TMC5160 数据手册

两相双极性步进电机的高电压通用控制器/驱动器。stealthChop™控制电机安静运行。外加 MOSFET 实现高达 20A 的电机线圈电流控制。带步进/方向接口和 SPI。

特点和优势

高达 20A 线圈电流的两相步进电机(外部 MOSFETs) 支持 sixPoint™的运动控制器

支持 microPlyer™微步插值功能的的步进/方向接口 电压范围 8...60V 直流

SPI 和单线 UART

编码器接口和 2 个参考开关输入

256 微步

stealthChop2™斩波模式,安静平滑的运行

电机中速运行的共振衰减

spreadCycle™ 高动态电机控制斩波器

dcStep™ 负载相关关速度控制

stallGuard2™ 高精度的无传感器负载检测

coolStep™ 电流控制,能量能减少 75%

被动制动和空转模式

全面保护和诊断

紧凑尺寸 9x9mm2 TQFP48 / 8x8mm2 QFN 封装

Full Protection & Diagnostics

Compact Size 9x9mm² TQFP48 package / 8x8mm² QFN

应用

机器人与工业驱动

纺织、缝纫机

包装

工厂和实验室自动化

高速 3D 打印机

液体处理

医疗

办公自动化

视频监控

自动取款机

现金回收机

描述

TMC5160 是带串行通信接口的高功率步进电机控制驱动芯片,将实现自动目标标定的灵活斜坡发生器和业界最先进的步击晶态。通过外置外部晶体管,实现高动态、高扭矩电机驱动器行为一个。和 spreadCycle 本 stealthChop 斩波器,驱动器可绝对无噪中控制。高集成度、高能效和小外形不会,是较小型化和性能可扩展可行,从而实现经济高效的解决方案。完整的解决方案。完整的解决方案。完整的解决方案。现高性能基础上将学习时间减小到最小。

BLOCK DIAGRAM

应用示例:高压-多用途

TMC5160 具有完整的运动控制功能、强大的外部 MOSFET 驱动和高质量的电流调节。它提供了多种用途,涵盖了从电池供电的高效系统到 20 安培电机线圈电流的嵌入式应用。TMC5160 包含驱动电机所需的全部智能。配置 TMC5160 目标位置驱动电机。TMC5160 支持 TRINAMICs 独有的 stallGuard2, coolStep, dcStep, spreadCycle和 stealthChop功能,优化了驱动器性能,平衡了速度和电机扭矩,优化能源效率、驱动平稳且无噪音。TMC 5160 的尺寸线,成本降低,满足小型化布局需求。芯片、控制板和软件级别的广泛支持使竞争产品能够缩短设计周期快速上市。高能效和可靠性可简化相关系统(如电源和冷却系统)设计并节约成本。TMC5130 提供 1.4A的电机电流,适合功率较小的应用,软件与 TMC5160 兼容。

MINIATURIZED DESIGN FOR ONE STEPPER MOTOR

带定标单元的 ABN 编码器接口和两个参考开 关输入用于确保电机正确运动,编码器有位 置偏差时,可使其中断。

COMPACT DESIGN FOR MULTIPLE STEPPER MOTORS

左图是驱动两个步进电机的应用。每个电机带一个 ABN 编码器接口和两个参考开关。如果运动电机不需要实时任务,可用一个 CPU 控制整个系统。CPU 板和控制器/驱动器板之间的连接经济且节省空间

TMC5160-EVAL 是 TRINAMICs 通用评估板系统的一部分,该系统包含方便的硬件处理板及用户易于使用的评估软件工具。 TMC 5160 评估板系统由三部分组成:landungsbruck (基板)、eselsbruck (有测试点的连接器板)和TMC5160-EVAL

订购代码

14 V4 L4 - 1		
订购代码	描述	尺寸[平方毫米]
TMC5160-TA	需外加 MOSFET 的步进控制器/驱动器; TQFP48	9 x 9
TMC5160-WA	需外加 MOSFET 的步进控制器/驱动器; wett. QFN8x8	8 x 8
TMC5160-xx-T	-T 代表卷带包装 (xx= TA or WA)	
TMC5160-EVAL	TMC5160 评估板	85 x 55
LANDUNGSBRÜCKE	TMC 5160 - EVAL 和其它评估板的主控板	85 x 55
ESELSBRÜCKE	连接评估板系统的连接板.	61 x 38

目录

		10.1	温度传感器	73
1.	操作原 则 5	10.2	短路保护	
1.1		10.3	开路诊断	75
1.2			A) L-1-42 (L- 00	
1.3		11.	斜坡 发 生器	76
1.4	4 运动和控制电机8	11.1	实际单位换算	76
1.5		11.2	运动轮廓	
1.6		11.3	速度阈值	
1.7	7 STALLGUARD2-机械负载传感9	11.4	参考开关	79
1.8	3 COOLSTEP-负载自适应电流控制9		5	
1.9) DCSTEP-负载相关速度控制9	12.	STALLGUARD2 负载检测	82
1.1	10 编码器接口10	12.1	调整 STALLGUARD2 阈值 SGT	83
2.	引脚分配11	12.2	STALLGUARD2 更新速率和滤波器	
4.		12.3	检测电机堵转	
2.1	」	12.4	用 STALLGUARD 实现归零	
2.2	2 信号描述12	12.5	STALLGUARD2 操作局限性	
3.	示例 电 路15	13.	COOLSTEP 操作	
2.4			对用户的好处	
3.1		13.1		
3.2		13.2	COOLSTEP 设置	
3.3		13.3	调节 COOLSTEP	88
3.4		14.	步 进/ 方向 接口	89
4.	SPI 接口22		· ·	
4.1	SPI 数据报结构22	14.1	时序	
4.2	•	14.2	改变分辨率	
4.3		14.3	MICROPLYER 和静止检测	91
5.	寄存器26	15.	DIAG 输 出	92
		15.1	脉冲/方向模式	92
5.1	• • •	15.2	•	
5.2				
5.3	• • • • • • • • • • • • • • • • • • • •	16.	DCSTEP	94
5.4	· · · · · · · · · · · · · · · · · · ·	16.1	用户好处	94
5.5	5 电机驱动寄存器42	16.2	设计 DCSTEP	94
6.	STEALTHCHOP™52	16.3	运动控制模式下的 DCSTEP	95
6.1		16.4	DCSTEP模式下的堵转检测	95
6.2		16.5	DCSTEP 操作中的测量电机实际	速度96
6.3		16.6	步进/方向模式下的 DCSTEP	97
6.4			11 7 to the .1	
6.5		17.	紧 急停止	100
6.6		18.	增量 编码 器 ABN 接口	101
6.7		10.		
0.,		18.1	编码器时序	
7.	SPREADCYCLE 和 经典斩 波方式 63	18.2		
7.1	L SPREADCYCLE 斩波器64	18.3	闭环	102
7.2		19.	直流 电 机或 螺 线 管	104
7.2		17,		
8.	选择采样电 阻69	19.1	螺线管操作	104
9.	基于速度的模式控制71	20.	快速配置指南	105
10.	诊断和保 护	21.	入 门	110

21.1	初始化例程	110	27.2		
22.	独立操作模式	111	27.3	21 14 = 1 1 1	
			27.4	/	
23.	外部复位	113	27.5	布线示例	120
24.	时钟振荡 器和 输 入	113	28.	封装机械数据	122
24.1	内部时钟	113	28.1		
24.2			28.2		
			28.3	封装代码	125
	最大 电 气参数		29.	设计理念	126
26.	电 气特性		30.	声明	126
26.1			31.	ESD 敏感	126
26.2			31.		120
26.3	热特性	117	32	图表	127
27.	布 线 考虑	119	33.	修 订 历史	128
27.1	芯片底部焊盘	119	34.	参考	128

1. 操作原则

TMC5160 运动控制和驱动芯片是 CPU 和大功率步进电机之间的智能功率接口器件。所有步进电机逻辑完全在 TMC5160 内,不需要软件来控制电机——只需提供目标位置。TMC5160 提供了许多独特的增强功能,这些功能通过集成的控制驱动器得以实现。TMC5160 的六点斜坡发生器自动使用 stealthChop, dcStep, coolStep, and stallGuard2 来优化每个电机的运动。TMC5160 将 TMC2100、TMC2130 和 TMC5130 系列扩展到更高的电压和更高的电机电流

TMC 5160提供三种基本操作模式:

模式1:全功能运动控制和驱动器

所有步进电机逻辑完全在 TMC5160 内。不需要软件来控制电机——只需提供目标位置。SD_MODE 接地使能此模式

模式2:脉冲和方向驱动器

像 TMC 4361 这样的外部高性能 S-ramp 运动控制器或 CPU 产生与系统内其他部件(如电机)同步的脉冲和方向信号。TMC5160 控制电流和运动模式,并反馈电机状态。microPlyer 自动平滑运动。SD_MODE 接高电平使能此模式。

模式3:简单的步进和方向驱动器

TMC 5160根据步进和方向信号控制电机。microPlyer自动平滑运动。不需要CPU;配置由硬件引脚完成。静止保持电流控制由TMC 5160完成。可选的反馈信号作为错误检测和同步标志的输出。SPI_MODE接地,SD MOD接高电平使能此模式

图1.1 TMC 5160基本应用框图(运动控制器)

图1.2 TMC5160 步进/方向模式应用框图

图1.3 TMC5160 独立模式驱动器应用框图

1.1 关键概念

TMC 5160实现了TRINAMIC产品独有的高级功能。这些特征在许多步进电机应用有效的提高了精度、能效、可靠性、平滑性和能耗。

stealthChop2™ 无噪声、高精度斩波算法,用于电机的静止和运动状态下的静音控制。stealthChop2在

stealthChop 的基础上,加快了电机运动加减速特性,降低的所需的电流最小值。

spreadCycle™ 高精度斩波算法,用于高动态电机运动和产生绝对干净的电流波。低噪音、低共振和

低振动斩波器。

dcStep™ 负载相关速度控制。电机尽可能快地移动,不失步

stallGuard2™ 无传感器堵转检测和机械负载测量。

coolStep™ 根据负载自适应电流,可将能耗降低 75 %。

microPlyer™ 细分内插器,用于从全步开始,以较低分辨率步长输入获得全 256 微步的平滑度

除了这些性能增强之外,TRINAMIC电机驱动器还提供了检测和防止短路输出、输出开路、过热和 欠压情况的保障措施,以增强安全性和故障恢复。

1.2 控制接口

TMC 5160支持SPI接口和带有CRC校验的UART单线接口。此外还支持为无需寄存器配置的独立STEP/DIR模式。配置引脚SPI MODE和SD MODE到相应的高电平或者地选择接口。

1.2.1 SPI 接口

SPI 接口是与总线时钟同步的串行位接口。当 SPI 主设备发送数据到从设备时,从设备同时会向主设备返回数据。SPI 主机和 TMC5160 之间的通信包括一条 40 位发送命令字和一条 40 位接收状态字。

每个完整电机运动过程通常是由多条命令构成。

1.2.2 UART接口

单线接口支持类似RS485 (SWP和SWN)或单线接口(SWN开路)的差分操作。它可以由任何标准UART驱动。不需要波特率配置。

1.3 软件

从软件的角度来看,TMC5160 是一个具有多个控制和状态寄存器的外围设备。其中大部分是只读或者只写的。一些寄存器允许读写访问。如果只写寄存器需要读-修改-写访问,可以在主软件中通过阴影寄存器实现。

1.4 运动和控制电机

1.4.1 集成运动控制器

集成的 32 位运动控制器直接驱动电机到目标位置,或者加速到目标速度。所有的运动参数都可以动态改变。运动控制器立即重新计算。最小运动配置数据包含加速和减速值以及最大运动速度。支持设置启动和停止速度以及第二加速和减速度。集成运动控制器可对机械参考开关和无传感器 stallGuard2及时响应。

优势:

- 灵活编程斜坡参数
- 有效地利用电动机转矩来加速和减速允许更高的机器性能
- 即时反应停止和堵转条件

1.4.2 STEP/DIR 接口

电机可选择通过步进和方向输入来控制。在这种情况下,运动控制器不使用。步进输入引脚上的有效边沿可以是上升沿,也可以是上升沿和下降沿双边缘,由模式位(dedge)控制。使用两个边缘将步进信号的触发速率降低一半,对慢速通信接口(如光耦隔离接口)非常有用。在每个活动边上,DIR输入电平值决定是向前还是向后运行。每个脉冲可以是全步或微步,其中每个全步有 2、4、8、16、32、64、128或 256个微步。DIR 引脚上电平为低的步进(STEP)脉冲增加了微步计数器数值,而电平高的减少了微步计数器的数值。内部表格将指针值转换成正弦和余弦值,控制电机微步电流

1.5 静止态自动降电流

自动电流减少大大降低了应用功耗和冷却需求。通过寄存器设置修改静态电流、延迟时间和衰减。 自动飞轮和被动制动是静止的一种选择。被动制动将电机静止功耗降低到零,同时仍然提供有效的阻尼 和制动!斜坡发生器和 STEP / DIR 两个操作模式都支持一种更快检测静止的配置。

图 1.1 电机自动降电流

1.6 stealthChop2 & spreadCycle 驱动

stealthChop 基于电压斩波器的原理。除了电机机械滚轮轴承产生的噪音,它特别保证了电机在静止和慢动作时绝对安静。不同于其他电压模式斩波器, stealthChop2 不需要任何配置。通电后,它会在第一次运动中自动学习最佳设置,并进一步优化后续运动中的设置。初始的归零过程足以使系统完成 stealthChop 最佳配置。也可以选择,通过接口预先配置初始学习参数。stealthChop2 通过对电机速度的变化立即做出反应,允许高的电机动态。

对于高动态的应用, spreadCycle是除stealthChop2之外的选项。它可以通过输入引脚(独立模式)或SPI或UART接口配置。stealthChop2和spreadCycle甚至可以结合使用, 以达到两者的最佳效果: stealthChop2用于无噪音的静止状态, 无声平滑的性能, spreadCycle用于高动态, 低振动和最高的峰值速度。

spreadCycle是周期斩波模式。它在很宽的速度和负载范围内提供平稳的操作和良好的共振阻尼。 spreadCycle方案自动集成和调节快衰减周期,以保证平滑过零性能。

stealthChop2 优势:

- 显著改善了低成本电机微步性能
- 电机运行平稳安静
- 绝对没有待机噪音
- 降低机械共振产生改善的扭矩

1.7 stallGuard2 - 机械负载传感

stallguard 2提供了对电机负载的精确测量。它可以用于堵转检测,也可以用于低于使电机失步的负载下的其他用途,例如coolStep负载自适应调节电流。这提供了更多关于驱动器的信息,允许诸如无传感器归零和驱动器机械诊断之类的功能。

1.8 coolStep-负载自适应电流控制

coolstep 以最佳电流驱动电机。它根据 stallguard2 负载测量信息将电机电流调整到实际负载所需的最小量。节约了能源,降低了芯片的温度。

好处是:

- 能效能效功耗降低高达 75%

- 电机产生较少热量 提高了机械精度

- 较少或没有散热 提高了可靠性

- 使用较小的电机 减少所需的转矩→成本较低的电机完成这项工

作

图 1.5 显示了 42mm 步进电机当使用 coolstep 时,与 50%转矩的标准操作相比的效率。在本例中,cool step 在 60 转/分以上时启用

图 1.5 coolStep 下的能效 (示例)

1.9 dcStep-负载相关速度控制

dcStep 能让电机在其负载极限和速度极限附近运行,而不失步。如果电机上的机械负载增加到堵转负载点,电机会自动降低速度,这样它仍然可以驱动负载。有了这个功能,马达将不会堵转。除了在较低速度下增加扭矩之外,动态惯性将允许电机通过减速克服机械过载。dcStep 直接与斜坡发生器集成,

因此即使电机速度因机械负载增加而需要降低,也能达到目标位置。dcStep 可以在没有任何失步的情况下达到 10 倍或更大的动态范围。通过优化高负载情况下的运动速度,该功能进一步提高了整体系统效率。

dcStep 优势:

- 电机在过载情况下不会失步
- 应用程序可以运行的更快
- 自动实现最高的加速度
- 在速度极限下实现最高的能效
- 全步驱动达到最高电机扭矩
- 便宜的马达便能满足应用

1.10 编码器接口

TMC5160 为外部增量编码器提供编码器接口。编码器不仅用于失步的判断,还可实现运动控制器的归零功能(替代参考开关)。可编程预分频器设置编码器分辨率以适应电机分辨率。内部包含一 32 位编码器计数器。

2. 引脚分配

2.1 封装外形

图 2.1 TMC 5160 - TA 封装和 TQFP - EP 48 引脚(主体 7x7mm, 9x9mm 带引脚)

图 2.2 TMC 5160 - WA 封装和 QFN - WA 引脚(8 x8mm)

2.2 信号描述

引脚	TQFP	QFN	类型	功能
HB1	1	2		高端栅极驱动器输出
CB1	2	3		自举电容器正极连接
12VOUT	3	4		内部电压调节器的 11.5V 电压输出,用于栅极驱动器下管的门级控制。为获得最佳性能,建议接 2.2μF 至 10μF 陶瓷电容器到引脚附近的地(地平面)。通常建议容值比自举电容的容值至少大 10 倍。如果功率器件的栅极电压由外部电压供应,将 VSA 和 12VOUT 接到外部电源。
VSA	4	5		11.5V和5V稳压器的模拟电源电压。通常与VS相连,滤波电容 100nf
5VOUT	5	6		内部 5V 调节器的输出。为获得最佳性能,建议接 2.2μF 至 10μF 陶瓷电容器到引脚附近的地 GNDA。5VOUT 输出给芯片的 VCC 供电。
GNDA	6	7		模拟地。连接到引脚附近的 GND 平面。
SRAL	7	8	Al	A 相采样电阻的地。直接连到采样电阻的 GND,以补偿 GND 互连上的电压降。
SRAH	8	9	AI	A 相采样电阻。连到采样电阻的上侧。对于高电机电流,开尔文连接是优选的。可在 SRAL 和 SRAH 设计对称 RC 滤波,以消除来自其他驱动器或线圈 B 开关的高频开关尖峰
SRBH	9	10	Al	B 相采样电阻。连到采样电阻的上侧。对于高电机电流,开尔文连接是优选的。可在 SRBL 和 SRBH 设计对称 RC 滤波,以消除来自其他驱动器或线圈 A 开关的高频开关尖峰
SRBL	10	11	AI	B 相采样电阻的地。直接连到采样电阻的地,以补偿地之间互连上的电压降。
TST_MODE	11	12	DI	测试模式输入。用短线连接到地
CLK	12	13	DI	时钟输入。短导线连接到地,则使用内部时钟或提供外部时钟。内部含时钟故障切换电路防止外部时钟信号丢失
CSN_CFG3	13	14	DI	SPI_MODE=1: SPI 片选信号(低有效) SPI_MODE=0: 配置输入脚
SCK_CFG2	14	15	DI	SPI_MODE=1: SPI 时钟信号 SPI_MODE=0: 配置输入脚
SDI_CFG1	15	16	DI	SPI_MODE=1: SPI 数据输入信号 SPI_MODE=0: 配置输入脚或 单线接口的下一个地址输入(NAI)。
SDO_CFG0	16	17	DIO	SPI_MODE=1: SPI 数据输出信号 SPI_MODE=0: 配置输入或 单线接口的下一个地址输出(NAO)。
REFL_STEP	17	18	DI	SD_MODE = 0: 左参考输入(用于内部斜坡发生器) SD_MODE = 1: 步进信号输入
REFR_DIR	18	19	DI	SD_MODE = 0: 右参考输入(用于内部斜坡发生器) SD_MODE = 1: 方向信号输入
GNDD	19, 30	25, Pad		数字接地。连接到引脚附近的地平面。
VCC_IO	20	20		所有数字口 IO 供电电压, 3.3V 到 5V.
SD_MODE	21	21	DI	模式选择输入。 SD_MODE = 0: 内部斜坡发生器产生步进信号 SD_MODE = 1: STEP / DIR 输入引脚控制驱动器 SD_MODE = 0 和 SPI_MODE = 0 使能 UART 操作。

引脚	TQFP	QFN	类型	功能
				模式选择输入。
CDL MAGDE	22	22	DI	SPI_MODE =0:芯片处于独立模式,引脚具有 CFG 功能
SPI_MODE	22	22	(pd)	SPI_MODE = 1:使能 SPI 接口
				内部集成下拉电阻
				在内部斜坡发生器模式下,编码器B通道输入
ENCB_DCEN_	23	23	DI	SD_MODE = 1, SPI_MODE = 1 : dcStep 使能输入 .如果没有使
CFG4	23	23	(pd)	能的 dcStep, 该引脚开路或者接到地,以确保正常工作
				SPI_MODE=0: CFG 配置输入引脚
ENCA DCIN			DI	在内部斜坡发生器模式下,编码器 A 通道输入
CFG5	24	24	(pd)	SD_MODE = 1, SPI_MODE = 1 : dcStep 门信号,用于同步控制
0. 03			(60)	SPI_MODE=0: CFG 配置输入引脚
ENCN_DCO_				SD_MODE =0:編码器 N 信号输入, 或
CFG6	25	26	DIO	dcStep 就绪输出信号(SD_MODE = 1)
				SD_MODE=0,如果没有编码器,将该信号拉高或者接地。
			DIO	诊断输出信号 DIAGO.
DIAGO_SWN	26	27	(pu+	SD_MODE=0, SPI_MODE=1:运动控制器的中断输出或步进输,在
			pd)	漏电极开路模式下,使用 47k 或更小的外部上拉电阻
			ļ . <i>'</i>	SD_MODE=0, SPI_MODE=0: 单线 I / O 通讯的负端信号
				诊断输出信号 DIAG1.
DIAG1 SWP	27	28	DIO	SD_MODE=0, SPI_MODE=1:运动控制器的位置比较输出或方向
			(pd)	输出。在漏电极开路模式下,使用 47k 或更小的外部上拉电阻
				SD_MODE=0, SPI_MODE=0: 单线 I / O 通讯的正端信号
DRV_ENN	28	29	DI	使能输入。当该引脚被驱动到高电平时,功率 MOSFET 输出关
_				闭(所有电机输出为悬浮(FLOATING)状态)。
				芯片内 5V 数字电路的电源输入。建议接 100nf 或更大的电容到
VCC	29	30		就近的地平面。应该由 5VOUT 作为 VCC 的输入,建议加 2.2 或
				3.3 欧姆电阻作为与 5VOUT 的噪声去耦。如果使用外部电源供
CDO	24	21		电,请确保 VCC 在 5VOUT 或 VCC_IO 之前上电或同时!
CPO	31	31		电荷泵电容输出 电荷泵电容输入。22nF、100V 电容连接到 CPO。
СРІ	32	32		电伺录电容输入。22nr、1000 电各迁接到 CPO。 电机电源电压。引脚与地平面之间需要滤波电容。必须连到功
VS	33	33		率器件 MOSFET 的上桥臂供电电压。
VCP	34	34		电荷泵电压。100nf 电容与 VS 相连。
CA2	35	35		自举电容器正极连接
HA2	36	36		高端栅极驱动器输出。
BMA2	37	37		桥臂中间节点和自举电容器负级连接
LA2	38	38		低端栅极驱动器输出。
LA2 LA1	39	39	1	低端栅极驱动器输出。
BMA1	40	40	1	桥臂中间节点和自举电容器负级连接
HA1	41	41		高端栅极驱动器输出。
CA1	42	42		自举电容器正极连接
CB2	43	43		自举电容器正极连接
HB2	44	44		高端栅极驱动器输出。
BMB2	45	45		桥臂中间节点和自举电容器负级连接
LB2	46	46		低端栅极驱动器输出。
LB1	47	47		低端栅极驱动器输出。
BMB1	48	1	-	
DIAIDT	40	т_	1	将得平同下点和自举电谷益贝级迁接 将裸露的管芯焊盘连接到地(GND)平面。提供尽可能多的通孔
Exposed die	_	_		以将热传递到地(GND)平面。也用作低端栅极驱动器的GND引
pad				脚。确保采样电阻GND的环路电感尽量低。
			l	/mio mm MMT 电阻UNUWM路电芯公里风o

- *(PD)代表有下拉电阻的引脚
- *所有数字引脚 DI、DIO 和 DO 都使用 VCC_IO 电平,并内置接地和 VCC_IO 的保护二极管
- *所有数字输入 DI 和 DIO 都内置施密特触发器

3. 示例电路

以下示例电路显示了不同操作和供电模式下所需的外部电路。为了清楚起见,省略了总线接口和其它数字信号的连接

3.1 标准应用电路

图 3.1 标准电路

标准路使用最少的外部器件。根据所需的电流、电压和封装类型选择八个 MOSFET。两个采样电阻设置电机线圈电流。请参阅第 8 章选择正确的采样电阻。电源滤波选用低 ESR 电容。为获得最佳性能,建议功率桥附近线圈电流的最小容量为 $100\mu F/$ 安培。电容需要吸收斩波器操作产生的电流纹波。电源电容上的电流纹波也取决于电源内阻和电缆长度。VCC_IO 可以从 5VOUT 或外部电源(例如 3.3V 调节器)提供。在 VM 高的应用中为了降低内部 5V 和 11.5V 稳压器的线性稳压器功耗,VSA 应该使用不同(较低)的电源电压(参见第 0 章)。

基本布线提示

将采样电阻和所有滤波电容尽可能靠近功率 MOSFETs。 TMC5160 靠近 MOSFETs 放置,短线互连线,以最小化寄生电感。所有的 GND、GNDA、 GNDD 及采样电阻 GND,使用一个公共地。5VOUT 滤波电容直接连到 5VOUT和 GNDA 引脚。有关详细信息,请参阅布局提示。VS 滤波推荐使用低 ESR 电解电容。

注意:

如果 VSA 由不同的电压源供电,请确保在电机运行期间 VSA 不会跌落。 VSA 在 VS 之前关断,需要禁用电机驱动。因为 VSA 上的硬切换边缘,可能导致桥臂导通。 VSA 与 VS 电源由一路供电是最安全的

3.2 外部栅极电压调节器

在 48V 这样的高电源电压下,内部栅极电压调节器和内部 5V 调节器具有相当大的功耗,特别是在 MOSFET 栅极电荷高、斩波器频率高或系统时钟频率大于 12 MHz 的情况下。散热块与系统 PCB 地平面的良好热传导将有助于散热。自身功耗增加芯片温度,将显著降低温度保护的阈值。为降低功耗,建议外接 TMC5160 驱动器栅极电压。如图 3.2 所示。在图中,内部栅极电压调节器变为禁用状态。为获得最佳效果,建议使用 12V+/-1V 的电源。

12V Gate Voltage

图 3.2 外部栅极电压源

提示

当 MOSFETs 的总栅极电荷超过 50nC、斩波器频率大于 40kHz 或时钟频率大于 12 MHz 时,建议使用不高于 40V 的 VSA 电源。

3.3 选择 MOSFET 和斜率

功率 MOSFETs 的选择取决于许多因素,如封装尺寸、导通电阻、额定电压和供应商。越大、越低 RDSon 的 MOSFETs 并不一定是越好,因为越大的器件也具有更高的电容,并且可能在栅极驱动电路中的 走线电感增加更多的振铃及功耗。将 MOSFET 调整到所需的电机电压(在峰值电源电压上增加 5-10V 的余量)和所需的最大电流,使得电阻功耗对于所选 MOSFET 封装的热容量仍然很低。TMC5160 以大约 10V 驱动 MOSFET 栅极,因此正常的 10V 就足够了。FETs 逻辑电平(4.5V 指定的 RDSon)也将工作,但由于 VGS(th) 较低,桥臂开通特性可能更为关键。

栅极驱动电流和 MOSFET 栅极电阻 R_G(可选)决定开关行为,且应根据 MOSFET 栅极-漏极电荷(米勒电荷)调整。图 3.3 显示了米勒电荷对开关事件的影响。图 3.4 还显示了不同负载情况下的切换事件(负载将输出拉高或拉低),以及所需的死区时间。

下表是设置 MOSFET 驱动器电流(DRVSTRENGTH 设置)和选择栅极电阻的经验法则:

GMOSFET 米勒电荷对应的 DRVSTRENGTH 及RG						
米勒 电荷[nC] (典型值)	DRVSTRENGTH 设置	R _G [Ω]值				
<10	0	≤ 15				
1020	0 or 1	≤ 10				
2040	1 or 2	≤ 7.5				
4060	2 or 3	≤ 5				
>60	3	≤ 2.7				

TMC5160的栅极截止驱动电流,以避免高 dV/dt 引起的桥臂直通。栅极电阻超过表中给出的值时,保护的效率会降低。因此,对于较大的 R_G 值,可能需要并联二极管来确保 MOSFET 在开关事件期间安全关断。

图 3.1 米勒电荷决定开关斜率

提示:

- -选择快速、软恢复特性二极管和低反向恢复电荷的 MOSFETs。
- -小型贴片 MOSFET 封装允许更紧凑的布线,并降低寄生电感效应

图 3.4 斜坡,米勒平台和消影时间

驱动器需根据 MOSFET 参数配置 以下 DRV_CONF 参数:

参数	描述	设置	备注
BBMTIME	死区时间,确保同一桥臂的高端和低端 MOSFETs 不	024	时间[ns]≈
	会直通。BBMTIME 允许以比时钟周期短的调节时间		100ns*32/(32-BBMTIME)
	步长。		
	需要更长的时间,使用 BBMCLKS。		确保~30% headroom
			复位缺省:0
BBMCLKS	与 BBMTIME 类似,以多个时钟周期为单位。	015	0: off
	较长的时间设置规则(BBMTIME 与 BBMCLKS 的区		复位缺省: OTP 4 or 2
	别)。		
DRV_	栅极驱动电流的选择。根据外部 MOSFET 的栅极电	03	复位缺省=2
STRENGTH	荷设置栅极驱动电流。		
FILT_ISENSE	采样电阻放大器的滤波时间常数, 以补偿另一个线	03	00: ~100ns (复位缺省)
	圈操作的振铃和耦合		01: ~200ns
	提示:如果两个线圈交叉耦合产生电机斩波器噪声,		10: ~300ns
	则增加设置。(重置默认值=%00)		11: ~400ns

DRV_CONF 参数

在增加栅极串联电阻值之前,使用最低栅极驱动强度设置 DRVSTRENGTH 给出有利的开关斜率。 40ns 到 80ns 的斜率时间是绝对足够的,通常最短的死区时间设置(BBMTIME=0, BBMCLKS=0)会大于这个时间。

如果大的 MOSFETs 需要较慢的斜率,要确保死区时间(BBMTIME, 200ns 以上时间可用 BBMCLKS) 充分覆盖开关事件,以避免桥臂直通短路。最短的 BBM 时间大于安全切换,效果最佳。控制大约 30 %的余量,以弥补 MOSFETs 和驱动器的生产批次不一致性。

3.4 调整 MOSFET 桥臂

干净的切换事件有利于确保低功耗和良好的 EMC 性能。不合适的布局或器件会危及电路的稳定运行。因此,了解寄生电感和 MOSFET 反向恢复的影响非常重要。

在接通低端 MOSFET 或高端 MOSFET 之前,只要相对的 MOSFET 处于二极管导通状态,电源布线中的杂散电感就会引起振铃。当负载电流与接下来的导通桥极性相反时,二极管在死区时间段导通。 MOSFET 体二极管具有一定的反向恢复时间和放电时间。这一时间通常在几十纳秒的范围内。在反向恢复期间,二极管将引起桥上的高电流流动。该电流来自电源滤波电容(参见图 3.5 粗线)。一旦二极管导通,寄生电感就试图保持电流流动。高、快速斜率导致寄生电感振铃(见图 3.6)。这可能导致桥电压低于GND 电平。必须确保驱动器 IC 在其 BM 引脚到 GND 上没有出现峰值低于-5V。直接测量驱动器引脚到驱动器 GND 的电压。下冲的量取决于从低侧漏极到低侧源极并且经由采样电阻 RS 到 GND 的寄生电感中的存储能量。

当使用相对较小的 MOSFET 时, 软斜率控制需要串联较高的栅极电阻。这危及安全的 MOSFET 关断。添加额外的二极管, 以确保 MOSFET 在缓慢切换斜率下的安全关断 (图 3.5 所示的 MOSFET 对管)。

·图 3.7 显示了调整开关斜率和增加 1nF 桥式输出电容器后的基本电路性能

Decide use and value of the additional components based on measurements of the actual circuit using the final layout!

