Sistemi Operativi

Laurea in Ingegneria Informatica Università Roma Tre

Docente: Romolo Marotta

I/O e file management

I/O management

- Diversi tipi di dispositivi
 - Interazione con l'essere umano
 - Interazione con la macchina
 - Comunicazione tra macchine
- Caratteristiche differenti:
 - Applicazioni
 - Data rate
 - Controllo
 - Unità del trasferimento di dati
 - Rappresentazione del dato
 - Condizioni di errore
 - Gestione dei consumi

2

I/O management

Obiettivi:

- Efficienza
 - Tipicamente l'interazione con dispositivi di I/O è il collo di bottoglia
 - Multiprogrammazione allevia il problema, ma richiede swapping
 - Swapping richiede operazioni di I/O
- Generalità
 - Necessità di trattare i dispositivi in modo uniforme
 - Fornire servizi di I/O con interfacce standard (indipendenti dal tipo di dispositivo)
 - Progettazione gerarchica e modulare tesa a nascondere dettagli di basso livello

Modello di organizzazione moduli di I/O

I/O management

- Evoluzione delle funzioni di I/O
 - Programmed I/O
 - Processore attende la terminazione di comandi e copia dati da I/O a memoria
 - Interrupt-driven I/O
 - Processore non attende la terminazione di comandi e copia dati da I/O a memoria
 - Direct memory access
 - Processore non attende la terminazione di comandi e non copia dati da I/O a memoria

I/O buffering

L'I/O diretto su memoria dei processi ha implicazioni non banali:

- area destinata all'I/O non è swappabile
 - sottoutilizzo delle risorse
- area destinata all'I/O è swappabile
 - Deadlock
 - Processo bloccato in attesa di I/O e poi swappato
 - I/O in attesa che il processo sia riattivato
- I/O viene effettuato su memoria riservata al sistema operativo chiamato buffer
- L'utilizzo di buffer è in generale utile al fine di risolvere altre criticità:
 - Appianare la differenza di velocità tra produttore e il consumatore del dato
 - Appianare la differenza della taglia del dato che può essere maneggiata dal produttore e dal consumatore
 - Supportare la semantica di copia per l'I/O

I/O buffering

 No buffering User process I/O device Single buffer Operating system User process I/O device Double buffer Operating system User process I/O device Circular buffer Operating system User process I/O device

I/O scheduling

- Definisce la pianificazione per cui un dispositivo di I/O viene attivato per le sue operazioni
- In alcuni casi, mantenere l'ordine tra richieste di I/O e le effettive operazioni può essere necessario (e.g., terminale)
- FCFS non è necessariamente la soluzione più efficiente
 - Forte dipendenza dalle peculiarità dell'hardware caratteristico del dispositivo di I/O

8

Hard disk – caratteristiche salienti

- Ogni blocco è accessibile in lettura/scrittura ad ogni istante di tempo
- L'usura del dispositivo è essenzialmente legata all'usura delle parti meccaniche coinvolte
 - Non ci sono relazioni dirette tra operazioni di scrittura/lettura ed usura del dispositivo
 - Relazioni indirette tra operazioni ed usura
 - Per leggere/scrivere è necessario muovere la testina

Tempo di accesso

- Tempo di accodamento della richiesta
- Tempo di acquisizione del canale di I/O (potrebbe essere condiviso con altri dispositivi)
- Seek time: tempo per spostare la testina sulla traccia corretta
- Ritardo di rotazione: tempo di rotazione per allineare l'inizio del settore di interesse alla testina
- Tempo di trasferimento: tempo speso a ruotare il disco affinché tutto il settore venga letto dalla testina

Hard disk

Hard disk – Tempi di accesso

- Tempo di trasferimento
 - B=byte da trasferire
 - N=byte per traccia
 - R=tempo di rivoluzione
 - BR/N
- Ritardo di rotazione
 - in media occorre metà giro per posizionarsi sul settore corretto
 - Tipicamente il disco gira ad una velocità costante (da 5400rpm a 15000rpm)
 - Da 5.5ms a 2ms
- Seek time
 - in media occorre un terzo del full seek time (dalla traccia più interna a quella più esterna)
 - tipicamente nell'ordine dei millisecondi

Hard disk – Accesso sequenziale

- Esempio
 - 500 settori per traccia
 - Average seek time = 4ms
 - Velocità di rotazione = 15000rpm = 250rps
 - Seek time per tracce adiacenti trascurabile
- Dati posizionati su 5 tracce consecutive
 - Tempo di rivoluzione = 4ms
 - Tempo di trasferimento = 5x(tempo di rivoluzione) = 20ms
 - Tempo di seek = 4ms (da considerare una sola volta)
 - Ritardo di rotazione complessivo = 5x(tempo di rivoluzione)/2 = 10ms
 - Tempo totale per l'accesso = 20ms + 10ms + 4ms = 34ms

Hard disk - accesso casuale

- Esempio
 - 500 settori per traccia
 - Average seek time = 4ms
 - Velocità di rotazione = 15000rpm = 250rps
 - Seek time per tracce adiacenti trascurabile
- Dati posizionati su 2500 settori non consecutivi
 - Tempo di rivoluzione = 4ms
 - Tempo di trasferimento = 5x(tempo di rivoluzione) = 20ms
 - Tempo totale di seek = 2500x(tempo di seek) = 10s
 - Ritardo di rotazione complessivo = 2500x(tempo di rivoluzione)/2 = 5s
 - Tempo totale per l'accesso = 20ms + 10s + 5s = 15.02s

 Minimizzare i movimenti meccanici è un aspetto cruciale per massimizzare le performance di accesso a disco

Seek time è oggetto di numerosi algoritmi di

ottimizzazione

Metodologia

 Esecuzione sintetizzata come una sequenza di richieste identificate dal numero di traccia

Metrica

 numero di tracce complessivamente attraversate

- Richieste:
 - 0,2,0,7,4,9,8,9,5,7,3
 - Posizione iniziale: 2
- FCFS
 - Richieste servite nell'ordine di arrivo
 - No starvation
 - Non minimizza seek time
 - Movimenti totali della testina: 32

tempo

- Richieste:
 - 0,2,0,7,4,9,8,9,5,7,3
 - Posizione iniziale: 2
- Shortest-seek-time-first (SSTF)
 - Seleziona la traccia successiva che minimizza il seek time
 - 2,3,4,5,7,7,8,9,9,0,0
 - Movimenti totali della testina: 16
 - Starvation
 - Non minimizza seek time

- Richieste:
 - 0,2,0,7,4,9,8,9,5,7,3
 - Posizione iniziale: 2, direzione decrescente
- SCAN (elevator)
 - Il seek avviene in una data direzione fino a che non ci sono più richieste lungo in quella direzione
 - 0,0,2,3,4,5,7,7,8,9,9
 - Movimenti totali della testina: 11
 - Performance simili a SSTF
 - Sfavorisce tracce servite in precedenza
 - Favorisce tracce agli estremi
 - Starvation

tempo

- SCAN (elevator)
 - Sfavorisce tracce servite in precedenza
 - Favorisce tracce agli estremi
 - Starvation

CSCAN

- Le richieste vengono soddisfatte in un'unica direzione
- Starvation

FSCAN

- Due code per la gestione delle richieste
- Una coda viene usata per lo scheduling secondo SCAN
- Nuove richieste vengono inserite in una coda di richieste pendenti
- Quando la coda di scheduling corrente è vuota, le due code vengono scambiate

- Gli algoritmi mostrati si focalizzano sul seek time
- Nei dischi moderni
 - il seek time è comparabile con il tempo di rotazione
 - non mostrano la posizione fisica del dato
- I produttori implementano algoritmi di scheduling nel controller del disco tesi a minimizzare sia seek time che ritardi di rotazione
- Il sistema operativo può delegare al controller se l'unico obiettivo è la performance
- Tuttavia, esistono scenari in cui alcune richieste sono prioritarie rispetto ad altre

Solid state drives

- Basati su tecnologia flash
- Le scritture deteriorano le celle flash
 - Erase
 - Program
 - La vi
- La tecnologia NAND:
 - notevole densità (byte per chip)
 - Asimmetria tra unità di erase (blocco=N pagine) e program (pagina)
- Le pagine vengono gestite dal controller all'interno dell'unità SSD al fine di garantire wear leveling
 - I dati vengono spostati al fine di controllare operazioni di erase
- Nascondono al sistema operativo la posizione fisica dei dati
- I sistemi operativi:
 - Spesso adottano politiche di scheduling semplici (FCFS)
 - Devono notificare la cancellazione dei dati