Agenda:

Perimer on real analysis:

- Supremum, infimum of sets on R Limsup, liming of R-valued sequences
- Limits of R-valued sequences

Andrey Nikolaevich Kolmogorov (1903-1987)

Kolmogorov during his visit to ISI Kolkata (Feb 1962)

Kolmogorov preparing for a talk

IN - Set of natural numbers = \$1,2,3,...? \mathbb{Z} - set of integers = $\{0, \pm 1, \pm 2, \pm 3, \dots \}$ Q - set of rotional numbers $= \{ P_q : p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$ R - set of real numbers Sequences of real numbers A sequence of real numbers is a mapping $f: \mathbb{N} \to \mathbb{R}$. $1 \mapsto f(1) = a_1$ San } n=1 $2 \mapsto f(2) = \alpha_2$ $3 \mapsto f(3) = a_3$ Supremum of a set of real numbers Let A CR. The Supremum of A is an element x* such that: i) x* is an upper bound for A, i.e. Y REA X XX* ii) ze* is the least upper bound, i.e., ∀E>O, x*- ε is NOT an upper bound ⇒ ∀ε>0, ∃x∈A s.t. x> x-ε. Examples: () A = (0,1)

SUP A = 1

Examples: (iii)

$$A = (0,1)$$

$$V) A = \left\{ 1 - \frac{1}{n} \right\}_{n=1}^{\infty}$$

ii)
$$A = \{1, 2, 3\}$$

in $A = 1$

$$\left[\inf_{A}A=0\right]$$

$$N = N$$
 $N = 1$
 $N = 1$

Limit supremum & Limit Infimum of Sequences
Let
$$\{a_n\}_{n=1}^{\infty}$$
 be a sequence of real numbers.

Def (Limit Supremum)

Limit supremum of Sa 200 is a number L s.t.

I = inf sup a,

limsup an Notation:

$$y_n = \sup_{k > n} \alpha_k$$

Eg: an = 1 Y nEIN

1	<i>∞</i>
The limit	infirmen of a sequence {an} is a num
8.t.	
	$\frac{L = \sup_{n \ge 1} \inf_{k \ge n} O_k}{k \ge n}$
	$n \geqslant 1$ $k \geqslant n$
E. M	
rormally,	liming an = L if
A 870,	JNEN s.t.
	3
	$a > L - \epsilon . \forall n > N_{\epsilon}$
Result:	
	$\inf A \leq \sup A \forall A \neq \emptyset$
	liming an \leq limsup an $n\to\infty$
	$n \rightarrow \infty$ $n \rightarrow \infty$
Limit:	
We Say	that $\{a_n\}_{n=1}^{\infty}$ admints a limit, say L
ih	
V	$ \left(\begin{array}{ccc} \text{linsup} & a_n &= & \text{lininf} & a_n &= & \\ n \to \infty & & & & \\ \end{array}\right) $
	$n \rightarrow \infty$ $n \rightarrow \infty$
Mothematic	ally, we say
	9
	lim an = L
ij:	N-700 a - L < E
11000	JN EN S.t.