Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

8 de julho de 2019

Exame da Época de Recurso

Duração: 2h30

Justifique devidamente as suas respostas. O formulário encontra-se no verso.

- 1. [50] Considere a série de potências $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{5^n}{n} x^n$.
 - (a) Determine o domínio de convergência da série.
 - (b) Justifique que

$$\ln\left(\frac{1}{1-x}\right) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad \text{para todo o } x \in]-1,1[.$$

[Sugestão: use convenientemente um dos desenvolvimentos indicados no formulário]

- (c) Usando a representação indicada da alínea (b), determine a soma f(x) da série dada (no respetivo intervalo de convergência).
- 2. [10] Determine a série de Fourier de co-senos da função f definida em $[0,\pi]$ por

$$f(x) = \begin{cases} 1, & se \quad 0 \le x \le 1, \\ 0, & se \quad 1 < x \le \pi. \end{cases}$$

- 3. [30] Considere a função g definida por $g(x,y) = x^2 + xy + y^2 + \frac{3}{x} + \frac{3}{x}$.
 - (a) Determine o domínio de g e represente-o geometricamente.
 - (b) Mostre que g possui um mínimo local no ponto (1,1).
- 4. [30] Calcule os extremos absolutos da função $f:\mathbb{R}^2\to\mathbb{R}$ definida por $f(x,y)=y+x^2$, no conjunto $C=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}.$
- 5. [40] Resolva as seguintes equações diferenciais:

 - (a) $y' = e^{x-2y}$; (b) y''' + y' = 4x.
- 6. [25] Resolva o seguinte problema de valores iniciais, usando transformadas de Laplace:

$$y'' - y' = 2e^t \cos t$$
, $y(0) = 0 = y'(0)$.

7. [15] Considere uma equação diferencial da forma

$$y' + a(x)y + b(x) = c(x) y^{2}, (1)$$

onde a(x), b(x), c(x) são funções contínuas num dado intervalo de \mathbb{R} . Mostre que se y_p é uma solução particular da equação (1), então a substituição

$$y = y_p + \frac{1}{z} \qquad [z = z(x)]$$

transforma a equação dada numa equação diferencial linear (em z e x), nomeadamente

$$z' + (2c(x) y_p(x) - a(x)) z = -c(x).$$

Algumas fórmulas de derivação

$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$\left(\log_a f\right)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \sin f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot f)' = -f' \operatorname{cosec}^2 f = -\frac{f'}{\operatorname{sen}^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$\left(\operatorname{arccos} f\right)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$\left(\operatorname{arccotg} f\right)' = -\frac{f'}{1+f^2}$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$