Kähler structure on T*G

Shing Tak Lam

July 16, 2023

Let G be a compact connected Lie group. We will show that T^*G is a Kähler manifold.

1 Tautological form and canonical symplectic form

Let M be any manifold. Suppose we have local coordinates x_1, \ldots, x_n on M. Then at each point $p \in M$, dx_1, \ldots, dx_n is a basis for T_p^*M . In particular, for $\xi \in T_p^*M$, we have that

$$\xi = \sum_{i} \xi_{i} dx_{i}$$

The coordinates $x_1, \ldots, x_n, \xi_1, \ldots, \xi_n$ are called *cotangent coordinates* on T*M. With this, define

$$\alpha = \sum_{i} \xi_{i} dx_{i}$$

which is a 1-form, and let

$$\omega = \sum_{i} dx_{i} \wedge d\xi_{i} = -d\alpha$$

 α and ω are intrinsically defined, that is, they are independent of the choice of coordinates. α is called the *tautological* 1-*form* and ω is called the *canonical symplectic form* on T^*M .

2 Complex structure on T^*G

First, we show that every Lie group is parallelisable, that is, we have a bundle isomorphism

$$TG \cong G \times \mathfrak{g}$$

In particular, a bundle is trivial if and only if a collection of sections forming a fibrewise basis exists. Let x_1, \ldots, x_n be local coordinates near $e \in G$. So

$$v_1 = \frac{\partial}{\partial x_1}, \dots, v_n = \frac{\partial}{\partial x_n}$$

is a basis for \mathfrak{g} . Moreover, by considering the left translations $\ell_g^* v_j$, we can see that these form a global frame for TG. Hence we have a bundle isomorphism $TG \cong \mathfrak{g} \times G$.

Next, we want to show that T^*G is also trivial. As G is compact, we can choose a bi-invariant Riemannian metric γ on G. Suppose without loss of generality that v_1, \ldots, v_n is an orthonormal basis of \mathfrak{g} . Then by bi-invariance, we have that $\ell_q^*v_1, \ldots, \ell_q^*v_n$ is an orthonormal basis of $T_{g^{-1}}G$.

Using the bi-invariant metric, we define

$$\eta_j = \gamma(\ell_q^* v, \cdot)$$

This is an orthonormal basis with respect to the induced metric on T^*G , and so it defines an isomorphism $T^*G \cong TG$. In particular, this gives us an isomorphism $T^*G \cong G \times \mathfrak{g}$.

Finally, we note that we can put a complex structure on $G \times \mathfrak{g}$, by

$$J(x, y) = (-d\ell_q y, d\ell_{q^{-1}} x)$$

for
$$x \in T_aG$$
, $y \in T_z\mathfrak{g} = \mathfrak{g}$.

2.1 In cotangent coordinates

In cotangent coordinates about $e \in G$, where we assume as above that the v_i are orthonormal, we find that $\eta_j = dx_j$. Moreover, the isomorphism above is given by

$$\mathsf{T}^*G \ni (p,\xi) \mapsto (p,(\xi_1,\ldots,\xi_n)) \in G \times \mathfrak{g}$$

Therefore, given $v \in T_{(p,\xi)}T^*G$, say v = a + b, where

$$v = \left(\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}\right) + \left(\sum_{j} b_{j} \frac{\partial}{\partial \xi_{j}}\right)$$

we have that J(a, b) = (-b, a).