1. Exploração Preliminar dos Dados

```
# Importando bibliotecas necessárias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
from sklearn.linear model import LinearRegression
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, r2_score
from lifelines import KaplanMeierFitter, CoxTimeVaryingFitter
# Apenas para ignorar os alertas do python
import warnings
warnings.filterwarnings("ignore")
# Definindo caminho dos dados
dir path = './CMAPSSData/'
# Definindo o nome das colunas para facilitar a exploração dos dados
index names = ['unidade', 'ciclo tempo']
setting_names = ['config_1', 'config_2', 'config_3']
sensor_names = ['s_{}'.format(i) for i in range(1,22)]
col names = index_names + setting_names + sensor_names
# Lendo os dados
train = pd.read csv((dir path+'train FD001.txt'), sep='\s+',
header=None, names=col names)
test = pd.read csv((dir path+'test FD001.txt'), sep='\s+',
header=None, names=col names)
y test = pd.read csv((dir path+'RUL FD001.txt'), sep='\s+',
header=None, names=['RUL'])
# Analisar as primeiras linhas da nossa base de dados
train.head()
   unidade ciclo_tempo config_1 config_2 config_3
                                                          s 1
/
         1
                          -0.0007
                                    -0.0004
                                                100.0 518.67
                                                               641.82
                      2
1
                           0.0019
                                    -0.0003
                                                100.0 518.67
                                                               642.15
                          -0.0043
                                     0.0003
                                                100.0 518.67
                                                               642.35
         1
                           0.0007
                                     0.0000
                                                100.0 518.67
                                                               642.35
         1
                          -0.0019
                                    -0.0002
                                                100.0 518.67
                                                               642.37
```

```
s_5 ...
                                   s 12
                                             s 13
       s 3
                s 4
                                                      s 14
                                                              s 15
s_16 s 17
0 1589.70
            1400.60
                     14.62
                            . . .
                                 521.66
                                         2388.02
                                                   8138.62
                                                           8.4195
0.03
       392
  1591.82
                                 522.28
1
            1403.14
                     14.62
                                         2388.07
                                                   8131.49
                                                            8.4318
0.03
       392
2
  1587.99
            1404.20
                     14.62
                                 522.42
                                         2388.03
                                                   8133.23
                                                           8.4178
0.03
       390
  1582.79
                     14.62 ...
                                 522.86
                                         2388.08 8133.83 8.3682
3
            1401.87
0.03
       392
           1406.22 14.62 ...
  1582.85
                                         2388.04 8133.80 8.4294
                                 522.19
0.03
       393
   s 18
          s 19
                 s 20
                          s 21
   2388
         100.0
                39.06
                       23.4190
1
  2388
         100.0
                       23.4236
                39.00
2
  2388
         100.0
                38.95
                       23.3442
3
  2388
         100.0
                38.88
                       23.3739
4 2388
         100.0
                38.90
                       23.4044
[5 rows x 26 columns]
# Analisar o conjunto de treino
train[index names].describe()
            unidade
                      ciclo tempo
       20631.000000
                     20631.000000
count
mean
          51.506568
                       108.807862
std
          29.227633
                        68.880990
min
           1.000000
                         1.000000
25%
          26.000000
                        52.000000
                       104.000000
50%
          52.000000
75%
          77.000000
                       156.000000
         100.000000
                       362.000000
max
# Analisar os ciclos temporais
train[index_names].groupby('unidade').max().describe()
       ciclo tempo
count
        100.000000
mean
        206.310000
std
         46.342749
min
        128.000000
25%
        177.000000
50%
        199.000000
75%
        229.250000
        362.000000
max
```

Analisar as configurações de operação train[setting_names].describe()

	config_1	config_2	config_3
count	20631.000000	20631.000000	20631.0
mean	-0.000009	0.000002	100.0
std	0.002187	0.000293	0.0
min	-0.008700	-0.000600	100.0
25%	-0.001500	-0.000200	100.0
50%	0.000000	0.00000	100.0
75%	0.001500	0.000300	100.0
max	0.008700	0.000600	100.0

Analisar os valores dos sinais

train[sensor_names].describe().transpose()

_				
count	mean	std	min	25%
50% \				
s_1 20631.0	518.670000	6.537152e-11	518.6700	518.6700
518.6700				
s_2 20631.0	642.680934	5.000533e-01	641.2100	642.3250
642.6400				
s_3 20631.0	1590.523119	6.131150e+00	1571.0400	1586.2600
1590.1000				1.100 0.00
s_4 20631.0	1408.933782	9.000605e+00	1382.2500	1402.3600
1408.0400	14 600000	2 204700 12	14 6000	14 6000
s_5 20631.0	14.620000	3.394700e-12	14.6200	14.6200
14.6200	21 600002	1 200005 02	21 6000	21 6100
s_6 20631.0	21.609803	1.388985e-03	21.6000	21.6100
21.6100	FF2 267711	0 050022- 01	F40 0F00	FF2 0100
s_7 20631.0	553.367711	8.850923e-01	549.8500	552.8100
553.4400	2200 006652	7 0005400 00	2207 0000	2200 0500
s_8 20631.0 2388.0900	2388.096652	7.098548e-02	2387.9000	2388.0500
s 9 20631.0	9065.242941	2.208288e+01	9021.7300	9053.1000
9060.6600	9005.242941	2.2002000+01	9021.7300	9055.1000
s 10 20631.0	1.300000	4.660829e-13	1.3000	1.3000
1.3000	1.300000	4.0000296-13	1.3000	1.3000
s 11 20631.0	47.541168	2.670874e-01	46.8500	47.3500
47.5100	47.341100	2.0700746-01	40.0300	47.5500
s 12 20631.0	521.413470	7.375534e-01	518.6900	520.9600
521.4800	3211413470	713733340 01	310.0300	320.3000
s 13 20631.0	2388.096152	7.191892e-02	2387.8800	2388.0400
2388.0900	25001050152	711310320 02	230710000	230010100
s 14 20631.0	8143.752722	1.907618e+01	8099.9400	8133.2450
8140.5400	00			0_001_100
s 15 20631.0	8.442146	3.750504e-02	8.3249	8.4149
8.4389			-	
s 16 20631.0	0.030000	1.556432e-14	0.0300	0.0300
0.0300				

```
s 17 20631.0
                393.210654 1.548763e+00
                                            388.0000
                                                        392.0000
393.0000
s 18 20631.0 2388.000000 0.000000e+00 2388.0000
                                                       2388.0000
2\overline{3}88.0000
s 19 20631.0
                100.000000 0.000000e+00
                                            100.0000
                                                        100.0000
100,0000
s 20
     20631.0
                 38.816271 1.807464e-01
                                             38.1400
                                                         38.7000
38.8300
s 21 20631.0
                 23.289705 1.082509e-01
                                             22.8942
                                                         23.2218
23.2979
            75%
                       max
s 1
       518.6700
                  518.6700
s 2
       643,0000
                  644.5300
s 3
      1594.3800
                 1616.9100
s 4
      1414.5550
                 1441.4900
s 5
        14.6200
                   14.6200
s 6
        21.6100
                   21.6100
s_7
       554.0100
                  556.0600
s 8
      2388.1400
                 2388.5600
s_9
      9069.4200
                 9244.5900
s 10
         1.3000
                    1.3000
        47.7000
s 11
                   48.5300
       521.9500
s 12
                  523.3800
                 2388.5600
s 13
      2388.1400
s 14 8148.3100
                 8293.7200
s 15
         8.4656
                    8.5848
s 16
         0.0300
                    0.0300
s 17
       394.0000
                  400.0000
s 18 2388.0000
                 2388,0000
s 19
     100.0000
                  100.0000
s 20
        38.9500
                   39.4300
        23.3668
                   23.6184
s 21
```

2. Computando o RUL

```
def add_RUL(df):
    # Obter o numero total de ciclos para cada unidade
    grupo_unidade = df.groupby(by="unidade")
    ciclo_max = grupo_unidade["ciclo_tempo"].max()

# Mesclar o valor do ciclo maximo no dataframe de origem
    df_resultado = df.merge(ciclo_max.to_frame(name='ciclo_max'),
left_on='unidade', right_index=True)

# Calcular o RUL para cada linha
    vida_restante = df_resultado["ciclo_max"] -
df_resultado["ciclo_tempo"]
```

```
df_resultado["RUL"] = vida_restante
    # Remover o valor do ciclo maximo, que nao e mais necessario
    df resultado = df resultado.drop("ciclo max", axis=1)
    return df resultado
train = add RUL(train)
train[index names+['RUL']].head()
   unidade ciclo_tempo
                         RUL
0
                         191
         1
         1
                      2
1
                         190
2
         1
                      3
                         189
3
         1
                      4
                         188
4
                      5
         1
                         187
# Distribuicao do RUL. Similar a funcao descricao feita acima na
coluna ciclo_tempo, mas visual
df max rul = train[['unidade',
'RUL']].groupby('unidade').max().reset_index()
df_max_rul['RUL'].hist(bins=15, figsize=(15,7))
plt.xlabel('RUL')
plt.ylabel('Frequência')
plt.show()
```


3. Grafico dos sensores

```
def plot_sinal(sensor):
   plt.figure(figsize=(13,5))
```


RUL

2387.9

4. Abordagem de Referência: Regressão Linear

```
# Criar a funcao de avaliacao
def avaliar(y verdadeiro, y calculado, label='teste'):
    mse = mean squared_error(y_verdadeiro, y_calculado)
    rmse = np.sqrt(mse)
    variancia = r2_score(y_verdadeiro, y_calculado)
    print('conjunto de {} -> RMSE:{}, R2:{}'.format(label, rmse,
variancia))
# Preparando os dados
# Removendo os sensores desnecessarios
drop_sensors = ['s_1','s_5','s_6','s_10','s_16','s_18','s_19']
drop labels = index names+setting names+drop sensors
# Separar os valores de entrada e saida do modelo
X train = train.drop(drop_labels, axis=1)
y train = X train.pop('RUL')
# Como os valores reais para o RUL no conjunto de treino são
fornecidos apenas para o último ciclo de tempo de cada motor,
# o conjunto de teste é subdividido para representar o mesmo
X test =
test.groupby('unidade').last().reset index().drop(drop labels, axis=1)
print(X train.columns) # Verificar as colunas restantes
Index(['s_2', 's_3', 's_4', 's_7', 's_8', 's_9', 's_11', 's_12',
        s 14', 's 15', 's_17', 's_20', 's_21'],
      dtvpe='object')
```

```
# Criar e treinar o modelo
lm = LinearRegression()
lm.fit(X train, y train)
# Testar e avaliar o modelo treinado
y hat train = lm.predict(X train)
avaliar(y_train, y_hat_train, 'treino')
y hat test = lm.predict(X test)
avaliar(y test, y hat test)
conjunto de treino -> RMSE:44.66819159545402, R2:0.5794486527796813
conjunto de teste -> RMSE:31.952633027743115, R2:0.40877368076569287
fig, ax1 = plt.subplots(1,1, figsize=(13,5))
sinal = ax1.plot('RUL', 's_12', 'b',
                 data=train.loc[train['unidade']==20])
plt.xlim(250, 0) # Reverter o eixo x
plt.xticks(np.arange(0, 275, 25))
ax1.set_ylabel('s_12', labelpad=20)
ax1.set_xlabel('RUL', labelpad=20)
ax2 = ax1.twinx()
linha rul = ax2.plot('RUL', 'RUL', 'k', linewidth=4,
                   data=train.loc[train['unidade']==20])
ax2.set ylabel('RUL', labelpad=20)
# código para ter espaçamento iqual de xticks para ambos os eixos,
para que as linhas de grade se alinhem
# fonte https://stackoverflow.com/questions/20243683/matplotlib-align-
twinx-tick-marks?rg=1
ax2.set ylim(0, 250) # defina os limites do eixo que você deseja
exibir
ax2.set yticks(
    np.linspace(ax2.get ybound()[0], ax2.get ybound()[1], 6)) #
escolha um número inteiro para dividir seu eixo, no nosso caso 6
ax1.set vticks(
    np.linspace(ax1.get ybound()[0], ax1.get ybound()[1], 6)) #
aplicar o mesmo espaçamento a outro eixo
# código para ter uma legenda unificada
# fonte https://stackoverflow.com/questions/5484922/secondary-axis-
with-twinx-how-to-add-to-legend
linhas = sinal+linha rul
etiquetas = [linha.get label() for linha in linhas]
ax1.legend(linhas, etiquetas, loc=0)
plt.show()
```



```
# Bloco que cria pontos de uma funcao exponencial com comportamento
semelhante a funcao de desgaste esperado
# Alguns parametros importante para criar os pontos da funcao
primeiro valor s12 = train.loc[train['unidade']==20]['s 12'].iloc[0]
ultimo ciclo = train.loc[train['unidade']==20]['ciclo tempo'].iloc[-1]
# Criando o vetor de tempo que vai do ciclo 1 ao último ciclo de tempo
daquela unidade
t = np.linspace(1, ultimo ciclo, 234)
# Definindo os parametros a, b e d
a = 0.4
b = -0.1
d = -primeiro valor s12
# Calcular os valores de h(t) para cada valor de t
h = 1 - d - np.exp(a * t ** b)
# Grafico dessa funcao exponencial
fig, ax1 = plt.subplots(1,1, figsize=(13,5))
sinal = ax1.plot('RUL', 's 12', 'b',
                 data=train.loc[train['unidade']==20])
plt.xlim(250, 0)
plt.xticks(np.arange(0, 275, 25))
ax1.set_ylabel('s_12', labelpad=20)
ax1.set xlabel('RUL', labelpad=20)
ax2 = ax1.twinx()
linha h = ax2.plot(t, h, 'k', linewidth=2,
                   data=train.loc[train['unidade']==20])
ax2.set ylabel('h(t)', labelpad=20)
```

```
ax2.set_ylim(min(h), max(h) + 0.05)
ax2.set_yticks(
    np.linspace(ax2.get_ybound()[0], ax2.get_ybound()[1], 6))
ax1.set_yticks(
    np.linspace(ax1.get_ybound()[0], ax1.get_ybound()[1], 6))
plt.show()
```


5. Reexaminando o RUL

```
fig, ax1 = plt.subplots(1,1, figsize=(13,5))
sinal = ax1.plot('RUL', 's_12', 'b',
                 data=train.loc[train['unidade']==20])
plt.xlim(250, 0) # reverter o eixo x
plt.xticks(np.arange(0, 275, 25))
ax1.set_ylabel('s_12', labelpad=20)
ax1.set xlabel('RUL', labelpad=20)
ax2 = ax1.twinx()
linha rul = ax2.plot('RUL', 'RUL', 'k', linewidth=4,
                   data=train.loc[train['unidade']==20])
rul = train.loc[train['unidade']==20, 'RUL']
linha rul2 = ax2.plot(rul, rul.where(rul <= 125, 125), '--g',
linewidth=4, label='rul cortada')
ax2.set ylabel('RUL', labelpad=20)
# código para ter espaçamento igual de xticks para ambos os eixos,
para que as linhas de grade se alinhem
# fonte https://stackoverflow.com/questions/20243683/matplotlib-align-
twinx-tick-marks?rg=1
ax2.set ylim(0, 250) # defina os limites do eixo que você deseja
exibir
```

```
ax2.set_yticks(
    np.linspace(ax2.get_ybound()[0], ax2.get_ybound()[1], 6)) #
escolha um número inteiro para dividir seu eixo, no nosso caso 6
ax1.set_yticks(
    np.linspace(ax1.get_ybound()[0], ax1.get_ybound()[1], 6)) #
aplicar o mesmo espaçamento a outro eixo

# código para ter uma legenda unificada
# fonte https://stackoverflow.com/questions/5484922/secondary-axis-with-twinx-how-to-add-to-legend
linhas = sinal+linha_rul
etiquetas = [linha.get_label() for linha in linhas]
ax1.legend(linhas, etiquetas, loc=0)

<matplotlib.legend.Legend at 0x1fa0735f700>
```



```
# Limitar o RUL a 125
# 0 objetivo é ter uma funcao mais proxima ao comportamento de
decaimento exponencial
y_train_clipped = y_train.clip(upper=125)

# Criar e ajustar o modelo
lm = LinearRegression()
lm.fit(X_train, y_train_clipped)

# Testar e avaliar o modelo
y_hat_train = lm.predict(X_train)
avaliar(y_train_clipped, y_hat_train, 'treino')

y_hat_test = lm.predict(X_test)
avaliar(y_test, y_hat_test)

conjunto de treino -> RMSE:21.491018701515276, R2:0.7340432868050482
conjunto de teste -> RMSE:21.900213406888167, R2:0.7222608196546836
```

6. Regressão com Vetores de Suporte - Support Vector Regression (SVR)

```
svr = SVR(kernel='linear')
svr.fit(X_train, y_train_clipped)

# Testar e avaliar o modelo
y_hat_train = svr.predict(X_train)
avaliar(y_train_clipped, y_hat_train, 'treino')

y_hat_test = svr.predict(X_test)
avaliar(y_test, y_hat_test)

conjunto de treino -> RMSE:31.162854665387698, R2:0.44079451641915235
conjunto de teste -> RMSE:31.762230542307382, R2:0.4157988020504362
```

6.1. Normalização

```
# Normalizacao
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X train)
X train scaled = scaler.transform(X train)
X test scaled = scaler.transform(X test)
# SVR + RUL cortada + normalizacao
svr = SVR(kernel='linear')
svr.fit(X_train_scaled, y_train_clipped)
# Testar e avaliar o modelo
y hat train = svr.predict(X train scaled)
avaliar(y train clipped, y hat train, 'treino')
y_hat_test = svr.predict(X_test_scaled)
avaliar(y test, y hat test)
conjunto de treino -> RMSE:21.578263975067905, R2:0.7318795396979628
conjunto de teste -> RMSE:21.580480163289657, R2:0.7303113540952145
```

6.2. Engenharia de Parâmetros

```
from sklearn.preprocessing import PolynomialFeatures
# Polinômio de 2º grau dos parâmetros [a, b] torna-se [1, a, b, a^2,
ab, b^2]
poly = PolynomialFeatures(2)
X_train_transformed = poly.fit_transform(X_train_scaled)
X_test_transformed = poly.fit_transform(X_test_scaled)
```

```
print(X_train_scaled.shape)
print(X_train_transformed.shape)

(20631, 14)
  (20631, 120)

# SVR + RUL cortada + engenharia de parametros
svr_f = SVR(kernel='linear')
svr_f.fit(X_train_transformed, y_train_clipped)

# Testar e avaliar o modelo
y_hat_train = svr_f.predict(X_train_transformed)
avaliar(y_train_clipped, y_hat_train, 'treino')

y_hat_test = svr_f.predict(X_test_transformed)
avaliar(y_test, y_hat_test)

conjunto de treino -> RMSE:19.71678973113082, R2:0.7761436785704148
conjunto de teste -> RMSE:20.585402508370784, R2:0.7546086882115255
```

6.3. Seleção de Parâmetros

```
# Engenharia de parametros + selecao de parametros
from sklearn.feature selection import SelectFromModel
select features = SelectFromModel(svr f, threshold='mean',
prefit=True)
select features.get support()
feature names = poly.get feature names out()
print('Parâmetros originais:\n', X train.columns)
print('Melhores parâmetros:\n', np.array(feature_names)
[select features.get support()])
np.array(feature names)[select features.get support()].shape
Parâmetros originais:
Index(['s_2', 's_3', 's_4', 's_7', 's_8', 's_9', 's_11', 's_12',
's_13',
        s_14', 's_15', 's_17', 's_20', 's_21'],
      dtype='object')
Melhores parâmetros:
 ['x0' 'x1' 'x2' 'x3' 'x5' 'x6' 'x7' 'x9' 'x10' 'x11' 'x12' 'x13' 'x2
x5'
 'x2 x8' 'x2 x9' 'x3 x5' 'x3 x8' 'x3 x9' 'x4^2' 'x4 x6' 'x4 x7' 'x4
 'x5^2' 'x5 x6' 'x5 x7' 'x5 x9' 'x5 x12' 'x5 x13' 'x6^2' 'x6 x8' 'x6
 'x7 x8' 'x7 x9' 'x8^2' 'x9^2' 'x9 x12' 'x9 x13'1
(37,)
```

```
# SVR + RUL cortada + engenharia de parametros + selecao de parametros
svr = SVR(kernel='linear')
svr.fit(X_train_transformed[:, select_features.get_support()],
y_train_clipped)

# Testar e avaliar o modelo
y_hat_train = svr.predict(X_train_transformed[:,
select_features.get_support()])
avaliar(y_train_clipped, y_hat_train, 'treino')

y_hat_test = svr.predict(X_test_transformed[:,
select_features.get_support()])
avaliar(y_test, y_hat_test)

conjunto de treino -> RMSE:19.74678910148113, R2:0.7754619593165268
conjunto de teste -> RMSE:20.556138196054615, R2:0.75530589134507
```

6.4. Modelo Final

```
epsilon = [0.4, 0.3, 0.2, 0.1, 0.05]
for e in epsilon:
    svr = SVR(kernel='linear', epsilon=e)
    svr.fit(X_train_transformed[:, select features.get support()],
y train clipped)
    # Testar e avaliar o modelo
    y hat = svr.predict(X train transformed[:,
select features.get support()])
    mse = mean squared_error(y_train_clipped, y_hat)
    rmse = np.sqrt(mse)
    variance = r2_score(y_train_clipped, y_hat)
    print("epsilon:", e, "RMSE:", rmse, "R2:", variance)
epsilon: 0.4 RMSE: 19.74772556660335 R2: 0.7754406619776464
epsilon: 0.3 RMSE: 19.74758076106985 R2: 0.7754439552496147
epsilon: 0.2 RMSE: 19.746600078171717 R2: 0.775466258012399
epsilon: 0.1 RMSE: 19.74678910148113 R2: 0.7754619593165268
epsilon: 0.05 RMSE: 19.746532456984 R2: 0.7754677958176169
svr = SVR(kernel='linear', epsilon=0.2)
svr.fit(X train transformed[:, select features.get support()],
y train clipped)
# Testar e avaliar o modelo
y hat train = svr.predict(X train_transformed[:,
select features.get support()])
avaliar(y_train_clipped, y_hat_train, 'treino')
y hat test = svr.predict(X test transformed[:,
```

```
select_features.get_support()])
avaliar(y_test, y_hat_test)

conjunto de treino -> RMSE:19.746600078171717, R2:0.775466258012399
conjunto de teste -> RMSE:20.544124820773813, R2:0.7555918150093471
```

7. Análise de série temporal

7.1. Carregando a base de dados

```
# carregar dados
train = pd.read csv((dir path+'train FD001.txt'), sep='\s+',
header=None, names=col names)
test = pd.read csv((dir path+'test FD001.txt'), sep='\s+',
header=None, names=col names)
y_test = pd.read_csv((dir_path+'RUL_FD001.txt'), sep='\s+',
header=None, names=['RUL'])
# avaliar as primeiras linhas
train.head()
  unidade ciclo tempo config 1 config 2 config 3
                                                       s 1
/
                        -0.0007
                                  -0.0004
                                             100.0 518.67 641.82
1
        1
                    2
                         0.0019
                                  -0.0003
                                             100.0 518.67 642.15
                        -0.0043
                                   0.0003
                                             100.0 518.67
                                                           642.35
                         0.0007
                                   0.0000
                                             100.0 518.67
                                                           642.35
                    5 -0.0019
                                  -0.0002
                                             100.0 518.67 642.37
               s 4
                     s 5 ... s 12
                                         s 13
                                                  s 14
                                                          s 15
s 16 s 17
0 1589.70
          1400.60 14.62 ... 521.66 2388.02 8138.62 8.4195
0.03
      392
1
 1591.82
           1403.14
                   14.62 ... 522.28
                                      2388.07 8131.49 8.4318
0.03
      392
          1404.20 14.62 ... 522.42 2388.03 8133.23 8.4178
 1587.99
0.03
      390
          1401.87 14.62 ... 522.86 2388.08 8133.83 8.3682
  1582.79
0.03
      392
  1582.85
          1406.22 14.62 ... 522.19
                                      2388.04 8133.80 8.4294
0.03 393
  s 18
         s 19
               s 20
                        s 21
```

```
2388
        100.0
               39.06
                      23.4190
  2388
        100.0
               39.00
                     23.4236
1
2
  2388
        100.0
               38.95
                      23.3442
3
  2388
        100.0
               38.88
                      23.3739
4 2388
        100.0 38.90 23.4044
[5 rows x 26 columns]
train = add RUL(train)
train[index names+['RUL']].head()
           ciclo tempo
   unidade
                        RUL
0
                        191
        1
                     1
        1
                     2
1
                        190
2
                     3
        1
                        189
3
        1
                     4
                        188
4
        1
                     5
                        187
# eliminar colunas indesejadas com base na análise inicial realizada
anteriormente
drop sensors = ['s 1','s 5','s 6','s 10','s 16','s 18','s 19']
drop labels = setting names+drop sensors
X train = train.drop(drop labels, axis=1)
# y_treino = X_treino.pop('RUL')
# vamos separar o RUL após remover as linhas contendo NaN introduzidos
pelo metodo de variaveis atrasadas
X test interim = test.drop(drop labels, axis=1)
X test interim.head()
   unidade ciclo tempo s 2
                                    s 3
                                             s 4
                                                     s 7
                                                              s 8
s 9 \
0
        1
                     1 643.02 1585.29 1398.21 553.90 2388.04
9050.17
        1
                        641.71 1588.45 1395.42 554.85 2388.01
9054.42
        1
                        642.46 1586.94 1401.34 554.11 2388.05
9056.96
        1
                        642.44 1584.12 1406.42 554.07 2388.03
9045.29
        1
                        642.51 1587.19 1401.92 554.16 2388.01
9044.55
   s 11
           s_12
                    s_13
                             s 14
                                     s 15
                                           s 17
                                                  s_20
                                                           s 21
         521.72
                          8125.55
  47.20
                                   8.4052
                                            392
                                                 38.86
                                                        23.3735
                 2388.03
1 47.50
         522.16
                 2388.06
                                   8.3803
                                            393
                                                 39.02
                          8139.62
                                                        23.3916
                          8130.10
2
  47.50 521.97
                 2388.03
                                   8.4441
                                            393
                                                 39.08
                                                        23.4166
3
  47.28 521.38
                 2388.05
                          8132.90
                                   8.3917
                                            391
                                                 39.00
                                                        23.3737
4 47.31 522.15
                 2388.03
                                            390 38.99
                          8129.54
                                   8.4031
                                                        23.4130
```

7.2. Adicionando variáveis defasadas

```
# Exemplo de como adicionar as variaveis atrasadas e os efeitos dessa
adicao no dataset
np.random.seed(42)
df exemplo = pd.DataFrame({'t': np.random.rand(5)})
df exemplo['t-1'] = df exemplo['t'].shift(1)
df exemplo['t-2'] = df exemplo['t'].shift(2)
display(df exemplo)
                 t-1
                           t-2
  0.374540
                  NaN
                           NaN
1 0.950714 0.374540
                           NaN
2 0.731994 0.950714 0.374540
3 0.598658 0.731994 0.950714
4 0.156019 0.598658 0.731994
# Criar as variaveis atrasadas
remaining sensors = X train.columns.difference(index names+['RUL'])
lag1 = [col + ' lag 1' for col in remaining sensors]
X train[lag1] = X train.groupby('unidade')[remaining sensors].shift(1)
X train.dropna(inplace=True)
X test interim[lag1] = X test interim.groupby('unidade')
[remaining sensors].shift(1)
X test interim.dropna(inplace=True)
# Variavel alvo
y train = X train.pop('RUL')
# preparar os dados do teste, já que os valores reais para o RUL no
conjunto de teste são fornecidos apenas para o último ciclo de tempo
# de cada motor, o conjunto de teste é subdividido para representar o
mesmo
X test = X test interim.groupby('unidade').last().reset index()
X train.head()
   unidade ciclo tempo
                           s 2
                                    s 3
                                             s 4
                                                     s 7
                                                              s 8
s_9 \
                     2 642.15 1591.82 1403.14 553.75 2388.04
1
         1
9044.07
         1
                        642.35 1587.99 1404.20 554.26 2388.08
9052.94
                     4 642.35 1582.79 1401.87
                                                 554.45 2388.11
         1
9049.48
         1
                        642.37 1582.85 1406.22 554.00 2388.06
9055.15
                     6 642.10 1584.47 1398.37 554.67 2388.02
        1
```

```
9049.68
            s 12 ... s 15 lag 1 s 17 lag 1 s 2 lag 1
    s 11
s 20 lag 1
1 47.49 522.28
                           8.4195
                                         392.0
                                                                39.06
                                                   641.82
2 47.27 522.42 ...
                           8.4318
                                         392.0
                                                   642.15
                                                                39.00
3 47.13 522.86 ...
                           8.4178
                                         390.0
                                                                38.95
                                                   642.35
4 47.28 522.19 ...
                           8.3682
                                         392.0
                                                                38.88
                                                   642.35
5 47.16 521.68 ...
                           8.4294
                                         393.0
                                                   642.37
                                                                38.90
               s 3 lag 1
                          s 4 lag 1
                                     s_7_lag 1
                                                 s 8 lag 1
   s 21 lag 1
                                                            s 9 lag 1
1
                 1\overline{5}89.\overline{7}0
      23.4190
                            1400.60
                                         554.36
                                                   2388.06
                                                              9046.19
2
                 1591.82
                                         553.75
                                                              9044.07
      23.4236
                            1403.14
                                                   2388.04
                                         554.26
3
      23.3442
                 1587.99
                            1404.20
                                                   2388.08
                                                              9052.94
                                                              9049.48
4
      23.3739
                 1582.79
                            1401.87
                                         554.45
                                                   2388.11
5
      23.4044
                 1582.85
                            1406.22
                                         554.00
                                                   2388.06
                                                              9055.15
[5 rows x 30 columns]
# Criar e treinar o modelo
lm = LinearRegression()
lm.fit(X train, y train)
# Testar o modelo e avaliar os resultados
y hat train = lm.predict(X train)
avaliar(y train, y hat train, 'treino')
y hat test = lm.predict(X test)
avaliar(y test, y hat test)
conjunto de treino -> RMSE:39.36769235113502, R2:0.6709929595362336
conjunto de teste -> RMSE:31.423109839703113, R2:0.42820706786543306
# Funcao para adicionar atrasos de 1 a n
def add lagged variables(df input, nr of lags, columns):
    df = df input.copy()
    for i in range(nr of lags):
        lagged columns = [col + ' lag {}'.format(i+1) for col in
columns1
        df[lagged columns] = df.groupby('unidade')[columns].shift(i+1)
    df.dropna(inplace=True)
    return df
# Funcao para adicionar atrasos específicos
def add specific lags(df input, list of lags, columns):
    df = df input.copy()
```

