Ch2. Simple Linear Regression

- Relationship between 2 variables
- The regression model
- Assumptions
- Estimation and method of least squares
- Inferences concerning β_1 and β_0
- Estimation of the mean of the response variable for a given level of x
- Prediction of new observation
- Analysis of variance approach to regression analysis
- \blacksquare Measures of linear association between x and y

Simple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, ..., n$$

- Assumptions:
 - \blacksquare $E(\epsilon_i) = 0$,
 - \blacksquare $Var(\epsilon_i) = \sigma^2$
 - \blacksquare Cov $(\epsilon_i, \epsilon_i) = 0$
- In matrix notation.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Simple Linear Regression Equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- The simple linear regression equation provides an estimate of the population regression line
- $\hat{\beta}_0$ is the estimated average value of y when the value of x is zero
- $\hat{\beta}_1$ is the estimated change in the average values of y as a result of a one-unit change in x

Simple Linear Regression: an example

A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)

- A random sample of 10 houses is selected
- y = house price in 1000s, x = square feet

У	X
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

An example: Graphical Presentation

House price model: scatter plot

An example: Graphical Presentation

House price model: scatter plot and regression line

$$\hat{y} = 98.248 + 0.10977x$$

An example: Interpretation of the intercept, $\hat{\beta}_0$

$$\hat{y} = 98.248 + 0.10977x$$

- $\hat{\beta}_0$ is the estimated average value of y when the value of x is zero (if x=0 is in the range of observed x values)
- Here, no houses had 0 square feet, so $\hat{\beta}_0 = 98.248$ just indicates that, for houses within the range of sizes observed, \$98,248 is the portion of the house price not explained by square feet.

An example: Interpretation of the Slope Coefficient,

$$\hat{y} = 98.248 + 0.10977x$$

- $\hat{\beta}_1$ measures the estimated change in the average value of y as a result of a one-unit change in x
 - Here, $\hat{\beta}_1 = .10977$ tells us that the average value of a house increases by .10977(k) = \$109.77, on average, for each additional one square foot of size.

An example: Predictions using Regression Analysis

■ Predict the price for a house with 2000 square feet:

$$\hat{y} = 98.25 + 0.10977 \times 2000 = 317.85$$

■ The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

An example: Interpolation vs. Extrapolation

When using a regression model for prediction, only predict within the relevant range of data unless you have further information.

Estimation: Method of Least Squares

■ $\hat{\beta}_0$ and $\hat{\beta}_1$ are obtained by finding the values of β_0 and β_1 that minimize the sum of the squared differences between y and \hat{y} :

$$\min \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

■ Solutions:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

lacktriangledown Comparing $\hat{eta}_1 = rac{S_{xy}}{S_{xx}}$ with $r = rac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$

Estimation of error terms variance σ^2

■ The estimator of σ^2 is

$$S^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-2}$$

■ S^2 is an unbiased estimator of σ^2

Estimation: Method of Maximum Likelihood

■ The simple linear regression model with normal error

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2) \ i = 1, 2, \dots, n,$$

- The likelihood of the above model
- lacksquare \hat{eta}_0 and \hat{eta}_1 are obtained by maximising the above likelihood
- MLEs:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

■ The estimator of σ^2 is $\frac{SSE}{n} = \frac{n-2}{n}S^2$.

Estimation: Method of Maximum Likelihood

- MLE of β_0 = LSE of β_0 and is unbiased
- MLE of β_1 = LSE of β_1 and is unbiased
- MLE of σ^2 is less than the unbiased estimator of σ^2 , but is asymptotically unbiased

Distribution of \hat{eta}_1

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

- Assumptions
 - \mathbf{x}_{i} 's are known constants,
 - \bullet $\epsilon_i \sim N(0, \sigma^2)$ independently for i = 1, 2, ..., n
- Therefore, $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \sum_{i=1}^n c_i y_i$$

where $c_i = \frac{(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$, and then $\hat{\beta}_1$ follows a normal distribution.

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2/S_{xx}).$$

Testing (Two-sided test of β_1)

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

 $H_0: \beta_1 = 0$ (no linear relationship) v.s.

