T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte III)

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Na última aula, fomos apresentados às redes neurais.
- Vimos que elas são formadas por camadas de perceptrons que se conectam através dos pesos sinápticos.
- Aprendemos que as funções de ativação logística e tangente hiperbólica causam o problema do desaparecimento do gradiente, o qual pode ser solucionado usando-se a função retificadora.
- Vimos algumas topologias diferentes de redes neurais.
- E aprendemos que as redes neurais são aproximadoras universais de funções.
- Nesta aula, veremos como as redes neurais aprendem, ou seja, são treinadas.

- Consideramos agora, o processo de otimização, ou seja, de atualização dos pesos sinápticos.
- Assim como vimos anteriormente, o processo de otimização corresponde a um problema de minimização de uma função custo (ou de perda), J(w), com respeito a um vetor de pesos w.
- Portanto, o problema de aprendizado em redes neurais pode ser formulado como

$$\min_{\mathbf{w}} J(\mathbf{w})$$

- Normalmente, esse processo de otimização é *conduzido de forma iterativa*, o que dá um *sentido mais natural à noção de aprendizado* (i.e., um processo gradual).
- Existem *vários métodos de otimização* aplicáveis, mas, sem dúvida, *os mais utilizados são aqueles baseados nas derivadas da função custo*, J(w).

- Dentre esses métodos, existem os de *primeira ordem* e os de *segunda ordem*.
- Os métodos de primeira ordem são baseados nas derivadas parciais de primeira ordem da função custo, agrupadas no vetor gradiente:

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \frac{\partial J(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_K} \end{bmatrix}$$

 Como já vimos, o gradiente aponta na direção de maior crescimento da função e portanto, caminhar em sentido contrário a ele é uma forma adequada de se buscar iterativamente a minimização da função de custo.

• Desta maneira, temos a seguinte equação de atualização dos pesos

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \nabla J(\mathbf{w}(k)),$$

onde α é o *passo de aprendizagem* e k é a iteração de atualização.

 Já os métodos de segunda ordem, são baseados na informação trazida pela derivada parcial de segunda ordem da função custo. Essa informação está contida na matriz Hessiana, H:

$$\boldsymbol{H}(\boldsymbol{w}) = \nabla^2 J(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1^2} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_K} \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2^2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_K} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K^2} \end{bmatrix}.$$

• De posse da *matriz Hessiana*, é possível fazer uma aproximação de Taylor de segunda ordem da *função de custo*, o que leva à seguinte expressão para adaptação dos pesos:

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \mathbf{H}^{-1}(\mathbf{w}(k)) \nabla J(\mathbf{w}(k)).$$

- Essa expressão requer que a *matriz Hessiana* seja *inversível* e *definida positiva* a cada iteração, k, i.e., $\mathbf{z}^T H \mathbf{z} > 0$, $\forall \mathbf{z} \neq \mathbf{0}$ (vetor nulo).
- A aproximação de Taylor com informação de segunda ordem é mais precisa que a fornecida por métodos de primeira ordem.
- Portanto, a tendência é que métodos de segunda ordem convirjam em menos passos que métodos de primeira ordem.
- Entretanto, o cálculo exato da *matriz Hessiana* pode ser complicado em vários casos práticos.
 - Por exemplo, se tivermos 10 pesos para otimizar, a matriz Hessiana teria 10x10 elementos. Portanto, essa abordagem direta não é eficiente se o número de pesos for muito grande.
- Porém, há um conjunto de métodos de segunda ordem que evitam esse cálculo direto, como os métodos *quasi-Newton* ou os métodos de *gradiente escalonado*, os quais aproximam a matriz Hessiana.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- É importante ressaltarmos que todos esses métodos são métodos de *busca local*, ou seja, eles têm *convergência assegurada para mínimos locais*.
- Um *mínimo* (local ou global) sempre atrai o vetor de pesos quando este se encontra em sua vizinhança.
- Para relembrarmos o que é um mínimo local, vejamos a figura ao lado onde existem dois mínimos:
 - Um deles é uma solução ótima em relação apenas a seus vizinhos, ou seja, um mínimo local.
 - O outro também é uma solução ótima em relação a seus vizinhos (mínimo local), mas também em relação a todo o domínio da função de custo. Este é um mínimo global.
- Por serem formadas pela combinação de vários nós com funções de ativação não-lineares, as superfícies de erro de redes neurais não são convexas, ou seja, são altamente irregulares, podendo conter vários mínimos locais.

