M3 – ALU Design

Module Outline

- Integer Arithmetic
 - Adder, Subtractor, Multiplier, Divider
- Arithmetic and Logical Unit Design
 - ALU Design in SystemC

Arithmetic Logic Unit

- Arithmetic operations
- Logic operations
- Comparison (Equal)

• Start with the simplest operations.

- Start with the simplest operations.
 - AND, OR
 - Control signal

- Start with the simplest operations.
 - AND, OR
 - Control signal
- Incrementally add functionality and control

- Start with the simplest operations.
 - AND, OR
 - Control signal
- Incrementally add functionality and control
- Start with a 1-bit ALU

- Start with the simplest operations.
 - AND, OR
 - Control signal
- Incrementally add functionality and control
- Start with a 1-bit ALU
- Modify design for a n-bit ALU

Include a Full Adder

ADDER, AND, OR

ADDER, AND, OR

Subtraction?

Adder/Subtractor

Adder/Subtractor

Adder/Subtractor

A-B: Binvert = 1; CarryIn = 1.

A+B: Binvert = 0; CarryIn = 0.

A-B: Binvert = 1; CarryIn = 1.

A+B: Binvert = 0; CarryIn = 0.

NAND, NOR?

NAND, NOR, NOT

A NAND B = $\overline{(A \text{ AND B})}$ = $\overline{A} \text{ OR } \overline{B}$ A NOR B = $\overline{(A \text{ OR B})}$ = $\overline{A} \text{ AND } \overline{B}$

a NAND b: Ainvert=1;Binvert=1;Op=1

A±B, AND, OR, NOR, NAND

Set Less Than

- Set a status bit if (a < b)
- If (a<b); (a-b) is -ve
- Calculate (a-b). Observe sign bit of the result

slt(a,b): Binvert=1; CarryIn=1; Operation=3;

A±B, AND, OR, NOR, NAND, SLT

A±B, AND, OR, NOR, NAND, SLT, Overflow detection

32-bit ALU

Operation Binvert Ainvert CarryIn CarryIn a0 -Result0 ALU0 b0 -Less CarryOut CarryIn а1 ➤ Result1 ALU1 Less CarryOut CarryIn ➤ Result2 ALU2 Less CarryOut CarryIn CarryIn Result31 a31-Set b31-ALU31 0 -Overflow Less

Zero detection?

32-bit ALU

	Ainvert	Binvert	CarryIn	Operation
AND				
OR				
ADD				
SUB				
NAND				
NOR				
SLT				

	Ainvert	Binvert	CarryIn	Operation
AND	0	0	0	00
OR				
ADD				
SUB				
NAND				
NOR				
SLT				

	Ainvert	Binvert	CarryIn	Operation
AND	0	0	0	00
OR	0	0	0	01
ADD				
SUB				
NAND				
NOR				
SLT				

	Ainvert	Binvert	CarryIn	Operation
AND	0	0	0	00
OR	0	0	0	01
ADD	0	0	0	10
SUB	0	1	1	10
NAND				
NOR				
SLT				

	Ainvert	Binvert	Carryln	Operation
AND	0	0	0	00
OR	0	0	0	01
ADD	0	0	0	10
SUB	0	1	1	10
NAND	1	1	0	01
NOR	1	1	0	00
SLT				

	Ainvert	Binvert	Carryln	Operation
AND	0	0	0	00
OR	0	0	0	01
ADD	0	0	0	10
SUB	0	1	1	10
NAND	1	1	0	01
NOR	1	1	0	00
SLT	0	1	1	11

ALU – Control Signals

	Ainvert	Binvert	Carryln	Operation
AND	0	0	0	00
OR	0	0	0	01
ADD	0	0	0	10
SUB	0	1	1	10
NAND	1	1	0	01
NOR	1	1	0	00
SLT	0	1	1	11

Ignore the effect of CarryIn during NAND and NOR execution. **Binvert == CarryIn.**

ALU – Control Signals

	ABOp
AND	0000
OR	0001
ADD	0010
SUB	0110
NAND	1101
NOR	1100
SLT	0111

ALU Control

Instructions using the ALU

- Arithmetic and Logic Instructions
 - R-type and I-type
- Memory transfer instructions
 - Effective address calculation
 - I-type
- Branch instructions (BEQ)
 - For Zero detection
 - I-type

ALU – Control Signals

	ABOp
AND	0000
OR	0001
ADD	0010
SUB	0110
NAND	1101
NOR	1100
SLT	0111

Which control signals for LW, SW, BEQ?

ALU – Control Signals

Input to ALU CU	Output Control Signals ABOp
AND	0000
OR	0001
ADD, LW, SW	0010
SUB, BEQ	0110
NAND	1101
NOR	1100
SLT	0111

ALU Control – AND (R-type)

Instruction	ALU action	Туре	Funct field	Control Signal
LW				
SW				
BEQ				
ALU instruction				
ALU Immediate				

Instruction	ALU action	Туре	Funct field	Control Signal
LW				
SW				
BEQ				
ALU instruction				
ALU Immediate				
<u> </u>		1		
Main Contro Identifies the in		nputs to the ALL	CU	Output of ALU CU

Instruction	ALU action	Туре	Funct field	Control Signal
LW	add	I-type	Invalid	0010
SW				
BEQ				
ALU instruction				
ALU Immediate				
<u> </u>		1		
Main Control Unit Identifies the instruction		Inputs to the ALU CU		Output of ALU CU

Instruction	ALU action	Туре	Funct field	Control Signal	
LW	add	I-type	Invalid	0010	
SW	add	I-type	Invalid	0010	
BEQ					
ALU instruction					
ALU Immediate					
	lain Control Unit cifies the instruction Inputs to the ALU CU			Output of ALU CU	

Instruction	ALU action	Туре	Funct field	Control Signal	
LW	add	I-type	Invalid	0010	
SW	add	I-type	Invalid	0010	
BEQ	sub	I-type	Invalid	0110	
ALU instruction					
ALU Immediate					
<u>+</u>					
Main Contro Identifies the in	Inpute to the ALII CII			Output of ALU CU	

Instruction	ALU action	Туре	Funct field	Control Signal	
LW	add	I-type	Invalid	0010	
SW	add	I-type	Invalid	0010	
BEQ	sub	I-type	Invalid	0110	
ALU instruction	As in instruction	R-type	Unique per instruction	As per instruction	
ALU Immediate					
Main Control Unit Inputs to the ALU CU				Output of ALU CU	

Instruction	ALU action	Туре	Funct field	Control Signal	
LW	add	I-type	Invalid	0010	
SW	add	I-type	Invalid	0010	
BEQ	sub	I-type	Invalid	0110	
ALU instruction	As in instruction	R-type	Unique per instruction	As per instruction	
ALU Immediate	As in instruction	I-type	Invalid	As in instruction	
Main Control Unit Inputs to the ALU CU			CU	Output of ALU CU	

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

ALUOp		Funct field						Operation
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	FO	
0	0	Х	Χ	X	Х	Х	Х	0010
X	1	Х	Χ	Х	Χ	Х	Х	0110
1	X	Х	Χ	0	0	0	0	0010
1	X	Х	Χ	0	0	1	0	0110
1	Х	Х	Х	0	1	0	0	0000
1	X	Х	Х	0	1	0	1	0001
1	X	X	Χ	1	0	1	0	0111

ALU Control Unit

Module Outline

- Integer Arithmetic
 - Adder, Subtractor, Multiplier, Divider
- Arithmetic and Logical Unit Design
 - ALU Design in SystemC

Backup

ALU Control

ALU Instructions

 ALU instructions (R type), Memory Transfer (effective address calculation), Branches (BEQ)

R-type

OP rd, rs, rt

op: Opcode (class of instruction). Eg. ALU funct: Which subunit of the ALU to activate?

I-type

OP rt, rs, IMM

ALU Instructions

- ALU instructions (R type), Memory Transfer (effective address calculation), Branches (BEQ)
- Identified by Opcode fields and Funct fields

ALU Instructions

 ALU instructions (R type), Memory Transfer (effective address calculation), Branches (BEQ)

R-type

OP rd, rs, rt

op: Opcode (class of instruction). Eg. ALU funct: Which subunit of the ALU to activate?

I-type

OP rt, rs, IMM

ALU Control – LW (I-type)

