
AL-TR-89-018

AD:

Special Report
for the Period
August 1988 to
April 1989

AD-A215 773

Ammonium Perchlorate Transportation Hazards Testing

April 1989

Authors:

C. I. Merrill
J. Marshall
A. G. Talianich
W. J. Ledden, Jr.
K. L. Woods

DTIC
ELECTED
DEC 06 1989
S B D

Approved for Public Release

Distribution is unlimited. The AL Technical Services Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

Astronautics Laboratory (AFSC)

Air Force Space Technology Center
Space Systems Division
Air Force Systems Command
Edwards Air Force Base, California 93523-5000

NOTICE

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may be related thereto.

FOREWORD

This special report describes the tests on AP transportation containers conducted at the Astronautics Laboratory (AFSC), Edwards Air Force Base CA and at the Naval Weapons Center, China Lake CA. The project was jointly funded by the Department of Defense and NASA. AL Project Manager was Capt Anthony Taliancich.

This report has been reviewed and is approved for release and distribution in accordance with the distribution statement on the cover and on the DD Form 1473.

ANTHONY G. TALIANCICH, CAPT, USAF
Project Manager

BERGE B. GOSHGARIAN
Chief, Propellant Development
Branch

FOR THE DIRECTOR

DAVID P. KING, Lt Col USAF
Deputy Director
Propulsion Division

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution is Unlimited			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATION REPORT NUMBER(S) AL-TR-89-018		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION Astronautics Laboratory (AFSC)	6b. OFFICE SYMBOL RKP	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (City, State, and ZIP Code) AL/RKP Edwards AFB CA 93523-5000		7b. ADDRESS (City, State, and ZIP Code)			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO. 35119F 64312F	PROJECT NO. 922G	TASK NO. 00	WORK UNIT ACCESSION NO. K4
11. TITLE (Include Security Classification) Ammonium Perchlorate Transportation Hazards Testing (U)					
12. PERSONAL AUTHOR(S) Merrill, Claude; Marshall, John; Taliancich, Tony; Ledden, William J. Jr.; and Woods, K. I.					
13a. TYPE OF REPORT Special	13b. TIME COVERED FROM 88/08 TO 89/04	14. DATE OF REPORT (Year, Month, Day) 89/04		15. PAGE COUNT 50	
16. SUPPLEMENTARY NOTATION Additional project numbers for this project: 921D00L9 and 632651M2 This project was jointly funded by DoD and NASA.					
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Ammonium perchlorate, hazards testing, AP hazards testing			
FIELD 07	GROUP 02				
13	12				
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The incident at Pacific Engineering Production Company of Nevada (PEPCON) on 4 May 1988 raised concern over the transportation and storage safety of 208 liter (55 gallon) DOT Specification 1H steel drums containing 227 kilograms (500 pounds) of ammonium perchlorate and 2045 to 2270 kilograms (4500 to 5000 pounds) net weight ammonium perchlorate aluminum bins meeting requirements of DOT Specification 56. As a result these containers have been subjected to a series of transportation certification tests. Test procedures were obtained from the 1986 issue of the United Nations' publication, "Recommendations on the Transport of Dangerous Goods: Tests and Criteria," (ST/SG/AC.10/11), Test Series 6, Sections 41 through 44. The results of the tests for both drums and bins with nominal 200-micron particle size propellant grade ammonium perchlorate confirm the suitability of the US DOT classification as an oxidizer with ID number UN1442.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS			21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a. NAME OF RESPONSIBLE INDIVIDUAL ANTHONY G. TALIANCICH, Captain, USAF			22b. TELEPHONE (Include Area Code) (805) 275-5209		22c. OFFICE SYMBOL AL/RKPL

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
Preface	v
Introduction	1
Experimental Procedures and Test Setup	2
Test Articles	2
Test Type 6 (a): Single Package Test	2
Test Type 6 (b): Stack Test	6
Test Type 6 (c): External Fire (Bonfire) Test	6
Results: 227 kg (500 lb) Steel Drums	10
Results: 2045 to 2270 kg (4500 to 5000 lb) Aluminum Bins	12
Summary	16
References	19
Appendix A Lot Analysis of AP Used in Testing	21
Appendix B Thermocouple and Radiometer Data for Steel Drum External Fire (Bonfire) Test	27
Appendix C Thermocouple Data for Aluminum Bin External Fire (Bonfire) Test	31

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A-1	

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1.	Single Package Test Configuration for Steel Drums	4
2.	Typical Sandbag Confinement for Steel Drums	4
3.	Insertion Tool in the Alumirum Guide Tube	5
4.	Insertion Tool Disassembled	5
5.	Instrumentation Layout	6
6.	External Fire (Bonfire) Test Configuration for Steel Drums	7
7.	Photograph of External Fire (Bonfire) Test Setup for Steel Drums	7
8.	External Fire (Bonfire) Test Configuration for Aluminum Bins	9
9.	External Fire (Bonfire) Test Instrumentation for Aluminum Bins	9
10.	External Fire (Bonfire) Test Thermocouple Placement for Aluminum Bins	10
11.	External Fire (Bonfire) Test Bin Arrangement for Aluminum Bins	14
12.	External Fire (Bonfire) Test Fragment Map for Aluminum Bins	17

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1.	Results: 227 kg (500 lb) Steel Drum Tests	11
2.	Results: 2045 to 2270 kg (4500 to 5000 lb) Aluminum Bin Tests	13
3.	External Fire (Bonfire) Test Bin Identification for Aluminum Bins	15
4.	External Fire (Bonfire) Test Fragment Summary and Analysis for Aluminum Bins	18

PREFACE

The ammonium perchlorate (AP) hazards assessment program was initiated at the Astronautics Laboratory (AL). A request for the program came from Mr Daniel S. Rak, the Air Force Deputy Assistant Secretary for Acquisition Management and Policy in his capacity as Chairman of the Ammonium Perchlorate Management Steering Group for the Department of Defense (DoD), National Aeronautics and Space Administration (NASA) and industry. At the same time, the Navy was immediately authorized to initiate work in support of this effort by Mr Peter Gratton, also a member of the Management Steering Group. Dr Richard R. Weiss, Chief Scientist of the AL, organized and conducted a workshop at the AL which was attended by 21 experts representing government, industry and consultants. The workshop developed a program plan that addressed the ammonium perchlorate processing, storage and transportation issues. Dr Frank Roberto of the AL was assigned as the program manager. A technical consortium was formed to address the technical issues and to assist Dr Roberto in the conduct of the program plan. We would like to acknowledge the appreciated support received from the people of the Naval Weapons Center (NWC), China Lake and the Experimental Area 1-32, Component Testing Section, AL/TOAB for conduct of the DOT transportation testing.

We also acknowledge and commend the contributions of Aerojet Solid Propulsion Company, Atlantic Research Corporation, Hercules Corporation - Bacchus Division, Morton Thiokol Corporation - Wasatch Division, and United Technologies - Chemical Systems Division. We similarly acknowledge the contributions and cooperation of the two ammonium perchlorate production companies, Kerr-McGee Company and Pacific Engineering Production Company of Nevada (PEPCON). Without the cooperation and supplies furnished by these members of the industry, especially Kerr-McGee, this project would not have been as responsive.

INTRODUCTION

Following the ammonium perchlorate (AP) fire and explosions at Pacific Engineering Production Company of Nevada (PEPCON) on 4 May 1988 a group of experts was convened by Mr Daniel S. Rak, Chairman of the Ammonium Perchlorate Management Steering Group, to perform an assessment of AP hazards. A primary objective was to determine the acceptability of containers commonly used by the industry for shipping and storage of AP. Nominal 200-micron particle size propellant grade AP in 114 liter (30 gallon) DOT specification 37A-350 steel drums with bolted ring closures containing approximately 114 kilograms (250 pounds) of material had successfully undergone shipping container safety testing in 1982 (Ref. 1). However, the same material in 208 liter (55 gallon) DOT specification 17H steel drums containing approximately 227 kilograms (500 pounds) of AP and aluminum bins conforming to requirements of DOT Specification 56, containing from 2045 to 2270 kilograms (4500 to 5000 pounds) of AP, both of which were involved in the PEPCON incident, had not been subjected to the same testing. The larger containers had been approved by analogy with AP behavior in the 114 liter (30 gallon) steel drums.

