DS3 Workshop: Exploratory Data Analysis

Shahriar Shams

Nov 15, 2023

Overview

In this workshop we will cover some basic exploratory data analysis and missing value imputation techniques. Topics to be covered includes

- Getting familiar with our data
 - Creating summary tables
 - Creating box-plots, histograms
 - Creating scatter plots
 - Creating correlation plots
- Univariate analysis using simple linear regression
- Dealing with missing values

Introduction to tidyverse package

tidyverse (https://www.tidyverse.org/) is a collection of R packages that are extremely helpful for basic to advanced level data science projects. Out of the collection of packages, some of the well known packages are dplyr, stringr, ggplot2 etc.

Getting familiar with our data

Loading data and printing some observations

```
# reading the .csv file and naming it "d"
d = read.csv("Salary.csv", stringsAsFactors = TRUE)
# printing the first 6 observations of the data set
head(d)
     Age Gender Education.Level
                                         Job.Title Years.of.Experience Salary
##
##
  1
      32
           Male
                               1 Software Engineer
                                                                      5
                                                                         90000
## 2
      28 Female
                               2
                                      Data Analyst
                                                                      3
                                                                         65000
## 3 45
           Male
                               3
                                           Manager
                                                                     15 150000
## 4
      36 Female
                               1
                                   Sales Associate
                                                                      7 60000
## 5 52
                                                                     20 200000
           Male
                               2
                                          Director
## 6
      29
           Male
                               1 Marketing Analyst
                                                                        55000
##
     Country
                 Race Senior
## 1
          UK
                White
## 2
         USA Hispanic
                            0
## 3
     Canada
                White
                            1
## 4
         USA Hispanic
                            0
         USA
## 5
                Asian
                            0
## 6
         USA Hispanic
# printing the last 6 observations of the dataset
tail(d)
        Age Gender Education.Level
##
                                                 Job.Title Years.of.Experience
## 6679
        37
              Male
                                     Sales Representative
## 6680 49 Female
                                  3 Director of Marketing
                                                                             20
## 6681 32
              Male
                                  0
                                          Sales Associate
                                                                              3
## 6682 30 Female
                                  1
                                        Financial Manager
                                                                              4
                                  2
                                                                             14
## 6683 46
              Male
                                        Marketing Manager
## 6684 26 Female
                                  0
                                          Sales Executive
                                                                              1
##
        Salary
                 Country
                                Race Senior
## 6679 75000
                  Canada
                               Asian
                                          0
## 6680 200000
                      UK
                               Mixed
                                          0
## 6681 50000 Australia Australian
                                          0
```

• These snapshots gives us the first first impression of the data.

Chinese

Korean

Black

0

0

0

China

China

Canada

6682 55000

6683 140000

6684 35000

Creating a basic summary

```
# printing the dimension of the table (# of rows and columns)
dim(d)
```

[1] 6684 9

```
# Creating an overall summary of the data
summary(d)
```

```
##
                         Gender
                                     Education.Level
                                                                            Job.Title
         Age
##
    Min.
            :21.00
                     Female:3013
                                     Min.
                                            :0.000
                                                      Software Engineer
                                                                                  : 809
##
    1st Qu.:28.00
                     Male :3671
                                     1st Qu.:1.000
                                                      Data Scientist
                                                                                  : 515
##
    Median :32.00
                                     Median :1.000
                                                      Data Analyst
                                                                                  : 391
            :33.61
                                                      Software Engineer Manager: 376
##
    Mean
                                     Mean
                                            :1.622
    3rd Qu.:38.00
                                     3rd Qu.:2.000
                                                      Product Manager
                                                                                  : 323
##
##
    Max.
            :62.00
                                     Max.
                                            :3.000
                                                      Project Engineer
                                                                                  : 317
##
                                                      (Other)
                                                                                  :3953
##
    Years.of.Experience
                              Salary
                                                  Country
                                                                       Race
##
            : 0.000
                                 :
                                            Australia:1335
                                                                          :1957
    Min.
                          Min.
                                      350
                                                               White
    1st Qu.: 3.000
                          1st Qu.: 70000
                                                      :1322
##
                                            Canada
                                                               Asian
                                                                          :1599
##
    Median : 7.000
                          Median :115000
                                            China
                                                      :1339
                                                               Korean
                                                                          : 457
            : 8.078
##
    Mean
                          Mean
                                 :115307
                                            UK
                                                      :1332
                                                               Australian: 452
##
    3rd Qu.:12.000
                          3rd Qu.:160000
                                            USA
                                                      :1356
                                                               Chinese
                                                                          : 443
##
    Max.
            :34.000
                          Max.
                                  :250000
                                                               Black
                                                                          : 435
##
                                                               (Other)
                                                                          :1341
##
        Senior
            :0.0000
##
    Min.
##
    1st Qu.:0.0000
##
    Median :0.0000
            :0.1435
##
    Mean
##
    3rd Qu.:0.0000
##
            :1.0000
    Max.
##
```

