6장 동적 계획법

목차

- ◆기본 개념
 - > 동적 계획법
 - ▶ 분할 정복과의 비교
 - ▶ 최적성의 원리
- ◆ 행렬의 연쇄적 곱셈
 - ▶ 직선적 알고리즘
 - > 동적 계획법을 사용한 알고리즘
- ◆최적 이진 탐색 트리
- ◆스트링 편집 거리

기본 개념

- ◆ 동적 계획법(dynamic programming)
 - 주어진 문제를 여러 개의 소문제로 분할하여 각 소문 제의 해결안을 바탕으로 주어진 문제를 해결
 - > 각 소문제는 다시 또 여러 개의 소문제로 분할 가능
 - 각 소문제는 원래 주어진 문제와 동일한 문제이지만 입력의 크기가 작음
 - 소문제의 해를 표 형식으로 저장해 놓고 이를 이용하여 입력 크기가 큰 원래의 문제를 점진적으로 해결

분할 정복과의 비교

◆ 분할 정복

분할되는 소문제가 독립적이어서 소문제를 다시 순환 적으로 풀어 그 결과를 합침

◆ 동적 계획법

- 소문제가 독립적이지 않아서, 즉 소문제 간에 중복되는 부분이 있어서 이를 분할 정복 방법으로 풀면 동일한 소문제를 반복적으로 풀어야 하는 경우가 발생
- 소문제의 계산 결과를 표에 저장해 놓고 필요할 때 이 표에서 값을 꺼내옴

분할 정복과의 비교 예(1)

- ◆ 피보나치 수열
 - f(n) = f(n-1) + f(n-2)
- ◆ 분할 정복의 경우
 - > 아래 함수를 반복 호출

```
def fib(n):
    if n <= 0: return 0
    if n == 1: return 1
    else: return fib(n-1) + fib(n-2)</pre>
```


분할 정복과의 비교 예(2)

- ◆동적 계획법의 경우
 - » f[2]부터 f[3], f[4]의 순서로 계산하여 f[n]을 구함
 - ▶ 상향식 방법 (bottom-up)

```
def fib2(n):
    f = [0] * n
    if n > 0:
        f[1] = 1
        for i in range(2, n):
            f[i] = f[i-1] + f[i-2]
    return f[n-1]
```

적용 대상

◆ 최적화 문제

- > 동적 계획법은 최소치 또는 최대치를 구하는 최적화 문제에 적용
- 최적화 문제의 최적해는 여러 개가 있을 수 있지만 그 중의 어느 하나를 구하면 됨
- 최적해는 기본적인 소문제의 최적해로부터 더 큰 크기의 소문제의 최적해를 구하는 과정을 거침
- ◆ 최적성의 원리(principle of optimality)
 - > 주어진 문제의 부분의 해가 전체 문제의 해를 구성하는데 사용
 - 동적 계획법으로 문제를 해결하려면, 그 문제가 최적성의 원리를 만족해야 함
- ◆ 최적성의 원리의 적용
 - > 어떤 문제의 한 사례(instance)에 대한 최적해가 모든 부분사례 (sub-instance)에 대한 최적해들을 항상 포함할 때

적용 단계

- ① 문제의 특성을 분석하여 최적성의 원리가 적용 되는지 확인
- ② 주어진 문제를 소문제로 분해하여 최적해를 제 공하는 점화식 도출
- ③ 입력 크기가 작을 때 도출된 점화식의 해를 구 함
- ④ 이 해를 이용하여 점차적으로 입력 크기가 클 때의 점화식의 최적해를 구함

최적성의 원리가 성립하지 않는 예

- $-v_1$ 에서 v_4 까지의 최장 경로 : $[v_1, v_3, v_2, v_4]$
- $-v_1$ 에서 v_3 까지의 최장 경로 : $[v_1, v_3]$ 가 아니라 $[v_1, v_2, v_3]$
- 부분 해가 전체 해를 구성하는데 사용되지 않음

욕심쟁이 방법과의 비교

- ◆ 두 방법 모두 최적성의 원리가 적용
- ◆ 욕심쟁이 방법 (greedy method)
 - 단계별로 진행되어 각 단계에서는 현재 상태에서 가장 최적이라 고 판단되는 결정
 - > 국부적인 최적해들이 결국에는 전체적인 최적해로 된다는 전략
 - ▶ 소문제에 대한 하나의 최적해만을 고려
 - ▶ 문제에 따라 최적해를 구할 수 있고, 그렇지 않을 수도 있음

◆ 동적 계획법

- 소문제에 대한 여러 최적해로부터 다음 크기의 소문제에 대한 최 적해가 결정
- ▶ 모든 가능성을 고려하여 결정을 내리게 되므로 항상 최적의 결과

행렬의 연쇄적 곱셈(1)

- n 개의 행렬을 곱함
 - $> M_1 \times M_2 \times \ldots \times M_n$
 - $\rightarrow (i \times j \ \vec{o}) \times (j \times k \ \vec{o}) = (i \times k \ \vec{o})$
- ◆ 결합법칙의 성립
 - ▶ 행렬을 곱하는 순서에 따라 여러 가지 다른 방법으로 계산
- ◆ 알고리즘의 목표
 - 여러 개의 곱셈 순서 중에서 비용이 최소인 곱셈 순서를 구하는 것

행렬의 연쇄적 곱셈(2)

- ◆ n = 4, M_1 부터 M_4 까지의 차원이 각각 10×100 , 100×5 , 5×50 , 50×20 이라고 할 때 이것들을 곱하는 방법
- ① $M_1 \times (M_2 \times (M_3 \times M_4)) : 5 \times 50 \times 20 + 100 \times 5 \times 20 + 10 \times 100 \times 20 = 35,000$
- ② $M_1 \times ((M_2 \times M_3) \times M_4) : 100 \times 5 \times 50 + 100 \times 50 \times 20 + 10 \times 100 \times 20 = 145,000$
- ③ $(M_1 \times M_2) \times (M_3 \times M_4) : 10 \times 100 \times 5 + 5 \times 50 \times 20 + 10 \times 5 \times 20 = 11,000$
- $\textcircled{4} ((M_1 \times M_2) \times M_3) \times M_4 : 10 \times 100 \times 5 + 10 \times 5 \times 50 + 10 \times 50 \times 20 = 17,500$
- (5) $(M_1 \times (M_2 \times M_3)) \times M_4 : 100 \times 5 \times 50 + 10 \times 100 \times 50 + 10 \times 50 \times 20 = 85,000$

행렬의 연쇄적 곱셈(3)

- ◆ 직선적(brute-force) 알고리즘
 - ▶ 가능한 모든 순서를 모두 고려해 보고, 그 가 운데에서 곱셈 횟수가 가장 최소인 것을 택하 는 것
 - > n 개의 행렬 $(M_1, M_2, ..., M_n)$ 을 곱할 수 있는 모든 순서의 가지 수를 t_n 이라 할 때
 - $t_n \ge 2t_{n-1} \ge 2^2t_{n-2} \ge \dots \ge 2^{n-2}t_2$ = $2^{n-2} = O(2^n)$

행렬의 연쇄적 곱셈(4)

- ◆동적 계획법을 사용한 알고리즘
 - $\triangleright n$ 개의 행렬을 곱할 때 n-1 번의 곱셈 필요
 - > n 개의 행렬 중 M_i 와 M_{i+1} , $1 \le i \le n-1$ 을 곱함
 - ▶ 두 개의 행렬이 하나의 새로운 행렬로 대체
 - \triangleright 이제 n-1 개의 행렬을 곱하는 문제로 변환
 - 이러한 작업을 계속하면 마지막에는 두 개의 행렬이 남고 이들을 곱함

행렬의 연쇄적 곱셈(5)

◆점화식

- $> 1 \le i \le j \le n$
- M[i,j]: i < j 일 때, A_i 부터 A_j 까지의 행렬을 곱하는데 필요한 기본적인 곱셈의 최소 횟수
- > $M[i,j] = \min_{i \le k \le j-1} (M[i,k] + M[k+1,j] + d_{i-1}d_kd_j)$, if i < j
- $\rightarrow M[i,j] = 0$, if $i \ge j$

행렬의 연쇄적 곱셈 알고리즘

```
matrixChainMult(d[], p[], n)
 for (i \leftarrow 1; i \leq n; i \leftarrow i + 1) do
   M[i,i] \leftarrow 0;
 for (h \leftarrow 1; h \leq n-1; h \leftarrow h + 1) do
   for (i \leftarrow 1; i \leq n-h; i \leftarrow i+1) do {
    i \leftarrow i + h;
    M[i,j] \leftarrow \min_{i \le k \le i-1} (M[i,k] + M[k+1,j] + d[i-1] \cdot d[k] \cdot d[j]);
    p[i,i] ← 최소 값을 갖는 k;
 return M[1,n];
end matrixChainMult()
```

행렬 곱셈의 예

А	В	С	D	E	F
4 × 2	2 × 3	3 × 1	1 × 2	2 × 2	2 × 3

풀이

	В	С	D	E	F
А	24 [A][B]	14 [A][BC]	22 [ABC][D]	26 [ABC][DE]	36 [ABC][DEF]
В		6 [B][C]	10 [BC][D]	14 [BC][DE]	22 [BC][DEF]
С			6 [C][D]	10 [C][DE]	19 [C][DEF]
D				4 [D][E]	10 [DE][F]
E					12 [E][F]

최적 이진 탐색 트리(1)

- ◆이진 탐색 트리
 - 루트의 왼쪽 서브트리에 있는 원소의 키 값은 루트보다 작고, 루트의 오른쪽 서브트리에 있 는 원소의 키 값은 루트보다 큰 이진 트리
- ◆최적 이진 탐색 트리
 - ▶ 트리 내의 키와 각 키가 탐색될 확률이 주어져 있을 때 그 트리의 평균 탐색 비용, 즉, 평균 비교 횟수를 계산하고 이를 최소화하는 탐색 트리를 구축하는 문제

최적 이진 탐색 트리(2)

◆ 키 값 $a_i \le a_{i+1} \le ... \le a_j$ 일 경우 A[i,j]는 이진 탐색 트리의 i부터 j까지의 노드에 대한 최소 평균 탐색 시간

최적 이진 탐색 트리(3)

◆점화식

$$A[i, j] = \min_{i \le k \le j} (A[i, k-1] + A[k+1, j] + \sum_{q=i}^{j} P(a_q))$$

$$A[i, i] = P(a_i)$$

$$A[i, i-1] = 0, 1 \le i \le n-1$$

최적 이진 탐색 트리 구하기(1)

$$\bullet a_1 = A, a_2 = B, a_3 = C, a_4 = D$$

- A < B < C < D
- $p_1 = 0.3, p_2 = 0.2, p_3 = 0.4, p_4 = 0.1$

최적 이진 탐색 트리 구하기(2)

A[i,j]의 값

i	1	2	3	4
1	0.3	0.7	1.6	1.8
2		0.2	0.8	1.0
3			0.4	0.6
4				0.1

최소값을 갖는 k의 값

i j	1	2	3	4
1	1	1	2	3
2		2	3	3
3			3	3
4				4

최적 이진 탐색 트리 구하기(3)

최적 이진 탐색 트리 알고리즘

```
optimalBST(p[], r[], n)
 for (i \leftarrow 1; i \leq n; i \leftarrow i + 1) do {
    A[i,i] \leftarrow p[i];
     r[i,i] \leftarrow i;
 for (h \leftarrow 1; h < n; h \leftarrow h + 1) do
     for (i \leftarrow 1; i \leq n-h; i \leftarrow i+1) do {
        i \leftarrow i + h;
        A[i,j] \leftarrow \min_{i \leq k \leq j} (A[i,k-1] + A[k+1,j] + \sum P[m]);
        r[i,i] ← 최소 값을 갖는 k;
 return A[1,n];
end omtimalBST()
```

