Cinematica

Corpo in caduta da fermo: $v = \sqrt{2gh}$ $t = \sqrt{\frac{2g}{h}}$

Proiettile

$$y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

$$h_{max} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

$$x_{max} = \frac{v_0^2 \sin 2\alpha}{g}$$

$$\theta = \tan^{-1} \left(-\frac{2hg}{v_0} \right)$$

$$v_0 = \sqrt{\frac{dg}{\sin 2\alpha}}$$

Moto circolare

Velocità angolare: $\omega = \frac{d\alpha}{dt}$ Accel. angolare: $\alpha = \frac{d\omega}{dt} = \frac{d^2\alpha}{dt^2}$

Moto circolare uniforme

$$\begin{split} \omega &= \frac{2\pi}{T} \\ v_{tang} &= \omega r \\ a_{centr} &= \frac{v^2}{r} = \omega^2 r \\ a_{tang} &= \frac{dv}{dt} = \alpha R \end{split}$$

Moto circolare unif. accel.

$$\begin{aligned} \omega &= \alpha t \\ v &= \omega r = \alpha r t \end{aligned}$$

Moto curvilineo

$$\overrightarrow{a} = a_T \hat{\theta} + a_R \hat{r} = \frac{d|\overrightarrow{v}|}{dt} \hat{\theta} - \frac{v^2}{r} \hat{r}$$

Sistemi a più corpi

$$\overrightarrow{r'}_{CM} = \sum_i \frac{m_i \overrightarrow{r'}_i}{M} = \frac{1}{M} \int \overrightarrow{r'} dm$$

$$\overrightarrow{v}_{CM} = \frac{d\overrightarrow{r'}_{CM}}{dt} = \frac{1}{M} \sum_i m_i \overrightarrow{v}_i = \frac{1}{M} \int \overrightarrow{v} dm$$

$$\overrightarrow{d}_{CM} = \frac{d\overrightarrow{v}_{CM}}{dt} = \frac{1}{M} \sum_i m_i \overrightarrow{d}_i = \frac{1}{M} \int \overrightarrow{a} dm$$
 Momento di inerzia:
$$I_{asse} = \sum_i m_i r_i^2 = \int r^2 dm$$
 Teorema assi paralleli:
$$I_{asse} = I_{CM} + M d^2$$

Forze, lavoro, energia

Gravità: $\overrightarrow{F} = -\frac{GMm}{r^2} \hat{r}$ Elastica: $\overrightarrow{F} = -k \overrightarrow{x}$ Attrito: Statico: $F_{max} = \mu_s N$ Dinamico: $F = \mu_d N$

Lavoro:

$$\begin{split} L &= \int_{x_i}^{x_f} \overrightarrow{F} \cdot d \overrightarrow{l} = \int_{\theta_i}^{\theta_f} \tau d\omega \\ \text{Forza costante: } L &= \overrightarrow{F} \cdot \overrightarrow{l} = Potenza \cdot \Delta t \\ \text{Forza Elastica: } L &= -\frac{1}{2}kx^2 \\ \text{Forza peso: } L &= -mgh \\ \text{Forza Gravità: } L &= -\frac{GMm}{\Delta r} \end{split}$$

Energia

Cinetica:
$$K = \frac{1}{2}mv^2$$
 asse Rotazionale: $K = \begin{cases} \frac{1}{2}I\omega^2 & \text{asse} \\ \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 & \text{CM} \end{cases}$ Forze vive: $K_f - K_i = L_{TOT}$ Potenziale: $U = -L = -\int \overrightarrow{F} \cdot d\overrightarrow{l}$ Meccanica: $E = K + U = \frac{1}{2}mv^2 + U$ Conservazione: $E_f - E_i = L_{NC}$ Potenziale Elastica: $U = \frac{1}{2}kx^2$

Impulso e Momento angolare

Quantità di moto: $\overrightarrow{p} = m \overrightarrow{v}$ Impulso: $\overrightarrow{I} = \int \overrightarrow{F} dt = \Delta \overrightarrow{p}$ Momento angolare: $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$ Intorno ad asse fisso: $|\overrightarrow{L}| = I\omega$

