

Insulin Simulator: A Comparison of RL Agents vs. PID Controller

A Patient-Safety-First Approach for Type 1 Diabetes Management

Stefano Lusardi Elena Ruiz de la Cuesta Castaño Arahí Fernández Monagas

June 30, 2025

University of Trieste

Outline

1. Introduction

2. Methodology

3. Results & Conclusion

Introduction

The Problem & Motivation

The Challenge: Improving Quality of Life in Type 1 Diabetes
The primary goal is to automate insulin delivery to consistently keep glucose levels within a healthy, non-critical range.

- This project simulates food intake and physiological responses to develop a more intelligent and personalized control system.
- Traditional control systems can be imprecise and often introduce significant risks, especially hypoglycemia.

Methodology

System Description

The system operates in discrete 1-minute cycles:

 Input: A meal's carbohydrate level is translated by the simglucose library, into a glucose level, G(t) taking into account the initial glucose level.

System Description

The system operates in discrete 1-minute cycles:

- Input: A meal's carbohydrate level is translated by the simglucose library, into a glucose level, G(t) taking into account the initial glucose level.
- 2. **Action:** The RL agent observes G(t) and administers an insulin dose.

System Description

The system operates in discrete 1-minute cycles:

- Input: A meal's carbohydrate level is translated by the simglucose library, into a glucose level, G(t) taking into account the initial glucose level.
- 2. **Action:** The RL agent observes G(t) and administers an insulin dose.
- 3. **Environment Update:** simglucose calculates the new glucose level, G(t+1), based on the meal and insulin dose.

System Description

The system operates in discrete 1-minute cycles:

- Input: A meal's carbohydrate level is translated by the simglucose library, into a glucose level, G(t) taking into account the initial glucose level.
- 2. **Action:** The RL agent observes G(t) and administers an insulin dose.
- 3. **Environment Update:** simglucose calculates the new glucose level, G(t+1), based on the meal and insulin dose.
- 4. **Reward:** The agent is rewarded for staying in the healthy range and penalized for hypoglycemia and hyperglycemia.

The Simulation Engine: simglucose

What is simglucose?

It is a validated, open-source simulator that models the complex dynamics of glucose metabolism in the human body. It serves as the main engine of our simulation environment.

The Simulation Engine: simglucose

What is simglucose?

It is a validated, open-source simulator that models the complex dynamics of glucose metabolism in the human body. It serves as the main engine of our simulation environment.

Core Components Provided

- T1DPatient: Simulates the patient's unique physiology and their body's reaction to insulin and carbohydrates.
- CGMSensor: Simulates the continuous glucose monitor (CGM) that provides observations to our agent.
- InsulinPump: Simulates the device that administers the insulin doses chosen by our agent.

Our setting with simglucose

- We will focus on a specific patient, adolescent001
 e.g. the way he reacts to glucose and insulin
- Meals are randomized in carbs content and time.
- Noise is introduced in G(t).

State Discretization

- 4 glucose levels (more important)
- 3 levels for glucose velocity to be added in the overall state computation.

Bigger positive velocity implies a bigger contribution; negative velocity does not contribute.

State Discretization

- 4 glucose levels (more important)
- 3 levels for glucose velocity to be added in the overall state computation.

Bigger positive velocity implies a bigger contribution; negative velocity does not contribute.

Total levels

$$total_{levels} = glucose_{level} * 3 + velocity_{level}$$

The Learning Process (Reinforcement Learning)

- 1. **Observation:** The agent sees the current glucose level, G(t), and its velocity.
- 2. Action: It chooses an insulin dose from a discrete set of options.
- 3. Reward Function:
 - A Gaussian function rewards values near the target (115 mg/dL).
 - A heavy penalty is applied near hypoglycemia (<70 mg/dL) to prioritize safety.

The agent's goal is to maximize its cumulative reward through trial and error.

What Type of RL

We consider the case of observable phenomenon without knowing the model $\rightarrow \textbf{TD-learning}$

Models Evaluated

Reinforcement Learning Agents Critic Only

- Q-learning TD(0)
- Q-learning TD(1)
- SARSA
- Expected SARSA

Models Evaluated

Reinforcement Learning Agents Critic Only

- Q-learning TD(0)
- Q-learning TD(1)
- SARSA
- Expected SARSA

Actor Only

Reinforce

Models Evaluated

Reinforcement Learning Agents Critic Only

- Q-learning TD(0)
- Q-learning TD(1)
- SARSA
- Expected SARSA

Actor Only

Reinforce

Baseline Controller

 PID (Proportional-Integral-Derivative) Controller

What We Added

- Safety rule: below 120 mg/dL glucose level, insulin is not given.
- Forced waiting: if there has just been a shot, there will not be a new shot.

