

Mixer

Mixer Module

Revision 0.9.0-41360

May 6, 2015

LIST OF	F TABL	ES	27-3
LIST OF	FIGU	RES	27-4
27	MIXE	R	27-5
27.1	Ove	ERVIEW	27-5
27.2	Мо	DULE CONFIGURATION	27-6
27	7.2.1	Mixer Control Register – HAL_DICE3_MIXER_CSR	27-6
27	7.2.2	Mixer Coefficients Register – HAL_DICE3_MIXER_COEFF	27-7
27	7.2.3	Mixer Saturation Register – HAL_DICE3_MIXER_SAT	27-8
27 3	REV	VISIONS	27-9

List of Tables

Table 27.1 Mixer Module register summary	. 27-6
Table 27.2 Mixer Control Register bit assignments	. 27-6
Table 27.3 Mixer Coefficients Register bit assignments	. 27-7
FARLE 27.4. DOCUMENT REVISION HISTORY	27-9

List of Figures

FIGURE 27.1: GENERIC MIXER CONFIGURATION 27-
--

27 Mixer

27.1 Overview

The Mixer module is a 32 input, 32 output, dynamically configurable matrix. Mixer inputs and outputs are connected to the streaming engine and other audio paths via the Router module [bkbk: link to Router section]. The module also provides saturation status for each output so that software may indicate clipping. The module is configured by specifying the number of inputs (INS) and outputs (OUTS) and global enabled state, and coefficients are programmed by indexing INn, OUTn coordinates in the matrix. Coefficients are interpreted as 16-bit signed integers, where 0x2000 represents unity and 0x7fff is equivalent to +12dB gain. Saturation occurs when the final sum in an output is larger than ± 1.0 in the 24-bit fixed-point result, i.e. when the value is either 0x7fffff for 0x800000.

On every sample cycle, the mixer will compute the results for all outputs and present them to the router in the following sample period. This means that in sample[0] all input values are transferred from the router, all active mixer outputs are calculated in sample[1] and transferred out of the router in sample[2]. This results in a latency of one sample, not including the 2 router transfers.

Figure 27.1: generic mixer configuration

The mixer will compute up to 32x32 multiplications. It can be programmed to compute a smaller matrix in order to save power and to accommodate higher sample rates. The total number of route multiplications the mixer can handle (M = INS*OUTS) is found by:

$$M = min(F_{sys_clk}/F_{srate} - 8, 1024)$$

For example: $F_{sys_clk} = 100MHz$

 $F_{srate} = 48k$ M = 1024 $F_{srate} = 96k$ M = 1024 $F_{srate} = 192k$ M = 512

27.2 Module Configuration

Table 27.1 Mixer Module register summary

Address	Register	Description
0xC4000200	HAL_DICE3_MIXER_CSR	<u>Mixer Control Register</u>
0xC4000204	HAL_DICE3_MIXER_COEFF	Mixer Coefficient Register
0xC400020C	HAL_DICE3_MIXER_SAT	Mixer Saturation Register

27.2.1 Mixer Control Register – HAL_DICE3_MIXER_CSR

Address offset: 0xC4000200 HAL_DICE3_MIXER_CSR

This register is used to configure the number of active mixer inputs and outputs. The entire mixer can be enabled and disabled with this register, and it includes a bit that indicates a process overflow state. The ERR bit indicates that the mixer did not have time to process all coefficient multiplies and adds in a given cycle.

Table 27.2 Mixer Control Register bit assignments

Name	Bit	Reset	Dir	Description
Reserved	31:29	0	N/A	Reserved
INS-1	28:24	0	RW	The number of mixer inputs less one (program 31 for 32 inputs).
Reserved	23:21	0	N/A	Reserved
OUTS-1	20:16	0	RW	The number of mixer outputs less one (program 31 for 32 outputs).
Reserved	15:2	0	N/A	Reserved

Name	Bit	Reset	Dir	Description
ERR	1	0	RW	Overflow error state. When set this confirms that the mixer can compute all outputs as configured. Write 1 to clear.
EN	0	0	RW	Global enable/disable. Set this bit to enable the mixer.

27.2.2 Mixer Coefficients Register – HAL_DICE3_MIXER_COEFF

Address offset: 0xC4000204 HAL_DICE3_MIXER_COEFF

This register is used to configure the coefficient for a coordinate in the mix matrix.

Table 27.3 Mixer Coefficients Register bit assignments

Name	Bit	Reset	Dir	Description
OUTn	31:27	0	RW	Output id
Reserved	26:22	N/A	RW	Reserved
INn	21:16	0	RW	Input id
VAL	15:0	0	RW	Gain value for the specified coefficient at INn, OUTn. This is interpreted as a 16-bit signed number, where 0x2000 is unity and 0x7fff is +12dB.

27.2.3 Mixer Saturation Register - HAL_DICE3_MIXER_SAT

Address offset: 0xC400020C HAL_DICE3_MIXER_SAT

This register is used to read the saturation status of the 32 possible mixer outputs. When a bit is set, the corresponding mixer output was in a saturation state one or more times since this register was last read. This register is read-to-clear.

27.3 Revisions

Table 27.4 Document revision history

Date	Rev.	Ву	Change
May 6, 2015	0.9.0-41360	BK	Initial publication