Equazioni cardinali

$$\begin{split} \overrightarrow{p}_T &= \sum \overrightarrow{p}_i = m_{tot} \overrightarrow{v}_{CM} \\ \overrightarrow{L}_T &= \sum \overrightarrow{L}_i = I_{asse} \overrightarrow{\omega} \\ \text{I card: } \sum \overrightarrow{F}_{est} = \frac{d\overrightarrow{p}_T}{dt} = m_{tot} \overrightarrow{d}_{CM} \\ \text{II card: } \sum \overrightarrow{\tau}_{est} = \frac{d\overrightarrow{L}_T}{dt} \end{split}$$

Urti

Elastico: conserva energia e q
ta moto Anelastico: conserva q
ta moto Compl. anelastico: corpi si uniscono Compl. anelastico:
 $v_f = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \text{ solo q}$ Elastico: $\left\{ \begin{array}{l} m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \\ m_1 v_{1i}^2 + m_2 v_{2i}^2 = m_1 v_{1f}^2 + m_2 v_{2f}^2 \end{array} \right.$

Moto armonico

$$\begin{split} x(t) &= A\cos(\omega t + \phi) \\ v(t) &= -\omega A\sin(\omega t + \phi) \\ a(t) &= -\omega^2 A\cos(\omega t + \phi) = -\omega^2 x(t) \\ A &= \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2} \\ \phi &= \tan^{-1}\left(-\frac{v_0}{\omega x_0}\right) \\ f &= \frac{\omega}{2\pi} \quad T = \frac{1}{f} = \frac{2\pi}{\omega} \\ \text{Molla: } \omega &= \sqrt{\frac{k}{m}} \leftarrow \text{pulsazione} \\ \text{Molle in parallelo: } k_{eq} &= \sum_i \frac{1}{k_i} \\ \text{Molle in serie: } \frac{1}{k_{eq}} &= \sum_i \frac{1}{k_i} \\ \text{Pendolo: } \omega &= \sqrt{\frac{g}{l}} \end{split}$$

Momenti di inerzia notevoli

Anello intorno ad asse: $I=MR^2$ Cilindro pieno intorno ad asse: $I=\frac{1}{2}MR^2$ Cilindro cavo intorno ad asse: $I=MR^2$ Sbarra sottile, asse CM: $I=\frac{1}{12}ML^2$ Sbarra sottile, asse perpendicolare estremo: $I=\frac{1}{3}ML^2$

Sfera piena, asse CM: $I = \frac{2}{5}MR^2$ Sfera cava, asse CM: $I = \frac{2}{3}MR^2$ Lastra rettangolare, asse CM: $I = \frac{1}{12}M(a^2 + b^2)$

Gravitazione

 $3^{\circ} \ \text{legge di Keplero:} \ T^2 = \frac{4\pi^2}{GM} R^3$ Vel. fuga: $v = \sqrt{\frac{2GM}{R}}$ Mom. angol.: L = mvr F. Gravitaz.: $F = \frac{GMm}{r^2}$ Pot. gravitaz.: $U = -\frac{GMm}{r}$ En. Mecc.: $= E_m = E_k + U = \frac{1}{2}mv^2 - \frac{GMm}{r}$ En. Meccanica si conserva. Un punto materiale soggetto a forze centrali conserva anche momento angolare. Velocità per arrivare a orbita geostaz: $v = \sqrt{\frac{GMr}{R_T}}$ Velocità fuga: $v = \sqrt{\frac{2GM_T}{R_T}}$ Orbita geostaz: $R_G = \sqrt[3]{\frac{GMT^2}{4\pi^2}} \ \text{terra:} \ \sqrt[3]{\frac{gR_T^2T^2}{4\pi^2}} \ \text{ca 36k km}$ T = 24h = 86400s

