GameBoy Opcode Summary

The GameBoy has instructions & registers similiar to the 8080, 8085, & Z80 microprocessors. The internal 8-bit registers are A, B, C, D, E, F, H, & L. Theses registers may be used in pairs for 16-bit operations as AF, BC, DE, & HL. The two remaining 16-bit registers are the program counter (PC) and the stack pointer (SP).

The F register holds the cpu flags. The operation of these flags is identical to their Z80 relative. The lower four bits of this register always read zero even if written with a one.

Flag Register							
7	6	5	4	3	2	1	0
$ \mathbf{Z} $	N	Н	\overline{C}	0	0	0	0

The GameBoy CPU is based on a subset of the Z80 microprocessor. A summary of these commands is given below.

Mnemonic Symbolic Operation Comments CI	PU Clocks Flags - Z,N,H,C
---	---------------------------

8-Bit Loads

LD r,s	r ← s	s=r,n,(HL)	r=4, n=8, (HL)=8
LD d,r	d ← r	d-r(UI)	r=4, (HL)=8
LD d,n	d ← n	d=r,(HL)	r=8, (HL)=12
LD A,(ss)	A ← (ss)	ss=BC,DE,HL,nn	[BC,DE,HL]=8, nn=16
LD (dd),A	(dd) ← A	dd=BC,DE,HL,nn	[DC,DE,IIL]=0, IIII=10
LD A,(C)	A ← (\$FF00+C)		8
LD (C),A	(\$FF00+C) ← A		8
LDD A,(HL)	A ← (HL), HL ← HL - 1		8
LDD (HL),A	(HL) ← A, HL ← HL - 1		8
LDI A,(HL)	A ← (HL), HL ← HL + 1	-	8
LDI (HL),A	(HL) ← A, HL ← HL + 1		8
LDH (n),A	(\$FF00+n) ← A		12
LDH A,(n)	A ← (\$FF00+n)		12

16-Bit Loads

LD dd,nn	dd ← nn	dd=BC,DE,HL,SP	12	П			
LD (nn),SP	(nn) ← SP		20	-	-	-	-
LD SP,HL	SP ← HL	-	8				
LD HL,(SP+e)	HL ← (SP+e)		12	0	0	*	*
PUSH ss	(SP-1) ← ssh, (SP-2) ← ssl, SP←SP-2	ss=BC,DE,HL,AF	16				
POP dd	ddl ← (SP), ddh ← (SP+1), SP ← SP+2	dd=BC,DE,HL,AF	12		-	_	

8-Bit ALU

OR s	A ← A ∨ s			* 0 0 0
XOR s	A 4 − A ⊕ s			
CP s	A - s			* 1 * *
INC s	s ← s + 1	с-г(Ш)	r=4 (UI)=12	*0*-
DEC s	s 4 − s - 1	s=r,(HL)	r=4, (HL)=12	* 1 * -

16-Bit Arithmetic

ADD HL,ss	HL ← HL + ss		8	-0**
ADD SP,e	SP ← SP + e	oc-DC DE HI SD	16	00**
INC ss	ss ← ss + 1	ss=BC,DE,HL,SP	8	
DEC ss	ss ← ss - 1		8	- - - -

Miscellaneous

SWAP s	7 43 0	Swap nibbles. s=r,(HL)	r=8, (HL)=16	*	0	0	0
DAA	Converts A into packed BCD.		4	*		0	*
CPL	A ← /A	_	4	-	1	1	
CCF	CY ←/CY	CY is the carry flag.	4	-	0	0	*
SCF	CY ← 1	C i is the carry mag.	4	-	0	0	1
NOP	No operation.		4				
HALT	Halt CPU until an interrupt occurs.		4				
STOP	Halt CPU.	-	4	-	-	-	-
DI	Disable Interrupts.		4				
EI	Enable Interrupts.		4				

Rotates & Shifts

RLCA	CY 4 7 4 0						
RLA	CY ← 7 ← 0		4		0		*
RRCA	7- → 0 →CY		4	0			
RRA							
RLC s	CY ◆ 7 ◆ 0						
RL s	CY ← 7 ← 0	c=Ar(UI)	r=8,(HL)=16				
RRC s	7- → 0 →CY	S-A,1,(11L)	1-0,(11L)-10				
RR s					0	0	*
SLA s	<u>CY</u> 4 7 4 0 − 0						
SRA s	<u>-▶7-▶0</u> →CY	s=r,(HL)	r=8, (HL)=16				
SRL s	0- 7-▶0						

Bit Opcodes

BIT b,s			r=8, (HL)=12 * 0 1	
SET b,s	sb 4 − 1	Z is zero flag. s=r,(HL)	r=8. (HL)=16	
RES b,s	sb 4 − 0		1 0, (112) 10	

Jumps

JP nn	PC ← nn		16
JP cc,nn	If cc is true, PC ← nn, else continue.		If cc is true, 16 else 12.
JP (HL)	PC ← HL	-	4
JR e	PC ← PC + e		12
JR cc,e	if cc is true, PC ← PC + e, else continue.		If cc is true, 12 else 8.

Calls

CALL nn	(SP-1) ← PCh, (SP-2) ← PCl, PC ← nn, SP←SP-2	24
CALL cc,nn	If condition cc is false continue, else same as CALL nn.	If cc is true, 24 else 12.

Restarts

$$\boxed{ \text{RST f} \left[(\text{SP-1}) \leftarrow \text{PCh, (SP-2)} \leftarrow \text{PCl, PCh} \leftarrow 0, \text{PCl} \leftarrow \text{f, SP} \leftarrow \text{SP-2} \right] - \left[16 \right] }$$

Returns

RET	pcl ← (SP), pch ← (SP+1), SP ← SP+2	16
RET cc	If cc is true, RET else continue.	- If cc is true, 20 else 8.
RETI	Return then enable interrupts.	16

Terminology

-	Flag is not affected by this operation.
*	Flag is affected according to result of operation.
b	A bit number in any 8-bit register or memory location.
С	Carry flag.
СС	Flag condition code: C,NC,NZ,Z
d	Any 8-bit destination register or memory location.
dd	Any 16-bit destination register or memory location.
e	8-bit signed 2's complement displacement.
f	8 special call locations in page zero.
Н	Half-carry flag.
N	Subtraction flag.
NC	Not carry flag
NZ	Not zero flag.
n	Any 8-bit binary number.
nn	Any 16-bit binary number.
r	Any 8-bit register. (A,B,C,D,E,H, or L)
S	Any 8-bit source register or memory location.
sb	A bit in a specific 8-bit register or memory location.
SS	Any 16-bit source register or memory location.
Z	Zero Flag.