Técnicas Observacionales SIA-2018047 Mártes y Jueves 4:00 – 6:00 pm

Docentes del curso: Giovanni Pinzón & Armando Higuera gapinzone@unal.edu.co, mahiguera@unal.edu.co

Programas de Posgrado Observatorio Astronómico Nacional

Facultad de Ciencias Universidad Nacional de Colombia, Sede Bogotá

Agosto 25 de 2020

Técnicas de Observación

• Término muy general que implica el diseño de un experimento con el fin de corroborar o no, una hipótesis.

ej. variabilidad

• Para el diseño es importante tener un conocimiento detallado de la instrumentación, la ventana temporal de las observaciones y las condiciones atmosféricas.

Técnicas observacionales en astronomía

- Astrometría
- Fotometría
- Espectroscopía
- Polarimetría
- Interferometría

Técnicas observacionales en astronomía

- Astrometría
- Fotometría
- Espectroscopía
- Polarimetría
- Interferometría

Astrometría

 La astrometría o astronomía de posición es la parte de la astronomía que se encarga de medir y estudiar la posición, paralaje y el movimiento de los astros.

SIMBAD

GAIA

FAST FACTS GAIA

Launch date:	19 December 2013, 09:12 UTC
Mission end:	nominal mission end after 5 years of operation (July 2019); mission extended to 31 December 2022 (subject to a mid-term review in 2020)
Launch vehicle:	Soyuz-Fregat
Launch mass:	2030 kg, including 710 kg of payload, a 920 kg service module, 400 kg of propellant
Mission phase:	Operations
Orbit:	Lissajous-type orbit around L2
Instruments:	Astro (2 identical telescopes and imaging system); BP/RP (Blue and Red Photometers) and RVS (Radial-Velocity Spectrometer)
Partnerships:	Gaia is a fully European mission designed, built, and operated by ESA. The Gaia Data Processing and Analysis Consortium (DPAC) are responsible for processing the raw data, which will be published in Gaia catalogue.

GAIA

MISSION STATUS NUMBERS

CURRENT DATE AND TIME	2020-08-24T19:42:05 (TCB)	
MISSION STATUS		
Satellite distance from Earth (in km)	1,415,813	
Number of days having passed since 25 July 2014	2222	
Number of days in mission extension	405	
OPERATIONS DATA (collected since 2014/07/25)		
Volume of science data collected (in GB)	82,613	
Number of object transits through the focal plane	156,683,796,410	
Number of astrometric CCD measurements	1,544,454,564,608	
Number of photometric CCD measurements	311,687,982,832	
Number of spectroscopic CCD measurements	30,518,063,697	
Number of object transits through the RVS instrument	10,226,815,986	

Fotometría

- La fotometría es la parte de la astronomía que se encarga de medir y estudiar el flujo emitido por los astros.
- El sistema de magnitudes ideado por Hiparco ~120 ac y clasifica las estrellas visibles según su brillo. Las más brillantes magnitud 1 y las más débiles magnitud 6.
- En 1700s Edmund Halley reconoció que una estrella de 1 magnitud es 100 veces más brillante que una de 6 magnitud.

Fotometría

- Primer sistema fotométrico, visual- fotográfico (mpg, mv)
- En 1953 H. Johnson y W. Morgan establecen un nuevo sistema fotométrico (UBV). Posteriormente se extendió al rojo e infrarrojo.
- La revolución que en la astronomía causa la creación de detectores en regiones distintas al rango visible, ha permitido detectar flujos en casi todas las regiones del espectro electromagnético.
- Precisión de diagramas Color Magnitud (CMD / HR) @1%
- Aladin https://aladin.u-strasbg.fr/

Charged Coupled Device

(CCD)

Espectroscopía

Información a la cual se puede acceder El tipo espectral => Temperatura Efectiva

La clase Luminosa => Gravedad Superficial

Velocidad Rotacional

Velocidad Radial

Metalicidad

Vientos (lineas Prohibidas)

Formación Estelar (Halpha)

Juventud (Lil)

Campos Magnéticos

Espectroscopía = Escrutinio de las atmósferas estelares Photosphere Hot interior

BIAS

(5 al principio y 5 al final)

FLAT

Lampara de quarzo

TARGET

Centrar el objeto en la rendija

Lampara de Comparación

No estable => una por target, Estable > al principio y final

ESTANDAR ESPECTRO-FOTOMETRICA (2 o 3)

Para realizar cal. en flujo

ESPECTROS DE CIELO (USO DE FIBRAS)

Espectroscopía de objetos extendidos

Galaxias

Espectroscopía de objetos extendidos

Galaxias

Ejemplo de secuencia evolutiva. Población estelar simple de metalicidad solar calculada con modelos de síntesis de poblaciones estelares de Bruzual y Charlot (2003)

Técnicas Observacionales

Objetivo del curso

Capacitar al estudiante en la adquisición y análisis cuantitativo de la información fotométrica y espectroscópica de los objetos astrofísicos.

Técnicas Observacionales

Objetivos específicos

Proporcionar al estudiante las herramientas básicas para el análisis de grandes volúmenes de datos, incentivando el uso de Python

Potenciar en el estudiante la escritura científica, rigurosa y analítica.

Módulos

0-. Introducción al Linux. Manejo de Latex (overleaf). Instalación de IRAF, ds9, aladin, python (matplotplib, astropy, scipy, numpy, specutils)

Duración estimada: 1 semana

1.- Espectroscopía en alta resolución

Determinación de la velocidad de rotación de estrellas en el complejo de Orión

Duración estimada: 4 semanas, Python3

Evaluación : Entrega de Reporte

2.- Espectroscopía en resolución intermedia

Cálculo del índice de actividad en estrellas jóvenes de baja masa

Duración estimada: 3 semanas, Python3

Evaluación: Exámen Parcial

3.- Espectroscopía en baja resolución

Aplicación al estudio de Galaxias con núcleo activo

Duración estimada: 3 semanas, IRAF

Evaluación: Exámen Parcial

4.- Fotometría con CCDs (Visible e Infraroja)

Determinación de los flujos absolutos de estrellas en la región LDN 1588

Duración estimada: 3 semanas, IRAF

Evaluación : Entrega de Reporte