DHANAMANJURI UNIVERSITY

JUNE 2022

Name of Programme : B.Sc Mathematics (Honours)

Semester : Core III Paper Type

Paper Code : CMA-103 Paper Title : Real Analysis

Full Marks : 100 : 3 Hours Duration

The figures in the margin indicate full marks for the questions. Answer all the questions.

1. State the completeness property of \mathbb{R} . Prove that if A and B are non empty subsets of \mathbb{R} that satisfy the property: $a \leq b$ for all $a \in A$ and all $b \in B$, then sub $A \le \inf B$.

2. Show that the series
$$\frac{1,2}{3^2,4^2} + \frac{3.4}{5^2,6^2} + \frac{5.6}{7^2,8^2} + \cdots$$
 is convergent.

- 3. Prove that a sequence cannot converge to more than one limit. 5
- 5 4. What is an absolutely convergent series? Prove that every absolutely convergent series is convergent.
- 5. Prove that an upper bound u of a non empty set S in $\mathbb R$ is the supremum of S if and only if for every $\epsilon > 0$ there exists $s_{\epsilon} \in S$ such that $u - \epsilon < s_{\epsilon}$.
- 6. Prove the following:
- 6

6

- ii) 1 > 0.
- iii) If $n \in \mathbb{N}$, then n > 0.
- 7. Prove that the following statements are equivalent:
 - i) S is a countable set.
 - ii) There exists a surjection from \mathbb{N} to S.

i) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.

iii) There exists a injection from S to \mathbb{N} .

8. State and prove the Archimedean Property.	6
9. State and prove the Sandwich Theorem for limits.	6
10. Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.	6
11. State and prove Cantor's Theorem.	7
12. If $I_n = [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of closed bounded intervals, then prove that there exists a number $\xi \in \text{that } \xi \in I_n \text{ for all } n \in \mathbb{N}$.	≅ ℝ such 7
13. If S is a subset of $\mathbb R$ that contains at least two points and has the property: if $x,y\in S$ and $x< y$, then $[x,y]\subseteq P$ prove that S is an interval.	S, then 8
State and prove the Density Theorem for rational numbers.	
14. State and prove the Bolzano-Weierstrass Theorem for sequences. Or	8
State and prove Cauchy's General Principle of Convergence.	
15. State and prove Leibnitz's Test for the convergence of an alternating series.	8
16. State and prove Cauchy's Root Test for the convergence of positive term series.	8