图 3.5 针对电源布线电感的可选保护选项

确保可靠操作

- 使用贴片 MOSFET 和短线连接
- 桥臂和 VS 引脚附近提供足够的滤波电容
- 调整 MOSFET 开关斜率 (在 MOSFET 栅极上测量开关事件) 比 MOSFET 体二极管反向恢复时间慢。这 将减少交叉导通。
- 靠近 MOSFET 处增加栅极电阻和输出电容,通过最大限度地减少响铃,确保开关特性和可靠运行,图 3.5 显示了一些的选项。
- 部分 MOSFET 通过集成源到漏级的快速二极管来消除反向恢复放电

图 3.6 输出振铃 (蓝色) 和未加调整的栅极电压 (黄色和紫色)

图 3.2 增加优化器件后的开关事件 (没有 体二极管/体二极管导通)

桥臂优化示例

一个 6A 电机电流步进驱动器的标准原理图中,选择 MOSFET AOD4126。

该 MOSFETS 具有低栅极电容,在最低驱动器强度设置下斜率时间大约为 50ns。在最低驱动强度设置下,切换质量最好(图 3.6),但仍显示大量振铃。增加低侧栅极电阻,提高开关斜率时间,通过对栅极-漏极(米勒)电荷放电的影响,在高侧体二极管传导后稍微增加开关斜坡时间。为了对称,增加了高侧栅极电阻。测试表明,1nF输出电容可显著降低体二极管导通后电桥的振铃(图 3.7)。图 3.8 显示了优化后的实际组件和值。

图 3.3 带有调整器件的桥臂示例(请参见示波器截图)

桥臂布线考虑

- 调整电桥布局,使环路电感最小。布局最好紧凑。
- MOSFET 栅极连接短而直,避免 BM 和相应的 HS 驱动器引脚之间的环路电感。利用平行走线或相邻 层上的相邻走线使回路电感最小化。较宽的走线也可以降低了电感(不使用最小线径)
- 采样电阻到低侧 MOSFET 源极的长度最短,并将 TMC5160 放置在采样电阻的地附近,其地通过过 孔直接连到同一平面。
- 调整栅极电流设置和栅极电阻优化开关行为。增加 MOSFET 电桥输出电容(470PF 至几个 NF)减少振铃。
- 通过使用示波器探针上 GND 尖端而不是 GND 电缆(如果可用)直接在桥臂或 TMC5160BM 引脚处探测 来测量桥臂的性能

4. SPI 接口

4.1 SPI 数据报结构

TMC 5160 采用 40 位 SPI (串行外围接口, SPI 是摩托罗拉的商标)数据报与微控制器 MCU 通信。带硬件 SPI 的微控制器 MCU 通常用 8 比特位的整数倍进行通信。设备的 NCS 信号必须在数据报传输的整个持续时间内保持有效(低)。

发送到设备的每个数据报由一个地址字节和四个数据字节组成。这允许与寄存器组直接进行 32 位数据字通信。每个寄存器通过 32 个数据位访问,即使少于 32 个数据位。

为了简化,每个寄存器由一个字节地址指定:

- 读操作, 地址字节的最高有效位是 0.
- 写操作, 地址字节的最高有效位为 1.

大多数寄存器都是只写寄存器,有些可读,还有一些只读。

SPI 数据结构					
高位(先传送)		40 位		低位 (后传送)	
39				0	
→8位地址	L -	→ 32 位数据			
← 8 位 SPI 状态	7.	7 32 位 级 佐			
39 32		31 .	0		
→ 发送到 TMC5160					
读写标志+7位地址	8位数据	8位数据	8位数据	8位数据	
← TMC5160 返回	8 2 数据	8 2 数据	8 位 级 掂	8 位 级 掂	
8位 SPI 状态					
39 / 38 32	31 24 23 16 15 8 7 0				
w 3832	3128 2724	2320 1916	1512 118	74 30	
3 3 3 3 3 3 3 3 9 8 7 6 5 4 3 2	3 3 2 2 2 2 2 2 2 1 0 9 8 7 6 5 4		1 1 1 1 1 1 1 9 8 5 4 3 2 1 0 9 8	7 6 5 4 3 2 1 0	

4.1.1 写/读选择(WRITE_notREAD)

读和写选择由地址字节的最高位(SPI数据报的位 39)控制。读访问为 0,写访问为 1。因此,标号为 W 的位是 WRITE_notREAD 控制位。有效高写入位是地址字节的最高位。因此,0x 80 必须加到地址中才能进行写入访问。SPI 接口总是将数据传送回主机,与 W 位无关。如果前一次访问是读访问,则传输回来的数据是前一个数据报一起传输的地址对应的读取值。如果前一次访问是写访问,则数据回读为以前接收的镜像写数据。因此,读访问和写访问之间的区别在于,读访问不将数据传输到寻址寄存器,仅传输地址,因此它的 32 个数据位是虚拟的,而且,随后的读访问或写访问将发回前一个读周期中传输的地址对应的数据。

读请求数据报需用空写数据。读取的数据值通过后续的读取或写入访问被传输回主设备。因此,可以以流水线方式读取多个寄存器。

每当从 TMC 5160 读取数据或向 TMC 5160 写入数据时,返回高位八位包含 SPI 状态,SPI_STATUS,对应八个选定的状态位。

示例:

读地址 0x 21 寄存器(XACTUAL)之前,地址字节必须设置为 0x 21。写寄存器(VACTUAL),地址字节必须设置为 0x80 + 0x22 = 0xA2。读操作的数据位可能是任何值(-)。因此,可以将它们设置为 0。

动作	发送给 TMC5160 的数	发据 TMC5160 返回的数据
读 XACTUAL	→ 0x2100000000	← 0xSS & unused data
读 XACTUAL	\rightarrow 0x2100000000	← 0xSS & XACTUAL
写 VMAX:= 0x00ABCDEF	→ 0xA700ABCDEF	← 0xSS & XACTUAL
写 VMAX:= 0x00123456	→ 0xA700123456	← 0xSS00ABCDEF

^{*)}S:表示代表状态位 SPI STATUS

4.1.2 每次 SPI 数据报读回时传送的状态位

新的状态信息在每次访问结束时被锁存,并可用于下一次 SPI 传输。

SPI_S	SPI_STATUS - 每个 SPI 访问时 39 到 32 位之间的状态标志				
位	名称	备注			
7	status_stop_r	RAMP_STAT[1]-1:仅限运动控制器模式下,右参考开关停止标志			
6	status_stop_l	RAMP_STAT[0]-1:仅限运动控制器模式下,左参考开关停止标志			
5	position_reached	RAMP_STAT[9]-1: 仅限运动控制器模式下,目标位置到达标志			
4	velocity_reached	RAMP_STAT[8]-1: 仅限运动控制器模式下,目标速度到达标志			
3	standstill	DRV_STATUS[31] - 1:电机静止标志			
2	sg2	DRV_STATUS[24] – 1: stallGuard 标志有效标志			
1	driver_error	GSTAT[1]-1: 驱动器错误指示 (通过 读 GSTAT 清标志)			
0	reset_flag	GSTAT[0] - 1: 复位发生指示(通过 读 GSTAT 清标志)			

4.1.3 数据排列

所有数据都是右对齐。寄存器格式包含无符号(正)值,二进制补码的整数值(有符号),单个位或位组分别代表单个位或整数组。

4.2 SPI 信号

TMC 5160 上的 SPI 总线有四个信号:

- SCK-总线时钟输入
- SDI-串行数据输入
- SDO-串行数据输出
- CSN -芯片选择输入(低电平有效)

SPI 芯片选择输入 CSN 上的低电平使能 SPI。位传输与总线时钟 SCK 同步,从设备在 SCK 的上升沿锁存来自 SDI 的数据,并在下降沿之后驱动数据到 SDO。首先发送最高有效位。与 TMC 5160 进行总线传输过程至少需要 40 个 SCK 时钟周期。

如果驱动的时钟超过 40 个,则通过内部移位寄存器延迟 40 个时钟后,多余的 SDI 位在 SDO 上被移出。这可用于菊花链多个芯片。

在整个 SPI 总线通讯期间,CSN 必须为低。当 CSN 变高时,内部移位寄存器的内容被锁存到内部控制寄存器中,并被识别为从主设备到从设备的命令。如果发送超过 40 位,则只有 CSN 上升沿之前接收的最后 40 位被识别为有效命令。

4.3 时序

SPI 接口单元与内部系统时钟同步,最高 SPI 时钟 SCK 为系统时钟频率的一半。如果系统时钟基于片上振荡器,则必须使用额外的 10 %安全裕度来确保可靠的数据传输。所有 SPI 输入以及 ENN 输入都经过内部滤波,以避免被短于 20ns 的脉冲触发。图 4.1 显示了 SPI 总线传送的时序参数,下表为对应的电气参数。

图 4.1 SPI 时序

提示

通常 TMC5160 SPI 时序指的是 SPI 模式 3

SPI 接口时序	交流特性					
	时钟周期:	t _{CLK}				
参数	符号	条件	最小值	典型值	最大值	单位
SCK 在 CSN 变化前或变化后有效 时间	tcc		10			ns
CSN 高电平时间	tcsн	*)最小时间仅用于 同步 CLK, 在 CSN 高电平前 SCK 至少 保持一个 tcH高电平 时间	t _{CLK} *)	>2t _{CLK} +10		ns
SCK 低电平时间	t _{CL}	*)最小时间仅用于 同步时钟	t _{CLK} *)	>t _{CLK} +10		ns
SCK 高电平时间	t _{сн}	*)最小时间仅用于 同步时钟	t _{CLK} *)	>t _{CLK} +10		ns
内部时钟下的 SCK 频率	f _{SCK}	假设最小振荡频率			4	MHz
外部 16M 时钟下的 SCK 频率	f _{SCK}	假设为同步时钟			8	MHz
SDI 在 SCK 上升沿前的建立时间	t _{DU}		10			ns
SDI 在 SCK 下降沿后的保持时间	t _{DH}		10			ns
SCK 时钟下降沿后的输出数据的 有效时间	t _{DO}	SDO 信号没有电容 负载			t _{FILT} +5	ns
SDI,SCK,CSN 滤波器延时	t _{FILT}	上升沿和下降沿	12	20	30	ns

5. 寄存器

本章概述了完整的寄存器集。一些寄存器对应的单独位的解释会在另外的表格中单独介绍。寄存器的功能应用在专门章节详细介绍。

注意

-除非另有说明, 否则所有寄存器在加电后都会重置为 0。

-将 0x 80 与地址 Addr 相加以进行写访问!

十六进制和二进制数的符号说明				
Ox	十六进制数前缀,例如 0x 04			
%	多个二进制位前的前缀,例如%100			

读写字符号说明					
R	尺读				
W	只写				
R/W	可读可写				
R+C	读清零				

寄存器概述

寄存器	描述
通用配置寄存器	该寄存器组提供以下寄存器
	- 全局配置
	- 全局状态标志
	- 接口配置
	- 输入/输出信号配置
斜坡发生器运动控制寄存器集	该寄存器组提供以下寄存器
	- 选择斜坡模式
	- 选择速度
	- 归零
	- 加速和减速
	- 目标定位
	- 参考开关和 stallguard2 事件配置
	- 斜坡和参考开关状态
速度相关的驱动器特性控制寄存器集	该寄存器组提供以下寄存器
	- 驱动器电流控制
	- 设置 coolstep 操作的阈值
	- 设置不同斩波模式的阈值
	设置 dcsep 操作的阈值
编码器寄存器集	ABN 编码器操作所需的所有寄存器
电机驱动寄存器集	该寄存器组提供以下寄存器
	- 设置/读出微步表和计数器
	- 斩波器和驱动器配置
	- coolStep 和 stallGuard2 配置
	- dcStep 配置
	- 读 stallGuard2 参数值及驱动器错误标志

5.1 通用配置寄存器

	置寄存器(-	1.2	n
R/W	地址	n	寄存器	描述/ 1	
				Bit	GCONF-全局配置标志
				0	recalibrate
					1: 驱动器禁用期间的过零重新校准(通过 ENN 或 TOFF
				1	设置) faststandstill
				1	Justistumustiii 步进信号的超时时长,超过该时间输出静止标志:
					1: 短时间长度: 2^18 时钟
					0: 正常时间长度: 2^20 时钟
				2	en_pwm_mode
					1: 使能 stealthChop 电压 PWM 模式 mode (取决于速度
					阈值)。仅在静止状态下及 IHOLD =标称 IRUN 电流
					时进行从断开到导通的切换。
				3	multistep_filt
					1: 使用外部步进 STEP 输入源时候, 使能步进 STEP 输
					入滤波器用于优化 stealthChop (缺省=1)
				4	shaft
					1: 电机反向
				5	diag0_error (仅 SD_MODE=1)
					1: 使能 DIAGO 在驱动器遇到以下故障时输出故障指示
					信号:
					过温(ot)、对地短路(s2g)、电荷泵欠压(uv_CP)
					DIAGO 总是显示复位状态,即在复位状态期间为有效的低电平
				6	diag0_otpw (仅 SD_MODE=1)
RW	0x00	17	GCONF		1: 使能 DIAGO 输出驱动器过热预警(otpw)指示信号
				7	diago_stall (SD_MODE=1)
					1: 使能 DIAGO 输出电机堵转有效信号 (在使用此功能
					之前设置 TCOOLTHRS)
					diag0_step (SD_MODE=0)
					0: DIAGO 输出中断信号
					1: 使能 DIAGO 输出步进 STEP 信号(双边缘触发步进信
					号),可控制外部 STEP/DIR 驱动器
				8	diag1_stall (SD_MODE=1)
					1: 使能 DIAG1 输出电机堵转信号 (在使用此功能之前
					设置 TCOOLTHRS)
					diag1_dir (SD_MODE=0) 0: DIAG1 输出位置比较信号
					U:
					STEP/DIR 驱动器
				9	diag1_index (仅在 SD_MODE=1)
					1: 使能 DIAG1 输出 索引位置信号 (微步查找表 0 位置)
				10	diag1_onstate (仅在 SD_MODE=1)
					1: 使能 DIAG1 输出斩波器导通阶段指示信号(线圈全
					步的第二部分)
				11	diag1_steps_skipped (仅在 SD_MODE=1)
					1:使能 DIAG1 在 dcStep 模式下失步时翻转输出信号
					(LOST_STEPS 增加)。不要与其他 DIAG1 选项一起使
					能

R/W	地址	n	寄存器	描述/ 位名称
			V .V 22	12 diagO_int_pushpull 0: SWN_DIAGO 集电极开路输出(低电平有效) 1: SWN_DIAGO 推挽输出(高电平有效)
				13 diag1_poscomp_pushpull 0: SWP_DIAG1 集电极开路输出(低电平有效) 1: SWP_DIAG1 推挽输出(高电平有效)
				14 small_hysteresis 0: 步进 step 频率的比较磁滞是 1/16 1: 步进 step 频率的比较磁滞是 1/32
				15 stop_enable 0: 正常操作 1: 紧急停止: ENCA_DCIN 在高电平时停止定序器(定序器不执行任何操作,电机进入停止状态)。
				16 direct_mode 0: 正常操作 1: 电机线圈电流和极性通过串行接口直接编程:寄存器 XTARGET (0x2D)对应有符号线圈 A 电流(位 80 和线圈 B 电流(位 2416)。在此模式下,电流按IHOLD 设置缩放。在这种模式下,基于速度的stealthChop电流调节是不可用的。自动 stealthChop电流调节仅适用于步进电机低速度。
				17
				位 GSTAT-全局状态标志 (写"1"以清除相应标志)
R+ WC	0x01	3	GSTAT	0 reset 1: 表示芯片已复位。所有寄存器都清零并重置复位值 1 drv_err 1: 驱动器过热或短路等驱动器错误关断状态。有关详细信息,请阅读 DRV_STATUS。只有当温度再次低于极限时,标志才能被清除
				2 uv_cp 1: 电荷泵上的欠压标志。欠压期间驱动器被禁用。此标志以供参考
R	0x02	8	IFCNT	接口传输计数器。每成功写入 UART 接口,该寄存器会增加。可以读出它来检查串行传输中是否有丢失的数据。读取访问不会更改内容。在 SPI 操作中禁用。计数器循环计数,到 255 后从 0 开始
W	0x03	8 + 4	SLAVECONF	位SLAVECONF70SLAVEADDR:

通用配置寄存器(0x000x0F)							
R/W	地址	n	寄存器	描述/ /	位名称		
				118	SENDDELAY: 0,1: 8 比特位时间长度(多个从设置不能设置为该值) 2,3: 3*8 比特位时间长度 4,5: 5*8 比特位时间长度 6,7: 7*8 比特位时间长度 8,9: 9*8 比特位时间长度 10,11: 11*8 比特位时间长度 12,13: 13*8 比特位时间长度		
					14, 15: 15*8 比特位时间长度		
				Bit	INPUT		
R	0x04	8 +	IOIN	0 1 2 3 4	读取所有可用输入引脚的状态 REFL_STEP REFR_DIR ENCB_DCEN_CFG4 ENCA_DCIN_CFG5 DRV_ENN		
		8		5			
				31 24	SD_MODE (1=外部步进和方向输入源) SWCOMP_IN (SWN 和 SWP 的电压差。将 DIAG 输出置于高电平,禁止推挽以测试比较器) VERSION: 0x30=芯片第一个版本号相同的数字意味着完全的数字兼容性		
				位	OUTPUT		
w	0x04	1	ОИТРИТ	0	在 UART 模式下设置输出引脚极性 在 UART 模式下, SDO_CFGO 是一个输出。此位编程此引脚的输出极性。其主要目的是将 SDO_CFG O 作为 NAO下一个地址输出信号,用于多个集成电路的链式寻址。提示:重置值为 1,用作单线链中下一个芯片的 NAO		
w	0x05	32	X_COMPARE	SWP_D	较寄存器用于运动控制器位置探测, 位置脉冲输出在引脚		
W	0x06		OTP_PROG	20	OTP_PROGRAM - OTP 编程 写操作编程 OTP 存储器(一次一位) 读操作刷新从 OTP 读取的数据 OTPBIT 选择要编程到选定字节位置的 OTP 位(n = 07:将位 n 编 程到逻辑 1)		
				158	OTPBYTE 设置 00 OTPMAGIC 设置为 0xbd 使能编程。建议编程时间至少为每位 10ms (通过读取 OTP_READ 进行检查)。		
R	0x07		OTP_READ	位 70	OTP_READ (访问 OTP 内存结果和更新) 请另见表格! OTPO 字节 0 读数据		
RW	0x08	5	FACTORY_ CONF	40	FCLKTRIM (复位缺省: OTP)		

通用配置寄存器(0x000x0F)						
R/W	地址	n	寄存器	描述/	位名称	
•	-				031: 最低到最高时钟频率。在电荷泵输出检测。频率跨度并不保证,但经过测试,调到 12MHz 内部时钟是可能的。通过 OTP 编程, 芯片预设为 12MHz 时钟频率 (复位缺省值: OTP)	
				位	SHORT_CONF	
				30	S2VS_LEVEL: 低端场效应晶体管的对 VS 的短路电平。检测 LS MOSFET 和采样电阻上的电压跌落。 4(最高灵敏度)15(最低灵敏度)	
					提示:由于采样电阻上的电压跌落,在正常操作期间设置成1到3可能会触发。 (复位缺省值:OTP6或12)	
			SHOPT	118	S2G_LEVEL: 高端场效应晶体管的对地短路电平,测量高端 MOSFET 上的电压跌落降 2 (最高灵敏度)15 (最低灵敏度)。	
W	0x09	19	SHORT_ CONF		注意:在>52V 操作时不建议设置低于6 可能会导致错误 检测 (复位缺省值: OTP 6 或 12)	
				1716	(友位映有世. OFF 6 以 12) SHORTFILTER:	
					短路检测的尖峰滤波带宽	
					0 (最低,100ns)、1 (1μs)、2 (2μs) 3 (3μs)	
					提示:好的 PCB 布局可配置 0。如果出现错误的短路检测	
					输出,则增加值。	
				40	(复位缺省值=%01)	
				18	shortdelay: 短路检测延迟 0 = 750ns:正常, 1 = 1500ns, 高。	
					0=750ms:止市, 1=1500ms, 同。 短路检测延迟应大于桥臂切换时间。0 将适用于大多数	
					应用程序。	
					(复位缺省值=0)	
				Bit	DRV_CONF	
				40	BBMTIME:	
					导通前的关断延时:	
					0=最短(100ns) 16 (200ns) 24=最长(375ns) , 不推荐设置大于 24, 建议 BBMCLKS 替代	
					提示: 根据开关时间的最低设置安全的, 避免桥臂直通。保留大约30%的余量。	
				11.0	(复位缺省值=0)	
W	0x0A	22	DRV_CONF	118	BBMCLKS:	
					U15: 以內針局期为平位的数于 BBM 时间(典型值 85 ns) 设定更长时间(BBMTIME 对 BBMCLKS)。	
					(复位缺省值: OTP 4 或 2)	
				1716	OTSELECT:	
					选择桥关断的过温级别,冷却至 120℃/OTPW 后恢复	
					00: 150°C 01: 143°C	
					01: 143℃ 10: 136℃(当 VSA > 24V 时不推荐)	
					11: 120°C (不推荐, 没有滞环)	

通用配	置寄存器(0x00	.0x0F)		
R/W	地址	n	寄存器	描述/ 位名称	
				提示:根据需要调整过热阈值以保护 MOSFETs 或 PCB 其他组件。(复位缺省值=%00)	上的
				1918 DRVSTRENGTH: 栅极驱动器电流的选择。根据外部 MOSFETs 的栅极电选择栅极驱动电流。 00:弱 01:弱+TC(高于 OTPW 水平的中等) 10:中等 11:强	电荷
				提示: 最低设置对应小于 100ns 斜率的。 (复位缺省值=%10)	
				2120 FILT_ISENSE: 采样运放的滤波时间常数,以减小另一线圈的振铃和 合 00:低-100ns 01:-200ns 10:-300ns	口耦
				11:高-400ns 提示:如果由于两个线圈的交叉耦合而产生电机斩波等 声,则增加设置。 (复位缺省值=%00)	朵
			GLOBAL	70 电机电流的全局缩放。该值乘以当前的比例,以便侵动器适应某一电机类型。在调整其他设置之前,应该择这个值,因为它也会影响斩波器磁滞。 0:满量程(或写 256)	
W	0x0B	8	SCALER	131:无效 32255:最大电流的 32/256255/256 提示:建议值>128 以获得最佳结果 (复位缺省值=0)	
R	0x0C	16	OFFSET_ READ	158 A 相偏移校准结果(有符号) 70 B 相偏移校准结果(有符号)	

5.1.1 OTP_READ - OTP 配置存储器

OTP 存储器保存某些寄存器的加电默认值。默认情况下,所有 OTP 内存位都清零。只能编程这些位,不可清除。otp0.0 到 otp0.4 为时钟出厂频率调整值,因此,这些位的状态在各个芯片之间可能会有所不同

0x07: OTP_READ - OTP 存储器映射					
位	名称	功能	备注		
7	otp0.7	otp_TBL	TBL 复位缺省值:		
			0: <i>TBL</i> =%10 (~3μs)		
			1: <i>TBL</i> =%01 (~2μs)		
6	otp0.6	otp_BBM	DRVCONF.BBMCLKS 复位缺省值		
			0: BBMCLKS=4		
			1: BBMCLKS=2		
5	otp0.5	otp_S2_LEVEL	短路检测电平复位缺省值:		
			0: S2G_LEVEL = S2VS_LEVEL = 6		
			1: S2G_LEVEL = S2VS_LEVEL = 12		
4	otp0.4	OTP_FCLKTRIM	FCLKTRIM 复位缺省值		
3	otp0.3		0: 最低频率设置		
2	otp0.2		31: 最高频率设置		
1	otp0.1		注意:该值是出厂设置,预编程为默认时钟频率 12MHz,		
0	otp0.0		并且在各个芯片之间有所不同!它不能被改变。		

5.2 速度相关的驱动特性控制寄存器

速度相关的驱动特性控制寄存器 (0x100x1F)								
R/W	地址	位	寄存器	描述/位名称				
•				位 IHOLD_IRUN - 驱动电流控制				
				40 IHOLD 静止状态下电机电流 (0=1/3231=32/32) 在 stealthChop 模式下,设置 IHOLD = 0 可配置电机制 止状态为飞轮模式或线圈短路模式。				
W	0x10	5 + 5	IHOLD_IRUN	128 IRUN 电机运行电流(0=1/3231=32/32) 提示:选择适合的采样电阻,建议 IRUN 设置范围是 16 到 31,以获得最佳的微步性能。				
		+ 4		1916 IHOLDDELAY 设置电机检测到静止(stst=1)及 TPOWERDOWN 之后,降电流过程的时钟周期数。避免电机没有机械停下来,电流变化造成的电机跳动。				
				115: 每 2^18 个时钟倍数的时间衰减电流				
W	0x11	8	TPOWER DOWN	TPOWERDOWN 设置电机静止后(stst)到电机开始降电流的之间的延时时间。时间范围约为 0 至 4 秒 注意:要求最小设置为 2,以允许自动校正 stealthChop PWM_OFFS_AUTO。 复位缺省值 10 0((2^8)-1) * 2^18 tclk				
R	0x12	20	TSTEP	以 1 / fCLK 为单位的步进输入信号上的两个 1 / 256 微步之间的实际测量时间。测量范围为(2^20)-1 以防溢出或电机进入静止状态。 所有与 TSTEP 相关的阈值使用比较值的 1 / 16 的滞环来补偿时针或步进频率中的抖动。small_hysteresis 标志将滞环修改为较小 / 32。 ((Txxx*15/16)-1 或 (Txxx*31/32)-1 作为第二个比较值 这意味着,切换速度的低值等于计算的设置,但切换速度的高值高于定义的磁滞设置。 当使用运动控制器时,对于给定速度 V,测量的 TSTEP 在(2 ²⁴ /V)≤ TSTEP≤ 2 ²⁴ /V-1 范围内 在 dcStep 模式下,TSTEP 不是电机的平均速度,而是每个微步的速度。 微步速度可能不稳定,而且因为运行速度低于目标速度,所以不对应实际电机速度				
W	0x13	20	TPWMTHRS	stealthChop 电压 PWM 模式的上限速度. TSTEP ≥ TPWMTHRS - stealthChop PWM 使能,如果配置 - dcStep 禁用				

