Spark Icesi Jorge Lizarazo

March 16, 2024

1 Entrega Parcial Procesamiento en la Nube "

Jorge Lizarazo & Leandro León Arce

15/03/2024 Proyecto creado como nota parcial en la materia de Procesamiento en la Nube de la Universidad Icesi Evaluada por el Porfesor Daniel Amariles

1.1 Introduction

Utilizando los datos recopilados a través de redes de niebla entre los años 2015 y 2019 en el Cerro Montezuma, área adyacente al Parque Nacional Natural Tatamá, llevamos a cabo un proceso de extracción de información. Este proceso implicó el análisis de varios conjuntos de datos raster, incluyendo aquellos de WorldClim 30seg y Hansen GFC (2022 - treecover200), junto con su recorte mediante un archivo shapefile de tipo polígono con un buffer alrededor del área de reserva (disponible en el enlace de GitHub proporcionado). Posteriormente, fusionamos dos bases de datos: una con información de campo y otra con datos extraídos de los raster. Realizamos una limpieza exhaustiva de los datos para homogeneizar nombres de especies, eliminar información superflua y estandarizar formatos. Utilizando análisis de componentes principales (PCA), determinamos el número mínimo de componentes necesario para representar el 90% de los datos. Luego, mediante el algoritmo de agrupamiento K-means, identificamos qué especies se agrupaban en qué comunidades, dividiendo así el conjunto en tres comunidades distintas. Finalmente, entrenamos un modelo de XGBoost para predecir a qué comunidad pertenecerían las especies a partir de los datos extraídos de los raster. Trasladamos este modelo a un escenario geográfico y generamos distribuciones o regiones ideales para cada comunidad de aves en el área del PNN Tatamá y su zona circundante.

```
[1]: import findspark findspark.init() findspark.find()
```

[1]: 'C:\\Users\\ASUS\\anaconda3\\envs\\pyspark-en\\Lib\\site-packages\\pyspark'

```
[2]: ## Solo para ver la cosa general con pandas
import pandas as pd
#df = pd.read_csv('Data_ColombiaGradientes_JFCO.csv', sep=',')
#df.head(2)
```

```
[2]:
                                                      Day ID Station
        Entrada Station
                                  Date
                                        Year month
     0
             621
                   Tatama
                            25-Feb-14
                                         2014
                                                Feb
                                                       25
                                                           1
                                                                 TA01
                                                                        NaN NaN
     1
             622
                            25-Feb-14
                                         2014
                                                       25
                                                           2
                   Tatama
                                                Feb
                                                                 TA01
                                                                       NaN NaN
```

```
Blood Parasite F-Chamber M. Feather \
     0
            no
                  NaN
                            NaN
                                          NaN
                                                    Y
                                                    Y
                  NaN
                            NaN
                                          NaN
     1
            no
                                                Notes_Bird Num_Colect replica \
     0
                     Muestras de plumas R4 y 2P, Marca R5
                                                                  NaN
                                                                           NaN
     1 Muestras 2pecho y 7 rectrices; primarias 1 y 2...
                                                                        NaN
                                                                NaN
       Anillador Notes_General
     0
             NaN
                           NaN
     1
             NaN
                           NaN
     [2 rows x 70 columns]
[3]: ## Solo general para pillar si son los documentos necesarios
     #dj = pd.read_csv('final_df_raster_data.csv', sep=',')
     #dj.head(2)
       Estacion
                            Longitud
[3]:
                  Latitud
           TA01 5.223194 -76.080167
            TA2 5.223056 -76.078000
     1
        clipped_Hansen_GFC-2022-v1.10_lossyear_10N_080W
     0
                                                       0
     1
                                                       0
        clipped_Hansen_GFC-2022-v1.10_treecover2000_10N_080W \
     0
                                                        45
     1
                                                        95
        resampled_clipped_wc2.1_30s_bio_1 resampled_clipped_wc2.1_30s_bio_10 \
    0
                                 19.033333
                                                                     19.383333
     1
                                 19.033333
                                                                     19.383333
        resampled_clipped_wc2.1_30s_bio_11 resampled_clipped_wc2.1_30s_bio_12 \
     0
                                       18.8
                                                                          2965.0
                                       18.8
                                                                          2965.0
     1
        resampled_clipped_wc2.1_30s_bio_13
     0
                                      416.0
     1
                                      416.0
        resampled_clipped_wc2.1_30s_bio_19 resampled_clipped_wc2.1_30s_bio_2 \
     0
                                      970.0
                                                                       7.816667
     1
                                      970.0
                                                                      7.816667
```

```
resampled clipped wc2.1 30s bio 3 resampled clipped wc2.1 30s bio 4 \
       0
                                   90.89148
                                                                      23.580935
                                   90.89148
                                                                     23.580935
       1
         resampled_clipped_wc2.1_30s_bio_5 resampled_clipped_wc2.1_30s_bio_6 \
       0
                                       23.3
                                                                           14.7
       1
                                       23.3
                                                                           14.7
         resampled_clipped_wc2.1_30s_bio_7 resampled_clipped_wc2.1_30s_bio_8 \
       0
                                   8.599999
       1
                                   8.599999
                                                                           18.8
         resampled_clipped_wc2.1_30s_bio_9 resampled_clipped_wc2.1_30s_elev
       0
                                  18.983334
                                                                          1493
       1
                                  18.983334
                                                                          1493
       [2 rows x 25 columns]
 [4]: import pyspark
       from pyspark.sql import SparkSession
       from pyspark.sql.functions import explode, split, coalesce, concat
       from pyspark.sql.functions import when, count, col, regexp replace, lit
 [5]: spark = SparkSession\
           .builder \
           .appName("Proyecto Gradientes Tatama") \
           .config("spark.driver.memory", "4g") \
           .getOrCreate()
[229]: import requests
       # URL del archivo CSV en GitHub
       csv url = 'https://raw.githubusercontent.com/jorgelizarazo94/Cloud procesing/
       96487afb8aa687ce23512c4962e79a432f08cc32d/Data/final_df_raster_data.csv'
       # Utiliza requests para descargar el archivo CSV
       r = requests.get(csv_url)
       with open('final_df_raster_data.csv', 'wb') as f:
           f.write(r.content)
       csv_url2 = 'https://github.com/jorgelizarazo94/Cloud_procesing/blob/
       -6487afb8aa687ce23512c4962e79a432f08cc32d/Data/Data ColombiaGradientes JFCO.
       # Utiliza requests para descargar el archivo CSV
       r = requests.get(csv_url2)
```

```
with open('Data_ColombiaGradientes_JFCO.csv', 'wb') as f:
       f.write(r.content)
[230]: dj_spark = spark.read.option('header', 'true').csv('final_df_raster_data.csv',
                                        header=True, __
     ⇔inferSchema=True)
    dj_spark = dj_spark.withColumnRenamed("Estacion", "Station")
    #dj_spark = dj_spark.withColumnRenamed("Elevacion", "Elevation")
    dj_spark.show(20)
    |Station|
                               Longitud | clipped_Hansen_GFC-2022-
                  Latitud|
    v1.10_lossyear_10N_080W|clipped_Hansen_GFC-2022-
    v1.10_treecover2000_10N_080W|resampled_clipped_wc2.1_30s_bio_1|resampled_clipped
    _wc2.1_30s_bio_10|resampled_clipped_wc2.1_30s_bio_11|resampled_clipped_wc2.1_30s
    _bio_12|resampled_clipped_wc2.1_30s_bio_13|resampled_clipped_wc2.1_30s_bio_14|re
    sampled_clipped_wc2.1_30s_bio_15|resampled_clipped_wc2.1_30s_bio_16|resampled_cl
    ipped_wc2.1_30s_bio_17|resampled_clipped_wc2.1_30s_bio_18|resampled_clipped_wc2.
    1 30s bio 19|resampled clipped wc2.1 30s bio 2|resampled clipped wc2.1 30s bio 3
    |resampled_clipped_wc2.1_30s_bio_4|resampled_clipped_wc2.1_30s_bio_5|resampled_c
    lipped_wc2.1_30s_bio_6|resampled_clipped_wc2.1_30s_bio_7|resampled_clipped_wc2.1
    30s bio 8|resampled clipped wc2.1 30s bio 9|resampled clipped wc2.1 30s elev|
    __________
    _+____
      -----
    ---+-----+
       TA01 | 5.223194444444444 | -76.08016666666666 |
    1
    01
                                         45 l
```

19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493		
TA2 5.22305555555556	-76.078		
01		95	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493		
TA3 5.21997222222222 -	76.0792777777778		
0		92	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493		
TA4 5.232250000000005 -			
0	70.03131000000000	95	
18.7875	19.116667	901	10 551
			18.55
2605.0	379.0		94.0
35.614826	862.0		458.0
765.0	862.0		7.741667
92.162704	22.373373		22.9
14.5	8.4		18.55
18.9	1544		
TA5 5.2402222222222 -	76.09208333333333		
0		90	
18.754168	19.083334		18.5
3087.0	414.0		163.0
26.5564	921.0		637.0
853.0	885.0		7.725
91.96429	23.204458		22.9
14.5	8.4		18.5
18.666666	1568		20.01
TA6 5.24469444444445	-76.09375		
0	10.030101	90	
	10 6333331	<i>3</i> 01	10 0666661
18.3375	18.633333		18.066666
3066.0	418.0		162.0
31.792627	992.0		555.0

875.0	992.0		7.758333
92.361115	22.676077		22.5
14.1	8.4		18.066666
18.366667	1667		
TA7	5.24625 -76.0961111111111		
0		90	
18.3375	18.633333		18.066666
3066.0	418.0		162.0
31.792627	992.0		555.0
875.0	992.0		7.758333
92.361115	22.676077		22.5
14.1	8.4		18.066666
18.366667	1667		
TA8 5.2381666	66666666 -76.08394444444444		
0		92	
19.8875	20.25		19.6
2871.0	363.0		128.0
31.151634	892.0		474.0
868.0	892.0		8.425
91.57609	25.77216		24.5
15.3	9.2		19.6
20.05	1377		
TA9 5.2476388	88888889 -76.09861111111111		
0		90	
18.3375	18.633333		18.066666
3066.0	418.0		162.0
31.792627	992.0		555.0
875.0	992.0		7.758333
92.361115	22.676077		22.5
14.1	8.4		18.066666
18.366667	1667		
TA10 5.2491388	88888889 -76.14944444444444		
0		95	
16.729166	16.966667		16.449999
2485.0	373.0		123.0
37.646206	848.0		397.0
685.0	814.0		7.2416663
89.4033	21.474976		20.8
12.7	8.099999		16.466667
16.816666	1938		
TA11 5.2487777	77777778 -76.1275		
0		95	
15.220833	15.400001		14.966666
2248.0	309.0		82.0
38.576023	771.0		316.0
649.0	771.0		7.1749997
89.68751	19.593414		19.3
11.3	7.999999		14.966666

15.316667	2228		
	511666666666666666666666666666666666666		
0	,	90	
16.629166	16.866667	•	16.366667
2140.0	289.0		83.0
37.20048	745.0		323.0
602.0	745.0		7.408333
90.345535	20.830303		20.8
12.6	8.199999		16.366667
16.733334	1984		10.000001
	5377777777778 -76.1086666666666		
0	337777777777777777.1000000000000000	99	
14.575	14.75	991	14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.6666661	2360		
	5761111111111 -76.11013888888888		
0		90	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360		
TA15 5.25	56888888888889 -76.1121111111111		
0		90	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360		
	66194444444445 -76.11355555555555		
0	, , , , , , , , , , , , , , , , , , , ,	90	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360		17.000000
	2388542745007 -76.07804003964577		
-	22300042140001 -10.01004003904511	95	
01		901	

