Lecture Notes

MATH205A: Real Analysis I (Autumn 2020)

@ Stanford University

Tianyu Du

November 2, 2020

1 Measures

1.1 Motivation

Motivation of this course is to define a notion of *length* on subsets of \mathbb{R} such that

- 1. length([a, b]) = b a.
- 2. (countable additivity) $length(\bigcup^{\infty} A_i) = \sum^{\infty} length(A_i)$ where A_i 's are disjoint.
- 3. (translation invariance) for all $a \in \mathbb{R}$, length(A + a) = length(A).

Fact 1.1. it is impossible to construct such length for all subsets of \mathbb{R} .

Proof. This proof shows it is impossible to construct a notion of length on [0,1] with desired properties.

For $x, y \in [0, 1]$, define an equivalence relation as $x \sim y \iff x - y \in \mathbb{Q}$. By the axiom of choice, we may construct a set A containing exactly one element from each equivalence class of $x \in [0, 1]$. Obviously, $A \subseteq [0, 1]$.

For each $r \in [-1,1] \cap \mathbb{Q}$, let $A_r := A + r$, and $A_r \subseteq [-1,2]$. By translation invariance, $length(A_r) = length(A)$. Note that for any $y \in [0,1]$, there exists some $x \in A$ such that $x \sim y$, therefore, $y \in A_{y-x} \subseteq \bigcup_r A_r$. Hence, $[0,1] \subseteq \bigcup_r A_r$.

If the notion of length satisfies countable additivity, $length(\bigcup_r A_r)$ is either zero or infinity, which leads to a contradiction.

Lebesgue's Resolution: we only defines length for a subset of $\mathcal{P}(\mathbb{R})$, which contains *everything* that may ever arrive in practice, i.e., σ -algebras.

1.2 Algebras and σ -algebra

Definition 1.1. Let X be a set, a collection \mathcal{A} of subsets of X is called an **algebra** if

1. $X \in \mathcal{A}$,

- $2. A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$.

Consequently: (1) $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$; (2) $A_1, \ldots, A_n \in \mathcal{A} \implies \bigcup_i A_i, \bigcap_i A_i \in \mathcal{A}$ (easily shown by induction); (3) $\emptyset \in \mathcal{A}$.

Definition 1.2. Let X be a set, a collection \mathcal{A} of subsets of X is called a σ -algebra if

- 1. $X \in \mathcal{A}$,
- $2. A \in \mathcal{A} \implies A^c \in \mathcal{A}.$
- 3. $A_1, A_2 \dots, \in \mathcal{A}, \implies \bigcup_i^{\infty} A_i \in \mathcal{A}.$

Example 1.1 (trivial examples). The power set of X is a σ -algebra on X; $\{\emptyset, X\}$ is a σ -algebra on X.

Example 1.2 (finite/co-finite algebra). Let X be an infinite set and A be the collection of subsets A such that either A is finite or A^c is finite. A is an algebra.

Proof. $X \in \mathcal{A}$ since $X^c = \emptyset$ is finite. For a $X \in \mathcal{A}$, if X is finite, then $X^c \in \mathcal{A}$. If X is infinite, X^c is finite and $X^c \in \mathcal{A}$. Let $A, B \in \mathcal{A}$, if both A and B are finite, $A \cup B$ is finite and in \mathcal{A} . If A is finite and B is co-finite, then $(A \cup B)^c = A^c \cap B^c \subseteq B^c$ is finite. If both A and B are co-finite, $(A \cup B)^c$ is finite so that $A \cup B \in \mathcal{A}$.

Note the \mathcal{A} is <u>not</u> a σ -algebra if X is infinite: take distinct points $x_1, x_2, \dots \in \mathcal{A}$, then the union of them is neither finite or co-finite, and therefore not in \mathcal{A} .

Example 1.3 (countable/co-countable σ -algebra). The collection of subsets $A \subseteq X$, such that either A is countable or A^c is countable, forms a σ -algebra.

Example 1.4. Let $X = \mathbb{R}$ and \mathcal{A} be the collection of all <u>finite</u> <u>disjoint</u> unions of half-open intervals (i.e., sets like $(a, b], (-\infty, b], (a, \infty)$), \mathcal{A} is an algebra. (Not working for open intervals).

Example 1.5 (counter example). Let X be an infinite set, \mathcal{A} be the collection of finite subsets of X. Then, \mathcal{A} is not an algebra.

Proposition 1.1. Let X be a set and $\{A_i\}_{i\in\mathcal{I}}$ be an arbitrary (not necessarily countable) collection of σ -algebras, then $\bigcap_{i\in\mathcal{I}} A_i$ is a σ -algebra.

Proof. Since
$$X \in \mathcal{A}_i$$
 for all $i \in \mathcal{I}$

Corollary 1.1. Let X be a set, and \mathcal{P} is an arbitrary collection of subsets of X, then $\exists!$ smallest σ -algebra \mathcal{A} containing \mathcal{P} . That is, for any σ -algebra $\mathcal{B} \supseteq \mathcal{P}$, $\mathcal{A} \subseteq \mathcal{B}$. \mathcal{A} is defined as the σ -algebra generated by \mathcal{P} , denoted as $\sigma(\mathcal{P})$.

Proof. For any \mathcal{P} , the power set of X is obviously a σ -algebra containing \mathcal{P} . Then we can take \mathcal{A} as the intersection of all σ -algebras containing \mathcal{P} .

1.3 Borel σ -algebra

Definition 1.3. The Borel σ -algebra of \mathbb{R} , denoted as $\mathcal{B}(\mathbb{R})$, is the σ -algebra generated by the set of open intervals in \mathbb{R} .

Fact 1.2. $\mathcal{B}(\mathbb{R})$ is generated by the collection of all closed intervals as well.

Proof. Let \mathcal{F} denote the σ -algebra generated by all closed intervals. Any open interval can be written as a countable union of closed sets: $(a,b) = \bigcup_{n=1}^{\infty} [a+1/n,b-1/n]$, therefore $(a,b) \in \mathcal{F}$ and $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{F}$.

Similarly, $[a,b] = \bigcap_{n=1}^{\infty} (a-1/n,b+1/n)$, hence $\mathcal{B}(\mathbb{R})$ is a σ -algebra contains all closed sets. Therefore, $\mathcal{F} \subseteq \mathcal{B}(\mathbb{R})$.

Fact 1.3. $\mathcal{B}(\mathbb{R})$ is generated by

- 1. all open sets,
- 2. all closed sets,
- 3. all half-open intervals.

Example 1.6 (counter example). $\mathcal{B}(\mathbb{R})$ is not generated by the collection of singletons.

Proof.

Definition 1.4. The Borel algebra of \mathbb{R}^d , $\mathcal{B}(\mathbb{R}^d)$, is the σ -algebra generated by

- 1. all open sets in \mathbb{R}^d ,
- 2. all closed sets in \mathbb{R}^d ,
- 3. all closed cubes (regions) in \mathbb{R}^d : $\prod_{i=1}^d [a_i, b_i]$.

1.4 Measures

Definition 1.5. For a set X and a σ -algebra \mathcal{A} of X, the pair (X, \mathcal{A}) is called a **measurable space**.

Definition 1.6. A measure μ on a measurable space (X, \mathcal{A}) is a map $\mu : \mathcal{A} \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$,
- 2. $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ for disjoint sequence (A_i)

For now, we don't require the translation invariance property.

The triple (X, \mathcal{A}, μ) is called a **measure space**.

Example 1.7 (counting measure).

Example 1.8 (point-mass measure).

Proposition 1.2. A measure μ possesses the following basic properties:

- 1. (Monotonicity) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- 2. (Sub-additivity) $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- 3. Let $A_1 \subseteq A_2 \subseteq \ldots$ be an increasing set, let $\bigcup_{i=1}^{\infty} A_i$ denoted $A_i \nearrow A$, $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
- 4. If $A_1 \searrow A \equiv \bigcap_{i=1}^{\infty} A_i$, and there exists $\mu(A_i) < \infty$, then $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

Example 1.9 (counter example). Let $X = \mathbb{Z}$, $A = 2^{\mathbb{Z}}$ and μ be the counting measure. Define $A_i = \{i, i+1, \ldots\}$, then $A_i \searrow A = \emptyset$, but $\lim_{n \to \infty} \mu(A_n) = \infty \neq \mu(\emptyset)$.

1.5 Outer Measure

Definition 1.7. Let X be a set, $\mu^*: 2^X \to [0, \infty]$ is an **outer measure** if

- 1. $\mu^*(\emptyset) = 0$.
- 2. $\mu^*(A) \leq \mu^*(B)$ whenever $A \subseteq B$.
- 3. (countable sub-additivity) $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$.

Key difference between outer measure and measure:

- 1. Outer measure does not require countable additivity,
- 2. outer measure is defined on 2^X instead of a σ -algebra .

Example 1.10.

1.6 Lebesgue Measure on \mathbb{R}

Definition 1.8. Let $A \subseteq \mathbb{R}$, define the **Lebesgue outer measure**:

$$\lambda^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} b_i - a_i : A \subseteq \bigcup_{i \in \mathbb{N}} (a_i, b_i) \right\}$$
 (1)

The Lebesgue outer measure of a set A is simply in the infimum of total lengths (the conventional notion of length) of open intervals cover A.

Proposition 1.3. The Lebesgue measure satisfies the following properties:

- 1. λ^* is an outer measure on \mathbb{R} ,
- 2. $\lambda^*([a, b]) = b a$ for all a < b.

Proof. (1.1) $\lambda^*(\emptyset) = 0$ since $(-\varepsilon, \varepsilon)$ covers \emptyset for arbitrarily small ε .

- (1.2) Let $A \subseteq B$, Ω_A and Ω_B be collection of sequences of open intervals covering A and B respectively. Then, any cover of B must be a cover of A, that is, $\Omega_A \subseteq \Omega_B$. Therefore, $\lambda^*(A) \leq \lambda^*(B)$.
 - (1.3) Let $A_1, A_2, \dots \subseteq \mathbb{R}$ and $A = \bigcup_{i=1}^{\infty} A_i$. For all i, we may find (a_{ij}, b_{ij}) covers A_i such that

$$\sum_{j=1}^{\infty} (b_{ij} - b_{ij}) \le \lambda^*(A_i) + \varepsilon 2^{-i}$$
(2)

Also, $\{(a_{ij}, b_{ij})\}_{i,j}$ is a countable union of open intervals that covers A.

$$\lambda^*(A) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (b_{ij} - a_{ij}) \tag{3}$$

$$\leq \sum_{i=1}^{\infty} (\lambda^*(A_i) + \varepsilon 2^{-i}) \tag{4}$$

$$=\sum_{i=1}^{\infty} \lambda^*(A_i) + \varepsilon \tag{5}$$

Therefore, $\lambda^*(A) \leq \sum_{i=1}^{\infty} \lambda^*(A_i)$.

(2) Note that $[a,b] \subseteq (a-\varepsilon,b+\varepsilon)$ for all $\varepsilon > 0$. Therefore,

$$\lambda^*([a,b]) \le \inf_{\varepsilon > 0} \lambda^*(a - \varepsilon, b + \varepsilon) = b - a \tag{6}$$

Now show $\lambda^*([a,b]) \ge b-a$. We want to show that $\sum_{i=1}^{\infty} (b_i - a_i) \ge b-a$ for all possible covering of [a,b], which implies the infimum of them is at least b-a.

Take an arbitrary covering $\{(a_i, b_i)\}_i$ of [a, b]. Since [a, b] is compact, there exists a finite covering $[a, b] \subseteq \bigcup_{i=1}^n (a_i, b_i)$ (reindexed), it suffices to show the finite sum $\sum_{i=1}^{\infty} (b_i - a_i) \ge b - a$.

(1) We firstly define an *interval* to be any open, closed or half-open intervals. The *length* of an interval is the difference between two end points.

Note that if an interval I contains a finite collection of disjoint sub-intervals, then the length of I is at least the sum of lengths of sub-intervals. The equality holds when I is exactly finite union of disjoint sub-intervals.

- (2) Suppose $[a,b] \subseteq \bigcup_{i=1}^n (a_i,b_i)$, let $I_i = [a,b] \cap (a_i,b_i)$. Easy to verify that the length of $I_i \le$ length of $(a_i,b_i) = b_i a_i$. Moreover, $\bigcup_{i=1}^n I_i = [a,b] \cup \bigcup_{i=1}^n (a_i,b_i) = [a,b]$.
- (3) For all i, define $I'_i = I_i \setminus (I_1 \cup I_2 \cup \cdots \cup I_{i-1})$. This procedure allows us to express [a, b] as a finite union of disjoint sub-intervals: $[a, b] = \bigcup_{i=1}^n I'_i$. Each I'_i is a finite union of disjoint intervals as well, the conventional notion of I'_i is well-defined. Then b a = sum of lengths of I'_i .

However, $\ell(I_i') \leq \ell(I_i) \leq b_i - a_i$ and sum of lengths of $I_i' \leq \text{sum of lengths of } I_i \leq \sum_{i=1}^n b_i - a_i$. Therefore, $b - a \leq \sum_{i=1}^n b_i - a_i \leq \sum_{i=1}^\infty b_i - a_i$. Hence, $b - a = \sum_{i=1}^\infty b_i - a_i$ and $\lambda^*[a, b] = b - a$ consequently.

1.7 Construct Lebesgue Measure

Definition 1.9. Let X be a set with outer measure μ^* . A set $B \subseteq X$ is μ^* -measurable if

$$\forall A \subseteq X, \mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c) \tag{7}$$

Theorem 1.1. For any set X with outer measure μ^* on it, let \mathcal{M}_{μ^*} denote the set of all μ^* -**measurable** sets. Then, \mathcal{M}_{μ^*} is a σ -algebra and $\mu^*|_{\mathcal{M}_{\mu^*}}$ (μ^* restricted to \mathcal{M}_{μ^*}) is a measure.

Proof. To show B is μ^* -measurable, it suffices to show that $\forall A \subseteq X, \mu^*(A) \ge \mu^*(A \cap B) + \mu^*(A \cap B^c)$, because the opposite inequality always holds by sub-additivity.

- $(1.1) \text{ Let } A \subseteq X, \ \mu^*(A \cap \varnothing) + \mu^*(A \cap \varnothing^c) = \mu^*(A \cap \varnothing^c) = \mu^*(A), \text{ therefore, } \varnothing \in \mathcal{M}_{\mu^*}.$
- (1.2) Let $A \subseteq X$ and $B \in \mathcal{M}_{\mu^*}$, $\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c) = \mu^*(A \cap (B^c)^c) + \mu^*(A \cap B^c)$. Hence, $B^c \in \mathcal{M}_{\mu^*}$.
 - (1.3.1) Let $B_1, B_2 \in \mathcal{M}_{\mu^*}$, we are going to show $B_1 \cup B_2 \in \mathcal{M}_{\mu^*}$. Fix any $A \subseteq X$,

$$\mu^*(A \cap (B_1 \cup B_2)) = \mu^*(A \cap (B_1 \cup B_2) \cap B_1) + \mu^*(A \cap (B_1 \cup B_2) \cap B_1^c)$$
(8)

$$= \mu^*(A \cap B_1) + \mu^*(A \cap B_1^c \cap B_2) \tag{9}$$

Moreover,

$$\mu^*(A \cap (B_1 \cup B_2)^c) = \mu^*(A \cap B_1^c \cap B_2^c) \tag{10}$$

Therefore,

$$\mu^*(A \cap (B_1 \cup B_2)) + \mu^*(A \cap (B_1 \cup B_2)^c) = \mu^*(A \cap B_1) + \mu^*(A \cap B_1^c \cap B_2) + \mu^*(A \cap B_1^c \cap B_2^c)$$
(11)

$$= \mu^*(A \cap B_1) + \mu^*(A \cap B_1^c) \text{ since } B_2 \in \mathcal{M}_{\mu^*}$$
 (12)

$$= \mu^*(A) \text{ since } B_1 \in \mathcal{M}_{\mu^*} \tag{13}$$

Therefore, \mathcal{M}_{μ^*} is an algebra.

(1.3.2) Now show that \mathcal{M}_{μ^*} is a σ -algebra. For any sequence of sets $A_i \in \mathcal{M}_{\mu^*}$, we can define $B_n := A_n \setminus \bigcup_{j=1}^{i-1} A_j$ such that $\cup B_i = \cup A_i$. Therefore, it is suffices to show \mathcal{M}_{μ^*} is closed under countable disjoint unions.

We are going to show the union $\cup B_i$ is μ^* -measurable for any disjoint sequence of μ^* -measurable B_i 's.

Claim: let $A \subseteq X$, $\mu^*(A) = \sum_{i=1}^n \mu^*(A \cap B_i) + \mu^*(A \cap (\bigcup_{i=1}^n B_i)^c)$. The claim can be proved by induction on n.

When n = 1, $\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c)$ because B_1 is μ^* -measurable.

