

REPRESENTAÇÃO DE SINAIS E SISTEMAS

Sinal - é uma função do tempo cujo valor em cada instante de tempo é único. (variável independente)

Sinais Determinísticos

Transformada de Fourier

Seja g(t) um sinal determinístico e não periódico, expresso como uma função do tempo.

$$G(f) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j2\pi ft} dt$$
$$w = 2\pi f$$

Transformada Direta de Fourier

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft}df$$
$$w = 2\pi f$$

Transformada Inversa de Fourier

Para a T. F. de um sinal g(t) existir, deve-se:

Sistemas de Comunicação

- □Condições de Dirichlet
- 1. A função g(t) tem um número finito de máximos e mínimos em um intervalo finito.
- 2. A função g(t) tem um número finito de descontinuidades em qualquer intervalo de tempo finito. $\int_{0}^{\infty} g(t) dt < \infty$
- 3. A função g(t) é integrável, isto é:

Podemos estabelecer que para todos os sinais realizáveis por um sistema físico, ou seja, todos os sinais de energia, haverá a T. F.

$$E = \int_{-\infty}^{\infty} |g(t)|^2 dt < \infty$$

➤ Classificação:

- ✓ Energia
- ❖Um sinal é dito de energia se: 0 <E < ∞</p>
- Um sinal de energia tem potência média zero. (determinístico e não periódicos)

$$E = \lim_{T \to \infty} \int_{-T/2}^{T/2} x^2(t) dt$$

✓ Potência

♦ Um sinal é dito de potência se: 0 < P < ∞</p>

Um sinal de potência tem energia infinita, porém com potência média finita. (periódicos

e aleatórios)

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt$$

Espectro contínuo - Transformada de Fourier

Figura 2.1 (a) Transformação de Fourier e (b) transformação de Fourier inversa ilustradas como operadores lineares.

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft}df$$

Transformada inversa de Fourier

A função g(t) é expressa em termos de somas continuas de componentes infinitesimais *df* centrado na frequência *f*

Espectro de fase contínuo de g(t)

Exemplo: Calcular a TF da função pulso retangular G(t), definida como: $A. se \mid t \mid < T/2$

A, se | t | < T/2 0, se | t | $\geq T/2$

$$G(t)=\{$$

TF:

-0,5

Figura 2.3 A função sinc.

$$Arect\left(\frac{1}{T}\right) \Leftrightarrow ATsinc(fT)$$

PAR DE Transformada Fourier

Exemplo:

$$u(t) = \begin{cases} 1, t > 0 \\ 1, t = 0 \\ 0, t < 0 \end{cases}$$

$$g(t) = e^{(-at)} u(t)$$

TF:

Figura 2.4 (a) Pulso exponencial decrescente. (b) Pulso exponencial crescente.

www.bookman.com.br

Propriedades da Transformada de Fourier

a)Linearidade (superposição)

$$sef_1(t) \leftrightarrow F_1(\omega)e f_2(t) \leftrightarrow F_2(\omega)$$

$$ent\tilde{a}oa_1.f_1(t) + a_2f_2(t) \leftrightarrow a_1.F_1(\omega) + a_2.F_2(\omega)$$

Propriedades da Transformada de Fourier

a)Linearidade (superposição)

✓EXEMPLO: Pulso exponencial duplo b) assimétrico

Figura 2.6 A função sinal.

Sistemas de Comunicação Omitima de Comunicação

Propriedades da Transformada de Fourier

b) Escalonamento no tempo

$$g(at) \leftrightarrow \frac{1}{|a|} g\left(\frac{f}{a}\right)$$

A <u>compressão</u> de uma função g(t) no domínio do tempo é equivalente à <u>expansão</u> da sua T.F. G(f) no domínio da frequência pelo mesmo fator, ou vice-versa.

✓EXEMPLO:

Produto Tempo X Largura de Banda = CONSTANTE

Propriedades da Transformada de Fourier

c) Dualidade

$$Arect\left(\frac{1}{T}\right) \Leftrightarrow ATsinc(fT)$$

$$Asinc(wt) \Leftrightarrow \frac{A}{2w}rect\left(\frac{f}{2w}\right)$$

Figura 2.7 (a) Pulso sinc g(t). (b) Transformada de Fourier G(f).

