CLAIMS

1. (Original) A foot inclination angle measuring method, comprising the steps of: measuring the shape of a human foot in three dimensions;

based on three-dimensional data on the measured shape of the foot, obtaining a two-dimensional cross section of the foot orienting in a front-rear direction, which includes a cross section of a heel of the foot;

obtaining a central line of the two-dimensional cross section in a right-left direction; and

obtaining the angle of inward/outward inclination of the foot from the angle of inclination of the central line.

2. (Original) A shoe or shoe sock liner selecting method, comprising the steps of: measuring the shape of a human foot in three dimensions;

based on three-dimensional data on the measured shape of the foot, obtaining a two-dimensional cross section of the foot orienting in a front-rear direction, which includes a cross section of a heel of the foot;

obtaining a central line of the two-dimensional cross section in a right-left direction; obtaining the angle of inward/outward inclination of the foot from the angle of inclination of the central line; and

based on the obtained foot inward/outward inclination angle, selecting a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot from among multiple types of previously prepared shoes or shoe sock liners.

3. (Original) The shoe or shoe sock liner selecting method as set forth in claim 2, comprising the steps of:

obtaining the rate of arch height of the foot from the three-dimensional data on the measured shape of the foot; and

based on the obtained foot inward/outward inclination angle and the obtained foot

arch height rate, selecting a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot and for correcting the flatness of the foot.

4. (Original) The shoe or shoe sock liner selecting method as set forth in claim 2, comprising the steps of:

obtaining the angle of inward inclination of a first toe of the foot from the threedimensional data on the measured shape of the foot; and

based on the obtained foot inward/outward inclination angle and the obtained first-toe inward inclination angle, selecting a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot and for correcting hallux valgus of the foot.

5. (Original) A shoe or shoe sock liner manufacturing method, comprising the steps of:

measuring the shape of a human foot in three dimensions;

based on three-dimensional data on the measured shape of the foot, obtaining a two-dimensional cross section of the foot orienting in a front-rear direction, which includes a cross section of a heel of the human foot;

obtaining a central line of the two-dimensional cross section in a right-left direction; obtaining the angle of inward/outward inclination of the foot from the angle of inclination of the central line;

obtaining the shape of a sole of the foot from the three-dimensional data on the measured shape of the foot; and

based on the obtained foot inward/outward inclination angle and the obtained foot sole shape, manufacturing a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot.

6. (Original) The shoe or shoe sock liner manufacturing method as set forth in claim 5, comprising the steps of:

obtaining the rate of arch height of the foot from the three-dimensional data on the measured shape of the foot; and

based on the obtained foot inward/outward inclination angle, the obtained foot sole shape, and the obtained foot arch height rate, manufacturing a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot and for correcting the flatness of the foot.

7. (Original) The shoe or shoe sock liner manufacturing method as set forth in claim 5, comprising the steps of:

obtaining the angle of inward inclination of a first toe of the foot from the threedimensional data on the measured shape of the foot; and

based on the obtained foot inward/outward inclination angle, the obtained foot sole shape, and the obtained first-toe inward inclination angle, manufacturing a fitting shoe or shoe sock liner for correcting the inward/outward inclination of the foot and for correcting hallux valgus of the foot.

8. (Original) A foot inclination angle measuring system comprising:

three-dimensional measuring means for measuring the shape of a human foot in three dimensions;

cross section recognizing means for recognizing, based on three-dimensional data on the measured shape of the foot by the three-dimensional measuring means, a two-dimensional cross section of the foot orienting in a front-rear direction, which includes a cross section of a heel of the foot; and

inclination angle calculating means for calculating the angle of inclination of a central line of the two-dimensional cross section of the foot in a right-left direction recognized by the cross section recognizing means.

9. (New) The foot inclination angle measuring method as set forth in claim 1, wherein the two-dimensional cross section is a two-dimensional cross section of the foot in a position ahead of a rearmost end of the foot by a distance of not less than 4% nor more than 11% of the length of the foot.

- **10.** (New) The shoe or shoe sock liner selecting method as set forth in claim 2, wherein the two-dimensional cross section is a two-dimensional cross section of the foot in a position ahead of a rearmost end of the foot by a distance of not less than 4% nor more than 11% of the length of the foot.
- 11. (New) The shoe or shoe sock liner manufacturing method as set forth in claim 5, wherein the two-dimensional cross section is a two-dimensional cross section of the foot in a position ahead of a rearmost end of the foot by a distance of not less than 4% nor more than 11% of the length of the foot.
- **12.** (New) The foot inclination angle measuring system as set forth in claim 8, wherein the two-dimensional cross section is a two-dimensional cross section of the foot in a position ahead of a rearmost end of the foot by a distance of not less than 4% nor more than 11% of the length of the foot.