Dynamics of Neural Systems Membrane Channels / Hodgkin-Huxley Equation

Martin A. Giese

Martin.giese@uni-tuebingen.de

Nov 11 2024

Overview

- Active ion channels
- Hodgkin Huxley equation

Overview

- Active ion channels
- Hodgkin Huxley equation

KcsA potassium channel

Active ion channels I

- More than 100 types of ion channels known.
- Typically, multiple types of channels in the same membrane (dependent on neuron type).
- 3D structure can be investigated by X-ray crystallography.

KcsA potassium channel

Active ion channels I

One or multiple protein subunits:
 principal subunits: form membrane pore auxiliary subunits: modulate function of principal subunits

multimers: channels with multiple principal units

homomer: principal units all identical

heteromer: different principal subunits

Active ion channels II

Example:

- Secondary structure: α-helices + connecting loops
- Membrane pore: segments S5-6 and P
- Voltage-sensitive region (VSD): segments S1-4
- S4 contains gating charges that experience force through membrane potential.

Secondary and tertiary structure of voltage-gated potassium channel

Active ion channels III

Function principle (other type of potassium channel)

Active ion channels IV

- Since 1980 sequencing of related genes; knock-out studies showing selective deficits; transfection with DNA or RNA to 'build channels in'.
- Generation of family trees based on related DNA sequences; provides basis for systematic nomenclature.

Family tree of mammalian voltage-gateded channels

Active ion channels IV

- Today often related membrane currents are classified according to systematic names of channel.
- Activation by voltage, Ca^{2+,} or intracellular ligands and second messengers.

Human gene prefix	IUPHAR protein prefix	lon selectivity	Activators
SCN	Na _v	Na ⁺	V↑
CACN	Ca _v	Ca ²⁺	V↑
KCN	K _v	K ⁺	V [↑]
KCNA	K _v 1	K ⁺	V↑
KCNB	K_v2	K ⁺	V↑
KCNC	K_v3	K ⁺	V ↑
KCND	K_v4	K ⁺	V↑
KCNQ	K_v7	K ⁺	V↑ V↑
KCNMA	K _{Ca} 1	K ⁺	Ca ²⁺ , V↑
KCNN	$K_{Ca}2$	K ⁺	Ca ²⁺ ↑
KCNJ	Kir	K ⁺	G-proteins, V↑
KCNK	K _{2P}	K ⁺	Leak, various modulators
HCN	HCN	K ⁺ , Na ⁺	V↓
CNG	CNG	Ca ²⁺ , K ⁺ , Na ⁺	cAMP, cGMP
TRP	TRP	Ca ²⁺ , Na ⁺	Heat, second messengers
CLCN	=	Cl-	V↓, pH
CLCA	_	Cl-	Ca ²⁺

Data from IUPHAR Compendium of Voltage-Gated Ion Channels (Catterall et al., 2005a, b; Gutman et al., 2005; Wei et al., 2005; Kubo et al., 2005; Goldstein et al., 2005; Hofmann et al., 2005; Clapham et al., 2005; Jentsch et al., 2005).

Experimental technique I

- Patch clamping as fundamental technique to investigate individual channels; recordings with low noise.
- Invented by Neher & Sakmann (1976); Nobel prize 1991.
- Thin glass pipette pressed against side of cell; high resistance seal ('gigaseal') around very small patch of the membrane.

Patch clamp technique

E. Neher

B. Sakmann

Experimental technique II

- Individual channels types can be blocked pharmacologically (e.g. Na⁺ channels by the poison tetrodotoxin (TTX)).
- Alternatively, ions in the extracellular medium can be replaced by others that cannot passage the membrane.

Tetrodotoxin (TTX)

Blowfish (Fugu) **河豚**

Single channel recording

Channel activation

- 'Binary' activation; channel current jumps between zero and a few pA.
- Opening and closing times random.
- Averaging over many trials: systematic behavior of average current (~ P(channel open)).
- Channels with long-lasting (a) and transient (b) currents.

Single channel recording

Channel activation

 Movement of the gating charges results in a (very small) gating current.

Gating current

Overview

- Active ion channels
- Hodgkin Huxley equation

Copyright @ 2009 Pearson Education, Inc.

Theory for action potentials

- Central mechanism for the active propagation of signals in the CNS (last lectures: focusing on passive membrane properties).
- First quantitative theory developed by Hodgkin and Huxley (1952), partially together with Katz.
- Nobel prize 1963, shared with Eccles for his work on synaptic transmission.

A.L. Hodgkin

A.F. Huxley

Theory for action potentials

- Intracellular recordings of the squid giant axon.
- Quantitative mathematical model: Hodgkin Huxley (HH) equation.
- Basic methodology still relevant today.

A.L. Hodgkin

A.F. Huxley

Voltage clamp technique

- Allows to study nonlinear dependence of current on membrane potential; developed by Cole and Marmont (1949).
- Membrane voltage clamped to a constant value.
- Implies dV / dt = 0 ⇒ Membrane capacitor can be ignored;
 ion flow measured directly.
- Control loop that injects current that makes the membrane voltage V equal to external reference

voltage V_{ref} .

Voltage clamp technique

 Hodgkin and Huxley used very long electrodes along the axon to ensure equal potential along whole axon ('space clamp').

Basic structure of the model

 Single compartment model with three types of ions:

Potassium (K⁺)
Sodium (Na⁺)
Leak current (mainly Cl⁻)

Differential equation:

$$C\frac{dV}{dt} + g_{K^{+}}(V)(V(t) - E_{K^{+}}) + g_{Na^{+}}(V)(V(t) - E_{Na^{+}}) + g_{L}(V(t) - E_{L}) = I_{e}(t)$$

- For voltage clamp capacitor can be neglected.
- Measurement of g_i for different values of V by fitting of the individual ion currents by the relationship:

$$g_i(V)(V(t)-E_i)=I_i$$

Ion substitution method

Total current is sum of ion flows:

$$I_{e}(V) = I_{K^{+}}(V) + I_{Na^{+}}(V) + I_{L}(V)$$

- Isolation of sodium current by replacing sodium in sea water by choline (does not permeate membrane).
- Leak current estimated by clamping voltage to reversal potential of K⁺; remaining current is caused by Cl⁻ and other ions.

Potassium current I

- Potassium conductance raises to constant level that is determined by V.
- Depolarization increases g_{K^+} (activation).
- After voltage goes back decay of conductance with faster time constant (deactivation).

Potassium current II

- Maximum potassium conductance \overline{g}_{K^+} increases with clamped voltage V.
- Speed of increase increases (effective time constant decreases) with clamped voltage V.
- Model: $g_{K^+} = \overline{g}_{K^+} n^4$
- Interpretation by HH:
 Four 'gating particles'
 must be in open state;
 n: probability that one
 is in open state
- Modern theory: multiple independent conformation changes, each with probability n necessary to open the channel pore.

Potassium current III

Hodgkin and Huxley postulated a kinetic equation for the 'particle open probability' n:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_n (1-n) - \beta_n n \quad \Leftrightarrow \quad \frac{\mathrm{d}n}{\mathrm{d}t} = \frac{n_\infty - n}{\tau_n}$$

- By fitting data by the solution of this DEQ and the exponent of n^k the parameters α_n and β_n were fitted for different values of the voltage V.
- Fitted voltage relationships:

$$\alpha_{\rm n} = 0.01 \frac{V + 55}{1 - \exp(-(V + 55)/10)}$$

$$\beta_{\rm n} = 0.125 \exp(-(V + 65)/80)$$

$$(V [mV] \text{ relative to resting potential})$$

Sodium current I

Sodium conductance increases and decays back to rest (transient!). ⇒ Active inactivation.

- Special **inactivation gating variable** h following the kinetic equation: $\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1-h) \beta_h h$
- In addition, normal 'opening particle' with activation variable:

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

Sodium current II, leak current

- Dynamic variation of sodium conductance successfully modeled by: $g_{Na^+} = \overline{g}_{Na^+} m^3 h$
- Voltage dependence of rate coefficients fitted to be:

$$\alpha_{\rm m} = 0.1 \, \frac{V + 40}{1 - \exp{(-(V + 40)/10)}}, \qquad \alpha_{\rm h} = 0.07 \, \exp{(-(V + 65)/20)} \qquad \qquad (V \, [\rm mV] \, relative \\ \beta_{\rm m} = 4 \, \exp{(-(V + 65)/18)}, \qquad \beta_{\rm h} = \frac{1}{\exp{(-(V + 35)/10) + 1}}. \qquad (V \, [\rm mV] \, relative \\ \text{to resting potential})$$

 Some additional current that is not carried by sodium or potassium; potentially from a mixture of other ions: 'leak current'; modeled by linear circuit:

$$I_{\rm L} = \overline{g}_{\rm L} \big(V - E_{\rm L} \big)$$

Complete HH model

 Putting the last equations together we obtain the full Hodgkin-Huxley model:

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} + \overline{g}_{\mathrm{K}^{+}} n^{4} \Big(V - E_{\mathrm{K}^{+}} \Big) + \overline{g}_{\mathrm{Na}^{+}} m^{3} h \Big(V - E_{\mathrm{Na}^{+}} \Big) + \overline{g}_{\mathrm{L}} \Big(V - E_{\mathrm{L}} \Big) &= I_{\mathrm{c}}(t) \\ \frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_{n} (1 - n) - \beta_{n} n \\ \frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_{m} (1 - m) - \beta_{m} m & \frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_{h} (1 - h) - \beta_{h} h \\ \alpha_{\mathrm{n}} &= 0.01 \frac{V + 55}{1 - \exp(-(V + 55)/10)} & (V [\mathrm{mV}] \text{ relative to resting potential in these last equations}) \\ \beta_{\mathrm{n}} &= 0.125 \exp(-(V + 65)/80) & \mathrm{in these last equations}) \\ \alpha_{\mathrm{m}} &= 0.1 \frac{V + 40}{1 - \exp(-(V + 40)/10)}, & \alpha_{\mathrm{h}} &= 0.07 \exp(-(V + 65)/20) \\ \beta_{\mathrm{m}} &= 4 \exp(-(V + 65)/18), & \beta_{\mathrm{h}} &= \frac{1}{\exp(-(V + 35)/10) + 1}. \end{split}$$

Overview of voltage dependence

 Overview of the voltage dependence of rate coefficients, saturation levels and time constants for HH model:

Na⁺ activation:

Na⁺ inactivation:

K⁺ activation:

$$\frac{dx}{dt} = \alpha_x (1 - x) - \beta_x x$$

$$\Leftrightarrow \tau_x \frac{dx}{dt} = x_\infty - x$$

$$\tau_x = \frac{1}{\alpha_x + \beta_x} \qquad x_\infty = \frac{\alpha_x}{\alpha_x + \beta_x}$$

Simulation of an action potential

- Hodgkin and Huxley simulated on hand-operated calculator (3 weeks per simulation!).
- Simulation of space clamp (potential not changing over space).
- High similarity to experimental data.

 Model allows to understand processes during AP.

- Model allows to understand processes during AP.
- After depolarization first sodium current is activated.

- Model allows to understand processes during AP.
- After depolarization first sodium current is activated.
- This increases depolarization because E_{Na+} > 0 (positive feedback!!); ⇒ Positive flank of V.

- Model allows to understand processes during AP.
- After depolarization first sodium current is activated.
- This increases depolarization because E_{Na+} > 0 (positive feedback!!); ⇒ Positive flank of V.
- With delay potassium cur rent increases; since this
 re-polarizes the membrane decreases (delayed rectifier current).

 Rapid inactivation of the sodium current by variable h; causes slight hyperpolarization.

- Rapid inactivation of the sodium current by variable h; causes slight hyperpolarization.
- As consequence m decays.

t (ms)

- Rapid inactivation of the sodium current by variable h; causes slight hyperpolarization.
- As consequence m decays.
- Deinactivation: Inactivation is released, since h increases again.

- Rapid inactivation of the sodium current by variable h; causes slight hyperpolarization.
- As consequence m decays.
- Deinactivation: Inactivation is released, since h increases again.
- Also refractary period can be explained:
 - As long as *h* is decreased it is more difficult to re-activate sodium current.
 - Increased potassium conductance $g_{{}_{\rm K^+}}$ produces outwards current; new depolarization would have to counteract this current.

Propagating action potential I

- Multi-compartment model, integrating the nonlinear elements of the HH equation in the individual compartments.
- Very good fit of data.

Propagating action potential II

- Propagating flank of depolarization caused by sodium inflow.
- Slower potassium outfow repolarises membrane.

Propagating action potential III

Things to remember

- How do active membrane channels work? → 2)
- Patch clamp; binary characteristics → 2)
- Gating charge and current → 2)
- Hodgkin Huxley model and how it was derived \rightarrow 2)
- Activation vs. inactivation dynamics \rightarrow 2)
- Principles of formation of an action potential at the membrane according to Hodgkin and Huxley → 1,2)

(Numbers relate to literature on next page.)

Literature (for this lecture)

- 1) Dayan P. & Abbott, L.F. (2001 / 2005) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge MA, USA. Chapter 5.
- 2) Sterratt, D., Graham, B, Gillies, A., Willshaw, D. (2011) *Principles of Computational Modelling in Neuroscience*. Cambridge University Press, UK. Chapters 3, and 5.