Fluidi

Spinta archimende: $B_A = \rho_L V g$ Continuità: Av = costBernoulli: $P + \frac{1}{2}\rho v^2 + \rho g h = cost$ $p(h) = p_0 + \rho g h \mathcal{V} = \pi r^2 v$

Esercizi

Velocità minima giro completo FUNE: $v_{min} = \sqrt{5gL}$ Velocità minima giro completo ASTA: $v_{min} = \sqrt{4gL}$ Forza interazione tra due corpi: $F = \frac{m_2}{m_1 + m_2} F$ Equilibrio corpo rigido: $\begin{cases} R_x = 0 \\ R_y = 0 \\ \mathcal{M}_{Az} = 0 \end{cases}$

Termodinamica Primo principio

Calore e cap. termica: $Q = mc\Delta T$ Calore latente di trasf.: $L_t = \frac{Q}{m}$ Lavoro <u>sul</u> sistema: dW = -PdV En. interna: dU = dQ - dW Entropia: $\Delta S_{AB} = \int_A^B \frac{dQ_{REV}}{T}$

Calore specifico

Per unità di massa $c = \frac{C}{m}$ gas perfetto: $c_p - c_v = R$ Gas c_V c_p γ Mo $\frac{3}{2}R$ $\frac{5}{2}R$ $\frac{5}{3}$ BI $\frac{5}{2}R$ $\frac{7}{2}R$ $\frac{7}{5}$

Gas perfetti

Eq. stato: pV = nRT = NkT Energia interna: $\Delta U = nc_V \Delta T$ Entropia: $\Delta S = nc_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}$ Isocora: $Q = \Delta U = nc_V \Delta T$ W = 0 $\Delta S = nc_V \ln \frac{T_f}{T_i} = nc_V \ln \frac{p_f}{p_i}$ Isobara: $Q = nc_p \Delta T$ $W = -p\Delta V$ $\Delta S = nc_p \ln \frac{T_f}{T_i} = nc_p \ln \frac{V_f}{V_i}$ Isoterma: $W = -Q = -nRT \ln \frac{V_f}{V_i}$ $\Delta S = nR \ln \frac{V_f}{V_i} = nR \ln \frac{p_i}{p_f}$ Adiabatica: Q = 0 $p^{1-\gamma}T^{\gamma} = cost$ $W = -\Delta U = \frac{1}{\gamma-1}(p_f V_f - p_i V_i)$ $\Delta S = 0$ $pV^{\gamma} = cost$ $TV^{\gamma-1} = cost$

Macchine termiche

Efficienza: $\eta = \frac{W}{Q_H} = 1 - \frac{Q_C^-}{Q_H^+}$ Eff. Carnot: $\eta = 1 - \frac{T_C}{T_H}$ Teorema di Carnot: $\eta \leq \eta_{REV}$ C.O.P. frigorifero: $\epsilon = \frac{Q_C}{W}$ C.O.P. pompa di calore: $\epsilon = \frac{Q_H}{W}$

Espansione termica solidi

 $\beta = 3\alpha$ Lineare: $\Delta L = \alpha L_0 \Delta T$ Volumetrica: $\Delta V = \beta V_0 \Delta T$

Entropia

$$\begin{split} \Delta S_u &= \Delta S_s + \Delta S_g \\ \Delta S &= \frac{m \lambda}{T_0} + m c_G \ln \frac{T_f}{T_i} \leftarrow \text{solido} + \text{liq} \\ \Delta S &= \frac{Q}{T} \leftarrow \text{gas a T cost} \\ \Delta S &= \sum \frac{Q_i}{T_i} \leftarrow \text{gas} \\ \Delta S_U &> 0 \text{ irreversibile} \\ \Delta S_U &= 0 \text{ reversibile} \end{split}$$

Teoria

1. ENUNCIARE I PRINCIPI DELLA TERMODINAMICA

Un corpo, sul quale non agiscano forze o la cui risultante sia nulla, permane:

In quiete sé già in quiete

In uno stato di moto rettilineo uniforme se in movimento

L'accelerazione di un corpo è direttamente proporzionale alla risultante delle forze a cui è sottoposto e inversamente proporzionale alla massa

Se un corpo A applica una forza su un corpo B allora anche B applica una forza su A pari direzione e modulo ma verso opposto

2. DEFINIZIONE DI LAVORO

Si consideri un punto materiale soggetto a una forza F che compie uno spostamento infinitesimo ds; si può definire il lavoro infinites-

Il lavoro compiuto dalla forza F, lungo una curva γ , tra i punti AB si può esprimere come: $L_{AB}^{\gamma} = \int_{\gamma A}^{B} \vec{F} \cdot d\vec{s}$

3. Teorema Energia cinetica

Il lavoro compiuto dalla risultante delle forze che agisce su un punto è pari alla sua variazione di energia cinetica.

$$d\hat{L}=\vec{F}\cdot d\vec{s}=(F_T\hat{\mu}_T+F_N\hat{\mu}_N)\cdot (ds\hat{\mu}_T)=F_Tds=mds=m\frac{dv}{dt}ds=mvdv$$

$$L_{AB}^{at} = \int_{A\gamma}^{B} mv dv = \frac{1}{2} mv_B^2 - \frac{1}{2} mv_A^2 = \Delta E_c$$

4. Forza conservativa

5. DEFINIZIONE DI ENERGIA POTENZIALE

Si definisce Energia Potenziale quella funzione di Stato tale che: $L_{AB}^{\gamma} = -\Delta E_P$

È possibile introdurre l'energia potenziale solo per le forze conser-

6. DEFINIZIONE DI FORZA CENTRALE A SIMMETRIA SFER-**ICA**

Si definisce forza centrale a simmetria sferica una forza che, definita un'origine O e data la posizione R del punto materiale, ha modulo definito in funzione della distanza RO e direzione pari alla retta passante per O e R.

7. Forza gravitazionale

La forza gravitazionale è una forza centrale a simmetria sfeerica

$$\vec{F_G} = -\frac{GMm}{r^2}\hat{\mu_r}$$

$$F_{G} = -\frac{G_{AB}}{r^{2}}\mu_{r}$$

$$L_{AB}^{\gamma} = \int_{\gamma A}^{B} \vec{F}_{G} \cdot d\vec{r} = -\gamma m_{1} m_{2} \int_{\gamma A}^{B} \frac{1}{r^{2}} dr = \gamma m_{1} m_{2} \left(\frac{1}{r_{B}} - \frac{1}{r_{A}}\right)$$
Per definizione di energia potenziale:
$$L^{\gamma} = -\gamma m_{1} m_{2} \left(-\frac{1}{r_{A}} + \frac{1}{r_{A}}\right)$$

$$L_{AB}^{\gamma} = -\gamma m_1 m_2 \left(-\frac{1}{r_B} + \frac{1}{r_A} \right)$$

$$\begin{split} L_{AB}^{\gamma} &= -\gamma m_1 m_2 \left(-\frac{1}{r_B} + \frac{1}{r_A} \right) \\ E_P &= -\frac{GMm}{r} + cost \text{ (per convenzione c} = 0 \text{ in quanto } E_P^G(\infty) = 0) \end{split}$$

8. Energia potenziale forza Coloumb

La forza di Coloumb è una forza centrale a simmetria sferica definita come:

$$\vec{F_C} = \frac{1}{4} \frac{q_1 q_2}{2} \hat{u_r}$$

definita come:
$$\vec{F_C} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{\mu_r}$$

$$L_{AB}^{\gamma} = \int_{\gamma A}^{B} \vec{F_C} \cdot d\vec{r} = \frac{q_1q_2}{h\pi\varepsilon_0} \int_{\gamma A}^{B} \frac{1}{r^2} dr = \frac{q_1q_2}{4\pi\varepsilon_0} \left(-\frac{1}{r_B} + \frac{1}{r_A} \right)$$
 Per definizione di energia potenziale:
$$E_P = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r} + cost$$

