Robot ERICC3

Chaîne fonctionnelle articulation d'épaule Modélisation - simulation

1 Performances annoncées

Le robot Ericc3 est un robot 5 axes pour lequel on étudie l'axe de poignet. Les performances annoncées à l'époque (1997) de son achat étaient pour l'articulation d'épaule :

• Course : $-45^{\circ} \rightarrow 90^{\circ}$

Vitesse maximum : 70 degrés/s
accélération : 410 degrés/s²

Cet axe asservi en position a été remis en fonctionnement en modifiant essentiellement la chaîne d'information. Pour la chaîne d'énergie la fonction moduler est réalisée par une carte moteur DRI0041.

2 Description du système

Le schéma chaîne d'énergie -chaîne d'information est donné ci-dessous :

2.1 Chaîne d'énergie :

2.1.1 Alimentation:

L'alimentation de la carte moteur est $U_0 = 24 V$, obtenue avec un adapateur AC/DC

2.1.2 Carte moteur:

La programmation de la carte DUE impose une commande en points représentée par un entier dans l'intervalle [-255 .. 255]

2.1.3 Autres composants : leur description est dans le dossier technique initial

2.2 Chaîne d'information

2.2.1 Codeur incrémental: 500 traits / tour de moteur.

Le débit des informations envoyées par le codeur incrémental K7-500 peut atteindre des dizaines de millier par seconde. La carte Arduino Due dispose d'un décodage intégré en quadrature. On obtient donc une résolution de $500\times4=2000$ pts/tr moteur

2.2.2 Carte Due +programme :

- Elle permet la communication avec le PC de l'utilisateur par la liaison série :
 - o réception du choix dans le menu, choix des consignes
 - envoi des mesures et autres messages.
- La carte évalue l'écart **E** dans l'asservissement de position et élabore la commande **y** en points qui sont envoyés à la **carte moteur**.

2.3 Schéma-bloc de l'asservissement de position :

L'asservissement en position de l'articulation d'épaule est décrit par le schéma ci-dessous :

(----) grandeurs directement accessibles par le logiciel.

Schéma-bloc en vue de simulation :

- $C(p) = K_p$ correcteur proportionnel pour ce T.P.
- $H_{ad}(p)$: L'écart en point est un entier très grand et la commande du hacheur doit être comprise entre -255 et 255 points; l'adaptation réalise donc deux fonctions:
 - diviser le signal par 1000,
 - limiter le signal par une saturation en dehors de l'intervalle -255..+255.
- $H_{mot}(p)$: on choisira une fonction de transfert d'ordre 1 simple dont le gain statique K_m et la constante de temps τ_m seront déterminés expérimentalement.

3 Objectifs:

- Construire un modèle de l'asservissement de position de l'axe d'épaule en utilisant les informations du dossier technique que l'on comparera avec des informations issues d'expériences.
- Valider le modèle en réalisant des essais.
- Vérifier les performances :
 - Course: 45° → 90° en déplaçant manuellement le bras;
 - Vitesse maximum : 70 degrés/s à partir de l'expérience réalisée pour l'identification ;
 - accélération: 410 degrés/s² à partir de l'expérience réalisée pour l'identification;

4 Annexe : pilotage de l'axe d'épaule

Remarque : Le pilotage de l'axe d'épaule se fait en utilisant le moniteur série intégré au logiciel Arduino. On n'a pas à charger un programme, ni en modifier un quelconque et encore moins d'en télécharger un dans la carte.

- Brancher l'alimentation du système : bloc 24VDC
- Brancher le câble USB sur le PC
- Démarrer l'IDE Arduino : le logiciel reconnaît la présence de la carte sur un port série
- Préciser le type de carte : dans la liste choisir (en bas) Arduino DUE sur programming port

• Préciser le port de communication

• Activer le moniteur série : Outil puis Moniteur série ou Ctrl+Maj+M ou

Paramètres du moniteur série : dans le bas de la fenêtre du moniteur série on doit avoir :

Logiciel de pilotage du robot : par le moniteur séri e

Attention, les mouvements du robot sont rapides !!!!!

• **menu de démarrage** : il permet de vérifier que les capteurs utiles sont bien actifs que le frein est relâché.

menu principal : si les tests sont réussis on accède au menu principal

Initialisation de l'axe : permet de mettre le robot en position 0 degré.

fonctionnement du codeur: permet d'afficher l'évolution des points du codeur en déplacçant manuellement le bras.

Boucle fermée échelon de position :

A la fin du mouvement on copie le tableau de mesures affiché dans le moniteur série

Exploitation des mesures dans le tableur de Libre Office

Dans une feuille vide on colle le tableau de mesures ; en prenant les précautions suivantes on les points du tableaux(séparateur décimal) deviendront des virgules dans Libre Office ce qui est obligatoire.

Utilisation de Scilab et du bloc Read CSV : on collera le tableau de mesure dans un fichier texte . Le séparateur décimal dans Scilab est le point.