# Scilab Textbook Companion for Numerical Methods: Principles, Analysis, And Algorithms by S. Pal<sup>1</sup>

Created by
Saurav Suman
B.Tech
Others
NIT Jamshedpur
College Teacher
NA
Cross-Checked by

July 31, 2019

<sup>&</sup>lt;sup>1</sup>Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

# **Book Description**

Title: Numerical Methods: Principles, Analysis, And Algorithms

Author: S. Pal

Publisher: Oxford University Press

Edition: 1

**Year:** 2009

**ISBN:** 9780195693751

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

**AP** Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

# Contents

| Lis       | st of Scilab Codes                                                   | 4   |
|-----------|----------------------------------------------------------------------|-----|
| 1         | Background to Numerical Methods                                      | 5   |
| 2         | Scope of Numerical and Mathematical Methods                          | 36  |
| 3         | Errors and Their Propagation                                         | 38  |
| 4         | Programming Tools and Techniques                                     | 42  |
| 5         | Solutions of Algebraic and Transcendental Equations                  | 46  |
| 6         | Numerical Methods of Linear Equations Direct Methods                 | 87  |
| 7         | Numerical Solutions for Matrix Inversion                             | 98  |
| 8         | Numerical Solutions of Linear Systems of Equations Iterative Methods | 108 |
| 9         | Linear Least Squares Problem                                         | 125 |
| <b>10</b> | Numerical Solutions of System of Non Linear Equations                | 136 |
| 11        | Eigenvalues and Eigenvectors                                         | 144 |

| <b>12</b> | Interpolation and Extrapolation                                                | 163        |
|-----------|--------------------------------------------------------------------------------|------------|
| <b>13</b> | Numerical Differentiation                                                      | 175        |
| <b>14</b> | Numerical Integration                                                          | 184        |
| 15        | Numerical Solutions of Ordinary Differential Equations Initial Value Problem   | 196        |
| 16        | Numerical Solutions of Ordinary Differential Equations Bourary Value Problems  | nd-<br>217 |
| 18        | Numerical Solutions of Parabolic Partial Differential Equations                | 226        |
| 19        | ${\bf Numerical\ Solutions\ of\ Hyperbolic\ Partial\ Differential\ Equations}$ | 236        |
| <b>20</b> | Numerical Solutions of Elliptical Partial Differential Equations               | 255        |
| <b>21</b> | Advances in Numerical Methods Using Parallel Computing<br>Paradigm             | 266        |
| <b>22</b> | Numerical Methods Using Neural Networks                                        | 275        |

# List of Scilab Codes

| Exa 1.1  | Conversion to Decimal System               |
|----------|--------------------------------------------|
| Exa 1.2  | Conversion Using Shortcut Method           |
| Exa 1.3  | Conversion to Base B from Decimal System   |
| Exa 1.4  | Conversion to Binary System                |
| Exa 1.5  | Conversion to Binary System                |
| Exa 1.6  | Conversion to Decimal Number               |
| Exa 1.7  | Conversion to Decimal Number               |
| Exa 1.8  | Conversion to Base B from Binary System .  |
| Exa 1.9  | Conversion to Binary System                |
| Exa 1.10 | Conversion to Binary System and to Base N  |
| Exa 1.13 | 1s compliment and 2s compliment            |
| Exa 1.14 | 1s compliment                              |
| Exa 1.15 | Addition and Subtraction                   |
| Exa 1.16 | Addition                                   |
| Exa 1.17 | Addition                                   |
| Exa 1.18 | Addition                                   |
| Exa 1.19 | Addition                                   |
| Exa 1.20 | Subtraction                                |
| Exa 1.23 | Multiplication                             |
| Exa 1.24 | Multiplication                             |
| Exa 1.25 | Division                                   |
| Exa 1.26 | Multiplication                             |
| Exa 1.29 | Normalized Floating Point Representation . |
| Exa 1.30 | Add                                        |
| Exa 1.31 | Add                                        |
| Exa 1.32 | Add                                        |
| Exa 1.33 | Add                                        |
| Exa 1 34 | Subtraction                                |

| Exa 1.35 | Multiplication                          |
|----------|-----------------------------------------|
| Exa 1.36 | Division                                |
| Exa 2.4  | Solving Simultaneous Linear Equation    |
| Exa 2.6  | Integration                             |
| Exa 3.1  | Limiting Error                          |
| Exa 3.2  | Known Error                             |
| Exa 3.3  | Absolute Relative and Percentage Errors |
| Exa 3.4  | Absolute Relative and Percentage Errors |
| Exa 3.5  | Absolute Relative and Percentage Errors |
| Exa 4.1  | Quadratic Equation                      |
| Exa 4.2  | Database Management                     |
| Exa 5.1  | Bisection Method                        |
| Exa 5.2  | Bisection Method                        |
| Exa 5.3  | Regula Falsi Method                     |
| Exa 5.4  | Ridders Method                          |
| Exa 5.5  | General Iterative Method                |
| Exa 5.6  | Linear Iterative Method                 |
| Exa 5.7  | Aitkens Method                          |
| Exa 5.8  | Newton Raphson Method                   |
| Exa 5.9  | Modified Newton Raphson Method          |
| Exa 5.10 | Newton Raphson Method                   |
| Exa 5.11 | Newton Raphson Method                   |
| Exa 5.12 | Newton Raphson Method                   |
| Exa 5.13 | Secant Method                           |
| Exa 5.14 | Kizner Method                           |
| Exa 5.15 | Brent Method                            |
| Exa 5.19 | Horner Method                           |
| Exa 5.20 | Laguerre Method                         |
| Exa 5.21 | Mullers Method                          |
| Exa 5.22 | Mullers Method                          |
| Exa 5.23 | Bairstow Hitchcock Method               |
| Exa 5.24 | Bernoulli Method                        |
| Exa 5.25 | Graeffe Method                          |
| Exa 5.26 | QD Method                               |
| Exa 5.27 | Linear Iteration Method                 |
| Exa 5.28 | Aitkens Method                          |
| Exa 5.29 | Newton Raphson Method                   |
| Exa 5 31 | Secant Method                           |

| Exa 5.32 | Regula Falsi Newton Raphson and Mullers Method |
|----------|------------------------------------------------|
| Exa 5.33 | Newton Raphson and Mullers Method              |
| Exa 5.34 | QD Method                                      |
| Exa 5.35 | Newton Raphson Method                          |
| Exa 5.36 | Secant Method                                  |
| Exa 5.37 | Newton Raphson Method                          |
| Exa 5.38 | Newton Raphson Method                          |
| Exa 5.39 | Newton Raphson Method                          |
| Exa 5.40 | Newton Raphson Method                          |
| Exa 6.1  | Gaussian Elimination Method                    |
| Exa 6.2  | Gaussian Elimination Method for TriDiago-      |
| LAG 0.2  | nal System                                     |
| Exa 6.3  | Gauss Jordan Method                            |
| Exa 6.4  | Gaussian Elimination Method without Pivot-     |
| LAG 0.1  | ing                                            |
| Exa 6.5  | Dolittle Factorization Method                  |
| Exa 6.6  | Trangularization Method                        |
| Exa 6.7  | Wilkinson Method                               |
| Exa 6.8  | Choleskys Factorization                        |
| Exa 6.9  | Complex System of Linear Equation              |
| Exa 6.10 | Solving Matrices                               |
| Exa 7.1  | Gauss Jordan Two Array Method                  |
| Exa 7.2  | Inverse in Place without Pivoting 10           |
| Exa 7.3  | Inverse in Place with Pivoting 10              |
| Exa 7.4  | Inverse of Triangular Matrices 10              |
| Exa 7.5  | Inverse of Complex Matrices                    |
| Exa 7.6  | Iterative Procedure                            |
| Exa 8.1  | Jacobi Method 10                               |
| Exa 8.2  | Gauss Seidel Method                            |
| Exa 8.3  | SOR Method                                     |
| Exa 8.4  | Gauss Seidel Point Iterative Method 1          |
| Exa 8.5  | Gauss Seidel Point Iterative Method 1          |
| Exa 8.6  | Block Jacobi Method 1                          |
| Exa 8.7  | Block Gauss Seidel Method 1                    |
| Exa 8.8  | Block SOR Method                               |
| Exa 9.1  | Moore Penrose Generalized Inverse 1            |
| Exa 9 2  | Curve Fitting 1                                |

| Exa 9.3   | Gram Schmidt Orthogonalization or Orthonor-     |
|-----------|-------------------------------------------------|
|           | malization Process                              |
| Exa 9.4   | QR Decomposition                                |
| Exa 9.5   | Vector Computation                              |
| Exa 9.6   | House Holder Transformation                     |
| Exa 9.7   | Givens QR Method                                |
| Exa 9.8   | Recursive Least Square Method 13                |
| Exa 10.1  | System of Non Linear Equations 13               |
| Exa 10.2  | Contraction Method and Seidel Method 13         |
| Exa 10.3  | Non Linear System of Equation                   |
| Exa 10.4  | Newton Method                                   |
| Exa 10.5  | Newton Raphshon Method                          |
| Exa 10.6  | Newton Method                                   |
| Exa 10.7  | Iterative Method                                |
| Exa 10.8  | Steepest Descent                                |
| Exa 11.1  | Eigenvalues and Eigenvectors 14                 |
| Exa 11.2  | Leverriers Method                               |
| Exa 11.3  | Danilevsky Method                               |
| Exa 11.4  | Power Method                                    |
| Exa 11.5  | Inverse Power Method                            |
| Exa 11.6  | Rayleigh Quotient                               |
| Exa 11.7  | Jacobi Method                                   |
| Exa 11.8  | Recursive Formula                               |
| Exa 11.9  | QR Method                                       |
| Exa 11.10 | LU Method                                       |
| Exa 11.11 | Generalized Eigenvalue Problem 15               |
| Exa 12.1  | Linear Interpolation Technique 16               |
| Exa 12.2  | Lagarangian Method                              |
| Exa 12.3  | Aitken Nevilles Method                          |
| Exa 12.4  | Newtons Divided Difference Interpolation . 16   |
| Exa 12.5  | Interpolation Methods                           |
| Exa 12.6  | Chebyshev Interpolating Polynomial 17           |
| Exa 12.7  | Double Interpolation                            |
| Exa 12.8  | Spline Interpolation                            |
| Exa 13.1  | Differentiation                                 |
| Exa 13.2  | Calculation of x coordinate of Minimum Point 17 |
| Exa 13.3  | Newton Forward Difference Formula 17            |
| Exa 13 4  | Newton Backward Difference Formula 17.          |

| Exa 13.5  | Stirlings Central Difference Derivatives 18    |
|-----------|------------------------------------------------|
| Exa 13.6  | Extrapolation                                  |
| Exa 13.7  | Richardson Extrapolation                       |
| Exa 13.8  | Application                                    |
| Exa 14.2  | Simpsons 1 3rd Rule                            |
| Exa 14.3  | Trapezoidal Rule and Simpsons Rule 18          |
| Exa 14.5  | Romberg Method                                 |
| Exa 14.7  | Gaussian Quadrature Formula                    |
| Exa 14.8  | Gauss Legendre Two Point Rule 18               |
| Exa 14.9  | Gauss Legendre Three Point Rule 18             |
| Exa 14.10 | Spline Integration Method                      |
| Exa 14.11 | Trapezoidal Rule                               |
| Exa 14.14 | Trapezoidal and Simpsons Rule 19               |
| Exa 14.15 | Trapezoidal and Simpsons Rule 19               |
| Exa 14.16 | Multiple Integration with Variable Limits . 19 |
| Exa 14.18 | Integration                                    |
| Exa 14.19 | Integration                                    |
| Exa 15.1  | Ordinary Differential Equation 19              |
| Exa 15.6  | Taylor Method                                  |
| Exa 15.7  | Picard Method 19                               |
| Exa 15.8  | Euler Method                                   |
| Exa 15.9  | Trapezium Method 19                            |
| Exa 15.10 | Heun Method                                    |
| Exa 15.11 | Midpoint Method                                |
| Exa 15.12 | Modified Midpoint Method 20                    |
| Exa 15.13 | Single Step Method                             |
| Exa 15.14 | Second Order Runge Kutta Method 20             |
| Exa 15.15 | Third Order Runge Kutta Method 20              |
| Exa 15.16 | Fourth Order Runge Kutta Method 20             |
| Exa 15.17 | New Variant of Runge Kutta Method 20           |
| Exa 15.18 | Runge Kutta Merson Method 20                   |
| Exa 15.19 | Runge Kutta Fehlberg Method 20                 |
| Exa 15.20 | Carp Karp Runge Kutta Method 20                |
| Exa 15.21 | Implicit Runge Kutta Method 20                 |
| Exa 15.22 | Linear Multi Step Method                       |
| Exa 15.23 | Milne Simpson Predictor Corrector Method 20    |
| Exa 15.24 | Improved Milne Simpson Predictor Corrector     |
|           | Method                                         |

| Exa 15.25 | Hamming Predictor Corrector Method 2            | 11 |
|-----------|-------------------------------------------------|----|
| Exa 15.26 | Multi Valued Method 2                           | 12 |
| Exa 15.27 | First order ODE 2                               | 14 |
| Exa 15.28 | Differential Equation 2                         | 15 |
| Exa 16.1  | Outline of Linear Shooting Method 2             | 17 |
| Exa 16.2  | Linear Shooting Method 2                        | 18 |
| Exa 16.3  | Multiple Shooting Method 2                      | 20 |
| Exa 16.4  | Finite Difference Method 2                      | 22 |
| Exa 16.5  | Non Linear Problem 2                            | 23 |
| Exa 16.6  |                                                 | 24 |
| Exa 18.4  |                                                 | 26 |
| Exa 18.5  | Bender Schmidt Method 2                         | 27 |
| Exa 18.6  | Crank Nicolson Method 2                         | 28 |
| Exa 18.7  | Gauss Seidel Method 2                           | 30 |
| Exa 18.8  | ADI Method                                      | 31 |
| Exa 19.3  | Simple Explicit Method 2                        | 36 |
| Exa 19.4  | Simple Implicit Method 2                        | 37 |
| Exa 19.5  |                                                 | 38 |
| Exa 19.6  | Wendroff Method 2                               | 39 |
| Exa 19.7  |                                                 | 40 |
| Exa 19.8  | Variable Coefficients 2                         | 42 |
| Exa 19.9  | Inhomogeneous 1st Order Hyperboolic Differ-     |    |
|           | ential Equation                                 | 45 |
| Exa 19.10 | Non Linear 1st Order Hyperboolic Differen-      |    |
|           | tial Equation                                   | 48 |
| Exa 19.11 | Finite Difference Method 2                      | 49 |
| Exa 19.12 | Hyperbolic Partial Differential Equations 2     | 51 |
| Exa 19.13 | Hyperbolic Differential Equations in 2D or 3D 2 | 51 |
| Exa 20.1  | Direct Method 2                                 | 55 |
| Exa 20.2  |                                                 | 56 |
| Exa 20.3  | Finite Difference Method 2                      | 57 |
| Exa 20.4  | Seven Point Formula 2                           | 58 |
| Exa 20.5  | Nine Point Formula                              | 59 |
| Exa 20.6  | Five Point Formula 2                            | 61 |
| Exa 20.7  | Laplace Distribution 2                          | 62 |
| Exa 20.8  | Spherical Coordinate System 2                   | 63 |
| Exa 21.1  | Parallel Bisection Method 2                     | 66 |
| Exa 21.2  | Lagrange Interpolation in Parallel Computing 2  | 68 |

| Exa 21.3 | Trapezoidal Rule and Simpsons Rule in Par- |
|----------|--------------------------------------------|
|          | allel Computing                            |
| Exa 21.4 | Parallel Gauss Seidel Method 2             |
| Exa 21.5 | Poissons Partial Differential Equation 2   |
| Exa 22.1 | MLP Algorithm                              |
| Exa 22.2 | MLP                                        |
| Exa 22.3 | Bisection Method                           |
| Exa 22.4 | Hopfield Neural Network                    |
| Exa 22.5 | RBF Network                                |
| Exa 22.7 | First Order ODE                            |

# Chapter 1

# Background to Numerical Methods

## Scilab code Exa 1.1 Conversion to Decimal System

```
1 / \text{Example } 1.1
2 //Conversion to Decimal System
3 //Page no. 4
4 clc; close; clear;
5 function [s]=bas2dec(x,b)
6
        xi = int(x)
        xd=x-int(x)
7
        s = 0
8
       for i = 1:10
9
            xi = xi / 10
10
            s=s+(10*(xi-fix(xi))*b^(i-1))
11
12
            xi = int(xi)
            if(xi==0)
13
14
                 break
15
            end
16
        end
       for i=1:1
17
```

```
xd=xd*10;
18
19
           s=s+(ceil(xd)/b^(i))
20
           xd=xd-fix(xd)
21
           if(xd==0)
22
               break
23
           end
24
       end
25 endfunction
26
27 //conversion from hexadecimal to decimal system
28 disp(hex2dec('1A2C'), '1A2C=');
                                        //inbuit function
29
30 //conversion from hexadecimal to decimal system
                                      //inline function
31 \text{ disp}(bas2dec(428.5,8), '428.5=')
32
33 //conversion from hexadecimal to decimal system
34 disp(bas2dec(120.1,3), '120.1=')
                                         //inline
      function
```

## Scilab code Exa 1.2 Conversion Using Shortcut Method

```
1 //Example 1.2
2 //Conversion Using Shortcut Method
3 //Page no. 4
4 clc; close; clear;
5 A=10; C=12;
6 d=(((1)*16+A)*16+2)*16+C;
7 disp(d, 'Decimal form of 1A2C is =');
```

#### Scilab code Exa 1.3 Conversion to Base B from Decimal System

```
1 / Example 1.3
2 // Conversion to Base B from Decimal System
3 //Page no. 5
4 clc; close; clear;
5 //conversion from binary to octal
6 disp(dec2oct(bin2dec('10101101110')), 'Octal form of
     10101101110 is ='); //inbuilt function
8 //conversion from binary to hexadecimal
9 disp(dec2hex(bin2dec('10101101110')), 'Hexadecimal
     form of 10101101110 is ='); //inbuilt function
10
11 //conversion from binary to octal
12 s=dec2oct(bin2dec('1011'));
13 s1=dec2oct(bin2dec('110011010100')); //inbuilt
     function
14 printf('\n Octal form of 1011.1100110101 is = \n
     %s.%s',s,s1)
15
16 //conversion from binary to hexadecimal
17 s=dec2hex(bin2dec('1011'));
18 s1=dec2hex(bin2dec('110011010100')); //inbuilt
     function
19 printf('\n\n Hexadecimal form of 1011.1100110101 is
     = \langle n \rangle n \% s.\% s', s, s1)
```

#### Scilab code Exa 1.4 Conversion to Binary System

```
1 //Example 1.4
2 //Conversion to Binary System
3 //Page no. 6
```

```
4 clc; close; clear;
5 //conversion from octal to binary
6 disp(dec2bin(oct2dec('1753')), 'Binary form of 1753
     is = ');
               //inbuilt function
7
8 //conversion from octal to binary
9 disp(dec2bin(hex2dec('A478')), 'Binary form of A478
     is = ');
               //inbuilt function
10
11 //conversion from octal to binary
12 s=dec2bin(oct2dec('3'));
13 s1=dec2bin(oct2dec('154')); //inbuilt function
14 printf('\n Octal form of 3.154 is = \n\n \%s.00\%s',s,
     s1)
```

#### Scilab code Exa 1.5 Conversion to Binary System

```
1 / Example 1.5
2 //Conversion to Binary System
3 //Page no. 6
4 clc; close; clear;
5 //conversion from octal to binary
6 b=dec2bin(oct2dec('1753'))
7 disp(b, 'Binary form of 1753 is ='); //inbuilt
     function
8 b=dec2hex(oct2dec('1753'))
9 disp(b, 'Hexadecimal form of 1753 is =');
     inbuilt function
10 //conversion from octal to binary
11 b=dec2bin(hex2dec('A478'))
12 disp(b, 'Binary form of A478 is ='); //inbuilt
     function
13 b=dec2oct(hex2dec('A478'))
```

```
disp(b, 'Octal form of A478 is =');  //inbuilt
    function

//conversion from octal to binary
s=dec2bin(oct2dec('3'));
s1=dec2bin(oct2dec('154'));  //inbuilt function
printf('\n Octal form of 3.154 is = \n\n %s.00%s',s,
    s1)
s=dec2hex(oct2dec('3'));
s1=dec2hex(oct2dec('154'));  //inbuilt function
printf('\n\n Hexadecimal form of 3.154 is = \n\n %s.
%s',s,s1)
```

#### Scilab code Exa 1.6 Conversion to Decimal Number

```
1 //Example 1.6
2 //Conversion to Decimal Number
3 //Page no. 7
4 clc; close; clear;
5
6 disp(dec2bin(182), 'Binary of 182=') //inbuilt
function
```

#### Scilab code Exa 1.7 Conversion to Decimal Number

```
1 //Example 1.7
2 //Conversion to Decimal Number
3 //Page no. 7
4 clc; close; clear;
```

```
6 disp(dec2oct(467), 'Octal of 467=') //
inbuilt function
```

## Scilab code Exa 1.8 Conversion to Base B from Binary System

```
1 / \text{Example } 1.8
2 //Conversion to Base B from Binary System
3 //Page no. 8
4 clc; close; clear;
5 //conversion from binary to octal
6 disp(dec2oct(bin2dec('10101101110')), 'Octal form of
                            //inbuilt function
      10101101110 is =');
8 //conversion from binary to hexadecimal
9 disp(dec2hex(bin2dec('10101101110')), 'Hexadecimal
     form of 10101101110 is ='); //inbuilt function
10
11 //conversion from binary to octal
12 s=dec2oct(bin2dec('1011'));
13 s1=dec2oct(bin2dec('110011010100')); //inbuilt
      function
14 printf('\n Octal form of 1011.1100110101 is = \n\n
     %s.%s',s,s1)
15
16 //conversion from binary to hexadecimal
17 s=dec2hex(bin2dec('1011'));
18 s1=dec2hex(bin2dec('110011010100')); //inbuilt
     function
19 printf('\n\n Hexadecimal form of 1011.1100110101 is
     = \langle n \rangle n \%s.\%s', s, s1)
```

#### Scilab code Exa 1.9 Conversion to Binary System

```
1 / \text{Example } 1.9
2 //Conversion to Binary System
3 //Page no. 8
4 clc; close; clear;
5 //conversion from octal to binary
6 disp(dec2bin(oct2dec('1753')), 'Binary form of 1753
     is = ');
               //inbuilt function
7
8 //conversion from octal to binary
9 disp(dec2bin(hex2dec('A478')), 'Binary form of A478
                //inbuilt function
     is = ');
10
11 //conversion from octal to binary
12 s=dec2bin(oct2dec('3'));
13 s1=dec2bin(oct2dec('154')); //inbuilt function
14 printf('\n Octal form of 3.154 is = \n\n \%s.00\%s',s,
     s1)
```

#### Scilab code Exa 1.10 Conversion to Binary System and to Base N

```
1 //Example 1.10
2 //Conversion to Binary System and to Base N
3 //Page no. 9
4 clc; close; clear;
5
6 b=dec2bin(oct2dec('1753'))
```

```
7 disp(b, 'Binary form of 1753 is ='); //inbuilt
     function
8 b=dec2hex(oct2dec('1753'))
9 disp(b, 'Hexadecimal form of 1753 is =');
     inbuilt function
10 //conversion from octal to binary
11 b=dec2bin(hex2dec('A478'))
12 disp(b, 'Binary form of A478 is ='); //inbuilt
     function
13 b=dec2oct(hex2dec('A478'))
14 disp(b, 'Octal form of A478 is ='); //inbuilt
     function
15 //conversion from octal to binary
16 s=dec2bin(oct2dec('3'));
17 s1=dec2bin(oct2dec('154')); //inbuilt function
18 printf('\n Octal form of 3.154 is = \n\n \%s.00\%s',s,
     s1)
19 s=dec2hex(oct2dec('3'));
20 s1=dec2hex(oct2dec('154')); //inbuilt function
21 printf('\n\n Hexadecimal form of 3.154 is = \n\n \%s.
     %s',s,s1)
```

#### Scilab code Exa 1.13 1s compliment and 2s compliment

```
9
           xd=x-fix(x)
           if (floor ((xd*10)+0.1) ==1)
10
               x1(1,i)=0;
11
12
           else
13
               x1(1,i)=1;
14
           end
15
           x=x-xd;
       end
16
17 endfunction
18 function [x1] = com2(x)
                                 //function for 2s
     compliment()
19
       for i=8:-1:1
20
           x=x/10;
           xd=x-fix(x)
21
22
           if (int((xd*10)+0.1) ==1)
23
               x1(1,i)=0;
24
           else
25
               x1(1,i)=1;
26
           end
27
       end
28
       for i=8:-1:1
           if (x1(1,i)==0) then
29
              x1(1,i)=1;
30
              break;
31
32
           else
33
              x1(1,i)=0;
34
           end
35
36
       end
37 endfunction
38 a
     39 for i=1:6
       printf('1s Compliment of \%.8i=',a(i));
40
       disp(com1(a(i)))
41
       printf('2s Compliment of %.8i=',a(i));
42
       disp(com2(a(i)))
43
```

```
44 printf( ' \ \ n \ \ ') 45 end
```

# Scilab code Exa 1.14 1s compliment

```
1 //Example 1.14
2 //1s compliment
3 // Page no. 12
4 clc; close; clear;
6 function [x1]=com1(x) //function for 1s
     compliment
      for i=8:-1:1
          x=x/10;
8
9
          xd=x-fix(x)
10
          if (floor ((xd*10)+0.1) ==1)
11
             x1(1,i)=0;
12
          else
13
             x1(1,i)=1;
14
          end
15
          x=x-xd;
16
      end
17 endfunction
18 a
     19 for i=1:6
      printf('1s Compliment of %.8i=',a(i));
20
      disp(com1(a(i)))
21
      printf('\n\n')
22
23 end
```

## Scilab code Exa 1.15 Addition and Subtraction

```
1 //Example 1.15
2 //Addition and Subtraction
3 // Page no. 13
4 clc; clear; close;
5 function [x1] = add(x,y)
                                                //function
      for addition of binaries
6
       c=0;
       for i=1:10
7
8
            x1(1,i)=0
9
       end
10
       for i=10:-1:1
            x = x / 10;
11
12
            xd=x-fix(x)
13
            x=x-xd;
14
            y=y/10;
            yd=y-fix(y)
15
            y = y - yd;
16
17
            if c==1 then
18
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
                   +0.1) == 1 then
                     x1(1,i)=1;c=1;
19
                elseif floor((xd*10)+0.1) == 0 & floor((yd
20
                    *10)+0.1)==0
21
                     x1(1,i)=1;c=0;
22
                else
23
                     x1(1,i)=0;c=0;
24
                end
25
            else
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
26
                    +0.1) == 1 then
```

```
27
                     x1(1,i)=0;c=1;
28
                 elseif floor((xd*10)+0.1) == 0 & floor((yd
                    *10) + 0.1) == 0
                     x1(1,i)=0; c=0;
29
30
                 else
31
                     x1(1,i)=1;c=0;
32
                 end
            end
33
34
       end
35
       disp(x1, 'Addition of 173 and 141= ')
36 endfunction
   function [x1] = sub(x,y)
                                         //function for
      subtraction of binaries
38
            c=0:
39
            for i=1:10
                 x1(1,i)=0
40
41
            end
42
            for i = 10: -1:1
                 x = x / 10;
43
                 xd=x-fix(x)
44
45
                 x=x-xd;
                 y = y / 10;
46
                 yd=y-fix(y)
47
48
                 y = y - yd;
49
                 if c==1 then
50
                     if floor((xd*10)+0.1) == 0 & floor((yd
                         *10) + 0.1) == 1 then
                          x1(1,i)=0;c=1;
51
52
                     elseif floor((xd*10)+0.1) == 0 & floor
                         ((yd*10)+0.1)==0
53
                          x1(1,i)=1;c=0;
                     elseif floor((xd*10)+0.1) == 1 & floor
54
                         ((yd*10)+0.1)==1
                          x1(1,i)=1;c=1;
55
                     elseif floor((xd*10)+0.1) == 1 & floor
56
                         ((yd*10)+0.1)==0
                          x1(1,i)=0;c=0;
57
58
                     end
```

```
else
59
60
                     if floor((xd*10)+0.1) == 1 & floor((yd
                        *10) + 0.1) == 1 then
61
                         x1(1,i)=1;c=1;
62
                     elseif floor((xd*10)+0.1) == 0 & floor
                        ((yd*10)+0.1)==0
63
                         x1(1,i)=0;c=0;
                     elseif floor((xd*10)+0.1) == 1 & floor
64
                        ((yd*10)+0.1)==0
                         x1(1,i)=1;c=0;
65
                     elseif floor((xd*10)+0.1) == 0 & floor
66
                        ((yd*10)+0.1)==1
67
                         x1(1,i)=1;c=1;
68
                     end
69
                end
70
            end
       disp(x1, 'Subtraction of 45 from 228= ')
71
72 endfunction
73 add(10101101,10001101)
74 sub(11100100,00101101)
```

#### Scilab code Exa 1.16 Addition

```
1 //Example 1.16
2 //Addition
3 //Page no. 14
4 clc; close; clear;
5
6 function [x1] = add(x,y) //function
    for addition of binaries
7     c=0;
8     printf('Addition of %.4i and %.4i= ',x,y)
9     for i=1:4
```

```
x1(1,i)=0
10
11
        end
12
        for i=4:-1:1
13
            x = x / 10;
14
            xd=x-fix(x)
15
            x=x-xd;
16
            y = y / 10;
            yd=y-fix(y)
17
            y = y - yd;
18
            if c==1 then
19
20
                 if floor((xd*10)+0.1) == 1 & floor((yd*10)
                    +0.1) == 1 then
21
                     x1(1,i)=1;c=1;
22
                 elseif floor((xd*10)+0.1) == 0 & floor((yd
                    *10)+0.1)==0
23
                     x1(1,i)=1;c=0;
24
                 else
25
                     x1(1,i)=0;c=1;
26
                 end
27
            else
28
                 if floor((xd*10)+0.1) == 1 & floor((yd*10)
                    +0.1) == 1 then
                     x1(1,i)=0; c=1;
29
30
                 elseif floor((xd*10)+0.1) == 0 & floor((yd
                    *10) + 0.1) == 0
                     x1(1,i)=0;c=0;
31
32
                 else
33
                     x1(1,i)=1;c=0;
34
                 end
35
            end
36
        end
37
        disp(x1)
38
39 endfunction
40 add(0010,0101);
41 add(1110,1011);
42 add(1110,0101);
43 add(0010,1011);
```

```
44 add(1110,0010);
45 add(0000,0000);
```

#### Scilab code Exa 1.17 Addition

```
1 //Example 1.17
2 // Addition
3 //Page no. 14
4 clc; close; clear;
                                                //function
6 function [x1] = add(x,y)
      for addition of binaries
       printf('Addition of %.4i and %.4i= ',x,y)
8
9
       for i=1:5
            x1(1,i)=0
10
11
       end
12
       for i=5:-1:1
13
            x = x / 10;
            xd=x-fix(x)
14
            x=x-xd;
15
16
            y = y / 10;
            yd=y-fix(y)
17
18
            y = y - yd;
19
            if c==1 then
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
20
                   +0.1) == 1 then
                     x1(1,i)=1;c=1;
21
                elseif floor((xd*10)+0.1) == 0 & floor((yd
22
                    *10)+0.1)==0
23
                     x1(1,i)=1;c=0;
24
                else
                     x1(1,i)=0;c=1;
25
```

```
26
                end
            else
27
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
28
                   +0.1) == 1 then
29
                     x1(1,i)=0;c=1;
                elseif floor((xd*10)+0.1) == 0 & floor((yd
30
                   *10)+0.1)==0
                     x1(1,i)=0;c=0;
31
32
                else
33
                     x1(1,i)=1;c=0;
34
                end
35
            end
36
       end
37
       disp(x1)
38
39 endfunction
40
41 add(0010,0101);
42 add(1101,1010);
43 add(1101,0101);
44 add(0010,1010);
45 add(1101,0010);
46 add(1111,0000);
```

#### Scilab code Exa 1.18 Addition

```
1 //Example 1.18
2 //Addition
3 //Page no. 15
4 clc; close; clear;
5
6 function [x1] = add(x,y) //function
    for addition of binaries
```

```
7
       c=0;
8
       printf('Addition of %.4i and %.4i= ',x,y)
9
       for i=1:5
            x1(1,i)=0
10
11
       end
12
       for i=5:-1:1
13
            x=x/10;
14
            xd=x-fix(x)
15
            x=x-xd;
            y=y/10;
16
17
            yd=y-fix(y)
18
            y=y-yd;
19
            if c==1 then
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
20
                   +0.1) == 1 then
21
                     x1(1,i)=1;c=1;
22
                elseif floor((xd*10)+0.1) == 0 & floor((yd
                    *10)+0.1)==0
23
                     x1(1,i)=1;c=0;
24
                else
25
                     x1(1,i)=0;c=1;
26
                end
27
            else
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
28
                    +0.1) == 1 then
29
                     x1(1,i)=0;c=1;
                elseif floor((xd*10)+0.1) == 0 & floor((yd
30
                    *10)+0.1)==0
                     x1(1,i)=0;c=0;
31
32
                else
33
                     x1(1,i)=1;c=0;
34
                end
35
            end
36
       end
37
38
       disp(x1)
39 endfunction
40
```

```
41 add(0100,0101);
42 add(1100,1011);
43 add(1000,1000);
```

#### Scilab code Exa 1.19 Addition

```
1 //Example 1.19
2 // Addition
3 // Page no. 15
4 clc; close; clear;
                                                //function
6 function [x1] = add(x,y)
      for addition of binaries
7
       printf('Addition of %.4i and %.4i= ',x,y)
8
9
       for i=1:5
10
            x1(1,i)=0
11
       end
12
       for i=5:-1:1
13
            x = x / 10;
            xd=x-fix(x)
14
15
            x=x-xd;
            y=y/10;
16
17
            yd=y-fix(y)
18
            y=y-yd;
            if c==1 then
19
20
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
                   +0.1) == 1 then
21
                     x1(1,i)=1;c=1;
22
                elseif floor((xd*10)+0.1) == 0 & floor((yd
                   *10)+0.1)==0
23
                     x1(1,i)=1;c=0;
24
                else
```

```
25
                     x1(1,i)=0;c=1;
26
                end
27
            else
                if floor((xd*10)+0.1) == 1 & floor((yd*10)
28
                   +0.1) == 1 then
                     x1(1,i)=0;c=1;
29
30
                elseif floor((xd*10)+0.1) == 0 & floor((yd
                   *10) + 0.1) == 0
                     x1(1,i)=0;c=0;
31
32
                else
33
                     x1(1,i)=1;c=0;
34
                end
35
            end
36
       end
37
38
       disp(x1)
39 endfunction
40
41 add(0010,0101);
42 add(11110,11011);
43 add(1000,0101);
44 add(00010,11011);
45 add(11110,00010);
46 add(11111,0000);
```

#### Scilab code Exa 1.20 Subtraction

```
6
       c = 0;
7
       for i=1:5
8
            x1(1,i)=0
9
       end
10
       for i=5:-1:1
11
            x = x / 10;
            xd=x-fix(x)
12
            x=x-xd;
13
14
            y = y / 10;
            yd=y-fix(y)
15
16
            y=y-yd;
17
            if c==1 then
18
                 if floor((xd*10)+0.1) == 1 & floor((yd*10)
                    +0.1) == 1 then
19
                     x1(1,i)=1;c=1;
                 elseif floor((xd*10)+0.1) == 0 & floor((yd
20
                    *10) + 0.1) == 0
21
                     x1(1,i)=1;c=0;
22
                 else
                     x1(1,i)=0;c=0;
23
24
                 end
25
            else
                 if floor((xd*10)+0.1) == 1 & floor((yd*10)
26
                    +0.1) == 1 then
27
                     x1(1,i)=0;c=1;
                 elseif floor((xd*10)+0.1) == 0 & floor((yd
28
                    *10)+0.1)==0
29
                     x1(1,i)=0; c=0;
30
                 else
                     x1(1,i)=1;c=0;
31
32
                 end
            end
33
34
        end
        disp(x1, 'Addition of 173 and 141= ')
35
36 endfunction
37
38 add(0100,1011);
39 add(1100,0101);
```

## Scilab code Exa 1.23 Multiplication

```
1 //Example 1.23
2 // Multiplication
3 // Page no. 18
4 clc; clear; close;
6 function [x1]=mul(x,y)
7
       for i=1:8
            x1(1,i)=0
8
9
       end
       printf ('Multiplication of \%.4i and \%.4i = ',x,y)
10
       x = x * y;
11
       c=0;
12
       for i=8:-1:1
13
            x=x/10;
14
            xd = floor((x - fix(x)) * 10 + 0.1)
15
            if c==1 then
16
                 if xd==0 then
17
                     x1(1,i)=1;c=0
18
                 elseif xd==1
19
20
                     x1(1,i)=0;
21
                     c=1;
22
                 elseif xd==2
23
                     x1(1,i)=1;c=1;
24
                 end
25
            else
                 if xd==0 | xd==1 then
26
27
                     x1(1,i)=xd;c=0
28
                 elseif xd==2
                     x1(1,i)=0;
29
```

