Нижегородский государственный университет им. Н.И.Лобачевского

Факультет Вычислительной математики и кибернетики

Параллельные численные методы

Решение систем обыкновенных дифференциальных уравнений

При поддержке компании Intel

Баркалов К.А., Кафедра математического обеспечения ЭВМ

Содержание

- □ Основные понятия
 - Обыкновенные дифференциальные уравнения (ОДУ), системы ОДУ
- □ Численные методы решения ОДУ
 - Метод Эйлера
 - Методы Рунге-Кутта
 - Методы Адамса
- □ Параллельное решение систем ОДУ
 - Системы общего вида
 - Разреженные системы

Основные понятия

□ Обыкновенное дифференциальное уравнение (ОДУ)

$$u' = f(x,u) , x \in [a,b].$$

- □ Pewenue u(x), обращающая уравнение в тождество.
- □ Решение определяется единственным образом, если

$$u_0 = u(x_0), x_0 = a$$

- □ Условия существования и единственности решения см., напр., в [Тихонов]
- □ Аналитически решить *задачу Коши* можно лишь для некоторых специальных видов уравнений.
- □ Численное решение задачи построение таблицы приближенных значений u_i искомого решения u(x) на некоторой сетке $x_i \in [x_0, b]$ значений аргумента x.

Основные понятия

□ Система ОДУ

$$u'_{1} = f_{1}(x, u_{1}, u_{2}, ..., u_{n}) \qquad u_{1}(x_{0}) = u_{1}^{0}$$

$$u'_{2} = f_{2}(x, u_{1}, u_{2}, ..., u_{n}) \qquad u_{2}(x_{0}) = u_{2}^{0}$$

$$...$$

$$u'_{n} = f_{n}(x, u_{1}, u_{2}, ..., u_{n}) \qquad u_{n}(x_{0}) = u_{n}^{0}$$

□ Если ввести векторные обозначения

$$U = [u_1, u_2, ..., u_n]^T$$
 $F = [f_1, f_2, ..., f_n]^T$

то формальная запись системы будет выглядеть как

$$U' = F(x, U)$$
 $U^0 = U(x^0)$

□ Можно обобщить методы, применимые для одного уравнения, для решения систем уравнений, заменив скалярные операции векторными.

Основные понятия

- □ Системы ОДУ возникают:
 - из мат.модели задачи (например, система «хищник-жертва»);
 - при решении уравнений высших порядков;

Например, уравнение 2-го порядка

$$u'' = f(x, u, u')$$
 $u_0 = u(x_0)$ $u'_0 = u'(x_0)$

сводится к системе уравнений 1-го порядка

$$u' = z$$
 $u_0 = u(x_0)$
 $z' = f(x, u, z)$ $z_0 = u'(x_0)$

с помощью замены переменных

 При решении дифференциальных уравнений в частных производных методом частичной дискретизации (подробнее рассмотрим позже).

Метод Эйлера

- □ Занимает ключевую позицию в численных методах решения дифференциальных уравнений.
- □ Пусть известно приближенное значение v_i в точке x_i (в начале расчетов известно v_0 = u_0 в точке x_0).
- Разложим решение в ряд Тейлора в окрестности x_i

$$u(x_i + h) = u(x_i) + u'(x_i)h + \dots + \frac{u^{(p)}(x_i)}{p!}h^p + \frac{u^{(p+1)}(\xi_i)}{(p+1)!}h^{p+1}, \xi_i \in [x_i, x_{i+1}]$$

□ Отбрасывая слагаемые порядка $O(h^2)$, получаем расчетную формулу метода Эйлера

$$v_{i+1} = v_i + hf(x_i, v_i)$$

 Остаточный член ряда Тейлора можно использовать как локальную погрешность метода

$$r_i(h) = \frac{u''(\xi_i)}{2}h^2$$

Погрешность метода Эйлера

 Остаточный член ряда Тейлора можно использовать как локальную погрешность метода

$$r_i(h) = \frac{u''(\xi_i)}{2}h^2$$

- □ За *п* шагов метода образуется *глобальная погрешность*. Известно (см., например, [Вержбицкий]), что порядок глобальной погрешности (относительно шага *h*) на единицу ниже, чем порядок локальной.
- □ Таким образом, локальная ошибка метода Эйлера есть величина порядка $O(h^2)$, глобальная O(h), т.е. метод Эйлера относится к методам первого порядка

