Изучение особенностей возбуждения и распространения акустических волн СВЧ в твердых телах

Нехаев Александр 654 гр.

25 марта 2019 г.

Цель работы: Снять частоту, зависимость коэффициента затухания амплитуды. Определить константы упругости 2 - го порядка.

1. Теоретическое введение

Под затуханием ультразвуковых волн (УЗВ) обычно понимают уменьшение интенсивности вдоль пути ее распространения. Это связано со следующими процессами: поглощением энергии УЗВ и переходом ее в тепло, с рассеянием на неоднородностях и причинами, сиоздающими кажущееся поглощение, связанное с методикой измерений, к примеру, разориентации образца относительно основных кристаллографических осей, дифракционные потери, потери из-за непараллельности торцевых граней образца и другие.

Первые две причины создают уменьшение интенсивности, пропорциональные самой интенсивности, то есть $-dI(x)=\gamma I(x)dx$ или $I(x)=I_0e^{-\gamma x}$. Для амплитуд выражение имеет вид $U(x)=U_0e^{-\alpha x}$. U_0 , I_0 — интенсивность и амплитуда УЗВ во вхрдном сечении кристалла. α — коэффициент затухания амплитуды, а $\gamma=2\alpha$ — коэффициент затухания интенсивности. Если при измерении затухания амплитудные характеристики линейны, то для определения α можно использовать следующее выражение:

$$\alpha = -\frac{1}{x_1 - x_2} ln \frac{U(x_1)}{U(x_2)}$$

Если регистрация амплитуды УЗВ происходит в одном и том же сечении образца, то $x_2-x_1=2L$, где L – длина образца, а величину можно найти, измеряя отношение амплитуд соответствующих импульсов на экране осциллографа. На этом и основа реализуемый в работе метод.

В работе на одном из двух торцов образца мы возбуждаем УЗВ, распространяющиеся вглубь образца. Переменное электрическое поле прикладывается к преобразователю на очень короткое время (порядка нескольких микросекунд). В результате по кристаллу распространяется короткий цуг УЗВ длиной $V_s\tau_{\rm имп}$, где V_s — скорость УЗВ. Испытав отражение от параллетьной грани и придя обратно, цуг вызывает но обкладках преобразователя переменное напряжение с частотой УЗВ. На выходе мы наблюдаем импульс длиной $\tau_{\rm имп}$. Скорость УЗВ мы находим временную задержку n-го импульса относительно m-го. Эта задержка соответствует целому числу двойных пробегов цуга УЗВ вдоль образца, поэтому $V_s = \frac{2L(m-n)}{T_3}$.

Рис. 1: Схема установки

2. Экспериментальная установка

3. Ход работы

1) Сняли частотную зависимость $\alpha(v)$ в кристалле SiO₂.

V , М Γ ц	U_1 , B	U_2 , B	α , cm ⁻¹
430	1	2.1	0.555174
500	3.4	5	0.288582
600	3	5.8	0.493298
700	2	4.2	0.555174
800	1.6	4	0.685638
980	0.8	3.7	1.14597

- 2) Полученная зависимость показана на графике. Параметры образца: $L=2.9~{\rm cm},~t=54/7~{\rm c}.$
- 3) Проведем расчет $\Delta_{\text{диф}}$ на $v=400~\text{М}\Gamma$ ц по формуле:

$$\Delta_{\text{диф}} = 20 \log(\frac{\lambda l}{\pi a^2}) \cdot \frac{\sin(\frac{\lambda l}{\pi a^2} \cdot \frac{\pi}{3.83})^4}{(\frac{\lambda l}{\pi a^2} \cdot \frac{\pi}{3.83})^4} \tag{1}$$

Радиус преобразователя приближенно равен: a=0.05 см, l=2L, $\lambda_{\rm 3}=\frac{l/t}{400{\rm M}\Gamma_{\rm H}}=-269.752$

4) Определим скорость УЗВ в кристалле $v=\frac{2L}{t}=0.75$ см/с. Считая, что мы измерили скорость продольной волны, вычислили один из коэффициентов тензора модулей упругости: Значение плотности $\rho=2196$ кг/м³ для SiO_2 . $C_{11}=\rho*v^2=0.124136$ кг/(м*c²).

Рис. 2: Зависимость $\alpha(v)$

4. Вывод

Сняли частотную характеристику коэффициента затухания амплитуды УЗВ в кристалле SiO_2 . Определили скорость распространения УЗВ в кристалле SiO_2 . Определили константу упругости 2-го порядка, оценили дифракционные потери в кристалле SiO_2 .