Relaciones de orden y elementos extremos

Clase 15

IIC 1253

Prof. Pedro Bahamondes

Outline

Relaciones de equivalencia (cierre)

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Definición

Sea A un conjunto cualquiera, y $\mathcal S$ una colección de subconjuntos de A ($\mathcal S\subseteq\mathcal P(A)$). Diremos que $\mathcal S$ es una partición de A si cumple que:

- 1. $\forall X \in \mathcal{S}, X \neq \emptyset$
- 2. $\bigcup S = A$
- 3. $\forall X, Y \in \mathcal{S}$, si $X \neq Y$ entonces $X \cap Y = \emptyset$.

Teorema

Si \sim es una relación de equivalencia sobre un conjunto A, entonces A/\sim es una partición de A.

<u>Demostración</u>: Debemos demostrar que $A/\sim = \{[x] \mid x \in A\}$ es una partición de A. Para esto demostraremos las tres propiedades que debe cumplir según la definición de partición:

1. $\forall X \in A/\sim$, $X \neq \varnothing$: por teorema anterior, sabemos que $\forall x \in A$, $x \in [x]$. Como todos los elementos de A/\sim son clases de equivalencia, es claro que todos son no vacíos.

Teorema

Si \sim es una relación de equivalencia sobre un conjunto A, entonces A/\sim es una partición de A.

- 2. $\bigcup A/\sim = A$: demostramos subconjunto hacia ambos lados.
 - ∪ A/~ ⊆ A: dado un elemento x ∈ ∪ A/~, por definición de unión generalizada y de conjunto cuociente, tenemos que x ∈ [y] para algún y ∈ A. Las clases de equivalencia de una relación sólo tienen elementos del conjunto donde están definidas, por lo que x ∈ A.
 - A ⊆ ∪ A/~: dado un elemento x ∈ A, por teorema anterior sabemos que x ∈ [x]. Dado que [x] es una clase de equivalencia, tenemos que [x] ∈ A/~, y por lo tanto x ∈ ∪ A/~.
- 3. $\forall X, Y \in A/\sim$, si $X \neq Y$ entonces $X \cap Y = \emptyset$: Todos los conjuntos en A/\sim son clases de equivalencia, y por lo tanto por teorema anterior esta propiedad se cumple.

Algo muy interesante es que lo inverso también se cumple:

Teorema

Si ${\mathcal S}$ es una partición cualquiera de un conjunto A, entonces la relación

$$x \sim y \Leftrightarrow \exists X \in \mathcal{S} \text{ tal que } \{x, y\} \subseteq X$$

es una relación de equivalencia sobre A.

Un elemento *x* estará relacionado con *y* si ambos pertenecen al mismo conjunto de la partición.

Ejercicio (Propuesto ★)

Demuestre el teorema.

<u>Reflexividad</u>: Dado $x \in A$, sabemos que $x \in X$ para algún $X \in S$, pues S es una partición de A. Luego, $\{x\} \subseteq X$, y por axioma de extensión $\{x,x\} \subseteq X$. Aplicando la definición de la relación \sim , concluimos que $x \sim x$ y por lo tanto la relación es refleja.

<u>Simetría</u>: Dados $x, y \in A$ tales que $x \sim y$, por definición de \sim sabemos que existe $X \in \mathcal{S}$ tal que $\{x, y\} \subseteq X$. Por axioma de extensión, se cumple que $\{y, x\} \subseteq X$, y por definición de \sim concluimos que $y \sim x$. Por lo tanto, la relación es simétrica.

<u>Transitividad</u>: Dados $x,y,z\in A$ tales que $x\sim y$ e $y\sim z$, por definición de \sim sabemos que existen $X_1,X_2\in \mathcal{S}$ tales que $\{x,y\}\subseteq X_1$ y $\{y,z\}\subseteq X_2$. Notemos que $X_1\cap X_2\neq \emptyset$, y por lo tanto como \mathcal{S} es una partición de A, necesariamente $X_1=X_2$. Luego, se cumple que $\{x,y\}\subseteq X_2$, y entonces $\{x,z\}\subseteq X_2$. Finalmente, aplicando la definición de \sim , tenemos que $x\sim z$, con lo que concluimos que la relación es transitiva.

Una de las aplicaciones más importantes de las relaciones de equivalencia es la definición de nuevos conjuntos. Lo que haremos será:

- Tomar un conjunto ya conocido (¿por ejemplo?).
- Calcular su conjunto cuociente respecto a alguna relación de equivalencia.
- Nombrar al conjunto y sus elementos.
- Definir operaciones sobre el nuevo conjunto, basándonos en los operadores del conjunto original.

