# Discovering Key Concepts in Verbose Queries

Michael Bendersky, W. Bruce Croft

#### **Outline**

- Why long queries?
- Key concepts in long queries
- Key concepts identification
- Putting it all together: Retrieval with weighted structured queries





#### Ad hoc Information Retrieval

- Performance is measured based on
  - Explicit Relevance Judgments
    - e.g., mean average precision
  - Implicit User Feedback
    - e.g., click patterns



#### Introducing the problem

- Most research in ad hoc IR is focused on keyword queries
  - Sufficient for expressing simple information needs
  - Common in many domains, including web search
- In some domains long queries are more natural, as they can express more complex information needs
  - Q&A
  - Text reuse
  - Academic and enterprise search
  - Search-in-Context





#### What is a long query?

- Natural Language Queries
  - ways in which the Federal Reserve conducts monetary policy
  - picture of Zephyr mythical figure that depicts wind blowing
- Questions in Q&A archives
  - What should I bring when traveling to Bolivia?
- Queries with multiple keywords/noun phrases
  - ▶ Jefferson Medical Center, Philadelphia, PA
- "Copy-Paste" Queries
  - required installation file could not be found SKU112.CAB





#### Do Long Queries Work?

#### For people, yes; for search engines, no

- Unpredictable results with current web search engines
  - Sparser click-data
  - Often suffer from term mismatch
- TREC description queries don't work as well as title queries
  - More details follow
- Searching Q&A archives is not very effective

(Xue and Croft, 2008)







# Long Queries on the Web

Web 1-10 of 1,090,000 results · Advanced

See also: Images, Video, News, Maps, More ▼

How to Avoid Morning Traffic to airport (Houston, West: travel, safe ...

I will be leaving Houston on a Friday morning during rush hour from Sam Houston Toll/Westpark Toll Westchase and I will be traveling to the airport (IA ...

www.city-data.com/forum/houston/390189-how-avoid-morning-traffic-airport.html · Cached page





#### Long Queries on the Web - Click Patterns



Based on 15M query sample from a Live Search log



# Long Queries on TREC

<title> Spanish Civil War Support

**<desc>** Provide information on all kinds of material international support provided to either side in the Spanish Civil War

(TREC Topic 829)

# Text Retrieval Conference

encourages research in information retrieval and related applications by providing a large test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results <a href="http://trec.nist.gov/">http://trec.nist.gov/</a>



#### Long Queries on TREC - Avg. Precision

|                                                                                                                                                                                                                                                                                                                                                                                                                               | ROBUST04 |     | WI0g |     | GOV2 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|------|-----|------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                               | MAP      | wlq | MAP  | wlq | MAP  | wlq |
| <title>&lt;/th&gt;&lt;th&gt;25.3&lt;/th&gt;&lt;th&gt;2.7&lt;/th&gt;&lt;th&gt;19.3&lt;/th&gt;&lt;th&gt;4.2&lt;/th&gt;&lt;th&gt;29.7&lt;/th&gt;&lt;th&gt;3.1&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;&lt;desc&gt;&lt;/th&gt;&lt;th&gt;24.5&lt;/th&gt;&lt;th&gt;8.3&lt;/th&gt;&lt;th&gt;18.6&lt;/th&gt;&lt;th&gt;6.4&lt;/th&gt;&lt;th&gt;25.3&lt;/th&gt;&lt;th&gt;6.1&lt;/th&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;</title> |          |     |      |     |      |     |

Mean Average Precision vs. Words Per Query



#### Past Work On Long Queries in TREC

- ▶ (Allan et al., 1997; Callan et al., 1995)
  - Improving performance of long TREC queries
- Murdock & Croft, 2005; Balasubramanian et. al. 2007)
  - Sentence Retrieval
- (Kumaran & Allan, 2006; Kumaran & Allan 2008)
  - Interactive reduction/expansion of long queries





#### **Hypothesis**

Identification of the <u>key query concepts</u> will have a (significant) positive impact on the retrieval performance for verbose queries



#### **Hypothesis Motivated**

- Verbose queries tend to mix key (<u>Spanish Civil War</u>) and complementary (material international support) concepts
- Current retrieval techniques tend to treat these equally
- Potentially, this results in a loss of focus on the main query topic(s)





#### Concept Identification - The Ideal

#### Everything is a potential concept

(Bentivogli & Pianta, 2003)

- Single words: dog, cat
- Phrasal verbs: catch up, come on
- Idioms: break a leg, spend time
- Open compounds: science fiction
- Named entities: Spanish Civil War, Steve Jobs
- ▶ Free word combinations: *long queries*





#### **Noun Phrases as Concepts**

- In this work, we approximate concept identification by noun-phrase extraction
- Reasonable approximation for the task at hand: nouns usually serve as query topics
- Works well in practice
- Used in a previous work involving key phrases extraction
  - ▶ Allan et al. (1997) Core concepts in TREC queries
  - ► Hulth (2003) Keywords in scientific abstracts
  - Yih et. al (2006) Keywords for web advertisement



# Back to Topic 829

Provide information on all kinds of material international support provided to either side in the Spanish Civil War



[ information, kinds, material international support, side, Spanish Civil War ]



# **Concept Weighting Principle [1]**

- Not all concepts are equally important for the query
- Weigh concept  $c_i$  by  $p(c_i | q)$ 
  - how well concept  $c_i$  represents query q.





