Stochastic Quasi-Newton Optimization in Large Dimensions Including Deep Network Training: Supplementary Material

1 Derivation of stochastic mimicry of inverse-Hessian matrix \tilde{G}

The evolution of state X_{τ} parameterized over time τ is governed by the following process dynamics' stochastic differential equation (SDE):

$$dX_{\tau} = \mathcal{R}_{\tau} dB_{\tau} \tag{1}$$

where, \mathcal{R}_{τ} is the diffusion coefficient, and B_{τ} is a standard Brownian motion. The process dynamics is constrained by another measurement SDE given by:

$$dY_{\tau} = \nabla f d\tau + d\eta_{\tau} \tag{2}$$

where Y_{τ} is the zero-mean observation process, $\nabla f_{X_{\tau}} (:= \nabla f(X_{\tau}))$ is the gradient of cost function $f(X_{\tau})$: $\mathbb{R}^{N} \to \mathbb{R}^{+}$, and η_{τ} is a measurement noise (independent of process noise). Let $X'_{\tau+1}$ denote the true state while $X_{\tau+1|\tau}$ represents the predicted state at $\tau+1$. Therefore,

$$Y_{\tau+1} = \nabla f_{X'_{\tau+1}} + \eta_{\tau+1} \tag{3}$$

The update obtained using the predicted state $X_{\tau+1|\tau}$ can be expressed as:

$$\hat{X}_{\tau+1} = X_{\tau+1|\tau} - \tilde{G}(Y_{\tau+1} - \nabla f_{X_{\tau+1|\tau}}) \tag{4}$$

It must be noted that on comparison with the Newton's-like update, the gain matrix \tilde{G} resembles the negative Hessian-inverse (i.e. $\tilde{G} = -H^{-1}$). Therefore, the error can be formally presented as $e = X'_{\tau+1} - \hat{X}_{\tau+1}$. For simplicity, we avoid the subscript $\tau+1$ in later part of the derivation. Accordingly, the error covariance matrix P can be written as:

$$P = \mathbb{E}[(e - \bar{e})(e - \bar{e})^T]$$

$$\implies P = \mathbb{E}[((X' - X - \overline{(X' - X)}) + \tilde{G}((\nabla f_{X'} - \nabla f_X) - \overline{(\nabla f_{X'} - \nabla f_X)}) + \tilde{G}\eta)$$

$$((X' - X - \overline{(X' - X)}) + \tilde{G}((\nabla f_{X'} - \nabla f_X) - \overline{(\nabla f_{X'} - \nabla f_X)}) + \tilde{G}\eta)^T]$$

$$\implies P = \mathbb{E}[((X - \overline{X}) + \tilde{G}(\nabla f_X - \overline{\nabla f_X}) - \tilde{G}\eta)((X - \overline{X}) + \tilde{G}(\nabla f_X - \overline{\nabla f_X}) - \tilde{G}\eta)^T]$$

$$\implies P = \mathbb{E}[(A + \tilde{G}B)(A + \tilde{G}B)^T]$$

$$\implies P = \mathbb{E}[AA^T + AB^T\tilde{G}^T + \tilde{G}BA^T + \tilde{G}BB^T\tilde{G}^T]$$
(5)

where, $A=(X-\bar{X})$ and $B=(\nabla f_X-\overline{\nabla f_X}-\eta)$. Using the linearity of expectation, we can split this into separate expectations:

$$P = \mathbb{E}[AA^T] + \mathbb{E}[AB^T\tilde{G}^T] + \mathbb{E}[\tilde{G}BA^T] + \mathbb{E}[\tilde{G}BB^T\tilde{G}^T]$$
(6)

To obtain the expression of \tilde{G} , we minimize the trace of error covariance matrix with respect to \tilde{G} :

$$tr(P) = tr(C) + tr(D\tilde{G}^T) + tr(\tilde{G}D^T) + tr(\tilde{G}E\tilde{G}^T)$$
 (7)

where, $C = \mathbb{E}[AA^T]$, $D = \mathbb{E}[AB^T]$ and $E = \mathbb{E}[BB^T]$. Thus, we get,

$$\frac{\partial tr(P)}{\partial \tilde{G}} = 2D + 2\tilde{G}E\tag{8}$$

Setting $\frac{\partial tr(P)}{\partial \hat{G}} = 0$ gives,

$$\tilde{G} = -DE^{-1} \tag{9}$$

So, the optimal \tilde{G} that minimizes the tr(P) is:

$$\tilde{G} = -\mathbb{E}[AB^T](\mathbb{E}[BB^T])^{-1} \tag{10}$$

Since, η is zero-mean and independent of X and ∇f , i.e. $\mathbb{E}[(X - \bar{X})\eta^T] = \mathbb{E}(X - \bar{X})\mathbb{E}[\eta^T] = 0$,

$$\mathbb{E}[AB^T] = \mathbb{E}[(X - \bar{X})(\nabla f_X - \overline{\nabla f_X})^T] \tag{11}$$

Accordingly,

$$\mathbb{E}[BB^T] = \mathbb{E}[(\nabla f_X - \overline{\nabla f_X})(\nabla f_X - \overline{\nabla f_X})^T] + \mathbb{E}[\eta \eta^T]$$

$$\implies \mathbb{E}[BB^T] = \mathbb{E}[(\nabla f_X - \overline{\nabla f_X})(\nabla f_X - \overline{\nabla f_X})^T] + R$$
(12)

where, $R = \mathbb{E}[\eta \eta^T]$ represents the measurement noise covariance matrix. Therefore, the expression for \tilde{G} can be expressed as:

$$\tilde{G} = -\mathbb{E}[(X - \bar{X})(\nabla f_X - \overline{\nabla f_X})^T] \left(\mathbb{E}[(\nabla f_X - \overline{\nabla f_X})(\nabla f_X - \overline{\nabla f_X})^T] + R \right)^{-1}$$
(13)

Thus, the explicit expression for stochastic mimicry of inverse-Hessian can be expressed as:

$$\tilde{G} = -\left[\int_{\Omega} \left(X - \overline{X}\right) \left(\nabla f - \overline{\nabla f}\right)^{T} dP\right] \left[\int_{\Omega} \left(\nabla f - \overline{\nabla f}\right) \left(\nabla f - \overline{\nabla f}\right)^{T} dP + R\right]^{-1}$$
(14)