Logistic Regression

By Trần Minh Dương - Learning Support

Overview

How do we predict whether an email is spam or not, or if a patient has a disease based on their symptoms? These are classification problems, and logistic regression is a powerful tool for solving them.

Logistic regression predicts probabilities for binary outcomes. It uses the **logistic (sigmoid) function** to model the likelihood of a data point belonging to a particular class.

To optimize the model parameters, we use:

- 1. **Gradient Descent:** An iterative approach to minimize the cost function.
- 2. **Newton's Method:** A second-order optimization technique for faster convergence.

In this document, we'll dive into the both methods and their applications.

1. Logistic Regression & Gradient Descent

Logistic regression is a classification algorithm that models the probability of a binary outcome using the logistic (sigmoid) function.

Key Points:

Hypothesis Function: The predicted output (probability) of logistic regression is computed as follows:

• For a single example:

$$h_{ heta}(x^{(i)}) = rac{1}{1+e^{- heta^Tx^{(i)}}}$$

Here, $x^{(i)}$ is a single input example.

• For the entire dataset (input matrix):

$$h_{ heta}(X) = rac{1}{1 + e^{-X heta}}$$

Where:

ullet $x^{(i)}$: A column vector representing the i-th example, containing n features.

Dimension: $n \times 1$.

• X: The input matrix containing m examples and n features.

Dimension: $m \times n$.

• θ : The parameter vector containing n weights (including θ_0 , the bias term).

Dimension: $n \times 1$.

Cost function:

To optimize θ , we minimize the negative log-likelihood cost function:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \ln(h_ heta(x^{(i)})) + (1-y^{(i)}) \ln(1-h_ heta(x^{(i)}))
ight]$$

Where:

• m: Number of training examples.

• $y^{(i)}$: Actual label (0 or 1) for the *i*-th training example.

• $h_{ heta}(x^{(i)})$: Predicted probability for the i-th training example.

Steps for Batch Gradient Descent of Logistic Regression:

This follows **exactly the same** procedure as Linear Regression. To minimize $J(\theta)$, we compute its gradient and update θ iteratively:

• Scalar form:

For j = 0, 1, ..., n:

$$oxed{rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \cdot x_j^{(i)}}$$

Where:

• $h_{ heta}(x^{(i)})$ is the predicted output

ullet $h_{ heta}(x^{(i)})-y^{(i)}$ is the residuals (error compared to actual output)

ullet $x_{i}^{(i)}$ is the j-th feature value of the i-th training example

Then the parameters θ are updated as:

$$\theta_j = heta_j - lpha rac{\partial J(heta)}{\partial heta_j}$$

• Matrix Form (for all θ): The gradient can also be written compactly in matrix form as:

$$oxed{
abla J(heta) = rac{1}{m} X^T (h_ heta(X) - y)}$$

Where:

- X: Feature matrix (including a column of 1s for the bias term).
- $h_{\theta}(X)$: Vector of predicted probabilities for all training examples.
- y: Vector of actual labels.

Update Rule in Matrix Form:

$$\theta = \theta - \alpha \nabla J(\theta)$$

2. Newton's Method for Logistic Regression

Newton's method refines the parameters θ using second-order derivative, incorporating the Hessian matrix H:

1. Gradient: Same as above:

$$abla J(heta) = rac{1}{m} X^T (h_ heta(X) - y)$$

2. Hessian Matrix:

$$H = rac{1}{m} X^T R X$$

Where:

- R: Diagonal matrix where $R_{ii} = h_{ heta}(x^{(i)}) \cdot (1 h_{ heta}(x^{(i)}))$.
- 3. Update Rule:

$$oxed{ heta = heta - H^{-1}
abla J(heta)}$$

Newton's method often converges faster than gradient descent but is computationally expensive for large datasets.

Summary of Key Differences

Aspect	Gradient Descent	Newton's Method
Approach	Iterative, uses first derivative	Iterative, uses first and second derivatives
Computation Cost	Lower per iteration	Higher per iteration due to Hessian inversion
Convergence Speed	Slower for large datasets Faster, but depends on dataset size	
Suitability	Large datasets or high dimensions	Small to medium datasets

Exercise

Given the training data for a classification problem, to identify if a person is male/female base on his/her weight and high. Stating at $\theta_0=\theta_1=\theta_2=0$ and learning rate $\alpha=0.001$.

Training example	Height(cm)	Weight (kg)	Gender
1	172	68	Male
2	163	52	Female
3	158	50	Female
4	180	75	Male

Calculate the coefficients after the first iteration with

- a) Batch-gradient descent.
- b) Newton method

Part a: Using Batch-gradient descent

```
In [15]: #Dataset
         import numpy as np
         X = np.array([
             [1,172,68],
             [1,163,52],
             [1,158,50],
             [1,180,75]
         ]) #Add a column of 1 to the left to represent the bias term X 0
         y = np.array([0,1,1,0]) # 0 for male, 1 for female
         m = len(y)
         alpha = 0.001
In [16]:
         theta = np.array([0,0,0],dtype=float)
         def hypothesis(X, theta):
             return 1 / (1 + np.exp(-X @ theta))
         def cost func(predictions, y):
             return -1/m * np.sum(y*np.log(predictions) + (1-y)*np.log(1-predictions))
         iterations = 100
         for i in range(1,iterations+1):
             predictions = hypothesis(X,theta)
             errors = predictions - y
             gradient = 1/m * (X.T @ errors)
             theta -= alpha * gradient
             if (i==1):
                  print("After the first iteration:")
                  print("Predictions: ",predictions)
                  print("Errors: ", errors)
                  print("Gradient: ",gradient)
                  print("Theta = ",theta)
                  print("Cost = ",cost_func(predictions,y),"\n")
             if (i%10==0):
                  print(f"Iteration {i}: Theta = {theta}, Cost = {cost_func(predictions,y):.4f}
```

```
After the first iteration:
        Predictions: [0.5 0.5 0.5 0.5]
        Errors: [ 0.5 -0.5 -0.5 0.5]
        Gradient: [0. 3.875 5.125]
        Theta = [0.
                            -0.003875 -0.005125]
        Cost = 0.6931471805599453
        Iteration 10: Theta = [0.00038151 \ 0.02552992 \ -0.0277586], Cost = 5.7494
        Iteration 20: Theta = [0.00068845 \ 0.03880599 \ -0.05969616], Cost = 5.4982
        Iteration 30: Theta = [0.0009826 \quad 0.05043766 \quad -0.09177184], Cost = 5.3825
        Iteration 40: Theta = [0.0012791 \ 0.0629325 \ -0.1231119], Cost = 5.1787
        Iteration 50: Theta = [0.0015715 \quad 0.07509407 \quad -0.15425996], Cost = 4.9968
        Iteration 60: Theta = [0.0018635 \quad 0.08748283 \quad -0.18507323], Cost = 4.7880
        Iteration 70: Theta = [0.00215382 \ 0.09980324 \ -0.21573278], Cost = 4.5807
        Iteration 80: Theta = [0.00244351 \ 0.11218556 \ -0.24623472], Cost = 4.3643
        Iteration 90: Theta = [0.00273237 \ 0.12455841 \ -0.27664243], Cost = 4.1461
        Iteration 100: Theta = [0.00302071 \ 0.13694618 \ -0.30696939], Cost = 3.9242
In [17]: #Assume me, a guy who is 170cm short and 62kg fat, lets see what gender I am
         def what gender am I(height, weight):
             tmd = np.array([1,height,weight])
             tmd gender = hypothesis(tmd,theta)
             print(tmd gender)
             if (tmd gender < 0.5): #male</pre>
                  print("A dude 00")
             elif (tmd gender > 0.5): #female
                  print("A cutie patooie **)
         what gender am I(170,62)
        0.9859608815891429
        A cutie patooie 😍
```

Part b: Using Newton method

Recall:

$$abla J(heta) = rac{1}{m} X^T (h_ heta(X) - y)$$
 $H = rac{1}{m} X^T R X$
 $heta = heta - H^{-1}
abla J(heta)$

```
In [18]: theta = np.array([0,0,0],dtype=float)

def hypothesis(X,theta):
    return 1 / (1+ np.exp(-X @ theta))

def compute_gradient(X,y,theta):
    gradient = 1/m * X.T @ (hypothesis(X,theta) - y)
    return gradient

def compute_hessian(X,theta):
    h = hypothesis(X,theta)
    R = np.diag(h*(1-h))
    return 1/m * (X.T @ R @ X)

gradient = compute_gradient(X, y, theta)
hessian = compute_hessian(X, theta)
```

```
theta = theta - np.linalg.inv(hessian) @ gradient
         print("After one iteration: ")
         print("Gradient:\n", gradient)
         print("Hessian:\n", hessian)
         print("Updated Theta:\n", theta)
        After one iteration:
        Gradient:
         [0.
               3.875 5.125]
        Hessian:
         [[2.5000000e-01 4.2062500e+01 1.5312500e+01]
         [4.2062500e+01 7.0948125e+03 2.5982500e+03]
         [1.5312500e+01 2.5982500e+03 9.6581250e+02]]
        Updated Theta:
         [-19.26812373 0.25391138 -0.38289741]
In [19]: #Now let's ask for Mr. Newton's opinion about my gender
         what_gender_am_I(170,62)
        0.539212276978382
        A cutie patooie 😍
In [20]: #Maybe Mr. Newton will change his mind after 20 iterations?
         theta = np.array([0,0,0],dtype=float)
         iterations = 20
         for i in range(1,iterations+1):
             gradient = compute_gradient(X, y, theta)
             hessian = compute hessian(X, theta)
             theta = theta - np.linalg.inv(hessian) @ gradient
         what gender am I(170,62)
        0.2076754683472401
```

BONUS: Tips for your model to work correctly and efficiently:

ullet Try different values of the hyperparameter lpha, whether it is 0.1, 0.01 or 0.001

A dude 🤨

- Add more and more iterations so your model can reach the optimal solution
- Try different initial parameters to begin with. A cost function may have many local minimums, yet there is only 1 global minimum.
- Visualize convergence by plotting the cost function over iterations to confirm it is decreasing.

Here's a quick visualization for the Gradient Descent with different values of α

```
In [21]: import matplotlib.pyplot as plt
def gradient_descent(X, y, alpha, iterations):
    theta = np.array([0,0,0], dtype=float)
    costs = []

for i in range(1, iterations + 1):
        predictions = hypothesis(X, theta)
        errors = predictions - y
        gradient = 1/m * (X.T @ errors)
        theta -= alpha * gradient

    cost = cost_func(predictions, y)
```

```
costs.append(cost)
         if i == 1 or i % 10 == 0:
             print(f"Alpha = {alpha}, Iteration {i}: Theta = {theta}, Cost = {cost:.4f
     return theta, costs
 iterations = 30
 alphas = [0.0001, 0.001]
 costs by alpha = {}
 for alpha in alphas:
     print(f"\nRunning gradient descent with alpha = {alpha}...")
     theta, costs = gradient descent(X, y, alpha, iterations)
     costs by alpha[alpha] = costs
 plt.figure(figsize=(5.6, 4.2))
 for alpha, costs in costs by alpha.items():
     plt.plot(range(1, iterations + 1), costs, label=f"Alpha = {alpha}")
 plt.xlabel("Iterations")
 plt.ylabel("Cost")
 plt.title("Cost vs. Iterations (Gradient Descent with Different Alphas)")
 plt.legend()
 plt.grid()
 plt.show()
Running gradient descent with alpha = 0.0001...
Alpha = 0.0001, Iteration 1: Theta = [0]
                                                 -0.0003875 -0.0005125, Cost = 0.6931
Alpha = 0.0001, Iteration 10: Theta = [ 2.61383667e-05 5.59458853e-04 -3.47731806e-0
3], Cost = 0.6806
Alpha = 0.0001, Iteration 20: Theta = [ 5.56316431e-05 1.73488809e-03 -6.68271752e-0
3], Cost = 0.6689
Alpha = 0.0001, Iteration 30: Theta = [ 8.47464161e-05 2.89547698e-03 -9.84821154e-0
3], Cost = 0.6575
Running gradient descent with alpha = 0.001...
Alpha = 0.001, Iteration 1: Theta = [0.
                                               -0.003875 - 0.005125], Cost = 0.6931
Alpha = 0.001, Iteration 10: Theta = [0.00038151 \ 0.02552992 \ -0.0277586], Cost = 5.7
Alpha = 0.001, Iteration 20: Theta = [0.00068845 \ 0.03880599 \ -0.05969616], Cost = 5.4
Alpha = 0.001, Iteration 30: Theta = [ 0.0009826
                                                 0.05043766 - 0.09177184, Cost = 5.3
825
```

Cost vs. Iterations (Gradient Descent with Different Alphas)

As you can see, with α = 0.0001, our cost steadily decreases while it fluctuates with α = 0.001

This document was created in Jupyter Notebook by Trần Minh Dương (tmd).

If you have any questions or notice any errors, feel free to reach out via Discord at @tmdhoctiengphap or @ICT-Supporters on the USTH Learning Support server.

Check out my GitHub repository for more projects: GalaxyAnnihilator/MachineLearning.