nf-ncov-voc 1 of 109

Surveillance report

Surveillance generated by nf-ncov-voc for Delta variant

Date

This report is generated on 2022-02-14 using 184213 number of genomes collected between 2020-02-25 and 2022-01-09

Pango Lineages

Pango Lineages in this report ['AY.1', 'AY.10', 'AY.100', 'AY.101', 'AY.102', 'AY.103', 'AY.104', 'AY.105', 'AY.106', 'AY.107', 'AY.108', 'AY.109', 'AY.110', 'AY.111', 'AY.112', 'AY.113', 'AY.114', 'AY.116', 'AY.1161', 'AY.117', 'AY.118', 'AY.118', 'AY.119', 'AY.119.1', 'AY.119.2', 'AY.120', 'AY.120.1', 'AY.121', 'AY.121', 'AY.121', 'AY.122', 'AY.122.1', 'AY.124.1', 'AY.125', 'AY.126', 'AY.127', 'AY.127.1', 'AY.128', 'AY.129', 'AY.13', 'AY.133', 'AY.14', 'AY.15', 'AY.16', 'AY.16.1', 'AY.17', 'AY.18', 'AY.19', 'AY.2', 'AY.20', 'AY.23', 'AY.24', 'AY.25', 'AY.25.1', 'AY.26', 'AY.27', 'AY.28', 'AY.29', 'AY.29.1', 'AY.3', 'AY.3.1', 'AY.3.2', 'AY.3.3', 'AY.32', 'AY.33', 'AY.34', 'AY.34.1', 'AY.35', 'AY.36', 'AY.37', 'AY.38', 'AY.39', 'AY.39.1', 'AY.4', 'AY.4.2', 'AY.4.2.1', 'AY.4.2.2', 'AY.4.3', 'AY.4.4', 'AY.4.5', 'AY.4.6', 'AY.4

Indicator

This table contains key indicators identified

Indicator	Sub-categories from POKAY	Mutations
Transmissibility between hu-	transmissibility	p.D614G, p.E484Q, p.L452R, p.P681R
mans		
Infection Severity	ACE2 receptor binding affinity, viral load, outcome haz-	p.D614G, p.E484K, p.E484Q, p.H69del,
	ard ratio	p.K417N, p.L452R, p.L5F, p.P26S,
		p.S494P, p.T95I, p.V70del
Immunity after natural infection	convalescent plasma escape, reinfection, humoral response	p.D614G, p.E484K, p.E484Q, p.G446V,
	durability	p.H69del, p.K417N, p.K458N, p.L452R,
		p.P1162S, p.S494P, p.S514F, p.V70del
Vaccines	vaccine neutralization efficacy	p.D614G, p.E484K, p.E484Q, p.K417N,
		p.L452R
Monoclonal antibodies	monoclonal antibody serial passage escape, pharmaceuti-	p.E484K, p.E484Q, p.G142D, p.G446V,
	cal effectiveness	p.K417N, p.L452R, p.P251L, p.R158G,
		p.S255F, p.S443F, p.S494P
Diagnostics	clinical indicators, antigenic test failure, symptom preva-	
	lence	

Mutation Significance

This table contains key functional impacts of mutations identified

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.T95I	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.33x decrease in binding (KD) relative to D614G.	AY.92	Gong et al. (2021)	8	TCCAC	GCCAT,TC	C.A.Tin
p.T95I	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.92	Gong et al. (2021)	8	TCCAC	GCCAT,TC	C A Tn

Contact Us CIDGOH ©

nf-ncov-voc 2 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.T95I	vaccinee plasma binding	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.92	Gong et al. (2021)	8	TCCAC	GCCAT,TC	C.A.Th
p.T95I	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.33x decrease in binding (KD) relative to D614G.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.105, AY.1, AY.126, AY.114, AY.113, AY.87, AY.104, AY.43.4, AY.125, AY.127.1, AY.20, AY.4.5, AY.119.1, AY.78, AY.117, AY.129, AY.119.2, AY.119.2, AY.42, AY.121, AY.110, AY.124.1, AY.110, AY.4.3, AY.34, AY.34.1, AY.39, AY.121.1, AY.39, AY.42, AY.44, AY.106, AY.29, AY.42, AY.49, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.416, AY.40, AY.416, AY.416, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.116, AY.117, AY.118, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.128, AY.120, AY.77, AY.1101, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.101,	Gong et al. (2021)	4906	C	T	nan

nf-ncov-voc 3 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.T95I	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.109, AY.105, AY.1, AY.126, AY.114, AY.113, AY.87, AY.104, AY.43.4, AY.125, AY.119.1, AY.20, AY.419.1, AY.129, AY.117, AY.129, AY.1110, AY.121, AY.110, AY.121, AY.106, AY.29, AY.4.2, AY.39, AY.4.3, AY.39, AY.121, AY.106, AY.291, AY.106, AY.116, AY.118, AY.120, AY.108, AY.127, AY.118, AY.128, AY.36, AY.4.4, AY.120, AY.77, AY.107, AY.107, AY.101	Gong et al. (2021)	4906	C	Т	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.T95I	vaccinee binding plasma	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.109, AY.105, AY.1, AY.126, AY.114, AY.113, AY.87, AY.104, AY.43.4, AY.125, AY.127.1, AY.20, AY.4.5, AY.119.1, AY.78, AY.117, AY.129, AY.119.2, AY.42, AY.121, AY.110, AY.124.1, AY.112, AY.4.3, AY.4.3, AY.34.1, AY.39, AY.4.4, AY.39, AY.4.4, AY.106, AY.29, AY.4.2, AY.4.3, AY.4.4, AY.106, AY.29, AY.4.5, AY.29, AY.4.6, AY.116, AY.117, AY.100, AY.108, AY.127, AY.118, AY.128, AY.36, AY.128, AY.36, AY.44, AY.120, AY.77, AY.107, AY.107, AY.101	Gong et al. (2021)	4906	С	Т	nan
p.P1162S	convalescent plasma escape	Escape mutant found after in passage in plasma pool of 26 convalescents mean 1.5 post symptom onset.	AY.4, AY.94	Schmidt et al. (2021)	316	C	T	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Gong et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.1x decrease in binding (KD) relative to D614G.	AY.9	Gong et al. (2021)	18	GGA	TGG,GGG	nan
p.D614G	ACE2 receptor binding affinity	In four cell lines (including 293T-hACE2 cells), this mutation combination increases infectivity vs D614G alone	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Li et al. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	convalescent plasma binding	2.15x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Gong et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.9	Gong et al. (2021)	18	GGA	TGG,GGG	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	convalescent plasma escape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Wilhelm et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	humoral response durability	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3), i.e. with a 9 month interval. Both cases were mild. No significant differences in the neutralizing capacity of the two linages were observed in 4 sera taken (1 pre-reinfection, three post-reinfection). Neutralizing antibody titres (IC50) before and immediately after re-infection were <300 against both strains, and jumped >7x upon re-infection. Viral titres were also higher in the second case. Second case also includes N:p.A220V	AY.67, AY.28, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Brehm et al. (2021)	14408	GGA	TGG,GGG	nan
p.D614G	immunosuppression variant emergence	Studying 94 COVID-19 extended infection cases with genomics April 1 to October 17, 2020, one case developed 23 mutations in a 19 day period, including this combination in Spike.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Landis et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	reinfection	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3). Both cases were mild. Second case also includes N:p.A220V	AY.67, AY.28, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Brehm et al. (2021)	14408	GGA	TGG,GGG	nan
p.D614G	syncytium forma- tion	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Kim et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	tissue specific neutralization	The nasal mucosa of Pfizer vaccinees with time course collection was evaluated against VSV pseudotypes: results (only one nasal swab from different previously infected vacinee neutralizing at weeks 3 and 6 against B.1.1.7 and D614G) suggest that vaccinees probably do not elicit an early humoral response detectable at mucosal surfaces even though sera neutralization was observed. They strengthen the hypothesis that some vaccines may not protect against viral acquisition and infection of the oral–nasal region, but may prevent severe disease associated with viral dissemination in the lower respiratory tract.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Planas et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	Circulating variant shown in vitro to not have major defects or enhancement of cell surface protein traffick- ing (i.e. Spike cleavage or fusion required for cell en- try)	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Barrett et al. (2021)	14621	GGA	TGG,GGG	nan

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	trafficking	The increased transduction with Spike D614G ranged from 1.3- to 2.4-fold in Caco-2 and Calu-3 cells expressing endogenous ACE2 and from 1.5-to 7.7-fold in A549ACE2 and Huh7.5ACE2 overexpressing ACE2. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, the G614 variant is more resistant to proteolytic cleavage, suggesting a possible mechanism for the increased transduction.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Daniloski et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Kim et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	extasciitilde4x more efficient S2 domain cleavage compared to wild type in Caco-2 cells, mid-range of three cell line tested (Vero and Calu-3).	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Kim et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	Among S variants tested, the D614G mutant shows the highest cell entry (ex- tasciitilde3.5x wild type), as supported by structural and binding analyses.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Ozono et al. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Tada et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	trafficking	We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than wild type (extasciitilde9-fold). This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Zhang et l. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	transmissibility	Increased infectivity of the B.1.617 spike was at- tributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Tada et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	vaccine neutralization efficacy	Pseudotyped D614G virus has reduced neutralization activity vs wild type: 1.2x (37 sera Pfizer median 9 days post 2nd dose, 37 sera Moderna median 18 days post 2nd dose). This was NOT significant by ANOVA.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Garcia- Beltran et al. (2021)	14621	GGA	TGG,GGG	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccine neutralization efficacy	Using a lentivirus virus pseudotyped with D614G Spike, sera from vaccinated individuals who received the second dose (9-11 days post-second dose of Pfizer) exhibited a robust neutralizing potential, with a mean NT50 value of 99,000. This was an average of a 2-fold increase, relative to sera drawn from the individuals who received one dose of vaccination—mean NT50 dilution of 51,300. Importantly, a 6-fold increase in mean NT50 dilution was obtained when sera from the first vaccination dose was compared to convalescent sera from cohort with severe disease (NT50 51,000 vs 8,700) 21 to 63 days post-onset.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Kuzmina et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	vaccine neutraliza- tion efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by 18 vaccinee sera (BNT162b2 and mRNA1273).	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Wilhelm et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	vaccinee plasma binding	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Gong et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	vaccinee plasma binding	1.23x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.9	Gong et al. (2021)	18	GGA	TGG,GGG	nan
p.D614G	viral load	Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Plante et al. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	virion structure	Estimated free energy change (ddG) for this variant is 2.5 kcal/mol (i.e. stabilizing relative to wild type)	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Spratt et al. (2021)	14621	GGA	TGG,GGG	nan
p.D614G	virion structure	Negative stain EM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Weissman et al. (2020)	14621	GGA	TGG,GGG	nan

nf-ncov-voc 8 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	virion structure	CryoEM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Yurkovetskiy et al. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	virion structure	Based on pseudotyped virus experiments, D614G may increase infectivity by assembling more func- tional S protein into the virion.	AY.67, AY.28, AY.33, AY.38, AY.27, AY.37, AY.58, AY.46, AY.9, AY.59	Zhang et al. (2020)	14621	GGA	TGG,GGG	nan
p.D614G	ACE2 receptor binding affinity	This variant appears twice in the experiments, with slightly different affinities (both extasciitilde1.2x decrease in binding relative to D614G) using flow cytometry and ACE2 ectodomains-Fc portion IgG complex.	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.51x increase in binding (KD) relative to D614G, mostly due to decreased in "off-rate" a.k.a. dissociation rate (Kdis).	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.5x decrease in binding (KD) relative to D614G.	AY.2, AY.1	Gong et al. (2021)	10	A	G	nan

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 9 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127.1, AY.2, AY.117, AY.65, AY.39, AY.121, AY.16.1, AY.4.7, AY.34, AY.65, AY.39, AY.121.1, AY.16.1, AY.65, AY.39, AY.121.1, AY.16.1, AY.65, AY.39, AY.121.1, AY.16.1, AY.66, AY.29.1, AY.133, AY.39.1, AY.62, AY.116.1, AY.66, AY.120, AY.116, AY.120, AY.116, AY.120, AY.116, AY.120, AY.116, AY.43, AY.44, AY.45, AY.57, AY.85, AY.103, AY.44, AY.45, AY.57, AY.85, AY.103, AY.74, AY.16, AY.116, AY.116, AY.120, AY.120, AY.140, AY.42, AY.46.1, AY.46.4, AY.42.2, AY.40, AY.42, AY.46.1, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.46.1, AY.46.4, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.49, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.49, AY.40, AY.410, AY.410, AY.410, AY.42, AY.40, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.44, AY.45, AY.40, AY.410, AY.42, AY.410, AY.42, AY.44, AY.45,	Gong et al. (2021)	53510	Allele	CIDGOH ©	Frequency nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant combination (representing lineage B.1.617) showed a 1.85x increase in binding (KD) relative to D614G. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	17	A	G	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.1x decrease in binding (KD) relative to D614G.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.6	Gong et al. (2021)	42	A	G	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.58x increase in binding (KD) relative to D614G.	AY.4.3	Gong et al. (2021)	1	A	G	nan
p.D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.33x decrease in binding (KD) relative to D614G.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.105, AY.105, AY.114, AY.113, AY.87, AY.104, AY.43.4, AY.125, AY.127.1, AY.20, AY.4.5, AY.119.1, AY.78, AY.119.1, AY.129, AY.119.2, AY.1110, AY.124.1, AY.110, AY.124.1, AY.110, AY.124.1, AY.110, AY.124.1, AY.110, AY.121.1, AY.39, AY.111, AY.4.2, AY.4.3, AY.39.1, AY.4.3, AY.39.1, AY.4.3, AY.116, AY.117, AY.100, AY.100, AY.108, AY.118, AY.128, AY.127, AY.118, AY.128, AY.127, AY.118, AY.128, AY.127, AY.117, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.101, AY.92	Gong et al. (2021)	5882	A	G	nan

nf-ncov-voc 11 of 109

D.101.1G for all the control blands of the c
AY.112, Contact Us CIDGOH®

nf-ncov-voc 12 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	convalescent plasma binding	1.42x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	convalescent plasma binding	1.33x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	convalescent plasma binding	2.16x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.2, AY.1	Gong et al. (2021)	10	A	G	nan

nf-ncov-voc 13 of 109

Debtid convolution plasma binding (cabuse to Debtid alone) by 5 plasma cube leads 8 ments posts symptom-conset. AY 30, AY 43, AY 35, AY 39, AY 44, AY 50, A
AY.120.1, AY.120, AY.25, AY.94, AY.101, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.110, AY.68,

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	convalescent plasma binding	This variant combination (representing lineage B.1.617) showed a 1.22x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 8 months postsymptom-onset. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	17	A	G	nan
p.D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptom- onset.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.6	Gong et al. (2021)	42	A	G	nan
p.D614G	convalescent plasma binding	1.08x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.4.3	Gong et al. (2021)	1	A	G	nan
p.D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.109, AY.105, AY.1, AY.126, AY.114, AY.113, AY.87, AY.104, AY.43.4, AY.125, AY.127.1, AY.20, AY.4.5, AY.119.1, AY.78, AY.117, AY.129, AY.119, AY.110, AY.124, AY.110, AY.124, AY.110, AY.124, AY.110, AY.124, AY.111, AY.112, AY.4.2, AY.4.3, AY.34, AY.39, AY.4.3, AY.34, AY.39, AY.4.3, AY.39, AY.4.3, AY.39, AY.121.1, AY.4.4, AY.106, AY.29, AY.4.8, AY.4.8, AY.4.8, AY.4.8, AY.4.8, AY.4.8, AY.4.8, AY.16, AY.116, AY.118, AY.120, AY.120, AY.118, AY.120, AY.118, AY.120, AY.177, AY.118, AY.120, AY.77, AY.107, AY.107, AY.101, AY.92	Gong et al. (2021)	5882	A	G	nan

Contact Us $${\rm CIDGOH}\,^{\odot}$$

nf-ncov-voc 15 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	convalescent plasma escape	Pseudotyped viruses for B.1.618 was 2.5-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618. [details on the convalescent patient sera collection are not abundantly clear in the preprint]	AY.77	Tada et al. (2021)	2	A	G	nan
p.D614G	convalescent plasma escape	Pseudotyped viruses for B.1.617 was 2.3-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617. [details on the convalescent patient sera collection are not abundantly clear in the preprint]	AY.98, AY.35, AY.87	Tada et al. (2021)	17	A	G	nan

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 16 of 109

Depth Allele	Allele	Alternate Frequency
Depth Allele	Allele	

<u>nf-ncov-voc</u> 17 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Allele	Alternate Allele	Alternate
					Depth			Frequency
p.D614G	humoral response	27yo female nurse rein-	AY.4.2.1,	Brehm et al.	11127	A	G	nan
	durability	fected in December 2020	B.1.617.2,	(2021)				
		(B.1.177) after initial infec-	AY.75.2,					
		tion in March 2020 (B.3),	AY.55, AY.47,					
		i.e. with a 9 month inter-	AY.61, AY.9.2,					
		val. Both cases were mild.	AY.119.1,					
		No significant differences	AY.2, AY.75,					
		in the neutralizing capac-	AY.64, AY.68,					
		ity of the two linages were	AY.4.2.2,					
		observed in 4 sera taken	AY.65, AY.4.2,					
		(1 pre-reinfection, three	AY.57, AY.26,					
		post-reinfection). Neu-	AY.74,					
		tralizing antibody titres	AY.133,					
		(IC50) before and imme-	AY.62,					
		diately after re-infection	AY.60, AY.24,					
		were <300 against both	AY.73, AY.10,					
		strains, and jumped >7x	AY.9.2.1,					
		upon re-infection. Viral	AY.72, AY.53,					
		titres were also higher in	AY.70 AY.70					
		the second case. Sec-	111.10					
		ond case also includes						
		N:p.A220V						I

nf-ncov-voc 18 of 109

			_		Depth	Allele	Allele	Frequency
Mutations p.D614G	Sub-category immunosuppression variant emergence	Studying 94 COVID-19 extended infection cases with genomics April 1 to October 17, 2020, one case developed 23 mutations in a 19 day period, including this combination in Spike.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.17, AY.19, AY.125, AY.110, AY.125, AY.110, AY.125, AY.111, AY.125, AY.121, AY.121, AY.124, AY.125, AY.121, AY.124, AY.125, AY.121, AY.126, AY.121, AY.126, AY.121, AY.121	Citation Landis et al. (2021)	Sequence Depth 53511	Reference Allele A	Alternate Allele G	Alternate Frequency nan
			AY.71, AY.49, AY.116, AY.13, AY.120.1,					
		Co	AY.68, AY.112, ontact Us AY.5.3,				CIDGOH [©]	

nf-ncov-voc 19 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	reinfection	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3). Both cases were mild. Second case also includes N:p.A220V	AY.4.2.1, B.1.617.2, AY.75.2, AY.55, AY.47, AY.61, AY.9.2, AY.119.1, AY.2, AY.75, AY.64, AY.68, AY.4.2.2, AY.57, AY.26, AY.74, AY.133, AY.62, AY.60, AY.24, AY.73, AY.10, AY.9.2.1, AY.72, AY.53, AY.70	Brehm et al. (2021)	11127	A	G	nan

nf-ncov-voc 20 of 109

p.D614G syncytium formation with VSV pseudotyped virus. Slight increase in Vero cellcell membrane fusion assay under infection with VSV pseudotyped virus. Slight increase in Vero cellcell membrane fusion assay under infection with VSV pseudotyped virus. AY.35, AY.31, AY.51, AY.44, AY.45, AY.19, AY.45, AY.19, AY.44, AY.43, AY.106, AY.29, AY.45, AY.19, AY.48, AY.60, AY.24, AY.73, AY.100, AY.21, AY.100, AY.108, AY.100, AY.108, AY.100, AY.108, AY.122, AY.48, AY.60, AY.48, AY.60, AY.48, AY.60, AY.48, AY.60, AY.49, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.119, AY.82, AY.47, AY.56, AY.113, AY.48, AY.191, AY.119, AY.82, AY.119, AY.82, AY.119, AY.125, AY.117, AY.125, AY.117, AY.125, AY.117, AY.125, AY.117, AY.125, AY.127, AY.48, AY.127, AY.48, AY.119, AY.125, AY.117, AY.125, AY.117, AY.125, AY.117, AY.125, AY.127, AY.48, AY.119, AY.125, AY.127, AY.125, AY.125, AY.127, AY.125, AY.127, AY.125, AY.125, AY.127, AY.125,
MY 2. AY 117 AY 7.5, Y 293, AY 1241, AY 1241, AY 1241, AY 16-1, AY 47, AY 344, AY 65, AY 39, AY 1211, AY 29-1, AY 29-1, AY 133, AY 39-1, AY 62, AY 10, AY 62, AY 116-1, AY 76, AY 128, AY 98-1, AY 148, AY 126, AY 128, AY 198-1, AY 198-1, AY 46-6, AY 48, AY 196, AY 197-2, AY 116, AY 106, AY 114, AY 99-2, AY 116, AY 107, AY 108, AY 114, AY 99-2, AY 107, AY 48, AY 49-2, AY 48, AY 49-3, AY 48, AY 49-4, AY 49-

nf-ncov-voc 21 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	tissue specific neutralization	The nasal mucosa of Pfizer vaccinees with time course collection was evaluated against VSV pseudotypes: results (only one nasal swab from different previously infected vacinee neutralizing at weeks 3 and 6 against B.1.1.7 and D614G) suggest that vaccinees probably do not elicit an early humoral response detectable at mucosal surfaces even though sera neutralization was observed. They strengthen the hypothesis that some vaccines may not protect against viral acquisition and infection of the oral—nasal region, but may prevent severe disease associated with viral dissemination in the lower respiratory tract.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127, AY.4.6, AY.121, AY.125, AY.121, AY.126, AY.121, AY.126, AY.121, AY.121, AY.126, AY.29.1, AY.133, AY.39.1, AY.62, AY.111, AY.126, AY.29.1, AY.128, AY.98.1, AY.46.6, AY.128, AY.120.1, AY.46.6, AY.48, AY.126, AY.128, AY.98.1, AY.46.6, AY.128, AY.114, AY.46.6, AY.128, AY.126, AY.129, AY.116, AY.128, AY.120, AY.120, AY.120, AY.120, AY.45, AY.45, AY.47, AY.40, AY.42, AY.46, AY.41, AY.45, AY.45, AY.47, AY.40, AY.42, AY.46, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.45, AY.46, AY.41, AY.40, AY.42, AY.41, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, A	Planas et al. (2021)	Depth 53511	A	CIDGOH ©	nan

nf-ncov-voc 22 of 109

D.D614G trafficking Circulating variant shown in vitro to not have major defects or enhancement of cell surface protein trafficking (i.e. Spike cleavage or fusion required for cell entry) AY.23, B.1.617.2, AY.3.2, AY.4.5, AY.9.9, AY.4.5, AY.19.2, AY.4.5, AY.19.2, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.4.8, AY.60, AY.24, AY.73, AY.64, AY.73,	rrequem	Allele	Allele	Depth				I
AY 100. AY 100. AY 100. AY 118, AY 121, AY 118, AY 127, AY 13, AY 14, AY 14, AY 15, AY 14, AY 16, AY 111, AY 110, AY 14, AY 10, AY 14, AY 13, AY 121, AY 122, AY 131, AY 131, AY 131, AY 132, AY 133, AY 143, AY 134,	Frequent	CIDGOH ©		Depth 53511	B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.117, AY.2, AY.117, AY.25, AY.127, AY.4, AY.119, AY.125, AY.121, AY.124, AY.125, AY.121, AY.124, AY.16.1, AY.47, AY.34, AY.19, AY.121, AY.16.1, AY.47, AY.39, AY.121, AY.122, AY.116.1, AY.46, AY.75, AY.116, AY.128, AY.99.1, AY.120, AY.128, AY.98.1, AY.46.6, AY.48, AY.120, AY.120, AY.114, AY.9.2, AY.114, AY.9.2, AY.114, AY.9.2, AY.17, AY.87, AY.40, AY.42, AY.40, AY.42, AY.40, AY.42, AY.43, AY.44, AY.45, AY.57, AY.85, AY.103, AY.116, AY.71, AY.49, AY.116, AY.71, AY.49, AY.116, AY.71, AY.40, AY.42, AY.40, AY.42, AY.43, AY.44, AY.45, AY.57, AY.85, AY.103, AY.114, AY.90, AY.120, AY.120, AY.120, AY.120, AY.120, AY.120, AY.120, AY.120, AY.120, AY.13, AY.110, AY.110, AY.110, AY.110, AY.110, AY.110, AY.110, AY.110, AY.110, AY.111, AY.110, AY.111, AY	in vitro to not have major defects or enhancement of cell surface protein trafficking (i.e. Spike cleavage or fusion required for cell entry)	trafficking	p.D614G

nf-ncov-voc 23 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	trafficking	The increased transduction with Spike D614G ranged from 1.3- to 2.4-fold in Caco-2 and Calu-3 cells expressing endogenous ACE2 and from 1.5-to 7.7-fold in A549ACE2 and Huh7.5ACE2 overexpressing ACE2. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, the G614 variant is more resistant to proteolytic cleavage, suggesting a possible mechanism for the increased transduction.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.55, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.121, AY.118, AY.127.1, AY.125, AY.117, AY.20, AY.111, AY.125, AY.116.1, AY.47, AY.34, AY.65, AY.34, AY.65, AY.39, AY.121, AY.124.1, AY.126, AY.29.1, AY.133, AY.39.1, AY.62, AY.116.1, AY.47, AY.62, AY.116.1, AY.47, AY.62, AY.116.1, AY.47, AY.39, AY.121, AY.126, AY.29.1, AY.126, AY.29.1, AY.126, AY.48, AY.98.1, AY.46.6, AY.48, AY.126, AY.48, AY.40, AY.42, AY.46.1, AY.46.4, AY.42, AY.46.1, AY.47, AY.49, AY.41, AY.40, AY.41, AY.40, AY.42, AY.46.1, AY.47, AY.49, AY.41, AY.40, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.44, AY.43, AY.44, AY.45, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.42, AY.41, AY.42, AY.41, AY.4	Daniloski et al. (2021)	Depth 53511	Allele	CIDGOH ©	nan

nf-ncov-voc 24 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.D614G	Sub-category trafficking	Function No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.111, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.17, AY.18, AY.127, AY.4, AY.113, AY.119, AY.82, AY.17, AY.18, AY.113, AY.125, AY.117, AY.125, AY.117, AY.125, AY.117, AY.25, AY.117, AY.25, AY.117, AY.26, AY.121, AY.122, AY.113, AY.39, AY.121, AY.26, AY.29.1, AY.128, AY.120, AY.128, AY.120, AY.128, AY.121, AY.46.6, AY.48, AY.126, AY.127, AY.40, AY.42, AY.46.4, AY.42.2, AY.46.4, AY.4.2.2,	Citation Kim et al. (2021)	Sequence Depth 53511			
			AY.65, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.62, AY.18, AY.10, AY.122, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.6, AY.48, AY.126, AY.105, AY.105, AY.105, AY.114, AY.9.2,					
			AY.40, AY.42, AY.46.1, AY.46.4, AY.4.2.2, AY.3, AY.4.4, AY.45, AY.57, AY.85, AY.103, AY.74, AY.16, AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.120, AY.25, AY.94,					
		Co	AY.101, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.110, AY.68, AY.112, DOM: GE & US AY.5.3,				CIDGOH [©]	

nf-ncov-voc 25 of 109

consarritations rocessing for \$2 domain cleaning from \$2 domain cleaning from \$2 domain cleaning for \$2 domain cle
AY.101, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2,

nf-ncov-voc 26 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.77	Kuzmina et al. (2021)	2	A	G	nan
p.D614G	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.2, AY.1	Kuzmina et al. (2021)	10	A	G	nan

nf-ncov-voc 27 of 109

					Depth	Allele	Allele	Frequency
p.D614G	Sub-category trafficking	Function Among S variants tested, the D614G mutant shows the highest cell entry (extasciitilde3.5x wild type), as supported by structural and binding analyses.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.118, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.411, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43, AY.19.1, AY.125, AY.127.1, AY.2, AY.117, AY.75, AY.93, AY.121, AY.124.1, AY.124.1, AY.16.1, AY.47, AY.34, AY.65, AY.39, AY.121.1, AY.124.1, AY.16.1, AY.47, AY.34, AY.65, AY.39, AY.121.1, AY.124.1, AY.16.1, AY.65, AY.127, AY.124.1, AY.16.1, AY.65, AY.121.1, AY.126, AY.127, AY.128, AY.99.1, AY.129, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.6, AY.128, AY.99.1, AY.126, AY.128, AY.99.1, AY.46.6, AY.48, AY.126, AY.127, AY.40, AY.42, AY.46.4, AY.4.2.2, AY.46.4, AY.4.2.2,	Ozono et al. (2020)	Sequence Depth 53511		Alternate Allele G	Alternate Frequency nan
			AY.126, AY.75.2, AY.105, AY.114, AY.9.2, AY.17, AY.87, AY.40, AY.42, AY.46.1, AY.46.4,					
			AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.15, AY.36, AY.25, AY.94, AY.101, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104,					
		Co	AY.20, AY.78, AY.99.2, AY.129, AY.110, AY.68, AY.112, on&68.Us AY.5.3, AY.34.I.				CIDGOН [©]	

nf-ncov-voc 28 of 109

witations	Sub-category		Lineages	Citation	Depth	Allele	Allele	Alternate Frequency
Mutations p.D614G	trafficking	Function Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.48, AY.60, AY.24, AY.73, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119.1, AY.125, AY.119.1, AY.125, AY.121, AY.121, AY.124.1, AY.121, AY.124.1, AY.16.1, AY.47, AY.34, AY.65, AY.39, AY.121, AY.133, AY.39.1, AY.62, AY.118, AY.106, AY.113, AY.41, AY.66, AY.120, AY.116, AY.120, AY.114, AY.120, AY.116, AY.47, AY.48, AY.49, AY.416, AY.47, AY.49, AY.416, AY.47, AY.40, AY.42, AY.46.4, AY.43, AY.44, AY.45, AY.16, AY.17, AY.49, AY.116, AY.116, AY.116, AY.116, AY.120, A	Tada et al. (2021)	Sequence Depth 53511	Reference Allele A	Alternate Allele G	Alternate Frequency nan
			AY.13, AY.120.1, AY.15, AY.36,				ÇIDGOH [©]	

nf-ncov-voc 29 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	trafficking	We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than wild type (extasciitilde9-fold). This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.119, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.17, AY.18, AY.127, AY.4.54, AY.19.1, AY.125, AY.121, AY.126, AY.121, AY.128, AY.121, AY.122, AY.111, AY.123, AY.121, AY.124, AY.124, AY.125, AY.114, AY.126, AY.127, AY.128, AY.129, AY.114, AY.120, AY.120, AY.120, AY.121, AY.120, AY.133, AY.44, AY.45, AY.40, AY.42, AY.41, AY.45, AY.40, AY.42, AY.41, AY.45, AY.41, AY.45, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.45, AY.410, AY.410, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.41, AY.42, AY.43, AY.44, AY.45, AY.44, AY.45, AY.46, AY.47, AY.49, AY.41, AY.49, AY.41, AY.49, AY.41, AY.49, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.44, AY.44, AY.45, AY.44, AY.45, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.41, AY.4	Zhang et 1. (2020)	Depth 53511	A	CIDGOH ©	nan

nf-ncov-voc 30 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	transmissibility	Increased infectivity of the B.1.617 spike was attributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127.1, AY.126, AY.121, AY.124.1, AY.124.1, AY.124.1, AY.124.1, AY.124.1, AY.124.1, AY.124.1, AY.125, AY.121.1, AY.29, AY.116.1, AY.47, AY.34, AY.65, AY.39, AY.121.1, AY.29, AY.116.1, AY.47, AY.66, AY.29.1, AY.133, AY.39.1, AY.62, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.6, AY.48, AY.98.1, AY.46.4, AY.42.2, AY.116, AY.17, AY.40, AY.42, AY.46.4, AY.42.2, AY.116, AY.114, AY.40, AY.42, AY.46.4, AY.42.2, AY.116, AY.71, AY.66, AY.74, AY.16, AY.71, AY.66, AY.74, AY.104, AY.42, AY.46, AY.42, AY.46, AY.42, AY.46, AY.42, AY.46, AY.42, AY.46, AY.114, AY.49, AY.101, AY.49, AY.101, AY.49, AY.101, AY.49, AY.101, AY.49, AY.101, AY.49, AY.101, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.40, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41,	Tada et al. (2021)	Depth 53510	Allele	CIDGOH ©	nan

nf-ncov-voc 31 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence		Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.D614G	transmissibility	The combination caused a	AY.98, AY.35,	Tada et al.	17	A	G	nan
	-	3-fold increase in infectiv-	AY.87	(2021)				
		ity relative to D614G wild		,				
		type. [compare to 3.5x for						
		L452R alone						
p.D614G	transmissibility	Normalized for particle	AY.98, AY.35,	Tada et al.	17	A	G	nan
		number, on ACE2.293T	AY.87	(2021)				
		cells showed that the		, ,				
		B.1.617 spike protein was						
		>2-fold increase in infectiv-						
		ity relative to D614G wild						
		type.						

