Homework #7

Chapter 17, exercises 3, 4, 8, 12, and 14.

Ex. 3:

Let

$$x' = y$$

$$y' = -x$$

$$X_0 = (x(0), y(0)) = (1, 0)$$

We now have the system:

$$X' = \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight) X$$
 , with $X_0 = \left(egin{array}{c} 1 \ 0 \end{array}
ight)$

We have i as an eigenvalue,

and so the general solution is

$$X(t) = x_0 \left(egin{array}{c} \cos t \ -\sin t \end{array}
ight) + y_0 \left(egin{array}{c} \sin t \ \cos t \end{array}
ight)$$

and using the initial condition, the solution to the initial value problem:

$$(\cos t, -\sin t)$$

Using the Picard Iteration:

$$u_0(t) = (1,0)$$

$$u_1(t) = (1,0) + \int_0^t F(1,0)ds = (1,0) + \int_0^t (0,-1)ds = \begin{pmatrix} 1 \\ -t \end{pmatrix}$$

$$u_2(t) = (1,0) + \int_0^t (-s,-1) ds = \left(egin{array}{c} 1 - rac{t^2}{2} \ -t \end{array}
ight)$$

$$u_3(t) = (1,0) + \int_0^t (-s,-1+s^2/2) ds = \left(egin{array}{c} 1-t^2/2 \ -t+t^3/3! \end{array}
ight)$$

$$u_4(t) = (1,0) + \int_0^t (-s + s^3/3!, -1 + s^2/2) ds = \begin{pmatrix} 1 - t^2/2 + t^4/4! \\ -t + t^3/3! \end{pmatrix}$$

I want to show
$$u_k=egin{pmatrix} \sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^i rac{t^{2i}}{(2i)!} \ \sum_{i=1}^{\lceil k/2 \rceil} (-1)^i rac{t^{2i-1}}{(2i-1)!} \end{pmatrix}$$

We know this is true for the case k=0, $u_0(t)=(1,0)$

so
$$u_{k+1}(t)=u_0(t)+\int_0^t F(u_k(s))ds$$

Using Inductive Step, we assume
$$u_k(t)=u_k=\left(egin{array}{c} \sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^i rac{t^{2i}}{(2i)!} \\ \sum_{i=1}^{\lceil k/2 \rceil} (-1)^i rac{t^{2i-1}}{(2i-1)!} \end{array}
ight)$$

$$\text{and we end up with } u_{k+1}(t) = u_0(t) + \int_0^t \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{s^{2i-1}}{(2i-1)!}}{-\sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^i \frac{s^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lfloor k/2 \rfloor} (-1)^{i+1} \frac{t^{2i+1}}{(2i+1)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lfloor k/2 \rceil} (-1)^{i+1} \frac{t^{2i+1}}{(2i+1)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^{i+1} \frac{t^{2i+1}}{(2i+1)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^{i+1} \frac{t^{2i}}{(2i+1)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=0}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\lceil k/2 \rceil} (-1)^i \frac{t^{2i}}{(2i)!}} \right) ds = \left(\frac{1}{0} \right) + \left(\frac{1$$

$$=u_{k+1}(t)=egin{pmatrix} \sum_{i=0}^{\lceil k/2
ceil} (-1)^i rac{t^{2i}}{(2i)!} \ \sum_{i=1}^{\lfloor k/2
ceil+1} (-1)^i rac{t^{2i-1}}{(2i-1)!} \end{pmatrix}$$

and
$$\lfloor (k+1)/2 \rfloor = \lceil k/2 \rceil$$
 , $\lceil (k+1)/2 \rceil = \lfloor k/2 \rfloor + 1$

so we have
$$u_{k+1}(t)=egin{pmatrix} \sum_{i=0}^{\lfloor (k+1)/2 \rfloor} (-1)^i rac{t^{2i}}{(2i)!} \ \sum_{i=1}^{\lceil (k+1)/2 \rceil} (-1)^i rac{t^{2i-1}}{(2i-1)!} \end{pmatrix}$$

so as $k o \infty$,

 $u_k(t) o (\cos t, -\sin t)$, by the Existence and Uniqueness Theorem, since F(x,y) = (-y,x) is C^1

$$\operatorname{so}\left(\frac{\sum_{i=0}^{\infty}(-1)^{i}\frac{t^{2i}}{(2i)!}}{\sum_{i=1}^{\infty}(-1)^{i}\frac{t^{2i-1}}{(2i-1)!}}\right) = \left(\frac{\cos t}{-\sin t}\right)$$

Ex 4: For each of the following functions, find a Lipschitz constant on the region indicated, or prove there is none:

To find a Lipschitz constant means to find a constant K s.t.

