

Obsah

1	Vla	stnosti	5					
2	Tecl	hnické vybavení	9					
	2.1	Schéma universálního testeru	9					
	2.2	Přídavné funkce pro universální tester	11					
		2.2.1 Ochrana ATmega vstupů	11					
		2.2.2 Měření Zenerova napětí	12					
		2.2.3 Frekvenční generátor	12					
		2.2.4 Frekvenční čítač	12					
		2.2.5 Rotační pulzní enkodér	13					
			14					
		2.2.7 Připojení grafického barevného displeje	18					
	2.3	Rady pro stavbu této zkoušečky	20					
	2.4	Konverze testovací verze po Markusu F	20					
	2.5	Pokročilý obvod s ATmega644 nebo ATmega1284	21					
	2.6	Konstrukce s ATmega1280 nebo Arduino Mega	23					
	2.7	Čínské repliky s textovým displejem	25					
	2.8	Čínské repliky s grafickým displejem	25					
	2.9	Čínské soupravy a rotačním kodérem	30					
	2.10	Ještě tester od firmy Hiland s M644	31					
_	3.7.4							
3			34					
	3.1	1	34					
	3.2	Volitelné funkce menu pro ATmega328	35					
	3.3	Autotest a kalibrace	38					
	3.4	Důležité poznámky pro použití						
	3.5	Problémové komponenty	39					
	3.6	Měření PNP- a NPN- transistorů	39					
	3.7	Měření JFET- a D-MOS- transistorů	40					
	3.8		40					
	3.9		40					
	3.10	Měření cívek	41					
4	Pro	rogramování testeru						
	4.1	Konfigurace testeru	42					
	4.2	Programování mikrokontroléru	52					
		4.2.1 Operační system Linux	53					
		4.2.2 Používání balíčku WinAVR pod Windows	60					
	4.3	Hledání chyb	61					

5	Pop	\mathbf{pis} met	ody měření 6	3					
	5.1	Měřen	í polovodičů	5					
		5.1.1	Měření PNP tranzistoru nebo P-kanálu MOSFET 6	6					
		5.1.2	Měření NPN tranzistoru nebo N-kanálového MOSFETu 6	7					
		5.1.3	Zjednodušený proces identifikace tranzistorů	0					
		5.1.4	Měření diod	2					
		5.1.5	Výsledky různých měření	3					
	5.2	Měřen	í odporů	7					
		5.2.1	Měření odporů s pomocí 680 Ω odporů	7					
		5.2.2	Měření odporů s precisními odpory $470k\Omega$	9					
		5.2.3	Výsledky měření odporů	0					
	5.3	Měřen	í kondenzátorů	4					
		5.3.1	Vybíjení kondenzátorů	4					
		5.3.2	Měření velkých kapacit	4					
		5.3.3	Měření malých kapacit	7					
		5.3.4	Měření velmi malých kapacit metodou vzorkování	9					
		5.3.5	Měření ekvivalentního sériového odporu ESR	0					
		5.3.6	Měření ekvivalentního sériového odporu ESR, metoda 1	2					
		5.3.7	Měření ekvivalentního sériového odporu ESR, metoda 2	6					
		5.3.8	Ztráta napětí po nabíjecím impulsu, Vloss	1					
		5.3.9	Samostatné měření kapacity a ESR	2					
		5.3.10	Výsledky měření kondenzátorů	3					
		5.3.11	Automatické nastavení měření kondenzátorů	7					
	5.4	Měřen	í indukčnosti	1					
		5.4.1	Výsledky měření indukčnosti	2					
		5.4.2	Měření malých indukčností metodou vzorkování	2					
	5.5	Funkce	e autotestu	5					
		5.5.1	Některé výsledky autotestu	9					
	5.6	Měřen	í frekvence	3					
		5.6.1	Kalibrace frekvence pomocí GPS nebo přijímače GLONASS	3					
		5.6.2	Kalibrace frekvence krystalu s hodinovým modulem	4					
6	Ger	nerace	signálu 12	6					
	6.1	Genero	ování frekvence	6					
	6.2	Genero	ování impulsů s pulzní šířkovou modulací	6					
7	Známé chyby a nevyřešené problémy 128								
8	Spe	Speciální součásti softwaru 129							
9	Pra	covní 1	íkoly a nové nápady 13	n					

Upozornění k tomuto vydání:

Změny oproti originálu:

Při překladu byly také přeloženy popisy na obrázcích a diagramech, které jsou v originálu anglicky, čímž byly nutné změny i v originálu.

- Dále byla v podkapitole 2.10 přidána (čínská replika od Firmy Hiland).
- V Podkapitole 4.1 bylo téma programirer doplněno.
- A nakonec byla upravena podkapitola 4.2 (programování v systému Linux) tak, aby i Linux "nováčci" zažili svůj úspěch.

Autor byl o těchto opatřeních informován, ale pokud vím, originál aktualizován nebyl a já zatím nedostal souhlas k vydání.

- Protože věřím, že jsou tyto změny pro "začátečníky Linuxu" důležité , je toto vydání, i bez souhlasu autora, odůvodněné.

Na autorově stránce [3] je pochopitelně možné, dosáhnout originál.

Jako další bod bych rád uvedl, že již přes 50 let žiji mimo CZ.

- Před 50 lety byl právě objevený tranzistor, a elektronika prakticky neexistovala.
- Všechny odborné výrazy jsem se nikdy česky neslyšel. K překladu jsem použil "Google", který překladal hodně nesmyslů.
- Takže... každé konstruktivní zlepšení je vždy vítáno. Nejlépe na [26]...

20.02.2020

bm-magic

Bylo přijato mnoho změn, ale vytvoření grafiky pomocí gnuplot ze surových dat měření byl zachován s odpovídajícím Makefile, který dokumentuje takové závislosti.

Čas od času se některé série měření opakují na konci verze softwaru a aktualizoval data. To znamená, že se grafika při kompilaci automaticky změní.

Tento postup by měl být zachován a měl by fungovat pro všechny jazyky.

Aby bylo snazší přizpůsobit se papírovým formátům, místo toho jsem zadal relativní specifikace velikosti pevné rozměry, jako jsou cm a pt.

6.3.2021

K.-H. Kübbeler

Jak je víše viditelné, autor nyní dokument aktualizoval a přidal např. do podkapitoly 4.2 mnoho ... mě dosud neznámých tipů... díky autorovi.

Důvod pro toto vydání je změna adresy zdrojů archivu ~/transistortester

od svn://www.mikrocontroller.net/transistortester

na https://github.com/Mikrocontroller-net/transistortester [1]

24.03.2021

bm-magic

Úvod

Hlavní motivy

Každý z nás zná tento problém: vymontuje transistor nebo ho najde mezi svými poklady, když je jeho označení čitelné a technické údaje nebo náhrada dostupné, je všechno v pořádku. pokud ale ne, nastává otázka, co je to za součástku. S konvenčními měřícími metodami je těžké a zdlouhavé typ součástky a její parametry zjistit. Může se jednat o NPN, PNP, N- nebo P-Kanal-MOSFET atd. Nápad Markuse F., je, aby tuto práci za nás udělal AVR-Mikrokontrolér.

Jak moje práce začala

Testerem v orinálu Transistor Tester od Markuse F. [2] jsem se začal zabývat, když jsem měl problémy s výrobou mého exempláře. Koupil jsem desku tištěných spojů a součástky, ale nebyl jsem schopen naprogramovat EPROM mcu ATmega8 bez chybových hlášení s driverem systému Windows. K vyřešení toho problému jsem v softwaru od Markuse F. změnil všechny zápisy do EEPROM paměti za zápisy do Flash.

Při té příležitosti jsem v jiné části programu, z důvodu úspory místa v programové paměti, dostal nápad, změnit výsledek ReadADC funkce z jednotek DC na rozlišení v milivoltech (mV).

Rozlišení mV je nutné k výstupu hodnot napětí. Pokud funkce ReadADC poskytuje rozlišení přímo mV, můžete uložit transformaci při každém měření. Tyto mV hodnoty lze získat, když budou výsledky od 22 ADC čtení nejprve sečteny. Součet musí být vynásoben dvěma a potom dělen devíti. Tím získáte přesnou hodnotu od $\frac{1023\cdot 22\cdot 2}{9} = 5001$, která nás přesně dovede k požadovánému výsledku v mV.

Kromě toho jsem ještě ďoufal, že zvýšení ADC jednotky oversamplingem by mohlo pomoci zlepšit načítání napětí, jak je popsáno v Atmel Reportu AVR121 [7]. Původní verze aplikace ReadADC přidala výsledky 20 hodnot ADC a poté je rozdělila o 20, takže výsledek je zpět k původnímu rozlišení ADC. Proto by se kvůli převzorkování nemohlo nikdy zvýšit rozlišení ADC. Tím jsem neměl žádnou práci na změně funkce ReadADC, ale to vyžadovalo analýzu celého programu a úpravu všech "if" dotazů v programu, kde byly kontrolovány hodnoty napětí. To byl ale jen začátek mé práce!

Realizoval jsem spoustu nápadů, kvůli rychlejšímu a přesnějšímu měření. Kromě toho byl rozšířen také rozsah měření odporu a kondenzátoru. Výstupní formát LC displeje byl změněn tak, že symboly byly použity jako diody, rezistory a kondenzátory. Další podrobnosti naleznete v kapitole o aktuálních vlastnostech Kapitola 1. Plánované práce a nové nápady byly shromážděny v kapitole 9. Mezitím mohu dokonale popsat EEPROM ATmega8 pod operačním systémem Linux.

Chtěl bych poděkovat autorovi softwaru Markusi Frejekovi, který mi umožnil pokračovat s jeho projektem Rád bych také poděkoval autorům mnoha příspěvků do diskusního fóra, které mi pomohly najít nové úkoly, slabiny a chyby. Kromě toho také děkuji Markusovi Reschkeovi, který mi dal povolení ke zveřejnění jeho uložených verzí na serveru SVN. Některé nápady a softwarové části Markuse R. jsem v testeru použil, díky také za to. Wolfgang Sch. odvedl skvělou práci pro podporu grafického displeje s ovladačem ST7565. Děkuji mu za opravu verze softwaru 1.10k a jeho integraci do aktuální vývojové verze. Chtěl bych také poděkovat Asco B., který vytvořil tabulku pro lidi ochotné kopírovat a Dirk W., který se postaral o hromadné objednávky pro tuto radu. Nebyl bych schopen strávit tolik času s vývojem softwaru, který by nebyl tak daleko. Chtěl bych také poděkovat členům místního sdružení města Lennestadt z německého radioamatérského klubu (DARC) za řadu návrhů na zlepšení. Rád bych poděkoval radioamatérovi a operátorovi Pieter-Tjerkovi (PA3FWM) za integraci metody vzorkování S ADC, která značně zlepšila měření malých kapacitních hodnot a malých indukčností. V neposlední řadě bych rád poděkoval Nicku L. z Ukrajiny, který mě podpořil prototypovými tištěnými spoji a navrhl nějaké hardwarové vylepšení a poskytl ruský překlad tohoto popisu.

Kapitola 1

Vlastnosti

- 1. Pracuje s mikrokontroléry ATmega8, ATmega168 nebo ATmega328.Ale lze použít také ATmega644, ATmega1280, ATmega1284 nebo ATmega2560.
- 2. K zobrazení výsledků měření je vhodný LCD displej 2x16 nebo 4x20 znaků. Alternativně může být, při použití procesoru s alespoň 32K flash pamětí, také grafický displej s 128x64 pixely a řadiče ST7565, ST7920, NT7108, KS0108 nebo SSD1306. Místo standardního 4bitového paralelního rozhraní je možné použít buď 4-vodičové rozhraní SPI ale také I²C sběrnici. Dokonce lze použít také barevné displeje s ILI9163 nebo ST7735 řadiči s SPI rozhraním. Ovladač NT7108 nebo KS0108 vyžaduje sériově paralelní převodník 74HC (T) 164 nebo 74HC (T) 595, protože tyto obvody umožňují pouze 8bitové paralelní připojení, Displeje s ovladači PCF8812 nebo PCF8814 lze použít pouze bez velkých tranzistorových symbolů proto že je velikost jejich zobrazení nedostatečná (102x65 a 96x65).
- 3. Jednoduchý provoz s funkcí automatického vypnutí.
- 4. Provoz s akumulátorem je možný, protože spotřeba po vypnutí je jen asi 20nA. Od softwarové verze 1.05k používá ATmega k úsporám energie během přestávek měření stav spánku, pokud právě není používán rotační enkodér.
- 5. Je možné i levné řešení bez krystalu a bez automatického vypínání.
- 6. Automatická detekce NPN a PNP bipolárních tranzistorů, N- a P-KANÁLOVÝ MOSFET, JFETs, diody, dvojité diody, N- a P-IGBT, tyristory a triaky. Pro tyristory a triaky musí být dosaženo dostatačné zapalovací a udržovací napětí a proudy. U IGBT musí být prahové napětí brány nižší než 5V.
- 7. Znázornění rozložení pinů testovacích součástek.
- 8. Měření stávajícího zesilovacího činitele a prahového napětí báse-emitor pro bipolární tranzistory.
- 9. Darlingtonovy tranzistory jsou charakteristické vyšším prahovým napětím a vysokým proudovým zesílením.
- 10. Automatická detekce ochranné diody v bipolárních tranzistorech a MOSFETů.
- 11. Měření prahového napětí, vstupní kapacity a $\rm R_{DSon}$ s hradlovým napětím těsně pod5Vu MOSFETů.
- 12. Jsou měřeny a zobrazeny až dva odpory jako —— symboly a jejích hodnoty jsou až na čtyři desetinná místa ve správné hodnotě. Všechny symboly jsou zarámovány s testovacími čísly, jak byly nasazeny do zkoušečky (1-3). Proto lze také měřit potenciometry. Když ale potenciometr dosáhne koncové polohy, Není možné rozlišit mezi prostředním a koncovým kontaktem.
- 13. Odpory lze nyní měřit od $0,01\Omega$, do $50M\Omega$.

- 14. Kondenzátor je také detekován a změřen. Je označen symbolem \Box Jeho kapacita je určena a zobrazena až na čtyři desetinná místa přesně. Hodnota může být v rozmezí od 25pF (při 8MHz taktu, 50pF při 1MHz taktu) do 100mF. Rozlišení je 1pF (u 8MHz taktu).
- 15. U kondenzátorů s kapacitou větší než 20nF je kromě toho měřen ještě ekvivalentní sériový odpor (ESR) kondenzátoru s rozlišením $0,01\Omega$ a zobrazen na dvě desetinná místa. Tato funkce je k dispozici pouze tehdy, pokud má ATmega nejméně 16K flash paměti.
- 16. U kondenzátorů s kapacitní hodnotou nad 5000pF lze po nabíjecím impulsu určit ztrátovou hodnotu Vloss. Ztrátová hodnota v procentech indikuje kvalitu kondenzátoru.
- 17. Až dvě diody jsou označeny symbolem —— nebo symbolem —— a jsou zobrazeny ve správném pořadí . Kromě toho jsou zobrazeny úbytky napětí na diodách.
- 18. LED dioda je rozpoznána jako dioda, úbytek napětí je ale mnohem vyšší než u normální diody. Dvojité diody jsou rozpoznány jako dvě diody.
- 19. Zenerovy diody lze detekovat, když je Zenerovo napětí pod hodnotou 4,5V. Zobrazují se jako dvě diody, rozpoznat je lze jen přes zobrazené napětí. Vnější čísla zkušebního kontaktu obklopující symboly diod jsou v tomto případě totožné. Skutečnou anodu diody lze nalézt pouze pro diodu, jejíž prahové napětí je blízké napětí 700mV!
- 20. Pokud se zjistí více než 3 diody, zobrazí se spolu s chybovou zprávou počet nalezených diod. K tomu může dojít pouze v případě diod na všech třech zkušebních pinech a jsou spojeny a alespoň jedna z nich je Zenerova dioda. V tomto případě je třeba připojit pouze dva testovací kontakty a restartovat skenování a měřit jednu diodu za druhou.
- 21. Kapacita diody v závěrném směru je určena automaticky. Bipolární tranzistory lze také testovat, pokud je připojena pouze báze a buď kolektor nebo emitor. Pro ATmega s více než 8k flash pamětí je kromě toho měřen ještě zpětný proud s rozlišením 2nA. Hodnota je zobrazena pouze tehdy pokud je rozdílná od nuly.
- 22. Zapojení usměrňovacího můstku lze zjistit pouze jedním měřením.
- 23. Kondenzátory s hodnotami kapacity pod 25pF není možné běžně rozpoznat, ale mohou být použity společně s diodou zapojenou paralelně nebo s paralelně připojeným kondenzátorem kapacity nejméně 25pF. V tomto případě musí být od výsledku měření odečtena hodnota kapacity součásti zapojené paralelně. U procesorů s minimální pamětí 32K flash se tester změní pomocí kondenzátoru > 25pF mezi TP1 a TP3 v cyklické měření kondenzátoru, která také přímo měří kapacity od 1pF.
- 24. Pro odpory pod 2100Ω se také provádí měření indukčnosti pokud má ATmega nejméně 16K flash paměti. Kromě symbolu odporu —— se zobrazí symbol indukčnosti —— . Rozsah zobrazení je asi 0,01mH až přes20H, ale přesnost není vysoká. Výsledek se zobrazuje pouze pro jeden rezistor společně s hodnotou odporu.
- 25. Doba měření je asi dvě sekundy, měření kapacity a indukčnosti mohou trvat déle.
- 26. Software lze konfigurovat pro sérii měření s předem definovaným počtem opakování, než se automatické vypne.
- 27. Vestavěná funkce automatického testování včetně volitelného frekvenčního generátoru 50Hz pro přesnost kontroly frekvence a časové prodlevy (pouze s minimálně 16 kB flash pamětí).
- 28. Volitelná možnost kalibrace pro měření kondenzátoru a vnitřní odpor pro automatické určování portů během samočinného testu (pouze s minimálně 16 kB flash pamětí). Externí kondenzátor s kapacitou mezi 100nF a $20\mu F$ na testovacích kontaktech TP1 a TP3 je nutný, pro kompenzaci vyrovnávacího napětí analogového komparátoru. To může snížit chybu měření při měření kapacity až na hodnotu $40\mu F$. Stejným kondenzátorem je korekční napětí pro nastavení správného zesílení pro vypočet měření ADC pomocí vnitřního referenčního napětí 1,1V.

- 29. Zobrazení kolektor emitor zbytkového proudu I_{CE0} při odpojené bázi ($1\mu A$ přesnost) a zbytkový proud kolektor emitor I_{CES} s bází připojenou na potenciál emitoru (pouze s minimálně 16K flash pamětí). Tyto hodnoty se zobrazují pouze v případě, že nejsou nulové (zejména pro germaniové tranzistory).
- 30. Pro ATmega s minimálně 32K flash pamětí se tester přepne z multifunkčního testu na režim měřiče odporu, pokud je v automatickém režimu rozpoznání součástek, pouze jeden odpor na testovacích kontaktech (TP1) a (TP3). Pokud je v souboru Makefile zapnuto pomocí volby RMETER_WITH_L při měření odporů také měření indukčnosti, měří se také. Provozní režim je indikován s [R] nebo [RL] na pravé straně 1 řádku displeje. Přesně tak, jak se tester přepne na měřič kapacit, když byl mezi TP1 a TP3 detekován kondenzátor. Tento provozní režim je označen symbolem [C] na pravé straně 1 řádku displeje. V tomto režimu lze měřit kondenzátory od 1pF. Pouze pro automatické spuštění funkce potřebujete kondenzátor s více než 25pF. Obě speciální funkce lze opět ukončit stisknutím tlačítka. Tester poté funguje v normálním režimu.
- 31. U procesorů s min. 32 kB flash pamětí je přístupné po dvousekundovém stisku tlačítka menu, což zprovozní další funkce. Menu lze samozřejmě použít také k návratu k funkci testeru tranzistoru.
- 32. Pomocí funkce menu lze provést měření frekvence na portu PD4 ATmega. Rozlišení je 1Hz na vstupních frekvencích nad 33kHz. Při nižších frekvencích může být rozlišovací schopnost až 0,001mHz. Přečtěte si prosím podkapitolu 2.2.4 na stránce 12, jak musí být frekvenční signál připojen.
- 33. Pomocí funkce menu a při vypnutí UART módu lze měřit externí napětí do 50 V přes 10:1 dělič napětí na PC3 kontaktu. U PLCC-ATmega328 varianty je možné jeden z těch dvou přidaných kontaktů dohromady s UART rozhraním použít na měření napětí. Pokud je připojené rozšíření pro měření Zenerovy diody (převodník DC-DC), je možné v této větvi, při současném podržení tlačítka, testovat Zenerovy diody.
- 34. Pomocí další funkce menu lze na kontaktu TP2 (PB2 port ATmega) zapnout výstup frekvence. V současné době lze frekvence nastavit od 1Hz do 2MHz.
- 35. Pomocí další funkce menu lze zapnout na pinu TP2 (PB2 port ATmega) pevně danou frekvenci s nastavitelnou šířkou impulsu. Šířku impulzu lze zvýšit o 1% krátkým stiskem klávesy a o 10% s delším stiskem.
- 36. Pomocí další funkce menu lze spustit speciální měření kondenzátoru s měřením ESR. Tato funkce se při výběru nazývá C+ESR@TP1:TP3 . Kapacity od přibližně $2\mu F$ až do 50mF mohou být měřeny pro nízké měřicí napětí okolo 300mV v zapájeném stavu.
- 37. Pro procesory s alespoň 32K flash pamětí (Mega328) lze ADC použít s metodou vzorkování, která umožní měřit kondenzátory pod 100pF s rorlíšením 0,01pF. Stejným způsobem je možné měřit také cívky pod 2mH čímž lze dosáhnout výrazně lepší rozlišení než rezonanční frekvence s paralelním kondenzátorem známé velikosti.

Při použití testeru pro testování kondenzátorů v obvodu je třeba věnovat zvláštní pozornost tomu aby kondenzátory neměly, již před měřením, žádné zbytkové napětí.

Tyristory a triaky lze detekovat pouze tehdy, je-li testovací proud nad přídržným proudem. Některé tyristory a triaky také vyžadují vyšší zapalovací proud, než tento tester dokáže dodat. Dostupný testovací proud je pouze asi 6mA! Stejně tak mohou být IGBT detekovány pouze tehdy, je-li zkušební napětí asi 5V pro testování dostatečné. Vezměte prosím na vědomí, že víc možností je k dispozici pouze u mikroprocesorů s minimálně $16~\mathrm{kB}$ programovou pamětí, jako je ATmega168. Všechny funkce jsou dokonce možné pouze u procesorů s programovou pamětí alespoň $32\mathrm{K}$, jako ATmega328 nebo ATmega1284.

Pozor: Vždy zkontrolujte, zda jsou **kondenzátory** před připojením ke zkoušečce, nejlépe zkratováním, **vybité!** V opačném případě by mohlo dojít k poškození přístroje ještě před jeho zapnutím. ! ATmega nabízí jen málo vlastní ochrany. ! Zvláštní pozornost je třeba věnovat také při měření v zapojení. Přístroj by měl být vždy předem odpojen od napájení a měli byste se přesvědčit, že v přístroji není **žádné zbytkové napětí**.

Kapitola 2

Technické vybavení

2.1 Schéma universálního testeru

Schéma universálního testeru na obrázku 2.1 je založen na schématu od Markuse F., které publikoval na obr. 1 AVR-Transistortester Reports [2]. Změněné nebo přesunuté komponenty jsou označeny zeleně, volitelné díly jsou značené červeně.

Některé změny byly provedeny, protože zapínání - vypínání působilo u některých klonů problémy. Proto je odpor R7 snížen na $3,3k\Omega$. Kondenzátor C2 je snížen na 10nF a odpor R8 je posunut tak, že Výstup PD6 se nesnaží přímo nabíjet kondenzátor C2. Byly přidány další blokovací kondenzátory, které by měly být umístěny v blízkosti napájecích pinů a pinů referenčního napětí ATmega.

Vzhledem k tomu, že vstupy PD7 a konektoru PC6 (RESET) jsou jediné vstupy u kterých jsou "pullup" odpory potřebné, byl dodán další $27k\Omega$ odpor na PD7 (Pin 13). Díky této změně lze vnitřní "Pull-Up" odpory od ATmega vypnout. Rovněž byl přidán krystal s 22pF-kondenzátory. To má výhody pro měření kapacity i kvůli přesnějšímu měření času.

Nový software umí přepnout rozsah napětí ADC. Rychlost přepínání je ale kondenzátorem C1 na AREF-Pin (21) des ATmega snížena. Aby měření nebylo zbytečně pomalejší než je nutné, hodnotu kondenzátoru je potřeba snížit na 1nF. Je možné také jeho vypuštění. Chcete-li software přizpůsobit příslušnému obvodu, podívejte se do kapitoly konfigurace 4 od stránky 42.

Na internetu jsou v oběhu několik různých kombinací R11/R12. Já jsem software přizpůsobil původnímu návrhu od Markuse F. [2] s $10k\Omega$ a $3,3k\Omega$. Poměr napětí lze ale nastavit v Makefile.

Přídavné precizní referenční napětí 2,5V zapojené na Pin PC4 (ADC4), se používá pro kontrolu a kalibraci napájecího napětí VCC, není ale nutné. Lze použít LM4040-AIZ2.5 (0,1%), LT1004CZ-2.5 (0,8%) nebo LM336-Z2.5 (0,8%) . Pokud nepoužíváte precizní referenci ani pro ochranu vstupů přídavné relé, měli byste instalovat nejméně jeden "Pull Up"-odpor R16 na PC4 s hodnotou (47 $k\Omega$). To pomáhá softwaru zjistit chybějící referenci napětí. Byl přidán další konektor ISP k snadnějšímu nahrání nové verze softwaru.

Obrázek 2.1. Nové schéma universálního testeru

Tabulka 2.1 zobrazuje přiřazení PD portů různých verzí displejů a přiřazení dalších funkcí. Ve všech variantách této tabulky by měly být možné další přídavné funkce . Signál LCD-CE je k disposici v rozhraní SPI na portu ATmega. Vstupní CE (Chip Enable) Vstup CE (Chip Enable) řídicí jednotky může být také připojen k GND namísto připojení k výstupu LCD-CE.

	Character	ST7565 LCD	ST7920 LCD	NT7108 LCD	SSD1306	Přídavné funkce
Port	LCD	SPI	serial	serial	I^2C	
PD0	LCD-D4	LCD-REST	LCD-REST	595-PCLK		
PD1	LCD-D5	LCD-RS		LCD-CS2		Rotační koder-2
PD2	LCD-D6	LCD-SCLK	LCD-B0	164-595-CLK	LCD-SDA	
PD3	LCD-D7	LCD-SI		LCD-CS1		Rotační koder-1
PD4	LCD-RS			LCD-RS		Frekvenční čítač
				164-595-SER		
PD5	LCD-E	(LCD-CE)	LCD-EN	LCD-EN	LCD-SCL	
PD7	Tlačítko	Tlačítko	Tlačítko	Tlačítko	Tlačítko	

Tabulka 2.1. Přiřazení kontaktů pro různé displeje

Aby bylo dosaženo jednoduššího propojení displeje s ATmega na DPS, je možné softwarově přiřadit portu D jiné funkce. Následující tabulka 2.2 zobrazuje změny přiřazení pinů pro textové displeje a alternativní připojení grafických displejů pomocí mikrokontroléru ATmega328. Kromě toho je zobrazeno přiřazení Portových vstupů pro přídavné funkce. Pokud používáte grafický displej s možností mřížky(STRIP_GRID_BOARD=1) není funkce čítače frekvence možná, protože displej používá port PD4 (T0). Přesto se o toto přiřazení jedna čínská verze s grafickým zobrazením pokouší. Ve většině případů jsou verze desek, které jsou vybaveny textovým displejem, pro dodatečné vybavení funkce čítače frekvence a ovládání s rotačním kodérem, vhodnější, protože jsou požadováné signály na pinech displeje k dispozici .

	Char. LCD	ST7565 LCD	ST7565 LCD	Přídavné funkce
Port	=1	=1	=5	
PD0	Tastensignal			
PD1	LCD-D7	LCD-SI	LCD-A0 (RS)	Rotační koder-2
PD2	LCD-D6	LCD-SCLK	LCD-REST	
PD3	LCD-D5	LCD-A0 (RS)	LCD-SCLK	Rotační koder-1
PD4	LCD-D4	LCD-REST	LCD-SI	Frekvenční čítač
PD5	LCD-E	(LCD-CE)		
PD7	LCD-RS	Tlačítko	Tlačítko	

Tabulka 2.2. Alternativní přiřazení pinů s možností STRIP_GRID_BOARD

2.2 Přídavné funkce pro universální tester

2.2.1 Ochrana ATmega vstupů

Pro lepší ochranu ATmega vstupů může být tester rozšířen o relé nebo diody podle schématu zapojení 2.2 . Bez napětí spojené rozpínací kontakty relé chrání ATmega už při vypnutí. Tyto kontakty budou softwarem rozpojeny pouze v době měření. Instalace přepětové ochrany s diodami také zvyšuje šance ATmega přežít připojení kondenzátoru s vyšším zbytkovým napětím. Úplná ochrana ale není možná. Proto by měly být před měřením vždy kondenzátory vybité.

Obrázek 2.2. Dodatečná ochrana ATmega vstupů

Ještě lepší ochranu nabízí relé vybavené s 3mi přepínacími kontakty jak je znázorněno na obrázku 2.3 . Výstupní proud je zde omezen odpory a vstupy ATmega jsou v chráněném stavu odděleny. Nesmíme zapomínat, že testovací přístroj zůstává přesto, během měření, nechráněný.

Obrázek 2.3. Vylepšená ochrana s relé

2.2.2 Měření Zenerova napětí

Není-li výstup sériových textů potřebný, může být pin PC3 ATmega použít pro měření externího napětí. Napětí lze nastavit volitelným přepínačem odporu 10:1 až do 50V a lze ho použit také k měření Zenerova napětí diody. Proudově omezený zdroj napájení s výstupním napětím až k 50V může být připojen k 0V-signálu pinů ATmega PD7, k zjištění Zenerova napětí diody. Návrh na toto rozšíření je zobrazen na obrázku 2.4. Pokud je tlačítko stisknuto zobrazuje tester externí napětí. Pokud je tlačítko stisknuto stoupá spotřeba baterie asi na 40mA.

Obrázek 2.4. Rozšíření o měření Zenerova napětí

Dělič napětí 10:1 lze s ATmega
328 použít i bez měniče napětí. Bez stisknutého tlačítka měnič napětí není v provozu, čímž je možné měřit externí napětí (např. Napětí baterie) na portu pro měření Zenerových diod. Lze měřit pouze kladná stejnosměrná napětí až do 50V. Takže musíte věnovat pozornost správné polaritě.

2.2.3 Frekvenční generátor

Pomocí sekce menu ATmega lze také přidat frekvenční generátor s frekvencí od 1Hz do 2MHz. Výstupní 5V signál je vyveden přes 680Ω -odpor na TP2. Jako zem lze použít nulovou svorku na přídavném zařízení pro test zenerových diod nebo pin TP1 testeru. TP3 je také připojen na kostru přes 680Ω odpor. Samozřejmě, lze ATmega port PB2 použít také jako obvod pro zesilování externího výstupního signálu. V tomto případě by měl vstup tohoto okruhu nepředstavovat žádnou kapacitní zátěž pro ATmega výstup.

2.2.4 Frekvenční čítač

Pro tuto volbu čtení kmitočtu je nutné malé rozšíření. Vstup pro měření kmitočtu je použit pin PD4 (T0 / PCINT20) ATmega. Tento pin je zároveň použitý pro LCD připojení. V normálním uspořádání se jedná o LCD-RS, při displejem s rozvržením mřížky je to LCD-D4.

Pro oba signály je pin PD4 přepnout na vstup a použít pro měření, pokud není potřeba zobrazení na LCD displeji. LCD displej se zajímá o tento signál pouze při přepnutí LCD-E na GND. Pro zavedení zkušebního signálu je nutný alespoň sé-

Obrázek 2.5. Rozšíření pro měření frekvence

riový odpor 270Ω . Lepší je použít schéma podle obrázku 2.5. Napětí na kontaktu PD4 (LCD-RS nebo LCD-D4) by měla být nastavena na hodnotu asi 2,4V, bez připojeného ATmega nebo režimu měření frekvence, aby byla dosažena nejvyšší citlivost pro vstupní signál.

Displej by ale měl být zapojený, protože jeho "Pull-Up" odpory mění napětí.

2.2.5 Rotační pulzní enkodér

Pro snadnější ovládání funkce menu může být obvod rozšířen o rotační snímač s tlačítkem. Schéma 2.6 udává výchozí přiřazení pro běžný LCD displej. Všechny vývody pro snímač impulzů jsou k dispozici na konektoru LCD displeje.

Rotační enkodér lze proto většinou snadno doplnit. V mnoha případech je grafický displej spojen s deskou s adaptérem na napájecí liště LCD. To je důvod, proč dodatečné vybavení pulzního snímače není ani v tomto případě obtížné.

Obrázek 2.6. Rozšíření o rotační pulzní snímač

Obrázek 2.7. Dvě různé verze snímačů impulzu

Obrázek 2.7 zobrazuje dvě verze snímačů. První verze má dvakrát tolik krokových poloh (detent) pro otáčku než impulsů pro otáčku. Druhá verze má stejný počet impulzů na otáčku jako krokových poloh. Některé snímače mají spínací hranu jednoho ze dvou spínačů přesně v zarážkové poloze.

Možné polohy z zleva do prava:

Obrázek 2.8. Impulzní snímač s kmitavými kontakty

Obrázek 2.8 zobrazuje pulzní snímač, který nejenže má kontakty které po pohybu kmitají, ale u kterého jeden z nich stojí v aretovaném stavu (detent) v nejisté poloze.

Program monitoruje každou změnu stavu spínače a uloží ji v cyklické vyrovnávací paměti.

Jakmile dojde ke změně stavu jsou i dva předchozí stavy známé a zkontrolovány. Celkově mohou být pro jeden cyklus spínacích stavů použity čtyři stavové sekvence pro každý směr otáčení nastavitelné. Má-li kodér pro jeden cyklus pouze jednu zarážku, stačí dotaz jednoho páru těchto stavových sekvencí pro počítání zarážek v obou směrech (WITH_ROTARY_SWITCH=2 nebo 3).

U kodéru s dvěma zarážkami pro cyklus, jak je znázorněno na obrázku 2.8 , musí být dotazovány dva páry (WITH_ROTARY_SWITCH=1). U impulsních snímačů bez zarážek lze nastavit parametr WITH_ROTARY_SWITCH podle potřeby na 2 nebo 3 pro nejnižší citlivost, na 1 pro střední citlivost a na 5 pro nejvyšší citlivost. Tímto způsobem dotazu se lze vyhnout výkyvu nastavení(počítadlo nahoru a dolů) ale umožní že bude v nevýhodné pozici spínací polohy, v aretovaném stavu, jeden impuls vynechán. Pokud není impulsní otoční spínač dostupný nebo požadován, je možné, pro obsluhu funkci nahoru a dolů, použít také dvě tlačítka. V tomto případě musí být volba WITH_ROTARY_SWITCH nastavena na 4, aby mohl program patřičně reagovat.

2.2.6 Připojení grafického displeje

Díky práci Wolfganga Sch. za podporu čínské verze s grafickým LCD displejem o rozměrech 128x64 pixelů lze nyní také připojit grafický LCD displej s řídící jednotkou ST7565. Protože je řídicí jednotka ST7565 řízena sériově, jsou zapotřebí pouze čtyři signály. Tím se uvolní dva piny portu D pro jiné použití. Procesor ATmega by měl mít nejméně 32k flash paměti. Řídicí jednotka ST7565 pracuje s provozním napětím 3, 3V. Proto je nutný přídavný regulátor s tímto napětím. Podle datového listu řídicího systému se k jeho vstupům nemohou přímo připojit žádné 5V signály. Proto je v rozšíření na obrázku 2.9 další CMOS 74HC4050 určený pro nastavení úrovně. Můžete také zkusit nahradit 74HC4050 čtyřmi odpory přibližně 2, $7k\Omega$. Pokles napětí na odporech zabraňuje tomu, aby se to 3, 3V-napětí nedostalo přes ochranné diody ATmega vchodů a ty 5V ATmega-výstupy nestoupli přes tu 3, 3V-hranici. Jest-li je tento tvar signálu ST7565 řadičem přijat, musíte vyzkoušet. 74HC4050 je v každém případě lepší řešení.

Obrázek 2.9. Připojení grafického displeje s ovladačem ST7565

Tabulka 2.3 zobrazuje další možnosti připojení pro ATmega328 a další procesory s SPI (LCD_INTERFACE_MODE=4) nebo 3LINE (LCD_INTERFACE _MODE = 3) rozhraním. Různé zadání pro procesor je s volbou STRIP_GRID_BOARD možné. Přiřazení jsou definována v souboru config.h. Pokud je vyžadováno více variant obsazenosti, měly by tyto být určeny dalšími kódovými čísly možností v STRIP_GRID_BOARD a pak přidány do config.h.

