

TIM AJAR
ALGORITMA DAN STRUKTUR DATA
2023/2024

Outlines

- Sequential Search
- Binary Search
- Pengayaan: Merge Sort

- Pada suatu data seringkali dibutuhkan pembacaan kembali informasi (information retrieval) dengan cara searching.
- Searching adalah proses pencarian data yang ada pada suatu deret data dengan cara menelusuri data-data tersebut.
- Tahapan paling penting pada searching: memeriksa jika data yang dicari sama dengan data yang ada pada deret data.
- Algoritma pencarian merupakan algoritma yang menerima suatu kata kunci sebagai kriteria pencarian, dan dengan langkah-langkah tertentu akan mencari data yang sesuai dengan kata kunci tersebut.

Hasil atau keluaran dari proses pencarian dapat berupa:

- Pesan
 - Ditemukan / Ada
 - Tidak ditemukan / Tidak ada
- Index array
 - index = 13
 - i = 7
 - idx = -1 (jika data yang dicari tidak ditemukan)
- Nilai Boolean
 - TRUE
 - FALSE

- Macam algoritma pencarian :
 - Sequantial Search
 - Binary Search

Sequential Search

- Sequential Search atau disebut juga Linear Search adalah teknik pencarian data dimana data dicari secara urut dari depan ke belakang atau dari awal sampai akhir
- Proses pencarian dilakukan dengan membandingkan elemen array satu per satu secara beruntun mulai dari elemen pertama sampai elemen yang dicari sudah ditemukan atau sampai semua elemen sudah diperiksa

Algoritma Sequential Search

Secara umum, algoritma Sequential Search dijabarkan sebagai berikut:

- 1. Input x (data yang dicari)
- 2. Bandingkan x dengan data ke-i sampai n (n 🛭 jumlah elemen array)
- 3. Jika ada data yang sama dengan x maka cetak pesan "ditemukan"
- 4. Jika tidak ada data yang sama dengan x cetak pesan "tidak ditemukan"

Ilustrasi Sequential Search

Misalnya terdapat array satu dimensi sebagai berikut:

0	1	2	3	4	5	6	7	indeks
8	10	6	-2	11	7	1	100	value

- Kemudian program akan meminta data yang akan dicari, misalnya 6 (x = 6).
- Iterasi:

```
6 = 8 (tidak!)
6 = 10 (tidak!)
6 = 6 (Ya!) => output : "Ada" pada index ke-2
```

• Jika sampai data terakhir tidak ditemukan data yang sama maka output : " data yang dicari tidak ada".

Kelebihan

- Kumpulan data tidak harus dalam keadaan terurut
- Jika data yang dicari terletak di posisi depan, maka data akan ditemukan dengan cepat
- Penyisipan dan penghapusan elemen pada kumpulan data tidak mempengaruhi proses pencarian karena data tidak perlu diurutkan.
 Pada algoritma pencarian lainnya, data harus disusun kembali setelah adanya penyisipan atau penghapusan elemen
- Merupakan algoritma pencarian yang sangat sederhana, hemat sumber daya dan memori

Kekurangan Sequential Search

- Jika data yang dicari terletak di posisi belakang atau paling akhir, maka proses pencarian akan membutuhkan waktu yang lama
- Beban komputer akan semakin bertambah jika jumlah data dalam array sangat banyak, sehingga tidak cocok untuk data berukuran besar

Best & Worst Case Sequential Search

- Best case: jika data yang dicari terletak di depan sehingga waktu yang dibutuhkan minimal.
- Worst case: jika data yang dicari terletak di akhir sehingga waktu yang dibutuhkan maksimal.
- Contoh:

```
DATA = 5 6 9 2 8 1 7 4
```

bestcase ketika x = 5

worstcase ketika x = 4

*x = key/data yang dicari

Visualisasi Linear Search

Linear Search Algorithm Animation (youtube.com)

Binary Search

Binary Search

- Teknik pencarian = data dibagi menjadi dua bagian untuk setiap kali proses pencarian.
- Data awal harus dalam kondisi terurut. Sehingga harus dilakukan proses sorting terlebih dahulu untuk data awal.
- Mencari posisi tengah :

Posisi tengah = (posisi awal + posisi akhir) / 2

Algoritma Binary Search

- 1. Data diambil dari posisi awal 1 dan posisi akhir N
- Kemudian cari posisi data tengah dengan rumus: (posisi awal + posisi akhir) / 2
- 3. Kemudian data yang dicari dibandingkan dengan data yang di tengah, apakah sama atau lebih kecil, atau lebih besar?
- 4. Jika data sama, berarti ketemu.
- Jika lebih besar, maka ulangi langkah 2 dengan posisi awal adalah posisi tengah + 1
- Jika lebih kecil, maka ulangi langkah 2 dengan posisi akhir adalah posisi tengah – 1

