Grundkursvorlesung Hydrologie

Das Wasser auf der Erde und seine Verteilung

Die Artemis am 9. Flugtag im November 2022 mit Blick auf unsere Erde, den blauen Planeten.

Dr. Jan Bliefernicht Lehrstuhl für Regionales Klima und Hydrologie Institut für Geographie Universität Augsburg

Überblick zur Vorlesung

- 1. Einführung in die Wasserforschung
- 2. Wasser als Stoff
- 3. Das Wasser auf der Erde und seine Verteilung
- 4. Die Ozeane
- 5. Die Kryosphäre und ihre Bedeutung im globalen Wasserhaushalt
- 6. Das Wasser im Untergrund
- 7. Das Wasser der Atmosphäre
- 8. Fließgewässer und Seen im Wasserkreislauf
- 9. Einzugsgebietshydrologie
- 10. Prozesse der Abflussbildung

Gliederung der heutigen Veranstaltung

- 1. Globaler Wasserkreislauf: Antreiber, Prozesse und Komponenten
- 2. Globale Wasserhaushaltsgleichung nach Brückner
- 3. Wasserbilanzen der Hemisphären, Ozeane und Kontinente
- 4. Globale Verteilung des Niederschlags und Verdunstung und Meridianprofile
- 5. Quellregionen des Niederschlags
- 6. Aridität und Humidität
- 7. Methoden, Qualität und Unsicherheiten bei der Bestimmung globaler

Wasserhaushaltsbilanzen

Wasser als erneuerbare Ressource

- Wasser bleibt im globalen
 Wasserkreislauf erhalten
- Wasserzufluss durch
 Meteoriten = Diffusion von
 Wassermolekülen ins Weltall
- "Wasserverbrauch" suboptimale Definition
- Wasser wird genutzt und dem Wasserkreislauf wieder hinzugefügt
- Wasser ist daher eine erneuerbare Ressource = unerschöpflicher Vorrat
- Änderung der Aggregatzustände / Verhältnis Meer- und Süßwasser / raumzeitliche Verteilung

Deckung des Wasserbedarfes aus globaler Sicht

viele Herausforderungen (Baumgartner & Liebscher, 1996)

- Wasservorräte sind aufgrund der Land-Meer-Verteilung und von Klimazonen raumzeitlich sehr ungleichmäßig verteilt
- Immenses Bevölkerungswachstum: Bedarf an Süßwasser/Trinkwasser steigt exponentiell

Globaler Bedarf an Süßwasser seit 1900

Global freshwater use over the long-run

Global freshwater withdrawals for agriculture, industry and domestic uses since 1900, measured in cubic metres (m³) per year.

Source: Global International Geosphere-Biosphere Programme (IGB)

OurWorldInData.org/water-use-stress • CC BY

Deckung des Wasserbedarfes aus globaler Sicht

viele Herausforderungen (Baumgartner & Liebscher, 1996)

- Wasservorräte sind aufgrund der Land-Meer-Verteilung und von Klimazonen raumzeitlich sehr ungleichmäßig verteilt
- Immenses Bevölkerungswachstum: Bedarf an Süßwasser/Trinkwasser steigt exponentiell
- Wasserbedarf für die Industrie steigt gerade in Schwellenländern enorm
- Klima- und Landnutzungswandel kann das Wasserdargebot in vielen Regionen der Welt langfristig ändern

Deckung des Wasserbedarfes aus globaler Sicht

Aufgrund den Herausforderungen ergeben sich viele zentrale Aufgaben in der Hydrologie und angrenzenden Wissenschaften

Monitoring von Wasservorräten und -entnahme notwendig (Beschlüsse von COP27)

Änderungen des Wasserkreislaufes müssen geschätzt und anthropogene Eingriffe (Landnutzung, Klimawandel) müssen quantifiziert werden

Technische Innovation zur Reduzierung des Wasserbedarfs

unterschiedliche Skalen: von global zu lokal

Wie sind die Wasservorräte global verteilt? Welche Komponenten des Wasserkreislaufes wirken als Speicher für Süßwasserreserven?

