Funciones elementales

1 Números reales

Ejercicio 1. Calcula para qué valores de x se verifica que $\frac{2x-3}{x+2} < \frac{1}{3}$.

Ejercicio 2. Encuentra aquellos valores de x que verifican que:

a)
$$\frac{1}{8} + \frac{1}{1-8} > 0$$

a)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
,
b) $x^2 - 5x + 9 > x$,

d) $x^2 \le x$, e) $x^3 \le x$,

c)
$$x^3(x-2)(x+3)^2 < 0$$
,

f) $x^2 - 3x - 2 < 10 - 2x$.

Ejercicio 3. Discute para qu \tilde{A} © valores de x se verifica que:

a)
$$|x-1| |x+2| = 3$$
,

c) |x-1|+|x+1|<1,

b)
$$|x^2 - x| > 1$$
,

d) |x + 1| < |x + 3|.

Ejercicio 4.

a) Calcula para qué valores de x se verifica que $x^4 - 2x^2 > x^2 - 2$.

b) Calcula para qué valores de x se verifica que $\frac{x^2-4x-2}{x^3+1} > 0$.

c) Calcula para qué valores de x se verifica la desigualdad $\frac{1-2x}{x^2-4} > \frac{1}{2}$.

d) Calcula para qué valores de $x \in \mathbb{R}$ se verifica que $|x - 6|(1 + |x - 3|) \ge 1$.

e) Calcula para qué valores de $x \in \mathbb{R}$ se verifica que $\frac{3-x}{x+4} < \frac{x+2}{2x-3}$.

f) Calcula para qué valores de $x \in \mathbb{R}$ se verifica que $\left| \frac{x^3 - 5}{x^2 - 2x - 3} \right| \le 1$.

Ejercicio 5. ¿Para qué valores de x se cumple la designal dad $x^2 - (a + b)x + ab < 0$?

2 Funciones elementales

Ejercicio 6. Calcula el dominio de las siguientes las funciones:

a)
$$y = \sqrt{\frac{x-2}{x+2}}$$

d) $y = \tan\left(x + \frac{\pi}{4}\right)$

b)
$$y = \sqrt{\frac{x+2}{x+2}}$$

c) $y = \log\left(\frac{x^2 - 5x + 6}{x^2 + 4x + 6}\right)$
d) $y = \sqrt{\frac{x}{1-|x|}}$

e) $y = \log(\text{sen}(x))$

c)
$$y = \sqrt{\frac{x}{1 - |x|}}$$

f) $y = \sqrt{\log(\text{sen}(x))}$

Ejercicio 7. Si f(x) = 1/x y $g(x) = 1/\sqrt{x}$, ¿cuáles son los dominios naturales de f, g, f + g, $f \cdot g$ y de las composiciones $f \circ g$ y $g \circ f$?

Ejercicio 8. Estudia si son pares o impares las siguientes funciones:

a)
$$f(x) = |x + 1| - |x - 1|$$

d)
$$f(x) = e^x - e^{-x}$$

b)
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$

e)
$$f(x) = \operatorname{sen}(|x|)$$

c)
$$f(x) = e^x + e^{-x}$$

f)
$$f(x) = \cos(x^3)$$

Ejercicio 9. ¿Para qué números reales es cierta la desigualdad $e^{3x+8}(x+7) > 0$?

Ejercicio 10. Comprueba que la igualdad $a^{\log(b)} = b^{\log(a)}$ es cierta para cualquier par de números positivos a y b.

Ejercicio 11. Resuelve la siguiente ecuación:

$$\frac{1}{\log_{\chi}(a)} = \frac{1}{\log_h(a)} + \frac{1}{\log_c(a)} + \frac{1}{\log_d(a)}.$$

Ejercicio 12. ¿Para qué valores de x se cumple que $\log(x-1)(x-2) = \log(x-1) + \log(x-2)$?

Ejercicio 13. Prueba que $\log \left(x + \sqrt{1 + x^2}\right) + \log \left(\sqrt{1 + x^2} - x\right) = 0$.

Ejercicio 14. Resuelve la ecuación $x^{\sqrt{x}} = (\sqrt{x})^x$.

Ejercicio 15. Simplifica las siguientes expresiones:

- a) $a^{\log(\log a)/\log a}$.
- b) $\log_a (\log_a(a^{a^x}))$.

Ejercicio 16. Comprueba que si $f(x) = \frac{1}{1-x}$, entonces $f \circ f \circ f(x) = x$.

Ejercicio 17. Calcula la inversa de las siguientes funciones

a)
$$f(x) = \sqrt[3]{1 - x^3}$$

b)
$$f(x) = \frac{e^x}{1+e^x}$$

Ejercicio 18. ¿Hay algún valor de x e y para los que se cumpla que $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$?

Ejercicio 19. ¿Hay algún valor de x e y para los que se cumpla que $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$?

Ejercicio 20. Estudia si son periódicas y cuál es el periodo de las siguientes funciones:

a) $2\cos(3x)$,

c) $3 \sin(5x/8)$,

b) $4 \operatorname{sen}(\pi x)$,

d) | sen(x) | + | cos(x) |.

Ejercicio 21. Calcula el valor de sen $(7\pi/12)$ y cos $(\pi/12)$.

Ejercicio 22. Discute si son ciertas las siguientes identidades:

a) $arccos(cos(\pi/4)) = \pi/4$,

c) $\arctan(\tan(3\pi/2)) = 3\pi/2$,

b) arcsen(sen(10)) = 10,

d) arccos(cos(x)) = x.

Ejercicio 23. Usa las fórmulas de adición para expresar tan(x + y) en términos de tan(x) y tan(y).

Ejercicio 24. Comprueba que

$$(\operatorname{sen}(x) + \cos(x))^4 = 1 + 2\operatorname{sen}(2x) + \operatorname{sen}^2(2x).$$