

19 BUNDESREPUBLIK **DEUTSCHLAND**

Patentschrift _® DE 196 17 009 C 2

(51) Int. Cl.6: G 01 J 1/28 G 01 J 3/50

G 01 N 21/47

DEUTSCHES PATENT- UND MARKENAMT

- (7) Aktenzeichen:
- 196 17 009.5-52
- ② Anmeldetag:
- 27. 4.96 6.11.97
- Offenlegungstag: Veröffentlichungstag
- der Patenterteilung: 20. 5.99

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

Patentinhaber:

MAN Roland Druckmaschinen AG, 63075 Offenbach, DE

(72) Erfinder:

Rakitsch, Peter, 85368 Moosburg, DE

66 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 43 14 219 A1 41 20 749 A1 DE 38 30 731 A1 DE DE 34 18 839 A1 US 49 17 500 US 46 81 454 US 40 03 660 EΡ 00 11 376 B1

- M Photoelektrische Meßeinrichtung
- Photoelektrische Meßeinrichtung mit zumindest einer Beleuchtungseinrichtung sowie einem Meßkanal, wobei der Beleuchtungseinrichtung sowie dem photoelektrischen Wandler eine Steuer- und Auswerteeinheit vorbzw. nachgeschaltet ist, mit einer Anzahl sequentiell durch die Steuerung aktivierbarer Beleuchtungseinrichtungen zur Beaufschlagung der Meßfläche mit Licht jeweils unterschiedlicher spektraler Intensitätsverteilung sowie wenigstens einem photoelektrischen Wandler zur Erfassung des jeweils von der Meßstelle entsprechend der Ansteuerung der Beleuchtungseinrichtungen reflektierten Lichtes, dadurch gekennzeichnet, daß durch die Steuerung (6) die einzelnen Beleuchtungseinrichtungen (3, 4, 9, 10) sequentiell in Verbindung mit wenigstens einer Dunkelphase (D), während der die Meßstelle (2) mit keinem Licht bestrahlt wird, ansteuerbar sind, und daß während dieser Dunkelphase (D) der Dunkelstrom des Empfängers (5) durch die Verstärkungs- und Auswerteeinheit (7) als Offset erfaßbar und für die Anzeige der Meßwerte verarbeitbar ist.

Beschreibung

Die Erfindung betrifft eine photoelektrische Meßeinrichtung gemäß dem Oberbegriff von Anspruch 1.

Zur Überprüfung der Qualität gedruckter Erzeugnisse werden die verschiedensten photoelektrischen Meßeinrichtungen verwendet. Zu nennen sind hier insbesondere Densitometer, bei welchen das von einer Meßstelle reflektierte Licht photoelektrisch gewandelt und aus dem Remissionswert durch Logarithmieren ein Farbdichtewert ermittelt 10 wird. Der Farbdichtewert für eine gegebene Druckfarbe wird dabei in einem spektralen Bereich erfaßt, der komplementär zu dieser Farbe ist, was mit anderen Worten bedeutet, daß derjenige spektrale Bereich der Farbe mit der geringsten Remission zur Ableitung einer Farbdichte herangezogen wird. Der optische Aufbau eines Densitometers besteht im wesentlichen aus zumindest einer Beleuchtungseinrichtung, um die Meßstelle auf dem Druckprodukt mit Strahlung zu beaufschlagen. Ferner sind ein oder mehrere Meßkanäle vorgesehen, wobei diese ein oder mehrere pho- 20 toelektrische Wandler nebst entsprechend vorgeschalteter Filterelemente aufweisen. Die spektralen Transmissionseigenschaften der Filter im jeweiligen Meßkanal sind dabei entsprechend dem abzuleitenden Farbdichtewert gestaltet.

Die EP 0 011 376 B1 beschreibt ein Densitometer, welches im Meßkopf einen Beleuchtungstrahlengang nebst Lichtquelle sowie drei gleichzeitig wirksame Meßkanäle aufweist. Den photoelektrischen Wandlern in den Meßkanälen sind zwecks Ableitung der entsprechenden Farbdichtewerte in einer nachgeordneten Auswerteelektronik ein rotes, 30 grünes bzw. blaues Licht durchlassende Filter für die beim Druck verwendeten Farben Cyan, Magenta bzw. Gelb vorgeordnet. Die mit diesem Densitometer erfaßten Farbdichtewerte können angezeigt werden, auch ist es möglich, durch Verarbeitung der über die drei Meßkanäle gewonnenen Remissionswerte in Verbindung mit gespeicherten Werten die Farbe einer gedruckten Meßfläche zu bestimmen.

