```
In [7]: import mysql.connector
         import pandas as pd
         # Connect to server
         cnx = mysql.connector.connect(
            host="127.0.0.1",
             port=3306,
             user="root",
             password="******")
In [ ]:
In [6]: query = "select * from banking_case.customer"
In [8]: df = pd.read_sql(query, cnx)
        C:\Users\zoyag\AppData\Local\Temp\ipykernel_12724\1600954950.py:1: UserWarning: p
        andas only supports SQLAlchemy connectable (engine/connection) or database string
        URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please con
        sider using SQLAlchemy.
         df = pd.read_sql(query, cnx)
In [9]: cnx.close()
In [10]: print(df)
```

```
Client ID
                                             Location ID Joined Bank
                                 Name
                                       Age
                                        24
0
         IND81288
                       Raymond Mills
                                                   34324 06-05-2019
1
         IND65833
                       Julia Spencer
                                        23
                                                   42205
                                                          10-12-2001
2
         IND47499
                      Stephen Murray
                                        27
                                                    7314 25-01-2010
3
         IND72498
                      Virginia Garza
                                        40
                                                   34594
                                                          28-03-2019
                                                          20-07-2012
4
         IND60181
                     Melissa Sanders
                                        46
                                                   41269
                                                     . . .
2995
         IND66827
                           Earl Hall
                                        82
                                                    8760
                                                          09-10-2014
2996
         IND40556
                   Billy Williamson
                                        44
                                                   32837 05-02-2009
2997
         IND72414
                        Victor Black
                                        70
                                                   36088
                                                          29-12-2009
2998
                         Andrew Ford
                                        56
                                                   24871 13-02-2006
         IND46652
2999
         IND40216
                                                   38518 08-12-2005
                          Amy Nguyen
          Banking Contact Nationality
                                                              Occupation \
0
           Anthony Torres
                                                   Safety Technician IV
                               American
1
         Jonathan Hawkins
                               African
                                                    Software Consultant
2
            Anthony Berry
                               European
                                                     Help Desk Operator
3
                Steve Diaz
                              American
                                                            Geologist II
4
                Shawn Long
                               American
                                                    Assistant Professor
2995
           Joshua Bennett
                              American
                                               Accounting Assistant III
2996
               Dennis Ruiz
                              European
                                                               Paralegal
2997
               Joshua Ryan
                              American
                                                        Statistician IV
     Nicholas Cunningham
2998
                              European Human Resources Assistant III
2999
                Joe Hanson
                              American
                                                    Biostatistician III
     Fee Structure Loyalty Classification
                                             . . .
                                                   Bank Deposits
0
               High
                                       Jade
                                             . . .
                                                      1485828.64
1
              High
                                       Jade
                                                       641482.79
                                             . . .
2
               High
                                       Gold
                                                      1033401.59
3
               Mid
                                                      1048157.49
                                     Silver
4
                Mid
                                   Platinum
                                                       487782.53
                . . .
2995
               High
                                       Gold
                                             . . .
                                                      1089957.03
2996
                Mid
                                       Gold
                                                       136891.32
2997
                Low
                                       Jade
                                                       214860.89
                                              . . .
2998
               Mid
                                       Jade
                                                       742630.22
2999
               High
                                                        65617.66
                                       Jade
      Checking Accounts
                          Saving Accounts
                                             Foreign Currency Account
0
               603617.88
                                 607332.46
                                                              12249.96
1
               229521.37
                                 344635.16
                                                              61162.31
2
               652674.69
                                 203054.35
                                                              79071.78
3
              1048157.49
                                 234685.02
                                                              57513.65
4
               446644.25
                                 128351.45
                                                              30012.14
. . .
                     . . .
                                       . . .
2995
               532867.88
                                 657849.62
                                                              12947.31
2996
               56581.74
                                  93195.61
                                                              23205.69
2997
               158726.06
                                                              30291.81
                                  35539.15
2998
               404638.26
                                  56411.33
                                                               6413.14
2999
                                                               8992.36
                77769.08
                                  32371.38
                         Properties Owned
                                             Risk Weighting
                                                              BRId
                                                                    GenderId
                                                                               IAId
      Business Lending
0
            1134475.30
                                         1
                                                           2
                                                                 1
                                                                            1
                                                                                  1
1
            2000526.10
                                         1
                                                           3
                                                                 2
                                                                            1
                                                                                  2
2
                                         1
                                                           3
                                                                            2
                                                                                  3
              548137.58
3
            1148402.29
                                         0
                                                           4
                                                                 4
                                                                            1
                                                                                  4
4
            1674412.12
                                         0
                                                           3
                                                                 1
                                                                            2
                                                                                  5
                    . . .
2995
            1238859.91
                                         1
                                                           3
                                                                 3
                                                                            2
                                                                                  4
```

2996	277171.07	1	2	3	2	5
2997	502947.22	2	2	3	2	6
2998	1538368.60	3	1	3	2	7
2999	329412.55	1	1	3	2	8

[3000 rows x 25 columns]

In [11]: df.head()

Out[11]:

	Client ID	Name	Age	Location ID	Joined Bank	Banking Contact	Nationality	Occupation	Stru
0	IND81288	Raymond Mills	24	34324	06-05- 2019	Anthony Torres	American	Safety Technician IV	
1	IND65833	Julia Spencer	23	42205	10-12- 2001	Jonathan Hawkins	African	Software Consultant	
2	IND47499	Stephen Murray	27	7314	25-01- 2010	Anthony Berry	European	Help Desk Operator	
3	IND72498	Virginia Garza	40	34594	28-03- 2019	Steve Diaz	American	Geologist II	
4	IND60181	Melissa Sanders	46	41269	20-07- 2012	Shawn Long	American	Assistant Professor	

