Housing Price Prediction Model using modeldata package - a subset of ames housing data

Saurav Mukherjee

2023-02-16

Introduction

I am building home price prediction model. I am using Ames Housing dataset to explore the attributes which have been identified somehow influencing the housing cost.

Initially I wanted to use the 'Ames Housing Data" - a data set describing the sale of individual residential property in Ames, Iowa from 2006 to 2010. The data set contains 2930 observations and a large number of explanatory variables (23 nominal, 23 ordinal, 14 discrete, and 20 continuous) involved in assessing home values. However, I looked at a dataset which is a subset of this dataset and which is available within modeldata package created by https://modeldata.tidymodels.org/. I did some research and looked at the model - Hedonic Pricing Method to predict the house price. The Hedonic Pricing Method talks about internal characteristics as well as the external factors affecting the price of a good. Based on the idea of hedonic price modeling I am looking the is that neighborhood-specific and unit-specific characteristics help determine house prices.

##Data - Ames Housing Data

A data set from De Cock (2011) has 82 fields were recorded for 2,930 properties in Ames IA. I used a version from the package modeldata dataset name as ames which is copies from the original AmesHousing package but does not include a few quality columns that appear to be outcomes rather than predictors.

##Load required Libraries ## Load ames dataset ## Setup environments

Exploratory Data Analysis

Table 1: Ames Housing Dataset dimension

```
\frac{x}{2930}
```

```
## tibble [2,930 x 74] (S3: tbl_df/tbl/data.frame)
   $ MS_SubClass
                        : Factor w/ 16 levels "One_Story_1946_and_Newer_All_Styles",...: 1 1 1 1 6 6 12
                        : Factor w/ 7 levels "Floating_Village_Residential",..: 3 2 3 3 3 3 3 3 3 3 ...
   $ MS_Zoning
   $ Lot_Frontage
                        : num [1:2930] 141 80 81 93 74 78 41 43 39 60 ...
##
   $ Lot Area
                        : int [1:2930] 31770 11622 14267 11160 13830 9978 4920 5005 5389 7500 ...
                        : Factor w/ 2 levels "Grv1", "Pave": 2 2 2 2 2 2 2 2 2 ...
##
   $ Street
                        : Factor w/ 3 levels "Gravel", "No Alley Access", ...: 2 2 2 2 2 2 2 2 2 ...
   $ Alley
                        : Factor w/ 4 levels "Regular", "Slightly Irregular", ...: 2 1 2 1 2 2 1 2 2 1
   $ Lot Shape
```

```
$ Land Contour
                        : Factor w/ 4 levels "Bnk", "HLS", "Low", ...: 4 4 4 4 4 4 4 2 4 4 ...
##
                        : Factor w/ 3 levels "AllPub", "NoSeWa", ...: 1 1 1 1 1 1 1 1 1 1 ...
   $ Utilities
## $ Lot Config
                        : Factor w/ 5 levels "Corner", "CulDSac", ...: 1 5 1 1 5 5 5 5 5 5 ...
                        : Factor w/ 3 levels "Gtl", "Mod", "Sev": 1 1 1 1 1 1 1 1 1 1 ...
## $ Land_Slope
##
   $ Neighborhood
                        : Factor w/ 29 levels "North_Ames", "College_Creek",..: 1 1 1 1 7 7 17 17 17 7 .
##
                        : Factor w/ 9 levels "Artery", "Feedr", ...: 3 2 3 3 3 3 3 3 3 ...
  $ Condition 1
                        : Factor w/ 8 levels "Artery", "Feedr", ...: 3 3 3 3 3 3 3 3 3 3 ...
   $ Condition 2
                        : Factor w/ 5 levels "OneFam", "TwoFmCon", ...: 1 1 1 1 1 1 5 5 5 1 ....
##
   $ Bldg_Type
                        : Factor w/ 8 levels "One_and_Half_Fin",..: 3 3 3 3 8 8 3 3 8 ...
##
   $ House_Style
                        : Factor w/ 10 levels "Very_Poor", "Poor", ...: 5 6 6 5 5 6 5 5 5 5 ....
##
   $ Overall_Cond
   $ Year_Built
                        : int [1:2930] 1960 1961 1958 1968 1997 1998 2001 1992 1995 1999 ...
##
                        : int [1:2930] 1960 1961 1958 1968 1998 1998 2001 1992 1996 1999 ...
   $ Year_Remod_Add
##
                        : Factor w/ 6 levels "Flat", "Gable", ...: 4 2 4 4 2 2 2 2 2 2 ...
   $ Roof_Style
##
  $ Roof_Matl
                        : Factor w/ 8 levels "ClyTile", "CompShg", ...: 2 2 2 2 2 2 2 2 2 2 ...
##
                        : Factor w/ 16 levels "AsbShng", "AsphShn", ...: 4 14 15 4 14 16 7 6 14 ....
   $ Exterior_1st
##
   $ Exterior_2nd
                        : Factor w/ 17 levels "AsbShng", "AsphShn",..: 11 15 16 4 15 15 6 7 6 15 ...
                        : Factor w/ 5 levels "BrkCmn", "BrkFace", ...: 5 4 2 4 4 2 4 4 4 4 ...
##
   $ Mas_Vnr_Type
                        : num [1:2930] 112 0 108 0 0 20 0 0 0 0 ...
   $ Mas Vnr Area
                        : Factor w/ 5 levels "Excellent", "Fair", ...: 5 5 5 5 5 5 5 5 5 5 ...