速度相关的驱动特性控制寄存器 (0x100x1F)						
R/W	地址	位	寄存器	描述/位名称		
W	0x14	20	TCOOLTHRS	使能 coolStep 和 stallGuard 功能的下限速度(无符号)。 设置此参数则在低速时禁用 coolStep,因为低速时不能可靠工作。在超过该速度时堵转停止功能(当使用内部运动控制器时,使能 sg_stop)和堵转输出信号有效。在非 dcStep 模式下,一旦速度降到这个阈值以下,它就会再次被禁用。 TCOOLTHRS≥TSTEP≥THIGH: - coolStep 使能(如果已配置) - stealthChop voltage PWM 模式禁用 TCOOLTHRS≥TSTEP - 使能堵转停止,如果被配置 - 使能堵转输出信号(DIAGO/1)(如果配置)		
W	0x15	20	THIGH	这种速度设置允许速度相关切换到不同的斩波模式和全步以最大化扭矩(无符号)。每当通过 THIGH 阈值时,堵转检测功能会关闭 2-3 个电周期,以补偿切换模式的影响。 TSTEP ≤ THIGH: - coolstep 被禁用(电机按设定的正常电流运行) - stealthChop 电压 PWM 模式被禁用 - 如果设置了 vhighchm,斩波器将切换到 chm = 1,TFD = 0 (只有慢衰减的恒定关闭时间) - 如果设置了 vhighfs,电机以全步模式运行,堵转检测切换到 dcStep 堵转检测		

微步速度时间参考 t: TSTEP = fclk / fstep

5.3 斜坡发生器寄存器

5.3.1 斜坡发生器运动寄存器

斜坡发	斜坡发生器运动寄存器集 (0x200x2D)						
R/W	地址	n	寄存器	描述/位名称	范围[单位]		
RW	0x20	2	RAMPMODE	RAMPMODE: 0: 位置模式(使用所有 A、D 和 V 参数) 1: 速度模式到正 VMAX (使用 AMAX 加速度) 2: 速度模式至负 VMAX (使用 AMAX 加速度) 3: 保持模式(除非发生停止事件,否则速度保持不变	03		
RW	0x21	32	XACTUAL	实际电机位置(有符号) 提示:该值通常只应在归零时修改。在位置模式 下,修改内容将启动一个运动。	-2^31 +(2^31)-1		
R	0x22	24	VACTUAL	斜坡发生器产生的实际电机速度(有符号) 符号标志与运动方向相匹配。负号表示降低 XACTUAL的运动	+-(2^23)-1 [μsteps / t]		
W	0x23	18	VSTART	电机起动速度(无符号) 为了通用,设置 VSTOP≥VSTART。如果运动距离足以确保从 VSTART 到 VSTOP 的减速,则不是必须	0(2^18)-1 [μsteps / t]		
W	0x24	16	A1	VSTART 和 V1 之间的加速度(无符号)	0(2^16)-1 [μsteps / ta²]		
W	0x25	20	V1	第一加速/减速阶段阈值速度(无符号) 0:禁用 A1 和 D1 相位, 仅使用 AMAX、DMAX	0(2^20)-1 [μsteps / t]		
W	0x26	16	AMAX	V1 和 VMAX 之间的加速度(无符号) 这是速度模式的加速度和减速值。	0(2^16)-1 [μsteps / ta²]		
W	0x27	23	VMAX	运动斜坡目标速度(位置模式确保 VMAX≥VSTART)(无符号) 速度模式下的目标速度。它可以在运动过程中 随时改变。	0(2^23)-512 [μsteps / t]		
W	0x28	16	DMAX	VMAX 和 V1 之间的减速度(无符号)	0(2^16)-1 [μsteps / ta²]		
W	0x2A	16	D1	V1 和 VSTOP 之间的减速度(无符号) 注意:不要在位置模式下设置 0, 即使 V1 = 0!	1(2^16)-1 [µsteps / ta²]		
W	0x2B	18	VSTOP	电机停止速度(无符号) 提示: 设置 VSTOP≥VSTART 则允许短距离位置模式 式 注意: 不要在位置模式下设置 0, 至少设置为 10!	1(2^18)-1 [µsteps / t] Reset Default=1		

斜坡发生器运动寄存器集 (0x200x2D)						
R/W	地址	n	寄存器	描述/位名称	范围[单位]	
W	0x2C	16	TZEROWAIT	定义下一次移动或方向反转开始前,下降到零速度后的等待时间。时间范围约为 0 至 2 秒 此设置可避免过度加速,例如从 VSTOP 到-VSTART。	0(2^16)-1 * 512 t _{CLK}	
RW	0x2D	32	XTARGET	斜坡模式的目标位置(有符号)。向该寄存器写入新的目标位置,以便激活 RAMPMODE = 0 中的斜坡发生器定位。需要初始化所有速度、加速和减速参数 提示: 该位置寄存器可以循环, 因此, XTARGET 值可以被视为无符号数字。 提示:最大可能位移为+/-((2^31)-1) 提示:在运动中如果需要修改 V1、D1 或 DMAX, 事后重写 XTARGET 以触发第二加速阶段。	-2^31 +(2^31)-1	

5.3.2 斜坡发生器驱动特性控制寄存器组

斜坡发	斜坡发生器驱动特性控制寄存器组 (0x300x36)			
R/W	地址	n	寄存器	描述/位名称
W	0x33	23	VDCMIN	在 VDCMIN (无符号)以上使能自动换向 dcStep (仅当使用内部斜坡发生器时,而不是用于 STEP / DIR 接口时——在 STEP / DIR 模式下,dcStep 由外部信号 DCEN 启用) 在这种模式下,实际位置由无传感器电机换向确定,并反馈给XACTUAL。如果电机负载很大,VDCMIN 也用作最小速度。激活堵转停止(sg_stop)以检测失步。 0: 禁用,关闭 dcStep VACT ≥ VDCMIN ≥ 256: - 触发与超出 THIGH 设置相同的动作 - 打开自动换向 dcStep 提示: 需设置 DCCTRL 参数来操作 dcStep。 (只有位 228 用于比较值)
RW	0x34	12	SW_MODE	开关模式配置 <i>请另见表格!</i>
R+ WC	0x35	14	RAMP_STAT	斜坡状态和开关事件状态 <i>请另见表格!</i>
R	0x36	32	XLATCH	斜坡发生器锁存位置,在可编程开关事件时锁存 XACTUAL(参见 SW_MODE)。 提示:可以将编码器位置与 XLATCH 一起锁定到 ENC_LATCH, 便于一致性检查。

速度的时间参考: $t = 2^24 / f_{CLK}$ 加速度的时间参考 ta^2 : $ta^2 = 2^41 / (f_{CLK})^2$

www.trinamic.com

5.3.2.1 SW_MODE - 参考开关和 stallguard 2 事件配置寄存器

0x34	:SW_MODE-参考:	开关和 STALLGUARD 2 事件配置寄存器
位	名称	备注
11	en_softstop	0: 硬停
		1: 软停
		軟停模式总是使用减速斜坡设置 DMAX、V1、D1、VSTOP 和 TZEROWAIT 来
		停止电机。当速度符号匹配参考开关位置(REFL表示负速度, REFR表示正
		速度)并且相应的开关停止功能被使能时,停止发生。
		在马达被释放之前,硬停止也使用 TZEROWAIT。
		注意:不要将软停与 stallguard 2 结合使用。stealthChop 模式下高速运行使用
10	,	软停。在这种情况下,必须避免硬停,因为这会导致严重的过电流。
10	sg_stop	1:使能 stallguard 2 停止(也可在 dcStep 模式下使用)。停止事件后禁用以释放电机。TCOOLTHRS 为对应的速度阈值。
		放电机。ICOULITIKS 为对应的还及网值。
		提示:在电机加速期间不要启用,等到电机速度超过某个值,此时 stallguard2
		会提供稳定的结果。这个速度阈值为TCOOLTHRS
9	en_latch_encoder	1: 参考开关事件时将编码器位置锁定到 ENC_LATCH.
8	latch_r_inactive	1:.当左侧参考开关输入 REFR 朝着非有效电平跳变时,位置锁存至
		XLATCH。有效电平由 pol_stop_r 定义
7	latch_r_active	1:当右侧参考开关输入 REFR 朝着有效电平跳变时,位置锁存以锁定。
		提示:通过读取 status_latch_r.激活 latch_r_ active 来检测任何虚假停止事件
6	latch_l_inactive	1: 当左侧参考开关输入 REFL 朝着非有效电平跳变时,位置锁存至 XLATCH。
	rateri_r_maetive	有效电平由 pol_stop_1定义.
5	latch_l_active	1: 当左侧参考开关输入 REFL 朝着有效电平跳变时,位置锁存至 XLATCH。
		提示:激活 latch_l_active, 通过读取 status_latch_l 来检测任何虚假的停止事
4	swap_lr	1: 交换左右参考开关输入 REFL 和 REFR
3	pol_stop_r	设置右参考开关输入的有效极性
		0=非反转,高有效: REFR 上的高电平会停止电机
2	pol_stop_l	1=反转, 低有效: REFR 上的低电平停止电机 设置左参考开关输入的有效极性
2	μοι_ειομ_ι	0=非反转,高有效: REFL 上的高电平停止电机
		1=反转,低有效:REFL上的低电平停止电机
1	stop r enable	1:使能右参考开关有效时电机停止
	,	
		提示:如果参考开关释放, 电机将重新启动
0	stop_l_enable	1: 使能左参考开关有效时电机停止
		提示:如果参考开关释放,电机将重新启动。

5.3.2.2 RAMP_STAT - 斜坡和参考开关状态寄存器

0x35: /	RAMP_	_STAT-斜坡和参	考开关状态寄存器	
R/W	位	名称	备注	
R	13	status_sg	1: coolStep 驱动器或 dcStep 单元 (如果使能)产生的有效 stallguard2 输入信号。 提示:轮询此标志时,可能会错过堵转事件-激活 sg_stop 以确保不会错	
			过失速事件。	
R+ WC	12	second_move	1:表明自动斜坡需要反向移动,例如由于运行中的参数变化 (写"1"以清除)	
R	11	t_zerowait_ active	1:马达停止后 TZEROWAIT 激活过程。在此期间,电机处于静止状态	
R	10	vzero	1: 实际速度为 0。	
R	9	position_ reached	1: 到达了目标位置。 当 XACTUAL 和 XTARGET 匹配时,此标志会被设置.	
R	8	velocity_ reached	1: 达到了目标速度。 当 VACTUAL 和 VMAX 匹配时,此标志会被设置。	
R+ WC	7	event_pos_ reached	当 VACTUAL 和 VMAX 匹配时,此标志会被设置。 1:目标位置已经到达(position_reached 变为有效)。 (写入"1"以清除标志和中断条件) 该位与中断输出信号进行或运算。	
R+ WC	6	event_stop_ sg	1:有效的 StallGuard 2 停止事件。 读取寄存器将清除堵转状态, 电机可能会重新启动运动, 除非运动控制器已经停止。 (写入"1"以清除标志和中断条件) 该位与中断输出信号进行或运算。	
R	5	event_stop_r	1:由于停止开关有效发出右停止状态。 可以通过将 RAMP_MODE 设置为保持模式或通过命令向相反方向移动 来去除停止条件和中断条件。在 soft_stop 模式下,该条件将保持激活 状态,直到电机停止向停止开关方向运动。禁用停止开关或停止功能 也会清除标记,但电机将继续运动。 该位与中断输出信号进行或运算。	
	4	event_stop_I	1:由于停止开关有效发出左停止状态。 可以通过将 RAMP_MODE 设置为保持模式或通过命令向相反方向移动来去除停止条件和中断条件。在 soft_stop 模式下,该条件将保持激活状态,直到电机停止向停止开关方向运动。禁用停止开关或停止功能也会清除标记,但电机将继续运动。该位与中断输出信号进行或运算	
R+ WC	3	status_latch_r	1:右锁存就绪 (SW_MODE E 使能位置锁存 atch_r_active 或 atch_r_inactive) (写"1"清除)	
	2	status_latch_l	1:左锁存就绪 (SW_MODE 使能位置锁存 latch_l_active 或 latch_l_inactive) (写"1"清除)	
R	1	status_stop_r	参考开关右状态(1=有效)	
	0	status_stop_l	参考开关左状态(1=有效)	

5.4 编码器寄存器

编码器	编码器寄存器 (0x380x3C)				
R/W	地址	n	寄存器	描述/ 位名称	范围[单位]
RW	0x38	11	ENCMODE	编码器配置和 N 通道的使用 请另见表格!	
RW	0x39	32	X_ENC	实际编码器位置(有符号)	-2^31 +(2^31)-1
W	0x3A	32	ENC_CONST	累加常数(有符号) 16 位整数部分, 16 位小数部分 X_ENC 累加 +/- ENC _ CONST / (2^16*X_ENC) (二进制) 或者 +/- ENC _ CONST / (10 ^ 4* X _ ENC) (十进制) ENCMODE 的 enc_sel_decima 位选择十进制和 二进制设置 符号匹配旋转方向!	二进制: ± [µsteps/2^16] ±(0 32767.999847) 十进制: ±(0.0 32767.9999) reset default = 1.0 (=65536)
R+ WC	0x3B	2	ENC_STATUS	编码器状态信息 位 0: n_event 位 1: deviation_warn 1:检测到事件。 要清除状态位,请在相应位置写入 1 位。 报警只要存在,无法清除 Deviation_warn。将 ENC_DEVIATION 设置零则为禁用。 两个位都与中断输出信号进行或运算。	
R	0x3C	32	ENC LATCH	N 个事件时锁存编码器位置 X_ENC	
W	0x3D	20	ENC_ DEVIATION	编码器计数器和 XACTUAL 之间的最大步长偏差,用于偏差报警标志导致标志 ENC_STATUS.deviation_warn 有效 0=功能关闭。	

5.4.1 ENCMODE - 编码器寄存器

0x38	0x38: ENCMODE -编码器寄存器			
位	名称	备注		
10	enc_sel_decimal	0	编码器预分频器二进制模式:	
			ENC_CONST (小数部分) / 65536	
		1	编码器预分频器十进制模式:	
			ENC_CONST (小数部分) / 10000	
9	latch_x_act	1:与	X_ENC 一起锁定 XACTUAL。	
		根据	N 通道事件的 pos_edge 和 pos_edge e 配置锁定斜坡发生器位置。	
8	clr_enc_x	0	当发生 N 事件时, X_ENC 仅锁存到 ENC_LATCH	
		1	N 事件时锁存并清除编码器计数器 X_ENC	
7	neg_edge	n p	N通道敏感度	
6	pos_edge	0 0	N 通道的有效电平触发 N 通道事件	
		0 1	朝着有效电平的跳变触发N事件有效	
		10	朝着非有效电平的跳变触发N通道有效	
		11	朝着有效电平及非有效电平的跳变触发 N 通道有效	
5	clr_once	1:写记	方问后的下一个 N 事件中,锁存或锁存并清除 X_ENC	
4	clr_cont	1: N	事件时,始终锁存或锁存并清除 X_ENC (每转一圈一次,建议将此设置	
		与N	事件的边缘设置相结合)	
3	ignore_AB	0	只有当极性与 pol_N、pol_A 和 pol_B 定义的极性匹配,N 事件发生。	
		1	忽略N通道事件的A和B极性	
2	pol_N	定义	N 通道的有效极性(0=低有效, 1=高有效)	
1	pol_B	N通i	道事件所需的 B 极性(0=负, 1=正)	
0	pol_A	N通i	道事件所需的 A 极性(0=负,1=正)	

5.5 电机驱动寄存器

微步拉	微步控制寄存器(0x600x6B)				
R/W	地址	n	寄存器	描述/位名称	范围[单位]
W	0x60	32	MSLUT[0] microstep table entries 031	根据 MSLUTSEL W 的设置, 条目 x 和条目 x + 1 之间的差值: 0: W= %00: -1	32x 0 or 1 reset default= sine wave table
w	0x61 0x67	7 x 32	MSLUT[17] microstep table entries 32255	%11: +2 1: W= %00: +0 %01: +1 %10: +2 %11: +3 这是第一个四分之一波的差分编码。CUR_A 和 CUR_B 的 起 始 值 存 储 在 START_SIN 和 START_SIN90 中的 MSCNT 位置 0。 ofs31, ofs30,, ofs01, ofs00 ofs255, ofs254,, ofs225, ofs224	7x 32x 0 or 1 reset default= sine wave table
W	0x68	32	MSLUTSEL	该寄存器定义了 MSLUT 正弦波 1/4 周期内的四个段。四个 2 位条目确定了 MSLUT 表中对应段的位宽。 参见单独的表!	0 <x1<x2<x3 复位缺省值= 正 弦表</x1<x2<x3
W	0x69	8 + 8	MSLUTSTART	7 0 位: START_SIN b23 16 位: START_SIN90 START_ SIN 给出了微步表位置 0 的绝对电流。 START_ SIN90 给出了微步表位置 256 的绝对电流。 当参考位置 MSCNT = 0 时,起始值被传送到微步寄存器 CUR_A 和 CUR_B。	START_SIN 复位缺省值=0 START_SIN90 复位缺省值=247
R	0x6A	10	MSCNT	微步计数器。指示 CUR_A 微步表中的实际位置。 01023 CUR_B 的偏移量为 256 (两相电机)。 提示:先将电机移动到 MSCT 为零的位置,再重新初始化 MSLUTSTART 或 MSLUT 和 MSLUTSEL,	
R	0x6B	9 + 9	MSCURACT	bit 8 0: CUR_A (有符号):	+/-0255

驱动寄	驱动寄存器组(0x6C0x7F)				
R/W	地址	n	寄存器	描述/ 位名称	范围[单位]
RW	0x6C	32	CHOPCONF	斩波器和驱动配置 <i>请另见表格</i>	复位缺省值= 0x10410150
W	0x6D	25	COOLCONF	coolStep 智能电流控制寄存器 和 stallGuard 2 配置 请另见表格	
W	0x6E	24	DCCTRL	dcStep (DC)自动换向配置寄存器 (通过引脚 DCEN 或 VDCMIN 使能): 9 0 位: DC_TIME: 换相中 PWM 导通时间的上限 (DC_TIME* 1 / fCLK)。设置略高于有效消影时间 TBL。 23 16 位: DC_SG:在 dcStep 模式下,使用dcStep stallGuard2 进行失步检测的最大 PWM 导通时间。(DC_SG*16/fclk)设置略高于 DC_TIME/160=禁用提示:高细分或插值运算,dcStep可产生更好的stallGuard 信号如果使能 vhighchm,则 DC_SG 在速度高于高于 VHIGH 在 VHIGH 以上也可用。为了获得最佳结果,需设置 vhighchm	
R	0x6F	32	DRV_ STATUS	stallGuard2 值和驱动错误标志 <i>请另见表格!</i>	
W	0x70	22	PWMCONF	电压 PWM 模式斩波器配置 <i>请另见表格!</i>	复位缺省值= 0xC40C001E
R	0x71	9+8	DWM SCALE	斩波调幅器的结果。这些值可用于监控自动 PWM 幅度调节(255 =最大值电压)。 bit 7 0	0255
Κ.	0x71	910	PWM_SCALE	CUR_A和CUR_B。 bit 24 16 PWM_SCALE_AUTO: 9 位有符号偏移加到计算的 PWM 占空比上。该值是在电流测量的基础上内部自动幅值调节后的结果.	有符号 -255+255
				芯片自动产生,可读回作为 PWM_GRAD 和 PWM_OFS 的默认/上电设置。	0.055
R	0x72	8+8	PWM_AUTO	bit 7 0	0255
R	0x73	20	LOST_STEPS	自动标定梯度值 当 DC_OUT 为低电平时,步进信号输入没有停止情况下,由于较高的负载导致 dcStep 操作中没有接收的输入步进数。经过 2^20 步后,这个计数器会自动从 0 开始。根据方向向上或向下计数。仅在 SDMODE = 1 时。	

上电缺省的内部正弦波微步表计算

$$round \left(248 * sin\left(2 * PI * \frac{i}{1024} + \frac{PI}{1024}\right)\right) - 1$$

- i:[0... 255]: 表格索引
- 波形幅值 248, 范围为 247 到-248.
- round 函数为四舍五入,即 0.5 到 1.4999 之间为 1

5.5.1 MSLUTSEL - 查找表段定义

0x68	: MSLUTSEL	-查找表段定义	
位	名称	功能	备注
31	Х3	第三段查找表起始点	正弦波查找表可以分成四段,每段用单独的 Wx 控制步长宽度。
30			段的起始由 X1、X2 和 X3 选择。
29			
28			段 0 从 0 到 X1 - 1。
26			段 1 从 X1 到 X2 - 1。
25			段 2 从 X2 到 X3 - 1。 段 3 从 X3 到 255。
24			秋 3 外 入3 到 200。
23	X2	第二段查找表起始点	· 对于定义的响应,这些值应满足:
22			0 <x1<x2 <x3<="" td=""></x1<x2>
21			
20			
19			
18 17			
16			
15	X1	第一段查找表起始点	
14			
13			
12			
11			
10			
9			
7	W3	ofs(X3) 到 ofs255 的 查找	W0W3 位宽控制编码:
6		表宽度选择	
5	W2	ofs(X2) 到 ofs(X3-1) 的 查	%01: MSLUT entry 0, 1 对应: +0, +1
4		找表宽度选择	%10: MSLUT entry 0, 1 对应: +1, +2
3	W1	ofs(X1) 到 ofs(X2-1) 的 查	%11: MSLUT entry 0, 1 对应: +2, +3
2		找表宽度选择	
1	W0	ofs00 到 ofs(X1-1) 的 查找	
0		表宽度选择	

5.5.2 CHOPCONF - 斩波器配置

0x6C	: CHOPCONE	斩波器配置				
位	名称	功能	备注			
31	diss2vs	对电源短路保护	0:对 VS 短路保护使能			
	0.00=10	, C, M, D = 12 11 V	1:禁用对 VS 短路保护			
30	diss2g	-1 12 11 1- ob 17 13	0:对 GND 短路保护使能			
		对接地短路保护	1:禁用对 GND 短路保护			
29	dedge	双边沿步进 STEP 脉冲	1:使能每个 STEP 脉冲边缘采样,以降低步进 STEP 信号的 频率要求。			
28	intpol	256 微步插值	1:实际微步分辨率(MRES)被插值至 256 微步,用于最平滑的电机操作(仅适用于步进/DIR操作)			
27	mres3	MRES	%0000:			
26	mres2	细分	256 微步。通常将此设置与内部运动控制器一起使用			
25	mres1					
24	mres0		%0001 %1000: 128, 64, 32, 16, 8, 4, 2, 全步 降低微步分辨率,用于步进/方向操作 分辨率给出了每正弦四分之一波的微步条目数 当选择较低的微步分辨率时,驱动器会自动使用产生对称 波的微步位置。 步长宽度= 2^ MRES [微步]			
23	tpfd3	TPFD	TPFD 降低电机的中程共振。			
22	tpfd2	被动快速衰减时间	被动快速衰减时间设置控制电桥极性变化后插入的快速衰			
21	tpdf1		减阶段的持续时间			
20	tpfd0		NCLK = 128 * TPFD			
			% 0000 :禁用 % 0001% 1111 : 115			
19	vhighchm	高速斩波模式	当超过 VHIGH 时,切换到 chm=1 1 和 fd=0。这样,可以获得更高的速度。可以与 vhighfs = 1 相结合。如果设置,则TOFF 设置在高速操作期间自动加倍,以避免斩波频率加倍。			
18	vhighfs	高速全步选择	当超过 VHIGH 时,切换到全步。切换仅发生在 45°位置。 全步目标电流使用微步表 45°位置对应的电流值。			
17	-	保留	保留,设置0			
16	tbl1	TBL	%00 %11:			
15	tbI0	消影时间选择	将比较器消影时间设置为 16、24、36 或 54 个时钟			
			提示:%01或%10建议用于大多数应用程序			
14	chm		0 标准模式(spreadCycle)			
		斩波方式	1 具有快速衰减时间的恒定关闭时间。			
		., =	当达到相反向标称电流时,快速衰减时间也终止。			
		ht da	快速衰减是在导通阶段之后.			
13	-1:-61	保留	保留,设置0			
12	disfdcc	快速衰减模式	chm=1: disfdcc=1 禁用用当前比较器终止快速衰减周期			
11	fd3	TFD [3]	chm=1: 快速衰减时间设置 TFD 的最高位			
10	hend3	HEND	<i>chm</i> =0 %0000 %1111:			
9	hend2	磁滞低值	磁滞是 -3, -2, -1, 0, 1,, 12			
8	hend1	OFFSET	(该设置的 1/512 叠加到当前电流)			
7	hend0	正弦波偏移量	磁滞值用于磁滞斩波.			
			chm=1 %0000 %1111:			

0x6C	0x6C: CHOPCONF - 斩波器配置				
位	名称	功能	备注		
			偏移量为-3,-2,-1,0,1,,12 这是正弦波偏移,该值的1/512加到每个正弦 波条目对应的绝对值上。		
6	hstrt2	HSTRT	chm=0 %000 %111:		
5	hstrt1	磁滞起始值累加到	增加 1, 2,, 8 到磁滞低值 HEND		
4	hstrt0	HEND TFD [20] 快衰减时间设置	(该设置的 1/512 叠加到当前电流) 注意: 有效 HEND+HSTRT ≤ 16. 提示: 每 16 个时钟周期磁滞值减少 1 chm=1 快速衰减时间设置(最高位: fd3): %0000 %1111: 使用快速衰减时间 TFD 设置 N _{CLK} = 32*TFD (%0000: 仅慢衰减)		
3	toff3	TOFF 关断时间和驱动器使	慢衰减阶段的持续时间		
2	toff2	能	$N_{CLK} = 12 + 32*TOFF$		
1	toff1		%0000: 驱动输出关闭,所有桥臂关断		
0	toff0		%0001:1-仅在 TBL≥2 时使用 %0010 %1111: 2 15		

5.5.3 COOLCONF -智能电流控制 coolStep 和 stallGuard2

0x6D	: COOLCONF	智能电流控制 coolSTE	P 和 STALLGUARD2
位	名称	功能	备注
	-	保留	设置 0
24	sfilt	stallGuard2 滤波器使能	0 标准模式, stallGuard2 的高时间分辨率
			1 滤波模式, stallGuard2 信号每四个全步更新一次(三
			相电机的六个全步)仅用于补偿电机级与级之间不一
			致
23	-	保留	设置 0
22	sgt6	stallGuard2 门槛值	该符号值控制堵转输出的 stallGuard2 电平,并设置读出
21	sgt5		的最佳测量范围。值越低,灵敏度越高。零是大多数电机
20	sgt4		的启动值。
19	sgt3		-64 to +63: 较高的值会降低 stallGuard2 的敏感度,并需
18	sgt2		要更多扭矩来指示堵转。
17	sgt1		
16	sgt0		
15	seimin	智能电流控制的最小电	0: 1/2 电流设置(IRUN)
		流	1: 1/4 电流设置(IRUN)
14	sedn1	电流下降速率	%00: 每 32 个 stallGuard2 值减少 1
13	sedn0		%01: 每 8 个 stallGuard2 值减少 1
			%10: 每 2 个 stallGuard2 值减少 1
			%11: 每个 stallGuard2 值减少 1
12	-	保留	设置 0
11	semax3	智能电流控制的	如果 stallGuard2 结果等于或高于(SEMIN + SEMAX + 1) *
10	semax2	stallGuard2 磁滞值	32, 则电机电流变小以节省能量。
9	semax1		% 0000% 1111 : 015
8	semax0	In to	No. of the second secon
7	-	保留	设置 0
6	seup1	电流上升步长	每测得 stallguard 2 值的电流增量步长
5	seup0	In to	%00 %11: 1, 2, 4, 8
4	-	保留	设置 0
3	semin3	智能电流控制的最小	如果 stallguard 2 的结果低于 SEMIN*32,则电机电流会
2	semin2	stallguard 2 值及智能电	增加以减小电机负载角。
1	semin1	流使能	%0000: 智能电流控制 coolStep 关闭
0	semin0		%0001 %1111: 1 15

5.5.4 PWMCONF - 电压脉宽调制模式 stealthChop

0x70	: PWMCONF	-电压脉宽调制模式 STE	ALTHC	СНОР	
位	名称	功能	备注	È	
31 30 29 28	PWM_LIM	使能后,PWM 自动缩 放幅度限制	PWI 动电 式轴 它不	C spreadCycle 切换回 stealthChop 时, M_SCALE_AUTO 的最大限幅。该值定义了切换回时自 已流控制的第7位至第4位的上限。设置该参数为在模 转换回 stealthChop 时降低电流的过冲。 C限制 PWM_GRAD 或 PWM_GRAD 偏移量。 以值=12)	
27 26 25 24	PWM_REG	调节回路梯度值	当 p 信 f (1 1:0 2:1 3:1 4:2 8:4	pwm_autoscale = 1 时,用户定义的每半波最大 PWM E变化:	
23	-	保留	设置		
22	-	保留	设置	ť 0	
21 20	freewheel1 freewheel0	允许不同的静止模式	当电机电流设置为零(I_HOLD=0)时,静止选项。 %00:正常操作 %01:空转 %10:使用 LS 驱动器线圈短路 %11:使用 HS 驱动器线圈短路		
19	pwm_ autograd	PWM 自动调节梯度	0 1	PWM_GRAD 的固定值 (PWM_GRAD_AUTO = PWM_GRAD) 自调节(仅 pwm_autoscale = 1) (复位缺省值) 当 pwm_autograd=0, PWM_GRAD_AUTO 用 PWM_GRAD 初始化, 并在运动过程中自动优化。 先决条件: 1. PWM_OFS_AUTO 自动初始化. 这需要电机以 IRUN 电流至少>130 毫秒, 以便 a)检测停止 b)在 IRUN 等待>128 次斩波周期 c)调节 PWM_OFS_AUTO, 使得 -1 < PWM_SCALE_AUTO <1 2. 电机运行和 1.5 * PWM_OFS_AUTO 和 PWM_ SCALE_SUM <4 * PWM_OFS_AUTO 和 PWM_ SCALE_SUM <255。 调节 PWM GRAD AUTO 所需的时间 每次变化+/-1 需要 8 个全步时间。 支持降低的斩波频率来调节 PWM_OFS_AUTO。	
18	pwm_ autoscale	PWM 自动电流调节	0	用户定义的前馈 PWM 幅度。当前设置 IRUN 和 IHOLD 没有影响! 产生的 PWM 振幅(0255 之间)为: PWM_OFS * ((CS_ACTUAL+1) / 32) + PWM_GRAD * 256 / TSTEP 使能自动电流控制(复位缺省值)	

0x70	0x70: PWMCONF-电压脉宽调制模式 STEALTHCHOP			
位	名称	功能	备注	
17	pwm_freq	PWM 频率	%00: fpwm=2/1024 fclk (复位缺省值)	
	1		%01: f _{PWM} =2/683 f _{CLK}	
16	pwm_freq		%10: f _{PWM} =2/512 f _{CLK}	
	0		%11: f _{PWM} =2/410 f _{CLK}	
15	PWM_	用户定义的梯度值	PWM 振幅的速度相关梯度;	
14	GRAD		PWM_GRAD * 256 / TSTEP	
13			这个值被加到 PWM_AMPL 中,以补偿速度相关的电机反	
12			电动势。	
11				
10			设置 PWM_GRAD 作为自动缩放的初始值, 可加快自调节	
9			过程。先设置 pwm_autoscale=0,根据特定应用设置	
8			PWM_GRAD。之后设置 pwm_autoscale=1。完成后使能	
			stealthChop。	
			提示:	
			初始调节,读 PWM_GRAD_AUTO 得到所需的初始值。	
7	PWM_	用户定义的幅值 (偏移	用户定义的 PWM 振幅偏移(0-255),与静止状态下的全	
6	OFS	量)	电机电流(CS_ACTUAL = 31)相关。	
5			(复位缺省值=30)	
4				
3			设置 PWM_OFS 作为自动缩放的初始值, 可加快自调节	
2			过程。先设置 pwm_autoscale=0,根据特定应用设置	
1			PWM_OFS。之后设置 pwm_autoscale=1。完成后使能	
0			stealthChop。	
			PWM_OFS = 0 将禁止将电机电流缩小到低于电机特定的	
			较低测量阈值。此设置应仅在某些条件下使用,例如当电	
			源电压可以上下变化两倍或更多倍时。它可以防止电机超	
			出调节范围,也可以防止电压低于调整的下限。	
			PWM_OFS > 0 允许自动缩放到低 PWM 占空比,甚至低于	
			較低的调节阈值。这可实现在实际(保持)电流定标器(寄存	
			器 IHOLD_IRUN)上产生较低(静止)电流	

5.5.5 DRV_STATUS -stallGuard2 值和驱动错误标志

0x6F	0x6F: DRV_STATUS-STALLGUARD2 值和驱动器错误标志				
位	名称	功能	备注		
31	stst	停止指示	此标志表示电机在每个操作模式下保持静止。这发生在最后一步脉冲之后的 2^20 时钟。		
30	olb	A相开路指示	1: 在 A 相或 B 相检测到开路		
29	ola	B相开路指示	提示:这只是一信息。驱动器不对它采取任何行动。快速 运动和静止时可能会出现错误检测。仅在慢动作时检查		
28	s2gb	B相短路指示	1:在 A 相或 B 相检测到对 GND 短路。驱动器被禁用。标		
27	s2ga	A相短路指示	志保持活动状态,直到驱动器被软件(TOFF = 0)或 ENN 输入禁用。		
26	otpw	过温预警标志	1:过温预警阈值。 两桥臂共用一个过温预警标志		
25	ot	过温标志	1:已达到过温极限。驱动器会被禁用,直到 IC 冷却, otpw 也被清除。 两桥臂共用一个过温标志。		
24	stallGuard		1:检测到电机堵转(SG_RESULT=0)或 dcStep 模式下的 dcStep 堵转。.		
23 22 21	-	保留	忽略这几位		
20 19 18 17 16	CS ACTUAL	实际电机电流/智能电流	实际缩放的电流,监控由寄存器 COOLCONF 设置的电流,或者用于监控自动电流缩放的功能。		
15	fsactive	全步有效指示	1:根据设置的斩波模式和速度阈值,驱动器切换到全步模式。		
14	stealth	stealthChop 指示	1: 驱动器工作在 stealthChop 模式		
13	s2vsb	B 相对供电电源的短路 指示	1:A 相或 B 相检测对电源短路。驱动器被禁用。标志保持		
12	s2vsa	A 相对供电电源的短路 指示	活动状态,直到驱动器被软件(TOFF=0)或 ENN 输入禁用。测量中包括采样电阻电压跌落!		
11	-	保留	忽略这位		
10	-	保留	忽略这位		
9	SG_		机械负载测量:		
8	RESULT		stallGuard2 的结果提供了一种测量机械马达负载的方法。		
7			较高的值意味着较低的机械负载。值 0 表示最高负载。在		
6			最佳 SGT 设置下,这是电机堵转的指示器。堵转检测将		
5			SG_RESULT 与 0 进行比较,以便检测堵转。SG_RESULT 通		
3		stallguard 2 分别为静止	过将其与可编程上限和下限进行比较,被用作 coolStep 操		
2		状态下的线圈 A 产生PWM 接通时间,用于	作的基础。不适用于 stealthChop 模式。 stallGuard2 在微步操作或 dcStep 中工作得最好。		
1		e机温度检测	StallGuard2 在版步保作或 dcStep 中工作得取好。 温度测量:		
0		17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	在静止状态下,无法获得 stallguard 2 结果。SG_RESULT 显示了电机线圈 A 的斩波器接通时间。在一定的电流设置下,将电机移动到确定的微步位置,通过按时读取斩波器的导通时间来粗略估计电机温度。因为随着电机加热,其线圈电阻上升,斩波器导通通时间增加。		

6. stealthChop™

stealthChop是一种步进电机非常安静工作的斩波模式,基于电压模式PWM脉宽调制技术,在静止和低速的情况下,电机绝对无噪音。采用stealthChop调制技术的步进电机非常适合于室内和家庭使用,电机在低速时绝对没有振动。stealthChop采用电压PWM技术,通过将有效电压加到线圈中产生电机电流。增强的stealthChop2,驱动器

不需要更多配置,参数自调整过程可以自动适应应用以获得最佳性能。允许用户在特殊情况下配置寄存器参数调整设置,或将存储的参数作为参数自整定阶段的初始值。高速应用,最好将spreadCycle和stealthChop结合使用。

图 6.1 stealthChop 电机线圈正弦波电流(用电流探头测量)

6.1 参数自调整

stealthChop2集成了参数自调整 (AT)过程,可自动调整电机最重要的运行参数。通过这种方式,电机在stealthChop2模式下能保持高的动态特性,并支持降低电机供电电压产生非常低的电流。为了获得最佳效果,运动控制器只需执行两个步骤:第一步,上电后,电机处于静止状态,电流设置成运行电流 (AT#1)。第二步,以中等速度运行电机,也可以作为归零的一部分(AT#2)。图6.2显示了这个自调整流程。

自调想	自调整和条件			
步骤	参数	条件	所需长度	
AT#1	PWM_ OFS_AUTO	- 电机在静止时候,实际电流(CS)与运行电流(IRUN)相同 如果使能了电机静止时候电流降低功能,需要初始步进脉冲将驱动器切换回运行电流,或者将 IHOLD 设置成 IRUN。 - VS 引脚供电在有效工作范围内. 注意: 驱动器在#AT1 阶段有可能降低新波频率,因此可使用减小的静止电流 IHOLD <irun,以防止在较低新波频率下时间过长。< td=""><td>≤ 2^20+2*2^18 t_{CLK}, ≤ 130ms (内部时钟)</td></irun,以防止在较低新波频率下时间过长。<>	≤ 2^20+2*2^18 t _{CLK} , ≤ 130ms (内部时钟)	
AT#2	PWM_ GRAD_AUTO	 以一定的速度运行电机,在该速度下产生一定的反电势,并且可以达到设定的运行电流。条件 1.5*PWM_OFS_AUTO < PWM_SCALE_SUM < 4*PWM_OFS_AUTO PWM_SCALE_SUM < 255. 提示:典型速度范围为 60 - 300 转/分。 	PWM_GRAD_AUTO 数值每 改变 1 的需要 8 个全步时间。 一般电机 PWM_GRAD_AUTO 最佳值 为 50 或更低的,从 OTP 缺 省值 0 开始时,需要 400 个全步	

提示:

用评估板确定自动调整的最佳条件。

建议在固件中用应用相关的 PWM GRAD和 PWM OFS 作为初始值

监控 PWM SCALE_AUTO 在 AT#2 参数自调整的恒速阶段下降到零。这表示参数自调整成功

注意:

如果没有进行适当参数自调整的情况下操作 stealthChop, 会导致减速期间电机产生高电流, 尤其在低电阻电机和减速度比较大的情况下。推荐使用评估板完成参数自调整过程, 并检查最佳整定条件。建议根据每个电机类型确定 PWM OFS和 PWM GRAD 的初始值。

通过增加一些过电流保护来保护功率管和电源

已知限制:

TMC5160 不能安全检测到自调整 AT#1 阶段的成功完成。它将需要多个电机启动/停止事件来安全地检测完成。

AT#2 必须成功确定:当 AT#1 尚未完成时, PWM GRAD 的自调节将不会开始。

AT#1 和 AT#2 的成功完成只能通过在 AT#2 运动期间监控 PWM SCALE AUTO 接近 0 来判别。

方案 a):

在 AT#1 过程中,通过执行一个低速操作完成参数自调整过程,低速需满足每两个脉冲信号之间能检测到静止。使用 8 (6hz)或更低的速度,在 AT#1 阶段执行至少 10 步。

方案 b):

存储实际应用中 PWM_GRAD_AUTO 的初始参数。因此,根据实际应用中的电机和操作条件,并执行完整的参数自调整过程(参见 a)。保存参数自调节产生的 PWM_GRAD_AUTO 值,并将其用于 PWM_GRAD_AUTO 的初始值。在这个过程中,AT#2 阶段的调整不是必须的,可以省略。参数自调整将进一步优化运行期间的设置。如果需要可结合 a)。

Figure 6.2 stealthChop2 自调节步骤

注意:

修改 GLOBALSCALER 或 VS 电压会使参数自调整过程的结果无效。下一个 AT#1 阶段开始之前, 电机电流调节不能补偿电源的变化。参数自调整只要在以后的操作中完成 AT#1和 AT#2, 就适应变化的条件。

6.2 stealthChop 选项

电压PWM有效值要根据电机转速调节才能保证电机目标电流。几个因素会影响达到电机目标电流所需的电压值:电机电阻、反电动势(与速度成正比)以及实际供电电压。TMC5160提供了两种PWM调节模式:带电流反馈调节的参数自调整(AT)(pwm_autoscale=1, pwm_autograd=1)和速度前馈控制模式(pwm_autoscale=0)。速度前馈控制模式不会对电源电压的变化或电机堵转等事件作出反应,但它提供非常稳定的幅值。它不使用也不需要任何电流测量手段。当电机类型和电源电压是已知时,速度前馈控制是完美的。我们推荐自动模式、除非在给定的运行条件下电流调节不满足。

推荐根据实际应用的电机类型和供电设置初始调整参数,此外自动调整模式能对参数变化做出相应,如电机供电或者温度改变。

仅在已知电机和运行条件下考虑。在这种情况下,需要通过接口进行编程。参数 PWM_GRAD 和 PWM OFS 可以在参数自调整模式下确定。

根据外部时钟源的频率,设置分频器参数配置stealthChop2的PWM频率。大多数应用的最佳PWM调制频率在20-50KHz范围内,该频率段平衡了电流纹波、高速与动态功耗的关系。

STEALTHCHOP PWM 频率选择					
时钟频率	PWM_FREQ=%00	PWM_FREQ=%01	PWM_FREQ=%10	PWM_FREQ=%11	
f _{CLK}	f _{PWM} =2/1024 f _{CLK}	f _{PWM} =2/683 f _{CLK}	f _{PWM} =2/512 f _{CLK}	f _{PWM} =2/410 f _{CLK}	
18MHz	35.2kHz	52.7kHz	70.3kHz	87.8kHz	
16MHz	31.3kHz	46.9kHz	62.5kHz	78.0kHz	
12MHz (internal)	23.4kHz	35.1kHz	46.9kHz	58.5kHz	
10MHz	19.5kHz	29.3kHz	39.1kHz	48.8kHz	
8MHz	15.6kHz	23.4kHz	31.2kHz	39.0kHz	

表 6.1 PWM 频率选择-绿色/浅绿色:推荐

6.3 stealthChop 电流调节器

在stealthChop电压PWM模式下,电流自定标功能(pwm_autoscale = 1, pwm_auto_grad = 1)能自动调节电机电流到所需的电流设置。电流自定标用作参数自调整(AT)的一部分,可以跟踪电机参数的变化。芯片在斩波器导通时间内测量电机电流,通过比例调节器调节 PWM_SCALE_AUTO ,以使电机电流与目标电流匹配。 PWM_REG 是该调节器的比例系数。通常,比例系数应当尽可能小以满足稳定和软调节性能高的要求,但是比例系数必须足够大能快速跟随电机目标电流的变化(例如VREF的变化)。 在参数自调整的第二步AT#2, PWM_REG 同时补偿电机速度的变化。因此,AT#2期间的加速度越高, PWM_REG 设置需要随之增大。用户需要根据系统选择归零适合的速度和加速度,通常来说电流自定标比例调节寄存器的最小设置是足够的(PWM_REG 1)。 PWM_REG 设置应根据所需的最快加速度和减速度优化(比较图6.3和图6.4)。监测加速阶段电机电流,如图6.5所示,可以判断AT#2阶段设置的 PWM_REG 以及参数自调整过程(或者非自定标过程 PWM_OFS 2000年数据。可以判断AT#2阶段设置的 PWM_REG 1以及参数自调整过程(或者非自定标过程 PWM_OFS 2000年数据。可以判断AT#2阶段设置的 PWM_REG 1以及参数自调整过程(或者非自定标过程 PWM_OFS 2000年数据。

图 6.3 示波器: PWM_REG 优化设置

图 6.4 示波器:在 AT#2 期间, PWM_REG 的设置太小

图6.5 成功确定了PWM_GRAD (_AUTO)和PWM_OFS (_AUTO)

快速启动

有关快速启动的信息,请参阅第20章中的快速配置指南。

6.3.1 电流下限

stealthChop电流调节过程需要一个最小电流值保证电机电流调节。stealthChop电流调节只能在斩波开通阶段通过采样电阻测量线圈电流,因此允许线圈电流调节的最小电流由TBL设置的消隐时间及斩波频率决定。在stealthChop电流自定标模式下,电机线圈的最小电流随电机供电电压和斩波频率增加而增加。较低的消隐时间允许较低的电流最小值。在AT#1中,PWM_OFS_AUTO非常重要,能控制由采样电阻、GLOBALSCALER和IRUN设置的运行电流很好地在调节范围内。更低的电流(例如静止态的自动降电流)是通过自动定标模式下的PWM_OFS_AUTO和PWM_GRAD_AUTO参数或者是非自动定标模式下的PWM OFS和PWM GRAD参数自动实现。空转选项允许电机电流为零。

stealthChop2参数自调整中的电机线圈电流下限:

$$I_{Lower\ Limit} = t_{BLANK} * f_{PWM} * \frac{V_{M}}{R_{COL}}$$

VM-电机供电电压, Rcoll - 电机线圈电阻

ILower Limit可以看成是IRUN最小运行电流(拇指值),如果电流最小值不足以达到所需设置,则芯片在AT#1中且仅在切换成较低斩波频率重试。

fpwm 是通过 PWM_FREQ 设置的斩波频率。在参数自调整 AT#1 阶段,如果驱动器无法达到电流,驱动器会尝试更低的斩波频率 (大致为一半频率)。电流比例 CS = IRUN 情况下,频率将在电机静止时保持有效。静止状态降电流的减少过程很短。

示例:

电机线圈电阻 5 欧姆,供电电压 24V。设置 *TBL*=%01, *PWM_FREQ*=%00, t_{BLANK} 为 24 个时钟周期, f_{PWM} 是 2/(1024 时钟周期):

$$I_{Lower\ Limit} = 24\ t_{CLK} * \frac{2}{1024\ t_{CLK}} * \frac{24V}{5\Omega} = \frac{24}{512} * \frac{24V}{5\Omega} = 225mA$$

这意味着,即在考虑相关因素情况下,参数自调整过程所需的电机目标电流必须是 225mA 及以上。 GLOBALSCALER 修改电机电流的也要满足电流限制的条件。

注意:

参数自调整过程要满足较低的线圈电流限制条件。参数自调节 AT#1 过程中的电机电流必须超过此下限。可以使用电流探头测量或根据参数计算 ILOWER LIMIT。在成功的完成参数自调节之后,IRUN 或 IHOLD 设置可以低于电流下限。

下限电流限制了驱动器响应 GLOBALSCALER 变化的能力。

6.4 基于速度的定标

基于速度的调节输出电压模式检测相邻两步之间的时间(即以时钟周期为单位的 TSTEP)标定 Stealthchop 的幅值。这个模式没有电流调节回路,因此不需要测量电流。通过串口编程设置 $pwm_autoscale=0$ 使能该模式。基本思想是电机输入的电压和电机目标电流线性近似。步进电机具有一定的线圈电阻,根据基本公式 I=U/R,一定的电压幅值能产生对应的电流。 R 为电机线圈电阻,U 为 PWM 调节输出的电压,I 为电机线圈上驱动电流。PWM OFS 值计算如下

$$PWM_OFS = \frac{374 * R_{coil} * I_{coil}}{V_{M}}$$

VM为电机供电电压, Icoll 目标均值电流

有效的PWM电压U_{PWM} (峰值的1/SQRT (2))是由PWM幅值寄存器PWM_SCALE的分辨率(8位)和内部正弦波LUT表峰值(248)计算得出:

$$U_{PWM} = V_M * \frac{PWM_SCALE}{256} * \frac{248}{256} * \frac{1}{\sqrt{2}} = V_M * \frac{PWM_SCALE}{374}$$

电机反电势电压随着电机速度增加,成正比。反电势降低了线圈电阻上的有效PWM电压,电流减小。TMC5160提供了第二个与速度相关寄存器(PWM_GRAD)对此进行补偿。此模式下的总有效PWM幅值(PWM SCALE SUM)根据微步频率计算公式为:

$$PWM_SCALE_SUM = PWM_OFS + PWM_GRAD * 256 * \frac{f_{STEP}}{f_{CLK}}$$

fstep- 等效的256微步下的微步频率

fax-外部提供给驱动器的时钟频率或芯片内部频率

电源电压中减去反电势电压,有效电流幅度减小。可以计算PWM_GRAD的近似值:

$$PWM_GRAD = C_{BEMF} \left[\frac{V}{\frac{rad}{S}} \right] * 2\pi * \frac{f_{CLK} * 1.46}{V_M * MSPR}$$

CBEMF-电机反电势系数,单位为伏特/弧度/秒。

MSPR是电机旋转一圈的微步数,例如51200=256(微步)*200(1.8°电机对应的全步数)。

图 6.6 基于速度的 PWM 定标 (pwm _autoscale= 0)

提示:

可通过示波器的电流探头测量电机电流进一步优化 PWM_OFS 和 PWM_GRAD 。也可以通过参数自调整从寄存器 PWM OFS AUTO 和 PWM GRAD AUTO 读出。

了解电机的反电势系数

反电势系数是电机以一定速度转动时产生的电压。电机规格书通常不列出此值,可从电机转矩和线圈电流额定值中计算得到。在标准国际单位制(SI)中,反电势常数 CBEMF 的数值和转矩常数的数值是一致。转矩常数为 1 Nm / A 的电机将具有 1V / rad / s 的反电势系数,用 1 rps (1 rps=每秒 1 转= 6.28 弧度/秒)转动,电机产生 6.28v 的反电势电压。因此,反电势系数可以计算为:

$$C_{BEMF} \left[\frac{V}{rad/s} \right] = \frac{HoldingTorque[Nm]}{2 * I_{COILNOM}[A]}$$

IcoILNOM 是保持转矩下电机的额定相电流

HoldingTorques是电机特定的保持转矩,即在两个线圈上电流为IcollNOM达到的转矩。转矩单位为[Nm]。1Nm = 100Ncm = 1000mNm。

电压是每个线圈的均值有效电压,因为电流在全步位置,两相都通电流,因此在该公式中,系数乘以2

6.5 stealthChop 和 spreadCycle 两者组合

对于需要高速运动的应用,spreadCycle在高速运行更稳定。为了将无噪音与最高的动态性能相结合,可以设置速度阈值将spreadCycle和stealthChop结合在一起(图6.7)。stealthChop只在低于这个速度阈值时有效。

图 6.7 切换到 spreadCycle 的速度阈值 TPWMTHRS

第一步,两种斩波原理都应独自设置和优化。再确定切换速度。低速精密定位采用 stealthChop,高动态运动采用 spreadCycle 。TPWMTHRS 寄存器为切换速度。电机以所需速度移动时,用户读出 TSTEP,并将结果值编程为 TPWMTHRS。使用较低的切换速度以避免切换点处的跳动。

高速切换时会发生跳动,电机的反电动势电压(随速度升高)导致电机电压和电流之间的相移高达90°。因此,当在电压PWM和电流PWM模式之间以较高速度切换时,跳动不断增加,高冲击可能产生瞬间过电流(取决于电机线圈电阻)。大多数电机,低速(例如1rpm至几十rpm)时的冲击影响可以完全忽略。因此,在选择TPWMTHRS时应考虑这种跳变。如果您只想使用stealthChop,请将TPWMTHRS设置为零。

当第一次使能自动电流调节stealthChop模式时,电机必须处于静止状态,以便进行电流调节。当驱动器以较高速度切换到stealthChop时,stealthChop逻辑存储之前的电流调节设置,直到电机再次返回到较低速度。这样电机返回到较低速度时stealthChop重新使能,调节器具有已知的起始点,调用之前参数。当斩波器切换到不同模式时,速度阈值和电源电压在模式切换期间都不要显著改变,否则电机可能失步或者导致瞬时电流过高或过低变化。

电机堵转或速度的突然变化可能导致驱动器检测到短路或自动电流调节状态,该状态不能自恢复。 清除错误标志并从零速度重新启动电机,才可恢复。

提示:

第一次使能 stealthChop 需要电机处于静止状态,需要保持停止状态至少 128 个斩波周期以允许 stealthChop 完成静止电流控制初始控制。

6.6 stealthChop 的标志位

stealthChop 电压模式驱动,因此与电流测量相关的状态标志响应较慢,驱动器对反电势的突然变化的响应被延迟,例如电机堵转。

注意:

在 stealthChop 操作期间,电机堵转或突然停止运动可导致过流。在几十毫秒的时间里,电机电流增大的幅值与之前电机运行速度和线圈电阻有关。在低速度下,其中反电动势仅是电源电压的一小部分,不存在触发短路报警的危险。

提示:

使用 stealthChop 时,需要调整低端驱动器过电流检测,以便在电机堵转时触发保护系统。避免从电源得到能量产生高电流。

6.6.1 开路标志

在 stealthChop 模式下,状态信息不同于周期调节的 spreadCycle 模式。OLA 和 OLB 显示电流调节是否可以在两个线圈上达到目标电流。

- OLA 或 OLB 标志的跳变可由采样电阻或电机线圈的不对称引起
- 电机线圈导线松掉会导致持续有效的开路标志
- 如果电流调节在最后几个全步中未成功地按比例增加到目标电流(因为没有连接电机或超过 PWM 限制的高速),则一个或两个标志都处于活动状态。

如果需要,使用spreadCycle斩波器进行可靠的开路测试。采用stealthChop斩波技术,可以检测 PWM_SCALE_SUM,以检测正确的线圈电阻。

PWM_SCALE_SUM 寄存器反应电机状态

有关电机状态的信息可通过读取PWM_SCALE_SUM进行自动定标。由于此参数反映了驱动目标电流所需的实际电压,与几个因素相关:电机负载、线圈电阻、电源电压和电流设置。因此,PWM_SCALE_SUM的幅值大小反应了电机的工作状态。当达到极限值(255)时,电流调节器不能完全维持电机电流,比如电源电压跌落。

6.7 空转和被动制动

stealthChop 提供了电机静止的不同选项。设置静止电流 IHOLD 为零和相应的 FREEWHEEL 参数使能不同的静止状态。所需选项在 TPOWERDOWN和 IHOLDDELAY 设定的时间段有效。一旦电机目标电流为零电流,电流调节就会冻结,以确保快速启动。通过 freewheeling 选项,可以实现空转和被动制动。被动制动是电机的涡流制动,线圈中没有驱动电流,因此消耗的能量最小。然而,当施加连续扭矩时,电机可以缓慢运动。

