3 77

A ... Menge, \mathcal{O}_A ... Menge aller Klone auf A **zu zeigen:** $(\mathcal{O}_A, \subseteq)$ bildet einen vollständigen Verband Sei $P \subseteq \mathcal{O}_A$ beliebig. Für $P = \emptyset$ ist

$$inf(P) = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{f : A^n \to A\}$$

$$sup(P) = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{\pi_i^{(n)} : i \in \{1, ..., n\}\}.$$

Was auch mit den unteren Definitionen übereinstimmt, wenn man die Vereinigung und den Schnitt über die leere Menge entsprechend definiert.

Wir wollen zeigen $\exists C \in \mathcal{O}_A : C = inf(P)$ also

$$\forall D \in P: C \subseteq D \text{ und}$$

$$\forall \tilde{C} \in \mathcal{O}_A: (\forall D \in P: \tilde{C} \subseteq D) \implies \tilde{C} \subseteq C.$$

$$C:=\bigcap_{D\in P}D$$

• zz: C ist ein Klon auf A

Sei $\pi_i^{(n)}$ eine beliebige Projektion auf A. $\forall D \in P : \pi_i^{(n)} \in D$, da $D \in \mathcal{O}_A$. Das bedeutet aber, dass $\pi_i^{(n)} \in \bigcap_{D \in P} D = C$.

Sei $f_1, ..., f_k : A^n \to A, g : A^k \to A$ aus C beliebig. $\Longrightarrow \forall D \in P : f_1, ..., f_k, g \in D$ und daher auch $\forall D \in P : h := g \circ_{n,k} (f_1, ..., f_k) \in D$. Das bedeutet aber, $h \in C$. Also ist $C \in \mathcal{O}_A$.

• **zz:** $\forall D \in P : C \subseteq D$ gilt nach Definition von C.

• **zz:** $\forall \tilde{C} \in \mathcal{O}_A : (\forall D \in P : \tilde{C} \subseteq D) \implies \tilde{C} \subseteq C$ Sei $\tilde{C} \in \mathcal{O}_A$ mit $\forall D \in P : \tilde{C} \subseteq D$ beliebig. Angenommen $C \subsetneq \tilde{C}$. Das bedeutet $\exists f \in \tilde{C} \setminus C$. Da $f \notin C$ gilt $\exists D \in P : f \notin D$ und somit $\neq (\tilde{C} \subseteq D)$ was ein Widerspruch ist. Also muss gelten $\tilde{C} \subseteq C$.

Insgesamt ist also C = inf(P).

Da $(\mathcal{O}_A, \subseteq)$ eine Halbordnung ist und jede Teilmenge ein Infimum besitzt gilt nach Aufgabe 52 von letzer Woche, dass auch jede Teilmenge ein Supremum besitzt.

Alternativer Beweis des Supremums:

Zu zeigen: $\exists C \in \mathcal{O}_A : C = sup(P)$ also

$$\forall D\in P:D\subseteq C \text{ und}$$

$$\forall \tilde{C}\in\mathcal{O}_A:(\forall D\in P:D\subseteq \tilde{C})\implies C\subseteq \tilde{C}.$$

$$C:=\left[\bigcup_{D\in P}D\right]$$
wobei $[M]$ den Abschluss unter allen $\circ_{n,k}$ bezeichnet

 \bullet **zz:** C ist ein Klon auf A

Sei $\pi_i^{(n)}$ eine beliebige Projektion auf A. $\forall D \in P : \pi_i^{(n)} \in D$, da $D \in \mathcal{O}_A$. Das bedeutet aber, dass $\pi_i^{(n)} \in \bigcup_{D \in P} D = C$.

Die Abgeschlossenheit bezüglich aller $\circ_{n,k}$ gilt nach Definition.

Also ist $C \in \mathcal{O}_A$.

- **zz:** $\forall D \in P : D \subseteq C$ gilt nach Definition von C.
- zz: $\forall \tilde{C} \in \mathcal{O}_A : (\forall D \in P : D \subseteq \tilde{C}) \implies C \subseteq \tilde{C}$ Sei $\tilde{C} \in \mathcal{O}_A$ mit $\forall D \in P : D \subseteq \tilde{C}$ beliebig. Angenommen $\tilde{C} \subsetneq C$. Das bedeutet $\exists f \in C \setminus \tilde{C}$. Da $f \in C$ gilt entweder $\exists D \in P : f \in D$ was aber ein Widerspruch zu $D \subseteq \tilde{C}$ ist, da $f \notin \tilde{C}$ oder f entsteht durch $\circ_{n,k}$ auf $\bigcup_{D \in P} D$. Da $\forall D \in P : D \subseteq \tilde{C} \implies \bigcup_{D \in P} D \subseteq \tilde{C}$ kann \tilde{C} kein Klon sein, da $f \notin \tilde{C}$ und somit \tilde{C} nicht unter allen $\circ_{n,k}$ abgeschlossen ist.

Insgesamt also C = sup(P).