Estimação pontual e intervalo de confiança

Parte 4

Prof.: Eduardo Vargas Ferreira

Ideia do intervalos de confiança para a média

ightharpoonup Fixando a probabilidade em $1-\alpha$, queremos encontrar os pontos c_1 e c_2 , tal que

$$P(c_1 < \mu < c_2) = 1 - \alpha.$$

Agora basta isolar p

Intervalo de confiança para proporção

Exemplo: marca de detergente

▶ Uma amostra aleatória de 625 pessoas revela que 70% preferem a marca B de detergente. Construa um intervalo de 95% de confiança para proporção de pessoas que preferem a marca B.

$$P(c_1$$

Exemplo: marca de detergente

▶ Uma amostra aleatória de 625 pessoas revela que 70% preferem a marca B de detergente. Construa um intervalo de 95% de confiança para proporção de pessoas que preferem a marca B.

$$P(c_1$$

Qual valor de p utilizar?

Qual variância utilizar no IC de uma proporção

▶ Uma possível dificuldade nessa abordagem é que em geral não conhecemos o verdadeiro valor de p para calcular a variância de \hat{p} . Temos duas alternativas:

Estimativa otimista

Utilizar \hat{p} no lugar de p.

Estimativa conservadora Utilizar p = 0.5.

Isso pois quando p = 0.5, o termo p(1-p) terá valor máximo.

p	(1 - p)	p(1 - p)
0.1	0.9	0.09
0.3	0.7	0.21
0.5	0.5	0.25
0.6	0.4	0.24
0.8	0.2	0.16

Exemplo: marca de detergente (cont.)

ightharpoonup A abordagem otimista produz intervalos menores, quanto mais distante \hat{p} estiver de 0,5.

Estimativa otimista

$$IC_{0.95}(p) = \left[0.7 - 1.96\sqrt{\frac{0.21}{625}}, 0.7 + 1.96\sqrt{\frac{0.21}{625}}\right]$$

Estimativa conservadora

$$IC_{0.95}(p) = \left[0.7 - 1.96\sqrt{\frac{0.25}{625}}, 0.7 + 1.96\sqrt{\frac{0.25}{625}}\right]$$

Exemplo: eleições nos Estados Unidos

The Economist

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

