Discrete Mathematics

Lecture 6. 함수

Lecturer: Suhyung Park, PhD

• Office: 공과대학 7호관 431호

• Contact: 062-530-1797

• E-mail: suhyung@jnu.ac.kr

^{*} 본 강의 자료는 생능출판사와 한빛아카데미 "PPT 강의자료"를 기반으로 제작되었습니다.

강의 내용

- 1. 함수의 정의
- 2. 함수 그래프
- 3. 단사 함수, 전사 함수, 전단사 함수
- 4. 여러 가지 함수들
- 5. 컴퓨터 언어에서의 함수의 역할

■ 함수(Function)

- **함수(function)**는 관계(relation)의 특수한 형태로서, 첫 번째 원소가 같지 않은 순서쌍들의 집합임
- 함수란 한 집합의 원소들과 다른 집합의 원소들 간의 관계를 나타내는 순서쌍 중에서, 앞에 있는 집합의 모든 원소가 한 번씩만 순서쌍에 포함될 경우를 말함

- 함수는 여러 가지 수학적 도구(tool) 중에서 가장 중요한 개념의 하나인데, 수학과 컴퓨터공학 그리고 다양한 공학 분야들에서 폭넓게 활용됨
- 함수 개념의 이해와 컴퓨터 언어에서의 응용 능력을 배양함으로써 주어진 문제를 해결하는 데 많은 도움이 됨

두 집합 X와 Y에서 **함수**(function) f는 집합 X에서 Y로의 관계의 부분 집합으로서, 집합 X에 있는 모든 원소 x가 집합 Y에 있는 원소 중 오직 하나씩만 대응되는 관계를 말한다. 집합 X에 서 집합 Y로의 함수 f는 다음과 같이 표기한다.

$$f:X\to Y$$

이때, X를 함수 f의 정의역(domain)이라 하며, Y를 함수 f의 공변역(codomain)이라 한다.

- 함수 f를 사상(mapping)이라고 하면 'f는 X에서 Y로 사상한다'라고 표현함
- $f: X \to Y$ 를 함수라 할 때 f(x) = y라 표시하면, y를 함수 f에 의한 x의 상(image) 또는 함수값이라고 함
- 함수 f의 정의역은 Dom(f)라 표시함
- 함수 f의 치역(range)은 Ran(f)라고 표시함

Dom
$$(f) = \{x \mid (x, y) \in f, x \in X, y \in Y\}$$

Ran $(f) = \{y \mid (x, y) \in f, x \in X, y \in Y\}$

■ 함수의 정의역, 공변역, 치역의 정의

• 두 함수 f와 g가 같은 정의역과 공변역을 가지는 경우, 즉 정의역에 있는 모든 원소 x에 대하여 f(x)=g(x)가 성립하면, 함수 f와 g는 서로 같다(equal)라고 하고 f=g로 표기함

〈그림 6.1〉 함수의 정의역, 공변역, 치역

 $A = \{a, b\}, B = \{1, 2, 3\}$ 이라고 할 때, A에서 B로의 함수가 되는 경우와 함수가 될 수 없는 경우를 살펴보자.

물이 (1) 함수가 되는 경우

(2) 함수가 될 수 없는 경우

(b에 대응되는 원소가 없다.)

(b에서 동시에 2개의 원소에 대응된다.)

예제 6-2

다음과 같이 주어진 각 화살표 도표가 $A=\{a, b, c\}$ 에서 $B=\{x, y, z\}$ 로의 함수가 되는지를 판별해보자.

A를 인터넷 온라인상의 사진 동호회 회원들의 집합이라고 할 때, 다음의 대응이 A에 관한 함수가 되는지를 알아보자.

- (1) 각 회원에 그 사람의 나이를 대응시킨다.
- (2) 각 회원에 그 사람의 성별을 대응시킨다.
- (3) 각 회원에 그 사람의 배우자를 대응시킨다.
- 풀 0 (1) 각 회원이 오직 하나의 나이를 가지고 있으므로 함수이다.
- (2) 함수이다.
- (3) 결혼하지 않은 회원이 한 명이라도 있는 경우에는 함수가 될 수 없다.

다음의 관계가 함수인지의 여부를 밝히고, 만약 함수인 경우 정의역, 공변역, 치역을 각각 구해보자.