nf-ncov-voc 32 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccine neutralization efficacy	Pseudotyped D614G virus has reduced neutralization activity vs wild type: 1.2x (37 sera Pfizer median 9 days post 2nd dose, 37 sera Moderna median 18 days post 2nd dose). This was NOT significant by ANOVA.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.108, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.17, AY.6, AY.113, AY.43, AY.119.1, AY.125, AY.127, AY.4, AY.13, AY.16.1, AY.47, AY.65, AY.121, AY.16.1, AY.47, AY.66, AY.121, AY.16.1, AY.47, AY.66, AY.121, AY.16.1, AY.47, AY.66, AY.121, AY.16.1, AY.47, AY.66, AY.128, AY.93, AY.121.1, AY.16.1, AY.46, AY.76, AY.128, AY.91, AY.16, AY.128, AY.94, AY.100, AY.128, AY.94, AY.100, AY.128, AY.94, AY.40, AY.42, AY.46, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.46, AY.41, AY.46, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.47, AY.49, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.45, AY.41, AY	Garcia-Beltran et al. (2021)	53511	Allele	CIDGOH ©	Frequency

nf-ncov-voc 33 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccine neutralization efficacy	1.4x reduction in neutralization (ID50) in sera 3 weeks after one dose of Pfizer/BioNTech BNT162b2 (up to 5 naive and post infection vaccinees)		Gong et al. (2021)	17	A	G	nan

nf-ncov-voc 34 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccine neutralization efficacy	Using a lentivirus virus pseudotyped with D614G Spike, sera from vaccinated individuals who received the second dose (9–11 days post-second dose of Pfizer) exhibited a robust neutralizing potential, with a mean NT50 value of 99,000. This was an average of a 2-fold increase, relative to sera drawn from the individuals who received one dose of vaccination—mean NT50 dilution was obtained when sera from the first vaccination dose was compared to convalescent sera from cohort with severe disease (NT50 51,000 vs 8,700) 21 to 63 days post-onset.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.411, AY.119.1, AY.125, AY.119.1, AY.125, AY.117, AY.42, AY.119.1, AY.125, AY.127.1, AY.66, AY.113, AY.66, AY.113, AY.65, AY.39, AY.121.1, AY.65, AY.39, AY.121.1, AY.65, AY.124.1, AY.65, AY.29.1, AY.16.1, AY.66, AY.29.1, AY.16.1, AY.66, AY.29.1, AY.16.1, AY.66, AY.120, AY.114, AY.67, AY.120, AY.116, AY.120, AY.116, AY.120, AY.116, AY.120, AY.140, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, AY.116, AY.116, AY.116, AY.116, AY.120, AY.120, AY.140, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.46, AY.110, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.44, AY.	Kuzmina et al. (2021)	Depth 53511	Allele	CIDGOH ©	requency

nf-ncov-voc 35 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.77	Kuzmina et al. (2021)	2	A	G	nan
p.D614G	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.2, AY.1	Kuzmina et al. (2021)	10	A	G	nan
p.D614G	vaccine neutralization efficacy	Pseudotyped viruses for B.1.618 was 2.7-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 3-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618.	AY.77	Tada et al. (2021)	2	A	G	nan
p.D614G	vaccine neutralization efficacy	Pseudotyped viruses for B.1.617 was 4-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 5-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617.	AY.98, AY.35, AY.87	Tada et al. (2021)	17	A	G	nan

nf-ncov-voc 36 of 109

Delification Programmer Delification Delifi
AY.68, AY.112, Contact Us CIDGOH ©

nf-ncov-voc 37 of 109

Mutations	Sub-category		Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate
Mutations	Sub-category		Function	Lineages	Citation	Depth	Allele	Allele	Frequency
p.D614G	vaccinee p binding	olasma	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.06x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	vaccinee p binding	olasma	1.14x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.09x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.77	Gong et al. (2021)	2	A	G	nan
p.D614G	vaccinee published	olasma	1.76x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.75x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.2, AY.1	Gong et al. (2021)	10	A	G	nan

nf-ncov-voc 38 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccinee binding plasma	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.17, AY.4.54, AY.19.1, AY.125, AY.121, AY.126, AY.121, AY.127, AY.4.60, AY.128, AY.121, AY.128, AY.121, AY.128, AY.121, AY.129, AY.111, AY.126, AY.121, AY.126, AY.29.1, AY.121, AY.121, AY.126, AY.29.1, AY.121, AY.122, AY.116.1, AY.47, AY.48, AY.49, AY.114, AY.49, AY.114, AY.49, AY.114, AY.49, AY.116, AY.114, AY.49, AY.116, AY.117, AY.49, AY.110, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.49, AY.101, AY.45, AY.47, AY.49, AY.110, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.110, AY.45, AY.101, AY.45, AY.102, AY.103, AY.47, AY.104, AY.107, AY.108, AY.118, AY.101, AY.418, AY.101, AY.42, AY.43, AY.44, AY.45, AY.45, AY.47, AY.49, AY.110, AY.45, AY.47, AY.49, AY.110, AY.45, AY.47, AY.49, AY.110, AY.49, AY.110, AY.49, AY.110, AY.45, AY.49, AY.110, AY.45, AY.49, AY.110, AY.45, AY.40, AY.41, AY.49, AY.110, AY.41, AY.42, AY.43, AY.44, AY.45, AY.45, AY.45, AY.46, AY.41, AY.49, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41	Gong et al. (2021)	Depth 53510	A	CIDGOH ©	requency

nf-ncov-voc 39 of 109

Mutations	Sub-categor	ry	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccinee binding	plasma	This variant combination (representing lineage B.1.617) showed a 1.30x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.18x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	17	A	G	nan
p.D614G	vaccinee binding	plasma	1.23x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.6	Gong et al. (2021)	42	A	G	nan
p.D614G	vaccinee binding	plasma	1.23x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.37x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.4.3	Gong et al. (2021)	1	A	G	nan

nf-ncov-voc 40 of 109

Mutations	Sub-catego:	ry	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	vaccinee binding	plasma	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.111, AY.4.2.1, B.1.617.2, AY.119, AY.102, AY.109, AY.105, AY.1, AY.126, AY.114, AY.113, AY.87, AY.104, AY.125, AY.127, AY.129, AY.119.1, AY.129, AY.117, AY.129, AY.1110, AY.121, AY.110, AY.121, AY.110, AY.124.1, AY.112, AY.4.2, AY.4.2, AY.4.3, AY.121, AY.4.4, AY.121, AY.4.4, AY.106, AY.29, AY.42, AY.116, AY.118, AY.120, AY.100, AY.108, AY.127, AY.118, AY.128, AY.120, AY.77, AY.107, AY.107, AY.107, AY.107, AY.107, AY.107, AY.101, AY.92	Gong et al. (2021)	5882	A	G	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 41 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	viral load	Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127, AY.4.64, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.126, AY.121, AY.126, AY.29.1, AY.133, AY.39.1, AY.62, AY.18, AY.10, AY.128, AY.98.1, AY.46.6, AY.48, AY.49, AY.105, AY.114, AY.40, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46, AY.116, AY.116, AY.116, AY.116, AY.128, AY.98.1, AY.46.4, AY.42, AY.46, AY.116, AY.117, AY.42, AY.42, AY.43, AY.44, AY.45, AY.45, AY.40, AY.42, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.57, AY.46, AY.110, AY.45, AY.101, AY.45, AY.47, AY.49, AY.116, AY.116	Plante et al. (2020)	Depth 53511	A	CIDGOH ©	nan

nf-ncov-voc 42 of 109

DOIAG Live design D. C. L. C.	DCDtH	Allele	Allele	Frequency
p.D614G virion structure change (ddG) for this variant is 2.5 kcal/mol (i.e. stabilizing relative to wild type) Second Control of the change of the chang	Depth 53511	Allele	Allele G	requency

nf-ncov-voc 43 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	virion structure	Negative stain EM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.411, AY.119.1, AY.119.1, AY.125, AY.119.1, AY.125, AY.117, AY.64, AY.119.1, AY.121, AY.121, AY.124.1, AY.16.1, AY.4.7, AY.34, AY.65, AY.39, AY.121.1, AY.65, AY.39, AY.121.1, AY.66, AY.29.1, AY.133, AY.39.1, AY.66, AY.29.1, AY.133, AY.39.1, AY.66, AY.128, AY.98.1, AY.46.6, AY.128, AY.98.1, AY.46.6, AY.48, AY.106, AY.114, AY.40, AY.42, AY.416, AY.116, AY.	Weissman et al. (2020)	Depth 53511	Allele	CIDGOH ©	nan

nf-ncov-voc 44 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	virion structure	CryoEM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.23, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.11, AY.119, AY.82, AY.17, AY.43, AY.119.1, AY.125, AY.117, AY.25, AY.117, AY.25, AY.117, AY.26, AY.121, AY.122, AY.114, AY.47, AY.49, AY.114, AY.49, AY.114, AY.40, AY.412, AY.414, AY.42, AY.415, AY.416, AY.416, AY.416, AY.417, AY.416, AY.418, AY.418, AY.419, AY.419, AY.419, AY.411, AY.42, AY.43, AY.44, AY.45, AY.40, AY.42, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, AY.116, AY.116, AY.117, AY.49, AY.117, AY.49, AY.118, AY.40, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.110, AY.410, AY.410, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.110, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.45, AY.40, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.45, AY.40, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.43, AY.44, AY.45, AY.47, AY.49, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.43, AY.44, AY.45, AY.410, AY.42, AY.44, AY.45, AY.45, AY.45, AY.45, AY.45, AY.46, AY.47, AY.49, AY.410, AY.410, AY.42, AY.410, AY.42, AY.44, AY.45, AY.410, AY.42, AY.44, AY.45, AY.45, AY.46, AY.47, AY.49, AY.410, AY	Yurkovetskiy et al. (2020)	Depth 53511	Allele	CIDGOH ©	nan

nf-ncov-voc 45 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.D614G	virion structure	Based on pseudotyped virus experiments, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.23, B.1.617.2, AY.35, AY.31.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.5, AY.19, AY.64, AY.90, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119.1, AY.125, AY.127.1, AY.125, AY.127.1, AY.124.1, AY.121, AY.124.1, AY.16.1, AY.65, AY.39, AY.121, AY.124.1, AY.65, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.62, AY.18, AY.10, AY.122, AY.116.1, AY.66, AY.29.1, AY.133, AY.39.1, AY.62, AY.116.1, AY.66, AY.128, AY.98.1, AY.46.6, AY.48, AY.19, AY.116, AY.118, AY.40, AY.120, AY.114, AY.9.2, AY.116, AY.120, AY.116, AY.13, AY.42.1, AY.45, AY.45, AY.40, AY.42, AY.46.4, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.42, AY.40, AY.410, AY.42, AY.43, AY.44, AY.45, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.40, AY.410, AY.42, AY.43, AY.	Zhang et al. (2020)	53511	Allele	CIDGOH ©	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.H69del	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.51x increase in binding (KD) relative to D614G, mostly due to decreased in "off-rate" a.k.a. dissociation rate (Kdis).	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.H69del	antibody epitope effects	Reduces neutralization by structurally unmapped mAb COVA1-21 (cluster XI).	AY.77	Rees-Spear et al. (2021)	2	ATACATG	A	nan
p.H69del	convalescent plasma binding	1.33x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.H69del	convalescent plasma escape	Fatal COVID-19 complica- tions in immunocomprim- ised patient after immune escape from convalescent plasma	AY.77	Kemp et al. (2020)	2	ATACATG	A	nan
p.H69del	convalescent plasma escape	Neutralization activity of almost all Moderna Phase 1 sera tested actually *in- creased*.	AY.77	Shen et al. (2021)	2	ATACATG	A	nan
p.H69del	convalescent plasma escape	Viruses containing the point mutations of B.1.1.7 showed that the single point mutations ($\Delta 69$ -70 and N501Y) were neutralized as efficiently as D614G across 10 convalescent sera from April 2020 infectees.	AY.77	Tada et al. (2021)	2	ATACATG	A	nan
p.H69del	immunosuppression variant emergence	The delH69/V70 enhances viral infectivity, indicating its effect on virus fitness is independent to the N501Y RBM change [with which it is found in lineage B.1.1.7] Possibly arisen as a result of the virus evolving from immune selection pressure in infected individuals and possibly only one chronic infection in the case of lineage B.1.1.7.	AY.77	Kemp et al. (2020)	2	ATACATG	A	nan
p.H69del	vaccinee plasma binding	1.14x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.09x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.S443F	monoclonal anti- body serial passage escape	Ranked effective escape variant in the RBD for highly neutralizing COV2- 2499 monoclonal antibody	AY.124.1	Greaney et al. (2020)	1	С	Т	nan
p.S494P	ACE2 receptor binding affinity	Using molecular dynamic simulation, the mildly (extasciitilde1kcal/mol) enhanced binding energy of this variant is primarily contributed by Tyr505 (-4.98 kcal/mol) which is now involved in a strong hydrogen bonding network with Arg393. Another important energetic contribution comes from the altered orientation of Tyr41 which is now involved with two hydrogen-bonding interactions with Asp355 and Thr500.	AY.108	Chakraborty (2021)	27	Т	С	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.S494P	ACE2 receptor binding affinity	Minor variant selected in late rounds of an in vitro evolution experiment for ACE2 binding. Shown to increase the thermostabil- ity but decrease the associ- ation rate constant of the RBD to ACE2	AY.108	Zahradnik et al. (2021)	27	Т	С	nan
p.S494P	antibody epitope effects	Mutant screen in neutralization assay with a broad range of monoclonal antibodies shows resistence to mAb SARS2-01.	AY.108	Liu et al. (2020)	27	Т	С	nan
p.S494P	antibody epitope effects	Greater than 10-fold rediuction of binding effeiency vs wild type for mAb LY-CoV555.	AY.108	Rappazzo et al. (2021)	27	Т	С	nan
p.S494P	convalescent plasma escape	S494P frequently engages in interactions with antibodies but not with ACE2. It reduces antibody neutralization of all 16 convalescent sera tested, averaging WT ratio of 0.41+0.08 (less dramatic than E484K). This amino acid emerges as an additional hotspot for immune evasion and a target for therapies, vaccines and diagnostics. It has emerged independently in multiple lineages.	AY.108	Alenquer et al. (2021)	27	Т	С	nan
p.S494P	convalescent plasma escape	In 2 of 11 subjects' convalescent sera in an early+late mutational landscape analysis of the RBD, S484P shows a slightly resistent profile across both timepoints (i.e. resistant to immune cell somatic mutation evolution)	AY.108	Greaney et al. (2021)	27	Т	С	nan
p.S494P	convalescent plasma escape	Mixed bag of positive and negative changes in neutralization capability of all 4 convalescent sera tested.	AY.108	Liu et al. (2021)	27	Т	С	nan
p.S494P	immunosuppression variant emergence	Combination of RBD mutations appeared (day 75) and persisted in chronic (152 day) SARS-CoV-2 infection of immunocompromised patient with severe antiphospholipid syndrome complicated by diffuse alveolar hemorrhage, who was receiving anticoagulation therapy, glucocorticoids, cyclophosphamide, and intermittent rituximab and eculizumab.	AY.108	Choi et al. (2020)	27	T	С	nan
p.S494P	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY-CoV555 (antibody that forms the basis for EliLilly's bamlanivimab)	AY.108	Starr et al. (2021)	27	Т	С	nan
p.S494P	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) lost extasci- itilde8x binding against this isolated mutation. Regdanvimab lost extasci- itilde32x binding against this isolated mutation.	AY.108	Engelhart et al. (2021)	27	Т	С	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 48 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.R158G	Sub-category monoclonal antibody serial passage escape	Escape mutation against Spike N terminal domain antigenic supersite i mAb S2X28	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.48, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.17, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43, AY.119.1, AY.125, AY.117, AY.62, AY.117, AY.63, AY.121, AY.124.1, AY.121, AY.124.1, AY.121, AY.29.1, AY.39, AY.121.1, AY.26, AY.39, AY.121.1, AY.26, AY.29.1, AY.39.1, AY.62, AY.59, AY.116.1, AY.62, AY.128, AY.46, AY.128, AY.47, AY.46, AY.120, AY.120, AY.47, AY.46, AY.47, AY.46, AY.47, AY.46, AY.47, AY.46, AY.49, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.45, AY.47, AY.46, AY.47, AY.48, AY.41, AY.49, AY.411, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.45, AY.47, AY.46, AY.47, AY.48, AY.41, AY.49, AY.411, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.45, AY.47, AY.49, AY.116, AY.116, AY.116, AY.116, AY.116, AY.117, AY.49, AY.4116, AY.117, AY.49, AY.4116, AY.417, AY.417, AY.417, AY.417, AY.417, AY.427, AY.43, AY.447, AY.447, AY.447, AY.447, AY.447, AY.447, AY.457, AY.457, AY.457, AY.457, AY.467, AY.467, AY.47, AY.487, AY.487, AY.497, AY.497, AY.410, AY.4110, AY.4110	Citation McCallum et al. (2021)	Sequence Depth 67286	Reference Allele GAGTTCA	Alternate Allele G	Alternate Frequency nan
		Co	AY.120,				CIDGOH [©]	

