Students Performances Dataset

Krishna Mohan Shah, Mohamed Radwan, Talha Naveed, Hai Phong Nguyen August 29, 2020

1 Summary

In this study, models were built to predict the final grade in for students in mathematics class of Portuguese secondary school pupils based on some variables (i.e. pupils demographics, pupils activities at school and at home..etc.). Feature selection techniques were used to identify the best features to predict the target variable like sequential forward selection, sequential backward selection and select KBest. Regression methods like Linear Regression, Partial Least Square (PLS), Ridge Regression, Lasso Regression, Elastic Net and Random Forest Regression were used to predict the grade of the students. Random Forest gives the best (R^2) score which is 0.87 on the test data. The data holds valuable information, such as trends and patterns, which can be used to improve decision-making. Hence, automated tools were deployed to analyze the raw data and extract interesting high-level information for decision making.

2 Introduction

Education is one of the most important investments, which a country must do for its future development. Education management is important to improve the education system and there is increasing demands for good support tools to manage the pupils' study. The application of Machine Learning (ML) may be a tool, which can help countries to manage their education systems. The dataset used in this report consisted of 33 variables and 395 instances (observations) and was retrieved from the website of University of California Irvine Machine Learning Repository. A description of variables is presented in appendix 1.

Portuguese education system was ranked in Top 20 education system in the third quarter, 2013. This data was also studied and published by Cotez & Silva, 2008. The variables of the dataset give a good insight of the student's personal and academic life. The dataset consists of scores for three periods of study that were represented by G1, G2 and G3. The target was to come up with a model that predicts the score of the G3 (The final period) based on the scores of the first two periods i.e. G1 and G2 and other variables that were provided in the dataset.

3 Methods

The raw data set was in csv format. We started with data visualisation using matplotlib, pandas and seaborn libraries. Null data was checked and histograms, correlation matrix, box-plot of numerical features were built (Fig. 1,2,3). Data was scaled using scikit-learn.

Different feature selection techniques used in this report were Sequential Forward Selection, Backward Selection and Select K Best. Mlextend library was used for sequential features selection. Se-

quential feature selection algorithms are greedy search algorithms. It's used to select a subset of features that is most relevant to the problem and removing irrelevant features or noise. The usage of features selection is important in this case study to remove the noises which leads to better prediction and to reduce the computation cost.

KBest feature selection method takes two arguments (f-regression and number of features to be selected). The idea behind f-regression in this context is that it uses f-score metric to tell if there is a regression relationship between each of features and the target. Select KBest technique proved to be the best features selection technique in this case study. Multiple regression methods were used to come up with a model that was best suited to predict the target variable (G3). The regression methods used were Linear regression, Partial Least Square (PLS) regression, Ridge regression, Lasso regression, Elastic Net and Random Forest Regression. All regressions implemented in this paper were using scikit-learn library.

Linear regression is best-fitting line through the training examples. Ordinary least squares (OLS) or Linear least squares method is to to estimate the coefficients of the regression line that minimizes the sum of the squared residuals or errors to the training data points. Partial Least Squares takes into account the decomposition of original variables into latent variables that describes the maximum variances.

Another family of regressions are the regularisation regressions (Ridge regression, Lasso, and elastic Net). Those methods are usually used to handle over-fitting by adding additional penalty term against complexity of the model which shrinks the parameter values of the model. The loss function will be sum of squared residuals of OLS equation plus the penalty term which is governed by the hyper-parameter lambda as shown the following equations.

$$L_{ridge} = \sum_{i=1}^{n} (y_i - a * x_i) + \lambda * \sum_{j=1}^{m} (a_j)^2$$

$$L_{lasso} = \sum_{i=1}^{n} (y_i - a * x_i) + \lambda * \sum_{j=1}^{m} |a_j|$$

$$L_{elasticnet} = \sum_{i=1}^{n} (y_i - a * x_i) + \lambda_1 * \sum_{j=1}^{m} * |a_j| + \lambda_2 * \sum_{j=1}^{m} * (a_j)^2$$

While a is the slope of the line, n is number of training examples and m is number of features. Ridge and Lasso use square and absolute value of the slope respectively. Elastic Net is just a combination of both penalties (Lasso and Ridge) in one loss function.

Another robust regression algorithms are decision tree. Decision tree splits its nodes until the leaves are pure which is defined by entropy as a measure of impurity. The impurity is what determine which feature split that maximizes the information gain. Combination or ensemble of several random decision trees gives better generalization performance and more robust model than an individual decision tree which is called "Random Forest".

Using these methods, It was not possible in this study to train all regression models on all kinds of selected features data. So, we train the regression models only on the data that gives the best validation score as shown in the results. For example, Lasso regression was only trained on forward selected features as it gives higher score and consider that score as the best score that Lasso regression will achieve in this case study. Grid Search was used only to optimize the best performing model which is the random forest in this study to save computational cost. Grid search is used to estimate the number of decision trees or estimators to be used.