- $(1) \{(1,a),(1,b),(2,c),(3,b)\}$
- (2) $\{(a,a),(b,b),(c,c)\}$
- (3) $\{(x,y) | x, y \in Z, y x = 1\}$
- $(4) \{(x,y) | x, y \in N, y x = 1\}$
- (3) y-x=1이므로 y=x+1이다. 우리는 이 식으로부터 함수가 됨을 쉽게 알 수 있다. 정의역과 공변역은 Z이고, y의 각 값에 대하여 y=x+1을 만족시키는 실수 x가 존재하므로 치역 역시 Z이다.
- (4) 이 관계 역시 함수이다. 정의역과 공변역은 자연수의 집합 N이고, x가 자연수일 때 y=x+1이므로 y의 범위는 $y\geq 2$ 인 자연수이다. 따라서 치역은 $\{2, 3, 4, \cdots\}$ 이다.

 $A=\{-1,0,1\}$ 에서 $f:A\to A$ 가 $f(x)=x^2$ 으로 주어졌을 때 함수가 되는지를 판별하고, 정의역과 치역 그리고 공변역을 구해보자.

물이 먼저 함수의 값을 구하면 f(-1)=f(1)=1, f(0)=0이므로 $f(A)=\{0,1\}$ 이 된다. 따라서 f는 함수이다. 여기서 정의역은 $\{-1,0,1\}$ 이고, 치역은 $\{0,1\}$ 이며, 공변역은 $\{-1,0,1\}$ 이다.

예제 8-2

다음을 보고 함수인지 아닌지 판별하고. 함수가 아닌 경우에는 함수가 될 수 있는 정의역을 구하라.

(1)
$$f: R \rightarrow R$$
일 때, $f(x) = \sqrt{9-x^2}$

(1)
$$f: R \to R$$
일 때, $f(x) = \sqrt{9 - x^2}$ (2) $f: Z \to R$ 일 때, $f(x) = \frac{3}{5x - 2}$

풀이

- (1) \sqrt{a} 의 경우 $a \ge 0$ 일 때만 성립한다. $x \in R$ 일 때, $9-x^2 < 0$ 이면 $\sqrt{9-x^2}$ 에 대한 상을 구할 수 없다.
 - $f: R \to R$ 일 때, $f(x) = \sqrt{9-x^2}$ 은 함수가 아니다. $9-x^2 \ge 0$ 인 R(4+)에 대해서만 함수가 성립되다
 - \therefore 정의역 $dom(f) = \{x \mid -3 \le x \le 3, x \in R\}$ 공변역 $codom(f) = \{y | y \in R\}$ 치역 $ran(f) = \{f(x) | 0 \le f(x) \le 3, f(x) \in R\}$
- (2) $f(x) = \frac{3}{5x-2}$ 은 분모가 0인 경우 연산을 할 수 없다. 그런데 $x \in Z$ 이므로 5x-2=0이 되는 x는 존재하지 않는다.

$$\therefore$$
 $f \colon Z \to R$ 일 때, $f(x) = \frac{3}{5x-2}$ 은 함수이다.
정의역 $dom(f) = \{x \mid x \in Z\}$
공변역 $codom(f) = \{y \mid y \in R\}$
치역 $ran(f) = \left\{f(x) \mid f(x) = \frac{3}{5x-2}, \ x \in Z\right\}$

함수 그래프

함수 $f: A \to B$ 에 대한 **함수 그래프(function graph)** $G \vdash x \in A$ 이고 y = f(x)인 순서쌍 (x, y)의 집합을 나타낸다. 즉, $G \vdash$ 다음과 같이 표현된다.

$$G = \{(x, y) \mid x \in A, y \in B, y = f(x)\}$$

함수 f에 대한 그래프 G의 원소들을 좌표 평면상에 점으로 표시하는 것을 함수 f의 그래프에서 순서쌍들은 집합 A의 모든 원소 x에 대하여 오직 하나씩만의 관계를 가짐

함수 $f: R \to R$ 일 때 다음과 같은 함수 그래프를 순서쌍의 집합으로 표시하고, (4) $G = \{(x,y) | y = 2^x, x \in R\}$ 좌표 평면상에 나타내어보자.

(1)
$$y = x + 2$$

(2)
$$y = x^2$$

(3)
$$y = |x|$$

(4)
$$y = 2^x$$

함수 그래프

다음의 그래프들이 실수 R에서 R로의 함수가 되는가를 판별해보자.

물이 (1), (2), (5), (6)은 x의 모든 실수값에 y의 실수값이 하나씩만 대응되므로 모두 함수가 된다. 그러나 (3)과 (4)는 함수가 아니다. (3)의 경우에 x=0일 때 y의 값이 2개 대응하고, (4)의 경우에 x=0일 때 대응되는 y의 값이 없기 때문이다.