Aus der US-PS 4 003 660 ist ein On-line-Densitometer bekannt, welches zwei Beleuchtungskanäle aufweist, um die Meßfelder eines Druckkontrollstreifens zu bestrahlen. Ein 40 Abschnitt des Kontrollstreifens wird auf eine Ebene abgebildet, welche mehrere photoelektrische Wandler aufweist. Die Beleuchtung des auszumessenden Meßfeldbereiches erfolgt hier zwar durch zwei Beleuchtungseinrichtungen, wobei diese aber untereinander gleichartig ausgebildet sind.

Bei den heutzutage zunehmend in der Druckindustrie verwendeten Farbmeßgeräten zur Erfassung und Ableitung von sogenannten Norm-Farbmaßzahlen ist es bekannt, entweder in einem Beleuchtungskanal durch zuschaltbare Filtereinrichtungen bzw. durch mehrere Beleuchtungskanäle unterschiedlicher spektraler Charakteristik unterschiedliche Beleuchtungssituationen im Sinne der verwendeten Lichtart zu simulieren. Auf der Empfängerseite sind bei derartigen Farbmeßgeräten Filter vorzusehen, um das von einem Meßfeld reflektierte Licht entsprechend der genormten Meßvorschrift spektral unterschiedlich zu wichten. Entsprechend komplex ist der optische Aufbau derartiger Farbmeßgeräte.

Neben den Densitometern mit mehreren simultan arbeitenden Meßkanälen sind auch Densitometer mit einem photoelektrischen Wandler bekannt, bei welchen die unterschiedlichen Filter zur spektralen Bewertung des von der Meßstelle reflektierten Lichtes nacheinander, d. h. sequentiell dem Empfänger vorschaltbar sind. Derartige empfindliche mechanische Einrichtungen verkomplizieren jedoch ebenfalls den Aufbau solcher Meßköpfe. Ferner müssen bei 65 mehreren Filtern, welche einem photoelektrischen Wandler sequentiell vorgeschaltet sind, die Transmissionsbereiche aufeinander abgestimmt werden. Ebenfalls bei Remissions-

meßköpfen bekannt ist die Verwendung von mehreren photoelektrischen Wandlern in Verbindung mit Spiegelsystemen. Durch diese Spiegel wird das reflektierte Licht spektral aufgeteilt und den einzelnen Wandlern zugeleitet. Nachteilig ist hierbei, daß die Intensität des von der Meßstelle reflektierten Lichtes durch optische Verluste zusätzlich herabgesetzt wird. Ferner ist es bei den bekannten und eingesetzten Meßgeräten mit Glühlampen zur Beleuchtung als nachteilig anzusehen, daß diese im IR-Spektralbereich eine höhere Emission als im sichtbaren Spektralbereich aufweisen. Demzufolge sind zusätzliche IR-Filter zur Beeinflussung dieses IR-Bereiches nötig.

Aus der US-PS 4,917,500 ist ein Farbsensorsystem für die Erkennung von Objekten mit farbigen Oberflächen bekannt, bei welchem eine Anzahl sequentiell ansteuerbarer und in unterschiedlichen Wellenlängenbereichen lichtemittierender Beleuchtungseinrichtungen vorgesehen ist. Das von der Meßfläche reflektierte Licht wird einem photoelektrischen Empfänger zugeleitet und von einer Auswerte- und Verarbeitungseinheit zur Bildung von anzeigbaren Meßgrößen verarbeitet.

Aus der DE 41 20 749 A1 ist ein Verfahren zur punktuellen Ermittlung der spektralen Remissionsfunktion mittels eines optoelektronischen Meßkopfes bekannt, bei welcher optoelektronische Strahlungssender in einer kuppelförmigen Gehäuseeinheit jeweils einen gleichen Winkel zu einer Meßstelle einnehmend angeordnet sind. Auch hier werden die einzelnen in unterschiedlichen spektralen Bereichen emittierenden Beleuchtungseinrichtungen sequentiell angesteuert, so daß beispielsweise die CIE-Farbmaßzahlen ermittelbar sind.

Aus der DE 43 14 219 A1 ist eine Anordnung zur punktuellen Messung der Remission bekannt, bei welcher den Strahlungsquellen Strahlungskonzentratoren nachgeordnet sind, welche die Form eines Kegelstumpfes aufweisen und aus einem hochbrechenden Glas umwandelt von einem niedrigbrechenden Glas bestehen, so daß die Strahlung im wesentlichen durch Totalreflexion auf einen kleinen Ausschnitt der Meßfläche konzentriert wird.

Aus der DE 34 18 839 A1 ist ein Gerät zur Kolorimetrie/ Photometrie bekannt, welches eine Anzahl von in unterschiedlichen spektralen Bereichen emittierenden Beleuchtungseinrichtungen aufweist. Zusätzlich sind bei dieser Einrichtung die Wellenlängenbereiche der Lichtquellen einengende Glasfilter vorgesehen, ferner wird das Licht einer Lichtquelle über lichtleitende Kabel zur Eingangsoptik der Meßeinheit geführt.

Aus der US-PS 4,681,454 ist ein Gerät zur Bestimmung von Farbunterschieden bekannt, bei welcher eine Anzahl einzeln ansteuerbarer und in unterschiedlichen Wellenlängenbereichen emittierender Beleuchtungseinrichtungen vorgesehen ist, deren Licht über eine Meßfläche einem photoelektrischen Wandler zugeführt wird. Ferner ist ein zweiter photoelektrischer Wandler vorgesehen, dem das direkt von den Beleuchtungseinrichtungen emittierte Licht zuführbar ist.

Aus der DE 38 30 731 A1 ist eine Vorrichtung zur Farbmessung bekannt, bei welcher in einem Meßkopf ein Dreifarben-Simultan-Meßkopf für die densitometrische Messung und ein weiterer Dreifarben-Simultan-Meßkopf für die farbmetrische Messung integriert ist. Bei einer derartigen Einrichtung lassen sich wahlweise Meßdaten für die Durchführung von Farbsteuer- bzw. Farbregelverfahren nach einem farbmetrischen bzw. nach einem densitometrischen Meßprinzip durchführen.

Aufgabe der vorliegenden Erfindung ist es daher, eine photoelektrische McBeinrichtung gemäß dem Oberbegriff von Anspruch 1 derartig zu erweitern, so daß bei möglichst einfachem und kostengünstigem Aufbau sowie gleichzeitiger Vermeidung der oben genannten Nachteile der Einsatzbereich eines insbesondere als Densitometer ausgebildeten Meßgerätes erweitert sowie die Meß- und Verarbeitungsgenauigkeit erhöht werden kann.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale von Anspruch 1. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.

Gemäß der Erfindung ist allgemein vorgesehen, daß die Beleuchtung der auszumessenden Meßstelle auf einem 10 Druckprodukt mittels einer Anzahl von Beleuchtungseinrichtungen erfolgt, wobei die spektrale Identitätsverteilung der Beleuchtungseinrichtungen entsprechend der Vorschrift der spektralen Bewertung des von der Meßstelle reflektierten Lichtes gewählt ist. Mit anderen Worten bedeutet dies, 15 daß bei einem als Densitometer ausgebildeten Meßkopf insbesondere drei Beleuchtungskanäle vorgesehen sind, wobei durch den ersten Beleuchtungskanal die Bestrahlung der Meßstelle mit blauem, durch den zweiten Beleuchtungskanal die Bestrahlung der Meßstelle mit grünem und durch den 20 dritten Beleuchtungskanal die Bestrahlung der Meßstelle mit rotem Licht erfolgt. Dies hat gegenüber dem Aufbau herkömmlicher Densitometer den Vorteil, daß zur Beleuchtung der Meßstelle nicht Strahlung in einem sehr breiten Bereich erzeugt werden muß, was gerade bei thermischen 25 Lichtquellen (Glühlampen) eine hohe anfallende Wärmeleistung zur Folge hat und wegen der nötigen Einrichtungen zur Wärmeableitung zusätzlichen Bauaufwand verursacht. Bei einer Beleuchtung mit LEDs können insbesondere IR-Sperrfilter entfallen. Zusätzlich ist vorgesehen, daß eine 30 Dunkelphase durch eine Steuerung ebenfalls seriell vorgegeben wird, innerhalb welcher der photoelektrische Wandler kein von den LED ausgesendetes Licht über die Meßstelle empfängt. Innerhalb dieser Dunkelphase kann durch die Verstärkungs- und Auswerteeinheit der Dunkelstrom des 35 Empfängers als Offset erfaßt und für die Anzeige der Meßwerte verarbeitet werden.