## $ Exter_Cond
##
   $ Foundation
                        : Factor w/ 6 levels "BrkTil", "CBlock", ...: 2 2 2 2 3 3 3 3 3 3 ...
## $ Bsmt_Cond
                        : Factor w/ 6 levels "Excellent", "Fair", ...: 3 6 6 6 6 6 6 6 6 ...
                        : Factor w/ 5 levels "Av", "Gd", "Mn", ...: 2 4 4 4 4 3 4 4 4 ...
## $ Bsmt_Exposure
                        : Factor w/ 7 levels "ALQ", "BLQ", "GLQ", ...: 2 6 1 1 3 3 3 1 3 7 ....
##
   $ BsmtFin Type 1
                        : num [1:2930] 2 6 1 1 3 3 3 1 3 7 ...
##
   $ BsmtFin SF 1
## $ BsmtFin_Type_2
                        : Factor w/ 7 levels "ALQ", "BLQ", "GLQ", ...: 7 4 7 7 7 7 7 7 7 7 ...
   $ BsmtFin_SF_2
                        : num [1:2930] 0 144 0 0 0 0 0 0 0 0 ...
##
   $ Bsmt_Unf_SF
                        : num [1:2930] 441 270 406 1045 137 ...
##
   $ Total_Bsmt_SF
                        : num [1:2930] 1080 882 1329 2110 928 ...
##
                        : Factor w/ 6 levels "Floor", "GasA", ...: 2 2 2 2 2 2 2 2 2 2 ...
  $ Heating
##
                        : Factor w/ 5 levels "Excellent", "Fair", ...: 2 5 5 1 3 1 1 1 1 3 ...
   $ Heating_QC
##
   $ Central_Air
                        : Factor w/ 2 levels "N", "Y": 2 2 2 2 2 2 2 2 2 2 ...
##
   $ Electrical
                        : Factor w/ 6 levels "FuseA", "FuseF", ...: 5 5 5 5 5 5 5 5 5 5 5 ...
##
   $ First_Flr_SF
                        : int [1:2930] 1656 896 1329 2110 928 926 1338 1280 1616 1028 ...
                        : int [1:2930] 0 0 0 0 701 678 0 0 0 776 ...
##
   $ Second_Flr_SF
##
   $ Gr Liv Area
                        : int [1:2930] 1656 896 1329 2110 1629 1604 1338 1280 1616 1804 ...
## $ Bsmt_Full_Bath
                        : num [1:2930] 1 0 0 1 0 0 1 0 1 0 ...
## $ Bsmt Half Bath
                        : num [1:2930] 0 0 0 0 0 0 0 0 0 0 ...
## $ Full_Bath
                        : int [1:2930] 1 1 1 2 2 2 2 2 2 2 2 ...
##
   $ Half_Bath
                        : int [1:2930] 0 0 1 1 1 1 0 0 0 1 ...
## $ Bedroom_AbvGr
                        : int [1:2930] 3 2 3 3 3 3 2 2 2 3 ...
## $ Kitchen AbvGr
                        : int [1:2930] 1 1 1 1 1 1 1 1 1 1 ...
## $ TotRms AbvGrd
                        : int [1:2930] 7 5 6 8 6 7 6 5 5 7 ...
                        : Factor w/ 8 levels "Maj1", "Maj2",...: 8 8 8 8 8 8 8 8 8 8 ...
##
   $ Functional
## $ Fireplaces
                        : int [1:2930] 2 0 0 2 1 1 0 0 1 1 ...
                        : Factor w/ 7 levels "Attchd", "Basment", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ Garage_Type
##
                        : Factor w/ 4 levels "Fin", "No_Garage", ..: 1 4 4 1 1 1 1 3 3 1 ...
   $ Garage_Finish
##
   $ Garage_Cars
                        : num [1:2930] 2 1 1 2 2 2 2 2 2 2 ...
##
   $ Garage_Area
                        : num [1:2930] 528 730 312 522 482 470 582 506 608 442 ...
   $ Garage_Cond
                        : Factor w/ 6 levels "Excellent", "Fair",..: 6 6 6 6 6 6 6 6 6 ...
##
   $ Paved_Drive
                        : Factor w/ 3 levels "Dirt_Gravel",..: 2 3 3 3 3 3 3 3 3 ...
## $ Wood_Deck_SF
                        : int [1:2930] 210 140 393 0 212 360 0 0 237 140 ...
## $ Open_Porch_SF
                        : int [1:2930] 62 0 36 0 34 36 0 82 152 60 ...
## $ Enclosed_Porch
                        : int [1:2930] 0 0 0 0 0 0 170 0 0 0 ...
## $ Three_season_porch: int [1:2930] 0 0 0 0 0 0 0 0 0 ...
```

```
$ Screen_Porch
                      : int [1:2930] 0 120 0 0 0 0 0 144 0 0 ...
##
   $ Pool_Area
                      : int [1:2930] 0 0 0 0 0 0 0 0 0 0 ...
  $ Pool_QC
                      : Factor w/ 5 levels "Excellent", "Fair", ...: 4 4 4 4 4 4 4 4 4 4 ...
                      : Factor w/ 5 levels "Good_Privacy",..: 5 3 5 5 5 5 5 5 5 ...
  $ Fence
##
##
   $ Misc_Feature
                      : Factor w/ 6 levels "Elev", "Gar2", ...: 3 3 2 3 3 3 3 3 3 ...
  $ Misc_Val
                      : int [1:2930] 0 0 12500 0 0 0 0 0 0 0 ...
##
  $ Mo Sold
                      : int [1:2930] 5 6 6 4 3 6 4 1 3 6 ...
##
   $ Year_Sold
                      ##
##
   $ Sale_Type
                      : Factor w/ 10 levels "COD", "Con", "ConLD", ...: 10 10 10 10 10 10 10 10 10 10 ...
                      : Factor w/ 6 levels "Abnorm1", "AdjLand", ...: 5 5 5 5 5 5 5 5 5 5 5 ...
  $ Sale_Condition
   $ Sale_Price
                      : int [1:2930] 215000 105000 172000 244000 189900 195500 213500 191500 236500 1
                      : num [1:2930] -93.6 -93.6 -93.6 -93.6 ...
   $ Longitude
##
   $ Latitude
                      : num [1:2930] 42.1 42.1 42.1 42.1 42.1 ...
```

