Claims:

- A method for treating female sexual dysfunction comprising:
 administering to a female subject in need thereof, an effective amount of an estrogen agonist / antagonist, and optionally,
 - co-administering an effective amount of a cyclic guanosine 3',5'-monophosphate elevator.
- 2. A method as in claim 1 wherein said estrogen agonist / antagonist of the following formula (I):

wherein:

15

A is selected from CH₂ and NR;

- B, D and E are independently selected from CH and N; Y is
- (a) phenyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- (b) naphthyl, optionally substituted with 1-3 substituents
 20 independently selected from R⁴;
 - (c) C₃-C₈ cycloalkyl, optionally substituted with 1-2 substituents independently selected from R⁴;
 - (d) C₃-C₈ cycloalkenyl, optionally substituted with 1-2 substituents independently selected from R⁴;
- 25 (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;

20

- (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R 4 ; or
- (g) a bicyclic ring system consisting of a five or six membered

 beterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;

 Z^1 is

- (a) $-(CH_2)_p W(CH_2)_{q}$;
- (b) $-O(CH_2)_D CR^5R^6$ -;
 - (c) $-O(CH_2)_pW(CH_2)_{q}$ -;
 - (d) -OCHR²CHR³-; or
 - (e) -SCHR²CHR³-;

G is

15 (a) $-NR^7R^8$;

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z^2 is -NH-, -O-, -S-, or -CH₂-; optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from R^4 ; or

(c) a bicyclic amine containing five to twelve carbon atoms, either bridged or fused and optionally substituted with 1-3 substituents independently selected from R^4 ; or

25 Z¹ and G in combination may be

W is

- (a) $-CH_2$ -;
- (b) -CH=CH-;
- (c) -O-;

-NR²-; (d) -S(O)_n-; (e) (f) -CR2(OH)-; (g) 5 (h) -CONR²-; (i) -NR²CO-; S (j) ; or (k) -C≡C-; R is hydrogen or C₁-C₆ alkyl; R² and R³ are independently 10 (a) hydrogen; or (b) C₁-C₄ alkyl; R⁴ is (a) hydrogen; 15 (b) halogen; C₁-C₆ alkyl; (c) (d) C₁-C₄ alkoxy; C₁-C₄ acyloxy; (e) (f) C₁-C₄ alkylthio; 20 (g) C₁-C₄ alkylsulfinyl; C₁-C₄ alkylsulfonyl; (h) (i) hydroxy (C₁-C₄)alkyl; (j) aryl (C₁-C₄)alkyl; (k) -CO₂H; 25 -CN; (l) (m) -CONHOR; -SO₂NHR; (n) (o) -NH₂; C₁-C₄ alkylamino; (p) 30 (q) C₁-C₄ dialkylamino;

-NHSO₂R;

(r)

- (s) -NO₂;
- (t) -aryl; or
- (u) -OH;

 \mbox{R}^{5} and \mbox{R}^{6} are independently $\mbox{C}_{1}\mbox{-}\mbox{C}_{8}$ alkyl or together form a $\mbox{C}_{3}\mbox{-}\mbox{C}_{10}$

5 carbocyclic ring;

R⁷ and R⁸ are independently

- (a) phenyl;
- (b) a C_3 - C_{10} carbocyclic ring, saturated or unsaturated;
- (c) a C₃-C₁₀ heterocyclic ring containing up to two heteroatoms,
- 10 selected from -O-, -N- and -S-;
 - (d) H;
 - (e) C_1 - C_6 alkyl; or
 - (f) form a 3 to 8 membered nitrogen containing ring with R⁵ or

 R^6 ;

 R^7 and R^8 in either linear or ring form may optionally be substituted with up to three substituents independently selected from C_1 - C_6 alkyl, halogen, alkoxy, hydroxy and carboxy;

a ring formed by R⁷ and R⁸ may be optionally fused to a phenyl ring;

e is 0, 1 or 2;

20 m is 1, 2 or 3;

n is 0, 1 or 2;

p is 0, 1, 2 or 3;

q is 0, 1, 2 or 3;

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

3. A method as in claim 2 wherein said estrogen agonist / antagonist is a compound of formula (IA):

5 wherein G is

$$-N$$
 or $-N$

R⁴ is H, OH, F, or Cl; and B and E are independently selected from CH and N or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof.

