# Sklopovi s preklapajućim kapacitetima

Napredni postupci u projektiranju analognih integriranih sklopova



Kako bi dobili veliko pojačanje operacijskog pojačala, povećavali smo  $R_{iz}$  ( $A_V = g_m R_{iz}$ ). Tipični iznosi  $R_{iz}$  u otvorenoj petlji za OP u CMOS tehnologiji postižu vrijednosti do 100 kΩ.  $R_2$  će rušiti pojačanje otvorene petlje pojačala.

Za nadomjesni sklop sa slike dobivamo:

$$-A_{v} \left( \frac{U_{iz} - U_{ul}}{R_{1} + R_{2}} R_{1} + U_{ul} \right) - R_{iz} \frac{U_{iz} - U_{ul}}{R_{1} + R_{2}} = U_{iz}$$
 
$$\frac{U_{iz}}{U_{ul}} = -\frac{R_{2}}{R_{1}} \frac{A_{v} - \frac{R_{iz}}{R_{2}}}{1 + \frac{R_{iz}}{R_{1}}} + A_{v} + \frac{R_{2}}{R_{1}}$$
 Pogreške u brojniku i nazivniku smanjuju pojčanje

R1 opterećuje prethodni stupanj i doprinosi svojim termičkim šumom



Kako bi eliminirali utjecaj  $R_1$  i  $R_2$  na smanjenje pojačanja, otpornike možemo zamijeniti kapacitetima

Kako postaviti napajanje za čvor X?

U ovoj konfiguraciji čvor X je u zraku.



Možemo dodati paralelno  $C_2$  otpor  $R_F$  velikog iznosa. Uspostavlja se DC povratna veza preko  $R_F$ , ali isto tako gubi se naboj sa  $C_2$  koji se izbija preko  $R_F$ .

Odziv na skokovitu pobudu daje inicijalno pojačanje ovisno o  $C_1$  i  $C_2$ , nakon čega se napon eksponencijalno mijenja zbog prežnjenja kapaciteta  $C_2$  preko  $R_F$ 

$$\frac{U_{iz}}{U_{ul}}(s) \approx -\frac{\frac{R_F}{C_2 s}}{\frac{1}{C_1 s}} = -\frac{R_F C_1 s}{1 + R_F C_2 s}$$

Visokopropusna karakteristika – nije dobro rješenje za širokopojasna pojačala

$$\frac{U_{iz}}{U_{ul}} \approx -\frac{C_1}{C_2} \quad uz \quad \omega >> (R_F C_2)^{-1}$$



Za korištenje kapacitivne povratne veze, potrebno je naći druge metode koje će omogućiti ispravno napajanje (postavljanje napona na invertirajućem ulazu OP) → sklopovi s preklapajućim kapacitetima

Koristimo 3 sklopke koje kontroliraju rad sklopa

Sklop radi diskretno u vremenu – u dvije faze rada

 $S_1$  i  $S_3$  preklapaju lijevu ploču od  $C_1$  na  $U_{\mu\nu}$  i na masu ovisno o fazi rada

S<sub>2</sub> spaja OP u spoj sljedila i definira DC napon na invertirajućem ulazu OP ("-" stezaljka)



Pretpostavljamo da je pojačanje OP jako veliko – ulazne stezaljke OP-a su na istom potencijalu

#### <u>Faza uzorkovanja</u>

- S<sub>1</sub> i S<sub>2</sub> su zatvorene, a S<sub>3</sub> je otvorena (lijeva slika)
- Napon na  $C_1$  prati ulazni napon naboj lijeve ploče osigurava  $U_{ul}$ , a naboj desne ploče osigurava izlaz OP-a. Bez jedinične povratne veze naboj desne ploče nema otkuda doći jer je ulaz OP visokoimpedantan (tu se nalazi upravljačka elektroda MOSFET)

#### Faza pojačanja

- $S_1$  i  $S_2$  je otvorene, a  $S_3$  je zatvorena (slika u sredini)
- Ulaz se spaja na masu (točka A), a OP tjera ulazne stezaljke na isti potencijal te je napon u točki B nula  $\rightarrow$  napon na  $C_1$  pada na nulu naboj pohranjen u prethodnoj fazi odlazi sa  $C_1$
- Lijeva ploča  $C_1$  se prazni na masu, a naboj desne ploče se premjesti na lijevu ploču od  $C_2$  ( $R_{ulOP} = \infty$ )



