

HISTÓRICO

- Desenvolvimento da linguagem APL pela IBM final da década de 60.
- Surgimento de uma nova classe de ferramentas, que foi chamada de OLAP. – Final de década de 90.
- Atualmente algumas das empresas que desenvolvem engines e arquiteturas de OLAP são Microsoft, IBM e Oracle.
- O termo OLAP foi usado pela primeira vez por Edgar Frank Codd, o qual também definiu doze regras para as aplicações OLAP.

HISTÓRICO

- Globalização => as empresas se concentraram mais nos seus modelos de negócio e deixaram um pouco de lado seu modelo físico
- Os sistemas transacionais não traziam essas informações devido a algumas características próprias, por exemplo:
 - não guardam históricos
 - são modelados de forma a guardar registro a registro não é possível consolidar grandes volumes de dados onde de uma forma geral não estão bem integrados entre si.

12 REGRAS PARA APLICAÇÕES OLAP

- 1. Conceito de visão multidimensional;
- 2. Transparência;
- 3. Acessibilidade;
- 4. Performance consistente de relatório;
- 5. Arquitetura cliente/servidor;
- 6. Dimensionamento genérico;
- 7. Tratamento dinâmico de matrizes esparsas;
- 8. Suporte a multiusuários;
- 9. Operações de cruzamento dimensional irrestritas;
- 10. Manipulação de dados intuitiva;
- 11. Relatórios flexíveis;
- 12. Níveis de dimensões e agregações ilimitados.

GARTNER GROUP ACRESCENTOU MAIS NOVE REGRAS:

- Dados Arrays múltiplos;
- 2. OLAP joins;
- 3. Ferramentas para gerenciar as bases de dados;
- 4. Armazenar objetos;
- 5. Seleção de subconjuntos;
- 6. Detalhe drill-down em nível de linha
- 7. Suporte a dados locais;
- 8. Reflesh incremental das bases de dados;
- 9. Interface SQL.

CONCEITO - OLAP

- O termo OLAP significa On-Line Analytical Processing.
- Dados Agregados
- É uma ferramenta de *Business Inteligente* utilizada para apoiar as empresas na análise ad-hoc de suas informações, visando obter novos conhecimentos que são empregados na tomada de decisão.

COMPARAÇÃO DE OLAP COM OLTP

	OLTP	OLAP
Operação típica	Transação	Análise
Granularidade	Atômico	Agregado
Temporalidade dos dados	Presente	Histórico, atual e projetado
Recuperação	Poucos registros	Muitos registros
Usuários	Muitos	Poucos
Orientação	Registros	Arrays
Consulta	Predefinida	Ad-hoc

CONTEXTO DO OLAP E DW

	dark	pastel	white	Total
skirt	8	35	10	53
dress	20	10	5	35
shirt	14	7	28	49
pant	20	2	5	27
Total	62	54	48	164

nome_item	cor	tamanho	número
skirt	dark	all	8
skirt	pastel	all	35
skirt	white	all	10
skirt	all	all	53
dress	dark	all	20
dress	pastel	all	10
dress	white	all	5
dress	all	all	35
shirt	dark	all	14
shirt	pastel	all	7
shirt	white	all	28
shirt	all	all	49
pant	dark	all	20
pant	pastel	all	2
pant	white	all	5
pant	all	all	27
all	dark	all	62
all	pastel	all	54
all	white	all	48
all	all	all	164

	1	1 1 1				
		dark	pastel	white	to	tal
womenswear	skirt	8	8	10	53	
	dress	20	20	5	35	
	subtotal	28	28	15		88
menswear	pant	14	14	28	49	
	shirt	20	20	5	27	
total	subtotal	34	34	33		76
total		62	62	48		164

PERSPECTIVAS DO DW

Perspectivas do DW

- Arquitetura suporta objetos
 - Fontes, Data Warehouse e Clientes
- Com perspectivas para as visões
 - Conceitual (variação do ER)
 - Lógica (Relacional)
 - Física

ARQUITETURA

- Para conhecermos a arquitetura de OLAP é preciso conhecer seus termos
- Cubo
- o Dimensão
- Hierarquia
- Membro
- Medidas

TERMOS DO OLAP

TIPOS DE ARQUITETURA

- Conforme o método de armazenamento de dados utilizado para uma aplicação OLAP, será elaborada a arquitetura da aplicação.
 - √ ROLAP OLAP Relacional
 - MOLAP OLAP multidimensional
 - ✓ HOLAP OLAP híbrido
 - ✓ DOLAP Desktop OLAP
 - WOLAP Web OLAP Ferramenta OLAP a partir de um navegador
 - JOLAP API Java para servidores e aplicações OLAP Orientada a objetos
 - ✓ SOLAP Spatial OLAP (SIG + OLAP)

