universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 7 - Measurable functions and the integral I

Exercise 1 (4 Points).

Let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$. Show that a Borel measurable map $g: \mathbb{R} \to \mathbb{R}$ is $\sigma(f) = f^{-1}(\mathcal{B}(\mathbb{R}))$ —measurable if and only if g is even.

Exercise 2 (4 Points).

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{-x} 1_{[0,\infty)}(x)$, and let λ be the Lebesgue measure on \mathbb{R} .

- (a) Find a sequence (f_n) of elementary functions such that $f_n \uparrow f$.
- (b) Compute $\int f_n d\lambda$ and determine $\int f d\lambda$ as a limit of integrals.

Exercise 3 (4 Points).

Let $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}')$ be measurable spaces and $f : \Omega \to \Omega'$. If there are $\mathcal{C} \subseteq \mathcal{F}$ and $\mathcal{C}' \subseteq \mathcal{F}'$ with $\sigma(\mathcal{C}) = \mathcal{F}$ and $\sigma(\mathcal{C}') = \mathcal{F}'$ and $f^{-1}(\mathcal{C}') \subseteq \mathcal{C}$, then f is \mathcal{F}/\mathcal{F}' -measurable.

Exercise 4 (4 Points).

Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E. Define E_0 to be the set of points x in E at which $\{f_n(x)\}$ converges. Is the set E_0 measurable?

Exercise 5 (Bonus question! 3 Points).

Let $\Omega = \{1, 2, 3, 4, 5\}.$

(a) Find the smallest σ - algebra \mathcal{F}_1 containing

$$\mathcal{F}_2 := \{\{1,2,3\},\{3,4,5\}\}.$$

(b) Is the function $f: \Omega \to \mathbb{R}$ defined by

$$f(1) = f(2) = 0$$
, $f(3) = 10$, $f(4) = f(5) = 1$

measurable with respect to \mathcal{F}_1 ?

(c) Find the σ -algebra \mathcal{F}_3 generated by $g:\Omega\to\mathbb{R}$ and defined by

$$g(1) = 0$$
, $g(2) = g(3) = g(4) = g(5) = 1$.