visualizeR: communication and visualization of uncertainty in seasonal climate prediction

Companion examples to the paper by Frias et~al.~2018 in Environmental Modelling & Software DOI:10.1016/j.envsoft.2017.09.008

Santander Meteorology Group 07 de Sep 2017

Abstract

This notebook is a companion document to the paper indicated in the title, illustrating the main characteristics and functionalities of package visualizeR, an R package for implementing a set of advanced visualization tools for the communication of probabilistic forecasts together with different aspects of forecast quality. visualizeR is a core package of the climate4R framework.CONTENTS

Contents

Package installation	1
Example data	2
Bubble plots	2
Tercile plots	7
Tercile bar plots	9
References	10
Session information	10

Package installation

```
## The following objects are masked from 'package:transformeR':
##

clim2sgdf, map.lines, map.stippling
```

Example data

In this part we will use the built-in datasets included in the package (see data(package = "visualizeR") for an overview). Seasonal hindcast and operational predictions are taken from the CFSv2 seasonal forecasting system produced by NCEP (Saha et al. 2013). Data from the NCEP-NCAR reanalysis 1 (Kalnay et al. 1996) are used as reference for verification. All datasets contain global data for near-surface air temperature for boreal winter (DJF). The hindcast dataset spans the temporal period 1983-2010.

```
data(tas.cfs)
data(tas.cfs.operative.2016)
data(tas.ncep)
```

In this step, the resolution of all data is downgraded to a 5 degree resolution regular grid, to improve the visualiation at a global scale, and for the sake of brevity in teh calculations.

```
# Adjusting data spatial resolution to 5° lat-lon resolution
newgrid <- getGrid(tas.cfs)
attr(newgrid, "resX") <- 5
attr(newgrid, "resY") <- 5
lower.res <- function(x, newgrid) {
    interpGrid(x, new.coordinates = newgrid, method = "bilinear", bilin.method = "fields")
}
obs <- lower.res(tas.ncep, newgrid)

## Warning in interpGrid(x, new.coordinates = newgrid, method = "bilinear", :
## The new latitudes are outside the data extent
hindcast <- lower.res(tas.cfs, newgrid)
forecast <- lower.res(tas.cfs.operative.2016, newgrid)</pre>
```

Bubble plots

For convenience, a text string is generated based on the metadata information to use as subtitle in the different plots:

In its most basic setup, the only information provided is the most likely tercile, indicated by the color of the bubble:

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Note that by default, red indicates the upper tercile and blue the lower (yellow is reserved for the mid tercile). This default behaviour can be reversed for precipitation for a more intuitive interpretation of the plot, or other colors can be alternatively chosen for each tercile (via the argument t.color).

An additional information that can be added to the plot is the probability of the most likely tercile. This is represented by the size of the bubble through the argument size.as.probability:

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Until now, the forecast information is displayed, but no information regarding the 'quality' of the forecasting system is provided. A usual quality measure of accuracy is the ROC skill score (ROCSS). ROCSS can be also indicated in the plot, using to this aim different levels of transparency proportional to the ROCSS value in each grid point. This is automatically done by setting the argument score to TRUE:

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Note that many of the grid points correpsond to areas where the forecasting system exhibits few or no skill at all. It is often desirable to mask the areas where the forecast can not be trusted and focus on those where the user can have more confidence. This can also help to communicate the forecast to users with low level of expertise, so they don't focus their attention in unreliable areas. A ROCSS score.range can be set to this aim:

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Finally, it is also possible to display the information for all terciles simultaneously. The probabilies of each tercile are in this case represented with a tercile plot. In order to avoid a congested map with hundreds of tiny pie charts, this visualization is better suited for regional domains. Next, we subset the global datasets for the North Atlantic domain:

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Tercile plots

```
To reproduce Figure 3 in Frías et al 2018, we firt crop the data considering the Niño 3.4 Region:
```

```
crop.nino <- function(x) subsetGrid(x, lonLim = c(-170, -120), latLim = c(-5, 5))
hindcast.nino <- crop.nino(hindcast)
obs.nino <- crop.nino(obs)
forecast.nino <- crop.nino(forecast)</pre>
```

The tercile plot is next produced:

tercilePlot(hindcast.nino, obs.nino, forecast = forecast.nino, subtitle = subtitle)