Procesor	m644	m1280	m1280	m328	m328	m328	m328
STRIP_GRID_BOARD		-	1	-	1	2	5
RES	PB4	PA0	PA4	PD0	PD4	PD0	PD2
EN, CLK	PB6	PA2	PA2	PD2	PD2	PD2	PD3
RS, D/C	PB5	PA1	PA3	PD1	PD3	PD3	PD1
B0, MOSI	PB7	PA3	PA1	PD3	PD1	PD1	PD4
CE, CS	PB3	PA4	PA5	PD5	PD5	PD5	PD5

Tabulka 2.3. Přiřazení SPI pinů SPI pro různé procesory

Normálně je řídicí jednotka ST7565 nebo SSD1306 připojena k rozhraní 4-Wire SPI. Řídicí jednotka SSD1306 může také používat I²C- rozhraní s PD2 jako SDA- a PD5 jako SCL-signál. SDA- a SCL-signály musí mít "Pull-up" odpor s hodnotou asi $4,7k\Omega$ k 3,3V. Možnost připojení je zobrazena na obrázku 2.10. Před použitím "Pull-up" odporů na 5V je nutné zkontrolovat, zda vstupy toto napětí tolerují. Obvykle jsou vstupy regulátoru diodami na 3.3V chráněny. ATmega výstupy ATmega jsou při použití I²C-rozhraní jen na 0V přepnuty. Před připojením displeje je však třeba zajistit, že byl načten do ATmega program pro I²C rozhraní. Pokud byl program načten pro jiné rozhraní, jsou ATmega výstupy přepnuty na 5V. Vzhledem k tomu, že jsem zjistil vliv na výsledky testů při připojení OLED modulů přes VCC kontakt, doporučuji pro oddělení přidat sériový odpor s 68Ω a

další $10\mu F$ blokovací kondenzátor. Namísto 68Ω odporu lze použít tlumivku s asi 1mH. Bez tohoto opatření byly na mém testeru zobrazeny zbytkové proudy kolektorů v bipolárních tranzistorech s OLED. Kromě toho je třeba zkontrolovat přiřazení pinů na modulu OLED, některé moduly mají GND a VCC obráceně!

Obrázek 2.10. Připojení grafického OLED displeje s I²C rozhraním

U procesorů řady ATmega
644 jsou pro připojení použité piny PD3 (SCL) a PD4 (SDA) místo PD5 a PD2. Řada procesorů ATmega
1280 používá piny PA5 (SCL) a PA4 (SDA). Výměna textového displeje za grafický je s adaptérovou deskou možná. Na LCD konektoru jsou všechny potřebné datové a napájecí signály k dispozici. O něco jednodušší je připojení grafického displeje s řadičem ST7920, protože regulátor běží na provozním napětí 5V. Displej by měl mít 128x64 viditelných pixelů. Zobrazovací modul s řídicí jednotkou ST7920 lze připojit jako 4 bitové paralelní rozhraní nebo pomocí speciálního sériového rozhraní jak ukazuje obrázek 2.11 .

Obrázek 2.11. Připojení displeje pomocí ovladače ST7920

Pro oba typy připojení musí být software speciálně nakonfigurován. Makefile volba "WITH_LCD_ ST7565 = 7920" musí být v každém případě nastavena. Pro sériový Typ připojení musí být také volba "CFLAGS + = -DLCD_INTERFACE_MODE=5" zvolená. Tabulka 2.4 ukazuje přiřazení signálů sériového portu připojení typu 5 (ST7920) a 7 (SSD1803) pro různé procesory.

Processor	m644	m644	m1280	m328
STRIP_GRID_BOARD		1		
EN	PB3	PB6	PA5	PD5
B0, R/W	PB4	PB7	PA4	PD2
RESET	PB2	PB4	PA0	PD0

Tabulka 2.4. Zapojení Sériového portu pro různé procesory

Orientaci displeje může být, stejně jako u všech grafických displejů, nastavena možností LCD_ST7565_H_FLIP a LCD_ST7565_V_FLIP. Zvláštním případem jsou displeje s řadiči NT7108 nebo KS0108 (S6B0108). Jelikož jsou ovládané pouze s 8bitovým paralelním rozhraním. U nich je třeba použít externí sériově paralelní převodník. Nejjednodušší řešení se mi zdá použít čip 74HCT164 nebo 74HCT595. Odpovídající návrh schematu je zobrazen na obrázku 2.12 .

Je třeba zkontrolovat pořadí pinů na vašem LCD displeji, některé moduly mají jinou sekvenci signálů. Několik různých přiřazení pinů z datových listů řady ABG128064 zobrazuje tabulka 2.5.

	128064H	128064G	128064C	128064B
VDD (5V)	1	2	4	2
VSS (GND)	2	1	3	1
VO (Drive)	3	3	(5)	3
DB0-DB3	4-7	7-10	9-12	7-10
DB4-DB7	8-11	11-14	13-16	11-14
CS1	12	15	1	15
CS2	13	16	2	16
Reset	14	17	-	17
R/W	15	5	7	5
RS	16	4	6	4
E	17	6	8	6
VEE	18	18	-	18
LEDA	19	19	17	(19)
LEDK	20	20	18	-

Tabulka 2.5. Přiřazení pinů různých NT7108 modulů

Procesor	m644	m1280	m328
EN	PB3	PA5	PD5
RS	PB2	PA4	PD4
В0	PB2	PA4	PD4
CS1	PB7	PA3	PD3
CS2	PB5	PA1	PD1
CLK	PB6	PA2	PD2
PCLK	PB4	PA0	PD0

Tabulka 2.6. Zapojení sériového portu NT7108 pro různé procesory

Je také možné použít displeje s řadičem PCF8814, jako jsou např jsou nainstalovány v telefonu Nokia 1100. Přitom je nutné zjistit, jaké rozhraní modulu displeje používá. Řadič PCF8814 podporuje rozhraní SPI jako 3-řádkové a 4-řádkové, rozhraní, I²C-rozhraní a speciální 3-řádkové rozhraní u kterého se Datový / instrukční signál přenáší jako první sériový bit. Displej má pouze 96x65 pixelů, takže žádné velké grafické symboly pro Tranzistory nelze s tímto regulátorem použít. Zobrazení je tedy podobné jako u textového displeje. Stejně jako u většiny grafických displejů je provozní napětí 3,3V. Proto je úprava signálu na 5V ATmega výstupy nutná. Pro SPI a 3 řádkové rozhraní je možné ATmega výstupy pomocí volby LCD_SPI_OPEN_COL jako "Open Collector" výstupy použít. Vyžadují se však "Pull-Up" odpory nebo se nesmí volba PULLUP_DISABLE v Makefile použít. V současné době je vyzkoušeno pouze 3-řádkové rozhraní.

	PCF8814	PCF8814	PCF8814	Přídavné funkce
Port	SPI	3-line	I^2C	
PD0	LCD-REST	LCD-REST		
PD1	LCD-D/C	LCD-SCE		rotační snímač-2
PD2	LCD-SCLK	LCD-SCLK	LCD-SDIN	
PD3	LCD-SDIN	LCD-SDIN		rotační snímač-1
PD4				měřič frekvence
PD5		LCD-EN	LCD-SCLK	

Tabulka 2.7. Přiřazení pinů pro různé varianty připojení řadiče PCF8814

K dispozici je také podpora pro řadič PCF8812 s rozlišením 102x65 pixelů, ale zcela netestován.

2.2.7 Připojení grafického barevného displeje

Čínští prodejci nabízejí levné barevné moduly s SPI rozhraním. Na obrázku 2.13 je zadní část dvou podporovaných modulů 128x128 pixelů a 128x160 pixelů. Tyto moduly jsou velmi malé, takže i texty a symboly jsou velmi malé. Ale vzhled je ostrý a jasný.

Obrázek 2.13. zadní strana obou barevných LCD

Modul 128x128 pixel používá ILI9163 kontrolér. Modul 128x160 pixel používá velmi podobný řadič ST7735. Testoval jsem moduly s adaptérovou deskou, která připojuje SPI signály a napájení svorkovnice s normálním textovým displejem. Přizpůsobení těch 5V ATmega signálů na 3.3V vstupy regulátoru jsem realizoval sériovými $10k\Omega$ odpory. Podsvícení (LED) je pro tyto moduly nezbytné, jinak není znázornění rozpoznatelné. Vzhledem k vysokému počtu pixelů ve svislém směru lze na displejích zobrazit více řádků textu. Na displeji s 128x128 pixelů lze zobrazit až 8 řádků textu s fontem 12x8, U displeje 128x160 pixelů je dokonce 10 řádků textu. Na fotografii 2.14 je výsledek měření germaniového tranzistoru na displeji s 128x128 pixely.

Obrázek 2.14. Měření bipolárního PNP tranzistoru

V současné době se barevné možnosti displejů nepoužívají. Pouze barva pozadí a barva popředí může

být změněna v souboru lcd_defines.h nebo v makefile. Používá se 16 bitový barevný model řadičů, barva popředí s konstantami LCD_FG _COLOR a barvu pozadí lze nastavit pomocí konstanty LCD_BG _COLOR.

2.3 Rady pro stavbu této zkoušečky

Pro tento přístroj lze použít libovolný LCD displej s minimálně 2x16 znaky a kompatibilním ovladačem k HD44780. Člověk by měl věnovat pozornost požadavkům na napájení podsvícení, některé potřebují více elektřiny než ostatní. Zkoušel jsem OLED displeje, ale tyto částečně ovlivňovaly ATmega měření a já je nedoporučuji. Také načítání zvláštních znaků pro zobrazování odporů působilo s OLED potíže. Odpory R1 až R6 jsou pro měření kritické a tyto 680Ω a $470k\Omega$ odpory by měli mít toleranci 0,1%), k zajištění plné přesností. Aby byla možná výměna ATmega mikrokontroléru měla by se použit precisní zásuvka. Je možné použít mikrokontrolér ATmega8, ATmega168 a ATmega328. Pokud chcete používat všechny funkce, doporučuje se ATmega328. Každopádně byste měli nejprve vybavit všechny součásti bez mikrokontroléru. Jako IC2 je doporučen Moderní regulátor nízkého napětí, jako je MCP1702-5002, protože vyžaduje jen $2\mu A$ klidový proud a může také dodávat 5Vpokud je vstupní napětí pouze 5.4V. Bohužel není tento řadič pinově kompatibilní s řadičem 78L05 v TO-92 provedení! Po namontování všech požadovaných komponentů by měla být nejdříve baterie nebo napájecí adaptér připojené. LCD by neměl být připojen a mikrokontrolér ještě nebít v patici. Při stisknutém tlačítku start byste měli zkontrolovat provozní napětí mikrokontroléru a LCD displeje. Provozní napětí by mělo zmizet po uvolnění spouštěcího tlačítka. Pokud bylo provozní napětí správné polarity a velikosti, měli byste odstranit napájecí zdroj a zasunout mikrokontrolér správně orientovaný. Buďte opatrní a ujistěte se zda jsou všechny piny mikrokontroléru v zásuvce. Pak můžete připojit LCD. Zkontrolujte, zda jsou svorky GND a VCC na LCD správně připojeny k modulu. Když jste si jisti, že je vše správně připojeno, zapněte znova napájení. Pokud jste již ATmega programovali, můžete použít tlačítko start. Stisknutím spouštěcího tlačítka by mělo podsvícení na LCD displeji svítit. Po uvolnění tlačítka by LED na desce měla slabě svítit. Poznámka: Zajistěte, že používáte správně přeložený software pro váš procesor. Mějte na paměti, že software pro jednočipový ATmega8 nelze spustit na ATmega168!

2.4 Konverze testovací verze po Markusu F..

Sledování napětí Problém se projeví okamžitém vypnutím při pokusu o zapnutí. V ode mne doporučených nastavení pojistek (makefile) je monitorování napětí u různých verzí ATmega nastavené na 4V (brown out level). To je důvod, proč to může působit problémy při zapnutí testeru, protože pin PD6 se pokouší ten 100nF-kondenzátor C2 přímo připojit. To může vést k nežádoucímu poklesu 5V napětí. Kondenzátor C2 lze jednoduše snížit na < 10nF. Pokud je to možné, měl by být místo přímého připojení PD6 ke kondenzátoru použít odpor $> 220\Omega$ k připojení.

Zlepšení spouštění chování Často se ukazuje chyba, že se přístroj při stisknutí tlačítka zapne, ale při uvolnění tlačítka zase vypne. Problém se vyskytuje častěji když po-zadní osvětlení displeje LCD vyžaduje hodně energie. Odpor R7 na bási PNP tranzistoru T3 s $27k\Omega$ byl optimalizován na velkou úsporu energie. Odpor je třeba lépe snížit na $3,3k\Omega$ aby také při nižším napětí baterie nebo při použití PNP tranzistoru T3 s nízkým proudovým zesílením bylo jisté zapnutí zajištěno.

Doplňkový pull-up odpor na PD7 Chyba je signalizována tím, že se na zkoušečce po krátkém čase a zobrazení zprávy "Časový limit"vypne. Software je ve výchozím nastavení konfigurován s (volbou PULLUP_DISABLE), čémž jsou interní Pull-Up-odpory odpojeny. Výsledkem je,

že úroveň na pinu PD7 není definována, pokud není tlačítkem nebo s T2 přepnut na GND potenciál. Externí Pull-Up-odpor s $27k\Omega$ k VCC vylučuje tuto chybu.

Kondenzátor C1 na pinu AREF V mnoha provedeních se zde používá kondenzátor s 100nF, stejně jako v návrhu Markuse Frejeka. Při použití ATmega168 / 328, software ale automatický přepíná referenční napětí z 5V na vnitřní referenční napětí 1,1V pokud vstupní napětí klesne pod hodnotou 1V. Tím získáte lepší rozlišení. Bohužel je přechod z 5V na 1.1V je velmi pomalý, což vyžaduje další čas o 10ms. Výměna 100nF kondenzátoru za 1nF sníží výrazně čekací dobu . Vliv menších kondenzátorů na kvalitu výsledků měření jsem nezjistil. Dokonce i odstranění kondenzátoru nemá významný vliv. Ten kdo si přeje tento 100nF kondenzátor nutně zachovat, může v Makefile volbu NO_AREF_CAP odstranit, a tím čekací dobu v programu aktivovat.

Dovybavení 8MHz krystalu S trochou dovednosti lze na pájecí straně desky na vchody PB6 Pin9 a PB7 Pin10 8MHz krystal přímo naletovat. V mé versi jsem si oba 22pF kondenzátory odpustil. U všech zkoušených procesorů, toto řešení fungovalo. Tento dodatek ale není nezbytný. Taktovací frekvence, ale z důvodu lepší časové konstanty pro měření kondenzátorů v každém případě hodnotu 8MHz. Tuto hodnotu lze také v RC-oscilátorovém provozu nastavit pojistkou.

Odblokování provozního napětí V původním schématu zapojení od Markuse F. je pouze jeden blokovací 100nF-kondenzátor k VCC-napětí (5V) přítomen. To je příliš málo. Měl by být jak 100nF kondenzátor v bezprostřední blízkosti ATmega stejně jako 100nF v bezprostřední blízkosti regulátoru napětí. U vchodu do řídicí jednotky patří rovněž 100nF kondenzátor. Další $10\mu F$ -elektrolytické (nebo keramické) kondenzátory na vstupu i výstupu řadiče mohou zvýšit stabilitu napětí. Keramické $10\mu F$ kondenzátory typu SMD jsou vhodnější pro dodatečné vybavení a mají obvykle nižší ESR hodnotu.

Výběr ATmega procesoru Základní funkce testovacího přístroje jsou stále s ATmega8 možné. Přitom je programová paměť téměř na 100% využita. Protože jsou ATmega168 nebo ATmega328 procesory pin kompatibilní s ATmega8, lze náhradu pouze doporučit. Mezitím je cena za ATmega328 tak nízká, že ve skutečnosti nic nehovoří pro ATmega168. Přístroj s ATmega168 / 328 nabízí následující výhody:

- Funkce automatického samo-testu s automatickou kalibrací.
- Zvýšená přesnost automatického přepnutí referenčního napětí ADC.
- Měření indukčnosti, jejíž hodnota odporu je $< 2100\Omega$.
- Měření ESR hodnoty kondenzátorů > 20nF.
- Rozlišení měření odporu pod 10Ω je $0,01\Omega$.
- PC3 pin lze použít jako sériový výstup.

Chybějící přesná reference Normálně by měla být chybějící referenční hodnota rozpoznána při nezapojeném PC4 pinu. V tomto případě se na druhém řádku při zapnutí neobjeví žádná VCC = x.xV indikace. Pokud by se přesto tato informace na displeji zobrazila, pomůže $2, 2k\Omega$ odpor na PC4 vchodu.

2.5 Pokročilý obvod s ATmega644 nebo ATmega1284

Pokročilý obvod pro procesory ATmega644 / 1284 byl vyvinut ve spolupráci s Nickem L. vyvinutým na Ukrajině. Obvod podle obrázku 2.16 umožňuje test krystalů a rozšířený frekvenční rozsah pro měření frekvence. Ačkoli je základní schema velmi podobné obvodu 2.1 používá jiné přiřazení portů. Ovládací kodér okruhu 2.6 může zde být zapojený na PB5 a PB7 (místo na PD1 a PD3). Oba signály a také napájecí signály VCC a GND jsou na konektoru ISP k dispozici, takže zde můžete také připojit modifikace. 16:1-frekvenční dělič 74HC4060 se vždy používá pro vyšší frekvence než 2MHz.

Dělič lze také použít pro frekvence od 25kHz do 400kHz pro použití s měřením doby pro zlepšení rozlišení měřeného kmitočtu. Pro přepínání provozních stavů (frekvenční dělič a křemenný oscilátor) jsou použíty analogové spínače 74HC4052. Tabulka 2.8 zobrazuje přiřazení pinů pro mikrokontrolér ATmega324 / 624/1284 s různými displeji. To I²C-rozhraní je možné pouze s řadičem SSD1306. Signály I²C-rozhraní vyžadují "Pull-Up"-odpor asi $4,7k\Omega$ na 3,3V. ATmega výstupy jsou při I²C-rozhraní jen k 0V propojeny.

Port	Klasický LCD	Grafický LCD	Grafický LCD	Přídavné funkce
		SPI 4-Wire	I^2C	
PB2	LCD-RS			
PB3	LCD-E	(LCD-CE)	LCD-SCL	
PB4	LCD-D4	LCD-REST	LCD-SDA	
PB5	LCD-D5	LCD-RS		ISP-MOSI
				kodér 2
PB6	LCD-D6	LCD-SCLK		ISP-MISO
PB7	LCD-D7	LCD-SI		ISP-SCK
				kodér 1

Tabulka 2.8. Různé varianty displejových portů

Dokonce i displej s NT7108 (KS0108, S6B0108) ovladačem lze připojit s malou přídavnou deskou DPS na ATmega644 nebo ATmega1284 připojit tak, jak je znázorněno na obrázku 2.15. Nezapomeňte ale na různé přiřazení pinů modulů zobrazení s řadičem NT7108, jak je uvedeno v Tabulce 2.5 na straně 17.

Obrázek 2.15. Zapojení NT7108 ovládače na ATmega644/1284

Obrázek 2.16. Pokročilé schema testeru tranzistorů s ATmega644

2.6 Konstrukce s ATmega1280 nebo Arduino Mega

Základního obvodu testovacího zařízení lze také použít s Arduino Mega s ATmega1280 nebo ATmega2560 na přídavné desce. Potřebná připojení jsou zobrazena na obrázku 2.17. Zásuvná připojení přístroje Arduino pro datová připojení displeje jsou označena zelenou barvou. Komponenty s červeným označením nejsou pro funkci testeru vyžadovány. Mikrochip ATmega2560 má mnoho pinů,

ale pouze jeden z nich má potřebné připojení pro obě metody měření frekvence. Tento pin musí být možné přepnout jako vstup pro počítadlo ale zároveň musí také umět generovat signál přerušení (interrupce) při změně úrovně. To platí jen pro pin PE6 (T3/INT6). Ostatní počítačové vchody jako PD7 (T0), PD6 (T1), PH7 (T4) a PL2 (T5) nelze jako interrupční signály použít. Bohužel PE6 pin není přístupen na konektorových proužcích Arduino. PE5 čep (7) je připojen ke kolíku 3 Arduino PWM konektor zásuvky a může být připojen k Atmega2560 s PE6 kolíkem (8) propojený. Výstup pro generování frekvence je na pinu PB6 (OC1B) k dispozici. Tento pin je propojený s pinem 12 připojené PWM zásuvky. ISP konektor není na Arduino nutný, protože lze program načíst přes USB rozhraní a zavaděč (Bootloader). Při tom nastane jen zpoždění spuštění programu.

Obrázek 2.17. Tester schema s ATmega1280, ATmega2560 nebo s Arduino Mega

Samozřejmě že všechny podporované displeje lze také připojit k ATmega1280 nebo ATmega2560, jak je uvedeno v tabulce 2.9.

	Character	ST7565	ST7920	NT7108	SSD1306	Přídavné funkce
Port	LCD	SPI	seriell	seriell	I^2C	
PA0	LCD-D4	LCD-REST	LCD-RESET	HC595-RCK		
PA1	LCD-D5	LCD-RS		LCD-CS2		kodér-2
PA2	LCD-D6	LCD-SCLK		HC164-CLK		
PA3	LCD-D7	LCD-SI		LCD-CS1		kodér-1
PA4	LCD-RS		LCD-B0	LCD-RS	LCD-SDA	
				HC164-SER		
PA5	LCD-E	(LCD-CE)	LCD-EN	LCD-EN	LCD-SCL	
PA7	Tlačítko					

Tabulka 2.9. Přiřazení pinů pro různé displeje na ATmega1280 / 2560

2.7 Čínské repliky s textovým displejem

Tester je reprodukován v Číně podle mých znalostí ve dvou verzích s textovým displejem. První variantou je replika prvního návrhu Markusu F. bez ISP rozhraní. V této verzi použitý ATmega8 je v zásuvce, takže může být také nahrazen s ATmega168 / 328. Pro tuto verzi platí všechny pokyny v podkapitole 2.4. Dodatečné 100nF keramické kondenzátory by měly být v blízkosti ATmega VCC-GND vstupu a pro lepší stabilitu napětí nedaleko AVCC-GND vstupu regulátoru.

Vzhledem k tomu, že na desce chybí ISP konektor, musí být ISP připojení dodatečně přidané nebo procesor k programování vytažen. Je třeba poznamenat, že i při dodatečné montáži krystalu musí ISP-Programátor dostat externí takt, nebo musí být programovací základna vybavena krystalem. Druhá varianta je z velké části postavena v SMD technologii. Také použitý ATmega168 nebo ATmega328 je typu 32TQFP a pevně naletován. Pro programování na desce je k dispozici 10 pólový ISP konektor. Já jsem analyzoval verzi "2.1 2012/11/06" .Zde je chyba v součástce "D1", což mělo být referenční 2,5V napětí. Ve skutečnosti je vybaven Zenerovou diodou. Tato součástka by měla být odstraněna. Použít jze přesnou referenci jako LM4040AIZ2.5 nebo LT1004CZ-2.5. Chybějící přesná reference je softwarem ale detekována, tak že ta výměna není tak podstatná. V mém exempláři byla instalovaná softwarová verse 1.02k. 10-pólová ISP-zástrčka nebyla obsazena a já jsem musel dodatečně spojit pin 6 a 10. Můj programátor očekává GND na pinu 10, ale testovaném přístroji měl konektor GND pouze na pinech 4 a 6. ATmega168 označení bylo vyškrábané a dokumentace nebyla k dispozici. Bezpečnostní bity ATmega byly tak nastaveny, aby nebylo možné program číst. Mohl jsem ale snadno nainstalovat softwarovou verzi 1.05k. Tato softwarová verze dělala problémy u jiného exempláře s výrobní verzí "2.2 2012/11/26". Zde běžela až poté, když jsem přidal další SMD 100nF kondenzátor mezi piny 18-AVCC a 21-GND. Software 1.05k využívá při čekání stav spánku ATmega. Proto se spotřeba energie častěji mění a regulátor napětí je více namáhaný. Dále jsem si všiml,že pro zlepšení stability VCC napětí, je kromě 100nF keramického kondenzátoru ještě jeden $220\mu F$ elektrolytický kondenzátor použitý v blízkosti 78L05-regulátoru napětí. Napájecí 9V napětí je vybaveno stejnými kondenzátory, až na to, že jsou na emitoru PNP-Transistoru (paralelně k baterii), místo přímo u řadiče napětí. Vodiče tištěných spojů mezi ATmega a testovacími porty jsou částečně velmi tenké. Já měřil asi $100m\Omega$ pro jednu signální cestu. To je důvod, proč při s 0Ω spojenými piny, naměříte $0,3\Omega$. Při měření v ESR režimu je toto možné obvykle kompenzovat nulováním. Od softwarové verse 1.07K jsou při měření odporů pod 10Ω automaticky offsety, zjištěny při auto-diagnose vzaty v úvahu.

2.8 Čínské repliky s grafickým displejem

Novější repliky používají grafický displej s rozsahem 128x64 pixelů, například verze Fish8840. Tato verze používá modifikovaný okruh pro zapnutí. Obrázek 2.18 ukazuje část obvodu.

Obrázek 2.18. Výňatek z obvodu Fish8840

Jak je z odporů R8 a R15 zřejmé, je zde při poměru 2: 1 odlišný poměr dělitelů napětí akumulátoru než v původním provedení. Kromě toho je R15 připojen přímo k baterii, což vede k nízké spotřebě energie v baterii i ve vypnutém stavu. Zde by měl být R15 lépe připojen na dra-in od Q1 nebo na vstup regulátoru napětí, aby se zabránilo zbytečné spotřebě baterie. Odpovídající změny ukazuje obrázek 2.19. Tištěný spoj je mezi R17 a D5 přerušen a pomocí smaltovaného měděného drátu nové spojení mezi Q1 a R15 uděláno.

Obrázek 2.19. Fotografie upravené desky Fish8840

Poměr děliče napětí musí být v každém případě v konfiguraci v souboru Makefile specifikován před načtením softwaru (například s BAT_NUMERATOR=66). Displej Modul Fish8840 testeru má 3.3V regulátor napětí, který řídí provozní napětí kontroléru displeje. Protože datové linky modulu displeje přicházejí z 5V ATmega výstupů, je zde to 3.3V napětí zvýšené. Odpomoc nabízí malý adaptér, podle obrázku 2.20. Na něm jsou čtyři $2.7k\Omega$ odpory zapojeny v řadě k datovým linkám. K připojení displeje s adaptérem k Fish8840 testeru je nezbytné prodloužení závitovými distančními sloupky M3.

(a) Displej s adaptérem (b) Smontovaný Tester Obrázek 2.20. Adaptér se správné zapojeným displejem

Namísto této úpravy je nyní možné v Makefile volbou LCD_SPI_OPEN_COL použít také se speciálním nastavením ATmega výstupů při použíti 4-SPI signálů. V tomto případě nejsou výstupy připojeny k VCC, ale při vydání vysoké úrovně, pouze přes interní "Pull-Up" odpory. Je-li nastavena volba PULLUP_DISABLE, je pro resetovací signál (PD0) externí "Pull-Up" odpor vyžadován. Vzhledem k tomu, datové signály nejsou nyní nikdy přepnuty přímo k VCC, nebude to 3.3V napětí řídící jednotky LCD zvýšeno. Můj exemplář Fish8840 Testeru má všechny signály pro připojení textového displeje k disposici. Proto může být také vybavený textovým displejem, pokud je přípoj doplněn o potenciometr pro nastavení kontrastu. Napájecí pin 15 pro osvětlení pozadí je ale přímo připojen na VCC. V případě instalace textového displeje, je třeba dbát na sériový odpor pro LED. Samozřejmě, musí být softwarová verse na jiný displej přizpůsobena. Fish8840 deska DPS nabízí také možnosti softwarové modifikace. Pro funkční schopnost nemůže být, samozřejmě, žádná záruka poskytnuta. Protože jsou bezpečnostní bity v ATmega328 jedno-čipu nastaveny, není možné, stav původní čínské softwarové verse zálohovat.

Tím pádem... bohužel... nevede, zpět k původní verzi softwaru, žádná cesta.

Další verzí s grafickým displejem je model WEI_M8, který je znázorněn na obrázku 2.21. Tato replika používá, jako zdroj energie, Li Ion akumulátor typu AA (Mig-non), který lze přes mi-kro-USB rozhraní nabít. Provoz je i bez baterie přes USB rozhraní možný.

Obrázek 2.21. Fotografie čínského WEI_M8 Testeru

Je příjemné, že na desce adaptéru displeje, jsou již sériové odpory pro signální linky, jak je vidět na levém obrázku 2.22. Tím nehrozí zvýšení dodávky 3.3V napětí pro řadič displeje kvůli ATmega 5V úrovni napětí výstupního signálu.

(a) Deska adaptéru pro displej

pro displej (b) Základní deska Obrázek 2.22. Pohled na WEI M8 tester

Při upgradu softwaru na versi 1.12k jsem se setkal s některými obtížemi. Pokud je ATmega pojistka nastavena podle doporučení na 0x04 (nebo 0xfc), došlo při určitých měření k "brown out" resetu procesoru. Příčinou tohoto chování jsou krátkodobé poklesy napětí VCC napájení. Přidal jsem proto $4.7\mu F$ keramický kondenzátor na vstup regulátoru napětí a další $10\mu F$ keramický kondenzátor na vstup (VCC) zdroje. Jak před, tak i po té modifikaci byl u bipolárních transistorů měřen zbytkový proud kolektoru (ICEO nebo ICEs). Teprve výměna toho LDO-regulátoru napětí (neznámého typu) za MCP1702-5002 pomohla. Na obrázku 2.23 je vidět vložený akumulátor, modifikace desky DPS s MCP1702 regulátorem a napravo pod ním šikmo naletované kondenzátory. Pokud nechcete aktualizovat kondenzátory, nastavte ATmexa pojistku na 0x07 (0xff). S tímto nastavením je provoz možný. Poklesy napětí nebudou ale hlídané.

Obrázek 2.23. Fotografie modifikovaného WEI M8 testeru

Další verzí s grafickým LCD displejem je T4 Tester na žluté desce. Při přehrávání nového softwaru jsem musel odstranit displej. Na pravé fotografii obrázku 2.24 je, v pravém horním rohu, položen konektor pro ISP připojení vedle odpovídajících otvorů na desce ve správné orientaci. Pro programování jsem zástrčku nenaletoval, ale pouze nastrčil a pevným bočním tlakem prstu po dobu programování zajistil. To umožňuje snadno vyjmout konektoru po programování a vrácení displeje na původní místo. Mimochodem, software 1.12k lze snadno načíst. Také aktivace "Brown-Out" detekce procesoru s ATmega pojistkou nepřinesla žádné překvapení.

(a) Kompletní

(b) S odebraným displejem

Obrázek 2.24. Pohled zepředu na T4 tester

Na fotografiích zadní strany na obrázku 2.25 vidíte dodatečné dodané závitové 5mm šrouby a napájené kabely s měřícími svorkami. Protože pro datové signály grafického LCD kontroléru žádné nastavení signálu (5V->3.3V) neexistuje, doporučuji volbu LCD_SPI_OPEN_COL. Protože zde dodatečně instalace "pull-up" odporu k "vytažení" signálu SPI reset není lehce proveditelná, zůstává jen volba DISABLE_PULLUP . Pro následné expanze je tato verze testeru méně vhodná, protože i výměna displeje je zde obtížná.

(a) Přední strana

(b) S měřícími kabely

Obrázek 2.25. Pohled zezadu na T4

Další čínská verze s grafickým displejem je nabízena s označením "GM328". V této verzi je grafický displej umístěn přes 16 kolíkovou zásuvku na přídavné desce. Na ní je také PD5 přes pin 6 CE (chip enable) signál grafické řídicí jednotky připojen. Tento signál je zde ale také s 0V Power (GND) spojený. To způsobí zkrat, při pokusu tento ATmega pin přepnout jako 5V výstup. Novější verze softwaru také přepínají CE signál, i když není k provozu potřebný. Proto je nutné, před nahráním nové softwarové verze, na přídavné desce DPS kontakt 6 u zásuvky přerušit.

2.9 Čínské soupravy a rotačním kodérem

Dosud jsou známy dva sady s grafickým displejem a rotačním enkodérem. První klon používá displej s ST7565 nebo kompatibilním řadičem (128x64 pixelů). Kromě otočného enkodéru je k dispozici vstup pro měření frekvence. Pro testovací porty je 14 kolíková zásuvka Textool, 3 pájecí očka pro drát, stejně jako zkušební podložka pro SMD komponenty k dispozici. Fotografie 2.26 zobrazují smontovanou sestavu. Jeden ze dvou 22pF kondenzátorů byl nahrazen trimrem což umožňuje přesnější nastavení frekvence křemene při měření frekvence nebo její generování.

(a) Smontován (b) s odebraným displejem Obrázek 2.26. Sestavená sada s 128x64 pixelovým displejem

Později zveřejněná sada využívá barevného displeje s ST7735 řadičem (128x160 pixelů) a má kromě vstupního signálu pro měření napětí a frekvence ještě frekvenční výstup. Frekvenční výstup není

vyrovnán, ale je pouze paralelně připojen k TP2. Při měření napětí je pouze možné měřit pozitivní stejnosměrné napětí až 50V DC-DC. Převodník pro měření zenerova napětí nebyl plánován. Fotografie 2.27 zobrazují smontované sestavy. I zde byl jeden ze dvou 22pF kondenzátorů byl nahrazen trimrem (zelený).

(b) Odebraný displej

(a) Sestaven Obrázek 2.27. Sestavená sada s 160x128 pixelovým displejem

Obě sady používají ATmega328P verzi s PATICI DIP a nemají žádný ISP konektor pro instalaci nových verzí softwaru. První verze používá pro základní desku DSP pouze součástky s drátovými vývody. Měřicí odpory 680Ω a $470k\Omega$ byly v mé sadě s 0.1% tolerancí dodány. Dokonce i 220nFkondenzátor pro kalibraci v soupravě nescházel. Souprava s barevným displejem má kromě připojení 9V baterie zásuvku pro napájení. SMD komponenty byly již na desce obsazeny, takže i při této sadě je třeba provádět pouze jednoduché pájení. Malou nevýhodou verze s barevným displejem je rychlost výstupu. Zejména při provozu v menu je výrazně pomalejší výstup negativní. Na druhé straně má barevný displej výrazně vyšší počet pixelů a může tak představovat více textu. Obě sady používají regulátor napětí pro napájení 3,3V na plně obsazeném displeji. Pouze kontakty konektoru musí být na desce displeje naletovány. Barevná verze používá vyrovnávací paměť CD4050 pro nastavení úrovní signálu. Na zobrazovací desce varianta ST7565 není vidět žádné nastavení úrovně signálu. Pravděpodobně vybraná verze regulátoru toleruje úrovně signálu 5V ATmega328. V žádném případě není žádná ochranná dioda proti napájení 3,3 V v tomto regulátoru viditelná.

2.10Ještě tester od firmy Hiland s M644

Tento klone je postaven podle plánu 2.16 na straně 22. od Nika Lanchaka s Ukrajiny. Tester je ovládán tlačítkem, které je zároveň rotační snímač. Nabízí následující přídavky:

- měření a generaci frekvence
- den f-Generator
- 10-bitový PWM,
- Impulsdrehgeber
- měření krystalů
- měření napětí a Zenerových diod(až do 50V).

Na desce je pod displejem připravena 6ti pólová řada pro ISP rozhraní s následujícím zapojením: z leva do prava: 1 -Reset; 2 -SCK; 3 -MISO; 4 -MOSI; 5 -+5V; 6 -GND.

Aby bylo možné tester aktualizovat je třeba mít modifikovaný kabel, který lze relativně lehce vyrobit. Při dodání jsou na desce dvě řady zdířek a testovací sokl je volně přiložen.

U toho níže zobrazeného testeru, byl sokl přímo naletován a tím ušetřená zdířková řada naletována na přestřižený vlastní kabel a zajištěna smrštovací bužírkou.

(a) dole TP1 až TP3 pro identifikaci součástek (b) nahoře TP pro funkce menu a IDE Obrázek 2.29. Tester firmy Hiland s testovacím soklem a 128x64 Pixel LCD Displejem

Die Testovací piny TP1, TP2 und TP3 lsou určeny pro automatické zjištění a měření součástek

a jsou popsány čísly 1 1 1 2 3 3 3.

Stejná čísla jsou také SMD poli a kromě toho je možné, naletovat vlastní kabely. Der **Testovací pin TP2** má kromě toho funkci výstupu v menu "f-Generator". S **LF** označené piny jsou určeny k měření krystalu s nízkou rezonanční frekvencí, a **HF** označené piny, jsou pro měření krystalu s vysokou rezonanční frekvencí.

Pin **F-in** lze použít dohromady **Gnd** pro menu funkci měření frekvence. a **Vext+** právě tak s **Gnd** k měření napětí **a** k určení Zenerových diod.

Poznámka překladatele. Nově existuje k tomuto testeru návod v češtině.

Kapitola 3

Návod k obsluze

3.1 Měřicí operace

Obsluha testeru je jednoduchá. Nicméně zde je pár rad pro jeho použití. Tři testovací porty jsou většinou propojeny prostřednictvím kabelů s krokosvorkami, nebo jiným zakončením. Může být také připojena zásuvka pro měření tranzistorů. V každém případě můžete do tří testovacích bodů připojit tříbodové komponenty v libovolném pořadí. U dvoupólových součástek můžete použít kterékoliv dva testovací porty. Nezáleží ani na polaritě, to znamená že i elyty mohou být připojeny libovolně. Měření kapacity se však provádí tak, že záporný pól je na měřícím portu s nižším číslem. Protože měřicí napětí leží mezi 0,3V a maximálně 1,3V, nehraje zde polarita důležitou roli. Je-li součástka připojena, nesmíte se jí během měření dotýkat. Dejte ji na izolační podklad, pokud není v zásuvce. Nedotýkejte se ani izolace měřicích kabelů, výsledek měření tím může být ovlivněn. Poté stiskněte tlačítko start. Po úvodním hlášení se výsledek měření zobrazí asi do dvou sekund. Při měření kondenzátorů může v závislosti na kapacitě trvat mnohem déle. Co se stane poté, závisí na softwarové konfiguraci testeru.

Jednotlivé měření Pokud je tester konfigurován pro jedno měření (POWER_OFF-volba), Pokud nespustíte nové měření, vypne se tester kvůli úspoře baterie automaticky za 28 sekund (konfigurovatelné). Po vypnutí lze samozřejmě spustit nové měření, buďto se stejnou součástkou, nebo také s jinou. Pokud chybí vypínací elektronika, zůstane zobrazen poslední výsledek měření.

