

Playing Atari with Deep Reinforcement Learning

GDGoC INU AI Part Paper Seminar 김재호 윤시원

Contents

- 1. Introduction
- 2. Background
- 3. Deep Reinforcement Learning
- 4. Preprocessing and Model Architecture
- 5. Experiments
- 6. Conclusion

1. Introduction

1. Introduction

- 목표: 다양한 Atari game을 잘하는 강화학습 모델 제작
- Atari game 예시:

Figure 1. Atari games

https://youtu.be/V1eYniJ0Rnk?feature=shared&t=24

Image: $x_t \in \mathbb{R}^d$, a vector of raw pixel values representing the current screen

State: $s_t = x_1, a_1, x_2, \dots, a_{t-1}, x_t$

목표: return을 최대화하는 action하기

Return:

$$R_{t} = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$$

T: game terminates

 γ : time-step, $\gamma \in [0,1]$ \longrightarrow 1. 발산 방지 2. 빠르게 reward 받는 것을 선호

- → return 값은 미래 보상에 의존
- \rightarrow return 값을 예측하는 optimal action-value function인 Q^* 사용(학습): Q-learning

Optimal action-value function(Q function):

$$Q^*(s,a) = \mathbb{E}_{s'\sim\varepsilon}[r + \gamma Q^*(s',a') \mid s,a]$$

 $r + \gamma Q^*(s', a')$: R_t 의 점화식 표현

변환된 목표: Q function 값을 최대화하는 action하기

Q-learning: 총 {'state 수' × 'action 수'}개의 Q 함수 필요

Figure 3. Q 함수 행렬 및 바둑

\rightarrow Q-Network

→ Network를 통해 Q 함수를 학습

 $Q(s, a; \theta) \approx Q^*(s, a)$: Weights θ as a Q-Networks

- $o L_i(heta_i) = \mathbb{E}_{(s,a,\mathbf{r},\mathbf{s}')\sim
 ho(\cdot)}[ig(y_i-Q(s,a; heta_i)ig)^2]$, each iteration i : 오차가 정규분포에 따라 모델링 가능하다고 가정
- $\rightarrow \rho(s,a)$: behaviour distribution \rightarrow 일반적으로 uniform distribution 사용

 ϵ -greedy Algorithm: 가끔 랜덤한 시도를 진행

$$a = \begin{cases} \max_{a} Q(s, a; \theta), & p \leq \epsilon \\ random \ action, & otherwise \end{cases}, \quad random \ value \ p \in [0, 1]$$

Experience Replay: 메모리를 사용하여 성능 향상

Experience: $e_t = (s_t, a_t, r_t, s_{t+1})$

Replay Buffer: Data-set $\mathcal{D} = e_1, \dots, e_N$: 이전 경험들을 저장

Deep Q-learning

State Representation: $\phi(s_t) = stacked[x_{t-3}, x_{t-2}, x_{t-1}, x_t]$

 \rightarrow DQN의 입력 값으로 전처리 되었음 \rightarrow 최근 4개 상황의 프레임을 저장

Figure 4. Network architecture

Deep Q-learning

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   {f for episode}=1, M {f do} How many times the agent plays the game
         Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1) = \frac{stacked[x_1, x_1, x_1, x_1]}{stacked[x_1, x_2, x_3]}
         for t=1,T do Game start
               With probability \epsilon select a random action a_t otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta) \epsilon -greedy algorithm: select action
               Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          1) Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          2) Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
               Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
              Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
         end for
                                                                                                                           Equation 3: \nabla_{\theta_i} L_i(\theta_i)
   end for
```

^{1.} State: $s_t = x_1, a_1, x_2, \dots, a_{t-1}, x_t$

^{2.} Transition $(\phi_t, a_t, r_t, \phi_{t+1})$: e_t : $(s_t, a_t, r_t, s_{t+1}) \rightarrow (\phi_t, a_t, r_t, \phi_{t+1})$, state representation

DQN vs Q-learning

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
        Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1) \rightarrow \text{데이터 재활용하여 효율적 학습 가능}
        for t=1,T do
             With probability \epsilon select a random action a_t
             otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
             Execute action a_t in emulator and observe reward r_t and image x_{t+1}
             Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
              Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D} - 근방의 큰 상관관계를 낮춤: 유사한 상황에서 반복된 action이 Set y_j = \left\{ \begin{array}{ll} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{array} \right.
             Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
        end for
   end for
```

210 x 160 pixels

210 x 160 pixels Gray Scale

110 x 84 pixels

84 x 84 pixels

84 x 84 x 4

Figure 2.1: DQN structure

Fully-Connected linear Output layer Q(s,a)

e.g.

- a_1 : move left
- a_2 : move right
- a_3 : fire
- a_4 : nothing

$$Q(s, a_1) = 2.5$$

$$Q(s, a_2) = 3.8$$

$$Q(s, a_3) = 1.0$$

$$Q(s, a_4) = 0.2$$

평가지표

Seaquest

Breakout

평균 보상 값

평균 maxQ 값

Q값의 시각화

5.1. Main Evaluation

5.1. Main Evaluation

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

5.1. Main Evaluation

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

6. Conclusion

- "강화학습을 위한 새로운 딥러닝 모델"
- RAW 픽셀만을 입력으로 사용하여 end-to-end 강화학습을 성공시킴.
- 별도의 하이퍼파라미터 조정없이 7개 게임 중 6개에서 기존 대비 최고성능을 기록
- Q-learning의 변형 알고리즘 제안

Q&A

