1 Constructions

Definition 1.1 (Induced). Let A a subset of a topological space \mathcal{Y} . Then

• all subsets $V \subseteq A$ such that $V = A \cap W$ for some open W in \mathcal{Y}

forms a topology on A. This topology is called induced topology on A.

Proof. Obviously, $\emptyset = A \cap \emptyset$ and $A = A \cap A$.

For any open set $V_0 = A \cap W_0$ and $V_1 = A \cap W_1$, then it is easy to see that $V_0 \cup V_1 = (A \cap W_0) \cup (A \cap W_1) = A \cup (W_0 \cap W_1)$, therefore for a collection $\{V_\alpha\}$ of open sets in A, $\bigcup_{\alpha} V_{\alpha} = A \cap (\bigcup_{\alpha} W_{\alpha})$, and we know $\bigcup_{\alpha} W_{\alpha}$ is still a open set in \mathcal{Y} , so is $\bigcup_{\alpha} V_{\alpha}$.

For any open set $V_0 = A \cap W_0$ and $V_1 = A \cap W_1$, we have $V_0 \cap V_1 = (A \cap W_0) \cap (A \cap W_1) = (A \cap W_0) \cap W_1 = A \cap (W_0 \cap W_1)$, so $V_0 \cap V_1$ is also a open set in A.

Definition 1.2 (Embedding). A map $f: \mathcal{X} \to \mathcal{Y}$ is called embedding if f defines a homeomorphism from \mathcal{X} to the subspace $f(\mathcal{X})$ in \mathcal{Y} .

Definition 1.3 (Product). Let \mathcal{X} and \mathcal{Y} are topology spaces, the product of \mathcal{X} and \mathcal{Y} , $\mathcal{X} \times \mathcal{Y}$ is a topology space, which open set is a union of the product of open sets in \mathcal{X} and \mathcal{Y} , that is, $\bigcup_i V_i \times W_i$ where V_i is an open set of \mathcal{X} and W_i is an open set of \mathcal{Y} (It won't work if the open set is just a product of open sets from both space).

Proof. We need to show that $\mathcal{X} \times \mathcal{Y}$ is a topology space.

- 1. $\mathcal{X} \times \mathcal{Y}$ is an open set since both \mathcal{X} and \mathcal{Y} are open set, similarly, \emptyset is an open set in $\mathcal{X} \times \mathcal{Y}$.
- 2. Trivial.

3.

$$\bigcup_{a,b} (V_a \cap V_b) \times (W_a \cap W_b)$$

Exercise 1.1. Let \mathscr{B} be a collection of open sets in a topological space \mathcal{X} . Show that \mathscr{B} is base in \mathcal{X} iff for any point $x \in \mathcal{X}$ and any neighborhood N, there is $B \in \mathscr{B}$ such that $x \in B \subseteq N$.

Proof.

- (\Rightarrow) We know N can be expressed as a union of some open sets in \mathscr{B} , that is, $N = B_0 \cup B_1 \cup \ldots$ Then there is B_i such that $x \in B_i$, and we know $B_i \subseteq N$, so $x \in B_i \subseteq N$.
- (\Leftarrow) For any open set A, consider any point $x \in A$, we know A is a neighborhood of x, so there is $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq A$. Then $\bigcup_{x \in A} B_x$ is a subset of A, but note that $x \in B_x$, so $\bigcup_{x \in A} B_x$ contains all points of A, so $\bigcup_{x \in A} B_x = A$.

Theorem 1.1. Let \mathscr{B} be a set of subsets in some set \mathcal{X} . Show that \mathscr{B} is a base of some topology on \mathcal{X} iff it satisfies the following conditions:

- 1. \mathscr{B} coverse \mathcal{X} , that is, for any $x \in \mathcal{X}$, there is $B \in \mathscr{B}$ such that $x \in B$.
- 2. For any $B_1, B_2 \in \mathcal{B}$, $x \in B_1 \cap B_2$, then there exists a set $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

Proof. (\Rightarrow) Trivial by the previous exercise.

 (\Leftarrow) Let \mathscr{O} the set of all unions of sets of \mathscr{B} . We claim \mathscr{O} is a topology on \mathcal{X} . First, $\emptyset \in \mathscr{O}$ since it is the result of union of no set. And $\mathcal{X} \in \mathscr{O}$ since \mathscr{B} covers \mathcal{X} . Obviously, the union of any sets of \mathscr{O} is in \mathscr{O} .

Let $O_0, O_1 \in \mathscr{O}$, then $O_0 = \bigcup_i B_i$ and $O_1 = \bigcup_j B_j$. For any $x \in O_0 \cap O_1$, we have $x \in B_x \subseteq O_0 \cap O_1$ where $B_x \in \mathscr{O}$ by (2). Then $O_0 \cap O_1 = \bigcup_x = B_x$, therefore $O_0 \cap O_1 \in \mathscr{O}$ cause it is a union of some set B_x .

Definition 1.4 (Prebase). Suppose \mathscr{P} is a collection of subsets in \mathcal{X} that covers the whole space. Show that the set of all finite intersections of sets in \mathscr{P} is a base for some topology on \mathcal{X} .

