MATH 131B: Homework #7

Professor Dave Penneys Assignment: 67, 69, 72, 73

Eric Chuu

UID: 604406828

June 3, 2016

Problem 67

Theorem 4.5.2 (Basic Properties of exponential).

- (a) For every real number x, the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is absolutely convergent. In particular, $\exp(x)$ exists and is real for every $x \in \mathbb{R}$, the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ has as infinite radius of convergence, and exp is a real analytic function on $(-\infty, \infty)$.
- (b) exp is differentiable on \mathbb{R} , and for every $x \in \mathbb{R}$, $\exp'(x) = \exp(x)$.
- (c) exp is continuous on \mathbb{R} , and for every interval [a,b], we have $\int_a^b \exp(x) dx = \exp(b) \exp(a)$.
- (d) For every $x, y \in \mathbb{R}$, we have $\exp(x + y) = \exp(x) \exp(y)$.
- (e) We have $\exp(0) = 1$. Also, for every $x \in \mathbb{R}$, $\exp(x)$ is positive, and $\exp(-x) = 1/\exp(x)$.
- (f) exp is strictly monotone increasing: in other words, if $x, y \in R$, then we have $\exp(y) > \exp(x)$ if and only if y > x.

Solution

Let $x \in \mathbb{R}$. To show that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is absolutely convergent, it suffices to show that $\sum_{n=0}^{\infty} \left| \frac{x^n}{n!} \right|$ converges. By the ratio test, we see that

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to \infty} \left| \frac{x}{n+1} \right| < 1,$$

so we conclude that $\sum_{n=0}^{\infty} \left| \frac{x^n}{n!} \right|$ converges, so $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely in \mathbb{R} , so $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ exists for every $x \in \mathbb{R}$. Since we've shown that $\exp(x)$ converges absolutely for every $x \in \mathbb{R}$, then we conclude that exp has an infinite radius of convergence, and exp is a real analytic function on $(-\infty, \infty)$, so (a) holds.

If we then consider $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\exp(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!}$, then we know from above that both $\exp(x)$, $\exp(y)$ are real analytic functions on $(-\infty, \infty)$, and we can use Theorem 4.41 to see that the product of $\exp(x)$, $\exp(y)$ is:

$$\exp(x)\exp(y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \cdot \sum_{n=0}^{\infty} \frac{y^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!}$$
(1)

Note that $\frac{1}{k!(n-k)!} = \frac{1}{n!} \cdot \frac{n!}{k!(n-k)!} = \frac{1}{n!} \binom{n}{k}$, so rewriting (1) and using the binomial theorem, we get

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{n!} \binom{n}{k} x^k y^{n-k} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \sum_{n=0}^{\infty} \frac{1}{n!} (x+y)^n = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!},$$

where the last equality is $\exp(x+y)$, so we've shown that $\exp(x)\exp(y)=\exp(x+y)$, so (d) holds.

Applying (d), we then see that $\exp(x) \exp(-x) = \exp(x-x) = \exp(0) = \sum_{n=0}^{\infty} \frac{0^n}{n!} = 1$, since $0^0 = 1$. Then $\exp(-x) \exp(x) = 1$, both $\exp(-x), \exp(x)$ are nonzero, so $\exp(-x) = 1/\exp(x)$. Moreover, if x > 0, then $\exp(x)$ is a sum of positive numbers, so $\exp(-x) = 1/\exp(x)$ together with $\exp(0) = 1 \implies \exp(x) > 0$ for all $x \in \mathbb{R}$, and (e) holds.

Again applying (d), we can evaluate the following:

$$\lim_{h \to 0} \frac{\exp(x+h) - \exp(x)}{h} = \lim_{h \to 0} \frac{\exp(x) \exp(h) - \exp(x)}{h} = \exp(x) \lim_{h \to 0} \frac{\exp(h) - 1}{h}$$
 (2)