- 정의역 A의 모든 원소들이 공변역 B의 서로 다른 원소와 대응되기 때문에 **단사 함수를 일대일 함수** (one-to-one function)라고 함
- a_i , $a_i \in A$ 에 대하여 $a_i \neq a_i$ 이면 $f(a_i) \neq f(a_i)$ 이 성립함
- 단사 함수에서 함수의 치역은 공변역의 부분 집합이 됨
- $f: A \rightarrow BMM Ran(f) \subseteq B$

 $\forall a_i, a_j \in A, \quad f(a_i) = f(a_j) \Rightarrow a_i = a_j$

- 전사 함수의 정의에서 알 수 있는 것은 공변역 *B*의 모든 원소가 정의역에 대응 되어야 하므로 그 자체 가 바로 치역이 된다는 것임
- Ran(f) = B이다. 전사 함수는 모든 함수의 관계가 B의 모든 원소에 반영되므로 **반영 함수(onto** function)라고도 함

정의 $\bigcirc -4$ 함수 $f: A \to B$ 에서 B의 모든 원소 b에 대하여 f(a) = b가 성립되는 $a \in A$ 가 적어도 하나 존재할 때 함수 f를 전사 함수(surjective function)라고 한다. 즉, $\forall b \in B, \ \exists a \in A, \ f(a) = b$

- 전단사 함수는 집합 A의 모든 원소들이 집합 B의 모든 원소와 하나씩 대응되기 때문에 일대일 대응 함수(one-to-one correspondence function)라고 함
- 단사, 전사, 전단사 함수를 쉽게 알기 위해서는 각 원소들의 관계를 화살표로 표시하는 **화살표 도표** (arrow diagram)를 활용함

〈그림 6.2〉 단사, 전사, 전단사 함수

함수 f_1, f_2, f_3 가 다음과 같이 주어졌을 때, 이 함수가 단사 함수, 전사 함수, 전 단사 함수인지를 판별해보자.

- (2) f_2 는 단사 함수이며 전사 함수이므로, 전단사 함수이다.
- (3) f_3 은 단사 함수이고, 전사 함수는 아니다.

A={1, 2, 3, 4}, B={x, y, z}이고 f_1 , f_2 , f_3 가 다음과 같을 때, 각 함수들이 전사 함수가 되는지 판별해보자.

$$f_1 = \{(1, z), (2, y), (3, x), (4, y)\}$$

$$f_2 = \{(1, x), (2, x), (3, y), (4, z)\}$$

$$f_3 = \{(1, x), (2, x), (3, y), (4, y)\}$$

30 f_1, f_2 는 전사 함수이다. 그러나 f_3 의 경우에는 z에 대응하는 것이 없으므로 전사 함수가 아니다.

다음 함수식들이 실수 R에서 R로의 함수일 때, 이 함수가 단사, 전사, 전단사 함수인지를 판별해보자.

(1)
$$f_1(x) = \sin x$$

(2)
$$f_2(x) = x^2$$

(3)
$$f_3(x) = 2^x$$

(4)
$$f_4(x) = x^3 + 2x^2$$

불 ○ 각각의 함수식을 그래프로 그리면 다음과 같다.

- (1) $f_1(x) = \sin x$ 는 $f_1(0) = f_1(\pi) = 0$ 일 때 $0 \neq \pi$ 이므로 단사 함수가 아니고, $f_1(R) \neq R$ 이므로 전사 함수도 아니다.
- (2) $f_2(x) = x^2$ 역시 $f_2(-1) = f_2(1) = 1$ 일 때 $-1 \neq 1$ 이므로 단사 함수가 아니고, $f_2(R) \neq R$ 이므로 전사 함수도 아니다.
- (3) $f_3(x) = 2^x$ 는 단사 함수이나 $f_3(R) \neq R$ 이므로 전사 함수는 아니다.
- $(4) \ f_4(x) = x^3 + 2x^2 는 \ f_4(-2) = f_4(0) = 0 일 \ \text{때} \ -2 \neq 0 \circ 0 = 2 \ \text{단사 함수가 아니고}, \ f_4(R) = R \circ 1 = 2 \ \text{전사 함수 or } 1 = 2 \ \text{전사 함수 or } 1 = 2 \ \text{The order} 1 = 2 \ \text{The order} 2 = 2 \ \text{The order} 2$

다음의 각 경우에 함수f가 단사 함수, 전사 함수, 전단사 함수인지를 판별해보자.

