

16-bit Instruction Format: ixxac₁c₂c₃c₄c₅c₆d₁d₂d₃j₄j₂j₃

i determines an A-Instruction or a C-Instruction

i = 0 is an A-instruction (Sets the address. The remaining fifteen bits will instead be used to select the address)

i = 1 is a C-Instruction

 \mathbf{x} is blank and doesn't matter if the instruction is a C-Instruction, these are used as address bits for A-Instructions

 \mathbf{a} determines whether the Y-Input to the ALU is the value of the current address (\mathbf{a} =0) or the value stored in memory at the current address (\mathbf{a} =1)

The values at c determine the options for the ALU	(when a=0) comp mnemonic	c1	c2	c 3	c4	c 5	c 6	(when a=1) comp mnemonic
C ₁ is zx	0	1	0	1	0	1	0	
c ₂ is nx	1	1	1	1	1	1	1	
c₃ is zy	-1	1	1	1	0	1	0	
c ₄ is ny	D	0	0	1	1	0	0	
c ₅ is f	A	1	1	0	0	0	0	М
c ₆ is no	!D	0	0	1	1	0	1	
	! A	1	1	0	0	0	1	! M
	-D	0	0	1	1	1	1	
The values for d determine	-A	1	1	0	0	1	1	-M
where the result will be saved	D+1	0	1	1	1	1	1	
(A, M, or D)	A+1	1	1	0	1	1	1	M+1
d₁ is A	D-1	0	0	1	1	1	0	
d ₂ is D	A-1	1	1	0	0	1	0	M-1
d ₃ is M	D+A	0	0	0	0	1	0	D+M
u 3 13 171	D-A	0	1	0	0	1	1	D-M
The contract of the	A-D	0	0	0	1	1	1	M-D
The values for j determine the	D&A	0	0	0	0	0	0	D&M
conditions for a jump to execute	D A	0	1	0	1	0	1	D M

 $[\]mathbf{j}_1$ is when less than zero

So the values for the j bits for the command "JGE" (comp is ≥ 0) would be 011

j₂ is when equal to zero

j₃ is when greater than zero