$$E_P = \frac{1}{4\pi a} \frac{q_1 q_2}{r} + cost$$

9. Teorema conservazione energia meccanica

$$L = \Delta E_c = E_c^F - E_c^I$$

$$L = -\Delta U = E_P^I - E_P^F$$

Per def energia potenziale $E_c^F - E_c^I = E_P^I - E_P^F$ $E_c^F + E_P^F = E_c^I + E_P^I$ $E_M^F = E_M^I$

$$E_{c}^{F} - E_{c}^{I} = E_{D}^{I} - E_{T}^{I}$$

$$E_{-}^{F} + E_{-}^{F} = E_{-}^{I} + E_{-}^{I}$$

$$E_{F}^{F} = E_{I}^{F}$$

10. Conservazione momento angolare per un punto materiale soggetto a forza centrale

Calcolo il momento della forza:

$$\vec{M}_o = \vec{F}_c \times \vec{r} = 0$$

Il momento è anche definito come:

$$\vec{M}_o = \frac{d\vec{I}}{dt}$$

 $\vec{M_o} = \frac{d\vec{L}}{dt}$ Ciò implica che il momento angolare è costante.

11. DIMOSTRARE CHE IL MOTO DI UNA PARTICELLA IN UN CAMPO DI FORZE CENTRALI È PIANO

Trattandosi di forze centrali, il momento angolare si deve conservare.

L=r x mv = k; per poter mantenere costante direzione e verso del prodotto vettoriale, il moto della particella non può cambiare piano (moto piano) né il senso di rotazione

12. In un campo di forze centrali la velocità areolare si conserva

$$dA = \frac{1}{2}r(rd\theta) = \frac{1}{2}r^2d\theta$$

(area infinitesima)

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \frac{1}{2}r^2\omega$$
 (velocità areolare)

$$\vec{L} = \vec{r} \times \vec{p} = mr^2 \omega$$

(alea minimesina) $\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \frac{1}{2}r^2\omega \text{ (velocità areolare)}$ $\vec{L} = \vec{r} \times \vec{p} = mr^2\omega$ $\frac{dA}{dt} = \frac{L}{2m} \text{ Visto che } L \text{ è costante, la velocità areolare è costante.}$

13. ENUNCIARE LE LEGGI DI KEPLERO

- a) La terra compie un orbita ellittica di cui il sole è uno dei due fuochi
- b) Il raggio vettore che unisce, virtualmente, sole e terra, spazia aree uguali in tempi uguali (velocità areolare costante)
- c) I quadrati dei tempi che i pianeti impiegano a percorrere le loro orbite sono proporzionali al cubo del semiasse maggiore \rightarrow $T^2 = \frac{4\pi^2}{GM}a^3$

14. SIGNIFICATO FISICO DEL SEGNO DELL'ENERGIA MEC-CANICA DI UN CORPO SOGGETTO SOLAMENTE ALLA FORZA GRAVITAZIONALE

Essendo soggetto a forze conservative si deve conservare l'energia meccanica:

L'energia cinetica non può che essere sempre positiva; l'unico termine che può divenire negativo è l'energia potenziale gravi-

Se l'energia meccanica del corpo è positiva non è necessario che il corpo torni indietro, compiendo un'orbita chiusa, per mantenere il segno, cosa che accade in caso di energia meccanica negativa

15. 1° e 2° eq. cardinale dinamica sistemi

• $\vec{F}^E = \frac{d\vec{p}}{dt}$ Dimostrazione:

In un sistema di N particelle, ogni particella risente di una forza: $\vec{F}_i = \vec{F}_i^E + \vec{F}_i^I$

Considerando il sistema nel suo complesso, deve valere il 2°

$$\sum_{i=1}^{N} \vec{F}_{i} = \sum_{i=1}^{N} m_{i} \vec{a}_{i}$$

$$\sum_{i=1}^{N} \vec{F}_{i}^{E} + \vec{F}_{i}^{I} = \sum_{i=1}^{N} m_{i} \vec{a}$$

