

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 89105740.8

⑮ Int. Cl. 6: A61B 17/39

⑭ Anmeldetag: 01.04.89

⑯ Veröffentlichungstag der Anmeldung:
10.10.90 Patentblatt 90/41

⑰ Anmelder: Erbe Elektromedizin GmbH.
Waldförnlestrasse 17
D-7400 Tübingen(DE)

⑱ Benannte Vertragsstaaten:
DE FR GB IT

⑲ Erfinder: Farlin, Günter
Kapellenweg 15
D-7400 Tübingen(DE)
Erfinder: Geisselhart, Franz
Dürerstrasse 76
D-7410 Reutlingen(DE)
Erfinder: Klett, Johannes
Heubergstrasse 30
D-7407 Ofterdingen(DE)

⑳ Vertreter: Endlich, Fritz, Dipl.-Phys.
Postfach 1326 Blumenstrasse 8
D-8034 Germering(DE)

㉑ Einrichtung zur Überwachung der Applikation von Neutralselektroden bei der Hochfrequenzchirurgie.

㉒ Die Erfindung betrifft eine Einrichtung zur Überwachung der Applikation von Neutralselektroden mit mindestens zwei voneinander getrennten Kontaktflächen (2,3) am Patienten während der Hochfrequenzchirurgie, wobei Warnsignale und/oder automatische Abschaltungen des Hochfrequenzgenerators (17) dann und nur dann aktiviert werden, wenn der Hochfrequenzstrom zum Schneiden und/oder Koagulieren größer wird als bei dem jeweils vorhandenen elektrischen Übergangswert zwischen Neutralselektrode und der Haut des Patienten ohne Risiko einer thermischen Schädigung der Haut an der Applikationsstelle der Neutralselektrode zulässig ist.

Fig.1

EP 0 390 937 A1

Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie

Die Erfindung betrifft eine Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie.

Nach DIN IEC 601 Teil 2-2 sind Neutralelektroden der Elektroden von relativ großer Fläche für die Anlage an den Patientenkörper, um einen Rückflussweg für den Hochfrequenzstrom mit so niedriger Stromdichte im Körperegewebe zu bilden, daß physikalische Effekte, wie unerwünschte Verbrennungen, vermieden werden. Die Neutralelektrode sollte mit ihrer ganzen Fläche zuverlässig an den Körper des Patienten angelegt werden. Ergänzend hierzu heißt es in den Anwendungsregeln für Hochfrequenz-Chirurgiegeräte, DIN 57 753 Teil 1, es ist darauf zu achten, daß die sichere Kontaktage der Neutralelektrode für die Gesamtdauer der Hochfrequenz-Anwendung sichergestellt ist.

Es sind verschiedene Einrichtungen bekannt, welche die Applikation der Neutralelektrode bei der Hochfrequenzchirurgie automatisch überwachen sollen und bei unzureichender Kontaktgabe zum Körper des Patienten Warnsignale erzeugen und/oder den Hochfrequenzstrom automatisch abschalten.

In der deutschen Patentanmeldung PA 15 7021-24 vom 02.04.1951 wird eine Sicherheitsschaltung für die Hochfrequenzchirurgie vorgeschlagen, welche dadurch gekennzeichnet ist, daß am Patienten zur Stromrückleitung wenigstens zwei neutrale Gegenelektroden angebracht werden, die mit dem Hochfrequenzgenerator über je eine getrennte Leitung in Verbindung stehen, durch welche aus einem Prüfstromkreis ein Prüfstrom geleitet wird, welcher Fehler insbesondere in der Stromrückleitung vom Patienten zum Hochfrequenzgenerator mißt und/oder anzeigen. Diese Sicherheitsschaltung ist außerdem dadurch gekennzeichnet, daß der Prüfstromkreis das Über- oder Unterschreiten zulässiger Toleranzgrenzen (d.h. zu großer oder zu kleiner Übergangswiderstände zwischen den beiden Gegenelektroden) durch ein Signal anzeigen und/oder den Hochfrequenzgenerator selbsttätig abschaltet.