提示

调试 stealthChop 性能应在您的应用环境中运行电机。马达性能通常在带负载的情况下更好,因为可防止马达在没有负载的情况下可能发生的机械振荡而造成的堵转。

STEALTHCHOP	相关参数		
参数	描述	设置	备注
en_spread_	禁用 stealthChop (寄存器 GCONF).	1	禁止 stealthchop
cycle		0	使能 stealthchop
TPWMTHRS	指定 stealthChop 操作的最高速度。按照所需阈值速	0	TSTEP 小于 TPWMTHRS 时
	度运行时,读出 TSTEP 设置(两个微步之间的时	1048575	stealthChop 无效
	间)。		
PWM_LIM	用于限制从 spreadCycle 切换到 stealthChop 时引起	0 15	8位幅值限幅的高 4位(缺
	的过冲。减小该值产生较低的电流冲击。		省 12)
pwm_	使能带电流测量的自定标模式	0	速度前向控制模式
autoscale	0 为速度前向控制模式	1	带电流测量的自调节模式
pwm_	使能 PWM_GRAD_AUTO 自调整	0	禁用, 调用寄存器的
autograd			PWM_GRAD 参数
		1	使能
PWM_FREQ	PWM 频率选择。一般最低的设置结果最佳。在每个	0	f _{PWM} =2/1024 f _{CLK}
	新波器输出处测量的频率是有效斩波器频率 fpwm 的	1	f _{PWM} =2/683 f _{CLK}
	一半	2	f _{PWM} =2/512 f _{CLK}
21444 250	and the state of the second of	3	f _{PWM} =2/410 f _{CLK}
PWM_REG	用户定义的 PWM 幅度调节比例系数, P	1 15	每全步 PWM_SCALE_AUTO
	pwm_autoscale 时,比例系数越高代表调节速度越快		调节器调节 0.5 到 7.5 步
PWM_OFS	伏 速度前向调节模式下用户定义的 PWM 幅度(偏移	0 255	
PVVIVI_OF3	量),也是参数自调整阶段 PWM_OFFS_AUTO 初始	0 233	PWM_OFS=0 禁用电流线
	值。		性调节
PWM GRAD	速度前向调节模式下用户定义的 PWM 幅度(梯度),	0 255	
, <u>_</u> 0,	也是参数自调节阶段 PWM_GRAD_AUTO 的初始值。	0 233	
FREEWHEEL	当电机电流设置为零(I HOLD = 0)时,静止选项。	0	正常操作
	仅在启用 stealthChop 时可用。飞轮选项使电机易于	1	空转
	移动, 而两个线圈短路选项实现被动制动。	2	使能低端功率管
		3	使能高端功率管
PWM_SCALE	电流调节器确定的实际 stealthChop 斩波电压 PWM	-255	19 41 4 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_AUTO	修正值。在参数自整整阶段调节应接近0。	255	(只读)在 spreadCycle 中操
			作时,该值将冻结
PWM_GRAD	参数自调整阶段 PWM_OFS 和 PWM_GRAD 的返回	0 255	
_AUTO	值,或者是 PWM_OFS 和 PWM_GRAD 初始值的确定		(只读)
PWM_OFS			(> + > /
_AUTO			L - L - L - L - L - L - L - L - L -
TOFF	电机驱动器使能,实际值不影响 stealthChop 性能	0	驱动器输出禁止
TDI		1 15	驱动器输出使能
TBL	比较器消隐时间。该时间应大于功率管开关事件和	0	16 tclk
	采样电阻上振铃的持续时间。典型应用一般设置 1		24 t _{CLK}
	或 2。对于较高的电容性负载,可能需要 3。较低的设置允许 stealthChop 调节到较低的线圈电流值。	3	36 tclк 54 clк
	仪且儿厅 SteatificHOP 两户封积似的纹图也流阻。		J- CLK

7. spreadCycle 和 经典斩波方式

相对于 stealthChop 的电压 PWM 斩波控制, spreadCycle 是周期电流控制模式。因此, 可以对电机速度或电机负载的变化作出极快的反应。spreadCycle 对电机两相线圈的电流进行斩波控制, 两相斩波控制彼此独立。图 7.1 显示了不同的斩波阶段

图 7.1 斩波器不同阶段

仅通过导通阶段和快衰减阶段可以完成电流调节,但是插入慢衰减阶段对于减小电机中的电损耗和电流纹波是重要的。慢衰减阶段的持续时间由控制参数设定,同时设置了斩波频率的上限。电流比较器在电流流过采样电阻期间测量线圈电流,但是在慢衰减阶段不测量线圈电流,因此慢衰减阶段由定时器终止。当通过线圈的电流达到目标电流时,比较器终止导通阶段。快衰减阶段可由比较器或另一定时器终止。

当切换线圈电流时,由于寄生电容的充放电,在采样电阻上出现电流尖峰。在此期间,通常为 1 或 2 微秒,无法测量电流。消隐参数是对电流比较器的输入进行屏蔽以阻止这些尖峰。

有两种周期斩波模式可用:一种称为 spreadCycle 新的高性能斩波算法和一种经验验证过的恒定关断时间斩波模式。恒定关断时间模式循环有三个阶段:导通、快衰减和慢衰减。spreadCycle 模式循环有四个阶段:导通、慢衰减、快衰减和第二慢衰减

斩波频率是电机驱动器斩波控制的重要参数。太低频率可能会产生可听噪声。较高的频率会降低电机中的电流纹波,但频率过高会导致磁损耗上升。此外,由于引起动态功耗的切换斜率的影响增加,驱动器中的功率随着频率的增加而增加。因此,需要找到折衷办法。大多数电机最佳工作的调制频率为 16 kHz 到 30 kHz。斩波频率受多个参数设置、电机电感和电源电压的影响

注意:

对于大多数电机而言, spreadCycle 调制的最佳斩波频率为 16 kHz 至 30 kHz。较高的频率导致开关损耗增加。

三个参数用于控制两种斩波模式:

参数	描述	设置	备注
TOFF	设置慢速衰减时间(关闭时间)。此设置还限制了最	0	斩波器关断
	大斩波频率。	115	关断时间设置 Nclk= 12 +
			32*TOFF
	此参数在 stealthChop 模式下无效,但需要它使能电		(最小消影时间 24 个时钟周
	机。因此, 该参数任何设置都可以。		期情况下设置1能满足应
			用)
	将此参数设置为零将完全禁用所有驱动晶体管,电		
	机可以自由转动。		
TBL	选择比较器消影时间。该时间需要安全地大于开关	0	16 t _{CLK}
	事件和采样电阻上振铃的持续时间。对于大多数应	1	24 t _{CLK}
	用,设置为 1 或 2 是好的。对于高电容负载,例如 当使用滤波器网络时,需要设置 2 或 3。	2	36 tclk
	□ I K I K I K I K I K I K I K I K I K I	3	54 t _{CLK}
		0	spreadCycle
		1	传统固定关断时间
TPFD	在桥臂极性改变后增加被动快衰减时间。电机出现		快速衰减时间,128个时钟
	中速振荡时,该参数从0开始增加。	015	的倍数(128个时钟大约为
			10μs)

7.1 spreadCycle 斩波器

spreadCycle (专利)斩波算法是一种精确且简单的斩波模式,可自动确定快衰减阶段的最佳长度。即使使用默认设置,spreadCycle 也将提供卓越的微步质量。有几个参数可用于优化斩波器的应用。

每个斩波周期由导通阶段、慢衰减阶段、快衰减阶段和第二慢衰减阶段组成(见图 7.3)。两个慢衰减相位和每个斩波周期的两个消隐时间为斩波频率设置了上限。慢衰减阶段通常占静止斩波周期的约 30 % - 70 %, 并且对于降低电机和驱动器功耗是重要的。

慢衰减时间 TOFF 的起始值计算:

示例:

斩波器目标频率: 25kHz.

假设:两个慢衰减周期占总斩波周期时间的50%

$$t_{OFF} = \frac{1}{25kHz} * \frac{50}{100} * \frac{1}{2} = 10\mu s$$

TOFF 设置:

$$TOFF = (t_{OFF} * f_{CLK} - 12)/32$$

12 MHz 时钟设置 TOFF=3.4, i.e. 3 or 4.

16 MHz 时钟设置 TOFF=4.6, i.e. 4 or 5.

磁滞起始值引入了驱动器电机线圈的最小电流纹波。电流纹波必须高于由电机中的电阻损耗引起的电流纹波,以便给出最佳的微步效果。斩波器能根据磁滞设置精确地调节电流的上升和下降以跟随目标电流。磁滞参数设置引入的电机线圈电流纹波所需的时间降低了斩波频率。因此,较高的磁滞宽度将导致较低的斩波频率。电机电感限制斩波器跟随电机电流变化的能力。此外,导通阶段和快衰减阶段的持续时间必须大于消隐时间,因为在消隐期间电流比较器不使能。

为找到最佳设置,通常从一个低的磁滞设置(例如 HSTRT = 0, HEND = 0)开始,逐渐增加 HSTRT,直到电机在低速设置下平稳运行。可通过测量电流探头或采样电阻上电压测量电机电流时来更好的检查这

一点(参见图 7.2)。如果磁滞设置太小,正弦波的两个半波零点附近的之间有小的畸变。在中速(即每秒 100 至 400 步)时,滞环设置过小将导致电机嗡嗡声和振动增加。

图 7.1 磁滞设置良好, 电流波形中没有突出部分, (紫红:电流 A,黄和蓝:采样电阻上电压 A 和 B)

过高的滞环设置将导致斩波频率降低和斩波噪声增加,同时不会对波形产生任何益处

快速入门:

有关快速入门,请参阅第20章中的快速配置指南。

详细调试步骤,请参阅应用笔记 ANOO1 - spreadCycle 参数调整

按照实验经验,该设置与电机基本无关,较高电流的电机通常也具有较低的线圈电阻,因此为磁滞选择低到中的默认值(例如,有效滞环=4)通常适合大多数应用。可以通过实验对电机进行优化设置:设置过低将导致微步精度降低,而设置过高将导致更多斩波噪声和电机功耗。当用示波器测量线圈在中等电流下电机静止时的采样电阻电压时,过低的设置会显示快衰减阶段小于消隐时间。快衰减时间比消隐时间稍长是最佳设置。如果难以达到要求,则可以减少TOFF设置。

磁滞原理在某些情况下可能导致斩波频率变得太低,例如当线圈电阻与电源电压相比较高时。这可以通过将磁滞设置分为开始设置(HSTRT+HEND)和结束设置(HEND)来避免。自动滞环递减器(HDEC)通过每16个系统时钟逐步递减磁滞值,在两个设置之间进行插值。在每个斩波周期开始时,滞环起始点是以开始值和结束值的总和(HSTRT+HEND),并在周期期间递减,直到斩波周期结束或达到滞环结束值(HEND)。这样,在高幅度和低电源电压的情况下,如果频率变得太低,可以通过以上设置将斩波频率稳定。避免了达到可听范围的频率。

图 7.2 spreadCycle 斩波器的不同斩波阶段的线圈电流

两个参数控制 spreadCycle:

参数	描述	设置	备注
HSTRT	磁滞开始设置。此值是磁滞结束参数 HEND 的偏移	07	HSTRT=18
	里。		该值加到 HEND 上.
HEND	磁滞结束参数。此值是经过多次递减后的磁滞结束		-31: 负 HEND
	参数。需满足 HSTRT+HEND≤16。电流设置 30 (幅度 减小到 240)以下,总和不限。	3	0: 0 HEND
	•	415	112: 正 HEND

当 HSTRT=0 和 HEND=0 是, 磁滞为 0, 即关断。.

示例:

选择滞环宽度为 4。您可能决定不使用滞环递减(HDEC)。在这种情况下,请设置::

HEND=6 (设置有效磁滞结束值 6-3=3)

HSTRT=0 (设置最小有效磁滞值, i.e. 1: 3+1=4)

为了利用可变滞环的优势, 我们可以将大部分值设置为 HSTRT, 即 4, 而剩余的 1 设置为磁滞结束值。对应的配置寄存器值如下:

HEND=0 (设置有效磁滞结束值-3)

HSTRT=6 (设置有效滞环结束值+7 对应的滞环起始值: 7-3=4)

提示:

将 TOFF 设置为 2 或 3 以及 TBL 设置为 2 或 1 可让电机运行速度更高。

7.2 经典恒定关断时间斩波器

经典的恒定关断时间斩波器是spreadCycle的替代方案。在参数调节后,同样也有良好的性能。在dcStep的全步操作中,系统会与经典恒定关断时间斩波器(自动)结合工作。

经典的恒定关断时间斩波器在每个导通阶段之后采用固定时间快速衰减。导通阶段的持续时间由斩波比较器确定,但是快速衰减时间需要足够长以使驱动器跟随正弦波的下降斜率,但太长增加电机电流纹波和功耗。可以使用示波器或评估不同速度下的电机平滑度来调节。起始设置建议将快衰减时间设置与慢衰减时间设置相同。

图 7.3 带偏移量的经典固定关断时间每个阶段电流波形

在调整快衰减时间之后,应该调整偏移参数以获得平滑的过零点。这是必要的,因为快衰减阶段使电机电流的绝对值低于目标电流(见图 7.5)。如果零点偏移太低,则电机在电流过零点期间静止片刻。如果设置得太高,则会产生较大的微步。通常,需要正偏移设置完成平滑操作。

Coil current does not have optimum shape

Target current corrected for optimum shape of coil current

图7.4 经典斩波模式的过零及正弦波偏移校正

三个参数控制恒定关断时间模式:

参数	描述	设置	备注
TFD	快衰减设置. CHM=1, 控制每个斩波周期的快衰减部	0	仅慢衰减
(fd3 & HSTRT)	分	115	快衰减阶段时间
OFFSET	正弦波偏移量. CHM=1, 控制正弦波的偏移量。正偏	02	负的偏移量: -31
(HEND)	移设置可以校正过零误差。	3	没有偏移量:0
		415	正的偏移量 112
disfdcc	选择使用 电流比较器 来终止 快衰减 周期。如果使能电流比较器,则在电流达到比实际电流更高的负值的时结束快衰减。	0	使能比较器结束快衰减阶 段
		1	定时器结束快衰减阶段

8. 选择采样电阻

TMC5160 提供了几种设置电机电流的方法:采样电阻、GLOBALSCALER 和电流定标器 CS。要驱动电机,请选择一个符合或略超过定标 100%设置时对应最大所需电流的采样电阻值。通过 8 位全局定标器细调特定电机的电流。电机电流由 5 位定标器(实际定标参数可通过 CS 读取)设置,由 coolStep、运行和保持电流(IRUN、IHOLD)控制调节。CS 控制与 TRINAMIC 其它芯片兼容。

采样电阻选择适当的值设置所需的最大电机电流。下表显示了使用标准电阻达到的 RMS 均值电流。

Rsense 的选择和 GLOBALSCALER=255 设置下对应最大电机电流				
R _{SENSE} [Ω] RMS 电流[A] (CS=31) 正弦波峰值电流				
		(CS=31)		
0.22	1.1	1.5		
0.15	1.6	2.2		
0.12	2.0	2.8		
0.10	2.3	3.3		
0.075	3.1	4.4		
0.066	3.5	5.0		
0.050	4.7	6.6		
0.033	7.1	10.0		
0.022	10.6	15.0		

应仔细选择采样电阻。电机电流全流过采样电阻。斩波操作会导致采样电阻上有来自MOSFET桥的脉冲电流。低电感采样电阻,例如薄膜电阻或CCR(碳晶实芯)电阻,能有效抑制电压尖峰引起的振铃,从而避免不稳定的测量结果。此外,低电感、低电阻PCB布局也是必不可少的。最好采用大面积的地平面。另请参阅第27章中的布局注意事项。

采样电阻阻值决定了上限电流,由软件寄存器 IRUN、IHOLD 和 GLOBALSCALER 设置多需的电流值。一般在最大电流设置(GLOBALSCALER = 0, IRUN = 31)情况下按照所需的最大电流(或稍多一些)选择采样电阻值。

RMS 电流的计算

$$I_{RMS} = \frac{GLOBALSCALER}{256} * \frac{CS+1}{32} * \frac{V_{FS}}{R_{SENSE}} * \frac{1}{\sqrt{2}}$$

电机电流瞬时值由以下公式计算:

$$I_{MOT} = \frac{GLOBALSCALER}{256} * \frac{CUR_{A/B}}{248} * \frac{CS+1}{32} * \frac{V_{FS}}{R_{SENSE}}$$

GLOBALSCALER 全局电流定标器, 0 对应满量程(256)

CS: IHOLD、IRUN 和 coolStep 设置对应的当前电流定标值。.

VFS: 满量程电压 (请参考电气参数 VSRT). CURA/B: 内部正弦表中对应的电流值

248: 内部正弦表的幅值

在电机静止状态下,线圈峰值电流可能全部流过采样电阻,除非降低待机功率。在正常情况下,采样电阻上的电流小于线圈RMS电流,因为在慢衰减阶段期间没有电流流过采样电阻。

采样电阻峰值功耗的计算

$$P_{RSMAX} = I_{COIL}^2 * R_{SENSE}$$

提示:

为了获得最佳的电流设置精度,建议在应用中测量电机电流并微调。根据所需的最大电机电流,选择下一档位的采样电阻。将 IRUN 设置为 31,对应于所需电机电流的 100%,再通过 GLOBALSCALER 微调电机电流。

注意:

采样电阻的布线需要对称,等长和紧凑。匹配良好的采样电阻可确保最佳性能 具有大面积接地平面的紧凑布局能有效避免寄生电阻效应。

参数	描述	设置	备注
IRUN	电机运行时的电流定标值。根据内部正弦波表调整	0 31	定标因子
	线圈电流值。对于高精度电机操作,请使用16到31		1/32, 2/32, 32/32
	范围内的电流定标因子, 因为缩小电流值会使查表		
	微步长变粗, 从而降低有效微步长分辨率。此设置		
	也对应着 coolStep 设的最大电流值		
IHOLD	与 IRUN 原理相同,代表电机静止情况下的电流		
IHOLD	保证电机电流从运行到到静止的减小过程平稳。	0	立即 IHOLD
DELAY	IHOLDDELAY 控制了电机在TZEROWAIT 之后电流减小	1 15	每 1*2 ¹⁸ 15*2 ¹⁸ 时钟电
	对应的时间:		流衰减1
	0: 立即降电流		
	115:电流每减小1步对应的时间延迟,单位为2^18		
	时钟周期		
	 示例: 如果 <i>IRUN=31</i> 、 <i>IHOLD=16</i> , 那么从 IRUN 到		
	IHOLD 过程需要 15 步电流减小的过程。		
	IHOLDDELAY 设置为 4,则对应的总的电流减小时间		
	为 4*15*2^18 时钟周期,在 16MHz 频率下,大约需		
	要1秒.		
GLOBAL	允许对电机电流进行精细控制	0 255	按1/256步长定标
SCALER			0=满量程

9. 基于速度的模式控制

TMC5160 支持不同的斩波模式和操作模式,以实现最佳电机控制。根据电机负载的不同,不同的模式可以优化为最低噪声&高精度、最高动态或最高速度下的最大扭矩。某些功能,如 coolStep 或 stallguard 2, 在有限的速度范围内是有用的。在需要宽速度范围的应用中可组合多个速度阈值实现不同的操作模式。

图 9.1 速度控制模式的选择

图 9.1 显示所有可用阈值和顺序。VPWMTHRS、VHIGH 和 VCOOLTHRS 由寄存器参数 TPWMTHRS、THIGH 和 TCOOLTHRS 确定。每两个阶跃脉冲之间的时间间隔 TSTEP 表示速度。在外部脉冲输入时对应电机速度。TSTEP 归一化为 256 微步。这样,当微步分辨率改变时,不必调整阈值。阈值表示相同的电机速度,与微步设置无关。TSTEP 与这些阈值进行比较选择斩波模式或工作状态。磁滞宽度可以设置成 1/16 TSTEP 或者 1/32 TSTEP,以避免在 TSTEP测量中外部干扰造成比较结果的不停切换。开关阈值速度因磁滞宽度的设置分别提高了 1/16 或者 1/32。stealthChop 阈值 TPWMTHRS 没有显示,它应满足VPWMTHRS < VCOOLTHRS。根据静止标志位置 stst. 电机电流为运行电流和静态保持电流。

使用自动速度阈值可以针对不同的速度范围调整应用程序。coolStep 等功能在设置中完全透明。这样,一旦参数化,它们就不需要通过软件进行激活。

参数	描述	设置	备注
stst	电机静止标志。最后一个脉冲之后的 2 ²⁰ 个时钟后有效。	0/1	只读, 状态位
TPOWER DOWN	电机停止(stst)到电流调整降电流的延迟时间。时间范围约为0至4秒。	0255	2^18 时钟周期的倍数对应 的时间
TSTEP	脉冲输入引脚的两个 256 细分脉冲之间的实际测量时间,单位为 1/fCLK。测量最大值为(2 ²⁰)-1。	0 1048575	状态寄存器,只读。 实际测量步长时间(以 tclx 的倍数表示)
TPWMTHRS	TSTEP≥TPWMTHRS - stealthChop PWM 使能,如果配置 - dcStep 关闭	0 1048575	stealthChop 操作的上限速 度阈值
TCOOLTHRS	TCOOLTHRS ≥ TSTEP ≥ THIGH: - coolStep 使能,如果配置 - stealthChop 电压 PWM 模式关闭	0 1048575	coolStep 和 stallGuard 的最低速度阈值
	TCOOLTHRS≥TSTEP - 如果已配置,堵转停止,stall 输出信号有效		
THIGH	TSTEP≤THIGH: - coolStep 不使能(电机按照正常电流定标器运行) - stealthChop 模式不使能 - 如果 vhighchm 设置,斩波器切换 chm=1,TFD=0(只有慢衰减的固定关断时间) - 如果 vhighfs 设置,电机进入全步状态,停止检测切换到 dcStep 停止检测	0 1048575	coolStep 和 stallGuard 速度 阈值及可选的高速全步操 作的速度阈值
small_	步进频率信号磁滞宽度	0	1/16 磁滞宽度
hysteresis	(TSTEP*15/16)-1为 TSTEP 的较低速度阈值 (TSTEP*31/32)-1为 TSTEP 的较高速度阈值	1	1/21 磁滞宽度
vhighfs	当速度超过VHIGH时,全步使能。切换仅发生在45°	0	不切换到全步
	位置。全步目标电流使用 45°位置的微步表中的电流值	1	高速切换到全步
vhighchm	当速度超过 VHIGH 时,此位允许切换到 chm=1和 fd	0	斩波模式不变化
	= 0。这样,可以获得更高的速度。可以与 vhighfs = 1 相结合。如果设置,则 TOFF 设置在高速操作期间自动加倍,以避免斩波频率加倍。	1	高速运行经典的固定关断 斩波模式
en_pwm_	stealthChop 电压 PWM 使能标志(取决于速度阈值)。	0	不使能 stealthChop
mode	必须在电机静止时候使能。	1	VPWMTHRS 速度阈值下使 能 StealthChop

10. 诊断和保护

TMC5160 提供一整套诊断和保护功能,如短路保护和欠压检测。开路负载检测允许测试电机线圈连接是否断开。有关详细信息,请参阅 DRV_STATUS 表。

10.1 温度传感器

驱动器集成了四级温度传感器(120°C 预警和可选的 136°C / 143°C / 150°C 热关断),用于诊断和保护IC、功率 MOSFETs 和相邻组件避免过热。选择过温级别以安全覆盖错误情况,如缺少热对流。热量主要由功率 MOSFETs 产生,并且在增加的电压下由内部电压调节器产生。对于许多应用,过温预警已经指示异常操作情况,并且可以用于启动用户预警或功率降低措施,例如电机电流降低。温度关断只是一种应急措施、应通过设计防止温度上升到关断水平

触发过温传感器 (ot 标志) 后, 驱动器保持关闭状态, 直到系统温度低于预警水平 (otpw), 以避免连续加热到关机水平

10.2 短路保护

TMC5160 通过监控高端 MOSFET, 采样电阻和低端 MOSFET 中的电压降, 保护 MOSFET 功率级免受短路或过载条件的影响(图 10.1)。可编程的短检测延迟(shortdelay)允许调节检测器以在非常慢的切换斜率下工作。另外, 短路检测器可对信号滤波。这有助于防止由 PCB 布局或长的相邻电机电缆(SHORTFILTER)的影响引起的寄生触发。所有控制位由寄存器 SHORT_CONF 设置。此外, 通过在连续关断电机输出之前会重复测量三次, 避免短路保护受单个事件(例如由 ESD 放电引起)的影响。

参数	描述	设置	备注
S2VS_LEVEL	低侧场效应晶体的短路或过电流检测电平。	415	4 (高敏感度)
	检测低端 MOSFET 和采样电阻器中的电压降。		15 (低敏感度)
	提示:建议使用6到8, 低电流时可减小到4。		(复位缺省:OTP 6 or 12)
S2G_LEVEL	S2G_LEVEL:	215	2(高敏感度)
	高侧场效应晶体的对地短路电平设置。		15 (低敏感度)
	检测高端 MOSFET 上的电压降。		(复位缺省:
	提示: 推荐 6 至 14(电压高于 52V 时最小设置为 12)		OTP 6 or 12)
SHORT_	短路检测的尖峰滤波带宽	03	0 (最低, 100ns),
FILTER	提示:良好的 PCB 布局将允许使用设置 0。如果发生		1 (1μs) (复位缺省),
	错误的短路检测,则增加		2 (2μs),
			3 (3µs)
shortdelay	shortdelay: 短路检测延时	0/1	0=750ns: 正常,
	短路检测延迟应大于桥臂切换时间。0 将适用于大		0=750ns: 正市, 1=1500ns: 高
	多数应用程序		1-1300HS. 🖭
CHOPCONF.	 关闭对 VS 短路保护	0/1	正常操作请使能 (0).
diss2vs	NHA VI MAN		五 中 环 下 柄
CHOPCONF.	关闭对地短路保护。	0/1	正常操作请使能 (0).
diss2g			, , 2 (2)

图 10.1 短路检测

低端短路检测包括采样电阻,因此可以将其设置为高灵敏度确保良好的电流检测精度。这样,它将安全地应对大多数过电流条件,即当电机停止时或在 Stealtchop 模式下突然停止时。

提示:

一旦安全地检测到短路状况,则相应的驱动器桥(A或B)变为关断,并且 s2ga 或 s2gb 标记分别有效。

要重新启动电机, 请禁用并重新启用驱动器。

注意:

短路保护不能针对所有可能的短路事件保护系统和功率器件,因为短路事件相当不确定,并且可能 涉及外部组件的复杂网络。因此,基本上应避免短路

提示:

将低端短路保护(S2VS)设置为灵敏地检测过电流条件(额定峰值电流的 150 %至 200 %)。特别是对于低电阻电机或者在 stealthChop 时电机停止,很容易被错误设置触发过电流。因此,对 VS 设置的敏感短路将保护功率端器件。

注意:

当电压高于 52V 时,高端短路检测(S2G)灵敏度可能会增加。如果电机电源电压可能超调至 55V,推荐设置 12 到 15。设置 S2VS 检测器阈值,更好调整过流检测。

如果电机电源电压超过 55V, 高端短路检测可能会错误触发。

10.3 开路诊断

电缆断开是系统故障的常见一种原因,例如连接器未牢固插入时。TMC5160 通过检查是否能够达到期望的电机线圈电流来检测开路负载条件。欠压、电机高速度设置或短路和过热条件也可引起打开负载标志的触发,并通知用户电机转矩可能受到影响。在电机静止状态下,由于线圈最终可能没有电流,因此无法测量是否开路。

开路诊断可用于系统调试。

为了安全地检测线圈连接是否断开,仅在电机低速或者中速运行时读出负载开路标志。如果可能,使用 spreadCycle 进行测试,因为它提供了最准确的测试。OLA 和 olb 标志仅提供信息,驱动器不会执行任何操作。

11. 斜坡发生器

斜坡发生器产生目标位置或目标速度的运动。它会考虑加速度和速度设置并自动计算最佳运动轮廓。TMC5160集成了一种新型斜坡发生器,与经典的线性加速斜坡相比,它提供了更快的机器操作。六点斜坡发生器允许使加速斜坡适应步进电机的转矩曲线,并且对于加速阶段和减速阶段分别使用两种不同的加速设置。见图 11.2

11.1 实际单位换算

TMC5160 使用其内部或外部时钟信号作为所有内部操作的时间基准。因此,所有时间、速度和加速度设置都参考 fclk。建议用外部石英振荡器或由微控制器提供时钟信号,获得最佳稳定性。

TMC5160 寄存器内容的单元被写入为寄存器[5160]

参数和单位						
参数/符号	单位	计算/描述/备注				
f _{CLK} [Hz]	[Hz]	TMC5160 时钟 [Hz]				
S	[s]	秒				
US	μstep	微步				
FS	fullstep	全步				
μstep velocity v[Hz]	μsteps / s	$v[Hz] = v[5160] * (f_{CLK}[Hz]/2 / 2^23)$				
μstep acceleration a[Hz/s]	μsteps / s^2	$a[Hz/s] = a[5160] * f_{CLK}[Hz]^2 / (512*256) / 2^24$				
USC microstep count	counts	微步分辨率(微步数) (即两个全步之间的微步数,				
osc microstep count	Counts	通常为 256)				
rotations per second v[rps]	rotations / s	v[rps] = v[μsteps/s] / USC / FSC				
Totations per second v[rps]	Totations / S	FSC: 电机每一圈的全步数, e.g. 200				
rps acceleration a[rps/s^2]	rotations / s^2	$a[rps/s^2] = a[\mu steps/s^2] / USC / FSC$				
		rs = (v[5160])^2 / a[5160] / 2^8				
ramp steps[µsteps] = rs	μsteps	线性加速度阶段的微步				
		(假设加速度从 O 到 v)				
		TSTEP = f_{CLK} / f_{STEP}				
TSTEP, TTHRS	-	速度阈值的时间基准是指时钟输入的实际微步频率,				
		对应速度 v [Hz]。				

在极少数情况下,可根据应用设置加速度上限,例如当时钟频率较低或高齿轮传动和电动机上的低负载工作时。为了增加可能的有效加速度,可以降低定序器输入的微步分辨率。设置 CHOPCONF 选项 intpol = 1 和 MRES = % 0001 将使相同速度设置的电机速度加倍,从而使有效加速和减速加倍。电机将具有相同的平滑度,但在此设置下位置分辨率减半。

快速

启动有关快速入门,请参阅第20章中的快速配置指南。

11.2 运动轮廓

斜坡发生器寄存器组请参见第错误!未找到引用源。章.