19.033333 2965.0 34.28378 875.0 90.89148 14.7	19.383333 416.0 970.0 970.0 23.580935 8.599999		18.8 152.0 532.0 7.816667 23.3 18.8
18.983334	1493		
-	772224742 -76.07835764967228	OFI	
0 19.033333	19.383333	95	18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493		
TA01_3 5.22500	346143882 -76.07885233888635		
0		95	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493		
0 1AU1_4 5.2253210	071465324 -76.07947568366103	95	
19.620832	19.966667	951	19.366667
2351.0	306.0		88.0
37.38887	784.0		344.0
720.0	725.0		8.224999
91.388885	24.069817		24.1
15.1	9.0		19.816668
19.766666	1420		
+			
	+	•	
·	+		
			·
•	+	•	
			+
	+-		
+	+		
only showing top 2	0 rows		

```
[7]: # Split the 'Station' column based on ' '
    split_col = split(dj_spark['Station'], '_')
    dj_spark = dj_spark.withColumn('Station_new', split_col.getItem(0)) \
                    .withColumn('Station_sample',
                              when(split_col.getItem(1).isNull(),
                                   lit('first'))
                               .otherwise(concat(lit('S'), split_col.

getItem(1))))
    # Show the result
    dj_spark.show(20)
   ____+
   |Station|
                    Latitud|
                                    Longitud | clipped_Hansen_GFC-2022-
   v1.10_lossyear_10N_080W|clipped_Hansen_GFC-2022-
   v1.10_treecover2000_10N_080W|resampled_clipped_wc2.1_30s_bio_1|resampled_clipped
   _wc2.1_30s_bio_10|resampled_clipped_wc2.1_30s_bio_11|resampled_clipped_wc2.1_30s
   _bio_12|resampled_clipped_wc2.1_30s_bio_13|resampled_clipped_wc2.1_30s_bio_14|re
   sampled_clipped_wc2.1_30s_bio_15|resampled_clipped_wc2.1_30s_bio_16|resampled_cl
   ipped_wc2.1_30s_bio_17|resampled_clipped_wc2.1_30s_bio_18|resampled_clipped_wc2.
   1_30s_bio_19|resampled_clipped_wc2.1_30s_bio_2|resampled_clipped_wc2.1_30s_bio_3
   |resampled_clipped_wc2.1_30s_bio_4|resampled_clipped_wc2.1_30s_bio_5|resampled_c
   lipped_wc2.1_30s_bio_6|resampled_clipped_wc2.1_30s_bio_7|resampled_clipped_wc2.1
   30s bio 8 resampled clipped wc2.1 30s bio 9 resampled clipped wc2.1 30s elev St
   ation_new|Station_sample|
   ______
       TA01 | 5.223194444444444 | -76.08016666666666 |
```

01		45	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TAO1	first
TA2 5.22305555555556	-76.078	31	
0		95	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TA2	first
TA3 5.21997222222222 -	-76.079277777777	3	
0		92	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TA3	first
TA4 5.2322500000000005 -	-76.0919166666666	6	
0		95	
18.7875	19.116667		18.55
2605.0	379.0		94.0
35.614826	862.0		458.0
765.0	862.0		7.741667
92.162704	22.373373		22.9
14.5	8.4		18.55
18.9	1544	TA4	first
TA5 5.2402222222222 -	-76.09208333333333		
01		90	
18.754168	19.083334		18.5
3087.0	414.0		163.0
26.5564	921.0		637.0
853.0	885.0		7.725
91.96429	23.204458		22.9
14.5	8.4		18.5
18.666666	1568	TA5	first
TA6 5.24469444444445	-76.09378		
01		90	
18.3375	18.633333		18.066666
3066.0	418.0		162.0

21 7006071	992.0		EEE OI
31.792627 875.0	992.0		555.0 7.758333
92.361115	22.676077		22.5
	8.4		18.066666
14.1	•	TACL	·
18.366667	1667	TA6	first
	-76.0961111111111		
0	40.000001	90	40.000001
18.3375	18.633333		18.066666
3066.0	418.0		162.0
31.792627	992.0		555.0
875.0	992.0		7.758333
92.361115	22.676077		22.5
14.1	8.4		18.066666
18.366667	1667	TA7	first
TA8 5.2381666666666666	-76.0839444444444	l	
0		92	
19.8875	20.25		19.6
2871.0	363.0		128.0
31.151634	892.0		474.0
868.0	892.0		8.425
91.57609	25.77216		24.5
15.3	9.2		19.6
20.05	1377	TA8	first
TA9 5.247638888888889			
0		90	
18.3375	18.633333		18.066666
3066.0	418.0		162.0
31.792627	992.0		555.0
875.0	992.0		7.758333
92.361115	22.676077		22.5
14.1	8.4		18.066666
18.366667	1667	TA9	first
TA10 5.249138888888889			111501
0	70.1131111111111	95	
16.729166	16.966667	901	16.449999
2485.0	373.0		123.0
37.646206	848.0		397.0
685.0	814.0		7.2416663
89.4033	21.474976		20.8
12.7	8.099999	mad o l	16.466667
16.816666	1938	TA10	first
TA11 5.24877777777778	-76.1275	•	
0		95	
15.220833	15.400001		14.966666
2248.0	309.0		82.0
38.576023	771.0		316.0
649.0	771.0		7.1749997
89.68751	19.593414		19.3

11.3	7.999999		14.966666
15.316667	2228	TA11	first
	66 -76.104083333333332	INII	111501
01	70.1040000000000	90	
16.629166	16.866667	901	16.366667
2140.0	289.0		83.0
37.20048	745.0		323.0
602.0	745.0		
•	•		7.408333
90.345535	20.830303		20.8
12.6	8.199999	ma a o l	16.366667
16.733334	1984	TA12	first
	78 -76.10866666666666	221	
0		99	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360	TA13	first
TA14 5.2576111111111	11 -76.11013888888888		
0		90	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360	TA14	first
TA15 5.25688888888888	89 -76.112111111111		
01		90	
14.575	14.75		14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360	TA15	first
•	45 -76.11355555555555	111101	111501
0	10, 10.1100000000000	90	
14.575	14.75	001	14.333333
1992.0	260.0		82.0
36.895878	667.0		308.0
595.0	667.0		7.2166667
90.20832	19.128756		18.7
10.7	8.000001		14.333333
14.666666	2360	TA16	14.333331 first
	2360† 07 -76.07804003964577	IMIOI	TITOL
INUI_I 0.223000421450	011-10.01004003904311		

01		95	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TAO1	S1
•		TAUT	211
-	.224508772224742 -76.07835764967228	0.5.1	
0	40,0000001	95	40.01
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TAO1	S2
TA01_3	5.22500346143882 -76.07885233888635		
0		95	
19.033333	19.383333		18.8
2965.0	416.0		152.0
34.28378	970.0		532.0
875.0	970.0		7.816667
90.89148	23.580935		23.3
14.7	8.599999		18.8
18.983334	1493	TAO1	S3
•	.225321071465324 -76.07947568366103	INOI	551
0	.223321071403324 -70.07947300300103	95	
19.620832	10 0666671	901	10 2666671
•	19.966667		19.366667
2351.0	306.0		88.0
37.38887	784.0		344.0
720.0	725.0		8.224999
91.388885	24.069817		24.1
15.1	9.0		19.816668
19.766666	1420	TAO1	S4
	+-		
	+		
		+	
	++-		
-+	+		
			+
	+	+	
+			+
			+
	+	-+	
+		+	+
only showin	g top 20 rows		

```
[8]: dj_spark = dj_spark.drop('Station').withColumnRenamed('Station_new', 'Station')
    dj_spark.show(20, False)
    |Latitud
                     Longitud
                                      |clipped_Hansen_GFC-2022-
   v1.10_lossyear_10N_080W|clipped_Hansen_GFC-2022-
   v1.10_treecover2000_10N_080W|resampled_clipped_wc2.1_30s_bio_1|resampled_clipped
    _wc2.1_30s_bio_10|resampled_clipped_wc2.1_30s_bio_11|resampled_clipped_wc2.1_30s
    _bio_12|resampled_clipped_wc2.1_30s_bio_13|resampled_clipped_wc2.1_30s_bio_14|re
   sampled_clipped_wc2.1_30s_bio_15|resampled_clipped_wc2.1_30s_bio_16|resampled_cl
   ipped_wc2.1_30s_bio_17|resampled_clipped_wc2.1_30s_bio_18|resampled_clipped_wc2.
    1_30s_bio_19|resampled_clipped_wc2.1_30s_bio_2|resampled_clipped_wc2.1_30s_bio_3
    |resampled_clipped_wc2.1_30s_bio_4|resampled_clipped_wc2.1_30s_bio_5|resampled_c
   lipped_wc2.1_30s_bio_6|resampled_clipped_wc2.1_30s_bio_7|resampled_clipped_wc2.1
    30s bio 8 resampled clipped wc2.1 30s bio 9 resampled clipped wc2.1 30s elev St
   ation|Station_sample|
    _______
    |5.22319444444444 | -76.0801666666666|0
                                                   119.033333
    119.383333
                                   118.8
                                                                   12965.0
    1416.0
                                   1152.0
                                                                   134.28378
    1970.0
                                   1532.0
                                                                   1875.0
    1970.0
                                   |7.816667
                                                                  190.89148
    123.580935
                                  23.3
                                                                 14.7
    18.599999
                                  118.8
                                                                 118.983334
    11493
                                 TA01
                                        |first
```

5.22305555555556	1-76.078	10)		
95	•	•		19.033333	
19.383333		18.8	3		2965.0
416.0		152			34.28378
1970.0		532			875.0
1970.0			16667		90.89148
23.580935		123.3			114.7
8.599999		118.8			18.983334
1493		TA2	first	1	
5.21997222222222	-76.07927777	777778 0)		
192				19.033333	
19.383333		18.8	3		12965.0
416.0		152.	. 0		34.28378
1970.0		532	. 0		875.0
1970.0		7.81	16667		90.89148
23.580935		123.3			14.7
18.599999		18.8			18.983334
1493		TA3	first	1	
5.232250000000000	5 -76.09191666	66666610)		
95				18.7875	
19.116667		18.5	55		12605.0
379.0		94.0)		35.614826
1862.0		458.	. 0		765.0
1862.0		17.74	11667		192.162704
122.373373		122.9			14.5
18.4		18.55	5		18.9
1544		TA4	first	1	
5.2402222222222	-76.09208333	333333)		
190				18.754168	
19.083334		18.5	5		3087.0
414.0		163.	. 0		126.5564
921.0		637.	. 0		853.0
885.0		7.72	25		91.96429
123.204458		122.9			14.5
18.4		18.5			18.666666
1568		TA5	first	1	
15.24469444444445	-76.09375	10)		
190				18.3375	
18.633333			066666		3066.0
418.0		162.			31.792627
1992.0		555.			1875.0
1992.0			58333		92.361115
22.676077		122.5			14.1
18.4		18.06			18.366667
1667		TA6	first		
5.24625	-76.09611111	11111 ()		
190		1		18.3375	1005-
18.633333		18.0	066666		3066.0

418.0 992.0 992.0 22.676077 8.4 1667	162.0 555.0 7.758333 22.5 18.066666 TA7 first	I	31.792627 875.0 92.361115 14.1 18.366667
	-76.0839444444444 0	140 0075	
192	140.0	19.8875	10074 0
120.25	19.6		2871.0
363.0	128.0		31.151634
892.0 892.0	474.0 8.425		868.0 91.57609
25.77216	24.5		191.57609
9.2	119.6		120.05
1377	TA8 first	1	120.03
	-76.098611111111110	1	
190	70.03001111111111	18.3375	
118.633333	18.066666	110.00.0	3066.0
418.0	162.0		31.792627
1992.0	555.0		1875.0
1992.0	17.758333		92.361115
22.676077	122.5		14.1
18.4	18.06666		18.366667
1667	TA9 first	1	
5.249138888888889	-76.1494444444444 0		
195		16.729166	
16.966667	16.449999		12485.0
373.0	123.0		37.646206
1848.0	397.0		685.0
1814.0	7.2416663		189.4033
21.474976	120.8		12.7
18.099999	16.46667		16.816666
1938	TA10 first	I	
5.24877777777778	-76.1275 0		
195		15.220833	10040
15.400001	14.966666		2248.0
309.0	82.0 		38.576023
771.0	316.0		649.0
771.0 19.593414	7.1749997		89.68751 11.3
7.999999	19.3 14.966666		111.3
2228	TA11 first	1	113.310007
	-76.1040833333332 0	ı	
190	7 70.10100000000000000000000000000000000	16.629166	
116.866667	16.366667	, 10.020100	2140.0
289.0	183.0		37.20048
1745.0	323.0		1602.0
745.0	7.408333		190.345535

