

# Model 625 HCMOS Clock Oscillator

## **Features**

- Ceramic Surface Mount Package
- Operating Temperature Range to -40°C to +105°C
- Fundamental and 3<sup>rd</sup> Overtone Crystal Designs
- Frequency Range 1.0 160MHz \*
- +1.8V, +2.5V and +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-481

## Networking Equipment

- Data Communications
- Computers and Peripherals
- Ethernet/GbE/SyncE

Check with factory for availability of frequencies not listed.

Portable Devices

Standard Frequencies

\* See Page 6 for common frequencies.

Test and Measurement

Part Dimensions

2.5 × 2.0 × 1.0mm • 15.001mg

## **Applications**

- Internet of Things [IoT, IIoT]
- Microcontrollers and FPGAs
- Wireless Communication

# Description

CTS Model 625 is a low cost, ultra-low voltage clock oscillator supporting HCMOS output. Employing the latest IC technology, M625 has excellent stability and low phase jitter performance.

# **Ordering Information**



#### Notes:

- $1] \ \ Consult \ factory \ for \ availability \ of \ 6I \ Stability/Temperature \ combination.$
- 2] Available with stability codes 4 and 3.
- 3] Frequency is recorded with 3 leading digits before and 5 significant digits after the "M" [including zeroes]. [Ex. 3.579545MHz = 003M57954; 14.31818MHz = 014M31818; 25MHz = 025M00000; 125MHz = 125M00000]

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC# 008-0329-0 Rev. F WWW.ctscorp.com Page 1 of 6



# **Electrical Specifications**

## Operating Conditions

| PARAMETER              | SYMBOL CONDITIONS |                                                                | MIN   | TYP | MAX   | UNIT |  |  |
|------------------------|-------------------|----------------------------------------------------------------|-------|-----|-------|------|--|--|
| Maximum Supply Voltage | Vcc               | -                                                              | -0.5  | -   | 4.0   | V    |  |  |
|                        |                   |                                                                | 1.620 | 1.8 | 1.980 |      |  |  |
| Supply Voltage         | $V_{CC}$          | ±10%                                                           | 2.25  | 2.5 | 2.75  | V    |  |  |
|                        |                   |                                                                | 2.97  | 3.3 | 3.63  |      |  |  |
|                        | Ту                | pical @ Nominal Vcc, $C_L = 15 \text{ pF}$ , $T_A = +25^\circ$ | 'C    |     |       |      |  |  |
|                        |                   | @ +1.8V, 1.0MHz to <60MHz                                      | -     | 2   | 4     |      |  |  |
|                        |                   | @ +1.8V, 60MHz to <100MHz                                      | -     | 5   | 15    | mA   |  |  |
|                        | lcc               | @ +1.8V, 100MHz to 160MHz                                      | -     | 8   | 25    |      |  |  |
| Supply Current         |                   | @ +2.5V, 1.0MHz to <60MHz                                      | -     | 3   | 10    |      |  |  |
|                        |                   | @ +2.5V, 60MHz to <100MHz                                      | -     | 8   | 20    | mA   |  |  |
|                        | _                 | @ +2.5V, 100MHz to 160MHz                                      | -     | 12  | 30    |      |  |  |
|                        |                   | @ +3.3V, 1.0MHz to <60MHz                                      | -     | 3   | 15    |      |  |  |
|                        |                   | @ +3.3V, 60MHz to <100MHz                                      | -     | 9   | 25    | mA   |  |  |
|                        |                   | @ +3.3V, 100MHz to 160MHz                                      | -     | 16  | 35    |      |  |  |
| Output Load            | $C_L$             | -                                                              | -     | -   | 15    | pF   |  |  |
|                        |                   |                                                                | -20   |     | +70   |      |  |  |
| Operating Temperature  | TA                |                                                                | -30   | +25 | +85   | °C   |  |  |
| Operating reinperature | IA                | -                                                              | -40   | 123 | +85   | C    |  |  |
|                        |                   |                                                                | -40   |     | +105  |      |  |  |
| Storage Temperature    | $T_{STG}$         | -                                                              | -55   | -   | +125  | °C   |  |  |