Графическая интерпретация метода

Повышение порядка метода

□ Учтем члены второго порядка в разложении

$$u(x_i + h) = u(x_i) + u'(x_i)h + \frac{u''(x_i)}{2}h^2 + O(h^3)$$

- □ Первая производная известна из уравнения $u'(x_i) = f(x_i, u_i)$
- □ Вторую производную можно найти как

$$u''(x) = f'_x(x,u) + f'_u(x,u)u' = f'_x(x,u) + f'_u(x,u)f(x,u)$$

□ Отбрасывая члены порядка O(h³) получаем метод порядка 2

$$v_{i+1} = v_i + h \left[f(x_i, v_i) + \frac{h}{2} (f'_x(x_i, v_i) + f'_u(x_i, v_i) f(x_i, v_i)) \right]$$

где v_i – приближенное значение функции u_i .

 \Box Недостаток: нужно вычислять частные производные функции f(x,u) на каждом шаге метода.

Методы Рунге-Кутта

Идея методов Рунге-Кутта (РК) – построить формулу вида

$$v_{i+1} = v_{i+1} + h\varphi(x_i, u_i, h)$$

где $\varphi(x_i,u_i,h)$ – функция, приближающая отрезок ряда Тейлора до p-го порядка и не содержащая частных производных f(x,u). Рассмотрим простейшие методы РК.

Пусть известно u(x), и нужно вычислить u(x+h). Рассмотрим равенство

$$u(x+h) = u(x) + \int_{0}^{h} u'(x+t)dt$$

lacktriangle Заменим интеграл на величину hu'(x) , получим

$$u(x+h) = u(x) + hf(x,u(x)) + O(h^2)$$

□ Отбрасывая члены порядка O(h²) получаем метод Эйлера

$$v_{i+1} = v_i + hf(x_i, v_i)$$

□ Более точная аппроксимация интеграла будет давать более точные расчетные формулы. Применим формулу трапеций, получим

 $u(x+h) = u(x) + \frac{h}{2}(u'(x) + u'(x+h)) + O(h^3)$

что равносильно

$$u(x+h) = u(x) + \frac{h}{2} (f(x,u(x)) + f(x+h,u(x+h))) + O(h^3)$$

□ Отбрасывая члены *O*(*h*³), получаем *неявную формулу Адамса* второго порядка ,

$$v_{i+1} = v_i + \frac{h}{2} (f(x_i, v_i) + f(x_{i+1}, v_{i+1}))$$

□ В общем случае данное уравнение неразрешимо относительно V_{i+1} , (спец. случай - линейность функции f).

 \square Заменим u(x+h) в правой части на некоторую величину

$$k=u(x+h)+O(h^2)$$
.

 $lue{}$ Тогда правая часть изменится на величину порядка $O(h^3)$

$$\frac{h}{2}(f(x,k) - f(x+h,u(x+h))) = \frac{h}{2}f'_u(x+h,\overline{u})(k-u(x+h)) = O(h^3)$$

и будет выполняется соотношение

$$u(x+h) = u(x) + \frac{h}{2} (f(x,u(x)) + f(x+h,k)) + O(h^3)$$

□ Осталось только предложить подходящий выбор величины *k*.

□ Соотношению $k=u(x+h)+O(h^2)$ удовлетворяет результат вычислений по формуле Эйлера, т.е.

$$k = u(x) + hf(x_i, u(x))$$

Сведя все воедино, получаем расчетные формулы метода
 Рунге-Кутта 2-го порядка

$$k = v_i + hf(x_i, v_i)$$

$$v_{i+1} = v_i + \frac{h}{2} (f(x_i, v_i) + f(x_{i+1}, k))$$

- □ Метод двухэтапный: 1) расчет k 2) расчет v_{i+1} .
- \square Правая часть f(x,u) вычисляется два раза.

 Построим другую пару формул с погрешностью такого же порядка. Применим формулу прямоугольников, получим

$$u(x+h) = u(x) + hu'(x+h/2) + O(h^3)$$

Что равносильно

$$u(x+h) = u(x) + hf(x+h/2, u(x+h/2)) + O(h^3)$$

□ Если рассмотреть вспомогательную величину

$$k = u(x+h/2) + O(h^2)$$

то, как и в предыдущем случае, получим

$$u(x+h) = u(x) + hf(x+h/2,k) + O(h^3)$$

□ Как выбрать k?

