Lecture 5 Sorting Algorithms

Subject Lecturer: Kevin K.F. YUEN, PhD.

Acknowledgement: Slides were offered from Prof. Ken Yiu. Some parts have been revised and indicated.

Sorting on array

- Applications of sorting
 - Websites, databases
- Sorting problem

 - Output: a sorted array A (in ascending order)

Input:

29 | 70 | 85 | 40 | 47 | 26 | 13 | 59

Output:

13 | 26 | 29 | 40 | 47 | 59 | 70 | 85

Time complexity of sorting algorithms

Algorithm	Worst-case	Average-case
	time	time
	complexity	complexity

Selection sort	$O(n^2)$	$O(n^2)$
Bubble sort	$O(n^2)$	$O(n^2)$
Insertion sort	$O(n^2)$	$O(n^2)$
Heap sort	$O(n \log n)$	$O(n \log n)$
Merge sort	$O(n \log n)$	$O(n \log n)$
Quick sort	$O(n^2)$	$O(n \log n)$

Our Roadmap

- Slow sorting algorithms
 - Selection sort
 - Bubble sort
 - Insertion sort
- Fast sorting algorithms (by divide-and-conquer)
 - Merge sort
 - Quick sort
- How to analyze the running time of these divide-and-conquer algorithms?

Selection Sort

- In the outer for-loop, each iteration
 - The subarray A[0..i-1] is already sorted
 - Select the smallest value from A[i..n-1], swap it with A[i]

input

5 2 4 9 7

i=0, after line 6: 2 | 5 | 4 | 9 | 7

```
Selection-Sort (Array A[0..n-1])
```

- 1. for integer $i \leftarrow 0$ to n-2
- $k \leftarrow i$
- 3. for integer $j \leftarrow i+1$ to n-1
- 4. if A[k] > A[j] then
- 5. $k \leftarrow j$
- 6. swap A[i] and A[k]

i=1, after line 6: 2 | 4 | 5 | 9 | 7

i=2, *after line* 6: 2 | 4 | 5 | 9 | 7

i=3, after line 6: 2 | 4 | 5 | 7 | 9

Bubble Sort

- Scan the array sequentially
 - Swap adjacent elements if they are not in the ascending order
- Repeat the above until no swaps are needed

Dubble Cont (Amore 450 m 11)		
Bubble-Sort (Array $A[0n-1]$)	input	5 2 4 9 7
1. repeat	іприі	3 2 4 9 1
2. $isUpdated \leftarrow false$	repeat iteration 1, swap #1	2 5 4 9 7
3. for integer $i \leftarrow 1$ to $n-1$		
4. if $A[i-1] > A[i]$ then	repeat iteration 1, swap #2	2 4 5 9 7
5. swap $A[i-1]$ and $A[i]$	repeat iteration 1, swap #3	2 4 5 7 9
6. $isUpdated \leftarrow true$		
7. until $isUpdated = false$	repeat iteration 2, no swap	2 4 5 7 9

Insertion Sort

- Let x be the value of A[i] at line 2 (before the while-loop)
- Move x to the position such that
 - \diamond The left hand size $\leq x$
 - \diamond The right hand size > x

```
? \mid ? \mid ? \mid x \mid \dots
```

$$\leq x \mid x \mid > x \mid \dots$$

Insertion-Sort (Array A[0..n-1])

- 1. for integer $i \leftarrow 1$ to n-1
- $2. \quad j \leftarrow i$
- 3. while j > 0:
- 4. if(A[j-1] > A[j])
- 5. swap A[j] and A[j-1]
- 6. $j \leftarrow j-1$

$$i=3$$
, no swap $2 | 4 | 5 | 9 | 7$

$$i=4$$
, swap #1 | 2 | 4 | 5 | 7 | 9

Best-Case Input vs. Worst-Case Input

- In comparison sorting algorithms, the number of element comparisons can be used to estimate the running time
 - \bullet E.g., the comparison A[i-1] > A[i] in Bubble Sort (Line 4)
- Examples for the Bubble Sort at n=5
 - The best-case input at n=5

 - The worst-case input at n=5
- How many element comparisons are performed by Bubble Sort in these two examples?

```
Bubble-Sort (Array A[0..n-1])
```

1. repeat

2 | 4 | 5 | 7 | 9

- $isUpdated \leftarrow false$
- for integer $i \leftarrow 1$ to n-1
- if A[i-1] > A[i] then
- swap A[i-1] and A[i]
- $isUpdated \leftarrow true$
- 7. until isUpdated = false

Our Roadmap

- Slow sorting algorithms
 - Selection sort
 - Bubble sort
 - Insertion sort

- Fast sorting algorithms (by divide-and-conquer)
 - Merge sort
 - Quick sort
- How to analyze the running time of these divide-and-conquer algorithms?

Divide and Conquer (D&C)

- Divide and Conquer (D&C) is a technique for designing algorithms
 - Divide: divide the problem into smaller subproblems
 - Conquer: solve each subproblem recursively
 - Combine: combine the solutions of subproblems into the solution of the original problem

Divide-and-Conquer

Algorithm	Merge Sort	Quick Sort
Divide	Divide the array A into two equal-sized sub-arrays L and R	Partition the array A into two sub-arrays L (with small values) and R (with large values)
Conquer	Sort each sub-array recursively	Sort each sub-array recursively
Combine	Merge the sorted sub-arrays <i>L</i> and <i>R</i>	NIL

Merge Sort

- Divide: divide the array A into two sub-arrays (L and R) of n/2 numbers each
- Conquer: sort two sub-arrays recursively
- Combine: merge two sorted sub-arrays into a sorted array

Merge Sort: Combine Phase

Merge (Array
$$L[0..n_L-1]$$
, Array $R[0..n_R-1]$)

1.
$$n_A \leftarrow n_L + n_R$$

- 2. create a new array $A[0..n_A-1]$
- $3. i \leftarrow 0$; $j \leftarrow 0$
- 4. for $k \leftarrow 0$ to n_A-1
- 5. if $(j=n_R)$ or $(i < n_L \text{ and } L[i] < R[j])$
- 6. $A[k] \leftarrow L[i]$; $i \leftarrow i+1$
- 7. else
- 8. $A[k] \leftarrow R[j]$; $j \leftarrow j+1$
- 9. return A

Pre-condition:

Arrays L and R are already sorted

 $L \mid 29 \mid 40 \mid 70 \mid 85$

R | 13 | 26 | 47 | 59

A

Merge Sort

Merge-Sort (Array A[0..n-1])

- 1. if n > 0
- 2. $m \leftarrow \lfloor n/2 \rfloor$
- 3. Array $L \leftarrow A[0..m-1]$
- 4. Array $R \leftarrow A[m..n-1]$
- 5. Merge-Sort (L)
- 6. Merge-Sort (R)
- 7. $A[0..n-1] \leftarrow \text{Merge}(L, R)$

Divide: divide the array into two sub-arrays of n/2 numbers each

Conquer: sort two sub-arrays recursively

Combine: merge two sorted sub-arrays into a sorted array

Merge Sort: Divide Phase

Merge Sort: Combine Phase

Quick Sort

- Divide: divide the array A into two sub-arrays
 L (smaller items) and R (larger items)
 - Note: L and R may have different sizes
- Conquer: sort two sub-arrays recursively
- Combine: no further work. Why?

Quick Sort: Divide Phase

Partition (Array A[l..h])

- 1. $pivot \leftarrow A[h]$
- 2. $i \leftarrow l 1$
- 3. for $j \leftarrow l$ to h-1
- 4. if $A[j] \leq pivot$
- 5. $i \leftarrow i + 1$
- 6. swap A[i] and A[j]
- 7. swap A[i+1] and A[h]
- 8. return i+1

- \bullet Position of sub-array A: from l to h
- Pick a pivot as the last item
- Sub-array A[l..i]: values $\leq pivot$
 - Sub-array A[i+1..j-1]: values > pivot
- In each loop iteration, how do we maintain these conditions?
- What's clever about Line 6?

- Iteration begin ≤ pivot
- If $A[j] > pivot \leq pivot$
- If $A[j] \le pivot$ $\le pivot$

> pivot

> pivot

- ? | ? | unseen
 - ? | unseen | pive
- > pivot ? | unseen
 - pivo

Quick Sort: Divide Phase

Execution order

Meaning of colours:

 $\leq pivot$

> pivot

unseen

pivot

29 70 85 40 47 26 13 59
29 70 85 40 47 26 13 59
29 70 85 40 47 26 13 59
29 40 85 70 47 26 13 59
29 40 47 70 85 26 13 59
29 40 47 26 85 70 13 59
29 40 47 26 13 70 85 59
29 40 47 26 13 59 85 70

Quick Sort

First call: Quick-Sort (A[0..n-1]) Divide: Line 2 Partition the array by a pivot Quick-Sort (Array A[l..h]) Note that these two sub-arrays 1. if l < hmay have different sizes $p \leftarrow \text{Partition} (A[l..h])$ Conquer: Lines 3-4 Quick-Sort (A[l..p-1]) Sort each sub-array recursively Quick-Sort (A[p + 1..h])Combine: NIL Before partition unseen After partition $\leq pivot$ > pivot

Quick Sort: Divide Phase

Quick Sort: Combine Phase

Our Roadmap

- Slow sorting algorithms
 - Selection sort
 - Bubble sort
 - Insertion sort
- Fast sorting algorithms (by divide-and-conquer)
 - Merge sort
 - Quick sort

How to *analyze* the running time of these divide-and-conquer algorithms?

Recurrence: running time of D&C Algorithm

- \bullet Let T(n) be the running time of algorithm at input size n
- * Example: running time of Merge-Sort
 - Divide the problem into 2 subproblems
 - Each subproblem has 1/2 of the original problem size
 - \diamond The combine phase takes O(n) time (we will analyze this later)
- The recurrence of the running time of Merge-Sort

$$T(n) = 2 T(n/2) + O(n)$$

Solving Recurrence

 [Step 1] Find the recurrence of the running time of Merge-Sort

$$T(n) = 2 T(n/2) + O(n)$$

Step 2] After solving the recurrence, we get:

$$T(n) = O(n \log_2 n)$$

- We skip the details of solving the recurrence
 - Beyond the scope of this course

Running Time of D&C Algorithm

- To analyze the running time of a D&C algorithm, we do:
 - Step 1. Find the recurrence of the algorithm (we now study)
 - Step 2. Solve the recurrence

- We will analyze the running time of:
 - The Merge-sort algorithm
 - The Quick-sort algorithm

Running Time of Merge (for Merge Sort)

Pre-condition:

Arrays L and R are already sorted

• The input size is $n_A = n_L + n_R$

Merge (Array $L[0..n_L-1]$, Array $R[0..n_R-1]$)

1.
$$n_A \leftarrow n_L + n_R$$

- 2. create a new array $A[0..n_A-1]$
- $3. i \leftarrow 0$; $j \leftarrow 0$
- 4. for $k \leftarrow 0$ to n_A-1
- 5. if $(j=n_R)$ or $(i < n_L \text{ and } L[i] < R[j])$
- 6. $A[k] \leftarrow L[i]$; $i \leftarrow i+1$
- 7. else
- 8. $A[k] \leftarrow R[j]$; $j \leftarrow j+1$
- 9. return A

- ♦ Lines 1, 3: O(1) time
- Lines 2, 4: $O(n_A)$ time
- Lines 5-8: same as Line 4
- \bullet Total time: $O(n_A)$

Running Time of Merge Sort

Merge-Sort (Array A[0..n-1])

- 1. if n > 0
- 2. $m \leftarrow \lfloor n/2 \rfloor$
- 3. Array $L \leftarrow A[0..m-1]$
- 4. Array $R \leftarrow A[m..n-1]$
- 5. Merge-Sort (L)
- 6. Merge-Sort (R)
- 7. $A[0..n-1] \leftarrow \text{Merge}(L, R)$

- Let T(n) be the running time of Merge Sort
 - \diamond Lines 3, 4: O(n) time
 - \diamond Line 5: T(n/2) time
 - \diamond Line 6: T(n/2) time
 - \diamond Line 7: O(n) time
 - Running time of Merge
- Recurrence of Merge Sort T(n) = 2 T(n/2) + O(n)
- After solving recurrence:

$$T(n) = O(n \log n)$$

Running Time of Partition (for Quick Sort)

Partition (Array A[l..h])

- 1. $pivot \leftarrow A[h]$
- 2. $i \leftarrow l 1$
- 3. for $j \leftarrow l$ to h-1
- 4. if $A[j] \leq pivot$
- 5. $i \leftarrow i + 1$
- 6. swap A[i] and A[j]
- 7. swap A[i+1] and A[h]
- 8. return i+1

• The input size n is h - l + 1

♦ Lines 1, 2:

O(1) time

♦ Line 3:

O(n) time

♦ Lines 4-6:

same as Line 3

♦ Lines 7,8:

O(1) time

Total time:

O(n) time

Running Time of Quick Sort

First call: Quick-Sort (A[0..n-1])

Quick-Sort (Array A[l..h])

- 1. if l < h
- 2. $p \leftarrow Partition(A[l..h])$
- 3. Quick-Sort (A[l..p-1])
- 4. Quick-Sort (A[p+1..h])

How do we solve this recurrence?

- The input size n is h l + 1
- Let T(n) be the running time of Quick Sort

 - \diamond Line 2: O(n) time
 - Let x be the number of items in the left sub-array
 - \diamond Line 3: T(x) time
 - \bullet Line 4: T(n-x-1) time
- Recurrence of Quick Sort:

$$T(n) = T(x) + T(n-x-1) + O(n)$$

Quick Sort: Best Case Running Time

- Recurrence: T(n) = T(x) + T(n-x-1) + c n
 - \diamond where c is a constant
- The *best case* happens when both sub-arrays have the same size, i.e., x = n-x-1 = (n-1)/2

$$T(n) = 2 T((n-1)/2) + c n$$

 $\leq 2 T(n/2) + c n$

♦ Solving this recurrence, we get: $T(n) = O(n \log n)$ as the best case running time of Quick-sort

Quick Sort: Worst Case Running Time

- Recurrence: T(n) = T(x) + T(n-x-1) + c n
- The *worst case* happens when the left (or the right) sub-array is the largest, i.e., x = n-1 and n-x-1 = 0

$$T(n) = T(n-1) + c n$$

Thus, we derive: T(n)

$$= c n + c (n-1) + c (n-2) + ... + c (1)$$

$$= c n (n+1) / 2$$

$$= O(n^2)$$

Input size	<u>Time</u>
n	c n
n-1	c(n-1)
n-2	c(n-2)
•••	•••
1	c(1)

Quick Sort: Worst-Case Input

- \diamond Quick Sort takes $O(n^2)$ time for the worst-case input:
- Is the following array the worst case input (at n=8)?
 - Run Quick Sort, find the pivot and partitions (i.e., subarrays) in each recursive call

13 | 26 | 29 | 40 | 47 | 59 | 70 | 85

 $\leq pivot$

pivot

Partition (Array A[l..h])

- 1. $pivot \leftarrow A[h]$
- 2. $i \leftarrow l 1$
- 3. for $j \leftarrow l$ to h-1
- $4. \quad \text{if } A[j] \leq pivot$
- 5. $i \leftarrow i + 1$
- 6. swap A[i] and A[j]
- 7. swap A[i+1] and A[h]
- 8. return i+1

Randomized Quick Sort

- To reduce the chance of the worst case in Quick Sort, we can pick a random pivot (in the Divide phase)
 - See Lines 2-3 in the algorithm below
- Expected running time:

 $O(n \log n)$

• Worst-case running time: still $O(n^2)$

but it occurs with very low chance

```
Rand-Quick-Sort (Array A[l..h])
```

- 1. if l < h
- 2. $r \leftarrow \text{pick a random position in } l..h$
- 3. swap **A**[*r*] with **A**[*h*]
- 4. $p \leftarrow Partition(A[l..h])$
- 5. Rand-Quick-Sort (A[l..p-1])
- 6. Rand-Quick-Sort (A[p+1..h])

Sorting on linked lists

- The sorting algorithms on arrays call the statement "swap A[i] and A[j]"
 - \diamond This statement can be executed in O(1) time

- How to execute such statement on a (doubly) linked list?
 - ightharpoonup Maintain the references to the *i*-th and the *j*-th element, e.g., i_{ref} , j_{ref}
 - ightharpoonup Update the nodes of i_{ref} , j_{ref} , and their neighbors

Summary

Selection sort, Bubble sort, Insertion sort

- Merge sort, Quick sort
- Worst-case input of a sorting algorithm

Time complexity of a sorting algorithm

Please read Chapter 12 in the book
 "Data Structures and Algorithms in Java", 6th Edition