By hull stellens at Z, max, ideals of C[x] correspond points in A' by a EA' = C[x] (x-a) = C[x] To max Spec (C[x]) = { $(x-a)|a \in C$ }.

For max Spec (C[x, 1/x]), consider a morphism $\varphi : C[x,y] \to C[x, 1/x], \qquad \varphi(x) = (x), \qquad \varphi(y) = \frac{1}{x}.$ Ken(φ) = (xy-1), so $\mathbb{C}(x, 1/x) \cong$ find the maximal ideals of C[xy]/(xy-11 = C[V], $y = |Y(xy-1)| = \mathcal{L}(\alpha,\alpha^{-1}) \mid \alpha \in \mathbb{C}^* \ \xi.$ where maximal ideals are of the form $(x-a, y-\frac{1}{a})$, The and - \frac{1}{4}(\frac{1}{x}-a) = - \frac{1}{4}\frac{1}{xy} + \frac{1}{y} = \frac{1}{a} - \frac{1}{a}, 50 $(\bar{x}-\alpha,\bar{y}-\bar{a})=(\bar{x}-a)$. Hence max spec($C(\bar{x}-a):a\in C^*\xi$. max Spec (C(x, 1/x]) = $\chi(x-a)$: $a \in C^* g$ by isom.

(i)
$$Q*\left(\frac{1}{x}\right) = \frac{1}{x} \circ Q(a)$$

$$= \frac{1}{\varphi(a)} = \frac{1}{a} = a$$

So
$$Q^*\left(\frac{1}{x}\right) = x$$
.

$$f \circ \varphi \times (f) \Leftrightarrow f$$

$$= \varphi \times (f) \Leftrightarrow f$$

The image of a Laurent polynomial in x should be a Laurent polynomial in y. Check the domain and codomain!

(ii) Let
$$f(x)=2x^2+\frac{2x^3+4x}{x^5}$$
. Then

$$Q^{*}(f(x)) = f \circ Q(x) = \frac{2}{x^{2}} + \frac{\frac{2}{x^{3}} + \frac{4}{x}}{\frac{1}{x^{5}}} = \frac{2}{x^{2}} + x^{5}(\frac{2}{x^{3}} + \frac{4}{x})$$

$$= \frac{2}{x^{2}} + 2x^{2} + 4x^{4} + x^{5}$$

(iii) Let
$$\int (x) = 2 - x$$
. Then $Q + (f) = \int Q(x) = 2 - \frac{1}{x}$. X

 $V = N(y - u \times) = d(x, y, u) / x = d, u = \frac{3}{2} = A^3.$ be a projection, which is a poly" map. (a) Let $\Phi: A^3 \longrightarrow A^2$ $(x,y,u) \mapsto (x,u)$ Define a morphism $\varphi := \Phi |_{V} : V \longrightarrow \mathbb{A}^{2} \quad \text{uiszero?} \\
(\times : y : u) = (\times : u)$ Note that I is well-defined, as it is a restriction of a poly map. For this we need to find is an isom. ω s.t. you = id, you = id, 2. JEVSUN) Define $(x,u) \mapsto (x,ux,u)$. It is (x,y,u), but the argument is wrong: take for example x=0. $(\gamma \circ \psi (x,u) = \psi(x,ux,u) = (x,u)$ (0,0,0) eV, (i) and (ii) need to be well defined at this point. (i) we can take (1,0,1)=(x,y,u), and (0,0)=(x,u) for (ii).

This doesn't solve the problem!

2.(6)
$$D: A^3 \rightarrow A^2$$

 $(x,y,u) \mapsto (x,y)$ a polyn map.