Suppose the claim holds for n, then

$$\mu^*(A \cap (\cup_{i=1}^n B_i)^c) = \mu^*(A \cap (\cup_{i=1}^n B_i)^c \cap B_{n+1}) + \mu^*(A \cap (\cup_{i=1}^n B_i)^c \cap B_{n+1}^c)$$
(14)

because $B_{n+1} \in \mathcal{M}_{\mu^*}$. Moreover, since all B_i 's are disjoint, $B_{n+1} \subseteq B_i^c$ for all i. Hence,

$$B_{n+1} \subseteq \bigcap_{i=1}^{n} B_i^c = (\bigcup_{i=1}^{n} B_i)^c \tag{15}$$

Also,

$$(\bigcup_{i=1}^{n} B_i)^c \cap B_{n+1}^c = \bigcap_{i=1}^{n+1} B_i^c \tag{16}$$

Consequently,

$$\mu^*(A \cap (\bigcup_{i=1}^n B_i)^c) = \mu^*(A \cap B_{n+1}) + \mu^*(A \cap (\bigcup_{i=1}^{n+1} B_i)^c)$$
(17)

Hence,

$$\mu^*(A) = \sum_{i=1}^n \mu^*(A \cap B_i) + \mu^*(A \cap (\cap_{i=1}^n B_i^c))$$
(18)

$$\geq \sum_{i=1}^{n} \mu^*(A \cap B_i) + \mu^*(A \cap (\cap_{i=1}^{\infty} B_i^c))$$
(19)

$$= \sum_{i=1}^{n} \mu^*(A \cap B_i) + \mu^*(A \cap (\cup_{i=1}^{\infty} B_i)^c)$$
 (20)

Take $n \to \infty$

$$\mu^*(A) \ge \sum_{i=1}^{\infty} \mu^*(A \cap B_i) + \mu^*(A \cap (\cup_{i=1}^{\infty} B_i)^c)$$
(21)

$$\geq \mu^*(A \cap \bigcup_{i=1}^{\infty} B_i) + \mu^*(A \cap (\bigcup_{i=1}^{\infty} B_i)^c)$$
(22)

Therefore, $\bigcup_{i=1}^{\infty} B_i$ is μ^* -measurable.

(2) Let B_1, B_2, \ldots be a sequence of disjoint sets from \mathcal{M}_{μ^*} . Using the above fact and take $A = \bigcup_{i=1}^{\infty} B_i$,

$$\mu^*(A) \ge \mu^*(\cup_{i=1}^{\infty} B_i) + \mu^*(\varnothing) = \mu^*(\cup_{i=1}^{\infty} B_i)$$
(23)

The opposite inequality holds by sub-additivity. Therefore, μ^* is a measure on \mathcal{M}_{μ^*} .

Definition 1.10. Let λ^* be the Lebesgue outer measure on \mathbb{R} , then the collection \mathcal{M}_{λ^*} of λ^* -measurable sets is called the **Lebesgue** σ -algebra. The restriction $\lambda = \lambda^*|_{\mathcal{M}_{\lambda^*}}$, which is a measure on \mathcal{M}_{λ^*} , is called the **Lebesgue measure**. Any set in \mathcal{M}_{λ^*} is called a **Lebesgue measurable** set.

Theorem 1.2. $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{M}_{\lambda^*}$.

Proof. Note that $\{(-\infty, b] : b \in \mathbb{R}\}$ generates $\mathcal{B}(\mathbb{R})$, it suffices to show $\{(-\infty, b] : b \in \mathbb{R}\} \subseteq \mathcal{M}_{\lambda^*}$. Let $B = (-\infty, b]$, we are going to show B is λ^* -measurable. Let $A \subseteq \mathbb{R}$ and (a_n, b_n) be a sequence of open intervals covers A. For every $n \in \mathbb{N}$,

$$\lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c) = \lambda^*((a_n, b_n) \cap (-\infty, b]) + \lambda^*((a_n, b_n) \cap (b, \infty))$$
(24)

Three cases follow:

1.
$$b > b_n$$
: $\lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c) = \lambda^*((a_n, b_n)) = b_n - a_n$.

2.
$$b_n > b > a_n$$
: $\lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c) = \lambda^*((a_n, b)) + \lambda^*((b, b_n)) = b_n - a_n$.

3.
$$a_n > b$$
: $\lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c) = \lambda^*((a_n, b_n)) = b_n - a_n$.

Therefore,

$$\lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c) = b_n - a_n \tag{25}$$

By monotonicity and sub-additivity:

$$\lambda^*(A \cap B) + \lambda^*(A \cap B^c) \le \lambda^*(\cup(a_n, b_n) \cap B) + \lambda^*(\cup(a_n, b_n) \cap B^c)$$
(26)

$$\leq \sum \lambda^*((a_n, b_n) \cap B) + \lambda^*((a_n, b_n) \cap B^c)$$
(27)

$$=\sum_{n=1}^{\infty}b_n-a_n\tag{28}$$

Take the infimum of all such covering, we can show

$$\lambda^*(A \cap B) + \lambda^*(A \cap B^c) < \lambda^*(A) \tag{29}$$

Therefore, B is μ^* -measurable and \mathcal{M}_{λ^*} is a σ -algebra containing all such intervals and $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{M}_{\lambda^*}$.

1.8 Lebesgue Measure on \mathbb{R}^d

Definition 1.11. Steps to construct Lebesgue measure on \mathbb{R}^d :

1. Define open cubes on \mathbb{R}^d as a Cartesian product of open intervals: $Q := \prod_{i=1}^d (a_i, b_i)$. Define Lebesgue outer measure:

$$\lambda^*(A) := \inf \left\{ \sum_{n=1}^{\infty} \prod_{i=1}^{d} (b_{ni} - a_{ni}) : A \subseteq \bigcup_{n=1}^{\infty} Q_n \right\}$$
 (30)

- 2. Show λ^* is an outer measure and $\lambda^*(Q) = \prod_{i=1}^d (b_i a_i)$.
- 3. \mathcal{M}_{λ^*} is the Lebesgue σ -algebra on \mathbb{R}^d . Restricting λ^* on \mathcal{M}_{λ^*} defines the Lebesgue measure.
- 4. Show that any Borel set in \mathbb{R}^d is Lebesgue measurable by showing that there is a generating set of $\mathcal{B}(\mathbb{R}^d)$ is in \mathcal{M}_{λ^*} .

1.9 Uniqueness of the Lebesgue Measure

The next goal is to prove the uniqueness of Lebesgue measure on $\mathcal{B}(\mathbb{R}^d)$ subject to the criterion that the measure of any interval (cube) is the volume in the usual sense (product of side lengths).

Theorem 1.3. Let λ be the Lebesgue measure on \mathbb{R}^d , then for any Lebesgue measurable set A,

- 1. $\lambda(A) = \inf\{\lambda(U) : \text{ open } U \supseteq A\},\$
- 2. $\lambda(A) = \sup \{\lambda(K) : \text{compact } K \subseteq A\}.$

Proof. (1.1) WLOG $\lambda(A) < \infty$, by monotonicity, $\lambda(A) \le \lambda(U)$ for any open cover, $\lambda(A) \le \inf\{..\}$. (1.2)Let $\varepsilon > 0$, \exists a sequence of open intervals (R_i) such that

$$\lambda(A) \le \sum_{i=1}^{\infty} \lambda(R_i) \le \lambda(A) + \varepsilon \tag{31}$$

Let $U := \bigcup R_i$ open, hence $\inf\{..\} \le \lambda(U) \le \sum_{i=1}^{\infty} \lambda(R_i) \le \lambda(A) + \varepsilon$. Since this ε can be arbitrarily small, we conclude $\inf\{..\} \le \lambda(A)$.

(2.1) let A be a Lebesgue measurable set, <u>assume A is bounded</u>, so that $\lambda(A) < \infty$. Then there exists a compact $C \supseteq A$. $C \setminus A$ is Lebesgue measurable as well.

By conclusion of part (1), there exists a open set $U \supseteq C \setminus A$ such that

$$\lambda(C \backslash A) \le \lambda(U) \le \lambda(C \backslash A) + \varepsilon \tag{32}$$

Let $K = C \setminus U$, K is compact. Moreover, let $a \in K$, then $a \in C$ and $a \notin U$. Therefore, $a \notin C \setminus A$, it must be $x \in A$. Hence, $K \subseteq A$.

$$\lambda(K) = \lambda(C \setminus U) \tag{33}$$

$$\geq \lambda(C) - \lambda(U) \tag{34}$$

$$\geq \lambda(C) - (\lambda(C \backslash A) + \varepsilon) \tag{35}$$

$$= \lambda(C) - \lambda(C) + \lambda(A) - \varepsilon \tag{36}$$

$$= \lambda(A) - \varepsilon \tag{37}$$

Take $\varepsilon \to 0$ and $\lambda(A) \le \sup\{..\}$. By monotonicity, $\lambda(A) \ge \sup\{..\}$.

(2.2) Other cases: suppose A is unbounded and $\lambda(A) > 0$. Take an arbitrary $b < \lambda(A)$. We will show that $\sup\{...\} \ge b$, this will prove that $\lambda(A) \le \sup\{...\}$.

To show $\sup\{..\} \geq b$, it suffices to show that there exists a compact set $K \subseteq A$ such that $\lambda(K) \geq b$.

Let $\{C_j\}_{j=1}^{\infty}$ be a sequence of compact sets increasing to \mathbb{R}^d .

Then $A \cap C_j \uparrow A$ and $\lambda(A \cap C_1) < \infty$, which implies $\lambda(A) = \lim_{j \to \infty} \uparrow \lambda(A \cap C_j)$. Since $b < \lambda(A)$, there exists j such that $\lambda(A \cap C_j) \ge b$, where $A \cap C_j$ is compact. Hence, $b \le \sup\{..\}$ and $\lambda(A) \le \sup\{..\}$. $\lambda(A) \ge \sup\{..\}$ holds by monotonicity.

When $\lambda(A) = 0$, $0 \le \lambda(K)$ for all K so that $0 \le \sup\{..\}$. The opposite inequality holds by monotonicity.

Lemma 1.1. For each $k \in \mathbb{Z}$, define **dyadic cubes** in \mathbb{R}^d as set in the following form:

$$\prod_{i=1}^{d} [j_i 2^{-k}, (j_i + 1)2^{-k}) \tag{38}$$

where $j_i \in \mathbb{Z}$ for every i. Let \mathcal{D} denote the collection of dyadic cubes.

Then, any open set $U \subseteq \mathbb{R}^d$ can be expressed as a countable union of some members of \mathcal{D} .

A dyadic cube of side length 2^{-k} has a unique parent of side length 2^{-k+1} and a unique grandparent with side length 2^{-k+2} .

Proof. Given open set U, let \mathcal{D}_U denote the set of all dyadic half open cubes D such that $D \subseteq U$ but the parent of U does not fully contain U.

Claim 1: $U = \bigcup_{D \in \mathcal{D}_U} D$. Obviously, $\bigcup_{D \in \mathcal{D}_U} \subseteq U$. To show the converse, take any $x \in U$, since U is open, there exists $D \in \mathcal{D}_U$ such that $x \in D \subseteq U$.

Let D_0 be the <u>earliest</u> ancestor of D such that $x \in D_0 \subseteq U$. Obviously, $D_0 \in \mathcal{D}_U$. Therefore, $U \subseteq \bigcup_{D \in \mathcal{D}_U} D$.

Claim 2: Two dyadic cubes can overlap if and only if one is the ancestor of the other. By construction, dyadic cubes in \mathcal{D}_U are disjoint.

Claim 3: \mathcal{D}_U is countable because \mathcal{D} is itself countable.

Proposition 1.4. Lebesgue measure is the only measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ which assigns the *correct* volume to any d-dimensional intervals or even any d-dimensional dyadic cube.

Proof. Let λ denote the Lebesgue measure, let μ be another measure satisfying the desired property.

By lemma, for all open set U, $\mu(U) = \sum_{j=1}^{\infty} \mu(D_j) = \sum_{j=1}^{\infty} \lambda(D_j) = \lambda(U)$, where $\{D_j\}$ is a collection of disjoint dyadic cubes contains with union U. Therefore, $\underline{\lambda(A) = \mu(A)}$ for all open Borel set A.

Let $A \in \mathcal{B}(\mathbb{R}^d)$, let open $U \supseteq A$, then $\mu(A) \le \mu(U) = \lambda(U)$ for all U. Taking the infimum over all $U \supseteq A$, we conclude $\mu(A) \le \lambda(A)$ for all Borel set A.

Next, take any bounded Borel set A, let V be a bounded open set containing A. Then,

$$\mu(V) = \mu(A) + \mu(V \backslash A) \tag{39}$$

$$\leq \lambda(A) + \lambda(V \backslash A) \tag{40}$$

$$=\lambda(V)\tag{41}$$

But we also know that $\mu(V) = \lambda(V)$ since V is open, the inequality holds as equality. Moreover, the previous conclusion implies $\mu(A) \leq \lambda(A)$ and $\mu(V \setminus A) \leq \lambda(V \setminus A)$, it must be $\mu(A) = \lambda(A)$ and $\mu(V \setminus A) = \lambda(V \setminus A)$. Therefore, $\mu(A) = \lambda(A)$ for all bounded Borel set A.

Lastly, any Borel set can be written as a countable disjoint union of bounded Borel set, therefore, $\mu(A) = \lambda(A)$ for all Borel set A.

Proposition 1.5. The Lebesgue outer measure on \mathbb{R}^d is translation invariant. In particular, Lebesgue measure is translation invariant and any translation of Lebesgue measurable set is Lebesgue measurable.

Proof. $\lambda^*(A+x) = \lambda^*(A)$ follows the definition of λ^* : translate all covering intervals by +x and the volumes of these intervals stay the same. Since λ is simply the restriction of λ^* on Lebesgue measurable sets, λ is translation invariant as well.

Now take Lebesgue measurable B, for all $A \subseteq \mathbb{R}^d$:

$$\lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^c) \tag{42}$$

$$\implies \lambda^*(A-x) = \lambda^*((A-x) \cap B) + \lambda^*((A-x) \cap B^c) \tag{43}$$

Note that

$$(A-x) + x = A \tag{44}$$

$$(A-x) \cap B + x = A \cap (B+x) \tag{45}$$

$$(A-x) \cap B^c + x = A \cap (B+x)^c \tag{46}$$

By translational invariance of λ^* ,

$$\lambda^*(A) = \lambda^*(A \cap (B+x)) + \lambda^*(A \cap (B+x)^c) \tag{47}$$

Therefore, B + x is Lebesgue measurable as well.

Theorem 1.4. Let μ be a non-zero measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, which is finite on bounded Borel sets and translation invariant. Then, $\mu(A) = c\lambda(A)$ for all $A \in \mathcal{B}(\mathbb{R}^d)$, where λ is the Lebesgue measure.

Remark 1.1. Borel σ -algebra is closed under translation.

Proof. Let $c = \mu([0,1)^d) \in (0,\infty)$. Then $[0,1)^d$ is the disjoint union of 2^{dk} half-open dyadic intervals with side length 2^{-k} . All of these sub-intervals have the same μ since μ is translation invariant. Therefore, for every dyadic sub-interval with side length 2^{-k} , $\mu(D) = 2^{-dk}c$.

Let $\nu(A) = \frac{1}{c}\mu(A)$, then ν is a measure that is finite on bounded sets and agrees with λ on all half-open dyadic cubes. By the previous proposition, λ is the only measure assign correct volumes to dyadic cubes, therefore, $\nu = \lambda$.

Theorem 1.5. Under the axiom of choice, there exists a non-Lebesgue subset of \mathbb{R} .

2 Functions

2.1 Measurable Functions

Definition 2.1. A function $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ is **measurable** if $f^{-1}(B)\in\mathcal{A}$ for all $B\in\mathcal{B}$.

In this course, we mainly consider functions with extended- \mathbb{R} as codomain: $Y = [-\infty, \infty]$, denoted as \mathbb{R}^* .

Definition 2.2. The σ -algebra on \mathbb{R}^* is defined to be the σ -algebra generated by $\mathcal{B}(\mathbb{R}) \cup \{-\infty\} \cup \{\infty\}$.

Proposition 2.1.

$$\sigma(\mathcal{B}(\mathbb{R}) \cup \{-\infty\} \cup \{\infty\}) = \mathcal{B}(\mathbb{R}) \cup \{B \cup \{\infty\} : B \in \mathcal{B}(\mathbb{R})\}$$
(48)

$$\cup \{B \cup \{-\infty\} : B \in \mathcal{B}(\mathbb{R})\} \tag{49}$$

$$\cup \{B \cup \{-\infty, \infty\} : B \in \mathcal{B}(\mathbb{R})\}$$
 (50)

Proposition 2.2. Equivalently, f is measurable if for every $t \in \mathbb{R}$,

$$\{x \in X : f(x) \le t\} \in \mathcal{A} \tag{51}$$

$$\{x \in X : f(x) < t\} \in \mathcal{A} \tag{52}$$

$$\{x \in X : f(x) \ge t\} \in \mathcal{A} \tag{53}$$

$$\{x \in X : f(x) > t\} \in \mathcal{A} \tag{54}$$

More generally, to determine the measurability of $f:(X,\mathcal{A})\to (Y,\mathcal{B})$, we only need to check whether $f^{-1}(C)\in\mathcal{A}$ for all C in a generating collection \mathcal{C} of \mathcal{B} . The converse holds true trivially.

Proof. Let $(X, \mathcal{A}), (Y, \mathcal{B})$ be two measurable spaces, let \mathcal{C} be a collection of subsets of Y generates \mathcal{B} .

 (\Longrightarrow) Let f be a measurable function, then for every $C \in \mathcal{C} \subseteq \mathcal{B}$. Obviously, $f^{-1}(C) \in \mathcal{A}$ by definition.

