Introduction

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis Speech parameter generation

Synthesis vocoders

Speech quality evaluation

Subjective listening tests

- The VODER "Voice Operation DEmonstratoR" of Homer Dudley, demonstrated at Bell Laboratory exhibit at the 1939 New York World's Fair, was controlled using a keyboard and foot pedals.
- We can say that these peripherals enabled to control parameters of the a vocoder behind the VODER. And operator of the VODER was a "model" that generated the control sequence.
- In the case of the VODER the "model" to synthesize the speech parameters was a human. Current vocoders incorporate the modelling of the parameters. To distinguish them from historical vocoders, we are going to call them hereinafter synthesis vocoders.

Analysis - MGC features

Speech Signal Processing

$_{\rm Cernak}^{\rm Milos}$

Introduction

synthesis signal

Analysis

parameter

Re-synthes

Synthesis vocoders

Speech quality evaluation

Subjective listening tes Objective Mel-generalised cepstral (MGC) features $c_{\alpha,\gamma}(m)$ are typically used in speech vocoding.

$$H(z) = s_{\gamma}^{-1} \left(\sum_{m=0}^{M} c_{\alpha,\gamma}(m) z^{-m} \right)$$

$$= \begin{cases} \left(1 + \gamma \sum_{m=1}^{M} c_{\alpha,\gamma}(m) \tilde{z}^{-m} \right)^{1/\gamma}, & -1 \le \gamma < 0 \\ \exp \sum_{m=1}^{M} c_{\alpha,\gamma}(m) \tilde{z}^{-m}, & \gamma = 0 \end{cases}$$

$$(1)$$

where M is an analysis order.

Relation of α and γ

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal processing

Analysis

Speech

generation Re-synthesi

Synthesis

Speech quality evaluation

Subjective listening test ■ The variable \tilde{z}^{-1} can be expressed as the first order all-pass function

$$\tilde{z}^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}} \tag{2}$$

where α is a warping factor.

- For 16kHz, $\alpha = 0.42$ gives good approximation to the mel scale. The parameter γ control the representation accuracy of poles and zeros.
- As the value of γ approaches zero, the accuracy for spectral zeros increases at the expense of formant accuracy.

Relation of MGC to other analysis methods.

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal processin

Analysis

parameter generation Re-synthesi

Synthesis vocoders

Speech quality evaluation

Subjective listening tests Objective

Figure: Relation of MGC to other analysis methods.

For more details and explanation, please see Phil's root cepstrum notes.

Speech parameter generation

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio:

Speech synthesis signal processing

Analysis

Speech parameter generation

Synthesis

Speech quality evaluation

> Subjective listening tes Objective

- As already mentioned, vocoders enable to model their parameters. The models are typically Hidden Markov Models (HMMs).
- Then, an additional algorithm need to be used, to calculate the speech parameters (static cepstra) from continuous mixture HMMs with dynamic features.
- An iterative MLPG algorithm does it. We will not explain it as it is a staff for sequential speech processing systems.

Re-synthesis

Speech Signal Processing

Milos Cernak

Re-synthesis

■ In mel-generalised speech ceptrum H(z) is modelled by as set cepstrum coefficients $c_{\alpha,\gamma}(m)$.

- For re-synthesis, the parameter γ is fixed to be -1/2. This value balances good representation of both spectral poles and zeros.
- Then, the synthesis filter is realised as a rational transfer function

$$H(z) = \frac{1}{\{B(\tilde{z})\}^2}$$
 (3)

where

$$B(\tilde{z}) = 1 + \gamma \sum_{m=0}^{M} c_{\alpha,\gamma}(m)\tilde{z}^{-m}.$$
 (4)

Removing delay-free loops

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

signal processing

Speech parameter

Re-synthesis

vocoders

Speech quality evaluation

Subjective listening tests Objective ■ To remove delay-free loops from $B(\tilde{z})$, it synthesis filter is re-designed to

$$B(\tilde{z}) = 1 + \gamma \sum_{m=0}^{M} b_{\gamma}'(m) \Phi_m(z).$$
 (5)

where

$$\Phi_m(z) = \frac{(1 - \alpha^2)z^{-1}}{1 - \alpha z^{-1}} \tilde{z}^{-(m-1)}, m \ge 1.$$
 (6)

• and the filter coefficients $b'_{\gamma}(m)$ are obtained using a recursive formula

$$b'_{\gamma}(m) = \begin{cases} c_{\alpha,\gamma}(M), & m = M \\ c_{\alpha,\gamma}(m) - \alpha b'_{\gamma}(m+1), & 0 \le m < M \end{cases}$$
 (7)

A structure of MGLSA filter

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis

Speech

Re-synthesis

Synthesis

Speech quality evaluation

Subjective listening tests

Figure: A structure of MGLSA filter $\frac{1}{B(\tilde{z})}$. (If you're not familiar with this kind of diagram, the triangles are scalers/attenuators i.e. multiply-by-constant, the plusses are adders, and the z^{-1} boxes are 1-cycle delays.)

