$\exists c \forall in \ Q(c, in)$

```
/* Average of x and y without using x+y (avoid overflow)*/
int avg(int x, int y) {
  int t = expr({x/2, y/2, x%2, y%2, 2 }, {PLUS, DIV});
  assert t == (x+y)/2;
  return t;
}
```

```
f_1
f_2
f_3
f_3
f_4
f_5
f_7
```

```
s = n.succ;
p = n.pred;
p.succ = s;
s.pred = p;
}
```

Module I: Synthesizing Simple Programs

Sk[c](in)

Lecture 2 Syntax-Guided Synthesis and Enumerative Search

Nadia Polikarpova

Logistics

Shared Google folder

- Does everyone have access?
- Register your team by next Friday

Other questions?

Week 1-2

Today

Synthesis from examples

Syntax-guided synthesis

- expression grammars as structural constraints
- the SyGuS project

Enumerative search

- enumerating all programs generated by a grammar
- bottom-up vs top-down

Synthesis from examples

Synthesis from Examples

=

Programming by Example

=

Inductive Programming Inductive Learning

A little bit of history: inductive learning

MIT/LCS/TR-76

LEARNING STRUCTURAL DESCRIPTIONS FROM EXAMPLES

Patrick H. Winston

September 1970

Patrick Winston

Explored the question of generalizing from a set of observations Became the foundation of machine learning

Key issues in inductive learning

- (1) How do you find a program that matches the observations?
- (2) How do you know it is the program you are looking for?

Key issues in inductive learning

Traditional ML:

- Fix the space so that (1) is easy
- (2) becomes the main challenge

- (1) How do you find a program that matches the observations?
- (2) How do you know it is the program you are looking for?

The synthesis approach

Program synthesis:

- Customize the space so that (2) becomes easier
- (1) is now the main challenge

(1) How do you find a program that matches the observations?

(2) How do you know it is the program you are looking for?

Key idea

Syntax-Guided Synthesis

Example

```
[1,4,7,2,0,6,9,2,5,0] \rightarrow [1,2,4,7,0]
                        the input
L ::= x
     single(N)
                        single(1) = [1]
                        sort([6,9,2,5]) = [2,5,6,9]
     sort(L)
                        slice([6,9,2,5],0,2) = [6,9]
     slice(L,N,N)
     concat(L,L)
                        concat([6,9],[2,5]) = [6,9,2,5]
N ::= find(L,N)
                        find([6,9],9) = 1
     0
                         0
f(x) := concat( sort(slice(x,0,find(x,0))), single(0))
```

Regular tree grammars (RTGs)

```
starting
nonterminal
           single(N)
           sort(L)
           slice(L,N,N)
                                      productions
           concat(L,L)
    N ::= find(L,N)
           0
```

ranked alphabet (terminals)

nonterminals

Regular tree grammars (CFGs)

```
nonterminals rules (productions) alphabet starting nonterminal \langle \Sigma, N, R, S \rangle
```

```
Terms: \mathbf{t} \in T_{\Sigma}(N) = \text{all terms made from } N \cup \Sigma Rules are of the form: A \to \sigma(A_1, ..., A_n) Rewrites to: \mathcal{C}[A] \to \mathcal{C}[t] if (A \to t) \in R (Incomplete) programs: \{t \in T_{\Sigma}(N) | A \to^* t\} Ground programs: \{t \in T_{\Sigma}|A \to^* t\} = programs without holes, complete programs Whole programs: \{t \in T_{\Sigma}|S \to^* t\} = roughly, programs of the right type
```

```
concat(L,0) \\ L \rightarrow concat(L,L) \\ concat(L,L) \rightarrow concat(x,L) \\ find(concat(L,L),N) \\ find(concat(x,x),0) \\ sort(concat(L,L))
```

RTGs as structural constraints

```
Space of programs
= the language of an RTG
= all ground, whole programs
```

```
L::= x

single(N)

sort(L)

slice(L,N,N)

concat(L,L)

N::= find(L,N)

0

x sort(x) concat(x, x) slice(x,0,0)

...

slice(x,0,find(x,0))

...

concat(sort(slice(x,0,find(x,0))), single(0))
```

How big is the space?

$$E ::= x \mid f(E,E)$$

depth <= 0

$$N(0) = 1$$

depth <= 1

$$N(1) = 2$$

depth <= 2

$$N(2) = 5$$

$$N(d) = 1 + N(d - 1)^2$$

How big is the space?

$$E ::= x \mid f(E,E)$$

$$N(d) = 1 + N(d - 1)^2$$

$$N(d) \sim c^{2^d}$$

(c > 1)

```
N(1) = 1
```

$$N(2) = 2$$

$$N(3) = 5$$

$$N(4) = 26$$

$$N(5) = 677$$

$$N(6) = 458330$$

$$N(7) = 210066388901$$

$$N(8) = 44127887745906175987802$$

$$N(9) = 1947270476915296449559703445493848930452791205$$

N(10) = 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026

How big is the space?

$$N(0) = k$$

 $N(d) = k + m * N(d - 1)^{2}$

```
N(1) = 3 k = m = 3
```

N(2) = 30

N(3) = 2703

N(4) = 21918630

N(5) = 1441279023230703

N(6) = 6231855668414547953818685622630

N(7) = 116508075215851596766492219468227024724121520304443212304350703

Syntactic sugar

Instead of this:

We will often write this:

```
L ::= X
        [N]
        sort(L)
        L[N..N]
        L + L
N ::= find(L,N)
        0
```

- allow custom syntax for terminal symbols
- not an RTG strictly speaking, but you know what we mean...

Syntactic sugar

The SyGuS project

https://sygus.org/

Goal: Unify different syntax-guided approaches

Collection of synthesis benchmarks + yearly competition

- 6 competitions since 2013
- consider writing a SyGuS solver for your project!

Common input format + supporting tools

parser, baseline synthesizers

SyGuS problems

SyGuS problem = < theory, spec, grammar >

A "library" of types and function symbols

Example: Linear Integer Arithmetic (LIA)

True, False 0,1,2,... ∧, ∨, ¬, +, ≤, ite

RTG with terminals in the theory (+ input variables)

Example: Conditional LIA expressions w/o sums

E ::=
$$X \mid \text{ite } C \mid E \mid C \mid \neg C$$
C ::= $E \leq E \mid C \mid A \mid C \mid \neg C$

SyGuS problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over the theory

Examples:

$$f(0, 1) = 1 \wedge$$

$$f(1, 0) = 1 \wedge$$

$$f(1, 1) = 1 \wedge$$

$$f(2, 0) = 2$$

SyGuS demo

SyGuS problems

A first-order logic formula over the theory

$$f(0, 1) = 1 \land f(1, 0) = 1 \land f(1, 1) = 1 \land f(2, 0) = 2$$

Formula with free variables:

$$x \le f(x, y) \land$$

 $y \le f(x, y) \land$
 $(f(x, y) = x \lor f(x, y) = y)$

The Zendo game

The teacher makes up a secret rule

• e.g. all pieces must be grounded

The teacher builds two koans (a positive and a negative)

A student can try to guess the rule

- if they are right, they win
- otherwise, the teacher builds a koan on which the two rules disagree

The Zendo game

Counter-example guided inductive synthesis (CEGIS)

The Zendo of program synthesis

The problem statement

Enumerative search

Enumerative search

=

Explicit / Exhaustive Search

Idea: Sample programs from the grammar one by one and test them on the examples

Challenge: How do we systematically enumerate all programs?

top-down vs bottom-up

Top-down enumeration

Maintain a worklist of whole programs
Initialize with the start non-terminal
Expand remaining non-terminals using productions

```
L ::= L[N..N]

X
N ::= find(L,N)

0

[[1,4,0,6] → [1,4]]
```

Top-down enumeration

```
nonterminals rules (productions)
alphabet starting nonterminal top-down(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):
  wl := [S]
  while (wl != []):
     p := wl.dequeue()
     if (ground(p) \land p([i]) = [o]):
       return p
     wl.enqueue(unroll(p))
unroll(p):
  wl' := []
  A := left-most non-term in p
  forall (A \rightarrow rhs) in R:
     wl' += p[A -> rhs]
  return wl';
```

Top-down: example

Worklist wl

```
iter 0: L
iter 1: L[N..N]
iter 2: L[N..N]
iter 3: x[N..N] L[N..N][N..N]
iter 4: x[0..N] x[find(L,N)..N] L[N..N][N..N]
iter 5: x[0..0] x[0.. find(L,N)] x[find(L,N)..N]
iter 6: x[0...find(L,N)] x[find(L,N)..N]
iter 7: x[0..find(x,N)] x[0..find(L[N..N],N)] ...
iter 8: x[0...find(x,0)] \propto x[0...find(x,find(L,N))]
iter 9:
```

```
L ::= L[N..N]

X
N ::= find(L,N)

0

[[1,4,0,6] → [1,4]]
```

Bottom-up enumeration

Maintain a bank of ground programs

• indexed by non-terminal and depth

Combine programs in the bank into larger programs using productions

Bottom-up enumeration

```
nonterminals rules (productions)
       alphabet starting nonterminal
bottom-up (\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):
  bank[A,d] := {} forall A, d
                                                                    L ::= sort(L)
  for d in [0..]:
                                                                            L[N..N]
L + L
     forall (A \rightarrow rhs) in R:
        forall p in new-terms(A \rightarrow rhs, d, bank):
                                                                             [N]
          if (A = S \land p([i]) = [o]):
             return p
                                                                    N ::= find(L,N)
          bank[A,d] += p;
new-terms(A \rightarrow \sigma(A_1...A_n), d, bank):
                                                                  [[1,4,0,6] \rightarrow [1,4]]
 if (d = 0 \land n = 0) yield \sigma
 else forall \{d_1,...,d_n\} in [0...d-1]^n s.t. \max(d_1,...,d_n) = d-1:
         forall \langle p_1, ..., p_n \rangle in bank [A_1, d_1] \times ... \times bank [A_n, d_n]:
            yield \sigma(p_1,...,p_n)
```

Bottom-up: example

Program bank

```
x 0
d=0:
          sort(x) x + x x[0..0] [0]
d = 1:
          find(x,0)
d = 2:
          sort(sort(x)) sort(x[0..0]) sort(x + x)
          sort([0]) x + (x + x) x + [0] sort(x) + x
         x[0..0] + x (x + x) + x [0] + x x + x[0..0]
          x + sort(x) \times [0..find(x,0)]
```

```
L ::= sort(L)

L + L

L[N..N]

[N]

X

N ::= find(L,N)

0

[[1,4,0,6] 

[1,4]]
```

Bottom-up vs top-down

Top-down

Bottom-up

Smaller to larger depth

Has to explore between 3*10⁹ and 10²³ programs to find sort(x[0..find(x, 0)]) + [0] (depth 6)

Candidates are whole but might not be ground

- Cannot always run on inputs
- Can always relate to outputs (?)

Candidates are ground but might not be whole

- Can always run on inputs
- Cannot always relate to outputs

How to make it scale

Prune

Discard useless subprograms

$$m * N^2$$

$$m * (N - 1)^2$$

Prioritize

Explore more promising candidates first