Bridgeland 安定性

よの

2023年8月16日

概要

三角圏の t 構造について簡単に復習し、Abel 圏の安定性条件を見たあと、三角圏の安定性条件を考える.

目次

, 1#\A

1		1
2	Abel 圏上の安定性条件	4
3	スライス	4
4	Bridgeland 安定性	7
5	安定性条件のなす空間	8

1 t構造

 \mathcal{D} を三角圏, n を整数とする.

定義 1.1 (拡大). \mathcal{D} の充満部分圏 \mathcal{X},\mathcal{Y} に対して

$$X \to D \to Y \to X[1] \ (X \in \mathcal{X}, Y \in \mathcal{Y})$$

が完全三角となるような $D\in\mathcal{D}$ のなす \mathcal{D} の部分圏を \mathcal{X} による \mathcal{Y} の拡大部分圏といい, $\mathcal{X}*\mathcal{Y}$ と表す.

定義 1.2 (t 構造). 同型と直和因子で閉じた $\mathcal D$ の充満加法部分圏 $t^{\leq 0}, t^{\geq 0}$ の対 $(t^{\leq 0}, t^{\geq 0})$ が次の条件を満たすとき, $(t^{\leq 0}, t^{\geq 0})$ を $\mathcal D$ 上の t 構造 (t-structure) という. 以下では, 次の記号を導入する.

$$t^{\leq n} := t^{\leq 0}[-n], \ t^{\geq n} := t^{\geq 0}[-n]$$

1. $t^{\leq 0} \perp t^{\geq 1}$

2. $\mathcal{D} = t^{\leq 0} * t^{\geq 1}$

3. $t^{\leq 0} \subset t^{\leq 1}$ かつ $t^{\geq 1} \supset t^{\geq 0}$

 $(t^{\leq 0}, t^{\geq 0})$ を \mathcal{D} 上の t 構造とする.

補題 1.3. $t^{\leq 0} = {}^{\perp}(t^{\geq 1})$ かつ $t^{\geq 0} = (t^{\leq -1})^{\perp}$ である.

系 1.4. 完全三角 $X \to Y \to Z \to X[1]$ において, $X, Z \in t^{\leq 0}$ のとき, $Y \in t^{\leq 0}$ である.

定義 1.5 (t 構造の核). \mathcal{D} の充満部分圏

$$\mathcal{D}^{\heartsuit} := t^{\leq 0} \cap t^{\geq 0}$$

を t 構造の核 (heart, core) という.

t 構造の核は Abel 圏の構造をもつ.

定理 1.6. t 構造 $(t^{\leq 0}, t^{\geq 0})$ の核 \mathcal{D}^{\heartsuit} は前 Abel 圏である.

Proof. 任意の $A, B \in \mathcal{D}^{\heartsuit}$ と $f: \operatorname{Hom}_{\mathcal{D}^{\heartsuit}}(A, B)$ に対して、ある $C \in \mathcal{D}$ が存在して

$$C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C[1] \tag{1.1}$$

は完全三角である. $(t^{\leq 0},t^{\geq 0})$ は $\mathcal D$ 上の t 構造なので、この C に対して、ある $X_C\in t^{\leq -1}$ と $Y_C\in t^{\geq 0}$ が存在して

$$X_C \xrightarrow{x_C} C[1] \xrightarrow{y_C} Y_C \to X_C[1]$$
 (1.2)

は完全三角である.このとき, $y_C\circ g:B\to Y_C$ が f の余核であることを示す. $y_C\circ g$ に対して,ある $M\in\mathcal{D}$ が存在して

$$M \xrightarrow{m} B \xrightarrow{y_C \circ g} Y_C \to M[1]$$
 (1.3)

は完全三角である. 八面体公理より

$$A \xrightarrow{l} M \to X_C \to A[1] \tag{1.4}$$

は次の図式を可換にする完全三角である.

まず, $Y_C\in\mathcal{D}^\heartsuit$ を示す. $Y_C\in t^{\geq 0}$ なので, $Y_C\in t^{\leq 0}$ を示せばよい. 式 (1.1) において, $B\in\mathcal{D}^\heartsuit$ かつ $A[1]\in t^{\leq -1}\subset t^{\leq 0}$ なので, 系 1.4 より $C[1]\in t^{\leq 0}$ である. 式 (1.2) において, $X[1]\in t^{\leq -2}\subset t^{\leq 0}$ かつ $C[1]\in t^{\leq 0}$ なので, 同様に $Y_C\in t^{\leq 0}$ である. よって, $Y_C\in\mathcal{D}^\heartsuit$ である.

