Autor: Katarzyna Skoczylas, nr indeksu: 333159, grupa laboratoryjna nr 3

Metoda Gaussa-Seidela dla równań macierzowych AX=B oraz XA=B, gdzie $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ lub $B \in \mathbb{R}^{m \times n}$.

KRÓTKI OPIS METODY

Metoda Gaussa-Seidela jest jedną z metod iteracyjnych rozwiązywania układów równań liniowych.

Mamy układ równań Ax=b, gdzie $A \in \mathbb{R}^{nxn}$ oraz $x,b \in \mathbb{R}^{nxm}$.

Startujemy z danego przybliżenia początkowego $x^{(0)}$ i tworzymy ciąg kolejnych przybliżeń $x^{(k)}$. Za przybliżenie początkowe, jeśli nie jest ono znane, można przyjąć wektor zerowy lub wektor o elementach losowych.

Algorytm metody można zapisać następująco:

```
\begin{split} \mathbf{x}^{(0)} &= (\mathbf{x_1}^{(0)}, ..., \, \mathbf{x_n}^{(0)})^\mathsf{T} - \mathsf{przybliżenie} \, \mathsf{początkowe} \\ \text{for k = 0,1,...} \, (\mathsf{dopóki nie będzie spełniony warunek stopu}) \\ \text{for i = 1, 2,..., n} \\ \mathbf{x_i}^{(k+1)} &= (\mathbf{b_i} - \sum_{j=1,j < i}^n \, \mathbf{a_{ij}} \mathbf{x_j}^{(k+1)} - \sum_{j=1,j > i}^n \, \mathbf{a_{ij}} \mathbf{x_j}^{(k)}) \, / \, \mathbf{a_{ii}} \\ \text{end} \\ \text{end} \end{split}
```

Jak widać, przy obliczaniu $x_i^{(k+1)}$ (i=1,2,3,...n) mamy już obliczone $x_1^{(k+1)}$ do $x_{i-1}^{(k+1)}$. Można zatem użyć tych najbardziej aktualnych przybliżeń przy obliczaniu $x_i^{(k+1)}$.

Metoda Gaussa-Seidela zapisana w sposób macierzowy:

$$x^{(k+1)} = B_{GS}x^{(k)} + c_{GS}, k = 0, 1, ...,$$

gdzie $B_{GS} = -(L + D)^{-1}U$ oraz $c_{GS} = (L + D)^{-1}b$

Macierz B_{GS} to macierz iteracji. Macierz A zapisujemy w postaci A=L+D+U, gdzie L jest macierzą trójkątną zawierającą elementy leżące pod diagonalą A, U jest macierzą trójkątną zawierającą elementy leżące nad diagonalą A, a D macierzą zawierającą elementy diagonali.

Macierz iteracji zależy tylko od macierzy układu równań, czyli macierzy A, a nie od wektora b.

Metoda ta nie zawsze będzie zbieżna, co opisane będzie w dalszej części.

KRÓTKI OPIS PROGRAMU

Program składa się z następujących funkcji:

- gauss_seidel_AX(A, B)
 Rozwiązuje równanie macierzowe AX=B metodą Gaussa-Seidela
 Weiście:
 - A macierz kwadratowa układu równań wymiaru nxn
 - B macierz wymiaru nxm

Wyjście:

- X macierz rozwiązań wymiaru nxm
- counter liczba wykonanych iteracji
- error wektor błędu w każdej iteracji

Tolerancje błędu ustawiłam na 10⁻¹², maksymalną liczbę iteracji na 1000 oraz przybliżenie początkowe na wektor samych zer.

Funkcja przechowuje poprzednią wartość X w zmiennej X_old.

Oblicza ona macierz X zgodnie z metodą Gaussa-Seidla iteracyjnie dla każdego wiersza macierzy A oraz odpowiadającego mu wiersza macierzy B.

Po każdej iteracji aktualizuje wektor błędów.

Warunek stopu: norma Frobeniusa z różnicy macierzy kolejnych przybliżeń mniejsza niż tolerancja.

gauss_seidel_XA(A, B)

Rozwiązuje równanie macierzowe XA=B metodą Gaussa-Seidela.

