#### **Group Competition: Instructions**

- For this round, the participants will be grouped by random selection into 5-person teams, each representing a named asteroid. Each participant in the group will be from a different country. The selection will take place near the beginning of the IOAA, so that the team members can get to know each other.
- Please remember the name and number of your asteroid, as this will also be used to identify your place during the Planetarium and Observation rounds.
- The group competition consists of several tasks, which you will receive in a sealed envelope. Each team works together at one table under the supervision of the guides to solve the tasks. You are not allowed to communicate with participants from other teams during the round.
- Dedicated answer sheets are provided for writing your answers. Enter the final answers into the appropriate boxes in the answer sheet (marked A).
- Open the envelopes on the START signal given by the judges. Time is measured from this moment; the winning team will be the one which finishes in the shortest total time, after any time penalties (for example for incorrect or missing answers) are applied. The time penalties are explained in each task.
- When you have solved all the problems, hand your answer sheets to the guide, who will note the total time.
- The maximum time available for the round is 90 minutes. After this time any remaining answer sheets should be handed in.
- The completed answer sheets will then be marked by the jury, who will apply time penalties as appropriate. The winning team will be announced at the closing ceremony.
- Everything you need will be provided on the table (calculator, office supplies, geometrical instruments, paper, table of constants).
- For one of the tasks, all the screens in the room will simultaneously display a video at a specified time (the video will be repeated several times).

## Group Competition 1: 'Crossword'

For each row of the table in the answer sheet, write in the three-letter IAU abbreviation of the constellation corresponding to the symbol. Your final answer is formed by the vertical column outlined in bold.

Hint: Mercator-projection sky map of constellations marked with symbols, below.

Penalties: empty space or wrong constellation: +1 minute





### Group Competition 2: 'Reply to Arecibo Message'

During IOAA 2023, a reply to the message sent by the Arecibo radio telescope in 1974 finally reached Earth. A video recording of the transmission will be played on the monitors during the round. Decode the transmission and write the hidden message on the answer sheet.

The recording will begin playing 30 minutes after the start of the competition, and play continuously in a loop for a total of 30 minutes.

Penalties: missing or incorrect answer: +15 minutes

### Group Competition 3: 'Mars loop'

- (a) On the provided graph paper, plot the X and Y positions of Earth and Mars in the heliocentric system over time using the data from the table, and draw vectors connecting the corresponding positions of Earth and Mars on each day.
- (b) Using a ruler and set square, translate each vector to a common origin while preserving their lengths and directions. Connect the ends of the translated vectors with a curve representing the position of Mars in the geocentric system.
- (c) From the plot, read off the minimal Earth–Mars distance, the duration of retrograde motion and the angle by which Mars moves backwards. Give your answers on the answer sheet.

**Penalties:** missing or incorrect drawing for part (b) +10 minutes; missing or out of range answers: +5 minutes for each part.

| Heliocentric Equatorial Positions |         |         |         |        |  |  |
|-----------------------------------|---------|---------|---------|--------|--|--|
|                                   | EARTH   |         | MARS    |        |  |  |
| Date                              | X [au]  | Y [au]  | X [au]  | Y [au] |  |  |
| 2022 Sep 01                       | 0.9375  | -0.3431 | 1.3235  | 0.4704 |  |  |
| 2022 Sep 11                       | 0.9846  | -0.1928 | 1.2724  | 0.5972 |  |  |
| 2022 Sep 21                       | 1.0033  | -0.0370 | 1.2082  | 0.7178 |  |  |
| 2022 Oct 01                       | 0.9928  | 0.1198  | 1.1320  | 0.8312 |  |  |
| 2022 Oct 11                       | 0.9530  | 0.2731  | 1.0448  | 0.9366 |  |  |
| 2022 Oct 21                       | 0.8850  | 0.4184  | 0.9477  | 1.0331 |  |  |
| 2022 Oct 31                       | 0.7905  | 0.5512  | 0.8417  | 1.1200 |  |  |
| 2022 Nov 10                       | 0.6722  | 0.6673  | 0.7282  | 1.1967 |  |  |
| 2022 Nov 20                       | 0.5336  | 0.7631  | 0.6082  | 1.2630 |  |  |
| 2022 Nov 30                       | 0.3785  | 0.8356  | 0.4830  | 1.3184 |  |  |
| 2022 Dec 10                       | 0.2119  | 0.8824  | 0.3537  | 1.3628 |  |  |
| 2022 Dec 20                       | 0.0387  | 0.9020  | 0.2216  | 1.3960 |  |  |
| 2022 Dec 30                       | -0.1357 | 0.8936  | 0.0877  | 1.4182 |  |  |
| 2023 Jan 09                       | -0.3058 | 0.8574  | -0.0468 | 1.4294 |  |  |
| 2023 Jan 19                       | -0.4665 | 0.7947  | -0.1810 | 1.4297 |  |  |
| 2023 Jan 29                       | -0.6128 | 0.7073  | -0.3139 | 1.4194 |  |  |
| 2023 Feb 08                       | -0.7401 | 0.5981  | -0.4445 | 1.3988 |  |  |
| 2023 Feb 18                       | -0.8447 | 0.4705  | -0.5719 | 1.3682 |  |  |
| 2023 Feb 28                       | -0.9234 | 0.3284  | -0.6954 | 1.3280 |  |  |
| 2023 Mar 10                       | -0.9740 | 0.1765  | -0.8140 | 1.2787 |  |  |
| 2023 Mar 20                       | -0.9954 | 0.0191  | -0.9272 | 1.2207 |  |  |
| 2023 Mar 30                       | -0.9868 | -0.1387 | -1.0341 | 1.1545 |  |  |
| 2023 Apr 09                       | -0.9491 | -0.2925 | -1.1342 | 1.0807 |  |  |
| 2023 Apr 19                       | -0.8835 | 0.4377  | -1.2268 | 0.9998 |  |  |
| 2023 Apr 29                       | -0.7920 | 0.5702  | -1.3115 | 0.9124 |  |  |

# Group Competition 4: 'Southern Pole Star'

On the map of the southern sky in the answer sheet, draw the southern precession circle and determine the year, nearest to the present date, in which the star  $\delta$  Velorum will become the southern pole star as a result of precession. The map is presented in the equidistant projection.

**Penalties:** missing or incorrect answer +10 minutes



#### Group Competition 5: 'Astrolabe'

An astrolabe helps you determine the positions of selected stars relative to the horizon at a given time. The base, or 'mater', is marked with the horizon, curves of constant altitude, the pole, tropics, prime vertical and celestial equator (for latitude 50°N). The two movable transparent parts are the 'rete' and the 'rule'. The 'rete' shows the positions of certain stars, one from each constellation, as seen from outside the celestial sphere, as well as the ecliptic divided into the signs of the Zodiac. Finally the 'rule' is a scale which lets you determine the positions of stars in declination.

(a) Identify the stars marked with letters on the rete and complete the table in the answer sheet. Give the name or Bayer designation and constellation, and the right ascension and declination (within  $\pm 0.25$  h and  $\pm 5^{\circ}$ ). Mark the star which was the source of the alien transmission from Task 2.

**Penalties:** missing or incorrect names or incorrect coordinates: +1 minute each; wrong source star: +1 minute.

(b) For the date of Nicolaus Copernicus's birthday (19 February) determine the right ascension and declination of the Sun (within  $\pm 0.25$  h and  $\pm 5^{\circ}$ ), and the times of sunrise and sunset (within  $\pm 0.25$  h).

**Penalties:** missing or incorrect coordinates: +5 minutes; missing or incorrect times: +5 minutes.



## Group Competition 6: 'Saros'

Use the following table of lunar eclipses from the last 25 years to predict when the next lunar eclipse clearly visible from Poland ( $50^{\circ}$ N,  $19^{\circ}$ E) will occur. Give the date and predicted hour on the answer sheet.

