Aprendizado por reforço: aplicação no problema de empacotamento

Gabriel Medeiros Lopes Carneiro (19103977)

Mikaella Cristina Bernardo Vieira (18103860)

Problema de Empacotamento

- Alocar conjunto de objetos dentro de um objeto maior.
 - Ex.: caixas em container.
- Objetos podem ser regulares ou não.
 - Quantidade de parâmetros necessários para identificação.
- O objeto maior pode ter dimensões fixas ou não.

Empacotamento de peças irregulares

- Peças irregulares bidimensionais.
- Objeto retangular de altura fixa.

Botton-left

Figura 1: Representação de uma sequência de alocação seguindo a regra bottom-left.

Aprendizado por reforço

- Baseado na qualidade das decisões tomadas.
 - Decisões serão analisadas e receberão recompensas e penalidades.
- Recompensas podem ser iguais independentes da qualidade da solução ou não.

Aprendizado por reforço

- Analise pode ser feita passo a passo ou ao final da solução.
 - Com alto número de repetições é possível superar as limitações de cada método.
- Q-learning.

Matriz de Aprendizado

- Representação do método Q-learning.
- $Q(n \times m)$.
 - \circ n quantidade de tipos de peça.
 - o m tamanho total da sequência.
- Q_{ij} representa o benefício do uso de uma peça do tipo i na posição j.
- A matriz é atualiza a cada solução gerada.

$$Q_{ij} = Q_{ij} + \alpha; \quad \text{se } (BW - CW) \ge 0 \text{ ou } (OW - CW) \ge 0, \tag{1}$$

$$Q_{ij} = Q_{ij} - \beta;$$
 caso contrário. (2)

```
Algoritmo 1 Aprendizado por reforço.
```

```
1: Dados de Entrada: OW, BW, d, m, \alpha e \beta
 2: procedimento Iterações de aprendizado por reforço
       Q \leftarrow \mathbf{0}
 3:
       enquanto critério de parada não atingido faça
 4:
           S \leftarrow \emptyset
 5:
           para cada posição da solução (j)
 6:
              p_i \leftarrow e^{Q_{ij}}, \ \forall i: d_i \geq 0
 7:
                                                     S_i \leftarrow i

⊳ Seleção por roleta ponderada

 8:
                                                       ⊳ Atualiza a demanda da peça selecionada
 9:
              d_i \leftarrow d_i - 1
           CW \leftarrow BL(S) \triangleright Calcula o comprimento da solução usando a regra bottom-left
10:
           se(BW-CW) \ge 0 ou (OW-CW) \ge 0 então
                                                                       ⊳ Atualização da matriz Q
11:
12:
               para cada entrada da sequência
                  Q_{ij} \leftarrow Q_{ij} + \alpha
13:
14:
           senão
               para cada entrada da sequência
15:
                  Q_{ij} \leftarrow Q_{ij} - \beta
16:
           se CW \leq BW então
                                                     17:
               BW \leftarrow CW
18:
```

Transferência de aprendizado

- A maioria das peças são similares.
 - Criar matriz de aprendizado e repassar para novas soluções.
- Matriz de aprendizado precisa ser redimensionada.
- Iterações puramente aleatórias
 - Adaptação ao novo exemplar.

```
Algoritmo 2 Aprendizado por reforço com transferência.
 1: Dados de Entrada: Q, OW, BW, d, m, \alpha e \beta
 2: enquanto critério de parada não atingido faça
       procedimento Iterações de aprendizado por reforco
          S \leftarrow \emptyset
 4:
          para cada posição da solução (j)
 5:
             p_i \leftarrow e^{Q_{ij}}, \ \forall i: d_i > 0
                                                 6:
              S_i \leftarrow i
                                                              ⊳ Seleção por roleta ponderada
 7:
                                                    d_i \leftarrow d_i - 1
 8:
          CW \leftarrow BL(S) \triangleright Calcula o comprimento da solução usando a regra bottom-left
 9:
          se (BW - CW) \ge 0 ou (OW - CW) \ge 0 então
                                                                  ⊳ Atualização da matriz Q
10:
              para cada entrada da sequência
11:
                 Q_{ij} \leftarrow Q_{ij} + \alpha
12:
          senão
13:
              para cada entrada da sequência
14:
15:
                 Q_{ij} \leftarrow Q_{ij} + \beta
          se CW \leq BW então
                                                 16:
              BW \leftarrow CW
17:
       procedimento Iterações com soluções aleatórias
18:
          S \leftarrow RS
                              ▷ Cria uma solução factível aleatória com probabilidade uniforme
19:
                                ⊳ Calcula o comprimento da solução usando a regra bottom-left
          CW \leftarrow BL(S)
20:
          se (BW - CW) \ge 0 ou (OW - CW) \ge 0 então
                                                                  ⊳ Atualização da matriz Q
21:
              para cada entrada da sequência
22:
                 Q_{ij} \leftarrow Q_{ij} + \alpha
23:
24:
          senão
              para cada entrada da sequência
25:
                 Q_{ij} \leftarrow Q_{ij} - \beta
26:
          se CW \leq BW então
                                                 27:
              BW \leftarrow CW
28:
```

Comparativo

- Aprendizado por reforço (R).
 - 700 segundos.
- Transferência de aprendizado (T).
 - \circ 600 segundos para geração de Q.
 - o 100 segundos no algoritmo 2.

Comparativo

- 10 exemplares.
 - 5 de peças convexas (rco).
 - 5 com peças côncavas (blazewicz).

Tabela 1: Descrição dos exemplares utilizados.

Exemplar	n	d	m
rco1	7	1	7
rco2	7	2	14
rco3	7	3	21
rco4	7	4	28
rco5	7	5	35
blazewicz1	7	1	7
blazewicz2	7	2	14
blazewicz3	7	3	21
blazewicz4	7	4	28
blazewicz5	7	5	35

Comparativo

Figura 3: Peças dos exemplares *rco* (esquerda) e *blazewicz* (direita). As peças de mesma cor representam os pares de peças côncavas (*blazewicz*) e seus contornos convexos (*rco*).

- Exemplares côncavos tiveram menos iterações.
 - Maior possibilidade de posições devido aos vértices.

Resultados

Tabela 2: Resultados obtidos pelos métodos de aprendizado por reforço com e sem transferência (**T e R**) de aprendizado para os exemplares *rco* e *blazewicz*.

			Mínimo		Máximo		Mediana		Desvio Padrão	
	OW	Ref.	T	R	T	R	T	R	T	R
rco1	8,00	8,00	8,00	8,00	12,00	12,00	9,00	9,00	0,89	0,99
rco2	17,00	14,87	15,33	15,50	22,33	20,66	17,50	17,00	1,00	0,83
rco3	25,00	22,44	23,00	22,33	32,00	32,00	26,00	26,00	1,21	1,21
rco4	29,00	30,44	31,00	30,00	39,66	40,00	34,00	34,00	1,27	1,29
rco5	41,00	38,40	39,11	37,66	47,40	49,00	42,00	42,11	1,38	1,39
blazewicz1	8,00	7,40	7,40	7,43	11,85	11,50	9,00	9,00	0,87	0,85
blazewicz2	16,00	14,25	14,58	14,50	20,80	21,38	17,08	17,03	1,08	1,06
blazewicz3	22,00	21,68	21,86	22,13	30,58	29,41	24,84	24,95	1,33	1,19
blazewicz4	29,00	29,44	30,19	30,50	35,43	37,42	32,75	32,94	1,58	1,49
blazewicz5	36,00	41,05	37,36	37,47	43,97	44,81	40,27	40,15	1,79	1,79

Conclusão

- Peças côncavas exigem maior esforço para solução.
- Transferência de aprendizado traz vantagens.
 - Desempenho similar ao aprendizado por reforço, com tempo de execução menor.
- A medida que nº de exemplares cresce, a transferência encontrou melhores comprimentos mínimos.

Referências

- Bartmeyer, P., Oliveira, L., Toledo, F. e Leão, A.
 (2021). Aprendizado por reforço aplicado ao
 problema de empacotamento de peças irregulares
 em faixas. LIII Simpósio Brasileiro de Pesquisa

 Operacional.
- Watkins, C. J. e Dayan, P. (1992). Q-learning.
 Machine learning, 8(3-4):279-292.