Table: Ames Housing Dataset

Sale Price skewness : 1.742607

Sale Price kurtosis : 8.108122

Sale Price Observation

The Sale Price is right-skewed

Age of the Building

Year Built

It looks that we have more houses were built at the begining of 2000

Condition of the houses

Overall Condition of the houses

House condition - most of the houses are of average condition

Neighborhood and House Price

House Price varies with the neighborhood with few outliers by neighborhood. Also, the median house price by neighborhood is roughly between 200,000 and 400,000. It seems Neighborhood would have some impact on housing price.

Correlation between Sale Price and other variables

Correlation between Numeric Variables

Table 2: Ames Housing Dataset - correlated numeric variables with the Sale Price

	X
Lot_Frontage	0.2018745
Lot_Area	0.2665492
Year_Built	0.5584261
$Year_Remod_Add$	0.5329738
Mas_Vnr_Area	0.5021960
$BsmtFin_SF_1$	-0.1349055
$BsmtFin_SF_2$	0.0060176
$Bsmt_Unf_SF$	0.1833076
$Total_Bsmt_SF$	0.6325288
$First_Flr_SF$	0.6216761
$Second_Flr_SF$	0.2693734
Gr_Liv_Area	0.7067799
$Bsmt_Full_Bath$	0.2758227
$Bsmt_Half_Bath$	-0.0358166
Full_Bath	0.5456039
Half_Bath	0.2850560
$\operatorname{Bedroom_AbvGr}$	0.1439134
$Kitchen_AbvGr$	-0.1198137
$TotRms_AbvGrd$	0.4954744