Propriedades da Transformada de Fourier

d) Deslocamento no tempo

$$g(t-t_{\scriptscriptstyle 0}) \leftrightarrow G(f)e^{-j2\pi ft_{\scriptscriptstyle 0}}$$

$$F(g(t-t_0)) = \int_{-\infty}^{\infty} g(t-t_0)e^{-j2\pi ft} dt$$

$$\tau = t - t_0 \quad t = \tau + t_0$$

$$F(g(t-t_0)) = e^{-j2\pi f t_0} \int_{-\infty}^{\infty} g(\tau) e^{-j2\pi f \tau} d\tau$$

$$g(t-t_0) \leftrightarrow G(f)e^{-j2\pi ft_0}$$

Propriedades da Transformada de Fourier

e) Deslocamento em frequência

$$e^{j2\pi fct}g(t)\leftrightarrow G(f-f_c)$$

$$F(e^{j2\pi fct}g(t)) = \int_{-\infty}^{\infty} g(t)e^{j2\pi fct}e^{-j2\pi ft} dt$$

$$F(e^{j2\pi fct}g(t)) = \int_{-\infty}^{\infty} g(t)e^{j2\pi t(fc-f)} dt$$

$$G(f-fc)$$

Pulso de radiofrequência

✓EXEMPLO:

Na frequência:

Figura 2.8 (a) Pulso de RF. (b) Espectro de magnitude.

Propriedades da Transformada de Fourier

f) Multiplicação no domínio do tempo

$$g_1(t)g_2(t) = \int_{-\infty}^{\infty} G_1(\lambda).G_2(f-\lambda) d\lambda$$

Demonstração:

$$g_{\scriptscriptstyle 1}(t)g_{\scriptscriptstyle 2}(t) \Leftrightarrow G_{\scriptscriptstyle 1}(f) * G_{\scriptscriptstyle 2}(f)$$

Propriedades da Transformada de Fourier

g) Convolução no domínio do tempo

$$\int\limits_{-\infty}^{\infty}g_{\scriptscriptstyle 1}(\tau).g_{\scriptscriptstyle 2}(t-\tau)\ d\tau=G_{\scriptscriptstyle 1}(f)G_{\scriptscriptstyle 2}(f)$$

Demonstração:

$$g_{\scriptscriptstyle 1}(t) * g_{\scriptscriptstyle 2}(t) \Leftrightarrow G_{\scriptscriptstyle 1}(f)G_{\scriptscriptstyle 2}(f)$$

Convolução

Convolução de dois sinais retangulares

$$f_1(t) = rect(t)$$
 $f_2(t) = rect(t)$

Convolução

Convolução

Convolução

Exemplo: Encontre a convolução de f1(t) com um par de impulsos de peso k cada um.

Exemplo: Encontre a convolução de f1(t) com f2(t).

Propriedades da Transformada de Fourier

Teorema de Rayleigh da Energia

A energia de um sinal g(t) pode ser obtida tanto por uma integração no domínio do tempo quanto por uma integração no domínio frequência.

$$E = \int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df < \infty$$

A energia de um sinal é dada pela área sob a curva $|G(f)|^{2}$.

Definição: A energia E de um sinal de tempo contínuo x(t), será a energia dissipada por uma tensão x(t), aplicada a um resistor de 1Ω .

Sinais onde E é finita são conhecidos como sinais de energia. (sinais de pulso)

$$E=\int_{-\infty}^{\infty}x^2(t)\,dt$$

Sinal de tempo discreto x[n], teremos:

$$E = \sum_{-\infty}^{\infty} x^2 [n]$$

•

Se G(w) é a transformada de Fourier de g(t).

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(w) e^{jwt} dw$$

A energia E de g(t) é dada por:

$$E = \int_{-\infty}^{\infty} g^{2}(t) dt = \int_{-\infty}^{\infty} g(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} G(w) e^{jwt} dw \right] dt$$

Permutando a ordem da integração

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(w) \left[\int_{-\infty}^{\infty} g(t) e^{jwt} dt \right] dw$$

$$\int_{-\infty}^{\infty} g^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(w) G(-w) dw$$

$$G(w)G(-w)=|G(w)|^2$$

$$\int_{-\infty}^{\infty} g^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(w)|^{2} dw = \int_{-\infty}^{\infty} |G(f)|^{2} df$$

 $|G(w)|^2$ é o espectro de densidade de energia.

Densidade espectral de energia - fornece a contribuição relativa de energia das diferentes componentes de frequência.

Largura de Banda

Sinal estritamente limitado no tempo

Figura 2.11a Ilustração da largura de banda nulo a nulo nos casos passa-baixas e passa-faixa.

Largura de Banda

Figura 2.11b Ilustração da largura de banda de 3 dB nos casos banda base e passa-faixa.

Largura de Banda

Largura de banda de valor quadrático médio (rms) de um sinal passa-faixa g(t).

$$W_{rms} = \left(\frac{\int_{-\infty}^{\infty} f^2 |G(f)|^2 df}{\int_{-\infty}^{\infty} |G(f)|^2 df}\right)^{1/2}$$

DEFINIÇÃO: Largura de banda de valor quadrático médio (rms) é definida como a raiz quadrada de uma forma normalizada do espectro de magnitude quadratico do sinal em torno de um ponto adequadamente escolhido.

Função delta de Dirac (impulso unitário)

Funções utilizadas na análise de sinais.

0, se $t \neq 0$ ∞ , se t = 0

□ Delta de Dirac, definida como:

$$\delta(t) = \{$$

□Uma característica importante é que a integral da função desde $-\infty$ a $+\infty$, ou seja:

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

Propriedade de peneiramento

$$\int_{-\infty}^{\infty} \delta(t).f(t).dt = f(0)$$

$$\int_{-\infty}^{\infty} \delta(t-t_0).f(t).dt = f(t_0)$$

$$F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j2\pi ft} dt$$
$$F[\delta(t)] = 1$$

Propriedade de peneiramento

$$F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) . e^{-j2\pi ft} dt = g(t_0)$$

Figura 2.12 (a) A função delta de Dirac $\delta(t)$. (b) O espectro de $\delta(t)$.

Função delta como uma forma limite do pulso gaussiano

$$g(t) = \frac{1}{\tau} e^{\left(-\frac{\pi t^2}{\tau^2}\right)}$$

$$G(f) = e^{(-\pi \tau^2 f^2)}$$

 \triangleright A função delta $\delta(t)$ é obtida tornandose o limite $\tau \rightarrow 0$.

➤O pulso gaussiano se torna infinitamente estreito em duração e infinitamente grande em amplitude, porém sua área permanece finita e fixada em 1.

Sistemas de Comunicação

g(t)

Figura 2.13 (a) Pulso gaussiano de duração variável. (b) Espectivo correspondente.

\triangleright Aplicações da função delta $\delta(t)$:

√ Sinal dc

$$\int_{-\infty}^{\infty} e^{-j2\pi ft} dt = \delta(f)$$

Figura 2.14 (a) Sinal dc. (b) Espectro.

✓ Se a função delta é de valor real podemos simplificar a relação:

$$\int_{-\infty}^{\infty} \cos(2\pi f t) dt = \delta(f)$$

$$1 \Leftrightarrow \delta(f)$$

- \triangleright Aplicações da função delta $\delta(t)$:
- ✓ Funções senoidais

$$\cos(2\pi f_c t) = \frac{1}{2} [e^{j2\pi f_c t} + e^{-j2\pi f_c t}]$$

$$\cos(2\pi f_c t) \Leftrightarrow \frac{1}{2} [\delta(f - f_c) - \delta(f + f_c)]$$

Sistema Comunic Figura 2.15 (a) Função cosseno. (b) Espectro.

\triangleright Aplicação da função delta $\delta(t)$:

✓ Funções senoidais

$$sen(2\pi f_c t) = \frac{1}{2j} \left[e^{j2\pi f_c t} - e^{-j2\pi f_c t} \right]$$

$$sen(2\pi f_c t) \Leftrightarrow \frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$$

Sistemas de Comunicação **Figura 2.16** (a) Função seno. (b) Espectro.