11.2.1 斜坡模式

斜坡发生器提供两相加速、两相减速斜坡及可编程启动和停止速度(见图 11.1).

注意:

起始速度可以设置为 0, 如果不用

停止速度可以设置为10(或者0)如果不用

需要设置 VSTOP 与 VSTART 相同或者略高,能确保即使很短的距离也能成功运行。

两组不同的加减速可以自由组合。*在加速和减速共用一个切换速度 V1 点*。一般在较高速度下使用 较低的加速和减速值,因为电动机扭矩在较高速度下下降。考虑系统摩擦,很明显系统的减速通常比加 速快。因此,在许多应用中减速度值可以更高。这样,在时间关键的应用中可以最大化操作电机的速度。

目标位置和斜坡参数可以在运动期间的任何时间改变,运动控制器将始终使用最佳(最快)方式到达目标,同时坚持用户设置的约束。该情况下,可能会发生运动自动停止、过零并再次往回驱动的情况。此案例由特殊标志 second_move 标记。

11.2.2 启动和停止速度

当设置启动和停止速度时,很明显,随后向相反方向移动系统会有 VSTART+VSTOP 的跳动,而不仅仅是 VSTART。电机可能无法跟随这种情况,您可以设置 TZEROWAIT 来延迟后续运动。有效延迟时间由标志位 $t_zerowait_active$ 标记。到达目标位置后, $position_reached$ 标志将变为活动状态。

图 11.1 斜坡发生器速度迹线, 其显示随后向反方向上移动

 M_{FRCT} Portion of torque required for friction and static load within the system

M_{MAX} Motor pull-out torque at v=0

M_{NOM1/2} Torque available at V1 resp. VMAX

Motor torque used in acceleration phase
Overall torque usable for deceleration

图 11.2 TMC5160 斜坡发生器优化电机转矩说明

11.2.3 速度模式

速度模式运动的加速和减速设置一样,便于使用。在位置模式下,只需设置 VMAX 和 AMAX。斜坡生成器始终调用 AMAX 加速或减速到 VMAX。

VMAX 设置为零,则电机减速到静止。标志 vzero 表示电机停止。flag velocity_reached 位有效,表示已经达到目标速度。

11.2.4 斜坡提前终止

在用户可以与系统交互的情况下,一些应用需要通过在到达目标位置之前将速度下降到零终止运动。

设置加速度参数终止运动的选项:

- a) 切换到速度模式,设置 VMAX=0、AMAX 为所需的减速值。线性斜坡停止电机
- b) 定位模式下,设置 *VSTART* = 0 和 *VMAX* = 0。在这种情况下不使用 VSTOP。驱动器根据 AMAX 和 A1 (由 *V1* 确定)设置减速到零。
- c) 系统如果配置 D1、DMAX 和 VSTOP 的位置模式停止,可将 XACTUAL 复制到 XTARGET 来触发减速阶段。保证设置 TZEROWAIT 足够大满足 CPU 在此期间与芯片交互。驱动器将减速并最终停下来。按选项 a)或 b)轮询实际速度,以在 TZEROWAIT 时间内终止运动
- d) 启动停止开关。这可以通过硬件输入来实现,例如使用到停止开关输入的线"或"。如果不使用硬件输入,并且已将 REFL 和 REFR 链接到固定电平,使能停止功能((stop_l_enable, stop_r_enable),并使用反相功能(pol_stop_l, pol_stop_r)模拟开关激活。

11.2.5 应用示例:操纵手柄控制

运动控制器可以优化某些应用如监控摄像机:当操纵杆命令以用户定义的速度操作电机时,目标斜坡发生器确保有效的运动范围不会偏离。

实现操作手柄控制

- 1. 使用位置模式控制运动方向并设置运动限幅。
- 2. 在 VSTART 及最大值限幅值之间可以随时修改 VMAX。对于 VSTART=0,还可以通过设置 VMAX=0 来停止运动。运动控制器将根据 V1 调用 A1 和 AMAX 来调整用于速度的上升和下降。
- 3. 如果不修改加速设置,则无需重写 XTARGET,只需重置 VMAX 即可。
- 4. DMAX、D1 和 VSTOP 仅在斜坡控制器由于到达目标位置而减速时或在目标位置已被修改为指向另一方向时才使用

11.3 速度阈值

斜坡发生器包括与 VACTUAL 相关的多个速度阈值。不同范围允许将电机编程到最佳步进模式、线圈电流和加速度设置。大多数应用程序不需要所有阈值,但原则上所有模式都可以组合,如图 11.1 所示。 VHIGH 和 VCOOLTHRS 由设置 THIGH 和 TCOOLTHRS 确定,以便在使用外部步进输入时确定速度。将 TSTEP 与这些阈值进行比较。磁滞分别为 1/16 或 1/32 TSTEP 以避免在 TSTEP 测量中发生抖动时比较结果的连续翻转。速度的阈值上限分别提高了 1 / 16 或 1 / 32。未示出 stealthChop 阈值 TPWMTHRS。它可以包含在 VPWMTHRS < VCOOLTHRS 中

图 11.3 斜坡发生器速度相关模式控制

不同斩波模式和无传感器操作的速度阈值和到每两个微步 TSTEP 之间的时间相关

11.4 参考开关

必须在驱动器参考开关工作之前进行设置。参考位置可以通过检测停止的机械开关或者参考开关找到。

如果是线性驱动,需要限定机械运动范围。对于异常情况,也可以通过启用左和右参考开关的停止开关功能来确保这一点。因此,斜坡发生器响应 SW_MODE 寄存器中配置的多个停止事件。有两种方法可以停止电机:

- 开关被按下,它可以突然停止。常有效用于紧急情况和基于 stallGuard 的归零的过程
- 或者可以使用减速设置(DMAX, V1, D1)将电动机柔和地减速到零

提示:

在开关事件时将斜坡位置 XACTUAL 锁存到保持寄存器 XLATCH 给出精确参考开关位置的

图 11.4 参考开关(示例)

可通过编程开关极性或选择上拉或下拉电阻配置来使用常开或常闭开关。常闭开关相对于开关连接的中断是故障安全的。可以使用的开关有:

- 机械开关
- 光电管,或者
- 霍尔传感器

注意选择符合开关要求的参考开关电阻!

在长电缆的情况下,可能需要在TMC5160参考输入附近进行额外的RC滤波。增加一个RC滤波器也将减少布线故障破坏逻辑电平输入的危险,但它将增加一定的延迟,应结合应用设计。

实现归零

- 1. 确保未按下零位开关,可控制电机远离参考开关。
- 2. 使能开关信号有效时锁存位置并让电机(软)停止。基于 stallGuard 的归零需要设置硬停止($en_softstop_soft)$ = 0)。
- 3. 向开关方向运动电机。(向左开关移到更负的位置,向右开关移到更正的位置)。您可以使用位置斜坡命令修正此动作。
- 4. 开关一按下,位置就锁定,电机停止。通过轮询实际速度 VACTUAL 或检查 vzero 或停止标志,直到电机再次停止。
- 5. 将斜坡发生器切换到保持模式,并计算锁定位置与实际位置之间的差值。对于基于 stallGuard 的归零 或使用硬停止时, XACTUAL 完全停止在初始位置,因此没有差异(0)
- 6. 将计算出的差值写入实际位置寄存器。现在,归零结束了。移动到位置 0 将使电机精确回到切换点。如果 stallGuard 用于归零,则读并并写回 RAMP_STAT 以清除 stallGuard 停止事件 event stop sq,并将电机从停止状态释放确保未按下零位开关,例如零位开关移开。

用第三个开关实现归零

一些应用使用单独的零位开关,其独立于机械限位开关操作。TMC5160 的编码器功能提供了用于位置锁定的附加功能。当 N 通道上升沿跳变、下降沿跳变或两者之一跳变时捕获 XACTUAL,同时支持中断输出

- 1. 激活锁存功能(ENCMODE:设置 ignoreAB,、clr_cont、neg_edge 或 pos_edge 和 latch_x_act)。锁存功能可以触发中断输出(DIAGO 引脚输出中断,中断有效时读 ENC_STATUS 中的 n_event 进行确认)。
- 2. 控制电机运动到 N 通道开关所在的方向。如果在检测到主开关之前电机碰到停止开关(REFL 或 REFR),则反向控制电机运动方向。
- 3. 开关有效后,读取 XLATCH。它给出了开关事件的位置
- 4. 检测到开关事件后,停止电机,并从实际位置减去 XLATCH。读回并写如 ENC_STAT 以清除状态标志。 (有关所需步骤的详细说明,请参阅上面的归零过程。)

12. stallGuard2 负载检测

stallGuard2 反应电机负载。它可用于堵转检测以及在低于让电机堵转的负载下的其它用途,例如负载相关电流调节。stallGuard2 的测量值在很宽的负载、速度和电流设置范围内线性变化,如图 12.1 所示。在最大电机负载时,该值为零或接近零。这对应于线圈的磁场与转子中的磁体之间的 90°负载角。这也是电机最节能的操作点。

图 12.1 stallGuard2 功能原理

参数	描述	设置	备注
SGT	该有符号参数控制 stallGuard2 的阈值用于堵转检测,并设置用于读出的最佳测量范围。值越低,灵敏度越高。	0	中间值
	零是大多数电机的启动值。值越高, stallguard2 的灵敏	+1 +63	低敏感度
	度越低,指示到电机 Stall 堵转所需的扭矩越大。	-164	高敏感度
sfilt	stallguard2 滤波器以获得更高的测量精度。如果设置,	0	标准模式
	将测量频率降低到每电机电气周期一次测量(4个全步)。	1	滤波模式
状态字	描述	范围	备注
SG_RESULT	这是 stallGuard2 的结果。读数越高表示机械负载越小。	0 1023	0: 最高负载
	较低的读数表示较高的负载,从而表示较大的负载角。		低值:高负载
	调整 SGT 设置,是的在电机堵转前的最大负载下的		高值:低负载
	SG_RESULT 读数大约 0 到 100。		

提示:

在启动 stallGuard2 和 coolStep 之前,先通过 SGT 设置调节 stallGuard2 的敏感度。

12.1 调整 stallGuard2 阈值 SGT

stallGuard2 值 SG_RESULT 受电机特性以及特定应用需求的负载和速度影响。因此,针对特定电机类型和运行条件调整 stallguard 2 阈值 SGT 的最简单方法是在实际应用中进行交互式调整。

调整 STALLGUARD 的 SGT 的初始步骤

- 1. 以适用的正常运行速度运行电机,并监控 SG_RESULT
- 2. 缓慢增加电机的机械负载。如果电机在 SG_RESULT 达到零之前停止,则减小 SGT。如果 SG_RESULT 在电机停止之前达到零,则增大 SGT。0 是最简 SGT 初始值。SGT 是有符号的,可正可负。
- 3. 将 TCOOLTHRS 设置为高于 TSTEP 的值,并启用 sg_stop 使能堵转停止功能。确保电机在停机时安全停止。如果电机在堵转发生前停止,则增加 SGT。通过禁用 sg_stop 或读并写入 $RAMP_STAT$ 寄存器 (写+清除功能)重新启动电机。
- 4. 在电机增加负载堵转前, SG_RESULT 最佳范围大约在 0 和 100 之间, 且在没有负载的情况下 SG_RESULT增加 100 或更多时。在大多数情况下, SGT 应在某个运动速度或速度范围调整。确保设置 在一定范围内(例如所需速度的 80 %至 120 %)以及极端电机条件下(最低和最高适用温度)工作可靠。

允许自动调整 SGT 的可选步骤

SGT设置背后的基本思想是一个因素,它补偿了电机内部电阻损耗的 stallGuard 测量。在静止和非常低的速度下,由于机械功率为零或接近零,电阻损耗是电机能量平衡的主要因素。这样,可以将 SGT 设置为接近零速度的最佳值。该算法特别适用于在应用中调整 SGT,以获得与环境条件、电机杂散等无关的最佳结果。

- 1. 以小于 10 RPM (即每秒几至几个全步的低速运行电机,并获得目标运行电流和电源电压。在此速度范围内, SG_RESUL 对电机负载的依赖性不大,因为电机不会产生显著的反电势。因此,机械负载对结果影响不大。
- 2. 打开 sfilt 滤波器。现在将 SG_RESULTT 从 0 增加到一个值,在该值中,SG_RESULT 开始增加。当 SGT 值较高时,SG_RESUL 将上升到最大值。将 SGT 从最高值减小,此时 SG_RESULT 保持在 0。现在,SGT 值被设置成最大敏感。当您看到 SG_RESULT 以较高的速度增加时,则检测到堵转。

该参数下堵转检测的上限速度由速度确定,在该速度下,电机反电势接近电源电压,速度继续增大 电机电流开始下降。

当电机堵转时, SG_RESULT 变为 0,可使能斜坡发生器 SW_MODE 中的 sg_stop 在堵转事件时停止电机。将 TCOOLTHRS 设置为与较低的速度阈值相匹配,在该阈值下,stallGuard 结果最佳,完成有效的 sg_stop 。

电源电压也会影响 SG_RESULT, 因此电压调节越严格, 数值越精确。stallGuard 测量具有高分辨率, 有几种方法可以提高其精度, 如以下部分所述

快速启动

有关快速入门,请参阅第20章中的快速配置指南。

有关详细步骤,请参见应用说明 ANOO2 - stallquard 2 和 coolStep 的参数化

12.1.1 速度 阈值 TCOOLTHRS 和 THIGH

作为先前描述的 SGT 调整结果而选择的 SGT 设置可以用于某个速度范围。超出此范围时,可能无法安全检测到堵转, coolStep 可能无法给出最佳结果。

图 12.2 示例:最佳 SGT 设置和 stallGuard2 读数(带示例电机)

在许多应用中,大部分时间只在单个操作点或附近运行,因此单个 SGT 设置就足够了。驱动器提供较低和较高的速度阈值以匹配这一点。在所确定的操作点之外堵转检测被禁用,例如在将 TCOOLTHRS 设置为匹配值时,在无传感器归零过程之前的加速阶段期间堵转检测无效。上限可由 THIGH 指定。

在一些应用中,可根据速度使用少量的点和线性内插来调整 SGT 参数。

12.1.2 具有高转矩脉动和共振的小电机

具有高制动转矩的电动机显示出随着变化的电机电流,特别是在低电流时,stallGuard2测量值SG的变化增加。对于这些电机,应检测电流相关性以获得最佳结果

12.1.3 电机线圈电阻的温度依赖性

在较宽温度范围内工作的电机可能需要温度校正,因为电机线圈电阻随温度升高而增加。当电机效率降低时,这可以被校正为在升高的温度下 SGT 的线性降低。

12.1.4 StallGuard2 测量准确度和重复性

在量产环境中,可能希望在一种电机类型的应用中使用固定的 SGT 值。大部分 stallGuard2 测量结果的差异是由电机结构中的制造公差引起的。如果所有其他参数保持稳定,stallGuard2 的测量误差可以低至:

 $stallGuard\ measurement\ error = \pm max(1, |SGT|)$

12.2 stallGuard2 更新速率和滤波器

stallGuard2 测量值 SG_RESULT 在电机的每一个全步位置都会更新。这足以安全地检测堵转,因为堵转总是意味着四个全步的损失。在实际应用中,尤其是在使用 coolStep 时,更精确的测量可能比每一个全步的更新更重要,因为机械负载从不在两个全步之间瞬间改变。对于这些应用,sfilt 位在四次全步测量中启用滤波功能。当需要高精度测量时,应始终启用滤波器。它补偿了电机结构的变化,例如由于 A相和 B 相磁体的不对称。当需要对增加的负载作出快速响应时,应该禁用滤波器,尤其是用 stallGuard 做无传感器的归零操作时。

12.3 检测电机堵转

要获得最佳堵转检测,请不要设置 stallGuard 滤波(sfilt =0)。要安全检测电机堵转,必须设置特定的 SGT 参数来确定堵转阈值。因此,需要确定电机可以在不堵转的情况下的最大负载。同时,检测此负载下的 SG_RESULT 值,例如 0 到 100 范围内的某个值。堵转阈值应该是安全地在操作极限内的值,以允许参数偏离。在 SGT 设置为 0 或接近 0 时的响应给出了对信号质量的一些想法:在没有负载和最大负载的情况下检查 SG 值。它们之间应该至少相差 100 或几个 100,比偏移大。如果将 SGT 值设置为最大电机负载时 SG 读数为 0,则运动控制器可以自动检测堵转,以发出电机停止。在步进脉冲导致失步的瞬间可读出最低值。失步后,电机将振动并显示较高的 SG RESULT 读数

12.4 用 stallGuard 实现归零

线性驱动器的归零过程需要将马达移动到硬停的方向。由于 stallGuard 需要一定的速度才能工作(如 TCOOLTHRS 设定的),请确保起始点离硬停止点足够远,以提供加速阶段所需的距离。设置 SGT 和斜坡发生器寄存器后,开始向硬停止方向运动,并激活堵转时停止功能(SW_MODE 中设置 sg_stop)。一旦检测到堵转,斜坡发生器停止运动并设定 VACTUAL 为零,从而停止电机。 DRV_STATUS 的标志 stallGuard 指示停止。设置新的运动参数以防止电机立即重启后,可以禁用 stallGuard,或者通过读和写回 $RAMP_STAT$ 重新启用电机。运动参数未被修改的情况下,在 TZEROWAIT 时间之后写入和清除 $RAMP_STAT$ 中的 $event_stop_sg$ 标志重新启动电机。最佳结果出现在标称电机电流的 30 %至 70 %,1 至 5 RPS (小于 NEMA17 的电机可能需要更高的速度)的速度。

12.5 stallGuard2 操作局限性

stallguard 2 在极端电机速度下运行不可靠: 非常低的电机速度(对于许多电机,每秒不到一圈)会产生低反电动势,使测量不稳定,同时还要考虑环境条件(温度等)。上述自动调整过程将对此进行补偿。其他条件也将导致 SGT 的极端设置和测量值 SG_RESULT 对电机负载的不良响应。

非常高的电机速度,因电机反电动势达到电源电压电机线圈无法输出正弦电流驱动,也导致较差的响应。

13. coolStep 操作

coolStep 是一种基于电机机械负载的步进电机智能调节能耗,使其"绿色"

13.1 对用户的好处

能效 电机发热减少 减少冷却机构 更便宜的电机

- 减少最多75%的能耗
- 提高机械精度
- 电机和驱动器
- 完成工作!

coolStep 实现节能,特别是对于负载变化或工作在高占空比的电机应用。即使是恒负载应用也需要节能,因为步进电机应用需要保留 30 %至 50 %的扭矩工作。 coolStep 在工作是根据负载需要自动保留扭矩。降低功耗使系统保持较冷,延长电机寿命,并降低电源和冷却部件的成本

将电机电流减小一半导致功率减小4倍

13.2 coolStep 设置

coolStep 由几个参数控制,但两个参数对于理解它的工作方式至关重要:

参数	描述	范围	备注
SEMIN	阈值下限。4位无符号整数。如果 SG 低于此阈值,	0	禁用 coolStep
	coolStep 会增加两个线圈的电流。4 位 SEMIN 乘以32,对应10位 SG 值范围的下半部分。(此参数的名称来自 smarternergy,它是 coolStep 的早期名称。)	115	阈值为 SEMIN*32
SEMAX	阈值上限,4位无符号整数。如果SG被采样到等于或高于该阈值,coolStep 将降低到两个线圈的电流。上限为(SEMIN+SEMAX+1)*32	015	阈值为 (SEMIN+SEMAX+1)*32

图 13.1 显示了 coolStep 的操作区域:

- 黑线代表 SG 测量值。
- 蓝线表示电机上的机械负载。
- 红线表示电机线圈的电流

当负载增加时, SG_RESULT 下降到 SEMIN 以下, coolStep 增加电流。当负载减小时, SG_RESULT 上升到(SEMIN+SEMAX+1)*32 以上, 电流减小。

图 13.1 coolStep 根据负载调节电机电流

五个参数控制 coolStep, 返回一个状态值:

参数	描述	范围	备注
SEUP	设置电流增加步长。测量到的 stallguard 2 值低于下	03	步长宽度为
	阈值, 电流增加		1, 2, 4, 8
SEDN	每次线圈电流减少时,stallGuard2 值必须等于或高	03	stallGuard 递减数:
	于上限阈值对应的数值		32, 8, 2, 1
SEIMIN	通过调整 IRUN 电流设置,设置 coolStep 操作的电机	0	0: IRUN 的 1/2
	电流下限。	1	1: IRUN 的 1/4
TCOOL	打开 coolStep 和堵转停止功能的较低速度阈值。低	1	指定与 TSTEP 速度比较的
THRS	于此速度, coolStep 将被禁用(不用于 STEP / DIR 模	2^20-1	coolStep 阈值下限
	式)。满足速度下限条件的 stallguard2 能给出稳定的		
	结果。		
	提示:可设置和 VMAX 一样,则在加速和减速阶段禁		
	用 coolStep。		
THIGH	coolStep 和堵转停的速度阈值上限。在此速度之		同时也控制其它功能,如
	上,coolStep 变为禁用状态。根据 stallguard2 结果	2^20-1	切换成全步
	的稳定性给出速度范围。		
状态字	描述	范围	备注
CSACTUAL	该状态值提供由 coolStep 控制的实际电机电流标	031	1/32, 2/32, 32/32
	度。该值上升到 IRUN 值,下降到 SEIMIN 指定的		
	IRUN 部分。		

13.3 调节 coolStep

在调整 coolStep 之前,首先调整 stallguard2 阈值水平 SGT,这会影响负载测量值 SG_RESULT 的范围。coolStep 使用 SG_RESULT 在+90°的最佳负载角附近运行电机。

电流增量速度在 SEUP 中设定, 电流减量速度在 SEDN 中指定。它们可以单独调整, 因为它们是由可能需要不同响应的不同事件触发的。这些参数的设置允许线圈电流的增加比减少快得多, 因为可能是需要更快响应更严重的事件造成跨过下阈值。如果响应太慢, 电机可能堵转。相比之下, 对跨越上限的缓慢反应并没有太多风险, 只是电机延时减少能量。

coolStep 在由当前标度参数 IRUN 和 seimin 位控制的范围之间操作

13.3.1 响应时间

为了快速响应增加的电机负载,使用大的电流增量步长 SEUP。如果电机负载变化缓慢,可以使用较低的电流增量步长来避免电机振荡。如果使能 sfilt 控制的滤波器,测量速率和调节速度将降低 4 倍。

提示

最常见和最有益的用途是使 coolStep 适应系统在目标速度的运行,并根据此设置速度阈值。由于加速和减速通常应该是快速的,它们将需要全电机电流,而由于它们的持续时间短,它们对总功耗的贡献很小。

13.3.2 低速和静止操作

由于 coolStep 无法测量静止和非常低 RPM 下的电机负载, 斜坡发生器中包含了较低的速度阈值。它应该根据应用设置。低于此阈值时, 电流设置由 IRUN和 IHOLD 确定。VHIGH 设置提供了一个上限阈值。作为 stallguard 2 调整过程的结果,可以设置两个阈值。

14. 步进/方向接口

步进和方向输入提供了与许多现有运动控制器兼容的简单标准接口。步进脉冲内插器(microPlyer)将提供高分辨率细分控制,让一些最开始用粗细分设计应用中的电机运行更平滑。如果使用外部步进信号输入,则可以关闭芯片内部集成的运动控制器。在这种情况下,唯一保持活动状态的运动控制器寄存器是寄存器 IHOLD IRUN。

14.1 时序

图 14.1 所示 STEP 和 DIR 信号的时序参数,下表给出了它们对应的规格。当 CHOPCONF 寄存器中的 dedge 模式位被设置时,STEP 的双边沿都有效。如果 dedge 模式位清零,则只有上升沿处于活动状态。 STEP 和 DIR 引脚与系统时钟同步。内部模拟滤波器消除信号上的毛刺,例如由 PCB 过长引起的毛刺。如果信号源远离芯片、特别是如果信号通过电缆传输、信号应该被滤波处理或差分传输。

图 14.1 步进和方向时序, 输入滤波

STEP和 DIR 接口时序	AC-特性					
	时钟周期 tclk					
参数	符号	符号	最小值	典型值	最大值	单位
step 频率(最大细分)	f _{STEP}	dedge=0			½ f _{CLK}	
		dedge=1			1/4 f _{CLK}	
全步频率	f _{FS}				f _{CLK} /512	
步进输入低电平时间*)	tsL		max(t _{FILTSD} , t _{CLK} +20)	100		ns
步进 输入高电平时间*)	tsн		max(t _{FILTSD} , t _{CLK} +20)	100		ns
方向引脚到步进引脚建立时间	t _{DSU}		20			ns
步进引脚后方向引脚 保持时间	t _{DSH}		20			ns
time						
步进引脚和方向引脚尖峰滤波时	t _{FILTSD}	上升沿和下降沿	13	20	30	ns
间*)						
步进和方向引脚和时钟输入上升	tsdclkhi	在 CLK 输入信号上升		t _{FILTSD}		ns
沿引脚		沿之前				

^{*)}这些值仅对全输入逻辑电平摆动有效。由于内部输入 RC 滤波器,非对称逻辑电平会增加滤波延迟tFILTSD。

14.2 改变分辨率

TMC 5160 内部有一个 1024 个正弦波条目微步表,用于产生电机线圈的正弦电流。这 1024 个条目对应于一个电周期或四个全步。微步分辨率设置决定了查表的步长。根据 DIR 输入,微步计数器根据每个步进宽度增加(DIR=0)或减少(DIR=1)。微步分辨率分别决定增量和减量。在最大分辨率下,定序器为每个 STEP 步进脉冲前进一步。在半分辨率下,它前进了两步。整步中的最高 256 步。定序器具有特殊的配置,允许在任何时候在不同细分设置之间无缝切换。当切换到较低的细分分辨率时,它会计算目标分辨率内最近的步长,并读取该位置的当前向量。这种行为对于像全步和半步这样的低分辨率尤其重要,因为当比较电机顺时针和逆时针运行时,步进序列中的任何故障都会导致不对称运行。

示例:

全步: 表格位置 128, 384, 640 和 896 循环: (45°, 135°, 225° 和 315° 电气位置, 两个线圈电流相同).

