REMARKS

Applicant has amended claims 1-3 and 6-8. The claim language is supported by the as-filed specification, e.g., page 8, lines 22-24. No new matter has been introduced. A revised drawing of the formula (I) in claim 1 is included as suggested at page 2 of the Office Action.

Applicant respectfully requests reconsideration and withdrawal of the 35 U.S.C. §§ 102(b) and 103(a) rejection of claim 1 over SU 422262 ("SU '262"). Applicant also respectfully traverses the § 103(a) rejection of claims 1-8 over SU '262 in view of JP 2002-053573 ("JP '573"), and the § 103(a) rejection of claims 1-8 over SU '262 in view of Kawanami et al., Research of carbonate synthesis using supercritical carbon dioxide and ionic liquid, Abstracts of Presentation, the 35th Fall Meeting of Society of Chemical Engineers, Japan, September 18-20, 2002, Vol. 35, p. 391 ("Kawanami").

The Office Action asserts that claim 1 does not "exclude 1,2 and 3,4 addition units." Office Action, p. 4.

Claim 1 is amended to recite, "[a] cyclic carbonate-containing polymeric compound consisting essentially of a polymeric compound represented by formula (I):

$$\begin{array}{c|c} CH_3 & CH_2 \\ \hline CH_2 - C - CH - CH_2 \\ \hline CH_2 - C -$$

wherein . . . the sum of p, q, and r is 1."

By this amendment, claim 1 limits the scope of the compound to consist essentially of the structure expressly depicted in the formula (I). Any other monomer units that are not included in the formula (I) and that would materially affect the basic and novel characteristics of the claimed compound are excluded from the claim. See M.P.E.P. §2111.03.

As explained in the remarks previously presented in the Reply to Office Action filed August 12, 2009 at pages 5-6, the method as taught in SU '262 would not result in the same final compound as recited in claim 1. Applicant respectfully submits that natural rubber has no amount of 1, 2 and 3, 4 addition units while synthetic polyisoprene contains these units, as evidenced by the teachings of the following documents:

S. Amnuaypornsri et al., *Green Strength of Natural Rubber: The Origin of the Stress-Strain Behavior of Natural Rubber,* Journal of Applied Polymer Science, Vol. 111, pp. 2127-2133 (2009) ("Amnuaypornsri") (copy attached); Komuro et al., Treatise of Technologies for Processing Synthetic Rubbers, Isoprene Rubbers, Vol. 1, page 10 (1975) ("Komuro") (copy of relevant portions attached along with their English translation).

Amuaypornsri provides analysis of natural polyisoprene and synthetic polyisoprene. For example, Amuaypornsri discloses that "NR [(a natural rubber)] contains 100 % cis-1,4-isoprene units, whereas Kraton IR-309 [(a synthetic rubber)] has been estimated to contain about 92% cis-1,4-isoprene units," and that the remaining portions of Kraton IR-309 include 3,4-units, as shown in Figure 4. See page 2128, right column, 3rd paragraph; page 2131, right column, 2nd paragraph.

Komuro also discloses structures of repeating units, i.e., cis-1,4-unit, trans-1,4-unit, 1,2-unit, and 3,4-unit, which may be produced theoretically by polymerization of isoprene monomers in Table 2-1.

If a synthetic rubber, which contains 3,4-units, is epoxidized and then is reacted with carbon dioxide, similarly to the method in Example 2 of SU '262, extra units derived from 3,4-units will be formed. The chemical structure of the extra units derived from 3,4-units is different from that of cyclic carbonate unit, the leftmost monomer unit in the formula (I) derived from cis-1,4- units. Therefore, the extra units derived from 3,4 units, which would be produced in Example 2 of SU' 262, are not included in the structure represented by the formula (I) and would materially affect the basic and novel characteristics of the claimed compound consisting essentially of a cyclocarbonated polymeric compound represented by the formula (I) wherein the sum of p, q, and r is 1.

For at least the foregoing reasons and the reasons set forth in the previous August 12, 2009 Reply, Example 2 of SU '262 would <u>not</u> necessarily result in the claimed compound. Claim 1, and its dependent claims, are neither anticipated by, nor obvious over, SU '262.

