CO 450/650 Combinatorial Optimization

Keven Qiu Instructor: Bill Cook Fall 2023

Contents

Ι	In	troduction	4
1	Line	ear Programming	5
	1.1	Farkas' Lemma	5
	1.2	Duality	6
2	Gra	ph Theory	8
Π	P	olyhedral Combinatorics	10
3	Inte	egrality of Polyhedra	11
	3.1	Convex Hull	11
	3.2	Polytopes	11
	3.3	Inegral Polytopes	13
	3.4	Total Unimodularity	14
	3.5	Edmonds' Matching Polytope	16
H	I (Optimal Trees and Paths	17
4	Mir	nimum Spanning Trees	18
	4.1	Problem	18
	4.2	Algorithm	18
	4.3	Linear Programming Relaxation	19

5	Sho	ortest Paths	21	
	5.1	Linear Programming	21	
IJ	V I	Network Flows	23	
6	Ma	ximum Flow	24	
	6.1	Problem	24	
	6.2	Maximum Flows and Minimum Cuts	25	
	6.3	Augmenting Path Algorithm	27	
		6.3.1 Shortest Augmenting Paths	27	
	6.4	Applications	29	
		6.4.1 Bipartite Matchings and Vertex Covers	29	
		6.4.2 Flow Feasibility	29	
\mathbf{V}	\mathbf{N}	$egin{smallmatrix} A & atchings \end{bmatrix}$	30	
7	Ma	tchings	31	
	7.1	Bipartite Matching	32	
	7.2	Alternating Paths	32	
	7.3	Tutte-Berge Formula	33	
8	Maximum Matching			
	8.1	Alternating Trees	35	
9	T-J	oins	37	
\mathbf{V}	I I	$\operatorname{Matroids}$	38	
\mathbf{V}	II	Traveling Salesman Problem	39	

List of Algorithms

1	Kruskal's Algorithm for MST	19
2	Ford-Fulkerson Algorithm	27

Part I Introduction

Linear Programming

Definition: Linear Programming

The problem of finding a vector x that maximizes a given linear function $c^T x$, where x ranges over all vectors satisfying a given system $Ax \leq b$ of linear inequalities.

1.1 Farkas' Lemma

Lemma (Farkas' Lemma for Inequalities)

The system $Ax \leq b$ has a solution x if and only if there is no vector y satisfying $y \geq 0$, $y^T A = 0$, and $y^T b < 0$.

Proof. Suppose $Ax \leq b$ has a solution \overline{x} and suppose there exists a vector $\overline{y} \geq 0$ satisfying $\overline{y}^T A = 0$ and $\overline{y}^T b < 0$. Then we obtain the contradiction

$$0 > \overline{y}^T b \ge \overline{y}^T (A \overline{x}) = (\overline{y}^T A) \overline{x} = 0$$

Now suppose that $Ax \leq b$ has no solution. If A has only one column, then the result is easy. Otherwise, apply Fourier-Motzkin elimination to obtain a system $A'x' \leq b'$ with one less variable. Since $A'x' \leq b'$ also has no solution, we can assume by induction that there exists a vector $y' \geq 0$ satisfying $y'^TA' = 0$ and $y'^Tb' < 0$. Now since each inequality in $A'x' \leq b'$ is the sum of positive multiples of inequalities in $Ax \leq b$, we can use y' to construct a vector y satisfying the conditions in the theorem.

Lemma (Farkas' Lemma)

The system Ax = b has a nonnegative solution if and only if there is no vector y satisfying $y^T A \ge 0$ and $y^T b < 0$.

Proof. Define

$$A' = \begin{bmatrix} A \\ -A \\ -I \end{bmatrix}, b' = \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$$

Then Ax = b has a nonnegative solution x if and only if $A'x' \le b'$ has a solution x'. Applying Farkas' Lemma for Inequalities to $A'x' \le b'$ gives the result.

Corollary

Suppose the system $Ax \leq b$ has at least one solution. Then every solution x of $Ax \leq b$ satisfies $c^Tx \leq \delta$ if and only if there exists a vector $y \geq 0$ such that $y^TA = c$ and $y^Tb \leq \delta$.

1.2 Duality

Consider the LP:

$$\max c^T x$$

s.t. $Ax \le b$

and dual LP

$$\begin{aligned} & \text{min} & y^T b \\ & \text{s.t.} & y^T A = c^T \\ & y \geq 0 \end{aligned}$$

Theorem (Weak Duality)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Suppose that \overline{x} is a feasible solution to $Ax \leq b$ and \overline{y} is a feasible solution to $y \geq 0$, $y^T A = c^T$. Then

$$c^T \overline{x} < \overline{y}^T b$$

Proof.

$$c^T \overline{x} = (\overline{y}^T A) \overline{x} = \overline{y}^T (A \overline{x}) \le \overline{y}^T b$$

Theorem (Strong Duality)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, then

$$\max\{c^T x : Ax \le b\} = \min\{y^T b : y^T A = c^T, y \ge 0\}$$

provided that both sets are nonempty.

Corollary

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, then

$$\max\{c^T x : Ax \le b, x \ge 0\} = \min\{y^T b : y^T A \ge c^T\}$$

provided that both sets are nonempty.

Definition: Complementary Slackness Conditions

For each $i \in \{1, ..., m\}$, either $y_i^* = 0$ or $a_i x^* = b_i$.

Theorem (Complementary Slackness Theorem)

Let x^* be a feasible solution of $\max\{c^Tx: Ax \leq b\}$ and let y^* be a feasible solution of $\min\{y^Tb: y^TA = c^T, y \geq 0\}$. Then x^* and y^* are optimal solutions for the maximum and minimum respectively if and only if the complementary slackness conditions hold.

