Лекции по введению в топлогию

Лектор: Миллионщиков Д.В. Автор конспекта: Ваня Коренев*

2 курс. Осенний семестр 2024,г. 14 сентября 2024 г.

^{*}tg: @gallehus

Содержание

1	Лекция 1	3
2	Лекция 2	4

1 Лекция 1

Повторение определений из мат. анализа: окрестность точки, открытое множество, замкнутое множество, непрерывная функция, компакт, связность, метрическое пространство. Так же было отмечено, что топлогию можно задать через систему окрестностей.

Замечание 1.1. $\rho(x,y)=|x-y|$ - метрика, при $x,y\in\mathbb{R}^1$.

Определение 1.2. Пара (X, ρ) называется метрическим пространство, если $\rho: X \times X \leftarrow \mathbb{R}_{\geq 0}$ удовлетворяет аксиомам метрики.

Теорема 1.3. $(\mathbb{R}^1, \rho = |x - y|)$ является метрическим пространством.

Определение 1.4. Топологическое пространство (X, τ) , где τ - совокупность подмножеств - тополгия, удовлетвояряющие следующим свойствам

- 1. $\emptyset \in \tau$
- 2. $X \in \tau$
- 3. $\bigcap_{i=1}^k U_k \in \tau$
- 4. $\bigcup U_k \in \tau$

Пример 1.5. 1. антидискретная(тривиальная) топология $\tau = \{\emptyset, X\}$

- 2. дискретная топология $\tau = 2^X$
- 3. $X = \{1, 2\}$, способы задания топологии: $\tau_1 = \{X, \emptyset, \{1\}\}$, $\tau_1 = \{X, \emptyset, \{2\}\}$

Определение 1.6. Пусть X - метрическое пространство. Открытый шар $O_r(x_0) = \{x \in X \mid \rho(x,x_0) < r\}$

Определение 1.7. Пусть X - метрическое пространство. $U \subset X$ - открыто, если $\forall x \in U \exists$ окрестность точ-ки(=открытый шар, содержащий x) x, содержащаяся в U.

Определение 1.8. $B \ X \ npous вольном топологическом пространстве <math>U \subset X \ является замкнутым, если дополнение <math>\kappa$ нему открыто.

Пример 1.9. Топология Зарисского определяется в \mathbb{C}^1 , можно обобщить до \mathbb{C}^n . - что-то из алгебраическое геомерии.

Замкнутое множество - это конечное множество точек.

Задача 1.10. Доказать, что это топология.

Определение 1.11. База топологии $\beta \subset \tau \subset 2^X$, если любое открытое множество $U \in \tau$ можно выразить в виде объединения элементов из базы β , т.е. $U = \bigcup_{\alpha \in A} B_{\alpha}$, где B_{α} - элемент базы.

База топологии необходима для уменьшения количестав задаваемых открытых множеств для определения топологии.

Лемма 1.12 (Достаточное условие на базу топологии). Пусть $\beta \subset 2^x$ - набор подмножеств. Если выполняются следующие условия

- 1. $\forall x \in X \exists B_x \in \beta \text{ такой, что } x \in B_x.$
- 2. $\forall B_1, B_2 \in \beta \Rightarrow (x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \beta : x \in B_3 \subset B_1 \cap B_2)$

 $mo \ eta$ является базой топлогии.

Доказательство. Вводим всевозможные $U_{lpha}=igcup_{\gamma}B_{\gamma}^{(lpha)}$. Проверим все свойства из опредления топологии.

Легко проверить, что выполняются первые 2-а свойства из опредедления топологии. В качество \emptyset можно взять объединение пустого числа множеств, а в качестве X - объединение всех элементов базы, оно будет равно X, т.к. для каждого $x \in X$ существует элемент базы, содержащий его.

Докажем выполнение 3-его свойства. Благодаря принципу математической индукции достаточно доказать, что k=2.

$$U_1 \cap U_2 = \bigcup_{\alpha \in A_1} B_{\alpha}^{(1)} \cap \bigcup_{\alpha \in A_2} B_{\alpha}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} \bigcup_{x \in B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)}} B_{3,x}^{(\alpha_1, \alpha_2)}$$

Тут $B_{3,x}^{(\alpha_1,\alpha_2)}$ существует из-за пункта 2. В итоге мы получили, что $U_1 \cap U_2$ можно выразить в виде объединения элементов базы.

Докажем выполнение 4-го свойства.

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} \bigcap_{i \in I} B_i^{(\alpha)} = \bigcup_{(\alpha, i) \in A \times I} B_i^{\alpha}$$

Опять получили объединения элементов базы.

Итого всевозможные объединение элементов базы задают топологию на X.

Задача 1.13. Повторить доказательство для базы метрического пространства.

Можно еще уменьшить количество задаваемых элементов.

Определение 1.14. π называется предбазов топологии, если $\pi \subset \beta \subset \tau \subset 2^X$ и каждое U представляется в виде объединения конечного пересечения элементов предбазы, т.е. forall $U \in \tau$ выполняется

$$U = \bigcup \bigcap_{i=1}^k P_i$$
, где P_i - элемент предбазы.

Замечание 1.15. Любое множество задает предбазу.

Следующее утверждение не дописано.

```
Пример 1.16. Пусть X=1,2,3,4,5. \pi=\{\{1,2,3\},\{2,3,4\},\{3,4,5\}\} - предбаза. \beta=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{2,3\},\{3,4\},\{3\},\{1,2,3,4\},\{2,3,4,5\},\{umo-mo\},\emptyset\} \tau=\{\ldots,\ldots\} Причем \pi\subset\beta\subset\tau\subset2^X
```

Определение 1.17. $f: X \to Y$ - непрерывная функция, если для каждого открытого $U \subset Y$ выполняется $f^{-1}(U)$ - открыто в X.

2 Лекция 2

Литература:

- 1. В.В. Федорчук Введение в топологию
- 2. 4 автора Введение в топоплогию

Определение 2.1. Пусть (X, ρ) - метрическое пространство. Из метрического можно построить топологические пространство (X, τ) . Такие пространства называеются метризуемыми.

Замечание 2.2 (Критерий метризуемости. Накаты Ю.М.Смирнова. 1950-1951).

Определение 2.3. $O_{\varepsilon}(x_0) = \{x \in X : \rho(x, x_0) < \varepsilon\}$

Теорема 2.4. Шары $O_{\varepsilon}(x)$ образуют базу топологии.

Доказательство. 1. $\forall x \in X \exists O_{\varepsilon}(x) : x \in O_{\varepsilon}(x)$

2. рассмторим $(O_{\varepsilon_1}(x_1)=B_1)\cap (B_2=O_{\varepsilon_2}(x_2))$ найдем окрестность точки x, лежащий в этом пересечении, чтобы вся окрестность тоже лежала в этом пересечении $\rho(x,x_1)<\varepsilon_1, \rho(x,x_2)<\varepsilon_2$. Пусть $\varepsilon=\min\left\{\varepsilon_1-\rho(x_1,x),\varepsilon_2-\rho(x_2,x)\right\}$ Проверим условие $O_{\varepsilon}\subset O_{\varepsilon_1}(x_1)\cap O_{\varepsilon_w}(x_2)$

Проверим $y \in O_{\varepsilon_1}(x_1) \Rightarrow \rho(y, x_1) < \varepsilon_1$.

$$\rho(y, x_1) \le \rho(y, x) + \rho(x, x_1) < \varepsilon - \rho(x, x_1) + \rho(x, x_1) = \varepsilon$$

Аналогично для второго шара.

Т.о. по достаточному условию на базу открытые шары будет образовывать базу.

Простой способ сравнения топологий. Пусть X - множество. τ_1, τ_2 - топологии, определенные на X. ЧУМ - частично упорядоченное множество.

Определение 2.5. $\tau_1 \leq \tau_2 \Leftrightarrow \tau_1 \subset \tau_2$

Обычными словами: любое открытое множество в τ_1 будет открытым в τ_2 .

Пример 2.6. Рассмотрим антидискретную и дискретную топологии.

$$\tau_1 = \{\emptyset, X\} \subset \tau_2 = 2^X$$

Можно считать, что это два полюса сравнения, где слева - слабейшая, справа - сильнейшая. Любую топологию можно сравнить с этими двумя. Но точно существуют не сравнимые.

Задача 2.7. Метризумые ли тривиальные топлогии(= антидискретная и дискретная)?

- 1. можнов ввести дискретную метрику $\rho_D(x,y) = (1, x = y; 0, x \neq y)$. Получим дискретную топологию.
- 2. неметризуемо.

Определение 2.8 (индуцированная топология подространства). *Пусть* (X, τ) - топологическое пространство, $Y \subset X$. $\tau_Y = \{U \cap Y : U \in \tau\}$.

Доказательство. Очевидно, что выполняются аксиомы топологии.

Пример 2.9. $\mathbb{R}^2 = X$ - метрическое пространство, $Y \subset X$.

Определение 2.10. U - окрестность точки $x \in X = U \in \tau$ такое, что $x \in U$.

Замечание 2.11 (Есть тут глубокий смысл?).

 $\bigcap_{i=1}^{n} oкрестность точки <math>x = oкрестность точки x$

 \bigcup_{α} окрестность x = окрестность

Утверждение 2.12. $A \subset X$ - открыто \Leftrightarrow для каждой точки $x \in cyщесвтует$ ее окрестность, лежащая в A.

Доказательство. (\Leftarrow): Рассмоторим $C = \bigcup_{x \in A} O(x) \in \tau$. Очевидно, что $A \subset C$. А т.к. для каждого $x \in A$ верно $O(x) \subset A$, то также выполняется включение в другую сторону.

 (\Rightarrow) : раз A - открыто, то A является окрестностью.

Определение 2.13. Пусть $x \in X$, $\{x\} \in \tau$, то x называется изолированной точкой.

Замечание 2.14. Если топлопгия дискретная, то все точки изолированные.

Определение 2.15. Пусть $A \subset X$, $x \in X$. x - точка прикосновения множества A, если для любой окрестности O(x) выполняется $O(x) \cap A \neq \emptyset$.

Определение 2.16. $x \in A$ - внутрення точка множества A, если существует O(x): $O(x) \subset A$.

Определение 2.17 (A1). Замыкание множества A - множество всех точек прикосновения A. Обозначается \overline{A} .

Определение 2.18 (B1). Внутренность - множество всех внутренних точек. Обозначается Int(A).

Задача 2.19. $Int(A) \subset A \subset \overline{A}$

Определение 2.20 (A2). $\overline{A} = \bigcap_{no\ всем\ возможным\ F} = F: 1.F - замкнуто, 2.A \subset F\ \overline{A} = наименьшее замкнутое множество, содержащее <math>A$.

Определение 2.21 (B2). $Int(A) = \bigcup_{no\ ecem\ U} U: U \in \tau, U \subset A\ Int(A) = наибольшее открытое в A.$ todo:

Определение 2.22. $x \in X$ - граничная точка A, если x - точка прикосновения $u \ x \notin Int(A)$. Граница - множество граничных точек. Обозначается Bd(A).

Замечание 2.23.

$$Bd(A) = \overline{A} \setminus Int(A)$$

Теорема 2.24. Это определния эквивалентны.

Доказательство. Докажем эквивалентность определний B1 и B2.

Пусть Int(A) - множество точек в смысле определения B1. Докажем B2. Докажем проверкой включений.

- (\subseteq): если $x \in A$ внутрення точка, то существует $O(x) \subset A$, тогда $x \in Int(A)$ в смыле другого определения.
- (\supseteq) : $x\in Int(A)$ в смысле определния B2, тогда x принадлежит каком-то одному открытому $V\subset A$, тогда можем взять V за окрестность точки x.

Определение 2.25 (понятие непрерывного отображения). Пусть $f: X \to Y$. f непрерывно в точке $x_0 \in X$, если для каждой $O(f(x_0))$ существует такая окрестность $O(x_0)$, что $f(O(x_0)) \subset O(f(x_0))$.

f - непрервыное отображение топологических пространств, если оно непрервыно во всех $x \in X$.

Утверждение 2.26. Следующие условия эквивалентны:

- 1. f непрерывно
- 2. прообраз любого открытого множества является открытым, т.е. $U \in \tau_X \Rightarrow f^{-1}(U) \in \tau_Y$
- 3. прообраз любого замкнутого замкнут
- 4. $f(\overline{A}) = \overline{f(A)}$

Доказательство. Докажем только $(1) \Leftrightarrow (2)$.

- (\Rightarrow) : пусть f непрерывно. Нужно доказать, что $f^{-1}(V)$ открыто, можем воспользоваться утвержеднием при критерий открытости.
- (\Leftarrow) : пусть $x \in X$, V окрестность точки $f(x_0)$, тогда по предположению $f^{-1}(V)$ открыто, следовательно существует $O(x) \subset f^{-1}(V)$

Задача 2.27. Доказать остальные эквивалентности в утверждении выше.