Topological Data Analysis and Neuroscience

Chapter 2: Simplicial Complex

Instructor: Alex McCleary

Section 1: Simplicial Complex

A (Geometric) Simplex

- ▶ Points $\{p_0, p_1, \dots, p_d\} \subset R^N$ are linearly independent
 - if vectors $v_i = p_i p_0$, $i \in [0, d]$, are linearly independent
- Geometric p-simplex $\sigma = \{v_0, v_1, \dots, v_p\}$
 - ▶ Convex combination of p+1 linearly-independent points in R^N
 - $\sigma = \{ \sum_{i=0}^{p} a_i v_i \mid a_i \ge 0, \sum a_i = 1 \}$

Examples

A (Geometric) Simplex

- ▶ Points $\{p_0, p_1, \dots, p_d\} \subset R^N$ are linearly independent
 - if vectors $v_i = p_i p_0$, $i \in [0, d]$, are linearly independent
- Geometric p-simplex $\sigma = \{v_0, v_1, \dots, v_p\}$
 - ▶ Convex combination of p+1 linearly-independent points in \mathbb{R}^N
 - $\sigma = \{ \sum_{i=0}^{p} a_i v_i \mid a_i \ge 0, \sum a_i = 1 \}$
- Simplex τ formed by a subset of $\{v_0, v_1, \dots, v_p\}$ is called a face of σ , denoted by $\tau \subseteq \sigma$
 - τ is a proper face of σ if $\dim(\tau) = \dim(\sigma) 1$
 - $bd(\sigma) = collection of all proper faces of \sigma$
- For a d-simplex σ
 - $\sigma \cong \mathbb{R}^{d+1}, \ bd(\sigma) \cong \mathbb{S}^d, \ int(\sigma) \cong \mathbb{R}^d$

Simplicial complex

- \blacktriangleright A geometric simplicial complex K
 - A collection of simplices such that
 - ▶ If $\sigma \in K$, then any fact $\tau \subseteq \sigma$ is also in K
 - ▶ If $\sigma \cap \sigma' \neq \emptyset$, then $\sigma \cap \sigma'$ is a face of both simplices.
 - \rightarrow dim(K) = highest dim of any simplex in K

Simplicial complex

- \blacktriangleright A geometric simplicial complex K
 - A collection of simplices such that
 - ▶ If $\sigma \in K$, then any fact $\tau \subseteq \sigma$ is also in K
 - If $\sigma \cap \sigma' \neq \emptyset$, then $\sigma \cap \sigma'$ is a face of both simplices.
 - \rightarrow dim(K) = highest dim of any simplex in K
- Subcomplex
 - $L \subseteq K$ and L is a complex
- ▶ Underlying space |K| of K
 - is the pointwise union of all points in all simplices of K,
 - i.e, $|K| = \bigcup_{\sigma \in K} \{x \mid x \in \sigma\}$

Abstract simplicial complex

- An (abstract) p-simplex $\sigma = \{v_0, v_1, \dots, v_p\}$
 - \triangleright a set of cardinality p+1
 - A subset $\tau \subseteq \sigma$ is a face of σ
- ▶ An (abstract) simplicial complex *K*
 - A collection of simplices such that
 - ▶ If $\sigma \in K$, then any fact $\tau \subseteq \sigma$ is also in K
- \blacktriangleright Geometric realization of an abstract simplicial complex S
 - is a geometric simplicial complex K such that there is an isomorphism between Vert(K) and Vert(S) inducing an isomorphism between all simplices in K and in S

Geometric realization

▶ Geometric realization of S in the standard simplex $\Delta \subset R^N$ with N = |Vert(S)|

▶ Theorem:

- Any abstract simplicial complex S of dimension d has a geometric realization $K \subset R^{2d+1}$
- Sketch of proof
- Underlying space |S| of an abstract simplicial complex
 - \blacktriangleright is the underlying space of its geometric realization into the standard simplex Δ

Star and links

- Given a simplex $\tau \in K$
 - Star: $St(\tau) = \{ \sigma \in K \mid \tau \subset \sigma \}$
 - ▶ Closed star: $clSt(\tau) = \bigcup_{\sigma \in St(\tau)} \{ \sigma' \mid \sigma' \subset \sigma \}$
- Intuition and examples

Simplicial map

- Intuitively, analogous to continuous maps between topological spaces
- ▶ Given simplicial complexes K and L
 - ▶ a function $f: K \to L$ is a simplicial map if
 - $f(Vert(K)) \subseteq Vert(L)$
 - For any $\sigma = \{p_0, \dots, p_d\}$, $f(\sigma) = \{f(p_0), \dots, f(p_d)\}$ spans a simplex in L
- ▶ A function $f: K \to L$ is an isomorphism
 - if f is a simplicial map and it is bijective

Simplicial map

- A simplicial map $f: K \to L$ induces a natural continuous function $f': |K| \to |L|$
 - s.t $f'(x) = \sum_{i \in [0,d]} a_i f(p_i)$ for $x = \sum_{i \in [0,d]} a_i p_i \in \sigma = \{p_0, ..., p_d\}$

▶ Theorem:

An isomorphism $f: K \to L$ induces a homeomorphism $f': |K| \to |L|$

Triangulation of a manifold

- Given a manifold (with or without boundary) M, a simplicial complex K is a triangulation of M
 - if the underlying space |K| of K is homeomorphic to M

Triangulation of a manifold

- Given a manifold (with or without boundary) M, a simplicial complex K is a triangulation of M
 - if the underlying space |K| of K is homeomorphic to M
- If K is a triangulation of d-manifold M
 - \blacktriangleright then the dimension of K is also d
 - for any vertex $v \in Vert(K)$, $St(v) \cong B_d^o \cong R^d$
- Examples of 2-manifolds / 2-complex

Section 2: Common Complexes

Delaunay Complex

- ▶ Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset R^d$
- ▶ Delaunay complex Del(P)
 - A simplex $\sigma = \left[p_{i_0}, p_{i_1}, \dots, p_{i_k}\right]$ is in Del(P) if and only if
 - There exists a ball B whose boundary contains vertices of σ , and that the interior of B contains no other point from P.

Delaunay Complex

- Many beautiful properties
 - Connection to Voronoi diagram
- Foundation for surface reconstruction and meshing in 3D
 - [Dey, Curve and Surface Reconstruction, 2006],
 - [Cheng, Dey and Shewchuk, Delaunay Mesh Generation, 2012]
- However,
 - Computationally very expensive in high dimensions

Čech Complex

- Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\{B(p_i, r)\}_{i \in [1, n]}$

i.e,
$$\sigma = \{p_{i_0}, \dots, p_{i_s}\} \in C^{r}(P) \text{ iff } \bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$$

▶ The definition can be extended to a finite sample *P* of a metric space.

Nerves

- Given a finite set F, its nerve complex Nrv(F) is
 - defined as all non-empty subset of F with non-empty common intersection
 - i.e, $Nrv(F) = \{ X \subseteq F \mid \bigcap_{\sigma \in X} \sigma \neq \emptyset \}$
- ▶ Hence Čech complex $C^r(P)$
 - is the nerve of $F = \{B(p,r) \mid p \in P \}$
 - i.e, $C^r(P) = Nrv(F)$

Nerve Lemma

Nerve Lemma:

Let F be a finite set of closed, convex set in \mathbb{R}^d . Then $Nrv(F) \simeq |F|$, that is, Nrv(F) is homotopy equivalent to |F|.

Corollary:

 $C^r(P) \simeq \bigcup_{p \in P} B(p,r)$, i.e, $C^r(P)$ is homotopy equivalent to the union of r-balls around points in P

Nerve Lemma

Nerve Lemma:

Let F be a finite set of closed, convex set in \mathbb{R}^d . Then $Nrv(F) \simeq |F|$, that is, Nrv(F) is homotopy equivalent to |F|.

