

Tests of Hypotheses for a Single Sample

CHAPTER OUTLINE

D					
9-1	HYPOTHESIS TESTING 9-1.1 Statistical Hypotheses 9-1.2 Tests of Statistical Hypotheses		9-3.1 Hypothesis Tests on the Mean		
			9-3.2 P-Value for a t-Test		
			9-3.3 Type II Error and Choice of		
	9-1.3 One-Sided and Two-Sided	9-4	Sample Size		
	Hypotheses		TESTS ON THE VARIANCE AND		
	9-1.4 P-Value in Hypothesis Tests		STANDARD DEVIATION OF A NORMAL DISTRIBUTION		
	1.5 Connection between Hypothesis Tests and Confidence Intervals		9-4.1 Hypothesis Tests on the Variance Procedures		
	9-1.6 General Procedure for Hypothesis Tests		9-4.2 Type II Error and Choice of Sample Size		
9-2	TESTS ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN	9-5	TESTS ON A POPULATION PROPORTION		
			9-5.1 Large-Sample Tests on a Proportion		
	9-2.1 Hypothesis Tests on the Mean		9-5.2 Type II Error and Choice of		
	9-2.2 Type II Error and Choice of Sample Size		Sample Size		
	9-2.3 Large-Sample Test				
9-3	TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,				
	VARIANCE UNKNOWN				

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

- 1. Structure engineering decision-making problems as hypothesis tests
- 2. Test hypotheses on the mean of a normal distribution using either a Z-test or a t-test procedure
- 3. Test hypotheses on the variance or standard deviation of a normal distribution
- 4. Test hypotheses on a population proportion
- 5. Use the P-value approach for making decisions in hypotheses tests
- Compute power, type II error probability, and make sample size selection decisions for tests on means, variances, and proportions
- 7. Explain and use the relationship between confidence intervals and hypothesis tests
- 8. Use the chi-square goodness of fit test to check distributional assumptions
- Use contingency table tests

9-1.1 Statistical Hypotheses

Definition

A statistical hypothesis is a statement about the parameters of one or more populations.

9-1.1 Statistical Hypotheses

For example, suppose that we are interested in the burning rate of a solid propellant used to power aircrew escape systems.

- Now burning rate is a random variable that can be described by a probability distribution.
- Suppose that our interest focuses on the **mean** burning rate (a parameter of this distribution).
- Specifically, we are interested in deciding whether or not the mean burning rate is 50 centimeters per second.

9-1.1 Statistical Hypotheses

Two-sided Alternative Hypothesis

 H_0 : $\mu = 50$ centimeters per second null hypothesis

 H_1 : $\mu \neq 50$ centimeters per second alternative hypothesis

One-sided Alternative Hypotheses

 H_0 : $\mu = 50$ centimeters per second H_0 : $\mu = 50$ centimeters per second

 H_1 : $\mu < 50$ centimeters per second H_1 : $\mu > 50$ centimeters per second

 $O\Gamma$

9-1.1 Statistical Hypotheses

Test of a Hypothesis

- A procedure leading to a decision about a particular hypothesis
- Hypothesis-testing procedures rely on using the information in a random sample from the population of interest.
- If this information is *consistent* with the hypothesis, then we will conclude that the hypothesis is **true**; if this information is *inconsistent* with the hypothesis, we will conclude that the hypothesis is **false**.

9-1.2 Tests of Statistical Hypotheses

Figure 9-1 Decision criteria for testing H_0 : $\mu = 50$ centimeters per second versus H_1 : $\mu \neq 50$ centimeters per second.

9-1.2 Tests of Statistical Hypotheses

Definitions

Rejecting the null hypothesis H_0 when it is true is defined as a type I error.

Failing to reject the null hypothesis when it is false is defined as a type II error.

9-1.2 Tests of Statistical Hypotheses

Table 9-1 Decisions in Hypothesis Testing

Decision	H_0 Is True	H_0 Is False
Fail to reject H_0	no error	type II error
Reject H_0	type I error	no error

 $\alpha = P(\text{type I error}) = P(\text{reject } H_0 \text{ when } H_0 \text{ is true})$

Sometimes the type I error probability is called the significance level, or the α -error, or the size of the test.