3.1 Used Libraries

- Pandas
- Numpy
- Matplotlib
- Seaborn
- Scikit-Learn
- mlxtend

4 Results

4.0.1 Reading the data

```
[170]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
[171]: data = pd.read_csv('arranged_mathData.csv')
[172]:
      data.shape
[172]: (395, 33)
[173]: data.head()
[173]:
         school sex
                      age address famsize Pstatus
                                                     Medu
                                                            Fedu
                                                                      Mjob
                                                                                 Fjob
             GP
                   F
                       18
                                 U
                                       GT3
       0
                                                  Α
                                                                   at_home
                                                                             teacher
             GP
                   F
                                 U
                                       GT3
                                                  Τ
       1
                       17
                                                         1
                                                               1
                                                                   at_home
                                                                                other
       2
             GP
                   F
                       15
                                 U
                                       LE3
                                                  Τ
                                                                   at_home
                                                         1
                                                               1
                                                                                other
       3
             GP
                   F
                       15
                                 U
                                       GT3
                                                  Т
                                                         4
                                                               2
                                                                   health services
             GP
                   F
                       16
                                 IJ
                                       GT3
                                                  Т
                                                         3
                                                               3
                                                                     other
                                                                                other
         famrel freetime
                           goout Dalc Walc health absences
                                                                 G1
                                                                      G2
                                                                          G3
       0
               4
                        3
                                4
                                             1
                                                    3
                                                                           6
                                      1
       1
              5
                        3
                                3
                                      1
                                             1
                                                    3
                                                                   5
                                                              4
                                                                       5
                                                                           6
       2
               4
                        3
                                2
                                                    3
                                                             10
                                                                  7
                                                                       8
                                                                          10
       3
               3
                        2
                                2
                                                    5
                                                              2
                                      1
                                             1
                                                                 15
                                                                      14
                                                                          15
               4
                        3
                                2
                                      1
                                             2
                                                    5
                                                                   6
                                                                      10
                                                                          10
       [5 rows x 33 columns]
[174]: data.Fjob.unique()
[174]: array(['teacher', 'other', 'services', 'health', 'at_home'], dtype=object)
```

Columns Names: The following pandas index shows all the columns names in the dataset.

[175]: data.columns

Checking if there is any data is null:

[176]: data.isnull().values.any()

[176]: False

Statistics of raw data:

[177]: data.describe()

[177]:		age	Medu	Fedu	traveltime	studytime	failures	\
	count	395.000000	395.000000	395.000000	395.000000	395.000000	395.000000	
	mean	16.696203	2.749367	2.521519	1.448101	2.035443	0.334177	
	std	1.276043	1.094735	1.088201	0.697505	0.839240	0.743651	
	min	15.000000	0.000000	0.000000	1.000000	1.000000	0.000000	
	25%	16.000000	2.000000	2.000000	1.000000	1.000000	0.000000	
	50%	17.000000	3.000000	2.000000	1.000000	2.000000	0.000000	
	75%	18.000000	4.000000	3.000000	2.000000	2.000000	0.000000	
	max	22.000000	4.000000	4.000000	4.000000	4.000000	3.000000	
		famrel	freetime	goout	Dalc	Walc	health	\
	count	395.000000	395.000000	395.000000	395.000000	395.000000	395.000000	
	mean	3.944304	3.235443	3.108861	1.481013	2.291139	3.554430	
	std	0.896659	0.998862	1.113278	0.890741	1.287897	1.390303	
	min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
	25%	4.000000	3.000000	2.000000	1.000000	1.000000	3.000000	
	50%	4.000000	3.000000	3.000000	1.000000	2.000000	4.000000	
	75%	5.000000	4.000000	4.000000	2.000000	3.000000	5.000000	
	max	5.000000	5.000000	5.000000	5.000000	5.000000	5.000000	
		absences	G1	G2	G3			
	count	395.000000	395.000000	395.000000	395.000000			
	mean	5.708861	10.908861	10.713924	10.415190			
	std	8.003096	3.319195	3.761505	4.581443			
	min	0.000000	3.000000	0.000000	0.000000			
	25%	0.000000	8.000000	9.000000	8.000000			
	50%	4.000000	11.000000	11.000000	11.000000			
	75%	8.000000	13.000000	13.000000	14.000000			
	max	75.000000	19.000000	19.000000	20.000000			

Histogram of the raw data: Figure 1 shows the histogram of the raw numeric data. Categorical features like Fjob and Mjob are not shown here and that will be encoded later. From the figure 1, the numeric data is relatively skewed.

```
[178]: sns.set(font_scale=1.5)
  data.hist(figsize=(20, 15))
  plt.suptitle('Figure 1: Histograms of raw data', fontsize=20)
  plt.show()
```

Figure 1: Histograms of raw data

Correlation matrix for all the features on raw data: Correlation matrix (Figure 2) was use to get overview patterns between the raw data features, It's obvious that G3 is highly correlated with G1 and G2 features.

```
[179]: #get correlations of each features in dataset
    corrmat = data.corr()
    top_corr_features = corrmat.index
    plt.figure(figsize=(20,20))
    plt.title('Figure 2: Correlations map of all features', fontsize=20)
    #plot heat map
```


Box Plot of raw data: Figure 3 displays the data quartiles is used to watch the data outliers, absences features shows values outside the inter-quartile range. However, the outliers were not removed from the data because it still gives r^2 score of more than 0.8 for most regression algorithms as will be shown later in the report.

```
[180]: plt.figure(figsize=(16,8))
   plt.xlabel('Features')
   plt.title('Figure 3: Box plot of all features', fontsize=20)
   data.boxplot()
   plt.xticks(rotation='vertical')
   plt.show()
```



```
[181]: # this dictionary is used to save the R2 scores from all regressions saved_results_r2 = {}
```