次に、 $Q\in\mathcal{D}^\heartsuit$ と $q\in\operatorname{Hom}_{\mathcal{D}^\heartsuit}(B,Q)$ が $q\circ f=0$ を満たすとする. このとき,ある $q'\in\operatorname{Hom}_{\mathcal{D}^\heartsuit}(C[1],Q)$ が存在して, $q'\circ g=q$ である. $X_C\in t^{\leq -1}$ かつ $q'\circ x_C=0$ である. よって,ある $q''\in\operatorname{Hom}_{\mathcal{D}^\heartsuit}(Y_C,Q)$ が存在して, $q''\circ y_C=0$ である.

一意性を示す. 以上より, $y_C\circ g:B\to Y_C$ は f の余核である. 同様に, $e\circ x_C[-1]:X_C[-1]\to A$ は f の核である.

定理 1.6 より、次の命題が成立する.

補題 1.7. 任意の $f \in \operatorname{Hom}_{\mathcal{D}^{\heartsuit}}(A,B)$ を補完する \mathcal{D} における完全三角

$$C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C[1]$$

において、次の2つが成立する.

- 1. $C[1] \in t^{\geq 0}$ のとき, g は f の余核である.
- 2. $C \in t^{\leq 0}$ のとき, e は f の核である.

定理 1.8. t 構造の核 \mathcal{D}^{\heartsuit} は Abel 圏である.

Proof. 任意の $f\in \operatorname{Hom}_{\mathcal{D}^{\heartsuit}}(A,B)$ に対して, $\operatorname{Im}(f)\cong \operatorname{Coim}(f)$ が成立することを示す。式 (1.4) において, $A\in \mathcal{D}^{\heartsuit}$ かつ $X_C[1]\in t^{\leq -2}\subset t^{\leq 0}$ より, $M\in t^{\leq 0}$ である。補題 1.7 より, $m=\ker(y_C\circ g)=\ker(\operatorname{coker}(f))$ である。よって, $\operatorname{im}(f)=m$ なので, $f=m\circ l$ と像経由分解できる。 同様に, $\operatorname{coim}(f)=l$ となっているので, $f=m\circ l$ は余像経由分解でもある。よって,同型 $\operatorname{Im}(f)\cong \operatorname{Coim}(f)$ が存在する。

2 Abel 圏上の安定性条件

 \mathcal{A} を Abel 圏, $K(\mathcal{A})$ を \mathcal{A} 上の Grothendieck 群とする.

定義 2.1 (Abel 圏上の安定関数). 群準同型 $Z:K(\mathcal{A})\to\mathbb{C}$ は次の条件を満たすとき, Z を \mathcal{A} 上の安定関数 (stability function) という.

• 任意の $E(\neq 0) \in \mathcal{A}$ に対して, $Z(E) \in \mathbb{H}$ である. ここで

$$\mathbb{H} := \{ r \exp(i\pi\phi) \mid r > 0, 0 < \phi \le 1 \} \subset \mathbb{C}$$

安定関数 Z に対して, $E(\neq 0) \in \mathcal{A}$ の位相 (phase) $\phi(E)$ を次の式で定義する.

$$\phi(E) := \frac{1}{\pi} \arg Z(E) \in (0, 1]$$

定義 2.2 (半安定対象). $Z:K(\mathcal{A})\to\mathbb{C}$ を \mathcal{A} 上の安定関数とする. $E(\neq 0)\in\mathcal{A}$ の任意の部分対象 $A\in\mathcal{A}$ に対して $\phi(A)\leq\phi(E)$ であるとき, E を Z による半安定対象 (the semistable object with respect to Z) という.

定義 2.3 (Harder-Narasimhan フィルトレーション).

3 スライス

♡を三角圏とする.

定義 3.1 (スライス). 任意の $\phi \in \mathbb{R}$ に対して, $\mathcal{P}(\phi)$ を \mathcal{D} の充満加法部分圏とする. $\mathcal{P} = \{\mathcal{P}(\phi)\}_{\phi \in \mathbb{R}}$ が次の条件を満たすとき, \mathcal{P} を \mathcal{D} のスライス (slicing) という. $\mathcal{P}(\phi)$ の 0 でない対象を位相 ϕ の対象という.

- 1. 任意の $\phi \in \mathbb{R}$ に対して, $\mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1]$
- 2. $\phi_1 > \phi_2$ のとき, $\mathcal{P}(\phi_1) \perp \mathcal{P}(\phi_2)$
- 3. 任意の $E(\neq 0) \in \mathcal{D}$ に対して、ある実数の有限列

$$\phi_1 > \cdots > \phi_n$$

と、完全三角の列

が存在して、各 i に対して、 $A_i \in \mathcal{P}(\phi_i)$ である.

条件(3)における完全三角の列は次のような意味で用いている.