Consideration if sixella field with the principle della dinamica: $\sum_{i=1}^{N} \vec{F}_i = \sum_{i=1}^{N} m_i \vec{a}_i$ $\sum_{i=1}^{N} \vec{F}_i^E + \vec{F}_i^I = \sum_{i=1}^{N} m_i \vec{a}_i$ Per il 3° principio della dinamica posso affermare: $\sum_{i=1}^{N} \vec{F}_i^I = 0$ Quindi: $\sum_{i=1}^{N} \vec{F}_i^E = \sum_{i=1}^{N} m_i \frac{d\vec{a}_i}{dt} = \frac{d\vec{p}}{dt}$ $\vec{F}^E = \sum_{i=1}^{N} m_i \frac{d\vec{a}_i}{dt} = \frac{d\vec{p}}{dt}$

$$\sum_{i=1}^{N} \vec{F}_{i}^{I} = 0$$

Quindi:
$$\sum_{i=1}^{N} \vec{F}_i^E = \sum_{i=1}^{N} m_i \vec{a}_i$$

$$\vec{F}^E = \sum_{i=1}^{N} m_i \frac{d\vec{v}_i}{dt} = \frac{d\vec{p}}{dt}$$

$$d\vec{L}_0 = \vec{v} \times m \cdot \vec{v} + \vec{M}^E$$

$$\vec{L}_0^{it} = \sum_{i=1}^N m_i \vec{r}_i \times \vec{v}_i$$

$$\begin{split} \bullet & \frac{d\vec{L}_0}{dt} = -\vec{v}_i \times m_i \vec{v}_{CM} + \vec{M}^E \\ \vec{L}_0 &= \sum_{i=1}^N m_i \vec{r}_i \times \vec{v}_i \\ \frac{d\vec{L}_0}{dt} &= \sum_{i=1}^N \left(\frac{d\vec{r}_i'}{dt} \times m_i \vec{v}_i + \vec{r}_i \times \frac{d\vec{v}_1}{dt}\right) \\ \text{Tuttavia è noto che: } \vec{r}_i' &= \vec{r}_i - \vec{r}_0 \\ \text{Quindi: } & \frac{d\vec{L}_0}{dt} = -\vec{v}_0 \times M \vec{v}_{CM} + \vec{M}^E \\ \end{split}$$

Quindi:
$$\frac{d\vec{L}_0}{dt} = -\vec{v}_0 \times M\vec{v}_{CM} + \vec{M}^{1}$$

16. Teoremi centro di massa

Teoremi centro di massa Definizione del luogo geometrico noto come centro di massa: $\vec{r}_{CM} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r}_i$ 1° Teorema del centro di massa: $\vec{v}_{CM} = \frac{d\vec{r}_{CM}}{dt} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{v}_i = \frac{\vec{p}}{M}$ 2° Teorema del centro di massa: $\vec{a}_{CM} = \frac{\vec{F}^E}{M} \quad \text{dove } \vec{F}^E \ \text{è la risultante delle forze esterne}$

$$\vec{r}_{CM} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r}_i$$

$$\vec{v}_{CM} = \frac{ar_{CM}}{dt} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{v}_i = \frac{T}{M}$$

$$\vec{a}_{CM} = \frac{\vec{F}^E}{\vec{F}^E}$$
 dove \vec{F}^E è la risultante delle forze esterne

17. T. di König $E_c = E_c^{CM} + E_c^I$ con E_c^{CM} energia cinetica del centro di massa e E_c^I energia cinetica del sistema rispetto al centro di massa \vec{r}_c^I con \vec{r}_c^I con \vec{r}_c^I con postibilità $\vec{r}_c^I = \vec{r}_{CM} + \vec{r}_c^I$. Considero la velocità i-esima di una particella: $\vec{v}_i = \vec{v}_{CM} + \vec{v}_i'$

essa è esprimibile in funzione del sistema di riferimento del centro

di massa: $E_c = \sum_{i=1}^{N} \frac{1}{2} v_i^2 = \sum_{i=1}^{N} \frac{1}{2} (v_{CM} + v_i')^2 m = \sum_{i=1}^{N} \frac{1}{2} v_{CM}^2 m + \sum_{i=1}^{N} \frac{1}{2} v_i'^2 m + \sum_{i=1}^{N} v_i' v_{CM} m$