$$|F(Y) - F(X)| \le K|Y - X|$$
 for all X, Y in the region

this is equivalent to $|\frac{F(Y)-F(X)}{Y-X}| \leq K$

(a)
$$f(x) = |x|, -\infty < x < \infty$$

Using the triangle inequality:

$$|(a-b)+b| \leq |a-b|+|b| \implies |a|-|b| \leq |a-b|$$

$$|(b-a)+a| < |b-a|+|a| \implies |b|-|a| < |b-a| \equiv |a|-|b| > -|a-b|$$

so
$$||a|-|b|| \leq |a-b|$$

meaning:
$$||y|-|x|| \leq |y-x| \equiv |F(y)-F(x)| \leq |y-x|$$
 , so $K=1$

(b)
$$f(x) = x^{1/3}, -1 \le x \le 1$$

Let
$$x=0$$
, and $y\to 0$,

I will show: $|rac{f(y)-f(0)}{y-0}| o\infty$ as y o 0, which would mean there is no constant K

s.t. $|f(y)-f(0)| \leq K|y-0|$, so there is no Lipschitz constant on the whole region.

as
$$y o 0$$
, $|rac{f(y)-f(0)}{y-0}| o ext{lim}_{y o 0}|rac{y^{1/3}}{y}|= ext{lim}_{y o 0}rac{1}{y^{2/3}} o \infty$

(c)
$$f(x) = 1/x, 1 \le x \le \infty$$

Need to find a constant K s.t.

$$|rac{1}{y}-rac{1}{x}|\leq K|y-x|$$
, for all $y,x\in [1,\infty]$

$$\left|\frac{1}{y} - \frac{1}{x}\right| = \left|\frac{x-y}{yx}\right|$$

and since $y,x\geq 1$, $|x-y|=\frac{|x-y|}{yx}=\frac{|x-y|}{xy}$

and
$$rac{|x-y|}{yx} \leq |x-y|$$
, since $rac{1}{xy} \leq 1$

(d)
$$f(x,y)=\left(egin{array}{c} x+2y \ -y \end{array}
ight)$$
 , $(x,y)\in\mathbb{R}^2$

so let $X_1, X_2 \in \mathbb{R}^2$.

$$|f(X_2)-f(X_1)| = |\left(egin{array}{c} x_2+2y_2 \ -y_2 \end{array}
ight) - \left(egin{array}{c} x_1+2y_1 \ -y_1 \end{array}
ight)|$$

$$= |(x_2, -y_2) + (2y_2, 0) - (x_1, -y_1) - (2y_1, 0)|$$

and using the triangle inequality, (\mathbb{R}^2 is a metric space, metrics have the triangle inequality)

$$| \leq |(x_2, -y_2) - (x_1, -y_1)| + |(2y_2 - 2y_1, 0)|$$

Looking at each of the summands

1.
$$|(x_2, -y_2) - (x_1, -y_1)| = |(x_2 - x_1, y_1 - y_2)|$$

1. and since
$$(y_2-y_1)^2=(y_1-y_2)^2$$
 we have $|(x_2-x_1,y_1-y_2)|=|X_2-X_1|$

2.
$$|(2(y_2 - y_1), 0)| = 2|(y_2 - y_1, 0)|$$

1.
$$(y_2-y_1)^2 \leq (y_2-y_1)^2 + (x_2-x_1)^2 \equiv |(y_2-y_1,0)| \leq |X_2-X_1|$$

$$|2, 2|(y_2 - y_1, 0)| < 2|X_2 - X_1|$$

So we have $|f(X_2) - f(X_1)| \le 3|X_2 - X_1|$, K = 3

(e)
$$f(x,y) = \frac{xy}{1+x^2+y^2}, x^2+y^2 \le 4$$

I want to show f is C^1 , so I may use that an upper bound for $|Df_x|=|\nabla f|$ is a Lipchitz constant for f(x,y) on $x^2+y^2\leq 4$, which is convex (it is a closed ball of radius 2)

f(x,y) has both of its partial derivatives:

$$f_x(x,y)=rac{y-x^2y+y^3}{(1+x^2+y^2)^2}$$
 , and $f_y(x,y)=rac{x-xy^2+x^3}{(1+x^2+y^2)^2}$

sums, products, and quotients of continuous functions are continuous,

and
$$g(x,y) = x, h(x,y) = y, \text{ and } k(x,y) = c$$
 are continuous

polynomials are therefore continuous as they are sums and products of f, g, h

and f_x, f_y are each a quotient of polynomials of two variables, so they are continuous (and the denominator is never 0 on the region $x^2 + y^2 \le 4$)

so
$$f$$
 is C^1

$$|
abla f| = \sqrt{f_x^2 + f_y^2}$$

this is equal to the square root of

$$\frac{x^2 + y^2 - x^4 y^2 - x^2 y^4 + x^6 y^6 + 2(x^4 + y^4)}{(1 + x^2 + y^2)^2}$$

