Mia Feng March 22, 2019

Linear Algorithms: An Introduction

Catalogue

- Definition
- Classification
 - Perceptron
 - Logistic Regression
 - SVM
- Regression
 - OLS
 - Bayes Regression
- Comparision

What are LAs?

Linear Algorithms

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b. \tag{1}$$

To be clear,

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b, \tag{2}$$

where $\mathbf{w} = (w_1; w_2; \dots; w_d), \mathbf{x} = (x_1; x_2; \dots; x_d).$

Tasks

- classification
- regression

General Processes

- Set hypothesis e.g. $y = x_1 + 2x_2$
- Define cost function e.g. RMSE, MSE Accurate, Recall

k-fold⇒reasonable?

- Find the optimal solution e.g. gradient descent (GD)⇒Large dataset? stochastic gradient descent (SGD)⇒optimal? batch gradient descent⇒reasonable?
- Evaluate and model selection: cross validation + regularization hold-out⇒accidental error? leave-one-out⇒large dataset?

Symbols and Notation

- J: cost function/control function
- f(x): the hypothesis, a function of x with parameters w, where w is a scalar or a vector.
- b: intercept (scalar)
- x: feature, which is a vector or a scalar
- X: collection of features.
- y: label, which is a vector or a scalar
- ε : Gaussian noise, aka follows a Guassian distribution with zero mean and variance σ^2
- η : learning rate

Perceptron-1

Idea: Minimize the number of misclassified samples.

$$J(\mathbf{w}, b) = -\sum_{\mathbf{x}_i \in \mathbf{X}} y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b). \tag{3}$$

Solve: SGD

- 1. Initialize w, b.
- 2. Repeat until no misclassified samples{
 - a. Choose (x_i, y_i) randomly,
 - b. If $y_i(\mathbf{w}^T\mathbf{x}_i + b) \leq 0$:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i, b \leftarrow b + \eta y_i.$$
 (4)

}

Perceptron-2

The number of misclassified samples in each iteration.

Logistic Regression

Idea: Log MLE

$$J(\mathbf{w}) = -\sum_{i=1}^{m} y_i \ln f(\mathbf{x}_i) + (1 - y_i) \ln (1 - f(\mathbf{x}_i)).$$
 (5)

Solve: GD

- 1. Initialize w, b.
- 2. Repeat until convergence{

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{1}{m} \sum_{i=1}^{m} (f(\mathbf{x}_i) - y_i) \mathbf{x}_i,$$

$$b \leftarrow b - \eta \frac{1}{m} \sum_{i=1}^{m} (f(\mathbf{x}_i) - y_i).$$
(6)

Idea: Maximize the geometry distance between hyperplanes

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^{2},
s.t. \quad y_{i}(\mathbf{w}\mathbf{x}_{i} + b) - 1 \ge 0, \quad i = 1, 2, \dots, m;$$
(7)

to be simpler,

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j - \sum_{i=1}^{m} \alpha_i,
s.t. \quad \sum_{i=1}^{m} \alpha_i y_i = 0,
\alpha_i \ge 0, \quad i = 1, 2, \dots, m.$$
(8)

如下图所示,中间的实线便是寻找到的最优超平面(Optimal Hyper Plane),其到两条虚线的距离相等,这个距离便是几何间隔 $\tilde{\gamma}$,两条虚线之间的距离等于 $2\tilde{\gamma}$,而虚线上的点则是支持向量。由于这些支持向量刚好在边界上, 所以它们满足 $y(w^Tx+b)=1$ (还记得我们把 functional margin 定为 1 了吗?上节中:处于方便推导和优化的目的,我们可以令 $\hat{\gamma}_{=1}$),而对于所有不是支持向量的点,则显然有 $y(w^Tx+b)>1$ 。

Hyperplane and support vector

SVM-3: See equations (p125-p131) in Book by Hang Li.

算法 7.5 (SMO 算法)

输入: 训练数据集 $T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$,其中, $x_i\in\mathcal{X}=\mathbf{R}'',\ y_i\in\mathcal{Y}=\{-1,+1\},\ i=1,2,\cdots,N$,精度 ε :

输出:近似解 $\hat{\alpha}$.

- (1) 取初值 $\alpha^{(0)} = 0$, 令k = 0;
- (2) 选取优化变量 $a_i^{(k)}, a_i^{(k)}$,解析求解两个变量的最优化问题 (7.101) \sim (7.103),求得最优解 $a_i^{(k+1)}, a_i^{(k+1)}$,更新 α 为 $\alpha^{(k+1)}$;
 - (3) 若在精度 ε 范围内满足停机条件

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C$$
, $i = 1, 2, \dots, N$

$$y_i \cdot g(x_i) = \begin{cases} \geqslant 1, & \{x_i \mid \alpha_i = 0\} \\ = 1, & \{x_i \mid 0 < \alpha_i < C\} \\ \leqslant 1, & \{x_i \mid \alpha_i = C\} \end{cases}$$

其中,

$$g(x_i) = \sum_{j=1}^{N} \alpha_j y_j K(x_j, x_i) + b$$

则转 (4); 否则令 k = k + 1, 转 (2);

(4) 取
$$\hat{\alpha} = \alpha^{(k+1)}$$
.

SMO algorithm

Ordinary Least Square

Idea: Minimize MSE

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (f(\mathbf{x}_i) - y_i)^2.$$
 (9)

Solve: GD

Repeat until convergence{

$$w_j = w_j + \eta \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i)).$$
 (10)

}

Bayes Regression

Idea: MAP

$$\log p(y|X) = -\frac{1}{2}y^{\mathrm{T}}K^{-1}y - \frac{1}{2}\log|K| - \frac{m}{2}\log 2\pi, \quad (11)$$

where K is the covariance matrix of training data X. For more details, read "GPR for ML" by Carl Edward Rasmussen (p8-p22).

Solve

Repeat until convergence or out of the iteration limitations.

Classification and Regression

cost function

- Regression: RMSE, MSE etc.
- Classification: the number of misclassified samples, recall, likelihood etc.

General

Derivative

Determined and Stochastic

- Determined:
 - Geometry: SVM
 - The number of misclassified samples: Pereptron
 - Euclidean distance: OLS
- Stochastic:
 - Frequency: Logsitc, OLS(↔ MLE if data follow unbiased Gaussian distribution)?
 - Bayesian: Bayesian regression.

Relation

Bayesian regression \leftrightarrow OLS + random noise prior \leftrightarrow regularization