每个位置的线圈电流对应于均方根值(0.71*振幅)。步长为256(电气角度90度)

半步: 表格的第一个位置为 64 (22.5° 电气角度), 步长为 128 (45° steps)

1/4 步: 表格的第一个位置为(90°/8=11.25°电气角度), 步长为 64 (22.5° steps)

0

这样方法产生相同的步长,在两个旋转方向上是相同的。一些较老的驱动器在查找表中使用零电流(表条目0,0)和全电流(90)。这种步进方式应尽量被避免,因为它提供的转矩较小,功耗更高

Step 位置	表格位置	线圈电流A	线圈电流B
Half step 0	64	38.3%	92.4%
Full step 0	128	70.7%	70.7%
Half step 1	192	92.4%	38.3%
Half step 2	320	92.4%	-38.3%
Full step 1	384	70.7%	-70.7%
Half step 3	448	38.3%	-92.4%
Half step 4	576	-38.3%	-92.4%
Full step 2	640	-70.7%	-70.7%
Half step 5	704	-92.4%	-38.3%
Half step 6	832	-92.4%	38.3%
Full step 3	896	-70.7%	70.7%
Half step 7	960	-38.3%	92.4%

14.3 microPlyer 和静止检测

如图 14.2 所示, STEP上的每个有效沿, microPlyer 都会产生 256 微步。它根据上一个步长间隔在脉冲输入处插值。这样, 在 STEP 信号中插入 2 个微步(128 微步输入产生 256 微步输出)到 256 微步(全步的输入产生 256 微分输出)

设置 CHOPCONF 中的 intpol 位使能 microPlyer CONF.faststandstill 配置静止检测时间减少到 2^18 clocks (~20 毫秒)

内插的 2 至 256 微步的步进速率是通过测量前一步周期的时间间隔并将其分成多达 256 个相等的部分来确定的。对于 256 个微步,每两个微步之间的最大时间对应于 2²⁰ (大约一百万个系统时钟周期)。在 12 MHz 的系统时钟频率下,这导致微步操作的最小阶跃输入频率为 12 Hz (50 Hz, faststandstill = 1)。较低的步进率会导致 STST 位被设置,这表示停止事件。在该频率下,微步频率为(系统时钟频率)/2^{16~256} Hz。当检测到静止时,驱动器自动将电机电流切换到保持电流 IHOLD。

提示:

microPlyer 只有在稳定的步进输入频率下才能完美工作。如果步进信号没有 50 %的占空比,则不要使用 dedge 选项

图 14.2 步进输入信号频率上升情况下的 microPlyer 微步插值功能(示例: 16 - 256)

图 14.2, 第一个 STEP 脉冲足够长, 系统设置静止标志位 stst。该位在下一个 STEP 信号的有效边沿被清除。接着外部 STEP 步进输入频率增加。在以较高速率进行一个周期之后, microPlyer 将内插微步速率调高以适应较高的频率。在速度较慢的一个周期中, microPlyer 没有产生全部 16 个微步, 因此在速度较高的第一和第二个周期之间, 马达有一个小的跳跃。使能 GCONF.faststandstill 后, 停止检测将在 2¹⁸个时钟(而不是 2²⁰个时钟)之后进行, 没有阶跃脉冲。驱动器可以更快减低电流以实现节能。

15. DIAG 输出

15.1 脉冲/方向模式

外部运动控制器操作通常需要对步进电机驱动器的某些状态做出快速反应。脉冲 /方向模式下的可配置 DIAG 输出实时内部信息。

DIAGO 和 DIAG1 可设置输出内容以及输出类型(缺省设置为低有效, 开路输出-或高有效推挽输出)。 为了确定驱动器的复位, 在复位状态期间, DIAGO 总是通过拉低来显示通电复位状态。图 16.1 显示了可用的信号和控制位。

图 15.1 STEP/DIR 模式下 DIAG 输出

堵转输出信号通知外部运动控制器,可以像停止开关一样处理 stallguard2。索引输出微步计数器的零位,便于驱动器切换不同的电流模式。斩波器 on-state 输出两个线圈斩波器(交替)在 spreadCycle 模式下或恒定断开时间模式中的导通阶段,以确定占空比。dcStep 跳过信息表明 dcStep 以低于脉冲输入速度的速度运行的另一种方法,定序器每丢一步,信号翻转一次。

注意:

索引脉冲的对应于微步的持续时间。当芯片在低于 256 微步且没使能内插功能时,索引时间会下降 到两个 CLK 时钟周期。

15.2 运动控制模式

在运动控制器模式下,DIAG 输出位置比较信号以准确触发外部逻辑,中断信号在运动斜坡中触发某些软件满足其他条件。可以选择漏极开路(低电平有效)输出信号(默认),也可以选择高电平有效推挽输出信号。使用漏极开路输出时,需要一个 $4.7k\Omega$ 至 $33k\Omega$ 范围内的外部上拉电阻。复位状态下,DIAGO 为低电平。在这种配置中,无法通过监控 DIAGO 来确定复位状态的结束,因为 event_pos_reached 标志在复位时也是活动状态,因此引脚在复位状态后保持活动低电平。为了安全地确定复位条件,通过 SPI 监控 reset 标志或读出任何寄存器以确认芯片已通电。

图 15.2 SD_MODE=0 模式下的 DIAG 输出

16. dcStep

dcStep 是步进电机的自动换向模式。它允许步进机按照斜坡发生器的指令以其目标速度运行,只要它能应付负载。万一马达过载,它会减速到一个速度,在这个速度下,马达仍然可以驱动负载。这样,步进电机就不会堵转,可以尽可能快地驱动重载。其较高的扭矩可在较低的速度下获得,加上飞轮质量的动态扭矩可补偿机械负载峰值。如果电机完全被 BLOCKED, 堵转标志将被设置。

16.1 用户好处

dcStep™

 en
 - 从不丢步

 应用
 - 尽可能快

 加速
 - 尽可能局

能效 - 能达到最高速度

廉价电机 - 胜任工作

16.2 设计 dcStep

在经典应用中,操作区域受到最大应用速度下所需的最大扭矩的限制。需要高达 50 %扭矩的安全裕度,以补偿不可预见的负载峰值、机械部件共振和老化造成的扭矩损失。dcStep 允许使用最大可用电机扭矩。使用电机和应用飞轮质量可以克服更高的短时间动态负载,而没有电机失速的危险。使用dcStep,标称应用负载可以扩展到更高的扭矩,仅受保持扭矩区域附近的安全裕度限制(这是电机可以提供的最高扭矩)。此外,最大应用速度可以增加到实际可达到的电机速度

M_{NOM}: Nominal torque required by application

M_{MAX}: Motor pull-out torque at v=0

percentage of motor pull-out torque

图 0.1 dcStep 扩大了应用操作范围

快速启动:

有关快速启动,请参见第20章中的快速配置指南。

有关详细配置过程,请参见应用注释 AN003 - dcStep

16.3 运动控制模式下的 dcStep

dcStep 只需要几个设置。它直接将电机运动反馈给斜坡发生器,从而即使电机相对于目标速度过载,它也能无缝集成到运动斜坡中。dcStep 在斜坡发生器目标速度 VACTUAL 下以全步模式运行电机,如果电机过载,则以降低的速度运行电机。它需要设置最小操作速度 VDCMIN。VDCMIN 应为 dcStep 可对电机运行进行可靠检测的最低运行速度。除非制动到低于 VDCMIN 的速度,否则电机不会堵转。如果速度低于这个值,一旦负载被释放,电机将重新启动,除非堵转检测被启用(设置 sg_stop)。stallguard 2 实现堵转检测功能。

图 0.2 过载影响下的速度图

提示:

dcStep 要求正弦波的相位极性在 MSCNT 范围 768~255 内为正,在 256~767 内为负。余弦极性必须从 0 到 511 为正,从 512 到 1023 为负。相移 1 将干扰 dcStep 操作。因此,建议使用默认波形。请参考第 18.2章,了解默认表的初始化。

16.4 dcStep 模式下的堵转检测

尽管 dcStep 能够在过载时使电机减速,但它不能避免在每种运行情况下出现堵转。一旦电机被堵转,或者它减速到低于电机相关的最小速度,在该速度下,电机的运行不再能够被安全地检测到,电机可能会堵转和失步。为了安全地检测失步并避免重新启动电机,可以使能堵转停止(设置 sg_stop)。在这种情况下,一旦电机停止运转,VACTUAL 就会被设置为零。除非读取 RAMP_STAT 状态标志。标志位event_stop_sg 显示停止。在 dcStep 操作期间,stallguard2 负载值也可用,范围限于 0 到 255,在某些情况下会读出较高到 511 的值。使能 stallGuard,还应设置 TCOOLTHRS,对应的速度略高于 VDCMIN 或低于VMAX。

当飞轮负载较松的施加到电机轴时,这种模式下的堵转检测可能由于共振而错误地触发。

描述	范围	备注
dcStep 操作中所需的 CHOPCONF 斩波器配置标志。	0/1	dcStep 模式需要置 1
一旦超过 VDCMIN,斩波器就切换到全步模式		
CHOPCONF 中增加的关闭时间值有助于 dcStep。设	2 15	设置 815 与 dcStep 操作
置>2 应是首选。		的设置8没有任何区别
当使用内部斜坡发生器时,这是 dcStep 操作的下限	0 2^22	0: 禁用 dcStep
速度。低于该阈值, 电机以正常微步模式运行。在		设置为 dcStep 操作的最低
dcStep 操作中, 电机以最小 VDCMIN 运行, 即使电		速度
机完全锁住也是如此。与 DC_TIME 设置一起调整。		
激活 stealthChop 也会禁用 dcStep。		
dcStep 负载测量对应的参考脉冲宽度。必须针对最	0 1023	设置的下限是: tBLANK (由 TBL
大电机扭矩的鲁棒运行进行优化。更高的值允许更		定义) 时钟周期中+n
高的扭矩和更高的速度, 更低的值允许运行到		N 范围 1 到 100 (对于典型
VDCMIN 设定的更低的速度。		的电机)
再标称运行条件下的检测最佳设置, 并在极端运行		
条件下重新检测(例如,最低运行电源电压、最高电		
机温度、最高电源电压、最低电机温度)。		
此设置控制 dcStep 模式下的堵转检测。越高灵敏度	0 255	设置略高于 DC_TIME / 16
也高。		
通过配置电机硬停, 堵转可用作错误状态。使能		
·		
样,一旦堵转,它就会停止运转。		
	dcStep 操作中所需的 CHOPCONF 斩波器配置标志。一旦超过 VDCMIN,斩波器就切换到全步模式 CHOPCONF 中增加的关闭时间值有助于 dcStep。设置>2 应是首选。 当使用内部斜坡发生器时,这是 dcStep 操作的下限速度。低于该阈值,电机以正常微步模式运行。在dcStep 操作中,电机以最小 VDCMIN 运行,即使电机完全锁住也是如此。与DC_TIME 设置一起调整。 激活 stealthChop 也会禁用 dcStep。 dcStep 负载测量对应的参考脉冲宽度。必须针对最大电机扭矩的鲁棒运行进行优化。更高的值允许更高的扭矩和更高的速度,更低的值允许更高的扭矩和更高的速度。 ———————————————————————————————————	dcStep 操作中所需的 CHOPCONF 斩波器配置标志。 —旦超过 VDCMIN,斩波器就切换到全步模式 CHOPCONF 中增加的关闭时间值有助于 dcStep。设 2 15 置>2 应是首选。 当使用内部斜坡发生器时,这是 dcStep 操作的下限 这度。低于该阈值,电机以正常微步模式运行。在 dcStep 操作中,电机以最小 VDCMIN 运行,即使电机完全锁住也是如此。与 DC_TIME 设置一起调整。 激活 stealthChop 也会禁用 dcStep。 dcStep 负载测量对应的参考脉冲宽度。必须针对最大电机扭矩的鲁棒运行进行优化。更高的值允许更高的担矩和更高的速度,更低的值允许运行到VDCMIN 设定的更低的速度。 再标称运行条件下的检测最佳设置,并在极端运行条件下重新检测(例如,最低运行电源电压、最高电机温度、最高电源电压、最低电机温度)。 此设置控制 dcStep 模式下的堵转检测。越高灵敏度 0 255 也高。 通过配置电机硬停,堵转可用作错误状态。使能 sg_stop 标志,用于在发生堵转事件时停止电机。这

16.5 dcStep 操作中的测量电机实际速度

在电机由于机械负载变的比目标速度慢的情况下,dcStep 能够降低电机速度。VACTUAL 显示了斜坡发生器的目标速度。它不受 dcStep 的影响。基于位置计数器 XACTUAL,测量 dcStep 速度是可能的。

因此, 用已知时间差对应的捕获的位置计数器计算:

$$VACTUAL_{DCSTEP} = \frac{XACTUAL(time2) - XACTUAL(time1)}{time2 - time1} * \frac{2^{24}}{f_{CLK}}$$

示例:

在 $16.0~\mathrm{MHz}$ 时钟频率下, $0.954~\mathrm{v}$ 的时差将直接产生速度值, $9.54~\mathrm{ms}$ 的延迟将产生 $1/100~\mathrm{y}$ 际 dcStep 速度。

为了尽可能精确地掌握时间间隔,每次从 IC 开始或结束传输 XACTUAL 时,都要捕获一个计时器。 SPI 传输的 NCS 上升沿提供了最精确的时间参考。

16.6 步进/方向模式下的 dcStep

当连接到外部运动控制器时,TMC 5160 提供了两种使用 dcStep 的方法。第一种方式将 dcStep step 执行的直接控制交给外部运动控制器,该控制器必须对电机过载做出反应,并处理电机被锁住情况。第二种方式假设外部运动控制器不能直接对 dcStep 信号做出反应。TMC 5160 自动降低电机速度或在过载时停止电机。为了允许运动控制器在这种模式下对降低的实际电机速度做出反应,计数器 LOST_STEPS 给出了电机控制器已经发出命令但没有采取的步数。运动控制器可以在以后读出 LOST_STEPS 并驱动任何缺失的步数。如果电机被锁住,它会尝试以 VDCMIN 编程的最小速度移动电机。

使能 dcStep 会自动将斩波器设置为恒定 TOFF 模式,仅缓慢衰减。这样,当从微步模式和 dcStep 切换,不需要重新配置。 dcStep 操作由 STEP 和 DIR 模式下的三个引脚控制:

dcStep 操作由 STEP 和 DIR 模式下的三个引脚控制:

- DCEN 如果为高电平,则强制驱动器执行 dcStep 操作。当对低速设置使用 stealthChop 操作时,基于速度激活的 dcStep 由 TPWMTHRS 控制。在这种情况下,dcStep 在 stealthChop 斩波模式下被禁用,即速度低于 stealthChop 斩波切换速度
- DCO 电机未准备好接受(低电平)时通知运动控制器。运动控制器应通过延迟下一步直到 DCO 变高来做出反应。定序器可以缓冲每个完步的有效微步数,以允许运动控制器对 DCO 的断言做出反应。如果电机被 blocked,这种等待情况可以在超时后通过提供一个大于 1024 的长时钟阶跃输入或通过内部 VDCMIN 设置来终止
- DCIN 命令驱动器等待步骤执行并禁用 DCO。此输入可用于同步使用 dcStep 操作的多个驱动程序.

16.6.1 dcStep 操作中 LOST STEPS

以下操作实现 dcStep 与外部运动控制器集成性:外部运动控制器使用 DCEN 或内部速度阈值使能 dcStep。TMC 5160 跟随运动。如果它需要减慢电机速度,它会计算步进 STEP 信号上的输入信号和电机上的步数之间的差异。运动控制器可以在运动之后或在循环的基础上读出差异并补偿差异。图 16.3 显示了原理(简化)。

如果电机驱动器检测到 dcStep 中的机械过载而需要推迟步进运动,但是运动控制器没有通过暂停产生步进信号来对此做出反应,则 LOST_STEPS 会随着未执行的每个步进输入而增加或减少(取决于 DIR 设置的方向)。这样,失步的步骤数量可以被读出并在稍后执行或者附加到运动中。当过载情况持续存在时,驱动器降低电机运行速度,应用程序受益于高微步分辨率,因为在 dcStep 操作中可实现更无缝的加速减速。如果应用程序被完全锁住,VDCMIN 是执行步进信号的速度下限。然而,如果电机速度下降到这个极限以下,就会失去未知的步数,电机位置也就不再确切知道了。DCIN 支持两个驱动器的同步:低电平停止步进执行,并将 DCO 设置为低电平。

图 0.3 轻过载, 电机移动速度比步进输入慢。LOSTSTEPS 增加

16.6.2 运动控制器的 DCO 接口

步进/方向模式下, DCEN 使能 dcStep。外部运动控制器使能 dcStep, 一旦在运动斜坡超过最小步进速度,或者使用自动阈值 VDCMIN 来使能 dcStep。

STEP/DIR 接口以微步分辨率工作,即使内部全步运行。这样,在运动控制器内不需要切换到不同的操作模式。如果电机根据 dcStep 结果准备好了下一步操作,则 dcStep 输出 DCO 信号。如果电机还没执行上一步,则不执行,在执行下一个全步之前,驱动器会自动停止。DCO 发出的信号指示上述情况的发生。当 DCOUT 为低电平时,外部运动控制器应停止步进产生,并等待直到再次变为高电平。图 17.5 显示了这个原理。驱动程序在等待期间缓冲步骤,直到微步数设置减 1。如果 DCOUT 在较低的步长限制时间内没有变高,例如由于严重的电机过载,则可以执行一个步长至少 1024 个时钟周期的步长脉冲取代停止状态。。使用内部时钟时,建议最小脉冲长度为 125µs。

图 0.4 dcStep 信号互连

 $\Delta 2$ = MRES (number of microsteps per fullstep)

图 0.5 DCO 与运动控制器的接口——当 DCO 有效时, 步进发生器停止

17. 紧急停止

驱动器提供低有效 ENN 使能引脚以安全关闭所有功率 MOSFET,并可设置电机为空转状态。该 ENN 引脚实现 非软件所需的紧急停止功能。一些应用可能要求驱动器静止情况下有保持电流或处于被动制动模式的状态。可通过编程引脚 ENCA_DCIN 禁用步进输入信号。设置 GCONF 标志 stop_enable 使能此选项。每当 ENCA_DCIN 被拉高,电机将根据设置的静止 IHOLD、IHOLDDELAY 和 stealthChop 进入电流降低状态。ENN 禁用驱动器将需要三个时钟周期来安全地关闭驱动器。

18. 增量编码器 ABN 接口

TMC 5160 带 ABN 编码器的增量编码器接口。编码器输入与其他信号多路复用。外围设备配置的基本选择由寄存器 GCONF 设置。N 通道可选的,因为一些应用可能使用参考开关或堵转检测替代编码器 N 通道来进行位置参考。编码器通过数字增量正交信号(通常命名为 A 和 B)和清零信号(通常命名为 N 表示空或 Z 表示零)指示位置。

N信号

N信号清除或捕获位置计数器。clr_cont 标志置 1,则检测到 N 通道事件清除或锁存编码器位置寄存器。或者,仅对下一个编码器 N 通道事件做出响应,并在第一个 N 信号事件(clr_once 标志)之后自动禁用编码器位置的清除或锁定。这可能是期望的,因为编码器每转一圈就给出一次这个信号。

一些编码器 N 信号需要匹配 A 和 B 极性。配置 ENCMODE 寄存器中的 pol_A 和 pol_B 所需的极性。如,当设置了 pol_A 和 pol_B 两者为高时,仅在 A 和 B 通道都是高电平是的 N 事件有效。

如果要实现下一个活动的 N 事件清除编码器位置 ENC_POS ,需设置 $clr_enc_x=1$ 且 $clr_once=1$ 或 $clr_cont=1$ 。

图 18.1 增量编码器的 ABN 信号

编码器常数 ENC CONST

当增量编码器的正交信号 AB 的每次极性变化时,编码器计数器增加或者减少编码器常数 ENC_CONST。编码器常数 ENC_CONST 数据格式是有符号的定点(16.16),用于匹配电机和编码器。在十进制模式下,高 16 位代表 0 到 9999 之间的数字。对于配备增量编码器的步进电机,固定的整数更容易归一系统参数。此外,机械传动装置可以很容易地被考虑在内。ENC_CONST的符号为负代表反向计数以匹配电机和编码器方向。

示例:

- 编码器因子为 1.0: ENC_CONST = 0x0001.0x0000 = FACTOR.FRACTION
- 编码器因子为-1.0: ENC_CONST = 0xFFFF.0x0000. 这是 0x 00010000 的二进制补码.等于 (2^16-(FACTOR+1)).(2^16-FRACTION)
- 十进制模式编码器因子 25.6: 00025.6000 = 0x0019.0x1770 = FACTOR.DECIMALS
- 十进制模式编码器因子-25.6: 0xFFE6.4000 = 0xFFE6.0x0FAO. 等于(2^16-(FACTOR+1)).(10000-DECIMALS)

X ENC 编码器计数器

编码器计数器 X_ENC 为当前编码器位置。根据不同类型的编码器,可以配置信号 A、B 和 N 有效电平信号。有关详细信息,请参考第 5.4 节中的寄存器映射。

ENC_STATUS 寄存器

寄存器 ENC_STATUS 包含编码器 N 通道清零事件相关的状态。寄存器 ENC_LATCH 锁存了 N 事件发生时的实际编码器位置。

18.1 编码器时序

编码器包含模拟和数字滤波,以保证在电缆长度增加下可靠运行。最大连续计数频率率受输入滤波限制为 fclk 的 2/3

编码器接口时序	AC-特性					
	时钟周期是 tclk					
参数	符号	条件	最小值	典型值	最大值	单位
Encoder 计数频率	f _{CNT}			<2/3 fclk	f _{CLK}	
A/B/N 输入低时间	tabnl		3 t _{CLK} +20			ns
A/B/N 输入高时间	tabnh		3 t _{CLK} +20			ns
A/B/N 尖峰滤波时间	tfiltabn	上升沿和下降沿		3 t _{CLK}		

18.2 设置编码器以匹配电机分辨率

电机参数为 USC=256 微步, 200 全步电机的编码器因子设置 因子= FSC*USC / 编码器分辨率

200全步电机, 256 微步情况下的编码因子设置例						
Encoder 分辨率	所需的编码器因子	备注				
200	256					
360	142.2222	无法准确匹配				
	= 9320675.5555 / 2^16					
	= 1422222.2222 / 10000					
500	102.4					
	= 6710886.4 / 2^16	十进制能准确匹配				
	= 1024000 / 10000					
1000	51.2	十进制能准确匹配				
1024	50					
4000	12.8	十进制能准确匹配				
4096	12.5					
16384	3.125					

示例:

编码器常数寄存器十进制 51.2, 因此设置 $ENC\ CONST = 51*2^{16} + 0.2*10000$

18.3 闭环

据应用,编码器可以用于不同的目的。医疗应用通常需要增加的监控来检测硬故障或软故障。出现故障时,机器可以手动停止和重启。设置 ENC_DEVIATION 和中断来安全地检测电机和编码器之间的失步/失配。

不太重要的应用可能会使用编码器来检测故障,在失步时停止电机并重启。编码器通过直接定位来提高定位精度。该应用程序可以基于偏差修改目标位置,或者用编码器位置更新实际位置。

TRINAMIC的S斜坡闭环运动控制器TMC 4361 可实现闭环换相操作。

19. 直流电机或 螺线管

TMC 5160 可以驱动一个或两个直流电机。可控制转矩,或者在转矩限幅的同时控制电压控制速度。

配置和控制

在 GCONF 寄存器中设置 direct_mode。在直接模式下,线圈电流极性和线圈电流分别由寄存器 XTARGET (0x2D)控制 PWM 占空比。第0到8位对应电机A相和第24到16位对应电机B相 PWM。除此设置之外,电流限制由 IHOLD 缩放。在此模式下 STEP / DIR 输入和运动控制器无作用。

PWM 占空比速度控制

为了以不同速度运行电机,用以下 stealthChop 斩波电压 PWM 模式配置: en_pwm_mode = 1, pwm_autoscale = 0, PWM_AMPL = 255, PWM_GRAD = 4, IHOLD = 31 设置 TOFF>0 使能驱动器。

在此模式下,驱动器的行为类似于四象限电源。使用 XTARGET 对 PWM A 和 PWM B 直接控制实现控制电机电压,从而控制电机速度。PWM 设置在-255 和+255 之间(带符号,二进制补码)对应电机电压从-100%变化到 100%。当 pwm_autoscale = 0 时,不使用电流采样电阻,并且应避免小于 150 毫欧的采样电阻,以避免在电机负载达到 2.5A 时出现过大的电压跌降。特别是对于电流较大的电机,确保缓慢加减速,以避免过流或触发驱动器过流保护。

设置 IHOLD = 0, FREEWHEEL = %01 使能电机飞轮

转矩限幅

使用自动电流缩放(PWM_autoscale = 1)可实现 stealthChop 斩波模式下的电机电流限制(即转矩控制操作)。实际电流极限由 IHOLD 给出,并由相应的电机 PWM 幅度来定标,例如,PWM = 128 产生 50%的电机速度和 50%的 IHOLD 设定的电流极限。如果两台直流电机以电压 PWM 模式驱动,请注意,自动电流调节仅适用于绝对 PWM 设置较高的电机。如果具有较高 PWM 设置的电机达到其电流限制,第二电机的 PWM 也将缩小。

纯转矩限幅操作

对于一个或两个电机的纯转矩限幅操作, SpreadCycle 斩波器分别调节两个全桥电机输出的电机电流。 使用 SpreadCycle 时, 电机速度上限仅受电源电压限制(或由电机上的负载决定)。

19.1 螺线管操作

同样,一个或两个螺线管(即电磁线圈)可以使用 SpreadCycle 斩波器操作。对于螺线管来说,通常希望在接通后短时间内增加电流,并且一旦磁性元件接通就减少电流。这是通过利用自动电流缩放(IRUN、IHOLD、IHOLDDELAY和 TPOWERDOWN)自动实现的。direct_mode 中的电流缩放仍然有效,但是如果没有提供步进 STEP 脉冲,则不会触发。因此,每当其中一个线圈被接通时,必须给步进 STEP 输入信号一个阶跃脉冲。这将同时增加两个线圈的电流。

20. 快速配置指南

本指南旨在作为一种实用工具,实现初始配置,完成一套最小的测量和决策来调整驱动芯片。它没有涵盖所有高级功能,而是专注于使电机平稳运行的基本功能集。一旦电机运行,你可能会决定更详细地探索其他功能,例如飞轮和其他功能。电流探头测量电机线圈电流有助于找到最佳设置,但这不是必须的

电流设置和 STEALTHCHOP 初始步骤

图 20.1 电流设置和 STEALTHCHOP 初始步骤

调整 STEALTHCHOP 及 SPREADCYCLE

图 20.2 调整 stealthChop 及 spreadCycle

运动控制器控制电机

图 20.3 运动控制器控制电机

使能 COOLSTEP (只在 SPREADCYCLE 下有效)

图 20.4 使能 coolStep (只在 spreadCycle 下有效)

设置 DCSTEP

图 20.5 设置 dcStep

21. 入门

请参考 tmc5160 评估板, 快速入门, 还可以用应用程序配置设备调整。正确设置所有寄存器的过程在20章节介绍。

21.1 初始化例程

以下 SPI 数据示例支持步进和方向模式, 12mhz 时钟, 配置小于 30 rpm 运行 stealthChop 及大于 30 rpm 运行 spreadCycle 的斩波器参数。

```
SPI 发送: 0xEC000100C3; // CHOPCONF: TOFF=3, HSTRT=4, HEND=1, TBL=2, CHM=0 (spreadCycle) SPI 发送: 0x9000061F0A; // IHOLD_IRUN: IHOLD=10, IRUN=31 (最大电流), IHOLDDELAY=6 SPI 发送: 0x910000000A; // TPOWERDOWN=10: 电机静止到电流减小之间的延时 SPI 发送: 0x8000000004; // EN_PWM_MODE=1 enables stealthChop (缺省 PWM_CONF 值) SPI 发送: 0x93000001F4; // TPWM_THRS=500 对应切换速度 35000 = ca. 30RPM
```

以下SPI 数据示例使能并初始化运动控制器,内部斜坡发生器控制电机运行一圈(51200微步),最后查询读取当前位置。

```
SPI 发送: 0xA4000003E8;
                      // A1
                               =1000第一阶段加速度
                               = 50 000 加速度阈值速度 V1
SPI 发送: 0xA50000C350;
                      // V1
SPI 发送: 0xA6000001F4;
                               = 500 大于 V1 的加速度
                      // AMAX
SPI 发送: 0xA700030D40;
                     // VMAX
                               = 200 000
                               = 700 大于 V1 的减速度
SPI 发送: 0xA8000002BC;
                      // DMAX
SPI 发送: 0xAA00000578:
                      // D1
                               = 1400 小于 V1 的减速度
SPI 发送: 0xAB0000000A;
                      // VSTOP = 10 停止速度(接近于 0)
SPI 发送: 0xA000000000;
                      // RAMPMODE = 0 (目标位置运动)
// 电机就绪!
SPI 发送: 0xADFFFF3800;
                      // XTARGET = -51200 (向左运动一圈 (200*256 微步)
// 现在电机 1 开始旋转
                      // 查询 XACTUAL - 下一个读操作返回 XACTUAL
SPI send: 0x2100000000;
SPI read;
                      // 读 XACTUAL
```

对于基于 UART 的操作, 确保 CRC 字节是正确的是很重要的。下面的示例演示具有从属地址 1 (NAI 引脚高) 的驱动程序的初始化。配置驱动斩波模式为 spreadCycle, 并对运动控制器进行恒定速度移动控制, 最后读取位置和实际速度寄存器:

```
UART write: 0x05 0x01 0xEC 0x00 0x01 0x00 0xC5 0xD3;
                                                       // TOFF=5, HEND=1, HSTR=4,
                                                       // TBL=2, MRES=0, CHM=0
UART write: 0x05 0x01 0x90 0x00 0x01 0x14 0x05 0xD8;
                                                       // IHOLD=5, IRUN=20, IHOLDDELAY=1
UART write: 0x05 0x01 0xA6 0x00 0x00 0x13 0x88 0xB4;
                                                       // AMAX=5000
UART write: 0x05 0x01 0xA7 0x00 0x00 0x4E 0x20 0x85;
                                                      // VMAX=20000
UART write: 0x05 0x01 0xA0 0x00 0x00 0x00 0x01 0xA3;
                                                       // RAMPMODE=1 (正速度)
// 现在电机旋转
UART write: 0x05 0x01 0x21 0x6B;
                                                       // Query XACTUAL
UART read 8 bytes;
UART write: 0x05 0x01 0x22 0x25;
                                                      // Query VACTUAL
UART read 8 bytes;
```

```
提示
```

根据电机和应用配置参数,以获得最佳性能。

22. 独立操作模式

独立操作模式下,TMC5160 无需通过 SPI 配置内部寄存器,所有尾缀有 CFG0 到 CFG6 的引脚有特殊定义,能被拉高或者接地。

图 22.1 TMC5160 (以独立模式名称显示的引脚)工作模式

SPI_MODE 引脚接地 GND 且 SD_MODE 引脚拉高使能独立模式。该模式下,驱动器是一个纯步进和方向驱动器。. SPI 和单线通讯接口关闭. 驱动器工作在 spreadCycle 模式或者 stealthChop 模式. 使能以下配置。