Claim 2 has been amended to positively recite "deproteinizing natural rubber," which is neither disclosed nor suggested in SU' 262. One of ordinary skill in the art would not have had any reason to incorporate any "deproteinizing [of] natural rubber" into the method of SU '262. Also, neither JP '573 nor Kawanami discloses or suggests deproteinizing natural rubber. Accordingly, amended claim 2 is allowable over the cited references for this additional reason. Also, none of these references discloses or

Application No. 10/591,231 Attorney Docket No. 04853.0137

suggest the compound expressly recited in amended claim 1, from which claim 2 depends.

In view of the foregoing amendments and remarks, Applicant respectfully requests reconsideration of this application, withdrawal of the rejections, and timely allowance of the pending claims.

Please grant any extensions of time required to enter this response and charge any additional required fees to our deposit account 06-0916.

Respectfully submitted, FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Dated: February 4, 2010 By: /Anthony M. Gutowski/

Anthony M. Gutowski Reg. No. 38,742 (202) 408-4000

Attachments:

- (1) S. Amnuaypornsri et al., *Green Strength of Natural Rubber: The Origin of the Stress-Strain Behavior of Natural Rubber,* Journal of Applied Polymer Science, Vol. 111, pp. 2127-2133 (2009); and
- (2) Relevant portions of Komuro et al., Treatise of Technologies for Processing Synthetic Rubbers, Isoprene Rubbers, Vol. 1 (1975), including an English translation.

Green Strength of Natural Rubber: The Origin of the Stress-Strain Behavior of Natural Rubber

Surecrut Ammuaypomsri, I Jitladda Sakdapipanich, 22 Yasuyuki Tanaka 2

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Institute of Science and Technology for Research and Development, Mahidol University, Salaya Compus. Nakhomphatam 73170, Thailand

Received 19 December 2007; accepted 21 August 2008 DOI 10.1002/app.29226 Published Online 10 November 2008 in Wiley Interedience (www.interedence.wiley.com).

ABSTRACT: The variation of the green strength of natural rubber (NR) with the preparation method of the film was studied to elucidate the origin of the areas-strain behavior characteristics of NR in connection with the structure of branch points in NR. A rubber film prepared via casting from NR latex showed the highest modulus and green strength in comparison with films prepared via casting from a toluene solution and via the hot pressing of dry rubber. The modulus and green strength of the NR latex-casting film decreased after the hot-press treatment

of the film. On the other hand, no difference was observed for synthetic cis-1,4-polyisoprene rubber with the preparation method of the film or the heat treatment. This stress-strain behavior characteristics of NR can be ascribed to the changes in the branch points of the NR film with the casting method, which may result in differences in entanglement and crystallizability on stretching. O 2008 Wiley Periodicals, Inc. J Appl Polym Sci 111: 2127-2133, 2009

Key words: film preparation: green strength; natural rubber

INTRODUCTION

The green strength, an elastomer's resistance to deformation and fracture before vulcanization, is, like processability and tackiness, an important property of elastomers. Elastomers with an appropriate green strength are desirable for the production so that they will not creep and hence distort excessively before molding or tear during the expansion that occurs during molding or in the second stage for radial tires. The most meaningful measure for the characteristics of the green strength is obtained by an examination of the stress-strain curves at a given rate of strain. The shape of the stress-strain curve is an unportant criterion for determining the green property. The green strength of elastomers has been commonly stiributed to long-chain branching,1,2 interactions, between polar groups,³ the presence of a gel,^{7,3} chain entanglements,^{2,4} and crystallization on

stretching.³ The differences in these factors are responsible for the differences in the green strength for various elastomers.

Natural rubber (NR) from Heven brusiliensis is known to have very high green strength in comparison with synthetic rubbers, especially synthetic cis-1.4-polyisoprene rubber (IR). This difference in the green strength has been attributed to the crystallizability derived from the regularity of isoprene units in the cis-1,4 configuration and non-rubbar constituents present in NR. The former is presumed to be the reason that NR shows a very high green strength versus IR, whereas the lower green strength of Guayule rubber from Parthenium organizium is believed to be due to the absence of nonrubbar components' characteristic of NR. One of the characteristics of NR can be seen in the crystallization at low temperatures. The rates of crystallization of NR and enzymatically deproteinized natural rubber (DPNR) at -25°C were almost the same, whereas the rate decreased significantly after the removal of free fatty acids by acetone extraction.5 The rate was partly recovered after the removal of the linked fatty acids in the acetone-extracted sample by transesterification, and this could be ascribed to the improvement of the rubber purity. The rate of crystallization of acetone-extracted NR was accelerated by the addition of 1% (w/w) methyl linolests. However, the crystallization of transesterified DPNR was suppressed by

Contract grant sponsor: Commission on Higher Education: contract grant number: RMU4980046.

