LSH Families of Hash Functions

Definition
Combining hash functions
Making steep S-Curves

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Hash Functions Decide Equality

- There is a subtlety about what a "hash function" really is in the context of LSH families.
- A hash function h really takes two elements x and y, and returns a decision whether x and y are candidates for comparison.
- Example: the family of minhash functions computes minhash values and says "yes" iff they are the same.
- Shorthand: "h(x) = h(y)" means h says "yes" for pair of elements x and y.

LSH Families Defined

- Suppose we have a space S of points with a distance measure d.
- A family H of hash functions is said to be (d₁,d₂,p₁,p₂)-sensitive if for any x and y in S:
 - 1. If $d(x,y) \le d_1$, then the probability over all h in H, that h(x) = h(y) is at least p_1 .
 - 2. If $d(x,y) \ge d_2$, then the probability over all h in H, that h(x) = h(y) is at most p_2 .

LS Families: Illustration

Example: LS Family

- Let S = sets, d = Jaccard distance, H is formed from the minhash functions for all permutations.
- Then Prob[h(x)=h(y)] = 1-d(x,y).
 - Restates theorem about Jaccard similarity and minhashing in terms of Jaccard distance.

Example: LS Family – (2)

Claim: **H** is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d.

If distance < 1/3 (so similarity > 2/3)

Then probability that minhash values agree is $\geq 2/3$

For Jaccard similarity, minhashing gives us a $(d_1, d_2, (1-d_1), (1-d_2))$ -sensitive family for any $d_1 < d_2$.

Amplifying a LSH-Family

- The "bands" technique we learned for signature matrices carries over to this more general setting.
 - Goal: the "S-curve" effect seen there.
- AND construction like "rows in a band."
- OR construction like "many bands."

AND of Hash Functions

- Given family H, construct family H' whose members each consist of r functions from H.
- For $h = \{h_1, ..., h_r\}$ in **H'**, h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for all *i*.
- Theorem: If **H** is (d_1,d_2,p_1,p_2) -sensitive, then **H'** is $(d_1,d_2,(p_1)^r,(p_2)^r)$ -sensitive.
 - Proof: Use fact that h_i 's are independent.

OR of Hash Functions

- Given family H, construct family H' whose members each consist of b functions from H.
- For $h = \{h_1, ..., h_b\}$ in **H'**, h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for some *i*.
- Theorem: If **H** is (d_1,d_2,p_1,p_2) -sensitive, then **H'** is $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -sensitive.

Effect of AND and OR Constructions

- AND makes all probabilities shrink, but by choosing r correctly, we can make the lower probability approach 0 while the higher does not.
- OR makes all probabilities grow, but by choosing b correctly, we can make the upper probability approach 1 while the lower does not.

Composing Constructions

- As for the signature matrix, we can use the AND construction followed by the OR construction.
 - Or vice-versa.
 - Or any sequence of AND's and OR's alternating.

AND-OR Composition

- Each of the two probabilities p is transformed into 1- $(1-p^r)^b$.
 - The "S-curve" studied before.
- Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H" by the OR construction with b = 4.

Table for Function 1-(1-p4)4

р	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

OR-AND Composition

- Each of the two probabilities p is transformed into $(1-(1-p)^b)^r$.
 - The same S-curve, mirrored horizontally and vertically.
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H'' by the AND construction with r = 4.

Table for Function (1-(1-p)4)4

р	(1-(1-p) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family.

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction.
- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family.

General Use of S-Curves

- For each S-curve 1-(1-p^r)^b, there is a threshold t, for which 1-(1-t^r)^b = t.
- Above t, high probabilities are increased;
 below t, they are decreased.
- You improve the sensitivity as long as the low probability is less than t, and the high probability is greater than t.
 - Iterate as you like.

Visualization of Threshold