This report covers results obtained from shipping container testing of the 208 liter (55 gallon) steel drums and DOT Specification 56 aluminum bins with nominal 200-micron particle size propellant grade AP. Test procedures were acquired from the United Nations' 1986 publication, "Recommendations on the Transport of Dangerous Goods: Tests and Criteria," (ST/SG/AC.10/11), Sections 41 through 44 (Ref. 2). Guidance and procedures were also received from Dr Jerry Ward from the Department of Defense Explosives Safety Board (DDESB) (Ref. 3) and the Department of the Air Force Technical Order, TO 11A-1-47, "Department of Defense Explosives Hazard Classification Procedures" (Ref. 4).

The Astronautics Laboratory (AL), Edwards Air Force Base CA and the Naval Weapons Center (NWC), China Lake CA performed Series 6 testing (Ref. 2) of AP transport containers described above between 8 November 1988 and 9 January 1989. Type 6 (a) single package tests of the drums and bins were conducted at the AL, as well as the type 6 (c) external fire (bonfire) test of the steel drums. The type 6 (c) external fire (bonfire) fire test of the aluminum bins was conducted at the NWC.

EXPERIMENTAL PROCEDURES AND TEST SETUP

TEST ARTICLES

There were two test articles evaluated under this program. The first test article was a 208 liter (55 gallon) DOT specification 17H steel drum with bolted ring closure containing approximately 227 kilograms (500 pounds) of nominal 200-micron particle size propellant grade AP. The AP was packaged in a polyethylene bag with desiccant sacks inside the bag. Adhesive tape was used to seal the polyethylene bag prior to clamping on the bolted ring closure. The AP used in the testing came from several different lots of material. Company analysis of each lot is presented in Appendix A.

The second test article was an aluminum bin with a volume of approximately 2.1 cubic meters (74 cubic feet). Five different top loading and top emptying bin designs are currently being used by the industry. Each is designed to meet the requirements of DOT Specification 56 and to contain amounts of AP in the range of 2045 to 2270 kilograms (4500 to 5000 pounds). Both rectangular and cylindrical bin designs are currently in use. This test program was performed using three of the bin designs rather than focusing on any one. The three designs used were the Morton-Thiokol Incorporated (MTI) cylindrical, the Atlantic Research Company (ARC) rectangular and the United Technologies-Chemical Systems Division (CSD) rectangular. Other aluminum bins with approximately the same AP capacity and having top loading and top emptying construction which meet requirements of DOT Specification 56 are addressed by analogy. In this test series significant test response differences between container designs were not noted. There was, however, a slight difference in the pressurization response of the various bins. The heavier construction of the CSD bins contained a higher pressure before failing. As a result the pressure rupture of the CSD bin tended to be slightly more violent with the ejection of more AP.

TEST TYPE 6 (a): SINGLE PACKAGE TEST

The type 6 (a) single package tests were performed in accordance with procedures in Section 42 of Reference 2 and with guidance provided in Reference 3. There were two basic tests performed under these procedures. The first was an initiation test which used a standard detonator as the initiation source. The standard detonator used for this test series was a number 8 blasting cap. An ignition source was used for the second test procedure. Here a dual squib igniter was used to ignite 57 g (2 ounces) of grade "FFF" black powder. Each source was placed at approximately the AP center within the test container. The

detonator/igniter also had a thermocouple secured one inch above it to measure AP pretest temperature and to ascertain functioning of the initiation/ignition source if the AP reaction provided no visible outside response. Three blasting cap and three black powder tests were required by Reference 3 for each test article.

Prior to placement of the initiation/ignition source, the test article, either a steel drum or aluminum bin, was set in position at the test location. Figures 1 and 2 show the test configuration for a steel drum. A special insertion tool was developed under this program to allow placement of the initiator/igniter near the center of the drum or bin without having to remove and replace large amounts of AP. The insertion tool was a combination guide tube and 2-inch diameter pointed rod. Figure 3 is a photo that shows the rod inserted in the aluminum tube. The disassembled insertion tool is shown in Figure 4. The actual penetration was accomplished by a combination of heavy downward pressure with both twisting and oscillating motions. During the process of developing this initiator/igniter insertion tool, several electrostatic measurements were obtained which confirmed there were no dangerous static ignition hazards created. Once the tool was located in the center of the drum or bin, the phenolic rod was removed from the inside of the aluminum tube, retaining the empty tube in the AP. The initiator or igniter assembly with its accompanying thermocouple was fed into the aluminum tube and the tube was then removed. As the tube was removed, the thermocouple and igniter/detonator wires were fed through it.

Sandbag confinement of nominally 0.6 meters (2 feet) was provided on all sides and the top for the steel drum tests. This was increased to a minimum of one meter (40 inches) for the larger aluminum bin tests. Sandbagging was not used on top of the bins because they are neither shipped nor stored with any material above them. The bin tests also included a thermocouple on the bottom and one centered on an outside panel. Instrumentation for each test included two piezo-electric microphones with threshold sensitivities of 0.2 Pascals (0.00003 psi) located 100 feet from the test article. Bikini (blow out paper) gauges were also used to detect overpressure, however, these gauges had lower thresholds sensitivities of 6890 Pascals (1.0 psi). They were positioned in two gauge lines 90 degrees apart and at distances of 30.5, 46, 61, 76, and 91 meters (100, 150, 200, 250, and 300 feet, respectively) from the test article. Twenty-four frames per second movie and thirty frames per second video coverages were provided by two documentation cameras and two video cameras. Two manually and remotely operated still cameras, 35 and 70 millimeter, were used for high definition photos at rates no greater than 3 frames per second. The instrumentation setup is shown in Figure 5.

Figure 1. Single Package Test Configuration for Steel Drums

Figure 2. Typical Sandbag Confinement for Steel Drums

Figure 3. Insertion Tool in the Aluminum Guide Tube

Figure 4. Insertion Tool Disassembled

Figure 5. Instrumentation Layout

TEST TYPE 6 (b): STACK TEST

This test series was not required due to the lack of any explosive reactions in the type 6 (a), single package test.

TEST TYPE 6 (c): EXTERNAL FIRE (BONFIRE) TEST

The bonfire test was conducted in accordance with the procedures prescribed in Reference 2 Section 44 and guidance from Reference 3. The steel drum test was conducted at the AL, Edwards AFB CA. The aluminum bin test was conducted at the NWC, China Lake CA.

For the steel drum bonfire test five steel drums were placed on a steel support frame one meter above the ground. The test articles were then steel banded together (Figs. 6 and 7). Hardwood pallet pieces 1.2 meters (4 feet) long were cross-

Figure 6. External Fire (Bonfire) Test Configuration for Steel Drums

Figure 7. Photograph of External Fire (Bonfire) Test Setup for Steel Drums

stacked to fill the volume under the support frame. The frame and drums were then surrounded by 51 by 102 mm (2 by 4 inch) by 2.4 meter (8 foot) lengths of softwood timbers leaning vertically four layers thick against the drum tops. The lower sections of lumber were then sprayed with 11 liters (3 gallons) of a diesel fuel and motor oil mixture (3 to 1 ratio). The base of the lumber was ignited remotely by 3 electric matches each in plastic bags containing 0.45 kg (1 lb) of aluminized class/division 1.3 solid propellant. Sixteen additional 2.5-cm (1-inch) cubes of propellant were distributed throughout the lower regions of the lumber to help assure rapid and uniform ignition. The blast instrumentation and movie/video coverage for the test were the same as for the type 6 (a), single package tests described above. Dual wide band radiometer sensors were added and located 360 meters (1180 feet) away to measure the radiant heat-time profile of the fire (Fig. 5). Thermocouples were located in the center and one perimeter drum. These thermocouples were placed on the top AP surface, inner bottom center and outer side wall of the drums.

