Worksheet 10: Ionization

Objectives

- 1. Use K_w to determine relative amounts of hydroxide and hydronium ions in solution and assess whether the solution is acidic, basic, or neutral
- 2. Calculate equilibrium concentrations and pH using any appropriate approximations
- 3. Determine the pH or pOH of a solution and identify the relationship between these quantities
- 4. Carry out all kinds of pH calculations and calculations using pH to find other quantities

Key Questions

- 1. Write the expressions for K_c and K_a of water. Recall that $[H_2O] \approx 55$ M. Using this information, the expression for the K_a of water, and the fact that water's K_a is 1.8×10^{-16} , calculate the value of $[H_3O^+] \times [OH^-]$.
- 2. What is the name for the value calculated in the previous problem?
- 3. Use the value of K_w to calculate the hydronium and hydroxide ion concentrations in pure water. Also calculate the pH and pOH of pure water.
- 4. For the following concentrations, state whether the associated solution will be acidic, basic, or neutral, and calculate the corresponding hydroxide or hydronium concentration.
 - (a) $[H_3O^+] = 7.2 \times 10^{-4} \text{ M}$
 - (b) $[H_3O^+] = 5.8 \times 10^{-10} \text{ M}$
 - (c) $[OH^{-}] = 1.8 \times 10^{-6} \text{ M}$
 - (d) $[OH^{-}] = 1.0 \times 10^{-7} \text{ M}$
- 5. Given an initial concentration of 0.5 M $\rm H_2S$ and its $\rm K_a$ of 1.1×10^{-7} , determine the equilibrium concentration of $\rm HS^-$, the pH of the solution, and $\rm [OH^-]$.
- 6. How many moles of NH₃ must be dissolved in 1.00 liters of aqueous solution to produce a solution with a pH of 11.47? The K_a of NH₄⁺ is 5.8×10^{-10} .
- 7. Calculate the percent ionization of the weak acid, HA, given a 0.25 M HA solution and a K_a of 5.3×10^{-7} .