Definición

El conjunto de los números naturales módulo 4 será el conjunto cuociente de $\mathbb N$ respecto a \equiv_4 :

$$\mathbb{N}_4 = \mathbb{N}/\equiv_4 = \{[0], [1], [2], [3]\}.$$

¿Cómo definimos las operaciones en este nuevo "mundo"?

Definimos la suma módulo 4 según

$$[i] +_4 [j] = [i+j]$$

Ejemplos

$$[3] +_{4} [2] = [3+2] = [5] = [1]$$
 $[1] +_{4} [3] = [1+3] = [4] = [0]$

Análogamente, definimos la multiplicación módulo 4 según

$$\begin{bmatrix}i\end{bmatrix}\cdot_4\begin{bmatrix}j\end{bmatrix}=\begin{bmatrix}i\cdot j\end{bmatrix}$$

Ejemplo

$$[2] \cdot_4 [3] = [2 \cdot 3] = [6] = [2]$$

Ahora simplificaremos notación renombrando elementos de \mathbb{N}_4

Podríamos renombrar los elementos de N₄:

$$[0] \leftrightarrow 0$$
 $[1] \leftrightarrow 1$ $[2] \leftrightarrow 2$ $[3] \leftrightarrow 3$

Y ocupar simplemente $+ y \cdot$, obteniendo un nuevo conjunto con operadores bien definidos:

$$\mathbb{N}_4 = \{0, 1, 2, 3\}$$
 con operadores + y ·

tal que, por ejemplo, 1 + 1 = 2, 3 + 3 = 2, $3 \cdot 3 = 1$, etc.

Del contexto se entiende que estamos sumando/multiplicando elementos de \mathbb{N}_4

Veamos una relación de equivalencia más interesante.

Definición

La relación \downarrow sobre $\mathbb{N} \times \mathbb{N}$ se define como

$$(m,n)\downarrow(r,s)$$
 \Leftrightarrow $m+s=n+r$
 $(\Leftrightarrow m-n=r-s)$

Ejercicio (propuesto ★)

Demuestre que \(\psi \) es una relación de equivalencia.

Reflexividad: Dado un par (m, n), es claro que m + n = m + n, y luego por definición de \downarrow se cumple que $(m, n) \downarrow (m, n)$.

<u>Simetría:</u> Dados dos pares tales que $(m, n) \downarrow (r, s)$, por definición de \downarrow se tiene que m + s = n + r. Es claro que r + n = s + m, y luego por definición de \downarrow se cumple que $(r, s) \downarrow (m, n)$.

Ejercicio

Demuestre que \(\psi \) es una relación de equivalencia.

<u>Transitividad</u>: Dados tres pares tales que $(m,n)\downarrow(r,s)$ y $(r,s)\downarrow(t,u)$, debemos demostrar que $(m,n)\downarrow(t,u)$. Por definición de \downarrow , tenemos que m+s=n+r (1) y r+u=s+t (2). Despejando r en (2), obtenemos que r=s+t-u, y reemplazando esto último en (1), se tiene que m+s=n+s+t-u. Reordenando, obtenemos que m+u=n+t, y por definición de \downarrow , concluimos que $(m,n)\downarrow(t,u)$. Por lo tanto, la relación es transitiva.

¿Cuáles son las clases de equivalencia inducidas por \$\dagger\$?

```
[(0,0)] = \{(0,0),(1,1),(2,2),\ldots\}
[(0,1)] = \{(0,1),(1,2),(2,3),\ldots\}
[(1,0)] = \{(1,0),(2,1),(3,2),\ldots\}
[(0,2)] = \{(0,2),(1,3),(2,4),\ldots\}
[(2,0)] = \{(2,0),(3,1),(4,2),\ldots\}
\vdots
[(0,n)] = \{(0,n),(1,n+1),(2,n+2),\ldots\}
[(n,0)] = \{(n,0),(n+1,1),(n+2,2),\ldots\}
\vdots
```


¿Qué tienen en común las diagonales? ¿Qué podrían representar los elementos de \mathbb{N}^2/\downarrow ?

Definición

El conjunto de los números enteros $\mathbb Z$ se define como el conjunto cuociente de $\mathbb N^2$ respecto a \downarrow :

$$\mathbb{Z} = \mathbb{N}^2/\downarrow = \{[(0,0)], [(0,1)], [(1,0)], [(0,2)], [(2,0)], \ldots\}.$$

¿Qué representan las clases de equivalencia?

- [(0,0)] será el entero 0.
- [(0,i)] será el entero i.
- [(i,0)] será el entero -i.

Renombramos los elementos de \mathbb{Z} :

$$[(0,0)] \leftrightarrow 0$$

$$[(0,1)] \leftrightarrow 1$$

$$[(1,0)] \leftrightarrow -1$$

$$[(0,2)] \leftrightarrow 2$$

$$[(2,0)] \leftrightarrow -2$$

$$\vdots$$

$$[(0,i)] \leftrightarrow i$$

$$[(i,0)] \leftrightarrow -i$$

$$\vdots$$

Y obtenemos entonces el conjunto de los números enteros

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}.$$

Importante: "-1" es sólo un **nombre** para la clase de equivalencia [(1,0)]. El símbolo "-" no significa nada por sí solo para nosotros.

Intentemos definir los operadores $+_{\downarrow}$ y \cdot_{\downarrow} , teniendo en cuenta que deben "*captar la estructura*" de los números enteros.

Definición

$$[(m,n)] +_{\downarrow} [(r,s)] = [(m+r,n+s)]$$

Ejercicio

Calcule 7 $+\downarrow$ -5, -18 $+\downarrow$ 4 y -3 $+\downarrow$ -6.

Definición

$$\lceil (m,n) \rceil \cdot \downarrow \lceil (r,s) \rceil = \lceil (m \cdot s + n \cdot r, m \cdot r + n \cdot s) \rceil$$

Ejercicio

Calcule $-3 \cdot \downarrow -4$ y $3 \cdot \downarrow 3$.

Ejercicio

Calcule 7 +
$$_{\downarrow}$$
 -5, -18 + $_{\downarrow}$ 4 y -3 + $_{\downarrow}$ -6.

$$7+_{\downarrow}-5=\left[\left(0,7\right) \right] +_{\downarrow} \left[\left(5,0\right) \right] =\left[\left(0+5,7+0\right) \right] =\left[\left(5,7\right) \right] =\left[\left(0,2\right) \right] =2$$

$$-18 + \downarrow 4 = [(18,0)] + \downarrow [(0,4)] = [(18+0,0+4)] = [(18,4)] = [(14,0)]$$

= -14

$$-3+\downarrow -6=[(3,0)]+\downarrow [(6,0)]=[(3+6,0+0)]=[(9,0)]=-9$$

Ejercicio

Calcule $-3 \cdot_{\downarrow} -4 y 3 \cdot_{\downarrow} 3$.

$$-3 \cdot_{\downarrow} -4 = \left[\left(3,0 \right) \right] \cdot_{\downarrow} \left[\left(4,0 \right) \right] = \left[\left(3 \cdot 0 + 0 \cdot 4, 3 \cdot 4 + 0 \cdot 0 \right) \right] = \left[\left(0,12 \right) \right] = 12$$

$$3 \cdot_{\downarrow} 3 = \left[(0,3) \right] \cdot_{\downarrow} \left[(0,3) \right] = \left[(0 \cdot 3 + 3 \cdot 0, 0 \cdot 0 + 3 \cdot 3) \right] = \left[(0,9) \right] = 9$$

Finalmente, podemos renombrar las operaciones anteriores, y obtenemos el conjunto de los números enteros con sus dos operaciones habituales:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, ...\}$$
 con las operaciones + y ·.

Outline

Relaciones de equivalencia (cierre)

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Definición

Una relación R sobre A es una relación de orden parcial si es refleja, antisimétrica y transitiva.

Generalmente denotaremos una relación de orden parcial con el símbolo ≤.

- $(x,y) \in \leq x \leq y.$
- x es menor (o menor-o-igual) que y.

Si \leq es una relación de orden parcial sobre A, diremos que el par (A, \leq) es un orden parcial.

Esto último enfatiza que el orden requiere especificar un dominio...

Quizás en otro dominio no es orden parcial

Ejemplos

- 1. Los pares (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) son órdenes parciales.
- 2. El par $(\mathbb{N}\setminus\{0\},|)$ es un orden parcial.
- 3. Si A es un conjunto cualquiera, el par $(\mathcal{P}(A), \subseteq)$ es un orden parcial.

Ejercicio (propuesto ★)

Demuestre los ejemplos anteriores.

Ejercicio

Si A es un conjunto cualquiera, el par $(\mathcal{P}(A), \subseteq)$ es un orden parcial.