- □ В качестве величины *k* можно взять результат вычислений по формуле Эйлера с половинным шагом.
- □ В итоге получаем расчетные формулы

$$k = v_i + \frac{h}{2} f(x_i, v_i)$$

$$v_{i+1} = v_i + h f(x_i + \frac{h}{2}, k)$$

- \square Метод двухэтапный: 1) расчет k 2) расчет v_{i+1} .
- \square Правая часть f(x,u) вычисляется два раза.

□ Когда говорят «метод Рунге-Кутта», не сообщая о нем никаких дополнительных сведений, то под этим подразумевают именно данный классический метод четвертого порядка.

$$k_{1} = f(x_{i}, v_{i})$$

$$k_{2} = f\left(x_{i} + \frac{h}{2}, v_{i} + \frac{h}{2}k_{1}\right)$$

$$k_{3} = f\left(x_{i} + \frac{h}{2}, v_{i} + \frac{h}{2}k_{2}\right)$$

$$k_{4} = f\left(x_{i} + h, v_{i} + hk_{3}\right)$$

$$v_{i+1} = v_{i} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

 \square Метод является четырехэтапным (4 раза вычисляется f(x,u))

Общий вид методов Рунге-Кутта

□ В процессе вычислений фиксированы некоторые числа a_i , b_{ij} , i=2,3,..., m, j=1,2,..., m-1, и c_i , i=1,2,..., m, с помощью которых вычисляются величины k_1 ,..., k_m и находится значение v_{i+1} :

$$k_{1} = f(x_{i}, v_{i}) k_{2} = f(x_{i} + a_{2}h, v_{i} + b_{21}hk_{1})$$

$$k_{3} = f(x_{i} + a_{3}h, v_{i} + b_{31}hk_{1} + b_{32}hk_{2})$$

$$...$$

$$k_{m} = f(x_{i} + a_{m}h, v_{i} + b_{m1}hk_{1} + b_{m2}hk_{2} + ... + b_{m-1,2}hk_{m-1})$$

$$v_{i+1} = v_{i} + h\sum_{i=1}^{m} c_{i}k_{i}$$

- □ Метод явный, *т*-этапный.
- □ В [Хайрер] приведены формулы 18-и этапного метода Рунге-Кутта 10-го порядка.

Контроль локальной погрешности

- □ Одной и той же погрешности можно достичь, если вести интегрирование с большим шагом в области, где решение изменяется плавно, и с малым шагом – в области резкого изменения решения.
- □ Как определить величину шага?
- □ Расчет следующей точки провести в два этапа
 - за один шаг длины h, получаем значение v_{i+1} ;
 - за два шага длины h/2, получаем значение \overline{v}_{i+1} .
- □ Вычислить величину

$$S = \frac{\overline{v}_{i+1} - v_i}{2^p - 1}$$

где *p* – порядок метода.

Контроль локальной погрешности

- 1. Если $|S| > \varepsilon$, то положить h = h/2, и провести расчет из i-й точки заново.
- 2. Если $2^{p+1} < |S| \le \epsilon$, то оставить шаг неизменным, и перейти к расчету следующей точки.
- 3. Если |S|<2^{p+1}, то положить *h*=2*h* , и перейти к расчету следующей точки.
- lacktriangle Вычисление v_{i+1} и \overline{v}_{i+1} может быть проведено параллельно.
- □ Предложенный подход является относительно трудоемким. Например, для подсчета одной следующей точки с контролем локальной погрешности по методу Эйлера потребуется три раза вычислить правую часть уравнения *f*(*x*,*u*), а в случае использования метода Рунге-Кутта 4-го порядка число вычислений правой части возрастет до 12-и.
- lacktriangledown v_{i+1} и \overline{v}_{i+1} можно вычислять, используя методы разных порядков.

Методы Адамса

- □ Рассмотрим иной подход к построению численных алгоритмов решения задачи Коши для ОДУ.
- □ Пусть найдено несколько приближенных значений *v_i* решения u(x) на равномерной сетке $x = x_0 + ih$, и надо найти v_{i+1} .

