Unification

Definition 1. Let t and u be any terms. A substitution $\sigma = [s_1/X_1, \ldots, s_m/X_m]$ is a *unifier* for t and u if

$$t\sigma = u\sigma$$

Definition 2. If σ and τ are substitutions then their *composition* $\sigma \circ \tau$ is the substitution given by

$$t(\sigma \circ \tau) = (t\sigma)\tau$$

for all terms t.

If
$$\sigma = [s_1/X_1, \dots, s_m/X_m]$$
 and $\tau = [r_1/Y_1, \dots, r_k/Y_k]$ then
$$\sigma \circ \tau = [s_1\tau/X_1, \dots, s_m\tau/X_m, r_1/Y_1, \dots, r_k/Y_k]$$

E.g., if
$$\sigma = [f(U, V)/X, g(V)/Y]$$
 and $\tau = [h(Z)/U, b/V]$ then
$$\sigma \circ \tau = [f(h(Z), b)/X, g(b)/Y, h(Z)/U, b/V]$$

Definition 3. If σ_1 and σ_2 are unifiers for t and u then σ_1 is more general than σ_2 if there exists a substitution τ such that

$$\sigma_2 = \sigma_1 \circ \tau$$

A substitution σ is a most general unifier (MGU) for the terms t and u if it is a unifier and it is more general than any other unifier for t and u, i.e.

- $t\sigma = u\sigma$, and
- whenever $t\sigma' = u\sigma'$ then $\sigma' = \sigma \circ \tau$ for some substitution τ .

Unification Algorithm

The algorithm takes two terms t and u and either succeeds, if they can be unified, and returns a MGU; or fails otherwise.

- If t = X and u = Y then succeed with $\sigma = [Y/X]$.
- If t = X and $u = g(u_1, ..., u_m)$ then succeed with $\sigma = [u/X]$ if X does not occur in u and fail otherwise.
- If $t = f(t_1, ..., t_n)$ and u = Y then succeed with $\sigma = [t/Y]$ if Y does not occur in t and fail otherwise.
- If $t = f(t_1, \ldots, t_n)$ and $u = g(u_1, \ldots, u_m)$ where $f \neq g$ then fail.
- If $t = f(t_1, \ldots, t_n)$ and $u = f(u_1, \ldots, u_n)$ then use the algorithm recursively to unify the lists $[t_1, \ldots, t_n]$ and $[u_1, \ldots, u_n]$.

If l and k are lists of terms then the unification of l and k proceeds as follows.

- If l = [] and k = [] then succeed with the identity substitution.
- If l = [] and k = (u : k') then fail.
- If l = (t : l') and k = [] then fail.
- If l = (t : l') and k = (u : k') then:
 - 1. apply unification to t and u, if that succeeds yielding σ_1 then
 - 2. apply unification recursively to the lists $l'\sigma_1$ and $k'\sigma_1$, if that also succeeds yielding σ_2 then
 - 3. succeed with $\sigma = \sigma_1 \circ \sigma_2$; otherwise fail.

Theorem 4. For any terms t and u,

- if t and u have a unifier then the algorithm succeeds and returns a MGU for t and u,
- if no unifier exists then the algorithm fails after finitely many steps.

Proof. Omitted.

Example 5.

$$h(f(U,V), U, g(V)) \stackrel{?}{=} h(X, g(Z), Z)$$

1.
$$f(U,V) \stackrel{?}{=} X$$

$$\sigma_1 = [f(U, V)/X]$$

2.
$$U \stackrel{?}{=} g(Z)$$

 $\sigma_2 = [g(Z)/U]$

3.
$$g(V) \stackrel{?}{=} Z$$

$$\sigma_3 = [g(V)/Z]$$

$$\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3 = [f(g(g(V)), V)/X, g(g(V))/U, g(V)/Z]$$

Example 6.

$$h(f(U,V), g(Y), X) \stackrel{?}{=} h(X, g(Z), Z)$$

1.
$$f(U, V) \stackrel{?}{=} X$$

 $\sigma_1 = [f(U, V)/X]$

$$2. \quad g(Y) \stackrel{?}{=} g(Z)$$

3.
$$Y \stackrel{?}{=} Z$$

$$\sigma_3 = [Y/Z]$$

$$\sigma_2 = \sigma_3 = [Y/Z]$$

4.
$$X(\sigma_1 \circ \sigma_2) = f(U, V), \ Z(\sigma_1 \circ \sigma_2) = Y$$

$$f(U, V) \stackrel{?}{=} Y$$

$$\sigma_4 = [f(U, V)/Y]$$

$$\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_4 = [f(U,V)/X, f(U,V)/Z, f(U,V)/Y]$$

Example 7.

$$f(f(U,V), W) \stackrel{?}{=} f(W, f(g(V), x))$$
1. $f(U,V) \stackrel{?}{=} W$

$$\sigma_{1} = [f(U,V)/W]$$
2. $W\sigma_{1} = f(U,V)$

$$f(U,V) \stackrel{?}{=} f(g(V), x)$$
3. $U \stackrel{?}{=} g(V)$

$$\sigma_{3} = [g(V)/U]$$
4. $V \stackrel{?}{=} x$

$$\sigma_{4} = [x/V]$$

$$\sigma = \sigma_1 \circ \sigma_2 = [f(g(x), x)/W, g(x)/U, x/V]$$

 $\sigma_2 = \sigma_3 \circ \sigma_4 = [g(x)/U, x/V]$

Example 8.

$$f(X,X) \stackrel{?}{=} f(g(Y),Y)$$

1.
$$X \stackrel{?}{=} g(Y)$$

$$\sigma_1 = [g(Y)/X]$$

$$2. \quad X\sigma_1 = g(Y)$$

$$g(Y) \stackrel{?}{=} Y$$

Fail (occurs check)

Example 9.

$$h(f(U,V),U,X) \stackrel{?}{=} h(X,g(Z),U)$$

- 1. $f(U, V) \stackrel{?}{=} X$ $\sigma_1 = [f(U, V)/X]$
- 2. $U \stackrel{?}{=} g(Z)$ $\sigma_2 = [g(Z)/U]$
- 3. $X(\sigma_1 \circ \sigma_2) = f(g(Z), V), \ U(\sigma_1 \circ \sigma_2) = g(Z)$ $f(g(Z), V) \stackrel{?}{=} g(Z)$

Fail