CS 445 Natural Language Processing Project 3: Text Classification V.2

Cavit Çakır

23657

Table of Contents:

```
Naïve Bayes
    Preprocessing:
    Classification Pipeline:
        Grid Search:
             TfidfVectorizer Parameters:
             MultinominalNB Parameters:
             Best Parameters:
    Evaluation:
        Classification_report:
        Confusion_matrix:
Logistic Regression
    Preprocessing:
    Classification Pipeline:
        Grid Search:
             TfidfVectorizer Parameters:
             LogisticRegression Parameters:
             Best Parameters:
    Evaluation:
        Classification_report:
        Confusion_matrix:
CNN
    Preprocessing:
        Text:
        Labels:
    Classification:
        Final Model with Random Embeddings:
                 Classification Report
                 Confusion Matrix
        Model with Pre-trained Embeddings from akoksal[2]:
                 Classification Report
                 Confusion Matrix
        Model with Pre-trained Embeddings from homework2:
                 Classification Report
                 Confusion Matrix
Summarize:
```

References:

Naïve Bayes

Preprocessing:

At first I lowered and removed punctuations & stopwords and stemmed the data with TurkishStemmer[1] then ran the classification pipeline and got 77% classification accuracy, then I tried to lower the data and remove stopwords then executed the pipeline again and I got 78% accuracy. So I decided to keep punctuations and not stem the data.

Classification Pipeline:

I used TfidfVectorizer from Sklearn in order to represent my text data with vectors. Then give the vectorized data to MultinominalNB from Sklearn.

Grid Search:

TfidfVectorizer Parameters:

```
'use_idf':[True,False],
'norm': [None, 'I1', 'I2'],
'binary': [True, False]
```

MultinominalNB Parameters:

```
'alpha': np.linspace(0.5, 1.5, 3), 'fit_prior': [True, False],
```

Best Parameters:

Following parameters give the best result according to GridSearchCV from Sklearn. Especially use_idf from TfidfVectorizer helps us to see the difference between different weights.

```
'alpha': 1.5,
'fit_prior': True,
'use_idf': True,
'norm': None
'binary': True
```

Evaluation:

Classification_report:

	precision	recall	f1-score	support
dunya	0.80	0.85	0.82	395
spor	0.90	0.93	0.92	384
turkiye	0.65	0.67	0.66	421
video	0.74	0.51	0.60	408
yazarlar	0.80	0.96	0.87	392
accuracy			0.78	2000
macro avg	0.78	0.78	0.78	2000
weighted avg	0.78	0.78	0.77	2000

Confusion_matrix:

As we can see from classification_report from sklearn, we predicted "dunya", "spor" and "yazarlar" classes good but news about "turkiye" and "video" are not good.

Also confusion_matrix shows us the model predicted "turkiye" as "video" a lot which supports results in classification_report.

Logistic Regression

Preprocessing:

At first I lowered and removed punctuations & stopwords and stemmed the data with TurkishStemmer[1] then ran the classification pipeline and got 83% classification accuracy, then I tried to lower the data and remove stopwords then executed the pipeline again and I got 86% accuracy. So I decided to keep punctuations and not stem the data.

Classification Pipeline:

I used TfidfVectorizer from Sklearn in order to represent my text data with vectors. Then give the vectorized data to LogisticRegression from Sklearn.

Grid Search:

TfidfVectorizer Parameters:

```
'use_idf':[True,False],
'binary': [True, False]
```

LogisticRegression Parameters:

```
'C': np.logspace(-3,3,3),
```

Best Parameters:

Following parameters give the best result according to GridSearchCV from Sklearn. Especially use_idf from TfidfVectorizer helps us to see the difference between different weights.

```
'C': 1000,
'use_idf': True,
'binary': True
```

Evaluation:

Classification_report:

	precision	recall	fl-score	support
dunya	0.82	0.88	0.85	395
spor	0.93	0.94	0.94	384
turkiye	0.82	0.73	0.77	421
video	0.81	0.80	0.81	408
yazarlar	0.91	0.96	0.93	392
accuracy			0.86	2000
macro avg	0.86	0.86	0.86	2000
weighted avg	0.86	0.86	0.86	2000

Confusion_matrix:

CNN

Preprocessing:

Text:

I extracted digits and lowered all the text then removed stopwords. As an experiment I tried stemming with TurkishStemmer[1] but again it did not improve my overall score.

I created a Tokenizer object and fit my train data into it. Then with the help of the Tokenizer object, I created numeric representation of text and also got the vocabulary size information.

After these steps, I calculated estimated max_token per sample size with the following equation: max_tokens = np.mean(num_tokens) + 2 * np.std(num_tokens) where num_tokens is the total number of tokens. This max_token has covered 97% of my data and helped me to reduce overall complexity which caused by noise.

After calculating the max_token size, I padded my data and put an OOV token if I see any out of vocabulary word.

Labels:

Created one-hot encoding vectors for each label.

