Data Collection & Storage

1. Architecture of Data Flow

2. Tools Used

Component	Tool	Reason
NoSQL Database	MongoDB	Flexible document model,
		schema-on-read, native JSON
		storage, easy indexing on ticker
		& date.
Rational DB	MySQL	ACID compliance, efficient
		indexed time-series queries.
Scripting	Python3	Rich ecosystem like (pymongo,
		mysql-connector,csv),
		cross-platform; concise bulk
		loading.
GUI Validation	MongoDB Compass/ MySQL	Visual data inspection, index
	Workbench	and schema management.

3. Storage Design Decisions

1. MongoDB (stockdb.tweets)

A) Schema:

B) Storage Engine & Configuration

- WiredTiger for document compression, high concurrency, and write throughput.
- Journaling enabled for crash recovery.

C) Scalability & Availability

- Replica Set for high availability and automatic failover.
- Sharding strategy (hash-shard on ticker) when collection grows beyond single-node capacity.

D) Retention & Archiving

• Archive older raw tweets to cold storage or S3 after sentiment extraction.

2. MySQL (stockdb.stock_prices)

A) Schema:

B) Partitioning & Maintenance

- Range Partitioning by date (e.g., monthly or yearly) to limit scan scope and speed up purging old partitions.
- Event Scheduler or external job to drop/archive partitions beyond a retention period.

C) High Availability & Scaling

- Master-Replica setup for read-scaling and zero-downtime failover.
- Evaluate MySQL Cluster or Amazon Aurora for automatic sharding and multi-AZ resilience if volumes spike.

D) Backup & Recovery

- Point-in-Time Recovery via binary logs.
- Logical Backups (mysqldump) for schema snapshots; Physical Backups (Percona XtraBackup) for large datasets.