МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.4.1

Определении теплоты испарения жидкости

Авторы: Идрисов Сергей Б04-306

Введение

Цель работы: 1) измерение давления насыщенного пара жидко- сти при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

В работе используются: термостат; герметический сосуд, запол- ненный исследуемой жидкостью; отсчетный микроскоп.

Теоретические сведения

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса (4.8):

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Здесь P - давление насыщенного пара жидкости при температуре T , T - абсолютная температура жидкости и пара, L - теплота испарения жидкости, V_2 - объем пара, V_1 - объем жидкости. Найдя из опыта dP/dT , T , V_2 и V_1 , можно определить L путем расчета. Величины L, V2 и V1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается. В таблице для ряда жидкостей приведены: температура, при ко- торой давление насыщенных паров равно атмосферному, величины V2 и V1, входящие в (1), а также константы а и b в уравнении Вандер-Ваальса.

	T_{κ ип	V_1 ,	V_2 ,	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	$\frac{_{ m M}^3}{_{ m MOЛЬ}}$	_м 3 моль	$\frac{_{\rm M}^3}{_{\rm MOЛЬ}}$	$\frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{monb}^2}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl_4	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	$1,\!2$	1,4

Таблица 1

Из таблицы видно, что V_1 не превосходит 0,5% от V_2 . При нашей точности опытов величиной V_1 в (1) можно пренебречь. Объем V связан с давлением и температурой уравнением Ван-дер-Ваальса:

$$P + \frac{a}{V^2}(V - b) = RT \tag{2}$$

Из рассмотрения таблицы следует, что b одного порядка с V_1 . В уравнении Вандер-Ваальса величиной b следует пренебречь. Пренебрежение членом $\frac{a}{V^2}$ по сравнению с P вносит ошибку менее 3%. При давлении ниже атмосферного ошибки становятся еще меньше. Таким образом, при давлениях ниже атмосферного уравнение Вандер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P} \Rightarrow L = \frac{RT^2dP}{PdT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(\frac{1}{T})}$$
 (3)

Экспериментальная установка

Схема установки изображена на рисунке 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5.

Рис. 1. Схема установки для определения теплоты испарения

В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по

ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа. На рисунке 2 приведена более полная схема такой же установки, но с использованием современного термостата. Установка включает термостат A, экспериментальный прибор B и отсчетный микроскоп C.

Рис. 2. Схема установки для определения теплоты испарения

Экспериментальный прибор В представляет собой емкость 12, заполненную водой. В нее погружен запаянный прибор 13 с исследуемой жидкостью 14. Перед заполнением исследуемой жидкости воздух из запаянного прибора был удален, так что над жидкостью находится только её насыщенный пар. Давление пара определяется по ртутному манометру 15, соединенному с емкостью 13. Численная величина давления измеряется по разности показаний отсчетного микроскопа 16, настраиваемого последовательно на нижний и верхний уровни столбика ртути манометра. Показания микроскопа снимаются по шкале 17.

Описываемый прибор обладает важным недостатком: термометр определяет температуру термостата, а не исследуемой жидкость. Эти температуры близки друг к другу лишь в том случае, если нагревание происходит достаточно медленно. Убедиться в том, что темп нагревания не является слишком быстрым, можно, сравнивая результаты, полученные при нагревании и при остывании прибора. Такое сравнение необходимо сделать. Для ориентировки укажем, что температуру воды в калориметре следует менять не быстрее, чем на 1 оС в течение 1–3 минут.

Ход работы

1.

T_1, K	Δx_1 , MM	P_1 , Π a	T_2, K	Δx_2 , mm	P_2 , Π a
297,12	19,57	2610,95	312	50,27	6706,82
298,16	20,38	2719,02	310,97	47,27	6306,57
299,24	21,63	2885,79	309,99	45,27	6039,74
300,18	24,21	3230	308,97	42,99	5735,55
301,13	25,77	3438,13	307,98	40,71	5431,36
302,21	26,56	3543,53	306,99	38,94	5195,22
302,93	29,01	3870,4	306,01	36,04	4808,31
304,11	31,01	4137,23	303,98	31,79	4241,29
305,05	33,68	4493,45	303	30,31	4043,84
306,03	35,48	4733,6	300,99	26,95	3595,56
307,04	37,02	4939,06	300	25,4	3388,77
308,1	38,39	5121,84	299	24,06	3209,99
309,06	41,99	5602,14	298,02	22,36	2983,18
310,08	44,97	5999,72			
311,07	48,28	6441,32			
312,07	49,47	6600,09			
313,08	53,27	7107,07			