**Penalties:** for a missing answer +10 minutes, eclipse with weak visibility +1 minute

| Data                       | Time UT  | Tr      | JD          |
|----------------------------|----------|---------|-------------|
| Date                       |          | Type    |             |
| 1991 Dec 21                | 10:33:60 | Partial | 2448602.940 |
| 1992 Jun 15                | 04:57:57 | Partial | 2448788.707 |
| 1992 Dec 09                | 23:45:05 | Total   | 2448966.49  |
| 1993 Jun 04                | 13:01:26 | Total   | 2449143.042 |
| 1993 Nov 29                | 06:27:06 | Total   | 2449320.769 |
| 1994 May 25                | 03:31:20 | Partial | 2449497.647 |
| 1995 Apr 15                | 12:19:04 | Partial | 2449823.013 |
| 1996 Apr 04                | 00:10:47 | Total   | 2450177.508 |
| 1996 Sep 27                | 02:55:24 | Total   | 2450353.622 |
| 1997 Mar 24                | 04:40:28 | Partial | 2450531.694 |
| 1997 Sep 16                | 18:47:42 | Total   | 2450708.283 |
| 1999 Jul 28                | 11:34:46 | Partial | 2451387.983 |
| 2000 Jan 21                | 04:44:34 | Total   | 2451564.698 |
| 2000 Jul 16                | 13:56:39 | Total   | 2451742.081 |
| 2001 Jan 09                | 20:21:40 | Total   | 2451919.349 |
| 2001 Jul 05                | 14:56:23 | Partial | 2452096.115 |
| 2003 May 16                | 03:41:13 | Total   | 2452775.653 |
| 2003 Nov 09                | 01:19:38 | Total   | 2452952.556 |
| 2004 May 04                | 20:31:17 | Total   | 2453130.345 |
| 2004 Oct 28                | 03:05:11 | Total   | 2453306.628 |
| 2005 Oct 17                | 12:04:27 | Partial | 2453661.003 |
| 2006 Sep 07                | 18:52:25 | Partial | 2453986.286 |
| 2007 Mar 03                | 23:21:59 | Total   | 2454163.474 |
| 2007 Aug 28                | 10:38:27 | Total   | 2454340.943 |
| 2008 Feb 21                | 03:27:09 | Total   | 2454517.644 |
| 2008 Aug 16                | 21:11:12 | Partial | 2454695.383 |
| 2009 Dec 31                | 19:23:46 | Partial | 2455197.308 |
| 2010 Jun 26                | 11:39:34 | Partial | 2455373.986 |
| 2010 Dec 21                | 08:18:04 | Total   | 2455551.846 |
| 2011 Jun 15                | 20:13:43 | Total   | 2455728.343 |
| 2011 Dec 10                | 14:32:56 | Total   | 2455906.106 |
| 2012 Jun 04                | 11:04:20 | Partial | 2456082.961 |
| 2013 Apr 25                | 20:08:38 | Partial | 2456408.34  |
| 2014 Apr 15                | 07:46:48 | Total   | 2456762.824 |
| 2014 Oct 08                | 10:55:44 | Total   | 2456938.956 |
| 2015 Apr 04                | 12:01:24 | Total   | 2457117.001 |
| 2015 Sep 28                | 02:48:17 | Total   | 2457293.617 |
| 2017 Aug 07                | 18:21:38 | Partial | 2457983.265 |
| 2018 Jan 31                | 13:31:00 | Total   | 2458150.063 |
| 2018 Jul 27                | 20:22:54 | Total   | 2458327.349 |
| 2019 Jan 21                | 05:13:27 | Total   | 2458504.717 |
| 2019 Jul 16                | 21:31:55 | Partial | 2458681.397 |
| 2021 May 26                | 11:19:53 | Total   | 2459360.972 |
| 2021 May 20<br>2021 Nov 19 | 09:04:06 | Partial | 2459537.878 |
| 2021 Nov 19<br>2022 May 16 | 04:12:42 | Total   | 2459715.676 |
| 2022 Nay 10<br>2022 Nov 08 | 11:00:22 | Total   | 2459891.958 |
| 2022 INOV UO               | 11.00.22 | Total   | 2403031.300 |