Learning by Observation for Surgical Subtasks: Multilateral Cutting of 3D Viscoelastic and 2D Orthotropic Tissue Phantoms

February 12, 2019

Paper info

Introductio

Background

Approach

Learn By Observation Finite state machine

Experiment
3D debridement

Paper information

	Learning by Observation for Surgical Subtasks:			
Title	Multilateral Cutting of 3D Viscoelastic			
	and 2D Orthotropic Tissue Phantoms			
Author(s)	Adithyavairavan Murali, Siddarth Sen,			
	Ben Kehoe, Animesh Garg, Seth McFarland,			
	Sachin Patil, W. Douglas Boyd, Susan Lim,			
	Pieter Abbeel, Ken Goldberg			
Year	2015			
Conference	IEEE ICRA (ICRA)			
Highlights	Best Medical Robotics Paper Finalist			
	PhD work			
	Multilateral manipulation			
	Learning By Observation (LBO)			
	Simple approach but effective results			

Paper info

Introduction

Approach

Learn By Observation Finite state machine

Experiment 3D debridement

Introduction

- Object: Repetitive surgical tasks automation
- Method: Building a Finite State Machine (FSM) via Learning By Observation (LBO)
- ► Evaluation:
 - Debridement of viscoelastic tissue phantoms (3d-DVTP)
 - ► Pattern cutting of orthotropic deformable tissue phantoms (2d-PCOTP)

Figure 1: 3D debridement

Figure 2: 2D pattern cutting

Paper info

Introduction

Background

Approach

Learn By Observat Finite state machin

Experiment 3D debridement

Background

Challenges:

- ▶ Interaction with deformable tissue
- Learning from expert demonstration
- Segmentation of demonstration into sequences

Current:

- Modelling of deformable tissue is computational expensive
- ► Handle it by learning from demonstration
- Manual or automatically segmentation

Paper info

Introduction

Background

Approach

Learn By Observation Finite state machine

Experiment
3D debridement

Future work and

Future work and comments

Set-up

Hardware:

- ▶ Da Vinci research kit (a tele-operated surgical platform)
- Stereo camera

Software:

- robot control program by JHU
- OpenCV

Paper info

Introduction

Background

Approach

Learn By Observatio

Experiment 3D debridement

3D debridement 2D pattern cutting

Future work and comments

Learn By Observation

Paper info

Introduction

Backgrour

Approach

Learn By Observation Finite state machine

Experiment 3D debridement

Future work and comments

 ρ - Repeatability

Finite state machine

Finite state machine for 2D pattern cutting:

Paper info

Introductio

Backgr

Approach

Learn By Observation
Finite state machine

Experir

3D debridement 2D pattern cutting

3D debridement

High success rate in 3D debridement:

Trial	Length	Outcome	Retrac-	Cut	Time (s)	
	(mm)	Outcome	tions	Failures	Total	Mean
1	21	Success	3	0	70	20.3
2	22	Success	3	0	70	20.3
3	27	Success	3	0	73	21.3
4	27	Success	4	1	94	20.5
5	24	Success	3	0	73	21.3
					76	20.8

Trial	Targets	Failure		Time (s)		
		Detection	Cut	Total	Mean	
1	5	0	0	128	23.2	
2	5	0	0	127	23.0	
3	5	0	0	125	22.6	
4	5	0	0	128	23.2	
5	5	0	0	128	23.2	
6	5	0	0	127	23.0	
7	5	1	1	103*	23.5	
8	5	0	0	125	22.6	
9	5	0	0	125	22.6	
10	5	0	0	124	22.4	
	50	1	1	_	22.3	

Linear targets

Spherical targets

Video.

Paper info

Introduction

Backgroui

Approach

Eearn By Observation Finite state machine

3D debridement

2D pattern cutting

Lower success rate in pattern cutting:

Trial	Success	Score	Failed	Transl. (mm)		Total
IIIai			State	X	у	Time
Demonstration		99.86		0.0	0.0	263
1	Success	99.81	l —	26.4	-1.0	284
2	Failure	_	Notch	2.0	-0.5	130*
3	Failure	_	Notch	1.2	-3.0	120*
4	Success	94.52	l —	4.5	-2.1	289
5	Failure	_	L.S.	2.0	-1.4	115*
6	Success	97.32	l —	-1.2	-2.2	283
7	Success	99.12	l —	4.0	-0.9	282
8	Failure	_	Notch	3.6	-0.9	131*
9	Failure		U.S.	8.1	0.2	248*
10	Success	98.89	l —	5.6	-0.4	279
11	Failure		Notch	8.5	-1.8	129*
12	Success	99.87	l —	5.6	-0.8	279
13	Success	100.00	l —	6.6	0.4	284
14	Success	99.96	l —	2.3	-1.6	285
15	Success	99.86	l —	3.0	0.3	283
16	Success	98.96	l —	9.3	-0.4	284
17	Success	98.39	—	8.5	-0.7	285
18	Success	98.94	l —	10.5	-0.7	284
19	Success	98.85	_	9.3	0.5	284
20	Success	99.98	_	6.8	0.8	284
Mean	70%	98.89		6.5	1.0	284
Std. Dev.		1.47		5.6	0.8	2.5

Paper info

Introduction

Backgr

Approach

Learn By Observation Finite state machine

3D debridement 2D pattern cutting

Future works and comments

Main conclusion: LBO can be effective in surgical task automation.

Future work:

- Improving speed and repeatability
- Automated (or semi-automated) segmentation of demonstrations
- Application to other subtasks

Personal comments:

Combination of current techniques performed impressive outcome

Any other feasible approaches?

Paper info

Introduction

Backgro

Approach

Learn By Observation Finite state machine

Experiment 3D debridement

comments