Graph Theory

Definition: Graph

A graph G = (V, E) is a set of vertices/nodes V and a set of edges E. We define n = |V| and m = |E|.

Definition: Subgraph

H = (W, F) of G = (V, E) where $W \subseteq V$ and $F \subseteq E$.

Definition: Spanning Subgraph

H is spanning if V(H) = V(G).

Definition: Path

A sequence $P = v_0, e_1, v_1, \dots, e_k, v_k$ where $v_0, \dots, v_k \in V(G), e_1, \dots, e_k \in E(G),$ and $e_i = v_{i-1}v_i$.

We call P a v_0v_1 -path. P is called edge-simple if all e_i are distinct and simple if all v_i are distinct.

The length of P is the number of edges in P.

Definition: Circuit/Cycle

An edge-simple closed path.

Definition: Connected

A graph is connected if every pair of vertices is joined by a path.

Definition: Cut Vertex

A vertex v of a connected graph G where G - v is not connected.

Definition: Forest

A graph with no circuits.

Definition: Tree

A connected forest.

Definition: Cut

Let $R \subseteq V$, then

$$\delta(R) = \{vw : vw \in E, v \in R, w \notin R\}$$

Definition: rs-Cut

A cut for which $r \in R, s \notin R$.

Part II Polyhedral Combinatorics

Integrality of Polyhedra

3.1 Convex Hull

Definition: Convex Combination

 $x = \lambda_1 v_1 + \cdots + \lambda_k v_k$ for some vectors v_1, \dots, v_k and nonnegative scalars $\lambda_1, \dots, \lambda_k$ such that $\lambda_1 + \cdots + \lambda_k = 1$.

Definition: Convex Hull

The convex hull of a finite set S, denoted conv.hull(S), is the set of all vectors that can be written as a convex combination of S.

Proposition

Let $S \subseteq \mathbb{R}^n$ be a finite set and let $w \in \mathbb{R}^n$. Then

$$\max\{w^T x : x \in S\} = \max\{w^T x : x \in conv.hull(S)\}\$$

3.2 Polytopes

Definition: Polyhedron

The solution set of a finite system of linear inequalities.

Definition: Polytope

A polyhedron $P \subseteq \mathbb{R}^n$ is a polytope if there exists $\ell, u \in \mathbb{R}^n$ such that $\ell \leq x \leq u$ for all $x \in P$.

Definition: Valid Inequality

An inequality $w^T x \leq t$ is valid for a polyhedron P if $P \subseteq \{x : w^T x \leq t\}$.

Definition: Hyperplane

The solution set of $w^T x = t$ where $w \neq 0$.

Definition: Supporting Hyperplane

With respect to a polyhedron P, a hyperplane is supporting if $w^Tx \leq t$ is valid for P and $P \cap \{x : w^Tx = t\} \neq \emptyset$.

Definition: Face

The intersection of a polyhedron with one of its supporting hyperplanes.

The null set and the polyhedron itself is a face.

Definition: Proper Face

Faces which are not the null set or the polyhedron itself.

Proposition

A nonempty set $F \subseteq P = \{x : Ax \leq b\}$ is a face of P if and only if for some subsystem $A^{\circ}x \leq b^{\circ}$ of $Ax \leq b$, we have $F = \{x \in P : A^{\circ}x = b^{\circ}\}$.

Proof. (\Longrightarrow) Suppose F is a face of P. Then there exists a valid inequality $w^Tx \leq t$ such that $F = \{x \in P : w^Tx = t\}$.

Consider the LP problem $\max\{w^Tx : Ax \leq b\}$. The set of optimal solutions is precisely F. Now let y^* be an optimal solution to the dual problem $\min\{y^Tb : y^TA = w, y \geq 0\}$ and let $A^{\circ}x \leq b^{\circ}$ be those inequalities $a_i^Tx \leq b_i$ whose corresponding dual variable y_i^* is positive. By complementary slackness, we have $F = \{x : Ax \leq b, A^{\circ}x = b^{\circ}\}$ as required.

(\Leftarrow) Conversely, if $F = \{x \in P : A^{\circ}x = b^{\circ}\}$ for some subsystem $A^{\circ}x \leq b^{\circ}$ of $Ax \leq b$, then add the inequalities $A^{\circ}x \leq b^{\circ}$ to obtain an inequality $w^{T}x \leq t$. Every $x \in F$ satisfies $w^{T}x = t$ and every $x \in P \setminus F$ satisfies $w^{T}x < t$ as required.

Proposition

Let F be a minimal nonempty face of $P = \{x : Ax \leq b\}$. Then $F = \{x : A^{\circ}x = b^{\circ}\}$ for some subsystem $A^{\circ}x \leq b^{\circ}$ of $Ax \leq b$.

Moreover, the rank of the matrix A° is equal to the rank of A.

Proposition

If a polyhedron P is pointed, then every minimal nonempty face of P is a vertex.

Proposition

Let $P = \{x : Ax \leq b\}$ and $v \in P$. Then v is a vertex of P if and only if v cannot be written as a convex combination of vectors in $P \setminus \{v\}$.

Theorem

A polytope is equal to the convex hull of its vertices.

Proof. Let P be a nonempty polytope. Since P is bounded, P must be pointed. Let v_1, \ldots, v_k be the vertices of P. Clearly, $conv.hull(\{v_1, \ldots, v_k\}) \subseteq P$. So suppose there exists

$$u \in P \setminus conv.hull(\{v_1, \dots, v_k\})$$

Then by proposition, there exists an inequality $w^T x \leq t$ that separates u from $conv.hull(\{v_1, \ldots, v_k\})$. Let $t^* = \max\{w^T x : x \in P\}$ and consider the face $F = \{x \in P : w^T x = t^*\}$. Since $u \in P$, we have $t^* > t$. So F contains no vertex of P, a contradiction.

Theorem

A set P is a polytope if and only if there exists a finite set V such that P is the convex hull of V.

Definition: Vertex

A vector $v \in P$ is called a vertex if $\{v\}$ is a face of P.

Definition: Pointed Polyhedron

A polyhedron P is pointed if it has at least one vertex.

 $\{(x_1,x_2)\in\mathbb{R}^2:x_1\geq 0\}$ is a polyhedron with no vertex.

3.3 Inegral Polytopes

Definition: Rational Polyhedron

A polyhedron that can be defined by rational linear systems.

Definition: Integral Polyhedron

A rational polyhedron where every nonempty face contains an integral vector.

Definition: Pointed Integral Polyhedron

A pointed rational polyhedron is integral if and only if all its vertices are integral.

Theorem

A rational polytope P is integral if and only if for all integral vectors w, the optimal value of $\max\{w^Tx:x\in P\}$ is an integer.

Proof. To prove sufficiency, suppose that for all integral vectors w, the optimal value of $\max\{w^Tx:x\in P\}$ is an integer. Let $v=(v_1,\ldots,v_n)^T$ be a vertex of P and let w be an integral vector such that v is the unique optimal solution to $\max\{w^Tx:x\in P\}$. By multiplying w by a large positive integer if necessary, we may assume $w^Tv>w^Tu+u_1-v_1$ for all vertices u of P other than v. This implies that if we let $\overline{w}=(w_1+1,w_2,\ldots,w_n)^T$, then v is an optimal solution to $\max\{\overline{w}^Tx:x\in P\}$. So $\overline{w}^Tv=w^Tv+v_1$. But, by assumption, w^Tv and \overline{w}^Tv are integers. Thus, v_1 is an integer. We can repeat this for each component of v, so v must be integral.

3.4 Total Unimodularity

Proposition

Let A be an integral, nonsingular, $m \times n$ matrix. Then $A^{-1}b$ is integral for every integral vector $b \in \mathbb{R}^m$ if and only if $\det(A) = 1$ or -1.

Proof. (\iff) Suppose $\det(A) = \pm 1$. By Cramer's Rule, we know that A^{-1} is integral, which implies $A^{-1}b$ is integral for every integral b.

(\Longrightarrow) Conversely, suppose $A^{-1}b$ is integral for all integral vectors b. Then, in particular, $A^{-1}e_i$ is integral for all $i=1,\ldots,m$. This means that A^{-1} is integral. So $\det(A)$ and $\det(A^{-1})$ are both integers. But, $\det(A) \cdot \det(A^{-1}) = 1$, this implies $\det(A) = \pm 1$.

Definition: Unimodular

A matrix A of full row rank is unimodular if A is integral and each basis of A has determinant ± 1 .

Theorem (Veinott & Dantzig 1968)

Let A be an integral $m \times n$ matrix of full row rank. Then the polyhedron defined by $Ax = b, x \geq 0$ is integral for every integral vector $b \in \mathbb{R}^m$ if and only if A is unimodular.

Proof. (\Leftarrow) Suppose A is unimodular. Let $b \in \mathbb{R}^m$ be an integral vector and let \overline{x} be a vertex of $\{x : Ax = b, x \geq 0\}$. The nonnegativity constraints implies the polyhedron has vertices. Then there are n linearly independent constraints satisfied by \overline{x} with inequality. It follows that the columns of A corresponding to the nonzero components of \overline{x} are linearly independent. Extending these columns to a basis B of A, we have the nonzero components of \overline{x} are contained in the integral vector $B^{-1}b$. So \overline{x} is integral.

 (\Longrightarrow) Conversely, suppose $\{x: Ax=b, x\geq 0\}$ is integral for all integral vectors b. Let B

be a basis of A and let v be an integral vector in \mathbb{R}^m . By previous proposition, it suffices to show that $B^{-1}v$ is integral. Let y be an integral vector such that $y + B^{-1}v \geq 0$ and let $b = B(y + B^{-1}v)$. Note b is integral. Furthermore, by adding zero components to the vector $y + B^{-1}v$, we can obtain a vector $z \in \mathbb{R}^n$ such that Az = b. Then, z is a vertex of $\{x : Ax = b, x \geq 0\}$, since z is a polyhedron and satisfies n linearly independent constraints with equality: the m equations Ax = b and the n - m equations $x_i = 0$ for the columns i outside B. So z is integral, and thus, $B^{-1}v$ is integral.

Definition: Totally Unimodular

A matrix is totally unimodular if all of its square submatrices have determinant 0, 1, or -1.

It is easy to see that A is totally unimodular if and only if $\begin{bmatrix} A & I \end{bmatrix}$ is unimodular where $I \in \mathbb{R}^{m \times m}$.

Theorem (Hoffman-Kruskal)

Let A be an $m \times n$ integral matrix. Then the polyhedron defined by $Ax \leq b, x \geq 0$ is integral for every integral vector $b \in \mathbb{R}^m$ if and only if A is totally unimodular.

Proof. Applying the linear programming trick of adding slack variables, we have that for any integral b, the polyhedron $\{x: Ax \leq b, x \geq 0\}$ is integral if and only if the polyhedron $\{z: A \mid z = b, z \geq 0\}$ is integral. So the result follows from previous theorem.

Theorem

Let A be an $m \times n$ totally unimodular matrix and let $b \in \mathbb{R}^m$ be an integral vector. Then the polyhedron defined by $Ax \leq b$ is integral.

Proof. Let F be a minimal face of $\{x: Ax \leq b\}$. Then, by proposition, $F = \{x: A^{\circ}x = b^{\circ}\}$ for some subsystem $A^{\circ}x \leq b^{\circ}$ of $Ax \leq b$, with A° having full row rank. By reordering the columns, if necessary, we may write A° as $\begin{bmatrix} B & N \end{bmatrix}$ where B is a basis of A° . It follows

$$\overline{x} = \begin{bmatrix} B^{-1}b^{\circ} \\ 0 \end{bmatrix}$$

is an integral vector in F.

