Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 27.2.2008)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

Doporučená literatura

- 1. J. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall, 1981.
- 2. W. Reisig. *Petri Nets—An Introduction*. Springer-Verlag, 1985.
- 3. W. Reisig. A Primer in Petri Net Design. Springer-Verlag, 1992.
- 4. M. Češka a kol.: Vyčíslitelnost a složitost. Skriptum VUT, kap. 4: Petriho sítě, 1992.
- 5. M. Češka. Petriho sítě. Akademické nakladatelství CERM Brno, 1994.

Úvod do Petriho sítí

Petriho sítě

Motivace:

- modely diskrétních systémů
- modely paralelních systémů
- modely distribuovaných systémů

❖ Využití:

návrh \times syntéza \times analýza \times verifikace

Historie:

C. A. Petri: Kommunikation mit automaten, 1962

Aplikace:

- hardware paralelní architektury
- software distribuované systémy, informační systémy, komunikační protokoly
- telekomunikace, strojírenství, administrativa

1. Základní koncepty Petriho sítí

Modelování událostí:

V Petriho síti:

V konečném automatu:

Složky Petriho sítě – statická reprezentace systému:

- místa (places)
- přechody (transitions)
- hrany (arcs)

Složky Petriho sítě – reprezentace dynamiky (změn) systému:

značky (tokens)

Před provedením přechodu t:

Po provedení přechodu t:

Modelování podmíněnosti:

precondition: $A \wedge B$

postcondition: $(A \land \neg B \land C) \lor (\neg A \land B \land D)$

Modelování vzájemné výlučnosti: t1 a t2 jsou vzájemně vyloučeny (konfliktní přechody)

Modelování paralelnosti (simultánnosti): t1 a t2 jsou simultánní (nezávislé přechody)

Modelování požadavků na zdroje:

Interpretace míst a přechodů:

- M počet volných paměťových bloků
- P procesor je volný
- O operace probíhá
- t_B počátek operace
- t_E konec operace

Poznámka: Problém vyrovnávacích pamětí (bufferů), front

B: buffer, z zpracování položky

Nemůže dojít k přetečení B (bufferu, fronty)?

Příklad 1: producent-konzument

Příklad 2: model úseku paralelního programu

2. Základní matematické definice

- **Definice 1.** Trojici N = (P, T, F) nazýváme sítí (net), jestliže:
 - 1. P a T jsou disjunktní množiny
 - 2. $F \subseteq (P \times T) \cup (T \times P)$ je binární relace

P nazýváme množinou míst (places)

T nazýváme množinou přechodů (transitions)

F nazýváme tokovou relací (flow relation)

- ❖ Grafem sítě nazveme grafovou reprezentaci relace F.
- \clubsuit Graf sítě je bipartitní orientovaný graf s množinou uzlů $P \cup T$ vrcholů.

- **Definice 2.** Nechť N = (P, T, F) je síť.
 - 1. Pro všechny prvky $x \in (P \cup T)$
 - $x = \{y \mid yFx\}$ se nazývá vstupní množinou (preset) prvku x
 - $x^{\bullet} = \{y \mid xFy\}$ se nazývá výstupní množinou (postset) prvku x

Podobně pro množinu prvků: Nechť $X\subseteq (P\cup T)$, pak

$${}^{ullet} X = \bigcup_{x \in X} {}^{ullet} x \quad \text{a} \quad X^{ullet} = \bigcup_{x \in X} x^{ullet}$$

Zřejmě platí:
$$\forall x,y \in (P \cup T) \colon x \in {}^{\bullet}\!y \iff y \in x^{\bullet}$$

- 2. Uspořádaná dvojice $< p, t > \in P \times T$ se nazývá vlastní cyklus (self-loop), jestliže $pFt \wedge tFp$. Neobsahuje-li síť vlastní cyklus, pak se nazývá čistou sítí (pure net).
- 3. Prvek $x \in (P \cup T)$ se nazývá izolovaný, jestliže $x \cup x = \emptyset$.

Definice 3. Nechť N=(P,T,F) je síť. N se nazývá jednoduchou sítí (simple net), jestliže

$$\forall x, y \in (P \cup T) : (^{\bullet}x = {}^{\bullet}y \land x^{\bullet} = y^{\bullet}) \Rightarrow x = y$$

Příklad nejednoduché sítě:

Definice 4. Nechť $N_1=(P_1,T_1,F_1)$ a $N_2=(P_2,T_2,F_2)$ jsou sítě. Existuje-li bijekce $\beta:(P_1\cup T_1)\leftrightarrow(P_2\cup T_2)$ taková, že

- 1. $x \in P_1 \Leftrightarrow \beta(x) \in P_2$
- **2.** $(x,y) \in F_1 \Leftrightarrow (\beta(x),\beta(y)) \in F_2$

pak N_1 a N_2 nazýváme izomorfní.