Transformada de Fourier de sinais periódicos

Utilizando a serie de Fourier, um sinal periódico pode ser representado pela soma de exponenciais complexas. $C_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \mathcal{G}T_0(t).e^{-jn\omega_0 t} dt \quad f_0 = \frac{1}{T_0}$

$$g_{\tau_o}(t) = \sum_{n=-\infty}^{\infty} \left(C_n e^{jn\omega_o t} \right)$$

Série de Fourier de exponenciais complexas

Coeficiente de Fourier complexo

fo - frequência **fundamental**

$$g(t) = \begin{cases} g_{\tau_0}(t), & \frac{-T_0}{2} \le t \le \frac{T_0}{2} \\ 0, & caso & contrário \end{cases}$$

O sinal periódico:

 $g_{T_{\alpha}}(t)$ O sinal periódico pode ser expresso em termos da sua função g(t)como um somatório infinito.

$$g_{T_0}(t) = \sum_{m=-\infty}^{\infty} g(t - mT_0)$$

Constituindo um período do sinal periódico, a transformada de Fourier da função existe:

Desta forma, podemos reescrever a fórmula para o Coeficiente de Fourier complexo. $C_n = f_0 \int_0^\infty g(t).e^{-jn\omega_0 t} dt = f_0 G(nf_0)$

Reescrevendo a fórmula para reconstrução do sinal periódico.

$$g_{T_o}(t) = \sum_{n=-\infty}^{\infty} \left(C_n e^{jn\omega_o t} \right)$$

$$g_{T_o}(t) = f_0 \sum_{n=-\infty}^{\infty} G(nf_0) e^{jn\omega_o t}$$

$$\sum_{m=-\infty}^{\infty} g(t-mT_0) = f_0 \sum_{n=-\infty}^{\infty} G(nf_0) e^{jn\omega_0 t}$$

$$\sum_{m=-\infty}^{\infty} g(t-mT_0) \Leftrightarrow f_0 \sum_{n=-\infty}^{\infty} G(nf_0) \delta(f-nf_0)$$

A TF de um sinal periódico consiste na função delta ocorrendo em múltiplos inteiros da frequência fundamental fo ponderada por um fator G(nfo).

$$\sum_{m=-\infty}^{\infty} g(t-mT_0) \Leftrightarrow f_0 \sum_{n=-\infty}^{\infty} G(nf_0) \delta(f-nf_0)$$

$$\sum_{m=-\infty}^{\infty} \delta(t-mT_0) \Leftrightarrow ?$$

Espectro do Pente de Dirac

 $\sum_{m=-\infty}^{\infty} g(t-mT_0) \Leftrightarrow f_0 \sum_{n=-\infty}^{\infty} G(nf_0) \delta(f-nf_0)$

$$\sum_{m=-\infty}^{\infty} \delta(t-mT_0) \Leftrightarrow f_0 \sum_{n=-\infty}^{\infty} \delta(f-nf_0)$$

Transmissão de sinais através de sistemas lineares

Ex: filtros e canais de comunicação.

Invariante no tempo – a forma de resposta ao impulso será a mesma (h(t) t=0), independentemente de quando o impulso unitário for aplicado ao sistema

Transmissão de sinais através de sistemas lineares invariante no tempo

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

y(t) - Obtido somando as várias resposta infinitesimais devido aos vários pulsos de entrada. (Superposição)

Considerando que a convolução é comutativa, pode-se escrever:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau$$

Exemplo de um filtro linear invariante no tempo – Filtro transversal ou Filtro Tapped-Delay-Line (TDL)

A resposta ao impulso

$$h(t) = 0 \quad t < 0$$

A resposta ao impulso do filtro é de alguma duração finita T_f de modo que h(t)=0 $t>=T_f$

A saída do filtro produzida em resposta à entrada será:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau$$

Ex de filtro linear invariante no tempo – Filtro transversal ou Filtro Tapped-Delay-Line

Seja a saída Y(t) uniformente amostrada à taxa de segundo $t = n\Delta \tau$ $\tau = k\Delta \tau$

amostras por

Período de amostragem (pequeno)

Figura 2.21 Filtro TDL.