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.G446V	antibody epitope effects	Mutant screen in neutralization assay with a broad range of monoclonal antibodies shows resistence to more than one antibody.	AY.127.1	Liu et al. (2021)	32	G	Т	nan
p.G446V	antibody epitope effects	Massive reduction in binding efficiency vs wild type for mAb REGN10933.	AY.127.1	Rappazzo et al. (2021)	32	G	Т	nan
p.G446V	convalescent plasma escape	In 2 of 11 subjects' convalescent sera in an early+late mutational landscape analysis of the RBD, the early serum timepoint shows significant resistance (extasciitide10x or more), but both abate by the late timepoint (extasciitide3m) presumably through immune cell somatic mutation evolution.	AY.127.1	Greaney et al. (2021)	32	G	Т	nan
p.G446V	convalescent plasma escape	Resistant to a pool of 10 convalescent sera (but less than 4x, a typical threshold for definition of escape)	AY.127.1	Li et al. (2020)	32	G	T	nan
p.G446V	convalescent plasma escape	Ablation of neutralization capability of 3 convalescent sera tested, 1 improvement.	AY.127.1	Liu et al. (2021)	32	G	Т	nan
p.G446V	monoclonal anti- body serial passage escape	Most effective mutant against this position in the RBD for highly neutralizing COV2-2499 monoclonal antibody Most but only mildly effective mutant against this position in the RBD for highly neutralizing COV2-2096 monoclonal antibody	AY.127.1	Greaney et al. (2020)	32	G	Т	nan
p.G446V	pharmaceutical effectiveness	Cligavimab lost extasci- itilde16x binding against this isolated mutation. Imdevimab lost extasci- itilde16x binding against this isolated mutation (the only RBD variant to do so).	AY.127.1	Engelhart et al. (2021)	32	G	Т	nan
p.P681R	trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at \$680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of \$680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	AY.65, AY.88, AY.127	Maaroufi (2021)	263	CTCC	TTCG,CTC	
p.P681R	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.65, AY.88, AY.127	Tada et al. (2021)	263	CTCC	TTCG,CTC	Gnan

nf-ncov-voc 50 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.P681R	virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.65, AY.88, AY.127	Tada et al. (2021)	263	CTCC	TTCG,CTC	Gnan
p.P681R	symptom prevalence	Gross examination of 3+3 hamster lung specimens showed pronounced congestion and hemorrhages on days 5 and 7 post-infection in the case of the B.1.617.1 as compared with the B.1. The lung lesions with the B.1 variant were minimal to mild whereas with B.1.617.1 they were moderate. For B.1 pneumonic changes were minimal to mild (inflammatory cell infiltration, focal consolidation and mild congestion). The pronounced changes (moderate to severe) with mononuclear infiltration in the alveolar interstitial space, interstitial septal thickening, consolidation and pneumocyte hyperplasia were observed with B.1.617.1 variant consistently.	AY.98, AY.35, AY.87	Yadav et al. (2021)	17	C	G	nan
p.P681R	trafficking	This variant combination shows a extasciitide3x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, significantly less of a decrease than any B.1.617 lineage variants alone, suggesting a synergistic effect on cell entry while maintaining known immunity esacpe mutants.	AY.77	Ferriera et al (2021)	2	С	G	nan

nf-ncov-voc 51 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.P681R	Sub-category trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at S680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of S680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119.2, AY.38, AY.5, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.4.8, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.41, AY.119, AY.82, AY.47, AY.66, AY.113, AY.43, AY.119, AY.125, AY.2, AY.117, AY.125, AY.2, AY.117, AY.125, AY.2, AY.117, AY.126, AY.113, AY.121, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.34, AY.39, AY.121, AY.121, AY.121, AY.16.1, AY.47, AY.46, AY.34, AY.39, AY.116, AY.47, AY.46, AY.47, AY.46, AY.48, AY.105, AY.116, AY.128, AY.105, AY.114, AY.46, AY.48, AY.126, AY.75, AY.105, AY.114, AY.46, AY.42, AY.116, AY.45, AY.40, AY.42, AY.40, AY.42, AY.40, AY.42, AY.40, AY.42, AY.43, AY.44, AY.45, AY.47, AY.46, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.45, AY.49, AY.116, AY.71, AY.49, AY.116, AY.71, AY.49, AY.116, AY.71, AY.49, AY.116, AY.71, AY.49, AY.116, AY.120, AY.42, AY.33, AY.44, AY.42, AY.43, AY.44, AY.45, AY.103, AY.74, AY.104, AY.109, AY.40, AY.109, AY.25, AY.103, AY.74, AY.109, AY.25, AY.103, AY.74, AY.109, AY.25, AY.104, AY.109, AY.25, AY.109, AY.27, AY.109, AY.27, AY.109, AY.29, AY.29, AY.29, AY.29, AY.29, AY.29, AY.170, AY.78, AY.99, AY.710, AY.78, AY.99, AY.770, AY.78, AY.99, AY.771, AY.790, AY.790	Citation Maaroufi (2021)	Sequence Depth 67857	Reference Allele C	Alternate Allele G,GTCGT,	Frequency
		Co	on#AYc68UsAY.37, AY.112,				CIDGOH [©]	

nf-ncov-voc 52 of 109

P.P681R trafficking Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2. Ay.99, Ay.4.5, Ay.99, Ay.4.5, Ay.19.2, Ay.99, Ay.58, Ay.84, Ay.4.3, Ay.106, Ay.29, Ay.7.1, Ay.54, Ay.25.1, Ay.4.8, Ay.60, Ay.24, Ay.73, Ay.30, Ay.100, Ay.108,	Frequency MGGG
AY.122.1, AY.18. AY.53, AY.18. AY.53, AY.77. AY.6, AY.14. AY.92, AY.111, AY.32. AY.37. AY.56, AY.113, AY.32. AY.37. AY.56, AY.113, AY.38. AY.39. AY.3	

nf-ncov-voc 53 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.P681R	transmissibility	Normalized for particle number, on ACE2.293T cells showed that the B.1.617 spike protein was >2-fold increase in infectivity relative to D614G wild type.	AY.98, AY.35, AY.87	Tada et al. (2021)	17	C	G	nan
p.P681R	viral load	In 9 infected hamsters each for B.1 and B.1.617.1, no significant change in viral load or subgenomic RNA levels were detected.	AY.98, AY.35, AY.87	Yadav et al. (2021)	17	С	G	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 54 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.P681R	virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.54, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.48, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.114, AY.16.1, AY.16.1, AY.16.1, AY.47, AY.46, AY.34, AY.39, AY.121.1, AY.16.1, AY.46, AY.34, AY.39, AY.121.1, AY.16.1, AY.46, AY.34, AY.39, AY.121, AY.124, AY.16, AY.29.1, AY.133, AY.39.1, AY.62, AY.55, AY.105, AY.114, AY.46, AY.48, AY.106, AY.128, AY.40, AY.42, AY.416, AY.42, AY.416, AY.42, AY.43, AY.44, AY.45, AY.105, AY.114, AY.46, AY.47, AY.48, AY.105, AY.116, AY.120, AY.416, AY.13, AY.42, AY.43, AY.44, AY.45, AY.40, AY.42, AY.46, AY.47, AY.49, AY.416, AY.116, AY.120, AY.42, AY.43, AY.44, AY.45, AY.49, AY.40, AY.416, AY.101, AY.67, AY.42, AY.40, AY.42, AY.43, AY.44, AY.45, AY.49, AY.101, AY.67, AY.49, AY.101, AY.68, AY.104, AY.107, AY.49, AY.107, AY.49, AY.107, AY.49, AY.107, AY.49, AY.107, AY.49, AY.107, AY.407,	Tada et al. (2021)	Depth 67857	Allele C	CIDGOH ©	Frequency

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.P681R	trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at S680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of S680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	AY.127.1	Maaroufi (2021)	16	CTCGG	GTCGT	nan
p.P681R	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.127.1	Tada et al. (2021)	16	CTCGG	GTCGT	nan
p.P681R	virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.127.1	Tada et al. (2021)	16	CTCGG	GTCGT	nan
p.V70del	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.51x increase in binding (KD) relative to D614G, mostly due to decreased in "off-rate" a.k.a. dissociation rate (Kdis).	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.V70del	antibody epitope effects	Reduces neutralization by structurally unmapped mAb COVA1-21 (cluster XI).	AY.77	Rees-Spear et al. (2021)	2	ATACATG	A	nan
p.V70del	convalescent plasma binding	1.33x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.V70del	convalescent plasma escape	Fatal COVID-19 complica- tions in immunocomprim- ised patient after immune escape from convalescent plasma	AY.77	Kemp et al. (2020)	2	ATACATG	A	nan
p.V70del	convalescent plasma escape	Neutralization activity of almost all Moderna Phase 1 sera tested actually *increased*.	AY.77	Shen et al. (2021)	2	ATACATG	A	nan
p.V70del	convalescent plasma escape	Viruses containing the point mutations of B.1.1.7 showed that the single point mutations ($\Delta 69$ -70 and N501Y) were neutralized as efficiently as D614G across 10 convalescent sera from April 2020 infectees.	AY.77	Tada et al. (2021)	2	ATACATG	A	nan

nf-ncov-voc 56 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.V70del	immunosuppression variant emergence	The delH69/V70 enhances viral infectivity, indicating its effect on virus fitness is independent to the N501Y RBM change [with which it is found in lineage B.1.1.7] Possibly arisen as a result of the virus evolving from immune selection pressure in infected individuals and possibly only one chronic infection in the case of lineage B.1.1.7.	AY.77	Kemp et al. (2020)	2	ATACATG	A	nan
p.V70del	vaccinee plasma binding	1.14x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.09x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.77	Gong et al. (2021)	2	ATACATG	A	nan
p.E484Q	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant combination (representing lineage B.1.617) showed a 1.85x increase in binding (KD) relative to D614G. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	16	G	С	nan
p.E484Q	antibody epitope effects	>20% (ELISA significance threshold) drop in anti- body binding by this vari- ant against monoclonal an- tibody VH-Fc ab8.	AY.98, AY.35, AY.87	Sun et al. (2021)	16	G	С	nan
p.E484Q	convalescent plasma binding	This variant combination (representing lineage B.1.617) showed a 1.22x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 8 months postsymptom-onset. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	16	G	С	nan

Contact Us CIDGOH $^{\odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484Q	convalescent plasma escape	In 3 of 11 subjects' convalescent sera in an early+late mutational landscape analysis of the RBD, E484Q shows a notably resistant profile, comparable to or even more resistant than E484K at later time points (i.e. more resistant to immune cell somatic mutation evolution), see Figure 5a,b. Subject C 32 days post-infection showed »10 fold reduction in neutralization, reducing to extasciitilde10-fold by day 104. Subject B 26 days post-infection showed extasciitilde10 fold reduction in neutralization, reducing to extasciitilde10 fold reduction in neutralization, reducing to extasciitilde10 fold reduction in neutralization, reducing to extasciitilde10 value (extasciitilde10 vs 30+ fold) reduction in one-month neutralization by E484K at day 32, and no E484K immune escape at day 104. Subject I 26 days post-infection showed extasciitilde10 fold reduction in neutralization, with no reduction in escape at day 102. Notably, Subject I also showed smaller than typical (extasciitilde10 vs 30+ fold) reduction in one-month neutralization by E484K at day 26, and no E484K immune escape at day 104. Which is the subject I also showed smaller than typical (extasciitilde10 vs 30+ fold) reduction in one-month neutralization by E484K at day 26, and no E484K immune escape at day 102.	AY.98, AY.35, AY.87	Greaney et al. (2021)	16 16	G	С	nan
p.E484Q	convalescent plasma escape	Pseudotyped viruses for B.1.617 was 2.3-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617. [details on the convalescent patient sera collection are not abundantly clear in the preprint]	AY.98, AY.35, AY.87	Tada et al. (2021)	16	G	С	nan
p.E484Q	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY-CoV555 (antibody that forms the basis for Eli Lilly's bamlanivimab)	AY.98, AY.35, AY.87	Starr et al. (2021)	16	G	С	nan
p.E484Q	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) lost extasciitilde20x binding against this isolated mutation. Casirivimab lost extasciitilde4x binding against this isolated mutation.	AY.98, AY.35, AY.87	Engelhart et al. (2021)	16	G	С	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484Q	symptom prevalence	Gross examination of 3+3 hamster lung specimens showed pronounced congestion and hemorrhages on days 5 and 7 post-infection in the case of the B.1.617.1 as compared with the B.1. The lung lesions with the B.1 variant were minimal to mild whereas with B.1.617.1 they were moderate. For B.1 pneumonic changes were minimal to mild (inflammatory cell infiltration, focal consolidation and mild congestion). The pronounced changes (moderate to severe) with mononuclear infiltration in the alveolar interstitial space, interstitial septal thickening, consolidation and pneumocyte hyperplasia were observed with B.1.617.1 variant con-	AY.98, AY.35, AY.87	Yadav et al. (2021)	16	G	С	nan
p.E484Q	trafficking	sistently. This variant alone shows a 10x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G.	AY.98, AY.35, AY.87	Ferriera et al (2021)	16	G	C	nan
p.E484Q	transmissibility	The combination caused a 3-fold increase in infectivity relative to D614G wild type. [compare to 3.5x for L452R alone]	AY.98, AY.35, AY.87	Tada et al. (2021)	16	G	С	nan
p.E484Q	transmissibility	Normalized for particle number, on ACE2.293T cells showed that the B.1.617 spike protein was >2-fold increase in infectivity relative to D614G wild type.	AY.98, AY.35, AY.87	Tada et al. (2021)	16	G	С	nan
p.E484Q	vaccine neutralization efficacy	Nine stored sera from Pfizer BNT162b2 vaccinees were tested against a range of spike mutation bearing PV. E484Q had a extasciitilde5x drop in neutralization (vs extasciitilde10x for E484K). When E484Q and L452R were combined, the fold change was significant, but similar to that of L452R alone (extasciitilde2x), suggesting no evidence for an additive effect [perhaps even E484Q effect dilution].	AY.98, AY.35, AY.87	Ferreira et al. (2021)	16	G	С	nan
p.E484Q	vaccine neutraliza- tion efficacy	1.4x reduction in neutralization (ID50) in sera 3 weeks after one dose of Pfizer/BioNTech BNT162b2 (up to 5 naive and post infection vaccinees)	AY.98, AY.35, AY.87	Gong et al. (2021)	16	G	С	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484Q	vaccine neutraliza- tion efficacy	Pseudotyped viruses for B.1.617 was 4-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 5-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617.	AY.98, AY.35, AY.87	Tada et al. (2021)	16	G	С	nan
p.E484Q	vaccinee plasma binding	This variant combination (representing lineage B.1.617) showed a 1.30x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.18x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	16	G	С	nan
p.E484Q	viral load	In 9 infected hamsters each for B.1 and B.1.617.1, no significant change in viral load or subgenomic RNA levels were detected.	AY.98, AY.35, AY.87	Yadav et al. (2021)	16	G	С	nan
p.P26S	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.58x increase in binding (KD) relative to D614G.	AY.4.3	Gong et al. (2021)	1	С	Т	nan
p.P26S	convalescent plasma binding	1.08x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.4.3	Gong et al. (2021)	1	С	Т	nan
p.P26S	vaccinee plasma binding	1.23x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.37x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.4.3	Gong et al. (2021)	1	C	T	nan
p.S514F	convalescent plasma escape	Strong reduction in neutralization capability of all 4 convalescent sera tested (2 ablations).	AY.92	Liu et al. (2021)	8	С	Т	nan

nf-ncov-voc 60 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate	1
p.G142D	monoclonal anti-	Escape mutation against	AY.23, AY.28,	McCallum et	Depth 60524	Allele G	Allele	Frequency GhanTA,ATT	ATG
	body serial passage escape	Spike N terminal domain antigenic supersite i mAbs	B.1.617.2, AY.35, AY.3.2,	al. (2021)					
		S2M28, S2X28, S2X333	AY.41, AY.51, AY.99, AY.4.5,						
			AY.119.2, AY.38, AY.5,						
			AY.64, AY.58, AY.84, AY.4.3,						
			AY.106, AY.29,						
			AY.7.1, AY.54, AY.25.1,						
			AY.4.8, AY.60, AY.24,						
			AY.73, AY.33, AY.100,						
			AY.108, AY.122.1,						
			AY.118, AY.127,						
			AY.4, AY.53, AY.77, AY.6,						
			AY.14, AY.92, AY.111,						
			AY.119, AY.82, AY.47,						
			AY.113, AY.43.4,						
			AY.119.1, AY.125,						
			AY.127.1, AY.117,						
			AY.75, AY.93, AY.121,						
			AY.124.1, AY.4.7,						
			AY.46, AY.34, AY.65, AY.39,						
			AY.121.1, AY.26,						
			AY.29.1, AY.133,						
			AY.39.1, AY.62, AY.59,						
			AY.18, AY.10, AY.122,						
			AY.116.1, AY.76,						
			AY.128, AY.98.1,						
			AY.46.6, AY.48,						
			AY.126, AY.105,						
			AY.114, AY.9.2, AY.87,						
			AY.40, AY.42, AY.46.1,						
			AY.46.4, AY.4.2.2,						
			AY.3, AY.44, AY.43, AY.4.4,						
			AY.45, AY.57, AY.85,						
			AY.103, AY.74, AY.16,						
			AY.116, AY.13,						
			AY.120.1, AY.15, AY.36,						
			AY.120, AY.25, AY.94, AY.101,						
			AY.67, AY.4.2.1,						
			AY.102, AY.109,						
			AY.43.3, AY.1, AY.55, AY.86,						
			AY.61, AY.32, AY.104,						
			AY.20, AY.78, AY.99.2,						
			AY.129, AY.27,						
			AY.110, AY.68, AY.37,						
			AY.112, AY.3.3,						
		Co	ntact.Us AY.34.1,				CIDGOH [©]		
			AY.4.2,				 		

nf-ncov-voc 61 of 109

Mutations Sub-category Function Lineages Citation Sequence Depth Allele Reference Allele Alter Allele p.G142D monoclonal antibody serial passage escape Selected twice in passage with mAb COV2-2489. AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.41, AY.51, AY.99, AY.4.5, AY.41, AY.51, AY.99, AY.4.5, AY.42, AY.43, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, A	rnate Alternate le Frequency TGT,ATGHÄHTA,ATT ATG
escape AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.64, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1,	
AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.64, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1,	
AY.38, AY.5, AY.64, AY.58, AY.84, AY.43, AY.106, AY.29, AY.7.1, AY.54, AY.25.1,	
AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1,	
AY.29, AY.7.1, AY.54, AY.25.1,	
AY.25.1,	
$ AVA\hat{8} $	
AY.60, AY.24,	
AY.73, AY.33, AY.100,	
AY.108, AY.122.1,	
AY.118, AY.127, AY.50	
AY.4, AY.53, AY.77, AY.6, AY.9	
AY.14, AY.92, AY.111, AY.112,	
AY.119, AY.82, AY.47, AY.42,	
AY.113, AY.43.4, AY.43.4,	
AY.119.1, AY.125, AY.107.1	
AY.127.1, AY.117, AY.727, AY.7	
AY.75, AY.93, AY.121, AY.124.1,	
AY.4.7, AY.46, AY.34,	
AY.65, AY.39, AY.121.1,	
AY.26, AY.29.1,	
AY.133, AY.39.1,	
AY.62, AY.59, AY.18, AY.10,	
AY.10, AY.122, AY.116.1,	
AY.76, AY.128,	
AY.98.1, AY.46.6,	
AY.48, AY.126,	
AY.105, AY.114,	
AY.9.2, AY.87, AY.40, AY.42,	
AY.46.1, AY.46.4,	
AY.4.2.2, AY.3, AY.44,	
AY.43, AY.4.4, AY.45, AY.57,	
AY.85, AY.103,	
AY.74, AY.16, AY.116,	
AY.13, AY.120.1,	
AY.15, AY.36, AY.120,	
AY.25, AY.94, AY.101,	
AY.67, AY.4.2.1,	
AY.102, AY.109,	
AY.43.3, AY.1, AY.55, AY.86,	
AY.61, AY.32, AY.104,	
AY.20, AY.78, AY.99.2,	
AY.129, AY.27,	
AY.110, AY.68, AY.37,	
AY.112, AY.3.3.	
Conexes Us AY.34.1, AY.4.2,	OH [©]

