Extending Regression to Multiple Variables

Paolo Perrotta
FREELANCE DEVELOPER
@nusco

Reservations	Temperature	Tourists	Pizzas	
13	33	9	52	
2	16	6	17	
14	32	3	46	
23	25	9	70	
13	23	8	43	
13	51	9	60	
1	27	7	23	
18	16	2	43	
7	34	3	28	
10	22	3	31	
26	17	7	65	
3	21	1	15	
3	12	4	15	
21	26	2	59	
22	15	4	52	
2	21	7	22	
27	18	3	68	

Disclaimer: this is probably the hardest module in this training.

Linear Regression with One Variable

Linear Regression with Two Variables

From Linear Regression to Multiple Regression

(Cannot be visualized)

1 Variable

$$y = wx + b$$

$$y = w_1x_1 + w_2x_2 + b$$

N Variables

$$y = w_1x_1 + ... + w_nx_n + b$$

A Special Case

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + ...$$

always equal to 1

Bias Reservations Temperature Tourists Pizzas

ртаз	Meser vactoris	remperature	יי
1	13	33	9
1	2	16	6
1	14	32	3
1	23	25	9
1	13	23	8
1	13	51	9
1	1	27	7
1	18	16	2
1	7	34	3
1	10	22	3
1	26	17	7
1	3	21	1
1	3	12	4
1	21	26	2

ITSTS	LTZZa:
	52
	17
	46
	70
	43
	60
	23
	43
	28
	31
	65
	15
	15

59

Matrix Multiplication

Upgrading gradient()

```
np.average(2 * X * (predict(X, w) - Y))

2 * np.matmul(X.T, (predict(X, w) - Y)) / X.shape[0]
```

Matrix Transposition

Summary

We moved from linear regression to multiple regression

We used matrices to represent our data

We got rid of the bias