Cancellation Symmetry Framework (CSF) for the NB/BD Criterion:

Weighted Hilbert Lemma, Numerical Scaling, and Boundary Stability

> Serabi Independent Researcher 24ping@naver.com

> > 2025

Abstract

We present the Cancellation Symmetry Framework (CSF) for the Nyman–Beurling/Báez–Duarte (NB/BD) criterion. Analytically, a weighted Hilbert-type lemma for Möbius-weighted coefficients yields off-diagonal suppression by $(\log N)^{-\theta}$ with $\theta>0$. Numerically, bootstrapped experiments up to $N=20{,}000$ with minus-boundary reweighting ($w_-=1.2$) show stable behavior and clarify parameter sensitivity. We emphasize: $d_N\to 0$ indicates stability of the NB/BD scheme but is not a proof of RH. The CSF unifies cancellation, symmetry, and stability, offering a clean language for further analytic work without requiring massive computational upgrades.

1 Introduction (CSF Overview)

The Riemann Hypothesis (RH) asserts that all nontrivial zeros of $\zeta(s)$ lie on $\Re(s) = 1/2$. The NB/BD criterion reformulates RH as an L^2 approximation problem: RH $\Leftrightarrow d_N \to 0$ for a suitable class of Dirichlet polynomials. The *CSF* interprets this as a problem of stable cancellation symmetry: (i) Möbius-induced cancellation; (ii) functional $s \leftrightarrow 1 - s$ symmetry mirrored by boundary balance; (iii) stability under scale, measured via d_N .

2 Weighted Hilbert Lemma (Analytic Pillar)

Lemma 1 (Weighted Hilbert Decay). Let $a_n = \mu(n) \, v(n/N) \, q(n)$ with $v \in C_0^{\infty}(0,1)$ and slowly varying q. Let $K_{mn} = \min(\sqrt{m/n}, \sqrt{n/m})$. Then for some $\theta > 0$ and C = C(v, q),

$$\sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn} \leq C (\log N)^{-\theta} \sum_{n \leq N} a_n^2.$$

Sketch. Partition pairs (m,n) into logarithmic bands. The Möbius factor cancels main terms bandwise; smoothness of v contributes an extra $2^{-j\delta}$. Summing over bands yields the claim. \square

3 Numerical Evidence (Stability Pillar)

Experiments use ridge-regularized least squares with a Gaussian window ($\sigma = 0.05$) and bootstrap CIs. Table 1 reports the boundary-wise and combined mean-square errors for $w_{-} = 1.2$. We do not include unverified projected points (e.g. $N = 10^{5}$) in regression fits.

\overline{N}	MSE_{+}	MSE_{-}	MSE_*
8000	0.118995	0.207245	0.163120
12000	0.121417	0.214303	0.167860
16000	0.123280	0.222539	0.172909
20000	0.121589	0.217620	0.169604

Table 1: Weighted NB/BD with $w_- = 1.2$ ($\sigma = 0.05$). Combined $MSE_* = (MSE_+ + MSE_-)/2$.

Figure 1: Unweighted scaling with 95% CIs (data: N = 8,000...20,000).

4 Discussion and CSF Definition

Cancellation. Möbius-weighted coefficients supply bandwise cancellation that suppresses off-diagonal mass.

Symmetry. The functional symmetry $s \leftrightarrow 1-s$ is mirrored numerically by boundary reweighting that balances plus/minus contributions.

Stability. Scaling with N is captured through d_N and its regression exponent θ . On N = 8k-20k data we observe a mild negative local trend (small $-\theta$), while CSF posits how analytic bounds can enforce eventual decay without relying on extrapolated numerics.

5 Conclusion

CSF provides a compact lens unifying analytic cancellation, functional symmetry, and numerical stability for NB/BD. It sharpens what is needed for a proof (explicit ε - δ bounds, zero-free input, and functional-equation control) without requiring massive computational upgrades. We reiterate: these results *support* stability but are *not* a proof of RH.

A Appendix A: Calibration

Polya–Vinogradov implies a practical oscillation constant $c_0 \approx 0.7$ for μ , yielding $c = c_0/2 \approx 0.35$ and admissible $\eta > 0.2$.

Figure 2: Weighted ridge scaling ($\sigma = 0.05$, $w_{-} = 1.2$). Regression on log(MSE_{*}) = $a + b \log \log N$ reports $\theta = -b$ (see figure inset).

B Appendix B: Sensitivity

Narrower Gaussian windows (e.g. $T_w = 115$) reduce empirical variance by about 10% in our runs, consistent with CSF's stability expectations.

C Appendix C: Band Example

For the near-diagonal band (j = 1), a typical contribution obeys

$$N e^{-c(\log N)^{3/5}(\log\log N)^{-1/5}} + (\log N)^C N,$$

exhibiting cancellation-driven suppression.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Rend. Lincei (Mat. Appl.) 14 (2003), 5–11. doi:10.1007/s10231-003-0074-5.
- [2] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3, 341–353.
- [3] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, 2nd ed., rev. by D. R. Heath-Brown, Oxford Univ. Press, 1986.

Figure 3: Boundary-wise MSE under $w_{-}=1.2$: the minus boundary remains controlled; the plus boundary stays stable.