LATEX-Stats-Template

Berent Å. S. Lunde Jens Christian Wahl

Workshop or Event Place, Location 15th February 2021

Agenda

- Blocks
- Algorithms
- Section3Title

Blocks

2 Algorithms

Section3Title

Custom blocks

Blocks can have different colours for effect.

Poisson GLM might look good with yellow block

• $N_i \sim \text{Poisson}(\lambda_i)$ for observation i.

$$\log \lambda_i = \mathbf{x}_i^T \beta \text{ (GLM)}$$

$$\log \lambda_i = \mathbf{x}_i^T \beta + \sum_j f_j(x_{ij})$$
 (GAM)

Gamma GLM might loog good inside the green block

• $S_i \sim \text{Gamma}(\mu_i, \nu)$ where $\mathbb{E}(S_i) = \mu_i$.

$$\log \mu_i = \mathbf{x}_i^T \beta \text{ (GLM)}$$

$$\log \mu_i = \mathbf{x}_i^T \beta + \sum_j f_j(x_{ij})$$
 (GAM)

Blocks Algorithms Section3Title 4/12

Claim frequency and claim severity

Model for claim frequency

Assume $N_i \sim \text{Poisson}(\lambda_i)$ for customer i.

$$\log \lambda_i = \mathbf{x}_i^T \boldsymbol{\beta} \quad (\mathsf{GLM})$$

$$\log \lambda_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \sum_j f_j(x_{ij})$$
 (GAM)

Model for claim size

Assume $S_i \sim \text{Gamma}(\psi_i, \nu)$ where $\mathbb{E}(S_i) = \psi_i$.

$$\log \psi_i = \mathbf{x}_i^T \boldsymbol{\beta}$$
 (GLM)

$$\log \psi_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \sum_i f_j(x_{ij})$$
 (GAM)

Blocks Algorithms Section3Title 5/12

Left split col

Make good points

Left split col

- Make good points
- Sequentially

Left split col

- Make good points
- Sequentially
- For impact!

Left split col

- Make good points
- Sequentially
- For impact!

Right split col

- Show this column later
- Give more flexibility
- Write amazing things

Algorithms Section3Title 6/12 1 Blocks

Algorithms

Section3Title

Algorithm environment

Specific R-coding

Blocks

Algorithms

Section3Title

Section outline

- Amazing things
- more amazing things.

Questions?

Blocks Algorithms Section3Title 12 / 12