Trabajo Práctico 3

- 1. Dadas las matrices $A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & -2 \\ -2 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 5 & -1 \\ 0 & 3 \\ 1 & 2 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 0 & -2 & 3 \\ 2 & 0 & -3 & 4 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ obtiene las matrices indicadas:
 - a) $A_2\left(\frac{1}{2}\right)$, $A_{31}\left(2\right)$, A_{23}
 - b) B_{21} , $B_1\left(\frac{1}{5}\right)$, $B_{13}\left(-5\right)$
 - c) $C_{21}(-2)$, C_{12} , $C_{3}(2)$
- 2. Dada la matriz $A = \begin{pmatrix} -5 & -10 & 0 & 5 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & -3 & 3 \end{pmatrix} \in \mathbb{R}^{3\times 4}$ realiza las operaciones elementales de filas indicadas:
 - a) $f_2 + (2) f_3$
 - b) $\left(\frac{1}{5}\right) f_1$
 - c) $f_1 \leftrightarrow f_3$
- 3. Determina cuáles de las siguientes matrices son elementales. Para aquellas matrices que lo sean, emplea la notación correspondiente para justificar tu afirmación:

- $\begin{aligned} & \text{4. Dadas las matrices} \ \ A = \left(\begin{array}{ccc} 2 & -1 & 3 \\ 0 & 1 & 2 \\ 1 & 4 & 0 \end{array} \right), \ B = \left(\begin{array}{ccc} 2 & -1 & 3 \\ -6 & 4 & -7 \\ 1 & 4 & 0 \end{array} \right) \in \mathbb{R}^{3 \times 3}, \\ & C = \left(\begin{array}{ccc} 3 & -1 & -2 \\ 1 & 0 & 2 \end{array} \right), \ D = \left(\begin{array}{ccc} 3 & -1 & -2 \\ 5 & 0 & 10 \end{array} \right), \ F = \left(\begin{array}{ccc} 5 & 0 & 10 \\ 3 & -1 & -2 \end{array} \right) \in \mathbb{R}^{2 \times 3} \end{aligned}$
 - a) Determina, si es posible, las matrices elementales E_1 , E_2 , E_3 , E_4 , E_5 , E_6 tales que $E_1 \cdot A = B$, $E_2 \cdot B = A$, $E_3 \cdot C = D$, $E_4 \cdot D = C$, $E_5 \cdot D = F$, $E_6 \cdot C = F$

Trabajo Práctico 3 Matrices

- b) ¿Qué relación hay entre E_1 y E_2 ?
- c) ¿Es posible determinar una matriz P tal que $P \cdot C = F$? Escríbela.
- 5. A partir de la matriz $A = \begin{pmatrix} -2 & -4 & 0 & 1 & 7 \\ 0 & 0 & 3 & 0 & -3 \\ 1 & 2 & 0 & 0 & -3 \end{pmatrix} \in \mathbb{R}^{3\times 5}$. Realiza en forma consecutiva

las siguientes operaciones elementales de filas: $f_1 + (1) f_3$, $(\frac{1}{3}) f_2$, $f_1 \leftrightarrow f_3$.

- a) ¿Qué relación existe entre A y la matriz que obtienes?
- b) Compara la matriz obtenida con la matriz $E_3 \cdot E_2 \cdot E_1 \cdot A$, siendo E_1, E_2, E_3 las matrices elementales que se obtienen de aplicar a la matriz identidad las respectivas operaciones elementales de filas indicadas. ¿Con qué teorema puedes relacionar este resultado?
- 6. Determina cuales de las siguientes matrices son matrices escalón reducida por filas.

$$A = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right) \; , \; B = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \; , \; C = \left(\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \; ,$$

$$D = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} , F = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} , G = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

7. Dadas las siguientes matrices de elementos reales:

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} -3 & 2 & 0 & 1 \\ 1 & 2 & 3 & -3 \\ -2 & 0 & -1 & 0 \end{pmatrix}, C = \begin{pmatrix} -2 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 1 & -2 \end{pmatrix},$$

$$D = \begin{pmatrix} 2 & 3 & 1 \\ -1 & -4 & 1 \\ -7 & -3 & -8 \\ 10 & 0 & 10 \end{pmatrix}, F = \begin{pmatrix} -3 & -3 & 6 & 0 & -6 \\ 1 & 1 & -2 & 0 & 2 \\ 2 & 2 & -4 & 1 & 1 \end{pmatrix}$$

Determina para cada una de ellas:

- a) la matriz escalón reducida por filas, $E_{rf}(X)$.
- b) la matriz P (expresada como producto de matrices elementales) tal que $P \cdot X = E_{rf}(X)$.
- c) Determina su rango, rg(X).
- 8. En los siguientes apartados, determina si A y B son equivalentes por filas. En caso afirmativo expresa la matriz P como producto de matrices elementales tal que $B = P \cdot A$

Trabajo Práctico 3 Matrices

a)
$$A = \begin{pmatrix} \frac{1}{2} & -1 \\ -2 & 3 \end{pmatrix}$$
 y $B = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix}$, $\mathbb{K} = \mathbb{R}$
b) $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -1 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 1 \end{pmatrix}$, $\mathbb{K} = \mathbb{R}$
c) $A = \begin{pmatrix} 1 & -1 & 3 \\ -2 & 2 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & i \end{pmatrix}$, $\mathbb{K} = \mathbb{C}$
d) $A = \begin{pmatrix} \frac{2}{3} & -1 & 0 & \sqrt{3} & 7 \\ -5 & 3 & 9 & 14 & 2 \\ -1 & 17 & 21 & -8 & 3 \end{pmatrix}$ y $B = \begin{pmatrix} \frac{2}{3} & -5 & -1 \\ -1 & 3 & 17 \\ 0 & 9 & 21 \\ \sqrt{3} & 14 & -8 \\ 7 & 2 & 3 \end{pmatrix}$, $\mathbb{K} = \mathbb{R}$

9. Determina $k \in \mathbb{R}$ tal que

a)
$$rg(C) = 2 \text{ siendo } C = \begin{pmatrix} k & 2 & 2 \\ 2 & 1 & 1 \\ 2 & k & -1 \end{pmatrix}$$

b) $rg(D) = 2 \text{ siendo } D = \begin{pmatrix} 2 & k+2 \\ -1 & -k \\ 1 & 4 \end{pmatrix}$
c) $rg(F) > 2 \text{ siendo } F = \begin{pmatrix} 0 & 1 & 2 & -1 & k \\ 0 & 2 & 4 & -2 & 2 \\ 0 & 3 & k+2 & k-7 & 0 \end{pmatrix}$

10. Dadas las siguientes matrices con elementos reales

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -2 & -2 \\ 0 & 0 & -1 \end{pmatrix},$$

$$E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, F = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 1 & -1 & 5 \end{pmatrix}, G = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix}, H = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -x \\ -x & 1 & 1 \end{pmatrix},$$

$$J = \begin{pmatrix} 2 & -1 & 3 \\ 2 & 0 & 3 \\ -1 & 3 & -1 \end{pmatrix}$$

- a) Determina si son inversibles (o no singulares). En caso afirmativo, halla su inversa.
- b) A las matrices inversibles, escríbelas como producto de matrices elementales. ¿Qué teorema utilizas para justificar?

11. Dadas las matrices
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -1 \\ -3 & 0 & 3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
, $B = \begin{pmatrix} 3x \\ 0 \\ 3y \end{pmatrix} \in \mathbb{R}^{3 \times 1}$ y $C = \begin{pmatrix} -8 & 1 & y+1 \end{pmatrix} \in \mathbb{R}^{1 \times 3}$

- a) Utilizando operaciones elementales de filas determina, en caso de ser posible, la inversa de A.
- b) Determina $x, y \in \mathbb{R}$ para que $A^{-1} \cdot B = B + C^t$

12. Dadas las matrices de elementos reales
$$A=\begin{pmatrix}1&1&-2\\2&1&0\\-2&-1&1\end{pmatrix}$$
 , $B=\begin{pmatrix}-2y\\y\\4\end{pmatrix}$ y $C=\begin{pmatrix}0&-2x&3y\end{pmatrix}$

- a) Utilizando operaciones elementales de filas determina, en caso de ser posible, la inversa de A.
- b) Determina $x, y \in \mathbb{R}$ para que $C \cdot A^{-1} = C + B^t$
- 13. Determina $x \in \mathbb{R}$ tal que exista la inversa de las siguientes matrices:

$$A = \begin{pmatrix} 6 & x \\ 4 & x \end{pmatrix}, B = \begin{pmatrix} 0 & -\frac{1}{3} \\ 4 - x^2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 1 + x \\ -1 & 3 & 1 \end{pmatrix}$$

14. Dadas las matrices
$$A = \begin{pmatrix} 1 & y & 2 \\ 0 & -1 & 1 \end{pmatrix} \in \mathbb{R}^{2\times 3}$$
, $B = \begin{pmatrix} 0 & y \\ 1 & 1 \\ 3 & 2 \end{pmatrix} \in \mathbb{R}^{3\times 2}$

- a) Determina $y \in \mathbb{R}$ para que $A \cdot B$ sea no singular.
- b) Para y=0 resuelve la ecuación $A\cdot B\cdot X=3\mathbb{I}$ y determina la inversa de $A\cdot B$.
- 15. Un criptograma es un mensaje codificado en el que se asigna un número a cada letra del alfabeto (A=1,B=2,...Z=27) y el 0 representa un espacio. Si la matriz con la que se codificó el mensaje es $C=\begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix}$ y el mensaje **ya codificado** es el criptograma 1,14,14,-8,7,-7,-5,16,11,10,42,33,9,28,23, ¿cuál es el mensaje transmitido? (Recuerda armar la matriz M_{cod} de modo que sea posible el producto, puedes guiarte con lo resuelto en la Guía 3).