UNIT VI

Analog to digital converter

And

Digital to analog converter

Part One

Analog to Digital converter

Outline

- Definition
- **❖** Why we need ADC
- Types ADC and each basic operation
- Applications of analog to digital converter

Definition

- An electronic integrated circuit which transforms a signal from analog(continues) to digital(discrete) form
- Analog signals are directly measurable quantities
- ❖ Digital signals only have two states for digital computer we refer to binary states, 0 and 1

- ❖The heart of computer-based data acquisition is usually the analog to digital converter
- ❖ Basically this device is digital volt meter
- ❖ Digital Systems require discrète digital data

- Digital computers require signals to be in digital form whereas most instrumentation transducers have an output signal in analogue form.
- *ADC conversion is therefore required at the interface between analogue transducers and the digital computer

Examples of use

Voltmeter

Cell phone (microphone)

Why we need ADC

- Microprocessors can only perform complex processing on digitized signals
- ❖When signals are in digital form they are less susceptible to the deleterious effects of additive noise
- *ADC Provides a link between the analog world of transducers and the digital world of signal processing and data handling.

Types of analog to digital converter

- There are many different types of analog to digital converters
- *Each offers something in the way of
 - ✓ Speed
 - **✓**Cost
 - ✓ Power dissipation
 - **✓** complexity

Types of analog to digital converter

- Counter type
- Successive approximation
- There are many types such as flash type and sigma-delta but we will cover these two types

Counter type

- One of the simplest types of analog to digital converter is counter type ADC
- ❖The input signal of ADC is connected to the signal input of its internal comparator
- ❖The ADC then systematically increases the voltage of the reference input of the comparator until the reference becomes larger than the signal

- ❖ And the comparator output goes to 0
- Ex: consider an input signal is 4.78 volts. The initial comparator's input would be 2.5 volts
- ❖The comparator compares the two value then the result this is less than 4.78 then the next higher voltage (5.00 volts) is applied
- The comparator compares the two value and says this is greater than 4.78 and switches 0

- The digital output of the ADC is the number of times the ADC increase the voltage after starting at the initial 2.5 volts
- ❖This scheme is relatively simple, but as the number of ADC increases the time it takes to scan through all possible values lower than input will grow quickly

Components of counter type

- This type of converter uses some type of counter as part of its operation
- Counter type contains the following elements:
 - ➤ Digital to analog converter
 - ➤ Some type of counting mechanism
 - **≻**Comparator
 - >clock

Features of counter type

- **❖**Use a clock to index the counter
- ❖Use DAC to generate analog signal to compare against input
- ❖ Comparator is used to compare V_{IN} and V_{DAC} where V_{IN} is the signal to be digitized
- The input to the DAC is from the counter

Operation of counter type

Operation of counter type

Quick Quiz

- Which of following is not a type of ADC?
- (a) Flash ADC
- (b) Dual slope ADC
- (c) Recessive approximation ADC
- (d) sigma-delta ADC

Quick Quiz

A DAC is a

- (a) digital-to-analog computer
- (b) digital analysis calculator
- (c) data accumulation converter
- (d) digital-to-analog converter