Markov Chain

- A Markov chain is a model that tells us something about the probabilities of sequences of random variables, states, each of which can take on values from some set.
- These sets can be words, or tags, or symbols representing anything, like the weather.
- Future state is predicted based on the current state.

A start distribution π is required; setting π = [0.1, 0.7, 0.2] would mean,

A probability 0.7 of starting in state 2 (cold)

A probability 0.1 of starting in state 1 (hot), etc

Markov Chain

• Consider a sequence of state variables q1,q2,...,qi . A Markov model embodies the Markov assumption on the probabilities of this sequence: that when predicting the future, the past doesn't matter, only the present matters.

Markov Assumption: $P(q_i = a | q_1...q_{i-1}) = P(q_i = a | q_{i-1})$

- A Markov chain is useful when we need to compute a probability for a sequence of observable events.
- In many cases, however, the events we are interested in are hidden.
- For example we don't normally observe part-of-speech tags in a text.

 Rather, we see words, and must infer the tags from the word sequence.
- A hidden Markov model (HMM) allows us to talk about both observed events (like words that we see in the input) and hidden events (like part-of-speech tags) that we think of as causal factors in our probabilistic model.
- Example He runs a successful Business

• An HMM is specified by the following components:

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state i to state j, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \forall i$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties, each expressing the probability of an observation o_t (drawn from a
	vocabulary $V = v_1, v_2,, v_V$) being generated from a state q_i
$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

 First, as with a first-order Markov chain, the probability of a particular state depends only on the previous state:

Markov Assumption:
$$P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$$

 Second, the probability of an output observation oi depends only on the state that produced the observation qi and not on any other states or any other observations:

Output Independence:
$$P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$$

- Hidden Markov Model (HMM) is a statistical Markov model in which the model states are hidden and the state-dependent output of the model is visible.
- Applications of HMM
 - PoS Tagging
 - Speech recognition and Speech Synthesis
 - Gene Prediction
 - Machine Translation
 - Alignment of Bio Sequences

- Given a sequence of observations O (each an integer representing the number of ice creams eaten on a given day) find the 'hidden' sequence Q of weather states (H or C) which caused Jason to eat the ice cream.
- The two hidden states (H and C) correspond to hot and cold weather, and the observations (drawn from the alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a given day.

 Hidden Markov models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence *O* and the set of states

in the HMM, learn the HMM parameters *A* and *B*.

- Let us consider our friends Mohan come form a distant city.
- Based on Weather condition in his city, he either carries an Umbrella
 U or doesn't carry an Umbrella NU.
- we can observe only whether he is carrying an umbrella or not; but not the weather condition of his city.
- Further assume that Mohan city has one of three possible weather conditions
 - Sunny
 - Cloudy
 - Runny

```
HMM model consists of Five tuple - {Q, Q, A, B, π}
set of States Q:
N=3 states
{Sunny(q1), Cloudy(q2), Rainy(q3)}
set of observations O:
M=2 no of unique observations
{U(Umbrella), NU(NotUmbrella)}
state transition matrix (A) -
emission matrix (B)
Initial state probability (π)
Model parameter: λ =< A, B, π >
```

$$\mathbf{A} = \begin{array}{ccc} q_1 & q_2 & q_3 \\ q_1 & 0.2 & 0.3 & 0.5 \\ 0.1 & 0.2 & 0.7 \\ q_3 & 0.4 & 0.25 & 0.35 \end{array}$$

$$\mathbf{B} = \begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array} \begin{pmatrix} 0.3 & 0.7 \\ 0.2 & 0.8 \\ 0.9 & 0.1 \end{pmatrix}$$

$$\pi = \begin{pmatrix} q_1 & q_2 & q_3 \\ 0.5 & 0.3 & 0.2 \end{pmatrix}$$

Q1:Calculate the joint probability of following sequence of observation and states: $P(<U \ NU \ U \ U>, < q_1, \ q_2, \ q_1, \ q_3>)$

Calculation:

$$\mathbf{II} \pi[q_1]^* \mathbf{B}[\mathsf{U}|q_1] = 0.5 *0.3 = 0.15$$

2
$$A([q_1][q_2]) * B[NU|q_2] = 0.3 *0.8 = 0.24$$

B
$$A([q_2][q_1]) * B[U|q_1] = 0.1 *0.3 = 0.03$$

4
$$A([q_1][q_3]) * B[U[q_3] = 0.5 *0.9 = 0.45$$

Q1:Calculate the joint probability of following sequence of observation and states: $P(<U \ NU \ U \ U>, < q_1, q_2, q_1, q_3 >)$

Calculation:

Hidden Markov Models – Likelihood Computation

• Computing Likelihood: Given an HMM λ = (A,B) and an observation sequence O, determine the likelihood $P(O|\lambda)$

• Note:

- In Hidden Markov models, each hidden state produces only a single observation.
- Thus, the sequence of hidden states and the sequence of observations have the same length.