Kontinuální měření Zvláštním případem je konfigurace bez funkce automatického vypnutí. V tomto případě je nutno nastavit možnost POWER_OFF v makefile. Tato konfigurace se obvykle používá pokud nejsou osazeny tranzistory pro automatické vypnutí. Místo toho je zapotřebí externí vypínač pro zapnutí / vypnutí. Zde tester opakuje měření až do vypnutí.

Opakované měření V tomto případě se testovací přístroj nevypne přímo po měření, ale až po zvoleném počtu. Chcete-li to nastavit, je volbě POWER_OFF v makefile přiřazeno číslo opakování (například 5). Ve standardním případě se přístroj vypne po pěti měřeních bez rozpoznaného komponentu. Pokud je detekována další měřená součástka, vypne se po dvojnásobku, tj. Deset měření. Jediné měření s nerozpoznanou komponentou vynuluje počet zjištěných kusů na nulu. Stejně tak jediné měření s detekovanou komponentou vynuluje počet nerozpoznaných komponent na nulu. To má za následek, že i bez stisku startovacího tlačítka lze měřit další a další kusy, pokud se součástky pravidelně obměňují. Změna součásti s prázdnými měřícími svorkami mezitím provede měření bez detekované součásti. V tomto provozním režimu je pro zobrazení času speciální funkce. Při krátkém stisku start tlačítka, jsou výsledky měření zobrazeny pouze 5 sekund. Pokud držíte tlačítko start, až do zobrazení první zprávy, je doba zobrazení 28 sekund, jako u jednotlivého měření. Další měření v době zobrazování, je umožněno následujícím stiskem Start tlačítka.

3.2 Volitelné funkce menu pro ATmega328

Když je zapnuta funkce menu, začne tester po dlouhém stisku tlačítka (>0.5s) volbu dalších funkcí. Tato funkce je k dispozici i pro jiné procesory s minimálně 32K flash pamětí. Volitelné funkce se zobrazují na řádku 2 dvouřádkového displeje nebo na řádku 3 čtyřřádkového displeje. Předchozí a následující funkce jsou zobrazeny v řádcích 2 a 4. Po delším čekání bez odezvy tlačítka se program vrátí k normální funkci testeru. Krátkým stiskem tlačítka můžete přepnout na další volbu. Dlouhým stisknutím tlačítka se spustí zobrazená doplňková funkce. Po zobrazení poslední funkce "Vypnout"se znovu zobrazí první funkce. Pokud je Tester vybaven pulzním enkodérem lze výběr nabídky docílit rychlým otáčením enkodéru. Funkcemi nabídky lze listovat pomalým otáčením voliče v libovolném směru. Zvolenou funkci nabídky, lze spustit pouze stiskem tlačítka. V rámci vybraných nastavení funkce jsou další parametry volitelné pomocí pomalého otáčení enkodéru. Rychlým otočením enkodéru se vrátíte do nabídkového menu.

- Frekvence Přídavná funkce "frekvence" (frekvenční měření) používá jako vstupní pin PD4 ATmega, který je také připojen k LCD. Nejdříve je vždy měřena frekvence, při frekvencích pod 25kHz je také měřena střední hodnota vstupního signálu a z toho je vypočtena frekvence frekvence s rozlišením až 0,001Hz. Pokud je v souboru Makefile nastavena v makefile volba POWER_OFF je doba měření frekvence omezena na 8 minut. Měření frekvence je ukončeno stisknutím tlačítka a návratem do nabídky menu.
- f-generátor Pomocí doplňkové funkce "f-generátor" (frekvenční generátor) lze zvolit frekvenci mezi 1Hz a 2MHz. Nastavení frekvence lze měnit pouze v nejvyšším řádu. Pro frekvenci 1Hz až 10kHz jsou volitelná čísla 0-9.Od 100kHz je možné volit 0-20. V prvním řádku oznámí symbol > nebo < angezeigt, zde je možné delším tiskem (> 0.8s) přepnout na vyšší nebo nižší místo. Na nižší místo (<) lze přepnout pouze tehdy, je-li aktuální číslice nastavena na hodnotu 0 a pokud nebyl zvolen kroke nižší než 1Hz. V řádu 100kHz je symbol > nahrazen znakem R (reset). Delší tisk způsobí návrat frekvence na počáteční hodnotu 1Hz. Je-li v Makefile nastavená volba POWER_OFF-musí být stisk tlačítka pro změnu frekvence delší. Krátké stisknutí tlačítka (< 0,2s) pouze resetuje sledování času 4 minut. Uplynulý čas je zobrazen v 1 řádku tečkou za každých 30 sekund. Pravidelným krátkým stiskem tlačítka lze zabránit předčasnému vypnutí generování kmitočtu. Dlouhé stisknutí tlačítka (> 2s) způsobí návrat do menu.
- 10-bit PWM Přídavná funkce "10bitové PWM" (šířková modulace impulzů) generuje pevnou frekvenci s nastavitelnou šířkou impulsu na pinu TP2. Při krátkém stisknutí klávesy (< 0,5s) se šířka impulsu zvýší o 1%, s delším stisknutím klávesy o 10%. Při překročení 99% bude 100% odečteno (zpátky na 0). Při zvolené možnosti POWER_OFF-v makefile, bude po 8 minutách bez stisku tlačítka, tester vypnutý. Konec generování je také možné dosáhnout dlouhým (> 1,3s) stiskem.
- C+ESR@TP1:3 Pomocí rozšiřující funkce "C + ESR @ TP1: 3"se na TP1 a TP3 spustí samostatné měření kondenzátoru s měřením ESR. Měřitelné jsou kondenzátory s více než $2\mu F$ až k 50mF. Vzhledem k nízkému měřicímu napětí asi 300mV by mělo být ve většině případech možné měření v obvodu bez předchozího vypájení. Pokud je v souboru Makefile nastavena možnost POWER_OFF-, je počet měření omezen na 250, může být ale znovu spuštěn. Opakované měření může být ukončeno delším stiskem tlačítka.
- Měření odporů Ikona 1 ———3 promění tester na ohmmetr mezi TP1 a TP3. Tento režim je indikován zobrazením textu [R] v pravém rohu prvního řádku displeje.

 Protože se při této měřicí funkci nepoužívá ESR, platí pro odpory s hodnotou nižší než 10Ω rozlišení pouze 0.1Ω. Pokud je funkce ohmmetru nakonfigurovaná i s měřením indukcí, zobrazí se zde ikona 1 —————3. Funkce ohmmetru poté zahrnuje měření indukčnosti pro odpory pod 2100Ω. V pravém rohu prvního řádku displeje se zobrazí text [RL]. Pokud nebyla detekována

žádná indukčnost pro odpory pod 10Ω tak je použita ESR metoda měření. To zvyšuje rozlišení rezistorů s hodnotou nižší než 10Ω na 0.01Ω . V tomto měřícím režimu se měření opakuje bez stisku tlačítka. Stisknutím tlačítka opustíme tento režim a tester se vrátí do nabídky menu. Pokud je mezi TP1 a TP3 připojený odpor je tento měřící režim také automaticky spuštěn stiskem tlačítka. Po stisku tlačítka se tester vrátí ke své normální funkci.

- Měření kondenzátorů Ikona 1 → 3 mění tester na klasický meřič kondenzátorů na TP1 a TP3. Tento režim je označen znakem [C] v pravém rohu prvního řádku displeje. V tomto režimu mohou být kondenzátory měřeny od 1pF do 100mF. V tomto provozním režimu se měření opakuje bez stisku tlačítka. Stiskem tlačítka se tato speciální operace ukončí a tester se vrátí do nabídky menu. Stejně tak jako u měření odporů se tento provozní režim automaticky zapne, pokud byl mezi TP1 a TP3 detektován kondenzátor. Po stisku tlačítka se tester vrátí ke své normální funkci.
- Pulzní Enkodér Pulzní enkodér lze testovat pomocí dodatečné funkce "Pulsní rotační snímač". Tři kontakty pulzního enkodéru libovolně připojíme ke třem zkušebním pinům před startem této doplňkové funkce. Po spuštění funkce nesmí být otočným knoflíkem otáčeno příliš rychle. Po úspěšném dokončení testu je na druhém řádku zobrazen symbol přiřazení kontaktů. Tester indikuje společný kontakt obou přepínačů a indikuje zda jsou v aretované poloze oba kontakty otevřené, ("o") nebo zavřené ("C"). Impulzní snímač s otevřenými kontakty v aretované pozici se zobrazí na řádce 2 "1-/-2-/-3 o"po dobu dvou sekund. Samozřejmě je správné číslo pinu společného kontaktu zobrazeno uprostřed namísto "2". Dokonce i když je uzavřená poloha spínače v aretovaných pozicích, je také zobrazen na řádku 2, "1—2—3 C"po dobu dvou sekund. Neznám žádný pulsní snímač, který má vždy pouze uzavřené kontakty v každé pozici zámku. Polohy kontaktů mezi aretačními polohami se jen krátce (< 0,5s) zobrazí bez kódových písmen "o"nebo "C"v 2 řádku. Pokud má být impulsní kodér použit k ovládání testeru, musí být v makefile volba WITH_ROTARY_SWITCH=2 pro kodéry s pouze otevřenými kontakty ('o') a volba WITH_ROTARY_SWITCH=1 pro snímače s otevřenými ("o") a uzavřenými ("C") kontakty v aretačních pozicích.
- $C(\mu F)$ -korekce Pomocí této funkce lze měnit korekční hodnotu pro měření kapacit velkých hodnot. Stejnou korekci můžete také nastavit pomocí volby Makefile C_H_KORR. Hodnoty nad nulou snižují výstupní hodnotu kapacity o tuto procentuální hodnotu. Hodnoty pod nulou výstupní hodnotu zvyšují. Krátké stisknutí tlačítka snižuje korekční hodnotu o 0.1%, delší stisk tlačítka zvýší opravnou hodnotu o 0.1%. Velmi dlouhým stiskem tlačítka se hodnota uloží. Vlastností této metody měření je, že u nekvalitních elektrolytických kondenzátorů je naměřena kapacita výrazně vyšší než skutečná. Kvalitu lze rozpoznat parametrem Vloss. Kvalitní kondenzátory nemají žádný Vloss, nebo pouze 0,1%. Pro nastavení tohoto parametru je třeba použít pouze kondenzátory s vyšší hodnotou než $50\mu F$ s vysokou kvalitou. Mimochodem, považuji za zbytečné, určit přesnou hodnotu kapacity elektrolytických kondenzátorů, protože kapacita závisí jak na teplotě, tak na výši stejnosměrného napětí.
- **Autotest** Pomocí přídavné funkce "autotest" se provádí kompletní autotest s kalibrací. Všechny testovací funkce T1 až T7 (pokud tomu nebrání možnost NO_TEST_T1_T7) Pokaždé se provádí kalibrace s externím kondenzátorem.
- Napětí Přídavná funkce "napětí" (měření napětí) je možná pouze tehdy, když je deaktivován UART výstup. nebo má ATmega nejméně 32 pinů (PLCC) a jeden z dalších pinů ADC6 nebo ADC7 je použit pro měření. Vzhledem k tomu, že je na portu PC3 (nebo ADC6 / 7) připojen dělič napětí 10:1, lze měřit napětí do hodnoty 50V. Připojený měnič DC-DC pro měření Zenerovy diody se zapíná stiskem tlačítka. Tak lze také měřit i připojené Zenerovy diody. Je-li v makefile volba POWER_OFF-Option nastavena a není li stisknuto tlačítko, skončí měření po 4 minutách. Měření lze předtím ukončit dlouhým stiskem tlačítka (> 4 vteřiny).

- Kontrast Tato funkce je k dispozici řadičům se softwarovým řízením kontrastu. Nastavenou hodnotu lze snížit velmi krátkým stisknutím tlačítka nebo levým otočením impulzního snímače. Dlouhým stiskem tlačítka, nebo otáčením pulzního enkodéru ve směru hodinových ručiček se hodnota kontrastu zvýší. Pokud je tlačítko stisknuto déle, je funkce ukončena a nastavená hodnota je trvale zapsána do paměti EEPROM.
- Barva pozadí Pro barevné displeje, může být tato položka zapnuta volbou Makefile LCD_CHANGE_COLOR, sloužící pro nastavení barvy pozadí. K tomu musí být nainstalováno rozšíření impulzního enkodéru. Můžete zvolit jednu ze tří barev červenou, zelenou a modrou pomocí delšího stisku tlačítka. Intenzitu vybrané barvy, označené znakem> ve sloupci 1, lze změnit otáčením enkodérem impulzů.
- Barva popředí Pro barevné displeje, může být tato položka zapnuta volbou Makefile LCD_CHANGE_COLOR, pro úpravu barvy popředí. K tomu musí být nainstalováno rozšíření impulzního enkodéru. Můžete zvolit jednu ze tří barev červenou, zelenou a modrou pomocí delšího stisku tlačítka. Intenzitu vybrané barvy, označené znakem> ve sloupci 1, lze změnit otáčením knoflíku impulzů.
- Zobrazit údaje Funkce "Zobrazit data" kromě údajů o verzi softwaru zobrazuje také údaje o kalibraci. Jedná se o přechodové odpory R0 kombinace pinů 1:3, 2:3 a 1:2. Také je změřen výstupní odpor měřících pinů proti 5V-(RiHi) a také proti 0V (RiLo). Také jsou zobrazeny hodnoty parazitní kapacity (C0) ve všech Pinových kombinacích (1:3, 2:3, 1:2 a 3:1, 3:2 2:1). Poté se také zobrazují korekce napětí komparátoru (REF_C) a pro referenční napětí (REF_R). U grafických displejů se zobrazí symboly použité pro součástky a font písma. Každá stránka se zobrazí 15 sekund. Na další stránku se také dostaneme stiskem tlačítka nebo otáčením enkodéru impulzů ve směru hodinových ručiček. Při otočení vlevo impulzního kodéru se zobrazení bude opakovat nebo přejdeme zpět na předchozí stránku.

Vypnout Pomocí dodatečné funkce "vypnout"se dá tester vypnout.

Transistor Samozřejmě že je možné s funkcí "tranzistor" (tranzistorový tester) vrátit zpět na normální funkci testeru tranzistorů.

Když je nastavena volba Makefile POWER_OFF jsou všechny přídavné funkce z důvodu úspory baterie časově omezené.

3.3 Autotest a kalibrace

Je-li v software konfigurovaná funkce Autotestu a kalibrace, může se provést samočinný test zkratováním všech tří testovacích portů a stiskem tlačítka Start. Pro zahájení autotestu musí být během 2 sekund znovu stisknuto tlačítko start, jinak začne tester s normálním měřením. Autotest provádí testy popsané v kapitole autotestu 5.5. Je-li tester konfigurován s funkcí menu (volba WITH MENU), provádí se úplný samočinný test automaticky jen při prvním použití a dále pak pouze během "autotestu", který lze vybrat jako funkci menu. Pro kalibraci jsou zkoušeny T1 až T7. Navíc se při volání funkce přes menu provádí nastavení s externím kondenzátorem. Normálně se provádí pouze při první kalibraci, tímto způsobem lze autotest se zkratovanými vstupy provádět rychleji. Čtyřnásobnému opakování testu na T1 až T7 je možné se vyhnout, pokud je trvale stisknuté tlačítko start. Takže můžete rychle ukončit nezajímavé testy a interaktivní testy můžete opakovat čtyřikrát uvolněním tlačítka start. Čtvrtý test pokračuje automaticky pouze, pokud je uvolněný zkrat mezi testovacími porty. Je-li v Makefile vybrána funkce AUTO_CAL provede autotest kalibraci nulové hodnoty pro měření kondenzátorů. Pro tuto kalibraci je důležité, aby během čtvrté zkoušky bylo zrušen zkrat mezi testovacími piny. Během kalibrace (po zkoušce 6) byste se neměli dotýkat testovacích portů, nebo připojených kabelů. Měřící kabely, by měly být stejné, které budou poté použity k měření. V opačném případě nebude vynulování správně provedeno. Při této volbě je kalibrace vnitřního odporu měřících portů provedena před každým měřením. Je-li v makefile nastavena funkce vzorkování volbou (WITH SamplingADC = 1) jsou během kalibrace provedeny navíc dva speciální kroky. Po normálním měření nulových hodnot kapacity budou změřeny také nulové hodnoty metodou odběru vzorků (C0samp). Poslední částí kalibrace je připojení zkušebního kondenzátoru pro měření cívky mezi pinem 1 a 3 což je oznámeno požadavkem na vložení kapacity 1 — 3 10-30nF(L). Hodnota kapacity by měla být mezi 10nF a 30nF, k dosažení měřitelné rezonanční frekvence v pozdějším paralelním spojení s cívkou (< 2mH). U cívky s indukčností větší než 2mH by měla být použita běžná zkušební funkce bez připojeného paralelního kondenzátoru. Paralelně připojený kondenzátor zde nezlepšuje výsledky měření. Po měření nulové kapacity je nezbytné připojit kondenzátor s kapacitou mezi 100nF a $20\mu F$ mezi Pin 1 a Pin 3. Z tohoto důvodu se v prvním řádku zobrazí požadavek na vložení kondenzátoru $1 \longrightarrow 3 > 100 \text{nF}$. Kondenzátor byste měli připojit pouze po výstupu hodnot C0 nebo po zobrazení této hlášky. S tímto kondenzátorem je proveden offset analogového komparátoru, k určení přesnějších hodnot při měření kapacit. Navíc je tímto kondenzátorem také nastaven zisk ADC s vnitřním referencí k získání lepších výsledků při měření odporů s možností AU-TOSCALE ADC. Pokud byla na testeru vybrána funkce menu (volba WITH MENU) a autotest nebyl spuštěn ve funkci menu, nastavení provede se kalibrace s externím kondenzátorem pouze při prvním zapnutím přístroje. Kalibrace s externím kondenzátorem se opakuje pouze v případě, že se provádí autotest funkcí menu. Offset pro měření ESR je přednastaven jako volba Option ESR ZERO v makefile. Při každém autotestu je nulová hodnota ESR znovu určena pro všechny tři kombinace měřících pinů. Metoda ESR měření se používá také pro odpory s hodnotami pod 10Ω, zde slouží k dosažení rozlišení $0,01\Omega$.

3.4 Důležité poznámky pro použití

Obvykle se při spuštění testeru zobrazí napětí baterie. Pokud napětí klesne pod hranici, bude za tímto textem vydáno varování. Pokud používáte dobíjecí 9V-baterii, měli byste ji co nejdříve dobít a jednorázovou baterii vyměnit. Pokud máte verzi s vestavěnou precizní referencí 2,5V ukáže se při startu na jednu sekundu naměřené provozní napětí v 2 řádku displeje "VCC=x.xxV". Nemůže být často připomínáno, že je třeba před měřením kondenzátory vybít. V opačném případě může být tester poškozený již před stiskem tlačítka Start. Při měření zapájených součástek musí být zařízení vždy vypnuto. Kromě toho se ujistěte, že v měřeném přístroji nezůstalo žádné zbytkové napětí. Všechna elektronická zařízení uvnitř obsahují kondenzátory! Při měření malých odporů je třeba vě-

novat zvláštní pozornost odporu měřících kabelů a přechodových odporů kontaktů. Kvalita a stav konektorů hrají velkou roli, stejně jako odpor měřicích kabelů. Totéž platí pro měření hodnoty ESR kondenzátorů. Se špatnými měřícími kabely s krokosvorkami se může ESR odpor z $0,02\Omega$ dosáhnout lehce hodnoty $0,61\Omega$. Pokud je to možné, připájejte měřící kabely s krokosvorkami k testovacím portům paralelně s existujícími konektory. Pak nemusí být tester, při měření malých kapacit pokaždé kalibrován, pokud měříte pomocí zkušebních kabelů, nebo bez nich. Při kalibraci nulového odporu je však rozdíl, pokud jsou testovací piny připojeny ke zkušebním svorkám přímo na základně nebo přes kabel. Pouze ve druhém případě je odpor kabelu a svorek kalibrován. Pokud máte pochybnosti, proveďte kalibraci pomocí zkratu na zkušební zásuvce a poté změřte odpor zkratovaných měřících kabelů. Neočekávejte vysokou přesnost měření, to platí zejména pro měření ESR a měření indukčnosti. Výsledky mě řady měření naleznete v kapitole 5 od stránky 63.

3.5 Problémové komponenty

Ve výsledcích měření byste měli mít vždy na paměti, že byl tester navržen pro citlivé součástky. Obvykle je maximální měřící proud pouze 6mA. Výkonové polovodiče často způsobují problémy při zjišťování, nebo měření vysokých zbytkových proudů malým měřícím proudem. Pro tyristory a triaky nejsou často dosaženy spínací, nebo přídržné proudy. To je důvod, proč je občas tyristor detekován jako NPN tranzistor, nebo dioda. Stejně tak se může stát, že některý tyristor, nebo triak nebude vůbec rozpoznán. Další Problém vzniká s detekováním polovodičů obsahujících integrované odpory, takže dioda báze-emitor BU508D tranzistoru nebyla v důsledku paralelně zapojeného vnitřního 42Ω odporu detekována. Z toho plyne, že zde funkce tranzistoru nemůže být testovaná. Problémy s rozpoznáním jdou často také u výkonových tranzistorů Darlington. Tady je také často vestavěný odpor mezi bází a emitorem, které komplikují detekci kvůli nízkým měřicím proudům, které se zde používají.

3.6 Měření PNP- a NPN- transistorů

Obvykle lze tranzistor zapojit k měřicím vstupům testeru v libovolném pořadí. Po stisknutí tlačítka Start tester zobrazí v 1 řádku typ (NPN nebo PNP) případně vestavěnou ochrannou diodu mezi kolektorem a emitorem a přiřazení pinů. Symbol diody je zobrazen se správnou polaritou. 2 řádek zobrazuje aktuální zesilovací činitel B nebo hFE a proud, kterým bylo zesílení měřeno. Pokud je k měření zesílení použito zapojení se společným emitorem, měří se proud kolektoru Ic. Při měření zesilovacího činitele v zapojení se společným kolektorem (emitorový sledovač) se měří proud emitoru Ie. Další parametry jsou na dvouřádkovém displeji jeden po druhém zobrazeny ve 2 řádku. U displejů s více řádky se používají další řádky až do posledního. Je li použít i poslední řádek, jsou zde postupně zobrazeny také další parametry. Pokud jsou k dispozici další parametry, zobrazí se na konci posledního řádku znak +. Další hodnota se také automaticky zobrazí stisknutím tlačítka nebo po uplynutí čekací doby. V každém případě je dalším parametrickým výstupem prahové napětí báze-emitor Ube, kde je měřen zesilovací činitel. Pokud je měřitelný, závěrný proud otevřeného základního kolektoru bude také I_{CE0} a se zkratovanou bází I_{CES} . Pokud je integrovaná ochranná dioda, tak se jako poslední parametr zobrazí její úbytek napětí Uf. V obvodu se společným emitorem má tester pouze dvě možnosti nastavení proudu báze:

1. S odporem 680Ω je výsledný proud báze asi 6,1mA.

To je pro malý signální tranzistor s vysokým zesilovacím činitelem obvykle příliš mnoho a je báze nasycená.

Vzhledem k tomu, že kolektorový proud je také měřen pomocí odporu 680Ω nemůže při vysokém zesilovacím činiteli dosáhnout vyššího proudu kolektoru.

Verze softwaru Markus F. měří v tomto stavu napětí báze-emitor (Uf=...).

2. S odporem $470k\Omega$ při kterém je vychází proud báze pouze $9, 2\mu A$. To je pro výkonový tranzistor s nízkým zesílením moc málo. Verze softwaru Markus F. měřila proudový zesilovací činitel v obvodu (hFE=...).

Software testeru měří zesílení i v zapojení se společným kolektorem. Zobrazena je vyšší hodnota z obou měřících metod. Zapojení se společným Kolektorem má tu výhodu, že proud báze snižuje proudová zpětná vazba, jejíž velikost odpovídá zesilovacímu činiteli tranzistoru. To umožňuje pro výkonové tranzistory s odporem 680Ω a pro Darlingtonové tranzistory s odporem $470k\Omega$ měření obvykle s výhodnějším měřicím proudem. Výstupní prahové napětí výstupu báze-emitor Ube je nyní napětí což bylo měřeno při stanovení současného faktoru zesílení. Pokud chcete zjistit prahové napětí báze-emitor proudem asi 6mA musíte kolektor odpojit od testeru a měřit znovu. Poté bude zobrazeno prahové napětí přibližně při 6mA proudi a také bude změřena kapacita diody v závěrném směru. Samozřejmě lze takto měřit i diodu báze-emitor. V případě germaniových tranzistorů je obvykle změřen také zbytkový proud kolektoru s I_{CE0} s bezproudovou bází nebo zbytkový proud kolektoremitor I_{CES} s bází na potenciálu emitoru. Pouze pro ATmega328. Tyto hodnoty se zobrazí po dobu 5 sekund na druhém řádku displeje, nebo po stisku tlačítka před zobrazením zesilovacího činitele. Ochlazení může zbytkový proud u germaniových tranzistorů výrazně snížit.

3.7 Měření JFET- a D-MOS- transistorů

Vzhledem k symetrickému provedení tranzistorů JFET nelze rozlišit elektrody S a D. Jeden parametr JFET specifikuje proud se zkratovanými elektrodami D a S. Tento proud je však často vyšší než proud, kterého lze dosáhnout v měřícím obvodu s 680Ω odporem. Proto je elektroda S připojena přes odpor 680Ω . Tím je zavedena záporná zpětná vazba elektrody G. Tester také měří proud elektrody S a strmost napětí Gate. Tímto je možné rozlišit různé typy. Pro tranzistory D-MOS (ochuzovací typ) se používá stejná metoda měření.

3.8 Měření E-MOStTransistorů a IGBTs

Měli byste vědět že u tranzistorů MOS (P-E-MOS nebo N-E-MOS) je měření prahového napětí Gate (Vth) z důvodu nízké kapacity obtížné. Zde je možné pomocí testeru změřit přesnější hodnoty napětí, pokud připojíte kondenzátor s hodnotou řádově nF paralelně mezi elektrody gate-source. Prahové napětí je změřeno při unikajícím proudu, pro P-E-MOS kolem 3,6mA a pro N-E-MOS cca při 4mA. RDS odpor, nebo lépe $R_{\rm DSon}$ u E-MOS transistorů je měřen napětím gate-source téměř 5V, což pravděpodobně není nejnižší hodnota. Kromě toho je odpor RDS určen při nízkém výstupním (drain) proudu, který omezuje rozlišení hodnoty odporu. Často s IGBT a někdy s MOS tranzistory, dostupné napětí testeru 5V nestačí pro ovládání gate tranzistoru. V takovém případě pro detekování pomůže baterie cca 3V a umožní měření s testerem. Baterie je připojena jedním pólem ke gate tranzistoru a druhý pól je připojen k portu (TP) testeru místo gate tranzistoru. Pokud je polarita baterie správná, připočítá se napětí baterie k řídícímu napětí přístroje a Detekce tranzistoru je úspěšná. Samozřejmě, že napětí baterie musí být pro změření správného prahového napětí pro tuto komponentu přičteno k uvedenému prahovému napětí.

3.9 Měření kondenzátorů

Hodnoty kapacit jsou vždy vypočítávány z časové konstanty vyplývající ze sériového zapojení vestavěných odporů s kondenzátorem při jeho nabíjení. U menších kondenzátorů jsou použity pro měření

času odpory $470k\Omega$ a měří se čas nutný k dosažení prahového napětí. U větších kondenzátorů s nějakými $10\mu F$ se zvyšuje napětí kondenzátoru po nabití impulsy s 680Ω odpory měří a výpočte kapacita. Velmi malé kapacity lze měřit metodou vzorkování ADC. Proces nabíjení je znovu a znovu generován a naskenován posunutím času ADC S&H s časovým intervalem, což je výsledkem hodinové frekvence procesoru. Kompletní konverze ADC však vyžaduje 1664 procesorových taktů! Dojde k výpočtu až 250 hodnot ADC a kapacita se vypočítá z křivky napětí. Pokud byla v souboru Makefile vybrána funkce vzorkování ADC, všechny kondenzátory < 100pF budou měřené metodou vzorkování S ADC [C]. Rozlišení je až 0.01pF při 16MHz. Odpovídající nulová kapacita je při tomhle rozlišení zvlášť přesná. Metoda odběru vzorků ADC pro stanovení kapacity byla vždy použita při rozlišení 1pF. Mimochodem, touto metodou může být měřena také kapacita jednotlivých diod. Protože metoda Kapacity měří jak při nabíjení, tak při vybíjení, jsou uvedeny dvě kapacitní hodnoty, protože kvůli vlivu kapacity diody, jsou obě hodnoty rozdílné.

3.10 Měření cívek

Metoda použitá k měření indukčnosti spočívá v určení časové konstanty nárůstu proudu. Pokud je odpor cívky menší než 24Ω je nejnižší měřitelná hodnota 0.01mH. Pro větší hodnoty odporu indukčnosti je rozlišení pouze 0.1mH. Pro hodnoty odporu nad $2.1k\Omega$ nelze tuto metodu použít. Výstupní hodnoty běžného měření se objevují ve druhém řádku (odpor a indukčnost). Metodou vzorkováníADC lze stanovit přirozené rezonance pro větší hodnoty cívky. Pokud je změřeno, tak budou k běžnému měření na 3 řádku zobrazeny také rezonanční frekvence a třída jakosti Q. Navíc může být pro měření indukčnosti použita metoda rezonanční frekvence, pokud je paralelně k cívce s nízkou indukčností (<2mH) připojen dostatečně velký kondenzátor se známou kapacitou. Kvůli paralelně zapojenému kondenzátoru je nemůže běžné měření dobře fungovat. Pokud rezonanční frekvence akceptuje paralelně připojený kondenzátor, očekávaná hodnota odporu se ukáže v prvním řádku. Také v tomto případě se vypočítává činitel jakosti Q a je zobrazen za hodnotou frekvence v řádku 3. Pro tento případ je vypočtená indukčnost uvedena na prvním místě druhého řádku. Za ním stojí text "if "následovaný kapacitní hodnotou paralelního kondenzátoru. Hodnota tohoto kondenzátoru může být aktuálně určena jen při kalibraci testeru (1 —1 3 10-30nF(1). U dvouřádkových displejů se obsah třetího řádku zobrazuje s časovým zpožděním ve 1 řádku.

Kapitola 4

Programování testeru

4.1 Konfigurace testeru

Veškerý software testeru je k dispozici ve zdrojovém kódu. Překlad modulů je řízen pomocí Makefile. Vývoj byl proveden na Ubuntu Linux s nástroji GNU (GNU toolchain, gcc verze 4.5.3).

Je jistě lehce možné, používat jiné operační verse Linuxu. Načtení přeložených dat do paměti flash nebo do paměti EEPROM je provedeno programem 'avrdude' [14] (Version 5.11svn) při použití Makefile volbou make upload .

Program 'avrdude' je k dispozici pro Linux a Windows. Kompilátor GNU C je také používán softwarem AVR studio v systému Windows pomocí softwaru WinAVR [18],[19].

Můžete také načíst programová data (.hex a .eep) s jinými programy do ATmega, ale pouze moje Makefile verze zajišťuje, že se dostanou správná data do zvoleného procesoru.

'avrdude ' načítá data do ATmega pouze tehdy, pokud jsou bajty podpisu připojené ATmegy stejné jako vybrané. Pokud změníte Makefile , bude software kompletně přeložen, pokud zvolíte make nebo make upload .

Software, který byl přeložen pro ATmega8, nefunguje na ATmega168 a software, který byl přeložen pro ATmega328, nefunguje na ATmega168.

Výjimkou je software, který byl přeložen pro ATmega 168. Tyto soubory programu jsou také užitečné pro ATmega 328. Dávejte pozor, při použití jiné, než s testerem dodané Makefile . S příslušnými možnostmi je software také založen na nezměněném návrhu hardwaru Markus F. spustitelný (PARTNO=m8 , ne NO_AREF_CAP a ne možnost PULLUP_DISABLE). Taktová frekvence může být také nastavena pojistkami (fuses) na 8MHz, pak není nutný krystal!

K konfiguraci softwaru pro tester jsou k dispozici následující volby v Makefile:

PARTNO popisuje cílový Procesor:

m8 = ATmega8 m168 or m168p = ATmega168 m328 or m328p = ATmega328 m644 or m644p = ATmega644 m1284p = ATmega1284 m1280 = ATmega1280 m2560 = ATmega2560 Příklad: PARTNO = m168

UI_LANGUAGE volba možné řeči pro tester:

LANG_BRASIL, LANG_CZECH, LANG_DANISH, LANG_DUTCH, LANG_ENGLISH, LANG_GERMAN, LANG_HUNGARIAN, LANG_ITALIAN, LANG_LITHUANIAN, LANG_POLISH, LANG_RUSSIAN, LANG_SLOVAK, LANG_SLOVENE,

- LANG_SPANISH, und LANG_UKRAINIAN lze nyní použít. Ruské a ukrajinské jazyky vyžadují LCD s cyrilikou.
- $Příklad: UI_LANGUAGE = LANG_ENGLISH$
- **LCD_CYRILLIC** je potřeba pouze při použití displeje s cyrilickým charakterem. Znaky μ a Ω nejsou zahrnuty v cyrilické znakové sadě. Pokud tuto možnost určíte, oba znaky budou načteny do LCD softwaru. Tuto volbu nastavíte, pokud se ve výstupu namísto μ nebo Ω objeví nesprávné znaky.

Příklad: CFLAGS += -DLCD CYRILLIC

- LCD_DOGM musí být zadán, když používáte displej s ovladačem ST7036 (typ DOG-M). Kontrast LCD se pak nastavuje pomocí softwarových příkazů. Pokud jste nastavili příliš velký kontrast, displej nezobrazuje nic, Nejdříve se mohou pokusit zjistit, jestli je při pohledu na obrazovku ze strany něco vidět. jinak by měl být EEprom přepisován, aby se změnila hodnota kontrastu. Příklad: CFLAGS += -DLCD DOGM
- **FOUR_LINE_LCD** lze použít na displeji 4x20 znaků pro lepší využití místa na displeji. Další parametry, které se jinak zobrazují pouze krátce na 2 řádku, jsou zobrazeny v na řádcích 3 a 4. Příklad: CFLAGS += -DFOUR_LINE_LCD
- **DD_RAM_OFFSET** U některých textových zobrazení se rozlišují počáteční adresy DD-RAM pro začátek řádku. Normálně začíná první řádek na adrese DD-RAM 0. U některých zobrazení jako TC1604 nebo TC1602 začíná 1 řádek, ale na adrese 128 (0x80). Tuto možnost lze zvážit. Příklad: CFLAGS += -DDD RAM OFFSET = 128
- WITH_LCD_ST7565 Tato volba musí být použita při použití sériového LCD displeje o velikosti 128x64 pixelů. Pro tento typ zobrazení je třeba nastavit další volby, které lze nalézt v tabulcee 4.1. Namísto ovladače ST7565 lze například nakonfigurovat podobný řadič SSD1306. V tom případě musí být volba nastavena na 1306. Ovladač PCF8812 nebo PCF8814 je také podporován, pokud je tato možnost nastavena správně. Může být také připojen displej s řídicím systémem ST7920 nebo NT7108. Pro regulátor NT7108 musí být použít další sériový měnič 74HC (T) 164 nebo 74HC (T) 595.

Příklad: WITH LCD ST7565 = 1

LCD_INTERFACE_MODE U řídicí jednotky SSD1306 je možné nahradit standardní SPI rozhraní (4-Wire) za rozhraní I²C. Tato volba musí být nastavena na hodnotu 2. U ovladače regulátoru ST7920 lze nastavit speciální sériový port s touto volbou nastavenou na hodnotu 5 je podporován. Je-li k dispozici pouze jedna možnost připojení, nemusí být nastaven konstantní LCD_INTERFACE_MODE Všechny doposud možné hodnoty pro LCD WITH LCD ST7565 a

LCD_INTERFACE_MODE jsou uvedeny v tabulce 4.1.

Display-Typ	Interface	WITH_LCD_ST7565	LCD_INTERFACE_MODE
Character 16x2,	4-Bit parallel	disabled (0)	disabled (1)
Character 20x4	4-Bit SPI		4
	I^2C		2
Graphic ST7565	4-Bit SPI	1 or 7565	disabled (4)
Graphic ST7565	I^2C	1 or 7565	2
Graphic SSD1306	4-Bit SPI	1306	disabled (4)
Graphic SSD1306	I^2C	1306	2
Graphic ST7920	4-Bit parallel	7920	disabled (1)
Graphic ST7920	2-Bit serial	7920	5
Graphic NT7108	8-Bit parallel	7108	disabled (6)
oder KS0108	+ 74HCT164		
Graphic PCF8812	SPI	8812	disabled (4)
Graphic PCF8814	SPI	8814	disabled (4)
	I^2C	8814	2
	3-line	8814	3
Graphic ILI9163	SPI	9163	disabled (4)
128x128 Color			
Graphic ST7735	SPI	7735	disabled (4)
128x160 Color			

Tabulka 4.1. Klíčové údaje pro typ řadiče a rozhraní

Hodnoty v závorkách jsou interně používány pouze softwarem a jsou zde uvedeny pouze pro informaci. Hodnoty v závorce byste neměli zadávat v Makefile .

Příklad: CFLAGS += -DLCD INTERFACE MODE=2

LCD_SPI_OPEN_COL Pomocí volby LCD_SPI_OPEN_COL se datové signály SPI rozhraní nepřepínají na VCC. Signály se přepínají pouze na GND, pro "high" signály se přepínají na "Pull-Up" odpory od ATmega. Pro "Reset" signál je však vyžadován externí odpor, pokud je volba PULLUP_DISABLE nastavena. Pro ostatní signály SPI jsou dočasně použity interní "Pull-Up" odpory v mcu, pokud je nastavena volba PULLUP_DISABLE.

Příklad: CFLAG += -DLCD SPI OPEN COL

LCD_I2C_ADDR Die I²C-adresa ovladače SSD1306 lze nastavit přednastavením adresy LCD_I2C_ADDR na předem zvolenou adresu nastavit.

