Search Problems

Uniform Cost Search

- Type of uninformed search
- Explores in all directions, so it isn't optimal

Informed Search

- Heuristic := a function that estimates how close a state is to a goal
 - designed for a particular search problem
 - Takes in a state and outputs a guess for how close you are to the goal
- Manhattan distance := distance from a point making only one 90° turn
 - Possible heuristic

Greedy Search

- Uninformed? search alg
- Fringe based algorithm
- Expand the node that seems closest with respect to some heuristic
- Not always optimal
- Somewhat like DFS because it explores a full path at a time

A* Search

- Considers both cost and heuristic value
- Like a combination of greedy and UCS
- Heuristic:

$$f(n) = g(n) + h(n) | \begin{cases} g(n) := \text{ distance traveled so far} \\ h(n) := \text{ heuristic value for a point} \end{cases}$$

- Note: you must evaluate the goal before you can declare success
- Not optimal b/c weightings of g(n) and h(n) can vary
 - Need optimal heuristic for optimality
- Expands mainly toward goal, but does hedge its bets to ensure optimality

Optimality

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

- A Search is optimal

 $B \in \text{fringe} \implies \exists \text{ Ancestor of A} \in \text{fringe - Argument: Ancestor of A will be popped off before } B - \text{Known:}$

$$\begin{array}{l} n \in \mathsf{ancestors}_A \implies f(n) \leq f(A) \\ B \in \mathsf{goals}_{\mathsf{suboptimal}} \implies f(A) < f(B) \end{array}$$

The heuristic is admissible, so it must be an underestimate $\Longrightarrow h(A) = h(B) = 0 : \{f(A) = g(A), f(B) = g(B)\}$

Given that B is suboptimal, we know the path cost to A < the path cost to B: g(A) < g(B)

 $:f(n) \le f(A) < f(B)$ so n must be expanded before $B \Longrightarrow$ all ancestors of A are expanded before $B :: A^*$ is optimal.

Heuristics

- Two types:
 - 1. Optimistic
 - 2. Pessimistic
- Admissible (optimistic) iff $0 \le h(n) \le h^*(n)|_{h^*(n) := \text{true cost to the nearest goal}}$

Pessimistic (not admissible)

- Regardless of h(n), consider g(n) as more important
- Breaks optimality by trapping good plans on the fringe
- We thought the plan was bad, but it ended up being a good plan

Optimistic (admissible)

- Gives better estimates than the reality
- Ensures optimality because it forces excess computation (explore things that are wrong)

Creating An Admissible Heuristic

- Most of the hard work is for a search problem comes down to the heuristic
- Often we evaluate the cost of an easier problem as our heuristic
 - Manhattan distance, straight-line distance