Federated Query Optimization Method based on SPARQL Endpoint Features for Efficient Retrieval

Soichiro Watanabe 2023/10/26

Outline

- Background:
 - It is important to be able to search across some fields for LOD datasets. SPARQL querying frequently time out.
- Purpose:
 - Efficiently retrieve SPARQL query results without timeouts
 - Related Work 1 (SPARQL optimization)
- Research Topic : Federated Query
 - Federated Query Structure
 - Related Work 2 (Federated Query Rewriting Technique using VALUES Clause)
- Approach: Federated Query Optimization Method based on SPARQL Endpoint Features
- Evaluation:
 - Comparative evaluation of the proposed method and 2 query execution methods.
 - · Discuss the results
- Conclusion
 - Future Works

Background

Linked Open Data(LOD)

- A mechanism for publishing and sharing metadata in a machine-readable format that can be used in combination each other.
- Described in Resource Description Framework(RDF) format.

 Attracting attention as a mechanism to promote the use of data across a variety of fields. [1]

Background

By using SPARQL, users can retrieve the desired information from LOD dataset

Problem

Timeouts in SPARQL queries

A work to measure the processing power of the SPARQL Endpoint engine (Like a DB engine in SQL)^[2]

- It actually happens that the query results are not returned from the SPARQL Endpoint.
 ("T" in the above table; Timeout)
- Whether a timeout occurs or not depends on the following three factors
 - 1. SPARQL Endpoint engine types
 - 2. SPARQL Endpoint scale
 - 3. SPARQL query type

In SPARQL queries, Timeouts are an important issue

Research Purpose

Efficiently retrieve SPARQL query results without timeouts

Whether a timeout occurs depends on the following items^[2]

- 1. SPARQL Endpoint engine throughput
- 2. SPARQL Endpoint scale

LOD dataset publishers set up → We cannot approach

3. The content of SPARQL query

We process against the content of SPARQL query

→ Aim to obtain results efficiently without timeouts.

Related Work

SPARQL optimization [3][4]

Result:

- Reduced server(SPARQL endpoint) load

Limit thresholds are different for each SPARQL endpoint
→ Optimization required for each SPARQL endpoint

Proposed Method (Abstract)

Query Optimization Method based on SPARQL Endpoint Features

- ① Obtain the various limits (SPARQL Endpoint Features) set on public SPARQL endpoints in advance by repeatedly querying using SPARQL
- 2 Decompose and execute the query to meet the acquired limits.

Federated Query

Multiple SPARQL endpoints can be queried using the **SERVICE** clause [5]

Example of Federated Query

Example of Federated Query

Behavior of the SPARQL endpoint being queried

Challenges in Federated Query:

Increased number of queries n (number of results retrieved from the Book Dataset)

ightarrow high load on the server side ightarrow increased possibility of timeouts

Related Works

Strategies for executing federated queries in SPARQL 1.1 [6]

- A study of various techniques to decompose queries in SPARQL Federated Query to get complete results by avoiding endpoint limitations.
- Part of the technique is to rewrite the Federated Query using the **VALUES** clause^[7].

Related Works

Example of an issue in related research^[6]

Limits in the Person Dataset

Different limits for each public LOD dataset

→ Need to decompose query to match limits for each LOD dataset

Proposed Method (Concrete)

Federated Query Optimization Method based on SPARQL Endpoint Features

- SPARQL Endpoint Features :
 - · A set of limits on SPARQL queries, different for each SPARQL endpoint
 - For instance ···
 - A) Permissible HTTP request methods(GET or POST)
 - B) Constraints on the number of resources VALUES can bind within an executable SPARQL query
 - C) Limitation on the length of a single resource that VALUES can bind within an executable SPARQL query
 - D) Length restriction for executable SPARQL queries (= HTTP Request Header / HTTP Request Body Size)

Proposed Method

- ① Get Features for each SPARQL endpoint by repeatedly querying
- 2 Decompose the Federated Query given as input to satisfy the pre-obtained Features

Proposed Method 1

Get features for each SPARQL endpoint by repeatedly querying

Example:

GET Constraints on the number of resources VALUES can bind within an executable SPARQL query

Proposed Method 2

Decompose the Federated Query given as input to satisfy the pre-obtained Features

1. Parsing input Federated Query

- Decompose into queries for each SPARQL endpoint
- Get the common variable ("Author" in the above figure)

Proposed Method 2

Decompose the Federated Query given as input to satisfy the pre-obtained Features

2. Create and execute each query to satisfy pre-obtained Features

Evaluation

Experiment

- Execute Federated Query with the following three methods and compare the execution time and availability of results
 - 1. Simply execute Federated Query (EXISTING)
 - 2. Rewrite the query using the VALUES clause (VALUES)
 - 3. Proposed Method (PROPOSED)
- Types of Federated Query prepared
 - manually created queries with relatively high utility
 - mechanically created queries with relatively low utility
- Evaluation Experiment
 - Ubuntu server 22.04 LTS
 - Apache jena fuseki 4.7.0 using 64GB memory
 - Ruby 2.7.7

