Nonnegative k-sums in a set of numbers

Alexey Pokrovskiy

Methods for Discrete Structures, Freie Universität Berlin, Berlin. alja123@gmail.com

8th July, 2014

$$\{5,3,-6,-1\}.$$
 Nonnegative sums: $\{5,3,-6\},\ \{5,3,-1\},\ \{5,3\},\ \{5,-1\},\ \{3,-1\},\ \{5\},\ \{3\}.$

Problem

Let $x_1, ..., x_n$ be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \ge 0$. How few subsets can have nonnegative sum?

$$\{5,3,-6,-1\}.$$
 Nonnegative sums: $\{5,3,-6\},\ \{5,3,-1\},\ \{5,3\},\ \{5,-1\},\ \{3,-1\},\ \{5\},\ \{3\}.$

Problem

Let $x_1, ..., x_n$ be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \ge 0$. How few subsets can have nonnegative sum?

• Choosing $x_1 = n$, and $x_2 = x_3 = \cdots = \ldots x_n = -1$ shows that the answer is at most 2^{n-1} .

$$\{5,3,-6,-1\}.$$
 Nonnegative sums: $\{5,3,-6\},\ \{5,3,-1\},\ \{5,3\},\ \{5,-1\},\ \{3,-1\},\ \{5\},\ \{3\}.$

Problem

Let $x_1, ..., x_n$ be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \ge 0$. How few subsets can have nonnegative sum?

- Choosing $x_1 = n$, and $x_2 = x_3 = \cdots = \ldots x_n = -1$ shows that the answer is at most 2^{n-1} .
- Since for any $A \subseteq \{x_1, \dots, x_n\}$, either A or \overline{A} has nonnegative sum, the answer is 2^{n-1} .

$$\{5,3,-6,-1\}.$$
 Nonnegative sums: $\{5,3,-6\},\ \{5,3,-1\},\ \{5,3\},\ \{5,-1\},\ \{3,-1\},\ \{5\},\ \{3\}.$

Problem

Let x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n > 0$. How few subsets can have nonnegative sum?

- Choosing $x_1 = n$, and $x_2 = x_3 = \cdots = \dots = x_n = -1$ shows that the answer is at most 2^{n-1} .
- Since for any $A \subseteq \{x_1, \dots, x_n\}$, either A or A has nonnegative sum, the answer is 2^{n-1} .

Problem

Let x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n > 0$. How few subsets of order k can have nonnegative sum?

2 / 13

Conjecture (Manickam, Miklós, Singhi)

Conjecture (Manickam, Miklós, Singhi)

Let $n \ge 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \ge 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

• The bound is seen to be best possible by again choosing $x_1 = n$, and $x_2 = x_3 = \cdots = \dots x_n = -1$.

Conjecture (Manickam, Miklós, Singhi)

- The bound is seen to be best possible by again choosing $x_1 = n$, and $x_2 = x_3 = \cdots = \dots x_n = -1$.
- " $n \ge 4k$ " is motivated by a construction at n = 3k + 1 ($x_1 = x_2 = x_3 = 2 3k$ and $x_4 = \cdots = x_{3k+1} = 3$).

Conjecture (Manickam, Miklós, Singhi)

Conjecture (Manickam, Miklós, Singhi)

Let $n \ge 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \ge 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

• True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).
 - ▶ $n \ge 33k^2$ or $n \ge 2k^3$ (Alon, Huang, and Sudakov).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).
 - ▶ $n \ge 33k^2$ or $n \ge 2k^3$ (Alon, Huang, and Sudakov).
 - ▶ $n \ge 2k^3$ (Aydinian and Blinovsky).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).
 - ▶ $n \ge 33k^2$ or $n \ge 2k^3$ (Alon, Huang, and Sudakov).
 - ▶ $n \ge 2k^3$ (Aydinian and Blinovsky).
 - ▶ $n \ge 3k^3/2$ (Frankl).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).
 - ▶ $n \ge 33k^2$ or $n \ge 2k^3$ (Alon, Huang, and Sudakov).
 - ▶ $n \ge 2k^3$ (Aydinian and Blinovsky).
 - ▶ $n \ge 3k^3/2$ (Frankl).
 - ▶ $n \ge 8k^2$ (Chowdhury, Sarkis, Shahriari).

Conjecture (Manickam, Miklós, Singhi)

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when *n* is large compared to *k*:
 - ▶ $n \ge (k-1)(k^k + k^2) + k$ (Manickam and Miklós).
 - ▶ $n \ge k(4e \log k)^k$ (Tyomkyn).
 - ▶ $n \ge 33k^2$ or $n \ge 2k^3$ (Alon, Huang, and Sudakov).
 - ▶ $n \ge 2k^3$ (Aydinian and Blinovsky).
 - ▶ $n \ge 3k^3/2$ (Frankl).
 - ▶ $n \ge 8k^2$ (Chowdhury, Sarkis, Shahriari).
 - ► $n \ge 10^{46} k$ (P.)

How to prove MMS conjecture:

• We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} n$$

How to prove MMS conjecture:

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} n$$

Lemma (easy)

Any nonneg. weighting of \mathbb{Z}_n , has at least k nonneg. k-intervals

How to prove MMS conjecture:

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} n$$

Lemma (easy)

Any nonneg. weighting of \mathbb{Z}_n , has at least k nonneg. k-intervals

• Therefore (number of nonneg. k-sets) $\frac{k!(n-k)!}{n!} n \ge k$ and so

number of nonneg.
$$k\text{-sets} \geq \binom{n-1}{k-1}.$$

How to prove MMS conjecture:

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} n$$

Lemma (easy)

Any nonneg. weighting of \mathbb{Z}_n , has at least k nonneg. k-intervals

• Therefore (number of nonneg. k-sets) $\frac{k!(n-k)!}{n!} n \ge k$ and so

number of nonneg.
$$k\text{-sets} \geq \binom{n-1}{k-1}$$
.

