

# LG Advanced Data Scientists Program Deep Learning

[1: Foundations of Deep Learning]

Prof. Sungroh Yoon

Electrical & Computer Engineering | Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 20:54:00 on 2020/02/09)

## Outline

Introduction to Deep Learning

Machine Learning Basics

Linear Models

**Development Strategy** 

Summary

#### References

- Deep Learning by Goodfellow, Bengio and Courville Link
  - ▶ Chapters 1–5
- online resources:
  - ► Deep Learning Specialization (coursera) Link
  - ► Stanford CS231n: CNN for Visual Recognition Link

## Outline

Introduction to Deep Learning

**Machine Learning Basics** 

Linear Models

Development Strategy

Summary

# Artificial intelligence (AI)

- objective
  - ▶ to create a machine that can think and/or act like <u>humans</u>

† think/act rationally

- ► AI = computational \_\_\_\_\_
- rationality in engineering
  - refers to maximizing expected utility
- evaluation metric
  - human-level performance (suggested from day one)

• Turing test: the imitation game metric





(source: http://searchenterpriseai.techtarget.com)

- - human-level intelligence?

# Comparison





# Deep learning

- hierarchical representation learning
  - implementation: neural nets
  - ▶ fueled by big data
  - workhorse: GPU
- · each layer in neural nets
  - \_\_\_\_\_ representation
- main applications
  - tasks humans can do well

(shaded boxes: components that are able to learn from data)



## Status quo

- subhuman performance
  - general intelligence
  - ▶ domains with small/pricey data, expensive human experts (e.g. medical)
- human-level performance
  - some perception tasks: visual/speech recognition
- superhuman performance
  - ▶ domains with \_\_\_\_\_ big data (e.g. recommendation, online AD)
  - ▶ some perception tasks (e.g. massive surveillance), game play

## Outline

Introduction to Deep Learning

Machine Learning Basics

Linear Models

Development Strategy

Summary

# Machine learning

- learning from \_\_\_\_
- what do we mean by learning?
  - ▶ Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

- common types:
  - supervised
  - unsupervised
  - reinforcement
  - many more



#### Tasks in ML

- described in terms of how to process an example
- an "example":
  - a collection of features quantitatively measured from object/event
  - ▶ represented as a vector  $x \in \mathbb{R}^n$  (each entry  $x_i$ : a feature)
  - e.g. features of an image: pixels values
- common ML tasks:
  - T1 classification
  - T2. classification with missing inputs
  - T3. regression
  - T4. transcription
  - T5. machine translation

- T6. structured output
- T7. anomaly detection
- T8. synthesis and sampling
- T9. imputation of missing values
- T10. denoising
- T11. density/pmf estimation

#### Data set

- a collection of examples
  - training set: for fitting
  - validation set ("dev set"): for model selection
  - ▶ test set: for

10-fold cross-validation:



#### Performance measure

- specific to task T
  - e.g. classification: accuracy, error rate  $E \leftarrow$  we focus on this for a while density estimation: average log-probability the model assigns to examples
- evaluated using data sets
  - training/dev/test sets  $\Rightarrow$   $E_{\rm train}$ ,  $E_{\rm dev}$ ,  $E_{\rm test}$
- often challenging to choose
  - 1. difficult to decide what to measure
    - e.g. penalize frequent mid-sized mistakes or rare large mistakes?
  - 2. know ideal measure but measurement is
    - e.g. density estimation

a lake whose depth at  $\mathbf{x} = (x, y)$  is  $P(\mathbf{x})$ 



# Central challenge in ML

- - ability to perform well on previously unobserved examples
- ullet generalization error  $E_{\mathrm{gen}}$ 
  - ▶ expected error on a new example ⇒ implausible to calculate
- ullet training error  $E_{\mathrm{train}}$ 
  - ightharpoonup measured on a training set  $\Rightarrow$  bad proxy for  $E_{\rm gen}$
- $\bullet$  test error  $E_{\mathrm{test}}$ 
  - $\blacktriangleright$  measured on a test set (not used in training)  $\Rightarrow$  better proxy for  $E_{\rm gen}$

## Two specific objectives

- $\bullet$  objective:  $\boxed{E_{\rm gen}=0}$  in theory or  $\boxed{E_{\rm test}\simeq 0}$  in practice
- split into two objectives:
  - 1.  $E_{test} \simeq E_{train}$
  - 2.  $E_{train} \simeq 0$
- objective 1: make  $E_{\rm test} \simeq E_{\rm train}$ 
  - ▶ failure:  $\rightarrow$  high variance
  - cure: regularization, more data
- objective 2: make  $E_{\rm train} \simeq 0$ 
  - ightharpoonup failure: underfitting ightarrow high bias
  - cure: optimization, more complex model

