COMS W4701: Artificial Intelligence

Lecture 2: Intelligent Agents

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Rational agents

Task environments

Agent programs

Agents and Environments

 An agent perceives its environment through sensors and acts upon its environment through actuators

Agents may be controlled or autonomous

- Agent functions map percepts to actions
- Other dependencies: Prior knowledge, past experience, goals, preferences, capabilities

Percepts

Agent

 Environment may be arbitrarily general, but in practice limited to aspects that directly interact with the agent

Examples of Agents

- Humans are agents!
 - Sensors: Vision, hearing, touch, smell, taste, proprioception
 - Actuators: Muscles, reflexes, changing brain state
- Al is more interested in "artificial" agents in complex environments that require nontrivial decision making

- Example: Vacuum cleaner (think Roomba)
- Environment: Square A and square B

Example: Vacuum Cleaner World

- Percepts: Current square; is the square dirty?
- Actions: Move left, move right, clean, do nothing

Agent function:

[A, IsClean]	Move right
[A, IsDirty]	Clean
[B, IsClean]	Move left
[B, IsDirty]	Clean
[[A, IsDirty], [A, IsClean]]	Move right
[[A, IsDirty], [A, IsClean]] [[B, IsDirty], [A, IsClean]]	Move right Move right

Rational Agents

- Environment state sequence can be evaluated by a performance measure
- Performance measures usually based on desired outcomes, not behaviors
- A rational agent selects an action to maximize its performance measure given percept sequence and in-built knowledge.
 - What performance measure makes our vacuum cleaner rational or irrational?

- Rational agents maximize expected performance, are not omniscient
- Rationality may involve info gathering, exploration, learning

Task Environments

- A rational agent is a solution to a task environment problem
- **PEAS**: Performance measure, environment, actuators, sensors

- Vacuum cleaner task environment
 - P: Cleanliness, power usage, time taken
 - E: The small grid world
 - A: Wheels to move, filter to clean
 - S: "GPS", cleanliness sensor

Task Environment Properties

- Fully observable vs partially observable vs unobservable
 - Can agent sense all relevant information? Is internal state (memory) required?
- Single-agent vs multi-agent
 - Does maximization of performance measure depend on other agents' behaviors?
- Deterministic vs stochastic
 - Can we completely predict the next state of the environment?
- Episodic vs sequential
 - Do current decisions depend on past ones? Do current decisions affect future ones?
- Static vs dynamic
 - Does the environment change while the agent is thinking?
- Discrete vs continuous
 - Is number of states, actions, percepts, time, etc. finite?

Examples of Environments

Environment	Partially / Fully Observable	Single- / Multi- Agent	Deterministic / Stochastic	Sequential / Episodic	Dynamic / Static	Continuous / Discrete
Vacuum cleaner world	Depends	Single	Deterministic	Sequential	Static	Discrete
Chess	Fully	Multi (adversarial)	Deterministic	Sequential	Static	Discrete
Self-driving car	Partially	Multi (cooperative)	Stochastic	Sequential	Dynamic	Continuous
Image classification	Fully	Single	Deterministic	Episodic	Static	Depends

Agent Design

- Understanding the task environment tells us how to design our agents
- The more difficult the task environment, the more complex the agent
- Partially observable env -> agent requires memory / state
- Multi-agent env -> agent requires tracking of other agents
- Stochastic env -> agent must consider multiple scenarios or contingencies
- Sequential env -> agent must consider past and future states
- Dynamic env -> agent must maintain model of the world

Agent Programs

- An agent program is an implementation of an agent function
- Specifies how something is computed rather than what needs to be computed

- A given agent program is not a universal solution!
- Program usefulness depends on hardware, tractability
- Agent programs also depend on the desired solutions
- E.g., optimal wrt some utility, approximately optimal, satisficing ("good enough"), probable

Simple Reflex Agents

- Simple reflex agent: Use current percept only
- Percepts may be mapped to internal states
- Match state to condition-action (if-then) rules

 $state \leftarrow \text{Interpret-Input}(percept)$ $rule \leftarrow \text{Rule-Match}(state, rules)$ $action \leftarrow rule. \text{Action}$

return action

Example: Vacuum Cleaner Robot

- Example: Vacuum cleaner robot as a reflex agent
- Use only the current (no past) percept
- What is its resultant behavior?

function Reflex-Vacuum-Agent([location, status]) returns action
 if status is dirty then return clean
 if location is A then return move right
 if location is B then return move left
 return do nothing

Model-Based Reflex Agents

- What about partially observable environments?
- Maintain internal state and transition model
- May also have sensor model mapping percepts
- Use all information to update the state

 $\begin{tabular}{ll} \textbf{function MODEL-BASED-REFLEX-AGENT}(percept) \begin{tabular}{ll} \textbf{returns} \ an \ action \\ \textbf{persistent}: \ state, \ the \ agent's \ current \ conception \ of \ the \ world \ state \\ model, \ a \ description \ of \ how \ the \ next \ state \ depends \ on \ current \ state \ and \ action \\ rules, \ a \ set \ of \ condition-action \ rules \\ action, \ the \ most \ recent \ action, \ initially \ none \\ \end{tabular}$

 $state \leftarrow \text{UPDATE-STATE}(state, action, percept, model)$ $rule \leftarrow \text{RULE-MATCH}(state, rules)$ $action \leftarrow rule. \text{ACTION}$ **return** action

Goal- and Utility-Based Agents

- Reflex agents are very rigid and predictable
- Goal-based agents try to achieve particular states
- Problems often solved using search and planning
- Utility-based agents can compare different states
- Utility functions map state to "desirability"
- Internalize the overall performance measure
- Utilities specify tradeoffs for competing goals
- Also useful in face of uncertainty

Learning Agents

- Learning agents can be used to create or improve upon initial models in unknown envs
- A learning element retrieves knowledge from and then improves the performance element
- A critic evaluates the learning element according to a performance standard (measure)
- A problem generator suggests actions that can help gather new information and experiences

Summary

- Agents interact with their environments through sensors and actuators
- Rational agents maximize expected performance measure
- PEAS descriptors define task environments and influence agent design
- Environment properties vary from easy to extremely challenging
- Agent programs may use current percept only, use a model, and/or try to achieve certain goals quantified by utilities
- Agent programs may also be created or improved via learning