Proof. We denote all finite intersections of sets in \mathscr{P} as P, then $\mathscr{P} \subseteq P$ since $\forall S \in P, S \cap S = S$. So P covers \mathcal{X} . For any $B_0, B_1 \in P$ and $x \in B_0 \cap B_1$, it is obvious that $x \in B_0 \cap B_1 \subseteq B_0 \cap B_1 \in P$. So \mathscr{P} is a base for some topology on \mathcal{X} by the previous theorem.

Theorem 1.2. Let \mathscr{P} be a prebase for the topology on \mathcal{Y} . Show that a map $f: \mathcal{X} \to \mathcal{Y}$ is continuous iff $f^{-1}(P)$ is open for any $P \in \mathscr{P}$.

Proof. (\Rightarrow) Obviously, every set in \mathscr{P} is open.

 (\Leftarrow) For any open set in \mathcal{Y} , it is a union of sets in \mathscr{P} , that is, $\bigcup_i P_i$. Then $f^{-1}(\bigcup_i P_i) = \bigcup_i f^{-1}(P_i)$ which is a union of open sets, so it is also open. \square

Theorem 1.3. For any map $f: \mathcal{X} \to \mathcal{Y}$, the map $F: \mathcal{X} \to \mathcal{X} \times \mathcal{Y}$ given by F(x) = (x, f(x)). Show that f(x) is continuous iff F is an embedding.

Proof. (\Rightarrow) We first show that $F: \mathcal{X} \to F(\mathcal{X})$ is continuous. For any open set G in the induced topology on $F(\mathcal{X})$, it has form $F(\mathcal{X}) \cap (\bigcup_{\alpha} V_{\alpha} \times W_{\alpha})$, where $(\bigcup_{\alpha} V_{\alpha} \times W_{\alpha})$ is the open set in $\mathcal{X} \times \mathcal{Y}$. Clearly, $F^{-1}(G) = G.0 = \{x \mid \forall (x,y) \in G\} = X \cap (\bigcup_{\alpha} V_{\alpha})$, so it is an open set in \mathcal{X} . It is easy to see $F^{-1}: F(\mathcal{X}) \to \mathcal{X}$ given by $F^{-1}(x,y) = x$ is the inverse of F, we need to show that it is continuous, or in other words, show that F sends open to open. For any open set $V \subseteq \mathcal{X}$, $F(V) = F(\mathcal{X}) \cap (V \times \mathcal{Y})$, which is open in $F(\mathcal{X})$. So F is an embedding.

- (\Leftarrow) For any open set G in \mathcal{Y} , we have $H = F(\mathcal{X}) \cap (\mathcal{X} \times G)$ is open in the induced topology on $F(\mathcal{X})$, then $F^{-1}(H)$ is open in \mathcal{X} . We claim $f^{-1}(G) = F^{-1}(H)$.
 - (\supseteq) For any $x \in F^{-1}(H)$, we know $f(x) \in f(\mathcal{X}) \cap G$ since $F(x) = (x, f(x)) \in H$, so $x \in f^{-1}(G)$ since $f(x) \in G$.
 - (\subseteq) For any $x \in f^{-1}(G)$, we know $f(x) \in G$, so $(x, f(x)) \in H$ since $x \in \mathcal{X} \cap \mathcal{X}$ and $f(x) \in f(\mathcal{X}) \cap G$, so $x \in F^{-1}(H)$.

Therefore f is continuous.

2 Compactness

Exercise 2.1. Let $\{V_{\alpha}\}$ be an open cover of a topological space \mathcal{X} . Show that $W \subseteq \mathcal{X}$ is open iff $W \cap V_{\alpha}$ is open for any $V_{\alpha} \in \{V_{\alpha}\}$.

Proof. (\Rightarrow) is trivial.

 (\Leftarrow) For any point $x \in W$, we have $x \in V_x$ since $\{V_\alpha\}$ is open cover. Consider $\bigcup_{x \in W} (W \cap V_x)$, it is a union of open sets, and it is a subset of W, and it contains all points of W, so W is open.

Theorem 2.1. Show that a space \mathcal{X} is compact iff for any collection of closed sets $\{Q_{\alpha}\}$ in \mathcal{X} such that

$$\bigcap_{\alpha} Q_{\alpha} = \emptyset$$

Then there is a finite subset of $\{Q_{\alpha}\}$ such that

$$Q_0 \cap Q_1 \cap \cdots \cap Q_n = \emptyset$$

Proof.

- (\Rightarrow) For any collection of closed set $\{Q_{\alpha}\}$ in \mathcal{X} such that $\bigcap_{\alpha} Q_{\alpha} = \emptyset$, we can see $\{\mathcal{X} \setminus Q_{\alpha}\}$ is a collection of open set and $\bigcup_{\alpha} (\mathcal{X} \setminus Q_{\alpha}) = \mathcal{X} \setminus (\bigcap_{\alpha} Q_{\alpha}) = \mathcal{X} \setminus \emptyset = \mathcal{X}$, therefore the collection of complements $\{\mathcal{X} \setminus Q_{\alpha}\}$ is an open cover of \mathcal{X} . So there is a finite subset of $\{\mathcal{X} \setminus Q_{\alpha}\}$ that also open covers \mathcal{X} . Then it is also a finite subset of $\{Q_{\alpha}\}$ since $\mathcal{X} = \bigcup_{i} (\mathcal{X} \setminus Q_{i}) = \mathcal{X} \setminus (\bigcap_{i} Q_{i})$ and $Q_{i} \subseteq \mathcal{X}$ implies $\bigcap_{i} Q_{i} = \emptyset$.
- (\Leftarrow) For any open cover $\{V_{\alpha}\}$ of \mathcal{X} , consider the collection of complements $\{\mathcal{X} \setminus V_{\alpha}\}$, we have $\bigcap_{\alpha} (\mathcal{X} \setminus V_{\alpha}) = \mathcal{X} \setminus (\bigcup_{\alpha} V_{\alpha}) = \emptyset$. So there is a finite subset $\{\mathcal{X} \setminus V_i\}$ such that $\emptyset = \bigcap_i (\mathcal{X} \setminus V_i) = \mathcal{X} \setminus (\bigcup_i V_i)$, therefore $\bigcup_i V_i = \mathcal{X}$, the space \mathcal{X} is compact.

Theorem 2.2. Let $Q_0 \supseteq Q_1 \supseteq \ldots$ be a nested sequence of closed nonempty sets in a compact space K. Show that there is a point $q \in K$ such that $\forall i, q \in Q_i$.

Proof. If there is no such point, we know $\bigcap_i Q_i = \emptyset$, which means there is a finite subsequence such that $\bigcap_j Q_j = \emptyset$. Since the sequence Q_i is a nested sequence of nonempty sets, so $\bigcap_j Q_j$ must equal to some "smallest" Q_j , but that means this Q_j is empty set, which contradicts to the assumption.

Theorem 2.3. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous mapping between topological spaces and \mathcal{K} is a compact subset in \mathcal{X} . Show that $\mathcal{Q} = f(\mathcal{K})$ is also compact in \mathcal{Y} . That is, continuous mapping preserve compactness.

Proof. For any open cover $\{V_{\alpha}\}$ of $f(\mathcal{K})$, then the inverse images of $\{V_{\alpha}\}$ cover are also open since f is continous, and also an open cover of \mathcal{K} since they cover $f(\mathcal{K})$. So there is a finite subset of open cover such that covers \mathcal{K} , then map those cover by f, we get a finite subset of open cover of $\{V_{\alpha}\}$

Theorem 2.4. Any closed set in a compact space is also compact.

Proof. This proof comes from textbook.

Suppose \mathcal{X} a compact space and \mathcal{Q} a closed set in it. Consider any open cover $\{V_{\alpha}\}$ of \mathcal{Q} and the complement $\mathcal{C} = \mathcal{X} \setminus \mathcal{Q}$. Obviously, \mathcal{C} is open, and $\{\mathcal{C}\} \cup \{V_{\alpha}\}$ is an open cover of \mathcal{X} , therefore there is a finite open cover on \mathcal{X} , that open cover may or may not contains \mathcal{W} , but we can always add \mathcal{W} to it, and it is still a finite subcover. Since the finite subcover $\{\mathcal{W}, V_{\alpha_0}, \dots, V_{\alpha_n}\}$ covers \mathcal{X} , then it also covers \mathcal{Q} , and we can see that \mathcal{W} contributes nothing for \mathcal{Q} , so it is safe to remove it, and $\{V_{\alpha_i}\}$ is still a finite open cover on \mathcal{Q} .

Furthermore, the proposition can be iff, since the whole space is a closed set. If any closed set in that space is compact, then the whole space is also compact.

Definition 2.1. Let $\{V_{\alpha}\}$ and $\{W_{\beta}\}$ be two covers of a topological space \mathcal{X} . We say $\{V_{\alpha}\}$ is inscried in $\{W_{\beta}\}$ if for any α , there is β such that $V_{\alpha} \subseteq W_{\beta}$

Theorem 2.5. A space \mathcal{X} is compact iff for any cover $\{V_{\alpha}\}$ of \mathcal{X} , there is a finite cover such that inscried in $\{V_{\alpha}\}$.

Proof. (\Rightarrow) For any cover on \mathcal{X} , there is a finite subcover on \mathcal{X} , and the finite subcover is an inscried in itself.

 (\Leftarrow) For any finite subcover $\{W_{\beta}\}$ on \mathcal{X} that is inscried in $\{V_{\alpha}\}$, since for any W_{β} there is a V_{α} such that $W_{\beta} \subseteq V_{\alpha}$, we may collect these V_{α} and they form a cover on \mathcal{X} .

Theorem 2.6. Suppose \mathcal{X} and \mathcal{Y} are compact topological spaces, show that the product $\mathcal{X} \times \mathcal{Y}$ is also compact.

Proof.

Theorem 2.7. Suppose that a product space $\mathcal{X} \times \mathcal{Y}$ is nonempty and compact. Show that \mathcal{X} and \mathcal{Y} are compact.

Proof. For any open cover $\{V_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ on \mathcal{X} , consider the open cover $\{V_{\alpha}\times\mathcal{Y}\}_{{\alpha}\in\mathcal{I}}$ on $\mathcal{X}\times\mathcal{Y}$, there is a finite subcover $\{V_{\alpha}\times\mathcal{Y}\}_{{\alpha}\in\mathcal{I}}$. For any $x\in\mathcal{X}$, take $y\in\mathcal{Y}$ (it is possible cause $\mathcal{X}\times\mathcal{Y}$ is nonempty), we have $(x,y)\in V_{\alpha}\times\mathcal{Y}$ for some α , so $\{V_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a open cover on \mathcal{X} .

Definition 2.2. A topological space \mathcal{X} is called sequentially compact if any point sequence in \mathcal{X} has a converging subsequence.

Theorem 2.8. A metric space \mathcal{M} is comapct implies it is sequentially compact.

Proof. Recall that if a sequence x_n converage to some point p, then for any ϵ , $B(p,\epsilon)$ contains infinite points in x_n .

If any subsequence in x_n is not converging, then for any point $p \in \mathcal{M}$, there is ϵ such that $B(p, \epsilon)$ contains finite points in x_n . Consider the collection of $B(p, \epsilon)$ for every $p \in \mathcal{M}$ is a cover on \mathcal{M} , then we have a finite subcover on \mathcal{M} , but then the subcover contains finite points in \mathcal{M} while x_n is infinite. \square

Theorem 2.9. Show that the product of two sequentially compact spaces is sequentially compact.

Proof. TODO

Definition 2.3. A sequence x_n of points in a metric space is called Cauchy if for any $\epsilon > 0$ there is n such that $|x_i - x_j| < \epsilon$ for all i, j > n.

Theorem 2.10. Any converging sequence in a metric space is Cauchy.

Proof. For any converging sequence, the distance between points becomes smaller and smaller, so for any ϵ , there is n such that $|x_i - x_j| < \epsilon$ for all i, j > n.

Definition 2.4. A metric space \mathcal{M} is called complete if any Cauchy sequence in \mathcal{M} converge to a point in \mathcal{M} .

Theorem 2.11. Show that any compact metric space \mathcal{M} is complete.

Proof. For any Cauchy sequence x_n , suppose it is not converage, that is, for any $p \in \mathcal{M}$, there is ϵ such that $B(p, \epsilon)$ contains finite points of x_n . Consider the cover $\{B(p, \epsilon)\}$ for all $p \in \mathcal{M}$ and corresponding ϵ on \mathcal{M} , we know there is a finite subcover on \mathcal{M} since \mathcal{M} is compact. Then these finite subcover contains all points in x_n cause it covers \mathcal{M} , and it contains finite points in x_n cause each $B(p, \epsilon)$ contains finite points in x_n , therefore the sequence x_n is finite, which is unacceptible.

Definition 2.5. Let \mathcal{M} be a metric space. A subset $A \subseteq \mathcal{M}$ is called ϵ -net of \mathcal{M} if for any $p \in \mathcal{M}$, there is $a \in A$ such that $|p - a|_{\mathcal{M}} < \epsilon$ (or equivalently, $p \in B(a, \epsilon)$).

Theorem 2.12. Let \mathcal{M} be a sequentially compact metric space, then for any $\epsilon > 0$, there is a finite ϵ -net of \mathcal{M} .

Proof. This proof comes from textbook.

We may trying to construct an ϵ -net of \mathcal{M} . We pick a point in \mathcal{M} randomly, say $x_0 \in \mathcal{M}$, then we pick another point $x_1 \in \mathcal{M}$ such that $x_1 \notin B(x_0, \epsilon)$, and then we pick $x_2 \in \mathcal{M}$ such that $x_2 \notin B(x_0, \epsilon)$ and $x_2 \notin B(x_1, \epsilon)$, for any i, we pick $x_i \in \mathcal{M}$ such that $x_i \notin B(x_j, \epsilon)$ for any j < i. If at some point, we can't pick any x_i that satisfies the requirement, then $\{x_0, x_1, \ldots, x_{i-1}\}$ is an ϵ -net of \mathcal{M} . If this procedure cannot stop, then we get a sequence x_i where their distance are always greater than ϵ . Since \mathcal{M} is sequentially compact, so there is a converging subsequence, however, the distance of points in the subsequence can not below ϵ , so it can't be converging.

3 Hausdorff spaces

Definition 3.1. A topological space \mathcal{X} is called Hausdorff, if for each pair of distinct points $x, y \in \mathcal{X}$ there are disjoint neighborhoods $x \in V$ and $y \in W$.

Theorem 3.1. Show that any converging sequence in a Hausdorff space has a unique limit.

Proof. Suppose a sequence x_n converage to x and y, then there are disjoint neighborhoods $x \in V$ and $y \in W$. Since x is the limit of x_n , so there is i such that for any neighborhood of x, x_j is in that neighborhood for any j > i. Similar to y, but V and W are disjoint, and V contains infinite points of x_n from some i, therefore W contains finite points of x_n , which is unacceptible.

Theorem 3.2. Show that a topological space \mathcal{X} is Hausdorff iff the diagonal

$$\Delta = \{ (x, x) \in \mathcal{X} \times \mathcal{X} \}$$

is a closed set in the product space $\mathcal{X} \times \mathcal{X}$

Proof. (\Rightarrow) The set $S = \bigcup_{x,y \in \mathcal{X}, x \neq y} V_{(x,y)} \times W_{(x,y)}$ is an open set in $\mathcal{X} \times \mathcal{X}$ where $V_{(x,y)}$ and $W_{(x,y)}$ are disjoint neighborhoods of x and y, respectively. It is easy to see that $(x,x) \notin S$ for any $x \in \mathcal{X}$, otherwise (x,x) must belongs to some $V_{(x,x)} \times W_{(x,x)}$ while $V_{(x,x)}$ and $W_{(x,x)}$ are disjoint and $x \in V_{(x,x)} \cap W_{(x,x)}$. Also, there is no point that is not in S beside the point in Δ . So Δ is the complement of S, and S is open, so Δ is closed.

(\Leftarrow) For any distinct $x, y \in \mathcal{X}$, we have $(x, y) \in \Delta^C$. We know Δ^C is a union of products of open sets in \mathcal{X} , so we may suppose $x \in V$ and $y \in W$ where V and W are open sets in \mathcal{X} . Suppose $z \in V \cap W$, then $(z, z) \in \Delta^C$ and then $(z, z) \notin \Delta$, which is unacceptible.
Corollary. Any one-point set in a Hausdorff space is closed.
<i>Proof.</i> For any Hausdorff space \mathcal{X} and $p \in \mathcal{X}$, for any $y \in \mathcal{X}$ that $x \neq y$, we have a pair of disjoint neighborhood V_y of x and W_y of y . Consider the union of these W_y , obviously it is an open set that contains every point in \mathcal{X} beside x , so the one-point set $\{x\}$ is closed.
Corollary. Any subspace of Hausdorff space is Hausdorff.
<i>Proof.</i> Suppose \mathcal{X} is Hausdorff and $S \subseteq \mathcal{X}$ a subspace. Consider $x,y \in S$ where $x \neq y$, we know there are disjoint neighborhood V and W such that $V \cap W = \emptyset$, then $(V \cap S) \cap (W \cap S) = \emptyset$ where $V \cap S$ and $W \cap S$ are open set in S and $x \in V \cap S$ and $y \in W \cap S$.
Theorem 3.3. Let \mathcal{X} be a Hausdorff space and $K \subseteq \mathcal{X}$ be a compact subset. Then for any $y \notin K$, there are open sets $K \subseteq V$ and $y \in W$ such that $V \cap W = \emptyset$.
<i>Proof.</i> For any point $z \in K$, we have disjoint neighborhoods $y \in W_z$ and $z \in V_z$, consider the union of V_z , obviously it is an open cover on K , so there is a finite subcover $\{V_{z_\alpha}\}$, then we consider the intersection of the corresponding W_{z_α} , that is, $\bigcap_{\alpha} W_{z_\alpha}$, we can do this intersection cause the subcover is finite. Then let $V = \bigcup_{\alpha} V_{z_\alpha}$ and $W = \bigcap_{\alpha} W_{z_\alpha}$, obviously $V \cap W = \emptyset$.
Theorem 3.4. Any compact subset of Hausdorff is closed.
<i>Proof.</i> Suppose \mathcal{X} is Hausdorff and $K \subseteq \mathcal{X}$ a compact subset. For any $y \notin K$, we have $K \subseteq V_y$ and $y \in W_y$ such that $V_y \cap W_y = \emptyset$. Consider the union of these W_y , we can see that it is an open set and contains every point in $\mathcal{X} \setminus K$.
Theorem 3.5. Let \mathcal{X} be a Hausdorff space and $K, L \subseteq \mathcal{X}$ be two compact subsets that $K \cap L = \emptyset$. Show that there are open sets $K \subseteq V$ and $L \subseteq W$ such that $V \cap W = \emptyset$

Proof. For any $l \in L$, we have $K \subseteq V_l$ and $l \in W_l$ where $V_l \cap W_l = \emptyset$ by Theorem 3.3. Consider the union of these W_l , it is an open cover on L, therefore there is a finite subcover $\{W_{l_{\alpha}}\}$. Then we can take the intersection of the corresponding V_l , that is, $V = \bigcap_{\alpha} V_{l_{\alpha}}$, and the union of the subcover $W = \bigcup_{\alpha} W_{l_{\alpha}}$. They are disjoint, otherwise there is $x \in V_{l_{\alpha}}$ and $x \in W_{l_{\alpha}}$ for some α , which contradict to the property from Theorem 3.3.

4 More Constructions

Definition 4.1 (Initial Topology). Let $f: \mathcal{X} \to \mathcal{Y}$ a mapping between two sets and \mathcal{Y} is equipped with a topology. Then we declare that $V \subseteq \mathcal{X}$ is open if there is an open set $W \subseteq \mathcal{Y}$ such that $V = f^{-1}(W)$. This topology is called initial topology.

Proof. We need to show that it forms a topology.

