1 Wstęp

Celem tych zadań jest oswojenie Cię z podstawowymi pojęciami teorii kategorii. Nie musisz zrobić wszystkich, jednak szczególnie do tego zachęcamy - warsztaty beda polegać głównie na rozwiązywaniu zadań przy tablicy.

Żadna dodatkowa literatura nie powinna być potrzebna do rozwiązania tych zadań, jednak w razie problemów z zadaniami, sugestii zmian lub chęci zobaczenia określonych kategorii na warsztatach, zachęcamy do kontaktu.

2 Kategorie

Kategoriq nazywamy kolekcję obiektów $A,B,C\ldots$, taką, że dla każdych dwóch obiektów A,B istnieje zbiór $\operatorname{Hom}(A,B)$ morfizmów z A do B. Na ogół piszemy $f:A\to B$ zamiast $f\in\operatorname{Hom}(A,B)$. Zakładamy też, że istnieje operacja składania morfizmów o posiadająca następujące własności:

- 1. Jeśli $f: A \to B$ oraz $g: B \to C$, to istnieje morfizm $g \circ f: A \to C$.
- 2. Dla dowolnych trzech morfizmów $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ g)\circ f=h\circ (g\circ f).$
- 3. Dla każdego obiektu X istnieje morfizm $\mathrm{Id}_X:X\to X,$ taki że dla każdego morfizmu $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f\circ \mathrm{Id}_A.$
- 1. Niech obiektami będą zbiory, morfizmami funkcje, a operacją \circ złożenie funkcji². Pokaż, że jest to kategoria dowodząc, że:
 - 1. dla dowolnych zbiorów A,B, wszystkie funkcje z A do B tworzą zbiór (nazywany $\operatorname{Hom}(A,B)$)
 - 2. dla dowolnych trzech funkcji $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ g)\circ f=h\circ (g\circ f).$
 - 3. Dla każdego zbioru X znajdź funkcję³ Id_X taką, że dla dowolnej $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f\circ\mathrm{Id}_A.$

 $^{^1\}mathrm{Można}$ myśleć o tym jak o zbiorze, do którego można włożyć dowolnie dużo elementów. Zainteresowanych jak uniknąć paradoksu zbioru wszystkich zbiorów odsyłamy do teorii klas Morse'a-Kelleya.

²Cóż za niezwykły zbieg okoliczności - to ten sam symbol!

³Ciekawe jak się może nazywać...