Příklad: CFLAGS += -DLCD I2C ADDR=0x3d

LCD_ST7565_RESISTOR_RATIO Tato volba nastaví poměr děliče odporu pro Regulátor napětí regulátoru ST7565. Užitečné hodnoty jsou obecně mezi 4 a 7. Můžete nastavit hodnoty mezi 0 a 7.

Příklad: LCD ST7564 RESISTOR RATIO = 4

LCD_ST7565_H_FLIP Tato volba umožňuje otočit displej vodorovně.

Příklad: CFLAGS += LCD ST7565 H FLIP = 1

LCD_ST7565_H_OFFSET Tato volba může přizpůsobit pamět použitou pro výstupné okno displeje. Řídicí jednotka používá více horizontálních pixelů (132) než je zobrazeno (128). V závislosti na použitém zobrazovacím modulu může být pro správné zobrazení nutné použít hodnotu 0, 2 nebo 4.

Příklad: CFLAGS += LCD_ST7565_H_OFFSET = 4

LCD ST7565 V FLIP Tato volba umožňuje otočit displej svisle.

Příklad: CFLAGS += LCD ST7565 V FLIP = 1

VOLUME_VALUE Zde můžete nastavit hodnotu kontrastu pro ovladač ST7565 nebo SSD1306. Hodnota může být pro regulátor ST7565 mezi 0 a 63. Pro regulátor SSD1306 jsou povoleny hodnoty mezi 0 a 255

Příklad: CFLAGS += -DVOLUME_VALUE = 25

LCD_ST7565_Y_START Pomocí této volby může být první řádek nastaven svisle správně. Pro některé varianty zobrazení je první řádek posunut do středu obrazu. Tyto displeje přesouvají první řádek zpět nahoru pokud je tato možnost nastavena na hodnotu 32 (výška poloviny obrazovky).

Příklad: CFLAGS += -DLCD_ST7565_Y_START = 32

- LCD_CHANGE_COLOR Tato volba doplňuje možnosti nabídky na možnost zvolit barvu pozadí a barvu popředí. Je-li tato volba zapnutá je nastaveno na 2, jsou barvy modrá a červená zaměněny. Tuto volbu lze vybrat pouze pro barevné displeje (řadič ST7735 nebo ILI9193). Příklad: CFLAGS += -DLCD_CHANGE_COLOR=1
- LCD_BG_COLOR Toto 16 bitové číslo lze použít k výběru barvy pozadí. Obvykle jsou horní 5 bitů pro barvu červenou, střední 6 bitů pro zelenou barvu a nižší 5 bitů je určeno pro modrou barvu. Někdy jsou ale bity pro barvy červenou a modrou obráceny. Tuto volbu lze vybrat pouze pro barevné displeje (řadič ST7735 nebo ILI9193).

Příklad: CFLAGS += -DLCD_BG_COLOR=0x000f

LCD_FG_COLOR Toto 16 bitové číslo umožňuje vybrat barvu popředí. Příklad vybírá bílou barvu textu a symbolů. Tuto volbu lze vybrat pouze pro barevné displeje (řadič ST7735 nebo ILI9193).

Příklad: CFLAGS += -DLCD FG COLOR=0xffff

FONT_8X16 Mělo by být vybráno písmo pro řadič ST7565. Písma lze volit s proměnnou FONT_ s připojenou velikostí (šířka x výška). V současné době jsou k dispozici 6X8, 8X8, 7X12, 8X12, 8X12thin, 8X14 8X15, 8X16 a 8X16thin. Velikost písma 8x16 nebo 8x16thin je nejúčinnější volbou pro grafický LCD displej 128x64.

Příklad: CFLAGS += FONT 8X16

- **BIG_TP** Die Čísla pinů TP 1, 2 a 3 na grafickém displeji se mohou zobrazit s touto volbou větší. Příklad: CFLAGS += BIG TP
- INVERSE_TP S touto volbou jsou čísla pinů v grafické reprezentaci zobrazena inversně (černá na bílém). Vzhledem k tomu, že pro vykreslování je potřeba okraj, nelze tuto možnost kombinovat s volbou BIG_TP

Příklad: CFLAGS += INVERSE_TP

STRIP_GRID_BOARD Tato možnost přizpůsobí software jinému zapojení portu D pro (experimentální) desky plošných spojů. Podrobnosti naleznete v hardwarové kapitole 2.1 na stránce 9. Pomocí této volby jsou také vybrány alternativní přiřazení pinů ATmega pro grafické zobrazení. Pro desku čínské "T5" musí být volba STRIP_GRID_BOARD nastavena na 5.

Při alternativách grafických zobrazení zůstává přiřazení signálu tlačítka nezměněno.

Příklad: CFLAGS += -DSTRIP_GRID_BOARD

- WITH_MENU aktivuje funkci menu pro ATmega328. Můžete provést některé další funkce výběru nabídky, dlouhým stiskem (> 0,5s) tlačítka. Když je funkce menu zapnuta, a jsou, při startu auto-testu, testovacími piny zkratované, bude provedena pouze kalibrační část autotestu. Testy T1-T7 se provádějí pouze během samočinného testu, který lze zvolit jako funkci menu. Příklad: CFLAGS += -DWITH MENU
- MAX_MENU_LINES Tato volba určuje maximální počet řádků pro výběr zobrazených funkcí menu. Proto-že lze vybrat více funkcí než je dostupných řádků, je výběr cyklicky vyměňován. Na přípravu obsahu displeje pro cyklickou výměnu je, zejména u velkých barevných displejů s

mnoha řádky, potřeba značného času. Omezení počtu řádků s touto volbou může výrazně snížit výstupní dobu během výběru nabídky a tak urychlit operaci. Výchozí Hodnota této možnosti je 5.

Příklad: CFLAGS += -DMAX_MENU_LINES=3

WITH_ROTARY_SWITCH Funkce menu lze lépe ovládat, při použití snímače pulzů (encoder) jako rozšíření. Podrobné informace o nezbytném rozšíření najdete v popisu kapitoly hardwaru v popisu 2.6. Pokud má snímač impulzů stejný počet pozic blokování jako impulsy pro každou otáčku, musí být volba WITH_ROTARY_SWITCH nastavena na hodnotu 2. Pokud má snímač impulzů dvakrát tolik impulsů, musí být volba WITH_ROTARY_SWITCH nastavena na hodnotu 1. Nastavení volby _WITH_ROTARY_SWITCH na hodnotu 5 zvolí nejvyšší rozlišení impulzního snímače. Každý cyklus dvou stavů spínače se počítá jako 4. Toto nastavení dává smysl pouze pro pulsní rotační snímač bez blokovací polohy. Nastavením možnosti WITH_ROTARY_SWITCH na 4 je nutná správná manipulace se dvěma oddělenými tlačítky, nahoru (Up) a dolů (Down), instalované namísto dvou spínačů impulzního snímače. Nepoužívejte nastavení 4 s normálními snímači impulzů!

Příklad: CFLAGS += -DWITH ROTARY SWITCH=1

CHANGE_ROTARY_DIRECTION Můžete zaměnit detekovaný směr otáčení snímače impulzů bud změnou spínacích signálů nebo nastavením této možnosti.

Příklad: CFLAGS += -DCHANGE ROTARY DIRECTION

WITH_SELFTEST Pokud zadáte tuto možnost, software vytvoří funkci automatického testu, která se spustí, pokud propojíte všechny tři sondy a spustíte měření.

Příklad: CFLAGS += -DWITH SELFTEST

NO_COMMON_COLLECTOR_HFE zabraňuje měření HFE tranzistorů v kolektorovém obvodu. To vám umožňuje šetřit paměť, abyste povolili rozšířené samočinné testy T1 až T7 pro procesor ATmega168. Ve výchozím nastavení jsou obě obvody zapnuty pro měření hFE, ale v programové paměti ATmega168 není žádný prostor pro rozšířené samočinné testy.

Příklad: CFLAGS += -DNO COMMON COLLECTOR HFE

NO_COMMON_EMITTER_HFE vypne měření hFE tranzistorů připojených k emitorům. To vám umožňuje šetřit pamět, abyste povolili rozšířené samočinné testy T1 až T7 pro procesor ATmega168. Ve výchozím nastavení jsou obě obvody zapnuty pro měření hFE, ale v programové paměti ATmega168 není žádný prostor pro rozšířené samočinné testy.

 $P\check{r}iklad: CFLAGS += -DNO_COMMON_EMITTER_HFE$

NO_TEST_T1_T7 Tato možnost zabrání provedení samo-testů dílů T1 až T7. Tyto testy jsou užitečné pro chyby v obvodu, jako je nesprávné hodnoty měřicích odporů nebo izolační problémy najít. Pokud je váš obvod bez chyb, můžete vynechat T1 T7 self-test dílů nastavení tímto parametrem k dosažení rychlejší kalibrace. Je-li tato funkce zapnutá, provádí se samo-test dílů T1 až T7 pouze při volání funkce "Autotest" v menu. ATmega168 procesor nepoužívá self-test díly T1 T7, kdy se používají oba způsoby měření pro stanovení hFE.

Příklad: CFLAGS += -DNO_TEST_T1_T7

- AUTO_CAL nulování pro měření kondenzátorů je při auto-testu zapsáno do paměti EEPROM, a tímto je připraven pro další kalibraci. Pokud se po nulové kalibraci kondenzátor s kapacitou mezi 100nF a $20\mu F$ na kontakty 1 a 3 připojen, je také určen ofset analogového komparátoru a měřítka pro AUTOSCALE_ADC přepnutí na referenční vnitřní napětí a zapíše do paměti EEPROM. Odpory výstupního portu jsou vždy na začátku každého měření znova určeny. Příklad: CFLAGS += -DAUTO_CAL
- SHORT_UNCAL_MSG Pro procesory s minimálně 32K flash, je po ukončení testu součástky, vydané upozornění na nekalibrovaný stav testeru. Obvykle následuje krátký průvodce, jak provést kalibraci. Tyto pokyny se nezobrazují, pokud je nastavena možnost SHORT UNCAL MSG.

Pak zůstává s jen odkaz na nekalibrovaný stav. Tím ušetříte prostor na jedné straně ve flash paměti a na druhé straně čas strávený pro uživatele, kteří stejně vědí jak kalibrovat.

Příklad: CFLAGS += -DSHORT_UNCAL_MSG

NO_ICONS_DEMO Tato volba vypíná další zobrazení symbolů a výstup znakové sady v nabídce "Zobrazit data". To šetří místo ve flash paměti a také výstupní čas pro uživatele.

Příklad: CFLAGS += -DNO ICONS DEMO

WITH_ROTARY_CHECK Tato volba odemkne další funkci menu pro testování snímače impulzů. Tato zkouška testuje pulsní snímač připojený k TP1, TP2 a TP3. Takový impulsní rotační snímač může být také použit k ovládání testeru s volbou WITH_ROTARY_SWITCH. Vezměte prosím na vědomí, že nezkoušíte vestavěný impulsní snímač testeru!

Příklad: CFLAGS += -DWITH_ROTARY_CHECK

- NO_FREQ_COUNTER Pomocí této volby je funkce čítače kmitočtu vypnuta. To je obzvláště užitečné, pokud použitý pin PD4 (ATmega328) nelze použít společně s připojeným displejem. Odpovídající položka v seznamu funkcí menu se již dále nezobrazuje a je také uložena na flash. Příklad: CFLAGS += -DNO FREQ COUNTER
- WITH_FREQUENCY_DIVIDER Touto volbou je nabídka rozšířena o nastavitelný před dělič (prescaler) pro čítač frekvencí. Poměr děliče lze nastavit na 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 a 1:128. Tato volba je užitečná pouze tehdy, pokud je k frekvenčnímu vstupu připojen externí před dělič. Frekvence a doby zobrazované během měření berou v úvahu nastavený poměr před děliče.

Příklad: CFLAGS += -DWITH_FREQUENCY_DIVIDER

WITH_SamplingADC Tato funkce používá metodu vzorkování S ADC v určitých případech. Přemístěním doby vzorkování ADC, pro opakovatelné signály, může být průběh křivky rozložen jednou skenován každým taktem procesoru nebo za 4 i 16 procesorových taktů. To umožňuje, že funkce nabíjení kondenzátorů pod 100pF je měřena tak, aby rozlišení u 0.01pF bylo dosaženo při procesorovém taktu mcu 16MHz. Stejnou metodou je možné měření rezonanční frekvence pro malé cívky pod 2mH s paralelně zapojeným kondenzátorem. Je-li kapacita paralelního kondenzátoru známa, může se indukčnost vypočítat z rezonanční frekvence s vysokým rozlišením. Jako vedlejší produkt může být odhadnutá kvalita cívky z chování resonance. Tyto funkce jsou povoleny pomocí možnosti WITH_SamplingADC. Během kalibrace jsou kromě toho stanoveny jak nulové kapacity, tak metoda vzorkování, stejně jako kapacita paralelního kondenzátoru pro pozdější vytvoření rezonančního obvodu s neznámou cívkou.

Příklad: WITH Sampling ADC = 1

WITH_XTAL Tato možnost také umožňuje testy na krystal a rezonátory, jestliže již existuje funkce SamplingADC a použije se 16 MHz krystal (OP_MHZ = 16). Je-li to možné, určují se frekvence pro sériové a paralelní obvody a pak se zkouší určení sériové kapacity Cm z frekvenčního posunu.

Příklad: CFLAGS += -DWITH XTAL

WITH_UJT Tato volba umožňuje další testy pro tranzistory unijunction. Když byla odemčena funkce SamplingADC, zkoumá se vibrační schopnost komponentu. Ale i bez funkce SamplingADCC bude komponenta správně rozpoznána. Bez volby WITH_UJT budou UJT tranzistory rozpoznány jako dvojitá dioda.

Příklad: CFLAGS += -DWITH UJT

WITH_PUT Tato volba umožňuje další testy pro tranzistory unijunction "Programírbáre unijunction transistor". Bez tohoto testu jsou PUTs normálně poznané jako bipolární tranzistory (Bipolar Junction Transistor).

Příklad: CFLAGS += -DWITH PUT

- **FET_Idss** Tato volba způsobí další měření pro výpočet odtokového proudu Idss, pokud odhad není výše 60mA. Odhad a výpočet se provádí s předpokládaným kvadratickým proudovým profilem. Příklad: CFLAGS += -DFET_Idss
- **FREQUENCY_50HZ** Na konci samo-testu bude na portu 2 a 3 generován signál 50Hz po dobu až jedné minuty. Tato možnost by měla být použita pouze ve výjimečných případech. Příklad: CFLAGS += -DFREQUENCY 50HZ
- **CAP_EMPTY_LEVEL** Tato volba nastavuje napětí (mV) pro vybitý kondenzátor. Hodnota může být nastavena na hodnotu vyšší než 3mV pokud se vybíjení nedokončí. V tomto případě tester hlásí po dlouhé době "Cell!".

Příklad: CFLAGS += -DCAP EMPTY LEVEL=3

WITH_AUTO_REF Tato volba měří referenční napětí na aktuální faktor pro měření kapacity menších kapacit (pod $40\mu F$).

Příklad: CFLAGS += -DWITH AUTO REF

REF_C_KORR určuje posun pro čtené referenční napětí v jednotkách mV. To lze použít pro nastavení kapacitního měření malých kondenzátorů. Navíc, pokud je vybrána možnost AUTO_CAL je to jen další offset pro nalezený ofset komparátoru. Hodnota 10 dává zhruba o 1 procent menší čtení.

Příklad: CFLAGS += -DREF C KORR=14

REF_L_KORR poskytuje dodatečný ofset referenčního napětí pro měření indukčnosti v jednotkách mV. Nalezený REF_C_KORR ofset případně nalezený ofset během kalibrace je vzatý v úvahu při měření indukčnosti. Hodnota REF_L_KORR se odečte pro měření bez 680Ω odporu, Pro měření s jedním 680Ω odporem je k hodnotě přidána. Hodnota 10 vede k 1 procentní změně výsledku.

Příklad: CFLAGS += -DREF_L_KORR=40

C_H_KORR Se používá pro nastavení kapacitního měření velkých kondenzátorů. Hodnota 10 dává zhruba o 1 procent menší výsledek.

Příklad: CFLAGS += -DC H KORR=10

WITH_UART používá pin PC3 pro výstup sériových textů (V24). Pokud volba není zvolena, je možné použít pin PC3 k připojení externího napětí s děličem odporu 10:1. Tak mohou být například testovány Zenerovy diody s vyšším Zenerovým průlomovým napětím Toto měření se opakuje při přibližně 3 měření za sekundu, pokud je stisknuto tlačítko start.

Příklad: CFLAGS += -DWITH UART

TQFP_ADC6 Při použití ATmega v plášti TQFP nebo QFN, používá tato volba další pin (ADC6), místo pinu PC3 (ADC3). To umožňuje použití tohoto vstupu nezávisle na sériovém výstupu na pinu PC3. Tento pin bude pak se používán pro měření zenerových diod a pro měření externího napětí prostřednictvím ATmega328 dialogu.

Příklad: CFLAGS += -DTQFP_ADC6

TQFP_ADC7 Tato volba používá místo PC3 (ADC3) doplňkový vchod (ADC7) při použití AT-mega v plášti TQFP nebo QFN. To umožňuje použití tohoto vstupu nezávisle na sériovém výstupu na pinu PC3. Pokud je tato volba udělena bez použití možnosti TQFP_ADC6 bude pakt tento pin používán, jak pro měření Zenerových diod, tak i pro měření externího napětí prostřednictvím ATmega328 dialogu. Je-li tato volba nastavena vedle možnosti TQFP_ADC6, provádí se měření zenerových diod pomocí pinu ADC6 a pomocí dialogu volitelné měření napětí lze oba vstupy měřit. Oba piny by pak měly být připojeny k děliči napětí 10:1.

Příklad: CFLAGS += -DTQFP ADC7

WITH_VEXT umožňuje měřit externí napětí přes dělič napětí 10:1. Pro ATmega168 nebo ATmega328 se běžně používá pin PC3, pokud není zvolená možnost TQFP ADC6 nebo TQFP

ADC7. Tuto možnost lze použít pouze tehdy, pokud není nastavena možnost WITH_UART. Příklad: CFLAGS += -DWITH VEXT

RMETER_WITH_L volí funkci měření odporu, která, spuštěna odporem na TP1 a TP3, měří kromě toho i indukčnosti. Provozní režim je pak pomocí [RL] označen, a zobrazen na konci prvního řádku displeje. Vzhledem k dodatečnému testu indukčnosti se doba měření pro odpory pod 2100Ω značně prodlouží. Bez této možnosti nejsou, kromě toho, odpory pod 10Ω měřeny metodou ESR, protože nelze na součástce vyloučit indukčnost. Kvůli krátkým proudovým impulsům nelze pomocí metody ESR měřit žádnou indukčnost. Protože pouze s metodou ESR je možné, dosáhnout 0.01Ω rozlišení, činí, bez této funkce, pro odpory pod 10Ω rozlišení pouze 0.1Ω . Je-li tato možnost nastavena, tato omezení neplatí, ale měření může trvat déle.

Příklad: CFLAGS += -DRMETER_WITH_L

AUTOSCALE_ADC zapne automatické nastavení ADC (buď VCC nebo interní referenci). Interní reference má 2,56V pro ATmega8 a 1,1V pro ostatní procesory. ATmega8 už nepoužívá autoranging.

Příklad: CFLAGS += -DAUTOSCALE ADC

ESR_ZERO určuje nulovou hodnotu ESR měření kondenzátorů. Předdefinovaná nulová hodnota je nahrazena hodnotami nuly pro všechny tři pinové kombinace, které byly stanoveny během samočinného testu. Tyto nulové hodnoty se odečítají od naměřených hodnot.

Příklad: CFLAGS += -DESR ZERO=29

NO_AREF_CAP říká softwaru, že jste nepřipojili kondenzátor na pin AREF (pin 21). To umožňuje kratší čekací doby pro přepnutí ADC na AUTOSCALE_ADC. 1nF kondenzátor byl v tomto režimu testován bez chyby. Obrázky 4.1a a 4.1b ukazují spínací časy kondenzátorem 1nF. Jak vidíte, přepnutí z 5V na 1, 1V je mnohem pomalejší než návrat k 5V. Pokud máte ještě nainstalován jiný (100nF) kondenzátor, je přepínací čas o faktor 100 delší!

Příklad: CFLAGS += -DNO_AREF_CAP

Obrázek 4.1. Přepnutí z AREF při použití 1nF kondenzátoru

REF_R_KORR určuje ofset vnitřního referenčního napětí v jednotkách mV. S tímto ofsetem může být nastaven rozdíl v přepínání referenčního napětí při měření odporu. Pokud byla vybrána volba AUTO_CAL je tato hodnota pouze ofset k rozdílu napětí nalezenému ve funkci AUTO_CAL.

Příklad: CFLAGS += -DREF_R_KORR=10

OP_MHZ informuje software o tom, s jakou frekvencí v MHz bude tester pracovat. Software je zkoušena pouze s 1MHz, 8MHz a také s 16MHz.

Provoz s 8MHz je pro lepší rozlišení při měření kondenzátorů a cívek doporučen.

Příklad: $OP_MHZ = 8$

RESTART_DELAY_TICS musí být nastaven na 6, pokud je ATmega168 nebo ATmega328 v provozu bez krystalu s RC Generátorem. Pokud tato hodnota není přednastavena, zvolí software 16384 taktů zpoždění startu krystalové operace.

Příklad: CFLAGS += -DRESTART_DELAY_TICS = 6

USE_EEPROM určuje, zda mají být uloženy pevné texty a tabulky v paměti EEPROM. V opačném případě se používá programová pamět (Flash). Doporučuje se používat pamět EEPROM (možnost zvolená).

Příklad: CFLAGS += -DUSE_EEPROM

EBC_STYLE označuje, že výstup přiřazení tranzistorových pinů by měl být ve formátu "EBC=..." eventuálně. "GDS=...". Tato prezentace šetří programový prostor. Bez této volby bude přiřazení zobrazeno ve formátu "123=..." kde každý bod může být E (emitor), B (báze) nebo K (kolektor). U FETs může být každý bod G (gate), D (drain) nebo S (source). Pokud pořadí zkušebních čepů není v pořadí čtení 1,2 a 3,lze pomocí volby EBC_STYLE=321 pořadí otočit. Pak bude přiřazení pinů ve tvaru "321=...", což je obvyklý směr čtení zleva doprava, což je vhodné, když mají zkušební kolíky pořadí 3,2,1.

Příklad: CFLAGS += EBC STYLE

 ${\bf NO_NANO}$ označuje, že desetinná předpona Nano by neměla být použita k zobrazení výsledků měření. Kapacitní hodnoty jsou uvedeny v μF místo nF.

Příklad: CFLAGS += NO NANO

NO_LONG_PINLAYOUT lze nastavit, aby se zabránilo dlouhé podobě pinout na grafických displejích jako "Pin 1=E 2=B 3=C". Je-li volba nastavena, použije se krátká forma jako "Pin 123=EBC".

Example: CFLAGS += NO_LONG_PINLAYOUT

PULLUP_DISABLE znamená, že nepotřebujete vnitřní "Pull-Up" odpory. Musíte mít externí "Pull-Up" odpor pro Pin 13 (PD7) a VCC zapojený, k použití této volby. Tato možnost zabraňuje možnému ovlivnění "Pull-Up" odporů na měřících portů (Port B a Port C).

Příklad: CFLAGS += -DPULLUP DISABLE

ANZ_MESS Tato volba určuje, jak často má být hodnota ADC čtena a přidána. Můžete zvolit hodnotu mezi 5 a 200, abyste získali průměrnou hodnotu pro měření ADC. Vyšší hodnoty poskytují větší přesnost, ale měřitelnost trvá déle. Měření ADC s hodnotou 44 potřebuje asi 5ms.

Příklad: CFLAGS += -DANZ MESS=44

POWER_OFF Tato funkce zapíná funkci automatického vypnutí. Pokud tuto možnost vynecháte, měření v smyčce se opakují nekonečně až do přerušení provozního napětí. Pokud máte tester s vypínačem místo spínacích tranzistorů, můžete tuto možnost vynechat. Pokud vynecháte volbu POWER_OFF, existuje přesto možnost vypnutí, pokud jste zvolili možnost WITH_MENU. Můžete také použít volbu POWER_OFF pro zadání počtu měření, po kterých se tester vypne, když nenalezne žádnou vloženou součástku. S dvojnásobným počtem po sobě jdoucích měření s nalezenou komponentou se tester také vypne, pokud není mezi nimi, měření bez nalezené součástky. Pokud zapomenete vyjmout připojenou součástku, zabrání to úplnému vybití baterie. Specifikace doplňku ve tvaru CFLAGS += -DPOWER_OFF=5 po 5ti, po sobě jdoucích měření bez nalezené součástky, také vypne. Následujících 10 měření s nalezenou součástkou vypne také. Pouze v případě, že příslušné měřicí řady jsou přerušeny jiným typem, měření pokračuje. Výsledky měření pro jedno měření se zobrazují po 28 sekund, pro více měření se čas zobrazení sníží na 5 vteřin (nastaveno v config.h). Pouze pokud se při prvním startu tlačítko start dlouze stiskne, zobrazí se výsledek měření také pro řadu postupných měření po dobu 28

vteřin. Maximální hodnota opakování je 255 (CFLAGS += -DPOWER OFF=255).

Příklad 1: CFLAGS += -DPOWER OFF=5

Příklad 2: CFLAGS += -DPOWER_OFF

- **BAT_CHECK** zapne kontrolu napětí baterie. Pokud tuto možnost nezadáte, zobrazí se číslo verze softwaru. Tato volba je užitečná pro upozornění na změnu baterie na testerových verzí s baterií. Příklad: CFLAGS += -DBAT CHECK
- **BAT_OUT** zapne indikátor napětí baterie na displeji LCD, když je vybrána položka BAT_CHECK. Je-li vaše napájecí zdroj 9V vybaven diodou pro ochranu proti přepólování, můžete zadejte formu BAT_OUT=600 na prahovou hodnotu diodového prahu které je třeba vzít v úvahu v zobrazení napětí. V této možnosti lze také zvážit ztrátu napětí na tranzistoru T3. Specifikace prahového napětí v mV nemá vliv na hodnoty zkušebního napětí (BAT_POOR).

Příklad 1: CFLAGS += -DBAT_OUT=300

Příklad 2: CFLAGS += -DBAT OUT

 ${\bf BAT_POOR}$ nastaví prázdné napětí pro test napětí baterie na zadanou hodnotu v jednotkách 1mV. Výstražné napětí je 0,8V vyšší než zadané prázdné napětí, když je prázdné napětí větší než 5,3V. V opačném případě bude vybráno 0,4V vyšší výstražné napětí, pod 3,25V dokonce pouze jedno 0,2V vyšší výstražné napětí pod 1,3V pouze jedno 0,1V vyšší výstražné napětí než specifikované prázdné napětí. Nastavování prázdného napětí na hodnoty jako 5,4V se nedoporučuje u dobíjecích baterií 9V,protože zvyšuje riziko poškození baterie v důsledku hlubokého vybití! Používáte-li dobíjecí baterie 9V doporučují se typy "Ready to Use" z důvodu nižšího samovybíjení.

Příklad ovládacího prvku low-drop (5,4V): CFLAGS += -DBAT_POOR=5400 Příklad regulátoru 7805 (6,4V): CFLAGS += -DBAT_POOR=6400

 $\begin{tabular}{ll} \bf DC_PWR & Tato úroveň napětí v jednotkách mV určuje výše uvedený limit napětí baterie který se změní na "DC_Pwr_Mode". Tester obvykle běží v režimu baterie, kde všechny další funkce běží po omezenou dobu. Pomocí funkce "DC_Pwr_Mode" se doplňkové funkce provádějí neomezeně. Protože neexistuje měnič DC-DC se vstupním napětím 0.9<math>V$, "DC_Pwr_Mode" se také spustí, pokud je detekováno napětí baterie pod 0.9V.

Příklad: CFLAGS += -DDC PWR=9500

BAT_NUMERATOR Definuje čitatel zlomku, se kterým musí být vyhodnoceno vnější napětí, abyste získali správné napětí. Pro standardní dělič napětí s $10k\Omega$ a $3.3k\Omega$ odpor je kvocient (10000+3300)/3300. Koeficient získaný pomocí hodnot odporu by měl být zkrácen. Například výsledky 133/33.

Příklad: CFLAGS += -DBAT_NUMERATOR=133

BAT_DENOMINATOR Určuje jmenovatele zlomku, se kterým musí být vyhodnoceno externí napětí.

Příklad: CFLAGS += -DBAT DENOMINATOR=33

EXT_NUMERATOR Definuje čitatel zlomku, se kterým musí být vyhodnoceno vnější napětí. abyste získali správné napětí. Pro standardní dělič napětí s $180k\Omega$ a $20k\Omega$ odpor je kvocient (180000+20000)/20000. Kvocient by měl být zkrácen na 10/1.

Příklad: CFLAGS += -DEXT_NUMERATOR=10

EXT_DENOMINATOR Určuje jmenovatele zlomku, se kterým musí být vyhodnoceno vnější napětí.

Příklad: CFLAGS += -DEXT DENOMINATOR=1

INHIBIT_SLEEP_MODE zakáže použití režimu spánku procesoru. Normálně software používá spánkový stav procesoru pro delší pauzy, aby šetřil energii. Použití tohoto stavu spánku s probuzením šetří kapacitu baterie, představuje další požadavek pro regulátor napětí.

Příklad: DINHIBIT SLEEP MODE=1

PROGRAMMER nastavuje typ programátoru pro program rozhraní 'avrdude'. Bez správného nastavení použitého programátoru 'avrdude' nefunguje. Standardně je připravený programátor firmy Diamex. Připraveny jsou, USBasp firmy Fischler a Arduino mega. Používáte-li jiný programátor, musíte ho přidat, a ten připravený pomocí # odhlásit. Příklad pro použití USBtiny programátoru:

setting for USBtiny ISP
PROGRAMMER=usbtiny
BitClock=10
PORT=usb
Další příklad přidání, Programátor od firmy Pololu:
#~setting for Pololu programmer
#~PROGRAMMER=stk500v2
#~BitClock=1.0
#~PORT = /dev/ttyACMO

Příklad: PROGRAMMER=avrisp2

BitClock nastavuje dobu taktové periody pro programátora. Viz popis parametru -B avrdudu.

Příklad: BitClock=5.0

PORT nastavuje použité rozhraní, kde může avrdude dosáhnout mikrokontroléru (ATmega).

Příklad: PORT=usb

Další informace naleznete v příručce pro avrdude nebo v online dokumentaci [14]. Další parametry lze nastavit v souborech Transistortester.h a config.h. Soubor config.h obsahuje globální proměnné a tabulky, definuje souhvězdí port / pin, frekvenci hodin ADC a hodnoty odporu použité pro měření. Soubor Transistortester.h obsahuje globální proměnné a tabulky, jakož i texty pro LCD displej. Obvykle se tyto hodnoty nemusejí bez důvodu změnit.

4.2 Programování mikrokontroléru

Vydávám software pro mikrokontrolér ve zdrojovém kódu. Vývoj byl proveden s operačním systémem Linux (Ubuntu přesněji Mint) a je ovládán přes Makefile .

Makefile zajišťuje, že software je stejný jako v souboru Makefile předem zvolené možnosti. Podívejte se prosím do souboru Readme.txt v adresáři trunk/default a v kapitole 4 od strany 42.

Výsledkem překladu jsou soubory s příponou .hex a .eep. Obvykle se soubory nazývají Transistor-Tester.hex a Transistor-Tester.eep.

Soubor .hex obsahuje data pro programovou paměť (Flash) procesoru ATmega. Soubor .eep obsahuje údaje pro EEPROM ATmega. Oba soubory musí být načteny do správné paměti.

Navíc ATmega musí být správně nakonfigurována s pojistkami (fuses). Pokud používáte Makefile spolu s programem avrdude [14], nepotřebujete mít žádné přesné znalosti o detailech pojistek. Musíte volat pouze make fuses , pokud nepoužíváte krystal nebo, pokud máte na desce nainstalovaný 8MHz krystal, musíte zvolit make fuses-crystal . S řadou mikrokontrolérů ATmega168 můžete alternativně zvolit make fuses-crystal-lp pro provoz s nízkou spotřebou krystalu. Nikdy nepoužívejte verzi pro krystal, pokud nemáte v použití 8MHz krystal. Pokud si nejste jisti, nechte nejdříve tovární nastavení v a spusťte testovací přístroj v tomto stavu. Je možné, že program běží příliš pomalu, ale to můžete později opravit! Když ale použijete programovou versi pro 8MHz krystal, tak nesprávné nastavení pojistky může zabránit pozdějšímu ISP programování.

Poznámka překladatele

aby zůstalo všem ostatním kolegům zoufalství a "bezesné nocí" ušetřeno, kterými trpěl autor této kapitoly, poté co získal klone testeru a bez jakékoli zkušenosti s AVR se rozhodl, ho "naučit česky", vznikla tato kapitola. Získané zkušenosti by měly pomoci všem ostatním naivním,

"ochotným … lehkomyslným a nezkušeným"…, ÚSPĚŠNĚ naprogramovat jejich tester.

Tato příležitost je zároveň využita, poděkovat autorovi a vývojáři tranzistorového testeru Karlovi-Heinzy Kübbelerovi viz [16] za jeho obětavost a trpělivost, protože bez jeho pomoci, by následující stránky nebyly napsány.

Aby překlad firmwaru a vypálení do MCU uspělo a současně ... "nemuselo být "kolo" znovu objeveno", je část následujících stránek převzatá z originálu.

Tak ještě jednou ... MOC VELKÝ VDĚK.

4.2.1 Operační system Linux

Programování pod Linuxem přináší mnoho výhod, protože tento OS byl vyvinut odborníky, kteří se orientují přáním uživatelů.

Prostředí je navíc k dispozici zdarma a je dokonale udržováno. Další výhodou je zabezpečení samotného operačního systému, hlavně při používání internetu. Jak používání, tak i instalace dnešních vydání je mnohem jednodušší než u konkurenčních operačních systémů.

Existují také velmi výkonné editory, jako jsou "vim" nebo "emacs", které ale vyžadují trochu času k zapracování. Zejména "Vim" má tu výhodu, že je předinstalován v každém systému a je také dostupný i u ostatních OS včetně Windows. Ale právě u tohoto editoru vyžaduje přepínání, mezi režimem zadávání a režimem příkazů, zvyk a tréning.

Tento tutoriál je tak navržen, aby povzbudil všechny "ne" uživatele Linuxu, aby se o tom, naprogramováním svého testeru v Linuxu, přesvědčili. Jako příklad, je zde použitý Linux Mint cinnemon v aktuální verzi, která je bezplatně k dispozici na internetu. Instalace je možná na různé způsoby, Linux přinese svého spouštěcího asistenta, který se samostatně předchozí OS respektuje a nakonfiguruje Linux k paralelnímu použití.

Rady k použití s Linuxem

Pro ty, kteří neradi píší, nabízí Linux snadný způsob, jak si to ulehčit. Zkopíruj tuto příručku na USB klíčenku a otevři ji dvojitým zmáčknutím levým tlačítkem myši $\bullet \circ \circ$ na tvém desktopu. Alternativně k dvojitému zmáčknutí můžeš pravým tlačítkem $\circ \circ \bullet$ zvolit jiný, než předvolený prohlížeč PDF. Poté přesuň myš na název dokumentu, stiskni levé $\bullet \circ \circ$ myší tlačítko a táhni dokument k levému okraji obrazovky, až se zobrazí možný rámeček. Nyní myš uvolni. Příručka nyní zabere levou polovinu obrazovky.

Jak je pro Linux typické, existuje další řada možností ke změně velikosti dokumentu. S levým tlačítkem $\bullet \circ \circ$ na okrajích nebo rozích okna, nebo pravým tlačítkem $\bullet \circ \bullet$ na hlavové liště pomocí funkce \bullet na pravým tlačítkem \bullet na hlavové liště pomocí funkce \bullet na pravým tlačítkem \bullet na hlavové liště pomocí funkce \bullet na pravým tlačítkem \bullet na hlavové liště pomocí funkce \bullet na pravým tlačítkem \bullet na hlavové liště pomocí funkce \bullet na hlavové liště na hlavové liště pomocí funkce \bullet na hlavové l

Grafická rozhraní v systému Linux mají zpravidla více než jednu pracovní plochu, s kombinací kláves Ctrl + Alt + → nebo Ctrl + Alt + ← je lze přepnout. Pomocí pravého tlačítka ○○● můžeš zadat a vybrat pracovní prostor, na kterém je okno zobrazeno.

Okna, která potřebuješ pro aktuální práci, můžeš mít tedy na pracovní ploše shromážděné a nedusíš se ve všech oknech pro různé pracovní oblasti. Mimochodem, se všemi položkami příkazů a identifikátory souborů je důležité vědět, že Linux konsekventně rozlišuje velká a malá písmena.

Instalace programových balíčků

K naprogramování testeru, musíš nejprve stáhnout s internetu a nainstalovat programové balíčky:

binutils-avr, avrdude, avr-libc, gcc-avr a git. To docílíš následovně. Naviguj ve tvé příručce k na tuto stránku 53 k následujícímu textu:

sudo apt-get install avrdude avr-libc binutils-avr gcc-avr git

Nyní současně stiskni Strg + Alt + t k otevření příkazového okna, které již známým způsobem
přesuneš, nyní na pravou polovinu obrazovky. Příručka nyní zabere levou polovinu obrazovky.
V dalším kroku označ levým myším tlačítkem 💿 o o ten výše jmenovaný text v levém okně. Při
dosáhnutí posledního písmene, povol tlačítko k ukončení označení. Je-li text ve vlastním řádku, jako
v tomto případě, je možné ho označit trojitým zmáčknutím levého tlačítka $lacktriangle$ o v jeho řádku.
Přesuň nyní myš na kurzor v pravém příkazovém okně a vlož tento text stisknutím prostředního
tlačítka myši, dále zkráceně 💿 • o do okna terminálu. U většiny myší je rolovací kolečko také pro-
středním tlačítkem. U myší bez prostředního tlačítka je možné napodobit prostřední tlačítko myši
současným stisknutím tlačítek $lacktriangle$. Bez ohledu na to, jak se text příkazu dostal do příkazového
řádku, by jsi měl tento text zkontrolovat, než odešleš tento příkaz stisknutím klávesy Enter. S insta-
lací balíčků si obvykle nemusíš dělat starosti, že se, kvůli nesprávné operaci, stane něco špatného.
Program apt-get zkontroluje, zda některý z uvedených balíčků není již nainstalovány a zda jsou
nutné závislosti splněny. V případě potřeby bude, již dříve nainstalovaný balíček, nahrazen nověj-
ším. Poté vás program sudo nejprve požádá o uživatelské heslo, než to udělá zbytek příkazového
řádku. Heslo byste měli vyplnit a potvrdit stisknutím klávesy Enter nebo 🜙. Nyní budou všechny
softwarové balíčky staženy a nainstalovány programem apt-get .
Je možné, že se apt-get při instalaci balíčků ptá na detaily, na které lze obvykle potvrdit.
*Pozor, Linux rozlišuje mezi malými a velkými písmeny. Takže odpovídej s J a ne s j !
Samozřejmě existují i jiné způsoby instalace balíčků, které používají grafické uživatelské rozhraní
jako synaptic nebo dpkg. Ale není jednodušší způsob instalace smíšených skupin balíčků.
Stáhnutí zdrojů

Zda byla instalace správce zdrojů Github úspěšná, lze kontrolovat s:

git version

Jako odpověď se ukáže číslo instalované verse.

Pokud složka transistortester již existuje, měla by být nyní přejmenována nebo odstraněna. Příkazem:

git clone https://github.com/Mikrocontroller-net/transistortester

stáhneš celý archiv.

Soubory jsou nyní v Linuxu [osobní složka] na /home/"uživatel" pod názvem "transistortester". Kontrolu přítomnosti docílíš, když v okně terminálu, zadáš ls to je 🚺 s 🖟 .

Více informací o souborech a adresářích získáš pomocí příkazu ls -lh. Zde byly kombinovány dvě možnosti příkazu ls a k tomu možnosti -l a -h. Tento vstupní formulář je tedy krátký formulář pro příkaz ls -l -h nebo ls -l –lidsky čitelný . Některé možnosti přicházejí ve dvou verzích, krátká s -(-h) a dlouhý formulář se dvěma - (-human-readable). Mimochodem, na pořadí možností nezáleží, stejně jako počet oddělovacích mezer . S téměř všemi příkazy se můžete dozvědět více o operaci a možnostech přidáním možnosti –help. To samozřejmě platí i pro příkaz git.

Chceš-li v budoucnu stáhnout nové aktualizace, postačí z této složky zadat:

git pull

v okně terminálu a v pracovním adresáři "transistortester", nebo z jakéhokoliv adresáře s:

```
(cd ~/transistortester ; git pull)
```

K zajištění správné funkce výzvy git pull, se doporučuje, neměnit adresářový strom.

Používání USB rozhraní

Všechny moderní ISP nástroje k programování se sériovým rozhraním používají USB, protože toto rozhraní také zajišťuje napájení. U těchto zařízení by jsi měl jako prvé zkontrolovat, jaké označení je přiřazené k tomuto zařízení. Při vložení nástroje do USB zásuvky v systému Linux je vytvořen záznam do systémového protokolu. Protože je systémový protokol textový soubor, nechá se jednoduše zobrazit na obrazovce. Chceš-li to provést, můžeš použít příkaz dmesg v okně terminálu. A proto, že nás, po zastrčení nástroje zajímají pouze na poslední řádky protokolu, použij: dmesg tail

Program dmesg zobrazuje celý systémový protokol a příkaz tail zobrazuje pouze posledních 10 řádků výstupu. U programátoru Pololu vypadá výsledek takto:

```
usb 1-3: new full-speed USB device number 3 using xhci_hcd
usb 1-3: New USB device found, idVendor=1ffb, idProduct=00bb, bcdDevice= 1.02
usb 1-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-3: Product: Pololu USB AVR Programmer v2.1
usb 1-3: Manufacturer: Pololu Corporation
usb 1-3: SerialNumber: 00227484
cdc_aem 1-3:1.1: ttyACMO: USB ACM device
cdc_aem 1-3:1.3: ttyACM1: USB ACM device
usbcore: registered new interface driver cdc_acm
cdc_aem: USB Abstract Control Model driver for USB modems and ISDN adapters
```

Zde jsou důležité řádky 7 a 8 se vstupy ttyACM0 a ttyACM1. Jedná se o přiřazené názvy zařízení pro dvě sériová rozhraní. V Linuxu jsou všechna zařízení také součástí stromu souborů a jsou v souboru /dev/ registrované. Přiřazené Jméno nástroje Pololu se skládá z dvou sériových rozhraní, a to /dev/ttyACM0 a /dev/ttyACM1. U programátora Pololu musíš vědět, že první sériové rozhraní se používá pro ISP programátor a druhé sériové rozhraní lze volně použít pro jiné účely.

Existenci položek zařízení můžeš potvrdit pomocí příkazu:

ls -1 /dev/ttyACM*

Výsledek by měl vypadat takto:

```
crw-rw---- 1 root dialout 166, 0 Mär 11 09:57 /dev/ttyACM0
crw-rw---- 1 root dialout 166, 1 Mär 11 09:57 /dev/ttyACM1
```

V tomto výstupu se dozvíš, že pro toto zařízení může ovládat uživatel root a je použití je povoleno pro skupinu uživatelů dialout . Tvé členství v této skupině můžeš zkontrolovat pomocí příkazu:

V odpovědi by se v seznamu měla objevit skupina dialout . Přístup ke členství do skupiny je popsán níže v dalším pracovním bodě. Předtím ale další příklad systémového protokolu pro nástroj jiného ISP-programátora Diamex ISP-PRog NG si můžeš prohlédnout zde:

```
usb 1-6: new full-speed USB device number 8 using xhci_hcd
usb 1-6: New USB device found, idVendor=16c0, idProduct=2a9b, bcdDevice=43.40
usb 1-6: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-6: Product: AVR-ISP2
usb 1-6: Manufacturer: ERFOS
usb 1-6: SerialNumber: 19377-43111-757
cdc_aem 1-6:1.0: ttyACMO: USB ACM device
```

Přehled připojených sériových převodníků USB jze vidět v adresáři /dev/serial/by-id/ , které lze dotazovat příkazem:

ls -og /dev/serial/by-id/* | cut -d' ' -f 7-Výstup může například vypadat takto:

/dev/serial/by-id/usb-Arduino_www.arduino.cc_0043_954323131383519062F0-if00 -> ../../ttyACM2 /dev/serial/by-id/usb-Pololu_Corporation_Pololu_USB_AVR_Programmer_v2.1_00227484-if01 -> ../../ttyACM0 /dev/serial/by-id/usb-Pololu_Corporation_Pololu_USB_AVR_Programmer_v2.1_00227484-if03 -> ../../ttyACM1

Pokud je popis dostatečně podrobný, můžete tímto způsobem přiřadit rozhraní.

Pokud je, až k tomuto bodu vše v pořádku, je třeba změnit v Makefile pouze položku PORT za "PORT=/dev/ttyACM0", aby měl program avrdude přístup k programátorovi. Pokud se ve tvém systému používají jiná USB sériová rozhraní, mohou se v označení zařízení poslední číslice lišit. Chtěl bych také zmínit o další skupině USB-serial rozhraní která používá místo ttyACM název ttyUSB. Pokud tvůj programátor používá speciální USB rozhraní ale žádný sériový typ USB, je pravděpodobně nutná další práce. V Makefile můžeš nastavit PORT pevně na USB. Ale je pravděpodobné, že stejně budeš mít přístup k zařízení. Všechna připojená USB zařízení lze zobrazit zadáním lsusb do příkazového okna. Zadej:

lsusb

před a po připojení tvého USB programátora. Porovnáním výsledků tento nástroj lokalizuješ. Výsledek může vypadat takto:

```
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

Bus 002 Device 003: ID 046d:c050 Logitech, Inc. RX 250 Optical Mouse

Bus 002 Device 058: ID 03eb:2104 Atmel Corp. AVR ISP mkII

Bus 002 Device 059: ID 2341:0042 Arduino SA Mega 2560 R3 (CDC Aem)

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub}

Zde bylo detekováno zařízení AVR ISP mkII jako zařízení 58 DIAMEX ALL-AVR.

ID 03eb je jeden ID výrobce a ID 2104 identifikátor produktu.

Tyto dva identifikátory je nutné zapsat do souboru /etc/udev/rules.d/90-atmel.rules pomocí:

sudo xed /etc/udev/rules.d/90-atmel.rules

Pochopitelně je možné,použít také jiný editor než xed . V tomto příkladu obsahuje soubor 90-atmel.rules pouze jeden řádek:

SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104", MODE="0660", GROUP="plugdev" Záznam je v Linuxu také možné vytvořit i bez editoru pomocí příkazu:

```
sudo echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104"
, MODE="0660", GROUP="plugdev"' >> /etc/udev/rules.d/90-atmel.rules
```

Zde viditelné dva řádky je nutné zapsat v terminálu jako JEDEN řádek!

Pro použití většiny programátorů se doporučuje napsat do 90-atmel.rules následující text, který je nutné tak upravit, aby stál celý příkaz vždy v jednom řádku (jako je to již u # Pololu programátoru):

```
# Copy this file to /etc/udev/rules.d/90-atmel.rules
# AVR ISP mkII- DIAMEX ALL-AVR
SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTS{idProduct}=="2104", GROUP="plugdev",
MODE="0660"
# Atmel AVR Dragon
ATTRS {idVendor}=="03eb", ATTRS {idProduct}=="2107", GROUP="plugdev", MODE="0660"
# Atmel-ICE
SUBSYSTEM=="usb", ATTRS {idVendor}=="03eb", ATTRS {idProduct}=="2141", GROUP = "plugdev",
MODE="0660",
# xplained-mini
SUBSYSTEM=="usb", ATTRS {idVendor}=="03eb", ATTRS {idProduct}=="2145", GROUP = "plugdev",
MODE="0660",
# avrftdi
#SUBSYSTEM=="usb", ATTRS {idVendor}=="0403, ATTRS {idProduct}=="6010", GROUP = "plugdev",
MODE="0660",
# uvrftdi
#SUBSYSTEM=="usb", ATTRS {idVendor}=="0403, ATTRS {idProduct}=="6010", GROUP = "plugdev",
MODE="0660",
# UM232H
```

```
#SUBSYSTEM=="usb", ATTRS {idVendor}=="0403, ATTRS {idProduct}=="6014", GROUP = "plugdev",
MODE="0660",
# USBasp programmer for Atmel AVR controllers FISCHL
ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="05dc", GROUP="plugdev", MODE="0660"
# USB NIBObee-Programmer
ATTRS {idVendor}=="16c0", ATTRS {idProduct}=="092f", GROUP="plugdev", MODE="0660"
# USBtiny ISP programmer
ATTRS{idVendor}=="1781", ATTRS{idProduct}=="0c9f", GROUP="plugdev", MODE="0660"
# USB ISP-programmer für Atmel AVR
SUBSYSTEM=="usb", ENV {DEVTYPE}=="usb_device", SYSFS {idVendor}=="16c0", SYSFS {idProduct}=="05dc", MODE="0660",
```

Po zapsání lze svůj úspěch kontrolovat s:

less /etc/udev/rules.d/90-atmel.rules

Pak bys měl systém pžimět k tomu, aby znovu načetl pravidla udev pomocí:

```
sudo udevadm control --reload-rules
```

a kromě toho, ještě svůj ISP programátor odpojit a znovu ho připojit. To umožňuje přístup k zařízení pro členy skupiny plugdev. K dispozici bylo také rozpoznáno zařízení 59 USB Arduino Mega 2560 SA systém, které vytváří přístup k sériovému zařízení "/dev/ttyACM0" pro členy skupiny dialout.

Skupinové členství

pro tvé vlastní uživatelské jméno, ve skupinách plugdev i dialout dosáhneš přikazem:

```
sudo usermod -a -G dialout, plugdev $USER
```

Nyní by měl být možný přístup s avrdude m k oběma zařízení. Kontrola je možná zadáním: id Pokud by se vyskytly problémy, můžeš také přistoupit k členství prostřednictvím:

Nabídka menu Správa systému Uživatelé a skupiny ?heslo. Zobrazí se okno se dvěma záložkami.

Pokud nyní klikneš na své jméno na kartě uživatelé, uvidíš svůj profil a skupinové přidružení na pravé straně. Pomocí tlačítka ADD je nyní možné, přidat nové skupiny.

Nabídku menu lze lehce dosáhnout s 🗏 to je tlačítko mezi Strg a Alt Gr na pravé straně klávesnice.

Příprava pracovního prostředí

Terminálové okno se otvírá normálně v domovském adresáři ../home/user . Název tvého domovského adresáře je uložen v systémové proměnné \$HOME . Do tohoto adresáře se dostaneš v terminálu z jakéhokoli adresáře také krátkým povelem:

~/

Nezapomeň zadat po zadání \sim zadat také znamení / , jinak hledá tlumočník příkazů uživatele s následujícím jménem!

Aby zůstal originál čistý je výhodné vytvořit duplikát svého testeru v pracovním adresáři se jménem například **Mytester**.

Nejprve vytvoříš nový Adresář s povelem:

mkdir ~/Mytester

Pokud jsi stáhl z Github archivu všechny zdrojové soubory do adresáře ~/transistortester, získáš následujícím příkazem kopii tvých souborů a jejich podadresářů do adresáře Mytester:

rsync -auv ~/transistortester/Software/trunk/ ./Mytester

Kvůli přítomnosti -v protokoluje rsync všechny procesy kopírování. Pokud místo možností -auv zadáš jen -au, proces kopírování nezaznamenává. K naplněnému kufru podadresáře však můžete přistupovat pomocí následujícího příkazu přesvědčit:

ls -lh ~/Mytester

K dispozici je také jasná reprezentace adresářové struktury a souborů příkazem:

tree ~/Mytester

Tento příkaz tree není ale standardně instalovaný. Pomocí:

sudo apt-get install tree

ho můžeš ale lehce doinstalovat.

Pokud nyní víš, který podadresář je pro tvůj tester vhodný, můžeš přejít do tohoto podadresáře.

Příklad: máš čínskou sadu s černobílým displejem, pak je podadresář mega328_st7565_kit správný a zadáním:

cd ~/Mytester/mega328\ st7565\ kit

Nyní nech okno terminálu otevřené a zkus otevřít tento Soubor následujícím způsobem:

Příprava svého testeru pomocí grafické cesty

Mytester můžeš také dosáhnout dalšími způsoby. Posuň myš na zelenou ikonou pořadač (Nemo) na systémové liště s nápisem Soubory , nebo otevři Nabídka a napiš do výběrového okna začáteční písmena tvého účelu. V tomto případě stačí so , abys viděl Soubory napravo. Kromě toho lze použít také Nabídka Příslušenství Soubory. Dvojitým stiskem • o o tvojí volbu otevři. Otevře se okno se všemi možnými testery a mezi nyní i vybraná složka mega328_st7565_kit a v ní soubor Makefile .

Úprava Makefile

Postav myš na tento soubor a dvojitým stiskem $\bullet \circ \circ$ se otevře tento dokument s předvoleným editorem. Druhá možnost je stisknutí $\circ \circ \bullet$ kdy se otevře menu s různými možnostmi spravování. A pro ty, kterým se práce s terminálem zalíbila stačí zadat v terminálu: xed Ma dále Tab a na konec

Je jedno jakou cestou jsi se sem dostal, **v souboru Makefile je nejdůležitější správně** zvolit tvůj USB programátor. Více o tom v Kapitole 4.1 na stránce 52, bod PROGRAMMER. Dále zde můžeš nastavit další možnosti jako řeč, písmo atd.

Programování testeru

A je čas se dostat k programování. Propoj svůj programátor s testerem a přes USB s počítačem. Po té, co jsi tvé změny v Makefile provedl, zkontroloval a dokument uložil, přejdi myší na okno terminálu a aktivuj ho stiskem na $\bullet \circ \circ$. Aktivní okno poznáš tím, že má záhlaví vyšší kontrast! Nyní stačí zadat příkaz:

make upload

Tester program bud nyní znovu sestaven a poté okamžitě načten do ATmega avrdude programem. Nyní můžeš okamžitě tvůj úspěch zkontrolovat a oslavit.

V případě nespokojenosti, je možné změnit okno k editoru Makefile, provést potřebné změny a proces opakovat.

Tips k terminálu

již zadané příkazy nemusíš stále znova psát. Ty lze otevřít klávesou, ↑ a stisknutím kláves Enter nebo ↓ příkaz opakovat. Zobrazený příkaz můžeš jeětě před odesláním upravit, nebo přejít na novější příkazy pomocí ↓.

Možné výzvy v Makefile

poručují se následo	vé výzvy:	
make clean	pro vyčištění prostředí	
make k zkompilování programu		
make fuses	ses k nastavení ATmega "fuses" bez krystalu	
make fuses-crystal k nastavení ATmega "fuses" JEN s versi s 8MHz krystalem!		
make upload	k načtení přeloženého programu do ATmega prostřednictvím ISP rozhraní.	

Možná, že program avrdude hlásí chybu při nastavení prodloužené pojistky (extendet Fuse). Čtení nevyužitých pojistkových bitů je uvedeno v ATmega jako "1", ale program 'avrdude' maskuje nepoužité bitové kódy tak, že očekává "0"pro všechny nepoužité bity. Za normálních okolností by měl efuse být nastaven na hodnotu 0xfc, ale avrdude přečte 0x04 maskou. Ke změně chování 'avrdude' je možné soubor avrdude.conf změnit nebo nastavit efuse na 0x04. Všechny hodnoty efuse lze zadat pomocí identifikátoru EFUSE_VAL na začátku souboru setup.mk v adresáři trunk nastavit. Pravděpodobně jsou ale "fuses" i s chybovou zprávou správně nastaveny.

Poznámky k aktualizaci zdrojů testeru

Kopii zdrojů testeru lze pomocí příkazu:

cd ~/transistortester; git pull

držet aktuální. Pokud pracuješ s kopii pod ~/Mytester, jak je zde doporučeno, změny se přenesou, pouze když zadáš opětovně příkaz:

rsync -auv ~/transistortester/Software/trunk/ ./Mytester

Je pravděpodobné, že Makefile na serveru github bude mýt někdy novější datum, než tvá lokálně upravená kopie. Po aktualizaci by byly i ve složce Mytester veškeré provedené změny v možnostech v tvém Makefile ztraceny. Proto je důležité úspěšně změněný Makefile zabezpečit. Toho lze dosáhnout například příkazem:

cp Makefile Makefile.bak

Později je možné příkazem:

diff Makefile Makefile.bak

porovnat změny v souborech po aktualizaci. Pro lepší přehled změn je k dispozici také možný s:

kdiff3 Makefile Makefile.bak

Tento Program musíš ale pravděpodobně předem instalovat pomocí:

sudo apt-get install kdiff3

protože byl vyvinut pro desktopové prostředí KDE.

4.2.2 Používání balíčku WinAVR pod Windows

Pokud pracuje3 v operačním systému Windows, je k správně naprogramovanému ATmega nejjednodušší, použití balíků WinAVR [18],[19]. S mým Patchem [20] může3 také nastavit pojistky (Fuses) s Makefile. Samozřejmě musí 'avrdude' programátor podporovat a konfigurace musí být v Makefile správně nastavena. Obrázky 4.2 zobrazují obsluhu souborů uživatelského rozhraní WinAVR k otevření souboru Makefile a uložení souboru Makefile po změnách (save).

(a) Otevření Makefile

(b) Uložení Makefile

Obrázek 4.2. Použití programu WinAVR

Následující obrázky 4.3 zobrazují nabídku menu Nástroje programu Poznámkový blok programu přeložení programu (Make All) a k naprogramování ATmega pomocí 'avrdudu'.

(a) Vytvořit data programu (.hex/.eep)

(b) Naprogramovat ATmega

Obrázek 4.3. Obsluha WinAVR s Notepadem

4.3 Hledání chyb

U většiny problémů vám na obrazovce LCD chybí text. Nejprve byste měli zkontrolovat, zda slabě svítí LED dioda na desce, když stisknuté tlačítko start uvolníte.

Zařízení se nezapne Pokud stisknete tlačítko Start a kontrolka se nerozsvítí, ale napětí VCC má správnou hodnotu, nezapne se mikrokontrolér správně. Mikrokontrolér má jako první úlohu, přepnout výstup PD6 na 5V. Pokud držíte tlačítko start stisknuté, je napájení tak jako-tak zapnuté. V tomto stavu je možné zkontrolovat hodnotu VCC napětí a navíc hodnotu napětí na výstupu PD6. Má-li VCC-napětí správnou hodnotu (5V) ale napětí na výstupu PD6 leží pod 4V není mikrokontrolér správně zapnutý. V takovém případě byste měli zkontrolovat, zda jsou data programu pro pamět flash nahrány pro správný typ procesoru a zda má procesor správně nakonfigurované (fuses). Když ATmega výstup PD6 přepne na 5V ale provozní napětí po puštění tlačítka start vypne, je obtížnější tu příčinu nalézt Nejprve můžete LED zkratovat a zkusit to znovu. Pokud se testovací zařízení spustí, je možná LED dioda zapojena obráceně. Pokud to není příčinou, mohl by být důvodem nedostatečný zesilovací proud tranzistoru T3 (BC557C). Proud do báze T3 je nižší, když mikrokontrolér zapne LED než když tlačítko "stisknuté".

Na LCD displeji nelze číst Zkontrolujte napětí na kontrastním pinu (pin 3) LCD displeje. Pomocí trimru nastavte hodnotu na hodnotu zadanou v datovém listu a optimalizujte ji vizuální prohlídkou. Pokud máte displej s vysokou teplotou, potřebujete pro provoz záporné kontrastní napětí. V tomto případě lze ke generování záporného napětí z pozitivních 5V, použít integrovaný obvod ICL 7660. Tester může být použit a nakonfigurován pro mnoho různých řadičů s různými typy připojení. Nezapomeňte zkontrolovat, zda se software shoduje s vaším displejem. Pokud LCD displej nic neukazuje a pokud je podsvícení zapnuté měli byste odpojit napájení a zkontrolujte všechna čtyři datová připojení i oba řídicí signály. Pokud jsou všechny tyto spojovací vodiče v pořádku, vidím jako příčinu pouze možnost nesprávné časové posloupnosti řídicích signálů. Důvodem pro to může být, že řídicí jednotka displeje LCD je pomalejší než je software ATmega očekává. Mohlo by se také stát, že ATmega je v chodu na nesprávné frekvenci. Zkontrolujte pro jakou taktovací frekvenci je software přeložena a zda jsou ATmega fuse pro tuto rychlost správně nastaveny. Nastavenou frekvenci najdete v příslušném Makefile. Pokud je tester vyroben bez vypínací automatiky, můžete zapojit zkušební LED diody přímo na zkoušené piny, abyste zjistili, zda program funguje. Pokud LED bliká, program běží. V tomto případě musí být chyba v připojení LCD displeje. U některých grafických displejů může být kontrast nastaven pomocí funkce menu. Pokud jste náhodně nastavili špatný kontrast, tak také není displej čitelný a tester není možné ovládat. Zde se můžete jen pokusit zjistit, zda je z boku (šikmé) něco vidět a obnovit kontrast pomocí nabídky menu. Pokud to nefunguje, můžete přepsat program EEprom ATmega s programátorem ISP a obnovit jeho hodnotu.

Něco, ale ne vše, je na LCD displeji čitelné Zkontrolujte, zda byla data EEPROM vložena do Eepromu ATmega. Po správném zavedení všech dat programu byste měli zkontrolovat nastavení frekvence v (Makefile) a nastavení ATmega (fuses).

Měření je příliš pomalé a kapacity jsou měřeny faktorem 8 příliš malým. Používáte software přeloženou pro 8MHz s frekvencí 1MHz. Nakonfigurujte u ATmega (fuses) správně.

Měření dává podivné výsledky. Zkontrolujte, zda je stále připojen programovací konektor ISP. Konektor ISP by během měření neměl být zapojen. Velmi často je důvodem pro nesprávné výsledky měření, že software používá volbu AUTOSCALE_ADC a že byla přeložena volba NO_REF_CAP ale kondenzátor na pinu AREF-Pin má stále hodnotu 100nF. Příčinou může být také použití nesprávných součástek, nesprávná montáž nebo reziduální zbytky pájky a tavidla FluX mohou ovlivňovat měření. Zkontrolujte prosím, pokud je to možné, funkcí automatického testu kalibrace její nastavení. Podrobnosti naleznete v kapitole 5.5. Jinak zkontrolujte

vizuálně desku a zkontrolujte hodnoty odporů s ohmmetrem. Pro tento test můžete použít ATmega piny, Můžete například měřit odpor R1 mezi pinem 23 a pinem 14. Podívejte se do schématu 2.1 pro podrobnosti. Nemusíte odstraňovat mikrokontrolér, ale zdroj napájení by měl být odpojen.

Tester se vypne po 2 sekundách. V tomto případě schází pull-up odpor u vstupu PD7, nebo je tlačítko trvale stisknuto. Software vypíná interní pull-up odpory pro ovlivňování výsledků měření.

Proto je vyžadován externí odpor.

Tester ukazuje stále jen Vext=xx.xV ve druhém řádku. Také zde chybí pull-up odpor u vstupu PD7, nebo je tlačítko trvale stisknuto. Kromě toho je software je také bez sériového výstupu (bez volby WITH_UART) a bez vnitřních pull-Up odporů (s volbou PULLUP_DISABLE) konfigurovaná.

Přidejte pull-Up odpor na PD7.

Kapitola 5

Popis metody měření

Zjednodušená schéma vstupu / výstupu ATmega je zobrazeno na obrázku 5.1. Přepínač PUD vypne napájení pro všechny "Pull Up" odpory ATmega. Pomocí přepínače DD lze výstup vypnout, vstup pracuje bud jako výstup, tak i jako vstup. Ve vstupním režimu je výstupní hodnota (PORT) použita k přepnutí "Pull Up" odporu vstupu. Ty dva přepínače PORT a DD nelze přepínat současně, ale pouze jeden po druhém. Protože přepnutí "Pull Up" odporu může rušit měření, dávám přednost úplnému odpojení všech "Pull Up" odporů pomocí spínače PUD. Samozřejmě, že jsou přepínače elektronické a odpory 19Ω a 22Ω jsou jen přibližné hodnoty.

Obrázek 5.1. Zjednodušené schéma každého pinu ATmega portu

Každý ze tří zkušebních pinů vašeho testeru se skládá ze tří pinů ATmega, který je znázorněn na zjednodušeném schéma zkušebního čepu TP2 (prostřední ze tří pinů) na obrázku 5.2.

Obrázek 5.2. Zjednodušené schéma zapojení zkušebního pinu TP2

Každý zkušební pin (měřící port) lze použít jako digitální nebo analogový vstup. Tato schopnost měření je nezávislá na použití portu jako výstupu. Každý zkušební pin může být použit jako výstup a připojen v tomto stavu k GND (0V) nebo VCC (5V), nebo může být připojen buď k GND nebo VCC pomocí odporů (680 Ω nebo 470 $k\Omega$). Tabulka 5.1 zobrazuje všechny možnosti měření. Všimněte si, že pozitivní stav je dosažen připojením přímo k VCC (Port C) nebo připojením k rezistoru 680 Ω s VCC (Port B). Stejná možnost má negativní stav zkušebního kolíku na straně GND. Stav testu znamená, že pin může být otevřený (vstup) připojen pomocí odporu 470 $k\Omega$ s VCC nebo GND, nebo pin může být připojen k VCC nebo GND přes 680 Ω -odpor.

	Stav Pin 1	Stav Pin 2	Stav Pin 3
1.	positivní	negativní	test
2.	positivní	test	negativní
3.	test	negativní	positivní
4.	test	positivní	negativní
5.	negativní	test	positivní
6.	negativní	positivní	test

Tabulka 5.1. všechny možnosti měření

Jakmile je nakonfigurováno měření kondenzátoru testerem, pokusí se přístroj nejprve k vybíjení kondenzátorů na všech připojovacích kolících. Pokud to nefunguje, to znamená zbytkové napětí je příliš vysoké, bude vybíjení po cca 12 sekundách přerušeno se zprávou "Cell!".

To se může stát i v případě když není žádný kondenzátor připojen.

Příčinou může v tomto případě být, že je mezní napětí výboje pro tento ATmega příliš nízké.

Pomocí makefile volby CAP_EMPTY_LEVEL, můžete ale zvolit vyšší zbytkové napětí.

5.1 Měření polovodičů

Nejdříve má být u součástky zkoumán průběh proudu, s odpojeným ovládacím pinem (TP3), (nazývaný také TriState pin). Ovládací pin je například (gate) nebo báze testované součástky. Jeden testovací pin bude zvolen za kladnou stranu součástky a připojen přímo k VCC. Jiný pin je pak považován za negativní stranu součástky. Negativní strana bude připojena přes 680Ω odpor k GND. U tranzistorů řízených polem je stav tranzistoru závislý na napájecím napětí. (TP3) je nejprve pomocí 680Ω odporu připojen k GND na 5ms a zároveň změřeno napětí na negativní straně.

Poté je TriState pin přepnutý na vstup mcu (vysoká impedance) napětí opět změřeno. Následovně je předpokládaný (gate) na 5ms přes 680Ω odpor přepnutý na VCC a napětí bude měřeno ještě jednou. Pokud je měřené napětí nyní nižší než u prvního měření, bude tento stav přijat jako správný. Nyní bude napětí s bezproudovým (TP3) ještě jednou změřeno. Pokud je napětí záporného pinu s udržovanou úrovní větší než 115mV, tato úroveň není 100mV nižší než úroveň s aktuálním (TP3), je předpokládán polovodič typu NPN minor chudý. Pro bipolární tranzistory s vysokým zbytkovým proudem je zbytkový proud kolektoru v bázi mnohem vyšší. Kontrolou obou úrovní se falešné detekci germaniových NPN tranzistorů s vyšším zbytkovým proudem kolektoru, jako zchudlý typ N JFET tranzistorů, vyhneme. Pak jsou provedeny další testy k rozlišení N-kanál JFET nebo D-MOSFET a P-kanál JFET nebo P-MOSFET. Verze MOSFET mohou být detekovány nedostatkem řídícího proudu v každém stavu na (TP3). Aby bylo možné měřit parametry typu N minor, je měřeno napětí na 680Ω odporu na zdrojovém source pinu. Jak je znázorněno na obrázku 5.3 Toto měření je místo obvyklého měření proudu na gate napětí na potenciálu zdroje uděláno, kvůli relativně vysokému 680Ω odporu. Tak by v mnoha případech charakteristický proud $I_{\rm DSS}$ FET by nebyl dosažen.

Obrázek 5.3. Měření Gate-Source-napětí a Source-proudu N-JFET-tranzistoru

Pokud součástka nemá proud mezi kladným vývodem a záporným vývodem bez signálu na (TP3) pinu jsou další testy popsány v další podkapitole 5.1.1. Pokud je zjištěn proud, jsou další testy popsány v podkapitole diody 5.1.4.

5.1.1 Měření PNP tranzistoru nebo P-kanálu MOSFET

Za prvé je měřen aktuální faktor zesílení hFE v okruhu kolektoru (emitor následovník) pro předpokládaný PNP tranzistor. Situace měření je zobrazena na obrázku 5.4. Leží-li naměřené napětí báze (UB) přes 9mV s 680Ω odporem, bude aktuální zesílení hFE vypočítán pomocí $hFE = \frac{UE-UB}{UB}$. Napětí UE je rozdíl napětí emitoru k VCC. Rozdíl mezi 22Ω a 19Ω odporem se zanedbává. Když leží UB napětí pod 10mV, bude měření provedeno s $470k\Omega$ odporem v bázi. V tomto případě bude vytvořen faktor zesílení proudu s $hFE = \frac{UE\cdot 470000}{UB\cdot (680+22)}$.

Obrázek 5.4. + měření PNP tranzistoru v kolektorovém obvodu

Dále jsou testy pro předpokládaný PNP tranzistor v zapojení emitorový sledovač v obvodu emitoru. Kladná strana je nyní připojena přímo k VCC, 680Ω odpor na záporném konci je připojen k GND, jak je znázorněno na obrázku 5.5. Pokud má záporná strana součástky napětí větší než 3,4V při použití 680Ω odporu na bázi spojenou s GND, musí se jednat o PNP trazistor nebo o P-Kanal-FET. To lze snadno rozlišit kontrolou napětí báze: pokud je větší než 0,97V, musí to být PNP. Pro měření aktuálního faktoru zesílení bude namísto 680Ω odporu použitý $470k\Omega$ jako odpor báze. Aktuální zesílení se vypočítá pomocí $hFE = \frac{(UC-UC0)\cdot 470000}{UB\cdot (680+19)}$. Napětí UC0 je napětí na kolektorovém odporu bez proudu báze. Vyšší faktor proudu je považován za správný, pro tento či onen zjištěný v kolektorovém obvodu. Hodnoty zjištěné pro PNP tranzistor jsou platné pouze po provedení druhé sady měření. Aby nedošlo k tomu, že by byl PNP tranzistor v inverzním obvodu, kdy je kolektor a emitor opačně, špatně detektován, bude jako správné měření použito to s vyšší hodnotou proudu. Pokud je báze napětí menší než 0,97V, musí to být P-E-MOS. V tomto případě je spínací napětí G

řídící elektrody určeno tak, že je napětí na Gate s $470k\Omega$ odporem pomalu měněno nahoru a dolů, dokud proud tekoucí přes vývod drain nevypne a potom je napětí na Gate měřeno.

Obrázek 5.5. Testování a měření hFE PNP tranzistoru v emitorovém okruhu

5.1.2 Měření NPN tranzistoru nebo N-kanálového MOSFETu

Měření tranzistoru NPN začíná stejným způsobem jako měření PNP tranzistoru, jmenovitě s měřením zesílení zesílení v kolektorovém obvodu. První měření se provádí pomocí na VCC spojeným 680Ω bázovým odporem. Pokud je napětí na bázovém odporu příliš malé, bude zde použitý $470k\Omega$ odpor. Měření pak pokračuje v emitorovém obvodu, jak je znázorněno na obrázku 5.6.

Obrázek 5.6. Testování a měření HFE tranzistoru NPN v emitorovém obvodu

Pokud napětí na kolektoru je pod 1,6V zatímco 680Ω je základní odpor na VCC připojen, musí to být NPN, N-Kanal MOSFET nebo tyristor (TRIAC). Dva jednoduché testy mohou detekovat tyristor nebo TRIAC. Je-li Gate pin po dobu 10ms připojen k GND a pak odpojen, měl by zůstat tyristor nebo triac sepnut. Pokud se nyní anodový odpor krátce přepne na GND a poté se vrátí zpět na VCC, neměl by tyristor znovu sepnout. Zůstane bez proudu. Mějte na paměti, že lze testovat pouze tyristory s nízkým výkonem, protože spínací proud testeru může dosáhnout pouze 6mA. Pokud oba testy tyristor potvrdí, jsou prováděny další testy s obrácenou polaritou, k vyloučení nebo potvrzení že se může jednat o TRIAC. Pokud nebyl potvrzen žádný tyristor ani TRIAC, může to být NPN nebo N-kanálový E-MOSFET. Napětí báze NPN tranzistoru se blíží napětí emitoru, čímž lze tento typ bezpečně rozpoznat. Aktuální faktor zesílení v emitorovém okruhu je $hFE = \frac{(VCC-UC-UC0)\cdot 47000}{(VCC-UB)\cdot (680+22)}$ Pokud napětí na bázi ukazuje, že teče jen malý nebo žádný proud, jedná se zde o N-kanál E-MOS MOSFET. V tomto případě je prahové napětí měřeno pomalým vzrůstem Gate napětí přes $470k\Omega$ odpor střídavým připojením na VCC a GND a čeká až digitální signál na vstupu G sepne proud na Drain, aby v tom okamžiku bylo přečteno Gate napětí. Měření se opakuje jedenáctkrát, jak je znázorněno na obrázku 5.7, a výsledky budou sčítány. Vypočtená suma je násobena čtyřmi a pak dělena devíti, aby bylo dosaženo rozlišení v mV.

Obrázek 5.7. Měření prahového napětí u N-kanálového MOSFETu

5.1.3 Zjednodušený proces identifikace tranzistorů

Obrázek 5.8. Program testování tranzistorů část 1, JFET a D-MOS

Obrázek 5.9. Program pro testování tranzistorů část 2, BJT a E-MOS

Obrázek 5.10. Program testování tranzistorů část 3, tyristor a triak

5.1.4 Měření diod

Pokud byl v předběžných testech zjištěn proud, je součástka testována na chování diod. Předpětí s 680Ω odporem musí být mezi 0,15V a 4,64V. Přední napětí s 680Ω odporem musí překročit 1,125 násobek dopředného napětí s $470k\Omega$ odporem a šestnáctinásobek dopředného napětí s $470k\Omega$ odporem větší než přední napětí s 680Ω odporem. Navíc nesmí následné opětovné měření s $470k\Omega$ odporem vydat vyšší napětí než měření s 680Ω odporem.

Pak se dá předpokládat, že zařízení s tímto chováním je vždy dioda. Detekce chování diody nedostatkem proudu v opačném směru není u antiparalelních diod možné. Pro jednu diodu je přidán zpětný proud diody měřený u 5V s $470k\Omega$ odporem. Rozlišení je asi 2nA. Pro větší zbytkové proudy než $5,3\mu A$ (napětí při odporu větší než 2,5V) bude měřeno s 680Ω odporem. Pak je rozlišení pouze $1\mu A$. Kromě toho se provádí měření kapacity diody v opačném směru.

5.1.5 Výsledky různých měření

Následující tři tabulky zobrazují výsledky měření různých komponentů s procesory ATmega8, ATmega168 a ATmega328. Měření kapacity pro dvojitou diodu MBR4045PT je úspěšné pouze při účinném chlazení. Příčinou je vysoký zbytkový proud diody 40A. Podobně pro báze emitor trasu germaniového tranzistoru AC128, lze izolační kapacitu měřit pouze při dobrém chlazení.

	Mega8@8MHz	Mega8@8MHz		
Diode Typ				
1N4148	dioda, 715mV,	dioda, 718mV,	dioda, 715mV,	
	1pF	0pF, 2nA	1pF, 4nA	
1N4150	dioda, 665mV,	dioda, 672mV,	dioda, 666V,	
	1pF	1pF, 4nA	2pF, 6nA	
BA157	dioda, 619mV,	dioda, 621V,	dioda, 615mV,	
	19pF	17pF, 12nA	18pF, 12nA	
BY398	dioda, 538mV,	dioda, 541mV,	dioda, 537mV,	
	$16 \mathrm{pF}$	14pF, 63nA	15pF, 63nA	
1N4007	dioda, 650mV,	dioda, 655mV,	dioda, 650mV,	
	13pF	10pF, 6nA	13pF, 6nA	
LED green	dioda, 1.96V, 5pF	dioda, 1.95V, 4pF	dioda, 1.95V, 4pF	
ZPD2,7	2xDi, 743mV, 2.53V	2xDi, 737mV, 2.52V	2xDi, 733mV, 2.51V	
BU508A B+E	dioda, 609mV,	dioda, 611mV,	dioda, 606mV,	
	$5.15\mathrm{nF}$	5.20 nF, 0.39 uA	5.25 nF, 0.4 uA	
BU508A B+C	dioda, 582mV,	dioda, 586mV,	dioda, 587mV,	
	256 pF	255pF, 21nA	259pF, 19nA	
AC128 B+E	dioda, 272mV,	dioda, 277mV,	dioda, 273mV,	
	$0 \mathrm{pF}$	0pF, 2.2uA	0pF, 2.3uA	
AC128 B+E			dioda, 349mV,	
gekühlt			140pF, 0.57uA	
MBR20100CT	2xDi, 337mV, 337mV	2xDi, 338mV, 338mV	2xDi, 336mV, 335mV	
MBR20100CT	dioda, 337mV,	dioda, 339mV,	dioda, 337mV,	
	345 pF	351pF, 29nA	$350 \mathrm{pF}, 25 \mathrm{nA}$	
MBR4045PT	dioda, 243mV,	dioda, 233mV,	dioda, 235mV,	
gekühlt	1.80nF	1.94nF, 1.7uA	1.95nF, 1.8uA	
SK14	dioda, mV,	dioda, mV,	dioda, 263mV,	
	0pF	pF, nA	0pF, 0.57uA	
SK14	dioda, mV,	dioda, mV,	dioda, 334mV,	
gekühlt	nF	pF, nA	88pF, 4nA	
SF38G	dioda, 519mV,	dioda, 521mV,	dioda, 516mV,	
	107pF	105pF, 2nA	106pF, 2nA	

Tabulka 5.2. Výsledky měření testů diod

Transistor	Тур	Mega8	Mega328	Mega328	Mega328
Typ		common-	maximum	common-	common-
		collector		collector	emitter
BU508A	NPN	B=9, 601 mV	B=9, 597 mV	B=9, 598mV	B=4, 484mV
2N3055	NPN	B=20, 557 mV	B=21, 550mV	B=21, 550mV	B=6, 442mV
BC639	NPN	B=148, 636mV	B=172, 629mV	B=172, 629mV	B=158, 605mV
BC640	PNP	B=226, 650 mV	B=176, 609mV	B=171, 655mV	B=177, 608mV
BC517	NPN	B=23.9k, 1.23V	B=24.8k, 1.22V	B=25.1k, 1.22V	B=764, 1.23V
BC516	PNP	B=75.9k, 1.21V	B=76.2k, 1.20V	B=76.2k, 1.20V	B=760, 1.23V
BC546B	NPN	B=285, 694mV	B=427, 687mV	B=427, 687mV	B=369, 683mV
BC556B	PNP	B=304, 704mV	B=254, 668mV	B=235, 709 mV	B=255, 668mV
AC128 (Ge.)	PNP	B=63, 191mV	B=59, 191mV	B=57, 193mV	B=43, 117mV
BUL38D	NPNp	B = 37, 627 mV	B=41, 617mV	B=40, 624mV	B=36, 562mV
parasitär	PNPn	B = 11, 654 mV	B=81, 543 mV	B=10, 656 mV	B=83, 541mV
BRY55/200	Thyrist.	0.84V	0.81V	0.82V	0.82V
MAC97A6	Triac	0.92V	0.90V	0.91V	0.90V

Tabulka 5.3. Výsledky měření testů s bipolárními tranzistory

Výsledky měření tranzistorů se v některých případech značně liší od hodnot verze programu eep a hex od Markuse Frejeka. Například pro Darlingtonův tranzistor BC517 bylo v předchozím softwarem měřen hFE pouze 797 namísto 77200. To souvisí se skutečností, že se aktuální zisk v nové verzi také měří v kolektorovém okruhu. To také dokazují výsledky nové verze v emitorovém okruhu (společný emitor), jak vidíte v posledním sloupci tabulky 5.3. Napětí báze emitor bylo předem stanoveno pomocí samostatného diodového testu s 1438mV. Nyní je také určeno uvedené napětí ze stavu měření zesílení (1, 20V). Tranzistor BUL38D obsahuje ochrannou diodu přes anodu a kolektor NPN tranzistoru, přičemž je vytvořen parazitní PNP tranzistor s obráceným spojením báze a kolektoru. V softwarové verzi 1.10k jsou oba tranzistory detekovány a s připojeným p ukázáno na druhý tranzistor. Správný tranzistor (NPN) je zjištěn porovnáním spojovacích kapacit. Předpokládá se, že ten, který má vyšší kapacitu přechodu, je ten správný tranzistor. Pokud je během zobrazení výsledku stisknuto tlačítko start, budou zobrazeny parametry parazitního tranzistoru. Přitom je zase s PNPn na další strukturu tranzistoru upozorněno. Další struktura tranzistoru vzniká pouze při integraci ochranné diody v blízkosti tranzistoru ve stejném polovodičovém materiálu, nikoli při připojení externí diody. V následující tabulce 5.4 jsou zobrazeny výsledky germánových tranzistorů, které jsou silně teplotně závislé a měření zbytkových proudů kolektorů je obzvláště problematické. Zde jsou výsledky původní verze Markuse F. a výsledky verze 1.10k srovnány s ostatními. Verze 1.10k měří aktuální zesílení jak v kolektorovém obvodu, stejně jako v obvodu emitoru s přihlédnutím ke klidovému proudu kolektoru, přičemž je vydáno vyšší proudové zesílení. Ve starších verzích nebyl brán ohled na klidový proud kolektoru.

Transistor	Mega8 @1MHz	Mega168 @8MHz	Mega328 @8MHz
Typ	Ur-Version	Version 1.10k	Version 1.10k
	Markus F.		
AC128	PNP, B=52, 279mV	PNP, B=59, 184mV	PNP, B=59, 191mV
AC116-65	PNP, B=505, 378mV	PNP, B=72, 146mV	PNP, B=72, 149mV
AC116-145	PNP, B=485, 294mV	PNP, B=146, 161mV	PNP, B=146, 163mV
AC176-65	NPN, B=98, 235mV	NPN, B=58, 94mV	NPN, B=56, 96mV
GC122	PNP, B=84, 368mV	PNP, B=55, 117mV	PNP, B=56, 117mV
GC301	PNP, B=48, 289mV	PNP, B=39, 184mV	PNP, B=39, 188mV
AD161	NPN, B=360, 230mV	NPN, B=296, 126mV	NPN, B=298, 128mV
AD162	PNP, B=2127, 280mV	PNP, B=89, 107mV	PNP, B=89, 107mV

Tabulka 5.4. Výsledky měření testů s bipolárními germániovými tranzistory

Tabulka 5.5 zobrazuje výsledky měření některých tranzistorů s efektem pole. Naměřený parametr typů E-MOS je Gate Source spínací napětí, kde digitální vstupní ATmega signál 680Ω Drain odpor spíná. Při velmi rychlé změně Gate napětí v důsledku malé Gate kapacity je zjištěné napětí poněkud nepřesné. U BS250 se změní Gate napětí z 2,6V na 2,5V, pokud je další 10nF kondenzátor mezi gatesource připojen. Dalším měřeným parametrem je kapacita gate. Gate kapacita je určena umístěním Source i Drain na potenciál GND. U IGBT nedosáhne často 5V Gate napětí testeru pro jeho sepnutí. Většinou je detekována pouze ochranná dioda emitor-kolektor. V takovém případě může baterie připojená k Gate pinu s hodnotou kolem 3V stačit k sepnutí, a k detekci tranzistoru IGBT. Druhý pól baterie pak nahradí Gate pin při připojením k testovacímu pinu (TP) testeru. Je-li polarita baterie správná, je možné rozpoznání IGBT. Zobrazené spínací napětí Gate Emitor napětí musí být navýšeno o napětí baterie, aby bylo dosaženo skutečné spínací napětí. V případě JFET tranzistorů se datové listy (datasheet) často vztahují k Idss charakteristickému proudu, proud v Drainu při Gate napětí 0V. Zde je však daný proud, který je charakterizován 680Ω odporem zatěžovaný Source straně JFET. Zátěžový odpor generuje pro Gate protiproudové Vgs, což je také uvedeno. S $470k\Omega$ odporem zátěže na Gate straně JFET je Source Drain proud téměř 0. Tímto způsobem lze stanovit s dostatečnou přesností Gate Source, spínací či vypínací napětí Vgs off pokud leží pod 5V. S těmito dvěma operačními body může být kvůli kvadratické proudové charakteristice Igss odhadnout. Pokud je odhadovaný proud menší než 40mA bude provedeno další měření bez odporu na Source straně. Přídavná hodnota proudu může být určena prostřednictvím napětí na Source. S touto vyšší hodnotou proudu a Gate Source napětím, bude aktuální Idss opět s kvadratickou proudovou charakteristikou vypočítán za předpokladu, že hodnota 40mA není překročena. Vzhledem k symetrické stavbě JFETs nelze rozlišit vývody Drain a Source.

		Mega8 @8MHz	Mega168 @8MHz	Mega328 @8MHz
Transistor	Тур			
ZVNL120A	N-E-MOS	D, 1.6V, 147pF	D, 1.5V,141pF	D, 1.5V, 140pF
IRF530N	N-E-MOS	D, 3.6V, 1.55nF	D, 3.6V, 1.54nF	D, 3.6V, 1.54nF
BS170	N-E-MOS	D, 2.6V, 78pF	D, 2.6V, 68pF	D, 2.6V, 68pF
IRL3803	N-E-MOS	D, 2.3V, 9.81nF	D, 2.3V, 9.71nF	D, 2.3V, 9.74nF
IRFU120N	N-E-MOS	D, 4.2V, 909pF	D, 4.2V, 913pF	D, 4.2V, 911pF
BUZ71A	N-E-MOS	D, 3.2V, 714pF	D, 3.2V, 708pF	D, 3.2V, 705pF
ZVP2106A	P-E-MOS	D, 3.2V, 122pF	D, 3.2V,115pF	D, 3.2V, 116pF
IRF5305	P-E-MOS	D, 3.6V, 2.22nF	D, 3.6V, 2.22nF	D, 3.6V, 2.22nF
BS250	P-E-MOS	D, 2.6V, 53pF	D, 2.6V, 43pF	D, 2.6V, 44pF
IRFU9024	P-E-MOS	D, 3.5V, 937pF	D, 3.6V, 945pF	D, 3.5V, 933pF
J310	N-JFET	3.1mA Vgs=2.2V	3.1mA Vgs=2.2V	3.1mA Vgs=2.2V
Idss=24-60mA				Idss=35mA
2N5459	N-JFET	2.1mA Vgs=1.5V	2.1mA Vgs=1.5V	2.1mA Vgs=1.5V
Idss=4-16mA				Idss=8.2mA
BF256C	N-JFET	3.4 mA Vgs = 2.4 V	3.4 mA Vgs = 2.4 V	3.4mA Vgs=2.4V
Idss=11-18mA				Idss=14mA
BF245A	N-JFET	1.1 mA Vgs = .75 V	1.1mA Vgs=0.75V	1.1 mA Vgs = 0.75 V
Idss=2-6mA				Idss=3.6mA
BF245B	N-JFET	2.5 mA Vgs = 1.7 V	2.5mA Vgs=1.7V	2.5 mA Vgs = 1.7 V
Idss=6-15mA				Idss=10mA
BF245C	N-JFET	3.9mA Vgs=2.7V	3.9mA Vgs=2.7V	3.9 mA Vgs = 2.7 V
Idss=12-25mA				Idss=17mA
J175	P-JFET	3.2 mA Vgs = 2.2 V	3.2mA Vgs=2.2V	3.2mA Vgs=2.2V
Idss=7-60mA				Idss=26mA
2N5460	P-JFET	0.78mA Vgs=0.54V	0.77mA Vgs=0.54V	0.78mA Vgs=0.54V
Idss=1-5mA				Idss=2.6mA
BSS139	N-D-MOS	1.7mA Vgs=1.2V	D, 1.7mA Vgs=1.2V	D, 1.7mA Vgs=1.2V
BSS169	N-D-MOS	2.6mA Vgs=1.8V	D, 2.6mA Vgs=1.8V	D, 2.6mA Vgs=1.8V
GP07N120	N-E-IGBT	C=3.81nF Vt=4.2V	C=3.76nF Vt=4.2V	C=3.74nF Vt=4.2V
IRG4PC30	N-E-IGBT			C=2.22nF
mit Bat.				Vt = 2.0V + 3.2V

Tabulka 5.5. Výsledky měření testu FET

5.2 Měření odporů

Každý odpor se měří čtyřmi měřicími metodami v jednom směru proudu. Stejný odpor je měřen stejnými čtyřmi měřicími metodami v druhém směru proudu. Měření v opačném směru se používá pouze pro detekci odporu. Pokud je odchylka těchto dvou měření příliš velká, není to žádný odpor.

5.2.1 Měření odporů s pomocí 680Ω odporů

Měření neznámého odporu Rx se provádí dvěma různými způsoby s přesnými odpory 680Ω . Schéma zapojení těchto měření pomocí zkušebního kolíku 1 (TP1) a zkušebního kolíku 3 (TP3) je zjednodušeně znázorněno na obr. 5.11 a obrázku 5.12 jako příklad šesti možných kombinací.

Obrázek 5.11. Měření typu 1 s 680Ω

Obrázek 5.12. Měření typu 2 s 680Ω

Zkušební pin TP 1 je zobrazen na levé straně a zkušební pin TP 3 na pravé straně. V obou obvodech je vidět, že je port 3 (TP3) spínán k VCC a na levé straně (TP1) je připojen na zem GND. Aktuální směr přes rezistor Rx je vždy stejný. Hodnoty pro porty přepojené na výstup jsou zobrazeny červeně, hodnoty vstupů jsou zobrazeny modře, neaktivní porty jsou černé. V obou měřených metodách by proud měl mít stejnou hodnotu, protože součet odporů mezi VCC a GND je stejný, pokud jsou vestavěné odpory Atmega stejné. Vzhledem k tomu, že se pořadí odporů obrací, obvykle nejsou měřené napětí stejné. Symbol V uvnitř kruhu označuje porty použité pro měření napětí.

V obou konfiguracích je možné, hodnotu odporu Rx vypočítat, ze známých odporů a měřeného napětí, když poměr odporu Rx a 680Ω odporů není příliš vysoký. Teoretická křivka napětí je znázorněna na obr. 5.13 kde jsou hodnoty odporu v logaritmickém měřítku.

Obrázek 5.13. Napětí typu 1 a typu 2 s měřicím odporem 680Ω

Gradient pro měření typu 1 je zobrazen na obrázku 5.14a s rozložením pro nižší hodnoty odporu. Jak můžete vidět, potřebujete lepší ADC rozlišení, než ty možné 4,9mV na 5V ADC odkazu, abyste získali správné hodnoty odporu od naměřeného napětí pod 2Ω . Existují pouze tři úrovně ADC s 5Vodkazem mezi 0Ω a 2Ω. Přepínání rozsahu s volbou AUTOSCALE ADC zde může pomoci. Stejný rozsah šíření pro měření typu 2 je zobrazen na obrázku 5.14b. Bohužel nemůžete použít vyšší rozlišení ADC pro metodu měření typu 2, protože napětí je příliš vysoké a naše ATmega nemá žádné diferenční ADC vstupy. Měření s odpory 680Ω se stávají až do hodnoty odporu $20k\Omega$ (napětí je pod hodnotou 169mV) použito k určení výsledku měření. Pro odpory vyšší hodnoty se používají k měření odpory $470k\Omega$. Průměrná hodnota obou měření se používá k zobrazení hodnoty odporu, pokud je výsledkem všech měření potvrzeno, že to není žádná jiná součástka. Je-li použita funkce AUTOSCALE ADC a jedno z naměřených napětí je menší než 0,98V pro obě verze, pro měření s napětím pod 0,98V se použije závažný průměr s faktorem čtyři. Druhá hodnota je určena s faktorem jedna. To způsobí o faktor čtyři lepší rozlišení tohoto měření. Čtvrtý faktor se používá pouze pro procesory ATmega168 a ATmega328, pro ATmega8 se používá jako faktor vážení dva, když je napětí nižší než 0,98V protože referenční ADC napětí je zde 2,56V namísto 1,1V. Pokud má ATmega více než 8 Kb flash paměti, bude měření napětí na odporech tak dlouho zpožděno, dokud nebude zjištěna žádná změna nebo překročen časový limit. Tímto opatřením nebudou ani velké kondenzátory omylně rozpoznány jako odpory, a u velkých cívek bude stejnosměrný odpor správně změřen.

5.2.2 Měření odporů s precisními odpory $470k\Omega$

Další obrázky 5.15 a 5.16 ukazují stejné měřicí metody pro měření s precisními $470k\Omega$ odpory. Protože je $470k\Omega$ v relaci k odporům portu 22Ω a 19Ω velmi velký, lze odpory portů Atmega pro výpočet hodnoty odporu Rx zanedbat. Pro obě metody měření s $470k\Omega$ odpory se měří jen jedno napětí kvůli tomu že je hodnota proudu tak nízká, že na vnitřních odporech portů Atmega nelze měřit žádný rozdíl napětí jak by se očekávalo . Křivka teoretického napětí je znázorněna na obrázku 5.17 s hodnotami odporu v logaritmickém měřítku. Teoretický průběh v tomto diagramu končí u $100M\Omega$, ale možnost testeru je omezen na $60M\Omega$, jinak tester předpokládá, že není připojen žádný odpor. Jako výsledek se používá průměr obou metod měření. K tomu jsou použity stejné pravidla, které již platí při měření pomocí odporů 680Ω . Zjistil jsem, že výsledky měření pro všechny typy ATmega jsou bližší skutečné hodnotě, pokud je k výsledku měření přidán konstantní rozdíl 350Ω . Tento ofset lze nastavit pomocí konstantního RH_OFFSET (definovat) v souboru config.h.

Obrázek 5.15. Měření typu 3 s $470k\Omega$

Obrázek 5.16. Měření typu 4 s $470k\Omega$

Obrázek 5.17. Napětí při měření typu 3 a typu 4 s $470k\Omega$

5.2.3 Výsledky měření odporů

Obrázek 5.18 ukazuje relativní chybu měření odporu se třemi různými ATmega8. Kromě toho jsou výsledky měření některých odporů s původním softwarem Markuse F. zobrazeny jako "Mega8orig". Výsledky měření stejných odporů se třemi ATmega8A a třemi ATmega8L jsou uvedeny na obrázcích5.19a a 5.19b. Obrázek 5.20 ukazuje stejné měření pomocí ATmega168. "Mega168" jsou výsledky bez možnosti AUTOSCALE_ADC, "Mega168as" s touto možností. S ATmega168 se zdá být možné získat měření odporu v rozsahu od 20Ω bis $20M\Omega$ s chybou měření menší než $\pm 1\%$. Pro měření pod 100Ω je třeba vzít v úvahu, že každá zkušební šňůra má také nějakou hodnotu odporu. Je lepší připojit měřěný objekt přímo ke svorkám. Pokud to není možné, je třeba od výsledku měření odečítat odpor zkratovaných zkušebních šnůr. Například. Tester zobrazí hodnotu 30, 6Ω . Pokud má přesný odpor vytištěnou hodnotu 30Ω a zkratované zkušební kabely mají hodnotu 0, 5Ω , pak je skutečná hodnota odporu 30, 1Ω . Pod hodnotou odporu 10Ω , činí krok rozlišení 0, 1Ω již chybu více než 1%!

Obrázek 5.18. Relativní chyba pro měření odporu s ATmega8

Obrázek 5.19. Relativní chyba při měření odporů

Obrázek 5.20. Relativní chyba při měření odporů s ATmega 168

Diagram 5.21a ukazuje chyby měření tří procesorů ATmega168 před kalibrací jako body, po kterých kalibrace jako přímka. Tomu odpovídá měření chyb u tří ATmega168A na obr. 5.21b a tří ATmega328P zobrazených na obrázku 5.22. Chyby měření ATmega328 jsou zobrazeny na obrázcích 5.23a a 5.23b. Po automatické kalibraci zůstává chyba měření v rozsahu odporu s jednou výjimkou (ATmega328P-13, $22k\Omega$), $10\Omega - 20M\Omega$ v rozsahu $\pm 1\%$. Před kalibrací dosahovaly chyby měření v některých procesorech až $\pm 3\%$. Chyba je způsobena přepnutím ADC reference AUTOSCALE_ADC. Přímým porovnáním napětí kondenzátoru pod 1V, jednou s VCC odkazem a opět s měřením interní referencí , může být chyba kompenzována. V tomto případě je napětí měřeno stejným kanálem multiplexeru a referenční pásmo je na AREF kolíku zapnuté. Přímé měření (Bandgap-reference) přímou volbou vstupu multiplexeru bohužel vede k tomuto ofsetu, který lze ručně odstranit pomocí volby REF_R_KORR nebo automaticky s volbou AUTO_CAL auto-testu. V režimu AUTO_CAL-Modus je REF_R_KORR další ofset k automaticky zjištěnému rozdílu napětí.

Obrázek 5.22. Relativní chyba při měření odporů se třemi ATmega168P

Obrázek 5.23. Relativní chyba při měření odporů

5.3 Měření kondenzátorů

Měření hodnot kapacity se stává samostatnou částí a provádí se měřením doby nabíjení. Původní software Markuse F. to dělal pomocí programové smyčky, která četla příslušný digitální vstupní pin až do doby změny signálu a přitom sčítala průchod smyček. To má tu nevýhodu, že je rozlišení časového měření omezeno celkovým časem průchodu smyčkou. Toto bylo obvykle provedeno ve všech šesti možných kombinacích tři zkušebních pinů. Současný software používá dva různé způsoby, jak přečíst pouze tři možné kombinace pro tři zkušební kolíky. Pozitivní stranou je nyní vždy vyšší číslo zkušebního pinu. Pouze pokud je kapacita měřena společně s paralelně zapojenou diodou, může mít polarita jiný směr.

5.3.1 Vybíjení kondenzátorů

Vždy byste měli kondenzátor vybít dříve, než bude připojen k testeru. Před zahájením jakéhokoliv testu bude kondenzátor přesto ještě jednou testerem vybit. Je-li napětí nižší než 1300mV, bude kondenzátor na připojeném ADC portu (Port C) zkratován. Myslím, že je to v pořádku, protože každý portový výstup má vnitřní odpor asi 20Ω . Obrázek 149 (strana 258) v datovém listu ATmega8 [4] ukazuje pokles napětí výstupních pinů, až na hodnotu 2V. Samozřejmě, nelze zaručit, že se nenastane žádná škoda. Testoval jsem tuto funkci velmi často s kondenzátory většími než 15mF a nikdy jsem si nevšiml nějakého problému. Proud by měl zůstat pod stanovenou mezní hodnotou 40mA a bude rychle vybíjením redukován. Samozřejmě může dojít k poškození, pokud (vysokonapěťový) kondenzátor před připojením k testeru, úplně nevybijete.

5.3.2 Měření velkých kapacit

Jedna strana kondenzátoru je připojena k GND.

Druhá strana je, pomocí 680Ω odporu, připojena k VCC na dobu 10ms. Pak se tento měřicí kolík přepne na vstup (vysoká impedance). Po tomto proudovém impulzu se napětí na kondenzátoru měří bez proudu. Pokud napětí nedosáhlo minimální hodnoty 300mV, opakuje se tento nabíjecí impuls dalších 499krát. Když po 127 pulsech (přibližně 2s) nebylo dosaženo minimálního napětí 75mV, proces nabíjení bude přerušen, protože se zbývajícími nabíjecími impulzy nebude 300mV dosaženo. Obrázek 5.24 ukazuje tři fáze určení kapacity kondenzátoru. Hodnota kapacity se pak vypočte z počtu nabíjecích impulsů a dosaženého nabíjecího napětí pomocí tabulky. Tabulka obsahuje, při rozsahu napětí 25mV, faktory pro výpočet, z doby nabíjení a napětí, hodnoty kapacity. Mezi-produktové hodnoty napětí jsou interpolovány.

Obrázek 5.24. Vybíjení a nabíjení kondenzátoru s 10ms nabíjecími impulzy na napětí > 300mV

Vzhledem k nízkému nabíjecímu napětí se měření stává mnohem rychlejší než u původní verze softwaru, protože tato výhoda funguje také při vybíjení. To umožňuje měřit větší kondenzátory. Kromě toho ve většině případů nezasahuje paralelní dioda do měření, protože nebude dosaženo její prahové napětí.

Po verzi 1.12k softwaru byl použit trik pro zjištění zbytkového napětí kondenzátoru ještě před měře-

ním. Zbytkové napětí může být kladné nebo záporné v závislosti na historii. ADC však nemůže měřit záporné napětí. Proto je napětí záporného zkušebního pinu s 680Ω odporem zvýšeno na přibližně 132mV, jak ukazuje obrázek 5.25. Zbytkové napětí může být nyní tvořeno, z rozdílu napětí, na obou stranách kondenzátoru. Napětí na kladném zkušebním pinu zůstává v každém případě pozitivní, i když kondenzátor má záporné zbytkové napětí několika mV.

Obrázek 5.25. Měření zbytkového napětí kondenzátoru při počátku nabíjení

Obrázek 5.26a ukazuje nabíjení a vybíjení velkého kondenzátoru $229\mu F$. Plochá střecha měřicí křivky až do začátku vybíjení je způsobena časem měření a dobou výpočtu ATmega. Obrázek 5.26b ukazuje stejné měření pomocí kondenzátoru 5mF, Všimněte si, jak se doba měření včetně vybíjení zvýšila na přibližně 1,5 sekundy.

(a) $229\mu F$ -Kondenzátor (b) 5mF-Kondenzátor Obrázek 5.26. Nabíjení a vybíjení velkých kondenzátorů pro měření

Poslední příklad na obrázku 5.27 ukazuje měření kondenzátoru 15mF.

Obrázek 5.27. Nabíjení a vybíjení 15mF kondenzátoru pro měření

Po tomto měření kondenzátoru bude zkoumáno samovybíjení kondenzátoru pomocí zkoušky ztráty napětí v úměrném čase době nabíjení. Naměřená kapacitní hodnota kapacity je odpovídajícím způsobem upravena. Test $68\mu F$ kondenzátoru s paralelně zapojeným $2,2k\Omega$ odporem ukazuje účinnost této metody. Zjištěná hodnota kapacity bez odporu je $66,5\mu F$, s paralelním odporem $2,2k\Omega$ je měřena hodnota kapacity $65,3\mu F$. Pro srovnání bych rád specifikoval odpovídající výsledky s Peaktech 3315 multimetrem.

Bez odporu se měří kapacita 68,2 μF , s paralelním 2,2 $k\Omega$ odporem je však, pomocí multimetru, naměřeno 192 μF .

5.3.3 Měření malých kapacit

Pokud první 10ms nabíjecí impuls přetížil kondenzátor, je použita jiná měřicí technika. Mikrokontrolér ATmega má vestavěný 16bitový čítač, který to zvládne při maximální taktové frekvenci (1MHznebo 8MHz). Tento čítač má také schopnost, kvůli externí události, uložit svoji momentální hodnotu do paměti. Tato hodnota může být také výstupní signál komparátoru. Komparátor může pracovat s libovolným vstupním kolíkem ADC a referenčním napětím (Band Gap Reference). Schéma zapojení 5.28 ukazuje zjednodušený diagram situace měření. Takže vybijí kondenzátor, připravím komparátor pro správný pin vstupu, vynuluji počítadlo a začnu okamžitě nabíjet kondenzátor. Jedna strana kondenzátoru je připojena k GND, druhá strana přes $470k\Omega$ odpor k VCC. Nyní zkontroluji programovou smyčkou, zda počitadlo hlásí přeplnění (overflow) nebo externí událost (input capture). Sčítám tak dlouho události přeplnění, pokud nezjistím externí událost. V takovém případě zastavím čítač a kontroluji, zda musím ještě jedno další přetečení přičíst, protože čítač nelze, pomocí externího vstupu (input capture), zastavit. Sčítání externí události s počítadlem přetečení, tvoří celkový čas, z kterého je s faktorem kapacita určena. Současný software může tabulku s teoretickou závislostí doby načítání ve vztahu k naměřené hodnotě srovnávacího napětí porovnat. Tabulka obsahuje hodnoty ve stupních 50mV, výsledky jsou interpolovány podle aktuálního referenčního napětí. Tato tabulka je aktivována pouze volbou Makefile WITH_AUTO_REF. Z hodnoty kapacity preferuji experimentálně zjištěnou předdefinovanou konstantu nebo jednu v autotestu zjištěnou konstantu pro

odstranění ofsetu naměřené hodnoty. Nevím, jestli má být předdefinovaná konstanta upravena pro jiné varianty testeru. Při autotestu s nastavením možnosti AUTO_CAL-Option se toto nastavení provede automaticky. Všiml jsem si, že referenční napětí je obvykle příliš malé, proto můžete zadat doplněk s volbou Makefile REF_C_KORR. Po kalibraci s volbou AUTO_CAL-Option je hodnota REF_C_KORR-Wert jen korekce k automaticky zjištěnému rozdílu mezi nabitým kondenzátorem a vnitřnímu referenčnímu napětí. Naměřené referenční napětí se pak koriguje (přidává) s hodnotou (v mV). Pokud není použita volba WITH_AUTO_REF bude referenční napětí stejné jako v dokumentech ATega8, ATmega168 a ATmega328 viz dokumentace [4] [5]. Příklad měření tohoto typu je zobrazeno na obrázku 5.29. Doba měření pro kondenzátor $22\mu F$ je přibližně 2,6s protože $470k\Omega$ odpor se používá k nabíjení. V tomto případě je však vybíjení mnohem rychlejší než nabíjení.

Obrázek 5.28. Měření malých kapacitních hodnot s komparátorem

Obrázek 5.29. Nabíjení a vybíjení $22\mu F$ kondenzátoru pro měření

V zásadě lze tuto techniku použít také s 680Ω odporem, ale protože ADC nemůže být používáno během provozu komparátoru, neexistuje žádná možnost sledování nabíjecího napětí až do zastavení komparátoru. Je-li neznámá dioda spojena paralelně s kondenzátorem, může být nabíjecí proud absorbovat diodou (prahové napětí) a referenční napětí by nikdy nebylo dosaženo. Této koncepční chybě se zabraňuje metodou popsanou v současném softwaru pro velké kondenzátory v kapitole 5.3.2.

5.3.4 Měření velmi malých kapacit metodou vzorkování

Amatérský radiový operátor Pieter-Tjerk (PA3FWM) rozšířil schopnosti testeru o měření velmi malých kapacit (< $100 \mathrm{pF}$) s vysokým rozlišením metodou vzorkování ADC. Doba konverze ADC není vlastně dostačující, aby bylo možné skenovat rychlé procesy. Při odběru vzorků napětí je zde však vstupní signál vzorkován v přesně stanoveném čase, době vzorkování(sample) a přidržení (hold) = (SH). ADC potřebuje pro úplnou konverzi 13 taktů, přičemž je tento takt získán dělením procesorového taktu 128 nebo 64. Vzorkování hodnoty napětí vždy probíhá přesně na cyklu ADC 1.5. Pokud je nyní možné, skenovat velikost napětí a stále znovu vytvářet, pak je také možné, posunem času vzorkování odebrat, pomocí rastru ofsetu, kompletní signál. Normální konverze ADC trvá na 8MHz procesorových taktů 13x64 = 832 taktových cyklů. Pokud se nyní signál s cyklem 831 taktů opakuje, bude nepřerušená konverze ADC (režim volnoběhu) tohoto signálu, je při každé konverzi, jeden procesorový takt později odebrán. Při této metodě je třeba dbát na to, aby start první konverze ADC signálu začal v požadovaném času

. Doba následných hodnot ADC se posune vždy o jeden takt procesoru relativně k nově generovanému signálu. Pokud je opakování impulsu úspěšné, odpovídá pak hodnota složena z mnoha opakování impulsu, ADC signálu, který je vzorkován a převeden s (8MHz) procesorovým taktem . Obrázek 5.30 ukazuje princip odběru vzorků desetkrát opakovaných impulsů k získání 10 vzorků (SH0 - SH9). Pro reálný případ je relativní časový posun postupných vzorků mnohem nižší, než je zobrazeno.

Obtížnost pro přesné stanovení prvního vzorkovacího času vyplývá ze skutečnosti, že oddělovač pro generování taktu ADC může být restartován pouze s externím signálem. Při spouštění ADC z programu čítač nepřestane počítat. Soulad s přesným počátečním a časovým obdobím je možný pouze v strojovém jazyce (assembler), protože zde závisí na každém taktu procesoru. Při odběru vzorkovací křivky malých kondenzátorů pomocí metody vzorkování se ukázalo, že časová konstanta nezůstává, během doby vzorkování, konstantní. To Pieter-Tjerk v jedné prezentaci na 60. konferenci VHF ve Weinheimu (D) představil. Asi 10pF kondenzátor, který drží napětí pro konverzi ADC, je v SH čase pro konverzi odpojen a asi dva ADC takty později znovu připojen. Kromě toho je tam, půl ADC taktu předem, ještě malá nepravidelnost v datech, která je pravděpodobně způsobena přepnutím multiplexeru.

Obě poruchy jsou zohledněny v softwaru. Software pro odběr vzorků může digitalizovat 255 hodnot, přičemž pro vzorkování nabíjecí křivky lze také použít výpočet průměrů 32 digitálně.

Tím je možné vliv poruchy mírně snížit. Software dokáže měřit jak proces nabíjení, tak i vybíjení. Protože při měření kapacity usměrňovací diody jsou měřeny oba procesy, je kalibrace nulové kapacity provedena v obou směrech a při všech kombinacích měřících pinů. Měřením kapacit během procesu nabíjení a vybíjení může být zobrazena závislost kapacity spojení na napětí, protože je nabíjecí kapacita měřena kolem 0V a proces vybíjení je měřen téměř u 5V. Normální kondenzátor by neměl, při tak nízkém napětí, žádný rozdíl kapacity ukázat. Zde je tedy kapacita měřena pouze během nabíjení.

Pieter-Tjerk optimalizoval funkci pro provoz 16MHz. Zde je dosaženo rozlišení 0,01pF. Při provozu s 8MHz běží převodník ADC pro vzorkovací metodu s poloviční frekvencí, aby hodnota dříve zmíněných rušivých vlivů ležela na stejných datových pozicích. Ztráta rozlišovací schopnosti, v důsledku použití 8MHz krystalu, nehraje většinou žádnou roli a také doba měření zůstává v tolerovatelnějších mezích.

5.3.5 Měření ekvivalentního sériového odporu ESR

ESR [10] je měřítkem stárnutí elektrolytických kondenzátorů. Obrázek 5.31 ukazuje ekvivalentní obvod kondenzátoru. Odpor Rp představuje izolační odpor kondenzátoru, odpor ESR představuje ekvivalentní sériový odpor a ESL ekvivalentní sériovou indukčnost.

Obrázek 5.31. Ekvivalentní obvod kondenzátoru

V datových listech je běžné, udávat ESR při frekvenci 100kHz a teplotě 20rC. Obrázky 5.32 a 5.33 ukazují výrobcem Panasonic specifikované ESR hodnoty pro elektrolytické kondenzátory při různých provozních napětí pro FC a "low ESR" série. Obě série jsou určeny pro maximální teplotu 105rC. Obrázek 5.34 představuje předepsaná data obou sérií při přípustném provozním napětí 25V. Pokud jsou v sérii k dispozici různé modely se stejnou kapacitou a napětím, jsou zobrazena data s nejnižším ESR. U elektrolytických kondenzátorů je ESR a kapacita relativně silně závislá na provozní teplotě.

Obrázek 5.32. ESR hodnoty z datového listu Panasonic série FC

Obrázek 5.33. ESR hodnoty z datového listu Panasonic série FR

Obrázek 5.34. Porovnání ESR hodnot série FC a FR

Měření při 100kHz není s hardwarem ATmega snadné, protože ani ADC neumožňuje při takové vysoké vstupní frekvenci přímé vzorkování, ani není 100kHz signál ve stávajícím okruhu k dispozici. Následovně budou prezentovány dvě metody pro určení ESR, které jsou s existujícím okruhem možné. Obě metody používají pro měření pravoúhlý měřicí signál, takže výsledky nikdy nemohou přesně odpovídat údajům, měřeným sinusovým signálem. V první metodě jsou výsledky blízké ESR hodnotám získaným u 1kHz. Nicméně má druhá metoda výhodu, že se zkratovanými zkušebními piny, může být nastavena nula a dále, že zjištěná ESR se blíží hodnotě, naměřené při 10kHz. V současné době nemám nápad na metodu měření, která může poskytnout srovnatelnou ESR hodnotu, jako 100kHz měření. Následující tabulka 5.6 by měla ukázat závislost ESR na frekvenci. S výjimkou kondenzátoru $47\mu F$ jsou všechny kondenzátory z řady Panasonic FC. Referenční hodnoty byly stanoveny měřidlem Peaktech 2170 LCR. Všechny výsledky testeru v této tabulce byly porovnány

s výsledky v podkapitole 5.3.7 popisované metodě 2. U velkých kapacitních hodnot činí indukčnost ESL, která je také přítomná, je měření, při vyšších frekvencích 100kHz, velmy obtížné.

	Datový list	PeakTech	Peaktech	PeakTech	tester
Kondenzátor	100 kHz	100 kHz	10 kHz	1 kHz	
1uF / 50V	2.4	1.27	1.75	4.31	2.1
2.2uF / 50V	1.8	1.07	1.34	2.76	1.6
4.7uF / 50V	1.3	1.19	1.40	2.37	1.5
4.7uF / 50V	1.3	1.19	1.40	2.37	1.5
10uF / 50V	1.3	1.26	1.45	2.05	1.5
22uF / 10V	2.0	1.52	1.76	2.24	1.9
47uF / 63V	?	0.46	0.50	0.63	0.52

Tabulka 5.6. ESR hodnoty různých elektrolytických kondenzátorů

5.3.6 Měření ekvivalentního sériového odporu ESR, metoda 1

U kondenzátorů s více než $0,45\mu F$ se pokouší měřit sériový odpor kondenzátorů. Při více než $3,6\mu F$ se pro převodník analogově-digitálního signálu používá normální taktová frekvence 125kHz. Při menších kapacitách se urychluje měření pomocí zvýšené frekvence 500kHz. Přesnost ADC výsledků bude při vyšší frekvenci sice horší, ale větší ESR hodnoty menší kondenzátory snižují vliv této ztráty přesnosti. Na druhou stranu není možné měřit ESR pro kondenzátory pod $1,8\mu F$ jinak pomocí této metody. Přísně řečeno, závisí ESR kondenzátoru na provozní frekvenci a teplotě. Obvykle je v datových listech uvedena hodnota naměřená sinusovým signálem při 100kHz. Při této frekvenci nemůže ATmega, bez vnějších obvodů, měřit. Níže popsaný postup dosahuje, při normální ADC frekvenci, pouze měřicí frekvenci pod 640Hz, s přibližně pravoúhlým signálem.

Při 500kHz ADC taktu se dosáhne frekvence měření přibližně 2400Hz. Pro určení ekvivalentního sériového odporu, bude kondenzátor nejprve v jednom směru nabíjen a na obou svorkách jeho napětí s interním referenčním napětím (1,1V) měřeno. Po měření se vypne nabíjecí proud a bude nyní měřeno napětí na kondenzátoru bez nabíjecího proudu. Když je napětí na kondenzátoru bez nabíjecího proudu menší než 3mV, bude tato sekvence měření opakována. Obrázek 5.35 zobrazuje odpovídající obvody.

Obrázek 5.35. Schéma ESR měření kondenzátoru

Rozdíl napětí mezi kondenzátorem a proudem je měřítkem vnitřního odporu kondenzátoru. Očekávaný rozdíl napětí je však tak malý, že s jedním měřením nelze dosáhnout žádného užitečného výsledku.

Z tohoto důvodu se proud převrací a měření se opakuje v opačném směru. Celá sekvence měření je 128 krát opakovaná a výsledky měření napětí jsou sečteny. Pak máte tři součty napětí, Ulp napětí na záporném pólu kondenzátoru s proudem, Uhp napětí na pozitivním pólu kondenzátoru s proudem a Uc napětí na kladném pólu kondenzátoru bez proudu. Součet napětí u záporného pólu kondenzátoru představuje pokles napětí v prostředním nabíjecím proudem při výstupním odporu portu Rport. Z rozdílu mezi součtem napětí na kladném pólu a záporným pólu kondenzátoru lze dosáhnout míru napětí na kondenzátoru s nabíjecím proudem Udiff = Uhp - Ulp. Rozdíl Uesr = Udiff - Uc by nyní měl representovat pokles napětí u středního nabíjecího proudu na vnitřním odporu kondenzátoru. Hodnota odporu bude zmenšena poměrem tohoto napětí Uesr k napětí Ulp známé hodnoty odporu výstupu portu Ulp rozdílu napětí na 4, Ulp kondenzátoru během Ulp rozdílu napětí na 4, Ulp kondenzátoru během Ulp měření. K objasnění Ulp vlivu byl Kondenzátor sériově propojen s 6, Ulp0 odporem. Malé napětí po skončení nabíjení kondenzátoru je vyhodnocováno softwarem. Větší pokles napětí při měření proti GND je způsoben vlivem výstupního portu odpor asi Ulp0. Výsledkem Ulp1 měření je tomto případě

 $7,5\Omega$, bez $6,8\Omega$ odporu to je $0,56\Omega$. Na obrázku 5.37 ukazuje stejné měření s vyšší frekvencí měření v $2,2\mu F$ Elko s ESR 6.5Ω .

(a) Pin naměřený proti GND (b) Měřeno od pinu k pinu Obrázek 5.36. Napěťová křivka 4, $2\mu F$ kondenzátoru během ESR měření

(a) Pin naměřený proti GND (b) Měřeno od pinu k pinu Obrázek 5.37. Napěťová křivka $2,2\mu F$ kondenzátoru během ESR měření

Přesnost ESR měření není z několika důvodů příliš vysoká:

- 1. Měření napětí na dvou koncích kondenzátoru nelze provádět současně, ale pouze po sobě. Mezitím se nabíjecí proud změnil v důsledku nabíjení kondenzátoru. To se pokouší kompenzovat s kapacitní závislostí korekce napětí záporného pólu.
- 2. ADC vezme hodnotu napětí 1,5 taktu po startu procesu konverze. Tato začíná stoupajícím bokem ADC taktu, když je nastaven počáteční bit. Pokud je nabíjecí proud kondenzátoru příliš brzy vypnutý, přebírá ADC špatné napětí pro proudové měření. Pokud je nabíjecí proud vypnutý příliš pozdě, je kondenzátor déle nabíjený, než odpovídá měření proudu. Potom se v bezproudovém stavu měřeno příliš vysoké napětí. V programu je však obtížné nastavit přesný čas vypnutí napájení.
- 3. Výstup odporu portu se používá jako referenční hodnota pro tuto měřicí metodu, tato hodnota odporu ale není přesně známa.

- 4. Rozlišení ADC není dostatečné k dosažení rozlišení $0,01\Omega$ odporu. Pro všechna měření se používá interní referenční napětí (1,1V) pro dosažení co nejlepšího rozlišení. Dále se snažíme zmírnit nedostatečné rozlišení velkým počtem jednotlivých měření.
- 5. S dotazem na připravený signál konverze ADC není možné přesně odpovídat spínacím časům výstupů portů s synchronizaci ADC taktu.

Navzdory všem obtížím se zdá, že výsledky jsou užitečné, jak ukazuje následující obrázek 5.38. Hodnoty ESR součásti měřené pomocí testeru kolísají více než měření LCR-měřidlem. Výsledky měření LCR-měřidlem byly měřeny frekvencí 1kHz nebo pro malé kapacity 2,4kHz interpolovány. Pří použití testeru je nutné věnovat pozornost kvalitě připojení. Při použití testovacích kabelů, je nutné, dbát na jejich kvalitu, a vzít na vědomí, že tyto zvýší naměřenou hodnotu odporu. Dokonce i kontakty konektorů mohou naměřené hodnoty odporu zvýšit. LCR-měřidlo zde způsobuje méně problémů díky použitým terminálům Kelvin. Kondenzátory s kapacitou nižší než $1\mu F$ byl jeden 500nF keramický kondenzátor (Z5U), všechny ostatní byly fóliové kondenzátory. Jediný elektrolytický kondenzátor série pod $9\mu F$ je $2,2\mu F$ kondenzátor.

Obrázek 5.38. Výsledky měření měření ESR s 15 různými ATmega

5.3.7 Měření ekvivalentního sériového odporu ESR, metoda 2

Ze softwarové verze 1.07k bylo měření ESR změněno na modifikovanou metodu měření. Jednotlivé kroky měření jsou zobrazeny na obrázku 5.40. Na této metodě, ve srovnání s metodou 1, je zvláštní, že doba proudového impulzu do kondenzátoru byla významně snížena. Kondenzátor je negativně před nabitý impulsem poloviční šířky a pak je cyklicky nabíjený a v protisměru zase vybíjený. Nabíjecí impuls je časově nastaven tak, aby při vzorcích 4 a 8 ve středu impulsu bylo napětí odebráno pro ADC, (vzorek a držení, 2,5 ADC taktu po spuštění). Kompletní cyklus měření je zobrazen na obrázku 5.39. Také v této metodě měření se hodnotí, k dosažení dostatečného rozlišení, součty výsledků měření z 255 cyklů. Nepřetržitému nabíjení kondenzátoru v jednom nebo v druhém směru je z velké části zmírněno krátkými a rovnoměrně dlouhými nabíjecími a vybíjecími impulsy se stejným zapojením. Při měření referenčního napětí neprobíhá proud kondenzátorem. Proto není toto měření časově kritické. Předpokládá se pouze, že se napětí kondenzátoru v tomto čase nezmění.

Obrázek 5.39. Časový průběh jednoho měřicího cyklu nového měření ESR

Obrázek 5.40. Zjednodušené ESR měření kondenzátoru

Kratší nabíjecí impuls nejen umožňuje, aby měřená hodnota ESR byla měřena nižšími kapacitními hodnotami, ale může být také použita pro měření malých hodnot odporů pokud nemají měřitelnou indukčnost. Tím lze snížit rozlišení na hodnotách odporů pod 10Ω na $0,01\Omega$. Kromě toho lze zjistit nulový odpor jak pro měření odporů, tak i pro měření ESR v samočinné větvi kalibrace pro všechny tři kombinace testovacích pinů. Pro stabilní výsledky by měl být dán pozor na pevnost spojů nebo svorky. Doba měření trvá asi $900\mu s$, což odpovídá frekvenci asi 1,1kHz. Kvůli nedostatku nabíjecích impulzů je výsledek spíše jako měření s10kHz. Jako příklad je uveden na obrázku 5.41 měření $10\mu F$ fólie kondenzátoru, jednou přímo a jednou se sériově připojeným $2,7\Omega$ odporem. Při srovnání obou diagramů můžete zřetelně vidět vliv dodatečného odporu. Zde je také pochopitelné, proč měření ADC musí být uprostřed nabíjecího impulsu. U velkých kondenzátorů zůstává nabíjecí proud kondenzátoru poměrně dobře konstantní, aby se dalo měřit v časovém středu nabíjecího pulzu také průměrné napětí. Pro malé kondenzátory je zde jasnější rozdíl, který je možné, pomocí známé kapacity, relativně dobře kompenzovat.

(a) bez sériového odporu (b) s 2,7 Ω sériovým odporem Obrázek 5.41. Napětí $10\mu F$ kondenzátoru během nového měření ESR

Při použití $27\mu s$ dlouhých proudových impulzů, může být ESR kondenzátorů určeno od přibližně 180nF. Aby šlo měřit i menší kondenzátory, byl současný puls ve verzi 1.11k dále redukován na $8\mu s$. Obrázky 5.42 ukazují křivku napětí na $2,2\mu F$ kondenzátoru jednou bez a jednou se sériově připojeným $2,7\Omega$ odporem.

Obrázek 5.42. Křivka napětí 2, $2\mu F$ kondenzátoru během měření ESR s $8\mu s$ nabíjecími impulsy

Protože v diagramech 5.42 nená okamžik převzetí napětí ADC rozpoznatelný, je tento impuls roztaženě načten v obrázcích 5.43. Doba převzetí napětí ADC je tady asi uprostřed obrazu.

Obrázek 5.43. Výňatek z křivky napětí $2, 2\mu F$ kondenzátoru během měření ESR s $8\mu s$ impulsy

Výsledky měření nové metody měření ESR jsou uvedeny na obrázku 5.44. Hodnoty ESR se liší od výsledků na obrázku 5.38 kvůli závislosti na frekvenci. Porovnávací hodnoty LCR-měřiče byly stanoveny na 10kHz.

Obrázek 5.44. Výsledky měření měření ESR s 15 různými ATmega, 2 metodou

Série měření s elektrolytickými kondenzátory různých velikostí je uvedena na obrázku 5.45. Zobrazuje výsledky měřicího přístroje PeakTech 3315 LCR při různých frekvencích měření a výsledky porovnání tranzistoru. Hodnoty odporů jsou v tomto diagramu zobrazeny logaritmicky. Ve všech případech leží výsledky testeru blízko výsledků LCR-měřidla při 10kHz frekvenci měření. Pouze $500\mu F/3V$ kondenzátor byl starší, všechny ostatní byly nové.

Obrázek 5.45. Výsledky ESR měření různých elektrolytických kondenzátorů

Vzhledem k tomu, že lze s novou metodou také měřit odpory, jsou na obr. 5.46 měření chyby při měření několika odporů pod 10Ω , každý s třemi exempláři, na různých ATmega zobrazeny.

Obrázek 5.46. Chyba měření u odporů, měřením ESR

Od softwarové verze 1.12k byla délka nabíjecího impulsu pro kondenzátory zkrácena na $2\mu s$, aby

bylo možné měření ESR hodnoty ESR i u menších hodnot kapacity. Nyní je možné měřit hodnotu ESR od kapacity 20nF. S klesající kapacitou se chyba měření zvyšuje. Důvodem je klesající časová konstanta RC obvodu, která je u 20nF je pouze asi $14.4\mu s$. V důsledku toho se mění významně napětí během $2\mu s$ proudového impulsu. Software může zvolit čas odběru vzorků pouze přesně na jeden takt procesoru. Ale vstupní filtr ADC má časovou konstantu asi $0.24\mu s$, která se bohužel od exempláře k exempláři trochu liší. Na toto změnu časové konstanty filtru nelze brát v programu ohled. Pro tento účel by musela být doba odebírání ADC nastavena přesně na zlomek doby taktu procesoru. S rostoucími hodnotami kapacity měřeného objektu se zvyšuje časová konstanta a změna napětí během nabíjecího impulzu se snižuje. Změna časové konstanty vstupního filtru ADC má tedy menší a menší vliv na výsledky měření. Příklady na obrázku 5.47 ukazují výsledky 10 různých zkoušečů. Na levé straně byly měřeny kondenzátory s vyššími hodnotami ESR. Výsledek vypadá ve srovnání s výsledkem měření měřícího přístroje Peaktech 2170 LCR u 10kHz a 100kHz uspokojivé. Na pravé straně jsou zobrazeny naměřené hodnoty kvalitních kondenzátorů s nízkými hodnotami ESR. I když je limit postupu jasně viditelný, je výsledek stále lepší než vůbec žádná informace. V každém případě je možné odhadnout kvalitu kondenzátoru i při nízké kapacitě.

U procesorů s pamětí s kapacitou více než 16 kB bude od softwarové verze 1.12k použito, pro polovinu jednotlivých měření, kromě 680Ω odporu, ještě paralelně připojený $470k\Omega$ odpor k možnosti změny měřicího proudu. Bohužel je dodatečný proud velmi nízký, takže zvýšení napětí dosáhne jen malé změny výsledku ADC. Zvýšení napětí představuje pouze asi 20% jednoho ADC bitu s interní 1.1V referencí. Bylo by žádoucí, aby na ADC vstupu bylo malé šumící napětí, které by změnilo individuální hodnoty ADC. To by pak umožnilo statistické zvýšení rozlišení ADC pomocí zprůměrování.

5.3.8 Ztráta napětí po nabíjecím impulsu, Vloss

Při metodě měření velkých kapacit se zkoumá ztráta napětí po nabíjecím impulzu v deaktivovaném stavu. U elektrolytických kondenzátorů, se po krátké době, nabíjecí napětí opět mírně sníží. Tato ztráta napětí může být způsobena paralelně zapojeným odporem. Předpokládám, že ztráta napětí v elektrolytických kondenzátorech kvůli internímu rozdělení náboje způsobené nabíjecím impulsem. Při pomalém nabíjení, jak je to provedeno u menších kapacit s $470k\Omega$ odporem je toto přerozdělení dokončeno již během procesu nabíjení.

Pak nedochází k žádné měřitelné ztrátě napětí poplatku v daném časovém období. Bude-li stejný elektrolytický kondenzátor, ale krátkými pulzními impulsy proudu nabíjen, je také zde i ztráta napětí způsobená následným přerozdělením pozorovatelná. Stejný účinek je v menší míře pozorován u keramických kondenzátorů. Podle předchozích pozorování jsou kondenzátory s několika % ztráty napětí podezřelé. Obzvláště poznatelné z hlediska ztráty napětí jsou starší papírové kondenzátory, které jsou výzvou í pro jiné měřicí přístroje. Chtěl bych to objasnit v následující tabulce.

Kondenzátor	kapacita	PeakTech	Voltcraft	PeakTech	tester
Тур		LCR 2170	M2650-B	3315	
Papír	4700pF	6.75 - 10.36 nF	8.00nF	25.40nF	10.71nF
		Q=2.5-32			Vloss=11 %
Papír	6800pF	9.40-11.40nF	10.41nF	23.30nF	11.65nF
		Q=5-25			Vloss=5.0 %
neznámý	4700pF	5.85-6.33 nF	6.12nF	6.90nF	6225pF
		Q=16-87			Vloss=1.7 %
Folie	7870pF	7.86-7.87 nF	7.95nF	$7.95 \mathrm{nF}$	7872pF
		Q = > 1540			Vloss=0 %
Papír	22000pF	37.4-57.5nF	52.8nF	112nF	118.5nF
		Q=2.5-32			Vloss=12 %
Folie	22600pF	22.4-22.5nF	22.57nF	22.69nF	22.54nF
		Q = > 1540			Vloss=0 %
Papír	100nF	144-256nF	177nF	318nF	529.7nF
		Q=2.6-28			Vloss=12 %
Keramika	100nF	97.7-102nF	103.7nF	103.3nF	103.1nF
		Q=90-134			Vloss=0.1 %
Folie	100nF	98.0-101nF	101.4nF	102.2nF	101.6nF
		Q=58-700			Vloss=0 %

V tabulce je vidět, že je kapacita všech kondenzátorů s fólií určena všemi měřicími přístroji s uspokojivou přesností. Kapacity a Q hodnocení měřidla PeakTech LCR jsou minimální a maximální výsledky
měření v kmitočtovém rozsahu od 100Hz do 100kHz. Ve všech příkladech v tabulce je ztráta napětí
Vloss testeru velká, pokud mají kondenzátory nízkou kvalitu. Pouze v tomto případě existují i velké
odchylky při sledování měřené kapacity. Takže ztráty napětí kondenzátoru lze testerem měřit, pokud
je měřená kapacita větší než 5000pF.

5.3.9 Samostatné měření kapacity a ESR

Samostatné měření kapacity s následným měřením ESR je pouze pro ATmega s dostatečnou pamětí volitelné pomocí dialogového menu. Tento typ měření je určen k měření kondenzátorů v obvodech v zapájeném stavu. Ujistěte se před začátkem měření, že jsou všechny kondenzátory na desce s plošnými spoji vybity. Aby bylo možné měřit v těchto obvodech, je zajištěno, že je měřicí napětí, jen nepatrně nad 300mV. Kromě toho je měření provedeno pouze s 680Ω odporem, k zmírnění vlivu zbytkových proudů připojených součástek na obvodové desce. Aby bylo možné měřit nejmenší možné kapacitní hodnoty, je začínající nabíjecí impulz pouze $200\mu s$ krátký. Pokud lze z nabíjejícího napětí očekávat, že i při dlouhém 2ms nabíjecím impulsu, nabíjecí napětí nepřekročí 300mV, bude nadále nabíjeno 2ms. Pokud, při velkých kapacitách, není přesto žádné významné zvýšení napětí pozorováno, bude pokračováno dokonce s 20ms dlouhými nabíjejícími impulsy. Když se napětí přiblíží k 300mV, vrátí se program zpět ke kratším nabíjecím impulsům. Celková nabíjecí doba bude sečtena a poté co bude 300mV napětová hranice překročena bude kapacita určena z nabitého napětí a doby nabíjení. S touto metodou je možné, měřit kapacitu něco pod $2\mu F$. Horní mez kapacity při tomto měření, v důsledku časového limitu nabíjení na 2,5s, je asi 50mF. Po změření hodnoty kapacity, bude hodnota ESR měřena s již uvedenou metodou v sekci 5.3.7. Výsledky jsou zobrazeny jen krátce a pak se okamžitě začne s dalším měřením. Série měření se přeruší po 250 měřeních, nebo stisknutím tlačítka. Poté se tester vrátí k provoznímu menu.

5.3.10 Výsledky měření kondenzátorů

Výsledky mých měření jsou uvedeny na obrázku 5.48 pro tři ATmega8. Kromě toho existují některé hodnoty původního softwaru s korekčním faktorem od 0,88 (-12%). Další výsledky verzí ATmega8 jsou zobrazeny na obrázcích 5.49a a 5.49b. Výsledky měření stejných kondenzátorů s ATmega168 jsou uvedeny na obrázku 5.50. Referencí na výpočet chyb jsou výsledky měření měřidla PeakTech 2170 LCR, nikoliv tiskové hodnoty součástí. Větší relativní chyby měření s velkými kondenzátory jsou částečně způsobeny vysokou měřicí frekvencí (100Hz) měřícího LCR přístroje pro velké elektrolytické kondenzátory, na druhé straně, hraje roli, špatná kvalita elektrolytických kondenzátorů.

Obrázek 5.48. Procentní chyba měření kondenzátoru se třemi ATmega8

Obrázek 5.49. Procentální chyba měření kondenzátorů

Obrázek 5.50. Procentuální chyba měření kondenzátorů se třemi ATmega168

Jak je obtížné najít správnou referenční hodnotu pro měření kondenzátoru, je znázorněno na obrázku 5.51.

Jako reference se zde nejlépe odhaduje. Křivka "Multimeter" zobrazuje odchylky, které mají a Peaktech 3315 multimetru. Další křivka "LCR" zobrazuje odchylky naměřené měřičem Peaktech 2170 LCR v nejpříznivějším kmitočtovém rozsahu. Pro srovnání, křivka "ATmega168as" také ukazuje odchylky měření testeru vybaveného ATmega168. Zda jsou zobrazeny chyby, ale skutečné chyby měření příslušného zařízení, musíme pochybovat, stejně jako odhad velikosti kapacity neodpovídá skutečné kapacitě.

Obrázek 5.51. Porovnání měření kondenzátoru s multimetrem, měřičem LCR a ATmega168

Odchylky měření jsou výsledkem tří různých ATmega168, které jsou uvedeny na obrázku 5.52a. Zde byl LCR-měřič jako základ pro srovnání měření.

V důsledku toho výsledky měření tří různých ATmega168A na obrázku 5.52b, tří různých ATmega168PA na obrázku 5.53 a tří různých ATmega328 na obrázku 5.54a stejně jako tři ATmega328P na obrázku 5.54b. V úvahu byla vzata pouze nulová hodnota měření kapacity 39pF, všechny ostatní možnosti korekce se zde nepoužívají. Tato nulová hodnota již obsahuje 2-3pF, který je způsoben přibližně 12cm dlouhými připojovacími kabely s krokosvorkami. Návrh desky plošných spojů DPS také ovlivňuje tuto nulovou hodnotu. Tuto nulovou hodnotu jsem zjistil při použití verze desky "DG2BRS V 5.2.1".

Obrázek 5.52. Chyba měření kondenzátoru, nekalibrovaná

Obrázek 5.53. Chyba měření kondenzátoru třemi ATmega168PA, nekalibrovaná

Pro dosažení nejlepší přesnosti měření musí software odpovídat individuálním vlastnostem použitého ATmega. Pro tento účel může být použito korekční napětí REF_C_KORR, které se používá pro měření malých kapacit. Opravné napětí 1mV vede ke snížení indikátoru kapacity o 0,11%. Při automatickém nastavení je REF C KORR pouze ofset k naměřenému diferenčnímu napětí nabitého kondenzátoru a interní referenci. U velkých kapacit lze zadat hodnotu percentilu C_H_KORR o kterou jsou výsledky měření velké.

Vzhledem k tomu, že velké kondenzátory jsou většinou nekvalitní elektrolytické kondenzátory, je zjištění skutečné hodnoty kapacity, a tím také určení chyby měření, zde obzvláště obtížné. Zejména s ATmega168 jsem pozoroval chybu měření s malými kapacitními hodnotami, což závisí na rychlosti nabití nabíjecího napětí. Obrázek 5.55 ukazuje chybu měření v případě měření kondenzátoru pouze s uvážením nulové hodnoty (168-3-A), přičemž korekční faktor pro malé kapacity REF C KORR=66 a korekční faktor pro velké Kondenzátory C_H_KORR=5 (168-3-B), a dále jako křivka 168-3-C s ohledem na vzrůst napětí (COMP_SLEW1=4000 a COMP_SLEW2=220) a vlastním vybíjecím chováním velkých kondenzátorů. Faktor vzrůstu napětí lze vypočítat podle $\frac{COMP_SLEW\,1}{cval + COMP_SLEW\,2}$

Obrázek 5.55. Optimalizace měření kondenzátorů ATmega168

5.3.11 Automatické nastavení měření kondenzátorů

Automatické nastavení se skládá ze dvou částí. První částí je nastavení nulové rovnováhy měření kondenzátoru. K tomuto účelu se průměrná hodnota naměřené kapacity určuje v rutině automatického testování, když není kondenzátor připojen. Průměrné hodnoty jsou stanoveny z 8 měření u všech 6 kombinací měření. Po úspěšném nastavení jsou korekční hodnoty zaznamenávány v paměti EEPROM a používány pro budoucí měření. Složitější je eliminace rozptylu vzorku při měření kondenzátorů na přibližně $40\mu F$, jak bylo zobrazeno na obrázcích 5.52a, 5.52b a 5.53. Hlavní příčinou bylo zjištěno odlišné chování (offset napětí) analogového komparátoru. Na obrázku 5.56 jsou zobrazena data z devíti zkoumaných procesorů. Body "diff2ref" ukazují rozdíl napětí, který vznikne po nabíjení kondenzátoru s 660nF na příslušném vnitřním referenčním napětí. V ideálním případě by toto napětí bylo vždy nulové, pokud by analogový komparátor dal včasný signál k ukončení nabíjecího procesu. Krátký čas ATmega administrace by neměl vést, při relativně velké kapacitě, k měřitelnému zvýšení napětí. Z obrázků 5.52a, 5.52b a 5.53 ukazují body "CapErr" odhadované chyby měření jednotlivých vzorků ATmega v promile. Je nápadné, jak se body "CapErr" řídí body "diff2ref". Proto body "diff" ukazují rozdíl mezi příslušnými body "CapErr" a "diff2ref". Při střední hodnotě pro "diff" lze tedy udělat dobrý odhad korekce měření kondenzátoru z rozdílu napětí kondenzátoru po nabití k vnitřnímu referenčnímu napětí vypočítat. Takže v druhé části kalibračního postupu musí být mezi pinem 1 a 3 připojen vysoce kvalitní kondenzátor s kapacitou mezi 100nF und $20\mu F$. Měl by to být fóliový kondenzátor, pokud možno žádný keramický kondenzátor a rozhodně ne elektrolytický kondenzátor. Pro toto srovnání nemusí být hodnota kapacity přesně známa.

Obrázek 5.56. Data od devíti ATmega168 procesorů

Grafy 5.57a, 5.57b, 5.58, 5.59a a 5.59b zobrazují výsledky měření stejnými procesory ve standardní konfiguraci softwaru po automatické kalibraci. Všechny procesory byly naprogramovány se stejným softwarem, pouze volba Makefile "PARTNO = " musela být, vzhledem k AVRDUDE programu, upravena na jiný typ procesoru ("m168", "m168p", "m328" nebo "m328p") upravena. Po programování byl s každým ATmega spuštěn Autotest a při Test 10, připojen na piny 1 a 3 330nF kondenzátor.

Obrázek 5.57. Chyba měření kondenzátorů, po kalibraci

Obrázek 5.58. Chyba měření kondenzátorů u tří ATmega168PA, po kalibraci

Ke konci chci vyjasnit efekt možnosti AUTO_CAL v autotestu. Následující diagram 5.60 ukazuje, ještě jednou, výsledky tří ATmega procesorů s největší měřící odchylkou před a po kalibraci. Body s koncovým znakem "unc" zobrazují odchylky bez kalibrace. Řádky končící na "cal" ukazují odchylky stejných procesorů se stejným softwarem po kalibraci v režimu automatického testování. Příčina odchylek měření u velkých kondenzátorů (> $40\mu F$) je zatím neznámá.

Všechny kondenzátory používané pro tuto řadu měření byly fóliové nebo keramické kondenzátory s hodnotou $(56pF,\,100pF$ a 3,3nF), žádné elektrolytické kondenzátory.

Obrázek 5.60. Chyba měření kapacity tří ATmega před a po kalibraci

Obvod s ATmega
644 nebo ATmega 1284 předpokládá na desce pro kalibraci kondenzátor. Schéma 5.61 zobrazuje výsledky měření kondenzátorů s ATmega 1284, jak s 100nF keramickým kondenzátorem kalibrován na desce (1284-int) tak i s externím foliovém 220nF kondenzátorem, ve srovnání s výsledky ATmega 328 na jiné desce.

Obrázek 5.61. Chyba měření kondenzátorů s ATmega1284 v porovnání s ATmega328

5.4 Měření indukčnosti

Měření hodnoty indukčnosti se stává samostatnou částí a je provedeno, po všech ostatních měřeních, se všemi nalezenými odpory s menšími než 2100 Ω . Metoda měření je založena na principu, že při zavírání okruhu proud stoupá podle vzorce $Il = Imax \cdot (1 - \exp{\frac{-t}{\tau}})$. Časová konstanta $\tau = \frac{L}{R}$ je úměrná indukčnosti L, ale naopak nepřímo úměrná odporu R. Proud může být měřen pouze nepřímo jako úbytek napětí na odporu. Naneštěstí, vzhledem k relativně vysokému 680 Ω odporu, se časová konstanta dále snižuje. A také to, že to stěžuje měřit malé indukčnosti s 8MHz taktem. Pro určení časové konstanty se napětí na 680 Ω odporu stává snímačem proudu a je kontrolováno analogovým komparátorem.

Pokud je pokles napětí napříč 680Ω odporem větší než referenční napětí interního referenčního napětí, hlásí to komparátor, na při startu měření spuštěného 16 bitového čítače, který tuto událost přidává. Eventuální přetečení čítače program přičte. Pokud je napětí větší, počítadlo se okamžitě zastaví a z naměřeného záznamu měřiče a přepočtu přepadu je určen celkový čas. Připojení cívky je opět přepnuto z VCC na GND a prostřednictvím monitorování napětí jsou oba porty obslouženy, dokud není detekován žádný proud. Schéma zapojení 5.62 ukazuje zjednodušený diagram situace měření.

Obrázek 5.62. Měření indukčnosti s komparátorem

Z napájecího napětí VCC a součtu všech odporů v obvodu, je možné maximální proud Imax a z toho poměr referenčního napětí vzhledem k měření maximálního napětí na 680Ω odporu $Umax = Imax \cdot (680 + 1900)$ určit. Pomocí vzorce $L = -\frac{t \cdot Rges}{\log (1 - \frac{Uref}{Umax})}$ lze určit indukčnost. Přirozený logaritmus je v programu určen tabulkou. Rozlišení indukčnosti je pro tento typ měření nastaveno na hodnotu 0, 1mH. Abychom mohli měřit ještě menší indukčnosti, je v okruhu 680Ω odpor vynechán, když byla měřena hodnota odporu cívky menší než 24Ω . Jako měřicí odpor pro měření proudu je v tomto případě použitý výstupní (19Ω) odpor výstupních portů mcu. V tomto případě se špičkový proud stává větší než umožňuje specifikace ATmega. Vzhledem k tomu, že se to děje jen velmi krátkou dobu, neočekávám žádné poruchy. K vyloučení delšího časového období s nadměrným proudem, bude vždy provedeno dodatečné měření, pomocí zpožděně spuštěného čítače přes 680Ω odpor. Pro tento typ měření je rozlišení indukčnosti nastaveno na hodnotu 0,01mH. Aby výsledky měření odpovídaly skutečné hodnotě indukčnosti, bude se od výsledku odečítat nulový ofset 6, pokud je měřen bez 680Ω . Jinak je odečtený nulový ofset 7 nebo 8. U velkých indukčností mohou parazitní kapacity zvýšit proud tak rychle, že monitorování napětí s komparátorem okamžitě reaguje. K zajištění určení indukčnosti je stejné měření znovu provedeno, ale čítač je o něco později spuštěn, aby bylo měřeno zvýšené napětí způsobené

aktuálním zvýšením indukčnosti a nikoliv špičkou přes parazitní kapacitu. Měření probíhá v obou směrech. Ze dvou měření ve stejném směru proudění se používá vyšší výsledek měření. Z měření v různých směrech proudu se používá menší hodnota jako výsledek měření indukčnosti.

5.4.1 Výsledky měření indukčnosti

Obrázek 5.63 zobrazuje výsledky měření různých induktorů. Indukčnosti nad 1H jsou relé a primární vinutí výkonových transformátorů, které je obtížné, kvůli remanenci železného jádra vůbec měřit.

Obrázek 5.63. Chyba měření indukčnosti 15 různých ATmega

5.4.2 Měření malých indukčností metodou vzorkování

Nejmenší detekovatelná indukčnost při normální metodě měření je 0,01mH. U vysokofrekvenčních aplikací má však měření menších hodnot indukčnosti smysl. Normální měření používá pro stanovení indukčnosti aktuální nárůst proudu v cívce. Tento způsob není použitelný pro metodu odběru vzorků, protože neexistují žádná měření pro metodu odběru vzorků bez použití dalších odporů. Proud tak rychle dosáhne nepřípustně vysoké hodnoty. Poškození ATmegy je při normálním měření zabráněno pouze dřívějším vypnutím napájení. Pro metodou výběru vzorku by bylo vypnutí obtížně proveditelné a kromě toho by kritický proces musel být opakován mnohokrát za sebou. Z tohoto důvodu používá holandský radioamatér Pieter-Tjerk (PA3FWM) jinou metodu pro toto měření. S paralelně připojeným kondenzátorem k indukčností je vytvořený rezonanční obvod. Krátkým proudovým impulzem je rezonanční obvod nabuzen a metoda vzorkování se pokouší určit přirozenou frekvenci tohoto rezonančního obvodu. Protože jeden konec cívky musí být udržován na potenciálu země pro měření ADC, existují dva problémy. Samozřejmě jde vibrační napětí také do záporné oblasti. Zde je oscilace přes interní ochrannou diodu ATmega omezené na přibližně 0,6V. Tímto je také kladné špičkové napětí oscilace omezené na tuto hodnotu. Kromě toho může ADC měřit pouze kladná napětí. To je důvod, proč chybí negativní část oscilace. Namísto negativního napětí čte ADC vždy nulu. Nicméně se Pieter-Tjerk podařilo, dostat přirozený kmitočet dostatečně přesný k určení naměřených dat ADC. Z přirozené frekvence rezonančního obvodu může být, pokud je známa hodnota kapacity, vypočtena indukčnost. Z tohoto důvodu je kalibrace rozšířena o měření paralelní kapacity pro měření indukčnosti. Kondenzátor je požadován se zprávou "1 — 3 10-30nF(L)". Nekalibrovaný tester

má výchozí hodnotu 18nF. Hodnoty pro paralelní kondenzátor jsou relativně vysoko zvolené, aby zůstal rezonanční obvod i při menších indukčnostech malý. Kondenzátor pro paralelní připojení by měl mít vysokou kvalitu (typ fólie), vzhledem k tomu, že kvalita rezonančního obvodu je určena z poklesu amplitudy napětí. Při vysoké kvalitě kondenzátoru je obvykle cívka určující kvalitu rezonančního obvodu. Pro obsluhu není nutná, kromě připojení paralelního kondenzátoru, žádná další akce. Rezonanční obvod je pak detekován automaticky. Pokud byl rezonanční obvod detekován, ukáže se za indukčností text " if " a předpokládaná kapacita paralelního kondenzátoru je uvedena v druhém řádku. V tomto případě je také výstupní hodnota odporu cívky zobrazena na konci 1 řádku. Hodnota odporu by měla být určitě kontrolována bez paralelně zapojeného kondenzátoru, protože měření odporu na rezonančním obvodu často nefunguje! V dalším řádku se uvádí měřená kmitočtová frekvence a kvalita Q. Pokud nebyl žádný rezonanční obvod detekován, ukáže se odpor a indukčnost ve druhém řádku. V příštím řádku je zobrazena rezonanční frekvence a kvalita, pokut je zjištěna, i bez paralelního kondenzátoru, rezonance cívky. Pro vzduchovou cívku se 6 závity a paralelně zapojený 18nF kondenzátor určuje metoda odběru vzorků následující výsledek:

260nH if 18.1nF 2306kHz Q=38.7

ATmega328 byl provozován s 8MHz. Ke stejném výsledku se také dosáhlo s 25cm dlouhým měděným drátem ohnutým do velkého kruhu. Naměřená indukčnost je v tomto měření příliš vysoká, protože byl připojený vinutý svitkový kondenzátor s vlastní indukčností. V následující tabulce 5.7 jsou výsledky měření různých cívek, které byly určeny s testerem a kmitočtovou frekvencí 16MHz.

Cp=	$6.68\mathrm{nF}$	11.4nF	18.2nF	20.3nF	33.3nF
Lp=					
3 turns, 13mm	100nH	116nH	108nH	115nH	111nH
(91.4nH)	$6.039 \mathrm{MHz}$	4.358MHz	$3.568 \mathrm{Mhz}$	3.282MHz	2.619MHz
	Q=29.9	Q=15.6	Q = 49.8	Q=12.1	Q=31.4
4 turns, 13mm	141nH	161nH	151nH	152nH	153nH
(144.9 nH)	5.172MHz	3.724MHz	$3.03 \mathrm{Mhz}$	$2.86\mathrm{MHz}$	2.226MHz
	Q=44.8	Q=16.0	Q = 46.2	Q=14.6	Q=30.5
6 turns, 13mm	217nH	232nH	223nH	224nH	227nH
(212.5 nH)	4.18MHz	3.094MHz	2.492Mhz	2.343MHz	1.832MHz
	Q = 30.5	Q=18.4	Q=43.0	Q=15.4	Q=31.7
12 turns, 13mm	547nH	571nH	559nH	$560 \mathrm{nH}$	566nH
(569.5 nH)	2.632MHz	1.973MHz	$1.573 \mathrm{Mhz}$	1.491MHz	1.16MHz
	Q = 36.9	Q=26.4	Q = 50.6	Q=20.8	Q=39.2
27 turns, 11mm	$1.93 \mu H$	$1.92 \mu H$	$2.02\mu H$	$2.00\mu H$	$2.01\mu H$
$(1.9\mu H)$	1.403MHz	1.067MHz	828.5khz	789.5kHz	615.4kHz
	Q = 36.5	Q = 33.4	Q = 43.6	Q = 26.6	Q=34.5
$6.3\mu H$	$6.69 \mu H$	$6.84\mu H$	$6.84\mu H$	$6.82\mu H$	$6.90 \mu H$
$7.12\mu H$	752.9kHz	570.2kHz	449.9khz	$428.1 \mathrm{kHz}$	332.3kHz
	Q=28.5	Q=30.5	Q=32.3	Q=25.5	Q=28.3

Tabulka 5.7. Výsledky měření některých malých cívek

Kondenzátory v této tabulce jsou vzorky s nízkou indukčností řady WIMA MKS. Cívka se 4 závity ukazuje se svitkovým 18.2nF paralelním kondenzátorem 196nH indukčnost namísto 151nH z tabulky. S výjimkou posledního induktoru se jedná o samovolně vinuté cívky, jejíž vypočtená indukčnost je uvedena v závorkách. Poslední $6.3\mu H$ cívka je průmyslově vyrobený vzorek označený $6.3\mu H$.

Měření pomocí měřícího RCL přístroje při 100kHz má ale za výsledek indukčnost $7.12\mu H!$ Tabulka také ukazuje různé Q kvality pro stejnou cívku a téměř stejné paralelní kapacity. Pro cívku s 12 závity je ukázána kvalita Q 50.2 s hodnotou 18.2nF kondenzátoru, ale s paralelní kapacitou 20.3nF pouze 20.8. To naznačuje podezření na chybu programu. Pro kontrolu jsou na obrázku 5.64 zobrazena data ADC převodníku pro cívku s 12 závity a pro kondenzátory 18.2nF a 20.3nF. Dokonce i se surovými daty je jasný rozdíl pro obě varianty rezonančního obvodu rozpoznat. Pravděpodobně je příčinou rozdílu kvality typ použitého kondenzátoru.

Obrázek 5.64. ADC data ze dvou rezonančních obvodů s 12-závitovou cívkou

5.5 Funkce autotestu

Počínaje verzí 0.9k jsem vytvořil funkci automatického testu. Použití je snadné. Propojte všechny svorky kouskem neizolovaného drátu a stiskněte tlačítko start. Program zjistí zkratované piny a zobrazí zprávu: Autotest..? Test začne, pokud to do dvou vteřin potvrdíte stisknutím tlačítka start. Toto potvrzení je nutné aby tester nezačínal samočinně autotest při měření proraženého rozbitého tranzistoru. Po dokončení samočinného testu, pokračuje přístroj v normálním měření. Pokud není připojena žádná součástka, končí tester se zprávou "žádná neznámá vadná součástka". Funkci autotestu můžete zvolit pouze pro ATmega 168 nebo ATmega 328. Před provedením dalších testovacích kroků je nejprve nastaven nulový odpor pro všechny tři kombinace testovacích pinů (T1:T3, T2:T3 a T1:T2). Tyto nulové odpory se používají pro budoucí měření ESR a odporů pod 10Ω . Akceptovány jsou pouze nulové hodnoty odporů pod 0.90Ω , protože tyto korekční hodnoty jsou při měření odporů přes 10Ω přehlédnuty. Při změně používaných kabelů musí být proto zajištěno dodržení nízké hodnoty odporu. Jestliže později klesnou hodnoty odporů naměřené pod příslušný nulový odpor o více než $0,2\Omega$ je tester resetován na "Nezkalibrováno!". To je indikováno aktivovaným kurzorem při testu. Jednotlivé kroky funkce automatického testu týkající se testu 1 až test 7 jsou zobrazeny v prvním řádku LC displeje s písmenem T následovaným číslem kroku. Kroky 1 až 7 se opakují čtyřikrát, než se program dostane k dalšímu kroku. Pokud však po dokončení kroku stisknete tlačítko Start, nebude se tento test znovu opakovat. Pokud držíte tlačítko stisknuté během celého automatického testu, bude každý krok proveden pouze jednou. Bez možnosti AUTO CAL se v každém kroku zobrazí pouze výsledky měření, není provedena žádná analýza chyb. Výsledky musíte vyhodnotit sami. V tomto okamžiku bych chtěl dát důležitou radu. Nikdy neprovádějte měření a kalibraci při připojení k ISP konektoru! Rozhraní ISP zasahuje do měření.

Zde je seznam aktuálně nainstalovaných testů:

- 1. Měření 1,3V (nebo 1,1V) velikost referenčního pásma (band gap Reference). V řádku 1 je text "Ref=" měřené napětí zobrazené v mV. U měniče ATmega8 by měřené napětí mělo být blízké 1,3V, u ostatních procesorů je referenční napětí normálně kolem 1,1V.
 - Druhý řádek ukazuje výsledný faktor měření kapacity s $470k\Omega$ odporem.
- 2. Porovnání 680Ω odporů. V prvním řádku se zobrazí kryptický text "+RL- 12 13 23". To znamená: RL je zkratka pro (Rezistor Low = nízký odpor), což znamená 680Ω odpor. "12" znamená: Odpor na pinu 1 je připojen k VCC (+) a odpor na pinu 2 je připojen k GND (-). Výsledek tohoto měření stojí v 2 řádku na prvním místě jako rozdíl teoretické hodnoty. V řádku 1 nyní následuje "13", což znamená, že odpor pin-1 je opět připojen k VCC, ale nyní je na GND připojen 680Ω odpor pinu 3. Výsledek je v 2 řádku na prostředním místě jako rozdíl k teoretické hodnotě. Poslední měření této zkoušky "23" znamená, že odpor pinu 2 je nyní připojen k VCC a odpor pinu 3 je připojen k GND. Výsledek je poslední ve druhé řádce LCD jako rozdíl teoretické hodnoty. Chtěl bych připomenout, že ADC rozlišení je asi 4, 88mV! Situace měření je také zobrazena na obrázku 5.65. Teoretická hodnota s ohledem na odolnost vnitřního portu je následující: ⁵⁰⁰¹⁻⁽¹⁹⁺⁶⁸⁰⁾/₍₁₉₊₆₈₀₊₆₈₀₊₂₂₎ = 2493.

Obrázek 5.65. Porovnání 680 Ω -odporů

3. Porovnání $470k\Omega$ odporů.

Nyní se na displeji zobrazí řádek 1 "+RH- 12 13 23". Stejný postup jako v kroku 2 se opakuje s 470 $k\Omega$ odpory (Symbol RH). Výsledky jsou prezentovány jako rozdíl pro $\frac{VCC\cdot(19+470000]}{(19+470000+470000+22)}$ pro všechny kombinace.

4. V tomto kroku není nic měřeno, pouze **příkaz "Isoluj sondy!"**, což znamená, že je čas odpojit svorky (odpojení holého drátu).

Tento krok je dokončen pouze v případě, když jste rozpojili testovací piny (porty).

5. Tento krok testuje schopnost na GND (-) připojení $470k\Omega$ odporů (H) zkušebních pinů na GND.

Řádek 1 zobrazuje text "RH-".

Řádek 2 by měl vykazovat nulovou hodnotu mV pro všechny tři piny.

6. Tento krok zkouší schopnost s VCC (+) spojené 470kΩ odpory (H) zvednout testovací piny na VCC.

Řádek 1 zobrazuje text "RH+". Nejlepší možná hodnota pro tři měření by měla být v 2 řádku 0mV, protože rozdíl je reprezentován jako VCC.

Velké odchylky od ideální hodnoty pro kroky 5 a 6 jsou chyby, jako je problém s izolací, svodový proud nebo poškozený testovací pin (port).

7. Tento krok testuje napětí napěťového děliče $470k\Omega/680\Omega$.

Řádek 1 zobrazuje text "RH/RL". Řádek 2 ukazuje odchylku od očekávaného napětí dělitele $470k\Omega$ / 680Ω 5V u všech tří zkušebních pinů. Odchylky více než několika mV indikují chybu při montáži odporů.

8. Měření vnitřních odporů s GND spojených výstupů.

Tento a následující kroky se provádějí pouze při volbě možnosti AUTO_CAL. Vnitřní Port-C odpory od na GND (-) připojených výstupů budou měřeny proudem procházejícím 680Ω odpory které wedou k VCC (+), viz obrázek 5.66. Měřeny jsou pouze ty tři piny ADC portu, odporové porty PB0, PB2 a PB4 nelze měřit bez změny hardwaru. Předpokládá se, že odolnost různých portů je téměř identická. Hodnota odporů je uvedena v dalším kroku.

Obrázek 5.66. Měření vnitřního odporu výstupů portu C připojených k GND

9. Měření vnitřních odporů s VCC spojenými výstupy portu MCU.

Požadovaný proud je dodáván přes GND spojených 680Ω -odporů. Je to stejné měření jako měření v testu 8 na druhé straně, jak je ukázáno na obrázku 5.67.

Interní odpor se vypočítá následovně:

Pro výpočet proudu: $(5001 - (výsledekt\ testu\ 8) - (výsledekt\ testu\ 9))/680$.

Hodnoty odporu se získají, když je naměřené napětí dělením tohoto proudu.

Výsledek tohoto testu se pak zobrazí v řádku 1 s textem "RI_Hi=" in Ω,

vnitřní odpor na stránce GND se zobrazí v řádku 2 s textem "RI_Lo=".

Od softwarové verze 1.06k jsou tyto hodnoty při každém měření nově určeny a zde se pouze zobrazují.

Obrázek 5.67. Měření vnitřních odporů s VCC a spojenými výstupy portu C

10. Měření nulového ofsetu při měření kondenzátorů.

Pro pinové kombinace 1:3, 2:3 und 1:2 je nulová hodnota měření kondenzátorů v pF v řádku 1 za textem "C0 ". V softwaru se pro normální výstup měření bere v úvahu výchozí hodnota přibližně 39pF. Pro výstupek této zkoušky se nezohledňuje žádná korekce, není odečtený žádný nulový ofset. Rovněž jsou určeny nulové odchylky pro reverzní pinovou kombinaci. Nalezené nulové odchylky jsou uloženy v EEPROM, pokud jsou všechny nulové ofsety menší než 190pF. Na řádku 2 se zobrazí "OK". Nalezené nulové odchylky jsou vzaty v úvahu pro další měření kapacity v závislosti na pinu. Sleduje se, zda měřená kapacita klesne pod zaznamenanou nulovou kapacitu o více než 20pF. Pokud by se tak stalo, je tester resetován na "nezkalibrovaný". To je indikováno aktivací kurzoru LCD (kurzor) při příštím testu. Vezměte prosím na vědomí, že

pokud se změní nastavení měření, má smysl nový autotest. Nulový ofset může být, při použití kabelů, přibližně o 3pF vyšší ve srovnání se svorkami. Pokud byl testovací přístroj konfigurován s funkcí SamplingADC přidá se, pro metodu měření ADC vzorkování, měření nulové kapacity v dvojnásobném počtu konfigurací. Je to proto, že je nulová kapacita určena ve všech pinových kombinacích jak pro nabíjení tak i pro vybíjení.

11. Čekání na připojení kondenzátoru na pin 1 a pin 3.

Na 1 řádku displeje se zobrazí zpráva "1 \longrightarrow 3 >100nF". K připravení měření napětového ofsetu analogového komparátoru musí být dostatečně velký kondenzátor připojený mezi piny 1 a 3. Měl by to být vysoce kvalitní kondenzátor s kapacitou mezi 100nF a 20 μ F. Za žádných okolností byste neměli používat elektrolytické kondenzátory.

12. Měření ofsetu komparátoru pro nastavení měření kondenzátorů.

Pro určení offsetu analogového komparátoru musí být kondenzátor připojen na pin 1 a pin 3. Kondenzátor je potřebný pro vyrovnávání nabíjecího napětí při měření kondenzátorů k určení rozdílu mezi nabíjecím napětím a vnitřním referenčním napětím. Pokud je měření úspěšné, zobrazí se korekční hodnota krátce na 1 řádku s textem "REF_C=" a bude zapsaná do EE-PROM paměti. Pokud jste vybrali volbu AUTOSCALE_ADC bude zesílení funkce čtení ADC porovnáno s nastaveným vnitřním referenčním napětím. To se provádí porovnáním napětí kondenzátoru pod 1V, jednou s VCC referencí a jednou s interní referencí. Nalezený rozdíl je zobrazen ve 2 řádku s textem "REF_R=" a bude také zaznamenán v paměti EEPROM. Hodnota REF_R_KORR je pak pouze dodatečným ofsetem pro tento automaticky zjištěný rozdíl.

13. Čekání na kondenzátor k měření malých indukčností

Pokud je tester nakonfigurován s funkcí SamplingADC je pro měření malých indukčností kondenzátor se známou velikostí potřebný pro výpočet indukčnosti z kmitočtu rezonance. Užitečné hodnoty kapacity jsou asi 10nF až 27nF. Vhodný kondenzátor by měl být připojen na pin 1 a pin 3, pokud se na 1 řádku objeví zpráva "1 \longrightarrow 3 10-30nF(L)". Přesně tento kondenzátor by pak měl být také paralelně připojený k cívce, pokud si přejete určit její indukčnost.

Na konci funkce autotestu se zobrazí text "Konec" v 1 řádku a číslo verze softwaru ve 2 řádku. Je-li to zvoleno v souboru makefile, vytvoří se na pinu 2 **p**ravoúhlý 50 Hz signál a na pinu 3 signál opačné fáze. Pin 1 se přepne na GND. Proud pro zkušební piny 2 a 3 je omezen 680Ω odpory. To je indikováno výstupem "50 Hz" na konci 1 řádku. Toto je provedeno třicetkrát, každý signál trvá 2 vteřiny. Pokud je k disposici osciloskop nebo vlastní čítač frekvencí, je možné zkontrolovat dobu zpoždění signálu. Obrázek 5.68 zobrazuje oscilogram výstupních úrovní s krystalem.

Obrázek 5.68. Oscilogram 50Hz výstupů portů 2 a 3

Pokud pro generování taktu nepoužíváte krystal, můžou být výsledky měření kondenzátorů nepřesné. Přesná frekvence taktu a přesné čekací doby jsou důležité pro stanovení hodnot kapacit. Výstup 50Hz signálu lze předčasně zrušit přidržením tlačítka start. Poté program pokračuje v normálním měření.

5.5.1 Některé výsledky autotestu

Výsledky autotestu 9 různých procesorů ATmega168 a 6 procesorů ATmega328 jsou uvedeny na následujících obrázcích.

Test č.	Typ měření	Ideální hodnota	Obrázek
Test 1	band gap Ref	1100	5.69
Test 2	RL střed	0	5.70a
Test 3	RH střed	0	5.70b
Test 5	RH Low	0	5.71a
Test 6	RH High	0	5.71b
Test 8	R out Lo	131	5.72a
Test 9	R out Hi	151	5.72b
Test 10	Cap0	30	5.73
Test 11	korekce reference	0	5.74

Tabulka 5.8. Seznam diagramů autotestu

Obrázek 5.69. Autotest: referenční napětí

Obrázek 5.70. Autotest: odchylka středového napětí

Obrázek 5.71. Autotest: vstupní napětí

Obrázek 5.72. Autotest: výstupní odpor

Obrázek 5.73. Autotest: nulová hodnota měření kapacity

Obrázek 5.74. Autotest: hodnoty automatické korekce kalibrace

Ke konci bych chtěl ukázat rozdíly na pinu AREF měřených napětí pomocí multimetru a vnitřně měřených s referenčních ADC napětí 15 různých ATmegas a těch s automaticky nastavených (REF_R_KORR) korektur, který se nachází na obrázku5.75. Zde je vidět, že hodnoty automatické kalibrace jsou téměř stejné jako hodnoty externích měřidel a následovně naměřených referenčních hodnot napětí.

Obrázek 5.75. Autotest: rozdíl napětí v interní referenci

5.6 Měření frekvence

Počínaje verzí 1.10k lze měřit frekvenci a toto vybrat pomocí ovládacího menu. Normální měření frekvence se provádí počítáním padajících hran vstupního signálu T0 (PD4). Je to provedeno s počítadlem 0 (COUNTER 0) po dobu jedné vteřiny. K udržení přesné vteřiny se používá čítač 1 s před-děličem frekvence CPU 256:1. 16-bitový čítač ATmega může s před-děličem v jednom průchodu i při 16MHz CPU frekvencí vypočítat jednu vteřinu. Pro spuštění a zastavení čítače 0 jsou použity srovnávací B a A registry čítače 1. K předejití dodatečné nejistotě času v dotazech, jsou zde používané, pro obě srovnávací události, rutiny služby přerušení. Časové zpoždění u těchto rutin služby přerušení je přibližně stejné. K udržení přesné sekundy je konstantní časová prodleva irelevantní. Analýzou kódu assembleru lze časovou nerovnost vyrovnat. Při frekvencích pod 33kHz se k měření přidává měření doby periody. Toto měření se provádí po normálním měření frekvence, přitom bude čas určitého počtu změn úrovně vstupu PCINT20 (PD4) měřen čítačem 0. Pro měření periody by měla být, jak záporná, tak i kladná šířka impulsu nejméně $10\mu s$ v každém období dlouhá. Čítač 0 běží s plnou taktovou CPU rychlostí, což poskytuje pro jednu periodu 125ns. Větším počtem změřených období lze rozlišení přesnosti ještě zlepšit. Při 125 periodách (250 změnách úrovně) je výsledkem středního rozlišení pro periodu již 1ns. Aby nevznikla žádná nepřesnost při startu a zastavení čítače 0, je čítač 0 spuštěn při první změně úrovně PCINT20 a po zadaném čísle, přes stejnou rutinu služby přerušení, zase zastaven. Počet období je zvolen tak, aby doba měření činila přibližně 10 milionů taktů. Chybová složka taktu je pak 0,1 ppm. U 8MHz je doba měření přibližně 1,25 vteřin. Z takto určeného středního období se vypočte frekvence s vyšším rozlišením. Pro kontrolu byly naměřeny dva testery proti sobě. Pouze s testerem 2 byly generovány zkušební frekvence a byly měřeny frekvencemi testeru 1. Poté bylo měření opakováno s obrácenými testery. Na obrázku 5.76 jsou zobrazeny výsledky. Takřka konstantní relativní odchylky lze vysvětlit malými frekvenčními rozdíly obou křemenů.

Obrázek 5.76. Relativní chyba při měření frekvence

5.6.1 Kalibrace frekvence pomocí GPS nebo přijímače GLONASS

Jemná změna frekvence testeru je možná pomocí proměnného kondenzátoru (trimmer 5-25pF) u krystalu. Pro referenci jsem úspěšně testoval vteřinový signál (1PPS) s GPS UP501 přijímačem od společnosti Fastrax Ltd. a pomocí přijímače GPS/GLONASS GNS701 od Global Navigation Systems GmbH úspěšně testoval. Naměřená doba může být nastavena pomocí trimru přesně na

1000,000ms. Pouze poslední zobrazená číslice se může o 1 lišit. Samozřejmě, závisí frekvence k na teplotě. To je důvod, proč nemůžete očekávat velmi dobrou dlouhodobou stabilitu. Obrázek 5.77 ukazuje obvody používané s UM232 USB-sériovým převodníkem pro připojení modulů přijímače k počítači. Převodník UM232 napájí obvod s provozním napětím 5V ale také s 3,3V z USB napájení. Při provozu přijímače není nutné připojení k počítači. Musí být pouze zaručena dodávka 5V s USB zásuvky.

Obrázek 5.77. Vteřinová pulzní generace s GPS přijímači

5.6.2 Kalibrace frekvence krystalu s hodinovým modulem

K naladění krystalové frekvence testeru, je výměna jednoho ze dvou krystalových kondenzátorů proti trimru s požadovanou nastavitelnou kapacitou nutná. Výhodou použití hodinových modulů oproti GPS nebo GLONASS frekvenčních tuningových modulů je to, že nemusíte mít žádný jasný výhled na oblohu a GPS družice. Nastavení lze provádět téměř kdekoli. Zkoušel jsem moduly hodinky s DS3231 a nápisem "ZS-042". Uvedené moduly jsou nejpravděpodobnější z čínské výroby a nepoužívají DS3231SN čip, ale DS3231M čip s MEMS rezonátorem (MEMS = Mico Electro Mechanical System). Mimochodem, DCP1301 čip také používá podobný MEMS rezonátor. Obrázek 5.78 zobrazuje jeden z použitých modulů.

Obrázek 5.78. Jeden z uvedených DS3231 modulů

Čip DS3231SN však používá jako časovou základnu hodinový křemen s 32768Hz. Pro obě varianty čipů DS3231 je měřeno teplotní chování frekvence kmitání pomocí měření vnitřních teplot čipu, aby

byla dosažena dobrá frekvenční přesnost v širokém teplotním rozmezí. Bohužel je ale 32kHz vyvedený signál na modulu u varianty DS3231M čipu pro kalibraci nevhodný. U čtyř přítomných modulů byly naměřeny kmitočty 32641Hz, 32710Hz, 32730Hz a 32748Hz. Všechny frekvence byly od skutečně očekávaných přesných 32768Hz daleko vzdáleny. Připojením těchto modulů k Arduino UNO systému. můžete také připojit signál 1PPS (1Hz) výstup na SQW výstup. Tento výstup je však v periodě tak stabilní, že ho lze použít pro kalibraci. Datový list zaručuje pro DS3231M přesnost $\pm 5ppm$ v celém rozsahu teplot pro výstup 1PPS -45° C do $+85^{\circ}$ C, zatímco přesnost 32kHz výstupu je zaručena pouze na $\pm 2,5\%$ (25000ppm). V datovém listu DS3231SN je v rozmezí teplot od -40° C do $+85^{\circ}$ C slíbená přesnost ±3.5ppm a pro rozsah teplot od 0°C do +40°C přesnost ±2ppm. Čip DS3231SN používá jako časovou základnu hodinový krystal s frekvencí 32768Hz, který s přepínatelnými kapacitami, drží stabilní kmitočet v širokém teplotním rozmezí. Se známou teplotní charakteristikou krystalu a na čipovém integrovaném teplotním čidlu je frekvence převážně konstantně udržována. Pro zkoumání tohoto čipu jsem všechny DS3231M čipy vyměnil za DS3231SN. Pro čerstvě kalibrovaný tester s 16MHz krystalem, je měření frekvence pro všechny čtyři moduly stejnou frekvenci 32.76800kHz se zřídka uvedenou odchylkou od 0.03Hz. To odpovídá odchylce cca 1ppm. Mimochodem, 1 Hz zlomky jsou zobrazeny pouze tehdy, když je frekvence vypočtena z měření periody. Aby bylo možné měřit 32768Hz touto metodou, změnil jsem hranici pro měření doby od 25kHz na 33kHz. Tato přesnost zobrazení frekvence může být samozřejmě dosažena pouze tehdy, pokud je zdroj kmitočtu stabilní a s nízkým šumem. Při použití signálu odvozeného z RC generátoru výrazně kolísají výsledky měření.

Generace signálu

Různé režimy generování signálu mohou pracovat pouze s jedním ATmega328 procesorem.

Dále musí být také zapnuta dialogová funkce s volbou makefile WITH MENU.

Ovládací nabídku lze vyvolat dlouhém stisknutím tlačítka.

Volitelné funkce se zobrazují na druhém řádku displeje.

Zobrazenou funkci lze zase zvolit dlouhým stiskem tlačítka.

Další funkce bude automaticky zobrazeny po 5 vteřinách nebo po krátkém stisknutí tlačítka.

6.1 Generování frekvence

Generování frekvence se spustí, když je funkce menu "f-Generator" spuštěna dlouhým stisknutím klávesy.

Frekvence se vyvede přes odpor 680Ω na měřící port TP2.

Měřící port TP1 se přepne na GND.

Frekvence jsou generovány pomocí 16 bitového čítače z CPU frekvence (8MHz) nebo 16MHz) taktu.

Frekvenci lze nastavit po dekádách začínajících číslicí 1Hz číslicemi 0-9.

Nejvyšší volitelná číslice je číslice 100kHz. Zde lze nastavit čísla až na 20.

Výstupní kmitočty jsou tedy nastavitelné až do 2MHz.

Bez otočného kodéru lze hodnotu nastavit krátkým stiskem kláves (< 0.8s).

Pomocí rotačních snímačů lze hodnoty podle potřeby zvýšit nebo snížit.

Při delším stisknutí tlačítka se změní pozice v dekádě.

V tomto případě sloupec 1 ukazuje, v jakém směru se změní další pozice po delším stisknutí.

Pro znak > v 1 sloupci frekvenční linky bylo zvoleno další vyšší místo.

Pro znak < v 1 sloupci je vybrána další dolní číslice (1Hz).

Je-li nastavena nejvyšší číslice (100kHz), zobrazí se namísto > R.

Pak delší stisknutí tlačítka způsobí reset frekvence na 1Hz.

Protože nelze každou nastavenou frekvenci správně generovat, je frekvenční odchylka vygenerovaného signálu zobrazena ve 3 řádku nebo za hodnotou frekvence.

Dlouhým stisknutím klávesy (> 2s) se vrátí tester do dialogové funkce, kde lze zvolit jinou funkci.

6.2 Generování impulsů s pulzní šířkovou modulací

Generování šířky impulsu je možné vybrat v menu volbou 10 bitové PWM.

Dlouhým stisknutím tlačítka je možné, tuto volbu nastartovat.

Frekvence je vyvedena přes 680Ω odpor na měřící port TP2.

Měřící port TP1 se přepne na GND.

Výstupní kmitočet je pevný a CPU takt je dělen 1024.

To dává frekvenci 7812,5Hz při frekvenci 8MHz taktu. Stisknutím tlačítka lze změnit pouze pozitivní šířku impulsu. Každým krátkým stiskem se zvýší šířka pozitivního impulzu o 1% až k 99%. Dlouhým stisknutím tlačítka se šířka impulsu zvyšuje o 10%. Když šířka impulzu dosáhne hodnoty více než 99%, bude od výsledku 100 odečteno. Šířka impulsu 0% vytváří velmi krátký pozitivní impuls.

Známé chyby a nevyřešené problémy

Software-Version 1.12k

- 1. Germanium diody (AC128) nejsou ve všech případech detekovány. Příčina je pravděpodobně zbytkový proud. Chlazení diody snižuje zbytkový proud.
- 2. V bipolárních tranzistorech není detekována ochranná dioda kolektoru emitoru Zbytkový proud kolektoru ICE0 je vysoký. Doposud byl problém zjištěn pouze s germania tranzistory s externí diodou.
- 3. Aktuální faktor zesílení germaniových tranzistorů může být měřen příliš vysokým z důvodu vysokého zbytkového proudu. V tomto případě je naměřené napětí báze emitor nápadně malé. Chlazení tranzistoru může pomoci určit realističtější zesílení proudu.
- 4. U dvojitých diod typu Schottky, jako je MBR3045PT, nelze detekovat kapacitu v opačném směru. Důvodem je příliš vysoký zbytkový proud. Chybě může být někdy zabráněno chlazením (studeným postřikem).
- 5. Případně došlo k chybnému rozpoznání přesnosti odkazu 2,5V pokud není pin PC4 (pin 27) připojen. Odstranění je možné pomocí dodatečného Pull-Up odporu k VCC.
- 6. Funkce diody gate triaku nelze změřit.
- 7. Příležitostně byly hlášeny problémy s prahovou hodnotou pro vypínání 4,3V pro procesory AT-mega168 nebo ATmega328. To vede k resetování při měření kondenzátorů. Příčina je neznámá. Chyba zmizí, když je práh Brown-Out nastaven na hodnotu 2,7V.
- 8. Při použití režimu spánku procesoru se spotřeba energie VCC pohybuje více než ve starších verzích softwaru. Pokud zjistíte nějaké problémy, měli byste zkontrolovat blokovací kondenzátory. Keramické 100nF kondenzátory by měly být připojeny v blízkosti napájecích pinů konektorů ATmega. Můžete také zabránit tomu, aby byl stav spánku použit s volbou makefile INHIBIT_SLEEP_MODE.
- 9. Měření tantalových elektrolytických kondenzátorů často způsobuje problémy. Mohou být rozpoznány jako diody nebo dokonce nejsou rozpoznány. Někdy pomáhá změna polarity.
- 10. U JFET není někdy možné správně rozlišit Source a Drain. Příčinou je symetrická struktura těchto polovodičů. Tento problém lze rozpoznat, že displej zůstává stejný s určenými parametry, když jsou spojnice obráceny. Bohužel, vím, že neexistuje způsob, jak správně polarizovat zdroj a polarizaci součástky. Ale výměna zdroje a polarity součástky v jakémkoli obvodu by nemělo zpravidla způsobit problém.

Speciální součásti softwaru

Bylo provedeno mnoho změn ukládání do paměti flash. Výstup LCD testovacích čísel portů byl proveden formou "lcd_data('1'+Pin)".

K ušetření místa pro další požadavky při každé výzvě, byla funkce "lcd_testpin(uint8_t pin)" vložena do souboru lcd_routines.c.

Pseudo funkce v podobě _delay_ms(200) nejsou funkce knihovny, místo toho jsou v programu pro každý bod spojení vestavěny čekací smyčky. To spotřebovává spoustu paměti, pokud je mnoho výzev do různých míst programu.

Všechny tyto výzvy byly vyměněny za speciální výzvu v assembleru napsanou knihovnou, která spotřebuje pouze 74 bajtů paměti flash (u 8MHz), ale dává k disposici výzvy od wait1us() do wait5s() v úrovních 1,2,3,4,5,10,20...

Pro všechny výzvy přes 50ms obsahují rutiny příkaz "Watch Dog Reset".

Každá výzva vyžaduje pouze jednu instrukci (2 Byte). Čekající výzvy s přechodnými hodnotami jako 8 ms potřebují dvě výzvy (wait5ms() a wait3ms() nebo dva wait4ms() výzvy).

Neznám žádné řešení, které by bylo ekonomičtější, pokud je v programu použito mnoho výzev. Výzvy nepoužívají registry, pro návratové adresy do RAM, pouze ukazatel zásobníku (stack pointer) v paměti RAM (maximálně 28 bajtů).

Úplný seznam funkcí je:

```
wait1us(), wait2us(), wait3us(), wait4us(), wait5us(), wait10us(),
wait20us(), wait30us(), wait30us(), wait40us(), wait50us(), wait100us(),
wait200us(), wait300us(), wait400us(), wait500us(), wait1ms(),
wait2ms(), wait3ms(), wait4ms(), wait5ms(), wait10ms(),
wait20ms(), wait30ms(), wait400ms(), wait500ms(), wait100ms(),
wait200ms(), wait300ms(), wait400ms, wait500ms(), wait1s(),
wait2s(), wait3s(), wait4s() und wait5s();
```

Jedná se o 36 funkcí, které používají pouze 37 instrukcí včetně Watch Dog Reset! Neexistuje žádný způsob, jak tuto knihovnu zkrátit.

V neposlední řadě dodržují tyto výzvy přesný čas, když to dělá nejnižší výzva (wait1us).

Pouze čekající výzvy přes 50ms jsou jeden takt pro 100ms delší, kvůli dodatečně zabudovanému Watch Dog resetu.

Kromě toho byla často používá sekvence "wait5ms(); ReadADC(...);" nahrazena jedinou výzvou "W5msReadADC(...);".

Totéž platí pro sekvenci "wait20ms(); ReadADC(...);" provedené výzvou "W20msReadADC(...);". Funkce ReadADC byla dodatečně přenesena do assembleru, takže toto rozšíření může být velmi účinně integrováno.

K dispozici je také funkčně identická C-verze ReadADC funkce.

Pracovní úkoly a nové nápady

- 1. Přidat další a lepší dokumentaci.
- 2. Přemýšlet o tom, jak určit skutečný vnitřní odpor vývodů portu B- namísto předpokladu, že jsou porty stejné.
- 3. Může být urychleno vybíjení kondenzátorů, kdyby byl kromě toho záporný pól přes 680Ω odpor spojen s VCC (+)?
- 4. Zkontrolovat, zda tester může používat hodnoty s plovoucí desetinnou čárkou. Riziko přetečení (overflow) je nižší. Nebylo by třeba konstrukce násobení nebo dělení k modelu faktoru s částečným číslem. Ale nevím, kolik místa potřebuje knihovna.
- 5. Napsat návod k instalaci testeru s volbami makefile a popsat průběh procesu až k dokončenému procesoru.
- 6. Pokud nemůže být dosažen držící proud tyristoru pomocí 680Ω odporu. Je pro velmi krátkou dobu bezpečné přepnout katodu přímo na GND a anodu přímo do VCC? Proud může dosáhnout více než 100mA. Bude port poškozen? A co napájení (regulátor napětí)?
- 7. Po této akci zkontrolovat porty s funkcí autotestu!
- 8. Nápad na nový projekt: USB verze bez LCD displeje, napájení z USB portu, komunikace s PC přes USB-Serial most.
- 9. Výměna funkce samplingADC s využitím Counter1 k upravení časového posunu ADC S&H.
- 10. Zkouška přesnosti měření pro malé kondenzátory metodou SamplingADC.
- 11. Vyšetřování přesnosti pro malé cívky pomocí metody SamplingADC.

Literatura

- [1] https://github.com/mikrocontroller-net/transistortester/ Zdroj. od 02-2021
- [2] Markus Frejek AVR-Transistortester,. Embedded Projects Journal, 11. Ausgabe, 2011
- [3] https://github.com/kubi48/ Zdroje a práce autora.
- [4] Atmel Corporation 8-bit AVR with 8KBytes In-System Programmable Flash ATmega8(L),. Manual, 2486Z-AVR-02/11, 2011
- [5] Atmel Corporation 8-bit AVR with 4/8/16/32KBytes In-System Programmable Flash AT-mega48 ATmega328,. Manual, 8271D-AVR-05/11, 2011
- [6] Atmel Corporation Atmel AVR126: ADC of megaAVR in Single Ended Mode,. Application Note, 8444A-AVR-10/11, 2011
- [7] Atmel Corporation Atmel AVR121: Enhancing ADC resolution by oversampling, Application Note, 8003A-AVR-09/05, 2005
- [8] http://cz.wikibooks.org/wiki/LaTeX LaTeX dokumentace,. Příručka pro sázení různých dokumentů v LaTeXu i začátečnický úvod jak s ním pracovat. 2012
- [9] http://en.wikibooks.org/wiki/Gnuplot Gnuplot documentation,. Documentation for the plotting tool gnuplot, 2012
- [10] Wikipedia http://de.wikipedia.org/wiki/Equivalent_Series_Resistance Vysvětlivky k ESR. Normování a náhradní obraz kondenzátoru, 2012
- [11] http://www.xfig.org/userman Xfig documentation,. Documentation of the interactive drawing tool xfig, 2009
- [12] http://docs.gimp.org/2.6/de gimp documentation. Dokumentace k vektorovému programu GIMP GNU Image Manipolation Program, 2010
- [13] http://www.mikrocontroller.net/articles/AVR-Transistortester Online Dokumentace Transistor testeru, Online Article, 2009-2011
- [14] http://www.mikrocontroller.net/articles/AVRDUDE Online Dokumentace avrdude programu interface, Online Article, 2004-2011
- [15] http://www.mikrocontroller.net/topic/131804 Thread von Markus F., Forum thread, 2009
- [16] http://www.mikrocontroller.net/articles/AVR_Transistortester Popis Transistor Testeru od Karl-Heinz K., Online Article, 2012

- [17] http://www.mikrocontroller.net/topic/248078 Thread von Karl-Heinz K., Thread und Software Versionen, 2012
- [18] http://www.mikrocontroller.net/articles/WinAVR Artikl o WinAVR, Online Artikel, 2012
- [19] http://sourceforge.net/projects/winavr/files Quelle pro WinAVR, Download Quelle, 2012
- [20] http://www.mikrocontroller.net/topic/248078?page=5#2922341 Patch pro WinAVR, nastavení pojistek (Fuses) s avrdude, Download Quelle, 2012
- [21] http://www.orientdisplay.com/pdf/ST7565.pdf Technické údaje grafického kontroléru ST7565, Download Quelle, 2014
- [22] Maxim Integrated Products, Inc. http://maximintegrated.com DS3231: Extremely Accurate I²C-Integrated RTC/TCXO/Crystal, Data Sheet, 19-5170;Rev 10; 3/15, 2015
- [23] Maxim Integrated Products, Inc. http://maximintegrated.com DS3231M: 5ppm I²C Real-Time Clock, Data Sheet, 19-5312;Rev 7; 3/15, 2015
- [24] http://www.avrtester.tode.cz $AVR\ tester$ $czech\ clone$
- [25] https://fandapro.blogspot.com
 Rady a zkušenosti fandapro, AVR tester
- [26] https://svetelektro.com/ *Všetko zo sveta elektroniky* Sme najnavštevovanejší portál zo zameraním na elektroniku na Slovensku! od 2006