

Neutrino Flavor Conversions in Dense Medium: Matter Stimulation, Dispersion Relation, and Neutrino Halo

PhD Defense

Lei Ma

Supervisor: Huaiyu Duan

Outline for Section 1

- 1. Neutrino Oscillations
 - 1.1 Neutrinos as Fundamental Particles
 - 1.2 Why Do Neutrinos Oscillate
- Matter Stimulated Oscillations
 - 2.1 Matter Interactions, MSW Effect, and Solar Neutrino Problem
 - 2.2 Stimulated Neutrino Oscillations and Rabi Oscillations
 - 2.3 Basis and Formalism
 - 2.4 Multiple Frequencies in Matter Potential
- Neutrino Oscillations and Dispersion Relation
 - 3.1 Neutrino Self-interactions
 - 3.2 Linear Stability Analysis
 - 3.3 Dispersion Relation
- Neutrino Halo Problem
 - 4.1 Flavor Isospin Picture
 - 4.2 Numerical Method
- Summary

What are Neutrinos?

Elementary particles. Source: symmetrymagazine.org

Neutrinos are

- fermions,
- · electrically neutral,
- three flavors,
- none vanishing mass.

Adapted from Olga Mena & Stephen Parke (2004)

What are Neutrinos?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- fermions,
- electrically neutral,
- three flavors.
- none vanishing mass.

Adapted from Olga Mena & Stephen Parke (2004)

Why Do Neutrinos Oscillate?

Flavor states are different from mass states.

$$\begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta_{\rm v} & \sin \theta_{\rm v} \\ -\sin \theta_{\rm v} & \cos \theta_{\rm v} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Why Do Neutrinos Oscillate?

Equation of Motion

$$i\partial_{\mathsf{x}} \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \end{pmatrix} = \mathbf{H} \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \end{pmatrix}$$

Why Do Neutrinos Oscillate?

Equation of Motion

$$i\partial_{\mathsf{x}} \begin{pmatrix} \psi_{\mathsf{e}} \\ \psi_{\mu} \end{pmatrix} = \mathbf{H} \begin{pmatrix} \psi_{\mathsf{e}} \\ \psi_{\mu} \end{pmatrix}$$

$$H = \frac{\omega_{v}}{2} \left(-\cos 2\theta_{v} \sigma_{3} + \sin 2\theta_{v} \sigma_{1} \right)$$

Oscillation frequency:

$$\omega_{\rm v} = \frac{\delta m^2}{2E} = \frac{m_2^2 - m_1^2}{2E}$$

Mixing angle θ_ν

Flavor Isospin

Hamiltonian:
$$\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

Flavor isospin: $\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$

Flavor isospin:
$$\vec{s} = \Psi^{\dagger} \frac{\sigma}{2} \Psi$$

Electron flavor survival probability

$$P = \frac{1}{2} + s_3$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

Flavor Isospin

Hamiltonian: $\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$ Flavor isospin: $\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$

Electron flavor survival probability

$$P = \frac{1}{2} + s_3$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

Vacuum oscillation Hamiltonian

$$\frac{\omega_{v}}{2}\left(-\cos2\theta_{v}\sigma_{3}+\sin2\theta_{v}\sigma_{1}\right)$$

$$\rightarrow \cos 2\theta_{v} \begin{pmatrix} 0 \\ 0 \\ \omega_{v} \end{pmatrix} - \sin 2\theta_{v} \begin{pmatrix} \omega_{v} \\ 0 \\ 0 \end{pmatrix}$$

Outline for Section 2

- Neutrino Oscillations
 - 1.1 Neutrinos as Fundamental Particles
 - 1.2 Why Do Neutrinos Oscillate
- 2. Matter Stimulated Oscillations
 - 2.1 Matter Interactions, MSW Effect, and Solar Neutrino Problem
 - 2.2 Stimulated Neutrino Oscillations and Rabi Oscillations
 - 2.3 Basis and Formalism
 - 2.4 Multiple Frequencies in Matter Potential
- Neutrino Oscillations and Dispersion Relation
 - 3.1 Neutrino Self-interactions
 - 3.2 Linear Stability Analysis
 - 3.3 Dispersion Relation
- Neutrino Halo Problem
 - 4.1 Flavor Isospin Picture
 - 4.2 Numerical Method
- 5. Summary

6/52

Matter Interaction

Matter Interaction

Hamiltonian with matter interaction in flavor basis ($\omega_v = \delta m^2/2E$):

$$H = \frac{\omega_{V}}{2} \left(-\cos 2\theta_{V} \sigma_{3} + \sin 2\theta_{V} \sigma_{1} \right) + \frac{\lambda(x)}{2} \sigma_{3}$$

- Vacuum Hamiltonian
- Matter interaction
- $\lambda(x) = \sqrt{2}G_{\rm F}n_{\rm e}(x)$

$$H = \frac{\omega_{V}}{2} \left(-\cos 2\theta_{V} \sigma_{3} + \sin 2\theta_{V} \sigma_{1} \right) + \frac{\lambda(x)}{2} \sigma_{3}$$

$$\rightarrow \frac{\omega_{V}}{2} \left(-\sin 2\theta_{V} \right) + \left(0 \right) - \lambda(x)$$

$$= \vec{H}_{V} + \vec{H}_{m}(x)$$

Electron flavor survival probability

$$P = \frac{1}{2} + s_3$$

Oscillation frequency in vacuum:

$$\omega_{\mathsf{V}} = |\vec{H}_{\mathsf{V}}|$$

Oscillation frequency in matter:

$$\omega_{\rm m} = |\vec{H}|$$

Flavor states and mass states in matter

$$\begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} \psi_{\rm L} \\ \psi_{\rm H} \end{pmatrix}$$

Large density

Adiabatic matter density change

Low density

- Maximum possible flavor transition probability amplitude
- MSW Resonance
- A specific matter density

$$\sqrt{2}G_{\rm F}n_{\rm e}\equiv\omega_{\rm v}\cos2\theta_{\rm v}$$

Supernova Matter Density Profile

Astrophysical environments: supernovae, accretion disks etc

Supernova shock and turbulence. E. Borriello, et al (2014)

Stimulated Neutrino Flavor Conversions

Transition probabilities between mass states in matter.

Stimulated Neutrino Flavor Conversions

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

P. Krastev and A. Smirnov (1989); A. Friedland et al (2006); J. Kneller et al (2013); K. Patton et al (2014);

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\rm m}}{2}\sigma_3 - \frac{\alpha}{2} \begin{pmatrix} 0 & e^{ikt} \\ e^{-ikt} & 0 \end{pmatrix}$$

Scheme

Static Frame

$$\vec{H}_3 = \omega_{\rm m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_+ = \alpha \begin{pmatrix} \cos(kt) \\ -\sin(kt) \\ 0 \end{pmatrix}$$

Static Frame

$$\vec{H}_{3} = \omega_{m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_{+} = \alpha \begin{pmatrix} \cos(kt) \\ -\sin(kt) \\ 0 \end{pmatrix} \qquad \vec{H}'_{3} = (\omega_{m} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}'_{+} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Corotating Frame

$$\vec{H}'_{3} = (\omega_{m} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}'_{+} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Corotating Frame

$$\vec{H}'_{3} = (\omega_{\rm m} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \Rightarrow k = \omega_{\rm m}$$

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\rm m}}{2}\sigma_3 - \frac{\alpha}{2} \begin{pmatrix} 0 & e^{ikt} \\ e^{-ikt} & 0 \end{pmatrix}$$

Scheme

Rabi formula

$$P_{1\to 2} = \frac{1}{1+D^2} \sin^2\left(\frac{\Omega_{\rm R}}{2}t\right).$$

Relative detuning

$$D = \left| \frac{\omega_{\rm m} - k}{\sigma} \right|.$$

Rabi frequency

$$\Omega_{\rm R} = |\alpha|\sqrt{1+D^2}$$

$$\begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x)=\lambda_0$$

Basis

matter basis:

$$H = \frac{1}{2} \left(-\omega_{\rm m} \right) \sigma_3$$

$$\begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Basis

Background matter basis:

$$H = \frac{1}{2} \left(-\omega_{m} + A \cos(kx) \cos 2\theta_{m} \right) \sigma_{3} - \frac{A \cos(kx)}{2} \sin 2\theta_{m} \sigma_{1}$$

