$Solutions \ MP/MP^*$ $Espaces \ pr\'ehilbertiens$

Solution 1.

1. φ est une forme bilinéaire symétrique. Soit $f \in E$, on a

$$\varphi(f, f) = \int_0^1 f^2 + f'^2 \ge 0. \tag{1}$$

Si $\varphi(f, f) = 0$, f^2 étant continue et positive, on a f = 0.

2. Soit $(f,g) \in V \times W$. On a

$$\int_0^1 fg + f'g' = \int_0^1 fg + \int_0^1 f'g', \tag{2}$$

$$= \int_0^1 fg + [fg']_0^1 - \int_0^1 fg'', \tag{3}$$

$$= \int_0^1 fg - \int_0^1 fg,$$
 (4)

$$=0. (5)$$

Donc V et W sont orthogonaux.

Soit $h \in E$. Supposons qu'il existe $(f,g) \in V \times W$ tel que h = f + g. Il existe $(a,b) \in \mathbb{R}^2$ tel que pour tout $x \in [0,1]$, $g(x) = ae^x + be^{-x}$ et f(0) = f(1) = 0. Donc h(0) = a + b et $h(1) = ae + \frac{b}{e}$. On trouve donc

$$a = \frac{\frac{h(0)}{e} - h(1)}{\frac{1}{e} - e},$$

$$b = \frac{eh(0) - h(1)}{e - \frac{1}{e}}.$$
(6)

Réciproquement, en définissant a et b comme précédemment, on pose f=h-g. On a bien $f\in V$ et h=f+g. Finalement, $E=V\overset{\perp}{\oplus}W$.

$$b = \frac{\beta - \alpha \cosh(1)}{\sinh(1)}. (7)$$

Réciproquement, h_0 ainsi défini est dans $W \cap E_{\alpha,\beta}$.

Pour tout $h \in E_{\alpha,\beta}$, $h - h_0 \in V$, d'après le théorème de Pythagore, on a $||h_0|| \leq ||h||$. Ainsi, la borne supérieure est $||h_0||^2$.

Solution 2.

1. Si $P \in \ker(\Delta)$, on a P(X + a) = P(X) et par itération, pour tout $k \in \mathbb{N}$, P(ka) = P(0), donc P est constant. Ainsi, $\ker(\Delta) = \mathbb{R}_0[X]$. On a

$$\Delta(X^k) = (X+a)^k - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i a^{k-i}, \tag{8}$$

de degré k-1 et de coefficient dominant ka. Ainsi, si $P = \sum_{i=0}^{n} X^{i}$ avec $a_{n} \neq 0$, on a $\Delta(P) = \sum_{k=0}^{n} a_{k} \Delta(X^{k})$ de degré n-1 et de coefficient dominant $a_{n}na$.

- 2. Si $k \ge \deg(P) + 1$, on a $\Delta^k P = 0$, et $\Delta^{\deg(P)}(P) = a_n \times n! a^n \ne 0$. φ est une somme finie, une forme bilinéaire symétrique, $\varphi(P,P) \ge 0$ et si $P \ne 0$, $\left(\Delta^{\deg(P)} P(0)\right)^2 > 0$ donc $\varphi(P,P) > 0$.
- 3. Soit $n \in \mathbb{N}$, cherchons P_n de coefficient dominant strictement positif avec $\deg(P_n) = n$ tel que pour tout $k \in [0,]$, $\Delta^k P_n(0) = \delta_{n,k}$. On a P(0) = 0 pour k = 0, et $\Delta(P)(0) = P(a) P(0) = 0$ donc P(a) = 0. De proche en proche, pour tout $k \in [0, n-1]$, P(ka) = 0. Donc $P_n = \alpha_n X(X a) \dots (X (n-1)a)$, et $\Delta^n(P_n)(0) = 1$ d'où

$$\alpha_n = \frac{1}{n!a^n}. (9)$$

Réciproquement, en définissant P_n comme ci-dessus, avec $P_0=1$, on a

$$\Delta(P_n) = \alpha_n [(X+a)(X-a)\dots(X-(n-2)a) - X(X-a)\dots(X-(n-1)a)], \quad (10)$$

$$= \alpha_n X(X-a) \dots (X-(n-2)a)(na), \tag{11}$$

$$=P_{n-1}. (12)$$

Par récurrence, $\Delta^k(P_n)(0) = \delta_{n,k}$ donc (P_n) est orthonormée.

