The Impact of Equivalent Mutants

Bernhard J. M. Grün Saarland University

with David Schuler and Andreas Zeller

Equivalent Mutants

A mutation may not change the semantics of a program. Then it is equivalent.

- What is the problem with them?
- Is it hard to find them?
- How frequent are these?
- How can we get rid of them?

```
if(!map.containsKey(key)) {
    Integer value = key.length();
    map.put(key, value);
}
```

```
if(!map.containsKey(key)) {
    Integer value = key.length();
    map.put(key, value);
}
```

```
if(!map.containsKey(key)) {
    Integer value = key.length();
    map.put(key, value);
}
```

Equivalent

```
counter++;
if(!map.containsKey(key)) {
    Integer value = counter;
    map.put(key, value);
}
```

```
counter++;
if(!map.containsKey(key)) {
    Integer value = counter;
    map.put(key, value);
}
```

```
counter++;
if(!map.containsKey(key)) {
    Integer value = counter;
    map.put(key, value);
}
Not Equivalent
```

Background

- Baldwin and Seyward: Heuristic Approach
 - Semantic-preserving compiler optimization
 - Offutt and Craft: 10 % of equivalent mutants
- Offutt and Pan: Path Conditions
 - If constraint solver shows subsequent states are equivalent then mutant is equivalent
 - 48 % of equivalent mutants
 - 11 Fortran-77 Programs (10-30 Statements)

An efficient mutation framework for Java

An efficient mutation framework for Java

Manipulates byte code directly

An efficient mutation framework for Java

- Manipulates byte code directly
- Implements selective mutation:
 - replace constant C by $C \pm I$, or 0
 - negate branch condition
 - replace operators (+ by -, * by /, etc.)

An efficient mutation framework for Java

- Manipulates byte code directly
- Implements selective mutation:
 - replace constant C by $C \pm I$, or 0
 - negate branch condition
 - replace operators (+ by -, * by /, etc.)
- Uses coverage and mutant schemata

Jaxen 12,449 LOC 6,626 mutations 6.5h

Jaxen	12,449 LOC	6,626 mutations	6.5h
XStream	14,480 LOC	5,186 mutations	6h

Jaxen	12,449 LOC	6,626 mutations	6.5h
XStream	14,480 LOC	5,186 mutations	6h
AspectJ	94,902 LOC	47,146 mutations	I4h

Jaxen	12,449 LOC	6,626 mutations	6.5h
✓ We are able to analyze real world programs			
AspectJ	94,902 LOC	47,146 mutations	I4h

Jaxen	12,449 LOC	6,626 mutations	6.5h
✓ We are able to analyze real world programs			
AspectJ	94,902 LOC	47,146 mutations	I4h

Publicly available this Summer

Equivalent Mutants

Experimental base – the Jaxen XQuery Engine:

- 6626 mutations applied by Javalanche
- 29% undetected by test suite

Random Mutants

Random Mutants

20 randomly chosen mutations from 20 different classes		
non-equivalent	50% (10)	
equivalent	40% (8)	
undecided	10% (2)	

Random Mutants

20 randomly chosen mutations from 20 different classes	
non-equivalent	50% (10)
equivalent	valent mutants! 40% (8)
undecided	10% (2)

Manual Classification

- About 15 minutes per mutant to classify.
 - Sometimes up to 2 hours per mutant.
- For 1900 (29%) mutations in Jaxen:
 - Nearly 500 hours!

Manual Classification

Original

Mutant

A mutated loop

Original

Mutant

for (int i = 0; i < 10; i++)

A mutated loop

Mutant

A mutated loop

Mutant

for (int i = 0; i < 0; i++)

A mutated loop

- Class without Change
- Class with Change

Tracing Programs

Tracing Programs

Original

compare traces

Quality of Impact

Using the same 20 random mutations

	impact	no impact
non-equivalent		
equivalent		
undecided		

Quality of Impact

Using the same 20 random mutations

	impact	no impact
non-equivalent	6	4
equivalent	2	6
undecided	2	0

Quality of Impact

Using the same 20 random mutations

Ranking along Impact

- Hypothesis:
 - Higher Impact means more likely nonequivalent.
- Experiment:
 - 20 mutations with the most impact.
 - 20 mutations with the least impact.

Ranking Example

IMPACT	MUTATION
10	A
2	В
0	С
3	D
7	E
0	F
5	G

Ranking Example

IMPACT	MUTATION
10	A
7	Ε
5	G
3	D
2	В
0	С
0	F

Ranking Results

Ranking along Impact

String Alteration

```
// org.jaxen.XPathSyntaxException, Line 140
public String getPositionMarker() {
  StringBuffer buf = new StringBuffer();
  int pos = getPosition();
  for (int i = 0; i < pos; i++) {
    buf.append(" ");
  buf.append("^");
  return buf.toString();
```

String Alteration

```
// org.jaxen.XPathSyntaxException, Line 140
public String getPositionMarker() {
  StringBuffer buf = new StringBuffer();
  int pos = getPosition();
  for (int i = 0; i < pos; i++) {
    buf.append(" ");
  buf.append("^");
  return buf.toString();
```

Return Values

```
// org.jaxen.function.CeilingFunction, Line 129
public static Double evaluate(Object obj, Navigator nav) {
    Double value = NumberFunction.evaluate(obj, nav);
    return new Double( Math.ceil( value.doubleValue() ) );
}
```

Return Values

Future Work

- Find other impact measures:
 - Trace method return values and invariants see our paper at ISSTA 2009
 - Count methods instead of classes
 - Use some distance measure
- Analyze more software projects

Idea: Distance Measure

Idea: Distance Measure

20 randomly chosen mutations from 20 different classes	
non-equivalent 50% (10)	
40% equivalent mutants!	
equivalent	40% (8)
undecided	10% (2)

20 randomly chosen mutations from 20 different classes	
non-equivalent 50% (10)	
40% equivalent mutants!	
equivalent	40% (8)
undecided	10% (2)

Manual Classification

20 randomly chosen mutations from 20 different classes	
non-equivalent 50% (10)	
40% equivalent mutants!	
equivalent	40% (8)
undecided	10% (2)

Manual Classification

http://www.st.cs.uni-saarland.de/mutation

20 randomly chosen mutations from 20 different classes	
non-equivalent 50% (10)	
40% equivalent mutants!	
equivalent	40% (8)
undecided	10% (2)

Manual Classification

http://www.st.cs.uni-saarland.de/mutation

Manual Classification

20 randomly chosen mutations from 20 different classes FA9/ /IA non-equivalent 40% equivalent Future Work equivalent undecided • Find other impact measures. Tracing of method return values.

ation is not efficient!

Coverage

- Based on methods instead of classes.
- Using some distance measure.
- Analyze more software projects.

long Impact

√Using only top ranked mutations effectively reduces the number of equivalent mutations!

http://www.st.cs.uni-saarland.de/mutation