

United States Utility
Patent Application entitled:

**DRIVER WAVEFORM MODELING
WITH MULTIPLE EFFECTIVE CAPACITANCES**

Inventors:

Prasad Subbarao
Sandeep Bhutani
Charutosh Dixit
Prabhakaran Krishnamurthy

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

"Express Mail" Mailing Label Number

EL591659519US

Date of Deposit: March 21, 2001
I hereby certify that this paper is being deposited with the United
States Postal Service "Express Mail Post Office to Addressee"
Service under 37 CFR §1.10 on the date indicated above and
is addressed to the Commissioner for Patents,
Washington, D.C. 20231

Pamela M. Stone
(Typed or printed names of person mailing)

Pamela M. Stone
(Signature of person mailing)

DRIVER WAVEFORM MODELING WITH MULTIPLE EFFECTIVE
5 CAPACITANCES

BACKGROUND OF THE INVENTION

The present invention relates generally to electronic circuit design using computer simulation techniques. More specifically, but without limitation thereto, the present invention relates to modeling the output waveform of a circuit element driving a distributed resistance-capacitance network.

Methods for modeling the output waveform of a circuit element or cell driving a resistance-capacitance network generally use a Thevenin equivalent model, i.e., a voltage source in series with a resistance, and a load having a single effective capacitance. However, previous methods produced unsatisfactory results using a computer circuit simulation program such as SPICE because the actual waveform delays were found to be more than ten percent larger than those predicted by the simulation program. A method is therefore needed for modeling the output waveform of a cell driving a resistance-capacitance network that compares more closely to the actual output waveform.

SUMMARY OF THE INVENTION

The present invention advantageously addresses the needs above as well as other needs by providing a method for modeling the output waveform of a cell driving

a resistance-capacitance network that includes multiple effective capacitances.

In one embodiment, the invention may be characterized as a method of calculating Thevenin parameters that includes the steps of (a) initializing estimates of effective capacitances C_{eff1} and C_{eff2} , of a switching threshold delay t_0 , and of a slope delay $deltat$; (b) solving ramp response equations for t_0 and $deltat$ as a function of C_{eff1} and C_{eff2} ; (c) comparing the estimates of t_0 and $deltat$ with solutions for t_0 and $deltat$ found in step (b); and (d) replacing the estimates of t_0 and $deltat$ with the solutions for t_0 and $deltat$ if the solutions for t_0 and $deltat$ have not converged to the estimates of t_0 and $deltat$.

15 In another embodiment, the invention may be characterized as a computer program product that includes a medium for embodying a computer program for input to a computer and a computer program embodied in the medium for causing the computer to perform at least one of the following functions:

- (a) initializing estimates of effective capacitances C_{eff1} and C_{eff2} , of a switching threshold delay t_0 , and of a slope delay $deltat$;
- (b) solving ramp response equations for t_0 and $deltat$ as a function of C_{eff1} and C_{eff2} ;
- (c) comparing the estimates of t_0 and $deltat$ with solutions for t_0 and $deltat$ found in step (b);
- (d) replacing the estimates of t_0 and $deltat$ with the solutions for t_0 and $deltat$ if the solutions for t_0 and $deltat$ have not converged to the estimates of t_0 and $deltat$;

(e) repeating steps (b), (c), and (d) until the
solutions for t_0 and Δt converge to the estimates of
 t_0 and Δt ;

(f) calculating a Δt_1 as a function of
5 $t_{30}(C_{eff1})$ or $t_{70}(C_{eff1})$ and a Δt_2 as a function of
 $t_{50}(C_{eff2})$ from a Foster or a pi model;

(g) comparing Δt_1 and Δt_2 to delays
 $\Delta t_1'$ and $\Delta t_2'$ corresponding to C_{eff1} and C_{eff2} in a
delay lookup table;

10 (h) finding new values for C_{eff1} and C_{eff2} from
a reverse lookup of Δt_1 and Δt_2 in the delay lookup
table if the calculated values for Δt_1 and Δt_2 have
not converged to delays $\Delta t_1'$ and $\Delta t_2'$;

15 (i) replacing the estimates of C_{eff1} and C_{eff2}
in step (b) with the new values for C_{eff1} and C_{eff2} ; and

(j) repeating steps (b) through (i) until the
calculated values for Δt_1 and Δt_2 converge to delays
 $\Delta t_1'$ and $\Delta t_2'$.