Kod prebacivanja iz faze uzorkovanja ( $t_0$ ) napon na  $C_1$  iznosi  $U_{ul0}$ . Naboj koji je pohranjen na kondenzatoru je:

$$Q_{ul0} = C_1 U_{ul0}$$

Pozitivni naboj jedne ploče  $C_1$  inducira istu količinu naboja na suprotnoj ploči Nakon prelaska u fazu pojačanja naboj desne ploče  $C_1$  premješta se na lijevu ploču  $C_2$  Izlaz OP osigurava naboj desne ploče koji mora biti iste količine i suprotnog polariteta od naboja lijeve ploče te je naboj pohranjen na  $C_2$  jednak  $Q_{ul0}$  Izlazni napon onda raste od nula prema:

$$U_{iz} = \frac{Q_{ul0}}{C_2} = \frac{C_1}{C_2} U_{ul0}$$
 Neinvertirajuće pojačalo

Pojačalo koje radi diskretno u vremenu

#### Razlika u odnosu na pojačala kontinuiranog signala:

- Dio vremena dodjeljen je uzimanju uzorka pri čemu je izlaz na nuli
- Nakon uzimanja uzorka u fazi pojačanja ignorira se napon na ulazu u pojačalo i pojačava se uzorak
- Konfiguracija sklopa se znatno mijenja kod izmjena faza rada



#### **Prednosti:**

Uzimanje uzoraka

Nakon smirivanja odziva  $(U_{iz})$ , struja nabijanja  $C_2$  teži u nulu te  $C_2$  ne opterećuje pojačalo i ne smanjuje pojačanje OP-a

Najpogodnija tehnologija za izvedbu je CMOS – dobre sklopke, veliki ulazni otpor OP (upravljačka elektroda izolirana je od tijela tranzistora) → uzorkovani naboj se ne gubi i postiže se velika preciznost



Pojačalo koje radi diskretno u vremenu u dvije faze

Potreban je upravljački napon – napon takta

Sklopovi mješovitog signala

## Sklop za uzorkovanje



Nije potreban otpornik ili kondezator za izvedbu

Izvedba za diskretni rad zahtijeva kapacitet za uzimanje uzorka i sklopke koje kontroliraju rad → dobiva se sklop za uzorkovanje signala (pojačanje je jedinično)

Problem kod gornje izvedbe je injekcija naboja kod isključivanja  $S_1$  koji unosi pogrešku u uzorku spremljenom na  $C_H$ 

#### Sklop za uzorkovanje



Izvedba s tri sklopke

U fazi uzorkovanja S<sub>1</sub> i S<sub>2</sub> su zatvorene, a S<sub>3</sub> je otvorena (slika u sredini)

Napon na  $C_H$  prati  $U_{ul}$ 

U fazi zadržavanja  $S_1$  i  $S_2$  su otvorene, a  $S_3$  spaja  $C_H$  u povratnu vezu oko OP (slika desno)

Naboj u točki X je sačuvan i ne može se dovesti ili odvesti –  $U_{iz}$  poprima vrijednost  $U_0$ , a OP svodi ulazne stezaljke na isti potencijal

Pravilnim upravljanjem sklopkama u vremenu može se minimizirati utjecaj injekcije naboja



Kod prelaska iz faze uzorkovanja u fazu zadržavanja ,  $S_2$  se mora isključiti malo prije nego  $S_1$ 

**Injekcija naboja S<sub>2</sub>** - Sklopka injektira naboj  $\Delta q_2$  i stvara pogrešku u uzorkovanom naponu:

$$\Delta U = \frac{\Delta q_2}{C_H}$$

Kako je čvor X na virtualnoj masi (konstantni potencijal) **injektirani naboj ne ovisi o**  $U_{ul}$ 

$$\Delta q_2 = WLC_{OX} \left( U_{CK} - U_{GS0} - U_X \right)$$

 $U_{GSO}$  ovisi o  $U_X$  (body effect) ali je relativno konstantan jer ne ovisi o  $U_{ul}$ 

Pogreška je sistematska i predstavlja napon pomaka koji se lako eliminira diferencijskom izvedbom



#### Injekcija od S1

Točka X je izolirana te se naboj ne može dovesti na desnu ploču – napon na  $C_H$  se ne može promijeniti nakon što se  $S_2$  otvori

U stvarnosti postoji parazitni kapacitet (ili ulazni kapacitet OP-a) –  $C_X$ 

Kada se dovede  $\Delta q_1$  na lijevu ploču  $C_H$ , na desnoj se inducira isti naboj različitog predznaka

Kako se ukupni naboj u točki X ne može promijeniti, naboj gornje ploče  $C_X$  se mora primiti naboj iste količine i suprotnog polariteta

Kada se  $C_H$  preklopi u povratnu vezu imamo:

$$\Delta q_1 = C_X U_X = (U_{iz} - U_X)C_H$$

$$U_X = \frac{-U_{iz}}{A_{ix}}$$







Injekcija od S₁

$$(C_X + C_H) \frac{U_{iz}}{A_{V1}} = -U_{iz} C_H \implies U_{iz} = 0$$

Nema doprinosa od injektiranog naboja iz S₁

Rezultat ne ovisi o  $\Delta q_1$ , iznosima kapaciteta  $C_H$  i  $C_X$  te pojačanju OP  $A_{V1}$ 

S<sub>1</sub> ne unosi pogrešku ako se S<sub>2</sub> prije isključi !!!