If we only consider the limit in the last equality, we see that

$$\lim_{h \to 0} \frac{\exp(h) - 1}{h} = \lim_{h \to 0} \frac{1}{h} (\exp(h) - 1) = \lim_{h \to 0} \frac{1}{h} \left(\sum_{n=0}^{\infty} \frac{h^n}{n!} - 1 \right)$$

$$\implies \lim_{h \to 0} \frac{1}{h} \left(\frac{h^0}{0!} + \frac{h}{1!} + \frac{h^2}{2!} + \dots - 1 \right) = \lim_{h \to 0} \frac{1}{h} \left(1 + \frac{h^1}{1!} + \frac{h^2}{2!} + \dots - 1 \right)$$

$$\implies \lim_{h \to 0} \frac{1}{h} \left(\frac{h}{1!} + \frac{h^2}{2!} + \dots \right) = \lim_{h \to 0} \left(\frac{1}{1!} + \frac{h}{2!} + \dots \right) = 1$$

Substituting this back into (2), we see that

$$\lim_{h \to 0} \frac{\exp(x+h) - \exp(x)}{h} = \exp(x) \lim_{h \to 0} \frac{\exp(h) - 1}{h} = \exp(x) \cdot 1 = \exp(x),$$

for any $x \in R$ and we conclude that exp is differentiable on \mathbb{R} and $\exp'(x) = \exp(x)$, so (b) holds. Since differentiability at a point implies continuity at the same point, exp being differentiable on \mathbb{R} implies that exp is continuous on \mathbb{R} . Since exp is continuous on \mathbb{R} , then it is continuous on every interval [a, b], so exp is integrable on [a, b], and $\int_a^b \exp(x) dx = \exp(b) - \exp(a)$, since $\exp'(x) = \exp(x)$ for all $x \in \mathbb{R}$. We conclude that (c) holds.

For (f), let $x, y \in \mathbb{R}$ such that x < y. Note that from part (e), $\exp(x) > 0$ for all $x \in \mathbb{R}$. Then using part (d), we see that $x < y \Leftrightarrow y - x > 0 \Leftrightarrow \exp(y - x) > \exp(0) \Leftrightarrow \exp(y) / \exp(x) > 1 \Leftrightarrow \exp(y) > \exp(x)$, so we conclude that exp is strictly monotone increasing. We have verified that all six of the above properties hold for the exponential, and we are done.

Problem 69

Theorem 4.5.6 (Logarithm properties).

- (a) For every $x \in (0, \infty)$, we have $\ln'(x) = \frac{1}{x}$. In particular, by the fundamental theorem of calculus, we have $\int_a^b \frac{1}{x} dx = \ln(b) \ln(a)$ for any interval [a, b] in $(0, \infty)$.
- (b) We have ln(xy) = ln(x) + ln(y) for all $x, y \in (0, \infty)$.
- (c) We have $\ln(1) = 0$ and $\ln(1/x) = -\ln(x)$ for all $x \in (0, \infty)$.
- (d) For any $x \in (0, \infty)$ and $y \in \mathbb{R}$, we have $\ln(x^y) = y \ln(x)$.
- (e) For any $x \in (-1,1)$, we have

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}.$$
(3)

In particular, ln is analytic at 1, with the power series expansion

$$\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n \tag{4}$$

for $x \in (0,2)$, with radius of convergence 1.

Solution

For part (a), we note that log is differentiable as mentioned in the book under Definition 4.5.5, so let $x \in (0, \infty)$. Then note that $x = \exp(\ln(x))$. Since exp is differentiable for all $x \in \mathbb{R}$, we can take the derivative, and using the chain rule, we get

$$x' = (\exp(\ln(x)))' = \exp'(\ln(x)) \cdot \ln'(x) = \exp(\ln(x)) \cdot \ln'(x),$$

where the last equality follows from $\exp'(x) = \exp(x)$ for all $x \in \mathbb{R}$. Continuing to evaluate this, we get $\exp(\ln(x)) \cdot \ln'(x) = x \cdot \ln'(x)$, and since the x' = 1, we have $\ln'(x) = 1/x$. Moreover, by the fundamental theorem of calculus, we can integrate this, and we have $\int_a^b \frac{1}{x} dx = \ln(b) - \ln(a)$ for any interval [a, b] in $(0, \infty)$, so property (a) holds.

As shown in problem 67, exp exists and is real for every $x \in \mathbb{R}$, let $x = \exp(u), y = \exp(v)$, where $x, y, u, v \in \mathbb{R}$. Then consider:

$$\ln(xy) = \ln(\exp(u)\exp(v)) = \ln(\exp(u+v)) = u + v = \ln(x) + \ln(y),$$

where the third equality holds because of property (d) of the exponential. Thus, property (b) of the logarithm holds.

To show property (d), we use proposition 4.5.4 that for every $x \in \mathbb{R}$, we have $\exp(x) = e^x$. In particular, we can use exponent laws. Let $x \in (0, \infty), y \in \mathbb{R}$. Consider $y \ln(x)$. Then

$$\exp(y \ln(x)) = e^{y \ln(x)} = \left(e^{\ln(x)}\right)^y = x^y$$

$$\implies \ln\left(e^{y \ln(x)}\right) = \ln(x^y)$$

$$\implies y \ln(x) = \ln(x^y),$$

so property (d) holds.

To show property (c), we first note that from property (e) from the exponential that $\exp(0) = 1$, so

$$ln(1) = ln(exp(0)) = 0.$$

We can use property (d) of the logarithm to note that since $1/x = x^{-1}$, then

$$\ln(1/x) = \ln(x^{-1}) = -\ln(x),$$

so property (c) holds.

For part (e), we first recall that for any $x \in (-1,1)$ the power series expansion for $f(x) = \frac{1}{1-x}$ is given by $f(x) = \sum_{n=0}^{\infty} x^n$ around 0. Then by property (a) of logarithms, we can write

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int \sum_{n=0}^{\infty} x^n dx = -\sum_{n=0}^{\infty} \int x^n dx = C - \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

To find C, we consider $\ln(1-x)$ when x=0, and since $\ln(1)=0$, then C=0, so we have

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}.$$

Note that we can rewrite the last sum by starting the sum from n=1 and we get

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = -\sum_{n=1}^{\infty} \frac{x^n}{n},$$

so the equality in (3) holds. To show (4), we first note that $f(x) = \frac{1}{1+x}$, defined on $\mathbb{R} \setminus \{-1\}$ has the power series $f(x) = \sum_{n=0}^{\infty} (-1)^n x^n$ around 0 on the interval (-1,1). Then

$$\ln(1+x) = \int \frac{1}{1+x} dx = \int \sum_{n=0}^{\infty} (-1)^n x^n dx = \sum_{n=0}^{\infty} (-1)^n \int x^n dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + C.$$

Evaluating $\ln(1+x)$ when x=0, we see that $\ln(1)=0$, so C=0. Then

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$

Then, we can write ln(x) as the power series representation of ln(1+x) centered around 1,

$$\ln(x) = \ln(1+x-1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n.$$

To find the radius of convergence, we consider

$$r = \frac{1}{\limsup_{n \to \infty} \left| \frac{(-1)}{n} \right|^{1/n}} = \frac{1}{\limsup_{n \to \infty} \left(\frac{1}{n} \right)^{1/n}} = 1,$$

so we conclude that $\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$, centered around 1, for $x \in (0,2)$ with radius of convergence of 1, so ln is analytic at 1 and (4) holds and consequently property (e) holds.

Problem 72

Prove the algebra $C(\mathbb{R}/\mathbb{Z})$ of continuous \mathbb{Z} -periodic functions $\mathbb{R} \to \mathbb{C}$ is isometrically isomorphic to the algebra $C(S^1)$ of continuous functions $S^1 = \{z \in \mathbb{C} : |z| = 1\} \to \mathbb{C}$. That is, find a bijection $\varphi : C(S^1) \to C(\mathbb{R}/\mathbb{Z})$ such that such that for all $f, g \in C(S^1)$ and $\lambda \in \mathbb{C}$,

- (a) $\varphi(f+g) = \varphi(f) + \varphi(g)$
- (b) $\varphi(\lambda f) = \lambda \varphi(f)$
- (c) $\varphi(f(g)) = \varphi(f)\varphi(g)$
- (d) $\varphi(\overline{f}) = \varphi(f)$
- (e) $\|\varphi(f)\|_{\infty} = \|f\|_{\infty}$
- (f) $d_{\infty}(\varphi(f), \varphi(g)) = d_{\infty}(f, g)$

Solution

Define $\phi:[0,1)\to S^1$ to be the bijective function, where $\phi(x)=e^{2\pi ix}$ for $x\in[0,1)$. Then let $\varphi(f)=f\circ\phi$, whenever $f\in C(S^1)$.

We first show that $\varphi(f)$ is well-defined. We check that for $f \in C(\mathbb{R}/\mathbb{Z})$, $\varphi(f)$ uniquely determines a \mathbb{Z} -periodic function. Let $x \in [0,1)$. Then $\phi(x) \in S^1$. Then we evaluate the limit:

$$\lim_{x \to 1^{-}} (f \circ \phi)(x) = \lim_{\phi(x) \to 1^{-}} (f \circ \phi)(x) = \lim_{\phi(x) \to 1^{-}} f(\phi(x))$$

Note that the first equality holds because ϕ is a bijective function. By continuity of f, we can then move the limit inside, and we see that

$$f\left(\lim_{\phi(x)\to 1^{-}}\phi(x)\right) = f(1) = (f\circ\phi)(0),$$

and we see that $\lim_{x\to 1^-} (f \circ \phi)(x) = (f \circ \phi)(0)$ so that $\varphi(f)$ uniquely determines a \mathbb{Z} -periodic function and is well-defined.

We show that φ is a bijection. That is, we show that φ is both one-to-one and onto.

(1) Claim: φ is one-to one.

It suffices to show that for $f, g \in C(S^1)$, if $\varphi(f) = \varphi(g)$, then f = g. Suppose $\varphi(f) = \varphi(g)$. Then $\varphi(f) = f \circ \phi = g \circ \phi = \varphi(g)$. Let $z \in S^1$. Then

$$(f \circ \phi)(z) = (g \circ \phi)(z)$$

$$\implies f(\phi(z)) = g(\phi(z)),$$

and so we conclude that f = g and that φ is one-to-one.

(2) Claim: φ is onto.

It suffices to show that for any $h \in C(\mathbb{R}/\mathbb{Z})$, there exists $f \in C(S^1)$ such that $\varphi(f) = h$. Note that since ϕ is bijective, then there exists an inverse function $\phi^{-1}: S^1 \to [0,1)$. Since $h \in C(\mathbb{R}/\mathbb{Z})$, then $h: [0,1) \to \mathbb{C}$. Then $h \circ \phi^{-1}: S^1 \to \mathbb{C}$, so $h \circ \phi^{-1} \in C(S^1)$. Setting $f:=h \circ \phi^{-1}$ and applying φ , we see that $\varphi(f) = \varphi(h \circ \phi^{-1}) = h \circ \phi^{-1} \circ \phi = h$, so φ is onto.

We show that φ satisfies properties (a) to (f). Let $f, g \in C(S^1)$ and $\lambda \in \mathbb{C}$, and $x \in S^1$.

(a)
$$\varphi(f+g)(x) = ((f+g) \circ \phi)(x) = (f \circ \phi)(x) + (g \circ \phi)(x) = (\varphi(f))(x) + (\varphi(g))(x) = (\varphi(f) + \varphi(g))(x)$$

 $\implies \varphi(f+g) = \varphi(f) + \varphi(g).$

(b)
$$\varphi(\lambda f)(x) = ((\lambda f) \circ \phi)(x) = \lambda(f \circ \phi)(x) = \lambda \varphi(f)(x)$$

 $\implies \varphi(\lambda f) = \lambda \varphi(f).$

(c)
$$\varphi(fg)(x) = ((fg) \circ \phi)(x) = (f \circ \phi)(x) \cdot (g \circ \phi)(x) = \varphi(f(x)) \cdot \varphi(g(x)) = (\varphi(f) \cdot \varphi(g))(x)$$

 $\implies \varphi(fg) = \varphi(f)\varphi(g).$

(d)
$$\varphi(\overline{f})(x) = (\overline{f} \circ \phi)(x) = \overline{f}(\phi(x)) = \overline{f}(e^{2\pi i x}) = \overline{f(e^{2\pi i x})} = \overline{f(\phi(x))} = \overline{(f \circ \phi)(x)} = \overline{\varphi(f)}(x)$$
 $\Longrightarrow \varphi(\overline{f}) = \overline{\varphi(f)}$.

(e) $\|\varphi(f)\|_{\infty} = \|f \circ \phi\|_{\infty} = \sup_{x \in [0,1)} \{(f \circ g)(x)\}$. Since ϕ is a bijection, taking the supremum over $x \in [0,1)$ is the same as taking the supremum over $\{\phi(z) : z \in [0,1)\}$, so we can write

$$\sup_{x \in [0,1)} \left\{ (f \circ g)(x) \right\} = \sup_{\phi(x) \in S^1} \left\{ f(\phi(x)) \right\} = \sup_{z \in S^1} \left\{ f(z) \right\} = \|f\|_{\infty}$$

(f) We apply the results of part (a) and part (e) to the second and third equalities, respectively:

$$d_{\infty}(\varphi(f), \varphi(g)) = \|\phi(f) - \varphi(g)\|_{\infty}$$
$$= \|\varphi(f - g)\|_{\infty}$$
$$= \|f - g\|_{\infty}$$
$$= d_{\infty}(f, g)$$

We've shown that $\varphi: C(S^1) \to C(\mathbb{R}/\mathbb{Z})$, where $\varphi(f)(x) = f \circ \phi(x)$ for all $x \in S^1$ is a bijection that satisfies properties (a) to (f) above. We conclude that the algebra $C(\mathbb{R}/\mathbb{Z})$ of continuous Z-periodic functions $\mathbb{R} \to \mathbb{C}$ is isometrically isomorphic to the algebra $C(S^1)$.

Problem 73

Show that $(\ell^1, |\cdot|_1)$ is a Banach Algebra, where $(a_n) + (b_n) = (a_n + b_n)$, $\lambda(a_n) = (\lambda a_n), (a_n) * (b_n) = \sum_{k=0}^{n} (a_k b_{n-k})$, and $\|(a_n)\| = \sum_{n=0}^{\infty} |a_n|$. That is, show:

- (1) The set ℓ^1 with its addition, scalar multiplication, and multiplication is an associative algebra over \mathbb{R} .
- (2) The multiplication and norm are related by $\|(a_n)*(b_n)\|_1 \leq \|(a_n)\|_1 \cdot \|(b_n)\|_1$.

What nice property does the compatibility of axiom (2) above ensure?

Solution

To show (1) holds, we show the following:

- (a) Addition is associative and commutative. Let $(a_n), (b_n), (c_n) \in \ell^1$. Then by definition of addition given in the problem, $(a_n) + ((b_n) + (c_n)) = (a_n + (b_n + c_n)) = (a_n + b_n + c_n)$. Similarly, $((a_n) + (b_n)) + (c_n) = ((a_n + b_n) + c_n) = (a_n + b_n + c_n)$, so addition is associative. By definition of addition, $(a_n) + (b_n) = (a_n + b_n)$, and since we are just adding the sequences component-wise, we can interchange the order of the summing so that $(a_n + b_n) = (b_n + a_n) = (b_n) + (a_n)$, so addition is also commutative.
- (b) There exists a zero element. The 0 element is the sequence of all 0's: $\mathbf{0} := (0, 0, ...)$. Then for any $(a_n) \in \ell^1$, $(a_n) + \mathbf{0} = (a_n + \mathbf{0}) = (a_n)$, since we do component-wise addition of 0 to each component of (a_n) .
- (c) There exists an additive inverse. Let $(a_n) \in \ell^1$. Then its additive inverse is $-(a_n)$, which is the sequence (a_n) with each component multiplied by -1. Then $(a_n) + -(a_n) = (a_n + (-1 \cdot a_n)) = 0$, since addition is component-wise.
- (d) Associativity of scalar multiplication and existence of multiplicative identity. Let $\lambda \in \mathbb{R}$. Then by scalar multiplication is given by multiplying each component of a sequence $(a_n) \in \ell^1$ by λ , so $\lambda \cdot (a_n) = (\lambda a_n)$. The multiplicative identity is given by 1, where $1 \cdot (a_n)$ is given by multiplying each component of the sequence by 1, so $1 \cdot (a_n) = (1 \cdot a_n) = (a_n)$.
- (e) Distributivity of scalar multiplication. Let $\lambda, \mu \in \mathbb{R}$ and $(a_n), (b_n) \in \ell^1$. Consider $(\lambda + \mu)(a_n)$. Since (a_n) is a sequence in \mathbb{R} , then we can use distributivity of each of its components to get $(\lambda + \mu)(a_n) = \lambda(a_n) + \mu(a_n)$, where we scalar multiply the components of the sequence first by λ and then sum that with the product of the components of (a_n) and μ . Similarly, for $\lambda((a_n) + (b_n)) = \lambda(a_n + b_n)$, we first scalar multiply the components of (a_n) and then scalar multiply the components of (b_n) . We can distribute the scalar because the terms of the sequences $(a_n), (b_n)$ are sequences in \mathbb{R} . Thus, we get $\lambda(a_n + b_n) = \lambda(a_n) + \lambda(b_n)$, so we have distributivity of scalar multiplication.
- (f) Commutativity of *. By definition, $(a_n) * (b_n) = \sum_{k=0}^n a_k b_{n-k}$. Let q = n k. Then $\sum_{q=0}^n a_{n-q} b_q = \sum_{q=0}^n b_q a_{n-q} = (b_n) * (a_n)$, so * is commutative.
- (g) Distributivity of *. $(a_n + b_n) * (c_n) = \sum_{k=0}^n (a_k + b_k) c_{n-k} = \sum_{k=0}^n (a_k c_{n-k} + b_k c_{n-k})$. Note that we can distribute, since each component of these sequences are elements in \mathbb{R} . Moreover, since this is a finite sum, we can split the sum so that $\sum_{k=0}^n (a_k c_{n-k} + b_k c_{n-k}) = \sum_{k=0}^n a_k c_{n-k} + \sum_{k=0}^n b_k c_{n-k} = (a_n) * (c_n) + (b_n) * (c_n)$. Note that by commutativity, we also have $(c_n) * (a_n + b_n) = (c_n) * (a_n) + (c_n) * (b_n)$, so distributivity holds.

- (h) Compatibility of * and ·. Consider $(\lambda a_n) * (b_n) = \sum_{k=0}^n (\lambda a_k) b_{n-k} = \sum_{k=0}^n \lambda a_k b_{n-k} = \lambda \cdot \sum_{k=0}^n a_k n k = \lambda ((a_n) * (b_n))$. Note we can pull out λ from the sum because of the distributive property of scalars in \mathbb{R} . By commutativity of *, we also have $(a_n) * (\lambda b_n) = \lambda ((a_n) * (b_n))$, so there is compatibility of * and ·.
- (i) Existence of Identity. Let $\mathbf{1} := (1,0,0,\ldots)$, the sequence of 1 followed by all 0's, so $\mathbf{1}_k$ is the k-th term of this sequence. Then $(\mathbf{1}) * (a_n) = \sum_{k=0}^{n} (1_k) a_{n-k} = (a_n)$. By commutativity, we also have $(a_n) * (1) = (a_n)$.

We've shown that all properties of an associative algebra over \mathbb{R} hold, so we conclude that $(\ell^1, |\cdot|)$ is an associative algebra over \mathbb{R} .

(2) We consider the left hand side of the inequality shown in (2),

$$\|(a_n) * (b_n)\|_1 = \left\| \sum_{k=0}^n a_k b_{n-k} \right\| = \sum_{n=0}^\infty \left| \sum_{k=0}^n a_k b_{n-k} \right| \le \sum_{n=0}^\infty \sum_{k=0}^n |a_k b_{n-k}| \le \sum_{n=0}^\infty \sum_{k=0}^n |a_k | |b_{n-k}|$$

Using Fubini's theorem, we can then rewrite the summation as

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} |a_k| |b_{n-k}| = \sum_{k=0}^{n} \sum_{n=0}^{\infty} |a_k| |b_{n-k}| = \sum_{k=0}^{n} \sum_{n=k}^{\infty} |a_k| |b_{n-k}| = \sum_{k=0}^{n} |a_k| \sum_{n=k}^{\infty} |b_{n-k}| \le \sum_{k=0}^{\infty} |a_k| \sum_{n=k}^{\infty} |a_k| |b_{n-k}| = \sum_{k=0}^{n} |a_k| |b_{n-k}|$$

If we adopt the convention that $b_j = 0$ for all j < 0, then we can rewrite the final inequality as

$$\sum_{k=0}^{\infty} |a_k| \sum_{n=k}^{\infty} |b_{n-k}| = \sum_{k=0}^{\infty} |a_k| \sum_{n=0}^{\infty} |b_n| = ||a_n||_1 \cdot ||b_n||_1,$$

so the inequality in (2) holds. The compatibility of axiom (2) ensures that the multiplication, *, from $\ell^1 \times \ell^1 \to \ell^1$ is continuous and that ℓ^1 is closed under convolution.