Course Goals

After studying section 5.5: Complex Matrices, you should

- 1 Understand how to deal with complex vectors and complex matrices.
- 2 Understand special properties of Hermitian and unitary matrices.

Course Outcomes

To manifest that you have reached the above course goals, you should be able to

- Find the inner products and lengths of complex vectors.
- Find the conjugate transpose (Hermitian transpose or adjoint) of a matrix.
- 3 Test whether a given matrix is Hermitian or unitary.
- Oiscuss what special properties the eigenvalues and eigenvectors of each kind of special matrices have.

Hermitian Matrices

A symmetric matrix that has *complex* values is called **Hermitian**.

Symmetric Matrices have Amazing Eigen-structure

- Every symmetric (and Hermitian) matrix has real eigenvalues.
- Every symmetric (and Hermitian) matrix is diagonalizable with an orthonormal set of eigenvectors.

Figure 5.4 The complex plane, with $a + ib = re^{i\theta}$ and its conjugate $a - ib = re^{-i\theta}$.

$$\overline{a+ib} = a-ib$$
 $\overline{a} = a$

Complex Number Arithmetic

- **1** Addition: (a + ib) + (c + id) = (a + c) + i(b + d).
- Multiplication: $(a+ib)(c+id) = ac+ibc+iad+i^2bd = (ac-bd)+i(bc+ad).$
- 3 Complex Conjugate: $\overline{a+ib} = a-ib \iff \text{Flipping about the}$
- 4 Absolute Value: $|a + ib| = \sqrt{a^2 + b^2}$.
- Solar Form: $a + ib = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$ $r = |a + ib|, \theta = \arctan(b/a)$
- The absolute value is also the square root of $z\overline{z}$

$$\sqrt{(a+ib)\overline{(a-ib)}} = \sqrt{a^2 - abi + abi - i^2b^2} = \sqrt{a^2 + b^2} = |a+ib|.$$

• To divide by a complex number, multiply by the complex conjugate.

$$\frac{2+i}{3+4i} = \frac{2+i(3-4i)}{3+4i(3-4i)} = \frac{6+3i-7i-4i^2}{3^2+4^2} = \frac{10-5i}{25}$$

Examples

- **1** (§5.5: 1) For the complex numbers $1 + \sqrt{3}i$ and $1 \sqrt{3}i$
 - find their positions in the complex plane;
 - find their sum and product;
 - find their conjugates and their absolute values.
 - Write the original numbers and their product into $re^{i\dot{\theta}}$ form.

(b) Find their sum and product and (d) Write the original numbers and product into $re^{i\theta}$ form.

•
$$(1+\sqrt{3}i)+(1-i) \neq 2+i(\sqrt{3}-1)$$
.

• $(1 + \sqrt{3}i)(1 - i) = 1 + \sqrt{3}i - i - i^2\sqrt{3} = (1 + \sqrt{3}) + i(\sqrt{3} - 1)$ We could also do:

$$(1+\sqrt{3}i) = 2e^{i\pi/3} \text{ and } (1-i) = \sqrt{2}e^{-i\pi/4}$$

$$(1+\sqrt{3}i)(1-i) = 2e^{i\pi/3} \left(\sqrt{2}e^{-i\pi/4}\right) = 2\sqrt{2}e^{i(\pi/3-\pi/4)} = 2\sqrt{2}e^{i\pi/12}$$

$$x = r\cos(\theta) \implies 2\sqrt{2}\cos(\pi/12) = 1+\sqrt{3}$$

$$y = r\sin(\theta) \implies 2\sqrt{2}\sin(\pi/12) = -1+\sqrt{3}$$

$$(e^{-i\pi/4}) = 2\sqrt{2}\sin(\pi/12) = -1+\sqrt{3}$$

- (c) Find their conjugates and absolute values.
 - Conjugates:

$$\overline{(1+\sqrt{3}i)}=1-i\sqrt{3}.$$

$$|(1-i)|^2 = (1-i)(1-i) = (1-i)(1+i) = 1^2 + 1^2 = 2.$$

Examples

- ② (§5.5: 5(a)) If $z \neq re^{i\theta}$, what are z^2 , z^{-1} , and \bar{z} in polar coordinates?
 - $z^2 = (re^{i\theta})(re^{i\theta}) \neq r^2e^{i2\theta}$.
 - $\bullet (z^{-1}) = \underbrace{(re^{i\theta})^{-1}} = \underbrace{(1/r)}e^{-i\theta}.$
 - $\overline{z} = \overline{re^{i\theta}} = re^{-i\theta}$.

