Analiza vztrajnostnih diagramov

Sara Bizjak, Žan Hafner Petrovski

Mentorica: prof. Neža Mramor Kosta

11. januar 2021

TERMINOLOGIJA

DEFINICIJA

Ripsov kompleks Rips(S, r) je abstraktni simplicialni kompleks, za katerega velja:

- množica oglišč je enaka S,
- ullet podmnožica $\sigma\subseteq S$ je simpleks natanko tedaj, ko je premer σ največ r.

Definicija

Filtracija kompleksa K je naraščajoče zaporedje kompleksov

$$\emptyset = K_0 \le K_1 \le \ldots \le K_n = K.$$

TERMINOLOGIJA

Vztrajnostni diagram je grafični prikaz razvoja oblike Ripsovega kompleksa, ki zadošča filtraciji z naraščujočim *r*.

Pri **stabilnosti** nas zanima, če se pri majhni spremembi začetnih podatkov tudi vztrajnostni diagram le malo spremeni.

Definicija

 ${f Razdalja\ bottleneck\ med\ vztrajnostnima\ diagramoma\ } X$ in Y je definirana kot

$$W_{\infty}(X,Y) = \inf_{\varphi:X\to Y} \left(\sup_{x\in X} ||x-\varphi(x)||_{\infty}\right).$$

Prikaz postopka

SLIKA: Prikaz izvornih točk in vztrajnostnega diagrama pripadajoče filtracije.

Obnašanje razdalje bottleneck

Analiza razdalje bottleneck pri 100 različnih perturbacijah.

S *Shapiro-Wilkovim* testom normalnosti dobimo

p-vrednost = 0.00022.

 ${f SLIKA}$: Primerjava histograma razdalje bottleneck v dimenziji 0 in normalne porazdelitve.

Obnašanje razdalje bottleneck

Analiza razdalje bottleneck pri 100 različnih perturbacijah.

S *Shapiro-Wilkovim* testom normalnosti dobimo

p-vrednost = 0.00030.

SLIKA: Primerjava histograma razdalje bottleneck v dimenziji 1 in normalne porazdelitve.

OBNAŠANJE RAZDALJE BOTTLENECK

Analiza razdalje bottleneck pri 100 različnih perturbacijah.

S *Shapiro-Wilkovim* testom normalnosti dobimo

p-vrednost = 0.91.

SLIKA: Primerjava histograma razdalje bottleneck v dimenziji 2 in normalne porazdelitve.

STABILNOST

Empirično sva potrdila sledečo trditev:

Trditev

Naj bo $S = \{v_1, \dots, v_n\}$ množica točk, ki ji priredimo ϵ -perturbacijo $S' = \{v'_1, \dots, v'_n\}$, da velja

$$d(v_i, v_i') \leq \epsilon, \quad \forall i \in \{1, \ldots, n\}.$$

Potem je razdalja bottleneck med vztrajnostnima diagramoma pripadajočih Ripsovih kompleksov največ 2ϵ :

$$d_b(D(S), D(S')) \leq 2\epsilon$$
.