This synthesis filter is known in literature as Mel-Generalised Log Spectral Approximation (MGLSA) filter

Mel-generalized cepstral vocoder (MGC)

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal processing

Analysis Speech parameter

generation Re-synthesi

Synthesis vocoders

Speech quality evaluation

Subjective listening tes Objective The MGC vocoder is based on analysis/re-synthesis framework introduced in the previous section. The main characteristics are:

- Uses a mixture of pulse train and white Gaussian noise for excitation source modelling.
- Pulse/noise model is straightforward.
- Produces characteristic "buzzy" sounds due to strong harmonics at higher frequencies.
- Typical parameters are $\alpha = 0.42$ and $\gamma = -1/3$.

STRAIGHT-MGC - 1999

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

synthesis signal processing

Speech parameter generation

Synthesis

Speech quality evaluation

Subjective listening tests Objective

Figure: Hideki Kawahara, Professor, Wakayama University

http://www.wakayama-u.ac.jp/~kawahara/ STRAIGHTadv/index_e.html STRAIGHT: Speech Transformation and Representation based on Adaptive Interpolation of weiGHTed spectrogram

Waveform
Fined-point analysis
Fixed-point analysis

Figure: A block diagram of STRAIGHT vocoder

- Extract fundamental frequency F0
- F0-adaptive spectral analysis. The aperiodicity measure is defined as the lower envelope (spectral valleys) normalized by the upper envelope (spectral peaks).

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis Speech parameter generation

Synthesis

Speech quality evaluation

Subjective listening test Objective

STRAIGHT: synthesis

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

Analysis

parameter generation

Synthesis

Speech quality evaluation

Subjective listening tests

Figure: STRAIGHT synthesis

Aperiodicity is used to weight the harmonic and noise components of the excitation; removes the periodicity effects of fundamental frequency on extracting the vocal tract spectral shape.

Glottal vocoder

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal processin

Speech parameter generation

Re-synthesis

Synthesis vocoders

Speech quality evaluation

> Subjective listening tests Objective

- Uses a library of glottal pulses instead of pulse train for voiced signals.
- The glottal excitation is synthesized through interpolating and concatenating natural glottal flow pulses.
- The excitation signal is further modified to reproduce the time-varying changes in the natural voice source.
- Analysis of excitation using the Iterative Adaptive Inverse Filtering.
- Energy and harmonic-to-noise ratio for weighting the noise component.
- Available at http://www.helsinki.fi/ speechsciences/synthesis/glott.html.

Deterministic plus Stochastic vocoder – 2012

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal

Analysis

Speech parameter generation

Synthesis

Speech quality

Subjective listening tes: Objective

- Uses MGC analysis/re-synthesis
- Differs in the excitation modelling:
 - 1 Uses GCI-synchronous LP residuals extraction.
 - 2 Deterministic component at the low frequencies is decomposed using PCA to obtain first eigen residual
 - 3 Stochastic component is made of energy envelope and an autoregressive model.

Harmonics plus Noise Model based vocoder - 2013

Speech Signal Processing

$_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis Speech parameter generation

Synthesis

Speech quality

Subjective listening te Objective

- The previous described vocoders were based on source-filter decomposition and modelling.
- An completely different approach is using sinusoidal/waveform decomposition.
- The harmonic plus noise (HNM) models assumes the speech spectrum to be composed of two frequency bands: harmonic and noise. The bands are separated by maximum voiced frequency (MVF).

HNM harmonic band analysis 1

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis

Speech

Re-synthesi

Synthesis vocoders

Speech quality evaluation

Subjective listening test Objective ■ The harmonic part, the lower band, is modelled as a sum of harmonics

$$s_h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) \exp(jk\omega_0(t)t)$$
 (8)

where L(t) denotes the number of harmonics that depends on the fundamental frequency $w_0(t)$ and on the MVF $F_m(t)$.

HNM harmonic band analysis 2

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

Analysis

Speech parameter generation

generation Re-synthesi

Synthesis

Speech quality evaluation

Subjective listening tests Objective ■ The complex magnitudes $A_k(t)$ can take on one of the following forms:

$$A_k(t) = a_k(t_i) A_k(t) = a_k(t_i) + tb_k(t_i) A_k(t) = a_k(t_i) + tc_k(t_i) + t^2 d_k(t_i)$$
(9)

where $a_k(t_i), b_k(t_i), c_k(t_i)$ and $d_k(t_i)$ are complex numbers with constant phases, measured at analysis time instants t_i .

■ A simple stationary harmonic model using the firstly defined $A_k(t)$ is referred as HNM_1 is capable to generate speech perceptually indistinguishable from original speech.

HNM noise band analysis

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis

Speech parameter

generation Re-synthesi

Synthesis vocoders

Speech quality evaluation

> Subjective listening tes Objective

■ The modulated noise, the upper band. Most important is specification of noise bursts (where energy is localised). Therefore the noise part $s_n(t)$ is described as time-varying autoregressive model $h(\tau, t)$ modulated by a parametric envelope e(t):

$$s_n(t) = e(t)[h(\tau, t) * b(t)]$$
 (10)

where b(t) is white Gaussian noise.

■ Finally, the synthetic speech $\hat{s}(t)$ is

$$\hat{s}(t) = s_h(t) + s_n(t) \tag{11}$$

HNM based vocoder

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal processing

Analysis

parameter generation Re-synthesis

Synthesis vocoders

Speech quality evaluation

Subjective listening tes Objective

The HNM based vocoder thus:

- Decomposes the speech frames into a harmonic part and the stochastic part using
 - 1 MGC
 - 2 F0
 - 3 MVF
- Voiced frames full spectral envelope may be obtained by interpolating amplitudes at harmonics.
- Unvoiced frames analysed with fast Fourier transform.
- Available at aholab.ehu.es/ahocoder/index.html

Speech quality evaluation

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

Analysis

Speech parameter generation

generation Re-synthesis

Synthesis vocoders

Speech quality evaluation

Subjective listening tes Objective

- In the context of the last lectures about the parametric speech, i.e., the speech analysis/re-synthesis methods, one may be interested in evaluation of speech quality degradation that the methods introduce.
- We distinguish:
 - 1 Subjective evaluation: by asking people about evaluated stimuli. It is costly and time consuming.
 - 2 Objective evaluation: by using computers for that. It is cheaper, faster, but the quality depends on the test.

Classification of speech quality evaluation methods

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

synthesis signal

Analysis

Speech parameter generation

Synthesis

Speech quality evaluation

> Subjective listening tes Objective

- Conversational quality: the quality aspects of the conversation it is a rare test.
- 2 Talking quality: echo, delay and sidetone distortion.
- 3 Listening quality: to measure typically single quality dimension such as:
 - intelligibility
 - naturalness
 - \blacksquare listening effort

Subjective listening tests

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

synthesis signal

Analysis

parameter generation Re-synthesis

Synthesis vocoders

Speech quality evaluation

Subjective listening tests

- The subjective listening tests differ mainly if the reference signal is used.
 - Non reference based tests follow absolute category (ACR) rating procedures.
 - 2 Otherwise reference based tests are called degradation category rating (DCR) tests.
- Both following MOS and DMOS tests are standardised by ITU-T.

Mean Option Score (MOS)

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

processing

Speech parameter generation

generation Re-synthesi

Synthesis

Speech quality evaluation

Subjective listening tests In an ACR test a group of listeners rate the listening quality of the stimuli (speech examples). The quality is rated in the 5-level impairment scale:

- 1 Bad,
- 2 Poor,
- 3 Fair,
- 4 Good,
- 5 Excellent.

and the average of all scores is represents the speech quality metric called mean opinion score (MOS).

Degradation Mean Option Score (DMOS)

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introduction

Speech synthesis signal

processing

Speech

generation Re-synthesi

Synthesis vocoders

Speech quality evaluation

Subjective listening tests

- Sometimes the resolution of the MOS is not sufficient. It can be increased by reference based DCR test.
- Here the listeners first listen original (source) speech signal and rate the degradation of speech quality of the processed (modified) speech signal. The degradation is again rated in the 5-level impairment scale:
 - 1 very annoying,
 - 2 annoying,
 - 3 slightly annoying,
 - 4 audible but not annoying,
 - 5 inaudible.
- The average of all scores is represents the speech quality metric called degradation mean opinion score (DMOS).