Theorem

Let A be a $0, \pm 1$ valued matrix where each column has at most one +1 and at most -1. Then A is totally unimodular.

Proof. Let N be a $k \times k$ submatrix of A. If k = 1, then $\det(N)$ is either 0 or ± 1 . So we may suppose that $k \geq 2$ and proceed by induction on k. If N has a column having at most one nonzero, then expanding the determinant along this column, we have that $\det(N)$ is either 0 or ± 1 , by induction. On the other hand, if every column of N has both a +1 and a -1, then the sum of the rows of N is 0 and hence $\det(N) = 0$.

Let D = (V, E) be a digraph and let A be its incidence matrix. Then A is totally unimodular.

Definition: Network Matrix

Let T = (V, E') be a spanning tree of D and define the matrix M having rows indexed by E' and columns indexed by E, where $e = (u, v) \in E$ and $e' \in E'$.

$$M_{e',e} = \begin{cases} +1 & \text{if } uv\text{-path in } T \text{ uses } e' \text{ in forward direction} \\ -1 & \text{if } uv\text{-path in } T \text{ uses } e' \text{ in backward direction} \\ 0 & \text{if } uv\text{-path in } T \text{ does not use } e' \end{cases}$$

Theorem (Tutte 1965)

Network matrices are totally unimodular.

3.5 Edmonds' Matching Polytope

For a graph G=(V,E), let $\mathcal{PM}(G)\subseteq\mathbb{R}^E$ denote the set of characteristic vectors of its perfect matchings.

Theorem (Perfect Matching Polytope Theorem)

For any graph G = (V, E), the convex hull of $\mathcal{PM}(G)$ is identical to the set of solutions of the linear system

$$x(\delta(v)) = 1, \ \forall v \in V$$

 $x(\delta(S)) \ge 1, \ \forall S \subseteq V, |S| \ge 3 \text{ and odd}$
 $x_e > 0, \ \forall e \in E$

Theorem (Birkhoff)

Let G be a bipartite graph. Then the convex hull of the perfect matchings of G is defined by

$$x(\delta(v)) = 1, \ \forall v \in V$$

 $x_e \ge 0, \ \forall e \in E$

Theorem (Fractional Matching Polytope Theorem)

Let G be a graph and let $x \in FPM(G)$. Then x is a vertex of FPM(G) if and only if $x_e \in \left\{0, \frac{1}{2}, 1\right\}$ for all $e \in E$ and the edges e for which $x_e = \frac{1}{2}$ form vertex-disjoint odd circuits.

Proof. (Perfect Matching Polytope Theorem – Schrijver)

Part III Optimal Trees and Paths

Minimum Spanning Trees

4.1 Problem

Definition: Spanning Tree

A subgraph $T \subseteq G$ where V(T) = V(G), T is connected, and T is acyclic.

Lemma

An edge e = uv of G is an edge of a circuit of G if and only if there is a path in $G \setminus e$ from u to v.

Minimum Spanning Tree Problem (MST)

Given a connected graph G and a real cost c_e for each $e \in E$, find a minimum cost spanning tree of G.

Lemma

A spanning connected subgraph of G is a spanning tree if and only if it has exactly n-1 edges.

4.2 Algorithm

Theorem

A graph G is connected if and only if there is no set $A \subseteq V$ where $\emptyset \neq A \neq V$ with $\delta(A) = \emptyset$.

Algorithm 1 Kruskal's Algorithm for MST

```
1: sort E to \{e_1, \ldots, e_m\} so that c_{e_1} \leq \cdots \leq c_{e_m}
```

2:
$$H = (V, F), F = \emptyset$$

3: for
$$i = 1$$
 to m do

4: **if** ends of e_i are in different components of H then

5:
$$F \leftarrow F \cup \{e_i\}$$

6: return H

4.3 Linear Programming Relaxation

Definition: $\kappa: E \to \mathbb{N}$

 $\kappa(A)$ is the number of components in the subgraph (V,A) of G.

We can formulate the MST problem as an IP.

min
$$c^T x$$

s.t. $x(A) \le |V| - \kappa(A), \ \forall A \subset E$
 $x(E) = |V| - 1$
 $x_e \in \{0, 1\}, \ \forall e \in E$

We can relax the integer program to get the following linear program.

Definition: MST LP

min
$$c^T x$$

s.t. $x(A) \leq |V| - \kappa(A), \ \forall A \subset E$
 $x(E) = |V| - 1$
 $x_e \geq 0, \ \forall e \in E$

We replace the minimization with a maximization in the primal to write the dual.

Definition: MST Dual LP

$$\begin{aligned} & \min & & \sum_{A\subseteq E} (|V|-\kappa(A)) y_A \\ & \text{s.t.} & & \sum (y_A:e\in A) \geq -c_e, \ \forall e\in E \\ & & y_A \geq 0, \ \forall A\subset E \end{aligned}$$

Theorem (Edmonds 1971)

Let x^* be the characteristic vector of an MST with respect to costs c_e . Then x^* is an optimal solution of the linear program.

Proof. We show that x^* is optimal for the LP and x^* is the characteristic vector generated by Kruskal's algorithm. y_E is not required to be nonnegative.