## Scilab code Exa 1.24 Multiplication

```
1 //Example 1.24
2 // Multiplication
3 // Page no. 18
4 clc; clear; close;
5
6 function [x1]=mul(x,y)
7
        for i=1:8
8
            x1(1,i)=0
9
       printf('Multiplication of \%.4i and \%.4i = ',x,y)
10
11
       x = x * y;
12
        c = 0;
       for i=8:-1:1
13
14
            x = x / 10;
15
            xd = floor((x - fix(x)) * 10 + 0.1)
            if c==1 then
16
17
                 if xd==0 then
                     x1(1,i)=1;c=0
18
                 elseif xd==1
19
20
                     x1(1,i)=0;
21
                     c=1;
22
                 elseif xd==2
                     x1(1,i)=1;c=1;
23
```

```
24
                 end
25
            else
                 if xd==0 \mid xd==1 then
26
                      x1(1,i)=xd;c=0
27
28
                 elseif xd==2
                      x1(1,i)=0;
29
                      i=i-1; c=1;
30
31
                 end
32
            end
33
        end
        disp(x1)
34
35 endfunction
36 mul(1110,1011);
```

#### Scilab code Exa 1.25 Division

```
1 //Example 1.25
2 // Division
3 // Page no. 19
4 clc; close; clear;
5 function [co] = com(x,y)
6
       co=1;
       for i=1:length(x)
7
            if x(i)>y(i) then
8
9
                break
            elseif x(i) == y(i)
10
11
                continue
12
            else
13
                co=0; break
14
            end
15
       end
16 endfunction
                                        //function for
17 function [x1] = sub(x,y)
```

```
subtraction of binaries
             c = 0; m = 0;
18
             for i=1:5
19
20
                 x1(1,i)=0
21
             end
             for i=5:-1:1
22
                 if c==1 then
23
                      if x(i) == 0 & y(i) == 1 then
24
25
                           x1(1,i)=0;c=1;
                      elseif x(i) == 0 & y(i) == 0
26
27
                           x1(1,i)=1;c=0;
28
                      elseif x(i) == 1 & y(i) == 1
29
                           x1(1,i)=1;c=1;
                      elseif x(i) == 1 & y(i) == 0
30
                           x1(1,i)=0;c=0;
31
32
                      end
33
                 else
34
                      if x(i) == 1 & y(i) == 1 then
                           x1(1,i)=0;c=0;
35
                      elseif x(i) == 0 & y(i) == 0
36
37
                           x1(1,i)=0;c=0;
                      elseif x(i) == 1 & y(i) == 0
38
39
                           x1(1,i)=1;c=0;
                      elseif x(i) == 0 & y(i) == 1
40
                           x1(1,i)=1;c=1;
41
42
                      end
43
                 end
44
             end
        disp(x1, 'Remainder = ')
45
46 endfunction
47 d1=11011001; d2=01011; d22=[0,0,0,0,0]
48 \quad for \quad i=8:-1:1
49
        d3=d1/10;
        div(1,i) = int(10*(d3-int(d3)))
50
        d1 = d1/10
51
52 end
53 for i=5:-1:1
        d3=d2/10;
54
```

```
d21(1,i) = int(10*(d3-int(d3))+0.5)
55
56
        d2 = d2/10
57 end
58 \text{ div1}(1,1)=0
59 \text{ for } j=1:4
60
        div1(1,j+1) = div(1,j)
61 end
62 \text{ for } i1=1:5
63
        printf('After Step %i : \n',i1)
        if com(div1,d21)==1 then
64
             dis(1,i1)=1
65
            n=sub(div1,d21)
66
67
        else
             dis(1,i1)=0
68
69
            n=sub(div1,d22)
70 end
71 disp(dis, 'Divisor = ')
72 if i1==5 then
73
        break
74 end
75
           for j=1:5
76
                      if j < 5 then
                           div1(1,j)=n(j+1)
77
78
                      else
79
                           div1(1,j)=div(1,i1+4)
80
                      end
81
             end
82
83 printf('\n\n\n'n')
84 end
```

Scilab code Exa 1.26 Multiplication

```
1 //Example 1.26
2 // Multiplication
3 // Page no. 19
4 clc; clear; close;
5
   function [x1]=mul(x,y)
        for i=1:8
8
9
            x1(1,i)=0
10
        end
       printf('Multiplication of %.4i and %.4i = ',x,y)
11
12
       x = x * y;
13
        c=0;
        for i=10:-1:1
14
15
            x = x / 10;
            xd=floor((x-fix(x))*10+0.1)
16
17
            if c==1 then
18
                 if xd==0 then
19
                     x1(1,i)=1;c=0
                 elseif xd==1
20
21
                     x1(1,i)=0;
22
                     c=1;
23
                 elseif xd==2
24
                     x1(1,i)=1;c=1;
25
                 end
26
            else
27
                 if xd==0 | xd==1 then
                     x1(1,i)=xd;c=0
28
                 elseif xd==2
29
                     x1(1,i)=0;
30
31
                     i=i-1; c=1;
32
                 end
33
            end
34
        end
        for i=1:10
35
            if x1(1,i) == 1 then
36
                 x1(1,i-1)=1;
37
                 break
38
```

```
39 end

40 end

41 disp(x1)

42 endfunction

43 mul(1110,1011);
```

### Scilab code Exa 1.29 Normalized Floating Point Representation

```
1 //Example 1.29
2 // Normalized Floating Point Representation
3 // Page no. 23
4 clc; clear; close;
6 function []=fp(x)
7
       x1=x;
8
       if x>0 then
9
            for i=1:10
10
                x=x/10
11
                  if int(x) == 0 then
12
                     break
13
                  end
14
            end
             printf('\n
15
                %i\nNormalized Floating Point
                Representation of \%g = \%.4 f x 10, i, x1, x
                )
16
        else
17
             for i=1:10
18
                x = x * 10
                 if ceil(x)^=0 then
19
20
                     break
21
                 end
```

```
22
             end
             x=x/10; i=i-1;
23
             printf(')n
24
                -%i\nNormalized Floating Point
                Representation of \%g = \%.4 f x 10, i,x1,x
25
       end
26
27 endfunction
28
29 x = [25.12, -0.00287, 87000];
30 for i=1:3
       fp(x(i))
31
32 end
```

### Scilab code Exa 1.30 Add

```
1 //Example 1.30
2 //Add
3 //Page no. 26
4 clc; clear; close;
5 a=0.4532e7; b=0.5427e7;
6 c=a+b
7 printf('Addition of %.6g and %.6g = %.6g',a,b,c)
```

### Scilab code Exa 1.31 Add

```
1 //Example 1.31
```

```
2 //Add
3 //Page no. 26
4 clc; clear; close;
5 a=0.4532e5; b=0.5427e7;
6 c=a+b
7 printf('Addition of %.4g and %.6g = %.6g',a,b,c)
```

### Scilab code Exa 1.32 Add

```
1 //Example 1.32
2 //Add
3 //Page no. 26
4 clc; clear; close;
5 a=0.4532e3; b=0.5427e7;
6 c=a+b
7 printf('Addition of %.2g and %.6g = %.4g',a,b,c)
```

### Scilab code Exa 1.33 Add

```
1 //Example 1.33
2 //Add
3 //Page no. 27
4 clc; clear; close;
5 a=[0.4632e3,0.4632e99]; b=[0.5427e3,0.5427e99];
6
7 for i=1:2
8     c(i)=a(i)+b(i)
9     printf('\nAddition of %.2g and %.2g = %.5g\n',a(i),b(i),c(i))
```

### Scilab code Exa 1.34 Subtraction

### Scilab code Exa 1.35 Multiplication

### Scilab code Exa 1.36 Division

## Chapter 2

# Scope of Numerical and Mathematical Methods

### Scilab code Exa 2.4 Solving Simultaneous Linear Equation

```
//Example 2.4
//Solving Simultaneous Linear Equation
//Page 36
clc; close; clear;
//eq1= 5x-331y=3.5
//eq2= 6x-397y=5.2

8 A=[5,-331;6,-397];
B=[3.5;5.2];
C=inv(A)*B; //finding value by multiplying inverse with values
disp(C(1,1),'Value of x=');
disp(C(2,1),'Value of y=');
```

### Scilab code Exa 2.6 Integration

```
1 //Example 2.6
2 //Integration
3 //Page no. 36
4 clc; clear; close;
5 disp(integrate('1/x', 'x', exp(-4),1), 'Integration Value='); //performing integration with respect to dx
```

## Chapter 3

# Errors and Their Propagation

### Scilab code Exa 3.1 Limiting Error

### Scilab code Exa 3.2 Known Error

```
1 //Example 3.2
2 //Known Error
3 //Page no. 46
4 clc; clear; close;
```

### Scilab code Exa 3.3 Absolute Relative and Percentage Errors

```
//Example 3.3
//Absolute, Relative and Percetage Errors
//Page no. 48
clc;clear;close;
x=0.00006;x1=0.00005;
ex=x-x1; //absolute error
Ex=ex/x1; //relative error
px=100*Ex; //percentage error
printf('\nAbsolute Error= %f\nRelative Error= %f\nPercentage Error= %f\nPercentage Error= %f\nPercentage
```

### Scilab code Exa 3.4 Absolute Relative and Percentage Errors

```
1 //Example 3.4
2 //Absolute, Relative and Percetage Errors
3 //Page no. 48
4 clc; clear; close;
5 x=100500; x1=100000;
6 ex=x-x1; //absolute error
```

### Scilab code Exa 3.5 Absolute Relative and Percentage Errors

```
1 / Example 3.5
2 //Absolute, Relative and Percentage Errors
3 //Page no. 52
4 clc; clear; close;
5 \quad x=9.12345; y=7.654321;
6 \times 1 = 9.1234; y1 = 7.6543;
                               //on a 5 decimal computer
                         //absolute error of x
7 ex=x-x1;
                         //absolute error of y
8 \text{ ev=v-v1};
9 z1=x1+y1;
10 printf('\nAbsolute Error in x = \%f', ex);
11 printf('\nAbsolute Error in y = \%f', ey);
12 printf('\nAddition on a 5 decimal computer yields= \%
      .5g',z1);
13 \quad z2=16.777;
14 printf('\nAbsolute Total Error= \%f',x+y-z2);
15 printf('\nAbsolute Propagated Error= \%f',x+y-z1);
16 printf('\nAbsolute Round-off Error= \%.4g',z1-z2);
17 printf('\nRealtive Total Error= \%.4g',(x+y-z2)/(x+y)
18 printf('\nRelative Propagated Error= \%.2g',(x+y-z1)
      /(x+y));
19 printf('\nRelative Round-off Error= \%.3g',(z1-z2)/(x
20 printf('\nBound on the propagated relative error= \%f
      <sup>'</sup>,2*10^-4);
21 printf('\nBound on the total relative error= \%f'
```

```
,3*10^-4);
22 printf('\nAs we can see that both the propagated and
    total relative error are less than their bound
    values')
```

# Chapter 4

# Programming Tools and Techniques

### Scilab code Exa 4.1 Quadratic Equation

```
1 //Example 4.1
2 //Quadratic Equation
3 //Page no. 96
4 clc; clear; close;
5 a=input("Enter value of a= ");
6 b=input("Enter vlaue of b= ");
7 c=input("Enter value of c= ");
8 x1=(-1*b+sqrt((b^2)-4*a*c))/(2*a); //1st root
9 x2=(-1*b-sqrt((b^2)-4*a*c))/(2*a); //2nd root
10 printf('\n1st Root= %f', x1);
11 printf('\n2nd Root= %f', x2);
```

Scilab code Exa 4.2 Database Management

```
Reg. No. Name of Students Test 1 Test 2 Test 3 Final Composite Score
CS/01 C. V. Rajan 12 25 21 35 81
CS/02 B. X. Roy 25 07 23 29 77
CS/02 B. V. Roy 10 27 07 36 73
CS/04 B. D. Box 26 26 26 35 87
CS/05 K. K. Mukherjee 29 0 23 30 82

Topper is:
Reg. No. Name of Students Composite Score
CS/04 B. D. Box 87
——>
```

Figure 4.1: Database Management

```
1 //Example 4.2
2 // Database Management
3 // Page no. 112
4 clc; clear; close;
5 M
      =[12,25,21,35;25,7,23,29;10,27,7,36;26,26,26,35;29,0,23,30];
          //marks
6
   //calculation of composite score
  for i=1:5,
9
        j=1; k=0;
10
       max1=M(i,j);
       if(max1 < M(i,j+1))
11
12
            \max 1 = M(i, j+1)
13
        else
14
            k=1;
15
        end,
16
17
            if(M(i,j+2)>M(i,j+k))
            \max 2 = M(i, j+2);
18
19
        else
            max2=M(i,j);
20
21
        end,
22
           CS(i,1) = max1 + max2 + M(i,4);
23
   end
24
```

```
25 I=['Reg. No.', 'Name of Students', 'Test 1', 'Test 2', '
       Test 3', 'Final';
   'CS/01', 'C.V. Rajan', '12', '25', '21', '35';
26
27 'CS/02', 'B.X.Roy', '25', '07', '23', '29';
28 'CS/03', 'P.C. Sasikumar', '10', '27', '07', '36';
   'CS/04', 'B.D.Box', '26', '26', '26', '35';
29
   'CS/05', 'K.K. Mukherjee', '29', '0', '23', '30';]
30
31 printf('\n')
32 \text{ for } i=1:6
        for j=1:6
33
34
             if(j>2)
35
                      printf('\t')
36
                  end
37
             printf('%s
                          ',I(i,j));
38
             if(i~=1)
39
                  if(j>2)
40
                      printf('\t')
41
42
                  end
                                ')
43
                  printf('
44
45
             end
             if (i == 1 & j == 6)
46
                  printf('Composite Score\n')
47
48
             end
49
50
        end
51
52
        if(i~=1)
        printf('%i\n',CS(i-1,1));
53
54 end
55
56 end
57 // disp (CS, 'Composite Score', I);
58 \text{ max1=CS}(1,1); j=1;
59 \text{ for } i=2:5
60
        if (max1 < CS(i,1))</pre>
             max1=CS(i,1); j=i;
61
```

## Chapter 5

14

else

# Solutions of Algebraic and Transcendental Equations

### Scilab code Exa 5.1 Bisection Method

```
1 / \text{Example } 5.1
2 // Bisection Method
3 //Page no. 145
4 clc; clear; close;
5 deff('y=f(x)', 'y=2^x-3*x')
6 x1=0; x2=2; e=0.001; i=0;
7 printf('Iteration\tx1\t\tx2\t\tz\t\tf(z)\n')
8 printf('
      n ')
9 while abs(x1-x2)>e
10
       z = (x1 + x2)/2
                      \%i\t\t\%f\t\%f\t\%f\t\%f\n',i,x1,x2,z,f
       printf('
11
          (z))
       if f(z)*f(x1)>0
12
13
            x1=z
```

### Scilab code Exa 5.2 Bisection Method

```
1 //Example 5.2
2 // Bisection Method
3 // Page no. 147
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^x-2*x+2')
6 \text{ x1=0}; \text{x2=2}; \text{e=0.001}; \text{i=0};
7 printf('Iteration\tx1\t\tx2\t\tz\t\tf(z)\n')
 8 printf('
       n ')
9 while abs(x1-x2)>e
         z = (x1 + x2)/2
10
                          \%i\!\setminus\!t\setminus\!t\%f\!\setminus\!t\%f\!\setminus\!t\%f\!\setminus\!n ',i,x1,x2,z,f
         printf('
11
            (z))
12
         if f(z)*f(x1)>0
13
              x1=z
14
         else
15
              x2=z
16
         end
17
         i=i+1
18 end
19 printf('\n\nThe solution of this equation is \%g
       after %i Iterations',z,i-1)
20
```

```
21 printf('\n\n\note: There are computational errors in the answer given by the book for this example')
```

### Scilab code Exa 5.3 Regula Falsi Method

```
1 / Example 5.3
2 //Regula Falsi Method
3 // Page no. 149
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-3*x-5')
6 \text{ x1=2}; \text{x2=3}; \text{e=0.00001}
8 printf('\n
     n ')
9 \text{ for } i=0:19
10
      x3=x2*f(x1)/(f(x1)-f(x2))+x1*f(x2)/(f(x2)-f(x1))
      11
         ), x2, f(x2), x3, f(x3))
      if f(x1)*f(x3)>0 then
12
13
          x1=x3
14
      else
15
          x2=x3
16
      end
17
      if abs(f(x3)) < e then
18
          break
19
      end
20 \text{ end}
21 printf('\n\nTherefore the solution is \%.10g',x3)
```

### Scilab code Exa 5.4 Ridders Method

```
1 / \text{Example } 5.4
2 // Ridders Method
3 //Page no. 153
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3-3*x-5')
6 \text{ x1=2; x2=3; e=0.00001}
7 printf('n\tx1\t\tf(x1)\t\tx2\t\tf(x2)\t\tx3\t\tf(x3)
            sign \setminus t \quad x4')
      \setminus t
8 printf('\n
      n ')
  for i=0:8
10
        x3 = (x1 + x2)/2
11
        a=f(x1)-f(x2);
12
        s=a*abs(1/a)
        x4=x3+(x3-x2)*(s*f(x3))/sqrt(f(x3)-f(x1)*f(x2))
13
        printf(' \%i \t\%f \t\%f \t\%f \t\%f \t\%f \t\%f
                                                      \%i \ t\%f \ n
14
           ,i,x1,f(x1),x2,f(x2),x3,f(x3),s,x4)
15
        if f(x1)*f(x4)>0 then
16
            x1 = x4
17
        else
18
            x2=x4
19
        end
20
        if abs(f(x4)) < e then
21
            break
22
        end
23 end
24 printf('\n\nThe solution of this equation is \%g
      after %i Iterations', x4,i)
25 printf('\n\nThere are computation error in the
```

```
answers given by the book in this example \n (value of x1 is used instead of x2)')
```

### Scilab code Exa 5.5 General Iterative Method

```
1 / Example 5.5
2 //General Iterative Method
3 //Page no. 154
4 clc; clear; close;
5 deff ('x=f(x)', 'x=sqrt(3+5/x)')
6 printf('n \times t \times t \times f(x) \times n')
7 printf('----
                                                        _\n ')
8 x = 2;
9 for i=1:8
10
        printf(' \%i \t\%.10 \f\t\%.10 \f\n',i,x,f(x))
11
        x=f(x);
12 end
13 printf('\n\nThe solution of this equation after %i
      Iterations is \%.10 \, \mathrm{f}',i,x)
```

### Scilab code Exa 5.6 Linear Iterative Method

```
1  //Example 5.6
2  //Linear Iterative Method
3  //Page no. 159
4  clc; clear; close;
5  deff('x=f(x)', 'x=1+sin(x)/10')
6  printf('n\tx\t\tf(x)\n')
7  printf('-----\n')
```

### Scilab code Exa 5.7 Aitkens Method

```
1 / \text{Example } 5.7
2 // Aitkens Method
3 //Page no. 161
4 clc; clear; close;
5 deff('x=f(x)', 'x=exp(-x)')
7 printf('
      n ')
8 \times 0 = 0.5; e = 0.0001
9 \text{ for } i=1:3
       x1=f(x0); x2=f(x1); x3=f(x2);
10
       y=x3-((x3-x2)^2)/(x3-2*x2+x1)
11
12
       dx0=y-x0;
13
       printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%
14
          t\%.10 \text{ f} \ \text{n',i,x0,x1,x2,x3,y,dx0}
       x0=y;
15
       if abs(x0)<e then
16
17
           break;
18
       end
19 end
20 printf('\n\nThe solution of this equation after %i
```

### Scilab code Exa 5.8 Newton Raphson Method

```
1 // Example 5.8
2 //Newton Raphson Method
3 //Page no. 163
4 clc; clear; close;
5 deff('x=f(x)', 'x=x-exp(-x)')
6 deff('x=f1(x)', 'x=1+exp(-x)')
')
8 printf('
     n ')
9 	 x0=0.5; e=0.00001
10 for i=1:4
11
      x1=x0-f(x0)/f1(x0)
      e1=abs(x0-x1)
12
      printf ( ' %i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t
13
         ',i-1,x0,f(x0),f1(x0),x1,e1)
14
      x0=x1;
      if abs(x0)<e then
15
16
           break;
17
      end
18 \text{ end}
19 printf('\n\nThe solution of this equation after %i
     Iterations is \%.10 \, f',i,x1)
```

### Scilab code Exa 5.9 Modified Newton Raphson Method

```
1 //Example 5.9
2 // Modified Newton Raphson Method
3 //Page no. 165
4 clc; clear; close;
5 deff('x=f(x)', 'x=exp(x)-3*x-sin(x)')
6 deff('x=f1(x)', 'x=exp(x)-3-cos(x)')
8 printf('
     n ')
9 \times 0 = 0; e = 0.00001
10 for i=1:4
      x1=x0-f(x0)/f1(x0)
11
12
      e1 = abs(x0 - x1)
      printf (' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ', i-1, x0, f(x0), f1(x0), x1, e1)
14
      x0=x1;
      if abs(x0)<e then
15
16
          break;
17
      end
18 end
19 printf('\n\nTherefore, the root is \%.10 \, f',x1)
```

### Scilab code Exa 5.10 Newton Raphson Method

```
1 //Example 5.10
2 //Newton Raphson Method
3 //Page no. 167
4 clc; clear; close;
5 deff('x=f(x)', 'x=x*exp(-x)')
```

```
6 deff('x=f1(x)', 'x=exp(-x)-x*exp(-x)')
8 printf('
     n ')
9 \times 0 = 2; e = 0.00001
10 for i=1:11
      x1=x0-f(x0)/f1(x0)
11
      e1 = abs(x0 - x1)
12
      printf ( ' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ',i-1,x0,f(x0),f1(x0),x1,e1)
14
      x0=x1;
      if abs(x0)<e then
15
16
          break;
17
      end
18 end
19 printf('\n\nTherefore, this is not convergent (i.e.)
      divergent')
```

### Scilab code Exa 5.11 Newton Raphson Method

```
9 \times 0 = 0; e = 0.00001
10 for i=1:11
      x1=x0-f(x0)/f1(x0)
11
      e1=abs(x0-x1)
12
      13
         ',i-1,x0,f(x0),f1(x0),x1,e1)
14
      x0=x1;
      if abs(x0)<e then
15
16
         break;
17
      end
18 end
19 printf('\n\nTherefore, it is cyclic in nature')
```

### Scilab code Exa 5.12 Newton Raphson Method

```
1 //Example 5.12
2 //Newton Raphson Method
3 //Page no. 168
4 clc; clear; close;
5 deff('x=f(x)', 'x=atan(x)')
6 deff('x=f1(x)', 'x=1/(1+x^2)')
')
8 printf('
     n ')
9 \times 0 = 1.45; e = 0.00001
10 for i=1:12
      x1=x0-f(x0)/f1(x0)
11
12
      e1=abs(x0-x1)
13
      printf(' %i\t%.5g\\t\t%.5g\\t\t%.5g\\t\
        t\%.5gn',i-1,x0,f(x0),f1(x0),x1,e1
14
      x0=x1;
```

```
if abs(x0) < e then
break;
end
printf('\n\nTherefore, it is divergent')</pre>
```

### Scilab code Exa 5.13 Secant Method

```
1 //Example 5.13
2 //Secant Method
3 //Page no. 170
4 clc; clear; close;
5 deff('x=f(x)', 'x=exp(x)-3*x-sin(x)')
6 deff('x=f1(x)', 'x=exp(x)-3-cos(x)')
tError\n')
8 printf('
     n ')
9 \times 0 = 0.567123008; \times 1 = 1; e = 0.00001
10 for i=1:9
       x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0))
11
       e1=abs(x0-x2)
12
       printf(' \%i\t\%.10\ f\t\%.10\ f\t\%.10\ f\t\%.10\ f\t\%.10\ f\t
13
         t\%.10 f n', i-1, x0, f(x0), x1, f(x1), x2, e1
14
       x0=x1;
15
       x1=x2
       if abs(x0)<e then
16
17
           break;
18
       end
19 end
20 printf('\n\nTherefore, the root is \%.10 \, f',x2)
```

### Scilab code Exa 5.14 Kizner Method

```
1 //Example 5.14
2 //Kizner Method
3 // Page no. 172
4 clc; clear; close;
5 h2=0.00001
6 deff('x=f(x)', 'x=2*x-3-cos(x)')
7 deff('y=f1(x,y)', 'y=h2/(-x+y)')
                                                  //function for
       differentiation
8 printf('n \cdot th \cdot tc \cdot txn \cdot t \cdot tf(xn) \cdot t \cdot tF(xn) \cdot t \cdot tk1 \cdot t \cdot v \cdot t
       tXn+1/n')
9 printf('
       n ')
10 x0=2; e=0.00001; h=0.5; c=0.5;
11 for i=1:11
12
        h1=-f(x0);
        F=f1(f(x0),f(x0+h2))
13
14
        k1=h1*F/2;
15
        v=h*f(x0)/(c*(f(x0+c+h)-f(x0+c)))-k1/c;
        a=0:
16
17
        for j=0:3
18
              a=a+(v^j)/factorial(j+1)
19
        end
20
        x1 = x0 + k1 * a
         printf (' %i\t%g\t%g\t%.6 f\t%.6 f\t%.6 f\t%.8 f\t %
21
            .5 \text{ f} \text{ k}\% .6 \text{ f} \text{ n}, i-1, h, c, x0, f(x0), F, k1, v, x1)
22
        x0=x1;
23
        if abs(x0)<e then
24
              break;
25
         end
```

```
26 end 27 printf('\n\nTherefore, the solution is \%.10\,\mathrm{f}',x1)
```

### Scilab code Exa 5.15 Brent Method

```
1 //Example 5.15
2 //Brent Method
3 //Page no. 173
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^2+x-2')
6 x1=0; x2=0.5; x3=2;
7 r=f(x2)/f(x3); s=f(x2)/f(x1); t=f(x1)/f(x3);
8 q=(t-1)*(r-1)*(s-1);
9 p=r*t*(s-1)*(x2-x3)-s*(1-r)*(x2-x1)+(t*s-r)*x2
10 printf('Root is: %.10g', x2+(p/q))
```

#### Scilab code Exa 5.19 Horner Method

```
1 //Example 5.19
2 //Horner Method
3 //Page no. 177
4 clc; clear; close;
5 deff('y=f(x,a1,a2,a3,a4)', 'y=a1*x^3+a2*x^2+a3*x+a4')
6
7 k=1; m=2;
8 a=[4;-13;-31;-275];
9 for i=1:10
10 s=1;
```

```
si=f(s,a(1),a(2),a(3),a(4))*abs(1/f(s,a(1),a(2),a(2)))
11
           a(3),a(4)))
12
        while 1
            a1=f(s,a(1),a(2),a(3),a(4))*abs(1/f(s,a(1),a
13
               (2),a(3),a(4)))
            if si~=a1 then
14
                 d(i)=s-1
15
                 break
16
17
            end
            si=a1;
18
19
            s=s+1;
20
        end
21
       b(1) = a(1)
22
        for j=1:3
23
            for k=1:4-j
24
                 b(k+1)=a(k+1)+b(k)*d(i)
25
                 a(k+1)=b(k+1)
26
            end
27
        end
28
        for j=1:3
29
            a(j+1)=10^j*a(j+1)
30
        end
31 end
32 printf('The positive root is %i.',d(1))
33 \text{ for } i=2:10
       printf('%i',d(i))
34
35 end
```

### Scilab code Exa 5.20 Laguerre Method

```
1 //Example 5.20
2 //Laguerre Method
3 //Page no. 180
```

```
4 clc; clear; close;
5 deff('y=f(x)', 'y=x^3+x^2+10*x-20')
6 deff('y=f1(x)','y=3*x^2+2*x+10')
7 deff('y=f2(x)','y=6*x+2')
8 n=3;
9 printf('i \in tn \in txi \in t) t \in tP1(x) \in tP2(x) \in tP2(x)
       t \setminus t N root \setminus n'
10 printf('
       n ')
11 \quad xi=1
12 \text{ for } i=0:9
        Proot=xi-(n*f(xi))/(f1(xi)+sqrt((n-1)*f1(xi)^2-n
13
            *f(xi)*f2(xi)))
        Nroot=xi-(n*f(xi))/(f1(xi)-sqrt((n-1)*f1(xi)^2-n)
14
            *f(xi)*f2(xi)))
        printf(' \%i \t\%f \t\%f \t\%f \t\%f \t\%f \t\%f \t\%f \n',i,n,
15
            xi, f(xi), f1(xi), f2(xi), Proot, Nroot)
16
        xi=Proot
17 \text{ end}
18 printf('\n\nProot = \%f\n\nNroot = \%f', Proot, Nroot)
```

### Scilab code Exa 5.21 Mullers Method

```
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1)=zi(3,1)-zi(2,1);
11 for i=2:6
12
       for j=1:3
13
           fz(j,i-1)=f(zi(j,i-1))
14
       end
       di(i-1)=1+li(i-1)
15
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
16
          fz(3,i-1)*(li(i-1)+di(i-1))
17
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
18
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
           -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       if abs(D1(i-1))>abs(D2(i-1)) then
19
            li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
20
21
       else
22
            li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
       end
24
       hi(i)=li(i)*hi(i-1);
       z(i-1)=zi(3,i-1)+hi(i)
25
26
       for j=1:2
27
            zi(j,i)=zi(j+1,i-1)
28
       end
29
       zi(3,i)=z(i-1)
30 \, \text{end}
31 for i=1:12
       if i==1 then
32
            printf(s(i))
33
34
            for j=1:5
35
                printf ('\t\t\t\i', j-1)
36
            end
       elseif i<=4
37
            printf(' \setminus n \%s', s(i))
38
39
            for j=1:5
                printf('\t \t \.10f',zi(i-1,j))
40
41
            end
```

```
elseif i<=7
42
43
             printf(' \setminus n \%s', s(i))
44
             for j=1:5
                   printf('\t \t \.10 f',fz(i-4,j))
45
46
             end
47
        elseif i<=8
             printf('\n %s',s(i))
48
49
             for j=1:5
                   printf(' \setminus t \setminus t\%.10 \, f', li(j))
50
51
             end
52
        elseif i<=9
53
             printf(' \setminus n \%s', s(i))
54
             for j=1:5
                   printf('\t \t \.10f',di(j))
55
56
             end
        elseif i<=10</pre>
57
             printf(' \ n \%s', s(i))
58
             for j=1:5
59
60
                  printf('\t\t%.10f',gi(j))
61
             end
62
        elseif i<=11</pre>
             printf(' \ n \%s', s(i))
63
64
             for j=1:5
                  printf('\t\t%.10f',z(j))
65
66
             end
        elseif i<=12</pre>
67
68
             printf(' \setminus n \%s', s(i))
69
             for j=1:5
70
                   printf('\t \t \.10f',zi(j))
71
             end
72
        end
73 end
74 printf('\n\nAt the end of the %i iteration, the root
        of the equation is \%.10 \, f', j-2, z(j))
```

### Scilab code Exa 5.22 Mullers Method

```
1 //Example 5.22
2 // Mullers Method
3 //Page no. 183
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^3-x-4')
7 \text{ zi} = [1;2;3];
8 s=["i","z0","z1","z2","f0","f1","f2","li","di","gi",
      " 1i+1", " hi", " hi+1", " zi+1", " D+", " D-"]
9 li(1) = (zi(3,1)-zi(2,1))/(zi(2,1)-zi(1,1))
10 hi(1)=zi(3,1)-zi(2,1);
11 for i=2:6
12
       for j=1:3
13
          fz(j,i-1)=f(zi(j,i-1))
14
       end
15
       di(i-1)=1+li(i-1)
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
16
          fz(3,i-1)*(li(i-1)+di(i-1))
17
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
18
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       if abs(D1(i-1))>abs(D2(i-1)) then
19
           li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
20
21
       else
22
           li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
23
24
       hi(i)=li(i)*hi(i-1);
```

```
z(i-1)=zi(3,i-1)+hi(i)
25
26
        for j=1:2
27
             zi(j,i)=zi(j+1,i-1)
28
        end
29
        zi(3,i)=z(i-1)
30 end
31 \text{ for } i=1:16
        if i==1 then
32
33
             printf(s(i))
34
             for j=1:5
                  printf ('\t\t\t\i', j-1)
35
36
             end
        elseif i<=4
37
             printf(' \ n \%s', s(i))
38
39
             for j=1:5
                 40
41
             end
42
        elseif i<=7
             printf(' \setminus n \%s', s(i))
43
44
             for j=1:5
45
                  printf('\t\t\%.10f',fz(i-4,j))
46
             end
47
        elseif i<=8
             printf(' \setminus n \%s', s(i))
48
49
             for j=1:5
                  printf(' \setminus t \setminus t\%.10 \, f', li(j))
50
51
             end
52
        elseif i<=9
             printf(' \ n \%s', s(i))
53
54
             for j=1:5
                 printf('\t \t \.10 f', di(j))
55
56
             end
        elseif i<=10
57
             printf('\n's',s(i))
58
             for j=1:5
59
                  printf('\t\t%.10f',gi(j))
60
61
             end
62
        elseif i<=11</pre>
```

```
printf(' \setminus n \%s', s(i))
63
64
              for j=1:5
                   printf('\t\t%.10f',li(j+1))
65
66
              end
67
         elseif i<=12
68
              printf(' \ n \%s', s(i))
69
              for j=1:5
                   printf('\t^{1}.10 f', hi(j))
70
71
              end
              elseif i<=13</pre>
72
              printf('\n's',s(i))
73
74
              for j=1:5
75
                   printf('\t\t\%.10f',hi(j+1))
76
              end
              elseif i<=14</pre>
77
              printf('\n's',s(i))
78
              for j=1:5
79
                   \texttt{printf('} \setminus t \setminus t\%.10\,f', \texttt{z(j))}
80
81
              end
              elseif i<=15
82
83
              printf(' \ n \%s', s(i))
              for j=1:5
84
                   printf('\t \t \.10 f', D1(j))
85
              end
86
              elseif i<=16</pre>
87
              \texttt{printf('} \ \ \text{$^{\prime}$s',s(i))$}
88
              for j = 1:5
89
                   printf('\t \t \.10 f', D2(j))
90
91
              end
92
         end
93 end
94 printf('\n\nAt the end of the %ith iteration, the
       root of the equation is %.10 f', j-1, z(j))
```

#### Scilab code Exa 5.23 Bairstow Hitchcock Method

```
1 //Example 5.23
2 //Bairstow Hitchcock Method
3 //Page no. 187
4 clc; clear; close;
5 deff('y=f(x,p,q)', 'y=x^2+p*z+q')
6 \quad a = [1, -1, 1, -1, 1]
7 a=a';a=[a,a,a,a,a]
8 printf('Iteration ->')
9 \text{ for } i=1:5
       printf('\t%i\t',i)
10
11 end
12 printf('\n
      ')
13 p(1,1) = -1.2; q(1,1) = 0.95;
14 s=["b1","b2","b3","b4","c1","c2","c3","c4","c","dp",
      "dq","p","q"]
  //s1 = [b1; b2; b3; b4; c1; c2; c3; c4; c; dp; dq; p; q]
16 \text{ for } i=1:5
       b(1,i)=0; b(2,i)=a(1,i); c(1,i)=0; c(2,i)=a(1,i);
17
18
           for k=1:4
               b(k+2,i)=a(k+1,i)-p(1,i)*b(k+1,i)-q(1,i)*
19
                  b(k,i)
20
               c(k+2,i)=b(k+2,i)-p(1,i)*c(k+1,i)-q(1,i)*
                  c(k,i)
21
           end
22
          cb(1,i)=c(6,i)-b(6,i);
          dq(1,i)=(b(6,i)*c(4,i)-b(5,i)*cb(1,i))/(c(4,i)
23
             ^2-cb(1,i)*c(3,i)
           dp(1,i)=(b(5,i)*c(4,i)-b(6,i)*c(3,i))/(c(4,i)
24
              ^2-cb(1,i)*c(3,i)
        p(1,i+1)=p(1,i)+dp(1,i);q(1,i+1)=q(1,i)+dq(1,i)
25
26 \text{ end}
27 \text{ for } j=1:13
                   %s\t\t',s(j)
     printf('\n
28
```

```
29
      if j < 5 then
30
           for i=1:5
                printf (\%.9 \text{ f} \text{ t}', b(j+2,i))
31
           end
32
33
      elseif j<9 then
34
           for i=1:5
                printf(\%.9 f t, c(j-2,i))
35
36
           end
37
      elseif j<10
           for i=1:5
38
                printf('%.9f\t',cb(1,i))
39
40
           end
41
           elseif j<11
42
           for i=1:5
                printf('%.9f\t',dp(1,i))
43
           \quad \text{end} \quad
44
           elseif j<12
45
           for i=1:5
46
                printf('%.9f\t',dq(1,i))
47
48
           end
49
           elseif j<13
           for i=1:5
50
                printf (\%.9 \text{ f} \text{ t}, p(1, i+1))
51
52
           end
53
           else
54
           for i=1:5
                printf (\%.9 \text{ f} \text{ t}, q(1, i+1))
55
56
           end
57
      end
58 end
59 z = poly(0, 'z');
60 a=f(z,p(1,i+1),q(1,i+1));
61 printf('\n\nRoots for Quadratic Equation Q = ')
62 disp(a)
63 \text{ a=roots(a)}
64 printf('\n \tan n')
65 disp(a(1))
66 \operatorname{disp}(a(2))
```

### Scilab code Exa 5.24 Bernoulli Method

```
1 //Example 5.24
2 // Bernoulli Method
3 // Page no. 189
4 clc; clear; close;
6 a=[1,-8,-15,10];
7 \text{ for } i=1:2
       c(i)=0;
9 end
10 c(3)=1;
11 for k=4:13
      c(k) = -(a(2)*c(k-1)+a(3)*c(k-2)+a(4)*c(k-3))
12
13
      r(k-3)=c(k)/c(k-1)
14 end
15 disp(c, 'Ck Values')
16 disp(r, 'Rk Values')
17 disp(r(k-3), Therefore the exact root is = ')
```