In der praktischen Anwendung zeigt diese Einrichtung jedoch folgende Probleme:
Infolge mehr oder weniger großer individueller Unterschiede in der Beschaffenheit der Haut können die elektrischen Übergangswiderstände von Patient zu Patient sehr unterschiedlich sein, so daß aus dem gemessenen Übergangswiderstand nicht ausreichend sicher auf die effektive Kontaktfläche zwischen Patient und Neutralelektrode zurückgeschlossen werden kann. Bei Patienten mit trockener Haut ist der Übergangswiderstand in der Regel

Außerdem gibt es heute verschiedene Typen von Neutralelektroden, z.B. konduktive, kapazitive, aus elektrisch leitfähigem Kunststoff, geliert oder trocken etc. Auch hierdurch ergeben sich verschiedene Übergangswiderstände, so daß die o.g. Einrichtung nach PA 15 70 21-24 bi auf den jeweils verwendeten Typ angepaßt werden müßte.

Das Problem der individuell unterschiedlichen Beschaffenheit der Haut der Patienten soll eine aus dem deutschen Patent DE 32 39 640 C2 bekannte Überwachungsanordnung gerecht werden, die eine Anpaßeinrichtung aufweist, welche die Einrichtung zur Feststellung der oberen und der unteren Grenze des Übergangswiderstandes so steuert, daß die obere Grenze für das elektrische Signal in Abhängigkeit von dem jeweiligen Wert des elektrischen Signals eingestellt und dadurch an Änderungen der Impedanz zwischen den zwei Elektrodenelementen im Verlauf einer Behandlung angepaßt wird.

Diese Überwachungsanordnung hat jedoch den Nachteil, daß eine ausreichende Sicherheit bezüglich der Applikation der Neutralelektrode am Patienten davon abhängig ist, wie gut die Neutralelektrode vor der Messung des jeweiligen Ausgangswertes der Impedanz zwischen den zwei elektrisch voneinander isolierten Elektrodenelementen am Patienten appliziert war. Wird die Neutralelektrode in der Weise falsch am Patienten appliziert, daß eines oder beide Elektrodenelemente nur teilweise mit der Haut des Patienten in elektrisch leitfähigem Kontakt sind, so werden die obere und die untere Grenze der Impedanz von diesem fehlerhaften Anfangs-Impedanzwert aus festgelegt.

Außerdem berücksichtigt diese Einrichtung nicht die o.g. Typenvielfalt von heute auf dem Markt befindlichen Neutralelektroden, so daß diese Einrichtung ebenfalls auf den jeweils verwendeten Typ von Neutralelektrode angepaßt werden muß.

Es ist Aufgabe der Erfindung, eine Einrichtung zu entwickeln, welche die Applikation von Neutralelektroden am Patienten in der Hochfrequenzchirurgie so überwacht, daß Warnsignale dann und nur dann erzeugt werden und/oder der Hochfrequenzgenerator des Hochfrequenz-Chirurgiegerätes dann und nur dann automatisch abgeschaltet wird, wenn das Risiko einer thermischen Schädigung der Haut des Patienten im Bereich der Kontaktflächen der Neutralelektroden vorhanden ist.

Diese Aufgabe wird erfundungsgemäß durch den Gegenstand des Patentanspruchs 1 bzw. 2 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Die erfundungsgemäße Lösung dieser Aufgabe geht von der an sich bekannten Beobachtung aus, daß die Er-

schen Strom - und dies gilt auch für biologische Gewebe - vom elektrischen Widerstand dieses Stoffes, der Stromflussdauer und insbesondere von der Intensität des elektrischen Stromes, die zum Quadrat wirkt, abhängig ist.

Um sicher zu stellen, daß auch bei großen Intensitäten und Stromflussintervallen thermische Schädigungen der Haut von Patienten im Applikationsbereich der Neutralenlektroden nicht entstehen, liegt es zwar nahe, Neutralenlektroden mit möglichst großen Kontaktflächen zu verwenden, um einen möglichst kleinen elektrischen Widerstand zu realisieren. Bei näherer Betrachtung stehen dem jedoch verschiedene Probleme entgegen. Relevant bezüglich der thermischen Belastung der Haut von Patienten ist nicht die auf einer Neutralenlektrode zur Verfügung stehende Kontaktfläche, sondern die mit der Haut eines Patienten in Kontakt bringbare, effektive Kontaktfläche. Da die Oberfläche von Patienten nicht planflächig, sondern konkav, konvexe und/oder kegelförmig Formen hat, kann in der Regel nur ein Teil der zur Verfügung stehenden Kontaktfläche einer Neutralenlektrode effektiv mit der Haut eines Patienten in Kontakt gebracht werden.

