Problems 3

09/28/2020

1) Let G, H be finite groups. Show that the product group $G \times H$ defined in Section 2.19 of the Lecture Notes is cyclic if and only if

(a) both G and H are cyclic, and

Math 328

(b) the integers |G| and |H| are coprime (i.e. have greatest common divisor 1).

Fall 2020

- 2) Let G be a group and $\alpha: G \longrightarrow H$ be a homomorphism of groups with H abelian. Show that α factors via G/[G,G], i.e. there exists a homomorphism $\beta: G/[G,G] \longrightarrow H$, such that $\alpha=\beta\circ q$, where $q:G \longrightarrow G/[G,G]$ is the quotient homomorphism.
- 3) Show that every automorphism of S_3 is an inner automorphism.
- 4) Show that every semidirect product is an internal semidirect product.
- 5) Let G be a group. Show that G is abelian if and only if the map $G \longrightarrow G$, $g \mapsto g^2$, is a homomorphism of groups. Show further that this map is an isomorphism if G is a finite abelian group of odd order.
- 6) Let G be a group and $H \supseteq [G, G]$ a subgroup of G. Show that H is normal and G/H is abelian.
- 7) Show that if G_1 and G_2 are isomorphic groups then $Aut(G_1)$ and $Aut(G_2)$ are also isomorphic as groups. Give an example of two groups, which have isomorphic automorphism groups, but which are not isomorphic to each other as groups.