Front matter

Front matter

lang: ru-RU

title: "Моделирование сетей передачи данных"

subtitle: "Отчёт по лабораторной работе №3: Измерение и тестирование пропускной способности

сети. Воспроизводимый эксперимент" author: "Ахлиддинзода Аслиддин"

institute:

Российский университет дружбы народов, Москва, Россия

i18n babel

babel-lang: russian babel-otherlangs: english

Formatting pdf

toc: false

toc-title: Содержание

slide_level: 2 aspectratio: 169 section-titles: true theme: metropolis header-includes:

- \metroset{progressbar=frametitle,sectionpage=progressbar,numbering=fraction}
- '\makeatletter'
- '\beamer@ignorenonframefalse'
- '\makeatother'

Цель работы

Основной целью работы является знакомство с инструментом для измерения пропускной способности сети в режиме реального времени — iPerf3, а также получение навыков проведения воспроизводимого эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.

Выполнение лабораторной работы

1. Запустили скрипт lab_iperf3_topo.py:

2. Посмотрели элементы топологии и завершили работу mininet:

3. Следующим шагом внесём в скрипт lab_iperf3_topo.py изменение, позволяющее вывести на экран информацию о хосте h1, а именно имя хоста, его IP-адрес, MAC-адрес. Для этого после строки, задающей старт работы сети, добавим нужную строку:

4. Запускаем скрипт с нашими изминениями:

5. Затем изменим скрипт lab_iperf3_topo.py так, чтобы на экран выводилась информация об имени, IP-адресе и MAC-адресе обоих хостов сети и проверим корректность отработки изменённого скрипта:

6. В начале скрипта lab_iperf3_topo2.py добавим записи об импорте классов CPULimitedHost и TCLink. Далее изменим строку описания сети, указав на использование ограничения производительности и изоляции. Следующим шагом изменим функцию задания параметров виртуального хоста h1, указав, что ему будет выделено 50% от общих ресурсов процессора системы. Аналогичным образом для хоста h2 зададим долю выделения ресурсов процессора в 45%. В конце изменим функцию параметров соединения между хостом h1 и коммутатором s3:

7. Сделали копию скрипта lab_iperf3_topo2.py и поместили его в подкаталог iperf:

8. Изменили код в скрипте lab_iperf3.py так, чтобы: на хостах не было ограничения по использованию ресурсов процессора и каналы между хостами и коммутатором были по 100 Мбит/с с задержкой 75 мс, без потерь, без использования ограничителей пропускной способности и максимального размера очереди.:

9. Запускаем скрипт на отработку (рис. [-@fig:010]):

10. Создаем Makefile:

11. Запускаем его:

Вывод

В ходе выполнения лабораторной работы познакомились с инструментом для измерения пропускной способности

сети в режиме реального времени — iPerf3, а также получили навыки проведения воспроизводимого

эксперимента по измерению пропускной способности моделируемой сети в среде Mininet

Список литературы. Библиография

[1] Mininet: https://mininet.org/