IMPORTANTE: Para muitos problemas envolvendo redes neurais, quase todos os mínimos locais têm um valor muito semelhante ao do mínimo global e, portanto, encontrar um mínimo local já é bom o suficiente para um dada problema.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outra irregularidade que podemos encontrar são os chamados *pontos de sela*:
 - Um ponto que é um mínimo ao longo de um eixo, mas um máximo ao longo de outro.
 - Em algumas direções são *atratores* (i.e., alta declividade), mas em outras não.
- O algoritmo de minimização da função de custo pode passar um longo período de tempo sendo atraído por eles, o que prejudica seu desempenho.
- Para escapar destes pontos, usa-se métodos de segunda ordem ou versões ruidosas do gradiente descendente, como, por exemplo, o Gradiente Descendente Estocástico.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outro tipo de irregularidade são os platôs: regiões planas, mas com erro elevado.
 - Como a inclinação nesta região é próxima de zero (consequentemente o gradiente é próximo de zero) o algoritmo pode levar muito tempo para atravesá-la.
- Para se escapar destas regiões, usa-se métodos de aprendizado adaptativo como AdaGrad, RMSProp, Adam, etc.
- Portanto, como garantir que o mínimo encontrado é bom o suficiente?
 - Treina-se o modelo várias vezes, sempre inicializando os *pesos aleatoriamente*, com a esperança de que em alguma dessas vezes ele inicialize mais próximo do mínimo global ou de um bom mínimo local.

Tarefa

• Quiz: "T320 - Quiz — Redes Neurais Artificiais (Parte V)" que se encontra no MS Teams.

Avaliação Presencial

- Data: 27/05/2023 às 08:00 na sala I-18.
- Faremos apenas o exercício #1 do projeto #2.

Projeto #2

 Projeto já está no github, logo abaixo do lab. # 9, e pode ser feito em grupos de no máximo 3 alunos.

- Entrega: 25/06/2023 até às 23:59.
- Leiam os enunciados atentamente.

- Conforme nós discutimos anteriormente, os métodos fundamentais de aprendizado para redes neurais são baseados no cálculo das derivadas parciais da função de erro (ou de custo/perda) com relação aos pesos sinápticos.
- Esses métodos têm como objetivo encontrar o *conjunto de pesos sinápticos* que minimize a *métrica (função) de erro* escolhida.
- Para isso, é necessário encontrar uma maneira de se calcular o vetor gradiente da função de custo com respeito aos pesos sinápticos das várias camadas de uma rede neural.
- Essa tarefa pode parecer óbvia, mas não é o caso.
 - Como podemos calcular a influência dos pesos das camadas ocultas no erro da camada de saída?
- Foram necessários 17 anos desde a criação do *Perceptron* até que se "descobrisse" uma forma de treinar RNAs.

- Para que entendamos melhor o porquê de não ser uma tarefa trivial, nós iremos considerar a notação abaixo, a qual será muito útil a seguir.
 - O peso sináptico, $w_{i,j}^m$, corresponde ao j-ésimo peso do i-ésimo nó da m-ésima camada da rede neural e W^m é a matriz com todos os pesos da m-ésima camada.

 - A ativação, u_i^m , corresponde à combinação linear das entradas do i-ésimo nó da m-ésima camada da rede neural e u^m é o vetor de ativações com as combinações lineares das entradas de todos os nós da m-ésima camada.
 - $f^m(.)$ é a função de ativação da m-ésima camada da rede neural.
 - Com essa notação, obter o *vetor gradiente* significa calcular, de maneira genérica, $\frac{\partial J(w)}{\partial w_{i,i}^m}$, ou seja, calcular essa derivada para todos os pesos de todos os *nós*.

 A figura abaixo apresenta um exemplo de como uma rede MLP pode ser descrita segundo essa notação.

obs.: Para facilitar nossa análise, não vamos considerar as entradas como uma camada, apenas as camadas ocultas e de saída.

• O mapeamento realizado pela rede MLP acima é dado por:

$$y^{3} = f^{3} \left(W^{3} f^{2} \left(W^{2} \underbrace{f^{1}(W^{1}x + b^{1}) + b^{2}}_{y^{2}} + b^{3} \right) + b^{3} \right)$$

 Para facilitar nosso trabalho, iremos supor, sem nenhuma perda de generalidade, que a função de custo escolhida é o erro quadrático médio (MSE).

• Nós vamos assumir que a *última camada da rede MLP* (definida como a M-ésima camada) tenha uma quantidade genérica, N_M , de *nós*. Assim, o MSE é dado por

$$J(w) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} e_j^2(n)$$

$$= \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2,$$

onde $N_{\rm dados}$ é o número de exemplos, $d_j(n)$ e $y_j^M(n)$ são o valor desejado da j-ésima saída (i.e., rótulo) e a saída do j-ésimo nó da M-ésima camada, respectivamente, ambos correspondentes ao n-ésimo exemplo de entrada.

- Para treinar a rede (i.e., atualizar os pesos), devemos derivar a *função custo* com respeito aos *pesos sinápticos*.
- Porém, percebam que os *pesos das camadas ocultas não aparecem explícitamente* na expressão do erro, J(w), apenas os da camada de saída, como veremos a seguir.

- Para fazer com que a dependência dos pesos apareça de maneira clara na expressão do erro, nós precisamos recorrer a aplicações sucessivas da regra da cadeia.
- Usando a notação de *Leibniz*, essa regra nos mostra que:

$$\frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}.$$

- Por exemplo, vamos considerar que $f(g(x)) = e^{x^2}$ e que queremos obter $\frac{\partial f(g(x))}{\partial x}$.
- Nós podemos fazer $g(x) = x^2$ e usar a *regra da cadeia*:

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} = e^{g(x)} 2x = 2xe^{x^2}.$$

$$J(w) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2$$

- Agora voltamos à equação do MSE e vemos que as saídas da M-ésima camada (i.e., saída) da rede aparecem de maneira direta na equação.
- Isso significa que é *simples se obter as derivadas com respeito aos pesos desta camada*.
- Porém, quando precisamos avaliar as *derivadas com respeito aos pesos das camadas anteriores (i.e., ocultas)*, a situação fica mais complexa, pois não existe uma dependência direta.
- Portanto surge a pergunta, como podemos atribuir a cada **nó** de uma camada oculta da rede, e, consequentemente a seus pesos, sua devida influência na composição dos valores de saída e, consequentemente, do erro?
 - Propaga-se o erro calculado na saída da rede neural para suas camadas anteriores até a primeira camada oculta usando-se um algoritmo, baseado na regra da cadeia, conhecido como backpropagation ou retropropagação do erro.

- A seguir, veremos de maneira mais sistemática como a retropropagação do erro é realizada.
- Inicialmente, nós devemos observar um fato fundamental. O cálculo da derivada do MSE com respeito a um peso qualquer é dada por:

$$\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} e_k^2(n)}{\partial w_{i,j}^m} = \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} \frac{\partial e_k^2(n)}{\partial w_{i,j}^m}.$$
 OBS.: mudei o indice do erro de j para k.

- OBS.1: Operação da derivada parcial é *distributiva*.
- OBS.2: A divisão pelo número de amostras é omitida, pois não afeta a otimização.
- A equação acima mostra que é necessário se calcular a derivada parcial apenas do quadrado do erro associado ao n-ésimo exemplo de entrada da k-ésima saída, pois o gradiente será a *média destes gradientes* particulares (ou *locais*).

Retropropagação: Algumas noções básicas

• Considerando a derivada geral $\frac{\partial J(w)}{\partial w_{i,j}^m}$ (i.e., um elemento genérico do vetor gradiente) e usando a **regra da cadeia**, podemos reescrevê-la como:

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m}.$$

- A primeira derivada após a igualdade é a derivada da **função de custo** com respeito à **ativação**, u_i^m , do i-ésimo **nó** da m-ésima camada.
- Essa grandeza será chamada de *sensibilidade* e é denotada pela letra grega δ . Desta forma:

$$\delta^m_i = rac{\partial J(w)}{\partial u^m_i}$$
. Sensibilidade do *i*-ésimo nó da *m*-ésima camada.

- O termo δ_i^m é único para cada **nó** da m-ésima camada.
- O outro termo, por sua vez, varia ao longo das entradas do $\it no$ em questão. Como adotamos nós do $\it tipo$ $\it perceptron$, a ativação, $\it u_i^m$, é uma $\it combinação$ $\it linear$ das entradas:

$$u_i^m = \sum_{i \in \text{entradas}} w_{i,j}^m y_j^{m-1} + b_i^m.$$

Retropropagação: Algumas noções básicas

Assim

Saída da camada anterior.
$$\frac{\partial u_i^m}{\partial w_{i,j}^m} = y_j^{m-1}.$$

• Caso a derivada seja em relação ao termo de **bias**, b_i^m , teremos o seguinte resultado $\frac{\partial u_i^m}{\partial b_i^m}=1$.

