AI/ML - CS 337 Lab - Lab Assignment 1 - Part 2

B.Nikhil 170050099

September 1, 2019

Task 4: Lasso regression

a) Parameters used

Parameters used for this task are,

$$\eta = \frac{1}{38000}$$

$$\lambda = 10000$$

$$maxnumber of iterations = 31000$$

$$lr = 0.00002872$$

Task 5: Observations

a) Important features for Ridge regression

The five most important features correspond to the indices of W with maximum value of weight. For the given test case the important features for ridge-regression correspond to columns with indices [87 211 158 66 221] See Figure 1 for features vs weight(W[i]). The top 5 highest peaks correspond to indices above

b) Important features for Lasso regression

The five most important features correspond to the indices of W with maximum value of weight. For the given test case the important features for lasso-regression correspond to columns with indices [73 275 256 97 40] See Figure 2 for features vs weight(W[i]). The top 5 highest peaks correspond to indices above

Task 6: Learning rate vs execution time and error

a) Learning rate vs execution time

Increasing learning rate will make error convergence to minima quickly but there are chances that the gradient might overshoot minima. In case of ridge-regression increasing learning rate will lead to decrease in number of iterations but for the case of lasso it almost runs max-iterations times so the execution time not always depends on rate of error convergence

See Figure 3 for Learning rate vs execution time for ridge grad descent. See Figure 4 for Learning rate vs Error for coord grad descent

Figure 1: Ridge Important features.

Figure 2: Lasso Important features.

Figure 3: Ridge Execution time vs Learning rate.

Figure 5: Lasso Execution time vs Learning rate.

Figure 4: Ridge Observed Error vs Learning rate.

Figure 6: Lasso Observed Error vs Learning rate.

b) Learning rate vs observed error

If the error converges then the observered error is independent of Learning rate. But if the error doesn't converge and reaches max-iterations then increasing learning rate decreases observed error.

See figure 5 for Learning rate vs observed-error for ridge regression See figure 6 for Learning rate vs observed-error for lasso