## 110

## Riemannian Hessians

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

**Instructor: Nicolas Boumal** 



Let  $\mathcal{M}$  be a Riemannian manifold.

Let  $\nabla$  denote the (unique) Riemannian connection on  $\mathcal{M}$ .

**Def.:** Let  $f: \mathcal{M} \to \mathbf{R}$  be smooth.

Its Riemannian Hessian at x is the linear map

$$\operatorname{Hess} f(x) : T_x \mathcal{M} \to T_x \mathcal{M}$$

defined by

$$\operatorname{Hess} f(x)[u] = \nabla_u \operatorname{grad} f.$$

Fact: Hess f(x) is symmetric.  $\{ \text{thenfine}[u], v \}_{x} = \{ \text{thenfine}[v], u \}_{x$ 

- fx & Rd: xx=1

lu,v>= u<sup>T</sup>V

**Example.** Consider  $S^{d-1}$  as a Riemannian submanifold of  $\mathbf{R}^d$ . Let  $f: \mathcal{M} \to \mathbf{R}$  be smooth on  $S^{d-1}$ , with extension  $\overline{f}$ . Compute  $\operatorname{Hess} f(x)$  in terms of  $\overline{f}$ .

The 
$$S^{d-1} = \{ v \in \mathbb{R}^d : \varkappa^T v = o \}$$
,  $\operatorname{Roj}_{\varkappa}(u) = u - (\varkappa^T u) \varkappa$ 

$$\operatorname{grad}_{\mathsf{f}}(u) = \operatorname{Proj}_{\varkappa}(\operatorname{grad}_{\mathsf{f}}(\varkappa)) = \operatorname{grad}_{\mathsf{f}}(\varkappa) - (\varkappa^T \operatorname{grad}_{\mathsf{f}}(\varkappa)) \varkappa$$

$$\operatorname{Manopt}_{\mathsf{f}} = \operatorname{grad}_{\mathsf{g}} \operatorname{grad}_{\mathsf{f}}(\varkappa) - (\varkappa^T \operatorname{grad}_{\mathsf{f}}(\varkappa)) \varkappa$$

$$\mathsf{G}(\varkappa) = \operatorname{grad}_{\mathsf{f}}(\varkappa) - (\varkappa^T \operatorname{grad}_{\mathsf{f}}(\varkappa)) \varkappa$$

$$\mathsf{D}_{\mathsf{f}}(\varkappa)[u] = \operatorname{Henf}_{\mathsf{f}}(\varkappa)[u] - (\varkappa^T \operatorname{grad}_{\mathsf{f}}(\varkappa)) u - (u^T \operatorname{grad}_{\mathsf{f}}(\varkappa) + \varkappa^T \operatorname{Henf}_{\mathsf{f}}(\varkappa)) \varkappa$$

Henf(x)[u] = Projx (DG(x)[u])

= Projx (Henf(x)[u]) - (x7graaf(x))u.

Manopt: eless 2 r hers