- (1) $f: N \to N \circ] \mathcal{I}, f(x) = 2x$
- $(2) f: \{1, 2\} \rightarrow \{0\}$
- $(3) f: \{a, b\} \rightarrow \{2, 4, 6\} \cap \Box, f(a) = 2, f(b) = 6$
- $(4) f: Z \rightarrow Z \circ] \mathcal{I}, f(x) = x+1$

(2) 함수 f가 집합 $\{1, 2\}$ 에서 집합 $\{0\}$ 로의 함수이므로, f(1) = f(2) = 0이다. 따라서 f는 단사 함수는 아니나 전사 함수이다.

(3) 함수 f가 f(a) = 2이고 f(b) = 6이므로, 이 함수는 단사 함수이나 전사 함수는 아니다.

(4) 이 함수는 단사 함수이고 전사 함수이므로 전단사 함수이다.

정의 🙃 – 6

두 함수 $f:A\to B$, $g:B\to C$ 에 대하여 두 함수 f와 g의 합성 함수(composition function) 는 집합 A에서 집합 C로의 함수, $g\circ f:A\to C$ 를 의미하며 다음을 만족시킨다.

 $g \circ f = \{(a, c) \mid a \in A, b \in B, c \in C, f(a) = b, g(b) = c\}$

두 함수 f 와 g의 **합성함수** $g \circ f$ 는 A의 모든 원소 a에 대하여

$$\forall a \in A, (g \circ f)(a) = g(f(a))$$

함수 f, g 와 합성 함수 $g \circ f$ 에 대한 관계

<a>⟨그림 6.3⟩ 합성 함수

 $f:A \to B$ 와 $g:B \to C$ 가 다음 그림과 같을 때, 두 함수 f와 g의 합성 함수 $g \circ f$ 를 구해보자.

 $() g \circ f : A \to C 를 그림으로 나타내면 아래와 같다.$

 $(g \circ f)(1) = g(f(1)) = g(b) = x$

$$(g \circ f)(2) = g(f(2)) = g(c) = y$$

$$(g \circ f)(3) = g(f(3)) = g(a) = y$$

이다.

 $A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e\}, C = \{7, 8, 9\}$ 이고, $f: A \to B$, $g: B \to C$ 일 때 합성 함수 $h: A \to C$ 를 구해보자.

물 ○ 이 과정을 단계별로 살펴보면 다음과 같다.

$$\begin{array}{ccc}
f & g & g \circ f \\
1 \mapsto a \mapsto 8 \Rightarrow 1 \mapsto 8
\end{array}$$

$$2 \mapsto b \mapsto 9 \Rightarrow 2 \mapsto 9$$

$$3 \stackrel{f}{\mapsto} d \stackrel{g}{\mapsto} 7 \Rightarrow 3 \stackrel{g \circ f}{\mapsto} 7$$

$$\begin{array}{ccc}
f & g & g \circ f \\
4 \mapsto b \mapsto 9 \Rightarrow 4 \mapsto 9
\end{array}$$

그러므로 합성 함수 h는 다음과 같이 표현된다.

예제 6-17

두 함수 f와 g가 각각 $f: R \to R$, f(x) = x + 3이고, $g: R \to R$, $g(x) = x^2 - 1$ 일 때. 합성 함수 $f \circ g$ 와 $g \circ f$ 를 구해보자.

$$\equiv 0$$
 $f \circ g : R \to R$

$$f \circ g(x) = f(g(x)) = f(x^2 - 1) = x^2 - 1 + 3 = x^2 + 2$$

$$g\circ f\!:\!R\to R$$

$$g \circ f(x) = g(f(x)) = g(x+3) = (x+3)^2 - 1 = x^2 + 6x + 8$$

세 함수 f, g, h를 각각 $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ 라 할 때, 그들의 합성 함수는 다음과 같은 결합 법칙(associative law)이 성립한다.

$$h \circ (g \circ f) = (h \circ g) \circ f$$

예제 8-9

두 함수 $f: R \rightarrow R$, $g: R \rightarrow R$ 에 대해 $f(x) = x^3 + 2x$, g(x) = x - 5일 때 다음을 구하라.

