Задание 1

Семен Федотов, 2 группа

Февраль, 2017

1 Задача 1.

Пусть X_1, \dots, X_n - выборка из нормального распределения с параметрами (a, σ^2) . Найти доверительный интервал уровня γ , для его третьего момента.

Proof. Для начала найдем этот третий момент: Знаем, что центральный нечетный момент равен нулю у нормальной с.в. То есть: $0 = E(X-a)^3 = E(X^3-3aX^2+3a^2X-a^3) = EX^3-3a(a^2+\sigma^2)+3a^3-a^3 \Rightarrow EX^3 = a^3+3a\sigma^2$. Для этой величины нужен нам доверительный интервал. Из курса статистики, мы умеем строить доверительный интервал для а и σ^2 , при неизвестный обоих параметрах. Построим уровня доверия: $\gamma + c_1 u \gamma + c_2$, константы позже подберем. Вот эти интервалы: 1)

$$P(\overline{X} - \sqrt{\frac{S^2}{n-1}} \cdot z_{\frac{1+(\gamma+c_1)}{2}} < \alpha < \overline{X} + \sqrt{\frac{S^2}{n-1}} \cdot z_{\frac{1+(\gamma+c_1)}{2}}) = \gamma + c_1$$

Тут квантиль распр Стьюдента с (n - 1) степ свободы. 2)

$$P(0 < \sigma^2 < \frac{nS^2}{z_{1-(\gamma+c_2)}}) = \gamma + c_2$$

, Тут квантиль хи квадрат с (n - 1) степенью свободы

Эти доверительные интервалы получаются из следствия теоремы об ортогональном разложении. Супер, обозначим за Ω_1 - множество тех ω , на которых выполняется первый довинт. Аналогично введем Ω_2 . Имея доверительный интервал для σ^2 , он очевидно преобразуется, чтобы найти довинт того же уровня доверия для $3\sigma^2$. Хотим построить довинт для $3\sigma^2 \cdot a$. Возьмем такой:(min $(0, left_1) < 3\sigma^2 \cdot a < 3right_2 \cdot right_1) \geq \gamma_3$ (это если у доверительного инетрвала для а обе границы положительные, аналогично рассматриваются оставшиеся случаи).(Пусть этот довинт выполняется на Ω_3) где left и right - левые и правые границы тех интервалов. Далее, имея интервал для а, он очевидно, преобразуется до σ^3 (все возведем в куб, уровень доверия останется тот же). Нам нужен довинт для суммы $\sigma^3 + 3\sigma^2 \cdot a = 3\sigma^3$. Сложим левые и правые границы. Тогда оно верно по крайней мере на $\sigma^3 \in \Omega_1 \cap \Omega_3$. Найдем долю этого пересечения. Она больше либо равна $\sigma^3 \in \Omega_1 \cap \Omega_2$ Нужно, чтобы эта величина была хотя бы $\sigma^3 \in \Omega_1 \cap \Omega_2$ мы это можем сделать подобрав хорошо константы $\sigma^3 \in \Omega_1 \cap \Omega_2$

2 Задача 2.

Пусть X_1, \ldots, X_n – выборка из распределения $U(-\theta, \theta), \theta > 0$. Построить оценку параметра θ методом максимального правдоподобия. Проверить её на состоятельность.

Proof. Во-первых, посмотрим на плотность данного распределения: $p(x) = \frac{1}{2\theta} \cdot I(x \in [-\theta,\theta]).$ Приступим к оцениванию: распишем правдоподобие нашей выборки: $f(X,\theta) = (\frac{1}{2\theta})^n \cdot I(x_1 \in [-\theta,\theta]), \dots, x_n \in [-\theta,\theta]).$ То есть, правдоподобие будет равно нулю, если хотя бы один элемент из выборки не лежит в отрезке от $-\theta$ до θ . Мы хотим найти argmax. Заметим, чтобы правдоподобие было равно нулю, то θ должна удовлетворять следующему условию: $\theta \geq \max(|X_{(1)}|,|X_{(n)}|) \Leftrightarrow \theta \geq \max(|x_1|,\dots,|x_n|)$ Хорошо, но чем больше θ , удовл. этому условию, тем меньше значение правдоподобия. Значит, $\hat{\theta} = \max(|x_1|,\dots,|x_n|).$ Так как у нас изначально набор н.о.р., то мы можем сначала модуля равномерного, а потом максимума этих модулей. Если $\xi \sim U(-\theta,\theta),$ то $|\xi| \sim U(0,\theta).$ (Просто плотность в каждой точке увеличилась в 2 раза). Обозначим $|x_i|$ как z_i . ну а теперь найдем распределение максимума модулей: $F(t) = P(\max(z_1,\dots,z_n) \leq t) = P(z_1 \leq t,\dots,z_n \leq t) = \prod_{i=1}^n P(z_i \leq t) = (F_{z_1}(t))^n$ (Так как если был набор независимых, то применив к ним борелевскую функцию, получим снова независимые в совокуп, ну а у таких вероятность произведения распадается в произведение вероятностей) , пусть t лежит внутри $[0,\theta]$ чтобы не писать индикатор). Найдем теперь плотность максимума: нужно взять и продифференцировать функцию распределения.

 $((F_{z_1}(t))^n)' = ((\frac{t}{\theta})^n)' = \frac{n}{\theta} \cdot (\frac{t}{\theta})^{n-1}$. Хотим проверить ее на состоятельность , т.е. $\forall \varepsilon > 0 \ P(|\hat{\theta} - \theta| \ge \varepsilon) \to 0$.

 $P(|\hat{\theta} - \theta| \ge \varepsilon) = P(\hat{\theta} - \theta \ge \varepsilon) + P(\hat{\theta} - \theta \le -\varepsilon) = 0 + F_{\hat{\theta}}(\theta - \varepsilon) = /(3$ десь первое слагаемое равно нулю, т.к. $\hat{\theta} <= \theta$ Ведь максимум модулей в выборке никогда не превысит параметр равномерного распределение, может лишь только быть меньшим или равным). $/= (\frac{\theta - \varepsilon}{\theta})^n \to 0$ при $n \to +\infty$. Так как $\varepsilon > 0$. Отсюда следует, что наша оценка является состоятельной! $\hat{\theta} = \max(|x_1|, \dots, |x_n|)$

3 Задача 3.

По выборке X_1, \ldots, X_n из распределения $U(0,\theta), \theta > 1$, с помощью метода моментов найти несмещенную оценку параметра $\frac{1}{\theta}$.

Proof. В чем заключается метод моментов в нашем случае? - В подборе пробной функции g(x) такой, что оценка, полученная благодаря данной функции, окажется несмещенной для параметра $\frac{1}{\theta}$. Посмотрим на $Eg(X_1)=\int\limits_0^\theta \frac{1}{\theta}g(x)dx=\overline{g(X)}$. Отсюда надо выразить $\frac{1}{\theta}$, тогда и получим оценку этого параметра. $\int\limits_0^\theta \frac{1}{\theta}g(x)dx=\frac{1}{\theta}\int\limits_0^\theta g(x)dx.$ Посмотрим, а что будет, если $\int\limits_0^\theta g(x)dx$ будет равен 1. Тогда $\frac{1}{\theta}=\overline{g(X)}=\hat{\theta}$ - оценка методом моментов с пробной функцией g. Но тогда посмотрим на матожидание этой оценки: $E\hat{\theta}=E\overline{g(X)}=/$ Из линейности матожидания $f=Eg(X_1)=\frac{1}{\theta}$, как мы предположили раньше $f=Eg(X_1)$ 0 несмещенную оценку! Значит, нам осталось подобрать функцию, удовлетворяющую следующему свойству: $f=Eg(X_1)$ 1. Таких функций очень много, благодаря тому, что $f=Eg(X_1)$ 2. Можем отделить и сделать нашу $f=Eg(X_1)$ 3. Пункцию, можно взять тождественную единицу, ну или $f=Eg(X_1)$ 4. Пусть все же $f=Eg(X_1)$ 5. Ну, например, можно взять тождественную единицу, ну или $f=Eg(X_1)$ 6. Пусть все же $f=Eg(X_1)$ 6. Понятно, что интеграл будет равен 1. $f=Eg(X_1)$ 1. Понятно, что интеграл будет равен 1. $f=Eg(X_1)$ 1.

4 Задача 4.

Пусть X_1, \ldots, X_n - выборка из распределения U(a,b), b > a > 0Выбрав в качестве априорного распределения сопряженное, найти байесовскую оценку двумерного параметра (a,b).

Proof. Возьмем в качестве сопряженного распределения двумерное распределение Парето с параметрами $(\hat{a}, \hat{b}, \hat{\alpha})$ (Его можно получить из обычного Парето одномерного, аккуратно проинтегрировав с индикаторами. Откуда вообще Парето? Если бы у нас было распределение от 0 до θ , то Одномерный Парето является к нему сопряженным). Покажем, что оно сопряженное. Рассмотрим плотность двумерного Парето с этими параметрами: $p(a,b) = \frac{\hat{a}(\hat{\alpha}+1)\cdot(\hat{b}-\hat{a})^{\hat{\alpha}}}{(b-a)^{\hat{\alpha}+2}}\cdot I(a\leq \hat{a},b\geq \hat{b})$. Для нахождения байесовской оценки не будем считать условное матожидание, а возьмем $\arg\max p(\theta|X).p(\theta|X) = \frac{p(X|\theta)p(\theta)}{\int\limits_{\theta^*\in\Theta}p(X|\theta^*)p(\theta^*)d\theta^*}$. То, что в знаменателе, вообще не зависит от θ , значит можем убрать. Распишем числитель, воспользовавшись априорными знаниями и $\theta=(a,b)$: $p(x|\theta)p(\theta)=\frac{1}{(b-a)^{n+\hat{\alpha}+2}}\cdot\hat{\alpha}(\hat{\alpha}+1)\cdot I(a\leq \hat{a},b\geq \hat{b})\cdot\prod_{i=1}^n I(a\leq X_i\leq b)$. Так, как нам не важны константы, то уберем их. В конце концов, получим снова двумерный Парето, но с другими параметрами, а именно: $(\min(\hat{a},X_1,\ldots,X_n),\max(\hat{b},X_1,\ldots,X_n),\alpha+n)$. Супер, это распределение является сопряженным. Осталось понять при каком (a,b), достигается максимум у плотности нового Парето. Очевидно, он будет достигнуть при параметрах а и b, как можно более близких к друг другу, чтобы разность была как можно меньше. То есть, когда $(a,b)=(\min(\hat{a},X_1,\ldots,X_n),\max(\hat{b},X_1,\ldots,X_n)$ Ответ. Иначе индикатор занулится и плотномть будет нулевой.