Semantic Proximity Search on Graphs with Metagraph-based Learning

Yuan Fang¹ Wenqing Lin¹ Vincent Zheng² Min Wu¹ Kevin Chang²³ Xiao-Li Li¹

- ¹ Institute for Infocomm Research, Singapore
- ² Advanced Digital Sciences Center, Singapore
- ³ University of Illinois at Urbana-Champaign, USA

Problem: Semantic Proximity Search on Heterogeneous Graph

On a "typed" object graph that captures users and their attributes on a social network:

Which users are close to /related to Bob?

Family? (Alice) Classmates? (Tom)

Insights: Metagraphs to "Explain" Different Semantic Classes

Family [Bob & Alice]

Classmates

Close friends [Kate & Jay, Bob & Tom] [Kate & Alice] [Kate & Jay]

Training

Definition of Proximity

Proximity of two nodes x, y on graph

$$\pi(x, y; \mathbf{w}) \triangleq \frac{2 \ \mathbf{m}_{xy} \cdot \mathbf{w}}{\mathbf{m}_x \cdot \mathbf{w} + \mathbf{m}_y \cdot \mathbf{w}}$$

 $\mathbf{m}_{xy}[i]$: # times x, y co-occur in instances of metagraph i

 $\mathbf{m}_{x}[i]$: # times x occurs in instances of metagraph i

 $\mathbf{w}[i]$: weight for metagraph i

Basic Learning Model

Pairwise learning to rank

 $(q, x, y; \mathbf{w}) \triangleq \frac{1}{1 + e^{-\mu(\pi(q, x; \mathbf{w}) - \pi(q, y; \mathbf{w}))}}$

Each example is a triplet: for query q, x is ranked before y.

Objective function

 $L(\mathbf{w}; \Omega) = \sum_{(q,x,y) \in \Omega} \log P(q, x, y; \mathbf{w})$

Matching Metagraphs

Existing method

- Backtracking DFS search
- Node by node until an entire matched instance is found
- Fail to leverage symmetric components

Symmetry-based matching

- Many metagraphs are symmetric
- Avoid redundant computation

Dual-Stage Training

- Expensive to process/match all metagraphs
- Yet not all metagraphs are useful

Main Results

Datasets:

- College & Coworkers (labelled on LinkedIn)
- Family & Classmate (rule on Facebook)

Baselines:

- MGP: metagraph-based proximity (ours)
- MPP: metapath-based proximity
- MGP-U: all metagraphs have uniform weights
- MGP-B: only use the best metagraph
- SRW: supervised random walk

(a) College (b) Coworker (d) Classmate (c) Family 0.60.60.90.9------ MGP \rightarrow MPP NDCG on test que dne — → MGP-U → SRW on on NDCG NDCG NDCG 1000 1000 1000 # Training examples $|\Omega|$ # Training examples $|\Omega|$ # Training examples $|\Omega|$ # Training examples $|\Omega|$ (b) Coworker (c) Family (a) College (d) Classmate → MGP test queries \longrightarrow MPP — MGP-U 0.6—— MGP-B → SRW MAP MAP100 1000 1000 1000 100 1000 100 100 # Training examples $|\Omega|$ # Training examples $|\Omega|$ # Training examples $|\Omega|$ # Training examples $|\Omega|$