

Algebraic Semantics of Classical Logic

Usually semantics for classical propositional formulas us defined in terms of two truth values.

lut B = 20,19. A valuation in B, is a map (v: PV → B) such a map is also called a 0,1 valuation

Juven a 0-1 valuation, define the map, [·]; 0 → B,

a) $[P]_{v} = v(P)$ for $P \in PV$ b) $[II]_{v} = 0$ c) $[PV + J_{v}] = max { <math>[PJ_{v}, [YJ_{v}]$ d) $[PA + VJ_{v}] = min { <math>[PJ_{v}, [YJ_{v}]$ e) $[\phi \rightarrow \gamma J]$, = man $\{ I - [\phi] \}$, $[\gamma J]_{\gamma} \}$

* PEQ, is considered as a tautology, if, V(P) = 1, for all valuations in B:

Field of wets

A fild of voits (our X), is a non emply family Rof subsets, closed over union, intersection and compliments (to X)

(i) A valuation in \mathcal{R} is a map $v: PV \to \mathcal{R}$.

(ii) Given a valuation v in \mathcal{R} , define the map $\llbracket \bullet \rrbracket_v : \Phi \to X$ by: for $p \in PV$

 $\llbracket \varphi \lor \psi \rrbracket_v = \llbracket \varphi \rrbracket_v \cup \llbracket \psi \rrbracket_v$

 $\llbracket \varphi \wedge \psi \rrbracket_v = \llbracket \varphi \rrbracket_v \cap \llbracket \psi \rrbracket_v$ $\llbracket \varphi \to \psi \rrbracket_v = (X - \llbracket \varphi \rrbracket_v) \cup \llbracket \psi \rrbracket_v$

2.3.3. Definition. Let \mathcal{R} be a field of sets over X.

We also write $v(\varphi)$ for $\llbracket \varphi \rrbracket_v$.

Proposition

These two remarks are equivalent, in following are equivalent for each field of realisets R over X. $\Rightarrow \varphi$ is a tautology $\Rightarrow v(\varphi) = X$, for all valuations v in R.

proof:

 $(1) \Rightarrow (2)$

suppose that $v(\phi) \neq x$, then there is an element $a \in X$, such that $a \notin v(\phi)$. Define $a \circ -1$ valuations w, so that $w(\phi) = 1$, if $a \in v(\phi)$

By induction, $\omega(\gamma) = 1$, if $a \in \nu(\gamma)$

Then $co(\phi) \neq 1$.

(a) ⇒ (ı)

A 0-1 valuation can be seen as a valuation as R that assigns only x and i't to propositional variables

We can generally this set of semantics to arbit ary Boolean Algebras, by replacing valuation in a field of sets by valuations in a Boolean algebra, in the obvious way.

In fact, every Boolean algebra is somorpher to a fuld of sets, so this generalization does not change our semantic.

ljuren any B.A, (B, ≤, V, 1, 0, 1, 7), we would like to associate with each prop², an element of BA Let B, be a BA, and $\Gamma \cdot \mathbb{J}$ a valuation into B. * $\Gamma \cdot \mathbb{J}$: i atomic prof²; \rightarrow B. [A 1 B] = [A] 1 [B] Soolean algebra operation [A V B] = [A] V [B] [A -> B] =7[A] V [B] (hast of idefinition)

Soperations on peop2 A us true in this vehres entation of [A] = 1.

Boolean Algebra (B, \le , V, \lambda, 0, 1, 7) (B, \leq, V, Λ) is a distributive lattice

1,0 are the largest and smallest element respectively.

'- is a many operation

ta & B, Tala= 0

Examples

La Not a numbre 2, just name of this algebra $P(x) = (x, \subseteq, \cup, \cap, \phi, \times, \overline{\cdot})$

· Boolean vectors of longth n (for some) fixed n ∈ N)

operations are defined bitwise

(0/01) ~ (1/00) (a 2) v (a 2) ? an (bvc) im bit on lhs
ain (bivci) 2 x 2 x 2 x 2 {0,1} = (a; nbi) v(a; nci) = ith bit on the ehe $B_1 \times B_2 = \{(b_1, b_2) | b_1 \in B_1, b_2 \in B_2\}$ Define operations componentwill (b,,b2) 1 (C,,C2) = (b,1C,, b2 1C2) Ex: Verify that B, xB, is a BA 2× for any let X.

7(0101) = 1010

Domain is the set of fine

Operations are defined componentwise (that is independently at each index) Ex: show that 2 x is a BA 2x is isomorphic to P(x). .,5} /A(y)=0 / y €A $X = \{1, 2,$ =1 y y = A A = {2,4} $\beta: \times \to \{0,1\}$ f(1) = 0, f(2) = 1, f(3) = 0, f(4) = 1, f(5) = 0 $\begin{cases} 1 & 1 \\ 1 & 2 \end{cases} \in 2^{\times}$ b, (y) 1 b2(y) pr y ∈× (f, 1 b2) (y)

Lemma if an b=0 and avb=1 then b = 72 2) 770 = 2 3) 7 (avb) талть 7(anb) 79 V 7 6 PADO () anb=0 7 a V (anb) = 7an 0 (7 a va) n(7 a vb) = 7 a 11 (7avb) = 7a avb=1 <u>-</u> 7avb = 7a 7a n (avb) = **>** $b \leq 7a$ Similar simplification

Coads 10

7 9 5 5 \Rightarrow

1) By application of 1 7 a 1 a=0 770 = 9 7a V a = 1 by part 1 3) Steatigy is to show (avb) 1 (7a 17b) =0 (a vb) v (7a 17b) = 1) Ex we can conclude by part 1 7 (a vb) = 7 a 1 7 b

The second De Mogan law can be shown similarly.