MONITORING TANAMAN CABAI HIDROPONIK DENGAN SENSOR PH, PENDETEKSI SUHU LINGKUNGAN, DAN LEVEL KETINGGIAN AIR YANG TERINTEGERASI OLEH RASPBERRY PI BERBASIS IOT

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh : MOCHAMMAD CHANDRA PERDANA 6705160101

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2021

LEMBAR PENGESAHAN

Proposal Proyek Tingkat dengan judul:

MONITORIN TANAMAN CABAI HIDROPONIK DENGAN SENSOR PH, PENDEKESI SUHU LINGKUNGAN, DAN LEVEL KETINGGIAN AIR YANG TERINTEGERASI OLEH RASPBERRY PI BERBASIS IOT

Oleh:

MOCHAMMAD CHANDRA

PERDANA 6705160101

Telah diperiksa dan disetujui untuk diajukan sebagai syarat mengambil Mata Kuliah Proyek Tingkat pada Program Studi D3 Teknologi Telekomunikasi Universitas Telkom

> Bandung, 2 Juni 2021 Menyetujui,

Pembimbing I

Pembimbing II

Asep Mulayana, S.T., MT

(NIP: 94570011)

Hartaman,ST.,M

(NIP: 14870047)

Latar Belakang

Saat ini susahnya lahan pertanian karena padatnya warga yang menimbulkan pembangunan yang lebih banyak membuat lahan pertanian semakin sedikit. Maka dari itu penting dari kita melakukkan penanaman tanaman cabai dengan cara hidroponik karena tidak memakan ruang yang terlalu luas seperti pertanian yang memakai bahan dasar tanah. Dan penyiraman tanaman secara manual membuat banyaknya keluar tenaga dan efisiensi waktu. Penyiraman tanaman yang berlebihan atau kekurangan dapat menyebabkan kematian pada tanaman itu sendiri menyebabkan kerugian pada hasil perkebunan sekitar. Laju teknologi pun semakin maju pada jaman sekarang. Kita dapat memanfaatkan teknologi dengan harapan meningkatkan hasil perkebunan menjadi lebih baik.

Hal ini diperkuat oleh Data Dinas Kabupaten Bekasi lahan pertanian menyusut sekitar 1.500 hektar per tahun, pada 2014 masih ada 52.000 hektar, sementara pada 2017 ini jumlah berkurang menjadi 48.000. Lahan- lahan pertanian ini beralih menjadi Kawasan perumahan ataupun industri. Hal ini menyebabkan kurangnya ketersediaan cabai. Dan selain kurangnya lahan pertanian adalah kegagalan dari pertanian yang ditanam. Sehingga menyebabkan harga cabai melambung tinggi. Seperti contohnya "Sebelum panen di Tuban, Kediri dan Blitar terjadi kerusakan panen 40 persen dan di Wajo Sulsel terjadi kerusakan 70 persen. Karena itu harga cabai merah besar, cabe merah keriting dan cabe rawit merah itu terjadi kenaikan harga stabil tapi tinggi," ujar Lutfi dalam konferensi pers secara virtual, Senin (15/3/2021). Banyak faktor yang mempengaruhi kegagalan panen dari pertanian cabai.

Oleh karena itu, maka dibuatlah suatu sistem yang memudahkan kita dalam bidang pertanian cabai dan mengurangi luas lahan pertanian cabai dengan menggunakan metode penanaman cabai hidroponik yang dilengkapi dengan teknologi *Internet of Things* (IoT).

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literatur terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No.	Judul Penelitian/Karya Ilmiah	Tahun	Keterangan
1.	Penyiraman Tanaman Hidroponik Otomatis Menggunakan Tenaga Surya Berbasis Mikrokontroler	2016	Alat ini dibuat dengan tujuan untuk melakukan penyiraman secara otomatis terhadap tanaman hidroponik. Alat penyiraman tanaman ini menggunakan mikrokontroler ATMega8535 sebagai interfacenya dan LED sebagai sarana indikator berapa suhu kelembapan tanah. Adapun permasalahan yang ada pada perancangan dan pembuatan alat ini adalah bagaimana merancang dan membuat alat penyiraman tanaman hidroponik otomatis menggunakan tenaga surya berbasis mikrokontroler. Cara kerja dari alat ini adalah apabila sensor telah mendeteksi kelembapan pada media tanam hidroponik maka sensor akan mengirimkan data ke mikrokontroler setelah itu mikrokontroler akan mengaktipkan logika 1 untuk mengaktifkan motor pompa penyiraman.