18. T. dell'Impulso

Definito impulso di una forza $\vec{I} = \int_{t_1}^{t_2} \vec{F} dt$

Il teorema dell'impulso afferma che:

 $\vec{I} = \Delta \vec{p}$

Dimostrazione:
$$\vec{I} = \int_{t_1}^{t_2} \vec{F} dt = \int_{t_1}^{t_2} \frac{d\vec{p}}{dt} dt = \int_{t_1}^{t_2} d\vec{p} = \Delta \vec{p}$$

19. Urti

- a) urto elastico: urto nel quale si mantiene sia l'energia cinetica sia la quantità di moto
- B) urto anaelastico: urto nel quale si conserva solo la quantità di
- c) urto completamente anaelastico: caso particolare di urto anaelastico dove i corpi rimangono "attaccati" dopo l'urto e si ha la massima perdita di energia cinetica

20. DIMOSTRAZIONE IN UN URTO COMPLETAMENTE ANAE-LASTICO SI HA LA MASSIMA PERDITA DI ENERGIA CI-

Per il teorema di Koning sull'energia cinetica:

 $E_c = E_c' + \frac{1}{2}Mv_{CM}^2$

Negli urti anaelastici si conserva la quantità di moto, per il 1° teorema del centro di massa:

 $\vec{p} = +M\vec{v}_{CM} = cost \rightarrow v_{CM} = cost$

Ne consegue che l'unico modo che l'energia cinetica ha le variare è che $E_c' \to 0$; si ha dunque la massima perdita di energia cinetica

21. ENUNCIARE IL PRIMO PRINCIPIO DELLA TERMODINAM-ICA

La variazione di energia interna di un sistema è pari alla differenza tra calore scambiato e lavoro compiuto $\Delta U = Q - L$

22. DEFINISCI CALORE MOLARE

Si definisce calore molare il rapporto tra la capacità termica e il numero di moli di un sistema

 $C_m = \frac{1}{n} \frac{dQ}{dT}$

- 23. DEFINISCI IL RENDIMENTO DI UNA MACCHINA TERMICA Si definisce rendimento di una macchina termica il rapporto tra il lavoro compiuto dalla macchina ed il calore da essa assorbito
- 24. ENUNCIATI, E DIMOSTRAZIONE DELLA LORO EQUIV-ALENZA, DEL SECONDO PRINCIPIO DELLA TERMODI
 - a) ENUNCIATO DI CLAUSIUS
 - è impossibile realizzare una qualsiasi trasformazione che abbia come unico risultato il passaggio di calore da un corpo freddo ad un corpo caldo
 - b) ENUNCIATO DI KELVIN PLANK
 - è impossibile realizzare una qualsiasi trasformazione che abbia come risultato quello di convertire completamente in lavoro il calore prelevato da un solo termostato

25. ENUNCIARE E DIMOSTRARE IL TEOREMA DI CARNOT

- a) tra le macchine termiche cicliche che operano tra due temperature ben definite hanno rendimento massimo quelle reversibili ossia quelle di carnot
- b) tutte le macchine di carnot che operano tra due termostati T1 e T2 hanno lo stesso rendimento
- c) il rendimento di una macchina di carnot dipende solo dalle temperature dei termostati tra i quali opera

26. ENUNCIATO E DIMOSTRAZIONE DEL TEOREMA DI CLAU-SIUS

Considerando una macchina termica che opera agendo su un numero n di termostati e compie un lavoro Lm sull'ambiente

Considero ora che su questo n termostati operino n macchine di Carnot operanti tra un termostato T0 e un n-esimo termostato della macchina M.