- For each numeric variable (including categorical variables that are coded using numeric numbers), this summary will produce the following summaries:
 - Min: The minimum value.
 - 1st Qu: The value of the first quartile (25th percentile).
 - Median: The median value.
 - Mean: The mean value.
 - 3rd Qu: The value of the third quartile (75th percentile).
 - Max: The maximum value.
- For each categorical variable it will show a portion of the categories and their corresponding frequencies.
- If there are any missing observations, this summary will also show us that. In this example, it is a complete data hence and hence there are no summary for missing-ness.

Summary using the *tidyverse* package

• Let's create the summary, but this time using the tidyverse package.

```
library(tidyverse)
glimpse(d)
## Rows: 6,684
## Columns: 9
## $ Age
                         <dbl> 32, 28, 45, 36, 52, 29, 42, 31, 26, 38, 29, 48, 35~
## $ Gender
                         <fct> Male, Female, Male, Female, Male, Female, Ma~
## $ Education.Level
                         <int> 1, 2, 3, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2,~
## $ Job.Title
                         <fct> Software Engineer, Data Analyst, Manager, Sales As~
## $ Years.of.Experience <dbl> 5, 3, 15, 7, 20, 2, 12, 4, 1, 10, 3, 18, 6, 14, 2,~
## $ Salary
                         <dbl> 90000, 65000, 150000, 60000, 200000, 55000, 120000~
## $ Country
                         <fct> UK, USA, Canada, USA, USA, USA, USA, China, China,~
                         <fct> White, Hispanic, White, Hispanic, Asian, Hispanic,~
## $ Race
## $ Senior
                         <int> 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ~
```

• In this summary, not only we can see the different variable types, but also can see some of the first few observations for each of the variables.

Summary tables (frequency table) for categorical variables

```
table(d$Gender)
##
## Female
             Male
     3013
             3671
table(d$Education.Level)
##
                  2
                       3
##
      0
            1
##
    436 3021 1858 1369
table(d$Country)
##
                                             UK
                                                       USA
##
  Australia
                  Canada
                              China
##
         1335
                    1322
                               1339
                                          1332
                                                      1356
table(d$Race)
##
## African American
                                  Asian
                                                Australian
                                                                         Black
                                    1599
                                                                           435
##
                  352
                                                        452
##
             Chinese
                               Hispanic
                                                    Korean
                                                                         Mixed
                  443
                                     322
                                                        457
                                                                           334
##
##
               Welsh
                                  White
                  333
                                    1957
##
```

```
table(d$Senior)
```

```
## 0 1
## 5725 959
```

• this table() command works for both categorical and numeric variables.

Creating factor variables

- Anytime a categorical variable is coded in numeric numbers (e.g. "Education.Level" and "Senior" in this data set), R (or any software) does not know that it is a representation of a categorical variable.
- Hence we need to convert them into factors. The variables will look exactly the same, just in the background R will know that 0 and 1 are not really 0 and 1, rather they represent two categories.

```
##
     Age Gender Education.Level
                                            Job. Title Years. of . Experience Salary
## 1
      32
            Male
                                 1 Software Engineer
                                                                              90000
## 2
      28 Female
                                        Data Analyst
                                                                              65000
                                 2
                                                                           3
## 3
      45
            Male
                                 3
                                                                          15 150000
                                              Manager
## 4
      36 Female
                                                                           7
                                                                              60000
                                 1
                                     Sales Associate
## 5
      52
                                 2
                                                                          20 200000
            Male
                                             Director
##
  6
      29
            Male
                                 1 Marketing Analyst
                                                                              55000
##
     Country
                  Race Senior E.Level S.yesno
## 1
           UK
                 White
                             0
                                      1
                             0
                                      2
                                               0
## 2
         USA Hispanic
      Canada
                                      3
## 3
                 White
                             1
                                               1
## 4
         USA Hispanic
                             0
                                      1
                                               0
## 5
         USA
                                      2
                                               0
                 Asian
                             0
                                               0
## 6
         USA Hispanic
                             0
                                      1
```

