

Class Name : MATH 1050/1051 Fall 2018 Instructor Name : Nguyen

Student Name : _____ Instructor Note :

1. Multiply.

$$(4-6i)(-3+5i)$$

Write your answer as a complex number in standard form.

2. Divide.

$$\frac{-5i}{6+4i}$$

Write your answer as a complex number in standard form.

- 3. Simplify the complex number i^{27} as much as possible.
- **4.** The length of a rectangle is 3 m more than twice the width, and the area of the rectangle is 54 m^2 . Find the dimensions of the rectangle.
- 5. Solve $(x-9)^2 50 = 0$, where x is a real number. Simplify your answer as much as possible.
- 6. Fill in the blank to make the expression a perfect square.

$$x^2 + 14x + \Box$$

7. Solve the quadratic equation by completing the square.

$$x^2 - 14x + 47 = 0$$

First, choose the appropriate form and fill in the blanks with the correct numbers.

Then, solve the equation. If there is more than one solution, separate them with commas.

Form:

$$\mathbf{C} \left(x + \square\right)^2 = \square$$

$$\mathbf{C} \ \left(x - \square\right)^2 = \square$$

Solution:

$$x = \square$$

8. Use the quadratic formula to solve for x.

$$7x^2 - 3x - 2 = 0$$

9. Solve for u.

$$4 + \frac{3}{u+3} = -\frac{3}{(u+2)(u+3)}$$

10. Solve.

$$(x^2-11)^2-10(x^2-11)+25=0$$

If there is more than one solution, separate them with commas.

11. Fill in the information about the parabolas below.

	$y = \frac{2}{3}x^2$	$y = -3x^2$	$y = -x^2$	$y = \frac{3}{4}x^2$
(a) For each parabola, choose whether it opens up or down	- up - down	- up - down	- up - updown	- up - down
(b) Choose the parabola with the widest graph	0	0	0	0
(c) Choose the parabola with the narrowest graph	C	C	C	С

12. Find the *x*-intercept(s) and the coordinates of the vertex for the parabola $y = -x^2 + 6x - 5$. If there is more than one *x*-intercept, separate them with commas.

13. Answer the questions below about the quadratic function.

$$g(x) = -3x^2 - 12x - 15$$

Does the function have a minimum or maximum value?

What is the function's minimum or maximum value?

Where does the minimum or maximum value occur? r =

14. For each function below, choose the correct description of its graph:

	vertical line	horizontal line	line with a negative slope	line with a positive slope	parabola opening down	parabola opening up
$f(x) = -3x^2 - 4$	0	0	0	0	0	O
$h\left(x\right) = -x + 2$	0	0	0	0	0	0
$g\left(x\right) = -5$	0	0	O	0	0	O

15. Find the equation of the quadratic function f whose graph is shown below.

Obj. 7 #5 Answers for class MATH 1050/1051 Fall 2018

1.
$$18 + 38i$$

2.
$$-\frac{5}{13} - \frac{15}{26}i$$

$$3.-i$$

4.

Length: 12 m
Width: 4.5 m

5. $x = 9 + 5\sqrt{2}$, $9 - 5\sqrt{2}$

6.
$$x^2 + 14x + 49$$

<u>/.</u>

Form:

$$\mathbf{C} \left(x + \square \right)^2 = \square$$

Solution:

$$x = 7 + \sqrt{2}, 7 - \sqrt{2}$$

8.
$$\frac{3+\sqrt{65}}{14}$$
, $\frac{3-\sqrt{65}}{14}$.

9.
$$u = -\frac{11}{4}$$

11.

	$y = \frac{2}{3}x^2$	$y = -3x^2$	$y = -x^2$	$y = \frac{3}{4}x^2$
(a) For each parabola, choose whether it opens up or down	- up - down	- up - down	- up - down	- up - down
(b) Choose the parabola with the widest graph	0	O	0	0
(c) Choose the parabola with the narrowest graph	0	•	O	0

12. x-intercept(s): 1 , 5

vertex: (3, 4)

13.

Does the function have a minimum or maximum value?

What is the function's minimum or maximum value? -3

Where does the minimum or maximum value occur? x = -2

14.

	vertical line	horizontal line	line with a negative slope	line with a positive slope	parabola opening down	parabola opening up
$f\left(x\right) = -3x^2 - 4$	C	0	0	0	0	0
$h\left(x\right) = -x + 2$	O	0	6	0	0	О
$g\left(x\right) = -5$	O	0	C	0	0	0

15.
$$f(x) = -(x-5)^2 - 5$$