

PROYECTO FINAL INTELIGENCIA ARTIFICIAL I

Minería de reglas de asociación espacial sobre Minecraft

Martín Cogo Belver

MOTIVACIÓN

- El objetivo es resolver algún problema utilizando algoritmos de Inteligencia Artificial.
- Dentro de la industria de creación de videojuegos existe un área centrada en la generación procedural.
- ¿Sería posible, con un algoritmo de inteligencia artificial y un entorno (artificial o natural), poder inferir parámetros para que un algoritmo de generación procedural genere entornos similares?
- La obtención de datos de un entorno real, resulta complejo.
- Se utiliza una porción de mapa del videojuego *Minecraft que* utiliza la generación procedural para la creación de terrenos del juego utilizando cubos.
- Los datos del videojuego son: de **fácil acceso y extracción, fácil generación** y la **disposición de los objetos** dentro del juego son bloques **con coordenadas rectangulares**.

ENFOQUE

- La Minería de Datos Espaciales o SDM:
 - Es un proceso de descubrimiento
 - Extracción de conocimiento
 - Enfocada sobre bases de datos espaciales o geográficas.
- Durante el trabajo buscaremos descubrir el patrón de posicionamiento de los bloques del juego.
- Para la búsqueda de patrones en datos espaciales se tomó el enfoque basado en reglas de asociación.
- La parte más importante es la creación de transacciones booleanas sobre el espacio de tal manera que se pueda usar el algoritmo Apriori.
- También se generarán gráficos para el análisis de resultados.

MÉTRICAS

Para evaluar las reglas utilizaremos las siguientes métricas:

Soporte: Se trata de la probabilidad de que aparezca X e Y en las transacciones.

$$Support(X \to Y) = \frac{\text{Transaction containing X and Y}}{\text{Total number of transactions}}$$

Confianza: Mide la probabilidad de que aparezca el Y dado que en una transacción aparece X.

$$Confidence(X \rightarrow Y) = \frac{\text{Transaction containing X and Y}}{\text{Transactions containing X}}$$

RESULTADOS

Experimentos:

- 1. Windows centric model
 - 1. Transacciones con ventanas de 4x4x4.
- 2. Reference feature centric model
 - 1. Transacciones centradas en el atributo diamond. (Diamante)
 - 2. Transacciones centrada en el atributo **grass_block**. (bloques de pasto)
 - Transacciones centradas en el atributo tree_log y tree_leaves.(troncos y hojas)
 - 4. Transacciones centradas en todos los atributos de un **chunk**. (todos los posibles bloques)

Transacciones de ventanas de 4x4x4 sin solapamiento

- `tiempo de preprocesamiento`= 9 minutos
 `total de transacciones` = 20480
 `soporte mínimo` = 100/20480 = 0.0049
 `confianza mínima` = 90%
- Las transacciones implementan un Window centirc model y en este caso son ventanas de 4x4x4 es decir cubos de 64 bloques.
- En el Grafo cada nodo representa un antecedente o consecuente de una regla.
- Al tratarse de un grafo muy grande resulta muy difícil analizarlo.

- El grafo ilustra el conjunto de reglas podadas y clasificadas como interesantes.
- Las demás reglas no podadas y clasificadas como no interesantes no tienen más información que la que se puede interpretar desde este grafico.
- El análisis resulta sencillo en este grafo.