General Structure of Critic-Based RL Algorithms

```
Initialize Q_0
Set \gamma, \alpha, \varepsilon
Loop over episodes:
   Initialize state s
   Loop:
      Derive \pi from Q_k (\varepsilon-greedy)
      Select action: a \sim \pi(\cdot \mid s)
      Take action a, observe:
         - reward r
         - next state s'
      (Optional) select next action a' \leftarrow only for SARSA
      Compute TD error: \delta \leftarrow depends on algorithm
      Update:
         Q_{k+1} = Q_k + \alpha \cdot \delta
```

RL Agent: Q-learning TD(0) (Single-Step Update)

Concept

Updates the value of applying an insulin dose I_t given the glucose state s_t . It learns using the maximum (most optimal) value of the next state.

Update Formula

$$Q(s_t, I_t) \leftarrow Q(s_t, I_t) + \alpha [R_{t+1} + \gamma \max_{i'} Q(s_{t+1}, i') - Q(s_t, I_t)]$$

RL Agent: Q-learning TD(1) (Monte Carlo Update)

Concept

Updates using the actual return G_t (the sum of future rewards) obtained at the end of the episode for the state-insulin pair (s_t, I_t) .

Update Formula

$$Q(s_t, I_t) \leftarrow Q(s_t, I_t) + \alpha [G_t - Q(s_t, I_t)]$$

RL Agents: SARSA & Expected SARSA

SARSA (On-policy)

Updates using the value of the next state-insulin pair (s_{t+1},I_{t+1}) that was *actually* chosen by the policy.

$$Q(s_t, I_t) \leftarrow Q(s_t, I_t) + \alpha [R_{t+1} + \gamma Q(s_{t+1}, I_{t+1}) - Q(s_t, I_t)]$$

RL Agents: SARSA & Expected SARSA

SARSA (On-policy)

Updates using the value of the next state-insulin pair (s_{t+1}, I_{t+1}) that was *actually* chosen by the policy.

$$Q(s_t, I_t) \leftarrow Q(s_t, I_t) + \alpha [R_{t+1} + \gamma Q(s_{t+1}, I_{t+1}) - Q(s_t, I_t)]$$

Expected SARSA

Updates using the *expected* value of the next state, averaging over all possible next insulin doses.

$$Q(s_t, I_t) \leftarrow Q(s_t, I_t) + \alpha \left[R_{t+1} + \gamma \sum_{i'} \pi(i'|s_{t+1}) Q(s_{t+1}, i') \right]$$

RL Agents: Reinforce

- Input
 - 1. $\pi_{\theta}(i,s) = \frac{e^{\theta_{i,s}}}{\sum_{i'} e^{\theta_{i',s}}}$
- for each episode
 - generate an episode from $\pi_{\theta}(i|s)$
 - for each time step (reversed)
 - $G_t = R_t + \gamma G_{t+1}$
 - $\theta = \theta + \alpha G_t \nabla ln[\pi_{\theta}(i|s)]$

Baseline: PID Controller

Concept

Calculates the insulin dose I(t) based on the error e(t) between the current glucose G(t) and the target setpoint G_{target} .

Control Formula

First, the error is defined as: $e(t) = G(t) - G_{target}$

Then, the insulin dose I(t) is calculated:

$$I(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Notes on PID

- RL should capture better the highly non-linear dynamics of the system.
- RL is continuously learning.
- PID has static parameters.
- PID can be good in short term control and it also does not need a training.

Results & Conclusion

Comparative Results: Glucose Trajectory

Figure 1: RL Agents vs PID Controller Glucose Levels

Comparative Results: Insulin Dosing Strategy

Figure 2: Dosing strategies reveal the behavior behind the glucose outcomes.

But also...

Figure 3: In a lot of scenarios the (almost) only technique that allows to reach the end of the simulation is the PID.

Discussion: Shifting the Evaluation Criterion

While RL agents are better at tracking the target range, a different criterion is more important for clinical application.

The Clinical Priority

Hypoglycemia (low glucose) is an acute and far more severe danger than controllable **Hyperglycemia** (high glucose).

Our Primary Goal

The system must, above all, avoid inducing dangerous low-glucose events.

Final Conclusion

Main Takeaway

When prioritizing patient safety, the **PID Controller** is the more responsible and superior option.

- RL Agents' Risk: All RL agents, with their aggressive dosing, caused episodes of critically low glucose. This is an unacceptable failure mode.
- PID Controller's Safety: Its passive, predictable strategy never causes a dangerous hypoglycemic event, even if it means tolerating manageable hyperglycemia.
- Final Verdict: It is clinically preferable to manage controllable hyperglycemia than to risk a potentially fatal hypoglycemic event.

Potential Developments

- **Going multi-agent** with the second agent being the agent meal. This should better avoid the cases of hypoglicaemia.
- **Inject insulin before meals** scheduling a less random meal scenario and letting the agent know about the incoming meal.
- Use semi-gradient SARSA and Actor-Critic to explore the continuous case.
- **Consider natural gradient** for Reinforce algorithm.

Questions?

Thank you.