Práctica ABP: Informe final

Pedro Gómez López Alejandro Moya Moya Jorge Valero Molina Hernán Indíbil De la Cruz Calvo Miguel Angel Sánchez Cifo Alejandro Zornoza Martínez

Planificación y Gestión de Infraestructuras TIC

Máster en Ingeniería Informática Universidad de Castilla La-Mancha

24 de Mayo de 2019

Índice

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

1.1. Dominio del problema

Motivación

En España se realizan cerca de 2.36 millones de horas extra a la semana. La totalidad de estas horas no son pagadas ni compensadas con horas de descanso.

Escenario de aplicación

Registros de checkeo en empresas privadas e instituciones públicas.

Objetivo esencial

Reconocer y gestionar rostros de personas, con el fin de llevar a cabo un proceso de control de acceso automatizado.

1.1. Dominio del problema

Propuesta de solución

Resolver el problema aplicando servicios de Amazon Web Services y máquinas virtuales.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

2.2.1 Consideración previa

La caracterización de una cara para que el servicio haga un reconocimiento adecuado queda determinado por tres imágenes, una de frente y otras dos de los perfiles derecho e izquierdo.

2.2.2 Kinesis

El módulo Kinesis de Amazon tiene por objetivo recibir flujos de información, esta información puede ser tanto de video como de datos.

2.2.2 Amazon Kinesis

 La información que arrojará Rekognition sobre el Kinesis Video Stream es un JSON, se puede visualizar en el fragmento de código.

2.2.3 Rekognition

El módulo Rekognition de Amazon tiene por objetivo la detección de personas en una imagen o conjunto de imágenes, también permite la detección de personas en un determinado video o un video captado en tiempo real.

2.2.4 Lambda

Implementación de la gran parte de la lógica del sistema, obteniendo los resultados procesados por Rekognition y lo almacena en la BBDD.

2.2.5 DynamoDB

Gestiona los datos relacionados con el historial de acceso al edificio (persona y momento). La interfaz web se conecta con este servicio para realizar consultas.

2.2.6 RDS

Con este servicio se consigue almacenar la información de los rostros de los usuarios y la última vez que fueron detectados por el sistema. Está conectado a Lambda.

Almacenamiento de los objetos multimedia que tratará el sistema.

2.2.8 EC2

Proporciona una amplia selección de tipos de instancias optimizados para adaptarse a diferentes casos de uso. En este componente se crearán las VMs que nos permitirán gestionar la información que será procesada por el sistema.

2.2.8 EC2

Número de instancias	2
Tipo de instancia	t2.micro
Sistema operativo	linux/UNIX
CPU virtual	1
Memoria (GiB)	1 GiB
Almacenamiento de Instancias (GB)	Solo EBS
Precio por hora/instancia	0,0116 USD

Cuadro: Tabla características máquinas virtuales

2.2.9 Cognito

Se encarga de la gestión de los diferentes usuarios que tendrán acceso al sistema. Su función principal es la gestión de identidades y autenticación en la nube de forma simple y segura

2.2.10 Interfaz web

Figura: Imágen páginas de inicio de sesión y control de accesos

2.2.10 Interfaz web

Alta Usuario
Enter name
Selecciona una imagen de perfil:
Examinar No se ha seleccionado ningún archivo.
Selecciona una imagen de lado:
Examinar No se ha seleccionado ningún archivo.
Selecciona una imagen de lado:
Examinar No se ha seleccionado ningún archivo.
Submit

Enter na	ame	
Enter na	ame	

Raja Usuario

Figura: Imágen páginas de alta y baja de usuario

Anécdota - Caso real - 14 de Mayo de 2019

Menos de 45 minutos

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

Conclusiones

- Se ha desplegado una arquitectura escalable y portable que resuelve el problema de gestión de accesos inteligente.
- 2 La utilización de microservicios reduce la complejidad en el desarrollo y mantenimiento de aplicaciones.
- Proporcionar un diseño más completo y una mayor retroalimentación a los usuarios por parte de la interfaz web.

- Introducción
- 2 Arquitectura
 - 2.1. Esquema.
 - 2.2. Componentes.
- Conclusiones y propuestas
 - 3.1 Conclusiones.
 - 3.2 Trabajo futuro.

Trabajo futuro - A nivel de sistema

Optimizar el rendimiento y la funcionalidad del sistema

- Mejorar la utilización de recursos por parte del sistema, reduciendo su uso en función del volúmen de personas o el horario.
- ② Incorporar sensores de IoT para facilitar la habilitación o no del sistema, interrumpiendo su uso e incorporando nuevas funcionalidades.
- Proporcionar un diseño más completo y una mayor retroalimentación a los usuarios por parte de la interfaz web.

Trabajo futuro - A nivel de proyecto

Testeo del sistema en escenarios reales y evaluación de su respuesta

- Realizar una prueba de campo en el acceso de uno de los laboratorios del I3A.
- 2 Trasladar la prueba de campo a un escenario real de gran volúmen de tráfico.
- Sextraer conclusiones de las pruebas en cuanto a coste o rendimiento.

FIN

Muchas gracias por vuestro tiempo y atención. ¿Alguna pregunta?