

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays

Jake Brawer, Debasmita Ghose, Kate Candon, Meiving Qin, Alessandro Roncone, Marvnel Vázguez, Brian Scassellati

ACM/IEEE International Conference on Human-Robot Interaction 2023 Stockholm, SE (p. 525-533)

Guilherme Santos - 113893 Pedro Pinto - 115304

Motivation

- Human-Robot Collaboration (HRC)
- Reinforcement Learning (RL)
- Adaptation to user preferences
- Learning via shielding

Overview

- Q-value matrix
- Policy

Types of overlays

Composability and Removing

Overlay List

Prohibitory and Permissive Overlays

Transfer Overlays

Experiments

- Assistive cooking
- Rapid and temporary changes
- Adaptive and flexible policies
- Environment

Simulated vs Physical

Simulated Tests

No Retraining Test vs Retraining Test

Physical Robot Tests

Proof-of-concept experiments

(video)

Physical Robot Tests

Results of the Case Study

Number of Errors	Base Model	Overlay-assisted robot	
All Types	14	2	-700%
(previous slide)	6	2	-300%
only Permissive	3	0	-300%

- 3 experienced users in each test
- same base policy form simulated tests

Conclusion

- Immediate adaptation to user preferences
- Physical Tests with few users
- Limitations:
 - Hand-crafted predicates
 - Scalability

What's next?

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays

Jake Brawer, Debasmita Ghose, Kate Candon, Meiving Qin, Alessandro Roncone, Marynel Vázquez, Brian Scassellati

ACM/IEEE International Conference on Human-Robot Interaction 2023 Stockholm, SE (p. 525-533)

Guilherme Santos - 113893 Pedro Pinto - 115304