§§Commutators

$$\begin{split} \left[\hat{a}, \hat{a}^{\dagger} \right] &= 1 \\ \left[\hat{a}, (\hat{a}^{\dagger})^{n} \right] &= n(\hat{a}^{\dagger})^{n-1} \\ \left[\hat{a}^{n}, \hat{a}^{\dagger} \right] &= n(\hat{a})^{n-1} \\ \left[\hat{a}, \exp\left(\beta \hat{a}^{\dagger}\right) \right] &= \beta (\exp\left(\beta \hat{a}^{\dagger}\right) \end{split}$$

Quantum Physics α

§Postulates

- 1. States describe the system
- 2. States evolve
- 3. States yield Probabilistic measurements
- 4. Systems can be composite states

Notation

U: Unitary operator

 M_m : Measurement operator with outcome m p(m): Probability to measure outcome m p_i : Ensemble probability to be in the ith state

§§Vector States

```
state: |\psi\rangle evolution: |\psi\rangle \Rightarrow U |\psi\rangle measurement: p(m) = \langle \psi | M_m^\dagger M_m | \psi \rangle and |\psi_m\rangle = M_m |\psi\rangle/p(m) composition: |\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle
```

§§Ensemble States

```
state: \rho = \sum_i p_i \, |\psi_i\rangle\langle\psi_i| evolution: \rho \Rightarrow \sum_i p_i U \, |\psi_i\rangle\langle\psi_i| \, U^\dagger measurement: p(m) = \sum_i p_i \operatorname{tr}(M_m^\dagger M_m \, |\psi_i\rangle\langle\psi_i|) and \rho_m = \sum_i p_i M_m \, |\psi_i\rangle\langle\psi_i| \, M_m^\dagger/p(m) composition: \rho = \sum_i p_i \rho_i = \sum_i p_i \sum_j p_{ij} \, |\psi_{ij}\rangle\langle\psi_{ij}|
```

§§Density Operator

```
state: \rho = \sum_i p_i \rho_i

evolution: \rho \Rightarrow U \rho U^{\dagger}

measurement: p(m) = \operatorname{tr}(M_m^{\dagger} M_m \rho) and \rho_m = M_m \rho M_m^{\dagger} / p(m)

composition: \rho = \rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_n
```

§Types of States

Quantum states are either pure or mixed. A state can be a superposition of other states, which is patently *not* a mixed state since the coefficients of the states are

§§Pure or Mixed

§§§Pure State (1 or more systems)

A pure state can describe a single or multiple quantum systems.

$$\begin{vmatrix} \psi_{\mathrm{pure}} \rangle \colon \text{known exactly} \\ |\psi_{\mathrm{pure}}^{(\mathrm{notEntangled})} \rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle \colon \text{all} \\ \text{constituent systems can be factored} \\ \rho_{\mathrm{pure}} \equiv |\psi_{\mathrm{pure}}\rangle \langle \psi_{\mathrm{pure}}| \colon \text{density operator is outer product} \\ \mathrm{tr}(\rho_{\mathrm{pure}}^2) = 1 \colon \text{unity trace of squared density operator}$$

§§§Mixed State (1 or more systems)

A mixed state is a combination of other states where the coefficients are the probability to be in the ith state p_i , representing our ignorance of the actual state it is in. Note that mixtures are represented by the density matrix ρ rather than the states themselves.

 $\rho_{\text{mixed}} = \sum_{i} p_i |\psi_i\rangle\langle\psi_i|$: statistical combination, not exactly known

 ${\rm tr}(
ho_{
m mixed}^2) <$ 1: less than unity trace of squared density operator

§§Superposition State

A superposition state is a combination of other states where the coefficients are complex *probability* **amplitudes** π_i to be in the ith state.

 $p_i = |\pi_i|^2 = \pi_i^* \pi_i$: probability to be in ith state is the squared absolute value of the probability amplitude $|\psi\rangle = \sum_i \pi_i |\psi\rangle$:

§§Entangled State (2 or more systems)

 $|\psi_{\text{entangled}}\rangle$: joint system is exactly known $|\psi_{\text{entangled}}\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$: constituent systems cannot be factored

 ${\rm tr}(\rho_{\rm entangled}^2)=1$: unity trace of squared density operator for $\it joint$ system

 $\rho_{\rm entangled} \equiv |\psi_{\rm entangled}\rangle\langle\psi_{\rm entangled}|$: density operator is outer product

