https://shorturl.at/qa271

Kyoto University

Statistical Learning Theory - Classification -

Hisashi Kashima

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Classification

Classification:

Supervised learning for predicting discrete variable

■ Goal: Obtain a function $f: X \to Y$ (Y: discrete domain)

-E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object

appearing in the image

- -Two-class classification: $\mathcal{Y} = \{+1, -1\}$
- Training dataset:

 N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$

Some applications of classification:

From binary to multi-class classification

- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer ${\bf x}$ will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if an obligor ${\bf x}$ will pay back a debt (+1) or not (-1)
- Multi-class classification (≠ Multi-label classification):
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ($\{running, walking, sitting, ...\}$) that a person is taking from sensor data x

A simple model for classification: Linear classifier

Linear (binary) classification model:

$$y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$$

- $-|\mathbf{w}^{\mathsf{T}}\mathbf{x}|$ indicates the intensity of belief
- $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane
 - w: normal vector perpendicular to the separating

hyperplane

Learning framework: Loss minimization and statistical estimation

- Two learning frameworks
 - 1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})$
 - Loss function ℓ : directly handles utility of predictions
 - Regularization term $R(\mathbf{w})$
 - 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$
 - Probabilistic model: generation process of class labels
 - Prior distribution $P(\mathbf{w})$
- They are often equivalent: \begin{cases} Loss = Probabilistic model Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of w)
- Loss function should reflect the number of misclassifications on training data
 - –Zero-one loss seems reasonable: Correct classification $\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 & \left(y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right) \\ 1 & \left(y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right) \end{cases}$

Incorrect classification

Zero-one loss:

Number of misclassification is hard to minimize

■ Zero-one loss:
$$\ell(y^{(i)}, \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)}) = \begin{cases} 0 & (y^{(i)} \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)} \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} \le 0) \end{cases}$$

Non-convex function is hard to optimize directly

Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - -Hinge loss \rightarrow SVM, Logistic loss \rightarrow logistic regression, ...

Logistic regression

Logistic regression:

Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}))$$

(Regularized) Logistic regression:

Convex

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_2^2$$

Statistical interpretation:

Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f_{\mathbf{w}}(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$$

- σ : Logistic function (σ : $\Re \to (0,1)$)
- Log likelihood:

$$\left(=\sum_{i=1}^{N} \delta(y^{(i)}=1) \log \frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} + \delta(y^{(i)}=-1) \log \left(1-\frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}\right)\right)$$

Parameter estimation of logistic regression: Numerical nonlinear optimization

Objective function of (regularized) logistic regression:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda ||\mathbf{w}||_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used
 - -Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$ (until convergence)

Parameter update:

Find the best update minimizing the objective function

■ By update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$, the objective function will be:

$$L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$$

- Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:
 - $\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$
- ... but so far, this problem has not been made easier at all ...

Finding the best parameter update: Approximate the objective with Taylor expansion

Taylor expansion:

3rd-order term

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \mathbf{H}(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

Steepest direction

-Hessian matrix: $[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w_j}$

Newton update:

Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

- Derivative w.r.t. \mathbf{d} : $\frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + \mathbf{H}(\mathbf{w})\mathbf{d}$
- Setting it to be **0**, we obtain $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula:

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

$$\mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}) \qquad \mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

Modified Newton update: Second order approximation + linear search

■ The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d}$$

- This is not actually true for most cases
- Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Learning rate $\eta > 0$ is determined by linear search:

$$\eta^* = \operatorname{argmin}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$$

(Steepest) gradient descent: Simple update without computing inverse Hessian

- Computing the inverse of Hessian matrix is costly
 - -Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- (Steepest) gradient descent:
 - -Replacing $H(\mathbf{w})^{-1}$ with I gives $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \nabla L(\mathbf{w})$
 - $\nabla L(\mathbf{w})$ is the steepest direction
 - ullet Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w})$$

Gradient of

objective function

Summary:

Gradient descent

- Steepest gradient descent is the simplest optimization method:
- Update the parameter in the steepest direction of the objective function

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$$

-Gradient:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

-Learning rate η is determined by line search or just fixed at a small value

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w})$$

 $\nabla L(\mathbf{w})$

Example of gradient descent: Gradient of logistic regression

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

$$\bullet \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial \left(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right)}{\partial \mathbf{w}}$$

$$= -\sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= -\sum_{i=1}^{N} \left(1 - f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})\right) y^{(i)}\mathbf{x}^{(i)}$$
Can be easily computed with the current prediction probabilities

Mini batch optimization: Efficient training using data subsets

Objective function for N instances:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$$

- Its derivative $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ needs O(N) computation
- Approximate this with only one instance:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Stochastic approximation)}$$

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Multi-class Classification

Multi-class classification:

Generalization of supervised two-class classification

- Training dataset: $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(i)}, y^{(i)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
 - -input $\mathbf{x}^{(i)} \in \mathcal{X} = \mathbb{R}^D$: D-dimensional real vector
 - -output $y^{(i)} \in \mathcal{Y}$: one-dimensional scalar
- Estimate a deterministic mapping $f: \mathcal{X} \to \mathcal{Y}$ (often with a confidence value) or a conditional probability P(y|x)
- Classification
 - $-\mathcal{Y}=\{+1,-1\}$: Two-class classification
 - $-\mathcal{Y}=\{1,2,\ldots,K\}$: K-class multi-class classification
 - hand-written digit recognition, text classification, ...

