慶應義塾大学試験問題 物理学 D

2011年1月22日(土)3時限(試験時間50分) 問題用紙 回収不要担当者 小原、神成、高野、日向

注意:とくに指示がない場合、答案には結果のみならず、それを導いた過程についても記すこと。また、万一与えられた条件だけでは解けない場合には、適当な量を定義したり、条件を明記した上で解いてよい。ただし、真空の誘電率 ϵ_0 、透磁率 μ_0 、光速 ϵ の記号は断りなしに使ってよい。

問題 I 電気抵抗率 ρ の導体でできた半径 a の無限に長い円柱棒がある。円柱棒の中心軸を z 軸にとり、z 軸に垂直な平面内の位置を 2 次元極座標 (r,φ) で表した円柱座標系 (r,φ,z) を用いて考える。z 軸の正の向きの単位ベクトルを e_z とする。位置 (r,φ,z) において、z 軸に垂直でz 軸から遠ざかる方向の単位ベクトルを e_r 、z 軸を中心に回転する方向 (石ねじが e_z 方向に進む方向) の単位ベクトルを e_φ とする (図 I-1 参照)。互いに直交するこれらの単位ベクトル e_r , e_φ , e_z を用いて位置 (r,φ,z) におけるベクトル量を表す。この円柱棒に時刻 t に依存した一様な磁界 $\mathbf{B}_{\mathrm{ex}}(r,\varphi,z,t) = B_{\mathrm{ex}}(t)e_z$ を加えた (図 I-2 参照)。ここで、 $B_{\mathrm{ex}}(t) = B_0 + \beta t$ で、 B_0 , β は正の定数である。

- (1) 時刻 t で、位置 (r, φ, z) における電界 $E(r, \varphi, z, t)$ と電流密度ベクトル $i(r, \varphi, z, t)$ を求めなさい。
- (2) 時刻tで、円柱棒の単位長さに発生する単位時間あたりのジュール熱P(t)を求めなさい。
- (3) 時刻 t で、円柱棒の表面上の位置 $(r=a,\varphi,z)$ におけるポインティング・ベクトル $\mathbf{S}(a,\varphi,z,t)$ を求めなさい。
- (4) 時刻 t での円柱棒の単位長さあたりの電磁エネルギーを U(t) とするとき、 $\frac{\mathrm{d}U(t)}{\mathrm{d}t}$ を求めなさい。(2)、(3) の結果を使っても良い。

問題 II 誘電率が ε 、透磁率が μ の物質中で、電界をE、電東密度をD、磁東密度をB、磁界をH、真電荷密度を ρ_t 、真電流密度を i_t とする。 ε , μ は定数とする。

- (1) この物質中のマクスウェルの方程式を書きなさい。
- (2) デカルト座標系 (x,y,z) を用いて考える。x,y,z 軸の正の方向の単位ベクトルを、それぞれ、 e_x , e_y , e_z とする。 $\rho_t=0$, $i_t=0$ で、時刻 t、位置 (x,y,z) において $E(x,y,z,t)=E_y(x,t)e_y$, $B(x,y,z,t)=B_z(x,t)e_z$ と与えられる平面電磁波で、 $E_y(x,t)$ が、2回以上微分可能な任意の関数 $f(\xi)$ を用いて、 $E_y(x,t)=f(x-vt)$ で与えられるとき、定数v>0 と $B_z(x,t)$ はどうなるか書きなさい (結果のみで良い)。ただし、 $B_z(x,t)$ には t に依存しない磁界の寄与はないものとする。

問題 III 極板間の距離が d、両極板の面積が S の平行平板コンデンサーを考える。次の図のように、一方の極板が x=0 の面内に、もう一方の極板が x=d の面内あるように、問題 II で用いたデカルト座標系 (x,y,z) をとる。極板間 0 < x < d には誘電体があり、その誘電率が x の関数として $\varepsilon(x) = \bar{\varepsilon}\varepsilon_0 \exp(\alpha x)$ のように変化している。ここで、 $\bar{\varepsilon}$, α は正の定数であり、 $\bar{\varepsilon} > 1$ を満たす。 x=0 にある電極に正の電荷 Q を、x=d にある電極に負の電荷 Q を与える。極板の端からの電界の漏洩は無視できるものとする。ベクトル量は単位ベクトル e_x , e_y , e_z を用いて表しなさい。

- (1) 極板間の電界 E、電東密度 D、電気分極 P を求めなさい。
- (2) コンデンサーの電気容量を求めなさい。
- (3) 誘電体の x=0 の表面の分極電荷面密度 $\omega_P^{(x=0)}$ と x=d の表面の分極電荷面密度 $\omega_P^{(x=d)}$ を求めなさい。誘電体の表面に現れた全分極電荷 $q_P^{(\xi \bar{n})}$ を求めなさい。
- (4) 誘電体内部 (表面以外) の分極電荷密度 ρ_P を求めなさい。 ρ_P を誘電体の全体積にわたって積分し、誘電体内部 (表面以外) の全分極電荷 $q_P^{(内部)}$ を求めなさい。
- 問題 IV 無限に長い直線状の導線があり、大きさ I の定常電流が流れている。図 IV-1 のように、その導線を中心軸として、内径がa、外径がbの円筒状の無限に長い磁性体がある。導線がz軸に、電流の流れる方向がz軸の正の方向になるように、問題 I で用いた円柱座標系 (r,φ,z) をとる。このとき、磁性体はa < r < bの領域にある。磁性体の透磁率はrの関数として $\mu(r)$ で与えられている。r < a, b < r の領域は真空である。ベクトル量は単位ベクトル e_r , e_{φ} , e_z を用いて表しなさい。
- (1) 磁束密度 ${m B}(r,\varphi,z)$ 、磁界 ${m H}(r,\varphi,z)$ 、磁化 ${m J}(r,\varphi,z)$ を求めなさい。
- (2) z 軸を中心とした半径 r の円内を貫く磁化電流 $I_{\rm m}(r)$ を、r < a, a < r < b, b < r の場合に求めなさい。ただし e_z を磁化電流の正の方向とする。r = a, r = b で $I_{\rm m}(r)$ に飛びがある理由を説明しなさい。

注意: 円内を貫く電流とは、例えば図 IV-2 のように、円周を縁とする面を貫通する電流のことで、円周上を流れる電流ではない。

ヒント: $i_{\rm m}$ を磁化電流密度とするとき、 ${\rm rot} J = \mu_0 i_{\rm m}$ の積分形を考える。あるいは、B に関するアンペールの法則 (積分形) で、全電流から真電流の寄与を差し引く。

図 IV-2