 (\Leftarrow) Suppose $f^{-1}(C) \in \mathcal{A}$ for all $C \in \mathcal{C}$. Define

$$\mathcal{B}_0 := \{ B \in \mathcal{B} : f^{-1}(B) \in \mathcal{A} \} \supseteq \mathcal{C}$$
 (55)

It's easy to check \mathcal{B}_0 is in fact a σ -algebra : $f^{-1}(\varnothing) = \varnothing \in \mathcal{A}$, $f^{-1}(B^c) = (f^{-1}(B))^c$, and $f^{-1}(\bigcup B_i) = \bigcup f^{-1}(B_i)$. Therefore, $\mathcal{B} \subseteq \mathcal{B}_0$ and all $B \in \mathcal{B}$ satisfies $f^{-1}(B) \in \mathcal{A}$.

Example 2.1. $f(x) = \mathbb{1}\{x \in \mathbb{Q}\}$ is measurable.

2.2 Simple Functions

Definition 2.3. A function $f:(X,\mathcal{A})\to(\mathbb{R}^*,\mathcal{B}(\mathbb{R}^*))$ is called **simple** if there exists <u>finitely</u> many disjoint sets A_1,\ldots,A_n and real numbers a_1,\ldots,a_n such that

$$f(x) = \begin{cases} a_i & \text{if } x \in A_i \\ 0 & \text{if } x \notin A_i \forall i \in [n] \end{cases}$$
 (56)

Let \$\mathbb{S}\$ denote the set of simple functions, and \$\mathbb{S}^+\$ denote the set of non-negative simple functions.

Proposition 2.3. All simple functions are measurable.

Proof. For any subset of \mathbb{R}^* , the pre-image is either X or a union of some (potentially none) A_i 's.

2.3 Properties of Measurable Functions

Example 2.2. Let $f: \mathbb{R}^d \to \mathbb{R}$, then all of the following functions are measurable:

$$f(x,y) = x + y \tag{57}$$

$$f(x,y) = \max\{x,y\} \equiv x \vee y \tag{58}$$

$$f(x,y) = \min\{x,y\} \equiv x \land y \tag{59}$$

$$f(x,y) = x - y \tag{60}$$

$$f(x,y) = \alpha x \quad \alpha \in \mathbb{R} \tag{61}$$

Proposition 2.4 (Component-wise Measurable Functions). Let $f, g: (X, A) \to (\mathbb{R}^*, \mathcal{B}(\mathbb{R}^*))$ be measurable, let $h(x) = (f(x), g(x)) \in \mathbb{R}^{*2}$, then f is measurable.

Proof.

$$h^{-1}([-\infty, t] \times [-\infty, s]) = f^{-1}([-\infty, t]) \cap g^{-1}([-\infty, s]) \in \mathcal{A}$$
(62)

And, $\mathcal{B}(\mathbb{R}^*)$ can be generated by sets with forms $[-\infty, t] \times [-\infty, s]$.

Proposition 2.5 (Composite of Measurable Functions). Let $(X, \mathcal{A}), (Y, \mathcal{B}), (Z, \mathcal{C})$ be measurable spaces, let $f: X \to Y$ and $g: Y \to Z$ be measurable functions. Then, the composite $g \circ f: X \to Z$ is measurable.

Corollary 2.1. Let $f, g : X \to \mathbb{R}$ be measurable functions, then f + g, f - g, $\max\{f, g\}$, and $\min\{f, g\}$ are all measurable.

Proof. f+g and f-g can be written as the composition of $h_1(x)=(f(x),g(x))$ and $h_2(x,y)=x\pm y$, which are all measurable.

 $f \vee g$ and $f \wedge g$ are measurable as special cases of next proposition.

Proposition 2.6. Let $f_1, f_2,...$ be a sequence of measurable maps from $(X, \mathcal{A}) \to (\mathbb{R}^*, \mathcal{B}(\mathbb{R}^*))$, then $\sup_n f_n$ and $\inf_n f_n$ are measurable.

Proof. Note $\{x \in X : \sup_n f_n \leq t\} = \bigcup_{n=1}^{\infty} \{x \in X : f_n \leq t\} \in \mathcal{A}$ for every t, therefore the supremum is measurable.

Corollary 2.2. $\limsup f_n$ and $\liminf f_n$ are measurable.

Proof. Let $g_k = \sup_{n \geq k} f_n$, g_k is measurable. $\limsup f_n = \inf_k g_k$ is measurable as well. Similar proof for the measurability of $\liminf f_n$.

Proposition 2.7. Let f and g be \mathbb{R}^* -valued measurable functions. Then sets

$$\{x \in A : f(x) < g(x)\}, \{x \in A : f(x) \le g(x)\}$$
(63)

are measurable.

Proof.

$$\{x \in A : f(x) < g(x)\} = \bigcup_{r \in \mathbb{O}} (\{x \in A : f(x) < r\} \cap \{x \in A : r < g(x)\})$$
(64)

Corollary 2.3. Let $u, v : X \to \mathbb{R}^*$ be a measurable functions, then $\{x \in X : u(x) = v(x)\}$ is measurable.

Proof. Note that
$$\{x \in X : u(x) = v(x)\} = \{x \in X : u(x) \le v(x)\} \cap \{x \in X : u(x) \ge v(x)\}.$$

Corollary 2.4. Let $\{f_n\}$ be a sequence of measurable functions from $(X, \mathcal{A}) \to (\mathbb{R}^*, \mathcal{B}(\mathbb{R}^*))$. Then,

$$\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\}$$
 (65)

is measurable.

Proof. Note that $\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\} = \{x \in X : \liminf_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)\}$, the result follows from previous lemma.

Corollary 2.5. If $\{f_n\}$ is a sequence of measurable functions such that $\lim f_n(x)$ exists for all $x \in X$, then $\lim f_n$ is a measurable function on (X, \mathcal{A}) .

Proof. In this case,
$$\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\} = X$$
, and $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x)$.

Corollary 2.6. If $\{f_n\}$ is a sequence of measurable function from X to $[0,\infty]$, then $\sum_{n=1}^{\infty} f_n$ is measurable.

Proof. Follows the previous corollary directly: define $g_k = \sum_{n=1}^k f_n$ and $\lim_{k \to \infty} g_k = \sum_{n=1}^\infty f_n$.

3 Integrals

3.1 Integrating Simple Functions

Definition 3.1. Let $f \in \mathbb{S}^+$ with representation $\{(A_i, a_i)\}_{i=1}^n$. WLOG, $\bigcup_{i=1}^n A_i = X$. Then, define

$$\int_{X} f \ d\mu := \sum_{i=1}^{n} a_{i} \mu(A_{i}) \tag{66}$$

Proposition 3.1. The notion of integral on simple functions is well defined. Specifically, let $\{(A_i, a_i)\}_{i=1}^n$ and $\{(B_j, b_j)\}_{j=1}^m$ be any two representations of f, $\sum_{i=1}^n a_i \mu(A_i) = \sum_{j=1}^m b_j \mu(B_j)$.

Proof. First note that $\{A_i \cap B_j\}_{i,j}$ are disjoint sets with union X. Moreover, for any i,j, if $A_i \cap B_j \neq \emptyset$, take some $x \in A_i \cap B_j$, $f(x) = a_i = b_j$. Therefore, $a_i \mu(A_i \cap B_j) = b_i \mu(A_i \cap B_j)$ since either $a_i = b_j$ or $\mu(A_i \cap B_j) = \mu(\emptyset) = 0$.

$$\sum_{i=1}^{n} a_i \mu(A_i) = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \mu(A_i \cap B_j)$$
(67)

$$= \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \mu(A_i \cap B_j)$$
 (68)

$$=\sum_{j=1}^{m}b_{j}\mu(B_{j})\tag{69}$$

3.2 Integrating Measurable Functions

Definition 3.2. For a non-negative <u>measurable</u> function $f: X \to [0, \infty]$, define its Lebesgue integral as

$$\int f \ d\mu = \sup \left\{ \int g \ d\mu : g \text{ is a non-negative simple function such that } g \le f \right\}$$
 (70)

For any measurable $f: X \to [-\infty, \infty]$, let

$$f^{+}(x) = \max\{f(x), 0\} \tag{71}$$

$$f^{-}(x) = -\min\{f(x), 0\} \tag{72}$$

So that $f = f^+ - f^-$, and f is measurable if and only if both f^+ and f^- are measurable.

If at least one of $\int f^+ d\mu$, $\int f^- d\mu$ is finite, the integral of f exists (well-defined) and is defined as

$$\int f \ d\mu = \int f^+ \ d\mu - \int f^- \ d\mu \tag{73}$$

If both $\int f^+ d\mu$ and $\int f^- d\mu$ are finite, f is said to be **integrable**.

3.3 Properties of Integral of Non-negative Simple Functions

Proposition 3.2 (Linearity). If f, g are non-negative simple functions, then

$$\int f + g \ d\mu = \int f \ d\mu + \int g \ d\mu \tag{74}$$

Moreover, for any $\alpha \geq 0$,

$$\int \alpha f \ d\mu = \alpha \int f \ d\mu \tag{75}$$

Proof. Let f and g be simple functions represented by $\{(A_i, a_i)\}_{i=1}^n$ and $\{(B_j, b_j)\}_{j=1}^m$. WLOG, $\bigcup A_i = \bigcup B_j = X$. Then f + g is a simple function with representation $\{(A_i \cap B_j, a_i + b_j)\}_{i,j}$, where $\bigcup_{i,j} A_i \cap B_j = X$.

Proposition 3.3. Let f, g be non-negative simple functions with $f \geq g$ everywhere. Then $\int f d\mu \geq \int g d\mu$.

Proof. Let f and g be simple functions represented by $\{(A_i, a_i)\}_{i=1}^n$ and $\{(B_j, b_j)\}_{j=1}^m$.

Claim: $a_i\mu(A_i\cap B_j) \geq b_j\mu(A_i\cap B_j)$ for every (i,j). If $A_i\cap B_j \neq \emptyset$, then taking some $x\in A_i\cap B_j$ implies $a_i\geq b_j$. If $A_i\cap B_j=\emptyset$, the equality holds trivially.

Note that $\int f$ and $\int g$ can be written as $\sum_{i,j} a_i \mu(A_i \cap B_j)$ and $\sum_{i,j} b_j \mu(A_i \cap B_j)$ respectively, therefore $\int f \geq \int g$ by the previous claim.

Proposition 3.4 (Approximation using Simple Functions). Let $f: X \to [0, \infty]$ be a <u>measurable</u> function. Then there exists an <u>increasing</u> sequence of <u>non-negative simple</u> functions f_n such that $f_n \leq f_{n+1}$ and

$$\lim_{n \to \infty} f_n(x) = f(x) \tag{76}$$

for all x.

Proof. For each n and $1 \le k \le n2^n$, let

$$A_{n,k} = \left\{ x \in X : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}$$
 (77)

Define

$$f_n(x) = \begin{cases} \frac{k-1}{2^n} & \text{if } x \in A_{n,k} \\ n & \text{otherwise} \end{cases}$$
 (78)

That is, for a $x \in X$, if $\frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}$ for some k, we take $f_n(x) = \frac{k-1}{2^n}$; if $f(x) \ge n$, we define $f_n(x) = n$. Clearly, each f_n is a simple function.

Claim 1: $f_n \leq f_{n+1}$. Easy to verify.

Claim 2: $\lim_{n\to\infty} f_n(x) = f(x)$. Let $x\in X$, (i) if $f(x)=\infty$, then $f_n(x)=n$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty} f_n(x)=\infty=f(x)$.

(ii) if $f(x) < \infty$, then $\exists n_0$ such that $f(x) < n_0$. For every $n \ge n_0$, $x \in A_{n,k}$ for some k such that $f_n(x) = \frac{k-1}{2^n}$ and $\frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}$. Therefore, for all $n \ge n_0$, $|f_n(x) - f(x)| < \frac{1}{2^n}$, which implies $\lim_{n \to \infty} f_n(x) = f(x)$.

Proposition 3.5 (Monotone Convergence 1: $\mathbb{S}_+ \uparrow \mathbb{S}_+$). Let f_n be a sequence of non-negative simple functions that increase to another non-negative simple function f at each point, then

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu \tag{79}$$

Proof. By monotonicity, $f_n \leq f$ for all n and $\int f d\mu \geq \lim \int f_n d\mu$.

Fix $0 < \varepsilon < 1$ and define $g = (1 - \varepsilon)f$. Suppose f is represented by (A_i, a_i) . Then for every n, i, define

$$A_{n,i} = \{x \in A_i : f_n(x) \ge (1 - \varepsilon)a_i\}$$

$$\tag{80}$$

Define

$$g_n(x) = \begin{cases} (1 - \varepsilon)a_i & \text{if } x \in A_{n_i} \\ 0 & \text{otherwise} \end{cases}$$
 (81)

In order to show $\int f \ d\mu \leq \lim \int f_n \ d\mu$, we are constructing this g_n satisfying

$$(1 - \varepsilon) \int f \ d\mu \le \lim \int g_n \ d\mu \le \lim \int f_n \ d\mu \le \int f \ d\mu \tag{82}$$

where the last equality has been shown above. The equality can then be shown by taking $\varepsilon \to 0$ and using Squeeze theorem. Note that $(1-\varepsilon)\int f\ d\mu \not\leq \int g_n\ d\mu$, only the limit does.

By construction, $g_n \leq f_n$ and $\int g_n d\mu \leq \int f_n d\mu$ as a result.

$$\lim_{n} \int f_n \ d\mu \ge \lim_{n} g_n \ d\mu \tag{83}$$

$$= \lim_{n} \sum_{i=1}^{K} (1 - \varepsilon) a_i \mu(A_{n,i})$$
(84)

$$= \sum_{i=1}^{K} (1 - \varepsilon) a_i \lim_{n} \mu(A_{n,i})$$
(85)

$$= \sum_{i=1}^{K} (1 - \varepsilon) a_i \mu(A_i) \text{ Since for all } i, A_{n,i} \uparrow A_i \text{ as } n \to \infty.$$
 (86)

$$= (1 - \varepsilon) \int f \, d\mu \tag{87}$$

Taking $\varepsilon \to 0$ completes the proof.

Proposition 3.6 (Monotone Convergence 2: $\mathbb{S}_+ \uparrow$ Measurable). Let $f: X \to [0, \infty]$ be a measurable function. Let f_n be a sequence of non-negative simple functions such that $f_n \uparrow f$ point-wise. Then

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu \tag{88}$$

Proof. The proof follows the previous proposition and the definition of $\int f d\mu$. Since $f_n \uparrow f$, $f_n \leq f$ and $\int f_n \leq \int f$ for all n. $\int f_n$ is a bounded monotone sequence, therefore $\lim \int f_n$ exists and $\int f_n f_n = f(x) \int f_n f(x) dx$.

To show the other equality, it suffices to prove $\lim \int f_n \geq \int g$ for any non-negative simple functions $g \leq f$.

Define $g_n = \min\{g, f_n\}$, easy to show that $g_n(x) \leq g_{n+1}(x)$.

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \min\{g, f_n\}$$
(89)

$$= \min\{g(x), f(x)\}\tag{90}$$

$$=g(x) \tag{91}$$

since $f_n \uparrow f$ and $g \leq f$.

By the previous proposition, $\int g \ d\mu = \lim \int g_n \ d\mu$ since g_n and g are non-negative simple functions. Since $g_n \leq f_n$ everywhere, so $\int g_n \ d\mu \leq \int f_n \ d\mu$. Taking limit on both sides implies $\int g \leq \lim \int f_n$.

Proposition 3.7 (Vector Space Properties for Non-negative Integrable Functions). Let $f, g : X \in [0, \infty]$ be integrable (of course, measurable as well) functions and $\alpha \geq 0$. Then

- 1. $\int f + g \ d\mu = \int f \ d\mu + \int g \ d\mu.$
- 2. $\int \alpha f \ d\mu = \alpha \int f \ d\mu.$
- 3. If $f \geq g$ everywhere, then $\int f d\mu \geq \int g d\mu$.

Proof. We know that there exists sequences of non-negative simple functions f_n and g_n such that $f_n \uparrow f$ and $g_n \uparrow g$. Note that $f_n + g_n$ is a sequence of simple functions increases to f + g. Therefore,

$$\int (f+g)d\mu = \lim_{n \to \infty} \int (f_n + g_n) \ d\mu \tag{92}$$

$$= \lim_{n \to \infty} \left(\int f_n \ d\mu + \int g_n \ d\mu \right) \tag{93}$$

$$= \lim_{n \to \infty} \int f_n \ d\mu + \lim_{n \to \infty} \int g_n \ d\mu \tag{94}$$

$$= \int f \ d\mu + \int g \ d\mu \tag{95}$$

Similarly, taking $\alpha f_n \uparrow \alpha f$ leads to the second result.

Finally, if $f \geq g$ everywhere, then

$$\{h \in \mathbb{S}_+ \text{ and } h \le g\} \subseteq \{h \in \mathbb{S}_+ \text{ and } h \le f\}$$
 (96)

Therefore, the supremum of integrals of functions from a larger collection is larger.