15

4. A method as in claim 3 wherein said estrogen agonist / antagonist is (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol or an optical or geometric isomer thereof; a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof.

20

5. A method as in claim 4 wherein said estrogen agonist / antagonist is in the form of a D-tartrate salt.

25

30

6. A method as in claim 1 wherein said estrogen agonist / antagonist is selected from the group consisting of tamoxifen, 4-hydroxy tamoxifen, raloxifene, toremifene, centchroman, idoxifene, 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-ylethoxy)-benzyl]-naphthalen-2-ol, {4-[2-(2-aza-bicyclo[2.2.1]hept-2-yl)-ethoxy]-phenyl}-[6-hydroxy-2-(4-hydroxy-phenyl)-benzo[b]thiophen-3-yl]-methanone, EM-652, EM-800, GW 5638, GW 7604, and optical or geometric isomers thereof; and pharmaceutically acceptable salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof.

7. A method as in claim 1 wherein said estrogen agonist / antagonist is a compound selected from the formulas V or VI:

$$R_{1B}$$
 R_{2B}
 R_{5B}
 R_{6B}
 R_{4B}
 R_{4B}
 R_{4B}

5

$$R_{1B}$$
 R_{2B}
 R_{5B}
 R_{6B}
 R_{6B}
 R_{1B}
 R_{2B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{5B}
 R_{6B}
 R_{6B}
 R_{7B}
 R_{7B}

10

wherein:

 R_{1B} is selected from H, OH, -O-C(O)-C₁-C₁₂ alkyl (straight chain or branched), -O-C₁-C₁₂ alkyl (straight chain or branched or cyclic), or halogens or C₁-C₄ halogenated ethers,

15

 R_{2B} , R_{3B} , R_{4B} , R_{5B} , and R_{6B} are independently selected from H, OH, -O-C(O)- C_1 - C_{12} (straight chain or branched), -O- C_1 - C_{12} (straight chain or branched or cyclic), halogens, or C_1 - C_4 halogenated ethers, cyano, C_1 - C_6 alkyl (straight chain or branched), or trifluoromethyl, with the proviso that, when R_{1B} is H, R_{2B} is not OH;

20

X_A is selected from H, C₁-C₆ alkyl, cyano, nitro, triflouromethyl, and halogen;

s is 2 or 3;

5 Y_A is the moiety:

wherein:

- a) R_{7B} and R_{8B} are independently selected from the group of H, C₁-C₆ alkyl, or phenyl optionally substituted by CN, C₁-C₆ alkyl (straight chain or branched), C₁-C₆ alkoxy (straight chain or branched), halogen, -OH, -CF₃, or -OCF₃; or
 - b) R_{7B} and R_{8B} are concatenated to form a five-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
- c) R_{7B} and R_{8B} are concatenated to form a six-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
- d) R_{7B} and R_{8B} are concatenated to form a seven-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl,

20

-CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂ R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or

- e) R_{7B} and R_{8B} are concatenated to form an eight-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR₁, -NH₂, -NH(C₁-C₄ alkyl), -N(C1-C4 alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
 - f) R_{7B} and R_{8B} are concatenated to form a saturated bicyclic heterocycle containing from 6-12 carbon atoms either bridged or fused and containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂ H, -CN, CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄) alkyl; or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.
 - 8. A method as in claim 7 wherein said estrogen agonist / antagonist is the compound, TSE-424, of formula Va below:

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt or prodrug thereof.

