# Undecidability

COMPSCI 3331

#### **Outline**

- Undecidability: definitions.
- Undecidability by diagonalization.
- Basic undecidability result: Halting problem.
- Universal TMs.
- Reductions.
- PCP and CFG undecidability.

## Undecidability

- A problem is undecidable if there is no TM which solves it.
- The fact that there exist undecidable problems is one of the major contributions of theoretical computer science.
- We show that new problems are undecidable from existing undecidable problems by reduction.

# Problems and Languages

- ▶ A **problem** P assigns each word  $w \in \Sigma^*$  a yes/no answer. Let P(w) denote this yes/no answer.
- ▶ e.g., Primality: given a word  $w \in \{0,1\}^*$ , is w the binary representation of a prime number?
  - ► P<sub>prime</sub> denotes this function.
  - $P_{\text{prime}}(101) = \text{yes}$
  - $P_{\text{prime}}(10110) = \text{no}$



### Undecidability

We translate **problems** into **languages**: For every problem P, we associate it with

$$L_P = \{x \in \Sigma^* : P(x) = \text{ yes } \}.$$

e.g., primality:

```
L_{\text{prime}} = \{x \in \Sigma^* : x \text{ encodes a prime number } \}.
= \{10, 11, 101, 111, \dots, \}
```

## Undecidability

- From last time:
  - ▶ a language L is recursively enumerable (r.e.) if there exists a TM M which accepts L.
  - ► The language *L* is recursive if there exists a TM *M* which recognizes a language *L* (i.e., *M* always halts).
- ▶ A problem P is **undecidable** if  $L_P$  is **not** recursive.
- ▶ We also say that any language *L* which is not recursive is an undecidable language.

## First Undecidable Language

- By diagonalization (Cantor).
- ▶ Need to define an ordering of TMs:  $M_1, M_2, M_3, ...$
- ► To do this, we will encode a TM as a word over {0,1}.
- ▶ The *i*-th TM will be the *i*-th word over  $\{0,1\}$ .

## **Encoding TMs**

Let  $\Sigma = \{0,1\}$ . Let  $M = (Q,\{0,1\},\Gamma,\delta,q_1,B,F)$  be a TM. We can rename the states and tape alphabet so that:

- $ightharpoonup Q = \{q_1, q_2, q_3, \dots, q_r\}$  for some  $r \ge 1$ . We can also assume that  $F = \{q_r\}$ .
- ►  $\Gamma = \{\alpha_1, \alpha_2, \dots, \alpha_s\}$  for some  $s \ge 3$ . We assume  $\alpha_1 = 0, \alpha_2 = 1$ , and  $\alpha_3 = B$

Consider a transition  $\delta(q_i, \alpha_j) = (q_k, \alpha_\ell, D)$ . We encode this **single** transition as the word

$$0^{i}10^{j}10^{k}10^{\ell}10^{m(D)}$$

where m(D) is 1,2,3 if D is L, S, R, respectively. (state from) 1 (symb. read) 1 (state to) 1 (symb. write) 1 (dir.)

## **Encoding TMs**

We now encode the **entire** TM  $M = (Q, \Sigma, \Gamma, \delta, q_1, B, F)$ . Let  $C_1, C_2, \ldots, C_m$  be the encodings of the m transitions of the TM. Then we encode M as

$$e(M) = C_1 11 C_2 11 C_3 11 \cdots 11 C_m$$

- Can we decode the TM based on e(M)?
- How can we guarantee that there are only finitely many transitions?

# Ordering words and TMs

Let  $\leq_{\ell}$  be the total lexicographical ordering of words over  $\{0,1\}$ :

- ▶ if x is shorter than y, then  $x \leq_{\ell} y$ .
- if x, y have the same length, but x comes before y in lexicographical order, then  $x \le_{\ell} y$ .

#### So:

- > 00 ≤<sub>ℓ</sub> 111
- > 00 ≤<sub>ℓ</sub> 01
- ightharpoonup 00101  $\leq_{\ell}$  00110.

## Ordering words and TMs

 $\leq_{\ell}$  imposes a total order on all words over  $\{0,1\}$ :

```
\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, ...
```

- ▶ Let  $w_i$  be the *i*-th word in this order.  $w_1 = \varepsilon$ ;  $w_2 = 0$ , etc.
- ▶ We can design a TM that starts with i (in binary) on its tape and halts with w<sub>i</sub> on its tape.
- ▶ Order TMs:  $M_i$  is the TM with  $e(M_i) = w_i$ . (Recall that  $e(M) \in \{0,1\}^*$ .)

# Diagonalization

Wi \rightarrow e (Mi)

Define

$$L_d = \{w_i \in \{0,1\}^* \ : \ i \ge 0, w_i \notin L(M_i)\}.$$

**Thm.**  $L_d$  is not r.e.



Is there a language *L* which is r.e. but not recursive?

## An undecidable problem that is r.e.

Consider the following problem (the halting problem): Given a TM M, and a word w, does M accept w?

- ▶ The input to this problem is (e(M), w).
- ➤ This problem is r.e.: we can give a TM which halts and accepts if the answer to the problem is yes (later...)
- This problem is undecidable: it is not recursive.

## Halting problem

**Thm.** The halting problem is undecidable.

**Pf.** Suppose there is a TM  $M_h$  which solves the halting problem (e(M), w) and always halts with a yes/no answer. Let  $M'_h$  be the following TM:



What does  $M'_h$  do when it gets  $e(M'_h)$  as input?

UMh ask Mh -> do I stop when I get e(M'L) as input? A if My says yes.

- that hears elm, ) EL(MK)

- action &M' = gree 40

infilme loop. B) IF My says no - test nears e(Mh) &L(Nh)

- notion of Mh -> says yes.

## Halting Problem

- We have shown that the halting problem "Does M halt on w?" is undecidable.
- Want to show that it is recursively enumerable: There exists a TM M<sub>u</sub> such that if M halts on w, M<sub>u</sub> halts and says yes.
- If M does not halt on w,  $M_u$  may not halt.
- ▶ We call this TM  $M_u$  a universal TM.
  - $ightharpoonup M_u$  gets e(M), w as input.



#### **Universal TM**

#### $M_u$ has at four tapes:

- ▶ On tape 1 is the input word (e(M), w).
- ► Tape 2 will simulate the input tape of M; initially we copy w from tape 1 to tape 2.
- ► Tape 3 will contain the current state of *M*; initially we write the code for the start state of *M* on tape 3 (encoded as 0).
- ► Tape 4 will be a scratch tape.



#### **Universal TM**

#### $M_{\mu}$ works as follows:

- ▶ After initialization,  $M_u$  simulates steps of M.
- M<sub>u</sub> searches through the transitions of M and simulates one step of M, changing the input to M on tape 2, updating the head position on tape 2, and the state of M on tape 3.
- $ightharpoonup M_u$  faithfully simulates M for acceptance and crashing.
- ▶ If M accepts w, then so does  $M_u$ .

#### Universal TM

The halting problem is r.e.:

$$\{(e(M), w) : w \in L(M)\}.$$

- ► However, it is **not** decidable.
- Universal TMs play a big part in problems involving TMs: it is often useful to simulate a TM on a given input.

### More Undecidable Problems

We now have two undecidable problems:

- The diagonalization language.
- The halting problem.

Are there more? How can we find them?

## Tool: TM computing functions.

- ▶ A TM *M* computes a function  $f: \Sigma^* \to \Sigma^*$  if, whenever the TM gets input *x* as input, it halts and outputs f(x) on the tape.
- There is no concept of acceptance and rejectance. Whatever happens when M halts, we take the tape contents as the result of applying f to the input.
- M is deterministic.
- Examples:
  - 1.  $f(a^n) = n$  (written in binary).
  - 2.  $f(a^n b^m) = c^{n^m}$  for all  $n, m \ge 0$ .
  - 3.  $f((e(M_1), e(M_2))) = e(M)$  where  $L(M) = L(M_1) \cup L(M_2)$ .

### More Undecidable Problems

- Let  $P_0$  be an undecidable problem.
- We can show that another problem P<sub>1</sub> is undecidable by reduction.
- A reduction is a function f which can be computed by a TM and satisfies the following properties:
  - ▶ if  $x \in P_0$  then  $f(x) \in P_1$ .
  - ▶ if  $x \notin P_0$  then  $f(x) \notin P_1$ .

### **Using Reductions**

- A reduction of problem  $P_0$  to  $P_1$  means that  $P_0$  is **at least** as hard as  $P_1$ .
- Suppose that  $P_1$  is decidable. To solve  $P_0$ : Take input x, convert it to f(x), and decide whether  $f(x) \in P_1$ .



### "Halts on $\varepsilon$ "

Want to show that the following problem is undecidable (*halts* on  $\varepsilon$ ):

Given a TM M, is  $\varepsilon \in L(M)$ ?

Use the halting problem show that "halts on  $\varepsilon$ " is undecidable.



"Halts on  $\varepsilon$ "  $\int \int$ 

Suppose (M, w) is an instance of the halting problem. We map (M, w) to a new TM  $M_0$ .  $M_0$  does the following on input x:

- **1**1. If  $x \neq \varepsilon$ , reject.
  - 2. Otherwise, if  $x = \varepsilon$ , use  $M_u$  to simulate the action of M on w.
  - 3. If  $M_u$  determines  $w \in L(M)$ , halt and accept  $\varepsilon$ .
  - 4. If  $M_u$  determines  $w \notin L(M)$ , reject  $\varepsilon$ .

#### "Halts on $\varepsilon$ "

What does  $M_0$  do?

- ▶ If  $w \in L(M)$ , then  $\varepsilon \in L(M_0)$ .
- ▶ If  $w \notin L(M)$ , then  $\varepsilon \notin L(M_0)$ .

This is a reduction of the halting problem to "halts on  $\varepsilon$ ". To solve the halting problem:

- ▶ Given (M, w), construct  $M_0$ .
- ▶ Use "halts on  $\varepsilon$ " to determine whether  $\varepsilon \in L(M_0)$ .
- This is an algorithm for the halting problem, therefore, an algorithm solving "halts on  $\varepsilon$ " must not exist.



# Post's Correspondence Problem

Post's Correspondence Problem (PCP) is a simple example of an undecidable problem:

**Input**: Two lists of words  $(u_1, u_2, ..., u_n)$  and  $(v_1, v_2, ..., v_n)$  of the same length  $n \ge 1$ .

**Determine**: does there exist indices  $i_1, i_2, ..., i_m$  with  $1 \le i_j \le n$  and  $m \ge 1$  such that

$$u_{i_1}u_{i_2}\cdots u_{i_m}=v_{i_1}v_{i_2}\cdots v_{i_m}.$$

Thm. PCP is undecidable.

Example 1:



Example 2:

$$\begin{array}{c|ccccc}
i & 1 & 2 & 3 \\
\hline
u_i & ab & abc & bb \\
v_i & b & ab & cbba
\end{array}$$

Abclablab

### PCP is undecidable

Thm. PCP is undecidable.

- $\triangleright$  Given (M, w), we construct a PCP instance  $(u_1, u_2, \ldots, u_n), (v_1, v_2, \ldots, v_n)$
- M accepts w iff the PCP instance has a solution.
- ▶ Idea: the solution to PCP will be a proof that M accepts w: a list of the IDs of *M* showing how *w* is accepted.
- The solution will be of the form

$$\alpha_0 \# \alpha_1 \# \alpha_2 \# \cdots \# \alpha_n$$
.









## **Using PCP**

**Thm.** Given CFGs  $G_1$ ,  $G_2$ , it is undecidable whether  $L(G_1) \cap L(G_2) = \emptyset$ .

**Thm.** Given a CFG G, it is undecidable whether  $L(G) = \Sigma^*$ .

**Thm.** Given a CFG G, it is undecidable whether G is ambiguous.

pcp intach 
$$CFG$$
 $U_1, U_2, \dots U_n$ 
 $V_1, V_2, \dots V_n$ 
 $G_1$ 



# Emil Post (1897–1954)