Corollary:

 $C^r(P) \simeq \bigcup_{p \in P} B(p,r)$, i.e, $C^r(P)$ is homotopy equivalent to the union of r-balls around points in P

Given a set of points P

- approximating a hidden domain M
- $U^r(P) = \bigcup_{p \in P} B(p, r)$ approximates M
- $C^r(P)$ approximates $U^r(P)$

More on Čech

- Given a set of points $P \subset R^d$
 - Γ $C^r(P)$ could have simplex of dimension larger than d
 - often only d-skeleton of $C^r(P)$ is needed
 - \blacktriangleright as $U^r(P)$ has trivial topology beyond dimension d
- Čech and Delaunay
 - ▶ Delaunay complex: $Del(P) = Nrv(\{Vor(p) \mid p \in P\})$
 - ▶ α -complex: $Del^r(P) = Nrv(Vor(p) \cap B(p,r) \mid p \in P)$
 - $\triangleright Del^{r(P)} \subseteq C^r(P)$
 - $C^r(P)$ typically has much larger size

Rips Complex

- Given a set of points $P = \{ p_1, p_2, ..., p_n \} \subset \mathbb{R}^d$
- Given a real value r > 0, the Vietoris-Rips (Rips) complex $R^r(P)$ is:
 - $\{ (p_{i_0}, p_{i_1}, ..., p_{i_k}) \mid B_r(p_{i_l}) \cap B_r(p_{i_j}) \neq \emptyset, \forall l, j \in [0, k] \}.$

- Rips complex shares the same edge set as the Cech complex w.r.t same r.
- It is the clique complex induced by its edge set.

Rips and Čech Complexes

- Relation in general metric spaces
 - $C^r(P) \subseteq R^r(P) \subseteq C^{2r}(P)$
 - Bounds better in Euclidean space
- Simple to compute
- Able to capture geometry and topology
 - One of the most popular choices for topology inference in recent years
- However:
 - Huge sizes
 - Computation also costly

Witness Complexes

- A simplex $\sigma = \{q_0, ..., q_k\}$ is weakly witnessed by a point x if $d(q_i, x) \le d(q, x)$ for any $i \in [0, k]$ and $q \in Q \setminus \{q_0, ..., q_k\}$.
 - ▶ is strongly witnessed if in addition $d(q_i, x) = d(q_j, x), \forall i, j \in [0, k]$
- ▶ Given a set of points $P = \{p_1, p_2, ..., p_n\} \subset R^d$ and a subset $Q \subseteq P$
- The witness complex W(Q, P) is the collection of simplices with vertices from Q whose all subsimplices are weakly witnessed by a point in P.
 - ▶ [de Silva and Carlsson, 2004] [de Silva 2003]
 - ▶ Can be defined for a general metric space
 - ▶ P does not have to be a finite subset of points

Intuition

 \blacktriangleright L: landmarks from P, a way to subsample.

Witness Complexes

- Greatly reduce size of complex
 - Similar to Delaunay triangulation, remove redundancy
- Relation to Delaunay complex
 - $W(Q,P) \subseteq Del Q$ if $Q \subseteq P \subset R^d$
 - $W(Q, R^d) = Del Q$
 - $W(Q,M) = Del|_M Q$ if $M \subseteq R^d$ is a smooth 1- C
 - ► [Attali et al, 2007]

- However,
 - Does not capture full topology easily for high-dimensional manifolds

Subsampling

Subsampling -cont

Subsampling -cont

Subsampling - cont

- [Dey, Fan, Wang, SoCG 2013]
- ▶ *P*: finite set of points
- \triangleright (P,d): metric space
- $\blacktriangleright G(P)$: a graph

- $\triangleright Q \subset P$: a subset
- ▶ $\pi(p)$: the closest point of $p \in P$ in Q

- ▶ Graph induced complex G(P, Q, d): $\{q_0, ..., q_k\} \subseteq Q$
 - if and only if there is a (k+1)-clique in G(P) with vertices p_0, \ldots, p_k such that $\pi(p_i) = q_i$, for any $i \in [0, k]$.

- Graph induced complex depends on the metric d:
 - Euclidean metric
 - lacktriangle Graph based distance d_G

- Small size, but with homology inference guarantees
- In particular:
 - $\vdash H_1$ inference from a lean sample

- Small size, but with homology inference guarantees
- In particular:
 - $ightharpoonup H_1$ inference from a lean sample
 - Surface reconstruction in R^3

lacktriangleright Topological inference for compact sets in \mathbb{R}^d using persistence