Проинтегрируем ОДУ от
$$x_i$$
 до x_{i+1}
$$u(x_{i+1}) = u(x_i) + \int_{x_i}^{x_{i+1}} f(x, u(x)) dx$$

 \Box Функция f(x,u(x)) как функция одного аргумента x в общем случае не известна, но известны ее приближенные дискретные значения $f(x_i, v_i)$. Значит, f(x, u(x)) можно заменить интерполирующим ее полиномом. При этом для построения полинома k-й степени можно использовать либо узлы x_i , j=i-k,...,i (обозначим такой полином $P_k(x)$), либо узлы x_i j=i-k+1,...,i+1 (обозначим такой полином $Q_k(x)$)

Методы Адамса

□ Подстановка полиномов приводит к формулам

$$v_{i+1} = v_i + \int_{x_i}^{x_{i+1}} P_k(x) dx$$

$$v_{i+1} = v_i + \int_{x_i}^{x_{i+1}} Q_k(x) dx$$

- □ Методы Адамса-Башфорта экстраполяционные, Адамса-Моултона – интерполяционные
- □ Построение интерполяционных полиномов $P_k(x)$, $Q_k(x)$ и их интегрирование можно найти в [Вержбицкий]

Методы Адамса-Башфорта

□ Запишем формулы, соответствующие нескольким первым значениям параметра *k*.

k=0:
$$v_{i+1} = v_i + hf(x_i, v_i)$$

k=1:
$$v_{i+1} = v_i + \frac{h}{2} (3f(x_i, v_i) - f(x_{i-1}, v_{i-1}))$$

k=2:
$$v_{i+1} = v_i + \frac{h}{12} (23f(x_i, v_i) - 16f(x_{i-1}, v_{i-1}) + 5f(x_{i-2}, v_{i-2}))$$

k=3:
$$v_{i+1} = v_i + \frac{h}{24} \left(55f(x_i, v_i) - 59f(x_{i-1}, v_{i-1}) + 37f(x_{i-2}, v_{i-2}) - 9f(x_{i-3}, v_{i-3}) \right)$$

- □ Локальная погрешность метода Адамса-Башфорта является величиной $O(h^{k+2})$, глобальная величиной $O(h^{k+1})$.
- □ Под шаговостью метода понимается количество значений решения, используемое в расчетной формуле

Методы Адамса-Моултона

□ Запишем формулы, соответствующие нескольким первым значениям параметра *k*.

$$k=0: v_{i+1} = v_i + hf(x_{i+1}, v_{i+1})$$

$$k=1: v_{i+1} = v_i + \frac{h}{2} (f(x_{i+1}, v_{i+1}) + f(x_i, v_i))$$

$$k=2: v_{i+1} = v_i + \frac{h}{12} (5f(x_{i+1}, v_{i+1}) + 8f(x_i, v_i) - f(x_{i-1}, v_{i-1}))$$

$$k=3: v_{i+1} = v_i + \frac{h}{24} (9f(x_{i+1}, v_{i+1}) + 19f(x_i, v_i) - 5f(x_{i-1}, v_{i-1}) + f(x_{i-2}, v_{i-2}))$$

- □ Локальная погрешность метода Адамса-Моултона является величиной $O(h^{k+2})$, глобальная величиной $O(h^{k+1})$.
- □ Для методов Адамса-Моултона порядок шаговости на единицу ниже порядка точности метода (за исключением *k*=0).

Схема предиктор-корректор

- □ Методы Адамса-Башфорта явные, Адамса-Моултона неявные. Непосредственное применение методов Адамса-Моултона возможно, напр., в случае линейности функции f(x,u).
- □ Обычно явные и неявные методы (одного или смежных порядков) применяются совместно, образуя так называемую схему прогноза и коррекции (предиктор-корректор):
 - по явной формуле значение решения задачи в расчетной точке x_{i+1} прогнозируется, т.е. находится его, быть может, грубое приближение;
 - по неявной формуле, в правую часть которой подставляется спрогнозированное значение, оно уточняется (коррекция).
- Пример: парное использование явного метода Эйлера для предсказания и метода трапеций для уточнения (один из методов Рунге-Кутта второго порядка).

Общий вид методов Адамса

$$v_{i+1} = v_i + h \sum_{j=0}^{m} a_j f(x_{i+1-j}, v_{i+1-j})$$

где m – натуральное число. При a_0 =0 формула определяет явные, а при a_0 ≠0 – неявные методы.

