	AGCAGGCGAS	3720
AATCCTGTTT	GATGGTGGTT	AACGGCGGGA	TATAACATGA	SCISICITOS	GTATESTEST	3780
ATCCCACTAC	CGAGATATCC	GCACCAACSC	GCAGCCCGGA	CTOGGTAATG	GCGCGCATTG	3840
CCCCCAGCSC	CATCTGATCG	TTGGCAACCA	GCATOGCAGT	GGGAACGATG	COCTCATTCA	3900
GCATTTGCAT	GGTTTGTTGA	AAACCGGACA	TOGCACTOCA	grescerree	COTTCCCCTA	3960
TOGGOTGAAT	TTGATTGCCGA	GTGAGATATT	TATGCCAGCC	AGCCAGACGC	AGACGCGCCG	4020
AGACAGAACT	TAATGGGCCC	GCTAACAGCG	CGATTTOCTS	GTGACCCAAT	GCGACCAGAT	4080
GCTCCACGCC	CAGTOGOGTA	CCGTCTTCAT	GGGAGAAAAT	AATACTSTIG	ATGGGTGTCT	4140
GGTCAGAGAC	ATCAAGAAAT	AACGCCGGAA	CATTAGTGCA	GGCAGCTTCC	ACACCAATOO	4200
CATCCTGGTC	ATCCAGCGGA	TAGTTAATGA	TCAGCCCACT	SACSCSTTGC	GCGAGAAGAT	4260
TOTOCACCOC	CCCTTTACAG	GCTTCGACGC	COCTTOSTIC	TACCATCGAC	ACCACCACGC	4320
TGGCACCCAG	TTGATCCCCG	CGAGATTTAA	TOSCOGGAC	AATTTGCGAC	GGCGCGTGCA	\$38 0
GOGCCAGACT	GGAGGTGGCA	ACGCCAATCA	GCAACGACTG	TTTGCCCGCC	ACTTOTTGTG	4440
CCACGCGGTT	GGGAATGTAA	TTCAGCTOOS	CCATCGCCGC	TTCCACTTTT	TOOCSCOTTT	4500
TOSCAGAAAC	GTGGCTGGCC	TGOTTCACCA	CCCGGGAAAC	GGTCTGATAA	GAGACACCEE	4560
CATACTCTGC	GACATOSTAT	AACGTTACTG	GTTTCACATT	CACCACCCTG	AATTGACTCT	4620
CTTCCGGGCG	CTATCATGCC	ATACCECEAA	AGGTTTTOOS	OCATTOGATG	CTCTCCGGGA	4680
TOTOGAGOOT	CTCCCTTATG	coactectec	ATTAGGAAGC	ACCCCAGTAG	TAGGTTGAGG	4740
COGTTGAGCA	ccsccsccsc	AAGGAATGGT	SCATOCAAGG	AGATGGCOCC	CARCAGTCCC	4800
CCGCCCACGG	GGCCTGCCAC	CATACCCACG	CCGAAACAAG	CGCTCATGAG	CCCGAAGTGC	\$8 60