Außerdem ist bekannt, daß die Stromverteilung über der Kontaktfläche einer Neutralenlektrode in der Regel nicht homogen ist. Je größer die Kontaktfläche einer Neutralenlektrode ist, desto größer ist in der Regel auch die Inhomogenität der Stromdichte in der Kontaktfläche. Bekanntlich ist die Stromdichte in den Flächenelementen einer Neutralenlektrode, welche der aktiven Elektrode am nächsten sind, am größten.

Außerdem sind große Neutralenlektroden inklusive deren Verpackung teurer in der Herstellung und Entsorgung als kleinere Neutralenlektroden. Letztere gilt insbesondere für Neutralenlektroden zum einmaligen Gebrauch.

Da hohe Stromintensitäten relativ selten, und wenn, dann nur relativ kurzzeitig angewendet werden, könnten in der Mehrzahl aller Operationen relativ kleinflächige Neutralenlektroden angewendet werden. Um jedoch sicherzustellen, daß hohe Stromintensitäten über längere Stromflussintervalle nicht zu thermischen Schädigungen der Haut von Patienten im Applikationsbereich der Neutralenlektroden führen, ist es zweckmäßig Warnsignale und/oder automatische Abschaltungen von Hochfrequenzgeneratoren nicht nur von der Höhe des Übergangswiderstandes zwischen Neutralenlektrode und Patient, sondern auch von der Höhe des jeweils durch neutrale oder aktive Elektroden fließenden und je nach Einstellung der Intensität am Hochfrequenz-Chirurgiegerät zu erwartenden Hochfrequenzstromes und der Stromflussdauer abhängig zu machen.

Eine erfindungsgemäße Einrichtung zur Über-

Patienten bei der Hochfrequenzchirurgie besteht daher prinzipiell aus einer Einrichtung, welche den Übergangswiderstand bzw. den Übergangswiderstand zwischen Neutralenlektrode und Patient in an sich

- 5 bekannter Weise feststellt, einer weiteren Einrichtung, welche den per Stellglieder am Hochfrequenzgenerator eingestellten oder den während der Hochfrequenzchirurgie fließenden hochfrequenten Wechselstrom in an sich bekannter Weise feststellt und einer Verknüpfung dieser beiden Parameter. In der Weise, daß einem bestimmten Übergangswiderstand ein bestimmter maximal zulässiger Hochfrequenzstrom oder einem bestimmten Hochfrequenzstrom ein bestimmter minimal zulässiger Übergangswiderstand zugeordnet wird und daß erst bei Überschreitung dieser Zuordnung Warnsignale generiert und/oder der Hochfrequenzgenerator automatisch abgeschaltet wird.
- 10 Bei der Verknüpfung des Übergangswiderwertes zwischen Neutralenlektrode und Patient einerseits und dem fließenden oder zu erwartenden Hochfrequenzstrom andererseits sind verschiedene Umstände und Randbedingungen zu beachten.
- 15 Wird der Übergangswiderstand bzw. der Übergangswiderstand zwischen Neutralenlektrode und Patient, wie in der Patentanmeldung PA 15 70 21-24 bl beschrieben, mittels eines Prüfstromes ermittelt, der zwischen wenigstens zwei am Patienten angebrachten neutralen Elektroden fließt, so stellt ein derartig ermittelter Übergangswiderstand die Reihenschaltung der Übergangswiderstände jeder neutralen Elektrode und dem Patient dar, wogegen der für die Erwärmung der Haut des Patienten relevante Übergangswiderstand nur ein Teilleitwert des so ermittelten Reihenleitwertes darstellt. Aus diesem Grunde muß der entsprechend PA 15 70 21-24 bl ermittelte Übergangswiderstand mehr oder weniger korrigiert werden.
- 20
- 25
- 30
- 35

- 30
 - 35
 - 40
 - 45
 - 46
- Da außerdem der Prüfstrom zur Ermittlung des Übergangswiderwertes nicht homogen über die Kontaktflächen der Neutralenlektroden verteilt ist, ist es zweckmäßig, je nach Typ und Gestaltung der Neutralenlektrode eine mehr oder weniger starke Korrektur des ermittelten Übergangswiderwertes bezüglich Typ und Gestaltung der jeweils verwendeten Neutralenlektrode zu berücksichtigen.

- 46
 - 50
 - 55
- Bei der Realisation der erfindungsgemäßen Einrichtung ist es bezüglich der Erfüllung der Aufgabe beliebig, ob die Ermittlung des relevanten Übergangswiderwertes und des relevanten Hochfrequenzstromes gleichzeitig oder zu verschiedenen Zeiten erfolgt. Da der für die Hochfrequenzchirurgie durch die aktive und/oder die neutrale Elektrode fließende Hochfrequenzstrom in der Regel viel größer ist als der für die Ermittlung des Übergangswiderwertes durch die Neutralenlektroden fließende Prüfstrom, ist es jedoch mit Rücksicht auf die Stärkung des Hochfrequenzstromes zweck-

mäßig, den Übergangselektivwert nicht während der Intervalle zu ermitteln, in denen der Hochfrequenzgenerator aktiviert ist, sondern während der Aktivierungspausen.

Bei einem bevorzugten Ausführungsbeispiel einer erfundungsgemäßen Einrichtung wird der Übergangselektivwert zwischen Neutralelektronen und Patient während der Aktivierungspausen des Hochfrequenzgenerators ermittelt, durch jedes Aktivierungssignal in einen Speicher übernommen und entweder mit dem am Hochfrequenz-Chirurgiegerät eingestellten oder mit dem durch Messung während der Aktivierung ermittelten Hochfrequenzstrom verknüpft und optische und/oder akustische Signale erzeugt oder der Hochfrequenzgenerator automatisch abgeschaltet, wenn oder sobald der Hochfrequenzstrom größer ist als bei dem ermittelten Übergangselektivwert maximal zulässig sein soll.

Da die Hochfrequenzströme in der Hochfrequenzchirurgie in der Regel nur sehr kurzzeitig aktiviert werden und außerdem deren Intensität während Schnelle- und/oder Koagulationsvorgängen stark schwanken und auch bereits im Hochfrequenzgenerator in der Amplitude moduliert werden, ist es zweckmäßig, den Hochfrequenzstrom zu bewerten, bevor er der Verknüpfung mit dem Übergangselektivwert zugeführt wird. Bei einer Ausgestaltung der erfundungsgemäßen Einrichtung wird daher nicht der momentan fließende, sondern ein geeigneter Mittelwert des Hochfrequenzstromes für die Verknüpfung gebildet, so daß kurzzeitige Spitzenströme nicht zu Fehlalarmen oder unnötigem Abschalten des Hochfrequenzgenerators führen.

Der Vorteil der erfundungsgemäßen Einrichtung im Vergleich zu den o.g. bekannten Einrichtungen besteht darin, daß Warnsignale und/oder Abschaltungen des Hochfrequenzgenerators während der Hochfrequenzchirurgie dann und nur dann aktiv werden, wenn der Hochfrequenzstrom relativ zum jeweils vorhandenen elektrischen Übergangselektivwert zwischen Neutralelektrode und Patient zu groß ist oder zu groß werden könnte. Hierdurch können Operationen, bei denen relativ kleine Hochfrequenzströme und/oder nur kurzzeitige Einschaltungen von Hochfrequenzströmen vorhanden sind, ohne Fehlalarme weiter ausgeführt werden solange der jeweils vorhandene Übergangselektivwert zwischen Neutralelektrode und der Haut des Patienten relativ zu dem Hochfrequenzstrom nicht zu klein ist. Hierdurch ist auch die Anwendung kleinerer Neutralelektronen, die bei kleineren Hochfrequenzströmen völlig ausreichen, sicher, denn wenn, aus welchem Grunde auch immer, der Hochfrequenzstrom größer wird als für eine kleine Neutralelektrode zulässig, so erzeugt die erfundungsgemäße Einrichtung Warnsignale und/oder schaltet den Hochfrequenzgenerator ab. Kleinere Neutralelektronen sind leicht-

leichter zu entsorgen als große Neutralelektronen.
Die erfundungsgemäße Einrichtung wird anhand schematischer Blockschaltbilder detaillierter dargestellt.

s Fig. 1 Ein schematisches Blockschaltbild eines Ausführungsbeispiels der erfundungsgemäßen Einrichtung.