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L5F	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.1x decrease in binding (KD) relative to D614G.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.9, AY.6	Gong et al. (2021)	60	С	Т	nan
p.L5F	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.9, AY.6	Gong et al. (2021)	60	C	Т	nan
p.L5F	vaccinee plasma binding	1.23x increase in Spike binding (relative to D614G alone) by 5 plasma colected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.4.4, AY.35, AY.46.4, AY.64, AY.53, AY.77, AY.9, AY.6	Gong et al. (2021)	60	С	Т	nan
p.K458N	convalescent plasma escape	Resistant to a pool of 10 convalescent sera (but less than 4x, a typical threshold for definition of escape)	AY.46.1	Li et al. (2020)	6	A	С	nan
p.L452R	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.3.1	Gong et al. (2021)	28	CT	TG,CG	nan
p.L452R	ACE2 receptor binding affinity	extasciitilde1.7-fold increase in binding affinity vs wild type.	AY.3.1	Motozono et al. (2021)	28	CT	TG,CG	nan
p.L452R	T cell evasion	L452R derivative virus did not induce IFN-gamma expression even at the highest concentration tested (10 nM) in two different A*24:02 convalescent sera donor plasma (linear epitope NYNYLYRLF 448.456).	AY.3.1	Motozono et al. (2021)	28	CT	TG,CG	nan
p.L452R	antibody epitope effects	Resistent to some neutralizing antibodies: mAbs X593 and P2B-2F6	AY.3.1	Li et al. (2020)	28	CT	TG,CG	nan
p.L452R	antibody epitope effects	Mutant screen in neutralization assay with a broad range of monoclonal antibodies shows resistence to more than one antibody.	AY.3.1	Liu et al. (2021)	28	CT	TG,CG	nan
p.L452R	antibody epitope effects	10 of 14 RBD-specific mAbs that showed at least 10-fold reduced neutralization of B.1.427/B.1.429 variant pseudotype (S13I, W152C, and L452R) were also found to poorly bind to just a L452R RBD mutant, demonstrating a role for this mutation as an escape mechanism for certain RBD-targeting mAbs.	AY.3.1	McCallum et al. (2021)	28	CT	TG,CG	nan
p.L452R	antibody epitope effects	extasciitilde20% (ELISA significance threshold) drop in antibody binding (ELISA) by this variant against monoclonal antibody VH ab6.	AY.3.1	Sun et al. (2021)	28	CT	TG,CG	nan
p.L452R	convalescent plasma binding	2.15x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.3.1	Gong et al. (2021)	28	CT	TG,CG	nan
p.L452R	convalescent plasma escape	Observed extasciitilde2x decrease on average in 16 health workers' convalescent sera.	AY.3.1	Alenquer et al. (2021)	28	CT	TG,CG	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	convalescent plasma escape	Ablation of neutralization capability of 3 of 4 convalescent sera tested, the other is significantly hindered.	AY.3.1	Liu et al. (2021)	28	СТ	TG,CG	nan
p.L452R	convalescent plasma escape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	AY.3.1	Wilhelm et al. (2021)	28	CT	TG,CG	nan
p.L452R	gene expression in- crease	Experimentally, Spike gene expression increased 0.32 fold	AY.3.1	Starr et al. (2020)	28	CT	TG,CG	nan
p.L452R	monoclonal anti- body serial passage escape	Ranked effective mutant against this position in the RBD for highly neutraliz- ing COV2-2096	AY.3.1	Greaney et al. (2020)	28	СТ	TG,CG	nan
p.L452R	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY- CoV555 (antibody that forms the basis for Eli Lilly's bamlanivimab)	AY.3.1	Starr et al. (2021)	28	CT	TG,CG	nan
p.L452R	monoclonal anti- body serial passage escape	Class 2/3 antibody C628 and class 2 antibody C643 selected for the emergence of the L452R mutation in vitro.	AY.3.1	Wang et al. (2021)	28	CT	TG,CG	nan
p.L452R	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) lost extasci- itilde5x binding against this isolated mutation. Cligavimab lost extasci- itilde4x binding against this isolated mutation. Regdanvimab lost extasci- itilde4x binding against this isolated mutation.	AY.3.1	Engelhart et al. (2021)	28	CT	TG,CG	nan
p.L452R	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) entirely lost its neutralizing activity due to the central location of L452R in the epitopes recognized by this mAb. Regdanvimab (CT-P59), and to a smaller extent etesevimab, showed a reduction in neutralization potency.	AY.3.1	McCallum et al. (2021)	28	СТ	TG,CG	nan
p.L452R	trafficking	We observed increased entry by pseudoviruses carrying the L452R mutation compared to D614G alone, with a 6.7 to 22.5-fold increase in 293T cells and a 5.8 to 14.7-fold increase in human airway organoids.	AY.3.1	Deng et al. (2021)	28	CT	TG,CG	nan
p.L452R	trafficking	This variant alone shows a extasciitilde5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G. [listed as L454R in Figure, but L452R in text, also text suggests not statistucally significant, but error bars say otherwise in Figure 4]	AY.3.1	Ferriera et al (2021)	28	СТ	TG,CG	nan
p.L452R	trafficking	Increased stability of RBD expression in yeast, suggesting increased Spike protein stability.	AY.3.1	Motozono et al. (2021)	28	СТ	TG,CG	nan
p.L452R	transmissibility	Increased infectivity of the B.1.617 spike was at- tributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.3.1	Tada et al. (2021)	28	СТ	TG,CG	nan

nf-ncov-voc 64 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	vaccine neutraliza- tion efficacy	Nine stored sera from Pfizer BNT162b2 vacci- nees were tested against a range of spike mutation bearing PV. L452R con- ferred about a two-fold reduction in neutralisation by vaccine sera, but was not statistically significant with this sample size.	AY.3.1	Ferreira et al. (2021)	28	CT	TG,CG	nan
p.L452R	vaccine neutraliza- tion efficacy	The presence of this variant in 189 post-mRNA-vaccination COVID-19 cases was proportionally in line with lineage prevalence in Northen California during the study period, suggesting no effect of these variants on immune escape.	AY.3.1	Jacobson et al. (2021)	28	CT	TG,CG	nan
p.L452R	vaccine neutralization efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by 18 vaccinee sera (BNT162b2 and mRNA1273).	AY.3.1	Wilhelm et al. (2021)	28	CT	TG,CG	nan
p.L452R	vaccinee plasma binding	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.3.1	Gong et al. (2021)	28	CT	TG,CG	nan
p.L452R	virion structure	Estimated free energy change (ddG) for this variant is -0.67 kcal/mol (i.e. destabilizing relative to wild type)	AY.3.1	Spratt et al. (2021)	28	CT	TG,CG	nan

nf-ncov-voc 65 of 109

ACE2 ecceptor band Ising flow cytometry and ACE2 ecceptomates Ising Ising	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
AY.129,	Mutations p.L452R	ACE2 receptor bind-	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.118, AY.127, AY.4, AY.53, AY.77, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.411, AY.125, AY.121, AY.125, AY.127, AY.45, AY.121, AY.124, AY.66, AY.121, AY.124, AY.65, AY.39, AY.121, AY.124, AY.65, AY.39, AY.121, AY.66, AY.29.1, AY.133, AY.39.1, AY.62, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.66, AY.39, AY.121.1, AY.66, AY.48, AY.106, AY.75, AY.105, AY.114, AY.66, AY.48, AY.106, AY.75, AY.105, AY.114, AY.9.2, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.4, AY.45, AY.67, AY.40, AY.42, AY.46.4, AY.45, AY.47, AY.49, AY.116, AY.	Gong et al.	Depth	Allele	Allele	Frequency

nf-ncov-voc 66 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.L452R	ACE2 receptor bind-	Using flow cytometry and	AY.98, AY.35,	Gong et al.	17	Т	G	nan
	ing affinity	ACE2 ectodomains-Fc por-	AY.87	(2021)				
		tion IgG complex, this		, ,				
		variant combination (rep-						
		resenting lineage B.1.617)						
		showed a 1.85x increase						
		in binding (KD) relative						
		to D614G. [exact vari-						
		ant list not provided in						
		manuscript, is inferred fro						
		common knowledge						

nf-ncov-voc 67 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	ACE2 receptor binding affinity	extasciitilde1.7-fold increase in binding affinity	AY.23, AY.28, B.1.617.2,	Motozono et al. (2021)	68112	Т	G	nan
		vs wild type.	AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5,					
			AY.119.2, AY.38, AY.5,					
			AY.19, AY.64, AY.90, AY.58,					
			AY.84, AY.4.3, AY.106,					
			AY.29, AY.7.1, AY.54,					
			AY.25.1, AY.60, AY.24, AY.73, AY.33,					
			AY.100, AY.108,					
			AY.122.1, AY.118,					
			AY.127, AY.4, AY.53,					
			AY.77, AY.6, AY.14, AY.92,					
			AY.111, AY.119,					
			AY.82, AY.47, AY.56, AY.113,					
			AY.43.4, AY.119.1,					
			AY.125, AY.127.1,					
			AY.2, AY.117, AY.75, AY.93,					
			AY.121, AY.124.1,					
			AY.16.1, AY.4.7, AY.46, AY.34,					
			AY.65, AY.39, AY.121.1,					
			AY.26, AY.29.1,					
			AY.133, AY.39.1,					
			AY.62, AY.59, AY.18, AY.10,					
			AY.122, AY.116.1, AY.76,					
			AY.128, AY.98.1,					
			AY.46.6, AY.48,					
			AY.126, AY.75.2,					
			AY.105, AY.114,					
			AY.9.2, AY.17, AY.87, AY.40, AY.42,					
			AY.46.1, AY.46.4,					
			AY.4.2.2, AY.3, AY.44,					
			AY.43, AY.4.4, AY.45, AY.57,					
			AY.85, AY.103,					
			AY.74, AY.16, AY.71, AY.49, AY.116,					
			AY.13, AY.120.1,					
			AY.15, AY.36, AY.120,					
			AY.25, AY.94, AY.101,					
			AY.67, AY.4.2.1,					
			AY.102, AY.109,					
			AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32,					
			AY.104, AY.20, AY.78,					
			AY.99.2, AY.129,				_	
		Co	ntact7Us AY.110,				CIDGOH [©]	

nf-ncov-voc 68 of 109

D.L452R T cell evasion	Lineages Citation Sequence Reference Alternate Alternate Depth Allele Allele Frequence		Lineages	Function	Sub-category	Mutations
AV.14, AV.92, AV.113, AV.113, AV.113, AV.123, AV.134, AV.134, AV.135, AV.125, AV.127.1, AV.2, AV.117, AV.2, AV.117, AV.24, AV.124, AV.10.1, AV.124, AV.10.1, AV.25, AV.20, AV.20.1, AV.21, AV.21, AV.21, AV.22, AV.20, AV.21, AV.21, AV.21, AV.22, AV.23, AV.24, AV.24, AV.25, AV.25, AV.25, AV.25, AV.25, AV.26, AV.27, AV.28, AV.29, AV.20, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.20, AV.29, AV.20, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.29, AV.20, AV.29, AV.20, AV.29, AV.2	st did	3, 2, 5, 5, 5, 5, 1, 3, 3, 3, 3, 4, 4, 3, 3, 5, 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.54, AY.90, AY.58, AY.84, AY.40, AY.29, AY.71, AY.60, AY.24, AY.73, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.119.1, AY.125, AY.127.1, AY.121, AY.125, AY.121, AY.121, AY.125, AY.121, AY.124, AY.121, AY.125, AY.121, AY.126, AY.14, AY.93, AY.121, AY.124, AY.121, AY.125, AY.121, AY.124, AY.121, AY.126, AY.13, AY.121, AY.126, AY.13, AY.121, AY.126, AY.13, AY.121, AY.126, AY.13, AY.121, AY.46, AY.39, AY.121, AY.46, AY.39, AY.121, AY.46, AY.39, AY.121, AY.46, AY.39, AY.121, AY.46, AY.48, AY.126, AY.46, AY.48, AY.126, AY.46, AY.48, AY.126, AY.46, AY.49, AY.46, AY.42, AY.461, AY.45, AY.46, AY.45, AY.46, AY.47, AY.47, AY.47, AY.48, AY.49, AY.49, AY.49, AY.49, AY.49, AY.40, AY.49, AY.40, AY.49, AY.40, AY.49, AY.40, AY.41, AY.42, AY.41, AY.41, AY.42, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.43, AY.44, AY.44, AY.44, AY.49, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.41, AY.43, AY.44, AY.44, AY.44, AY.49, AY.49, AY.41, AY.49, AY.41, AY.49, AY.41, AY.49, AY.41, AY.42, AY.41, A	L452R derivative virus did not induce IFN-gamma expression even at the highest concentration tested (10 nM) in two different A*24:02 convalescent sera donor plasma (linear epitope NYNYLYRLF 448,456).		

