

Tarea 1

Alonso Muñoz

Álgebra Lineal Licenciatura en Matemática Pontificia Universidad Católica - Chile

7 de septiembre de 2025

1. Problema 1

Sea V un espacio vectorial real.

■ Llamamos la complejificación de V, que denotamos por $V_{\mathbb{C}}$, al producto $V \times V$. Un elemento de $V_{\mathbb{C}}$ es un par ordenado (u, v), donde $u, v \in V$; denotamos a tal elemento por u + iv.

 \bullet Definimos la suma en $V_{\mathbb C}$ mediante la regla

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

para todo $u_1, u_2, v_1, v_2 \in V$.

■ La multiplicación por un escalar se define como

$$(a+ib)(u+iv) = (au - bv) + i(av + bu)$$

para todo $a, b \in \mathbb{R}$ y todo $u, v \in V$.

Demuestre que con las definiciones anteriores, $V_{\mathbb{C}}$ es un espacio vectorial sobre complejo.

Demostraci'on.

Problema 2

Suponga que U es un subespacio vectorial de V con $U \neq V$. Suponga además que $S \in \mathcal{L}(U,W)$, para algún espacio vectorial W, y que $S \neq 0$ (es decir, suponga que $Su \neq 0$ para algún $u \in U$). Defina $T: V \to W$ mediante

$$Tv = \begin{cases} Sv, & \text{si } v \in U, \\ 0, & \text{si } v \in V \text{ y } v \notin U. \end{cases}$$

Determine si T es una transformación lineal.

Problema 3

Considere el espacio vectorial $\mathbb{P}_3(\mathbb{R})$ de los polinomios de grado menor o igual a 3, y la función $T: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ definida por

$$T(p(x)) = p(0) x^3 + p(1) (x - 4)^2.$$

(a) Muestre que T es una transformación lineal.

Demostración. Sean $p(x), q(x) \in \mathbb{P}_3(\mathbb{R})$

$$T(p(x) + q(x)) = (q+p)(0)x^{3} + (p+q)(1)(x-4)^{2}$$

$$= p(0)x^{3} + q(0)x^{3} + p(1)(x-4)^{2} + q(1)(x-4)^{2}$$

$$= p(0)x^{3} + q(1)(x-4)^{2} + q(0)x^{3} + q(1)(x-4)^{2}$$

$$= T(p(x)) + T(q(x))$$

Así, obtenemos que $T(p(x)+q(x))=T(p(x))+T(p(x)) \quad \forall p(x), p(x) \in \mathbb{P}_3(\mathbb{R})$. Ahora, sea $\alpha \in \mathbb{F}$, tenemos que

$$T(\alpha \cdot p(x)) = (\alpha \cdot p(0)x^{3}) + (\alpha \cdot p(1)(x-4)^{2})$$

$$= \alpha \cdot (0)x^{3} + \alpha \cdot p(1)(x-4)^{2}$$

$$= \alpha(p(0)x^{3} + q(1)(x-4)^{2})$$

$$= \alpha \cdot T(p(x))$$

Por lo tanto, T es una transformación lineal.

(b) Encuentre la matriz representante de T respecto a la base canónica $\{1, x, x^2, x^3\}$.

Demostración. En primer lugar, calculamos los respectivos componentes de la base, para T(1), necesitamos que p(x) = 1, es decir p(0) = 1 y p(1) = 1, por lo tanto

$$T(1) = p(0)x^{3} + p(1)(x - 4)^{2}$$

$$= x^{3} + (x - 4)^{2}$$

$$= 16 - 8x + x^{2} + x^{3}$$

$$= 16 \cdot 1 - 8 \cdot x + 1 \cdot x^{2} + 1 \cdot x^{3}$$

Ahora, notamos que para los siguientes tres vectores de la base, $T(x^1)$, $T(x^2)$ y $T(x^3)$, necesitamos que $p(x^1) = x^1$, $p(x^2) = x^2$ y $p(x^3) = x^3$, es decir, p(0) = 0 y p(1) = 1, por lo tanto

$$T(x) = p(0)x^{3} + p(1)(x - 4)^{2}$$

$$= 0 \cdot x^{3} + 1 \cdot (x - 4)^{2}$$

$$= 16 - 8x + x^{2}$$

$$= 16 \cdot 1 - 8 \cdot x + 1 \cdot x^{2} + 0 \cdot x \ 3$$

Finalmente, la matriz asociada a la transformación lineal respecto a $\{1, x, x^2, x^3\}$ viene determinada por los escalares de las respectivas combinaciones lineales, es decir:

$$A = \begin{pmatrix} 16 & 16 & 16 & 16 \\ -8 & -8 & -8 & -8 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Problema 4

Considere los vectores en \mathbb{R}^2

$$v_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

Sea $P(v_1,v_2)$ el paralelogramo generado por ambos vectores, y sea $A=[v_1,v_2]$ la matriz cuyas columnas son v_1 y v_2 . Muestre que

$$\det A = \operatorname{Area} (P(v_1, v_2)).$$

Demostración. Observamos como se ve el paralelogramo formado por $v_1, v_2 \in \mathbb{R}^2$.