GCONF 设置:

GCONF.diag0_error = 1: DIAG0 漏级开路模式,输出驱动器错误. GCONF.diag1_index = 1: DIAG1 漏级开路模式,输出细分表索引位置

以下设置受 CFG 引脚的影响, 以确保正确的配置:

CFG0/CF	CFG0/CFG1: STEP 输入的细分配置				
CFG1	CFG0	细分设置			
GND	GND	8 微步, MRES=5			
GND	VCC_IO	16 微步, MRES=4			
VCC_IO	GND	32 微步, MRES=3			
VCC_IO	VCC_IO	64 微步, MRES=2			

CFG4/CF	CFG4/CFG3/CFG2: 运行电流配置						
CFG4	CFG3	CFG2	IRUN 设置				
GND	GND	GND	IRUN=16				
GND	GND	VCC_IO	IRUN=18				
GND	VCC_IO	GND	IRUN=20				
GND	VCC_IO	VCC_IO	IRUN=22				
VCC_IO	GND	GND	IRUN=24				
VCC_IO	GND	VCC_IO	IRUN=26				
VCC_IO	VCC_IO	GND	IRUN=28				
VCC_IO	VCC_IO	VCC_IO	IRUN=31				

CFG5: 斩波模式选择			
CFG5	斩波器设置		
GND	spreadCycle 操作. (TOFF=3)		
VCC_IO	stealthChop 操作. (<i>GCONF</i> .en_PWM_mode=1)		

CFG6:保持电流配置				
CFG6*)	斩波器设置			
GND	保持电流不减小。 IHOLD=IRUN			
VCC_IO	50%. IHOLD=1/2 IRUN			

提示

stealthChop 使能前,请确保电机保持至少 100 毫秒复位(假设 fclk 最小为 10MHz)。 用于驱动器调节电流设置电机的初始电流。

*) CFG6: 注意

CFG6 引脚电平与 CFG5 不同时会产生电流 (20mA), 因为输出驱动器试图使 CFG6 电平等于 CFG5。 因此, 需要一个 0 欧姆电阻来拉低/高 CFG6。建议仅在外部 VCC_IO 电源在 $3.3\,v$ 情况下 CFG6 与 CFG5 电平值不同。

23. 外部复位

芯片通过内部通电在上电时加载默认值。为了将芯片上电重置默认值,必须控制内部重置电路(VSA、+5VOUT或 VCC_IO)的电压。注意 VCC 不受监控。因此,在芯片运行期间,VCC 必须正常,不能掉电。由于+5VOUT 是内部电压调节器的输出,因此它不能通过外部电源供电,除非 VSA。控制 VCC_IO 完成复位是最简单和最安全的方法。此外,VCC_IO 消耗的电流很低,驱动要求很简单。由于输入保护二极管不允许数字输入上升到 VCC_IO 电平以上,因此在此复位操作期间,所有输入必须被驱动为低电平。如果无法全低,可以使用输入保护电阻器来限流。

若 VCC 由外部电源提供,确保 VCC 在复位结束时候高于操作下限并稳定。当用产生 3.3V VCC_IO 的+5V 电源给 VCC 供电时,基本能满足上述条件,因为它会产生一定的延迟。

24. 时钟振荡器和输入

时钟是所有功能的定时基准:斩波器、速度、加速度控制等。许多参数随着时钟频率而缩放,因此精确的参考允许更确定的结果。在没有外部时钟情况下,出厂校正的片上时钟振荡器,可以作为时钟参考。

24.1 内部时钟

如果要使用内部时钟振荡器,直接将 CLK 输入连接到 IC 附近的 GND。对于速度精度大约为±4%的应用来说,这就足够了。

24.2 外部时钟

建议外部时钟频率为 10 MHz 至 16 MHz 以获得最佳性能。只要满足引脚的最小高或低输入时间(参见电气特性),时钟信号的占空比就不重要。当时钟占空比为 50 %时,最多可使用 18 MHz。确保时钟源在使用高时钟频率时提供干净的 CMOS 输出逻辑电平和陡峭的斜率。CLK 输入检测到第二次高电平则外部时钟输入有效。

提示

关闭外部时钟频率让驱动器正常异常。因此,外部时钟信号丢失超过大约32个内部时钟周期后,内部看门狗会切换回内部时钟。

24.2.1 频率的考虑

越高的频率可以产生更快的步进速率、更快的 SPI 操作和更高的斩波频率。另一方面,也会在TMC5160 数字核心和 5V 电压调节器中造成更多功耗。通常,10 MHz 到 12 MHz 的频率对于大多数应用来说应该足够了。在较高的时钟频率下,VSA 电源电压应连接到较低的电压,如用于工作在 24V 标称电源电压以上的应用。为了降低对电机动态特性的要求,可以考虑低至 8 MHz (甚至更低)的时钟频率。

25. 最大电气参数

任何情况下都不得超过最高限制。 系统设计应避免超过最大额定值或在接近最大额定值的情况下长时间运行电路

参数	符号	最小值	最大值	单位
感性负载下最大供电电压	Vvs, Vvsa	-0.5	60	V
电源和功率桥臂电压短时峰值(受电荷泵输出和 Cxx 引脚上的	V _{VSMAX}		64	V
峰值电压限制*)	VVSMAX			
VSA(与 VS 不是一路供电)	V _{VSAMAX}	-0.5	60	V
Cxx 自举引脚和 VCP 引脚上的峰值电压	V _{CxCP}		76	V
V12OUT 供电电压	V _{12VOUT}	-0.5	14	V
BM 引脚上的峰值电压 (由于杂散电感)	V _{BMx}	-6	V _{VS} +6	V
Cxx 自举引脚上相对于 BM 的峰值电压	V_{CxBMx}	-0.5	16	V
VCC_IO 对应的 IO 口供电电压	V _{VIO}	-0.5	5.5	V
数字 VCC 供电电压 (一般由 5VOUT 供电)	V _{VCC}	-0.5	5.5	V
逻辑输入电压	V_{I}	-0.5	V _{VIO} +0.5	V
数字引脚的最大电流	lio		+/-500	mA
和模拟低电压 I/Os (短时间峰值电流)				
5V 调节器输出电流(内部加外部负载)	I _{5VOUT}		30	mA
5V 调节器连续功耗(VvsA-5V) * Isvout	P ₅ VOUT		1	W
12V 调节器输出电流(内部加外部负载)	I _{12VOUT}		20	mA
12V 调节器连续功耗 (Vvm-12V) * I _{12VOUT}	P _{12VOUT}		0.5	W
结点温度	TJ	-50	150	°C
存储温度	T _{STG}	-55	150	°C
接口引脚的 ESD 保护 (人体模型, HBM)	VESDAP		4	kV
操作的 ESD 保护 (人体模型, HBM)	V _{ESD}		1	kV

^{*)}当驱动感应负载时,电源布线的杂散电感将导致电源电压振铃。这种振铃是由驱动器输出的快速切换 斜率与输出驱动器 MOSFETs 的反向恢复体二极管产生的。即使很小的迹线电感以及感测电阻器的杂散电 感也可以容易地产生几伏特的振铃,导致暂时的电压过冲。工作在最大电压附近时应考虑这一点

26. 电气特性

26.1 操作范围

参数	符号	最小值	最大值	单位
节点温度	TJ	-40	125	°C
电机及桥臂供电电压	V _{VS}	10	55	٧
VSA 供电电压	V_{VSA}	10	50	٧
VSA 和 120UT (供内部桥接内部栅极电压调节器)的电源电压	V _{12VOUT} ,	10	13	٧
	V _{VSA}			
最低电源电压(规格降低,对 GND 短路保护不起作用),下限	V .	8		V
取决于 MOSFETs 栅极阈值电压和负载电流	V _{VS}			
VCC_IO 上的输入/输出电源电压	V _{VIO}	3.00	5.25	V

26.2 直流特性和时序

除非另有规定,直流特性包含在指定电源电压范围内保证的范围值。典型值为+25℃下测量的平均值。温度变化也会导致偏离某些值。芯片的典型值在全温度范围内工作在最小/最大范围之间。

供电电流	直流特性						
	V _{VS} = V _{VSA} =	$V_{VS} = V_{VSA} = 24.0V$					
参数	符号	条件	最小值	典型值	最大值	单位	
总电源电流, 驱动器禁用 lvs + lvsA	Is	fclk=12MHz/内部时 钟		18	24	mA	
VSA 电源电流(VS 和 VSA 分开)	Ivsa	fclk=12MHz/内部时钟,驱动器禁用		15		mA	
总电源电流,工作,MOSFETs AOD4126, lvs + lvsa	Is	fclk=12MHz, 23.4kHz 斩波器,无负载		25		mA	
VCC 引脚上 5V 电源的内部电流消耗	lvcc	f _{CLK} =12MHz		10		mA	
VCC 引脚上 5V 电源的内部电流消耗	lvcc	f _{CLK} =16MHz		12.5		mA	
VCC_IO 上的 IO 电源电流(典型值 5V)	I _{VIO}	无负载输出,VIO 或 GND 输入 不包括上拉/下拉电 阻		15	30	μΑ	

电机驱动器部分	直流特性	直流特性和时序						
	V _{VS} = 24.0\	V _{VS} = 24.0V; Tj=50°C						
参数	符号	条件	最小值	典型值	最大值	单位		
RDSon 低侧驱动器	Ronl	栅极关断		1.8	3	Ω		
RDSon高侧驱动器	Ronh	栅极关断		2.2	3.5	Ω		
低侧 MOSFET 在 2V V _{GS} 下导通栅	I _{SLPON0}	DRVSTRENGTH=0		200		mA		
极驱动电流	I _{SLPON2}	DRVSTRENGTH=2		400		mA		
	I _{SLPON3}	DRVSTRENGTH=3		600		mA		
高侧 MOSFET 在 2V V _{GS} 下导通栅	I _{SLPON0}	DRVSTRENGTH=0		150		mA		
极驱动电流	I _{SLPON2}	DRVSTRENGTH=2		300		mA		
	I _{SLPON3}	DRVSTRENGTH=3		450		mA		
内部延迟的 BBM 时间(从栅极关	t _{ввмо}	BBMCLKS=0	75	100		ns		
闭开始到栅极导通)		BBMTIME=0						
	t _{BBM16}	BBMTIME=16		200		ns		
	t _{ввм16}	BBMTIME=24		375	500	ns		

电荷泵	直流特性							
参数	符号	条件	最小值	典型值	最大值	单位		
电荷泵输出电压	V _{VCP} -V _{VS}	工作	V _{12VOUT}	V _{12VOUT}		V		
			-2	-1				
用于欠压检测的电荷泵电压阈值	V _{VCP} -V _{VS}	上升,内部 5V 调节	4.5	5	6.5	V		
		器电压						
电荷泵频率	f _{CP}			1/16				
				f _{CLKOSC}				

线性调节器	直流特性							
	V _{VS} = V _{VSA} =	$V_{VS} = V_{VSA} = 24.0V$						
参数	符号	条件	最小值	典型值	最大值	单位		
输出电压	V _{5VOUT}	T _J = 25°C	4.80	5.0	5.20	V		
整个温度范围内的输出电压偏差	V _{5VOUT(DEV)}	驱动器关闭		+/-30	+/-100	mV		
		T」= 全温度范围						
整个电源电压范围内的输出电压	V ₅ VOUT(DEV)	驱动器关闭,			+/-50	mV /		
偏差		内部时钟				10V		
		T _A = 25°C						
		V _{VSA} = 10V to 30V						
输出电压	V _{12VOUT}	operating, internal clock	10.8	11.5	12.2	\		
		T _J = 25°C						

时钟振荡器和输入	时序特征						
参数	符号	条件	最小值	典型值	最大值	单位	
时钟振荡器频率 (工厂校准)	fclkosc	t _J =-50°C		11.7		MHz	
	fclkosc	t _J =50°C	11.5	12.0	12.5	MHz	
	fclkosc	t _J =150°C		12.1		MHz	
外部时钟频率(工作)	f _{CLK}		4	10-16	18	MHz	
外部时钟高/低电平时间	t _{CLKH} /	CLK 为	10			ns	
	t _{CLKL}	0.1 Vvio / 0.9 Vvio					
外部时钟超时检测, 按内部 fclkosc	t _{CLKH1}	CLK 高电平	32		48	cycles	
作为计算周期						f _{CLKOSC}	

短路检测	直流特性						
参数	符号	条件	最小值	典型值	最大值	单位	
对 GND 短路/对 VS 检测器短路延	t _{SD0}	FILT_ISENSE=0	0.5	0.85	1.1	μs	
迟(从栅极开关开始到短路检测)		S2xx_LEVEL=6					
包括 100ns 滤波时间		shortdelay=0					
	t _{SD1}	shortdelay=1	1.1	1.6	2.2	μs	
短路检测电平 S2VS (测量包括采	V _{BM}	S2VS_LEVEL=15	1.4	1.56	1.72	V	
样电阻电压跌落)		S2VS_LEVEL=6	0.55	0.625	0.70	V	
短路检测电平	Vs - V _{BM}	S2G_LEVEL=15;	1.2	1.56	1.9	V	
		VS<52V					
		S2G_LEVEL=15;	0.85			V	
		VS<55V					
		S2G_LEVEL=6;	0.46	0.625	0.80	V	
		VS<50V					

检测电平	直流特性	直流特性				
参数	符号	条件	最小值	典型值	最大值	单位
V _{VSA} 复位欠压阈值	V _{UV_VSA}	V _{VSA} 上升	3.6	4	4.6	V
V _{svout} 复位欠压阈值	V _{UV_5VOUT}	V _{5VOUT} 上升		3.5		V
Vvcc_io 复位欠压阈值	Vuv_vio	V _{VCC_IO} 上升(delay typ. 10µs)	2.0	2.5	3.0	V
Vvcc_io 欠压检测器磁滞	V _{UV_VIOHYST}			0.3		V
过温预警 120℃	Totpw	温度上升	100	120	140	°C
过温关断 136℃	Тот136	温度上升		136		°C
过温关断	T _{OT143}	温度上升		143		°C
143 °C						
过温关断 150℃	Тот150	温度上升	135	150	170	°C
150 C						

采样电阻电压电平	直流特性					
	f _{CLK} =16MH	f _{CLK} =16MHz				
参数	符号	条件	最小值	典型值	最大值	单位
采样电阻输入峰值阈值电压	V _{SRT}	GLOBALSCALER=0		325		mV
(低敏感度)		csactual=31				
(V _{SRxH} -V _{SRxL})		sin_x=248				
		Hyst.=0; I _{BRxy} =0				
采样电阻输入公差/电机电流满量	Icoil	GLOBALSCALER=0	-5		+5	%
程公差						
-内部参考						

数字脚	直流特性	直流特性				
参数	符号	条件	最小值	典型值	最大值	单位
输入电压低电平	VINLO		-0.3		0.3 V _{VIO}	V
输入电压高电平	V _{INHI}		0.7 V _{VIO}		V _{VIO} +0.	V
输入施密特触发器磁滞	VINHYST			0.12 V _{VIO}		V
输出电压低电平	Voutlo	I _{OUTLO} = 2mA			0.2	V
输出电压高电平	V _{OUTHI}	I _{OUTHI} = -2mA	V _{VIO} -0.2			V
输入漏电流	IILEAK		-10		10	μΑ
上拉/下拉电阻	R _{PU} /R _{PD}		132	166	200	kΩ
数字管脚电容	С			3.5		pF

26.3 热特性

下表将给出热阻相关信息。四层板有助于系统热阻设计。实际的热特性将取决于 PCB 布局、PCB 类型和 PCB 尺寸。热阻将受益于较厚的 CU (内部)层,用于在 PCB 内水平散热。此外,气流将降低热阻。

参数	符号	条件	典型值	单位
典型功耗	P _D	stealthChop 或者 spreadCycle, 40 or 20kHz 斩波器, 24V, 内部供电调节器	0.6	V
多层板上与环境的热阻	Rтмја	如 JEDEC EIA JESD51 - 5 和 JESD51 - 7 中 定义的两个信号层和两个电源层板 (2s2p) (FR4, 35μm CU, 70mm x 133mm, d=1.5mm)	21	K/W
到板上的热阻	R _{ТЈВ}	距离封装引引脚1毫米范围内测量的 PCB 温度	8	K/W
到外壳的热阻	RTJC	」封装的散热片对应的结温	3	K/W

表 26.1 TQFP48-EP 封装的热特性

实际布局中的热阻可以通过芯片待机功耗引起的发热来测试。不接电机时,在电源上看到的所有功率都是芯片产生。

27. 布线考虑

27.1 芯片底部焊盘

TMC5160 使用其芯片焊盘将热量从栅极驱动器和线性调节器传输到电路板。为了获得最佳的电气和热性能,请在芯片底部连接焊盘和接地面之间使用适量的过孔。印刷电路板应该有一个地平面,将热量扩散到电路板中,并提供稳定的 GND 参考。

27.2 地的布线

TMC5160 的所有信号都参考它们各自的 GND。将器件下的所有 GND 引脚直接连接到公共接地区域 (GND、GNDP、GNDA 和芯片底部焊盘)。芯片连接焊盘正下方的地平面应视为虚拟起点。出于热原因, PCB 顶层应连接到一个大的 PCB 地平面, 在 PCB 内散发热量。

注意

将 TMC5160 靠近 MOSFET 桥和采样电阻 GND,以避免振铃导致 GND 差异和危险的感应峰值电压

27.3 桥臂电压的布线

电源桥将会以极高的 dl/dt 脉冲形式抽取整个线圈电流。因此,VS 电源滤波和 MOSFETS 之间的任何电感都会导致严重的电压尖峰。这必须避免。避免滤波电容和 MOSFET 开关之间的供电线路出现任何弯曲,并保持尽可能小的距离。特别是对于大电流,建议单独的电源电压平面,并设计足够的电源滤波数量和容量。芯片 VS 引脚需另加电容,因为额外的纹波电压会导致电荷泵电容上出现严重的电流尖峰。可以添加一个小串联电阻来避免这种情况。

注意

在 MOSFET 桥附近设置足够的滤波容量,保持电源电压纹波低。

27.4 供电滤波

5VOUT 输出电压陶瓷滤波电容器(推荐 2.2 至 4.7F) 应尽可能靠近 5VOUT 引脚,其地回路直接通向 GNDA 引脚。此接地不应与其他负载或地平面的额外过孔共享。使用尽可能短和粗的连接。为了获得最佳的微步进性能和最低的斩波噪声,VCC 引脚至 GND 应增加滤波电容,以避免数字部分纹波影响电机电流调节。因此,陶瓷滤波电容(推荐 470nF)要尽可能靠近 VCC 引脚(1-2 毫米距离),GND 返回接地平面。 VCC 可以使用 2.2Ω 或 3.3Ω 电阻耦合到 5VOUT,以便从 5VOUT 提供数字逻辑,同时保持纹波远离该引脚。100 nF 滤波电容器应尽可能靠近 VSA 引脚接地平面。确保 VS 不会因桥臂工作而出现过大的电压尖峰,并在 VS 引脚附近将 100 nF 或更大的滤波电容置于 GND。

请仔细阅读第 3.3 章和第 3.4 章. 了解关于外部 MOSFET 功率器件和其它器件选择、布线和条件

27.5 布线示例

原理图(TMC5160+MOSFETs)

1- 顶层 (焊接侧)

2- 内层 (地)

图 27.1 布线示例

28. 封装机械数据

28.1 TQFP48-EP 封装尺寸图

图 28.1 TQFP48-EP 封装尺寸图

参数	Ref	最小值	正常	最大值
总高度	Α	-	-	1.2
间隙高度	A1	0.05	-	0.15
模具高度	A2	0.95	1	1.05
引脚宽度(含镀层)	b	0.17	0.22	0.27
引脚宽度	b1	0.17	0.2	0.23
引线框厚度(含镀层)	С	0.09	-	0.2
引线框厚度	c1	0.09	-	0.16
芯片主体尺寸 X (包含引脚)	D		9.0	
芯片主体尺寸Y(包含引脚)	Е		9.0	
芯片主体尺寸X	D1		7.0	
芯片主体尺寸Y	E1		7.0	
引脚脚间距	е		0.5	
引脚	L	0.45	0.6	0.75
封装引脚	L1		1 REF	
	Θ	0°	3.5°	7°
	Θ1	0°	-	-
	Θ2	11°	12°	13°
	Θ3	11°	12°	13°
	R1	0.08	-	-
	R2	0.08	-	0.2
	S	0.2	-	-
芯片底部焊盘尺寸X	M	4.9	5	5.1
芯片底部焊盘尺寸Y	N	4.9	5	5.1
封装边缘公差	aaa			0.2
引脚边缘公差	bbb			0.2
同面性	ссс			0.08
引脚偏移	ddd			0.08
模具平整度	eee			0.05

28.2 QFN-WA 封装尺寸

图 28.2 wettable QFN 封装尺寸

参数	Ref	最小值	正常	最大值
总高度	Α	0.8	0.85	0.9
间隙高度	A1	0	0.035	0.05
模具高度	A2		0.65	
引线框高度	A3		0.203	
引脚宽度	b	0.2	0.25	0.3
芯片主体尺寸X	D		8.0	
芯片主体尺寸Y	E		8.0	
引脚间隔	е		0.5	
芯片底部焊盘尺寸X	J	6.15	6.25	6.35
芯片底部焊盘尺寸Y	K	6.15	6.25	6.35
引脚长度	L	0.35	0.4	0.45
引脚长度	L1	0.3	0.4	0.45
封装边缘公差	aaa		0.1	
模具平整度	bbb		0.1	
同面性	ссс	0.08		
引脚偏移	ddd	0.1		
芯片底部焊盘偏移	eee		0.1	
半切割深度	R	0.075		_
半切割深度	S			0.075

28.3 封装代码

类型	封装	稳定范围	代码和标记
TMC5160-TA	TQFP-EP48 (RoHS)	-40°C +125°C	TMC5160-TA
TMC5160-WA	QFN8x8 wettable	-40°C +125°C	TMC5160-WA
Т	-T表示卷带包装(订购选项)		

29. 设计理念

TMC50XX 和 TMC51XX 系列为智能应用带来了高级功能、可靠性和一致性,这些都是以前昂贵的运动控制单元才具有的。通过使用最现代的工艺,将专业知识压缩到几毫米的布局中,以低成本集成成为可能。集成电路包含了 20 多年来从设计运动控制器、驱动芯片和复杂运动控制系统中获得的所有知识。我们经常被问及我们的运动控制器是否包含软件——他们肯定没有。原因是在软件中共享资源会导致复杂的时间限制,并且会在不应该相关的部分之间产生相互关系。这使得软件调试变得如此困难。因此,IC 完全被设计为硬件解决方案,即每个内部计算都使用专门设计的专用运算单元。基本理念是将所有实时关键功能集成到硬件中,提高灵活性。部分设计可以追溯到以前的集成电路,如从 1997 年开发的TMC453 运动控制器开始。深度调研、实际测试和稳定的团队让我们对芯片的功能和安全高度自信。

Bernhard Dwersteg, CTO and founder

30. 声明

未经 TRINAMIC Motion Control GmbH & Co. KG 的具体书面同意,不得授权或保证其 TRINAMIC Motion Control GmbH & Co. KG 任何产品用于生命支持系统。生命支持系统是旨在支持或维持生命的设备,如果不按照所提供的说明正确使用,可能会导致人身伤害或死亡。

本数据表中提供的信息被认为是准确可靠的。但是,对于使用该产品的后果,以及使用该产品可能导致的对第三方专利或其他权利的任何侵犯,概不负责。

规格如有变更, 恕不另行通知。

所有使用的商标都是各自所有者的所属。

31. ESD 敏感

TMC5160 是对静电放电敏感的 ESD 敏感 CMOS 器件。手动操作时,要特别注意人员和机器的充分接地。将器件焊接到电路板上后,ESD 要求降低。不合理的操作会导致损坏或降低可靠性。

32 图表

图	1.1 电机自动降电流	8
	3.1 米勒电荷决定开关斜率	
	3.2 增加优化器件后的开关事件(没有体二极管/体二极管导通)	
	3.3 带有调整器件的桥臂示例(请参见示波器截图)	
	6.1 STEALTHCHOP 电机线圈正弦波电流(用电流探头测量)	
	iure 6.2 stealthChop2 自调节步骤	
	6.3 示波器: PWM REG 优化设置	
	6.4 示波器:在 AT#2 期间, PWM_REG 的设置太小	
	6.5 成功确定了 PWM_GRAD (_AUTO)和 PWM_OFS (_AUTO)	
图	6.6 基于速度的 PWM 定标 (PWM _AUTOSCALE= 0)	59
图	6.7 切换到 SPREADCYCLE 的速度阈值 TPWMTHRS	60
图	7.1 磁滞设置良好, 电流波形中没有突出部分, (紫红:电流 A, 黄和蓝:采样电阻上电压 A和 B)	65
图	7.2 SPREADCYCLE 斩波器的不同斩波阶段的线圈电流	66
图	7.3 带偏移量的经典固定关断时间每个阶段电流波形	67
图	7.4 经典斩波模式的过零及正弦波偏移校正	67
	9.1 速度控制模式的选择	
	10.1 短路检测	
	11.1 斜坡发生器速度迹线,其显示随后向反方向上移动	
	11.2 TMC5160 斜坡发生器优化电机转矩说明	
	11.3 斜坡发生器速度相关模式控制	
	11.4 参考开关(示例)	
	12.1 STALLGUARD2 功能原理	
	12.2 示例:最佳 SGT 设置和 STALLGUARD2 读数(带示例电机)	
	13.1 COOLSTEP 根据负载调节电机电流	
	14.1 步进和方向时序, 输入滤波	
	14.2 步进输入信号频率上升情况下的 MICROPLYER 微步插值功能(示例: 16-256)	
	15.1 STEP/DIR 模式下 DIAG 输出	
	15.2 SD_MODE=0 模式下的 DIAG 输出	
	0.1 pcStep 扩大了应用操作范围	
	0.2 过载影响下的速度图	
	0.3 轻过载, 电机移动速度比步进输入慢。LOSTSTEPS 增加	
	0.4 DCSTEP 信号互连	
	0.5 DCO 与运动控制器的接口——当 DCO 有效时,步进发生器停止	
	18.1 增量编码器的 ABN 信号	
	20.1 电流设置和 STEALTHCHOP 初始步骤	
	20.3 运动控制器控制电机	
	20.4 使能 COOLSTEP (只在 SPREADCYCLE 下有效)	
	20.5 设置 DCSTEP (八在 SPREADCYCLE 下有 奴)	
	20.5 设直 DCSTEP	
	22.1 TMC5160(以独立侯式石标业小的引牌)工作侯式	
	28.1 TQFP48-EP 封装尺寸图	
	28.2 WETTARIE OFN 封装尺寸	122 12 <i>4</i>

33. 修订历史

版本	日期	作者	描述
		BD= Bernhard Dwersteg	
V0.14	2017-APR-13	BD	基于数据手册 TMC 5130 1.13 的数据手册第一版
V0.15	2017-APR-28	BD	增加了 QFN 包装和产品图片
V0.9	2017-MAY-04	BD	添加了新的 EVAL 布局截图
V0.91	2017-MAY-15	BD	适用于 QFN 封装的引脚(47 引脚!),添加了初步包装尺寸
V0.92	2017-MAY-31	BD	添加了自动优化过程的提示。
V0.93	2017-SEP-07	BD	一些文字增强,更高的工作电压限制
V0.94	2017-SEP-14	BD	UV VCCIO → 2V 最小.
V1.00	2017-NOV-18	BD	链接已更正,OTP 读取表地址。
			降低峰值工作电压限制
			添加了一些注意框或转换为提示
V1.01	2017-NOV-29	BD	最终产品的 S2G 检测阈值固定,修正的 TPFD 时间公式
V1.02	2017-DEZ-14	BD	SWIOP/N → SWP/N, CFG6 修正
V1.04	2018-MAY-02	BD	将标题图形换成-WA,文字的小修正。
V1.06	2018-JUN-06	BD	增加了 AT#1/AT#2 阶段初始调整的勘误表/限制
V1.07	2018-OCT-18	BD	修正了 S2GND 检测的 52V 和 55V 限制,小修正
V1.08	2018-NOV-19	BD	增加了调整 MOSFET 桥的提示,增加了对应布线

表 33.1 文档版本

34. 参考

[TMC5160-EVAL] TMC5160-EVAL Manual

[AN001] Trinamic Application Note 001 - Parameterization of spreadCycle™, <u>www.trinamic.com</u>

[AN002] Trinamic Application Note 002 - Parameterization of stallGuard2™ & coolStep™, www.trinamic.com

[AN003] Trinamic Application Note 003 - dcStep™, www.trinamic.com

Calculation sheet TMC5160_Calculations.xlsx

TRINAMIC 中国 gao@trinamic.cr

