机器学习 课程笔记

酥雨

zusuyu@stu.pku.edu.cn

April 25, 2022

目录

1	Inequalities	2
2	VC Theory	4
3	Lagrange Duality	5
4	Boosting	6
5	PAC-Bayesian Theory 5.1 PAC-Bayesian Bound for SVM	7
6	Algorithmic Stability	9
7		11
	7.1 Clustering	11
	7.1.1 K-means	11
	7.1.2 K-means++	11
	7.2 Dimensionality Reduction	11

1 Inequalities

定理 1.1 (Markov Inequality). 如果非负随机变量 X 期望存在,则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \frac{\mathbb{E}\left[X\right]}{k}$$

进一步地, 如果 r 阶矩 $\mathbb{E}[X^r]$ 存在, 则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \min_{j \leqslant r} \frac{\mathbb{E}\left[X^{j}\right]}{j}$$

定理 1.2 (Chebyshev Inequality). 如果随机变量 X 方差存在,则对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \geqslant \varepsilon\right] \leqslant \frac{\operatorname{Var}\left[X\right]}{\varepsilon^{2}}$$

定义 1.1 (矩生成函数, Moment Generating Function, MGF). 如果随机变量 X 的任意 $n \in \mathbb{N}$ 阶矩存在,则定义其矩生成函数为

$$\psi_X(t) = \mathbb{E}\left[e^{tX}\right] = \sum_{i\geqslant 0} t^i \frac{\mathbb{E}\left[X^i\right]}{i!}$$

定理 1.3 (Chernoff Inequality).

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \inf_{t>0} e^{-tk} \psi_X(t)$$

定理 1.4. $X_1, X_2, \dots, X_n \sim \text{ i.i.d. } \mathcal{B}(1,p),$ 对于任意 $\varepsilon > 0$

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

其中 $D_B(p||q)$ 是两个 Bernoulli distribution P = (p, 1-p), Q = (q, 1-q) 之间的相对熵. 证明.

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right] = \mathbb{P}\left[\sum_{i=1}^{n}X_{i}\geqslant n(p+\varepsilon)\right]$$

$$\leqslant \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^{n}X_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\prod_{i=1}^{n}\mathbb{E}\left[\mathrm{e}^{tX_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}(p\mathrm{e}^{t}+1-p)^{n}$$

$$= \inf_{t>0}\left(\frac{p\mathrm{e}^{t}+1-p}{\mathrm{e}^{t(p+\varepsilon)}}\right)^{n}$$

通过"简单"求导,取 $t=\ln\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}$ 时上式右边取最小值,从而有

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\left(\frac{\frac{(1-p)(p+\varepsilon)}{1-p-\varepsilon}+1-p}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}=\left(\frac{\frac{1-p}{1-p-\varepsilon}}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}$$

$$=\left(\left(\frac{p}{p+\varepsilon}\right)^{p+\varepsilon}\left(\frac{1-p}{1-p-\varepsilon}\right)^{1-p-\varepsilon}\right)^{n}=e^{-nD_{B}(p+\varepsilon\|p)}$$

定理 1.5. $X_1, X_2, \dots, X_n \in [0, 1]$ 是 n 个期望相同的独立随机变量, $\mathbb{E}[X_i] = p$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到指数函数是下凸的, 根据 Jensen Inequality, 有

$$\mathbb{E}\left[\mathbf{e}^{tX}\right] \leqslant \mathbb{E}\left[X\mathbf{e}^t + (1 - X)\mathbf{e}^0\right] = p\mathbf{e}^t + 1 - p$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant (pe^{t}+1-p)$$

沿用定理 1.4 的证明即可.

定理 1.6 (Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^n p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到对数函数是上凸的, 从而函数 $f(x) = \ln(xe^t + 1 - x)$ 也是上凸的, 同样根据 Jensen Inequality, 有

$$\frac{1}{n} \sum_{i=1}^{n} \ln(p_i e^t + 1 - p_i) \leqslant \ln(p e^t + 1 - p)$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant \prod_{i=1}^{n} (p_{i}e^{t} + 1 - p_{i}) \leqslant (pe^{t} + 1 - p)^{n}$$

定理 1.7 (Additive Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^n p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}}$$

证明. 只需要证明 $D_B(p+\varepsilon||p) \ge 2\varepsilon^2$ 即可. 听说可以暴力求导.