CGACCCCCAT	CTTCCCCCATC	GCTGATGTCG	GCGATATAGG	CGCCAGCAAC	CGCACCTGTG	4 929
GCGCCGGTGA	TOCCOGCCAC	SATOCGTCCG	GCGTAGAGGA	TOGRGATOTO	GATCCCGCGA	4980
AATTAATACG	ACTCACTATA	CCCCAATTCT	GAGCGGATAA	CAATTOCCCT	CTAGAAATAA	5040
TTTTCTTTAA	CTTTAAGAAG	GAGATATACA	TATGGGCCAT	CATCATCATO	ATCACGTGAT	5100
CCACATCATC	GGGACCAGCC	CCACATCCTG	GGAACAGGCG	GCCGCCGGAGG	CGGTCCAGCG	\$1.60
GGCGCGCGAT	AGCGTCGATG	ACATCOGCGT	CECTCESSITC	ATTGAGCAGG	ACATOGCCGT	5220
GGACASCSCC	GGCAAGATCA	CCTACOGCAT	CAAGCTCGAA	GTGTCGTTCA	AGATGAGGCC	5280
GGCGCAACCG	AGGGGGCTOGA	AACCACCGAG	OBSTICECCT	GAAACGGGCCG	ccescecces	5340
TACTGTCGCG	ACTACCCCC	carcarcacc	CETGACETTG	GCGGAGACCG	GTAGCACGCT	5400
SCTCTACCOG	CTGTTCAACC	TOTGGGGTCC	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT	CASSSCACES	GTTCTGGTGC	CGCCATCGCC	CAGGCCGCCG	COGGGACGGY	5520
CAACATTGGG	GCCTCCGACG	CCTATCTGTC	GGAAGGTYGAT	ATGGCCGCGC	ACAAGGGGGT	5580
GATGAACATC	GOGOTAGOCA	TOTOCOGOTOR	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	5640
CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5760
CTGGGACGAC	CCCCAGATOG	CTOCGCTCAA	ccccccccr	AACCTGCCCG	GCACCGCGGT	5760
ACTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	TGACACCTTC	TTOTTCACCO	AGTACCTGTC	5920
CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	GCCCGGCTTC	GGCACCACCG	TOGACTICCC	5880
GCCGGTGCCG	GGTGCGCTGG	STGAGAACGS	CAMCGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCGGGC	rocorocccr	ATATOGGCAT	CASCITCCIC	GACCAGGCCA	GTCAACOGGG	6000
ACTOGGOGAG	GOCCAACTAG	GCAATAGCTC	TGGGGAATTTC	TTGTTGCCCQ	ACGCGCAAAG	6660
CATTCAGGGC	GCGGCGGCTG	GCTTCGCATC	GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	6120
GATCGACGGG	cocscocess	ACGGCTACCC	GATCATCAAC	TACGAGTACG	CCATYXTCAA	6180
CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	GACCTTGCAG	GCHTTTCTGC	ACTGGGGGAT	\$240
CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	CCAGGTTCAT	TTOCAGCCGC	TGCCGCCCGG	6300
GGTGGTGAAG	TTGTCTGACG	COTTGATOSC	GACGATTTCC	agogetgaga	TGAAGACCGA	6360
TOCCCCCTACC	CTCGCGCAGG	AGGCAGGTAA	TTTCGAGCGG	ATCTCCGGGG	ACCTGAAAAC	6420
CCAGATCGAC	CASSTSSAGT	CCACCCCAGG	TTCCTTCCAC	GGCCAGTGGC	GCGGCGCGCC	6480
900GACGGCC	GCCCAGGCCG	CGGTGGTGCG	CTTCCAAGAA	GCACCCAATA	AGCAGAAGCA	6540
GGAACTCGAC	GAGATCTCGA	OGAATATTOG	TCMSSCOSGC	STCCAATACT	CGAGGGCCGA	8600
CGAGGAGCAG	CAGCAGGGGG	TGTOCTCGCA	AATGGGCTTT	GTGCCCACAA	cascoscenc	6660
SCCSCCSTCS	ACCECTOCAG	OGCCACCOGC	ACCGGCGACA	CCTGTTGCCC	CCCCACCACC	6720

20%

ggaagaaaaa	AACACGCCGA	ATGCCCAGCC	GGGCGATCCC	AACGCAGCAC	CTCCGCCGGGC	6780
CGACCCGAAC	GCACCGCCGC	CACCTGTCAT	TGCCCCAAAC	GCACCCCAAC	CTGTCCGGAT	6840
CGACAACCCG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GCCTGCCTGG	AGTCTGACGC	6900
CSCCCACTTC	SACTACGGTT	CAGCACTOCT	CAGCAAAACC	ACCERGEACC	CGCCATTTCC	6960
CGGACAGCCG	CCGCCGGTGG	CCAATGACAC	CCGIATCSTS	eresseesse	TAGACCAAAA	7020
GCTTTACGCC	AGCGCCGAAG	CCACCGACTC	CAASOCOSCS	GCCCGGTTQG	GCTCGGACAT	7080
GGGTGAGTTC	TATATGCCCT	ACCCGGGCAC	COSSATCAAC	CAGGAAACCG	TCTCCCTTGA	7140
OGCCAACGGG	CTCTCTGGAA	GCGCGTCGTA	TTACGAAGTC	AAGTTCAGCG	ATCCGAGTAA	7200
GCCGAACGGC	CAGATCTGCA	CGGGCGTAAT	CGGCTCGCCC	GOGGCGAACG	CACCEGACGC	7260
osgacccccr	CASCGCTGGT	TTGTGGTATG	SCTCSSSACC	GOCAACAACC	CGGTGGACAA	7320
355555555	AAGGCGCTGG	CCGAATCGAT	CCSGCCTTTS	grosoccosc	Ceccescacc	7380
GOCACCGGCT	CCTGCAGAGC	cogereesse	GCC99C9CCG	GCCGGGGAAG	TOGOTOCTAC	7440
COOGAOGACA	CCCACACCCGC	AGOGGACCTT	ACCEGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7560
CCGAAAGGAA	OCTOACTICG	crocroceac	COCTGAGCAA	TAACTAGCAT	AACCCCTTGG	7620
GCCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	GCTGAAAGGA	GGRACTATAT	COGENT	7676