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

It is also possible to use tercile plots considering the forecast of a specific year of the forecast. For instance, in this case the forecast argument is set to NULL (the default), and we select year 1992 of the hindcast as the forecast (year.target = 1992):

tercilePlot(hindcast.nino, obs.nino, forecast = NULL, year.target = 1992, subtitle = subtitle)

- $\mbox{\tt \#\#}$ Warning in spatial Mean(hindcast): The results presented are the spatial
- ## mean of the input field
- $\hbox{\tt \#\# Warning in spatialMean(obs): The results presented are the spatial mean of}$
- ## the input field
- ## Warning in spatialMean(forecast): The results presented are the spatial
- ## mean of the input field

2-meter air temperature, dic to feb

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Tercile bar plots

```
This code reproduces Figure 4 in Frías et al. 2018
```

2-meter air temperature, dic to feb, 2016

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010

Plot for winter 2002 (selected from the hindcast)

Reference data: NCEP; Hindcast: CFS (24 members); 1983-2010 (except 2002)

References

- Frías, M.D., Iturbide, M., Manzanas, R., Bedia, J., Fernández, J., Herrera, S., Cofiño, A.S., Gutiérrez, J.M., 2018. An R package to visualize and communicate uncertainty in seasonal climate prediction. Environmental Modelling & Software 99, 101–110. https://doi.org/10.1016/j.envsoft.2017.09.008
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society 77, 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
- Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Peña Mendez, M., van den Dool, H., Zhang, Q., Wang, W., Chen, M., Becker, E., 2013. The NCEP Climate Forecast System Version 2. J Clim 130925135638001. https://doi.org/10.1175/JCLI-D-12-00823.1

Session information

```
print(sessionInfo(package = c("visualizeR", "transformeR")))
## R version 3.4.4 (2018-03-15)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
##
## locale:
```

```
[1] LC CTYPE=en US.UTF-8
                                   LC NUMERIC=C
##
   [3] LC_TIME=es_ES.UTF-8
                                   LC_COLLATE=en_US.UTF-8
                                   LC MESSAGES=en US.UTF-8
   [5] LC MONETARY=es ES.UTF-8
                                   LC_NAME=C
##
   [7] LC_PAPER=es_ES.UTF-8
##
   [9] LC ADDRESS=C
                                   LC TELEPHONE=C
## [11] LC MEASUREMENT=es ES.UTF-8 LC IDENTIFICATION=C
## attached base packages:
## character(0)
##
## other attached packages:
## [1] visualizeR_1.2.0 transformeR_1.3.3
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.16
                                plyr_1.8.4
##
   [3] compiler_3.4.4
                                RColorBrewer_1.1-2
## [5] methods_3.4.4
                                bitops_1.0-6
## [7] utils 3.4.4
                                tools 3.4.4
## [9] grDevices_3.4.4
                                boot 1.3-20
## [11] digest 0.6.12
                                dotCall64 0.9-5.2
## [13] vioplot_0.2
                                evaluate_0.10.1
## [15] lattice 0.20-35
                                Matrix 1.2-14
                                parallel_3.4.4
## [17] yaml_2.1.18
## [19] spam 2.1-3
                                akima 0.6-2
                                stringr_1.3.0
## [21] padr_0.4.0
## [23] knitr_1.20
                                raster 2.6-7
## [25] mapplots_1.5
                                graphics_3.4.4
## [27] datasets_3.4.4
                                stats_3.4.4
                                maps_3.3.0
## [29] fields_9.6
## [31] rprojroot_1.3-2
                                grid_3.4.4
## [33] data.table_1.10.4-3
                                base_3.4.4
## [35] dtw_1.18-1
                                sm_2.2-5.4
## [37] SpecsVerification_0.5-2 rmarkdown_1.9
## [39] sp_1.2-7
                                latticeExtra_0.6-28
## [41] magrittr 1.5
                                codetools 0.2-15
## [43] scales_0.5.0
                                backports_1.1.2
## [45] htmltools 0.3.6
                                CircStats 0.2-4
## [47] MASS_7.3-49
                                abind_1.4-5
## [49] colorspace_1.3-2
                                stringi_1.1.7
                                munsell_0.4.3
## [51] proxy_0.4-19
## [53] RCurl 1.95-4.10
                                verification 1.42
## [55] RcppEigen_0.3.3.4.0
```