Q3:

Consider matrix A:

$$A = \begin{bmatrix} +4 & -1 & -1 & -1 \\ -1 & +4 & -1 & -1 \\ -1 & -1 & +4 & -1 \\ -1 & -1 & -1 & +4 \end{bmatrix}$$

The inverse of matrix *A* is known to be of the form:

$$A^{-1} = \begin{bmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{bmatrix}$$

a) Write two algebraic equations in terms of the unknowns a and b that must hold true for $AA^{-1} = I$.

b) Solve for the unknowns a and b in part (a).

c) By determining its rank, show that matrix *B* is **NOT** invertible, where:

$$B = \begin{bmatrix} +3 & -1 & -1 & -1 \\ -1 & +3 & -1 & -1 \\ -1 & -1 & +3 & -1 \\ -1 & -1 & -1 & +3 \end{bmatrix}$$

$$Q3: a)$$
 GIVEN A AND A^{-1} , THEN WE KNOW, $AA^{-1} = I$

$$4a-b-b-b=1$$
or $4a-3b=1$

$$4b - a - b - b = 0$$
or $2b - a = 0$ (2)

From (1),
$$4(2b)-3b=1$$

 $8b-3b=1$
 $5b=1$
 $b=\frac{1}{5}$

$$a = \frac{2}{5}$$
, $b = \frac{4}{5}$