## PSYCH 260/PSYCH BBH

**Emotion II** 

Rick O. Gilmore 2022-03-24 09:30:10

#### **Announcements**

• Exam 3 next Thursday, March 31

## Today's Topics

Fear & stress

## Fear and stress

## Inducing "fear-like" behavior in animals

#### **Pavlovian Threat Conditioning Paradigm**



http://www.cns.nyu.edu/labs/ledouxlab/images/image\_research/fear\_conditioning.jpg

### Rat vs. Human

| Measures in Animal Model  | DSM-III: Generalized Anxiety |
|---------------------------|------------------------------|
| Heart rate increase       | Heart pounding               |
| Salivation decrease       | Dry mouth                    |
| Stomach ulcers            | Upset stomach                |
| Respiration change        | Respiration increase         |
| Scanning & vigilance      | Scanning & vigilance         |
| Startle response increase | Jumpiness, easy startle      |
| Urination                 | Frequent urination           |
| Defecation                | Diarrhea                     |
| Grooming                  | Fidgeting                    |
| Freezing                  | Apprehensive expectation     |

Adapted from (Davis, 1992)

## Amygdala circuits



Nature Reviews | Neuroscience

(Medina, Repa, Mauk, & LeDoux, 2002)

## Amygdala's inputs

- Convergent inputs
  - Thalamus ("direct" or "fast"")
  - Cerebral cortex ("indirect" or "slow")

## Amygdala's outputs

- Project to
  - CG (central gray matter) of tegmentum: behavior
  - LH (lateral hyp): ANS
  - PVN (paraventricular n. of hyp): hormones
- Fast-acting, involuntary responses
- Lesions of amygdala impair 'fear conditioning'

#### Cerebral cortex role

- Response discrimination?
  - Cortex lesions cause generalized not cue-specific fear response
- Fast, crude responses vs. slower, detailed ones
  - That's a stick, not a snake!
  - Prefrontal cortex and response inhibition

## But, are we really studying learned 'fear'?

- Amygdala connected to other 'affective' nodes in neural network
- Emotion not just about subjective feelings

## Amygdala as processing hub



Nature Reviews | Neuroscience

(Pessoa, 2008)

## Amygdala as key hub in circuit for survival



(LeDoux, 2012)

## Emotion as global physiological/behavioral "state"



(LeDoux, 2012)

## Stress



## Stressors linked with biological imperatives

- Sustenance
  - Hunger, thirst
- Well-being/defense
  - Threat

## Stressors linked with biological imperatives

- Reproduction
  - Rejection
- Affiliation
  - Loneliness

#### Stress and the brain



(McEwen, 2007)

## Regulating internal states

- Homeostasis
  - Regulation of physiological variables (e.g., blood  $O_2$ ) via negative feedback (Cannon, 1929)
- Allostasis (Sterling, 1988)
  - Regulation is active process
  - Regulation is anticipatory, varies by circumstance
  - Target levels vary (Ramsay & Woods, 2014)

#### Brain under stress

- Acute stress
  - Short duration
  - Fast action required
  - HPA (Cortisol), SAM (NE/Epi) axes
- Brain detects threat
- Mobilizes physiological, behavioral responses

#### Brain under stress

- · vs. Chronic stress
  - Long duration, persistent

#### Glucocorticoids

- Adrenal cortex releases cortisol (hydrocortisone)
  - Increases blood glucose levels
  - Suppresses immune system
  - Reduces inflammation
  - Aids in metabolism
- Receptors in brain and body

#### Cortisol and the brain



http://www.molecularbrain.com/content/figures/1756-6606-3-2-1-l.jpg

## Glucocorticoid cascade hypothesis

- Cort receptors in hippocampus, amygdala, hypothalamus
  - Hippocampus (hipp) regulates HPA axis via hypothalamus
- Prolonged cortisol exposure reduces hippocampus response
  - Reduces volume, connectivity in hippocampus
- Hipp critical for long-term memory formation
  - Chronic stress impairs long-term memory

## But, cortisol -> stress link not straightforward



(Faresjö et al., 2013)

# Stress and coping across the animal kingdom

- Pain thresholds lower (sensitivity greater) when a mouse's cage mate is also in pain
- Rats will cooperate to release distressed cage mate, foregoing food rewards
- (Sapolsky, 2016)

## Why Zebras Don't Get Ulcers

### Your (zebra) stress ain't like mine

- Phasic (short-term) vs. chronic (long-term)
- Physical stress (hunger, thirst, injury, disease)
  vs. social stress

## Where in the brain is emotion processed?



## Where in the brain is emotion processed?



Figure S2. Proportion of Study Contrasts with Increased Activation in Key Brain Areas

(Lindquist et al., 2012)

## 'Emotion' responses in 'cognitive' areas



The y-axes plot the proportion of study contrasts in our database that had increased activation within 10mm of that brain area.

(Lindquist et al., 2012)

### Main points

- Biological approach to emotion
  - Behavior
  - Physiological states
  - Subjective feelings
  - Adaptive function
- Networks of brain systems, multiple NT systems
- Emotional and cognitive processing have strong similarities

#### References

- Cannon, W. B. (1929). Organization for physiological homeostasis. *Physiological Reviews*, *9*(3), 399–431. https://doi.org/10.1152/physrev.1929.9.3.399
- Davis, M. (1992). The role of the amygdala in fear-potentiated startle: Implications for animal models of anxiety. *Trends in Pharmacological Sciences*, *13*, 35–41. https://doi.org/10.1016/0165-6147(92)90014-W
- Faresjö, Å., Theodorsson, E., Chatziarzenis, M., Sapouna, V., Claesson, H.-P., Koppner, J., & Faresjö, T. (2013). Higher Perceived Stress but Lower Cortisol Levels Found among Young Greek Adults Living in a Stressful Social Environment in Comparison with Swedish Young Adults. *PLoS ONE*, 8(9), e73828. https://doi.org/10.1371/journal.pone.0073828
- LeDoux, J. (2012). Rethinking the Emotional Brain. *Neuron*, *73*(4), 653–676. https://doi.org/10.1016/j.neuron.2012.02.004
- Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. *The Behavioral and Brain Sciences*, *35*(3), 121–143. https://doi.org/10.1017/S0140525X11000446
- McEwen, B. S. (2007). Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. *Physiological Reviews*, *87*(3), 873–904. https://doi.org/10.1152/physrev.00041.2006
- Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between cerebellum-and amygdala-dependent conditioning. *Nature Reviews Neuroscience*, *3*(2), 122–131. <a href="https://doi.org/10.1038/nrn728">https://doi.org/10.1038/nrn728</a>
- Pessoa, L. (2008). On the relationship between emotion and cognition. *Nature Reviews Neuroscience*, *9*(2), 148–158. https://doi.org/10.1038/nrn2317
- Ramsay, D. S., & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. *Psychological Review*, *121*(2), 225–247. https://doi.org/10.1037/a0035942