20.830303	20.8		12.6
8.199999	116.366667		116.733334
1984	TA12 first	1	110.100001
	8 -76.1086666666666 0	'	
99	0 10.1000000000000	14.575	
114.75	14.333333	114.070	1992.0
1260.0	182.0		36.895878
1667.0	1308.0		595.0
1667.0	17.2166667		190.20832
19.128756	18.7		190.20832
8.000001 2360	14.333333	ı	14.666666
•	TA13 first	l	
	1 -76.11013888888888 0	144 575	
90	144 202000	14.575	14000 0
114.75	14.333333		1992.0
1260.0	182.0		36.895878
1667.0	308.0		595.0
1667.0	7.2166667		190.20832
19.128756	18.7		110.7
8.000001	14.333333		14.666666
12360	TA14 first		
•	9 -76.112111111111 0		
190		14.575	
14.75	14.333333		1992.0
1260.0	182.0		36.895878
667.0	308.0		595.0
667.0	7.2166667		190.20832
19.128756	18.7		10.7
8.000001	14.333333		14.666666
12360	TA15 first		
5.2561944444444	5 -76.1135555555555 0		
190		14.575	
14.75	14.333333		1992.0
1260.0	82.0		36.895878
667.0	308.0		595.0
667.0	7.2166667		190.20832
19.128756	18.7		10.7
8.000001	14.333333		14.666666
12360	TA16 first		
5.22388542745007	-76.07804003964577 0		
195		19.033333	
19.383333	18.8		2965.0
416.0	152.0		34.28378
1970.0	1532.0		1875.0
1970.0	7.816667		90.89148
23.580935	123.3		114.7
18.599999	118.8		18.983334
1493	TAO1 S1	I	

```
15.224508772224742 1-76.0783576496722810
  195
                                    119.033333
                                               12965.0
  119.383333
                        118.8
  416.0
                        |152.0
                                               134.28378
  1970.0
                        1532.0
                                               1875.0
  1970.0
                        |7.816667
                                              190.89148
  123.580935
                        123.3
                                             114.7
  18.599999
                        118.8
                                             118.983334
                       ITA01
                                      I
                            IS2
  15.22500346143882 | -76.07885233888635|0
                                    19.033333
  195
  119.383333
                        118.8
                                               12965.0
  1416.0
                        152.0
                                               134.28378
  1970.0
                                               1875.0
                        1532.0
                                              190.89148
  1970.0
                        17.816667
  123.580935
                        123.3
                                             114.7
  18.599999
                        118.8
                                             118.983334
  1493
                       TA01
                            IS3
  |5.225321071465324 | -76.07947568366103|0
  195
                                    119.620832
  119.966667
                        119.366667
                                               12351.0
                        188.0
  306.0
                                               |37.38887
  1784.0
                        1344.0
                                               1720.0
  1725.0
                        18.224999
                                              191.388885
  124.069817
                        124.1
                                             115.1
  19.0
                        119.816668
                                             119.766666
  11420
                       TA01
                           IS4
  +-----
  _____
  ______
  ___+_____
  ______
  ______
  ______
  -----
  only showing top 20 rows
[9]: df_spark = spark.read.option('header', 'true').

¬csv('Data_ColombiaGradientes_JFCO.csv',
                                   header=True,
    →inferSchema=True)
[]:
```

```
[10]: from IPython.core.display import HTML
   display(HTML("<style>pre { white-space: pre !important; }</style>"))
   <IPython.core.display.HTML object>
[11]: df_spark.show(5)
   ___________
    ____+___
    _____+
     ____+___
   ___+______
     _____
   |Entrada|Station |
               Date | Year | month | Day | ID | Station | net | N: | W: | Elev.
   (m) | altitude | time | Band_Code | Color_Anillo |
                              Orderl
                                     Family|
                                            Genus
                    common name | Recap | new recap |
   Species | code | Species |
   Mass|Culmen_Total|Culmen_Exposed|PW bill_width|PH bill_depth|Culmen_gapes|Tarsus
   |Halux|Nail_1finger|feet_extension|Central_rectrix|External_Rectrices|Wing_cord|
               Sex|Rep|Pro_Cloacal|Brood_Patch|Fat|Condition|Pectoral_Mus
   P-S|age_Historical|
   cle|Body_Molt|FLIGHT_MOLT|Fheather_wear|Molt_tail|Wear_tail| molt_notes| Molt_
        Cycle_WRP| Code_cycle|Skull|How_sex|How_aged|Status|
   Limit
   Iris_Color|Photos|Blood|Parasite|F-Chamber M.|Feather|
   Notes_Bird|Num_Colect|replica|Anillador|Notes_General|
   ______
   ______
   ______
   ______
   ___+____
    621 | Tatama | 25-Feb-14 | 2014 |
                      Feb | 25 |
                               TAO1|null|null|null|
                                             1400
   null
      NA
             x
                      Apodiformes|
                    x l
   Trochilidae | Phaethornis | Phaethornis syrma... |
                                TBHE | Tawny-bellied Hermit |
       null| 6.32|
                   401
                                   3.91
   NAI
                          39.9
   NAI
       NAI
                 NAI
                                   70 l
          NA
                          NAI
                                              NA
   64| NA|
            ADULT
                 UNK | NA |
                          NA
                                 NA | NA |
                                        null|
        7|
   21
               SI
                  desgastada
                             0|
                                 null
   p1s|Check_photos|Check_photos|Check_photos|
                             NA |
                                 NAI
                                      NAI
   NA | Check photos |
              no| null|
                      NA |
                             null
                                   Y|Muestras de pluma...|
   null
       null
             nulll
                     null
```

TAO1|null|null|null|

1400

622 | Tatama | 25-Feb-14 | 2014 | Feb | 25 | 2 |

```
null| NA|
          C6161
                      x|Passeriformes| Tyrannidae|
Mionectes | Mionectes striati... |
                           STNF|Streak-Nekced Fly...|
                                               NA |
              9.51
                         8.21
                                   4.5
                                                       NAI
nulll
     NAI
                                             3.71
16.2
                                                   NAI
     NA
               NA |
                          NA |
                                     481
661 NAI
             UNKI
                 UNKI NAI
                              NAI
                                       NAI
                                          Μl
                                               null
                   desgastada
                                 0|
               0|
null|Check_photos|Check_photos|Check_photos|
                                           NA |
                                                 NAI
                                         Y|Muestras 2pecho y...|
NA | Check_photos |
              nol null
                         NAI
                                 null
null
     null
            null
                       null
       Tatama|25-Feb-14|2014| Feb| 25| 3|
   623 L
                                    TAO1|null|null|null|
null| NA|
                      x|Passeriformes|Fringillidae|
                                             Euphonia | Euphonia
          A813|
             OBEU|Orange-bellied Eu...|
                                NA I
xanthoga...|
                                       null|12.85|
8.7|
                    7.8
                                         NA| 16.1|
          6.6
                               5.5
                                                  NA
                      321
NAI
          NAI
                                    NA |
                                           591 NAI
ADULT|Female| NA|
                  NA
                           NA | A |
                                    null
                                                  41
                          01
        01
            intermedio
null|Check_photos|Check_photos|Check_photos|
                                           NA |
                                                 NAI
                                                       NAI
NA | Check_photos |
              si| null|
                         NA I
                                 null
                                         Y|Muestras de pluma...|
null
     null|
             null l
                       nulll
   624 | Tatama | 25-Feb-14 | 2014 | Feb | 25 | 4 |
                                    TAO1|null|null|null|
                                                      1400 l
          B825 l
                      x|Passeriformes| Tyrannidae|
                    GFTY|Golden-faced Tyra...|
Zimmerius chrysops
                                       NA
                                             null| 8.43|
6.81
          5.21
                     3.91
                               3.41
                                         NAI 14.71
NAI
          NAI
                      40 l
                                           481 NA1
                                    NAI
ADULTI
      UNKI NAI
                  NAI
                           NAI FI
                                    null
                                                  4 I
            0|
               intermedio|
                             0|
null|Check_photos|Check_photos|Check_photos|
                                                 NA I
                                                       NA |
                                           NA I
NA | Check_photos |
              si| null|
                         NA I
                                 null
                                         Y|Muestras de pluma...|
nulll
     nulll
             nulll
                       nulll
       Tatama|25-Feb-14|2014| Feb| 25| 5|
                                    TAO1|null|null|null|
                      x|Passeriformes| Tyrannidae| Mionectes|
null| NA|
          A814|
Mionectes olivaceus
                     OSTF|Olive-striped Fly...|
                                        NA |
                                              null|13.28|
                                          NA| 16.1|
13.1
           9.61
                     5.3
                                3.91
                      45|
                                           601 NAI
NAI
          NAI
                                    NA|
                             NA | NA |
INMATURE
        UNK | NA |
                    NA
                                      null
                                                    4|
        01
            desgastada
                          01
null|Check_photos|Check_photos|Check_photos|
NA|Check photos|
              sil null|
                         Υl
                                 null
                                        Y|Muestras de pluma...|
nulll
     null
            null
                       null
______
______
______
-----
______
______
```

```
[12]: df_spark = df_spark.drop("N:", "W:")
      df_spar = df_spark.join(dj_spark, ["Station"], "left")
      #df_spar.printSchema()
      df_spa = df_spar.drop("Localidad", "Elev. (m)", "net", "Notes_General",
                            "Anillador", "replica", "Num_Colect", "Notes_Bird", u
       ⇔"Blood", "Photos",
                            "Feather", "F-Chamber M.", "Parasite", "Iris_Color", __

¬"Status", "How_aged",
                            "How_sex", "Skull", "Code_cycle", "Cycle_WRP", "Molt_\_
       "Wear_tail", "Molt_tail", "Fheather_wear", "FLIGHT_MOLT",

¬"Body_Molt",
                             "Pectoral Muscle", "Condition", "Fat", "Station ",,,

¬"P-S", "Sex", "age_Historical",
                           "Rep", "Pro_Cloacal", "Brood_Patch", "Pro_Cloacal", __

¬"External_Rectrices",
                           "new_recap", "common_name", __

¬"Color_Anillo", "time", "altitude", "Recap", "Band_Code")

      df_spa.show(20)
```



```
sampled_clipped_wc2.1_30s_bio_15|resampled_clipped_wc2.1_30s_bio_16|resampled_cl
ipped_wc2.1_30s_bio_17|resampled_clipped_wc2.1_30s_bio_18|resampled_clipped_wc2.
1_30s_bio_19|resampled_clipped_wc2.1_30s_bio_2|resampled_clipped_wc2.1_30s_bio_3
|resampled_clipped_wc2.1_30s_bio_4|resampled_clipped_wc2.1_30s_bio_5|resampled_c
lipped wc2.1 30s bio 6|resampled clipped wc2.1 30s bio 7|resampled clipped wc2.1
_30s_bio_8|resampled_clipped_wc2.1_30s_bio_9|resampled_clipped_wc2.1_30s_elev|St
ation sample
+----+
_+_____
___+______
______
______
______
______
+-----
______
______
 ______
______
        621|25-Feb-14|2014| Feb| 25|
  TAO1
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                        TBHE | 6.32 |
       39.9|
                 3.91
                           31
                                  NAI
                                      NAI
                                          NAI
NAI
         NAI
                   70 I
64 | 5.22319444444444 | -76.07793059868916 |
                                95|
19.0333331
                     19.3833331
                                              18.8
2965.01
                      416.0
                                           152.0
34.283781
                       970.01
                                            532.01
875.01
                     970.01
                                        7.8166671
90.89148|
                    23.580935|
                                            23.3
14.7|
                  8.5999991
                                         18.8
18.983334|
                       1493 l
                                 S20|
        621|25-Feb-14|2014| Feb| 25|
  TAO1
1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                        TBHE | 6.32 |
40 l
                 3.9|
                           31
       39.91
                                      NAI
                                          NAI
NAI
         NAI
                   70 I
64 | 5.222503461438818 | -76.07804003964577 |
01
                                95 l
19.033333|
                     19.3833331
                                              18.81
2965.01
                      416.0
                                           152.0
34.283781
                       970.01
                                             532.01
                                        7.816667
875.0
                     970.01
90.891481
                    23.580935|
                                            23.31
14.7
                  8.5999991
                                         18.81
18.983334|
                       1493 l
                                 S191
  TAO1
       621|25-Feb-14|2014| Feb| 25|
```

