Ana III Hausaufgabe, 7 Woche

Tutor: David Sering

SS 2021

Analysis III für Ingenieurwissenschaften

Juan Pardo Martin (397882) — Tuan Kiet Nguyen (404029) Leonardo Nerini (414193)

6. Juni 2021

1 Aufgabe

Entwickeln Sie die reelle Funktion $\frac{1}{1+x^2}$ in eine reelle Potenzreihe mit Entwicklungspunkt 1. Hierbei ist auch die maximale Konvergenzkreisscheibe zu ermitteln. Hinweise: Sie dürfen diese Aufgabe mit Hilfe von komplexen Zahlen lösen. Die verlangte reelle Potenzreihe darf aber keine komplexe Zahlen mehr enthalten. Reelle Winkelfunktionen brauchen nicht ausgewertet zu werden.

1.1 Antwort

Wir haben

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^{2n}), \left| -x^2 \right| < 1,$$

aber dann ist die Entwicklungspunkt 0, wi wollen unsere "Polynom-Basis"von x zu x-1 wechseln. Die Singularität ist $x=\pm i$

$$x^{2} + 1 = a(x - 1)^{2} + b(x - 1) + c = ax^{2} - 2ax + a + bx - b + c$$

Mit Koeffizientenvergleich

$$a = 1; -2 + b = 0 \Leftrightarrow b = 2; 1 - 2 + c = 1 \Leftrightarrow c = 2$$

$$\frac{1}{1+x^2} = \frac{1}{2+2(x-1)+(x-1)^2} = \frac{1}{2} \frac{1}{1+(x-1)+\frac{1}{2}(x-1)^2}$$

$$= \frac{1}{2} \frac{1}{1-\left(-\left((x-1)+\frac{1}{2}(x-1)^2\right)\right)}$$

Geometrische Reihenfolge:

$$=\frac{1}{2}\sum_{n=0}^{\infty}\left(-\left((x-1)+\frac{1}{2}(x-1)^2\right)\right)^n, \left|-\left((x-1)+\frac{1}{2}(x-1)^2\right)\right|<1$$

Man kann sehr schwer die Koeffizienten der Laurent Reihe hier extrahieren. Wir verwenden andere Methode:

$$\frac{1}{1+x^2} = \frac{1}{(x+i)(x-i)} = \frac{i}{2} \left(-\frac{1}{x-i} + \frac{1}{x+i} \right)$$

$$a_n = \frac{1}{n!} \frac{\partial^n}{\partial x^n} \frac{i}{2} \left(-\frac{1}{x-i} + \frac{1}{x+i} \right) = \frac{i}{2} \left(\left(-\frac{1}{x-i} \right)^{n+1} - \left(-\frac{1}{x+i} \right)^{n+1} \right) |_{x=1}$$

$$= \frac{1}{2} i \left(\left(-\frac{1}{2} - \frac{i}{2} \right)^{1+n} - \left(-\frac{1}{2} + \frac{i}{2} \right)^{1+n} \right)$$

$$= \left(\frac{1}{4} + \frac{i}{4} \right) \left(-i \left(-\frac{1}{2} - \frac{i}{2} \right)^n + \left(-\frac{1}{2} + \frac{i}{2} \right)^n \right) = \frac{1}{2\sqrt{2}} e^{i\frac{\pi}{4}} \left(e^{i\frac{3\pi}{2}} \left(\frac{1}{\sqrt{2}} e^{-i\frac{3\pi}{4}} \right)^n + \left(\frac{1}{\sqrt{2}} e^{i\frac{3\pi}{4}} \right)^n \right)$$

$$= \left(2^{-\left(\frac{1}{2} + \frac{n}{2}\right)} \right) \frac{1}{2} e^{i\frac{\pi}{4}} \left(i \left(e^{-i\frac{3\pi}{4}} \right)^n + \left(e^{i\frac{3\pi}{4}} \right)^n \right)$$

$$= \left(2^{-\left(\frac{1}{2} + \frac{n}{2}\right)} \right) \frac{1}{2} e^{i\frac{\pi}{4}} \left(1 - i \right) \left(\cos \left(\frac{3n\pi}{4} \right) - \sin \left(\frac{3n\pi}{4} \right) \right) \right)$$

$$= \left(2^{-\left(1 + \frac{n}{2}\right)} \left(\cos \left(\frac{3n\pi}{4} \right) - \sin \left(\frac{3n\pi}{4} \right) \right) \right)$$

$$\sum_{n=0}^{\infty} \left(2^{-\left(1 + \frac{n}{2}\right)} \left(\cos \left(\frac{3n\pi}{4} \right) - \sin \left(\frac{3n\pi}{4} \right) \right) \right) (x - 1)^n$$

und ihre Konvergenzradius ist $\sqrt{2}$ Denn $\pm i$ sind die Polstellen.

2 Aufgabe

Entwickeln Sie die Funktion $\log z$ in eine Potenzreihe mit dem Entwicklungspunkt i. (Vergessen Sie nicht, den Konvergenzbereich anzugeben. Ermitteln Sie den Wert der Reihe

$$\sum_{n=1}^{\infty} \frac{i^n}{n}$$

2.1 Antwort

$$a_n = \frac{1}{n!} \frac{\partial^n}{\partial x^n} \log(z)$$

für
$$n > 0$$
 und $a_0 = \log(i) = \frac{i\pi}{2}$

$$=-\frac{1}{n}\left(\frac{-1}{z}\right)^n$$

für z = i

$$=-\frac{i^n}{n}$$

die Potenzreihe ist

$$\frac{i\pi}{2} - \sum_{n=1}^{\infty} \frac{i^n}{n} (z - i)^n$$

für |z|<1wegen der Polstelle am 0. für z=1+i

$$\log(1+i) = \frac{i\pi}{2} - \sum_{n=1}^{\infty} \frac{i^n}{n} (1)^n$$

$$\sum_{n=1}^{\infty} \frac{i^n}{n} (1)^n = \frac{i\pi}{2} - \log(1+i)$$

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = \log(i) - \log(1+i)$$

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = \log\left(\frac{i}{1+i}\right)$$

$$\sum_{n=1}^{\infty} \frac{i^n}{n} = -\log(1-i)$$

3 Aufgabe

Berechnen Sie die Integrale

a)
$$\int_{|z-1|=2} \frac{e^{i\pi z}}{(z-1)^4} dz$$
, b) $\int_{|z-\pi|=1} \frac{z^4 \sin z}{(z-\pi)^6} dz$

Tipp: Benutzen Sie gerne die Leibnizsche Produktregel.

3.1 Antwort

für a:

$$\int_{|z-1|=2} \frac{e^{i\pi z}}{(z-1)^4} dz = \frac{2\pi i}{3!} f^{(3)}(1)$$

für $f(z) = e^{i\pi z}$. Daraus folgt:

$$f'''(z) = (i\pi)^3 e^{i\pi z}$$

Also die Integral ausgewertet

$$\int_{|z-1|=2} \frac{\mathrm{e}^{\mathrm{i}\pi z}}{(z-1)^4} \mathrm{d}z = \frac{2\pi^4}{3!}$$

für b

$$\int_{|z-\pi|=1} \frac{z^4 \sin z}{(z-\pi)^6} \mathrm{d}z = \frac{2\pi i}{5!} f^{(5)}(\pi)$$

für $f(z) = z^4 \sin z$.

$$f''(z) = z^4 \sin z = z^4 \cos(z) + 4z^3 \sin(z)$$

$$f'''(z) = z^4 (-\sin(z)) + 8z^3 \cos(z) + 12z^2 \sin(z)$$

$$f'''(z) = z^4 (-\cos(z)) - 12z^3 \sin(z) + 36z^2 \cos(z) + 24z \sin(z)$$

$$f''''(z) = z^4 \sin(z) - 16z^3 \cos(z) - 72z^2 \sin(z) + 24\sin(z) + 96z \cos(z)$$

$$f'''''(z) = z^4 \cos(z) + 20z^3 \sin(z) - 120z^2 \cos(z) - 240z \sin(z) + 120 \cos(z) = 20z \left(z^2 - 12\right) \sin(z) + \left(z^4 - 120z^2 + 120\right) \cos(z)$$

$$f^{(5)}(\pi) = -\pi^4 + 120\pi^2 - 120$$

Die Integral entspricht:

$$\frac{2\pi i}{5!} \left(= -\pi^4 + 120\pi^2 - 120 \right)$$