

Matemática Discreta 1

Regras de Inferência e Argumentos

AULA 5

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Recordando ...

Implicação

Regras de Inferência

Argumentos

Implicação Lógica

$$\circ P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

 Na tabela verdade de P e Q não acontece uma linha (em função de p, q e r) em que P tenha valor V e Q tenha valor F.

Recordando ...

Implicação

Regras de Inferência

Argumentos

Nota 2

Os símbolos \rightarrow e => são distintos:

- O símbolo → é de operação lógica
- 2)O símbolo => é de *relação*, pois estabelece que a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

Recordando ...

Implicação

Regras de Inferência

Argumentos

Teorema 2

A proposição P(p,q,r,...) implica a proposição Q(p,q,r,...), isto é

$$P(p,q,r,...) => Q(p,q,r,...)$$

Se e somente se a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

Regras de Inferência

Implicação

Regras de Inferência

Argumentos

<u>Definição</u>:

Regras de Inferência são implicações lógicas utilizadas para executar os passos de uma dedução ou demonstração.

Implicação

Regras de Inferência

Argumentos

р	q	p + q	p → p+q	$q \rightarrow p+q$
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	V	V

Regras de Inferência

Adição: p⇒p+q e q⇒p+q

Exemplo 1 (cont.)

Implicação

Regras de Inferência

Argumentos

р	q	p • q	$p \cdot q \rightarrow p$	$p \cdot q \rightarrow q$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

Regras de Inferência

Simplificação: p • q ⇒ p e p • q ⇒ q

Exemplo 1 (cont.)

Implicação

Regras de Inferência

Argumentos

р	q	p • q	p + q	$p \leftrightarrow q$	p • q → p + q	$p \bullet q \rightarrow p \leftrightarrow q$
V	V	V	V	V	V	V
V	F	F	V	F	V	V
F	V	F	V	F	V	V
F	F	F	V	F	V	V

Regras de Inferência

$$p \bullet q \Rightarrow p + q$$

$$p \bullet q \Rightarrow p \leftrightarrow q$$

Regras de Inferência

Argumentos

Exemplo 2

р	q	((p + q))	•	~p)	\rightarrow	q
V	V	V	F	F	V	V
V	F	V	F	F	V	F
F	V	V	V	V	V	V
F	F	F	F	V	V	F

Regra do Silogismo Disjuntivo (1)

$$(p + q) \cdot \sim p \Rightarrow q$$

 $p \cdot \sim p + q \cdot \sim p = q \cdot \sim p$

Regras de Inferência

Argumentos

Exemplo 2 (cont.)

р	q	((p + q))	•	~q)	\rightarrow	p
V	V	V	F	F	V	V
V	F	V	V	V	V	V
F	V	V	F	F	V	F
F	F	F	F	V	V	F

Regra do Silogismo Disjuntivo (2)

$$(p + q) \bullet \sim q \Rightarrow p$$

Regras de Inferência

Argumentos

Exemplo 3

р	q	((p + q)	•	~p)	\rightarrow	p + q
V	V	V	F	F	V	V
V	F	V	F	F	V	V
F	V	V	V	V	V	V
F	F	F	F	V	V	F

Regra de Simplificação (aplicação)

$$(p + q) \bullet \sim p \Rightarrow (p + q)$$

Regras de Inferência

Argumentos

Exemplo 3 (cont.)

р	q	((p + q))	•	~p)	\rightarrow	~ p
V	V	V	F	F	V	F
V	F	V	F	F	V	F
F	V	V	V	V	V	V
F	F	F	F	V	V	V

Regra de Simplificação (aplicação)

$$(p + q) \bullet \sim p \Longrightarrow \sim p$$

Regras de Inferência

Argumentos

Exemplo 4

р	q	((p → q)	•	p)	\rightarrow	q
V	V	V	V	V	V	V
V	F	F	F	V	V	F
F	V	V	F	F	V	V
F	F	V	F	F	V	F

Regra Modus Ponens (Modo que afirma)

$$(p \rightarrow q) \bullet p \Rightarrow q$$

Regras de Inferência

Argumentos

Exemplo 5

р	q	((p → q)	•	~q)	\rightarrow	~ p
V	V	V	F	F	V	F
V	F	F	F	V	V	F
F	V	V	F	F	V	V
F	F	V	V	V	V	V

Regra Modus Tollens (Modo que nega)

$$(p \rightarrow q) \bullet \sim q \Rightarrow \sim p$$

$$(\sim q \rightarrow \sim p) \bullet \sim q \Rightarrow \sim p$$

Regras de Inferência

Argumentos

Exemplo 5 (cont.)

р	q	(~p	\rightarrow	(p → q))
V	V	F	V	V
V	F	F	V	F
F	V	V	V	V
F	F	V	V	V

$$\sim p \Rightarrow (p \rightarrow q)$$

 $\sim p + q$

Implicação

Regras de Inferência

Argumentos

р	q	r	((p →q)	•	$(q \rightarrow r))$	\rightarrow	(p → r)
V	V	V	V	V	V	V	V
V	V	F	V	F	F	V	F
V	F	V	F	F	V	V	V
V	F	F	F	F	V	V	F
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

Regra do Silogismo Hipotético

$$(p \rightarrow q) \bullet (q \rightarrow r) => (p \rightarrow r)$$

Implicação

Regras de Inferência

Argumentos

As condicionais $p \rightarrow (p \bullet q) e p \rightarrow q$ tem tabelas verdade idênticas:

р	q	p • q	$p \to q$	p → (p • q)	$(p \to q) \to (p \to (p \bullet q))$	$ (p \rightarrow (p \bullet q)) \rightarrow (p \rightarrow q) $
V	٧	V	V	V	V	V
V	F	F	F	F	V	V
F	٧	F	V	V	V	V
F	F	F	V	V	V	V

Por conseguinte elas são equivalentes:

$$p \rightarrow (p \bullet q) \iff p \rightarrow q$$

Daí:
$$p \rightarrow q \Rightarrow p \rightarrow (p \cdot q)$$
 e

$$p \rightarrow (p \bullet q) => p \rightarrow q$$

(Regra de Absorção)

Implicação

Regras de Inferência

Argumentos

A bicondicional p \leftrightarrow q e a conjunção (p \rightarrow q) • (q \rightarrow p) têm tabelas verdade idênticas

р	q	$p \leftrightarrow q$	$p \to q$	q o p	(p→q) • (q→p)
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Por conseguinte elas são equivalentes:

$$p \leftrightarrow q \ll (p \rightarrow q) \cdot (q \rightarrow p)$$

Daí:
$$p \leftrightarrow q \Rightarrow (p \rightarrow q)$$
 e $p \leftrightarrow q \Rightarrow (q \rightarrow p)$

Regras de Inferência

Argumentos

Exercício 1

Demonstre analiticamente que a bicondicional p ↔ q e a disjunção
(p • q) + (~p • ~q) são equivalentes.

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

Regras de Inferência

Argumentos

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- ((p q) + \sim p) ((p q) + \sim q)
- ((p + \sim p) (q + \sim p)) ((p + \sim q) (q + \sim q))

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- ((p q) + \sim p) ((p q) + \sim q)
- $((p + \sim p) \bullet (q + \sim p)) \bullet$

$$((p + \sim q) \bullet (q + \sim q))$$

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- ((p q) + \sim p) ((p q) + \sim q)
- 3) $((p + \sim p) \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot (q + \sim q))$
- (V $(q + \sim p)$) $((p + \sim q) V)$
- $(q + \sim p) \cdot (p + \sim q)$

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- 2) $((p \cdot q) + \sim p) \cdot ((p \cdot q) + \sim q)$
- 3) $((p + \sim p) \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot (q + \sim q))$
- (V $(q + \sim p)$) $((p + \sim q) V)$
- $(q + \sim p) \bullet (p + \sim q)$
- $(\sim p + q) \bullet (\sim q + p)$

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- ((p q) + \sim p) ((p q) + \sim q)
- 3) $((p + \sim p) \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot (q + \sim q))$
- (V $(q + \sim p)$) $((p + \sim q) V)$
- $(q + \sim p) \cdot (p + \sim q)$
- 6) $(\sim p + q) \cdot (\sim q + p)$
- 7) $(p \rightarrow q) \bullet (q \rightarrow p)$

Regras de Inferência

Argumentos

- (p q) + (\sim p \sim q)
- ((p q) + \sim p) ((p q) + \sim q)
- $((p + \sim p) \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot (q + \sim q))$
- (V $(q + \sim p)$) $((p + \sim q) V)$
- $(q + \sim p) \cdot (p + \sim q)$
- 6) $(\sim p + q) \cdot (\sim q + p)$
- 7) $(p \rightarrow q) \bullet (q \rightarrow p)$
- 8) $p \leftrightarrow q$

Regras de Inferência

Argumentos

Exercício 2

Mostre que a negação da bicondicional \sim (p \leftrightarrow q) e a disjunção exclusiva p \oplus q, também expressa como (p \bullet \sim q) + (\sim p \bullet q), são equivalentes.

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

$$^{2)} \sim ((\sim p + q) \bullet (\sim q + p))$$

Regras de Inferência

Argumentos

$$\sim (p \leftrightarrow q) \ll \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

$$^{2)} \sim ((\sim p + q) \bullet (\sim q + p))$$

$$\sim (\sim p + q) + \sim (p + \sim q)$$

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

$$\sim ((\sim p + q) \cdot (\sim q + p))$$

$$^{3)} \sim (\sim p + q) + \sim (p + \sim q)$$

(p
$$\bullet$$
 \sim q) + (\sim p \bullet q)

Regras de Inferência

Argumentos

1)
$$\sim (p \leftrightarrow q) \ll \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

$$^{2)} \sim ((\sim p + q) \bullet (\sim q + p))$$

$$^{3)} \sim (\sim p + q) + \sim (p + \sim q)$$

(p
$$\bullet$$
 \sim q) + (\sim p \bullet q)

(p •
$$\sim$$
q) + (\sim p • q) <=> p \oplus q

Regras de Inferência

Argumentos

$$^{1)} \sim (p \leftrightarrow q) <=> \sim ((p \rightarrow q) \bullet (q \rightarrow p))$$

$$^{2)} \sim ((\sim p + q) \bullet (\sim q + p))$$

$$^{3)} \sim (\sim p + q) + \sim (p + \sim q)$$

(p
$$\bullet$$
 \sim q) + (\sim p \bullet q)

(p •
$$\sim$$
q) + (\sim p • q) <=> p \oplus q

6)
$$\sim (p \leftrightarrow q) <=> p \oplus q$$

Regras de Inferência

Argumentos

Exercício 3

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (p + r) \rightarrow (q + s)$$

Regra do Dilema Construtivo

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (p + r) \Rightarrow (q + s)$$

Regras de Inferência

Argumentos

Exercício 4

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) \rightarrow (\sim p + \sim r)$$
$$(\sim q \rightarrow \sim p) \bullet (\sim s \rightarrow \sim r) \bullet (\sim q + \sim s) \rightarrow (\sim p + \sim r)$$

Regra do Dilema Destrutivo

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) => (\sim p + \sim r)$$

Regras de Inferência (resumo)

$$p \Rightarrow p + q$$

$$q \Rightarrow p + q$$

$$p \bullet q \Rightarrow p$$

$$p \cdot q \Rightarrow q$$

$$p \bullet q \Rightarrow p \bullet q$$

$$p \bullet q \Rightarrow q \bullet p$$

IV. Regra da Absorção (a):
$$p \rightarrow q \Rightarrow p \rightarrow (p + q)$$

$$p \rightarrow q \Rightarrow p \rightarrow (p + q)$$

V. Regra da Absorção (b):
$$p \rightarrow q \Rightarrow p \rightarrow (p \cdot q)$$

$$p \rightarrow q \Rightarrow p \rightarrow (p \bullet q)$$

$$(p \rightarrow q) \bullet p \Rightarrow q$$

$$(p \rightarrow q) \bullet \sim q \Rightarrow \sim p e \sim p \Rightarrow (p \rightarrow q)$$

$$(p+q) \bullet \sim p \Rightarrow q \bullet (p+q) \bullet \sim q \Rightarrow p$$

$$(p \rightarrow q) \bullet (q \rightarrow r) \Rightarrow (p \rightarrow r)$$

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (p+r) \Rightarrow (q+s)$$

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) \Rightarrow (\sim p + \sim r)$$

Argumentos

Implicação

Regras de Inferência

Argumentos

Definição (recordação):

Sejam P_1 , P_2 , ..., P_n ($n \ge 1$) e Q proposições quaisquer, simples ou compostas.

Chama-se <u>argumento</u> à afirmação que a sequência finita de proposições P_1 , P_2 , ..., P_n (chamadas premissas), têm como consequência ou acarretam a proposição final Q (chamada conclusão).

Um argumento de premissas P₁, P₂, ..., P_n e conclusão Q é indicado por:

$$P_1, P_2, ..., P_n \vdash Q$$

Diz-se que P₁, P₂, ..., P_n acarretam Q, ou que Q decorre de P₁, P₂, ..., P_n.

Validade de um Argumento

Implicação

Regras de Inferência

Argumentos

<u>Definição</u>:

Um argumento $P_1, P_2, ..., P_n \longrightarrow Q$ diz-se **válido** se e somente se a conclusão Q é verdadeira todas as vezes em que as premissas $P_1, P_2, ..., P_n$ forem verdadeiras.

Um argumento que não é válido é chamado sofisma.

Critério de Validade

Implicação

Regras de Inferência

Argumentos

Teorema:

Um argumento $P_1, P_2, ..., P_n \longrightarrow Q$ é **válido** se e somente se a condicional

$$(P_1 \bullet P_2 \bullet \dots \bullet P_n) \rightarrow Q$$

é tautológica.

Diz-se que ao argumento $P_1, P_2, ..., P_n \vdash Q$ *corresponde* a condicional $(P_1 \bullet P_2 \bullet ... \bullet P_n) \to Q$, ou que esta é a condicional *associada ao* argumento.

Como consequência do teorema pode-se também expressar um argumento válido como:

$$(P_1 \bullet P_2 \bullet \dots \bullet P_n) \Rightarrow Q$$

Implicação

Regras de Inferência

Argumentos

Argumentos Válidos e

Regras de Inferência

As regras de inferência vistas até aqui são todas argumentos válidos.

Uso das Regras de Inferência

Método Dedutivo

Regra Modus Tollens

(1)
$$q \cdot r \rightarrow s \cdot P$$

$$(3) \sim (q \bullet r)$$

Regra do Dilema Construtivo

$$(1) (p \bullet q) \rightarrow \sim r \qquad \mathbf{P}$$

(2)
$$s \rightarrow t$$

(3)
$$(p \cdot q) + s \quad P$$

(4) $\sim r + t \quad Q$

Regra do Silogismo Hipotético

(1)
$$|x| = 0 \rightarrow x = 0$$

(2)
$$x = 0 \rightarrow x + 1 = 1$$

(3)
$$|x| = 0 \rightarrow x + 1 = 1$$
 Q

Regra Modus Ponens

$$(1) x \in (A \cap B) \rightarrow x \in A \triangleright$$

$$(2) x \in (A \cap B)$$

$$(3) \times \in A$$

Verificar a validade do argumento:

$$p \bullet q, p+r \rightarrow s \longmapsto p \bullet s$$

 $(1) p \bullet q$

P

(2) $p+r \rightarrow s$

P

$$p \bullet q, p+r \rightarrow s \longmapsto p \bullet s$$

(1)
$$p \cdot q$$
 P
(2) $p+r \rightarrow s$ P
(3) p 1 - SIMP

$$p \bullet q, p+r \rightarrow s \longmapsto p \bullet s$$

$$p \bullet q, p+r \rightarrow s \longmapsto p \bullet s$$

(1)
$$p \cdot q$$
 P
(2) $p+r \rightarrow s$ P
(3) p 1 - SIMP
(4) $p+r$ 3 - AD
(5) s 2,4 - MP

$$p \bullet q, p+r \rightarrow s \longmapsto p \bullet s$$

(2)
$$p+r \rightarrow s$$

(4)
$$p+r$$
 3 - AD

$$x=y \rightarrow x=z, x \neq y \rightarrow x < z, x < z \rightarrow y > z, y \neq z \bullet x \neq z \longmapsto y > z$$

- (2) $x \neq y \rightarrow x < z$
- (3) $x < z \rightarrow y > z P$
- (4) $y \neq z \bullet x \neq z$

$$x=y \rightarrow x=z, x \neq y \rightarrow x < z, x < z \rightarrow y > z, y \neq z \bullet x \neq z \longmapsto y > z$$

(1)
$$X = y \rightarrow X = Z$$

(2)
$$x \neq y \rightarrow x < z$$

(3)
$$x < z \rightarrow y > z P$$

(4)
$$y \neq z \bullet x \neq z$$

$$(5) x \neq z$$

$$x=y \rightarrow x=z, x \neq y \rightarrow x < z, x < z \rightarrow y > z, y \neq z \bullet x \neq z \longmapsto y > z$$

$$(1) X = Y \rightarrow X = Z P$$

(2)
$$x \neq y \rightarrow x < z$$

(3)
$$x < z \rightarrow y > z P$$

(4)
$$y \neq z \bullet x \neq z$$

$$(5) \times \neq Z$$

(6)
$$x \neq y$$

$$x=y \rightarrow x=z, x \neq y \rightarrow x < z, x < z \rightarrow y > z, y \neq z \bullet x \neq z \longmapsto y > z$$

(1)
$$X = y \rightarrow X = Z$$

(2)
$$x \neq y \rightarrow x < z$$

(3)
$$x < z \rightarrow y > z P$$

(4)
$$y \neq z \bullet x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

(6)
$$x \neq y$$
 1,5 - MT

(7)
$$x < z$$
 2,6 - MP

$$x=y \rightarrow x=z, x \neq y \rightarrow x < z, x < z \rightarrow y > z, y \neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

(3)
$$x < z \rightarrow y > z P$$

(4)
$$y \neq z \bullet x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

(6)
$$x \neq y$$
 1,5 - MT

(7)
$$X < Z$$
 2,6 - MP

(8)
$$y > z$$
 3,7 - MP

Uso das Regras de Inferência

Demonstração Condicional

O argumento:
$$P_1, P_2, ..., P_n \longmapsto A \rightarrow B$$
 (1) cuja conclusão é a condicional $A \rightarrow B$

Será válido se a condicional seguinte for tautológica:

$$(P_1 \bullet P_2 \bullet P_3 \bullet \dots \bullet P_n) \to (A \to B) \tag{2}$$

Pela regra da importação a condicional (2) será equivalente a:

$$(P_1 \bullet P_2 \bullet P_3 \bullet \dots \bullet P_n \bullet A) \rightarrow B \tag{3}$$

Assim (1) será válido se e somente se for válido o argumento:

$$P_1, P_2, \dots, P_n, A \vdash B$$
 (4)

Uso das Regras de Inferência

Demonstração Indireta ou Redução ao Absurdo

Dado o argumento:
$$P_1, P_2, ..., P_n \longrightarrow Q$$
 (1)

Vamos introduzir o argumento ~Q e provar a contradição C:

$$P_1, P_2, P_3, \dots, P_n, \sim Q \longrightarrow C$$
 (2)

Então, pela Demonstração Condicional (DC), o argumento seguinte também é válido:

Contradição = F

$$P_1, P_2, P_3, \dots, P_n \quad \longleftarrow \quad \sim Q \rightarrow C \quad (3)$$

Daí:
$$\sim Q \rightarrow C \Leftrightarrow \sim \sim Q + C \Leftrightarrow Q + F \Rightarrow Q$$

O que prova o argumento (1) !!!