EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2022 - 2023 Matematică

Model

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	d)	5 p
2.	a)	5p
3.	c)	5p
4.	b)	5p
5.	c)	5p
6.	b)	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	a)	5p
2.	b)	5p
3.	b)	5p
4.	b)	5p
5.	(c)	5p
6.	b)	5p

SUBIECTUL al III-lea

(30 de puncte)

1.	a) În a doua zi excursionistul a parcurs $\frac{1}{3} \cdot \frac{30}{100} x = \frac{x}{10}$, unde x reprezintă lungimea traseului	1p
	Cum $\frac{x}{10} \neq \frac{x}{4}$, obținem că nu este posibil ca lungimea parcursă de excursionist în a doua zi să	1p
	reprezinte o pătrime din lungimea traseului	
	$\mathbf{b)} \ \frac{30}{100} x + \frac{x}{10} + 72 = x$	1p
	4x + 720 = 10x	1p
	$x = 120 \mathrm{km}$	1p
2.	a) $E(x) = \frac{x^2 + 4}{(x - 2)(x + 2)} \cdot \frac{x^2 - x - 2}{x^2 + 4} =$	1p
	$=\frac{(x-2)(x+1)}{(x-2)(x+2)}=\frac{x+1}{x+2}, \text{ pentru orice număr real } x \in \mathbb{R} \setminus \{-2,-1,2\}$	1p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

_		
	b) $E(a) \in \mathbb{Z}, \ E(a) = \frac{a+1}{a+2} = 1 - \frac{1}{a+2}$	1p
	Cum $a+2 \in \mathbb{Z}$ și $\frac{1}{a+2} \in \mathbb{Z} \Rightarrow a+2 \in \{-1,1\}$	1p
	a = -1 care nu convine și $a = -3$ care convine	1p
3.	a) $3(x+2) = -4 - 2x \implies 3x + 6 = -4 - 2x$	1p
	x=-2	1p
	x=-2 b) $A(-2,0)$ și $B(0,2)$ sunt punctele de intersecție a graficului funcției f cu axele Ox , respectiv Oy	1p
	$CT \perp Ox$, $T \in Ox$, B este mijlocul lui AC, deci OB este linie mijlocie în triunghiul ATC	1p
	$CT=2 \cdot BO=4$, $OT=AO=2 \Rightarrow C(2,4)$	1p
4.	a) $\angle PAD = 90^{\circ} + 60^{\circ} = 150^{\circ}$, $AD = AP \Rightarrow$ triunghiul APD isoscel, deci $\angle ADP \equiv \angle APD$	1p
	$\angle APD = 15^\circ \Rightarrow \angle DPB = 60^\circ - 15^\circ = 45^\circ$	1p
	b) În triunghiul echilateral APB , $PQ \perp AB$, $Q \in AB$, deci $PQ = 2\sqrt{3}$ cm și Q este mijlocul lui	
	$AB \Rightarrow AQ = 2 \text{ cm}$	1p
	$PQ \mid\mid AD \Rightarrow \Delta DAM \sim \Delta PQM \Rightarrow \frac{AD}{PQ} = \frac{AM}{MQ}$	1p
	$\Rightarrow AM = 4(2-\sqrt{3}) \text{ cm}$	1p
5.	a) RT este linie mijlocie în trapezul ABCD	1p
	$RT = \frac{AB + CD}{2} = 5 \mathrm{cm}$	1p
	b) $DQ \perp AB, Q \in AB, \mathcal{A}_{ABCD} = RT \cdot DQ$	1p
	$\mathcal{A}_{\Delta DRT} = \frac{DP \cdot RT}{2}$ și $\mathcal{A}_{\Delta RST} = \frac{QP \cdot RT}{2}$, unde $\{P\} = DQ \cap RT$	1p
	$\mathcal{A}_{DRST} = \mathcal{A}_{\Delta DRT} + \mathcal{A}_{\Delta RST} = \frac{DP \cdot RT}{2} + \frac{QP \cdot RT}{2} = \frac{RT \cdot DQ}{2} = \frac{\mathcal{A}_{ABCD}}{2}$	1p
6.	a) $V = D'C'^3 = 6^3 =$	1p
	$= 216 \text{ cm}^3$	1p
	b) OO' este linie mijlocie în triunghiul $AB'C \Rightarrow OO' AB'$	1p
	$AB' \perp A'B$, $AB' \perp A'D'$, $A'B \cap A'D' = \{A'\}$, deci $AB' \perp (A'D'C)$	1p
	$OO' \parallel AB' \text{ și } AB' \perp (A'D'C) \Rightarrow OO' \perp (A'D'C)$	1p
	· · · · · · · · · · · · · · · · · · ·	