

Language detection

Yashashvini Rachamallu, Bhanu Kanamarlapudi, Neel Joshi

Introduction

- ➤ A method that classifies text into a set of accessible languages.
- Plays a critical role in numerous NLP applications, such as autocorrection, machine translation, information retrieval, summarization, and question answering.
- Two approaches to language detection: computational and non-computational.
- ➤ Plays crucial role in natural language processing for sentiment analysis
- ➤ Useful in the development of chatbots and virtual assistants that can interact with users in multiple languages
- ➤ Helps linguists and historians identify the language of ancient manuscripts and documents

Source: Google

Implementing different classification models to predict the languages

Motivation

- ➤ Is an important tool for facilitating communication and ensuring that content is appropriate and accessible to diverse audiences.
- ➤ Plays a crucial role in analyzing language usage and trends to provide insights into customer behavior, sentiment analysis.
- Companies operating globally use language detection to provide users with localized content and services.
- Can also be used for security purposes.

- > Implementing different embedding methods
- ➤ Implementing numerous Machine learning models
- > Implementing deep learning models
- > Fine tuning mBERT
- ➤ Analyze and Compare

Datasets

- ➤ Data-1(10267 records):

 https://www.kaggle.com/datasets/basilb2s/language-detection
- ➤ Data-2(21859 records):

 https://www.kaggle.com/code/martinkk5575/language-detection/data
- ➤ Data-3(12646 records):

 https://www.kaggle.com/datasets/lailaboullous/languag
 e-detection-dataset
- ➤ Data-4(10^7 records):

 https://www.kaggle.com/datasets/chazzer/big-language-detection-dataset?select=sentences.csv

Dataset Creation

- ➤ We created two different datasets by merging the above four datasets.
- For Dataset-1, we started with combining Data-1, Data-2 and Data-3 resulting in approximately 45000 rows.
- To remove the outliers in above combined Dataset-1, we used the Data-4 and picked only languages whose sentences count is in between 4000-6000.
- ➤ We ended up generating Dataset-1 with around 2 lakh sentences.

Dataset Creation

- ➤ The Dataset-2 is generated by combining Data-1, Data-2, Data-3 and few sentences from Data-4, to make each language in Dataset-2 to be between 10000 and 14000.
- > Dataset-2 contains around 2 lakh rows.

Dataset Analysis

- ➤ Checked the sentiment of all the sentences, to make sure if we are using neutral sentences.
- ➤ Plotted the word cloud for different languages.

Methodology

> Text Preprocessing:

- > Converted to lower case
- > Removed special characters
- > Removed of punctuation, htmls, email addresses.
- > Applied stemming
- Removed stop words for each language separately.

> Text vectorization:

- ➤ Bag-of-Words
- > TF-IDF vectorizer
- > transformer, Tokenizer
- ➤ Word2Vec
- > N-gram analysis
- ➤ DistilBERT-base-uncased
- > mBERT

Methodology

> Classification modeling:

- ➤ Naïve Bayes
- ➤ Logistic Regression
- Decision Tree
- ➤ Random Forest
- > Ensemble
- > SVM
- > LSTM
- ➤ BiLSTM
- > DISTILBERT

> Training and Testing:

- ➤ Training 80%
- ightharpoonup Testing 20%

MODEL	ACCURACY
BoW + Naïve Bayes	87.1
BoW + Decision Trees	78.5
TF-IDF + Naïve Bayes	85
TF-IDF + Decision Trees	76
mBERT + Custom NN	72
LSTM + 1 Dense	87
LSTM + 2 Dense	86.7
Bi-LSTM + 2 Dense	85.6

Table 1: Dataset-1 Results

Results

Model	Accuracy
Unigram(Word) + NB	82
Unigram(Word) + LR	88
Unigram(Word) + SVM	88
Unigram(Word) + RF	87
Bigram (Word) + NB	33
Bigram (Word) + LR	35
Bigram (Word) + SVM	35
Bigram (Word) + RF	35
Trigram (Word) + NB	13
Trigram (Word) + LR	15
Trigram (Word) + SVM	15
Trigram (Word) + RF	15
3 Char gram + NB	84
3 Char gram + LR	90.3
3 Char gram + SVM	91.5
3 Char gram + RF	89
4 Char gram + NB	74
4 Char gram + LR	82
4 Char gram + SVM	83
4 Char gram + RF	80
Word2Vec + LR	68.3
Char+Word+Pos+ NB	91.7
Char+Word+Pos + LR	92.3
Char+Word+Pos + RF	91
Char+Word+Pos + Ensemble	92.6
Fine-tuned DistilBERT	88.7
Fine-tuned mBERT	93

Table 2: Dataset-2 Results

Conclusion

- ➤ We have experimented with various embedding techniques, machine learning and deep learning models.
- ➤ Observed that considering position along with character and word analysis plays a crucial role during embedding phase.
- Among all our implementations, the model with mBERT has given the best accuracy of 93%.

Future Work

- Improve the performance of low-resource language identifications.
- Develop a user interface to accept text or document as input and identify and parse the text to desired language.
- Explore domain specific language detection as language usage vary significantly depending on domain or industry.

References

- 1. N. Sarma, S. R. Singh and D. Goswami, "Word Level Language Identification in Assamese-Bengali-Hindi-English Code-Mixed Social Media Text," 2018 International Conference on Asian Language Processing (IALP), Bandung, Indonesia, 2018, pp. 261-266, doi: 10.1109/IALP.2018.8629104.
- 2. W. B. Canvar and J. M. Trenkle. N-gram based Text Categorization. Proceedings of Symposium on Document Analysis and Information Retrieval, University of Nevada, Las Vegas, pp. 161-176, 1994.
- 3. B. Ahmed, S.-H. Cha, and C. Tappert. Language Identification from Text Using N-gram Based Cumulative Frequency Addition. Proceedings of Student/Faculty Research Day, CSIS, Pace University, 2004.
- 4. Pujeri*, B. P., & Sai D, J. (2020). An anatomization of language detection and translation using NLP techniques. *International Journal of Innovative Technology and Exploring Engineering*, 10(2), 69–77. https://doi.org/10.35940/ijitee.b8265.1210220.
- 5. Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: State of the art, current trends and challenges. *Multimedia Tools and Applications*, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4.
- 6. Christian Bartz, Tom Herold, Haojin Yang, Christoph Meinel(2017). Language Identification Using Deep Convolution Recurrent Neural Networks. https://arxiv.org/abs/1708.04811.
- 7. Priyanka Mathur, Arkajyoti Misra, Emrah Budur(2015). Language Identification from Text Document. https://cs229.stanford.edu/proj2015/324_report.pdf
- 8. Bhat, Irshad Ahmad, et al. "Universal Dependency parsing for Hindi-English code-switching." *arXiv* preprint arXiv:1804.05868 (2018).
- 9. D. Patel and R. Parikh, "Language Identification and Translation of English and Gujarati code-mixed data," 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 2020, pp. 1-4, doi: 10.1109/ic-ETITE47903.2020.410.
- 10. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text Classification Algorithms: A Survey. *Information* **2019**, *10*, 150. https://doi.org/10.3390/info10040150
- 11. Jeremy Howard and Sebastian Ruder. 2018. <u>Universal Language Model Fine-tuning for Text Classification</u>. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 328–339, Melbourne, Australia. Association for Computational Linguistics.

THANK YOU!