Contract grant sponsor. Center of Excellence for Innovation in Chemistry (Commission on Higher Education).

Journal of Applied Polymer Science, Vol. 111, 2127–2133 (2009) © 2008 Wiley Periodicals, Inc.

Correspondence to:]. Sakdapipanich (egip@mehidol.ac.th), Commact grant sponson Thailand Research Fund (TRF); contract grant number: PHD/0142/2546.

the addition of methyl linoleate as in the case of IR⁸ because of the lack of fatty acids linked to rubber molecules. These findings demonstrate that both the outsimiding green strength and high crystallizability of NR are presumably derived from the linked fatty scids, which promote crystallization on stretching and at low temperatures. Similar tendencies for NR and IR with respect to crystallization on stretching have been observed. In the case of the crystallization of cured nubber on stretching, it was reported that NR started crystallization at a strain of 270%, whereas the strain of cured IR was 330% by dilatometric measurement.

NR recovered from skim letex, that is, the rubber from small rubber particles, shows low green strength comparable to that of IR 11 The nubber from small rubber particles has been found to be a linear polymer with no fatty acid ester group linked or associated with the NR chain 12 These findings suggest that the presence of long-chain branching in ordinary NR is the reason for the high green strength characteristic of NR, Here, it is necessary to take into consideration that most of the branch points in ordimany NR are formed by both functional terminal groups via hydrogen bonding and the association of phospholipid groups at the chain end, that is, the a terminal. 1314 Proteins in NR are considered to originate branch points by hydrogen bonding. As proof, the gel content in ordinary NR decreases with the enzymatic deproteinization of latex. However, it is clear that proteins have no direct effect on the green strength because DPNR shows almost the same green strength as that of NR before deproteinization.14 Consequently, it seems reasonable to assume that the phospholipid groups in NR, which are pre-sumed to be linked at the a terminal. 13,14 play an important role in developing the green strength.

in an attempt to gain greater understanding of the origin of the green properties characteristic of NR, we conducted a series of experiments on the relationship between the structure of NR and the green strength. In previous works, 11,17 we carried out the measurement of the green strength only for rubber film obtained by the solution-casting method. However, we found that the green strength of NR depends on the method used to prepare the test sheet, that is, casting from latex or a rubber solution or hot pressing of dry rubber. In general, the preparation of a film by the hot pressing of raw rubber is usually applied to prepare test sheets, as can be seen in ASTM D 6746-02. This standard method for preparing test sheets indicates that the sample will be pressed at 100°C for 5 min. However, this condition is not suitable for all rubbers because the viscosity and elasticity of nibbers depend on the chemical structure and molecular weight. Furthermore, no information has been given on the relationship

between the hot-pressing conditions and the green strength. Therefore, in this study, an attempt was made to show the varietion of the green strength with changes in the preparation method of the testing film in connection with the structure of the branch points of NR versus that of IR. Here, the nubber film was prepared in three ways: casting from rubber latex, casting from a rubber solution in toluene, and hot pressing of dry rubber. The effects of the temperature and time of the hot-press treatment for the test film were also investigated to analyze the effect of the presumed branch points on the stress-strain behavior.

EXPERIMENTAL

The preparation of NR films for the measurement of the stress-strain curve was carried out in three ways: (1) casting from rubber latex with a 30% dry rubber content and drying in an oven at 50°C for 24 h; (2) casting from a rubber solution [$\sim 3\%$ (w/v)] in toluene including ~ 2% (w/v) athenol and 1 phr butylated hydroxytoluene (BHI), keeping it at room temperature in the dark to evaporate the solwant, and eliminating the residual toluene with a vacuum oven at 40°C for 12 h; and (3) hot pressing of solid NR. Here, the rubber film from the hotpress method was made in two ways. First, the rubber film obtained by latex casting was pressed in a mold, which was sandwiched between two slide polyester films and pressed at 100-160°C for 10-40 min. After heating, the mold was cooled immediately to room temperature under pressure by a cooling system for 15 min. The resulting rubber film was subjected to the measurement of the stress-strain curve. Second, the subber gum, sandwiched between two slide polyester films, was pressed in a mold at 100-160°C for 10-40 min. After the pressing, the mold was cooled immediately to room temperature under pressure for 15 min by a cooling system. To eliminate the residual molding strains, all the test sheets were stored at room temperature for 5 days before use.