### Scilab code Exa 5.25 Graeffe Method

```
1 //Example 5.25
2 //Graeffe Method
3 //Page no. 191
4 clc;clear;close;
```

```
6 \quad a = [1, -6, 11, -6]
7 k=0;
8 \text{ for } k=2:6
9
       for i=1:4
10
            a(k,i)=(-1)^{(i-1)}*(a(k-1,i))^2
            j=1;
11
            while i+j<5 & i+j>2
12
                 a(k,i)=a(k,i)+(-1)^{(i-j-1)}*2*(a(k-1,i-j)
13
                    )*a(k-1,i+j)
                 break
14
15
                 j=j+1;
16
            end
17
        end
18 end
19 printf('\t\t\ta1\t\t\t\a2\t\t\t\ta3\n k\ta0\ta1\t
      t--t ta2 tt--t ta3 tt--t nt ta0 tt
      ta1 \ t \ t \ ta2')
20 printf('\n
      n ')
21 \text{ for } i=1:4
       printf(' \%i \ t\%g \ t\% . 4g \ t \ t\% . 5g \ t \ t\% . 9g \ t \ t\% . 8g
22
           t\%g \ t\%. 10 g\n',i-1,a(i,1),a(i,2),abs (a(i,2)/
           a(i,1))^{(1/(2^{(i-1))})}, a(i,3), abs(a(i,3)/a(i,3))
           (1/(2^{(i-1)})), a(i,4), abs(a(i,4)/a(i,3))
           ^(1/(2^(i-1))))
23 end
24 \text{ for } i=5:6
       printf (' %i\t%g\t%.4g\t%.5g\t\t%.9g\t%.8g\t%.7g\
25
           t\%.10 g/n', i-1, a(i,1), a(i,2), abs(a(i,2)/a(i,1))
           )^(1/(2^(i-1))),a(i,3),abs(a(i,3)/a(i,2))
           (1/(2(i-1))), a(i,4), abs(a(i,4)/a(i,3))
           ^(1/(2^(i-1))))
26 end
27 printf('\n\nThe Absolute Values of the roots are \%g,
       \%.8g and \%g', abs(a(i,2)/a(i,1))^(1/(2^(i-1))),
      abs(a(i,3)/a(i,2))^(1/(2^(i-1))), abs(a(i,4)/a(i-1)))
      (3))^{(1/(2^{(i-1))})}
```

### Scilab code Exa 5.26 QD Method

```
1 //Example 5.26
2 //QD Method
3 //Page no. 194
4 clc; clear; close;
6 \quad a = [32, -48, 18, -1]
7 \text{ for } i=1:5
        e(i,1)=0;
9
        e(i,4)=0;
10 \, \text{end}
11 q(1,1) = -a(2)/a(1);
12 q(1,2)=0; q(1,3)=0;
13 e(1,2)=a(3)/a(2);
14 e(1,3)=a(4)/a(3);
15 \text{ for } i=2:16
16
        for j=1:3
            q(i,j)=e(i-1,j+1)+q(i-1,j)-e(i-1,j)
17
18
        end
19
        for j=1:2
20
            e(i,j+1)=e(i-1,j+1)*q(i,j+1)/q(i,j)
21
        end
22 end
23 printf('e0\t\tq1\t\te1\t\tq2\t\te2\t\tq3\t\te3\n')
24 printf('
      n ')
25 \text{ for } i=1:14
26
        for j=1:3
            printf('\t\t%.10 f\t',q(i,j))
27
28
        end
```

```
printf('\n')
29
        for j=1:4
30
            printf(\%.10 f t t t', e(i, j))
31
32
        end
33
        printf('\n')
34 end
35 printf('\t\t\.10 f\t\t\t\.10 f\t\t\t\.10 f\t\t\t\.10 f\n',q(15,1),q
      (15,2),q(15,3)
36 printf('\nThe exact roots are \t^{1}.10 f
                                                   and
                                                           %.10
      f',q(15,1),q(15,3))
```

### Scilab code Exa 5.27 Linear Iteration Method

```
1 //Example 5.27
2 //Linear Iteration Method
3 // Page no. 198
4 clc; clear; close;
6 deff('x=f(x)', 'x=20/(x^2+2*x+10)')
7 printf('n \times t \times t \times f(x) \times n')
8 printf('-----
                                                        --\n ')
9 x = 1;
10 for i=1:19
        printf(' \%i\t\%.10 f\t\%.10 f\n',i,x,f(x))
11
12
        x1=x;
13
        x=f(x);
14 end
15 printf('\n\nx = %.10 f', x1)
```

### Scilab code Exa 5.28 Aitkens Method

```
1 //Example 5.28
2 // Aitkens Method
3 //Page no. 199
4 clc; clear; close;
6 deff('x=f(x)', 'x=20/(x^2+2*x+10)')
8 printf('
     n ')
9 \times 0 = 1; e = 0.0001
10 for i=1:3
       x1=f(x0); x2=f(x1); x3=f(x2);
11
       y=x3-((x3-x2)^2)/(x3-2*x2+x1)
12
       dx0=y-x0;
13
14
       printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t
15
          t\%.10 \text{ f} \setminus \text{n}',i,x0,x1,x2,x3,y,dx0)
16
       x0=y;
       if abs(x0)<e then
17
18
           break;
19
       end
20 end
21 printf('\n\nThe solution of this equation after %i
      Iterations is \%.10 \, f', i, y)
```

# Scilab code Exa 5.29 Newton Raphson Method

```
1 //Example 5.292 //Newton Raphson Method3 //Page no. 199
```

```
4 clc; clear; close;
5 deff('x=f(x)', 'x=x^3+2*x^2+10*x-20')
6 \mbox{deff}(\ 'x=f1\ (x)\ ',\ 'x=3*x^2+4*x+10\ ')
')
8 printf('
     n ')
9 \times 0 = 01; e = 0.00001
10 for i=1:4
       x1=x0-f(x0)/f1(x0)
11
12
       e1=abs(x0-x1)
       printf ( ' %i\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\t\%.10 f\n
13
          ', i-1, x0, f(x0), f1(x0), x1, e1)
14
       x0=x1;
       if abs(x0)<e then
15
16
           break;
17
       end
18 \, end
19 printf('\n\nThe solution of this equation after %i
      Iterations is \%.10 \,\mathrm{f}',i,x1)
```

### Scilab code Exa 5.31 Secant Method

```
n ')
8 \times 0 = 0.1; \times 1 = 1.2; e = 0.00001
9 \text{ for } i=1:7
10
        x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0))
        e1=abs(x0-x2)
11
        printf(' \%i\t\%.10\ f\t\%.10\ f\t\%.10\ f\t\%.10\ f\t\%.10\ f\t\%.10\ f
12
            t\%.10 f n', i-1, x0, f(x0), x1, f(x1), x2, e1)
13
        x0=x1;
        x1=x2
14
        if abs(x0)<e then
15
16
              break;
17
        end
18 end
19 printf('\n\nTherefore, the root is %.10f',x2)
```

# Scilab code Exa 5.32 Regula Falsi Newton Raphson and Mullers Method

```
11 for i=1:4
12
       x1=x0-f(x0)/f1(x0)
       e1=abs(x0-x1)
13
       printf (' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
14
          ', i-1, x0, f(x0), f1(x0), x1, e1)
15
       x0=x1;
       if abs(x0)<e then
16
17
           break;
18
       end
19 end
20 printf('\n\nThe solution of this equation by newton
     raphshon after %i Iterations is \%.10 f n n', i, x1
     )
21
22 //regula falsi
23 \times 1 = 1; \times 2 = 2; e = 0.00001
24 printf ('n\tx1\t\tf(x1)\t\tx2\t\tf(x2)\t\tx3\t\tf(x3)
      ')
25 printf('\n
     n ')
  for i=0:7
26
       x3=x2*f(x1)/(f(x1)-f(x2))+x1*f(x2)/(f(x2)-f(x1))
27
       28
          ),x2,f(x2),x3,f(x3))
       if f(x1)*f(x3)>0 then
29
30
           x1=x3
31
       else
32
           x2=x3
33
       end
34
       if abs(f(x3))<e then
35
           break
36
       end
37 end
38 printf('\n\nTherefore the solution by regula falsi
     method after %i iterations is %.10g',i,x3)
39
40 //mullers method
```

```
41 zi=[1;2;3];
42 s=["i","z0","z1","z2","f0","f1","f2","li","di","gi",
      " li+1", "hi", "hi+1", "zi+1", "D+", "D-"]
43 li(1) = (zi(3,1) - zi(2,1)) / (zi(2,1) - zi(1,1))
44 hi(1)=zi(3,1)-zi(2,1);
45 \text{ for } i=2:6
       for j=1:3
46
           fz(j,i-1)=f(zi(j,i-1))
47
       end
48
       di(i-1)=1+li(i-1)
49
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
50
          fz(3,i-1)*(li(i-1)+di(i-1))
51
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
           -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
           -1)+fz(3,i-1))
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
52
           -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       if abs(D1(i-1))>abs(D2(i-1)) then
53
            li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
54
55
       else
            li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
56
57
       end
       hi(i)=li(i)*hi(i-1);
58
       z(i-1)=zi(3,i-1)+hi(i)
59
60
       for j=1:2
61
            zi(j,i)=zi(j+1,i-1)
62
       end
       zi(3,i)=z(i-1)
63
64 end
65 printf('\n')
66 \quad for \quad i=1:16
67
       if i==1 then
            printf(s(i))
68
69
            for j=1:5
                printf('\t \t \t \%i', j-1)
70
71
            end
            printf('\n
72
```

```
')
          elseif i<=4
 73
               printf(' \setminus n \%s', s(i))
 74
 75
               for j=1:5
                    \textbf{printf('} \backslash t \backslash t\%.10\,f', \textbf{zi(i-1,j))}
 76
 77
               end
 78
          elseif i<=7
 79
               printf(' \ n \%s', s(i))
 80
               for j=1:5
                    printf('\t \t \.10 f',fz(i-4,j))
 81
 82
               end
          elseif i<=8
 83
               printf(' \ n \%s', s(i))
 84
 85
               for j=1:5
                    printf('\t\t\%.10f',li(j))
 86
 87
               end
          elseif i<=9
 88
               printf(' \setminus n \%s', s(i))
 89
 90
               for j=1:5
91
                    printf('\t\t%.10f',di(j))
92
               end
93
          elseif i<=10
               printf(' \setminus n \%s', s(i))
94
95
               for j=1:5
                    printf('\t \t \.10f',gi(j))
96
97
               end
98
          elseif i<=11</pre>
               printf(' n %s',s(i))
99
100
               for j=1:5
                    printf('\t\t%.10 f', li(j+1))
101
102
               end
          elseif i<=12
103
               printf('\n's',s(i))
104
105
               for j=1:5
                    printf('\t \t .10 f', hi(j))
106
107
               end
108
               elseif i<=13</pre>
```

```
printf(' \setminus n \%s', s(i))
109
110
              for j=1:5
                   printf('\t\t\%.10f',hi(j+1))
111
112
              end
113
              elseif i<=14</pre>
114
              printf(' \ n \%s', s(i))
              for j=1:5
115
                   printf('\t\t%.10f',z(j))
116
117
              end
              elseif i<=15
118
              printf('\n's',s(i))
119
              for j=1:5
120
121
                   printf('\t \t \.10f',D1(j))
122
              end
              elseif i<=16</pre>
123
              printf('\n's',s(i))
124
              for j=1:5
125
                   \textbf{printf('} \setminus t \setminus t\%.10\,f', \texttt{D2(j))}
126
127
              end
128
         end
129 end
130 printf('\n\nAt the end of the %ith iteration by
        mullers method, the root of the equation is %.10 f
        ',j-1,z(j))
```

# Scilab code Exa 5.33 Newton Raphson and Mullers Method

```
1 //Example 5.33
2 //Newton Raphson and Mullers Method
3 //Page no. 202
4 clc; clear; close;
5 deff('x=f(x)', 'x=x^4-8*x^3+18*x^2+0.12*x-24.24')
6 deff('x=f1(x)', 'x=4*x^3-24*x^2+36*x+0.12')
```

```
7
8 //newton raphson
9 x9 = [1.5, 2.5, 2.7, 3.1; 4, 5, 14, 10]
10 for h=1:4
11
       x0=x9(1,h);e=0.00001
12 for i=1:x9(2,h)
       x1=x0-f(x0)/f1(x0)
13
14
       e1=abs(x0-x1)
15
       x0=x1;
       if abs(x0)<e then
16
17
            break;
18
       end
19 end
20 printf('\nThe solution of this equation by newton
      raphshon after %i Iterations is %.5f\n',i,x1)
21 end
22
23 //mullers method
24 zx = [1,2,2.7,3.1;2,3,3.7,4.1;3,4,4.7,5.1]
25 \text{ zi} = [1;2;3];
26 s=["i","z0","z1","z2","f0","f1","f2","li","di","gi",
      " li+1", "hi", "hi+1", "zi+1", "D+", "D_-"]
27 li(1) = (zi(3,1) - zi(2,1)) / (zi(2,1) - zi(1,1))
28 hi(1)=zi(3,1)-zi(2,1);
29 \text{ for } i=2:4
30
       for j=1:3
31
           fz(j,i-1)=f(zi(j,i-1))
32
       end
       di(i-1)=1+li(i-1)
33
       gi(i-1)=fz(1,i-1)*li(i-1)^2-fz(2,i-1)*di(i-1)^2+
34
          fz(3,i-1)*(li(i-1)+di(i-1))
       D1(i-1)=gi(i-1)+sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
35
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       D2(i-1)=gi(i-1)-sqrt(gi(i-1)^2-4*fz(3,i-1)*di(i-1)
36
          -1)*li(i-1)*(fz(1,i-1)*li(i-1)-fz(2,i-1)*di(i-1)
          -1)+fz(3,i-1))
       if abs(D1(i-1))>abs(D2(i-1)) then
37
```

```
li(i) = -2*fz(3,i-1)*di(i-1)/D1(i-1)
38
39
       else
            li(i) = -2*fz(3,i-1)*di(i-1)/D2(i-1)
40
41
       end
42
       hi(i)=li(i)*hi(i-1);
43
       z(i-1)=zi(3,i-1)+hi(i)
       for j=1:2
44
            zi(j,i)=zi(j+1,i-1)
45
46
       end
       zi(3,i)=z(i-1)
47
48 \text{ end}
49 printf('\n\nAt the end of the %ith iteration by
      mullers method, the root of the equation is %.10 f
      ',j+2,z(j))
```

## Scilab code Exa 5.34 QD Method

```
1 //Example 5.34
2 //QD Method
3 // Page no. 202
4 clc; clear; close;
5 a = [1, 2, 10, -20]
6 for i=1:5
       e(i,1)=0;
8
       e(i,4)=0;
9 end
10 q(1,1)=-a(2)/a(1);
11 q(1,2)=0; q(1,3)=0;
12 e(1,2)=a(3)/a(2);
13 e(1,3)=a(4)/a(3);
14 for i=2:7
15
       for j=1:3
           q(i,j)=e(i-1,j+1)+q(i-1,j)-e(i-1,j)
16
```

```
17
       end
18
       for j=1:2
           e(i,j+1)=e(i-1,j+1)*q(i,j+1)/q(i,j)
19
20
       end
21 end
22 printf('e0\t\tq1\t\te1\t\tq2\t\te2\t\tq3\t\te3\n')
23 printf('
     n ')
24 \text{ for } i=1:7
       for j=1:3
25
26
           printf('\t\t%.10 f\t',q(i,j))
27
       end
       printf('\n')
28
29
       for j=1:4
           30
31
       end
32
       printf('\n')
33 end
34 printf('\t\t\.10 f\t\t\t\.10 f\t\t\t\.10 f\n',q(7,1),q
      (7,2),q(7,3)
35 printf('\nThe exact roots are \t%.10 f
                                                    %.10
                                             and
      f', q(7,1), q(7,3)
```

### Scilab code Exa 5.35 Newton Raphson Method

```
9 printf('
    n ')
10 x0=10; e=0.00001
11 for i=1:4
      x1=x0-f(x0)/f1(x0)
12
13
      e1=abs(x0-x1)
      printf (' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
14
        ',i-1,x0,f(x0),f1(x0),x1,e1)
15
      x0=x1;
16
      if abs(x0)<e then
17
         break;
18
      end
19 end
20 printf('\n\nThus the ball is submerged upto height
     of \%.10 f cm n n n', x1)
```

#### Scilab code Exa 5.36 Secant Method

```
1  //Example 5.36
2  //Secant Method
3  //Page no. 204
4  clc; clear; close;
5  a=8670; c=10^-8; t2=1.4*10^-4;
6  deff('x=f(x)', 'x=-t2+log((1-2*x/a)/(2-x/a))*(a*x*c)/(a+x)')
7
8  printf('n\txn\t\tf(xn)\t\tXn+1\t\tf(Xn+1)\t\tXn+2\t\tError\n')
9  printf('
```

```
n ')
10 x0=20000; x1=25000; e=0.00001
11 for i=1:8
        x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0))
12
13
        e1=abs(x0-x2)
14
        printf(' \%i \t\%f \t\%.10 f \t\%f \t\%.10 f \t\%f \t\%.10 f \t\%
           i-1,x0,f(x0),x1,f(x1),x2,e1)
15
        x0=x1;
        x1=x2
16
        if abs(x0)<e then
17
18
             break;
19
        end
20 \text{ end}
21 printf('\n\nTherefore, Rb = \%.10 \text{ f ohm'}, x2)
```

### Scilab code Exa 5.37 Newton Raphson Method

e1=abs(x0-x1)

13

# Scilab code Exa 5.38 Newton Raphson Method

```
1 //Example 5.38
2 //Newton Raphson Method
3 //Page no. 205
4 clc; clear; close;
5 deff('y=f(p)', 'y=p^3-9*p^2+33*p-65')
6 deff('y=f1(p)', 'y=3*p^2-18*p+33')
')
8 printf('
     n ')
9 \times 0 = 6; e = 0.00001
10 for i=1:10
11
      x1=x0-f(x0)/f1(x0)
      e1=abs(x0-x1)
12
      printf ( ' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
         ', i-1, x0, f(x0), f1(x0), x1, e1)
14
      x0=x1;
15
      if abs(x0)<e then
16
          break;
17
      end
18 end
```

```
19 printf('\n\nTherefore, Market Price at equilibrium = Rs. \%. f', x1)
```

# Scilab code Exa 5.39 Newton Raphson Method

```
1 //Example 5.39
2 // Newton Raphson Method
3 //Page no. 205
4 clc; clear; close;
5 deff('y=f(v)', 'y=v^3-20*v+30')
6 deff('y=f1(v)', 'y=3*v^2-20')
8 printf('
     n ')
9 \times 0 = 10; e = 0.00001
10 \text{ for } i=1:10
11
       x1=x0-f(x0)/f1(x0)
       e1 = abs(x0 - x1)
12
       printf (' %i\t%.10 f\t%.10 f\t%.10 f\t%.10 f\n
13
          ',i-1,x0,f(x0),f1(x0),x1,e1)
14
       x0=x1;
15
       if abs(x0) < e then
16
           break;
17
       end
18 end
19 printf('\n\nTherefore, sides are = \%.5 \,\mathrm{f} m x \%.5 \,\mathrm{f} m
     x \%.5 f m', x1, x1, 20/x1^2
```

### Scilab code Exa 5.40 Newton Raphson Method

```
1 //Example 5.40
      2 //Newton Raphson Method
      3 //Page no. 206
     4 clc; clear; close;
      5 deff('y=f(F)', 'y=-10*F^3-21*F+10')
    6 deff('y=f1(F)', 'y=-21-30*F^2')
     ')
      8 printf('
                                            n ')
     9 \times 0 = 1; e = 0.00001
10 \text{ for } i=1:10
11
                                                        x1=x0-f(x0)/f1(x0)
                                                        e1=abs(x0-x1)
12
                                                       printf(' %i \times .10 f \times ..0 
13
                                                                              i-1,x0,f(x0),f1(x0),x1,e1)
                                                       x0=x1;
14
15
                                                        if abs(x0)<e then
16
                                                                                       break;
17
                                                        \quad \text{end} \quad
18 end
19 printf('\n\t\t\t\t\t\t\2\n Therefore, Magnetic Flux = \%
                                               .5 f Wb m', x1)
```

# Chapter 6

# Numerical Methods of Linear Equations Direct Methods

### Scilab code Exa 6.1 Gaussian Elimination Method

```
1 / \text{Example } 6.1
2 //Gaussian Elimination Method
3 // Page no. 220
4 clc; clear; close;
6 \quad A = [5,10,1,28;1,1,1,6;4,8,3,29];
                                                   //
      augmented matrix
8 //triangularization
9 \text{ for } i=1:4
10
       B(1,i) = A(1,i)
11
       B(2,i)=A(2,i)-(A(2,1)/A(1,1))*A(1,i)
12
       B(3,i)=A(3,i)-(A(3,1)/A(1,1))*A(1,i)
13 end
14 disp(A, 'Augmented Matrix=')
15 disp(B, 'Triangulated Matrix=')
16 //back substitution
```

```
17 x(3) = B(3,4)/B(3,3);
18 printf (' \setminus nx(3) = \%f \setminus n', x(3))
19 for i=2:-1:1
20
         k=0
21
          for j=i+1:3
22
              k=k+B(i,j)*x(j)
23
          end
         x(i) = (1/B(i,i))*(B(i,4)-k)
24
25
           printf (' \setminus nx(\%i) = \%f \setminus n', i, x(i))
26 \text{ end}
```

# Scilab code Exa 6.2 Gaussian Elimination Method for TriDiagonal System

```
1 / \text{Example } 6.2
    2 //Gaussian Elimination Method for Tri-Diagonal
                                System
    3 //Page no. 222
    4 clc; clear; close;
    6 //equation matrix
    7 A = [1, 2, 0, 0; 2, 3, -1, 0; 0, 4, 2, 3; 0, 0, 2, -1];
   8 K = [5;5;11;10];i=1;
   9
10 //initialization
11 w(1) = A(1,2)/A(1,1);
12 g(1) = K(1)/A(1,1);
13 printf('\nw(%i)=\%f',i,w(i)); printf('\ng(\%i)=\%f',i,g(
                                i))
14
15 //computation
16 for i=2:3
17
                                       w(i) = (A(i,i+1))/(A(i,i)-A(i,i-1)*w(i-1))
                                       g(i) = (K(i) - A(i, i-1) * g(i-1)) / (A(i, i) - A(i, i-1) * w(i-1)) / (A(i, i) - A(i, i-1) * w(i-1)) / (A(i, i) - A(i, i-1)) / (A(i, i) - A(i, i-1))
18
```

```
-1))
        printf ('\nw(%i)=\%f',i,w(i))
19
        printf('\ng(%i)=\%f',i,g(i))
20
21 end
22 i = 4
23 m = -2
24 g(i)=m*(K(i)-A(i,i-1)*g(i-1))/(A(i,i)-A(i,i-1)*w(i,i-1))
      -1))
25 x(i) = g(i)
26 printf('\ng(%i)=\%f',i,g(i))
27 printf('\n \n (\%i) = \%f', i, x(i))
28
29 //solution
30 for i=3:-1:1
       x(i)=g(i)-w(i)*x(i+1)
31
       printf(' \ n \ nx(\%i) = \%f', i, x(i))
32
33 end
```

### Scilab code Exa 6.3 Gauss Jordan Method

```
1 //Example 6.3
2 //Gauss-Jordan Method
3 //Page no. 224
4
5 clc; clear; close;
6
7 A=[5,10,1,28;4,8,3,29;1,1,1,6]; //augmented matrix
8
9 for i=1:3
10    j=i
11    while (A(i,i)==0 & j<=3)
12    for k=1:4</pre>
```

```
B(1,k) = A(j+1,k)
13
14
                  A(j+1,k)=A(i,k)
                  A(i,k) = B(1,k)
15
16
             end
17
             disp(A)
18
             j = j + 1
19
        end
20
        disp(A)
21
        for k=4:-1:i
22
             A(i,k)=A(i,k)/A(i,i)
23
        end
24
        disp(A)
25
        for k=1:3
             if(k~=i) then
26
                 l=A(k,i)/A(i,i)
27
28
                 for m=i:4
29
                     A(k,m) = A(k,m) - 1 * A(i,m)
30
                 end
31
             end
32
33
        end
34
        disp(A)
35 end
36
37 \text{ for } i=1:3
        printf('\nx(%i) = %g\n',i,A(i,4))
38
39 end
```

Scilab code Exa 6.4 Gaussian Elimination Method without Pivoting

```
1 //Example 6.4
2 //Gaussian Elimination Method without Pivoting
3 //Page no. 227
```

```
4 clc; clear; close;
                                                //augmented
6 A = [0.3*10^-11, 1, 0.7; 1, 1, 0.9];
      matrix
8 //triangularization
9 \text{ for } i=1:3
10
       B(1,i) = A(1,i)
       B(2,i)=A(2,i)-(A(2,1)/A(1,1))*A(1,i)
11
12 end
13 disp(A, 'Augmented Matrix=')
14 disp(B, 'Triangulated Matrix=')
15
16 //back substitution
17 x(2) = B(2,3)/B(2,2);
18 printf('\nx(2)=\%f\n',x(2))
19 for i=1:-1:1
20
       k=0
       for j=i+1:2
21
           k=k+B(i,j)*x(j)
22
23
       end
       x(i) = (1/B(i,i))*(B(i,3)-k)
24
        printf ('\nx(%i)=\%f\n',i,x(i))
25
26 end
```

### Scilab code Exa 6.5 Dolittle Factorization Method

```
1 //Example 6.5
2 // Dolittle Factorization Method
3 //Page no. 233
4 clc; clear; close;
5
6 A=[2,1,1;1,3,1;1,1,4];
```

```
7 printf('\tL\t\t *\t\U\t\t =\t\tA')
8 U(2,1)=0; U(3,1)=0; U(3,2)=0;
9 L(1,2)=0; L(1,3)=0; L(2,3)=0;
10 for i=1:3
11
       L(i,i)=1
12 end
13 for i=1:3
14
       U(1,i) = A(1,i)
15 end
16 L(2,1)=1/U(1,1);
17 for i=2:3
18
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
19 end
20 L(3,1)=1/U(1,1);
21 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
22 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
23 printf(' \ n')
24 for i=1:3
        for j=1:3
25
            printf('%.2f\t',L(i,j))
26
27
        end
28
        if(i==2)
29
                          ')
            printf(' *
30
31
        else
32
            printf('\t')
33
        end
34
35
        for j=1:3
            printf('%.2f\t',U(i,j))
36
37
        end
        if(i==2)
38
                             ')
39
            printf(' =
40
        else
            printf('\t')
41
42
        end
        for j=1:3
43
            printf (\%.2 \text{ f} \text{ t}, A(i,j))
44
```

```
\begin{array}{ccc} 45 & & \text{end} \\ 46 & & \text{printf('} \backslash n') \\ 47 & \text{end} \end{array}
```

### Scilab code Exa 6.6 Trangularization Method

```
1 //Example 6.6
2 //Trangularization Method
3 // Page no. 236
4 clc; clear; close;
6 \quad A = [2,1,1;1,3,1;1,1,4];
7 B = [7; 10; 15];
8 printf('A can be factorizaed as follows:\n')
9 printf('\tL\t\t\ *\t\tU\t\t
                                     = \t \t A,
10 U(2,1)=0; U(3,1)=0; U(3,2)=0;
11 L(1,2)=0; L(1,3)=0; L(2,3)=0;
12 for i=1:3
13
        L(i,i)=1
14 end
15 \text{ for } i=1:3
16
       U(1,i) = A(1,i)
17 \text{ end}
18 L(2,1)=1/U(1,1);
19 for i=2:3
20
       U(2,i)=A(2,i)-U(1,i)*L(2,1);
21 end
22 L(3,1) = 1/U(1,1);
23 L(3,2) = (A(3,2) - U(1,2) * L(3,1)) / U(2,2);
24 U(3,3) = A(3,3) - U(1,3) * L(3,1) - U(2,3) * L(3,2);
25 printf('\n')
26 \text{ for } i=1:3
27
       for j=1:3
```

```
printf('%.2f\t',L(i,j))
28
29
        end
30
        if(i==2)
31
32
             printf(' *
                              ')
33
        else
             printf('\t')
34
35
        end
36
        for j=1:3
37
            printf(\%.2 f \ t', U(i,j))
38
39
        end
40
        if(i==2)
             printf(' =
                           ,)
41
        else
42
             printf(' \setminus t')
43
44
        end
        for j=1:3
45
             printf(\%.2 f t, A(i,j))
46
47
        end
48
        printf('\n')
49 end
50 printf('\nY=U*X')
        Y = inv(L) *B
51
        X = inv(U) * Y
52
53 printf('\n \nX=')
54 \text{ for } i=1:3
        printf('\n
                       \%i', X(i,1))
55
56 end
```

### Scilab code Exa 6.7 Wilkinson Method

```
1 //Example 6.7
```

# Scilab code Exa 6.8 Choleskys Factorization

```
1 / \text{Example } 6.8
2 // Cholesky 's Factorization
3 // Page no. 243
4 clc; clear; close;
6 \quad A = [1,2,3;2,5,8;3,8,22];
7 U(2,1)=0; U(3,1)=0; U(3,2)=0;
8 for i=1:3
9
        for j=1:3
            if(i==j)
10
11
                 k=0;
12
                 for m=1:i-1
13
                     k=k+U(m,i)^2;
14
                 end
                 U(i,j) = sqrt(A(i,j)-k)
15
16
            end
            if(j>i)
17
18
                 k=0;
19
                 for m=1:i-1
                      k=k+U(m,j)*U(m,i);
20
```

```
21 end

22 U(i,j)=(A(i,j)-k)/U(i,i)

23 end

24 end

25 end

26 disp(U, 'Required Matrix (U)=')
```

## Scilab code Exa 6.9 Complex System of Linear Equation

```
1 //Example 6.9
2 //Complex System of Linear Equation
3 // Page no. 244
4 clc; clear; close;
5
6 \text{ for } i=1:7
7
        s=0;
8
        for j=1:7
9
            A(i,j)=j^i
            s=s+(-1)^{(j+1)}*A(i,j)
10
        \verb"end"
11
12
        B(i,1)=s;
13 end
14 X = inv(A) *B
15 disp(X, 'The Solution = ')
```

## Scilab code Exa 6.10 Solving Matrices

```
1 //Example 6.102 //Solving Matrices
```

```
3 // Page no. 244
4 clc; close; clear;
5 warning('off')
6 \text{ for } i=1:7
7
        s=0;
        for j=1:7
8
            A(i,j)=360360/(i+j)
9
10
        end
        B(i,1)=1;
11
12 \text{ end}
13 X = inv(A) *B
14 disp(360360*X, 'The Solution by 360360*X= ')
15 disp(X, 'Final Solution = ')
```

# Chapter 7

# Numerical Solutions for Matrix Inversion

# Scilab code Exa 7.1 Gauss Jordan Two Array Method

```
1 / \text{Example } 7.1
2 //Gauss-Jordan Two Array Method
3 //Page no. 254
4 clc; clear; close;
6 A = [2,6,1;3,9,2;0,-1,3];
                               //matrix
                               //Unit Matrix
7 C = eye(3,3);
                                //interchange of row 1
8 for i=1:3
      and 2
9
       B(1,i)=A(1,i);
10
       A(1,i)=A(2,i);
11
       A(2,i)=B(1,i);
12
       B(2,i)=C(1,i);
       C(1,i)=C(2,i);
13
       C(2,i)=B(2,i);
14
15 end
16 printf('\n')
```

```
17
18 //printing of matrices A and C
19 for i=1:3
20
        for j=1:3
             printf('%f\t', A(i,j))
21
22
        end
23
        printf('|\t');
        for j=1:3
24
25
             printf('%f\t',C(i,j))
26
        end
        printf(' \setminus n')
27
28 end
29 printf('\n'n');
30
31
32 for i=1:3
        A(1,i)=A(1,i)/3;
33
34
        C(1,i)=C(1,i)/3;
35 end
36
37 // printing of matrices A and C
38 \text{ for } i=1:3
39
        for j=1:3
             printf('\%f \setminus t', A(i,j))
40
41
        end
42
        printf('|\t');
43
        for j=1:3
             printf('%f\t',C(i,j))
44
45
        end
        printf('\n')
46
47 end
48 printf('\n'n');
49
50 \text{ for } i=1:3
        A(2,i)=A(2,i)-2*A(1,i);
51
52
        C(2,i)=C(2,i)-2*C(1,i);
53 \, {\rm end}
54
```

```
55 //printing of matrices A and C
56 \text{ for } i=1:3
57
        for j=1:3
             printf('%f\t', A(i,j))
58
59
        end
60
        printf('|\t');
        for j=1:3
61
             printf('%f\t',C(i,j))
62
63
        end
64
        printf('\n')
65 end
66 printf('\langle n \rangle n');
67
                        //interchange of row 2 and 3
68 \text{ for } i=1:3
        B(1,i)=A(2,i);
69
70
        A(2,i)=A(3,i);
        A(3,i)=B(1,i);
71
72
        B(2,i)=C(2,i);
        C(2,i)=C(3,i);
73
        C(3,i)=B(2,i);
74
75 end
76
77 // printing of matrices A and C
78 \text{ for } i=1:3
79
        for j=1:3
80
             printf('%f\t',A(i,j))
81
        end
        printf('|\t');
82
        for j=1:3
83
             printf('%f\t',C(i,j))
84
85
        end
86
        printf('\n')
87 end
88 printf('\n\n');
89
90 \text{ for } i=1:3
        A(2,i) = -1 * A(2,i);
91
        C(2,i) = -1*C(2,i);
92
```

```
93 end
94 \text{ for } i=1:3
         A(1,i)=A(1,i)-3*A(2,i);
95
         C(1,i)=C(1,i)-3*C(2,i);
96
97 end
98
99 //printing of matrices A and C
100 \text{ for } i=1:3
         for j=1:3
101
102
              printf('%f\t',A(i,j))
103
         end
104
         printf('|\t');
105
         for j=1:3
              printf('%f\t',C(i,j))
106
107
         end
108
         printf('\n')
109 end
110 printf('\langle n \rangle n');
111
112 for i=1:3
113
         A(3,i) = -3*A(3,i);
114
         C(3,i) = -3*C(3,i);
115 end
116
117 //printing of matrices A and C
118 for i=1:3
         for j=1:3
119
              printf('%f\t',A(i,j))
120
121
         end
         printf('|\t');
122
123
         for j=1:3
              printf('%f\t',C(i,j))
124
125
         \quad \text{end} \quad
         printf('\n')
126
127 end
128 printf('\langle n \rangle n');
129
130 \text{ for } i=1:3
```

```
A(1,i)=A(1,i)-A(3,i)*(29/3);
131
132
         C(1,i)=C(1,i)-29*C(3,i)/3;
133 end
134 for i=1:3
135
         A(2,i)=A(2,i)+A(3,i)*3;
136
         C(2,i)=C(2,i)+C(3,i)*3;
137 end
138
    //printing of matrices A and C
139
140 for i=1:3
         for j=1:3
141
142
              printf('\%f \setminus t', A(i,j))
143
         end
         printf('|\t');
144
145
         for j=1:3
              \textbf{printf} (\ '\%f \backslash t\ ', \texttt{C(i,j)})
146
         end
147
         printf('\n')
148
149 end
150 printf('\langle n \rangle n');
151
152 disp(C, 'Inverse Matrix of A')
```

#### Scilab code Exa 7.2 Inverse in Place without Pivoting

```
1 //Example 7.2
2 //Inverse in Place without Pivoting
3 //Page no. 256
4 clc; clear; close;
5
6 A=[3,-6,7;9,0,-5;5,-8,6]; //matrix
7 B=[3,-6,7;9,0,-5;5,-8,6]; //copied matrix
8 for i=1:3
```

```
printf('\n\nStage %i',i);
9
10
        for j=1:3
            if(i==j)
11
                 B(i,j)=1/B(i,j);
12
13
            else
14
                 B(i,j) = A(i,j)/A(i,i);
15
            end,
16
        end
17
        disp(B)
            for j=1:3
18
19
                 for k=1:3
20
                     if(i~=j)
21
                          B(j,k)=A(j,k)-A(j,i)*B(i,k);
22
                     end,
23
                 end
24
            end
25
            disp(B)
26
        for j=1:3
27
            if(i~=j)
                 B(j,i) = -1*A(j,i)*B(i,i);
28
29
            end,
30
31
        end
32
        disp(B)
33
        A = B;
34 end
35 disp(B, 'Inverse of Matrix A=')
```

