In the game of Chess, pieces move about on an $n \times n$ grid of squares. In a single move, a piece can go from one square to one of a set of squares depending on the type of piece. In this problem, we are interested in the movement of the piece known as the Knight. In a single move, a Knight can traverse two squares horizontally or vertically followed by one square in a perpendicular direction. If we imagine the squares as having coordinate "addresses" (x,y) where x and y are positive integers, then for example a Knight can move from (3,5) to one of (4,7), (5,6), (5,4), (4,3), (2,3), (1,4), (1,6), or (2,7). There are at most eight squares to which a Knight can go in a single move, and possibly fewer since the Knight is not allowed to go to an address outside the $n \times n$ grid. In this problem, we seek to find the least number of successive moves required for a Knight to go from a given address to any other address within the $n \times n$ grid.

Input Format

Each line of the input contains three positive integers. The first number is the dimension $\mathfrak n$ of the square grid on which the Knight moves. We will assume the square in its lower right corner has address $(\mathfrak n,1)$, and the square in its upper left corner has address $(\mathfrak 1,\mathfrak n)$. The second number $\mathfrak x$ and third number $\mathfrak y$ are between 1 and $\mathfrak n$ and give the coordinates of the starting address $(\mathfrak x,\mathfrak y)$ of the Knight on the grid.

Output Format

For each line of input, output an $n \times n$ grid of numbers, each showing the minimum number of successive moves required for a Knight to reach that address in the grid from the starting address (x, y). If a square on the grid cannot be reached from the starting address (x, y), output -1 in that position of the output grid.

Input Sample

8 6 5

4 1 1

3 2 3

Output Sample

see reverse side of this page

Output Sample

Minimum number of moves from (6,5) on a 8 by 8 board:

4	3	2	3	2	3	2	3
3	2	3	4	1	2	1	4
4	3	2	1	2	3	2	1
3	2	3	2	3	0	3	2
4	3	2	1	2	3	2	1
3	2	3	4	1	2	1	
4	3	2	3	2	3	2	3
3	4	3	2	3	2	3	2

Minimum number of moves from (1,1) on a 4 by 4 board:

Minimum number of moves from (2,3) on a 3 by 3 board: