

Imitation Learning with FITenth

Xiatao Sun

A Benchmark Comparison of Imitation Learning-based Control Policies for Autonomous Racing

Xiatao Sun, Mingyan Zhou, Zhijun Zhuang, Shuo Yang, Johannes Betz, Rahul Mangharam

Motivation

- Autonomous racing gains increasing popularity recently
- Most prior works focus on human-engineered or reinforcement learning methods
- Our work applies and compares various imitation learning methods in autonomous racing scenarios

Demo

• Expert: pure pursuit algorithm

- Expert: pure pursuit algorithm
- Learner: 2-layer MLP with 256 hidden units

- Expert: pure pursuit algorithm
- Learner: 2-layer MLP with 256 hidden units
- Learning algorithms: BC, DAGGER, HG-DAGGER, EIL

Algorithm	Intervention Rule	Loss Function
EIL	Intervene if $(s, a) \notin \mathcal{G}$	$\ell_B(\cdot) + \lambda \ell_C(\cdot)$
BC	Expert in control	$\ell_C(\cdot)$
DAGGER	Learner in control	$\ell_C(\cdot)^\dagger$
HG-DAGGER	Intervene if $(s, a) \notin \mathcal{G}$	$\ell_C(\cdot)$

- Expert: pure pursuit algorithm
- Learner: 2-layer MLP with 256 hidden units
- Learning algorithms: BC, DAGGER, HG-DAGGER, EIL

Comparison and Evaluation

- Sample and bootstrapping efficiency
- Performance and generalizability
- The experiments are performed in both simulation and real-world environments

Sample Efficiency

 Training in simulation with respect to 3 different expert

Slow: 4.79m/s

Normal: 6.39 m/s

Fast: 8.24 m/s

 Overall interactive IL demonstrate better sample efficiency

Bootstrapping efficiency

- Using any IL algorithms can help PPO converge to a better policy
- Interactive IL has better bootstrapping efficiency

Performance in training map

- Data aggregation mitigates the problem of compounding errors
- EIL has the best performance and is the only one successfully completed one lap when the speed is fast

Expert Type	Expert	ВС	DAGGER	HG-DAGGER	EIL
Slow	33.07 s	Failed	34.34 s	33.78 s	33.50 s
Normal	25.04 s	25.35 s	25.85 s	25.06 s	25.22 s
Fast	19.69 s	Failed	Failed	Failed	20.40 s

Elapsed time of IL policies trained with different experts

Generalizability

- The combinations of IL and PPO significantly outperform policies only using IL or PPO, and can efficiently converge to a more generalized policy
- Interactive IL can train policies that are more similar to expert behavior than non-interactive IL and PPO

Method	BC	DAGGER	HG-DAGGER	EIL	PPO	BC+PPO	DAGGER+PPO	HG-DAGGER+PPO	EIL+PPO
Distance Traveled (m)	7.84	8.90	12.34	15.89	12.69	151.23	86.49	155.88	150.15
Complete 1 Lap	No	No	No	No	No	Yes	No	Yes	Yes
Bhattacharyya Distance	0.77	0.60	0.12	0.24	1.09	0.59	0.59	0.47	0.43

Evaluations of different learned policies in an unseen simulation environment

Experiments in real-world environment

- Policies from interactive IL can travel further distances
- PPO policies have more warbling compared with IL policies
- HG-DAGGER + PPO has the best performance

Method	Expert	BC	DAGGER	HG-DAGGER	EIL	PPO	BC+PPO	DAGGER+PPO	HG-DAGGER+PPO	EIL+PPO
Distance Traveled (m) Complete 1 Lap				37.74 No	38.04 No	5.27 No	6.44 No	6.29 No	64.08 Yes	39.5 No

Evaluations of different learned policies in the real-world environment.

Conclusion

- IL algorithms can train or bootstrap high-performance policies for autonomous racing
- Interactive mechanism improves sample efficiency and bootstrapping efficiency of IL
- Combining IL and RL can achieve fast convergence and better generalizability

MEGA-DAgger: Imitation Learning with Multiple Imperfect Experts

Xiatao Sun*, Shuo Yang*, Rahul Mangharam

Overview

- Existing interactive imitation learning algorithms requires one optimal expert
- Real-world scenarios: imperfect experts

Challenges:

- Undesired demonstrations
- Conflicted demonstrations

Reduced-scale vehicle controlled by policy learned using HG-DAgger

Example of conflicted demonstrations from different experts

Xiatao Sun, Mingyan Zhou, Zhijun Zhuang, Shuo Yang, Johannes Betz, and Rahul Mangharam. A benchmark comparison of imitation learning-based control policies for autonomous racing. arXiv preprint arXiv:2209.15073, 2022.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-dagger: Interactive imitation learning with human experts. In 2019 International Conference on Robotics and Automation (ICRA), pages 8077–8083. IEEE, 2019.

Comparison: HG-DAgger & MFGA-DAgger

Comparison: Experts & MEGA-DAgger

MEGA-DAgger: Multiple Experts GAted DAgger

π^j_{exp}	Expert policies
D	Global dataset
π_{N_0}	Initial novice policy
П	All possible policies
0	Observation
а	Action
D_j	Dataset of current rollout
σ_t	Safety score
$\pi_{N_{\mathrm{i}}}$	Novice policy of current iteration
K	Total number of iterations
M	Total number of rollouts for each
	iteration
T	Total number of timesteps
n Enginoo	ring

```
Algorithm 1 MEGA-DAgger
 1: procedure MEGA-DAGGER(\pi_{exp}^{1:M})
         Initialize \mathcal{D} \leftarrow \emptyset
         Initialize \pi_{N_0} to any policy in \Pi
         for iteration i = 1 : K do
 4:
              for rollout j = 1: M with expert \pi_{exp}^{j} do
 5:
                   for timestep t \in T of rollout j do
 6:
                       if \pi_{exp}^{j} takes control then
                            o \leftarrow \text{rollout}_{i,i}^t
 8:
                            a \leftarrow \pi_{exp}^{j}(o)
 9:
                            D_i \leftarrow o, a
10:
                            D_i, \sigma_t \leftarrow \text{DATA FILTER}(D_i)
11:
                       end if
12:
                   end for
13:
                   D_i \leftarrow \text{Conflict Resolution}(D_i, D, \sigma_t)
14:
15:
                   D \leftarrow D \cup D_i
              end for
16:
              Train \pi_{N_i} on \mathcal{D}
17:
         end for
18:
19: end procedure
```


MEGA-DAgger: Data Filter

Algorithm 1 MEGA-DAgger

```
1: procedure MEGA-DAGGER(\pi_{exp}^{1:M})
         Initialize \mathcal{D} \leftarrow \emptyset
         Initialize \pi_{N_0} to any policy in \Pi
          for iteration i = 1 : K \text{ do}
              for rollout j = 1: M with expert \pi_{exp}^{j} do
                   for timestep t \in T of rollout j do
                        if \pi_{exp}^{j} takes control then
                             o \leftarrow \text{rollout}_{i,i}^t
 8:
                             a \leftarrow \pi^j_{exp}(o)
 9:
                             D_i \leftarrow o, a
10:
                             D_i, \sigma_t \leftarrow \text{DATA FILTER}(D_i)
11:
                        end if
12:
                   end for
13:
                   D_i \leftarrow \text{Conflict Resolution}(D_i, D, \sigma_t)
14:
15:
                   D \leftarrow D \cup D_i
              end for
16:
              Train \pi_{N_i} on \mathcal{D}
17:
         end for
18:
19: end procedure
```


MEGA-DAgger: Data Filter

Control Barrier Function (CBF):

$$h(x_t^e, y_t^e) = (x_t^e - x_t^p)^2 - (y_t^e - y_t^p)^2 - \alpha^2$$

Safety score:

$$\sigma_t = h(x_{t+1}^e, y_{t+1}^e) - (1 - \gamma)h(x_t^e, y_t^e)$$

$$0 < \gamma \le 1$$

$$(x_t^e, y_t^e) \qquad \text{Current ego position}$$

$$(x_t^p, y_t^p) \qquad \text{Current obstacle position}$$

$$\alpha \qquad \text{Minimal safety distance}$$

Algorithm 1 MEGA-DAgger

```
1: procedure MEGA-DAGGER(\pi_{exp}^{1:M})
         Initialize \mathcal{D} \leftarrow \emptyset
         Initialize \pi_{N_0} to any policy in \Pi
         for iteration i = 1 : K do
 4:
              for rollout j = 1: M with expert \pi_{exp}^{j} do
 5:
                   for timestep t \in T of rollout j do
 6:
                        if \pi_{exp}^{j} takes control then
 7:
                             o \leftarrow \text{rollout}_{i,i}^t
 8:
                             a \leftarrow \pi_{exp}^{j}(o)
 9:
                            D_j \leftarrow o, a
D_j, \sigma_t \leftarrow \text{DATA FILTER}(D_j)
10:
11:
                        end if
12:
                   end for
13:
                   D_i \leftarrow \text{Conflict Resolution}(D_i, D, \sigma_t)
14:
15:
                   D \leftarrow D \cup D_i
              end for
16:
              Train \pi_{N_i} on \mathcal{D}
17:
         end for
18:
19: end procedure
```


Evaluation: Data Filter

- Comparison: HG-DAgger with data filter and HG-DAgger with random data truncation
- The proposed data filter is able to effectively remove undesired demonstrations and result in a better policy

- P(U): Undesired behavior probability
- r_{β} : Ratio of removed demonstrations

MEGA-DAgger: Conflict Resolution

Algorithm 1 MEGA-DAgger

```
1: procedure MEGA-DAGGER(\pi_{exp}^{1:M})
         Initialize \mathcal{D} \leftarrow \emptyset
         Initialize \pi_{N_0} to any policy in \Pi
          for iteration i = 1 : K \text{ do}
              for rollout j = 1: M with expert \pi_{exp}^{j} do
                   for timestep t \in T of rollout j do
                        if \pi_{exp}^{j} takes control then
                             o \leftarrow \text{rollout}_{i,i}^t
 8:
                             a \leftarrow \pi_{exp}^{j}(o)
 9:
                             D_i \leftarrow o, a
10:
                             D_i, \sigma_t \leftarrow \text{DATA FILTER}(D_i)
11:
                        end if
12:
                   end for
13:
                   D_i \leftarrow \text{Conflict Resolution}(D_i, D, \sigma_t)
14:
                   D \leftarrow D \cup D_i
15:
              end for
16:
              Train \pi_{N_i} on \mathcal{D}
17:
         end for
18:
19: end procedure
```


MEGA-DAgger: Conflict Resolution

Cosine similarities:

$$\Theta = \frac{O \cdot O_j}{\|O\| \odot \|O_j\|}$$

Evaluation score:

$$\omega_t = \frac{\|\sigma_t\| - \min_t \|\sigma_t\|}{\max_t \|\sigma_t\| - \min_t \|\sigma_t\|} + \frac{\|v_t\| - \min_t \|v_t\|}{\max_t \|v_t\| - \min_t \|v_t\|}$$

Observations in D

 O_j Observations in D_j

 v_t Ego velocity

Algorithm 1 MEGA-DAgger

```
1: procedure MEGA-DAGGER(\pi_{exp}^{1:M})
         Initialize \mathcal{D} \leftarrow \emptyset
         Initialize \pi_{N_0} to any policy in \Pi
          for iteration i = 1 : K \text{ do}
              for rollout j = 1: M with expert \pi_{exp}^{j} do
                   for timestep t \in T of rollout j do
 6:
                        if \pi_{exp}^{j} takes control then
                             o \leftarrow \text{rollout}_{i,i}^t
                             a \leftarrow \pi_{exp}^{j}(o)
                             D_i \leftarrow o, a
10:
                             D_i, \sigma_t \leftarrow \text{DATA FILTER}(D_i)
11:
                        end if
12:
                   end for
13:
                   D_i \leftarrow \text{Conflict Resolution}(D_i, D, \sigma_t)
14:
                   D \leftarrow D \cup D_i
15:
              end for
16:
              Train \pi_{N_i} on \mathcal{D}
17:
         end for
18:
19: end procedure
```


Evaluation: Comparison with HG-DAgger

- Comparison: MEGA-DAgger, HG-DAgger with and without data filter
- Perform experiments on two different maps
- Policies learned using MEGA-DAgger demonstrates better performance on both overtaking and collision avoidance!

Overtakes rate

Collisions rate

Evaluation: Comparison with Experts

- Comparison: MEGA-Dagger and experts
- By leveraging the complementarily good demonstrations, policies learned using MEGA-Dagger is able to outperform all experts!

Collision points visualization

Metrics	MEGA-DAgger	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Experts Cumulative
Collisions Percentage	0.212 ± 0.019	0.340 ± 0.025	0.401 ± 0.033	0.291 ± 0.025	0.392 ± 0.028	0.317 ± 0.032	0.348 ± 0.051
Overtakes Percentage	0.781 ± 0.016	0.657 ± 0.027	0.594 ± 0.036	0.706 ± 0.022	0.605 ± 0.024	0.681 ± 0.030	0.649 ± 0.051

Thank you