Pode-se aproximar:

$$y(n\Delta\tau) = \sum_{k=0}^{N-1} h(k\Delta\tau)x(n\Delta\tau - k\Delta\tau) \Delta\tau$$

$$w_{k} = h(k\Delta\tau)\Delta\tau$$

Elementos de atraso

Multiplicadores

Somador

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau$$

$$y(n\Delta\tau) = \sum_{k=0}^{N-1} w_k x(n\Delta\tau - k\Delta\tau)$$

FILTROS

Realizável na prática se:

- ✓ Resposta ao impulso é causal Ele não responde antes que a excitação seja aplicada. h(t) = 0, t < 0
- ✓ Na frequência Critério de Paley-Wiener

Para uma função $\alpha(f)$ ser o ganho de um filtro causal - a integral deve convergir.

$$\int_{-\infty}^{\infty} \frac{|\alpha(f)|}{1 + f^2} df < \infty$$

Atenuação infinita para um conjunto discreto de frequência, mas ele não pode ter atenuação infinita sobre uma banda de frequência – Condição de causalidade no dominio da frequencia.

Exemplos de Filtros

Figura 2.22 Ilustração da definição de largura de banda: (a) sistema passa-baixas de largura de banda *B*; (*b*) sistema passa-faixa de largura de banda 2*B*.

FILTRO PASSA BAIXA IDEAL

COMUNICAÇÃO DE BANDA BASE -

Limitadas a instalações com fios e cabos.

Figura 2.23 Resposta em frequência do filtro passa-baixas ideal.

❖A função de transferência do FPB ideal é:

$$H(f) = \begin{cases} e^{-j2\pi f t_0}, -B \le f \le B \\ 0, & |f| > B \end{cases}$$

Sendo B a largura de banda do filtro Filtro não causal

FILTRO PASSA BAIXA IDEAL

❖A resposta ao impulso do FPB ideal é:

$$h(t) = \int_{-B}^{B} e^{j2\pi f(t-t_o)} df$$

Transformada Inversa de Fourier

$$h(t) = \frac{e^{j2\pi f(t-t_0)}}{j2\pi(t-t_0)} \Big|_{-B}^{B}$$

$$h(t) = \left[e^{j2\pi B(t-t_0)} - e^{-j2\pi B(t-t_0)}\right] \frac{1}{j2\pi(t-t_0)}$$

$$h(t) = \frac{1}{\pi(t-t_0)} \cdot \frac{1}{2j} \cdot [e^{j2\pi B(t-t_0)} - e^{-j2\pi B(t-t_0)}]$$

$$h(t) = \frac{1}{\pi(t-t_0)}.sen[2\pi B(t-t_0)].\frac{2B}{2B}$$

❖A resposta ao impulso do FPB ideal é:

$$h(t) = \frac{1}{\pi(t-t_0)}.sen[2\pi B(t-t_0)].\frac{2B}{2B}$$

$$h(t) = 2B \frac{sen[2\pi B(t - t_0)]}{2B\pi(t - t_0)}$$

$$h(t) = 2Bsinc[2B(t - t_0)]$$

EXEMPLOS DE FILTROS PASSA BAIXAS

Figura 2.26 Comparação da resposta em magnitude de um filtro de Butterworth passa-baixas de 6^a ordem com a de um filtro de Chebyshev de 6^a ordem.

EXEMPLOS DE FILTROS PASSA BAIXAS

www.bookman.com.t

Figura 2.27 Resposta em magnitude de um filtro elíptico passa-faixa de 8ª ordem.

EXEMPLOS DE FILTROS PASSA BAIXAS

Sistema: ComunicaFigura 2.28 Resposta em magnitude de um filtro FIR passa-baixas de 29 taps.

LINK DE COMUNICAÇÃO - FILTROS PASSA BAIXAS

Sistemas de Comunicação

EX: Transmissão de rádio – canal multipercurso

Figura 3.4 - Ondas de múltiplos percursos.