Two-class classification model: One model with one parameter vector

- Two-class classification model
 - -Linear classifier: $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) \in \{+1, -1\}$
 - -Logistic regression: $P(y|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$
 - The model is specified by a parameter vector

$$\mathbf{w} = (w_1, w_2, \dots, w_D)^{\mathsf{T}}$$

Simple approaches to multi-class classification: Reduction to two-class classification

- Reduction to a set of two-class classification problems
- Approach 1: One-versus-rest
 - -Construct K two-class classifiers; each classifier $sign(\mathbf{w}^{(k)}\mathbf{x})$ discriminates class k from the others
 - -Prediction: the most probable class with the largest $\mathbf{w}^{(k)}$ \mathbf{x}
- Approach 2: One-versus-one

- -Construct K(K-1)/2 two-class classifiers, each of which discriminates between a pair of two classes
- Prediction by voting

Error Correcting Output Code (ECOC): An approach inspired by error correcting coding

- Approach 3: Error correcting output code (ECOC)
 - Construct a set of two-class classifiers, each of which discriminates between two groups of classes, e.g. AB vs. CD
 - Prediction by finding the nearest code in terms of Hamming distance

codes

	class	two-class classification problems						
		1	2	3	4	5	6	
	Α	1	1	1	1	1	1	code for class A
	В	1	-1	1	-1	-1	-1	
	С	-1	-1	-1	1	-1	1	
	D	-1	1	1	-1	-1	1	
	prediction	1	1	1	1	1	-1	

Design of ECOC:

Code design is the key for good classification

- Codes (row) should be apart from each other in terms of Hamming distance
 - −E.g., Hadamard codes

codes

class	two-class classification problems								
class	1	2	3	4	5	6			
Α	1	1	1	1	1	1			
В	1	-1	1	-1	-1	-1			
С	-1	-1	-1	1	-1	1			
D	-1	1	1	-1	-1	1			

Hamming distances between codes

class	Α	В	С	D
Α	0	4	4	3
В		0	4	3
С			0	3
D				0

Multi-class logistic regression model: One model parameter vector for each class

- More direct modeling of multi-class classification
 - -One parameter vector $\mathbf{w}^{(k)}$ for each class $k: \mathbf{w}^{(k)} \mathbf{x}$
 - -Multi-class linear classifier: $f(\mathbf{x}) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)\intercal} \mathbf{x}$
 - -Multi-class logistic regression: $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)^{\intercal}}\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')^{\intercal}}\mathbf{x})}$
 - converts real values into positive values, and then normalizes them to obtain a probability value $\in [0,1]$

Training multi-class logistic regression: (Regularized) maximum likelihood estimation

• Find the parameters that minimizes the negative log-likelihood

$$J(\{\mathbf{w}^{(y)}\}_y) = -\sum_{i=1,...,N} \log p(y^{(i)}|\mathbf{x}^{(i)}) + \gamma \sum_{y \in \mathcal{Y}} \|\mathbf{w}^{(y)}\|_2^2$$

- $\|\mathbf{w}^{(y)}\|_2^2$: a regularizer to avoid overfitting
- For multi-class logistic regression $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)}|\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')}|\mathbf{x})}$

$$J = -\sum_{i} \mathbf{w}^{(k)\intercal} \mathbf{x}^{(i)} + \sum_{i} \log \sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k)\intercal} \mathbf{x}^{(i)}) + \text{reg.}$$

-Minimization using gradient-based optimization methods

Summary:

Classification

- Classification is a supervised learning task for predicting discrete labels from input data
- Linear classifiers use a weighted sum of input features to separate classes with a hyperplane
- Loss minimization (with regularization) and probabilistic modeling (like logistic regression) are two main frameworks
- Gradient-based optimization (e.g., gradient descent, Newton's method) is used to learn model parameters
- Multi-class classification can be built from binary classifiers or modeled directly with a separate weight vector per class

Upcoming lectures:

The next two lectures include hands-on-practice

- May 12 (today): Classification [Kashima]
- May 19: Model evaluation and selection [Atarashi]
- May 26: Hands-on practice [Atarashi]

- Bring your own laptop (recommended)
- June 2: Feature selection & Dimensionality reduction [Yamada]
- June 9: Self-supervised learning [Yamada]
- ...