Valeur absolue

Définition 1. La fonction valeur absolue est notée $|\cdot|: \mathbb{R} \to \mathbb{R}$ et définie par :

$$|x| = \begin{cases} x & \text{si } x \ge 0\\ -x & \text{si } x < 0 \end{cases}$$

Remarque:

- En particulier, la fonction valeur absolue est toujours positive. De plus, |x| = 0 si et seulement si x = 0.
- Soit $(x,y) \in \mathbb{R}^2$ alors, |x-y| correspond à la distance entre x et y sur la droite réelle.
- On a $x \leq |x|$ et $-x \leq |x|$.
- ullet La fonction valeur absolue est continue sur $\mathbb R$ mais pas dérivable en 0.

Proposition 1. Soit, $(x, y) \in \mathbb{R}^2$, on a alors :

- 1. |x| = |-x|
- 2. |xy| = |x||y|
- 3. Si $y \neq 0$ alors, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$.

$$|x+y| \le |x| + |y|.$$

Proposition 3. Pour tout $x \in \mathbb{R}$,

$$\sqrt{(x^2)} = |x|$$

Pour tout $x \in \mathbb{R}^+$,

$$(\sqrt{x})^2 = x = |x|$$

Proposition 4. Pour tout $x \in \mathbb{R}$,

$$|x|^2 = |x^2| = x^2$$

Proposition 5. Soit $a \in \mathbb{R}$ un réel et $\epsilon > 0$ un réel strictement positif. Pour tout $x \in \mathbb{R}$ on a

$$|x-a| \le \epsilon \iff a-\epsilon \le x \le a+\epsilon \iff x \in [a-\epsilon,a+\epsilon].$$

En particulier, pour tout $\epsilon > 0$, l'inégalité $|x| \le \epsilon$ est équivalente à $-\epsilon \le x \le \epsilon$ ou a $x \in [-\epsilon, \epsilon]$.

• Pour enlever une valeur absolue, il faut connaître le signe de ce qui est à l'intérieur.

⇒ Étude de cas selon le signe de ce qui est à l'intérieur de la valeur absolue.