7.3. Estacionaridade

```
# Graficos de exemplo de estacionaridade
t = np.arange(0, 150)
fator = 0.2
estacionaria = np.sin(fator*t)
media crescente = np.sin(fator*t) + t/100
variancia crescente = np.sin(fator*t) * (1 + t/100)
covariancia inconsistente = np.sin((fator + t/500) * t)
plotlist = [estacionaria, media crescente, variancia crescente,
covariancia inconsistente]
plotnames = ['Estacionária', 'Média crescente', 'Variância crescente',
'Covariância inconsistente'l
plt.subplots(2, 2, figsize=(12,7)) # inicia subplot
ylim = 2.5
for i in range(len(plotlist)):
    plt.subplot(2, 2, i+1) # define qual subplot preencher, o
intervalo começa em 0, e aumenta de 1 em 1
    plt.plot(t, plotlist[i], linewidth=3)
    plt.ylim(-ylim, ylim)
    plt.tick_params(which='both', bottom=False, labelbottom=False,
left=False, labelleft=False) # remover marcações e rótulos do eixo
    plt.title(str(plotnames[i]))
plt.tight layout(pad=3) # especifica o layout e o preenchimento de
espaços em branco entre os gráficos
plt.show()
```



```
from statsmodels.tsa.stattools import adfuller
test series = train.loc[train['unidade']==1, 's 7']
adf, valor p, atraso usado, n obs, valores criticos, melhor ic =
adfuller(test series, maxlag=1)
print('uma unidade, uma coluna de teste - resultados:')
print('adf: {} \nvalor_p: {}'.format(adf, valor_p))
print('significancia: \{\}\\n'.format(valor p < 0.\overline{05}))
uma unidade, uma coluna de teste - resultados:
adf: -2.276666927948035
valor p: 0.17960380425358008
significancia: False
test series = test series.diff(1).dropna()
adf, valor_p, atraso_usado, n_obs, valores_criticos, melhor_ic =
adfuller(test series, maxlag=1)
print('uma unidade, uma coluna de teste após diferenciação')
print('adf: {} \nvalor_p: {}'.format(adf, valor_p))
print('significancia: {}\n'.format(valor p < 0.05))</pre>
uma unidade, uma coluna de teste após diferenciação
adf: -14.824168539718976
valor p: 1.943101859639205e-27
significancia: True
adf, valor p, atraso usado, n obs, valores criticos, melhor ic =
adfuller(train[ 's 7'], maxlag=1)
```

```
print('todas as unidades, uma coluna de teste - resultados:')
print('adf: {} \nvalor p: {}'.format(adf, valor p))
print('significancia: {}'.format(valor p < 0.05))</pre>
print('OBS: Testando uma coluna com valores de 100 turbinas, todos os
motores juntos são estacionarios, mas motores individuais não!\n')
todas as unidades, uma coluna de teste - resultados:
adf: -32.413164189329294
valor p: 0.0
significancia: True
OBS: Testando uma coluna com valores de 100 turbinas, todos os motores
juntos são estacionarios, mas motores individuais não!
# todas as turbinas vs uma unica turbina
plt.subplots(3,1, figsize=(15,8))
plt.subplot(3,1,1)
plt.plot(train[ 's 7'])
plt.title('todas as tubinas aparentam ser estacionarias \n\
adf=-32.41, valor p=0.0')
plt.subplot(3,1,2)
plt.plot(train.loc[train['unidade']==1, 's 7'])
plt.title('turbinas individuais não são estacionarias (turbina 1) \n\
adf=-2.28, valor p=0.18')
plt.subplot(3,1,3)
plt.plot(train.loc[train['unidade']==1, 's 7'].diff(1).dropna())
plt.title('motores individuais diferenciados podem ser estacionarios
(turbina 1) \n\
adf=-14.82, valor p<0.01')
plt.tight layout()
plt.show()
```


-1

```
# Funcao para realizar a diferenciacao dos dados para garantir a
estacionaridade
def find max diff(series):
    maxdiff = 0
    do = True
    adf, pvalue, usedlag, nobs, critical values, icbest =
adfuller(series, maxlag=1)
    if pvalue < 0.05:
        do = False
    while do:
        maxdiff += 1
        adf, pvalue, usedlag, nobs, critical_values, icbest =
adfuller(series.diff(maxdiff).dropna(), maxlag=1)
        if pvalue < 0.05: # Se significante, parar de diferenciar e
testar estacionaridade
            do = False
    return maxdiff
# Funcao que torna os dados estacionarios
def make stationary(df input, columns):
    df = df input.copy()
    for unit nr in range(1, df['unidade'].max()+1):
        for col in columns:
            maxdiff = find max diff(df.loc[df['unidade']==unit nr,
col])
            if maxdiff > 0:
                df.loc[df['unidade']==unit nr, col] =
df.loc[df['unidade']==unit nr, col].diff(maxdiff)
```

```
df.dropna(inplace=True)
return df
```

7.4. Aplicando o conceito de estacionaridade aos dados

```
# fazer com que todos os sensores restantes sejam estacionarios para
cada unidade
intermediate df = train.drop(drop labels, axis=1)
intermediate_df = make_stationary(intermediate df, remaining sensors)
intermediate df.head() # dados estacionarios
  unidade ciclo tempo
                           s 2
                                   s 3 s 4 s 7 s 8
                                                              s 9
s 11 \
1
        1
                     2 642.15 1591.82 2.54 -0.61 -0.02 9044.07
0.02
                     3 642.35 1587.99 1.06 0.51 0.04 9052.94 -
        1
0.22
                     4 642.35 1582.79 -2.33 0.19 0.03 9049.48 -
        1
0.14
                     5 642.37 1582.85 4.35 -0.45 -0.05 9055.15
        1
0.15
                        642.10 1584.47 -7.85 0.67 -0.04 9049.68 -
5
        1
0.12
                                                  RUL
  s 12 s 13 s 14
                      s 15
                           s 17
                                   s 20
                                            s 21
1 0.62 0.05 -7.13 8.4318
                            392.0
                                  39.00
                                         23.4236
                                                  190
2 0.14 -0.04 1.74 8.4178
                           390.0
                                  38.95
                                         23.3442
                                                  189
3 0.44 0.05 0.60 8.3682
                           392.0
                                  38.88
                                                  188
                                         23.3739
4 -0.67 -0.04 -0.03 8.4294
                           393.0
                                  38.90
                                         23.4044
                                                  187
5 -0.51 -0.01 -0.95 8.4108
                           391.0 38.98 23.3669 186
# Criar e treinar o modelo
lm = LinearRegression()
lm.fit(intermediate df[remaining sensors], intermediate df['RUL'])
# Testar o modelo e avaliar os resultados
y hat train = lm.predict(intermediate df[remaining sensors])
avaliar(intermediate df['RUL'], y hat train, 'treino')
conjunto de treino -> RMSE:51.633756137911796, R2:0.43408640113852304
```

7.5. AIC: Procurando o número correto de defasagens

```
# Adicionar atrasos e avaliar os modelos para encontrar o numero ideal
de atrasos
import statsmodels.api as sm

metrics = pd.DataFrame(columns=['rmse', 'AIC', 'BIC'])
nr_of_lags = 30
```

```
for i in range(0, nr of lags+1):
    X train = add lagged variables(intermediate df, i,
remaining sensors)
    X train = X train.drop(index names, axis=1)
    y train = X train.pop('RUL')
    model = sm.OLS(y train, sm.add constant(X train.values))
    result = model.fit()
    metrics = pd.concat([metrics, pd.DataFrame(
        data=[[np.sqrt(result.mse resid), round(result.aic,2),
round(result.bic,2)]],columns=['rmse', 'AIC', 'BIC']
        )],
                        ignore index=True)
display(metrics)
         rmse
                     AIC
                                BIC
0
    51.652627
               220271.65
                          220390.59
1
    46.060503
               214530.30
                          214760.12
2
    43.058562
               210753.82
                          211094.38
3
    41.151503
               207898.35
                          208349.51
4
    39.833453
               205574.27
                          206135.89
5
    38.813294
               203528.00
                          204199.94
6
               201667.95
    37.986450
                          202450.06
7
    37.304649
               199952.23
                          200844.37
8
    36.723366
               198338.72
                          199340.76
9
    36.198014
               196782.37
                          197894.15
10
    35.717277
               195272.37
                          196493.75
11
    35.279048
               193807.53
                          195138.36
12
    34.869837
               192373.83
                          193813.96
    34.481184
               190962.43
                          192511.71
13
14
    34.096930
               189555.58
                          191213.86
15
    33.735926
               188174.60
                          189941.74
16
    33.396878
               186818.44
                          188694.27
17
    33.065376
               185471.02
                          187455.40
    32.737658
               184128.15
18
                          186220.90
19
    32.420900
               182798.11
                          184999.09
20
    32.110808
               181476.10
                          183785.15
21
    31.803284
               180157.46
                          182574.43
22
    31.502414
               178846.97
                          181371.69
23
    31.212569
               177549.83
                          180182.14
    30.937293
               176270.33
24
                          179010.06
25
    30.670196
               175001.12
                          177848.10
26
    30.407545
               173737.89
                          176691.96
    30.150377
27
               172481.90
                          175542.91
28
   29.901632
               171236.72
                          174404.47
29
    29.660232
               170001.12
                          173275.46
30 29.420456
               168768.36
                          172149.11
```

```
# Gráfico da taxa de mudança do AIC versus número de atrasos
adicionados
plt.figure(figsize=(15,5))
plt.plot(metrics['AIC'].diff(), marker='.') # traca a diferença para
ver onde a curva se achata
plt.plot(14, metrics['AIC'].diff()[14], '.r')
plt.xlabel("Número de atrasos")
plt.ylabel("Taxa de mudança do AIC")
plt.show()
plt.close()
```


7.5.1. Resumo dos resultados AIC

```
result.summary() # Cheque as notas ao final dos resultados
<class 'statsmodels.iolib.summary.Summary'>
                            OLS Regression Results
=======
Dep. Variable:
                                   RUL
                                         R-squared:
0.777
Model:
                                   0LS
                                         Adj. R-squared:
0.771
Method:
                        Least Squares F-statistic:
136.9
                     Fri, 09 Feb 2024 Prob (F-statistic):
Date:
0.00
                             15:10:16 Log-Likelihood:
Time:
-83949.
No. Observations:
                                 17533
                                         AIC:
1.688e+05
Df Residuals:
                                 17098
                                         BIC:
1.721e+05
Df Model:
                                   434
```

Covariance Type:		nonrobust			
0.975]	coef	std err	t	P> t	[0.025
const	1.908e+04	165.898	114.981	0.000	1.88e+04
1.94e+04	0 5160	0.722	0.715	0 474	1 021
x1 0.899	-0.5162	0.722	-0.715	0.474	-1.931
x2	-0.3837	0.055	-6.974	0.000	-0.492
-0.276	0 0005	0.017	4 700	0.000	0 015
x3 -0.130	-0.2225	0.047	-4.728	0.000	-0.315
x4	1.2576	0.471	2.671	0.008	0.335
2.180					
x5	14.4389	6.395	2.258	0.024	1.904
26.974 x6	-0.0607	0.046	-1.325	0.185	-0.150
0.029	010007	01010	1.323	0.105	0.150
x7	-7.1442	1.865	-3.830	0.000	-10.800
-3.488 x8	1.5610	0.624	2 501	0.012	0.338
2.784	1.5010	0.024	2.501	0.012	0.330
x9	12.0334	6.284	1.915	0.056	-0.284
24.351					
x10 0.162	0.0454	0.059	0.764	0.445	-0.071
x11	-32.1409	10.207	-3.149	0.002	-52.148
-12.134	3212100	201207	3.1.3	0.002	3212.0
x12	-0.4505	0.228	-1.975	0.048	-0.897
-0.003 x13	3.2219	2.087	1.544	0.123	-0.869
7.313	J. 2219	2.007	1.344	0.123	-0.009
x14	5.7930	3.539	1.637	0.102	-1.144
12.730	11 2000	2 120	F 241	0.000	15 541
x15 -7.197	-11.3690	2.129	-5.341	0.000	-15.541
×16	2.2548	0.675	3.342	0.001	0.932
3.577					
x17	13.9514	6.514	2.142	0.032	1.183
26.720 x18	0.0655	0.063	1.035	0.301	-0.059
0.190	0.0055	0.005	1.055	0.301	-0.039
x19	-31.2511	10.278	-3.041	0.002	-51.397
-11.106					

x20	-0.4099	0.228	-1.797	0.072	-0.857	
0.037 x21	-0.5227	0.723	-0.723	0.470	-1.939	
0.894 x22	3.5827	2.090	1.714	0.087	-0.515	
7.680 x23	5.4823	3.544	1.547	0.122	-1.464	
12.429			-6.605			
x24 -0.256	-0.3639	0.055	-0.003	0.000	-0.472	
x25 -0.224	-0.3235	0.051	-6.390	0.000	-0.423	
x26	1.6130	0.494	3.263	0.001	0.644	
2.582 x27	16.1230	6.638	2.429	0.015	3.112	
29.134						
x28 0.016	-0.0789	0.048	-1.633	0.103	-0.174	
x29 -9.273	-13.5609	2.187	-6.200	0.000	-17.848	
x30	2.6131	0.679	3.850	0.000	1.283	
3.943 x31	12.4625	6.550	1.903	0.057	-0.377	
25.302 x32	0.0639	0.064	1.003	0.316	-0.061	
0.189 x33	-27.0154	10.276	-2.629	0.009	-47.157	
-6.874						
x34 0.118	-0.3297	0.228	-1.443	0.149	-0.777	
x35 0.611	-0.8074	0.724	-1.116	0.264	-2.226	
x36	4.0887	2.093	1.953	0.051	-0.014	
8.192 x37	5.5043	3.544	1.553	0.120	-1.443	
12.451			-6.553	0.000		
x38 -0.253	-0.3612	0.055		0.000	-0.469	
x39 -0.263	-0.3632	0.051	-7.130	0.000	-0.463	
×40	1.7238	0.494	3.486	0.000	0.755	
2.693 x41	10.6883	6.669	1.603	0.109	-2.383	
23.759 x42	-0.1016	0.048	-2.100	0.036	-0.196	
-0.007						
x43 -10.790	- 15 . 1007	2.199	-6.866	0.000	-19.411	
x44	2.8442	0.680	4.185	0.000	1.512	

4.176	0 1200	C	1 202	0.164	2 710
x45 21.981	9.1309	6.556	1.393	0.164	-3.719
x46	0.0554	0.064	0.871	0.384	-0.069
0.180 x47	-24.7710	10.284	-2.409	0.016	-44.929
-4.613	-24.7710	10.204	-2.409	0.010	-44.929
x48	-0.2381	0.228	-1.042	0.297	-0.686
0.210 x49	-0.7158	0.724	-0.988	0.323	-2.135
0.704	-0.7136	0.724	-0.900	0.323	-2.133
x50	3.4893	2.096	1.665	0.096	-0.618
7.597 x51	5.1919	3.550	1.463	0.144	-1.766
12.150	5.1919	3.330	1.405	0.144	-1.700
x52	-0.3593	0.055	-6.515	0.000	-0.467
-0.251 x53	-0.3455	0.051	-6.773	0.000	-0.446
-0.246	-0.3433	0.031	-0.773	0.000	-0.440
x54	1.7473	0.495	3.530	0.000	0.777
2.717 x55	9.0302	6.688	1.350	0.177	-4.079
22.139	9.0302	0.000	1.550	0.177	-4.079
x56	-0.1013	0.048	-2.088	0.037	-0.196
-0.006 x57	- 15 . 4788	2.204	-7.022	0.000	-19.800
-11.158	-13.4700	2.204	-7.022	0.000	-19.000
x58	2.9086	0.682	4.263	0.000	1.571
4.246 x59	7.3085	6.564	1.113	0.266	-5.557
20.174	7.13003	0.30.	1.113	01200	3.337
x60	0.0421	0.064	0.660	0.509	-0.083
0.167 x61	-21.8150	10.299	-2.118	0.034	-42.002
-1.628	21.0150	10.233	2.110	0.051	121002
x62	-0.1948	0.229	-0.852	0.394	-0.643
0.253 x63	-0.8302	0.724	-1.147	0.252	-2.249
0.589		• • • • • • • • • • • • • • • • • • • •	=1=17		
x64	3.2161	2.095	1.535	0.125	-0.891
7.323 x65	4.9624	3.553	1.397	0.163	-2.002
11.927					
x66	-0.3468	0.055	-6.281	0.000	-0.455
-0.239 x67	-0.3194	0.051	-6.242	0.000	-0.420
-0.219					
x68	1.7426	0.496	3.512	0.000	0.770
2.715					

x69	7.0777	6.699	1.056	0.291	-6.053	
20.209 ×70	-0.1018	0.049	-2.094	0.036	-0.197	
-0.007 ×71	- 14 . 9779	2.212	-6.772	0.000	-19.313	
-10.643 x72	2.8179	0.685	4.114	0.000	1.475	
4.161						
x73 19.560	6.6674	6.578	1.014	0.311	-6.225	
x74	0.0457	0.064	0.713	0.476	-0.080	
0.172 x75	-19.7584	10.310	-1.916	0.055	-39.967	
0.450	0 2005	0 220	0.076	0 201	0.640	
x76 0.248	-0.2005	0.229	-0.876	0.381	-0.649	
x77 0.789	-0.6308	0.724	-0.871	0.384	-2.050	
x78	2.0938	2.097	0.999	0.318	-2.016	
6.203 x79	3.9833	3.556	1.120	0.263	-2.986	
10.953 x80	-0.3651	0.055	-6.608	0.000	-0.473	
-0.257	0.2050	0.051	F 7F0	0.000	0 207	
x81 -0.195	-0.2959	0.051	-5.759	0.000	-0.397	
x82 2.632	1.6565	0.498	3.328	0.001	0.681	
x83	5.5047	6.711	0.820	0.412	-7.650	
18.659 x84	-0.1070	0.049	-2.199	0.028	-0.202	
-0.012						
x85 -9.530	-13.8846	2.222	-6.250	0.000	-18.239	
x86 4.053	2.7048	0.688	3.932	0.000	1.356	
x87	7.0066	6.596	1.062	0.288	-5.922	
19.935 x88	0.0433	0.064	0.672	0.502	-0.083	
0.170						
x89 1.435	-18.8011	10.324	-1.821	0.069	-39.037	
x90	-0.1365	0.229	-0.597	0.551	-0.585	
0.312 x91	-0.4272	0.724	-0.590	0.555	-1.846	
0.991 x92	2.0504	2.099	0.977	0.329	-2.063	
6.164						
x93	4.4078	3.566	1.236	0.216	-2.582	

