

VAS网络流分析

报告人: 夏鸣轩

日期: 2019年3月18日

内容简介

- 项目背景
- 项目理解与分析
- 项目进展
- 项目展望

背景

- VAS网络定义
 - 基于NFV技术,提供除通信等基本服务以外,包括网络流量监控、网络故障管理等功能的网络
- 网络基本业务
 - 网络节点接入、网络节点通信
- 网络增值业务
 - 网络流量监控、网络故障管理、网络安全防护

问题

- 问题一: VAS网络功能组件修改报文内容
 - 其根据需要会修改报文头部或并合并不同报文的荷载,导 致报文特征难以有效提取,从而难以准确拼接流信息。
- 问题二: VAS网络异构且复杂
 - VAS网络中网络功能异构复杂,包含来自于不同的第三方的物理设备和软件功能,无法直接采集各网络服务功能的配置信息。
- 问题三: VAS网络吞吐量大
 - 高速网络中网络吞吐量大,且网络功能规则动态性强,无 法对报文进行逐包快速分析并实时识别流。

例子

[1] Yu D, Zhu Y, Arzani B, et al. dShark: A General, Easy to Program and Scalable Framework for Analyzing Innetwork Packet Traces[C]//16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19). 2019.

分析

- 问题定义
 - VAS网络流串接技术→网络流量关联、分类
- 工作流程
 - 一训练过程 特征工程→样本构建→模型训练
 - 识别过程
- 提高效率
 - 抽样提取
 - 高速报文处理技术(Netmap, DPDK)

项目规划

特征选取

- 流量特征定义
 - -表示网络流量行为的一系列度量,包括时间特征、规模特征等
 - 时间特征
 - ✓和数据包发送、接收时间相关的特征,比如达到间隔时间、空闲时间、链接持续时间等
 - 规模特征
 - ✓和数据包自身大小相关的特征,如数据包大小、有效负载大小、控制信息长度等

Inter-arrival Time

- 定义
 - 到达间隔时间(IAT)
 - 两个连续数据包到达同一个节点的间隔时间
 - IAT = D(i+1) D(i), 其中D(i)为第i个数据包到达的时间
- 适用场景
 - NAT
 - 隧道
- 开销分析
 - 存储开销大
 - 时间开销与数据流量大小相关

Connection duration

- 定义
 - 链接持续时间(CD)
 - 数据流在链路上保持传输的时间
 - CD=链接空闲时间+链接活动时间
- 适用场景
 - NAT
 - 隧道
- 开销分析
 - 存储开销较小
 - 时间开销随流量大小变化

Time Spent Idle

- 定义
 - 空闲时间(TSI)
 - 一条流的状态由空闲变为活跃之前的持续时间
 - TSI=当前发送数据时间-上次发送数据时间
- 适用场景
 - NAT
 - 隧道
- 开销分析
 - 存储开销小
 - 时间开销和空闲的时长有关

Time Spent Active

- 定义
 - 流活跃时间(TSA)
 - 一条流的状态由活动变为空闲之前的持续时间
 - TSA=最后数据包发送的时间-第一个数据包发送时间
- 适用场景
 - 隧道
 - NAT
- 开销分析
 - 存储开销小
 - 时间开销和流传输的时间有关

Percent of Time Spent in Bulk Transfer

- 定义
 - 块传输时间 (PTB)
 - 指在多个数据段连续发送而不需要等待对端应答的传输时间
 - PTB=最后数据包到达时间-第一个数据包到达时间
 - 发送应答前接收到的最后一个数据包就是最后数据包
- 适用场合
 - NAT
 - 隧道
- 开销分析
 - 存储开销较大
 - 时间开销与块传输数据量有关

[1] Moore A, Zuev D, Crogan M. Discriminators for use in flow-based classification[R]. 2013.

13

Packet Length

- 定义
 - 数据包长度 (PL)
 - 数据包头部(控制信息)和数据包有效负载的整体大小
 - PL=控制信息长度(SPH)+有效负载大小(PS)
- 适用场景
 - 防火墙
 - NAT
- 开销分析
 - 存储开销较大
 - 时间开销与数据包数目有关

Size of Packet Header

- 定义
 - 数据包头长度(SPH)
 - 指数据包中控制信息字段的长度,如IP首部信息
 - SPH=数据包长度(PL)-有效负载大小(PS)
- 适用场景
 - 防火墙
 - NAT
- 开销分析
 - 存储开销较大
 - 时间开销与数据包数目有关

Payload Size

- 定义
 - 有效载荷大小(PS)
 - 数据包中除头部控制信息外净荷的大小
 - PS=数据包大小(PL)一控制信息大小(SPH)
- 适用场景
 - 防火墙
 - NAT
- 开销分析
 - 存储开销较大
 - 时间开销与数据包数目有关

Initial Window Size

•	分					
	_	total segments	IW=3	<u> </u>	IW=10	
] 3	1	ļ	1	1
	_	6] 2		1	I
		10] 3		1	
•	辽	12] 3		2	1
	₹	21	1 4		2	
	_	1 25	1 5	- 1	2	1
		33	5	- 1	3	1
	_	46	6	- 1	3	
	Т	51	6		4	1
•	ナ	78	7		4	1
	Í	79	1 8	ľ	4	1
	_	120	. 8	Ì	5	i
	_	127	9	i	5	i

^[1] Moore A, Zuev D, Crogan M. Discriminators for use in flow-based classification[R]. 2013.

Number of Unique Bytes Sent

- 定义
 - 发送的唯一字节数(NUB)
 - 除重传数据包和窗口探针以外的数据字节数目
 - NUB=接收数据字节总数一(接收探针字节数+重传字节数)
- 适用场景
 - NAT
- 开销分析
 - 存储开销小
 - 时间开销与数据量相关

其他特征

- number of packets(bytes) in forward/backward direction 前/后向转 发的数据包/字节数
- Time since the last connection between these hosts 上次链接 后再次链接的时间差
- burst network traffic 突发网络流量
- periodic traffic 网络流量周期
- count of all the window probe packets 窗口探针数目

未来工作

• 在网络流中实现对所提出的流量特征进行有效提取

• 实现特征学习的机器学习算法,并进行验证

• 提升特征提取以及机器学习算法的性能