定理 1.8 (Hoeffding Bound). X_1, X_2, \dots, X_n 是 n 个独立随机变量, $X_i \in [a_i, b_i]$, 记 $p = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^n \frac{a_i + b_i}{2}$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-\frac{2n\varepsilon^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}b_{i}-a_{i}\right)^{2}}}\leqslant\mathrm{e}^{-\frac{2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}}$$

定理 1.9 (McDiarmid Inequality). $X_1, X_2, \dots, X_n \in \mathcal{X}$ 是 n 个独立随机变量, 如果对于 $f: \mathcal{X}^n \to \mathbb{R}$ 存在常数 c_1, c_2, \dots, c_n 使得

$$|f(x_1,\cdots,x_i,\cdots,x_n)-f(x_1,\cdots,x_i',\cdots,x_n)| \leq c_i$$

对于任意 $i \in [n], x_1, \dots, x_n, x_i'$ 成立, 则对于任意 $\varepsilon > 0$, 有

$$\mathbb{P}\left[f(x_1,\dots,x_n) - \mathbb{E}\left[f(x_1,\dots,x_n)\right] \geqslant \varepsilon\right] \leqslant \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

2 VC Theory

对一个分类器 f, 通常有两种评价指标: training error $err_S(f) = \mathbb{P}_{(x,y)\in S}[y \neq f(x)]$ 与 generalization error $err_D(f) = \mathbb{P}_{(x,y)\sim D}[y \neq f(x)]$. 接下来可能会不加声明地用 S 表示从数据集 D 中 sample 出来的训练集.

称 $err_D(f) - err_S(f)$ 为分类器 f 的 generalization gap. 我们提出一致收敛 (uniformly converge) 的概念, 它表示随着训练集 S 的增大, hypothesis space F 中的所有分类器 f 的 generalization gap 都会"一致"地被 bound 住.

定理 2.1 (Uniform Convergence when $|\mathcal{F}| < \infty$). S 是从数据集 D 中随机采样的训练集, |S| = n, 有

$$\mathbb{P}\left[\forall f \in \mathcal{F}, err_D(f) - err_S(f) \geqslant \varepsilon\right] \leqslant |\mathcal{F}| e^{-2n\varepsilon^2}$$

证明. 对于某个确定的 $f \in \mathcal{F}$, 注意到 $err_S(f) = \frac{1}{n} \sum_{i=1}^n [y_i \neq f(x_i)], \mathbb{E}[y_i \neq f(x_i)] = err_D(f)$, 故根据 Chernoff Bound 有 $\mathbb{P}[err_D(f) - err_S(f) \geqslant \varepsilon] \leqslant e^{-2n\varepsilon^2}$. 再结合 Union Bound 即得结论.

定理 2.2 (VC Theorem). 对于 VC-dimension (会在接下来定义) 为 d 的 hypothesis space \mathcal{F} , 从数据集 D 中随机采样大小为 n 的训练集 S, 则

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}|err_D(f) - err_S(f)| \geqslant \varepsilon\right] \leqslant 2\left(\frac{2\mathrm{e}n}{d}\right)^d \mathrm{e}^{-cn\varepsilon^2}$$

其中 c 是常数. 或者等价地, 有至少 $1-\delta$ 的概率,

$$err_D(f) \leq err_S(f) + O\left(\sqrt{\frac{d\ln n - \ln \delta}{n}}\right)$$

对所有 $f \in \mathcal{F}$ 成立.