3.4 Linearity of Lebesgue Integral for Arbitrary Integrable Functions

Theorem 3.1 (Vector Space Property of Integral Functions). Let (X, \mathcal{A}, μ) be a measure space, let $f, g: X \to \mathbb{R}^*$ be integrable functions, let $\alpha \in \mathbb{R}$. Then, f + g and αf are integrable, and

$$\int f + gd\mu = \int fd\mu + \int gd\mu \tag{97}$$

$$\int \alpha f d\mu = \alpha \int f d\mu \tag{98}$$

Proof. It's easy to check that $(f+g)^+ \leq f^+ + g^+$ and $(f+g)^- \leq f^- + g^-$. By monotonicity, $\int (f+g)^+ d\mu$, $\int (f+g)^- d\mu < \infty$. Therefore, f+g is integrable.

Moreover, $f + g = f^+ - f^- + g^+ - g^- \iff f + g + f^- + g^- = f^+ + g^+$. We can apply the linearity of non-negative integrable functions to derive the result.

When $\alpha \geq 0$, $(\alpha f)^+ = \alpha f^+$ and $(\alpha f)^- = \alpha f^-$. The proof for cases with $\alpha < 0$ is similar.

Corollary 3.1. Let f, g be integrable functions such that $f \geq g$, then $\int f \ d\mu \geq \int g \ d\mu$.

Proof. Let $h = f - g = f + (-1)g \ge 0$, which is integrable by the previous theorem. And $\int h \ d\mu \ge 0$ since its the supremum of integrals for simple functions less than h, which includes the zero function (has zero integral).

Lemma 3.1. A function f is integrable if and only if |f| is integrable.

Proof. Note that $|f| = f^+ + f^-$, and $\int f^+ + f^- d\mu < \infty$ by the integrability of f. Therefore, |f| is integrable.

Moreover, $|f|^+ = f^+ + f^-$, therefore, the integrability of |f| implies both $\int f^+ d\mu$ and $\int f^- d\mu$ are finite.

Proposition 3.8. All integrable function f satisfies the triangle inequality

$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu \tag{99}$$

Proof.

$$\left| \int f \ d\mu \right| = \left| \int f^+ - f^- \ d\mu \right| \tag{100}$$

$$= \left| \int f^+ d\mu - \int f^- d\mu \right| \tag{101}$$

$$\leq \left| \int f^+ \ d\mu \right| + \left| \int f^- \ d\mu \right| \tag{102}$$

$$= \int f^{+} d\mu + \int f^{-} d\mu \tag{103}$$

$$= \int |f| \ d\mu \tag{104}$$

4 Limit Theorems (i.e., when we can exchange limits and integrals)

Theorem 4.1 (Monotone Convergence Theorem). Let (X, \mathcal{A}, μ) be a measure space, let $f_n : X \to [0, \infty]$ be a non-decreasing sequence of measurable functions converge to f. Then,

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu \tag{105}$$

Proof. f measurable since $f = \lim_n f_n = \lim_n f_n$. Moreover, $\int f_n d\mu$ is a non-decreasing sequence to the limit $\int f d\mu$, therefore $\int f d\mu \geq \lim_n \int f_n d\mu$.

For each $n \in \mathbb{N}$, there exists a non-decreasing sequence of non-negative simple functions $g_{n,k}$ converges to f_n . Define

$$h_n = \max\{g_{1,n}, g_{2,n}, \dots, g_{n,n}\}$$
(106)

Note that h_n is a non-decreasing sequence since

$$h_{n+1} = \max\{g_{1,n+1}, g_{2,n+1}, \dots, g_{n+1,n+1}\}\tag{107}$$

$$\geq \max\{g_{1,n+1}, g_{2,n+1}, \dots, g_{n,n+1}\}\tag{108}$$

$$\geq \max\{g_{1,n}, g_{2,n}, \dots, g_{n,n}\} = h_n \tag{109}$$

Moreover, for any $m \in \mathbb{N}$, for any $n \geq m$,

$$h_n(x) = \max\{g_{1,n}, g_{2,n}, \dots, g_{n,n}\} \ge g_{m,n}$$
 (110)

Therefore, by taking the limit $n \to \infty$,

$$\lim_{n \to \infty} h_n(x) \ge \lim_{n \to \infty} g_{m,n} = f_m \tag{111}$$

Taking limit $m \to \infty$ on both sides

$$\lim_{n} h_n(x) = \lim_{m} \lim_{n} h_n(x) \ge \lim_{m} f_m = f$$
(112)

$$\implies \int \lim_{n} h_n(x) \ d\mu \ge \int f \ d\mu \tag{113}$$

Note that, by construction,

$$h_n = \max\{g_{1,n}, g_{2,n}, \dots, g_{n,n}\} \le \max\{f_1, \dots, f_n\} = f_n$$
 (114)

Therefore,

$$\int \lim_{n \to \infty} f_n(x) \ d\mu \ge \int f \ d\mu \tag{115}$$

Corollary 4.1. Let (f_n) be a sequence (not necessarily increasing) non-negative measurable functions, then

$$\int \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int f_n \ d\mu \tag{116}$$

Theorem 4.2 (Fatou's Lemma). Let f_n be a sequence of non-negative measurable functions, then

$$\int \liminf_{n \to \infty} f_n \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu \tag{117}$$

Proof. Define $g_n = \inf_{k \geq n} f_k$, then g_n is an increasing sequence of non-negative functions. By construction, $\int g_n d\mu \leq \inf_{k \geq n} \int f_k d\mu$. By MCT,

$$\int \liminf_{n \to \infty} f_n \ d\mu = \int \lim_{n \to \infty} g_n \ d\mu \tag{118}$$

$$=\lim_{n\to\infty}\int g_n\ d\mu\tag{119}$$

$$\leq \lim_{n \to \infty} \inf_{k \geq n} \int f_k \ d\mu \tag{120}$$

$$= \liminf_{n \to \infty} \int f_n \ d\mu \tag{121}$$

Theorem 4.3 (Lebesgue's Dominated Convergence Theorem). Let (X, \mathcal{A}, μ) be a measure space, let f and f_n be \mathbb{R}^* -valued measurable functions on X such that $f_n \to f$ point-wise. If there exists a non-negative integrable function g such that $|f_n| \leq g$ for all n, then, all f and f_n are integrable, moreover,

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu \tag{122}$$

Proof. Since $|f_n| \leq g$, all f_n are integrable. The limit f also satisfies $|f| \leq g$ and is integrable. For now, assume f_n are \mathbb{R} -valued instead of \mathbb{R}^* -valued.

Note that $f + g = \lim_{n\to\infty} f_n + g$ is non-negative (because of the dominance) and integrable, by Fatou's lemma

$$\int f + g \ d\mu = \int \liminf f + g \ d\mu \le \liminf \int f_n + g \ d\mu \tag{123}$$

$$= \liminf \int f_n \ d\mu + \int g \ d\mu \tag{124}$$

$$\implies \int f \ d\mu \le \liminf \int f_n \ d\mu \tag{125}$$

Similarly, $g - f = \lim_{n \to \infty} g - f_n$ is non-negative and integrable as well, by Fatou's lemma

$$\int g - f \ d\mu = \int \liminf g - f_n \ d\mu \le \liminf \int g - f_n \ d\mu \tag{126}$$

$$\implies -\int f \ d\mu \le -\liminf \int f_n \ d\mu \tag{127}$$

$$\implies \int f \ d\mu \ge \limsup \int f_n \ d\mu \tag{128}$$

Also, $\liminf \int f_n \ d\mu \leq \limsup \int f_n \ d\mu$, therefore,

$$\liminf \int f_n \ d\mu \ge \int f \ d\mu \ge \limsup \int f_n \ d\mu \ge \liminf \int f_n \ d\mu \tag{129}$$

$$\implies \int f \ d\mu = \lim \int f_n \ d\mu \tag{130}$$

Proposition 4.1 (A Stronger Result). Given assumptions of the dominated convergence theorem, f_n L^1 -converges to f.

$$\lim_{n \to \infty} \int |f_n - f| \ d\mu = 0 \tag{131}$$

Proof. Note that $|f_n - f| \to 0$ point-wise, and $|f_n - f| \le 2g$. The dominated convergence theorem suggests $\lim_{n\to\infty} \int |f_n - f| \ d\mu = \int 0 \ d\mu = 0$.

4.1 The Notion of Almost Everywhere

Definition 4.1. Let (X, \mathcal{A}, μ) be a measure space, a set $N \subseteq X$ (not necessarily measurable) is called "negligible w.r.t. μ " if $N \subseteq A$ for some $A \in \mathcal{A}$ with $\mu(A) = 0$.

A property is said to hold **almost everywhere** w.r.t. μ (denoted as μ -a.e.) if the set on which this property fails is negligible.

Proposition 4.2. Let $f: X \to [0, \infty]$ be an integrable function, then f is finite μ -a.e.

Proof. Let $A := f^{-1}(\infty)$, define $h_n(x) := n\mathbb{1}\{x \in A\}$. Clearly, h_n is a simple function $\leq f$ for every n, by monotonicity, $\int f \ d\mu \leq \int h_n \ d\mu = n\mu(A)$. Taking $n \to \infty$ leads to a contradiction.

Corollary 4.2. If $f: X \to \mathbb{R}^*$ is integrable w.r.t. μ , then $|f| < \infty \mu$ -a.e.

Proof. f is integrable implies $\int f^+ d\mu$, $\int f^- d\mu < \infty$. Then, by the previous proposition, $f^+ < \infty$ except for a negligible set A, and $f^- < \infty$ expect for a negligible set B. Therefore, $|f| = \infty$ on set $A \cup B$, which is negligible as well.

Proposition 4.3. Let $f: X \to [0, \infty]$ be measurable, then

$$\int f \ d\mu = 0 \iff f = 0 \ \mu - a.e. \tag{132}$$

Proof. (\Longrightarrow) Suppose f=0 a.e., for every simple function $g \leq f$, let (a_i, A_i) be the representation of g, then $\int g \ d\mu = 0$ by definition. Suppose $a_i > 0$ for some A_i , then $f(x) \geq a_i > 0$ for all $x \in A_i$, since f=0 a.e., $\mu(A_i)=0$. Therefore, $\int g \ d\mu = 0$, so is the integral of f.

(\iff), suppose $\int f d\mu = 0$, note that

$$\{x: f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x: f(x) > 1/n\}$$
(133)

Define $A_n = \{x : f(x) > 1/n\}$, then A_n is an increasing sequence of sets, therefore, suppose there exists some A_n with $\mu(A_n) > 0$, define $g(x) = \frac{1}{n} \mathbb{1}\{x \in A_n\}$. $f \geq g$ by construction, so that $\int f \ d\mu \geq \int g \ d\mu = \frac{1}{n} \mu(A_n) > 0$. This leads to a contradiction, so all $\mu(A_n) = 0$, and $\mu(\{x : f(x) > 0\}) = \lim_n \mu(A_n) = 0$.

Corollary 4.3. Let $f: X \to \mathbb{R}^*$ be a measurable function,

$$f = 0 \ \mu - a.e. \implies \int f \ d\mu = 0$$
 (134)

Proof. f = 0 a.e. implies $f^+, f^- = 0$ a.e., apply the previous proposition, $\int f^+ d\mu = \int f^- d\mu = 0$, so is $\int f d\mu$.

Note the converse is not true, it is possible that $f^+ d\mu = \int f^- d\mu \neq 0$ such that $\int f d\mu = 0$.

Corollary 4.4. Let $f, g: X \to \mathbb{R}^*$ be integrable functions, then

$$f = 0 \ \mu - a.e. \implies \int f \ d\mu = \int g \ d\mu$$
 (135)

Proof. Let $\tilde{f} = f(x)\mathbb{1}\{x \in \mathbb{R}\}$ and $\tilde{g} = g(x)\mathbb{1}\{x \in \mathbb{R}\}$, we are doing this to avoid subtracting infinity from infinity. $|\tilde{f}|$ and $|\tilde{g}|$ are bounded by |f| and |g| and are integrable. Moreover, $f = \tilde{f} = g = \tilde{g}$ a.e. by construction. Lastly, since $|\tilde{f}|$, $|\tilde{g}| < \infty$, we can write

$$\int \tilde{f} - \tilde{g} \ d\mu = \int \tilde{f} \ d\mu - \int \tilde{g} \ d\mu = 0 \tag{136}$$

$$\implies \int f \ d\mu = \int \tilde{f} \ d\mu = \int g \ d\mu = \int \tilde{g} \ d\mu \tag{137}$$

Proposition 4.4. Monotone convergence theorem and dominated convergence theorem holds even if $f_n \to f$ a.e. In DCT, we can also have $|f_n| \le g$ a.e.

Proof for MCT. Suppose $f_n \geq 0$ a.e.

$$A = \{x : f_n(x) \ge 0 \ \forall n \land \lim_{n \to \infty} f_n(x) = f(x)\}$$
(138)

Therefore, $A^c = \bigcup_n \{x : f_n(x) < 0\} \cup \{x : \lim_{n \to \infty} f_n(x) \neq f(x)\}$, which is a countable union of measure zero sets, hence $\mu(A^c) = 0$.

Define $\tilde{f}_n = \mathbb{1}_A f_n$ and $\tilde{f} = \mathbb{1}_A f$, apply the original version of MCT on \tilde{f}_n and f, then exert the fact that $\int \tilde{f}_n d\mu = \int f_n d\mu$ and $\int \tilde{f} d\mu = \int f d\mu$.

5 Integral of Complex-Valued Functions

Definition 5.1. A function $f: X \to \mathbb{C}$ is called **measurable** if both $\Re(f)$ and $\Im(f)$ (both are real-valued functions) are measurable. Similarly, f is **integrable** if both its real and imaginary parts are integrable.

Define

$$\int f \ d\mu = \int \Re(f) \ d\mu + i \int \Im(f) \ d\mu \tag{139}$$

Proposition 5.1. Let f, g be integrable complex-valued functions, then

- 1. $\int (f+g) d\mu = \int f d\mu + \int g d\mu$.
- 2. for all $\alpha \in \mathbb{C}$, $\int (\alpha f) d\mu = \alpha \int f d\mu$.

Proposition 5.2 (Triangle Inequality). Let $f: X \to \mathbb{C}$ be an integrable function, then

$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu \tag{140}$$

Proof. Note that there exists $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ such that

$$\left| \int f \ d\mu \right| = \alpha \int f \ d\mu \tag{141}$$

To see this point, let $z=re^{i\theta}\in\mathbb{C}$ so that |z|=r, let $\alpha=e^{-i\theta}$, which satisfies $\alpha z=r=|z|$. Therefore,

$$\left| \int f \ d\mu \right| = \alpha \int f \ d\mu \tag{142}$$

$$= \int (\alpha f) \ d\mu \tag{143}$$

$$= \int \Re(\alpha f) \ d\mu + i \int \Im(\alpha f) \ d\mu \tag{144}$$

$$\implies \int \Im(\alpha f) \ d\mu = 0 \tag{145}$$

Therefore,

$$\left| \int f \ d\mu \right| = \int \Re(\alpha f) \ d\mu \le \int |\alpha f| \ d\mu = \int |f| \ d\mu \tag{146}$$

where the last step holds because $|\alpha| = 1$.

6 Convergence of Measurable Functions

Definition 6.1. Let (X, \mathcal{A}, μ) be a measure space, let $\{f_n\}_n$ be a sequence of real-valued measurable functions on X, let $f: X \to \mathbb{R}$ be a measurable function.

Then $f_n \to f$ in measure if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \mu(\lbrace x : |f_n(x) - f(x)| > \varepsilon \rbrace) = 0 \tag{147}$$

Remark 6.1. Convergence almost everywhere does not imply convergence in measure.

$$Counter$$
-example.

Remark 6.2. Convergence in measure does not imply convergence almost everywhere (even if we are considering a finite measure).

$$Counter$$
-example.

Proposition 6.1. Let μ be a finite measure, then convergence a.e. implies convergence in measure.

Proof. Suppose $f \to f_n$ a.e. Let $\varepsilon > 0$. Note that if there exists x such that $|f_n - f(x)| \ge \varepsilon$ for infinitely many n, then $f_n \not\to f$ at x. Therefore,

$$\mu(\lbrace x : |f_n(x) - f(x)| > \varepsilon \text{ for infinitely many } n\rbrace) \le \mu(\lbrace x : f_n(x) \not\to f(x)\rbrace) = 0 \tag{148}$$

Further, note that

$$\{x: |f_n(x) - f(x)| > \varepsilon \text{ for infinitely many } n\} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{x: |f_k(x) - f(x)| > \varepsilon\}$$
(149)

Where $x \in B_n$ indicates there exists a $k \ge n$ such that $|f_k(x) - f(x)| > \varepsilon$. If we take the intersection of all B_n , it means for all $n \in \mathbb{N}$, there exists $k \ge n$ such that $|f_k(x) - f(x)| > \varepsilon$, which is equivalent to saying there are infinitely many k such that $|f_k(x) - f(x)| > \varepsilon$.

Clearly $B_1 \supseteq B_2 \supseteq \ldots$, there must exist some B_i such that $\mu(B_i)$ since μ is a finite measure. Therefore,

$$0 = \mu(\lbrace x : |f_n(x) - f(x)| > \varepsilon \text{ for infinitely many } n\rbrace) = \lim_{n \to \infty} \mu(B_n)$$
 (150)

Hence, $\lim_{n\to\infty} \mu(B_n) = 0$. However, $B_n \supseteq \{x : |f_n(x) - f(x)| > \varepsilon\}$, therefore,

$$\lim_{n \to \infty} \{ x : |f_n(x) - f(x)| > \varepsilon \} = 0$$
 (151)

Proposition 6.2. Let f_n be a sequence of measurable real-valued functions converge to a measurable f in measure, then there exists a subsequence of f_n converges to f a.e.