 $H_1: \beta_1 \neq 0$ (linear relationship does exist between x and y)

■ Test statistic:

$$t=rac{eta_1-eta_1}{S/S_{
m xx}^{1/2}}\sim t_{n-2}$$
 if H_0 is true

lacksquare Decision rule: reject H_0 if $|t|>t_{lpha/2,n-2}$.

Two-sided test and confidence interval of β_1

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

$$H_0: \beta_1 = k \quad v.s.H_1: \beta_1 \neq k \ (k \text{ is a constant})$$

- What are the test statistic and decision rule?
- What are the confidence interval of β_1 ?

Distribution of $\hat{\beta}_0$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2) \ i = 1, 2, ..., n,$$

- $\hat{\beta}_1 \sim N(\beta_1, \sigma^2/S_{xx}).$
- lacksquare $\hat{eta}_0 = ar{y} \hat{eta}_1 ar{x}$ also follows a normal distribution

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_i(x_i - \bar{x})^2}\right]\right)$$

Estimation of the mean of the response variable for a given level of \boldsymbol{x}

- Example
 - y (in \$000) house price, x (square feet) house size
 - Estimate the average house price for houses with 2000 square feet.
- Let x_h be the level of x for which we wish to estimate the mean response, then

$$y_h = \beta_0 + \beta_1 x_h + \epsilon_h,$$

the mean response is $E(y_h) = \beta_0 + \beta_1 x_h$.

■ The estimation of $E(y_h)$ is $\hat{y}_h = \hat{\beta}_0 + \hat{\beta}_1 x_h$, with distribution

$$\hat{y}_h \sim N\left(\beta_0 + \beta_1 x_h, \sigma^2 \left[\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}\right]\right)$$

Confidence interval for $E(y_h)$

$$\mathsf{E}(y_h) - \hat{y}_h \sim N\left(0, \sigma^2 \left[\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}\right]\right)$$

Two-sided $100(1-\alpha)\%$ C.I. for $E(y_h)$ is

$$\left(\hat{y}_h - t_{\alpha/2,n-2} S \sqrt{\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}, \hat{y}_h + t_{\alpha/2,n-2} S \sqrt{\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}\right)$$

Prediction of a new observation y_h

- Example
 - y (in \$000) house price, x (square feet) house size
 - Estimate the house price for **an individual** house with 2000 square feet.
- It means we wish to estimate the response y_h given x_h

$$y_h = \beta_0 + \beta_1 x_h + \epsilon_h,$$

■ The estimation of y_h is still $\hat{y}_h = \hat{\beta}_0 + \hat{\beta}_1 x_h$, but

$$y_h - \hat{y}_h \sim N\left(0, \sigma^2\left[1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i(x_i - \bar{x})^2}\right]\right)$$

Confidence interval for a new observation y_h

Two-sided $100(1-\alpha)\%$ C.I. for y_h is

$$\left(\hat{y}_h - t_{\alpha/2, n-2} S \sqrt{\frac{1}{n}} + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}, \right.$$

$$\hat{y}_h + t_{\alpha/2, n-2} S \sqrt{\frac{1}{n} + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}\right)$$

We also call it as a predictive interval.

Analysis of variance approach to regression analysis

■ Partitioning of Total Sum of Squares (SST)

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$= SSE + SSR$$

where SSE=sum of squares of residual, SSR=sum of squares due to regression.

OR

Total Variation = Unexplained Variation + Explained Variation

Analysis of variance (ANOVA) table

	Sum of	Degrees of	Mean	F
	Squares (SS)	freedom (df)	squares (MS)	
Regression	SSR	1	$MSR = \frac{SSR}{1}$	MSR MSE
Error	SSE	n-2	$MSE = \frac{\overline{SSE}}{(n-2)}$	
Total	SST	n-1		

- Test $H_0: \beta_1 = 0$ (no linear relationship) v.s. $H_1: \beta_1 \neq 0$ (linear relationship does exist between y and x)
- Test statistics $F = \frac{MSR}{MSF} \sim_{H_0} F_{1,n-2}$
- Reject H_0 if $F > F_{\alpha,1,n-2}$.

The coefficient of determination

■ The coefficient of determination OR R-squared is defined

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- The proportion of the variation can be explained by the model: $0 < R^2 < 1$.
- Coefficient of correlation (true for simple linear regression only)

$$r = \pm \sqrt{R^2}$$