Demostración: Sean $X, Y, Z \in \mathcal{P}(A)$.

<u>Reflexividad</u>: Por definición de subconjunto, para todo conjunto X se cumple que $X \subseteq X$, por lo que la relación es refleja.

Antisimetría: Por definición de igualdad de conjuntos, si $X \subseteq Y$ e $Y \subseteq X$, se cumple que X = Y, y entonces la relación es antisimétrica.

<u>Transitividad</u>: Por definición de subconjunto:

- Si $X \subseteq Y$, entonces $\forall x \in X$ se tiene que $x \in Y$.
- Si $Y \subseteq Z$, entonces $\forall y \in Y$ se tiene que $y \in Z$.

Combinando las dos aseveraciones, obtenemos que $\forall x \in X$ se tiene que $x \in Z$, y por lo tanto $X \subseteq Z$. Concluimos que la relación es transitiva.

¿Por qué orden parcial?

Definición

Una relación \leq sobre A es una relación de orden total (o lineal) si es una relación de orden parcial y además es conexa.

¿Qué quiere decir esto?

Para todo par $x, y \in A$, se tiene que $x \le y$ o $y \le x$

Similarmente al caso anterior, diremos que un par (A, \leq) es un orden total.

Outline

Relaciones de equivalencia (cierre)

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Definición

Sean (A, \leq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una cota inferior de S si para todo $y \in S$ se cumple que $x \le y$.
- 2. x es un elemento minimal de S si $x \in S$ y para todo $y \in S$ se cumple que $y \le x \Rightarrow y = x$.
- 3. x es un mínimo en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Ejercicio

Sea el orden parcial $(\mathbb{N}\setminus\{0\},|)$ y $S = \{2,3,5,10,15,20\} \subseteq \mathbb{N}$. Estudie los conceptos anteriores.

Ejercicio

Sea el orden parcial $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ y $S = \{\{1\},\{1,2\},\{1,3\},\{1,2,3,4\}\}$. Estudie los conceptos anteriores.

Ejercicio

En cada caso, ¿podemos encontrar un ${\cal S}$ tal que todos sus elementos sean minimales y maximales a la vez?

Ejercicio

Sea el orden parcial ($\mathbb{N}\setminus\{0\}$,|) y $S = \{2,3,5,10,15,20\} \subseteq \mathbb{N}$. Estudie los conceptos anteriores.

- 1 es cota inferior, pues 1|2, 1|3, etc.
- 2 no es cota inferior, pues 2 / 3.
- 60 es cota superior, pues 2|60, 3|60, ..., 20|60.
 Nótese que 60 es el mínimo común múltiplo de S.
- También cualquier múltiplo de 60 es cota superior, por ejemplo 120.
- Elementos minimales: 2,3,5, pues ningún elemento en S además de ellos mismos los divide.
- Elementos maximales: 15, 20, pues no dividen a ningún elemento en S además de ellos mismos.
- No tiene mínimos ni máximos, pues ninguna cota inferior o superior pertenece a S.

Ejercicio

```
Sea el orden parcial (\mathcal{P}(\{1,2,3,4\}),\subseteq) y S = \{\{1\},\{1,2\},\{1,3\},\{1,2,3,4\}\}. Estudie los conceptos anteriores.
```

- {1} es cota inferior, elemento minimal y mínimo.
- $\{1,2,3,4\}$ es cota superior, elemento maximal y máximo.
- Ø también es cota inferior.
- No hay más cotas superiores, pues el orden está definido sobre $\mathcal{P}(\{1,2,3,4\})$.

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

- En el orden ($\mathbb{N}\setminus\{0\}$,|) podemos tomar $S = \{2,3,5\}$. Como no se dividen entre sí, son todos minimales y maximales.
- En el orden $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ podemos tomar $S = \{\{1\},\{2\},\{3\},\{4\}\}$. Como ninguno de los conjuntos en S es subconjunto de ninguno de los demás, son todos minimales y maximales.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Ejercicio

Demuestre el teorema.

Ejercicio (★)

Demuestre el resultado análogo para el máximo.

Esto nos permite hablar de el mínimo o el máximo, que denotaremos por min(S) y max(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Demostración: Formalmente, debemos demostrar que

$$\forall x, y \in S(x \text{ es mínimo} \land y \text{ es mínimo} \rightarrow x = y)$$

Por demostración directa, supongamos que S tiene dos mínimos s_1, s_2 . Como son mínimos, $s_1, s_2 \in S$, y también $s_1 \le s_2$ y $s_2 \le s_1$. Como \le es una relación de orden, es antisimétrica, y luego $s_1 = s_2$. Por lo tanto, si hay un mínimo, este es único.