Globaler Wasserkreislauf und dessen Speicher

Schema des globalen Wasserkreislauf

Globale Wasserreservoire: Meer- und Süßwasser

Bereich	Menge S [km³]	Anteil [%]
Meerwasser	1.348 * 10 ⁶	97,4 % des freien Wassers
Süßwasser	36,1 * 10 ⁶	2,6 %

- 1400 * 10⁶ km³
- Würfel mit Kantenlänge 1120 km
- 0.13% des Erdvolumens

Globale Wasserreservoire: Anteil Süßwasser

Bereich	Menge S [km³]	Anteil [%]
Meerwasser	1348 * 10 ⁶	97,4 % des freien Wassers
Süßwasser	36,1 * 10 ⁶	2,6 %
Anteile Süßwasser:		
Eis	27,8 * 10 ⁶	77,1 %
Grundwasser	8,06 * 10 ⁶	22,3 %
Bodenwasser	0,065 * 10 ⁶	0,18 %
Seen	0,125 * 10 ⁶	0,35 %
Fließgewässer	0,0012 * 106	< 0,01 %
Atmosphäre	0,013 * 10 ⁶	0,04 %

- Großteil des Wassers nicht direkt nutzbar (Meerwasser, Eis)
- Grundwasser
 wichtigste
 Trinkwasseressource,
 aber nur 0.6% des
 verfügbaren Wasser
- Seen unbedeutend trotz riesiger Seen wie das Kaspische Meer
- Fehlend: Wasser der Biosphäre und in Gesteinen gebundenes Wasser

leicht angepasst, nach Wilhelm (1997) aus Korzun (1978)

Globale Wasserreservoire - Schichtdicke

Bereich	Menge S [km³]	Anteil [%]	Schichtdicke [m]
Meerwasser	1348 * 10 ⁶	97,4 % des freien Wassers	2550
Süßwasser	36,1 * 10 ⁶	2,6 %	72
Anteile Süßwasser:			
Eis	27,8 * 10 ⁶	77,1 %	56
Grundwasser	8,06 * 10 ⁶	22,3 %	15,7
Bodenwasser	0,065 * 106	0,18 %	0,12
Seen	0,125 * 10 ⁶	0,35 %	0,24
Fließgewässer	0,0012 * 106	< 0,01 %	0,002
Atmosphäre	0,013 * 10 ⁶	0,04 %	0,024

leicht angepasst, nach Wilhelm (1997) aus Korzun (1978)

Berechnung von Verweilzeiten

Verweilzeit:
$$T = \frac{S}{D}$$

T = Verweilzeit [a]

S = Wassermenge eines Wasserreservoirs [km³] = Speicherkapazität

Q = Umsatzmenge (Durchflussmenge) [km³/a]

Beispiel Atmosphäre: $S = 0.013 * 10^6 \text{ km}^3 \text{ und } Q = 0.4961 * 10^6 \text{ km}^3/\text{a}$

$$T = \frac{S}{D} = \frac{0.013 \cdot 10^6 \text{ km}^3}{0.4961 \cdot 10^6 \text{ km}^3 \text{ a}^{-1}} \approx 0.0262 \text{ a} \approx 9.5 \text{ d}$$

interessante Betrachtung: alle 9.5 Tage erneuert sich das Wasser in der Atmosphäre

Hausaufgabe: Verweilzeiten

- Berechnen Sie die Verweilzeiten für die hydrologischen Speicher:
 Ozean bzw. Meerwasser, Eis, Grundwasser, Bodenwasser, Seen und Fließgewässer
- 2. Vergleichen Sie Ihre Resultate mit den Angaben in der nachfolgenden Tabelle

Globale Wasserreservoire: Verweilzeiten

Bereich	Menge S [km³]	Anteil [%]	Schichtdicke [m]	Verweilzeit T Jahre, Tage
Meerwasser	1348 * 10 ⁶	97,4 % des freien Wassers	2550	ca. 2500 a
Süßwasser	36,1 * 10 ⁶	2,6 %	70	
Anteile Süßwasser:				
Eis	27,8 * 10 ⁶	77,1 %	56	1000 a
Grundwasser	8,06 * 10 ⁶	22,3 %	15,7	1400 a
Bodenwasser	0,065 * 10 ⁶	0,18 %	0,12	1 a
Seen	0,125 * 10 ⁶	0,35 %	0,24	17 d
Fließgewässer	0,0012 * 106	< 0,01 %	0,002	11 - 12 d
Q/a	0,04 * 10 ⁶			
Atmosphäre	0,013 * 10 ⁶	0,04 %	0,024	9 - 10 d
Q/a	0,4961 * 106			

leicht angepasst, nach Wilhelm (1997) aus Korzun (1978)

Welche Bedeutung hat die Verweilzeit?

Hinweis auf die Gefährdung des Wasserreservoirs durch menschliche Eingriffe!

- kurze Verweilzeiten: rascher Austausch der Wassermenge (z. B. Atmosphäre)
- lange Verweilzeiten: Kontaminationen werden nur schwer entdeckt (z. B. Grundwasser)
- Erneuerungsrate λ : $\lambda = \frac{1}{T}$ Schadstoffbetrachtung sehr wichtig

mit T = Verweilzeit [a]

- Kehrwert der Verweilzeit
- Berechnung der Ausdünnung der Schadstoffkonzentration

Berechnung von Verweilzeiten (Verweildauer)

Vorratsspeicher	Verweildauer		Jahresumsatz	
	Jahre a	Tage d	Schichthöhe m/a	
Globales Wasservolumen	2 800		0,97	
Permafrost, Bodeneis	10 000		0,14	
Polareis	9 700		0,15	
Weltmeer	3 150		1,20	
Gebirgsgletscher	1 600		0,11	
Grundwasser, inaktiv	1 400		0,12	
Grundwasser, aktiv	300			
Seen	17		4,35	
Moore, Sümpfe	5		0,85	
Bodenfeuchte	1		0,20	
Flüsse		16	0,32	
Atmosphäre		9	0,97	
Biologisches Wasser		1	0,73	

2. Globale Wasserhaushaltsgleichung nach Brückner

Wasserhaushaltsgleichung

Regionale Wasserhaushaltsgleichung (z. B. für ein Flussgebiet)

$$N = V + Q + \Delta S$$

N = Niederschlag [mm]

V = Verdunstung (Evaporation E) [mm]

Q = Abfluss [mm]

 ΔS = Änderung der gespeicherten Wassermenge (z. B. die Bodenfeuchte innerhalb eines Flussgebietes) [mm]

Basis: Massenerhaltungssatz der Wasserbilanz (Plausbilitätskontrolle)

stationäre Verhältnisse $\Delta S = 0$, wenn N = V + Q, andernfalls instationär

Aufgabe:

- N = 650 mm, V = 500, Annahme stationäres Verhältnis. Wie ist der Abfluss Q?
- Wie verändert sich Q wenn die Bodenfeuchte zunimmt?

Speicherkonzept & lineare Speicher

- Speicherkonzept bildet die Grundlage für die einfachsten (konzeptionellen) mathematischen Modelle in der Hydrologie (z. B. Wasserhaushaltsmodelle)
- lineare Speicher: Q(t) = k S(t)

Wasserhaushaltsgleichung des Erdsystems

Wasserhaushaltsgleichung (z. B. für ein Flussgebiet)

$$N = V + Q + \Delta S$$

N = Niederschlag [mm]

V = Verdunstung (Evaporation E) [mm]

Q = Abfluss [mm]

 $\Delta S = \ddot{A}$ nderung der gespeicherten Wassermenge (z. B. des Flussgebietes) [mm]

Wasserhaushaltsgleichung des Erdsystems als Spezialfall:

$$N = V$$

- ΔS und A verschwinden
- geschlossenes System

Wasserhaushaltsgleichung: Land-/Meeresflächen

https://de.wikipedia.org/wiki/Eduard Br%C3%BCckner

VON DER SEKTION BRESLAU DES UND ÖSTERREICHISCHEN ALPENVEREINS G

IN DREI BÄNDI

LEIPZIG 1909

Die Bilanz des Kreislaufs des Wassers auf der Erde.