Desta forma, vemos que todas as derivadas da função de custo com respeito aos pesos (sinápticos/bias) são produtos de uma sensibilidade, δ_i^m , por uma entrada do i-ésimo nó da rede (ou, no caso dos termos de bias, pela unidade). $\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial J(w)}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1},$

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1}$$

ou, para o peso de bias, b_i^m

$$\frac{\partial J(\mathbf{w})}{\partial b_i^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial b_i^m} = \delta_i^m.$$

• São os valores de *sensibilidade*, δ_i^m , que trazem mais dificuldades em seu cálculo, pois a derivada $\frac{\partial u_i^m}{\partial w_{i,j}^m}$ é trivial (ela é apenas o valor de uma entrada daquele nó).

Retropropagando o erro

- Portanto, a estratégia de otimização adotada para atualização dos pesos (sinápticos e de bias) da rede neural é a seguinte:
 - 1. Começa-se pela saída, onde o erro é calculado.
 - Etapa chamada de direta, pois aplica-se as entradas à rede e calcula-se o erro de saída.
 - 2. Encontra-se uma *regra recursiva* que gere os valores de *sensibilidade* para os *nós* das camadas anteriores até a primeira camada oculta.
 - Etapa chamada de reversa, pois calcula-se a contribuição de cada nó das camadas ocultas no erro de saída.
- Esse processo é chamado de retropropagação do erro ou backpropagation.
- Para facilitar a *retropropagação do erro*, nós vamos inicialmente agrupar todas as *sensibilidades* da m-ésima camada, δ_i^m , $\forall i$, em um vetor, δ^m .
- Em seguida, vamos encontrar uma regra que fará a transição $\boldsymbol{\delta}^m \to \boldsymbol{\delta}^{m-1}$.
- Ou seja, a partir da **sensibilidade** da camada m, iremos encontrar a **sensibilidade** da camada anterior, m-1.

Retropropagando o erro

- Em resumo, o processo de *retropropagação do erro* é iniciado calculando-se o **vetor de sensibilidades** da última camada, $\boldsymbol{\delta}^{M}$, e, de maneira **recursiva**, obtémse os *vetores de sensibilidades* de todas as camadas anteriores.
- Para calcular $oldsymbol{\delta}^M$ (vetor de sensibilidades da camada de saída) consideramos N_M saídas e, assim, temos que o j-ésimo elemento do vetor $\hat{\delta}^M$ é dado por:

Saldas e, assim, temos que o *j*-esimo elemento do vetor
$$\boldsymbol{\delta}^{M}$$
 e dado por:
$$\delta_{j}^{M} = \frac{\partial e_{j}^{2}}{\partial u_{j}^{M}} = \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial u_{j}^{M}} \stackrel{\text{Regra da}}{=} \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial y_{j}^{M}} \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -2\left(d_{j} - y_{j}^{M}\right) \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -2\left($$

onde

$$y_j^M = f^M(u_j^M),$$

$$f'^M(u_j^M) = \frac{\partial f^M(u_j^M)}{\partial u_j^M}.$$

Função logistica
$$\frac{\partial f(u)}{\partial u} = f(u) (1 - f(u))$$

→Função tangente hiperbólica $\frac{\partial f(u)}{\partial x} = \left(1 - \tanh^2(u)\right)$

$$\frac{\partial f(u)}{\partial u} = (1 - \tanh^2(u))$$

Retropropagando o erro

• Matricialmente nós podemos expressar o vetor $\boldsymbol{\delta}^{M}$ como:

$$\boldsymbol{\delta}^{M} = -2\boldsymbol{F}^{\prime M}(\boldsymbol{u}^{M})(\boldsymbol{d} - \boldsymbol{y}),$$

onde a matriz
$$F'^M(u^M)$$
 é uma $matriz$ $diagonal$ com as derivadas das funções de ativação em relação às ativações dos N_M nós da M -ésima camada,
$$F'^M(u^M) = \begin{bmatrix} f'^M(u_1^M) & 0 & \cdots & 0 \\ 0 & f'^M(u_2^M) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f'^M(u_{N_M}^M) \end{bmatrix},$$

d e y são vetores coluna de dimensão $N_M \times 1$ com os valores esperados e de saída da rede neural, respectivamente.

