Conjuntos Numéricos

Introdução

Como o próprio nome indica, toda coleção de objetos, pessoas, animais ou coisas constitui um **conjunto**. Os objetos que formam um conjunto são denominados **elementos**. Os elementos de um conjunto são indicados por letras minúsculas **a, b, c, ...** e os conjuntos, por letras maiúsculas **A, B, C, ...**.

Alguns termos e definições são importantes para o nosso estudo dos conjuntos:

Pertinência

Um elemento pode pertencer ou não pertencer a um determinado conjunto. Para indicar que um elemento pertence a um dado conjunto, utilizamos o símbolo \in e quando não pertence usamos o $\not\in$.

Exemplos:

```
x \in A (Lê-se: x pertence a A)
x \notin B (Lê-se: x não pertence a B)
```

Observação: Os símbolos \in e \notin são utilizados para relacionar elemento com conjunto.

Igualdade de conjuntos

Dois conjuntos são iguais quando possuem os mesmos elementos.

Indica-se: A = B

Conjunto vazio

Conjunto vazio é o conjunto que não possui elementos.

Representa-se o conjunto vazio por $\{\}$ ou \emptyset .

Conjunto universo

Conjunto universo é o conjunto ao qual pertencem os elementos de todos os conjuntos que fazem parte do nosso estudo.

subconjuntos

Dados dois conjuntos, A e B, dizemos que A é subconjunto de B se cada elemento do conjunto A é, também, elemento do conjunto B.

Indicamos essa relação por:

 $A \subset B$ (Lê-se: A está contido em B)

Ou também por:

 $B \supset A$ (Lê-se: B contém A).

Observações:

- 1ª) Escreveremos $A \not\subset B$ (A não está contido em B) ou $B \not\supset A$ (B não contém A), se A não for subconjunto de B.
- 2^a) Os símbolos \subset , $\not\subset$, \supset e $\not\supset$ são utilizados para relacionar conjunto com conjunto.

Como representar um conjunto

Um conjunto pode ser representado de três formas:

■ 1^a forma: por extensão

Enumeram-se seus elementos, escrevendo-os entre chaves e separando-os por vírgulas. Por exemplo, o conjunto dos dias da semana:

 $A = \{\text{domingo, segunda-feira, terça-feira, quarta-feira, quinta-feira, sexta-feira, sábado}\}.$

Podemos também utilizar a representação por extensão mesmo que o conjunto seja **infinito** ou seja **finito** mas com um número elevado de elementos.

Exemplos:

a) Conjunto dos números pares:

 $A = \{ 2, 4, 6, ... \} \rightarrow \text{Conjunto infinito}$

b) Conjunto dos números naturais menores que 500:

 $B = \{0, 1, 2, 3, ..., 499\} \rightarrow \text{Conjunto finito}$

■ 2ª forma: por compreensão

O conjunto será representado por meio de uma propriedade que caracteriza os seus elementos.

Exemplos: a)
$$A = \{x \mid x \in \mathbb{Z} \text{ e } x < 8\}$$

b)
$$B = \{x \mid x \text{ \'e vogal}\}$$

Observe que a propriedade que caracteriza o conjunto permite estabelecer se um dado elemento pertence ou não ao conjunto.

• 2ª forma: por figuras

Toda figura utilizada para representar um conjunto é chamada de **diagrama de Venn**. Por exemplo, o conjunto $A = \{1, 2, 3, 4\}$ pode ser representado pelo diagrama:

Os elementos de A são representados por pontos internos desta figura. Observe que $2 \in A$ (é um ponto interno) e $7 \notin B$ (é um ponto externo)

Operações com conjuntos

União de conjuntos

Sejam os conjuntos $A = \{0, 2, 4, 6\}$ e $B = \{0, 1, 2, 3, 4\}$. Vamos determinar um conjunto C formado pelos elementos que pertencem a A ou a B ou a ambos:

$$A = \{0, 2, 4, 6\}$$

$$B = \{0, 1, 2, 3, 4\}$$

$$C = \{0, 1, 2, 3, 4, 6\}$$

O conjunto C assim formado, é chamado **união** de A e B.

