CSE211 Homework1

Yakup Talha Yolcu

November 16, 2020

1 Problem 1

- a) If it snows tonight, then I will stay at home.
 Converse:If I will stay at home, it snows tonight.
 Contrapositive:If I will not stay at home, it doesn't snow tonight
 Inverse:If it doesn't snow tonight, I will not stay at home
- b) I go to the beach whenever it is a sunny summer day.
 Converse: It is a sunny summer day whenever I go to the beach
 Contrapositive:Neither it is not a sunny summer day nor I go to the beach
 Inverse:I don't go to the beach and It is not a sunny summer day
- c) If I stay up late, then I sleep until noon
 Converse: If I sleep until noon then I stay up late
 Contrapositive: If I don't sleep until noon then I don't stay up late
 Inverse: If I don't stay up late then I don't sleep until noon

2 Problem 2

• a) (p ⊕ → q)

р	q	→ q	p ⊕ →q
Т	Т	F	T
Т	F	T	F
F	Т	F	F
F	F	Т	T

• (b) $(p \Leftrightarrow q) \bigoplus (\neg p \Leftrightarrow \neg r)$

	p	q	r	$\neg r$	$p \Leftrightarrow q$	$\neg p \Leftrightarrow \neg r$	$(p \Leftrightarrow q) \bigoplus (\neg p \Leftrightarrow \neg r)$
ĺ	Т	Т	Т	F	Т	F	T
ĺ	Т	Т	F	Т	Т	T	F
Ì	Т	F	F	Т	F	T	T
	Т	F	Т	F	F	F	F
Î	F	Т	Т	F	F	T	T
ĺ	F	Т	F	Т	F	F	F
Ì	F	F	F	Т	T	F	T
Ì	F	F	Т	F	T	T	F

• (c) $(p \bigoplus q) \Rightarrow (p \bigoplus \neg q)$

р	q	⊸q	р⊕ q	$p \bigoplus \neg q$	$(p \bigoplus q) \Rightarrow (p \bigoplus \neg q)$
Τ	Т	F	F	T	T
Т	F	Τ	Τ	F	F
F	Т	F	Τ	F	F
F	F	Т	F	T	T

3 Problem 3

• P(x): "x can speak English."

• Q(x): "x knows Python."

• H(x): "x is happy."

(a) There is a student at the university who can speak English and who knows Python.

(Solution) $\exists x (P(x) \land Q(x))$

(b) There is a student at the university who can speak English but who doesn't know Python.

(Solution) $\exists x (P(x) \land \rightarrow Q(x))$

- (c) Every student at the university either can speak English or knows Python. (Solution) $\forall x (P(x) \lor Q(x))$
- (d) No student at the university can speak English or knows Python. (Solution) $\exists x (P(x) \lor Q(x))$
- (e) If there is a student at the university who can speak English and know Python, then she/he is happy.

(Solution) $\exists x ((P(x) \land Q(x)) \Rightarrow H(x))$

(f) At least two students are happy. (Solution) $\exists x 1 \exists x 2 (P(x1), P(x2))$

(g)
$$\neg \forall x (Q(x) \land P(x))$$

(Solution) "There is not a student who knows Python and there is not a student can speak English"

Problem 4 4

Prove that $3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^n = \frac{3(5^{n+1}-1)}{4}$ whenever n is a nonnegative integer.

Solution:

In Mathematical Induction we try for n=1

1st step:For n=1 Equation becomes: $3 + 3.5 = \frac{3(5^{1+1}-1)}{4}$ so 18=18 n=1 satisfies this equation

2nd step:
We accept that equation satisfies for n=k 3 + 3 . 5 + 3 . 5^2 + + 3 . 5^k =

$$\frac{3(5^{k+1}-1)}{4}$$

3rd step:We will try for n=k+1 to prove the equation

$$3+3.5+3.5^2+...+3.5^k+3.5^{k+1}=\frac{3(5^{k+1+1}-1)}{4}$$

If we subtitue 2nd step equation from 3rd step equation we will get:

3 . $5^{k+1} = \frac{3(5^{k+1+1}-1)}{4}$ - $\frac{3(5^{k+1}-1)}{4}$ If we multiply by 4 and divide by 3 two side of the equation we will get:

$$\begin{array}{l} 4 \;.\; 5^{k+1} = (5^{k+2} \; \text{-1}) \;\text{-}\; (5^{k+1} \; \text{-1}) \\ 20 \;.\; 5^k = 5^k \;.\; 25 \;\text{-}\; 1 \;\text{-}\; 5^k \;.\; 5 \;\text{+}\; 1 \end{array}$$

$$20 \cdot 5^k = 5^k \cdot 25 - 1 - 5^k \cdot 5 + 1$$

$$20$$
 . $5^k=20$. 5^k

So for n=k+1 equation is satisfied and it means that this equation is true

5 Problem 5

Prove that n^2 - 1 is divisible by 8 whenever n is an odd positive integer Solution:

Let's say n=2k-1 because of the term that n is an odd positive integer For Induction's 1st step, let's say n=3

$$3^2 - 1 \equiv 0 \pmod{8}$$

$$8 \equiv 0 \pmod{8}$$

For Induction's 2st step accept this equation satisfies for n=2 . k - 1

```
(2 . k - 1) <sup>2</sup> - 1 \equiv 0 (mod 8)
4 . k <sup>2</sup> - 4 . k + 1 - 1 \equiv 0 (mod 8)
4 . k <sup>2</sup> - 4 . k \equiv 0 (mod 8)
```

For Induction's 3rd step, we will try for n=2 . k+1 (n is still odd positive integer)

$$(2 \cdot k + 1)^2 - 1 \equiv 0 \pmod{8}$$

$$4 \cdot k^2 + 4 \cdot k + 1 - 1 \equiv 0 \pmod{8}$$
 we can write $4 \cdot k^2 + 4 \cdot k$ as $4 \cdot k^2 - 4 \cdot k + 8 \cdot k$
 $4 \cdot k^2 - 4 \cdot k + 8 \cdot k \equiv 0 \pmod{8}$ $4 \cdot k^2 - 4 \cdot k$ was divisible by 8

8 . $k \equiv 0 \pmod{8}$ this equation satisfies the main equation

We concluded that n^2 - 1 is divisible by 8 whenever n is an odd positive integer

6 Problem 6

Which of the following sets are equal? Show your work step by step.

- a) $\{t : t \text{ is a root of } x^2 6x + 8 = 0\}$
- b) {y : y is a real number in the closed interval [2, 3]}
- c) $\{4, 2, 5, 4\}$
- d) {4, 5, 7, 2} {5, 7}
- e) {q: q is either the number of sides of a rectangle or the number of digits in any integer between 11 and 99}

Solution: a)roots of the x^2 – 6x + 8 = 0} can be find by factoring (x-4)*(x-2)=0 (x-4).(x-2)=0 x=4 and x=2 the A set is A={2,4}

b)B set has infinite number elements so it can be expressed as: B= $\{2,....,2.5,.....3\}$

- c) C set is $C=\{4, 2, 5, 4\}$
- d) D set is D= $\{4, 5, 7, 2\}$ $\{5, 7\}$ this means that D= $\{4, 2\}$
- e) Number of the sides of a rectangle is 4 Number of digits in any integer between 11 and 99 is 2 But in the expression it says that either 4 or 2 This means that there should be just 1 element in the set So $E=\{2\}$ or $E=\{4\}$

We find A set and D set are equal $A=D=\{2,4\}$

7 Problem Bonus

Figure 1: Combinational Circuit

- \bullet p : It is sunny.
- q : The flowers are blooming.

p	q	$\neg \mathbf{q}$	$p \wedge q$	$p \lor \neg q$
Т	Т	F	Т	T
Т	F	Т	F	Т
F	Т	F	F	F
F	F	Т	F	Т

Circuit can be expressed as (p \land q) Multiplexer (p $\lor \rightarrow$ q) Multiplexer selection is 1 These 3 are connected to OR gate Circuit becomes

Multiplexer is 1 so result will be p $\lor \neg q$ It means It is sunny or The flowers are not blooming

```
~/Masaüstü/GTU/2.sınıf/CSE 211 Discrete/HW's/HW1/ayrik.cpp - Sublime Text (UNREGIS
File Edit Selection Find View Goto Tools Project Preferences Help
           ayrik.cpp
          #include <iostream>
#include <string>
          using namespace std;
          string pl="It is sunny ";
string ql="The flowers are blooming ";
          void say(int x) {
                bool or1=true;
                 bool notq=true;
                 bool and1=true;
                 switch(x) {
   case 1:
   if(orl==true && notq==true) {
     cout<<pl><<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<</pre>
                        if(and1==true) {
    cout<<pl<<" and "<<ql<<endl;
                 bool selector=true;
                 bool r1;
                 cout<<endl;</pre>
                 if(selector==true) {
                        say(1);
                        say(2);
                 cout<<endl;</pre>
```

Figure 2: Code