DATA ANALYTICS

DR. BRENDA MULLALLY

ı

OUTLIERS

- An outlier is a value or an entire observation (row) that lies well outside of the norm.
 - Some statisticians define an outlier as any value more than three standard deviations from the mean, but this is only a rule of thumb.
- Even if values are not unusual by themselves, there still might be unusual combinations of values.
- When dealing with outliers, it is best to run the analyses two ways: with the outliers and without them.

MISSING VALUES

- Most real data sets have gaps in the data.
- There are two issues: how to detect these missing values and what to do about them.
- The more important issue is what to do about them:
 - One option is to simply ignore them. Then you will have to be aware
 of how the software deals with missing values.
 - Another option is to fill in missing values with the average of nonmissing values, but this isn't usually a very good option.
 - A third option is to examine the nonmissing values in the row of a missing value; these values might provide clues on what the missing value should be.

EXCEL TABLES FOR FILTERING, SORTING, AND SUMMARIZING

- Tables are a tool introduced in Excel 2007.
- You now have the ability to designate a rectangular data set as a table and then employ a number of powerful tools for analyzing tables.
- These tools include:
 - Filtering
 - Sorting
 - Summarizing

EXAMPLE 2.7:CATALOG MARKETING.XLSX

- Objective: To illustrate Excel tables for analyzing the HyTex data.
- Solution: Data set contains data on 1000 customers of HyTex, a fictional direct marketing company.
- Designate the data set as a table by selecting any cell in the data set and clicking the Table button on the Insert ribbon.
- Use the dropdown arrows next to the variable names to filter in many different ways.

-24	A	В	С	D	E	F	G	H	I	J	K	L	M	N	0
1	Person	Age	Gender	Own Home	Married	Close	Salary	Children	History	Catalogs	Region	State	City	First Purchase	Amount Spent
2	1	1	0	0	0	1	\$16,400	1	1	12	South	Florida	Orlando	10/23/2008	\$218
3	2	2	0	1	1	0	\$108,100	3	3	18	Midwest	Illinois	Chicago	5/25/2006	\$2,632
4	3	2	1	1	1	1	\$97,300	1	NA	12	South	Florida	Orlando	8/18/2012	\$3,048
5	4	3	1	1	1	1	\$26,800	0	1	12	East	Ohio	Cleveland	12/26/2009	\$435
6	5	1	1	0	0	1	\$11,200	0	NA	6	Midwest	Illinois	Chicago	8/4/2012	\$106
7	6	2	0	0	0	1	\$42,800	0	2	12	West	Arizona	Phoenix	3/4/2010	\$759
8	7	2	0	0	0	1	\$34,700	0	NA	18	Midwest	Kansas	Kansas City	6/11/2012	\$1,615
9	8	3	0	1	1	0	\$80,000	0	3	6	West	California	San Francisco	8/17/2006	\$1,985
10	9	2	1	1	0	1	\$60,300	0	NA	24	Midwest	Illinois	Chicago	5/29/2012	\$2,091
11	10	3	1	1	1	0	\$62,300	0	3	24	South	Florida	Orlando	6/9/2008	\$2,644

CATALOG MARKETING.XLSX

- 24	A	В		С	D	E	F	G	Н	Î.	J K	L	M	N	0
1	Person 💌	Age	-	Gender 💌	Own Home	Married 🕶	Close	Salary -	Children 💌	History -	Catalogs 🕶 Region	State	City -	First Purchase	Amount Spent
2	1	I	1	0	0	0	1	\$16,400	1	1	12 South	Florida	Orlando	10/23/2008	\$218
3	2		2	0	1	1	0	\$108,100	3	3	18 Midwest	Illinois	Chicago	5/25/2006	\$2,632
4	3		2	1	1	1	1	\$97,300	1	NA	12 South	Florida	Orlando	8/18/2012	\$3,048
5	4		3	1	1	1	1	\$26,800	0	1	12 East	Ohio	Cleveland	12/26/2009	\$435
6	5		1	1	0	0	1	\$11,200	0	NA	6 Midwest	Illinois	Chicago	8/4/2012	\$106
7	6		2	0	0	0	1	\$42,800	0	2	12 West	Arizona	Phoenix	3/4/2010	\$759
8	7		2	0	0	0	1	\$34,700	0	NA	18 Midwest	Kansas	Kansas City	6/11/2012	\$1,615
9	8		3	0	1	1	0	\$80,000	0	3	6 West	California	San Francisco	8/17/2006	\$1,985
10	9	Ü .	2	1	1	0	1	\$60,300	0	NA	24 Midwest	Illinois	Chicago	5/29/2012	\$2,091