How to prove MMS conjecture:

- We have set {x₁,...x_k} with x₁ + ··· + x_k ≥ 0.
 Choose a random cyclic ordering of x₁,...,x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative k-intervals})$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} n$$

Lemma (mostly false)

Any nonneg. weighting of \mathbb{Z}_n , has at least k nonneg. k-intervals

• Therefore (number of nonneg. k-sets) $\frac{k!(n-k)!}{n!} n \ge k$ and so

number of nonneg.
$$k\text{-sets} \geq \binom{n-1}{k-1}.$$

Why is the easy lemma is false?

k = 3, n = 16. Here is a weighting of the cycle with only one nonnegative interval:

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.
- Choose a random ordering of x_1, \ldots, x_n .

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.
- Choose a random ordering of x_1, \ldots, x_n .
- Count $E = \mathbb{E}(\text{number of nonnegative intervals})$ of the form $\{tk, \dots, tk + k 1\}$ in two different ways.

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.
- Choose a random ordering of x_1, \ldots, x_n .
- Count $E = \mathbb{E}(\text{number of nonnegative intervals})$ of the form $\{tk, \dots, tk + k 1\}$ in two different ways.

 $E = (number of nonneg. k-sets)\mathbb{P}(k-set forms an interval)$

= (number of nonneg. k-sets)
$$\frac{k!(n-k)!}{n!} \frac{n}{k}$$

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.
- Choose a random ordering of x_1, \ldots, x_n .
- Count $E = \mathbb{E}(\text{number of nonnegative intervals})$ of the form $\{tk, \dots, tk + k 1\}$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k}$$

Lemma (really easy)

For any nonnegative weighting of \mathbb{Z}_n , there is at least 1 nonnegative k-intervals of the above form.

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \dots x_k\}$ with $x_1 + \dots + x_k \ge 0$.
- Choose a random ordering of x_1, \ldots, x_n .
- Count $E = \mathbb{E}(\text{number of nonnegative intervals})$ of the form $\{tk, \dots, tk + k 1\}$ in two different ways.

$$E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})$$
$$= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k}$$

Lemma (really easy)

For any nonnegative weighting of \mathbb{Z}_n , there is at least 1 nonnegative k-intervals of the above form.

• Therefore (number of nonneg. k-sets) $\frac{k!(n-k)!}{n!} \frac{n}{k} \geq 1$ and so

number of nonneg. k-sets
$$\geq \binom{n-1}{k-1}$$
.

Definition

A k-uniform hypergraph \mathcal{H} has the **MMS property** if for any weighting of $V(\mathcal{H})$, $w:V(\mathcal{H})\to\mathbb{R}$, satisfying $\sum_{v\in\mathcal{H}}w(v)\geq 0$, there are at least $\delta(\mathcal{H})$ nonnegative edges in \mathcal{H} .

Definition

A k-uniform hypergraph \mathcal{H} has the **MMS property** if for any weighting of $V(\mathcal{H})$, $w:V(\mathcal{H})\to\mathbb{R}$, satisfying $\sum_{v\in\mathcal{H}}w(v)\geq 0$, there are at least $\delta(\mathcal{H})$ nonnegative edges in \mathcal{H} .

The averaging argument from the last few slides shows that:

Lemma

Suppose that there is a regular k-uniform hypergraph on n vertices with the MMS property.

Then the Manickam-Miklós-Singhi Conjecture holds for that n and k.

Theorem (P.)

For $n \ge 10^{46} k$, there are $k(k-1)^2$ -regular k-uniform hypergraphs $\mathcal{H}_{n,k}$ on n vertices with the MMS property.

Theorem (P.)

For $n \ge 10^{46} k$, there are $k(k-1)^2$ -regular k-uniform hypergraphs $\mathcal{H}_{n,k}$ on n vertices with the MMS property.

Vertices of $\mathcal{H}_{n,k}$ are \mathbb{Z}_n .

Edges of $\mathcal{H}_{n,k}$ are *double intervals* where the distance between the intervals is less than k.

i.e. sets of the form $[x, x+i-1] \cup [x+i+j, x+k+j-1]$ for i, j < k.

Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Claim 1

Let I be an interval in $V(\mathcal{H}_{n,k})$ of length $\leq n-2k$. Then there is a negative interval J of order at most |I|+2k containing I.

Claim 2

Let I be an interval in $V(\mathcal{H}_{n,k})$ with $|I| \geq 20k$ containing no nonnegative edges. Then I is negative.

Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Claim 1

Let I be an interval in $V(\mathcal{H}_{n,k})$ of length $\leq n-2k$. Then there is a negative interval J of order at most |I|+2k containing I.

Claim 2

Let I be an interval in $V(\mathcal{H}_{n,k})$ with $|I| \geq 20k$ containing no nonnegative edges. Then I is negative.

If $n \ge 30k^4$, by the Pigeonhole Principle there is an interval I of length 30k containing no nonnegative edges.

Question

What hypergraphs have the MMS property?

Question

What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)

For $n \ge 10k^3$, every hypergraph with all codegrees equal has the MMS property.

Question

What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)

For $n \ge 10k^3$, every hypergraph with all codegrees equal has the MMS property.

Question

What is the complexity of deciding whether a hypergraph has the MMS property?

Question

What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)

For $n \ge 10k^3$, every hypergraph with all codegrees equal has the MMS property.

Question

What is the complexity of deciding whether a hypergraph has the MMS property?

Problem

Characterize all (2-uniform) graphs with the MMS property.