9. A use as in claim 1 wherein said estrogen agonist / antagonist is EM-652 of formula III below or is EM-800 of formula IV below:

- or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt or prodrug thereof.
 - 10. A method as in claim 1 further comprising co-administrering a cyclic guanosine 3',5'-monophosphate elevator.
 - 11. A method as in claim 8 wherein said cyclic guanosine 3',5'-monophosphate elevator is a PDE_V phosphodiesterase inhibitor.
- 12. A method as in claim 5 further comprising co-administrering 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt.
 - 13. A method as in claim 1 wherein said method substantially reduces the concomitant liability of adverse effects associated with estrogen administration.
 - 14. A method as in claim 1 wherein said female sexual dysfunction is a condition selected from the group consisting of hypoactive sexual desire disorder, sexual arousal disorder, dyspareunia and vaginismus.

- 15. A kit for use by a consumer to treat female sexual dysfunction comprising:
- (a) a pharmaceutical composition comprising an estrogen agonist / antagonist and a pharmaceutically acceptable carrier, vehicle or diluent; and optionally,
- (b) a pharmaceutical composition comprising a cyclic guanosine 3',5'-monophosphate elevator and pharmaceutically acceptable carrier, vehicle or diluent; and optionally,
- (c) instructions describing a method of using the pharmaceutical composition(s) to treat female sexual dysfunction,
- wherein said estrogen agonist / antagonist and said cyclic guanosine 3',5'monophosphate elevator may optionally be combined in the same pharmaceutical composition.
- 16. A kit as in claim 15 wherein said estrogen agonist / antagonist of the following formula (I):

wherein:

20

A is selected from CH₂ and NR;

B, D and E are independently selected from CH and N;

Y is

- (a) phenyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- 25 (b) naphthyl, optionally substituted with 1-3 substituents independently selected from R⁴;

- (c) C_3 - C_8 cycloalkyl, optionally substituted with 1-2 substituents independently selected from R^4 ;
- (d) C₃-C₈ cycloalkenyl, optionally substituted with 1-2 substituents independently selected from R⁴;
- 5 (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;
 - (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R 4 ; or
 - (g) a bicyclic ring system consisting of a five or six membered heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;

 Z^1 is

10

20

25

- (a) $-(CH_2)_p W(CH_2)_q$ -;
- (b) $-O(CH_2)_p CR^5R^6$ -;
- (c) $-O(CH_2)_0W(CH_2)_0$ -;
- (d) -OCHR²CHR³-; or
- (e) -SCHR²CHR³-;

G is

(a) $-NR^7R^8$;

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z^2 is -NH-, -O-, -S-, or -CH₂-;

- optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from R⁴; or
- (c) a bicyclic amine containing five to twelve carbon atoms,
 30 either bridged or fused and optionally substituted with 1-3 substituents independently selected from R⁴; or

10

20

25

$$-OCH_2$$
 N

Z¹ and G in combination may be

W is

- (a) -CH₂-;
- (b) -CH=CH-;
- (c) -O-;
- (d) $-NR^2$ -;
- (e) $-S(O)_n$ -;

- (g) -CR²(OH)-;
- (h) $-CONR^2$ -;
- (i) -NR²CO-;

(k) -C≡C-;

R is hydrogen or C_1 - C_6 alkyl;

- 15 R² and R³ are independently
 - (a) hydrogen; or
 - (b) C_1 - C_4 alkyl;

R⁴ is

- (a) hydrogen;
- (b) halogen;
- (c) C_1 - C_6 alkyl;
- (d) C_1 - C_4 alkoxy;
- (e) C₁-C₄ acyloxy;
- (f) C_1 - C_4 alkylthio;
- (g) C_1 - C_4 alkylsulfinyl;
- (h) C_1 - C_4 alkylsulfonyl;
- (i) hydroxy (C_1-C_4) alkyl;
- (j) aryl (C_1 - C_4)alkyl;

p is 0, 1, 2 or 3; q is 0, 1, 2 or 3;

