ET - 657 - Probabilidade 2 para atuária Unidade 3 - 2022.2

Questão 1.

- (a) Se X_1, \ldots, X_k k variáveis aleatórias independentes tal que $X_i \sim \chi^2(n_i)$, $i = 1, \ldots, n$, verifique que $Z = X_1 + \ldots + X_k$, tem distribuição $Z \sim \chi^2(\sum_{i=1}^k n_i)$.
- (b) Se X_1, \ldots, X_k k variáveis aleatórias independentes com distribuição normal padrão N(0,1); $i=1,\ldots,k$ verifique que $Z=X_1^2+\ldots+X_k^2,\, Z\sim\chi^2(k)$.

Questão 2.

A função geratriz de momentos da variável aleatória contínua X é dada por

$$M(t) = \left(\frac{1/2}{1/2 - t}\right)^r,$$

para t < 1/2 e onde r é parâmetro de X.

Qual o valor de r para que X tenha distribuição qui-quadrado com 12 graus de liberdade?

Questão 3.

As variáveis X e Y são independentes com $X \sim Exp(\lambda)$ e $Y \sim Exp(2\lambda)$. Usando função geradora de momentos, calcule a média e a variância de X - 2Y.

Questão 4.

A função geratriz de momentos da variável aleatória X tem a forma: $M(t) = (0, 2 + 0, 8e^t)^{10}$. Nessas condições, qual a média da variável aleatória Y = 0, 5X + 2.

Questão 5.

Defina como verdadeiro ou falso cada afirmação a seguir e justifique sua resposta.

- () Se X uma variável aleatória com função geradora de momentos M_X , então a função geradora de momentos da variável aleatória Y == 2X + 3é dada por $M_Y(t) = e^{2t}M_X(3t)$.
- () Sabe-se que X e Y são variáveis aleatórias independentes, com funções geradoras de momentos M_X e M_Y , respectivamente. Nessas condições, a função geradora de momentos da variável aleatória U = X + Y é dada por $M_U(t) = M_x(t)M_y(t)$.
- () Se a variável aleatória X tem função geradora de momentos $M_x(t) = (0, 2e^t + 0, 8)^5$, então a variável aleatória Y = 4X + 1 tem variância igual a 12,8.

Questão 6.

Empregue a fgm para mostrar que, se X e Y forem variáveis aleatórias independentes, com distribuição $N(\mu_x, \sigma_x^2)$ e $N(\mu_y, \sigma_y^2)$, respectivamente, então Z = aX + bY será também normalmente distribuída, onde a e b são constantes.

Questão 7.

Em um circuito, n resistores são montados em série. Suponha que a resistência de cada um seja uniformemente distribuída sobre [0,1] e suponha, também, que todas as resistências sejam independentes. Seja R a resistência total. Estabeleça a fgm.

ET - 657 – Probabilidade 2 para atuária

Unidade 3 - 2022.2

Questão 8.

Sejam X_1, X_2, \ldots, X_n variáveis aleatórias definidas num mesmo espaço de probabilidade e t_1, t_2, \ldots, t_n números reais. A função geradora de momentos multidimensional dessas variáveis é definida por

$$M_{X_1,X_2,...,X_n}(t_1,t_2,...,t_n) = E(e^{t_1X_1+t_2X_2+...+t_nX_n}),$$

desde que a esperança seja finita para os tj's tomados numa vizinhança de zero.

Seja X o valor do primeiro dado e Y a soma dos valores quando dois dados são jogados. Calcule a função geratriz de momentos conjunta de X e Y.

Questão 9.

A variável X tem fgm dada por

$$M_X(t) = e^{\alpha t + \beta t^2},$$

 $t \in \mathbb{R}$, $\alpha \in \mathbb{R}$ e $\beta > 0$. Determine a esperança e variância de X.

Questão 10.

Sabe-se que 20% das peças de um lote são defeituosas. Sorteiam-se oito peças, com reposição, e calcula-se a proporção \hat{p} de peças defeituosas na amostra.

- (a) Construa a distribuição exata de \hat{p} (use a tábua da distribuição binomial).
- (b) Construa a aproximação normal à binomial.
- (c) Você pensa que a segunda distribuição é uma boa aproximação da primeira?
- (d) Já sabemos que, para dado p fixo, a aproximação melhora à medida que n aumenta. Agora, se n for fixo, para qual valor de p a aproximação é melhor?

Questão 11.

Um procedimento de controle de qualidade foi planejado para garantir um máximo de 10% de itens defeituosos na produção. A cada 6 horas sorteia-se uma amostra de 20 peças e, havendo mais de 15% de defeituosas, encerra-se a produção para verificação do processo. Qual a probabilidade de uma parada desnecessária?

Questão 12.

Supondo que a produção do exemplo anterior esteja sob controle, isto é, p = 10%, e que os itens sejam vendidos em caixas com 100 unidades, qual a probabilidade de que uma caixa:

- (a) tenha mais do que 10% de defeituosos?
- (b) não tenha itens defeituosos?

Questão 13.

Um eixo com diâmetro externo (D.E) $\sim N(1, 20; 0, 0016)$ é inserido em um mancal comum de diâmetro interno, que é N(1, 25: 0, 0009). Determine a probabilidade de interferência.

Questão 14.

O tempo de vida útil de componentes de computador produzidos por certo fabricante de semicondutores é normalmente distribuído com parâmetros $\mu = 1,4 \times 10^6$ horas e $\sigma == 3 \times 10^5$

ET - 657 - Probabilidade 2 para atuária Unidade 3 - 2022.2

horas. Qual é a probabilidade aproximada de que um lote com 100 componentes contenha pelo menos 20 componentes cujos tempos de vida útil sejam menores que $1, 8 \times 10^6$?

Questão 15.

O tamanho ideal de uma turma de primeiro ano em uma faculdade particular é de 150 alunos. A faculdade, sabendo de experiências anteriores que, em média, apenas 30% dos alunos aceitos vão de fato seguir o curso, usa a prática de aprovar os pedidos de matrícula de 450 estudantes. Calcule a probabilidade de que mais de 150 estudantes de primeiro ano frequente as aulas nesta faculdade

Questão 16.

Cada item produzido por certo fabricante é, independentemente, de qualidade aceitável com probabilidade 0,957. Obtenha uma aproximação para a probabilidade de que mais de 10 dos próximos 150 itens fabricados sejam inaceitáveis.

Questão 17.

Cinquenta números são arredondados para o inteiro mais próximo e somados. Se os erros de arredondamento individuais são uniformemente distribuídos ao longo de (-0,5;0,5), obtenha uma aproximação para a probabilidade de que a soma resultante difira da soma exata em mais de 3.

Questão 18.

Um dado é jogado continuamente até que a soma total das jogadas exceda 300. Obtenha uma aproximação para a probabilidade de que pelo menos 80 jogadas sejam necessárias.

Questão 19.

Uma pessoa possui 100 lâmpadas cujos tempos de vida são exponenciais independentes com média de 5 horas. Se as lâmpadas são usadas uma de cada vez, sendo a lâmpada queimada imediatamente substituída por uma nova, obtenha uma aproximação para a probabilidade de que ainda exista uma lâmpada funcionando após 525 horas.

Questão 20.

Certo componente é crítico para a operação de um sistema elétrico e deve ser substituído imediatamente após a sua falha. Se o tempo de vida médio deste tipo de componente é de 100 horas e seu desvio padrão é de 30 horas, quantos desses componentes devem estar em estoque de forma que a probabilidade de que o sistema permaneça em operação contínua nas próximas 2000 horas seja de pelo menos 0,95?

Questão 21.

A. J. tem 20 tarefas que deve realizar em sequência, com os tempos necessários para cada tarefa sendo variáveis aleatórias independentes com média 50 minutos e desvio padrão 10 minutos. M. J tem 20 tarefas que deve realizar em sequência, com os tempos necessários para realizar cada tarefa sendo variáveis aleatórias independentes com média 52 minutos e desvio padrão 15 minutos.

- (a) Determine a probabilidade de que A. J. termine em menos de 900 minutos.
- (b) Determine a probabilidade de que M. J. termine em menos de 900 minutos.

ET - 657 - Probabilidade 2 para atuária Unidade 3 - 2022.2

(c) Determine a probabilidade de que A. J. termine antes de M.J.

Questão 22.

(Lima e Magalhães) A resistência de vigas de madeira utilizadas na construção está sendo estudada. O fornecedor atesta que, em média, cada viga resiste a 3 toneladas com desvio padrão de aproximadamente 2 toneladas. Vinte destas vigas serão sorteadas para serem utilizadas numa obra. Considerando que é verdadeira a informação do fornecedor e supondo que o modelo Normal é adequado, pergunta-se:

- a) Qual a probabilidade de uma destas vigas suportar menos do que 1 tonelada?
- b) Qual a probabilidade de as 20 vigas suportarem, em média, pelo menos 2,5 toneladas?
- c) Qual a probabilidade em (b), considerando agora 40 vigas e sem fazer a suposição de normalidade dos dados?

Questão 23.

Um fabricante afirma que sua vacina contra gripe imuniza em 80% dos casos. Uma amostra de 25 indivíduos que tomaram a vacina foi sorteada e testes foram feitos para verificar a imunização ou não desses indivíduos. Se o fabricante estiver correto, qual é a probabilidade da proporão de imunizados na amostra ser inferior a 0,75? E superior a 0,85?

Questão 24.

Numa pesquisa de mercado, desejamos estimar a proporção de pessoas que compram o sabonete Bom-Cheiro.

- a) Que tamanho de amostra devemos colher para que, com probabilidade 0,9; a proporção amostral não se desvie do verdadeiro valor por mais de 0,05?
- b) Se tivermos a informação adicional de que a aceitação do sabonete Bom-Cheiro é no mínimo 0,8, qual deve ser então o tamanho da amostra?
- c) Decidimos colher uma amostra de tamanho 81. Qual o erro máximo que cometemos com probabilidade 0.90 ?
- d) Para uma amostra de tamanho 81, qual a probabilidade de que o erro máximo seja 0,08?

Questão 25.

A máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com media μ e desvio padrão 10 g.

(a) Em quanto deve ser regulado o peso médio μ para que apenas 10% dos pacotes tenham menos do que 500 g?

ET - 657 — Probabilidade 2 para atuária ^{Unidade 3 - 2022.2}

- (b) Com a máquina assim regulada, qual a probabilidade de que o peso total de 4 pacotes escolhidos ao acaso seja inferior a 2 kg?
- (c) Após a máquina estar regulada, programou-se uma carta de controle de qualidade. De hora em hora, será retirada uma amostra de quatro pacotes e esses serão pesados. Se a média da amostra for inferior a 495 g ou superior a 520 g, encerra-se a produção para reajustar a máquina, isto e, reajustar o peso médio. Qual é a probabilidade de ser feita uma parada desnecessaria? Se o peso medio da máquina desregulou-se para 500 g, qual é a probabilidade de continuar a produção fora dos padrões desejados?

Questão 26.

Suponha que a densidade sedimentar (g/cm) de um espécime selecionado aleatoriamente de uma determinada região tenha distribuição normal com média de 2,65 e desvio padrão de 0,85 (sugerido em "Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants" (Modelo de Sedimentos e Interações da Coluna de Água para Poluentes Hidrofóbicos) Water Research, 1984, p. 1169-1174).

- (a) Se uma amostra aleatória de 25 espécimes é selecionada, qual é a probabilidade de a densidade sedimentar média amostral ser de no máximo 3,00? Entre 2,65 e 3,00?
- (b) Qual deve ser o tamanho de uma amostra para garantir que a primeira probabilidade da parte (a) seja no mínimo 0,99?

Questão 27.

A proporção de peças fora de especificaçãao em um lote é de 40%. Tomada uma amostra de tamanho 30, qual a probabilidade de se obter mais da metade de peças fora de padrão? Determine a probabilidade via distribuição exata e via TCL.