9-1.2 Tests of Statistical Hypotheses

$$\alpha = P(\overline{X} < 48.5 \text{ when } \mu = 50) + P(\overline{X} > 51.5 \text{ when } \mu = 50)$$

The z-values that correspond to the critical values 48.5 and 51.5 are

$$z_1 = \frac{48.5 - 50}{0.79} = -1.90$$
 and $z_2 = \frac{51.5 - 50}{0.79} = 1.90$

Therefore

$$\alpha = P(Z < -1.90) + P(Z > 1.90) = 0.028717 + 0.028717 = 0.057434$$

Figure 9-2 The critical region for H_0 : $\mu = 50$ versus H_1 : $\mu \neq 50$ and n = 10.

$$\alpha = P(\text{type I error}) = P(\text{reject } H_0 \text{ when } H_0 \text{ is true})$$
 (9-3)

$$\beta = P(\text{type II error}) = P(\text{fail to reject } H_0 \text{ when } H_0 \text{ is false})$$
 (9-4)

Figure 9-3 The probability of type II error when $\mu = 52$ and n = 10.

Definition

The power of a statistical test is the probability of rejecting the null hypothesis H_0 when the alternative hypothesis is true.

- The power is computed as 1β , and power can be interpreted as the probability of correctly rejecting a false null hypothesis. We often compare statistical tests by comparing their power properties.
- For example, consider the propellant burning rate problem when we are testing H_0 : $\mu = 50$ centimeters per second against H_1 : μ not equal 50 centimeters per second . Suppose that the true value of the mean is $\mu = 52$. When n = 10, we found that $\beta = 0.2643$, so the power of this test is $1 \beta = 1 0.2643 = 0.7357$ when $\mu = 52$.

9-1.3 One-Sided and Two-Sided Hypotheses

Two-Sided Test:

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

or

One-Sided Tests:

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu < \mu_0$

Example 9-1

Consider the propellant burning rate problem. Suppose that if the burning rate is less than 50 centimeters per second, we wish to show this with a strong conclusion. The hypotheses should be stated as

 H_0 : $\mu = 50$ centimeters per second

 H_1 : $\mu < 50$ centimeters per second

Here the critical region lies in the lower tail of the distribution of \overline{X} . Since the rejection of H_0 is always a strong conclusion, this statement of the hypotheses will produce the desired outcome if H_0 is rejected. Notice that, although the null hypothesis is stated with an equal sign, it is understood to include any value of μ not specified by the alternative hypothesis. Therefore, failing to reject H_0 does not mean that $\mu = 50$ centimeters per second exactly, but only that we do not have strong evidence in support of H_1 .

9-1.4 P-Values in Hypothesis Tests

Definition

The P-value is the smallest level of significance that would lead to rejection of the null hypothesis H_0 with the given data.

9-1.4 P-Values in Hypothesis Tests

Consider the two-sided hypothesis test for burning rate

$$H_0: \mu = 50 \quad H_1: \mu \neq 50$$

with n = 16 and $\sigma = 2.5$. Suppose that the observed sample mean is $\overline{x} = 51.3$ centimeters per second. Figure 9-6 shows a critical region for this test with critical values at 51.3 and the symmetric value 48.7. The *P*-value of the test is the α associated with this critical region. Any smaller value for α expands the critical region and the test fails to reject the null hypothesis when $\overline{x} = 51.3$. The *P*-value is easy to compute after the test statistic is observed. In this example

$$P
-value = 1 - P(48.7 < \overline{X} < 51.3)$$

$$= 1 - P\left(\frac{48.7 - 50}{2.5/\sqrt{16}} < Z < \frac{51.3 - 50}{2.5/\sqrt{16}}\right)$$

$$= 1 - P(-2.08 < Z < 2.08)$$

$$= 1 - 0.962 = 0.038$$

9-1.4 P-Values in Hypothesis Tests

Figure 9-6 P-value is area of shaded region when $\overline{x} = 51.3$.

9-1.5 Connection between Hypothesis Tests and Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say θ , and the confidence interval for θ . If [l, u] is a $100(1 - \alpha)\%$ confidence interval for the parameter θ , the test of size α of the hypothesis

$$H_0: \theta = \theta_0$$

 $H_1: \theta \neq \theta_0$

will lead to rejection of H_0 if and only if θ_0 is not in the $100(1 - \alpha)\%$ CI [l, u]. As an illustration, consider the escape system propellant problem with $\bar{x} = 51.3$, $\sigma = 2.5$, and n = 16. The null hypothesis H_0 : $\mu = 50$ was rejected, using $\alpha = 0.05$. The 95% two-sided CI on μ can be calculated using Equation 8-7. This CI is $51.3 \pm 1.96(2.5/\sqrt{16})$ and this is $.50.075 \le \mu \le 52.525$. Because the value $\mu_0 = 50$ is not included in this interval, the null hypothesis H_0 : $\mu = 50$ is rejected.

