Exercise 1:

- V = [0.5, 0.8, 0.9]
- M = [1.0, 0.3, 0.65; 0.5, 0.8, 0.9; 1.0, 0.3, 0.65]

Using NumPy:

- Create the vector V.
- Create the matrix M, M transpose, Matrix $G = M^{T*}M$.
- Extract vector 1, row 1, sub matrix (0-2,0-2), then the max, min, sum, and average of each.
- Extract from M: (a) diagonal matrix. (b) identity matrix, (c) values bigger than 0.5.
- Insert a new row to M, and then insert a new column to M using random values.
- Calculate Euclidean distance of each two vectors of M using G.
- Verify if V is in M.
- Create a random sample of data (X values, and Y values) as to have 10 values of X in the range [0; 11], and Y has a linear form Y = aX + b (a in [1.5; 1.8], and b in [4; 4.5].
 - o Check Linspace.
- Check if a matrix N is sub matrix of another matrix M.
- Create matrix of size (5,5) containing: (a) ones, (b) zeros, and (c) random values.

Exercise 2

Calculate Maclaurin series with NumPy

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \dots$$

Exercise 3:

Let us consider the data set of Amazon Ratings from Kaggle.

• https://www.kaggle.com/datasets/skillsmuggler/amazon-ratings

In next:

- Load the data.
- Filter rows to pick up the 10 highest sold products.
- Transform the data so we have days instead of timestamps.
- Draw a line graph representing the averaging rating of the products.
- Draw a multi-line graph representing the selling number of each product by day.

Exercise 4:

For a given data matrix M as an example of 2 data rows, and 3 data features as in the next Table.

10	3	5
19	13	6

• Compute the centered matrix Mc:

- O Create an identity matrix I_n of shape (n, n), and the ones matrix J_n of shape (n, n) containing only 1s, then calculate the centering matrix $Cn = I_n 1/n *J_n$, where represents the number of rows of M.
- Calculate the centered matrix $M_c = C_n * M$

• Reduce the data:

- O Calculate the diagonal matrix **diag**_n of length n (containing in the diagonal n 1 value, e.g., $diag_3 = [1,0,0;0,1,0;0,0,1]$.).
- o Divide $diag_n$ by n and get $Ndiag_n$.
- Calculate variance matrix $Var_M = M_c^T N diag_n M_c$
- Of the diagonal variance matrix Var_V from Var_M , (Var_V contains zeros in all of its elements except the diagonal elements that should hold the diagonal elements of Var_M).
- Calculate the inverse matrix of $IVar_V = Var_V^{-1}$.
- Calculate the reduced matrix $M_r = M_c I V a r_v$

• Calculate the covariance matrix:

- $\circ \quad Cov = M_r^T N diag_n M_r$
- Calculate the eigenvalues, and the eigenvectors of Cov.
- Filter the eigenvectors, and keep only the vectors, which explain 90% of the variance.
- Project M into the new dimensions.

Exercise 5:

Write equivalent pandas instructions for the next cases:

1)

I	2		I	2
		U		

2)

3)

Х		Х	2
	$oldsymbol{\cap}$		
	X		

4)

Х		Х		Х	
1	N	4	=	1	
2	X	5		2	
3				3	

5)

Х		Х		Х	
1	N	4	=	I	
2	x	5		2	
3				3	
				4	
				5	

6)

Х		X		Х	
1	$\mathbf{\Omega}$	3	=	1	
2	X	5		2	
3				3	
				3	
				5	

7)

	А	E	В	С			С	D	Е			Α	В	С	D	Е
Ι	1				N	_				=	Ι					
2	2					2					2					

8)

							_					
	Α	В			Α	В		Х	Α	В	Α	В
I			\cap	2				Т				
2				3			–	2				
				4				3				
							-	4				

9)

	Α	В			Α	В	C		Χ	Α	В	С
I	_	_	0	4	_		0	_	_	_	Ι	0
2	2	2		5	-	2	Ι	_	2	_	2	1
3	2	_		6	2	2	Ι		3	2	Ι	NAN

10)

	Α	В			Α	В	С		Х	Α	В	С
Ι	Ι	—	_	4	_	Ι	0	_		_	Ι	0
2	2	2	11	5	Ι	2	Ι	_	2	Ι	2	Ι
3	2			6	2	2	Ι					

11)

	Α	В			Α	В			Α	В
I	N	3	Fill	1	I	3	=	_	Ι	3
2	0	4	N	2	I	N		2	0	4
3	N	5		3	3	3		3	3	5

12)

2 3	+	2	+	2	=	2		
3		3		3		3		