#### Injekcija od S<sub>3</sub>

Kada se  $S_3$  zatvara, potrebno je osigurati naboj za formiranje kanala – otkuda naboj dolazi ? Kako se naboj u točki X ne može promijeniti, naboj na  $C_H$  ostaje sačuvan i kada se postavi u povratnu vezu naboj na njemu je:

$$Q_{CH} = C_H U_0$$

Prema tome naboj za formiranje kanala S<sub>3</sub> u potpunosti se osigurava sa izlaza OP



#### Izvedba s pravilnom sinkronizacijom sklopki

Prvo se otvara  $S_2$  i injektira naboj u čvor X – pogreška je sistamatska jer je  $U_X$ =konst. i ne ovisi o  $U_{ii}$  – jednostavno se eliminira diferencijskom izvedbom

Nakon toga otvara se  $S_1$  i na kraju zatvara se  $S_3$  čija injekcija naboja ne može promijeniti naboj u čvoru X te ne utječe na napon na  $C_H$ 

## Sklop za uzorkovanje – diferencijska izvedba

Naboj injektiran iz  $S_2$  i  $S_2$ ' predstavlja zajednički signal jer ne ovisi o  $U_{ul}$ 

U stvarnosti S<sub>2</sub> i S<sub>2</sub>' nisu savršeno uparene te postoji mala razlika u injektiranom naboju.

Može se dodati sklopka  $S_{eq}$  koja se otvara malo poslije  $S_2$  i  $S_2$ ' te malo prije nego  $S_1$  i  $S_1$ ' i koja izjednačava naboj u čvorovima X i Y





Na ulazu u OP postoji parazitni ulazni kapacitet –  $C_{ul}$ 

OP ima konačno pojačanje

U fazi uzorkovanja OP je u spoju sljedila,  $U_{iz}=U_X=0$ , a  $C_H$  se nabija na  $U_0$ 

Kod prelaska u fazu pojačanja (zadržavanja), zbog konačnog pojačanja OP imamo napon  $U_X$ 

Naboj na  $C_{ul}$  je onda  $C_{ul}U_X$ 

Taj naboj dolazi sa  $C_H$  preraspodjelom pa naboj na  $C_H$  raste jer zbroj naboja u čvoru X je nepromijenjen

 $Q_{CH} = U_0 C_H + U_X C_{ul}$ 

Prema tome napon na  $C_H$  je:

$$U_{CH} = \frac{Q_{CH}}{C_{H}} = \frac{U_{0}C_{H} + U_{X}C_{ul}}{C_{H}}$$



Izlazni napon je onda:

$$U_{iz} = U_{CH} + U_{X} = \frac{U_{0}C_{H} + U_{X}C_{ul}}{C_{H}} + U_{X} = U_{0} + U_{X} \left(1 + \frac{C_{ul}}{C_{H}}\right)$$

 $U_X = \frac{-U_{iz}}{A_{v1}}$ 

Dobivamo

$$U_{iz} \left[ 1 + \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right) \right] = U_0$$

$$U_{iz} = \frac{U_0}{1 + \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right)} \approx U_0 \left[ 1 - \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right) \right]$$

$$U_{iz} = \frac{U_0}{1 + \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right)} \approx U_0 \left[ 1 - \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right) \right]$$

$$\operatorname{Uz} C_{ul} << C_{H} \rightarrow U_{iz} = \frac{U_{0}}{1 + \frac{1}{A_{v1}}}$$

Općenito sklop ima pogrešku pojačanja:

$$\varepsilon \approx -\frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right)$$

Pogreška ovisi o ulaznom kapacitetu !!!

Za veliko pojačanje koristimo male prenapone upravljačke elektrode ( $U_{GS}$ - $U_{GSO}$ ) i velike širine kanala za ulazne tranzistore kako bi povećali strminu  $\rightarrow$  dobivamo velik  $C_{ul}$ 

Kod projektiranja pojačala treba naći optimalno rješenje da se smanji pogreška

Možemo završiti na tome da žrtvujemo pojačanje kako bi dobili manji  $C_{ul}$  i time manju pogrešku