## Frequency Stability

| SYMBOL CONDITIONS |                                             |           | MIN TYP MAX |                                 |                                    |  |
|-------------------|---------------------------------------------|-----------|-------------|---------------------------------|------------------------------------|--|
| f <sub>O</sub>    | -                                           | 1.0 - 160 |             |                                 | MHz                                |  |
| Δf/f <sub>O</sub> | -                                           | 2         | ±ppm        |                                 |                                    |  |
| $\Delta f/f_{25}$ | First Year @ +25°C, nominal V <sub>CC</sub> | -3 - 3    |             |                                 | ppm                                |  |
|                   | , ,                                         | , =       | 27.0        | $\Delta f/f_0$ - 20, 25, 30, 50 | Δf/f <sub>0</sub> - 20, 25, 30, 50 |  |



# **Electrical Specifications**

## **Output Parameters**

| PARAMETER                  | SYMBOL                          | CONDITIONS                                                 | MIN                | TYP   | MAX                | UNIT<br>- |  |
|----------------------------|---------------------------------|------------------------------------------------------------|--------------------|-------|--------------------|-----------|--|
| Output Type                | -                               | -                                                          |                    | HCMOS |                    |           |  |
| Outnut Valtage Levels      | V <sub>OH</sub>                 | Logic '1' Level, CMOS Load                                 | 0.9V <sub>CC</sub> | -     | -                  | \/        |  |
| Output Voltage Levels      | $V_{OL}$                        | Logic '0' Level, CMOS Load                                 | -                  | -     | $0.1V_{\text{CC}}$ | V         |  |
| Outnut Cumant Lavala       | Іон                             | V <sub>OH</sub> = 90%V <sub>CC</sub> [+1.8V, +2.5V, +3.3V] | -                  | -     | -4, -4, -8         | то Л      |  |
| Output Current Levels      | loL                             | V <sub>OL</sub> = 10%V <sub>CC</sub> [+1.8V, +2.5V, +3.3V] | - +4, +4, +8       |       | +4, +4, +8         | mA        |  |
| Output Duty Cycle          | SYM                             | @ 50% Level                                                | 45                 | -     | 55                 | %         |  |
|                            |                                 | @ 10%/90% Levels, Nominal $V_{CC}$ , $C_L = 15 pF$         |                    |       |                    |           |  |
|                            |                                 | @ +1.8V, 1.0MHz to <20MHz                                  | -                  | -     | 3                  |           |  |
|                            |                                 | @ +1.8V, 20MHz to <125MHz                                  | -                  | -     | 3                  | ns        |  |
| Rise and Fall Time         | T <sub>R</sub> , T <sub>F</sub> | @ +1.8V, 125MHz to 160MHz                                  | -                  | -     | 3                  |           |  |
|                            |                                 | @ +2.5V, 1.0MHz to <20MHz                                  | -                  | -     | 4                  |           |  |
| [Note 2]                   |                                 | @ +2.5V, 20MHz to <125MHz                                  | -                  | -     | 3                  | ns        |  |
|                            |                                 | @ +2.5V, 125MHz to 160MHz                                  | -                  | -     | 3                  |           |  |
|                            |                                 | @ +3.3V, 1.0MHz to <20MHz                                  | -                  | -     | 5                  |           |  |
|                            |                                 | @ +3.3V, 20MHz to <125MHz                                  | -                  | -     | 4                  | ns        |  |
|                            |                                 | @ +3.3V, 125MHz to 160MHz                                  | -                  | -     | 3                  |           |  |
| Start Up Time              | Ts                              | Application of V <sub>CC</sub>                             | -                  | 2     | 5                  | ms        |  |
| Enable Function            | S                               | tandby                                                     |                    |       |                    |           |  |
| Enable Input Voltage       | $V_{IH}$                        | Pin 1 Logic '1', Output Enabled                            | $0.7V_{CC}$        | -     | -                  | V         |  |
| Disable Input Voltage      | $V_{IL}$                        | Pin 1 Logic '0', Output Standby                            | -                  | -     | $0.3V_{CC}$        | V         |  |
| Standby Current            | I <sub>STB</sub>                | Pin 1 Logic '0', Output Standby                            | -                  | -     | 10                 | μΑ        |  |
| Enable Time                | $T_{PLZ}$                       | Pin 1 Logic '1', Output Enabled                            | -                  | -     | 5                  | ms        |  |
| Phase Jitter, RMS [Note 3] | tjrms                           | Bandwidth 12kHz - 20MHz                                    | -                  | 0.5   | <1                 | ps        |  |

<sup>2.]</sup> Parameters are worst case and account for comprehensive range of product specification. Performance may vary by application and must be validated by end user.

#### **Enable Truth Table**

| Pin 1     | Pin 4            |
|-----------|------------------|
| Logic '1' | Output Enabled   |
| Open      | Output Enabled   |
| 1 (0)     | Output Disabled, |
| Logic '0' | High Impedance   |

#### **Test Circuit**

**HCMOS** 



## Output Waveform

HCMOS



DOC# 008-0329-0 Rev. F WWW.ctscorp.com Page 3 of 6

<sup>3.]</sup> For frequencies 10MHz - 40MHz, the measurement Bandwidth is 12kHz - 5MHz.



# **Mechanical Specifications**



## Marking Information

- 1. 625 CTS Model.
- 2. D Date Code. See Table I for codes.
- xxxx Frequency Code.
   3-digits, frequencies below 100MHz
   4-digits, frequencies 100MHz or greater

[See document 016-1454-0, Frequency Code Tables.]

## Recommended Pad Layout



#### Notes

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- 2. Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.

#### Pin Assignments

| Pin | Pin Symbol Function |                          |  |  |  |
|-----|---------------------|--------------------------|--|--|--|
| 1   | EOH                 | Enable                   |  |  |  |
| 2   | GND                 | Circuit & Package Ground |  |  |  |
| 3   | Output              | RF Output                |  |  |  |
| 4   | $V_{CC}$            | Supply Voltage           |  |  |  |

## Table I - Date Code, Beginning year 2021

|      |      | ľ    | монтн |      |     | FFD | MAAD | 4 D.D. | B 4 A V | HIN |     | ALIC | CED | ОСТ | NOV | DEC |
|------|------|------|-------|------|-----|-----|------|--------|---------|-----|-----|------|-----|-----|-----|-----|
|      | YEAR |      | JAN   | FEB  | MAR | APR | MAY  | JUN    | JUL     | AUG | SEP | ОСТ  | NOV | DEC |     |     |
| 2021 | 2025 | 2029 | 2033  | 2037 | А   | В   | С    | D      | Е       | F   | G   | Н    | J   | K   | L   | М   |
| 2022 | 2026 | 2030 | 2034  | 2038 | N   | Р   | Q    | R      | S       | Т   | U   | V    | W   | Χ   | Υ   | Z   |
| 2023 | 2027 | 2031 | 2035  | 2039 | а   | b   | С    | d      | е       | f   | g   | h    | j   | k   | 1   | m   |
| 2024 | 2028 | 2032 | 2036  | 2040 | n   | р   | q    | r      | S       | t   | u   | V    | W   | Х   | У   | Z   |



# Packaging - Tape and Reel



## Reel Drawing



#### Notes

- $1. \quad \text{Device quantity is 1k pieces minimum and 3k pieces maximum per 180mm reel}.$
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.





# Addendum

# Common Frequencies – MHz

| FREQUENCY | FREQUENCY<br>CODE | FREQUENCY | FREQUENCY<br>CODE | FREQUENCY | FREQUENCY<br>CODE | FREQUENCY  | FREQUENCY<br>CODE |
|-----------|-------------------|-----------|-------------------|-----------|-------------------|------------|-------------------|
| 1.544000  | 001M54400         | 12.288000 | 012M28800         | 26.000000 | 026M00000         | 40.000000  | 040M00000         |
| 3.072000  | 003M07200         | 13.000000 | 013M00000         | 27.000000 | 027M00000         | 48.000000  | 048M00000         |
| 3.200000  | 003M20000         | 14.318180 | 014M31818         | 27.120000 | 027M12000         | 50.000000  | 050M00000         |
| 3.686400  | 003M68640         | 15.625000 | 015M62500         | 28.636360 | 028M63636         | 80.000000  | 00000M080         |
| 4.000000  | 004M00000         | 16.000000 | 016M00000         | 29.491200 | 029M49120         | 100.000000 | 100M00000         |
| 6.000000  | 000M00000         | 19.200000 | 019M20000         | 30.000000 | 030M00000         | 125.000000 | 125M00000         |
| 7.372800  | 007M37280         | 20.000000 | 020M00000         | 30.720000 | 030M72000         | 160.000000 | 160M00000         |
| 8.000000  | 0000M800          | 24.000000 | 024M00000         | 32.000000 | 032M00000         |            |                   |
| 10.000000 | 010M00000         | 24.576000 | 024M57600         | 33.000000 | 033M00000         |            |                   |
| 12.000000 | 012M00000         | 25.000000 | 025M00000         | 37.400000 | 037M40000         |            |                   |