

New Phytologist Supporting Information

Article title: Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment, and leaf age in lowland moist tropical forests

Authors: Jin Wu, Alistair Rogers, Loren P. Albert, Kim Ely, Neill Pohaska, Brett T. Wolfe, Raimundo Cosme Oliveira Jr, Scott R. Saleska, Shawn P. Serbin

Article acceptance date: 21 June 2019

The following Supporting Information is available for this article:

Fig. S1 Example demonstration of partial least squares regression (PLSR) analysis for spectra- $V_{c,max25}$ relationship.

Fig. S2 Example demonstration of partial least squares regression (PLSR) analysis for spectraage relationship.

Fig. S3 The final spectra- $V_{c,max25}$ model was trained using two thirds of our entire dataset, and then applied to the remaining, independent validation datasets.

Table S1 Site, species, canopy positions, traits and leaf age for trees sampled with leaf spectral and physiological measurements in two Panamanian tropical forests and one Brazilian tropical forest.

Table S2 Leaf gas exchange, spectra, LMA, and age data sources.

Fig. S1 Example demonstration of partial least squares regression (PLSR) analysis for spectra- $V_{c,max25}$ relationship, including (a) the histogram distribution of field observed $V_{c,max25}$, (b) the histogram distribution of the square root of field-observed $V_{c,max25}$, (c) the relationship between root mean square error (RMSE) of the 30% independent validation through 100-time random 7-fold permutations of calibration data and the number of latent variables (error bars are one standard deviation bootstrapped from 100 random fittings of the calibration data), where the optimal latent variable was achieved at 11 (in blue box), and (d) the PLSR spectral coefficients of the spectra- $V_{c,max25}$ relationship under optimal latent variables with central black line for the mean value and gray shaded region for the 95% confidence interval. The model coefficients shown in panel d multiplied by leaf-level spectral reflectance will enable the prediction of square root of $V_{c,max25}$. The panel (c) and (d) demonstrated here are based on the community level spectra- $V_{c,max25}$ model including the dataset from both Panama and Brazil, as shown in Fig. 3.

Fig. S2 Example demonstration of partial least squares regression (PLSR) analysis for spectraage relationship, including (a) the histogram distribution of field observed age (in days), (b) the histogram distribution of the square root of field-observed age, (c) the relationship between root mean square error (RMSE) of the 30% independent validation through 100-time random 7-fold permutations of calibration data and the number of latent variables, where the optimal latent variable was achieved at 5 (in blue box), and (d) the PLSR spectral coefficients of the spectra-age relationship under optimal latent variables with central black line for the mean value and gray shaded region for the 95% confidence interval. The model coefficients shown in panel d multiplied by leaf-level spectral reflectance will enable the prediction of square root of leaf age. The panel (c) and (d) demonstrated here are based on the community level spectraage model including all Brazilian spectra-age data used in Wu *et al* (2017).

Fig. S3 The final spectra- $V_{c,max25}$ model was trained using two thirds of our entire dataset, and then applied to the remaining, independent validation dataset of (a) Panamanian immature leaves, (b) Brazilian mature and immature leaves, and (c) Panamanian mature leaves. Error bars denote the 95% confidence intervals for each predicted value based on the ensemble PLSR models, the gray line shows the ordinary least square regression fit, and the black line shows the 1:1 line.

Table S1 Site, species, canopy positions, traits and leaf age for trees sampled with leaf spectral and physiological measurements in two Panamanian tropical forests and one Brazilian tropical forest.

Site	Time (year)	Species	Family	Canopy height (m)	$V_{c,max25}$ - mature (μ mol m ⁻² s ⁻¹)	LMA- mature (g m ⁻²)	# of gas exchange	# of gas exchange and spectra
SLZ	2016, 2017	Guatteria dumetorum**	Annonaceae	35	37±11	88±10	24	24
SLZ	2016, 2017	Miconia borealis**	Melastomataceae	25	59±12	105±12	30	30
SLZ	2016, 2017	Terminalia Amazonia**	Combretaceae	27	48±11	113±15	21	21
SLZ	2016, 2017	Vochysia ferruginea**	Vochysiaceae	29	52±14	131±18	25	25
SLZ	2016	Tocoyena pittieri**	Rubiaceae	27	40±9	95±8	11	10
SLZ	2016	Tachigali versicolor**	Fabaceae	30	36±4	100±6	8	7
SLZ	2016	Carapa quianensis**	Meliaceae	34	29±8	124±1	4	4
SLZ	2016	Apeiba membranacea*	Tiliaceae	29	53±18	119±13	7	6
PNM	2016	Albizia adinocephala**	Fabaceae	29	67±10	72±10	10	7
PNM	2016	Anacardium excelsum**	Anacardiacea	39	48±7	96±9	5	4
PNM	2016	Pittoniotis trichantha*	Rubiaceae	19	30±8	81±25	8	4
PNM	2016	Calycophyllum candidissimum*	Rubiaceae	20	44±19	82±6	8	3
PNM	2016	Castilla elastica*	Moraceae	24	41±10	98±5	4	1
PNM	2016	Cordia alliodora*	Boraginaceae	23	75±6	70±3	4	4
PNM	2016	Ficus insipida*	Moraceae	31	79±16	119±11	9	6
PNM	2016	Luehea seemannii*	Tiliaceae	26	87±7	132±21	8	5
K67	2012	Erisma uncinatum**+	Vochysiaceae	39	21±9	143±32	34	32
K67	2012, 2013	Chamaecrista xinguensis**+	Fabaceae	25	25±11	83±35	18	15
K67	2012	Mezilaurus itauba**+	Lauraceae	37	22±8	128±39	11	11
K67	2012, 2013	Manilkara elata**+	Sapotaceae	38	37±11	213±28	11	8
K67	2012, 2013	Tachigali cf. chrysophylla**	Fabaceae	44	44±20	161±26	7	3