40	39.9	lae Phaethornis F 3.9	3	NA	TBHE 6.32 NA NA
NA	NA	70	•	·	•
		6.07835764967228	31		
0			•	95	
19.033333		19.3	883333		18.
2965.0			3.01		152.0
34.28378			970.0		532.0
875.0		970.			7.816667
90.89148		23.580			23.3
14.7		8.599999	·		18.8
18.983334			493	S18	
TAO1	621 25-Feb			2201	
		lae Phaethornis F		vrma…l	TBHE 6.32
40	39.9	3.9	3	NA	NA NA
NA	NA	701	01	,	
		76.07885233888635	5 l		
01,0.221000 0	127 1000007 7	0.0100020000000	' 1	90	
19.0333331		19.3	883333		18.
2965.0			3.0l		152.0
34.28378			970.0		532.0
875.0		970.			7.816667
90.89148		23.580			23.3
14.7		8.5999991			18.8
18.983334			493	S17	10.01
TAO1	621 25-Feb			2111	
•		lae Phaethornis F		vrmal	TBHE 6.32
40	39.9	3.9	3	NA	NA NA
NA	NA	70	01	,	,,
		76.07947568366103	₹		
0	01, 120001, 1	0.01011000000100	, 1	90	
19.033333		19.3	883333		18.
2965.0			3.0		152.0
34.28378			970.0		532.0
875.0		970.			7.816667
90.89148		23.580			23.3
14.7		8.5999991			18.8
18.983334			493	S16	10.01
TAO1	621 25-Feb	- -14 2014 Feb		2201	
•		lae Phaethornis F	•	vrma…l	TBHE 6.32
40	39.9	3.9	3	NA	NA NA
NA	NA	70	- 1	1	,1
		6.0801666666666	3 l		
0 1 0.220300	0.0100010 7	0.0001000000000000000000000000000000000	· 1	95	
		10 :	883333	501	18.
19 0333331		10.0	,00001		10.
		Δ1 6	3.01		152 Al
19.033333 2965.0 34.28378			3.0 970.0		152.0 532.0

```
90.891481
                                   23.5809351
                                                                            23.31
14.71
                                8.5999991
                                                                        18.8
18.983334|
                                                         S15|
                                        1493 l
| TA01|
             621|25-Feb-14|2014| Feb| 25|
1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                                                      TBHE | 6.32 |
             39.91
                             3.91
                                              31
                                                           NAI
                                                                   NAI
                                                                         NAI
NA |
                                70 l
               NA
64 | 5.221067817423564 | -76.08085764967228 |
                                                       90 l
19.0333331
                                     19.3833331
                                                                                18.81
2965.01
                                      416.0|
                                                                            152.0|
34.28378|
                                        970.01
                                                                              532.01
875.0|
                                     970.01
                                                                      7.816667|
                                   23.580935|
90.89148
                                                                            23.3
14.7
                                8.5999991
                                                                        18.8
18.9833341
                                        1493 l
                                                         S141
    TAO1|
             621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                                      TBHE | 6.32 |
40 l
             39.91
                             3.91
                                               31
                                                           NA |
                                                                   NAI
                                                                         NAI
               NAI
                                 70 l
64 | 5.221385427450069 | -76.08148099444696 |
                                                       10|
19.0333331
                                     19.3833331
                                                                                18.81
                                      416.01
2965.0
                                                                           152.01
34.283781
                                        970.0|
                                                                              532.01
                                                                      7.816667|
875.0|
                                     970.01
90.89148|
                                   23.580935|
                                                                            23.3
14.7|
                                8.5999991
                                                                        18.8
18.983334|
                                        1493 l
                                                         S13|
   TAO1|
             621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                                      TBHE | 6.32 |
             39.91
                             3.91
                                               31
                                                           NAI
                                                                         NA
NA
               NAI
                                 701
64 | 5.221880116664146 | -76.08197568366103 |
                                                        0|
19.033333|
                                     19.383333|
                                                                                18.81
2965.0
                                      416.0|
                                                                            152.0
34.283781
                                        970.01
                                                                              532.01
875.01
                                     970.01
                                                                      7.816667
90.891481
                                   23.5809351
                                                                            23.31
14.7|
                                8.5999991
                                                                        18.8
18.983334|
                                        1493 l
                                                         S12|
             621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                                      TBHE | 6.32 |
40|
             39.91
                             3.9|
                                               3|
                                                           NA I
                                                                         NAI
                                                                   NAI
               NA
64 | 5.222503461438818 | -76.08229329368754 |
0|
                                                       901
```

```
19.0333331
                                     19.3833331
                                                                                18.81
2965.01
                                      416.0|
                                                                            152.0|
34.283781
                                        970.01
                                                                              532.01
875.0|
                                     970.01
                                                                      7.816667
90.891481
                                   23.5809351
                                                                             23.31
14.7
                                8.5999991
                                                                         18.8
18.983334|
                                        1493 l
                                                         S11|
             621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                                      TBHE | 6.32 |
             39.91
                             3.91
                                               31
                                                            NAI
                                                                   NAI
                                                                         NAI
                NA
                                 70|
NA
64|5.22319444444444|-76.08240273464415|
                                                       901
19.0333331
                                     19.3833331
                                                                                18.81
2965.01
                                      416.0
                                                                            152.0|
34.283781
                                        970.01
                                                                              532.01
875.0|
                                     970.01
                                                                      7.816667|
90.89148|
                                   23.580935|
                                                                             23.31
14.7|
                                8.5999991
                                                                         18.8
18.9833341
                                        1493 l
                                                          S10|
             621|25-Feb-14|2014| Feb| 25|
TAO1
1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                                                       TBHE | 6.32 |
40 l
             39.91
                              3.91
                                               31
                                                            NAI
                                                                   NAI
                                                                          NAI
NAI
                NAI
                                 701
                                            64 l
5.22388542745007 | -76.08229329368754 |
01
                                                         61
19.0333331
                                     19.383333|
                                                                                18.8
2965.0|
                                      416.0|
                                                                            152.0|
34.283781
                                        970.01
                                                                              532.01
875.0|
                                     970.01
                                                                      7.816667|
90.89148
                                   23.580935
                                                                             23.31
14.7
                                                                         18.8
                                8.5999991
18.983334|
                                                           S9|
                                        1493|
             621|25-Feb-14|2014| Feb| 25|
1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                                                      TBHE | 6.32 |
                              3.91
40 l
             39.91
                                               31
                                                                          NAI
                                                            NA |
                                                                   NAI
               NAI
                                 701
64 | 5.224508772224742 | -76.08197568366103 |
01
                                                       37 l
19.0333331
                                     19.3833331
                                                                                18.81
2965.0
                                                                            152.01
                                      416.0
34.28378|
                                        970.01
                                                                              532.01
875.0|
                                     970.01
                                                                       7.816667|
                                   23.580935|
90.89148
                                                                             23.31
14.7|
                                8.5999991
                                                                         18.8
18.983334|
                                        1493
                                                           S81
    TAO1
             621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                                      TBHE | 6.32 |
```

40	39.9	3.9	3	NAI	NA	NAI
NA	NA I	70	64			
	3882 -76.081480	99444696				
01				90		
19.033333	19.383333					18.8
2965.0	416.0					152.0
34.28378	970.0				_	532.0
875.0	970.0				γ.	.816667
90.89148		23.580935				23.3
14.7		8.59999		~- 1		18.8
18.983334			1493	S7		
TA01	621 25-Feb-14		0 25	,		NITT I A OO I
_	es Trochilidae F					BHE 6.32
40	39.9	3.9	3	NA	NA	NA
NA	NA	70	2001			
	71465324 -76.08	30857649672	2281	051		
0			0000071	95		10 0000071
19.620832			9.966667			19.366667
2351.0	306.0					88.0
37.38887	784.0				•	344.0
720.0			25.0		8.	. 224999
91.388885			069817		40.0	24.1
15.1		9.	.0	aal	19.81	16668
19.766666	404 LOE TE 1 441	00441 8.1	1420	S6		
TAO1	621 25-Feb-14		0 25			
llApodiforme						
_	es Trochilidae F			-		3HE 6.32
40	39.9	3.9	3	syrma… NA	TE NA	BHE 6.32 NA
40 NA	39.9 NA	3.9 70	3	-		
40 NA 64 5.2254305	39.9	3.9 70	3	NA		
40 NA 64 5.2254305	39.9 NA	3.9 70 8016666666	3	-		NA
40 NA 64 5.2254305 0 19.620832	39.9 NA	3.9 70 80166666666	3 666 9.966667	NA		NA 19.366667
40 NA 64 5.2254305 0 19.620832 2351.0	39.9 NA	3.9 70 80166666666	3 666 9.966667 806.0	NA		NA 19.366667 88.0
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887	39.9 NA	3.9 70 80166666666 19	3 666 9.966667 806.0 784.0	NA	NA	19.366667 88.0 344.0
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0	39.9 NA	3.9 70 80166666666 19 3	3 666 9.966667 806.0 784.0 25.0	NA	NA	NA 19.366667 88.0 344.0 .224999
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885	39.9 NA	3.9 70 80166666666 19 3 72	3 666 9.966667 806.0 784.0 25.0 069817	NA	NA	19.366667 88.0 344.0 .224999 24.1
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1	39.9 NA	3.9 70 80166666666 19 3 72	3 666 9.966667 806.0 784.0 25.0 069817	NA 95	NA	NA 19.366667 88.0 344.0 .224999
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666	39.9 NA 512421943 -76.08	3.9 70 80166666666 19 3 72 24 9	3 666 0.966667 806.0 784.0 25.0 069817 0 1420	NA	NA	19.366667 88.0 344.0 .224999 24.1
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01	39.9 NA 512421943 -76.08	3.9 70 30166666666 19 24 9	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25	NA 95 S5	NA 8.	NA 19.366667 88.0 344.0 .224999 24.1 16668
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F	3.9 70 30166666666 19 3 72 24 9 2014 Feb	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 s Phaethornis	95 S5 syrma	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25	NA 95 S5	NA 8.	NA 19.366667 88.0 344.0 .224999 24.1 16668
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 s Phaethornis 3	95 S5 syrma	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 s Phaethornis 3	NA 95 S5 syrma NA	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210 0	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 0.966667 806.0 784.0 25.0 069817 0 1420 5 25 8 Phaethornis 3	95 S5 syrma	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668 BHE 6.32 NA
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210 0 19.620832	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 6 Phaethornis 3 103	NA 95 S5 syrma NA	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668 BHE 6.32 NA
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210 0 19.620832 2351.0	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 s Phaethornis 3 103 9.966667 806.0	NA 95 S5 syrma NA	NA 8.19.83	19.366667 88.0 344.0 .224999 24.1 16668 BHE 6.32 NA 19.366667 88.0
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210 0 19.620832 2351.0 37.38887	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 8 Phaethornis 3 103 9.966667 806.0 784.0	NA 95 S5 syrma NA	NA 8.19.81	19.366667 88.0 344.0 .224999 24.1 16668 BHE 6.32 NA 19.366667 88.0 344.0
40 NA 64 5.2254305 0 19.620832 2351.0 37.38887 720.0 91.388885 15.1 19.766666 TA01 1 Apodiforme 40 NA 64 5.2253210 0 19.620832 2351.0	39.9 NA 512421943 -76.08 621 25-Feb-14 es Trochilidae F 39.9 NA	3.9 70 301666666666666666666666666666666666666	3 666 9.966667 806.0 784.0 25.0 069817 0 1420 0 25 s Phaethornis 3 103 9.966667 806.0	NA 95 S5 syrma NA	NA 8.19.81	19.366667 88.0 344.0 .224999 24.1 16668 BHE 6.32 NA 19.366667 88.0

```
15.1 l
                          9.01
                                               19.8166681
19.7666661
                            14201
                                         S4 l
  TAO1
         621|25-Feb-14|2014|
                         Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                  TBHE | 6.32 |
40 l
         39.91
                     3.91
                                 31
                                          NAI
                                               NAI
                                                    NAI
NAI
           NAI
                               64 l
                       70 l
5.22500346143882 | -76.07885233888635 |
                                       95 l
19.0333331
                          19.3833331
                                                         18.81
2965.01
                                                      152.01
                           416.01
34.28378|
                            970.01
                                                       532.0|
875.0
                          970.01
                                                  7.816667
90.89148|
                         23.580935
                                                      23.31
14.7
                      8.5999991
                                                   18.8
18.983334|
                            1493
                                         S3|
  TAO1
         621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                  TBHE | 6.32 |
401
         39.9
                     3.91
                                 31
                                          NA I
                                               NA
                                                    NA
NAI
           NAI
                       70 I
64 | 5.224508772224742 | -76.07835764967228 |
                                       95|
19.033333|
                          19.383333|
                                                         18.8
2965.01
                           416.01
                                                     152.01
34.283781
                            970.01
                                                       532.01
                          970.0|
875.01
                                                  7.8166671
90.89148|
                         23.580935|
                                                      23.3|
14.7
                      8.5999991
                                                   18.8
                                         S2I
18.983334|
                            1493
         621|25-Feb-14|2014| Feb| 25|
  TAO1
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                                  TBHE | 6.32 |
40 l
         39.91
                     3.91
                                 3 I
                                          NAI
                                               NAI
                                                    NAI
NAI
           NAI
                       70 l
                               64 l
5.22388542745007 | -76.07804003964577 |
01
                                       95|
19.033333|
                          19.383333|
                                                         18.8
2965.0
                           416.01
                                                      152.01
34.28378|
                            970.0
                                                       532.0
875.01
                          970.01
                                                  7.8166671
90.891481
                         23.5809351
                                                      23.31
14.71
                      8.5999991
                                                   18.81
18.9833341
                            1493 l
                                         S1I
______
_____
```

```
only showing top 20 rows
 []:
[13]: df_spa = df_spa \
          .withColumnRenamed("clipped_Hansen_GFC-2022-v1.10_lossyear_10N_080W",
                             "lossyear") \
          .withColumnRenamed("clipped Hansen GFC-2022-v1.10 treecover2000 10N 080W",
                             "treecover") \
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_1", "bio_1") \
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_2", "bio_2")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_3", "bio_3")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_4", "bio_4")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_5", "bio_5")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_6", "bio_6")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_7", "bio_7")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_8", "bio_8")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_9", "bio_9")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_10", "bio_10") \
          .withColumnRenamed("resampled clipped wc2.1 30s bio 11", "bio 11")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_12", "bio_12")
          .withColumnRenamed("resampled clipped wc2.1 30s bio 13", "bio 13")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_14", "bio_14")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_15", "bio_15")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_16", "bio_16")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_bio_17", "bio_17")
          .withColumnRenamed("resampled clipped wc2.1_30s_bio_18", "bio_18")
          .withColumnRenamed("resampled clipped wc2.1_30s_bio_19", "bio_19")
          .withColumnRenamed("resampled_clipped_wc2.1_30s_elev", "elev")
      # Mostrar el esquema del DataFrame modificado para verificar los cambios
      df_spa.printSchema()
     root
      |-- Station: string (nullable = true)
      |-- Entrada: integer (nullable = true)
      |-- Date: string (nullable = true)
      |-- Year: integer (nullable = true)
      |-- month: string (nullable = true)
```

