DRIVER DROWSINESS: MODEL PERFORMANCE ANALYSIS

How well models predict driver drowsiness from images of different distances

TABLE OF CONTENTS

01

PROBLEM BACKGROUND

02

DATA OVERVIEW 03

MODEL TRAIN & TEST

04

CONCLUSION & BUSINESS IMPACT

05

KEY LIMITATIONS & NEXT STEPS

01 THE PROBLEM

Drowsy Driving - What's up with that?

ACCIDENT STATISTICS

Police Reported Crash Stats due to Driver Drowsiness

1:25

1 in 25 drivers admit to falling asleep at the wheel

20+ hrs

Driving 20+ hours without sleeping = 0.08% BAC

21%

On average, drowsy driving is a factor in 21% of fatal crashes each year

FINANCIAL COSTS

\$109 Billion

Societal costs, annually - not including property damage (NHTSA)

\$12.5 Billion

Monetary losses (NHTSA)

FINANCIAL COSTS

Avg Increase in Car Insurance Rates After Reckless Driving Ticket

Insurance rates increase

- An average of \$500/6-mo policy period
- Over \$3,000 over the course of a 3 year period.

Avg cost of car insurance	\$1,771
Avg. cost of car insurance after accident	\$2,521
\$ increase	+\$750
% increase	+42%

02 DATA OVERVIEW

Where did we find the data?

DATA COLLECTION

MRL Eye Dataset

Training Dataset

Driver Face Dataset

Testing Dataset

Closed Eyes In The Wild

Testing Dataset

METHODS OF ACQUISITION

Histogram of Oriented Gradients (HOG)

 This feature extraction method captures the structure of the eyes by encoding the direction of edges and gradients, which are informative for the appearance of open or closed eyes.

SVM Classifier

 Classifier that uses these features to learn a boundary between the different categories of images (e.g., open vs. closed eyes).

MRL EYE DATASET

CLOSED EYES IN THE WILD

Face Dataset

Facial

Focus on the entire face

Facial Key Points

Eyes, nose and mouth, several facial features like glasses and beard.

DRIVER FACE DATASET

Face Dataset

General

Background with annotation of the face bounding box **Facial Key Points**

Eyes, nose and mouth, several facial features like glasses and beard. Gaze Direction

"Looking-right", "frontal", "looking-left"

03 THE MODEL

Convolutional Neural Network in TensorFlow for Binary Image Classification

WHY EFFICIENT NET?

Optimal Balance

Superior balance between accuracy and computational efficiency, which is achieved through a systematic approach to scaling called "compound scaling".

Versatility Across Devices

Can be deployed on a wide range of devices, from mobile and edge devices with EfficientNet-Lite to powerful cloud servers with the larger B7 model.

State of Art Performance

Has achieved state-of-the-art accuracy on image classification tasks, making them a top choice for advanced visual recognition problems.

Pre-Trained and Customizable

Comes with pre-trained models on ImageNet, which can be used as is or further fine-tuned to suit specific tasks and datasets.

MODEL SPECIFICATIONS

Layer (type)	Output	Shape	Param #
efficientnetb0 (Functional)	(None,	1280)	4049571
<pre>batch_normalization_1 (Bat chNormalization)</pre>	(None,	1280)	5120
dense_2 (Dense)	(None,	256)	327936
dropout_1 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	2)	514
=======================================			

Total params: 4383141 (16.72 MB) Trainable params: 4338558 (16.55 MB) Non-trainable params: 44583 (174.16 KB)

Architecture

EfficientNet architecture which uniformly scales all dimensions of depth/width/resolution

Normalization

Batch normalization that utilizes momentum to reduce training duration

Dropout

Drops nodes during training at rate of 0.45 to reduce overfitting

Optimizer

Legacy Adamax with learning rate of 0.001

TRAINING PERFORMANCE

Test Performance

	precision	recall	f1-score	support
close eyes open eyes	0.90 1.00	1.00 0.89	0.95 0.94	1566 1657
accuracy macro avg weighted avg	0.95 0.95	0.95 0.94	0.94 0.94 0.94	3223 3223 3223

Train Loss: 0.026102516800165176 Train Accuracy: 0.9985068440437317

Validation Loss: 0.04426911473274231

Validation Accuracy: 0.9933874011039734

Test Loss: 0.24402648210525513

EXTERNAL DATASET TESTING

CLOSED EYES IN THE WILD EYE PATCHES

Eye patches are collected based on the coarse face region and eye position automatically and respectively estimated by the face detector and eye localization. We first resize the cropped coarse faces to the size 100×100 (pixels) and then extract eye patches of 24×24 centered at the localized eye position.

CLOSED EYES IN THE WILD₁

This dataset contains 2423 subjects, among which 1192 subjects with both eyes closed are collected directly from Internet, and 1231 subjects with eyes open are selected from the Labeled Face in the Wild database.