- □ При любом порядке метода Адамса для реализации одного шага требуется вычисление лишь одного нового значения функции (или двух в схеме предиктор-корректор).
- □ Выгодно применять многошаговые методы высоких порядков
- □ Проблема вычисления первых *m*−1 «разгонных» значений *v*₁,..., *v*_{m−1} :
 - специальные расчетные формулы;
 - использовать одношаговые методы Рунге-Кутта.

Решение систем ОДУ

Параллельное решение систем ОДУ

□ При применении метода Эйлера получаем

$$V^{j+1} = V^j + hF(x^j, V^j)$$

верхним индексом обозначен номер итерации, а вектор V^{j} является приближенным значением точного решения $U(x^{j})$.

- Вычисление векторов V^{j} , j=1,2,..., производится последовательно, поэтому распараллеливание возможно лишь при выполнении одной итерации метода:
 - разделим все уравнения системы на $n_p = \lceil n/p \rceil$ блоков;
 - каждый поток проводит вычисление компонент решения v_i^{j+1} только в рамках своего блока
 - после вычисления всех блоков переход к следующей итерации.
- □ Синхронизация после проведения каждой итерации

Параллельное решение систем ОДУ

□ При применении метода Рунге-Кутта 2-го порядка получаем

$$K^{j} = V^{j} + \frac{h}{2}F(x^{j}, V^{j})$$

$$V^{j+1} = V^{j} + hF(x^{j} + \frac{h}{2}, K^{j})$$

□ Очевидно, что в общем случае распараллеливание возможно даже не в рамках одной итерации, а лишь в рамках одного этапа метода. Это опять выводит на первый план накладные расходы на создание/закрытие параллельных секций после каждой итерации в случае быстро вычисляемой правой части.

Метод частичной дискретизации

- □ Один из известных методов решения уравнений в частных производных (ДУЧП)
- □ ДУЧП сводится к системе ОДУ.
- □ Рассмотрим уравнение теплопроводности

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} , 0 < x < 1, 0 < t \le T,$$

$$u(x,0) = u_0(x), 0 \le x \le 1, u(0,t) = 0, u(1,t) = 0, 0 \le t \le T.$$

□ По оси *X* введем равномерную сетку с шагом *h* с узлами *x_i=ih*, 0≤*i*≤*n*, *h*=1/*n*; а затем, используя формулу вычисления второй производной, запишем приближенное соотношение

$$\frac{\partial u}{\partial t}\bigg|_{x_{i},t} \approx \frac{u(x_{i+1},t) - 2u(x_{i},t) + u(x_{i-1},t)}{h^{2}} , 1 \le i \le n-1.$$

Метод частичной дискретизации

- □ Нужно найти (*n*–1)-у функцию $v_1(t), v_2(t), ..., v_{n-1}(t)$ такую, что $v_i(t) \approx u(x_i, t)$, 1≤*i*≤*n*–1.
- □ Функции можно найти как решение системы ОДУ

$$v_i'(t) = \frac{v_{i+1}(t) - 2v_i(t) + v_{i-1}(t)}{h^2}$$
, $1 \le i \le n-1$.

из граничных условий $v_0(t)$, $v_n(t)$ - известны из начальных условий $v_i(0) = u_0(x_i)$, $1 \le i \le n-1$.

□ Полученная нами система ОДУ записывается в матричной форме как

$$v'(t) = \frac{1}{h^2} A v(t)$$
 $v(0) = v^0$ где $v(t) = [v_1(t), v_2(t), ..., v_{n-1}(t)]^T$

Свойства матрицы системы ОДУ

- □ Матрица А трехдиагональная
- в случае решения двумерного уравнения матрица будет пятидиагональной, трехмерного A = уравнения – семидиагональной.
- □ Размер системы экспоненциально растет с увеличением размерности.

$$\begin{bmatrix} -2 & 1 \\ 1 & -2 & 1 \end{bmatrix}$$

Система ОДУ, полученная из «одномерного» уравнения при n=1001, будет содержать 10³ уравнений, из «двумерного» – 10⁶ уравнений, из «трехмерного» – 10⁹ уравнений.

