network *representations*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2020/21

network representations

	0 1 1	1 0 1	1 1 0	0 1 0 0
	L	1	•	ر
adjacency matrix				

2: 3:	[2, 3] [1, 3, 4 [1, 2] [2]	!]	{1,2 {1,3 {2,3 {2,4

[2, 3]	$\{1, 2\}$
[1, 3, 4]	$\{1, 3\}$
[1, 2]	$\{2, 3\}$
[2]	$\{2,4\}$
cency list	edge li

Го	0	1	0
1	0	0	0 0 0
0	1	0	0
0	1	0	0
L			_

3] :1:	[2]	(1
1] :2:	[3, 4]	(2
2] :3:	[1]	(2
2] :4:	[]	(3

adjacency matrix

adjacency list

edge list

 $^{^{*}}$ adjacency list can be implemented with maps or trees & edge list does not represent isolated nodes

network *representations*

- adjacency matrix for elegant analytical derivations most derivations based on matrix representation[†]
- adjacency list for efficient algorithms implementation ideal complexity since most algorithms require incidence[†]
- edge list for efficient network storing/manipulation
 easy editing since each edge stored only once

[†]some derivations are based on adjacency list & some algorithms require edge list

— edge list edges data structure complexity

data structure	link manipulation	random node	random link
array	none	$\mathcal{O}(m)$	$\mathcal{O}(1)$
array list	addition	$\mathcal{O}(m)$	$\mathcal{O}(1)$
hash map	any	$\mathcal{O}(m)$	$\mathcal{O}(m)$

— adjacency list nodes data structure complexity

data structure	node manipulation	random node	random link
array	none	$\mathcal{O}(1)$	O(m)
array list	addition	$\mathcal{O}(1)$	$\mathcal{O}(m)$
hash map	any	$\mathcal{O}(n)$	$\mathcal{O}(m)$

adjacency list neighbors data structure complexity

data structure	link manipulation	node incidence	random neighbor
array	none	$\mathcal{O}(k)$	$\mathcal{O}(1)$
array list	addition	$\mathcal{O}(k)$	$\mathcal{O}(1)$
hash map	any	$\approx \mathcal{O}(1)$	$\mathcal{O}(k)$
tree map	any	$\mathcal{O}(\log k)$	$\mathcal{O}(k)$

- hash maps for construction and arrays for analysis
- use directed adjacency list with undirected flag

[‡]random link selection equivalent to random node selection by degree

network formats

 $[\]S_{\text{ad-hoc}}$ edge list and Pajek format most popular & other formats include GML, GraphML, JSON

network data

- easily obtained from *online sources*
- already present in many standard datasets
- personal web pages of network researchers
- popular network repositories/collections
 - network catalogue and repository [Netzschleuder]
 - Colorado Index of Complex Networks [ICON]
 - Stanford Network Analysis Project [SNAP]
 - Koblenz Network Collection [KONECT]
 - Network Repository [NetRepo]
 - Pajek datasets [Pajek]