Problem 1 (LDA)

(a) Write a general program to calculate the optimal direction $m{v}$ for a linear discriminant analysis based on three-dimensional data

```
程式碼:
```

```
clear; clc; close all;
data = load('data.txt');
y1 = data(:, 1:3);
y2 = data(:, 4:6);
y = \{y1, y2\};
N1 = 10;
N2 = 10;
N = N1 + N2;
m1 = (1/N1)*sum(y1);
m2 = (1/N2)*sum(y2);
m = [m1; m2];
m0 = (N1/N)*m1 + (N2/N)*m2;
% Sb
Sb = 0;
for i = 1:2
     Sb = Sb + (N1/N)*(m(i, :) - m0)'*(m(i, :) - m0);
end
% Sw
Sw = 0;
for i = 1:2
     for j = 1:N1
          Sw = Sw + (N1/N)*(y{i}(j, :) - m(i, :))'*((y{i}(j, :) - m(i, :)));
     end
end
% (b) Find the optimal v for the data in the table above
[w, ^{\sim}] = eig( Sb^{(1/2)}*Sw^{(-1)}*Sb^{(1/2)} );
v = inv(Sw)*(m1' - m2');
```

(b) Find the optimal \boldsymbol{v} for the data in the table above

```
optimal vector :
-0.7665
0.4275
-0.1535
```

(c) Plot a line representing your optimal direction v. Mark on the line the positions of the projected points Figure 1 \times <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>I</u>nsert <u>T</u>ools <u>D</u>esktop <u>W</u>indow <u>H</u>elp k 🔍 🥄 🖑 🗑 🐙 🔏 - 🛃 🔲 🖽 💷 3 4 2.5 2 . 1.5 1、 0.5 0、 1.5 -0.5 0 0.5 0.5 Figure 2 \times <u>File Edit View Insert Tools Desktop Window Help</u> 🖺 🗃 📓 🦫 \mid 🔖 🤍 🤏 🖑 🗑 🐙 🔏 - 🗒 📗 🔡 🔳 🛄 0.1 < 0 -0.1 0.5 0.4 0.2 0 0 -0.2 -0.5 -0.4

(d) Fit each distribution with a (univariate) Gaussian, and find the resulting decision boundary

(e) What is the training error in the optimal subspace you found in (b)?

training_error = 20.0 %

Discussion:

我們可以發現,經由 LDA 後,可以找到一條最佳的投影向量,接著將點投影到該線上,就可以作大概的分類,經由高斯分布得到 decision boundary = -0.04,用來當作分類的標準,這個資料最後的 training error 20%

Problem 2 (PCA and LDA)

- (a) Perform PCA on the unlabeled points from the Fisher' Iris flower data set provided on ceiba
- (1) List the principal components explaining 95% of the total variance in the dataset

Discussion:

由上圖可以看出,PC1 和 PC2 即可決定超過 95%的總變異數。

(2) Plot the data points using the first two PCs as axes, distinguishing between the classes using different color or marker

(b) Split the Fisher' Iris flower data set into a training and test set - use the first 30 points from each class for training and the last 20 points from each class for testing

(1) Perform LDA on the original explanatory variables

(3) Compare the results of 1) and 2). Explain the discrepancy

首先,我們看第一個經由 PCA 後的散佈圖,可以發現從 PC1 的角度,versicolor 和 virginica(綠色、藍色)並沒有分得很好,應該是由於 PCA 最主要是由整體的變異數決定方向,而沒有分群標記,因此可以找出全部資料散佈的主要方向,但並無法作分群。

因此,我們可以看到經過 PCA 再進行 LDA,不同群之間的差異反而縮小,因為已經將 PC3 和 PC4 除去,剩下 PC1 和 PC2,數據遺失掉一些資訊,反而比直接進行 LDA 更難將資料藉由投影分群。