|-- Day: integer (nullable = true)

```
|-- ID: string (nullable = true)
|-- Order: string (nullable = true)
|-- Family: string (nullable = true)
|-- Genus: string (nullable = true)
|-- Species: string (nullable = true)
|-- code _Species: string (nullable = true)
|-- Mass: string (nullable = true)
|-- Culmen_Total: string (nullable = true)
|-- Culmen Exposed: string (nullable = true)
|-- PW bill_width: string (nullable = true)
|-- PH bill_depth: string (nullable = true)
|-- Culmen_gapes: string (nullable = true)
|-- Tarsus: string (nullable = true)
|-- Halux: string (nullable = true)
|-- Nail_1finger: string (nullable = true)
|-- feet_extension: string (nullable = true)
|-- Central_rectrix: string (nullable = true)
|-- Wing_cord: string (nullable = true)
|-- Latitud: double (nullable = true)
|-- Longitud: double (nullable = true)
|-- lossyear: integer (nullable = true)
|-- treecover: integer (nullable = true)
|-- bio_1: double (nullable = true)
|-- bio_10: double (nullable = true)
|-- bio_11: double (nullable = true)
|-- bio_12: double (nullable = true)
|-- bio_13: double (nullable = true)
|-- bio_14: double (nullable = true)
|-- bio_15: double (nullable = true)
|-- bio_16: double (nullable = true)
|-- bio_17: double (nullable = true)
|-- bio_18: double (nullable = true)
|-- bio_19: double (nullable = true)
|-- bio_2: double (nullable = true)
|-- bio 3: double (nullable = true)
|-- bio 4: double (nullable = true)
|-- bio 5: double (nullable = true)
|-- bio_6: double (nullable = true)
|-- bio_7: double (nullable = true)
|-- bio_8: double (nullable = true)
|-- bio_9: double (nullable = true)
|-- elev: integer (nullable = true)
|-- Station_sample: string (nullable = true)
```

[14]: df_spa.show(2)