Matter potential frequency

$$k \sim \omega_{\rm m}$$

$$H = \frac{1}{2} \left(-\omega_{m} + \frac{\cos 2\theta_{m} + \cos (kx)}{2} \right) \sigma_{3} - \frac{\sin 2\theta_{m}}{2} A \cos(kx) \sigma_{1}$$

$$\rightarrow \omega_{m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(kx) \\ -\sin(kx) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-kx) \\ -\sin(-kx) \\ 0 \end{pmatrix}$$

$$\alpha = \frac{\sin 2\theta_{m}}{2} A$$

Matter potential frequency

$$k \sim \omega_{\rm m}$$

$$H = \frac{1}{2} \left(-\omega_{m} + \frac{\cos 2\theta_{m} + \cos (kx)}{2} \right) \sigma_{3} - \frac{\sin 2\theta_{m}}{2} A \cos(kx) \sigma_{1}$$

$$\rightarrow \omega_{m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(kx) \\ -\sin(kx) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-kx) \\ -\sin(-kx) \\ 0 \end{pmatrix}$$

$$\alpha = \frac{\sin 2\theta_{m}}{2} A$$

Rabi Formula Works

Transition between two mass states in background matter potential λ_0 Lines: Rabi formula Dots, diamonds, triangles, and squares are **full solutions without approximations** for $k=\omega_{\rm m}$, $k=(1-2\times10^{-5})\omega_{\rm m}$, and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

Single Frequency Matter Potential Revisited

We have been making approximations.

$$H = \frac{1}{2} \left(-\omega_{m} + \frac{\cos 2\theta_{m} + \cos(kx)}{\cos(kx)} \right) \sigma_{3} - \frac{\sin 2\theta_{m}}{2} A \cos(kx) \sigma_{1}$$

$$\rightarrow \omega_{m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(kx) \\ -\sin(kx) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-kx) \\ -\sin(-kx) \\ 0 \end{pmatrix}$$

Rabi Basis

Hamiltonian in Background Matter Basis

$$H = \frac{1}{2} \left(-\omega_{\rm m} + A\cos(kx)\cos 2\theta_{\rm m} \right) \sigma_3 - \frac{A\cos(kx)}{2} \sin \theta_{\rm m} \sigma_1.$$

A Better Basis

Define Rabi basis in which the wave function is related to wave function in background matter basis through

$$\begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix} = \begin{pmatrix} e^{-i\eta(x)} & 0 \\ 0 & e^{i\eta(x)} \end{pmatrix} \begin{pmatrix} \tilde{\psi}_L \\ \tilde{\psi}_H \end{pmatrix},$$

where

$$\eta(x) - \eta(0) = \frac{\cos 2\theta_{\rm m}}{2} \int_0^x A \cos(k\tau) d\tau.$$

Single Frequency Matter Potential

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Hamiltonian in Rabi Basis

The Hamiltonian

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathsf{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} \begin{pmatrix} 0 & \frac{1}{2}\alpha_{n}e^{i(nk)x} \\ \frac{1}{2}\alpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n (A \cos 2\theta_m/k)$.

Single Frequency Matter Potential

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Hamiltonian in Rabi Basis

The Hamiltonian

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathsf{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} \begin{pmatrix} 0 & \frac{1}{2}\alpha_{n}e^{i(nk)x} \\ \frac{1}{2}\alpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n (A \cos 2\theta_m/k)$.

Map neutrino oscillations in single frequency matter potential to Rabi oscillations with many driving potentials.

