Career Map

Yuxin Zhao Jinyi Luo

Career Map

Content

- 1. Background
- 2. Intro to Amazon Web Services
- 3. Standardization
 - a. Preprocessing
 - b. String Similarity
 - i. Cosine Similarity
 - ii. Jaccard's Coefficient Similarity
 - iii. Word2Vec
- 4. Career Map Network Analysis

Background

Applicants:

- What can I do?
- Where am I in the labor market?
- How far is it to my dream position?
- Next Step?

Employers:

- Skills
- Experience

Job Posting - 18,727

Job Posting
18,727

Company

9,658

DS Job Posting

560

DS Company

400

Resume - 3,564,157

22 400000000	AⅡ =	DC
Accountant	586,003	35,384
Marketing Manager	418,090	
Financial Manager	400,268	25,340
Financial Analyst	341,882	21,058
Management Analyst	281,921	27,637
IT Manager	257,602	19,181
Business Operations Manager	186,300	11,491
Construction Manager	160,471	8,488
Loan Officer	146,084	8,532
Laboratory Technician	116,424	7,547
Financial Advisor	101,380	5,379
Interpreter	96,441	7,133
HR Specialist	91,969	6,413
High School Teacher	60,590	3,741
Compliance Officer	56,259	3,517
Database Administrator	53,613	5,503
Computer Support Specialist	38,760	3,310
Civil Engineer	27,964	1,712
Fundraiser	26,972	1,446
Computer Systems Analyst	26,736	3,048
Information Security Analyst	22,968	3,963
Computer Systems Administrator	20,550	2,171
Data Scientist	18,467	1,298
Lawyer	14,032	769
Cost Estimator	6,567	374
Actuary	2,553	117
Cartographer	2,011	244
Computer Network Architect	1,280	154
Grand Total	3,564,157	214,950

Amazon Web Services (AWS)

AWS Management Console

EC2 (Virtual Server in the Cloud)

T2 Instances (Ubuntu Server 18.04) **ubuntu**

PuTTY

FileZilla 🗾

Preprocessing

	All Resumes	All Titles	All Unique Titles	DC Unique Titles
Database Administrator	53,613	351,697	100,970	18,348
Computer Systems Administrator	20,550	165,934	53,418	10,942
Data Scientist	18,467	104,782	27,181	5,220

18,467

Data Scientist Resumes

From 30 Cities among 20 States

23, 825

Purpose

Detect different expressions of same meaning

Build a career map

Provide suggestions to the applicants

String Similarity

Term Frequency-Inverse Document Frequency

$$\mathrm{TF}(t) = rac{\mathrm{Number\ of\ times\ term\ t\ appears\ in\ a\ document}}{\mathrm{Total\ number\ of\ terms\ in\ the\ document}}$$

$$ext{IDF}(t) = \log_e \left(rac{ ext{Total number of documents}}{ ext{Number of documents with term t in it}}
ight)$$

$$TF(t) = 3/100 = 0.03$$

$$IDF(t) = log(20,000 / 200) = 2$$

TF-IDF weight =
$$0.03 * 2 = 0.06$$

N-Grams

scientist

ngrams('scientist',n=3)
Out[1]: ['sci', 'cie', 'ien', 'ent', 'nti', 'tis', 'ist']

print(tf_idf_matrix[245])

(0, 5053) 0.4009

(0, 1469) 0.3999

(0, 2869) 0.3912

(0, 2076) 0.3043

(0, 4014) 0.4103

(0, 5441) 0.4108

(0, 3045) 0.3108

science

ngrams('science',n=3)
Out[2]: ['sci', 'cie', 'ien', 'enc', 'nce']

print(tf_idf_matrix[2501])

(0, 1469) 0.4157

(0, 2869) 0.4067

(0, 2064) 0.5236

(0, 3805) 0.4624

Cosine Similarity

Algorithm

```
Sparse (MATRIX)
Step 1: Set M to number of rows in MATRIX
Step 2: Set N to number of columns in MATRIX
Step 3: I = 0, NNZ = 0. Declare A, JA, and IA.
       Set IA[0] to 0
Step 4: for I = 0 ... N-1
Step 5: for J = 0 ... N-1
Step 5: If MATRIX [I][J] is not zero
       Add MATRIX[I][J] to A
       Add J to JA
       NNZ = NNZ + 1
       [End of IF]
Step 6: Add NNZ to IA
       [End of J loop]
       [End of I loop]
Step 7: Print vectors A, IA, JA
Step 8: END
```