Let e_1, \ldots, d_m be the order in which Kruskal's algorithm considers the edges. Let $R_i = \{e_1, \ldots, e_i\}$ for $1 \leq i \leq m$. Let y^* be the be the dual solution. We denote $y_A^* = 0$ unless A is one of the R_i , $y_{R_i}^* = c_{e_{i+1}} - c_{e_i}$ for $1 \leq i \leq m-1$, and $y_{R_m}^* = -c_{e_m}$. It follows from the ordering of the edges, $y_A^* \geq 0$ for $A \neq E$. Now consider the first constraint, then where $e = e_i$, we have

$$\sum_{A:e \in A} y_A^* = \sum_{j=i}^m y_{R_j}^* = \sum_{j=i}^{m-1} (c_{e_{i+1}} - c_{e_i}) = -c_{e_i} = -c_e$$

All of the inequalities hold with equality. So the complementary slackness conditions $(x_e^* > 0 \implies \sum_{A:e \in A} y_A = c_e)$ are satisfied.

We want to show now that the second constraint also satisfies complementary slackness conditions $(y_A^* > 0 \implies x(A) \leq |V| - \kappa(A))$. We know $A = R_i$ for some i. If the primal constraint does not hold with equality for R_i , then there is some edge of R_i whose addition to $E(T) \cap R_i$ would decrease the number of components of $(V, E(T) \cap R_i)$. But this edge would have ends in two different components of $(V, E(T) \cap R_i)$, and therefore would have been added to T by Kruskal's algorithm.

Therefore, x^* and y^* satisfy complementary slackness conditions. So, x^* is an optimal solution to the LP.

Shortest Paths

Shortest Path Problem

Given a digraph G, a vertex $r \in V$, and a real cost vector $(c_e : e \in E)$, find for each $v \in V$, a dipath from r to v of least cost.

Let y_v for $v \in V$ be the least cost of a dipath to v, then y s

Definition: Feasible Potential

 $y = (y_v : v \in V)$ is a feasible potential if it satisfies $y_v + c_{vw} \ge y_w$ for all $vw \in E$ and $y_r = 0$.

Proposition

Let y be a feasible potential and let P be a dipath from r to v. Then $c(P) \geq y_v$.

Proof. Suppose that P is $v_0, e_1, v_1, \ldots, e_k, v_k$ where $v_0 = r$ and $v_k = v$. Then

$$c(P) = \sum_{i=1}^{k} c_{e_i} \ge \sum_{i=1}^{k} (y_{v_i} - y_{v_{i-1}}) = y_{v_k} - y_{v_0} = y_v$$

5.1 Linear Programming

Theorem

Let G be a digraph, $r, s \in V$, and $c \in \mathbb{R}^E$. If there exists a least-cost dipath from r to v for every $v \in V$, then

 $\min\{c(P): P \text{ an } rs\text{-dipath}\} = \max\{y_s: y \text{ a feasible potential}\}$

Definition: Shortest Path LP

$$\begin{aligned} & \text{min} & & \sum (c_e x_e : e \in E) \\ & \text{s.t.} & & \sum (x_{wv} : w \in V, wv \in E) - \sum (x_{vw} : w \in V, vw \in E) = b_v, \ \forall v \in V \\ & & & x_{vw} \geq 0, \ \forall vw \in E \end{aligned}$$

Definition: Shortest Path Dual LP

$$\max \quad y_s - y_r$$
s.t.
$$y_w - y_v \le c_{vw}, \ \forall vw \in E$$

Part IV Network Flows

Maximum Flow

6.1 Problem

Definition: Net Flow/Excess

$$f_x(v) = x(\delta(\overline{v})) - x(\delta(v)) = \sum (x_{wv} : w \in V, wv \in E) - \sum (x_{vw} : w \in V, vw \in E)$$

Definition: rs-Flow

A vector x that satisfies $f_x(v) = 0$ for all $v \in V$.

Definition: Value of rs-Flow

 $f_x(s)$

Maximum Flow Problem

Given a digraph G = (V, E), with source r and sink s, find an rs-flow of maximum value.

Proposition

There exists a family (P_1, \ldots, P_k) of rs-dipaths such that $|\{i : e \in P_i\}| \le u_e$ for all $e \in E$ if and only if there exists an integral feasible rs-flow of value k.

Proof. (\Longrightarrow) We have seen family of dipaths determines a corresponding flow.

(\Leftarrow) Let x be a flow. We assume that x is acyclic, that is, there is no dicircuit C, each of whose arcs e has $x_e > 0$. If a dicircuit does exist, we can decrease x_e by 1 on all arcs of C. The new x remains feasible of value k.

If $k \ge 1$, we can find an arc vs with $x_{vs} \ge 1$. Then, if $v \ne r$, it follows that there is an arc wv with $x_{wv} \ge 1$ by the constraint $f_x(v) = 0$. If $w \ne r$, then the argument can be repeated

producing distinct vertices, since x is acyclic, so we get a simple rs-dipath P_k on each arc e with $x_e \ge 1$. We can decrease x_e by 1 for each $e \in P_k$. The new x is an integral feasible flow of value k-1, and the process is repeated.

6.2 Maximum Flows and Minimum Cuts

Definition: Maximum Flow LP

max
$$f_x(s)$$

s.t. $f_x(v) = 0, \forall v \in V \setminus \{r, s\}$
 $0 \le x_e \le u_e, \forall e \in E$

Definition: Path Flow

A vector $x \in \mathbb{R}^E$ such that for some rs-dipath P and some $\alpha \in \mathbb{R}$, $x_e = \alpha$ for each $e \in P$ and $x_e = 0$ for every other arc of G.

Definition: Circuit Flow

A vector $x \in \mathbb{R}^E$ such that for some rs-dicircuit C and some $\alpha \in \mathbb{R}$, $x_e = \alpha$ for each $e \in C$ and $x_e = 0$ for every other arc of G.

Proposition

Every rs-flow of nonnegative value is the sum of at most m flows, each of which is a path flow or a circuit flow.