ROLAP - OLAP RELACIONAL (RELATIONAL ON LINE PROCESSING)

- Esse tipo de arquitetura utiliza banco de dados relacional, resultando em um maior acoplamento com fontes de dados OLTP.
- A consulta é enviada ao servidor de base de dados relacional e processada no mesmo (Tabela de Fatos). Nota-se que o processamento OLAP se dá exclusivamente no servidor.
- Utiliza um SGBD relacional
- É mais tolerante às mudanças de fontes de dados originais quando elas são OLTP, pois também utiliza OLTP.

ROLAP - OLAP RELACIONAL (RELATIONAL ON LINE PROCESSING)

- Existem vários esquemas utilizados em ROLAP. Exemplos:
- Esquema estrela
- Esquema floco de neve
- Esquema constelação

ROLAP - OLAP RELACIONAL

ESQUEMA ESTRELA

Tem po

chave_de_tempo

dia_da_semana
dia_do_mês
mês
trimestre
ano_fiscal
estação_do_tempo
feriado
fim_de_semana
último_dia_do_mês

Prom oção

chave_de_promoção

nome_da_promoção tipo_de_redução custo_da_promoção ínicio_da_promoção fim da promoção

Vendas

chave_de_tempo
chave_de_promoção
chave_de_produto
chave_de_loja
Vendas
Quantidades
Custos
Contador_de_Clientes

Produto

chave_de_produto

estoque#

descrição_do_produto
pacote_de_unidades
sub-categoria
categoria
departamento
dieta
peso
prateleira

Loja

chave_de_loja

nome número_da_loja endereço cidade distrito de vendas ...

ROLAP - OLAP RELACIONAL

ESQUEMA FLOCO DE NEVE

ROLAP - OLAP RELACIONAL

ESQUEMA CONSTELAÇÃO

MOLAP - OLAP MULTIMENSIONAL

(MULTIDIMENSIONAL ON-LINE ANALYTICAL PROCESSING)

- Dados são armazenados em um banco de dados multidimensional em uma estrutura do tipo *Array* para prover um melhor desempenho das consultas.
- A implementação varia de acordo com a ferramenta OLAP utilizada, mas frequentemente é implementado em um banco de dados relacional, porém não na terceira forma normal.
- O acesso aos dados ocorre diretamente no banco de dados do servidor multidimensional, o utilizador trabalha, constrói e manipula os dados do cubo diretamente no servidor. (SGBD multidimensional)

MOLAP - OLAP MULTIMENSIONAL

VANTAGENS

- Os dados de um banco multidimensional exigem um espaço menor que o necessário para armazenar os mesmos dados em um BD relacional.
- Apresenta como vantagem a grande gama de funções de análises presentes nos bancos multidimensionais.
- Utiliza Cubos pré-calculados o que aumenta o desempenho nas consultas
- Permite Consultas Ad-hoc com dinamismo

MOLAP - OLAP MULTIMENSIONAL

LIMITAÇÕES

- A complexidade no processo de carga em um banco de dados multidimensional, pode acarretar a demora no processo.
 - O processo de carga é complexo devido a série de cálculos que devem ser realizados para agregar os dados às dimensões e preencher as estruturas do banco. (Depois do processo concluído, ainda é realizado uma série de mencanismos para melhorar a capacidade de pesquisa)
- Possibilidade dos dados serem esparsos (explosão de dados)
- A maioria dos bancos multidimensionais são sistemas proprietários.

HOLAP - OLAP HÍBRIDO (HYBRID ON-LINE ANALYTICAL PROCESSING)

- Processamento híbrido cuja forma de acesso aos dados é uma mistura de tecnologias onde há uma combinação entre ROLAP e MOLAP
- Consegue combinar a capacidade e a escalabilidade das ferramentas ROLAP com o desempenho superior dos bancos de dados multidimensionais.
- Exemplo:

"Suponha uma base de 50.000 clientes distribuídos em 500 cidades, 23 estados, 5 regiões e um total geral. Até o nível de cidades o armazenamento multidimensional resolveria as consultas para levantar totais de vendas. Porém, se fosse necessário consultar o total de vendas de um determinado cliente, o banco de dados relacional responderia com muito mais rapidez à solicitação. Essa situação é típica para a indicação da arquitetura HOLAP "