Wejście:

- A macierz kwadratowa układu równań wymiaru nxn
- B macierz wymiaru nxm

Wyjście:

- X macierz rozwiązań wymiaru nxm
- counter liczba wykonanych iteracji
- error wektor błędu w każdej iteracji

Funkcja ta wywołuje funkcję gauss_seidel_AX(transpose(A), transpose(B)), a następnie transponuje X. Wynika to z:

XA=B

 $(XA)^T = B^T$

 $A^TX^T=B^T$

spectral_r

Oblicza promień spektralny macierzy iteracyjnej w metodzie Gaussa-Seidela.

Wejście:

- A - kwadratowa macierz układu równań wymiaru nxn

Wyjście:

- r - promień spektralny macierzy iteracji B_GS = (D - L)^{-1} * U

Dla równania XA=T wywołuję funkcję od macierzy A^T, zgodnie z równaniem rozpisanym w poprzedniej funkcji.

main

W skrypcie testującym main generuję 6 przypadków i tworzę dla nich tabele oraz wykresy.

PRZYPADEK 1

```
PRZYPADEK 1
A_1 =
   10
   -1
         10
               2
    0
         -1
             10
                     2
         0
              -1
                     10
B_1 =
    1
    3
          4
    5
          6
   Iteration
                  Error
       1
                   1.5266
                  0.32225
       2
                 0.064509
       3
                  0.011044
       4
       5
                0.00064316
       6
                3.4174e-05
       7
                1.7932e-06
       8
                9.392e-08
                4.9179e-09
       9
                2.5751e-10
      10
                1.3483e-11
      11
```


Liczba iteracji: 11

Promień spektralny macierzy iteracji: 0.052361 Współczynnik uwarunkowania macierzy A: 1.1752

Błąd względny wyznaczonego przybliżenia X: 6.7088e-13

Na początek rozważmy równanie macierzowe AX=B dla powyższych A i B. Jak widać metoda działa poprawnie i w małej liczbie iteracji. Promień spektralny tej macierzy wynosi około 0,052. Z twierdzenia z wykładu wiemy, że metoda jest zbieżna globalnie (tzn. dla każdego przybliżenia początkowego) wtedy i tylko wtedy, gdy promień spektralny macierzy iteracji jest mniejszy niż 1. Przetestujmy zatem różne przybliżenia początkowe.

• Przybliżenie początkowe wygenerowane przy pomocy funkcji rand

Iteration	Error		
1	1.3115		
2	0.16936		
3	0.020277		
4	0.0032573		
5	0.00019073		
6	1.0141e-05		
7	5.322e-07		
8	2.7875e-08		
9	1.4596e-09		
10	7.6429e-11		

Liczba iteracji: 10

Promień spektralny macierzy iteracji: 0.052361 Współczynnik uwarunkowania macierzy A: 1.1752

Błąd względny wyznaczonego przybliżenia X: 3.8027e-12

• Przybliżenie początkowe wygenerowane przy pomocy funkcji randn

Iteration	Error		
1	5.4758		
2	0.70705		
3	0.1062		
4	0.019925		
5	0.0011995		
6	6.4005e-05		
7	3.3605e-06		
8	1.7603e-07		
9	9.2175e-09		
10	4.8264e-10		
11	2.5271e-11		

Liczba iteracji: 11

Promień spektralny macierzy iteracji: 0.052361 Współczynnik uwarunkowania macierzy A: 1.1752 Błąd względny wyznaczonego przybliżenia X: 1.2574e-12

Przybliżenie początkowe miało wpływ na błąd względny. Są to jednak bardzo małe wartości rzędu 10⁻¹². Dla każdego z nich zgodnie z powyższym twierdzeniem metoda była zbieżna, różnica liczby iteracji wyniosła 1.

PRZYPADEK 2

Rozważmy teraz macierz o dużym promieniu spektralnym i równanie AX=B.

Promień spektralny tej macierzy wynosi około 1,8. Funkcja zakończyła działanie po 12 iteracjach, jednak błąd względny wyznaczonego przybliżenia to prawie 0,6. Metoda nie wyznaczyła X prawidłowo. Tak samo było dla innych przetestowanych przeze mnie przybliżeń początkowych. Pokazuje to, że metoda nawet wykonując małą liczbę iteracji nie musi zbiegać do poprawnego X.