5 rows × 25 columns

In [12]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Client ID	3000 non-null	object
1	Name	3000 non-null	object
2	Age	3000 non-null	int64
3	Location ID	3000 non-null	int64
4	Joined Bank	3000 non-null	object
5	Banking Contact	3000 non-null	object
6	Nationality	3000 non-null	object
7	Occupation	3000 non-null	object
8	Fee Structure	3000 non-null	object
9	Loyalty Classification	3000 non-null	object
10	Estimated Income	3000 non-null	float64
11	Superannuation Savings	3000 non-null	float64
12	Amount of Credit Cards	3000 non-null	int64
13	Credit Card Balance	3000 non-null	float64
14	Bank Loans	3000 non-null	float64
15	Bank Deposits	3000 non-null	float64
16	Checking Accounts	3000 non-null	float64
17	Saving Accounts	3000 non-null	float64
18	Foreign Currency Account	3000 non-null	float64
19	Business Lending	3000 non-null	float64
20	Properties Owned	3000 non-null	int64
21	Risk Weighting	3000 non-null	int64
22	BRId	3000 non-null	int64
23	GenderId	3000 non-null	int64
24	IAId	3000 non-null	int64
l+vn	as: float64(9) int64(8)	object(8)	

dtypes: float64(9), int64(8), object(8)

memory usage: 586.1+ KB

Data processing and data cleaning

```
In [13]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [15]: df.shape

Out[15]: (3000, 25)

In [16]: # generate descriptive statistics for the dataframe

In [17]: df.describe()
```

Out[17]:

	Age	Location ID	Estimated Income	Superannuation Savings	Amount of Credit Cards	Credit Ba
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00
mean	51.039667	21563.323000	171305.034263	25531.599673	1.463667	3176.20
std	19.854760	12462.273017	111935.808209	16259.950770	0.676387	2497.09
min	17.000000	12.000000	15919.480000	1482.030000	1.000000	1.1
25%	34.000000	10803.500000	82906.595000	12513.775000	1.000000	1236.6
50%	51.000000	21129.500000	142313.480000	22357.355000	1.000000	2560.80
75%	69.000000	32054.500000	242290.305000	35464.740000	2.000000	4522.6
max	85.000000	43369.000000	522330.260000	75963.900000	3.000000	13991.99

```
In [21]: bins = [0, 100000, 300000, float('inf')]
    labels = ['Low','Med','High']
    df['Income Band'] = pd.cut(df['Estimated Income'], bins=bins, labels=labels, rig

In [24]: df['Income Band'].value_counts().plot(kind='bar')
```


In [29]: # examine the distribution of unique categories in categorial columns
 categorial_cos = df[["BRId" , "GenderId", "IAId", "Amount of Credit Cards", "Nat
 for col in categorial_cos:

print(f"Value Counts for '{col}':")

```
display(df[col].value_counts())
Value Counts for 'BRId':
BRId
3
     1352
1
      660
2
      495
      493
4
Name: count, dtype: int64
Value Counts for 'GenderId':
GenderId
     1512
     1488
Name: count, dtype: int64
Value Counts for 'IAId':
IAId
1
      177
2
      177
3
      177
4
      177
8
      177
9
      176
13
      176
12
      176
10
      176
11
      176
14
      176
15
      176
6
       89
5
       89
7
       89
16
       88
17
       88
18
       88
19
       88
20
       88
21
       88
22
       88
Name: count, dtype: int64
Value Counts for 'Amount of Credit Cards':
Amount of Credit Cards
1
     1922
2
      765
3
      313
Name: count, dtype: int64
Value Counts for 'Nationality':
Nationality
European
              1309
Asian
               754
American
               507
Australian
               254
African
               176
Name: count, dtype: int64
```

Value Counts for 'Occupation':

```
Occupation
        Associate Professor
                                         28
        Structural Analysis Engineer
                                         28
        Recruiter
                                         25
        Account Coordinator
                                         24
        Human Resources Manager
                                         24
        Office Assistant IV
        Automation Specialist I
                                         7
        Computer Systems Analyst I
                                         6
        Developer III
        Senior Sales Associate
        Name: count, Length: 195, dtype: int64
        Value Counts for 'Fee Structure':
        Fee Structure
        High
               1476
        Mid
                 962
        Low
                 562
        Name: count, dtype: int64
        Value Counts for 'Loyalty Classification':
        Loyalty Classification
        Jade
                    1331
        Silver
                     767
                     585
        Gold
        Platinum
                     317
        Name: count, dtype: int64
        Value Counts for 'Properties Owned':
        Properties Owned
        2
             777
        1
             776
        3
             742
             705
        Name: count, dtype: int64
        Value Counts for 'Risk Weighting':
        Risk Weighting
        2
             1222
        1
              836
        3
              460
        4
              322
        5
              160
        Name: count, dtype: int64
        Value Counts for 'Income Band':
        Income Band
        Med
                1517
                1027
        Low
                 456
        High
        Name: count, dtype: int64
 In [ ]: # with the help of hue you can analysis the data based on bivariate
         # if you will remove the hue it will give the analysis based on bivariate
          for i,predictor in enumerate(df[["BRId" , "GenderId", "IAId", "Amount of Credit
In [33]:
              plt.figure(i)
               sns.countplot(data=df, x=predictor, hue="GenderId")
```


Income Band

Numerical Analysis

Foreign Currency Account

HeatMaps

```
In [62]: numerical_cos = ['Estimated Income', 'Superannuation Savings', 'Credit Card Ba
    correlation_matrix = df[numerical_cos].corr()
    plt.figure(figsize=(12,12))
    sns.heatmap(correlation_matrix, annot=True, cmap='crest', fmt=" 2f")
    plt.title("correlation_matrix")
    plt.show()
```


In []: