TILLICIE CONTONE CONTONE

19/8 and their generating functions Partitions

PEFN An (integer) partition $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ of n · weakly decreasing, eventually zero;

sequence of nonnegative integers

e 'size' of) with 11+ 12+ 13+ - = - n. We write & + n ('x ludash n') and

2.9. X= (5,5,3,1,0,0,...)= (5,5,3,1) -14=5+5+34 Its length L(x):=#\si: \; > 0\} = # of nonzero parts \; Its Young diagram is a left + top justified array of boxes, with hi boxes in the ith row from the top!

e.g., $\lambda = (5,5,3,1) \iff$

Let p(h) = # of partitions x + n

	Den).	[n
	• • • •	
mm、	7	5
"四"和"里"	5	4
	3	3
3四、一	2.	2
7 日	(1
of Complex and Lon	1	0
& Cempty partition,	•	

unique partition of 0).

Y= Young's lattice, the poset of all partitions, ordered by containment of Young diagrams i means & obtained from µ by adding one box

$$\sum_{n\geq 0} p(n) q^n = \sum_{n\geq 0} q^{|X|} = \sum_{n\geq 0} q^{|X|} = \sum_{n\geq 0} q^{n} = \sum_{n\geq 0} q^{n}$$

9/10 G.f.'s for restricted classes of partitions; Let d(n) = # of partitions of n into distinct parts. $\frac{n}{0}$ Ø a 田宮 阳阳田太阳春 = (1+9)(1+92)(1+93)(1+94)... = (1+9)(1+93)(1+94)... D(q):= \(d(n) q^n

Let o(n) := # partitions of n into odd parts.

	n 1	0(2)		<u>:</u>	
	0	_	₡		
~			0		٠,
_	2		H		
	3	2	<u> </u>	目	
	4	2	8		
	5	T3	ш	TO HO	

A TILLLILL TOUR TELEVISION

Looks like possibly o(n) = d(h), but how to show it? G. + ?;

$$O(q) := \sum_{n \ge 0} o(n) q^n = (1+q+q^2+...) (1+q^3+q^6+...)$$

$$= \frac{1}{1-q} \cdot \frac{1}{1-q^2} \cdot \frac{1}{1-q^2} \cdot \dots = \frac{1}{1} \frac{1}{1-q^2} \cdot 1$$

$$= \frac{1}{1-q} \cdot \frac{1}{1-q^3} \cdot \frac{1}{1-q^2} \cdot \dots = \frac{1}{1} \frac{1}{1-q^2} \cdot 1$$

$$= \frac{1}{1-q} \cdot \frac{1}{1-q^3} \cdot \frac{1}{1-q^2} \cdot \dots = \frac{1}{1-q^2} \cdot \frac{1}{1-q^2} \cdot \dots = \frac{1}{1-q^2} \cdot \frac{1}{1-q^2} \cdot \dots = \frac$$

```
TO COUNTY TO SEE TO COUNTY OF THE PARTY OF T
              How to show D(9) = O(9)?
             Well, D(q)= (1+q)(1+q2)(1+q3)--.
                                                        = \frac{(1-q^2)(1-(q^2)^2)(1-(q^3)^2)}{(1-q)(1-q^2)(1-q^2)(1-q^3)}
= \frac{(1-q^2)(1-q^4)(1-q^4)(1-q^4)}{(1-q^3)(1-q^4)(1-q^4)}
                                                                                                                                                                                             Re(=4) (1+x)(1-x)
                                                   = \overline{((-q)(1-q^2)(1-q^2)} = O(q) 
           Was that manipulation ok? Yes! Thinking slightly differently...
           Let R(9) = 11-9) [1-93] (1-95) -- = 1 0(9) E [[97]
           Want to Show , 1 = D(q) R(q) in C[cq]]
                1+0.9+0.92,...
                                                                       ( (۱٠٠٩ (۱۲۹۶)(۱۲۹۶) (۱۰۰۹) (۱۲۹۹)(۱۲۹۶) ) . . . )
                                                                        = (1-94) (1-43)(1+43)...) ((1-43)(1-45)...)
= (1-94) (1+43)(1+94)...) ((1-43)(1-95)...)
                                                                        = (1-94) (1-96) ( (1+94)(1+95) ... ) (11-95) (1-97)... )
                                                                                                 = 1+0.9+0.92+0.93+ ...
                                                                                    · · et cetera
       Note: 7 bijective proof that d(n) = o(n) as well
   ( See Stanley Prop. 1.85) Basic idea is binary expansion:
       (9.5, 3) = (9.5, 5.2, 3.2, 1.3) = (9.5, 5.2, 3.2, 3.2, 1.2, 2.2, 3.3)
n=114
                             (-) μ = (9.2°, 9.2°, 5.2°, 5.23, 3.2', 1.2°, 1.2')
                                          = (9,36,20,40,6,1,2)
= (40,36,20,9,6,2,1) \in d(n)
```

```
THE TOTAL STREET STREET STREET
               Some useful formal power series
               Let's define and study some specific elements of [CI]:
              DEFN ex:= \( \frac{x^n}{n!} = 1 + \frac{x^2}{2} + \frac{x^3}{3!} + \dots
               log(1+x):= \(\int_{\notag}(-1)^{\notag}\) \(\frac{\x^{\notag}}{\x^{\notag}} = \x - \frac{\x^{2}}{2} + \frac{\x^{3}}{3} - \frac{\x^{4}}{4} + \dots
                  where (k) := \lambda (\lambda - 1) (\lambda - 2) - (\lambda - (k - 10)) \in \mathbb{C} "generalized to binantal Gestsicient"
              \forall \lambda \in \mathbb{C}, (1+x)^{\lambda} := \sum_{k>\lambda} (\sum_{k}) \times^{k}
                 (just like for nEN, (") = "! " = " (n-1) ... (n-(K-1)))
              These formal power series satisfy the properties you'd expet:
           E.y. ()(1+x)) (1+x) M = (1+x) )+ ME C[[x]] +, MEC
               @ exey = ex-y e ( [[x, y]]
                3) e log(1+x) = 1+x, e+c...
                defined to be = 1 + \frac{\log(1+x)}{2} + \frac{\log(1+x)^2}{2!} + \cdots

= 1 + \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots\right) + \frac{\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots\right)^2}{2!} + \cdots
                Hwhy does this even converge in CICXTT?
                Prop. If A(x)= Sanxn, B(x) = E boxn, and bo = 0
                then A(B(x)):= & an (B(x)) converges in CTTX]],
                How to justify O, @, B, etc. ? Could do a
                tedious manipulation of coet sicients, but
                instead, since ex, log(1+x), (1+x1) are also
                analytic functions we are familiar with
                (whose power series expansions are as above), we can
                 use a trick from complex analysis ...
```

いっしつしつしゅうしゅう ري 1dddddddddddddddann

Standard fact from complete enalysis, true under weaker hypotheses too. 1hm If f(z)= 2 an 2" is analytic for 121 < R for Some R>0, and I vanishes on 121<R, then ao = 9, (R) x = (R) x = (R) x = (R) x K, but also (1-x)n = (1+(-x))-n= (-n)(-n-1)(-n-2)...(-n-(x-1)) (-x)k $=\sum_{k>n}\binom{n+k-1}{k}\times$ 'n muttichage k') ((n)) := # K element muttisets w/ entries in \$1,2, ..., mig e.g. \$1,1,2, 4,4,4,73 is Stars and bars 7 -evenent multisalment of Eliz, Stars indicate how many of each element is chosen bars separate bins for each element = \(\frac{2}{\kappa}\left(\frac{-1}{\kappa}\right)\left(\frac{-4}{\kappa}\right)^{\kappa} = \(\frac{2}{\kappa}\left(\frac{1+k-1}{\kappa}\right)^{\kappa}^{\kappa}\kappa^{\kappa} = \(\frac{2}{\kappa}\left(\frac{1+k-1}{\kappa}\right)^{\kappa} \\ \frac{1+k-1}{\kappa}\left(\frac{1+k-1}{\kappa}\right)^{\kappa} \\ \frac{1+k-1}{\kappa}\left(\frac{1+k-K=0 (K)=K+1 = K=0 (K+1) 4K K ((+(-4X))~/ (1-4x)3 = \(4 \times \(\lambda \cdot \lambda \lambda \lambda \lambda \cdot \lambda \lambda \cdot \lambda \lambda \lambda \cdot \lambda \lambda \cdot \lambda \lambda \cdot \lambda \lambda \lambda \cdot \lambda iseful for extracting coefficients a rational function after performing the Partial fraction expansion

- -

Another tool france (culus that's use ful for R[[X]]

DEFN For A(x) = Z an x" \in R[[X]], we define

the formal derivative A'(x) := Z n. an x" \in R[[X]]

antant an

n times

The derivative Satisfres the usual rules from calculus;

-
$$(A(x) + B(x))' = A'(x) + B'(x)$$

$$-\left(\frac{1}{A}\right)' = \frac{-A'}{A^2}$$

$$+ (A(B(X)))' = A'(B(X)) \cdot B'(X)$$

9/18 Quick review of binomial (and multinomial) coefficients The Binomial $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ has several (easy) interpretations = # words with k 1's (n-k) 2's, =# \$ 1122, 1212, 1221, 3 1.e., rearrangements of = # lattice paths in Z taking east or north steps, from (0,0) to (K, n-K) 123466 789 NEENEEENE ←(3) (could be 1's/2's instead of ES/N's) (0,0) = # subsets of [n]:= \{1,2, ..., n\} of size K eg. (2:3 4 5 6 7 8 9 ←> £2,3,5,6,7,93 € [9] (position of E's in word) Of course, we have Thm (Binomial Theorem) (x+y)" = \(\frac{2}{2}\)(\frac{n}{k}\)xky"-k Lenoma (Pascal's Identity) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ Pf (bijection)! Multi nomials How many rearrangements (anagrams) of BANANAS? i.e., of 3A's, 1B, 2N's, 1S? (equiv. of AAA BNNS)

14400

۷,

٥

<u>e</u>,

C

Q

Ů,

I a transitive action of the symmetric group G7 of permutations of [7] on the rearrangements e.g., perm. T = (1234567) sends AAA BNNS-> AABANSN The Stabilizer of this action is 63 x 6, x 62 x 6, E GZ The Multinomial $(k_1, k_2, ..., k_m) = \frac{n!}{k_1! k_2! - k_m!}$ for $n = k_1 + k_2 + ... + k_m$ = # words K, 1's, Km m's, i.e., rearrang's of line 22-2- MM-m = # lattice paths in Z m taking steps &, e'z, ..., em (1,0,0,70) (0,1,0,-0) (0,0,-,1) from 0=(0,-,0) to (Ki, Kz, ..., Km) (same correspondence between words + walks as w/ binomials) = # chains \$= So C Sk, C Skitk2 C -- C Sn=Kit-tKm= [n] of subsets of En]= El,2,..., n3 for which #S; = i V i=0, K, K, K, K, ..., N eg. for (3,1,2,1) have 2131314 ← φ ⊂ \21,4,63 ⊂ \21,24,63 di334563 Note (") = (n, n-k) in multinomial notation Also note: (k, , k2, -, Km) = (k,). (n-k,). (n-(k,+k,))... (n-(k,+-+k,-)) (Km) And...

Multinomial: (x,+x2+...+xm)" = \(\lambda_1, \kappa_2, \lambda_1, \kappa_1 \times \kap

Kitk2+-+Km=n