Algorithmische Geometrie

Helmut Alt, Ludmila Scharf, Matthias Henze

Abgabe 4.5.2015

Aufgabe 1 rotating calipers

13 Punkte

Implementieren Sie die rotating-calipers-Technik, um alle antipodalen Paare und den Duchmesser eines konvexen Polygons zu bestimmen.

Visualisierung wäre natürlich schön, aber muss nicht sein.

Aufgabe 2 konvexe Hülle

7 Punkte

Bei dem divide-and-conquer-Algorithmus zur Berechnung der konvexen Hülle einer Punktmenge $S \subseteq \mathbb{R}^2$, |S| = n könnte man vor dem Aufspalten in S_1 und S_2 die Punkte nach x-Koordinate sortieren, so dass alle Punkte in S_1 eine x-Koordinate kleiner gleich der aller Punkte in S_2 haben. Damit erhält man disjunkte Polygone $CH(S_1)$ und $CH(S_2)$, für die die beiden Brücken schneller gefunden werden können.

- (a) Zeigen Sie, dass das Finden der Brücken in $O(\log n)$ Zeit möglich ist.
- (b) Analysieren Sie die Laufzeit des gesamten Algorithmus, getrennt nach der fürs Sortieren am Anfang einerseits und dem rekursiven Teil andererseits.