nf-ncov-voc 69 of 109

			_		Depth	Allele	Allele	Alternate Frequency
Mutations p.L452R	Sub-category antibody epitope effects	Resistent to some neutralizing antibodies: mAbs X593 and P2B-2F6	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.119, AY.43, AY.119.1, AY.125, AY.119.1, AY.125, AY.127.1, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.34.	Li et al (2020)			Alternate Allele G	Alternate Frequency nan
			AY.46, AY.34, AY.65, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.62, AY.59, AY.18, AY.10, AY.122, AY.116.1, AY.76,					
			AY.128, AY.98.1, AY.46.6, AY.48, AY.126, AY.75.2, AY.105, AY.114, AY.9.2, AY.17, AY.87, AY.40, AY.42, AY.46.1,					
			AY.4.2.2, AY.3, AY.44, AY.43, AY.4.4, AY.45, AY.57, AY.85, AY.103, AY.74, AY.16, AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.15, AY.36, AY.120,					
			AY.25, AY.94, AY.101, AY.67, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.129,					

nf-ncov-voc 70 of 109

p.L4b2R else with the state of the set of of th	Mutations Sub	b-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate
AY.15, AY.36, AY.120, AY.25, AY.94, AY.101, AY.67, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.129,	p.L452R ant	tibody epitope ef-	Mutant screen in neutralization assay with a broad range of monoclonal antibodies shows resistence to	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.121, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.124.1, AY.125, AY.121, AY.124.1, AY.124.1, AY.125, AY.121.1, AY.26, AY.39.1, AY.65, AY.39, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.39, AY.121.1, AY.26, AY.116.1, AY.47, AY.46, AY.39, AY.121, AY.128, AY.104, AY.129, AY.116.1, AY.46, AY.48, AY.126, AY.116.1, AY.47, AY.46.4, AY.48, AY.116.1, AY.47, AY.48, AY.104, AY.49, AY.416, AY.416, AY.116, A	Liu et al.	Depth	Allele	Allele	Frequency

nf-ncov-voc 71 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	antibody epitope effects	10 of 14 RBD-specific mAbs that showed at least 10-fold reduced neutralization of B.1.427/B.1.429 variant pseudotype (S13I, W152C, and L452R) were also found to poorly bind to just a L452R RBD mutant, demonstrating a role for this mutation as an escape mechanism for certain RBD-targeting mAbs.	AY.23, AY.28, B.1.617.2, AY.35, AY.32, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.54, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.121, AY.121, AY.124.1, AY.124.1, AY.126, AY.121, AY.121, AY.121, AY.126, AY.121, AY.121, AY.121, AY.124, AY.133, AY.39.1, AY.65, AY.39, AY.121, AY.126, AY.121, AY.126, AY.121, AY.126, AY.127, AY.16.1, AY.46.4, AY.47, AY.46.4, AY.42.2, AY.116, AY.126, AY.128, AY.116, AY.129, AY.116, AY.120, AY.124, AY.45, AY.120, AY.42, AY.40, AY.42, AY.44, AY.45, AY.49, AY.416, AY.116, AY	McCallum et al. (2021)	Depth 68112	T	CIDGOH ©	requency

nf-ncov-voc 72 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	antibody epitope effects	extasciitilde20% (ELISA significance threshold) drop in antibody binding (ELISA) by this variant against monoclonal antibody VH ab6.	Lineages AY.23, AY.28, B1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.19, AY.64, AY.90, AY.58, AY.84, AY.43, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.121, AY.124, AY.125, AY.121, AY.124, AY.66, AY.34, AY.65, AY.39, AY.121, AY.124, AY.65, AY.39, AY.121, AY.16.1, AY.66, AY.39, AY.121, AY.16.1, AY.47, AY.66, AY.39, AY.121, AY.16.1, AY.76, AY.19, AY.19, AY.19, AY.19, AY.116, AY.75, AY.105, AY.114, AY.92, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.4, AY.45, AY.57, AY.85, AY.105, AY.114, AY.92, AY.116.1, AY.75, AY.103, AY.74, AY.46, AY.416, AY.75, AY.103, AY.74, AY.46, AY.416, AY.75, AY.103, AY.74, AY.46, AY.416, AY.71, AY.49, AY.116, AY.71, AY.49, AY.4	Sun et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan

nf-ncov-voc 73 of 109

p.L452R convalescent plasma binding binding (relative to D614G alone) by 5 plasma collected 8 months postsymptom-onset. AY.23, AY.28, Gong et al. (2021) Great of the convalence of the con	Frequency
NY-119-2, AV-3, AV-3, AV-3, AV-3, AV-3, AV-3, AV-30, AV-38, AV-31, AV-51, AV-25,1, AV-25,1, AV-25,1, AV-26, AV-108, AV-108, AV-121, AV-108, AV-121, AV-121, AV-121, AV-121, AV-121, AV-121, AV-121, AV-121, AV-13, AV-14, AV-14, AV-14, AV-14, AV-15, AV-17, AV-18, AV-19, AV-18, AV-19, AV-18, AV-19, AV-19, AV-10, AV-11, AV-20, AV-10, AV-11, AV-30, AV-12, AV-10, A	Frequency

nf-ncov-voc 74 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.L452R	convalescent plasma	This variant combina-	AY.98, AY.35,	Gong et al.	17	T	G	nan
_	binding	tion (representing lineage	AY.87	(2021)				
	9	B.1.617) showed a 1.22x		` /				
		decrease in Spike bind-						
		ing (relative to D614G						
		alone) by 5 plasma col-						
		lected 8 months post-						
		symptom-onset. [exact						
		variant list not provided in						
		manuscript, is inferred fro						
		common knowledgel						

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 75 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	Sub-category convalescent plasma escape	Function Observed extasciitilde2x decrease on average in 16 health workers' convalescent sera.	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.71, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.119.1, AY.125, AY.17, AY.43.4, AY.119.1, AY.125, AY.17, AY.75, AY.93, AY.121, AY.124.1, AY.124.1, AY.16.1, AY.4.7, AY.46, AY.34, AY.47, AY.46, AY.34, AY.34, AY.47, AY.46, AY.34, AY.34, AY.47, AY.46, AY.34, AY.34, AY.47, AY.46, AY.34,	Citation Alenquer et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan
			AY.125, AY.127.1, AY.2, AY.117, AY.75, AY.93, AY.121, AY.124.1, AY.16.1, AY.4.7,					
			AY.98.1, AY.46.6, AY.48, AY.126, AY.75.2, AY.105, AY.114, AY.9.2, AY.17, AY.87, AY.40, AY.42, AY.46.1, AY.46.4, AY.4.2.2, AY.3, AY.44, AY.43, AY.4.4, AY.45, AY.57, AY.85,					
		Co	AY.103, AY.74, AY.16, AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.15, AY.36, AY.120, AY.25, AY.94, AY.101, AY.67, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.129, bn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				CIDGOH [©]	

nf-ncov-voc 76 of 109

p.L452R	convalescent plasma escape	Ablation of neutralization capability of 3 of 4 convalescent sera tested, the	AY.23, AY.28, B.1.617.2,	Liu et al. (2021)	68112	Т	G	nan
		other is significantly hindered.	AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.54, AY.119, AY.82, AY.111, AY.119, AY.82, AY.411, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43, AY.119.1, AY.125, AY.121, AY.121, AY.124.1, AY.124.1, AY.124.1, AY.61, AY.47, AY.46, AY.39, AY.121.1, AY.29.1, AY.133, AY.39.1, AY.62, AY.59, AY.116.1, AY.76, AY.128, AY.98.1, AY.66, AY.75.2, AY.116, AY.75, AY.116, AY.126, AY.75, AY.116, AY.127, AY.46, AY.47, AY.46, AY.47, AY.46, AY.48, AY.198.1, AY.46, AY.198.1, AY.46, AY.114, AY.92, AY.116, AY.115, AY.47, AY.46, AY.47, AY.46, AY.48, AY.103, AY.44, AY.45, AY.47, AY.46, AY.47, AY.46, AY.47, AY.46, AY.47, AY.46, AY.48, AY.116, AY.75, AY.103, AY.44, AY.45, AY.47, AY.46, AY.47, AY.46, AY.413, AY.410, AY.413, AY.410, AY.413, AY.410, AY.113, AY.120, AY.13, AY.120, AY.13, AY.120, AY.25, AY.94,					
			AY.46.1, AY.46.4, AY.4.2.2, AY.3, AY.4.4, AY.43, AY.4.4, AY.85, AY.103, AY.74, AY.16, AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.15, AY.36,					

<u>nf-ncov-voc</u> 77 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference	Alternate	Alternate
Mutations p.L452R	Sub-category convalescent plasma escape	Pseudotyped viruses for B.1.617 was 2.3-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617. [de-	Lineages AY.98, AY.35, AY.87	Citation Tada et al. (2021)	Sequence Depth 17	Reference Allele T	Alternate Allele G	Alternate Frequency nan
		tails on the convalescent patient sera collection are not abundantly clear in the preprint]						

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 78 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	Sub-category convalescent plasma escape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.82, AY.47, AY.56, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127.1, AY.2, AY.117, AY.2, AY.117, AY.2, AY.117, AY.2, AY.117, AY.2, AY.117, AY.2, AY.117, AY.124.1, AY.125, AY.121.1, AY.124.1, AY.126, AY.29.1, AY.133, AY.39.1, AY.62, AY.59, AY.118, AY.121, AY.126, AY.75, AY.118, AY.121, AY.126, AY.76, AY.121, AY.126, AY.75, AY.118, AY.121, AY.126, AY.75, AY.118, AY.121, AY.126, AY.75, AY.118, AY.121, AY.126, AY.75, AY.114, AY.126, AY.75, AY.115, AY.127, AY.128, AY.129, AY.114, AY.129, AY.115, AY.121, AY.126, AY.75, AY.114, AY.92, AY.117, AY.87, AY.40, AY.42, AY.46.4, AY.46.4, AY.46.4,	Citation Wilhelm et al. (2021)	Sequence Depth 68112			
			AY.29.1, AY.133, AY.39.1, AY.62, AY.59, AY.18, AY.10, AY.122, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.6, AY.48, AY.126, AY.75.2, AY.105, AY.114, AY.9.2, AY.17, AY.87,					
			AY.46.1,					
		Co	AY.25, AY.94, AY.101, AY.67, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.129, DIAMES AV. 37				CIDGOН [©]	

nf-ncov-voc 79 of 109

Depth Allele Allele Crease gene expression increased 0.32 fold Shape of the crease of
AY. 84, AY. 4.3, AY. 106, AY. 29, AY. 71, AY. 54, AY. 25.1, AY. 60, AY. 24, AY. 73, AY. 24, AY. 73, AY. 23, AY. 100, AY. 108, AY. 108, AY. 118, AY. 118, AY. 118, AY. 117, AY. 4, AY. 53, AY. 77, AY. 6, AY. 14, AY. 92, AY. 111, AY. 119, AY. 82, AY. 47, AY. 56, AY. 113, AY. 13, AY. 43.4, AY. 19.1,

nf-ncov-voc 80 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	Sub-category monoclonal antibody serial passage escape	Ranked effective mutant against this position in the RBD for highly neutralizing COV2-2096	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.121, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.124.1, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.125, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.39, AY.121.1, AY.26, AY.39, AY.121.1, AY.26, AY.19.1, AY.128, AY.103, AY.129, AY.116.1, AY.46, AY.48, AY.126, AY.128, AY.129, AY.116.1, AY.46, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.43, AY.44, AY.45, AY.47, AY.46, AY.47, AY.48, AY.49, AY.49, AY.49, AY.416, AY.71, AY.49, AY	Citation Greaney et al. (2020)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan
		Co	AY.85, AY.103, AY.74, AY.16,				CIDGOH [©]	

nf-ncov-voc 81 of 109

Rootspan Rootspan Rootspan Dec		Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
AY.99.2,	p.L452R r	monoclonal anti- body serial passage	Escape mutation against monoclonal antibody LY- CoV555 (antibody that forms the basis for Eli	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119.2, AY.38, AY.54, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.118, AY.127, AY.4, AY.53, AY.77, AY.4, AY.92, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.17, AY.47, AY.48, AY.19.1, AY.125, AY.121, AY.125, AY.121, AY.125, AY.121, AY.124.1, AY.126, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.39, AY.121.1, AY.26, AY.121, AY.124.1, AY.16.1, AY.47, AY.48, AY.19.1, AY.124.1, AY.16.1, AY.47, AY.48, AY.19.1, AY.124.1, AY.16.1, AY.47, AY.48, AY.19.1, AY.124.1, AY.16.1, AY.47, AY.48, AY.104, AY.120, AY.121, AY.120, AY.120, AY.120, AY.120, AY.120, AY.140, AY.42, AY.46.1, AY.45, AY.47, AY.49, AY.410, AY.49, AY.116,	Starr et al.	Sequence Depth 68112		Allele	Frequency

nf-ncov-voc 82 of 109

					Depth	Allele	Allele	Alternate Frequenc
Mutations p.L452R	Sub-category monoclonal antibody serial passage escape	Function Class 2/3 antibody C628 and class 2 antibody C643 selected for the emergence of the L452R mutation in vitro.	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.119.1, AY.125, AY.119.1, AY.125, AY.117, AY.75, AY.93, AY.121, AY.124.1, AY.124.1, AY.124.1, AY.126, AY.39, AY.121.1, AY.47, AY.46, AY.34, AY.65, AY.39, AY.121.1, AY.26, AY.29.1,	Citation Wang et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequence nan
			AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.14, AY.92, AY.111, AY.119, AY.82, AY.47, AY.56, AY.113, AY.43.4, AY.119.1, AY.125, AY.127.1, AY.2, AY.117, AY.75, AY.93, AY.121, AY.16.1, AY.4.7, AY.46, AY.34, AY.65, AY.39, AY.121.1, AY.26,					
			AY.48, AY.126, AY.75.2, AY.105, AY.114, AY.9.2, AY.17, AY.87, AY.40, AY.42, AY.46.1, AY.46.4, AY.4.2.2, AY.3, AY.44, AY.43, AY.4.4, AY.45, AY.57, AY.85, AY.103, AY.74, AY.16, AY.71, AY.49, AY.116, AY.13, AY.120.1, AY.15, AY.36, AY.120.1					
		Co	AY.120, AY.25, AY.94, AY.101, AY.67, AY.4.2.1, AY.102, AY.109, AY.43.3, AY.1, AY.55, AY.86, AY.61, AY.32, AY.104, AY.20, AY.78, AY.99.2, AY.129, DIRAGE TUS AY.110, AY.68, AY.37.				CIDGOH [©]	

nf-ncov-voc 83 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) lost extasci- itilde5x binding against this isolated mutation. Cligavimab lost extasci- itilde4x binding against this isolated mutation. Regdanvimab lost extasci- itilde4x binding against this isolated mutation.	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.127, AY.4, AY.53, AY.77, AY.6, AY.114, AY.127, AY.4, AY.53, AY.77, AY.6, AY.119, AY.82, AY.111, AY.125, AY.1119, AY.82, AY.111, AY.125, AY.1119, AY.125, AY.127, AY.46, AY.121, AY.121, AY.124, AY.126, AY.29, AY.133, AY.39, AY.121, AY.26, AY.29, AY.116, AY.120, AY.120, AY.46, AY.42, AY.46, AY.43, AY.44, AY.49, AY	Engelhart et al. (2021)	68112	Allele	CIDGOH ©	nan

nf-ncov-voc 84 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) entirely lost its neutralizing activity due to the central location of L452R in the epitopes recognized by this mAb. Regdanvimab (CT-P59), and to a smaller extent etesevimab, showed a reduction in neutralization potency.	AY.23, AY.28, B.1.617.2, AY.35, AY.32, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.54, AY.90, AY.58, AY.84, AY.40, AY.29, AY.71, AY.54, AY.25.1, AY.106, AY.221, AY.118, AY.127, AY.4, AY.25.1, AY.119, AY.66, AY.127, AY.4, AY.57, AY.6, AY.119, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.127, AY.4, AY.25.1, AY.119, AY.82, AY.111, AY.125, AY.127, AY.4, AY.133, AY.121, AY.124, AY.127, AY.161, AY.47, AY.65, AY.121, AY.124, AY.124, AY.124, AY.124, AY.124, AY.126, AY.127, AY.46, AY.34, AY.65, AY.39, AY.121, AY.26, AY.29.1, AY.133, AY.39.1, AY.62, AY.59, AY.116.1, AY.47, AY.65, AY.128, AY.98.1, AY.46.6, AY.48, AY.126, AY.71, AY.67, AY.40, AY.42, AY.46.4, AY.45, AY.104, AY.49, AY.49, AY.49, AY.104, AY.49, AY.49, AY.49, AY.49, AY.104, AY.49, AY.49, AY.104, AY.49, AY.49, AY.104, AY.49, AY	McCallum et al. (2021)	Depth 68112	Allele	CIDGOH ©	nan

nf-ncov-voc 85 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	symptom prevalence	Gross examination of 3+3 hamster lung specimens showed pronounced congestion and hemorrhages on days 5 and 7 post-infection in the case of the B.1.617.1 as compared with the B.1. The lung lesions with the B.1 variant were minimal to mild whereas with B.1.617.1 they were moderate. For B.1 pneumonic changes were minimal to mild (inflammatory cell infiltration, focal consolidation and mild congestion). The pronounced changes (moderate to severe) with mononuclear infiltration in the alveolar interstitial space, interstitial septal thickening, consolidation and pneumocyte hyperplasia were observed with B.1.617.1 variant consistently.	AY.98, AY.35, AY.87	Yadav et al. (2021)	Depth 17	T	G	nan

nf-ncov-voc 86 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	Trafficking trafficking	Function We observed increased entry by pseudoviruses carrying the L452R mutation compared to D614G alone, with a 6.7 to 22.5-fold increase in 293T cells and a 5.8 to 14.7-fold increase in human airway organoids.	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.111, AY.119, AY.121, AY.119, AY.125, AY.111, AY.119, AY.125, AY.119, AY.121, AY.124.1, AY.16.1, AY.16.1, AY.16.1, AY.46, AY.39, AY.121.1, AY.16.1, AY.118, AY.120, AY.128, AY.116, AY.128, AY.116, AY.128, AY.116, AY.128, AY.116, AY.128, AY.116, AY.129, AY.116, AY.120, AY.120, AY.121, AY.46.4, AY.42.2, AY.116, AY.43, AY.44, AY.45, AY.46, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.46.4, AY.42, AY.116, AY.120, AY.120, AY.120, AY.120, AY.13, AY.120, AY.13, AY.120, AY.140, AY.47, AY.49, AY.116, AY.15, AY.49, AY.116, AY.17, AY.49, AY.116, AY.116, AY.13, AY.120, AY.42, AY.43, AY.44, AY.45, AY.47, AY.46, AY.47, AY.49, AY.110, AY.47, AY.49, AY.110, AY.49, AY.100, AY.49, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.40, AY.	Citation Deng et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan
		Co	n t act7Us AY.110,			·	CIDGOH [©]	

