線性代數 期中考 111.4.13

 P_1 : the set of all real polynomials of degree 1 or less.

- 1. (10%) Consider the matrix $A = \begin{bmatrix} 5 & -2 \\ 3 & 3 \end{bmatrix}$
 - (a) (4%) Find elementary matrices E_1 , E_2 ,..., E_k such that E_k ... $E_2E_1A=I_2$.
 - (b) (3%) Write A⁻¹ as a product of elementary matrices.
 - (c) (3%) Write A as a product of elementary matrices.
- 2. (10%) Suppose A is a $n \times n$ matrix, show that if det(A) = 0, then the homogeneous system Ax = 0 has infinitely many solutions.
- 3. (15%) Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$
 - (a) Find a basis for the column space of A.
 - (b) Find a basis for the null space of A.
 - (c) Suppose $A\mathbf{x}=\mathbf{b}$ was consistent, where $\mathbf{x}=\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$ and $\mathbf{b}=\begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix}$ what is the relationship between b

relationship between b_1 , $b_2 \& b_3$?

4. (10%) Find the inverse of $A = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \end{bmatrix}$ by using the elementary row

operations.

- 5. (10%) Evaluate the determinant of the matrix $A = \begin{bmatrix} 4 & 0 & 0 & 1 & 0 \\ 3 & 3 & 3 & -1 & 0 \\ 1 & 2 & 4 & 2 & 3 \\ 9 & 4 & 6 & 2 & 3 \\ 2 & 2 & 4 & 2 & 3 \end{bmatrix}$.
- 6. (15%) Prove that $A^{-1} = \frac{1}{\det(A)} adj(A)$

- 7. (10%) Find all 2x2 matrices whose nullspace is the line 3x-5y=0.
- 8. (20%) Consider the bases $B = \{p_1, p_2\}$ and $B' = \{q_1, q_2\}$ for P_1 , where $p_1 = 6 + 3x$, $p_2 = 10 + 2x$, $q_1 = 2$, $q_2 = 3 + 2x$.
 - (a) (5%) Find the transition matrix from B to B.
 - (b) (5%) Find the transition matrix from B to B'.
 - (c) (5%) Compute the coordinate vector [p]_B, where p = -4+x, and use the result
 (b) to compute [p]_B.

(d) (5%) Check your work by computing $[\mathbf{p}]_{B'}$ directly.

$$\begin{bmatrix} 6 & 3 \\ 10 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$$

$$6+32 = a(2) + b(3+22)$$

$$39$$
 $2a + 3b = 6$ $2b = 3$, $b = \frac{3}{2}$, $2a + \frac{9}{2} = 6 \Rightarrow a = \frac{3}{4}$

$$b = \frac{2}{3}$$
 $3a + \frac{2}{3} = 0$
 $b = \frac{1}{3}$
 $A = -\frac{7}{9}$

$$3+27 = c(6+37) + d(10+27)$$

 $6c + 10d = 3$
 $4 - 3c + 2d = 2$

$$\frac{c}{b} = \frac{1}{2}$$

$$\frac{3c^{-1}}{b^{-1}} = \frac{3c^{-1}}{b^{-1}}$$

$$\frac{3c^{-1}}{b^{-1}} = \frac{3c^{-1}}{b^{-1}}$$

$$c = \frac{1}{2}$$

$$c = \frac{1}{2}$$

-56-3 sh