# Capacity of a model

- the ability of the  $\underbrace{\mathsf{model}}_{\uparrow}$  to fit various functions representation (+ learning algorithm)
- altering capacity controls over/underfitting
  - example (truth: quadratic; fit: linear, quadratic, degree-9)



# Choosing a model (conventional advice)

- Occam's razor (a principle of parsimony)
  - ▶ among competing hypotheses, choose the " one
- why? **VC generalization bound**: for any  $\epsilon > 0$  and N > 0

$$\mathbb{P}[\underbrace{|\mathbf{E}_{\mathrm{train}}(f) - \mathbf{E}_{\mathrm{test}}(f)|}_{\text{bad event}} > \epsilon \ ] \leq \underbrace{4 \cdot (2N)}^{\text{capacity}} \cdot e^{-\frac{1}{8}\epsilon^2 N}$$

- ightharpoonup N: # of training examples
- f : a model ( $d_{
  m VC}$  : its *VC dimension*, a measure of model capacity)
- ullet in words: discrepancy between  $E_{\mathrm{train}}$  and  $E_{\mathrm{test}}$ 
  - grows as model capacity grows

(but 
$$\underbrace{\text{shrinks as } N \text{ increases}}_{\uparrow}$$
)

power of big data

# A tradeoff: the main challenge in ML

• approximation-generalization tradeoff or bias-variance tradeoff



- in theory: choose simpler functions
  - better generalization (smaller gap between training/test error)
- in practice: must still choose a sufficiently complex hypothesis
  - to achieve low training error

## Two major weapons to fight the tradeoff

- optimization: \_\_\_\_ reduction (better approximation)
  - ▶ finds model parameters that minimize error
  - e.g. stochastic gradient descent
- regularization: \_\_\_\_\_ reduction (better generalization)
  - constrains model capacity by reflecting prior knowledge
  - e.g. dropout, weight decay

# Choosing a model (modern advice)

- complex model + effective + big data
- complex model
  - ▶ higher chance of fitting data  $\rightarrow E_{\rm train} \simeq 0$
- regularization + big data
  - lacktriangleright reduces generalization gap ightarrow  $E_{\mathrm{test}} \simeq E_{\mathrm{train}}$

## Big picture



## Outline

Introduction to Deep Learning

Machine Learning Basics

Linear Models

Development Strategy

Summary

#### Linear models

- basis for more sophisticated models
- has many advantages → worth trying first
  - simplicity: easy to implement, test, and interpret
  - ightharpoonup generalization: higher chance of  $E_{\mathrm{test}} \simeq E_{\mathrm{train}}$  than complex models
  - extension: nonlinear transform, kernel trick, neural nets
- can solve three important problems
  - 1. classification
  - 2. regression
  - 3. probability estimation (aka regression)
  - come with different but related algorithms

## Example: credit card application

- given:
  - ightharpoonup applicant information  $\longrightarrow$
- decide:
  - approve a credit card or not?



| feature                                              | value                                    |
|------------------------------------------------------|------------------------------------------|
| age<br>gender<br>annual salary<br>years in residence | 23 years<br>female<br>\$30,000<br>1 year |
| years in job<br>current debt                         | 1 year<br>\$15,000                       |
|                                                      |                                          |

#### Formalization

- ullet let  $\mathcal{X}=\mathbb{R}^d$  be the input space
  - $ightharpoonup \mathbb{R}^d$ : the d-dimensional Euclidean space
  - ▶ input vector  $\mathbf{x} \in \mathcal{X}$ :  $\mathbf{x} = (x_1, x_2, \dots, x_d)$
- let  $\mathcal{Y} = \{+1, -1\}$  be the output space
  - denotes a decision
- in our credit example
  - coordinates of input x: salary, debt, and other fields in a credit card application
  - ▶ binary output *y*: approved or denined

| component                                                | symbol                                                                                                                                                                                            | credit approval metaphor                                                                                      |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| input<br>output<br>target function<br>data<br>hypothesis | $egin{array}{c} \mathbf{x} \\ y \\ f: \mathcal{X}  ightarrow \mathcal{Y} \\ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \\ g: \mathcal{X}  ightarrow \mathcal{Y} \end{array}$ | customer application<br>approve or deny<br>ideal approval formula<br>historical records<br>formula to be used |

- ▶ f: unknown target function
- X: input space (set of all possible inputs x)
- Y: output space (set of all possible outputs)
- ▶ *N*: the number of input-output examples (*i.e.* training examples)
- $\blacktriangleright \ \mathbb{X} \triangleq \{(\mathbf{x}^{(1)},y^{(1)}),\ldots,(\mathbf{x}^{(N)},y^{(N)})\}: \ \mathsf{data} \ \mathsf{set} \ \mathsf{where} \ y^{(n)} = f(\mathbf{x}^{(n)})$

## Example

- $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$  where  $x_1$ : age and  $x_2$ : annual salary in USD
- N = 11, d = 2,  $\mathcal{X} = \mathbb{R}^2$ , and  $\mathcal{Y} = \{\text{approve}, \frac{\text{deny}}{}\}$
- data set D:

| n  | $x_1$ | $x_2$ | y       |
|----|-------|-------|---------|
| 1  | 29    | 56k   | approve |
| 2  | 64    | 89k   | approve |
| 3  | 33    | 17k   | deny    |
| 4  | 45    | 94k   | approve |
| 5  | 24    | 26k   | deny    |
| 6  | 55    | 24k   | deny    |
| 7  | 35    | 52k   | approve |
| 8  | 57    | 65k   | approve |
| 9  | 45    | 32k   | deny    |
| 10 | 52    | 75k   | approve |
| 11 | 62    | 31k   | deny    |
|    |       |       |         |



# Decision making

- to make a decision
  - weighted coordinates are combined to form a 'credit score'
  - ▶ the resulting score is then compared to a \_\_\_\_\_
- in our credit card approval example
  - for input  $\mathbf{x} = (x_1, \dots, x_d)$ , 'attributes of an applicant':

\_\_\_\_\_ the application if  $\sum_{i=1}^d w_i x_i >$  threshold

\_\_\_\_ the application if  $\sum_{i=1}^d w_i x_i <$  threshold

## The perceptron

this linear formula can be written more compactly:

$$g(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \mathsf{threshold}\right) \tag{1}$$

$$= \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) + b\right) \tag{2}$$

where 
$$b$$
 is called the \_\_\_\_ and  $\operatorname{sign}(z)^1 = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$ 

- this model: called the perceptron
  - a simple linear classifier

<sup>&</sup>lt;sup>1</sup>value of sign(z) when z=0 is a simple technicality we can ignore

- $m{ullet}$  different parameters  $m{ heta} = (\underbrace{w_1, w_2, \ldots, w_d}_{ ext{weights}}, \underbrace{m{b}_{ ext{bias}}}_{ ext{bias}})$ 
  - yield different hyperplanes  $w_1x_1 + w_2x_2 + \cdots + w_dx_d + b = 0$
- for simplification
  - ▶ treat bias b as a weight  $w_0 \equiv b$
  - introduce an artificial coordinate
- with this convention,  $\mathbf{w}^{\top}\mathbf{x} = \sum_{i=0}^{d} w_i x_i$ 
  - ▶ this gives the perceptron in vector form:

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x})$$
(3)

 $\mathbf{w}^{\top}\mathbf{x}$ : called signal

## Linear models



based on "signal" z:

$$z = \sum_{i=0}^{d} w_i x_i$$





# Comparison

|                           | linear classification                                                               | linear regression                                                                                                                   | logistic regression                                                                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{y}$            | $\{-1, +1\}$                                                                        | $\mathbb{R}$                                                                                                                        | $\{-1, +1\}$                                                                                                                                                      |
| $\hat{y} = g(\mathbf{x})$ | $\mathrm{sign}(\mathbf{w}^{\top}\mathbf{x})$                                        | $\mathbf{w}^{\top}\mathbf{x}$                                                                                                       | $\theta^{\star}(\mathbf{w}^{\top}\mathbf{x})$                                                                                                                     |
| $e(\hat{y},y)$            | 0-1 loss $[\![\hat{y}\neq y]\!]$                                                    | squared error $(\hat{y}-y)^2$                                                                                                       | cross-entropy error                                                                                                                                               |
| $E_{train}(h)$            | $\frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}^{(n)}) \neq y^{(n)} \rrbracket$ | $\frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}^{(n)}) - y^{(n)})^2$                                                                      | $\frac{1}{N} \sum_{n=1}^{N} \ln \left( 1 + e^{-y^{(n)}} \mathbf{w}^{\top} \mathbf{x}^{(n)} \right)$                                                               |
| training                  | combinatorial optimization (NP-hard)                                                | $\begin{array}{l} \text{set } \nabla E_{\mathrm{in}}(\mathbf{w}) = 0 \\ \text{(closed-form} \\ \text{solution exists)} \end{array}$ | $\begin{aligned} &\text{set } \nabla E_{\mathrm{in}}(\mathbf{w}) = 0 \\ &\text{iterative optimization} \\ &\text{(\textit{e.g.} gradient descent)} \end{aligned}$ |

 $<sup>\</sup>star$  logistic sigmoid  $\theta(z) = 1/(1 + e^{-z})$ 

## Outline

Introduction to Deep Learning

Machine Learning Basics

Linear Models

**Development Strategy** 

Summary

### Motivation

- deep learning
  - highly \_\_\_\_\_ process



- many knobs to tweak
  - data, metric, optimizer, regularizer, hyperparameters/architecture, ...



- how to accelerate this iterative process?
  - ▶ before autoML comes on earth

#### Data breakdown

• small data ( $n \approx 100\text{-}10,000$ ):



• big data ( $n \approx 1,000,000$ ):



## Power of big data





- ullet as  $N o \infty$ 
  - ightharpoonup  $E_{
    m test}-E_{
    m train} o 0$  regardless of model/statistical confidence<sup>2</sup>
  - performance generally improves

 $<sup>^2\</sup>delta$  in left plot

### How much data?

- highly dependent on problems
- a rough rule of thumb (Goodfellow et al., 2016):
  - ▶ 5000 labeled examples per category
    - to achieve acceptable performance by supervised deep learning
  - at least 10 million labeled examples
    - to match/exceed human performance
- active research areas
  - pre-training and/or transfer learning
  - un/semi-supervised learning to use unlabeled data

# When you do not have enough data

- 1. data augmentation
  - rotation, noise, translation
- 2.
  - ▶ AlphaGo Zero
- 3. generation
  - generative adversarial net (GAN)











### Match data distributions

• dev distr  $\neq$  test distr



dev distr ≈ test distr (better)



## Orthogonalization



(source: Porsche)

- @ to open window, press 0.3 of  $\boxed{\text{bttn 1}} + 0.2$  of  $\boxed{\text{bttn 2}} + 0.5$  of  $\boxed{\text{bttn 3}}$
- just press bttn open
- $\blacktriangleright$  knobs  $\rightarrow$  more effective control

orthogonalization in training ML models

| desired task               | if you fail, try the following:        |                        |  |
|----------------------------|----------------------------------------|------------------------|--|
|                            | (orthogonal knob)                      | (less orthogonal knob) |  |
| fit train set well         | bigger network<br>better optimizer     | early stopping         |  |
| fit dev set well           | regularization<br>bigger training set  |                        |  |
| fit test set well          | bigger dev set                         |                        |  |
| perform well in real world | change dev set<br>change cost function |                        |  |

- early stopping (terminating training prematurely)
  - ▶ affects both training and validation performance ⇒ less orthogonal
  - sometimes not recommended in deep learning training

## Choosing a metric

- using a real number evaluation metric
  - ▶ clear objective ⇒ can speed up the iterative process
- optimizing and satisficing metrics
  - ▶ M metrics  $\Rightarrow$  1 optimizing metric + (M-1) satisficing metrics
  - example

| classifier | accuracy | runtime |
|------------|----------|---------|
| Α          | 90%      | 80ms    |
| В          | 92%      | 95ms    |
| C          | 95%      | 1,500ms |

 $\begin{array}{c} \text{maximize} & \begin{array}{c} \text{optimizing metric} \\ \text{accuracy} \end{array} \\ \text{s.t.} & \begin{array}{c} \text{runtime} \\ \text{satisficing metric} \end{array} \leq 100 \text{ms} \end{array}$ 

⇒ optimal: B

# Setting (and adjusting) a target

- learning target: set by a metric + dev/test sets
  - bullets: shot by training sets



- change your metric and/or dev/test sets
  - if you experience bad

(i.e. have low test error but cannot handle new inputs well)

## Referencing human-level performance

- error (irreducible error): lowest possible error
- human error
  - often close to Bayes error (especially for natural perception tasks)
  - $\Rightarrow$  used as a proxy for Bayes error  $\Rightarrow$  target for ML



- when ML performance < human performance: tools exist
  - more labeled data from humans
  - manual error analysis (why did humans get things right?)
  - better bias-variance analysis
- when ML performance > human performance:
  - ▶ the above tools no longer useful
  - more difficult to improve machine learning

## Bias-variance analysis



- reducing
  - more complex model, longer training, better optimization
  - better hyperparameter/architecture
- reducing \_\_\_\_\_
  - more data, regularization
  - better hyperparameter/architecture

### Outline

Introduction to Deep Learning

Machine Learning Basics

Linear Models

Development Strategy

Summary

### Summary

- deep learning: hierarchical representation learning
  - driving forces: big data, parallel hw (GPU), advanced algorithms
- machine learning: learn from data to achieve generalization
  - lacktriangle objectives: making  $E_{\mathrm{test}} \simeq E_{\mathrm{train}} + \mathsf{making}\ E_{\mathrm{train}} \simeq 0$
  - challenge: approximation-generalization or bias-variance tradeoff
  - weapons: big data, optimization, regularization
  - example: linear models for classification/regression/prob estimation
- data sets: train/dev/test
  - ightharpoonup breakdown in big data era: train/dev/test  $\simeq 98\%/1\%/1\%$
  - handling data scarcity: data augmentation, simulation, generation
- machine learning strategy: needed to accelerate iterative process
  - orthogonalization, optimizing/satisficing metrics, bias-variance analysis