(k) -CO₂H; -CN; (l) (m) -CONHOR; -SO₂NHR; (n) 5 -NH₂; (o) C₁-C₄ alkylamino; (p) C₁-C₄ dialkylamino; (q) (r) -NHSO₂R; -NO₂; (s) 10 (t) -aryl; or -OH; (u) R⁵ and R⁶ are independently C₁-C₈ alkyl or together form a C₃-C₁₀ carbocyclic ring; R⁷ and R⁸ are independently 15 (a) phenyl; (b) a C₃-C₁₀ carbocyclic ring, saturated or unsaturated; (c) a C₃-C₁₀ heterocyclic ring containing up to two heteroatoms, selected from -O-, -N- and -S-; H; (d) 20 (e) C₁-C₆ alkyl; or form a 3 to 8 membered nitrogen containing ring with R5 or (f) R^6 ; R⁷ and R⁸ in either linear or ring form may optionally be substituted with up to three substituents independently selected from C₁-C₆ alkyl, halogen, alkoxy, 25 hydroxy and carboxy; a ring formed by R⁷ and R⁸ may be optionally fused to a phenyl ring; e is 0, 1 or 2; m is 1, 2 or 3; n is 0, 1 or 2;

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

15

20

25

30

17. A kit as in claim 16 wherein said estrogen agonist / antagonist is a compound of formula (IA):

wherein G is

-N or -N

R⁴ is H, OH, F, or Cl; and B and E are independently selected from CH and N or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof.

- 18. A kit as in claim 17 wherein said estrogen agonist / antagonist is (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt, or a prodrug thereof.
- 19. A kit as in claim 18 wherein said estrogen agonist / antagonist is in the form of a D-tartrate salt.
- 20. A kit as in claim 15 wherein said estrogen agonist / antagonist is selected from the group consisting of tamoxifen, 4-hydroxy tamoxifen, raloxifene, toremifene, centchroman, idoxifene, 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-benzyl]-naphthalen-2-ol, {4-[2-(2-aza-bicyclo[2.2.1]hept-2-yl)-ethoxy]-phenyl}-[6-hydroxy-2-(4-hydroxy-phenyl)-benzo[b]thiophen-3-yl]-methanone, EM-652, EM-800, GW 5638, GW 7604 and optical or geometric isomers thereof; and pharmaceutically

acceptable salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof.

21. A kit as in claim 15 wherein said estrogen agonist / antagonist is a compound selected from the formulas V or VI:

$$R_{1B}$$
 R_{2B}
 R_{2B}
 R_{3B}
 R_{4B}
 R_{4B}
 R_{2B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}

wherein:

 R_{1B} is selected from H, OH, -O-C(O)-C₁-C₁₂ alkyl (straight chain or branched), -O-C₁-C₁₂ alkyl (straight chain or branched or cyclic), or halogens or C₁-C₄ halogenated ethers,

(VI)

15

10

 R_{2B} , R_{3B} , R_{4B} , R_{5B} , and R_{6B} are independently selected from H, OH, -O-C(O)- C_1 - C_{12} (straight chain or branched), -O- C_1 - C_{12} (straight chain or branched or cyclic), halogens, or C_1 - C_4 halogenated ethers, cyano, C_1 - C_6 alkyl (straight chain or branched), or trifluoromethyl, with the proviso that, when R_{1B} is H, R_{2B} is not OH;

20

X_A is selected from H, C₁-C₆ alkyl, cyano, nitro, triflouromethyl, and halogen;

s is 2 or 3;

 Y_A is the moiety:

wherein:

- a) R_{7B} and R_{8B} are independently selected from the group of H, C₁-C₆ alkyl, or phenyl optionally substituted by CN, C₁-C₆ alkyl (straight chain or branched), C₁-C₆ alkoxy (straight chain or branched), halogen, -OH, -CF₃, or -OCF₃; or
 - b) R_{7B} and R_{8B} are concatenated to form a five-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN-, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
- c) R_{7B} and R_{8B} are concatenated to form a six-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
- d) R_{7B} and R_{8B} are concatenated to form a seven-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl,

- -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)₂, -NHSO₂ R_{1B}, -NHCOR_{1B} -NO₂, or phenyl optionally substituted with 1-3 (C_1 - C_4)alkyl; or
- e) R_{7B} and R_{8B} are concatenated to form an eight-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C1-C4 alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
 - f) R_{7B} and R_{8B} are concatenated to form a saturated bicyclic heterocycle containing from 6-12 carbon atoms either bridged or fused and containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁ -C₄)alkyl, -CO₂ H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄) alkyl;
- or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.
 - 22. A kit as in claim 21 wherein said estrogen agonist / antagonist is the compound, TSE-424, of formula Va below:

(Va)

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

23. A kit as in claim 15 wherein said estrogen agonist / antagonist is EM-652 of formula III below or EM-800 of formula IV below:

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Novide, ester, quaternary ammonium salt or prodrug thereof.

5

- 24. A kit as in claim 15 wherein said kit further comprising a pharmaceutical composition comprising a cyclic guanosine 3',5'-monophosphate elevator and a pharmaceutically acceptable carrier, vehicle or diluent.
- 10 25. A kit as in claim 24 wherein said cyclic guanosine 3',5'-monophosphate elevator is a PDE_V phosphodiesterase inhibitor.
 - 26. A kit as in claim 25 wherein said kit further comprises a pharmaceutical composition comprising 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt and a pharmaceutically acceptable carrier, vehicle or diluent.
- A kit as in claim 15 further comprising instructions describing a method of using the pharmaceutical composition(s) to treat female sexual dysfunction wherein
 said instructions indicate that the kit substantially reduces the concomitant liability of adverse effects associated with estrogen administration.

- 28. A kit as in claim 15 wherein said female sexual dysfunction is a condition selected from the group consisting of hypoactive sexual desire disorder, sexual arousal disorder, dyspareunia and vaginismus.
- 5 29. A pharmaceutical composition comprising:
 - (a) an estrogen agonist / antagonist, and
 - (b) a cyclic guanosine 3',5'-monophosphate elevator.
- 30. A pharmaceutical composition as in claim 29 wherein said cyclic guanosine 3',5'-monophosphate elevator is 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt.
- 31. A pharmaceutical composition as in claim 29 wherein said estrogen agonist / antagonist of the following formula (I):

(I)

wherein:

20 A is selected from CH₂ and NR;

B, D and E are independently selected from CH and N;

Y is

- (a) phenyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- 25 (b) naphthyl, optionally substituted with 1-3 substituents independently selected from R⁴;

- (c) C_3 - C_8 cycloalkyl, optionally substituted with 1-2 substituents independently selected from R^4 ;
- $\mbox{(d)} \qquad \mbox{$C_3$-$C_8$ cycloalkenyl, optionally substituted with 1-2} \\ \mbox{substituents independently selected from R^4;}$
- (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;
 - (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R 4 ; or
 - (g) a bicyclic ring system consisting of a five or six membered heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R 4 ;

 Z^1 is

5

10

20

- (a) $-(CH_2)_p W(CH_2)_q$ -;
- (b) $-O(CH_2)_p CR^5R^6$ -;
- (c) $-O(CH_2)_pW(CH_2)_q$ -;
- (d) -OCHR2CHR3-; or
- (e) -SCHR²CHR³-;

G is

(a) $-NR^7R^8$;

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z^2 is -NH-, -O-, -S-, or -CH₂-;

- optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from R⁴; or
- (c) a bicyclic amine containing five to twelve carbon atoms,
 30 either bridged or fused and optionally substituted with 1-3 substituents independently selected from R⁴; or

