CONCOURS COMMUNS POLYTECHNIQUES ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 1

DURÉE: 4 heures

Les calculatrices ne sont pas autorisées.

Après une première partie consacrée à l'étude de la projection sur les convexes fermés de \mathbb{R}^n on établira (dans \mathbb{R}^2) le théorème du point fixe de Brouwer et quelques unes de ses conséquences.

On suppose que \mathbb{R}^n est muni de son produit scalaire canonique et de la norme associée, notés (\mid) et $\mid \mid \mid$, donc si $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ sont des éléments de \mathbb{R}^n on a: $(x|y)=\sum\limits_{i=1}^n x_iy_i$ et $\mid \mid x\mid \mid =(x|x)^{1/2}$. Si X est une partie de \mathbb{R}^n on notera X son intérieur,—soit $f:X\to\mathbb{R}^n$ on dira que $u\in X$ est un point fixe de f si f(u)=u;—si $i\in\{1,\ldots,n\}$, f_i désigne la composante de rang i de f, donc $f(x)=(f_1(x),\ldots,f_n(x),\ldots,f_n(x))$.

I. Projection sur un convexe fermé de \mathbb{R}^n

- 1. Démontrer que si $(x,y) \in (\mathbb{R}^n)^2$, on a $|(x|y)| \leq ||x|| \, ||y||$ (inégalité de Schwarz). Montrer que $|(x|y)| = ||x|| \, ||y||$ si et seulement si x et y sont colinéaires. Montrer que si $\{a,b,c\} \subset \mathbb{R}^n$ vérifie: $b \neq c$ et ||a-b|| = ||a-c||, on a alors: $||a-\frac{b+c}{2}|| < ||a-b||$.
- 2. Soit F un fermé non vide de \mathbb{R}^n , soit $x \in \mathbb{R}^n$, montrer qu'il existe $u \in F$ tel que: $||x u|| \le ||x y||$ pour tout $y \in F$ (on supposera d'abord que F est borné avant d'étudier le cas général).
- 3. Soit A un convexe fermé non vide de \mathbb{R}^n , montrer, en utilisant les questions précédentes, que pour tout $x \in \mathbb{R}^n$, il existe un unique $u \in A$ tel que $||x u|| \le ||x y||$ pour tout $y \in A$.

Ceci établit le théorème de projection sur les convexes de \mathbb{R}^n : soit A un convexe fermé non vide de \mathbb{R}^n , il existe une unique application, notée P, de \mathbb{R}^n dans A qui vérifie: $||x - P(x)|| = \min\{||x - y|| : y \in A\}$, pour tout $x \in \mathbb{R}^n$. P(x) s'appelle la projection de x sur A.

- 4. Montrer que s'il existe $\alpha \in A$ tel que: $(x \alpha|y \alpha) \le 0$ pour tout $y \in A$, on a: $\alpha = P(x)$.
- 5. Supposons qu'il existe $y \in A$ tel que: (x P(x) | y P(x)) > 0. Soit alors $\mathcal{S} : [0, 1] \to \mathbb{R}$ définie par: $\mathcal{S}(t) = \|(x - P(x)) - t(y - P(x))\|^2$. Montrer qu'il existe $t \in]0, 1[$ tel que: $\mathcal{S}(t) < \|x - P(x)\|^2$.
- 6. Déduire de 4. et 5. que u = P(x) si et seulement si: $u \in A$ et $(x u|y u) \le 0$ pour tout $y \in A$.

1

- 7. Soit $\{x,y\} \subset \mathbb{R}^n$ montrer que: $(x-y|P(x)-P(y)) \ge ||P(x)-P(y)||^2$. En déduire que P vérifie les propriétés suivantes: P est continue, $P(\mathbb{R}^n) = A$, P(x) = x si $x \in A$.
- 8. Montrer que si $x \notin A$, alors $P(x) \notin \mathring{A}$ (raisonner par l'absurde en supposant qu'il existe une boule de centre P(x), de rayon strictement positif, incluse dans A).

II. Théorème de Brouwer dans \mathbb{R}^2

Pour toute la suite du problème, on se place dans \mathbb{R}^2 ; si r > 0, $\overline{B}(O, r)$ désigne le disque fermé de centre O et de rayon r et S(O, r) le cercle correspondant, on note $B = \overline{B}(O, 1)$ et S = S(O, 1). On entend par application dérivable (ou C^1 ou C^2) de B (ou de $B \times \mathbb{R}$) dans \mathbb{R}^2 (ou \mathbb{R}), la restriction à B (ou à $B \times \mathbb{R}$) d'une application dérivable (ou C^1 ou C^2) définie sur un ouvert de \mathbb{R}^2 (ou \mathbb{R}^3), contenant B (ou $B \times \mathbb{R}$), à valeurs dans \mathbb{R}^2 (ou \mathbb{R}).

A. Cas particulier d'une application de classe C^2

Soit $f: B \to \mathbb{R}^2$, on suppose que f est de classe C^2 et que $f(B) \subset B$ et on se propose de montrer que f possède au moins un point fixe. On va raisonner par l'absurde et supposer que: $f(x) \neq x$ pour tout $x \in B$.

- 9. Montrer qu'il existe une application $\rho: B \to \mathbb{R}_+$, unique, telle que: $x + \rho(x) (x f(x)) \in S$ pour tout $x \in B$. Expliciter ρ , montrer qu'elle est de classe C^2 et que $\rho(x) = 0$ si et seulement si $x \in S$. On pose $\alpha(x) = \rho(x) (x f(x))$ et $\alpha_{ij}(x) = \frac{\partial \alpha_j}{\partial x_i}(x)$ pour tout $(i, j) \in \{1, 2\}^2$ et $\varphi(x) = x + \alpha(x)$.
- 10. Montrer que, pour tout $x \in B$, la matrice $\begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(x) & \frac{\partial \varphi_1}{\partial x_2}(x) \\ \frac{\partial \varphi_2}{\partial x_1}(x) & \frac{\partial \varphi_2}{\partial x_2}(x) \end{pmatrix}$ est singulière (on pourra, à cet effet, caractériser géométriquement l'image de l'application linéaire correspondante).

11. Soit
$$\psi: B \times \mathbb{R} \to \mathbb{R}$$
 définie par: $\psi(x,t) = \begin{vmatrix} 1 + t\alpha_{11}(x) & t\alpha_{21}(x) \\ t\alpha_{12}(x) & 1 + t\alpha_{22}(x) \end{vmatrix}$.

- (a) Montrer que: $\psi(x,t) = 1 + t\beta(x) + t^2\gamma(x)$ où β et γ sont des applications continues de B dans \mathbb{R} que l'on explicitera à l'aide des applications $(\alpha_{ij})_{(i,j)\in\{1,2\}^2}$. Vérifier que $\psi(x,1) = 0$ pour tout $x \in B$.
- (b) Soit $J:[0,1] \to \mathbb{R}$ définie par $J(t) = \iint_B \psi(x,t) dx_1 dx_2$. Justifier l'existence de J et calculer J(0) et J(1).
- (c) Montrer, grâce au théorème de Fubini, que $\iint_{B} \beta(x) dx_{1} dx_{2} = 0$.

(d) Soit $g: B \to \mathbb{R}^2$ de classe C^2 ; soient $I_1(g) = \iint_B \frac{\partial g_1}{\partial x_1}(x) \frac{\partial g_2}{\partial x_2}(x) dx_1 dx_2$, $I_2(g) = \iint_B \frac{\partial g_1}{\partial x_2}(x) \frac{\partial g_2}{\partial x_1}(x) dx_1 dx_2$. Montrer que:

$$I_{1}(g) = \int_{-1}^{+1} \left[g_{1}\left(\sqrt{1-s^{2}}, s\right) \frac{\partial g_{2}}{\partial x_{2}} \left(\sqrt{1-s^{2}}, s\right) - g_{1}\left(-\sqrt{1-s^{2}}, s\right) \frac{\partial g_{2}}{\partial x_{2}} \left(-\sqrt{1-s^{2}}, s\right) \right] ds$$
$$-\iint_{B} g_{1}(x) \frac{\partial^{2} g_{2}}{\partial x_{1} \partial x_{2}}(x) dx_{1} dx_{2}$$

On obtient alors, de façon analogue:

$$I_{2}(g) = \int_{-1}^{+1} \left[g_{1}\left(s,\sqrt{1-s^{2}}\right) \frac{\partial g_{2}}{\partial x_{1}} \left(s,\sqrt{1-s^{2}}\right) - g_{1}\left(s,-\sqrt{1-s^{2}}\right) \frac{\partial g_{2}}{\partial x_{1}} \left(s,-\sqrt{1-s^{2}}\right) \right] ds$$
$$- \iint_{B} g_{1}(x) \frac{\partial^{2} g_{2}}{\partial x_{2} \partial x_{1}} (x) dx_{1} dx_{2}$$

Montrer que: $\iint_{B} \gamma(x) dx_1 dx_2 = 0$ et donc, que J est constante; montrer que ceci est impossible.

On a ainsi démontré le théorème de Brouwer particulier: toute application de classe C^2 , de B dans B, a au moins un point fixe.

B. Forme générale du théorème de Brouwer

On admettra la généralisation suivante du théorème de Weierstrass: soit F un fermé borné non vide de \mathbb{R}^2 , soit $g: F \to \mathbb{R}$. Si g est continue, il existe, pour tout $\varepsilon > 0$, une application $g_{(\varepsilon)}$ de \mathbb{R}^2 dans \mathbb{R} , de classe C^2 , telle que: sup $\{|g_{(\varepsilon)}(x) - g(x)| : x \in F\} \le \varepsilon$.

- 12. Montrer que si F est un fermé borné non vide de \mathbb{R}^2 , et si $g: F \to \mathbb{R}^2$ est continue, il existe, pour tout $\varepsilon > 0$ une application $g_{(\varepsilon)}$ de \mathbb{R}^2 dans \mathbb{R}^2 , de classe C^2 , telle que: $\sup \left\{ \left\| g_{(\varepsilon)}\left(x\right) g\left(x\right) \right\| : x \in F \right\} \le \varepsilon$.
- 13. Soit $f: B \to B$, f continue. Soit $\varepsilon > 0$, il existe, d'après 12. une application $f_{(\varepsilon)}$ de \mathbb{R}^2 dans \mathbb{R}^2 , de classe C^2 , telle que: $\sup \left\{ \left\| f_{(\varepsilon)} \left(x \right) f \left(x \right) \right\| : x \in B \right\} \le \varepsilon$. Soit $h_{(\varepsilon)}: \mathbb{R}^2 \to \mathbb{R}^2$, $h_{(\varepsilon)} \left(x \right) = \frac{f_{(\varepsilon)} \left(x \right)}{1 + \varepsilon}$. Montrer que $h_{(\varepsilon)} \left(B \right) \subset B$ et que: $\sup \left\{ \left\| h_{(\varepsilon)} \left(x \right) f \left(x \right) \right\| : x \in B \right\} \le 2\varepsilon$.
- 14. Montrer que si $f: B \to B$ est continue, elle possède au moins un point fixe.
- 15. Soit r > 0, soit $f : \overline{B}(O, r) \to \overline{B}(O, r)$, montrer que si f est continue, elle possède au moins un point fixe (considérer $g : B \to \mathbb{R}^2$, $g(x) = \frac{1}{r}f(rx)$).

- 16. Soit A un convexe fermé borné non vide de \mathbb{R}^2 , soit $f:A\to\mathbb{R}^2$, f continue telle que: $f\left(A\backslash\stackrel{\circ}{A}\right)\subset A$.
 - (a) Montrer qu'il existe r>0 tel que: $A\cup f\left(A\right)\subset\overline{B}\left(O,r\right)$.
 - (b) On associe au convexe fermé non vide A la projection P, comme cela a été défini en question 3. Soit alors $h: \overline{B}(O,r) \to \mathbb{R}^2$ définie par h(x) = f(P(x)). Déduire de l'étude de h que f possède au moins un point fixe dans A. On a donc le théorème de Brouwer général: si A est un convexe fermé borné non vide de \mathbb{R}^2 , et si $f: \overline{A} \to \mathbb{R}^2$ est continue et vérifie: $f(A \setminus \mathring{A}) \subset A$, alors f possède au moins un point fixe dans A.

III. Quelques conséquences du théorème de Brouwer

- 17. Soit $f: B \to S$, telle que: f(x) = x pour tout $x \in S$. Montrer, en étudiant (-f), que f ne peut être continue (ceci constitue le théorème de non rétraction).
- 18. Soit $f: B \to \mathbb{R}^2$ telle que: f continue et f(x) = x pour tout $x \in S$. Soit alors $y \notin f(B)$, montrer, en étudiant $g: B \to \mathbb{R}^2$ définie par: $g(x) = \frac{y f(x)}{\|y f(x)\|}$, que $y \notin B$. En déduire que: $B \subset f(B)$.
- 19. Soit $h: S \times [0,1] \to S$ telle que: h est continue et h(x,0) = x pour tout $x \in S$. Supposons qu'il existe $y \in S$ tel que: h(x,1) = y pour tout $x \in S$; soit alors f, de B dans S, définie par: $f(x) = \begin{cases} h\left(\frac{x}{\|x\|}, 1 \|x\|\right) & \text{si } x \neq O \\ y & \text{si } x = O \end{cases}.$

Montrer que f est continue et que cela contredit le théorème de non rétraction: en déduire que $(x \to h(x, 1))$ ne peut être constante (on dit que S n'est pas contractile).

- 20. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que: f continue, $(f(x)|x) \ge 0$ pour tout $x \in \mathbb{R}^2$, $||f(x)|| \underset{||x|| \to +\infty}{\longrightarrow} +\infty$. Soit $y \in \mathbb{R}^2$, soit r > 0, on définit, si $y \notin f(\overline{B}(O,r))$, l'application $g_{(r)}: \overline{B}(O,r) \to \mathbb{R}^2$ par: $g_{(r)}(x) = r \frac{y f(x)}{||y f(x)||}$.
 - (a) Montrer qu'il existe $u_{(r)} \in S(O, r)$ tel que l'on ait: $(f(u_{(r)}) | u_{(r)}) = (y|u_{(r)}) r ||y f(u_{(r)})||$.
 - (b) Montrer que $f(\mathbb{R}^2) = \mathbb{R}^2$.

Fin de l'énoncé.