Topic 2 - Face Detection

Group 57

Jun 27, 2024

Group Members

- NGUYEN DUY THAI 175906
- PHAM HOANG DUY 220607
- NGUYEN HOANG VINH QUANG 219130
- PHAN VAN TAN 219200
- TRUONG MINH NGHIA 164626

Overview

- Introduction to Face Detection
- Importance of Face Detection
- Applications of Face Detection
- Face Detection Techniques
- Project Goals

Introduction to Face Detection

 Definition: Technology to identify and locate human faces in images and videos.

• Importance:

- Foundation for facial recognition, emotion detection, and security systems.
- Crucial in various applications like surveillance, user authentication, and personalized marketing.

How it Works:

- Uses algorithms and machine learning techniques.
- Detects facial features and distinguishes them from other objects.

Advancements:

- Deep learning has enhanced accuracy and efficiency.
- Modern systems are more robust and reliable.

Proposed Solution

- Model Selection: Use YOLOv10-L, a state-of-the-art object detection model known for its speed and accuracy.
- Data Collection: Gather a dataset of diverse images containing faces, ensuring a balanced representation of different facial features.
- **Data Annotation**: Label the images with bounding boxes around faces using tools like LabelImg or CVAT.
- Environment Setup: Clone the YOLOv10-L repository and install dependencies in Google Colab for free GPU access.
- Model Configuration: Define the model architecture and configuration using a custom YAML file tailored for face detection.
- **Training**: Train the YOLOv10-L model on the annotated dataset, optimizing for accuracy and performance.
- Evaluation: Assess the model's performance using metrics such as mAP (mean Average Precision) and adjust parameters as needed.

Architecture Model Evaluation

Model	Pros	Cons
VGG16	- Simplicity - Strong Feature Extraction	- Computationally Intensive - Not Specialized for Detectio
ResNet50	Residual ConnectionsHigh AccuracyScalability	ComplexityResource Intensive
YOLO	Real-Time PerformanceHigh AccuracyUnified Architecture	- Complexity - Resource Intensive

Architecture

YOLOv10 Detailed Structure:

- Backbone:
 - Uses CSPDarknet architecture for feature extraction.
 - Includes multiple convolutional layers and residual blocks.
- Neck:
 - PANet structure for path aggregation.
 - Enhances feature pyramid for better detection at various scales.
- Head:
 - Outputs bounding box coordinates, objectness scores, and class probabilities.
 - Utilizes anchor boxes for improved localization accuracy.
- Advantages:
 - Superior performance on small and large objects.
 - Optimized for both accuracy and speed.

Data Processing

• Preprocessing:

- Normalization: Adjust image pixel values to a common scale to improve model performance.
- Augmentation: Apply techniques such as rotation, flipping, and scaling to increase dataset diversity.
- Annotation: Label images with bounding boxes around faces using tools like LabelImg or CVAT.
- **Dataset Preparation**: Ensure balanced representation of various facial features and expressions.

Data Processing

- Post-Processing:
 - Non-Max Suppression (NMS): Filter out overlapping bounding boxes to retain the best predictions.
 - Bounding Box Refinement: Adjust predicted boxes to better align with detected faces.
 - Confidence Thresholding: Discard predictions below a certain confidence level to reduce false positives.
 - Evaluation Metrics: Use metrics like mAP (mean Average Precision) to assess model accuracy.

Dataset

Source:

- We used the Face Detection Dataset from Kaggle.
- This dataset is specifically curated for training and testing face detection models.

• Dataset Composition:

- Training Set: 26,300 images with annotated face locations.
- Validation Set: 6,500 images with similar annotations.

Annotations:

 Each image comes with corresponding labels indicating face positions using bounding boxes.

Dataset

• Preparation:

- Downloaded and extracted the dataset using a simple helper script.
- Ensured the removal of duplicate images and corresponding labels.

Directory Structure:

Organized as follows:

YAML Configuration:

- Defined paths for training and validation data in a data.yaml file.
- Included class names and counts for model reference.

Evaluation Metrics

Average Precision (AP):

- Measures precision and recall at various thresholds.
- Calculates the weighted mean of precisions achieved at each threshold.
- Provides a comprehensive view of model performance across different confidence levels.

AP@0.5:

- Measures precision and recall with a fixed Intersection over Union (IoU) threshold of 0.5.
- Indicates how well the model distinguishes true positives from false positives.
- Important for evaluating object detection models in real-world applications.

Evaluation Metrics

Mean Average Precision (mAP):

- Combines AP scores over multiple IoU thresholds (e.g., 0.5 to 0.95).
- Averages AP across all classes in the dataset.
- Offers a comprehensive metric for overall model performance comparison.

• Importance:

- These metrics provide insights into the trade-offs between precision and recall.
- Essential for fine-tuning the model to achieve optimal detection accuracy.
- Used to benchmark performance against other models and datasets.

Experimental Results

Evaluation Metrics

- VGG16: AP, AP@0.5 results
- ResNet50: AP, AP@0.5 results
- YOLO: AP, AP@0.5 results

Benchmark

• Comparison with state-of-the-art models in face detection tasks

Ablation Study (Optional)

 Analyzing the impact of different architectural changes on model performance

Examples of Test Results

 Generated images and screenshots demonstrating detection performance on test data

Conclusion

- Face detection is a vital technology
- Wide range of applications
- Project aims to contribute to this field

Questions?

• Open for any questions or discussions

References

- Dataset: Face Detection Dataset
- Information: Train set 26,300 images, Test set 6,500 images
- Evaluation Metric: AP, AP@0.5