UTO EJERCICIOS: CONCEPTOS BÁSICOS DE ELECTRICIDAD-ELECTRÓNICA

- 1.- Dadas dos resistencias R1 = 10 ohm y R2 = 20 ohm. Calcular :
 - a) Resistencia total si las dos están en serie.
 - b) Resistencia equivalente si las dos están en paralelo.
 - c) Si en los extremos de las resistencias se aplica 12V calcular :
 - 1. Intensidad del sistema serie.
 - 2. Intensidad total del sistema paralelo
 - 3. Intensidad R1 del sistema paralelo.
 - 4. Intensidad R2 del sistema paralelo.
 - 5. Comprobar que Intensidad R1 + Intensidad R2 es igual a Intensidad total del sistema paralelo.

- a) Intensidad del circuito.
- b) Potencia resistencia R v R BAT.
- c) Potencia entregada por la pila.
- d) Rendimiento de la pila (relación entre potencia R y potencia r)

Datos : E_BAT1 = 11V, R_BAT1 = 3 ohm, E_BAT2 = 12,5V, R_BAT2 = 2 ohm, R = 3 ohm.

- a) Intensidad de la Resistencia R generada por la BAT1.
- b) Intensidad de la Resistencia R generada por la BAT2.
- c) Intensidad total de la Resistencia R.
- d) Tensión A-B.
- e) Intensidad BAT1
- f) Intensidad BAT2
- g) Potencia R BAT1 y R BAT2.
- h) Potencia BAT1 y BAT2.
- i) Rendimiento BAT1 y BAT2. (PR/PBAT1 y PR/PBAT2)

- a) Equivalente Thevenin en los puntos A-B. (Vth con circuito abierto, Ith en cortocircuito)
- b) Dibujar el circuito equivalente Thevenin.
- c) Intensidad por la resistencia R.
- d) Potencia en la resistencia R.
- e) Potencia en la resistencia thevenin, Rth.
- f) Potencia entregada por la pila equivalente thevenin
- g) rendimiento del circuito (PR/PBAT_thevenin)
- 5.- Teorema de Norton del circuito de las dos pilas con los mismos datos del ejercicio 3. Calcular :
 - a) Equivalente Norton en los puntos A-B. (se puede hacer facilmente con los datos del ejercicio anterior)
 - b) Intensidad por R norton y R.
 - c) Potencia R_norton, Potencia R y Potencia Total.
 - d) Rendimiento del generador de corriente (PR/Potencia total)

- a) Intensidades del circuito de todas las ramas
- b) Potencia de todas las resistencias.
- c) Potencia entregada por todos los generadores o pilas.
- d) Rendimiento de las pilas (relación entre potencia R y potencia entregada por el generador)

- a) Calcular la potencia máxima de la resistencia R (Potencia Max_R) posible que puede entregar la pila (R = R_BAT).
- b) Intensidad del circuito.
- c) Potencia de la resistencia R.
- d) Potencia de la resistencia interna de la batería R_BAT.
- e) Potencia entregada por la batería
- f) Rendimiento de la pila (relación entre potencia R y potencia entregada por la pila)

g) Relación Potencia_R/Potencia_Max_R.

Y repetir todos los cálculos para los distintos valores de la resistencia de carga indicados en el enunciado, colocando los resultados en la siguiente tabla :

R	I	P_R	P_RBAT	PBAT	Rend. BAT	PR/PR_max
1 ohm						
3 ohm						
5 ohm						
10 ohm						
30 ohm						