

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA IHP1

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2023-24 School of Electronics CURRICULUM: HITUGECE22 Cycle Test – I

16, Aug.'23

Degree	B. Tech.	Branch	ECE
Semester	VII		
Subject Code & Name	ECPE61 / Nanoscience and Nanotechnology		
Time: 60 Minutes	Answer All	Questions	Maximum: 20 Marks

S. No.	Question	Marks
1.a	OF Links describe as	
1.b	Lattice constant of Silicon is $a = 5.43$ Å. Calculate the inter-planner separation for $\{111\}$ and $\{112\}$ family of planes. Comment on their packing density. Out of these two, which family of planes will etch faster?	2
1.c	What are surface states? why they are so detrimental to nano-devices? Why does a nano particle have such huge density of surface states? Mention and explain briefly about one technique to reduce these unwanted surface states.	2
2.a	How can dry and wet oxidation techniques be compared based up on the quality of oxide grown by them? Write down one application of oxides grown both techniques	1
2.b	Given oxidation rate constants for (111) planes of Si, at temperature T = 1100 °C wet oxidation: $A = 0.11 \mu m$, $B = 0.51 \mu m^2/hr$, $\tau = 0 hr$. dry oxidation: $A = 0.090 \mu m$, $A = 0.037 \mu m^2/hr$, $a = 0.076 hr$. If oxidation is carried out for 1 hour, calculate the oxide thickness in both cases (in nm) and compare the results.	2
2.c	Prove that packing density of silicon or silicon-like lattice structure is 34%.	2
3.a	What are three variants of optical lithography? Based up on which parameter such	1
3.b	A proximity printer operates with a 10 μ m mask-wafer gap with wavelength of $\lambda = 430$ nm. Another proximity printer uses 40 μ m mask-wafer gap with wavelength of $\lambda = 250$ nm of light source. Which has higher resolution?	2
	To make resolution better water droplets are introduced between mask and wafer of a projection lithography system. The angle at which images are formed on wafer is $\alpha = 20^{\circ}$ and refractive index of water is $n = 1.33$. The system uses an exciment LASER with ArF for illumination that emits light at $\lambda = 193$ nm. Calculate the resolution and depth of focus.	

4.a	Fig. 1 shows a variation of nano transistor called FinFET's.	
	JUUI	1
	Fig. 1: Vertical narrow Fin's of Silicon.	
	What kind of etch profile are they called? Which etching technique will be use to	
	fabricate such nanostructures, from given silicon wafer?	
4.b	Fig. 2 shows the layer diagram of a MOSFET, aluminium metallic contact for	
	Source, Drain and Gate:	
	LAYER	
	SOURCE GATE ORAIN O D SIO2	
	DIELECTRIC	
	N ^T N ^T	
		2
	P-TYPE SUBSTRATE	-
	Fig. 2: Cross-section diagram of NMOS with ohmic contacts.	
	You are converted into Alicon	
	detrop took and he would be used to grow this new SILP lavel i Debette	
	growth with proper necessary chemical reactions. How did p-type Silicon wafer	
	halm in this oxide growth process?	-
_	24 district two major differences between the doning techniques (1) diffusion, (11)	1
.c	ion implantation. (five one application of each of these two doping technique)	2
	with respect to the fabrication of an <i>npn</i> bipolar junction transistor.	