• Desta forma, a aplicação sucessiva da regra da cadeia leva a uma recursão que, em termos matriciais, é simples e dada por

$$\boldsymbol{\delta}^{m-1} = \boldsymbol{F}'^{m-1}(\boldsymbol{u}^{m-1})(\boldsymbol{W}^m)^T \boldsymbol{\delta}^m.$$

Exemplo da aplicação da retropropagação

• Encontrar o vetor gradiente para todos os pesos do nó 1 (camada oculta) da rede neural abaixo.

• **OBS**.: vamos deixar as derivadas da função de ativação em relação às ativações de forma genérica, ou seja, sem assumir um tipo específico de função de ativação.

- Vamos considerar uma rede MLP com uma camada oculta com dois nós e uma camada de saída com um único nó, portanto M=2.
- Devemos começar calculando δ^2 .
- Percebam que essa sensibilidade é um escalar pois há apenas um nó na camada de saída.
- Vamos considerar um *único exemplo de entrada* $x = [x_1, x_2]$ e a respectiva saída desejada, d.
- Supomos que os pesos de todos os nós têm uma certa configuração inicial (e.g., dist. normal).
- Assim, quando a entrada, x, é apresentada à rede, é possível calcular todos os valores de interesse ao longo dela até sua saída.
- Essa é a etapa *direta* (ou do inglês, *forward*).

• Portanto, temos então a saída y_1^2 , onde o erro pode ser calculado como $e_1=d-y_1^2$.

- De posse do erro, podemos calcular a sensibilidade do **nó** da camada de saída $\delta^2 = -2(d-y_1^2)f'^2(u_1^2).$
- Temos, portanto, nossa primeira *sensibilidade*. Agora, usamos a equação de recursão para *retropropagar* o erro até a camada anterior. A fórmula nos diz:

$$\boldsymbol{\delta}^1 = \boldsymbol{F}^{\prime 1}(\boldsymbol{u}^1)(\boldsymbol{W}^2)^T \delta^2,$$

onde
$$(\mathbf{W}^2)^T = [w_{1,1}^2, w_{1,2}^2]^T$$
e

$$\mathbf{F}^{\prime 1}(\mathbf{u}^1) = \begin{bmatrix} f^{\prime 1}(u_1^1) & 0 \\ 0 & f^{\prime 1}(u_2^1) \end{bmatrix}.$$

OBS.: Notem que $.^2$ aqui não significa "ao quadrado", mas sim a indicação de que se trata de um valor da camada m=2.

Portanto,

$$\boldsymbol{\delta}^{1} = \begin{bmatrix} \delta_{1}^{1} \\ \delta_{2}^{1} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{2} f'^{1}(u_{1}^{1}) \\ w_{1,2}^{2} f'^{1}(u_{2}^{1}) \end{bmatrix} \delta^{2}.$$

- Agora, para obtermos o vetor gradiente, multiplicamos as *sensibilidades* pelas entradas correspondentes.
- Por exemplo, as derivadas parciais com relação aos pesos do $\emph{n\'o}~i=1$ da camada m=1 são mostradas abaixo

$$\begin{bmatrix} \frac{\partial J(\boldsymbol{w})}{\partial w_{1,1}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial w_{1,2}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial b_1^1} \end{bmatrix} = \delta_1^1 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \delta^2 w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = -2(d-y_1^2) f'^2(u_1^2) w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}.$$
Os pesos de **bias**
estão ligados a
entradas com valores
constantes iguais a 1.

 Se fôssemos calcular as derivadas aplicando a regra da cadeia diretamente, elas seriam calculadas como mostrado abaixo.

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \underbrace{\frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{1}} \underbrace{\frac{\partial u_{1}^{1}}{\partial w_{1,1}^{1}}}_{x_{1}}$$

• Resolvendo as derivadas parciais, temos

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = -2(d - y_1^2)f'^2(u_1^2)w_{1,1}^2f'^1(u_1^1)x_1$$

Aplicando-se o mesmo procedimento aos outros pesos, temos:

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \frac{\partial e^{2}}{\partial w_{1,1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,1}^{1}}
\frac{\partial J(\mathbf{w})}{\partial w_{1,2}^{1}} = \frac{\partial e^{2}}{\partial w_{1,2}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,2}^{1}}
\frac{\partial J(\mathbf{w})}{\partial b_{1}^{1}} = \frac{\partial e^{2}}{\partial b_{1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial b_{1}^{1}}$$

Tarefas

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte VI)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #8.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Projeto #2

- Projeto já está no github e pode ser feito em grupos de no máximo 3 alunos.
- Entrega: 25/06/2023 até às 23:59.
- Leiam os enunciados atentamente.

Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog..

Figuras