DRIVER FACE₂

The DrivFace database contains images sequences of subjects while driving in real scenarios. It is composed of 606 samples of 640×480 pixels each, acquired over different days from 4 drivers (2 women and 2 men) with several facial features like glasses and beard.

https://parnec.nuaa.edu.cn/_upload/tpi/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
 http://adas.cvc.uab.es/elektra/enigma-portfolio/cvc11-drivface-dataset/

Closed Eyes In the Wild Eye Patches

Test Performance

Test Loss: 0.3227684795856476

	precision	recall	f1-score	support
closedEyes openEyes	0.82 0.96	0.97 0.80	0.89 0.87	2384 2462
accuracy macro avg weighted avg	0.89 0.89	0.88 0.88	0.88 0.88 0.88	4846 4846 4846

Closed Eyes In The Wild Test Performance

Test Loss: 41.48398971557617

	precision	recall	f1-score	support
ClosedFace OpenFace	0.49 0.24	0.97 0.01	0.65 0.02	1192 1231
accuracy macro avg weighted avg	0.37 0.36	0.49 0.48	0.48 0.33 0.33	2423 2423 2423

Drive Face Test Performance

Test Loss: 2.8023948669433594

	precision	recall	f1-score	support
closed open	0.09 1.00	1.00 0.05	0.17 0.09	52 553
accuracy macro avg weighted avg	0.54 0.92	0.52 0.13	0.13 0.13 0.10	605 605 605

NEW APPROACH New Model Trained on Closed Eyes in the Wild

Test Performance

	precision	recall	f1-score	support
ClosedFace	0.85	0.90	0.87	239
0penFace	0.90	0.84	0.87	246
accuracy			0.87	485
macro avg	0.87	0.87	0.87	485
weighted avg	0.87	0.87	0.87	485

Train Loss: 0.2952400743961334

Train Accuracy: 0.982300877571106

Validation Loss: 0.6066295504570007

Validation Accuracy: 0.8608247637748718

Test Loss: 0.5450876355171204

Closed Eyes In the Wild Eye Patches

Test Performance

Test Loss: 0.866802990436554

	precision	recall	f1-score	support
closedEyes openEyes	0.62 0.69	0.75 0.55	0.68 0.61	2384 2462
accuracy macro avg weighted avg	0.65 0.66	0.65 0.65	0.65 0.64 0.64	4846 4846 4846

MRL Test Performance

Test Loss: 1.6714320182800293

	precision	recall	f1-score	support
close eyes open eyes	0.47 0.46	0.66 0.28	0.55 0.35	41946 42952
accuracy macro avg weighted avg	0.47 0.47	0.47 0.47	0.47 0.45 0.45	84898 84898 84898

Drive Face Test Performance

Test Loss: 2.4694907665252686

	precision	recall	f1-score	support
closed open	0.13 0.97	0.83 0.45	0.22 0.62	53 553
accuracy macro avg weighted avg	0.55 0.89	0.64 0.49	0.49 0.42 0.58	606 606 606

CONCLUSIONS & BUSINESS IMPACT

Learnings and Business Applications

Dataset Selection on Model Performance

Test Accuracy

	(1) MEDIA RESEARCH LAB (MRL)	(2) CLOSED EYES IN THE WILD EYE PATCHES	(3) CLOSED EYES IN THE WILD (CEW)	(4) DRIVER FACE
Model Trained by (1)	94.45%	88.24%	48.25%	13.06%
Model Trained by (3)	46.80%	64.71%	87.22%	48.51%

Impact of Overfitting on Out-of-Sample Model Performance

Original Model Architecture trained on CEW

Train Loss: 0.17708471417427063

Train Accuracy: 1.0

Validation Loss: 0.2203344851732254 Validation Accuracy: 0.9774305820465088

Test Loss: 0.20876258611679077 Test Accuracy: 0.985567033290863

Closed Eyes in the Wild Eye Patches Confusion Matrix

Real-Time Application: Accident Prevention

Install video camera in car that faces the driver

Feed the live footage through a trained CNN

Identify when the driver closes their eyes for an extended period of time

Trigger an alarm to alert/awake the driver.

Business Impact: Insurance Companies

Classification of UBI (Usage-Based Insurance)

Arumugam, S., Bhargavi, R. A survey on driving behavior analysis in usage based insurance using big data. J Big Data 6, 86 (2019).

KEY LIMITATIONS & NEXT STEPS

How we move forward

NEXT STEPS

Model Improvement

- Limited labeled datasets with images of people with their eyes open and closed for model out-of-sample performance testing
- Test other model architectures and classification methods
- Create higher threshold for closed eyes classification for real-time application so program
 does not overpenalize insured drivers or exceedingly annoy drivers using live prevention
 systems
- Choose/tune model based on what camera setup/images that will be classified

Image Background and Timing Selection

- Identify whether driver is on a rural road or highway
- Factor in time of day when photo was taken between midnight and 6am or late afternoon

Music Selection

- Design an experiment and model to determine whether audio selection has an impact on eye open-close status
- Play different genres of music (beats/min, etc), take photos, and evaluate a classifier on whether eyes are open or closed

Thank you!

Questions?