11.397	0.2755	0.055	C 70C	0.000	0.404	
x94 -0.267	-0.3755	0.055	-6.796	0.000	-0.484	
x95	-0.2764	0.052	-5.354	0.000	-0.378	
-0.175 x96	1.6884	0.500	3.379	0.001	0.709	
2.668 x97	5.1293	6.724	0.763	0.446	-8.050	
18.309 x98	-0.1128	0.049	-2.312	0.021	-0.208	
-0.017 ×99	-12.9024	2.234	-5.776	0.000	-17.280	
-8.524 x100	2.2658	0.689	3.287	0.001	0.915	
3.617 x101	4.6505	6.610	0.704	0.482	-8.307	
17.608 ×102	0.0396	0.065	0.613	0.540	-0.087	
0.166 x103	-13.7061	10.350	-1.324	0.185	-33.993	
6.581 x104	-0.0764	0.229	-0.333	0.739	-0.525	
0.373 x105	-0.5312	0.724	-0.733	0.463	-1.951	
0.888 x106	2.3639	2.099	1.126	0.260	-1.750	
6.478 x107	4.5611	3.568	1.278	0.201	-2.432	
11.554 x108	-0.3823	0.055	-6.917	0.000	-0.491	
-0.274 x109	-0.2663	0.052	-5.139	0.000	-0.368	
-0.165 ×110	1.6381	0.501	3.268	0.001	0.656	
2.621 x111		6.734	1.076	0.282	-5.957	
20.443	7.2430					
x112 -0.011	-0.1066	0.049	-2.178	0.029	-0.202	
x113 -6.230	-10.6341	2.247	-4.732	0.000	-15.039	
x114 3.348	1.9949	0.690	2.890	0.004	0.642	
x115 15.605	2.6262	6.622	0.397	0.692	-10.353	
x116 0.157	0.0296	0.065	0.457	0.648	-0.097	
x117 9.845	-10.4773	10.368	-1.011	0.312	-30.800	

x118	-0.0967	0.229	-0.423	0.673	-0.545	
0.352 x119	-0.5067	0.724	-0.699	0.484	-1.927	
0.913 x120	2.8134	2.099	1.341	0.180	-1.300	
6.927 x121	3.9524	3.576	1.105	0.269	-3.056	
10.961	313321	3.370	1.103	0.203	3.030	
x122 -0.264	-0.3728	0.055	-6.741	0.000	-0.481	
x123	-0.2275	0.052	-4.377	0.000	-0.329	
-0.126 ×124	1.4263	0.503	2.834	0.005	0.440	
2.413	11.1203	0.303	21031	0.005	01110	
x125 20.698	7.4667	6.750	1.106	0.269	-5.765	
x126 -0.006	-0.1018	0.049	-2.076	0.038	-0.198	
x127	-8.7999	2.258	-3.897	0.000	-13.226	
-4.373 x128	1.8563	0.692	2.683	0.007	0.500	
3.212	2 0702	6 625	0 212	0.755	10 015	
x129 15.055	2.0702	6.625	0.312	0.755	-10.915	
x130	0.0217	0.065	0.334	0.738	-0.106	
0.149 x131	-5.1450	10.379	-0.496	0.620	-25.489	
15.199 x132	-0.0579	0.229	-0.253	0.800	-0.507	
0.391	0.00.0	0.1_0	0.200	0.000	0.007	
x133 1.036	-0.3834	0.724	-0.529	0.597	-1.803	
x134	2.2275	2.099	1.061	0.289	-1.887	
6.342 x135	3.2209	3.575	0.901	0.368	-3.787	
10.229	0. 2040	0.055	C 0CC	0.000	0 402	
x136 -0.276	-0.3848	0.055	-6.966	0.000	-0.493	
x137 -0.094	-0.1958	0.052	-3.762	0.000	-0.298	
x138	1.2698	0.504	2.518	0.012	0.281	
2.258	10 0604	6 760	1 400	0 126	2 100	
x139 23.319	10.0694	6.760	1.490	0.136	-3.180	
x140 0.004	-0.0927	0.049	-1.886	0.059	-0.189	
x141	-6.2933	2.271	-2.771	0.006	-10.745	
-1.841 x142	1.8086	0.693	2.608	0.009	0.450	

3.168	1 0442	C C22	0. 270	0.701	11 127
x143 14.825	1.8443	6.623	0.278	0.781	-11.137
x144	-0.0069	0.065	-0.106	0.916	-0.135
0.121	010003	0.005	0.100	0.510	0.155
x145	-5.0708	10.390	-0.488	0.626	-25.436
15.295					
x146	-0.0833	0.229	-0.364	0.716	-0.532
0.366					
x147	-0.4933	0.724	-0.681	0.496	-1.912
0.926 x148	1 2200	2 101	0.627	0 524	-2.780
5.458	1.3388	2.101	0.637	0.524	-2.700
x149	2.1763	3.578	0.608	0.543	-4.836
9.189	2.1705	3.370	0.000	0.545	41050
x150	-0.3829	0.055	-6.928	0.000	-0.491
-0.275					
x151	-0.1500	0.052	-2.882	0.004	-0.252
-0.048					
x152	1.0327	0.505	2.043	0.041	0.042
2.023	0 4050	6 770	1 252	0.210	4 705
x153	8.4858	6.770	1.253	0.210	-4.785
21.756 x154	-0.0634	0.049	-1.287	0.198	-0.160
0.033	-0.0034	0.049	-1.207	0.190	-0.100
x155	-4.3992	2.283	-1.927	0.054	-8.874
0.076	113332	2.200	21327	0.05.	0.07.
x156	1.3358	0.695	1.923	0.054	-0.025
2.697					
x157	1.8226	6.621	0.275	0.783	-11.156
14.801	0 0017	0.005	0.006	0.070	0 100
x158	0.0017	0.065	0.026	0.979	-0.126
0.130 x159	-7.6734	10.392	-0.738	0.460	-28.044
12.697	-7.0734	10.392	-0.730	0.400	-20.044
×160	-0.0072	0.229	-0.031	0.975	-0.457
0.443	0.0072	0.225	0.051	0.373	01.157
x161	-0.3715	0.724	-0.513	0.608	-1.792
1.048					
x162	1.4676	2.103	0.698	0.485	-2.654
5.589					
x163	1.9654	3.577	0.549	0.583	-5.047
8.977	0 2740	0.055	6 770	0 000	-0.483
x164 -0.267	-0.3749	0.055	-6.779	0.000	-0.403
×165	-0.1227	0.052	-2.359	0.018	-0.225
-0.021	011227	3.032	2.333	31313	0.225
x166	0.9971	0.506	1.970	0.049	0.005
1.989					

x167	5.8206	6.775	0.859	0.390	-7.458
19.099 ×168	-0.0344	0.049	-0.698	0.485	-0.131
0.062 x169	-2.7328	2.292	-1.192	0.233	-7.225
1.759	-2.7320	2.292	-1.192	0.233	-7.223
x170 2.192	0.8297	0.695	1.194	0.233	-0.532
x171	4.1320	6.624	0.624	0.533	-8.851
17.115 x172	0.0273	0.065	0.418	0.676	-0.101
0.156	0.0273	0.005	0.410	0.070	-0.101
x173 13.983	-6.4106	10.405	-0.616	0.538	-26.805
x174 0.502	0.0515	0.230	0.224	0.823	-0.399
x175 1.293	-0.1279	0.725	-0.176	0.860	-1.549
x176	1.3598	2.100	0.647	0.517	-2.757
5.477 x177	0.8711	3.579	0.243	0.808	-6.143
7.886 x178	-0.3654	0.055	-6.597	0.000	-0.474
-0.257 ×179	-0.0816	0.052	-1.568	0.117	-0.184
0.020 ×180	0.7633	0.506	1.507	0.132	-0.229
1.756	2 0174	C 701	0 570	0 562	0. 274
x181 17.208	3.9174	6.781	0.578	0.563	-9.374
x182	-0.0357	0.049	-0.723	0.469	-0.132
0.061 x183	-1.2055	2.294	-0.525	0.599	-5.703
3.292 x184	0.4223	0.696	0.607	0.544	-0.941
1.786 x185	2.2019	6.635	0.332	0.740	-10.803
15.207					
x186 0.151	0.0225	0.066	0.343	0.732	-0.106
x187	-1.1606	10.399	-0.112	0.911	-21.544
19.222 x188	-0.0040	0.230	-0.017	0.986	-0.455
0.447 ×189	-0.2719	0.724	-0.375	0.707	-1.692
1.148 ×190	1.1216	2.100	0.534	0.593	-2.996
5.239					
x191	1.5336	3.578	0.429	0.668	-5.479

8.547					
x192	-0.3778	0.055	-6.817	0.000	-0.486
-0.269 x193	-0.0407	0.052	-0.783	0.433	-0.143
0.061	-0.0407	0.032	-0.765	0.455	-0.145
x194	0.4769	0.507	0.941	0.346	-0.516
1.470					
x195	2.3115	6.783	0.341	0.733	-10.984
15.607	0.0000	0.040	0 405	0.000	0 101
x196	-0.0239	0.049	-0.485	0.628	-0.121
0.073 x197	-0.2498	2.293	-0.109	0.913	-4.745
4.246	-0.2490	2.293	-0.109	0.913	-4.743
x198	0.0700	0.696	0.101	0.920	-1.295
1.435					
x199	0.8303	6.640	0.125	0.900	-12.185
13.845					
x200	0.0039	0.066	0.059	0.953	-0.125
0.133 x201	4.0567	10.398	0.390	0.696	-16.324
24.437	4.0307	10.590	0.390	0.090	-10.324
x202	0.0744	0.230	0.323	0.746	-0.377
0.525					
x203	0.1844	0.724	0.255	0.799	-1.235
1.604	0.000	2 222	0 100	0.000	2 045
x204	0.2693	2.099	0.128	0.898	-3.845
4.384 x205	1.5386	3.574	0.430	0.667	-5.467
8.544	1.5500	3.374	0.430	0.007	3.407
x206	-0.3764	0.055	-6.791	0.000	-0.485
-0.268					
×207	-0.0177	0.052	-0.340	0.734	-0.120
0.084	0.2045	0.506	0 500	0 561	0.600
x208	0.2945	0.506	0.582	0.561	-0.698
1.287 x209	0.5148	6.783	0.076	0.940	-12.780
13.810	0.5140	0.705	0.070	0.540	12.700
x210	-0.0206	0.049	-0.418	0.676	-0.117
0.076					
x211	0.2289	2.294	0.100	0.921	-4.268
4.726	0.0050	0.607	0.000	0.071	1 241
x212	0.0253	0.697	0.036	0.971	-1.341
1.392 x213	0.7268	6.638	0.109	0.913	-12.284
13.737	0.7200	0.050	0.105	0.515	12.207
x214	0.0038	0.066	0.058	0.954	-0.125
0.133					
x215	5.9335	10.379	0.572	0.568	-14.410
26.277					

x216	0.0366	0.230	0.159	0.874	-0.414	
0.487	0 1000	0.704	0 140	0 007	1 016	
x217	0.1033	0.724	0.143	0.887	-1.316	
1.522	0 2121	2 101	0 101	0.010	4 221	
x218	-0.2131	2.101	-0.101	0.919	-4.331	
3.905	0 2706	2 560	0.078	0.938	6 717	
x219 7.275	0.2786	3.569	0.076	0.930	-6.717	
x220	-0.3844	0.055	-6.936	0.000	-0.493	
-0.276	015011	01033	0.550	0.000	01133	
x221	0.0115	0.052	0.221	0.825	-0.091	
0.114	0.0220	0.00=	V	0.025	0.002	
x222	0.0242	0.507	0.048	0.962	-0.969	
1.017						
x223	-2.7317	6.777	-0.403	0.687	-16.016	
10.553						
x224	-0.0045	0.049	-0.092	0.927	-0.101	
0.092						
x225	0.8917	2.294	0.389	0.697	-3.604	
5.388						
x226	-0.2261	0.698	-0.324	0.746	-1.593	
1.141	0 4126	6 641	0.062	0.050	12 604	
x227	0.4126	6.641	0.062	0.950	-12.604	
13.429	0 0111	0 066	0 160	0.066	0 140	
x228 0.118	-0.0111	0.066	-0.169	0.866	-0.140	
x229	4.4351	10.378	0.427	0.669	-15.906	
24.776	4.4331	10.570	0.427	0.009	-13.900	
x230	0.0145	0.230	0.063	0.950	-0.436	
0.465	010115	01230	0.005	0.330	01150	
x231	-0.1002	0.723	-0.139	0.890	-1.517	
1.317						
x232	-0.4879	2.104	-0.232	0.817	-4.612	
3.636						
x233	-0.2328	3.567	-0.065	0.948	-7.225	
6.759						
x234	-0.3880	0.055	-7.004	0.000	-0.497	
-0.279						
x235	0.0384	0.052	0.737	0.461	-0.064	
0.140	0.0000	0 500	0.016	0.007	0 005	
x236	0.0080	0.506	0.016	0.987	-0.985	
1.001	2 6242	6 770	0 526	0 502	16 022	
x237 9.653	-3.6343	6.779	-0.536	0.592	-16.922	
x238	0.0131	0.049	0.265	0.791	-0.084	
0.110	0.0131	0.043	0.203	0.791	0.004	
x239	2.4893	2.291	1.087	0.277	-2.001	
6.979	21.000		2.00,	0.27,	2.001	
x240	-0.6263	0.697	-0.898	0.369	-1.993	
0.740						
-						

x241	-1.3535	6.639	-0.204	0.838	-14.366	
11.659 x242	-0.0310	0.066	-0.472	0.637	-0.160	
0.098 x243	2.5591	10.369	0.247	0.805	-17.765	
22.884						
x244 0.551	0.1001	0.230	0.435	0.664	-0.351	
x245	0.0334	0.724	0.046	0.963	-1.385	
1.452 x246	-0.5095	2.104	-0.242	0.809	-4.634	
3.615						
x247 6.682	-0.3139	3.569	-0.088	0.930	-7.310	
x248	-0.3913	0.055	-7.062	0.000	-0.500	
-0.283 x249	0.0721	0.052	1.387	0.165	-0.030	
0.174	010721	0.032	11307	0.103	0.050	
x250 0.874	-0.1190	0.506	-0.235	0.814	-1.112	
x251	-3.3842	6.770	-0.500	0.617	-16.655	
9.887 x252	0.0348	0.049	0.707	0.480	-0.062	
0.131	0.0540	0.043	0.707	0.400	-0.002	
x253 8.268	3.7801	2.290	1.651	0.099	-0.708	
x254	-0.8911	0.695	-1.283	0.200	-2.253	
0.471 x255	-2.1465	6.646	-0.323	0.747	-15.173	
10.880	-2.1403	0.040	-0.323	0.747	-13.1/3	
x256	-0.0447	0.065	-0.684	0.494	-0.173	
0.083 x257	4.8066	10.359	0.464	0.643	-15.498	
25.111	0.1080	0.230	0.470	0.639	-0.343	
x258 0.559	0.1000	0.230	0.470	0.039	-0.343	
x259	0.0630	0.723	0.087	0.931	-1.354	
1.480 x260	-0.6131	2.104	-0.291	0.771	-4.737	
3.511	0.0245	2 500	0.224	0.015	6 150	
x261 7.827	0.8345	3.568	0.234	0.815	-6.158	
x262	-0.4051	0.055	-7.312	0.000	-0.514	
-0.297 x263	0.0886	0.052	1.703	0.089	-0.013	
0.191						
x264 0.619	-0.3742	0.507	-0.738	0.460	-1.368	
x265	-4.9969	6.770	-0.738	0.460	-18.267	