glimpse(d)

```
## Rows: 6,684
## Columns: 11
                         <dbl> 32, 28, 45, 36, 52, 29, 42, 31, 26, 38, 29, 48, 35~
## $ Age
                         <fct> Male, Female, Male, Female, Male, Female, Ma~
## $ Gender
## $ Education.Level
                         <int> 1, 2, 3, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2,~
## $ Job.Title
                         <fct> Software Engineer, Data Analyst, Manager, Sales As~
## $ Years.of.Experience <dbl> 5, 3, 15, 7, 20, 2, 12, 4, 1, 10, 3, 18, 6, 14, 2,~
                         <dbl> 90000, 65000, 150000, 60000, 200000, 55000, 120000~
## $ Salary
## $ Country
                         <fct> UK, USA, Canada, USA, USA, USA, USA, China, China,~
                         <fct> White, Hispanic, White, Hispanic, Asian, Hispanic,~
## $ Race
## $ Senior
                         <int> 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ~
## $ E.Level
                         <fct> 1, 2, 3, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2,~
## $ S.yesno
                         <fct> 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ~
```

Creating cross tables

```
# table of Gender and Education level
t1 = table(d$Gender, d$E.Level)
t1
##
               0
                         2
                               3
##
                    1
##
     Female 251 1198 1068
                            496
##
     Male
             185 1823 790 873
#
# Creating table with proportions
prop.table(t1)
##
##
##
     Female 0.03755236 0.17923399 0.15978456 0.07420706
##
     Male
            0.02767804 0.27274087 0.11819270 0.13061041
#
# proportions calculated using row totals
prop.table(t1,margin=1)
##
##
##
     Female 0.08330568 0.39761036 0.35446399 0.16461998
##
            0.05039499 0.49659493 0.21520022 0.23780986
#
# proportions calculated using column totals
prop.table(t1,margin=2)
##
                                                   3
##
                    0
                               1
##
     Female 0.5756881 0.3965574 0.5748116 0.3623083
##
            0.4243119 0.6034426 0.4251884 0.6376917
```

Creating histograms/density curves

• Histograms are very useful to find the overall distribution of a variable.

```
# a histogram using the variable salary
ggplot(d, aes(x = Salary))+
    geom_histogram(colour="blue", fill="skyblue")
```


Creating histograms as a function of another variable

• looks like the salary variable is related to Education level and seniority.

Creating boxplots

• Box plots are gives us two information: 1) distribution of the data and 2) presence of outliers

ggplot(d, aes(y=Age, x=E.Level, fill= E.Level)) +
 geom_boxplot()

Filtering data

• In the previous page we saw some outliers for the Age variable. Let's filter these observations.

```
d2 = d %>% filter(Age >55) %>% arrange(desc(Age))
dim(d2)
## [1] 39 11
head(d2)
     Age Gender Education.Level
                                                 Job. Title Years. of. Experience
                              3 Software Engineer Manager
## 1
      62
           Male
                                                                             19
## 2 62
           Male
                              3 Software Engineer Manager
                                                                             20
## 3 62
                              3 Software Engineer Manager
                                                                             19
           Male
## 4 62
           Male
                              3 Software Engineer Manager
                                                                             20
## 5 62
                              3 Software Engineer Manager
           Male
                                                                             19
                              3 Software Engineer Manager
## 6 61
           Male
                                                                             20
##
     Salary
              Country
                        Race Senior E.Level S.yesno
     2e+05
                                  0
                                           3
## 1
                   UK White
                                                   0
     2e+05
                                           3
## 2
                China Korean
                                  0
                                                   0
## 3 2e+05
                   UK Mixed
                                  0
                                           3
                                                   0
## 4 2e+05
                                  0
                                           3
               Canada Asian
                                                   0
## 5 2e+05 Australia Asian
                                  0
                                           3
                                                   0
                                           3
## 6 2e+05
                   UK Welsh
                                  0
                                                   0
```

Creating summary tables

4 Male

• Let's create a random summary based on this filtered data

```
d2 %>% group_by(Gender, E.Level) %>%
  summarize( Counts = n(),
             Avg_Salary = mean(Salary),
             Avg_Experience = mean(Years.of.Experience))
## # A tibble: 4 x 5
## # Groups:
               Gender [2]
     Gender E.Level Counts Avg_Salary Avg_Experience
##
     <fct> <fct>
                     <int>
                                <dbl>
                                                <dbl>
## 1 Female 2
                                                 33
                         2
                              188232
## 2 Female 3
                              178591.
                                                 29.6
                        11
## 3 Male
                         2
                              190004
                                                27
```

17.9

24

197292.