Resonance condition for each mode: $nk = \omega_{\rm m}$

Rabi Oscillations With Multiple Driving Frequencies

Consider Rabi oscillation with two driving frequencies $k_1 = n_1 k$, $k_2 = n_2 k$

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 x) \\ -\sin(k_1 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} \cos(k_2 x) \\ -\sin(k_2 x) \\ 0 \end{pmatrix}$$

Corotating frame of the second potential,

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 - k_2 x) \\ -\sin(k_1 - k_2 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Rabi Oscillations With Multiple Driving Frequencies

Relative detuning

$$D' = \left| \frac{\omega_{\rm m} - k_1}{\alpha_1} + \frac{\alpha_2^2}{2\alpha_1(\omega_{\rm m} - k_2)} \right|$$

Rabi Oscillations With Multiple Driving Frequencies

Grid lines: amplitude predicted using $1/(1 + D'^2)$

α_2 , k_1 values			
Dashed	dotted	dash-dotted	solid
$10^{-2} \omega_{\rm m}$, $10 \omega_{\rm m}$	$10^{-2}\omega_{\rm m}, 10^{-1}\omega_{\rm m}$	$5.0 \times 10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$5 \times 10^{-2} \omega_{\rm m}, 10^{-1} \omega_{\rm m}$

Rabi Oscillations With Multiple Driving Frequencies

Consider $k_1 = \omega_{\rm m}$

$$D' = \left| \frac{\alpha_2^2}{2\alpha_1(\omega_m - k_2)} \right|$$

Amplitude reduces from 1 to 1/2 if

$$D' = 1 \Rightarrow \alpha_{2,C} \equiv \sqrt{2|\alpha_1(k_2 - \omega_m)|}.$$

Two driving frequencies k_1 , and k_2 , with amplitude α_1 , and α_2 For $k_1 = \omega_m$, survival of resonance requires

$$|\alpha_2| \ll \alpha_{2,C} \equiv \sqrt{2|\alpha_1(k_2 - \omega_{\rm m})|}$$

Single Frequency Matter Potential

Width of different modes given value of matter potential frequency k

Single Frequency Matter Potential

Multiple Frequencies in Matter Potential

$$\lambda(x) = \lambda_0 + \sum_{a=1}^{N} A_a \sin(k_a x)$$

Hamiltonian in Rabi Basis

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathsf{m}}}{2}\sigma_{3} + \frac{1}{2}\sum_{n_{1}=-\infty}^{\infty}\cdots\sum_{n_{N}=-\infty}^{\infty} \begin{pmatrix} 0 & B_{\{n_{\alpha}\}}e^{i\sum_{\alpha}n_{\alpha}k_{\alpha}x} \\ B_{\{n_{\alpha}\}}e^{-i\sum_{\alpha}n_{\alpha}k_{\alpha}x} & 0 \end{pmatrix}$$

where

$$B_{\{n_a\}} = -(-i)^{\sum_a n_a} \tan 2\theta_m \left(\sum_a n_a k_a \right) \left(\prod_a J_{n_a} \left(\frac{A_a}{k_a} \cos 2\theta_m \right) \right)$$

Castle Wall Matter Potential

Castle wall matter profile:
$$\begin{split} & \Lambda_2 = 0.35 \omega_{\rm V} \cos 2\theta_{\rm V}, \\ & \Lambda_1 = 0.15 \omega_{\rm V} \cos 2\theta_{\rm V} \text{ and period } \\ & X = 2\pi/\omega_{\rm m} \end{split}$$

$$\lambda(x) = \lambda_0 + \sum_{1}^{\infty} \lambda_n \cos(k_n x)$$

where

$$\lambda_0 = (\Lambda_1 + \Lambda_2)/2$$

$$\lambda_n = 2(-1)^n (\Lambda_1 - \Lambda_2)/(2n\pi - \pi)$$

$$k_n = 2\pi(2n - 1)/X$$

Castle Wall Matter Potential

Castle wall matter profile:
$$\begin{split} &\Lambda_2 = 0.35 \omega_{\rm V} \cos 2\theta_{\rm V}, \\ &\Lambda_1 = 0.15 \omega_{\rm V} \cos 2\theta_{\rm V} \text{ and period } \\ &X = 2\pi/\omega_{\rm m} \end{split}$$

Transition probability is a Rabi resonance with small variations due to higher orders.

1. Vacuum oscillations: flavor sates are not mass states.

- Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.

- Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter potential can cause resonances.

For matter potential

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

Resonance condition

$$nk = \omega_{\rm m}$$

- Vacuum oscillations: flavor sates are not mass states.
- MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter potential can cause resonances.
- In many cases neutrino oscillations in multi-frequency matter potential can be viewed as Rabi oscillations with few driving frequencies.

Outline for Section 3

- Neutrino Oscillations
 - 1.1 Neutrinos as Fundamental Particles
 - 1.2 Why Do Neutrinos Oscillate
- Matter Stimulated Oscillations
 - 2.1 Matter Interactions, MSW Effect, and Solar Neutrino Problem
 - 2.2 Stimulated Neutrino Oscillations and Rabi Oscillations
 - 2.3 Basis and Formalism
 - 2.4 Multiple Frequencies in Matter Potential
- 3. Neutrino Oscillations and Dispersion Relation
 - 3.1 Neutrino Self-interactions
 - 3.2 Linear Stability Analysis
 - 3.3 Dispersion Relation
- Neutrino Halo Problem
 - 4.1 Flavor Isospin Picture
 - 4.2 Numerical Method
- 5. Summary

Interaction Hamiltonian

 $H_{\nu\nu}$

$$\sqrt{2}G_{\rm F}(1-\hat{p}\cdot\hat{p}')\rho(\mathbf{p}')$$

In Flavor Isospin space

$$-2\sqrt{2}G_{\mathsf{F}}(1-\hat{p}\cdot\hat{p}')n(\mathbf{p}')\vec{s}(\mathbf{p}')$$

Interaction Hamiltonian $\mathbf{H}_{\nu\nu}$

$$\sqrt{2}G_{\mathsf{F}}(1-\hat{p}\cdot\hat{p}')\rho(\mathbf{p}')$$

In Flavor Isospin space

$$-2\sqrt{2}G_{\mathsf{F}}(1-\hat{p}\cdot\hat{p}')n(\mathbf{p}')\vec{s}(\mathbf{p}')$$

•
$$H_{\nu} = -\eta \frac{1}{2} \omega \sigma_3$$

•
$$H_m = \frac{1}{2}\lambda\sigma_3$$

$$\bullet \ H_{\nu\nu,2} = \frac{1}{2}\mu_1\rho_1\xi$$

•
$$H_{\nu\nu,1} = \frac{1}{2}\mu_2\rho_2\xi$$

$$\mu_i = \sqrt{2}G_F(1 - \cos(\theta_1 - \theta_2))n_i$$

$$\xi = (1 - \cos(\theta_1 - \theta_2))$$

Characteristic Length Scales

- $\omega_{\rm V} = \delta m^2/2E$
- $\lambda \sim G_{\rm F} n_e$
- $\mu \sim G_F(1-\mathbf{p}_1\cdot\mathbf{p}_2)n_{\nu}$

Characteristic Length Scales

- $\omega_{\rm V} = \delta m^2/2E$
- $\lambda \sim G_F n_e$
- $\mu \sim G_F(1-\mathbf{p}_1\cdot\mathbf{p}_2)n_{\nu}$

Vacuum oscillation oscillation frequencies

$$\omega_{\rm v} = \frac{\Delta m^2}{2E} \sim 6.3 \times 10^{-3} {\rm m}^{-1} \frac{\Delta m_{32}^2}{2.5 \times 10^{-3} {\rm eV}^2} \frac{1 \text{MeV}}{E}$$
$$\sim 1.90 \times 10^{-4} {\rm m}^{-1} \frac{\delta m_{12}^2}{7.5 \times 10^{-5} {\rm eV}^2} \frac{1 {\rm MeV}}{E}$$

Characteristic Length Scales

- $\omega_{\rm V} = \delta m^2/2E$
- $\lambda \sim G_{\rm F} n_{\rm e}$
- $\mu \sim G_F(1-\mathbf{p}_1\cdot\mathbf{p}_2)n_{\nu}$

Vacuum oscillation oscillation frequencies

$$\begin{split} \omega_{\text{v}} &= \frac{\Delta m^2}{2\textit{E}} \sim &6.3 \times 10^{-3} \text{m}^{-1} \frac{\Delta m_{32}^2}{2.5 \times 10^{-3} \text{eV}^2} \frac{1 \textit{MeV}}{\textit{E}} \\ &\sim &1.90 \times 10^{-4} \text{m}^{-1} \frac{\delta m_{12}^2}{7.5 \times 10^{-5} \text{eV}^2} \frac{1 \text{MeV}}{\textit{E}} \end{split}$$

Neutrino self-interactions might lead to Faster oscillations.

$$H_{\nu\nu,2} = \frac{1}{2}\mu_1\rho_1\xi, \qquad H_{\nu\nu,1} = \frac{1}{2}\mu_2\rho_2\xi$$

 ρ_1 : neutrinos; ρ_2 : antineutrinos

$$i\partial_z \rho_i = [H_i, \rho_i]$$

$$\theta_1=\theta_2\equiv\theta\equiv\pi/6$$

$$H_{\nu\nu,2} = \frac{1}{2}\mu_1\rho_1\xi, \qquad H_{\nu\nu,1} = \frac{1}{2}\mu_2\rho_2\xi$$

 ρ_1 : neutrinos; ρ_2 : antineutrinos

$$i\partial_z \rho_i = [H_i, \rho_i]$$

$$\theta_1=\theta_2\equiv\theta\equiv\pi/6$$

$$ho_i = rac{1}{2} egin{pmatrix} 1 & \epsilon_i \ \epsilon_i^* & -1 \end{pmatrix}$$

$$H_{\nu\nu,2} = \frac{1}{2}\mu_1\rho_1\xi, \qquad H_{\nu\nu,1} = \frac{1}{2}\mu_2\rho_2\xi$$

 ρ_1 : neutrinos; ρ_2 : antineutrinos

$$i\partial_z \rho_i = [H_i, \rho_i]$$

$$\theta_1 = \theta_2 \equiv \theta \equiv \pi/6$$

$$ho_i = rac{1}{2} egin{pmatrix} 1 & \epsilon_i \ \epsilon_i^* & -1 \end{pmatrix}$$

$$i\partial_z \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = rac{1}{2\sin\theta} \begin{pmatrix} \omega_{\mathsf{V}} - \mu\xi & \mu\xi \\ -\mu\xi & -\omega_{\mathsf{V}} + \mu\xi \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix}$$

Eigenvalues

$$\pm\sqrt{\omega_{\rm v}(\omega_{\rm v}-2\mu\xi)}$$

Identify the condition for complex eigenvalues

$$\omega_{\rm v}(\omega_{\rm v}-2\mu\xi)<0$$

Eigenvalues

$$\pm\sqrt{\omega_{\rm v}(\omega_{\rm v}-2\mu\xi)}$$

Identify the condition for complex eigenvalues

$$\omega_{\rm v}(\omega_{\rm v}-2\mu\xi)<0$$

More general approach?

$$Det(\omega + N_{\nu}^{\nu}) = 0,$$

$$I_{n}(\theta) = \int_{\cos \theta_{2}}^{\cos \theta_{1}} d\cos \theta G(\theta) \frac{\cos^{n} \theta}{1 - n \cos \theta}$$

$$N_{\nu}^{\mu} = \omega P_{\nu}^{\mu} \rightarrow \begin{pmatrix} \frac{1}{2}I_{0} & 0 & 0 & -\frac{1}{2}I_{1} \\ 0 & -\frac{1}{4}(I_{0} - I_{2}) & 0 & 0 \\ 0 & 0 & -\frac{1}{4}(I_{0} - I_{2}) & 0 \\ \frac{1}{2}I_{1} & 0 & 0 & -\frac{1}{2}I_{2} \end{pmatrix}$$

$$Det(\omega + N^{\nu}_{\nu}) = 0,$$

$$I_n(\theta) = \int_{\cos\theta_2}^{\cos\theta_1} d\cos\theta G(\theta) \frac{\cos^n\theta}{1 - n\cos\theta}$$

Solutions

$$\omega = \frac{1}{4}(I_0 - I_2), \quad -\frac{1}{4}\left(I_0 - I_2 \pm \sqrt{(I_0 - 2I_1 + I_2)(I_0 + 2I_1 + I_2)}\right)$$

Two beams

Three beams

Dispersion relation and linear stability analysis (right panel) for a spectrum constructed from Garching 1D simulation data (left panel). Solid red line is dispersion relation for MAA solution while blue and green lines are for MZA solutions. Light red (green and green) blob is instability for MAA (MZA) solution.

$$k = \frac{1}{4} \int du G(u) \frac{1 - u^2}{\omega/k - u}.$$

$$Re(k) = \frac{1}{4} \left(\mathscr{P} \int du G(u) \frac{1 - u^2}{-u} \right)$$

$$Im(k) = \frac{\pi}{4} G(0) \operatorname{Sign}(\omega) \operatorname{Sign}(\operatorname{Im}(k)).$$

$$|\operatorname{Im}(k)| = \frac{\pi}{4} |G(0)|.$$

$$\left(4\operatorname{Re}(k) - \mathscr{P}\int \frac{G(u)}{u} du + U_1\right)^2 - (\operatorname{Sign}(\omega\operatorname{Im}(k))\pi G(0) + 4\operatorname{Im}(k))^2$$

$$= -\left(\mathscr{P}\int \frac{G(u)}{u} du + U_1\right)\pi \operatorname{Sign}(\omega\operatorname{Im}(k))G(0),$$

Dispersion Relations

Dispersion relation and linear stability analysis for box spectrum. The box spectrum is defined to be -0.1 within range $u \in [-1, -0.3)$ and 1 within range $u \in [-0.3, 1]$. Left panel shows the dispersion relation and the complex k for real ω for MAA solution. Right panel is the corresponding result for MZA solution. Dash-dotted gray lines are $\omega = \pm k$ which sets the boundaries of the forbidden region for dispersion relation.

Outline for Section 4

- Neutrino Oscillations
 - 1.1 Neutrinos as Fundamental Particles
 - 1.2 Why Do Neutrinos Oscillate
- 2. Matter Stimulated Oscillations
 - 2.1 Matter Interactions, MSW Effect, and Solar Neutrino Problem
 - 2.2 Stimulated Neutrino Oscillations and Rabi Oscillations
 - 2.3 Basis and Formalism
 - 2.4 Multiple Frequencies in Matter Potential
- Neutrino Oscillations and Dispersion Relation
 - 3.1 Neutrino Self-interactions
 - 3.2 Linear Stability Analysis
 - 3.3 Dispersion Relation
- 4. Neutrino Halo Problem
 - 4.1 Flavor Isospin Picture
 - 4.2 Numerical Method
- 5. Summary

Neutrino Halo

Neutrino Halo

Assumptions

- Neutrinos are translational symmetric on the emission line.
- Reflection obays Snell's law.
- Neutrinos are reflected on a fixed surface z = L.
- Neutrino reflections are translational symmetric.

Flavor Isospin

Relaxation Scheme

Algorithm

- 1. Calculate forward beam using null backward beam;
- Calculate backward beam using forward beam calculated in step 1;
- Calculate forward beam using backward beam calculated in step 2;
- 4. Repeat 2 and 3 until the beams reach equilibrium.

Numerical Method

Horizontal axis is the location of neutrinos; Vertical axis is the number of iteration steps; Color indicates the electron flavor probability.

Numerical Method

Linear Stability Analysis

EoM

$$i\partial_t \vec{s}_F = \mathbf{s}_F \times (\vec{H}_{\nu} + R\mu \vec{s}_B)$$
$$i\partial_t \vec{s}_B = \vec{s}_B \times (-\vec{H}_{\nu} - \mu \vec{s}_F).$$

Compare with bipolar

$$i\partial_t \vec{s} = \mathbf{s} \times (\eta \vec{H}_v + \alpha \mu \vec{s})$$
$$i\partial_t \vec{s} = \vec{s} \times (\eta \vec{H}_v + \mu \vec{s})$$

Linear Stability Analysis

Outline for Section 5

- Neutrino Oscillations
 - 1.1 Neutrinos as Fundamental Particles
 - 1.2 Why Do Neutrinos Oscillate
- Matter Stimulated Oscillations
 - 2.1 Matter Interactions, MSW Effect, and Solar Neutrino Problem
 - 2.2 Stimulated Neutrino Oscillations and Rabi Oscillations
 - 2.3 Basis and Formalism
 - 2.4 Multiple Frequencies in Matter Potential
- Neutrino Oscillations and Dispersion Relation
 - 3.1 Neutrino Self-interactions
 - 3.2 Linear Stability Analysis
 - 3.3 Dispersion Relation
- 4. Neutrino Halo Problem
 - 4.1 Flavor Isospin Picture
 - 4.2 Numerical Method

5. Summary

Summary

- The fact that neutrino flavor sates are not mass states causes vacuum oscillations.
- MSW resonance happens when matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Even matter profile doesn't match MSW requirement, variation in matter profile can cause resonances.
- Single frequency perturbations in matter profile is a combination of many Rabi oscillations.
- How to understand and calculate systems with multi-frequency matter profile (turbulence).
- Combine periodic or even turbulent matter profile with neutrino self-interaction.

Acknowledgement

I am very thankful to my advisor Professor Huaiyu Duan, Dr. Sajad Abbar, and Dr. Shashank Shalgar, and Joshua Martin, for all the help in both research and life.

Supported by DOE EPSCoR grant #DE-SC0008142 at UNM.

Citations

T_EX, L^aT_EX, and Beamer

T_EX is a programming language for the typesetting of documents. It was created by Donald Erwin Knuth in the late 1970s and it is documented in *The T_EXbook* [1].

In the early 1980s, Leslie Lamport created the initial version of LTEX, a high-level language on top of TEX, which is documented in LTEX: A Document Preparation System [2]. There exists a healthy ecosystem of packages that extend the base functionality of LTEX; The LTEX Companion [3] acts as a guide through the ecosystem.

In 2003, Till Tantau created the initial version of Beamer, a LATEX package for the creation of presentations. Beamer is documented in the *User's Guide to the Beamer Class* [4].

Bibliography T_FX, L^aT_FX, and Beamer

- [1] Donald E. Knuth. *The TEXbook*. Addison-Wesley, 1984.
- [2] Leslie Lamport. *LETEX: A Document Preparation System*. Addison-Wesley, 1986.
- [3] M. Goossens, F. Mittelbach, and A. Samarin. *The Late Companion*. Addison-Wesley, 1994.
- [4] Till Tantau. *User's Guide to the Beamer Class Version 3.01*. Available at http://latex-beamer.sourceforge.net.
- [5] A. Mertz and W. Slough. Edited by B. Beeton and K. Berry. *Beamer by example* In TUGboat, Vol. 26, No. 1., pp. 68-73.

Hamiltonian, and Basis, and Rabi Oscillations

Hamiltonian in Background Matter Basis

$$H = \frac{1}{2} \left(-\omega_{m} + \frac{\delta \lambda(x)}{\delta \lambda(x)} \cos 2\theta_{m} \right) \sigma_{3} - \frac{\frac{\delta \lambda(x)}{2}}{2} \sin 2\theta_{m} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$H = \frac{1}{2} \left(-\omega_{\text{m}} + \cos 2\theta_{\text{m}} A \cos(kx) \right) \sigma_{3} - \frac{\sin 2\theta_{\text{m}}}{2} A \cos(kx) \sigma_{1}.$$

Stimulated Neutrino Oscillations

Matter Profile

$$\lambda(x) = \lambda_0 + \delta\lambda(x)$$

Basis

Background matter basis: Hamiltonian is diagonalized with only background matter profile λ_0 ,

$$H_{\text{background}} = -\frac{\omega_{\text{m}}}{2}\sigma_{3}.$$

Hamiltonian

$$H = \frac{1}{2} \left(-\omega_{\rm m} + \frac{\delta \lambda(x)}{\delta \lambda(x)} \cos 2\theta_{\rm m} \right) \sigma_3 - \frac{\delta \lambda(x)}{2} \sin \theta_{\rm m} \sigma_1.$$

Stimulated Neutrino Oscillations

P. Krastev and A. Smirnov (1989); J. Kneller et al (2013); K. Patton et al (2014);

Stimulated oscillations. $\lambda(x) = \lambda_0 + A \sin(kx)$ with $\hat{x} = \omega_m x$, $A = 0.1\omega_m$, $k = 0.995\omega_m$, $\theta_m = \pi/6$