

Variabilidad mensual de las velocidades de flujo en una zona del mar Caribe

Paula Andrea Espinosa Ordoñez

Datos

Variables Independientes (X):

- Nivel del agua
- Salinidad
- Temperatura
- Altura y dirección de ola
- Magnitud y dirección del viento

Resolución:

- Pixeles: 4km x 8 km
- Temporal: promedio mensual
- Hycom
- ERA5

Variables Dependiente (Y):

- Magnitud de la velocidad
- Dirección de la velocidad

Configuración de la base de datos

Inforr	mación
del	pixel

)	
	index
0	46
1	47
2	48
3	49
4	50
216352	20939
216353	20940
216354	20941
216355	20942
216356	20943

		waterlevel	temp	sal	hs_wave	dir_wave	vel_wind	dir_wind	mes	vel_flow	dir_flow
	0	0.260220	0.260220	0.260220	0.116837	0.116837	0.116837	45.000000	1	0.368006	45.0
	1	0.263163	0.263163	0.263163	0.122465	0.122465	0.122465	45.000000	1	0.372168	45.0
	2	0.258976	0.258976	0.258976	0.130494	0.130494	0.130494	45.000000	1	0.366247	45.0
	3	0.256825	0.256825	0.256825	0.140012	0.140012	0.140012	45.000000	1	0.363206	45.0
	4	0.258829	0.258829	0.258829	0.149988	0.149988	0.149988	45.000000	1	0.366040	45.0
21	6352	0.218121	28.110162	35.755665	1.887047	87.019027	9.213161	259.490423	12	0.781339	225.0
21	6353	0.222498	28.105264	35.748895	1.888027	87.102830	9.229263	259.621510	12	0.802535	225.0
21	6354	0.226166	28.097134	35.737414	1.888999	87.187034	9.245683	259.752242	12	0.822391	225.0
21	6355	0.229069	28.081057	35.720507	1.889970	87.271393	9.257756	259.873328	12	0.838176	225.0
21	6356	0.231113	28.077571	35.710580	1.890939	87.355596	9.262286	259.979580	12	0.848334	225.0

216357 rows × 10 columns

Análisis Exploratorio de datos

Análisis Exploratorio de datos

Selección de variables Recursive Feature Elimination (RFE)

Selección de variables

Magnitud

Dirección

Validación Cruzada

K fold - Random Forest Regressor:

```
1 from sklearn.ensemble import RandomForestRegressor
   2 #----- Para La magnitud-----
   3 kfold = KFold(n_splits=5, shuffle= True,random_state=1)
   4 model = RandomForestRegressor()
   5 results = cross val score(model, X train1, y train1, cv=kfold, scoring='r2')
                                                                                       5 print(results)
   6 print(results)
                                                                                       6 print(results.mean())
   7 print(results.mean())
                                                                                       7 print(results.std())
   8 print(results.std())
                                                                                     ✓ 6m 41.1s
✓ 6m 35.1s
[0.96009712 0.95924487 0.95943987 0.96002153 0.95760486]
                                                                                    0.896489240545718
0.9592816500593436
                                                                                    0.002319638406659958
0.0009000478611234187
```

ShuffleSplit Linear Regression:

Curva de validación

Validación

Entrenamiento

Curva de aprendizaje

Clustering

Dendograma

Análisis de componentes principales

Análisis de componentes principales

REFERENCIAS

- Cooper, K. M., & Barry, J. (2020). A new machine learning approach to seabed biotope classification. Ocean & Coastal Management, 198, 105361. https://doi.org/10.1016/J.OCECOAMAN.2020.105361
- de Clippele, L. H., Huvenne, V. A. I., Orejas, C., Lundälv, T., Fox, A., Hennige, S. J., & Roberts, J. M. (2018). The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs, 37(1), 253–266. https://doi.org/10.1007/S00338-017-1653-Y/FIGURES/8
- Lykkebo, Karem, Nadine Heck, Borja G. Reguero, Donald Potts, Armen Hovagimian, and Andina Paytan. 2019. "Biological and Physical Effects of Brine Discharge from the Carlsbad Desalination Plant and Implications for Future Desalination Plant Constructions." Water 11:21.
- Olarte, Paloma Marina. 2019. "Climatología Del Transporte Potencial de Sedimentos Costeros Inducido Por Oleaje En La Isla San Andrés." Universidad Nacional de Colombia.
- Escobar, Carlos A., Liliana Velásquez, and Federico Posada. 2015. "Marine Currents in the Gulf of Urabá, Colombian Caribbean Sea." *Journal of Coastal Research* 31(6):1363–74.

AGRADECIMIENTOS