(2) INFORMATION FOR SEQ ID NO:214:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 802 aming acids
 - (B) TYPE: amino soid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ 10 NO:214:

Met Gly His His His His His Val Ile Asp Ile 1le Gly Thr Ser 1 5 10 15

Pro Thr Ser Trp Glu Gln Ale Ale Ale Gln Ale Val Gln Arg Ale Arg 25 30

Asp Ser Val Asp Asp Tie Arg Val Ala Arg Val Tie Glu Glu Asp Met 35 45

Als Val Asp Ser Ale Gly Lye IIo Thr Tyr Arg IIe Lys Leu Glu Val $50 \,$

Ser Phe Lye Met Arg Pro Als Gin Pro Arg Gly Ser Lys Pro Pro Ser 65 70 80

Gly	Ser	Pro	Slu	Tha 85	Gly	Ala	Gly	Ala	01y 90	The	Val	Ala	Thr	Thr 95	Pro
Ala	Ser	Sex	Pro 100	Val	The	lien	Ala	61a 105	The	Sly	Sec	The	Leo 110	Leu	Tyx
Pro	Leu	Pho 115	Asn	Leu	Trp	Gly	8ro 120	Ala	Phe	His	GLu	Arg 125	Tyr	Pro	Aso
Väl	Thr 130	Tle	Thr	Ala	Gla	Gly 135	Thr	Gly	Ser	Cly	Ala 140	Gly	lle	Ala	Øln.
Ala 145	Ala	Ala	Gly	Thr	val 150	Asn	I.Læ	Gly	Alä	50r 155	Asp	Als	Tyr	Leu	Ser 160
Glu	Gly	Asp	Met	Ala 165	Ala	His	Lys	61y	1.eu 170	Met	Asm	He	Ala	Leu 175	Ala
lle	Ser	Ala	Gln 180	Oln	Val	Ass	Tyr	Ass 183	Leu	Pro	Gly	Val.	Ser 190	Glo	His
Lou	Lys	Leu 195	Aso	Gly	Lys	Val	Leu 200	Ala	Ala	Met	Tyr	Gln 205	Gly	Thr	lle
Lys	Thr 210	Trp	Asp	Asp	Pro	Gln 215	lle	Ala	Als	Lou	Asn 220	Pro	Gly	Val	Asn
225 Leu	Pro	Gly	Thr	Als	Val 230	Val	Pro	Leu	His	Arg 235	Sor	Asp	Gly	Sex	Gly 240
Asp	Thr	Phe	Leu	245	The	Gla	Tyr	leu	Ser 250	Lys	Ols	Asp	Pro	Glu 255	Gly
Trp	Gly	lys	80r 260	Pro	Gly	Pho	Gly	Thr 265	Thr	Val	qså	Phe	Pro 270	Ala	Val
Pro	Gly	Ala 275	Leu	Gly	Glu	Asn	580 Ojv	asa	Sly	Gly	Mot	Val 205	Thr	Gly	Cys
Ala	Glu 290	The	Pro	Gly	Cys	Val 295	ria	Тух	Ile	Gly	11e 300	Ser	Phe	Leu	Asp
Gln 305	Ala	Ser	Gln	Arg	Gly 310	Len	Gly	Glu	Ala	Oln 315	Lexi	Gly	Aan	Sex	Ser 320
Gly	Asn	Phe	Len	Leu 325	Pro	Asp Ç	A.La	Gln	8er 336	Ile	Gla	Ala	Alla	Ala 338	Als
Gly	Phe	Ala	340 340	Lys	The	Pro	Ala	Asn 345	Win.	Als	lle	Ser	Met 350	Ile	Asp
Gly	\$50	Ala 355	Pro	qeA	Sly	Tyx	Pro 360	lle	Ile	Asn	Tyr	Glu 365	Tyr	Ala	Tie
	370	Aso.				375					380				
388		His			390					398					400
Gln	Val	H3.%	Fhe	Gln 405	Pro	Leu	Pro	Pro	Ala 410	Val	Val	Lys	7.60	30r 115	Asp

