AFD Mínimo ou Autômato Finito Mínimo

AFD equivalente, com o menor número de estados possível

Minimização em algumas aplicações especiais

não necessariamente o menor custo de implementação

exemplo: circuitos lógicos ou redes lógicas

* pode ser desejável introduzir estados intermediários

* de forma a melhorar eficiência ou facilitar ligações físicas

prever variáveis específicas da aplicação

Autômato finito mínimo é único

a menos de isomorfismo

diferenciando-se, eventualmente, na identificação dos estados

▶ Algoritmo de minimização

unifica os estados equivalentes

Estados equivalentes

- processamento de uma entrada qualquer
- a partir de estados equivalentes
- resulta na mesma condição de aceita/

Def: Estados Equivalentes

 $M = (\Sigma, Q, \delta, q_0, F)$ AFD qualquer

q e p de ℚ são Estados Equivalentes sse, para qualquer w∈Σ*

$$\delta(q, w) = \delta(p, w)$$

resultam simultaneamente em estados finais, ou não-finais

Def: Autômato Finito Mínimo

L linguagem regular. O Autômato Finito Mínimo é um AFD

$$M_m = (\Sigma, Q_m, \delta_m, q_{Q_m}, F_m)$$

tal que

- ACEITA(Mm) = L
- para qualquer AFD $M = (\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L

Obs: Pré-Requisitos do Algoritmo de Minimização

- determinístico
- estados alcançáveis a partir do estado inicial
- função programa total

Caso não satisfaça algum dos pré-requisitos

- gerar um autômato determinístico equivalente
- * algoritmos de tradução apresentados nos teoremas
- eliminar estados inacessíveis (e transições): exercício
- função programa total
- * introduzir um estado não-final d
- * incluir transições não-previstas, tendo d como estado destino
- * incluir um ciclo em d para todos os símbolos do alfabeto

▶ Algoritmo de minimização

- identifica os estados equivalentes por exclusão
- tabela de estados
- * marca estados não-equivalentes
- * entradas não-marcadas: estados equivalentes

Def: Algoritmo de Minimização

 $M = (\Sigma, Q, \delta, q_0, F)$ AFD que satisfaz aos pré-requisitos

Passo 1: Construção da Tabela: relaciona estados distintos

					ď
					dn-1
					•
					d1
					0b
q1	q2	:	qn	р	

pares do tipo { estado final, estado não-final }

Passo 3: Marcação dos Estados Não-Equivalentes

Para { q_u, q_v } não-marcado e a∈∑, suponha que

$$\delta(q_u, a) = p_u$$
 e $\delta(q_v, a) = p_v$

- d = nd
- * q_u é equivalente a q_v para a: não marcar
- p_u ≠ p_v e { p_u, p_v } não está marcado
- * $\{$ $\mathsf{q}_\mathsf{u},\,\mathsf{q}_\mathsf{v}$ $\}$ incluído na lista encabeçada por $\{$ $\mathsf{p}_\mathsf{u},\,\mathsf{p}_\mathsf{v}$ $\}$
- p_u ≠ p_v e { p_u, p_v } está marcado
- * { qu, qv } não é equivalente: marcar
- * se { qu, qv } encabeça uma lista: marcar todos os pares da lista
- (e, recursivamente, se algum par da lista encabeça outra lista)

Passo 4: Unificação dos Estados Equivalentes Pares não-marcados são equivalentes

- equivalência de estados é transitiva
- pares de estados não-finais equivalentes
- * um único estado não-final
- pares de estados finais equivalentes
- * um único estado final
- se algum dos estados equivalentes é inicial
- estado unificado é inicial
- transições com origem (destino) em um estado equivalente
- * origem (destino) no estado unificado

Passo 5: Exclusão dos Estados Inúteis

q é um estado inútil

- não-final
- a partir de q não é possível atingir um estado final
- d (se incluído) é inútil

Transições com origem ou destino em estado inútil

excluir

Algoritmo para excluir os estados inúteis

exercício

Exp: Minimização

Pré-requisitos de minimização ???

Passo 1. Construção da tabela

Passo 2. Marcação dos pares { estado final, estado não-final }

			Í		
					9 4
			×	×	d3
			×	×	d ₂
			×	×	d1
X	×	×			Ob
q1	d ₂	Сþ	q 4	d5	

Passo 3. Análise dos pares de estado não-marcados

{ q0, q4 }

$$\delta(q_0, a) = q_2 \delta(q_0, b) = q_1$$

 $\delta(q_4, a) = q_3 \delta(q_4, b) = q_2$

* inclui { q₀, q₄ } nas listas de { q₁, q₂ } e { q₂, q₃ { q1, q2 } e { q2, q3 } são não-marcados

{ q0, q5 }

$$\delta(q_0, a) = q_2 \delta(q_0, b) = q_1$$

 $\delta(q_5, a) = q_2 \delta(q_5, b) = q_3$

 { q1, q3 } é não-marcado (e { q2, q2 } é trivialmente equivalente) * inclui { q₀, q₅ } na lista de { q₁, q₃ }

```
{ q1, q2 }
```

$$\delta(q_1, a) = q_1 \delta(q_1, b) = q_0$$

- $\delta(q_2, a) = q_4 \delta(q_2, b) = q_5$
- { q1, q2 } encabeça uma lista: marca { q0, q4 } { q1, q4 } é marcado: marca { q1, q2 }

{ q1, q3 }

$$\delta(q_1, a) = q_1 \delta(q_1, b) = q_0$$

$$\delta(q_3, a) = q_5 \delta(q_3, b) = q_4$$

- { q1, q5 } e { q0, q4 } são marcados: marca { q1, q3 }
- { q1, q3 } encabeça uma lista: marca { q0, q5 }

$$\delta(q_2, a) = q_4 \delta(q_2, b) = q_5$$

$$\delta(q_3, a) = q_5 \delta(q_3, b) = q_4$$

• { q4, q5 } é não-marcado: inclui { q2, q3 } na lista de{ q4, q5

{ q4, q5 }

$$\delta(q_4, a) = q_3 \delta(q_4, b) = q_2$$

$$\delta(q_5, a) = q_2 \delta(q_5, b) = q_3$$

• { q2, q3 } é não-marcado: inclui { q4, q5 } na lista de{ q2, q3

				{q4, q5}			
{an. as}	(C) (C)		₹40, 44 <i>}</i>	{q ₀ , q ₄ }		{q2, q3}	
1							
						ı	d ₄
			١.		×	×	d3
					×	×	d ₂
		Q	⊗	\otimes	×	×	d1
×		×		×	\otimes	\otimes	do
0	q1 q2		4 2	cb	Q4	d5	

Passo 4. { q2, q3 } e { q4, q5 } são não-marcados

- q23: unificação dos estados q2 e q3
- q45: unificação dos estados finais q4 e q5

Linguagens Formais e Autômatos - P. Blauth Menezes

ಹ

Ω

9

ठ

ಹ

4

ප