Creating scatter plots

• Scatter plot allows us to see the relationship between two numeric variables (preferably continuous variables)

```
# a basic scatter plot of Salary against Age
ggplot(d, aes(x=Age,y=Salary)) +
  geom_point()
```



```
#
# Salary against Age, Gender added as the color parameter
ggplot(d, aes(x=Age,y=Salary,colour=Gender)) +
geom_jitter(alpha=0.5)
```



```
# Salary against Age
# with Gender as the color, Education level as the shape
ggplot(d, aes(x=Age,y=Salary,colour=Gender, shape = E.Level)) +
geom_jitter(alpha=0.3)
```


Dividing our plots by different country using facet_wrap
ggplot(d, aes(x=Age,y=Salary,colour=Gender, shape = E.Level)) +
geom_jitter(alpha=0.3)+
facet_wrap(~Country)


```
# use of multiple variables in facet_wrap
ggplot(d, aes(x=Age,y=Salary,colour=Gender, shape = E.Level)) +
geom_jitter(alpha=0.25)+
facet_wrap(~Country+S.yesno)
```


Exploratory data anlysis using explore package

- The best way to use this package is in an interactive R session.
- We can also create some default summaries

library(explore)

d %>% explore(Salary, target=Gender)

d %>% explore(Country, target = Gender)

S.yesno

• In interactive sessions these plots show up in colors here is an example

20

%

E.Level

30

the above line produces this following plot in an interactive session.

Creating correlation plots

• Correlation looks at the linear relationship between continuous numeric variables

```
d3 = d %>% select(Age, Years.of.Experience, Salary)
library(corrplot)
corrplot(cor(d3))
```


corrplot(cor(d3),method="number")

Exercise-1

• Load the Boston dataset by running these following two lines

library(MASS)

d.boston = Boston

- 1. Crete a quick summary of the dataset that includes how many observations are there, how many variables are there, what are the variable types etc.
- 2. Create a density curve for the "medv" variable by making separate densities for the "chas" variable values.
- 3. Create a scatter plot of "medv" against "lstat" while using "chas" as the colour and the shape parameter.
- 4. Create a correlation plot using all the variables of the data.

Univariate analysis using simple linear regression

- After we are done with our exploration using graphs and tables, we can use a bit more advanced tool (which is a bit more objective) to check the relations.
- Simple Linear Regression is one such tool.

```
m = lm(Salary~Age, data=d)
summary(m)
##
## Call:
## lm(formula = Salary ~ Age, data = d)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -112287 -26899
                     -6645
                             22150
                                     98165
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
  (Intercept) -54876.15
                            2008.02 -27.33
                                              <2e-16 ***
## Age
                 5063.39
                              58.27
                                      86.89
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36190 on 6682 degrees of freedom
## Multiple R-squared: 0.5305, Adjusted R-squared: 0.5304
## F-statistic: 7550 on 1 and 6682 DF, p-value: < 2.2e-16
#
#
m = lm(Salary~Gender, data = d)
summary(m)
##
## Call:
## lm(formula = Salary ~ Gender, data = d)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -121046 -47789
                     -1396
                             47111
                                    128604
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) 107889.0
                             954.3 113.06
                                             <2e-16 ***
## GenderMale
                13506.7
                            1287.7
                                     10.49
                                             <2e-16 ***
##
  ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 52380 on 6682 degrees of freedom
## Multiple R-squared: 0.0162, Adjusted R-squared: 0.01605
## F-statistic:
                  110 on 1 and 6682 DF, p-value: < 2.2e-16
```

```
m = lm(Salary~E.Level, data=d)
summary(m)
##
## Call:
## lm(formula = Salary ~ E.Level, data = d)
##
## Residuals:
##
      Min
                1Q Median
                                       Max
                                30
## -165072 -30078
                     -5078
                             24917
                                    154917
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  34416
                              1914
                                     17.98
                                              <2e-16 ***
## E.Level1
                  60667
                              2048
                                     29.63
                                              <2e-16 ***
## E.Level2
                                     44.98
                  95663
                              2127
                                             <2e-16 ***
## E.Level3
                 131236
                              2198
                                     59.71
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39970 on 6680 degrees of freedom
## Multiple R-squared: 0.4273, Adjusted R-squared: 0.4271
## F-statistic: 1662 on 3 and 6680 DF, p-value: < 2.2e-16
m = lm(Salary \sim Country, data = d)
summary(m)
##
## Call:
## lm(formula = Salary ~ Country, data = d)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -115370 -46326
                        75
                             44789
                                    133545
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 114925.5
                              1445.3 79.518
                                                <2e-16 ***
## CountryCanada
                   1529.6
                              2049.0
                                       0.747
                                                0.455
## CountryChina
                   1357.1
                              2042.4
                                       0.664
                                                0.506
## CountryUK
                    994.5
                              2045.1
                                       0.486
                                                0.627
## CountryUSA
                  -1926.7
                              2036.0 -0.946
                                                0.344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 52810 on 6679 degrees of freedom
## Multiple R-squared: 0.0005868, Adjusted R-squared: -1.169e-05
## F-statistic: 0.9805 on 4 and 6679 DF, p-value: 0.4168
table(d$Country)
```

