Esperimento di Equilibrio su un piano inclinato al variare della massa

Lorenzo Mauro Sabatino

Sommario

L'obiettivo che ci prefiggiamo in questa esperienza è di determinare l'intensità della forza equilibrante che serve per mantenere in equilibrio un corpo sul piano inclinato, al variare della massa del corpo.

1 Introduzione

Posizionare sul piano inclinato il carrellino, quindi collegare attraverso un filo passante per una carrucola il carrellino a un dinamometro. L'esperimento dimostra che il carrello rimane in equilibrio sul piano inclinato. Ciò vuol dire, facendo riferimento alla figura, che la componente parallela della forza peso del carrello $\vec{P}_{//}$ è equilibrata dalla forza elastica del dinamometro.

Figura 1: Setup

Figura 2: Setup

Per le considerazioni precedenti possiamo scrivere: $P_{//}=F_{el}\Rightarrow mg\cdot\sin\theta=F_{el}$. Da cui:

$$mg\frac{h}{l} = F_{el} \tag{1}$$

Con l lunghezza del piano e h altezza del piano.

Pertanto possiamo verificare questa legge variando la massa del carrello e leggendo in corrispondenza il valore di forza elastica sul dinamometro (g, h ed l sono fissati).

Alternativamente si potrebbe anche verificare la legge variando l'angolo θ e mantenendo la massa costante (in tal caso, h ed l vanno misurate di volta in volta).

2 Procedimento

Pesare il carrellino;
Realizzare l'apparato come quello in figura (1), cioè legare il carrellino al dinamometro facendo passare il filo attorno alla carrucola e posizionare il piano ad una inclinazione non troppo elevata;
Misurare l e h;
A questo punto iniziare la raccolta della misure: leggere la forza elastica quando il carrellino è a vuoto;
Aggiungere progressivamente delle massette al carrellino e leggere il valore di forza elastica;
Verificare la legge 1.

3 Tabelle e analisi dati

I dati devono essere raccolti in tabelle ordinate. Esempio di tabella:

		F_{el} [N]	e_F	m_{tot} [g]	e_m
	Mis. 1	土 土		±	
$\max 1$	Mis. 2	± ±		\pm	
	Mis. 3	土		\pm	
		±		±	
	Mis. 1	土			±
${\it massa}\ 2$	Mis. 2	土		土	
	Mis. 3	±			\pm
	•••	土			±

3.1 Commenti sull'analisi dati

- \square Potete creare le tabelle nella maniera che preferite
- □ Può essere utile disegnare il diagramma delle forze
- \square Dalla legge 1 si osserva una relazione lineare (y = a·x) tra F_{el} e la forza peso P del carrellino al variare della massa. Costruire un grafico F_{el} vs P. Possiamo dunque scrivere:

$$F_{el} = a \cdot P \tag{2}$$

con P = mg e a = $\frac{h}{l}$.

Verificare che il coefficiente della retta del grafico che si ottiene vale $a = \frac{h}{l}$.

☐ **Importante:** segnate sempre gli errori degli strumenti di misura (sensibilità). Ripetete le misure e calcolate media ed errore. Per propagare l'errore usate le formule viste a lezione.

Figura 3: Esempio analisi dati relazione lineare

4 Conclusioni e domande

- La legge è verificata?
- Il valore del coefficiente "a" teorico e sperimentale sono compatibili?
- Se anziché utilzzare un dinamometro si avesse deciso di utilizzare una molla, come sarebbero diventate le equazioni dell'equilibrio? Che informazioni sulla molla si sarebbero potute ricavare effettuando misure diverse?