Undergrad Complexity

Ben Chaplin

Contents

1	Prir	mitive Recursive Functions	1
	1.1	Various functions and operators	1
	1.2	Definition and examples	1

1 Primitive Recursive Functions

1.1 Various functions and operators

Definition. The constant function C_n^k is defined for all $n, k \in \mathbb{N}$ as $C_n^k(x_1, \dots, x_k) = n$.

Definition. The successor function S is defined for all x inN as S(x) = x + 1.

Definition. The **projection function** P_i^k is defined for all $i, k \in \mathbb{N}$, $1 \le i \le k$ as $P_i^k(x_1, \dots, x_k) = x_i$.

Definition. Given an m-ary function h and m k-ary functions g_1, \ldots, g_m , the **composition operation** \circ is defined:

$$f = h \circ (g_1, \dots, g_m)$$

$$f(x_1, \dots, x_k) = h(g_1(x_1, \dots, x_k), \dots, g_m(x_1, \dots, x_k))$$

Definition. Given a k-ary function g and a (k+2)-ary function h, the **primitive recursion operator** ρ is defined:

$$f = \rho(g, h)$$

$$f(0, x_1, \dots, x_k) = g(x_1, \dots, x_k)$$

$$f(S(y), x_1, \dots, x_k) = h(y, f(y, x_1, \dots, x_k), x_1, \dots, x_k)$$

1.2 Definition and examples

Definition. The constant function, successor function and projection function are **primitive recursive** functions, as well as any finite number of composition or primitive recursive operations on those functions.

Example.