Kapitel 1 - Normierte Vektorräume

Vektorräume

Eine Menge V heißt \mathbb{K} -Vektorraum, wenn:

- 1. $\forall \mathbf{v}_1, \mathbf{v}_2 \in V : \mathbf{v}_1 + \mathbf{v}_2 \in V$
- 2. $\forall \mathbf{v} \in V \forall k \in \mathbb{K} : k \cdot \mathbf{v} \in V$
- 3. $\forall \mathbf{v}_1, \mathbf{v}_2 \in V : \mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_2 + \mathbf{v}_1$
- 4. $\forall \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in V : (\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{v}_3 = \mathbf{v}_1 + (\mathbf{v}_2 + \mathbf{v}_3)$
- 5. $\forall v \in V \exists 0 \in V : 0 + v = v + 0 = v$
- 6. $\forall \mathbf{v} \in V \exists \mathbf{v}' \in V : \mathbf{v} + \mathbf{v}' = \mathbf{v}' + \mathbf{v} = \mathbf{0}$
- 7. $\forall \mathbf{v} \in V \exists 1 \in \mathbb{K} : 1 \cdot \mathbf{v} = \mathbf{v}$
- 8. $\forall \mathbf{v} \in V \forall k, l \in \mathbb{K} : (k \cdot l) \cdot \mathbf{v} = k \cdot (l \cdot \mathbf{v})$
- 9. $\forall \mathbf{v}_1, \mathbf{v}_2 \in V \forall k \in \mathbb{K} : k \cdot (\mathbf{v}_1 + \mathbf{v}_2) = k \cdot \mathbf{v}_1 + k \cdot \mathbf{v}_2$
- 10. $\forall \mathbf{v} \in V \forall k, l \in \mathbb{K} : (k+l) \cdot \mathbf{v} = k \cdot \mathbf{v} + l \cdot \mathbf{v}$

Vektorräume im \mathbb{K}^n

Ist $V \subseteq \mathbb{K}^n$, dann ist V ein \mathbb{K} -VR, g.d.w.:

- 1. $\forall \mathbf{v}_1, \mathbf{v}_2 \in V : \mathbf{v}_1 + \mathbf{v}_2 \in V$
- 2. $\forall \mathbf{v} \in V \forall k \in \mathbb{K} : k \cdot \mathbf{v} \in V$

(Die Addition und Skalarmultiplikation ist hierbei komponentenweise).

Wichtige Vektorräume

 $\mathbb{R}^n, \mathbb{C}^n$

 $\mathcal{C}^k(D)$ für $k\in\mathbb{N}_0\cup\{\infty\}$ - Raum der k-mal stetig diff.baren Funktionen mit Definitionsbereich D.

 $\mathcal{L}^p(\Omega, \mathcal{A}, \mu) :=$

 $\{f: \Omega \to \mathbb{K} | f \text{ ist messbar}, \int_{\Omega} |f(x)|^p d\mu(x) < \infty\}$

Normierte Vektorräume

Sei X ein \mathbb{K} -VR. Eine Fkt. $\|\cdot\|: X \to \mathbb{R}$ heißt Norm auf X, wenn:

- 1. $\forall \mathbf{x} \in X : ||\mathbf{x}|| = 0 \iff \mathbf{x} = 0$
- 2. $\forall \mathbf{x} \in X \forall \lambda \in \mathbb{K} : ||\lambda \mathbf{x}|| = |\lambda| ||\mathbf{x}||$
- 3. $\forall \mathbf{x}, \mathbf{y} \in X : \|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$

 $(X, \|\cdot\|)$ heißt normierten Vektorraum

Wichtige Normen

 $\|\mathbf{x}\|_p := \sqrt[p]{\sum_{i=1}^n |x_i|^p}$ heißt allgemein p-Norm.

 $\|\mathbf{x}\|_{\infty} := \max\{|x_1|, \dots, |x_n|\}$ heißt Maximumsnorm.