# **Concept Weighting Principle [2]**

- Either
  - Estimate  $p(c_i | q)$  directly from the query
- Or
  - Leverage non-query specific information to estimate  $p(c_i | q)$
- We choose the second option
  - Queries do not provide enough context
  - This is what we humans do





# **Concept Weighting Principle [3]**

#### **Assumption A**

Each concept **C**<sub>i</sub> can be assigned to one of the mutually exclusive classes

- ► **KC** (key concepts class)
- ▶ **NKC** (non-key concepts class)

#### **Assumption B**

A global function  $h_k(c_i)$  indicates the confidence that concept

C, belongs to class KC





# **Concept Weighting Principle [4]**

▶ Following the assumptions, weigh each query concept

$$\hat{p}(c_i \mid q) = \frac{h_k(c_i)}{\sum_{c_i \in q} h_k(c_i)}$$

- That is, we rank query concepts
- Concepts which have the highest confidence in membership in class KC are regarded as the best query representatives





# Estimating $h_k(c_i)$

- As  $h_k(c_i)$  is query-independent, we can
  - a) Take an unsupervised approach to estimate it
    - e.g., use concept *IDF*
  - b) Try to learn it using a set of given concepts and features
- What kind of features?
  - As  $h_k(c_i)$  is query-independent, we can use any concept related features





#### **Query-Based Features**

- I.  $is_{cap}(c_i)$  is concept capitalized in the query?
  - If TREC queries were not capitalized, we could resort to corpus-based capitalization



# **Collection-Based Features [1]**

- 2.  $cf(c_i)$  Concept frequency in the collection
- 3.  $idf(c_i)$  Concept IDF in the collection

$$idf(c_i) = \log_2 \frac{N}{df(c_i)}$$

- ▶ **N** number of documents in the collection
- $\rightarrow$  df( $c_i$ ) number of documents in the collection containing  $c_i$





# **Collection-Based Features [3]**

- 4. ridf(c<sub>i</sub>) Concept residual IDF in the collection
  - Deviation of an actual IDF from Poisson model prediction
    (Church & Gale, 1995)

$$ridf(c_i) = idf(c_i) - \log_2 \frac{1}{1 - e^{\theta_i}}$$

 $\theta_i$  – average number of occurrences of concept  $c_i$  per document



# **Collection-Based Features [4]**

#### 5. wig(c;) Concept Weighted Information Gain

Information gain from a state where only average document is retrieved

(Zhou & Croft, 2007)

$$wig(c_i) = \frac{\frac{1}{|T|} \sum_{d \in T} \log p(c_i|d) - \log p(c_i|C)}{-\log p(c_i|C)}$$

▶ T - a set of top 50 documents retrieved from a collection in response to concept  $c_i$ 





#### Collection-Independent Features

- 6.  $g_cf(c_i)$  Concept frequency in Google n-grams.
  - Estimates concept frequency in a large web collection
- 7.  $I_{qp}(c_i)$  Number of times a concept was used as a part of a web search query
  - Extracted from an excerpt of MSN search log
- 8. I\_qe(c<sub>i</sub>) Number of times a concept was used as an exact query
  - Extracted from an excerpt of MSN search log





#### **Collections**

| Collection | # Docs     | #Topics |
|------------|------------|---------|
| ROBUST04   | 528,155    | 250     |
| WI0g       | 1,692,096  | 100     |
| GOV2       | 25,205,179 | 150     |



#### Concept Classification: The Task

- Task: identifying key concepts
- Simplifying assumption: a single key concept per query
- Train an AdaBoost.MI classifier on a set of labelled concept instances:  $x_i \in \{KC, NKC\}$
- Rank concepts for each query in the test-set according to their confidence in membership in class KC





#### Concept Classification: Results

|          | AdaBoost    |             | idf(c <sub>i</sub> ) |      |  |
|----------|-------------|-------------|----------------------|------|--|
|          | Accuracy    | MRR         | Accuracy             | MRR  |  |
| ROBUST04 | <u>76.4</u> | <u>84.5</u> | 56.4                 | 74.2 |  |
| WI0g     | <u>81.0</u> | <u>85.3</u> | 66.0                 | 78.6 |  |
| GOV2     | <u>84.0</u> | <u>88.9</u> | 74.7                 | 85.7 |  |

#### **Accuracy and MRR results:**

3-fold cross-validation with **AdaBoost.M1** vs. **IDF** 



#### What Makes a Key Concept?



#### **Example:**

A high-weight decision tree for key concept classification for GOV2





# What About Retrieval?

Does identifying key concepts help at all?

Does the concept weighting help?



# Concept Weighting for Ranking

Having estimated  $p(c_i|q)$  we may use a linear combination of query and all weighted concepts for ranking

**Concept Weight** 

$$rank(d) \propto \lambda \log p(q \mid d) + (1 - \lambda) \sum_{c_i \in a} \log p(c_i \mid d) p(c_i \mid q)$$

**Query Score** 

**Concept Score** 





# **How Many Concepts?**





- Simple bag-of-words query
  - #combine (spanish civil war)
- Phrase Operators
  - #I (spanish civil war)
  - #uw8 (spanish civil war)
- Weights
  - #weight ( 0.8 #combine(spanish civil war)
    - 0.1 #I (spanish civil war)
    - 0.1 **#uw8**(spanish civil war))

# Indri Query Language: Crash Course

Indri - Open Source search engine

The Indri query language... allows complex phrase matching, synonyms, weighted expressions, Boolean filtering, numeric fields, and the extensive use of document structure...

http://www.lemurproject.org/



#### <title> and <desc> - #COMBINE query

```
#combine( Spanish Civil War support )
```

#combine(information kinds material international support provided side Spanish Civil War)



#### <desc> - Sequential Dependence Model

(Metzler & Croft, 2005)



# <desc> - Key Concepts Expanded



# **Retrieval Results [1]**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBUST04 | WI0g | GOV2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAP      | MAP  | MAP  |
| <title>&lt;/th&gt;&lt;th&gt;25.28&lt;/th&gt;&lt;th&gt;19.31&lt;/th&gt;&lt;th&gt;29.67&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;&lt;desc&gt;&lt;/th&gt;&lt;th&gt;24.50&lt;/th&gt;&lt;th&gt;18.62&lt;/th&gt;&lt;th&gt;25.27&lt;sup&gt;t&lt;/sup&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;SeqDep&lt;desc&gt;&lt;/th&gt;&lt;th&gt;25.69&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;th&gt;19.28&lt;/th&gt;&lt;th&gt;27.53&lt;sup&gt;t&lt;/sup&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;KeyConcept[2]&lt;desc&gt;&lt;/th&gt;&lt;th&gt;&lt;u&gt;26.20&lt;/u&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;th&gt;20.46&lt;sup&gt;t&lt;/sup&gt;d&lt;/th&gt;&lt;th&gt;27.27&lt;sup&gt;t&lt;/sup&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;</title> |          |      |      |

Comparison of methods performance (Mean Average Precision)



# **Retrieval Results [2]**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROBUST04 | WI0g | GOV2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAP      | MAP  | MAP  |
| <title>&lt;/th&gt;&lt;th&gt;25.28&lt;/th&gt;&lt;th&gt;19.31&lt;/th&gt;&lt;th&gt;29.67&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;&lt;desc&gt;&lt;/th&gt;&lt;th&gt;24.50&lt;/th&gt;&lt;th&gt;18.62&lt;/th&gt;&lt;th&gt;25.27&lt;sup&gt;t&lt;/sup&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;SeqDep&lt;desc&gt;&lt;/th&gt;&lt;th&gt;25.69&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;th&gt;19.28&lt;/th&gt;&lt;th&gt;27.53&lt;sup&gt;t&lt;/sup&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;th&gt;KeyConcept[2]&lt;desc&gt;&lt;/th&gt;&lt;th&gt;&lt;u&gt;26.20&lt;/u&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;th&gt;20.46&lt;sup&gt;t&lt;/sup&gt;d&lt;/th&gt;&lt;th&gt;27.27&lt;sup&gt;t&lt;/sup&gt;&lt;sub&gt;d&lt;/sub&gt;&lt;/th&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;</title> |          |      |      |

#### Query expansion by key concepts

- a) always outperforms the original description queries
- b) comparable performance to **SeqDep** model
- more efficient than **SeqDep** model





#### Future (and Present) Work

- Finding text reuse on the web
  - Did I see this story somewhere else?

    (Bendersky & Croft, To appear in WSDM 2009)
- "Learning to Rank" is an active field in IR
  - Can we reweight query terms based on available relevance judgments?

(Lease et al., To appear in ECIR 2009)

- Investigating long queries in web search logs
  - Insight into how and why people formulate long queries
  - Possibly leverage the insights into other domains