Vorzugsweise finden bei der Realisierung des Erfindungsgedankens in Form eines Densitometers lichtemittierende Dioden (LED) Verwendung, denen zusätzlich Interferenzfilter vorschaltbar sind. Durch eine vorgeschaltete Steuerung werden die lichtemittierenden Dioden des Yellow-, Magenta- sowie Cyan-Kanals nacheinander für jeweils ein kurzes Zeitintervall angeschaltet, so daß die entsprechenden Remissionen der Meßstelle am photoelektrischen Wandler 45 seriell anfallen. Dem photoelektrischen Wandler ist dabei eine entsprechende Verstärkungs- und Auswerteschaltung nachgeordnet, durch welche die entsprechenden Remissionssignale für den Cyan-, Magenta-, Yellow- sowie den Schwarz-Kanal in Farbdichteeinheiten umrechenbar und 50 über eine nachgeschaltete Einrichtung anzeigbar sind.

Die Taktfrequenz, mit welcher die einzelnen Leuchtdioden sequentiell angesteuert werden, kann einige Kilohertz betragen. Die Grenze der Taktfrequenz wird dabei im wesentlichen durch die maximal zulässige Taktfrequenz der in 55 der Verstärkungs- und Auswerteeinheit enthaltenden Elemente (z. B. AD-Wandler bzw. schaltbare Verstärker) bestimmt.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, daß neben dem photoelektrischen Wandler eine weitere, insbesondere als SI-Photodiode ausgebildete lichtelektrische Empfangscinheit vorgesehen ist, welche direkt mit dem Licht der der Beleuchtung der Meßstelle dienenden LED's beaufschlagt wird. Durch diese zweite Photodiode erfolgt eine Erfassung der direkten Bestrahlungsstärke der einzelnen LEDs, so daß in der Verstärkungs- und Auswerteeinheit zur Ableitung exakter Meßwerte eventuelle Helligkeitsschwankungen der LED's berücksichtigt und korrigiert wer-

den können.

Gemäß einer weiteren Ausgestaltung der Erfindung weist die photoelektrische Meßeinrichtung Lichtleiteinrichtungen auf, vermittels denen das entsprechend der gewählten Meßvorschrift unterschiedlich farbige Licht der einzelnen LEDs zur Beleuchtung auf die Meßstelle gerichtet wird. Vorzugsweise kann hier ein mehrarmiger Lichtleiter mit mehreren Lichteinkoppel- und einer Lichtauskoppelfläche Verwendung finden. Dieser Lichtleiter kann eine weitere Lichtaustrittsfläche aufweisen, über welche das Licht der LEDs direkt einer weiter oben beschriebenen zusätzlichen lichtelektrischen Empfangseinheit (SI-Photodiode) zugeleitet wird. Das von der Meßstelle reflektierte Licht kann ebenfalls über einen separaten Lichtleiter dem der Verstärkungs- und Auswerteeinheit vorgeschalteten lichtelektrischen Wandler zugeleitet werden. Zur Ein- bzw. Auskoppelung der Strahlung in die Lichtleiter werden geeignete Koppelungsoptiken ver-

Des weiteren erfolgt die Erläuterung von drei Ausführungsbeispielen der Erfindung anhand der Zeichnungen. Hierbei zeigt:

Fig. 1 den grundsätzlichen Aufbau der Meßeinrichtung nebst der nachgeschalteten Komponenten,

Fig. 2 die Weiterbildung der Meßeinrichtung mit einem Lichtleiter zur Beleuchtung der Meßstelle, und

Fig. 3 den Aufbau entsprechend Fig. 2 erweitert um eine Lichtleiteinrichtung zur Beaufschlagung des photoelektrischen Wandlers mit dem von der Meßstelle reflektierten Licht.