Ed. Brückner:

Von Prof. Dr. Ed. Brückner in Halle a. S.

Vor bald sechs Jahren habe ich in einem vor dem internationalen Geographenkongreß zu Berlin gehaltenen und auch im VI. Jahrgang dieser Zeitschrift S. 89 abgedruckten Vortrag über die Herkunft des Regens den Nachweis zu führen gesucht, daß die Niederschläge, die auf das Festland niederfallen, zu einem sehr erheblichen Teil nicht den Wasserdampfmassen der Ozeane entstammen, sondern Wasserdämpfen, die vom Lande aus durch Verdunstung der Atmosphäre zugeführt werden. Mein Resultat bestätigte eine kurz vorher von Alexander Supan und früher schon von Alexander Woeikof ausgesprochene, wenn auch nicht ziffernmäßig belegte Anschauung. Ein Vortrag im Institut für Meereskunde in Berlin über die Beziehungen zwischen Meer und Regen¹) bot mir die Veranlassung den damals eingeschlagenen Gedankengang weiter zu verfolgen. Ich kam dabei zur Aufstellung einer Bilanz des Kreislaufs des Wassers auf der Erde, d. h. zu einer Bestimmung der Wassermengen, die im Kreislauf des Wassers vom Ozean zum Ozean in Bewegung sind. Selbstverständlich handelt es sich nur um angenäherte Schätzungen. Nichtsdestoweniger scheinen mir auch Schätzungen nicht uninteressant, weil sie einen Begriff von der Größenordnung der bewegten Wassermassen geben.

Der Kreislauf des Wassers vollzieht sich auf der Erde in zweierlei Weise. Von der Oberfläche des Meeres findet Verdampfung von Wasser statt; das verdampfte Wasser verdichtet sich in der Atmosphäre zu Wolken und

BRÜCKNER, Ed. Die Bilanz des Kreislaufs des Wassers auf der Erde. Geographische Zeitschrift, 1905, 11. Jg., Nr. 8. H, S. 436-445. https://www.istor.org/stable/27805335

Wasserhaushaltsgleichung - Landflächen

Wasserhaushaltsbilanzen für Landflächen (Brückner, 1905):

 $A = D_{ml} - D_{lm}$

 D_{lm}

Land:
$$N_1 = V_1 + A = V_1 + D_{ml} - D_{lm}$$

- Niederschlag Land
- Verdunstung Land
- Abfluss vom Land
- Wasserdampf vom Land zum Meer
- Wasserdampf vom Meer zum Land D_{ml}

Bedingung: $D_{ml} > D_{lm} \rightarrow A > 0$

Annahme: $\Delta S = 0$ (stationäre Verhältnisse)

Wasserhaushaltsgleichung - Meeresflächen

Wasserhaushaltsbilanzen für Meeresflächen (Brückner):

Meer:
$$N_m = V_m - A = V_m - D_{ml} + D_{lm}$$

- Niederschlag Meer
 N_m
- Verdunstung Meer
- Wasserdampf vom Meer zum Land D_{ml}
- Wasserdampf vom Land zum Meer D_{Im}
- Abfluss vom Land $A = D_{ml} D_{lm}$

Annahme: $\Delta S = 0$ (stationäre Verhältnisse)

Globaler Wasserhaushalt: Land- und Ozeanflächen

Zahlen leicht modifiziert von Baumgartner & Liebscher (1996) aus Baumgartner & Reichel (1975)

