Let m be the Lebesgue measure as described in class.

- 1. Compute $\int x^2 dm$ over the interval [0,1].
- 2. Compute $\int f \ dm$ over the interval [0,1], where $f(x) = \begin{cases} x^2 & x \in \mathbb{Q}^c \\ 0 & x \in \mathbb{Q} \end{cases}$.
- 3. Compute $\int g \ dm$ over the interval [0,1], where $g(x) = \begin{cases} x^2 & x \in \mathbb{R} \setminus (\mathbb{Q} \cup \mathbb{C}) \\ \infty & x \in \mathbb{Q} \\ 0 & x \in \mathbb{C} \setminus \mathbb{Q} \end{cases}$, where \mathbb{C} is the Cantor Set.

Proof:

1. Let $E_{0,1} = [0,1]$, and let the function $S_0 = 0 \times \chi_{[0,1]}$, and $\int S_0 dm = 0$ Let $E_{1,0} = [0,\frac{1}{2})$ and $E_{1,1} = [\frac{1}{2},1]$, and let the function $S_1 = 0 \times \chi_{E_{1,0}} + \frac{1}{2^2} \times \chi_{E_{1,1}}$, and $\int S_1 dm = \frac{1}{8}$.

Let $E_{n,i} = \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)$, and let the function $S_n = \sum_{i=0}^{2^n-1} \frac{i^2}{4^n} \chi_{E_{n,i}}$.

Then
$$\int S_n \ dm = \sum_{i=0}^{2^n - 1} \frac{i^2}{4^n} \ \mu(E_{n,i})$$

$$= \sum_{i=0}^{2^n - 1} \frac{i^2}{4^n} \frac{1}{2^n}$$

$$= \frac{1}{8^n} \sum_{i=0}^{2^n - 1} i^2$$

$$= \frac{2^n (2^n - 1)(2^{n+1} - 1)}{6 \times 8^n}$$

$$= \frac{2^{2n+1} - 2^{n+1} - 2^n + 1}{6 \times 4^n}$$

$$= \frac{2 \times 4^n}{6 \times 4^n} - \frac{2}{6 \times 2^n} - \frac{1}{6 \times 2^n} + \frac{1}{6 \times 4^n}$$

$$= \frac{1}{3} - \frac{2}{6 \times 2^n} - \frac{1}{6 \times 2^n} + \frac{1}{6 \times 4^n}$$

Since, for all $n, S_n \leq x^2$, so $\int x^2 dm = \lim_{n \to \infty} \int S_n dm = \frac{1}{3}$.

- 2. Consider the same function S_n as part 1, but $E_{n,i} = \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right) \cap \mathbb{Q}^c$. With the same calculation, $\int S_n \ dm = \frac{1}{3} \frac{2}{6 \times 2^n} \frac{1}{6 \times 2^n} + \frac{1}{6 \times 4^n}$ Since for all $n, S_n \leq f$, so $\int f \ dm = \lim_{n \to \infty} \int S_n \ dm = \frac{1}{3}$.
- 3. Consider the same function S_n as part 1, but $E_{n,i} = \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right) \setminus (\mathbb{Q} \cap \mathbb{C})$. Since for all $n, S_n \leq g$, so $\int g \ dm = \lim_{n \to \infty} \int S_n \ dm = \frac{1}{3}$.