9-1.6 General Procedure for Hypothesis Tests

- 1. From the problem context, identify the parameter of interest.
- 2. State the null hypothesis, H_0 .
- **3.** Specify an appropriate alternative hypothesis, H_1 .
- 4. Choose a significance level, α .
- 5. Determine an appropriate test statistic.
- 6. State the rejection region for the statistic.
- 7. Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute that value.
- 8. Decide whether or not H_0 should be rejected and report that in the problem context.

9-2.1 Hypothesis Tests on the Mean

We wish to test:

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu \neq \mu_0$

The test statistic is:

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \tag{9-8}$$

9-2.1 Hypothesis Tests on the Mean

Reject H_0 if the observed value of the test statistic z_0 is either:

$$z_0 > z_{\alpha/2}$$
 or $z_0 < -z_{\alpha/2}$

Fail to reject H_0 if

$$-z_{\alpha/2} < z_0 < z_{\alpha/2}$$

Figure 9-7 The distribution of Z_0 when H_0 : $\mu = \mu_0$ is true, with critical region for (a) the two-sided alternative H_1 : $\mu \neq \mu_0$, (b) the one-sided alternative H_1 : $\mu > \mu_0$, and (c) the one-sided alternative H_1 : $\mu < \mu_0$.

Example 9-2

Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an important product characteristic. Specifications require that the mean burning rate must be 50 centimeters per second. We know that the standard deviation of burning rate is $\sigma = 2$ centimeters per second. The experimenter decides to specify a type I error probability or significance level of $\alpha = 0.05$ and selects a random sample of n = 25 and obtains a sample average burning rate of $\overline{x} = 51.3$ centimeters per second. What conclusions should be drawn?

Example 9-2

We may solve this problem by following the eight-step procedure outlined in Section 9-1.4.

This results in

- 1. The parameter of interest is μ , the mean burning rate.
- 2. H_0 : $\mu = 50$ centimeters per second
- 3. H_1 : $\mu \neq 50$ centimeters per second
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Example 9-2

- 6. Reject H_0 if $z_0 > 1.96$ or if $z_0 < -1.96$. Note that this results from step 4, where we specified $\alpha = 0.05$, and so the boundaries of the critical region are at $z_{0.025} = 1.96$ and $-z_{0.025} = -1.96$.
- 7. Computations: Since $\bar{x} = 51.3$ and $\sigma = 2$,

$$z_0 = \frac{51.3 - 50}{2/\sqrt{25}} = 3.25$$

8. Conclusion: Since z₀ = 3.25 > 1.96, we reject H₀: μ = 50 at the 0.05 level of significance. Stated more completely, we conclude that the mean burning rate differs from 50 centimeters per second, based on a sample of 25 measurements. In fact, there is strong evidence that the mean burning rate exceeds 50 centimeters per second.

9-2.1 Hypothesis Tests on the Mean

We may also develop procedures for testing hypotheses on the mean μ where the alternative hypothesis is one-sided. Suppose that we specify the hypotheses as

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$ (9-11)

In defining the critical region for this test, we observe that a negative value of the test statistic Z_0 would never lead us to conclude that H_0 : $\mu = \mu_0$ is false. Therefore, we would place the critical region in the **upper tail** of the standard normal distribution and reject H_0 if the computed value of z_0 is too large. That is, we would reject H_0 if

$$z_0 > z_\alpha \tag{9-12}$$

9-2.1 Hypothesis Tests on the Mean (Continued)

as shown in Figure 9-7(b). Similarly, to test

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$ (9-13)

we would calculate the test statistic Z_0 and reject H_0 if the value of z_0 is too small. That is, the critical region is in the lower tail of the standard normal distribution as shown in Figure 9-7(c), and we reject H_0 if

$$z_0 < -z_{\alpha} \tag{9-14}$$

9-2.1 Hypothesis Tests on the Mean (Continued)

```
Null hypothesis: H_0: \mu = \mu_0

Test statistic: Z_0 = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}

Alternative hypothesis Rejection criteria

H_1: \mu \neq \mu_0 z_0 > z_{\alpha/2,s-1} or z_0 < -z_{\alpha/2,s-1}

H_1: \mu > \mu_0 z_0 > z_{\alpha,s-1}

H_1: \mu < \mu_0 z_0 < -z_{\alpha,s-1}
```


P-Values in Hypothesis Tests

The P-value is the smallest level of significance that would lead to rejection of the null hypothesis H_0 with the given data.

$$P = \begin{cases} 2[1 - \Phi(|z_0|)] & \text{for a two-tailed test: } H_0: \mu = \mu_0 & H_1: \mu \neq \mu_0 \\ 1 - \Phi(z_0) & \text{for a upper-tailed test: } H_0: \mu = \mu_0 & H_1: \mu > \mu_0 \\ \Phi(z_0) & \text{for a lower-tailed test: } H_0: \mu = \mu_0 & H_1: \mu < \mu_0 \end{cases}$$
(9-15)

9-3.1 Hypothesis Tests on the Mean

One-Sample t-Test

Null hypothesis:
$$H_0$$
: $\mu = \mu_0$

Test statistic:
$$T_0 = \frac{X - \mu_0}{S/\sqrt{n}}$$

Alternative hypothesis

Rejection criteria

$$H_1$$
: $\mu \neq \mu_0$ $t_0 > t_{\alpha/2,n-1}$ or $t_0 < -t_{\alpha/2,n-1}$
 H_1 : $\mu > \mu_0$ $t_0 > t_{\alpha,n-1}$
 H_1 : $\mu < \mu_0$ $t_0 < -t_{\alpha,n-1}$

9-3.1 Hypothesis Tests on the Mean

Figure 9-9 The reference distribution for H_0 : $\mu = \mu_0$ with critical region for (a) H_1 : $\mu \neq \mu_0$, (b) H_1 : $\mu > \mu_0$, and (c) H_1 : $\mu < \mu_0$.

Example 9-6

The increased availability of light materials with high strength has revolutionized the design and manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can result in much longer tee shots, especially for players of modest skills. This is due partly to the "spring-like effect" that the thin face imparts to the ball. Firing a golf ball at the head of the club and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantify this spring-like effect. The ratio of velocities is called the coefficient of restitution of the club. An experiment was performed in which 15 drivers produced by a particular club maker were selected at random and their coefficients of restitution measured. In the experiment the golf balls were fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely controlled. It is of interest to determine if there is evidence (with $\alpha = 0.05$) to support a claim that the mean coefficient of restitution exceeds 0.82. The observations follow:

0.8411	0.8191	0.8182	0.8125	0.8750
0.8580	0.8532	0.8483	0.8276	0.7983
0.8042	0.8730	0.8282	0.8359	0.8660

Example 9-6

The sample mean and sample standard deviation are $\bar{x} = 0.83725$ and s = 0.02456. The normal probability plot of the data in Fig. 9-9 supports the assumption that the coefficient of restitution is normally distributed. Since the objective of the experimenter is to demonstrate that the mean coefficient of restitution exceeds 0.82, a one-sided alternative hypothesis is appropriate.

The solution using the eight-step procedure for hypothesis testing is as follows:

- The parameter of interest is the mean coefficient of restitution, μ.
- 2. H_0 : $\mu = 0.82$
- 3. H_1 : $\mu > 0.82$. We want to reject H_0 if the mean coefficient of restitution exceeds 0.82.
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

6. Reject H_0 if $t_0 > t_{0.05,14} = 1.761$

Example 9-6

Figure 9-10

Normal probability plot of the coefficient of restitution data from Example 9-6.

9-4.1 Hypothesis Test on the Variance

Suppose that we wish to test the hypothesis that the variance of a normal population σ^2 equals a specified value, say σ_0^2 , or equivalently, that the standard deviation σ is equal to σ_0 . Let X_1 , X_2, \ldots, X_n be a random sample of n observations from this population. To test

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 \neq \sigma_0^2$$
(9-26)

we will use the test statistic:

$$X_0^2 = \frac{(n-1)S^2}{\sigma_0^2} \tag{9-27}$$

9-4.1 Hypothesis Test on the Variance

If the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$ is true, the test statistic X_0^2 defined in Equation 9-27 follows the chi-square distribution with n-1 degrees of freedom. This is the reference distribution for this test procedure. Therefore, we calculate χ_0^2 , the value of the test statistic X_0^2 , and the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$ would be rejected if

$$\chi_0^2 > \chi_{\alpha/2, n-1}^2$$
 or if $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the chisquare distribution with n-1 degrees of freedom, respectively. Figure 9-10(a) shows the critical region.