FILTERING

- Finding records that match particular criteria is called filtering.
- One way to filter is to create an Excel table, which automatically provides dropdown arrows next to the field names that allow you to filter.
- There are also three ways to filter on any rectangular data set with variable names:
 - 1. Use the Filter button from the Sort & Filter dropdown list on the Home ribbon.
 - 2. Use the Filter button from the Sort & Filter group on the Data ribbon.
 - 3. Right-click any cell in the data set and select Filter. You get several options, the most popular of which is Filter by Selected Cell's Value.

CATALOG MARKETING.XLSX

- **Objective**: To investigate the types of filters that can be applied to the HyTex data.
- **Solution**: There is almost no limit to the filters you can apply, but here are a few possibilities:
 - Filter on one or more values in a field.
 - Filter on more than one field.
 - Filter on a continuous numerical field.
 - Top 10 and Above/Below Average filters.
 - Filter on a text field.
 - Filter on a date field.
 - Filter on color or icon.
 - Use a custom filter.

EXAMPLE 2.7 CATALOG MARKETING.XLSX

Results from a Typical Filter

RELATIONSHIPS AMONG VARIABLES

- The primary interest in data analysis is usually in *relationships* between variables.
 - The most useful numerical summary measure is correlation.
 - The most useful graph is a scatterplot.
 - To break down a numerical variable by a categorical variable, it is useful to create side-by-side box plots.
 - Excel's® pivot table breaks down one variable by others so that all sorts of relationships can be uncovered very quickly.

RELATIONSHIPS AMONG CATEGORICAL VARIABLES

- The most meaningful way to examine relationships between two categorical variables is with counts and corresponding charts of the counts.
 - You can find counts of the categories of either variable separately, as well as counts of the joint categories of the two variables.
 - Corresponding percentages of totals and charts help tell the story.
- It is customary to display all such counts in a table called a crosstabs (for crosstabulations). This is also sometimes called a contingency table.

SMOKING DRINKING.XLSX

- Objective: To use a crosstabs to explore the relationship between smoking and drinking.
- **Solution:** Data set lists the smoking and drinking habits of 8761 adults.
- Categories have been coded "N," "O,"
 "H," "S," and "D" for "Non,"
 "Occasional," "Heavy," "Smoker," and
 "Drinker."

saff)	A	В	C
1	Person	Smoking	Drinking
2	1	NS	OD
3	2	NS	HD
4	3	OS	HD
5	4	HS	ND
6	5	NS	OD
7	6	NS	ND
8	7	NS	OD
9	8	NS	ND
10	9	OS	HD
11	10	HS	HD

EXAMPLE 3.1: SMOKING DRINKING.XLSX (SLIDE 2 OF 2)

- To create the crosstabs, enter the category headings in Excel and use the COUNTIFS function to fill the table with counts of joint categories.
- Next, sum across rows and down columns to get totals.
- Then express the counts as percentages of row and percentages of column.

- 4	E	F	G	н	i i			
1	Crosstabs	from COUN	TIFS formu	ılas				
2								
3		NS	OS	HS	Total			
4	ND	2118	435	163	2716			
5	OD	2061	1067	552	3680			
6	HD	733	899	733	2365			
7	Total	4912	2401	1448	8761			
8								
9	Shown as	n as percentages of row						
10		NS	os	HS	Total			
11	ND	78.0%	16.0%	6.0%	100.0%			
12	OD	56.0%	29.0%	15.0%	100.0%			
13	HD	31.0%	38.0%	31.0%	100.0%			
14								
15	Shown as	percentage	s of colum	n				
16		NS	os	HS				
17	ND	43.1%	18.1%	11.3%				
18	OD	42.0%	44.4%	38.1%				
19	HD	14.9%	37.4%	50.6%				
20	Total	100.0%	100.0%	100.0%				

RELATIONSHIPS AMONG CATEGORICAL VARIABLES AND A NUMERICAL VARIABLE

- The comparison problem is one of the most important problems in data analysis. It occurs whenever you want to compare a numerical measure across two or more subpopulations.
 - Examples:
 - The subpopulations are males and females, and the numerical measure is salary.
 - The subpopulations are different regions of the country, and the numerical measure is the cost of living.
 - The subpopulations are different days of the week, and the numerical measure is the number of customers going to a particular fast-food chain.