OLIVEIRA, P. C. S: disponível em: http://www.dwbrasil.com.br/html/olap

DOLAP - DESKTOP OLAP (DESKTOP ON-LINE ANALYTICAL PROCESSING)

- Variação de arquitetura OLAP criada para fornecer portabilidade dos dados e se obter uma redução do tráfico na rede.
- Normalmente utiliza Banco de dados Relacional
- O usuário ao acessar o bancos de dados num servidor multidimensional central Olap, através de sua máquina local, dispara uma instrução SQL e acessa os cubos já existentes e obtém de volta um novo Cubo (copiado) para ser analisado em sua estação de trabalho.

WOLAP - WEB OLAP

 Variação de arquitetura OLAP que utiliza um browser para acessar a ferramenta.

 Como utiliza Web, foi criada para facilitar a distribuição, o acesso remoto dos dados pois a sua utilização independente de plataforma.

 Atualmente o uso de WOLAP está sendo muito divulgado, porém ainda é muito pouco utilizado.

SOLAP - SPATIAL OLAP

• É a união de OLAP com sistema de informação geográfico.

SOLAP - SPATIAL OLAP

- É a união de aplicação de OLAP ecom aplicação Sistema de informações Geográficas (SIG), para possibilitar análises.
- Permite localizar sobre uma carta geográfica as informações correspondentes às áreas através OLAP e vice-versa.
- Os usuários podem navegar através dos dados, através de duas abordagens: Seja a partir da interface de OLAP seja através do SIG.

TIPOS DE OPERAÇÕES

- Drill-down: Desagrega uma dimensão.
- Drill Across: envolvem mais do que uma tabela de fato – descer na hierarquia
- Roll-up: Agrega uma dimensão subir na Hierarquia
- Drill-through: Detalha além do cubo. Vai até o nível de registros.
- Slice: Faz restrição de um valor ao longo de uma dimensão.
- Dice: Faz restrições de valores em várias dimensões.aplica-se sobre os valores das células
- Pivot: Muda o eixo de visualização
- Rank: Ordena os membros de uma dimensão de acordo com algum critério.

TIPOS DE OPERAÇÕES

Rotate: Rotaciona 1 dos eixos de dimensão

Switch : Permutação de valores

Split: Planificação das faces do cubo

Nest / Unest: Redução das dimensões

Push / Pull: Junção de valores

- Junção
- União
- Intersecção
- Diferença

CONSULTAS EM OLAP

- Consultas sobre Multidimensional Database
- Necessidade de Multidimensional Expressions
- Surgimento da linguagem de consulta MDX
 - Começou a ser utilizado comercialmente em 1998
 - Para fazer consultas em bases de dados OLAP
 - Projetada pela Microsoft como um padrão para consultas e troca de dados em Multidimentional Data Sources
 - Utilizada como uma linguagem de expressões, para calcular valores, e como linguagem de consulta

CONSULTAS EM OLAP MDX QUERY

Consultas MDX Query

Exemplo

Um consumidor interno solicitou o total de vendas e o custo total para os anos de 1997 e 1998 para cada loja dos USA (incluindo todos os produtos). Foi solicitado também que as informações estivessem disponíveis em um grid de duas dimensões, com as vendas e o custo total em linhas e os anos em colunas.

Consultas MDX Query

Consultas MDX

Resultado:

	1997	1998
Warehouse Sales	196,770.89	193,612.37
Warehouse Cost	89,043.25	87,898.53
		4 8

MDX x SQL

- Consultas MDX
 - Considerações (MDX x SQL)
 - Aparentemente semelhantes
 - Diferenças importantes:
 - MDX usa um cubo como datasource e a saída da consulta é outro cubo;
 - SQL usa tabelas como datasource e a saída é em forma de colunas.

FERRAMENTAS FRONT - END

Análise

- ver determinados cubos de informações de diferentes ângulos;
- vários níveis de agregação.

Relatórios (Reports)

- Tipo de Relatórios: Parametrizados/Não Parametrizados
- Tipo de Navegação: (drill-down, etc)

FERRAMENTAS FRONT - END

- Interrogações Ad-hoc Definição de Inmon:
 - "São interrogações com acesso casual e único; e tratamento de dados segundo parâmetros nunca antes utilizados, geralmente executado de forma iterativa e heurística".
- Linguagem de Interrogação
 - SQL Structured Query Language
 - MDX Multi-Dimensional Expressions
 - Criada pela Microsoft
 - Interrogação a base de dados multi-dimensionais
 - Outras Proprietárias
- Data Mining
 - Processo de extração de conhecimento "escondido" na informação.

