Resistor

Energy Consuming Element

Resistor

Passive electric device that dissipates energy

- **Resistance:** Property that opposes the flow of current
 - Symbol: R
 - \circ Unit: Ohms (Ω)
 - o Power Consumed = I^2R

- Reciprocal of resistance
- Symbol: G
- Unit Siemens (S)

Resistivity or Specific Resistance

$$ho R = \frac{\rho l}{A}$$

$$\rho$$
 = resistivity

$$ho$$
 = resistivity | | = | length | A = cross sectional area | Unit: Ohm-meter

- The factor in the resistance which takes into account the **nature of the material**
- It is temperature dependent
- \circ The inverse of resistivity is called **conductivity**, **denoted by** σ

Effect of Temperature on Resistance

Metallic conductors (Example: Cu, Al)	If temperature is increased resistance increases	Positive temperature coefficient of resistance
Electrolytes, insulators (Example: glass, mica, rubber), and semiconductors	Resistance decreases with the increase in temperature	Negative temperature coefficient of resistance

- At temperature T₁, resistance is R₁
- Temperature is increased from T₁ to T₂, resistance becomes R₂

• Then,
$$\alpha = \frac{R_2 - R_1}{R_1 (T_2 - T_1)}$$

- The constant α is known as **temperature coefficient of resistance**
- Unit: 1 / °C
- Defined as increase in resistance per unit original resistance per unit rise in temperature
- Resistivity of metallic conductors also increases with the rise in temperature and vice-versa

Effect of Temperature on Resistance

Typical Values of Electrical Resistivity (In Ohm-Meters) at 20°C			
Aluminium	2.8 x 10 ⁻⁸		
Copper	1.7 x 10 ⁻⁸		
Gold	2.4 x 10 ⁻⁸		
Carbon (Graphite)	1 x 10 ⁻⁵		
Iron	1.0 x 10 ⁻⁷		
Nickel	7 x 10 ⁻⁸		
Silicon	6.4 x 10 ²		
Quartz	7 x 10 ¹⁷		

Temperature Coefficient of Resistance / °C (at 20° C)			
Aluminium	0.00429		
Copper	0.00386		
Gold	0.0034		
Carbon (Graphite)	- 0.0005		
Iron	0.00651		
Nickel	0.00641		
Silicon	- 0.07		
Quartz			

Resistor Value Determination

Ohm value and tolerance based on resistor color codes

1st Band 2nd Band				
Color	1 st , 2 nd Band Significant Figures	Multiplier		
Black	0	× 1		
Brown	1	× 10		
Red	2	× 100		
Orange	3	× 1K		
Yellow	4	× 10K		
Green	5	× 100K		
Blue	6	× 1M		
Violet	7	× 10M		
Grey	8	× 100M		
White	9	× 1G		
Gold		× 0.1		
Silver		× 0.01		

Color	1 st , 2 nd Band Significant Figures	Multiplier	Tolerance
Black	0	× 1	
Brown	1	× 10	±1% (F)
Red	2	× 100	±2% (G)
Orange	3	× 1K	±0.05% (W)
Yellow	4	× 10K	±0.02% (P)
Green	5	× 100K	±0.5% (D)
Blue	6	× 1M	±0.25% (C)
Violet	7	× 10M	±0.1% (B)
Grey	8	× 100M	±0.01% (L)
White	9	× 1G	
Gold		× 0.1	±5% (J)
Silver		× 0.01	±10% (K)

	Color	1 st , 2 nd , 3 rd Band Significant Figures	Multiplier	Tolerance
	Black	0	× 1	
	Brown	1	× 10	±1% (F)
	Red	2	× 100	±2% (G)
	Orange	3	× 1K	±0.05% (W)
	Yellow	4	× 10K	±0.02% (P)
	Green	5	× 100K	±0.5% (D)
	Blue	6	× 1M	±0.25% (C)
	Violet	7	× 10M	±0.1% (B)
	Grey	8	× 100M	±0.01% (L)
ĺ	White	9	× 1G	
İ	Gold		× 0.1	±5% (J)
	Silver		× 0.01	±10% (K)

Color	2 nd , 3 rd Band	Multiplier	Tolerance	Temperature Coefficient
Black	0	× 1		250 ppm/K(U)
Brown	1	× 10	±1% (F)	100 ppm/K(S)
Red	2	× 100	±2% (G)	50 ppm/K (R)
Orange	3	× 1K	±0.05%(W)	15 ppm/K (P)
Yellow	4	× 10K	±0.02%(P)	25 ppm/K (Q)
Green	5	× 100K	±0.5% (D)	20 ppm/K (Z)
Blue	6	× 1M	±0.25%(C)	10 ppm/K (Z)
Violet	7	× 10M	±0.1% (B)	5 ppm/K (M)
Grey	8	× 100M	±0.01% (L)	1 ppm/K (K)
White	9	× 1G		
Gold		× 0.1	±5% (J)	
Silver		× 0.01	±10% (K)	

Resistors

Series connection of Resistors

- Current (I) in the all the resistors remains same
- $V = V_1 + V_2 + V_3$
- $R_{eq} = R_1 + R_2 + R_3$

Parallel connection of Resistors

- Voltage (V) is same
- $I = I_1 + I_2 + I_3$
- $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Resistors – Voltage and Current Division

Series Resistors
$$R_1 \mapsto R_1 \mapsto R_1 + R_2$$
 Equivalent resistance $R_1 + R_2$

$$V_1 = \frac{R_1}{R_1 + R_2} V_s$$
 $V_2 = \frac{R_2}{R_2 + R_2} V_s$

Equivalent resistance
$$=R_1\|R_2=rac{R_1R_2}{R_1+R_2}$$

$$I_1 = rac{R_2}{R_1 + R_2} \, I_s \qquad I_2 = rac{R_1}{R_1 + R_2} \, I_s$$

Energy Storage Element

Passive electric device that stores energy in its magnetic field when current flows through it.

Inductance (also known as Self-Inductance, Unit: Henry or H)

- The property of a coil that opposes any change in the amount of current flowing through it.
- This property is due to the self-induced emf in the coil itself by the changing current.
- Self-inductance does not prevent the current from changing, it serves only to delay the change.

$$e = -N \frac{d\phi}{dt} = -N \frac{d\phi}{di} \cdot \frac{di}{dt} = -L \frac{di}{dt}$$
$$L = N \frac{d\phi}{di}$$

- The greater the self-induced emf, the greater the self-inductance of the coil and hence larger is the opposition to the changing current.
- Inductance of the coil depends upon: Shape and number of turns, relative permeability (μ_r) of the material surrounding the coil, and the speed at which the magnetic field changes

(i)
$$e = L \frac{di}{dt}$$

(ii)
$$N \varphi = L I$$

(iii)
$$L = \frac{N^2}{\text{Reluctance}} = \frac{N^2 \mu_0 \ \mu_r \ A}{l}$$

Types of Inductors

Air-core inductor (fixed inductor)

- Linear B-H curve, so L is the same no matter what current is in the coil.
- Since μ_r of air is 1, the values of L obtained are very low

Iron-core inductor (variable inductor)

- Ferromagnetic core
- Provides much higher value of L (as μ_r of ferromagnetic material is very large)
- B-H curve is not linear, so inductance will vary with current.

Practical Inductor

- All inductors are coil that have some winding resistance.

Practical Inductor

Inductor	Fixed	Variable	Pre-set	Shape
Air Core	70000°	TOWN-	M	
Iron Core	-0000_	-0000_ 	- JOROO -	
Ferrite Core	-70000°	70000	70000	

Energy Stored in an Inductor

Instantaneous power,

$$p = v_L.i = L i \frac{di}{dt}$$

Energy absorbed in 'dt' time is

$$dw = L i di$$

Energy absorbed by the magnetic field when current increases from 0 to I amperes, is

$$W = \int_0^I L i di = \frac{1}{2} L I^2$$

Inductance and Saturation Current

Equivalent Inductance

Inductors in series

$$L_{eq} = L_1 + L_2 + + L_n$$

Inductors in Parallel

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

$$L_1$$
 L_2
 L_3

•

Capacitor

Energy Storing Element

Capacitors

- Passive electric device that stores energy in the electric field between a pair of closely spaced conductors
- **Capacitance**: Property which opposes the rate of change of voltage
 - Symbol: C
 - Unit: Farad (F)