Wasserbilanzen der Hemisphären,Ozeane und Kontinente

Land- und Meerverteilung des Erdsystems

- Hemisphärische Unterschiede der Wasserbilanz im wesentlichen durch die unterschiedliche Land-Meer-Verteilung begründet
- Nordhemisphäre mit positive Bilanz, Südhemisphäre mit negativer Bilanz

Globaler Wasserhaushalt – Hemisphären

Wasserhaushaltsgleichung der Hemisphären [mm/a]: mit Abweichung vom Globalwert in %

Überschuss auf der Nordhalbkugel weist auf einen Austausch zwischen den Hemisphären hin

Globaler Wasserhaushalt – Hemisphären

Wie erfolgt der Austausch zwischen den Hemisphären?

Hemisphärischer Transport [km³/a] - Ozeane

Abfluss von den Landflächen

Wasserdampfzuoder -abfluss d. Ozeane

Wasserzu- oder –abfluss durch Meeresströmungen

Salzgehalt in den Ozeanen

https://bildungsserver.hamburg.de/wasserressourcen-nav/2182190/wasserkreislauf-global/

Wasserbilanzen der Kontinente

4. Globale Verteilung des Niederschlags und der Verdunstung und deren Meridianprofile

Globaler Niederschlag für Landmassen

Globale Niederschlagsverteilung für Landmassen, 1950 – 2000 Global Precipitation Climatology Centre (GPCC)

Wasser – globaler Niederschlag

Globale Niederschlagsverteilung für Landmassen, 1950 – 2000 Global Precipitation Climatology Centre (GPCC)

Cherrapunji, Indien, 1.313 m

Ort mit den höchsten jährlichen Niederschlägen (Schneider et al., 2014):

im Mittel:

- 11.000 mm/a
- ca. 3.000 mm im Juni
- 4 Monate < 100 mm

1974 Rekordmonat und -jahr:

Juli: 8.205 mm

Jahr: 24.555 mm

Cherrapunji, Indien

https://commons.wikimedia.org/wiki/File:Bengladesh_Plains,_View_FromThangkharang_Cherrapunjee_105.JPG Blick von Cherrapunji auf die Ebenen von Bangladesh

Globaler Niederschlag für Landmassen

Globale Niederschlagsverteilung für Landmassen, 1950 – 2000 Global Precipitation Climatology Centre (GPCC)

Dynamik der globalen Niederschlagsverteilung

https://en.wikipedia.org/wiki/Precipitation

Dynamik der globalen Niederschlagsverteilung

https://en.wikipedia.org/wiki/Precipitation

Dynamik der globalen Niederschlagsverteilung

https://en.wikipedia.org/wiki/Precipitation

Globale Verdunstung für Landmassen

1958 - 2001

van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P. (2011), Global monthly water stress: 1. Water balance and water availability, *Water Resour. Res.*, 47, W07517, doi:10.1029/2010WR009791.

Meridianprofil der Niederschlagshöhen

nach Baumgartner & Reichel (1975) aus Baumgartner & Liebscher (1996)

Globale Verteilung des Abflusses

5. Quellregionen des Niederschlags

Kontinental gebildeter Niederschlag

Continental precipitation recycling ratio ρ_c

Figure 3. Average continental precipitation recycling ratio ρ_c (1999–2008).

$$P(t,x,y) = P_c(t,x,y) + P_o(t,x,y)$$

van der Ent et al. (2010)

$$\rho_c(t, x, y) = \frac{P_c(t, x, y)}{P(t, x, y)}$$

mit P = ges. Niederschlag

P_c = auf Kontinent generierter Niederschlag

P_o = auf Ozean generierter Niederschlag

Ozeanische Quellregionen des kont. Niederschlags

$$\varepsilon_c(t, x, y) = \frac{E_c(t, x, y)}{E_o(t, x, y) + E_c(t, x, y)} = \frac{E_c(t, x, y)}{E(t, x, y)}$$

mit E = gesamte Evaporation

E_c = Evaporation mit kontinentaler Senke

 E_0 = Evaporation mit ozeanischer Senke

Ozeanische Quellgebiete des Niederschlags

van der Ent et al. (2013) https://doi.org/10.1002/wrcr.20296

6. Aridität und Humidität

Aridität und Humidität nach Penck

Aridität und Humidität nach Penck (1896):

$$A = N - V$$

A = Abfluss [mm/a]
N = Niederschlag [mm/a]
V = Verdunstung [mm/a]