Solution 3. On choisit $E = \mathcal{C}^0\left(\left[0, \frac{\pi}{2}\right], \mathbb{R}\right)$ muni du produit scalaire $\int_0^{\frac{\pi}{2}} f(t)g(t) dt = (f|g)$. Soit $f_0 \colon x \mapsto 1$ et $f_1 \colon x \mapsto x \in E$, on note $F = \text{Vect}(f_0, f_1)$. Trouver I(a, b) revient à calculer $p_F(\sin) = a_0 f_0 + b_0 f_1$ avec $\sin -p_F(\sin) \in F^{\perp}$.

On a

$$(\sin -a_0 f_1 - b_0 f_0 | f_0) = (\sin -a_0 f_1 - b_0 f_0 | f_1) = 0.$$
(13)

D'où

$$\int_0^{\frac{\pi}{2}} (\sin(x) - a_0 x - b_0) dx = 0,$$

$$\int_0^{\frac{\pi}{2}} (x \sin(x) - a_0 x^2 - b_0 x) dx = 0.$$
(14)

On trouve ainsi les valeurs de $b_0 = \frac{8}{\pi^2}(\pi - 3)$ et de $a_0 = \frac{96}{\pi^3}\left(1 - \frac{\pi}{4}\right)$ en résolvant un système de deux équations à deux inconnues en calculant les intégrales (utiliser une intégration par partie pour le calcul de celle d'intégrande $x \sin(x)$). Enfin,

$$I(a,b) = \|\sin -p_F(\sin)\|^2,$$
(15)

$$= \|\sin\|^2 - \|p_F(\sin)\|^2. \tag{16}$$

On finit par trouver I(a, b) = 1.

Remarque 1. Ce genre nde problème se résout souvent en se ramenant à un espace euclidien et en utilisant nos connaissances sur le projeté orthogonal.

Solution 4.

- 1. Si $k \ge \min(\deg(P), \deg(Q))$, $P^{(k)}(a_k)Q^{(k)}(a_k) = 0$, donc $(\cdot|\cdot)$ est définie et est une forme bilinéaire symétrique positive. Soit $P \in E \setminus \{0\}$ avec $\deg(P) = k_0$. Si (P|P) = 0, alors $\sum_{k=0}^{+\infty} (P^{(k)}(a_k))^2 = 0$. En particulier, $P^{(k_0)}(a_{k_0}) = 0$ ce qui est absurde par définition de k_0 . Donc $(\cdot|\cdot)$ est un produit scalaire.
- 2. On applique le procédé d'orthogonalisation de Schmidt à $(X^n)_{n\in\mathbb{N}}$.
- 3. Soit $Q_n = \alpha_{0,n} + \alpha_{1,n}X + \cdots + \alpha_{n,n}X^n$ de degré n. On a

$$0 = Q_n(a_0) = Q'_n(a_1) = \dots = Q_n^{(n-1)}(a_{n-1}), \tag{17}$$

et $Q_n^{(n)}(a_n) = 1$ si et seulement si

$$\alpha_{0,n} + \alpha_{1,n}a_0 + \dots + \alpha_{n,n}a_0' = 0,$$

$$\alpha_{1,n} + 2\alpha_{2,n}a_1 + \dots + n\alpha_{n,n}a_1^{n-1} = 0,$$

$$\vdots \quad \vdots \quad \vdots,$$

$$(n-1)!\alpha_{n-1,n} + (n \times \dots \times 2)\alpha_{n,n}a_{n-1} = 0,$$

$$n!\alpha_{n,n} = 1.$$
(18)

Il y a une unique solution car c'est un système triangulaire. Ainsi, pour tout $k \in \{0, \ldots, n\}$, $Q_n^{(k)}(a_k) = \delta_{n,k}$ et pour k > n+1, c'est vrai aussi car $Q_n^{(k)} = 0$.

On obtient ainsi une famille de polynômes telle que pour tout $n \in \mathbb{N}$, $\deg(Q_n) = 0$ et le coefficient dominant de Q_n est strictement positif. De plus pour tout $(n, m) \in \mathbb{N}^2$,

$$(Q_n|Q_m) = \sum_{k=0}^{+\infty} \underbrace{Q_n^{(k)}(a_k)Q_m^{(k)}(a_k)}_{\delta_{n,k}\delta_{m,k}} = \delta_{n,m}.$$
 (19)

Par unicité, $Q_n = P_n$ et $P_n^{(k)}(a_k) = \delta_{n,k}$.