DESEMPENHO

- Como medir o desempenho?
 - Tempo de carregamento do cubo/tabelas
 - Tempo de processamento/leitura do cubo/tabelas
- Sabendo que...
 - Servidores ROLAP maior escalabilidade, menor desempenho
 - Servidores MOLAP menor escalabilidade, maior desempenho

FERRAMENTAS OLAP

Exemplos de ferramentas de mercado

COGNOS BUSINESS INTELLIGENCE PLATFORM

- Servidores OLAP:
 - Servidor DOLAP e ROLAP
- Tipo de ferramenta Front-End
 - Módulo de Análise e Interrogações Ad-hoc Cognos PowerPlay .
 - Linguagem de Interrogação: SQL.
 - Módulo de Reporting Cognos ReportNet
 - Tipo de Relatórios: Parametrizável
 - Tipo de Navegação: Suporta Navegação

COGNOS BUSINESS INTELLIGENCE PLATFORM

- Ferramenta Web e não Web
 - Web: Browsers e Não Web: Excell.
- Sistemas Operacionais
 - Windows 95/98/NT/2000/ME/XP; HP/UX; IBM AIX; Solaris/Sun OS.
- Bases de Dados:
 - Microsoft Access; Oracle RDB; NCR Teradata; Sybase; Oracle; Red Brick; Microsoft SQL Server; Informix; IBM DB2; Nota: Interrogações a Base de Dados (suporte nativo): Oracle; DB2/UDB; SQL Server; DB2/390; DB2/400; Sybase; Informix; Nota: Interrogações a Base de Dados (via ODBC): B2/400; Redbrick; Sybase; MS Access; Teradata

MICROSTRATEGY 71 PLATFORM

- Servidores OLAP
 - Servidor ROLAP e recentemente MOLAP
- Tipo de ferramenta Front-End
 - Módulo de Análise e Interrogações Ad-hoc MicroStrategy OLAP Services e MDX Adapter.
 - Linguagem de Interrogação: SQL e MDX.
 - Módulo de Reporting MicroStrategy Report Services
 - Tipo de Relatórios: Parametrizável
 - Tipo de Navegação: Suporta Navegação

MICROSTRATEGY 71 PLATFORM

- Ferramenta Web e não Web
 - Web: Browsers e E-mail e Não Web: ficheiros.
- Sistemas Operacionais
 - Windows 95/98/NT/2000/ME/XP; HP/UX; IBM AIX; Solaris/Sun OS.
- Bases de Dados
 - JDBC; OLE-DB; ODP.NET; Oracle.

http://www.microstrategy.com/

ORACLE 10G

- Servidores OLAP
 - Servidor ROLAP, MOLAP e HOLAP
- Tipo de ferramenta Front-End
 - Módulo de Análise e Interrogações Ad-hoc Oracle Olap
 - Linguagem de Interrogação: SQL e PL/SQL; OLAP DML (equivalente a PL/SQL mas para multidimensional).
 - Módulo de Reporting Oracle Reports
 - Tipo de Relatórios: Parametrizável
 - Tipo de Navegação: Suporta Navegação

http://otn.oracle.com/products/reports/index.html

ORACLE 10G

- Ferramenta Web e não Web
 - Web: Browsers e E-mail N\u00e3o Web: ficheiros e Excell.
- Sistemas Operacionais
 - Windows 95/98/NT/2000/ME/XP; HP/UX (PA-RISC e Itanium); IBM AIX; Solaris (SPARC).
- Bases de Dados
 - Oracle.

APPLIX

- Servidores OLAP
 - Servidor ROLAP e MOLAP
- Tipo de ferramenta Front-End
 - Módulo de Análise e Interrogações Ad hoc TM1 e TM1 Web e Integra
 - Linguagem de Interrogação: Não referenciada, possívelmente SQL e/ou outra linguagem proprietária
 - Módulo de Reporting TM1 Web
 - Tipo de Relatórios: Sem informação
 - Tipo de Navegação: Suporta Navegação (drilldown)