스트링 편집 거리(1)

- ◆ 스트링 편집 거리(string edit distance)
 - 두 스트링의 유사도를 측정하기 위해 사용
 - > Levenshtein distance(LD)라고도 함
 - ▶ 원래 스트링을 S, 목표 스트링을 T
 - ▶ S를 T로 변환하는데 필요한 삽입, 삭제, 대치 연산의 최소 비용
 - ▶ 편집 거리가 커질수록, 두 스트링의 유사도는 낮아지 게 됨
 - 논문이나 보고서의 표절 검사, DNA 염기 서열의 유사도 검사 등에 사용됨

스트링 편집 거리(2)

◆점화식

- \triangleright 삽입 연산의 비용 : δ_I
- ightrightarrow 삭제 연산의 비용 : δ_D
- ight
 angle 대치 연산의 비용 : δ_S
- > $D[i,j]: S = s_1 s_2 ... s_i$ 와 $T = t_1 t_2 ... t_j$ 사이의 편집 거리
- > $D[i,j] = \min(D[i,j-1] + \delta_{I}, D[i-1,j] + \delta_{D}, D[i-1,j-1] + 0/\delta_{S})$
 - 여기서 $0/\delta_S$ 는 $s_i=t_j$ 이면 0이고, 그렇지 않으면 δ_S 임을 의미

스트링 편집 거리(3)

- ◆동적 계획법의 적용
 - 위의 점화식에 의하면 편집 거리에 대하여 최적 성의 원리가 성립
 - D[i,j]를 단순히 순환적으로 계산하면 중복될 수 있으므로 동적 계획법을 적용
 - $\delta_I = \delta_D = \delta_S = 1$ 인 경우의 점화식
 - $D[i,j] = \min(D[i,j-1] + 1, D[i-1,j] + 1, D[i-1,j-1] + 0/1)$

스트링 편집 거리 예

 $lacktriangle \delta_I = \delta_D = \delta_C = 1$ 일 때, $S = \text{GUMBO} = T = \text{GAMBOL} \ Z = \text{변경하는 스트링 편집 거리}$

풀이(1)

		G	U	M	В	0
	0	1	2	3	4	5
G	-					
Α	2					
М	3					
В	4					
O	5					
L	6					

풀이(2)

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0	1	2	က	4
Α	2	1				
М	3	2				
В	4	3				
O	5	4				
L	6	5				

풀이(3)

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	က	4
М	ന	2	2	1	2	3
В	4	3	က	2	1	2
O	5	4	4	3	2	1
L	6	5	5	4	3	2

스트링 편집 거리 알고리즘

 \bullet $\delta_I = \delta_D = \delta_S = 1$ 인 경우 알고리즘

```
editDistance(s[], t[], m, n)
 // 문자 배열 s[1,m], t[1,n]
 D[0.0] \leftarrow 0;
 for (i \leftarrow 1; i \leq n; i \leftarrow i + 1) do
  D[i.0] \leftarrow D[i-1.0] + 1;
 for (j \leftarrow 1; j \leq m; j \leftarrow j + 1) do
  D[0.i] \leftarrow D[0.i-1] + 1;
 for (i \leftarrow 1; i \leq n; i \leftarrow i + 1) do
   for (j \leftarrow 1; j \leq m; j \leftarrow j + 1) do {
    if (s[i] = t[j]) then cost \leftarrow 0;
    else cost \leftarrow 1:
    D[i,j] \leftarrow min(D[i,j-1] + 1, D[i-1,j] + 1, D[i-1,j-1] + cost);
 return D[n,m];
end editDistance()
```