4. Comme $\int_{a_{n-1}}^{t_{n-1}} dt_n$ est un polynôme en t_{n-1} de degré 1, si

$$A_n(x) = \int_{a_0}^x \int_{a_1}^{t_1} \dots \int_{a_{n-1}}^{t_{n-1}} dt_n dt_{n-1} \dots dt_2 dt_1,$$
(20)

alors c'est un polynôme en x de degré n et de coefficient dominant $\frac{1}{n!}$. De plus, pour tout $k \in \{0, \dots, n\}$,

$$A_n^{(k)}(t_k) = \int_{a_k}^{t_k} \dots \int_{a_{n-1}}^{t_{n-1}} dt_n \dots dt_{k+1}.$$
 (21)

Donc si $k \leq n-1$, $A_n^{(k)}(a_k)=0$, et si k>n, $A_n^{(k)}=0=A_n^{(k)}(a_k)$. Enfin, $A_n^{(n)}=1$. Donc $A_n=P_n$ par unicité.

5. On a $P_0 = 1$, $P_1(x) = x$. On trouve $P_2(x) = \frac{1}{2}x(x - 2\alpha)$ et $P_3(x) = \frac{x}{6}(x^2 - 6\alpha x + 9\alpha^2)$. On vérifie alors par récurrence que $P_n = \frac{x}{n!}(x - n\alpha)^{n-1}$.

Solution 5. On note $\varphi(a,b,c)$ l'intégrale. On pose

$$E = \left\{ f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}) \middle| f^2(x) e^{-x} \in \mathcal{L}^1(\mathbb{R}) \right\}. \tag{22}$$

 $0 \in E$, si $f \in E$, alors $\lambda f \in E$ pour tout $\lambda \in \mathbb{R}$ et si $(f,g) \in E^2$, alors $|fg| \leq \frac{1}{2}(f^2 + g^2)$ donc $g(x)g(x)e^{-x} \in \mathcal{L}^1(\mathbb{R}_+)$, et $(f+g)^2 = f^2 + g^2 + 2fg$ donc $f+g \in E$.

On définit pour tout $(f,g) \in E^2$,

$$(f|g) = \int_0^{+\infty} f(x)g(x)e^{-x}dx,$$
(23)

qui est un produit scalaire sur E.

Soit $f_k : x \mapsto x^k$ de $\mathbb{R}_+ \to \mathbb{R}$, $F = \text{Vect}(f_0, f_1, f_2)$. On a $\varphi(a, b, c) = \|\sin -af_2 - bf_1 - cf_0\|^2$ minimum pour $af_2 - bf_1 - cf_0 = p_F(\sin)$.

Par définition, (a,b,c) vérifient $(\sin -af_2 - bf_1 - cf_0|f_k) = 0$ pour tout $k \in \{0,1,2\}$.

On a

$$(\sin|f_0) = \int_0^{+\infty} \sin(x) e^{-x} dx = \Im\left(\int_0^{+\infty} e^{-x(1-i)} dx\right) = \Im\left(\frac{1}{1-i}\right) = \frac{1}{2},$$
 (24)

$$(\sin|f_1) = \int_0^{+\infty} x \sin(x) e^{-x} dx, \qquad (25)$$

$$= \Im\left(\int_0^{+\infty} x e^{-x(1-i)} dx\right),\tag{26}$$

$$= \Im\left(\left[\frac{xe^{-x(1-i)}}{-(1-i)}\right]_0^{+\infty} + \frac{1}{1-i}\int_0^{+\infty} e^{-x(1-i)} dx\right), \tag{27}$$

$$=\Im\left(0+\frac{1}{(1-\mathrm{i})^2}\right),\tag{28}$$

$$=\frac{1}{2},\tag{29}$$

$$(\sin|f_2) = \int_0^{+\infty} x^2 \sin(x) e^{-x} dx,$$
 (30)

$$= \Im\left(\int_0^{+\infty} x^2 e^{-x(1-i)} dx\right),\tag{31}$$

$$= \Im\left(0 + \frac{2}{(1-i)^3}\right),\tag{32}$$

$$= -\frac{1}{2}.\tag{33}$$

Soit $(i, j) \in \llbracket 0, 2 \rrbracket^2$, on a

$$(f_i|f_j) = \int_0^{+\infty} x^{i+j} e^{-x} dx, \qquad (34)$$

$$=\Gamma(i+j+1),\tag{35}$$

$$= (i+j)!. (36)$$

On résout ensuite le système

$$\begin{cases}
a+b+2c &= \frac{1}{2}, \\
a+2b+6c &= \frac{1}{2}, \\
2a+6b+24c &= -\frac{1}{2},
\end{cases}$$
(37)

et on finit par calculer $\|\sin -p_F(\sin)\|^2 = \|\sin\|^2 - \|p_F(\sin)\|^2$.