- $(1) g \circ f \qquad \qquad (2) f \circ g \qquad \qquad (3) f \circ f \qquad \qquad (4) g \circ g$

풀이

(1)
$$g \circ f = g(f(x)) = g(x^3 + 2x) = x^3 + 2x - 5$$

(2)
$$f \circ g = f(g(x)) = f(x-5) = (x-5)^3 + 2(x-5) = x^3 - 15x^2 + 77x - 135$$

(3)
$$f \circ f = f(f(x)) = f(x^3 + 2x) = (x^3 + 2x)^3 + 2(x^3 + 2x)$$

= $x^9 + 6x^7 + 12x^5 + 10x^3 + 4x$

(4)
$$g \circ g = g(g(x)) = g(x-5) = (x-5)-5 = x-10$$

예제 8-10

집합 $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d, e\}$, $C = \{x, y, z\}$, $D = \{11, 12, 13, 14\}$ 에 대해 세 함수 $f \colon A \to B$, $g \colon B \to C$. $h \colon C \to D$ 가 아래와 같다면 다음을 구하라.

$$f = \{(1, c), (2, a), (3, e), (4, b)\}$$

$$g = \{(a, x), (b, y), (c, y), (d, z), (e, z)\}$$

$$h = \{(x, 12), (y, 11), (z, 14)\}$$

(1)
$$h \circ (g \circ f)$$

(2)
$$(h \circ g) \circ f$$

풀이

(1) $h \circ (g \circ f)$ 의 경우 $g \circ f$ 를 먼저 구하고, 그 결과를 함수 h와 합성한다.

 $g \circ f = \{(1, y), (2, x), (3, z), (4, y)\}$

 $h \circ (g \circ f) = \{(1,11), (2,12), (3,14), (4,11)\}$

(2) $(h \circ g) \circ f$ 의 경우 $h \circ g$ 를 먼저 구하고, 그 결과를 함수 f와 합성한다.

 $h \circ g = \{(a, 12), (b, 11), (c, 11), (d, 14), (e, 14)\}$

 \therefore $(h \circ g) \circ f = \{(1,11), (2,12), (3,14), (4,11)\}$

예제 8-11

실수 집합 R에 대해 $f\colon R\to R,\ g\colon R\to R,\ h\colon R\to R$ 이고 $f(x)=x-3,\ g(x)=3x^2,\ h(x)=\frac{x}{2}$ 일 때, 다음을 구하라.

$$(1) h \circ (g \circ f)$$

$$(2) (h \circ g) \circ f$$

풀이

(1)
$$(h \circ (g \circ f))(x) = h \circ (g(f(x))) = h \circ (g(x-3))$$

= $h(g(x-3)) = h(3(x-3)^2) = \frac{3(x-3)^2}{2}$

(2)
$$((h \circ g) \circ f)(x) = (h(g(x))) \circ f(x) = (h(3x^2)) \circ f(x)$$

$$= \left(\frac{3x^2}{2}\right) \circ f(x) = (h \circ g)(x-3) = \frac{3(x-3)^2}{2}$$

爲 정의 ⑥-7

집합 A에 대한 함수 f가 $f:A\to A$, f(a)=a일 때 함수 f를 항등 함수(identity function)라 하고, I_A 로 표기한다. 즉,

 $\forall a \in A, I_A(a) = a$ $0 \mid \Box \mid$.

함수 $f:A \to B$ 가 전단사 함수일 때 f의 역함수(inverse function)는 $f^{-1}:B \to A$ 로 표기하고 다음과 같이 정의한다.

 $\forall a \in A, \ \forall b \in B, \ f(a) = b \Rightarrow f^{-1}(b) = a$

 $\langle \mathbf{\neg e} | \mathbf{e} | \mathbf{e} | \mathbf{e} \rangle$ 함수 f의 역함수 f^{-1}

모든 함수 f에 대하여 그것의 역함수 f^{-1} 이 항상 존재하는 것은 아니고, 함수 f가 전단사 함수 일 경우에만 역함수 f^{-1} 이 존재한다. 따라서 함수 f가 전단사 함수가 아닐 경우에는 함수 f의 역관계는 함수가 되지 않는다.

항등함수

집합 $A=\{-1, 0, 1\}$ 이고 함수 $f: A \to A$, $f(x)=x^3$ 일 때 함수 f는 항등 함수 임을 보이자.

물이
$$f(-1) = (-1)^3 = -1$$

 $f(0) = 0$
 $f(1) = 1^3 = 1$
이므로 f는 항등 함수이다.

항등함수 + 역함수

집합 $A=\{1, 2, 3\}, B=\{a, b, c\}$ 이고 A에서 B로의 함수 $f=\{(1, a), (2, c), (3, b)\}$ 일 때 $(f^{-1})^{-1}, f^{-1} \circ f$ 를 구해보자.