Proof. Suppose $f_n \to f$ in measure, take $\varepsilon = 1$, there exists infinitely many n_1 such that

$$\mu(\lbrace x : |f_{n_1} - f(x)| > 1\rbrace) < 2^{-1} \tag{152}$$

Then for every k, we can choose $n_k > n_{k-1}$ such that

$$\mu(\underbrace{\{x: |f_{n_k} - f(x)| > \frac{1}{k}\}}_{A_k}) < 2^{-k}$$
(153)

Let $B = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$, define $B_j = \bigcup_{k=j}^{\infty} A_k$. Note that for all $j, B \subseteq B_j$, therefore,

$$\mu(B) \le \mu(B_j) = \mu(\bigcup_{k=j}^{\infty} A_k) \le \sum_{k=j}^{\infty} \mu(A_k) < \sum_{k=j}^{\infty} 2^{-j+1}$$
 (154)

Take $j \to \infty$, $\mu(B) = 0$. If $x \notin B$, $x \in B^c = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k^c$, which means $\exists j$ such that $x \in A_k^c$ for all $k \ge j$. That is

$$\exists j \ s.t. \ \forall k \ge j \ |f_{n_k} - f(x)| \le \frac{1}{k}$$
 (155)

Therefore, this subsequence n_k converges to f(x) a.e.

Lemma 6.1 (Borel-Cantelli Lemma). If A_1, A_2, \dots , is a sequence of measurable sets such that

$$\sum_{k=1}^{\infty} \mu(A_k) < \infty \tag{156}$$

then

$$\mu\left(\left\{x:x\in\text{ infinitely many }A_k\right\}\right)=0\tag{157}$$

Proof. Define

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \tag{158}$$

Easy to verify that $x \in B$ if and only if $x \in \text{infinitely many } A_k$. For every j,

$$B \subseteq \bigcup_{k=j}^{\infty} A_k \tag{159}$$

Hence

$$\mu(B) \le \mu\left(\bigcup_{k=j}^{\infty} A_k\right) \le \sum_{k=j}^{\infty} \mu(A_k) \to 0 \text{ as } j \to \infty$$
 (160)

Therefore, $\mu(B) = 0$.

Theorem 6.1 (Egorov's Theorem). Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$. Let f_n be a sequence of measurable \mathbb{R} -valued functions converging a.e. to a \mathbb{R} -valued function f.

Then for all $\varepsilon > 0$, \exists a set $B \in \mathcal{A}$ such that

- 1. $\mu(B^c) < \varepsilon$,
- 2. and $f_n \to f$ uniformly on B.

Proof. Let $\varepsilon > 0$.

For all $n \in \mathbb{N}$, define

$$g_n(x) := \sup_{k > n} |f_k(x) - f(x)|$$
 (161)

since $f_n \to f$ a.e., $g_n(x)$ is finite a.e. Moreover, $g_n(x) \to 0$ a.e. as $n \to \infty$ (both holds where $f_n \to f$).

Since $\mu(X) < \infty$, $g_n(x) \to 0$ in measure by previous results. Then, for every $k \in \mathbb{N}$, there exists n_k such that

$$\mu\left(\left\{x:g_{n_k}(x)>\frac{1}{k}\right\}\right)<\frac{\varepsilon}{2^k}\tag{162}$$

Since there are infinitely many n_k to choose, we may choose an increasing sequence of n_k 's. Define

$$B^{c} = \left\{ x : g_{n_{k}}(x) > \frac{1}{k} \text{ for some } k \right\}$$
 (163)

Then,

$$\mu(B^c) = \mu\left(\bigcup_{k=1}^{\infty} \left\{ x : g_{n_k}(x) > \frac{1}{k} \right\} \right)$$
(164)

$$\leq \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon \tag{165}$$

Lastly, we can show that $f_n \to f$ uniformly on B. Note that for every $\delta > 0$, take $k_\delta \ge \frac{1}{\delta}$, if $x \in B$, then $g_{n_{k_{\delta}}}(x) \leq \frac{1}{k_{\delta}} < \delta$. Therefore, $\sup_{n \geq n_{k_{\delta}}} |f_n(x) - f(x)| < \delta$. Therefore, $\forall x \in B, n \geq n_{n_{\delta}}, |f_n(x) - f(x)| < \delta$ and $f_n \to f$ uniformly on B.

Therefore,
$$\forall x \in B, n \geq n_{n_{\delta}}, |f_n(x) - f(x)| < \delta \text{ and } f_n \to f \text{ uniformly on } B.$$

Definition 6.2. A sequence of measurable \mathbb{R} -valued functions f_n converges to a \mathbb{R} -valued measurable function f in L^1 if

$$\lim_{n \to \infty} \int |f_n - f| \ d\mu = 0 \tag{166}$$

Proposition 6.3 (Markov Inequality). If $g \ge 0$, then for all $t \ge 0$,

$$\mu\left(\left\{x:g(x)\geq t\right\}\right)\leq \frac{\int g\ d\mu}{t}\tag{167}$$

In probabilistic notations:

$$P(g \ge t) \le \frac{\mathbb{E}[g]}{t} \tag{168}$$

Proof. Define $h(x) := t\mathbb{1}\{g \ge t\}$, obviously, $h \le g$.

$$\int h \ d\mu = t\mu(\{x : g(x) \ge t\}) \le \int g \ d\mu \tag{169}$$

The result follows.

Proposition 6.4. $f_n \stackrel{L^1}{\to} f \implies f_n \stackrel{\mu}{\to} f$.

Proof. Let $\varepsilon > 0$, apply Markov inequality on every $|f_n - f|$:

$$\mu\left(\left\{x:|f_n(x)-f(x)|\geq\varepsilon\right\}\right)\leq \frac{\int |f_n-f|\ d\mu}{\varepsilon}\to 0 \text{ as } n\to\infty$$
 (170)

Therefore, $f_n \stackrel{\mu}{\to} f$.

Remark 6.3.

- 1. $f_n \stackrel{a.e.}{\to} f \implies f_n \stackrel{L^1}{\to} f$.
- $2. \ f_n \stackrel{L^1}{\to} f \implies f_n \stackrel{a.e.}{\to} f.$
- 3. $f_n \stackrel{\mu}{\to} f \implies f_n \stackrel{a.e.}{\to} f$.

Figure 1: Modes of Convergences

Proposition 6.5 (Dominated Convergence Theorem II). Suppose $f_n \stackrel{\mu}{\to} f$, and \exists integrable g such that $|f_n| \leq g$ a.e. for all n. Then, $f_n \stackrel{L^1}{\to} f$, in particular, $\int f_n \ d\mu \to \int f \ d\mu$.

Proof. Suppose, for contradiction, $f_n \not\to f$ in L^1 . Equivalently, there exists ε and a subsequence f_{n_k} such that for all k:

$$\int |f_{n_k} - f| \ d\mu \ge \varepsilon \quad (\dagger) \tag{171}$$

But the convergence in measure implies $f_{n_k} \to f$ in measure as well. Then there exists a subsequence n_{k_ℓ} such that $f_{n_{k_\ell}} \to f$ almost everywhere.

By the previous dominated convergence theorem, $\lim_{\ell\to\infty} \int \left| f_{n_{k_{\ell}}} - f \right| d\mu = 0$, contradicts (†).

7 Normed Space

Definition 7.1. Let V be a vector space over \mathbb{R} (over \mathbb{C}), a **norm** on V is a function $||\cdot||:V\to\mathbb{R}$ such that

- 1. $||x|| \ge 0 \ \forall x \in V$,
- 2. $||x|| = 0 \iff x = 0$,
- 3. ||ax|| = |a| ||x|| for all $a \in \mathbb{R} (\in \mathbb{C})$,
- 4. (Triangle Inequality) $||x+y|| \le ||x|| + ||y|| \ \forall x, y \in V$.

Example 7.1. For $V = \mathbb{R}^n$, for every $p \geq 1$, the L^p norm is defined as

$$||x||_{L^p} = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \tag{172}$$

Note: for p < 1, the triangle inequality fails.

Example 7.2. Let C[a, b] denote the collection of continuous functions from [a, b] to \mathbb{R} , where [a, b] is a compact interval.

The sup norm is defined as

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$
 (173)

The 1-norm is defined as

$$||f||_1 = \int_{[a,b]} |f| \ d\lambda$$
 (174)

Definition 7.2. Let S be a set, a **metric** d on S is a function $d: S \times S \to \mathbb{R}$ such that for all $x, y, z \in S$:

- 1. $d(x,y) \ge 0$,
- 2. $d(x,y) = 0 \iff x = y$,
- 3. d(x,y) = d(y,x),
- 4. d(x,y) < d(x,z) + d(y,z).

Proposition 7.1. A norm induces a metric: d(x,y) := ||x-y||.

Note: the converse is false, i.e., there are metrics not induced by any norm. For example, $d(x,y) := \mathbb{1}\{x=y\}$ is in general not induced by any norm.

Definition 7.3. Let S be a set with a metric d, a sequence of points x_n converges to $x \in S$ if

$$\lim_{n \to \infty} d(x_n, x) = 0 \tag{175}$$

A sequence is **Cauchy** with respect to d if $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ s.t. $\forall m, n \geq n_0, d(x_m, x_n) < \varepsilon$.

Definition 7.4. A metric space w.r.t d is **complete** if every Cauchy sequence w.r.t. d converges to somewhere in the space.

Example 7.3. C[a, b] with the supremum norm is complete.

Example 7.4. C[a,b] with L^1 norm is not complete.

Proof. Using counter-example: for [a, b] = [-1, 1],

$$f_n(x) = \begin{cases} 0 & \text{if } x \in [-1, 0] \\ nx & \text{if } x \in (0, 1/n) \\ 1 & \text{if } x \in [1/n, 1] \end{cases}$$
 (176)

The sequence of f_n is Cauchy but converges to $f = \mathbb{1}\{x \geq 0\} \notin C[a,b]$.

Proposition 7.2. C[a, b] under sup-norm is complete.

Proof. Suppose f_n is a Cauchy sequence in C[a,b] under supremum norm. For all $x \in [a,b]$,

$$f_n(x) - f_m(x) \le ||f_n - f_m||_{\infty} \to 0$$
 (177)

since f_n is Cauchy. Therefore, $f_n(x)$ is a Cauchy sequence in \mathbb{R} and $\lim_{n\to\infty} f_n(x)$ exists. Define f to be the point-wise limit of f_n .

Claim: $f \in C[a, b]$ and $f_n \to f$ in sup-norm.

For all $\varepsilon > 0$, there exists N, such that for all $m, n \geq N$,

$$||f_m - f_n||_{\infty} < \varepsilon \tag{178}$$

Therefore, for all $x \in [a, b]$, $|f_n(x) - f_m(x)| < ||f_m - f_n||_{\infty} < \varepsilon$.

Fixing n, take $m \to \infty$, this shows for all $n \ge N$, for all $x \in [a, b]$

$$|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| \le \varepsilon \tag{179}$$

Therefore, for all $n \geq N$, $||f - f_n||_{\infty} \leq \varepsilon$. Hence $f \to f_n$ in sup-norm.

Now show the continuity of f: take $x_0 \in [a, b]$, given $\varepsilon > 0$, since $f_n \to f$ in sup-norm, there exists N such that for all $n \ge N$,

$$||f - f_n||_{\infty} \le \frac{\varepsilon}{3} \tag{180}$$

In particular, $||f - f_N||_{\infty} \leq \frac{\varepsilon}{3}$.

Moreover, since f_N is continuous, $\exists \delta > 0$ such that $|x - x_0| < \delta \implies |f_N(x) - f_N(x)| < \varepsilon/3$ for every x. Take any $x \in \mathcal{B}_{\delta}(x_0)$, by triangle inequality,

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \tag{181}$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \tag{182}$$

Hence, $f \in C[a, b]$.

8 Functional Analysis: L^p Spaces

We will firstly define \mathcal{L}^p spaces, which is a little simpler than L^p spaces.

Definition 8.1. Let (X, \mathcal{A}, μ) be a measure space, for every $1 \leq p < \infty$, the $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbb{R})$ space is the collection of all measurable functions $f: X \to \mathbb{R}$ such that

$$\int |f|^p \ d\mu < \infty \tag{183}$$

Similarly, $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbb{C})$ denotes the collection of all measurable functions $f: X \to \mathbb{C}$ such that $\int |f|^p d\mu < \infty$.

Thought out this notes, we use \mathcal{L}^p to denote $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbb{R})$ or $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbb{C})$.

Proposition 8.1 (\mathcal{L}^p space is a vector space). Note that $0 \in \mathcal{L}^p$, and if $f \in \mathcal{L}^p$ and $\alpha \in \mathbb{R}/\mathbb{C}$, then

$$\int |\alpha f|^p \ d\mu = |\alpha|^p \int |f|^p \ d\mu < \infty \tag{184}$$

Therefore, $\alpha f \in \mathcal{L}^p$.

For all $x \in X$,

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \tag{185}$$

$$\leq (2\max\{|f(x)|,|g(x)|\})^2 \tag{186}$$

$$\leq 2^p \max\{|f(x)|^p, |g(x)|^p\} \tag{187}$$

$$\leq 2^{p}(|f(x)|^{p} + |g(x)|^{p}) \tag{188}$$

$$\implies \int |f+g|^p \ d\mu < \infty \tag{189}$$

$$\implies f + g \in \mathcal{L}^p \tag{190}$$

Hence, \mathcal{L}^p is a vector space.

Definition 8.2. Let $\mathcal{L}^{\infty}(X, \mathcal{A}, \mu, \mathbb{R}/\mathbb{C})$ be the set of all bounded measurable $f: X \to \mathbb{R}/\mathbb{C}$.

Definition 8.3. For $f \in \mathcal{L}^p$ with $p < \infty$, define

$$||f||_p = \left(\int |f|^p \ d\mu\right)^{\frac{1}{p}}$$
 (191)

for $p = \infty$, $||f||_{\infty}$'s definition is a little bit more complicated, for continuous functions, it collides with the sup-norm. However, it's not the same as sup-norm for discontinuous functions.

Definition 8.4. Given a measure space (X, \mathcal{A}, μ) , a set B is called μ -null/negligible if $B \subseteq A$ for some $A \in \mathcal{A}$ with $\mu(A) = 0$.

A subset $N \subseteq X$ is called **locally** μ -null if $\forall A \in \mathcal{A}$ with $\mu(A) < \infty$, $A \cap N$ is μ -null.

A property of elements of X is said to hold **locally a.e.** if the set on which it fails is locally μ -null.

We use this notion of locally null to circumvent non-sigma finite cases.

Definition 8.5. For $f \in \mathcal{L}^{\infty}$, define

$$||f||_{\infty} = \inf \{ M \ge 0 : \text{the set of all } x \text{ with } |f(x)| > M \text{ is locally } \mu\text{-null.} \}$$
 (192)

this is called the **essential supremum** of |f|. Equivalently, $||f||_{\infty}$ is the infimum of M such that $|f(x)| \leq M$ locally a.e.

Note that $||f||_{\infty}$ is only a semi-norm, we may modify a function on a measure-zero set without changing the value of $||f||_{\infty}$.

Our previous definitions of semi-norms on \mathcal{L}^p spaces satisfy

$$||f||_p = 0 \iff \int |f|^p \ d\mu = 0 \iff |f|^p = 0 \ a.e. \iff f = 0 \ a.e.$$
 (193)

This definition of semi-norm on \mathcal{L}^{∞} ensures $||f||_{\infty} = 0 \iff f = 0$ a.e..

Example 8.1. Take X = [0, 1] and $\mu = \lambda$,

$$f(x) = \begin{cases} x & \text{if } x \neq \frac{1}{2} \\ 2 & \text{otherwise} \end{cases}$$
 (194)

Then $||f||_{\infty} = 1$ but sup f = 2. To see this, note that $\{x : |f(x)| > 1\} = \{1/2\}$ has zero measure. However, for any M < 1, the same has non-zero Lebesgue measure.

Proposition 8.2.

$$\mu\left(\left\{x:|f(x)|>||f||_{\infty}\right\}\right) \text{ is locally }\mu\text{-null}.\tag{195}$$

$$\mu(\lbrace x : |f(x)| > c \rbrace)$$
 is not locally μ -null $\forall c < ||f||_{\infty}$ (196)

Lemma 8.1. Countable union of locally μ -null sets is locally μ -null.

Proposition 8.3. $||f||_p$ and $||f||_{\infty}$ are semi-norms.

Definition 8.6. Given $p \in (1, \infty)$, the **conjugate exponent** q is defined as

$$\frac{1}{p} + \frac{1}{q} = 1 \tag{197}$$

That is,

$$q = \frac{p}{p-1} \tag{198}$$

For $p = \infty$, q = 1.

Lemma 8.2 (Young's Inequality). Take $p \in (1, \infty)$, let q be the conjugate exponent of p, then for all $x, y \ge 0$,

$$xy \le \frac{x^p}{p} + \frac{y^q}{q} \tag{199}$$

Proof.

Theorem 8.1 (Hölder's Inequality). Let (X, \mathcal{A}, μ) be a measure space, take $1 \leq p \leq \infty$, and q be it's conjugate exponent. Take $f \in \mathcal{L}^p$, $g \in \mathcal{L}^q$, then

$$fg \in \mathcal{L}^1 \tag{200}$$

and

$$||fg||_1 \le ||f||_p ||g||_q \tag{201}$$

Example 8.2. Take $X = \{x_1, \dots, x_n\}$ and μ to be the counting measure on X. Let p = q = 2 and $f, g \in \mathcal{L}^2$. Define $v = (f(x_1), \dots, f(x_n)) \in \mathbb{R}^n$ and $u = (g(x_1), \dots, g(x_n)) \in \mathbb{R}^n$.

$$||fg||_1 = \sum_{i=1}^n \mu(\{x_i\}) |f(x_i)g(x_i)| = \sum_{i=1}^n |f(x_i)g(x_i)|$$
(202)

Therefore,

$$|\langle v, u \rangle| = \left| \sum_{i=1}^{n} f(x_i) g(x_i) \right| \le ||fg||_1 \tag{203}$$

In this finite dimensional case with counting measure,

$$||f||_2 = \sqrt{\sum_{i=1}^n \mu(\{x_i\}) f(x_i)^2} = \sqrt{\sum_{i=1}^n f(x_i)^2} = ||v||_2$$
 (204)

The same holds for g, in this case Hölder's inequality reduces to cauchy-Switchz inequality.

Theorem 8.2 (Minkowski's Inequality). Let (X, \mathcal{A}, μ) be a measure space. Take $1 \leq p \leq \infty$. If $f, g \in \mathcal{L}^p(X, \mathcal{A}, \mu)$, then $f + g \in \mathcal{L}^p$ and $||f + g||_p \leq ||f||_p + ||g||_p$.

Proof. First, suppose that $p \in (1, \infty)$. Let q be the conjugate exponent of p. We have already shown that \mathcal{L}^p is a vector space, so $f + g \in \mathcal{L}^p$.

Note that

$$1/p + 1/q = 1 \implies (p+q)/(pq) = 1 \implies p+q = pq \implies p = (p-1)q$$
 (205)

Therefore,

$$\int (|f+g|^{p-1})^q \ d\mu = \int |f+g|^p \ d\mu < \infty \tag{206}$$

Therefore, $|f + g|^{p-1} \in \mathcal{L}^q$. By Hölder's inequality,

$$\int |f+g|^p d\mu = \int |f+g| |f+g|^{p-1} d\mu \tag{207}$$

$$\leq \int |f| |f + g|^{p-1} d\mu + \int |g| |f + g|^{p-1} d\mu$$
 (208)

$$\leq ||f||_p|||f+g|^{p-1}||_q + ||g||_p|||f+g|^{p-1}||_q$$
(209)

where

$$|||f+g|^{p-1}||_q = \left(\int (|f+g|^{p-1})^q\right)^{1/q} = \left(\int |f+g|^p\right)^{1/q}$$
(210)

If $||f+g||_p = 0$, we are done. Suppose not, divide $(\int |f+g|^p \ d\mu)^{1/q}$ on both sides,

$$\frac{\int |f+g|^p d\mu}{(\int |f+g|^p d\mu)^{1/q}} \le ||f||_p + ||g||_p \tag{211}$$

$$\implies (\int |f+g|^p \ d\mu)^{1-1/q} = (\int |f+g|^p \ d\mu)^{1/p} = ||f+g||_p \le ||f||_p + ||g||_p \tag{212}$$

When p = 1,

$$||f+g||_1 = \int |f+g| \ d\mu \le \int (|f|+|g|) \ d\mu = ||f||_1 + ||g||_1 \tag{213}$$

When $p = \infty$, define

$$N_1 = \{x : |f(x)| > ||f||_{\infty}\}$$
(214)

$$N_2 = \{x : |g(x)| > ||g||_{\infty}\}$$
(215)

Then N_1 and N_2 are locally μ -null, so is $N_1 \cup N_2$. For $x \notin N_1 \cup N_2$,

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$
 (216)

Note that $||\cdot||_p$ is a **semi-norm** on \mathcal{L}^p , to make it a norm, we introduce the L^p space.

Definition 8.7. For $1 \le p < \infty$, define the class of zero vectors

$$\mathcal{N}^p := \{ f \in \mathcal{L}^p : f \text{ is measurable and } f = 0 \text{ a.e.} \}$$
 (217)

which is a subspace of \mathcal{L}^p . Define L^p to be the quotient space:

$$L^{p}(X, \mathcal{A}, \mu) := \mathcal{L}^{p}(X, \mathcal{A}, \mu) / \mathcal{N}^{p}(X, \mathcal{A}, \mu)$$
(218)

That is, an element $[f] \in L^p$ (an equivalent class) is the collection of all $g \in \mathcal{L}^p$ such that f - g = 0

almost everywhere:

$$L^p \ni [f] := \{ g \in \mathcal{L}^p : f - g \in \mathcal{N}^p \}$$

$$(219)$$

Then L^p is a vector space over \mathbb{R} or \mathbb{C} , and $||\cdot||_p$ is well-defined: for any f, for all $g \in [f]$, $||f||_p = ||g||_p$ since f = g almost everywhere so their integrals are the same. Most importantly, $||\cdot||_p$ is a norm on L^p .

For $p = \infty$, we define

$$\mathcal{N}^{\infty} := \{ f : f \text{ is bounded, measure and } f = 0 \text{ a.e.} \}$$
 (220)

Then $L^{\infty} := \mathcal{L}^p/\mathcal{N}^p$.

Note that L^p for $1 \le p \le \infty$ is also a vector space with equivalence relations. In general, we treat L^p as a space of functions instead of a space of classes of functions.

Proposition 8.4. Convergence in L^p $(1 \le p < \infty)$ implies convergence in measure.

Proof. By Markov's inequality,

$$\mu(\{x : |f_n(x) - f(x)| > \varepsilon\}) = \mu(\{x : |f_n(x) - f(x)|^p > \varepsilon^p\})$$
(221)

$$\leq \frac{\int |f_n - f|^p \ d\mu}{\varepsilon^p} \to 0 \text{ as } n \to \infty$$
 (222)

Corollary 8.1. Let $f_n \to f$ in L^p with $1 \le p < \infty$, then there exists a subsequence $f_{n_k} \to f$ a.e.

Proof. As convergence in L^p implies convergence in measure, which further implies existence of a.e. converging subsequences.

Theorem 8.3. For any $1 \le p \le \infty$, the $||\cdot||_p$ norm on L^p is complete.

Proof. For $1 \leq p < \infty$, let (f_n) be a Cauchy sequence in L^p .

Step 1: Find a subsequence (f_{n_k}) such that $||f_{n_k} - f_{n_{k+1}}||_p \le 2^{-k}$ for all k. By Cauchy property, we may find n_1 such that $||f_{n_1} - f_n|| \le 2^{-1}$ for all $n \ge n_1$. Also, find a $n_2 \ge n_1$ such that $||f_{n_2} - f_n|| \le 2^{-2}$ for all $n \ge n_2$, etc.

Step 2: construct the limit Define

$$A_k := \{x : |f_{n_k}(x) - f_{n_{k+1}}(x)| > 2^{-k/2}\}$$
(223)

Then, by Markov's inequality,

$$\mu(A_k) \le \frac{\int |f_{n_k} - f_{n_{k+1}}|^p d\mu}{(2^{-k/2})^p} \tag{224}$$

$$\leq \frac{2^{-kp}}{(2^{-k/2})^p} = 2^{-kp/2} \tag{225}$$

Thus, $\sum_{k=1}^{\infty} \mu(A_k) < \infty$. Define

$$B := \{x : x \in \text{ infinitely many } A_k\} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_j$$
 (226)

By Borel-Cantelli lemma, $\mu(B) = 0$. Take any $x \notin B$, then for sufficiently large k,

$$\left| f_{n_k}(x) - f_{n_{k+1}} \right| \le 2^{-k/2} \tag{227}$$

This shows for all $x \notin B$, the constructed $(f_{n_k}(x))$ is a Cauchy sequence in \mathbb{R} , therefore, it's convergent.

Define the almost point-wise limit

$$f(x) := \begin{cases} \lim_{k \to \infty} f_{n_k}(x) & \text{if } x \notin B \\ 0 & \text{if } x \in B \end{cases}$$
 (228)

Step 3: Show $f_n \to f$ in L^p . Note that $f_{n_k} \to f$ almost everywhere, so that $|f|^p \to |f_{n_k}|^p$. By Fatou's lemma,

$$\int |f|^p d\mu \le \liminf_{k \to \infty} \int |f_{n_k}|^p d\mu \tag{229}$$

But the Cauchy property of f_n implies that $\sup_n ||f_n||_p < \infty$ (find n such that $||f_n - f_m||_p \le 1$ for all $m \ge n$. Thus, $\forall m \ge n$, $||f_m||_p \le ||f_n - f_m||_p + ||f_n||_p \le 1 + ||f_n||_p$. Therefore, $||f||_p < \infty$.

For any $\varepsilon > 0$, we can find N so large that $||f_n - f_m||_p < \varepsilon$ for all $n, m \ge N$ since f_n is Cauchy. By Fatou's lemma, for all $n \ge N$,

$$\int |f_n - f|^p d\mu \le \liminf_{n \to \infty} \int |f_n - f|^p d\mu \tag{230}$$

But when k is so large that $n_K \geq N$, we have

$$\int |f_n - f_{n_k}|^p \ d\mu = ||f_n - f_{n_k}||_p^p \le \varepsilon^p$$
 (231)

Thus, fo all $n \geq N$, $||f - f_n||_p \leq \varepsilon$.

Proof. for $p = \infty$ case. Let f_n be Cauchy in L^{∞} , as before, find a subsequence f_{n_k} such that

$$||f_{n_k} - f_{n_{k+1}}||_{\infty} \le 2^{-k} \quad \forall k$$
 (232)

Then for all k, there exists a locally μ -null set N_k such that for all $x \notin N_k$.

$$\left| f_{n_k}(x) - f_{n_{k+1}}(x) \right| \le 2^{-k}$$
 (233)

Let $N = \bigcup_{k=1}^{\infty} N_k$, so that N is locally μ -null as well. Then for all $x \notin N$, $f_{n_k}(x)$ is a Cauchy sequence of real numbers, define $f(x) = \lim_k f_{n_k}(x)$ outside N and f(x) = 0 on N.

Claim: $f_n \to f$ in L^{∞} . Note that for all $x \notin N$, for all k,

$$|f(x) - f_{n_k}(x)| \le \sum_{j=k}^{\infty} |f_{n_j}(x) - f_{n_{j+1}}(x)| \le \sum_{j=k}^{\infty} 2^{-j} = 2^{-k+1}$$
 (234)

Thus, $||f - f_{n_k}||_{\infty} \le 2^{-k+1}$.

Take any $\varepsilon > 0$, find N so large that $\forall m, n \geq N$, $||f_m - f_n||_{\infty} \leq \varepsilon$. Then find k so large that $n_k \geq N$ and $2^{-k+1} \leq \varepsilon$. Then for all $n \geq N$,

$$||f - f_n||_{\infty} \le ||f - f_{n_k}||_{\infty} + + ||f_{n_k} - f_n|| \le 2\varepsilon$$
 (235)

Taking $\varepsilon' = \varepsilon/2$ concludes $f_n \to f$ in L^{∞} .

9 Signed and Complex Measures

Definition 9.1. Let (X, \mathcal{A}) be a measurable space, let $\mu : \mathcal{A} \to [-\infty, \infty]$ be a function. We say that μ is a **signed measure** if

- 1. $\mu(\emptyset) = 0$,
- 2. and μ is countable additive: for all disjoint $A_1, A_2, \dots \in \mathcal{A}$, $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

From now on, we use **measure** to denote the conventional notion of measure, that is, μ : $\mathcal{A} \to [0,\infty]$ with $\mu(\varnothing) = 0$ and countable additivity. The term **signed measure** denotes functions $\mu: \mathcal{A} \to [-\infty,\infty]$ with above properties.

Remark 9.1. Note that the countable additivity does not change if we permute A_i 's, thus, implies $\sum_{i=1}^{\infty} \mu(A_i)$ should now change under any rearrangement of the terms. This implies that if $\mu(\bigcup_{i=1}^{\infty} A_i)$ is finite, $\sum_{i=1}^{\infty} |\mu(A_i)| < \infty$.

Proposition 9.1. If μ is a signed measure, then μ cannot be both ∞ and $-\infty$.

Proof. Case 1: if $\mu(X) \in \mathbb{R}$, then for any A, $\mu(X) = \mu(A) + \mu(A^c)$, both of $\mu(A)$ and $\mu(A^c)$ must be finite.

Case 2: if $\mu(X) = \infty$, then $\mu(A) + \mu(A^c) = \mu(X) = \infty$, none of $\mu(A)$ or $\mu(A^c)$ can be $-\infty$.

Case 3: if $\mu(X) = -\infty$, then $\mu(A) + \mu(A^c) = \mu(X) = -\infty$, none of $\mu(A)$ or $\mu(A^c)$ can be ∞ .

Proposition 9.2. If $\mu(A)$ is finite (i.e., in \mathbb{R}), then $\mu(B) \in \mathbb{R}$ for any $B \subseteq A$, $B \in \mathcal{A}$.

Proof.
$$\mu(A) = \mu(B) + \mu(A \setminus B) \in \mathbb{R}$$
, both $\mu(B)$ and $\mu(A \setminus B)$ must be finite.

Definition 9.2. A signed measure is called **finite** if $\mu(A) \in \mathbb{R}$ for all $A \in \mathcal{A}$.

9.1 Construction of Signed Measures

Example 9.1 (Relationship between integrable function and measure). Let (X, \mathcal{A}, μ) be a measure space, let $f \in L^1$, define $\nu(A) = \int_A f \ d\mu$, then ν is a signed measure.

Example 9.2 (Construction of signed measure). If ν_1 and ν_2 are measures and a least one of them if finite, then $\nu_1 - \nu_2$ is a signed measure.

9.2 Hahn Decomposition Theorem

Let (X, \mathcal{A}) be a measurable space and let μ be a signed measure on (X, \mathcal{A}) .

Definition 9.3. A set $A \in \mathcal{A}$ is called a **positive set for** μ if $\mu(B) \geq 0$ for all $B \subseteq A, B \in \mathcal{A}$. Similarly, a set $A \in \mathcal{A}$ is called a **negative set for** μ if $\mu(B) \leq 0$ for all $B \subseteq A, B \in \mathcal{A}$.

Lemma 9.1. If $A \in \mathcal{A}$ satisfies $-\infty < \mu(A) < 0$, then there exists a negative set $B \subseteq A$ such that $\mu(B) \le \mu(A) (< 0)$.

Proof. Let $\delta_1 = \sup\{\mu(E) : E \in \mathcal{A}, E \subseteq A\}$, note that $\delta_1 \geq 0$ since $\mu(\emptyset) = 0$.

By the definition of δ_1 we can find $A_1 \subseteq A$ such that $\mu(A_1) \ge \delta_1/2$ if $\delta_1 < \infty$, or $\mu(A_1) \ge 1$ if $\delta_1 = \infty$. Thus, $\mu(A_1) \ge \min\{\delta_1/2, 1\}$.

Let $\delta_2 = \sup\{\mu(E) : E \in \mathcal{A}, E \subseteq A \setminus A_1\}$, similarly, we can choose $A_2 \subseteq A \setminus A_1$ and $A_2 \in \mathcal{A}$ such that $\mu(A_2) \ge \min\{\delta_2/2, 1\}$.

Similarly, choose $A_n \in \mathcal{A}$, $A_n \subseteq A \setminus (A_1 \cup \ldots A_{n-1})$, such that $\mu(A_n) \ge \min\{\delta_n/2, 1\}$. Then by definition, A_1, A_2, \ldots are disjoint, they are all contained in A.

Let $B = A \setminus (\bigcup_{i=1}^{\infty} A_i)$.

Claim: this B is a negative set such that $\mu(B) \leq \mu(A)$.

Note that $\mu(A) \in \mathbb{R} \implies \mu(B) \in \mathbb{R}$. Thus, $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A) - \mu(B) \in \mathbb{R}$.

But $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ since $A'_n s$ are disjoint. Therefore, $\mu(A_i) \to 0$ as $i \to \infty$. However, $\mu(A_i) \ge \min\{\delta_i/2, 1\} \ge 0$. It must be $\delta_i \to 0$ as $i \to 0$.

Take any $E \subseteq B$ such that $E \in \mathcal{A}$. Then $E \subseteq B \subseteq A \setminus (A_1 \cup \ldots A_{n-1})$ for all $n \in \mathbb{N}$. So by definition of δ_n , we have $\mu(E) \leq \delta_n$, thus $\mu(E) \leq 0$ as we take $n \to \infty$. Hence B is a negative set.

Finally, since $\mu(A_i) \to 0$, $\mu(B) = \mu(A) - \sum_{i=1}^{\infty} \mu(A_i) \le \mu(A)$.

Theorem 9.1 (Hahn Decomposition Theorem). Let (X, \mathcal{A}) be a measurable space and μ a signed measure on (X, \mathcal{A}) . Then, there exists disjoint $P \cup N$ in \mathcal{A} such that $X = P \cup N$ such that P is a positive set for μ and N is a negative set for μ .

