@ EPODOC / FPO

PN

- JP7261100 A 19951013

PD - 1995-10-13

PR - JP19940046774 19940317

OPD - 1994-03-17

TI - SHAPE-VARIABLE MIRROR

IN - ICHINOSE YUJI

PA - HITACHI LTD

IC - G02B26/00; B23K26/06; G02B5/08; H01S3/041 OWPI / DERWENT

TI

- Reflecting mirror for optical distortion correction e.g. for high power laser, light beam - forms coolant circulation space in mirror with surface-deforming actuators attached to mirror rear face to prevent thermal surface deformation NoAbstract

PR - JP19940046774 19940317

PN - JP7261100 A 19951013 DW 199550 G02B26/00 008pp

PA - (HITA) HITACHI LTD

IC - B23K26/06;G02B5/08;G02B26/00;H01S3/041

OPD - 1994-03-17

AN - 1995-386221 [50]

@ PAJ / JPO

PN - JP7261100 A 19951013

PD - 1995-10-13

AP - JP19940046774 19940317

IN - ICHINOSE YUJI PA

- HITACHI LTD

TI SHAPE-VARIABLE MIRROR

AB

- PURPOSE:To provide the structure of a shape-variable mirror by which the resposiveness of the shape-variable mirror is enhanced and the mirror surface can be cooled.
- CONSTITUTION: Plural actuators 3 are fitted to the lower part of the mirror 1 on which a cylindrical laser beam 9 is made incident through a pin 2. Then, the mirror 1 and the plural actuators 3 are fixed to a lens barrel 4. The wave surface of the beam 9 can be controlled by giving a driving voltage to the respective actuators 3. The peripheral part of the mirror 1 is provided with a space where a coolant 5 is circulated. Besides, the lower surface of the central part of the mirror 1 is provided with a space where the coolant 5 is circulated a pin 8 for cooling.
- G02B26/00 ;B23K26/06 ;G02B5/08 ;H01S3/041

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-261100

(43)公開日 平成7年(1995)10月13日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI	技術表	示箇所
G 0 2 B	26/00					
B 2 3 K	26/06	Z				
G 0 2 B	5/08					
H 0 1 S	3/041				3/ 04 G	
	·			H01S 審査請求	ま請求 請求項の数14 OL (全	8 頁)
(21)出願番号		特顧平6-46774		(71)出願人	000005108 株式会社日立製作所	
(22)出願日		平成6年(1994)3月17日		(72)発明者	東京都千代田区神田駿河台四丁目6 一ノ瀬 祐治 茨城県日立市大みか町七丁目2番1	号 株
				(74)代理人	式会社日立製作所エネルギー研究所 弁理士 小川 勝男	N
					·	

(54) 【発明の名称】 形状可変鏡

(57)【要約】

【目的】形状可変鏡の応答性を高め、ミラー面の冷却を 可能にする形状可変鏡の構造を提供する。

【構成】円筒形レーザビーム9が入射するミラー1の下部にピン2を介してアクチュエータ3を複数個取付け、ミラー1と複数個のアクチュエータ3は鏡筒4に固定する。各アクチュエータ3にそれぞれ駆動電圧を与えて円筒形レーザビーム9の波面を制御できる。ミラー1の問辺部に冷却材5を循環させる空間を設け、ミラー1の中央部下面には冷却用ピン8に冷却材5を循環させる空間を設ける。

1

【特許請求の範囲】

【請求項1】レーザビームを入射して反射するミラーと前記ミラーの裏面に複数のアクチュエータを有し、前記複数のアクチュエータに任意の信号を与えることにより前記ミラーの凹凸を変えることのできる形状可変鏡において、前記ミラーの前記レーザビームが入射される部分の裏面以外のミラーに冷却材を循環させる空間を設け、前記空間に冷却材を循環させる手段を設けたことを特徴とする形状可変鏡。

【請求項2】レーザビームを入射して反射するミラーと 10 前記ミラーの裏面に複数のアクチュエータを有し、前記 複数のアクチュエータに任意の信号を与えることにより 前記ミラーの凹凸を変えることのできる形状可変鏡において、前記ミラーの前記レーザビームが入射される部分の裏面以外のミラー裏面に、冷却材を循環させる空間を 設けた構造物を取付け、前記空間に冷却材を循環させる 手段を設けたことを特徴とする形状可変鏡。

【請求項3】請求項1または2において、前記ミラーに 冷却材を循環させる空間を設け、前記ミラー裏面に冷却 材を循環させる空間を設けた構造物を取付けた形状可変 20 鏡。

【請求項4】レーザビームを入射して反射するミラーと前記ミラーの裏面に複数のアクチュエータを有し、前記複数のアクチュエータに任意の信号を与えることにより前記ミラーの凹凸を変えることのできる形状可変鏡において、前記ミラーの前記レーザビームが入射される部分の裏面以外のミラー裏面に、ベルチェ素子を取付け、前記ペルチェ素子に駆動電圧を与える手段を設けたことを特徴とする形状可変鏡。

【請求項5】請求項1または4において、前記ミラーに 30 冷却材を循環させる空間を設け、前記ミラー裏面に、ペルチェ素子を取付け、前記ペルチェ素子に駆動電圧を与える手段を設けた形状可変鏡。

【請求項6】請求項1,2,3,4または5において、前記形状可変鏡の前記ミラー裏面及び前記アクチュエータに冷却用ガスを送風し、前記冷却用ガスを循環させる手段を設けた形状可変鏡。

【請求項7】レーザビームを入射して反射するミラーと前記ミラーの裏面に複数のアクチュエータを有し、前記複数のアクチュエータを有し、前記複数のアクチュエータに任意の信号を与えることにより前記ミラーの凹凸を変えることのできる形状可変鏡において、前記ミラーの裏面に雌ねじを設け、前記アクチュエータの一端に熱伝達率の低い材料から成る緩衝材を接続し該緩衝材に雄ねじを持つ構造物を接続し、前記アクチュエータの他端に雄ねじを持つ台座を接続し前記台座の中を前記アクチュエータを駆動するための信号線を通す手段を設けたことを特徴とする形状可変鏡。

【請求項8】請求項1,2,3,4,5,6または7に おいて、前記ミラーの裏面に雌ねじを設け、前記アクチ ュエータの一端に熱伝達率の低い材料から成る緩衝材を50 接続し前記緩衝材に雄ねじを持つ構造物を接続し、前記 アクチュエータの他端に雄ねじを持つ台座を接続し前記 台座の中を前記アクチュエータを駆動するための信号線 を通す手段を設けた形状可変鏡。

【請求項9】請求項1, 2, 3, 4, 5, 6, 7または8において、前記ミラーを熱伝達率のよい材質で作る形状可変鏡。

【請求項10】請求項1, 2, 3, 4, 5, 6, 7または8において、前記ミラーは金属材料で作る形状可変鏡。

【請求項11】請求項1,2,3,4,5,6,7,8,9または10において、前記レーザビームの波面を補正する形状可変鏡と前記レーザビームの波面の検出手段と検出値により形状可変鏡の複数のアクチュエータの駆動量を決定する手段からなる補償光学装置。

【請求項12】請求項11において、前記補償光学装置でレーザ発振器から出力されるレーザビームの波面を補正するレーザ発振器。

【請求項13】請求項11において、レーザ発振器と前記レーザビームを集光させ加工材の所定の位置に照射する光学系及び制御装置からなるレーザ加工機。

【請求項14】物質の中に含まれている同位体を取り出すことのできるレーザ同位体分離装置において、レーザ発振器から出力されたレーザビームを前記物質を気化したものに繰返し照射するために形状可変鏡とビームスプリッタとミラーを複数個設け、前記ビームスプリッタで分けられたレーザビームをレーザ波面検出器に入射し前記レーザ波面検出器の検出値から前記形状可変鏡のアクチュエータの駆動量を決定する波面制御装置を設けたことを特徴とするレーザ同位体分離装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、レーザビーム及び光の 光学的な歪を補正する補償光学装置の形状可変鏡に係 り、特に、形状可変鏡の応答性を低下させずに高出力レ ーザビームによる形状可変鏡の熱歪を抑えるミラー面冷 却装置に関する。

[0002]

【従来の技術】補償光学装置は、光学的な歪を検出し形状可変鏡でその歪を補正するものである。この補償光学 装置を用いて、高出力レーザ発振器から出力されるレーザビームの歪を補正することによりビーム品質を改善することが可能である。このとき形状可変鏡では、ミラー面がレーザビームを吸収することにより熱歪がミラー面に生じる恐れが有る。そこで上記用途に供するために、形状可変鏡のミラー面を冷却する機能を有したものが考案されている。その形状可変鏡の構造については、例えば、米国特許第4674848号,第4657358号が挙げられる。いずれもミラー裏面に冷却材(気体、液体)を循環させる空間を設け、その後段にアクチュエータを取付けたも

のである。

[0003]

【発明が解決しようとする課題】しかし、上記従来技術 は形状可変鏡のミラー面の冷却効率のみを考慮してお り、ミラー面下部に冷却材を循環させる空間を設けたこ とによるミラー剛性の向上によるアクチュエータの駆動 電圧に対するミラー面変位に関する応答性の低下に関し ては考慮されていない。

3

【0004】本発明の日的は、形状可変鏡の上記課題を **解決する装置を提供し、この形状可変鏡を用いた補償光** *10* 学装置、その補償光学装置を適用することにより性能を 向上させることのできるレーザ発振器, レーザ加工機, レーザ同位体分離装置を提供することにある。

[0005]

【課題を解決するための手段】形状可変鏡の基本構造 は、光を反射するミラー面にその凹凸を変えるためのア クチュエータを2次元的に複数個取付たものである。ア クチュエータは、印加電圧に比例して変位する圧電素子 を複数枚積層しそれぞれを電気的に直列に接続した積層 型圧電素子が応答性の点で優れており多く使用されてい る。形状可変鏡の応答性を高めるには、ミラー面から圧 電素子の底面までの長さを短くすれば良い。圧電素子の 全長は、最大変位量に比例するため形状可変鏡の要求性 能により決まるため短くすることはできない。そこでミ ラー面厚み及びミラーと圧電素子の接続部を短くすれば 良い。一方、ミラー面を冷却する構造はミラー面下部に 冷却材を循環させる空間を設けるのではなく、ミラー面 の熱をミラー周辺部に逃がすようにすれば良い。

[0006]

【作用】形状可変鏡の応答性は上述したように、ミラー 30 面厚み及びミラーと圧電素子の接続部を短くすれば、応 答速度は速くなる。レーザビームにより発生する熱は、 ミラー周辺部に冷却材を循環させる空間を設けることに より吸収する。このようにすれば、形状可変鏡の応答性 を低下させずに、ミラー面の冷却が可能となる。また、 一般にレーザ発振器から出力されるレーザビームの形状 は円形であるが、本発明の対象となるような髙出力レー ザ発振器、特に気体レーザの場合、円筒状のレーザビー ムが出力されるため、ミラー周辺部だけでなくミラー中 央部にも冷却材を循環させる空間を設けることが可能と なる。このような構造にすることにより、高い応答性を 持ちミラー面の冷却が可能な形状可変鏡が可能となる。

[0007]

【実施例】図1, 図2を用いて本発明の一実施例を説明 する。図1には本発明の一実施例である形状可変鏡の構 造を示すが、1はミラー、2は各アクチュエータ3a… 3 dの変位量をミラー1に伝えるピン、4は鏡筒、図1 の斜線部は冷却材5を循環させる空間、6は冷却材5を 循環させるための流入口、7は冷却材5を循環させるた めの流出口、8はミラー1の中央部を冷却するための冷 50

却用ピンである。形状可変鏡は補債光学装置の重要な構 成要案の一つであり、波面の乱れたレーザビームを形状 可変鏡に入射し、形状可変鏡の各アクチュエータ3に駆 動電圧を与えることによりミラー面に凹凸をつけること により、反射されるレーザピームの波面を制御するもの である。図1は円筒形レーザピーム9の波面を制御する 形状可変鏡についての本発明の一実施例を示している。 ミラー1はピン2を介してアクチュエータ3と連結して おり、各アクチュエータ3に駆動電圧を与えることによ り円筒形レーザビーム9の波面を制御できる。ミラー1 で反射される円筒形レーザピーム9の一部はミラー1に 吸収されるため、ミラー1の温度が上昇しミラー面に温 度分布が生じることによりミラー面が熱変形する恐れが 有る。ミラー1の周辺部に冷却材5を循環させる空間を 設け、ミラー1の中央部下面には冷却用ピン8に冷却材 5を循環させる空間を設けることによりミラー1の円筒 形レーザビーム9が入射された領域で生じる熱を吸収す ることができる。冷却材5を循環させる空間に、冷却材 5 を流入させる入り口 6 a, 6 b 及び出口 7 a, 7 b に より冷却材5を循環させることで冷却効果を高める。図 1の形状可変鏡を円筒形レーザピーム9から見た図が、 図2である。上述したように円筒形レーザビーム9の波 面を制御するために設けられる各アクチュエータ3の接 続されるミラー面以外のミラー1の中央部及び周辺部 に、冷却材5を循環させる。図1に示すように、薄いミ ラー1にピン2とアクチュエータ3が連結された構造 は、形状可変鏡の機能を満たす上で最も単純な構造であ り、形状可変鏡の応答性を高めることができる。さらに 冷却機構も同時に設けてあるために、高出力レーザによ るミラー面の熱変形を抑えることができる。

【0008】本発明の実施例を実現するためのアクチュ エータ3は、印加電圧に比例して変位する圧電素子、積 層型の圧電素子、油圧駆動素子、磁歪素子及びリニアア クチュエータ等で実現できる。またミラー1の材質とし てはガラスでも実現できるが、熱伝達率の高い金属材料 を用いた方が効率の良い冷却が可能である。さらに冷却 材5は、液体の他気体を用いても実現でき、液体の方が 冷却効率が高い。

【0009】図3は本発明の一実施例である形状可変鏡 のミラー1と冷却材5を循環させる空間の構造を示す。 ミラー1は周辺部が厚く、中央部(アクチュエータ3を 接続する領域)が薄い構造を持ち、冷却材5を循環させ る部分をくり抜いた構造にする。そして側板10は円筒 形で、ミラー1と側板10にねじの雄、雌山を設けるこ とにより、双方を接続できかつ冷却材5を循環させる閉 空間をミラー周辺部に実現できる。そして側板10の外 周上の二ヶ所に冷却材 5 を流入させる入り口 6 a 及び出 口7aを設けることで本発明を実現できる。次にミラー 1の中央部を冷却する冷却用ピン8について説明する。

図3に示すように、冷却用ピン8の中央部をくり抜き、

そこに冷却材5を循環させる。上板11と冷却用ビン8にねじの雄、雌山を設けることにより、双方を接続できかつ冷却材5を循環させる閉空間を実現できる。そして上板11の二ヶ所に冷却材5を流入させる入り口6b及び出口7bを設けることで本発明を実現できる。図3を用いた本発明の一実施例では冷却材5を循環させる空間を実現する構造について述べたが、空間における冷却材5と接触する面積は広ければ広いほど冷却能力は高くなる。そこで図3に示した構造だけでなく、面積を大きくする構造は、壁面に凹凸を設ける方法、空間に仕切り板 10を設けるなどの構造が考えられる。

【0010】実施例では円筒形レーザビームの場合について述べたが、次に円形レーザビームの場合の本発明の一実施例を図4を用いて説明する。図4は形状可変鏡の断面を示したものである。図において、円形レーザビームの波面を制御するためにはミラー1の下部に二次元的に配列したピン2とアクチュエータ3を設け、ミラー1の冷却はその周辺部に設けた冷却材5を循環させる空間により実現すれば良い。本発明によれば、形状可変鏡の応答性を高めることができ、さらに冷却機構も同時に設けてあるために、高出力レーザによるミラー面の熱変形を抑えることができる。これまで円筒形レーザビームと円形レーザビームの場合の本発明の実施例を説明したが、その他の形状のレーザビームの場合にも本発明を実現することができる。

【0011】図5は円形レーザビームの波面を制御するための本発明の一実施例の形状可変鏡の断面を示したものであるが、ミラー1の下部に二次元的に配列したピン2とアクチュエータ3を設け、ミラー1の冷却はベルチェ素子12を用いて実現するものである。ベルチェ素子12は電気エネルギを熱に変換するものであり、ベルチェ素子12にベルチェ素子用電源13から電気エネルギを供給することにより、ミラー1に生じた熱を吸収することができる。実施例は円形レーザビームの場合であるが、円筒状レーザビームの場合にはミラー中央部の下面にベルチェ素子12を設けた構造にすれば良い。

【0012】次に図6を用いて本発明の一実施例を説明する。図6は本発明の一実施例である形状可変鏡の断面構造を示したものであるが、ミラー周辺部に冷却材5を循環させる空間を設け、さらにミラー1の裏面とアクチュエータ2に冷却用ガスを送風することによりミラー1及びアクチュエータ2を冷却するものである。このような構造にすることにより、ミラー1の剛性を増やすことなくミラーの冷却能力を向上させることができる。実施例では、ミラー周辺部に冷却材5を循環させる空間を設けた本発明の他の実施例と組み合わせたものであるが、同様に図1から図5を用いて説明した本発明の他の実施例と組み合わることが出来る。

【0013】図7は本発明の一実施例の形状可変鏡の断面を示したものであるが、ミラー1の下面にアクチュエ 50

ータ3を取付けるための雌ねじを設け、アクチュエータ 3の一端には緩衝材42とそれと接続された雄ねじを持 つピン2を連結し、他端には鏡筒4に固定するために雄 ねじを設けた台座15を連結した構造であり、ポルト4 1により鏡筒4に固定することができる。アクチュエー タ3は圧電素子等の駆動電圧により変位するものであ り、そのリード線14は台座15の中を通している。こ のような構造にすることにより、アクチュエータ3の部 分とミラー1及び鏡筒4を接続がいずれもねじ式になっ ているため、形状可変鏡の組立て及び分解が容易にな る。また、緩衝材42にセラミック等の熱伝達率の悪い 材料を用いることで、ミラー1に発生した熱がアクチュ エータ3に伝達されることによってアクチュエータ3の 機能が低下するのを抑えることができる。本実施例によ れば、形状可変鏡の組立て及び分解が容易になり、また アクチュエータ3の熱による機能低下を抑えることがで きる。

【0014】本発明の一実施例であるアクチュエータとミラー及び鏡筒との接続構造は、図1から図6を用いて説明した本発明の他の実施例と組合わせて実施できる。そしてこのような構造の形状可変鏡にすることにより、応答性、組立効率、冷却性に優れた形状可変鏡を実現することができる。

【0015】次にこれらを用いた本発明の一実施例である補償光学装置及び補償光学装置をいろいろな光学装置に適用した例について説明する。本発明の一実施例である形状可変鏡を用いて構成する補償光学装置は、レーザ及び光の波面歪を補正できるため、いろいろな光学装置に適用してその波面歪による性能の劣化を抑えることができる。

【0016】図8に本発明の一実施例であるマルチディ ザー方式補償光学装置の基本的構成を示す。レーザ及び 光の波面検出方式の違いによりいろいろな方式の補償光 学装置が提案されており、マルチディザー方式もその一 つである。図8において、歪みのあるレーザ波面17a を持つ入射レーザピーム16は上述した本発明の一実施 例である形状可変鏡18に入射され、そこで入射レーザ ビーム16は位相変調と波面補正が実施される。位相変 調は、形状可変鏡18にある複数のアクチュエータをレ 一ザ波長の数十分の一の振幅で異なる周波数で駆動する ことにより実現される。このため形状可変鏡18は、ア クチュエータの数が多ければ多いほど高い応答性が要求 される。形状可変鏡18から出たレーザビームはビーム スプリッタ19で分割され、一方は出射レーザビーム3 0となり、他方はレンズ20で集光されレンズ20の焦 点位置に置かれた光検出器21でその光信号22が検出 される。光信号22には形状可変鏡18のアクチュエー 夕数と同数の位相変調信号が含まれており、波面制御装 置23では光信号22から複数の位相変調信号を分離検 出する。位相変調信号は形状可変鏡18で位相変調され

7

た領域のレーザビームの位相に比例するため、各位相変調信号の強度分布がレーザ位相の分布、すなわち、レーザ波面である。波面制御装置23では検出したレーザ波面から形状可変鏡18の指令値24を決定し、駆動電圧26に増幅され、形状可変鏡18が制定される。なお、波面制御装置23で決定される指令値24は、形状可変鏡18のアクチュエータ数と同数であり、各指令値24には位相変調のための駆動信号が重されている。マルチディザー方式補償光学装置は、形状可変鏡の応答性を高めることができ、ミラー面の熱変形を抑えることができる。

【0017】次に本発明の一実施例である他の方式の補 **償光学装置について説明する。図9において、16は入** 射レーザピーム、17aはレーザ波面、18は形状可変 鏡、19はピームスプリッタ、27は波面検出器、23 は波面制御装置、25は駆動電源である。入射レーザビ ーム16は形状可変鏡18で波面補正された後、ピーム スプリッタ19により一方は波面検出器27へ、他方は 出射レーザビーム30に分けられる。波面検出器27で は、ハルトマン方式及びシェアリング干渉方式のいずれ の方式を用いても検出可能である。波面検出器27で検 出される波面信号28は、ハルトマン方式及びシェアリ ング干渉方式のいずれの方式を用いてもレーザ波面の傾 き、すなわち、波面の微分値であり、波面制御装置23 では波面信号28を、例えば、積分演算することにより レーザ波面を求め形状可変鏡18の指令値24を決定 し、駆動電源25で駆動電圧26に増幅され、形状可変 鏡18が制御される。補償光学装置は、高出力レーザビ ームの波面歪を補正する場合にも、形状可変鏡の応答性 を高めることができ、ミラー面の熱変形を抑えることが できるため、髙性能の補償光学装置を実現できる。

【0018】本発明の一実施例である補償光学装置は、図10に示すように補償光学装置31に歪みのあるレーザ波面17aを持つ入射レーザピーム16を入射し、歪の無いレーザ波面17bに変換しレーザピーム30を出射するものである。従って、高出力レーザ発振器から出力されるレーザピームを本発明の補償光学装置に入射することにより、高出力レーザ発振器内で生じたレーザ波面の歪を補正し、高品質のレーザピームを得ることができる。

【0019】次に本発明の一実施例であるレーザ加工機について説明する。図11は本発明の一実施例であるレーザ加工機であり、32はレーザ発振器、31は補償光学装置、33は凹面鏡、34は加工材である。レーザ加工機は、レーザエネルギによって加工材34を切断したり、溶接したりするものである。レーザピームは凹面鏡33により絞ることができるため、バイト(刃物)を用いる従来の切断加工機と比較してより正確な加工が可能50

である。そして、レーザエネルギが高いほど、加工時間は短くて済む。ところが高出力レーザ発振器から出力されるレーザピームに波面歪があると、凹面鏡33によりレーザビームを絞ることができなくなるため、加工材34に照射するレーザエネルギ密度が低下したり、切断部の面積が大きくなるなどの問題が発生する。そこで図11に示すように、レーザ発振器32から出力されたレーザビーム16を補償光学装置31でレーザは面を補正したレーザビーム30を常に凹面鏡33に供給できるため、高性能のレーザ加工機を実現できる。

【0020】次に本発明の一実施例であるレーザ同位体分離装置について説明する。図12にレーザ同位体分離装置40の基本的構成を示す。分離する同位体を含んだ物質を容器37の中に入れ加熱して気化させる。蒸気38となった物質に、分離したい同位体のみをイオン化するために特定の波長を持つレーザピーム35を照射する。イオン化した同位体は、回収電極39に付着されるレーザピーム35を効率良く蒸気38に照射するたいできる。レーザ発振器32から出力できる。レーザ発振器32から出力でできる。シーザ発振器32がにわたり服射する。このときレーザピーム35が拡大りに対するときに波面歪が生じ、レーザビーム35が拡大りに対するときに波面でが生じ、レーザビーム35が拡大りでできなができるとができないできないできないできないできる。これを解決するためには、補償光学装置をレーザ同位体分離装置40に適用すれば良い。

【0021】図13はレーザ同位体分離装置40に補債 光学装置を適用した本発明の一実施例を示すが、レーザ 発振器32から出力されるレーザビーム35は形状可変 鏡18aで反射され、ビームスプリッター19aを介し て一方は形状可変鏡18bへ、他方は波面検出器27a へ入力される。波面検出器27aで検出された波面を より制御装置23aで形状可変鏡18aの指令値を決定 し、波面歪を補正する。以下同様の動作で、形状可変鏡 18bにより波面歪を補正することにより、レーザビー ム35を蒸気中で伝搬させることが可能となる。なが、 図13の実施例では、レーザビーム35は形状の変貌1 8とビームスプリッタ19のみで折り返しているが、これらの代りにいくつの場所に折返しミラー36を用いて も問題は無い。

[0022]

【発明の効果】本発明によれば、薄いミラーにピンとアクチュエータが連結された構造でミラー面を駆動する形状可変鏡であるため形状可変鏡の応答性を高めることができ、さらに冷却機構も同時に設けてあるために高出力レーザによるミラー面の熱変形を抑えることができる。

【0023】本発明によれば、アクチュエータの一端に 伝熱を抑制する緩衝材とねじ付きピンを接続し、他端に ねじ付き台座を接続し、アクチュエータとミラー及び鏡 筒との接続をねじにより可能にした構造であるため、ア

—895—

10

クチュエータが取外し可能な構造でミラーに発生した熱がアクチュエータに伝わりにくいため、メンテナンス性が高く信頼性の高い形状可変鏡を提供できる。

【0024】本発明によれば、レーザあるいは光の波面 歪を補正する補償光学装置において、応答性、ミラー面 冷却性、メンテナンス性及び信頼性に優れた形状可変鏡 を用いるために高性能の補償光学装置を提供できる。

【0025】本発明によれば、レーザ発振器,レーザ加工機及びレーザ同位体分離装置に上述の高性能の補償光学装置を適用できるため、高品質のレーザ発振器,高特 10度のレーザ加工機及び高効率のレーザ同位体分離装置を提供できる。

【図面の簡単な説明】

- 【図1】本発明の一実施例を示す形状可変鏡の説明図。
- 【図2】本発明の一実施例を示す形状可変鏡の上面図。
- 【図3】本発明の一実施例を示す形状可変鏡のミラー部分の説明図。
- 【図4】本発明の第二実施例を示す形状可変鏡の断面図。

【図5】本発明の第三実施例を示す形状可変鏡の断面

【図1】

【図 6】本発明の第四実施例を示す形状可変鏡の断面

【図7】本発明の第五実施例を示す形状可変鏡の断面 図。

【図8】本発明の一実施例を示すマルチディザー方式補 質光学装置の説明図。

【図9】本発明の一実施例を示す補償光学装置の説明 図。

) 【図10】補償光学装置の説明図。

【図11】本発明の一実施例を示すレーザ加工機の説明図。

【図12】レーザ同位体分離装置の説明図。

【図13】本発明の一実施例を示すレーザ同位体分離装置の説明図。

【符号の説明】

1 …ミラー、2 …ピン、3 …アクチュエータ、4 …鏡筒、5 …冷却材、6 …冷却材入口、7 …冷却材出口、8 …冷却用ピン、9 …支柱。

(アクチュエータ3a) 25 (大部村以口6b) 25 (大部村以口7b) 25 (

[図2]

図 2

[図7]

図 7

[図10]

図 10

-896-

Best Available Copy

[図9] 【図11】 **2** 9 **2** 11 四面盤 33 形状可变量18 [図12] 【図13】 図 12 形状三变统 18b 形状可变量 188 レーザ同位体分層装置 40

レーザ同位体分離装置 40