■ A > 0: humid

A < 0: arid

- sehr einfach, problematisch bei Vergleichen
- besser standardisierte Werte oder relativer Vergleich (N/V)

Meridianprofil von P, E und S

Meridianprofil von P, E, S und E-P im Meer (nach Marcinek & Rosenkranz 1996)

Globale Verdunstung für Landmassen

https://bildungsserver.hamburg.de/wasserressourcen-nav/2182190/wasserkreislauf-global/

Aridität und Humidität

UNEP-Ariditätsindex:

A = N/V

A = Abfluss [mm/a]
N = Niederschlag [mm/a]
V = potentielle Verdunstung [mm/a]

5 Klassen:

A < 0.05 : hyper-arid

0.05 < A < 0.2: arid

0.2 < A < 0.5: semi-arid

0.5 < A < 0.65: arid - subhumid

> 0.65 humid

Verteilung der ariden Gebiete

Feng & Fu (2013), 1961 - 1990 https://www.atmos-chem-phys.net/13/10081/2013/acp-13-10081-2013.pdf

6. Methoden, Qualität und Unsicherheiten bei der Bestimmung globaler Wasserhaushaltsbilanzen

Abschätzung weltweiter Wassermengen

- Wassermengen auf der Erde sind nur schwer abzuschätzen, Unsicherheit führen zu schwankenden Angaben:
- Mengen beruhen u.a. auf Schätzungen der Volumina von Teilglieder des Wasserkreislaufes, Volumen der Ozeane, Volumen der Inlandeismassen

Beispiel: siehe nachfolgende Tabelle von Marcinek (2011)

Abschätzungen globaler Wasserhaushaltsbilanzen

		N_L	V_{L}	A_L	$V_{\rm M}$	$N_{_{M}}$	$N_E = V_E$
E. BRÜCKNER	1905	122	97	25	384	359	481
R. Fritzsche	1906	112	81	31	384	353	465
W. SCHMIDT	1915	112	81	31	273	242	354
G. WÜST	1922	112,1	75	37,1	304,2	267,1	379,2
A. A. KAMINSKIJ	1925	81	51	30	337	307	388
W. MEINARDUS	1934	99	62	37	449	412	511
W. HALBFASS	1934	100	52	48	458	410	510
G. WÜST	1936	99	62	37	334	297	396
W. WUNDT	1937	99	62	37	383	346	445
F. MÖLLER	1951	99	62	37	361	324	423
E. REICHEL	1952	100	70	30	345	315	415
M. I. BUDYKO U. A.	1956	105,1	67	38,1	407,9	369,8	474,9
M. I. BUDYKO U. A.	1963	107	61	46	450	404	511
J. MARCINEK	1966	100	63,5	36,5	411,2	374,7	474,7
M. I. L'VOVIÈ	1967	108,4	71,3	37,1	448	410,9	519,3
M. I. BUDYKO U. A. (BEI DYCK 1968)	1968	107	61	46	449	403	510
M. I. L'voviè	1972	113,5	71,8	41,7	-	-	-
J. MARCINEK (ERGÄNZT)	1975	100	62,5	37,5	411,2	373,7	473,7
V. I. KORZUN U. A.	1974	119	72	47	505	458	577
M. I. L'VOVIÈ	1974	113,5	72,5	41	452,6	411,6	525,1
A. BAUMGARTNER U. E. REICHEL	1975	111,1	71,4	39,7	424,7	385	496,1
R. K. Klige (für 1894–1975)	1982	119,8	69,9	50,2	507,1	457,2	Δ 0,3
R. K. KLIGE U. A.(aktualisiert)	1998	119,83	69,91	50,53	507,15	457,23	577,06
M.T. CHAHINE	1992	107	71	36	434	398	505
I.A. SHIKLOMANOV	1998	119	74	45	503	458	577
T. OKI	1999	115	75	40	431	391	506
K.E. Trenberth et al.	2006	113	73	40	413	373	486
MITTELWERT		107	69	38	411	373	480
STANDARDABWEICHUNG		9,2	9,6	6,3	60,8	56,5	60,6
MAXIMUM		122	97	50	273	242	354
MINIMUM		81	51	25	273	242	354

