

Computer Networks

Wenzhong Li, Chen Tian

Nanjing University

Chapter 2. Link Layer

- Link Layer Service
 - Framing
 - Link access
 - Reliable delivery
 - Error detection and correction
- Local Area Network (LAN)
 - Token Ring
 - Ethernet
- Medium access control (Cont.)
- Bridges and Layer-2 switch
- Wireless Networks

Performance of MAC

Performance Metric

Media Utilization

 Time used for frame transmission vs. time the shared media is occupied

$$U = \frac{\text{Time for frame transmission}}{\text{total time for a frame}}$$

Relative Propagation Time

$$a = \frac{\text{propagation time}}{\text{transmission time}} \quad or$$

$$a = \frac{\text{length of the data path (in bits)}}{\text{length of a standard frame (in bits)}}$$

Different Networks

- Contention free
 - Point-to-Point Link
 - Ring LAN
- Random access
 - ALOHA, slotted ALOHA
 - CSMA/CD

Point-to-Point Link with No ACK

Time for frame transmission total time for a frame

Large frame

(a) transmission time = 1 propagation time = a<1

Small frame

(b) transmission time = 1 propagation time = a>1

Define

1: normalized frame transmission time

a: end to end propagation delay

N: number of stations

Max Utilization U=?

Max Utilization for Point-to-Point Link

- Parameters and assumptions
 - 1: normalized frame transmission time
 - a: end to end propagation delay
 - N: number of stations
- Each station has frames to transmit
- Total frame time=transmission delay
 + propagation delay: 1+a
- Max Utilization:

$$U = \frac{\text{Time for frame transmission}}{\text{total time for a frame}}$$

Ring

Token is released at t_0+1 , and it will arrive the next station at t_0+1+a/N (next transmission starts).

End of the previous transmission at t_0+1+a .

Token is released at t_0+a , and it will arrive the next

station at t_0+a+a/N (next transmission starts).

 $t_0 + 1 + a$

 t_0 +1+a

 T_1 : Average time to transmit a frame, i.e. $T_1 = 1$

 T_2 : Average time to pass the token after frame transmission

N: number of stations

Q:

Max Utilization: U = ?

End of the previous transmission at t_0+1+a .

Max Utilization for Ring LAN

- Define
 - T_1 : Average time to transmit a frame, i.e. $T_1 = 1$
 - T_2 : Average time to pass the token after frame transmission
- Max Utilization: $U = T_1/(T_1+T_2)$
- 2 cases
- Case 1: *a*<1 (frame longer than ring)
 - T_2 = time to pass token to the next station = a/N
- Case 2: *a*>1 (frame shorter than ring)
 - T_2 = sender wait for frame returns after transmission = a–1+a/N

$$U = \begin{cases} \frac{1}{1+a/N} & a < 1\\ \frac{1}{a+a/N} & a > 1 \end{cases}$$

Slotted ALOHA

- All frames have same size
- Time is uniformly slotted
- Nodes are synchronized
- Transmission begins at slot boundary
- Frames either miss or overlap totally

Operation:

- N nodes with many frames to send
- Each transmits in each slot with probability *p* until success
- Q:
- Max Utilization: U =?

Slotted ALOHA

- Suppose:
 - N nodes with many frames to send, each transmits in slot with probability p
- Probability of successful transmission
 - One node has success in a slot $= p(1-p)^{N-1}$
 - Any node has a success $A = Np(1-p)^{N-1}$
- Maximize value of A (let A'(p)=0)

$$p = \frac{1}{N} \implies A = \left(1 - \frac{1}{N}\right)^{N-1}$$

Slotted ALOHA Efficiency

Utilization if a slot is successfully used

$$U_s = \frac{1}{1 + 2a} \approx 1 \quad (a \ll 1)$$

Since A is the rate of success slot

$$U = U_s \times A \approx \left(1 - \frac{1}{N}\right)^{N-1}$$

Let $N \to \infty$
 $U \approx e^{-1} = 0.367879$

Before data transmission, it takes a to detect collision;

After transmission, it takes a to make sure the transmission of the last bit

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

$$\lim_{x \to \infty} (1 - \frac{1}{x})^x = e^{-1}$$

Pure ALOHA

- Simpler but collision probability increases
 - Frame sent at t_0 collides with other frames sent in $[t_0-1, t_0+1]$

Suppose:

N nodes with many frames to send, each transmits in any time with probability p

Q: Max Utilization: U = ?

Pure ALOHA Efficiency

Probability of successful transmission

$$A = N \cdot P$$
 (one transmits in the slot).

P(no other node transmits in $[t_{0-1}, t_0]$ ·

P(no other node transmits in $[t_0, t_{0+1}]$

$$U \approx A = Np \cdot (1-p)^{2N-1}$$

$$\approx \frac{1}{2}(1 - \frac{1}{2N})^{2N-1} \quad (p = \frac{1}{2N})$$

$$\approx 1/(2e) = 0.183940 \quad (N \to \infty)$$

CSMA/CD

- With CSMA, collision occupies medium for duration of transmission
 - Colliding transmissions aborted once detected
- Stations listen whilst transmitting
 - 1. If medium idle, transmit; otherwise, step 2
 - 2. If busy, listen for idle, then transmit immediately
 - 3. If collision detected, send jam signal then abort
 - 4. After jam, wait random time then start from step 1

CSMA/CD (p-persistent): Max Utilization

- Contention slots end in a collision
- Contention interval is a sequence of contention slots
 - Length of a slot in contention interval is 2a
 (in worst case it takes 2a time to detect contention)
- Assume p-persistent:
 - The probability that a station attempts to transmit in a slot is p
- Q: Max Utilization: U = ?

Max Utilization for CSMA/CD (1)

Let A be the probability that some station can successfully transmit in a slot, then:

$$A = {N \choose 1} p^{1} (1-p)^{N-1} = Np (1-p)^{N-1}$$

■ In above formula, A is maximized when p=1/N, thus:

$$A = \left(1 - \frac{1}{N}\right)^{N-1}$$

Max Utilization for CSMA/CD (2)

- Probability of a contention interval with j slots $Prob[j \text{ unsuccessful attempts}] \times Prob[1 \text{ successful attempt}] = A(1-A)^{j}$
- The expected number of slots in a contention interval is then calculated as (Geometric distribution, mean=(1-p)/p):

$$\sum_{j=1}^{\infty} jA (1-A)^{j} = \frac{1-A}{A}$$

Max Utilization for CSMA/CD (3)

Maximum Utilization

$$U = \frac{\text{Frame time}}{\text{Frame time} + \text{Propagation time} + \text{Average contention interval}}$$
$$= \frac{1}{1+a+2a\frac{1-A}{A}} = \frac{1}{1+\frac{2-A}{A}a}$$

• Let $N \rightarrow \infty$, $A = (1-1/N)^{N-1} = 1/e \ (e=2.718)$

$$U = \frac{1}{1 + \frac{2 - A}{A}a} = \frac{1}{1 + (2e - 1)a} \approx \frac{1}{1 + 4.44a}$$

MAC Address and Discovery

What is MAC Address?

Medium Access Control (MAC) Address

- Numerical address associated with a network adapter
- Flat name space of 48 bits (e.g., 00-15-C5-49-04-A9 in HEX)
- Unique, hard-coded in the adapter when it is built
- Hierarchical Allocation
 - Blocks: assigned to vendors (e.g., Dell) by the IEEE
 - First 24 bits (e.g., 00-15-C5-**-**)
 - Adapter: assigned by the vendor from its block
 - Last 24 bits

Address Configuration

Default Gateway:

all packets to the IPs in the same subnet will be broadcasted;

all packets to the other IPs will be sent to the default gateway (if no other route rule is given)

Discovery

- A host is "born" knowing only its MAC address
- Must discover lots of information before it can communicate with a remote host B
 - What is my IP address?
 - What is B's IP address? (remote)
 - What is B's MAC address? (if B is local)
 - What is my first-hop router's address? (if B is not local)

...

200

我在哪儿

我要干嘛

ARP and DHCP

- Link layer discovery protocols
 - ARP → Address Resolution Protocol
 - DHCP → Dynamic Host Configuration Protocol
 - Confined to a single local-area network (LAN)
 - Rely on broadcast capability

ARP and DHCP

- Link layer discovery protocols
- Serve two functions
 - Discovery of local end-hosts
 - For communication between hosts on the same LAN
 - Bootstrap communication with remote hosts
 - What's my IP address?
 - Who/where is my local DNS server?
 - Who/where is my first hop router?

Address Configuration

- Dynamic Host Configuration Protocol
 - Defined in RFC 2131
- A host uses DHCP to discover
 - Its own IP address
 - Its netmask
 - IP address(es) for its local DNS name server(s)
 - IP address(es) for its first-hop "default" router(s)

Typical Procedure of DHCP

- The client broadcasts a DHCP-DISCOVER message on its subnet
- Each server may respond with a DHCP-OFFER message
- The client chooses one server, broadcasts a DHCP-REQUEST message including server IP
- The selected server commits the binding, responds with a DHCP-ACK message

Typical Procedure of DHCP

 The client set its configuration parameters within the DHCP-ACK

- The client relinquish the binding by a DHCP-RELEASE message
- The binding will be expired if the client does not renew (rebind) the binding before

DHCP Messages

Soft state under failure

- What happens when host XYZ fails?
 - Refreshes from XYZ stop
 - Server reclaims a.b.c.d after O(lease period)

Soft state under failure

- What happens when server fails?
 - ACKs from server stop
 - XYZ releases address after O(lease period); send new request
 - A new DHCP server can come up from a `cold start' and we are back on track in ~lease time

Soft state under failure

- What happens if the network fails?
 - Refreshes and ACKs don't get through
 - XYZ release address; DHCP server reclaims it

Are we there yet?

MAC Address Resolution Problem

User 137.196.7.23 want to Ping 137.196.7.88

Source IP: 137.196.7.23

Destination IP: 137.196.7.88

Source MAC: 71-65-F7-2B-08-53

Destination Mac: ?

- Its MAC address is needed to deliver the data
- On LAN, ARP is used get a host/router's MAC given its IP address

Address Resolution Protocol

- ARP (Address Resolution Protocol)
 - Map IP address to MAC address
 - 192.168.1.2 -> 00-15-C5-49-04-A9
 - Only works in a LAN

- Compare: DNS (domain name system)
 - Map domain name to IP address
 - Baidu.com -> 220.181.38.148

ARP Procedure

- Every host maintains an ARP table
 - List of (IP address → MAC address)

Sender

- Looks into local cache first, if none
- Constructs ARP request, insert < sender IP, sender MAC, destination IP>
- Broadcasts using MAC frame
- Caches destination's <MAC, IP> pair with timestamp

Receiver

- Checks the destination IP, if OK
- Constructs ARP reply, insert < destination IP, destination MAC>
- Sends to sender MAC using MAC frame
- Caches sender's <MAC, IP> pair with timestamp

Illustration of ARP

ARP-Request to MAC FF:FF:FF:FF:FF (Broadcast)

(129.25.10.72)

Reply: 129.25.10.11

(49:78:21:21:23:90)

Requested by: 129.25.10.72

MAC address of 129.25.10.11? Requested by: 49:72:16:08:64:14

Computer A: IP: 129.25.10.72

MAC: 49:72:16:08:64:14

Computer B: IP: 129.25.10.97

Computer C: IP: 129.25.10.81 MAC: 49:72:16:08:80:70 MAC: 49:17:92:96:96:96

What if the destination is remote?

- Look up the MAC address of the first hop router
 - 1.2.3.48 uses ARP to find MAC address for first-hop router
 1.2.3.19 rather than ultimate destination IP address
- How does the red host know the destination is not local?
 - Uses netmask (discovered via DHCP)
- How does the red host know about 1.2.3.19?

Example: PC1 Ping PC2

Key ideas in both ARP and DHCP

- Broadcasting: Can use broadcast to make contact
 - Scalable because of limited size
- Caching: remember the past for a while
 - Store the information you learn to reduce overhead
- Soft state: eventually forget the past
 - Associate a time-to-live field with the information
 - ... and either refresh or discard the information
 - Key for robustness in the face of unpredictable change

ID resolution in the networking stack

Layer	Examples	Structure	Configuration	Resolution Service
App. Layer	cse.umich.edu	Organizational hierarchy	~ manual	DNS
Network Layer	123.45.6.78	topological hierarchy	DHCP	+
Link layer	45-CC-4E-12-F0-97	vendor (flat)	hard-coded	ARP

Discovery mechanisms

- We have seen two approaches
 - Broadcast (ARP, DHCP)
 - Flooding does not scale
 - No centralized point of failure
 - Zero configuration
 - Directory service (DNS)
 - No flooding / scalable
 - Root of the directory is vulnerable (caching is key)
 - Needs configuration to bootstrap (local, root servers, etc.)

Summary

- MAC机制性能分析
 - Point-to-point link
 - Ring LAN
 - ALOHA, Slotted ALOHA
 - CSMA/CD (p-persistent)
- MAC地址发现
 - 自动地址配置: DHCP
 - MAC地址解析: ARP

Homework

■ 第5章: P8, P10, P18, P19