4.0.2 Conversion of categorical features into dummy variables

Through data analysis, we noticed that the dataset includes 13 binary features (i.e. sex, internet) that were converted into zeros and ones for simplification of the data. Other features that include more than 2 unique values like Mjob used one-hot-encoding. One-hot-encoding will assign a numeric value to categorical features. For example, Fjob features has 5 unique values, Those values are teacher, other, services, health and at_home. The value 'teacher' will be encoded as [1, 0, 0, 0, 0] while the value 'other' is encoded as [0, 1, 0, 0, 0]. The newly converted data matrix now has 46 columns.

```
[183]: dummy_data.shape
```

[183]: (395, 46)

4.0.3 Columns names:

The following pandas index shows all the columns names in the dataset after converting the raw catgorical variables into dummy variables

4.1 Splitting the data matrix into variables matrix and output vector

The target variable (y) is set to be the column G3, all other columns are considered as the X matrix. As explained in the data, The target variable G3 has a strong correlation with G2 and G1. It was not possible to predict G3 without G2 and G1.

```
[185]: X = dummy_data.loc[:, dummy_data.columns != 'G3']
y = dummy_data['G3']

[186]: X.shape, y.shape

[186]: ((395, 45), (395,))
```

4.2 Train Test Split

The data has 395 obsevations, and was split the data with 70% train and 30%.

```
[187]:
```

4.3 Standardization

Standardization the data prior to Principal Components Analysis (PCA) so to make the other components contribute in variance. The reason for this is because PCA seeks to maximize the variance of each component. The training data is used to fit the scaler object and the use the parameters of scaling from train data to scale the test data as follows.

```
[247]: from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    sc.fit(X_train)
    X_train_std = sc.transform(X_train)
    X_test_std = sc.transform(X_test)
```

4.4 Principal Components Analysis (PCA)

The matrix X contains 45 columns, so we build instance of the PCA object with 45 components to estimate the explained variance for each component. from the graph, we noticed that the curve flattens at 40 components, which means that 40 components would be enough to explain the variance in the data. However, we didn't use PCA in the modeling, we run the modeling and feature selection on the original standardized data because the original data tends to gives higher scores.

```
[189]: from sklearn.decomposition import PCA
pca = PCA(n_components=45)
pca.fit(X_train_std)
cum_var = pca.explained_variance_ratio_.cumsum()
```


4.5 Sequential Feature Selection

4.5.1 Forward Sequential Feature Selection

Mlextend library is used in sequential feature selection. It was decided to stick to only 21 features, after 21 features, the R^2 score declines again (fig. 5), The calculation was done using linear regression.

```
# Fit models
sfs1 = sfs1.fit(X_train_std, y_train)

# This dictionary contains results from all computations
metric_dict = sfs1.get_metric_dict()

# Get indices of best features
k_ind = sfs1.k_feature_idx_

# Get names of best features using numpy arrays
feature_names = X.columns

# Plot the score vs the feature index
fig = plot_sfs(metric_dict, kind='std_err', figsize=(20, 8))
plt.title('Figure 5: Sequential Forward Selection (w. StdErr)', fontsize=20)
plt.xticks(rotation='vertical')
plt.show()
```


By the following, we take only the 21 features that are only need from the train data.

```
sfs1 = sfs1.fit(X_train_std, y_train)

# This dictionary contains results from all computations
metric_dict = sfs1.get_metric_dict()

# Get indices of best features
k_ind = sfs1.k_feature_idx_

# Get names of best features using numpy arrays
feature_names = X.columns
```

The next cell is a list of the features names of selected features based on forward sequential selection

```
[193]: forward_selected_features_names = [dummy_data.columns[col] for col in k_ind]
    print('Forward selected features names', forward_selected_features_names)

Forward selected features names ['age', 'famrel', 'goout', 'Dalc', 'absences',
    'G1', 'G2', 'school_MS', 'Pstatus_T', 'schoolsup_yes', 'famsup_yes', 'paid_yes',
    'higher_yes', 'internet_yes', 'Mjob_teacher', 'Fjob_other', 'Fjob_teacher',
    'reason_course', 'reason_home', 'reason_other', 'guardian_father']

[194]: X_test_forward_selected_features = X_test_std[:, k_ind]
    X_train_forward_selected_features = X_train_std[:, k_ind]
```

4.5.2 Backward Features Selection

In backward selection features, 10 features gives optimal scores (fig. 6).

```
k_ind = sfs1.k_feature_idx_

# Get names of best features using numpy arrays
feature_names = X.columns

# Plot the score vs the feature index
fig = plot_sfs(metric_dict, kind='std_err', figsize=(20, 8))
plt.title('Figure 6: Sequential Backward Selection (w. StdErr)', fontsize=20)
plt.xticks(rotation='vertical')
plt.show()
```


Now in backward selection features, only 10 features were selected

```
# Get indices of best features
k_ind = sfs1.k_feature_idx_
```

```
[197]: X_test_backward_selected_features = X_test_std[:, k_ind]
X_train_backward_selected_features = X_train_std[:, k_ind]
```

