On the Robustness of Second-Price Auctions in Prior-Independent Mechanism Design

Jerry Anunrojwong, Santiago Balseiro, Omar Besbes

Columbia Business School

Motivation

- mech design: how to optimally sell things
- classical theory too detail-dependent, so we relax the common prior assumption (Wilson doctrine)

Problem Formulation

- Optimize over direct mechanisms (x, p) selling one indivisible item to n buyers.
- mechanism is **prior-independent**
- no need to know F ("detail-free" or "robust")
- performance guarantee over all $F \in \mathcal{F}$
- We consider many dist classes on $[0,1]^n$.
- dominant strategy IC+IR
- each buyer need not know other buyers' dists
- Objective = "regret" on revenue
- Benchmark = maximum possible revenue when valuation is known = $\max(\boldsymbol{v})$.

Research question:

What is an optimal detail-free mechanism and how well can we perform?

Challenges

- The space of all mechanisms is large.
- The space of all bounded dists is large.
- The problem is **nonconvex** due to class restriction in \mathcal{F} e.g. i.i.d.

Minimax Problem For Each Distribution Class \mathcal{F}

Main Result

Second Price Auction with Random Reserve is minimax optimal across many distribution classes!

Theorem

Under the distribution class of {i.i.d., mixture of i.i.d., exchangeable and affiliated}, the minimax regret admits as an optimal mechanism a second-price auction with random reserve price with cumulative distribution Φ_n^* on $[r_n^*, 1]$ given by

$$\Phi_n^*(v) = \left(\frac{v}{v - r_n^*}\right)^{n-1} \log\left(\frac{v}{r_n^*}\right) - \sum_{k=1}^{n-1} \frac{1}{k} \left(\frac{v}{v - r_n^*}\right)^{n-1-k},$$

where $r_n^* \in (0, 1/n)$ is the unique solution to

$$(1 - r^*)^{n-1} + \log(r^*) + \sum_{k=1}^{n-1} \frac{(1 - r^*)^k}{k} = 0.$$

Our Approach

- saddle point approach: find m^*, F^* $R(m^*, \mathbf{F}) \leq R(m^*, \mathbf{F}^*) \leq R(m, \mathbf{F}^*) \ \forall m, \mathbf{F}$
- Conjecture that $m^* = \text{SPA}(\Phi^*)$.
- Φ^* minimizes $R(\Phi, F^*)$, which is linear in $\Phi \Rightarrow$ pins down F^*
- F^* maximizes $R(\Phi^*, F)$ which is a function of $F(\cdot) \Rightarrow$ pins down Φ^*

Insights

n	OPT	SPA(0)	$\mathrm{SPA}(r^*)$
1	0.3679	1.0000	0.5000
2	0.3238	0.5000	0.4444
3	0.3093	0.4444	0.4219
4	0.3021	0.4219	0.4096
5	0.2979	0.4096	0.4019
10	0.2896	0.3874	0.3855
∞	0.2815	0.3679	0.3679

- value of competition positive as $n \to \infty$
- significantly outperforms benchmarks (no & optimal deterministic reserves)