To see why here's a little tip:

$$\overline{z} = \overline{r\cos(\theta) + ir\sin(\theta)}$$

$$= r\cos(\theta) - ir\sin(\theta)$$

$$= r\cos(-\theta) + ir\sin(-\theta)$$

$$= re^{-i\theta}$$

$$= re^{-i\theta}$$

Examples

Here we might as well use the polar coordinate forms we had in the previous slide:

•
$$z^{-1} = (re^{i\theta})^{-1} = (1/r)e^{-i\theta}$$
.

•
$$z^{-1} = (re^{i\theta})^{-1} = (1/r)e^{-i\theta}$$
.
• $\overline{z} = re^{i\theta} = re^{-i\theta}$ $(1/r)e^{-i\theta} = re^{-i\theta}$ $\Rightarrow 1/r = r \Rightarrow r = 1$.

Thus, when we have complex number that lies on the unit circle, its

inverse is equal to its converse.

Examples

- (§5.5: 2) What can you say about
 - the sum of a complex number and its conjugate? what about difference?
 - b the conjugate of a number on the unit circle? $(\overline{z} = z^{-1})$
 - the product of two numbers on the unit circle?

• Sum:
$$(a+ib) + \overline{a+ib} = (a+ib) + (a-ib) + (a$$

• Difference:

$$(a+ib)-\overline{a+ib}=(a+ib)-(a-ib)=2bi=i2$$

• Product of 2 Numbers on the Unit Circle (also on the unit circle)

$$e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1+\theta_2)}.$$

Examples

(§5.5: 6) Find the lengths and the inner product of

$$\vec{x} = \begin{bmatrix} 2 - 4i \\ 4i \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 2 + 4i \\ 4i \end{bmatrix}$.

Conjugate Transpose: $\vec{x}^H = \overline{\vec{x}^T}$.

Lengths:

$$\|\vec{x}\|^{2} = \vec{x}^{H}\vec{x} = 2 - 4i \quad \overline{4}i \quad \left[2 - 4i \atop 4i \right] = 2 + 4i \quad 4i \quad \left[2 - 4i \atop 4i \right]$$

$$= (2 + 4i)(2 - 4i) + (-4i)(4i) = 4 + 8i - 8i + 16 + 16 = 36$$

$$\|\vec{y}\|^{2} = \vec{y}^{H}\vec{y} = \left[2 + 4i \quad \overline{4}i \right] \quad \left[2 + 4i \atop 4i \right] = \left[2 - 4i \quad -4i \right] \quad \left[2 + 4i \atop 4i \right]$$

$$= (2 - 4i)(2 + 4i) + (-4i)(4i) = 4 + 8i - 8i + 16 + 16 = 36$$

$$\|\vec{x}\| = (\vec{x}^{H}\vec{x})^{1/2} = 6 \text{ and } \|\vec{y}\| = (\vec{y}^{H}\vec{y})^{1/2} = 6.$$

Examples

(§5.5: 6) Find the lengths and the inner product of

$$\vec{x} = \begin{bmatrix} 2-4i \\ 4i \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 2+4i \\ 4i \end{bmatrix}$.

Conjugate Transpose: $\vec{x}^H = \overline{\vec{x}^T}$.

Real -

• Inner Product:

$$\frac{2Hy}{y} = \underbrace{\left[2-4i\right]}_{4i} \underbrace{\left[2+4i\right]}_{4i} = \underbrace{\left[2+4i\right]}_{4i} \underbrace{\left[2+4i\right]}_{4i}$$

$$\frac{(2+4i)^2 + (-4i)(4i)}{y} = \underbrace{4+16i - 16+16}_{y} = \underbrace{4+16i}_{y}$$

Examples

What is the proper equivalence of the transpose A^T of a real matrix in the complex case?

A Conjugate Transpose: $A^{H} \neq A^{*} = \overline{A^{T}}$.

- Note that if A is a real matrix $A^H = A^T$
- The generalization of a real symmetric matrix is a Hermitian matrix.
- Similarly to $(AB)^T = B^T A^T$ we have $(AB)^H = B^H A^H$.

A=AH Jermitian

Example

Take the conjugate transpose of

$$A = \begin{bmatrix} 2+i & 3i \\ 4-i & 5 \\ 0 & 0 \end{bmatrix} \implies A^{H} = \begin{bmatrix} 2-i & 4+i & 0 \\ -3i & 5 & 0 \end{bmatrix}$$

Examples

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}.$$

- (a) Check that A is a Hermitian matrix.
- Diagonalize A.
- Have you noticed anything special about its eigenvalues and eigenvectors?

Let's check: $A^H = \overline{A}^T = A$.

$$A^{H} = \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 3+3i \end{bmatrix}^{T} = \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix} = A$$

Thus A is a Hermitian matrix.

