

LBIR1250 : Rapport de laboratoire nº 2

Détermination des paramètres cinétiques et inhibition par le vanadate

1 Introduction

Ce laboratoire a pour but de déterminer experimentalement les valeurs des paramètres cinétiques K_M et V_{max} de la phosphatase alcaline CIP. Il faudra ensuite mesurer et quantifier l'inhibition de l'activité phosphatique sous l'action d'un inhibiteur : le vanadate. La dernière étape abordée sera de déterminer le type d'inhibition entrant en jeu, sur base du mécanisme réactionnel observé.

2 Mode Opératoire

Les protocoles de la séance de laboratoire sont présent sur les figures 1 et 2.

		Blanc							solution avec réaction															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
MR 2X [μΙ]	500											→	500											-
Eau [μΙ]	465	→	460	→	440	→	380	→	280	\rightarrow	80		465	\rightarrow	460	\rightarrow	440		380	\rightarrow	280	\rightarrow	80	\rightarrow
pNPP 5mM [μl]	15		20	-	40		100		200	→	400		15		20		40		100		200		400	-
NaOH 1M [μl]	1000												0											-
5 min à 37°C																								
Temps [min,sec]	0,00	0,30	1,00	1,30	2,00	2,30	3,00	3,30	4,00	4,30	5,00	5,30	6,00	6,30	7,00	7,30	8,00	8,30	9,00	9,30	10,00	10,30	11,00	11,30
CIP 1000X [µI]	20											→	20											
Agitez																								
Temps [min,sec]	9,00	9,30	10,00	10,30	11,00	11,30	12,00	12,30	13,00	13,30	14,00	14,30	15,00	15,30	16,00	16,30	17,00	17,30	18,00	18,30	19,00	19,30	20,00	20,30
NaOH 1M [μl]	0												1000											-
Transfert de 200 μl	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
Absorbance*													0,124	0,164	0,205	0,214	0,282	0,317	0,447	0,427	0,523	0,523	0,565	0,562

FIGURE 1 – Protocole pour essais blanc et essais avec solution en présence de vanadate.*Valeurs corrigées en tenant compte des blancs

	1000		9	sol	ution a	vec réa	ction et	t inhibit	ion			
	25	26	27	28	29	30	31	32	33	34	35	36
MR 2X [μΙ]	500											—
Eau [μl]	465	-	460	-	440	\rightarrow	380		280	→	80	
pNPP 5mM [μl]	15	-	20	-	40		100		200	→	400	
Vanadate 1mM [μl]	10											-
NaOH 1M [μl]	0											
5 min à 37°C												
Temps [min,sec]	0,00	0,30	1,00	1,30	2,00	2,30	3,00	3,30	4,00	4,30	5,00	5,30
CIP 1000X [µI]	20											-
Agitez												
Temps [min,sec]	9,00	9,30	10,00	10,30	11,00	11,30	12,00	12,30	13,00	13,30	14,00	14,30
NaOH 1M [μl]	1000											
Transfert de 200 μl	H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10	H11	H12
Absorbance*	0,043	0,038	0,045	0,056	0,051	0,075	0,190	0,162	0,249	0,252	0,324	0,296

FIGURE 2 – Protocole pour essais avec solution en présence de vanadate.*Valeurs corrigées en tenant compte des blancs

3 Mesures et graphes

Les mesures des absorbances sont reprises dans les tables 1 et 2.

Les graphes de la courbe de Michaelis-Menten et de la représentation inverse sont représentés (avec et sans vanadate) sur les figure 3 et 4 respectivement.

Essais	13	14	15	16	17	18	19	20	21	22	23	24
A_{595} (sans vanadate)	0.124	0.164	0.205	0.214	0.282	0.317	0.447	0.427	0.523	0.523	0.565	0.562

 $TABLE\ 1-Tableau\ des\ absorbances\ des\ solutions\ mesur\'ees\ \grave{a}\ une\ longueur\ d'onde\ de\ 595\ nm\ et\ avec\ valeurs\ corrig\'ees\ en\ tenant\ compte\ des\ blancs$

Essais	25	26	27	28	29	30	31	32	33	34	35	36
A_{595} (avec vanadate)	0.043	0.038	0.045	0.056	0.087	0.075	0.190	0.162	0.249	0.252	0.324	0.296

Table 2 – Tableau des absorbances des solutions en présence de vanadate mesurées à une longueur d'onde de 595 nm et avec valeurs corrigées en tenant compte des blancs

FIGURE 3 – Courbe de Michaelis-Menten de l'activité phosphatasique de la CIP en fonction de la concentration en substrat, avec et sans vanadate

