Álgebra Lineal I

Nota importante: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros

Problema 1

Sea $V = M_2(\mathbb{R})$ el espacio vectorial de la matrices cuadradas 2x2

con coeficientes en
$$\mathbb R$$
 y sean $S = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a = d \}$ y

$$T = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a = d, c = 2b \right\}.$$

Calcular las bases de los subespacios S + T y $S \cap T$. (3 puntos)

Problema 2

- a) Sea E un espacio vectorial de tipo finito y consideremos una base suya $B = \{u_1, \ldots, u_n\}$. Sea F un segundo espacio vectorial (no necesariamente de tipo finito) y $v_1, \ldots v_n \in F$. Entonces existe una única aplicación lineal $f: E \to F$ tal que $f(u_1) = v_1, \ldots, f(u_n) = v_n$. (2 puntos)
 - b) Sea A una matriz nxn. Demostrar que si n es impar, $A^t.A = I_n$ (I_n

es la matriz identidad nxn) y det(A) = 1, entonces $det(A - I_n) = 0$. (2 puntos)

Problema 3

Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal definida por $f(u_1,u_2,u_3)=(u_1-u_2+2u_3,u_1+3u_2)$ y las bases $B_1=\{(1,1,0),(1,0,-1),(0,1,1)\}$ y $B_2=\{(1,1),(1,-1)\}$ a) Hallar la matriz asociada a f respecto a la base B_1 de \mathbb{R}^3 y la canónica de \mathbb{R}^2 . b) Hallar la matriz asociada a f respecto a la base canónica de \mathbb{R}^3 y la base B_2 de \mathbb{R}^2 . (3 puntos)