In the Claims

1. (currently amended) Compound of formula

(1)
$$\begin{bmatrix} R_1 & OH & O & A \\ R_2 & N & A \end{bmatrix} R_3$$
, wherein

R₁ and R₂ independently from each other are; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when $n_1 = 1$,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; cyclohexyl optionally substituted with one or more C₁-C₅alkyl; <u>or phenyl optionally substituted with a heterocyclic radical, aminocarbonyl or C₁-C₅alkylcarboxy;</u>

wennwhen n₁ is 2,

 R_3 is an alkylen-, cycloalkylene, alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; <u>or</u> a radical of formula $-cH_2-c\equiv c-cH_2-\cdot$; or R_3 together with A forms

a bivalent radical of the formula (1a)
$$-A = \begin{pmatrix} CH_2 \end{pmatrix}_{n_2} A = K$$
; wherein

n₂ is a number from 1 to 3;

when n₁ is 3,

R₃ is an alkantriyl radical;

wennwhen n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

- 2. (currently amended) Compound according to claim 1, wherein
- R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6membered heterocyclic ring;
- n₁ is a number from 1 to 4;

wennwhen n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; or [[C]]cyclohexyl substituted with one or more C₁-C₅alkyl;

wennwhen n₁ is 2,

R₃ is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

wennwhen n₁ is_3,

R₃ is an alkantriyl radical;

wennwhen n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

3. (currently amended) Compound according to claim 1-or-2, wherein

 R_1 and R_2 are C_1 - C_{20} alkyl.

- **4.** (currently amended) Compound according to <u>claim 1 one of claims 1 to 3</u>, wherein R_1 and R_2 independently from each other are C_1 - C_5 alkyl.
- **5.** (currently amended) Compound according to claim 1 one of claims 1 to 4, wherein R_1 and R_2 in formula (1) have the same definition
- **6.** (currently amended) Compound according to claim 1 one of claims 1 to 5, wherein if n_1 is 1,

R₃ is a saturated or unsaturated heterocyclic radical.

7. (currently amended) Compound according to claim 1 one of claims 1 to 5, wherein if n_1 is 1,

R₃ is a saturated heterocyclic radical.

8. (original) Compound according to claim 7, wherein

R₃ is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

9. (original) Compound according to claim 8, wherein

R₃ is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl

10. (original) Compound according to claim 6, wherein

R₃ is an unsaturated heterocyclic radical.

11. (original) Compound according to claim 10, wherein

R₃ a polycyclic radical.

12. (currently amended) Compound according to claim 1 or 11, wherein

 R_3 is a radical of formula (1a) R_s , ar

 $\,R_{5}\,\,$ is polycyclic heteroaromatic radical with one or 2 heteroatoms.

13. (original) Compound according to claim 12, wherein

 R_3 is a radical of formula (1b)

R₆ is hydrogen; or C₁-C₅alkyl.

14. (currently amended) Compound according to claim 1 one of claims 1 to 4 or 13, wherein, if n_1 is 2,

R₃ is a C₁-C₁₂alkylene radical[[,]]and

R₁, R₂ and A are defined as in claim 1.

15. (original) Compound according to claim 14, wherein

R₃ is a radical of formula $*-CH_2-(CH_2)_m-CH_2-*$; $*-CH_2-*$;

$$*-CH_{2} \xrightarrow{CH_{3}} CH_{2} * ; *-CH_{2} \xrightarrow{CH_{2}} CH_{2} * ; *-CH_{2} \xrightarrow{CH_{3}} C-O \xrightarrow{CH_{3}} (CH_{2})_{q} \xrightarrow{CH_{2}} CH_{2} * ;$$

r is 0 or 1; and

q = is a number from 0 to 5.

16. (currently amended) Compound according to claim 1 to 5, wherein, when n_1 is 3;

R₃ is a radical of formula (1a) *-CH₂-CH-(CH₂)_p-CH₂-* or (1b) *-CH₂- $\overset{*}{\underset{*}{\text{CH}}}$ [[.]] and

p is a number from 0 to 3; and

 $R_1,\,R_2$ and A are defined as in formula (1).

17. (currently amended) Compound according to claim 1 one of claims 1 to 5, wherein, when n_1 is 4,

R₁, R₂ and A are defined as in formula (1).

18. (original) Compound according to claim 1, which corresponds to formula

(2)
$$R_1$$
 R_2 , wherein

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

 R_3 is a saturated or unsaturated heterocyclic radical.

19. (original) Compound according to claim 1, which corresponds to formula

(3)
$$R_1$$
 R_2 R_3 R_4 R_3 R_4 , wherein

 R_1 and R_2 independently from each other are hydrogen; or C_1 - C_5 alkyl;

A is -NH; or -O-; and

R₃ is a C₁-C₁₂alkylene radical.

20. (original) Compound according to claim 1, which corresponds to formula

(4)
$$\bigcap_{R_1} \bigcap_{R_2} \bigcap_{R_3} \bigcap_{A} \bigcap_{R_4} \bigcap_{R_2} \bigcap_{R_2} \bigcap_{R_3} \bigcap_{R_4} \bigcap_$$

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

$$R_3$$
 is *-CH₂—CH-(CH₂)_p-CH₂-* or *-CH₂--CH -; and

p is a number from 0 to 3.

21. (original) Compound according to claim 1, which corresponds to formula

(5)
$$R_1$$
 R_2 R_3 A O OH R_2 R_3 A O OH R_2 R_3 R_4 R_2 R_2

 R_1 , R_2 and A are defined as in formula (1).

22. (currently amended) A process for the preparation of the compounds of formula (1), which comprises, dehydratisating

(a) the compound formula (6a)
$$R_1$$
 to the compound of formula

$$R_1$$
 N and R_2

(b) reacting the anhydride with the compound of formula $(6c_1)$ H-N(R₅)-R₃ or $(6c_2)$ H-O-R₃ to the compound of formula

(1')
$$\begin{bmatrix} R_1 & O & A \\ R_2 & R_3 \\ R_2 & R_3 \end{bmatrix}$$
, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is 1 to 4;

if n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-[[C]]cyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y is C₁-C₁₂alkylen;

Z is C₁-C₅alkyl;

p is a number from 1 to 20;

if n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n_1 is 3,

R₃ is an alkantriyl radical;

if n₁ is 4.

R₃ is a alkantetrayl radical;

A is -O-; or $-N(R_5)$ -;

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

23. (currently amended) Process according to claim 22, wherein the process refers to compounds of formula

(7)
$$R_2$$
 R_1 R_2 , wherein

 R_1 and R_2 independently from each other are C_1 - C_{12} alkyl; and

 R_5 is hydrogen; C_1 - C_{12} alklyl; or C_3 - C_6 -[[C]]cycloalkyl.

- 24. (canceled)
- 25. (canceled)
- **26. (original)** A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim **1** with cosmetically acceptable carriers or adjuvants.
- 27. (currently amended) Compounds of formula

(6b')
$$\underset{R'_1}{\underset{N}{\bigvee}}$$
 , wherein

R₁' and R₂" independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cycloalkyl; o<u>r</u> C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.

28. (canceled)

29. (currently amended) UV-Absorber-dispersion, comprising

(a) a micronised UV absorber of formula

(1')
$$\begin{bmatrix} R_1 & O & O \\ R_2 & R_3 \\ R_2 & R_3 \end{bmatrix}$$
, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; <u>C₃-C₁₀cyclohexyl</u> not substituted or substituted with one or more C₁-C₅alkyl-substituted C₃-C₁₀cyclohexyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y C₁-C₁₂alkylen;

Z C₁-C₅alkyl;

p is a number from 1 to 20;

when n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n₁ is,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

R₅—is hydrogen; C₄-C₅alkyl; or hydroxy-C₄-C₅Alkyl[[;]]

having a particle size from $0[[,]]_.02$ to $2 \mu m$, and

(b) a suitable dispersing agent.

30. (new) A cosmetic preparation according to claim **26**, wherein the compounds of formula (1) are present in micronized form.