(*) La demostración de unicidad del máximo es completamente análoga.

Outline

Relaciones de equivalencia (cierre)

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **infimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$.

El ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Un ejemplo típico son los intervalos abiertos en el orden (\mathbb{R},\leq) . Por ejemplo, (0,1) no tiene mínimo pero sí infimo, 0; y no tiene máximo pero sí supremo, 1.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio (★)

Demuestre el teorema.

Esto nos permite hablar de **el** supremo o **el** ínfimo, que denotaremos por sup(S) e inf(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

<u>Demostración</u>: de manera similar a la demostración del mínimo, supongamos que S tiene dos supremos s_1 y s_2 . Por definición de supremo, ambos son cotas superiores de S.

Como s_1 es supremo, para toda cota superior s de S se tiene que $s_1 \le s$, pues el supremo es la menor cota superior, y en particular, $s_1 \le s_2$, pues s_2 es cota superior.

Realizando un razonamiento análogo, obtenemos también que $s_2 \le s_1$, y como \le es antisimétrica, se tiene que $s_1 = s_2$. Concluimos entonces que si existe un supremo, este es único.

(*) La demostración de unicidad del ínfimo es completamente análoga.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

- En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.
- En (\mathbb{Q}, \leq) sí, por ejemplo $S = \{q \in \mathbb{Q} \mid q^2 \leq 2\}$. Este conjunto está acotado superiormente (por ejemplo por 2), pero no tiene supremo en \mathbb{Q} . Uno podría estar tentado de decir que el supremo es $\sqrt{2}$, pero $\sqrt{2} \notin \mathbb{Q}$. El supremo debe pertenecer al conjunto sobre el cual está definido el orden.

Definición

Sea (A, \leq) un orden parcial. Este se dice superiormente completo si para cada $S \subseteq A$ no vacío, si S tiene cota superior, entonces tiene supremo.

De manera similar definimos el concepto de ser inferiormente completo.

Dado el ejemplo anterior, tenemos que (\mathbb{Q}, \leq) no es superiormente completo. Una observación importante es que tampoco es inferiormente completo: basta tomar $S' = \{ q \in \mathbb{Q} \mid q^2 \geq 2 \}.$

Esto motiva el siguiente teorema:

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ejercicio

Demuestre el teorema.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

<u>Demostración</u>: Demostraremos la dirección hacia la derecha; la otra dirección es análoga y se deja como ejercicio.

Supongamos que (A, \leq) es superiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado superiormente, tiene supremo. Queremos demostrar que también es inferiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado inferiormente, tiene ínfimo. Sea entonces $S \subseteq A$ no vacío. Supongamos que está acotado inferiormente. Demostraremos que tiene ínfimo.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Como S está acotado inferiormente, tiene al menos una cota inferior. Tomemos el siguiente conjunto:

$$S_{ci} = \{ a \in A \mid a \text{ es cota inferior de } S \}$$

Es decir, S_{ci} es el conjunto de todas las cotas inferiores de S. Es claro que $S_{ci} \neq \emptyset$. Por otra parte, como todos los elementos de S_{ci} son cotas inferiores de S, por definición de cota inferior se cumple que

$$\forall x \in Sci \quad \forall y \in S \quad x \leq y$$

de donde es claro que S_{ci} está acotado superiormente (por todos los elementos de S). Luego, como (A, \leq) es superiormente completo, S_{ci} tiene supremo, $sup(S_{ci})$, el que por definición es una cota superior de S_{ci} .

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ahora, como todos los elementos de S son cotas superiores de S_{ci} , se cumple que

$$\forall y \in S \quad sup(S_{ci}) \leq y$$

pues el supremo es la menor cota superior. De esto último se deduce que $sup(S_{ci})$ es una cota inferior de S, y como es una cota superior de S_{ci} , es la mayor cota inferior de S, es decir, es el ínfimo de S:

$$inf(S) = sup(S_{ci})$$

Concluimos entonces que (A, \leq) es inferiormente completo.

Outline

Relaciones de equivalencia (cierre)

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Objetivos de la clase

- Construir nuevos conjuntos a partir de relaciones de equivalencia
- □ Comprender conceptos de relación de orden parcial y total
- Comprender conceptos de mínimo y máximo
- □ Comprender conceptos de supremo e ínfimo