注意 3.2.

$$E_{0} \xrightarrow{f_{1}} E_{1} \xrightarrow{g_{1}} A_{1} \xrightarrow{h_{1}} E_{0}[1]$$

$$\downarrow f_{2} \downarrow \\ E_{2} \xrightarrow{g_{2}} A_{2} \xrightarrow{h_{2}} E_{1}[1]$$

$$\downarrow \downarrow \\ \vdots \\ f_{n} \downarrow \\ E_{n} \xrightarrow{g_{n}} A_{n} \xrightarrow{h_{n}} E_{n-1}[1]$$

を

と表している.

 \mathcal{P} $\in \mathcal{D}$ のスライスとする.

補題 3.3. 条件(3)における完全三角の列は同型を除いて一意である.

補題 3.3 より、0 でない対象から最大の位相と最小の位相という不変量が定まる.

定義 3.4. 任意の $E(\neq 0) \in \mathcal{D}$ に対して

$$\phi_{\mathcal{P}}^{+}(E) := \phi_{1}, \quad \phi_{\mathcal{P}}^{-}(E) := \phi_{n}$$

とする. $\mathcal P$ が明らかな場合は $\mathcal P$ を省略する. また, $\{A_i\}$ を E の半安定要素 (semistable factors) という.

補題 3.5. 任意の $E(\neq 0) \in \mathcal{D}$ に対して、次の式が成立する.

$$\phi_{\mathcal{D}}^+(E) \ge \phi_{\mathcal{D}}^-(E)$$

ある $\phi \in \mathbb{R}$ が存在して, $E \in \mathcal{P}(\phi)$ となるときに等号は成立する.

定義 3.6. 任意の $I\subset\mathbb{R}$ に対して、各 $\phi\in I$ における $\mathcal{P}(\phi)$ によって生成される \mathcal{D} の拡大で閉した部分圏を $\mathcal{P}(I)$ とする.つまり, $\mathcal{P}(I)$ は次のように表せる.

$$\mathcal{P}(I) := \{0\} \cup \{E \in \mathcal{D} \mid \phi^+(E), \phi^-(E) \in I\}$$

また、任意の $t \in \mathbb{R}$ に対して、次のような省略を用いる.

$$\mathcal{P}(\leq t) := \mathcal{P}((-\infty, t]) = \{0\} \cup \{E \in \mathcal{D} \mid \phi^{+}(E) \leq t\}$$

$$\mathcal{P}(< t) := \mathcal{P}((-\infty, t)) = \{0\} \cup \{E \in \mathcal{D} \mid \phi^{+}(E) < t\}$$

$$\mathcal{P}(\geq t) := \mathcal{P}([t, \infty)) = \{0\} \cup \{E \in \mathcal{D} \mid \phi^{-}(E) \geq t\}$$

$$\mathcal{P}(> t) := \mathcal{P}((t, \infty)) = \{0\} \cup \{E \in \mathcal{D} \mid \phi^{-}(E) > t\}$$

補題 3.7. I を長さ 1 上の区間とする. $\mathcal D$ における完全三角 $A \to E \to B$ において, A, E, B は $\mathcal P(I)$ の 0 でない対象とする. このとき, $\phi^+(A) \le \phi^+(E)$ かつ $\phi^-(E) \le \phi^-(B)$ である.

Proof. $\phi^+(A) \leq \phi^+(E)$ を示す。ある $t \in \mathbb{R}$ と $\alpha \in \mathbb{R}_{\geq 1}$ を用いて、 $I = [t, t + \alpha]$ と表す。定義より、ある $A^+ \in \mathcal{P}(\phi^+(A))$ が存在する。 $A_1 \cong A^+$ なので、0 でない射 $f: A^+ \to A$ が存在する。 $\phi^+(A) > \phi^+(E)$ であると仮定する。定義より、 $\mathrm{Hom}_{\mathcal{D}}(A^+, F_n) = 0$ である。 $\mathrm{Hom}_{\mathcal{D}}(E, F_n) \neq 0$ なので、 $\mathrm{Hom}_{\mathcal{D}}(A^+, E) = 0$ であり、f は B[-1] を経由する(らしい).

補題 3.8. 任意の $\phi \in \mathbb{R}$ に対して, $(\mathcal{P}(>\phi), \mathcal{P}(\leq \phi+1))$ と $(\mathcal{P}(\geq \phi), \mathcal{P}(<\phi+1))$ は \mathcal{D} 上の t 構造である.

Proof. $(\mathcal{P}(>\phi), \mathcal{P}(\leq \phi+1))$ が t 構造であることを示す.

まず, $\mathcal{P}(>\phi)$ \perp $\mathcal{P}(\leq\phi)$ を示す. 任意の $E\in\mathcal{P}(>\phi)$ と $F\in\mathcal{P}(\leq\phi)$ に対して, $\phi^-(E)>\phi\geq\phi^+(F)$ なので, $\mathrm{Hom}(E,F)=0$ である.