The features and advantages summarized above in
20 addition to other aspects of the present invention will
become more apparent from the description, presented in
conjunction with the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

25 The above and other aspects, features and
advantages of the present invention will be more apparent
from the following more specific description thereof,
presented in conjunction with the following drawings
wherein:

30 FIG. 1 is a schematic diagram of a Thevenin
equivalent model of the prior art;

FIG. 2 is a schematic diagram of a Foster load synthesis model of the prior art for modeling the voltage response of the CMOS gate of FIG. 1;

5 FIG. 3 is a schematic diagram of a pi load synthesis model of the prior art for modeling the voltage response of the CMOS gate of FIG. 1;

FIG. 4 is an ideal voltage plot of the prior art illustrating Thevenin voltage parameter definitions for the CMOS gate of FIG. 1;

10 FIG. 5 is a voltage plot illustrating typical output voltage response of the CMOS gate of FIG. 1 as a function of time; and

FIG. 6 is a flowchart of an embodiment of the present invention for calculating Thevenin parameters and
15 the effective capacitances C_{eff1} and C_{eff2} .

Corresponding reference characters indicate corresponding elements throughout the several views of the drawings.

20 DETAILED DESCRIPTION OF THE DRAWINGS

The following description is presented to disclose the currently known best mode for making and using the present invention. The scope of the invention is defined by the claims.

25 FIG. 1 is a schematic diagram of a Thevenin equivalent model 100 of the prior art. Shown are a Thevenin voltage source 102, a driver resistance 104, a CMOS gate 150 and a load impedance 152. The CMOS gate 150 includes the Thevenin voltage source 102, which is
30 connected in series with the driver resistance 104. The

Thevenin equivalent model 100 is used to model a typical cell in integrated circuit designs.

FIG. 2 is a schematic diagram of a Foster load synthesis model 200 of the prior art for modeling the voltage response of the CMOS gate 150 of FIG. 1. Shown are a driver resistance 104, a first current branch 202, a first resistor 204, a first capacitor 206, a second current branch 208, a second resistor 210, and a second capacitor 212. The Foster load synthesis model 200 is connected in series with the driver resistance 104 of the CMOS gate 150 and includes multiple current branches 202 and 208 connected in parallel. In the first current branch 202, the first resistor 204 is connected in series with the first capacitor 206. Likewise in the second current branch 208, the second resistor 210 is connected in series with the second capacitor 212.

FIG. 3 is a schematic diagram of a pi load synthesis model 300 of the prior art for modeling the voltage response of the CMOS gate 150 of FIG. 1. Shown are a driver resistance 104, a first capacitor 302, a first resistor 304, and a second capacitor 306. The pi load synthesis model 300 is connected in series with the driver resistance 104 of the CMOS gate 150. The first capacitor 302 is connected between the driver resistance 104 and ground. The first resistor 304 and the second capacitor 306 are connected in series across the first capacitor 302.

FIG. 4 is an ideal voltage plot vs. time 400 illustrating Thevenin voltage parameter definitions for an inverting CMOS gate. Shown are a gate input signal 402, a Thevenin voltage 404, a switching threshold delay (t_0)

406, and a slope delay (*deltat*) 408. The delay between the time when the gate input signal 402 reaches the logic switching threshold *Vst* and the time when the Thevenin voltage 404 begins to fall defines the switching threshold 5 delay (*t0*) 406. The delay between the time when the Thevenin voltage 404 begins to fall and the time when the Thevenin voltage 404 reaches zero defines the slope delay (*deltat*) 408. Similar Thevenin voltage parameters may be defined for other CMOS gates and input transitions.

10 Using the Thevenin model, the output voltage *vo'* of the CMOS gate 150 may be expressed as a function of time *t* by

$$vo'(t) = y(t,t0,deltat) \quad (1)$$

Specifically, for a falling output transition

$$\begin{aligned} 15 \quad y(t,t0,deltat) &= Vdd & t - t0 < 0 \\ y(t,t0,deltat) &= Vdd - y0(t,t0,deltat) & 0 \leq t - t0 < deltat \\ y(t,t0,deltat) &= Vdd - y0(t,t0,deltat) \\ &\quad + y0(t - deltat,t0,deltat) & t - t0 \geq deltat \end{aligned} \quad (2)$$

and for a rising output transition

$$\begin{aligned} 20 \quad y(t,t0,deltat) &= 0 & t - t0 < 0 \\ y(t,t0,deltat) &= y0(t,t0,deltat) & 0 \leq t - t0 < deltat \\ y(t,t0,deltat) &= y0(t,t0,deltat) \\ &\quad - y0(t - deltat,t0,deltat) & t - t0 \geq deltat \end{aligned} \quad (3)$$

where $y0(u,v,w)$ is the single positive ramp response for a 25 capacitive load *C* and a driver resistance *Rd*, which may be found from the equation

$$y0(u,v,w) = Vdd \cdot \left[\frac{u - v}{w} - \left(\frac{Rd \cdot C}{w} \left(1 - e^{-\frac{u-v}{Rd \cdot C}} \right) \right) \right] \quad (4)$$

