	doc_1		doc_2		decision	id
cases		Robin B. Chan	authors	Robin Chan Matthias Rottmann Hanno Gottschalk		
	authors	Matthias Rottmann Hanno Gottschalk	title	Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation		
			publication_date	2021-07-27 00:00:00		
	title	Entropy Maximization and Meta Classification for Out- of-Distribution Detection in Semantic Segmentation	source	SupportedSources.INTERNET_ARCHIVE		
			journal			
	publication_date 2021-10-01 00:00:00		volume			
	source	SupportedSources.OPENALEX	doi		DUPLICATES 115	
	journal	arXiv (Cornell University)	urls	 https://web.archive.org/web/20210730170902/https://arxiv.org/pdf/2012.06575v2.pdf 		
	volume		id	id-8904738483363938247	DOFLICATE	3 113
	doi	10.1109/iccv48922.2021.00508		Deep neural networks (DNNs) for the semantic segmentation of images are usually trained to operate on a predefined closed set of object classes. This is in	stly, ing ve by	
	urls	 https://openalex.org/W3112906266 https://doi.org/10.1109/iccv48922.2021.00508 http://arxiv.org/pdf/2012.06575 	abstract	the "open world" setting where DNNs are envisioned to be deployed to. From a functional safety point of view, the ability to detect so-called "out-of-t" (OoD) samples, i.e., objects outside of a DNN's semantic space, is crucial for many applications such as automated driving. A natural baseline of OoD detection is to threshold on the pixel-wise softmax entropy. We present a two-step procedure that significantly improves that approach. Firstly, samples from the COCO dataset as OoD proxy and introduce a second training objective to maximize the softmax entropy on these samples. Starting		
	id	id-7924627670073505000		from pretrained semantic segmentation networks we re-train a number of DNNs on different in-distribution datasets and consistently observe improved OoD detection performance when evaluating on completely disjoint OoD datasets. Secondly, we perform a transparent post-processing step to discard false positive		
	abstract			samples by so-called "meta classification". To this end, we apply linear models to a set of hand-crafted metrics derived from the DNN's softmax		
	versions			probabilities. In our experiments we consistently observe a clear additional gain in OoD detection performance, cutting down the number of detection errors by up to 52% when comparing the best baseline with our results. We achieve this improvement sacrificing only marginally in original segmentation performance.		
				Therefore, our method contributes to safer DNNs with more reliable overall system performance.		
			versions			