Contoh Data:

Misalnya data yang dicari 23 (X = 23)

Iterasi 1

$$m(tengah) = (0+8)/2 = 4$$

	Inde x	0	1	2	3	4	5	6	7	8
	Data	3	9	11	12	15	17	23	31	35
A	posi p s ikah :	i 15 = 7	23? tid	ak		m				j

apakah 23 > 15 ? Ya , maka : awal (1)= tengah + 1

Iterasi 2

$$m(tengah) = (5+8)/2=6$$

Inde x	0	1	2	3	4	5	6	7	8
Data	3	9	11	12	15	17	23	31	35
posi si						i	m		j

Apakan

X = m / 23=23 (sama dengan data tengah).

Output = "Data ditemukan"

 Misalkan diberikan array arr dengan delapan buah elemen yang sudah terurut menurun seperti di bawah ini

arr	81	76	21	18	16	13	10	7
index	0	1	2	3	4	5	6	7

Misalkan elemen yang dicari adalah x = 16.

- Langkah 1:
- i = 0 dan j = 8 Indeks elemen tengah m = (0+ 7) div 2 = 3 (elemen dalam kolom abu-abu)

arr	81	76	21	18	16	13	10	7
index	0	1	2	3	4	5	6	7
	kiri			m	kanan			

Langkah 2:

- Pembandingan: arr[3] = 16 Tidak! Harus diputuskan apakah pencarian akan dilakukan di bagian kiri atau di bagian kanan dengan pemeriksaan sebagai berikut:
- Pembandingan: arr[3] > 16? 218>16? Ya! Lakukan pencarian pada array bagian kanan dengan $i = k + 1 = 4 \, dan \, j = 7 \, (tetap)$

16	13	10	7					
4	5	6	7					
kanan								

- Kembali ke langkah 1 untuk mencari nilai tengah
- i = 4 dan j = 7 Indeks elemen tengah k = (4 + 7) div 2 = 5 (elemen yang diberi warna abu-abu)

16	13	10	7		
4	5	6	7		
kiri		kanan			

- Kembali melakukan langkah 2. Melakukan perbandingan
- Pembandingan: arr[5] = 16 13=16? Tidak! Harus diputuskan apakah pencarian akan dilakukan di bagian kiri atau di bagian kanan dengan pemeriksaan sebagai berikut:
- Pembandingan: arr[5] > 16? 13>16? Tidak! Lakukan pencarian pada array bagian kiri dengan i = 4 (tetap) dan j = k 1 = 4

- Kembali ke langkah 1 untuk mencari nilai tengah
- i = 4 dan j = 4 Indeks elemen tengah k = (4 + 4) div 2 = 4 (elemen yang berwarna abu)

- Kembali melakukan langkah 2. Melakukan perbandingan
- arr[4] = 16? Ya! (x ditemukan, proses pencarian selesai)

Best & Worst Case Binary Search

- Best case: jika data yang dicari terletak di posisi tengah.
- Worst case: jika data yang dicari tidak ditemukan.
- Contoh:

```
DATA = 5 6 9 2 8 1 7 4 3
bestcase ketika x = 5 (T(n)=1)
worstcase ketika x = 25 (T(n) = 5 atau n/2)
*x = \frac{1}{2} key/data yang dicari
```


Visualisasi Binary Search

Binary Search Algorithm Animation | Data Structures and Algorithms | Technology Strive - YouTube

Pengayaan-Merge Sort

- Pengurutan dengan metode ini sering juga disebut dengan metode Divide and Conquer.
- Metode ini terdiri dari 3 tahapan.
 - Divide membagi permasalahan atau koleksi data ke dalam bagian-bagian yang lebih kecil.
 - 2. Conquer mengurutkan dari bagian yang paling kecil.
 - Dan tahapan yang terakhir yaitu Combine, mengkombinasikan atau menggabungkan solusi dari bagian yang paling kecil sehingga menjadi solusi utama.

Ilustrasi Merge Sort (Ascending) – 1

Visualisasi Merge Sort

Merge Sort | Manim Animation [4K] - YouTube

Latihan

- 1. Buatlah flowchart dari algoritma binary search!
- 2. Buatlah flowchart dari algoritma sequential search!
- 3. Diketahui array sebagai berikut

Index	0	1	2	3	4	5	6
Array	78	13	24	9	30	22	41

Jika nilai yang dicari adalah 9, maka:

- Gambarkan proses penyelesaian kasus pencarian dengan sequential search secara ordered dan unordered!
- Gambarkan proses penyelesaian kasus pencarian dengan binary seach (urutkan dahulu array nya dengan algoritma sorting)!