#### Primjer:

U sklopu za uzorkovanje,  $C_{ul}$ =0.5 pF i  $C_H$ =2 pF. Izračunati minimalno pojačanje operacijskog pojačala koje će osigurati pogršku manju od 0.1%

$$\left| \varepsilon \right| \approx \frac{1}{A_{v1}} \left( 1 + \frac{C_{ul}}{C_H} \right)$$

$$A_{v1} = \frac{1}{|\varepsilon|} \left( 1 + \frac{C_{ul}}{C_H} \right) = \frac{1}{0.001} \left( 1 + \frac{0.5}{2} \right) = 1250$$



#### U fazi uzorkovanja

OP je u spoju sljedila, primjenjena je naponska povratna veza koja smanjuje izlazni otpor Iz nadomjesnog modela imamo:

$$U_X = I_X R_{on2} + (I_X - G_m U_X) R_O \quad \Rightarrow \quad R_X = \frac{U_X}{I_X} = \frac{R_{on2} + R_O}{1 + G_m R_O}$$

Vrijedi 
$$R_{on2} << R_O \rightarrow R_x = 1/G_m$$

Zbog naponske negativne povratne veze

Što daje vremensku konstantu u fazi uzorkovanja: 
$$au_{samp} = C_H \left( R_{on1} + \frac{1}{G_m} \right)$$

Mora biti dovoljno mala da se u određeno vrijeme postigne željena preciznost !!!



#### <u>U fazi zadržavanja (pojačanja)</u>

Pretpostavljamo ulazni i opteretni kapacitet

Nakon što se preklopi  $C_H$  u povratnu vezu napon u čvoru X pada za napon  $U_0$  koji se nalazi na  $C_H$  zato jer  $U_{iz}$ =0 u trenutku preklapanja (vrijedi za  $C_{ul}$ << $C_H$ )

Naponu na  $C_L$  potrebno je neko vrijeme da poraste zato jer treba dovesti naboj

 $U_X$  u tom trenutku može doživiti skok jer iako naboj u čvoru X ostaje konstantan on se može preraspodjeliti između lijeve ploče  $C_H$  i gornje ploče  $C_{ul}$ 

Velik skok  $U_x$  može potjerati izlaz pojačala u režim ograničen brzinom porasta (slew-rate)

Pojačalo na izlazu osigurava naboj za  $C_L \rightarrow U_{iz}$  raste jer je  $U_{+}>U_{-}$ 

OP tjera  $U_{iz}$  na porast sve dok se ne izjednače potencijali ulaznih stezaljki OP-a



#### Uz pretpostavku da OP ostaje u linearnom režimu

Naboj na  $C_H$  predstavljamo serijskim naponom  $U_S$  koje ima skokovitu promjenu sa 0 na  $V_O$  i  $C_H$  koji je prazan (bez naboja)

Želimo dobiti odziv na skokovitu pobudu  $U_{iz}(s)/U_s(s)$ 

$$U_{iz}\left(\frac{1}{R_O} + C_L s\right) + G_m U_X = \left(U_S + U_X - U_{iz}\right) C_H s$$

$$U_{X} \frac{C_{ul}s}{C_{H}s} + U_{X} + U_{S} = U_{iz} \implies U_{X} = \frac{U_{iz} - U_{S}}{1 + \frac{C_{ul}s}{C_{H}s}}$$

$$\frac{U_{iz}(s)}{U_{S}(s)} = R_{O} \frac{(G_{m} + C_{ul}s)C_{H}}{R_{O}(C_{L}C_{ul} + C_{ul}C_{H} + C_{H}C_{L})s + G_{m}R_{O}C_{H} + C_{H} + C_{ul}}$$

$$\text{Uz } G_{m}R_{O}C_{H} >> C_{H} + C_{ul} \implies \frac{U_{iz}(s)}{U_{S}(s)} = \frac{(G_{m} + C_{ul}s)C_{H}}{(C_{L}C_{ul} + C_{ul}C_{H} + C_{H}C_{L})s + G_{m}C_{H}}$$

Vremenska konstanta koja određuje pol je:

$$\tau_{amp} = \frac{C_L C_{ul} + C_{ul} C_H + C_H C_L}{G_m C_H}$$

Ne ovisi o izlaznom otporu pojačala

Veći  $R_O$  daje veće pojačanje otvorene petlje i konstantnu brzinu uz zatvorenu petlju (konstantan izlazni otpor uz zatvorenu petlju)

Uz 
$$C_{ul} << C_L$$
,  $C_H$ :  $\tau_{amp} = \frac{C_L}{G_m}$ 

Očekivano jer izlazni otpor sljedila je  $1/G_m$  (uz  $C_{ul} <<$ )

# Sklop za uzorkovanje – odziv ograničen brzinom porasta



Kod prelaska u fazu zadržavanja (pojačanja) skok napona u čvoru  $U_X$  isključi M2.  $C_L$  se nabija konstantnom strujom  $I_{SS} \rightarrow$  linearni porast napona  $U_{iz}$  brzinom  $I_{SS}/C_L$  Kako  $U_X$  raste M2 se uključuje i pojačalo ulazi u linearni režim, napon raste s vremenskom konstantom:

$$\tau_{amp} = \frac{C_L C_{ul} + C_{ul} C_H + C_H C_L}{G_m C_H}$$

## Uzorkovanje donjom pločom



Ulazni kapacitet OP utječe i na brzinu i na preciznost

Donja ploča kondenzatora (npr. poly-poly) koja ima veći parazitni kapacitet spaja se tako da je nabija ulazni napon

Gornja ploča s manjim parazitnim kapacitetom se spaja na čvor X Na taj način izjegava se injektiranje šuma podloge u čvor X

Tzv. "uzorkovanje donjom pločom" (bottom plate sampling)

## Ne-invertirajuće pojačalo



Radi u dvije faze

#### <u>U fazi uzorkovanja:</u>

S1 i S2 su zatvorene, OP je u spoju sljedila

Čvor X predstavlja virtualnu masu, a napon na C1 prati ulazni napon

## Ne-invertirajuće pojačalo



#### U fazi pojačanja:

Prvo se otvara S2 i injektira naboj u čvor X

Kako su  $U_{iz}$  i  $U_X$  na masi, sklopka injektira uvijek isti naboj koji ne ovisi o  $U_{ul}$  Nakon otvaranja S2 čvor X je plivajući i ukupan naboj u tom čvoru ostaje sačuvan Nakon toga otvara se S1 i zatvara S3

Napon na  $C_1$  se mijenja sa  $U_{ul0}$  na 0, odnosno naboj desne ploče  $C_1$  se premješta na lijevu ploču  $C_2$  te izlazni napon teži prema :

$$U_{iz} = \frac{C_1}{C_2} U_{ul0}$$

# Ne-invertirajuće pojačalo – injekcija naboja S2



Prvo se otvara S2 i injektira naboj u čvor X Kako su  $U_{iz}$  i  $U_X$  na masi, sklopka injektira uvijek isti naboj koji ne ovisi o  $U_{ul}$ Injekcija naboja može se eliminirati potpuno diferencijskom izvedbom

## Ne-invertirajuće pojačalo – injekcija naboja S1 i S3



Kako se nakon isključivanja S2 naboj u čvoru X ne može promijeniti, injecija naboja iz S1 i S3 ne unosi pogrešku

Prvo se otvara S1 i injektira naboj  $\Delta q_1$  te unosi pogrešku  $\Delta U_p = \Delta q_1/C_1$  te  $\Delta u_{iz} = -\Delta q_1/C_2$  Kada se zatvori S3  $U_p$  pada na nulu te  $U_p$  ima ukupnu promjenu od  $U_{ul0}$  do 0, a izlaz ukupno mora imati promjenu od 0 do  $U_{ul0} * C_1/C_2$ 

## Ne-invertirajuće pojačalo – injekcija naboja S1 i S3



Ključna stvar je da  $U_P$  ide s jednog fiksnog napona ( $U_{ulo}$ ) na drugi (0)

Injekcija naboja iz S1 promijeni napon na  $C_1$  u međukoraku

Međutim  $U_{iz}$  se uzima nakon što se P spoji na masu te konačna vrijednost ne ovisi o međukoraku

Kako naboj u čvoru X ostaje sačuvan nakon otvaranja S2, konačani  $U_{iz}$  ne ovisi o injekciji iz S1 i S3 nego samo o početnoj i konačnoj vrijednosti  $U_p$ 

Napon u međukoraku može promijeniti napon na  $C_1$  zbog redistribucije naboja između desne ploče  $C_1$  i lijeve ploče  $C_2$ 

Naboj u čvoru X ostaje sačuvan

U fazi pojačanja OP svodi ulazne stezaljke na isti potencijal te dolazi do redistribucije naboja koji se premješta s desne ploče  $C_1$  na lijevu ploču  $C_2$ . Izlaz OP osigurava naboj desne ploče  $C_2$ 

## Ne-invertirajuće pojačalo – primjer





#### **Primjer:**

U diferencijskom sklopu sa slike, sklopke S2 i S2' imaju neusklađene napone pragova čija razlika iznosi 10 mV. Pretpostavite da se  $S_{eq}$  ne koristi. Ako je  $C_1$ =1 pF,  $C_2$ =0.5 pF,  $U_{GSO}$ =0.6 V i za sve sklopke vrijedi  $WLC_{ox}$ =50 fF izračunati istosmjerni napon pomaka na izlazu OP uz pretpostavku da se sav naboj iz kanala S2 i S2' injektira u čvorove X i Y ?

Naboj koji se injektira u čvorove X i Y završi na lijevim pločama kapaciteta  $C_2$  jer su X i Y virtualne mase. Dobiva se:

$$\Delta U_{iz} \approx \frac{\Delta q}{C_2}$$

Gdje je: 
$$\Delta q = WLC_{OX}\Delta U_{GS0}$$

Slijedi: 
$$\Delta U_{iz} \approx \frac{\Delta q}{C_2} = \frac{WLC_{OX}\Delta U_{GS0}}{C_2} = 1 \, mV$$

## Ne-invertirajuće pojačalo – preciznost



Pretpostavljamo konačno pojačanje OP-a  $A_{v1}$  te ulazni kapacitet  $C_{ul}$ . Za čvor X pišemo:

$$(U_{iz} - U_X) C_2 s = U_X C_{ul} s + (U_X - U_{ul}) C_1 s$$
,  $U_X = \frac{-U_{iz}}{A_{v1}}$ 

Slijedi:

$$\left| \frac{U_{iz}}{U_{ul}} \right| = \frac{C_1}{C_2 + \frac{1}{A_{v1}} \left( C_1 + C_2 + C_{ul} \right)} = \frac{C_1}{C_2} \cdot \frac{1}{1 + \frac{1}{A_{v1}} \left( 1 + \frac{C_1}{C_2} + \frac{C_{ul}}{C_2} \right)} \approx \frac{C_1}{C_2} \cdot \left[ 1 - \frac{1}{A_{v1}} \left( 1 + \frac{C_1}{C_2} + \frac{C_{ul}}{C_2} \right) \right]$$

Pogreška pojačanja ovisi o nominalnom pojačanju  $C_1/C_2$ 

U usporedbi sa sklopom za uzorkovanje pogreška je veća jer je faktor povratne veze  $C_2/(C_1+C_2+C_{ul})$  u odnosu na  $C_H/(C_H+C_{ul})$  kod sklopa za uzorkovanje

## Ne-invertirajuće pojačalo – brzina



Veći faktor povratne veze znači da je brzina odziva manja nego kod sklopa za uzorkovanje

Uz pretpostavku modela za izmjenični signal možemo izračunati prijenosnu funkciju. Ulaz se nadomješta po Thevenin-u gdje:

$$\alpha = \frac{C_1}{C_1 + C_{ul}}, \quad C_{eq} = C_1 + C_{ul}$$

Za čvor X možemo napisati

$$U_{X} = U_{iz} + (\alpha U_{ul} - U_{iz}) \frac{C_{eq}C_{2}}{C_{eq} + C_{2}} \frac{1}{C_{2}}$$

## Ne-invertirajuće pojačalo – brzina

Za izlazni čvor možemo napisati:

$$G_{m}U_{X} + U_{iz}(\frac{1}{R_{0}} + sC_{L}) = (\alpha U_{ul} - U_{iz})\frac{C_{eq}C_{2}}{C_{eq} + C_{2}}s$$

$$G_{m}\left(U_{iz} + (\alpha U_{ul} - U_{iz})\frac{C_{eq}}{C_{eq} + C_{2}}\right) + U_{iz}(\frac{1}{R_{0}} + C_{L}s) = (\alpha U_{ul} - U_{iz})\frac{C_{eq}C_{2}}{C_{eq} + C_{2}}s$$

Te se za prijenosnu funkciju dobiva:

$$\frac{U_{iz}}{U_{ul}}(s) = \frac{-C_{eq} \frac{C_1}{C_{eq} + C_2} (G_m - C_2 s) R_0}{C_2 G_m R_0 + C_{eq} + C_2 + R_0 \left[ C_L C_{eq} + C_L C_2 + C_{eq} C_2 \right] s}$$

$$\text{Uz } G_{m}R_{O} >> \frac{-C_{eq} \frac{C_{1}}{C_{eq} + C_{2}} (G_{m} - C_{2}s) R_{0}}{U_{ul}(s) \approx \frac{U_{iz}}{C_{2}G_{m}R_{0} + R_{0} \left[C_{L}C_{eq} + C_{L}C_{2} + C_{eq}C_{2}\right]s} }$$

Odnosno vremenska konstanta

$$\tau_{amp} = \frac{C_{L}C_{eq} + C_{L}C_{2} + C_{eq}C_{2}}{C_{2}G_{m}}$$

Dosta veće nego kod sklopa za uzorkovanje jer  $C_{eq} = C_{ul} + C_1$ 

# Ne-invertirajuće pojačalo – brzina

Uz  $C_L = 0$ 

$$\tau_{amp} = \frac{C_{eq}}{G_m} = \frac{C_1 + C_{ul}}{G_m}$$

Ne ovisi o  $C_2$  preko kojeg se ostvaruje povratna veza

Veći  $C_2$  predstavlja veće kapacitivno opterećenje ali i osigurava veći faktor povratne veze

# Sklop s preciznim množenjem sa 2



Neinvertirajuće pojačalo može postići relativno veliko pojačanje uz zatvorenu povratnu vezu, ali pri tome pati od smanjenja brzine i preciznosti zbog malog faktora povratne veze.