10 Fig. 2 Ein schematisches Blockschaltbild eines anderen Ausführungsbeispiels der erfundungsgemäßen Einrichtung.

15 Fig. 3 Ein schematisches Blockschaltbild eines weiteren Ausführungsbeispiels der erfundungsgemäßen Einrichtung.

20 Anhand von Figur 1 wird im folgenden das Prinzip der erfundungsgemäßen Einrichtung zur Überwachung der Applikation von Neutralelektronen bei der Hochfrequenzchirurgie beschrieben.

Voraussetzung für die Überwachung der Applikation von Neutralelektronen am Patienten während 25 der Hochfrequenzchirurgie sind entweder mindestens zwei voneinander unabhängige Neutralelektronen 2,3, die gleichzeitig am selben Patienten 4 appliziert werden bzw. eine Neutralelektrode 1 mit mindestens zwei voneinander elektrisch isolierten Kontaktflächen 2,3, die über mehradrige Kabel 6 mit dem Hochfrequenz-Chirurgiegerät verbunden werden.

30 In an sich bekannter Weise wird der elektrische Übergangselektivwert zwischen den Kontaktflächen 2,3 der Neutralelektrode 1 und der Haut des Patienten 4 mittels eines Kontrollstromes I_k ermittelt. Hierfür ist als Spannungsquelle ein mittelfreQUenter Wechselstromgenerator 7 vorhanden, der über einen Transformator 8 und ein mehradrige Kabel 6 mit den Kontaktflächen 2,3 der Neutralelektrode 1 verbunden ist. Wenn die Ausgangsspannung U_k des Wechselspannungsgenerators 7 konstant ist, dann ist der Kontrollstrom I_k auf der primären Seite 9 des Transformators 8 bzw. I_k' auf der sekundären Seite 10 des Transformators 8 mit dem Übersetzungsverhältnis \bar{u} proportional dem Übergangselektivwert zwischen den Kontaktflächen 2,3 und der Haut des Patienten 4.

35 Wie in der Zeichnung durch zwei Punkte ange deutet ist, ist die Wicklung 10 des Transformators 8 derart gewickelt, daß das magnetische Feld, welches durch die Teilströme I_{HF1} und I_{HF2} in der Wicklung induziert wird, bei $I_{HF1} = I_{HF2}$ ist.

40 Bei Anwendung kapazitiver Neutralelektronen ist es zweckmäßig, die Frequenz des Kontrollstromes I_k gleich der Frequenz des hochfrequenten Stromes I_{HF} zu verwenden.

45 Bei Anwendung eines Stromsensors 11 wird ein von dem Kontrollstrom I_k abhängiges elektrisches Signal b gebildet.

50 In einem Stromsensor 11 wird ein von dem Kontrollstrom I_k abhängiges elektrisches Signal b gebildet.

55 Der hochfrequente Strom I_{HF} zum Schneiden und/oder Koagulieren wird in an sich bekannter Weise in die Mitte der sekundären Wicklung 10

des Transformators 8 eingekoppelt, so daß er bei den Kontaktflächen 2,3 der Neutralelektrode 1 möglichst symmetrisch erreicht. Die Höhe des hochfrequenten Stromes I_{HF} ist hauptsächlich von der Ausgangsspannung U_{HF} des Hochfrequenzgenerators 17 sowie dem elektrischen Leitwert zwischen aktiver Elektrode 5 und der Neutralelektrode 1 abhängig.

Die Höhe des hochfrequenten Stromes I_{HF} wird mittels eines Stromsensors 12, der sicherheitshalber durch einen Trenntransformator 14 vom Patienten 4 isoliert ist, ermittelt und in ein von diesem Strom abhängiges elektrisches Signal a gewandelt.

Da der elektrische Übergangswiderstand zwischen den Kontaktflächen 2,3 nicht nur von den in den Figuren 1 bis 3 schafft dargestellten effektiven Kontaktflächen - das meint den Teil der zur Verfügung stehenden Kontaktfläche, der mit der Haut eines Patienten leitfähig in Kontakt kommt - sondern auch von der Geometrie, dem Abstand der beiden Kontaktflächen 2,3 zueinander usw. abhängig ist, kann es vorteilhaft oder gar erforderlich sein, die Abhängigkeit des Signals b von I_k durch eine geeignete Funktion zu korrigieren.

