۱ - در شکل (۱) یک مدار مغناطیسی با یک فاصله هوایی دیده میشود. ابعاد هسته عبارتند از:

 $A_c = 1.5 \times 10^{-3} \, m^2$... عساحت سطح مقطع:

 $l_c = 0.7 \, m$ طول متوسّط هسته:

 $g = 2.5 \times 10^{-3} \, m$ طول فاصله هوایی:

دورN=25

. نفوذپذیری هسته را بینهایت ($\infty \to \infty$) فرض کرده و از اثر نشت مغناطیسی و اثر لبه ها صرف نظر کنید . اکنون به ازای جریان i=1 موارد زیر را محاسبه کنید : (الف) شار کل (ب) شار پیوندی هسته (ج) اندوکتانس L کلاف.

کنید. (۱) را با نفوذپذیری محدود هسته ($\mu = 1500 \mu_0$) تکرار کنید.

0 است . D مدار مغناطیسی شامل حلقه هایی از ماده مغناطیسی به شکل مجموعه ای با ضخامت D است . حلقه ها، دارای شعاع داخلی R_i و شعاع خارجی R_o هستند. اگر نفوذپذیری آهن، بینهایت بوده و از اثر نشت مغناطیسی و اثر لبه ها چشم پشی کنیم، این موارد را محاسبه کنید:

 A_c و سطح مقطع الف) طول متوسّط هسته l_c

 $\mathfrak{R}_{\scriptscriptstyle g}$ و رلوکتانس فاصله هوایی $\mathfrak{R}_{\scriptscriptstyle c}$ و رلوکتانس فاصله هوایی

به ازای N = 75 دور، این موارد را محاسبه کنید:

پ) اندوکتانس L (ت)جریان لازم برای این که چگالی شار فاصله هوایی $R_{\rm g}=1.2T$ باشد

ث) شار پیوندی λ هم ارز آن برای هسته.

۴- شکل زیر سطح مقطع یک مدار مغناطیسی با تقارن دایره ای با N دور سیم پیچ را نشان میدهد . با ϕ و ϕ ای با $\mu \to \infty$ ($\mu \to \infty$) هسته $\mu \to \infty$ ($\mu \to \infty$) هسته و فرض بینهایت بودن نفوذپذیری هسته $\mu \to \infty$ ($\mu \to \infty$) شار فرالی شار فاصله هوایی $\mu \to \infty$ و چگالی شار $\mu \to \infty$ و اندوکتانس $\mu \to \infty$ را برای جریان $\mu \to \infty$ و چگالی شار در داخل هسته، یکرهاخت کنید. همچنین مقدار $\mu \to \infty$ را بر حسب $\mu \to \infty$ به گونه ای بیابید که چگالی شار در داخل هسته، یکرهاخت باشد.

۵- در شکل زیر تعداد دور سیم پیچ برابر ۱۰۰۰ دور بوده و طول مسیر متوسّط هسته ۴۰۰ سیباشد . اگر طول شکاف هوایی ۳mm ۲ و چگالی شار هسته ۱ تسلا باشد، مطوبست:

(الف) تعیین جریان سیم پیچ و ضریب نفوذ پذیری هسته؟

(ب) اگر جریان سیم پیچ 0.5A باشد چگالی شار درشکاف هوایی را به دست آورید . منحنی مغناطیسی هسته مطابق شکل زیر می باشد

 F_2 برای مدار مغناطیسی شکل زیر جهت و نیروی محرّکه مغناطیسی لازم برای F_2 را چنان تعیین کنید که شار فاصله هوایی برابر F_2 باشد. منحنی مغناطیسی هسته مطابق جدول زیر است (طول متوسّط شاخه های کناری F_2 و طول متوسّط شاخه میانی برابر F_2 است.)

. ستکیل شده است (m و قطعه غیر خطّی و غیر خطّی و غیر خطّی m تشکیل شده است -۷ و قسمت خطّی و غیر خطّی و $\phi_m = (F_m + 0.01F_m^2) \times 10^{-4}$ در قطعه به صورت F_m در قطعه به صورت و پیروی محرکهٔ مغناطیسی و $\phi_m = (F_m + 0.01F_m^2) \times 10^{-4}$ داده شده است (F_m بر حسب آمپر دور و F_m بر حسب وبر). برای ایجاد چگالی شار مغناطیسی برابر F_m تسلا

چه جریاری باید از سیم پیچ عبور داده شود؟ (از شارهای بهاکندگی صرف نظ ر کنید . سطح مقطع همه جا مساوی $10cm^2$ است). طول مسیر قسمت خطّی 10cm و ضریب نفوذ پذیری آن $10cm^2$ است.

