

The team

Jonathan Khalifa

Ryan Headley

Fabrice Sumsa

Alex Commeau

Huck Geoffroy

"Un bon vendeur n'arrache pas une vente, il se la fait offrir."

- Mohamed Fillali

1 Billion

Value from recommendation on Netflix

1300

Recommendation clusters by Netflix on users preferences

17.30\$ Billion by 2028

Market size

Our solution

Technologies in use

draft

React

Narrative Flow

Board Kanban

1. Analyze Dataset

Sales

7 245 522

That's a lot of sales

853 514

And a lot of clients

1 484

Total products

Unique Famille	9
Unique Maille	34
Unique Univers	105
Unique Mois	12_

2. Pre-processing

Key Performance Indicators (KPI)

- Define the cart (all purchases by client)
- Extract the highs and lows
- Calculate averages, totals, frequencies
- Input only the data used for calculations

3.
Application:
Store & Client
Data

Store and Client

- Group together the data used for recommendations
- Input only the data used for calculations

Client Table

CLI_ID PROD_ID	QTY	RATING
----------------	-----	--------

Store Table

PRIX_NET	FAMILLE	LIBELLE	UNIVERS	MAILLE	PROD_ID	PROD_CAT
----------	---------	---------	---------	--------	---------	----------

4.
Recommendation
System

Collaborative Filtering

Singular Value Decomposition (SVD)

=> Prédire combien d'exemplaires le client est susceptible d'acheter pour chaque article du magasin.

Algèbre

linéaire

latents

Content based filtering

Natural Language Processing

=> Trouver les articles les plus similaires aux articles les plus achetés par un

client.

Similarité cosinus

	the	red	dog	cat	eats	food
1. the red dog \rightarrow	1	1	1	0	0	0
2. cat eats dog ->	0	0	1	1	1	0
 dog eats food→ 	0	0	1	0	1	1
4. red cat eats→	0	1	0	1	1	0

Demo app

010

Thanks!

Any questions?

Fabrice Sumsa Ryan Headley Huck Geoffroy Jonathan Khalifa Alex Commeau