Algorithms

- Forward Algorithm
- Backward Algorithm

Example: Find the probability of the sequence U, NU, U, U from above example.

Likelihood Computation – Forward Algorithm

Given Model parameter $\lambda = < A, B, \pi >$ and a sequence of observation $o_1, o_2, o_3, ..., o_{T-1}, o_T$

We define a variable (helper function) α_t^j

$$\alpha_{\mathbf{t}}^{\mathbf{j}} = P(O_1, O_2, O_3, ..., O_t | S_t = q_j, \lambda)$$

- We have calculated probability of the sequence $o_1, o_2, o_3, ..., o_{t-1}, o_t$
- the last sequence is emitted from the state q_j .

Hidden Markov Models – Forward Algorithm

Initialization (Base case):

For
$$j \in [1, N]$$
:

$$\alpha_1^j = \pi_j * b_j(o_1)$$

2 Inductive case:

For
$$t \in [2, T]$$
:

For $j \in [1, N]$:

$$\alpha_t^j = \sum_{i=1}^N \alpha_{t-1}^i * \mathbf{a}_{ij} * \mathbf{b}_j(\mathbf{o}_t) ;$$

3 Termination:

$$P(\mathbf{O}|\lambda) = \sum_{j=1}^{j=N} \alpha_T^j$$

What is the probability of the observed sequence "SSH" given the parameters of the HMM?

$$A = \begin{bmatrix} 0.5 & 0.5 \\ 0.3 & 0.7 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.375 & 0.625 \end{bmatrix}$$

John has a small dog.

John	has	а	small	dog	
noun	verb	determiner	adjective	noun	

• Some applications - > Grammatical Analyzer (Spell Checkers)

- Noun John, Car, India , Apple
- Verb Run, Swim, Speak
- Modal Verb Must, Will, Would, May
- Be verb am, is, are, was, were, been, being

					Marry noun	will modal	see verb	will ???
	Our	data!				N	v	М
Mary noun	will modal	see verb	Jane noun	Mai	ry	2	0	0
Will	will	see	Mary	se	e	0	3	0
noun	modal	verb	noun	Jan	ie	2	0	0
Jane noun	will modal	see verb	will	Wi	"	2	0	3

Marry	will	see	will	
noun	modal	verb	noun	

Our data!

Mary	will	see	Jane
noun	modal	verb	noun
Will	will	see	Mary
noun	modal	verb	noun
Jane	will	see	Will
noun	modal	verb	noun

BIGRAMS

	N-M	M-V	V-N
mary-will	1	0	0
will-see	0	3	0
see-jane	0	0	1
will-will	1	0	0
see-mary	0	0	1
jane-will	1	0	0
see-will	0	0	1

Dr Padmavathy T, SCOPE

- Emission Probabilities How likely is that Jane will be a noun, will be a modal,
- Transition Probabilities How likely is it that Noun is followed by a modal, which is followed by a verb,......

	N	М	V	<e></e>
<s></s>	3/4	1/4	0	0
N	1/9	1/3	1/9	4/9
M	1/4	0	3/4	0
V	Dr Pad	lmavathy ⁻	r, SCOPE	0

• What is the probability that the following sentence occurs?

Dr Padmavathy T, SCOPE

• How many different possibilities ? 3 ^4 = 81

Jane will spot Will.

N N N N

M M M M

V V V V

Challenge ?

Determine the initial probability distribution $\pi = \pi_1, \pi_2, ..., \pi_N$ over the states?

To Do.....

- Use the following paragraph to estimate the state transition probability (A), initial state probability (π), and output emission probability (B) of POS tag and observed words using Hidden Markov Model.
- Did/VERB Brown/NOUN drink/VERB coffee/OTHER
- Coffee/NOUN is/VERB brown/OTHER
- Swift/NOUN is/VERB a/OTHER car/NOUN
- A/OTHER car/NOUN is/VERB brown/NOUN
- Brown/NOUN had/VERB a/Other swift/Other drive/NOUN
- Did/VERB Brown/VERB drive/VERB

Calculate the probability of the observation below using the Forward algorithm of the Hidden Markov Model.

A brown swift

References

- Daniel Jurafsky and James H Martin "Speech and Language Processing", Prentice Hall 2017.
- Nitin Indurkhya, Fred J Damerau, "Handbook of Natural language Processing"
- Part-of-speech (POS) tagging with Hidden Markov Model (HMM) (youtube.com)