COMSCI 33 (AUTOMATA THEORY and FORMAL LANGUAGES)

Lesson 1: Introduction to formal languages

Automata Theory

- In theoretical computer science, automata theory is the study of abstract computing devices or "machines" and the problems which they are able to solve.
- These abstract machines are called automata.

Formal Languages

- These are languages with precise syntax and semantics
 - Formal languages are defined by two sets of rules:
 - Syntax: precise rules that tell you the symbols you are allowed to use and how to put them together into legal expressions.
 - Semantics: precise rules that tell you the meanings of the symbols and legal expressions
- Programming languages are examples of formal languages

The Chomsky Hierarchy

Non Turing-Acceptable

Turing-Acceptable decidable Context-sensitive Context-free Regular

Course Outline (1/3)

- Formal Languages
 - Symbols
 - Alphabets
 - Strings
 - Formal Languages
 - Regular Expressions
 - Regular Languages

Course Outline (2/3)

- Finite State System
 - Deterministic Finite Automata (DFA)
 - Non-deterministic Finite Automata (NFA)
 - Equivalence of DFA and NFA
 - Properties of Languages accepted by FA
 - Finite Automata and Regular Expressions

Course Outline (3/3)

- Context-free Languages
 - Context-free Grammar (CFG)
 - Regular Languages and Context-free Languages
 - Pushdown Automata
 - Pushdown Automata and CFG
- Turing Machines (TM)
 - Turing Machines
 - Computing with Turing Machines
 - Combining Turing Machines

Grading System (1.0 = 60%)

Midterm Grade

 Midterm Exam 	35%
 Quizzes 	35%
 Assignments 	15%
Seatwork's	15%

Final Grade

 Midterm Grade 	25%
 Final Exam 	30%
 Exer/Homeworks 	20%
• Quiz	25%

Books

- Textbook
 - Sipser, Michael (2006). Introduction to the Theory of Computation –
 Second Edition. Thomson Learning, Inc. Thomson Learning.
- References
 - any automata books/ebooks

Why study automata theory?

- The study of automata is important because
 - Automata theory plays an important role when we make software for designing and checking the behavior of a digital circuit
 - The lexical analysis of a compiler breaks a program into logical units, such as variables, keywords, and punctuation using this mechanism
 - Automata theory works behind software for scanning large bodies of text, such as web pages to find occurrence of words, phrases, etc
 - Automata theory is the most useful concept of software for natural language processing

Basic Concepts

Symbol

- a single character or mark
- an abstract entity with no meaning by itself and often called un-interpreted
- may be letters from various alphabets (like in the english alphabet – a,b,c,d, ..) or digits or special characters

Alphabet

Definition: Any nonempty finite set is called an **alphabet**. Every element of an alphabet Σ is called a **symbol** of Σ .

- is a finite set of symbols
- often represented by the greek letter sigma (Σ) but still you can give any name you want
- for example
 - A = {0, 1} Boolean alphabet
 - $B = \{a, b\}$
 - $\Sigma = \{a, b, c, ..., z\}$ Latin alphabet

String or Word

Definition: Let Σ be an alphabet. A **word** over Σ is any finite sequence of symbols of Σ . The **empty word** λ (or e) is the only word without any symbol.

- concatenation of 0 or more symbols from an alphabet
- Examples:

```
A = {0, 1}
e, 0, 1, 01, 10, 11, 10101, ... are words over the alphabet {0,1}
B = {a, b, c}
e, a, b, c, ab, ac, abc, cab, aacabb, ...
Σ = {a, b, c, ..., z}
e, a, b, c, d, e, abc, abcde, chi, chu, chuchi... are words over the latin alphabet
```

Note:

e means the empty string or string with no symbols

Length

Definition: The **length of a word** w over Σ , denoted by |w|, is the number of symbols in w.

- is the number of symbols in the string
- |w| = the length of string w
- for example:

```
|0| = 1
|abcd| = 4
|e| = 0
```

Powers of an alphabet

- Σ^k is the set of strings of length k, each of whose symbols is in Σ .
- If $\Sigma = \{0, 1\}$
 - $\Sigma^0 = \{e\}$
 - $\Sigma^1 = \{0,1\}$
 - $\Sigma^2 = \{00,01,10,11\}$
 - $\Sigma^3 = \{000,001,010,011,100,101,110,111\}$

Definition: The set of all words over Σ is denoted by Σ^* . Then, Σ^+ = Σ^* - $\{\lambda\}$, to be the set of words without the empty word

Example:

```
_{\circ} {0,1}* = {e,0,1,00,01,10,11,000, . . .}

_{\circ} \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...
```

• The set of nonempty strings from alphabet Σ is denoted Σ^+

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup ...$$

$$_{\circ} \Sigma^{*} = \Sigma^{+} \cup \{e\}$$

Concatenation

• The concatenation of two string x and y is the string x followed by the string y, that is xy

Example:

```
u= 0110 and v=10110.
Then
    uv=011010110
while
    vu=101100110
```

Substring or Subword

Definition: Let u, w be element of Σ^* .

–u is a **subword** of w iff there are x,y in Σ^* such that w=xuy.

where:

- -y is the **suffix** of w. if $y\neq\lambda$, it is **proper suffix**.
- -x is a **prefix** of w. if $x \ne \lambda$, it is **proper prefix**.

• Exercise:

Count the number of subwords of the word abbcbbab

Reversal

- the reversal of a string w, denoted by w^R is the string spelled backwards
- Example
 - w = abbab
 - w^R = babba

Formal definition of Reversal

- Formally,
 - ∘ if |w|=0, then w=w^R=e
 - if the length of the string w is 0 then string w is equal to its reverse as well as to the empty string.
 - if |w|=n+1, then w=ua for some a ε Σ and w^R=au^R
- Example
 - Show the reverse of w = aabab

\sum^*

Σ* is the set of all strings over the alphabet Σ, including
 e.

Example

```
1. Σ = {a}
Σ* ={e, a, aa, aaa, ...}
2. Σ = {0,1}
Σ* ={e, 0, 1, 00,01,10,11, 000, ...}
```

A (formal) Language is ...

- •A set of strings from an alphabet. The set may be empty, finite or infinite.
- Any subset of Σ*

Examples

 The languages of all strings consisting of n 0's followed by n 1's for some n>=0

```
{e,01,0011,000111, ...}
```

 The set of strings of 0's and 1's with an equal number of each

```
{e, 01, 10, 0011, 0101, 1001, ...}
```

 The set of binary numbers whose value is prime {10, 11, 101, 111, 1011, ...} Some special languages:

- {} The empty set/language, containing no strings
- $\{\epsilon\}$ A language containing one string, the empty string.

Set-Former as way to define languages

- It is common to describe a language using a "set-former"
 - { w / something about w}
- This expression is read "the set of words w such that whatever is said about w to the right of the vertical bar"
- Examples:
 - { w / w consists of an equal number of 0's and 1's}
 - {w / w is a binary integer that is prime}

Example Languages

```
•L1 = \{x, xx, xxx, xxxx, ...\}
    L1 = {w \in \{x\}^* / w = x^n \text{ for } n = 1, 2, 3, ...}
•L2 = {x, xxx, xxxxx, xxxxx, ... }
    L2 = \{w \in \{x\}^* / w = x^{\text{odd}}\}
    L2 = {w \in \{x\}^* / x^{2n+1} \text{ for } n=0, 1, 2, 3, ...\}
• L3= {aa, bb, ab, ba}
• L4= {b, ba, baa, baaa, ...}
• L5= {w \in {a,b}* / w=w<sup>R</sup>}
```

Hierarchy of languages

Non-Recursively Enumerable Languages

Operations on Languages

Concatenation

L1. L2 = L1L2
= {
$$w \in \Sigma^* / w = xy \text{ for some } x \in L1 \text{ and } y \in L2 }$$

Kleene Closure

```
L^* = \{ w \in \Sigma^* / w = w^0 w^1 w^2 \dots w^k, 
where w^0, w^1, w^2, \dots w^k \in L \}
```

Kleene Star *

- The Kleene closure (*) is defined as the concatenation of none, one, two, or any countable number strings it applies to. The notation is sometimes known as the Kleene star.
- Example:

```
L1 = { a }
L1* = { e, a, aa, aaa, ... }
```

Set operations on languages

 Since languages are set, they can be combined with the operations: union, intersection and difference.

```
    Union L = L1 U L2
```

- Intersection L = L1 ∩ L2
- Difference L = L1 L2
- Complement L = Σ* L

Examples

- •L1 = $\{a\}$ L2 = $\{bb\}$ L3 = $\{a,bb,aa\}$
- Solve for:
 - Union
 - Intersection
 - Difference
 - complement