 $|x|,|y|\leq 2$, so roughly, we have

$$x^2 + y^2 - x^4y^2 - x^2y^4 + x^6 + y^6 + 2(x^4 + y^4) \le 4 + 2^7 + 2^6 = 196$$

and
$$1 \leq (1+x^2+y^2)^2 \leq 25$$

so
$$\left|
abla f
ight|^2 \leq 196 \equiv \left|
abla f
ight| \leq 14$$
 , $K=14$ is a Lipschitz Constant

Ex. 8 Let A(t) be a continuous family of $n \times n$ matrices and let P(t) be the matrix solution to the IVP P' = A(t)P, $P(0) = P_0$ Show that $\det P(t) = (\det P_0) \exp(\int_0^t \operatorname{Tr} A(s) ds)$

$$rac{1}{h}(P(t+h)-P(t)) o P'(t)=A(t)P$$
 as $h o 0$

hA(t)P(t)-(P(t+h)-P(t))=o(h)

since
$$rac{A(t)P(t)h-P(t+h)+P(t)}{h}
ightarrow 0$$
 as $h
ightarrow 0$

$$P(t+h) = hP'(t) + P(t) + o(h) = hA(t)P(t) + P(t) + o(h) = (I + hA(t))P(t) + o(h)$$

$$\det P(t+h) = \det(I + hA(t)) \det P(t) + o(h)$$

$$\text{if } M = \begin{pmatrix} a+o(h) & b+o(h) \\ c+o(h) & d+o(h) \end{pmatrix} \text{, we have the determinant = } ad-bc+do(h)+ao(h)-bo(h)-co(h) \\ &= \det M + o(h)$$

so with induction, it would be easy to set that this is the case for $\det P(t+h)$

and $1 + hA(t) = \left(11\right(t) & \cdot ha_{11}(t) & \cdot ha_{1$

so the determinant will be $= 1 + ha_{11}(t) + ha_{22}(t) + ... + ha_{nn}(t) + O(h^2)$

$$= 1 + h \operatorname{Trace} A + O(h^2)$$

Proof:

Induction on size of square matrix,

obvious for case 1×1 , where the determinant is $1 + ha_{11}(t) + 0$,

and
$$0 \le h^2$$
 whenever $0 \le |h| < \delta$, for any $\delta > 0$

and the case 2 imes 2 where the determinant is $(1+ha_{11})(1+ha_{22})-h^2a_{12}a_{21}$ $= 1+ha_{11}+ha_{22}+h^2(a_{11}a_{22}-a_{12}a_{21})$

Suppose this is true for $k \times k$ matrices, and $(k-1) \times (k-1)$ matrices

let
$$B=I+hA$$
 be a $k+1 imes k+1$ matrix ,

and let B_{ij} be the matrix without the ith row and jth column

then
$$\det B = (1 + ha_{11}(t)) \det B_{11} + \sum_{j=2}^{k+1} (-1)^{1+j} ha_{1j} \det B_{1j}$$

$$\det B_{11} = 1 + h \mathrm{Trace} \ A_{11} + O(h^2)$$
 by inductive hypothesis

and each $\det B_{1j}$ is going to be a linear combination of the determinant of $(k-1)\times (k-1)$ matrices that have k-1 diagonal entries of the form $1+ha_{ii}(t)$, where $i\neq 1, i\neq j$

and all the other entries will be of the form ha_{il} , where $i \neq 1, l \neq 1, j$, and using the inductive hypothesis again, the determinant of this matrix is $(1 + h \operatorname{Trace} A_{12,jl} + O(h^2))$, where $l \neq j$ and these terms get multiplied by $h^2a_{1j}a_{2l}$,

so the sum will be $O(h^2)$, and we have altogether

$$1 + h \operatorname{Trace} A_{11} + h a_{11}(t) + O(h^2) = 1 + h \operatorname{Trace} A + O(h^2)$$

so
$$\det P(t+h) = (1 + h \operatorname{Trace} A + O(h^2) \det P(t)) + o(h)$$

$$\text{and } \tfrac{d}{dt} \det P(t) = \lim_{h \to 0} \tfrac{\det P(t+h) - \det P(t)}{h} - \lim_{h \to 0} \tfrac{h \operatorname{Trace} A \cdot \det P(t) + O(h^2) \det P(t) + o(h)}{h}$$

which
$$=\lim_{h o 0} \operatorname{Trace} \operatorname{A} \cdot \det P(t) + O(h) + o(h)/h$$
, and $O(h), o(h)/h o 0$ as $h o 0$

so $rac{d}{dt}\det P(t)=\operatorname{Trace} \operatorname{A}\cdot\det P(t)$, so solving this differential equation, we get

 $\det P(t) = C \exp(\int_0^t \operatorname{Trace} A(s) ds)$, and when t=0, $C=\det P(0)=\det P_0$, which proves the statement.

