Modelação de Sistemas Físicos

Ano Académico 2021/2022 - 2º Semestre

1º TESTE - Resolução Parte Cálculo Computacional-Numérico

Data: 8 ABRIL 2022 **Duração:** 1 hora **Cotação:** 1) 1.5 + 1.5 + 2 = 5 valores

Hora: 17H00 **Disciplina:** 41769 2) 2 + 3 = 5 valores

Salas: 12.1.1 e 12.2.1.

NOTE:

a) Responda às perguntas **na vossa folha de prova**, justificando-as,

b) Indique claramente o sistema de eixos usado.

- c) **Esboce os gráficos**, indicando univocamente os pontos importantes. Se gravar as figuras, salve-as em formato png.
- d) Na vossa folha de prova indique os métodos, os algoritmos, passos, ... usados.
- e) Os ficheiros devem ser copiados para a caneta de memória do docente presente na sala com o nome e número do aluno (para poderem ser consultados quando o docente tiver dúvidas durante a correção).
- f) Tem de usar o seu computador portátil. Pode (e deve) usar os seus programas, assim como outros programas que tenha obtido.
- g) É um teste de consulta, mas não pode aceder à internet, incluindo para consultar documentos do python.

As respostas não podem ser escritas a lápis

Justifique todas as respostas

1. Galileo Galilei realizou várias experiências de uma bola a descer (com atrito muito fraco) numa rampa inclinada. Numa recriação dessas experiências obteve-se os seguintes resultados

t(s)	s (cm)
0.5	0.1
1.5	1.4
2.5	1.7
3.5	6.5
4.5	7.7
5.5	10.4
6.5	19.5
7.5	26.1
8.5	26.5
9.5	45.9
10.5	52.5

do percurso percorrido s e o tempo gasto t.

a) Trace o gráfico s em função de t, usando os dados da tabela, e faça um ajuste linear. Indique os valores do declive, e o seu erro, a ordenada na origem, e o seu erro, e o coeficiente de determinação r^2 .

- b) Trace o gráfico $\log(s)$ em função de $\log(t)$. Indique os valores do declive, e o seu erro, e o coeficiente de determinação r^2 .
- c) Pelos resultados obtidos nas alíneas anteriores, que conclui acerca da relação entre a distância percorrida no plano inclinado (s) e o tempo gasto no percurso (t). Justifique. Faça um outro gráfico que mostre essa relação.

Resolução resumida

Pelo metodo dos minimos quadraí han obtemos M = 5.44 cm/s Dm = 0.60 cm/s b = -10.2 cm $\Delta b = 3.8 \text{ cm}$ $r^2 = 0.89$

m = 2.011 $\Delta m = 0.084$ 5 = -0.864 $\Delta b = 0.14$ $r^2 = 0.985$

c) A regress as linear no grapes (log, log)

fornece $r^2 = 0.985 \times 1$, o pue sijuifica nun Sun ajuste

linear. Assim

0 7

 $m = 0.46 \text{ cm/s}^{-011}$ $\Delta m_{2} = 0.02 \text{ cm/s}^{2.011}$ b = -1.0 cm $\Delta b = 1.33$ $\Delta = (0.46 \text{ fo.02})^{\frac{2.011}{2.011}} - (1 \pm 2)$

- 2. Um paraquedista salta de um avião, a uma altitude de 800 m. As velocidades terminais típicas são 60.0 e 5.0 m/s para o salto livre e para o paraquedas aberto, respetivamente. Estas velocidades terminais correspondem à massa volúmica do ar à superfície do solo $\rho = 1.225 \text{ kg/m}^3$.
- a) Quanto tempo demoraria a chegar ao solo com o paraquedas fechado? E a que velocidade?
- b) Quanto tempo demora a chegar ao solo com o paraquedas aberto, considerando que o paraquedas abre (instantaneamente) 10 s depois do salto do avião.

Resolução resumida

Os valores envergen! tempo chejede ao volo 97.30 velocidade

Formulário

$$v_x(t) = \frac{dx}{dt}$$

$$a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$$

$$v_x(t+\delta t) = v_x(t) + \frac{dv_x}{dt}\Big|_t \delta t + \frac{1}{2}\frac{d^2v_x}{dt^2}\Big|_t \delta t^2 + \frac{1}{3!}\frac{d^3v_x}{dt^3}\Big|_t \delta t^3 + \sigma(\delta t^4)$$

Grandezas físicas e conversões:

$$1 \text{ polegada} = 1 \text{ in} = 0.39370 \text{ m}$$

$$1 \text{ pé} = 1 \text{ ft} = 2,54 \text{ cm}$$

$$1 \text{ milha} = 1,609344 \text{ km}$$

$$1 \text{ cv (cavalo - vapor métrico)} = 735,4975 \text{ W}$$
 $1 \text{ hp (cavalo - vapor inglês)} = 745,715 \text{ W}$

$$1 \text{ hp (cavalo - vapor inglês)} = 745,715 \text{ W}$$

$$M_{Sol} = M = 1.989 \times 10^{30} \text{ kg}$$

$$1 \text{ AU} = 1.489 \times 10^{11} \text{ m}$$

$$1 \text{ ano} = 365,24 \text{ dias}$$

$$g = 9.80 \text{ m/s}^2$$

$$G = 6.67408 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 4\pi^2 \text{ AU}^3/(\text{M} \cdot \text{ano}^2) R_{Terra} = 6371 \text{ km}$$

$$=4\pi^2 AU^3/(M\cdot$$

$$R_{Terra} = 6371 \text{ km}$$

Sistema Internacional de Unidades (SI):

Quantidades básicas

Quantidade	unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Temperatura	kelvin	K
Corrente elétrica	ampere	A

Outras quantidades importantes

Quantidade	unidade	Símbolo
Velocidade	metro/segundo	m/s
Aceleração	metro/segundo ²	m/s ²
Força	$kilograma \times metro/segundo^2 = newton$	N
Energia	kilograma \times metro2 /segundo ² = joule	J
Potência	$kilograma \times metro2 / segundo^3 = watt$	W