CSE221

Lecture 10: Hashing

Fall 2021 Young-ri Choi

Outline

- Static hashing
 - –Division
 - -Mid square
 - -Folding
- Overflow handling

Hashing

- Hash table or hash map is a data structure that associates values with keys
- Example: phone book

Hashing

- Hash function: hashing method
 - Calculate indexes from keys
 - –Expected time: O(1)
 - Input data is not known in advance
 - Should consider all possible key values
- Types
 - -Static hashing vs. Dynamic hashing

Static Hashing

 Key-value pairs are stored in a fixed size <u>hash</u> table

		0	1	s slots	s-1
b buckets	0				
	1				
		•	•		•
					•
		•			•
	b-1				5

Static Hashing

- Key-value pairs are stored in a fixed size <u>hash</u> table
 - -2-D structure:
 - A hash table is partitioned into b buckets
 - Each bucket has s slots
 - Each slot holds one record
 - -Hash function h(k) transforms key k into an address (or index) to a bucket in the hash table
 - Each key appears only once in the table

Static Hashing

- n: current number of key-value pairs in the table
- T: all possible keys
- Key density : n/T
 - Fraction of keys in the table
 - Usually very low because not all keys are used
- Loading density(factor) : $\alpha = n/(sb)$
 - -How much the hash table is used
 - -1: table is full, 0: table is empty

Hashing

- Hash function h computes hash table <u>address</u> of a key without any other information
 - -h(k) is a function of k
- Hash function may generate identical addresses for different keys
 - -Why? Key density is usually very low
 - There is a chance for two keys map to a same location
 - A bucket may store multiple keys in slots

Example

- b = 26, s = 2, n = 10
- Key: a string starting with a character
- Hash function: A~Z to 0~25, from the first character of key

-A -> 0	
-A2 -> 0	
−D -> 3	
− G -> 6	
-GΔ -> 6	

	Slot 1	Slot 2
0	A	A2
1	A STATE OF THE STA	
2		· ·
3	D	
4	1 (× 183)	
5		1 2 11
5	GA	G
	•	11.
.		•
.		•
5		9
,		

Example

How about additionally inserting A1 and A3?

-*Collision*: h(A1) = h(A3) = h(A) = h(A2) = 0

-Overflow: no slot left

	Slot 1	Slot 2
0	A	A2
1		trong g
2		
3	D	
4	- 1 - 73	(d. ** * * *
5		1 2 11
6	GA	G
	•	
:		:
25		

A, A2, A1, A3 : collisions

A1, A3: overflows

Hash Table Issues

- Choice of hash function
 - –Easy to compute
 - -Avoid collision as much as possible
- Overflow handling method
 - Should handle when there is no space in the bucket for the new pair
- Size of hash table
 - -If too small, the collision occurs often

Two Steps for Hashing with Strings

- In many cases, keys are given as strings
- We first transform a string to an integer
- We then produce an address from the integer

String To Integer

- char: 1 byte, int: 4 bytes
- A character has a unique value (i.e., ASCII code)
- We can pack and convert multiple characters in a string into a single integer
 - —E.g. two-character string key[0:1] can be converted into a unique 4 byte non-negative int

```
number = key[0];
number += ((int) key[1]) << 8;</pre>
```


String To Integer

Example

- -Key: SA
- -S: ASCII code 83 = 01010011
- -A: ASCII code 65 = 01000001
- -S + A << 8
 - = 000000001010011 + 010000010000000
 - = 0100000101010011 (Binary)
 - = 16723 (Decimal)

Generalization

```
unsigned int stringToInt(char *key)
   int number = 0;
   while(*key)
      number += *key++;
      if (*key)
          number += ((int) *key++) <<8;
   return number;
```

This code generates 16bit integer for a string of arbitrary length (every two characters are converted into a 16bit integer and added together)

Uniform Hash Function

- If k is a key chosen randomly, then we want probability of h(k)=i to be 1/b for all buckets
 - Distribute key values uniformly over the range
- Uniform hash function minimizes collision / overflow when keys are selected randomly
- E.g., division, mid-square, folding, etc

Hash Function: Division

- Domain is all nonnegative integers
- h(k)=k % D (D is usually b)
- Generated address: 0 ~ D-1
- For b buckets, the number of integers that get hashed into bucket i is approximately $2^{31}/b$
- The division maps approximately the same number of keys into each bucket
 - Uniform hashing function

Hash Function: Division

- Issue: keys tend to be biased
- If divisor (D) is an even number
 - Odd integers hash into odd buckets
 - Even integers into even buckets
 - –Example
 - 20%14 = 6, 30%14 = 2, 8%14 = 8
 - 15%14 = 1, 3%14 = 3, 23%14 = 9
- If divisor is an odd number
 - -Odd (even) integers may hash into any bucket
 - –Example
 - 20%15 = 5, 30%15 = 0, 8%15 = 8
 - 15%15 = 0, 3%15 = 3, 23%15 = 8

Hash Function: Mid-square

- Squaring the key and using r middle bits
- Example: r=2 digits in 10-base

$$-k = 4567$$
, $k^2 = 20857489$, $h(k) = 57$

- Avoid division operation, but expensive
- All bits of the key contribute the result

Hash Function: Folding

- Partition the key x into several parts, and add the parts together to obtain the hash address
 - —Part's size matches the size of the required address
- ex) x=12320324111220, 1000 addresses
 - -partition x into 123,203,241,112,20
 - -Shift folding
 - return the address 123+203+241+112+20=699
 - —Folding at the boundaries
 - return the address 123+302+241+211+20=897