Ovaj sklop postiže pojačanje 2, ali postiže veću preciznost i brzinu u odnosu na neinvertirajuće pojačalo.

Za pojačanje 2 koristi se  $C_1 = C_2 = C$  te sklop radi u dvije faze.

# Sklop s preciznim množenjem sa 2



U fazi uzorkovanja S1, S2, S3 su zatvorene. Napon na  $C_1$  i  $C_2$  prati ulazni napon, a OP je postavljeno u spoj sljedila i osigurava virtualnu masu u čvoru X.

Prilikom prelaska u fazu pojačanja, S3 se prva isključuje i injektira naboj u čvor X.

Nakon toga naboj u čvoru X je očuvan i imun na injekciju iz preostalih sklopki.

Ukupni naboj na  $C_1$  i  $C_2$  na završetku faze uzorkovanja je  $2U_{ulo}C$ .

U fazi pojačanja  $C_2$  je spojen u povratnu vezu, a  $C_1$  na masu.

Pojačalo postavlja ulazne stezaljke na isti potencijal, a naboj se transferira na  $C_2$ .

Ukupni napon na  $C_2$  te i izlazni napon postaje  $2U_{ulo}$ 

# Sklop s preciznim množenjem sa 2



Transfer naboja kroz pojedine faze prikazan je na slici.

Preciznost i brzina dani su izrazima:

$$\left| \frac{U_{iz}}{U_{ul}} \right| \approx 2 \cdot \left[ 1 - \frac{1}{A_{v1}} \left( 1 + \frac{C_1}{C_2} + \frac{C_{ul}}{C_2} \right) \right] \qquad \qquad \tau_{amp} = \frac{C_L C_{eq} + C_L C_2 + C_{eq} C_2}{C_2 G_m}$$

U usporedbi s neinvertirajućim pojačalom za isto pojačanje postiže se veći faktor povratne veze jer je  $C_1 = C_2$ 

Kao posljedica dobiva se veća preciznost i veća brzina jer je  $C_1/C_2=1$  dok je kod neinvertirajućeg pojačala  $C_1/C_2=2$ 

## Integrator s preklapajućim kapacitetima



Koriste se u filtrima te pre-uzorkovanim (oversampled) analogno-digitalnim pretvornicima

Izvedba kontinuiranog signala prikazana je na slici, i vrijedi:

$$U_{iz} = -\frac{1}{RC_E} \int U_{ul} \, dt$$

## Izvedba otpornika s preklapajućim kapacitetima



Uloga otpornika je da prenese određenu količinu naboja od točke A do točke B u danom vremenskom intervalu što predstavlja tok struje od A do B.

Istu funkciju može odraditi kapacitet  $C_s$ .

Ako kapacitet naizmjence spajamo između točaka A i B frekvencijom  $f_{CK}$ , prosječna struja koja teče jednaka je naboju koji se prenese unutar jednog perioda napona takta:

$$I_{AB} = \frac{C_S(U_A - U_B)}{f_{CK}^{-1}} = C_S f_{CK}(U_A - U_B)$$

Prema tome sklop možemo promatrati kao otpornik  $R = 1/C_s f_{CK}$ 

# Integrator s preklapajućim kapacitetima



Izvedba je prikazana na slici.

Kada je S1 zatvorena,  $C_1$  se nabija na  $U_{ul}$ . Kada se S1 otvori i S2 zatvori, naboj sa  $C_1$  se transferira na  $C_2$  jer OP postavlja ulazne stezaljke u virtualni kratki spoj (X je virtualna masa). Za smirivanje odziva potrebno je vrijeme

$$\tau_{amp} = \frac{C_L C_{ul} + C_{ul} C_H + C_H C_L}{G_m C_H}$$
 Izraz za sklop za uzorkovanje

U slučaju konstantnog ulaznog napona,  $U_{iz}$  je stepenast sa stepenicom  $U_{ul}^*C_1/C_2$ . Ako stepenice aproksimiramo pravcem, vidimo da se sklop ponaša kao integrator. Na kraju svakog perioda takta vrijedi:

$$U_{iz}(kT_{CK}) = U_{iz}[(k-1)T_{CK}] - U_{ul}[(k-1)T_{CK}]\frac{C_1}{C_2}$$

## Integrator s preklapajućim kapacitetima



Nedostatci:

Injekcija naboja iz S1 ovisi o  $U_{ul}$  – nelinearnost naboja na  $C_1$  i posljedično  $U_{iz}$ 

