Proyecto 3

Detección y Corrección de Errores

Para esta 3ra etapa del proyecto de redes incorporaremos la possibilidad de que dos *host* se comuniquen y el receptor pueda verificar si la información recibida es correcta.

Elementos a implementar

- 1. En las tramas (*frames*) antes había un campo extra que era 00000000 siempre. A partir de ahora, este campo va a contener el tamaño de la **información de verificación**. Esta información adicionl vendrá después de los datos. El frame quedará de la siguiente forma:
 - Primeros 16 *bits*: dirección *MAC* destino. (igual que antes)
 - Próximos 16 *bits*: dirección *MAC* origen. (igual que antes)
 - Proximos 8 *bits*: tamaño de los datos (en *bytes*) de los datos. (igual que antes)
 - Próximos 8 *bits*: tamaño de los datos de verificación (en *bytes*) **(esto es nuevo)**
 - A continuación vienen los datos (tamaño especificado en el 3er campo). (igual que antes)
 - Después de los datos vienen los datos de verificación (tamaño especificado en el 4to campo) (esto es nuevo)

Detalles de los algoritmos de detección de errores

- A partir de ahora cada *host* agregará al final de cada trama, información que servirá al *host* de destino para verificar y comprobar si los datos llegaron correctamente.
- Existen muchas técnicas y algoritmos posibles de los cuales ustedes escogerán (o inventarán) una o varias y las implementarán en el sistema.
- Estas técnicas deberían ser capaces de detectar si hubo algun cambio en los datos que se transmitieron.
- Una ténica simple y bastante común que pueden implementar es crear una especie de *hash*de los datos y enviarlos a continuación de los datos. Y el receptor, lee los datos, aplica la
 misma función *hash* y comprueba el resultado.
- Por ejemplo, el hash más simple posible es una suma de cada uno de los valores.
 Supongamos que la *data* es AABBCCDD (tamaño 4 *bytes* recuerden que se especifica en hexadecimal y un 1 *byte* tiene 2 dígitos hexadecimales):
 - \circ 1er *byte* = AA (170 en decimal)
 - 2do *byte* = BB (187 en decimal)
 - 3er byte = CC (204 en decimal)
 - \circ 4to *byte* = DD (221 en decimal)
 - \circ suma total = 782
 - necesitas 2 *bytes* para transmitir eso y por lo tanto
 - el campo extra tendría valor 2 (00000010) lo cual indica que cuando se terminen de transmitir los datos, vienen 2 *bytes* más
 - al final de los datos transmites 2 bytes con valor 782 (00000011 00001110)

- el receptor lee los datos, lee el campo extra, suma los valores de los datos y le tiene que dar 782.
- Cada algorítmo que ustedes implementen tienen que quedar bien documentado en el directorio docs/ del proyecto.
- En caso de que decidan implementar uno solo:
 - Cada *host* transmite los frames y rellena esa información de verificación utilizando ese algoritmo.
 - Y cada *host* recibe y analiza los datos usando ese mismo algoritmo.
- En caso de que decidan implementar más de un algoritmo:
 - En el fichero config.txt de su proyecto tienen que incluir un elemento configurable con keyword: error_detection cuyo valor corresponda con alguna de las diferentes técnicas implementas por ustedes:
 - Por ejemplo supongamos ustedes implementan un algoritmo llamado *CRC*.
 - E implementan además otro algoritmo llamado *Hamming*.
 - Ustedes tienen que documentar ambos algoritmos en el directorio docs/
 - Además tienen que poner el el fichero config.txt una entrada que sea error detection = crc.
 - En ese caso, los *hosts* a la hora de transmitir o recibir utilizarán el algoritmo *CRC*.
 - Y si yo voy al fichero config.txt y donde dice "crc" pongo "hamming" entonces los hosts a la hora de transmitir y recibir información utilizarán esta otra técnica.

Instrucciones

No hay ninguna instrucción nueva en este 3er proyecto.

Salida

- En el fichero _data.txt asociado a cada *host* se pondrá un **ERROR** al final de cada línea en los casos en los que los datos llegaron corruptos y ustedes no pudieron recuperarlos.
 - Si llegan los datos correctamente ustedes escriben en el fichero lo mismo que antes.
 - Si llegan datos corruptos, pero los algorítmos que ustedes implementan les permiten recuperar los datos, ustedes escriben lo mismo que antes en el fichero.
 - Si ustedes no son capaces de reconstruir la data original de ninguna forma, solo pueden saber que los datos están mal, entonces en la línea correspondiente ponen ERROR al final.

Objetivo del proyecto

Implementar una o varias técnicas de detección y corrección de errores en el sistema.

Hasta el Momento

Entregables

Archivo steve_rodgers_311_natasha_romanov_312.zip subido al EVEA que contenga:

- README.txt con información para compilar y ejecutar el programa
- archivo script.txt
- archivo config.txt
- directorio docs/
 - o decisiones tomadas en la capa fisica
 - decisiones tomadas en la capa de enlace
 - o algoritmos de detección y corrección de errores
 - o cualquier otra cosa que nos ayude a entender mejor el proyecto
- directorio output/
 - o un archivo .txt por cada *dispositivo*
 - o un archivo _data.txt por cada *host*

Elementos Configurables

- [1] **signal_time** = <time in ms>
- [3] error_detection = <algorithm name>

Elementos Físicos

- [1] Cable
- [1] Computadora / Host
- [1] Concentrador / Hub
- [2] Cable *Duplex*
- [2] Conmutador / Switch

Conceptos

- [2] Dirección *MAC*
- [2] *Trama / Frame*
- [3] Detección y Corrección de Errores

Instrucciones

- [1] <time> create host <name>
- [1] <time> create hub <name> <number of ports>
- [1] <time> connect <port1> <port2>
- [1] <time> disconnect <port>
- [1] <time> send <host> <data>
- [2] <time> create switch <name> <number of ports>
- [2] <time> mac <host> <address>
- [2] <time> send_frame <host> <mac destination> <data>