	X
Fireplaces	0.4745581
Garage_Cars	0.6475616
Garage_Area	0.6401383
$Wood_Deck_SF$	0.3271432
Open_Porch_SF	0.3129505
$Enclosed_Porch$	-0.1287874
$Three_season_porch$	0.0322246
Screen_Porch	0.1121512
Pool_Area	0.0684032
Misc_Val	-0.0156915
Mo_Sold	0.0352588
Year_Sold	-0.0305691
Sale_Price	1.0000000
Longitude	-0.2513973
Latitude	0.2908914

There are some high correlations between variables mostly positive but with some negative. I did further analysis and added pairwise correlation between other numeric valiables and sales price. Thus, I dentified variables which has higher correlations (correlation > 0.5 and < -0.2)

I also looked at some non-numeric variables and their relatins with the Sale Price

Table 3: Ames Housing Dataset - correlated non-numeric variables with the Sale Price

X
-0.0347748
-0.3064225
0.0595193
0.1088436
0.3026647
-0.0693388
-0.0310365
-0.0587875
0.0685534
0.1575002
0.1590773
0.1048063
-0.0952280
0.2310546
-0.1635790
0.2546450
0.0720760
0.0550217
0.0535448
-0.0763142
0.1206939
0.4579558
0.1095363

	X
Bsmt_Exposure	-0.3519094
$BsmtFin_Type_1$	-0.0975925
$BsmtFin_Type_2$	0.1074020
Heating	-0.0728977
Heating_QC	-0.4426972
Central_Air	0.2645064
Electrical	0.2378218
Functional	0.1192451
$Garage_Type$	-0.4061833
$Garage_Finish$	-0.4494826
$Garage_Cond$	0.2750657
Paved_Drive	0.2749134
$Pool_QC$	-0.0919699
Fence	0.1745827
Misc_Feature	-0.0574683
$Sale_Type$	-0.1845079
Sale_Condition	0.3330831

Looking at the non-numeric variable, I identified few variables which are highly correlated -

```
# MS_Zoning, Lot_Shape, Foundation, Sale_Condition , Garage_Finish, House_Style, Heating_QC, #Feature Engineering and additional visualizations
```

Created a variable total_Bathroom = Full_Bath + Bsmt_Full_Bath + 0.5* Half_Bath+ 0.5 * Bsmt_Half_Bath

Created a variable sales $_$ price $_$ T = sale $_$ Price $_$ T

 $\label{lem:condition_n} Created\ a\ variable\ or a rall_Condition_n\ a\ numeric\ representation\ of\ over-all_Condition$

Created a variable house_Age = year_Sold - year_Build

```
##
## Corelation between Total Area and Sale Price : 0.7931272

##
## Corelation between Total Bathroom and Sale Price : 0.636175

##
## Corelation between Age of House and Sale Price : -0.5589068

##
## Corelation between Overall Condition and Sale Price : -0.1016969
```


Total Area vs. Sales Price

Age of the house vs. Sales Price

Overall Condition vs. Sales Price

Looking at the negative correlation between overall condition of the house and sales price I felt that there is something incorrect about the data. I excluded the overall condition from the final parameter set # Create Final Set with Parameters

ames <- ames %>% select (Sale_Price_T,total_Area, Gr_Liv_Area, house_Age, total_Bathroom ,Garage_Cars,G Year_Remod_Add, Mas_Vnr_Area, MS_Zoning, Lot_Shape, Foundation, Sale_Condition

Create Test Set and Training set for building Linear Models

test set will be 20% of housing_data data

Table 4: Ames Housing Dataset dimension

 $\frac{x}{2930}$ 16

Table 5: Ames Housing Dataset

${\rm Sale}_{_}$	_Paritæl_	A real	ikr <u>ou</u> Aæ	<u>een</u> Azele_	_ Batahar	g 6 mCa	ge <u>Ye</u> An <u>re</u>	aRManso o	<u>lWMSddZreninlg</u> ot_Shalpæund Stale<u>n</u> CGladi te	je <u>H</u> dvinėsHetyleg_QC
215	2736	1656	50	2.0	2	528	1960	112	Residentia <u>Slig</u> btdy DerlagtNor malFin	One_Staniry
105	1778	896	49	1.0	1	730	1961	0	Residentia <u>Re</u> <u>Highr</u> Clehod Normal Unf	One_SFypical

$Sale_{-}$	Pritæl	CAr eal	⊥ikr <u>ou</u> As	e <u>ea</u> Aagle_	_Katahar	g G nCa	ge <u>Ye</u> Anre	aRManso o	<u>dWWKddZrening</u> ot_Shalpound Stalen_ C Gladin	je <u>H</u> Frincis⊞Statlerg_QC
172	2658	1329	52	1.5	1	312	1958	108	Residentia <u>Slightly</u> DerhottNor malUnf	One_STypycal
244	4220	2110	42	3.5	2	522	1968	0	ResidentiaRegular_DelsidNormalFin	One_Stwcgllent
190	2557	1629	13	2.5	2	482	1998	0	Residentia Slightly Pelegit Normal Fin	Two_ Sfory d
196	2530	1604	12	2.5	2	470	1998	20	Residentia Slightly Pelegit Normal Fin	Two_Strcyllent

Table 6: Ames Housing Dataset Summary

Sale_	Potek	(Alirea	Lho <u>u</u> ste	revatede_	_Bath	<u> </u>	ge <u>Ye</u> aArre	e Riens no	aw <u>ihSA d</u> aalomaa	n g ot_Sh	a Þe ur	o Sætlie <u>r</u>	ı Cand	igd <u>do</u> frlise	isl St edeing_QC
Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Floating_	Widelgagk ar	Reskd	Tei A tbab	rFih	${ m One}$	StExxcellent:1495
:	:	:	: -	:1.000	:0.000):	:1950	:	139	:1859	311	190	:	:1481	
13.0	334	334	1.00			0.0		0.0					728		
1st	1st	1st	1st	1st	1st	1st	1st	1st	Residentia	a <u>Slighthy</u>	Debe	gitAkellj 2.	\$4N dr_	Galwage:	StEajr
Qu.:1	3Qı0:	Qu.:1	126 .:	Qu.:1	. 5000 .:1	:00Q.	Qu.:1	9 Q5 1.:	: 27	: 979		12	159	: 873	:
	2000		7.00			320.0		0.0							92
Media	a M edia	a M edi	a M edia	\mathbf{M} edia	a M edia	a M edia	Media	a M edia	a R esidentia	aM bder a		ItnyA dbod	laR :Fn	One_	an <mark>Go</mark> Half_Fin:
:160.0):	:1442	:	:2.000	:2.000):	:1993	:	:2273	76	:1310):	:	314	:
	2450		34.00			480.0		0.0				24	812		476
Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Residentia	al <u>Ir</u> iNegodia	nSilaD	elfasitný	lyUnf	SLvl	Poor
:180.8	3:	:1500	:	:2.218	:1.766	i:	:1984	:	: 462	: 16	:	:	:1231	1: 128	: 3
	2546		36.43			472.7		101.1			49	46			
3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	A_agr	NA	Ston	eNorn	naNA	SFoye	r Typical
Qu.:2	1Q10:	Qu.:1	7243.:	Qu.:2	.5000.:2	:00Q.	Qu.:2	0 Q4 ı.:	: 2		:	:2413		: 83	:
	2990		54.00			576.0		162.8			11				864
Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	$C_{all}:$	NA	Woo	dParti	aNA	$Two_{\underline{}}$	$anNAHalf_Unf$:
:755.0):1175	2:5642	:136.0	07.000	:5.000	1488.	02010	:1600.	.25		: 5	245		24	
NA	NA	NA	NA	NA	NA	NA	NA	NA	$I_all:$	NA	NA	NA	NA	(Othe	r) NA
									2					: 27	

Recommendation System Model - develop, train and test

Build Linear Models

```
## Naive RMSE in ,000 : 75.25
##
## Call:
## lm(formula = Sale_Price_T ~ total_Area + total_Bathroom, data = .)
##
## Residuals:
      {\tt Min}
               1Q Median
                              ЗQ
##
                                     Max
## -665.48 -20.32
                    0.26
                           19.33 262.67
##
## Coefficients:
##
                   Estimate Std. Error t value
                                                        Pr(>|t|)
                             3.350986 -10.79 <0.0000000000000000 ***
## (Intercept)
                 -36.153333
## total_Area
                   0.064023
                             0.001504 42.57 < 0.0000000000000000 ***
## total_Bathroom 24.275518
                                       1.511957
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 46.98 on 2340 degrees of freedom
## Multiple R-squared: 0.6639, Adjusted R-squared: 0.6636
## F-statistic: 2311 on 2 and 2340 DF, p-value: < 0.000000000000000022
                method
                                                                    RMSE
                                                                  75.25000
                Just the average in ,000
                Total Area and Total Bathroom Effect Model in in ,000
                                                                  42.63694
## [1] 37.2129
## # A tibble: 8 x 7
##
    term
                      estimate std.error statistic
                                                     p.value
                                                               conf.low
                                                                         conf.high
##
     <chr>>
                         <dbl>
                                   <dbl>
                                             <dbl>
                                                       <dbl>
                                                                  <dbl>
                                                                              <dbl>
## 1 (Intercept)
                    -1191.
                                89.8
                                            -13.3 5.23e- 39 -1367.
                                                                        -1015.
                                             36.4 7.89e-240
## 2 total_Area
                        0.0482
                                 0.00132
                                                                 0.0456
                                                                            0.0508
## 3 total_Bathroom
                       8.91
                                 1.27
                                              7.04 2.42e- 12
                                                                 6.43
                                                                           11.4
## 4 house Age
                       -0.259
                                 0.0344
                                             -7.52 7.12e- 14
                                                                -0.326
                                                                           -0.191
## 5 Garage_Cars
                       10.7
                                              4.85 1.28e- 6
                                 2.21
                                                                 6.38
                                                                           15.0
## 6 Garage_Area
                        0.0299
                                 0.00765
                                              3.91 9.63e- 5
                                                                 0.0149
                                                                            0.0448
## 7 Year_Remod_Add
                        0.605
                                 0.0453
                                             13.3 1.66e- 39
                                                                 0.516
                                                                            0.694
## 8 Mas_Vnr_Area
                        0.0526
                                 0.00471
                                             11.2 1.87e- 28
                                                                 0.0434
                                                                            0.0619
##
## lm(formula = Sale_Price_T ~ total_Area + total_Bathroom + house_Age +
##
       Garage_Cars + Garage_Area + Year_Remod_Add + Mas_Vnr_Area,
##
       data = .)
##
## Residuals:
      Min
                10 Median
                                3Q
                                       Max
## -575.71 -18.74
                     -2.99
                             16.13
                                   303.73
## Coefficients:
##
                                 Std. Error t value
                                                                Pr(>|t|)
                      Estimate
## (Intercept)
                  -1190.960356
                                  89.821434 -13.259 < 0.0000000000000000 ***
## total_Area
                                   0.001323 36.424 < 0.0000000000000000 ***
                      0.048175
## total Bathroom
                      8.911990
                                   1.266223
                                              7.038
                                                      0.000000000024160 ***
## house_Age
                     -0.258834
                                   0.034409 -7.522
                                                      0.000000000000712 ***
## Garage_Cars
                                   2.207507
                                              4.852
                                                      0.0000012844482347 ***
                     10.711467
## Garage_Area
                      0.029857
                                   0.007646
                                              3.905
                                                      0.0000962703710742 ***
## Year_Remod_Add
                      0.604965
                                   0.045316 13.350 < 0.0000000000000000 ***
## Mas_Vnr_Area
                      0.052626
                                   0.004706 11.182 < 0.0000000000000000 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 39.37 on 2922 degrees of freedom
## Multiple R-squared: 0.7578, Adjusted R-squared: 0.7572
## F-statistic: 1306 on 7 and 2922 DF, p-value: < 0.000000000000000022
```

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000 $$	37.21290

Non-linear Models

I took the optimum lamda for which the RMSE was the lowest. I built the model and ran the model against the final holdout set to validate the model performance

Train the final model

##		Length	Class	Mode
##	learn	2	-none-	list
##	k	1	-none-	numeric
##	theDots	0	-none-	list
##	xNames	41	-none-	character
##	${\tt problemType}$	1	-none-	character
##	tuneValue	1	${\tt data.frame}$	list
##	obsLevels	1	-none-	logical
##	param	0	-none-	list

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178
Knn Model in ,000	32.92832

Final Result and improvements over time

RMSEs over Model

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290

method	RMSE
Knn Model in ,000	36.67178
Knn Model in ,000	32.92832

Conclusion

I have used linear model with regularization to build this recommendation system. I came to a reasonable level of accuracy. Linear model is relatively simple to start with but not the best and we realized that during our study. We need more sophisticated models to enhance the accuracy - may be the random forest would be better suited for this prediction.

Reference -

Introduction to Data Science

https://jse.amstat.org/v19n3/decock.pdf - Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project - Dean De Cock

https://modeldata.tidymodels.org/reference/ames.html - Ames Housing Data

https://www.investopedia.com