nf-ncov-voc 87 of 109

The variant alone shows a constraint of the cons	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
			This variant alone shows a extasciitilde5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G. [listed as L454R in Figure, but L452R in text, also text suggests not statistucally significant, but error bars	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.125, AY.127.1, AY.2, AY.117, AY.2, AY.117, AY.2, AY.117, AY.124.1, AY.125, AY.121.1, AY.124.1, AY.125, AY.121.1, AY.124.1, AY.125, AY.121.1, AY.126, AY.121.1, AY.66, AY.39, AY.121.1, AY.66, AY.48, AY.104, AY.69, AY.116.1, AY.76, AY.128, AY.103, AY.74, AY.105, AY.116, AY.13, AY.44, AY.45, AY.57, AY.85, AY.103, AY.74, AY.40, AY.42, AY.46.1, AY.45, AY.57, AY.85, AY.103, AY.74, AY.16, AY.120, AY.210, AY.22, AY.100, AY.23, AY.24, AY.200, AY.23, AY.24,	Ferriera et al	Depth	Allele	Allele	Frequency

nf-ncov-voc 88 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	trafficking	This variant combination shows a extasciitilde4-5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, same as L452R alone.	AY.77	Ferriera et al (2021)	4	Т	G	nan
p.L452R	trafficking	This variant combination shows a extasciitilde3x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, significantly less of a decrease than any B.1.617 lineage variants alone, suggesting a synergistic effect on cell entry while maintaining known immunity esacpe mutants.	AY.77	Ferriera et al (2021)	4	Т	G	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 89 of 109

p.L452R trafficking Increased stability of RBD expression in yeast, suggesting increased Spike protein stability. Increased stability of RBD expression in yeast, suggesting increased Spike protein stability. AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.90, AY.58, AY.90, AY.58, AY.90, AY.58, AY.90, AY.58, AY.90, AY.29,	Frequency nan
AY71, AY54, AY26, AY33, AY33, AY100, AY108, AY108, AY108, AY118, AY118, AY118, AY118, AY111, AY118, AY111, AY111, AY119, AY111, AY119, AY111, AY111, AY111, AY111, AY111, AY111, AY111, AY121, AY121, AY121, AY121, AY124, AY141, AY16, AY34, AY414, AY16, AY34, AY46, AY46, AY46, AY46, AY46, AY48, AY46, AY48, A	

nf-ncov-voc 90 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
Mutations p.L452R	Sub-category transmissibility	Function Increased infectivity of the B.1.617 spike was attributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	Lineages AY.23, AY.28, B1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.119.4, AY.90, AY.58, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119, AY.82, AY.117, AY.125, AY.121, AY.121, AY.121, AY.121, AY.121, AY.124, AY.66, AY.33, AY.77, AY.66, AY.33, AY.106, AY.113, AY.47, AY.66, AY.113, AY.47, AY.65, AY.121, AY.121, AY.124.1, AY.16.1, AY.47, AY.46, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.65, AY.39, AY.121.1, AY.16, AY.12, AY.16, AY.116, AY.12, AY.40, AY.42, AY.46.1, AY.45, AY.40, AY.42, AY.46.1, AY.47, AY.49, AY.116, AY.116, AY.13, AY.41, AY.45, AY.40, AY.42, AY.41, AY.45, AY.40, AY.42, AY.41, AY.45, AY.103, AY.71, AY.49, AY.116, AY.120, AY.42, AY.40, AY.42, AY.43, AY.44, AY.45, AY.40, AY.42, AY.40, AY.41, AY.45, AY.40, AY.42, AY.41, AY.45, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.42, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.42, AY.40, AY.42, AY.40, AY.42, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.40, AY.42, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42,	Citation Tada et al. (2021)				
			AY.129,					

nf-ncov-voc 91 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence		Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.L452R	transmissibility	The combination caused a	AY.98, AY.35,	Tada et al.	17	T	G	nan
	-	3-fold increase in infectiv-	AY.87	(2021)				
		ity relative to D614G wild						
		type. [compare to 3.5x for						
		L452R alone]						
p.L452R	transmissibility	Normalized for particle	AY.98, AY.35,	Tada et al.	17	Т	G	nan
		number, on ACE2.293T	AY.87	(2021)				
		cells showed that the		, ,				
		B.1.617 spike protein was						
		>2-fold increase in infectiv-						
		ity relative to D614G wild						
		type.						

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 92 of 109

Nine stored sera from Ay,23, AY,28, Ferrira et al. 68112 T G	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
AY, 39.1, AY, 62, AY, 18, AY, 10, AY, 122, AY, 116.1, AY, 76, AY, 128, AY, 98.1, AY, 46.6, AY, 48, AY, 126, AY, 105, AY, 105, AY, 105, AY, 104, AY, 105, AY, 106, AY, 106, AY, 107, AY,		vaccine neutraliza-	Nine stored sera from Pfizer BNT162b2 vaccinees were tested against a range of spike mutation bearing PV. L452R conferred about a two-fold reduction in neutralisation by vaccine sera, but was not statistically significant with this sample size.	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.19, AY.64, AY.90, AY.58, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.111, AY.119.1, AY.125, AY.111, AY.125, AY.121, AY.121, AY.124, AY.65, AY.13, AY.65, AY.14, AY.65, AY.93, AY.121, AY.16.1, AY.4.7, AY.46, AY.39, AY.121, AY.122, AY.116.1, AY.4.7, AY.46, AY.39, AY.121.1, AY.226, AY.29.1, AY.133, AY.39.1, AY.65, AY.39, AY.121.1, AY.26, AY.29.1, AY.122, AY.116.1, AY.76, AY.122, AY.116.1, AY.76, AY.122, AY.116.1, AY.46, AY.47, AY.49, AY.121, AY.46, AY.122, AY.116.1, AY.76, AY.122, AY.116.1, AY.76, AY.120, AY.121, AY.46.4, AY.42, AY.46.4, AY.42.2, AY.46.4, AY.45, AY.57, AY.40, AY.42, AY.46.4, AY.45, AY.57, AY.46, AY.47, AY.49, AY.116, AY.13, AY.120, AY.45, AY.49, AY.116, AY.13, AY.149, AY.15, AY.49, AY.116, AY.15, AY.49, AY.101, AY.45, AY.57, AY.49, AY.101, AY.45, AY.57, AY.49, AY.101, AY.45, AY.57, AY.49, AY.104, AY.45, AY.57, AY.49, AY.104, AY.45, AY.57, AY.49, AY.104, AY.45, AY.57, AY.49, AY.104, AY.49, AY.104, AY.45, AY.57, AY.49, AY.104, AY.49,	Ferreira et al.	Depth	T	Allele G	Frequency

nf-ncov-voc 93 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	vaccine neutralization efficacy	Nine stored sera from Pfizer BNT162b2 vaccinees were tested against a range of spike mutation bearing PV. E484Q had a extasciitilde5x drop in neutralization (vs extasciitilde10x for E484K). When E484Q and L452R were combined, the fold change was significant, but similar to that of L452R alone (extasciitilde2x), suggesting no evidence for an additive effect [perhaps even E484Q effect dilution].	AY.98, AY.35, AY.87	Ferreira et al. (2021)	17	Т	G	nan
p.L452R	vaccine neutraliza- tion efficacy	1.4x reduction in neutralization (ID50) in sera 3 weeks after one dose of Pfizer/BioNTech BNT162b2 (up to 5 naive and post infection vaccinees)	AY.98, AY.35, AY.87	Gong et al. (2021)	17	Т	G	nan

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 94 of 109

nf-ncov-voc 95 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate
								Frequency
p.L452R	vaccine neutraliza-	Pseudotyped viruses for	AY.98, AY.35,	Tada et al.	17	T	G	nan
	tion efficacy	B.1.617 was 4-fold resis-	AY.87	(2021)				
		tant to neutralization by						
		6 BNT162b2 vaccine sera						
		28 days post-booster com-						
		pared to wild type - a						
		finding that was similar to						
		that of the 3.4-fold resis-						
		tance of the South Africa						
		B.1.351 variant using the						
		same assay. Neutralization						
		by 3 Moderna vaccine sera						
		28 days post-booster was						
		5-fold resistant (vs. 2.2-						
		fold for B.1.351). The						
		resistance of B.1.617 was						
		caused by the L452R and						
		E484Q mutation, based on						
		results from viruses pseu-						
		dotyped for individual vari-						
		ants within B.1.617.						

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 96 of 109

			_		Depth	Allele	Allele	Alternate Frequency
P.L452R	Sub-category vaccine neutralization efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by 18 vaccinee sera (BNT162b2 and mRNA1273).	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.58, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.11, AY.119, AY.82, AY.17, AY.46, AY.113, AY.43.4, AY.119.1, AY.125, AY.121, AY.124, AY.121, AY.125, AY.121, AY.124, AY.126, AY.121, AY.126, AY.121, AY.126, AY.29.1, AY.133, AY.39.1, AY.62, AY.39, AY.121.1, AY.26, AY.29.1, AY.133, AY.39.1, AY.62, AY.116.1, AY.76, AY.128, AY.116.1, AY.76, AY.128, AY.116.1, AY.76, AY.120, AY.114, AY.9.2, AY.116.1, AY.76, AY.128, AY.19.1, AY.46.4, AY.47, AY.46.4, AY.48, AY.126, AY.75.2, AY.114, AY.92, AY.116, AY.116, AY.128, AY.440, AY.45, AY.47, AY.46.4, AY.42, AY.46.4, AY.43, AY.44, AY.45, AY.47, AY.46, AY.47, AY.48, AY.16, AY.71, AY.49, AY.416, AY.71, AY.49, AY.416, AY.71, AY.49, AY.416, AY.71, AY.49, AY.416, AY.71, AY.49, AY.116, AY.119, AY	Citation Wilhelm et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan
		Ce	AY.116,				CIDGOH [©]	

nf-ncov-voc 97 of 109

Mutations	Sub-categor	·y	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.L452R	vaccinee binding	plasma	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.111, AY.119, AY.82, AY.113, AY.47.5, AY.91, AY.121, AY.125, AY.121, AY.121, AY.125, AY.121, AY.121, AY.121, AY.121, AY.121, AY.124.1, AY.66, AY.39, AY.121.1, AY.66, AY.39, AY.121.1, AY.65, AY.39, AY.121.1, AY.66, AY.75.2, AY.105, AY.114, AY.9.2, AY.116.1, AY.76, AY.128, AY.98.1, AY.46.6, AY.48, AY.126, AY.75.2, AY.105, AY.114, AY.49.4, AY.49, AY.10, AY.116, AY.110, AY.67, AY.40, AY.42, AY.410, AY.42, AY.43, AY.44, AY.45, AY.57, AY.85, AY.104, AY.102, AY.109, AY.45, AY.57, AY.85, AY.104, AY.49, AY.101, AY.67, AY.99.2, AY.78, AY.99.	Gong et al. (2021)	Depth 68112	T	CIDGOH ©	nan

nf-ncov-voc 98 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference	Alternate	Alternate
					Depth	Allele	Allele	Frequency
p.L452R	vaccinee plasma binding	This variant combination (representing lineage B.1.617) showed a 1.30x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.18x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.98, AY.35, AY.87	Gong et al. (2021)	17	Т	G	nan
p.L452R	viral load	In 9 infected hamsters each for B.1 and B.1.617.1, no significant change in viral load or subgenomic RNA levels were detected.	AY.98, AY.35, AY.87	Yadav et al. (2021)	17	Т	G	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 99 of 109

Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
virion structure	Estimated free energy change (ddG) for this variant is -0.67 kcal/mol (i.e. destabilizing relative to wild type)	Lineages AY.23, AY.28, B.1.617.2, AY.35, AY.3.2, AY.41, AY.51, AY.99, AY.4.5, AY.119.2, AY.38, AY.5, AY.19, AY.64, AY.90, AY.58, AY.84, AY.4.3, AY.106, AY.29, AY.7.1, AY.54, AY.25.1, AY.60, AY.24, AY.73, AY.33, AY.100, AY.108, AY.122.1, AY.118, AY.127, AY.4, AY.53, AY.77, AY.6, AY.11, AY.119, AY.82, AY.411, AY.119.1, AY.125, AY.117, AY.42, AY.117, AY.43, AY.119.1, AY.125, AY.117, AY.66, AY.113, AY.121, AY.121, AY.124.1, AY.16.1, AY.65, AY.39, AY.121.1, AY.65, AY.39, AY.121.1, AY.66, AY.29.1, AY.16.1, AY.66, AY.29.1, AY.126, AY.29.1, AY.126, AY.29.1, AY.126, AY.46.4, AY.46.6, AY.48, AY.126, AY.126, AY.126, AY.126, AY.126, AY.127, AY.16, AY.128, AY.105, AY.114, AY.46.6, AY.48, AY.126, AY.46.1, AY.46.4, AY.42.2, AY.46.1, AY.46.4, AY.43, AY.44, AY.45, AY.57, AY.40, AY.42, AY.46.1, AY.45, AY.57, AY.40, AY.410, AY.410, AY.116, AY.116, AY.116, AY.116, AY.117, AY.49, AY.116, AY.117, AY.49, AY.118, AY.119, AY.410, AY.410, AY.42, AY.46.1, AY.45, AY.47, AY.46, AY.410, AY.47, AY.49, AY.410, AY.49, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.57, AY.40, AY.40, AY.410, AY.41	Spratt et al. (2021)	Sequence Depth 68112	Reference Allele T	Alternate Allele G	Alternate Frequency nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Allele	Alternate Allele	Alternate Frequency
p.P251L	monoclonal anti- body serial passage escape	Escape mutation against Spike N terminal domain antigenic supersite i mAb S2X28	AY.86, AY.98.1	McCallum et al. (2021)	961	C	T	nan
p.S255F	monoclonal anti- body serial passage escape	Escape mutation against Spike N terminal domain antigenic supersite i mAb S2L28	AY.106	McCallum et al. (2021)	212	С	T	nan
p.E484K	ACE2 receptor binding affinity	This combination showed extasciitilde3x increase binding to ACE2 vs wild type, about half that of the B.1.1.7 lineage, suggesting that the K417N mutation is slightly detrimental to ACE2 binding, probably as a result of disrupting the salt bridge formed with ACE2 residue D30	AY.77	Collier et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	This variant appears twice in the experiments, with slightly different affinities (both extasciitidel.2x decrease in binding relative to D614G) using flow cytometry and ACE2 ectodomains-Fc portion IgG complex.	AY.77	Gong et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	RBD containing the N501Y mutation results in 9-fold stronger binding to the hACE2 receptor than wild type RBD. The E484K mutation does not significantly influence the affinity for the receptor, while K417N attenuates affinity. As a result, RBD from B.1.351 containing all three mutations binds 3-fold stronger to hACE2 than wild type RBD but 3-fold weaker than N501Y.	AY.77	Laffeber et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	Studying the key covariants in lineage of concern 501Y.V2, observed about 2-fold increase in ACE2 binding vs wildtype, but greatly decreased mAb binding, suggesting evolutionary optimum tension between immune evasion and ACE2 binding affinity as the N501Y variant alone has 10x increase in affinity but no effect on tested mAb binding.	AY.77	Liu et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	Using Mircoscale Thermopheresis, the B.1.351 variant harboring three mutations, binds ACE2 at nearly five-fold greater affinity than the original SARS-COV-2 RBD (Kd 87.6, vs 402.5 nM).	AY.77	Ramanathan et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	Experimentally, ACE2 binding affinity increased 0.06 fold	AY.77	Starr et al. (2020)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	Reported moderate in- crease in affinity compared to wild-type RBD on the cell surface (Kd	AY.77	Tian et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	Reported slight increase in affinity compared to wild- type RBD on the cell sur- face (Kd	AY.77	Tian et al. (2021)	2	G	A,C	nan
p.E484K	ACE2 receptor binding affinity	The affinity of ACE2 for this mutation combination was twice as high as for wild type. Having in mind that the affinity of SARS-CoV-2 for ACE2 is only 4-fold higher compared to SARS-CoV-1, this factor of 2 is expected to be biologically significant.	AY.77	Vogel et al. (2021)	2	G	A,C	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484K	ACE2 receptor binding affinity	Among the first selected variants in an in vitro evolution experiment for ACE2 binding.	AY.77	Zahradnik et al. (2021)	2	G	A,C	nan
p.E484K	T cell evasion	Analyzing responses to the E484K mutation seen in B.1.351 and P.1 variants, we noted that it did not fall in a region predicted to bind the HLAII alleles tested (table S4). The mutation appeared to have no substantial or differential impact on T cell responses.	AY.77	Reynolds et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Ablates Class 1 receptor- binding-motif targeting an- tibodies COV2-2050, 1B07, COVOX-384 and S2H58.	AY.77	Chen et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Of 50 mAbs tested, major loss of neutralization observed for S2N28, S2X615, S2N12, S2X192, S2H7, S2X16, S2X54, S2D19, S2N22, S2D32, S2H58, S2M11, S2D106, S2X30.	AY.77	Collier et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Ablates binding by class 2 mAbs such as C144 that directly interfere with ACE2 binding, but clonal somatic mutations of memory B cells at 6.2 months (evolving humoral immune response) show pronounced increase in binding to the variant.	AY.77	Gaebler et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Monoclonal antibodies 13G9 and 58G6 maintain fairly high neutralization potency, compared to others interfacing with E484K.	AY.77	Li et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Mutant screen in neutralization assay with a broad range of monoclonal antibodies shows high resistence to 4 antibodies, and broad low level resistence against much of the rest of the panel.	AY.77	Liu et al. (2020)	2	G	A,C	nan
p.E484K	antibody epitope effects	Massive reduction in binding efficiency vs wild type for mAb LY-CoV555.	AY.77	Rappazzo et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Complete loss of binding in ELISA by the variant against monoclonal anti- body VH-Fc ab8	AY.77	Sun et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Pseudotyped virus model ablates neutralization by RBD-directed mAbs 4-20, 2-4, 2-43, 2-30, 2-15, LY-Cov555, C121. Pseudotyped virus model impairs neutralization by RBD-directed mAb COV2-2196 (somewhat more than fully pseudotyped B.1.351 or live virus)	AY.77	Wang et al. (2021)	2	G	A,C	nan
p.E484K	antibody epitope effects	Resistent to all seven class 2 (Spike 'up' or 'down' conformation, RBD targeting) antibodies tested, with 10-fold or greater reduction in neutralization (plus notable reudction in two unclassfied mAbs).	AY.77	Wang et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma binding	1.42x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.77	Gong et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	Average extasciitilde5-fold reduction in neutralization efficacy in convalescent sera of 16 health workers infected in Spring 2020.	AY.77	Alenquer et al. (2021)	2	G	A,C	nan