A resposta ao impulso desse canal será modulada por:

- τ Intervalo de duração maior devido a reflexão.
- α Atenuação do sinal
- P Rotação da fase Reflexão

Figura 2.29 Resposta em amplitude de um canal multipercurso $h(t) = \delta(t) + \alpha e^{j\phi} \delta(t - \tau) \cos \alpha = 0.2$, $\phi = 180^{\circ}$ e $\tau = 0.2$ microssegundos.

www.bookman.com.br

FILTROS PASSA FAIXA

Figura 2.30 (a) Ilustração do espectro de um sinal passa-faixa.

$$g(t) = a(t).cos[2.\pi.f_c.t + \varphi(t)]$$

FILTROS PASSA FAIXA

Figura 2.30 (b) Um sinal passa-faixa.

$$g(t) = a(t).cos[2.\pi.f_c.t + \varphi(t)]$$

a(t) – envelope do sinal passa-faixa g(t)

 $\Phi(t)$ – fase do sinal

Representação fasorial de um sinal passa faixa g(t)

$$\underset{2.\pi.f_c.t}{\overset{a(c)}{\leftarrow}} \underset{\varphi(t)}{\mathsf{omprimento}}$$

Fase

Representação fasorial do envelope complexo $\sim g(t)$ (a)

$$g(t) = a(t).cos[2.\pi.f_c.t + \varphi(t)]$$

$$g(t) = g_I(t).cos(2.\pi.f_c.t) - g_Q(t).sen(2.\pi.f_c.t)$$

$$g_I(t) = a(t).cos\varphi(t)$$

$$g_Q(t) = a(t).sen\varphi(t)$$

Fase

Quadratura

$$a(t) = \sqrt{g_I(t)^2 + g_Q(t)^2}$$
$$\varphi(t) = tan^{-1}()$$

11.

Sistemas de Comunicação

www.bookman.com.b

Diagrama para derivação das componentes em fase e em quadratura

$$g(t) = a(t).cos[2\pi.f_c.t + \varphi(t)]$$

$$g(t) = g_t(t).cos(2\pi.f_c.t) - g_Q(t).sen(2\pi.f_c.t)$$

DEMONSTRAÇÃO

Figura 2.33 (a) Esquema para a derivação dos componentes em fase e em quadratura de um sinal passa-faixa. (b) Esquema para a reconstrução do sinal passa-faixa a partir dos seus componentes em fase e em quadratura.

Fontes de informação

Fontes de informação analógica

Figura 2.37 Um exemplo de forma de onda que representa uma fonte de informação analógica.

Fontes de informação digital

Figura 2.38 Ilustração de uma onda binária aleatória: (a) Um pulso de forma retangular e (b) um pulso de forma não retangular.

$$g(t) = \sum_{k=0}^{K-1} b_K p(t - kT)$$

p(t) - forma do pulso

t-kT - desloca o centro do pulso para kT

T - período de um pulso individual

bK - k-ésimo bit de dado (0 e 1, ±1 ou ±A)

Exemplo: ESTIMAÇÃO DE UM CANAL DE LAN SEM FIO

Sequencia de treinamento

Resposta no domínio da frequência do canal

Sequencia de impulso detectada no receptor, com sua magnitude e fase modificada pelo canal.

Figura 2.40 Ilustração da estimação de canal com uma sequência de funções delta no domínio da frequência: (a) sequência de treinamento no domínio da frequência; (b) resposta em frequência do canal; e (c) estimativa do canal.

Sequencia de treinamento resultante para impulso unitário limitado a uma largura de banda 20MHz.

Figura 2.41 Ilustração de uma sequência de treinamento de WLAN no domínio do tempo.

Técnica de compensação do canal

Figura 2.42 Diagrama de blocos da técnica de compensação do canal baseado na sequência de treinamento que é um conjunto de impulsos no domínio da frequência.

Sinais e espectros Fasores e espectro de linhas

Seja um sinal senoidal dado pela seguinte expressão:

$$v(t) = A\cos(\omega_0 t + \varphi)$$

Utilizando-se da relação de Euler, tal que:

$$e^{j\theta} = cos(\theta) + jsen(\theta)$$

Podemos expressar o sinal senoidal por um fasor, tal como na figura abaixo:

