

Mecánica de los Sólidos 2021 Profesor Titular Daniel Millán JTP Eduardo Rodriguez

Trabajo Práctico 8: Torsión: Ejes circulares

Ejercicio 1.

Un eje compuesto está formado por un cilindro circular interno de material elástico con módulo de corte G_1 , y un anillo circular exterior de material elástico con módulo de corte G_2 . Los materiales están unidos de forma segura en la interfaz r_i . Usando la derivación de texto en las Secciones 2.1 a 2.4 (Unidad 4-A) como modelo, obtenga fórmulas para el ángulo de torsión Φ y para el esfuerzo cortante $\tau_{\theta z}$, que resultan de la aplicación del momento de torsión M_t .

Figura 1: Ejercicio 1.

Ejercicio 2.

El eje solido está hecho de un material que tiene un esfuerzo cortante permisible de $\tau_{per} = 10 Mpa$. Determine el diámetro requerido del eje con una precisión de 1mm. Dibuje el diagrama de momento a lo largo del eje.

Figura 2: Ejercicio 2.

Ejercicio 3.

El motor mostrado en la figura entrega 15HP a la polea A mientras gira a la velocidad constante de 1800rpm. Determine, el diámetro más pequeño posible para fijar el eje BC, si el esfuerzo cortante permisible para el acero es $\tau_{per}=12ksi$. La banda no se desliza sobre la polea.

Figura 3: Ejercicio 3.

Ejercicio 4.

El motor de un helicóptero entrega 600HP al eje del rotor AB cuando la hélice está girando a 1200rev/min. Determine el diámetro del eje AB si el esfuerzo cortante permisible $\tau_{per}=8ksi$ y las vibraciones limitan un ángulo de torsión del eje a 0.05rad. El eje tiene 2 pies de largo y está fabricado de acero L_2 .

Figura 4: Ejercicio 4.

Ejercicio 5.

El eje ABC de 60mm de diámetro se encuentra apoyado en dos chumaceras, mientras que el eje EH con un diámetro de 80mm esta fijo en E y se apoya sobre una chumacera en H. Si $T_1 = 3kN.m$ y $T_2 = 4kN.m$, determine el ángulo de giro de los engranajes en A y C. Los ejes están fabricados de acero A - 36.

Figura 5: Ejercicio 5.

Ejercicio 6.

El motor A desarrolla un par de torsión de 450lb.pie en el engranaje B, el cual se aplica a lo largo de la línea central del eje de acero CD que tiene un diámetro de 2pulg. Este par de torsión se transmite a los engranajes de piñón en E y F. Si los engranajes se fijan de manera temporal, determine el esfuerzo cortante máximo en los segmentos CB y BD del eje. Además, ¿Cuál es el ángulo de giro de cada uno de estos segmentos? Los cojinetes en C y D sólo ejercen reacciones de fuerza sobre el eje y no se resisten al par de torsión. $G_{ac} = 12 \times 10^3 ksa$

Figura 6: Ejercicio 6.

Ejercicio 7.

El eje de acero inoxidable 304 tiene 3m de longitud y un diámetro exterior de 60mm. Cuando gira a 60rad/s transmite 30kw de potencia desde el motor E hasta el generador G. Determine el menor grosor posible del eje si el esfuerzo cortante permisibles es $\tau_{per} = 150MPa$ y el eje no se puede torcer más de 0.08rad.

Figura 7: Ejercicio 7.

Ejercicio 8.

Si el eje solido AB al que está conectada la manivela de una válvula es de latón rojo C83400 y tiene un diámetro de 10mm, determine las máximas fuerzas de par F que pueden aplicarse a la manivela justo antes de que el material comience a fallar. Considere $\tau_{per} = 40Mpa$ ¿Cuál es el ángulo de giro en la manivela? El eje se encuentra fijo en A.

Figura 8: Ejercicio 8.

Ejercicio 9.

Al taladrar un agujero en una pata de una mesa, un carpintero utiliza un taladro de operación manual con una broca con diámetro d=4.0mm.

- a) Si el par de torsión resistente suministrado por la pata de la mesa es igual a 0.3N.m, ¿cuál es el esfuerzo cortante máximo en la broca del taladro?
- b) Si el módulo de elasticidad cortante del acero es G=75GPa, ¿cuál es la razón de torsión de la broca del taladro (grados por metro)?

Figura 9: Ejercicio 9.

Ejercicio 10.

Al desmontar una rueda para cambiar un neumático, un conductor aplica fuerzas P=25lb en los extremos de dos de los brazos de una llave de cruz. La llave está hecha de acero con módulo de elasticidad cortante $G=11.4\times 10^6 psi$. Cada brazo de la llave tiene una longitud de 9.0in y tiene una sección transversal circular sólida con diámetro d=0.5in.

