Since $\gamma_{\ell} = \gamma_{k-}^{j^+} > 0$, the matrix $E(\gamma)$ is invertible, and it is easy to check that its inverse is given by

$$E(\gamma)^{-1} = \begin{pmatrix} 1 & -\gamma_{\ell}^{-1}\gamma_{1} & & \\ & \ddots & \vdots & & \\ & 1 & -\gamma_{\ell}^{-1}\gamma_{\ell-1} & & \\ & & \gamma_{\ell}^{-1} & & \\ & & -\gamma_{\ell}^{-1}\gamma_{\ell+1} & 1 & \\ & \vdots & & \ddots & \\ & & -\gamma_{\ell}^{-1}\gamma_{m} & & 1 \end{pmatrix},$$

which is very cheap to compute. We also have

$$A_{K^+}^{-1} = E(\gamma)^{-1} A_K^{-1}.$$

Consequently, if A_K and A_K^{-1} are available, then A_{K^+} and $A_{K^+}^{-1}$ can be computed cheaply in terms of A_K and A_K^{-1} and matrices of the form $E(\gamma)$. Then the systems $(*_{\gamma})$ to find the vectors γ_K^j can be solved cheaply.

Since

$$A_{K^+}^{\top} = E(\gamma)^{\top} A_K^{\top}$$

and

$$(A_{K^+}^{\top})^{-1} = (A_K^{\top})^{-1} (E(\gamma)^{\top})^{-1},$$

the matrices $A_{K^+}^{\top}$ and $(A_{K^+}^{\top})^{-1}$ can also be computed cheaply from A_K^{\top} , $(A_K^{\top})^{-1}$, and matrices of the form $E(\gamma)^{\top}$. Thus the systems $(*_{\beta})$ to find the linear forms β_K can also be solved cheaply.

A matrix of the form $E(\gamma)$ is called an *eta matrix*; see Chvatal [40] (Chapter 7). We showed that the matrix A_{K^s} obtained after s steps of the simplex algorithm can be written as

$$A_{K^s} = A_{K^{s-1}} E_s$$

for some eta matrix E_s , so A_{k^s} can be written as the product

$$A_{K^s} = E_1 E_2 \cdots E_s$$

of s eta matrices. Such a factorization is called an eta factorization. The eta factorization can be used to either invert A_{K^s} or to solve a system of the form $A_{K_s}\gamma = A^{j^+}$ iteratively. Which method is more efficient depends on the sparsity of the E_i .

In summary, there are cheap methods for finding the next basic feasible solution (u^+, K^+) from (u, K). We simply wanted to give the reader a flavor of these techniques. We refer the reader to texts on linear programming for detailed presentations of methods for implementing efficiently the simplex method. In particular, the revised simplex method is presented in Chvatal [40], Papadimitriou and Steiglitz [134], Bertsimas and Tsitsiklis [21], and Vanderbei [181].