10

15

20

25

Z¹ and G in combination may be

W is

- (a) $-CH_2-;$
- (b) -CH=CH-;
- (c) -O-;
- (d) $-NR^2$ -;
- (e) $-S(O)_n$ -;

- (g) -CR²(OH)-;
- (h) -CONR²-;
- (i) -NR²CO-;

(k) -C≡C-;

R is hydrogen or C₁-C₆ alkyl;

R² and R³ are independently

- (a) hydrogen; or
- (b) C_1 - C_4 alkyl;

R⁴ is

- (a) hydrogen;
- (b) halogen;
- (c) C₁-C₆ alkyl;
- (d) C_1 - C_4 alkoxy;
- (e) C_1 - C_4 acyloxy;
- (f) C_1 - C_4 alkylthio;
- (g) C₁-C₄ alkylsulfinyl;
 - (h) C₁-C₄ alkylsulfonyl;
 - (i) hydroxy (C_1-C_4) alkyl;
 - (j) aryl (C₁-C₄)alkyl;

-CO₂H; (k) -CN; (l) -CONHOR; (m) (n) -SO₂NHR; -NH₂; 5 (o) C₁-C₄ alkylamino; (p) C₁-C₄ dialkylamino; (q) (r) -NHSO₂R; -NO₂; (s) -aryl; or 10 (t) -OH; (u) R^{5} and R^{6} are independently $C_{1}\text{-}C_{8}$ alkyl or together form a $C_{3}\text{-}C_{10}$ carbocyclic ring; R⁷ and R⁸ are independently (a) phenyl; 15 a C₃-C₁₀ carbocyclic ring, saturated or unsaturated; (b) a C_3 - C_{10} heterocyclic ring containing up to two heteroatoms, (c) selected from -O-, -N- and -S-; H; (d) 20 (e) C₁-C₆ alkyl; or form a 3 to 8 membered nitrogen containing ring with R5 or (f) R^6 :

 R^7 and R^8 in either linear or ring form may optionally be substituted with up to three substituents independently selected from C_1 - C_6 alkyl, halogen, alkoxy,

25 hydroxy and carboxy;

```
a ring formed by R<sup>7</sup> and R<sup>8</sup> may be optionally fused to a phenyl ring;
```

e is 0, 1 or 2;

m is 1, 2 or 3;

n is 0, 1 or 2;

30 p is 0, 1, 2 or 3;

q is 0, 1, 2 or 3;

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

15

30

wherein G is

32. A pharmaceutical composition as in claim 31 wherein said estrogen agonist / antagonist is a compound of formula (IA):

OCH₂CH₂G

R⁴ is H, OH, F, or CI; and B and E are independently selected from CH and N or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof.

- 33. A pharmaceutical composition as in claim 32 wherein said estrogen agonist / antagonist is (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof.
- 25 34. A pharmaceutical composition as in 33 wherein said estrogen agonist / antagonist is in the form of a D-tartrate salt.
 - 35. A pharmaceutical composition as in claim 29 wherein said estrogen agonist / antagonist is selected from the group consisting of tamoxifen, 4-hydroxy tamoxifen, raloxifene, toremifene, centchroman, idoxifene, 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-benzyl]-naphthalen-2-ol, {4-[2-(2-aza-bicyclo[2.2.1]hept-2-yl)-

ethoxy]-phenyl}-[6-hydroxy-2-(4-hydroxy-phenyl)-benzo[b]thiophen-3-yl]-methanone, EM-652, EM-800, GW 5638, GW 7604 and optical or geometric isomers thereof; and pharmaceutically acceptable salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof.

5

36. A pharmaceutical composition as in claim 29 wherein said estrogen agonist / antagonist is a compound selected from the formulas V or VI:

$$R_{1B}$$
 R_{2B}
 R_{5B}
 R_{6B}
 R_{6B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{5B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}

10

$$R_{1B}$$
 R_{2B}
 R_{6B}
 R_{6B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{4B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}
 R_{6B}

15 wherein:

 R_{1B} is selected from H, OH, -O-C(O)-C₁-C₁₂ alkyl (straight chain or branched), -O-C₁-C₁₂ alkyl (straight chain or branched or cyclic), or halogens or C₁-C₄ halogenated ethers,

 R_{2B} , R_{3B} , R_{4B} , R_{5B} , and R_{6B} are independently selected from H, OH, -O-C(O)-C₁-C₁₂ (straight chain or branched), -O-C₁-C₁₂ (straight chain or branched or cyclic), halogens, or C₁-C₄ halogenated ethers, cyano, C₁-C₆ alkyl (straight chain or branched), or trifluoromethyl, with the proviso that, when R_{1B} is H, R_{2B} is not OH;

5

X_A is selected from H, C₁-C₆ alkyl, cyano, nitro, triflouromethyl, and halogen;

s is 2 or 3;

10

20

25

30

Y_A is the moiety:

wherein:

a) R_{7B} and R_{8B} are independently selected from the group of H, C₁-C₆ alkyl, or phenyl optionally substituted by CN, C₁-C₆ alkyl (straight chain or branched), C₁-C₆ alkoxy (straight chain or branched), halogen, -OH, -CF₃, or -OCF₃; or

b) R_{7B} and R_{8B} are concatenated to form a five-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 acyloxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4)alkyl, - CO_2 H, -CN-, - $CONHR_{1B}$, - NH_2 , - $NH(C_1$ - C_4 alkyl), - $N(C_1$ - C_4 alkyl)₂, - $NHSO_2R_{1B}$, - $NHCOR_{1B}$, - NO_2 , or phenyl optionally substituted with 1-3 (C_1 - C_4)alkyl; or

c) R_{7B} and R_{8B} are concatenated to form a six-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 acyloxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4)alkyl, - CO_2 H, -CN, - $CONHR_{1B}$, - NH_2 , - $NH(C_1$ - C_4 alkyl), - $N(C_1$ - C_4 alkyl)₂, - $NHSO_2$ R_{1B}, - $NHCOR_{1B}$, - NO_2 , or phenyl optionally substituted with 1-3 (C_1 - C_4)alkyl; or

30

5

- d) R_{7B} and R_{8B} are concatenated to form a seven-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 acyloxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4)alkyl, - CO_2H , -CN, - $CONHR_{1B}$, - NH_2 , - $NH(C_1$ - C_4 alkyl), - $N(C_1$ - C_4 alkyl)₂, - $NHSO_2$ R_{1B} , - $NHCOR_{1B}$ - NO_2 , or phenyl optionally substituted with 1-3 (C_1 - C_4)alkyl; or
- e) R_{7B} and R_{8B} are concatenated to form an eight-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR_{1B}, -NH₂, -NH(C₁-C₄ alkyl), -N(C1-C4 alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or
 - f) R_{7B} and R_{8B} are concatenated to form a saturated bicyclic heterocycle containing from 6-12 carbon atoms either bridged or fused and containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 acyloxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4)alkyl, - CO_2 H, -CN, $CONHR_{1B}$, - NH_2 , - $NH(C_1$ - C_4 alkyl), - $N(C_1$ - C_4
- or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt or prodrug thereof.

optionally substituted with 1-3 (C₁-C₄) alkyl;

- 32. A pharmaceutical composition as in claim 25 further comprising a pharmaceutical composition comprising a cyclic guanosine 3',5'-monophosphate elevator.
- 33. A pharmaceutical composition as in claim 31 wherein said cyclic guanosine 3',5'-monophosphate elevator is a PDE $_V$ phosphodiesterase inhibitor.

34. A pharmaceutical composition as in claim 29 further comprising a pharmaceutical composition comprising 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt.