Practical Machine Learning Assignment

steven157

Monday, May 25, 2015

Project Description

- We were given 6 participants' data from accelerometers on the belt, forearm, arm, and dumbell by performing barbell lifts correctly and incorrectly in 5 different ways.
- Based on these data, we are going to predict the manner in which they did the exercise.

Activate required packages.

```
library(abind)
library(arm)
library(caret)
library(caTools)
library(kernlab)
library(klaR)
library(nnet)
library(rattle)
library(randomForest)
library(rpart)
```

Set a seed for pseudo-random generator.

```
set.seed(777)
```

Read data from working directory

```
train <- read.csv("pml-training.csv", na.strings=c("NA","#DIV/0!",""))
test <- read.csv("pml-testing.csv", na.strings=c("NA","#DIV/0!",""))</pre>
```

Process of cleaning and pre-processing traning dataset

· Check names' coherence.

```
all.equal(colnames(test)[1:length(colnames(test))-1], colnames(train)[1:length(colname
s(train))-1])
```

```
## [1] TRUE
```

- Clean out variables with high proportion of NAs and low variance.
- Specifically, variables with NAs more than half or related with data acquisition were removed.
- For easier computation with low informativity loss.

```
nearzero <- nearZeroVar(train, saveMetrics = TRUE)
train <- train[, !nearzero$nzv]
toberem <- sapply(colnames(train), function(x) if(sum(is.na(train[, x])) > 0.50*nrow(train)) {return(TRUE)} else{return(FALSE)})
train <- train[, !toberem]
train <- train[, -(1:6)]</pre>
```

- Correlation analysis showed that majority of the variables are highly orrelated.
- Hence, PCA was used for the pre-processing process.
- The variables selected for model specification is presented below.

```
HC <- caret::findCorrelation(cor(train[, -53]), cutoff=0.8)
names(train)[HC]</pre>
```

```
## [1] "accel_belt_z" "roll_belt" "accel_belt_y"
## [4] "accel_dumbbell_z" "accel_belt_x" "pitch_belt"
## [7] "accel_arm_x" "accel_dumbbell_x" "magnet_arm_y"
## [10] "gyros_arm_y" "gyros_forearm_z" "gyros_dumbbell_x"
```

```
names(train)
```

```
## [1] "roll_belt"
                                "pitch_belt"
                                                        "yaw_belt"
## [4] "total_accel_belt"
                                "gyros_belt_x"
                                                        "gyros_belt_y"
## [7] "gyros_belt_z"
                                "accel_belt_x"
                                                        "accel_belt_y"
## [10] "accel_belt_z"
                                "magnet_belt_x"
                                                        "magnet_belt_y"
## [13] "magnet_belt_z"
                                "roll_arm"
                                                        "pitch_arm"
## [16] "yaw_arm"
                                "total_accel_arm"
                                                        "gyros_arm_x"
## [19] "gyros_arm_y"
                                                        "accel arm x"
                                "gyros_arm_z"
## [22] "accel_arm_y"
                                "accel_arm_z"
                                                        "magnet_arm_x"
## [25] "magnet_arm_y"
                                "magnet_arm_z"
                                                        "roll_dumbbell"
                                                        "total_accel_dumbbell"
## [28] "pitch_dumbbell"
                                "yaw_dumbbell"
## [31] "gyros_dumbbell_x"
                                "gyros_dumbbell_y"
                                                        "gyros_dumbbell_z"
## [34] "accel_dumbbell_x"
                                                        "accel_dumbbell_z"
                                "accel_dumbbell_y"
## [37] "magnet_dumbbell_x"
                                "magnet_dumbbell_y"
                                                        "magnet_dumbbell_z"
## [40] "roll_forearm"
                                                        "yaw_forearm"
                                "pitch_forearm"
## [43] "total_accel_forearm"
                                "gyros_forearm_x"
                                                        "gyros_forearm_y"
## [46] "gyros_forearm_z"
                                "accel_forearm_x"
                                                        "accel_forearm_y"
## [49] "accel_forearm_z"
                                "magnet_forearm_x"
                                                        "magnet_forearm_y"
                                "classe"
## [52] "magnet_forearm_z"
```

Cross Validation

- TrainControl is used to perform 7-fold cross validation.
- Reduce out of sample error and avoid overfitting

```
tc <- trainControl(method = "cv", number = 7, verboseIter=FALSE , preProcOptions="pca",
allowParallel=TRUE)</pre>
```

Model Specification

· Bayes Generalized Linear model.

```
BGLM <- train(classe ~ ., data = train, method = "bayesglm", trControl= tc)
```

Logit Boosted model.

```
LB <- train(classe ~ ., data = train, method = "LogitBoost", trControl= tc)
```

· Neural Net.

```
NN <- train(classe ~ ., data = train, method = "nnet", trControl= tc, verbose=FALSE)
```

· Random Forest.

```
RF <- train(classe ~ ., data = train, method = "rf", trControl= tc)</pre>
```

• Support Vector Machine (linear)

```
SVML <- train(classe ~ ., data = train, method = "svmLinear", trControl= tc)
```

Support Vector Machine (radial)

```
SVMR <- train(classe ~ ., data = train, method = "svmRadial", trControl= tc)</pre>
```

Accuracy comparison among these models.

model	ACC	KPP
Bayes GLM	0.402405338464838	0.235754704805116
LogitBoost	0.895518192432842	0.866855688388553
Neural Net	0.437825863039573	0.296946869503721

Random Forest	0.995056771497045	0.993746901020635
SVM (linear)	0.786005069669905	0.727931165180934
SVM (radial)	0.934462188715825	0.916945783465477

• Based on the above table, Random Forest & Support Vector Machine (radial) provide the most accurate results and will be used for prediction on testing dataset.

Prediction on testing dataset

- · Predict class variables on testing dataset
- · Compare prediction similarity from both models

```
RFP <- predict(RF, test)
SVMRP <- predict(SVMR, test)
prediction <- data.frame(cbind(RFP, SVMRP))
prediction$match <- with(prediction, RFP == SVMRP)
colnames(prediction) <- c("Random Forest", "SVM (radial)", "Prediction Match?")
knitr::kable(prediction)</pre>
```

Random Forest	SVM (radial)	Prediction Match?
2	2	TRUE
1	1	TRUE
2	2	TRUE
1	1	TRUE
1	1	TRUE
5	5	TRUE
4	4	TRUE
2	2	TRUE
1	1	TRUE
1	1	TRUE
2	2	TRUE
3	3	TRUE
2	2	TRUE
1	1	TRUE
5	5	TRUE
5	5	TRUE
1	1	TRUE

2	2 TRUE
2	2 TRUE
2	2 TRUE

• THe prediction result is generated by the code below for each test case

```
pml_write_files = function(x){
    n = length(x)
    for(i in 1:n){
        filename = paste0("problem_id_",i,".txt")
            write.table(x[i],file=filename,quote=FALSE,row.names=FALSE)
    }
}
pml_write_files(RFP)
pml_write_files(SVMRP)
```