sía	Z:es	lle	Ala 420	Thr	Ile	Ser	Ser	Ala 425	Glu	Met	Lys	Thr	Asp 430	Als	Ala
Thr	Leu	Ala 435	Gla	Giu	Ala	Gly	Asn 440	Phe	Glu	Arg	Tie	Sor 445	Gly	Asp	Leu
Lys	Thr 450	Gla	Tle	Asp	Gin	Vai 455	Glu	Ser	Thr	Ala	Gly 460	Ser	Less	Gla	Gly
Gin 465	Trp	Arg	Gly	Ala	Ala 470	Gly	The	Ala	Ala	Gln 475	Ala	Als	Vel	Val	Arg 480
Phe	Gln	Glu	Äla	Ala 485	Asn	Lys	Gla	Lys	Gin 450	Glu	Leu	Asp	Glu	Tle 495	Ser
Thr	Asn	Tle	Arg 500	Glo	Ala	Gly	Val	61n 505	Tyr	Ser	Arg	Ala	Asp 510	9lu	Glu
Gln	Gln	Gla 515	Ala	Leu	Ser	Ser	Gln 520	Met	Gly	Phe	Val	9ro 826	Thr	Thr	Ala
Ala	Ser 530	Pro	Pro	Ser	The	Ala 535	Ala	āls	Pro	Pro	Ala 340	Pro	Ala	Thr	Pro
Val S45	Ala	Pro	Ero	Fro	Pro 550	Ala	Ala,	Ala	Asn.	The 555	Fre	Asn	Ala	Gin	Pro 560
Gly	Asp	Pro	ana	Ala S65	Als	Pro	Pro	Sro	%ia 570	Asp	8ro	Asiri	Als	Pro 575	Pro
Pre	Pess	Val	Tle 580	Als	Pro	Asa	Ala	Pro 585	Gln	Pro	Val.	Ārg	lle 590	Ang	Asn
Pro	Val	Gly 595	G.i.y	Phe	Ser	Phe	Ala 600	Leo	Peo	Ala	Gly	Txp 605	Va.i.	Sla	Ser
Asp	Ala 610	Ala	Sis	Fhe	Asp	Tyr 615	Gly	Ser	Ala	Leu	620 1-61	Sex	Lys	Thr	Thr
61y 625	Asp	Fre	Fro	Phe	630 630	Gly	Gla.	PEG	\$10KB	Pro €35	Val	Als	Asn	ąss.	The 640
Arg	lle	Val								i.esti		Ala	Sex	Ala 655	Gla
Ala	Thr	Asp	Ser 660	Lys	Ala	Ala	Ala	Arg 665	læu	Gly	Ser	Asp	Met 670	Gly	Glu
Phe	Tyr	Met 675	Pro	Tyr	Pxo	ely	The 680	Arg	Ile	Asn	Gln	Glo 888	The	Val.	Ser
Len	Asp 690	Ala	Asn	Sly	Val	8er 695	61.y	Ser	Ala	Ser	Tyr 700	Tyr	Glu	Val	Lys
Phe 705	Ser	Asp	Pro	Ser	Lys 710	Pro	Asn	Gly	Gln	Tle 715	Trp	Thx	Gly	Val	ĭle 720
Gly	Ser	Pro	Ala	Ala 725	Asn	Ala	Pro	Asp	Ala 730	Gly	Pro	Pro	Gla	Arg 735	Trp
Phe	Val	Val	Trp	Leu	Gly	Thr	Ala	Asn	Asn	Pro	Val.	Asp	Lys	Gly	Ala

211

Als Lys Als Leu Ala Glu Ser Lie Arg Pro Leu Val Ala Pro Pro Pro Pro Ala Pro Ala

CLAIMS

- 1. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gin-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
 - (b) Ala-Vai-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala Lys-Glu-Gly-Arg; (SEQ ID No. 122)
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
 - (e) Asp-lic-Giy-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gin-Xaa-Ala-Vai; (SEQ ID No. 124)
 - (f) Ala-Giu-Giu-Ser-lie-Ser-Thr-Xaa-Giu-Xaa-lie-Val-Pro; (SEQ ID No. 125)
 - (g) Asp-Pro-Ghi-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Scr-Pro-Pro-Scr. (SEQ ID No. 126)
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gin-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128) and
 - (i) Ala-Pro-Glu-Ser-Gly-Aia-Gly-Leu-Gly-Gly-Thr-Vai-Gln-Ala-Gly;(SEQ ID No. 136)

wherein Xaa may be any amino acid.