GEAC

- Servidores OLAP
 - Servidor de outro proprietário (dependência)
- Tipo de ferramenta Front-End
 - Módulo de Análise e Interrogações Ad hoc Sem informação
 - Linguagem de Interrogação: Sem informação
 - Módulo de Reporting Pervasive 2000 SP2a e Crystal Reports 8.0 ou 8.5
 - Tipo de Relatórios: Dependendo da ferramenta do proprietário
 - Tipo de Navegação: Dependendo da ferramenta do proprietário

http://www.performance.geac.com/decision/decision.cfm

HYPERION BI PLATFORM

- Servidores OLAP
 - Servidor ROLAP e MOLAP
- Tipo de ferramenta Front-End
 - Módulo de Ad-Hoc Queries Hyperion Intelligence
 - Linguagem de Interrogação : SQL, MaxL
 - Módulo de Reporting Hyperion Reports
 - Tipo de Relatórios: Parametrizável
 - Tipo de Navegação: Sem informação

http://www.hyperion.com/products/bi_platform/

HYPERION BI PLATFORM

- Ferramenta Web e não Web
 - Web : Browsers, E-Mail, Não Web: Excel, PDF, Lotus
- Sistemas Operacionais
 - Microsoft Windows 2000 Server; Microsoft Windows 2003 Server; Solaris Sparc 8.x e 9.x; IBM AIX, Linux
- Bases de Dados
 - Oracle 8i e 9i, IBM DB2, MS SQL SERVER 2000, MS SQL SERVER 7, Informir, Sybase, Teradata, outros

http://www.hyperion.com/products/bi_platform/

Business Objects

- Servidores OLAP
 - Servidor ROLAP e MOLAP
- Tipo de ferramenta Front-End
 - Módulo de Ad-Hoc Queries Suporta Ad-Hoc Queries
 - Linguagem de Interrogação : SQL, MDX
 - Módulo de Reporting Suporta Reports
 - Tipo de Relatórios: Parametrizável
 - Tipo de Navegação: Drill-Down, Slicing and Dicing, Pivoting, Ranking, Sorting, Alerts e Filter Helps

http://www.techsupport.businessobjects.com

Business Objects

- Ferramenta Web e não Web
 - Web : Browsers, E-Mail, Não Web: Excel, PDF
- Sistemas Operacionais

 IBM AIX, Solaris, Unix, MAC OS e todas a versões do Windows

- Bases de Dados
 - Sem informação

http://www.techsupport.businessobjects.com

Mais ferramentas...

Panorama NovaView BI Platform anoramasoftware.com Crystal Analysis and Reports - http://www.businessobjects.com MIS on Vision - http://www.misag.com Arcplan in Sight and dynaSight http://www.arcplan.com SoftPro Manager - http://www.softpro.hr
SPSS Olap Hub Information Intelligence Platform - http://www.spss.com/olap_hub Targit Analysis - http://www.targit.com Databeacon - http://www.databeacon.com/ Q4bis - http://www.q4bis.com/ Hummingbird - http://www.hummingbird.com/products/bi/index.htm Vista - http://www.beyond2020.com/products/Vista.htm DeltaMaster - http://www.bissantz.de/index e.html Strategy Analyzer - http://www.strategycompanion.com USoft - http://www.u-soft.com.cn

Desempenho 2003 – The OLAP Survey 3

 Melhores Tempos de Carregamento e Processamento de Dados:

MAS OS LÍDERES SÃO...

	2003 (preliminary figures)		2002		2001		2000	
Vendor	Market position	Share (%)	Market position	Share (%)	Market position	Share (%)	Market position	Share (%)
Microsoft	1	26.1%	1	24.4%	2	21.1%	3	11.5%
Hyperion Solutions (incl Brio)	2	21.9%	2	23.3%	1	24.0%	1	27.4%
Cognos (incl Adaytum)	3	14.2%	3	14.7%	3	13.7%	2	13.5%
Business Objects (incl Crystal)	4	7.7%	4	7.4%	4	7.6%	6	7.4%
MicroStrategy	5	6.2%	5	5.4%	6	6.8%	5	9.1%
SAP	6	5.8%	6	5.2%	7	5.4%	8	2.9%
Oracle	7	4.0%	7	4.7%	5	7.0%	4	9.9%
Cartesis	8	3.1%	9	2.6%	9	2.4%	11	2.2%
Applix	9	3.0%	8	2.6%	8	2.5%	7	3.0%
MIS AG	10	3.0%	12	2.1%	11	2.1%	12	2.1%
Geac	11	2.0%	10	2.2%	10	2.0%	10	2.5%
SAS Institute	12	0.9%	13	1.1%	13	1.2%	13	1.6%