CE 311K: Linear System of Equations

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

December 2, 2019

Linear System of Equations

Linear System of Equations

Solving Linear System of Equations

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

Solving Linear System of Equations

Singularity and III-conditioned

Solving Linear System of Equations

- Direct Methods
 - Gauss Elimination
 - @ Gauss-Jordan Elimination
 - U decomposition
- Iterative Methods
 - Jacobi iterative
 - @ Gauss-Seidel

Direct methods

Consider a system of 3 linear equations for simplicity:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

Matrix form is:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Concise form: Ax = b

Systems that can be solved easily

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

Solve by "back substitution' Upper triangle system (U)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Start with the last equation 3: $x_3 = b_3/a_{33}$

Equation 2: $a_{22}x_2 + a_{23}x_3 = b_2$ so

$$x_2 = \frac{b_2 - a_{23}x_3}{a_{22}}$$

Equation 1: $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$ so

$$x_1 = \frac{b_1 - (a_{12}x_2 + a_{13}x_3)}{a_{11}}$$

General for 'n' systems: $x_n = b_n/a_{nn} \ x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}$

Gauss Elimination

Consider a system of 3 linear equations:

$$\begin{bmatrix} 2 & 4 & 6 \\ 4 & 11 & 21 \\ 6 & 21 & 52 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 72 \\ 158 \end{bmatrix}$$

Divide row 2 by -2 and row 3 by -3

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 3 & 9 \\ 0 & 9 & 34 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 24 \\ 86 \end{bmatrix}$$

Second reduction:

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 24 \\ 14 \end{bmatrix}$$

```
Consider a system of 3 finant equations:  \begin{bmatrix} 2 & 4 & 6 \\ 4 & 11 & 21 \\ 2 & 1 & 62 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ 2 & 12 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ 21 & 22 \end{bmatrix}  Divide row 2 by -3 and row 3 by -3  \begin{bmatrix} 2 & 4 & 6 \\ 2 & 1 & 21 \\ 2 & 1 & 22 \end{bmatrix} \begin{bmatrix} 24 \\ n_1 \\ n_2 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_4 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_4 \\
```

```
\begin{array}{l} a = np.array([[2,4,6],\ [4,11,21],\ [6,\ 21,\ 52]])\\ b = np.array([24,\ 72,\ 158])\\ x = np.linalg.solve(a,\ b) \end{array}
```