Probability CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

Bayes OCONORO BYU 1875

Outline

- Probability
 - Definition
 - Discrete variable
 - Continuous variable
- Multiple variables
 - Joint distribution
 - Marginal distribution
 - Conditional distribution
- Bayes
 - Independence
 - Bayes
 - Maximum likelihood
 - Maximum a posteriori

Bayes BYU BYU

Outline

- Probability
 - Definition
 - Discrete variable
 - Continuous variable
- 2 Multiple variables
 - Joint distribution
 - Marginal distribution
 - Conditional distribution
- Bayes
 - Independence
 - Bayes
 - Maximum likelihood
 - Maximum a posteriori

Probability space

Probability space

- ullet Ω world physical states
- defining P
 - $P: 2^{\Omega} \Longrightarrow [0,1]$
 - for all $A \subseteq \Omega, P(A) \in [0,1]$
 - $P(\Omega) = 1$

Probability space

Kolmogorvo's axioms

For any set of propositions (events) A, B

- $0 \le P(A) \le 1$
- P(True) = 1 and P(False) = 0
- $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

Туре

Discrete random variable

Probability mass function

$$\bullet \ \forall x \in S, P(X = x) = f(x) \leq 0$$

•
$$\sum_{x \in S} f(x) = 1$$

•
$$P(A) = \sum_{x \in A} f(x)$$

Discrete random variable

Cumulative mass function

•
$$F(x) = P(X \le x)$$

•
$$P(a < X \le b) = F(b) - F(a)$$

Continuous random variable

Probability density function

$$P(A) = \int_{x \in A} f(x)$$

Continuous random variable

Cumulative density function

•
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

•
$$P(a < X \le b) = \int_a^b f(t)dt = F(b) - F(a)$$

Bayes NAMED BYU 1875

Outline

- Probability
 - Definition
 - Discrete variable
 - Continuous variable
- Multiple variables
 - Joint distribution
 - Marginal distribution
 - Conditional distribution
- Bayes
 - Independence
 - Bayes
 - Maximum likelihood
 - Maximum a posteriori

Joint distribution

Joint probability of $P(X_1, X_2, \dots, X_n)$

•
$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \in [0, 1]$$

•
$$\sum P(X_1, X_2, \cdots, X_n) = 1$$

Marginal distribution

Relative to Joint distribution

Example:

P(X) and P(Y) are marginal distributions to the joint distribution P(X, Y)

discrete variable

$$P(X) = \sum_{Y} P(X, y)$$

continuous variable

$$P(X) = \int_Y P(X, y)$$

mixing discrete variable and continuous variable?

Marginal distribution

Example

P(Cavity, Toothache)	
Cavity = false ∧Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

P(Cavity)	
Cavity = false	?
Cavity = true	?

P(Toothache)	
Toothache = false	?
Toochache = true	?

Conditional distribution

• $P(A \mid B)$ is the probability of A given B

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A, B)}{P(B)}$$

- B provides information → uncertainty reduce
- $P(A) \le P(A \mid B)$

Conditional distribution

Example

P(Cavity, Toothache)	
Cavity = false ∧Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

P(Cavity)	
Cavity = false	0.9
Cavity = true	0.1

P(Toothache)	
Toothache = false	0.85
Toothache = true	0.15

- $P(Cavity = true \mid Toothache = false)$
- $P(Cavity = false \mid Toothache = true)$

Conditional distribution

discrete variable

$$\sum_{X} P(x \mid y) = 1$$

continuous variable

$$\int_X P(x \mid y) = 1$$

P(Cavity, Toothache)	
Cavity = false ∧Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

Select

Toothache, Cavity = false	
Toothache= false	0.8
Toothache = true	0.1

Renormalize

P(Toothache Cavity = false)	
Toothache= false	0.889
Toothache = true	0.111

Chain rule

From conditional probability

$$P(A_{1}, A_{2}, \dots, A_{n})$$

$$=P(A_{1})P(A_{2} \mid A_{1}) \cdots P(A_{n} \mid A_{1}, \dots, A_{n-1})$$

$$=\prod_{i=1}^{n} P(A_{i} \mid A_{1}, \dots, A_{i-1})$$

Example : Toothache

	toothache		¬ too	othache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- P(toothache, cavity)
- P(toothache | cavity)
- $P(catch \mid toothache)$

Bayes BYU

Outline

- Probability
 - Definition
 - Discrete variable
 - Continuous variable
- 2 Multiple variables
 - Joint distribution
 - Marginal distribution
 - Conditional distribution
- 3 Bayes
 - Independence
 - Bayes
 - Maximum likelihood
 - Maximum a posteriori

Bayes POUNC (1) POUN

Independence

•
$$P(A \land) = P(A)P(B)$$

•
$$\forall a \in A, b \in B, P(a \land b) = P(a)P(b)$$

Equivalence

•
$$P(A \mid B) = P(A)$$

•
$$P(B | A) = P(B)$$

Coin flip

Bayes BYU

Independence

Example:

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

1 (1)	
Р	
0.5	
0.5	

1 (11)		
W	Р	
sun	0.6	
rain	0.4	

 $P_2(T, W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional independence

- $P(A \wedge B \mid c) = P(A \mid c)P(B \mid c)$
- $\forall a \in A, b \in B, P(a \land b \mid c) = P(a \mid c)P(b \mid c)$

Example:

Bayes theorem

Bayes theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

- E Evidence
- H Hypothesis
- $P(H \mid E)$ Posterior
- P(H) Priori
- $P(E \mid H)$ Likelihood

Bayes BYU 1857 1857

ML estimation

Maximum likelihood estimate

ML

$$x^* = \arg\max_X P(e \mid x)$$

Example:

- $P(slim \mid action = diet) = 1$
- $P(slim \mid action = drug) = 0.5$

What should I do to be slim?

Bayes WARRED BYU 1875

MAP estimation

Maximum a posteriori estimate

MAP

$$x^* = \arg\max_X P(x \mid e)$$

Example:

- $P(slim \mid action = diet) = 1$
- $P(slim \mid action = drug) = 0.5$
- P(action = diet) = 0.1
- P(action = drug) = 0.9
- P(slim) = 0.5

What should I do to be slim?

Bayes OUNG (N) BYU INDEED THE STATE OF TH

MAP estimation

Maximum a posteriori estimate

MAP

$$x^* = \arg \max_{X} P(e \mid X)P(X)/P(e)$$
$$= \arg \max_{X} P(e \mid X)P(X)$$

Example:

- $P(slim \mid action = diet) = 1$
- $P(slim \mid action = drug) = 0.5$
- P(action = diet) = 0.1
- P(action = drug) = 0.9

What should I do to be slim?