- a) Determine el esfuerzo cortante máximo en el brazo que gira la tuerca del birlo (brazo A).
- b) Determine el ángulo de torsión (en grados) de este mismo brazo.

Figura 10: Ejercicio 10.

Ejercicio 11.

Un eje escalonado ABCD que consiste en segmentos circulares sólidos se somete a tres pares de torsión, como muestra en la figura. Los pares de torsión tienen magnitudes de 12.5k - in, 9.8k - in y 9.2k - in. La longitud de cada segmento es 25in y los diámetros de los segmentos son 3.5in, 2.75in y 2.5in. El material es acero con módulo de elasticidad en cortante $G = 11.6 \times 10^3 ksi$

a) Calcule el esfuerzo cortante máximo t máx en el eje.

b) Calcule el ángulo de torsión (en grados) en el extremo D.

Figura 11: Ejercicio 11.

Ejercicio 12.

Un tubo hueco ABCDE construido de metal está sometido a cinco pares de torsión que actúan en los sentidos que se muestran en la figura. Las magnitudes de los pares de torsión son $T_1 = 1000lb - in$, $T_2 = T_4 = 500lb - in$ y $T_3 = T_5 = 800lb - in$. El tubo tiene un diámetro exterior $d_2 = 1in$. El esfuerzo cortante permisible es 12,000psi y la razón de torsión permisible es $2^{\circ}/ft$. Determine el diámetro interior máximo permisible d_1 del tubo.

Figura 12: Ejercicio 12.

Ejercicio 13.

Un eje sólido de acero ABC con 50 mm de diámetro es impulsada en A por un motor que transmite 50 kW al eje a 10 Hz. Los engranes en B y C impulsan maquinaria que requiere potencia igual a 35 kW y 15 kW, respectivamente. Calcule el esfuerzo cortante máximo τ_{max} en el eje y el ángulo de torsión ϕ_{AC} entre el motor en A y el engrane en C. (Utilice G=80~GPa).

Figura 13: Ejercicio 13.

Ejercicio 14.

Una barra ahusada AB con sección transversal circular se somete a pares de torsión T aplicados en los extremos. El diámetro de la barra varía linealmente de d_A en el extremo izquierdo a d_B en el extremo derecho, suponiendo que d_B es mayor que d_A .

- a) Determine el esfuerzo cortante máximo en la barra.
- b) Deduzca una fórmula para el ángulo de torsión de la barra.

Figura 14: Ejercicio 14.

Ejercicio 15.

Al perforar un pozo, se supone que el extremo profundo de la tubería de perforación encuentra una resistencia a la torsión T_A . Por otra parte, la fricción del suelo a lo largo de los lados del tubo crea una distribución lineal del par de torsión por unidad de longitud que varía desde cero en la superficie B hasta t_A en A.

- a) Determine el par de torsión necesario T_B que debe suministrar la unidad propulsora para girar la tubería.
- b) Calcule el esfuerzo cortante máximo en la tubería.
- c) Además, ¿cuál es el ángulo relativo de giro de un extremo de la tubería con respecto al otro extremo cuando el tubo está a punto de girar? El tubo tiene un radio exterior r_o y un radio interior r_i . El módulo cortante es G.

Figura 15: Ejercicio 15.

Ejercicio 16.

La barra ACB que se muestren en las figuras está fija en los dos extremos y cargada por un par de torsión T_0 en el punto C. Los segmentos AC y CB de la barra tienen diámetros d_A y d_B ,

longitudes L_A y L_B y momentos polares de inercia I_{PA} e I_{PB} , respectivamente. El material de la barra es el mismo en los dos segmentos. Obtenga:

- a) Las fórmulas para los pares de torsión reactivos T_A y T_B en los extremos,
- b) Los esfuerzos cortantes máximos τ_{AC} y τ_{CB} en cada segmento de la barra,
- c) El ángulo de rotación ϕ_c en la sección transversal donde se aplica la carga T_0 .

Figura 16: Ejercicio 16.

Ejercicio 17.

Se va a fabricar un eje de acero como una barra circular sólida o bien como un tubo circular Se requiere que el eje transmita un par de torsión de 1200 N.m sin que se exceda un esfuerzo cortante permisible de 40~MPa ni una razón de torsión permisible de $0.75^{\circ}/m$. (El módulo de elasticidad en cortante del acero es 78~GPa).

- a) Determine el diámetro necesario d_0 del eje sólido.
- b) Determine el diámetro exterior necesario d_2 del eje hueco si su espesor t se especifica igual a un décimo del diámetro exterior.
- c) Determine la razón de los diámetros (es decir, la razón d_2/d_0) y la razón de los pesos de los ejes hueco y sólido.

Figura 17: Ejercicio 17.