Experimental Spaceplane (XS-1)

A First Step Toward Reducing the Cost of Space Access by Orders of Magnitude

Mr. Jess Sponable, TTO Program Manager

Program Overview

6 November 2013

The Problem: Access to Space

- DoD payloads launched on Evolved ELV at ~\$3B/year & growing
- Small payloads launched at ~\$50M on few remaining Minotaurs
- No surge capability, long call-up times, typically > 2 years
- Budgets continue to decline
- Threats to space and air assets growing

Solution: Experimental Spaceplane (XS-1)

XS-1 Vision

- Break cycle of escalating space system costs
- Enable routine space access & hypersonic vehicles by integrating, testing, and maturing technologies and lean operations
- Provide capability for responsive launch of 3,000 5,000 lb payloads

Technical objectives

- Reusable first stage
- Fly XS-1 10 times in 10 days
- Fly XS-1 to Mach 10+ at least once
- Launch demo payload to orbit
- Design for recurring cost ≤ 1/10 Minotaur IV
 (< \$5M/flight for 3 5000 lbs to LEO at 10+ flts/yr)

Objectives explained further in next session

Open Design Space

Launch and Recovery CONEMPs

Ground launch

Air launch

Sea/barge launch

Land downrange

Return to launch site

Artist Concepts

Propulsion

Stage count and type

© XCOR Aerospace

Artist Concepts

TPS and Structures

Metallic

• Hybrid

Active

Passive

Gov't Reference X-Plane One of Many Possible Solutions

The second secon	Artist Concept			
Booster				
Engine	2 Merlins			
GLOW (K lbs)	223.9			
MECO (K lbs)	47.4			
Usable LOX/RP (K lbs)	176.5			
Isp (vac)	310			
Stage PMF	0.84			
Upper Stage				
GLOW (lbs)	15.0			
Isp (vac)	336			
Stage PMF	0.9			
Payload (K lbs)	3.0			

Expendable stage ~5% of dry stack weight

Using NK-33, air launch, two stage and/or scale-up → 5K lb payload

Addressing the Cost Equation

Aggressive and Achievable 10X Lower Recurring Flight Cost

Tackle the tipping point < \$5M/flight (\$2M Ops + \$3M Stage)

1. Breaks cycle of escalating space system costs

- Order of magnitude lower launch cost changes how spacecraft are built
- Enables new responsive & disaggregated architectures
- On path to affordable space

2. XS-1 enables new types of aircraft & test capabilities

- Space access aircraft → Global ISR and protection
- Affordable hypersonic aircraft → Low parts count & CTE structures/TPS
- Hypersonic testbed → boost-glide systems & hypersonics

Artist Concepts

- 3. Enables ORS residual capability & disaggregation
 - ORS Launch → single smallsat or constellations for rapid employment
 - Modular launch (bi-mese) → captures AF missions, recaptures commercial market
 - Disaggregation → of stage or satellite can capture AF, NRO & commercial missions

Key Goal: Break cycle of escalating space system cost

10X Cost Reduction Would Enable Many Benefits

Space Systems Cost Spiral

Invert the Cost Equation

XS-1 Market #1 (DOD) and #2 (Commercial)

Responsive launch of 3 to 5K lb payloads

Note: All satellites launched on U.S. boosters. U.S. satellites launched on foreign boosters. Excludes classified & crewed flights. Counts satellites >1K lbs, aggregates smaller satellites.

- '97-'99 spike due to Iridium and Globalstar
- Lost commercial opportunities
 - Commercial launch migrated overseas
 - ... \$Billions in lost revenue
 - ... Grew cost of DOD launch
 - New constellations hard to finance
 - ... Teledesic

Potential to leverage commercial sector

- Missions enabled by XS-1
 - USAF ORS & "disaggregated" satellites
 - Recapture commercial launch
- → Historical avg of 3-5 launches/yr at 5,000 lbs
 - → Projected market much higher

Multiple Test Options

- Captive carry experiments
 - May Limit Q and thermal testing
 - Propulsion (RAM/SCRAM/Turbine)
 - Airframe/Structures
 - Thermal Protection
- Release free-flyer experiments
 - Unpowered constant Q reentry
 - Long test time vs. ground test
 - Aerodynamic & thermal test
 - Laminar flow/boundary transition
 - Controls/avionics
 - Powered test vehicle
 - Longer flight tests
 - Useful test data limited only by scale and cost

Constant Q Unpowered Glide from Engine Burn Out

Projected Cost of Flight Test < Many (Not All) Ground Tests
Test of component & systems ◆ RAM/SCRAM/turbine ◆ Boost-glide vehicles

XS-1 Future Markets: #4, #5, etc. *Technology scaleable to future capability*

Proposed XS-1 Program

National security global reach architectures

Commercial Launch for ORS, AF & Intel

Capability

Enable AFSPC Full Spectrum Launch Capability

Transition Path Requires Proactive Industry

✓ Robust DOD and commercial launch industry with ideas

- ✓ Growing small satellite industry building low cost satellites.
 - Commercial
 - Military
 - Civil

- ✓ Emerging DOD requirements for disaggregation & resiliency
 - **Disaggregation:** downsize spacecraft for routine, responsive & affordable launch
 - Resiliency: ability to fight through contested & congested environments

Consider Near-Term (#1 - #3) and Future (#4 - #5) Markets for transition when developing XS-1 designs!

Legacy of Past Programs

Initial Goals (requirements)	NASA human rated Payload — 65K lbs \$10M per flight	AF crewed Payload < 10K lbs SSTO, scramjet powered Aircraft-like ops, fast turn	NASA human rated Payload - 65K lbs SSTO, rocket powered Aircraft-like ops, fast turn
Technology (at start)	TRL ~3 <u>and</u> immature design New LOX/LH ₂ SSME Unproven materials/TPS Toxic OMS/RCS, etc. 1960s/1970s technology	TRL ~2 and immature design New LS/RAM/SCRAM/rocket New materials/structures New LOX/LH ₂ tanks New hot structure TPS, etc	TRL ~3 <u>and</u> immature design Mod LOX/LH ₂ aerospike rocket New composite structures New metallic TPS New LOX/H2 tanks, etc.
Approach	Expendable launch (SRB, ET) Operational after 4 flights Evolved to "space station"	X-Plane first Incremental flight test	X-Plane first Incremental flight test
Outcome	Successful flights Very expensive with ground "standing army"	Never flew Design never closed Technology not available	Never flew Design never closed Technology not available

Past programs over specified the problem (SSTO, scramjet, heavy lift, crewed, etc.) AND relied on immature designs and technology (TRL 2/3)

What Has Changed?

20 years of investment → Technology mature & affordable

Challenges to Achieving Lower Cost

Complements heavy Falcon & EELV payloads – does not compete

ELV Launch Cost Breakdown

Technical Challenges

- Design and system integration enabling "aircraft-like" operations
- Light weight/high energy airframe, high propellant mass fraction
- Durable thermal structures/ protection, -300°F to +3,000°F
- Reusable, long life & affordable propulsion

Design and System Integration

Enable "aircraft-like" operations

Today's Launch Complex Complex to Simplex Autonomous Ops Incorporate "-ilities"

Design Integration

"Clean Pad" Aircraft-Like Operations

Aircraft-like CONOPS

- Clean pad rapid throughput
- Ops Control Center like aircraft
- Containerized payloads

Aircraft GSE/Facilities where practical

- Hangars, not specialized buildings
- Standard interfaces/processes
- Automated ops, propellant & fluid loading

OPS CONTROL CENTER Small 3 Person Ops Crew Size

(FM)

Integrated Systems Health Management

- Determine real-time system health
- Integrate with Adaptive G&C
- Enable reliable, rapid turnaround aircraft

Leverage high ops tempo investments

- ALASA Autonomous Flight Termination System
- ALASA Rangeless range, space based command, control & data acquisition
- Adaptive GN&C safe, reliable recovery/abort

Light Weight / High Energy Airframe

High Propellant Mass Fraction (PMF)

Affordable Structure

Composite
Structures Reduce
Weight ~30%

USAF Monocoque Tank in Test

NASA Open-Core Tank in Fabrication

Tank/Structure Integration

✓ Integral load bearing structure

✓ High PMF key to performance

$$\triangle V = I_{SP} * g * ln \left(\frac{1}{1 - PMF} \right)$$

√ 10X fewer parts & lower cost

✓ Reusable vehicle cost is amortized rapidly ...

 $\left(\frac{\mathsf{Unit}\;\mathsf{Cost}}{\mathsf{No.}\;\mathsf{Flights}}\right)$

Design tank / airframe structure to enable high PMF/ ΔV

Durable Thermal Structures / Protection

100

BTU/ft²/sec)

Heat Rate

-300 °F to +3,000 °F

How you design & fly is key!

Many Thermal Protection Options

AFRSI and CRI

Mechanical Atch

ACC, C/SiC, TUFROC

Space Shuttle Post-Flight CMC/TUFI **Tiles**

Emerging Thermal Structures

Reusable, Long Life and Affordable Propulsion

Multiple Options - Design Integration Challenge

- ✓ Use existing propulsion with mods for
 - Long life ... rapid call up/turnaround ... deep throttle
 - High reliability ... historically, most launch failures caused by propulsion
- ✓ Design as Line Replaceable Unit
 - Rapid remove and replace
 - Support high ops tempo flight rate

Multiple Affordable Propulsion Options

Merlin Commercial Rocket <u>NK-33</u> Stockpiled Russian Rocket

<u>SSME</u> Space Shuttle Engines

DARPA Anticipated Way Ahead

Highlights

- New era Launch costs growing, budgets declining and threats proliferating
- Disruptive Order of magnitude lower cost → new game changing capabilities
- Leverage Emerging suborbital and launch technology & entrepreneurs
- Transition Industry leads, many paths forward → Commercial, DoD, civil

XS-1 program can be agent for change ...

... DARPA open to innovative industry proposals

Several Notional Concepts

Flight Test

Mach 10 Validates Critical Technology

Technology Requirements Demonstrated