The bonfire test of the aluminum bins was similar to that described for the drums. Five bins were supported one meter above the ground by a steel support frame. The volume below the support frame was filled with lengths of 51 by 102 mm (2 by 4 inch) by 2.4 meters (8 feet) lumber. The lumber was cross-stacked with approximately a board width spacing between lengths to allow ventilation (Fig. 8). An upper frame was built around the test stand after the bins were positioned to add initial stability to the perimeter stack of wood. Around the perimeter of the structure lengths of 51 by 102 mm (2 by 4 inch) by 3.0 meters (10 feet) lumber were used. The perimeter lumber was leaned against the frame in stacks 0.4 meters (15 inches) thick with a board width spacing between each stack. The four corners were left open for fuel placement and access to the interior. Rope was tied around the upper perimeter of the vertical lengths to add further stability in the event of winds common to the test site. Approximately 185 liters (50 gallons) of a 50 percent diesel fuel and 50 percent gasoline mixture were used to prime the lumber for ignition. About 150 liters (40 gallons) were spread internally through the four open corners, and the remaining 35 liters (10 gallons) were spread around the exterior vertical lengths. Ignition devices were placed in each of the four corners. Each igniting device consisted of a resistive wire wrapped inside a match book which was wrapped inside a gasoline soaked rag. The two ends of each igniter were energized by a 110 Volt A.C. source. The instrumentation layout for this test is presented in Figure 9. A radiometer was placed 185 meters (607 feet) away and centered on the stack. A total of 24 type K thermocouples (rated to 2500 degrees F) were used for this test. Ten thermocouples were positioned in the center bin (bin number 1) and 10 in one perimeter bin (bin number 2) as indicated in Figure 10. The four remaining thermocouples were positioned in the fire 1 meter (3 feet) above the test stand to measure the fire characteristics.

Figure 8. External Fire (Bonfire) Test Configuration for Aluminum Bins

Figure 9. External Fire (Bonfire) Test Instrumentation for Aluminum Bins

BOTH BIN #1 & #2 HAD THE SAME ORIENTATION AND THERMOCOUPLE (TC) LOCATIONS.
TC 11-20 WERE PLACED IN THE SAME SEQUENCE AS TC 1-10.

Figure 10. External Fire (Bonfire) Test Thermocouple Placement for Aluminum Bins

RESULTS: 227 kg (500 lb) STEEL DRUMS

The results of the steel drum series 6 tests are presented in Table 1. For the three single package cap tests the blasting cap functioned each time but only the 8 November 1988 test produced a visible response. In this test, after about a 42 second delay, the lid was ejected from the drum due to internal pressure but did not escape the sandbag coverage. AP within the drum decomposed slowly with an increasing rate of reddish-orange smoke evolution that ceased after about 28 minutes. All the AP was consumed and there was no explosion. The piezo-electric microphones did not detect measurable overpressure.

Table 1. RESULTS: 227 kg (500 lb) STEEL DRUM TESTS

<u>Test Type</u>	<u>Stimulus</u>	<u>Sandbag Confinement</u>	<u>Results</u>
6(a)	No. 8 blasting cap	>.5m	Slow burn for 28 min, drum body intact, no explosion.
6(a)	No. 8 blasting cap	>.5m	Cap functioned, no fire, no explosion.
6(a)	No. 8 blasting cap	>.5m	Cap functioned, no fire, no explosion.
6(a)	57g (2 oz) black powder	>.5m	Immediate fire response, slow burn for 33 min., no fragments, no explosion.
6(a)	57g (2 oz) black powder	>.5m	Immediate fire response, slow burn for 38 min., no fragments, no explosion.
6(a)	57g (2 oz) black powder	>.5m	Immediate fire response, slow burn for 43 min., no fragments, no explosion.
6(c)	Bonfire	N/A	Two drums ejected from the stack and fell not more than 1.2 m (4 ft) from the stand. One lid was thrown 21 m (70 ft) and another 6 m (20 ft) from the stand. Peak heat flux .07 cal/sq.cm/sec (2.8 kW/sq.m) @ 15 m (49 ft) corrected to 100 kg (220 lb) AP mass, fireball not beyond witness screens, flame jet not more than 3 m (10 ft) from flames, no explosion.

In each of the three black powder tests the drum lid was ejected immediately after ignition of the black powder charge. However, drum lids did not escape the sandbag covering. AP decomposed slowly with an increasing rate of reddish-orange smoke evolution similar to the one blasting cap test. Toward the end of the test, smoke evolution increased several fold and some flame was observed. The AP was completely consumed within 33 to 43 minutes after the initiating event. There were no explosions as indicated by the lack of measurable overpressure by the piezo-electric microphones.

During the bonfire test two of the five drums simultaneously burst out the bottom and top closures. These drums were thrown not more than 3 meters (10 feet) high and fell not more than 1.2 meters (4 feet) from the stand. Three drums were still on the support frame after the test. All AP was consumed in the fire except for about 45 kg (100 lb) which was thrown out on the ground around the stack. Thermocouple data for this test is provided in Appendix B. The piezo-electric microphones detected a minuscule overpressure event of 6.2 Pascals (0.001 psi). This overpressure does not indicate an explosive event. One drum lid ended up about 21 meters (70 feet) and another lid about 6 meters (20 feet) from the stack. The other three lids were closer to the fire event area. Radiometer readings corrected for the differences in range and mass indicated a heat flux of .07 cal/sq.cm/sec (2.8 kW/sq.m) at 15 meters for 100 kg (220 lb) of material. Examination of the photo and video coverages showed that the fireball did not extend beyond any of the three witness screens and that jets of flame did not extend more than 3 meters from the fire.

RESULTS: 2045 to 2270 kg (4500 to 5000 lb) ALUMINUM BINS

The results of the aluminum bin series 6 tests are presented in Table 2. For the three single package blasting cap tests the results were similar to those for the drums. In two tests the blasting caps fired, but no AP burned and there were, obviously, no explosions. In the other cap test the upper perimeter weld of the top panel fractured approximately 30 seconds after ignition of the blasting cap. The fill lid remained attached to the almost completely separated bin top. Rapid escape of pressure within the bin lifted the partially attached top of the bin onto the sandbags and tossed out approximately 45 kg (100 lb) of AP. The remaining AP decomposed by slow burning with reddish-orange smoke evolution lasting about 66 minutes. No explosive reaction occurred.

In the first two black powder tests, using Chemical Systems Division (CSD) bins, lids were ejected along with 114 kg and 182 kg (250 and 400 lb) of AP from 4 to 6 seconds after ignition of the black powder charge. Lids were thrown about 21 meters (70 ft) and 34 meters (110 ft). Flaming desiccant bags came out with

Table 2. RESULTS: 2045 to 2270 kg
(4500 to 5000 lb) ALUMINUM BIN TESTS

<u>Test Type</u>	<u>Stimulus</u>	<u>Sandbag Confinement</u>	<u>Results</u>
6(a)	No. 8 blasting cap	>1 m	Slow burn for 1.1 hrs, ejected 45 kg (100 lb) AP, no explosion.
6(a)	No. 8 blasting cap	>1 m	Cap functioned, no fire, no explosion.
6(a)	No. 8 blasting cap	>1 m	Cap functioned, no fire, no explosion.
6(a)	57g (2 oz) black powder	>1 m	114 kg (250 lb) AP ejected, no fire, lid thrown 21 m (70 ft), no explosion.
6(a)	57g (2 oz) black powder	>1 m	182 kg (400 lb) AP ejected, lid thrown 34 m (110 ft), small 15 min fire on AP unburned, no explosion.
6(a)	57g (2 oz) black powder	>1 m	45 kg (100 lb) AP ejected, lid thrown 70 m (230 ft), no fire, no explosion.
6(c)	Bonfire	N/A	Intense AP burning complete in about four minutes, no hazardous fragments, fireball did not extend beyond witness screens, flame jet not more than 3 m from flames, no explosion.

the ejected AP and fell back onto the sandbags. In one of the tests this ignited the cloth sandbag material and created a short duration (10 to 15 min) minor fire. In these tests AP remaining in the containers was not consumed. During the last black powder test using a Morton Thiokol, Inc. (MTI) bin, at about 3 seconds after ignition of the black powder charge, the fill neck fractured throwing as a unit the sealing ring, clamp and lid about 70 meters (230 ft). Approximately 45 kg (100 lb) of AP was thrown out of the container. There was no sustained reaction or fire. The remaining 2000 kg (4400 lb) of AP was unburned.

The five aluminum bin bonfire test was conducted at the Naval Weapons Center (NWC), China Lake CA. All five of the bins were 2270 kg (5000 lb) capacity with three bins from ARC and the two remaining bins from CSD. The bin arrangement is shown in Figure 11 and the bin identification is presented in Table 3.

ARC - ATLANTIC RESEARCH
CORPORATION BIN

CSD - UNITED LOGISTICS
CHEMICAL SYSTEMS
DIVISION BIN

Figure 11. External Fire (Bonfire) Test Bin Arrangement for Aluminum Bins

**Table 3. EXTERNAL FIRE (BONFIRE) TEST BIN
IDENTIFICATION FOR ALUMINUM BINS**

<u>Position</u>	<u>Identification and Description</u>
1	Atlantic Research Corporation Bin AR-658 Hoover Universal Tote Products DOT 56 Cap. 73 cubic feet, 5052 H-34 AL Top and Wall Thickness 0.110 inch, Bottom 0.250 inch AP-Kerr McGee Lot No. 7924
2	Atlantic Research Corporation Bin AR-479 Hoover Universal Tote Products DOT 56 Cap. 73 cubic feet, 5052 H-34 AL Top and Wall Thickness 0.110 inch, Bottom 0.250 inch AP-Kerr McGee Lot No. 7924
3	United Technologies-Chemical Systems Division Bin 059853 Fabrication Metal Inc. DOT 56 Cap. 74 cubic feet, 5052 H-32 AL Top and Wall Thickness 0.125 inch, Bottom 0.250 inch AP-Kerr McGee Lot No. 7665
4	Atlantic Research Corporation Bin AR-693 Hoover Universal Tote Products DOT 56 Cap. 73 cubic feet, 5052 H-34 AL Top and Wall Thickness 0.110 inch, Bottom 0.250 inch AP-Kerr McGee Lot No. 7924
5	United Technologies-Chemical Systems Division Bin 059862 Fabrication Metal Inc. DOT 56 Cap. 74 cubic feet, 5052 H-32 AL Top and Wall Thickness 0.125 inch, Bottom 0.250 inch AP-Kerr McGee Lot No. 7665

The radiometer was eliminated just prior to the test due to unstable operation. The test was initiated at 0915 on 6 Dec 1988. At approximately one minute and forty-eight seconds after ignition one of the bins ejected its lid and a substantial amount of AP. An intense AP burn followed that was complete in about four minutes. After the test only a small amount of AP was left scattered on the ground. A summary of the thermocouple data is presented in Appendix C. A total of 4.589 kilograms of aluminum was recovered from the bins original combined 657.72 kilograms. Figure 12 presents a fragment map of the surveyed area. A summary of these data as well as an analysis of each fragment is presented in Table 4. The first UN test criterion for fragments requires that no fragment with a mass of 150 grams or greater be thrown more than 15 meters. No fragment exceeded this first criterion. The second UN test criterion requires that not more than 10 fragments with a mass of 25 grams or greater be thrown a distance of 50 meters or greater. Only one fragment exceeded this 50 meter criterion, far short of the 10 specified. This one fragment was identified as witness screen material and did not belong to any of the test articles. Examination of the photo and video coverages showed that the fireball did not extend beyond any of the three witness screens and that jets of flame did not extend more than 3 meters from the flames of the fire. Lack of visible or overpressure sensory data indicates that no explosion occurred.

SUMMARY

This report provides a summary of transportation hazards tests completed by the Astronautics Laboratory and the Naval Weapons Center for certification of two ammonium perchlorate shipping container configurations. Specifically, the container configurations are 208 liter (55 gallon), 227 kilogram (500 pound) net weight AP, DOT specification 17H steel drums with bolted ring closure, and 2.1 cubic meters (74 cubic foot) aluminum bins containing from 2045 to 2270 kilograms (4500 to 5000 pounds) of material that conform to DOT Specification 56. The tests were conducted in accordance with the 1986 United Nations publication, "Recommendations on the Transportation of Dangerous Goods: Tests and Criteria," (ST/SG/AC.10/11). The results of the tests with propellant grade nominal 200-micron particle size ammonium perchlorate confirm the combination of the material and containers as being suitable for DOT hazard classification as an oxidizer with US DOT ID number UN1442.

Figure 12. External Fire (Bonfire) Test Fragment Map for Aluminum Bins

**Table 4. EXTERNAL FIRE (BONFIRE) TEST FRAGMENT
SUMMARY AND ANALYSIS FOR ALUMINUM BINS**

Fragment Number	Distance m (ft)	Weight grams	Thickness inches	Alloy	Source
1	76 (250)	44	0.090	6061	Witness Panels
2	18 (58)	60	0.124	5052	CSD Sidewall
3	18 (58)	13	0.124	5052	CSD Sidewall
4	21 (70)	18	0.114	5052	ARC Sidewall
5	23 (76)	13	0.123	5052	CSD Sidewall
6	24 (78)	38	0.090	6061	Witness Panels
7	31 (103)	7	0.124	5052	CSD Sidewall
8	34 (110)	13	0.123	5052	CSD Sidewall
9	44 (143)	14	0.089	6061	Witness Panels
10	55 (180)	14	0.089	6061	Witness Panels
11	16 (51)	22	0.108	5052	ARC Sidewall
12	17 (55)	38	0.113	5052	ARC Sidewall

REFERENCES

1. McIntyre, F.L., et alia, "Hazards Testing of Ammonium Perchlorate," ARLCD-CR-82026, May 1982.
2. United Nations, "Recommendations on the Transportation of Dangerous Goods: Tests and Criteria," (ST/SG/AC.10/11), first edition, 1986.
3. Ward, J., PhD, Guidance Memorandum from the Department of Defense Explosives Safety Board (DDESB), Sep 1988.
4. Department of The Air Force Technical Order, TO 11A-1-47, "Department of Defense Explosives Hazard Classification Procedures," March 1981.

APPENDIX A

LOT ANALYSIS OF AP USED IN TESTING

Kerr-McGee Lot Number 7893

Chemical Analysis (%)

Sample	A	A	B	B
Ash (H ₂ SO ₄ treated)	0.23	0.28	0.28	0.27
Total Moisture	0.013	0.014	0.014	0.013
H ₄ ClO ₄ Assay	99.3	99.2	99.2	99.2
TCP	0.15	0.15	0.16	0.16
pH	6.0	6.1	6.1	6.1

Screen Analysis (% Retained)

U.S. Sieve No.	A	A	B	B
48 Mesh	8.5	9.1	8.5	8.6
60 Mesh	23.1	23.8	22.8	22.9
65 Mesh	40.9	41.5	41.7	41.8
80 Mesh	54.7	55.4	54.2	54.6
100 Mesh	73.4	73.5	72.0	72.2
140 Mesh	91.0	91.1	90.2	90.2
200 Mesh	99.1	99.1	98.5	98.5

This AP was contained in all of the 500 pound net AP steel drum tests.

Kerr-McGee Lot Number 7716

Chemical Analysis (%)

Sample	A	B	C
Insoluble in Acid	0.002	0.002	0.002
Ash (H ₂ SO ₄ treated)	0.22	0.27	0.22
Chlorates as NH ₄ ClO ₃	0.007	0.007	0.007
Chlorides as NH ₄ Cl	0.008	0.006	0.008
Bromates as NH ₄ BrO ₃	0.001	0.001	0.001
Fe ₂ O ₃	0.0001	0.0001	0.0001
Moisture, (surface)	0.007	0.008	0.009
Total Moisture	0.026	0.025	0.028
NH ₄ ClO ₄ Assay	99.4	99.4	99.4
Sodium and Potassium	0.03	0.03	0.03
TCP	0.16	0.170	0.17
pH	6.2	6.2	6.2

Screen Analysis (% Passing)

U.S. Sieve No.	A	B	C
40 Mesh	100.	100.	100.
50 Mesh	91.9	91.7	90.6
70 Mesh	61.7	60.5	39.4
100 Mesh	27.4	26.7	25.6
140 Mesh	8.9	8.8	7.9
200 Mesh	1.1	1.3	0.9

This AP was contained in three Morton Thiokol Incorporated bins. One bin was used in a 21 November 1988 blasting cap test and another In a 15 December 1988 blasting cap test. The last one was used in a 15 December 1988 black powder test.

PEPCON Lot Number 85034

Chemical Analysis (%)

Property/Sample	Composite I	Composite II
NH4ClO4 Assay	98.8	99.0
TCP	0.16	0.17
Total Water	0.05	0.05
pH	6.3	6.3
Sulphate Ash	0.24	0.25
Density, g/cubic in.	17.5	17.5

Screen Analysis (% Retained)

Tyler Sieve No.	Composite I	Composite II
35 Mesh	1	1
48 Mesh	7	7
65 Mesh	30	30
80 Mesh	50	49
100 Mesh	73	72
150 Mesh	94	93
200 Mesh	98	98

This AP was contained in three of the United Technologies-Chemical Systems Division Bins. One was used in a 12 December 1988 blasting cap test and another in a 13 December blasting cap test. The last was used in a 30 November 1988 black powder test.

Kerr-McGee Lot Number 7665

Chemical Analysis (%)

Sample	A	B	C
Water Insoluble	0.21	0.23	0.23
Ash (H ₂ SO ₄ treated)	0.22	0.23	0.23
Chlorates as NH ₄ ClO ₃	0.005	0.007	0.007
Chlorides as NH ₄ Cl	0.004	0.006	0.006
Fe ₂ O ₃	0.0002	0.0002	0.0002
Moisture, (surface)	0.011	0.011	0.009
Total Moisture	0.029	0.027	0.035
NH ₄ ClO ₄ Assay	99.5	99.5	99.5
Sodium and Potassium	0.03	0.03	0.03
TCP	0.20	0.22	0.22
pH	6.2	6.1	6.1

Screen Analysis (% Passing)

U.S. Sieve No.	A	B	C
50 Mesh	93.0	91.5	91.3
100 Mesh	28.8	29.9	28.4
140 Mesh	9.6	10.5	9.2

This AP was contained in the two United Technologies-Chemical Systems Division Bins used for the five bin external fire (Bonfire) test performed at the Naval Weapons Center, China Lake.

Kerr-McGee Lot Number 7924

Chemical Analysis (%)

Sample	-----
Insoluble in Acid	0.0038
Ash (H ₂ SO ₄ treated)	0.25
Chlorates as NH ₄ ClO ₃	0.003
Chlorides as NH ₄ Cl	0.010
Bromates as NH ₄ BrO ₃	0.001
Moisture, (surface)	0.009
Total Moisture	0.018
NH ₄ ClO ₄ Assay	99.3
Sodium and Potassium	0.0121
TCP	0.19
pH	6.3

Screen Analysis (% Retained)

U.S. Sieve No.	-----
40 Mesh	0
50 Mesh	7.5
70 Mesh	38.1
100 Mesh	69.8
140 Mesh	90.0
200 Mesh	98.0

This AP was contained in the three Atlantic Research Corporation bins used for the five bin external fire (Bonfire) test performed at the Naval Weapons Center, China Lake.

APPENDIX B

**THERMOCOUPLE AND RADIOMETER DATA
FOR STEEL DRUM EXTERNAL FIRE (BONFIRE) TEST**

4-32 K4 - AP HAZARD TEST 19 09 JAN 1989

APPENDIX C

THERMOCOUPLE DATA FOR ALUMINUM BIN EXTERNAL FIRE (BONFIRE) TEST

APPENDIX C

Thermocouple Data for External Fire (Bonfire) Test of Five Aluminum Shipping Bins Each Containing Approximately 5000 Pounds of Ammonium Perchlorate

- Thermocouples 1-10 were located in Bin 1 (the center bin).
- Thermocouples 11-20 were located in Bin 2.
- Thermocouples 21-24 were located in the flame regions.
- See Figure 10 for individual thermocouple locations.

- The data for thermocouples 1-20 are presented in tabular form.
 - From $t = 29$ seconds (first appreciable temperature outside bins) until time ~ 2 minutes (vigorous outside reaction caused thermocouple disruption).
 - Time interval between columns is 0.5 seconds.
- The flame thermocouple data is presented in graphical form. The data after 2 minutes is unreliable.

TIME IS FIRST COLUMN OF THE DATA. DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS.

--

C 074-12ab FAST CDD OFF WDD AP 6 DEC 1983

	TIME	TC 003 DEGF							
HOUR	MIN	SEC							
0	27	60	45	45	45	45	45	45	45
0	33	99	45	45	45	45	45	45	45
0	38	98	45	45	45	45	45	45	45
0	43	97	45	45	45	45	45	45	45
0	48	96	45	45	45	45	45	45	45
0	53	95	45	45	45	45	45	45	45
0	58	95	45	45	45	45	45	45	45
0	1	3	94	45	45	45	45	45	45
0	1	8	93	45	45	45	45	45	45
0	1	13	92	45	45	45	45	45	45
0	1	18	91	45	44	45	45	44	45
0	1	23	90	45	44	45	44	45	45
0	1	28	89	44	44	45	45	44	44
0	1	33	88	44	44	44	44	45	45
0	1	38	87	45	45	45	45	46	46
0	1	43	87	45	46	46	46	46	46
0	1	48	86	51	47	45	44	43	43
0	1	53	85	45	44	44	44	44	44
0	1	58	84	41	37	36	34	33	32
0	2	3	83	33	34	35	36	31	31
0	2	8	82	92	103	114	122	127	121
0	2	13	81	117	107	91	84	78	74
0	2	18	80	-2					

C TIME IS FOR FIRST COLUMN OF TC 003 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

C 074-12ab FAST CDD OFF WDD AP 6 DEC 1983

	TIME	TC 004 DEGF							
HOUR	MIN	SEC							
0	29	60	46	46	46	46	46	46	46
0	33	99	46	46	46	46	46	46	46
0	38	98	46	46	46	46	46	46	46
0	43	97	46	46	46	46	46	46	46
0	48	96	46	46	46	46	46	46	46
0	53	95	46	46	46	46	46	46	46
0	58	95	46	46	46	46	46	46	46
0	1	3	94	45	45	46	46	46	46
0	1	8	93	46	45	46	46	46	46
0	1	13	92	45	45	46	46	46	46
0	1	18	91	46	46	46	46	46	46
0	1	23	90	46	47	46	46	46	46
0	1	28	89	46	46	46	46	46	46
0	1	33	88	46	46	46	46	46	46
0	1	38	87	46	46	46	46	46	46
0	1	43	87	46	46	46	46	46	46
0	1	48	86	46	46	46	46	46	46
0	1	53	85	46	46	46	46	46	46
0	1	58	84	46	46	46	46	46	46
0	2	3	83	46	46	46	46	46	46
0	2	8	82	46	46	46	46	46	46
0	2	13	81	46	46	46	46	46	46
0	2	18	80	46	46	46	46	46	46

C TIME IS FOR FIRST COLUMN OF TC 004 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

CT4-1266 FAST CUTOFF WOOD AP 6 DEC 1968

TIME HOUR MIN SEC	TC 005 DEGF						
0 0 29 00	47	47	47	47	47	47	47
0 0 23 99	47	47	47	47	47	47	47
C 0 36 96	47	47	47	47	47	47	47
C 0 43 97	47	47	47	47	47	47	47
C 0 43 98	47	47	47	47	47	47	47
C 0 53 98	47	47	47	47	47	47	47
C 0 56 95	47	47	47	47	47	47	47
C 1 3 94	47	47	47	47	47	47	47
C 1 8 93	47	47	47	47	47	47	47
C 1 12 92	47	47	47	47	47	47	47
C 1 18 91	47	47	47	47	47	47	47
C 1 23 90	47	47	47	47	47	47	47
C 1 28 89	47	47	47	47	47	47	47
C 1 33 88	47	47	47	47	47	47	47
C 1 38 87	47	47	47	47	47	47	47
C 1 43 87	47	47	47	47	47	47	47
C 1 48 86	47	47	47	47	47	47	47
C 1 53 85	47	47	47	47	47	47	47
C 1 58 84	46	45	45	45	46	46	46
C 1 63 83	44	44	43	41	40	38	29
C 2 8 82	31	29	25	19	13	9	0

TIME IS FIRST COLUMN OF TC 005 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

35

TIME HOUR MIN SEC	TC 006 DEGF						
0 0 24 00	49	49	49	49	49	49	49
0 0 33 99	49	49	49	49	49	49	49
C 0 32 98	49	49	49	49	49	49	49
C 0 41 97	49	49	49	49	49	49	49
C 0 42 96	49	49	49	49	49	49	49
C 0 53 96	49	49	49	49	49	49	49
C 0 58 95	49	49	49	49	49	49	49
C 0 1 2 94	49	49	49	49	49	49	49
C 0 1 8 93	49	49	49	49	49	49	49
C 0 1 13 92	49	49	49	49	49	49	49
C 0 1 18 91	49	49	49	49	49	49	49
C 0 1 23 90	49	49	49	49	49	49	49
C 0 1 28 89	49	49	49	49	49	49	49
C 0 1 33 88	49	49	49	49	49	49	49
C 0 1 38 87	49	49	49	49	49	49	49
C 0 1 43 87	49	49	49	49	49	49	49
C 0 1 48 86	49	49	49	49	49	49	49
C 0 1 53 85	49	49	49	49	49	49	49
C 0 1 58 84	49	49	49	49	49	49	49
C 0 1 63 83	49	49	49	49	49	49	49
C 0 2 8 82	42	42	42	42	42	42	42

TIME IS FIRST COLUMN OF TC 006 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

TIME TIME FIRST COOKOFF WJBD AP & DEC 1988

TIME	TIME	TC 009 DEGF									
0 0 0 00	0 0 0 00	52	52	52	52	52	52	52	52	52	52
0 0 0 33	0 0 0 33	52	52	52	52	52	52	52	52	52	52
0 0 42 97	0 0 42 97	52	52	52	52	52	52	52	52	52	52
0 0 48 96	0 0 48 96	52	52	52	52	52	52	52	52	52	52
0 0 53 95	0 0 53 95	52	52	52	52	52	52	52	52	52	52
0 0 52 95	0 0 52 95	52	52	52	52	52	52	52	52	52	52
0 1 3 94	0 1 3 94	52	52	52	52	52	52	52	52	52	52
0 1 13 93	0 1 13 93	52	52	52	52	52	52	52	52	52	52
0 1 13 92	0 1 13 92	52	52	52	52	52	52	52	52	52	52
0 1 18 91	0 1 18 91	52	52	52	52	52	52	52	52	52	52
0 1 42 90	0 1 42 90	52	52	52	52	52	52	52	52	52	52
0 1 22 87	0 1 22 87	52	52	52	52	52	52	52	52	52	52
0 1 13 83	0 1 13 83	52	52	52	52	52	52	52	52	52	52
0 1 12 87	0 1 12 87	52	52	52	52	52	52	52	52	52	52
0 1 43 87	0 1 43 87	52	52	52	52	52	52	52	52	52	52
0 1 42 86	0 1 42 86	52	52	52	52	52	52	52	52	52	52
0 1 52 85	0 1 52 85	52	52	52	52	52	52	52	52	52	52
0 1 52 84	0 1 52 84	51	51	51	51	50	50	49	48	47	47
0 1 2 83	0 1 2 83	46	46	46	46	41	41	39	37	36	35
0 2 8 82	0 2 8 82	33	28	28	28	27	26	19	11	5	2

TIME IS FOR FIRST COLUMN OF TC 009 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.5 SEC SECONDS

TIME	TIME	TC 010 DEGF									
0 0 0 00	0 0 0 00	54	54	54	54	54	54	54	54	54	54
0 0 23 99	0 0 23 99	54	54	54	54	54	54	54	54	54	54
0 0 32 98	0 0 32 98	54	54	54	54	54	54	54	54	54	54
0 0 43 97	0 0 43 97	54	54	54	54	54	54	54	54	54	54
0 0 42 96	0 0 42 96	54	54	54	54	54	54	54	54	54	54
0 0 52 95	0 0 52 95	54	54	54	54	54	54	54	54	54	54
0 0 53 95	0 0 53 95	54	54	54	54	54	54	54	54	54	54
0 0 1 2 94	0 0 1 2 94	54	54	54	54	54	54	54	54	54	54
0 0 1 6 93	0 0 1 6 93	54	54	54	54	54	54	54	54	54	54
0 0 1 13 92	0 0 1 13 92	54	54	54	54	54	54	54	54	54	54
0 0 1 16 91	0 0 1 16 91	54	54	54	54	54	54	54	54	54	54
0 0 1 22 90	0 0 1 22 90	54	54	54	54	54	54	54	54	54	54
0 0 1 28 89	0 0 1 28 89	54	54	54	54	54	54	54	54	54	54
0 0 1 32 88	0 0 1 32 88	54	54	54	54	54	54	54	54	54	54
0 0 1 42 87	0 0 1 42 87	54	54	54	54	54	54	54	54	54	54
0 0 1 46 86	0 0 1 46 86	54	54	54	54	54	54	54	54	54	54
0 0 1 51 85	0 0 1 51 85	54	54	54	54	54	54	54	54	54	54
0 0 1 56 84	0 0 1 56 84	54	54	54	54	54	54	54	54	54	54
0 0 1 61 83	0 0 1 61 83	54	54	54	54	54	54	54	54	54	54
0 0 1 66 82	0 0 1 66 82	54	54	54	54	54	54	54	54	54	54
0 0 1 71 81	0 0 1 71 81	54	54	54	54	54	54	54	54	54	54
0 0 1 76 80	0 0 1 76 80	54	54	54	54	54	54	54	54	54	54
0 0 1 81 79	0 0 1 81 79	54	54	54	54	54	54	54	54	54	54
0 0 1 86 78	0 0 1 86 78	54	54	54	54	54	54	54	54	54	54
0 0 1 91 77	0 0 1 91 77	54	54	54	54	54	54	54	54	54	54
0 0 1 96 76	0 0 1 96 76	54	54	54	54	54	54	54	54	54	54
0 0 1 101 75	0 0 1 101 75	54	54	54	54	54	54	54	54	54	54
0 0 1 106 74	0 0 1 106 74	54	54	54	54	54	54	54	54	54	54
0 0 1 111 73	0 0 1 111 73	54	54	54	54	54	54	54	54	54	54
0 0 1 116 72	0 0 1 116 72	54	54	54	54	54	54	54	54	54	54
0 0 1 121 71	0 0 1 121 71	54	54	54	54	54	54	54	54	54	54
0 0 1 126 70	0 0 1 126 70	54	54	54	54	54	54	54	54	54	54
0 0 1 131 69	0 0 1 131 69	54	54	54	54	54	54	54	54	54	54
0 0 1 136 68	0 0 1 136 68	54	54	54	54	54	54	54	54	54	54
0 0 1 141 67	0 0 1 141 67	54	54	54	54	54	54	54	54	54	54
0 0 1 146 66	0 0 1 146 66	54	54	54	54	54	54	54	54	54	54
0 0 1 151 65	0 0 1 151 65	54	54	54	54	54	54	54	54	54	54
0 0 1 156 64	0 0 1 156 64	54	54	54	54	54	54	54	54	54	54
0 0 1 161 63	0 0 1 161 63	54	54	54	54	54	54	54	54	54	54
0 0 1 166 62	0 0 1 166 62	54	54	54	54	54	54	54	54	54	54
0 0 1 171 61	0 0 1 171 61	54	54	54	54	54	54	54	54	54	54
0 0 1 176 60	0 0 1 176 60	54	54	54	54	54	54	54	54	54	54
0 0 1 181 59	0 0 1 181 59	54	54	54	54	54	54	54	54	54	54
0 0 1 186 58	0 0 1 186 58	54	54	54	54	54	54	54	54	54	54
0 0 1 191 57	0 0 1 191 57	54	54	54	54	54	54	54	54	54	54
0 0 1 196 56	0 0 1 196 56	54	54	54	54	54	54	54	54	54	54
0 0 1 201 55	0 0 1 201 55	54	54	54	54	54	54	54	54	54	54
0 0 1 206 54	0 0 1 206 54	54	54	54	54	54	54	54	54	54	54
0 0 1 211 53	0 0 1 211 53	54	54	54	54	54	54	54	54	54	54
0 0 1 216 52	0 0 1 216 52	54	54	54	54	54	54	54	54	54	54
0 0 1 221 51	0 0 1 221 51	54	54	54	54	54	54	54	54	54	54
0 0 1 226 50	0 0 1 226 50	54	54	54	54	54	54	54	54	54	54
0 0 1 231 49	0 0 1 231 49	54	54	54	54	54	54	54	54	54	54
0 0 1 236 48	0 0 1 236 48	54	54	54	54	54	54	54	54	54	54
0 0 1 241 47	0 0 1 241 47	54	54	54	54	54	54	54	54	54	54
0 0 1 246 46	0 0 1 246 46	54	54	54	54	54	54	54	54	54	54
0 0 1 251 45	0 0 1 251 45	54	54	54	54	54	54	54	54	54	54
0 0 1 256 44	0 0 1 256 44	54	54	54	54	54	54	54	54	54	54
0 0 1 261 43	0 0 1 261 43	54	54	54	54	54	54	54	54	54	54
0 0 1 266 42	0 0 1 266 42	54	54	54	54	54	54	54	54	54	54
0 0 1 271 41	0 0 1 271 41	54	54	54	54	54	54	54	54	54	54
0 0 1 276 40	0 0 1 276 40	54	54	54	54	54	54	54	54	54	54
0 0 1 281 39	0 0 1 281 39	54	54	54	54	54	54	54	54	54	54
0 0 1 286 38	0 0 1 286 38	54	54	54	54	54	54	54	54	54	54
0 0 1 291 37	0 0 1 291 37	54	54	54	54	54	54	54	54	54	54
0 0 1 296 36	0 0 1 296 36	54	54	54	54	54	54	54	54	54	54
0 0 1 301 35	0 0 1 301 35	54	54	54	54	54	54	54	54	54	54
0 0 1 306 34	0 0 1 306 34	54	54	54	54	54	54	54	54	54	54
0 0 1 311 33	0 0 1 311 33	54	54	54	54	54	54	54	54	54	54
0 0 1 316 32	0 0 1 316 32	54	54	54	54	54	54	54	54	54	54
0 0 1 321 31	0 0 1 321 31	54	54	54	54	54	54	54	54	54	54
0 0 1 326 30	0 0 1 326 30	54	54	54	54	54	54	54	54	54	54
0 0 1 331 29	0 0 1 331 29	54	54	54	54	54	54	54	54	54	54
0 0 1 336 28	0 0 1 336 28	54	54	54	54	54	54	54	54	54	54
0 0 1 341 27	0 0 1 341 27	54	54	54	54	54	54	54	54	54	54
0 0 1 346 26	0 0 1 346 26	54	54	54	54	54	54	54	54	54	54
0 0 1 351 25	0 0 1 351 25										

C14-1202 FAS1 COOKOFF WOOD AP C DEC 1422

THE JOURNAL OF CLIMATE

38

TIME IS FOR FIRST COUNT OF 1000 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS ONE SECOND

TIME IS FOR FIRST COLUMN OF TIC 013 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SEC/DIG

TIME IS FIVE FIRST COLUMN OF THE CHART.

C74-1256: FIRST COOKOFF WOOD AP 6 DEC 1988

C	HOUR	TIME	MIN	SEC	TC 015 DEGF							
C	C	0	29	00	45	45	45	45	45	45	45	45
C	C	0	31	99	45	45	45	45	45	45	45	45
O	O	0	36	98	45	45	45	45	45	45	45	45
O	O	0	43	97	45	45	45	45	45	45	45	45
O	O	0	43	96	45	45	45	45	45	45	45	45
O	O	0	52	95	45	45	45	45	45	45	45	45
O	O	0	52	94	45	45	45	45	45	45	45	45
O	O	0	52	93	45	45	45	45	45	45	45	45
C	C	0	1	2	93	45	45	45	45	45	45	45
C	C	0	1	13	72	45	45	45	45	45	45	45
O	O	0	1	18	71	45	45	45	45	45	45	45
C	C	0	1	23	70	45	45	45	45	45	45	45
C	C	0	1	28	69	45	45	45	45	45	45	45
C	C	0	1	33	68	45	45	45	45	45	45	45
O	O	0	1	38	67	45	45	45	45	45	45	45
O	O	0	1	43	67	45	45	45	45	45	45	45
O	O	0	1	46	66	45	45	45	45	45	45	45
O	O	0	1	52	65	45	45	45	45	45	45	45
C	C	0	1	58	64	45	45	45	45	45	45	45
O	O	0	2	5	63	45	45	44	44	43	46	39
O	O	0	2	8	62	36	32	28	24	20	17	16
C	C	C	C	C	C	C	C	C	C	C	C	C

TIME IS FOR FIRST COLUMN OF TC 015 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

40

C	HOUR	TIME	MIN	SEC	TC 016 DEGF							
C	C	0	29	00	48	48	48	48	48	48	48	48
O	O	0	33	99	48	48	48	48	48	48	48	48
O	O	0	36	98	48	48	48	48	48	48	48	48
O	O	0	43	97	48	48	48	48	48	48	48	48
O	O	0	48	96	48	48	48	48	48	48	48	48
O	O	0	52	95	48	48	48	48	48	48	48	48
O	O	0	56	95	48	48	48	48	48	48	48	48
C	C	0	1	3	94	48	48	48	48	48	48	48
O	O	0	1	8	93	48	48	48	48	48	48	48
O	O	0	1	13	92	48	48	48	48	48	48	48
O	O	0	1	18	91	48	48	48	48	48	48	48
O	O	0	1	23	90	48	48	48	48	48	48	48
O	O	0	1	28	89	48	48	48	48	48	48	48
O	O	0	1	33	88	48	48	48	48	48	48	48
O	O	0	1	38	87	48	48	48	48	48	48	48
O	O	0	1	43	87	48	48	48	48	48	48	48
O	O	0	1	48	86	48	48	48	48	48	48	48
O	O	0	1	53	85	48	48	48	48	48	48	48
O	O	0	1	58	84	48	48	48	48	48	48	48
O	O	0	2	3	83	47	45	45	45	45	47	47
O	O	0	2	8	82	48	49	49	49	49	47	47
O	O	0	2	13	81	43	37	27	19	14	53	52
C	C	C	C	C	C	C	C	C	C	C	C	C

TIME IS FOR FIRST COLUMN OF TC 016 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

C

TIME			TC 017			FAST COOKOFF			WOOD AP			WOOD DEG			TC 017			TC 018			TC 018			TC 018			
HOUR	MIN	SEC	TC	017	DEGF	TC	017	DEGF	TC	017	DEGF	TC	017	DEGF	TC	017	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	
0	0	29.00	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	22.99	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	33.98	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	43.97	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	48.96	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	53.95	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	58.95	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	63.94	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	68.93	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	73.92	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	78.91	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	83.90	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	88.89	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	93.88	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	98.87	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	103.86	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	108.85	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	113.84	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	118.83	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	123.82	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
0	0	128.81	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	
TIME IS FOR FIRST COLUMN OF TC 017			DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS																								
TIME			TC 018			FAST COOKOFF			WOOD AP			6 DEC 1988			TC 018												
HOUR	MIN	SEC	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	TC	018	DEGF	
0	0	29.00	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	33.99	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	38.98	52	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	43.97	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	48.96	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	53.95	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	58.95	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	63.94	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	68.93	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	73.92	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	78.91	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	83.90	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	88.89	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	93.88	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	98.87	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	103.86	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	108.85	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	113.84	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
0	0	118.83	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
TIME IS FOR FIRST COLUMN OF TC 018			DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS																								

C14-1266		FAST COOKOFF		WOOD AP		C. LIT C 1458	
TIME	TC 019 DEGF						
HOUR MIN SEC							
C 0 29 00	51	51	51	51	51	51	51
C 0 33 99	51	51	51	51	51	51	51
C 0 32 98	51	51	51	51	51	51	51
C 0 42 97	51	51	51	51	51	51	51
C 0 42 96	51	51	51	51	51	51	51
C 0 53 96	51	51	51	51	51	51	51
C 0 58 95	51	51	51	51	51	51	51
C 0 1 2 94	51	51	51	51	51	51	51
C 0 1 8 93	51	51	51	51	51	51	51
C 0 1 12 92	51	51	51	51	51	51	51
C 0 1 18 91	51	51	51	51	51	51	51
C 0 1 23 90	51	51	51	51	51	51	51
C 0 1 28 89	51	51	51	51	51	51	51
C 0 1 33 88	51	51	51	51	51	51	51
C 0 1 38 87	51	51	51	51	51	51	51
C 0 1 43 87	51	51	51	51	51	51	51
C 0 1 48 86	51	51	51	51	51	51	51
C 0 1 53 85	51	51	51	51	51	51	51
C 0 1 58 84	51	51	51	51	51	51	51
C 0 2 3 83	50	50	50	50	50	49	49
C 0 2 8 82	49	49	48	48	46	44	42
C 0 2 13 81	13	6	8	6	6	6	6

TIME IS FOR FIRST COLUMN OF TC 019 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS C 50 SECONDS

42

C14-1266		FAST COOKOFF		WOOD AP		C. DEC 1998	
TIME	TC 020 DEGF						
HOUR MIN SEC							
C 0 29 00	54	54	54	54	54	54	54
C 0 33 99	54	54	54	54	54	54	54
C 0 38 98	54	54	54	54	54	54	54
C 0 43 97	54	54	54	54	54	54	54
C 0 48 96	54	54	54	54	54	54	54
C 0 53 96	54	54	54	54	54	54	54
C 0 58 95	54	54	54	54	54	54	54
C 0 1 2 94	54	54	54	54	54	54	54
C 0 1 8 93	54	54	54	54	54	54	54
C 0 1 13 92	54	54	54	54	54	54	54
C 0 1 18 91	54	54	54	54	54	54	54
C 0 1 23 90	54	54	54	54	54	54	54
C 0 1 28 89	54	54	54	54	54	54	54
C 0 1 33 88	54	54	54	54	54	54	54
C 0 1 38 87	54	54	54	54	54	54	54
C 0 1 43 87	54	54	54	54	54	54	54
C 0 1 48 86	54	54	54	54	54	54	54
C 0 1 53 85	54	54	54	54	54	54	54
C 0 1 58 84	54	54	54	54	54	54	54
C 0 2 3 83	54	54	54	54	54	54	54
C 0 2 8 82	54	54	54	54	54	54	54
C 0 2 13 81	49	49	47	52	52	53	50
C 0 2 18 80	27	36	36	36	36	37	37
C 0 2 23 79	26	26	26	26	26	26	26

TIME IS FOR FIRST COLUMN OF TC 020 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS C 50 SECONDS

TIME IS FOR FIRST COLUMN OF TC G21	DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS
------------------------------------	---

	TIME HOUR MIN SEC	TC 023 DEGF	TC 023 REF	FAST CDRUFF	WOOD AP	6 DEC 1928	TC 023 DEGF	TC 023 REF						
C	0 -1 0 00	47	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -55 01	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -50 02	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -45 03	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -40 04	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -35 04	47	46	47	47	47	47	47	47	47	47	47	47	47
C	0 0 -30 05	47	47	47	47	47	47	47	47	47	47	47	47	47
C	0 0 -25 06	47	47	47	47	47	47	47	47	47	47	47	47	47
C	0 0 -20 07	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -15 08	46	46	46	46	46	46	46	46	46	46	46	46	46
C	0 0 -10 09	47	47	47	47	47	47	47	47	47	47	47	47	47
C	0 0 -5 10	47	47	47	47	47	47	47	47	47	47	47	47	47
C	0 0 -0 11	47	47	47	47	47	47	47	47	47	47	47	47	47
C	0 0 4 88	47	48	48	48	48	48	48	48	49	49	49	49	49
C	0 0 9 87	49	50	50	50	50	50	50	51	51	51	51	51	51
C	0 0 14 87	52	53	53	53	53	54	54	54	55	55	55	55	55
C	0 0 19 86	62	65	67	68	70	71	72	72	73	73	74	75	75
C	0 0 24 85	76	76	76	76	76	77	78	78	79	79	80	80	80
C	0 0 29 84	81	81	82	83	85	87	90	90	103	111	113	118	118
C	0 0 34 83	127	136	149	174	215	241	292	292	396	527	697	697	697
C	0 0 39 82	838	1017	1140	1214	1263	1353	1432	1479	1472	1472	1475	1475	1475
C	0 0 44 81	1462	1483	1534	1579	1631	1658	1693	1721	1721	1721	1725	1725	1725
C	0 0 49 80	1827	1859	1876	1989	1995	1999	1999	1999	1999	1999	1999	1999	1999
C	0 0 54 79	1893	1908	1917	1928	1996	1867	1847	1842	1842	1836	1871	1871	1871
C	0 0 59 78	1890	1918	1941	1947	1929	1933	1940	1946	1946	1956	1956	1956	1956
C	0 1 4 78	1765	1924	1920	1920	1908	1877	1847	1847	1847	1801	1801	1801	1801
C	0 1 9 77	1810	1829	1853	1853	1770	1729	1713	1713	1713	1695	1703	1703	1703
C	0 1 14 76	1749	1774	1757	1775	1769	1781	1791	1791	1791	1812	1823	1823	1823
C	0 1 19 75	1673	1831	1835	1804	1802	1803	1787	1787	1787	1755	1755	1755	1755
C	0 1 24 74	1730	1730	1747	1772	1621	1854	1855	1855	1855	1872	1872	1872	1872
C	0 1 29 73	1919	1947	1970	1958	1943	1917	1923	1923	1923	1950	1950	1950	1950
C	0 1 34 72	1935	1945	1943	1958	1906	1882	1820	1820	1820	1789	1789	1789	1789
C	0 1 39 71	1750	1728	1726	1729	1723	1717	1756	1756	1756	1815	1825	1825	1825
C	0 1 44 70	1835	1810	1776	1752	1724	1723	1756	1756	1756	1757	1855	1870	1870
C	0 1 49 69	1876	1987	2053	2053	1993	1970	1739	1739	1739	1863	1863	1863	1863
C	0 1 54 69	1876	2034	2197	2249	2214	2155	2110	2110	2110	2056	2056	2056	2056
C	0 1 59 69	1932	1892	1789	1616	1246	1027	919	885	885	910	910	910	910
C	0 2 4 67	1621	1525	1324	1206	1225	1417	1824	2258	2258	2397	2397	2397	2397
C	0 2 9 66	2644	1555	1425	1177	1044	1601	107	3770	3770	3538	3538	3538	3538
C	0 2 14 65	2304	1978	3602	3802	3502	3602	3602	3602	3602	3714	3714	3714	3714
C	0 2 19 64	1835	554	-890	-1140	-1140	-1140	-1140	-1140	-1140	-671	-671	-671	-671
C	0 2 24 63	161	296	641	641	641	641	641	641	641	665	665	665	665
C	0 2 29 62	1291	1311	1311	1311	1311	1311	1311	1311	1311	1492	1492	1492	1492

TIME IS FOR FIRST COLUMN OF TC 023. DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS 0.50 SECONDS

TIME IS FOR FIRST COLUMN OF TG G24 DELTA TIME BETWEEN TWO ADJACENT COLUMNS IS .050 SECONDS