Proposition

For any rs-cut $\delta(R)$ and any rs-flow x, we have

$$f_x(s) = x(\delta(R)) - x(\delta(\overline{R}))$$

Proof. We add the equations $f_x(v) = 0$ for all $v \in \overline{R} \setminus \{s\}$ as well as the identity $f_x(s) = f_x(s)$. The right hand side sums to $f_x(s)$.

For any arc vw with $v, w \in R$, x_{vw} occurs in none of the equations, so it does not occur in the sum. If $v, w \in \overline{R}$, then x_{vw} occurs in the equation for v with a coefficient of -1, and in the equation for w with a coefficient of +1, so it has a coefficient of 0 in the sum. If $v \in R, w \notin R$, then x_{vw} occurs in the equation for w with a coefficient of 1, and so has coefficient 1 in the sum. If $v \notin R, w \in R$, then x_{vw} occurs in the sum with a coefficient of -1. So, the left hand side sums to $x(\delta(R)) - x(\delta(\overline{R}))$, as required.

Corollary

For any feasible rs-flow x and any rs-cut $\delta(R)$,

$$f_x(s) \le u(\delta(R))$$

Proof. Using previous proposition, since $x(\delta(R)) \leq u(\delta(R))$ and $x(\delta(\overline{R})) \geq 0$.

Definition: Incrementing Path

A path is x-incrementing if every forward arc e has $x_e < u_e$ and every reverse arc e has $x_e > 0$.

Definition: Augmenting Path

An rs-path that is x-incrementing.

Theorem Maximum-Flow Minimum-Cut

If there is a maximum rs-flow, then

 $\max\{f_x(s): x \text{ is a feasible } rs\text{-flow}\} = \min\{u(\delta(R)): \delta(R) \text{ is an } rs\text{-cut}\}\$

Proof. By previous corollary, we need only show that there exists a feasible flow x and a cut $\delta(R)$ such that $f_x(s) = u(\delta(R))$. Let x be a flow of maximum value. Let $R = \{v \in V : \text{there exists an } x\text{-incrementing } rv\text{-path}\}$. Clearly $r \in R$ and $s \notin R$, since there can be no x-augmenting path.

For every arc $vw \in \delta(R)$, we must have $x_{vw} = u_{vw}$, since otherwise adding vw to the x-incrementing vv-path would yield such a path to w, but $w \notin R$. Similar, for every arc $vw \in \delta(\overline{R})$, we have $x_{vw} = 0$. Then by proposition, $f_x(s) = x(\delta(R)) - x(\delta(\overline{R})) = u(\delta(R))$. \square

Theorem

A feasible flow x is maximum if and only if there is not x-augmenting path.

Proof. (\Longrightarrow) If x is maximum, there is no x-augmenting path.

(\iff) If there is no x-augmenting path, then the construction of the proof of Max-Flow Min-Cut yields a cut $\delta(R)$ with $f_x(s) = u(\delta(R))$, so x is maximum, by corollary.

Theorem

If u is integral and there exists a maximum flow, then there exists a maximum flow that is integral.

Proof. Choose an integral flow x of maximum value. If there is an x-augmenting path, then since x and u are integral, the new flow can be chosen integral, contradicting the choice of x. Hence there is no x-augmenting path, so x is a maximum flow, by previous theorem. \square

Corollary

If x is a feasible rs-flow and $\delta(R)$ is an rs-cut, then x is maximum and $\delta(R)$ is minimum if and only if $x_e = u_e$ for all $e \in \delta(R)$ and $x_e = 0$ for all $e \in \delta(\overline{R})$.

Proof. Combine Max-Flow Min-Cut theorem with the proof of corollary.

6.3 Augmenting Path Algorithm

Algorithm 2 Ford-Fulkerson Algorithm

```
1: x = 0

2: while there is an x-augmenting path P do

3: \varepsilon_1 = \min(u_e - x_e : e \text{ forward in } P)

4: \varepsilon_2 = \min(x_e : e \text{ reverse in } P)

5: \varepsilon = \min(\varepsilon_1, \varepsilon_2) // x-width of P

6: if \varepsilon = \infty then

7: no maximum flow
```

8: **return** x is maximum flow, set R of vertices reachable by an x-incrementing path from r is minimum cut

Definition: Auxiliary Digraph

```
G(x), depending on G, u, x, where V(G(x)) = V and vw \in E(G(x)) if and only if vw \in E and x_{vw} < u_{vw} or wv \in E and x_{wv} > 0.
```

rs-dipaths in G(x) corresponding to x-augmenting paths in G. Each iteration of Ford-Fulkerson can be performed in O(m) time, using breadth-first search.

Theorem

If u is integral and the maximum flow value is $K < \infty$, then the maximum flow algorithm terminates after at most K augmentations.

6.3.1 Shortest Augmenting Paths

Theorem (Dinits 1970, Edmonds & Karp 1972)

If each augmentation of the augmenting path algorithm on a shortest augmenting path, then there are at most nm augmentations.

Corollary

The augmenting path algorithm with breadth-first search solves the maximum flow problem in time $O(nm^2)$.

Let $d_x(v, w)$ be the least length of a vw-dipath in G(x). $d_x(v, w) = \infty$ if no vw-dipath exists.

Consider a typical augmentation from flow x to flow x' determined by the augmenting path P having vertex-sequence v_0, \ldots, v_k .

Lemma

For each $v \in V$, $d_{x'}(r, v) \ge d_x(r, v)$ and $d_{x'}(v, s) \ge d_x(v, s)$.