#### Scilab code Exa 7.3 Inverse in Place with Pivoting

```
1 //Example 7.3
2 //Inverse in Place with Pivoting
3 //Page no. 258
```

```
4 clc; clear; close;
                                       //matrix
6 \quad A = [3, -6, 7; 9, 0, -5; 5, -8, 6];
                                        //copied matrix
7 B = [3, -6, 7; 9, 0, -5; 5, -8, 6];
8
9 \text{ for } i=1:3
10
        printf('\n\nStage %i',i)
        if(i<3)
11
12
             for j=1:3
                                  //interchange of rows
                 C(i,j)=A(i,j);
13
14
                 A(i,j) = A(i+1,j);
                 A(i+1,j)=C(i,j);
15
16
                 C(i,j)=B(i,j);
17
                 B(i,j)=B(i+1,j);
                 B(i+1,j)=C(i,j);
18
19
             end
20
        end
21
        disp(B)
22
        for j=1:3
23
             if(i==j)
24
                 B(i,j)=1/B(i,j);
25
             else
                 B(i,j) = A(i,j)/A(i,i);
26
27
             end,
28
        end
29
             for j=1:3
30
                 for k=1:3
31
                      if(i~=j)
32
                           B(j,k)=A(j,k)-A(j,i)*B(i,k);
                      end,
33
34
                 end
35
             end
        for j=1:3
36
             if(i~=j)
37
38
                 B(j,i) = -1*A(j,i)*B(i,i);
39
             end,
40
41
        end
```

```
disp(B)
42
43
       A = B;
44 end
45 \text{ for } j=1:3
              //interchange of column 2 and 3
        C(j,1) = A(j,2);
46
47
        A(j,2) = A(j,3);
       A(j,3)=C(j,1);
48
49 end
                    //interchange of column 2 and 1
50 \text{ for } j=1:3
        C(j,1) = A(j,2);
51
        A(j,2) = A(j,1);
52
        A(j,1)=C(j,1);
53
54 end
55 disp(A, 'Inverse of Matrix A=')
```

#### Scilab code Exa 7.4 Inverse of Triangular Matrices

```
1 //Example 7.4
2 //Inverse of Triangular Matrices
3 //Page no. 260
4 clc; clear; close;
6 R=[2,4,-4,0;0,3,-3,-3;0,0,4,2;0,0,0,3];
                                             //matrix
     R
  for i=4:-1:1
       for j=4:-1:1
9
           if(i>j)
               Y(i,j)=0;
10
11
           end
           if(i==j)
12
13
               Y(i,j)=1/R(i,j);
14
           end
15
           if(i<j)
```

```
16
                 1 = 0;
17
                 for k=i+1:j
                     1=1-R(i,k)*Y(k,j);
18
19
                 end
20
                 Y(i,j)=1/R(i,i);
21
            end
22
        end
23 end
24 disp(Y, 'Inverse of Matrix R=')
```

#### Scilab code Exa 7.5 Inverse of Complex Matrices

```
1 / \text{Example } 7.5
2 //Inverse of Complex Matrices
3 // Page no. 262
4 clc; clear; close;
6 \quad A = [1, -1, 0; 2, 3, 4; 0, 1, 2];
7 B=[1,1,3;1,3,-3;-2,-4,-4];
8 P = A + \%i * B;
9 disp(P, 'Matrix P=')
10 disp(A, 'Matrix A='); disp(B, 'Matrix B=');
11 A1 = inv(A); B1 = inv(B);
12 disp(A1, 'Inverse of Matrix A=');
13 disp(B1, 'Inverse of Matrix B=');
14 B1A=B1*A; disp(B1A, 'Inverse(B)*A=');
15 AB1A_B=A*B1A+B; disp(AB1A_B, 'A*Inverse(B)*A+B=');
16 AB1A_B1=inv(AB1A_B); disp(AB1A_B1, 'Inverse(A*Inverse(
      B) *A+B)=');
17 X = B1A * AB1A_B1; disp(X, 'X=');
18 Y = -1 * AB1A_B1; disp(Y, 'Y=');
19 Q=X+\%i*Y; disp(Q, 'Inverse of Matrix P=')
```

#### Scilab code Exa 7.6 Iterative Procedure

```
1 / \text{Example } 7.6
2 //Iterative Procedure
3 //Page no. 265
4 clc; clear; close;
5
       A = [3, 1, 3/2; -5/4, -1/4, -3/4; -1/4, -1/4, -1/4];
6
7 disp(A, 'Matrix A=');
8 B=[1,1,3.5;1,3,-3;-2,-3,-4];
9 disp(B, 'Assumed Matrix B=');
10 e = 0.1;
11
12 //iterations
13 E1=e; k=1;
14 while (E1>=e)
       printf ('\n \n Iteration \%i \n ',k)
15
16 C=B*(2*eye(3,3)-A*B); disp(C, 'Matrix C=');
17 E=A*C-eye(3,3); disp(E, 'Matrix E=');
18 B=C; printf('\nInverse of Matrix A after %i
      iterations=',k);disp(B);
19 E1=0;
20 \text{ for } i=1:3
21
        for j=1:3
            E1=E1+E(i,j)^2;
22
23
        end
24 end
25 E1=sqrt(E1);
26 k = k + 1;
27 end
```

## Chapter 8

## Numerical Solutions of Linear Systems of Equations Iterative Methods

#### Scilab code Exa 8.1 Jacobi Method

```
1 //Example 8.1
2 // Jacobi Method
3 // Page no. 273
4 clc; clear; close;
                                         //equation matrix
6 \quad A = [8, -3, 2; 4, 11, -1; 6, 3, 12];
7 B = [20; 33; 36]
                                         //solution matrix
8 for i=0:19
       X(i+1,1)=i;
10 \text{ end}
11 for i=2:4
12 X(1,i)=0;
13 end
14 for r=1:19
15 for i=1:3
```

```
16
              k=0;
17
              for j=1:3
                   if(i~=j)
18
                        k=k-A(i,j)*X(r,j+1);
19
20
                   end
21
              end
22
              X(r+1,i+1) = (k+B(i,1))/A(i,i);
23
         end
24 end
25 printf(' r \setminus t \quad x(r) \setminus t \setminus ty(r) \setminus t
                                                   z(r)');
26 printf('\n
27 disp(X)
28 printf('\n\nAfter 18 iterations exact solution is:\
       nx=\%i \setminus ty=\%i \setminus tz=\%i ',X(19,2),X(19,3),X(19,4))
```

#### Scilab code Exa 8.2 Gauss Seidel Method

```
1 //Example 8.2
2 //Gauss-Seidel Method
3 //Page no. 274
4 clc; clear; close;
                                             //equation matrix
6 \quad A = [8, -3, 2; 4, 11, -1; 6, 3, 12];
                                            //solution matrix
7 B = [20; 33; 36]
8 \text{ for } i=0:10
9
        X(i+1,1)=i;
10 \text{ end}
11 for i=2:4
12
        X(1,i)=0;
13 end
14 for r=1:10
15
        for i=1:3
16
             k1 = 0;
```

```
17
              for j=1:i-1
18
19
                         k1=k1-A(i,j)*X(r+1,j+1);
20
21
              end
              k2=0;
22
23
              for j=i+1:3
24
25
                         k2=k2-A(i,j)*X(r,j+1);
26
27
              end
28
              X(r+1,i+1) = (k1+k2+B(i,1))/A(i,i);
29
         \quad \text{end} \quad
30 \text{ end}
31 printf(' r \setminus t \quad x(r) \setminus t \setminus ty(r) \setminus t
                                                    z(r)');
32 printf('\n
33 disp(X)
34 printf('\n\nAfter 9 iterations exact solution is:\nx
       =\%i \ ty =\%i \ tz =\%i \ , X(10,2), X(10,3), X(10,4))
```

#### Scilab code Exa 8.3 SOR Method

```
1 //Example 8.3
2 //SOR Method
3 //Page no. 275
4 clc; clear; close;
5
6 A=[5,2,1;-1,4,2;2,-3,10];
7 B=[-12;20;3];
8 w=0.9;
9 for i=0:13
10    X(i+1,1)=i;
11 end
```

```
12 X(1,2) = -2.4;
13 X(1,3)=5;
14 X(1,4)=0.3;
15 for r=1:13
16
        for i=1:3
17
             k1 = 0;
             for j=1:i-1
18
19
                       k1=k1-A(i,j)*X(r+1,j+1);
20
21
22
             end
23
             k2 = 0;
24
             for j=i+1:3
25
                       k2=k2-A(i,j)*X(r,j+1);
26
27
28
             end
29
             X(r+1,i+1) = (1-w)*X(r,i+1) + (w*k1+w*k2+w*B(i))
                ,1))/A(i,i);
30
        end
31 end
                r \setminus t  x(r) \setminus t \setminus ty(r) \setminus t  z(r)');
32 printf('
33 printf(' \ n
       ;
34 disp(X);
35 printf('\n\nAfter 12 iterations exact solution is:\
      nx=\%i \ ty=\%i \ tz=\%i', X(13,2), X(13,3), X(13,4));
```

#### Scilab code Exa 8.4 Gauss Seidel Point Iterative Method

```
1 //Example 8.4
2 //Gauss-Seidel Point Iterative Method
3 //Page no. 278
```

```
r x1 x2 x3 x4 x5 x6

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1. 0.5 0.95 0.45 - 0.045 - 0.095 0.245

2. 0.4295 0.91205 0.4593 - 0.05543 - 0.115705 0.2439725

3. 0.4331923 0.9107508 0.4594523 - 0.0575157 - 0.1154723 0.2442043

4. 0.4333454 0.9107202 0.4595413 - 0.0575014 - 0.1154925 0.2442009

5. 0.4333481 0.9107111 0.4595403 - 0.0575033 - 0.1154912 0.2442012

6. 0.4333490 0.9107111 0.4595403 - 0.0575031 - 0.1154912 0.2442012

7. 0.4333490 0.9107111 0.4595403 - 0.0575031 - 0.1154912 0.2442012

After & iterations exact solution is:

x1=0.433349 x2=0.910711 x3=0.459540 x4=-0.057503 x5=-0.115491 x6=0.244201

->
```

Figure 8.1: Gauss Seidel Point Iterative Method

```
clc; clear; close;
5
6
7
  Α
      = [10,1,0,0,0,0,-1;1,10,1,0,0,0;2,0,20,1,0,0;0,0,1,10,-1,0;0,3,0,0,3,0,0]
                //equation matrix
                                                  //solution
  B = [5; 10; 10; 0; 0; 5]
      matrix
   for i=1:6
10
        for j=1:6
             if(A(j,j) == 0)
11
12
                  for k=1:6
                       C(j,k)=A(j,k);
13
                       A(j,k) = A(j+1,k);
14
                       A(j+1,k)=C(j,k);
15
16
                  end
17
             end
18
        end
19 end
20 \text{ for } i=0:7
21
        X(i+1,1)=i;
22 \text{ end}
23 \text{ for } i=2:7
        X(1,i)=0;
24
25
   end
```

```
26 \text{ for } r=1:7
27
       for i=1:6
28
            k1 = 0;
29
            for j=1:i-1
30
31
                     k1=k1-A(i,j)*X(r+1,j+1);
32
33
            end
34
            k2 = 0;
            for j=i+1:6
35
36
37
                     k2=k2-A(i,j)*X(r,j+1);
38
39
            end
            X(r+1,i+1) = (k1+k2+B(i,1))/A(i,i);
40
41
        end
42 \text{ end}
43 printf(' r
                      ');
44 for i=1:6
                               ',i);
       printf('x%i
45
46 \, \mathbf{end}
47 printf('\n
      ')
48 disp(X)
49 printf('\n\nAfter 6 iterations exact solution is:\n'
      );
50 for i=1:6
       51
                          ',i,X(7,i+1));
52 end
```

Scilab code Exa 8.5 Gauss Seidel Point Iterative Method

```
1 / Example 8.5
2 //Gauss-Seidel Point Iterative Method
3 //Page no. 279
4 clc; clear; close;
6 \quad A = [2,3,-4,1;1,-2,-5,1;5,-3,1,-4;10,2,-1,2];
                                                             //
      equation matrix
7 B = [3;2;1;-4];
                              //solution matrix
9 //transformation of the equations
10 for i=1:4
        A1(1,i) = A(4,i);
11
12
        B1(1,1)=B(4,1);
13 end
14 \text{ for } i=1:4
        A1(3,i)=A(2,i);
15
        B1(3,1)=B(2,1);
16
17 \text{ end}
18 for i=1:4
19
        A1(2,i) = A(1,i) - A(2,i);
20
        B1(2,1)=B(1,1)-B(2,1);
21 end
22 \quad for \quad i=1:4
        A1(4,i)=2*A(1,i)-A(2,i)+2*A(3,i)-A(4,i);
23
        B1(4,1) = 2*B(1,1) - B(2,1) + 2*B(3,1) - B(4,1);
24
25 end
26
27 //printing of transformed equations
28 printf('\nTransformed Equations are=\ln n')
29 \text{ for } i=1:4
30
        for j=1:4
31
            printf('(%ix(%i))',A1(i,j),j);
32
            if(j<4)
                 printf(' + ')
33
34
            end
35
        end
        printf('= %i\n',B1(i,1));
36
37 end
```

```
38
39 \text{ for } i=1:4
        for j=1:4
40
             if(A(j,j)==0)
41
42
                  for k=1:4
43
                       C(j,k)=A(j,k);
44
                       A(j,k) = A(j+1,k);
                       A(j+1,k)=C(j,k);
45
46
                  end
47
             end
48
        end
49 end
50 \text{ for } i=0:12
        X(i+1,1)=i;
51
52 end
53 for i=2:5
        X(1,i)=0;
54
55 end
56 \text{ for } r=1:12
        for i=1:4
57
58
             k1 = 0;
             for j=1:i-1
59
60
                       k1=k1-A1(i,j)*X(r+1,j+1);
61
62
63
             end
64
             k2 = 0;
             for j = i + 1 : 4
65
66
                       k2=k2-A1(i,j)*X(r,j+1);
67
68
69
             end
70
             X(r+1,i+1) = (k1+k2+B1(i,1))/A1(i,i);
71
        end
72 end
73 printf('\nn
                               ');
                     \mathbf{r}
74 \text{ for } i=1:4
        printf('x%i
                                    ',i);
75
```

#### Scilab code Exa 8.6 Block Jacobi Method

```
1 / \text{Example } 8.6
2 //Block Jacobi Method
3 //Page no. 281
4 clc; clear; close;
5
6 A
      =[10,1,0,0,0,-1;1,10,1,0,0,0;2,0,20,1,0,0;0,0,1,10,-1,0;0,3,0,0,3
                //equation matrix
                                               //solution
7 B = [5;10;10;0;0;5]
      matrix
8 disp(B, 'B=', A, 'A=')
9 \text{ for } i=1:3
        for j=1:3
10
11
            A11(i,j)=A(i,j);
12
        end
13
        B1(i,1)=B(i,1);
14 end
15 \text{ for } i=1:3
16
        for j=1:3
            A12(i,j)=A(i,j+3);
17
```

```
18
                                 end
19 end
20 \text{ for } i=1:3
21
                                 for j=1:3
22
                                                    A21(i,j) = A(i+3,j);
23
                                 end
24 end
25 \text{ for } i=1:3
26
                                 for j=1:3
27
                                                    A22(i,j)=A(i+3,j+3);
28
                                 end
                                 B2(i,1)=B(i+3,1);
29
30 \, \text{end}
31 disp(B2, 'B2=', B1, 'B1=', A22, 'A22=', A21, 'A21=', A12, 'B1=', A21, 'A21=', A21, 'B1=', A21, 'B
                          A12=',A11,'A11=');
32 A11_1 = inv(A11); A22_1 = inv(A22);
33 disp(A22_1, 'Inverse of A22=', A11_1, 'Inverse of A11='
                           )
34 for i=1:3
35
                                 X1(i,1)=0;
36
                                 X2(i,1)=0;
37 end
38 \text{ for } r=1:2
                                 X11 = A11_1 * (-1 * A12 * X2 + B1);
39
                                 X22=A22_1*(-1*A21*X1+B2);
40
41
                                X1 = X11;
42
                                 X2 = X22;
                                 disp(X1, 'X1=')
43
                                 disp(X2, 'X2=')
44
45 end
46 \text{ for } i=1:6
47
                                 if (i < 4)</pre>
                                                    X(i,1) = X1(i,1);
48
49
                                 else
                                                    X(i,1) = X2(i-3,1);
50
51
                                 end
52 end
53 \text{ disp}(X, 'X=')
```

```
54 printf('\n\nNote: There is a computation error in calculation of X1(2)')
```

#### Scilab code Exa 8.7 Block Gauss Seidel Method

```
1 //Example 8.7
2 //Block Gauss-Seidel Method
3 // Page no. 283
4 clc; clear; close;
6 A
     //equation matrix
                                       //solution
7 B = [5; 10; 10; 0; 0; 5]
     matrix
8 disp(B, 'B=', A, 'A=')
10 for i=1:2
11
      for j=1:2
          A11(i,j) = A(i,j);
12
13
      end
14
      B1(i,1)=B(i,1);
15 end
16 for i=1:2
17
      for j=1:2
18
          A12(i,j)=A(i,j+2);
19
      end
20
      B2(i,1)=B(i+2,1);
21 end
22 \text{ for } i=1:2
23
      for j=1:2
24
          A13(i,j)=A(i,j+4);
25
      end
```

```
26
                              B3(i,1)=B(i+4,1);
27 \text{ end}
28 \text{ for } i=1:2
29
                              for j=1:2
                                               A21(i,j) = A(i+2,j);
30
31
                              end
32 \text{ end}
33 \text{ for } i=1:2
34
                              for j=1:2
                                               A22(i,j)=A(i+2,j+2);
35
36
                              end
37 end
38 \text{ for } i=1:2
                              for j=1:2
39
                                               A23(i,j)=A(i+2,j+4);
40
41
                              end
42 \text{ end}
43 \text{ for } i=1:2
44
                              for j=1:2
                                               A31(i,j) = A(i+4,j);
45
46
                              end
47 end
48 \text{ for } i=1:2
49
                              for j=1:2
                                               A32(i,j)=A(i+4,j+2);
50
51
                              end
52 end
53 for i=1:2
                              for j=1:2
54
                                               A33(i,j)=A(i+4,j+4);
55
56
                              end
57 end
58 disp(B3, 'B3=', B2, 'B2=', B1, 'B1=', A33, 'A33=', A32, 'A32=', A32, 'A32=', A32, 'A32=', A32, 'A32=', A32, 'A33=', A32, 'A33=', A33=', A
                           ', A31, A31=', A23, A23=', A22, A22=', A21, A21=', A13
                          , 'A13=' , A12 , 'A12=' , A11 , 'A11=');
59 A11_1=inv(A11); A22_1=inv(A22); A33_1=inv(A33);
60 disp(A33_1, 'Inverse of Matrix A33=', A22_1, 'Inverse
                         of Matrix A22=', A11_1, 'Inverse of Matrix A11=');
```

```
61 \text{ for } i=1:2
62
        X1(i,1)=0;
        X2(i,1)=0;
63
        X3(i,1)=0;
64
65 end
66 \text{ for } i=1:6
        X(i,1)=i-1;
67
68 end
69 \text{ for } i=2:7
        X(1,i)=0;
70
71 end
72 \text{ for } r=1:5
73
        X11 = A11_1 * (-1 * A12 * X2 + (-1) * A13 * X3 + B1);
74
        X22=A22_1*(-1*A21*X11+(-1)*A23*X3+B2);
75
        X33 = A33_1 * (-1 * A31 * X11 + (-1) * A32 * X22 + B3);
76
        X1 = X11;
77
        X2 = X22;
78
        X3 = X33;
79
        disp(X3, 'X3=', X2, 'X2=', X1, 'X1=')
        for i=2:7
80
81
             if(i<4)</pre>
82
                  X(r+1,i) = X1(i-1,1);
83
             end
              if(i<6 & i>3)
84
                  X(r+1,i) = X2(i-3,1);
85
86
             end
87
              if(i<8 & i>5)
                  X(r+1,i)=X3(i-5,1);
88
89
             end
90
        end
91 end
92 printf('\n\nIteration');
93 for i=1:6
                       x%i
        printf('
                                   ',i);
94
95 end
96 printf('\n
       ')
```

```
97 disp(X)
98 printf('\n\nAfter 4 iterations exact solution is:\n'
      );
99 for i=1:6
100     printf('x%i=%f ',i,X(5,i+1));
101 end
```

#### Scilab code Exa 8.8 Block SOR Method

```
1 //Example 8.8
2 //Block SOR Method
3 // Page no. 284
4 clc; clear; close;
5
6
7 A
      = [10,1,0,0,0,0,-1;1,10,1,0,0,0;2,0,20,1,0,0;0,0,1,10,-1,0;0,3,0,0,3,0,0]
               //equation matrix
                                              //solution
B = [5;10;10;0;0;5]
      matrix
9 disp(B, 'B=', A, 'A=')
10 \text{ w=0.8}
11 for i=1:2
12
       for j=1:2
            A11(i,j)=A(i,j);
13
14
       B1(i,1)=B(i,1);
15
16 end
17 for i=1:2
18
       for j=1:2
19
            A12(i,j)=A(i,j+2);
20
       end
       B2(i,1)=B(i+2,1);
21
```

```
22 \text{ end}
23 \text{ for } i=1:2
24
                                     for j=1:2
25
                                                          A13(i,j) = A(i,j+4);
26
                                     end
27
                                    B3(i,1)=B(i+4,1);
28 end
29 for i=1:2
30
                                    for j=1:2
                                                         A21(i,j)=A(i+2,j);
31
32
                                     end
33 end
34 for i=1:2
35
                                    for j=1:2
                                                          A22(i,j)=A(i+2,j+2);
36
37
                                     end
38 end
39 \text{ for } i=1:2
                                    for j=1:2
40
                                                          A23(i,j)=A(i+2,j+4);
41
42
                                     end
43 end
44 for i=1:2
                                    for j=1:2
45
                                                          A31(i,j) = A(i+4,j);
46
47
                                     end
48 end
49 for i=1:2
                                    for j=1:2
50
                                                          A32(i,j)=A(i+4,j+2);
51
52
                                     end
53 end
54 for i=1:2
55
                                    for j=1:2
                                                         A33(i,j)=A(i+4,j+4);
56
57
                                     end
58 end
59 disp(B3, 'B3=', B2, 'B2=', B1, 'B1=', A33, 'A33=', A32, 'A32=', B1, 'B1=', A33, 'A33=', A32=', A32=', A32=', A32=', A32=', A33=', A32=', A32=',
```

```
', A31, 'A31=', A23, 'A23=', A22, 'A22=', A21, 'A21=', A13
       , 'A13=', A12, 'A12=', A11, 'A11=');
60 A11_1=inv(A11); A22_1=inv(A22); A33_1=inv(A33);
61 disp(A33_1, 'Inverse of Matrix A33=', A22_1, 'Inverse
       of Matrix A22=', A11_1, 'Inverse of Matrix A11=');
62 \text{ for } i=1:2
        X1(i,1)=0;
63
        X2(i,1)=0;
64
        X3(i,1)=0;
65
66 end
67 \text{ for } i=1:7
        X(i,1)=i-1;
68
69 end
70 \text{ for } i=2:7
71
        X(1,i)=0;
72 end
73 \text{ for } r=1:6
        X11 = A11_1 * ((1-w) * X1 + (-1) * w * A12 * X2 + (-1) * w * A13 * X3 +
74
            w*B1);
        X22 = A22_1 * ((1-w) * X2 + (-1) * w * A21 * X11 + (-1) * w * A23 * X3
75
            +w*B2);
        X33 = A33_1 * ((1-w) * X3 + (-1) * w * A31 * X11 + (-1) * w * A32 *
76
            X22+w*B3);
77
        X1 = X11;
78
        X2 = X22;
79
        X3 = X33;
80
        disp(X3, 'X3=', X2, 'X2=', X1, 'X1=')
        for i=2:7
81
             if(i<4)</pre>
82
83
                  X(r+1,i) = X1(i-1,1);
84
             end
85
             if(i<6 & i>3)
                   X(r+1,i)=X2(i-3,1);
86
87
             end
88
             if(i<8 & i>5)
                  X(r+1,i) = X3(i-5,1);
89
90
             end
91
         end
```

```
92 end

93 printf('\n\nIteration');

94 for i=1:6

95 printf(' x%i ',i);

96 end

97 printf('\n

')

98 disp(X)

99 printf('\n\nAfter 5 iterations exact solution is:\n');

100 for i=1:6

101 printf('x%i=%f',i,X(6,i+1));

102 end
```

### Chapter 9

## Linear Least Squares Problem

#### Scilab code Exa 9.1 Moore Penrose Generalized Inverse

```
//Example 9.1
//Moore-Penrose Generalized Inverse
//Page no. 292
clc;clear;close;

AT=[3,0,3;0,3,3];
A=AT'; //transpose
I=inv(AT*A); //inverse
disp(I,'Inverse of AT*A=',AT*A,'AT*A=',A,'A=',AT,'AT=');
A#=I*AT;
disp(A#,'Moore-Penrose Generalized Inverse of A=')
```

Scilab code Exa 9.2 Curve Fitting

```
1 //Example 9.2
     2 //Curve Fitting
    3 //Page no. 293
    4 clc; clear; close;
    5 \times (1) = 0.25;
    6 \text{ for } i=2:6
                                           x(1,i)=x(1,i-1)+0.25;
                                                                                                                                    //x values
    8 end
     9 y(1,1)=3.1; y(1,2)=1.7; y(1,3)=1; y(1,4)=0.68; y(1,5)
                                   =0.42; y(1,6)=0.26; //y values
10
11 //construction of normal equations
12 for i=1:6
                                           Y(1,i) = log10(y(1,i));
13
14 end
15 Ex = 0;
16 for i=1:6
17
                                          Ex=Ex+x(1,i);
18 end
19 EY=0;
20 \text{ for } i=1:6
21
                                          EY = EY + Y(1, i);
22 end
23 \text{ Ex2=0};
24 \text{ for } i=1:6
25
                                          Ex2=Ex2+x(1,i)^2;
26 \, \text{end}
27 \quad \text{ExY} = 0;
28 \text{ for } i=1:6
29
                                           ExY = ExY + x(1,i) * Y(1,i);
30 \, \text{end}
31 printf('E x(k) \setminus t \setminus t y(k) \setminus t \setminus tE Y(k) \setminus t \setminus tE x(k) \setminus t \setminus tE
                                   k)*Y(k)'
32 printf('\n
                                     ')
33 for i=1:6
                                          printf('\n\%f\t\%f\t\%f\t\%f\t\%f\,\x(1,i),y(1,i),Y(1,i),
34
```

```
i),x(1,i)^2,x(1,i)*Y(1,i))
35 end
36 printf('\n
      ')
37 printf ('\n\%f\t\%f\t\%f\t\%f\t\%f\, t\%f\f\, ex,0,EY,Ex2,ExY)
38 printf('\n
      n \setminus n'
39 A = [6, Ex; Ex, Ex2];
                             //system of normal equations
40 B = [EY; ExY];
41 X = inv(A) *B;
42 a = exp(X(1,1));
43 b=-1*X(2,1);
44 for i=1:2
45
        for j=1:2
            printf('%f ',A(i,j))
46
47
        end
        if(i==1)
48
             printf(' *')
49
        \verb"end"
50
51
52
        printf('\ta%i',i);
        if (i==1)
53
             printf(' =')
54
55
        end
56
        printf('\t\%f\n',B(i,1))
57
58 end
59 printf ('\n\na1=\%f\na2=\%f\n\na=\%f\nb=\%f\n\n', X(1,1), X
      (2,1),a,b)
                                                     %fx \neq y=%f
60 printf('The fitted curve is:\n
      e',b,a)
```

Scilab code Exa 9.3 Gram Schmidt Orthogonalization or Orthonormalization Process

```
1 //Example 9.3
2 //Gram-Schmidt Orthogonalization/Orthonormalization
      Process
3 //Page no. 294
4 clc; clear; close;
5 deff ('y=f(x,a)', 'y=sqrt(x(1,a)^2+x(2,a)^2+x(3,a)^2+x
      (4,a)^2);
  deff ('y=f1 (g,a,h,b)', 'y=g(1,a)*h(1,b)+g(2,a)*h(2,b)+
      g(3,a)*h(3,b)+g(4,a)*h(4,b)');
8 U=[1/sqrt(3),-2/sqrt(7),1,0,0,0;0,1/sqrt(7)]
      ,0,1,0,0;1/sqrt(3),1/sqrt(7),0,0,1,0;-1/sqrt(3)
      ,-1/sqrt(7),0,0,0,1];
9 \text{ for } i=1:4
10
            V(i,1) = U(i,1);
11 end
12 for i=1:4
       if (f(V,1)~=0)
13
14
            W(i,1) = V(i,1)/f(V,1);
15
       else
16
            W(i,1)=0;
17
       end
18 end
19 for j=2:6
20
       for i=1:4
21
            for 1=1:4
22
                k(1,1)=0;
23
            end
            for l=1:j-1
24
25
                for m=1:4
26
                    w(m,1) = W(m,1);
27
28
                k=k-(f1(U,j,W,1))*w;
29
            end
            V(i,j)=U(i,j)+k(i,1);
30
31
       end
```

```
32
        for i=1:4
             if(j~=4)
33
                  if (f(V,j)~=0)
34
                       W(i,j)=V(i,j)/f(V,j);
35
36
                  else
37
                       W(i,j)=0;
38
                  end
39
              else
                  W(i,j)=0;
40
41
             end
42
        end
43
44 \, \text{end}
45 \text{ disp}(U, 'U=')
46 disp('W=')
47 printf(' \ n')
48 \text{ for } i=1:4
        for j = 1:6
49
             printf(\%.4 f t t', W(i,j))
50
51
        end
        printf(' \ n')
52
53 end
54 disp('V=')
55 printf('\n')
56 \text{ for } i=1:4
57
        for j=1:6
             printf(\%.4 f t t', V(i,j))
58
59
        end
60
        printf('\n')
61 end
```

Scilab code Exa 9.4 QR Decomposition

```
1 //Example 9.4
2 //QR Decomposition
3 //Page no. 296
4 clc; clear; close;
6 \quad A = [2,1,1;1,3,1;1,1,4];
7 B = A * A ;
8 disp(B, 'AT*A=')
9 //cholesky factorization to find R
10 R(2,1)=0; R(3,1)=0; R(3,2)=0;
11 for i=1:3
12
       for j=1:3
13
            if(i==j)
14
                k=0;
15
                for m=1:i-1
                    k=k+R(m,i)^2;
16
17
                end
                R(i,j) = sqrt(B(i,j)-k)
18
19
            end
20
            if(j>i)
21
                k=0;
22
                for m=1:i-1
23
                     k=k+R(m,j)*R(m,i);
24
                end
                R(i,j)=(B(i,j)-k)/R(i,i)
25
26
            end
27
       end
28 end
29 //cholesky factorization end
30 disp(R, 'Upper Triangular Matrix (R)=')
31 R_1 = inv(R);
32 disp(R_1, 'Inverse of R')
33 Q = A * R_1;
34 disp(Q, 'Orthogonal Matrix Q=')
```

#### Scilab code Exa 9.5 Vector Computation

```
1 //Example 9.5
2 // Vector Computation
3 //Page no. 299
4 clc; clear; close;
6 \quad X = [2,3,0,1];
7 n=X(1);
8 \text{ for } i=2:4
9
        if (n<X(i))</pre>
             n=X(i);
10
11
        end
12 end
13 printf('\nMaximum Value (n)=\%i\n',n)
14 for i=1:4
15
        X(i)=X(i)/n;
16 \text{ end}
17 disp(X, 'Normalized X=')
18 k=0;
19 for i=1:4
20
        k=k+X(i)^2;
21 end
22 sigma=X(1)*abs(1/X(1))*sqrt(k);
23 printf('\nsigma=%f\n', sigma);
24 \times (1) = \times (1) + sigma;
25 printf('\nModified x1 = \%g\n', X(1))
26 \text{ for } i=1:4
27
        U(1,i)=X(i);
28 end
29 disp(U, 'U=')
30 p=sigma*X(1);sigma=n*sigma;
```

```
31 printf('\n p = %f\n\n sigma = %f',p,sigma);
32 printf('\n\nNote: There is a computation error in calculation of U1')
```

#### Scilab code Exa 9.6 House Holder Transformation

```
1 / Example 9.6
2 //House Holder Transformation
3 //Page no. 300
4 clc; clear; close;
6 \quad A = [4,2,1;2,5,-2;1,-2,7]
7 \text{ disp}(A, 'A=')
8 k=0;
9 \text{ for } j=2:3
10
       k=k+A(j,1)^2;
11 end
12 a=A(2,1)*abs(1/A(2,1))*sqrt(k);
13 disp(a, 'alpha=')
14 U = [0; a+A(2,1); A(3,1)];
15 disp(U, 'U=')
16 U1=U'*U;
17 disp(U1, 'UT*U=')
18 U2 = U * U';
19 disp(U2, 'U*UT=')
20 P = eye(3,3) - (2*U2)/U1;
21 disp(P, 'P=');
22 B = P * A * P;
23 disp(B, 'B=');
24 printf('\n'n\nThere are computation error in the
      answers given by the book in this example \ln \ln (a22)
       value error in U*UT)')
```

#### Scilab code Exa 9.7 Givens QR Method

```
1 / \text{Example } 9.7
2 // Givens QR Method
3 // Page no. 303
4 clc; clear; close;
6 \quad A = [4,2,1;2,5,-2;1,-2,7]
7 deff('y=c(i,j)', 'y=A(j,j)/sqrt((A(i,j)^2+A(j,j)^2))'
      )
8 deff('y=s(i,j)', 'y=A(i,j)/sqrt((A(i,j)^2+A(j,j)^2))'
9 disp(A, 'A=')
10 R=A; Q=eye(3,3);
11 m=1;
12 for j=1:2
13
       for i = j + 1 : 3
                                      //C matrix evaluation
14
            for k=1:3
15
                 for 1=1:3
16
                     if(k==1)
                          if (k==i | k==j)
17
                               C(k,1)=c(i,j)
18
19
                          else
20
                               C(k,1)=1
21
                          end
22
                     end
23
                     if(k>1)
24
                          if (k==i & l==j)
25
                               C(k,1) = -1*s(i,j)
26
                          else
                               C(k,1)=0
27
28
                          end
```

```
29
                          end
30
                          if (k<1)</pre>
                               if (k==j & l==i)
31
                                     C(k,1)=s(i,j)
32
33
                               else
34
                                     C(k,1)=0
35
                               end
36
                          end
37
                    \quad \text{end} \quad
38
               end
              printf('\n\n Iteration %i',m)
39
40
               m=m+1
              disp(C, 'C=');
41
42
               R = C * R;
43
               Q = Q * C';
               disp(Q, 'Q=',R, 'R=')
44
45
         end
46 \, \text{end}
                                             //verification
47 disp(Q*R, 'Q*R=A=')
```

#### Scilab code Exa 9.8 Recursive Least Square Method

```
1 //Example 9.8
2 //Recursive Least-Square Method
3 //Page no. 308
4 clc; clear; close;
5
6 A0=[3,0;0,3;3,3];
7 B0=[2;2;2];
8 A1=[6,3]; B1=[6];
9 A0T=A0';
10 G0=A0T*A0;
11 disp(G0, 'G0=')
```

```
12 GO_1 = inv(GO);
13 disp(GO_1, 'Inverse of GO=')
14 \text{ XO=GO\_1*AOT*BO};
15 disp(X0, 'X0=')
16
17 //by recursive least square algorithm
18 G1 = G0 + A1 , *A1;
19 disp(G1, 'G1=');
20 G1_1 = inv(G1);
21 disp(G1_1, 'Inverse of G1')
22 X1 = X0 + G1_1 * A1 '* (B1 - A1 * X0);
23 disp(X1, 'X1=')
24
25 // verification
26 \quad A = [3,0;0,3;3,3;6,3];
27 B = [2;2;2;6];
28 \quad AT = A;
29 G = AT * A;
30 disp(G, 'G=')
31 G_1=inv(G);
32 disp(G_1, 'Inverse of G=')
33 X = G_1 * AT * B;
34 \text{ disp}(X, 'X=')
35 disp('Thus X and X1 are Same')
```

## Chapter 10

# Numerical Solutions of System of Non Linear Equations

#### Scilab code Exa 10.1 System of Non Linear Equations

```
1 //Example 10.1
2 //System of Non Linear Equations
3 // Page no. 311
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^2-\exp(2*x)-4')
7 deff('y=f1(x)', 'y=2*x-2*exp(2*x)')
8 \text{ x0=0; e=0.00001}
9 \text{ for } i=1:10
       x1=x0-f(x0)/f1(x0)
10
       e1=abs(x0-x1)
11
12
       x0=x1;
       if abs(x0)<e then
13
14
            break;
15
       end
16 end
17 printf('\n\nThe solution of this equation after %i
```

Iterations by newton raphshon method is  $\%.10 \,\mathrm{f}$ ',i, x1)

# Scilab code Exa 10.2 Contraction Method and Seidel Method

```
1 //Example 10.2
2 //Contraction Method and Seidel Method
3 //Page no. 315
4 clc; clear; close;
5 \times (1) = 0; y(1) = 0
6 printf('(a) Contraction Mapping\n \ln \tan t \ln \tan t
                                          ----\n 0\t%f\t%f\n',x
       (1), y(1)
7 \text{ for } i=2:9
        x(i) = sin(x(i-1)+y(i-1))
        y(i) = cos(x(i-1)-y(i-1))
9
        printf(' \%i \ t\%f \ n', i-1, x(i), y(i))
10
11 end
12 printf('\n \n \n \b) Seidel Method\n \n \t \n \t \t \n \n
                                   ----\n 0\t%f\t%f\n',x
       (1), y(1)
13 for i=2:9
        x(i) = sin(x(i-1) + y(i-1))
14
15
        y(i) = \cos(x(i) - y(i-1))
16
        printf(' \%i \setminus t\%f \setminus t\%f \setminus n', i-1, x(i), y(i))
17 \text{ end}
```

Scilab code Exa 10.3 Non Linear System of Equation

```
1 //Example 10.3
    2 //Non Linear System of Equation
    3 //Page no. 315
    4 clc; clear; close;
    5 x(1,1)=1; x(1,2)=0; x(1,3)=0;
    6 y(1,1)=0; y(1,2)=2; y(1,3)=2;
    7 printf('Case -->\t\tI\t\t\t\t\II\\t\t\t\tIII\n
                                      nIteration \tx \t \ty \t \tx \t \ty \t \tx \t \ty \n \n
                                                                                                                                                                                                                                                                                                                                                            0 \setminus t
                                     \t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f\t^{\%}f
                                     y(1,2),x(1,3),y(1,3)
               for i=2:9
    9
                                              printf('
                                                                                                                               \%i \setminus t', i-1)
                                              for j=1:3
10
11
                                                                         if j==1 | j==2 then
                                                                                                    x(i,j)=(-y(i-1,j)^2-4*x(i-1,j)^2+8*x(i-1,j)
12
                                                                                                                       -1,j)+4)/8
                                                                        y(i,j)=(2*y(i-1,j)^2-2*x(i-1,j)+1)/4
13
                                                                         printf('\t%f\t%f',x(i,j),y(i,j))
14
15
                                                                         end
16
                                                                         if j==3 then
                                                                                                    x(i,j)=(-y(i-1,j)^2-4*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,j)^2+11*x(i-1,
17
                                                                                                                      -1, j) + 4) / 11
                                                                         y(i,j)=(-2*y(i-1,j)^2+8*y(i-1,j)-2*x(i-1,j)
18
19
                                                                         printf('\t%f\t%f',x(i,j),y(i,j))
20
                                                                          end
21
                                               end
22
                                              printf('\n')
23 end
24 printf('\n\n\n\n) nNote: There are computational
                                       errors in this example given by the book')
```

#### Scilab code Exa 10.4 Newton Method

```
1 //Example 10.4
2 //Newton Method
3 //Page no. 317
4 clc; clear; close;
6 deff('y=f1(x1,x2)', 'y=x1+3*log10(x1)-x2^2')
7 deff('y=f2(x1,x2)', 'y=2*x1^2-x1*x2-5*x1+1')
8 deff('y=f11(x1,x2)', 'y=1+3/(log(10)*x1)')
9 deff('y=f12(x1,x2)', 'y=-2*x2')
10 deff('y=f21(x1,x2)', 'y=4*x1-x2-5')
11 deff('y=f22(x1,x2)', 'y=-x1')
12 x = [3.4; 2.2];
13 disp(x, 'x(0) = ')
14 for i=1:3
       fx = [f1(x(1), x(2)); f2(x(1), x(2))]
15
       16
17
       disp(fx)
18
       A = [f11(x(1), x(2)), f12(x(1), x(2)); f21(x(1), x(2)),
          f22(x(1),x(2)),]
       disp(A, 'A = ')
19
20
       A_1 = inv(A)
       disp(A_1, 'Inverse \ of \ A = ')
21
22
       x = x - A_1 * f x
       23
24
       disp(x)
25
  end
```

#### Scilab code Exa 10.5 Newton Raphshon Method

```
1 //Example 10.52 //Newton Raphshon Method
```

```
3 //Page no. 320
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=x^3-3*x*y^2+1')
7 deff('y=f2(x,y)', 'y=3*x^2*y-y^3')
8 deff('y=f11(x,y)', 'y=3*x^2-6*y^2')
9 deff('y=f12(x,y)', 'y=-6*x*y')
10 deff('y=f21(x,y)', 'y=6*x*y')
11 deff('y=f22(x,y)', 'y=3*x^2-3*y^2')
12 x = [0; 1];
13 printf('\nx(0) = \%g\ny(0) = \%g\n',x(1),x(2))
14 \text{ for } i=1:3
15
       fx = [f1(x(1), x(2)); f2(x(1), x(2))]
       printf(' \mid n fx(\%i) = \mid n', i)
16
       disp(fx)
17
       J=[f11(x(1),x(2)),f12(x(1),x(2));f21(x(1),x(2)),
18
          f22(x(1),x(2)),]
       disp(J, 'J = ')
19
       d = det(J);
20
21
       if d==0 then
22
            dx1=0; dx2=0;
23
       else
            dx1=(fx(1)*J(2,2)-fx(2)*J(1,2))/d;
24
            dx2=(fx(2)*J(1,1)-fx(1)*J(2,1))/d;
25
26
       end
27
       x(1) = x(1) + dx1;
28
       x(2) = x(2) + dx2;
       printf('\nx(%i) = \%g\ny(\%i) = \%g\n',i,x(1),i,x
29
30 end
```

Scilab code Exa 10.6 Newton Method

```
1 //Example 10.6
2 //Newton Method
3 //Page no. 322
4 clc; clear; close;
6 deff('y=f1(x,y,z)', 'y=x-0.1*y^2+0.05*z^2-0.7')
7 deff('y=f2(x,y,z)', 'y=y+0.3*x^2-0.1*x*z-0.5')
8 deff('y=f3(x,y,z)', 'y=z+0.4*y^2+0.1*x*y-1.2')
9 deff('y=f11(x,y,z)', 'y=1')
10 deff('y=f12(x,y,z)', 'y=-0.2*y')
11 deff('y=f13(x,y,z)', 'y=0.1*z')
12 deff('y=f21(x,y,z)', 'y=0.6*x-0.1*z')
13 deff('y=f22(x,y,z)', 'y=1')
14 deff('y=f23(x,y,z)', 'y=-0.1*x')
15 deff('y=f31(x,y,z)', 'y=0.1*y')
16 deff('y=f32(x,y,z)', y=0.8*y+0.1*x')
17 deff('y=f33(x,y,z)', 'y=1')
18 x = [0;0;0];
19 printf('n \times x n \times t \times y n \times t \times z n \times n
      n ')
20 \text{ for } i=1:6
        fx=[f1(x(1),x(2),x(3));f2(x(1),x(2),x(3));f3(x
21
           (1), x(2), x(3)
22
        J=[f11(x(1),x(2),x(3)),f12(x(1),x(2),x(3)),f13(x)]
           (1), x(2), x(3)); f21(x(1), x(2), x(3)), f22(x(1), x(3))
           (2), x(3)), f23(x(1), x(2), x(3)); f31(x(1), x(2), x(3))
           (3)), f32(x(1),x(2),x(3)), f33(x(1),x(2),x(3))]
        J_1 = inv(J)
23
        printf(' \%i \setminus t\%f \setminus t\%f \setminus t\%f \setminus n', i-1, x(1), x(2), x(3))
24
25
        x=x-J_1*fx
26
   end
   printf('\n\nThe solution is x = \%f, y = \%f and z =
      \%f',x(1),x(2),x(3))
28
29 printf('\n\n\nNote: There are computation errors in
        calculation given by the book')
```

#### Scilab code Exa 10.7 Iterative Method

```
1 //Example 10.7
2 //Iterative Method
3 //Page no. 326
4 clc; clear; close;
6 \quad x = [0;0;0];
n ')
  for i=1:7
       printf(' \%i\t\%.10 f\t\%.10 f\t\%.10 f\n',i-1,x(1),x
          (2), x(3)
10
       x(1) = 0.7 + 0.1 * x(2)^2 - 0.05 * x(3)^2
11
       x(2) = 0.5 - 0.3 * x(1)^2 + 0.1 * x(1) * x(3)
       x(3) = 1.2 - 0.4 * x(2)^2 - 0.1 * x(1) * x(2)
12
13 end
14 printf('\n\nThe solution is x = \%.10 f, y = \%.10 f and
       z = \%.10 f', x(1), x(2), x(3)
```

#### Scilab code Exa 10.8 Steepest Descent

```
1 //Example 10.8
2 //Steepest Descent
3 //Page no. 328
4 clc; clear; close;
```

```
6 deff('y=f(x1,x2)', 'y=(x1-2)^4+3*(x2+3)^2')
 7 x = [1; -2];
8 printf('n \ t
                           x1 \setminus t \setminus t
                                          x2 \setminus t \setminus t F(x1, x2) \setminus n
        n ')
 9 for i=1:11
         Fx = [f(x(1), x(2))];
10
         J = [4*(x(1)-2)^3, 6*(x(2)+3)];
11
         u = (Fx*J*J'*Fx)/(J*J'*Fx*J*J'*Fx)
12
         \label{eq:printf} \textbf{printf('\%i} \setminus t\%.10 \ f \setminus t\%.10 \ f \setminus t\%.10 \ f \setminus n', \textbf{i-1,x(1),x}
13
              (2),Fx)
14
         x=x-u*J'*Fx
15 end
16 printf('\n\nThis shows that the solution tends to x1
                            x2 = \%i', ceil(x(1)), floor(x(2)))
         =\%i
                   and
```

# Chapter 11

# Eigenvalues and Eigenvectors

# Scilab code Exa 11.1 Eigenvalues and Eigenvectors

```
1 //Example 11.1
2 // Eigenvalues and Eigenvectors
3 // Page no. 333
4 clc; clear; close;
6 A1 = [0.6; 0.2]; A2 = [-0.2; 0.6]; A3 = [-0.6; -0.2]; A4
      =[0.2;-0.6];
7 T = [1.1, -0.3; -0.3, 1.9];
8 B1=T*A1; B2=T*A2; B3=T*A3; B4=T*A4;
9 disp(B4,B3,B2,B1,'The transformed vectors are :')
10 disp('These points lie on the ellipse:')
                        2 \ln(x-3y) + (3x+y) \ln ----
11 printf('
                ^{2}
        16
                4 \ln n
12 A5 = [0; 2/sqrt(10)];
13 disp('The vector (0,2/10^{\circ}(1/2)) lies on the circle:'
14 printf(' 2 2 \ln x + y = 4 \ln - \ln 10 \ln n
15 B5=T*A5;
```

```
16 disp('Also lies on the same ellipse',B5)
17 printf('\n\nWe can see that there is a linear
    relationship between the first 4 vectors and
    their respective transformend vectors through the
    scalars known as eigenvectors and eigenvalues
    respectively')
```

#### Scilab code Exa 11.2 Leverriers Method

```
1 //Example 11.2
2 //Leverrier's Method
3 //Page no. 337
4 clc; close; clear;
6 A = [2,2,2;2,5,5;2,5,1];
7 \quad A1 = A;
8 C(1) = 0;
9
        for j=1:3
10
             for k=1:3
                  if(j==k)
11
12
                       C(1) = C(1) + A1(j,k)
13
                  end
14
             end
15
        end
16
        disp(A, 'A=')
17
             disp(A1, 'A1=')
18
        printf('\nC1=')
19
        disp(C(1));
20 \text{ for } i=2:3
        A2 = A * (A1 - C(i-1) * eye(3,3));
21
22
        printf ('\n\nA\%i=',i)
23
        disp(A2);
        C(i) = 0;
24
```

```
25
        for j=1:3
26
             for k=1:3
27
                  if(j==k)
28
                      C(i)=C(i)+A2(j,k)/i
29
                  end
30
             end
31
        end
32
        printf('\nC\%i=',i)
33
        disp(C(i))
34
        A1 = A2;
35 end
36 printf('\n'n\n\nTherefore the characteristic
      polynomial is:\n 3
                              2 \setminus nx - \%ix - \%ix \%i = 0, C
       (1), C(2), C(3))
37
38 //verification
39 printf ('\n\' n Verification:')
40 \text{ s=poly}(0, "s");
41 p = poly(A, 'x');
42 A = A - eye(3,3) * %s;
43 disp(p,'=',A)
```

# Scilab code Exa 11.3 Danilevsky Method

```
1  //Example 11.3
2  //Danilevsky Method
3  //Page no. 341
4  clc; close; clear;
5
6  A=[-1,0,0;1,-2,3;0,2,-3];
7  G=[A; eye(3,3)];
8  disp(G);
9  //transformation to frobenius matrix
```

```
10 for k=3:-1:2
11
        g(k)=0;
12
        for j=1:k-1
             if(g(k) < G(k,j))
13
14
                  g(k)=G(k,j)
15
                  p=j;
16
             end
17
        end
18
        if(g(k)~=0)
19
             for j=1:3
                  r(1,j)=G(k,j)
20
21
             end
22
             for i=1:6
23
                  G(i,k-1)=G(i,k-1)/g(k)
24
             end
25
             disp(G)
26
             for j=1:3
                  if (j~=k-1)
27
28
                       1=G(k,j)
29
                       for i=1:6
30
                            G(i,j)=G(i,j)-1*G(i,k-1)
31
                       end
32
                  end
33
             end
34
             disp(G)
35
        \quad \text{end} \quad
        for j=1:3
36
37
             for i=1:3
                  c(i,1) = G(i,j)
38
39
             end
             G(k-1, j) = 0
40
             for i = 1:3
41
                  G(k-1,j)=G(k-1,j)+r(1,i)*c(i,1)
42
43
             end
44
        end
        disp(G)
45
46 \, \text{end}
47
```

```
48 // partition g
49 for i=4:6
        for j=1:3
50
            T(i-3,j)=G(i,j)
51
52
        end
53 end
54 \text{ disp}(T, T=')
55
56 //eigenvalues computation
57 printf('\n\nCharateristic polynomial:')
58 p = poly(A, 'x')
59 disp(p)
60 printf('\n\nEigenvalues:')
61 a=roots(p)
62 disp(a')
63 //eigenvectors computation
64 \text{ for } k=1:3
65
       m=2
66
        for 1=1:3
            y(1,k)=a(k,1)^{(m)}
67
            m=m-1;
68
69
        end
70 \text{ end}
71 printf('\n\')
72 disp(y,'y=')
73
74 //eigenvector computation
75
76 \text{ for } k=1:3
77
        for 1=1:3
            y1(1,1)=y(1,1)
78
            y2(1,1)=y(1,2)
79
            y3(1,1)=y(1,3)
80
81
        end
82
        x1=T*y3;
83
        x2=T*y2;
        x3 = T * y1;
84
85 end
```

```
86 printf('\n\nEigenvectors :\n')
87 for i=1:3
88 printf('|%.1f|\t\t|%.1f|\t\t|%.1f|',x1(i,1),x2(i,1),x3(i,1))
89 printf('\n')
90 end
```

#### Scilab code Exa 11.4 Power Method

```
1 //Example 11.4
2 //Power Method
3 //Page no. 345
4 clc; close; clear;
5
6 \quad A = [1, 2; 3, 4];
7 e=0.001;
8 q0 = [1;1];
9 \text{ for } i=1:5
10
        q1=A*q0;
        a=max(q1)
11
12
        for j=1:2
13
             q2(j)=q1(j)/a;
14
        end
        printf('\nq(%i) = \%.4 f
                                         a = \%.4 f
15
                                                           Scaled
           q(\%i) = \%.4 f n
                                     %.4 f
                                                          \%i \ n \ n',
           i,q1(1),a,i,q2(1),q1(2),q2(2))
16
        q1=q2;
17
        q0=q1;
18 end
19 printf ('Hence the largest eigenvalue is %.4f with
       the corresponding eigenvector as \%.4 \text{ f} \setminus \text{n}
```

#### Scilab code Exa 11.5 Inverse Power Method

```
1 //Example 11.5
2 //Inverse Power Method
3 //Page no. 347
4 clc; close; clear;
6 A = [7, 6, -3; -12, -20, 24; -6, -12, 16];
7 e=10^-6;
8 X = [1;1;1];
9 B = 0;
10 Y = [0;0;0]
11 a=0; 1=0;
12 \text{ for } i=1:2
        printf ('When a=\%i \setminus n', a);
13
14
        C = A - a * eye();
        disp(C,"C=")
15
        C_1 = inv(C);
16
        disp(C_1, "Inverse of C=");
17
        printf('\n\nItr
                                    lambda
18
                                               X')
19
        printf('\n
            n ')
20
        for j=1:10
             printf(' \setminus n\%i)
                                       \%f
                                                        \%f
                                                                 \%f
21
                       %f', j-1, 1, X(1), X(2), X(3));
22
             Y = C_1 * X;
23
             B=\max(Y);
24
             e1=abs(1-B);
25
             X = Y / B;
```

```
26
            m = 0;
27
            for k=1:3
                m=m+(Y(k)-X(k))^2;
28
29
            end
30
            e2 = sqrt(m);
31
            er=max(e1,e2);
            if (er < e)</pre>
32
                break
33
34
            end
            1=B;
35
36
37
       end
38
       a = -3;
       printf('\n\n\n')
39
40 \text{ end}
41 printf('\n\n\n) is wrong given
       in the book')
```

# Scilab code Exa 11.6 Rayleigh Quotient

```
14
15 e=0.001;
16 \text{ for } i=1:5
17
        q1=A*q0;
18
        a=max(q1)
19
        for j=1:4
            q2(j)=q1(j)/a;
20
21
        end
22
23
        q1=q2;
24
        q0=q1;
25 end
26 disp(q2, 'Corresponding Eigenvector = ')
```

#### Scilab code Exa 11.7 Jacobi Method

```
1 //Example 11.7
2 // Jacobi 's Method
3 // Page no. 355
4 clc; close; clear;
6 A = [1, 1, 1/2; 1, 1, 1/4; 1/2, 1/4, 2];
7 C = A;
8 V = [sqrt(2), 0, 1/2; sqrt(2), 0, 1/4; 3/(4*sqrt(2)), -1/(4*sqrt(2))]
      sqrt(2)),2]
9 S = eye(3,3)
10 disp(A, "A =")
11 VI = 0;
12 for i=1:3
        for j=1:3
13
14
            if(i~=j)
                 VI=VI+A(i,j)^2
15
                    //initial off diag norm
```

```
16
            end
17
        end
18 end
19 VI=sqrt(VI);
20 VF = VI * 10^{-7};
                         //final threshold
21 V1 = VI/3;
22 o=poly(0,"o");
23 for i=1:3
24 \text{ for } q=2:3
25
        for p=q-1:-1:1
            if(A(p,q)>V1)
26
27
                 a=-A(p,q);
28
                 b = (A(p,p) - A(q,q))/2
29
                 if(b~=0)
                      w=b*abs(1/b)*(a/sqrt(a^2+b^2));
30
31
                 else
                      w = (a/sqrt(a^2+b^2));
32
33
                 end
                 sin0=w/sqrt(2*(1+sqrt(1-w^2)));
34
                 cos0=sqrt(1-sin0^2)
35
36
            end
            B(p,p)=A(p,p)*cos0^2+A(q,q)*sin0^2-2*A(p,q)*
37
               sin0*cos0
                 B(q,q)=A(p,p)*sin0^2+A(q,q)*cos0^2+2*A(p)
38
                    ,q)*sin0*cos0
39
                 B(p,q) = (A(p,p)-A(q,q))*sin0*cos0+A(p,q)
                    *(\cos 0^2 - \sin 0^2)
                 S(i,i)=S(i,i)
40
                 S(i,p)=S(i,p)*cos0-S(i,q)*sin0
41
                 S(i,q)=S(i,p)*sin0+S(i,q)*cos0
42
43
44
        end
45 end
46 \text{ end}
47 \text{ disp}(B, "B =")
48 \text{ disp}(S, "S =")
49 printf('\n\n\nComputation error in the solution
      provided by book')
```

# Scilab code Exa 11.8 Recursive Formula

```
1 //Example 11.8
2 // Recursive Formula
3 // Page no. 357
4 clc; close; clear;
6 A = [2, -1, 0, 0; -1, 2, -1, 0; 0, -1, 2, -1; 0, 0, -1, 2];
7 l=poly(0,"l");
8 p0=1;
9 p1=A(1,1)-1;
10 for i=2:4
       p2=(A(i,i)-1)*p1-A(i,i-1)^2*p0;
11
12
        p0=p1;
13
       p1=p2;
       printf('\n\np\%i(l) = ',i);
14
15
        disp(p2)
16 \, \text{end}
```

# Scilab code Exa 11.9 QR Method

```
1 //Example 11.9
2 //QR Method
3 //Page no. 360
4 clc; close; clear;
5
6 A=[2,-1,0;-1,2,-1;0,-1,2];
```

```
7 deff('y=c(i,j)', 'y=A(j,j)/sqrt((A(i,j)^2+A(j,j)^2))'
8 deff('y=s2(i,j)', 'y=A(i,j)/sqrt((A(i,j)^2+A(j,j)^2))
9 disp(A, 'A=')
10 10=0; f=1; m=0; s=0; w=0;
11 for n=1:5
        for j=1:2
12
13
            for k=1:2
14
                 V(j,k)=A(j,k)
15
            end
16
        end
17
        disp(V, 'V=')
        p=poly(V, 'x');
18
        disp('=0',p);
19
20
        a=roots(p);
21
        for j=1:2
22
            printf('\na(%i) = %f',j,a(j))
23
        end
            if(abs(a(1)-V(1,1)) \le abs(a(2)-V(1,1)))
24
25
                 a=a(1)
26
            else
27
                 a=a(2)
28
            end
29
        printf ('\na = \%f\n',a)
30
        s=s+a;
31
        A = A - a * e y e ()
32
        R = A; Q = eye(3,3);
33
      for j=1:2
34
35
           for i=j+1:3
                                         //C matrix
36
                for k=1:3
                   evaluation
                    for 1=1:3
37
38
                         if(k==1)
39
                              if (k==i | k==j)
40
                                  C(k,1)=c(i,j)
41
                              else
```

```
C(k,1)=1
42
43
                                  \quad \text{end} \quad
44
                            end
                            if(k>1)
45
46
                                  if (k==i & l==j)
47
                                       C(k,1) = -1*s2(i,j)
48
                                else
                                       C(k,1)=0
49
50
                                  end
                            end
51
                            if(k<1)
52
53
                                  if (k==j & l==i)
54
                                       C(k,1)=s2(i,j)
55
                                  else
                                       C(k,1)=0
56
57
                                  end
58
                            end
59
                       end
60
                 end
61
62
                  R = C * R;
63
                  Q = Q * C';
64
65
             end
66
         end
67 disp(Q,'Q=',R,'R=')
68 disp(Q*R, 'Q*R=')
69 A = R * Q;
70 disp(A, 'A=')
71 end
72 \quad 11 = 10 + s;
73 \text{ for } i=2:3
         for j=2:3
74
              V(i-1,j-1) = A(i,j)
75
76
         end
77 end
78 disp(V, 'V=')
        p=poly(V, 'x');
79
```

```
disp('=0',p);
80
81
       a=roots(p);
       for j=1:2
82
            printf(' \setminus na(\%i) = \%f', j, a(j))
83
84
       end
85
       12=11+a(1)
       13=11+a(2)
86
       disp(13, '13=',12, '12=',11, 'l1=')
87
88 printf('\n\nNote: Values of V varies in each step
       resulting in different results due to error in
      book calculation')
```

#### Scilab code Exa 11.10 LU Method

```
1 //Example 11.10
2 //LU Method
3 //Page no. 363
4 clc; close; clear;
5
6 A
      = [120, 80, 40, -16; 80, 120, 16, -40; 40, 16, 120, -80; -16, -40, -80, 120];
7 \text{ disp}(A, "A =")
8 L = eye(4,4);
9 for 1=1:20
10 for j=1:4
11
        for i=1:j
12
            k=0
13
            for p=1:i-1
                 k=k-A(i,p)*A(p,j)
14
15
            end
16
            A(i,j)=A(i,j)+k
17
        end
```

```
for i = j + 1 : 4
18
19
            k=0;
            for p=1: j-1
20
21
                 k=k-A(i,p)*A(p,j)
22
23
            A(i,j) = (A(i,j)+k)/A(j,j)
24
        end
25
   end
   disp(A, "Modified A = ")
26
27
        for i=1:4
28
        for j=1:4
29
            if i>j then
30
                 L(i,j)=A(i,j)
31
            else
32
                 U(i,j)=A(i,j)
33
            end
34
        end
35 end
36 disp(U,"U =",L,"L =")
37 A = U * L;
38 printf('\n\nAfter \%i iterations, matrix A = \n\n', 1)
39 \text{ for } i=1:4
40
        for j=1:4
                        \%.2 \text{ f} \text{ t}, A(i,j))
            printf('
41
42
        end
43
        printf('\n')
44 end
45 end
46 printf('\n\nTherefore the eigenvalues are the
      diagonal elements f the transformed triangular
      matrix are: \n\n')
47 for i=1:4
        printf('\%.2f,',A(i,i))
48
49 end
```

# Scilab code Exa 11.11 Generalized Eigenvalue Problem

```
1 //Example 11.11
2 //Generalized Eigenvalue Problem
3 //Page no. 365
4 clc; close; clear;
6 \quad A = [1, 1, 0.5; 1, 1, 0.25; 0.5, 0.25, 2]
7 B=[2,2,2;2,5,5;2,5,11]
8 disp(B, "B =", A, "A =")
9 \text{ for } i=1:3
10
       G(i,i) = sqrt(B(i,i))
11 end
12 G = [B; eye(3,3)];
13
14 //transformation to frobenius matrix
15 for k=3:-1:2
       g(k)=0;
16
       for j=1:k-1
17
            if(g(k)<G(k,j))
18
19
                 g(k)=G(k,j)
20
                 p=j;
21
            end
22
        end
        if(g(k)~=0)
23
24
            for j=1:3
25
                 r(1,j)=G(k,j)
26
            end
27
            for i=1:6
28
                 G(i,k-1)=G(i,k-1)/g(k)
29
            end
30
            for j=1:3
```

```
if(j^{-}=k-1)
31
32
                       1=G(k,j)
                       for i=1:6
33
                            G(i,j)=G(i,j)-1*G(i,k-1)
34
35
                       end
36
                  end
             end
37
38
        end
        for j=1:3
39
             for i=1:3
40
                  c(i,1)=G(i,j)
41
42
             end
43
             G(k-1,j)=0
             for i=1:3
44
                  G(k-1,j)=G(k-1,j)+r(1,i)*c(i,1)
45
46
             end
47
        end
48 end
49
50 //partition g
51 \text{ for } i=4:6
52
        for j=1:3
             T(i-3,j)=G(i,j)
53
54
        end
55 end
56
57 //eigenvalues computation
58 p = poly(B, 'x')
59 a=roots(p)
60 printf('\n\nDiagonalized Matrix B = \langle n \rangle')
61 \text{ for } i=1:3
62
        for j=1:3
63
             if i~=j then
                  B(i,j)=0
64
65
             else
                  B(i,j)=a(i)
66
67
             end
68
        end
```

```
69 end
70 disp(B)
71 //eigenvectors computation
72 \text{ for } k=1:3
73
         m=2
74
         for 1=1:3
             y(1,k)=a(k)^{(m)}
75
76
             m=m-1;
77
         end
78 end
79 printf('\n')
80
81
82 \text{ for } k=1:3
         for 1=1:3
83
             y1(1,1)=y(1,1)
84
85
              y2(1,1)=y(1,2)
             y3(1,1)=y(1,3)
86
87
         end
88
         x1=T*y3;
89
         x2=T*y2;
90
         x3=T*y1;
91 end
92 printf('\n\nEigenvectors of B are :\n\n')
93 for i=1:3
         printf('|\%.5f|\t\t|\%.5f|\t\t|\%.5f|',x3(i,1),x2(i
94
            ,1),x1(i,1))
         printf('\n')
95
96 \text{ end}
97 x = [x3, x2, x1]
98
99
100
101
102
103 B = [2,2,2;2,5,5;2,5,11]
104 G = 0
105 \text{ for } i=1:3
```

```
for j=1:3
106
107
            if i==j then
                G(i,j) = sqrt(B(i,j))
108
109
            else
                G(i,j)=0;
110
111
            end
112
        end
113 end
114
115 B=inv(G)*x'*A*x*inv(G)
116 disp(B,"Eigenvectors of A =")
117
118 printf('\n\n Note : Computation Error in book in
       caculation of eigenvector of B thus for A')
```

# Chapter 12

# Interpolation and Extrapolation

## Scilab code Exa 12.1 Linear Interpolation Technique

```
1 //Example 12.1
2 //Linear Interpolation Technique
3 //Page no. 372
4 clc; close; clear;
6 printf('x:
7 f = [1,4,9,16,25];
8 for i=1:5
       printf('\%i\t',i)
10 \text{ end}
11 printf('\setminusnf(x):
12 \text{ for } i=1:5
       printf('\%i\t',f(i))
13
14 end
15 \quad x = 2.5;
16 x1=2; x2=3; printf('\n\nfor(2,4) and (3,9)')
17 f(2.5)=f(x1)+(f(x2)-f(x1))*(x-x1)/(x2-x1)
```

```
18 printf('\nf(2.5) = %.1f',f(2.5))
19
20 x=2.5;
21 x1=2; x2=4; printf('\n\nfor (2,4) and (4,16)')
22 f(2.5)=f(x1)+(f(x2)-f(x1))*(x-x1)/(x2-x1)
23 printf('\nf(2.5) = %.1f',f(2.5))
24
25 x=2.5;
26 x1=1; x2=3; printf('\n\nfor (1,1) and (3,9)')
27 f(2.5)=f(x1)+(f(x2)-f(x1))*(x-x1)/(x2-x1)
28 printf('\nf(2.5) = %.1f',f(2.5))
29
30 printf('\n\nExact value = %.2f',2.5^2)
```

# Scilab code Exa 12.2 Lagarangian Method

```
1 //Example 12.2
2 //Lagarangian Method
3 //Page no. 373
4 clc; close; clear;
6 \text{ xk} = [-1, 0, 2, 5];
7 yk = [10,7,7,22];
9 P = 0;
10 x = poly(0, "x");
11 for k=0:3
12
        p = yk(k+1)
13
        for j=0:3
             if(j^=k)
14
15
                  p=p*((x-xk(j+1))/(xk(k+1)-xk(j+1)))
16
             end
        \quad \text{end} \quad
17
```

```
18 P=P+p;
19 end
20 disp(P,'P=')
```

#### Scilab code Exa 12.3 Aitken Nevilles Method

```
1 //Example 12.3
2 // Aitken-Neville 's Method
3 // Page no. 378
4 clc;close;clear;
                                       // function for
6 function [x,y,z]=tran(a,b)
      exchanging values
7
       z=a; y=b; x=z;
8 endfunction
9 deff('y=P(a,b,c,d,e)', 'y=(c(d)*b(d+1)-c(d+e)*b(d))/(
      a(d+e)-a(d))') //function for finding
      polynomials
10 xi = [0.8, 1, 1.2, 1.4, 1.6];
11 yi = [2.2255, 2.7183, 3.3201, 4.0552, 4.9530];
12 x = 1.23
13 [xi(5),xi(1),a]=tran(xi(1),xi(5))
14 [xi(4),xi(1),a]=tran(xi(1),xi(4))
15 [xi(3),xi(2),a]=tran(xi(2),xi(3))
16 [xi(2),xi(1),a]=tran(xi(1),xi(2))
17 [yi(5),yi(1),a]=tran(yi(1),yi(5))
18 [yi(4),yi(1),a]=tran(yi(1),yi(4))
19 [yi(3),yi(2),a]=tran(yi(2),yi(3))
20 [yi(2),yi(1),a]=tran(yi(1),yi(2))
21 \quad for \quad i=1:5
22
       x_xi(i)=x-xi(i);
23 end
24 printf('xi
                   x-xi
                               yi\n')
```

```
25 printf('----
                     ----\n ')
26 \text{ for } i=1:5
       printf('%.1f
                      \%.2 \text{ f} \text{ h', xi(i), x_xi(i), yi(i)}
27
          )
28 \quad {\tt end}
29 printf('\n nPolynomials\n')
30 printf('----\n')
31 for i=1:4
32
       for j=1:5-i
             printf('%f\n',P(xi,yi,x_xi,j,i))
33
34
             yi(j)=P(xi,yi,x_xi,j,i)
35
36
       printf('\n\n')
37 end
```

#### Scilab code Exa 12.4 Newtons Divided Difference Interpolation

```
1 //Example 12.4
2 //Newton's Divided Difference Interpolation
3 //Page no. 381
4 clc; close; clear;
6 x = [0, 1, 2, 3, 4, 5]
7 y = [1, 2, 5, 10, 17, 26];
8 y1 = y;
9 deff('yi=P(a,b,d,e)', 'yi=(b(d+1)-b(d))/(a(d+e)-a(d))
      ') //function for finding polynomials
10 for i=1:3
       for j=1:6-i
11
            z(j,i)=P(x,y,j,i)
12
13
             y(j)=z(j,i)
14
       end
15 end
```

```
16 z(6,1)=0;
                             f(x0, x1, x3) f
17 printf('x
             y 	 f(x0, x1)
     (x0, x1, x2, x3) \ n'
18 printf('
     n ')
19
      for j=1:6
          20
            ,y1(1,j),z(j,1),z(j,2),z(j,3))
21
      end
22 \times 1 = 2.6;
23 f=y1(4)+(x1-x(4))*(z(4,1))+(x1-x(4))*(x1-x(5))*z
24 printf(' \ n \ n \ (2.6) = \%.2 f', f)
```

## Scilab code Exa 12.5 Interpolation Methods

```
1 //Example 12.5
2 //Interpolation Methods
3 //Page no. 403
4 clc; close; clear;
6 x = [0, 1, 2, 3, 4];
7 y = [0, 1, 8, 27, 64];
9 //Inverse lagrange Method
10 P = 0;
11 y1=20;
12 \text{ for } k=0:4
13
       p=x(k+1)
14
       for j=0:4
15
            if(j^=k)
                 p=p*((y1-y(j+1))/(y(k+1)-y(j+1)))
16
```

```
17
            end
18
       end
19
       P=P+p;
20 end
21 disp(P, 'Inverse Lagrange interpolation x=')
22
23
24 // Newton's divide difference interpolation
25 \times 1 = x;
26 deff('xi=P(a,b,d,y)', 'xi=(b(d+1)-b(d))/(a(d+y)-a(d))
      ') //function for finding polynomials
27 \text{ for } i=1:2
28
       for j=1:5-i
            z(j,i)=P(y,x,j,i)
29
             x(j)=z(j,i)
30
31
        end
32 end
33 z(5,1)=0;
34 printf('\n'n y\tx
                       f (y0, y1)
                                          f(y0, y1, y3) \ n
      ')
35 printf('-
                                                           -\n
      ')
36
       for j=1:5
            printf(' \%i \ t\%i \ t\%i \ t\%i \ t \ n', y(1, j), x1(1, j)
37
               j),z(j,1),z(j,2))
38
       end
39 \text{ y} 1 = 20;
40 f=x1(4)+(y1-y(4))*(z(4,1))+(y1-y(4))*(y1-y(5))*z
41 printf('\n\nNewton Divide Difference x(20)=\%.2 f',f)
42
43 x = x1;
44 //Iterated Linear Interpolation
45 function [x,y,z]=tran(a,b)
                                         // function for
      exchanging values
46
       z=a; y=b; x=z;
47 endfunction
48 deff('y=P(a,b,c,d,e)', 'y=(c(d)*b(d+1)-c(d+e)*b(d))/(
```

```
a(d+e)-a(d))') //function for finding
      polynomials
49 y1 = 20
50
[y(4),y(1),a]=tran(y(1),y(4))
[y(3),y(2),a]=tran(y(2),y(3))
[x(4),x(1),a]=tran(x(1),x(4))
[x(3),x(2),a]=tran(x(2),x(3))
55 for i=1:5
       y1_y(i) = y1 - y(i);
56
57 end
58 printf('y\ty1-y\tx\n')
59 printf('-----
60 \text{ for } i=1:5
       printf('\%.1 f\t\%i\t\%i\n',y(i),y1_y(i),x(i))
61
62 end
63 printf('\n\nPolynomials\n')
64 printf('----\n')
65 \text{ for } i=1:4
66
       for j=1:5-i
67
             printf('%f\n',P(y,x,y1_y,j,i))
             x(j) = P(y, x, y1_y, j, i)
68
69
       end
       printf('\n\n')
70
71 end
72 printf('Iterated Linear Interpolation x(20) = \%f', x(
      j))
73
74 x = [0, 1, 2, 3, 4];
75 y = [0, 1, 8, 27, 64];
76 \text{ y1=y};
77 //Suggested Interpolation
78
79 \text{ for } i=1:4
       for j=1:5-i
80
            z(j,i)=y(j+1)-y(j);
81
            y(j)=z(j,i)
82
83
       end
```

```
84 end
 85 printf('\n \n \x \ty \tdy \td2y \td3y \td4y \n')
 86 printf('
                                                              —\n ')
 87 \text{ for } i=1:5
 88
         printf(' \%i \t\%i \t\%i \t\%i \t\%i \t\%i \n', x(i), y1(i), z(
             i,1),z(i,2),z(i,3),z(i,4))
 89 end
 90 s = poly(0, 's')
91 p=y1(4); k=3;
92 \text{ for } i=1:3
93
         r=1;
94
         for j=1:i
              r=r*(s+(j-1))
95
96
         end
         r=r*z(k,i)/factorial(j);
97
         k=k-1;
98
99
         p=p+r;
         printf('\n\nStage %i :',i)
100
101
         disp(p)
102 end
103 \text{ s0} = -7/19;
104 disp(s0, 's0=');
105 \text{ s1} = (-7 - \text{s0} * (\text{s0} + 1) * 6) / 19
106 disp(s1, 's1=')
107 \text{ disp}(3+s1, 'x1=')
108 	ext{ s2=(-7-s1*(s1+1)*6-s1*(s1+1)*(s1+2))/19}
109 disp(s2, 's2=')
110 x2=3+s2;
111 disp(x2, 'Suggested Interpolation x(20)=');
```

Scilab code Exa 12.6 Chebyshev Interpolating Polynomial

```
1 //Example 12.6
2 //Chebyshev Interpolating Polynomial
3 //Page no. 407
4 clc; close; clear;
6 deff('y=f(x)', 'y=1/(1+\exp(-x))');
7 a=-2;b=2;n=3;
8 D = \% pi/(2*n+2)
9 for k=0:n
10
       t(k+1) = -\cos(D*(2*k+1))
       x(k+1) = ((a+b)/2) + (b-a)*t(k+1)/2
11
12
       y(k+1) = f(x(k+1))
13
       C(k+1)=0
14 end
15 for j = 0:n
       for k=0:n
16
            L = (2 * k + 1) * D
17
            C(j+1) = C(j+1) + y(k+1) * cos(j*L)
18
19
        end
20 end
21 C(1)=C(1)/(n+1);
22 \text{ for } j=1:n
       C(j+1)=2*C(j+1)/(n+1)
23
24 end
25
26 x = poly(0, "x")
27 T(1)=1; T(2)=x;
28 \text{ for } j=1:n-1
29
        T(j+2)=2*x*T(j+1)-T(j)
30 \text{ end}
31 P=C(1)*T(1)
32 \text{ for } j=1:n
       P=P+C(j+1)*T(j+1)
33
34 end
35 disp(P, 'P3(x)=')
36 printf('\n\nNote: Book has Calculation errors in
      calculation of coefficients')
```

# Scilab code Exa 12.7 Double Interpolation

```
1 //Example 12.7
2 //Double Interpolation
3 //Page no. 409
4 clc; close; clear;
6 \quad x = [0, 1, 2, 3, 4];
7 y = [0, 1, 2, 3, 4];
8 z
      =[0,1,8,27,64;1,3,11,31,69;4,7,16,37,76;9,13,23,45,85;16,21,32,55
9 printf('y / x')
10 for i=1:5
11
       printf('\t\%i',x(i))
12 end
13 for i=1:5
       printf('\n %i',y(i))
14
       for j = 1:5
15
            printf('\t\%i',z(j,i))
16
17
        end
18 end
19 printf('\n\n'n')
20 \text{ for } i=1:5
21
       x = 2.5;
22
       x1=2; x2=3;
       z1(1,i)=z(i,x1+1)+(z(i,x2+1)-z(i,x1+1))*(x-x1)/(
23
           x2-x1)
24 end
25 printf('Values of z at x=2.5:\n\n y')
26 \text{ for } i=1:5
       printf('\t\%i',y(i))
27
```

```
28 end
29 printf('\n z')
30 for i=1:5
31    printf('\t%g',z1(i))
32 end
33 y=1.5;
34 y1=1;y2=2;
35 z2=z1(y1+1)+(z1(y2+1)-z1(y1+1))*(y-y1)/(y2-y1)
36 printf('\n\nValue of z at x=2.5 and y=1.5 : %g',z2)
```

## Scilab code Exa 12.8 Spline Interpolation

```
1 //Example 12.8
2 //Spline Interpolation
3 //Page no. 414
4 clc; close; clear;
6 xi = [0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17];
7 yi
      = [0.1110, 0.1234, 0.1361, 0.1491, 0.1623, 0.1759, 0.1897, 0.2038];
8 h=0.01;
9
10 pi(1)=0; qi(1)=0; pi(8)=0; qi(8)=0;
11 for i=2:7
       pi(i) = -1/(4+pi(i-1))
12
13
        qi(i) = ((6/h^2)*(yi(i+1)-2*yi(i)+yi(i-1))-qi(i-1)
           )/(4+pi(i-1))
14 end
15 \text{ si2}(8)=0;
16 \text{ si2}(1)=0; \text{si1}(8)=0;
17 \sin(1) = 0;
18 for i=7:-1:2
```

```
si2(i)=pi(i)*si2(i+1)+qi(i)
19
20 \text{ end}
21 for i=2:8
       si1(i)=si1(i-1)+h*(si2(i)+si2(i-1))/2
23 end
24 printf('\n i\t xi\t fi\t pi\t\t qi\t\t si2\t\t
      si1')
25 printf('\n
      ')
26 for i=1:8
       printf('\n %i\t%g\t%g\t%f\t%f\t%f\t%f',i,xi(i),
          yi(i),pi(i),qi(i),si2(i),si1(i))
28 end
29 x = 0.1325;
30 i = 4;
31 s=yi(i)+(x-xi(i))*si1(i)+(si2(i)*(x-xi(i))^2)/2+((
     si2(i+1)-si2(i))/(xi(i+1)-xi(i)))*((x-xi(i))^3)/6
32 printf('\n\nSpline Interpolated Value of s(0.1325)
     is : %f',s)
```

# Chapter 13

# **Numerical Differentiation**

#### Scilab code Exa 13.1 Differentiation

```
1 //Example 13.1
2 // Differentiation
3 //Page no. 420
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=x^2+5')
7 deff('y=f1(x,h)', 'y=(f(x+h)-f(x))/h')
8 h=0.01; x=2.4
9 d=f1(x,h)
10 d1=(f1(x+h,h)-f1(x))/h
11 printf('dy\n --- = \%g\n dx',d)
12 printf('\n\n\n d2y\n --- = \%g\n dx2',d1)
```

Scilab code Exa 13.2 Calculation of x coordinate of Minimum Point

```
1 //Example 13.2
2 // Calculation of x-coordinate of Minimum Point
3 // Page no. 422
4 clc; close; clear;
6 \text{ for } i=1:7
7
        for j = 1:6
             z(i,j)=0
9
        end
10 \text{ end}
11 h = 0.2
12 printf('
                                          d
                                                       d2
                 X
               d3
                           d4 n
13 printf('
      ')
14 \text{ for } i=1:7
        z(i,1)=i/5;
15
16 \text{ end}
17 z(1,2)=2.10022
18 z(2,2) = 1.98730
19 z(3,2)=1.90940
20 z(4,2)=1.86672
21 z(5,2) = 1.85937
22 z(6,2)=1.88755
23 z(7,2)=1.95147
24 for i=3:6
25
        for j=1:9-i
             z(j,i)=z(j+1,i-1)-z(j,i-1)
26
27
        end
28 \text{ end}
29 disp(z)
30
31 s=poly(0, 's')
32 p=z(5,2); k=4;
33 \text{ for } i=3:5
34
        r=1;
       for j=1:i-2
35
```

```
r=r*(s+(j-1))
36
37
        end
38
        r=r*z(k,i)/factorial(j);
39
        k=k-1;
40
        p=p+r;
41
42 \text{ end}
43 disp(p)
44 s=(-z(4,3)+z(3,4)/2)/z(3,4)
45 \text{ disp(s,'s=')}
46 \text{ x=z}(5,1) + s*h
47 disp(x, 'x=')
```

### Scilab code Exa 13.3 Newton Forward Difference Formula

```
1 //Example 13.3
 2 //Newton's Forward Difference Formula
 3 //Page no. 423
4 clc; close; clear;
                               y \setminus t \setminus t d \setminus t \setminus t d2 \setminus t \setminus t
 5 printf(' x \setminus t \setminus t
                                                                      d3 \setminus t
                d4 \ n')
       \setminus t
 6 printf('
        ')
 7 h=0.05;
       =[1.00,1.00000;1.05,1.02470;1.10,1.04881;1.15,1.07238;1.20,1.0954
9 deff('y=f1(x,s)', 'y=(z(x,3)+(s-1/2)*z(x,4)+z(x,5)
        *(3*s^2-6*s+2)/6)/h
10 deff('y=f2(x,s)', 'y=(z(x,4)+z(x,5)*(s-1))/h^2') 11 deff('y=f3(x,s)', 'y=z(x,5)/h^3')
```

12 for i=3:6

```
for j=1:9-i
13
             z(j,i)=z(j+1,i-1)-z(j,i-1)
14
15
        end
16 \text{ end}
17 printf('\n')
18 for i=1:7
19
        for j=1:6
             if z(i,j)==0 then
20
21
                  printf(' \t')
22
             else
                  printf(\%.7 f \ t^{\prime}, z(i,j))
23
24
             end
25
        end
26
        printf('\n')
27 \text{ end}
28 \text{ s=poly}(0, 's')
29 p=z(5,2); k=4;
30 \text{ for } i=3:5
31
        r=1;
32
        for j=1:i-2
33
             r=r*(s+(j-1))
34
        end
35
        r=r*z(k,i)/factorial(j);
36
        k=k-1;
37
        p=p+r;
38
39 end
40 disp(p, 'y(s) = ')
41 printf('\n\ny1(1) = \%g',f1(1,0))
42 printf('\n\ny2(1) = \%g',f2(1,0))
43 printf('\n \ny3(1) = \%g', f3(1,0))
44 printf('\n\ny1(1.025) = \%g',f1(1,0.5))
```

### Scilab code Exa 13.4 Newton Backward Difference Formula

```
1 //Example 13.4
 2 //Newton's Backward Difference Formula
 3 //Page no. 425
4 clc; close; clear;
                             y \setminus t \setminus t d \setminus t \setminus t d2 \setminus t \setminus t
 5 printf(' x \setminus t \setminus t
                                                                 d3 \setminus t
              d4 \ n')
       \setminus t
 6 printf('
       ')
 7 h=0.02;
 8 z
       = [0.96, 1.8025; 0.98, 1.7939; 1.00, 1.7851; 1.02, 1.7763; 1.04, 1.7673];
9 deff('y=f1(x,s)', 'y=(z(x,3)+(s+1/2)*z(x,4))/h')
10 for i=3:6
         for j=1:7-i
11
12
              z(j,i)=z(j+1,i-1)-z(j,i-1)
13
         end
14 end
15 printf('\n')
16 for i=1:5
         for j = 1:6
17
              if z(i,j)==0 then
18
                   \texttt{printf(', \ \ \ ')}
19
20
              else
                   printf('%.7f\t',z(i,j))
21
22
              end
23
         end
24
         printf('\n')
25 end
26 printf('\n\ny1(1) = \%g',f1(2,0))
27 printf('\n\ny1(1.03) = \%g',f1(4,0.5))
```

## Scilab code Exa 13.5 Stirlings Central Difference Derivatives

```
1 //Example 13.5
2 // Stirlings Central Difference Derivatives
3 //Page no. 426
4 clc; close; clear;
                        y \setminus t \setminus t d \setminus t \setminus t d2 \setminus t \setminus t
5 printf('
               x \setminus t \setminus t
                                                              d3 \setminus n
6 printf('
       ')
7 h=0.01; s=0.5;
8 deff('y=f1(x,s)', 'y=((z(x,3)+z(x-1,3))/2+s*z(x-1,4)
      +(z(x-1,5)+z(x-2,5))*(3*s^2-1)/12)/h
9 deff('y=f2(x,s)', 'y=(z(x-1,4))/h^2')
10 deff('y=f3(x,s)', 'y=(z(x-1,5)+z(x-2,5))/(2*h^3)')
11 z
      = [1.00, 1.00000; 1.01, 1.00499; 1.02, 1.00995; 1.03, 1.01489; 1.04, 1.0198]
12 for i=3:5
13
        for j=1:19-i
             z(j,i)=z(j+1,i-1)-z(j,i-1)
14
15
        end
16 end
17 printf('\n')
18 \text{ for } i=1:17
19
        for j=1:5
             if z(i,j)==0 then
20
                  printf(' \t')
21
             else
22
                  printf('%.7f\t',z(i,j))
23
24
             end
```

## Scilab code Exa 13.6 Extrapolation

#### Scilab code Exa 13.7 Richardson Extrapolation

```
1 //Example 13.7
```

```
2 //Richardson Extrapolation
3 // Page no. 431
4 clc; close; clear;
6 deff('y=f(x)', 'y=exp(2*x)')
7 e=10^-4; h=0.8;
8 D1 = 0;
9 \text{ for } i=1:4
      printf('\n')
10
      for j=1:i
11
12
          if j==1 then
13
              D(i,j)=(f(h)-f(-h))/(2*h)
14
          else
15
              D(i,j)=D(i,j-1)+(D(i,j-1)-D(i-1,j-1))
                 /(2^{(2*(j-1))-1})
16
          end
          printf('\%g\t\t',D(i,j))
17
18
      end
19
      h=h/2
20 end
of the function y = f(x) = e at x=0 is D(3,3) =
      %g',D(i,j))
```

## Scilab code Exa 13.8 Application

```
1 //Example 13.8
2 //Application
3 //Page no. 433
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=2/x^2')
7 a=1; b=2; a1=1; b1=0;
```

```
8 N=4;
9 h=(b-a)/(N+1);
10 for j=1:N
        s(j)=f(a+j*h)
11
12 end
13 for i=1:N
        for j=1:N
14
             if abs(i-j)==1 then
15
                 A(i,j) = -1
16
17
             end
18
             if i==j then
                 A(i,j)=2+s(i)*h^2
19
20
             end
21
        end
22
        if i==1 then
            k(i,1)=s(i)+a1/h^2
23
        elseif i==N
24
25
            k(i,1)=s(i)+b1/h^2
26
        else
            k(i,1)=s(i)
27
28
        \quad \text{end} \quad
29 end
30 \text{ disp}(A, A = ')
31 \text{ disp}(k, k = ')
```

# Chapter 14

# **Numerical Integration**

## Scilab code Exa 14.2 Simpsons 1 3rd Rule

```
1 //Example 14.2
2 //Simpsons 1/3rd Rule
3 //Page no 442
4 clc; clear; close;
5 \times (1,1) = 0
6 \text{ for } i=2:9
       x(1,i)=x(1,1)+(i-1)*10
8
9 end
10 y
      = [30, 31.63, 33.44, 35.47, 37.75, 40.33, 43.29, 46.69, 50.67]
11
12 //trapezoidal rule
13 S = 0;
14 h=(x(9)-x(1))/8
15 for j=1:9
16
       S=0;
17
       for i=1:j
```

```
if (i == 1 | i == j)
18
19
                 S=S+y(i)
20
             else
21
                 S=S+2*y(i)
22
             end
23
        end
24
        S=S*h/2
        printf('\n Velocity at t (%i) = \%.2 \, \text{f',x(j),S})
25
26
        y1(j)=S
27 end
28
29 y1(1)=0;
30 //Simpsons 1/3rd Rule
31 S = 0;
32 h = (x(9) - x(1))/8
33 for i=1:9
        if (i == 1 | i == 9)
34
             S=S+y1(i)
35
        elseif(((i)/2)-fix((i)/2)==0)
36
             S = S + 4 * y1(i)
37
38
        else
39
             S=S+2*y1(i)
40
        end
41 end
42 S=S*h/3;
43 S=S/1000
44 printf('\n\nSimpsons 1/3rd Rule Sum = %g km',S)
```

## Scilab code Exa 14.3 Trapezoidal Rule and Simpsons Rule

```
1 //Example 14.3
2 //Trapezoidal Rule and Simpsons Rule
3 //Page no. 442
```

```
4 clc;close;clear;
5 n=2; a=0; b=1;
6 h=(b-a)/n
7 deff('y=f(x)', 'y=1/(1+x)')
8 for i=0:2
9
        x(i+1)=i/2;
        y(i+1) = f(x(i+1))
10
11 end
12 printf('xi\t')
13 for i=1:3
        printf('\%g\t'',x(i))
14
16 printf('n yit')
17 \text{ for } i=1:3
        printf('1/\%g\t',1+(i-1)/2)
18
19 end
20
21 //trapezoidal rule
22 S = 0;
23 for i=1:3
24
        if (i == 1 | i == 3)
25
            S=S+y(i)
26
       else
27
            S=S+2*y(i)
28
        end
29 \text{ end}
30 S = S * h / 2
31 printf('\n\nTrapezoidal Rule Sum = \%g',S)
32
33 //Simpsons 1/3rd Rule
34 S = 0;
35 \text{ for } i=1:3
36
        if (i == 1 | i == 3)
            S=S+y(i)
37
        elseif(((i)/2)-fix((i)/2)==0)
38
            S=S+4*y(i)
39
40
        else
            S=S+2*y(i)
41
```

```
42 end

43 end

44 S=S*h/3

45 printf('\n\nSimpsons 1/3rd Rule Sum = %g',S)
```

## Scilab code Exa 14.5 Romberg Method

```
1 //Example 14.5
2 //Romberg Method
3 //Page no. 457
4 clc; close; clear;
6 deff('y=f(x)', 'y=1/(1+x)')
7
8 h = [0.5, 0.25, 0.125]
9 \text{ for } k=1:3
10
       for i=0:h(k):1
11
            x(i/h(k)+1)=i;
12
            y(i/h(k)+1)=f(x(i/h(k)+1))
13
       end
       n=1+(1/h(k))
14
15
       //trapezoidal rule
       S=0;
16
17
        for i=1:n
18
            if (i == 1 | i == n)
19
                S=S+y(i)
20
            else
                S=S+2*y(i)
21
22
            \quad \text{end} \quad
23
       end
24
       S=S*h(k)/2
       25
       z(2*k-1,1)=S
26
```

```
27 end
28 for i=2:3
29          for k=1:4-i
30          z(k*2+i-2,i)=z(2*k-1+i,i-1)+(z(2*k-1+i,i-1)-z(2*k-3+i,i-1))/3
31 end
32 end
33
34 printf('\n\n')
35 disp(z,'The Table of values:')
```

## Scilab code Exa 14.7 Gaussian Quadrature Formula

Scilab code Exa 14.8 Gauss Legendre Two Point Rule

```
1 //Example 14.8
```

## Scilab code Exa 14.9 Gauss Legendre Three Point Rule

```
1 //Example 14.9
2 //Gauss Legendre Three Point Rule
3 //Page no. 473
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=1/(x+3)')
7 s=integrate('f(x)', 'x', -1,1)
8 printf('By Direct Method, I = %g',s)
9 s=5/9*f(-sqrt(3/5))+8/9*f(0)+5/9*f(sqrt(3/5))
10 printf('\n\n By Gauss-Legendre 3 point rule, I = %g',s)
,s)
```

## Scilab code Exa 14.10 Spline Integration Method

```
1 //Example 14.102 //Spline Integration Method
```

```
3 //Page no. 478
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=sind(%pi*x)')
7 deff('y=f1(x,h)', 'y=(f(x+h)-f(x))/h')
8 h=0.01;
9 n=2; h=0.5; a=0; b=1;
10 disp(integrate('f(x)', 'x',0,1), 'I = ')
```

## Scilab code Exa 14.11 Trapezoidal Rule

```
1 //Example 14.1
2 //Trapezoidal Rule
3 //Page no 440
4 clc; clear; close;
5 x1=1.46
6 for i=1:6
7
       x(1,i)=x1+i/100
9 y = [3.86, 3.90, 3.96, 4.02, 4.06, 4.12]
10
11 //trapezoidal rule
12 S = 0;
13 h=(x(6)-x1)/6
14 for i=1:6
       if (i == 1 | i == 6)
15
16
            S=S+y(i)
17
       else
18
            S=S+2*y(i)
19
        end
20 end
21 S = S * h / 2
22 printf('\n I = \%g',S)
```

## Scilab code Exa 14.14 Trapezoidal and Simpsons Rule

```
1 //Example 14.14
2 //Trapezoidal and Simpsons Rule
3 //Page no. 486
4 clc; close; clear;
6 x(1) = 0.5; y(1) = 0.5; h = 0.25
7 \text{ for } i=2:3
        x(i)=x(i-1)+h
        y(i)=y(i-1)+h
10 \text{ end}
11 printf(' y/x \setminus t \mid t\%g \setminus t\%g \setminus t\%g', x(1), x(2), x(3))
12 printf('\n------
13 for i=1:3
        printf(' \n\%g\t \mid \t', y(i))
14
15
        for j=1:3
             z(i,j)=x(j)*y(i)
16
             printf('%g\t',z(i,j))
17
18
        end
19 end
20
21 //trapezoidal rule
22 s = 0;
23 for i=1:3
24
        for j=1:3
25
             if i==1 \& j==1 then
26
                 s=s+z(i,j)
             elseif i==3 & j==3
27
28
                  s=s+z(i,j)
29
             else
                 s=s+2*z(i,j)
30
```

```
31
            end
32
        end
33 end
34 s = (s*(h^2))/4
35 printf(' \n \n')
36 disp(s, 'Trapezoidal Rule Sum = ')
37 printf(' \n \n')
38 //simpsons rule
39 s = 0;
40 \text{ for } i=1:3
        for j=1:3
41
            if i/2-int(i/2) == 0 & j/2-int(j/2) == 0 then
42
43
                 s=s+16*z(i,j)
            elseif i/2-int(i/2)~=0 & j/2-int(j/2)~=0
44
45
                 s=s+z(i,j)
46
            else
47
                 s=s+4*z(i,j)
48
            end
49
        end
50 end
51 s = (s*(h^2))/9
52 disp(s, 'Simpsons Rule Sum = ')
```

## Scilab code Exa 14.15 Trapezoidal and Simpsons Rule

```
1 //Example 14.15
2 //Trapezoidal and Simpsons Rule
3 //Page no. 487
4 clc; close; clear;
5
6 x(1)=0; y(1)=0; h=0.25
7 for i=2:5
8 x(i)=x(i-1)+h
```

```
y(i) = y(i-1) + h
9
10 \text{ end}
11 printf(' y/x \setminus t \mid t\%g \setminus t\%g \setminus t\%g \setminus t\%g \setminus t\%g', x(1), x(2), x(3),
       x(4), x(5)
12 printf('\n
       ')
13 for i=1:5
          printf (' \n\%g\t | \t', y(i))
14
         for j=1:5
15
              z(i,j)=x(j)*y(i)
16
17
              printf('%g\t',z(i,j))
18
         end
19 end
20
21 //trapezoidal rule
22 s = 0;
23 \text{ for } i=1:5
24
        for j=1:5
25
              if i==1 \& j==1 then
26
                   s=s+z(i,j)
27
              elseif i==5 & j==5
28
                   s=s+z(i,j)
29
              else
30
                   s=s+2*z(i,j)
31
              end
32
         end
33 end
34 s = (s*(h^2))/4
35 printf('\n')
36 disp(s, 'Trapezoidal Rule Sum = ')
37 printf('\n\n')
38
39 //simpsons rule
40 s = 0;
41 for i=1:5
42
        for j = 1:5
              if i/2-int(i/2) == 0 & j/2-int(j/2) == 0 then
43
```

```
44
                if i== j then
45
                     s=s+16*z(i,j)
46
                 else
47
                     s=s+4*z(i,j)
48
                 end
49
            elseif i/2-int(i/2)~=0 & j/2-int(j/2)~=0
50
                 s=s+z(i,j)
51
52
            else
53
                 s=s+4*z(i,j)
54
            end
55
       end
56 end
57 s = (s*(h^2))/9
58 disp(s, 'Simpsons Rule Sum = ')
```

## Scilab code Exa 14.16 Multiple Integration with Variable Limits

```
1 //Example 14.16
2 //Multiple Integration with Variable Limits
3 //Page no. 491
4 clc; close; clear;
5
6 deff('z=f(x)','z=x+1')
7 deff('z=f1(y)','z=(y+1)^3*(y+3)^2')
8 s=5/9*f(-sqrt(3/5))+8/9*f(0)+5/9*f(sqrt(3/5))
9 s=s*5/9*f1(-sqrt(3/5))+8/9*f1(0)+5/9*f1(sqrt(3/5)))
10 s=s/256;
11 disp(s,'I = ')
```

## Scilab code Exa 14.18 Integration

```
1 //Example 14.18
2 //Integration
3 //Page no. 494
4 clc; close; clear;
5
6 s=integrate('x^2*sin(x^2)', 'x',0,1)
7 disp(s,'I = ')
```

# Scilab code Exa 14.19 Integration

```
1 //Example 14.19
2 //Integration
3 //Page no. 494
4 clc; close; clear;
5
6 s=integrate('sin(t)/t','t',1,999)
7 disp(s,'I = ')
```

# Chapter 15

# Numerical Solutions of Ordinary Differential Equations Initial Value Problem

Scilab code Exa 15.1 Ordinary Differential Equation

```
1 //Example 15.1
2 //Ordinary Differential Equation
3 //Page no. 503
4 clc; clear; close;
5 s=log(2)/log(1.02)
6 disp(s, 'Time Taken = ')
```

Scilab code Exa 15.6 Taylor Method

```
1 //Example 15.6
```

```
2 // Taylor Method
3 //Page no. 510
4 clc; clear; close;
 6 \quad {\tt deff('y=}f1\left(x\,,y\right)', \text{'}y=x^2+y^2') \\
7 deff('y=f2(x,y)', 'y=2*x+2*y*f1(x,y)')
8 deff('y=f3(x,y)', 'y=2+2*f1(x,y)^2+2*y*f2(x,y)')
9 deff('y=f4(x,y)', 'y=6*f1(x,y)*f2(x,y)+2*y*f3(x,y)')
10 h=0.2;
11 for 1=1:2
12
        a=0; y=0; x=0;
                              ----\nh = \%g\n
        printf('\n---
13
                     ----\n ',h)
       for i=1:4
14
       x=a+(i-1)*h
15
16
       k=0;
17
       for j=1:4
18
        if j==1 then
19
            k=k+(h^j)*f1(x,y)/factorial(j)
20
        elseif j==2
21
            k=k+(h^j)*f2(x,y)/factorial(j)
22
        elseif j==3
            k=k+(h^j)*f3(x,y)/factorial(j)
23
24
        else
            k=k+(h^j)*f4(x,y)/factorial(j)
25
26
        end
27 \text{ end}
28 y = y + k;
29 printf('\nx = %g\n\ny(%g) = %g\n\n', x, x+0.2, y)
30 \text{ end}
31 h=h+0.2;
32 end
```

#### Scilab code Exa 15.7 Picard Method

```
1 //Example 15.7
2 //Picard Method
3 //Page no. 511
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x^2+y^2')
6 y(1)=0;
7 for i=1:2
8     y(i+1)=y(1)+integrate('f(x,y(i))', 'x',0,i/10)
9    printf('\n y(%g) = %g\n',i/10,y(i+1))
10 end
```

## Scilab code Exa 15.8 Euler Method

```
1 //Example 15.8
2 //Euler Method
3 //Page no. 513
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x+y')
6 y(1)=1;
7 h=0.1;
8 for i=1:6
9    printf('\ny(%g) = %g\n', (i-1)/10, y(i))
10    y(i+1)=y(i)+h*f((i-1)/10,y(i))
11
12 end
```

## Scilab code Exa 15.9 Trapezium Method

```
1 //Example 15.9
2 //Trapezium Method
3 // Page no. 516
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x*y^2')
6 y = 1;
7 h=0.2;
8 y2 = poly(0, 'y2')
9 \text{ for } i=1:2
10
       x = (i-1)*h;
       x1=x+h
11
       y1 = roots(-y2 + y + h*(f(x,y) + f(x1,y2))/2)
13
       printf('\n Y(%i) = \%g or \%g\n',i,y1(1),y1(2))
14 end
```

## Scilab code Exa 15.10 Heun Method

```
1 //Example 15.10
2 //Heun Method
3 //Page no. 517
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y*2/x')
6 y = 2;
7 h=0.25;
8 for i=1:4
       x=1+(i-1)*h
9
10
       x1=x+h
11
       ye=y+h*f(x,y)
       y=y+h*(f(x,y)+f(x1,ye))/2
12
       printf('\n y(\%g) = \%g\n',x1,y)
13
14 end
```

## Scilab code Exa 15.11 Midpoint Method

```
1 //Example 15.11
2 // Midpoint Method
3 // Page no. 518
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y+x')
6 y = 1;
7 h=0.2;
8 printf('i\txi\tyi\tslope1\tslope2\ty(i+1)\n
      ')
9 \text{ for } i=1:3
       x = (i-1) *h
10
11
       s1=f(x,y);
       s2=f(x+h/2,y+s1*h/2);
12
       printf(' \%i\t\%g\t\%g\t\%g\t\%g', i-1, x, y, s1, s2)
13
       y=y+s2*h;
14
       printf('\t\%g\n',y)
15
16 end
```

## Scilab code Exa 15.12 Modified Midpoint Method

```
1 //Example 15.12
2 //Modified Midpoint Method
3 //Page no. 519
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y+x')
```

```
6 y = 1;
7 h=0.2;
8 Z(1) = y;
9 Z(2)=Z(1)+h*f(0,Z(1))
10 printf('Z(\%i) = \%g', 1, Z(2))
11 for i=2:5
12
       x = (i-1) *h;
       Y(i-1) = (Z(i)+Z(i-1)+h*f(x,Z(i)))/2
13
       Z(i+1)=Z(i-1)+2*h*f(x,Z(i))
14
       printf('\n Y(%i) = \%g\n\n\n Z(%i) = \%g',i-1,Y(i
15
          -1), i, Z(i+1))
16 end
17 printf('\n\n\n y4 = \%g', (4*Y(4)-Y(2))/3)
```

# Scilab code Exa 15.13 Single Step Method

,y,f1(x))

```
1 //Example 15.13
2 //Single Step Method
3 //Page no. 521
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^2')
7 deff('y=f1(x)', 'y=1/(1-x)')
8 y=1; h=0.2;
9 printf('n\tXn\tYn (by single-step method)\tYn (
      computed)\n
      n ')
10 for i=1:6
       x = (i-1) *h
11
12
       if i<6 then
13
           printf(' \%i\t\%.2 f\t\%.5 f\t\t\t\t\%.5 f\n',i-1,x
```

## Scilab code Exa 15.14 Second Order Runge Kutta Method

```
1 //Example 15.14
2 //Second Order Runge Kutta Method
3 //Page no. 525
4 clc; clear; close;
6 deff('y=f(x,y)', 'y=x-y')
7 y=1; x=1; h=0.1;
8 //simple runge kutta method
9 K1=h*f(x,y);
10 K2=h*f(x+h,y+K1);
11 y1=y+(K1+K2)/2
12 printf('\ny(1.1) by simple runge kutta method = \%g\n
     n', y1)
13
14 //euler cauchy method
15 K1=h*f(x,y);
16 K2=h*f(x+h/2,y+K1/2);
17 y1=y+(K1+K2)
18 printf('y(1.1) by euler cauchy method = \%g\n\n',y1)
19
20 //optimal method
21 \text{ K1=h*f(x,y)};
22 K2=h*f(x+2*h/3,y+2*K1/3);
23 y1=y+(K1+3*K2)/4
24 printf('y(1.1) by optimal method = \%g',y1)
```

## Scilab code Exa 15.15 Third Order Runge Kutta Method

```
1 //Example 15.15
2 //Third Order Runge Kutta Method
3 //Page no. 526
4 clc; clear; close;
5 \quad \textcolor{red}{\texttt{deff}(\ 'y=f\left(x\,,y\,\right)\ '\text{, 'y=}x-y\ '\text{)}}
6 y=1; x=1; h=0.1;
7 / \text{scheme } 1
8 \text{ K1=h*f(x,y)};
9 K2=h*f(x+h/2,y+K1/2);
10 K3=h*f(x+h/2,y-K1+2*K2);
11 y1=y+(K1+4*K2+K3)/6
12 printf('\ny(1.1) by scheme 1 = \%g \setminus n \setminus n', y1)
13
14 //scheme 2
15 K1=h*f(x,y);
16 K2=h*f(x+h/3,y+K1/3);
17 K3=h*f(x+2*h/3,y+2*K2/3);
18 y1=y+(K1+3*K3)/4
19 printf('\ny(1.1) by scheme 2 = \%.7 \text{ f} \cdot \text{n} \cdot \text{n}', \text{y1})
```

#### Scilab code Exa 15.16 Fourth Order Runge Kutta Method

```
1 //Example 15.16
2 //Fourth Order Runge Kutta Method
3 //Page no. 528
```

```
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x-y')
6 y=1; x=1; h=0.1;
7 K1=h*f(x,y);
8 K2=h*f(x+h/2,y+K1/2);
9 K3=h*f(x+h/2,y+K2/2);
10 K4=h*f(x+h,y+K3);
11 disp(K4, 'K4 = ',K3, 'K3 = ',K2, 'K2 = ',K1, 'K1 = ')
12 y1=y+(K1+2*K2+2*K3+K4)/6
13 printf('\ny(1.1) = %.8 f\n\n',y1)
```

## Scilab code Exa 15.17 New Variant of Runge Kutta Method

```
1 //Example 15.17
2 //New Variant of Runge Kutta Method
3 //Page no. 530
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x-y')
6 y=1; x=1; h=0.1;
7 K1=h*f(x,y);
8 K2=h*f(x+h/2,y+K1/2);
9 K3=h*f(x+h/2,y+K2/2);
10 K4=h*f(x+h,y+K3);
11 K5=h*f(x+3*h/4,y+(5*K1+7*K2+13*K3-K4)/32)
12 disp(K5, 'K5 = ',K4, 'K4 = ',K3, 'K3 = ',K2, 'K2 = ',K1, 'K1 = ')
13 y1=y+(K1+2*K2+2*K3+K5)/6
14 printf('\ny(1.1) = %.8f\n\n',y1)
```

### Scilab code Exa 15.18 Runge Kutta Merson Method

```
1 //Example 15.18
   2 //Runge Kutta Merson Method
   3 //Page no. 532
   4 clc; clear; close;
   5 deff('y=f(x,y)', 'y=x+y')
   6 y=1; x=0; h=0.1;
   ')
           for i=0:14
   9
                                     K1=h*f(x,y);
10 K2=h*f(x+h/3,y+K1/3);
11 K3=h*f(x+h/3,y+(K1+K2)/6);
12 K4=h*f(x+h/2,y+(K1+3*K3)/8);
13 K5=h*f(x+h,y+(K1-3*K3+4*K4)/2)
14 y1=y+(K1+4*K4+K5)/6
15 printf ('\n %i\t%.3 f\t%.3 f\t%
                               .3 \text{ f} \t\% .3 \text{ f}',i,x,y,K1,K2,K3,K4,K5,y1)
16 y = y1;
17 x=x+h;
18 end
```

## Scilab code Exa 15.19 Runge Kutta Fehlberg Method

```
//Example 15.19
//Runge Kutta Fehlberg Method
//Page no. 535
clc; clear; close;
deff('y=f(x,y)', 'y=x-y')
y=1; x=1; h=0.1;
```

```
7 K1=h*f(x,y);
8 K2=h*f(x+h/4,y+K1/4);
9 K3=h*f(x+3*h/8,y+3*(K1+3*K2)/32);
10 K4=h*f(x+12*h/13,y+1932*K1/2197-7200*K2/2197+7296*K3
      /2197);
11 K5=h*f(x+h,y+439*K1/216-8*K2+3680*K3/513-845*K4
      /4104)
12 K6=h*f(x+h/2,y-8*K1/27+2*K2-3544*K3/2565+1859*K4
      /4104 - 11 * K5/40
13 disp(K6, 'K6 = ', K5, 'K5 = ', K4, 'K4 = ', K3, 'K3 = ', K2, 'K2
      = ', K1, 'K1 = ')
14 y1=y+(25*K1/216+1408*K3/2565+2197*K4/4104-K5/5)
15 y11=y+(16*K1/135+6656*K3/12825+28561*K4/56430-9*K5
      /50+2*K6/55)
16 printf('\ny(1.1) = \%.9 \text{ f} \cdot \text{n} \cdot \text{n}',y1)
17 printf('\ny^(1.1) = \%.9 f\n\n', y11)
```

### Scilab code Exa 15.20 Carp Karp Runge Kutta Method

```
11 for l=1:5
12
        K(1) = h * f(x,y);
13 for i=2:6
14
        k=0;
15
        for j=1:i-1
16
             k=k+v(i,j)*K(j)
17
        end
        K(i)=h*f(x+U(i)*h,y+k)
18
19 end
20 k = 0;
21 for i=1:6
22
        k=k+a(i)*K(i)
23 end
24 y1 = y + k;
25 k=0;
26 for i=1:6
27
        k=k+a1(i)*K(i)
28 end
29 y11=y+k;
30 \text{ for } i=1:6
31
        printf ('K\%i = \%.9 \text{ f} \setminus n', i, K(i))
32 end
33 printf ('\ny(1.1) = Y\%i = \%.9 \text{ f} \setminus n',1,y1)
34 printf('y~(1.1) = Y\%i~ = \%.9 f n',1,y11)
35 y = y1;
36 printf('\n\n'n')
37 end
```

# Scilab code Exa 15.21 Implicit Runge Kutta Method

```
1 //Example 15.21
2 //Implicit Runge Kutta Method
3 //Page no. 539
```

```
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=x-y')
6 y=1; x=1; h=0.1; printf('\n')
7 U=[0,1/5];
8 v=[0,0;1/2,1/2];
9 a2=1;
10 K(1)=h*f(x,y);
11 K(2)=(x+h/2-y-K(1)/2)/(1/h-1/2)
12 y1=y+(K(1)+a2*K(2))
13 printf('\ny(1.1) = %.9 f\n\n',y1)
```

## Scilab code Exa 15.22 Linear Multi Step Method

```
1 //Example 15.22
2 //Linear Multi Step Method
3 //Page no. 540
4 clc; clear; close;
5 \text{ deff}('y=f(x,y)','y=x+y')
6 y(1)=1; y(2)=1; x(1)=0; h=0.1;
7 printf('n \times X n \times t \times Y n \times t \times f n \times n
        0 \ t\%g \ t\ t\%.3 \ f\ t\ t\%.3 \ f\ n, x(1), y(1), f(x(1), y(1)))
8 \text{ for } i=2:11
9
        x(i)=(i-1)*h;
        y(i+1) = (-y(i)-y(i-1)+h*(f(x(i),y(i))+f(x(i-1),y(i)))
10
            i-1))))/2;
        printf(' \%i\t\%.3 f\t\t\%.3 f\t\t\%.3 f\n',i-1,x(i),y(
11
            i),f(x(i),y(i)))
12 end
```

### Scilab code Exa 15.23 Milne Simpson Predictor Corrector Method

```
1 //Example 15.23
2 // Milne Simpson Predictor Corrector Method
3 //Page no. 544
4 clc; clear; close;
5 deff('y=f(x,y)', 'y=y+exp(x)')
6 h = 0.5;
7 y=[1,1.824,3.718,7.722]
8 \text{ for } i=1:4
       x = (i-1)*h;
9
       f1(i)=f(x,y(i));
10
       printf('\nf\%i = \%g',i-1,f1(i))
11
12 end
13 y41=y(1)+4*h*(2*f1(4)-f1(3)+2*f1(2))/3
14 f4=f(x+h,y41);
15 y4=y(3)+h*(f4+4*f1(4)+f1(3))/3
16 printf('\n\nPredictor = %.9 f\n'n', y41)
17 printf ('Evaluator = \%.9 \text{ f} / \text{n} / \text{n}',f4)
18 printf('Corrector = \%.9 \, f', y4)
```

### Scilab code Exa 15.24 Improved Milne Simpson Predictor Corrector Method

```
1 //Example 15.24
2 //Improved Milne Simpson Predictor Corrector Method
3 //Page no. 546
4 clc; clear; close;
```

```
6 deff('y=f(x,y)', 'y=y-x^2')
   7 y(1)=1; h=0.25; x=0;
   8 printf('n \times x n \times y n \times t fn \times t Y' n \times t Y' 
                           +1) \ n
                           n ')
   9 f1(1)=f(x,y(1));
10 for i=1:3
                                  K1=h*f(x,y(i));
11
                                  K2=h*f(x+2*h/3,y(i)+2*K1/3);
12
                                  y(i+1)=y(i)+(K1+3*K2)/4
13
                                  printf(' \%i\t\%.3 f\t\%.3 f\t\%.3 f\n',i-1,x,y(i),f1(i)
14
15
                                  x = x + h
16
                                  f1(i+1) = f(x, y(i+1))
17 \text{ end}
18 Y31=0
19 for i=3:10
                                  Y41=y(i-2)+4*h*(2*f1(4)-f1(3)+2*f1(2))/3
                                                                                                                                                                                                                                                                         //
20
                                                predictor
                                                                                                                                                                             //modifier
21
                                  m4 = Y41 + 28 * (y(i+1) - Y31)/29
                                  v4=f(x+h,m4)
22
                                                                                                                       //evaluator
                                  Y4=y(i)+h*(v4+4*f1(4)+f1(3))/3
                                                                                                                                                                                                                           //corrector
23
                                   printf(' %i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\
24
                                               t\%.3 f \t\%.3 f \n',i,x,y(i+1),f1(4),Y31,y(i+1),
                                               Y41, m4, v4)
25
                                  y(i+2) = Y4
26
                                  Y31 = Y41;
                                  f1(2)=f1(3);
27
                                  f1(3)=f1(4);
28
                                  f1(4) = f(x+h, y(i+2))
29
30
                                  x = x + h
31 end
```

#### Scilab code Exa 15.25 Hamming Predictor Corrector Method

```
1 //Example 15.25
   2 //Hamming Predictor Corrector Method
   3 //Page no. 548
   4 clc; clear; close;
   6 deff('y=f(x,y)', 'y=y-x^2')
   7 v(1)=1; h=0.25; x=0;
   8 printf('n \times tXn \times tYn \times tfn \times tY' n \times tYc(n) \times tY' n+1 \times tm(n+1) \times tV(
                               n+1)\tYc(n+1)\n
                              n')
   9 f1(1)=f(x,y(1));
10 for i=1:3
11
                                      K1=h*f(x,y(i));
                                      K2=h*f(x+2*h/3,y(i)+2*K1/3);
12
                                      y(i+1)=y(i)+(K1+3*K2)/4
13
                                      printf(' %i \times .3 f \times 
14
                                                      ))
                                      x = x + h
15
16
                                      f1(i+1)=f(x,y(i+1))
17 \text{ end}
18 \quad Y31 = y(4); Yc = 0
19 for i=3:10
20
                                      Y41=y(i-2)+4*h*(2*f1(4)-f1(3)+2*f1(2))/3
                                                      predictor
                                      m4 = Y41 + 112 * (Y31 - Yc) / 121
21
                                                                                                                                                                                              //modifier
                                                                                                                                                                             //evaluator
22
                                      v4=f(x+h,m4)
                                      Y4c = (9*y(i+1)-y(i-1))/8+3*h*(v4+2*f1(4)-f1(3))/8
23
                                                                                 //corrector
                                      Y4=Y4c+9*(Y41-Y4c)/121
24
                                                                                                                                                                                                              //final value
                                       printf(' %i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\
25
                                                     t\%.3 f \t\%.3 f \t\%.3 f \n', i, x, y (i+1), f1 (4), Y31, Yc,
                                                     Y41, m4, v4, Y4c)
                                      y(i+2) = Y4
26
27
                                      Y31 = Y41;
                                      f1(2)=f1(3);
28
```

#### Scilab code Exa 15.26 Multi Valued Method

22

23

break

end

```
1 //Example 15.26
 2 // Multi Valued Method
 3 //Page no. 553
4 clc; clear; close;
6 deff('y=f1(x,y)', 'y=2*x^2-y')
7 h=0.1; x=0; y=-1;
8 deff('y=f2(x,y)', 'y=4*x-f1(x,y)')
9 deff('y=f3(x,y)', 'y=4-f2(x,y)')
10 B=[1,1,1,1;0,1,2,3;0,0,1,3;0,0,0,1];
11 y0=[y;h*f1(x,y);h^2*f2(x,y)/2;h^3*f3(x,y)/6]
12 y01 = y0;
13 r = [0;1;3/4;1/6]
14
15 \operatorname{disp}(r, 'If r = ')
16 printf('\nn
       nx = 0 \setminus t \setminus tx = 0.1 \setminus t \setminus t \setminus tx = 0.2 \setminus n \setminus t')
17 for i=1:2
18
        y11 = B * y01
        s(i)=h*(f1(x+h,y11(1)))-y11(2)
19
        y1 = y11 + s(i) *r
20
21
        if i==2 then
```

```
24
           y2=y1;
25
           y22 = y11;
           y01 = y1
26
27 end
28 printf('\t
                          (s = \%.5g) \setminus t \setminus t (s = \%.9f) \setminus n
               Y0 \setminus t \setminus t
                              Y' i \setminus t \setminus t
                                              Y1 \setminus t \setminus t
                                                             Y'2 \setminus t \setminus t
                                                                              Y2 \setminus n
         n
         n',s(1),s(2))
29 \text{ for } i=1:4
           printf('\%.5f \t\%.5f \t\%.5f \t\%.5f \t\%.5f \t\%.5f \t\%.
30
                ),y22(i),y2(i),y11(i),y1(i))
31 end
32 y0=[y;h*f1(x,y);h^2*f2(x,y)/2;h^3*f3(x,y)/6]
33 \text{ y01=y0};
34 r = [5/12; 1; 3/4; 1/6]
35 \text{ disp}(r, 'If r = ')
36 printf('\n\n
         nx = 0 \setminus t \setminus t \setminus tx = 0.1 \setminus t \setminus t \setminus tx = 0.2 \setminus n \setminus t'
37
   for i=1:2
38
           y11 = B * y01
39
           s(i)=h*(f1(x+h,y11(1)))-y11(2)
           y1 = y11 + s(i) *r
40
           if i==2 then
41
42
                  break
43
           end
           y2=y1;
44
           y22 = y11;
45
46
           y01 = y1
47 end
                          (s = \%.5g) \ t \ t (s = \%.9f) \ n
48 printf('\t
               Y0 \setminus t \setminus t
                              Y' i \setminus t \setminus t
                                              Y1 \setminus t \setminus t
                                                             Y'2 \setminus t \setminus t
                                                                              Y2 \setminus n
         n
         n',s(1),s(2))
49 \text{ for } i=1:4
           printf('\%.5 f \t\%.5 f \t\%.5 f \t\%.5 f \t\%.5 f\n', y0(i)
50
```

```
),y22(i),y2(i),y11(i),y1(i))
```

#### Scilab code Exa 15.27 First order ODE

51 end

```
1 //Example 15.27
2 //First order ODE
3 //Page no. 558
4 clc; clear; close;
6 deff('y=f1(x,y1,y2)', 'y=y1*y2+x')
7 deff('y=f2(x,y1,y2)', 'y=y1-x')
8 h=0.2; x=0; y1=0; y2=1;
9 //heun method
10 printf('Heun Method:\n\n x\ty1\ty2\n
11 Y = [y1; y2]
12 for i=1:8
13
14
        F = [f1(x, Y(1), Y(2)); f2(x, Y(1), Y(2))]
       Y1 = Y + h * F
15
16
       x = x + h;
       F1 = [f1(x, Y1(1), Y1(2)); f2(x, Y1(1), Y1(2))]
17
18
       Y = Y + (h/2) * (F + F1)
19
       printf(' \%g\t\%.3 f\t\%.3 f\n',x-h,Y(1),Y(2))
20
21 end
22
23 //classical runge kutta method
24 printf('\n\n\n Classical Runge Kutta Method:\n\n \n\tx
      \t Yn \t K1 \t K2 \t K3 \t K4 \t Y(n+1) \n
      n ')
```

```
25 \quad Y = [y1; y2]; x = 0;
26 \text{ for } i=1:6
27
        K1=h*[f1(x,Y(1),Y(2));f2(x,Y(1),Y(2))]
        K2=h*[f1(x+h/2,Y(1)+K1(1)/2,Y(2)+K1(2)/2);f2(x+h)
28
           /2, Y(1) + K1(1)/2, Y(2) + K1(2)/2)
29
        K3=h*[f1(x+h/2,Y(1)+K2(1)/2,Y(2)+K2(2)/2);f2(x+h)
           /2, Y(1) + K2(1)/2, Y(2) + K2(2)/2)
        K4=h*[f1(x+h,Y(1)+K3(1),Y(2)+K3(2));f2(x+h,Y(1)+K3(2))]
30
           K3(1), Y(2) + K3(2)
        Y1=Y+(K1+2*K2+2*K3+K4)/6
31
        printf('%i\t%.2f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\
32
           t\%.3 f \ h \ t\%.3 f \ t\%.3 f \ t\%.3 f \ t\%.3 f \ t\%.3 f
           \n
           n',i-1,x,Y(1),K1(1),K2(1),K3(1),K4(1),Y1(1),Y
           (2), K1(2), K2(2), K3(2), K4(2), Y1(2))
33
        Y = Y1;
34
        x = x + h
35 end
```

#### Scilab code Exa 15.28 Differential Equation

# Chapter 16

# Numerical Solutions of Ordinary Differential Equations Boundary Value Problems

 ${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 16.1}$  Outline of Linear Shooting Method

```
1 //Example 16.1
2 //Outline of Linear Shooting Method
3 //Page no. 572
4 clc; close; clear;
6 deff('y=f(x)', 'y=x^2');
7 h=0.5; X0=0; Y0=1; Z1=[-1, -1.5, -1.1771]; i=1; Y1=Y0;
8 \text{ for } j=1:3
9
       Z0 = Z1(i);
        i=i+1
10
       Y0 = 1;
11
12
       for n=1:2
            printf ('\nFor n = \%i \setminus n
13
                                           ----\n', n-1)
            K1(1) = h * Z0;
14
```

```
15
            printf('\n K11 = \%g', K1(1));
            K1(2) = h*f(Y0);
16
            printf('\n K12 = \%g', K1(2));
17
            K2=h*f(Y0+K1(2))
18
19
            printf ('\n K22 = \%g', K2);
20
            Z0 = Z0 + (K1(2) + K2)/2
21
            printf('\n Z\%i = \%g', n, Z0);
            K2=h*Z0;
22
            printf ('\n K21 = \%g', K2);
23
            Y0 = Y0 + (K1(1) + K2)/2
24
            printf('\n Y%i = %g',n,Y0);
25
            printf('\n\n\n')
26
27
             if n==1 then
28
                 Y2 = Y0
29
            end
30
        end
        printf('\n\n')
31
32 end
33 printf ('Hence the solution is y(\%g) = \%i, y(\%g) = \%
                  y(\%g) = \%.1 f', X0, Y1, X0+h, Y2, X0+2*h, Y0)
      .4 f
```

## Scilab code Exa 16.2 Linear Shooting Method

```
1 //Example 16.2
2 //Linear Shooting Method
3 //Page no. 576
4 clc; close; clear;
5
6 deff('y=f1(x,y,y1)', 'y=-x*y1+x^2*y+2*x^3')
7 deff('y=F1(x,y,y1)', 'y=-x*y1+x^2*y+2*x^3')
8 deff('y=F2(x,y,y1)', 'y=-x*y1+x^2*y+2*x^3')
9 a=0; b=1;
10 y0=1; y1=-1; n=5;
```

```
11 h = (b-a)/n
12 y=y0; y01=0; x=a;
13 for i=0:5
14
        yi1(1,i+1)=y
15
        K1 = h * y01;
16
        R1=h*F1(x,y,y01);
17
        K2=h*(y+R1/2);
        R2=h*F1(x+h/2,y+K1/2,y01+R1/2)
18
19
        K3=h*(y01+R2/2)
        R3=h*F1(x+h/2,y+K2/2,y01+R2/2)
20
21
        K4 = h * (y + R3)
22
        R4=h*F1(x+h,y+K3,y01+R3)
23
        y=y+(K1+2*K2+2*K3+K4)/6
24
        y01 = y01 + (R1 + 2 * R2 + 2 * R3 + R4) / 6
25
        x = x + h
26 \, \text{end}
27 y=0; y01=1; x=a;
28 \text{ for } i=0:5
29
        yi2(1,i+1)=y
30
        K1 = h * y01;
31
        R1=h*F2(x,y,y01);
32
        K2=h*(y+R1/2);
        R2=h*F2(x+h/2,y+K1/2,y01+R1/2)
33
34
        K3=h*(y01+R2/2)
        R3=h*F2(x+h/2,y+K2/2,y01+R2/2)
35
36
        K4 = h * (y + R3)
37
        R4=h*F2(x+h,y+K3,y01+R3)
38
        y=y+(K1+2*K2+2*K3+K4)/6
39
        y01 = y01 + (R1 + 2 * R2 + 2 * R3 + R4) / 6
40
        x = x + h
41 end
42 for i=1:6
43
        yi(i)=yi1(1,i)+((y1-yi1(6))/yi2(6))*yi2(i)
44 \, \text{end}
45 y=1; x=a; y01=y1
46 \text{ for } i=0:5
        yir(1,i+1)=y;
47
        K1=h*y01;
48
```

```
R1=h*f1(x,y,y01);
49
       K2=h*(y+R1/2);
50
       R2=h*f1(x+h/2,y+K1/2,y01+R1/2)
51
       K3=h*(y01+R2/2)
52
53
        R3=h*f1(x+h/2,y+K2/2,y01+R2/2)
54
       K4 = h * (y + R3)
       R4=h*f1(x+h,y+K3,y01+R3)
55
        y=y+(K1+2*K2+2*K3+K4)/6
56
        y01 = y01 + (R1 + 2 * R2 + 2 * R3 + R4) / 6
57
        x = x + h
58
59 end
60 \text{ x=a};
61 printf('\n
      n \setminus tx')
62 \text{ for } i=1:6
        printf('\t\%.1f\t',x)
63
64
       x = x + h
65 end
66 printf('\n')
67 \text{ for } i=1:6
       68
69 end
70 printf('\n
                   by RK')
71 for i=1:6
       printf('\t\%.4f\t',yir(i))
72
73 end
74 printf('\n
      ')
75 printf('\n\n\nNote: Computation error in calculation
       of values by RK method performed in book')
```

#### Scilab code Exa 16.3 Multiple Shooting Method

```
1 //Example 16.3
2 // Multiple Shooting Method
3 // Page no. 577
4 clc; close; clear;
6 h=0.25; x=0; y1=0;
7 deff('y=f(x)', 'y=-(4*h^2)/(1+x)^2')
8 deff('y=f1(x)', 'y=-2*(1+(h^2)/(1+x)^2)')
9
10 for i=1:4
11
        x = x + h
12
        B(i)=f(x);
13
        for j=1:4
14
            if i==4 & i==j
15
                 A(i,j)=f1(x)+1/4
16
                 A(i,j-1)=2
17
             elseif j==i then
18
                 A(i,j)=f1(x)
19
                 A(i,j+1)=1
                 if j-1~=0 then
20
21
                      A(i, j-1)=1
22
                 end
23
            end
24
        \quad \text{end} \quad
25 end
26 y = inv(A) *B
27 disp(B,"B =",A,'A = ')
28 printf('\n\n\ x :')
29 for i=1:5
30
        printf ('\t\%.2 f',x)
31
        x = x + h
32 end
33 x=0; printf('\n y :\t%.2f',y1);
34 \text{ for } i=1:4
        printf('\t%.4f',y(i))
35
36 end
```

#### Scilab code Exa 16.4 Finite Difference Method

```
1 //Example 16.4
2 // Finite Difference Method
3 // Page no. 582
4 clc; close; clear;
6 x=0; h=0.25; q=-1; Y(1)=-2; Y(5)=1;
7 printf('\n i\txi\tYi\tpi\tqi\tri\n
      ')
8 \text{ for } i=1:5
       r(i) = -x^2
       if i>1 & i<5 then
10
           printf(' %i\t\%g\t\%s\t\%g\t\%i\t\%g\n',i-1,x,"?"
11
              ,x,q,r(i))
12
       else
           13
              ),x,q,r(i))
14
       end
15
       x = x + h
16 \text{ end}
17 x = 0;
18 printf('
      ')
19 for i=1:3
20
       x = x + h
21
       for j=1:3
22
           if i==j then
23
                A(i,j)=2+h^2*q
           elseif i<j & abs(i-j)~=2</pre>
24
```

```
A(i,j) = -1 + h * x/2
25
26
             elseif i > j \& abs(i-j)^{=2}
27
                  A(i,j) = -1 - h * x/2
28
             end
29
        end
30
        if i==3 then
             B(i) = -h^2 * r(i+1) + (-h * x/2+1) * Y(1+2*(i-1))
31
32
        else
             B(i)=-h^2*r(i+1)+(h*x/2+1)*Y(1+2*(i-1))
33
34
        end
35
        B(i) = (-1)^{(i+1)} *B(i)
36 \, \text{end}
37 \text{ disp}(B, "B =", A, 'A = ')
38 y = inv(A) *B
39 for i=1:3
        Y(i+1) = y(i)
40
41 end
42 x = 0;
43 disp("The Solution is :",B,"B =",A,'A = ')
44 printf(' x :')
45 for i=1:5
        printf('\t \%.2 f',x)
46
47
        x = x + h
48 end
49 x=0; printf('\n y :');
50 \text{ for } i=1:5
        printf('\t%.3f',Y(i))
51
52 end
```

#### Scilab code Exa 16.5 Non Linear Problem

```
1 //Example 16.52 //Non Linear Problem
```

```
3 //Page no. 584
4 clc; close; clear;
6 deff('y=f(x)', 'y=2/(1+x)')
7 Y = [1, 0.75, 0.75, 0.75, 0.5]; h = 0.25
8 A = [-2, 1, 0; 1, -2, 1; 0, 1, -2]; A_1 = inv(A)
9 disp(A<sub>1</sub>, "Inverse of A = ", A, "A =")
10 printf('\nThe Solution of the system is: \n\n
      Iteration \t Y0\t Y1\t Y1\t Y2\t Y3\t
                                                            Y4 \ n
      ')
11 for i=0:6
12
        printf('\n
                         %i',i)
13
        for j=1:5
            if j < 4 & i ~ = 0 then</pre>
14
15
                 Y(j+1)=y(j)
            end
16
17
            printf('\t \t \.4 f', Y(j))
18
        end
19
        x = 0;
20
        for j=1:3
21
            x = x + h
22
            if j~=2 then
                 B(j)=h^2*f(x)*Y(j+1)^2-Y(1+2*(j-1))
23
24
            else
25
                 B(j)=h^2*f(x)*Y(j+1)^2
26
            end
27
        end
28
        y = A_1 + B
29 end
```

Scilab code Exa 16.6 Collocation Method

```
1 //Example 16.6
 2 // Collocation Method
 3 //Page no. 589
4 clc; close; clear;
 6 h1=0.000001; h=0.25; x=0;
7 Y(1) = 0; Y(5) = 0;
8 deff('y=p(x)', 'y=1')
9 deff('y=q(x)', 'y=-2/(1+x)^2')
10 deff('y=f(x)', 'y=(2*x-4)/(1+x)^4')
11 deff('y=fi(x,j)','y=(1-x)*x^j')
12 deff('y=f1(x,y)','y=(-x+y)/h1') //function for
       differentiation
13 for i=1:4
14
        x = x + h
15
        for j=1:4
             A(i,j)=p(x)*f1(f1(fi(x,j),fi(x+h1,j)),f1(fi(x,j),fi(x+h1,j))
16
                 x+h1, j), fi(x+2*h1, j)))+f1(p(x), p(x+h1))*
                 f1(fi(x,j),fi(x+h1,j))+q(x)*fi(x,j)
17
        end
18 end
19 x = 0;
20 \text{ for } i=1:4
21
        x = x + h
22
        B(i)=f(x)
23 end
24 disp(B, 'B = ', A, "A = ")
25 \quad C = inv(A) *B
26 x = 0;
27 \text{ for } i=2:4
28
        x = x + h;
29
        for j=1:4
30
             Y(i)=Y(i)+C(j)*fi(x,j)
31
        end
32 end
33 disp(Y, "Solution Matrix Y = ")
```

# Chapter 18

# Numerical Solutions of Parabolic Partial Differential Equations

#### Scilab code Exa 18.4 Forward Difference Method

```
1 //Example 18.4
2 //Forward Difference Method
3 //Page no. 624
4 clc; clear; close;
5
6 h=0.2; k=0.02;
7 r=k/h^2;
8 printf('\n j\tt\t|\ti -->\t')
9 for i=0:5
10 printf(' %i\t',i)
11 end
12 printf('\n |\t|\tx -->\t')
13 for i=0:5
14 printf('%.3 f\t',(i)/5)
15 end
```

```
16 printf('\n
      ')
  for j=1:6
17
       printf('\n %i\t%.3f\t|\t\t',j-1,(j-1)/50)
18
19
       for i=1:6
            if i==1 | i==6 then
20
                u(j,i)=0;
21
22
            elseif j==1 then
                u(j,i) = sin(\%pi*(i-1)/5)
23
24
            else
                u(j,i)=(u(j-1,i-1)+u(j-1,i+1))/2
25
26
            end
            printf('%.3f\t',u(j,i))
27
28
       end
29 end
```

#### Scilab code Exa 18.5 Bender Schmidt Method

```
1 //Example 18.5
2 //Bender Schmidt Method
3 // Page no. 625
4 clc; clear; close;
6 h=0.1; k=0.005;
7 r=k/h^2;
                  | \ ti \ --> \ t
8 printf('\n j
9 \text{ for } i=0:10
       printf(' %i\t',i)
10
11 end
12 printf('\n | | \ tx --> \ '')
13 for i=0:10
       printf('%.3 f\t',(i)/10)
14
```

```
15 end
16 printf('\n
      ')
17 for j=1:9
18
        printf('\n %i | \t ', j-1 \rangle
        for i=1:11
19
20
            if i==1 | i==11 then
                 u(j,i)=0;
21
22
            elseif j==1 then
                 u(j,i)=sin(%pi*(i-1)/10)
23
24
                 u(j,i)=u(j-1,i)/2+(u(j-1,i-1)+u(j-1,i+1)
25
                    )/4
26
            printf(\%.3 f t, u(j,i))
27
28
        end
29 \text{ end}
```

## Scilab code Exa 18.6 Crank Nicolson Method

```
1 //Example 18.6
2 //Crank Nicolson Method
3 //Page no. 631
4 clc; clear; close;
5 h=1/2; k=1/8;
6 \text{ r=k/h^2};
7 for i=1:2:3
8
       for j=1:9
            if i==1 \mid j==1 then
9
10
                u(i,j)=0;
11
            end
12
            if i==3 then
```

```
u(i,j)=(j-1)/8
13
              end
14
15
         end
16 \text{ end}
17 a=[3,-1,0;-1,3,-1;0,-1,3];
18 \quad a = inv(a);
19 for j=2:9
              u(2,j)=(u(1,j-1)+2*u(2,j-1)+u(3,j-1)+u(1,j)+
20
                  u(3,j))/6
21 end
22 u=u,
23 printf('\nfor h = 1/2 \setminus n \setminus n')
24 printf('i \setminus j --> ')
25 \text{ for } i=1:3
         \textbf{printf} (\ ' \backslash t\%i \backslash t\ ', \textbf{i})
26
27 end
28 printf('\n
       n ')
29 for i=1:9
30
         printf('\n %i',i)
         for j=1:3
31
              printf('\t %.9f',u(i,j))
32
33
         end
34 end
35
36
37
38
39 h=1/4; k=1/8;
40 \text{ r=k/h^2};
41 for i=1:4:5
42
         for j = 1:9
              if i==1 \mid j==1 then
43
                    u(i,j)=0;
44
45
              end
              if i==5 then
46
                   u(i,j)=(j-1)/8
47
```

```
48
             end
49
        end
50 end
51 a = [3, -1, 0; -1, 3, -1; 0, -1, 3];
52 \quad a=inv(a);
53 \text{ for } j=2:9
54
             b=[u(1,j-1)-u(2,j-1)+u(3,j-1)+u(1,j);u(2,j)]
                 -1) -u (3, j -1) +u (4, j -1); u (3, j -1) -u (4, j -1) +u
                 (5,j-1)+u(5,j)
55
        x=a*b
        u(2,j)=x(1);u(3,j)=x(2);u(4,j)=x(3);
56
57 end
58 u=u
59 printf('\n \n \n \n \n = 1/4 \n \n')
60 printf('i \setminus j --> ')
61 \text{ for } i=1:5
        printf('\t\%i\t',i)
62
63 end
64 printf('\n
      n ')
65 \text{ for } i=1:9
        printf('\n %i',i)
66
        for j=1:5
67
             printf('\t %.9f',u(i,j))
68
69
        end
70 end
```

#### Scilab code Exa 18.7 Gauss Seidel Method

```
1 //Example 18.72 //Gauss Seidel Method3 //Page no. 637
```

```
4 clc; clear; close;
5 deff('y=f(x)', 'y=4*x-4*x^2')
6 h=0.2; k=0.04;
7 \text{ r=k/h^2};
8 printf('\n k \setminus t \mid ti \longrightarrow t')
9 for i=0:5
        printf('\%i\t',i)
10
11 end
12 printf('\n | \ t | \ tx \longrightarrow t')
13 for i=0:5
        printf(\%.2 f t',(i)/5)
14
15 end
16 printf('\n
       ')
  for k=1:7
17
        printf('\n %i\t|\t\t',k-1)
18
19
        for i=1:6
20
             if i==1 | i==6 then
21
                  u(k,i)=0;
22
             elseif k==1 then
23
                  u(k,i)=f((i-1)/5)
24
             else
25
                  u(k,i)=(u(k-1,i-1)+u(k-1,i+1))/2
26
             printf(\%.2 f \ t, u(k,i))
27
28
        end
29 \quad {\tt end}
```

#### Scilab code Exa 18.8 ADI Method

```
1 //Example 18.8
2 //ADI Method
```

```
3 //Page no. 642
4 clc; clear; close;
6 \text{ for } i=1:4
7
        for j=1:5
8
            P(i,j)=20
9
        end
10 \text{ end}
11 r=1; k=0;
12 for i=1:6
13
        v1(i) = 20
14
        u1(i)=20
15 end
16 P1
      = [25,30,35,50,60;35,0,0,0,70;45,0,0,0,80;60,70,80,100,90]
17 for i=1:4
        \texttt{printf('} \backslash n')
18
19
        for j=1:5
            printf('%i\t',P(i,j))
20
21
        end
22
        if i==2 then
             printf('-->')
23
24
        end
        printf('\t')
25
26
        for j=1:5
27
             printf('%i\t',P1(i,j))
28
             if i>1 & i<4 & j>1 & j<5 then
29
                 P1(i,j)=P(i,j)
30
             end
31
        end
32 end
33 P1v=P1; P1h=P1;
34 for i=1:6
        for j=1:6
35
             if i==j then
36
37
                 Av(i,j)=1+2*r
             elseif abs(i-j)==1 & i+j^{-}=5 & i+j^{-}=9
38
```

```
Av(i,j)=-r
39
40
            end
41
        end
42 end
43 for i=1:6
44
       for j=1:6
            if i==j then
45
                 Ah(i,j)=1+2*r
46
            elseif abs(i-j)==1 \& i+j^{-}=7
47
                 Ah(i,j)=-r
48
49
            end
50
        end
51 end
52 n=8
53 \text{ for } 1=1:n
       k=0;
54
55 \text{ for } j=0:2
       for i=1:2
56
            if i==1 then
57
                 Bv(i+j+k)=r*P1h(i+1,j+1)+(1-2*r)*P1h(i
58
                    +1, j+2)+r*P1h(i+1, j+3)+r*P1h(i, j+1)
59
            else
                 Bv(i+j+k)=r*P1h(i+1,j+1)+(1-2*r)*P1h(i
60
                    +1, j+2)+r*P1h(i+1, j+3)+r*P1h(i+2, j+1)
            end
61
62
        end
63
       k=k+1;
64 end
65 \text{ k=0};
66 Bh=[r*30+(1-2*r)*v1(1)+r*v1(4)+r*35;r*35+(1-2*r)*v1
      (3)+r*v1(5);r*v1(1)+(1-2*r)*v1(2)+r*v1(3)+r*(70);
      r*v1(1)+(1-2*r)*v1(2)+r*(70+45);r*v1(3)+(1-2*r)*
      v1(4)+r*80; r*v1(5)+(1-2*r)*v1(6)+r*(100+80)
         for i=1:6
67
             v(i,1)=v1(i)
68
69
         end
70
         for i=1:6
             u(i,1)=u1(i)
71
```

```
72
         end
         v1 = inv(Av) *Bv
73
74
         u1 = inv(Ah)*Bh
75
         k=1;
76
         for i=2:3
77
              for j=2:4
                  P1h(i,j)=u1(i+j+k-4)
78
79
              end
80
              k=k+2
81
         end
82
         k=0;
83
         for j=2:4
84
              for i=2:3
                  P1v(i,j)=v1(i+j+k-3)
85
86
              end
              k=k+1
87
88
         end
89 end
   printf('\n\n\nResults for Vertical Transverse in
90
       Celsius :\n')
91
   for i = 1:7
        printf('\n')
92
        if i==1 then
93
             printf('Itr -->')
94
             for j=1:n
95
             printf('\t
                          \%i', j-1)
96
97
        end
        printf('\n
98
           ')
99
        else
             printf(' v%i',i-1)
100
101
             for j=1:n
             printf('\t\%.2f',v(i-1,j))
102
             end
103
104
        end
105 end
106 printf('\n\n\n nResults for Horizontal Transverse in
```

```
Celsius :\n')
107 for i=1:7
        printf('\n')
108
        if i==1 then
109
            printf('Itr -->')
110
            for j=1:n
111
            printf('\t
                         \%i',j-1)
112
113
        \quad \text{end} \quad
        printf('\n
114
           ')
        else
115
            116
            for j=1:n
117
            118
119
120
        \quad \text{end} \quad
121 end
```

# Chapter 19

# Numerical Solutions of Hyperbolic Partial Differential Equations

### Scilab code Exa 19.3 Simple Explicit Method

```
1 //Example 19.3
2 //Simple Explicit Method
3 //Page no. 658
4 clc; clear; close;
6 c=-2; dt=0.07; dx=0.2;
7 r = abs(c)*dt/dx;
8 printf('\n x \in ti \in t = --> t')
9 for i=0:6
        \textbf{printf('} \ \%i \backslash t \ ', i)
10
11 end
12 printf('\n | t | t | t --> t')
13 for i=0:6
        printf('%.3f \setminus t',i*dt)
14
15 end
```

```
16 printf('\n
      ')
  for j=1:6
17
       printf('\n %.1 f\t%i\t|\t\t',(j-1)*dx,j-1)
18
19
       for i=1:7
            if i==1 then
20
                u(j,i)=0;
21
22
            elseif j==1 then
23
                u(j,i)=1
24
            else
25
                u(j,i)=(1-r)*u(j,i-1)+r*u(j-1,i-1)
26
            end
            printf('%.3f\t',u(j,i))
27
28
       end
29 end
```

#### Scilab code Exa 19.4 Simple Implicit Method

```
1 //Example 19.4
2 //Simple Implicit Method
3 //Page no. 659
4 clc; clear; close;
5
6 c=-2; dt=0.07; dx=0.2;
7 r=abs(c)*dt/dx;
8 printf('\n x\ti\t|\tj -->\t')
9 for i=0:6
10 printf(' %i\t',i)
11 end
12 printf('\n |\t|\t|\tt -->\t')
13 for i=0:6
14 printf('%.3f\t',i*dt)
```

```
15 end
16 printf('\n
      ')
17 for j=1:6
18
       printf('\n \%.1 f\t\%i\t|\t\t',(j-1)*dx,j-1)
       for i=1:7
19
20
            if i==1 then
21
                u(j,i)=0;
            elseif j==1 then
22
                u(j,i)=1
23
24
            else
25
                u(j,i)=(1/(1+r))*u(j,i-1)+r*u(j-1,i)/(1+r)
                   r)
26
            end
            printf(\%.3 f t, u(j,i))
27
28
       end
29 end
```

#### Scilab code Exa 19.5 Lax Wendroff Method

```
1 //Example 19.5
2 //Lax Wendroff Method
3 //Page no. 660
4 clc; clear; close;
5
6 c=-2; dt=0.07; dx=0.2;
7 r=abs(c)*dt/dx;
8 printf('\n x\ti\t|\tj -->\t')
9 for i=0:6
10 printf(' %i\t',i)
11 end
12 printf('\n |\t|\tt -->\t')
```

```
13 for i=0:6
        printf ('\%.3 f\t',i*dt)
15 end
16 i = 1;
17 printf('\n
       ')
18 for j=1:7
19
        for i=1:6
             if j==1 then
20
                 u(i,j)=0;
21
22
                 u(i+1,j)=0;
23
             elseif i==1 then
24
                  u(i,j)=1
25
             else
                  u(i,j)=r*(r-1)*u(i+1,j-1)/2+(1-r^2)*u(i,j)
26
                     j-1)+r*(1+r)*u(i-1,j-1)/2
27
             end
28
        end
29 \text{ end}
30 \text{ for } i=1:6
        printf('\n %.1 f\t%i\t1 | \ t\t1 ',(i-1)*dx,i-1)
31
        for j=1:7
32
             printf(\%.3 f \ t', u(i,j))
33
34
        end
35 end
```

#### Scilab code Exa 19.6 Wendroff Method

```
1 //Example 19.6
2 //Wendroff Method
3 //Page no. 661
4 clc; clear; close;
```

```
5
6 c=2; k=0.07; h=0.2;
7 a=(h+k*c)/(h-k*c)
8 printf('\n x \in ti \in t = --> t')
9 \text{ for } i=0:6
10
       printf(' %i\t',i)
11 end
12 printf('\n | \ t \ | \ t \ | \ t')
13 for i=0:6
       printf (\%.3 f t, i*k)
15 end
16 printf('\n
      ')
17 for i=1:6
       printf('\n %.1 f\t%i\t1 | \t t\t1', (i-1)*h,i-1)
18
19
        for j=1:7
20
            if j==1 then
                 u(i,j)=0;
21
22
            elseif i==1 then
23
                 u(i,j)=1
24
            else
                 u(i,j)=u(i-1,j-1)+(u(i,j-1)-u(i-1,j))/a
25
26
            end
            printf(\%.3 f \ t', u(i,j))
27
28
        end
29 end
```

## Scilab code Exa 19.7 Leapfrog Method

```
1 //Example 19.7
2 //Leapfrog Method
3 //Page no. 662
```

```
4 clc; clear; close;
6 c=2; k=0.07; h=0.2;
7 r=c*k/h
8 printf('\n x \in ti \in t = --> t')
9 for i=0:6
        printf('\%i\t',i)
10
11 end
12 printf('\n | \t | \t | \t --> \t')
13 for i=0:6
        printf (\%.3 f t, i*k)
14
15 end
16 printf('\n
      ')
17
18 for j=1:7
19
        for i=1:6
20
            if j == 1 | j == 2 & i ~= 1 then
                 u(i,j)=0;
21
22
                 u(i+1,j)=0;
23
             elseif i==1 then
24
                 u(i,j)=1
25
            else
                 u(i,j)=u(i,j-2)-r*(u(i+1,j-1)-u(i-1,j-1)
26
27
             end
28
        end
29 \text{ end}
30 \text{ for } i=1:6
        printf('\n %.1 f\t%i\t1 | \ t\t1 ',(i-1)*h,i-1)
31
        for j=1:7
32
            printf(\%.3 f \ t', u(i,j))
33
34
        end
35 end
```

#### Scilab code Exa 19.8 Variable Coefficients

```
1 //Example 19.8
2 // Variable Coefficients
3 //Page no. 663
4 clc; clear; close;
5
6 //simple explicit method
7 printf('\nSimple Explicit Method:\n')
8 dt=0.05; dx=0.2;
9 x = 0;
10 printf('\n i\t x\t r\t|\tj -->\t')
11 for i=0:6
       printf(' %i\t',i)
12
13 end
14 printf('\n \t\t\t\t\ \t\ -->\t')
15 for i=0:6
       printf (\%.3 f \ t, i*dt)
16
17 \text{ end}
18 printf('\n
      ')
  for j=1:6
19
20
       r = sqrt(1+2*x)*dt/dx;
       printf('\n %i\t%.3f\t%.3f\t|\t\t',(j-1),x,r)
21
22
       for i=1:7
23
           if i==1 then
                u(j,i)=0;
24
25
           elseif j==1 then
26
                u(j,i)=1
27
           else
                u(j,i)=(1-r)*u(j,i-1)+r*u(j-1,i-1)
28
```

```
29
            end
30
            printf (\%.3 f t, u(j,i))
31
32
        end
33
        x = x + dx
34 end
35
36
37 //simple implicit method
38 printf('\n\nSimple Implicit Method:\n')
39 c=-2; dt=0.05; dx=0.2; x=0
40 printf('\n i\t x t r t | tj --> t')
41 for i=0:6
        \texttt{printf('} \ \%i \backslash t \ ', \texttt{i)}
42
43 end
44 printf('\n \t\t\t\\t\ -->\t')
45 \text{ for } i=0:6
        \textbf{printf} (\ \ \%.3 \ f \setminus t \ \ \texttt{',i*dt})
46
47 end
48 printf('\n
      ')
  for j=1:6
49
        r = sqrt(1+2*x)*dt/dx;
50
        51
        for i=1:7
52
53
            if i==1 then
54
                 u(j,i)=0;
            elseif j==1 then
55
                 u(j,i)=1
56
57
             else
                 u(j,i)=(1/(1+r))*u(j,i-1)+r*u(j-1,i)/(1+r)
58
                    r)
59
            printf('%.3f\t',u(j,i))
60
61
        end
62
        x = x + dx
63 end
```

```
64
65
66 //wendroff method
67 printf('\n\nNBy Wendroff Method:\n')
68 k=0.05; h=0.2;
69 x = 0.1;
70 printf('\n i\t x\t c\t a\t|\tj -->\t')
71 for i=0:6
       printf(' %i\t',i)
72
73 end
74 printf('\n \t\t\t\t\\t\->\t')
75 \text{ for } i=0:6
76
       printf (\%.3 \text{ f} \text{ t}, i*k)
77 end
78 printf('\n
      ')
79
  for i=1:6
80
       c = sqrt(1+2*x);
       a=(h+k*c)/(h-k*c)
81
82
       printf('\n %i\t%.3f\t%.3f\t%.3f\t|\t\t',(i-1),x-
          h/2,c,a)
83
       for j=1:7
            if j==1 then
84
85
                u(i,j)=0;
86
                u(i+1,j)=0;
87
            elseif i==1 then
88
                 u(i,j)=1
89
            else
                u(i,j)=u(i-1,j-1)+(u(i,j-1)-u(i-1,j))/a
90
91
            printf('%.3f\t',u(i,j))
92
93
       end
94
       x = x + h
95 end
```

Scilab code Exa 19.9 Inhomogeneous 1st Order Hyperboolic Differential Equation

```
1 //Example 19.9
2 //Inhomogeneous 1st Order Hyperboolic Differential
      Equation
3 //Page no. 665
4 clc; clear; close;
6 //simple explicit method
7 printf('\n\nBy Simple Explicit Method:\n')
8 c=-2; dt=0.07; dx=0.2;
9 r = abs(c)*dt/dx;
10 printf('\n i\tx\t|\tj -->\t')
11 for i=0:6
       printf(' \%i \setminus t',i)
12
13 end
14 printf('\n | \t | \t | \t --> \t')
15 for i=0:6
       printf ('\%.3 f\t',i*dt)
16
17 \text{ end}
18 printf('\n
      ')
19 x = 0;
20 \text{ for } j=1:6
21
       printf('\n %i\t%.1f\t|\t\t',j-1,x)
22
       for i=1:7
            if i==1 then
23
24
                u(j,i) = exp(-x);
25
            elseif j==1 then
                u(j,i)=1
26
27
            else
```

```
u(j,i)=(1-r)*u(j,i-1)+r*u(j-1,i-1)+dt*2*
28
29
            end
            printf('%.3f\t',u(j,i))
30
31
        end
32
       x = x + dx
33 end
34
35
36 //simple implicit method
37 printf('\n\nBy Simple Implicit Method:\n')
38 c=-2; dt=0.07; dx=0.2;
39 \text{ r=abs(c)*dt/dx};
40 printf('\n i\tx\t|\tj -->\t')
41 for i=0:6
       printf('\%i\t',i)
42
43 end
44 printf('\n | \t | \t | \t --> \t')
45 for i=0:6
       printf ('\%.3 f\t',i*dt)
46
47 end
48 printf('\n
      ')
49 x = 0;
50 \text{ for } j=1:6
       printf('\n %i\t%.1f\t|\t\t',j-1,x)
51
       for i=1:7
52
53
            if i==1 then
                 u(j,i) = exp(-x);
54
55
            elseif j==1 then
56
                 u(j,i)=1
57
            else
                 u(j,i)=(1/(1+r))*u(j,i-1)+r*u(j-1,i)/(1+r)
58
                    r)+dt*2*x
59
            end
60
            printf('%.3f\t',u(j,i))
61
       end
```

```
62
       x = x + dx
63 end
64
65
66 //wendroff method
67 printf('\n\nBy Wendroff Method:\n')
68 \quad c=2; k=0.07; h=0.2;
69 a=(h+k*c)/(h-k*c)
70 printf('\n x \in ti \in t = --> t')
71 for i=0:6
       printf(', \%i \setminus t', i)
72
73 end
74 printf('\n | t | t | t  --> t')
75 \text{ for } i=0:6
       76
77 end
78 printf('\n
      ')
79 x = 0;
80 \text{ for } i=1:6
       printf ('\n %.1 f\t%i\t|\t\t',x,i-1)
81
        for j=1:7
82
83
            if j==1 then
                u(i,j) = exp(-x);
84
            elseif i==1 then
85
86
                u(i,j)=1
87
            else
                 u(i,j)=u(i-1,j-1)+(u(i,j-1)-u(i-1,j))/a
88
                    +(2*h*k)*(x+h/2)/(a*(h+c*k))
89
            printf('%.3f\t',u(i,j))
90
91
        end
92
       x = x + h
93 end
```

Scilab code Exa 19.10 Non Linear 1st Order Hyperboolic Differential Equation

```
1 //Example 19.10
2 //Non Linear 1st Order Hyperboolic Differential
      Equation
3 //Page no. 667
4 clc; clear; close;
6 c=-2; k=0.05; h=0.2;
7 r = abs(c)*k/h;
8 printf('\n i\t x\t|\tj -->\t')
9 \text{ for } i=0:6
       printf('\%i\t',i)
10
11 end
12 printf('\n |\t |\t|\tt -->\t')
13 for i=0:6
       printf ( \%.3 f \ t , i*k)
14
15 end
16 i = 1;
17 x = 0;
18 printf('\n
      ')
19 for j=1:7
20
       for i=1:6
21
            if j==1 then
                u(i,j) = exp(-x);
22
                u(i+1,j) = exp(-(x+h));
23
24
            elseif i==1 then
25
                u(i,j)=1
26
            else
27
                 u(i,j)=u(i,j-1)-k*(u(i+1,j-1)^2-u(i-1,j)
```

```
-1)^2/(4*h)+k^2*((u(i+1,j-1)+u(i,j))
                    -1))*(u(i+1,j-1)^2-u(i,j-1)^2)-(u(i,j-1)^2)
                    -1)+u(i-1,j-1))*(u(i,j-1)^2-u(i-1,j)
                    -1)^2))/(8*h^2)
28
       end
29
       x = x + h
30
       end
31 end
32 x = 0;
33 for i=1:6
       printf('\n %i\t%.1f\t|\t\t',i-1,x)
34
35
       for j=1:7
36
            printf('%.3f\t',u(i,j))
37
       end
38
       x = x + h
39 end
```

#### Scilab code Exa 19.11 Finite Difference Method

```
1 //Example 19.11
2 //Finite Difference Method
3 //Page no. 670
4 clc; clear; close;
5 deff('y=f(x)', 'y=sin(%pi*x)')
6 deff('y=g(x)', 'y=0')
7 a=1; b=1; c=1; n=5; m=10;
8 h=a/n; k=b/m; r=c*k/h;
9 r1=r^2; r2=r1/2; s1=1-r1; s2=2*(1-r2)
10 printf('\n i ')
11 for i=1:n
12    printf('\t %i',i)
13 end
14 printf('\n
```

```
nfi')
15 for i=1:n
        f1(i)=f(h*(i-1))
16
17
        printf('\t%.3f',f1(i))
18 end
19 printf('\ngi')
20 \quad for \quad i=1:n
21
        g1(i)=g(h*(i-1))
        printf('\t %g',g1(i))
22
23 end
24 printf('\n\n'n i / j ---> ')
25 \text{ for } i=1:m
        printf('\t %i',i)
26
27 end
28 printf('\n
       ')
29 for j = 1 : m
        for i=1:n
30
31
            if i==1 | i==n then
32
                 u(i,j)=0;
33
            elseif j==1
34
                 u(i,j)=f1(i)
            elseif j==2
35
                 u(i,j)=s1*f1(i)+k*g1(i)+r2*(f1(i+1)+f1(i))
36
                    -1))
37
             else
                 u(i,j)=s2*u(i,j-1)+r1*u(i-1,j-1)+u(i+1,j
38
                    -1) - u(i, j-2)
39
            end
40
41
        end
42 \text{ end}
43 \text{ for } i=1:n
        printf('\n \%i\t',i)
44
        for j=1:m
45
            printf('\t%.3f',u(i,j))
46
```

```
47 end 48 end
```

## Scilab code Exa 19.12 Hyperbolic Partial Differential Equations

```
1 //Example 19.12
2 // Hyperbolic Partial Differential Equations
3 //Page no. 673
4 clc; clear; close;
5 deff('y=f(x)', 'y=12*x')
6 Ua(1) = 0.25;
7 \text{ Ua}(2) = 0.75
8 A = [1, -2; 1, 2];
9 x1=inv(A)*Ua;
                        and Tb = \%g', x1(1), x1(2))
10 printf ('Xb = \%g
11 A = [2, -1; 2, 1];
12 B = [-7.5; -8.5];
13 x2 = inv(A) *B;
                              and Qb = \%g', x2(1), x2(2)
14 printf('\n Pb = %g
15 \times 1(1) = \times 1(1) - Ua(1)
16 \quad du = x1' \times x2
17 printf('\n\n dU = \%g',du)
18 Ub=f(Ua(1))+du;
19 printf('\n\n Modified Ub = \%g', Ub)
```

Scilab code Exa 19.13 Hyperbolic Differential Equations in 2D or 3D

```
1 //Example 19.132 //Hyperbolic Differential Equations in 2D or 3D
```

```
3 //Page no. 675
4 clc; clear; close;
6 deff('y=f(x,y)', 'y=x*(2-x)*y*(2-y)')
7 c2=3; k=0.4; h=0.4; c2=3; s2=0.5
8 for 1=0:11
9
       if l==0 then
            printf('\n t = \%i\n\n i\t x\t | tj -->\t',1)
10
       for i=0:5
11
            printf(' %i\t',i)
12
13
        end
14
       printf('\n | t | t | ty --> t')
15
       for i=0:5
             printf (\%.3 f t, i*k)
16
17
       end
18
       x = 0;
19
        printf('\n
            ')
20
         for i=1:6
21
             y=0;
22
            printf('\n %i\t%.3f\t|\t\t',i-1,x)
23
            for j=1:6
24
                  if i==1 | i==6 then
                     u(i,j)=0;
25
26
                 elseif j==1 \mid j==6 then
27
                     u(i,j)=0
28
                 else
29
                     u(i,j)=f(x,y)
30
            end
                printf('%.3f\t',u(i,j))
31
32
           y = y + k;
33
            end
34
       x = x + h
35 end
36 u2=u;
37 else
       printf('\n\n\n t = \%i\n\n i\t x\t|\tj -->\t',1)
38
```

```
39
       for i=0:5
            printf(' %i\t',i)
40
41
        end
       printf('\n | t | t | ty --> t')
42
43
       for i=0:5
             printf (\%.3 f t, i*k)
44
45
       end
       x = 0;
46
47
         printf('\n
            ')
48
         for i=1:6
49
             y=0;
            printf('\n %i\t%.3f\t|\t\t',i-1,x)
50
            for j=1:6
51
52
                  if i==1 | i==6 then
53
                     u(i,j)=0;
54
                 elseif j==1 \mid j==6 then
55
                     u(i,j)=0
                 elseif l==1
56
57
                     u(i,j)=s2*(u1(i+1,j)+u1(i-1,j)+u1(i,
                        j+1)+u1(i,j-1)-4*u1(i,j))+2*u1(i,
                        i)
                 else
58
                     u(i,j)=s2*(u1(i+1,j)+u1(i-1,j)+u1(i,
59
                        j+1)+u1(i,j-1)-4*u1(i,j))+2*u1(i,
                        j)-u2(i,j)
60
            end
61
                printf('%.4f\t',u(i,j))
62
           y = y + k;
63
            end
64
       x = x + h
65
       end
66 end
67 if 1>1 then
       u2=u1
68
69 end
70 u1=u;
```

71 end

# Chapter 20

# Numerical Solutions of Elliptical Partial Differential Equations

#### Scilab code Exa 20.1 Direct Method

```
1 //Example 20.1
2 // Direct Method
3 // Page no. 682
4 clc; clear; close;
5 h=1/3;
6 \quad A = [-4, 1, 1, 0; 1, -4, 0, 1; 1, 0, -4, 1; 0, 1, 1, -4]
7 x = 0;
8 \text{ for } i=1:4
       x = x + h
10
        if i==4 then
11
             B(i,1)=0
12
        else
             B(i,1) = -1*sin(x*%pi)^2
13
14
        end
15 end
```

```
16 disp(A, 'A =')
17 disp(B, 'B =')
18 U=inv(A)*B
19 disp(U, 'U =')
```

#### Scilab code Exa 20.2 Five Point Formula

```
1 //Example 20.2
2 // Five Point Formula
3 // Page no. 683
4 clc; clear; close;
6 \quad A = [-4,1,1,0;1,0,-4,1;1,-4,0,1;0,1,1,-4];
7 B = [-25; -150; -25; -150];
8 u1=inv(A)*B;
9 j=0; k=1
10 for i=1:4
11
       j=j+1;
       printf('\nu%i%i = %g\n',k,j,u1(i))
12
       if i==2 then
13
14
            j=0; k=2
15
       end
16 \, \text{end}
17 printf('\n U = \n')
18 for i=1:4
19
       printf('\n')
20
       for j=1:4
            if j==1 then
21
22
                u(i,j)=0
23
            elseif j==4
24
                u(i,j)=100
            elseif (i==1 | i==4) & j==2
25
26
                u(i,j)=25
```

#### Scilab code Exa 20.3 Finite Difference Method

```
1 //Example 20.3
2 // Finite Difference Method
3 // Page no. 685
4 clc; clear; close;
6 printf('Itr\t\t U11\t\t U21\t\t U12\t\t U22\n
      n ')
  for i=1:4
8
       for j=1:4
9
           if j==1 then
                u(i,j)=0
10
           elseif j==4
11
12
                u(i,j)=100
           elseif (i==1 | i==4) & j==2
13
14
                u(i,j)=25
           elseif i==1 | i==4
15
                u(i,j)=u(i,j-1)*2
16
17
           else
18
                u(i,j)=0
19
           end
20
       end
```

```
21 end
 22 \text{ for } k=0:17
                                                                                                                                    printf(' \%i \setminus t \setminus t\%.3 f 
                                                                                                                                                                                     k,u(3,2),u(3,3),u(2,2),u(2,3))
 24
                                                                                                                                    for i=3:-1:2
 25
                                                                                                                                                                                                                for j=2:3
 26
                                                                                                                                                                                                                                                                                             u1(i,j)=(u(i,j+1)+u(i,j-1)+u(i-1,j)+u(i
                                                                                                                                                                                                                                                                                                                                               +1,j))/4
 27
                                                                                                                                                                                                                 end
 28
                                                                                                                                    end
 29
                                                                                                                                    for i=3:-1:2
                                                                                                                                                                                                                for j=2:3
 30
 31
                                                                                                                                                                                                                                                                                         u(i,j)=u1(i,j)
 32
                                                                                                                                                                                                                end
 33
                                                                                                                                    end
 34 end
 35 \text{ disp}(u, 'U = ')
```

#### Scilab code Exa 20.4 Seven Point Formula

11

elseif (i==1 | i==4 | j==1 | j==4) & k

```
==2
12
                      u(i,j,k) = 300
                 elseif k==2
13
14
                      u(i,j,k)=0
15
                 elseif (i==1 | i==4 | j==1 | j==4) & k
16
                      u(i,j,k)=500
17
                 else
                      u(i,j,k) = 700
18
19
                 end
20
             end
21
        end
22 \text{ end}
23 k = 2
24 for 1=0:14
        printf(' %i\t \t \.3 f\t \t \.3 f\t \t \.3 f\t \t \.3 f\t \t \.
25
           1, u(3,2,2), u(3,3,2), u(2,2,2), u(2,3,2))
26
        for i=3:-1:2
             for j=2:3
27
                 u1(i,j)=(u(i,j+1,k)+u(i,j-1,k)+u(i-1,j,k)
28
                     )+u(i+1,j,k)+u(i,j,k+1)+u(i,j,k-1))/6
29
             end
30
        end
        for i=3:-1:2
31
32
             for j=2:3
                 u(i,j,2)=u1(i,j)
33
34
             end
35
        end
36 end
```

#### Scilab code Exa 20.5 Nine Point Formula

```
1 //Example 20.5
```

```
2 // Nine Point Formula
3 //Page no. 688
4 clc; clear; close;
5
6 printf('Itr\t\t U11\t\t U12\t\t U21\t\t U22\n
     n ')
  for i=1:4
8
       for j=1:4
9
           if j==1 then
               u(i,j)=0
10
           elseif j==4
11
12
               u(i,j) = 100
           elseif (i==1 | i==4) & j==2
13
14
               u(i,j)=25
           elseif i==1 | i==4
15
               u(i,j)=u(i,j-1)*2
16
17
           else
18
               u(i,j)=0
19
           end
20
       end
21 end
22 \quad for \quad k=0:17
       23
         k,u(3,2),u(2,2),u(3,3),u(2,3))
       for i=3:-1:2
24
25
           for j=2:3
26
               u1(i,j)=(u(i+1,j-1)+u(i-1,j-1)+u(i+1,j
                  +1)+u(i-1,j+1)+4*(u(i,j+1)+u(i,j-1)+u
                  (i-1,j)+u(i+1,j))/20
27
           end
28
       end
29
       for i=3:-1:2
30
           for j=2:3
               u(i,j)=u1(i,j)
31
32
           end
33
       end
34 end
```

```
35 disp(u, 'The Solution of the System is = ')
```

# Scilab code Exa 20.6 Five Point Formula

```
1 //Example 20.6
2 // Five Point Formula
3 //Page no. 689
4 clc; clear; close;
6 h=0.25; k=0.25; y=1; x=0;
7 \text{ deff}('x=f(y)', 'x=y^3')
8
9 \text{ for } i=1:5
10
        x = 0;
        printf(' \n\%g\t | ',y)
11
12
        for j=1:5
             if (i==1 | i==5)
13
14
                  u(i,j)=f(x)
15
             elseif j==5
                  u(i,j)=f(x)
16
17
             else
18
                  u(i,j)=0
19
             end
20
             x = x + k;
             printf('\%f \setminus t', u(i,j))
21
22
        end
23
        y = y - h
24 end
25 printf('\nt
      n ')
26 x = 0;
27
        for j=1:5
```

```
printf('\t \%g\t',x)
28
29
            x = x + k
30
        end
31 printf('\n\n\n Itr\t U11\t U12\t U13\t U21\t U22\t
      U23 \ t \ U31 \ t \ U32 \ t \ U33 \ n
      n ')
32
33 \text{ for } 1=0:20
        y = 0;
34
                    \%i\t\%.3 f\t\%.3 f\t\%.3 f\t\%.3 f\t\%.3 f
        printf('
35
           t\%.3 f t\%.3 f t\%.3 f n',1,u(4,2),u(4,3),u(4,4),
           u(3,2),u(3,3),u(3,4),u(2,2),u(2,3),u(2,4))
        for i=4:-1:2
36
37
            y = y + k
38
            for j=2:4
                 u1(i,j)=(u(i,j+1)+u(i,j-1)+u(i-1,j)+u(i
39
                    +1,j)-h^2*y)/4
40
             end
41
        end
42
        for i=4:-1:2
43
            for j=2:4
                 u(i,j)=u1(i,j)
44
45
             end
46
        end
47
  end
```

#### Scilab code Exa 20.7 Laplace Distribution

```
1 //Example 20.7
2 //Laplace Distribution
3 //Page no. 694
4 clc; clear; close;
```

```
5
6 dr=3; r0=4; dth=\%pi/4;
7 deff('y=f(u1,u2,u3,u4)', 'y=(u1+u3+(dr*(u3-u1))/(2*r0
      +(u^2+u^4)*(dr/(r^0*dth))^2)/(2*(1+(dr/(r^0*dth))^2)
                   //laplace distribution
      ) ')
8 for i=1:8
       U(i) = 0;
10 \, \text{end}
11 printf('Itr\t
                    U1\t U2\t U3\t U4\t U5\t U6\t
      U7 \ t \quad U8 \ n
      ')
12 for 1=0:15
                     \%i',1)
       printf('\n
13
14
       for i=1:8
15
            if i==1 then
                u1(i)=f(100,U(8),40,U(i+1))
16
17
            elseif i==8
                 u1(i)=f(100,U(i-1),40,U(1))
18
19
            else
20
                u1(i)=f(100,U(i-1),40,U(i+1))
21
            end
22
23
       end
       for i=1:8
24
25
            U(i)=u1(i)
26
            printf('\t%.3f',U(i))
27
       end
28 end
```

#### Scilab code Exa 20.8 Spherical Coordinate System

```
1 //Example 20.8
```

```
2 //Spherical Coordinate System
  3 //Page no. 697
  4 clc; clear; close;
  5 deff('y=cot(x)', 'y=1/tan(x)')
  6 dr=5; r0=50; dth=\%pi/4; dfi=\%pi/4; N=-10; Z=60; Nb=0; Zt
                     =70:
  7 deff('y=f(u1,u2,u3,u4,u5,u6,th0)', 'y=((u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(u1+u3)/dr^2+(
                    u3-u1)/(r0*dr)+(u2+u4)/(r0*dth)^2+(u2*cot(th0)/(
                     r0^2*dth)+(u5+u6)/(r0*sin(th0)*dfi)^2)/(2/dr
                     ^2+2/(r0*dth)^2+cot(th0)/(r0^2*dth)+2/(r0*sin(th0)
                     )*dfi)^2)')
                                                                                               //laplace distribution in
                     spherical coordinate
  8 T1=40; T2=20; H1=35; H2=10; B1=5; B2=0; t1=240; t2=180; b1
                     =100; b2=80; h1=210; h2=150
  9 printf('\n
                    n ')
10 s = ["T", "H", "B", "t", "h", "b"];
11 for i=1:8
12
                          if i < 4 \mid i > 6 then
13
                                        T(1,i)=T1;
                                        H(1,i) = H1;
14
15
                                        B(1,i) = B1;
                                        b(1,i)=b1;
16
17
                                        t(1,i)=t1;
18
                                        h(1,i)=h1;
19
                         else
20
                                        T(1,i)=T2;
21
                                        H(1,i) = H2;
22
                                        b(1,i)=b2;
23
                                        B(1,i)=B2;
24
                                        t(1,i)=t2;
25
                                        h(1,i)=h2;
26
                          end
27 end
28 h(1)=0;h(2)=0;
29 Al = [T; H; B; t; h; b]
30 \text{ for } i=1:6
```

```
31
        if i==1 then
32
             printf('Temperature Distribution in Outer
                Sphere\n')
             printf('
33
                n ')
34
        end
35
        if i==4 then
             printf('\nTemperature Distribution in Inner
36
                Sphere\n')
             printf('
37
                n')
38
        end
        printf('\nPoint : ')
39
        for j=1:8
40
                 printf('\t\%s\%i',s(i),j)
41
42
        end
        printf('\nTemperature : ')
43
44
        for j=1:8
             if (j==1 | j==2) & i==5 then
45
                 printf('\t%s',"?")
46
             else
47
                 printf('\t\%i',Al(i,j))
48
49
             end
50
        end
51
        printf('\n
           ')
52 end
53 \text{ th0}=10^{-30}
54 Uh1=f(1000, Al(5,8), Al(2,1), Al(5,2), Al(6,1), Al(4,1),
      th0)
55 \text{ disp}(Uh1, 'Uh1 = ')
56 \text{ th0=}\%\text{pi/4};
57 Uh2=f(1000, Uh1, Al(2,2), Al(5,3), Al(6,2), Al(4,2), th0)
58 \text{ disp}(Uh2, 'Uh2 = ')
```

# Chapter 21

# Advances in Numerical Methods Using Parallel Computing Paradigm

#### Scilab code Exa 21.1 Parallel Bisection Method

```
1 //Example 21.1
2 //Parallel Bisection Method
3 //Page no. 721
```



Figure 21.1: Parallel Bisection Method

```
4 clc; close; clear;
5
6 deff('y=f(x)', 'y=x^2-\cos(x)')
7 \quad a=0; b=1; e=0.0001; i=1;
8 printf('Itr\ta\tb\th\t\tx0\t\tx1\t\tx2\t\tx3\t\tx4\t
     )
9 printf('\n
     n ')
10 while (abs(a-b) \ge e)
11
12
13
       h=(b-a)/5;
       y(1) = f(a);
14
15
       x(1)=a;
16
       printf(' \%i \t\%g \t\%g \t\%f \t\%f', i, a, b, h, x(1))
17
       for j=2:6
18
           x(j)=x(j-1)+h;
           y(j)=f(x(j));
19
20
           if (y(j-1)*y(j)<0)
21
                    a=x(j-1);
22
                    b=x(j);
23
           end
24
           printf('\t\%f',x(j))
25
       end
26
       printf('\n\t\t\t\t\t')
27
       for j=1:6
28
           printf('%f\t',y(j))
29
       end
30
       printf('\n')
31
32
       i=i+1;
33 end
```

## Scilab code Exa 21.2 Lagrange Interpolation in Parallel Computing

```
1 //Example 21.2
2 //Lagrange Interpolation in Parallel Computing
3 // Page no. 723
4 clc; close; clear;
5
6 xi = [-1, 0, 2, 5];
7 \text{ yi} = [9,5,3,15];
8 s = ["x=1", "n=4", "Data:", "(-1,9)", "(0,5)", "(2,3)","]
      (5,15)"]
9 for i=1:4
       printf('\tProcessor\t')
10
11 end
12 printf('\n')
13 for i=1:4
       printf('\t N%i\t\t',i)
14
15 end
16 printf('\n')
17 for i=1:7
18
       for j=1:4
                               %s\t\t',s(i)
19
            printf('
20
       end
        printf('\n')
21
22 \text{ end}
23
24 x = 1; T = 0;
25 \text{ for } k=0:3
26
       p=yi(k+1)
27
       for j=0:3
            if(j^=k)
28
                 p=p*((x-xi(j+1))/(xi(k+1)-xi(j+1)))
29
```

Scilab code Exa 21.3 Trapezoidal Rule and Simpsons Rule in Parallel Computing

```
1 //Example 21.3
2 //Trapezoidal Rule and Simpsons Rule in Parallel
      Computing
3 // Page no. 726
4 clc; close; clear;
5 n=8; a=0; b=8;
6 h=(b-a)/n
7 deff('y=f(x)', 'y=1/(1+x)')
8 for i=0:8
9
       x(i+1)=i;
       y(i+1) = f(x(i+1))
10
11 end
12 printf('xi\t')
13 for i=1:9
       printf('\%i\t'',x(i))
14
15 end
16 printf('\n yi\t')
17 for i=1:9
18
       printf ('1/\%i\t',i)
19 end
20
21 //trapezoidal rule
22 S = 0;
23 \text{ for } i=1:9
```

```
if (i==1 | i==9)
24
25
             S=S+y(i)
26
        else
27
             S=S+2*y(i)
28
        end
29 \text{ end}
30 S = S * h/2
31 printf('\n\nTrapezoidal Rule Sum = \%g',S)
32
33 //Simpsons 1/3rd Rule
34 \text{ S=0};
35 \text{ for } i=1:9
36
        if (i == 1 | i == 9)
             S=S+y(i)
37
        elseif(((i)/2)-fix((i)/2)==0)
38
             S=S+4*y(i)
39
40
        else
             S=S+2*y(i)
41
42
        end
43 end
44 \text{ S=S*h/3}
45 printf('\n\nSimpsons 1/3rd Rule Sum = \%g',S)
```

#### Scilab code Exa 21.4 Parallel Gauss Seidel Method

```
1 //Example 21.4
2 //Parallel Gauss-Seidel Method
3 //Page no. 730
4 clc; close; clear;
5
6 A=[3,2;6,2];
7 B=[2;3];
8 x(1)=1/4;
```

```
9 \times (2) = 1/5;
10 e = 0.002;
11 old(1)=x(1);
12 old(2)=x(2);
13 new(1) = old(1);
14 \text{ new}(2) = \text{old}(2);
15 printf('\t\tProcess 1\t\tProcess 2\n Itr\t\told\
       tnew1 \setminus t \setminus told2 \setminus tnew2 \setminus n \setminus n')
16 printf(' \%i \ t \ \%g \ t \ \%g \ t \ \%g \ n',0,old(1),new(1),
       old(2), new(2))
17 for i=1:4
         printf(' %i',i)
18
19
         for j=1:2
20
              k=0;
21
              for 1=1: j-1
                   k=k-(A(j,1)*old(1));
22
23
              end
24
              m = 0;
              for 1 = j + 1 : 2
25
26
                   m=m-(A(j,1)*old(1));
27
              end
              new(j) = (B(j)+k+m)/A(j,j)
28
              printf('\t\t\%.5g\t\%.5g',old(j),new(j))
29
         end
30
         printf('\n')
31
32
         old(1) = new(1)
         old(2) = new(2)
33
34 end
```

#### Scilab code Exa 21.5 Poissons Partial Differential Equation

```
1 //Example 21.52 //Poissons Partial Differential Equation
```

```
3 //Page no. 733
 4 clc; clear; close;
6 s=["st","nd","rd"]
 7 \text{ for } i=4:20
         s(i) = "th"
9 end
10 h=0.25; deff('y=f(x)', 'y=x^3'); y=1; x=0;
11 for i=1:6
12
13
14
         if i~=6 then
              printf(\%g\t|,y)
15
16
              y = y - h;
17
              x = 0;
18
              for j=1:5
19
                   if i==1 | i==5 | j==5 then
20
                        P(i,j)=f(x)
21
                   else
                        P(i,j) = 0
22
23
                   end
              printf('\%f\t',P(i,j))
24
25
              x = x + h;
26
              end
27
         else
28
              printf('
                 n \setminus t')
29
              x=0;
30
              for j=1:5
                                %g\t \ t \ ', x)
31
                   printf('
32
                   x = x + h
33
              end
34
         end
         printf('\n')
35
36 \text{ end}
37
38 printf('\langle n \rangle n \rangle')
```

```
39
40 \text{ for } 1=0:17
41
        y=1;
        if 1~=0 then
42
             printf('After the %i%s Iteration : \n
43
                    %i',1,s(1),1)
        for i=1:6
44
45
             if i~=6 then
                 printf('\t%g',y)
46
47
             y = y - h
                  for j=1:5
48
                 printf('\t\%.3f',P(i,j))
49
50
                end
51
             else
                 x = 0;
52
                 printf('\t')
53
54
                  for j=1:5
                      printf(' \t \%g', x)
55
                      x = x + h
56
57
                  end
58
             end
             printf('\n')
59
60
        end
        printf('
61
           n ')
62 end
63 y = 0;
        for i=4:-1:2
64
65
             y = y + h
             for j=2:4
66
                  P1(i,j)=(P(i,j+1)+P(i,j-1)+P(i-1,j)+P(i
67
                     +1,j)-h^2*y)/4
68
             end
69
        end
70
        for i=4:-1:2
             for j=2:4
71
```

# Chapter 22

# Numerical Methods Using Neural Networks

## Scilab code Exa 22.1 MLP Algorithm

```
1 //Example 22.1
2 //MLP Algorithm
3 // Page no. 748
4 clc; clear; close;
5 deff('y=f(x)', 'y=1/(1+exp(-x))')
6 Wih=[0.1, -0.3; 0.3, 0.4];
7 Who = [0.4; 0.5]
8 i = [0.2, 0.6];
9 t=0.7;
10 a=10;
11 for k=1:3
12
       printf('\n\n After Iteration \%i : \n\n',k)
       disp(Wih, 'Wih = ')
13
14
       disp(Who, 'Who = ')
15 \quad a1=i*Wih;
16 \text{ disp}(a1, 'a = ')
17 h=[f(a1(1)),f(a1(2))]
```

```
18 disp(h, 'h = ')
19 b1=h*Who
20 \text{ disp(b1,'b1 =')}
21 \text{ o=f(b1)}
22 \text{ disp}(o, o = ')
23 d=o*(1-o)*(t-o)
24 \text{ disp}(d, 'd = ')
25 \text{ for } j=1:2
          e(1,j)=h(j)*(1-h(j))*d*Who(j)
26
27 end
28 \text{ disp(e,'e=')}
29 \quad dWho=a*h'*d;
30 \text{ disp}(dWho, 'dWho = ')
31 \quad \text{Who=Who+dWho};
32 \text{ dWih=a*i'*e};
33 \operatorname{disp}(\operatorname{dWih}, \operatorname{'dWih} = ')
34 Wih=Wih+dWih;
35 end
```

#### Scilab code Exa 22.2 MLP

## Scilab code Exa 22.3 Bisection Method

17

else

```
1 //Example 22.3
2 // Bisection Method
3 //Page no. 764
4 clc; clear; close;
6 deff('y=f(x)', 'y=x^3-x^2+x-1')
7 printf('N01\tN02\tN11\tN12\tN21\tNet31\tO31\tN41\
      tN42 \n
      n ')
8 NO1
      = [0,1,0.5,0.75,0.875,0.938,0.969,0.984,0.992,0.996,0.998,0.999,1,
9 N02(1)=2
10 \text{ for } i=2:13
11
       N02(i)=1;
12 end
13 for i=1:13
       net31(i)=f(N01(i+1))*f(N01(i))
14
15
       if net31(i)>0 then
16
           031(i)=1;
```

```
18
                                                          031(i)=0;
19
                                     end
20
                                     N41(i) = (1-031(i))*(N01(i))+031(i)*N01(i+1)
21
                                     N42(i) = (1-031(i))*N01(i+1)+031(i)*N02(i)
22
                                     if i==2 then
23
                                                          printf('%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\
                                                                        t\%.3 f \t\%.3 f \t\%.3 f \n',0,N02(i),f(N01(i)),
                                                                         NO1(i+1),f(NO1(i+1)),net31(i),O31(i),N41(
                                                                         i), N42(i))
24
                                     else
                                     printf ('%.3 f\t%.3 f\t%.3 f\t%.3 f\t%.3 f\t%.3 f\t%.3 f
25
                                                    \t^{6}.3 \ f \ ^{6}.3 \ f \ ^
                                                   +1),f(N01(i+1)),net31(i),031(i),N41(i),N42(i)
                                                   )
26 \text{ end}
27
28 end
29 printf('\n\nTherefore the solution is \%.3 f', N42(13))
```

## Scilab code Exa 22.4 Hopfield Neural Network

```
1 //Example 22.4
2 //Hopfield Neural Network
3 //Page no. 766
4 clc; clear; close;
5
6 A=[1,2,1;-1,1,1;1,0,-1];
7 disp(inv(A), 'Inverse of A = ',A, 'A = ')
8 for i=1:3
9     for j=1:3
10          k=0;
11          for l=1:3
12          k=k+A(i,l)*A(j,l)
```

### Scilab code Exa 22.5 RBF Network

```
1 //Example 22.5
   2 //RBF Network
   3 //Page no. 773
   4 clc; clear; close;
   6 deff('y=f(x)', 'y=10*sin(x)')
   7 printf('Input\t\tDesired\t\tNetwork\t\tError\n\t\t
                                Output \ t \ t \ Output \ n
                                n ')
    8 in
                                 = [0.7053, 0.7060, 0.7097, 1.5056, 1.5103, 1.5377, 2.2481, 2.2514, 2.2599,
   9 n
                                 = [6.4828, 6.4883, 6.5164, 9.9786, 9.9816, 9.9944, 7.7926, 7.7718, 7.7180, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9.9816, 9
10 \text{ for } i=1:18
                                        (in(i)),n(i),f(in(i))-n(i))
12 \quad {\tt end}
```

#### Scilab code Exa 22.7 First Order ODE

```
1 //Example 22.7
2 // First Order ODE
3 // Page no. 783
4 clc; clear; close;
6 deff('y=f(x)', 'y=(\exp(-x^2/2))/(1+x+x^3)')
7 printf('Test Points\tActual Solution \tEstimated
      Solution \setminus tError \setminus n \qquad x \setminus t \setminus twa(x) \setminus t \setminus twt(x) \setminus t \setminus tdw
      (x) \n
      n ')
8 x
      = [0.1054, 0.1091, 0.2693, 0.2703, 0.3067, 0.3088, 0.4268, 0.4284, 0.5098,
9 e
      = [0.1027, 0.1063, 0.2513, 0.2522, 0.2832, 0.2849, 0.3792, 0.3805, 0.4398,
10 \text{ for } i=1:10
11
       i),(1-f(x(i))),e(i),-e(i)+(1-f(x(i))))
12 end
13 printf('\n\n Experimental result varying from
      calculated result')
```