The next cell is a list of the features names of selected features based on backward sequential selection

```
[198]: backward_selected_features_names = [dummy_data.columns[col] for col in k_ind] print('Backward selected features names', backward_selected_features_names)
```

```
Backward selected features names ['famrel', 'absences', 'G1', 'G2', 'Pstatus_T', 'paid_yes', 'internet_yes', 'Mjob_services', 'Fjob_health', 'reason_course']
```

4.5.3 Using ExtraTreesRegressor to plot features importances

ExtraTreesRegressor was applied to find the features importance. The most important features are presented in figure 7. G2, G1, absences, age and health features are among the top most important features that can be used to predict the final grade (G3) of the student.

```
[199]: from sklearn.ensemble import ExtraTreesClassifier
  import matplotlib.pyplot as plt
  model = ExtraTreesClassifier(n_estimators=100)
  model.fit(X,y)
  #plot graph of feature importances for better visualization
  plt.figure(figsize=(12, 8))
  plt.title('Figure 7: Features Importances', fontsize=20)
  plt.ylabel('Features Labels')
  plt.xlabel('Features Importances')
  feat_importances = pd.Series(model.feature_importances_, index=X.columns)
  feat_importances.nlargest(20).plot(kind='barh')
  plt.show()
```


4.6 Regression Algorithms:

4.6.1 Partial Least Square Regression (PLS)

Figure 8 shows the validation Curve for PLS regression on Forward Selected Features. From the fig. 8, the number of regression components to be used is 6 (at the flatted point of the validation of the accuracy).

IV.14.1.1. Partial Least Square Regression with Forward selected features data

```
[249]: print('Validation R2 average for using PLS on forward selected features '+⊔

⇒str(np.mean(pls_r2)))
```

Validation R2 average for using PLS on forward selected features 0.8429343620491305

```
[251]: print('Validation MSE average for using PLS on forward selected features '+_\_ 
\( \to \str(np.mean(pls_mse))) \)
```

Validation MSE average for using PLS on forward selected features 3.1107850800464387

PLS Regression components were decided to be 6 based on the following plot, Using PLS regression as an estimator and get the best validation accuracy. From the plot, after number of components reaches 6, the validation and training curve flatten.

```
[252]: from sklearn.model_selection import validation_curve
      pls = PLSRegression()
       # Validation curve for parameter estimation
      param_range = list(range(1,13))
      train_scores, test_scores = validation_curve(
                       estimator=pls,
                       X=X_train_forward_selected_features,
                       y=y_train,
                       param_name='n_components',
                       param_range=param_range,
                       cv = 10)
       # Calculate validation curves for training and test sets
      train_mean = np.mean(train_scores, axis=1)*100
      train_std = np.std(train_scores, axis=1)*100
      test_mean = np.mean(test_scores, axis=1)*100
      test_std = np.std(test_scores, axis=1)*100
      plt.figure(figsize=(12, 8))
      plt.plot(param_range, train_mean,
                color='blue', marker='o',
                markersize=5, label='training accuracy')
      plt.plot(param_range, test_mean,
                color='green', linestyle='--',
                marker='s', markersize=5,
                label='validation accuracy')
      plt.legend()
      plt.xlabel('Num of Components')
      plt.ylabel('R2')
```

```
plt.tight_layout()
plt.title("Figure 8: Validation Curve for PLS regression \n on Forward Selected ∪
 →Features", fontsize=20)
plt.show()
```


Figure 8: Validation Curve for PLS regression

Training of PLS: We train the model on the X_train_forward_selected_features,

```
[253]: pls.fit(X_train_forward_selected_features, y_train)
      y_pred = pls.predict(X_test_forward_selected_features)
```

Scatter Graphs for Prediction vs Actual using PLS on Forward Selected features: Fig.9 shows that the prediction based on the model and the real data are relatively closer. The R^2 score is 0.766.

```
[255]: plt.figure(figsize=(10, 10))
       plt.scatter(y_test, y_pred, color = "red")
       plt.title("Figure 9: Scatter Plot of Prediction vs actual \n using PLS⊔
        →regression on Forward Selected Features", fontsize=20)
       plt.xlabel("Actual")
       plt.ylabel("Prediction")
       plt.show()
```


[256]: print(pls.score(X_test_forward_selected_features, y_test))

0.7587037084655428

Partial Least Square Regression with backward selected features data: Number of components is decided to be 5 based on the optimal R^2 score on training and validation data as shown in fig.10.

```
pls = PLSRegression(n_components=5)

pls_r2 = cross_val_score(pls, X_train_backward_selected_features, y_train,__
cv=10, scoring='r2')
```

```
pls_mse = cross_val_score(pls, X_train_backward_selected_features, y_train, ∪ cv=10, scoring= make_scorer(mean_squared_error))
```

```
[258]: print('Validation R2 averge for using PLS on backward selected features '+str(np.

→mean(pls_r2)))

print('Validation MSE average for using PLS on backward selected features '+

→str(np.mean(pls_mse)))
```

Validation R2 averge for using PLS on backward selected features 0.8429651279757728

Validation MSE average for using PLS on backward selected features 3.1091512827784813

PLS gives relatively higher R^2 scores on test data when we use the forward selected features comparing to using backward selected features as training data.

Training PLS on backward selected features

```
[259]: pls.fit(X_train_backward_selected_features, y_train)
y_pred = pls.predict(X_test_backward_selected_features)
```

```
[260]: score = pls.score(X_test_backward_selected_features, y_test)
    print('Testing PLS score on backward selected features '+ str(score))
#Save the score to the result dictionary
saved_results_r2['PLS'] = score
```

Testing PLS score on backward selected features 0.7812965448665099

```
[261]: from sklearn.model_selection import validation_curve
      pls = PLSRegression()
       # Validation curve for parameter estimation
      param_range = list(range(1,10))
      train_scores, test_scores = validation_curve(
                       estimator=pls,
                       X=X_train_backward_selected_features,
                       y=y_train,
                       param_name='n_components',
                       param_range=param_range,
                       cv=10)
       # Calculate validation curves for training and test sets
      train_mean = np.mean(train_scores, axis=1)*100
      train_std = np.std(train_scores, axis=1)*100
      test_mean = np.mean(test_scores, axis=1)*100
      test_std = np.std(test_scores, axis=1)*100
```


4.6.2 Ridge Regression

Ridge Regression on forward selected features

```
[212]: from sklearn.linear_model import Ridge
ridge = Ridge(alpha=0.01)
ridge_r2 = cross_val_score(ridge, X_train_forward_selected_features, y_train,__

ocv=10, scoring='r2')
ridge_mse = cross_val_score(ridge, X_train_forward_selected_features, y_train,__

ocv=10, scoring= make_scorer(mean_squared_error))
```

```
[262]: print('Validation R2 average for using Ridge regression on forward selected

→features '+ str(np.mean(ridge_r2)))

print('Validation MSE average for using Ridge regression on forward selected

→features '+ str(np.mean(ridge_mse)))
```

Validation R2 average for using Ridge regression on forward selected features 0.8428034737508195

Validation MSE average for using Ridge regression on forward selected features 3.1169902020826985

Ridge Regression on backward selected features

```
[265]: print('Validation R2 average for using Ridge regression on backward selected

→features '+ str(np.mean(ridge_r2)))

print('Validation MSE average for using Ridge regression on backward selected

→features '+ str(np.mean(ridge_mse)))
```

Validation R2 average for using Ridge regression on backward selected features 0.8428034737508195

Validation MSE average for using Ridge regression on backward selected features 3.1169902020826985

Using ridge regression on backward selected features gives slightly higher R^2 than using ridge on forward selected features. So, we used it for training ridge regression.

```
[266]: ridge = Ridge(alpha=0.01)
    ridge.fit(X_train_forward_selected_features, y_train)
    score = ridge.score(X_test_forward_selected_features, y_test)
    print('Best ridge regression score on test data ' + str(score))
    #Save the score to the results dictionary
    saved_results_r2['Ridge'] = score
```

Best ridge regression score on test data 0.7774667805064169

As shown in the next cell, There are no zero coefficient when using ridge regression

Figure 11: Scatter plot of prediction vs actual using ridge regression

4.6.3 Lasso Regression

Lasso Regression on forward selected features

```
[269]: from sklearn.linear_model import Lasso

lasso = Lasso(alpha=0.1, max_iter = 10000)

lasso_r2 = cross_val_score(lasso, X_train_forward_selected_features, y_train,__

ocv=10, scoring='r2')

lasso_mse = cross_val_score(lasso, X_train_forward_selected_features, y_train,__

ocv=10, scoring= make_scorer(mean_squared_error))
```

```
[270]: print('Validation R2 average for using Lasso regression on forward selected

→features '+ str(np.mean(lasso_r2)))

print('Validation MSE average for using Lasso regression on forward selected

→features '+ str(np.mean(lasso_mse)))
```

Validation R2 average for using Lasso regression on forward selected features 0.8375819873020628

Validation MSE average for using Lasso regression on forward selected features 3.2118833572809917

Lasso Regression on backward selected features

```
[272]: print('Validation R2 average for using Lasso regression on backward selected

→features '+ str(np.mean(lasso_r2)))

print('Validation MSE average for using Lasso regression on backward selected

→features '+ str(np.mean(lasso_mse)))
```

Validation R2 average for using Lasso regression on backward selected features 0.8369102223774684

 $\begin{tabular}{lll} Validation MSE average for using Lasso regression on backward selected features $3.2247756130766363 \end{tabular}$

Using Lasso with forward selected features gives slightly better R^2 score than backward selected features. So, we used forward for training Lasso regression

```
[273]: lasso.fit(X_train_forward_selected_features, y_train)
    score = lasso.score(X_test_forward_selected_features, y_test)
    print('Best lasso regression score on test data ' + str(score))

#Save the score to the results dictionary
    saved_results_r2['Lasso'] = score
```