Proof. Suppose that there exists a vertex v such that $d_{x'}(r,v) < d_x(r,v)$ and choose such v so that $d_{x'}(r,v)$ is as small as possible. Clearly, $d_{x'}(r,v) > 0$. Let P' be a rv-dipath in G(x') of length $d_{x'}(r,v)$ and let w be the second-last vertex of P'. Then

$$d_x(r,v) > d_{x'}(r,v) = d_{x'}(r,w) + 1 \ge d_x(r,w) + 1$$

It follows that wv is an arc of G(x'), but not of G(x), otherwise $d_x(r,v) \leq d_x(r,w) + 1$, so $w = v_i$ and $v = v_{i-1}$ for some i. But, this implies that i - 1 > i + 1, a contradiction. The second statement is similar.

Definition: $\tilde{E}(x)$

 $\tilde{E}(x) = \{e \in E : e \text{ is an arc of a shortest } x\text{-augmenting path}\}$

Lemma

If $d_{x'}(r,s) = d_x(r,s)$, then $\tilde{E}(x') \subsetneq \tilde{E}(x)$.

Proof. Let $k = d_x(r, s)$ and suppose that $e \in \tilde{E}(x')$. Then e induces an arc vw of G(x') and $d_{x'}(r, v) = i - 1$, $d_{x'}(ws) = k - i$ for some i. Therefore, $d_x(r, v) + d_x(w, s) \le k - 1$ by previous lemma. Now suppose that $e \notin \tilde{E}(x)$, then $x_e \ne x'_e$, so e is an arc of P, a contradiction. This proves $\tilde{E}(x') \subseteq \tilde{E}(x)$.

There is an arc e of P such that e is forward and $x'_e = u_e$ or e is reverse and $x'_e = 0$. Therefore, any x'-augmenting path using e must use it in the opposite direction from P, so its length, for some i, will be at least i + k - i + 1 + 1 = k + 23, so $e \notin \tilde{E}(x')$.

Proof. (Dinits, Edmonds, Karp) It follows from previous lemma that there can be at most m augmentations per stage. Since there are at most n-1 stages, there are at most nm augmentations in all.

6.4 Applications

6.4.1 Bipartite Matchings and Vertex Covers

Theorem (König)

For a bipartite graph G,

 $\max\{|M|: M \text{ a matching}\} = \min\{|C|: C \text{ a cover}\}$

6.4.2 Flow Feasibility

Flow Feasibility Problem

Given a digraph G, $u \in \mathbb{R}_+^E$, and $b \in \mathbb{R}^V$, find, if possible, $x \in \mathbb{R}^E$ such that

$$f_x(v) = b_v, \ \forall v \in V$$

and

$$0 \le x_e \le u_e, \ \forall e \in E$$

Theorem (Gale 1957)

There exists a solution to the flow feasibility problem if and only if b(V) = 0 and for every $A \subseteq V$, $b(A) \le u(\delta(\overline{A}))$.

If b and u are integral, then there is an integral solution.

Corollary

Given a digraph G and $b \in \mathbb{R}^V$, there exists $x \in \mathbb{R}^E$ with

$$f_x(v) = b_v, \ \forall v \in V$$

$$x_e \ge 0, \ \forall e \in E$$

if and only if b(V) = 0 and for every $A \subseteq V$ with $\delta(\overline{A}) = \emptyset$, we have $b(A) \leq 0$.

Definition: Circulation

A vector $x \in \mathbb{R}^E$ with $f_x(v) = 0$ for all $v \in V$.

Theorem (Hoffman's Circulation Theorem 1960)

Given a digraph G, $\ell \in (\mathbb{R} \cup \{-\infty\})^E$, and $u \in (\mathbb{R} \cup \{\infty\})^E$, with $\ell \leq u$, there is a circulation x with $\ell \leq x \leq u$ if and only if every $A \subseteq V$ satisfies $u(\delta(\overline{A})) \geq \ell(\delta(A))$.

$\mathbf{Part}\ \mathbf{V}$

Matchings

Matchings

Definition: Matching

A set $M \subseteq E$ such that no vertex of G is incident with more than one edge in M.

Definition: M-Covered

A vertex v is covered by M if some edge of M is incident with v.

Definition: M-Exposed

A vertex v is exposed if v is not M-covered.

The number of vertices covered by M is 2|M| and number of M-exposed vertices is |V| - 2|M|.

Definition: Maximum Matching

A matching of maximum cardinality, denoted $\nu(G)$.

Definition: Deficiency

The minimum number of exposed vertices for any matching of G, denoted by def(G).

Note $def(G) = |V| - 2\nu(G)$.

Definition: Perfect Matching

A matching that covers all vertices.

7.1 Bipartite Matching

Definition: Bipartite

G = (V, E) is bipartite if $V = V_1 \cup V_2$, where V_1, V_2 disjoint and every edge has one end in V_1 and the other end in V_2 .

Definition: Cover

A set $C \subseteq V$ such that every edge has at least one in C.

If M is a matching and C is a cover, then $|M| \leq |C|$ since every edge in M meets one vertex in C, but no vertex in C meets two edges in M.

Definition: Minimum Cover

A cover of minimum cardinality, denoted $\tau(G)$.

Theorem (König)

If G is bipartite, $\nu(G) = \tau(G)$.

In general, $\nu(G) \leq \tau(G)$.

7.2 Alternating Paths

Definition: M-Alternating

A path P is M-alternating if its edges are alternately in and not in M.

Definition: M-Augmenting

An M-alternating path P is M-augmenting if the ends of P are distinct and are both M-exposed.

Definition: Symmetric Difference

For sets S and T, let $S\Delta T$ denote the symmetric difference, which is defined as

$$S\Delta T = (S \cup T) \setminus (S \cap T)$$

Let a path P be an M-augmenting path. Then we can obtain a larger matching $M' = M\Delta E(P)$ with |M'| = |M| + 1.

Theorem (Augmenting Path Theorem of Matchings – Berge 1957)

A matching M in a graph G is maximum if and only if there is no M-augmenting path.