 $\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i|$ heißt Summennorm.

 $\|\mathbf{x}\|_2 := \sqrt[2]{\sum_{i=1}^n |x_i|^2}$ heißt Euklidische Norm.

 $\|A\|_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$ heißt Frobenius
norm.

 $||[f]||_{L^p(\Omega)} := \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} \text{ heißt } L^p\text{-Norm.}$

 $||f||_{\infty} := \sup\{|f(x)||x \in D\}$ heißt Supremumsnorm

Offene und abgeschlossene Mengen

Sei $(X, \|\cdot\|)$ ein normierter VR. Wir definieren:

 $B_{\varepsilon}(\mathbf{x}) := \{ y \in X | ||\mathbf{x} - \mathbf{y}|| < \varepsilon \} \text{ (offener Ball um } \mathbf{x}).$

 $\bar{B}_{\varepsilon}(\mathbf{x}) := \{ y \in X | ||\mathbf{x} - \mathbf{y}|| \le \varepsilon \} \text{ (abgesch. Ball um } \mathbf{x} \text{)}.$ $S_{\varepsilon}(\mathbf{x}) := \{ y \in X | ||\mathbf{x} - \mathbf{y}|| = \varepsilon \} \text{ (Sphäre um } \mathbf{x} \text{)}.$

 \mathbf{x} ist innerer Punkt von A, wenn $\exists \varepsilon > 0 : B_{\varepsilon}(\mathbf{x}) \subseteq A$. Die Menge aller inneren Punkte von A heißt das Innere von A (A° oder int A).

 \mathbf{x} heißt Randpunkt von A, wenn $\forall \varepsilon > 0 : A \cap B_{\varepsilon}(\mathbf{x}) \neq \emptyset$ und $A^c \cap B_{\varepsilon}(\mathbf{x}) \neq \emptyset$. Die Menge aller Randpunkte von A heißt der Rand von A (∂A).

Die Menge $\bar{A} = A \cup \partial A$ heißt Abschluss von A.

x heißt Häufungspunkt von A, wenn $\forall \varepsilon > 0$: $|A \cap B_{\varepsilon}(\mathbf{x})| = \infty$

 \mathbf{x} heißt isolierter Punkt von A, wenn $\exists \varepsilon > 0$: $B_{\varepsilon}(\mathbf{x}) \cap A = \{\mathbf{x}\}.$

A heißt offen in X, wenn $A = A^{\circ}$.

A heißt abgeschlossen in X, wenn A^c offen ist.

Eigenschaften von offenen/abges. Mengen

Sei $(X, \|\cdot\|)$ ein normierter VR, $A \subseteq X$, $A_i \subseteq X$ offen $\forall i \in \mathbb{N}$ und $B_j \subseteq X$ abgeschlossen $\forall j \in \mathbb{N}$. Dann gilt:

- 1. A ist offen $\iff \bar{A}$ ist abgeschlossen.
- 2. X und \emptyset sind offen und abgeschlossen.
- 3. $\forall \mathbf{x} \in X : {\mathbf{x}}$ ist abgeschlossen.
- 4. $\bigcup_{i=1}^{\infty} A_i$ offen.
- 5. $\bigcap_{i=1}^n A_i$ offen.
- 6. $\bigcap_{j=1}^{\infty} B_j$ abgeschlossen.
- 7. $\bigcup_{i=1}^{n} B_i$ abgeschlossen.

