ECE 250: Stochastic Processes: Week #5

Instructor: Behrouz Touri

Outline:

- Strong Law of Large Numbers
- Applications of SLLN: Kelly Gambling, Pandemics Model
- Central Limit Theorem

Sums of Independent Random Variables and their Variances

Theorem 1. For an independent sequence of random variables $\{X_k\}$ with zero mean, if

$$\sum_{k=1}^{\infty} Var(X_k) < \infty,$$

then $\lim_{n\to\infty} \sum_{k=1}^n X_n$ exists.

Main idea of the proof: show that $\sum_{k=1}^{\infty} X_k$ is a Cauchy sequence almost surely by utilizing the Maximal inequality:

$$\Pr(\sup_{M \ge m} |S_M - s_m| \ge \epsilon) \le \sum_{k=m}^{\infty} \mathsf{Var}(X_k).$$

Kolmogorov's Three-Series Theorem

Theorem 2. Sum of an independent random process $\{X_k\}$ converges almost surely if and only if for any $\alpha > 0$, if we let $Y_k = X_k \mathbf{1}_{|X_k| \le \alpha}$, the following three (deterministic) series converges:

- $\sum_{k=1}^{\infty} P(|X_k| \ge \alpha) < \infty$,
- $\sum_{k=1}^{\infty} \mathbb{E}[Y_k]$ converges, and
- $\sum_{k=1}^{\infty} Var(Y_k)$ converges.

Strong Law of Large Numbers: main idea of the proof

Theorem 3. Let $\{X_k\}$ be a sequence of i.i.d. random variables with finite mean $\mathbb{E}[X_k] = \mu$. Then, the running average sequence:

$$Y_k = \frac{X_1 + \ldots + X_n}{n},\tag{1}$$

converges almost surely to μ .

Lemma 1. (Kronecker's Lemma) Suppose that $\sum_{k=1}^{\infty} \frac{x_k}{a_k}$ converges for two deterministic sequences $\{x_k\}$ and $\{a_k\}$ with $a_k \to \infty$. Then

$$\frac{x_1 + \ldots + x_n}{a_n} \to 0.$$

Proof. (Proof of SLLN for the case of $Var(X_k) = \sigma^2 < \infty$)

- By Theorem 1, $\sum_{k=1}^{\infty} \frac{X_k \mu}{k}$ converges almost surely as $\operatorname{Var}(\frac{X_k \mu}{k}) = \frac{\sigma^2}{k^2}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$.
- Therefore, using the Kronecker's Lemma,

$$\frac{\sum_{k=1}^{n} (X_k - \mu)}{n} = \frac{S_n}{n} - \mu$$

converges to 0 almost surely as $k \to \infty$.

 $\overline{}$

Strong Law of Large Numbers: Applications

• Kelly Gambling:

- Suppose that we have a slot machine
- At time k, we put in Z(k) dollars in we win with probability p=0.51 and loose with probability 1-p=0.49
- If win, the machine returns the money and matches the investment, otherwise, lose the money
- Question: If we initially have $X_0 = 10$, can we become a millionaire with probability one?

Strong Law of Large Numbers: Applications cont.

- Pandemics Modeling: Suppose that $X_{k+1} = W_k X_k$ for some $X_0 > 0$ and an i.i.d. process $\{W_k\}$ that is positive a.s.
- What happens if $\mathbb{E}[\log(W_k)] = \gamma > 0$?
- \bullet Answer: For any $0<\lambda<\gamma$, for almost all ω , there exists a $T(\omega)$ such that, we have

$$X_k(\omega) \ge e^{\lambda k}$$
,

for all $k \geq T(\omega)$.

- What happens if $\mathbb{E}[\log(W_k)] = \gamma < 0$?
- \bullet Answer: For any $0<\lambda<-\gamma$, for almost all ω , there exists a $T(\omega)$ such that, we have

$$X_k(\omega) \le e^{-\lambda k},$$

for all $k \geq T(\omega)$.

Convergence in Distribution

- **Definition**: We say that a random process $\{X_k\}$ converges in distribution to a random variable X if $\lim_{k\to\infty}\Pr(X_k\leq\alpha)=\Pr(X\leq\alpha)$ for all $\alpha\in\mathbb{R}$.
- In other words, we say that $\{X_k\}$ converges in distribution if the distribution of $\{X_k\}$ converges (point-wise) to the of distribution X.
- We denote this by $X_k \stackrel{\mathsf{law}}{\to} \mu$.
- Sometimes this mode of convergence is defined as: We say that a random process $\{X_k\}$ converges in distribution to a **distribution** η if $\lim_{k\to\infty}\Pr(X_k\leq\alpha)=\eta(\alpha)$ for all $\alpha\in\mathbb{R}$.
- This convergence is much weaker than almost sure convergence.
- \bullet Recall we say that a continuous r.v. X is normally distributed with mean μ and variance σ^2 if

$$f_X(x) = \frac{d}{dx} F_X(x) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

We denote this by $X \sim \mathcal{N}(\mu, \sigma^2)$.

Central Limit Theorem

Theorem 4. (Central Limit Theorem) Suppose that $\{X_k\}$ is an i.i.d. sequence with finite mean μ and finite variance σ^2 . Then,

$$\frac{(X_1 - \mu) + (X_2 - \mu) + \dots + (X_n - \mu)}{\sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} - \sqrt{n}\mu$$
$$= \frac{S_n - n\mu}{\sqrt{n}} \xrightarrow{law} X,$$

where $X \sim \mathcal{N}(0, \sigma^2)$.

- Application: Suppose that we have a fair coin and we flip it N=1000 times. How likely is it to have between 450 and 550 of heads?
- Solution: Let $X_k=1$ if the coin comes head and $X_k=0$ if the coin comes tail. Then, $\mathbb{E}[X_k]=\frac{1}{2}$ and $\text{Var}(X_k)=\frac{1}{4}$.
- Then,

$$\Pr(450 \le X_1 + \dots + X_{1000} \le 550) = \Pr(-50 \le S_{1000} - 1000\mu \le 50)$$

$$= \Pr(-\frac{50}{10\sqrt{10}} \le \frac{S_{1000} - 1000\mu}{10\sqrt{10}} \le \frac{50}{10\sqrt{10}})$$

$$= \Pr(-\frac{\sqrt{10}}{2} \le \frac{S_{1000} - 1000\mu}{10\sqrt{10}} \le \frac{\sqrt{10}}{2})$$

$$\approx \Pr(-1.5811 \le X \le 1.5811)$$
 (2)

for a random variable $X \sim \mathcal{N}(0, \frac{1}{4})$.

• Using Gaussian integral tables, $\Pr(-1.5811 \le X \le 1.5811) \approx 0.9984$.