8.273						
x266	0.0446	0.049	0.904	0.366	-0.052	
0.141 x267	5.2140	2.278	2.289	0.022	0.749	
9.679	3.2140	2.2/0	2.209	0.022	0.749	
x268	-1.2435	0.693	-1.794	0.073	-2.602	
0.115	112433	0.033	11754	0.075	21002	
x269	-4.6603	6.640	-0.702	0.483	-17.675	
8.355						
x270	-0.0576	0.065	-0.882	0.378	-0.186	
0.070						
x271	6.5251	10.347	0.631	0.528	-13.756	
26.806						
x272	0.1131	0.230	0.491	0.623	-0.338	
0.564	0.0200	0.722	0.055	0.056	1 275	
x273	0.0399	0.722	0.055	0.956	-1.375	
1.455 x274	-1.1274	2.106	-0.535	0.592	-5.254	
3.000	-1.12/4	2.100	-0.555	0.392	-3.234	
x275	0.7470	3.565	0.210	0.834	-6.242	
7.736	017170	31303	01210	0.05	01212	
x276	-0.4016	0.055	-7.248	0.000	-0.510	
-0.293						
x277	0.1379	0.052	2.651	0.008	0.036	
0.240						
x278	-0.5930	0.506	-1.172	0.241	-1.585	
0.399	7 2725	6 754	1 077	0 202	20 511	
x279	-7.2725	6.754	-1.077	0.282	-20.511	
5.966 x280	0.0430	0.049	0.874	0.382	-0.053	
0.139	0.0430	0.049	0.074	0.302	-0.055	
x281	6.4691	2.265	2.856	0.004	2.029	
10.909	000=					
x282	-1.4789	0.692	-2.136	0.033	-2.836	
-0.122						
x283	-6.1314	6.639	-0.924	0.356	-19.144	
6.881						
x284	-0.0766	0.065	-1.177	0.239	-0.204	
0.051	F 0424	10 222	0 575	0 565	14 200	
x285	5.9424	10.332	0.575	0.565	-14.308	
26.193 x286	0.1537	0.230	0.668	0.504	-0.297	
0.605	0.1337	0.230	0.008	0.304	-0.297	
x287	0.1351	0.722	0.187	0.852	-1.280	
1.550	0.1331	31722	0.107	0.002	1.200	
x288	-1.5838	2.102	-0.753	0.451	-5.704	
2.536						
x289	-1.1352	3.561	-0.319	0.750	-8.114	
5.844						

x290	-0.3957	0.055	-7.147	0.000	-0.504	
-0.287 x291	0.1755	0.052	3.372	0.001	0.073	
0.277 x292	-0.7041	0.505	-1.394	0.163	-1.694	
0.286 x293	-5.8743	6.740	-0.872	0.383	-19.085	
7.336 x294	0.0449	0.049	0.914	0.361	-0.051	
0.141	0.0449	0.049	0.914	0.301	-0.031	
x295 12.389	7.9755	2.251	3.542	0.000	3.562	
x296	-1.5593	0.692	-2.253	0.024	-2.916	
-0.202 x297	-8.0959	6.639	-1.219	0.223	-21.109	
4.917 x298	-0.0674	0.065	-1.039	0.299	-0.195	
0.060 x299	7.9464	10.326	0.770	0.442	-12.294	
28.186	0 1026	0 220	0.446	0 656	0.240	
x300 0.554	0.1026	0.230	0.446	0.656	-0.348	
x301 1.807	0.3929	0.722	0.544	0.586	-1.022	
x302	-1.8884	2.100	-0.899	0.368	-6.004	
2.227 x303	-2.5268	3.561	-0.710	0.478	-9.506	
4.453 x304	-0.3952	0.055	-7.139	0.000	-0.504	
-0.287 x305	0.2048	0.052	3.935	0.000	0.103	
0.307 x306	-0.9682	0.504	-1.920	0.055	-1.957	
0.020						
x307 8.278	-4.9093	6.728	-0.730	0.466	-18.096	
x308	0.0439	0.049	0.895	0.371	-0.052	
0.140 x309	9.1863	2.245	4.093	0.000	4.787	
13.586 x310	-1.9824	0.691	-2.869	0.004	-3.337	
-0.628 x311	-9.3473	6.633	-1.409	0.159	-22.348	
3.653 x312	-0.0586	0.065	-0.905	0.366	-0.186	
0.068						
x313 34.377	14.1523	10.318	1.372	0.170	-6.073	
x314	0.1593	0.230	0.692	0.489	-0.292	

0.610						
x315	0.4220	0.721	0.585	0.559	-0.992	
1.836 x316	-1.8293	2.100	-0.871	0.384	-5.945	
2.287	-1.0293	2.100	-0.6/1	0.304	-3.943	
x317	-3.4409	3.554	-0.968	0.333	-10.408	
3.526	311103	3.33.	0.500	0.555	201.100	
x318	-0.3955	0.055	-7.139	0.000	-0.504	
-0.287						
x319	0.2266	0.052	4.354	0.000	0.125	
0.329	1 2564	0 500	2 422	0.010	2 242	
x320	-1.2564	0.503	-2.499	0.012	-2.242	
-0.271 x321	-6.1372	6.723	-0.913	0.361	-19.315	
7.041	-0.13/2	0.723	-0.913	0.301	-19.313	
x322	0.0505	0.049	1.033	0.302	-0.045	
0.146	0.0303	01015	1.055	0.302	01015	
x323	11.3733	2.231	5.097	0.000	7.000	
15.747						
x324	-2.0226	0.690	-2.932	0.003	-3.375	
-0.670						
x325	-8.6984	6.627	-1.313	0.189	-21.688	
4.292	0.0574	0 065	0.000	0 274	0 104	
x326 0.069	-0.0574	0.065	-0.889	0.374	-0.184	
x327	13.1084	10.310	1.271	0.204	-7.100	
33.316	1511001	101510	112/1	01201	71100	
x328	0.2055	0.230	0.894	0.371	-0.245	
0.656						
x329	0.4966	0.722	0.688	0.491	-0.918	
1.911	2 222	2 222	0.000	0 001	6 100	
x330	-2.0833	2.099	-0.992	0.321	-6.198	
2.032 x331	-3.8273	3.554	-1.077	0.282	-10.793	
3.139	-3.02/3	3.334	-1.0//	0.202	-10.795	
x332	-0.4216	0.055	-7.616	0.000	-0.530	
-0.313	01.1220	0.055	7.020	0.000	0.550	
x333	0.2320	0.052	4.473	0.000	0.130	
0.334						
x334	-1.6187	0.501	-3.234	0.001	-2.600	
-0.638	0 01 10					
x335	-8.0149	6.707	-1.195	0.232	-21.162	
5.132	0.0504	0.049	1 217	0 222	-0.036	
x336 0.155	0.0594	0.049	1.217	0.223	-0.030	
x337	12.7181	2.226	5.713	0.000	8.354	
17.082	,		5., 20	2.000	2.33.	
x338	-2.2714	0.689	-3.298	0.001	-3.621	
-0.922						

x339 -9.8137 6.604 -1.486 0.137 -22.759 3.131 x340 -0.0506 0.064 -0.787 0.431 -0.177 0.075 x341 15.4825 10.297 1.504 0.133 -4.701 35.666 x342 0.1411 0.230 0.614 0.539 -0.309 0.591 x343 0.5671 0.722 0.785 0.432 -0.849 1.983 x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 0.339 x347 0.2513 0.052 4.859 0.000 0.150 0.344 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 3.590 0.000							
x340 -0.0506 0.064 -0.787 0.431 -0.177 0.075 x341 15.4825 10.297 1.504 0.133 -4.701 35.666 x342 0.1411 0.230 0.614 0.539 -0.309 0.591 x343 0.5671 0.722 0.785 0.432 -0.849 1.983 x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 0.309 x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 0.0796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 18.792 -2.6525		-9.8137	6.604	-1.486	0.137	-22.759	
x341 35.666 35.666 36.661 0.1411 0.230 0.614 0.539 -0.309 0.591 0.5671 0.722 0.785 0.432 -0.849 1.983 3344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 3345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 3346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 3347 0.2513 0.052 4.859 0.000 -0.526 0.353 3348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 3349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 3350 0.0914 0.049 1.879 0.060 -0.004 0.187 -3.351 14.4313 2.225 6.487 0.000 10.070 18.792 -3.552 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 -3.553 -8.9625 6.601 -1.358 0.175		-0.0506	0.064	-0.787	0.431	-0.177	
35.666 x342		15 4005	10 007	1 504	0 100	4 701	
x342 0.1411 0.230 0.614 0.539 -0.309 0.591 x343 0.5671 0.722 0.785 0.432 -0.849 1.983 x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x351 14.4313 2.225 6.487 0.000 10.070 18.792 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x354		15.4825	10.297	1.504	0.133	-4./01	
x343 0.5671 0.722 0.785 0.432 -0.849 1.983 x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 -3.49 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 2.6525 0.686 -3.864 0.000 -3.998 -1.307 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356	x342	0.1411	0.230	0.614	0.539	-0.309	
1.983 x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 -345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 -346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 -347 0.2513 0.052 4.859 0.000 0.150 0.353 3348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 -3.499 -6.6469 6.695 -0.993 0.321 -19.770 6.476 -350 0.0914 0.049 1.879 0.060 -0.004 0.187 -3551 14.4313 2.225 6.487 0.000 10.070 18.792 -3552 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 -8.9625 6.601 -1.358 0.175 -21.901 3.976 -354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 -355 21.0831 10.286 2.050 0.040 0.922		0 5671	0 722	0 705	0 422	0.040	
x344 -2.7366 2.097 -1.305 0.192 -6.847 1.374 x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 </td <td></td> <td>0.30/1</td> <td>0.722</td> <td>0.785</td> <td>0.432</td> <td>-0.849</td> <td></td>		0.30/1	0.722	0.785	0.432	-0.849	
x345 -4.7097 3.548 -1.327 0.184 -11.664 2.245 x346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357	x344	-2.7366	2.097	-1.305	0.192	-6.847	
2.245		4 7007	2 540	1 227	0 104	11 664	
x346 -0.4177 0.055 -7.546 0.000 -0.526 -0.309 0.2513 0.052 4.859 0.000 0.150 0.353 0.348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 0.349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 0.350 0.0914 0.049 1.879 0.060 -0.004 0.187 0.351 14.4313 2.225 6.487 0.000 10.070 18.792 0.352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 0.353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 0.354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 0.089 0.040 0.922 41.244 0.040 0.922 41.244 0.356 0.947 0.344 -0.732 0.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 0.000 -0.4186 0		-4.7097	3.348	-1.32/	0.184	-11.004	
x347 0.2513 0.052 4.859 0.000 0.150 0.353 x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359	x346	-0.4177	0.055	-7.546	0.000	-0.526	
x348 -1.7749 0.499 -3.554 0.000 -2.754 -0.796 x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360	x347	0.2513	0.052	4.859	0.000	0.150	
x349 -6.6469 6.695 -0.993 0.321 -19.770 6.476 x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 <td>x348</td> <td>-1.7749</td> <td>0.499</td> <td>-3.554</td> <td>0.000</td> <td>-2.754</td> <td></td>	x348	-1.7749	0.499	-3.554	0.000	-2.754	
x350 0.0914 0.049 1.879 0.060 -0.004 0.187 x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366	x349	-6.6469	6.695	-0.993	0.321	-19.770	
x351 14.4313 2.225 6.487 0.000 10.070 18.792 x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903	x350	0.0914	0.049	1.879	0.060	-0.004	
x352 -2.6525 0.686 -3.864 0.000 -3.998 -1.307 x353 -8.9625 6.601 -1.358 0.175 -21.901 3.976 x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x351	14.4313	2.225	6.487	0.000	10.070	
x353	x352	-2.6525	0.686	-3.864	0.000	-3.998	
x354 -0.0364 0.064 -0.567 0.571 -0.162 0.089 x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949 -0.949 -0.949 -0.000 -0.000 -0.2903	x353	-8.9625	6.601	-1.358	0.175	-21.901	
x355 21.0831 10.286 2.050 0.040 0.922 41.244 x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x354	-0.0364	0.064	-0.567	0.571	-0.162	
x356 0.1930 0.230 0.839 0.402 -0.258 0.644 x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x355	21.0831	10.286	2.050	0.040	0.922	
x357 0.6841 0.722 0.947 0.344 -0.732 2.100 x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x356	0.1930	0.230	0.839	0.402	-0.258	
x358 -2.8710 2.096 -1.370 0.171 -6.980 1.238 x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x357	0.6841	0.722	0.947	0.344	-0.732	
x359 -5.9620 3.540 -1.684 0.092 -12.901 0.977 x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x358	-2.8710	2.096	-1.370	0.171	-6.980	
x360 -0.4186 0.055 -7.561 0.000 -0.527 -0.310 x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x359	-5.9620	3.540	-1.684	0.092	-12.901	
x361 0.2650 0.052 5.137 0.000 0.164 0.366 x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x360	-0.4186	0.055	-7.561	0.000	-0.527	
x362 -1.9258 0.498 -3.864 0.000 -2.903 -0.949	x361	0.2650	0.052	5.137	0.000	0.164	
	x362	-1.9258	0.498	-3.864	0.000	-2.903	
		-8.0115	6.678	-1.200	0.230	-21.102	