Considero la macchina termica equivalente:

Essendo una macchina ciclica monoterma è necessario che

$$Q_T = \sum Q_i \leq 0$$

$$\frac{Q_i}{T_0} + \frac{Q_i}{T_i} = 0 \Rightarrow Q_i = t_0 \frac{Q_i}{Q_0}$$

$$Q_T = \sum Q_i = T_0 \sum \frac{Q_i}{T_i} \le 0$$

 $Q_T = \sum_i Q_i = 0$ Per ogni macchina di Carnot è valida la relazione $\frac{Q_i}{T_0} + \frac{Q_i}{T_i} = 0 \Rightarrow Q_i = t_0 \frac{Q_i}{Q_0}$ $Q_T = \sum_i Q_i = T_0 \sum_i \frac{Q_i}{T_i} \leq 0$ Siccome la macchina è reversibile devono valere nello stesso tempo le seguenti condizioni:

$$\left\{ \begin{array}{l} Q_T = T_0 \sum \frac{Q_i}{T_i} \leq 0 \\ Q_T = T_0 \sum \frac{Q_i}{T_i} \geq 0 \end{array} \right. \Rightarrow Q_T = 0$$

Nella situazione più generale in cui la trasformazione ciclica sia accompagnata da scambi di calore con una successione, di corpi a diversa temperatura T, si può assumere che il sistema interagisca con una distribuzione continua di serbatoi con ciascuno dei quali può scambiare o meno una quantità infinitesima di calore dQ; mediante integrazione

 $\oint \frac{dQ}{T} \le 0 \to \text{integrale di Clausius}$

27. ENUNCIATO E DIMOSTRAZIONE DEL PRINCIPIO DELL'AUMENTO DELL'ENTROPIA

Definita la funzione di Stato entropia come:

 $DeltaS = \int \frac{dQ}{T}$

Considerando un sistema termicamente isolato è sempre vero che: dQ = 0

Dunque non può essere vero altro che:

 $\Delta S \geq 0$ con $\Delta S = 0$ per trasformazioni reversibili

Il sistema isolato per eccellenza è l'universo termodinamico; nella realtà trasformazioni perfettamente reversibili non esistono. Dunque l'entropia dell'universo tende sempre ad aumentare.

28. UTILIZZO DEL PRINCIPIO DI AUMENTO DELL'ENTROPIA NEL SECONDO PRINCIPIO DELLA TERMODINAMICA

Considerando una macchina ciclica che scambia calore con un solo termostato; la variazione di entropia dell'universo di tale ciclo è pari a quella del termostato:

 $\Delta S_U = -\frac{Q}{T}$ Tuttavia l'entropia deve essere $\Delta S \geq 0$ ciò vuol dire quindi che:

 $Q \leq 0$

Confermando nuovamente la validità del l'enunciato di Kelvin

29. UTILIZZO DEL PRINCIPIO DI AUMENTO DELL'ENTROPIA NELLA DIMOSTRAZIONE DEL TEOREMA DI CARNOT

Considero una macchina termica qualsiasi che assorba calore ${\cal Q}>0$ e che compia lavoro sull'ambiente L>0 cedendo il calore L-Q a un serbatoio freddo; la variazione di entropia dell'universo coincide con quella delle sorgenti:

con quella delle sorgenti:
$$\Delta S_{U} = \Delta S_{1} + \Delta S_{2} = \frac{-Q}{T_{1}} + \frac{-Q}{T_{2}} = Q \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right) - \frac{L}{T_{2}}$$

$$L = Q(1 - \frac{T_{2}}{T_{1}}) - T_{2} \Delta S_{U}$$

$$\eta = \frac{L}{Q} = \left(1 - \frac{T_{2}}{T_{1}} \right) - \frac{T_{2}}{Q} \Delta S_{U}$$

È quindi stato identificato il rendimento di una macchina termica e confermato che la macchina di Carnot è la più efficace possibile.

30. Equazione differenziale moto armonico

$$\frac{d^2x}{dt^2}x(t) + \omega^2x(t) = 0$$