Feature Engineering – Assignment

Name: Palak Khandelia Date: 26 August 2025

Q1. What is a parameter?

Answer:

A parameter is a value inside a model that is learned from the data.

They define how input features are mapped to output predictions.

Example: In linear regression (y = mx + c), slope (m) and intercept (c) are parameters.

Q2. What is correlation? What does negative correlation mean?

Answer:

- Correlation measures the strength and direction of the relationship between two variables.
- Range: -1 to +1
 - +1: Perfect positive correlation (both increase together).
 - -1: Perfect negative correlation (one increases, other decreases).
 Example:
- Study hours ↑ → Marks ↑ (positive)
- TV hours ↑ → Marks ↓ (negative)

Q3. Define Machine Learning. What are the main components in Machine Learning?

Answer:

Machine Learning is a branch of AI where systems learn from data and make predictions or decisions without being explicitly programmed.

Main Components:

- 1. Data
- 2. Features
- 3. Model
- 4. Training
- 5. Evaluation

Q4. How does loss value help in determining whether the model is good or not?

Answer:

- Loss function measures how far predictions are from actual values.
- Lower loss → Better model.

Example: Mean Squared Error (MSE) in regression.

Q5. What are continuous and categorical variables?

Answer:

- Continuous Variable: Numeric values (e.g., height, salary).
- Categorical Variable: Categories/labels (e.g., Gender = Male/Female).

Q6. How do we handle categorical variables in Machine Learning?

Answer:

Techniques:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Target Encoding

Q7. What do you mean by training and testing a dataset?

Answer:

- Training dataset: Used to train model.
- Testing dataset: Used to evaluate performance.

Q8. What is sklearn.preprocessing?

Answer:

A module in Scikit-learn used for preprocessing.

Includes:

- Scaling (StandardScaler, MinMaxScaler)
- Encoding (LabelEncoder, OneHotEncoder)
- Normalization

09. What is a Test set?

Answer:

A subset of dataset used to test model's performance on unseen data.

Q10. How do we split data for model fitting (training and testing) in Python?

Q11. Why do we have to perform EDA before fitting a model to the data?

Answer:

EDA (Exploratory Data Analysis) helps to:

- Understand data distribution
- Detect missing values/outliers
- Identify correlations
- Decide preprocessing methods

Q12. What is correlation?

Answer:

Correlation measures the strength and direction of the relationship between two variables.

Q13. What does negative correlation mean?

Answer:

Correlation measures the strength and direction of the relationship between two variables.

- Range: -1 to +1
 - +1: Perfect positive correlation (both increase together).
 - -1: Perfect negative correlation (one increases, other decreases).
 Example:
- Study hours ↑ → Marks ↑ (positive)
- TV hours ↑ → Marks ↓ (negative)

```
### Q14. How can you find correlation between variables in Python?
import pandas as pd

data = pd.DataFrame({
    "StudyHours":[2,4,6,8,10],
    "Marks":[20,40,60,80,100]
})
print(data.corr())

StudyHours Marks
    StudyHours 1.0 1.0
    Marks 1.0 1.0
```

Q15. What is causation? Explain difference between correlation and causation.

Answer:

- Correlation: Two variables move together but not necessarily cause-effect.
- Causation: One variable directly affects another.

Example:

- Ice cream sales ↑ and drowning cases ↑ (correlation, not causation).
- More study hours → Higher marks (causation).

Q16. What is an Optimizer? Types of optimizers?

Answer:

Optimizer: Algorithm to update model parameters to minimize loss.

Types:

- 1. Gradient Descent
- 2. SGD
- 3. Adam
- 4. RMSProp

Q17. What is sklearn.linear_model?

Answer:

A module containing linear models:

- Linear Regression
- Logistic Regression
- Ridge, Lasso
- Q18. What does model.fit() do? What arguments must be given?

Answer:

- model.fit() is used to train the machine learning model on the training data.
- It adjusts the model's parameters based on the input features (X) and the target/output
 (y).
- It is called during the training phase.

Required Arguments:

- 1. $X_{train} \rightarrow Input features (independent variables).$
- 2. $y_{train} \rightarrow Target values (dependent variable)$.

After calling .fit(), the model "learns" from the data and stores parameters (like slope and intercept in linear regression).

```
# Example of model.fit()
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split
import pandas as pd
# Sample dataset
data = pd.DataFrame({
   "X":[1,2,3,4,5],
   "y":[2,4,6,8,10]
})
X = data[["X"]] # Features
y = data["y"]
                # Target
# Splitting data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Creating and training model
model = LinearRegression()
model.fit(X train, y train)
print("Model trained successfully!")
print("Coefficient:", model.coef_)
```

```
print("Intercept:", model.intercept_)

Model trained successfully!
Coefficient: [2.]
Intercept: 8.881784197001252e-16
```

Q19. What does model.predict() do? What arguments must be given?