- $\varnothing = f^{-1}(\varnothing)$ and $\mathcal{X} = f^{-1}(\mathcal{Y})$.
- For a collection of open set $\{V_{\alpha}\}$, we claim $\bigcup_{\alpha} V_{\alpha} = f^{-1}(\bigcup_{\alpha} W_{\alpha})$. For any $x \in \bigcup_{\alpha} V_{\alpha}$, it must belongs to some V_{α} , therefore $x \in f^{-1}(W_{\alpha}) \subseteq f^{-1}(\bigcup_{\alpha} W_{\alpha})$. For any $x \in f^{-1}(\bigcup_{\alpha} W_{\alpha})$, we know f(x) must belongs to some W_{α} , so $x \in f^{-1}(W_{\alpha}) \subseteq f^{-1}(\bigcup_{\alpha} W_{\alpha})$.
- For two open sets $V_0, V_1 \subseteq \mathcal{X}$, we claim $V_0 \cap V_1 = f^{-1}(W_0 \cap W_1)$. For any $x \in V_0 \cap V_1$, then $f(x) \in W_0$ and $f(x) \in W_1$, so $x \in f^{-1}(W_0 \cap W_1)$. For any $x \in f^{-1}(W_0 \cap W_1)$, we know $f(x) \in W_0 \cap W_1$, therefore $x \in f^{-1}(W_0) = V_0$ and $x \in f^{-1}(W_1) = V_1$, so $x \in V_0 \cap V_1$.

Definition 4.2 (Final Topology). Let $f: \mathcal{X} \to \mathcal{Y}$ a mapping between two sets and \mathcal{X} is equipped with a topology. Then we declare that $W \subseteq \mathcal{Y}$ is open if there is an open set $V \subseteq \mathcal{X}$ such that $V = f^{-1}(W)$. This topology is called final topology

Proof. Similar to the proof of initial topology.

We can see that the induced topology makes the mapping open.

Theorem 4.1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous mapping between topological spaces, then:

- The initial topology on \mathcal{X} is weaker than its own topology.
- The final topology on \mathcal{Y} is stronger than its own topology.

Recall that V is weaker than W if any open set under V is also an open set under W.

Proof.

- For any open sets V in initial topology of \mathcal{X} , we know there is $W \subseteq \mathcal{Y}$ such that $V = f^{-1}(W)$. Then V is an open set in the original topology cause f is continuous.
- For any open sets W in the original topology of \mathcal{Y} , we know there is $V \subseteq \mathcal{X}$ such that $V = f^{-1}(W)$ since f is continuous, then W is an open set in final topology of \mathcal{Y} .

Theorem 4.2. Let $g: \mathcal{X} \to \mathcal{Y}$ be a continuous map.

- Suppose \mathcal{X} is equipped with the initial topology induced by g. Show that a map $f: \mathcal{W} \to \mathcal{X}$ is continuous iff $g \circ f: \mathcal{W} \to \mathcal{Y}$ is continuous.
- Suppose \mathcal{Y} is equipped with the final topology induced by g. Show that $a \text{ map } h : \mathcal{Y} \to \mathcal{Z}$ is continuous iff $h \circ g : \mathcal{X} \to \mathcal{Z}$ is continuous.

Proof. (\Rightarrow)s are trivial, we focus on (\Leftarrow)s.

- For any open set $W \subseteq \mathcal{Y}$, there is an open set $V \subseteq \mathcal{W}$ such that $V = (g \circ f)^{-1}(W)$ and $S \subseteq \mathcal{X}$ such that $S = g^{-1}(W)$. Then $V = (g \circ f)^{-1}(W) = (f^{-1} \circ g^{-1})(W) = f^{-1}(g^{-1}(W)) = f^{-1}(S)$. Also, every open set in \mathcal{X} is induced by an open sets in \mathcal{Y} , so we proved that the inverse image of every open sets in \mathcal{X} is also open in \mathcal{W} , that is, f is continuous.
- For any open set $W \subseteq \mathcal{Z}$, there is an open set $V \subseteq \mathcal{X}$ such that $V = (h \circ g)^{-1}(W)$. Then $V = (h \circ g)^{-1}(W) = g^{-1}(h^{-1}(W))$, and we know $h^{-1}(W)$ is open cause \mathcal{Y} is the final topology induced by g, so there must be an open set which inverse image of g is V, and $h^{-1}(W)$ can do the job. So $h^{-1}(W)$ is an open set, therefore h is continuous.

Definition 4.3 (Quotient Topology). Let be an equivalence relation on a topology space \mathcal{X} . The set $[x] = \{y \in \mathcal{X} \mid x \sim y\}$ is called the equivalence class of x. Then the final topology on \mathcal{X}/\sim induced by f(x) = [x] is called quotient topology. The set \mathcal{X}/\sim equipped with a quotient topology is called quotient space.

Theorem 4.3. Let $f: \mathcal{K} \to \mathcal{Y}$ be a continuous map. Suppose \mathcal{K} is compact and \mathcal{Y} is Hausdorff, show that f is closed.

Proof. For any closed set S in K, we know S is compact since K is compact, then f(S) is also compact in Y cause f is continuous. Then f(S) is closed cause Y is Hausdorff.

Definition 4.4. Let \mathcal{X} be a topological space and G be a group. Suppose $-\cdot -: G \times \mathcal{X} \to \mathcal{X}$ is a mapping such that:

- 1. For any $x \in \mathcal{X}$, $1 \cdot x = x$. 1 is the identity of G.
- 2. For any $g, h \in G$ and $x \in \mathcal{X}$, $g \cdot (h \cdot x) = (g \cdot h) \cdot x$.
- 3. For any $g \in \mathcal{G}$, the map $x \mapsto g \cdot x$ is continuous.

Then we say G acts on \mathcal{X} , or \mathcal{X} is a G-space. In this case, the set $G \cdot x = \{ g \cdot x \mid \forall g \in G \}$ is called the G-orbit of x.

Theorem 4.4. Suppose that a group G acts on a topological space \mathcal{X} . Show that for any $g \in G$, the map $x \mapsto g \cdot x$ defines a homeomorphism $\mathcal{X} \to \mathcal{X}$.

Proof. We first show that $f(x) = g \cdot x$ is bijective. (Injective) If f(a) = f(b) for some $a, b \in \mathcal{X}$, then $g \cdot a = g \cdot b$ and then $g^{-1} \cdot g \cdot a = g^{-1} \cdot g \cdot b$, which is eventually a = b. (Surjective) For any $x \in \mathcal{X}$, we have $g^{-1} \cdot x \in \mathcal{X}$ that $f(g^{-1} \cdot x) = g \cdot g^{-1} \cdot x = x$. By definition, we know f is continuous, we need to show that f^{-1} is continuous. It is easy to see that $f^{-1}(x) = g^{-1} \cdot x$, which is continuous by definition. So f is a homeomorphism.

Definition 4.5. Suppose that a group G acts on a topological space \mathcal{X} . Define $x \sim y$ if there is $g \in G$ such that $y = g \cdot x$. We can show that \sim is an equivalence relation, and \mathcal{X}/\sim can be also denoted by \mathcal{X}/G . Note that $[x] = G \cdot x$, the orbit of x, therefore \mathcal{X}/G is also called orbit space.

Proof. We will show that \sim is an equivalence relation.

• (Reflexivity) $x = 1 \cdot x$

- (Symmetry) If $x \sim y$, then $y = g \cdot x$, we have $x = g^{-1} \cdot g \cdot x = g^{-1} \cdot y$, that is, $y \sim x$.
- (Transitivity) if $x \sim y$ and $y \sim z$, then $y = g \cdot x$ and $z = h \cdot y$, we have $z = (h \cdot g) \cdot x$, that is, $z \sim x$.

П

Theorem 4.5. Suppose a group G acts on a topological space \mathcal{X} , and f: $\mathcal{X} \to \mathcal{X}/G$ is the quotient map.

- Show that f is open.
- Show that f is closed if G is finite.

Proof.

- We can see that $f^{-1}(f(V))$ for any open set V is the set that contains points that equivalence to the points in V, that is, $G \cdot V$, it is easy to see that $G \cdot V = \bigcup_{g \in G} g \cdot V$ is open set, since every $g \cdot V$ is open while $g \cdot -$ is a homeomorphism by Theorem 4.4. Therefore, f(V) has to be open cause $f^{-1}(f(V))$ is open.
- Similar to the previous answer, the finite condition is used when we are trying to obtain a union of some closed sets.

5 Connected Spaces

Definition 5.1. A subset of a topological space is called clopen if it is open and closed.

Definition 5.2. A topological space \mathcal{X} is called connected if it has exactly two clopen sets: \varnothing and \mathcal{X} .

Note that the empty space \varnothing is not connected.

A subset of topological space is called connected or disconnected if so is the corresponding subspace.

Definition 5.3. A subset S of a topological space is called disconnected if it is empty or there are two open sets V and W such that:

- $(V \cap S) \cap (W \cap S) = V \cap W \cap S = \emptyset$
- $V \cap S \neq \emptyset$ and $W \cap S \neq \emptyset$
- $V \cap W \cap S = S$ (or equivalently, $S \subseteq V \cap W$)

Otherwise, we say S is connected.

Theorem 5.1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous map between topological spaces. Show that f preserves connectness.

Theorem 5.2. Suppose \mathcal{X} is a connected space, show that the quotient space \mathcal{X}/\sim is connected for any equivalence relation \sim on \mathcal{X} .

Proof. Consider the quotient map $f: \mathcal{X} \to \mathcal{X}/\sim$ which is onto, then $f(\mathcal{X})$ is connected since \mathcal{X} is connected.

Theorem 5.3. Suppose $\{A_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a collection of connected subsets of a topological space. Suppose that $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, show that $A = \bigcup_{\alpha} A_{\alpha}$ is connected.

Proof. Suppose A is disconnected, then there are two splitting V and W. We take $p \in \bigcap_{\alpha} A_{\alpha} \neq \emptyset$, since $A \subseteq V \cup W$, then $p \in V \cup W$, we may suppose $p \in V$. Then for any α , we have $V \cap A_{\alpha} \neq \emptyset$ cuase $p \in V \cap A_{\alpha}$, therefore $W \cap A_{\alpha} = \emptyset$, otherwise A_{α} is no longer connected.

Theorem 5.4. Let A be a connected set in a topological space. Suppose $A \subseteq B \subseteq \overline{A}$, show that B is connected.

Proof. Suppose B is disconnected and V, W is a splitting of B. We may suppose $A \subseteq V$, otherwise V, W also splits A. Then $W \subseteq \partial A$ while W is open, which means there is a smaller close set $\bar{A} \setminus W$ that contains A, which is unacceptible.

Definition 5.4. Suppose \mathcal{X} a topological space and $x \in \mathcal{X}$, the intersection of all clopen neighborhoods of x is called connected component of x. Note that the space \mathcal{X} is connected iff \mathcal{X} is a connected component of some point in \mathcal{X} .

Theorem 5.5. Show that any connected component is closed. Show that connected component is not necessary open.

Proof. The intersection of closed sets is closed. However, the infinite intersection of open sets is not necessary open. \Box

6 Path-connected spaces

Definition 6.1. Let \mathcal{X} be a topological space. A continuous map $f:[0,1] \to \mathcal{X}$ is called path. If f(0) = x and f(1) = y, we say f is a path from x to y.

Definition 6.2. A space \mathcal{X} is called path-connected if it is nonempty and any two points in \mathcal{X} can be connected by a path.

Theorem 6.1. Any path-connected space is connected.

Proof. Suppose \mathcal{X} a path-connected space, take $x \in \mathcal{X}$. Then we consider all path from x to y for all $y \in \mathcal{X}$, we can see that all these path is connected cause [0,1] is connected. Then:

$$\bigcup_{y \in \mathcal{X}} f_y([0,1])$$

is connected cause every $f_y([0,1])$ (the path from x to y) is connected, and these path contain x.

Definition 6.3. Given a path $f:[0,1] \to \mathcal{X}$, one can consider the time-reversed path \bar{f} :

$$\bar{f}(t) = f(1-t)$$

Note that \bar{f} is continuous cause f is continuous.

Definition 6.4. let f and g be paths in the topological space \mathcal{X} . If f(1) = g(0), we can join these two paths into one $h: [0,1] \to \mathcal{X}$:

$$h(t) = \begin{cases} f(2t) & \text{if } t \le \frac{1}{2} \\ g(2t-1) & \text{if } t \ge \frac{1}{2} \end{cases}$$

Theorem 6.2. Show that \sim is equivalence relation: $x \sim y$ iff there is a path from x to y.

Proof.

- (Reflexivity) Obviously, there is a path from x to x.
- (Symmetry) Consider the time-reversed path.
- (Transitivity) Consider the concatenation of paths.

The equivalence class of point x for the equivalence relation \sim is called path-connected component of x.

Theorem 6.3. Show that the product of path-connected space is path-connected.

Proof. Suppose \mathcal{X} and \mathcal{Y} are path-connected spaces, for any $(a,b), (c,d) \in \mathcal{X} \times \mathcal{Y}$, we know there are paths $a \xrightarrow{f} c$ and $b \xrightarrow{g} d$. We claim h(t) = (f(t), g(t)) is a path from (a,b) to (c,d). We need to show that h is continuous. For any open sets $\bigcup_{\alpha} V_{\alpha} \times W_{\alpha}$ in $\mathcal{X} \times \mathcal{Y}$ for every α , we claim $h^{-1}(V_{\alpha} \times W_{\alpha}) = f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$.

- (\subseteq) For any $i \in [0,1]$ such that $h(i) \in V_{\alpha} \times W_{\alpha}$, we know $f(i) \in V_{\alpha}$ and $g(i) \in W_{\alpha}$, therefore $i \in f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$.
- (\supseteq) For any $i \in f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$, we know $h(i) = (f(i), g(i)) \in V_{\alpha} \times W_{\alpha}$ cause $f(i) \in V_{\alpha}$ and $g(i) \in W_{\alpha}$, therefore $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$.

We can see that $h^{-1}(V_{\alpha} \times W_{\alpha})$ is open cause f and g are continuous. Then we claim $h^{-1}(\bigcup V_{\alpha} \times W_{\alpha}) = \bigcup h^{-1}(V_{\alpha} \times W_{\alpha})$.

- (\subseteq) For any $i \in [0,1]$ such that $h(i) \in \bigcup V_{\alpha} \times W_{\alpha}$, we know $h(i) \in V_{\alpha} \times W_{\alpha}$ for some α , therefore $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$.
- (\supseteq) For any $i \in \bigcup h^{-1}(V_{\alpha} \times W_{\alpha})$, we know $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$ for some α , therefore $h(i) \in V_{\alpha} \times W_{\alpha} \subseteq \bigcup V_{\alpha} \times W_{\alpha}$.

Therefore the inverse image of some open sets in $\mathcal{X} \times \mathcal{Y}$ is open, cause it is a union of some open sets, then h is continuous.

Hey, we are trying to obtain an arrow $h:[0,1]\to\mathcal{X}\times\mathcal{Y}$ from $f:[0,1]\to\mathcal{X}$ and $g:[0,1]\to\mathcal{Y}$, it is similar to the unique morphism in the product diagram!