 Sistem Monitoring Suhu, Kelembaban, dan Pengendali Penyiraman Tanaman Hidroponik menggunakan Blynk Android

2017

Hidroponik merupakan cara bercocok tanam yang tidak menggunakan tanah sebagai media tanam, tetapi hanya menggunakan air yang mengandung nutrisi yang diperlukan tanaman. Salah satu faktor keberhasilan penanaman dengan metode ini dipengaruhi oleh bagaimana cara pemilik melakukan perawatan untuk tanamannya. Perawatan dilakukan utamanya untuk memastikan sirkulasi atau penyiraman air nutrisi tersebut diberikan sesuai waktunya dalam jumlah yang cukup. Ada saatnya pemilik tanaman hidroponik tidak berada di dekat area penanaman tersebut sehingga tidak dapat secara langsung melakukan perawatan terhadap tanamannya. Agar pemilik tanaman hidroponik tetap dapat merawat dan memantau kondisi lingkungan tanamannya meskipun jauh dari lokasi penanaman, proyek dalam skripsi ini memberikan alternatif solusi untuk mengatasi permasalahan tersebut. Alat yang dibuat dalam menggabungkan proyek ini kemampuan arduino mega sebagai sistem akuisisi data yang dilengkapi ethernet *shield* untuk

pengiriman data melalui jaringan sensor DHT11 untuk internet, membaca suhu dan kelembaban, khusus aplikasi android *blynk* sebagai alat bantu pemantuan, dan RTC untuk pewaktuan secara real time. Arduino Mega juga dihubungkan dengan *relay* untuk mengatur penyalaan pompa penyiram atau sirkulator air. Berdasarkan pengujian dilakukan yang didapatkan bahwa setiap modul dapat bekerja dengan baik sesuai fungsnya. Dengan kualitas jaringan sesuai pengujian (delay rata-rata ke server blynk 1242ms, diperoleh proses pengiriman perintah dan ekseskusi penyiraman air dan pengiriman data lingkungan memerlukan waktu sekitar 1-2 menit. 3. Sistem Monitoring Tanaman 2018 Sistem Monitoring Tanaman Hidroponik dengan Raspberry Pi Hidroponik dengan Raspberry Berbasi IoT Berbasi IoT oleh Era Desti Ramayani Hidroponik adalah salah satu metode bercocok tanam dengan menggunakan air. Air sebagai solusi untuk tersebut menggantikan tanah sebagai media tanamnya. Hidroponik juga sebagai solusi di dalam dunia pertanian terutama di wilayah yang memiliki

keterbatasan hijau. ruang hidroponik Keberhasilan bergantung pada bagaimana cara penggiat hidroponik merawat tanamannya. Semakin berkembangnya teknologi, para penggiat hidoponik dapat memanfaatkan teknologi Internet of Things (IoT). Dalam tahap perancangan sistem terdapat langkah – langkah yang dilakukan yaitu menganalisis kebutuhan sistem, sistem. merancang implementasi sistem, dan pengujian. Berdasarkan hasil dari implementasi yang telah dilakukan Monitoring mengenai Sistem Tanaman Hidroponik dengan Rasberry Pi Berbasis IoT dapat disimpulkan bahwa sistem ini dapat diterapkan dalam dunia pertanian untuk membantu aktifitas rutin yang dilakukan terhadap tanaman. Terciptanya sistem ini akan memudahkan untuk mendokumentasikan segala aktivitas yang dilakukan terhadap tanaman. Sistem ini juga memberikan keuntungan untuk memberikan informasi dapat secara real time, sirkulasi air yang cukup kapan waktu yang tepat untuk dialirkan dan disertai dengan

kamera untuk dapa pemantauan dari terhadap kondisi hidroponik. Kata ku	jarak jauh
terhadap kondisi hidroponik. Kata ku	· ·
hidroponik. Kata ku	tanaman
Of Thing, Hidroponia	nci : Internet
	k, Rasberry Pi
4. Realisasi Sistem Monitoring pada 2018 Tanaman hidroponi	k merupakan
Budidaya Tanaman Hidroponik sebuah solusi unt	uk budidaya
Berbasis IoT dan Web dengan tanaman tanpa mem	-
Perangkat ESP8266 NodeMCU yang luas dise	rtai ramah
lingkungan. Namu	n, kegiatan
budidaya tersebut dip	erlukan suatu
perawatan yang teru	ıkur dan ter-
monitoring sehingga	menghasilkan
kualitas yang b	aik. Sistem
controlling dan mo	nitoring pada
tanaman hidroponik	sudah banyak
dikembangkan, nan	nun sebagian
besar sistem ters	sebut hanya
mengetahui salah sa	atu parameter
saja tanpa diikut	i parameter
penting lainnya da	n selain itu
masih banyak y	ang belum
terintegrasi denga	an internet
sehingga tidak dap	at dilakukan
secara jarak jauh.	Untuk itu
diperlukan sebuah	sistem untuk
melakukan perawata	n dalam jarak
jauh secara real-t	ime dengan
mengimplementasika	n teknologi
internet of things p	ada budidaya
tanaman. Perawatan	-
jauh secara real-tim	e, diperlukan
konektivitas internet	dan platform

antarmuka seperti web yang dapat daikses melalui komputer maupun smartphone. Sistem ini pun memiliki sensor suhu, kelembapan, TDS, dan pH. Data yang diperoleh dari sensor-sensor tersebut diintegrasikan dengan mikrokontroler NodeMCU dan dapat diakses dengan konektivitas internet melalui web. Bagian kontrol pada perawatan tanaman dapat dilakukan secara otomatis sesuai jadwal yang telah ditentukan ataupun secara manual. Tujuan dari perancangan sistem ini adalah terciptanya sebuah sistem yang dapat bekerja sebagai alat yang membantu perawatan budidaya tanaman hidroponik agar memudahkan masyarakat berkomunikasi dengan tanamannya hanya dengan mengakses web dan konektivitas internet. Dengan adanya sistem ini diharapkan mampu meningkatkan budidaya tanaman dengan menerapkan sistem yang terukur dari parameterparameter yang ada dan sesuai dengan kebutuhan tanaman hidroponik yang dibudidayakan

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan sistem pemantauan pertumbuhan cabai yang berbasis ioT. Dimana yang dapat di monitoring berupa suhu lingkungan, kadar pH, dan ketinggian air.

Gambar 1. Rancangan Sistem Monitoring

Daftar Pustaka

- [1] S. Lestari, "BBC News," 29 Agustus 2017. [Online]. Available: https://www.bbc.com/indonesia/indonesia-41078646.
- [2] C. Iswinarno, "Suara.com," 15 Maret 2021. [Online]. Available: https://www.suara.com/bisnis/2021/03/15/161953/harga-cabai-melambung-tinggimendag-sebut-gara-gara-panennya-rusak?page=all.
- [3] Y. Arafat, Penyiraman Tanaman Hidroponik Otomatis Menggunakan, Palembang: Politeknik Negeri Sriwijaya, 2015.
- [4] W. A. Prayitno, Sistem Monitoring Suhu, Kelembaban, dan Pengendali Penyiraman Tanaman Hidroponik menggunakan Blynk Android, Malang: Universitas Brawijaya, 2017.
- [5] E. R. Ramayani, Sistem Monitoring Tanaman Hidroponik dengan Raspberry, Lampung: Universitas Lampung, 2018.
- [6] M. F. Nurmilawati, Realisasi Sistem Monitoring pada Budidaya Tanaman Hidroponik Berbasis ioT dan Web dengan Perangkat ESP8266 NodeMCU, Bandung: Politeknik Negeri Bandung, 2018.

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Hander): 6705160101 Dosen Wali : AIM / ARIS HARTAMAN Program Studi : D3 Teknologi Telekomunikasi

Nama : MOCHAMMAD CHANDRA PERDANA

2016/2017 - GANJIL

10/2011 0/111012					
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	D	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	С	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С	
DUH1A2	LITERASI TIK	ICT LITERACY	2	Α	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
	Jumlah SKS	20			
	IPS	2.5			

2016/2017 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	Е	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	Е	

Jumlah SKS	21	
IPS	1.26	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	E	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	ВС	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	С	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	D	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В	
	Jumlah SKS	21			
	IPS	1.26			

2016/2017 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2017/2018 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	E	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	E	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	E	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	С	
	20				
	IPS	1.43			

2017/2018 - GENAP

Kode Mata Kuliah Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
------------------------------	--------------------------------	-----	-------	--------

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	E	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В	
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	С	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	С	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	ВС	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	В	
	Jumlah SKS	21			
	IPS	2.5			

2017/2018 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2018/2019 - GANJIL

2018/2019 - GANJIL							
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status		
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	В			
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ			
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	В			
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	E			
DTH3C3	KEAMANAN JARINGAN	NETWORK SECURITY	3	ВС			
DTH3D3	TEKNIK SWITCHING BROADBAND	SWITCHING TECHNIQUES BROADBAND	3	С			
DTH3E2	BENGKEL JARINGAN DAN MULTIMEDIA	NETWORKING AND MULTIMEDIA WORKSHOP	2	С			
	Jumlah SKS						
	IPS						

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А	
	20				
IPS			2.4		

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	E	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	E	
DMH3A6	MAGANG	APPRENTICE	6	E	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	E	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	Е	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	E	
LUH1A2	BAHASA INDONESIA	INDONESIAN	2	E	
Jumlah SKS			21		
IPS			0		

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS				
IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	Т	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	E	
DTH3A2	BAHASA INGGRIS TEKNIK II (ACADEMIC PRESENTATION AND COMMUNICATION)	ENGLISH TECHNIQUES II (ACADEMIC PRESENTATION AND COMMUNICATION)	2	Е	
DTH3B3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION NETWORKS	3	Т	
	Jumlah SKS				
IPS			0		

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH3E2	BENGKEL JARINGAN DAN MULTIMEDIA	NETWORKING AND MULTIMEDIA WORKSHOP	2	E	
DTH3F3	KOMUNIKASI NIRKABEL BROADBAND	BROADBAND WIRELESS COMMUNICATIONS	3	E	
LUH1A2	BAHASA INDONESIA	INDONESIAN	2	Е	
Jumlah SKS			17		
IPS			0		

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	E	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	E	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	E	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	Е	
	Jumlah SKS				
IPS			0.62		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	В	
VTI2B3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	В	
VTI2E3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	С	

Jumlah SKS	19	
IPS	2.74	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	D	
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	С	
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А	
VTI3A3	SISTEM KOMUNIKASI BERGERAK	MOBILE COMMUNICATION SYSTEMS	3	А	
Jumlah SKS			19		
IPS			2.74		

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VPI3GC	MAGANG	APPRENTICE	12		
VTI2L3	JARINGAN DATA BROADBAND	BROADBAND TELECOMMUNICATION NETWORKS	3		
VTI2M2	DASAR KOMUNIKASI MULTIMEDIA	BASIC MULTIMEDIA COMMUNICATIONS	2		
VTI3F4	PROYEK AKHIR	FINAL PROJECT	4		
Jumlah SKS			21		
	IPS				

2020/2021 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2021/2022 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

 Tingkat I
 : 41 SKS
 Belum Lulus
 IPK : 2.65

 Tingkat II
 : 97 SKS
 Belum Lulus
 IPK : 2.29

 Tingkat III
 : 123 SKS
 Belum Lulus
 IPK : 2.08

 Jumlah SKS
 : 91 SKS
 IPK : 2.08

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Juni 2021 11:09:06 oleh MOCHAMMAD CHANDRA PERDANA