+----+

```
_+____
____+_____
___+______
 |Station|Entrada|
           Date | Year | month | Day | ID |
Genus
          Species|code _Species|Mass|Culmen_Total|Culmen_Exposed|PW
bill_width|PH bill_depth|Culmen_gapes|Tarsus|Halux|Nail_1finger|feet_extension|C
entral_rectrix|Wing_cord|
                  Latitud
Longitud|lossyear|treecover|
                bio_1
                     bio_10|bio_11|bio_12|bio_13|bio_14|
                             bio_4|bio_5|bio_6|
bio_15|bio_16|bio_17|bio_18|bio_19|
                   bio 2
                        bio_3|
        bio_9|elev|Station_sample|
_+_____
___+____
______
______
---+
  TAO1
      621|25-Feb-14|2014| Feb| 25|
1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                  TBHE | 6.32 |
40 l
      39.91
              3.91
                       31
                             NAI
                                 NAI
                                    NAI
                70 I
NAI
       NAI
64 | 5.223194444444444 | -76.07793059868916 |
                        01
                             95 | 19.033333 | 19.383333 |
18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
S20|
      621|25-Feb-14|2014| Feb| 25|
1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                  TBHE | 6.32 |
40 l
      39.91
                       31
              3.91
                             NAI
                                 NAI
                                    NAI
NAI
       NAI
                70 l
64 | 5.222503461438818 | -76.07804003964577 |
                        01
                             95 | 19.033333 | 19.383333 |
18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
S19|
-+----
___+____
______
___+____
______
only showing top 2 rows
```

```
[15]: from pyspark.sql.types import StringType
      for column in df_spa.columns:
          if isinstance(df_spa.schema[column].dataType, StringType):
              df_spa = df_spa.withColumn(column, when(col(column) == "NA", None).
       ⇔otherwise(col(column)))
[16]: # Contar los valores NA en la columna Latitud
      na_count = df_spa.agg(
          count(when(col("elev").isNull(), True))
      ).collect()[0][0]
      print("valores NA en --:", na_count)
     valores NA en --: 0
 []:
[17]: na_counts = df_spa.select([count(when(col(c).isNull(),
                                            c)).alias(c) for c in df_spa.columns]).
       # Imprime el conteo de valores NA por columna
      for column, na_count in na_counts.items():
         print(f"Número de valores NA en la columna {column}: {na_count}")
     Número de valores NA en la columna Station: O
     Número de valores NA en la columna Entrada: O
     Número de valores NA en la columna Date: O
     Número de valores NA en la columna Year: O
     Número de valores NA en la columna month: 0
     Número de valores NA en la columna Day: O
     Número de valores NA en la columna ID: 0
     Número de valores NA en la columna Order: 21
     Número de valores NA en la columna Family: 84
     Número de valores NA en la columna Genus: 63
     Número de valores NA en la columna Species: O
     Número de valores NA en la columna code _Species: 2793
     Número de valores NA en la columna Mass: 10164
     Número de valores NA en la columna Culmen_Total: 10038
     Número de valores NA en la columna Culmen_Exposed: 36267
     Número de valores NA en la columna PW bill_width: 10710
     Número de valores NA en la columna PH bill_depth: 35889
     Número de valores NA en la columna Culmen_gapes: 49476
     Número de valores NA en la columna Tarsus: 21987
     Número de valores NA en la columna Halux: 49539
     Número de valores NA en la columna Nail_1finger: 49665
     Número de valores NA en la columna feet_extension: 49854
```

```
Número de valores NA en la columna Central_rectrix: 13125
     Número de valores NA en la columna Wing_cord: 10563
     Número de valores NA en la columna Latitud: O
     Número de valores NA en la columna Longitud: O
     Número de valores NA en la columna lossyear: 0
     Número de valores NA en la columna treecover: O
     Número de valores NA en la columna bio 1: 0
     Número de valores NA en la columna bio_10: 0
     Número de valores NA en la columna bio_11: 0
     Número de valores NA en la columna bio_12: 0
     Número de valores NA en la columna bio_13: 0
     Número de valores NA en la columna bio_14: 0
     Número de valores NA en la columna bio_15: 0
     Número de valores NA en la columna bio_16: 0
     Número de valores NA en la columna bio_17: 0
     Número de valores NA en la columna bio_18: 0
     Número de valores NA en la columna bio_19: 0
     Número de valores NA en la columna bio_2: 0
     Número de valores NA en la columna bio_3: 0
     Número de valores NA en la columna bio 4: 0
     Número de valores NA en la columna bio_5: 0
     Número de valores NA en la columna bio 6: 0
     Número de valores NA en la columna bio_7: 0
     Número de valores NA en la columna bio 8: 0
     Número de valores NA en la columna bio_9: 0
     Número de valores NA en la columna elev: 0
     Número de valores NA en la columna Station_sample: 0
[18]: | #### Posiblemente algunas especies esten mal escritas o duplicadas por error enu
      \hookrightarrow typing then...
      #unique_species = df_spa.select("Species").distinct().collect()
     #print(unique species)
[19]: #unique species = [row['Species'] for row in unique species]
[20]: #import csv
     #with open('unique_speciesk.csv', 'w', newline='', encoding='utf-8') as file:
          writer = csv.writer(file)
     #
          writer.writerow(['Species']) # escribir el encabezado
          for species in unique_species:
              writer.writerow([species])
specie_colum = spark.read.option('header', 'true').csv('updated_species.csv',
                                                       header=True,
       →inferSchema=True)
```

```
[19]: df_spa_updated = df_spa.join(specie_colum, df_spa["Species"] ==_u
    ⇔specie_colum["Species1"], "left")
    df spa updated = df spa updated.withColumn("Species", ...
    ⇔coalesce(col("Species_new"), col("Species")))
    df_sp = df_spa_updated.drop("Species_new", "Species1")
    df_sp = df_sp.filter(~(col("Species").isin(["Buscar", "buscar"])))
[20]: df_sp.show(2)
   -+----
   ___+______
   ______
   ___+____
     |Station|Entrada|
                  Date | Year | month | Day | ID |
                                      Orderl
                                             Family|
                Species | code _ Species | Mass | Culmen_Total | Culmen_Exposed | PW
   bill_width|PH bill_depth|Culmen_gapes|Tarsus|Halux|Nail_1finger|feet_extension|C
   entral_rectrix|Wing_cord|
                          Latitud
   Longitud | lossyear | treecover |
                        bio_1|
                              bio_10|bio_11|bio_12|bio_13|bio_14|
   bio_15|bio_16|bio_17|bio_18|bio_19| bio_2|
                                  bio_3|
                                         bio_4|bio_5|bio_6|
   bio 7|bio 8|
              bio_9|elev|Station_sample|
   -+-----
   ___+______
   ___+____
   ______
      TA01|
            621|25-Feb-14|2014| Feb| 25|
   1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
                                               TBHE | 6.32 |
            39.9|
                      3.91
                                3|
                                       null | null | null |
                         70 I
   nulll
             nulll
   64|5.22319444444444|-76.07793059868916|
                                        95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S20|
      TAO1
            621|25-Feb-14|2014| Feb| 25|
   1|Apodiformes|Trochilidae|Phaethornis|Phaethornis syrma...|
                                               TBHE | 6.32 |
   40 l
            39.91
                      3.91
                                31
                                       null | null | null |
   nulll
             null
                         70 l
   64 | 5.222503461438818 | -76.07804003964577 |
                                  01
                                        95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S19|
   +----+
```

```
-+----
     only showing top 2 rows
[21]: ## Sera mejor eliminar los espacios y solo usar _ para genero y epitetou
      ⇔especifico
     df_sp = df_sp.withColumn("Species", regexp_replace(col("Species"), " ", "_"))
     #df sp.show(3)
[22]: #### Solo para rectificar que los cambios estan bien y ya nos vamos con estasu
      ⇔especies...
     unique_species = df_sp.select("Species").distinct().collect()
     print(unique_species)
     [Row(Species='Phylloscartes_ophthalmicus'), Row(Species='Habia_cristata'),
    Row(Species='Picumnus_cinnamomeus'), Row(Species='Myrmotherulia_schisticolor'),
    Row(Species='Haplophaedia_aureliae'), Row(Species='Tangara_labradorides'),
    Row(Species='Creurgops_verticalis'), Row(Species='Troglodytes_aedon'),
    Row(Species='Myadestes_ralloides'), Row(Species='Thripadectes_holostictus'),
    Row(Species='Aulacorhynchus_prasinus'), Row(Species='Catharus_minimus'),
    Row(Species='Clibanornis_rubiginosus'), Row(Species='Xenops_MInutus'),
    Row(Species='Myrmotherula_schiticolor'), Row(Species='Veniliornis_dignus'),
    Row(Species='Aglaiocercus_coelestis'), Row(Species='Oreothraupis_arremonops'),
    Row(Species='Thripadectes_ignobilis'), Row(Species='Chlorospingus_semifuscus'),
    Row(Species='Psarocolius_wagleri'), Row(Species='Myiothlypis_fulvicauda'),
    Row(Species='Xiphorhynchus_triangularis'), Row(Species='Arremon_castaneiceps'),
    Row(Species='Platyrinchus_coronatus'), Row(Species='Catamblyrhynchus_diadema'),
    Row(Species='Formicarius_rufipectus'), Row(Species='Momotus_aequatorialis'),
    Row(Species='Veniliornis_affinis'), Row(Species='Xenops_rutilans'),
    Row(Species='Philydor rufum'), Row(Species='Margarornis stellatus'),
    Row(Species='Pseudocolaptes_lawrencii'), Row(Species='Eubucco_bourcierii'),
    Row(Species='Cyphorhinus thoracicus'), Row(Species='Lophotriccus pileatus'),
    Row(Species='Coeligena_coeligena'), Row(Species='Sporophila_luctuosa'),
    Row(Species='Dysithamnus_occidentalis'), Row(Species='Synallaxis_brachyura'),
    Row(Species='Eriocnemis_vestita'), Row(Species='Margarornis_squamiger'),
    Row(Species='Piranga_rubra'), Row(Species='Rupicola_peruvianus'),
    Row(Species='Thripadectes_flammulatus'),
    Row(Species='Basileuterus_tristriatus'),
    Row(Species='Cantorchilus_nigricapillus'), Row(Species='Heliangelus_exortis'),
    Row(Species='Thraupis_cyanocephala'), Row(Species='Troglodytes_solstitialis'),
    Row(Species='Phaetornis_syrmatophorus'),
    Row(Species='Microbates_cinereiventris'), Row(Species='Phaethornis_guy'),
    Row(Species='Drymotoxeres_pucheranii'), Row(Species='Heliodoxa_imperatrix'),
```

```
Row(Species='Sporophila_sp.'), Row(Species='Synallaxis_unirufa'),
Row(Species='Mionectes_striaticollis'), Row(Species='Cinnycerthia_unirufa'),
Row(Species='Pachyramphus_versicolor'), Row(Species='Phyllomyias_cinereiceps'),
Row(Species='Malacoptila_mystacalis'), Row(Species='Atlapetes_albinucha'),
Row(Species='Ramphocelus flammigerus'), Row(Species='Zentrygon frenata'),
Row(Species='Xiphorhynchus_erythropygius'), Row(Species='Scytalopus_vicinior'),
Row(Species='Myiarchus tuberculifer'), Row(Species='Atlapetes tricolor'),
Row(Species='Stilpnia_cyanicollis'), Row(Species='Tangara_arthus'),
Row(Species='Doryfera_ludovicae'), Row(Species='Cyanolyca_pulchra'),
Row(Species='Dromococcyx_pavoninus'), Row(Species='Cercomacroides_parkeri'),
Row(Species='Grallaricula flavirostris'), Row(Species='Ochthoeca_diadema'),
Row(Species='Haplospiza rustica'), Row(Species='Henicorhina leucosticta'),
Row(Species='Myiotriccus_ornatus'), Row(Species='Trogon_collaris'),
Row(Species='Campephilus_haematogaster'),
Row(Species='Onychorhynchus_coronatus'),
Row(Species='Chlorothraupis_stolzmanni'),
Row(Species='Myiothlypis_chrysogaster'),
Row(Species='Chlorostilbon_mellisugus'), Row(Species='Thamnophilus_unicolor'),
Row(Species='Chlorospingus_canigularis'), Row(Species='Myioborus_ornatus'),
Row(Species='Grallaria flavotincta'), Row(Species='Arremon aurantiirostris'),
Row(Species='Rhynchocyclus_brevirostris'), Row(Species='Uropsalis_lyra'),
Row(Species='Tangara_icterocephala'), Row(Species='Boissonneaua_jardini'),
Row(Species='Nephelomyias\xa0pulcher'),
Row(Species='Lepidocolaptes_lacrymiger'),
Row(Species='Hemitriccus_granadensis'),
Row(Species='Phyllomyias_nigrocapillus'), Row(Species='Diglossa_caerulescens'),
Row(Species='Automolus ochrolaemus'), Row(Species='Premnoplex brunnescens'),
Row(Species='Phaethornis_longirostris'), Row(Species='Saltator_atripennis'),
Row(Species='Leptopogon_superciliaris'), Row(Species='Amazilia_franciae'),
Row(Species='Zimmerius_chrysops'), Row(Species='Synallaxis_azarae'),
Row(Species='Urochroa_bougueri'), Row(Species='Anabacerthia_variegaticeps'),
Row(Species='Anisognathus_somptuosus'), Row(Species='Pyrrhomyias_cinnamomeus'),
Row(Species='Pseudocolaptes_boissonneautii'), Row(Species='Serpophaga_cinerea'),
Row(Species='Myiodynastes_chrysocephalus'), Row(Species='Nephelomyias_pulcher'),
Row(Species='Glaucidium jardinii'), Row(Species='Zonotrichia capensis'),
Row(Species='Cyclarhis_nigrirostris'), Row(Species='Coeligena_wilsoni'),
Row(Species='Micromonacha_lanceolata'),
Row(Species='Aulacorhynchus_haematopygus'),
Row(Species='Pseudotriccus_ruficeps'), Row(Species='Pipreola_jucunda'),
Row(Species='Dendrocincla_tyrannina'), Row(Species='Chlorornis_riefferii'),
Row(Species='Myrmotherula_schisticolor'), Row(Species='Syndactyla_subalaris'),
Row(Species='Campylorhamphus pusillus'), Row(Species='Anisognathus notabilis'),
Row(Species='Phaethornis_syrmatophorus'), Row(Species='Turdus_leucops'),
Row(Species='Microcerculus_marginatus'), Row(Species='Diglossa_gloriosissima'),
Row(Species='Lafresnaya_lafresnayi'), Row(Species='Diglossa_albilatera'),
Row(Species='Mitrospingus_cassinii'), Row(Species='Sporophila_nigricollis'),
Row(Species='Euphonia_xanthogaster'), Row(Species='Henicorhina_leucophrys'),
Row(Species='Mionectes_olivaceus'), Row(Species='Pipreola riefferii'),
```

```
Row(Species='Ochthoeca_cinnamomeiventris'), Row(Species='Scytalopus_sp.'),
Row(Species='Diglossa_cyanea'), Row(Species='Anisognathus_lacrymosus'),
Row(Species='Arremon atricapillus'), Row(Species='Tangara xanthocephala'),
Row(Species='Poecilotriccus_ruficeps'),
Row(Species='Rhynchocyclus fulvipectus'), Row(Species='Ocreatus underwoodii'),
Row(Species='Trogon_personatus'), Row(Species='Malacoptila_panamensis'),
Row(Species='Pseudotriccus_pelzelni'), Row(Species='Henicorhina_negreti'),
Row(Species='Piaya_cayana'), Row(Species='Phaethornis_striigularis'),
Row(Species='Machaeropterus_striolatus'),
Row(Species='Anthracothorax_nigricollis'), Row(Species='Thalurania_colombica'),
Row(Species='Stilpnia_heinei'), Row(Species='Turdus_serranus'),
Row(Species='Manacus manacus'), Row(Species='Myioborus miniatus'),
Row(Species='Hafferia_zeledoni'), Row(Species='Ramphomicron_microrhynchum'),
Row(Species='Dendrocincla_fuliginosa'),
Row(Species='Chlorospingus_flavigularis'), Row(Species='Schistes_albogularis'),
Row(Species='Islerothraupis_luctuosa'), Row(Species='Aglaiocercus_kingii'),
Row(Species='Masius_chrysopterus'), Row(Species='Myiobius_villosus'),
Row(Species='Atlapetes_latinuchus'), Row(Species='Dysithamnus_mentalis'),
Row(Species='Sayornis_nigricans'), Row(Species='Machaeropterus_deliciosus'),
Row(Species='Bangsia aureocincta'), Row(Species='Cyanoloxia cyanoides'),
Row(Species='Chlorochrysa_phoenicotis'), Row(Species='Nothocercus_bonapartei'),
Row(Species='Turdus_flavipes'), Row(Species='Chlorophonia_pyrrhophrys'),
Row(Species='Bangsia_melanochlamys'), Row(Species='Sporophila_funerea'),
Row(Species='Phaethornis_yaruqui'), Row(Species='Iridosornis_porphyrocephalus'),
Row(Species='Xenops_minutus'), Row(Species='Pygochelidon_cyanoleuca'),
Row(Species='Sclerurus mexicanus'), Row(Species='Diglossa_indigotica'),
Row(Species='Pipreola_arcuata'), Row(Species='Setophaga_fusca'),
Row(Species='Tangara gyrola'), Row(Species='Colaptes rubiginosus'),
Row(Species='Premnornis_guttuliger'), Row(Species='Chaetocercus_mulsant'),
Row(Species='Eutoxeres_aquila'), Row(Species='Turdus_ignobilis'),
Row(Species='Entomodestes_coracinus'), Row(Species='Hafferia_immaculata'),
Row(Species='Heliodoxa_jacula'), Row(Species='Turdus_fuscater'),
Row(Species='Drymophila striaticeps'), Row(Species='Tachyphonus luctuosus'),
Row(Species='Kleinothraupis_atropileus'),
Row(Species='Sporophila crassirostris'), Row(Species='Pheugopedius spadix'),
Row(Species='Boissonneaua_flavescens'), Row(Species='Ixothraupis_rufigula'),
Row(Species='Platyrinchus_mystaceus'), Row(Species='Arremon_brunneinucha'),
Row(Species='Myiophobus_flavicans'), Row(Species='Semnornis_ramphastinus'),
Row(Species='Cinnycerthia_olivascens'), Row(Species='Thripadectes_virgaticeps'),
Row(Species='Snowornis_cryptolophus'), Row(Species='Coeligena_torquata'),
Row(Species='Empidonax_sp.'), Row(Species='Glaucidium_nubicola'),
Row(Species='Micrastur ruficollis'), Row(Species='Dryobates fumigatus'),
Row(Species='Saltator_maximus'), Row(Species='Catharus_ustulatus'),
Row(Species='Conopophaga_castaneiceps'), Row(Species='Tangara_nigroviridis'),
Row(Species='Scytalopus_spillmanni'), Row(Species='Glyphorynchus_spirurus')]
```



```
[24]: df_sp = df_sp.drop("Wing_cord", "code _Species", 'Central_rectrix', "PW_
    ⇔bill_width",
                 'feet_extension', 'Nail_1finger', 'Halux', 'Tarsus', |
    ⇔'Culmen gapes' ,
                 'PH bill_depth', 'Culmen_Exposed', 'Culmen_Total', 'Mass')
[25]: from pyspark.sql.functions import monotonically_increasing_id
   df_sp = df_sp.withColumn("id", monotonically_increasing_id())
   df sp.show(2)
   _+____
   ___+_____
   |Station|Entrada|
                 Date | Year | month | Day | id |
                                   Orderl
                                          Family|
               Species | PW bill_width |
                                   Latitud
                            bio_10|bio_11|bio_12|bio_13|bio_14|
   Longitud | lossyear | treecover |
                       bio_1|
   bio_15|bio_16|bio_17|bio_18|bio_19|
                          bio_2| bio_3|
                                      bio_4|bio_5|bio_6|
             bio_9|elev|Station_sample|
   bio 7|bio 8|
   +----+
   _+_____
   __________
   --+---+
           621|25-Feb-14|2014| Feb| 25|
   0|Apodiformes|Trochilidae|Phaethornis|Phaethornis_syrma...|
   3.9|5.223194444444444|-76.07793059868916|
                                 01
                                      95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S201
     TAO1
           621|25-Feb-14|2014| Feb| 25|
   1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis _ syrma... |
   3.9|5.222503461438818|-76.07804003964577|
                                 01
                                      95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   +-----
   _+_____
   __+____
   ___+____
   --+---+
   only showing top 2 rows
```

```
[26]: from pyspark.ml.feature import VectorAssembler, StandardScaler
    from pyspark.ml.clustering import KMeans
    from pyspark.ml.feature import PCA
    from pyspark.ml.linalg import Vectors
    import numpy as np
    import matplotlib.pyplot as plt
[27]: columns_for_pca = ["treecover", "bio_1", "bio_10", "bio_11", "bio_12", __
     ⇔"bio_13", "bio_14", "bio_15",
                 "bio_16", "bio_17", "bio_18", "bio_19", "bio_2", "bio_3", __
     "bio_8", "bio_9", "elev"]
[28]: assembler = VectorAssembler(inputCols=columns_for_pca, outputCol="features")
    df_vector = assembler.transform(df_sp)
[29]: | scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures", u

→withStd=True, withMean=False)
    scalerModel = scaler.fit(df_vector)
    df_scaled = scalerModel.transform(df_vector)
    df scaled.show(6)
   _+_____
      __+___+
   |Station|Entrada|
                   Date | Year | month | Day | id |
   Genus
                Species|PW bill_width|
                                       Latitud
                        bio_1| bio_10|bio_11|bio_12|bio_13|bio_14|
   Longitud | lossyear | treecover |
   bio_15|bio_16|bio_17|bio_18|bio_19| bio_2| bio_3|
                                           bio 4|bio 5|bio 6|
   bio_7|bio_8|
              bio_9|elev|Station_sample|
                                         features
   scaledFeatures
   _+_____
   __+___+
      TAO1
            621|25-Feb-14|2014| Feb| 25|
   0|Apodiformes|Trochilidae|Phaethornis|Phaethornis_syrma...|
   3.9|5.223194444444444|-76.07793059868916|
                                     01
                                           95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S20 | [95.0.19.033333.1... | [5.28145580923873... |
      TA01
            621|25-Feb-14|2014| Feb| 25|
   1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis_syrma... |
   3.9|5.222503461438818|-76.07804003964577|
                                     01
                                           95|19.033333|19.383333|
```

```
970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    $19 | [95.0, 19.033333, 1... | [5.28145580923873... |
                621|25-Feb-14|2014| Feb| 25|
    2 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
    3.9|5.221880116664146|-76.07835764967228|
                                                         95|19.033333|19.383333|
    18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    S18 | [95.0,19.033333,1... | [5.28145580923873... |
        TAO1
                621|25-Feb-14|2014| Feb| 25|
    3|Apodiformes|Trochilidae|Phaethornis|Phaethornis_syrma...|
    3.9|5.221385427450069|-76.07885233888635|
                                                 0|
                                                         90 | 19.033333 | 19.383333 |
    18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    $17 | [90.0, 19.033333, 1... | [5.00348445085774... |
                621|25-Feb-14|2014| Feb| 25|
        TAO1
    4|Apodiformes|Trochilidae|Phaethornis|Phaethornis_syrma...|
    3.9|5.221067817423564|-76.07947568366103|
                                                0|
                                                         90 | 19.033333 | 19.383333 |
    18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    S16 | [90.0,19.033333,1... | [5.00348445085774... |
                 621|25-Feb-14|2014| Feb| 25|
        TAO1
    5|Apodiformes|Trochilidae|Phaethornis|Phaethornis_syrma...|
    3.9|5.220958376466945|-76.08016666666666|
                                                         95 | 19.033333 | 19.383333 |
    18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    S15 | [95.0,19.033333,1... | [5.28145580923873... |
     only showing top 6 rows
[30]: n_components = len(columns_for_pca)
[31]: pca = PCA(k=n components, inputCol="scaledFeatures", outputCol="pcaFeatures")
     pcaModel = pca.fit(df_scaled)
     df_pca = pcaModel.transform(df_scaled)
[32]: # Varianza explicada por cada componente principal
     explainedVariance = pcaModel.explainedVariance
     # Varianza acumulada
     cumulativeVariance = explainedVariance.cumsum()
```