Proof. Since μ is a signed measure, we know that it cannot take value at both ∞ and $-\infty$. WLOG, suppose μ never takes value $-\infty$. Let

$$L = \inf\{\mu(A) : A \in \mathcal{A} \text{ s.t. } A \text{ is negative}\}$$
 (236)

Then there exists a sequence of negative sets A_n such that $\mu(A_n) \to L$. Define $B = \bigcup_{n=1}^{\infty} A_n$. For sure, $B \in \mathcal{A}$.

Claim: B is a negative set.

Take and $E \subseteq B$ such that $E \in \mathcal{A}$, then

$$E = E \cap B = \bigcup_{i=1}^{\infty} E \cap A_i = \bigcup_{i=1}^{\infty} E \cap (A_i \setminus (A_1 \cup \dots \cup A_{i-1}))$$
 (237)

where the last step holds because we only consider the net incremental at each step. Moreover, $\{E \cap (A_i \setminus (A_1 \cup \cdots \cup A_{i-1}))\}_i$ are disjoint.

Thus,

$$\mu(E) = \sum_{i=1}^{\infty} \mu(\underbrace{E \cap (A_i \setminus (A_1 \cup \dots \cup A_{i-1}))}_{\subseteq A_i})$$
(238)

Since A_i 's are all negative sets, we must have $\mu(E) \leq 0$ and B is a negative set.

Claim: $\mu(B) = L$.

Since $A_n \subseteq B$,

$$\mu(B) = \mu(A_n) + \mu(B \backslash A_n) \tag{239}$$

But B is a negative set, so $\mu(B \setminus A_n) \leq 0$. Thus,

$$\mu(B) \le \mu(A_n) \quad \forall n \in \mathbb{N} \tag{240}$$

Thus, $\mu(B) \leq \lim_n \mu(A_n) = L$. But B itself is a negative set, and L is the infimum, so $L \leq \mu(B)$.

In particular, we've shown that $L > -\infty$ since μ never takes value at $-\infty$.

Let N = B and $P = N^c$. Since $B \in \mathcal{A}$, both $N, P \in \mathcal{A}$.

Claim: P is a positive set.

Suppose not, then $\exists A \subseteq P$ such that $A \in \mathcal{A}$ and $-\infty < \mu(A) < 0$.

By the lemma, there exists a negative set $D \subseteq A$ and $\mu(D) \leq \mu(A) < 0$. Note that $D \subseteq A \subseteq P$, but then $N \cup D$ is a negative set as a union of negative sets. Then,

$$\mu(N \cup D) = \mu(N) + \mu(D) = L + \mu(D) < L \tag{241}$$

which leads to a contradiction.

Consequently, this $X = N \cup P$ is a Hahn decomposition.

Theorem 9.2 (Jordan Decomposition Theorem). Every signed measure is the difference of two

measures, at least one of which is finite.

$$\mu = \mu^{+} - \mu^{-} \tag{242}$$

Proof. Let μ be a signed measure, let (N, P) be a Hahn decomposition of X.

For every $A \in \mathcal{A}$, define

$$\mu^{+}(A) = \mu(A \cap P) \tag{243}$$

$$\mu^{-}(A) = -\mu(A \cap N) \tag{244}$$

Since P is a positive set, $\mu^+(A) \ge 0$, similarly, since N is negative, $\mu^-(A) \ge 0$ as well.

Let A_1, A_2, \ldots be disjoint sets in \mathcal{A} , then

$$\mu^{+}(\cup_{i}A_{i}) = \mu(P \cap (\cup_{i}A_{i})) \tag{245}$$

$$=\mu(\cup_i(P\cap A_i))\tag{246}$$

$$=\sum_{i}\mu(P\cap A_{i})\tag{247}$$

$$=\sum_{i}\mu^{+}(A_{i})\tag{248}$$

So μ^+ is a measure. Similarly, μ^- is a measure as well.

$$\mu^{+}(A) - \mu^{-}(A) = \mu(A \cap P) + \mu(A \cap N) = \mu(A)$$
(249)

Therefore, $\mu = \mu^+ - \mu^-$. Lastly, note that $\mu(X) = \mu(P) + \mu(N) = \mu^+(P) - \mu^-(N)$, we need at least one of them to be finish in order to avoid subtracting infinity from infinity.

Proposition 9.3. Let (μ^+, μ^-) be the decomposition of a signed measure from Hahn decomposition (P, N), that is, $\mu^+(A) = \mu(A \cap P)$ and $\mu^-(A) = -\mu(A \cap N)$ for any $A \in \mathcal{A}$. Then,

$$\mu^{+}(A) = \sup\{\mu(B) : B \subseteq A, B \in \mathcal{A}\}$$
(250)

$$\mu^{-}(A) = \sup\{-\mu(B) : B \subseteq A, B \in \mathcal{A}\}$$
 (251)

Proof. Take any $A \in \mathcal{A}$, take any $B \subseteq A$ such that $B \in \mathcal{A}$. Then

$$\mu(B) = \mu^{+}(B) - \mu^{-}(B) \tag{252}$$

$$\leq \mu^{+}(B) :: \mu^{-}(B) \geq 0$$
 (253)

$$\leq \mu^+(A) :: \mu^+ \text{ is a measure}$$
 (254)

Therefore, $\mu^+(A) \ge \sup{\{\mu(B) : B \subseteq A, B \in A\}}$.

On the other hand, $\mu^+(A) = \mu(A \cap P)$ by definition, take $B = A \cap P \subseteq A$, which satisfies $A \cap P \in \mathcal{A}$. Then $\mu^+(A) \leq \sup\{\mu(B) : B \subseteq A, B \in \mathcal{A}\}.$

The similar logic works for μ^- .

Definition 9.4. The pair of (μ^+, μ^-) defined above is called the **Jordan decomposition** of the signed measure μ , where μ^+ and μ^- are called the **positive and negative parts of** μ . The **variation** of μ is defined to be the <u>measure</u> $|\mu| = \mu^+ + \mu^-$. The **total variation** of μ is the number $|\mu| = |\mu|(X)$.

9.3 Complex Measures

Definition 9.5. Let (X, \mathcal{A}) be a measurable space, $\mu : \mathcal{A} \to \mathbb{C}$ is called a **complex measure** if for all disjoint $A_1, A_2, \dots \in \mathcal{A}$, $\mu(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \mu(A_i)$ and $\mu(\emptyset) = 0$. In particular, this implies the sum is absolutely converged.

Any complex measure μ can be written uniquely as

$$\mu = \mu' + i\mu'' \tag{255}$$

where

$$\mu'(A) = \Re(\mu(A)) \tag{256}$$

$$\mu''(A) = \Im(\mu(A)) \tag{257}$$

Let $\mu' = \mu_1 - \mu_2$ and $\mu'' = \mu_3 - \mu_4$ be Jordan compositions of μ' and μ'' respectively. Then

$$\mu = \mu_1 - \mu_2 + i\mu_3 - i\mu_4 \tag{258}$$

is called the **Jordan decomposition** of complex measure μ .

Definition 9.6. The variation of a complex measure μ is defined as

$$|\mu|(A) := \sup \left\{ \sum_{i=1}^{n} |\mu(A_i)| : A_1, \dots, A_n \in \mathcal{A} \text{ disjoint s.t. } \bigcup_{i=1}^{n} A_i = A \right\}$$
 (259)

Note that the supremum is taken over all *finite partitions of A*. It is easy to check that if μ is a finite signed measure, this definition of variation is the same as the previous one.

Lemma 9.2. Suppose $\mu : \mathcal{A} \to [0, \infty]$ is a function such that (i) $\mu(\emptyset) = 0$ and (ii) is finite additivity (that is, $\mu(A \cup B) = \mu(A) + \mu(B)$ for all disjoint A and B). Moreover, if $\lim_{n \to \infty} \mu(A_n) = 0$ for all $A_n \searrow \emptyset$, then μ is a measure.

Proof. It suffices to check the countable additivity of μ , let B_1, B_2, \ldots be a disjoint sequence of sets in \mathcal{A} .

Let $B = \bigcup_i B_i$ and define $A_n := B \setminus \bigcup_{i=1}^{n-1} B_i$. Easy to check $A_n \setminus \emptyset$. Therefore, by finite additivity of μ : $\mu(A_n) = \mu(B) - \sum_{i=1}^{n-1} \mu(B_i) \to 0$. Taking $n \to \infty$ implies $\mu(B) = \sum_{i=1}^{\infty} \mu(B_i)$.

Proposition 9.4. Let μ be a complex measure, then $|\mu|$ is a measure.

Proof. Obviously, $|\mu|(\varnothing) = 0$.

Take any disjoint $A, B \in \mathcal{A}$. Now show the finite additivity of $|\mu|$: let C_1, \ldots, C_n be a measurable disjoint partition of $A \cup B$, so $(C_i \cap A)$ and $(C_i \cap B)$ are partitions of A and B respectively.

$$|\mu|(A) + |\mu|(B) \ge \sum |\mu(C_i \cap A)| + \sum |\mu(C_i \cap B)|$$
 (260)

$$\geq \sum |\mu(C_i \cap A) + \mu(C_i \cap B)| \tag{261}$$

$$= \sum |\mu(C_i)| :: C_i \subseteq A \cup B \tag{262}$$

$$\geq |\mu|(A \cup B) \tag{263}$$

Conversely, let C_1, \ldots, C_n be a partition of A and D_1, \ldots, D_m be a partition of B, then $C_1, \ldots, C_n, D_1, \ldots, D_m$ is a partition of $A \cup B$.

$$|\mu|(A \cup B) \ge \sum_{i=1}^{n} |\mu(C_i)| + \sum_{i=1}^{m} |\mu(D_i)|$$
 (264)

Taking supremum of partitions (C_i) for A and (D_i) for B,

$$|\mu|(A \cup B) \ge |\mu|(A) + |\mu|(B)$$
 (265)

Therefore, $|\mu|$ is finitely additive.

Now take a $A_n \searrow \emptyset$ in \mathcal{A} , using the Jordan decomposition: $\mu = \mu_1 - \mu_2 + i\mu_3 - i\mu_4$ where μ_i are measures. By triangle inequality in \mathbb{C} ,

$$|\mu(A)| \le \sum_{i=1}^{4} \mu_i(A)$$
 (266)

then for all measurable partitions A_1, \ldots, A_n of A,

$$\sum_{j=1}^{n} |\mu(A_j)| \le \sum_{i=1}^{4} \sum_{j=1}^{n} \mu_i(A_j) = \sum_{i=1}^{4} \mu_i(A)$$
(267)

Taking supremum of all such partitions,

$$|\mu|(A) \le \sum_{i=1}^{4} \mu_i(A)$$
 (268)

Since $A_n \searrow \emptyset$ implies $\mu_i(A_n) \to 0$ as μ_i 's are finite measures (there is no ∞ in \mathbb{C}), $|\mu|(A_n) \to 0$. By Previous lemma, $|\mu|$ is a measure.

Proposition 9.5 (Completeness of Total Variation). The total variation is a norm on the space of finite signed/complex measures.

Proof. Obviously, $||\mu||$ is a norm. Now show the completeness.

Let $\{\mu_n\}$ be a Cauchy (in total variation) sequence of measures, for all $A \in \mathcal{A}$, $|\mu(A)| \leq |\mu|(A)$ since A is a trivial partition of A.

For any $m, n \in \mathbb{N}, A \in \mathcal{A}, \mu_m - \mu_n$ is a signed measure,

$$|\mu_m(A) - \mu_n(A)| \le |\mu_m - \mu_n|(A) \tag{269}$$

$$\leq ||\mu_m - \mu_n|| \tag{270}$$

Therefore, $\{\mu_n(A)\}$ is a Cauchy sequence in \mathbb{R} for all $A \in \mathcal{A}$. Define μ as the "set-wise" limit of μ_n :

$$\mu(A) := \lim_{n \to \infty} \mu_n(A) \tag{271}$$

Now show μ is a measure: observe that $\mu_n \to \mu(A)$ uniformly over all $A \in \mathcal{A}$ by Equation (270). The finite additivity of μ follows its definition.

Fix arbitrary $A_n \searrow \emptyset$, show that $\mu(A_n) \to 0$. Take any $\varepsilon > 0$, find N so large that $|\mu_N(A) - \mu(A)| < \varepsilon$ for all A by uniform convergence.

Find j_0 so large such that for all $j \geq j_0$, $|\mu_N(A_j)| < \varepsilon/2$. For all $j \geq j_0$,

$$|\mu(A_j)| \le |\mu(A_j) - \mu_N(A_j)| + |\mu_N(A_j)| < \varepsilon$$
 (272)

Lastly, we show $||\mu_n - \mu|| \to 0$. Take any partition A_n, \ldots, A_k of X, take any $\varepsilon > 0$, the Cauchy property of $\{\mu_n\}$ provides a N so large that for all $m, n \geq N$, $||\mu_m - \mu_n|| < \varepsilon$.

$$\sum_{j=1}^{k} |\mu_m(A_j) - \mu_n(A_j)| \le ||\mu_m - \mu_n|| < \varepsilon$$
 (273)

Take $m \to \infty$,

$$\sum_{j=1}^{k} |\mu(A_j) - \mu_n(A_j)| \le \varepsilon \tag{274}$$

Since above inequality holds for all partitions of X, $||\mu - \mu_m|| < \varepsilon$.

9.4 Integration w.r.t. Signed and Complex Measures

Definition 9.7. Let $\mu = \mu^+ - \mu^-$ be a signed measure and its corresponding Jordan decomposition, define

$$\int f \ d\mu = \int f \ d(\mu^{+} - \mu^{-}) = \int f \ d\mu^{+} - \int f \ d\mu^{-}$$
 (275)

Easy to check that $f \mapsto \int f \ d\mu$ and $\mu \mapsto \int f \ d\mu$ are linear maps.

When μ is a complex measure: $\mu = \mu' + i\mu''$, define

$$\int f \ d\mu = \int f \ d\mu' + i \int f \ d\mu'' \tag{276}$$

10 Radon-Nikodym Theorem

Definition 10.1. Let (X, \mathcal{A}) be a measurable space, let μ, ν be two measures on this space, ν is absolutely continuous w.r.t. μ if for every $A \in \mathcal{A}$:

$$\mu(A) = 0 \implies \nu(A) = 0 \tag{277}$$

denoted as $\nu \ll \mu$.

Theorem 10.1 (Radon-Nikodym). Let (X, A) be a measurable space, let $\underline{\mu}$, $\underline{\nu}$ be two σ -finite measures. Suppose $\underline{\nu}$ is absolutely continuous w.r.t. $\underline{\mu}$, then there exists a measurable map $g: \overline{X} \to [0, \infty)$ such that

$$\nu(A) = \int_{A} g \ d\mu \tag{278}$$

for every $A \in \mathcal{A}$.

Interpretations Let χ_A denote the indicator function of set A, recall that $\int_A f \ d\mu \equiv \int f \chi_A \ d\mu$. Then, $\nu(A) = \int_A 1 \ d\nu = \int \chi_A \ d\nu = \int g \chi_A \ d\mu$ for all A. Moreover, for any integrable f,

$$\int f \ d\nu = \int fg \ d\mu \tag{279}$$

This allows us to denote g as $\frac{d\nu}{d\mu}$.

Example 10.1. Suppose (X, \mathcal{A}) is a <u>metric</u> space (take $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ here), suppose g is continuous w.r.t. the metric, let $A = B(x, \varepsilon)$ be the ε -open ball around $x \in X$, then for sufficiently small ε :

$$\nu(A) = \nu(B(x, \varepsilon)) \tag{280}$$

$$\int_{A} g \ d\mu \approx g(x) \int_{A} d\mu = g(x)\mu(B(x,\varepsilon)) \tag{281}$$

That is,

$$\frac{d\nu}{d\mu} = g(x) \approx \frac{\nu(B(x,\varepsilon))}{\mu(B(x,\varepsilon))}$$
(282)

Actually,

$$g(x) = \lim_{\varepsilon \to 0} \frac{\nu(B(x,\varepsilon))}{\mu(B(x,\varepsilon))}$$
 (283)

Therefore, the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ captures the relative growth rate of ν to μ when we initially apply them on a small ball and expand the radius of this ball.

Lemma 10.1. Let (X, \mathcal{A}) be a measurable space, let ν be a measure on it, let ν be a finite measure.

Then, $\nu \ll \mu$ if and only if

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ s.t. \ \mu(A) < \delta \implies \nu(A) < \varepsilon \ \forall A \in \mathcal{A}$$
 (284)

Recall the definition of uniform continuity and $\frac{df(x)}{dx}$.

Proof. (\iff) Suppose $\mu(A) = 0$, $\nu(A) < \varepsilon$ for all $\varepsilon > 0$, it must be $\nu(A) = 0$.

(\Longrightarrow) Suppose $\nu \ll \mu$, suppose the condition fails, $\exists \varepsilon > 0$ such that $\forall \delta > 0$, $\exists A$ with $\mu(A) < \delta$ but $\nu(A) \geq \varepsilon$.

We can find a sequence A_1, A_2, \ldots such that $\mu(A_j) < \delta_j = 2^{-j}$ for all j and $\nu(A_j) \geq \varepsilon$. It follows $\sum \mu(A_j) < \infty$. By Borel-Cantelli lemma,

$$\mu\left(\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}A_k\right) = 0\tag{285}$$

Define $B_j = \bigcup_{k=j}^{\infty} A_k$ and $B = \bigcap_{j=1}^{\infty} B_j$. Since $B_j \setminus B$ and ν is a finite measure, $\nu(B) = \lim_j \nu(B_j)$. But for any $j, \nu(B_j) \geq \nu(A_j) \geq \varepsilon$. Therefore, $\nu(B) \geq \varepsilon$, which contradicts $\nu \ll \mu$.

