

DIFFERENTIATION

Introduction: Slope and tangent line to a curve

DEFINITIONS Slope, Tangent Line

The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (provided the limit exists).

The **tangent line** to the curve at P is the line through P with this slope.

Finding the Tangent to the Curve y = f(x) at (x_0, y_0)

- 1. Calculate $f(x_0)$ and $f(x_0 + h)$.
- 2. Calculate the slope

$$m = \lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

3. If the limit exists, find the tangent line as

$$y = y_0 + m(x - x_0).$$

1

Example 1: Consider the curve y = 1/x

- (a) Find the slope of the curve y = 1/x at $x = a \neq 0$.
- **(b)** Where does the slope equal -1/4?
- (c) What happens to the tangent to the curve at the point (a, 1/a) as a changes?

Solution

(a) Here f(x) = 1/x. The slope at (a, 1/a) is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{h} \frac{a - (a+h)}{a(a+h)}}{a(a+h)}$$

$$= \lim_{h \to 0} \frac{-h}{ha(a+h)}$$

$$= \lim_{h \to 0} \frac{-1}{a(a+h)} = -\frac{1}{a^2}.$$

Notice how we had to keep writing " $\lim_{h\to 0}$ " before each fraction until the stage where we could evaluate the limit by substituting h=0. The number a may be positive or negative, but not 0.

(b) The slope of y = 1/x at the point where x = a is $-1/a^2$. It will be -1/4 provided that

$$-\frac{1}{a^2} = -\frac{1}{4}$$
.

This equation is equivalent to $a^2 = 4$, so a = 2 or a = -2. The curve has slope -1/4 at the two points (2, 1/2) and (-2, -1/2) (Figure 3.1)

(c) Notice that the slope $-1/a^2$ is always negative if $a \neq 0$. As $a \rightarrow 0^+$, the slope approaches $-\infty$ and the tangent becomes increasingly steep (Figure 1.2). We see this situation again as $a \rightarrow 0^-$. As a moves away from the origin in either direction, the slope approaches 0^- and the tangent levels off to become horizontal.

2

1.1 The

The Derivative as a Function

DEFINITION Derivative Function

The **derivative** of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

If we write z = x + h, then h = z - x and h approaches 0 if and only if z approaches x. Therefore, an equivalent definition of the derivative is as follows (see (Figure 3.3))

Alternative Formula for the Derivative

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

Figure 1.3

Calculating Derivatives from the Definition

The process of calculating a derivative is called **differentiation**. To emphasize the idea that differentiation is an operation performed on a function y = f(x), we use the notation

$$\frac{d}{dx}f(x)$$

EXAMPLE 1 Applying the Definition

Differentiate
$$f(x) = \frac{x}{x-1}$$
.

Solution Here we have
$$f(x) = \frac{x}{x-1}$$

and

$$f(x+h) = \frac{(x+h)}{(x+h)-1}, \text{ so}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x+h}{x+h-1} - \frac{x}{x-1}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{(x+h)(x-1) - x(x+h-1)}{(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h}{(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{1}{(x+h-1)(x-1)} = \frac{-1}{(x-1)^2}.$$

EXAMPLE 2 Derivative of the Square Root Function

- (a) Find the derivative of $y = \sqrt{x}$ for x > 0.
- **(b)** Find the tangent line to the curve $y = \sqrt{x}$ at x = 4.

Solution

(a) We use the equivalent form to calculate f':

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

$$= \lim_{z \to x} \frac{\sqrt{z} - \sqrt{x}}{z - x}$$

$$= \lim_{z \to x} \frac{\sqrt{z} - \sqrt{x}}{\left(\sqrt{z} - \sqrt{x}\right)\left(\sqrt{z} + \sqrt{x}\right)}$$

$$= \lim_{z \to x} \frac{1}{\sqrt{z} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

(b) The slope of the curve at x = 4 is

$$f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}.$$

The tangent is the line through the point (4, 2) with slope 1/4 (Figure 1.4)

$$y = 2 + \frac{1}{4}(x - 4)$$

$$y = \frac{1}{4}x + 1.$$

Figure 1.4: The tangent line to $y = \sqrt{x}$

Notations

There are many ways to denote the derivative of a function y = f(x), where the independent variable is x and the dependent variable is y. Some common alternative notations for the derivative are

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D(f)(x) = D_x f(x).$$

Example 3:

Show that the function y = |x| is differentiable on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at x = 0.

Solution To the right of the origin,

$$\frac{d}{dx}(|x|) = \frac{d}{dx}(x) = \frac{d}{dx}(1 \cdot x) = 1. \qquad \frac{d}{dx}(mx + b) = m.|x| = x$$

To the left,

$$\frac{d}{dx}(|x|) = \frac{d}{dx}(-x) = \frac{d}{dx}(-1 \cdot x) = -1$$

(Figure 1.4) There can be no derivative at the origin because the one-sided derivatives differ there:

Figure 1.4

Right-hand derivative of
$$|x|$$
 at zero $=\lim_{h\to 0^+} \frac{|0+h|-|0|}{h} = \lim_{h\to 0^+} \frac{|h|}{h}$
 $=\lim_{h\to 0^+} \frac{h}{h}$ $|h| = h \text{ when } h > 0$
 $=\lim_{h\to 0^+} 1 = 1$
Left-hand derivative of $|x|$ at zero $=\lim_{h\to 0^-} \frac{|0+h|-|0|}{h} = \lim_{h\to 0^-} \frac{|h|}{h}$
 $=\lim_{h\to 0^-} \frac{-h}{h}$ $|h| = -h \text{ when } h < 0$
 $=\lim_{h\to 0^-} -1 = -1$.

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x_0 if the slopes of the secant lines through $P(x_0, f(x_0))$ and a nearby point Q on the graph approach a limit as Q approaches P. Whenever the secants fail to take up a limiting position or become vertical as Q approaches P, the derivative does not exist. Thus differentiability is a "smoothness" condition on the graph of f. A function whose graph is otherwise smooth will fail to have a derivative at a point for several reasons, such as at points where the graph has

 a corner, where the one-sided derivatives differ.

3. a *vertical tangent*, where the slope of PQ approaches ∞ from both sides or approaches $-\infty$ from both sides (here, $-\infty$).

4. a discontinuity.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at x = c, then f is continuous at x = c.

CAUTION The converse of Theorem 1 is false. A function need not have a derivative at a point where it is continuous,

Exercise 1.1:

Use the definition to calculate the derivatives of the following functions then find thye derivative at the indicated point(s):

1.
$$f(x) = 4 - x^2$$
; $f'(-3), f'(0), f'(1)$

2.
$$F(x) = (x-1)^2 + 1$$
; $F'(-1), F'(0), F'(2)$

3.
$$g(t) = \frac{1}{t^2}$$
; $g'(-1), g'(2), g'(\sqrt{3})$

4.
$$f(x) = \sin x$$
; $f'(0), f'(\frac{\pi}{2})$

5.
$$f(x) = x$$
; $f'(0), f'(1)$