5.079	0 1151	0.040	2 272	0.010	0.020
x364 0.210	0.1151	0.049	2.373	0.018	0.020
x365	15.5927	2.226	7.003	0.000	11.229
19.957					
x366	-2.9812	0.685	-4.354	0.000	-4.323
-1.639	0 0702	6 504	1 400	0 124	22 005
x367 3.046	-9.8792	6.594	-1.498	0.134	-22.805
x368	-0.0205	0.064	-0.321	0.748	-0.146
0.105					
x369	23.5514	10.282	2.291	0.022	3.398
43.705	0 1405	0 220	0.650	0 516	0. 201
x370 0.600	0.1495	0.230	0.650	0.516	-0.301
x371	0.8624	0.722	1.195	0.232	-0.553
2.277	0.002	017==		0.100	0.000
x372	-3.0413	2.097	-1.450	0.147	-7.151
1.069	6 0244	2 540	1 705	0.000	12 072
x373 0.904	-6.0344	3.540	-1.705	0.088	-12.972
x374	-0.4090	0.055	-7.388	0.000	-0.518
-0.301	011030	0.033	71300	0.000	01310
x375	0.3097	0.051	6.015	0.000	0.209
0.411					
x376	-2.0970	0.497	-4.219	0.000	-3.071
-1.123 x377	-10.9813	6.658	-1.649	0.099	-24.031
2.069	10.3013	0.050	1.043	0.033	241031
x378	0.1141	0.048	2.355	0.019	0.019
0.209					
x379	15.4593	2.228	6.938	0.000	11.092
19.826 x380	-3.1955	0.684	-4.671	0.000	-4.536
-1.855	-3.1933	0.004	-4.0/1	0.000	-4.550
x381	-9.3293	6.584	-1.417	0.157	-22.235
3.577					
x382	-0.0052	0.064	-0.082	0.935	-0.130
0.120 x383	25.1040	10.278	2.442	0.015	4.958
45.250	23.1040	10.276	2.442	0.013	4.930
x384	0.1483	0.230	0.646	0.519	-0.302
0.599					
x385	0.7582	0.722	1.050	0.294	-0.658
2.174 x386	-3.3316	2.097	-1.588	0.112	-7.443
0.780	-3.3310	2.097	-1.300	0.112	- / . 443
x387	-5.7604	3.539	-1.628	0.104	-12.697
1.177					

x388	-0.4262	0.055	-7.698	0.000	-0.535	
-0.318 x389	0.3474	0.052	6.745	0.000	0.246	
0.448 x390	-2.1278	0.496	-4.290	0.000	-3.100	
-1.156						
x391 1.342	-11.7073	6.658	-1.759	0.079	-24.757	
x392	0.1105	0.048	2.279	0.023	0.015	
0.205 x393	14.0420	2.219	6.328	0.000	9.693	
18.391 x394	-2.9618	0.685	-4.323	0.000	-4.305	
-1.619						
x395 6.201	-6.7109	6.588	-1.019	0.308	-19.623	
x396	-0.0003	0.064	-0.005	0.996	-0.126	
0.125 x397	24.8123	10.272	2.415	0.016	4.677	
44.947 x398	0.1521	0.230	0.661	0.508	-0.299	
0.603 x399	0.7531	0.723	1.042	0.298	-0.664	
2.170						
x400 0.022	-4.0909	2.098	-1.950	0.051	-8.204	
x401	-6.7870	3.533	-1.921	0.055	-13.712	
0.138 x402	-0.4044	0.055	-7.303	0.000	-0.513	
-0.296 x403	0.3512	0.052	6.809	0.000	0.250	
0.452						
x404 -1.211	-2.1831	0.496	-4.402	0.000	-3.155	
x405 1.301	-11.7425	6.655	-1.765	0.078	-24.786	
x406	0.1295	0.048	2.673	0.008	0.035	
0.224 x407	11.9818	2.157	5.555	0.000	7.754	
16.210 x408	-2.4515	0.680	-3.607	0.000	-3.784	
-1.119						
x409 9.520	-3.4016	6.592	-0.516	0.606	-16.323	
x410 0.135	0.0102	0.064	0.159	0.873	-0.115	
x411	26.8862	10.279	2.616	0.009	6.738	
47.035 x412	0.1732	0.230	0.752	0.452	-0.278	

0.624					
x413	0.9290	0.723	1.285	0.199	-0.489
2.347	4 4044	2 000	2 141	0 022	0 600
x414 -0.380	-4.4944	2.099	-2.141	0.032	-8.609
x415	-8.2558	3.532	-2.338	0.019	-15.178
-1.333	0.2550	3.332	2.330	0.015	13.17.0
x416	-0.3820	0.055	-6.897	0.000	-0.491
-0.273					
x417	0.3157	0.051	6.163	0.000	0.215
0.416	2 0250	0 406	4 005	0.000	2 007
x418	-2.0250	0.496	-4.085	0.000	-2.997
-1.053 x419	-10.3500	6.647	-1.557	0.119	-23.378
2.678	-10.5500	0.047	-1.557	0.119	-23.370
x420	0.1406	0.048	2.902	0.004	0.046
0.236					
x421	7.3578	1.887	3.899	0.000	3.659
11.057					
x422	-1.7508	0.627	-2.793	0.005	-2.979
-0.522 x423	-1.3445	6.383	-0.211	0.833	-13.855
11.166	-1.3443	0.303	-0.211	0.033	-13.033
x424	0.0040	0.060	0.068	0.946	-0.113
0.121	0.00.0		0.000	0.0.0	0.120
x425	21.1604	10.197	2.075	0.038	1.173
41.148					
x426	0.2148	0.230	0.933	0.351	-0.237
0.666	0.0100	0.724	1 101	0 250	0.600
x427 2.238	0.8189	0.724	1.131	0.258	-0.600
x428	-3.5362	2.098	-1.686	0.092	-7.648
0.575	3.3302	2.000	2.000	0.002	7.10.10
x429	-7.5083	3.525	-2.130	0.033	-14.419
-0.598					
x430	-0.3696	0.055	-6.674	0.000	-0.478
-0.261	0.2264	0.040	4 075	0.000	0 142
x431 0.329	0.2364	0.048	4.975	0.000	0.143
x432	-1.5751	0.471	-3.341	0.001	-2.499
-0.651	1.5751	0.471	31541	0.001	21433
x433	-7.4253	6.423	-1.156	0.248	-20.015
5.165					
x434	0.1129	0.046	2.453	0.014	0.023
0.203					
Omnibus:		2014.	889 Durbin	-Watson:	
0 024					

0.024

```
Prob(Omnibus):
                                0.000
                                        Jarque-Bera (JB):
3114.102
Skew:
                                0.836
                                        Prob(JB):
0.00
Kurtosis:
                                4.211
                                      Cond. No.
3.27e+07
=========
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
[2] The condition number is large, 3.27e+07. This might indicate that
there are
strong multicollinearity or other numerical problems.
```

7.6. Multicolinearidade

```
from statsmodels.stats.outliers influence import
variance inflation factor as vif
X train = add lagged variables(intermediate df, 14, remaining sensors)
X_train = X_train.drop(index_names, axis=1)
# observação, isso leva alguns minutos para calcular
vifs = {X train.columns[i]:round(vif(X train.values, i), 2) for i in
range(len(X train.columns))}
display(vifs)
{'s 2': 4081069.37,
 's 3': 148827.31,
 's 4': 34450.38,
 's 7': 676636.48,
 's 8': 2591641803.36,
 's 9': 1580259.79,
 's 11': 28779.21.
 's 12': 686940.38,
 's 13': 2480791096.44,
 's 14': 1724157.4,
 's 15': 116497.33,
 's 17': 152527.42,
 's 20': 113760.29,
 's 21': 119734.69,
 'RUL': 5.11,
 's 11 lag 1': 36657.17,
 's 12 lag 1': 785930.67,
 's 13 lag 1': 2613853860.37,
 's 14 lag 1': 1926076.65,
 's_15_lag_1': 116696.91,
```

```
's_17_lag_1': 152525.25,
's 2 lag 1': 4074895.76,
's 20 lag 1': 113444.5,
's 21 lag 1': 119475.96,
's 3 lag 1': 148979.81,
's_4_lag_1': 38889.32,
's 7 lag 1': 733701.46,
's 8 lag 1': 2748462855.3,
's 9 lag 1': 1716566.66,
's 11 lag 2': 37805.01,
's_12_lag_2': 780833.03,
's_13_lag_2': 2620758747.64,
's_14_lag_2': 1917277.53,
's 15 lag 2': 116346.14,
's_17_lag_2': 152686.28, 's_2_lag_2': 4072573.42,
's 20 lag 2': 113685.05,
's_21_lag_2': 119653.41,
's \overline{3} \overline{l} ag \overline{2}': 149009.07,
's_4_lag_2': 38847.79,
's 7 lag 2': 730031.66,
's 8 lag 2': 2753903979.86,
's 9 lag 2': 1701499.91,
's 11 lag 3': 37105.7,
's 12 lag 3': 773526.33,
's 13 lag 3': 2618785248.58,
's_14_lag_3': 1896597.22,
's_15_lag_3': 116127.43,
's_17_lag_3': 152610.2, 
's_2_lag_3': 4068060.65,
's 20 lag_3': 114361.87,
's_21_lag_3': 119613.2,
's 3 lag 3': 148800.49,
's 4_lag_3': 38497.52,
's 7 lag 3': 728089.62,
's 8 lag 3': 2749195207.39,
's 9 lag 3': 1683956.51,
's 11 lag_4': 36059.48,
's_12_lag_4': 771185.41,
's 13 lag 4': 2624330020.99,
's 14 lag 4': 1886173.65,
's 15 lag 4': 115823.95,
's_17_lag_4': 153272.33,
's 2 lag 4': 4062599.0,
's 20 lag 4': 114088.67,
's_21_lag_4': 119312.75,
's 3 lag 4': 148722.78,
's 4 lag 4': 38584.48,
's 7 lag 4': 729044.21,
```

```
's_8_lag_4': 2743933140.15,
's 9 lag 4': 1683268.62,
's 11 lag 5': 35244.87,
's 12 lag 5': 772466.32,
's 13 lag 5': 2641501136.77,
's_14_lag_5': 1889391.77,
's 15 lag 5': 115853.68,
's 17 lag 5': 153607.6,
's 2 lag 5': 4063127.86,
's 20 lag 5': 113685.06,
's_21_lag_5': 119507.78,
's_3_lag_5': 148932.1,
's_4_lag_5': 38679.79,
's 7 lag 5': 727778.41,
's_8_lag_5': 2735546298.33,
's 9 lag 5': 1681368.16,
's 11 lag 6': 34798.69,
's_12_lag_6': 774980.99,
's 13 lag 6': 2650576379.39,
's 14 lag 6': 1891928.65,
's 15 lag 6': 115892.67,
's 17 lag 6': 153120.03,
's 2 lag 6': 4056163.35,
's 20 lag 6': 113991.08,
's_21_lag 6': 119621.05,
's_3_lag_6': 149196.52,
's_4_lag_6': 38921.14,
's 7 lag 6': 728141.57,
's 8_lag_6': 2737289603.74,
's_9_lag_6': 1680383.52,
's 11 lag 7': 34504.61,
's_12_lag_7': 774738.12,
's 13 lag 7': 2664214961.26,
's_14_lag_7': 1890207.16,
's 15 lag 7': 116125.94,
's_17_lag_7': 153305.33,
's 2 lag 7': 4053766.67,
's 20 lag 7': 114005.35,
's_21_lag_7': 119658.72,
's_3_lag_7': 149094.91,
's 4 lag 7': 38889.24,
's 7 lag 7': 724862.22,
's_8_lag_7': 2726961215.99,
's_9_lag_7': 1681104.36,
's 11 lag 8': 34722.55,
's_12_lag_8': 773448.24,
's 13 lag 8': 2657202566.2,
's 14 lag 8': 1892490.36,
's 15 lag 8': 116075.99,
```

```
's 17 lag_8': 153127.73,
's 2 lag 8': 4057249.05,
's 20 lag_8': 113882.63,
's 21 lag 8': 119457.58,
's 3 lag 8': 149090.83,
's_4_lag_8': 38831.86,
's 7 lag 8': 726609.31,
's_8_lag_8': 2732378792.92,
's 9 lag 8': 1676326.04,
's 11 lag 9': 35139.75,
's_12_lag_9': 769744.07,
's 13 lag 9': 2649938498.41,
's_14_lag_9': 1894940.8,
's 15 lag 9': 116156.64,
's_17_lag_9': 153503.58, 's_2_lag_9': 4061020.86,
's 20 lag 9': 113625.1,
's 21 lag 9': 119239.28,
's 3 lag 9': 148797.63,
's 4 lag 9': 38674.95,
's 7 lag 9': 726300.5,
's 8 lag 9': 2724589688.57,
's 9 lag 9': 1678515.58,
's 11 lag 10': 35884.42,
's 12 lag 10': 770020.38,
's 13 lag 10': 2630826238.38,
's_14_lag_10': 1895242.94,
's 15 lag 10': 116047.01,
's_17_lag_10': 153038.83,
's 2 lag 10': 4060044.03,
's 20_lag_10': 114102.31,
's_21_lag_10': 118944.38,
's 3 lag 10': 148624.82,
's 4 lag 10': 38519.52,
's 7 lag 10': 725865.13,
's 8 lag 10': 2726371041.82,
's 9 lag 10': 1681292.35,
's 11 lag 11': 36892.92,
's_12_lag_11': 773025.62,
's 13 lag 11': 2608847308.54,
's_14_lag_11': 1910711.51,
's 15 lag 11': 116061.38,
's_17_lag_11': 152730.91,
's 2 lag 11': 4062510.43,
's 20 lag 11': 114335.75,
's_21_lag_11': 119145.99,
's 3 lag 11': 148282.2,
's 4 lag 11': 38674.45,
's 7 lag 11': 725708.69,
```

```
's 8 lag 11': 2729653667.05,
 's 9 lag 11': 1680967.62,
 's 11 lag 12': 37626.5,
 's_12_lag_12': 782627.0,
 's 13 lag 12': 2615374839.28,
 's_14_lag_12': 1932547.11,
 's 15 lag 12': 116172.02,
 's 17 lag 12': 153241.62,
 's 2 lag 12': 4062099.93,
 's 20 lag 12': 113786.28,
 's_21_lag_12': 119052.67,
 's_3_lag_12': 148384.8,
 's_4_lag_12': 39051.6,
 's 7 lag 12': 728254.64,
 's_8_lag_12': 2742823506.32,
 's 9 lag 12': 1694380.25,
 's 11 lag 13': 36642.27,
 's 12 lag 13': 786005.95,
 's 13 lag 13': 2642486873.59,
 's 14 lag 13': 1947122.52,
 's 15 lag 13': 116420.99,
 's 17 lag 13': 152905.08,
 's 2 lag 13': 4055096.01,
 's 20 lag 13': 113656.05,
 's 21 lag 13': 119027.09,
 's 3 lag 13': 148386.05,
 's_4_lag_13': 39132.88,
 's 7 lag 13': 732498.08,
 's 8 lag 13': 2763723655.45,
 's 9 lag 13': 1709258.03,
 's 11 lag 14': 28840.05,
 's_12_lag_14': 687369.03,
 's 13 lag 14': 2525867132.5,
 's 14 lag 14': 1747444.47,
 's 15 lag 14': 115928.84,
 's 17 lag 14': 153167.49,
 's 2 lag 14': 4062462.88,
 's 20 lag 14': 114126.98,
 's_21_lag_14': 119271.89,
 's 3 lag 14': 147985.56,
 's 4 lag 14': 34630.32,
 's 7 lag 14': 676496.63,
 's_8_lag_14': 2629757810.34,
 's 9 lag 14': 1575418.83}
from sklearn.preprocessing import StandardScaler
intermediate df = train.drop(drop labels, axis=1)
scaler = StandardScaler()
scaler.fit(intermediate df[remaining sensors])
```

```
intermediate df[remaining sensors] =
scaler.transform(intermediate df[remaining sensors])
intermediate df = make stationary(intermediate df, remaining sensors)
X train = add lagged variables(intermediate df, 14, remaining sensors)
X train = X train.drop(index names, axis=1)
vifs = {X train.columns[i]:round(vif(X train.values, i), 2) for i in
range(len(X train.columns))}
display(vifs)
{'s 2': 2.58,
 's 3': 2.31,
 's 4': 2.09,
 's 7': 2.21,
 's 8': 2.39,
 's_9': 4.15,
 's_11': 1.9,
 's 12': 1.97,
 's 13': 2.37,
 's 14': 4.75,
 's_15': 2.55,
 's 17': 2.47,
 's 20': 2.64,
 's 21': 2.72,
 'RUL': 2.34,
 's_11_lag_1': 2.39,
 's 12 lag 1': 2.22,
 's_13_lag_1': 2.47,
 's 14 lag 1': 5.27,
 's_15_lag_1': 2.51,
 's 17 lag 1': 2.42,
 's_2_lag_1': 2.54,
 's 20 lag 1': 2.59,
 's_21_lag_1': 2.67,
 's_3_lag_1': 2.27, 's_4_lag_1': 2.32,
 's 7 lag 1': 2.36,
 's 8 lag 1': 2.51,
 's_9_lag_1': 4.48,
 's 11 lag 2': 2.42,
 's 12 lag 2': 2.18,
 's_13_lag_2': 2.45,
 's 14 lag 2': 5.22,
 's_15_lag_2': 2.47,
 's 17 lag 2': 2.39,
 's 2 lag 2': 2.49,
 's_20_lag_2': 2.55,
 's 21 lag 2': 2.63,
```

```
's_3_lag_2': 2.24, 's_4_lag_2': 2.29,
's 7 lag 2': 2.31,
's 8 lag 2': 2.48,
's_9_lag_2': 4.42,
's_11_lag_3': 2.35,
's 12 lag 3': 2.13,
's_13_lag_3': 2.42,
's 14 lag 3': 5.14,
's_15_lag_3': 2.43,
's_17_lag_3': 2.35,
's_2_lag_3': 2.45,
's_20_lag_3': 2.53,
's_21_lag_3': 2.59,
's_3_lag_3': 2.2,
's_4_lag_3': 2.24,
's 7 lag 3': 2.28,
's_8_lag_3': 2.46,
's 9 lag 3': 4.36,
's_11_lag_4': 2.28,
's 12 lag 4': 2.11,
's 13 lag 4': 2.41,
's 14 lag 4': 5.09,
's_15_lag_4': 2.39,
's 17 lag 4': 2.33,
's 2 lag 4': 2.41,
's_20_lag_4': 2.48,
's 21 lag 4': 2.55,
's_3_lag_4': 2.17,
's_4_lag_4': 2.21,
's 7 lag 4': 2.26,
's_8_lag_4': 2.43,
's 9 lag 4': 4.35,
's_11_lag_5': 2.23,
's 12 lag 5': 2.1,
's 13 lag 5': 2.41,
's 14 lag 5': 5.08,
's_15_lag_5': 2.36,
's_17_lag_5': 2.29,
's_2_lag_5': 2.38,
's_20_lag_5': 2.44,
's_21_lag_5': 2.51,
's_3_lag_5': 2.14,
's_4_lag_5': 2.2,
's_7_lag_5': 2.24,
's_8_lag_5': 2.42,
's 9 lag 5': 4.33,
's 11 lag 6': 2.2,
's 12 lag 6': 2.09,
```

```
's 13 lag 6': 2.4,
's 14 lag 6': 5.07,
's 15 lag 6': 2.33,
's 17 lag 6': 2.26,
's_2_lag_6': 2.35,
's_20_lag_6': 2.41,
's 21 lag 6': 2.47,
's_3_lag_6': 2.11,
's 4 lag 6': 2.19,
's 7 lag 6': 2.22,
's_8_lag_6': 2.4,
's_9_lag_6': 4.33,
's_11_lag_7': 2.19,
's_12_lag_7': 2.08,
's_13_lag_7': 2.4,
's 14 lag 7': 5.05,
's_15_lag_7': 2.3,
's_17_lag_7': 2.23,
's_2_lag_7': 2.32,
's_20_lag_7': 2.38,
's_21_lag_7': 2.44,
's \overline{3} \overline{l} ag \overline{7}': 2.09,
's 4 lag 7': 2.17,
's_7_lag_7': 2.18,
's_8_lag_7': 2.38,
's_9_lag_7': 4.33,
's_11_lag_8': 2.21,
's 12 lag 8': 2.07,
's_13_lag_8': 2.38,
's_14_lag_8': 5.04,
's 15 lag 8': 2.27,
's_17_lag_8': 2.2,
's 2 lag 8': 2.28,
's 20_lag_8': 2.34,
's 21 lag 8': 2.41,
's 3 lag 8': 2.06,
's 4 lag 8': 2.15,
's 7 lag 8': 2.17,
's_8_lag_8': 2.37,
's_9_lag 8': 4.31,
's_11_lag_9': 2.24,
's 12 lag 9': 2.05,
's_13_lag_9': 2.35,
's_14_lag_9': 5.03,
's 15 lag 9': 2.25,
's_17_lag_9': 2.17,
's 2 lag 9': 2.26,
's 20 lag 9': 2.31,
's 21 lag 9': 2.37,
```

```
's_3_lag_9': 2.03,
's_4_lag_9': 2.13,
's 7 lag 9': 2.14,
's 8 lag 9': 2.35,
's_9_lag_9': 4.31,
's_11_lag_10': 2.29,
's_12_lag_10': 2.04,
's_13_lag_10': 2.33,
's 14 lag 10': 5.02,
's 15 lag 10': 2.21,
's_17_lag_10': 2.14,
's_2_lag_10': 2.23,
's_20_lag_10': 2.29,
's 21 lag 10': 2.34,
's_3_lag_10': 2.01,
's 4 lag 10': 2.11,
's 7 lag 10': 2.12,
's_8_lag_10': 2.34,
's 9 lag 10': 4.31,
's_11_lag_11': 2.34,
's_12_lag_11': 2.03,
's 13 lag 11': 2.3,
's 14 lag 11': 5.05,
's_15_lag_11': 2.19,
's 17 lag 11': 2.11,
's_2_lag_11': 2.2,
's_20_lag_11': 2.26,
's 21 lag 11': 2.31,
's_3_lag_11': 1.98,
's_4_lag_11': 2.1,
's 7 lag 11': 2.1,
's_8_lag_11': 2.33,
's 9 lag 11': 4.3,
's 1\overline{1} lag 12': 2.36,
's 12 lag 12': 2.04,
's_13_lag_12': 2.29,
's_14_lag_12': 5.1,
's 15 lag 12': 2.16,
's_17_lag_12': 2.09,
's 2 lag 12': 2.18,
's_20_lag_12': 2.23,
's 21 lag 12': 2.28,
's_3_lag_12': 1.96,
's_4_lag_12': 2.09,
's_7_lag_12': 2.08,
's_8_lag_12': 2.32,
's 9 lag 12': 4.33,
's 11 lag 13': 2.25,
's 12 lag 13': 2.02,
```

```
's 13 lag 13': 2.29,
's 14 lag 13': 5.11,
's 15 lag 13': 2.14,
's_17_lag_13': 2.07,
's 2 lag_13': 2.15,
's_20_lag_13': 2.2,
's 21 lag 13': 2.25,
's_3_lag_13': 1.94,
's 4 lag 13': 2.06,
's 7 lag 13': 2.07,
's_8_lag_13': 2.32,
's_9_lag_13': 4.35,
's_11_lag_14': 1.73,
's 12 lag 14': 1.73,
's_13_lag_14': 2.15,
's 14 lag 14': 4.54,
's 15 lag 14': 2.09,
's_17_lag_14': 2.05,
's 2 lag 14': 2.14,
's 20 lag 14': 2.18,
's 21 lag 14': 2.22,
's \overline{3} \overline{1}ag \overline{1}4': 1.92,
's 4 lag 14': 1.78,
's 7 lag 14': 1.87,
's_8_lag_14': 2.18,
's 9 lag 14': 3.98}
```