Fig. 1 zeigt den grundsätzlichen Aufbau der erfindungsgemäßen Meßeinrichtung. In einem nicht dargestellten Gehäuse sind gemäß den noch folgenden Ausführungen insgesamt drei Leuchtioden (LED) 3 derartig um einen zentralen photoelektrischen Wandler 5 angeordnet, so daß die Bestrahlung einer auf einem Druckbogen 1 befindlichen Meßstelle 2 unter jeweils 45° zur Flächennormalen erfolgt und das von der Meßstelle 2 auf dem Bogen 1 reflektierte Licht in Richtung der Flächennormalen vom photoelektrischen Wandler 5 empfangen wird. Insbesondere sind hier die lichtemittierenden Dioden 3 sowie der photoelektrische Wandler 5 in Bohrungen eines nicht dargestellten Gehäuses eingelassen, so daß insbesondere der photoelektrische Wandler 5 weitestgehend gegen durch Umgebungshelligkeit verursachtes Streulicht abgeschattet ist. Die den einzelnen Druckfarben Cyan C, Yellow Y sowie Magenta M zugeordneten Dioden 3 des Rot R, Blau B sowie Grün-Kanals G sind dabei um jeweils 120° zueinander versetzt um den direkt oberhalb der Mcßstelle 2 befindlichen photoelektrischen Wandler 5 angeordnet.

Den einzelnen Dioden 3, welche den zuvor angedeuteten Rot R, Blau B sowie Grünkanal entsprechend den Farben Cyan C, Yellow Y sowie Magenta M zugeordnet sind, weisen Strahlungseigenschaften auf, welche eine Bestimmung von Farbdichtewerten gestatten. Dies bedeutet, daß die dem Rot-Kanal R zugeordnete und zur Gewinnung eines Farbdichtewertes für die Druckfarbe Cyan C zugeordnete Diode 3 eine spektrale Intensitätsverteilung im wesentlichen im langwelligen Rotbereich aufweist. Entsprechend weist der Strahlungsintensität der dem Blau-Kanal B zugeordneten Diode 3 zur Gewinnung eines Farbdichtewertes für Yellow Y ein Maximum im Blau und die Leuchtdiode 3 des Grün-Kanals G für die Druckfarbe Magenta M ein Intensitätsmaximum in Grün auf.

Den einzelnen lichtemitierenden Dioden 3 sind zusätzlich noch schmalbandige Interferenzfilter 4 vorgeschaltet, so daß das von den lichtemitierende Dioden 3 ausgesendete Licht exakt an die spektralen Bedingung zur Ableitung von Farbdichtewerten angepaßt ist. Insbesondere werden aus den

spektralen Intensitätsverteilungen der lichtemitierenden Dioden 3 diejenigen Bereiche ausgeblendet, welche zur Gewinnung von Farbdichtewerten nicht geeignet sind. Zur Unterdrückung des Oberflächenglanzes insbesondere eines frisch bedruckten Bogens 1 ist zwischen dem letzten Element der Beleuchtungseinrichtung (3, 4, 9, 10) und der Meßstelle (2) ein Polarisator (12) und zwischen dem ersten Element des Empfangskanales (5; 11 - Fig. 3) und der Meßstelle (2) ein Analysator (13) angeordnet.

Die einzelnen Dioden 3 sind jeweils einzeln an eine 10 1 Bogen Steuerung 6 geschaltet, über welche eine sequentielle Ansteuerung erfolgt. Beispielsweise wird über die Steuerung 6 nacheinander zunächst die Diode 3 des Rot-R, dann die des Grün- G sowie die des Blau-Kanals B für jeweils ein kurzes Zeitintervall aktiviert. Zusätzlich ist dabei auch eine Dun- 15 kelphase vorgesehen, in welcher die Steuerung 6 keine der drei Dioden 3 ansteuert. In Fig. 1 ist neben der Steuerung 6 prinzipiell der Zeitverlauf der drei zueinander versetzten Ansteuerungsvorgänge für den Rot- R, den Grün- G sowie den Blau-Kanal B dargestellt. Die von der Steuerung 6 vor- 20 gebbare Dunkelphase D ist ebenfalls angedeutet.

