and for transferring blister copper from said converting furnace to said anode furnace;

producing matte in said matte-producing means and oxidizing said matte produced in said matte producing means into blister copper in said converting furnace;

subsequently causing said blister copper produced in said converting furnace to flow through said blister copper launder means into one of said anode furnaces; and

refining said blister copper into copper of higher purity in said anode furnaces.--

SUPPORT FOR AMENDMENTS

New Claim 5 has been drafted with the Examiner's concerns in mind regarding the presently claimed launder means. Support for the new Claim is found throughout the specification, particularly in the paragraph bridging pages 5 and 6 of the specification, by the paragraph bridging pages 9 and 10 of the specification, and by the Figures. No new matter would be added to this application upon entry of the above amendments.

Claims 2-5 are pending in this application.

REMARKS

The present invention is directed to a copper smelting process wherein blister copper produced in a converting furnace flows through blister copper launder means and into

200 (Control of the control of the