Dies gilt auch bezüglich des Umstandes, daß die Höhe des Kontrollstromes I_k von der Reihenschaltung der Übergangswiderstände zwischen den in den Figuren 1 bis 3 schafft dargestellten effektiven Kontaktflächen A_{HF1} und A_{HF2} und der Haut des jeweiligen Patienten abhängig ist, während die thermische Belastung der Haut durch den hochfrequenten Strom I_{HF} die Parallelschaltung dieser beiden Übergangswiderstände relevant ist. Das Verhältnis zwischen dem Übergangswiderstand, den der Kontrollstrom I_k vorfindet, und dem Übergangswiderstand, den der hochfrequente Strom I_{HF} vorfindet, ist abhängig von der Konstruktion der verwendeten Neutralelektrode und kann in einfacher Weise maßtechnisch für jeden Typ von Neutralelektroden ermittelt und als typischer Korrekturfaktor berücksichtigt werden.

Dies gilt insbesondere auch für das Signal a in Abhängigkeit vom hochfrequenten Strom I_{HF} . Da die Hochfrequenzströme in der Hochfrequenzchirurgie in der Regel nur sehr kurzzeitig durch den Patienten fließen und außerdem deren Intensität während Schneide- und/oder Koagulationsvorgängen stark schwanken und auch bereits im Hochfrequenzgenerator mehr oder weniger stark in der Amplitude moduliert werden, und außerdem die Erwärmung des biologischen Gewebes auch von der Stromflüßdauer abhängig ist, ist es zweckmäßig, das Signal a in Abhängigkeit vom Effektivwert des hochfrequenten Stromes I_{HF} , z.B. wie in Fig. 2 dargestellt, mittels eines thermoelektrischen Wandlers zu ermitteln. Hierfür reicht es beispielsweise, den Strom I_{HF} durch einen reellen Widerstand 27 mit geeigneter Wärmekapazität fließen zu lassen,

stand einerseits ausreichend warm, aber andererseits nicht so heiß wird, daß der Wandler 29 Überlastet wird, während das Signal a mittels des thermoelektrischen Wandlers 29 aus der Temperatur ϑ dieses Widerstandes 27 ermittelt wird. Der Wärmeleiterstand dieses Widerstandes 27 gegen das Umfeld kann konstruktiv so festgelegt werden, daß dessen Abkühlung in den Pausen etwa der Abkühlung der Haut im Kontaktbereich der Neutralelektrode entspricht, denn die an den Kontaktstellen der Neutralelektrode in der Haut des Patienten infolge des Stromes I_{HF} entstehende Wärme wird durch den Blutkreislauf und Wärmeleitung abgeleitet. Die Erzeugung bzw. Korrektur der Signale b und/oder a in Abhängigkeit von I_k bzw. I_{HF} kann auch mittels digitaler Verfahren erfolgen, wofür beispielsweise Mikroprozessor-Schaltungen, mit denen in bekannter Weise beliebige Abhängigkeiten des Signals b von I_k und/oder a von I_{HF} realisierbar sind, Verwendung finden können.

Wenn ein relativ großer hochfrequenter Strom I_{HF} und ein relativ kleiner Kontrollstrom I_k gleichzeitig durch die sekundäre Wicklung 10 des Transformators 8 fließen, kann die Auswertung des Kontrollstromes I_k gestört werden, wenn der Strom I_{HF} sich nicht gleichmäßig auf beide Kontaktflächen 2,3 der Neutralelektrode 1 verteilt, d.h. wenn I_{HF1} kleiner oder größer als I_{HF2} ist. Deswegen ist, wie in Figur 1 dargestellt, ein Filter 13 zweckmäßig oder gar erforderlich, welches eine Störung der Auswertung von I_k durch eine Differenz der hochfrequenten Teilströme I_{HF1} und I_{HF2} unterdrückt, indem es Ströme mit der Frequenz des Hochfrequenzgenerators 17 sperrt.

Da hochfrequenter Strom I_{HF} einerseits nur kurzzeitig während Schneide- und/oder Koagulationsvorgängen vorhanden ist, und andererseits das Risiko, daß die Applikation einer Neutralelektrode sich während dieser kurzzeitigen Vorgänge wesentlich verschlechtert, vernachlässigbar klein ist, kann der Wert des Signals b, der vor jedem Aktivieren des Hochfrequenzgenerators 17 vorhanden ist, wie in Figur 2 dargestellt, während einer jeden Aktivierungsperiode $t_2 - t_3$ des Hochfrequenzgenerators 17 durch eine Sample and Hold-Schaltung 25 festgehalten werden. Hierbei ist es zweckmäßig, die Aktivierung des Hochfrequenzgenerators 17 und die Sample and Hold-Schaltung 25 zeitlich so zu steuern, daß die Aktivierungsintervalle $t_2 - t_3$ stets innerhalb der Hold-Intervalle $t_1 - t_4$ der Sample and Hold-Schaltung liegen.