Proof. (\Longrightarrow) Suppose there exists an M-augmenting path P joining v and w. Then $N = M\Delta E(P)$ is a matching that covers all vertices covered by M, plus v and w. So, M is not maximum.

(\iff) Conversely, suppose that M is not maximum and some other matching N satisfies |N| > |M|. Let $J = N\Delta M$. Each vertex of G is incident with at most two edges of J, so J is the edge set of some vertex disjoint paths and circuits of G. For each such path or circuit, the edges alternately belong to M or N. Therefore, all circuits are even and contain the same number of edges of M and N. Since |N| > |M|, there must be at least one path with more edges of N than M. This path is an M-augmenting path.

7.3 Tutte-Berge Formula

Definition: Vertex Cover

A set A of vertices such that every edge has at least one end in A.

Let A be a subset of the vertices which G - A has k components H_1, \ldots, H_k having an odd number of vertices. Let M be a matching of G. For each i, either H_i has an M-exposed vertex or M contains an edge having just one end in $V(H_i)$. All such edges have their other ends in A and since M is a matching, all these ends must be distinct. Therefore, there can be at most |A| edges and so the number of M-exposed vertices is at least k - |A|.

Definition: oc(H)

The number of odd components of a graph H.

Thus, for any $A \subseteq V$,

$$\nu(G) \le \frac{1}{2}(|V| - \text{oc}(G - A) + |A|)$$

If A is a cover of G, then there are |V|-|A| odd components of G-A (each is a single vertex), so the right hand side reduces to |A|. This bound is at least as strong as that provided by covers.

Theorem (Tutte-Berge Formula)

For a graph G = (V, E), we have

$$\max\{|M|: M \text{ a matching}\} = \min\left\{\frac{1}{2}(|V| - \operatorname{oc}(G - A) + |A|): A \subseteq V\right\}$$

Theorem (Tutte's Matching Theorem 1947)

A graph G = (V, E) has a perfect matching if and only if for every $A \subseteq V$, $oc(G-A) \le |A|$.

Definition: Shrink

Let C be an odd circuit in G. Define $G' = G \times C$ as the subgraph obtained from G by shrinking C; G' has vertex set $(V - V(C)) \cup \{C\}$ and edge set $E \setminus \gamma(V(C))$.

Proposition

Let C be an odd circuit of G, let $G' = G \times C$, and let M' be a matching of G'. Then here is a matching M of G such that $M \subseteq M' \cup E(C)$ and the number of M-exposed vertices of G is the same as the number of M'-exposed vertices of G'.

Proof. Choose a vertex $w \in V(C)$ as follows. If C is covered by $e \in M'$, then choose w to be the vertex in V(C) that is an end of e, and otherwise, choose w arbitrarily. Deleting w from C results in a subgraph having a perfect matching M''. Take $M = M' \cup M''$. M has the required properties.

The previous proposition gives the inequality

$$\nu(G) \ge \nu(G \times C) + \frac{|V(C)| - 1}{2}$$

or equivalently,

$$\operatorname{def}(G) \le \operatorname{def}(G \times C)$$

Definition: Tight Odd Circuit

An odd circuit C is tight if $\nu(G) = \nu(G \times C) + \frac{|V(C)|-1}{2}$.

Definition: Inessential

A vertex v of G is inessential if there is a maximum matching of G that does not cover v.

Definition: Essential

A vertex not inessential.

Let A be a set that satisfies the Tutte-Berge formula. Let $v \in A$ and consider G' = G - v. Then, $G' - (A \setminus \{v\})$ has the same odd components as G - A, so $\nu(G') < \nu(G)$, i.e. every $v \in A$ is essential.

Lemma

Let G = (V, E) be a graph and let $vw \in E$. If v, w are both inessential, then there is a tight odd circuit C using vw. Moreover, C is an inessential vertex of $G \times C$.

Maximum Matching

Maximum Matching Problem

Given a graph G, find a maximum matching of G.

Definition: Maximum Matching IP

$$\begin{aligned} \max \quad & \sum (x_e:e\in E) \\ \text{s.t.} \quad & x(\delta(v)) \leq 1, \ \forall v \in V \\ & x_e \geq 0, \ \forall e \in E \\ & x_e \text{ integer}, \ \forall e \in E \end{aligned}$$

Definition: Maximum Matching LP

$$\begin{aligned} \max \quad & \sum (x_e: e \in E) \\ \text{s.t.} \quad & x(\delta(v)) \leq 1, \ \forall v \in V \\ & x_e \geq 0, \ \forall e \in E \end{aligned}$$

Definition: Minimum Cover Dual LP

min
$$\sum (y_v : v \in V)$$

s.t. $y_u + y_v \ge 1, \ \forall e = (u, v) \in E$
 $y_v \ge 0, \ \forall v \in V$

8.1 Alternating Trees

Suppose we have a matching M of G and a fixed M-exposed vertex r of G. We can iteratively build up sets A, B of vertices such that each vertex in A is the other end of an odd-length

M-alternating path beginning at r, and each vertex in B is the other end of an even-length M-alternating path beginning at r.

Begin with $A = \emptyset$, $B = \{r\}$, and use the rule: if $vw \in E$, $v \in B$, $w \notin A \cup B$, $wz \in M$, then add w to A, z to B. The set $A \cup B$ and edges in the construction form a tree T rooted at r.

Definition: Alternating Tree

A tree T such that

- every vertex of T other than r is covered by an edge of $M \cap E(T)$;
- for every vertex v of T, the path in T from v to r is M-alternating.

We let the vertex sets at odd and even distances from the root as A(T) and B(T) respectively. Note that |B(T)| = |A(T)| + 1 since all other vertices other than r come in matched pairs, one in A(T) and one in B(T).

T-Joins

Part VI

Matroids

Part VII Traveling Salesman Problem