Beispiel von offenen/abges. Mengen

- 1. Für $X=\mathbb{R}$ und A=(0,1] ist $A^\circ=(0,1),$ $\partial A=\{0,1\},$ $\bar{A}=[0,1]$
- 2. Für $X=\mathbb{R}$ und $A=\mathbb{Q}$ ist $A^\circ=\emptyset,\,\partial A=\bar{A}=\mathbb{R}$

Konvergenz in normierten VR

Sei $(\mathbf{x}^k)_{k\in\mathbb{N}}$ eine Folge im normierten VR $(X, \|\cdot\|)$

- 1. $(\mathbf{x}^k)_{k \in \mathbb{N}}$ heißt beschränkt, wenn $\{\|\mathbf{x}^k\| | k \in \mathbb{N}\}$ in \mathbb{R} beschränkt ist.
- 2. $(\mathbf{x}^k)_{k \in \mathbb{N}}$ heißt konvergent mit Limes $\mathbf{y} \in X$, wenn $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall k > N : ||\mathbf{x}^k \mathbf{y}|| < \varepsilon$
- 3. $(\mathbf{x}^k)_{k \in \mathbb{N}}$ heißt Cauchyfolge in X, wenn $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall k, l > N : ||\mathbf{x}^k \mathbf{x}^l|| < \varepsilon$
- 4. $\mathbf{y} \in X$ heißt Häufungspunkt von $(\mathbf{x}^k)_{k \in \mathbb{N}}$, wenn $\forall \varepsilon > 0 : |\{\mathbf{x}^k | k \in \mathbb{N}\} \cap B_{\varepsilon}(\mathbf{y})| = \infty$

Konvergenzsätze

Sei $(\mathbf{x}^k)_{k \in \mathbb{N}}$ eine Folge im normierten VR $(X, \|\cdot\|)$

- 1. $(\mathbf{x}^k)_{k\in\mathbb{N}}$ konvergiert $\implies (\mathbf{x}^k)_{k\in\mathbb{N}}$ ist beschränkt.
- 2. $\mathbf{y} \in X$ ist Häufungspunkt von $(\mathbf{x}^k)_{k \in \mathbb{N}} \iff (\mathbf{x}^k)_{k \in \mathbb{N}}$ hat eine Teilfolge die gegen \mathbf{y} konvergiert.
- 3. $(\mathbf{x}^k)_{k\in\mathbb{N}}$ konvergiert $\implies (\mathbf{x}^k)_{k\in\mathbb{N}}$ ist Cauchyfolge.
- 4. Sei $(\mathbf{x}^k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{K}^n :

 $(\mathbf{x}^k)_{k \in \mathbb{N}}$ konvergiert $\iff \forall j : (x_j^k)_{k \in \mathbb{N}}$ konvergiert. $(\mathbf{x}^k)_{k \in \mathbb{N}}$ ist Cauchy $\iff \forall j : (x_i^k)_{k \in \mathbb{N}}$ ist Cauchy.

5. $A \subseteq X$ ist abgeschlossen \iff Der Grenzwert jeder Folge in A, die in X konvergiert, hat ihren Grenzwert in A.

Banachraum

Ein normierten VR $(X, \|\cdot\|)$ heißt vollständig, wenn jede Cauchyfolge in X konvergiert. Ein vollständiger normierter VR heißt Banachraum.

Banachraum Sätze

- 1. Sei $(\mathbf{x}^k)_{k \in \mathbb{N}}$ eine Folge im Banachraum $(X, \| \cdot \|)$. $(\mathbf{x}^k)_{k \in \mathbb{N}}$ konvergiert $\iff (\mathbf{x}^k)_{k \in \mathbb{N}}$ ist Cauchyfolge.
- 2. Ist $(X, \|\cdot\|)$ ein endlichdimensionaler normierter VR, dann ist X ein Banachraum.

Banachraum Beispiel

- 1. $(\mathbb{K}^n, \|\cdot\|_p)$ ist ein Banachraum.
- 2. Kein Banachraum
- 3. Bsp. 1.33 (b) im Skript ist kein Banachraum.

Ab jetzt bezeichnen wir die normierten Vektorräume $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ als X und Y.

Grenzwerte und Stetigkeit

Sei $A \subseteq X$ und $f: A \to Y$ eine Fkt. Ist $\mathbf{x}^0 \in X$ ein HP von A, dann sagen wir f hat den Grenzwert/Limes $\mathbf{y}^0 \in Y$ für $\mathbf{x} \to \mathbf{x}^0$, wenn $\forall \varepsilon > 0 \exists \delta > 0 \forall \mathbf{x} \in A \cap B_{\delta}(\mathbf{x}^0) \setminus \{\mathbf{x}^0\} : ||f(\mathbf{x}) - \mathbf{y}^0|| < \varepsilon$.

Ist $\mathbf{x}^0 \in A$, so heißt f stetig in \mathbf{x}^0 , wenn $\forall \varepsilon > 0 \exists \delta > 0 \forall \mathbf{x} \in A \cap B_{\delta}(\mathbf{x}^0) : ||f(\mathbf{x}) - f(\mathbf{x}^0)|| < \varepsilon$. f heißt stetig in A, wenn $\forall \mathbf{x}^0 \in A : f$ ist stetig in \mathbf{x}^0 .

Folgenkriterium für Stetigkeit

Sei $A \subseteq X$ und $f: A \to Y$ eine Fkt. Ist $\mathbf{x}^0 \in X$ ein HP von A, dann gilt:

- 1. $\lim_{\mathbf{x} \to \mathbf{x}^0} f(\mathbf{x}) = \mathbf{y}^0 \iff \forall (x^k)_{k \in \mathbb{N}} \text{ in } A \setminus \{\mathbf{x}^0\} : \lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0 \implies \lim_{k \to \infty} f(\mathbf{x}^k) = \mathbf{y}^0$
- 2. f ist in \mathbf{x}^0 stetig $\iff \forall (x^k)_{k \in \mathbb{N}}$ in A: $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0 \implies \lim_{k \to \infty} f(\mathbf{x}^k) = f(\mathbf{x}^0)$

Koordinatenfunktionen und Projektionen

- 1. Die Funktion $\pi_j : \mathbb{K}^n \to \mathbb{K}, \pi_j(z_1, \dots, z_n) := z_j$ heißt Projektion.
- 2. Für $A \subseteq X$ und die Fkt. $f: A \to \mathbb{K}^n$ heißen die Funktionen $f_j := f \circ \pi_j : A \to \mathbb{K}$ Koordinatenfunktionen von f.

Stetigkeit von Koord.fkt. und Proj.

- 1. Konstante Funktionen sind stetig.
- 2. Ist $(z^k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{K}^n mit $\lim_{k\to\infty} z^k = z^0$, so gilt $\forall j \in \{1,\ldots,n\} : \lim_{k\to\infty} z_j^k = z_j^0$ und daher sind alle Projektionen $\pi_j : \mathbb{K}^n \to \mathbb{K}, \pi_j(z_1,\ldots,z_n) := z_j$ stetig.
- 3. Für $A \subseteq X, \mathbf{x}^0 \in A$ und die Fkt. $f : A \to \mathbb{K}^n$ mit $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ gilt: f ist stetig in $\mathbf{x}^0 \iff$ alle f_i sind stetig in \mathbf{x}^0 .

Stetigkeit von Verknüpfungen

Seien $f, g: X \to Y$ Fkt. stetig in \mathbf{x}^0 und $\lambda \in \mathbb{K}$. Dann sind $f+g, \lambda f, f \cdot g, \frac{f}{g}$ für $g \neq 0, |f|, \max\{g, f\},$ $\min\{g, f\}, f^+ = \max\{0, f\}$ und $f^- = -\min\{0, f\}$ stetig in \mathbf{x}^0 sofern überhaupt wohldefiniert.

Ist Z ein weiterer normierter VR und $h: Y \to Z$ eine Fkt. die stetig in $f(\mathbf{x}^0)$ ist. Dann ist $h \circ f: X \to Z$ stetig in \mathbf{x}^0 , sofern überhaupt wohldefiniert.

Stetigkeit Beispiel

Sei $f: \mathbb{R}^+ \times \mathbb{C} \to \mathbb{C}, f(x,z) := x^z = \exp(z \log(x)).$ f ist stetig, weil $f(x,z) = \exp(\pi_2(x,z) \log(\pi_1(x,z)))$ bzw. $f = \exp \circ (\pi_2 \cdot (\log \circ \pi_1))$ eine Verkettung bzw. Multiplikation stetiger Funktionen ist und somit laut dem Satz oben wieder stetig ist.

Stetigkeit bezüglich Koordinaten

Sei $f: \mathbb{K}^n \to Y$ und $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in \mathbb{K}^n$. Wir nennen f stetig in \mathbf{x}^0 bezüglich der j-ten Komponente x_j^0 , wenn die Funktion $\phi: \mathbb{K} \to Y$ mit $\phi(x) := f(x_1^0, \dots, x_{j-1}^0, x, x_{j+1}^0, \dots, x_n^0)$ stetig in $x = x_j^0$ ist.

Lemma: Ist f stetig in x^0 , so ist f stetig in jeder Komponente von x^0 . ! Umkehrung gilt nicht im allgemeinen.

Stetigkeit bezüglich Koordinaten Beispiel

fkann in allen Komponenten von \mathbf{x}^0 stetig sein ohne in \mathbf{x}^0 stetig zu sein. Sei $\mathbf{x}^0=(0,0).$ Definiere $f:\mathbb{K}^2\to\mathbb{K}$ mit

$$f(x_1, x_2) = \begin{cases} 0 & x_1 x_2 = 0 \\ 1 & x_1 x_2 \neq 0 \end{cases}$$
, dann sind

 $\phi_1(x_1) := f(x_1, 0), \phi_2(x_2) := f(0, x_2)$ beide konstant gleich 0 und somit stetig in $x_1 = 0$ bzw. $x_2 = 0$. Also ist f stetig in jeder Komponente von $\mathbf{x}^0 = (0, 0)$. Aber f ist nicht stetig in \mathbf{x}^0 , weil z.B. für die Folge

$$(x_1^k, x_2^k) = \begin{cases} (\frac{1}{k}, 0) & \text{für k gerade} \\ (\frac{1}{k}, \frac{1}{k}) & \text{für k ungerade} \end{cases} \text{gilt, dass}$$

 $\lim_{k\to\infty}(x_1^k,x_2^k)=(0,0), \text{ jedoch } f(x_1^k,x_2^k)=1 \text{ für alle ungeraden } k. \text{ Also konvergiert } f(x_1^k,x_2^k) \text{ nicht gegen } f(0,0)=0 \text{ und somit ist } f \text{ nicht stetig in } \mathbf{x}^0=(0,0).$

Monome/Polynome

Sei $n \in \mathbb{N}$ und $p = (p_1, \dots, p_n) \in (\mathbb{N}_0)^n$. p heißt Multiindex und $|p| := p_1 + \dots + p_n$ heißt Grad von p.

Für $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{K}^n$ setze $x^p := x_1^{p_1} \cdot \dots \cdot x_n^{p_n}$. Die Funktion $f(\mathbf{x}) = x^p = x_1^{p_1} \cdot \dots \cdot x_n^{p_n}$ heißt Monom vom Grad |p|.

Eine Linearkombination von Monomen heißt Polynom. D.h. P ist ein Polynom, wenn $P: \mathbb{K}^n \to \mathbb{K}$, mit $P(\mathbf{x}) = P((x_1, \dots, x_n)) = \sum_{k \geq |p|} a_p x^p$ für $k \in \mathbb{N}_0$ und $a_p \in \mathbb{K}$.

Für zwei Polynome P, Q heißt $\frac{P}{Q}$ rationale Funktion.

Monome/Polynome Beispiel

		Grad
Monome	xy^2z^2	5
	xy^2z^2 x^2y^2 x^2y	4
	x^2y	3
	y	1
	1	0
Polynome	$3xy^2z^2 + 4x^2y^2 - 2x^2y + 3y + 1$	5
	$(x+y)(x+z^2)$ $0x^2+2y$	3
	$0x^2 + 2y$	1

Skalarprodukt und induzierte Norm

Die Funktion $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ heißt inneres Produkt oder Skalarprodukt auf X, wenn gilt:

- $\forall \mathbf{x} \in X : \langle \mathbf{x}, \mathbf{x} \rangle \ge 0 \text{ und } \langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = 0$
- $\bullet \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{K} : \langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$
- $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X, \lambda, \mu \in \mathbb{K} :$ $\langle \lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z} \rangle = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle$

Ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf X, so definiert $\| \cdot \| : X \to \mathbb{R}_0^+$, mit $\| \mathbf{x} \| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ eine Norm auf X. Diese nennen wir die von $\langle \cdot, \cdot \rangle$ induzierte Norm.

Hilbertraum

Ist X ein \mathbb{K} -Vektorraum und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt, so heißt $(X, \langle \cdot, \cdot \rangle)$ Prähilbertraum oder Innenproduktraum. Wenn die von $\langle \cdot, \cdot \rangle$ induzierte Norm $\| \cdot \|$ zusammen mit X ein Banachraum bildet (vollständige Norm), dann nennen wir $(X, \langle \cdot, \cdot \rangle)$ einen Hilbertraum.

Ab jetzt bezeichnet $\langle\cdot,\cdot\rangle$ ein Skalarprodukt auf dem normierten K-Vektorraum X

Sätze für Skalarprodukte

Für $\langle \cdot, \cdot \rangle$ gilt:

- $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X, \lambda, \underline{\mu} \in \mathbb{K} :$ $\langle \mathbf{x}, \lambda \mathbf{y} + \mu \mathbf{z} \rangle = \overline{\lambda} \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\mu} \langle \mathbf{x}, \mathbf{z} \rangle$ Note: Für $\mathbb{K} = \mathbb{R}$ ist $\overline{\lambda} = \lambda$ und $\overline{\mu} = \mu$.
- $\forall \mathbf{x} \in X : \langle 0, \mathbf{x} \rangle = \langle \mathbf{x}, 0 \rangle = 0$
- (Cauchy-Schwarz-Ungleichung) Für die von $\langle \cdot, \cdot \rangle$ induzierte Norm $\| \cdot \|$ gilt $\forall \mathbf{x}, \mathbf{y} \in X : |\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|$ Gleichheit gilt g.d.w. \mathbf{x} und \mathbf{y} linear abhängig sind.

Äquivalente Normen

Seien $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf X (beliebige Normen. Nicht verwechseln mit Notation für 1-Norm und 2-Norm).

Dann heißen $\|\cdot\|_1$ und $\|\cdot\|_2$ äquivalent, wenn $\exists a, b \in \mathbb{R}^+ \forall \mathbf{x} \in X : a \|\mathbf{x}\|_1 \leq \|\mathbf{y}\|_2 \leq b \|\mathbf{x}\|_1$.

In Worten: Normen sind äquivalent, wenn ihr Ergebnisse sich höchstens um einen konstanten Faktoren unterscheiden.

Sätze für äquivalente Normen

Seien $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf X. Dann sind die beiden Aussagen äquivalent:

- $\|\cdot\|_1$ und $\|\cdot\|_2$ sind äquivalent.
- $\forall (\mathbf{x}^k)_{k \in \mathbb{N}} \text{ in } X : \lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0 \text{ bzgl. } \| \cdot \|_1 \iff \lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^0 \text{ bzgl. } \| \cdot \|_2$
- ! Auf \mathbb{K}^n sind alle Normen äquivalent. D.h. alle Normen erzeugen die genau die gleichen konvergenten Folgen.

Kapitel 2 - Differentialrechnung im \mathbb{R}^n

Partielle Ableitungen von $f: \mathbb{R}^n \to \mathbb{K}$

Sei $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{K}$, $\mathbf{x}^0 \in A$ und $j \in \{1, \dots, n\}$. Gibt es ein $\varepsilon > 0$, s.d. $\forall h \in (-\varepsilon, \varepsilon) : \mathbf{x}^0 + h\mathbf{e}_j \in A$, so nennen wir f in \mathbf{x}^0 partiell differenzierbar nach x_j , wenn der Grenzwert $\lim_{h \to 0} \frac{f(\mathbf{x}^0 + h\mathbf{e}_j) - f(\mathbf{x}^0)}{h}$ existiert. Den Grenzwert nennen wir dann j-te partielle Ableitung von f in \mathbf{x}^0 und wird bezeichnet durch: $\partial_j f(\mathbf{x}^0)$, $\partial_{x_j} f(\mathbf{x}^0)$, $\frac{\partial f(\mathbf{x}^0)}{\partial x_j}$, $f_{x_j}(\mathbf{x}^0)$, $D_j f(\mathbf{x}^0)$ Randnotiz: Für $\mathbf{x}^0 \in \partial A$ definieren wir $\partial_j f(\mathbf{x}^0)$ so wie oben, bloss mit $h \in [0, \varepsilon)$ bzw. $h \in (\varepsilon, 0]$.

Existieren alle partiellen Ableitungen von f in \mathbf{x}^0 , so nennen wir den (Zeilen)vektor $\nabla f(\mathbf{x}^0) = (\partial_1 f(\mathbf{x}^0), \dots, \partial_n f(\mathbf{x}^0))$ Gradient von f in \mathbf{x}^0 .

Exisitert $\partial_j f(\mathbf{x}^0)$ für alle $\mathbf{x}^0 \in A$, so nennen wir die Funktion $\partial_j f : A \to \mathbb{K}, \mathbf{x} \mapsto \partial_j f(\mathbf{x})$ die j-te partielle Ableitung von f.

Partielle Ableitung berechnen

Um die $\partial_j f(\mathbf{x}^0)$ zu berechnen, falls diese existiert, tun wir so, als seien alle x_i mit $i \neq j$ konstant und berechnen die Ableitung der Funktion

 $\phi(x):=f(x_1^0,\dots,x_{j-1}^0,x,x_{j+1}^0,\dots,x_n^0)$ in $x=x_j^0$ wie im 1-dimensionalen Fall.

Beispiel:

Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1^2 x_2 e^{2x_1 + x_2} - 3x_2 + x_1$ und $\mathbf{x}^0 = (1, 0)$. Dann ist $\partial_1 f(x_1, x_2) = 2x_1 x_2 e^{2x_1 + x_2} + 2x_1^2 x_2 e^{2x_1 + x_2} + 1$ $\partial_2 f(x_1, x_2) = x_1^2 e^{2x_1 + x_2} + x_1^2 x_2 e^{2x_1 + x_2} - 3$

 $\nabla f(\mathbf{x}^0) = (1, e^2 - 3)$

Partielle Ableitungen von $f: \mathbb{R}^n \to \mathbb{K}^m$

Sei $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{K}^m$, $\mathbf{x}^0 \in A$. Existieren alle partiellen Ableitungen $\partial_j f_l(\mathbf{x}^0)$ für $j \in \{1, \dots, n\}, l \in \{1, \dots, m\}$, dann nennen wir die $m \times n$ -Matrix

$$\begin{bmatrix} \partial_1 f_1(\mathbf{x}^0) & \dots & \partial_n f_1(\mathbf{x}^0) \\ \vdots & & & \vdots \\ \partial_1 f_m(\mathbf{x}^0) & \dots & \partial_n f_m(\mathbf{x}^0) \end{bmatrix} = \begin{bmatrix} \nabla f_1(\mathbf{x}^0) \\ \vdots \\ \nabla f_m(\mathbf{x}^0) \end{bmatrix}$$

die Jacobimatrix von f in \mathbf{x}^0 und bezeichnen diese mit $J_f(\mathbf{x}^0)$. Für m = n bezeichnen wir $\det(J_f(\mathbf{x}^0))$ als die Jacobideterminante von f in \mathbf{x}^0 .