Die elektrischen Signale a und b werden einem Komparator 20 zugeführt, welcher diese beiden Signale miteinander vergleicht und je nach deren Verhältnis zueinander Steuersignale erzeugt, deren Anwendung je nach Bedarf definiert werden kann. So kann beispielsweise bei $a < b$ ein grünes optisches Signal 21 bei $a \geq b$ ein rotes optisches

Signal 22 und/oder bei $a > b$ ein akustisches Signal 23 aktiviert und/oder gleichzeitig der Hochfrequenzgenerator 17 deaktiviert werden, wobei der Hochfrequenzgenerator 17 solange deaktiviert bleibt, bis der Aktivierungsschalter 19 erneut geschlossen wird und hierdurch ein RS-Flip-Flop 25 zurückgesetzt. Statt des Hochfrequenzgenerators 17 könnte alternativ auch das Netztell 18 deaktiviert werden.

Der Aktivierungsschalter 19 kann ein per Fingertaste 24 an der aktiven Elektrode 5 betätigbarer Fingerschalter, ein per Pedal betätigbarer Fußschalter oder ein automatisch betätigter Relais-Kontakt sein.

Eine andere Lösung der Aufgabe wird anhand der Figur 3 beschrieben. Diese Lösung unterscheidet sich von den in den Figuren 1 und 2 dargestellten Lösungen dadurch, daß das Signal a nicht vom tatsächlich durch den Patienten 4 fließenden hochfrequenten Strom I_{HF} , sondern von dem am Hochfrequenz-Chirurgiegerät, beispielsweise am Netztell 18 eingestellten, für die Erwärmung des biologischen Gewebes relevanten Parameter x abgeleitet wird. Hierbei kann x die Ausgangsspannung U_{HF} des Hochfrequenzgenerators 17, der Ausgangstrom I_{HF} oder die Ausgangsleistung P_{HF} des Hochfrequenzgenerators 17 sein.

Die Abhängigkeit des Signales a vom Parameter x kann in einer Bewertungsschaltung 28, welche beispielsweise mittels Mikroprozessor realisierbar ist, wie bei den Ausführungsbeispielen der Figuren 1 und 2 beschrieben, definiert und/oder korrigiert werden.

Alle anderen Eigenschaften dieses Ausführungsbeispiels entsprechen den in den Figuren 1 und 2 dargestellten und beschriebenen Ausführungsbeispielen.

Ansprüche

1. Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie, wobei die Kontaktflächen (2,3) von mindestens zwei voneinander unabhängigen Neutralelektroden oder eine Neutralelektrode (1) mit mindestens zwei voneinander elektrisch isolierten Kontaktflächen (2,3) am selben Patienten (4) appliziert werden, mit

a) einer Einrichtung (7,8,9,10,11), welche ein elektrisches Signal b in Abhängigkeit vom elektrischen Übergangsleitwert zwischen den Kontaktflächen (2,3) liefert,

b) einer Einrichtung (12,14,15,16 oder 27,29), welche ein elektrisches Signal a in Abhängigkeit vom Hochfrequenzstrom (I_{HF}) liefert, der durch die Neutralelektrode (1) oder durch die aktive Elektrode (5) fließt, sowie mit

gnales a und b zugeführt werden und der Steuersignale liefert, welche

d) optische und/oder akustische Signale aktivieren und/oder den Hochfrequenzstrom (I_{HF}) abschalten, wenn $a < b$, $a \geq b$ und/oder $a > b$ ist.

2. Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie, wobei die Kontaktflächen (2,3) von mindestens zwei voneinander unabhängigen Neutralelektroden oder eine Neutralelektrode (1) mit mindestens zwei voneinander elektrisch isolierten Kontaktflächen (2,3) am selben Patienten (4) appliziert werden, mit

a) einer Einrichtung (7,8,9,10,11), welche ein elektrisches Signal b in Abhängigkeit vom elektrischen Übergangsleitwert zwischen den Kontaktflächen (2,3) liefert,

b) einer Bewertungsschaltung (28), welche ein elektrisches Signal a in Abhängigkeit von einem am Netztell (18) des Hochfrequenzchirurgiegerätes eingestellten elektrischen Signal X liefert, welches Signal X dem Sollwert der Betriebsspannung (U_S), der Ausgangsspannung (U_{HF}) des Hochfrequenzstromes (I_{HF}) oder der Ausgangsleistung (P_{HF}) des Hochfrequenzgenerators entspricht, sowie mit

c) einem Komparator (20), welchem die Signale a und b zugeführt werden und der Steuersignale liefert, welche

d) optische und/oder akustische Signale aktivieren und/oder den Hochfrequenzstrom (I_{HF}) abschalten, wenn $a < b$, $a \geq b$ und/oder $a > b$ ist.

3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das elektrische Signal a in Abhängigkeit vom Effektivwert des Hochfrequenzstromes (I_{HF}) mittels eines thermoelektrischen Wandlers (29) ermittelt wird, indem der Hochfrequenzstrom (I_{HF}) durch einen reellen Widerstand (27) mit geeigneter Wärmekapazität und definiertem Wärmeleitwert gegen das Umfeld geleitet wird und das Signal a aus der Temperatur (ϑ) dieses Widerstandes (27) ermittelt wird.

4. Einrichtung nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß das Signal b einer Sample & Hold-Schaltung (25) zugeführt wird, welche den Wert des Signals b während Pausenintervallen, wenn der Hochfrequenzgenerator (17) nicht aktiviert ist, aus der Einrichtung (7,8,9,10,11) zur Lieferung des Signals b kontinuierlich übernimmt und während Intervallen $t_1 - t_2$ denjenigen Wert des Signals b speichert und an den Komparator (20) weiterleitet, welcher vor dem Zeitpunkt t_1 vorhanden war.

5. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein optisches Signal (21) eingeschaltet wird, wenn $a < b$ ist.

6. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein optisches Signal (22) eingeschaltet wird, wenn $a \geq b$ ist.

7. Einrichtung nach Anspruch 1 oder 2, da-

durch gekennzeichnet, daß ein akustisches Signal (23) aktiviert und/oder der Hochfrequenzgenerator (17) automatisch abgeschaltet wird, wenn $a \geq b$ oder $a \gg b$ ist.

8. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Abhangigkeit des elektrischen Signals b vom Übergangsleitwert oder Kontrollstrom (I_k) mittels eines Mikroprozessors und geeigneter Software entsprechend den relevanten Randbedingungen korrigiert wird.

5

9. Einrichtung nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß die Abhangigkeit des elektrischen Signals a vom Hochfrequenzstrom (I_{HF}) mittels eines Mikroprozessors und geeigneter Software entsprechend den relevanten Randbedingungen korrigiert wird.

10

15

20

25

30

35

40

45

50

55

Fig.1

Fig. 2

$$S_1 = t_1 - t_3$$

$$S_2 = t_2 - t_3$$

Fig.3

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
A,D	DE-A-3 239 640 (VALLEYLAB) * Seite 1, Zeilen 8-10; Seite 5, Zeilen 18-30; Seite 16, Zeile 25 - Seite 17, Zeile 15; Figur 1; Seite 7, Zeilen 5-8 * --- A DE-A-3 544 443 (FEUCHT) * Spalte 3, Zeilen 29-36; Figur 2 *	1,2,7,8 ,5,6	A 61 B 17/39
A	US-A-4 657 015 (IRNICH) * Spalte 3, Zeilen 54,55; Anspruch 1f,6 * --- A FR-A-2 516 782 (AIR LIQUIDE) * Ansprüche 1,3,5,8 *	3,7 1,2,7 -----	
			RECHERCHIERTE SACHGEBiete (Int. CL.5)
			A 61 B 17/00
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Rechercheort		Abschlußdatum der Recherche	Prüfer
DEN HAAG		20-11-1989	PAPONE F.
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet		T : der Erfindung zugrunde liegende Theorien oder Grundsätze	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist	
A : technologischer Hintergrund		D : in der Anmeldung angeführte Dokumente	
O : nichtschriftliche Offenbarung		L : aus einer Gruppe angeführtes Dokument	
P : Zeitschriftenliteratur		& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	