

Randomized Controlled Trials (RCT)

Mendelian Randomization (MR)

Sample Case

Random assignment of subjects
Random allocation of alleles

-Mu

Genotype AA

Target effects

Protein effects

Outcome

Methods

Two-Sample MR	- Estimate causal effect between different samples - Summary-level data from GWAS can be used	- Cannot test for confounding - No overall causal estimate - Assumes genetic variants are uncorrelated (not in linkage disequilibrium)	- Causal estimate between genetic variants
Inverse-Variance Weighted method (IVW)	- Overall causal estimate between exposure and outcome - Summary-level data from GWAS can be used	 Assumes causal estimates provide independent evidence (no correlation) Cannot test for confounding 	- Overall causal estimate between exposure and outcome
MR-egger method	 Can test for confounding (correlation between variants) Can test for a causal effect An estimate of the overall causal effect 	- Needs 3 or more genetic variants	Overall causal estimateMR-egger causal testOverall pleiotropiceffect
Bidirectional MR	- Can determine when genetic variant exhibits primary effect on the exposure, or the effect is secondary to the outcome	- difficulty in the presence of genetic variants that influence each other	- MR analysis in both directions, that ascertains direction of causal relationship

Data

	Туре	Amount of Phenotypes	Direction
Celiac, Trynka 2011	GWAS Immunochip	1	Outcome
Celiac, Dubois 2010	GWAS Immunochip	1	Outcome
The NHGRI-EBI GWAS catalog	Publicated GWAS	2893	Exposure
MRbase Metabolite	GWAS on metabolites in whole blood	121	Exposure
MRbase Proteins	GWAS on protein levels whole blood	47	Exposure
MRbase Gene Expression levels	GWAS on gene identifiers in 44 different tissues	32432	Exposure
MRbase Methylation levels	GWAS on methylation levels in whole blood across 5 time points	33256	Exposure
Publicated GWAS	GWAS	1308	Exposure
Total		70059	6 (0 6

Pipeline

GWAS

SNP	effect_allele	beta	se	р
rs61733845	T	0.03536714	0.04432255	2.465e-06
rs1320571	A	0.01882175	0.04265126	6.590e-01
-				· Care

Celiac 2011. Gosia Trynka et al

GWAS

SNP	effect_allele	beta	se	Р
rs314253	C	-0.0201900	0.002646	2.471-14
rs7775397	G	-0.0369352	0.004845	2.721e-14
	/			

HDL, LDL, Triglycerides. Willer CJ et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013. doi:10.1038/ng.2797

Outcome = Celiac Disease, Exposure = HDL, LDL, Triglycerides

Mendelian Randomization setup

- Rules that need to be met before using a genetic variant in the MR framework
 - ▶ The genetic variant must be associated with the exposure of interest
 - ▶ The genetic variant must not be associated with confounders
 - ▶ The genetic variant may only affect the outcome through the exposure

Pipeline

Data input

GWAS exposure

First core assumption

1000 Genomes

GWAS outcome

Operation

Select genome-wide significance on exposure

Remove variants without Beta/Log odds on exposure

Query missing alleles by reference on exposure

Find overlap between exposure and outcome

Harmonize Exposure on Outcome

- I Positive align exposure
- Align outcome on exposure
- Remove palindromic SNPs

Preliminary results

- Celiac 2011, Gosia Trynka et. Al
 - ▶ 63 significant potential exposures

_	7.0
Top	
	-1 \cup
. – –	. •

Exposure	IVW	Egger	nSNP
Rheumatoid_Arthritis_2014_24390342_hg1	3.171316e-06	4.627945e-15	53
eo_baso_sum_build37_171771_20161212	1.361791e-05	8.413819e-08	28
eo_build37_172275_20161212	1.482109e-07	2.594648e-06	32
lymph_build37_171643_20161212	7.274596e-01	1.892860e-05	2 7
pct_build37_164339_20161212	5.517519e-08	2.612460e-05	19
plt_build37_166066_20161212	1.679860e-07	3.664932e-05	18
eo_p_build37_172378_20161212	2.691746e-04	1.070842e-03	27
pdw_build37_164433_20161212	8.302935e-03	1.199338e-03 🍎 🥟	14
hct_build37_173039_20161212	1.125320e-02	3.785512e-03	2
hgb_build37_172925_20161212	7.628868e-03	4.910752e-03	98

- Celiac 2010, Patrick Dubois et. Al
 - 36 significant potential exposures

	_	10
	Top	
		-1 \cup
•	. • •	. •

	Exposure	IVW	Egger 6	nSNP
1	eo_build37_172275_20161212	2.457824e-05	0.03444228 <mark>3</mark> 1	25
	hct_build37_173039_20161212	3.635149e-01	0.0344422831	22
	neut_p_gran_build37_170672_20161212	2.694008e-02	0.0344422831	25
	eo_p_gran_build37_170536_20161212	6.095143e-03	0.0500008203	21
	eo_baso_sum_build37_171771_20161212	6.892643e-06	0.0545461874	24
	eo_p_build37_172378_20161212	3.581443e-03	0.0881148661	22
	TID_CC_2015_25751624_hg19	1.036351e-04	0.5464139213	24 2
	Multiple_sclerosis_2011_21833088_hg19	2.899315e-02	0.5587373911	17
	Packed_cell_volume_2012_23222517_hg18_h	4.829159e-02	0.5587373911	8
	g19 TR_trait31_2013_24074872_hg19	4.356029e-02	0.5924281 5 53	19

Preliminary results

Celiac 2010, Patrick Dubois et. all

Preliminary results

Celiac 2010, Patrick Dubois et. all

Preliminary results Bidirectional MR

Preliminary results Bidirectional MR

Future steps

- Predict significant hits in case-control studies
- Pathway analysis on SNPs in significant hits
- Network Mendelian Randomization