Equations (1), (2), (3), and (4) are derived and explained in detail in the article "Performance Computation for Precharacterized CMOS Gates with RC Loads", Florentin Dartu, Noel Menezes, and Lawrence T.

- 5 Pileggi, IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 15, No. 5, May 1996.

FIG. 5 is a voltage plot 500 illustrating typical output voltage response $V_o'(t)$ of the CMOS gate 150 of FIG. 1 as a function of time. As the effective 10 capacitance of the load 152 builds up charge, the output voltage $V_o'(t)$ increases from zero to 30 percent of the final voltage for a rising transition in a time t_{30} from the input switching threshold and continues increasing to 50 percent of the final voltage in a time t_{50} measured 15 from the input switching threshold. For a falling transition, the output voltage V_o' drops to 70 percent of the initial voltage in a time t_{70} from the input switching threshold.

In contrast to methods that solve for the 20 Thevenin parameters using a single effective capacitance, the following method uses two values of effective capacitance C_{eff1} and C_{eff2} . C_{eff1} is used to find either $t_{30}(C_{eff1})$ (for a rising transition) or $t_{70}(C_{eff1})$ (for a falling transition), and C_{eff2} is used to find $t_{50}(C_{eff2})$ 25 to calculate the Thevenin parameters from the ramp response equations

$$y(t_{50}(C_{eff2}), t_0, \Delta t) = 0.5 \cdot V_{dd} \quad (5)$$

$$y(t_{30}(C_{eff1}), t_0, \Delta t) = 0.3 \cdot V_{dd} \quad (\text{or})$$

30 $y(t_{70}(C_{eff1}), t_0, \Delta t) = 0.7 \cdot V_{dd} \quad)$

Initial estimates are made for $Ceff1$, $Ceff2$, t_0 , and $deltat$, for example:

$$\begin{aligned} Ceff1 &= Ceff2 = .0001 \text{ pf} \\ 5 \quad deltat &= 5 \cdot t50(Ceff2) - t30(Ceff1) \\ t0 &= t50(Ceff2) - 0.69 \cdot Rd \cdot Ceff2 - 0.5 \cdot deltat \end{aligned} \tag{6}$$

Newton's method may be used to solve the non-linear equations (5) from equations (1) - (4) for t_0 and
10 $deltat$ by using the estimates of $Ceff1$ and $Ceff2$ and a delay lookup table according to well known techniques. The delay lookup table contains a range of delays calculated as a function of input ramptime and input capacitance and is contained in a precharacterized cell
15 library created according to well known techniques. The calculated solutions for t_0 and $deltat$ are substituted for the previous estimates of t_0 and $deltat$ in the ramp response equations (5) until the solutions for t_0 and $deltat$ converge to a desired accuracy.

20 After computing the Thevenin parameters t_0 and $deltat$ from the initial estimates, either the Foster model
200 of FIG. 2 or the pi model 300 of FIG. 3 may be used according to well known techniques such as AWE (asymptotic waveform evaluation) to calculate a first delay, $delay1$,
25 to $t30(Ceff1)$ or $t70(Ceff1)$ and a second delay, $delay2$, to $t50(Ceff2)$.

The calculated values for $delay1$ and $delay2$ are compared to corresponding delays $delay1'$ and $delay2'$ found in the lookup table using the input ramptime and $Ceff1$ and
30 $Ceff2$, respectively. If $delay1$ and $delay2$ have converged to within a desired accuracy of $delay1'$ and $delay2'$, then the calculation of the Thevenin parameters t_0 and $deltat$

is complete. If not, then new values for C_{eff1} and C_{eff2} are found by a reverse interpolation of $delay1$ and $delay2$ from the delay lookup table, i.e.,

$$5 \quad \begin{aligned} delay &= f(input\ ramptime, capacitance) \Rightarrow \\ &\text{capacitance} = g(input\ ramptime, delay) \end{aligned} \quad (7)$$

After obtaining new values for $Ceff1$ and $Ceff2$,
 the Thevenin parameters $t0$ and $deltat$ are recomputed from
 10 the ramp response equations (5), and new values for $delay1$
 and $delay2$ are calculated from the Foster or the pi model
 until $delay1$ and $delay2$ converge to $delay1'$ and $delay2'$
 within a desired accuracy, for example, 1 picosecond.