Ex. 12 Prove the following general fact: If $C\geq 0$ and $u,v:[0,\beta]\to\mathbb{R}$ are continuous and nonnegative, and $u(t)\leq C+\int_0^t u(s)v(s)ds$ for all $t\in[0,\beta]$, then $u(t)\leq Ce^{V(t)}$ where $V(t)=\int_0^t v(s)\,ds$

Suppose C > 0,

Let $U(t) = C + \int_0^t u(s) v(s) ds$, which is greater than 0 since u,v are nonnegative

$$U'(t) = u(t)v(t)$$

$$rac{U'(t)}{U(t)} = rac{u(t)v(t)}{U(t)} \leq v(t)$$
 since $u(t) \leq U(t)$

and
$$rac{d}{dt}{
m log}\,U(t)=(1/U(t))U'(t)$$
 so

$$\frac{d}{dt}(\log U(t)) \le v(t)$$

$$\implies \int_0^t rac{d}{dt} \log U(s) ds = \log U(t) - \log U(0) \leq \int_0^t v(s) ds$$

$$\log U(t) \leq \log U(0) + \int_0^t v(s) ds$$

and
$$U(0)=C+\int_0^0 u(s)v(s)ds=C$$

$$U(t) \leq \exp(\log C + \int_0^t v(s)ds) = C \exp(\int_0^t v(s)ds)$$

and
$$u(t) \leq C \exp(\int_0^t v(s) ds)$$

For the case of C=0

We can construct a sequence of positive real numbers $c_n \to 0$ as $n \to \infty$, like $c_n = 1/n$

this gives us a sequence $u_n(t) = c_n + \int_0^t u(s)v(s)ds$,

and since $c_n>0$, using the argument above, this means each $u_n(t)\leq c_n e^{V(t)}$ for each $n\in\mathbb{N}$,

and as $n \to \infty$, we have $c_n e^{V(t)} \to 0$, and so $u_n(t) \le 0$, meaning $u(t) \le 0$

Ex. 14 Let A(t) be a continuous family of $n\times n$ matrices. Let $(t_0,X_0)\in J\times \mathbb{R}^n$. Then the initial value problem $X'=A(t)X,X(t_0)=X_0$ has a unique solution on all of J

This the Corollary of the Theorem on page 399:

Let $\mathcal{O}\subset\mathbb{R} imes\mathbb{R}^n$ be open and $F:\mathcal{O}\to\mathbb{R}^n$ a function that is C^1 in X and continuous in t. If $(t_0,X_0)\in\mathcal{O}$, there is an open interval J containing t_0 and a unique solution of X'=F(t,X) defined on J and satisfying $X(t_0)=X_0$

The function F(t,X)=A(t)X is a function that takes $\mathbb{R} imes\mathbb{R}^n o\mathbb{R}^n$

F is continuous in t, since A(t) is continuous

Showing F is C^1 in X:

$$A(t) = egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & \cdots & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

$$A(t)X = \left(egin{array}{c} \sum_{k=1}^{n} a_{1k}(t)x_{k}(t) \ dots \ \sum_{k=1}^{n} a_{nk}(t)x_{k}(t) \end{array}
ight)$$

$$DF_X = (rac{\partial f_i}{\partial x_j}) = rac{\partial}{\partial x_j} (\sum_{k=1}^n a_{ik}(t) x_k) = \sum_{k=1}^n rac{\partial}{\partial x_j} (a_{ik}(t) x_k)$$

the last equality coming from the definition of a derivative being a limit, and the limit of a sum is the sum of the limits.

$$=a_{ij}(t)$$

$$DF_X = A(t)$$

and A(t) is continuous, so DF_X is continuous.

A(t) is continuous everywhere, and so $DF_X = A(t)$ is continuous everywhere,

so on any $\mathcal{O} \subset \mathbb{R} \times \mathbb{R}^n$, F(t,X) = A(t)X is C^1 in X and continuous in t.

J is an open interval containing t_0 , and so, if we define \mathcal{O} to be an open set in $\mathbb{R} \times \mathbb{R}^n$ containing J, then using the theorem, we have a unique solution for X' = A(t)X defined on J satisfying $X(t_0) = X_0$