Queries are here

https://github.com/ichichi-3180/mtsr2023/

Evaluation

Evaluation Result

Manually created

queryLabel	number of successes / number of trials, average execution time(second)			
	EXISTING	VALUES	PROPOSED	
Query1	0/10,	5/10, 63.43932973099872	5/10, 72.34730386268348	
Query2	10/10, 7.355361410416663	0/10,	0/10,	
Query3	0/10,	0/10,	0/10,	
Query4	1/10, 335.407594993012	0/10,	10/10, 61.23718678732403	
Query5	0/10,	0/10,	10/10, 9.801166327246888	
Query6	9/10, 437.27629097028534	0/10,	10/10, 170.16292382902466	

Mechanically created

queryLabel	number of successes / number of trials, execution time(second)		
(Second Service Endpoint)	EXISTING	VALUES	PROPOSED
assaultlily-rdf []	0/10,	0/10,	10/10, 3.6007316867122428
Cultural Japan []	0/10,	0/10,	10/10, 0.20709268788341434
DBpedia []	0/10,	10/10, 2.4891252658562735	10/10, 3.1280574607662857
DBpedia Japanese []	10/10, 18.008064862154423	0/10,	0/10,
Earthquake LOD []	10/10, 39.91150904921815	0/10,	10/10, 0.9186438637319952
Japan Search []	0/10,	0/10,	10/10, 1.6497687711846083
jrslod []	10/10, 9.802138139726594	0/10,	10/10, 0.433084353688173
Linked Open Vocabularies []	0/10,	0/10,	10/10, 4.227437379048206
Media Art Database []	0/10,	0/10,	0/10,
Web NDL Authorities []	10/10, 9.497704373137093	0/10,	10/10, 0.40398354569915684
Onsen LOD []	0/10,	0/10,	10/10, 0.19432361498475076
OWL de ramen ontology []	0/10,	10/10, 5.092421144200489	10/10, 5.1769265659153465
☆pikopiko planet☆space []	0/10,	0/10,	0/10,
PrismDB []	0/10,	0/10,	10/10, 1.4926710256142541
Wikidata []	0/10,	0/10,	10/10, 44.732915345299986

Discussion

- Of the queries used in this evaluation, the PROPOSED method was the one that obtained 100% (10/10) of the results for the most queries (16/21).
- The PROPOSED method was significantly faster than the EXSITING method and was able to retrieve results almost as fast as VALUES method.
- There were queries for which results could not be obtained even with the PROPOSED method.
 - Query2: Due to character encoding in Japanese URIs from Japan Search
 - Query3:
 The number of Solutions obtained from MADB is too large (could not be handled by the machine specs of the experimental environment).
 - DBpedia Japanese, pikopiko planet:
 The query used for execution met all the pre-obtained limits but could not be executed.
 → There may be additional items required in the limits that should be obtained in advance.
 - Media Art Database: Comparison method is a timeout, PROPOSED is an error specific to the SPARQL endpoint(403)

Conclusion

The evaluation shows that PROPOSED method improves execution time and accuracy

Future Works

- PROPOSED Method needs to be more updated based on the causes of gueries that could not be executed
- Need to experiment with more queries
 - I investigated Wikidata Query Log [7] and LSQ [8]
 - Few queries contain SERVICE clauses
 - \rightarrow Even though the SERVICE clause is used, it specifies a server down.
 - All triples have been specified in the graph pattern. (?s ?p ?o)
 - → Depends on machine power rather than number of HTTP requests issued.
 - · Need to collect query logs from different endpoints
 - → Currently we have part of logs from the Media Art Database
 - Manual creation of further queries

References

- 1. LOD cloud. http://cas.lod-cloud.net/
- 2. Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2009, March). SP2Bench: a SPARQL performance benchmark. In 2009 IEEE 25th International Conference on Data Engineering (pp. 222-233). IEEE.)
- 3. Groppe, J., Groppe, S., Kolbaum, J. "Optimization of SPARQL by using core SPARQL". Proc.of the ICEIS, pp.107–112 (2009)
- 4. Kenta Hirayama, Ken Kaneiwa. "SPARQLにおける集約の形式化とクエリ書き換え". 人工知能学会研究資料 SIG-SWO-048-03. 2019. In Japanese.
- 5. SPARQL 1.1 Federated Query W3C Recommendation 21 March 2013, https://www.w3.org/TR/sparql11-federated-query/
- 6. Buil-Aranda, C. et al.: "Strategies for executing federated queries in SPARQL1. 1". In: The Semantic Web-ISWC 2014: 13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II 13. Springer International Publishing, 2014. p. 390-405.
- 7. Wikidata SPARQL Logs, https://iccl.inf.tu-dresden.de/web/Wikidata SPARQL Logs/en
- 8. Linked SPARQL Queries, http://lsq.aksw.org/

Thank you for listening!