PRZYE	ADEK	2			
A_2 =	:				
1	.5	5	5	5	5
	5	15	5	5	5
	5	5	15	5	5
	5	5	5	15	5
	5	5	5	5	15
B_2 =	:				
	1	2			
	3	4			
	5	6			
	7	8			
	9	10			
1	terat	ion	E	rror	

Iteration	Error				
1	1.1089				
2	0.24753				
3	0.027503				
4	0.0030559				
5	0.00033955				
6	3.7727e-05				
7	4.1919e-06				
8	4.6577e-07				
9	5.1752e-08				
10	5.7503e-09				
11	6.3892e-10				
12	7.0991e-11				

Liczba iteracji: 12

Promień spektralny macierzy iteracji: 1.8092 Współczynnik uwarunkowania macierzy A: 3.5 Błąd względny wyznaczonego przybliżenia X: 0.5930

Macierz	PromienSpektralny	LiczbaIteracji	BladWzgledny
{'A1'}	0.083333	11	2.7084e-12
{'A2'}	0.4445	27	3.1694e-11
{'A3'}	0.99214	36	3.4943e-11

Ponadto, im większy promień spektralny, tym więcej iteracji potrzebuje metoda Gaussa-Seidela.

PRZYPADEK 3

Sprawdźmy, jak dominacja diagonali wpływa na poprawność metody. W tym celu przetestowałam funkcje rozwiązującą układ XA=B dla 4 różnych macierzy A z tą samą wartością (10) na diagonali oraz pod diagonalą (-1) i różnymi wartościami nad diagonalą.

Tabela wyników dla różnych sum na diagonali i poza diagonalą:							
SumOnDiagonal	MaxSumOffDiagonal	Iterations	CondA	SpectralRadius	RelativeError	RowDominance	
10	2	10	1.1752	0.052361	7.5471e-13	true	
10	10	17	4.166	0.2618	1.2823e-11	false	
10	30	102	57.755	0.78541	2.2594e-11	false	
10	60	10000	473.29	1.5708	NaN	false	
10	100	10000	2164	2.618	NaN	false	

Jak widać nie dla wszystkich macierzy A metoda była zbieżna. Czym większa była dominacja wartości poza diagonalą, tym metoda radziła sobie gorzej. Potrzebowała ona większej liczby iteracji lub w ogóle nie była zbieżna jak w dwóch ostatnich przypadkach (10000 iteracji to maksymalna liczba iteracji ustawiona w funkcji). Wzrastał także promień spektralny macierzy iteracji oraz współczynnik uwarunkowania macierzy A.

Zatem to, czy macierz jest wierszowo / kolumnowo dominująca wpływa na poprawność metody Gaussa-Seidela. Dominacja diagonali gwarantuje zbieżność tej metody.

PRZYPADEK 4

Sprawdźmy, jak radzi sobie metoda, gdy A jest macierzą bliską macierzy osobliwej. W tym celu rozwiązałam równanie AX=B dla trzech różnych A. Każde kolejne A było coraz bliższe macierzy osobliwej.

В =				A =			
6 12					0000	1.0000	
3					0000	1.0000	
A =				A =			
1.0000	1.0000	1.0000		1	0000	1 0000	1 0000
1.0000	1.1100	1.0000			0000 0000	1.0000 1.0010	
1.0000	1.0000	1.2000			0000	1.0000	
Przypadek 1:							
Determinant	Conditi	onNumber	Spectral	Radius	Iter	ations	RelativeError
0.022	70.	244	3.45	31	2	49	1.259e-11
Przypadek 2:							
Determinant	Conditi	onNumber	Spectral	Radius	Itera	ations	RelativeError
2.5e-05	18	04	4.20	56	1	000	0.039945
Przypadek 3:							
Determinant	Conditi	onNumber	Spectral	Radius	Itera	ations	RelativeError
1e-06						000	0.56221

Widzimy, że tylko w pierwszym przypadku metoda zadziałała poprawnie i dała wynik z błędem rzędu 10⁻¹¹, wykonując 249 iteracji. W pozostałych przypadkach funkcja wykonała 1000 iteracji i nie uzyskaliśmy wyniku bliskiemu poprawnego. Norma różnicy między obliczoną wartością X i wartością obliczoną w Matlabie przy pomocy funkcji wbudowanej to odpowiednio 0.04 oraz 0.056, więc zdecydowanie więcej niż w pierwszym przypadku. Ponadto macierze te były źle uwarunkowane oraz promień macierzy iteracji był większy od 1.

Sprawdziłam także czy większa liczb iteracji pomoże w uzyskaniu lepszego przybliżenia. Okazało się, że tak. W drugim przypadku 5710 iteracji dało wynik z błędem rzędu 10⁻¹¹, a w trzecim przypadku 10000 iteracji błąd względny to około 0,0005.