FIG. 6 is a flowchart 600 for calculating the
15 Thevenin parameters of switching threshold delay t_0 and
slope delay Δt and effective load capacitances C_{eff1}
and C_{eff2} according to the method explained above.

Step 602 is the entry point for the flowchart 600.

20 In step 604, estimates for $Ceff1$, $Ceff2$, t_0 , and
 $deltat$ are initialized.

In step 606, the solutions to the following ramp response equations are calculated:

$y(t50(Ceff2), t0, deltat) = 0.5 \cdot Vdd$ and either
 25 $y(t30(Ceff1), t0, deltat) = 0.3 \cdot Vdd$ or
 $y(t70(Ceff1), t0, deltat) = 0.7 \cdot Vdd$ for $t0$ and $deltat$.

In step 608, the estimates of t_0 and deltat are compared with the calculated solutions. If the solutions for t_0 and deltat have not yet converged to the estimates, 30 then the estimates of t_0 and deltat are replaced with the calculated solutions in step 610, and step 606 is repeated.

If the solutions for t_0 and Δt_{lat} have converged to the estimates, then the delay_1 is calculated as a function of $t_{30}(\text{Ceff}_1)$ or $t_{70}(\text{Ceff}_1)$ and delay_2 is calculated as a function of $t_{50}(\text{Ceff}_2)$ from a Foster or a 5 pi model in step 612.

In step 614, corresponding delays delay_1' and delay_2' for Ceff_1 and Ceff_2 are found in the delay lookup table.

In step 616, the calculated values for delay_1 10 and delay_2 are compared to the corresponding delays delay_1' and delay_2' . If delay_1 and delay_2 have converged to within a desired accuracy of delay_1' and delay_2' , then control transfers to step 622.

If delay_1 and delay_2 have not converged to 15 within a desired accuracy of delay_1' and delay_2' , then new values for Ceff_1 and Ceff_2 are found from the delay lookup table in step 618.

In step 620, the estimates of Ceff_1 and Ceff_2 are replaced with the new values and step 606 is repeated.

20 Step 622 is the exit point for the flow chart 600.

The flowchart 600 may also be embodied in a computer program product that includes a medium for embodying a computer program for input to a computer and a 25 computer program embodied in the medium for causing the computer to perform at least one of the following functions:

(a) initializing estimates of effective capacitances Ceff_1 and Ceff_2 , of a switching threshold 30 delay t_0 , and of a slope delay Δt_{lat} ;

- 20
21
22
23
24
25
26
27
28
29
30
- (b) solving ramp response equations for t_0 and Δt as a function of C_{eff1} and C_{eff2} ;
 - (c) comparing the estimates of t_0 and Δt with solutions for t_0 and Δt found in step (b);
 - 5 (d) replacing the estimates of t_0 and Δt with the solutions for t_0 and Δt if the solutions for t_0 and Δt have not converged to the estimates of t_0 and Δt ;
 - 10 (e) repeating steps (b), (c), and (d) until the solutions for t_0 and Δt converge to the estimates of t_0 and Δt ;
 - (f) calculating a $delay_1$ as a function of $t_{30}(C_{eff1})$ or $t_{70}(C_{eff1})$ and a $delay_2$ as a function of $t_{50}(C_{eff2})$ from a Foster or a pi model;
 - 15 (g) comparing $delay_1$ and $delay_2$ to delays $delay_1'$ and $delay_2'$ corresponding to C_{eff1} and C_{eff2} in a delay lookup table;
 - (h) finding new values for C_{eff1} and C_{eff2} from a reverse lookup of $delay_1$ and $delay_2$ in the delay lookup table if the calculated values for $delay_1$ and $delay_2$ have not converged to delays $delay_1'$ and $delay_2'$;
 - (i) replacing the estimates of C_{eff1} and C_{eff2} in step (b) with the new values for C_{eff1} and C_{eff2} ; and
 - (j) repeating steps (b) through (i) until the 25 calculated values for $delay_1$ and $delay_2$ converge to delays $delay_1'$ and $delay_2'$.

Other modifications, variations, and arrangements of the present invention may be made in accordance with the above teachings other than as 30 specifically described to practice the invention within the spirit and scope defined by the following claims.