Tutorial 2: Integer Programming

Aditya Bharti, Kritika Prakash

IIIT Hyderabad

27 Jan 2020

Overview

- Integer Programming: Introduction
- Binary Integer Programming
- Integer Program Example
- Logical Constraints
 - Constraint Feasibility
 - Alternative Constraints
 - Conditional Constraints
 - k-fold Alternatives
 - Compound Alternatives
- Representing Non-Linearities
 - Fixed Costs
 - Piece-wise Linear Functions

Integer Programming: Introduction

Integer Programs allow us to express a richer variety of optimization problems.

- Indivisible Quantities: Number of units
- Logical Constraints: Choices, if-then relationships
- Non-linearities: fixed costs, piece-wise linear functions

A formulation with integer decision variables is an Integer Programming formulation.

In **Mixed Integer Programming** formulations *some* of the decision variables are integers.

In **Pure Integer Programming** formulations *all* of the decision variables are integers.

Binary Integer Programming

Binary variables are integer variables which are restricted to $\{0,1\}$. They are useful for representing choices and logical constraints in our programming.

In **Binary Integer Programming** formulations all decision variables are binary.

The warehousing problem illustrates most of these concepts.

Integer Programming Example

Choose which of m warehouses must be set up to meet the demand of n customers.

$$y_i = \begin{cases} 1 & \text{if warehouse } i \text{ is opened,} \\ 0 & \text{if warehouse } i \text{ is not opened;} \end{cases}$$
 $x_{ij} = \text{Amount to be sent from warehouse } i \text{ to customer } j.$

The relevant costs are:

- f_i = Fixed operating cost for warehouse i, ifopened (for example, a cost to lease the warehouse),
- c_{ij} = Per-unit operating cost at warehouse i plus the transportation cost for shipping from warehouse i to customer j.

There are two types of constraints for the model:

- i) the demand d_j of each customer must be filled from the warehouses; and
- goods can be shipped from a warehouse only if it is opened.

Logical Constraints

Frequently, problem settings impose logical constraints on the decision variables (like timing restrictions, contingencies, or conflicting alternatives), which lend themselves to integer-programming formulations.

- Constraint Feasibility
- Alternative Constraints
- Conditional Constraints
- k-fold Alternatives
- Compound Alternatives

Constraint Feasibility

Possibly the simplest logical question that can be asked in mathematical programming is whether a given choice of the decision variables satisfies a constraint. More precisely, *when* is the general constraint

$$f(x_1, x_2, \ldots, x_n) \leq b$$

satisfied?

Alternative Constraints

Consider a situation with the *alternative* constraints:

$$f_1(x_1,x_2,\ldots,x_n)\leq b_1$$

$$f_2(x_1,x_2,\ldots,x_n)\leq b_2$$

At least one, but not necessarily both of these constraints must be satisfied.

Conditional Constraints

These constraints have the form:

$$f_1(x_1, x_2, \dots, x_n) \le b_1$$
 implies that $f_2(x_1, x_2, \dots, x_n) \le b_2$

A implies B is logically equivalent to?

k-fold Alternatives

Suppose that we must satisfy at least k of the following p constraints:

$$f_j(x_1, x_2, \dots, x_n) \le b_j \quad (j = 1, 2, \dots, p).$$

Decision variable y_i represents whether the i^{th} constraint is considered.

Compound Alternatives

Suppose we wish to express a formulation where the feasible region consists of 3 disjoint regions as follows:

Question 1: Logical Constraints

Representing Non-Linearities

Some non-linear functions can be represented by integer-programming formulations. Let us analyze two of the most useful representations of this type.

- Fixed Costs
- Piece-wise Linear Functions

Fixed Costs

A fixed cost in a cost formulation represents an initial setup cost that is contingent on some decision.

For example, the cost of producing x units of a specific product might consist of a fixed cost of setting up the equipment and a variable cost per unit produced on the equipment.

Fixed Costs

Assume that the equipment has a capacity of B units. Define y to be a binary variable that indicates when the fixed cost is incurred, so that y=1 when x>0 and y=0 when x=0.

Ky + cx,

with the constraints:

$$x \le By,$$

$$x \ge 0,$$

$$y = 0 \text{ or } 1.$$

Piece-wise Linear Functions

Integer programs can also be used to represent piece-wise linear functions. Consider the following cost function:

Piece-wise Linear Functions

To model the cost curve, we express any value of x as the sum of three variables $\delta_1, \delta_2, \delta_3$, so that the cost for each of these variables is linear. Hence,

$$X = \delta_1 + \delta_2 + \delta_3,$$

where

$$0 \le \delta_1 \le 4,$$

 $0 \le \delta_2 \le 6,$
 $0 \le \delta_3 \le 5;$ (10)

and the total variable cost is given by:

$$Cost = 5\delta_1 + \delta_2 + 3\delta_3.$$

- δ_1 : amount by which x exceeds 0 when it is less than or equal to 4
- ullet δ_2 : amount by which x exceeds 4 when it is less than or equal to 10
- δ_3 : amount by which x exceeds 10 when it is less than or equal to 15

Piece-wise Linear Functions

Enforcing bounds on δ variables:

$$w_1 = \begin{cases} 1 & \text{if } \delta_1 \text{ is at its upper bound,} \\ 0 & \text{otherwise,} \end{cases}$$
 $w_2 = \begin{cases} 1 & \text{if } \delta_2 \text{ is at its upper bound,} \\ 0 & \text{otherwise,} \end{cases}$

Rewriting constraints using binary variables:

$$4w_1 \le \delta_1 \le 4,$$

 $6w_2 \le \delta_2 \le 6w_1,$
 $0 \le \delta_3 \le 5w_2,$
 w_1 and w_2 binary,

In general, for segments of length L_j :

$$L_j w_j \leq \delta_j \leq L_j w_{j-1}$$
,

Question 2: Piece-wise Linear Function with Fixed Cost