 A polypeptide comprising an immunogenic portion of an M. tuberculosis antigen, or a variant of said antigen that differs only in conservative

substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:

- (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129) and
- (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an immunogenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201 or a complement thereof under moderately stringent conditions.
- A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.
- An expression vector comprising a DNA molecule according to claim 5.
 - A host cell transformed with an expression vector according to claim 6.

PCT/US97/18293

- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- A pharmaceutical composition comprising one or more polypeptides according to any one of claims 1-4 and a physiologically acceptable carrier.
- 10. A pharmaceutical composition comprising one or more DNA molecules according to claim 5 and a physiologically acceptable carrier.
- A pharmaceutical composition comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and a physiologically acceptable carrier.
- 12. A vaccine comprising one or more polypeptides according to any one of claims 1-4 and a non-specific immune response enhancer.

13. A vaccine comprising:

a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and

a non-specific immune response enhancer.

14. A vaccine comprising:

one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140 and 141, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and

a non-specific immune response enhancer.

15. The vaccine of claims 12-14 wherein the non-specific immune response enhancer is an adjuvant.

- 16. A vaccine comprising one or more DNA molecules according to claim5 and a non-specific immune response enhancer.
- A vaccine comprising one or more DNA sequences recited in SEQ ID
 Nos.: 3, 11, 12, 140 and 141; and a non-specific immune response enhancer.
- 18. The vaccine of claims 16 or 17 wherein the non-specific immune response enhancer is an adjuvant.
- 19. A pharmaceutical composition according to any one of claims 9-11, for use in the manufacture of a medicament for inducing protective immunity in a patient.
- 20. A vaccine according to any one of claims 12-18, for use in the manufacture of a medicament for inducing protective immunity in a patient.
- A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6.
- A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the M. tuberculosis antigen 38 kD (SEQ ID NO:155).
- 24. A pharmaceutical composition comprising a fusion protein according to any one of claims 21-23 and a physiologically acceptable carrier.
- A vaccine comprising a fusion protein according to any one of claims
 21-23 and a non-specific immune response enhancer.
- 26. The vaccine of claim 25 wherein the non-specific immune response cohancer is an adjuvant.

- A pharmaceutical composition according to claim 24, for use in the 27. manufacture of a medicament for inducing protective immunity in a patient.
- 28. A vaccine according to claims 25 or 26, for use in the manufacture of a medicament for inducing protective immunity in a patient.
 - 29. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with one or more polypeptides according to any one of claims 1-4; and
- detecting an immune response on the patient's skin and therefrom (b) detecting tuberculosis in the patient.
 - 30. A method for detecting tuberculosis in a patient, comprising:
- (3) contacting dermal cells of a patient with a polypeptide having an Nterminal sequence selected from the group consisting of sequences recited in SEO ID NO: 134 and 135; and
- detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
 - A method for detecting tuberculosis in a patient, comprising: 31.
- (a) contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
- detecting an immune response on the patient's skin and therefrom (b) detecting tuberculosis in the patient.
- 32. The method of any one of claims 29-31 wherein the immune response is induration.

- 33. A diagnostic kit comprising:
- (a) a polypeptide according to any one of claims 1-4; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - A diagnostic kit comprising;
- (a) a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
- apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - 35. A diagnostic kit comprising:
- (a) a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - 36. A diagnostic kit comprising:
 - (a) a fusion protein according to any one of claims 21-23; and
 - (b) apparatus sufficient to contact said fusion protein with the dermal cells of a patient.
- 37. A fusion protein according to claim 23 comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 153 and 209.

D7 T Cell Proliferation

FIG. 1.4

D160 T Cell Proliferation

D160 IFNg

FIG. 1B

FIG. 2

116.8.3.1.D

CPM Incorporated

T Cell Clone PPD 800-10 IFNg Production

FIG. 4B

D131 T Cell Proliferation

D131 IFNg

FIGS. 5 A-B

D184 T Cell Proliferation

D184 IFNg

FIGS. 6 A-B

D201 T Cell Proliferation

D201 IFNg

FIGS. 7 A-B

D160 T Cell Proliferation

FIGS. 8A-B

D184 T Call Proliferation

FIGS. 9A-B