Best lasso regression score on test data 0.7999199578554859

Lasso shows 7 zeros coefficients and the features that were assigned zero coefficients are as in the following, We called those features that are not used in modeling 'muted features'.

```
[274]: print('Lasso Coefficents', lasso.coef_)

#lasso_muted_features = [forward_selected_features_names[coef] if coef == 0 for_\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
```

```
if coef == 0:
              lasso_muted_features.append(forward_selected_features_names[idx])
          idx += 1
      print('Lasso muted features', lasso_muted_features)
      Lasso Coefficents [-8.52570396e-02 2.36553327e-01 1.35120155e-02
      -0.0000000e+00
        2.44425075e-01 5.78351093e-01 3.55575070e+00 0.00000000e+00
        1.33833672e-01 3.12220539e-03 2.67811139e-02 -1.11699354e-01
       -0.00000000e+00 -1.14033333e-01 -0.00000000e+00 -9.88139268e-02
        0.00000000e+00 -1.67068654e-01 0.00000000e+00 0.0000000e+00
        1.14892767e-01]
      Lasso muted features ['Dalc', 'school_MS', 'higher_yes', 'Mjob_teacher',
      'Fjob_teacher', 'reason_home', 'reason_other']
[275]: y_pred = lasso.predict(X_test_forward_selected_features)
      plt.figure(figsize=(10, 10))
      plt.scatter(y_test, y_pred, color = "red")
      plt.title("Figure 12: Scatter Plot of Prediction vs actual \n using Lasso⊔
       →regression", fontsize=20)
      plt.xlabel("Actual")
      plt.ylabel("Prediction")
      plt.show()
```


Figure 12: Scatter Plot of Prediction vs actual using Lasso regression

4.6.4 Elastic Net Regression

Elastic Net regression using forward selected features

```
[276]: print('Validation R2 average for using Elastic net regression on forward

→selected features '+ str(np.mean(elastic_r2)))

print('Validation MSE average for using Elastic net regression on forward

→selected features '+ str(np.mean(elastic_mse)))
```

Validation R2 average for using Elastic net regression on forward selected features 0.8427158609243568

Validation MSE average for using Elastic net regression on forward selected features 3.11791854928766

Elastic Net regression using forward selected features

```
[278]: print('Validation R2 average for using Elastic net regression on backward_\( \) \( \to \) selected features '+ str(np.mean(elastic_r2)))

print('Validation MSE average for using Elastic net regression on backward_\( \to \) \( \to \) selected features '+ str(np.mean(elastic_mse)))
```

Validation R2 average for using Elastic net regression on backward selected features 0.8427158609243568

Validation MSE average for using Elastic net regression on backward selected features 3.11791854928766

Elastic net regression gives slightly higher score on forward selected features. So, forward selected features were used for training Elastic net

Training Elastic Net regression on forward selected features

```
[279]: elastic.fit(X_train_forward_selected_features, y_train)
    score = elastic.score(X_test_forward_selected_features, y_test)
    print('Best elastic net regression score on test data ' + str(score))

#Save the score to the results dictionary
    saved_results_r2['Elastic Net'] = score
```

Best elastic net regression score on test data 0.7796918612142189

Elastic Net shows only one zero coefficient

```
[280]: print('Elastic Net Coefficents', elastic.coef_)

#lasso_muted_features = [forward_selected_features_names[coef] if coef == 0 for_\(\pi\)
\[ \times coef in lasso.coef_]

elastic_muted_features = []
\[ idx = 0 \]

for coef in elastic.coef_:
```

```
if coef == 0:
               elastic_muted_features.append(forward_selected_features_names[idx])
           idx += 1
       print('Elastic Net muted features', elastic_muted_features)
      Elastic Net Coefficents [-0.14082278 0.32740024 0.16179784 -0.1214087
      0.41792485 0.76938178
        3.50507217 0.14865198 0.2735164 0.08970137 0.11526739 -0.22534169
       -0.05672475 \ -0.17019116 \ -0.05874692 \ -0.17603062 \ \ 0.05659844 \ -0.24104478
        0.12504654 -0.
                                0.15271677]
      Elastic Net muted features ['reason_other']
[281]: | y_pred = elastic.predict(X_test_forward_selected_features)
       plt.figure(figsize=(10, 10))
       plt.scatter(y_test, y_pred, color = "red")
       plt.title(" Figure 13: Scatter plot of prediction vs actual \n using elastic net_
        →regression", fontsize=20)
       plt.xlabel("Actual")
       plt.ylabel("Prediction")
       plt.show()
```


Figure 13: Scatter plot of prediction vs actual using elastic net regression

4.6.5 Random Forest Regression

Random Forest Regressor on forward selected features

We estimate the number of estimators hyper-parameter by using grid search that gives the best validation score. Number of estimators from 100 to 1500 were pre-selected for the GridSearchCV function.

0.8838558191007291 {'n_estimators': 400}

```
[284]: print('Validation R2 average for using Random Forest regression on forward

→selected features '+ str(np.mean(forest_r2)))

print('Validation MSE average for using Random Forest regression regression on

→forward selected features '+ str(np.mean(forest_mse)))
```

Validation R2 average for using Random Forest regression on forward selected features 0.8926458381084181

Validation MSE average for using Random Forest regression regression on forward selected features 1.9760714680631875

Training the Random Forest Regressor on forward selected features

```
[285]: forest.fit(X_train_forward_selected_features, y_train)
    score = forest.score(X_test_forward_selected_features, y_test)
    print('Best Random Forest regression score on test data ' + str(score))

#Save the score to the results dictionary
    saved_results_r2['Random Forest'] = score
```

Best Random Forest regression score on test data 0.8453352799096014

Scatter plot of the actual data vs the predicted data

```
[293]: y_pred = forest.predict(X_test_forward_selected_features)
plt.figure(figsize=(10, 10))
plt.scatter(y_test, y_pred, color = "red")
plt.title("Figure 14: Scatter Plot of Prediction vs actual \n using Random
→Forest Regression", fontsize=20)
plt.xlabel("Actual")
```

```
plt.ylabel("Prediction")
plt.show()
```


Using random forest regression with KBest selected features Below we have used select k best for feature selection. The scores of the features are shown in the score table. Looking at the table, we see that 22 columns have a score greater than zero. So we decided to use the variables with score of at least 1.

```
[287]: from sklearn.feature_selection import SelectKBest, f_regression
selector = SelectKBest(f_regression, k=22).fit(X_train_std, y_train)
kbest_features_train = selector.transform(X_train_std)
kbest_features_test = selector.transform(X_test_std)
```

print(kbest_features_train.shape)

(276, 22)

```
[288]:
                      Feature
                                     Scores
       14
                            G2
                                1310.693812
       13
                            G1
                                 440.445682
       5
                     failures
                                  44.124162
       25
                   higher_yes
                                  16.595315
       1
                         Medu
                                   9.461505
       22
                     paid_yes
                                   7.715219
       27
                 romantic_yes
                                   5.119667
       29
                  Mjob_health
                                   5.063262
       0
                                   4.792613
                           age
       8
                                   4.728930
                        goout
       41
           reason_reputation
                                   3.427594
       26
                 internet_yes
                                   3.329182
       38
               reason_course
                                   3.080103
       4
                    studytime
                                   3.016719
       28
                 Mjob_at_home
                                   2.934689
       2
                          Fedu
                                   2.751941
       11
                       health
                                   2.148822
       9
                         Dalc
                                   1.950665
       3
                   traveltime
                                   1.466995
       19
                                   1.423250
                    Pstatus_T
       40
                 reason_other
                                   1.042527
       12
                     absences
                                   1.000620
       17
                    address_U
                                   0.952532
       30
                   Mjob_other
                                   0.798771
       32
                 Mjob_teacher
                                   0.734784
       20
                schoolsup_yes
                                   0.611683
       16
                        sex_M
                                   0.575303
       44
               guardian_other
                                   0.564390
       43
              guardian_mother
                                   0.482776
       6
                       famrel
                                   0.472103
       37
                 Fjob_teacher
                                   0.471535
       10
                          Walc
                                   0.444683
       39
                  reason_home
                                   0.422118
       7
                     freetime
                                   0.358124
                   famsup_yes
       21
                                   0.331425
                  famsize_LE3
       18
                                   0.275379
       34
                  Fjob_health
                                   0.270579
```

```
33
         Fjob_at_home
                           0.111409
31
        Mjob_services
                           0.076220
42
      guardian_father
                           0.069556
35
           Fjob_other
                           0.049117
23
       activities_yes
                           0.044006
36
        Fjob_services
                           0.042992
24
          nursery_yes
                           0.038869
15
            school_MS
                           0.000035
```

We train random forest regression on the KBest selected features and calculating the R^2 score. Random forest gives the best score we measured in this study which is 0.871 on test data and 0.879 on validation data.

```
[240]: rf = RandomForestRegressor(n_estimators = 400, random_state = 42)
forest_r2 = cross_val_score(forest, kbest_features_train, y_train, cv=20, ___
→scoring='r2')
forest_mse = cross_val_score(forest, kbest_features_train, y_train, cv=20, ___
→scoring= make_scorer(mean_squared_error))
```

```
[289]: print('Validation R2 average for using Random Forest regression on KBest

→selected features '+ str(np.mean(forest_r2)))

print('Validation MSE average for using Random Forest regression regression on

→KBest selected features '+ str(np.mean(forest_mse)))
```

Validation R2 average for using Random Forest regression on KBest selected features 0.8926458381084181

Validation MSE average for using Random Forest regression regression on KBest selected features 1.9760714680631875

```
[290]: #Training the random forest on Kbest features
rf.fit(kbest_features_train, y_train)
y_pred = rf.predict(kbest_features_test)
score = rf.score(kbest_features_test, y_test)
print('Random Forest regression score on test data with KBest selected features_\_\text{
} \( \text{-'} + \str(\score) \)

#Save the score to the results dictionary
saved_results_r2['Random Forest with KBest'] = score
```

Random Forest regression score on test data with KBest selected features 0.8710430256105279

```
[291]: y_pred = rf.predict(kbest_features_test)
plt.figure(figsize=(10, 10))
plt.scatter(y_test, y_pred, color = "red")
plt.xlabel("Actual")
plt.ylabel("Prediction")
```

plt.title("Figure 15: Scatter Plot of Prediction vs actual \n using Random

→Forest on KBest features", fontsize=20)
plt.show()

Figure 15: Scatter Plot of Prediction vs actual using Random Forest on KBest features

By combining and comparing the results of all the used regression methods, Random Forest Regression on KBest features gives the best R^2 score as shown in fig.16.

5 Disscusion

The outcomes show that at all regression models, the predictions and the observations are close in the mark ranging from 5 to 20. This outcome is similar with Cortez and Silva, 2008. This study shows that G1, G2, failures, age and health are amongst the most important independent variables

to predict the grades of students which is similar to the study conducted by Cortez and Silva, 2008.