Define morphism as a restriction of \$\P\$ by V as follows

$$Q := \Phi |_{V} : (x,y,u) \mapsto (x,y) = (\frac{u}{u}, ux).$$

suppose by contradiction () is an isom. Then there exists an inverse $\Psi: A \to V$ s.t.

$$y \circ Q = i \partial y$$
, $Q \circ Y = i \partial_A z$.

we want: $\psi \circ \psi(x,y,u) = \psi(x,y) = (x,y,\frac{x}{x}) = (\frac{x}{u},ux,\frac{x}{x}).$ But since $(0,0,0) \in V$ we need the inverse ψ to be well defined at this point, and this means we need to choose y=0 and either u=0 or x=0, since $\psi(x,y) = (\frac{x}{u},ux,\frac{x}{x}).$

But choosing u=0 or $\chi=0$, we get division by zero, which is undefined. Hence the inverse γ does not exist. Therefore γ is not isomorphism.

$$2.(c) \quad V = V(y - ux) \subseteq \mathbb{A}^3.$$

$$0_V(D(u)) = 0_V(V|V(u)) = 0_V(V|Y(u)) = 0_V(V|Y(u)$$

$$O_V(D(u)) = \frac{C(x,y,u)}{(y-ux)}$$
, since $D(u) \neq V(y-ux) = V$, and $O_V(v) \cong O_{D(x)}(D(x))$

So $V = V \cap \overline{V} = V \cap (W(\overline{I}) \cup W(\overline{J}))$ $= (V \cap W(\overline{I})) \cup (V \cap W(\overline{J})).$

But since V is irreducible, who we have $V = V \cap V(I) = V \cap V$.

50 $\overline{y} = y(\overline{x})$, for some homogenised ideal \overline{x} .

How did you get this?

Note that $V(y-\sin(x))$ is not an affine algebraic variety, as it intersects with $y=\frac{1}{2}$ at infinitely many points. as a union of affine charts. write V=W (y-sin(x)) fave V is taken in the affine plane, so Ne what are the charts? Why are you passing to the $U_{x} = \left\{ \left[1 : \frac{\sin(x)}{x} \right] : x \neq 0 \right\},$ projective line? The projective closure should live in the projective plane. $U_{y} = \left\{ \left(\frac{x}{\sinh(x)} : 1 \right] : \sinh(x) \neq 0 \right\} = \left\{ \left(\frac{x}{\sinh(x)} : 1 \right] : x \neq \pi k, k \in \mathbb{Z} \right\}$ $= \left\{ \left(\frac{x}{\sin(x)} : 1 \right) : x \neq 0 \right\} = \mathcal{U}_{x}.$ So V = Ux. Note that V contains [1:0], when $X = \pi$, and $(2n+1)\pi:2$] when $x = \frac{n\pi}{2}$, $n \in \mathbb{Z}$. $= \left[1 : \frac{2}{(2+h)\pi} \right]$

This does not contradict Chow's Lemma, as V'is affine analytic in P?

$$V_{\perp}:=V(-xy^2-t)\subseteq A^2,\quad t\in \mathbb{C}$$

is preducible, V, and V2 are not.

Justify!

dim V, - dim () - 2 - 1=1 $A = (x\lambda_3 - 1) \sim x = \frac{1}{\lambda_5}$ $\dim(\ker_{\tau_{(a)}}(v_1)) = \dim(\ker_{\tau_{(a)}}(v_2)) = \dim(\ker_{\tau_{(a)}}(v_2))$ What if a=0? Can that happen? = dim (ker(a², =) = $\operatorname{ker}(a^2, \frac{2}{a}) = \left\{ \begin{pmatrix} b \\ c \end{pmatrix} \in \mathbb{C}^2 : \begin{pmatrix} a^2 \\ \frac{2}{a} \end{pmatrix} \cdot \begin{pmatrix} b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ $z = 0 = \begin{pmatrix} a^2 \\ \frac{2}{a} \end{pmatrix} \cdot \begin{pmatrix} b \\ c \end{pmatrix} = a^2 b + \frac{2c}{a}$ z = 0So $\ker(a^2, \frac{2}{a})$ not linearly independent, and has one variable. Therefore $\dim(\ker(a^2, \frac{2}{a})) = 1 = \dim V_1$, is smooth. Moreover, $\nabla V_1 = \nabla V_2$, so $dim(\ker \nabla V_2) = dim(\ker \nabla V_1) = dim V_2$ Hence V_2 is also smooth. What about V_1 02