7.7. Testando e avaliando o modelo

```
# primeiro vamos reexaminar a quantidade ideal de atrasos como fizemos
antes
# execute etapas de processamento de dados para garantir que estamos
trabalhando com os dados processados corretamente
intermediate df = train.drop(drop labels, axis=1)
scaler = StandardScaler()
scaler.fit(intermediate df[remaining sensors])
intermediate df[remaining sensors] =
scaler.transform(intermediate df[remaining sensors])
intermediate df = make stationary(intermediate df, remaining sensors)
# calcular as metricas do modelo
metrics = pd.DataFrame(columns=['rmse', 'AIC', 'BIC'])
nr of lags = 30
for i in range(0, nr_of_lags+1):
    X train = add lagged variables(intermediate df, i,
remaining sensors)
    X_train = X_train.drop(index names, axis=1)
    v train = X train.pop('RUL')
```

```
model = sm.OLS(y train, sm.add constant(X train.values))
    result = model.fit()
    metrics = pd.concat([metrics, pd.DataFrame(
        data=[[np.sqrt(result.mse resid), round(result.aic,2),
round(result.bic,2)]],columns=['rmse', 'AIC', 'BIC']
        )],
                         ignore index=True)
display(metrics)
         rmse
                     AIC
                                 BIC
0
               214892.78
                           215011.72
    45.311459
1
    43.199826
               211909.99
                           212139.82
2
    42.321539
                           210392.28
               210051.72
3
    41.806392
               208537.26
                           208988.42
4
    41.449199
               207175.30
                           207736.92
5
    41.159315
               205879.37
                           206551.31
6
               204622.43
    40.908577
                           205404.54
7
    40.677353
               203385.46
                           204277.60
8
    40.459553
               202162.57
                           203164.60
9
    40.246294
               200945.11
                           202056.89
10
    40.032297
               199727.93
                           200949.31
               198501.28
11
    39.807564
                           199832.11
12
    39.569598
               197262.72
                           198702.85
                           197574.57
13
    39.331775
               196025.28
14
    39.086446
               194781.51
                           196439.79
15
    38.832622
               193530.39
                           195297.52
16
    38.565998
               192267.69
                           194143.52
17
    38.276907
               190983.82
                           192968.19
               189697.81
18
    37.984763
                           191790.56
19
    37.692030
               188412.06
                           190613.04
20
    37.397693
               187125.56
                           189434.62
21
    37.094592
               185831.20
                           188248.16
22
    36.786163
               184532.32
                           187057.03
23
               183230.92
                           185863.23
    36.474461
24
    36.159212
               181926.72
                           184666.44
25
    35.832347
               180611.53
                           183458.52
26
    35.502479
               179293.95
                           182248.03
27
    35.178855
               177983.30
                           181044.31
28
    34.850913
               176668.91
                           179836.67
29
    34.532843
               175365.21
                           178639.55
    34.218579
               174066.08
                           177446.83
plt.figure(figsize=(15,5))
plt.plot(metrics['AIC'].diff(), marker='.') # traca a diferença para
ver onde a curva se achata
plt.plot(9, metrics['AIC'].diff()[9], '.r')
plt.xlabel("Número de atrasos")
```

```
plt.ylabel("Taxa de mudança do AIC")
plt.show()
plt.close()
```



```
# Treinar e avaliar o modelo com 0 a 9 atrasos inseridos
lags = 9
# Preparo dos dados
X train interim = train.drop(drop labels, axis=1)
X train interim[remaining sensors] =
scaler.transform(X train interim[remaining sensors])
X train interim = make stationary(X train interim, remaining sensors)
X train interim = add lagged variables(X train interim, lags,
remaining sensors)
X train interim = sm.add constant(X train interim)
X_train = X_train_interim.drop(index_names, axis=1)
y train = X_train.pop("RUL")
X test interim = test.drop(drop labels, axis=1)
X test interim[remaining sensors] =
scaler.transform(X test interim[remaining sensors])
X test interim = make stationary(X test interim, remaining sensors)
X test interim = add lagged variables(X test interim, lags,
remaining sensors)
X test interim =
X test interim.groupby('unidade').last().reset index()
X test interim = sm.add constant(X test interim)
X test = X test interim.drop(index names, axis=1)
# Ajuste do modelo
model = sm.OLS(y train.clip(upper=125), X train) # apply clipped RUL
from last post
model fitted = model.fit()
# Teste
```

```
y hat train = model fitted.predict(X train)
y hat = model fitted.predict(X test)
# Avaliar
avaliar(y train.clip(upper=125), y hat train, 'treino')
avaliar(y_test, y_hat)
conjunto de treino -> RMSE:20.80233928213837, R2:0.7523208224684113
conjunto de teste -> RMSE:21.148958570124005, R2:0.7409888687595046
# Treinar e avaliar modelo com atrasos específicos
specific lags = [1,2,3,4,5,10,20]
# Preparo dos dados
X train interim = train.drop(drop labels, axis=1)
X train interim[remaining sensors] =
scaler.transform(X train interim[remaining sensors])
X train interim = make stationary(X train interim, remaining sensors)
X_train_interim = add_specific_lags(X_train_interim, specific_lags,
remaining sensors)
X train interim = sm.add constant(X train interim)
X train = X train interim.drop(index names, axis=1)
y_train = X_train.pop("RUL")
X test interim = test.drop(drop labels, axis=1)
X test interim[remaining sensors] =
scaler.transform(X test interim[remaining sensors])
X test interim = make stationary(X test interim, remaining sensors)
X_test_interim = add_specific_lags(X_test_interim, specific_lags,
remaining sensors)
X test interim =
X test interim.groupby('unidade').last().reset index()
X_test_interim = sm.add_constant(X_test_interim)
X test = X test interim.drop(index names, axis=1)
# Ajuste do modelo
model = sm.OLS(y_train.clip(upper=125), X_train)
model fitted = model.fit()
# Testar o modelo
y hat train = model fitted.predict(X train)
y hat = model fitted.predict(X test)
# Avaliar
avaliar(y train.clip(upper=125), y hat train, 'treino')
avaliar(y test, y hat)
conjunto de treino -> RMSE:20.742950740267165, R2:0.7542608298904978
conjunto de teste -> RMSE:20.85223486440749, R2:0.7482058292992063
```

8. Análise de sobrevivência

8.1. Carregando a base de dados

```
# Definir o caminho para os dados
dir path = './CMAPSSData/'
# Definir o nome das colunas
index names = ['unidade', 'ciclo tempo']
setting_names = ['config_1', 'config_2', 'config_3']
sensor_names = ['s_{\{\}}'.format(i) for i in range(1,22)]
col names = index names + setting names + sensor names
# Ker os dados
train = pd.read csv((dir path+'train FD001.txt'), sep='\s+',
header=None, names=col names)
test = pd.read csv((dir path+'test FD001.txt'), sep='\s+',
header=None, names=col names)
y test = pd.read csv((dir path+'RUL FD001.txt'), sep='\s+',
header=None, names=['RUL'])
train.head()
  unidade ciclo_tempo config_1 config_2 config_3
                                                        s 1
/
                                                            641.82
        1
0
                         -0.0007
                                   -0.0004
                                              100.0 518.67
                     2
1
        1
                          0.0019
                                  -0.0003
                                              100.0
                                                     518.67
                                                             642.15
                     3
                         -0.0043
                                   0.0003
                                              100.0 518.67
                                                            642.35
        1
                          0.0007
                                   0.0000
                                              100.0 518.67
                                                            642.35
                     5
                         -0.0019
                                  -0.0002
                                              100.0 518.67
                                                            642.37
               s 4 s 5 ... s 12
                                          s 13
                                                   s 14
      s 3
                                                           s 15
s 16 s 17
           1400.60
                    14.62 ... 521.66
0 1589.70
                                       2388.02
                                                8138.62 8.4195
0.03
      392
1 1591.82
           1403.14
                    14.62 ...
                               522.28
                                       2388.07 8131.49 8.4318
0.03
      392
 1587.99
           1404.20
                    14.62 ... 522.42 2388.03 8133.23 8.4178
0.03
      390
                    14.62 ... 522.86 2388.08 8133.83 8.3682
 1582.79
           1401.87
0.03
      392
          1406.22 14.62 ... 522.19 2388.04 8133.80 8.4294
4 1582.85
0.03
      393
```

```
s 18
       s 19 s 20
                       s 21
  2388 100.0 39.06 23.4190
0
1
 2388
       100.0 39.00 23.4236
2 2388
              38.95 23.3442
        100.0
3 2388 100.0 38.88 23.3739
4 2388 100.0 38.90 23.4044
[5 rows x 26 columns]
train = add RUL(train) # Adicionar o RUL
display(train[index names+['RUL']].head())
  unidade ciclo_tempo RUL
0
        1
                      191
        1
                    2 190
1
2
                    3 189
        1
3
        1
                    4 188
                    5 187
4
        1
# Corte do RUL, conforme visto anteriormente
train['RUL'].clip(upper=125, inplace=True)
# Remocao dos parametros nao significativos
drop_sensors = ['s_1','s_5','s_6','s_10','s_16','s_18','s_19']
drop labels = setting_names + drop_sensors
train.drop(labels=drop labels, axis=1, inplace=True)
print(train.columns)
Index(['unidade', 'ciclo_tempo', 's_2', 's_3', 's_4', 's_7', 's_8',
      's 11', 's 12', 's 13', 's_14', 's_15', 's_17', 's_20', 's_21',
'RUL'],
     dtype='object')
```