Nelinearni kapacitet u točki P zbog kapaciteta uvoda i odvoda tranzistora ( $C_j$ ) kojima su izvedene S1 i S2 – nelinearna pretvorba naboja u napon kada je  $C_1$  spojen na X

Naboj spremljen na  $C_j$  nije  $U_{ulo}C_j$  nego:

$$q_{Cj} = \int_{0}^{U_{ul0}} C_j dU$$

Kako je  $C_j$  ovisan o naponu  $q_{Cj}$  ima nelinearnu ovisnost o  $U_{ul0}$  te uzrokuje nelinearnu ovisnost  $U_{iz}$ 

#### Integrator neovisan o parazitima



- U fazi uzorkovanja S1 i S3 su zatvorene te S2 i S4 otvorene  $C_1$  prati ulazni napon, Dok OP i  $C_2$  zadržavaju prethodnu vrijednost.
- Kod prelaska u fazu integracije S3 se prva otvara i injektira konstantan naboj (neovisan o  $U_{ul}$ ) na  $C_1$ . Nakon toga otvara se S1 te se zatvaraju S2 i S4. Naboj sa  $C_1$  transferira se na  $C_2$  preko virtualne mase X.
- Lijeva ploča  $C_1$  se spaja između dvije točke sa "čvrstim" potencijalom te injekcija naboja S1 i S2 ne unosi pogrešku.
- Kako X predstavlja virtualnu masu injekcija naboja S4 je konstantna i ne ovisi o  $U_{ul}$  i može se eliminirati diferencijskom izvedbom.
- Nelinearnost *pn*-spojeva S3 i S4 ne predstavlja problem jer napon na tim sklopkama se jako malo mijenja (od 0 u fazi uzorkovanja do virtualne mase u fazi integriranja) te rezultira u zanemarivoj nelinearnosti

#### Povratna veza za zajednički signal s preklapajućim kapacitetima

#### Jednostavna izvedba:



Jednaki kapaciteti  $C_1$  i  $C_2$  u čvoru X mjere promjenu zajedničkog signala (ne mjere razinu zajedničkog signala !) za izlaze  $U_{iz1}$  i  $U_{iz2}$ 

Ako npr. Izlazi odu prema gore i razina zajedničkog signala poraste kao i napon u čvoru X. To povećava struju  $I_{D5}$  kao i struje M1 i M2 koje tjera prema triodnom području te povlači  $U_{iz1}$  i  $U_{iz2}$  prema dolje

Izlazni zajednički signal jednak je  $U_{GS5}$  plus DC napon koji se postavi na  $C_1$  i  $C_2$ Potrebno je osigurati naboj u X da se postavi napon na  $C_1$  i  $C_2$ 

#### Povratna veza za zajednički signal s preklapajućim kapacitetima



U fazi uzorkovanja (resetiranja OP) postavlja se napon  $U_X$ . Pri tome je ulazni diferencijalni napon nula, a S1 je uključena. M6 i M7 rade kao linearni mjerni sklop jer su im upravljačke elektrode na istom potencijalu. Sklop se smiruje tako da se izlazni zajednički signal postavi na  $U_{GS6,7}+U_{GS5}$ 

Prilikom izlaska iz faze uzorkovanja otvara se S1, a napon na  $C_1$  i  $C_2$  ostaje  $U_{GS6,7}$ 

U fazi pojačanja M6 i M7 trpe velike hodove na upravljačkim elektrodama te i velike nelinearnosti. To ne predstavlja problem jer je S1 otvorena

#### Povratna veza za zajednički signal s preklapajućim kapacitetima



- U fazi uzorkovanja (resetiranja) jedna ploča  $C_1$  i  $C_2$  je spojena na napon  $U_{CM}$ , a druga na upravljačku elektrodu M6. Na  $C_1$  i  $C_2$  nalazi se napon  $U_{CM}$ - $V_{GS6}$ .
- U fazi pojačanja S2 i S3 se uključuju, a preostale sklopke isključuju te se izlazni zajednički signal postavlja na  $U_{CM}$ - $V_{GS6}$ + $V_{GS5}$
- Dobrom usklađenosti struja  $I_{D3}$  i  $I_{D4}$  sa  $I_{REF}$  postiže se  $U_{GS5}=U_{GS6}$  te izlazni zajednički signal poprima vrijednost  $U_{CM}$
- Ova topologija daje veću točnost nego prethodna.
- Kod velikih hodova izlaznog napona petlja povratne veze za zajednički signal može utjecati na smirivanje odziva. Zbog toga se često M5 izvodi kao konstantni izvor kojem se paralelno dodaje izvor koji podešava napajanje i preko kojeg se ostvaruje povratna veza