Answer:

- model.predict() predicts output for given input features.
- Argument: X_test.
- It returns the predicted y values for unseen data.

```
# Example of model.predict()
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
import pandas as pd
# Sample dataset
data = pd.DataFrame({
   "X": [1, 2, 3, 4, 5],
   "y": [2, 4, 6, 8, 10]
})
X = data[["X"]] # Features
y = data["y"]
                # Target
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Train model
model = LinearRegression()
model.fit(X train, y train)
# Predict on test set
y pred = model.predict(X test)
print("X_test values:\n", X_test)
print("Predicted y values:\n", y pred)
print("Actual y values:\n", list(y_test)) # safe way
→ X test values:
        Χ
     4 5
    Predicted y values:
      [ 4. 10.]
     Actual y values:
      [4, 10]
```

Q20. What are continuous and categorical variables?

Answer:

• Continuous Variables:

- Numeric variables that can take infinite values within a range.
- They are measurable quantities.
- Examples: Height (170.5 cm), Weight (60.2 kg), Salary (₹55,000), Temperature (36.6°C).

• Categorical Variables:

- Variables that represent categories, labels, or groups.
- They are qualitative, not numerical.
- Examples: Gender (Male/Female), City (Delhi, Jaipur, Mumbai), Colors (Red, Blue, Green).

 $Continuous \rightarrow Measurement (numbers)$

Categorical → Labels (groups)

Q21. What is feature scaling? How does it help in Machine Learning?

Answer:

- **Feature Scaling** is the process of transforming all features into the same scale or range (like 0-1 or -1 to +1).
- Many ML models are sensitive to the scale of data (for example: KNN, SVM, Logistic Regression, Neural Networks).

Helps in:

- 1. Prevents features with larger values from dominating smaller features.
- 2. Improves speed and convergence of Gradient Descent.
- 3. Makes distance-based algorithms (KNN, Clustering) work correctly.

Example:

- Dataset: Age = [18, 22, 35], Salary = [20,000, 60,000, 1,00,000].
- Without scaling → Salary dominates Age because of large values.
- After scaling → Both Age and Salary contribute equally.
- Q22. How do we perform scaling in Python?

from sklearn.preprocessing import StandardScaler, MinMaxScaler import pandas as pd

```
# Sample data
data = pd.DataFrame({
    'Age': [25, 30, 45, 35, 50],
   'Salary': [50000, 60000, 80000, 75000, 90000]
})
# Standardization
scaler = StandardScaler()
standardized = scaler.fit_transform(data)
# Normalization
minmax = MinMaxScaler()
normalized = minmax.fit_transform(data)
print("Original Data:\n", data)
print("\nStandardized Data:\n", standardized)
print("\nNormalized Data:\n", normalized)
→ Original Data:
        Age Salary
      25 50000
    1 30 60000
    2 45
           80000
    3 35 75000
    4 50 90000
    Standardized Data:
     [[-1.29399328 -1.47029409]
     [-0.75482941 -0.77015405]
     [ 0.86266219  0.63012604]
     [-0.21566555 0.28005602]
     Normalized Data:
     [[0. 0. ]
     [0.2 0.25]
     [0.8 0.75]
     [0.4 0.625]
     [1. 1. ]]
```

Q23. What is sklearn.preprocessing?

Answer:

- sklearn.preprocessing is a module in Scikit-learn for preprocessing data.
- It includes tools for:
 - Scaling (StandardScaler, MinMaxScaler)
 - Encoding (OneHotEncoder, LabelEncoder)
 - Normalization
 - Binarization

• It prepares raw data for training models.

Q24. How do we split data for model fitting (training and testing) in Python?

```
from sklearn.model_selection import train_test_split
import pandas as pd
# Sample dataset
data = pd.DataFrame({
   'Feature1': [10, 20, 30, 40, 50],
   'Feature2': [1, 2, 3, 4, 5],
   'Target': [100, 200, 300, 400, 500]
})
X = data[['Feature1', 'Feature2']] # Features
y = data['Target']
                                # Target
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.2, random_state=42
print("X_train:\n", X_train)
print("\nX_test:\n", X_test)
print("\ny_train:\n", y_train)
print("\ny_test:\n", y_test)
→ X_train:
     Feature1 Feature2
    4 50 5
    2
            30
                      3
            10
    3
           40
    X test:
       Feature1 Feature2
      20
    y_train:
     4 500
    2
        300
    0 100
       400
    Name: Target, dtype: int64
    y_test:
     1 200
    Name: Target, dtype: int64
```

Q25. Explain data encoding.

Answer:

- Data Encoding means converting categorical values into numbers.
- Types:

[1. 0. 0.] [0. 1. 0.]]

- 1. Label Encoding → Converts categories to numbers (Male=0, Female=1).
- 2. One-Hot Encoding → Creates dummy columns for each category.
- 3. Ordinal Encoding → Assigns numbers based on order (Low=1, Medium=2, High=3).
- Encoding is needed because ML algorithms work with numerical data.

```
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
data = pd.DataFrame({"Color":["Red","Blue","Green"]})
enc = OneHotEncoder(sparse_output=False)
print(enc.fit_transform(data))
```