© 2023 Shahriar Shams, University of Toronto Scarborough

##

## Au	ıstralia	Canada	China	UK	USA
##	1335	1322	1339	1332	1356

comments based on the outputs of these four models:

- Looks like Age, Gender, E.Level are all significantly associated with Salary.
- But there is not a lot of variation in Salaries among the different countries.
- Of course you can continue to fit these models for all other explanatory variables.

Using ggplot2 to graph the relationship

- geom_smooth() adds smooth non-linear curves on top of any scatter plot.
- If we want to restrict it to certain model (e.g. linear), we can put that formula inside the geom_smooth() command.

```
ggplot(d, aes(x=Age, y = Salary))+
  geom_jitter()+
  geom_smooth()
```



```
ggplot(d, aes(x=Years.of.Experience, y = Salary))+
  geom_jitter()+
  geom_smooth()
```


• These pictures indicate that when fitting our final model, we should consider nor linear functions of Age or Year of Experience.

Dealing with missing values

- Missing value is a common feature in almost all real world data.
- For numerous reasons, values in one of the variable/feature or more than one variable/feature can be missing.
- A missing observation can be a result of the respondent not answering the question, or for any systematic reason, or simply a data entry error.
- When missing values are present, we can either remove them or impute them.

Summary of missing-ness using the *naniar* package

```
# reading a different version of the dataset with some missing values
d.miss = read.csv(file="salary_with_missing_values.csv")
library(naniar)
miss_var_summary(d.miss)
## # A tibble: 10 x 3
##
      variable
                          n_miss pct_miss
      <chr>
                           <int>
                                    <dbl>
##
    1 Years.of.Experience
##
                            1000
                                    15.0
```

500 2 Salary 7.48 ## ## 3 X 0 4 Age ## 0 0 0 ## 5 Gender 0 ## 6 Education.Level 0 0 ## 7 Job.Title 0 0 0 0 8 Country ## ## 9 Race 0 0 ## 10 Senior

gg_miss_var(d.miss, facet = Gender)

Option-1: removing rows

• This is a bad option.

Option-2: removing columns

```
d2 = d.miss %>% select(-Years.of.Experience)

names(d2)

## [1] "X" "Age" "Gender" "Education.Level"

## [5] "Job.Title" "Salary" "Country" "Race"

## [9] "Senior"
```

• This is also a bad option and not recommended!

Option-3: Imputing with the average

```
mean(d.miss$Years.of.Experience, na.rm=T) # overall average
## [1] 8.035626
```

```
d2 = d.miss %>%
  mutate(NewYOE = case_when(
    is.na(Years.of.Experience) ~ mean(Years.of.Experience,na.rm=T),
    !is.na(Years.of.Experience) ~ Years.of.Experience))

library(knitr)
kable(d2[1:6,-c(1:5)])
```

Years.of.Experience	Salary	Country	Race	Senior	NewYOE
5	90000	UK	White	0	5.000000
3	65000	USA	Hispanic	0	3.000000
NA	150000	Canada	White	1	8.035626
7	60000	USA	Hispanic	0	7.000000
20	200000	USA	Asian	0	20.000000
2	55000	USA	Hispanic	0	2.000000

Option-4: Imputing using a regression model

• This is probably the **best** option compared to the previous ones.

Years.of.Experience	Salary	Country	Race	Senior	YOE
5	90000	UK	White	0	5.00000
3	65000	USA	Hispanic	0	3.00000
NA	150000	Canada	White	1	15.72772
7	60000	USA	Hispanic	0	7.00000
20	200000	USA	Asian	0	20.00000

Exercise-2

- 1. load the "salary_with_missing_values.csv" to R/Rstudio.
- 2. Install and load the *simputation* package
- 3. Create an imputed dataset where the missing "Salary" values are imputed as a function of the rest of the variables.

References

Here are few good resources:

- https://r4ds.had.co.nz/
- $\bullet \ \ https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf$
- $\bullet \ \ https://ggplot2.tidyverse.org/index.html$
- $\bullet \ \ https://cran.r-project.org/web/packages/explore/vignettes/explore_titanic.html$
- https://cran.r-project.org/web/packages/simputation/vignettes/intro.html
- https://r-project.ro/conference2018/presentations/simputation_presentation.pdf

{Good luck with your future Exploratory Data Analysis!}