次に、 $\mathcal{D}=\mathcal{P}(>\phi)*\mathcal{P}(\le\phi)$ を示す。 $\mathcal{D}\supset\mathcal{P}(>\phi)*\mathcal{P}(\le\phi)$ は明らかなので、逆を示す。任意の $E\in\mathcal{D}$ に対して、条件 (3) の ϕ 以下と ϕ より大きい実数で完全三角の列を分ける。このとき、次の完全三角が存在するので、 $\mathcal{D}\subset\mathcal{P}(>\phi)*\mathcal{P}(\le\phi)$ である。

最後に $, \mathcal{P}(>\phi) \subset \mathcal{P}(>\phi)[-1]$ を示す. 定義より

$$\mathcal{P}(>\phi)[-1] = \mathcal{P}(\leq \phi - 1) = \{0\} \cup \{E \in \mathcal{D} \mid \phi - 1 < \phi^{-}(E)\}\$$

なので, $\mathcal{P}(>\phi)\subset\mathcal{P}(>\phi)[-1]$ である. 同様に, $\mathcal{P}(\leq\phi)[-1]\supset\mathcal{P}(\leq\phi)$ も示せる. 以上より, $(\mathcal{P}(>\phi),\mathcal{P}(\leq\phi+1))$ は t 構造である.

系 3.9. t 構造 $(\mathcal{P}(>\phi),\mathcal{P}(\leq\phi+1))$ の核は $\mathcal{P}((\phi,\phi+1])$ の部分集合である. t 構造 $(\mathcal{P}(\geq\phi),\mathcal{P}(<\phi+1))$ の核は $\mathcal{P}([\phi,\phi+1))$ の部分集合である.

4 Bridgeland 安定性

 \mathcal{D} を三角圏, $K(\mathcal{D})$ を \mathcal{D} の Grothendieck 群とする.

定義 4.1 (三角圏上の安定性条件). 群準同型 $Z:K(\mathcal{D})\to\mathcal{C}$ と次の条件を満たす \mathcal{D} のスライス \mathcal{P} の組 $\sigma=(Z,\mathcal{P})$ を \mathcal{D} 上の安定性条件 (stability condition) という.

• 任意の $E(\neq 0) \in \mathcal{P}(\phi)$ に対して、ある $m(E) \in \mathbb{R}_{\geq 0}$ が存在して、 $Z(E) = m(E) \exp(i\pi\phi)$ である.

群準同型 Z を安定性条件の中心電荷 (central charge), $\mathcal{P}(\phi)$ の対象を位相 ϕ の半安定対象 (semistable objects with phase ϕ), $\mathcal{P}(\phi)$ の単純対象を位相 ϕ の安定対象 (stable objects with phase ϕ) という.

 (Z,\mathcal{P}) を \mathcal{D} 上の安定性条件とする.

補題 **4.2.** 任意の $\phi \in \mathbb{R}$ に対して, $\mathcal{P}(\phi)$ は Abel 圏である.

定義 4.3 (質量). 任意の $E(\neq 0) \in \mathcal{D}$ に対して

$$m_{\sigma}(E) := \sum_{i} |Z(A_i)|$$

を E の質量 (mass) という. σ が明らかな場合は σ を省略する.

補題 4.4. $E(\neq 0) \in \mathcal{D}$ に対して、次の式が成立する.

$$m_{\sigma}(E) \ge |Z(E)|$$

ある $\phi \in \mathbb{R}$ が存在して, $E \in \mathcal{P}(\phi)$ となるときに等号は成立する.

定理 4.5. 次の 2 つは同値である.

- 1. *D* 上に安定性条件を与える.
- 2. \mathcal{D} 上の有界 t 構造の核と HN フィルトレーションをもつその上の安定性条件を与える.

Proof. (1) から (2) を示す. $\mathcal D$ 上の有界 t 構造の核を $\mathcal D^\heartsuit$ とすると、自然な同型 $(D^\heartsuit)\cong K(\mathcal D)$ がある.

定義 4.6 (局所有限).

5 安定性条件のなす空間

D を三角圏とする.

定義 $\mathbf{5.1}$ (スライスと安定性条件のなす集合). 局所有限なスライスのなす集合を $\mathrm{Slice}(\mathcal{D})$, 局所有限な安定性条件のなす集合を $\mathrm{Stab}(\mathcal{D})$ と表す.

補題 5.2. 任意の $\mathcal{P},\mathcal{Q} \in \operatorname{Slice}(\mathcal{D})$ に対して

$$d(\mathcal{P},\mathcal{Q}) := \sup_{E(\neq 0) \in \mathcal{D}} \left\{ |\phi_{\mathcal{P}}^{-}(E) - \phi_{\mathcal{Q}}^{-}(E)|, |\phi_{\mathcal{P}}^{+}(E) - \phi_{\mathcal{Q}}^{+}(E)| \right\} \in [0, \infty)$$

は $\mathrm{Slice}(D)$ 上の距離を定める.