8.2. Preparação dos dados

```
train['falha'] = 0
idx_ultimo_registro = train.reset_index().groupby(by='unidade')
['index'].last()
for i in idx_ultimo_registro:
        train.at[i, 'falha'] = 1

train['start'] = train['ciclo_tempo'] - 1
train.tail() # varificar os dados

        unidade ciclo_tempo s_2 s_3 s_4 s_7 s_8
\/
```

```
20626
          100
                       196
                            643.49 1597.98
                                             1428.63 551.43
                                                             2388.19
                                            1433.58 550.86
20627
          100
                       197
                            643.54 1604.50
                                                             2388.23
20628
          100
                                    1602.46
                       198
                            643.42
                                             1428.18 550.94
                                                             2388.24
          100
                            643.23 1605.26
                                            1426.53 550.68
                                                             2388.25
20629
                       199
          100
                                                             2388.26
20630
                       200
                            643.85 1600.38 1432.14 550.79
          s 9
                s 11
                        s 12
                                 s 13
                                          s 14
                                                  s 15
                                                       s 17
                                                              s 20
s 21 \
20626 9065.52
               48.07 519.49
                              2388.26 8137.60 8.4956
                                                        397
                                                             38.49
22.9735
20627 9065.11
               48.04 519.68
                              2388.22
                                       8136.50 8.5139
                                                        395
                                                             38.30
23.1594
               48.09 520.01
                              2388.24 8141.05 8.5646
                                                             38.44
20628 9065.90
                                                        398
22.9333
20629 9073.72
               48.39 519.67
                              2388.23
                                       8139.29 8.5389
                                                             38.29
                                                        395
23.0640
20630 9061.48
               48.20 519.30 2388.26 8137.33 8.5036
                                                        396
                                                             38.37
23.0522
           falha
      RUL
                  start
20626
        4
                    195
               0
               0
                    196
20627
        3
                    197
20628
        2
               0
20629
        1
               0
                    198
20630
        0
               1
                    199
cut off = 200
train censored = train[train['ciclo tempo'] <=</pre>
cut_off].copy().reset index(drop=True)
```

8.3. Curva de KaplanMeier

```
# Criando a curva
data = train_censored[index_names+['falha']].groupby('unidade').last()
plt.figure(figsize=(15,7))
survival = KaplanMeierFitter()
survival.fit(data['ciclo_tempo'], data['falha'])
survival.plot()
plt.ylabel("Probabilidade de sobrevivência")
plt.show()
plt.close()
```


8.4. Modelos de riscos proporcionais de Cox (Cox Proportional Hazards models) - CoxTimeVaryingFitter

```
train cols = index names + remaining sensors + ['start', 'falha']
predict cols = ['ciclo tempo'] + remaining sensors + ['start',
'falha'] # valor que indica falha sera 0
ctv = CoxTimeVaryingFitter()
ctv.fit(train censored[train cols], id col="unidade",
event col='falha',
        start col='start', stop col='ciclo tempo', show progress=True)
Iteration 1: norm_delta = 9.03e-01, step size = 0.9500, log lik = -
230.78680, newton_decrement = 1.07e+02, seconds_since_start = 0.0
Iteration 2: norm delta = 7.17e-01, step size = 0.9500, log lik = -
109.79194, newton decrement = 2.32e+01, seconds since start = 0.0
Iteration 3: norm delta = 6.79e-01, step size = 0.9500, log lik = -
81.15203, newton decrement = 1.03e+01, seconds since start = 0.0
Iteration 4: norm delta = 6.29e-01, step size = 1.0000, log lik = -
68.53253, newton decrement = 3.52e+00, seconds since start = 0.0
Iteration 5: norm delta = 3.05e-01, step size = 1.0000, log lik = -
64.35996, newton decrement = 4.53e-01, seconds since start = 0.0
Iteration 6: norm delta = 4.80e-02, step size = 1.0000, log lik = -
63.86912, newton decrement = 8.90e-03, seconds since start = 0.1
Iteration 7: norm_delta = 9.95e-04, step_size = 1.0000, log_lik = -
63.86010, newton decrement = 3.78e-06, seconds since start = 0.1
Iteration 8: norm delta = 4.27e-07, step size = 1.0000, log lik = -
63.86010, newton decrement = 7.09e-13, seconds since start = 0.1
Convergence completed after 8 iterations.
```

```
felines.CoxTimeVaryingFitter: fitted with 18627 periods, 100
subjects, 54 events>
ctv.print summary()
plt.figure(figsize=(10,5))
ctv.plot()
plt.show()
plt.close()
lifelines.CoxTimeVaryingFitter: fitted with 18627 periods, 100
subjects, 54 events>
         event col = 'falha'
number of subjects = 100
number of periods = 18627
  number of events = 54
partial log-likelihood = -63.86
 time fit was run = 2024-02-09 18:12:42 UTC
- - -
            coef exp(coef) se(coef) coef lower 95%
                                                             coef upper
     exp(coef) lower 95% exp(coef) upper 95%
covariate
            2.05
                        7.75
                                   0.72
                                                     0.64
s 2
3.45
                                           31.64
                      1.90
s 3
            0.07
                        1.07
                                   0.04
                                                    -0.01
0.15
                      0.99
                                            1.16
            0.16
                        1.18
                                   0.05
                                                     0.07
s 4
0.26
                      1.07
                                            1.29
                        0.34
                                   0.50
s 7
           -1.09
                                                    -2.07
                                            0.90
0.11
                      0.13
s 8
           -5.03
                        0.01
                                   4.84
                                                   -14.51
                                           85.79
4.45
                      0.00
s 9
           -0.02
                        0.98
                                   0.04
                                                    -0.10
0.05
                      0.91
                                            1.05
s 11
                                   1.70
                                                     1.78
            5.12
                      167.43
8.46
                      5.95
                                         4714.95
s 12
           -1.14
                        0.32
                                   0.53
                                                    -2.17
0.10
                      0.11
                                            0.90
                                   5.51
s 13
           12.90
                    3.99e+05
                                                     2.09
23.70
                       8.09
                                         1.97e+10
                        1.04
                                   0.04
                                                    -0.04
s_14
            0.04
0.12
                      0.96
                                            1.13
s 15
            5.07
                      159.96
                                   9.53
                                                   -13.61
23.76
                                         2.09e+10
                       0.00
s 17
            0.41
                        1.51
                                   0.20
                                                     0.01
0.81
                                            2.25
                      1.01
                                   2.02
                                                    -9.09
s 20
           -5.13
                        0.01
1.17
                      0.00
                                            0.31
```

```
-4.23
s 21
                         0.01
                                     2.67
                                                       -9.46
1.01
                       0.00
                                              2.75
                                     -log2(p)
             cmp to
                         Z
covariate
s_2
               0.00
                      2.85 < 0.005
                                          7.84
s_3
               0.00
                     1.73
                             0.08
                                         3.57
s 4
               0.00
                     3.49 < 0.005
                                         11.03
s_7
               0.00 - 2.17
                                          5.06
                             0.03
s_8
               0.00 - 1.04
                             0.30
                                         1.74
s_9
               0.00 - 0.58
                             0.56
                                          0.82
s 11
               0.00
                    3.01 < 0.005
                                         8.56
                             0.03
                                          4.99
s 12
               0.00 - 2.15
                     2.34
s 13
               0.00
                             0.02
                                          5.69
                     0.95
                             0.34
                                         1.54
s 14
               0.00
s 15
               0.00
                     0.53
                             0.59
                                         0.75
                                          4.56
s 17
               0.00
                    2.03
                             0.04
s 20
               0.00 - 2.54
                             0.01
                                         6.49
s_21
               0.00 -1.58
                             0.11
                                         3.14
Partial AIC = 155.72
log-likelihood ratio test = 333.85 on 14 df
-\log 2(p) of ll-ratio test = 205.97
```


8.5. Testar e avaliar o modelo

```
df = train_censored.groupby("unidade").last()
df = df[df['falha'] == 0] # obter motores do conjunto de dados que
ainda estão funcionando para que possamos prever seu RUL
```

```
df to predict = df[df['falha'] == 0].copy()
predictions =
ctv.predict log partial hazard(df to predict[predict cols])
predictions = predictions.to frame()
predictions.rename(columns={0: "previsoes"}, inplace=True)
df unidade = df.reset index()["unidade"].to frame()
resultado = pd.concat([df unidade,predictions],
axis=1).set index("unidade")["previsoes"]
resultado.index.name = None
predictions = resultado.to frame()
predictions['RUL'] = df to predict['RUL']
predictions.head(10)
    previsoes
               RUL
2
    -1.128757
                87
5
    -1.607369
                69
7
     3.073379
                59
9
    21.145492
                1
10
   11.751951
                22
    4.391817
11
                40
15
   14.439742
                 7
16
    20.540832
                 9
17
   -3.512471
                76
20
   10.624723
                34
plt.figure(figsize=(15,5))
plt.plot(predictions['RUL'], predictions['previsoes'], '.b')
xlim = plt.gca().get xlim()
plt.xlim(xlim[1], xlim[0])
plt.xlabel('RUL')
plt.ylabel('log risco parcial')
plt.show()
```



```
X = train.loc[train['unidade'].isin(df_to_predict.index)]
X_unico = X['unidade'].unique()

plt.figure(figsize=(15,5))

for i in range(1, len(X_unico), 2):  # para plotar apenas algumas
linhas, estamos selecionando apenas alguns valores
    if i in X_unico:
        X_sub = X.loc[X['unidade'] == i]
        predictions = ctv.predict_partial_hazard(X_sub).values
        plt.plot(X_sub['ciclo_tempo'].values, np.log(predictions))

plt.xlabel('ciclo_tempo')
plt.ylabel('log_partial_hazard')
plt.show()
```


8.6. Regressão do risco parcial para RUL

```
df hazard = train censored.copy()
df hazard['risco'] = ctv.predict log partial hazard(df hazard)
df_hazard.head()
   unidade ciclo tempo
                            s_2
                                     s 3
                                              s_4
                                                      s 7
                                                               s_8
s 9 \
                         641.82 1589.70 1400.60
                                                   554.36 2388.06
         1
                      1
9046.19
         1
                         642.15 1591.82
                                          1403.14
                                                   553.75
                                                           2388.04
1
9044.07
                         642.35 1587.99
                                          1404.20
                                                   554.26
                                                           2388.08
         1
                      3
9052.94
         1
                         642.35 1582.79
                                          1401.87
                                                   554.45
                                                           2388.11
3
9049.48
         1
                         642.37 1582.85 1406.22 554.00
                                                           2388.06
9055.15
```

```
s 11
           s 12
                    s 13
                             s 14
                                     s 15 s 17
                                                  s 20
                                                           s 21
                                                                 RUL
falha \
  47.47 521.66
                2388.02
                          8138.62
                                   8.4195
                                            392
                                                 39.06 23.4190
                                                                 125
0
1
  47.49
         522.28
                 2388.07
                          8131.49
                                   8.4318
                                            392
                                                 39.00
                                                        23,4236
                                                                 125
0
2
  47.27 522.42
                 2388.03
                         8133.23
                                            390 38.95 23.3442
                                                                 125
                                   8.4178
  47.13 522.86
3
                2388.08
                         8133.83
                                   8.3682
                                            392 38.88
                                                        23.3739
                                                                 125
0
4
  47.28 522.19 2388.04 8133.80 8.4294
                                            393 38.90 23.4044
                                                                 125
   start
             risco
0
      0 -6.856341
1
      1 -4.700971
2
      2 -7.370774
3
       3 -8.140738
4
      4 -5.260691
df hazard.plot('risco', 'RUL', 'scatter', figsize=(15,5))
plt.xlabel('risco')
plt.ylabel('RUL')
plt.show()
```



```
# https://stackoverflow.com/questions/52930401/how-to-get-a-robust-
nonlinear-regression-fit-using-scipy-optimize-least-squares
from scipy.optimize import curve_fit

def exponential_model(z, a, b):
    return a * np.exp(-b * z)

# checar por unidade especifica
y_hat = exponential_model(df_hazard.loc[df_hazard['unidade']==1,
'risco'], 70, 0.1)
```



```
popt, pcov = curve_fit(exponential_model, df_hazard['risco'],
df_hazard['RUL'])
print(popt)

[8.85954699e+01 4.35302167e-02]

# Preparar grupo de teste
test = test.drop(labels=drop_labels, axis=1)
test['falha'] = 0
test['start'] = test['ciclo_tempo'] - 1

# Testar e avaliar o modelo
y_hat = exponential_model(df_hazard['risco'], *popt)
avaliar(df_hazard['RUL'], y_hat, 'treino')
```

```
y_pred =
ctv.predict_log_partial_hazard(test.groupby('unidade').last())
y_hat = exponential_model(y_pred, *popt)
avaliar(y_test, y_hat)

conjunto de treino -> RMSE:26.30285842224388, R2:0.5487597218187092
conjunto de teste -> RMSE:27.13524416898879, R2:0.5736091039470262
```

8.7. Aplicando a todo o conjunto de dados

```
ctv2 = CoxTimeVaryingFitter()
ctv2.fit(train[train_cols], id_col="unidade", event_col='falha',
        start col='start', stop col='ciclo tempo', show progress=True)
train['risco'] = ctv2.predict log partial hazard(train)
popt2, pcov2 = curve_fit(exponential_model, train['risco'],
train['RUL'])
y hat = exponential model(train['risco'], *popt2)
avaliar(train['RUL'], y hat, 'treino')
y pred =
ctv2.predict log partial hazard(test.groupby('unidade').last())
y hat = exponential model(y pred, *popt2)
avaliar(y test, y hat)
Iteration 1: norm delta = 1.00e+00, step size = 0.9500, log lik = -
363.73938, newton decrement = 1.69e+02, seconds since start = 0.0
Iteration 2: norm delta = 1.23e+00, step size = 0.9500, log lik = -
196.95744, newton decrement = 6.53e+01, seconds since start = 0.0
Iteration 3: norm delta = 7.49e-01, step size = 0.9500, log lik = -
141.32406, newton decrement = 2.53e+01, seconds since start = 0.1
Iteration 4: norm delta = 7.27e-01, step size = 0.9310, log lik = -
129.43964, newton decrement = 1.68e+01, seconds since start = 0.1
Iteration 5: norm delta = 2.30e-01, step size = 1.0000, log lik = -
115.92018, newton decrement = 1.13e+00, seconds since start = 0.1
Iteration 6: norm delta = 4.04e-02, step size = 1.0000, log lik = -
114.78357, newton decrement = 1.24e-02, seconds_since_start = 0.1
Iteration 7: norm delta = 5.62e-04, step size = 1.0000, log lik = -
114.77107, newton decrement = 2.21e-06, seconds since start = 0.1
Iteration 8: norm delta = 1.18e-07, step size = 1.0000, log lik = -
114.77106, newton decrement = 9.32e-14, seconds since start = 0.1
Convergence completed after 8 iterations.
conjunto de treino -> RMSE:26.22636478059728, R2:0.603928906030835
conjunto de teste -> RMSE:26.58098880820965, R2:0.5908498441213126
```