 $FIGURE\ 4-Courbe\ de\ Lineweaver-Burk\ de\ l'inverse\ de\ l'activit\'e\ phosphatasique\ de\ la\ CIP\ en\ fonction\ de\ l'inverse\ de\ la\ concentration\ en\ substrat,\ avec\ et\ sans\ vanadate$

4 Calculs et interprétations

4.1 Détermination du nombre de μ mol de p-nitrophénol produit et de l'A.S. en abscence d'inhibiteur

[p-NPP](mM)	$1/[pNPP] (mM^{-1})$	p-nitrophénol (μmol)	AS $(\mu mol.min^{-1}.mg^{-1})$	$1/AS (min.mg.\mu mol^{-1})$
0.075	13.33	0.026	204	$4.9 * 10^{-3}$
0.10	10	0.038	296	$3.4 * 10^{-3}$
0.20	5	0.055	423	$2.4 * 10^{-3}$
0.50	2	0.08	618	$1.6 * 10^{-3}$
1.00	1	0.095	740	$1.4 * 10^{-3}$
2.00	0.5	0.103	797	$1.3 * 10^{-3}$

TABLE 3 – Tableau reprenant le nombre de mole de p-nitrophénol formé, de l'activité spécifique (AS) de l'enzyme CIP et son inverse pour chaque concentration de substrat.

La première étape consiste à utiliser la loi de Beer-Lambert et d'en tirer la concentration soit :

$$c = \frac{A}{\epsilon d}$$

Où ϵ est le coefficient d'extinction molaire et d la distance traversée par la lumière dans la solution.

En remplacant dans l'équation par $A_{12} = 0.144$, la valeur moyenne de l'absorbance des deux premiers essais :

$$c = \frac{0.144}{22 * 0.5} = 0.013[mM]$$

Puis grâce aux valeurs de ces concentrations, on obtient le nombre de moles de p-nitrophénol produites pour chaque essai.

$$n = c * V = 0.013 * 10^{-3} * 2 * 10^{-3} = 0.026[\mu mol]$$

Pour calculer l'activité spécifique de la CIP, il faut utiliser la formule :

$$A.S. = \frac{n}{tm}$$

où n est le nombre de mol de p-nitrophénol en μmol , t est le temps de réaction en minute et m la masse en mg de la CIP.

Lors de notre expérience il a été prélevé 20 μL d'un échantillon dont la concentration c = 0.714 * 10⁻³ [mg/mL] a été calculée au laboratoire précédent. On obtient la masse de CIP :

$$m = c * V = 0.714 * 10^{-3} * 20 * 10^{-3} = 1.428 * 10^{-5} [mg]$$

et donc on calcule l'AS:

$$AS = \frac{0.026}{9 * 1.428 * 10^{-5}} = 203[\mu mol.min^{-1}.mg^{-1}]$$

4.2 Détermination du nombre de μ mol de p-nitrophénol produit et de l'A.S. en présence d'inhibiteur

[p-NPP](mM)	$1/[pNPP] \ (mM^{-1})$	p-nitrophénol (μmol)	AS' $(\mu mol.min^{-1}.mg^{-1})$	$1/AS' (min.mg.\mu mol^{-1})$
0.075	13.33	0.0074	57	$17.5 * 10^{-3}$
0.10	10	0.0092	71	$14 * 10^{-3}$
0.20	5	0.0147	114	$8.7 * 10^{-3}$
0.50	2	0.032	249	$4.0*10^{-3}$
1.00	1	0.0456	354	$2.8 * 10^{-3}$
2.00	0.5	0.0563	439	$2.3*10^{-3}$

TABLE 4 – Tableau reprenant le nombre de mole de p-nitrophénol formé, de l'activité spécifique (AS) de l'enzyme CIP et son inverse pour chaque concentration de substrat avec l'inhibition par la vanadate.

La procédure des différents calcul est la même qu'au point précédent. Il suffit d'adapter dans les formules avec nos valeurs en présence de vanadate.

Pour le nombre de mol de p-nitrophénol :

$$A_{12} = 0.0405$$

$$c = \frac{0.0405}{22*0.5} = 3.68*10^{-3} [mM]$$

$$n = c*V = 3.68*10^{-3}*10^{-3}*2*10^{-3} = 0.00736 [\mu mol]$$

Pour l'activité spécifique :

$$m = c * V = 0.714 * 10^{-3} * 20 * 10^{-3} = 1.428 * 10^{-5} [mg]$$

$$AS = \frac{0.00736}{9 * 1.428 * 10^{-5}} = 57.29 [\mu mol.min^{-1}.mg^{-1}]$$
(1)

4.3 Détermination graphique du K_M et de l'activité spécifique maximale

4.3.1 Michaelis-Menten

La figure 3 représente la courbe de Michaelis-Menten de l'activité phosphatasique de la CIP (AS) en fonction de la concentration en substrat ([p-NPP]).