Durch das sequentielle Ansteuern der R-, G- und B-Dioden 3 durch die Steuerung 6 empfängt der photoelektrische Wandler 5 das von der Meßstelle 2 nacheinander im roten, grünen sowie blauen Bereich R, G, B reflektierte Licht, Der 25 photoelektrische Wandler 5 ist dabei an eine Verstärkungsund Auswerteeinheit 7 angeschlossen, durch welche die den Remissionsstärken entsprechenden elektrischen Größen verarbeitet werden. Der Verstärkungs- und Auswerteeinheit 7 ist eine Anzeigeeinrichtung 8 nachgeschaltet, vermittels 30 D Dunkelphase der die Farbdichtewerte für die Farbe Cyan C, die Farbe Magenta M, die Farbe Yellow Y anzeigbar sind. Durch eine Verarbeitung der Remissionswerte des Rot R, des Grün G sowie des Blau-Kanals B ist in an sich bekannter Weise ferner ein Farbdichtewert für die Druckfarbe Schwarz K ableit- 35 bar. In Fig. 1 ist neben der Verstärkungs- und Auswerteeinheit der Zeitverlauf der im Rot-, Grün- sowie Blau-Kanal R, G, B anfallenden Remissionswerte dargestellt, wie diese durch die Verstärkungs- und Auswerteeinheit entsprechend der sequentiellen Vorgabe durch die Steuerung 6 erfaßbar 40 sind

Fig. 2 zeigt eine Weiterbildung der Erfindung, wobei hier zur Beleuchtung der Meßstelle 2 auf dem Bogen 1 ein Lichtleiter 10 vorgesehen ist. Die drei den Rot-, Grün- und Blau-Kanälen R, G, B zugeordneten Dioden 3 sind insgesamt drei 45 Lichteinkoppelstellen zugeordnet, wobei diesen zusätzlich noch Kopplungsoptiken 9 vorgeschaltet sind. Ebenfalls sind den Dioden 3 zusätzliche Interferenzister 4 zugeordnet, durch welche die weiter oben stehend erläuterte spektrale Anpassung des von den Dioden 3 ausgesendeten Lichtes er- 50 folgt.

In dem in Fig. 2 dargestellten Ausführungsbeispiel weist der Lichtleiter 10 - die Darstellung gemäß Fig. 2 und 3 ist prinzipieller Natur - drei Arme mit Lichtankoppelstellen auf, welche den entsprechenden lichtemitierenden Dioden 3 55 zugeordnet sind. Das durch die Lichteinkoppelstellen aufgefangene Licht der Dioden 3 wird entsprechend der vorgesehenen Beleuchtungsgeometrie - dargestellt ist eine sogenannte 45°/0°-Geometrie – auf die Meßstelle 2 des Bogens 1 geleitet. Entsprechend weist der Lichtleiter 10 eine Licht- 60 austrittsfläche auf, welche der Meßstelle 2 zugeordnet ist. Das von der Meßstelle 2 entsprechend der sequentiellen Ansteuerung der Dioden 3 reflektierte Licht wird wie im Ausführungsbeispiel gemäß Fig. 1 unter gegebenenfalls Zwischenschaltung entsprechender Abbildungsmittel dem pho- 65 toelektrischen Wandler 5 zugeführt.

Im Ausführungsbeispiel gemäß Fig. 3 ist zur Beaufschlagung des photoelektrischen Wandlers 5 mit dem von der

Meßstelle 2 entsprechend der sequentiellen Ansteuerung der Dioden 3 reflektierten Licht ebenfalls ein Lichtleiter 11 vorgesehen. Auch hier ist die Darstellung des Lichtleiters 11 rein prinzipiell - die konkrete Ausführungsform richtet sich nach den vorgesehenen Abmessungen des zu schaffenden

Bezugszeichenliste

- - 2 Meßstelle

Meßkopfes.

- 3 lichtemittierende Diode (LED)
- 4 Filter (Interferenzfilter)
- 5 photoelektrischer Wandler
- 6 Steuerung
- 7 Verstärkungs- und Auswerteeinheit
- 8 Anzeigeeinheit
- 9 Kopplungsoptik
- 10 Lichtleiter
- 11 Lichtleiter (photoelektrischer Wandler 5)
 - 12 Polarisator
 - 13 Analysator
 - R Rot-Kanal
- B Blau-Kanal
- G Grün-Kanal
 - C Cyan
 - M Magenta
 - Y Yellow
- K Schwarz

sen.