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}$$

To diagonalize the matrix A, we find eigenvectors and eigenvalues:

$$0 = \det(A - \lambda I) = \lambda^{2} - \operatorname{Tr}(A)\lambda + \det(A)$$

$$= \lambda^{2} - 7\lambda + (10 - 18)$$

$$= \lambda^{2} - 7\lambda - 8$$

$$= (\lambda - 8)(\lambda + 1).$$

$$\Rightarrow \lambda_{1} = -1, \lambda_{2} = 8.$$

Week 13: Tuesday. 5.5: Complex Matrices $\lambda_1 = -1$

$$\lambda_1 = -1$$

$$(\underbrace{A-\lambda_1 I)}\vec{x} = \vec{0} \implies \begin{bmatrix} 2-(-1) & 3-3i & 0 \\ 3+3i & 5-(-1) & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3-3i & 0 \\ 3+3i & 6 & 0 \end{bmatrix}$$

$$\begin{array}{c|c}
\hline
R_2 \rightarrow R_2 - (1+i)R_1 \\
\hline
0 \\
0
\end{array}$$

$$\begin{array}{c|c}
3 & 3-3i \\
\hline
0 \\
0
\end{array}$$

$$\Rightarrow x_2 = t, x_1 = (-1+i)t$$

$$(A - \lambda_2 I)\vec{x} = \vec{0} \implies \begin{bmatrix} 2 - 8 & 3 - 3i & 0 \\ 3 + 3i & 5 - 8 & 0 \end{bmatrix} = \begin{bmatrix} -6 & 3 - 3i & 0 \\ 3 + 3i & -3 & 0 \end{bmatrix}$$

$$\vec{x}_2 =$$

To diagonalize we have: $\Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1+i & 1-i \\ 1 & 2 \end{bmatrix}$

Let's first take a look at the eigenvectors a little more closely:

$$\vec{x}_1^H \vec{x}_2 = \overline{\left[(-1+i) \ 1 \right]} \begin{bmatrix} (1-i) \\ 2 \end{bmatrix} = (-1-i)(1-i)+2 = -1-i+i-1+2 = 0.$$

- The eigenvectors are orthogonal! Which means that we could make S into an orthonormal matrix by making the columns have length 1 in which case $S^{-1} = S^H$.
- We call a complex matrix with orthonormal columns a unitary matrix.
- Also, are we a little surprised that we have real valued eigenvalues even though our matrix had complex numbers in it?

We will finish diagonalizing by taking unit vectors:

$$S = ||\vec{x_1}|||\vec{x_2}|||\vec{x_2}|||.$$

$$||\vec{x_1}||^2 = \vec{x_1}^H \vec{x_1} = \overline{\left[(-1+i) \quad 1 \right]} \begin{bmatrix} -1+i \\ 1 \end{bmatrix} = (-1-i)(-1+i) + 1 = 3.$$

$$||\vec{x_2}||^2 = \vec{x_2}^H \vec{x_2} = \overline{\left[(1-i) \quad 2 \right]} \begin{bmatrix} (1-i) \\ 2 \end{bmatrix} = (1+i)(1-i) + 4 = 6$$

$$S = \begin{bmatrix} (1/\sqrt{3})(-1-i) & (1/\sqrt{6})(1-i) \\ 1/\sqrt{3} & 2/\sqrt{6} \end{bmatrix} \text{ then } S^{-1} = S^H. \text{ Thus we have:}$$
 Then $S^{-1} = S^H. \text{ Thus we have:}$ which is the symmetric symmetric symmetric.

$$A = S\Lambda S^H$$

Examples

- $oldsymbol{0}$ A is any Hermitian matrix. Show that A has the following properties.
 - (a) $\vec{x}^H A \vec{x}$ is a real number for any complex vector \vec{x} .
 - → All eigenvalues of A are real.
 - © Eigenvectors corresponding to different eigenvalues are orthogonal.
- Suppose that $A = A^H$. We will show $r = \vec{x}^H A \vec{x}$ must be a real number by showing that $r^H = r$.

Suppose that $A = A^H$, show that all eigenvalues are real. That is, if

 $A\vec{x} = \lambda \vec{x}$

 λ must be real.

Let's multiply both sides of the equation by

But this gives us:

From our previous exercise we know that $\vec{x}^H A \vec{x}$ is real. But we also know that the length of an eigenvector is a positive real number. (We also know that the length of an eigenvector is larger than 0.) Thus (λ) is the ratio of two <u>real numbers</u> which is necessarily real.

Note this means real symmetric matrices have real eigenvalues. A

© Let A be a Hermitian matrix, $A^H = \overline{A}$. Show that eigenvectors from distinct eigenvalues are orthogonal.

Suppose that λ_x and λ_y are two distinct eigenvalues (i.e., $\lambda_x \neq \lambda_y$) corresponding to distinct eigenvectors \vec{x} and \vec{y} .

We know that λ_x and λ_y are real and that.

$$A\vec{x} = \lambda_x \vec{x}$$
 and $A\vec{y} = \lambda_y \vec{y}$.