ABX

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

Analysis

Speech parameter generation

Synthesis

Speech quality

Subjective listening tests

- If one can test listener' reliability as well, there is so called ABX test.
- The listeners are provided with three speech examples
 A, B, and X, asking which of A/B is identical to X.
 As the signal X is known reference, the ABX test also belongs to the DCR procedures.
- The ABX test is suitable for rating small degradation using a continuous impairment scale, and expert (trained) listeners should be used.

Objective

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

Analysis

Speech parameter generation

Synthesis

Speech quality evaluation

Subjective listening tests Objective

- I Similarly as in subjective listening tests, reference based tests are called *intrusive*.
- 2 Non reference based are called *non-intrusive*.

Spectral distortion

Speech Signal Processing

Milos Cernak

Objective

Widely accepted objective measure is a frequency domain measure – gain-normalised spectral distortion (SD). The SD measure evaluates autoregressive spectra $P_{xy}(n,k)$

$$P_{xy}^{R}(n,k) = \langle R_{xy}(k), \exp^{-j2\pi nk/N} \rangle$$
 (12)

as per frame k

$$d_{SD}^{k}(s,t) = \frac{1}{N} \sum_{n=0}^{N-1} \left[10 \log_{10} \left(\frac{P_{xy}^{s}(n,k)}{P_{xy}^{t}(n,k)} \right) \right]^{2}$$
 (13)

for the source signal s and target signal t. The final measure, the global distortion is the root-mean SD:

$$d_{SD}(s,t) = \frac{1}{K} \sqrt{\sum_{k=0}^{K-1} d_{SD}^k(s,t)}$$
 (14)

where K is the total number of frames.

Psycho-acoustically motivated measures

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal

Analysis Speech parameter generation

Synthesis

Speech quality evaluation

Subjective listening tes Objective Many of the intrusive objective measures are psycho-acoustically motivated measures. The idea here is to mimic human speech listening, and so the methods implement two basic modules:

- Auditory processing it employs an perceptual transform using bark-scale frequency warping and subjective loudness conversion. The output is the auditory (nerve) excitation.
- 2 Cognitive mapping it extract key information related to anomalies in the speech signal from the auditory excitation. This area is still not well understood.

Perceptual Evaluation of Speech Quality (PESQ)

Speech Signal Processing

 $_{\rm Cernak}^{\rm Milos}$

Introductio

Speech synthesis signal processin

Analysis

Speech
parameter
generation
Re-synthesi

Synthesis

Speech quality evaluation

Subjective listening tests Objective

Figure: Mimicking human quality assessment.

- Widely used Perceptual Evaluation of Speech Quality (PESQ) computes internal representations based on auditory periphery of both reference/source signal s and distorted/target signal y
- Internal representations are compared to predict speech quality degradation \hat{Q} .
- It mimics human brain that probably compares these two entities during speech quality evaluation as well.

Perceptual Objective Listening Quality Assessment (POLQA)

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal

processing

Speech parameter generation

Synthesis

Speech quality evaluation

Subjective listening tes Objective A recent update of PESQ measure is Perceptual Objective Listening Quality Assessment (POLQA):

- PESQ measures one-way distortion and the effects related to two-way communication such as delay, echo are not reflected in the scores. POLQA handles the signal with variable delays.
- PESQ was design for narrow-band signal (3.4 kHz) and even there is an wide-band (7 kHz) extension,
 POLQA should perform better for wide-band signals

POLQA enhancements

Speech Signal Processing

Milos Cernak

Introduction

Speech synthesis signal

Analysis

Speech
parameter
generation

Re-synthesis

Synthesis vocoders

Speech quality evaluation Subjective

Subjective listening tests Objective

- POLQA in addition predicts "idealised" reference signal, modelling listeners expectations of an ideal signal.
- The reference signal with low amount of recording noise and an identical degraded signal will not be scored with the maximum score.
- When the uncertainty of the subjective scores is taken into account, a statistical metric called epsilon-insensitive rmse (rmse*) can be used (ITU-T P.1401 (07/2012)).
- Last but not least: PESQ is free while a binary of POLQA costs 3500 CHF.