STACKED AND UNSTACKED FORMATS

- There are two possible data formats, stacked and unstacked.
 - The data are **stacked** if there are two "long" variables, such as Gender and Salary. The idea is that the male salaries are stacked in with the female salaries.
 - This is the format you will see in the vast majority of situations.
 - You will occasionally see data in **unstacked** format, when there are two "short" variables, such as *Male Salary* and *Female Salary*.
- Most tools are capable of dealing with either format and can convert from stacked to unstacked or vice versa.

STACKED AND UNSTACKED DATA

Stacked Data

- 2	Α	В
1	Gender	Salary
2	Male	81600
3	Female	61600
4	Female	64300
5	Female	71900
6	Male	76300
7	Female	68200
8	Male	60900
9	Female	78600
10	Female	81700
11	Male	60200
12	Female	69200
13	Male	59000
14	Male	68600
15	Male	51900
16	Female	64100
17	Male	67600
18	Female	81100
19	Female	77000
20	Female	58800
21	Female	87800
22	Male	78900

Unstacked Data

- saf	Α	В
1	Female Salary	Male Salary
2	61600	81600
3	64300	76300
4	71900	60900
5	68200	60200
6	78600	59000
7	81700	68600
8	69200	51900
9	64100	67600
10	81100	78900
11	77000	
12	58800	
13	87800	

BASEBALL SALARIES 2011 EXTRA.XLSX

- **Objective**: To learn methods in PhStat tool for breaking down baseball salaries by various categorical variables.
- **Solution**: Data set contains the same 2011 baseball data examined previously, as well as several extra categorical variables.
- First unstack the position and salary columns using PhStat. Then create summary measures by selecting multi groups unstacked

41	А	в	C	υ ,	E	+	G	н	1
1	Descriptive Summary	1							
2									
3		Pitcher	Catcher	Second Baseman	Outfielder	Designated Hitter	Shortstop	First Baseman	Third Baseman
4	Mean	2943853.373	2252780.696	2776197.153	4018200.303	7110181.875	2852726.277	5452236.81	4309856.848
5	Median	1095000	850000	1000000	1275000	5930727.5	1350000	2000000	2150000
6	Mode	414000	1000000	414000	414000	#N/A	414000	414000	414000
7	Minimum	414000	414000	414000	414000	2020000	414000	414000	414000
8	Maximum	24285714	23000000	15285714	26187500	13000000	14729364	23125000	32000000
9	Range	23871714	22586000	14871714	25773500	10980000	14315364	22711000	31586000
10	Variance	16349851327761.4000	12528678194398.7000	11473372139785.1000	27147519477562.6000	22877093836056.7000	12706088419007.1000	44785321707213.6000	35330116134885.4000
11 5	Standard Deviation	4043494.9397	3539587.2915	3387236.6525	5210328.1545	4783000.5055	3564560.0597	6692183.6277	5943914.2099
12	Coeff. of Variation	137.35%	157.12%	122.01%	129.67%	67.27%	124.95%	122.74%	137.91%
13	Skewness	2.2877	3.8267	1.7222	1.7723	0.2702	1.8851	1.3342	2.7296
14	Kurtosis	5.5377	18.3092	2.7569	2.8457	-2.2177	3.1318	0.6397	9.7154
15	Count	413	69	59	152	8	47	42	46
16	Standard Error	198967.3786	426116.2357	440980.6510	422613.4189	1691046.0459	519944.5228	1032626.3523	876382.3383
17									
18									

BASEBALL SALARIES 2011 EXTRA.XLSX

- Create side-byside boxplots, by selecting boxplots from the phstat descriptive statistics option.
- Select the data range, phstat will only show the first eight categories.

BASEBALL SALARIES 2011 EXTRA.XLSX

- You can carry out further analysis by unstacking the salary and playoff variables or the salary and Yankees variables. Then present the box plots comparing those variables.
- The Yankee payroll is much larger than the payrolls for the rest of the teams.
- Aside from many outliers, the playoff teams of 2011 tend to have slightly larger payrolls than the non playoff teams.

RELATIONSHIPS AMONG NUMERICAL VARIABLES

- To study relationships among numerical variables, a new type of chart, called a scatterplot, and two new summary measures, correlation and covariance, are used.
- These measures can be applied to any variables that are displayed numerically.
- However, they are appropriate only for truly numerical variables, not for categorical variables that have been coded numerically.