Rubber samples

Kraton IR-309 latex (Kraton Polymers U.C), provided by SRI R & D, Ltd. (Kobe, Japan), and NR latex, provided by That Rubbex Latex Co. (Chonburi, Thailand), were used as IR and NR latices, respectively. NR in solution was prepared by the dissolution of the NR film obtained by latex casting in a toluene solution. NR gum was prepared by the coagulation of NR-latex with 5% (w/v) formic acid followed by washing and drying at 50°C for 24 h.

Journal of Applied Polymer Science DOI 10:1002/app

Figure 1 Stress-strain curves of three NR films obtained by (---) intex costing and (---) toluene solution costing.

Measurement

The test pieces for the green strength measurement were stamped out with a type C dumbbell die according to ASTM D 412-87. The measurement was carried out with an tensile tester (Instron model 5569, Instron Co., PA) at room temperature. The testing crosshead speed of 500 mm/min was applied with a load cell of 100 N. The thickness of the sample was 0.5-1.5 mm. The measurement was repeated three to four times for each sample.

The molecular weight of the NR samples was determined by size exclusion chromatography (Jasco-Borwin, Tokyo, Japan) with two columns in series packed with a polystyrene-divinylbenzene copolymer gel having exclusion limits of 2.0×10^7 and 4×10^5 . The nubber solution was prepared by the dissolution of rubber into tetrahydrofuran (LabScan, high-performance liquid chromatography grade) at a concentration of 0.05% (w/v) and filtered through a Millipore prefilter and 0.45-µm membrane filter (All-tech). Tetrahydrofuran was used as an cluent at a flow rate of 0.5 mL/min at 35 ± 0.01°C with the refractive index as a detector. Standard IRs (Polymer Standard Service GmbH, Germany) were used for the calibration of the molecular weight.

RESULTS AND DISCUSSION

Figure 1 shows the stress-strain curves of NR films prepared by lateo-casting and solution-casting methods. Three to four test pieces were measured and plotted separately. The latex-casting film, represented by solid lines, showed higher modulus than the solution-casting film, represented by dotted lines, whereas the green strength and stress at break values of the two samples were almost the same (ca. 6.5 MPa). This value is in the range of green strength values reported previously. The stress of the latex-casting film increased significantly at about 300% strain, whereas the stress of the solution-cast-

ing film increased significantly at about 400% strain. As reported previously, 15 the increase in the stress can be attributed to the crystallization of rubber choles on straining. Thus, the lower stress—strain behavior in the solution-casting film compared with that of the latex-casting film can be attributed to the lower crystallizability. It is reasonable to assume that the crystallization on stretching is related to the number of branch points per chain and chain entanglement. This assumption suggests that the branch points and/or chain entanglements of the NR film prepared by latex casting are higher than those of the NR film prepared by solution casting.

the NR film prepared by solution casting.

In a previous work, Kawahara et al. 16 studied the relationship between the green strength and gel content of rubber from NR latex during preservation in an ammonia solution. They found that the green strength of NR increased with the preservation time increasing, and this was due to the increase in the gel content. However, it was revealed that the deproteinization of the NR latest resulted in the disappearance of the gel fraction without a significant change in the arcon strength.16 This finding clearly indicates that the gel content has no direct relationship with the green strength. We presumed that the long-chain branching in NR plays an important role in the high green strength in comparison with synthatic R. Furthermore, we found that the solutioncasting film of DPNR, which had no gel fraction. also showed a lower modulus than the DPNR latexcasting film, acting similarly to the NR film. The details of this work will be reported and discussed in the future.

In Figure 2, the stress-strain behavior of the NR film prepared by the hot-press method is compared with that of the NR films prepared by latex-casting and solution-casting methods; it is represented as the mean of three samples for each. Here, the hot-pressed films from latex casting and rubber gum

Figure 2 Stress-strain curves of NR sheets prepared by (a) latex casting, (b) toluene solution casting, (c) hot pressing of latex-casting film at 100°C for 15 min, and (d) hot pressing of rubber gum at 100°C for 15 min.

