Orale Fisica

Giuseppe Facchi

Indice

1	Lave	oro ed Energia	3
	1.1	Introduzione	3
	1.2	Sistemi e Ambienti	3
	1.3	Lavoro	4
	1.4	Energia Cinetica	5
	1.5	Lavoro svolto da una molla	6
	1.6	Lavoro della forza gravitazionale	7
	1.7	Forze conservative	8
	1.8	Energia potenziale	8
		1.8.1 Energia potenziale gravitazionale	8
		1.8.2 Energia potenziale elastica	8

1 Lavoro ed Energia

1.1 Introduzione

L'energia è presente nell'Universo in varie forme. Ogni processo fisico nell'Universo coinvolge energia e trasferimenti o trasformazioni ed energia.

Sfortunatamente, però, essa non è facile da definire.

Per parlare di energia occorre definire il concetto di **sistema** e il concetto di **ambiente**.

1.2 Sistemi e Ambienti

Si definisce **sistema** un modello secondo il quale la nostra attenzione viene concentrata su una **piccola regione dell'Universo**, ignorando i dettagli del resto.

Occorre quindi saper identificare il sistema corretto. Un sistema può:

- Essere un singolo oggetto o particella
- Essere un insieme di oggetti o particelle
- Essere una regione dello spazio
- Variare in dimensioni e forma

Si definisce **contorno del sistema** la superificie **immaginaria**, che potrebbe anche coincidere con una superificie fisica, che **divide** il sistema dall'ambiente

Si definisce **ambiente** l'area che agisce sul sistema attraverso il suo contorno

1.3 Lavoro

Il **lavoro** fatto su un sistema da una causa che esercita una forza costante sul sistema è il prodotto del modulo della forza F, del modulo dello spostamento Δr del punto di applicazione della forza e di $\cos \theta$, essendo θ l'angolo compreso tra il vettore forza ed il vettore spostamento.

$$W = F\Delta r cos \theta$$

- È una grandezza scalare
- \bullet Il segno dipende dalla direzione di F relativamente a Δr
- \bullet L'unità di misura è il $J~[N\cdot m]$

Il lavoro rappresenta un trasferimento di energia

- dal sistema se **negativo**
- al sistema se **positivo**

Lavoro con forza variabile È la sommatoria di tutte le aree sottese del grafico Forza-spostamento con spostamento infinitesimale

$$\int_{x_i}^{x_f} F_x \ dx$$

Se su un sistema agisce più di una forza ed esso può essere assimilato ad una particella, il lavoro compiuto è il lavoro compiuto dalla forza risultante.

1.4 Energia Cinetica

Si definisce energia cinetica la forma di energia conseguente ad un lavoro compiuto su un sistema, relativa ad un suo cambio di velocità.

Segue l'equazione

$$W_{est} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

Quest'equazione ci dice che il lavoro svolto dalla forza risultante su un particella di massa m è uguale alla differenza fra i valori finale e iniziale della grandezza $\frac{1}{2}mv^2$

Si deduce quindi che il lavoro compiuto dalla forza risultante è pari alla variazione di energia cinetica della particella

$$W_{est} = K_f - K_i = \Delta K$$

Quest'equazione è nota come **teorema dell'energia cinetica**, ovvero: Quando viene svolto un lavoro su un sistema e la **sola** variazione nel sistema è il modulo della sua velocità, il lavoro compiuto dalla forza risultante è uguale alla variazione di energia cinetica del sistema

Dimostrazione:

- Trovo $F_x = F \cdot \cos \theta = ma_x$
- Se F_x è **constante** anche a lo è, quindi posso ricavare la velocità da $v_f^2 = v_i^2 + 2ad \to a = \frac{v_f^2 v_i^2}{2d}$
- Sostituendo a_x ottengo $F_x = m \frac{v_f^2 v_i^2}{2d}$
- $F_x d = \frac{1}{2} m v_f^2 \frac{1}{2} m v_i^2 = \Delta K$

1.5 Lavoro svolto da una molla

Legge di Hook:

$$F_m = -kx$$

dove x è la posizione del blocco rispetto all'equilibrio

- \bullet Da $x_i=0$ a $x_f=+x_{max}\to {\rm Lavoro}$ negativo
- Da $x_i = -x_{max}$ a $x_f = +x_{max} \to \text{Lavoro } \mathbf{nullo}$
- Da $x_i = +x_{max}$ a $x_f = 0 \rightarrow$ Lavoro **positivo**

Figura 1: Il lavoro corrisponde all'area del triangolo, quindi $W=-\frac{1}{2}kx^2$

Se il blocco compie uno spostamento arbitrario da x_i a x_f allora il lavoro sarà dato da

$$W_{est} = \int_{x_i}^{x_f} kx \ dx = \frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2$$

1.6 Lavoro della forza gravitazionale

La forza di gravità

- Esegue lavoro **resistente** quando il corpo sale
- Esegue lavoro a favore quando il corpo scende

Applicando il teorema dell'energia cinetica si ha:

- $\bullet \ \Delta K = K_f K_i = L_f + L_g$
- Se $K_f = K_i$ allora si ha che $\Delta K = 0 = L_f + L_g$
- Quindi $L_f = -L_g$

Ovvero la forza di gravità toglie tanta energia quanta ne ha fornita ${\cal F}$ per far salire il corpo

1.7 Forze conservative

Una forza è detta **conservativa** se:

- Il lavoro totale che compie su una particella è NULLO
- Il **lavoro** compiuto su una particella cge si muove tra due punti qualsiasi **non dipende dal percorso seguito**

1.8 Energia potenziale

Con energia potenziale ci si riferisce all'energia **associata alla disposizione di due o più corpi** (configurazione di un sistema)

$$\Delta U = -L$$

Ad ogni forza conservativa è associata un'energia potenziale

1.8.1 Energia potenziale gravitazionale

Consideriamo uno spostamento verticale $\Delta y = y_f - y_i$

- $\bullet \ \Delta U = -L = -(F_g \cdot \Delta y \cdot cos90^\circ) = F_g \cdot \Delta y = mg \cdot \Delta y$
- Cosiderando $y_i = 0 \rightarrow \Delta U = mgh$

1.8.2 Energia potenziale elastica

$$\Delta U = -L \to \Delta U = -(-\frac{1}{2}kx^2) \to \Delta U = \frac{1}{2}kx^2$$