United College of Engineering & Research, Prayagraj

Department of Computer Science & Engineering

Automata Theory(KCS-402)

Assignment-3

Q. No.	Question	СО	Bloom's level
	Section-A		
1	Construct the CFG for the regular expression (0+1)*.	CO4	L2
2	Construct context free grammar for the language, $L=\{a^nb^n n\geq 0\}$.	CO4	L2
3	Explain Chomsky Normal Form and Greibach Normal Form.	CO4	L1
4	Define Reduced grammar.	CO4	L1
5	Define nullable variable and null production.	CO4	L1
	Section-B		
6	Explain in detail about the following:- (a) Closure properties of Context Free Languages. (b) Decidability-Decision properties of Regular Languages.	CO4	L2
7	Design the CFG for the following language: i) $L = \{0^m 1^n \mid m \neq n \& m, n \geq 1\}$ ii) $L = \{a^l b^m c^n \mid l + m = n \& l, m \geq 1\}$	CO4	L4
8	Prove that the following Language $L = \{a^n b^n c^n\}$ is not Context Free.	CO4	L4
9	Convert the following CFG into CNF $S \rightarrow XY \mid Xn \mid p$ $X \rightarrow mX \mid m$ $Y \rightarrow Xn \mid o$	CO4	L3
10	Convert the following CFG into equivalent Greibach Normal Form: $S \rightarrow AA$, $A \rightarrow SS$, $S \rightarrow a$, $A \rightarrow b$	CO4	L3
11	Show that context free grammar(CFG) with productions S→a Sa bSS SSb SbS is ambiguous.	CO4	L2
12	Convert the following grammar into Chomsky Normal Form(CNF):- S→ABa, A→aab, B→Ac	CO4	L3
13	Consider the following grammar:- S \rightarrow A1B, A \rightarrow 0A/ ϵ , B \rightarrow 0B/1B/ ϵ Find leftmost and rightmost derivation of strings 00101.	CO4	L2
14	Find context free grammar for the following languages with (n, m, $k \ge 0$);- (a) L= $\{a^nb^nc^k \mid k \ge 3\}$ (b) L= $\{a^mb^nc^k \mid n=m \text{ or } m \le k\}$	CO4	L3
15	Given context free grammar, how do you determine that grammar as (a) Empty or Non-Empty (b) Finite or Non-Finite (c) Whether a string x belong to languages of grammar.	CO4	L3

CO - Course Outcome

Bloom's Levels

1- Remembering 2-Understanding 3-Applying

4-Analyzing 5-Evaluating 6-Creating