Stanford University ACM Team Notebook (2013-14)

Table of Contents

Combinatorial optimization

- Sparse max-flow (C++)
- 2. Min-cost max-flow (C++)
- 3. Push-relabel max-flow (C++)
- 4. Min-cost matching (C++)
- Max bipartite matching (C++)
- 6. Global min cut (C++)
- 7. Graph cut inference (C++)

Geometry

- 8. Convex hull (C++)
- Miscellaneous geometry (C++)
- 10. Java geometry (Java)
- 11. 3D geometry (Java)
- 12. Slow Delaunay triangulation (C++)

Numerical algorithms

- 13. Number theoretic algorithms (modular, Chinese remainder, linear Diophantine) (C++)
- 14. Systems of linear equations, matrix inverse, determinant (C++)
- 15. Reduced row echelon form, matrix rank (C++)
- 16. Fast Fourier transform (C++)
- 17. Simplex algorithm (C++)

Graph algorithms

- 18. Fast Dijkstra's algorithm (C++)
- 19. Strongly connected components (C)
- 20. Eulerian Path (C++)

Data structures

- 21. Suffix arrays (C++)
- 22. Binary Indexed Tree
- 23. Union-Find Set (C/C++)
- 24. KD-tree (C++)
- 25. Lazy Segment Tree (Java)
- 26. Lowest Common Ancestor (C++)

Miscellaneous

- 27. Longest increasing subsequence (C++)
- 28. Dates (C++)
- 29. Regular expressions (Java)
- 30. Prime numbers (C++)
- 31. C++ input/output
- 32. Knuth-Morris-Pratt (C++) 33. Latitude/longitude
- 34. Emacs settings

Dinic.cc 1/34

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
// Running time:
      O(|V|^2 |E|)
```

```
- graph, constructed using AddRdge()
        - source
        - sink
// OUTPUT:
        - maximum flow value
        - To obtain the actual flow values, look at all edges with
          capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
const int INF = 2000000000;
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index)
    from(from), to(to), cap(cap), flow(flow), index(index) {}
struct Dinic {
  int N;
  vector<vector<Edge> > G;
vector<Edge *> dad;
  vector<int> Q;
  Dinic(int N) : N(N), G(N), dad(N), Q(N) {}
  void AddEdge(int from, int to, int cap) {
    G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
if (from == to) G[from].back().index++;
    G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
 long long BlockingFlow(int s, int t) {
  fill(dad.begin(), dad.end(), (Edge *) NULL);
  dad[s] = &G[0][0] - 1;
    int head = 0, tail = 0;
    Q[tail++] = s;
while (head < tail) {
      int x = Q[head++];
for (int i = 0; i < G[x].size(); i++) {
         Edge &e = G[x][i];
         if (!dad[e.to] && e.cap - e.flow > 0) {
           dad[e.to] = &G[x][i];
Q[tail++] = e.to;
    if (!dad[t]) return 0;
    long long totflow = 0;
    for (int i = 0; i < G[t].size(); i++) {
   Edge *start = &G[G[t][i].to][G[t][i].index];
      int amt = INF;
for [Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
         if (!e) { amt = 0; break; }
         amt = min(amt, e->cap - e->flow);
       if (amt == 0) continue;
      for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
  e->flow += amt;
         G[e->to][e->index].flow -= amt;
       totflow += amt;
    return totflow;
  long long GetMaxFlow(int s, int t) {
    long long totflow = 0;
    while (long long flow = BlockingFlow(s, t))
totflow += flow;
    return totflow;
```

MinCostMaxFlow.cc 2/34

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972). This implementation keeps track of
// forward and reverse edges separately (so you can set cap[i][j] !=
```

```
// cap[j][i]). For a regular max flow, set all edge costs to 0.
// Running time, O(|V|^2) cost per augmentation
       max flow: O(|V|^3) augmentations min cost max flow: O(|V|^4 * MAX\_EDGE\_COST) augmentations
// INPUT:
       - graph, constructed using AddEdge()
       - 9011700
       - sink
// OUTPUT:
       - (maximum flow value, minimum cost value)
       - To obtain the actual flow, look at positive values only.
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
const L INF = numeric_limits<L>::max() / 4;
struct MinCostMaxFlow {
 int N;
VVL cap, flow, cost;
  VL dist, pi, width;
  MinCostMaxFlow(int N) :
    N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)), found(N), dist(N), pi(N), width(N), dad(N) {}
  void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
  void Relax(int s, int k, L cap, L cost, int dir) {
    L val = dist[s] + pi[s] - pi[k] + cost;
if (cap && val < dist[k]) {
      dist[k] = val;
dad[k] = make_pair(s, dir);
width[k] = min(cap, width[s]);
  L Dijkstra(int s. int t) {
    fill(found.begin(), found.end(), false);
    fill(dist.begin(), dist.end(), INF);
fill(width.begin(), width.end(), 0);
    dist[s] = 0;
    width[s] = INF;
    while (s != -1) {
      int best = -1;
      found[s] = true;
for (int k = 0; k < N; k++) {</pre>
         if (found[k]) continue;
Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
Relax(s, k, flow[k][s], -cost[k][s], -1);
         if (best == -1 || dist[k] < dist[best]) best = k;</pre>
    for (int k = 0; k < N; k++)
pi[k] = min(pi[k] + dist[k], INF);</pre>
    return width[t];
  pair<L. L> GetMaxFlow(int s, int t) {
    L totflow = 0, totcost = 0;
    while (L amt = Dijkstra(s, t)) {
       totflow += amt;
       totrlow += amt;
for (int x = t; x != s; x = dad[x].first) {
   if (dad[x].second == 1) {
     flow[dad[x].first][x] += amt;
}
            totcost += amt * cost[dad[x].first][x];
         } else {
            flow[x][dad[x].first] -= amt;
            totcost -= amt * cost[x][dad[x].first];
```

```
}
return make_pair(totflow, totcost);
}
```

PushRelabel.cc 3/34

```
// Adjacency list implementation of FIFO push relabel maximum flow // with the gap relabeling heuristic. This implementation is
// significantly faster than straight Ford-Fulkerson. It solves 
// random problems with 10000 vertices and 1000000 edges in a few
 // seconds, though it is possible to construct test cases that
 // achieve the worst-case.
// Running time:
// O(|V|^3)
 // INPUT:
        - graph, constructed using AddEdge()
        - source
// OUTPUT:
       - maximum flow value
        - To obtain the actual flow values, look at all edges with
           capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
typedef long long LL;
struct Edge {
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
  from(from), to(to), cap(cap), flow(flow), index(index) {}
struct PushRelabel {
  int N;
   vector<vector<Edge> > G;
   vector<LL> excess;
   vector<int> dist, active, count;
   PushRelabel(int N) : N(N), G(N), excess(N), dist(N), active(N), count(2*N) \{ \}
   void AddEdge(int from, int to, int cap)
    G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
if (from == to) G[from].back().index++;
     G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
  void Enqueue(int v) {
  if (!active[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
   void Push(Edge &e) {
    int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
    e.flow += amt;
G[e.to][e.index].flow -= amt;
     excess[e.to] += amt;
     excess[e.from] -= amt;
     Enqueue(e.to);
  void Gap(int k) {
  for (int v = 0; v < N; v++) {</pre>
       if (dist[v] < k) continue;
        count[dist[v]]--;
        dist[v] = max(dist[v], N+1);
        count[dist[v]]++;
       Enqueue(v);
  void Relabel(int v) {
  count[dist[v]]--;
     dist[v] = 2*N;
     for (int i = 0; i < G[v].size(); i++)
       if (G[v][i].cap - G[v][i].flow > 0)
          dist[v] = min(dist[v], dist[G[v][i].to] + 1);
```

```
count[dist[v]]++;
     Enqueue(v);
  void Discharge(int v) {
     for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]); if (excess[v] > 0) {
       if (count[dist[v]] == 1)
         Gap(dist[v]);
          Relabel(v);
  LL GetMaxFlow(int s, int t) {
    count[0] = N-1;
count[N] = 1;
    count[N] = 1,
dist[s] = N;
active[s] = active[t] = true;
for (int i = 0; i < G[s].size(); i++) {
   excess[s] += G[s][i].cap;</pre>
       Push(G[s][i]);
     while (!Q.empty()) {
       int v = Q.front();
Q.pop();
        active[v] = false;
       Discharge(v);
     for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;
     return totflow;
};
```

MinCostMatching.cc 4/34

```
// Min cost bipartite matching via shortest augmenting paths
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1 \,
     cost[i][j] = cost for pairing left node i with right node j
     Lmate(i) = index of right node that left node i pairs with
Rmate(j) = index of left node that right node j pairs with
//
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
  // construct dual feasible solution
  VD 11(n):
  VD v(n);
  for (int i = 0; i < n; i++) {
     u[i] = cost[i][0];
     for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
  /for (int j = 0; j < n; j++) {
    v[j] = cost[0][j] - u[0];
    for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);</pre>
  // construct primal solution satisfying complementary slackness
  Lmate = VI(n, -1);
Rmate = VI(n, -1);
  rmate = VI(n, -1);
int mated = 0;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
    if (Rmate[j] != -1) continue;
}</pre>
```

```
if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
       Lmate[i] = j;
        Rmate[j] = i;
        mated++;
       break;
VD dist(n);
VI dad(n);
VI seen(n);
 // repeat until primal solution is feasible
   // find an unmatched left node
  while (Lmate[s] != -1) s++;
   // initialize Dijkstra
  fill(dad.begin(), dad.end(), -1);
fill(seen.begin(), seen.end(), 0);
  for (int k = 0; k < n; k++)
     dist[k] = cost[s][k] - u[s] - v[k];
  int j = 0;
   while (true) {
     // find closest
     i = -1;
     for (int k = 0; k < n; k++) {
       if (seen[k]) continue;
if (j == -1 || dist[k] < dist[j]) j = k;</pre>
     seen[j] = 1;
     // termination condition
if (Rmate[j] == -1) break;
     // relax neighbors
     const int i = Rmate[j];
for (int k = 0; k < n; k++) {</pre>
        if (seen[k]) continue;
       const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
if (dist[k] > new_dist) {
          dist[k] = new_dist;
dad[k] = j;
   // update dual variables
  for (int k = 0; k < n; k++) {
   if (k == j || !seen[k]) continue;
   const int i = Rmate[k];</pre>
     v[k] += dist[k] - dist[j];
u[i] -= dist[k] - dist[j];
  u[s] += dist[j];
   // augment along path
   while (dad[j] >= 0) {
     const int d = dad[i]:
     Rmate[j] = Rmate[d];
     Lmate[Rmate[j]] = j;
     j = d;
  Rmate[j] = s;
Lmate[s] = j;
  mated++;
 double value = 0;
for (int i = 0; i < n; i++)
value += cost[i][Lmate[i]];
return value;
```

MaxBipartiteMatching.cc 5/34

```
// This code performs maximum bipartite matching. 

// Running time: O(|E| |V|) -- often much faster in practice 

// INPUT: w[i][j] = edge between row node i and column node j 

// OUTPUT: m[i] = assignment for row node i, -1 if unassigned
```

```
mc[j] = assignment for column node j, -1 if unassigned
                   function returns number of matches made
#include <vector>
using namespace std;
typedef vector<VI> VVI;
\label{eq:bool_find_match} \begin{array}{lll} bool \ \mbox{Find_match}(int \ i, \ const \ \mbox{VVI \&w}, \ \mbox{VI \&mc}, \ \mbox{VI \&seen}) \ \left\{ & \mbox{for } (int \ j = 0; \ j < w[i].size(); \ j++) \ \left\{ & \mbox{if } (w[i][j] \ \&\& \ !seen[j]) \ \right\} \end{array}
        seen[i] = true;
        if (mc[j] < 0 || FindMatch(mc[j], w, mr, mc, seen)) {</pre>
          mr[i] = j;
mc[j] = i;
   return false;
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
  mr = VI(w.size(), -1);
  mc = VI(w[0].size(), -1);
   for (int i = 0; i < w.size(); i++) {
     VI seen(w[0].size());
      if (FindMatch(i, w, mr, mc, seen)) ct++;
  return ct;
```

MinCut.cc 6/34

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm
// Running time:
       O(|V|^3)
// INPUT:
        - graph, constructed using AddEdge()
// OUTPUT:
        - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std.
typedef vector<int> VI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
    VI w = weights[0];
VI added = used;
     int prev, last = 0;
     for (int i = 0; i < phase; i++) {
       last = -1;
       for (int j = 1; j < N; j++)
         if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
      if (i == phase=1) {
  for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];
  for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];
  used[last] = true;</pre>
          cut.push_back(last);
         if (best_weight == -1 || w[last] < best_weight) {
  best_cut = cut;</pre>
           best_weight = w[last];
         for (int j = 0; j < N; j++)
            w[j] += weights[last][j];
         added[last] = true;
```

```
}
return make_pair(best_weight, best_cut);
```

GraphCutInference.cc 7/34

```
// Special-purpose {0,1} combinatorial optimization solver for
// problems of the following by a reduction to graph cuts:
           minimize
                             sum i psi i(x[i])
// x[1]...x[n] in \{0,1\} + sum_{\{i < j\}} phi_{ij}(x[i], x[j])
         psi i : {0, 1} --> R
// phi_{ij}: {0, 1} x {0, 1} --> R
// phi_{ij}(0,0) + phi_{ij}(1,1) <= phi_{ij}(0,1) + phi_{ij}(1,0) (*)
// This can also be used to solve maximization problems where the
// direction of the inequality in (*) is reversed.
/// INPUT: phi -- a matrix such that phi(i)[j][u][v] = phi_{ij}[u, v)
/// psi -- a matrix such that psi(i)[u] = psi_i(u)
// x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution
// To use this code, create a GraphCutInference object, and call the
// DoInference() method. To perform maximization instead of minimization, // ensure that #define MAXIMIZATION is enabled.
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<VVI> VVVI
typedef vector<VVVI> VVVVI;
const int INF = 1000000000;
// comment out following line for minimization
#define MAXIMIZATION
struct GraphCutInference {
  VVI cap, flow;
  int Augment(int s, int t, int a) {
    reached[s] = 1;
if (s == t) return a;
    for (int k = 0; k < N; k++) {
      if (reached[k]) continue;
if (int aa = min(a, cap[s][k] - flow[s][k])) {
         if (int b = Augment(k, t, aa)) {
  flow[s][k] += b;
           flow[k][s] -= b;
           return b;
    return 0;
  int GetMaxFlow(int s, int t) {
    N = cap.size();
    flow = VVI(N, VI(N));
    reached = VI(N);
    int totflow = 0;
    while (int amt = Augment(s, t, INF)) {
      totflow += amt;
fill(reached.begin(), reached.end(), 0);
    return totflow;
  int DoInference(const VVVVI &phi, const VVI &psi, VI &x) {
    int M = phi.size();
cap = VVI(M+2, VI(M+2));
    VI b(M);
    for (int i = 0; i < M; i++) {
```

```
b[i] += psi[i][1] - psi[i][0];
      c += psi[i][0];
for (int j = 0; j < i; j++)</pre>
      bii] == phi[i][j][1][1] - phi[i][j][0][1];
for (int j = i=t, j < W; j++) {
    cap[i][j] = phi[i][i][0][1] - phi[i][j][1][0] - phi[i][j][0][0] - phi[i][j][1][1];
         b[i] += phi[i][j][1][0] - phi[i][j][0][0];
         c += phi[i][j][0][0];
#ifdef MAXIMIZATION
    for (int i = 0; i < M; i++) {
  for (int j = i+1; j < M; j++)
    cap[i][j] *= -1;</pre>
      b[i] *= -1;
    c *= -1;
#endif
    for (int i = 0; i < M; i++) {
         cap[M][i] = b[i];
       } else {
         cap[i][M+1] = -b[i];
         c += b[i];
    int score = GetMaxFlow(M, M+1);
    fill(reached.begin(), reached.end(), 0);
    Augment(M, M+1, INF);
    x = VI(M);
    for (int i = 0; i < M; i++) x[i] = reached[i] ? 0 : 1;
#ifdef MAXIMIZATION
#endif
    return score;
};
int main() {
 // solver for "Cat vs. Dog" from NWERC 2008
  cin >> numcases;
  for (int caseno = 0; caseno < numcases; caseno++) {
    int c, d, v;
    cin >> c >> d >> v;
    VVVVI phi(c+d, VVVI(c+d, VVI(2, VI(2))));
    for (int i = 0; i < v; i++) {
      char p, q;
      int u, v;
cin >> p >> u >> q >> v;
      u--; v--;
if (p == 'C') {
         phi[u][c+v][0][0]++;
         phi[c+v][u][0][0]++;
       } else {
         phi[v][c+u][1][1]++;
         phi[c+u][v][1][1]++;
    GraphCutInference graph;
    cout << graph.DoInference(phi, psi, x) << endl;</pre>
  return 0
```

ConvexHull.cc 8/34

```
// Compute the 2D convex hull of a set of points using the monotone chain // algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT is // #defined.

// Running time: O(n log n)

// INPUT: a vector of input points, unordered.

// OUTPUT: a vector of points in the convex hull, counterclockwise, starting with bottomost/leftmost point
```

```
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
#define REMOVE_REDUNDANT
typedef double T;
 const T EPS = 1e-7;
struct PT {
  PT() {}
PT(T x, T y) : x(x), y(y) {}
  bool operator=(const PT &rhs) const { return make_pair(y,x) < make_pair(rhs.y,rhs.x); }
bool operator==(const PT &rhs) const { return make_pair(y,x) == make_pair(rhs.y,rhs.x); }</pre>
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; } T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a); }
bool between(const PT &a, const PT &b, const PT &c) {
    return (fabs(area2(a,b,c)) < EPS && (a.x-b.x)*(c.x-b.x) <= 0 && (a.y-b.y)*(c.y-b.y) <= 0);
#endif
void ConvexHull(vector<PT> &pts) {
  sort(pts.begin(), pts.end());
   pts.erase(unique(pts.begin(), pts.end()), pts.end());
   vector<PT> up, dn;
   for (int i = 0; i < pts.size(); i++) {
     while (dn.size() > 1 && area2(dn[dn.size()-2], up.back(), pts[i]) <= 0) up.pop_back();
while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();</pre>
     up.push back(pts[i]);
     dn.push_back(pts[i]);
   for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
#ifdef REMOVE_REDUNDANT
  if (pts.size() <= 2) return;
   dn.clear();
   dn.push_back(pts[0]);
  dn.push back(pts[1]);
   for (int i = 2; i < pts.size(); i++) {
     if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back();
  if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
     dn[0] = dn.back();
     dn.pop_back();
  pts = dn;
#endif
```

Geometry.cc 9/34

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std:
double INF = 1e100;
double EPS = 1e-12;
struct PT {
    double x, y;
   PT() {}
   PT() {}

PT(double x, double y) : x(x), y(y) {}

DT(const PT &D) : x(p.x), y(p.y) {}
  PT(const P, woulter y, x(x), y(y, y))

PT(const PT &p) : x(p.x), y(p.y) }

PT operator + (const PT &p) const { return PT(x+p.x, y+p.y);}

PT operator - (const PT &p) const { return PT(x+p.x, y-p.y);}

PT operator * (double c) const { return PT(x+c, y+c);}
   PT operator / (double c)
                                              const { return PT(x/c, y/c );
double dot(PT p, PT q)
double dist2(PT p, PT q)
                                          { return p.x*q.x+p.y*q.y; }
                                            return dot(p-q,p-q);
double cross(PT p, PT q)
                                          { return p.x*q.y-p.y*q.x; }
```

```
ostream &operator<<(ostream &os, const PT &p) {
  os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
// rotate a point CCW of CW alocale CLE ----
PT RotateCCW90(PT p) { return PT(-p.y,p.x);
PT RotateCW90(PT p) { return PT(p.y,-p.x);
PT RotateCCW(PT p, double t)
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
  return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
   double r = dot(b-a,b-a);
  if (fabs(r) < EPS) return a:
   r = dot(c-a, b-a)/r;
  if (r < 0) return a;
  if (r > 1) return b;
return a + (b-a)*r;
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d double DistancePointPlane(double x, double y, double z, double c, double c, double d)
  return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear bool LinesParallel(PT a, PT b, PT c, PT d) \{
  return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
        && fabs(cross(a-b, a-c)) < EPS
        && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
  if (LinesCollinear(a, b, c, d)) {
  if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
     dist2(b, c) < EPS || dist2(b, d) < EPS) return true;
if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
     return true:
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
  b=b-a; d=c-d; c=c-a;
assert(dot(b, b) > EPS && dot(d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
  b=(a+b)/2;
  c = (a+c)/2;
  return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William Kandolph Pranklin)) returns I for strictly interior points, 0 for // strictly exterior points, and 0 or I for the remaining points
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact // tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0;
   for (int i = 0; i < p.size(); i++){
```

```
int j = (i+1)%p.size();
    if ((p[i].y <= q.y && q.y < p[j].y ||
p[j].y <= q.y && q.y < p[i].y) &&
       q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
  return c;
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)</pre>
     if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
      return true;
    return false;
// compute intersection of line through points a and b with
// circle centered at c with radius r > |
 vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ret;
  a = a-c:
  double A = dot(b, b);
   double B = dot(a, b);
  double C = dot(a, a) - r*r;
double D = B*B - A*C;
  if (D < -EPS) return ret;
ret.push back(c+a+b*(-B+sqrt(D+EPS))/A);</pre>
   if (D > EPS)
    ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret;
// compute intersection of circle centered at a with radius \boldsymbol{r}
// with circle centered at b with radius R
 vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret;
   double d = sqrt(dist2(a, b));
  if (d > r+R | | d+min(r, R) < max(r, R)) return ret;
double x = (d*d-R*R+r*r)/(2*d);</pre>
   double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
    ret.push_back(a+v*x - RotateCCW90(v)*y);
  return ret;
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as // the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area / 2.0;
double ComputeArea(const vector<PT> &p) {
  return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
   double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++){
     int j = (i+1) % p.size();
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
  for (int i = 0; i < p.size(); i++) {</pre>
     for (int k = i+1; k < p.size(); k++) {
       int j = (i+1) % p.size();
int l = (k+1) % p.size();
       if (i == 1 || j == k) continue;
if (SegmentsIntersect(p[i], p[j], p[k], p[1]))
         return false;
  return true;
int main() {
```

```
// expected: (-5,2)
cerr << RotateCCW90(PT(2.5)) << endl;
 // expected: (5,-2)
cerr << RotateCW90(PT(2,5)) << endl;
 // expected: (-5.2)
cerr << RotateCCW(PT(2,5),M_PI/2) << endl;
cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
// expected: (5,2) (7.5,3) (2.5,1)
cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "
<< ProjectPointSegment(PT(7.5,3), PT(10,4), PT(3,7)) << " "
        << ProjectPointSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
 // expected: 6.78903
cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;
 // expected: 1 0 1
cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
        << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
        << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
// expected: 0 0 1
cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
        << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
<< LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;</pre>
cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "
        << SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " " << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " " " \sim 
        << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;</pre>
// expected: (1,1)
cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;
vector<PT> v;
v.push_back(PT(0,0));
v.push back(PT(5,0));
v.push_back(PT(5,5));
v.push_back(PT(0,5));
 // expected: 1 1 1 0 0
cerr << PointInPolygon(v, PT(2,2)) << " " << PointInPolygon(v, PT(2,0)) << " "
        << PointInPolygon(v, PT(0,2)) << " "
<< PointInPolygon(v, PT(5,2)) << " "</pre>
        << PointInPolygon(v, PT(2,5)) << endl;
 // expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2,2)) << " "
        << PointOnPolygon(v, PT(2,0)) << " "
        << PointOnPolygon(v, PT(0,2)) << " "
<< PointOnPolygon(v, PT(5,2)) << " "</pre>
        << PointOnPolygon(v, PT(2,5)) << endl;
                    (5.4) (4.5)
                    blank line
                    (4,5) (5,4)
                    blank line
u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl; u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr < u[i] << ", cerr << end]; u = CirclecircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqct(2.0)/2.0); for (int i = 0; i < u.size(); i++) cerr < u[i] << ", cerr << end]; for (int i = 0; i < u.size(); i++) cerr < u[i] << ", cerr << end];
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
 vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c << endl;</pre>
```

JavaGeometry.java 10/34

```
// In this example, we read an input file containing three lines, each
// containing an even number of doubles, separated by commas. The first two
// lines represent the coordinates of two polygons, given in counterclockwise
// (or clockwise) order, which we will call "A" and "B". The last line
// contains a list of points, p[1], p[2], ...
// Our goal is to determine:
    (1) whether B - A is a single closed shape (as opposed to multiple shapes)
(2) the area of B - A
    (3) whether each p[i] is in the interior of B - A
// INPUT:
// 0 0 10 0 0 10
// 0 0 10 10 10 0
// 8 6
// 5 1
// The area is singular
     The area is 25.0
     Point belongs to the area
// Point does not belong to the area.
import java.util.*;
import java.io.*;
public class JavaGeometry {
    // make an array of doubles from a string
static double[] readPoints(String s) {
         double[] ret = new double[arr.length];
for (int i = 0; i < arr.length; i++) ret[i] = Double.parseDouble(arr[i]);</pre>
         return ret;
     // make an Area object from the coordinates of a polygon
     static Area makeArea(double[] pts) {
         Path2D.Double p = new Path2D.Double();
p.moveTo(pts[0], pts[1]);
          for (int i = 2; i < pts.length; i += 2) p.lineTo(pts[i], pts[i+1]);
         p.closePath();
    // compute area of polygon
static double computePolygonArea(ArrayList<Point2D.Double> points) {
         Point2D.Double[] pts = points.toArray(new Point2D.Double[points.size()]);
         double area = 0;
         for (int i = 0; i < pts.length; i++) {
              int j = (i+1) % pts.length;
area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
         return Math.abs(area)/2;
     // compute the area of an Area object containing several disjoint polygons
     static double computeArea(Area area) {
         double totArea = 0;
         PathIterator iter = area.getPathIterator(null);
         ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>();
         while (!iter.isDone()) {
   double[] buffer = new double[6];
               switch (iter.currentSegment(buffer)) {
              case PathIterator.SEG MOVETO:
              case PathIterator.SEG_LINETO
                  points.add(new Point2D.Double(buffer[0], buffer[1]));
                   break;
              case PathIterator.SEG_CLOSE:
                  totArea += computePolygonArea(points);
                  points.clear();
                  break;
              iter.next();
          return totArea;
     // notice that the main() throws an Exception -- necessary to
     // avoid wrapping the Scanner object for file reading in a
     // try { ... } catch block.
    public static void main(String args[]) throws Exception {
         Scanner scanner = new Scanner(new File("input.txt"));
         // Scanner scanner = new Scanner (System.in);
```

```
double[] pointsA = readPoints(scanner.nextLine());
double[] pointsB = readPoints(scanner.nextLine());
Area areaA = makeArea(pointsA);
Area areaB = makeArea(pointsB);
areaB.subtract(areaA);
// also.
    areaB.exclusiveOr (areaA);
    areaR add (areaA).
// areaB.intersect (areaA);
// (1) determine whether B - A is a single closed shape (as
      opposed to multiple shapes)
boolean isSingle = areaB.isSingular();
// areaB.isEmptv():
if (isSingle)
   System.out.println("The area is singular.");
   System.out.println("The area is not singular.");
// (2) compute the area of B - A
System.out.println("The area is " + computeArea(areaB) + ".");
// (3) determine whether each p[i] is in the interior of B - A
while (scanner.hasNextDouble()) {
   double x = scanner.nextDouble();
   assert(scanner.hasNextDouble());
    double y = scanner.nextDouble();
   if (areaB.contains(x,y)) {
       System.out.println ("Point belongs to the area.");
   } else {
       System.out.println ("Point does not belong to the area.");
// Finally, some useful things we didn't use in this example:
    Ellipse2D.Double ellipse = new Ellipse2D.Double (double x, double y,
                                                      double w, double h);
      creates an ellipse inscribed in box with bottom-left corner (x,y)
      and upper-right corner (x+y,w+h)
     Rectangle 2D.Double rect = new Rectangle 2D.Double (double x, double y,
                                                      double w. double h):
      creates a box with bottom-left corner (x,v) and upper-right
      corner (x+y,w+h)
// Each of these can be embedded in an Area object (e.g., new Area (rect)).
```

Geom3D.java 11/34

```
public class Geom3D {
  // distance from point (x, y, z) to plane aX + bY + cZ + d = 0
  public static double ptPlaneDist(double x, double y, double z,
     double a, double b, double c, double d) {
    return Math.abs(a*x + b*y + c*z + d) / Math.sqrt(a*a + b*b + c*c);
  // distance between parallel planes aX + bY + cZ + d1 = 0 and
  // aX + bY + cZ + d2 = 0
  public static double planePlaneDist(double a, double b, double c,
     double d1, double d2) {
    return Math.abs(d1 - d2) / Math.sqrt(a*a + b*b + c*c);
  // distance from point (px, py, pz) to line (x1, y1, z1)-(x2, y2, z2)
 // (or ray, or segment; in the case of the ray, the endpoint is the // first point) \,
  public static final int LINE = 0;
  public static final int SEGMENT = 1;
  public static final int RAY = 2;
  public static double ptLineDistSq(double x1, double y1, double z1,
      double x2, double y2, double z2, double px, double py, double pz,
     int type) {
    double pd2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2);
   double x, y, z;
if (pd2 == 0) {
     x = x1;
y = y1;
z = z1;
```

```
} else {
    double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1) + (pz-z1)*(z2-z1)) / pd2;
    x = x1 + u * (x2 - x1);
    y = y1 + u * (y2 - y1);
    z = z1 + u * (z2 - z1);
    if (type != LINE && u < 0) {
        x = x1;
        y = y1;
        z = z1;
    }
    if (type == SEGMENT && u > 1.0) {
        x = x2;
        y = y2;
        z = z2;
    }
}

return (x-px)*(x-px) + (y-py)*(y-py) + (z-pz)*(z-pz);
}

public static double ptLineDist(double x1, double y1, double z1, double x2, double x2, double x2, double px, double py, double pz, int type) {
    return Math.sgrt(ptLineDistSq(x1, y1, z1, x2, y2, z2, px, py, pz, type));
    }
}
```

Delaunay.cc 12/34

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
// INPUT:
             x[] = x-coordinates
              y[] = y-coordinates
// OUTPUT: triples = a vector containing m triples of indices
                         corresponding to triangle vertices
#include<vector>
using namespace std;
typedef double T;
struct triple {
    int i, j, k
    triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
         int n = x.size();
         vector<T> z(n);
         vector<triple> ret;
        for (int i = 0; i < n; i++)
   z[i] = x[i] * x[i] + y[i] * y[i];</pre>
         for (int i = 0; i < n-2; i++) {
             for (int j = i+1; j < n; j++) {
                 for (int k = i+1; k < n; k++) {
                      if (j == k) continue;
                      double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);
                      double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);
double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);
                      bool flag = zn < 0;
for (int m = 0; flag && m < n; m++)
                          flag = flag && ((x[m]-x[i])*xn +
                                            (y[m]-y[i])*yn +
(z[m]-z[i])*zn <= 0);
                      if (flag) ret.push_back(triple(i, j, k));
        return ret;
int main()
    T xs[]={0, 0, 1, 0.9};
    T ys[]={0, 1, 0, 0.9};
    vector<T> x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
    vector<triple> tri = delaunayTriangulation(x, y);
    int i:
```

```
for(i = 0; i < tri.size(); i++)
    printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
    return 0;
}</pre>
```

Euclid.cc 13/34

```
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.
#include <iostream>
#include <vector>
#include <algorithm>
typedef vector<int> VI;
typedef pair<int,int> PII;
// return a % b (positive value)
int mod(int a, int b) {
 return ((a%b)+b)%b;
// computes gcd(a,b)
int gcd(int a, int b) {
  while(b){a%=b; tmp=a; a=b; b=tmp;}
  return a
// computes lcm(a,b)
int lcm(int a, int b) {
  return a/gcd(a,b)*b;
// returns d = gcd(a,b); finds x,y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
  int xx = y = 0;
  int yy = x = 1;
while (b) {
    int q = a/b;
int t = b; b = a%b; a = t;
     t = xx; xx = x-q*xx; x = t;
    t = yy; yy = y-q*yy; y = t;
  return a;
// finds all solutions to ax = b (mod n)
VI modular_linear_equation_solver(int a, int b, int n) {
  int x, y;
VI solutions;
  int d = extended_euclid(a, n, x, y);
  if (!(b%d)) {
    x = mod (x*(b/d), n);
    for (int i = 0; i < d; i++)
       solutions.push_back(mod(x + i*(n/d), n));
  return solutions;
// computes b such that ab = 1 \pmod{n}, returns -1 on failure
int mod_inverse(int a, int n) {
  int x, y;
  int d = extended_euclid(a, n, x, y);
  if (d > 1) return -1;
  return mod(x,n);
// Chinese remainder theorem (special case): find z such that
// z \ x = a, z \ y = b. Here, z is unique modulo M = lcm(x,y). 
// Return (z,M). On failure, M = -1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
  int s, t;
  int d = extended_euclid(x, y, s, t);
if (a%d != b%d) return make_pair(0, -1);
  return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
// Chinese remainder theorem: find z such that // z \otimes x[i] = a[i] for all i. Note that the solution is // unique modulo M=1 cm_i (x[i]). Return (z,M). On // failure, M=-1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese remainder theorem(const VI &x, const VI &a) {
  PII ret = make_pair(a[0], x[0]);
  for (int i = 1; i < x.size(); i++) {
```

```
ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i]);
    if (ret_second == -1) break;
   return ret;
// computes x and v such that ax + bv = c; on failure, x = v = -1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
  int d = gcd(a,b);
  if (c%d) {
  x = y = -1;
} else {
    x = c/d * mod_inverse(a/d, b/d);
    v = (c-a*x)/b;
int main() {
  // expected: 2
cout << gcd(14, 30) << endl;
  // expected: 2 -2 1
  int x, y;
int d = extended_euclid(14, 30, x, y);
cout << d << " " << x << " " << y << endl;</pre>
  VI sols = modular linear equation solver(14, 30, 100);
  for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
  cout << endl;
  // expected: 8
cout << mod_inverse(8, 9) << endl;</pre>
  // expected: 23 56
  // 11 12
int xs[] = {3, 5, 7, 4, 6};
int as[] = {2, 3, 2, 3, 5};
  PII ret = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3)); cout << ret.first << " " << ret.second << endl;
  ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
cout << ret.first << " " << ret.second << endl;</pre>
   // expected: 5 -15
  linear_diophantine(7, 2, 5, x, y);
  cout << x << " " << y << endl;
```

GaussJordan.cc 14/34

```
// Gauss-Jordan elimination with full pivoting.
// Uses:
// (1) solving systems of linear equations (AX=B)
     (2) inverting matrices (AX=I)
    (3) computing determinants of square matrices
// Running time: O(n^3)
// INPUT: a[][] = an nxn matrix
             b[][] = an nxm matrix
             X = an nxm matrix (stored in b[][])

A^{-1} = an nxn matrix (stored in a[][])
// OUTPUT: X
             returns determinant of a[1[1
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan(VVT &a, VVT &b) {
 const int n = a.size();
const int m = b[0].size();
  VI irow(n), icol(n), ipiv(n);
  for (int i = 0; i < n; i++) {
    int pj = -1, pk = -1;
```

```
for (int j = 0; j < n; j++) if (!ipiv[j])
   for (int k = 0; k < n; k++) if (!apiv(k))

if (pj == -1 | fabs(a[j](k)) > fabs(a[pj][pk])) { pj = j; pk = k; }

if (fabs(a[j]j[pk]) > EBS) { cerr < "Matrix is singular." << end! exit(0); }
    ipiv[pk]++;
   swap(b[pj], b[pk]);
if (pj != pk) det *= -1;
   irow[i] = pj;
icol[i] = pk;
    T c = 1.0 / a[pk][pk];
    det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;
   for (int p = 0; p < m; p++) b[pk][p] *= c;
for (int p = 0; p < n; p++) if (p != pk) {
      c = a[p][pk];
      a[p][pk] = 0;
      for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
      for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
   for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
return det;
const int n = 4;
const int m = 2;
double A[n][n] = { \{1,2,3,4\},\{1,0,1,0\},\{5,3,2,4\},\{6,1,4,6\} }; double B[n][m] = { \{1,2\},\{4,3\},\{5,6\},\{8,7\} };
for (int i = 0; i < n; i++) {
    a[i] = VT(A[i], A[i] + n);
   b[i] = VT(B[i], B[i] + m);
double det = GaussJordan(a, b);
 // expected: 60
cout << "Determinant: " << det << endl;
 // expected: -0.233333 0.166667 0.133333 0.0666667
                   0.166667 0.166667 0.333333 -0.333333
                   0.233333 0.833333 -0.133333 -0.0666667
                   0.05 -0.75 -0.1 0.2
cout << "Inverse: " << endl;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++)
    cout << a[i][j] << ' ';</pre>
   cout << endl;
 // expected: 1.63333 1.3
                  -0.166667 0.5
                   2.36667 1.7
                   -1.85 -1.35
 cout << "Solution: " << endl;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++)
      cout << b[i][j] << ' ';
   cout << endl;
```

ReducedRowEchelonForm.cc 15/34

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
//
// Running time: O(n^3)
// INPUT: a[][] = an nxm matrix
//
// INPUT: rref[][] = an nxm matrix (stored in a[][)
// returns rank of a[][]
#include <iostream>
#include <costream>
#include comath>
using namespace std;
```

```
const double EPSILON = 1e-10;
typedef vector<T> VT;
typedef vector<VT> VVT;
int rref(VVT &a)
  int m = a[0].size();
  int r = 0;
  for (int c = 0; c < m && r < n; c++) {
    int i = r;
    for (int i = r+1; i < n; i++)
    if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
if (fabs(a[j][c]) < EPSILON) continue;</pre>
    swap(a[j], a[r]);
    T s = 1.0 / a[r][c];
    for (int j = 0; j < m; j++) a[r][j] *= s;
for (int i = 0; i < n; i++) if (i != r) {
       for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];
    r++;
  return r;
int main(){
  const int n = 5;
  const int m = 4;
  double A[n][m] = { {16,2,3,13}, {5,11,10,8}, {9,7,6,12}, {4,14,15,1}, {13,21,21,13} };
  for (int i = 0; i < n; i++)
    a[i] = VT(A[i], A[i] + n);
  int rank = rref (a);
  cout << "Rank: " << rank << endl;
  // expected: 1 0 0 1
                 0 0 0 2.78206e-15
                  0 0 0 3.22398e-15
 cout << "rref: " << endl;
for (int i = 0; i < 5; i++){
  for (int j = 0; j < 4; j++)</pre>
      cout << a[i][j] << ' ';
    cout << endl;
```

FFT_new.cpp 16/34

```
#include <cassert>
#include <cstdio>
#include <cmath>
struct cpx
 cpx(double aa):a(aa){}
 cpx(double aa, double bb):a(aa),b(bb){}
  double a:
  double b;
  double modsq(void) const
    return a * a + b * b;
  cpx bar(void) const
    return cpx(a, -b);
cpx operator +(cpx a, cpx b)
 return cpx(a.a + b.a, a.b + b.b);
cpx operator *(cpx a, cpx b)
  return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
cpx operator /(cpx a, cpx b)
```

```
cpx r = a * b.bar();
   return cpx(r.a / b.modsq(), r.b / b.modsq());
cpx EXP(double theta)
   return cpx(cos(theta),sin(theta));
const double two_pi = 4 * acos(0);
// in:
                input array
// out: output array
// step: (SET TO 1) (used internally)
// size: length of the input/output (MUST BE A POWER OF 2)
// dir: either plus or minus one (direction of the FFT)
// RESULT: \operatorname{out}[k] = \operatorname{sum}_{\{j=0\}}^{n}(\operatorname{size} - 1\} \operatorname{in}[j] * \exp(\operatorname{dir} * 2pi * i * j * k / \operatorname{size}) void FFT(cpx *in, cpx *out, int step, int size, int dir)
   if(size < 1) return;
   if(size == 1)
      out[0] = in[0];
      return;
   FFT(in, out, step * 2, size / 2, dir);
   FFT(in + step, out + size / 2, step * 2, size / 2, dir);
for(int i = 0; i < size / 2; i++)
      cpx even = out[i];
      cpx odd = out[i + size / 2];
     cpx odd = out[1 + size / 2],
out[i] = even + EXP(dir * two_pi * i / size) * odd;
out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
// Usage: 
// f[0...N-1] and g[0...N-1] are numbers
// it...w-1 and y[0...w-1] are number of (North to compute the convolution h, defined by // h[n] = sum of f[k]g[n-k] (k = 0, \ldots, N-1). 

// Here, the index is cyclic; f[-1] = f[N-1], f[-2] = f[N-2], etc. 

// Let F[0...N-1] be FFT(f), and similarly, define G and H.
 // The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N \log N) time, do the following: // 1. Compute F and G (pass dir = 1 as the argument).

    Get H by element-wise multiplying F and G.
    Get h by taking the inverse FFT (use dir = -1 as the argument)

            and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR
   printf("If rows come in identical pairs, then everything works.\n");
   \mathtt{cpx}\ \mathtt{a[8]}\ =\ \big\{0\,,\ 1,\ \mathtt{cpx}(1,3)\,,\ \mathtt{cpx}(0,5)\,,\ 1,\ 0,\ 2,\ 0\big\};
   cpx b[8] = \{1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2\};
   cpx A[8];
   cpx B[8];
   FFT(a, A, 1, 8, 1);
FFT(b, B, 1, 8, 1);
   for(int i = 0 ; i < 8 ; i++)
      printf("%7.21f%7.21f", A[i].a, A[i].b);
   printf("\n");
   for(int i = 0 ; i < 8 ; i++)
      cpx Ai(0,0);
      for(int j = 0 ; j < 8 ; j++)
         Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
      printf("%7.21f%7.21f", Ai.a, Ai.b);
   printf("\n");
   cpx AB[8];
   for(int i = 0 ; i < 8 ; i++)
      AB[i] = A[i] * B[i];
   cpx aconvb[8];
FFT(AB, aconvb, 1, 8, -1);
   for(int i = 0 ; i < 8 ; i++)
  aconvb[i] = aconvb[i] / 8;</pre>
   for(int i = 0 ; i < 8 ; i++)
      printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
   printf("\n");
   for(int i = 0 ; i < 8 ; i++)
      cpx aconvbi(0,0);
```

Simplex.cc 17/34

```
// Two-phase simplex algorithm for solving linear programs of the form
        mavimiza
                       CAT Y
        subject to Ax <= b
 // INPUT: A -- an m x n matrix
            b -- an m-dimensional vector
            c -- an n-dimensional vector
            x -- a vector where the optimal solution will be stored
 // OUTPUT: value of the optimal solution (infinity if unbounded
             above, nan if infeasible)
// To use this code, create an LPSolver object with A. b. and c as
// arguments. Then, call Solve(x).
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include <limits>
using namespace std;
typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver {
  int m, n;
VI B, N;
  LPSolver(const VVD &A, const VD &b, const VD &c) :
    For (int i = 0; i < m; j++) { N[j] = j; D[m[j] = -c[j]; }
     N[n] = -1; D[m+1][n] = 1;
  void Pivot(int r, int s) {
  for (int i = 0; i < m+2; i++) if (i != r)</pre>
    for (int j = 0; j < m<sup>2</sup>2; j+r) It (j = r)
for (int j = 0; j < m<sup>2</sup>2; j+r) It (j = r)
[li[j] - D[r][j] * D[r][s];
for (int j = 0; j < m<sup>2</sup>2; j+r) It (j = s) D[r][j] /= D[r][s];
for (int i = 0; i < m<sup>2</sup>2; i+r) It (i = r) D[i][s] /= -D[r][s];
D[r][s] = 1.0 / D[r][s];
    swap(B[r], N[s]);
  bool Simplex(int phase) {
     int x = phase == 1 ? m+1 : m;
    while (true) {
       int s = -1;
       for (int j = 0; j <= n; j++) {
         if (phase == 2 \& \& N[j] == -1) continue;
if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] \& \& N[j] < N[s]) s = j;
       if (D[x][s] >= -EPS) return true;
       int r = -1;
for (int i = 0; i < m; i++) {
         if (r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] ||
D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
       if (r == -1) return false;
```

```
DOUBLE Solve(VD &x) {
    int r = 0;
     for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;
     if (D[r][n+1] \leftarrow -EPS) {
       Pivot(r, n);
       if (!Simplex(1) || D[m+1][n+1] < -EPS) return -numeric_limits<DOUBLE>::infinity();
for (int i = 0; i < m; i++) if (B[i] == -1) {</pre>
         for (int j = 0; j <= n; j++)

if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;
         Pivot(i, s);
     if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
    return D[m][n+1];
int main() {
  const int m = 4:
  const int n = 3;
  DOUBLE _A[m][n] = {
    { 6, -1, 0 },
{ -1, -5, 0 },
    { 1, 5, 1 },
{ -1, -5, -1 }
  DOUBLE _b[m] = { 10, -4, 5, -5 };

DOUBLE _c[n] = { 1, -1, 0 };
  VD b(_b, _b + m);
  \label{eq:vd_constraint} \begin{array}{lll} VD \ c(\_c, \_c + n); \\ for \ (int \ i = 0; \ i < m; \ i++) \ A[i] = VD(\_A[i], \_A[i] + n); \end{array}
  LPSolver solver(A, b, c);
  DOUBLE value = solver.Solve(x);
  cerr << "VALUE: "<< value << endl;
  cerr << "SOLUTION:";
  for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl;
  return 0;
```

FastDijkstra.cc 18/34

```
// Implementation of Dijkstra's algorithm using adjacency lists
// and priority queue for efficiency.
// Running time: O(|E| log |V|)
#include <queue>
#include <stdio.h>
using namespace std;
const int INF = 2000000000;
typedef pair<int,int> PII;
int main(){
 int N. s. t;
  scanf ("%d%d%d", &N, &s, &t);
 vector<vector<PII> > edges(N);
for (int i = 0; i < N; i++) {</pre>
   int M:
    scanf ("%d", &M);
    for (int j = 0; j < M; j++){
     int vertex, dist;
scanf ("%d%d", &vertex, &dist);
      edges[i].push_back (make_pair (dist, vertex)); // note order of arguments here
  // use priority queue in which top element has the "smallest" priority
 priority_queue<PII, vector<PII>, greater<PII> > Q;
vector<int> dist(N, INF), dad(N, -1);
 Q.push (make_pair (0, s));
dist[s] = 0;
  while (!Q.empty()){
   PII p = Q.top();
if (p.second == t) break;
    Q.pop();
```

```
int here = p.second;
for (vector=VII)::ikerator it=edges[here].begin(); it!=edges[here].end(); it++){
   if (dist[here] + it->first < dist[it->second]){
      dist[it->second] = dist[here] + it->first;
      dad[it->second] = here;
      Q.push (make_pair (dist[it->second], it->second));
   }
}

printf ("%d\n", dist[t]);
if (dist[t] < INF)
for(int i=t;!=-1;i=dad[i])
   printf ("%d%c", i, (i==s?'\n':' '));
return 0;
}</pre>
```

SCC.cc 19/34

```
#include<memory.h>
struct edge{int e, nxt;};
int V. E;
edge e[MAXE], er[MAXE];
int sp[MAXV], spr[MAXV];
int group_cnt, group_num[MAXV];
bool v[MAXV];
int stk[MAXV];
void fill_forward(int x)
  int i:
  v[x]=true;
  for(i=sp[x];i;i=e[i].nxt) if(!v[e[i].e]) fill_forward(e[i].e);
stk[++stk[0]]=x;
void fill backward(int x)
  int i;
  v[x]=false;
  for(i=spr[x];i;i=er[i].nxt) if(v[er[i].e]) fill_backward(er[i].e);
void add_edge(int v1, int v2) //add edge v1->v2
  e [++E].e=v2; e [E].nxt=sp [v1]; sp [v1]=E;
er[ E].e=v1; er[E].nxt=spr[v2]; spr[v2]=E;
void SCC()
  int i;
  stk[0]=0;
  memset(v, false, sizeof(v));
for(i=1;i<=V;i++) if(!v[i]) fill_forward(i);</pre>
  for(i=stk[0];i>=1;i--) if(v[stk[i]]){group_cnt++; fill_backward(stk[i]);}
```

EulerianPath.cc 20/34

```
struct Edge;
typedef list<Edge>::iterator iter;
struct Edge
        int next_vertex;
       iter reverse_edge;
       Edge(int next_vertex)
               :next_vertex(next_vertex)
               { }
};
const int max_vertices = ;
int num vertices;
list<Edge> adj[max_vertices];
                                        // adjacency list
vector<int> path;
void find path(int v)
        while(adj[v].size() > 0)
                int vn = adj[v].front().next_vertex;
```

SuffixArray.cc 21/34

```
// Suffix array construction in O(L log^2 L) time. Routine for
// computing the length of the longest common prefix of any two
// suffixes in O(log L) time.
// INPUT: string s
// OUTPUT: array suffix[] such that suffix[i] = index (from 0 to L-1)
             of substring s[i...L-1] in the list of sorted suffixes.
              That is, if we take the inverse of the permutation suffix[],
             we get the actual suffix array.
#include <iostream>
#include <string>
using namespace std;
struct SuffixArray
 string s;
vector<vector<int> > P;
  vector<pair<pair<int,int>,int> > M;
  \label{eq:suffixed_const_string} Suffixed ray(const string \&s) : L(s.length()), s(s), P(1, vector<int>(L, 0)), M(L) \ \{ for (int i = 0; i < L; i++) P[0][i] = int(s[i]); \}
    for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {
      P.push_back(vector<int>(L, 0));
for (int i = 0; i < L; i++)</pre>
        \texttt{M[i]} = \texttt{make\_pair(make\_pair(P[level-1][i], i + skip < L ? P[level-1][i + skip] : -1000), i);}
      sort(M.begin(), M.end());
for (int i = 0; i < L; i++)</pre>
          P[level][M[i].second] = (i > 0 \&\& M[i].first == M[i-1].first) ? P[level][M[i-1].second] : i; 
  vector<int> GetSuffixArray() { return P.back(); }
  // returns the length of the longest common prefix of s[i...L-1] and s[j...L-1]
  int LongestCommonPrefix(int i, int j) {
    if (i == j) return L - i;
for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
      if (P[k][i] == P[k][j]) {
        i += 1 << k;
         len += 1 << k;
    return len;
};
int main() {
  // bobocel is the 0'th suffix
  // obocel is the 5'th suffix
       bocel is the 1'st suffix
        ocel is the 6'th suffix
cel is the 2'nd suffix
          el is the 3'rd suffix
            1 is the 4'th suffix
  SuffixArray suffix("bobocel")
  vector<int> v = suffix.GetSuffixArray();
  // Expected output: 0 5 1 6 2 3 4
  for (int i = 0; i < v.size(); i++) cout << v[i] << " ";
  cout << endl;
  cout << suffix.LongestCommonPrefix(0, 2) << endl;
```

BIT.cc 22/34 #include <iostream>

```
using namespace std
#define LOGSZ 17
int tree[(1<<LOGSZ)+1];</pre>
int N = (1<<LOGSZ);
// add w to walue at w
void set(int x, int v) {
  while(x <= N) {
    tree[x] += v;
 // get cumulative sum up to and including x
int get(int x) {
  int res = 0;
  while(x) {
    res += tree[x];
    x -= (x & -x);
  return res;
// get largest value with cumulative sum less than or equal to x;
// for smallest, pass x-1 and add 1 to result
int getind(int x) {
  int idx = 0, mask = N;
while(mask && idx < N)
    int t = idx + mask;
    if(x >= tree[t]) {
      idx = t;
       x -= tree[t];
     mask >>= 1;
  return idx;
```

UnionFind.cc 23/34

//union-find set: the vector/array contains the parent of each node int find(vector <int>& C, int x) {return (C[x]=x) ? x : C[x]=find(C, C[x]);} //C++ int find(int x) {return (C[x]=x)?x:C[x]=find(C[x]);} //C

KDTree.cc 24/34

```
// A straightforward, but probably sub-optimal KD-tree implmentation that's
// probably good enough for most things (current it's a 2D-tree)
// - constructs from n points in O(n \lg^2 2 n) time // - handles nearest-neighbor query in O(\lg n) if points are well distributed
      worst case for nearest-neighbor may be linear in pathological case
 // Sonny Chan, Stanford University, April 2009
#include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
using namespace std;
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
bool operator == (const point &a, const point &b)
    return a.x == b.x && a.v == b.v;
```

```
// sorts points on x-coordinate
bool on_x(const point &a, const point &b)
// sorts points on v-coordinate
bool on_y(const point &a, const point &b)
    return a.v < b.v;
ntype pdist2(const point &a, const point &b)
    ntype dx = a.x-b.x, dy = a.y-b.y;
    return dx*dx + dv*dv;
// bounding box for a set of points
struct bbox
    ntype x0, x1, y0, y1;
    bbox() : x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
    // computes bounding box from a bunch of points
    // computes Doublinding Dox from a Dunch of points void compute(const vector-points &v) {
    for (int i = 0; i < v.size(); ++i) {
        x0 = min(x0, v[i].x); x1 = max(x1, v[i].x); y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
    // squared distance between a point and this bbox, 0 if inside
    ntype distance(const point &p) {
        if (p.x < x0) {
            if (p.y < y0) return pdist2(point(x0, y0), p);
else if (p.y > y1) return pdist2(point(x0, y1), p);
                                  return pdist2(point(x0, p.y), p);
         else if (p.x > x1) {
            else
                                  return pdist2(point(x1, p.y), p);
            if (p.v < v0)
                                  return pdist2(point(p.x, y0), p);
             else if (p.y > y1) return pdist2(point(p.x, y1), p);
             else
                                  return 0;
// stores a single node of the kd-tree, either internal or leaf
                     // true if this is a leaf node (has one point)
    point pt;
                     // the single point of this is a leaf
                     // bounding box for set of points in children
    bbox bound;
    kdnode *first, *second; // two children of this kd-node
    kdnode() : leaf(false), first(0), second(0) {}
    ~kdnode() { if (first) delete first; if (second) delete second; }
    // intersect a point with this node (returns squared distance)
    ntype intersect(const point &p) {
         return bound.distance(p);
    // recursively builds a kd-tree from a given cloud of points
    void construct(vector<point> &vp)
         // compute bounding box for points at this node
        bound.compute(vp);
         // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
   leaf = true;
             pt = vp[0];
               split on x if the bbox is wider than high (not best heuristic...)
             if (bound.x1-bound.x0 >= bound.y1-bound.y0)
             sort(vp.begin(), vp.end(), on_x);
// otherwise split on y-coordinate
                 sort(vp.begin(), vp.end(), on v);
```

```
// divide by taking half the array for each child
             // (not best performance if many duplicates in the \mbox{middle})
             int half = vp.size()/2;
             vector<point> vl(vp.begin(), vp.begin()+half);
             vector<point> vr(vp.begin()+half, vp.end());
            first = new kdnode(); first->construct(v1);
second = new kdnode(); second->construct(vr);
// simple kd-tree class to hold the tree and handle queries
     // constructs a kd-tree from a points (copied here, as it sorts them)
    kdtree(const vector<point> &vp) {
   vector<point> v(vp.begin(), vp.end());
         root = new kdnode();
        root->construct(v);
    ~kdtree() { delete root; }
    // recursive search method returns squared distance to nearest point
    ntype search(kdnode *node, const point &p)
             // commented special case tells a point not to find itself
               if (p == node->pt) return sentry;
                 return pdist2(p, node->pt);
        ntype bfirst = node->first->intersect(p);
        ntype bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to search first
           (note that the other side is also searched if needed)
        if (bfirst < bsecond) {
             ntype best = search(node->first, p);
             if (bsecond < best)</pre>
                 best = min(best, search(node->second, p));
             ntype best = search(node->second, p);
if (bfirst < best)</pre>
                 best = min(best, search(node->first, p));
             return best;
    // squared distance to the nearest
    ntype nearest(const point &p) {
        return search(root, p);
// some basic test code here
    // generate some random points for a kd-tree
   vector<point> vp;
for (int i = 0; i < 100000; ++i) {</pre>
        vp.push_back(point(rand()%100000, rand()%100000));
    kdtree tree(vp);
    for (int i = 0; i < 10; ++i) {
        point q(rand()%100000, rand()%100000);
cout << "Closest squared distance to (" << q.x << ", " << q.y << ")"
              << " is " << tree.nearest(q) << endl;
    return 0;
```

SegmentTreeLazy.java 25/34

```
public class SegmentTreeRangeUpdate {
   public long[] leaf;
   public long[] update;
   public int origSize;
```

```
public SegmentTreeRangeUpdate(int[] list)
        origSize = list.length;
        leaf = new long[4*list.length];
         update = new long[4*list.length];
        build(1,0,list.length-1,list);
public void build(int curr, int begin, int end, int[] list) {
        if(begin == end)
                 leaf[curr] = list[begin];
                 int mid = (begin+end)/2;
build(2 * curr, begin, mid, list);
build(2 * curr + 1, mid+1, end, list);
                 leaf[curr] = leaf[2*curr] + leaf[2*curr+1];
public void update(int begin, int end, int val) {
         update(1,0,origSize-1,begin,end,val);
public void update(int curr, int tBegin, int tEnd, int begin, int end, int val)
        if(tBegin >= begin && tEnd <= end)
                 update[curr] += val;
                  leaf[curr] += (Math.min(end,tEnd)-Math.max(begin,tBegin)+1) * val;
                  int mid = (tBegin+tEnd)/2;
                 if(mid >= begin && tBegin <= end)
    update(2*curr, tBegin, mid, begin, end, val);</pre>
                 if(tEnd >= begin && mid+1 <= end)
    update(2*curr+1, mid+1, tEnd, begin, end, val);</pre>
public long query(int begin, int end)
        return query(1,0,origSize-1,begin,end);
public long query(int curr, int tBegin, int tEnd, int begin, int end) {
        if(tBegin >= begin && tEnd <= end)
                 if(update[curr] != 0) {
                          leaf[curr] += (tEnd-tBegin+1) * update[curr];
                          if(2*curr < update.length){
                                   update[2*curr] += update[curr];
update[2*curr+1] += update[curr];
                          update[curr] = 0;
                 return leaf[curr];
                  leaf[curr] += (tEnd-tBegin+1) * update[curr];
                 if(2*curr < update.length){
                          update[2*curr] += update[curr];
                          update[2*curr+1] += update[curr];
                 update[curr] = 0;
                 int mid = (tBegin+tEnd)/2;
                 long ret = 0;
                 if(mid >= begin && tBegin <= end)
                 ret += query(2*curr, tBegin, mid, begin, end);
if(tEnd >= begin && mid+1 <= end)</pre>
                         ret += query(2*curr+1, mid+1, tEnd, begin, end);
                 return ret;
```

LCA.cc 26/34

```
const int max_nodes, log_max_nodes;
int num nodes, log num nodes, root;
vector<int> children[max nodes];
                                                   // children[i] contains the children of node i
int A[max_nodes][log_max_nodes+1];
                                                  // A[i][j] is the 2^j-th ancestor of node i, or -1 if that ancestor does not exist
int L[max nodes];
                                                   // L[i] is the distance between node i and the root
// floor of the binary logarithm of \boldsymbol{n}
int lb(unsigned int n)
    if(n==0)
         return -1;
    return =1;
int p = 0;
if (n >= 1<<16) { n >>= 16; p += 16; }
if (n >= 1<< 8) { n >>= 8; p += 8; }
if (n >= 1<< 4) { n >>= 4; p += 4; }
if (n >= 1<< 2) { n >>= 2; p += 2; }
     if (n >= 1<< 1) {
    return pa
void DFS(int i, int 1)
```

```
for(int j = 0; j < children[i].size(); j++)</pre>
       DFS(children[i][j], 1+1);
int LCA(int p, int q)
    // ensure node p is at least as deep as node q
   if(L[p] < L[a])
       swap(p, q);
    // "binary search" for the ancestor of node p situated on the same level as g
    for(int i = log_num_nodes; i >= 0; i--)
       if(L[p] - (1<<i) >= L[q])
            p = A[p][i];
   if(p == q)
        return p;
     // "binary search" for the LCA
   for(int i = log_num_nodes; i >= 0; i--)
    if(A[p][i] != -1 && A[p][i] != A[q][i])
            n = A[n][i];
            q = A[q][i];
    return A[p][0];
int main(int argc,char* argv[])
    // read num_nodes, the total number of nodes
    log_num_nodes=lb(num_nodes);
    for(int i = 0; i < num_nodes; i++)
       // read p, the parent of node i or -1 if node i is the root
       A[i][0] = p;
            children[p].push_back(i);
            root = i:
    // precompute A using dynamic programming
    for(int j = 1; j <= log_num_nodes; j++)</pre>
       for(int i = 0; i < num nodes; i++)
            if(A[i][j-1] != -1)
                A[i][j] = A[A[i][j-1]][j-1];
            else
                A[i][j] = -1;
     // precompute L
   DFS(root, 0);
   return 0;
```

LongestIncreasingSubsequence.cc 27/34

```
// Given a list of numbers of length n, this routine extracts a
// longest increasing subsequence.
// Running time: O(n log n)
//
// Running time: O(n log n)
//
// INPUT: a vector of integers
// OUTPUT: a vector containing the longest increasing subsequence
#include <vector>
#include <vector>
#include <vector>
#include <vector>
#include <vector>
#include vector
// Ut suppose the form of the property of the property
```

```
#ifdef STRICTLY_INCREASING
   PII item = make_pair(v[i], 0);
   VPII::iterator it = lower_bound(best.begin(), best.end(), item);
   item.second = i;
   PII item = make_pair(v[i], i);
   VPII::iterator it = upper_bound(best.begin(), best.end(), item);
   if (it == best.end()) {
     dad[i] = (best.size() == 0 ? -1 : best.back().second);
     best.push_back(item);
   } else {
     dad[i] = dad[it->second];
     *it = item;
 for (int i = best.back().second; i >= 0; i = dad[i])
   ret.push_back(v[i]);
 reverse(ret.begin(), ret.end());
 return ret;
```

Dates.cc 28/34

```
// Routines for performing computations on dates. In these routines
// months are expressed as integers from 1 to 12, days are expressed
// as integers from 1 to 31, and years are expressed as 4-digit
#include <iostream>
#include <string>
using namespace std;
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
// converts Gregorian date to integer (Julian day number) int dateToInt (int m, int d, int y) \{
     1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 - 3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
// converts integer (Julian day number) to Gregorian date: month/day/year void intToDate (int jd, int &m, int &d, int &y) {
  n = 4 * x / 146097;
x -= (146097 * n + 3) / 4;
  i = (4000 * (x + 1)) / 1461001;
x -= 1461 * i / 4 - 31;
  j = 80 * x / 2447;
d = x - 2447 * j / 80;
  x = j / 11;
  m = j + 2 - 12 * x;
  y = 100 * (n - 49) + i + x;
// converts integer (Julian day number) to day of week
string intToDay (int id){
  return dayOfWeek[jd % 7];
int main (int argc, char **argv)
  int jd = dateToInt (3, 24, 2004);
  int m, d, y;
  intToDate (jd, m, d, y);
string day = intToDay (jd);
  // expected output:
        2453089
  // 3/24/2004
        Wed
  cout << jd << endl
    << m << "/" << d << "/" << y << endl
     << day << endl;
```

LogLan.java 29/34

```
// This is a solution for
     Loglan: a logical language
     http://acm.uva.es/p/v1/134.html
// In this problem, we are given a regular language, whose rules can be
// inferred directly from the code. For each sentence in the input, we must
\ensuremath{//} determine whether the sentence matches the regular expression or not. The
// code consists of (1) building the regular expression (which is fairly
// complex) and (2) using the regex to match sentences.
import java.util.*;
import java.util.regex.*;
public class LogLan {
     public static String BuildRegex (){
         String space = " +";
          String A = "([aeioul)";
         String A = "[[a=z&&[^aeiou]]]";

String MOD = "(g" + A + ")";

String BA = "(b" + A + ")";
         String BA = "(D" + A + ")";

String DA = "(d" + A + ")";

String LA = "(1" + A + ")";

String NAM = "([a-z]*" + C + ")";
          String PREDA = "(" + C + C + A + C + A + " | " + C + A + C + C + A + ")";
         String predstring = "(" + PREDA + "(" + space + PREDA + ")*)";
String predname = "(" + LA + space + predstring + "|* + NAM + ")";
String preds = "(" + predstring + "(" + space + A + space + predstring + ")*)";
String predclaim = "(" + prednam + space + BA + space + preds + "|" + DA + space +
              preds + ")";
          String verbpred = "(" + MOD + space + predstring + ")";
         String verbpred = "(" + MOU + Space + predstring + ")".

String statement = "(" + predname + space + verbpred + space + predname + "|" + predname + space + verbpred + ")";

String sentence = "(" + MOU + Space + predstring + ")".
         return "^" + sentence + "$";
    public static void main (String args[]){
          String regex = BuildRegex();
          Pattern pattern = Pattern.compile (regex);
          Scanner s = new Scanner(System.in);
          while (true) {
               // In this problem, each sentence consists of multiple lines, where the last
               // line is terminated by a period. The code below reads lines until // encountering a line whose final character is a '.'. Note the use of
                      s.length() to get length of string
                      s.charAt() to extract characters from a Java string
                      s.trim() to remove whitespace from the beginning and end of Java string
               // Other useful String manipulation methods include
                      s.compareTo(t) < 0 if s < t, lexicographically
                      s.indexOf("apple") returns index of first occurrence of "apple" in s
                      s.lastIndexOf("apple") returns index of last occurrence of "apple" in s
                      s.replace(c.d) replaces occurrences of character c with d
                      s.startsWith("apple) returns (s.indexOf("apple") == 0)
                      s.toLowerCase() / s.toUpperCase() returns a new lower/uppercased string
                      Integer.parseInt(s) converts s to an integer (32-bit)
                     Long.parseLong(s) converts s to a long (64-bit)
Double.parseDouble(s) converts s to a double
               String sentence = "";
                    sentence = (sentence + " " + s.nextLine()).trim();
                     if (sentence.equals("#")) return;
                    if (sentence.charAt(sentence.length()-1) == '.') break;
               // now, we remove the period, and match the regular expression
               String removed period = sentence.substring(0, sentence.length()-1).trim();
               if (pattern.matcher (removed_period).find()){
                    System.out.println ("Good");
               } else {
                   System.out.println ("Bad!");
```

// Code which demonstrates the use of Java's regular expression libraries.

Primes.cc 30/34

```
// O(sqrt(x)) Exhaustive Primality Test
#include <cmath>
#define EPS 1e-7
typedef long long LL;
bool IsPrimeSlow (LL x)
  if(x<=1) return false;
  if (!(x%2) || !(x%3)) return false;
LL s=(LL)(sqrt((double)(x))+EPS);
  for(LL i=5;i<=s;i+=6)
    if (!(x%i) || !(x%(i+2))) return false;
  return true;
// Primes less than 1000:
                                11
59
109
                                      13
61
113
                                                   19
71
131
             43
                          53
                         107
                 167
233
                         173
239
                               179
241
                                      181
251
                                            191
257
                                                   193
263
                                                         197
269
                                                                199
271
                  307
379
                         311
                               313
389
                                      317
397
                                            331
401
                                                   337
409
                                                         419
                                                                421
                         457
      509
            521
                  523 541 547
                                      557
                                             563
                                                   569
                                                         571
                         613
                                617
                                      619
                                             631
                                                   641
                  677 683 691 701
761 769 773 787
                                            709
797
                                                   719 727 733 739 743
809 811 821 823 827
            839 853 857 859 863 877
929 937 941 947 953 967
                                                   881
971
      919
// Other primes:
// The largest prime smaller than 10 is 7.
      The largest prime smaller than 100 is 97.
      The largest prime smaller than 1000 is 997
      The largest prime smaller than 10000 is 9973.
     The largest prime smaller than 100000 is 99991.
The largest prime smaller than 1000000 is 999983
     The largest prime smaller than 10000000 is 9999991.
The largest prime smaller than 100000000 is 99999989
      The largest prime smaller than 1000000000 is 999999937.
The largest prime smaller than 10000000000 is 9999999967
      The largest prime smaller than 10000000000 is 99999999977
      The largest prime smaller than 1000000000000 is 999999999971
      The largest prime smaller than 100000000000000 is 99999999999937.
      The largest prime smaller than 1000000000000000 is 9999999999999997
      The largest prime smaller than 1000000000000000 is 99999999999999999
```

IO.cpp 31/34

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
    // Ouput a specific number of digits past the decimal point,
    // in this case 5
    cout.setf(ios::fixed); cout << setprecision(5);</pre>
    cout << 100.0/7.0 << endl;
    cout.unsetf(ios::fixed);
    // Output the decimal point and trailing zeros
    cout.setf(ios::showpoint);
    cout << 100.0 << endl;
    cout.unsetf(ios::showpoint)
    // Output a '+' before positive values
   cout.setf(ios::showpos);
cout << 100 << " " << -100 << endl;
    cout.unsetf(ios::showpos);
    // Output numerical values in hexadecimal
    cout << hex << 100 << " " << 1000 << " " << 10000 << dec << endl;
```

KMP.cpp 32/34

```
Searches for the string w in the string s (of length k). Returns the
0-based index of the first match (k if no match is found). Algorithm
runs in O(k) time
#include <iostream>
#include <vector>
using namespace std;
typedef vector<int> VI;
void buildTable(string& w, VI& t)
  t = VI(w.length());
 int i = 2, j = 0;
t[0] = -1; t[1] = 0;
  while(i < w.length())
    if(w[i-1] == w[j]) { t[i] = j+1; i++; j++; }
    else if(j > 0) j = t[j];
else { t[i] = 0; i++; }
int KMP(string& s, string& w)
  int m = 0, i = 0;
  buildTable(w, t);
   while(m+i < s.length())
    if(w[i] == s[m+i])
      if(i == w.length()) return m;
       m += i-t[i];
      if(i > 0) i = t[i];
  return s.length();
int main()
  string a = (string) "The example above illustrates the general technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the overall search: "+
"most of the work was already done in getting to the current position, so very "+
    "little needs to be done in leaving it. The only minor complication is that the "+
    "logic which is correct late in the string erroneously gives non-proper "+
    "substrings at the beginning. This necessitates some initialization code."
  string b = "table";
  int p = KMP(a, b);
  cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;
```

LatLong.cpp 33/34

```
/*
Converts from rectangular coordinates to latitude/longitude and vice
versa. Uses degrees (not radians).
*/
#include <iostream>
#include <cmath>
using namespace std;

struct l1
{
    double r, lat, lon;
};

struct rect
{
    double x, y, z;
};

ll convert(rect& P)
```

EmacsSettings.txt 34/34

 $Generated \ by \ \underline{GNU \ enscript \ 1.6.1}.$

	Theoretical	Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series: $\frac{n}{n} = e^{n+1} = 1$
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^n ic^i = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^2}, c \neq 1, \sum_{i=0}^\infty ic^i = \frac{c}{(1-c)^2}, c < 1.$
$\liminf_{n\to\infty}a_n$	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\limsup_{n\to\infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	<i>i</i> =1
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$, 4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,
$\begin{Bmatrix} n \\ k \end{Bmatrix}$	Stirling numbers (2nd kind):	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$
	Partitions of an n element set into k non-empty sets.	$6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {n \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$
$\binom{n}{k}$	2nd order Eulerian numbers.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \qquad 11. \binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	1)!, $15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$	$10!H_{n-1}, \qquad \qquad 16. \ \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \ \begin{bmatrix} n \\ k \end{bmatrix} \geq \begin{Bmatrix} n \\ k \end{Bmatrix},$
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \; \begin{Bmatrix} n-1 \\ n-1 \end{Bmatrix}$	$\left\{ egin{aligned} n \\ n-1 \end{aligned} \right\} = \left[egin{aligned} n \\ n-1 \end{aligned} \right] = \left(egin{aligned} n \\ 2 \end{aligned} \right), 20. \ \sum_{k=0}^n \left[egin{aligned} n \\ k \end{aligned} \right] = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n}, \end{aligned}$
22. $\binom{n}{0} = \binom{n}{n}$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
25. $\binom{0}{k} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$	otherwise 26. $\langle 1 \rangle$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
n-0	ne —	$\sum_{k=0}^{n} {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} {n \choose k} {k \choose n-m},$
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \cdot$	${n \choose k} {n-k \choose m} (-1)^{n-k-m} k!,$	32. $\left\langle {n \atop 0} \right\rangle = 1,$ 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k+1)^n$	$+1$) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle$	// k=0 \\ ''
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{3}{2}$	$\sum_{i=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), \\ 2n$	37. $ {n+1 \brace m+1} = \sum_k {n \brace k} {k \brack m} = \sum_{k=0}^n {k \brack m} (m+1)^{n-k}, $

Theoretical Computer Science Cheat Sheet	
Identities Cont.	Trees
$\boxed{\textbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{n-k} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \textbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \binom{x+k}{2n},}$	
$ 40. \left\{ \begin{matrix} n \\ m \end{matrix} \right\} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}, $ $ 41. \left[\begin{matrix} n \\ m \end{matrix} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, $	ity: If the depths
	of the leaves of a binary tree are
44. $\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k},$ 45. $(n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k},$ for $n \ge m$,	d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1$,
$48. {n \atop \ell+m} {\ell+m \atop \ell} = \sum_{k} {k \atop \ell} {n-k \atop m} {n \atop k}, \qquad 49. {n \atop \ell+m} {\ell+m \atop \ell} = \sum_{k} {k \atop \ell} {n-k \atop m} {n \atop k}.$	only if every in- ternal node has 2 sons.
Recurrences	

Master method:

 $T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$. and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2$$
, $T_1 = 2$.

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i$$
, $u_1 = \frac{1}{2}$,

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope'

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

: : : :
$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$\begin{split} n \sum_{i=0}^{m-1} c^i &= n \left(\frac{c^m - 1}{c - 1} \right) \\ &= 2n (c^{\log_2 n} - 1) \\ &= 2n (c^{(k-1)\log_c n} - 1) \\ &= 2n^k - 2n. \end{split}$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1$$

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j$$

T_{i+1} - T_i = 1 +
$$\sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x). Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} \text{Multiply and sum:} \\ \sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x}\right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i\right)$$

$$= \sum (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$

	$\pi \approx 3.14159,$	$e \approx 2.7$			
i	2^i	p_i			
1	2	2			
2	4	3			
3	8	5			
4	16	7			
5	32	11			
6	64	13			
7	128	17			
8	256	19			
9	512	23			
10	1,024	29			
11	2,048	31			
12	4,096	37			
13	8,192	41			
14	16,384	43			
15	32,768	47			
16	65,536	53			
17	131,072	59			
18	262,144	61			
19	524,288	67			
20	1,048,576	71			
21	2,097,152	73			
22	4,194,304	79			
23	8,388,608	83			
24	16,777,216	89			
25	33,554,432	97			
26	67,108,864	101			
27	134,217,728	103			
28	268,435,456	107			
29	536,870,912	109			
30	1,073,741,824	113			
31	2,147,483,648	127			
32	4,294,967,296	131			
	Pascal's Triangl	e			
	1				
1 1					
	1 2 1				
	1 3 3 1				
	$1\ 4\ 6\ 4\ 1$				
	1 5 10 10 5 1				

 $1\ 6\ 15\ 20\ 15\ 6\ 1$

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

 $1\ 9\ 36\ 84\ 126\ 126\ 84\ 36\ 9\ 1$

10 45 120 210 252 210 120 45 10 1

			Theoretical Computer Science Cheat	511
	$\pi \approx 3.14159,$	$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61
i	2^i	p_i	General	
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	C
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$,	
3	8	5	$B_6 = \frac{1}{42}$, $B_8 = -\frac{1}{30}$, $B_{10} = \frac{5}{66}$.	١.
4	16	7	Change of base, quadratic formula:	tl X
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	
6	64	13	$\log_b x = \frac{1}{\log_a b}, \frac{2a}{}$	t]
7	128	17	Euler's number e :	F
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.$	
10	1,024	29	$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}.$	E
11	2,048	31		
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	I
13	8,192	41	Harmonic numbers:	
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	E
15	32,768	47	2, 6, 12, 60, 20, 140, 280, 2520,	V
16	65,536	53	$ ln n < H_n < ln n + 1, $	
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	
18	262,144	61	$H_n = \lim_{n \to \infty} n + \gamma + O\left(\frac{-n}{n}\right)$.	F
19	524,288	67	Factorial, Stirling's approximation:	
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	
21	2,097,152	73	(m) n (1)	
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	
23	8,388,608	83	Ackermann's function and inverse:	
24	16,777,216	89	l	F
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	
26	67,108,864	101		
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	
28	268,435,456	107	Binomial distribution:	Е
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	E
30	1,073,741,824	113	()	
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	I
32	4,294,967,296	131	k=1 ' '	
	Pascal's Triangle	e	Poisson distribution:	

$[X = k] = \binom{n}{k} p^k q^{n-k}, q = 1 - p,$	$\Pr[A]$
()	FI[A
$\mathrm{E}[X] = \sum_{k=1}^n k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion
sson distribution:	Pr V.
$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathbb{E}[X] = \lambda.$	i=1

Theoretical Computer Science Cheat Sheet

$$p(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2},\quad \text{E}[X]=\mu.$$
 The "coupon collector": We are given a

random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

nH_n	٠
--------	---

<u> </u>
Probability
Continuous distributions: If
$\Pr[a < X < b] = \int_a^b p(x) dx,$
then p is the probability density function of
X. If
$\Pr[X < a] = P(a),$
then P is the distribution function of X . If
P and p both exist then
Γ^a

 $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -.61803$

$$P(a) = \int_{-\infty}^{a} p(x) dx.$$
Expectation: If X is discrete

Expectation: If
$$X$$
 is discrete
$$\mathbb{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$
If X continuous then
$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) p(x) \, dx = \int_{-\infty}^{\infty} g(x) \, dP(x).$$

Variance, standard deviation:

$$VAR[X] = E[X^{2}] - E[X]^{2},$$

$$\sigma = \sqrt{VAR[X]}.$$

For events A and B:

$$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$$

$$Pr[A \land B] = Pr[A] \cdot Pr[B],$$

iff A and B are independent.

$$\Pr[A|B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

For random variables X and Y:

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

if X and Y are independent.

$$\mathrm{E}[X+Y] = \mathrm{E}[X] + \mathrm{E}[Y],$$

E[cX] = c E[X].Baves' theorem:

$$Pr[A_i|B] = \frac{Pr[B|A_i]Pr[A_i]}{\sum_{i=1}^{n} Pr[A_i]Pr[A_i]}$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] + \sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right]$$

$$\Pr\left[|X| \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \operatorname{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}$$

Geometric distribution:

$$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

- Issac Newton

Theoretical Trigonometry $(\cos \theta, \sin \theta)$ Pythagorean theorem: $C^2 = A^2 + B^2$ Definitions: $\sin a = A/C$, $\cos a = B/C$, $\csc a = C/A$, $\sec a = C/B$, $\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}$ Area, radius of inscribed circle: $\frac{1}{2}AB$, $\frac{AB}{A+B+C}$. Identities: $\sin x = \frac{1}{\csc x},$ $\tan x = \frac{1}{\cot x},$ $\cos x = \frac{1}{\sec x},$ $\sin^2 x + \cos^2 x = 1,$ $1 + \tan^2 x = \sec^2 x,$ $1 + \cot^2 x = \csc^2 x,$ $\sin x = \cos\left(\frac{\pi}{2} - x\right),\,$ $\sin x = \sin(\pi - x),$ $\cos x = -\cos(\pi - x),$ $\tan x = \cot \left(\frac{\pi}{2} - x\right),$ $\csc x = \cot \frac{x}{2} - \cot x$, $\cot x = -\cot(\pi - x),$ $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$, $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$ $\tan(x \pm y) = \frac{\tan x \pm \sin y}{1 \mp \tan x \tan y}$ $\tan x \pm \tan y$ $\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$ $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$ $\sin 2x = 2\sin x \cos x,$ $\cos 2x = \cos^2 x - \sin^2 x,$ $\cos 2x = 2\cos^2 x - 1,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$ $\cos 2x = 1 - 2\sin^2 x,$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$ $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$ $\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$ Euler's equation: $e^{i\hat{x}} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$

v2.02 ©1994 by Steve Seiden

sseiden@acm.org

http://www.csc.lsu.edu/~seiden

Computer Science Cheat Sheet	
Matrices	More Trig.
Multiplication: $C = A \cdot B, c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$ Determinants: $\det A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$	A C A C A C B Law of cosines:
$\det A = \sum_{\pi} \prod_{i=1}^n \mathrm{sign}(\pi) a_{i,\pi(i)}.$ 2×2 and 3×3 determinant:	$c^2 = a^2 + b^2 - 2ab\cos\theta$ Area:
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$	$A = \frac{1}{2}hc,$ $= \frac{1}{2}ab\sin C,$ $= \frac{c^2\sin A\sin B}{2\sin C}.$
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$ $= \begin{cases} aei + bfg + cdh \\ -ceg - fha - ibd. \end{cases}$ Permanents:	Heron's formula: $A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$ $s = \frac{1}{2}(a+b+c),$
perm $A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}$.	$s_a = s - a,$ $s_b = s - b,$
Hyperbolic Functions	$s_c = s - c$.
Definitions:	More identities: $\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$ $\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$
Identities: $\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$	$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$ $= \frac{1 - \cos x}{\sin x},$
$\begin{split} \coth^2 x - \operatorname{csch}^2 x &= 1, & \sinh(-x) &= -\sinh x, \\ \cosh(-x) &= \cosh x, & \tanh(-x) &= -\tanh x, \end{split}$	$= \frac{\sin x}{1 + \cos x},$ $\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$
$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$ $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $\sinh 2x = 2 \sinh x \cosh x,$	$= \frac{1 + \cos x}{\sin x},$ $= \frac{\sin x}{1 - \cos x},$ $\sin x = \frac{e^{ix} - e^{-ix}}{2i},$
$\begin{aligned} \cosh 2x &= \cosh^2 x + \sinh^2 x, \\ \cosh x + \sinh x &= e^x, \qquad \cosh x - \sinh x = e^{-x}, \\ (\cosh x + \sinh x)^n &= \cosh nx + \sinh nx, n \in \mathbb{Z}, \end{aligned}$	$\cos x = \frac{e^{ix} + e^{-ix}}{2},$
$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$ $\theta \sin \theta \cos \theta \tan \theta \qquad \dots \text{in mathematics}$	$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$ $= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sin x = \frac{\sinh ix}{i},$ $\cos x = \cosh ix,$ $\tan x = \frac{\tanh ix}{i}.$
$\frac{\pi}{2}$ $\tilde{1}$ 0 ∞	ı

More Trig.
C A A C B C
$A = \frac{1}{2}hc,$ = $\frac{1}{2}ab\sin C,$
$= \frac{c^2 \sin A \sin B}{a^2 \sin B}.$
$=\frac{c \sin T \sin B}{2 \sin C}$.
Heron's formula:
$\begin{split} A &= \sqrt{s \cdot s_a \cdot s_b \cdot s_c}, \\ s &= \frac{1}{2}(a+b+c), \\ s_a &= s-a, \\ s_b &= s-b, \\ s_c &= s-c. \\ \text{More identities:} \\ \sin\frac{x}{2} &= \sqrt{\frac{1-\cos x}{2}}, \\ \cos\frac{x}{2} &= \sqrt{\frac{1+\cos x}{2}}, \\ \tan\frac{x}{2} &= \sqrt{\frac{1-\cos x}{1+\cos x}}, \\ &= \frac{1-\cos x}{\sin x}, \\ &= \frac{\sin x}{1+\cos x}, \\ \cot\frac{x}{2} &= \sqrt{\frac{1-\cos x}{1-\cos x}}, \\ \cot\frac{x}{2} &= \sqrt{\frac{1-\cos x}{1-\cos x}}, \end{split}$
$=\frac{1+\cos x}{\sin x},$ $=\frac{\sin x}{1-\cos x},$ $\sin x=\frac{e^{ix}-e^{-ix}}{2i},$
$\cos x = \frac{e^{ix} + e^{-ix}}{2},$
$\cos x = \frac{2}{1},$ $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$
$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$
$\sin x = \frac{-i e^{2ix} + 1}{\sin ix},$
$\cos x = \cosh ix$,
$\cos x = \cosh ix,$ $\tanh ix$

Theor	retical Compu	ter Science Cheat Sheet
Number Theory		Graph Th
The Chinese remainder theorem: There ex-	Definitions:	
ists a number C such that:	Loop	An edge connecting a ver- tex to itself.
$C \equiv r_1 \bmod m_1$	Directed	Each edge has a direction.
:::	Simple	Graph with no loops or multi-edges.
$C \equiv r_n \mod m_n$	Walk	A sequence $v_0e_1v_1 \dots e_\ell v_\ell$.
if m_i and m_j are relatively prime for $i \neq j$.	Trail	A walk with distinct edges.
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct
positive integers less than x relatively		vertices.
prime to x . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	Connected	A graph where there exists a path between any two vertices.
$\phi(x) = \prod_{i=1} p_i^{e_i - 1} (p_i - 1).$	Component	A maximal connected subgraph.
Euler's theorem: If a and b are relatively	Tree	A connected acyclic graph.
prime then	Free tree	A tree with no root.
$1 \equiv a^{\phi(b)} \mod b$.	DAG	Directed acyclic graph.
Fermat's theorem:	Eulerian	Graph with a trail visiting
$1 \equiv a^{p-1} \mod p$.		each edge exactly once.
*	Hamiltonian	Graph with a cycle visiting
The Euclidean algorithm: if $a > b$ are in-		each vertex exactly once.
tegers then $gcd(a, b) = gcd(a \mod b, b).$	Cut	A set of edges whose re-
		moval increases the num- ber of components.
If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x	Cut-set	A minimal cut.
then $n e_i + 1 = 1$	Cut edge	A size 1 cut.
$S(x) = \sum_{d x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$		A graph connected with the removal of any $k-1$
Perfect Numbers: x is an even perfect num-		vertices.
ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.
Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.	k-Regular	A graph where all vertices have degree k .
Möbius inversion: $(1)^{i}$ if $i = 1$.	k-Factor	A k-regular spanning
0 if i is not square-free.		subgraph.
$\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$	Matching	A set of edges, no two of which are adjacent.
If	Clique	A set of vertices, all of
		which are adjacent.
$G(a) = \sum_{d a} F(d),$	Ind. set	A set of vertices, none of which are adjacent.
then	Verter cover	A set of vertices which
$F(a) = \sum_{u} \mu(d)G\left(\frac{a}{d}\right).$	vertex cover	cover all edges.
$\frac{\sum_{d a}}{d a}$, (d)	Planar graph	A graph which can be em-
Prime numbers:		beded in the plane.
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a planar graph.
$+O\left(\frac{n}{\ln n}\right)$,	<u> </u>	
n n $2!n$		• *
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$		$n + f = 2, so$ $n - 4, m \le 3n - 6.$
$+O\left(\frac{n}{(\ln n)^4}\right).$		raph has a vertex with de-
$(\ln n)^4$	gree < 5.	roph has a vertex with de-

	Graph Th	neorv
Definitions:		Notation:
Loop	An edge connecting a ver-	E(G) Edge set
Directed Simple	tex to itself. Each edge has a direction. Graph with no loops or	V(G) Vertex set $c(G)$ Number of components $G[S]$ Induced subgraph
Walk Trail	multi-edges. A sequence $v_0e_1v_1 \dots e_\ell v_\ell$.	$\deg(v)$ Degree of v $\Delta(G)$ Maximum degree $\delta(G)$ Minimum degree
Path	A walk with distinct edges. A trail with distinct vertices.	$\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number
Connected	A graph where there exists a path between any two vertices.	G^c Complement graph K_n Complete graph K_{n_1,n_2} Complete bipartite graph $\mathbf{r}(k,\ell)$ Ramsey number
Component	A maximal connected subgraph.	Geometry
Tree	A connected acyclic graph.	Projective coordinates: triples
Free tree	A tree with no root.	(x, y, z), not all x, y and z zero.
DAG	Directed acyclic graph.	(x, y, z), not an x, y and z zero. $(x, y, z) = (cx, cy, cz) \forall c \neq 0.$
Eulerian	Graph with a trail visiting	
	each edge exactly once.	Cartesian Projective
	Graph with a cycle visiting each vertex exactly once.	(x,y) $(x,y,1)$ $y = mx + b$ $(m,-1,b)$
Cut	A set of edges whose re- moval increases the num- ber of components.	x = c $(1, 0, -c)Distance formula, L_p and L_{\infty}metric:$
Cut-set	A minimal cut.	$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$,
Cut edge	A size 1 cut.	$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p},$
x-Connected	A graph connected with the removal of any $k-1$ vertices.	$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 ^p \right]^{1/p},$
k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.	Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :
k-Regular	A graph where all vertices have degree k .	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.
r-Factor	A k -regular spanning subgraph.	Angle formed by three points:
Matching	A set of edges, no two of which are adjacent.	(x_2, y_2) $(0,0) \ell_1 (x_1, y_1)$ $\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$ Line through two points (x_0, y_0)
Clique	A set of vertices, all of which are adjacent.	θ
Ind. set	A set of vertices, none of which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{(x_1, y_1) \cdot (x_2, y_2)}.$
Vertex cover	A set of vertices which cover all edges.	$\ell_1\ell_2$ Line through two points (x_0, y_0)
Planar graph	A graph which can be em- beded in the plane.	and (x_1, y_1) :
Plane graph	An embedding of a planar graph.	$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$
$\sum_{v \in \mathcal{V}}$		Area of circle, volume of sphere: $A=\pi r^2, \qquad V=\frac{4}{3}\pi r^3.$
f G is planar	then $n - m + f = 2$, so	If I have seen farther than others,
	$n-4, m \le 3n-6.$	it is because I have stood on the

gree ≤ 5 .

Theoretical Computer Science Cheat Sheet

Wallis'	identity	r:								
	$\pi = 2$.	2 ·	2	4	4	6	6	٠		
	n — 2 ·	1 .	- 3	3	5	5	7		-	

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

 $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

$$\begin{split} \frac{\pi^2}{6} &= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \\ \frac{\pi^2}{8} &= \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots \\ \frac{\pi^2}{19} &= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{4^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots \end{split}$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)}$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$

$$3. \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{dv}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

$$\frac{v}{x}$$
, 6. $\frac{d(e^{cu})}{dx} = c$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$
9.
$$\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

10.
$$\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{d}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx},$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx},$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$
22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$
23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^{2} u \frac{du}{dx}.$$

$$\frac{dx}{dx} = -\operatorname{csch}^{2} u \frac{du}{dx}$$
24. $\frac{d(\operatorname{coth} u)}{dx} = -\operatorname{csch}^{2} u \frac{du}{dx}$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

$$27. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}.$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

$$30. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}.$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}, \quad n \neq 0$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

11.
$$\int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$

13.
$$\int \csc x \, dx = \ln|\csc x + \cot x|,$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Theoretical Computer Science Cheat Sheet

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

19.
$$\int \sec^2 x \, dx = \tan x$$
, 20. $\int \csc^2 x \, dx = -\cot x$, 21. $\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{x} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$, 22. $\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{x} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$,

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{2} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad \textbf{27.} \int \sinh x \, dx = \cosh x, \quad \textbf{28.} \int \cosh x \, dx = \sinh x,$$

$$\textbf{29.} \ \int \tanh x \, dx = \ln |\cosh x|, \ \textbf{30.} \ \int \coth x \, dx = \ln |\sinh x|, \ \textbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \textbf{32.} \ \int \operatorname{csch} x \, dx = \ln \left|\tanh \frac{x}{2}\right|$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$
, 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{sech}^2 x \, dx = \tanh x$,

$$35. \int \operatorname{sech}^2 x \, dx = \tanh$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$
 37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{c} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+cx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$
52.
$$\int \frac{\sqrt{a^2-x^2}}{x} dx = \sqrt{a^2-x^2} - a \ln \left| \frac{a+\sqrt{a^2-x^2}}{x} \right|,$$

$$50. \int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

$$51. \int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

$$52. \int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

$$53. \int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$
 55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Theoretical Computer Science Cheat Sheet					
Calculus Cont.	Finite Calculus				
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$				
64. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$ 65. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$	Ef(x) = f(x+1). Fundamental Theorem:				
$66. \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$\begin{split} f(x) &= \Delta F(x) \Leftrightarrow \sum f(x) \delta x = F(x) + C. \\ &\sum_{a}^{b} f(x) \delta x = \sum_{i=a}^{b-1} f(i). \end{split}$ Differences:				
67. $ \int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases} $	$\Delta(cu) = c\Delta u,$ $\Delta(u+v) = \Delta u + \Delta v,$ $\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$ $\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$ $\Delta(H_x) = x^{-1},$ $\Delta(2^x) = 2^x,$				
68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\Delta(n_x) - x = 0,$ $\Delta(c^x) = (c - 1)c^x,$ $\Delta(m_x) = 0,$ Sums: $\Delta(m_x) - x = 0,$ $\Delta(m_x) - x = 0,$ $\Delta(m_x) - x = 0,$ Sums:				
69. $ \int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}, $	$\sum cu \delta x = c \sum u \delta x,$ $\sum (u + v) \delta x = \sum u \delta x + \sum v \delta x,$				
$70. \int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\sum u \Delta v \delta x = uv - \sum \mathbf{E} v \Delta u \delta x,$ $\sum x^{\underline{n}} \delta x = \frac{x^{\underline{n+1}}}{m+1}, \qquad \sum x^{-\underline{1}} \delta x = H_x,$ $\sum c^x \delta x = \frac{c^x}{c-1}, \qquad \sum \binom{x}{m} \delta x = \binom{x}{m+1}.$				
71. $\int x^3 \sqrt{x^2 + a^2} dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2},$	Falling Factorial Powers: $x^{\underline{n}} = x(x-1)\cdots(x-n+1), n > 0,$ $x^{\underline{0}} = 1.$				
72. $\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$,	$x = 1,$ $x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+ n)}, n < 0,$				
73. $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$,	$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$				
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$,	Rising Factorial Powers: $x^{\overline{n}} = x(x+1)\cdots(x+n-1), n > 0,$				
75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$	$x^{\overline{0}} = 1,$ $x^{\overline{n}}$ $x^{\overline{n}}$ $x^{\overline{n}}$ $x^{\overline{n}}$				
76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{split} & \text{Conversion:} \\ & x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x-n+1)^{\overline{n}} \\ & = 1/(x+1)^{\overline{-n}}, \\ & x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}} \\ & = 1/(x-1)^{\underline{-n}}, \\ & x^n = \sum_{k=1}^n \binom{n}{k} x^{\underline{k}} = \sum_{k=1}^n \binom{n}{k} (-1)^{n-k} x^{\overline{k}}, \\ & x^{\underline{n}} = \sum_{k=1}^n \binom{n}{k} (-1)^{n-k} x^k, \\ & x^{\overline{n}} = \sum_{k=1}^n \binom{n}{k} x^k. \end{split}$				

	Theoretical Computer	Science Cheat Sheet	
	Serie	s	
Taylor's series:			Ordinary power series:
f(x) = f(a) + (x - a)f'(a)	$f(x) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{n=0}^{\infty} \frac{(x-a)^n}{n!}$	$\frac{(-a)^i}{i!}f^{(i)}(a).$	$A(x) = \sum_{i=1}^{\infty} a_i x^i$
Expansions:	<i>i</i> =0	200	i=0 Exponential power series
$\frac{1}{1-x}$	$= 1 + x + x^2 + x^3 + x^4 + \cdots$	$= \sum_{i=0}^{\infty} x^i,$	Exponential power series $A(x) = \sum_{i=1}^{\infty} a_i \frac{x^i}{i!}$
$\frac{1}{1-cx}$	$= 1 + cx + c^2x^2 + c^3x^3 + \cdots$	$= \sum_{i=0}^{\infty} c^i x^i,$	Dirichlet power series:
$\frac{1}{1-x^n}$	$= 1 + x^n + x^{2n} + x^{3n} + \cdots$	$= \sum_{i=0}^{\infty} x^{ni},$	$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$
$\frac{x}{(1-x)^2}$	$= x + 2x^2 + 3x^3 + 4x^4 + \cdots$	$=\sum_{i=0}^{\infty}ix^{i},$	Binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k$
$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x} \right)$	$= x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots$	$\cdot = \sum_{n=0}^{\infty} i^n x^i,$	Difference of like powers:
e^x	$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$	$=\sum_{i=0}^{i=0} \frac{x^i}{i!},$	$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k}$
$\ln(1+x)$	$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \dots$	$= \sum_{\infty}^{i=0} (-1)^{i+1} \frac{x^i}{i},$	For ordinary power serie
$\ln \frac{1}{1-x}$	$= x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots$	$= \sum_{i=1}^{i=1} \frac{x^i}{i},$	$\alpha A(x) + \beta B(x) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta B(x)) = \sum_{\substack{i=0 \\ \infty}} (\alpha A(x) + \beta A(x)$
$\sin x$	$= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$	i=1	$x^k A(x) = \sum_{i=k}^{\infty} a_i$
$\cos x$	$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$	i=0	$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_i x^i$
$\tan^{-1} x$	$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$	$= \sum_{i=0}^{i=0} (-1)^{i} \frac{x^{2i+1}}{(2i+1)},$	$A(cx) = \sum_{i=0}^{\infty} c^i$
$(1+x)^n$	$=1+nx+\frac{n(n-1)}{2}x^2+\cdots$	$= \sum_{i=0}^{n-1} \binom{n}{i} x^i,$	$A'(x) = \sum_{i=0}^{\infty} (i$
$\frac{1}{(1-x)^{n+1}}$	$=1+(n+1)x+\binom{n+2}{2}x^2+\cdots$	$=\sum_{i=0}^{\infty} \binom{i+n}{i} x^i,$	$xA'(x) = \sum_{i=1}^{\infty} ia$
$\frac{x}{e^x - 1}$	$= 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots$	$=\sum_{i=0}^{\infty}\frac{B_ix^i}{i!},$	$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_i}{a_i}$
$\frac{1}{2x}(1-\sqrt{1-4x})$	$= 1 + x + 2x^2 + 5x^3 + \cdots$	$= \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i} x^i,$	$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_2$
$\frac{1}{\sqrt{1-4x}}$	$= 1 + x + 2x^2 + 6x^3 + \cdots$	$= \sum_{i=0}^{\infty} {2i \choose i} x^i,$	$\frac{A(x) - A(-x)}{2} = \sum_{n=0}^{\infty} a_2$
$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^n$	$=1+(2+n)x+\binom{4+n}{2}x^2+\cdots$	$= \sum_{i=0}^{\infty} \binom{2i+n}{i} x^i,$	Summation: If $b_i = \sum_{j=1}^{i} b_j$
$\frac{1}{1-x}\ln\frac{1}{1-x}$	$= x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \cdots$	$= \sum_{i=1}^{\infty} H_i x^i,$	$B(x) = \frac{1}{1-x}A(x)$ Convolution:
$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2$		$=\sum_{i=2}^{\infty} \frac{H_{i-1}x^i}{i},$	$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j\right)$
$\frac{x}{1-x-x^2}$	$= x + x^2 + 2x^3 + 3x^4 + \cdots$	$=\sum_{i=0}^{\infty}F_ix^i,$	God made the natural r
$F_n x$	$= F_n x + F_{2n} x^2 + F_{3n} x^3 + \cdots$	$=\sum_{i=1}^{\infty} F_{ni}x^{i}$.	all the rest is the work o

 $1 - (F_{n-1} + F_{n+1})x - (-1)^n x^2$

power series: $A(x) = \sum_{i=0}^{\infty} a_i x^i.$ tial power series: $A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$ power series: $A(x) = \sum_{i=1}^{\infty} a_i \frac{x^i}{i!}.$ theorem: In theorem: $y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$ The of like powers: $x^n = (x-y) \sum_{k=0}^{n-1} x^{n-1-k} y^k.$ The of like powers: $x^n = (x-y) \sum_{k=0}^{n-1} x^{n-1-k} y^k.$ The power series: $x^n = \sum_{i=0}^n (\alpha a_i + \beta b_i) x^i,$ $x^n = \sum_{i=0}^n a_{i-k} x^i,$ $x^n = \sum_{i=0}^n a_{i-1} x^i,$ $x^n = \sum_{i=$

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

the natural numbers; is the work of man. - Leopold Kronecker

$ \begin{vmatrix} \frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} &= \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, & \left(\frac{1}{x}\right)^{-n} &= \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i, \\ x^{\overline{n}} &= \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, & (e^x - 1)^n &= \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n! x^i}{i!}, \\ \left(\ln \frac{1}{1-x}\right)^n &= \sum_{i=0}^{\infty} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n! x^i}{i!}, & x \cot x &= \sum_{i=0}^{\infty} \frac{(-4)^i B_{2i} x^{2i}}{(2i)!}, \\ \tan x &= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, & \zeta(x) &= \sum_{i=1}^{\infty} \frac{1}{i^x}, \end{aligned} $	
$x^{\overline{n}} = \sum_{i=0}^{i=0} {n \brack i} x^{i}, \qquad (e^{x} - 1)^{n} = \sum_{i=0}^{i=0} {i \brack n} \frac{n!x^{i}}{i!}, $ $\left(\ln \frac{1}{1-x}\right)^{n} = \sum_{i=0}^{\infty} {i \brack n} \frac{n!x^{i}}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!}, $ $\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}}, $	
$ \begin{pmatrix} \ln \frac{1}{1-x} \end{pmatrix}^{n} = \sum_{i=0}^{i=0} \begin{bmatrix} i \end{bmatrix} \frac{n!x^{i}}{i!}, \qquad x \cot x = \sum_{i=0}^{i=0} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!}, \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}}, $	
·	
$\frac{1}{\zeta(x)} = \sum_{i} \frac{\mu(i)}{i^x}, \qquad \frac{\zeta(x-1)}{\zeta(x)} = \sum_{i} \frac{\varphi(i)}{i^x},$	
i=1 $i=1$	
$\zeta(x) = \prod \frac{1}{1 - p^{-x}},$ Stieltjes Integration	
$\zeta^{2}(x) = \sum_{i=1}^{p} \frac{d(i)}{x^{i}} \text{ where } d(n) = \sum_{d n} 1,$ If G is continuous in the interval [a, b] and F is nondecreased for f is continuous in the interval f is nondecreased for f is continuous in the interval f is nondecreased for f is nondecrea	sing then
$\zeta(x)\zeta(x-1) = \sum_{i=1}^{i=1} \frac{S(i)}{x^i} \text{ where } S(n) = \sum_{d n} d, $ exists. If $a \le b \le c$ then $\int_a^c G(x) dF(x) = \int_a^b G(x) dF(x) + \int_b^c G(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF(x) dF(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF(x) dF(x) dF(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF(x) dF(x) dF(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF(x) dF(x) dF(x) dF(x) dF(x) dF(x) dF(x) = \int_a^b G(x) dF(x) dF($.)
$\zeta(2n) = \frac{1-2n_1}{(2n)!} \pi^{2n}, n \in \mathbb{N},$ If the integrals involved exist	
$\frac{x}{\sin x} = \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^i - 2)B_{2i}x^{2i}}{(2i)!}, \qquad \int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x) dF(x) dF(x) dF(x) dF(x)$	
$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^{n} = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^{i}, \qquad \int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dF(x) $	
$e^{x} \sin x = \sum_{i=1}^{a} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$ $\int_{a}^{b} C \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dx + c \int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) dF(x) = \int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) dF($	
$\sqrt{\frac{1-\sqrt{1-x}}{x^i}} = \sum_{i=0}^{\infty} \frac{(4i)!}{(5i)!(2i-x)!} x^i,$ If the integrals involved exist, and F possesses a derivative I	
$\left(\frac{x}{x}\right)^{2} = \sum_{i=0}^{\infty} \frac{4^{i}i!^{2}}{(i+1)(2i+1)!} $ point in $[a,b]$ then $\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x)F'(x) dx.$	
i=0 (** I) (**	me
If we have equations:	
$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$	55, 89,
$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$ 59 96 81 33 07 48 72 60 24 15 Definitions:	
$ \begin{array}{c} 73 & 69 & 90 & 82 & 44 & 17 & 58 & 01 & 35 & 26 \\ 68 & 74 & 09 & 91 & 83 & 55 & 27 & 12 & 46 & 30 \\ \end{array} \begin{array}{c} F_i = F_{i-1} + F_{i-2}, F_0 \\ F_{-i} = (-1)^{i-1}F_i \end{array} $	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/
there is a unique solution iff det $A \neq 0$. Let A_i be A	
with column i replaced by B. Then $F_{i+1}F_{i-1} - F_i = (-1)^{i-1}$	-1).
$x_i = \frac{\det A_i}{\det A}.$ The Fibonacci number system: Every integer n has a unique representation $F_{n+k} = F_k F_{n+1} + F_k$ $F_{2n} = F_n F_{n+1} + F_n$	
Improvement makes strait roads, but the crooked $n = F_{k_1} + F_{k_2} + \cdots + F_{k_m}$, Calculation by matrice	
roads without Improvement, are roads of Genius. - William Blake (The Marriage of Heaven and Hell) where $k_i \geq k_{i+1} + 2$ for all i , $1 \leq i < m$ and $k_m \geq 2$. $\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	-