- Estas son las reglas interesantes graficadas en el grafo anterior.
- El soporte es bajo y la confianza es alta en todas.
- El soporte es tan bajo debido a:
 - La enorme cantidad de bloques.
 - Lo desbalanceado que se encuentra el conjunto de bloques de entrada.

```
id
                                                           confidence
            antecedants
                                     consequents
                                                  support
                             =>
            ['stone']
                                                              1.000000
                                                  0.050830
                ['lava'] ['<mark>=>']</mark>
                                        ['stone']
                                                  0.006641
                                                              1.000000
          ['tree leaves'] ['=>']
                                                              1.000000
                                          ['air']
                                                  0.028857
               ['grass'] ['=>'] ['grass_block']
                                                  0.008057
                                                              0.906593
          ['grass_block'] ['=>']
                                        ['dirt']
                                                  0.024414
                                                              0.902527
            ['iron_ore'] ['=>']
                                        ['stone']
                                                  0.054346
                                                              1.000000
6
    ['sedimentary_stone'] ['=>']
                                        ['stone']
                                                  0.025244
                                                              0.966355
            ['air']
                                                  0.023584
                                                              0.997934
            ['stone']
                                                  0.029443
                                                              0.982085
9
         ['grass_block'] ['=>']
                                                  0.024951
                                                              0.922383
                                         ['air']
         ['planks_block'] ['=>']
10
                                                  0.007275
                                                              1.000000
                                        ['stone']
11
            ['gold_ore'] ['=>']
                                        ['stone']
                                                  0.006006
                                                              1.000000
12
               ['fence'] ['=>']
                                        ['stone']
                                                  0.005811
                                                              1.000000
               ['fence'] ['=>']
13
                                     ['cave air']
                                                  0.005811
                                                              1.000000
14
         ['redstone_ore'] ['=>']
                                       ['stone']
                                                  0.014307
                                                              1.000000
15
         ['igneous_rock'] ['=>']
                                        ['stone']
                                                  0.179639
                                                              0.997019
               ['grass'] ['=>']
16
                                          ['air']
                                                  0.008887
                                                              1.000000
17
         ['planks_block'] ['=>']
                                     ['cave_air']
                                                  0.007275
                                                              1.000000
             ['bedrock'] ['=>']
18
                                       ['stone']
                                                  0.031152
                                                              1.000000
```

OTRO MODELO

- Modelar las transacciones con ventanas de 4x4x4 no es interesante.
- Simplemente nos muestra que bloque existe en una ventada dado que otro existe en ella.
- No podemos saber claramente como es el patrón entre bloques.
- Windows centric model no nos da las reglas que buscamos.
- Los próximos experimentos se realizan con un Reference feature centric model.
- Las transacciones con ventanas de la forma cruz con **7 bloques**, donde el bloque que hay en el centro es de **un atributo determinado**.

Atributo de referencia diamante

```
`tiempo de preprocesamiento`= 9 segundos
`total de transacciones` = 75
`soporte mínimo` = 12/75 = 0.16
`confianza mínima` = 75%
```

- No tenemos un nodo con ítem [es diamond_ore].
- Es debido a que este ítem aparece en todas las transacciones generadas en el pre-procesamiento.
- En el conjunto de reglas interesantes solo tenemos 4 reglas que muestran el patrón:
- Los bloques de piedra al lado de un bloque de diamante en el juego están rodeados de bloques de piedra.


```
antecedants
                                                                                   confidence
                                                  =>
                                                        consequents
                                                                       support
         ['detrás tiene diamond_ore'] ['=>'] ['delante tiene stone']
                                                                       0.253333
                                                                                   0.791667
             ['abajo hay diamond_ore'] ['=>'] ['arriba hay stone']
                                                                       0.186667
                                                                                   0.823529
['está a la izquierda de diamond ore'] ['=>'] ['está a la derecha de stone'] 0.240000
                                                                                          0.857143
         ['delante tiene diamond_ore'] ['=>'] ['detrás tiene stone']
                                                                       0.253333
                                                                                   0.791667
```

Atributo de referencia hojas y troncos

- `tiempo de preprocesamiento`= 24 minutos
- `total de transacciones` = 11531
- soporte mínimo = 200/11531 = 0.0173
- `confianza mínima` = 90%
- Observando el Grafo se ven claro los patrones en este conjunto:
- El patrón que indica que si hay un bloque de tierra abajo se trata de un tronco y arriba tiene otro tronco. (Corresponde con el tallo del árbol)
- El patrón que indica que si hay una bloque de tipo hoja en el juego este está rodeada de bloques de hoja y por arriba o debajo puede haber bloques de tipo aire. (Corresponde con la copa del árbol)

Atributo de referencia pasto

- `tiempo de preprocesamiento`= 6 minutos
 `total de transacciones` = 4108
 `soporte mínimo` = 200/4108 = 0,0486
 `confianza mínima` = 90%
- Las reglas del grafo tienden a relacionarse con los ítems:
 - [abajo hay dirt]
 - [arriba hay air]
- Esto muestra 2 patrones:
 - Si el bloque es de tipo pasto, debajo tiene bloques de tierra y por arriba tiene bloques de aire.
 - Si el bloque es de tipo pasto puede estar rodeado de bloques de tierra o más bloques de pasto.

- El patrón: Abajo hay dirt entonces arriba hay flower. No es una de las reglas obtenidas.
- Se debe a que tiene una frecuencia de aparición menor a 200.
- Aún así se trata de un patrón totalmente válido y no descubierto.
- Esto nos hace replantear si realmente estamos tomando un acercamiento correcto al problema.

- Las reglas obtenidos mediante las transacciones con forma de cruz son más cercanos a los que buscamos.
- Queremos entonces combinar la forma que toman las reglas como resultado de el reference feature centric model y aplicarlo en todo el espacio como con el window centric model.
- La complejidad temporal del algoritmo de pre-procesamiento no es lineal y <u>depende de la cantidad de bloques de entrada</u>.
- El tiempo necesario para generar las ventanas en cruz para todos los bloques de la porción del mapa **es grande.**
- Por eso, solo generaremos transacciones para un solo *chunk* que son un total de 16x16x256 = 65536 bloques.
- Por lo tanto generamos las transacciones para todos los bloques con ventanas tipo cruz que se superpondrán en todo el espacio.

Combinación entre los modelos anteriores

- `tiempo de pre procesamiento`= 13 minutos y
 30 segundos
- `total de transacciones` = 65536
- soporte mínimo = 200/65536 = 0.0003
- `confianza mínima` = 90%
- En este grafo solo hay 3 patrones interpretables:
- Si el bloque es de tipo aire, está rodeado de otros bloques de tipo aire.
- Si el bloque es de tipo piedra, está rodeado de bloques de tipo piedra
- Si el bloque es de tierra, arriba hay bloques de pasto y abajo bloques de tierra

PROBLEMAS QUE SURGIERON

Este proyecto tiene problemas importantes:

- Tamaño de las ventanas :
 - Definir **ventanas** tiene, a veces, un tiempo de procesamiento más alto comparado con el tiempo necesario para correr **Apriori** y tiene **complejidad temporal no lineal**.
- Soporte mínimo:
 - Con respecto al **soporte mínimo**, cómo el conjunto de datos está muy **desbalanceado**, si buscamos conseguir los patrones que son poco frecuentes, la forma de obtenerlos es <u>bajando el soporte mínimo</u> lo cual lleva a la generación de una gran cantidad de reglas donde muchas son **redundantes** o **pequeñas variaciones de aquellas reglas con mayor soporte**.
- Algoritmo P-DS para la poda de reglas:
 Si bien, el algoritmo devuelve un conjunto de reglas que podrían servir de resumen, tiende a estar formado por todas aquellas reglas con un solo antecedente y consecuente.
- Conjunto de reglas no interesantes:
 - No es sencillo determinar si existen más patrones que los clasificados como interesantes, en el conjunto de reglas no interesantes sobre todo porque su tamaño es grande.

ALCANCE

Cosas que podrían implementarse en el proyecto:

- Un generador de representaciones gráficas con grafos automático.
- Implementación de algún método o algoritmo que no genere tantas reglas redundantes o que brinden información insignificante.
- Aplicar técnicas para trabajar con conjuntos de datos desbalanceados.
- La implementación de un **cloud model** para que permite expresar datos numéricos en lenguaje coloquial.
 - Por ejemplo, si se aplicara a coordenadas rectangulares de los bloques, podríamos generar reglas como por ejemplo:

[hay muchos bloques de tipo piedra en lo profundo]

[hay algunos bloques de tipo oro en lo profundo]

CONCLUSIÓN

- Hay muchos patrones en el mapa de Minecraft, pero han resultado difíciles de obtener y el análisis de los resultados no es sencillo para la evaluación del rendimiento de las pruebas.
- Los patrones tienen que **ser deducidos por un experto**. Esto indica que es necesario buscar un mecanismo de minería de reglas que expresen mejor los patrones que buscamos.

- Debido a todas las complicaciones que se han presentado durante el proyecto se concluye que:
 - Se debe búsqueda de **otro tipo de acercamiento** para solucionar el problema empleando inteligencia artificial.
 - O buscar otro algoritmo para la generación de reglas que sea mas enfocado, aunque esto requeriría una exploración bibliográfica de algoritmos más complejos.

GRACIAS