Note: Three tropical forest sites include the San Lorezon crane site (SLZ) and the Parque Natural Metropolitano crane site (PNM) in The Republic of Panama, and the K67 eddy covariance tower site (K67) in the Tapajos National Forest near Santarem, Brazil; tree species-specific leaf carboxylation capacity (Vc,max25) and leaf mass per area (LMA) of mature leaves are shown here with mean ± one standard deviation; only sunlit canopy leaves were surveyed for Panamanian tree species, and canopy leaves from both sunlit and shade environments were surveyed for Brazilian tree species; leaf age record for each tree species is indexed by "*" (indicating those species with spectral and gas exchange measurements for the mature leaves only) or "**" (indicating those species with spectral and gas exchange measurements for both mature and immature leaves); the tree-species with in-situ monitoring of leaf age and spectra is marked in "+".

Table S2 Leaf gas exchange, spectra, LMA, and age data sources.

Site	Dataset	References	
Panama	Leaf sample detail, Feb 2016 and April 2016, SLZ and PNM	(Ely et al., 2019a)	
	CO ₂ response (ACi) gas exchange, calculated V_{cmax} & J _{max} parameters, Feb 2016 and April 2016, SLZ and PNM	(Rogers <i>et al.</i> , 2019a)	
	Leaf spectra, Feb 2016 and April 2016, SLZ and PNM	(Serbin et al., 2019)	
	Leaf mass area, Feb 2016 and May 2016, SLZ and PNM	(Ely <i>et al.</i> , 2019b)	
	Leaf sample details, leaf traits by age, Feb2017, SLZ	(Ely et al., 2019c)	
	CO_2 response (ACi) gas exchange by leaf age, V_{cmax} and J_{max} parameters, Feb 2017, SLZ	(Rogers <i>et al.</i> , 2019b)	
	Leaf mass per area, by age, Feb 2017, SLZ	(Rogers et al., 2019c)	
	Leaf spectra by leaf age, Feb 2017, SLZ	(Serbin et al., 2018)	
Brazil	CO_2 response (ACi) gas exchange by leaf age, V_{cmax} and J_{max} parameters, leaf mass per area	(Albert <i>et al.</i> , 2018)	
	Leaf spectra, and spectra-age dataset	(Wu <i>et al.,</i> 2017)	

References

- Albert LP, Wu J, Prohaska N, Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, Oliveira RS, Garcia S, Smith MN et al. 2018. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist 219: 870-884.
- Ely K, Rogers A, Serbin S, Wu J, Wolfe B, Dickman T, Collins A, Detto M, Grossiord C, McDowell N, Michaletz S. 2019a. Leaf sample detail, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1411971.
- Ely K, Rogers A, Serbin S, Wu J, Wolfe B, Dickman T, Collins A, Detto M, Grossiord C, McDowell N, Michaletz S. 2019b. Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1411973.
- Ely K, Rogers A, Serbin S, Wu J, Wolfe B. 2019c. Leaf sample details, leaf traits by age, Feb2017, PA-SLZ: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1508122.
- Rogers A, Serbin S, Ely K, Wu J, Wolfe B, Dickman T, Collins A, Detto M, Grossiord C, McDowell N, Michaletz S. 2019a. CO₂ response (ACi) gas exchange, calculated V_{cmax} & J_{max} parameters, Feb2016-May2016, PA-SLZ, PA-PNM: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1411867.
- Rogers A, Ely K, Wu J, Serbin S. 2019b. CO_2 response (ACi) gas exchange by leaf age, V_{cmax} and J_{max} parameters, Feb2017. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1508118.
- Rogers A, Ely K, Serbin S, Wu J, Kinlock N. 2019c. Leaf mass per area, by age, Feb2017, PA-SLZ: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1478532.
- **Serbin S, Wu J, Ely K. 2018.** Leaf spectra by leaf age, Feb2017, PA-SLZ: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1475180.
- Serbin S, Ely K, Rogers A, Dickman T, Detto M, Wu J, Wolfe B, McDowell N, Grossiord C, Michaletz S, Collins A. 2019. Leaf spectra, Feb2016-April2016, PA-SLZ, PA-PNM, PA-BCI: Panama. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/ngt/1478523.
- Wu J, Chavana-Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, Leeuwen WJ, Garnello AJ, Martins G et al. 2017. Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests. New Phytologist 214: 1033-1048.