

LIF064 - Optimisation - TD3 Problème dual

Exercice 1

Résoudre le problème suivant avec la méthode du simplexe en vous appuyant sur le problème dual.

$$\min_{y_1, y_2, y_3} w = 5y_1 + 11y_2 + 8y_3 \qquad \text{s.c.} \qquad \begin{cases} 2y_1 + 4y_2 + 3y_3 \ge 5 \\ 3y_1 + y_2 + 4y_3 \ge 4 \\ y_1 + 2y_2 + 2y_3 \ge 3 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

Si on appelle primal le problème de la minimisation de w, alors on peut appeler dual le problème de maximisation où le nombre de variables est égal au nombre de contraintes du primal. On obtient le problème dual suivant :

$$\max_{x_1, x_2, x_3} z = 5x_1 + 4x_2 + 3x_3 \qquad \text{s.c.} \qquad \begin{cases} 2x_1 + 3x_2 + x_3 \le 5 \\ 4x_1 + x_2 + 2x_3 \le 11 \\ 3x_1 + 4x_2 + 2x_3 \le 8 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Dans ce problème dual, il y a aussi trois variables à optimiser mais pas de variables artificielles à introduire (et donc pas besoin de 2 phases). On applique la méthode classique du simplexe (par tableau).

	x_1	x_2	x_3	e_1	e_2	e_3	
e_1	2	3	1	1	0	0	5
e_2	4	1	2	0	1	0	11
e_3	3	4	2	0	0	1	8
Z	5	4	3	0	0	0	0

On choisit x_1 pour entrer dans la base et e_1 pour en sortir.

		x_1	x_2	x_3	e_1	e_2	e_3		
χ	\mathcal{C}_1	1	3/2	1/2	1/2	0	0	5/2	$x_1/2$
е	22	0	-5	0	-2	1	0	1	$e_2 - 4x_1$
ϵ	53	0	-1/2	1/2	-3/2	0	1	1/2	$e_3 - 3x_1$
	Z	0	-7/2	1/2	-5/2	0	0	-25/2	$z - 5x_1$

On choisit x_3 pour entrer dans la base et e_3 pour en sortir.

	x_1	x_2	x_3	e_1	e_2	e_3		
x_1	1	2	0	2	0	-1	2	$x_1 - x_3/2$
e_2	0	-5	0	-2	1	0	1	Déjà à 0
x_3	0	-1	1	-3	0	2	1	$2x_3$
Z	0	-3	0	- <mark>1</mark>	0	- <mark>1</mark>	-13	$z - x_3/2$

L'optimisation de z est terminée et la solution optimale est (2,0,1,0,1,0) avec un coût z=13.

La solution optimale pour le problème primal est donnée par la dernière ligne du tableau (i.e. pour z). Les valeurs d'écarts (e_1,e_2,e_3) correspondent à l'opposé des variables primales (y_1,y_2,y_3) . Donc ici nous avons la solution du problème primal : $y_1=1,y_2=0,y_3=1$ pour un coût identique w=13.

Exercice 2

Résoudre le problème suivant avec la méthode du simplexe en vous appuyant sur le problème dual.

$$\min_{y_1,y_2,y_3} w = 255y_1 + 117y_2 + 420y_3 \qquad \text{s.c.} \begin{cases} 3y_1 + y_2 + 4y_3 \ge 19 \\ 2y_1 + y_2 + 3y_3 \ge 13 \\ y_1 + y_2 + 3y_3 \ge 12 \\ 2y_1 + y_2 + 4y_3 \ge 17 \\ y_1,y_2,y_3 \ge 0 \end{cases}$$

Le problème dual est le suivant :

$$\max_{x_1, x_2, x_3, x_4} z = 19x_1 + 13x_2 + 12x_3 + 17x_4 \qquad \text{s.c.} \quad \begin{cases} 3x_1 + 2x_2 + x_3 + 2x_4 \le 255 \\ x_1 + x_2 + x_3 + x_4 \le 117 \\ 4x_1 + 3x_2 + 3x_3 + 4x_4 \le 420 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

On applique la méthode classique du simplexe (par tableau).

	<u> </u>					<u> </u>			
		x_1	x_2	x_3	x_4	e_1	e_2	e_3	
	e_1	3	2	1	2	1	0	0	255
	e_2	1	1	1	1	0	1	0	117
	e_3	4	3	3	4	0	0	1	420
ĺ	Z	19	13	12	17	0	0	0	0

On choisit x_1 pour entrer dans la base et e_1 pour en sortir.

	x_1	x_2	x_3	x_4	e_1	e_2	e_3		
x_1	1	2/3	1/3	2/3	1/3	0	0	85	$x_1/3$
e_2	0	1/3	2/3	1/3	-1/3	1	0	32	$e_2 - x_1$
e_3	0	1/3	5/3	4/3	-4/3	0	1	80	$e_3 - 4x_1$
Z	0	1/3	17/3	13/3	-19/3	0	0	-1615	$z - 19x_1$

On choisit x_3 pour entrer dans la base et e_2 pour en sortir (e_3 est possible car donne le même ratio).

	3				- 2	,	- 3 1-		
	x_1	x_2	x_3	x_4	e_1	e_2	e_3		
x_1	1	1/2	0	1/2	1/2	-1/2	0	69	$x_1 - x_3/3$
x_3	0	1/2	1	1/2	-1/2	3/2	0	48	$3x_3/2$
e_3	0	-1/2	0	1/2	-1/2	-5/2	1	0	$e_3 - 5x_3/3$
Z	0	-5/2	0	3/2	-7/2	-17/2	0	-1887	$z - 17x_3/3$

On choisit x_4 pour entrer dans la base et e_3 pour en sortir.

	x_1	x_2	x_3	x_4	e_1	e_2	e_3		
x_1	1	1	0	0	1	2	-1	69	$x_1 - x_4/2$
x_3	0	1	1	0	0	4	-1	48	$x_3 - x_4/2$
x_4	0	-1	0	1	-1	-5	2	0	$2x_4$
Z	0	-1	0	0	- <mark>2</mark>	- <mark>1</mark>	- <mark>3</mark>	-1887	$z - 3x_4/2$

L'optimisation de z est terminée et la solution optimale est (69,0,48,0,0,0,0) avec un coût z=1887.

La solution optimale pour le problème primal est donnée par la dernière ligne du tableau (i.e. pour z). Les valeurs d'écarts (e_1,e_2,e_3) correspondent à l'opposé des variables primales (y_1,y_2,y_3) . Donc ici nous avons la solution du problème primal : $y_1=2,y_2=1,y_3=3$ pour un coût identique w=1887.