Par interprétation graphique, les paramètres cinétiques peuvent être aisément déduit sur base de cette courbe. L'asymptote horizontale de l'hyperbole donne la valeur de l' AS_{max} . De cette valeur on détermine le K_m qui n'est autre que la concentration en substrat ([p-NPP]) lorsque la courbe atteint la moitié de l' AS_{max} .

4.3.2 Lineweaver-Burk

La figure 4 représente quant à elle la représentation inverse de Lineweaver-Burk. Les valeurs de l' AS_{max} sont alors déterminées par intersection entre la droite obtenue et l'axe des ordonnées tandis que celles des K_m s'obtiennent par intersection de la droite avec l'axe des abscisses.

En effet, quand $\frac{1}{[S]}=0,$ la loi donne

$$\frac{1}{[AS]} = \frac{1}{AS_{max}}$$

Et pour K_m quand $\frac{1}{|AS|} = 0$, la loi donne :

$$\frac{1}{[S]} = \frac{-1}{K_m}$$

Le même résonnement est appliqué pour les courbes avec et sans vanadate. Les résultats des calculs sont repris pour les expériences sans et avec vanadate dans les tables 5 et 6 respectivement.

4.3.3 Résultats et interprétations

Les résulats et l'allure des courbes permettent d'identifer l'inhibiteur comme étant non-compétitif. En effet, les K_M sont presque similaires pour les courbes avec et sans inhibiteur alors que les AS_{max} diffèrent. De plus, sur la représentation inverse de Lineweaver-Burk, on observe que les deux droites se rejoigne quand la concentration en substrat est proche de $\frac{-1}{K_M}$ ce qui caractérise bien une inhibition non compétitive. Une même constation peut être faite sur la représentation de Michaelis-Menten où la différence des ASmax, à savoir les asymptotes des courbes, est clairement visible.

	Représentation Michaelis-Menten	Représentation Lineweaver-Burk
$K_M [\mu M]$	0.23	0.255
$AS_{max} \left[\mu mol.min^{-1}.mg^{-1} \right]$	910	959

Table 5 – Tableau reprenant les K_M et les activitées spécifiques maximales trouvées graphiquement sur la représentation de Michaelis-Menten et celle de Lineweaver-Burk en l'absence de vanadate.

	Représentation Michaelis-Menten	Représentation Lineweaver-Burk
K_M' $[\mu M]$	0.62	0.645
$AS'_{max} [\mu mol.min^{-1}.mg^{-1}]$	550	537

Table 6 – Tableau reprenant les K_M et les activitées spécifiques maximales trouvées graphiquement sur la représentation de Michaelis-Menten et celle de Lineweaver-Burk en l'absence de vanadate.

4.4 Détermination du K_I

Comme la vanadate est un inhibiteur non-compétitif, sa constante d'inhibition se calcule à partir de la valeur de l' AS_{max} et de l' AS'_{max} . Il faudra dès lors introduire ces valeur dans la relation :

$$AS'_{max} = \frac{AS_{max}}{1 + \frac{[I]}{K_I}} \tag{2}$$

où [I] est la concentration en inhibiteur (vanadate) et où $l'AS_{max}$ et $l'AS'_{max}$ sont calculés en faisant la moyenne des valeurs trouvées lors des deux représentations.

En isolant K_I , on obitent finalement :

$$K_I = \frac{[I]}{\frac{AS_{max}}{AS_{max}'} - 1} = \frac{10[\mu M]}{\frac{934.644}{543.408} - 1} = 13.89[\mu M]$$
(3)

On remarquera que la concentration en inhibiteur [I] utilisée pour calculer K_I est la concentration initiale en inhibiteur de la réaction, c'est à dire, avant l'ajout de 1000 μl d'une solution de NaOH. Sa concentration est donc bel et bien de 10 μM .

5 conclusion

Lors de ce laboratoire, les résultats expérimentaux récoltés ont permis d'établir deux représentation graphiques : la courbe de Michaelis-Menten et la représentation inverse de Lineweaver-Burk. En les allures de ces courbes et leurs paramètres conétiques, avec et sans l'ajout de l'inhibiteur, il a été possile de déterminer que l'inhibiteur était non-compétitif. La valeur du K_I , la constante de dissociation du complexe enzyme-substrat, a ensuite pu être déduite.