Ahora, consideramos dos áreas axuliares para calcular área $(P(v_1, v_2))$

Notemos que podemos calcular ambas áreas, ya que la primera corresponde a un rectangulo y la segunda es la suma de rectángulos y triángulos rectángulos. Por lo tanto, la

resta de áreas es igual a

$$A_1 - A_2 = 35 - 22$$

= 13

Además, podemos calular det(A):

$$\det(A) = \det \begin{vmatrix} 4 & 1 \\ 3 & 4 \end{vmatrix}$$
$$= 4 \cdot 4 - 1 \cdot 3$$
$$= 13$$

Con esto, concluimos que $det(A) = \acute{A}rea(P(v_1, v_2)).$

Problema 5

Sea $A \in M_{n \times n}(\mathbb{R})$. Decimos que A es nilpotente de orden k si $A^k = 0$ para algún $k \in \mathbb{Z}_{>0}$. Por otro lado, decimos que A es ortogonal si $A^T A = I$. Pruebe las siguientes propiedades:

(a) El determinante de toda matriz nilpotente es 0.

Demostración. Sea $A \in M_{n \times n}(\mathbb{R})$ una matriz nilpotente, es decir, para algún $k \in \mathbb{Z} > 0$ se tiene que $A^k = 0$. En particular, para dicho caso k se tiene que

$$M_0 = \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{vmatrix} = \det(A^k) = \det(A \cdot A \cdots A)$$

Luego, sabemos que para $A, B \in M_{n \times n}(R)$, entonces

$$det(AB) = det(A) det(B)$$

tenemos que

$$\det(A \cdot A \cdot \dots) = \det(A) \cdot (A) \cdot \dots \cdot \det(A)$$
$$M_0 = \det(A) \cdot \det(A) \cdot \dots \cdot \det(A)$$

Por lo tanto,

$$\det(A) = 0$$

(b) El determinante de toda matriz ortogonal es ± 1 .

Demostración. Sea $A \in_{n \times n} (\mathbb{R})$ una matriz ortogonal. Definimos $L = \det(A)$ y utilizamos

$$\det(A) = \det(A^t)$$
 y $\det(AB) = \det(A) \det(B) \quad \forall A, B \in M_{x \times n}(\mathbb{R})$

tenemos que $L = \det(A) = \det(A^t)$. Por lo tanto

$$1 = \det(A)$$

$$= \det(A^t A)$$

$$= \det(A^t) \det(A)$$

$$= L \times L$$

$$= L^2$$

Entonces

$$L = \det(A) = \pm 1$$

Problema 6

Sea A una matriz cuadrada. Muestre que las matrices triangulares por bloque

$$\begin{pmatrix} I & * \\ 0 & A \end{pmatrix}, \qquad \begin{pmatrix} A & * \\ 0 & I \end{pmatrix}, \qquad \begin{pmatrix} I & 0 \\ * & A \end{pmatrix}, \qquad \begin{pmatrix} A & 0 \\ * & I \end{pmatrix},$$

tienen todas ellas determinante igual a det A. (En la notación anterior, el símbolo "*" significa "lo que sea").

Problema 7

El objetivo de este problema es demostrar el determinante de Vandermonde

$$\begin{vmatrix} 1 & c_0 & c_0^2 & \cdots & c_0^n \\ 1 & c_1 & c_1^2 & \cdots & c_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_n & c_n^2 & \cdots & c_n^n \end{vmatrix} = \prod_{0 \le j < k \le n} (c_k - c_j).$$

Para ello, procederemos por inducción:

- (a) Muestre que la fórmula funciona para n = 1, 2.
- (b) Defina $x := c_n$ y muestre que el determinante es un polinomio de grado n,

$$A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n$$

donde los coeficientes dependen de $c_0, c_1, \ldots, c_{n-1}$.

ÁLGEBRA LINEAL

(c) Muestre que las raíces del polinomio anterior son $x=c_0,c_1,\ldots,c_{n-1},$ de manera que el determinante toma la forma

$$A_n(x-c_0)(x-c_1)\cdots(x-c_{n-1}).$$

(d) Asumiendo que la fórmula es válida para n-1, calcule A_n y demuestre la fórmula para n.