Let's use the fact that \vec{x} and \vec{y} are eigenvectors to look closely at this calculation: $\vec{x}^{+1}\vec{y} = \vec{0}$

$$(\lambda_{x}\vec{x}_{H}\vec{y}) = (\lambda_{x}\vec{x})^{H}\vec{y} = (A\vec{x})^{H}\vec{y} = \underline{\vec{x}}^{H}\underline{A}^{H}\underline{\vec{y}} = \underline{\vec{x}}^{H}\underline{A}\vec{y} = \vec{x}^{H}(\lambda_{y}\vec{y}) = \underline{\lambda_{y}}\vec{x}^{H}\underline{\vec{y}}.$$

Both ends of the equation given us:

$$\frac{\lambda_{x} \vec{x}_{H} \vec{y} = \lambda_{y} \vec{x}_{H} \vec{y}.}{\lambda_{x} \vec{x}_{H} \vec{y}.}$$

If $\vec{x}_H \vec{y} \neq 0$ we could divide both sides by this (complex) number and be left with $\lambda_x \equiv \lambda_y$. But this is a contradiction because $\lambda_x \neq \lambda_y$. Thus $\vec{x}^H \vec{y} = 0$, eigenvectors from distinct eigenvalues are orthogonal.

This same proof tells us that eigenvectors from distinct eigenvalues of a real symmetric matrix are also orthogonal.

Examples

- What can you say about the eigenvalues and eigenvectors of a symmetric matrix?
- The same proof to (b) we have above shows that eigenvalues from a symmetric matrix are real.
- The same proof to (c) shows that eigenvectors from distinct eigenvalues of a real symmetric matrix are orthogonal.
- We will soon see that symmetric matrices (and Hermitian matrices)
 are <u>ALWAYS</u> diagonalizable. In that there is always a full set of
 orthogonal eigenvectors.

Examples

What is a natural generalization of notion of orthogonal matrices to the complex case?

We say that a complex valued matrix that has orthonormal columns is a **unitary matrix**. We tend to use the notation U for a unitary matrix and know that:

$$U^{-1} = U^{H}$$
.

Examples

- \bullet U is a unitary matrix. Show that U has the following properties.
 - \odot U preserves inner products, and as a consequence lengths.
 - All eigenvalues have absolute value 1.
 - © Eigenvectors corresponding to different eigenvalues are orthogonal.
- To show U preserves inner products, we need to show that $\vec{x}^H \vec{y} = (U\vec{x})^H (U\vec{y})$.

$$(U\vec{x})^H(U\vec{y}) = \vec{x}^H U^H U\vec{y} = \vec{x}^H \vec{y}.$$

This is because $U^H U = I$. This also says that U preserves lengths because:

$$||U\vec{x}||^2 = (U\vec{x})^H(U\vec{x}) = \vec{x}^H U^H U\vec{x} = \vec{x}^H \vec{x} = ||\vec{x}||^2.$$

To show that eigenvalues have absolute value 1, let's note that if $U\vec{x} = \lambda \vec{x}$ this gives us:

$$\|\vec{x}\|^2 = \|U\vec{x}\|^2 = (U\vec{x})^H (U\vec{x}) = (\lambda \vec{x})^H (\lambda \vec{x}) = \overline{\lambda} \vec{x}^H \vec{x} \lambda = |\lambda|^2 \|\vec{x}\|.$$

This gives us:

$$\|\vec{x}\|^2 = |\lambda|^2 \|\vec{x}\|^2 \implies |\lambda|^2 = 1 \implies |\lambda| = 1.$$

Note that λ might be complex! This is the absolute value in the sense of a complex number.

 \odot To show that for a unitary matrix U eigenvectors from distinct eigenvalues are orthogonal, we will use the fact that the a U preserves inner products.

Let \vec{x} and \vec{y} be eigenvectors from distinct eigenvalues λ_x and λ_y .

$$\vec{x}^H \vec{y} = (U\vec{x})^H (U\vec{y}) = (\lambda_x \vec{x})^H (\lambda_y \vec{y}) = \overline{\lambda_x} \vec{x}^H \lambda_y \vec{y} = \overline{\lambda_x} \lambda_y \vec{x}^H \vec{y}.$$

Looking at both sides of the equal sign we have:

$$(1 - \overline{\lambda_x} \lambda_y) \vec{x}^H \vec{y} = 0.$$

Thus, this either means: $\vec{x}^H \vec{y} = 0$ or $1 = \overline{\lambda_x} \lambda_y$. Since $\overline{\lambda_x} \lambda_x = 1$ and $\overline{\lambda_y} \lambda_y = 1$ it is not possible that $\lambda_x \neq \lambda_y$ and $\overline{\lambda_x} \lambda_y = 1$.

Thus it must be that $\vec{x}^H \vec{y} = 0$.