Таблица 1: Данные эксперимента

$$f(a,b) = \sum_{i=1}^{n} \left[T_i - (a+bN_i) \right]^2.$$

$$b = \frac{\left\langle \frac{\ln P}{T} \right\rangle - \left\langle \ln P \right\rangle \left\langle \frac{1}{T} \right\rangle}{\left\langle \frac{1}{T}^2 \right\rangle - \left\langle \frac{1}{T} \right\rangle^2}.$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\left\langle \ln P^2 \right\rangle - \left\langle \ln P \right\rangle^2}{\left\langle \frac{1}{T}^2 \right\rangle - \left\langle \frac{1}{T} \right\rangle^2} - b^2.$$

	$\frac{1}{T}, \frac{1}{K} \cdot 10^{-3}$	$\ln P$	$\frac{\ln P}{T} \cdot 10^{-2}$	$(\ln P)^2$	$(\frac{1}{T})^2 \cdot 10^{-5} \frac{1}{K^2}$	$<\ln P>^2$	$<\frac{1}{T}>^2\cdot 10^{-5}$
	3,36	7,86	2,64	61,89	1,13		
	3,35	7,90	2,65	62,53	1,12		
	3,34	7,96	2,66	63,48	1,11		
	3,33	8,08	2,69	65,29	1,11		
	3,32	8,14	2,70	66,30	1,10		
	3,30	8,17	2,70	66,79	1,09		
	3,30	8,26	2,74	68,24	1,08		
	3,28	8,32	2,73	69,35	1,08		
	3,27	8,41	2,75	70,73	1,07		
	3,26	8,46	2,76	71,61	1,06		
	3,25	8,50	2,76	72,33	1,06		
	3,24	8,54	2,77	72,95	1,05		
	3,23	8,63	2,79	74,49	1,04		
	3,2	8,69	2,80	75,68	1,04		
	3,21	8,77	2,81	76,92	1,03		
	3,20	8,79	2,81	77,34	1,02		
	3,19	8,86	2,83	78,65	1,02		
<>	3,278	8,377	2,744	70,272	1,075	70,173	1,074
	3,20	8,81	2,82	77,63	1,02		
	3,21	8,74	2,81	$76,\!55$	1,03		
	3,22	8,70	2,80	75,79	1,04		
	3,23	8,65	2,80	74,89	1,04		
	3,24	8,59	2,79	73,95	1,05		
	3,25	8,55	2,78	73,19	1,06		
	3,26	8,47	2,77	71,87	1,06		
	3,28	8,35	2,74	69,76	1,08		
	3,3	8,30	2,74	68,97	1,08		
	3,32	8,18	2,72	67,03	1,10		
	3,33	8,12	2,70	66,06	1,11		
	3,34	8,07	2,70	65,18	1,11		
	3,35	8	2,68	64,01	1,12		
<>	3,277	8,43	2,761	71,15	1,074	71,065	1,073

Таблица 2: Данные для построения графика 1

$$b_1 = \frac{2,744 \cdot 10^{-2} - 8,377 \cdot 3,278 \cdot 10^{-3}}{(1,075 - 1,074) \cdot 10^{-5}} = (-6 \pm 1) \cdot 10^{-3} \text{K}.$$

$$\sigma_b \approx \frac{1}{\sqrt{17}} \sqrt{\frac{70,272 - 70,173}{(1,075 - 1,074) \cdot 10^{-5}} - 5800^2} \approx 1000 \text{K}.$$

$$L_1 = -\frac{R}{\mu} \frac{d(\ln P)}{d(\frac{1}{T})} = \frac{8,31}{18 \cdot 10^{-3}} \cdot 6000 = (2,7 \pm 0,4) \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$$

$$L_1(\text{табл}) = 2,4 \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$$

Рис. 3. График 1

$$b_2 = \frac{2,761 \cdot 10^{-2} - 8,43 \cdot 3,277 \cdot 10^{-3}}{(1,074 - 1,073) \cdot 10^{-5}} = (-5 \pm 1) \cdot 10^{-3} \text{K}.$$

$$\sigma_b \approx \frac{1}{\sqrt{15}} \sqrt{\frac{71,15 - 71,065}{(1,074 - 1,073) \cdot 10^{-5}} - 5300^2} \approx 1000 \text{K}.$$

$$L_2 = -\frac{R}{\mu} \frac{d(\ln P)}{d(\frac{1}{T})} = \frac{8,31}{18 \cdot 10^{-3}} \cdot 5000 = (2,3 \pm 0,3) \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$$
$$L_2(\text{табл}) = 2,4 \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$$

Рис. 3. График 2

Вывод

Как видно из результатов, более точные данные были полученны при охлаждении. Несмотря на это, мы получили значение L, которое отличается от действительного на $\varepsilon_L=9\%$. Причиной всему этому скорее всего является недостаточное время отведенное для релаксации системы, изи за чего действительная температура в балоне ниже регистрируемого. Именно в следствии этих искажении мы и получаем ошибочное значение L.