'Spor' = [1,0,0,0,0]

'Yazarlar'=[0,1,0,0]

'Video' = [0,0,1,0,0]

'Dunya'=[0,0,0,1,0]

'Turkiye'=[0,0,0,0,1]

Classification:

Final Model with Random Embeddings:

I tried various methods in order to get good results but I got a maximum 82 classification accuracy. I realized that complex models do not work good in our dataset. Because of this fact, I tried simple models and get the best results with the following model;

I created 100 sized word2vec vectors in the embedding layer then put that data into a convolutional layer in order to extract features. After that I used double maxpooling in order to reduce complexity. After these steps I put a dense layer with relu activation function. After that again in order to reduce complexity I put 0.75 dropout layer then I give output with softmax layer.

Classification Report

>	precision	recall	f1-score	support
spor	0.93	0.94	0.94	383
yazarlar	0.95	0.91	0.93	411
video	0.66	0.88	0.75	306
dunya	0.77	0.81	0.79	376
turkiye	0.80	0.64	0.71	524
accuracy			0.82	2000
macro avg	0.82	0.84	0.82	2000
weighted avg	0.83	0.82	0.82	2000

Confusion Matrix

Model with Pre-trained Embeddings from akoksal[2]:

I used the same model that I used with Random Embeddings.

With the pre-trained word-embeddings which sized 400, I got a maximum 81 classification accuracy. I tried training the pre-trained word embeddings in the embedding layer and got lower accuracy. In order to get more accuracy, I didn't trained the embedding layer in the following results.

I think the reason for getting a lower score in akoksal's pre-trained embeddings is the domain of the akoksal's training data. He used wikipedia in order to get those weights.

Classification Report

	precision	recall	f1-score	support
spor	0.88	0.94	0.91	359
yazarlar	0.96	0.76	0.85	500
video	0.86	0.74	0.79	473
dunya	0.76	0.84	0.80	356
turkiye	0.58	0.79	0.67	312
accuracy			0.81	2000
macro avg	0.81	0.81	0.80	2000
weighted avg	0.83	0.81	0.81	2000

Confusion Matrix

Model with Pre-trained Embeddings from homework2:

I used the same model that I used with Random Embeddings.

With the pre-trained word-embeddings which sized 32, I got a maximum 83 classification accuracy. I tried not to train the pre-trained word embeddings in the embedding layer and got lower accuracy. In order to get more accuracy, I trained the embedding layer in the following results.

I think the reason for getting a best score in hw2's pre-trained embeddings is the domain of our hw2 dataset is similar to our current dataset.

Classification Report

	precision	recall	fl-score	support
spor	0.94	0.90	0.92	401
yazarlar	0.97	0.82	0.89	461
video	0.77	0.83	0.80	381
dunya	0.88	0.81	0.84	425
turkiye	0.63	0.80	0.71	332
accuracy			0.83	2000
macro avg	0.84	0.83	0.83	2000
weighted avg	0.85	0.83	0.84	2000

Confusion Matrix

Summarize:

In order to compare the results;

- → Naive bayes: 78 classification accuracy (micro f1-score)
- → Logistic Regression: 86 classification accuracy (micro f1-score)
- → Random Embedding CNN: 82 classification accuracy (micro f1-score)
- → Akoksal's Embedding CNN: 81 classification accuracy (micro f1-score)
- → Hw2's Embedding CNN: 83 classification accuracy (micro f1-score)
- → Extra "dbmdz/bert-base-turkish-cased" BERT model: 96 classification accuracy (micro f1-score)

At first I implemented Naive Bayes and Logistic Regression models and compared the results, I thought that it's normal because of the nature of the models, what I mean by nature is naive bayes is generative and logistic regression is discriminative models. So, Naïve Bayes assumes all the features to be conditionally independent [3] which is not in our case so we expect to get a lower score in naive bayes. Also, When the training data size is small relative to the number of features, logistic regression can help reduce overfitting and result in a more generalised model [3]. So, when we look at scores, the comparison between naive bayes and logistic regression results were as expected.

After these 2 models, I implemented CNN with random embeddings with a very complex CNN architecture which consists several convolutional layers and too much dense layers and got scores in between 70-80%, at first i thought that I am doing something wrong so I tried a lot of different architectures and asked TA if i am doing something wrong. He recommended me to try more simple models because our data may not be good for complex CNN architectures. I tried really simple models and got results like 83-84% but I still didn't get satisfactory results because I expected more from CNN. After finished my homework, I wonder what score I will get if I put the same data into the "dbmdz/bert-base-turkish-cased" model from huggingface[4] and got 96% classification accuracy. That point I got satisfied but still I do not know how to increase CNN performance.

References:

- [1] https://github.com/otuncelli/turkish-stemmer-python
- [2] https://github.com/akoksal/Turkish-Word2Vec
- [3]https://dataespresso.com/en/2017/10/24/comparison-between-naive-bayes-and-logi stic-regression/
- [4] https://huggingface.co/dbmdz/bert-base-turkish-cased

Following are used for general information and datasets.

- Çiğdem İnan ACI, Adem ÇIRAK, and Berrin Yanıkoglu. "Türkçe Haber Metinlerinin Konvolüsyonel Sinir Ağları ve Word2Vec Kullanılarak Sınıflandırılması"
- https://machinelearningmastery.com/develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/
- https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
- https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-review-sentiment/
- https://github.com/ibrahimcelenli/cnn-word2vec-tweets-classification
- https://github.com/ibrahimcelenli/news-classification
- https://medium.com/@kocur4d/hyper-parameter-tuning-with-pipelines-5310aff069d6
- https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-e be8b2c2ca1