Применение метода Эйлера

Применим к системе метод Эйлера, то получим

$$v^{j+1} = v^j + \frac{\tau}{h^2} A v^j$$
, $0 \le j \le m-1$,

□ В покомпонентной форме это будет записано как

$$v_i^{j+1} = v_i^j + \frac{\tau}{h^2} \left(v_{i+1}^j - 2v_i^j + v_{i-1}^j \right), 1 \le i \le n-1, 0 \le j \le m-1,$$

что соответствует явной разностной схеме.

- Аналогично чисто неявная разностная схема получается при применении к неявного метода Эйлера, а схема Кранка-Николсона – при применении неявного метода Адамса 2-го порядка.
- Указанные разностные схемы будут рассмотрены в следующем разделе.

Решение разреженных систем ОДУ

□ Вернемся к общему описанию системы в форме

$$U' = F(x, U) \qquad U(x_0) = U^0$$

- \square В силу разреженности матрицы A аргументы функции f_i будут лежать лишь в некоторой окрестности i.
- □ Расстояние доступа d(F) наименьшее целое b такое, что любая функция из правой части имеет доступ лишь к подмножеству $\{w_{i-b},...,w_{i+b}\}$ компонентов вектора U.
- □ Расстояние доступа ограничено, если d(F) << n.
- □ В этом случае можно организовать конвейерную схему вычислений. Рассмотрим ее на примере метода Рунге-Кутта четвертого порядка.

Конвейерная схема решения

 \square Разделим все уравнения системы на $n_B = \lceil n/B \rceil$ блоков размера B, где $d(F) \le B << n$. Тогда при вычислении блока $J = \{1,...,n_B\}$ $F_J(x,U) = [f_{(J-1)B+1}(x,U),...,f_{(J-1)B+\min\{B,n-(J-1)B\}}(x,U)]^T$

будут использованы только блоки *J*–1, *J*, *J*+1 (кроме очевидного случая граничных блоков). Тогда

- Первый шаг конвейера: вычисляются 1-й и 2-й блоки коэффициентов K_1^i
- Второй шаг: вычислить 1-й блок коэффициентов K_2^i , и 3-й блок K_1^i .
- Третий шаг: вычислить 4-й блок K_1^i и 2-й блок K_2^i .
- Четвертый шаг: вычислить 5-й блок K_1^i , третий блок K_2^i , и первый блок K_3^i ,
- и т.д.

Конвейерная схема решения

K_1^i	1	1	2	3	4	5	6	7	8	• • •
K_2^i	2	3	4	5	6	7	8			•••
K_3^i	4	5	6	7	8					•••
K_4^i	6	7	8							• • •
V^{i}	6	7	8							•••
	1	2	3	4	5	6	7	8	9	• • •

lacktriangled Отметим, что после вычисления очередного блока K_4^i можно проводить вычисление блока значений V^i , т.к. здесь не содержится трудоемкой операции вычисления правой части F(x,U).

Конвейерная схема решения

- □ Приведенная схема вычислений позволяет не только организовать конвейер, но и существенным образом сэкономить память:
 - при использовании метода в общем случае потребовалось бы хранить 6n значений (для векторов K_1^i , K_2^i , K_3^i , K_4^i , V^i , V^{i+1}).
 - при использовании конвейерной схемы достаточно хранить $n+O(n_B)$ значений (вектор V, который поблочно пересчитывается из V^i в V^{i+1} , и необходимое количество блоков для очередного шага конвейера).

Заключение

- □ Рассмотрены
 - Численные методы решения ОДУ
 - Метод Эйлера
 - Методы Рунге-Кутта
 - Методы Адамса
 - Параллельное решение систем ОДУ
 - Системы общего вида
 - Разреженные системы

Литература

- 1. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. – М.: Наука, 1985.
- Вержбицкий В.М. Численные методы. М.: Высшая школа, 2001.
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- 4. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 5. Ортега Дж., Пул У. Введение в численные методы решения дифференциальных уравнений. М.: Наука, 1986.
- 6. Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990.

Авторский коллектив

- □ Баркалов Константин Александрович, к.ф.-м.н., старший преподаватель кафедры Математического обеспечения ЭВМ факультета ВМК ННГУ. barkalov@fup.unn.ru
- Коды учебных программ разработаны Маловой Анной и Сафоновой Яной

