

Preliminary

The test consists of 10 questions with answers (5 points max)

You have 1 attempt.

Any new attempt gives you 0,5-point penalty.

In the case of anonymous answer (like «Name -1, HDU ID -1») ALL students will receive 0,5-point penalty for each case.

All questions are in this presentation. Form with answers can be filled here:

https://forms.yandex.ru/u/67c99d4c068ff011cc426dcb/

Consider the differential equation of RL-circuit:

$$L\frac{di}{dt} = U - Ri$$

$$R = 1.5$$

$$L = 0.006$$

Calculate the settling time within 5% tolerance for the step response of the voltage U

a) 0.004 c

b) 0.008 c

c) 0.012 c

d) 0.009 c

e) 0.006 c

f) 0.018 c

Consider the closed-loop system with the first order transfer function and proportional-integral controller.

Calculate symbolical equations for K_p and K_i that gives us the closed loop transfer function of the form: $W_{CL} = \frac{\omega_c}{s + \omega}$

a)
$$K_p = R \cdot \omega_c$$
, $K_i = L \cdot \omega_c$ b) $K_p = \frac{L}{R} \cdot \omega_c$, $K_i = 1$ c) $K_p = R \cdot \omega_c^2$, $K_i = L \cdot \omega_c^2$

d)
$$K_p = 1$$
, $K_i = \frac{L}{R} \cdot \omega_c$ e) $K_p = L \cdot \omega_c$, $K_i = R \cdot \omega_c$ f) $K_p = L \cdot \omega_c^2$, $K_i = R \cdot \omega_c^2$

Consider the second order transfer function with the follows form:

$$W(s) = \frac{50000}{s^2 + 5s + 2500}$$

Determine *percent overshoot* of the output signal for unit step response.

a)
$$\approx 85.5\%$$

b)
$$\approx 62.5\%$$

c)
$$\approx 43\%$$

d)
$$\approx 46.1\%$$

e)
$$\approx 38.5\%$$

Consider the second order transfer function with the follows form:

$$W(s) = \frac{100000}{s^2 + 50s + 10000}$$

Determine damped natural frequency of the output signal for unit step response.

- a) $\approx 100 \, rad / s$ b) $\approx 10 \, rad / s$ c) $\approx 96.8 \, rad / s$
- e) $\approx 103.1 \, rad / s$ f) $\approx 51.6 \, rad / s$ d) $\approx 48.4 \, rad / s$

Consider the second order transfer function with the follows form:

$$W(s) = \frac{100000}{s^2 + 100s + 10000}$$

Determine *peak time* of the output signal for unit step response.

a) $\approx 0.009 \, s$

b) $\approx 0.018 \, s$

c) $\approx 0.288 \, s$

d) $\approx 0.036 \, s$

e) $\approx 0.144 \, s$

f) $\approx 0.072 \, s$

Consider the system with the follows bode plot. Find the static gain of the such system.

a)
$$\approx 45$$

b)
$$\approx 53$$

c)
$$\approx 117.5$$

d)
$$\approx 750$$

e)
$$\approx 28.8$$

f)
$$\approx 1.1$$

Consider the DC motor described by the follows equations:

$$\begin{cases} 0.0005 \cdot \frac{di_a}{dt} = U - 0.1 \cdot i_a - 0.2 \cdot \omega \\ 0.02 \cdot \frac{d\omega}{dt} = 0.2 \cdot i_a - T_L \end{cases}$$

Calculate poles of the transfer function from the voltage to speed.

a)
$$s_{12} \approx -0.0500 \pm 1.4i$$
 b) $s_1 \approx -57.3$, $s_2 \approx -12.1$ c) $s_1 \approx -388.4$, $s_2 \approx -135.7$

d)
$$s_1 \approx -199.6$$
, $s_2 \approx -0.4$ e) $s_{12} \approx -0.0500 \pm 0.2i$ f) $s_1 \approx -177.5$, $s_2 \approx -22.5$

Consider the follows block diagram:

Simplify this to 1 transfer function from R(s) to C(s).

$$\mathbf{a)} \qquad W(s) = \frac{G - H_1}{1 + GH_2}$$

$$W(s) = \frac{G + H_2}{1 + GH_1}$$

$$C) W(s) = \frac{G + H_1}{1 + GH_2}$$

d)
$$W(s) = \frac{G + H_1}{1 + H_1 H_2}$$
 e) $W(s) = \frac{G + H_1}{1 - G H_2}$

e)
$$W(s) = \frac{G + H_1}{1 - GH_2}$$

$$f) W(s) = \frac{G - H_2}{1 + GH_1}$$

Consider the follows block diagram:

Simplify this to 1 transfer function from R(s) to C(s).

a)
$$W(s) = G_1G_2 + G_1 + 1$$

b)
$$W(s) = G_1G_2 + G_2 + 1$$
 c) $W(s) = G_1G_2 - G_2 - 1$

C)
$$W(s) = G_1G_2 - G_2 - G_3$$

d)
$$W(s) = \frac{G_1 G_2}{G_2 + 1}$$

e)
$$W(s) = \frac{G_1 G_2}{G_1 + 1}$$

f)
$$W(s) = \frac{G_1 + G_2}{G_1}$$

Consider the dynamic system that is described by the follows differential equation: $2\ddot{y} + 4\dot{y} + 12y = u$

Also, that can be described in state space form with some coefficients

$$a_{21}$$
, a_{22} , b_{21} : $\dot{x}_1 = x_2$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + b_{21}u$$

$$y = x_1$$

Find the value of the coefficient a₂₁

a)
$$a_{21} = -3$$

b)
$$a_{21} = -2$$

c)
$$a_{21} = 3$$

d)
$$a_{21} = -6$$

e)
$$a_{21} = 6$$

f)
$$a_{21} = -4$$

THANK YOU FOR YOUR TIME!

ITSMOre than a UNIVERSITY