 The capacitive current is proportional to the rate of change of voltage across it

$$i_{c} = C \frac{dv_{c}}{dt}$$

Charge stored in a capacitor whose plates are maintained at constant voltage:

$$Q = CV$$

Terminologies

• Electric field strength,

$$E = \frac{V}{d} \text{ volts/m}$$

Electric flux density,

$$D = \frac{Q}{A} C/m^2$$

Permittivity of free space,

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$$

- Relative permittivity, ε_{r}
- Capacitance of parallel plate capacitor

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Equivalent Capacitance

Capacitors in Series

$$\frac{1}{C_{eq}} = \frac{1}{C1} + \frac{1}{C2} + \dots + \frac{1}{Cn}$$

Capacitors in Parallel

$$C_{eq} = C_1 + C_2 + \dots + C_n$$

Energy stored in a Capacitor

Instantaneous power

$$p = v_c \times i = C v_c \frac{dv_c}{dt}$$

Energy supplied during 'dt' time is:

$$d\mathbf{w} = \mathbf{C} \mathbf{v}_{\mathbf{c}} d\mathbf{v}_{\mathbf{c}}$$

Energy stored in the electric field when potential rises from 0 to V volts is,

$$W = \int_0^V C v_c dv_c = \frac{1}{2}CV^2$$
 Joules

Types of Capacitors and their Applications

Electrolytic Capacitor

- Used when large capacitor values are required
- Used generally in the DC power supply circuit
- Typical values ranges from 1 μF up to 47,000 μF

Mica Capacitor

- Mica is the dielectric material
- A stable, reliable, low loss capacitor of small value
- Used in high-frequency applications
- Typical values: under 100 nF

Paper Capacitor

- Typical values: Ranges from 0.001 to 2 μF
- Used in electronic noise filtering, signal processing applications, etc.

Types of Capacitors and their Applications

Film Capacitor

- Thin plastic is used as dielectric material
- It is heat resistant and used in aerospace and military technology
- Typical values: ranging from 1 nF to 30 μF

Ceramic Capacitor

- Ceramic is used as dielectric material
- Applications: Power circuit breakers, induction furnaces, also printed circuit boards in electronics
- Typical values: ranging from 1 nF to 1 μF

Non-Polarized Capacitor

- It can be of two types: plastic foil or electrolytic.
- Used in AC applications with signal or power supply
- Typical values ranges from 1 μF up to 47,000 μF

Types of Capacitors and their Applications

Ultracapacitor (Also known as Supercapacitor or Electrochemical Capacitor)

- Store energy electrostatically
- Much higher energy storage density (high-capacity capacitor) than a normal capacitor
- Can release energy much quicker than the battery and can be used many times over without degradation
- Possess high energy density, short charging cycle, and a wide range of operating temperatures
- Applications: Ranges from large-scale energy storage to small portable/wearable watches
- Has the potential to replace or augment battery and fuel cell systems in many areas of technology
- Rated in Farads typically be found in the 100 F to 500 F range (individual cells)

Capacitor Vs Supercapacitor Vs Battery

Exercise 1

The following voltage is applied to a capacitor of 50 μ F. Determine the current for 0 – 1 ms duration.

- A) 5 A
- B) 5 mA
- C) 5 A
- D) 1 A

Hint:
$$i_c = C \frac{dV_c}{dt}$$

Ans: 5 A

Exercise 2

A 100 mH inductor is supplied with a voltage of $v(t) = 25 e^{-5t} V$. Determine the inductor current.

Hint:
$$i_L = \frac{1}{L} \int_0^t v \, dt$$

ELE 1071

Ans: - $50 e^{-5t} A$