9-4.1 Hypothesis Test on the Variance

The same test statistic is used for one-sided alternative hypotheses. For the one-sided hypothesis

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 > \sigma_0^2$$
(9-28)

we would reject H_0 if $\chi_0^2 > \chi_{\alpha,n-1}^2$, whereas for the other one-sided hypothesis

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 < \sigma_0^2$ (9-29)

we would reject H_0 if $\chi_0^2 < \chi_{1-\alpha,n-1}^2$. The one-sided critical regions are shown in Figure 9-10(b) and (c).

9-4.1 Hypothesis Test on the Variance

Figure 9-11 Reference distribution for the test of H_0 : $\sigma^2 = \sigma_0^2$ with critical region values for (a) H_1 : $\sigma^2 \neq \sigma_0^2$, (b) H_1 : $\sigma^2 > \sigma_0^2$, and (c) H_1 : $\sigma^2 < \sigma_0^2$.

Example 9-8

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles results in a sample variance of fill volume of $s^2 = 0.0153$ (fluid ounces)². If the variance of fill volume exceeds 0.01 (fluid ounces)², an unacceptable proportion of bottles will be underfilled or overfilled. Is there evidence in the sample data to suggest that the manufacturer has a problem with underfilled or overfilled bottles? Use $\alpha = 0.05$, and assume that fill volume has a normal distribution.

Using the eight-step procedure results in the following:

- 1. The parameter of interest is the population variance σ^2 .
- 2. H_0 : $\sigma^2 = 0.01$
- 3. H_1 : $\sigma^2 > 0.01$
- 4. $\alpha = 0.05$
- 5. The test statistic is

$$\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Example 9-8

- 6. Reject H_0 if $\chi_0^2 > \chi_{0.05,19}^2 = 30.14$.
- 7. Computations:

$$\chi_0^2 = \frac{19(0.0153)}{0.01} = 29.07$$

8. Conclusions: Since $\chi_0^2 = 29.07 < \chi_{0.05,19}^2 = 30.14$, we conclude that there is no strong evidence that the variance of fill volume exceeds 0.01 (fluid ounces)².

9-5.1 Large-Sample Tests on a Proportion

Many engineering decision problems include hypothesis testing about p.

$$H_0$$
: $p = p_0$

$$H_1: p \neq p_0$$

An appropriate test statistic is

$$Z_0 = \frac{X - np_0}{\sqrt{np_0(1 - p_0)}} \tag{9-32}$$

and reject H_0 : $p = p_0$ if

$$z_0 > z_{\alpha/2}$$
 or $z_0 < -z_{\alpha/2}$

Example 9-10

A semiconductor manufacturer produces controllers used in automobile engine applications. The customer requires that the process fallout or fraction defective at a critical manufacturing step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of quality using $\alpha = 0.05$. The semiconductor manufacturer takes a random sample of 200 devices and finds that four of them are defective. Can the manufacturer demonstrate process capability for the customer?

We may solve this problem using the eight-step hypothesis-testing procedure as follows:

- The parameter of interest is the process fraction defective p.
- 2. H_0 : p = 0.05
- 3. H_1 : p < 0.05This formulation of the problem will allow the manufacturer to make a strong claim about process capability if the null hypothesis H_0 : p = 0.05 is rejected.
- 4. $\alpha = 0.05$

Example 9-10

5. The test statistic is (from Equation 9-32)

$$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$$

where x = 4, n = 200, and $p_0 = 0.05$.

- **6.** Reject H_0 : p = 0.05 if $z_0 < -z_{0.05} = -1.645$
- 7. Computations: The test statistic is

$$z_0 = \frac{4 - 200(0.05)}{\sqrt{200(0.05)(0.95)}} = -1.95$$

8. Conclusions: Since $z_0 = -1.95 < -z_{0.05} = -1.645$, we reject H_0 and conclude that the process fraction defective p is less than 0.05. The P-value for this value of the test statistic z_0 is P = 0.0256, which is less than $\alpha = 0.05$. We conclude that the process is capable.

Another form of the test statistic Z_0 is

$$Z_0 = \frac{X/n - p_0}{\sqrt{p_0(1 - p_0)/n}}$$
 or $Z_0 = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$

IMPORTANT TERMS AND CONCEPTS

α and β
Connection between
hypothesis tests and
confidence intervals
Critical region for a test
statistic
Hypothesis test
Inference

Null distribution
Null hypothesis
One- and two-sided
alternative hypotheses
Operating characteristic
(OC) curves
Power of a test
P-value

Reference distribution
for a test statistic
Sample size determination for hypothesis
tests
Significance level of
a test
Statistical hypotheses

Statistical versus practical significance Test for goodness of fit Test for homogeneity Test for independence Test statistic Type I and type II errors