东南大学学生会

Students' Union of Southeast University

07-08-2高数AB期末试卷

一. 填空题(本题共9小题,每小题4分,满分36分)

1.
$$\lim_{x \to 0} (e^x - x)^{\frac{1}{x^2}} = \underline{\hspace{1cm}}$$
;

2. 设
$$y = x^{\sin \frac{1}{x}}$$
,则 $dy =$ _______

3. 已知
$$f'(3) = 2$$
,则 $\lim_{h \to 0} \frac{f(3-h) - f(3)}{\sin 2h} =$ _____;

4. 对数螺线
$$\rho = e^{\theta}$$
 在 $\theta = \frac{\pi}{2}$ 对应的点处的切线方程是_____;

5. 设
$$y = y(x) \left(\sqrt{\frac{\pi}{2}} < x < \sqrt{\frac{5\pi}{2}} \right)$$
 是由方程 $\int_0^y e^{t^2} dt - \int_0^x \cos t^2 dt = 0$ 确定的隐函数,则

y(x)的单调增加区间是 ________,单调减少区间是 ________;

7.
$$\lim_{n\to\infty} \left(\frac{n}{n^2+3} + \frac{n}{n^2+12} + \dots + \frac{n}{n^2+3n^2} \right) = \underline{\hspace{1cm}}$$

8.
$$\int_{-\pi}^{\pi} \left(\sqrt{1 + \cos 2x} + \cos x^2 \sin^3 x \right) dx =$$
_____;

9. 二阶常系数线性非齐次微分方程
$$y'' + y = 2\sin x$$
 的特解形式为

y*=_____.

二. 计算下列积分(本题共3小题,每小题7分,满分21分)

10.
$$\int_0^2 x^2 \sqrt{2x - x^2} \, dx$$

11.
$$\int \arctan\left(1+\sqrt{x}\right) dx$$

$$12. \int_{\frac{\pi}{2}}^{+\infty} e^{-x} \cos x dx$$

东南大学学生会 Students' Union of Southeast University

三 (13). (本题满分 8 分) 设
$$f(x) = \begin{cases} xe^{x^2}, & x \ge 0 \\ x, & x < 0 \end{cases}$$
, $F(x) = \begin{cases} \frac{1}{2}e^{x^2}, & x \ge 0 \\ \frac{1}{2}x^2, & x < 0 \end{cases}$.

(1) 问 F(x) 是否为 f(x) 在 $(-\infty, +\infty)$ 内的一个原函数? 为什么? (2) 求 $\int f(x) dx$.

四(14).(本题满分 7 分)设
$$f(x) = \int_{x^2}^x \frac{\sin(xt)}{t} dt$$
, 求 $\lim_{x\to 0} \frac{f(x)}{x^2}$.

五 (15). (本题满分 6 分) 求微分方程 $(y\cos x + \sin 2x)dx - dy = 0$ 的通解.

六 (16). (本題满分 8 分) 设 f(x)、 g(x) 满足 f'(x) = g(x) , $g'(x) = 2e^x - f(x)$,且 $f(0) = 0, g(0) = 2 \text{ , } \ \, x \int_0^\pi \left(\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right) dx$

七(17).(本题满分 8 分) 设直线 y = ax (0 < a < 1) 与抛物线 $y = x^2$ 所围成的图形面积 为 S_1 ,它们与直线 x = 1 所围成的图形面积为 S_2 .(1)试确定 a 的值,使 $S_1 + S_2$ 达到最小,并求出最小值.(2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积.

八(18).(本题满分 6 分)设 $f(x) = \int_{x}^{x+1} \sin t^{2} dt$, 求证: 当 x > 0 时, $\left| f(x) \right| < \frac{1}{x}$.