ГУАП

КАФЕДРА № 44

ОТЧЕТ										
ЗАЩИЩЕН С ОЦЕНКОЙ										
ПРЕПОДАВАТЕЛЬ										
доц., канд. техн. наук, доц.		О.О. Жаринов								
должность, уч. степень, звание	подпись, дата	инициалы, фамилия								
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №4 РАЗРАБОТКА ФОРМИРОВАТЕЛЯ ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ С ЗАДАННЫМИ СВОЙСТВАМИ С ИСПОЛЬЗОВАНИЕМ ЯЗЫКОВ ОПИСАНИЯ АППАРАТУРЫ										
п	ю курсу: СХЕМОТЕХНИКА									
РАБОТУ ВЫПОЛНИЛ										
СТУДЕНТ гр. № 4143	подпись, дата	Д.В. Пономарев инициалы, фамилия								

Цель работы

Разработать проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus, используя языки описания аппаратуры.

Индивидуальное задание

Содержание индивидуального задания варианта №24 продемонстрировано на рисунке 1.

	Таблица вариантов заданий														
Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Кнач	0	1	2	1	0	2	0	1	2	3	1	2	0	1	2
K_1	3	12	1	4	5	6	9	8	14	13	1	3	4	2	1
K_0	14	5	16	13	12	11	8	9	. 3	4	6	4	3	3	4
Bap.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Кнач	0	1	2	0	1	2	3	1	2	3	1	2	3	1	2
K_1	3	4	3	1	5	9	8	7	6	5	5	4	3	2	1
K_0	2	1	6	8	1	2	3	4	5	4	6	7	7	7	7
Bap.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Кнач	0	1	2	0	1	2	3	1	2	3	1	2	3	1	2
K_1	1	2	3	10	9	10	7	7	7	7	8	8	2	10	2
K_0	10	10	10	1	2	3	1	2	3	4	1	2	8	2	9

Рисунок 1 – Индивидуальное задание

Кнач.-количество нулей в начале работы

К1-количество единиц после начала работы

КО-количество нулей после единиц

Ход работы

В качестве языка описания аппаратуры был выбран Verilog.

В качестве решения был использован конечный автомат. В данном автомате будет 3 состояния:

- Состояние 0: данное состояние является начальным. Это состояние напрямую связано с выводом $K_{\text{нач}}$. Так как в данном варианте оно выводится в течение 2 тактов переход от этого состояния будет один раз в себя ,а следующий в другое состояние 1. Результатом после пребывания в этом состоянии является вывод 0.
 - Состояние 1: данное состояние отвечает за вывод единиц.

• Состояние 2: данное состояние отвечает за вывод нуля.

На вход будут подаваться обычные тактовые импульсы, а на выходе будет формироваться 1 или 0. Каждому состоянию эквивалентно двухбитное значение $(0-00,\,1-01,\,2-10)$.

Внутри каждого из состояний написан способ вывода и условия действий.

Листинг программы

```
module lab1 (
  input clk,
  output reg out
);
parameter kn_0 = 2'b00, k1 = 2'b01, k0 = 2'b10;
reg [1:0] state;
reg [2:0] counter;
always @(posedge clk) begin
out <= 1'b0;
  case (state)
     kn_0: begin
     if (counter == 1) begin
        counter \leq 0;
       state \leq k1;
        end
       else begin
       out <= 1'b0;
        counter <= counter + 1;</pre>
       state \leq kn_0;
     end
     end
```

```
k1: begin
        if (counter == 5) begin
          counter \leq 0;
          state \leq k0;
        end
        else begin
          out <= 1'b1;
          counter <= counter + 1;</pre>
          state \leq k1;
        end
     end
     k0: begin
       if (counter == 4) begin
          counter \leq 0;
          state <= k1;
        end
        else begin
          out <= 1'b0;
          counter <= counter + 1;</pre>
          state \leq k0;
        end
     end
    endcase
end
initial begin
  state <= kn_0;
end
```

endmodule

ПЛИС

Результат назначения выводов ПЛИС показан на рисунке 2.

Рисунок 2 – Назначение выводов ПЛИС

Временная диаграмма

Результат функциональной симуляции первой программы на временной диаграмме продемонстрирован на рисунке 3, тогда как результат временной – на рисунке 4 соответственно.

Рисунок 4 – Временная симуляция

Выводы

В данной лабораторной работе был разработан проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus, используя языки описания аппаратуры.

Список используемых источников

- 1. Проектирование встраиваемых систем на ПЛИС. / З.Наваби; перев. с англ.В.В. Соловьева. М.: ДМК Пресс, 2016. 464 с.
- 2. Цифровая схемотехника и архитектура компьютера / Д.М. Харрис, С.Л. Харрис; пер. с англ. ImaginationTechnologies. М.: ДМК Пресс, 2018. 792 с.
- 3. Методические указания: [Электронный ресурс] // Санкт-Петербургский государственный университет аэрокосмического приборостроения. URL.: https://pro.guap.ru/inside/student/tasks/0fdb98383428d337ebd147c885592f56/download. (Дата обращения: 16.03.24).
- 4. Лекционный курс: [Электронный ресурс] // Санкт-Петербургский государственный университет аэрокосмического приборостроения. URL.: https://lms.guap.ru/new/course/view.php?id=9962. (Дата обращения: 16.03.24).