6 Conclusion

From the above scores, Random Forest gives the best predictions with R^2 of 0.87 on test data as shown in fig.16. We can get into the conclusion that student's performance is greatly affected by past grades (G1 & G2). Also, features like (age, health, etc.) affected the student's performance. More research is needed to predict the G1 and G2 grades based on those features. Further research can be done like tuning the hyper-parameters using grid search for other regressions like elastic net.

```
[292]: lists = saved_results_r2.items()
  plt.figure(figsize=(12, 8))
  x, y = zip(*lists)
  plt.title("Figure 16: R-square of different regresion methods", fontsize=20)
  plt.xlabel('Regression method')
  plt.ylim(0.7, 0.9)
  plt.ylabel('R2 Score')
  plt.bar(x, y)
  plt.xticks(rotation='vertical')
  plt.show()
```


7 References

Cortez, P. Student Performance Data Set, https://archive.ics.uci.edu/ml/datasets/student +performance.

Cortez, P. and A. Silva, Using data mining to predict secondary school student performance. 2008.

Pardos Z,; Heffernan N.; Anderson B.; and Heffernan C., 2006. Using Fine-Grained Skill Models to Fit Student Performance with Bayesian Networks. In Proc. Of 8th Int. Conf. on Intelligent Tutoring Systems. Taiwan.

Kotsiantis S.; Pierrakeas C.; and Pintelas P., 2004. Predicting Students' Performance in Distance Learning using Machine Learning Techniques. Applied Artificial Intelligence (AAI), 18, no.5, 411-426.

Raschka, Mirjalili, 2019, Python Machine Learning, 3rd edition

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f

https://www.globalpartnership.org/benefits-of-education

https://worldtop20.org/the-worlds-best-20-education-systems-rankings-third-quarter-report

https://stats.stackexchange.com/questions/69157/why-do-we-need-to-normalize-data-before-principal-component-analysis-pca

https://archive.ics.uci.edu/ml/datasets/student+performance

https://www.researchgate.net/post/ Is_it_necessary_to_normalize_data_before_performing_principle_component_analysis

https://sebastianraschka.com/faq/docs/scale-training-test.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

https://stackoverflow.com/questions/43675665/when-scale-the-data-why-the-train-dataset-use-fit-and-transform-but-the-te

https://www.geeksforgeeks.org/lasso-vs-ridge-vs-elastic-net-ml/

http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

https://www.researchgate.net/post/Is_it_advisable_to_use_a_dummy_variable_for_sex_male_female_in_my_regression_analysis

https://bookdown.org/ripberjt/labbook/categorical-explanatory-variables-dummy-variables-and-interactions.html

https://github.com/bhattbhavesh91/GA_Sessions/blob/master/ga_dsmp_5jan2019/16_feature_selection.ipynb

8 Appendix 1: Varibles in datasets

- 1- school student's school (binary: "GP" Gabriel Pereira or "MS" Mousinho da Silveira)
- 2- sex student's sex (binary: "F" female or "M" male)
- 3- age student's age (numeric: from 15 to 22)
- 4- address student's home address type (binary: "U" urban or "R" rural)
- 5- famsize family size (binary: "LE3" less or equal to 3 or "GT3" greater than 3)
- 6- Pstatus parent's cohabitation status (binary: "T" living together or "A" apart)
- 7- Medu mother's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)
- 8- Fedu father's education (numeric: 0 none, 1 primary education (4th grade), 2 5th to 9th grade, 3 secondary education or 4 higher education)

- 9- Mjob mother's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrative or police), "at_home" or "other")
- 10- Fjob father's job (nominal: "teacher", "health" care related, civil "services" (e.g. administrative or police), "at_home" or "other")
- 11- reason reason to choose this school (nominal: close to "home", school "reputation", "course" preference or "other")
- 12- guardian student's guardian (nominal: "mother", "father" or "other")
- 13- traveltime home to school travel time (numeric: 1 <15 min., 2 15 to 30 min., 3 30 min. to 1 hour, or 4 >1 hour)
- 14- studytime weekly study time (numeric: 1 <2 hours, 2 2 to 5 hours, 3 5 to 10 hours, or 4 >10 hours)
- 15- failures number of past class failures (numeric: n if 1<=n<3, else 4)
- 16- schoolsup extra educational support (binary: yes or no)
- 17- famsup family educational support (binary: yes or no)
- 18- paid extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
- 19- activities extra-curricular activities (binary: yes or no)
- 20- nursery attended nursery school (binary: yes or no)
- 21- higher wants to take higher education (binary: yes or no)
- 22- internet Internet access at home (binary: yes or no)
- 23- romantic with a romantic relationship (binary: yes or no)
- 24- famrel quality of family relationships (numeric: from 1 very bad to 5 excellent)
- 25- freetime free time after school (numeric: from 1 very low to 5 very high)
- 26- goout going out with friends (numeric: from 1 very low to 5 very high)
- 27- Dalc workday alcohol consumption (numeric: from 1 very low to 5 very high)
- 28- Walc weekend alcohol consumption (numeric: from 1 very low to 5 very high)
- 29- health current health status (numeric: from 1 very bad to 5 very good)
- 30- absences number of school absences (numeric: from 0 to 93)
- 31- G1 first period grade (numeric: from 0 to 20)
- 32- G2 second period grade (numeric: from 0 to 20)
- 33- G3 final grade (numeric: from 0 to 20, target feature)