18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |

```
[33]: print("Varianza explicada por cada componente principal:")
   print(explainedVariance)
   Varianza explicada por cada componente principal:
   [0.7432952779327794,0.12998221241187907,0.04817708788095776,0.04164101832457,0.0
   18502906414520206,0.011051574919055781,0.0031070658744734177,0.00163710023176608
   5,0.0010650491820818266,0.0007299359706796621,0.0004374224961990203,0.0002534773
   5953235457,7.251391294561552e-05,3.474961683847048e-05,1.0703268831694875e-
   05,1.7847320080810641e-06,9.278156778362384e-08,2.4064112238068714e-
   08, 2.625124902246856e - 09, 4.978739172667878e - 14, 2.6864249417919408e - 14
[34]: print("\nVarianza acumulada:")
   print(cumulativeVariance)
   Varianza acumulada:
   [0.74329528 0.87327749 0.92145458 0.9630956 0.9815985 0.99265008
    0.99575714 0.99739424 0.99845929 0.99918923 0.99962665 0.99988013
    0.99995264 0.99998739 0.99999981 0.99999988 0.99999997 1.
    1.
           1.
                  1.
                         1
[36]: optimal k = np.argmax(cumulativeVariance >= 0.90) + 1 # +1 porque los indices
    ⇔en Python empiezan en O
   print("\nC90% de varianza explicada:", optimal_k)
   C90% de varianza explicada: 3
df_pca.show(2)
   _+_____
   __+____
   ___+____
   __+___+
   |Station|Entrada|
                 Date | Year | month | Day | id |
                                     Orderl
                                             Family|
                Species|PW bill_width|
   Genus|
                                     Latitud|
   Longitud | lossyear | treecover |
                        bio_1|
                              bio_10|bio_11|bio_12|bio_13|bio_14|
   bio_15|bio_16|bio_17|bio_18|bio_19|
                            bio 2|
                                  bio_3|
                                         bio_4|bio_5|bio_6|
   bio_7|bio_8|
              bio_9|elev|Station_sample|
                                       features
   scaledFeatures
                   pcaFeatures|
```

__+____

```
621|25-Feb-14|2014| Feb| 25|
        TAO1
    0 | Apodiformes | Trochilidae | Phaethornis | Phaethornis _ syrma... |
    3.9|5.223194444444444|-76.07793059868916|
                                                 0|
                                                         95 | 19.033333 | 19.383333 |
    18.8|2965.0| 416.0| 152.0|34.28378| 970.0| 532.0| 875.0|
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    S20 | [95.0,19.033333,1... | [5.28145580923873... | [56.0384615290574... |
        TAO1
                621|25-Feb-14|2014| Feb| 25|
    1 | Apodiformes | Trochilidae | Phaethornis | Phaethornis syrma... |
    3.9|5.222503461438818|-76.07804003964577|
                                                 01
                                                         95 | 19.033333 | 19.383333 |
    18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
    970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
    $19|[95.0,19.033333,1...|[5.28145580923873...|[56.0384615290574...|
     ___+______
    only showing top 2 rows
[]:
[48]: # Ensamblar solo las columnas que se utilizarán para PCA
     assembler = VectorAssembler(inputCols=columns_for_pca, outputCol="features")
     df_vector = assembler.transform(df_sp)
[49]: | scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
      ⇔withStd=True, withMean=False)
     scalerModel = scaler.fit(df_vector)
     df_scaled = scalerModel.transform(df_vector)
[50]: pca = PCA(k=3, inputCol="scaledFeatures", outputCol="pcaFeatures")
     pcaModel = pca.fit(df_scaled)
     df_pca = pcaModel.transform(df_scaled)
[55]: df_pca.select("pcaFeatures").show(truncate=False)
     |pcaFeatures
     [56.038461529057415,-11.052202954735705,21.779740548918824]
     [56.038461529057415,-11.052202954735705,21.779740548918824]
     | [56.038461529057415,-11.052202954735705,21.779740548918824] |
     [56.037949245249855,-11.078376771435948,21.522740004571258]
     [56.037949245249855,-11.078376771435948,21.522740004571258]
     [56.038461529057415,-11.052202954735705,21.779740548918824]
```

----+

```
| [56.02975270432888,-11.497157838639826,17.410731295010205] |
     [56.02872813671375,-11.54950547204031,16.89673020631507]
     [56.037949245249855,-11.078376771435948,21.522740004571258]
     [56.037949245249855,-11.078376771435948,21.522740004571258]
     [56.02934287728283,-11.51809689200002,17.20513085953215]
     [56.03251903688971,-11.355819228458518,18.798534234487057]
     | [56.037949245249855, -11.078376771435948, 21.522740004571258] |
     [54.59309908144201,-15.700881425299293,22.23430700608372]
     [54.59309908144201,-15.700881425299293,22.23430700608372]
     [54.59309908144201,-15.700881425299293,22.23430700608372]
     | [56.038461529057415, -11.052202954735705, 21.779740548918824] |
     [56.038461529057415,-11.052202954735705,21.779740548918824]
     | [56.038461529057415, -11.052202954735705, 21.779740548918824] |
     only showing top 20 rows
[52]: from pyspark.ml.clustering import KMeans
[56]:
[60]: k = 3
      # Configura KMeans para que utilice la columna 'pcaFeatures'
      kmeans = KMeans().setK(k).setSeed(123).setFeaturesCol("pcaFeatures")
      # Ajusta el modelo KMeans utilizando solo las columnas 'id' y 'pcaFeatures'
      model = kmeans.fit(df_pca.select('id', 'pcaFeatures'))
      # Realiza las predicciones
      predictions = model.transform(df_pca.select('id', 'pcaFeatures'))
      # Une las predicciones con el DataFrame original para añadir la columna de_{\sqcup}
       \hookrightarrowpredicciones
      df_sp_with_predictions = df_sp.join(predictions, 'id')
[64]: from pyspark.ml.evaluation import ClusteringEvaluator
      # Suponiendo que 'model' es el modelo KMeans ya ajustado y 'predictions'
       ⇔contiene las predicciones
      # Inercia (coste de entrenamiento)
      inertia = model.summary.trainingCost
      # Coeficiente de silueta
      evaluator = ClusteringEvaluator(featuresCol="pcaFeatures")
```

[56.037949245249855,-11.078376771435948,21.522740004571258]

```
silhouette = evaluator.evaluate(predictions)
    print("Coeficiente de silueta:", silhouette)
    print("Inercia:", inertia)
   Coeficiente de silueta: 0.7635437048318442
   Inercia: 259979.75872146673
[66]: # Muestra las primeras filas con las predicciones añadidas
    df_sp_with_predictions.show(4)
   +-----
   _+_____
   __+____
   -+---+
    | id|Station|Entrada|
                      Date | Year | month | Day |
                                            Order
                                                   Family|
   Genus
                  Species | PW bill_width |
                                         Latitud
   Longitud|lossyear|treecover| bio_1| bio_10|bio_11|bio_12|bio_13|bio_14|
   bio_15|bio_16|bio_17|bio_18|bio_19| bio_2| bio_3|
                                             bio_4|bio_5|bio_6|
   bio 7|bio 8|
               bio 9 elev | Station sample |
                                         pcaFeatures|prediction|
   _+_____
   __+____
   _+___+
         TAO1
                622|25-Feb-14|2014| Feb|
   25 | Passeriformes | Tyrannidae | Mionectes | Mionectes _ striati... |
   4.5|5.220958376466945|-76.08016666666666| 0|
                                              95 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S15| [56.0384615290574...|
                           01
                622|25-Feb-14|2014| Feb|
         TAO1
   25 | Passeriformes | Tyrannidae | Mionectes | Mionectes striati... |
   4.5|5.221880116664146|-76.08197568366103|
                                       01
                                              0 | 19.033333 | 19.383333 |
   18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |
   970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|
   S12 | [56.0287281367137...|
                           01
   |474|
                643|26-Feb-14|2014| Feb| 26|Passeriformes|Thraupidae|
         TAO1
                                7.8|5.224508772224742|-76.08197568366103|
   Tangara|
              Tangara_arthus|
          37|19.033333|19.383333| 18.8|2965.0| 416.0| 152.0|34.28378| 970.0|
   532.0 | 875.0 | 970.0 | 7.816667 | 90.89148 | 23.580935 | 23.3 | 14.7 | 8.599999 |
                           S8 | [56.0325190368897...|
   18.8 | 18.983334 | 1493 |
   19641
                667|26-Feb-14|2014| Feb| 26|Passeriformes|Cotingidae|
         TA01
   Rupicola | Rupicola_peruvianus |
                                11.7
```