Globaler Wasserkreislauf - Klimamodell

Marcinek (2011): Wasserkreislauf und Wasserbilanz – globale Übersicht, https://www.climate-service-center.de/imperia/md/content/csc/warnsignalklima/warnsignal klima wasser kap1 1.3 marcinek.pdf

aus Lozán et al. (2011): Warnsignal Klima: Genug Wasser für alle? https://www.climate-service-center.de/products_and_publications/publications/detail/062586/index.php.de

Weiterführende Literatur

- Kapitel 3 "Globaler und regionaler Wasserkreislauf" in Fohrer et al. (2016)
- Kapitel 5 "Die Hydrosphäre der Erde: Wasservorkommen und Wasserumsätze" in Baumgartner & Liebscher (1996)

Literaturverzeichnis

- Baumgartner und Liebscher, 1996, Lehrbuch der Hydrologie, Allgemeine Hydrologie,
 Quantitative Hydrologie, 2. Auflage, Gebrüder Borntraeger, Berlin
- Leycuer, 2013, Water on Earth, Physicochemical and Biological Properties, Wiley
- Wilhelm, 1997, Hydrogeographie. Das Geographische Seminar, Westermann, Braunschweig
- Schneider, Becker, Finger, Meyer-Christoffer, Ziese & Rudolf, 2014, GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle; https://doi.org/10.1007/s00704-013-0860-x
- Fohrer, N., Bormann, H., Miegel, K., & Casper, M. (Eds.). (2016). *Hydrologie* (Vol. 4513). UTB.
- Van der Ent & Savenije, 2013, Oceanic sources of continental precipitation and the correlation with sea surface temperature; https://doi.org/10.1002/wrcr.20296
- Van der Ent et al., 2010, Origin and fate of atmospheric moisture over continents; https://doi.org/10.1029/2010WR009127
- van Beek, Wada & Bierkens, 2011, Global monthly water stress: 1. Water balance and water availability; https://doi.org/10.1029/2010WR009791
- Feng & Fu, 2013, Expansion of global drylands under a warming climate; https://www.atmos-chemphys.net/13/10081/2013/acp-13-10081-2013.pdf

Literaturverzeichnis

- Wang & Dickinson, 2012, A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability; https://doi.org/10.1029/2011RG000373
- Marcinek & Rosenkranz, 1996, Das Wasser der Erde, 2. Auflage, Justus Perthes Verlag Gotha
- Marcinek, 2011, Wasserkreislauf und Wasserbilanz globale Übersicht; https://www.climate-service-center.de/imperia/md/content/csc/warnsignalklima/warnsignal_klima_wasser_kap1_1.3_marcinek.pdf
- Baumgartner & Reichel, 1975, Die Weltwasserbilanz, Oldenbourg, München
- WBGU, 2006, https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/sondergutachten/sg2006/pdf/wbgu_s n2006.pdf
- Bryden & Imawaki, 2001, Chapter 6.1 Ocean heat transport, Elsevier Science & Technology
- Darling et al., 2006, Isotopes in Palaeoenvironmental Research, Isotopes in water, Springer, Dordrecht, The Netherlands; DOI: 10.1007/1-4020-2504-1_01
- Korzun, 1978, World water balance and water resourdes of the earth, Studies and reports in Hydrology, Paris (UNESCO)