 $\rho_{\rm entangled}^A = {\rm tr}_B(\rho_{\rm entangled}^{AB}) \hbox{: susbsystem A obtained via} \\ \textit{partial trace} \ {\rm over \ subsystem} \ B$

 ${\rm tr}_A([\rho_{\rm entangled}^A]^2) < 1$: less than unity trace of squared density operator for *subsystem*

 Subsystem is in a mixed state whereas the full system is a pure state — fingerprint of entanglement

§§Eigenstates

 $\mathcal{O}\left|\psi^{(\mathrm{eigen})}\right>=\lambda\left|\psi^{(\mathrm{eigen})}\right>$: an eigenstate $\left|\psi^{(\mathrm{eigen})}\right>$ of an operator $\mathcal O$ remains unchanged after action by the operator except for a scale factor called the eigenvalue λ

 $c(\lambda) = \det|\mathcal{O} - \lambda I|$: the characteristic function $c(\lambda)$ is independent of the representation of the operator \mathcal{O} (NOTE: I is the identity matrix.)

 $0=\det |\mathcal{O}-\lambda I|$: solutions where the characteristic equation is zero yield the eigenvalues λ_i

 $\mathcal{O}^{\mathrm{diag}} = \sum_i \lambda_i \left| \psi_i^{\mathrm{(eigen)}} \right\rangle \!\! \left\langle \psi_i^{\mathrm{(eigen)}} \right| \!\! : \text{ a diagonal}$ representation of the operator $\mathcal{O}^{\mathrm{diag}}$, if it exists, presents the eigenvalues λ_i along the diagonal that correspond to eigenstates $\left| \psi_i^{\mathrm{(eigen)}} \right\rangle$ which form a complete, orthonormal set for $\mathcal{O}^{\mathrm{diag}}$

$$\mathcal{O}^{\text{diag}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

§Two-state System

0	λ	$ \psi^{\text{(eigen)}}\rangle$
$\sigma_x \equiv X$	1	$\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	-1	$\frac{1}{\sqrt{2}}\begin{pmatrix} -1\\1 \end{pmatrix}$
$\sigma_y \equiv Y$	1	$\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ -i \end{pmatrix}$
$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	-1	$\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ i \end{pmatrix}$
$\sigma_z \equiv Z$	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	-1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle$$
$$(x, y, z) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

O	λ	$ \psi^{({ m eigen})} angle$	(θ,ϕ)
$\sigma_x \equiv X$	1	$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle+\left 1\right\rangle\right)$	$(\frac{\pi}{2},0)$
$ 0\rangle\langle 1 + 1\rangle\langle 0 $	-1	$\frac{\sqrt{1}}{\sqrt{2}}\left(\left 0\right\rangle - \left 1\right\rangle\right)$	$(\frac{\pi}{2}, -\pi)$
$\sigma_y \equiv Y$	1	$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle+i\left 1\right\rangle\right)$	$(\frac{\pi}{2},\frac{\pi}{2})$
$-i\left(0\rangle\langle 1 - 1\rangle\langle 0 \right)$	-1	$\frac{1}{\sqrt{2}}\left(\left 0\right\rangle - i\left 1\right\rangle\right)$	$(\frac{\pi}{2}, -\frac{\pi}{2})$
$\sigma_z \equiv Z$	1	$ 0\rangle$	(0,0)
$ 0\rangle\langle 0 - 1\rangle\langle 1 $	-1	$ 1\rangle$	$(\pi,0)$

§§Commutators for Two-State System

§Number State

 $|n\rangle$: number state with exactly n quanta (AKA Fock)

 $\hat{a}\,|n\rangle=\sqrt{n}\,|n-1\rangle$: annihilation operator \hat{a} removes a quanta (AKA destruction, lowering)

 $\hat{a}^\dagger\,|n
angle=\sqrt{n+1}\,|n+1
angle$: creation operator \hat{a}^\dagger introduces a quanta (AKA raising)

 $\hat{n}\,|n\rangle\equiv\hat{a}^{\dagger}\hat{a}\,|n\rangle=n\,|n\rangle$: number operator $\hat{n}\equiv\hat{a}^{\dagger}\hat{a}$ counts quanta

 $|n\rangle=(n!)^{-1/2}(\hat{a}^{\dagger})^n\,|0\rangle$: generate number state $|n\rangle$ from a vacuum state $|0\rangle$