貴の
$$f^{-1} = \{(a,1), (c,2), (b,3)\}$$
이旦로 $(f^{-1})^{-1} = \{(1,a), (2,c), (3,b)\} = f$ $f^{-1} \circ f = \{(1,1), (2,2), (3,3)\} = I_A$

역함수

 $f:\{0,1,2\} \rightarrow \{a,b,c\}$ 가 다음과 같은 그래프로 정의될 경우 이에 대응되는 역 함수를 구해보자.

정의 6-9

함수 $f:A \to B$ 에서 집합 A의 모든 원소가 집합 B의 오직 한 원소와 대응할 때 함수 f를 상수 함수(constant function)라고 한다. 즉,

 $\forall a \in A, \exists b \in B, f(a) = b$ 이다.

상수 함수에 대한 간단한 예를 살펴보면, $f: R \to R$ 이고 f(x) = 1이라고 하면 모든 실수 x에 대한 함수값이 1이므로 f는 상수 함수이다.

 $f: R \to R$ 이고 f(x) = 2로 정의될 때, f가 상수 함수임을 보이자.

(()) 정의역의 모든 (x)에 대한 (())의 값이 모두 (())이므로 상수 함수이다.

전체 집합 U의 부분 집합 A의 특성 함수(characteristic function) $f_A\colon U\to \{0,1\}$ 는 다음 과 같이 정의된다.

$$f_A(x) = \begin{cases} 0, & x \notin A \\ 1, & x \in A \end{cases}$$

 $U=\{x\in R\,|\,0\le x\le 2\}$ 이고 $A=\left\{x\in R\,\Big|\,\frac{1}{2}\le x\le \frac{3}{2}\right\}$ 일 때, 특성 함수 f_A 를 그 래프로 나타내어보자.

 $x \in R$ 에 대한 <mark>올림 함수(ceiling function)는</mark> x보다 크거나 같은 정수값 중 가장 작은 값을 나타내며 $\lceil x \rceil$ 로 표기한다. $x \in R$ 에 대한 내림 함수(floor function)는 x보다 작거나 같은 정수 값 중 가장 큰 값을 나타내며, $\lceil x \rceil$ 로 표기한다.

컴퓨터 언어에서의 함수의 역할

- 컴퓨터 프로그램을 작성하는 데 있어서, 일반적으로 복잡한 문제를 여러 개의 독립적 기능을 가지는 서브프로그램 (subprogram)으로 나누어서 해결함
- 서브프로그램들은 각기 논리적으로 독립된 계산을 할 때나, 동일한 수행을 여러 번 해야 할 때 많이 사용
 - 예를 들면, 입력되는 데이터에 대하여 같은 일을 계속 수행해야 하는 경우에는 데이터마다 수행해야 하는 부분을 서브프로 그램으로 만들어서 필요한 경우 호출하여 사용

- 서브프로그램 중 함수에 속하는 서브프로그램은 정의역에 있는 매개 변수의 값을 받아서 계산을 한 뒤 하나의 값을 되돌려 줌
- 함수 호출(function call)
 - 매개 변수(parameter)를 가지고 함수를 부르는 것임
- 리턴(return)
 - 함수에서 계산된 값을 되돌려 주는 것임

$$rms = \frac{1}{N} \sqrt{\frac{\sum (f^{true} - f^{est})^2}{\sum (f^{true})^2}}$$

컴퓨터 언어에서의 함수의 역할

컴퓨터 언어에서의 두 가지 함수

- 1. 컴퓨터 언어 자체에서 미리 만들어 놓은 함수 라이브러리(library)라는 곳에 저장되어 있으며, 자주 사용하는 작업을 위해 미리 만들어 놓은 함수들로 서 수학적 계산을 하는 sin, cos, sqrt 등이 여기에 속함
- 2. 프로그래머(programmer)가 자기 상황에 편리하도록 직접 만든 함수로 각자의 경우에 따라 여러 가지의 함수가 만들어질 수 있음

실수의 제곱을 구하는 함수 square

```
double square(double num)
{
    return num*num;
}
```

컴퓨터 언어에서의 함수의 역할

- 함수는 매개 변수로 실수 num을 넘겨주고, 결과값으로 실수인 num의 제곱 값을 리턴 받음
- 함수의 정의역과 공변역은 모두 실수 R임
- 함수 이름 앞의 자료형(type)은 공변역을 나타내며, 매개 변수 앞의 자료형은 정의역을 나타냄

〈그림 6.5〉 square 함수