

Dokumentacja do projektu

Kalkulator dla elektroników

Z przedmiotu

Języki programowania

Autor: Jakub Płoskonka

WIET Elektronika

Spis treści

1.	. Wstęp	. 3
2.	. Funkcjonalność	. 3
	2.1 Operacje na liczbach zmiennoprzecinkowych:	. 3
	2.2 Przeliczanie na podany system liczbowy:	. 3
	2.3 Realizacja zadań	4
3.	. Projekt techniczny – Analiza problemu	. 5
4.	. Opis realizacji	6
	4.1 Activity Diagram	6
	4.2 Diagram Klas	. 7
5.	. Bibliografia	8

1. Wstęp

Projekt Kalkulatora dla elektroników z obsługą 4 systemów liczbowych, wykonywania prostych obliczeń oraz konwersją liczb między systemami liczbowymi.

Celem projektu jest opracowanie systemu klas, poleceń oraz zaimplementowanie prostego interfejsu użytkownika (poprzez dialog w konsoli).

Całość kodu została napisana w języku C++ w środowisku Visual Studio 2022.

Jednym z głównych założeń projektu była uniwersalność oraz możliwość optymalizacji pisanego kodu.

2. Funkcjonalność

2.1 Operacje na liczbach zmiennoprzecinkowych:

- dodawanie
- odejmowanie
- mnożenie
- dzielenie
- pierwiastkowanie
- potęgowanie

2.2 Przeliczanie na podany system liczbowy:

- binarny
- ósemkowy
- szesnastkowy
- dziesiętny

2.3 Realizacja zadań

- 1. Stworzenie odpowiedniego systemu klas i ich hierarchii:
- klasa główna -> Calculator
- klasy pochodne:

DecCalculator – przeliczanie na system dziesiętny

BinaryCalculator – przeliczanie na system binarny

OctalCalculator – przeliczanie na system ósemkowy

FloatingPointCalculator – operacje matematyczne na liczbach zmiennoprzecinkowych

- 2. Design patterns realizacja działania programu w klasie CalculatorFactory, tworzy obiekty w zależności od wybranego systemu liczbowego.
- 3. Funkcje w poszczególnych klasach realizujące arytmetykę na podany system.

3. Projekt techniczny – Analiza problemu

Przykładowe przeliczanie na system dziesiętny:

Number	Base	D	Result
111011	2	6	59
1234	8	4	668
3AB	16	3	939

D = number.lenght()

digit = numer[D-1-i] – 48 (-48, ponieważ znaki muszą być zamienione na odpowiednie liczby w ASCI)

result = result + digit * base^i

i = kolejne wykładniki (0,1,2,3,4,5)

i = 0 liczba [5] = 1

i = 1 liczba [4] = 1

i = 2 liczba [3] = 0

i = 3 liczba [2] = 1

i = 4 liczba [1] = 1

i = 5 liczba [0] = 1

4. Opis realizacji

4.1 Activity Diagram

Strona 6 z 8

4.2 Diagram Klas

- 5. Bibliografia
- 1) https://en.cppreference.com/w/
- 2) https://github.com/BogCyg/BookCPP PL
- 3) https://linuxhint.com/understanding-ascii-table/
- 4) https://www.microsoft.com/pl-pl/microsoft-365/visio/flowchart-software
- 5) Prof. Bogusław Cyganek Programowanie w języku C++. Wprowadzenie dla inżynierów 2023