Contact Us CIDGOH [©]

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484K	convalescent plasma escape	This mutation occurred in 100% of sequenced virions after 12 passages and led to a 4-fold decrease in convalescent plasma neutralization activity	AY.77	Andreano et al. (2020)	2	G	A,C	nan
p.E484K	convalescent plasma escape	The 501Y.V2 to first wave IC50 ratio ranged from 6 to 200-fold. Averaging across all 7 participant convalescent sera highlighted the dramatic decrease in sensitivity to neutralization of authentic 501Y.V2 variants. PG: I'm purposefully ignoring D614G and A701V as contributors	AY.77	Cele et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	Remarkably, several of the E484 escape mutants were resistant to neutralization at the highest concentration (1:80 initial dilution) of all 4 convalescent sera tested (triplicate experiments). Against a wider panel of 16 convalescent plasma (no replicates), all but one show major resistance.	AY.77	Liu et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	Escape mutant found after in passage in plasma pool of 26 convalescents mean 1.5 post symptom onset.	AY.77	Schmidt et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	The only mutation in the B.1.351 lineage that appears to contribute to neutralization reduction (extasciitide1.7x across 10 convalescent sera from April 2020 infectees)	AY.77	Tada et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	Pseudotyped viruses for B.1.618 was 2.5-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618. [details on the convalescent patient sera collection are not abundantly clear in the preprint]	AY.77	Tada et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	As measured by surface plasmon resonance, RBD with the E484K mutation alone showed a mean 19.1x decrease in binding affinity for six batches of hyperimmune immunoglobulin (hCoV-2IG) preparations generated from SARS-CoV-2 convalescent plasma.	AY.77	Tang et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	The neutralizing activity of 15/20 convalescent sera was significantly lower against this pseudotyped virus model	AY.77	Wang et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	27% of 44 early pandemic exposure convalescent plasma/sera lose all activity against a RBD triple mutant pseudovirus (RBD mutatants of the 501Y.V2 "South African" lineage), while only 23% retained high titres	AY.77	Wibmer et al. (2021)	2	G	A,C	nan

Contact Us CIDGOH $^{\odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484K	convalescent plasma escape	Nearly half (21 of 44, 48%) of early pandemic exposure convalescent plasma/sera failed to neutralize the 501Y.V2 ("South African") lineage pseudovirus construct Only 3 of 44 convascent sera (those with the highest titer, which correlated directly with initial infection severity) had high neutralization against this 501Y.V2 PG: note that lineage variant R246I was excluded from the text in reference to these sera assays, not sure if that was an oversight.	AY.77	Wibmer et al. (2021)	2	G	A,C	nan
p.E484K	convalescent plasma escape	Subtype of the B.1.526 "New York" lineage, lentivirus pseudotyped with this mutation combination in showed 3.3x reduction in IC50 serum dilution concentration for 6 convalescent sera.	AY.77	Zhou et al. (2021)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	The engineered mutation cause 10-fold or more increase in the disassociation constant with many monoclonal antibodies (C144/C002/C121/C104/C1	AY.77	Barnes et al. (2020)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	Escape variant 100% appearance in 2 pas- sages against Regeneron monoclonal antibody REGN10989 @ 50ug/mL (99% after one passage)	AY.77	Baum et al. (2020)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	Mildly effective mutant against this position in the RBD for highly neutralizing COV2-2479 monoclonal antibody Effective mutant against this position in the RBD for highly neutralizing COV2-2050 monoclonal antibody	AY.77	Greaney et al. (2020)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY-CoV555 (antibody that forms the basis for Eli Lilly's bamlanivimab)	AY.77	Starr et al. (2021)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	Class 2 antibodies C627, C602, C671, C643, and class 2/3 antibody C603 se- lected for the emergence of the E484K mutation in vitro.	AY.77	Wang et al. (2021)	2	G	A,C	nan
p.E484K	monoclonal anti- body serial passage escape	Strong positive selection (up to 50% of supernatant sequences) after C121 monoclonal antibody assay, decreasing in subsequent passages Strong positive selection (up to 44% of supernatant sequences) after after one round of C144 monoclonal antibody passage, then waning on subsequent passages	AY.77	Weisblum et al. (2020)	2	G	A,C	nan
p.E484K	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) lost extasciitlde16x binding against this isolated mutation. Casirivimab lost extasciitlde16x binding against this isolated mutation.	AY.77	Engelhart et al. (2021)	2	G	A,C	nan
p.E484K	pharmaceutical effectiveness	Tixagevimab, Regdan- vimab and COR-101 display reduced binding affinity to virus pseu- dotyped as RBD from B.1.351.	AY.77	Engelhart et al. (2021)	2	G	A,C	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Allele	Alternate Allele	Alternate Frequency
p.E484K	pharmaceutical effectiveness	This mutated version of RBD completely abolishes the binding to a ther- apeutic antibody, Bam- lanivimab, in vitro.	AY.77	Liu et al. (2021)	2	G	A,C	nan
p.E484K	trafficking	This variant alone shows a extasciitilde5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G.	AY.77	Ferriera et al (2021)	2	G	A,C	nan
p.E484K	trafficking	This variant combination shows a extasciitilde4-5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, same as L452R alone.	AY.77	Ferriera et al (2021)	2	G	A,C	nan
p.E484K	trafficking	This variant combination shows a extasciitilde3x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, significantly less of a decrease than any B.1.617 lineage variants alone, suggesting a synergistic effect on cell entry while maintaining known immunity esacpe mutants.	AY.77	Ferriera et al (2021)	2	G	A,C	nan
p.E484K	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.77	Kuzmina et al. (2021)	2	G	A,C	nan
p.E484K	trafficking	Lentiviral pseudotyped with this individual mutation from B.1.351 was tested on ACE2.293T cells. Luciferase activity was measured two days postinfection, showing no change in infection rate amongst the cells.	AY.77	Tada et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	Nine stored sera from Pfizer BNT162b2 vacci- nees were tested against a range of spike muta- tion bearing PV. E484K conferred a ten-fold reduc- tion in neutralisation by vaccine sera.	AY.77	Ferreira et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	E484K pseudotyped VSV was tested for neutralization in a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection. A cohort of 12 Argentinian recipients of the Gamaleya Sputnik V Ad26 / Ad5 vaccine showed a mean 2.8x decrease in neutralization effiacacy.	AY.77	Ikegame et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	Human sera from 5 two-dose Pfizer vaccinated individuals (47-68 days post 1st-dose) neutralized this variant 3.4x less relative to reference USA-WA1/2020 strain. 8 convalescent plasma with weak IgG ELISA titre neutralized this variant 2.4x less relative to reference USA-WA1/2020 strain. One plasma failed to neutralize at all. 11 convalescent plasma with moderate IgG ELISA titre neutralized this variant 4.2x less relative to reference USA-WA1/2020 strain. 11 convalescent plasma with high IgG ELISA titre neutralized this variant 4.2x less relative to reference USA-WA1/2020 strain. 11 convalescent plasma with high IgG ELISA titre neutralized this variant 2.6x less relative to reference USA-WA1/2020 strain.	AY.77	Jangra et al. (2021)	2	G	A,C	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.E484K	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.77	Kuzmina et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	Neutralizing antibody titers of non-human primate sera after one or two doses of Ad26.COV2.S (Jannsen vaccine) against the variants containing the E484K substitution in the RBD were present but reduced (fold reduction between 3.35–7.78, 95% confidence interval all above twofold difference,	AY.77	Solfrosi et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	one-sample t test). Pseudotyped viruses for B.1.618 was 2.7-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 3-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618.	AY.77	Tada et al. (2021)	2	G	A,C	nan
p.E484K	vaccine neutralization efficacy	In a cohort of 20 patients 8+ weeks after second vaccine dose of Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines, ELISA tests show 10x reduced efficacy of a majority of isolated antibodies, but only a modest decrease for vaccine plasma overall.	AY.77	Wang et al. (2021)	2	G	A,C	nan
p.E484K	vaccinee plasma binding	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.06x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.77	Gong et al. (2021)	2	G	A,C	nan
p.E484K	virion structure	Estimated free energy change (ddG) for this variant is -0.6 kcal/mol (i.e. destabilizing relative to wild type)	AY.77	Spratt et al. (2021)	2	G	A,C	nan
p.K417N	ACE2 receptor binding affinity	The K417N mutation decreased the affinity extasciitilde4 fold, mainly by decreasing the k(on) but also by increasing the k(off) as measured by surface plasmon resonance.	AY.2, AY.1	Barton et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	This combination showed extasciitilde3x increase binding to ACE2 vs wild type, about half that of the B.1.1.7 lineage, suggesting that the K417N mutation is slightly detrimental to ACE2 binding, probably as a result of disrupting the salt bridge formed with ACE2 residue D30	AY.2, AY.1	Collier et al. (2021)	10	G	Т	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.K417N	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.5x decrease in binding (KD) relative to D614G.	AY.2, AY.1	Gong et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	RBD containing the N501Y mutation results in 9-fold stronger binding to the hACE2 receptor than wild type RBD. The E484K mutation does not significantly influence the affinity for the receptor, while K417N attenuates affinity. As a result, RBD from B.1.351 containing all three mutations binds 3-fold stronger to hACE2 than wild type RBD but 3-fold weaker than N501Y.	AY.2, AY.1	Laffeber et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	Studying the key covariants in lineage of concern 501Y.V2, observed about 2-fold increase in ACE2 binding vs wildtype, but greatly decreased mAb binding, suggesting evolutionary optimum tension between immune evasion and ACE2 binding affinity as the N501Y variant alone has 10x increase in affinity but no effect on tested mAb binding.	AY.2, AY.1	Liu et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	Using Mircoscale Thermopheresis, the B.1.351 variant harboring three mutations, binds ACE2 at nearly five-fold greater affinity than the original SARS-COV-2 RBD (Kd 87.6, vs 402.5 nM).	AY.2, AY.1	Ramanathan et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	Reported 3-fold decrease in affinity compared to wild- type RBD on the cell sur- face (Kd	AY.2, AY.1	Tian et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	Reported slight increase in affinity compared to wild- type RBD on the cell sur- face (Kd	AY.2, AY.1	Tian et al. (2021)	10	G	Т	nan
p.K417N	ACE2 receptor binding affinity	The affinity of ACE2 for this mutation combination was twice as high as for wild type. Having in mind that the affinity of SARS-CoV-2 for ACE2 is only 4-fold higher compared to SARS-CoV-1, this factor of 2 is expected to be biologically significant.	AY.2, AY.1	Vogel et al. (2021)	10	G	Т	nan
p.K417N	antibody epitope effects	>20% (ELISA significance threshold) drop in anti- body binding (ELISA) by this variant against IgG1 monoclonal antibody ab1.	AY.2, AY.1	Sun et al. (2021)	10	G	Т	nan
p.K417N	antibody epitope effects	5 antibodies tested were less potent against K417N by ten-fold or more (class 1 mAbs)	AY.2, AY.1	Wang et al. (2021)	10	G	Т	nan
p.K417N	antibody epitope effects	Pseudotyped virus model ablates binding by RBD-directed mAbs CB6 and 910-30 (targeting the inner side of the RBD). Pseudotyped virus model impairs binding by RBD-directed mAbs 4-20 and REGN10933.	AY.2, AY.1	Wang et al. (2021)	10	G	Т	nan
p.K417N	convalescent plasma binding	2.16x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.2, AY.1	Gong et al. (2021)	10	G	Т	nan

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.K417N	convalescent plasma escape	The 501Y.V2 to first wave IC50 ratio ranged from 6 to 200-fold. Averaging across all 7 participant convalescent sera highlighted the dramatic decrease in sensitivity to neutralization of authentic 501Y.V2 variants. PG: I'm purposefully ignoring D614G and	AY.2, AY.1	Cele et al. (2021)	10	G	Т	nan
p.K417N	convalescent plasma	A701V as contributors In 19 convalescent hu-	AY.2, AY.1	Chen et al.	10	G	T	nan
	escape	man sera extasciitilde1mo post infection, Two-tailed Wilcoxon matched-pairs signed-rank test shows mild resistence P	,	(2021)				
p.K417N	convalescent plasma escape	27% of 44 early pandemic exposure convalescent plasma/sera lose all activity against a RBD triple mutant pseudovirus (RBD mutatants of the 501Y.V2 "South African" lineage), while only 23% retained high titres	AY.2, AY.1	Wibmer et al. (2021)	10	G	T	nan
p.K417N	convalescent plasma escape	Nearly half (21 of 44, 48%) of early pandemic exposure convalescent plasma/sera failed to neutralize the 501Y.V2 ("South African") lineage pseudovirus construct Only 3 of 44 convascent sera (those with the highest titer, which correlated directly with initial infection severity) had high neutralization against this 501Y.V2 PG: note that lineage variant R246I was excluded from the text in reference to these sera assays, not sure if that was an oversight.	AY.2, AY.1	Wibmer et al. (2021)	10	G	Т	nan
p.K417N	gene expression in- crease	Experimentally, Spike gene expression increased 0.1 fold	AY.2, AY.1	Starr et al. (2020)	10	G	Т	nan
p.K417N	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY- CoV016	AY.2, AY.1	Starr et al. (2021)	10	G	Т	nan
p.K417N	monoclonal anti- body serial passage escape	In vitro selection against class 1 (Spike 'up' conformation) monoclonal antibody C682, and to a lesser extent C614 and C660	AY.2, AY.1	Wang et al. (2021)	10	G	Т	nan
p.K417N	pharmaceutical effectiveness	COR-101 lost extasci- itilde6x binding against this isolated mutation. Estesevimab lost extasci- itilde100x binding against this isolated mutation.	AY.2, AY.1	Engelhart et al. (2021)	10	G	Т	nan
p.K417N	pharmaceutical effectiveness	Tixagevimab, Regdan- vimab and COR-101 display reduced binding affinity to virus pseu- dotyped as RBD from B.1.351.	AY.2, AY.1	Engelhart et al. (2021)	10	G	Т	nan
p.K417N	pharmaceutical effectiveness	This mutated version of RBD completely abolishes the binding to a ther- apeutic antibody, Bam- lanivimab, in vitro.	AY.2, AY.1	Liu et al. (2021)	10	G	Т	nan
p.K417N	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.2, AY.1	Kuzmina et al. (2021)	10	G	Т	nan

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 108 of 109

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Allele	Alternate Allele	Alternate Frequency
p.K417N	trafficking	Lentiviral pseudotyped with this individual mutation from B.1.351 was tested on ACE2.293T cells. Luciferase activity was measured two days postinfection, showing mild decrease in infection rate amongst the cells, suggesting that this mutation does not contributing to cell entry fitness.	AY.2, AY.1	Tada et al. (2021)	10	G	Т	nan
p.K417N	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.2, AY.1	Kuzmina et al. (2021)	10	G	Т	nan
p.K417N	vaccinee plasma binding	1.76x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.75x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.2, AY.1	Gong et al. (2021)	10	G	Т	nan
p.K417N	virion structure	Estimated free energy change (ddG) for this variant is -0.86 kcal/mol (i.e. destabilizing relative to wild type)	AY.2, AY.1	Spratt et al. (2021)	10	G	Т	nan

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 109 of 109

The results here are in whole or part based upon data hosted at the Canadian VirusSeq Data Portal: https://virusseq-dataportal.ca/.We wish to acknowledge the following organisations/laboratories for contributing data to the Portal: Canadian Public Health Laboratory Network (CPHLN), CanCOGGeN VirusSeq and the list of labs available at https://virusseq-dataportal.ca/acknowledgements)