Input:
$$\begin{bmatrix} 10 & 20 & 0 & 0 & 0 & 0 \\ 0 & 30 & 0 & 4 & 0 & 0 \\ 0 & 0 & 50 & 60 & 70 & 0 \\ 0 & 0 & 0 & 0 & 0 & 80 \end{bmatrix}$$

Output:
$$A = \begin{bmatrix} 10 & 20 & 30 & 4 & 50 & 60 & 70 & 80 \end{bmatrix}$$
 $IA = \begin{bmatrix} 0 & 2 & 4 & 7 & 8 \end{bmatrix}$ $JA = \begin{bmatrix} 0 & 1 & 1 & 3 & 2 & 3 & 4 & 5 \end{bmatrix}$

Data Scientist

		Data Scientist				
5	data scientist	data scientist i	0.896795			
6	data scientist	data scientist in	0.870202			
7	data scientist	data scientist r	0.863371			
8	data scientist	d data scientist	0.86019			
9	data scientist	data scientist co	0.853945			
Data Scientist Intern						
43	data scientist intern	d data scientist intern	0.910315			
44	data scientist intern	data scientist in	0.88135			
45	data scientist intern	data scientist intel	0.877297			
46	data scientist intern	scientist intern	0.861003			
47	data scientist intern	data scientist i	0.855215			
Senior Data Scientist						
499	senior data scientist	senior data scientist ii	0.899819			
500	senior data scientist	sr senior data scientist	0.858319			
501	senior data scientist	senior data scienist	0.856755			

Senior Software Engineer

281	senior software engineer	senior software engineer lead	0.889968				
282	senior software engineer	sr software engineer	0.855782				
	Senior Software Architect						
505	senior software architect	sr software architect	0.869285				
	Lead Data Scientist						
1943	lead data scientist	head data scientist	0.916895				
1944	lead data scientist	d data scientist	0.875953				
Senior Network Design Engineer							
2605	senior network design engineer	senior network design engineer iv	0.945961				
2603	senior network design engineer iv	senior network design engineer	0.945961				
	Senior Operations Research Analyst						
4828	senior operations research analyst	sr operations research analyst	0.876618				

Word2Vector

"You shall know a word by the company it keeps." – J.R.Firth

Word2Vector

"You shall know a word by the company it keeps." – J.R.Firth

Word2Vector

"You shall know a word by the company it keeps." – J.R.Firth

Word2ector

"You shall know a word by the company it keeps." – J.R.Firth

'analysts': 'analyst', 'administrator': 'manager', 'coordinator': 'administrator', 'analsyt': 'analyst', 'manger': 'manager', 'supervisor': 'manager', 'mgr': 'manager', 'director': 'manager', 'sr': 'senior', 'managementanalyst': 'management', 'managementit': 'management', 'planning': 'management', 'oversight': 'management', 'mgmt': 'management', 'control': 'management', 'assurancemanager': 'assurance', 'budget': 'financial', 'tax': 'financial',

'deduction': 'financial', 'program': 'project', 'technician': 'specialist', 'powerbuilder': 'consultant', 'aide': 'assistant', 'assist': 'assistant'. 'asst': 'assistant', 'targeting': 'business', 'market': 'business', 'citibusiness': 'business'. 'resource': 'resources'. 'directors': 'director', 'system': 'systems', 'leader': 'lead', 'application': 'software', 'engineering': 'engineer', 'helpdesk': 'support', 'provided': 'support',

Career Guide (Gephi)

Career Guide (Interactive Function)

Reference

Den, V. (2017, October 14). Super Fast String Matching in Python. Retrieved from https://bergvca.github.io/2017/10/14/super-fast-string-matching.html

WB Advanced Analytics, & WB Advanced Analytics. (2017, July 26). Boosting selection of the most similar entities in large scale datasets. Retrieved from

https://medium.com/wbaa/https-medium-com-ingwbaa-boosting-selection-of-the-most-similar-entities-in-large-scale-datasets-450b3242e618

Perone, C. S. (n.d.). Machine Learning:: Cosine Similarity for Vector Space Models (Part III). Retrieved from http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/

QETAThank you