

In [113]:	<pre># Function that computes simulation VaR for a number of simulations and seed simVaR <- function(S, seed = 999, message = TRUE) { # Include elapsed time old <- Sys.time() set.seed(seed) ysim <- rnorm(S, mean = r/365, sd = sigma) Psim <- P*(1+ysim) q <- sort(Psim - P) VaR1s <q[ceiling(probability*s)] "\n")="" "seconds")="" (message)=""),="" cat("elapsed="" cat("number="" difftime(sys.time(),="" if="" of="" old,="" pre="" s,="" simulations",="" time:",="" units="secs" {="" }="" }<=""></q[ceiling(probability*s)]></pre>
	return(VaR1s) } round(simVaR(S = 1e4, seed = seed),2) round(simVaR(S = 1e6, seed = seed),2) Number of simulations 10000 Elapsed time: 0.002403021 seconds 7.37 Number of simulations 1e+06 Elapsed time: 0.131144 seconds 7.6
In [114]:	Creating a plot: # Plotting # Sequence of simulations x <- seq(100, 1000000, length = 100) # Simulation VaR of each VaR_sim <- sapply(x, simVaR, seed = seed, message = FALSE) # Plot plot(x, VaR_sim, type = "l", main = "Simulated VaR for stock", sub = paste0("Seed: ", seed), xlab = "Simulation Size", ylab = "VaR", las = 1)
	# Add horizontal line on Analytic VaR abline (h = VaRlt, col = "red") Simulated VaR for stock 7.65 -
In [115]:	Simulation Size Seed: 456 Calculating VaR for the option To calculate the VaR for the option we can apply the Black-Scholes formula using the observed price and the simulated prices, and a sigma scaled for the yearly trading days: # VaR for the option # Calculate put put <- bs(K = K, P = P, r = r, sigma = sqrt(sigma^2 * 250), Maturity = Maturity)
	<pre># Simulate prices S <- 1e3 set.seed(444) ysim <- rnorm(S, mean=r/365, sd=sigma) Psim <- P*(1+ysim) # Use simulated prices in Black-Scholes formula fsim <- bs(K=K, P=Psim, r=r, sigma=sqrt(sigma^2 *250), Maturity = Maturity-(1/365)) # Sort the vector q <- sort(fsim - put) # Get the value that meets the VaR probability VaR2 <q[ceiling(probability*s)] pre="" round(var2,3)<=""></q[ceiling(probability*s)]></pre>
In [116]:	Calculating VaR for a portfolio of stock and option If we have a portfolio that has both an option and the underlying stock, we can calculate VaR as follows: # VaR for a portfolio # Assets xb <- 3 xo <- 2
	<pre># Create portfolio portfolio_today <- xb*P + xo*put round(portfolio_today) 426 Use the vector of simulated prices, Psim , to calculate tomorrow's value of the portfolio: # Calculating tomorrow's value of the portfolio option_tomorrow <- bs(K = K, P = P, r = r, sigma = sqrt(sigma^2 * 250), Maturity = Maturity - (1/365)) portfolio_tomorrow <- xb*Psim + xo*option_tomorrow # Find the profit-loss</pre>
	portfolio_loss <- portfolio_tomorrow - portfolio_today # We can see its distribution hist(portfolio_loss, main = "P/L distribution") P/L distribution
In [119]:	<pre>portfolio_loss <- sort(portfolio_loss) portfolio_VaR <portfolio_loss[ceiling(s*probability)] pre="" round(portfolio_var,2)<=""></portfolio_loss[ceiling(s*probability)]></pre>
In [120]:	We can include a new option, with a different strike price, and see how it changes our VaR: # Introducing a second option xo2 <- 15 K2 <- 90 # Get the prices using Black-Scholes option2_today <- bs(K=K2, P=P, r=r, sigma=sqrt(sigma^2 *250), Maturity=Maturity) option2_tomorrow <- bs(K=K2, P=Psim, r=r, sigma=sqrt(sigma^2 * 250), Maturity=Maturity-(1/365)) # Portfolio values portfolio_today <- xb*P + xo*put + xo2*option2_today portfolio_tomorrow <- xb*Psim + xo*option_tomorrow + xo2*option2_tomorrow
	# Find the profit-loss portfolio_loss <- portfolio_tomorrow - portfolio_today # We can see its distribution hist(portfolio_loss, main = "P/L distribution") P/L distribution 88
In [121]:	OC TO
	round (portfolio_VaR, 2) 13.48 Recap In this seminar we have covered: Pricing a put option analytically with Black-Scholes Simulating option prices with Monte Carlo Evaluating convergence to analytical solutions for different simulation sizes Stock, option and portfolio VaR calculations
	Some new functions used: • bs() • Sim() • SimVaR() For more discussion on the material covered in this seminar, refer to Chapter 6: Analytical value-at-risk for options and bonds and Chapter 7: Simulation methods for VaR for options and bonds on Financial Risk Forecasting by Jon Danielsson. Acknowledgements: Thanks to Alvaro Aguirre for creating these notebooks © Jon Danielsson, 2020
	© Jon Danielsson, 2020