Journal of Applied Palymer Science DOI 10.1002/app

TABLE I

Molecular Weights of the Rubber Samples Obtained from Latex Casting, Toluene
Solution Casting, and Hot Pressing at 100°C for 15 min

Sample	Method	Weighteverage molecular weight (× 10°)	Number-average molecular weight (x 10 ⁵)	Polydispensity
NR	Latex casting	1.49	1.47	10.1
NR	Solution casting	1.42	1.27	11.2
NR	Hot pressing	1.53	1.43	10.7

were prepared by the pressing of subber in the mold, which was sandwiched between two clides at 100°C for 15 min under high pressure. In the case of the NR present gum, the green strength was very low, and the strain at break was also very low versus that of the hot-pressed illm from latex casting, This can be explained by the high elasticity of NR gum resulting in difficulty in preparing a homogeneous film, although this method has usually been used to prepare films for tensile testing. It is remarkable that the hot-press latex film showed very low green strength in comparison with the one without the hot-press treatment. This indicates that the stress-strain curve changes dramatically after the hot-press treatment of an NR latex film. Under the assumption that the branch points and entanglements affect the stress-strain behavior, the hot-press treatment of an NR latex film is presumed to bring about a structural change in the nubber chains by the treatment at a high temperature and a high pressure.

The molecular weights of the rubber samples prepared by various casting methods were aimost the same, as shown in Table I. This indicates that the lower stress-strain curve of the NR film from toluene solution casting was not caused by the degradation of the rubber. The possibility of degradation after the hot-press treatment is also neglected because the samples from the intex-casting film showed almost the same molecular weights before and after the hot-press treatment. In previous works, 20,21 the role of the molecular weight in the

green strength of NR was studied. The results dearly showed a decrease in the green strength when the molecular weight of NR decreased by mastication.20 In fact, not only the molecular weight but also the branch points were decomposed by mastication. Therefore, it is natural to consider the effect of the branch structure. It is known that NR from small subber particles has a higher molecular weight than NR from large rubber particle.22-24 However, NR from small rubber particles has shown very low green strength compared with that of NR from large rubber particles. This behavior can be explained by the linear structure characteristics of NR from small rubber particles. Therefore, it can be deduced that the long-chain branching in NR is a dominant factor, affecting the high green strength of

The effects of the temperature and time of the hotpress treatment were investigated to check the influence on the green strength and strain at break. The
NR latex-cast film, which is comparable to NR gum,
was used for this experiment to eliminate the effect
of the inhomogeneity of the film. To neglect the degradation of rubber at a high temperature during the
hot-press treatment, an antioxidant, Wingstay-L, was
added to the NR latex before costing in the latex
form and before coagulation of the NR gum. Tables
II and III show the green strength and strain at
break of the NR latex-casting film and NR gum after
hot-press treatment, respectively, at various conditions. The green strength and strain at break of the
NR latex-casting film and NR gum showed no

TABLE II

Green Strength and Strain at Break of the NR Latex Cashing Film After Hot-Press Treatments at Various Temperatures and Times

Temperature (*C)	Time (inin)	NR latex casting film			
		Without antioxident		With antioxidant	
		Green strength (MPa)	Strain at break (%)	Creen strength (MPs)	Strain at break (%)
100	10	1.36 ± 0.32	594 ± 64	1.08 ± 0.10	651 ± 46
100	20	1.50 ± 0.32	623 ± 48	1.07 ± 0.09	666 ± 41
100	30	1.11 ± 0.38	617 ± 75	0.89 ± 0.13	633 ± 37
100	40	1.41 ± 0.26	690 ± 53	1.08 ± 0.15	695 ± 27
120	10	1.57 ± 0.95	674 ± 22	1.02 ± 0.26	586 ± 61
140	10	1.15 ± 0.21	596 ± 68	0.85 ± 0.29	653 ± 62
160	10	0.71 ± 0.07	567 ± 67	0.48 ± 0.07	574 de 55

TABLE III
Green Strength and Strain at Break of the NR Gum After Hot-Press Treatments at Various Temperatures and Times