Zatem metoda Gaussa-Seidela zawodzi przy macierzach A bardzo bliskich macierzom osobliwym lub potrzebuje zdecydowanie więcej iteracji, aby dać poprawne przybliżenie wyniku.

PRZYPADEK 5

Sprawdźmy, czy macierz B ma wpływ na działanie metody Gaussa-Seidela. W tym celu rozwiązałam równanie AX=B dla poniższych macierzy.

```
Przypadek B 2:
A 5 =
                                                  B =
     4
           1
                 2
                                                      60
     1
           3
                -1
                                                     120
                 3
                                                      30
Promień spektralny macierzy iteracji: 0.25
                                                  Liczba iteracji: 67
Współczynnik uwarunkowania macierzy A: 9.118
                                                  Błąd względny: 1.4714e-10
Przypadek B 1:
                                                  Przypadek B 3:
B =
                                                  B =
     6
                                                         60000
    12
                                                        120000
     3
                                                         30000
Liczba iteracji: 61
                                                  Liczba iteracji: 84
Błąd względny: 1.676e-10
                                                  Błąd względny: 1.5158e-10
```

Jak widać dla większych wartości w macierzy B potrzebowaliśmy większej liczby iteracji, aby osiągnąć dokładny wynik. Zbieżność metody Gaussa-Seidela zależy od właściwości macierzy A, takich jak jej dominacja diagonalna lub promień spektralny macierzy iteracji. Wartości w B nie wpływają bezpośrednio na zbieżność. Mogą jednak zmienić liczbę potrzebnych iteracji. Zmieniają także oczywiście wynik równania.

PRZYPADEK 6

W ostatnim przypadku sprawdzimy warunek gwarantujący zbieżność metody, czyli to czy A jest macierzą symetryczną i dodatnio określoną. W tym celu rozwiązałam równanie AX=B dla 6 macierzy. Pierwsze trzy z nich były symetryczne i dodatnio określone, natomiast ostatnie trzy były symetryczne, ale nie były dodatnio określone.

YPADEK 6: Matrix	PositiveDefinite	CondA	SpectralRadius	Iterations	RelativeErro
"A1"	true	3.9357	0.5	17	4.1532e-12
"A2"	true	2.6863	0.18333	15	1.6159e-11
"A3"	true	2.0509	0.059761	12	1.4027e-11
"A4"	false	1.9408	NaN	10000	NaN
"A5"	false	7.8541	0.5	37	9.4814e-12
"A6"	false	2	NaN	10000	Inf

Jak widać w trzech pierwszych przypadkach, czyli dla macierzy A symetrycznej i dodatnio określonej metoda jest zbieżna. W ostatnich trzech przypadkach metoda raz była zbieżna i dwa razy nie udało się rozwiązać równania.

Podsumowując, jeśli macierz A:

- jest diagonalnie dominująca
- lub symetryczna i dodatnio określona

to metoda Gaussa-Seidela jest zbieżna.

Metoda może zbiegać, jeśli te warunki nie są spełnione, ale nie mamy wtedy pewności czy tak się stanie (np. równanie nr 5 z szóstego przypadku).

Praktyczne zastosowanie metody Gaussa-Seidela dla równań macierzowych:

- Analiza systemów energetycznych: Metoda Gaussa-Seidela jest używana do rozwiązywania równań przepływu mocy w systemach energetycznych, aby określić napięcie i prąd na każdym węźle systemu.
- **Przenoszenie ciepła i dynamika płynów**: Metoda Gaussa-Seidela jest stosowana do rozwiązywania równań opisujących przenoszenie ciepła i przepływ płynów w różnych zastosowaniach inżynieryjnych, takich jak symulacja wymienników ciepła, przepływ płynów w ośrodkach porowatych oraz konwekcja naturalna.
- **Przetwarzanie obrazów**: Metoda Gaussa-Seidela jest wykorzystywana do rozwiązywania równania Poissona w aplikacjach przetwarzania obrazów, takich jak wygładzanie i usuwanie szumów z obrazów.
- Symulacja obwodów elektrycznych: Metoda Gaussa-Seidela jest stosowana do rozwiązywania równań węzłowych w symulacji obwodów w celu określenia napięcia i prądu w każdym węźle obwodu.

Źródło: https://www.quora.com/What-are-some-practical-applications-of-the-Gauss-Seidelmethod