01

95 | 19.033333 | 19.383333 |

5.22388542745007|-76.07804003964577|

18.8 | 2965.0 | 416.0 | 152.0 | 34.28378 | 970.0 | 532.0 | 875.0 |

```
S1|[56.0384615290574...|
                                                                  01
           +-----
           _+_____
           __+____
           -+---+
           only showing top 4 rows
 [67]: df_pandas = df_sp_with_predictions.toPandas()
            # Separar características y etiquetas
            X = df_pandas[['treecover', 'bio_1', 'bio_10', 'bio_11', 'bio_12', 'bio_13', __
              ς'bio_14', 'bio_15', 'bio_16', 'bio_17', 'bio_18', 'bio_19', 'bio_2', 'bio_2', 'bio_2', 'bio_18', 'bio_19', 'bio_19', 'bio_2', 'bio_19', 'bio_19'
              y = df pandas['prediction']
[107]: X.head()
[107]:
                 treecover
                                            bio 1
                                                              bio_10 bio_11 bio_12 bio_13 bio_14
                                                                                                                                         bio 15 \
                              95 19.033333 19.383333
                                                                                18.8 2965.0
                                                                                                           416.0
                                                                                                                         152.0 34.28378
                               0 19.033333 19.383333
                                                                                18.8
                                                                                          2965.0
                                                                                                           416.0
                                                                                                                         152.0
                                                                                                                                     34.28378
            1
            2
                              37 19.033333 19.383333
                                                                                                          416.0
                                                                                18.8 2965.0
                                                                                                                         152.0 34.28378
            3
                              95
                                    19.033333 19.383333
                                                                                18.8 2965.0
                                                                                                           416.0
                                                                                                                         152.0
                                                                                                                                     34.28378
                              95
                                   19.033333 19.383333
                                                                                18.8 2965.0
                                                                                                          416.0
                                                                                                                         152.0 34.28378
                                                                                                            bio 4 bio 5 bio 6 \
                 bio 16 bio 17 ... bio 19
                                                                       bio 2
                                                                                         bio 3
                                 532.0 ...
                                                     970.0
                                                                                                                           23.3
                   970.0
                                                                7.816667
                                                                                   90.89148
                                                                                                     23.580935
                                                                                                                                        14.7
            1
                   970.0
                                 532.0 ...
                                                     970.0 7.816667
                                                                                   90.89148
                                                                                                     23.580935
                                                                                                                           23.3
                                                                                                                                        14.7
            2
                   970.0
                                 532.0 ...
                                                     970.0 7.816667
                                                                                   90.89148
                                                                                                     23.580935
                                                                                                                           23.3
                                                                                                                                        14.7
                   970.0
                                                                                                                                        14.7
            3
                                 532.0 ...
                                                     970.0 7.816667
                                                                                   90.89148 23.580935
                                                                                                                           23.3
                   970.0
                                 532.0 ...
                                                     970.0 7.816667 90.89148 23.580935
                                                                                                                           23.3
                                                                                                                                        14.7
                       bio_7 bio_8
                                                       bio_9 elev
            0 8.599999
                                   18.8 18.983334 1493
            1 8.599999
                                     18.8 18.983334 1493
            2 8.599999
                                     18.8 18.983334 1493
            3 8.599999
                                     18.8 18.983334 1493
            4 8.599999
                                     18.8 18.983334 1493
            [5 rows x 21 columns]
 [91]: import xgboost as xgb
            from hyperopt import hp, fmin, tpe, STATUS_OK, Trials
            from sklearn.metrics import mean_squared_error
            from sklearn.model selection import train test split
```

970.0|7.816667|90.89148|23.580935| 23.3| 14.7|8.599999| 18.8|18.983334|1493|

```
import numpy as np
     from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
[88]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random state=42)
     # Convertir los conjuntos a DMatrix, que es el formato preferido por XGBoost
     dtrain = xgb.DMatrix(X_train, label=y_train)
     dtest = xgb.DMatrix(X_test, label=y_test)
[92]: from sklearn.metrics import f1_score
[93]: def objective(space):
         clf = xgb.train(space, dtrain, num_boost_round=1000, evals=[(dtest,__
       preds = clf.predict(dtest)
         # Asequrate de que 'preds' sean las clases predichas para calcular F1-score
         preds = np.asarray([np.argmax(line) for line in preds])
         f1 = f1_score(y_test, preds, average='weighted') # 'weighted' considera elu
       →desbalance de clases
         # Hyperopt minimiza la función objetivo; se retorna 1 - F1 para maximizar
         return {'loss': 1 - f1, 'status': STATUS_OK}
     space = {
         'max_depth': hp.choice('max_depth', np.arange(1, 14, dtype=int)),
         'eta': hp.uniform('eta', 0.01, 0.3),
         'objective': 'multi:softmax',
         'num class': 3,
         'lambda': hp.uniform('lambda', 1e-8, 1.0), # Regularización L2
         'alpha': hp.uniform('alpha', 1e-8, 1.0) # Regularización L1
     }
     trials = Trials()
     best_hyperparams = fmin(fn=objective,
                             space=space,
                             algo=tpe.suggest,
                             max_evals=100,
                             trials=trials)
     print("Los mejores hiperparámetros son: ", best_hyperparams)
     100%|
               | 100/100 [03:04<00:00, 1.84s/trial, best loss:
     0.7035852236355664]
     Los mejores hiperparámetros son: {'alpha': 0.6590523500251971, 'eta':
```

```
0.16275265224049576, 'lambda': 0.0033755891434843924, 'max_depth': 12}
[94]: import joblib
[95]: final_params = {
          'max_depth': 12,
          'eta': 0.16275265224049576,
          'objective': 'multi:softmax',
          'num_class': 3,
          'lambda': 0.0033755891434843924,
          'alpha': 0.6590523500251971
      }
[96]: final_bst = xgb.train(final_params, dtrain, num_boost_round=1000)
      # Guardar el modelo
      joblib.dump(final_bst, "xgboost_aves_model.dat")
[96]: ['xgboost_aves_model.dat']
[147]: import rasterio
      import os
      from rasterio.enums import Resampling
 [108]: xgb_model = joblib.load("xgboost_aves_model.dat")
[113]: def read_rasters_and_stack(raster_files, folder_path):
          data = []
          for file in raster_files:
              with rasterio.open(os.path.join(folder_path, file)) as src:
                  band = src.read(1) # read only the first band
                  data.append(band)
          return np.stack(data, axis=-1) # stack rasters
[114]: nombres_columnas = X.columns.tolist()
      nombres_columnas
[114]: ['treecover',
       'bio_1',
       'bio_10',
       'bio 11',
       'bio_12',
       'bio 13',
       'bio_14',
       'bio_15',
```

```
'bio_17',
        'bio_18',
        'bio_19',
        'bio_2',
        'bio_3',
        'bio_4',
        'bio_5',
        'bio_6',
        'bio_7',
        'bio_8',
        'bio_9',
        'elev']
[142]: folder path = 'resampled rasters'
       raster_files = ['r_aligned_clipped_Hansen_GFC-2022-v1.10_treecover2000_10N_080W.
        ⇔tif',
        'resampled_clipped_wc2.1_30s_bio_1.tif',
        'resampled clipped wc2.1 30s bio 10.tif',
        'resampled clipped wc2.1 30s bio 11.tif',
        'resampled_clipped_wc2.1_30s_bio_12.tif',
        'resampled_clipped_wc2.1_30s_bio_13.tif',
        'resampled_clipped_wc2.1_30s_bio_14.tif',
        'resampled_clipped_wc2.1_30s_bio_15.tif',
        'resampled_clipped_wc2.1_30s_bio_16.tif',
        'resampled_clipped_wc2.1_30s_bio_17.tif',
        'resampled_clipped_wc2.1_30s_bio_18.tif',
        'resampled_clipped_wc2.1_30s_bio_19.tif',
        'resampled_clipped_wc2.1_30s_bio_2.tif',
        'resampled_clipped_wc2.1_30s_bio_3.tif',
        'resampled_clipped_wc2.1_30s_bio_4.tif',
        'resampled_clipped_wc2.1_30s_bio_5.tif',
        'resampled_clipped_wc2.1_30s_bio_6.tif',
        'resampled_clipped_wc2.1_30s_bio_7.tif',
        'resampled clipped wc2.1 30s bio 8.tif',
        'resampled_clipped_wc2.1_30s_bio_9.tif',
        'resampled_clipped_wc2.1_30s_elev.tif'
[144]: # Check shapes of all rasters
       for file in raster_files:
           with rasterio.open(os.path.join(folder_path, file)) as src:
               print(file, src.shape)
```

'bio_16',

r_aligned_clipped_Hansen_GFC-2022-v1.10_treecover2000_10N_080W.tif (1634, 1534)

```
resampled_clipped_wc2.1_30s_bio_10.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_11.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_12.tif (1634, 1534)
      resampled clipped wc2.1 30s bio 13.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_14.tif (1634, 1534)
      resampled clipped wc2.1 30s bio 15.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_16.tif (1634, 1534)
      resampled clipped wc2.1 30s bio 17.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_18.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_19.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_2.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_3.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_4.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_5.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_6.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_7.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_8.tif (1634, 1534)
      resampled_clipped_wc2.1_30s_bio_9.tif (1634, 1534)
      resampled clipped wc2.1 30s elev.tif (1634, 1534)
 []:
[143]: # Read the rasters
      raster_stack = read_rasters_and_stack(raster_files, folder_path)
[148]: # Reshape the raster stack for prediction
      num_features = raster_stack.shape[-1]
      raster_stack_reshaped = raster_stack.reshape(-1, num_features)
[151]: | feature_names = ['treecover', 'bio_1', 'bio_10', 'bio_11', 'bio_12', 'bio_13', __

¬'bio_14', 'bio_15', 'bio_16', 'bio_17', 'bio_18', 'bio_19', 'bio_2',
□
       # Create the DMatrix for prediction, specifying feature names
      dtest = xgb.DMatrix(raster_stack_reshaped, feature_names=feature_names)
      # Predict using the model
      predictions = model.predict(dtest)
[152]: predictions_reshaped = predictions.reshape(raster_stack.shape[0], raster_stack.
        \hookrightarrowshape[1])
[153]: with rasterio.open(os.path.join(folder_path, raster_files[0])) as src:
          meta = src.meta.copy()
          meta.update(dtype='uint8', count=1) # Assuming predictions are categorical
```

resampled_clipped_wc2.1_30s_bio_1.tif (1634, 1534)

```
with rasterio.open('predictions.tif', 'w', **meta) as dst:
          dst.write(predictions_reshaped.astype('uint8'), 1)
 []:
import geopandas as gpd
      from rasterio.mask import mask
      from rasterio.plot import show
[205]: shapefile_path = 'Shape/tTatama.shp' # Ruta al archivo shapefile
      raster_path = 'predictions.tif'
                                          # Ruta al archivo raster
      # Leer el shapefile usando Geopandas
      shapes = gpd.read_file(shapefile_path)
 []:
 []:
[215]:
     Valores únicos en el raster: [0 1 2]
[216]:
 []:
[226]: import geopandas as gpd
      import rasterio.mask
      import matplotlib.colors
[225]: nodata_value = -9999
      shapes = gpd.read_file('Shape/tTatama.shp')
      # Leer el raster de predicciones usando Rasterio
      with rasterio.open('predictions.tif') as src:
          # Leer la primera banda del raster como un MaskedArray
          raster_data = src.read(1, masked=True)
          # Crea una máscara para el raster basada en el shapefile, donde todo fuerau
       ⇔de la geometría sea True
          raster_mask, out_transform = rasterio.mask.mask(src, shapes.geometry,_
       →invert=True)
          # Combina la máscara de la geometría con la máscara existente en los datos
          raster_data.mask |= raster_mask[0]
```

```
# Asignar el colormap manualmente
cmap = plt.cm.viridis  # o cualquier otro colormap que prefieras
cmap.set_bad('white')  # Asignar el color blanco para valores nodata/máscara

# Crear la figura y los ejes para el mapa
fig, ax = plt.subplots(figsize=(8, 8))
img = ax.imshow(raster_data, cmap=cmap)

# Agregar la barra de colores con etiquetas para las comunidades
colorbar = fig.colorbar(img, ax=ax, fraction=0.036, pad=0.04, ticks=[0, 1, 2])
colorbar.ax.set_yticklabels(['Comunidad A', 'Comunidad B', 'Comunidad C'])

# Esconder los ejes
ax.axis('off')

# Agregar título
ax.set_title('Distribución de Comunidades de Aves')

# Mostrar el gráfico
plt.show()
```


[]: