

Is quantum machine learning better?

- We do not know yet where and how for sure
- Many cases of better results are with advantageous datasets
- When is it better?
 - <u>Faster training time for good, small datasets</u> Finance
 - Better classification in visual datasets with QCNN Image processing
 - Improvement in low-resource language classification with QRNN NLP
 - Potential improvements in scheduling tasks with QNN Supply chain management
 - <u>Secure encryption even against quantum attacks</u> Cybersecurity
- Expectations are for quantum-classical hybrid computing

Credit: Amazon Braket

Terminology braindump

QPCA Quantum Principal Component Analysis
QRNN Quantum Recurrent Neural Networks
QRL Quantum Reinforcement Learning
QSVM Quantum Support Vector Machine
QTSA Quantum Time-Series Analysis

AI	Artificial Intelligence	QLSTM	Quantum Long Short-Term Memory		
CNN	Convolutional Neural Networks	QML	Quantum Machine Learning	TFQ	TensorFlow Quantum
DL	Deep Learning	QNLP	Quantum Natural Language Processing	VQA	Variational Quantum Algorithm
EQDA	Exploratory Quantum Data Analysis	QNB	Quantum Naive Bayes	VQC	Variational Quantum Classifiers
GAN	Generative Adversarial Networks	QNN	Quantum Neural Networks	VQE	Variational Quantum Eigen

QIML	IML Quantum Inspired Machine Learning		NISQ	Noisy Intermediate-Scale Quantum	
QIP	Quantum Image Processing		NLP	Natural Language Processing	
QKD	Quantum Key Distribution		PCA	Principal Component Analysis	
`			PQC	Post-Quantum Cryptography	
QKNN	Quantum K-Nearest Neighbour		QAOA	Quantum Approximate Optimization Algorithm	

QTL	Quantum Transfer Learning	QC	Quantum Computing		
RL	Reinforcement Learning	QDA	Quantum Data Analysis	GMM	Gaussian Mixture Models
		QEC	Quantum Error Correction	HPC	High Performance Computing
RNN	Recurrent Neural Networks	QFL	Quantum Federated Learning	KNN	K-Nearest Neighbour
SVM	Support Vector Machine	QGAN	Quantum Generative Adversarial Networks	LSTM	Long Short-Term Memory
				ML	Machine Learning

3 building blocks for QML

ENCODE

(Quantum)

- Feature map

ALGORITHM

(Quantum)

- QNN, quantum kernel, etc.

PROCESSING

(Classical)

Cost function, optimizer, etc.

Feature map (fm)

- $\{x_i,y_i,z_i\}$ Feature Map $|\psi_i
 angle$
- Classical data → Quantum states
- Lower dimension → Higher dimension (Hilbert feature space)
- #features & encoding method determines #qubits
- #repetitions affect smoothness:
 - More reps
 - More gates over each feature
 - More volatility when feature changes
 - Less smoothness
- Popular examples:
 - ZFeatureMap
 - ZZFeatureMap →

(3 qubits with 2 repetitions)

Encoding method

- Basis encoding
 - Bit string representation → Computational state representation
- Angle encoding
 - n features $\rightarrow n$ qubits rotated around an axis e.g. Z-axis
- Dense angle encoding
 - Same, but with 2 features per qubit on 2 axes e.g. Z-axis & X-axis
- Amplitude encoding
 - n features \rightarrow Probability amplitudes of n qubits i.e. $0 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow 1$

Entanglement key to quantum improvement opportunity!

Support Vector Classifiers (SVC)

- Transfer points to higher dimension

(← quantum naturally does!)

- Trained hyperplane classifies data points
- Hyperplane is the lowest cost line, farthest from data points per class
- Kernel function does the trick

Kernels

- Kernel function can be represented by a matrix
- Classical kernel matrix: $K_c = [K_{ij} \ \forall i,j] = [\langle f(\overrightarrow{x_i}), f(\overrightarrow{x_j}) \rangle \ \forall i,j]$; f is map
- Quantum kernel matrix: $K_q = [K_{ij} \ \forall i,j] = \left[|\langle \phi \left(\overrightarrow{x_i} \right) | \phi \left(\overrightarrow{x_j} \right) \rangle|^2 \ \forall i,j \right]$; ϕ is feature map
 - This is the fidelity of (pure) states
 - Quantum Kernel Alignment (QKA): can train feature map to optimize quantum data pre-kernel

Ansatz

- Parameterized circuit trainable weights
- Each layer of ansatz acts as layer of neural network
- More weights ightarrow More fine-tuning
- #features & #layers determines #parameters
- Popular examples: RealAmplitudes, EfficientSU2

Layers can be repetitions of same smaller circuit

Ansatz

- Optimizer after the ansatz minimizes the cost function, fine-tunes weights
- Again!... entanglement encouraged to exploit quantum advantages
- Can't be too much depth currently due to noise
- Notice the 'pre-layer' gates → Priming and avoiding loss of first-layer utility

Barriers indicate 3 layers

Optimizer

- Classic method to find local or global minima cost

- Iterates with new parameters for neural network till resting state

- Examples with ideal usage:

- SPSA: Gradient descent

COBYLA: Objective functions with

unknown derivatives

- SLSQP: Twice continuously

differentiable objective

functions

ADAM: Large and noisy datasets

Variational Quantum Classifier (VQC)

- Supervised neural network classifier as an example of VQAs (..... Algorithms)
- Introduced by <u>Havlíček et al. in 2019</u>
- Interpret expectation values as classifier output
- Promising for NISQ era (Noisy Intermediate-Scale Quantum)
- Often requires Principal Component Analysis (PCA) dimensionality reduction
- Requires many measurements to get expectation values
- NOTE: VQC can also mean Variational Quantum Circuits, be wary...

$$data_{cl} \longrightarrow fmap() \longmapsto data \longrightarrow U_{data}(\theta_i) \longrightarrow meas() \longmapsto labels \longrightarrow model$$

$$\theta_1 \qquad \theta_{i+1} \longleftarrow opt() \longleftarrow cost \longleftarrow C()$$

VQC example

- Feature map: 1 rep
 - ZZFeatureMap
- Ansatz: 3 reps
 - RealAmplitudes
- Measurements: 1000
 - Get expectation values
- Cost function: pain
 - MSE
- Optimizer: 100 epochs
 - COBYLA
- Dataset: Iris

VQC example

```
from matplotlib import pyplot as plt
from IPython.display import clear_output
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_iris
from qiskit_algorithms.optimizers import COBYLA
from qiskit_machine_learning.algorithms.classifiers import VQC
from qiskit.circuit.library import ZZFeatureMap, RealAmplitudes
from giskit.visualization import plot histogram
iris = load iris()
X = iris.data
y = iris.target
X = MinMaxScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=123)
feature_map = ZZFeatureMap(feature_dimension=X.shape[1], reps=1)
ansatz = RealAmplitudes(num_qubits=X.shape[1], reps=3)
optimizer = COBYLA(maxiter=100)
plt.rcParams["figure.figsize"] = (12, 6)
def callback_graph(weights, obj_eval):
    clear_output(wait=True)
    vals.append(obj_eval)
    plt.title("Cost against iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Cost")
    plt.plot(range(len(vals)), vals)
    plt.show()
vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer=optimizer, callback=callback_graph)
vals = []
start = time.time()
vqc.fit(X_train, y_train)
elapsed = time.time() - start
print(f"Training time: {round(elapsed)} seconds")
train_score_quantum = vqc.score(X train, y train)
test_score_quantum = vqc.score(X_test, y_test)
print(f"VQC on the training dataset: {train_score_quantum:.2f}")
print(f"VQC on the test dataset: {test_score_quantum:.2f}")
```

Training time on laptop: 27 seconds (Macbook M2)

VQC on training data: 0.79

VQC on testing data: 0.73

Havlíček et al. paper drawbacks

- The dataset is "perfect" for quantum.
- Results were 100% classification, but real datasets show weaker score than their classical counterpart.
- Datasets like Iris with 4 features and 3 classes, QSVC and VQC previously did at best classical-level accuracy.
- Same went for MNIST.

VQC these days...

- VQC and QSVC for prediction in vaccine design (2025)
 - VQC slightly outperforms QSVC and SVC, which were about equal
- Parallelized VQC with pre-determined shallow QRAM (2024)
 - Much better accuracy for Iris and MNIST due to log reduction in circuit width (more dim. allowed)
- VQC dimensionality reduction with autoencoders (2024)
 - QAE (quantum autoencoder) outperforms AE and PCA on Iris, MNIST and other
- High-efficiency VQC for high-dimensional data (2024)
 - No dimensionality reduction required, with improved results

People love their pretty Iris flowers

Benchmarking

Always a good idea

Which feature map?

- ZFeatureMap
- ZZFeatureMap
- Other
- Custom
- Al gen.?

Which optimizer?

- SPSA
- COBYLA
- SLSQP
- ADAM

How many repetitions/layers?

- 1,2,3,4,5...

Credit: Abigail Burrola

Which entanglement structure?

- linear, circular, full, custom...

Which ansatz?

- RealAmplitudes
- EfficientSU2
- Other
- Custom
- Al gen.?

How much dim. reduction?

Which dim. reduction?

- PCA
- Autoencoder
- Other

Now to different neural networks