//QUESTION 5

80 tubes

//Given

T_avg=60[C]
V_dot=15[L/s]*convert(L/s;m^3/s)
N_brass=80[dim]
D_i=1[cm]*convert(cm;m)
L_brass=1,5[m]
e_brass=0,0013[mm]*convert(mm;m)

//Assumption satuarated water at 60 C x=0[dim]

nu=kinematicviscosity(*Water*;*T*=T_avg;*x*=x)

A_brass=pi*(D_i^2)/4 A_total=A_brass*N_brass

V=V_dot/A_total

//Checking the type of flow R_e=(V*D_i)/nu

 $//Re>40*10^5$, the flow

 $(1/sqrt(f))+2*log10((e_brass/D_i)/3,7+2,51/(R_e*sqrt(f)))=0$

rho=density(Water; T=T_avg; x=x)

DELTAP=f*(L_brass/D_i)*(rho*V^2/2)

 $W_dot_in=V_dot*DELTAP$

$$T_{avg} = 60 [C]$$

$$\dot{V} = 15 \text{ [L/s]} \cdot \left| 0.001 \cdot \frac{\text{m}^3/\text{s}}{\text{L/s}} \right|$$

 N_{brass} = 80 [dim]

EES Ver. 11.824: #2413: Mechanical & Nuclear Engineering, North-West University, Potchefstroom, South Africa

$$D_i = 1 \text{ [cm]} \cdot \left| 0.01 \cdot \frac{\text{m}}{\text{cm}} \right|$$

$$L_{brass} = 1,5 [m]$$

$$e_{brass} = 0.0013 \text{ [mm]} \cdot \begin{vmatrix} 0.001 \cdot \frac{\text{m}}{\text{mm}} \end{vmatrix}$$

$$x = 0 [dim]$$

 $v = KinematicViscosity(Water; T = T_{avg}; x = x)$

$$A_{brass} = \pi \cdot \frac{D_i^2}{4}$$

$$A_{total} = A_{brass} \cdot N_{brass}$$

$$V = \frac{\dot{V}}{A_{total}}$$

$$R_e = \frac{V \cdot D_i}{V}$$

$$\frac{1}{\sqrt{f}} + 2 \cdot \log \left[\frac{e_{brass}}{D_i \cdot 3.7} + \frac{2.51}{R_e \cdot \sqrt{f}} \right] = 0$$

$$\rho = \rho(Water; T = T_{avg}; x = x)$$

$$\Delta P = f \cdot \frac{L_{brass}}{D_i} \cdot \rho \cdot \frac{V^2}{2}$$

$$\dot{W}_{in} = \dot{V} \cdot \Delta P$$

SOLUTION

Unit Settings: SI C kPa kJ mass deg

Abrass = 0,00007854 [m²]
Di = 0,01 [m]
Lbrass = 1,5 [m]

$$\rho$$
 = 983,2 [kg/m³]
V = 2,387 [m/s]
x = 0 [dim]

$$\begin{aligned} &\text{Atotal} &= 0,006283 \text{ [m}^2\text{]} \\ &\text{ebrass} &= 0,0000013 \text{ [m]} \\ &\text{V} &= 4,740\text{E-}07 \text{ [m}^2\text{/s]} \\ &\text{R_e} &= 50366 \text{ [dim]} \\ &\text{\dot{V}} &= 0,015 \text{ [m}^3\text{/s]} \end{aligned}$$

$$_{\Delta}P = 8960$$
 [Pa]
f = 0,02132 [dim]
N_{brass} = 80 [dim]
T_{avg} = 60 [C]
 $\dot{W}_{in} = 134,4$ [W]

No unit problems were detected.