

یادگیری بازنمایی

Representation Learning

مدل زبان طبیعی

جفتهای Context/Target دیگر

- جمله نمونه
- I want a glass of orange juice to go along with my cereal. -

Context •

- چهار كلمه قبل
- چهار کلمه قبل و بعد
 - یک کلمه قبل
- یک کلمه در نزدیکی

Context	Target
orange	juice
orange	glass
orange	with

- Skip-grams •
- بجای اینکه همیشه از آخرین کلمات استفاده شود
- به طور تصادفی یک کلمه را به عنوان Context انتخاب کنید
- به طور تصادفی کلمه دیگری را در پنجرهای اطراف آن انتخاب کنید
 - یک مسئله یادگیری با ناظر تنظیم کنید که در آن:
 - با توجه به کلمه Context
 - کلمهای که به طور تصادفی انتخاب شده است را پیشبینی کنید

I want a glass of orange juice to go along with my cereal.

Context	Target
orange	juice
orange	glass
orange	with

Context c ("orange")
$$\Rightarrow$$
 Target t ("juice") 6257 4834

$$\mathcal{L}_{ce} = -\sum_{j=1}^{10,000} y_j \log \hat{y}_j$$

$$p(t|c) = \frac{e^{w_t^T e_c + b_t}}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$$

- مشكلات Softmax
- مشكل اصلى سرعت محاسبات است
- مخصوصاً برای مجموعه واژگان بسیار بزرگ (مثلاً ۱۰۰٬۰۰۰ یا ۱،۰۰،۰۰۰ واژه)

$$p(t|c) = \frac{e^{w_t^T e_c + b_t}}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$$

Context	Word	Target	
orange	juice	1	
orange	king	0	
orange	book	0	
orange	the	0	
orange	of	0	

- نمونهبرداری منفی (Negative sampling)
 - یک مسئله یادگیری باناظر جدید
 - یک جفت کلمه را ورودی بگیرد
- پیشبینی کند که یک جفت Context-Target است؟
- بنابراین مسئله این است که پیشبینی کند آیا دو کلمه در کنار هم استفاده میشوند یا خیر
 - مقدار پیشنهادی برای k:
 - ۵ تا ۲۰ برای مجموعهدادههای کوچکتر
 - ۲ تا ۵ برای مجموعهدادههای بزرگتر

I want a glass of orange juice to go along with my cereal.

Context	Word	Target	• نمونهبرداری منفی
orange	juice	1	
orange	king	0	orange $\longrightarrow e_{6257} \longrightarrow \bigcirc \qquad e^{w_t^T e_c + b_t}$
orange	book	0	orange $\longrightarrow e_{6257} \longrightarrow \bigcup_{i} p(t c) = \frac{10,000}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$
orange	the	0	$ \cdot $
orange	of	0	Softmax

orange
$$\longrightarrow e_{6257} \longrightarrow \bigcap_{c} p(y=1|t,c) = \sigma(w_t^T e_c + b_t)$$
Sigmoid

یادگیری تکنمونه (One Shot Learning)

• یادگیری تکنمونه یک مسئله دستهبندی است که در آن تنها از یک نمونه برای هر کلاس استفاده می شود

بازشناسی چهره تکنمونه

- یادگیری تنها از یک تصویر برای بازشناسی افراد
- آیا ConvNet + Softmax برای بازشناسی چهره تکنمونه مناسب است؟
 - داده کافی برای آموزش یک شبکه عصبی قوی وجود ندارد
 - اگریک نفر جدید اضافه شود؟
 - بجای آن، یک تابع "شباهت" را آموزش میدهیم

یادگیری تابع شباهت

درجه تفاوت بین دو تصویر:d(img1,img2) •

$$d(x^{(1)}, x^{(2)}) = ||f(x^{(1)}) - f(x^{(2)})||_2^2$$

یادگیری تابع شباهت

درجه تفاوت بین دو تصویر:d(img1,img2) •

$$d(x^{(1)}, x^{(2)}) = ||f(x^{(1)}) - f(x^{(2)})||_2^2$$

- پارامترهای شبکه آموزش میبینند تا:
- اگر $x^{(i)}$ و $x^{(i)}$ مربوط به یک نفر باشند، $d(x^{(i)},x^{(j)})$ عدد کوچکی باشد -
- اگر $x^{(i)}$ و $x^{(i)}$ مربوط به افراد متفاوتی باشند، $d(x^{(i)},x^{(j)})$ عدد بزرگی باشد -

$$x^{(i)} \longrightarrow \bigcap_{\stackrel{\cdot}{=}} \bigcap_{\stackrel{\cdot$$

شبکه Siamese

$x^{(1)}$	$\chi^{(2)}$	y	سبکه Siaillese
		0	• یک شبکه Siamese کلاسی از شبکههای عصبی است که شامل یک یا چند شبکه یکسان است
		1	Input 1 Both models are instances of the same model. Same weights and structure Model Instance 1 Model Instance 2
		0	Features Features
		1	Output 1 (Similar)/ 0(Not Similar)

تابع ضرر سەتايى (Triplet Loss)

• مدل سه ورودی میگیرد:

Positive ،Anchor -

$$x^{(1)}$$
 $x^{(2)}$ y

0

1

 $/ \\ d(Anchor, Positive) + \alpha \leq d(Anchor, Negative)$

margin

Negative

تابع ضرر سەتايى (Triplet Loss)

$$d(A, P) + \alpha \le d(A, N)$$

$$d(A, P) - d(A, N) + \alpha \le 0$$

$$\mathcal{L}(A, P, N) = \max(d(A, P) - d(A, N) + \alpha, 0)$$

$$J = \sum_{i=1}^{M} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$$

- برای نمونههای مربوط به یک کلاس، جانماییهایی تولید میشود که فاصله کمی داشته باشند
- این سیستم مستقیماً یک نگاشت از تصاویر چهره به فضای فشرده اقلیدسی را میآموزد که در آن فاصلهها مستقیماً با معیار تشابه چهرهها مطابقت دارند

انتخاب سهتاییها

- سهتاییهایی که برای آموزش مدل استفاده میشوند باید با دقت انتخاب شوند
 - اگر به صورت تصادفی انتخاب شوند
 - به راحتی برآورده می شود شرط $d(A,P) + \alpha \leq d(A,N)$ به راحتی برآورده می
 - تابع ضرر کوچک خواهد بود و بهروزرسانی مدل به کندی انجام خواهد شد
 - سهتاییها به صورت آنلاین و برحسب فاصله فعلی با یکدیگر تولید می شوند
 - به آنها مثبت سخت (hard positive) و منفی سخت (hard negative) گفته می شود

FaceNet

- CASIA-Webface (10K ids/0.5M images)
- VGG2 (9K ids/3.31M images)
- Glint360K (360K ids/17M images)
- LFW (5749 ids/13233 images/6K pairs)

Model name	LFW accuracy	Training dataset	Architecture
20180408-102900	0.9905	CASIA-WebFace	Inception ResNet v1
20180402-114759	0.9965	VGGFace2	Inception ResNet v1

یادگیری بدوننمونه (Zero-Shot Learning)

- هیچ نمونه برچسبداری به شبکه داده نمیشود!
- به عنوان مثال، این مسئله این را در نظر بگیرید که یک مدل دارای یادگیری، مجموعه بزرگی از متن را بخواند و سپس مسئله شناسایی اشیاء را حل کند

• به عنوان مثال، دانستن اینکه "گربهها چهار پا دارند" یا "گربهها گوشهای نوک تیز دارند" برای شناسایی آن کمککننده است