Patentansprüche

- 1. Photoelektrische Meßeinrichtung mit zumindest einer Beleuchtungseinrichtung sowie einem Meßkanal, wobei der Beleuchtungseinrichtung sowie dem photoelektrischen Wandler eine Steuer- und Auswerteeinheit vor- bzw. nachgeschaltet ist, mit einer Anzahl sequentiell durch die Steuerung aktivierbarer Beleuchtungseinrichtungen zur Beaufschlagung der Meßfläche mit Licht jeweils unterschiedlicher spektraler Intensitätsverteilung sowie wenigstens einem photoelektrischen Wandler zur Erfassung des jeweils von der Meßstelle entsprechend der Ansteuerung der Beleuchtungseinrichtungen reflektierten Lichtes, dadurch gekennzeichnet, daß durch die Steuerung (6) die einzelnen Beleuchtungseinrichtungen (3, 4, 9, 10) sequentiell in Verbindung mit wenigstens einer Dunkelphase (D), während der die Meßstelle (2) mit keinem Licht bestrahlt wird, ansteuerbar sind, und daß während dieser Dunkelphase (D) der Dunkelstrom des Empfängers (5) durch die Verstärkungs- und Auswerteeinheit (7) als Offset erfaßbar und für die Anzeige der Meßwerte verarbeitbar ist.
- 2. Photoelektrische Meßeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Meßeinrichtung als Densitometer ausgebildet ist und die einzelnen Beleuchtungseinrichtungen (3, 4, 9, 10) zur Bestrahlung der Meßstelle (2) mit jeweils zur Gewinnung von Farbdichtewerten der beim Druck verwendeten Farben Cyan (C), Magenta (M), Yellow (Y) eine spektrale Intensitätsverteilung in einem roten (R), grünen (G) sowie blauen (B) Wellenlängenbereich ausgebildet sind. 3. Photoelektrische Meßeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Beleuchtungseinrichtungen (3, 4, 9, 10) Leuchtdioden (3) (LED) unterschiedlicher spektraler Intensitätsverteilung aufwei-

5

- 4. Photoelektrische Meßeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beleuchtungseinrichtungen (3, 4, 9, 10) insbesondere als Interferenzfilter (4) ausgebildete Filtereinrichtungen aufweisen.
- 5. Photoelektrische Meßeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beleuchtungseinrichtungen (3, 4, 9, 10) Lichtleiter (10) aufweisen.
- 6. Photoelektrische Meßeinrichtung nach Anspruch 5, 10 dadurch gekennzeichnet, daß ein mehrarmiger Lichtleiter (10) vorgesehen ist, der entsprechend der Anzahl vorgesehener Beleuchtungseinrichtungen (3, 4, 9, 10) eine Anzahl von Lichteinkopplungen (9) und eine der Meßstelle (2) zugewandte Lichtauskoppelstelle auf 15 weist.
- 7. Photoelektrische Meßeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem photoelektrischen Wandler (5) ein das von der Meßstelle (2) reflektierte Licht erfassender Lichtleiter 20 (11) zugeordnet ist.
- 8. Photoelektrische Meßeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß neben dem photoelektrischen Wandler (5) zur Erfassung des von der Meßstelle (2) reflektierten Lichtes 25 ein weiterer, mit der Verstärkung- und Auswerteeinheit (7) in Wirkverbindung stehender photoelektrischer Empfänger vorgesehen ist, durch welchen das direkt von den Beleuchtungseinrichtungen (3, 4, 9, 10) erzeugte Licht erfaßbar ist.
- 9. Photoelektrische Meßeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem letzten Element der Beleuchtungseinrichtungen (3, 4, 9, 10) und der Meßstelle (2) ein Polarisator (12) und zwischen dem ersten Element des 35 Empfangskanales (5, 11) und der Meßstelle (2) ein Analysator (13) zur Unterdrückung des Oberflächenglanzes angeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

40

45

50

55

60

- Leerseite -

Nummer: Int. Cl.⁶: Veröffentlichungstag: **DE 196 17 009 C2 G 01 J 1/28**20. Mai 1999

Nummer: Int. Cl.⁶: Veröffentlichungstag: **DE 196 17 009 C2 G 01 J 1/28** 20. Mai 1999

Fig. 2