3 Lagrange Duality

4 Boosting

5 PAC-Bayesian Theory

定理 5.1 (PAC-Bayesian Theorem). 对于给定的 prior distribution of classifiers \mathcal{P} , 从数据集 D 中随机抽取 大小为 n 的训练集 S, 有至少 $1-\delta$ 的概率, 对于任意 distribution of classifiers \mathcal{Q} 有如下不等式成立

$$\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h)] \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[err_S(h)] + \sqrt{\frac{D_{KL}(\mathcal{Q}||\mathcal{P}) + \log(3/\delta)}{n}}$$

其中 $err_X(f)$ 表示 classifier f 在数据集 X 上的错误率,即 $\mathbb{P}_{(x,y)\in X}[y\neq f(x)], D_{KL}(\mathcal{Q}||\mathcal{P}) = \mathbb{E}_{h\sim\mathcal{Q}}\left[\ln\frac{\mathcal{Q}_h}{\mathcal{P}_h}\right]$ 为概率分布 \mathcal{Q} 与 \mathcal{P} 的 KL 散度.

引理 5.1. 对于任意在 hypothesis space \mathcal{F} 上的概率分布 \mathcal{P}, \mathcal{Q} , 以及任意函数 $f: \mathcal{F} \to \mathbb{R}$, 都有

$$\mathbb{E}_{h \sim Q}[f(h)] \leqslant \ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P})$$

证明.

RHS – LHS =
$$\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P}) - \mathbb{E}_{h \sim Q}[f(h)]$$

= $\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + \mathbb{E}_{h \sim \mathcal{Q}}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{P}_h}\right] - \mathbb{E}_{h \sim Q}[f(h)]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\frac{\mathcal{P}_h \exp(f(h))}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}}\right]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{R}_h}\right]$
= $D_{KL}(\mathcal{Q}||\mathcal{R})$
 $\geqslant 0$

其中 \mathcal{R} 也是一个 \mathcal{F} 上的概率分布, $\mathcal{R}_h = \frac{\mathcal{P}_h \exp(f(h))}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}$.

引理 5.2. 对于任意 $\delta > 0$, 有

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} \left[e^{n(err_D(h) - err_S(h))^2} \right] \geqslant 3/\delta \right) \leqslant \delta$$

证明. 先证明对于某个固定的 $h \sim \mathcal{P}$, 有

$$\mathbb{E}_{S \sim D^n} \left[e^{n(err_D(h) - err_S(h))^2} \right] \leqslant 3$$

记 $\Delta = |err_D(h) - err_S(h)|$, 根据 Chernoff bound, 有

$$\mathbb{P}_{S \sim D^n}(\Delta \geqslant \varepsilon) \leqslant 2 \exp(-2n\varepsilon^2)$$

于是

$$\mathbb{E}_{S \sim D^n} \left[e^{n\Delta^2} \right] = \int_0^{+\infty} \mathbb{P}_{S \sim D^n} \left(e^{n\Delta^2} \ge t \right) dt$$
$$= \int_1^{+\infty} \mathbb{P}_{S \sim D^n} \left(\Delta \ge \sqrt{\frac{\ln t}{n}} \right) dt + 1$$
$$\le \int_1^{+\infty} 2e^{-2\ln t} dt + 1$$
$$= 3$$

随后, 使用 Markov Inequality 得到

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \geqslant 3/\delta \right) \leqslant \frac{\mathbb{E}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \right)}{3/\delta} = \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(\mathbb{E}_{S \sim D^n} [e^{n\Delta^2}] \right)}{3/\delta} \leqslant \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(3 \right)}{3/\delta} = \delta$$

我们利用上述两个引理证明定理 5.1. 有至少 $1-\delta$ 的概率,

$$(\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h) - err_S(h)])^2 \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[\Delta^2]$$

$$= \frac{1}{n} \mathbb{E}_{h \sim \mathcal{Q}}[n\Delta^2]$$

$$\leqslant \frac{1}{n} \left(\ln \mathbb{E}_{h \sim P} \left[e^{n\Delta^2} \right] + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

$$\leqslant \frac{1}{n} \left(\ln(3/\delta) + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

其中第一行等号使用了 Cauchy Inequality, 第三行使用了引理 5.1 代入 $f(h)=n\Delta^2$, 第四行使用了引理 5.2, with probability at least $1-\delta$.

5.1 PAC-Bayesian Bound for SVM

命题 5.1. 对于任意的 distribution of classifiers Q, 令 g_Q 为一个确定性二分类器, $g_Q(x) = \operatorname{sgn}(\mathbb{E}_{h\sim Q}h(x))$, 则

$$err_D(g_Q) \leqslant 2\mathbb{E}_{h \sim Q}[err_D(h)]$$

证明. 如果 g_Q 在一个数据点 x 上出错, 则说明 Q 中至少一半的 classifier 都在 x 上出错.

考虑两个 distribution of classifiers $\mathcal{P} = \mathcal{N}(\mathbf{0}, I_d), \mathcal{Q} = \mathcal{N}(\mu \mathbf{w}, I_d)$, 其中 $\|\mathbf{w}\|_2 = 1$, μ 是缩放系数. 此时 $g_{\mathcal{Q}}$ 就是传统理解下的 linear classifier \mathbf{w} (这里不考虑常数 b).

根据定理 5.1 的结论, 我们有

$$err_D(g_Q) \leqslant 2 \left[\mathbb{E}_{h \sim Q} err_S(h) + \sqrt{\frac{D_{KL}(Q \| \mathcal{P}) + \log(3/\delta)}{n}} \right]$$

$$\begin{split} D_{KL}(\mathcal{Q}||\mathcal{P}) &= \int_{\mathbb{R}^d} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\mathbf{x} - \mu \mathbf{w}\|^2\right] \frac{1}{2} \left(\|\mathbf{x}\|^2 - \|\mathbf{x} - \mu \mathbf{w}\|^2\right) d\mathbf{x} \\ &= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\lambda \mathbf{w} + \mathbf{y} - \mu \mathbf{w}\|^2\right] \frac{1}{2} \left(\|\lambda \mathbf{w} + \mathbf{y}\|^2 - \|\lambda \mathbf{w} + \mathbf{y} - \mu \mathbf{w}\|^2\right) d\lambda d\mathbf{y} \\ &= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2 - \frac{1}{2} \|\mathbf{y}\|^2\right] \frac{1}{2} \left(\lambda^2 + \|\mathbf{y}\|^2 - (\lambda - \mu)^2 - \|\mathbf{y}\|^2\right) d\lambda d\mathbf{y} \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \frac{1}{2} (2\lambda \mu - \mu^2) d\lambda \left[\int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{(d-1)/2}} \exp\left(-\frac{1}{2} \|\mathbf{y}\|^2\right) d\mathbf{y}\right] \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] (\lambda \mu - \mu^2) d\lambda + \frac{\mu^2}{2} \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \mu d\frac{(\lambda - \mu)^2}{2} + \frac{\mu^2}{2} \\ &= \frac{\mu^2}{2} \end{split}$$

6 Algorithmic Stability

定义 6.1 (一致稳定, Uniform Stability). A 是输入训练集 $S = (z_1, \dots, z_n)$, 输出一个分类器 A(S) 的学习算法. 记 $S^i = (z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_n)$ 是与 S 只相差第 i 个数据点的相邻训练集, $\ell(\cdot, \cdot)$ 是损失函数, 即 $\ell(f, z)$ 是在分类器 f 下, 数据点 z 产生的损失.

称学习算法 A 关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性, 如果对于任意大小为 n 的训练集 S 及其相邻训练集 S^i , 以及任意数据点 z, 都有

$$|\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)| \leq \beta(n)$$

定义 6.2 (Risk & Empirical Risk). 分别类似于 test error 与 training error, 定义 risk 与 empirical risk 为

$$R(\mathcal{A}(S)) = \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z)]$$

$$R_{emp}(\mathcal{A}(S)) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}(S), z_i)$$

以下讨论中不会出现超过一个学习算法, 故简记 $\Phi(S) = R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))$.

定理 6.1 (一致稳定能说明泛化). 对于一个关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性的学习算法 \mathcal{A} , 其中 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 有

$$\mathbb{P}\left[\Phi(S) \leqslant \varepsilon + \beta(n)\right] \leqslant \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

或者等价的,有至少 $1-\delta$ 的概率下式成立

$$R(\mathcal{A}(s)) \leq R_{emp}(\mathcal{A}(s)) + \beta(n) + (n\beta(n) + M)\sqrt{\frac{2\ln(1/\delta)}{n}}$$

证明. 先证明两个引理.

引理 6.1. 假设 A 是对称的, 即对于任意 n 元置换 σ , 有 $A(\{z_1,\cdots,z_n\})=A(\{z_{\sigma_1},\cdots,z_{\sigma_n}\})$, 则

$$\mathbb{E}_S[\Phi(S)] \leqslant \beta(n)$$

证明.

$$\mathbb{E}_S[\Phi(S)] = \mathbb{E}_{S,z}[\ell(\mathcal{A}(S),z)] - \mathbb{E}_S[\ell(\mathcal{A}(S),z_1)] = \mathbb{E}_{S,S^1}[\ell(\mathcal{A}(S^1),z_1) - \ell(\mathcal{A}(S),z_1)] \leqslant \beta(n)$$

引理 6.2. 如果 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 则对于任意 S,S^i , 有

$$|\Phi(S) - \Phi(S^i)| \leqslant 2\left(\beta(n) + \frac{M}{n}\right)$$

证明. 除了 $\ell(A(S), z_i) - \ell(A(S^i), z_i')$ 一项外, 其余所有项都可以被 $\beta(n)$ -稳定性限制住.

$$\begin{split} |\Phi(S) - \Phi(S^i)| &= |R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) - R(\mathcal{A}(S^i)) + R_{emp}(\mathcal{A}(S^i))| \\ &\leqslant |R_{emp}(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S^i))| + |R(\mathcal{A}(S)) - R(\mathcal{A}(S^i))| \\ &= \frac{1}{n} |\ell(\mathcal{A}(S), z_i) - \ell(\mathcal{A}(S^i), z_i')| + \frac{1}{n} \sum_{j \neq i} |\ell(\mathcal{A}(S), z_j) - \ell(\mathcal{A}(S^i), z_j)| + \left| \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)] \right| \\ &\leqslant \frac{2M}{n} + \frac{n-1}{n} \beta(n) + \beta(n) \\ &\leqslant 2\left(\beta(n) + \frac{M}{n}\right) \end{split}$$

考虑 McDiarmid's 不等式, 把 Φ 视作一个关于 z_1, \dots, z_n 的多元函数, 则引理 6.1 与引理 6.2 分别给出了 Φ 的期望以及在相邻输入上的差的上界. 于是

$$\mathbb{P}\left[\Phi(S) \geqslant \beta(n) + \varepsilon\right] \leqslant \mathbb{P}\left[\Phi(S) - \mathbb{E}\left[\Phi(S)\right] \geqslant \varepsilon\right] \leqslant \exp\left(-\frac{2n\varepsilon^2}{\sum_{i=1}^n c_i^2}\right) = \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

7 Unsupervised Learning

前面讨论的都是监督学习. 现在我们讨论一下无监督学习. 无监督学习其实主要在做两件事情: Clustering, 以及 Dimensionality Reduction.

7.1 Clustering

对于一组 $\mathbf{x}_1,\cdots,\mathbf{x}_n\in\mathbb{R}^d$,需要把这些数据点划分成 k 个 cluster S_1,\cdots,S_k . 可以如下定义一种划分的损失函数: 记 $\mu_i=\frac{1}{|S_i|}\sum_{j\in S_i}\mathbf{x}_j$ 为第 i 个 cluster 的中心,损失函数为

$$L(\{S_1, \dots, S_k\}) = \sum_{i=1}^k \sum_{j \in S_i} \|\mathbf{x}_j - \mu_i\|^2$$

7.1.1 K-means

7.1.2 K-means++

定理 7.1. K-means++ 算法给出的损失 L 与最优解 L_{opt} 满足

$$\mathbb{E}\left[L\right] \leqslant 8(\ln k + 2)L_{opt}$$

7.2 Dimensionality Reduction