Proof of Radon-Nikodym Theorem. Let ν, μ be finite measures, let

$$\mathcal{F} := \left\{ f : X \to [0, \infty] : f \text{ measurable and } \int_{A} f \ d\mu \le \nu(A) \ \forall A \in \mathcal{A} \right\}$$
 (286)

We are choosing the largest $g \in \mathcal{F}$ as $\frac{d\nu}{d\mu}$.

Claim: $f, g \in \mathcal{F} \implies f \vee g \equiv \max\{f, g\} \in \mathcal{F}.$

Proof. Let $B := \{x : f(x) \ge g(x)\}$, for any $A \in \mathcal{A}$,

$$\int_{A} f \vee g \ d\mu = \int_{A \cap B} f \vee g \ d\mu + \int_{A \cap B^{c}} f \vee g \ d\mu \tag{287}$$

$$= \int_{A \cap B} f \ d\mu + \int_{A \cap B^c} g \ d\mu \le \nu(A \cap B) + \nu(A \cap B^c) = \nu(A)$$
 (288)

Let $(f_n) \in \mathcal{F}$ be a sequence such that

$$\lim_{n \to \infty} \int f_n \ d\mu = \sup \{ \int f \ d\mu : f \in \mathcal{F} \}$$
 (289)

For every $n \in \mathbb{N}$, take $g_n(x) = \max_{j \le n} f_j(x)$, $g_n \in \mathcal{F}$ by previous claim. Moreover, $g_n(x) \uparrow$ for all $x \in X$.

$$\int f_n d\mu \le \int g_n d\mu \le \sup \{ \int f d\mu : f \in \mathcal{F} \}$$
 (290)

By squeeze theorem, $\lim_{n\to\infty} \int g_n \ d\mu = \sup\{\int f \ d\mu : f \in \mathcal{F}\}.$

Define $g(x) = \lim_{n \to \infty} g_n(x)$, which alway exists but is potentially infinity. By MCT,

$$\int g \ d\mu = \lim_{n \to \infty} \int g_n \ d\mu = \sup \{ \int f \ d\mu : f \in \mathcal{F} \}$$
 (291)

Note that $\forall A \in \mathcal{A}$,

$$\int_{A} g \ d\mu = \lim_{n \to \infty} \int_{A} g_n \ d\mu \le \nu(A) \tag{292}$$

So $g \in \mathcal{F}$ and attains the supremum, in terms of integral, over \mathcal{F} .

Claim: $\forall A \in \mathcal{A}, \int_A g \ d\mu = \nu(A).$

Proof. Define $\nu_0(A) = \nu(A) - \int_A g \ d\mu$. Since ν is a measure and $A \mapsto \int_A g \ d\mu$ is also a finite measure. Therefore, ν_0 is a finite signed measure. Moreover, since $g \in \mathcal{F}$, $\nu_0(A) \geq 0$ for all $A \in \mathcal{A}$.

Suppose, for contradiction, $\nu_0(A) > 0$ for some $A \in \mathcal{A}$. It must be $\nu_0(X) > 0$. But $\mu(X) < \infty$, there exists $\varepsilon > 0$ such that $\nu_0(X) > \varepsilon \mu(X)$. Note that $\nu_0 - \varepsilon \mu$ is a finite signed measure, let (P, N) be the Hahn decomposition of $\nu_0 - \varepsilon \mu$. Then for any $A \in \mathcal{A}$,

$$\nu(A) = \int_{A} g \ d\mu + \nu_0(A) \tag{293}$$

$$\geq \int_{A} g \ d\mu + \nu_0(A \cap P) \tag{294}$$

$$= \int_{A} g \ d\mu + \underbrace{\nu_0(A \cap P) - \varepsilon\mu(A \cap P)}_{\geq 0} + \varepsilon\mu(A \cap P)$$
 (295)

$$\geq \int_{A} g \ d\mu + \varepsilon \mu(A \cap P) \tag{296}$$

$$= \int_{A} g + \varepsilon \chi_{A \cap P} \ d\mu \tag{297}$$

Therefore, $g + \varepsilon \chi_{A \cap P} \in \mathcal{F}$. Take A = X:

$$\int g + \varepsilon \chi_{A \cap P} \ d\mu = \int g \ d\mu + \varepsilon \mu(P \cap A) \ge \int g \ d\mu \tag{298}$$

Suppose, for contradiction, $\mu(P) \leq 0$, it must be $\mu(P) = 0$, by absolute continuity, $\nu \ll \mu$, $\nu(P) = 0$ as well. Then, since $\int_P g \ d\mu$ is bounded on a measure zero set, it must be zero,

$$\nu_0(P) = \nu(P) - \int_P g \ d\mu = 0 \tag{299}$$

Thus

$$(\nu_0 - \varepsilon \mu)(P) = 0 \tag{300}$$

$$\implies (\nu_0 - \varepsilon \mu)(X) = (\nu_0 - \varepsilon \mu)(P) + (\nu_0 - \varepsilon \mu)(N) \le 0 \tag{301}$$

Contradicts $\nu_0(X) \geq \varepsilon \mu(X)$, therefore, $\mu(P) > 0$.

This leads to a contradiction since $g + \varepsilon \chi_{A \cap P}$ has strictly larger integral than g. Therefore, $\nu_0 = 0$.

Suppose μ and ν are σ -finite. Let $B_1, B_2, \dots \in \mathcal{A}$ be a partition of X such that $\mu(B_n), \nu(B_n)$ are finite. Moreover, define $\mu_n(A) := \mu(A \cap B_n)$ and $\nu_n(A) := \nu(A \cap B_n)$, both of μ_n and ν_n are finite on X (in particular, on B_n) and $\nu_n \ll \mu_n$.

For every $n \in \mathbb{N}$, there exists measurable $g_n : X \to [0, \infty]$ such that

$$\nu_n(A) = \int_A g_n \ d\mu \tag{302}$$

Therefore,

$$\nu(A \cap B_n) = \int g_n \chi_{A \cap B_n} \ d\mu \tag{303}$$

$$= \int g_n \chi_{B_n} \chi_A \ d\mu \tag{304}$$

$$= \int_{A} g_n \chi_{B_n} \ d\mu \tag{305}$$

Let $g = \sum_{n=1}^{\infty} g_n \chi_{B_n}$, then

$$\nu(A) = \sum_{n=1}^{\infty} \nu(A \cap B_n) \tag{306}$$

$$=\sum_{n=1}^{\infty} \int g_n \chi_{B_n} \chi_A \ d\mu \tag{307}$$

$$=\sum_{n=1}^{\infty} \chi_A \int g_n \chi_{B_n} \ d\mu \tag{308}$$

$$= \int \chi_A \sum_{n=1}^{\infty} g_n \chi_{B_n} \ d\mu \tag{309}$$

$$= \int_{A} g \ d\mu \tag{310}$$

(311)

Since $g_n < \infty$ everywhere for all n, so is g.

Remark 10.1 (Uniqueness of Radon-Nikodym Derivative). Let g and h be two Radon-Nikodym derivatives of ν w.r.t. μ .

Case 1: suppose $\nu(X) < \infty$, then for all $A \in \mathcal{A}$, by definition,

$$\int_{A} g \ d\mu = \nu(A) = \int_{A} h \ d\mu \tag{312}$$

Let $B := \{x, g(x) > h(x)\}, (g-h)\chi_A \ge 0$ and $(g-h)\chi_A = 0$ a.e. on A. Similarly, $(h-g)\chi_{A^c} \ge 0$ and $(h-g)\chi_{A^c} = 0$ a.e. on A^c . Add them together, g-h=0 a.e. on X.

Case 2: suppose ν is σ -finite, let B_1, B_2, \ldots be disjoint measurable sets such that $\nu(B_n) < \infty$ and $\cup_n B_n = X$. Since g = h a.e. on every B_n as shown before, g = h a.e. on X.

Theorem 10.2 (Radon-Nikodym Theorem for Complex Measures). TODO

10.1 Lebesgue Decomposition Theorem

Definition 10.2. Let (X, \mathcal{A}) be a measurable space, let μ be a measure on (X, \mathcal{A}) , then μ is **concentrated** on a set $E \in \mathcal{A}$ if $\mu(E^c) = 0$.

We say that a signed complex measure μ is concentrated on E if $|\mu|$ is concentrated on E.

Definition 10.3. Two measures / signed measures / complex measures μ and ν on measurable space (X, \mathcal{A}) are **mutually singular** if $\exists E \in \mathcal{A}$ such that μ is concentrated on E and ν is concentrated on E^c .

$$\mu \perp \nu$$
 (313)

Example 10.2. Any measure on \mathbb{R} that is concentrated on \mathbb{Z} is mutually singular to the Lebesgue measure, which is concentrated on \mathbb{Z}^c .

Theorem 10.3 (Lebesgue Decomposition). Let (X, A) be a measurable space, let μ be a <u>measure</u> (the reference measure) on it. Let ν be a finite signed, complex measure, or σ -finite measure on (X, A), then there is a unique decomposition

$$\nu = \nu_a + \nu_s \tag{314}$$

such that

$$\nu_a \ll \mu \tag{315}$$

$$\nu_s \perp \mu$$
 (316)

Proof. Case 1: suppose ν is a finite measure. Define \mathcal{N} to be the collection of μ -negligible sets:

$$\mathcal{N} := \{ B \in \mathcal{A} : \mu(B) = 0 \} \tag{317}$$

Let

$$S := \sup\{\nu(B) : B \in \mathcal{N}\} < \infty \text{ since } \nu \text{ is finite.}$$
 (318)

Then there exists a sequence of sets $B_n \in \mathcal{N}$ such that $S = \lim_{n \to \infty} \nu(B_n)$, define

$$N = \bigcup_{n=1}^{\infty} B_n \tag{319}$$

Easy to verify that $\mu(N) \leq \sum_{n=1}^{\infty} \mu(B_n) = 0$, so $N \in \mathcal{N}$. Obviously, $\nu(N) \leq S$ since $N \in \mathcal{N}$. Moreover, since $\nu(N) \geq \nu(B_n)$ for every $n \in \mathbb{N}$, $\nu(N) \geq \lim_n \nu(B_n) = S$. Thus, $\nu(N) = S$, so that N is the ν -maximal set in \mathcal{N} .

For every $A \in \mathcal{A}$, define

$$\nu_a(A) = \nu(A \cap N^c) \tag{320}$$

$$\nu_s(A) = \nu(A \cap N) \tag{321}$$

So that $\nu = \nu_a + \nu_s$.

Claim: $\nu_s \perp \mu$.

Easy to verify that $\mu(N) = 0$ and $\nu_s(N^c) = \nu(N^c \cap N) = 0$.

Claim: $\nu_a \ll \mu$.

Take any $B \in \mathcal{A}$ such that $\mu(B)$. Suppose, for contradiction, $\nu_a(B) \neq 0$, that is, $\nu(B \cap N^c) \neq 0$. Since we assumed ν is a finite measure (not signed), $\nu(B \cap N^c) > 0$. Thus,

$$\nu(N \cup B) = \nu(N) + \nu(B \cap N^c) > \nu(N) = S \tag{322}$$

but $N \cup B \in \mathcal{N}$, this leads to a contradiction.

Case 2: suppose ν is a finite signed or complex measure, we can find N as above for $|\nu|$ and define $\nu_a(A) = \nu(A \cap N^c)$ and $\nu_s(A) = \nu(A \cap N)$.

Case 3: if ν is a σ -finite measure, we can firstly express X as a disjoint union D_1, D_2, \ldots with finite ν measure, and then find $N_i \subseteq D_i$ as the ν -maximal element among all μ -zero subsets of D_i . Lastly, define $N = \bigcup_{i=1}^{\infty} N_i$ and follow the construction before.

Uniqueness: suppose

$$\nu = \nu_a + \nu_s = \nu_a' + \nu_s' \tag{323}$$

Assume ν is a finite / finite signed / complex measure, then

$$\nu_a - \nu_a' = \nu_s' - \nu_s \tag{324}$$

The left hand side is absolutely continuous and the right hand side is singular to μ by the following lemma, hence, they must be both zero.

Lemma 10.2. The notion of absolute continuity and singularity are closed under linear combinations.

Proof. TODO

Lemma 10.3. If a measure is both absolutely continuous and singular with respect to μ , then it must be zero.

Proof. TODO

11 Product Measure and Fubini's Theorem

11.1 Dynkin's π - λ System

Definition 11.1. Let X be a set, a collection \mathcal{P} of subsets of X is called a π -system if $A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$.

Definition 11.2. Let X be a set, a collection \mathcal{D} of subsets of X is called a λ -system / Dynkin class if

- 1. $X \in \mathcal{D}$,
- 2. $A, B \in \mathcal{D}, A \subseteq B \implies B \setminus A \in \mathcal{D},$
- 3. if $A_1 \subseteq A_2 \subseteq \cdots \in \mathcal{D}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$.

Remark 11.1 (An equivalent definition). The third requirement of λ -system may be replaced by closure under countable disjoint union.

Remark 11.2. A σ -algebra is always a λ -system but not converse.

Example 11.1. Take any two probability measures μ and ν on \mathbb{R} , let

$$\mathcal{D} = \{ A \in \mathcal{B}(\mathbb{R}) : \mu(A) = \nu(A) \}$$
(325)

Then \mathcal{D} is always a λ -system but not necessarily a σ -algebra.

Theorem 11.1 (Dynkin's π - λ theorem). Let X be a set, let \mathcal{P} be a π -system and \mathcal{D} be a λ -system. Then

$$\mathcal{P} \subseteq \mathcal{D} \implies \sigma(\mathcal{P}) \subseteq \mathcal{D} \tag{326}$$

Proof. Note that an arbitrary intersection of λ -system is a λ -system. Let \mathcal{D} be the smallest λ -system contains \mathcal{P} . Define

$$\mathcal{D}_1 = \{ \mathcal{A} \in \mathcal{D} : A \cap B \in \mathcal{D} \quad \forall B \in \mathcal{P} \}$$
 (327)

Since \mathcal{P} is a π -system, $A \cap B \in \mathcal{P} \subseteq \mathcal{D}$ for all $A, B \in \mathcal{P} \subseteq \mathcal{D}$, thus, $\mathcal{P} \subseteq \mathcal{D}_1$. Note that

- 1. $A \cap B = B \in \mathcal{D}$ for all $B \in \mathcal{P}$, therefore, $X \in \mathcal{D}_1$.
- 2. Let $A, B \in \mathcal{D}_1$, for every $C \in \mathcal{P}$, $A \cap B$, $B \cap C \in \mathcal{D}$. Therefore,

$$(B \cap C) \setminus (A \cap C) = (B \setminus A) \cap C \in \mathcal{D} \tag{328}$$

Hence, $B \setminus A \in \mathcal{D}_1$.

3. If $A_1 \subseteq A_2 \subseteq \cdots \in \mathcal{D}_1$, then for all $B \in \mathcal{P}$,

$$\left(\bigcup A_i\right) \cap B = \bigcup (A_i \cap B) \in \mathcal{D} \tag{329}$$

Therefore, $\bigcup A_i \in \mathcal{D}_1$, so \mathcal{D}_1 is a λ -system.

Since \mathcal{D}_1 is a λ -system contains \mathcal{P} , hence $\mathcal{D} \subseteq \mathcal{D}_1$. Therefore, $\mathcal{D}_1 = \mathcal{D}$. This shows $\forall A \in \mathcal{D} = \mathcal{D}_1, B \in \mathcal{P}, A \cap B \in \mathcal{D}$.

Define

$$\mathcal{D}_2 = \{ \mathcal{A} \in \mathcal{D} : A \cap B \in \mathcal{D} \quad \forall B \in \mathcal{D} \}$$
 (330)

By the previous result, $\mathcal{P} \subseteq \mathcal{D}_2$. Also, \mathcal{D}_2 is a λ -system, so $\mathcal{D}_2 = \mathcal{D}$.

Moreover, for all $A, B \in \mathcal{D}$, $A \cap B \in \mathcal{D}$, so that \mathcal{D} is also a π -system.

Lemma 11.1. A collection of sets is both π and λ if and only if its a σ -algebra.

Proof. For a λ -system \mathcal{D} , it contains $X^c = \emptyset$ and is closed under complement (take one of two sets to be X).

Let $A_1, A_2, \dots \in \mathcal{D}$, we may define $B_n = A_1 \cup \dots \cup A_n$, so that $\bigcup A_n = \bigcup B_n$ and B_n is an increasing sequence. In particular, since \mathcal{D} is closed under complement (as a λ -system) and finite intersection (as a π -system), $B_n \in \mathcal{D}$ as well. By definition of λ -system, $\bigcup A_n \in \mathcal{D}$.

Therefore, \mathcal{D} is a σ -algebra containing \mathcal{P} , it follows $\sigma(\mathcal{P}) \subseteq \mathcal{D}$.

Corollary 11.1. Let μ and ν be $\underline{\sigma\text{-finite}}$ measures on a measurable space (X, \mathcal{A}) . If μ and ν agree on a π -system \mathcal{P} that generate \mathcal{A} , then $\mu = \nu$ on \mathcal{A} .