SCATTERPLOTS

- A scatterplot is a scatter of points, where each point denotes the values of an observation for two selected variables.
 - It is a graphical method for detecting relationships between two numerical variables.
 - The two variables are often labeled generically as X and Y, so a scatterplot is sometimes called an X-Y chart.
 - The purpose of a scatterplot is to make a relationship (or the lack of it) apparent.

GOLFSTATS.XLSX

- Objective: To use scatterplots to search for relationships in the golf data.
- **Solution**: Data set includes an observation (stats) for each of the top 200 earners on the PGA Tour.
- Using PhStat you can create a scatterplot for two variables such as Age and Events

- 4	A	В	С	D	E	E	G	Н	1	J	K	L	M	N
1	Rank	Player	Age	Events	Rounds	Cuts Made	Top 10s	Wins	Earnings	Yards/Drive	Driving Accuracy	Greens in Regulation	Putting Average	Sand Save Pct
2	1	Luke Donald	34	19	67	17	14	2	6,683,215	284.1	64.3	67.3	1.7	59.1
3	2	Webb Simpson	26	26	98	23	12	2	6,347,354	296.2	61.9	69.8	1.731	52
4	3	Nick Watney	30	22	77	19	10	2	5,290,674	301.9	58.2	66.9	1.738	48.1
5	4	K.J. Choi	41	22	75	18	8	1	4,434,691	285.6	62	65.9	1.787	55.6
6	5	Dustin Johnson	27	21	71	17	6	1	4,309,962	314.2	57.2	68.4	1.759	41.5
7	6	Matt Kuchar	33	24	88	22	9	0	4,233,920	286.2	64.7	67	1.735	58.9
8	7	Bill Haas	29	26	92	22	7	1	4,088,637	296.6	63.6	69.4	1.775	43.9
9	8	Steve Stricker	44	19	69	18	5	2	3,992,785	288.8	62.5	66	1.71	52.1
10	9	Jason Day	24	21	73	18	10	0	3,962,647	302.6	54.7	64.9	1.737	61
11	10	David Toms	45	23	79	16	7	1	3,858,090	279.1	71.8	66.6	1.749	55.9

GOLFSTATS.XLSX

TREND LINES IN SCATTERPLOTS

- Once you have a scatterplot, Excel enables you to superimpose one
 of several trend lines on the scatterplot.
 - A trend line is a line or curve that "fits" the scatter as well as possible.
 - This could be a straight line, or it could be one of several types of curves.
- On the Layout tab for the scatterplot click on Trendline and choose the appropriate one.

SCATTERPLOT WITH TREND LINE AND EQUATION SUPERIMPOSED

(SLIDE 1 OF 4)

- Correlation and covariance measure the strength and direction of a linear relationship between two numerical variables.
 - The relationship is "strong" if the points in a scatterplot cluster tightly around some straight line.
 - If this straight line rises from left to right, the relationship is positive and the measures will be positive numbers.
 - If it falls from left to right, the relationship is negative and the measures will be negative numbers.
 - The two numerical variables must be "paired" variables.
 - They must have the same number of observations, and the values for any observation should be naturally paired.

(SLIDE 2 OF 4)

 Covariance is essentially an average of products of deviations from means.

$$Covar(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

- Excel has a built-in COVAR function, and PhStat also calculates covariances automatically.
- Covariance has a serious limitation as a descriptive measure because it is very sensitive to the *units* in which X and Y are measured.

(SLIDE 3 OF 4)

 Correlation is a unitless quantity that is unaffected by the measurement scale.

$$Correl(X, Y) = \frac{Covar(X, Y)}{Stdev(X) \times Stdev(Y)}$$

- The correlation is always between -1 and +1.
 - The closer it is to either of these two extremes, the closer the points in a scatterplot are to a straight line.
- Excel has a built-in CORREL function and the built in Add-In data analysis can calculate correlation on multiple variables.

(SLIDE 4 OF 4)

- Three important points about scatterplots, correlations, and covariances:
 - A correlation is a single-number summary of a scatterplot. It never conveys as much information as the full scatterplot.
 - You are usually on the lookout for large correlations, those near -1 or +1.
 - Do not even try to interpret covariances numerically except possibly to check whether they are positive or negative. For interpretive purposes, concentrate on correlations.