Temperature (*C)		NR gran			
	Time (win)	Problem tundily!		With anthodiant	
		Green strength (MPa)	Strain at break (%)	Creen strength (MPa)	Strain at break (%)
100 100 100 100 100 120 140 160	10 20 30 40 10 10	0.56 ± 0.10 0.61 ± 0.06 0.57 ± 0.03 0.54 ± 0.07 0.49 ± 0.03 0.55 ± 0.03 0.31 ± 0.06	590 ± 78 636 ± 31 565 ± 53 615 ± 39 652 ± 56 686 ± 42 491 ± 117	0.63 ± 0.07 0.55 ± 0.04 0.50 ± 0.04 0.51 ± 0.10 0.44 ± 0.08 0.35 ± 0.03	616 ± 60 625 ± 64 568 ± 49 612 ± 94 647 ± 78 593 ± 65 436 ± 115

significant changes after an increase in the time of the hot-press treatment at 100°C. This means that the decrease in the green strength after hot pressing is not related to the time of hot pressing in the range of 10-40 min. The increase in the temperature of the hot-press treatment resulted in a decrease in the green strength of the NR latex-casting film and NR gum. This was due to the fact that the high temperature caused oxidative degradation in NR. The addition of an antioxidant did not increase the green strength of the hot-pressed films prepared from the NR latex-cepting film and NR gum, as shown in Tables II and III, respectively. Similar green strengths observed for the hot-pressed films with and without an anticyddant indicated that the oxidative degradation was not the main cause of the significant decrease in the green strength of the NR latex film after heat treatment. Furthermore, this assumption was confirmed by the decrease in the green strength without a change in the molecular weight of the NR latex-casting film after heat treatment at a low temperature (i.e., 100°C). We presumed that the very low grown strength of the hotpressed film was derived from the decrease in the crystallizability and/or entanglement because of the decrease in the branch points after hear treatment.

Figure 3 Stress-strain curves of IR films prepared by (a) latex casting, (b) toluene solution costing, and (c) hor pressing of latex-casting film at 100°C for 15 min.

This assumption can be confirmed by the measurement of the stress-strain behavior for IR films prepared similarly to NR. As shown in Figure 3, the casing film from IR latex before and after the hotpress treatment showed very low stress-strain behavior, which was almost the same as that observed for the solution-casting film. This clearly indicates that the change in the stress-strain behavior of NR by the casting method and heat treatment is a phenomenon characteristic of NR.

Let us consider the difference in the structural purity of rubber chains; NR contains 100% cis-1.4-Isoprene units, whereas Kraton IR-309 has been estimated to contain about 92% cis-1,4-isoprene units. As shown in Figure 4, "H-NMR spectra of Kreton IR-309 exhibited small signals resonating at 1.60, 1.62, and 4.75 ppm, which were assigned to -CHs of trans-1,4-units, -CHs of 3.4-units, and -CH2 of 3.4 units, respectively. The irregularity in the structure of Kraton IR-309 contributed to the lower crystallizability in comparison with NR. Accordingly, the fact that there was no difference in the stress-strain behavior in the latex-casting film of IR versus the solution-casting film and hot-pressed film can be attributed to the absence of crystallizability and low number of entanglements due to the lack of long-chain branching. If we consider

Figure 4 ¹H-NMR spectra of synthetic Kraton IR 309 (TMS = tetramethylsilane).

lournal of Applied Polymer Science DOI 10.1002/app

polymerization with an anionic initiator, Kraton IR-309 can be considered to be composed of almost linear rubber molecules, which also contribute to the very low green strength. This assumption is supported by the very low green strength of transesterified DPNR, which is comparable to that of IR-17 Transesterified DPNR has been confirmed to be composed of linear molecules, in which almost all branch points are decomposed by a treatment with protease followed by a treatment with sodium methoxide. Both reatments result in the decomposition of branch points composed of proteins, lipids, and phospholipids.

It has been reported that the a-terminal group of a rubber chain in fresh NR latex consists of monophosphate and diphosphate groups linked with phospholipids. 13,74 The association or micelle formation of phospholipids is presumed to form longchain branching, as illustrated in Figure 5. Here, the branch points are postulated to be derived from the micelle formation of phospholipids attached to the a terminal group of a rubber chain. It is well known that phospholipids form a mitelle in aqueous media. Rubber particles in latex have been reported to be covered by a bilayer composed of lipids in the Inside and proteins on the outside.25 The polar terminal groups in subber molecules are assumed to be on the surface of rubber particles in latex, as illustrated in Figure 6. The a-terminal groups may associate together on the surface of rubber particles to form branch points. The branched structure of rubber molecules in latex can be held even after casting and drying to form a film. On the other hand, the branch points composed of phospholipids can form a reversed micelle in a toluene solution, which is

Figure 5 Presumed structure of the branch points of rubber chains in the latex.

Journal of Applied Polymer Science DOI 10,1002/app

Figure 6 Presumed location of both terminal groups in the rubber particles.

expected to be less effective for the formation of branch points because of the concentration of rubber in the toluene solution. It is reasonable to think that the rubber film obtained by casting from a toluene solution shows lower stress-strain properties because of the reduction of long-chain branching. The high temperature and high pressure in the hotpressing process will result in a conformational change in the long-chain fatty acid chains in phospholipids, leading to less effective formation between associated phospholipids at the branch points. This will result in a decrease in the number of long-chain branch points. Moreover, in this experiment, the rubber after hot pressing was cooled. immediately under pressure. Therefore, the conformational change in the long-chain fatty acid was fixed and could not be rearranged to recover the original branch points. This behavior resulted in a decrease in the green strength of the nubber film from latex casting after hot pressing.

CONCLUSIONS

The latex-casting film of NR showed the highest stress-strain behavior in comparison with the films produced by solution casting and by hot pressing, whereas synthetic IR showed similar stress-strain behavior independent of the preparation process of the testing films. This clearly indicates that the change in the stress-strain behavior with the casting method and heat treatment is a phenomenon characteristic of NR. It is remarkable that a mild heat treatment of the NR latex film at 100°C caused very low green strength without a change in the molecular

weight. These findings support the assumption that the branch points composed of mainly phospholipids decrease with the heat treatment of a latex-casting film and with casting from a toluone solution, and this will result in a decrease in the entanglement of rubber chains and crystallizability on stretching and contribute to the lower stress-strain behavior.

References

- Gřechanovskii, V. A.; Ivanova, L. S.; Poddubnyi, I. Y. Rubbar Chem Technol 1973, 46, 1234.
- 2. Blyler, L. L. Rubber Chem Technol 1969, 42, 823.
- Greckenovskii, V. A.: Foddubnyi, I. Y.: Ivanove, L. S. Rubber Chem Technol 1974, 47, 342.
- 4. Homed, G. R. Rubber Chem Technol 1981, 54, 576.
- 5. Geni, A. N. Trans Inst Rubber Ind 1984, 30, 139.
- Eng, A. H.; Ejirl, S.; Kawahare, S.; Tanaka, Y. J Polym Sci Polym Symp 1994, 33, 3.
- Nishiyama, N., Kawahara, S.; Rakubo, T.; Eng. A. H.; Tanaka, Y. Rubber Chem Technol 1996, 59, 608.
- Kawahara, S.; Nishiyama, N.; Kakaho, T.; Eng. A. H.; Tanaka, Y. Rubber Chem Technol 1996, 69, 600.
- Kakubo, T.: Matanum, A.; Kawahara, S.; Tanaka, Y. Rubber Chem Technol 1998, 71, 70.

- 10. Tanaka, Y.; Tadokoro, H. Polym J 1970, 1, 656.
- Kawahara, S.; Kakubo, T.; Nishiyama, N.; Tanaka, Y.; Isono,
 Y.; Sakdapipanich, J. T. J. Appl Polym Sci 2000, 78, 1510.
- Sakdapipenich, J. T.; Suksujarotpom, S.; Tanaka, Y. J. Rubber Rev. Phys. J. 18th.
- Tarachiwin, C.; Sakdapipanich, J.; Ute, K.; Eltayama, T.; Bamba, T.; Fuhusaki, E.; Kobayashi, A.; Taraka, Y. Biometro-molecules 2005, 6, 1851.
- Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaha, Y. Biomacromolecules 2005, 6, 1838.
- Tanaka, Y.; Kawahara, S.; Tangpaleles, J. Kautsch. Guzund Kumstst 1997, 50, 6.
- Kawahora, S.; Isono, Y.; Sakdapipanich, J. T.; Tenaka, Y.; Eng. A. H. Rubber Chem Technol 2002, 73, 739.
- Kawaham, S.; Isono, Y.; Kakubo, T.; Taneka, Y.; Eng. A. H., Rubber Chem Technol 2000, 73, 39.
- Kawaham, S.; Isono, Y.; Sakdapipanich, J. T.; Toneka, Y.; Eng, A. H. Rubber Chem Technol 2007, 75, 739.
- 19. Mark, J. P. Polym Eng Sci 1979, 19, 254.
- 20. Forbes, W. G.; MecLeod, L. A. Trens Htl 1958, SO, 154.
- 21. Harned, C. R. Rubber Chem Technol 1981, 54, 576.
- 27 Subramaniam, A. RRIM Technol Buil 1980, 4, 20.
- Yesng, H. Y.; Esab, Y.; Samsidam, H. J. Nat Rubber Res 1995,
 10, 108.
- Tarachiwin, L.; Sakdapipanich, J.; Tanaka, Y. Rubber Chem Technol 2005, 78, 694.
- 25. Wren, W. G. Rubber Chem Technol 1942, 15, 107.

含成ゴム加工技術全書 ●

イソプレンゴム

小室轻治 上田明男 和久哲夫 和田克郎 害では除外する。

表 2-1 イソプレンの結合様式

表 2-2 イソプレンゴムのミクロ標準

着 含 様 式		天然ゴム	合成イソプレンゴム	
			チーグラー 独城	リチウム
	シス-1,4 トランス-1,4	98<	97	92
ミクロ構造			_	2
(%)	. 1,2 結合			····· *
A	3,4 結合	2>	. 3	6

レンでおり、 といるので会 Nipel IR2200 ハあすべての よくとも部分 されます。

2200の性質

4 結合97%以上 2% .2%

かれかべある が存むい ジェクションや

*4

Bが得られる

Jたむし、尾が

カ独彦 (グリー

もか、 別凝強さ

-100%で配金し ブレンドではほ

EMCELE)1777大代美 学·的 EMCELES)1771点化版 学·的 E MC(ALS)1871 代表 学EM E MEZ(ALS)1871 代表 学M E MEZ(ALS)1871代表 学M E MEZ(ALS)1874代表 学协

赤 黛 蹇 斋 昭和28年 横浜ゴム物入社 昭和34年 日本ゼオン個人社 在 日本ゼオン網 ゴム開発センター主管 朔弟 昭和37年 日本ゼオン婦人社 磈 在 日本ゼオン跳 ゴム開発センター主任研究員 靠货亩 昭和38年 日本ゼオン構入社 現 在 日本ゼオン(株) ゴム開発センター主任研究員 和 友, 習 美 昭和42年 日本ゼオン例入社 現 在 日本ゼオン帆 ゴム開発センター研究員

合成ゴム加工技術全書 全12巻

①イソプレンゴム,

定価 2,500円

昭和50年8月10日 初版発行

小上和和 室田田久 経明党哲 治男郎夫

路行者 佐 男 A. 木

印刷者 1 Ē Щ 雄

発行所 株式会社 大 成 杜 東京都中央区京標2の9 石橋ピル 電話 東京 (03) 563—3366 (代) 报替承京 19947 發

Translation of relevant parts of Document 2

(Cover page)

Treatise of technologies for processing synthetic rubbers, Vol.1

Isoprene Rubbers

Written by Keiji KOMURO, Akio UEDA, Yoshio WADA, and Tetsuo WAKU

Table 2-1 Bonding modes of isoprene

Table 2-2 Micro structures of isoprene rubbers

Bonding mode		Natural rubber	Synthetic isoprene rubber	
			Ziegler	Lithium
			catalyst	catalyst
Minus	cis-1,4-unit	98<	97	92
Micro structure	trans-1,4-unit	-	507	2
(%)	1,2-unit		***	
	1,3-unit	2>	3	6

(Copyright page)

Treatise of technologies for processing synthetic rubbers 12 Volumes total

Volume 1, Isoprene Rubbers

Date of first printing: August 10, 1975

Authors: Keiji KOMURO, Akio UEDA, Yoshio WADA, and Tetsuo WAKU

Published by KABUSHIKI KAISHA TAISEISHA