

CD4029BMS

CMOS Presettable Up/Down Counter

FN3304 Rev 0.00 December 1992

Features

- High-Voltage Type (20V Rating)
- Medium Speed Operation: 8MHz (Typ.) at CL = 50pF and VDD - VSS = 10V
- Multi-Package Parallel Clocking for Synchronous High Speed Output Response or Ripple Clocking for Slow Clock Input Rise and Fall Times
- · "Preset Enable" and Individual "Jam" Inputs Provided
- · Binary or Decade Up/Down Counting
- BCD Outputs in Decade Mode
- 100% Tested for Maximum Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package-Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standards No. 13B, "Standard Specifications for Description of "B" Series CMOS Device's

Applications

- Programmable Binary and Decade Counting/Frequency Synthesizers-BCD Output
- · Analog to Digital and Digital to Analog Conversion
- · Up/Down Binary Counting
- Difference Counting
- Magnitude and Sign Generation
- Up/Down Decade Counting

Description

CD4029BMS consists of a four-stage binary or BCD-decade up/down counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single CLOCK, CARRY-IN (CLOCK ENABLE), BINARY/DECADE, UP/DOWN, PRESET ENABLE, and four individual JAM signals. Q1, Q2, Q3, Q4 and a CARRY OUT signal are provided as outputs.

A high PRESET ENABLE signal allows information on the JAM INPUTS to preset the counter to any state asynchronously with the clock. A low on each JAM line, when the PRESET-ENABLE signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the CARRY-IN and PRE-SET ENABLE signals are low. Advancement is inhibited when the CARRY-IN or PRESET ENABLE signals are high. The CARRY-OUT signal is normally high and goes low when the counter reaches its maximum count in the UP mode or the minimum count in the DOWN mode provided the CARRY-IN signal is low. The CARRY-IN signal in the low state can thus be considered a CLOCK ENABLE. The CARRY-IN terminal must be connected to VSS when not in use.

Binary counting is accomplished when the BINARY/DECADE input is high; the counter counts in the decade mode when the BINARY/DECADE input is low. The counter counts up when the UP/DOWN input is high, and down when the UP/DOWN input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Figure 17.

Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

The CD4029BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X Frit Seal DIP H1F Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	$\theta_{\sf ia}$	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°Č/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C	
For TA = -55°C to +100°C (Package Type	oe D, F, K)	500mW
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
Lineari	ity at 12mW/ ^c	C to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VE	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

^{2.} Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock To Q Output	TPLH1		10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	560	ns
Clock To Carry Out	TPLH2		10, 11	+125°C, -55°C	-	756	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	470	ns
Preset Enable To Q	TPLH3		10, 11	+125°C, -55°C	-	635	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	640	ns
Preset Enable To Carry- Out	TPLH4		10, 11	+125°C, -55°C	-	864	ns
Propagation Delay	TPHL5	VDD = 5V, VIN = VDD or GND	9	+25°C	-	340	ns
Carry-In To Carry-Out	TPLH5		10, 11	+125°C, -55°C	-	459	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Q Output	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	2	-	MHz
Frequency			10, 11	+125°C, -55°C	1.48	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and $+125^{\circ}\text{C}$ limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA	
				-55°C	-	-2.0	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA	
				-55°C	-	-2.6	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA	
				-55°C	-	-4.2	mA	
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V	
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V	
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	240	ns	
Q Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	180	ns	
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	260	ns	
Carry Output	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	190	ns	
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	200	ns	
Preset Enable To Q	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	160	ns	
Propagation Delay	TPHL4	TDUUA		+25°C	-	290	ns	
Preset Enable To Carry- Out	TPLH4	VDD = 15V	1, 2, 3	+25°C	i	210	ns	
Propagation Delay	TPHL5	VDD = 10V	1, 2, 3	+25°C	-	140	ns	
Carry In To Carry Out	TPLH5	VDD = 15V	1, 2, 3	+25°C	-	100	ns	
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns	
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns	
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	4	-	MHz	
Frequency		VDD = 15V	1, 2, 3	+25°C	5.5	-	MHz	
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	340	ns	
Time Note 4		VDD = 10V	1, 2, 3	+25°C	-	140	ns	
11010		VDD = 15V	1, 2, 3	+25°C	-	100	ns	
Clock Rise And Fall Time	TRCL	VDD = 5V	1, 2, 3	+25°C	-	15	μS	
Note 5	TFCL	VDD = 10V	1, 2, 3	+25°C	-	15	μS	
		VDD = 15V	1, 2, 3	+25°C	-	15	μS	
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	180	ns	
Width		VDD = 10V	1, 2, 3	+25°C	-	90	ns	
		VDD = 15V	1, 2, 3	+25°C	-	60	ns	
Minimum Carry In Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	200	ns	
Time Note 6		VDD = 10V	1, 2, 3	+25°C	-	70	ns	
110.00		VDD = 15V	1, 2, 3	+25°C	-	60	ns	
Minimum Carry Input	TH	VDD = 5V	1, 2, 3	+25°C	-	50	ns	
Hold Time Note 6		VDD = 10V	1, 2, 3	+25°C	-	30	ns	
		VDD = 15V	1, 2, 3	+25°C	-	25	ns	
Minimum Preset Enable	TREM	VDD = 5V	1, 2, 3	+25°C	-	200	ns	
Removal Time Note 4		VDD = 10V	1, 2, 3	+25°C	-	110	ns	
11010 7		VDD = 15V	1, 2, 3	+25°C	-	80	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Preset Enable	TW	VDD = 5V	1, 2, 3	+25°C	-	130	ns
Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	70	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. From Up/Down, Binary/Decode, Carry In, or Preset Enable Control Inputs to Clock Edge.
- If more than one unit is cascaded in the parallel clocked application, tr CL should be made ≤ the sum of the fixed propagation delay at 15pF and the transition time of the carry output driving stage for the estimated capacitive load. This measurement was made with a decoupling capacitor (>1μF) between VDD and VSS.
- 6. From Carry In to Clock Edge.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

- 2. CL = 50pF, RL = 200K, Input TR, TF < 20ns
- 3. See Table 2 for +25°C limit.
- 4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	\pm 1.0 μ A
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Interim Test 2	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	2, 6, 7, 11, 14	1, 3 - 5, 8 - 10, 12, 13, 15	16			
Static Burn-In 2 Note 1	2, 6, 7, 11, 14	8	1, 3 - 5, 9, 10, 12, 13, 15, 16			
Dynamic Burn- In Note 1	-	1, 3 - 5, 8, 12, 13	9, 10, 16	2, 6, 7, 11, 14	15	-
Irradiation Note 2	2, 6, 7, 11, 14	8	1, 3 - 5, 9, 10, 12, 13, 15, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Logic Diagram

СГОСК	TE	PE	J	Q	Ια	
Х	Х	0	0	0	1	
_	0	1	Х	Q	Q	
Х	Х	0	1	1	0	
/	1	1	Х	Q	Q	NC
	Χ	1	Χ	Q	Q	NC

TRUTH TABLE

BIN/DEC **Binary Count** 0 **Decade Count** (B/D) UP/DOWN **Up Count** 1 0 **Down Count** (U/D) Preset Enable 1 Jam In (PE) 0 No Jam No Counter Advance at 1 CARRY IN (CI) **POS Clock Transition** (CLOCK ENABLE) 0 Advance Counter at **POS Clock Transition**

FUNCTION TABLE

LOGIC

LEVEL

ACTION

CONTROL

INPUT

FIGURE 1.

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (Q OUTPUT)

Typical Performance Characteristics (Continued)

FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CARRY OUTPUT)

FIGURE 9. TYPICAL POWER DISSIPATION AS A FUNCTION
OF FREQUENCY

Timing Diagrams

The CD4029BMS CLOCK and UP/DOWN inputs are used directly in most applications. In applications where CLOCK UP and CLOCK DOWN inputs are provided, conversion to the CD4029BMS CLOCK and UP/DOWN inputs can easily be realized by use of the circuit in Figure 11.

CD4029BMS changes count on positive transitions of CLOCK UP or CLOCK DOWN inputs. For the gate configuration in Figure 12, when counting up the CLOCK DOWN input must be maintained high and conversely when counting down the CLOCK UP input must be maintained high.

FIGURE 11. CONVERSION OF CLOCK UP, CLOCK DOWN INPUT SIGNALS TO CLOCK AND UP/DOWN INPUT SIGNALS

Timing Diagrams (Continued)

FIGURE 12. TIMING DIAGRAM-DECADE MODE

"PARALLEL CLOCKING"

*CARRY OUT LINES AT THE 2ND, 3RD, ETC, STAGES MAY HAVE A NEGATIVE-GOING GLITCH PULSE RESULTING FROM DIFFERENTIAL DELAYS OF DIFFERENT CD4029BMS IC'S. THESE NEGATIVE GOING GLITCHES DO NOT AFFECT PROPER CD4029BMS OPERATION. HOWEVER, IF THE CARRY OUT SIGNALS ARE USED TO TRIGGER OTHER EDGE-SENSITIVE LOGIC DEVICES, SUCH AS FF'S OR COUNTERS, THE CARRY OUT SIGNALS SHOULD BE GATED WITH THE CLOCK SIGNAL USING A 2-INPUT OR GATE SUCH AS CD4071BMS.

FIGURE 13. CASCADING COUNTER PACKAGES

Timing Diagrams (Continued)

"RIPPLE CLOCKING"

RIPPLE CLOCKING MODE:

THE UP/DOWN CONTROL CAN BE CHANGED AT ANY COUNT. THE ONLY RESTRICTION ON CHANGING THE UP/DOWN CONTROL IS THAT THE CLOCK INPUT TO THE FIRST COUNTING STAGE MUST BE HIGH. FOR CASCADING COUNTERS OPERATING IN A FIXED UP-COUNT OR DOWN-COUNT MODE, THE OR GATES ARE NOT REQUIRED BETWEEN STAGES, AND TO IS CONNECTED DIRECTLY TO THE CL INPUT OF THE NEXT STAGE WITH CI GROUNDED.

FIGURE 13. CASCADING COUNTER PACKAGES (Continued)

Chip Dimensions and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

