Taller 1 topo

1. Sea $X = \{1, 2, 3, 4, 5\}$. Considere la topología sobre X dada por

$$\mathcal{T} = \{\emptyset, \{3\}, \{1, 2\}, \{3, 4\}, \{3, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, X\}.$$

- b) Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:
 - \bullet * $A = \{1, 3, 4, 5\}$
- 6 IN(A) = {35 U } 3,43 U { 3,5} U { 3,4,5} = { 3,4,5 }

- Chusura (A) = $A \cup A^1 = \{1, 2, 3, 4, 5\}$
- 2. Sobre R definamos la colección

$$\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(-n, n) : n \in \mathbb{Z}\}\$$

- c) Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:
 - \bullet (* A = (1,4))
 - IMCA) = Ø
 - A' = § 1 }
 - 0 A = [1,4]
- 3. Considere \mathbb{R} con la topología euclidiana. Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:

- in+(A) =
 Ø

- **4.** * Sean A, B, y A_{α} subconjuntos del espacio X. Pruebe lo siguiente:
 - a) Si $A \subseteq B$ entonces $\overline{A} \subseteq \overline{B}$.
 - b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - c) $\bigcup \overline{A_{\alpha}} \subseteq \overline{\bigcup A_{\alpha}}$, dé un ejemplo donde no se cumpla la igualdad.

a) Si A C B entones A C B

AUA' S BUB'

Como ASB la denostración consiste realmente en decir:

A' CBUB'

Sca $x \in A'$, Sabenes que cualquier vecendad U_x contrere a por la arenes un elemento de A, llanémosito a $\in A$ cono $A \subseteq B$, a $\in B$ bego U_x contrare al menos un elemento de de b. Como x era arbitrario entenes $A' \subseteq B \cup B'$.

D AUB = AUB

(AUB) U (AUB) = (AUA') U (BUB')

(AUB) U (AUB) = (AUA') U (BUB')

(AUB) = (AUB)

el problem se puede reducer a la escrito arriba

- (a) See $x \in (\text{tob})'$ enteres una verieble U_x intersected con (A U B)', eso quere lectr que $U_x \cap \text{A} \neq \emptyset$ $O U_x \cap \text{B} \neq \emptyset$ bego $(\text{A U B})' \subseteq (\text{A' U B'})$
- (2) Sea $x \in (A' \cup B')$, note ge $U_x \cap A \neq \emptyset$ of $U_x \cap B \neq \emptyset$ o ambos; bego

0x ~ (AUS) +8

así que x es punto hoube de (AUB).

- 10. Pruebe las siguientes afirmaciones:
- c) * Si (X, \mathcal{T}) es un espacio Hausdorff y $Y \subset X$ entonces Y con la topología del subespacio \mathcal{T}_Y es una topología Hausdorff.

doub que (X, T) es un especio de hausdorff, podemos tonar

Y1 # Y2 Con Y1, Y2 E Y, Como Y1, Y2 EX podemos hucer

2 vecindades disjuntes Uy1, Uy2.

Si buscumos el correspondiente abierto en la topología del subesqueso terenos:

0'y = 0 y 1 1 1 1 2 = 0 y 1 1

Si probunos:

 $\begin{array}{ll}
\left(\begin{array}{ccc} V_{1} & \Lambda & V_{1} \\ V_{2} & \Lambda \end{array} \right) & \Lambda & \left(\begin{array}{ccc} V_{1} & \Lambda & Y \\ V_{2} & \Lambda & V_{2} \end{array} \right) & \Lambda & Y \\
& = \left(\begin{array}{ccc} V_{11} & \Lambda & V_{12} \\ V_{21} & \Lambda & V_{22} \end{array} \right) & \Lambda & Y
\end{array}$

luego 2 abrertos arbitrarios de y pueden separalise.

 \square Pruebe que X es Hausdorff si y solo si

$$\Delta = \{(x, x) \in X \times X\}$$

es cerrado en la topología producto de $X \times X$.

conjuntos: ■ Los intervalos $(a, b) \subset \mathbb{R}$ con a < b; ■ Las vecindades de P obtenidas como una vecindad de 0, quitando 0 y agregando P, es decir, conjuntos de la forma $((a,b) - \{0\}) \cup \{P\}, \text{ con } a < 0, b > 0.$ a) Pruebe que si $I \subset X$ es cualquier intervalo que contiene a 0 entonces $P \in \overline{I}$. Similarmente, si $V \subset X$ es cualquier vecindad de P entonces $0 \in \overline{V}$. b) Pruebe que si $A \subseteq X$ es un subconjunto con $0 \in A'$ entonces $P \in A'$. c) Pruebe que la sucesión $\{\frac{1}{n}: n \in \mathbb{N}\}$ como subconjunto de X converge a 0 y a P. Es decir, sucesiones en X pueden tener más de un límite. S: I CX es coalquier intervalo que Contiene a O entones essa generado por buses de la forma (a,b) CIR. Para poder decir que PEI es necessirio decir que PEI. Si consideranos una recordad de P Up note que para cualquer recordad por la defencción de la base habrá una intersection, Es dear: I es un intervalo de la forma (a,b), prodo generar Up con base a un intervalo de la forma de I, así: { Ca, b) - {0}} U { P}, hego co duro que Up (I + Ø. ose que PEI. b) Pruebe que Si A C X es un subconjunto con OEA enforces PEA' Si A C X con O & A' huy 2 cases: (▷ ∈ A :) A es de la fama (a,b): en ayo Cuso ejencicio anterior que PE A. A es de la forma {Ca, b) - {0}} Julps, y walquier vecadorio de f

12. Sea $X = \mathbb{R} \cup \{P\}$ donde $P \notin \mathbb{R}$. En X podemos definir la topología \mathcal{T}_{oo} generada por los

tadrá una interse ación distinta de vaccio: Sa Up de la forma: entonces ({ (\ C \ w, 2) - {0}} \ U \ P}) \ \ U \ p \ \ \ \ y \ \ contine mis elements que U. entonces ({ (C vs, 2) - {0}} U { P}) ~ Up # \$ y continue mis elementos que U.