

Networking Basics

Week 7
IPv4 Basic Subnetting – Part 1

Yvan Perron CST8103 - Fall 2012

Topics

- Subnetting
 - What?
 - Why?
 - How?
 - Examples
- Case study

Subnetting

What

Allows creating multiple networks from a single address block

Why

- Maximise addressing efficiency
- Extend the life of IPv4
- Public IPv4 addresses are scarce

How

 Transform host bits into network bits creating additional networks from a single address block

Examples

0./250.28/25

- Subnetting base address 192.168.1.0/24/
 - 11111111 11111111 11111111 00000000
- Transform 1 host bit into a network bit
 - 11111111 11111111 111111111/10000000
- 20b networks
- 2^h2 hosts per new network
- New prefix length /25 (2^7)-2 = 126 255.255.255.128

- Transform 2 host bits into network bits
 - 11111<u>1111</u>11111 11111111(11000000
- 2°b hetworks
- 2^h-2 hosts per new network
- $(2^6)-2=62$
- New prefix length /26 - 255.255.255.192

2 new networ

> -64/26 .128/26 4 new .192/26

.0/26

maximum number of IP is 62

Formulas and Variables

- h=number of host bits
- b=number of host bits tranformed into network bits (aka borrowed bits)
- n=number network bits
- Number of new networks resulting from the subnetting:
 - -2^b
- Number of hosts per new network
 - -2^h-2

Subnet masks

•	Mask	Number of hosts	Host bits
•	255.255.255.0	254 hosts	8
•	255.255.255.128	126 hosts	7
•	255.255.255.192	62 hosts	6
•	255.255.254	30 hosts	5
•	255.255.255.240	14 hosts	4
•	255.255.258	6 hosts	3
•	255.255.252	2 hosts	2

Example

- Subnet base address: 200.10.21.0/24
 - Objective:
 - The largest network segment requires a maximum of 25 IP addresses
 - Subnet the base address in order to yield the maximum address utilization
 - 2^h-2 => 25 what is the smallest value of h that meets the criteria
 - h=5
 - b= 32-(n+h) = 32-(24+5) = 3
 - 2^3=8 new networks
 - 30 hosts per network
 - New mask
 - 255.255.255.224/27

Case study

- Base: 99.0.0.0/8
 - Mask 255.255.254.0/23
 - b = (23-8) = 15 bits
 - $-2^{15} = 32768$ new networks
 - h=32-(15+8)=9
 - 2^9-2=510 hosts per network

CST8103 8

Summary

 In order to extend the life of IPv4, several changes had to be implemented to the original addressing scheme, including subnetting.

Next

- Subnetting basics part 2
- More subnetting examples

CST8103 10