Então:

A união de dois conjuntos, A e B, é o conjunto formado por todos os elementos que pertencem a A ou a B. Designamos a união de A e B por $A \cup B$ (lê-se: A união B). $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$

Exemplos:

a)
$$A = \{0, 1, 2, 3, 4\}, B = \{1, 3, 5, 7\} \Rightarrow A \cup B = \{0, 1, 2, 3, 4, 5, 7\}$$

b)
$$A = \{0, 1, 2\}, B = \{0, 1, 2, 3, 4\} \Rightarrow A \cup B = \{0, 1, 2, 3, 4\}$$

c)
$$A = \{0, 2\}, B = \{1, 3, 5\} \Rightarrow A \cup B = \{0, 1, 2, 3, 5\}$$

Intersecção de conjuntos

Sejam os conjuntos $A = \{0, 2, 4, 6\}$ e $B = \{0, 1, 2, 3, 4\}$. Vamos determinar um conjunto C formado pelos elementos que são comuns a A e a B, ou seja, pelos elementos que pertencem a A e também pertencem a B:

$$\begin{array}{c} A = \{0, 2, 4, 6\} \\ B = \{0, 1, 2, 3, 4\} \end{array} \longrightarrow C = \{0, 2, 4\}$$

O conjunto C assim formado, é chamado **intersecção** de A e B.

Então:

A intersecção de dois conjuntos, A e B, é o conjunto formado pelos elementos que são comuns a A e a B, isto é, pelos elementos que pertencem a A e também pertencem a B. Designamos a intersecção de A e B por $A \cap B$ (lê-se: A inter B).

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Exemplos:

a)
$$A = \{0, 1, 2, 3, 4\}, B = \{1, 3, 5, 7\} \Rightarrow A \cap B = \{1, 3\}$$

b)
$$A = \{0, 1, 2\}, B = \{0, 1, 2, 3, 4\} \Rightarrow A \cap B = \{0, 1, 2\}$$

c)
$$A = \{0, 2\}, B = \{1, 3, 5\} \Rightarrow A \cap B = \emptyset$$

Observação: Quando $AcapB = \emptyset$, os conjuntos A e B são chamados **disjuntos**.

Diferença de conjuntos

Sejam os conjuntos $A = \{1, 2, 3, 4, 5\}$ e $B = \{2, 4, 6, 8\}$. Vamos determinar um conjunto C formado pelos elementos que pertencem a A mas não pertencem a B:

$$\begin{array}{c} A = \{1, 2, 3, 4, 5\} \\ B = \{2, 4, 6, 8\} \end{array} \longrightarrow C = \{1, 3, 5\}$$

O conjunto C, assim formado, é chamado **diferença** de A e B.

Então:

A diferença de dois conjuntos, A e B, é o conjunto dos elementos que pertencem a A e não pertencem a B. Designamos a diferença de A e B por A-B (lê-se: A menos B). $A-B=\{x\mid x\in A \text{ e } x\not\in B\}$

Observação Se $B\supset A,$ a diferença A-B denomina-se complementar de Bem relação a A,e indica-se \mathbb{C}_{A^B}

Atividades

- 1) Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito.
 - **a)** $B = \{0, 1, 2, ..., 70\}$
 - **b)** $C = \{x \mid x \text{ \'e um n\'umero par positivo}\}$
 - c) $E = \{x \mid x \text{ \'e um número ímpar, solução da equação } x^2 = 4\}$
- 2) Sejam $A = \{x \mid x \text{ \'e um n\'umero par compreendido entre 3 e 15}\}, B = \{x \mid x \text{ \'e um n\'umero par menor que 15}\}$ e $C = \{x \mid x \text{ \'e um n\'umero par diferente de 2}\}$. Usando os símbolos \subset ou $\not\subset$, relacione entre si os conjuntos:
 - **a)** A e B
 - **b)** *A* e *C*
 - c) $B \in C$
- 3) No diagrama seguinte, A, B e C são três conjuntos não vazios. Associe \mathbf{V} ou \mathbf{F} a cada uma das seguintes sentenças, conforme ela seja verdadeira ou falsa:
 - a) $A \subset B$
- d) $B \not\subset A$
- b) $C \subset B$
- e) $A \not\subset C$
- c) $B \subset A$
- f) $B\supset A$
- d) $A \subset C$
- \mathbf{g}) $A \not\supset B$

4) Considere o diagrama abaixo e dê, por extensão, os conjuntos A e B

5) Considere o diagrama abaixo e dê, por extensão, os conjuntos X e Y

- 6) Sendo $A = \{0, 1, 2, 3\}$, $B = \{0, 2, 3, 5\}$, $C = \{x \mid x \text{ \'e um n\'umero par positivo menor que } 10\}$ e $D = \{x \mid x \text{ \'e um n\'umero \'impar compreendido entre 4 e 10}\}$, determine:
 - a) $A \cup B$
 - **b)** $A \cup C$

c) $A \cup D$

- e) Quais os elementos de A que não pertencem a B.
- 12) Com base no diagrama ao lado, calcule:
 - a) $A \cup B$

f) $A \cap B \cap C$

- b) $A \cap C$
- g) $A \cup B \cup C$
- c) $A \cup C$
- **h)** $(A \cup B) \cap C$
- d) $B \cap C$

i) $(A \cap B)$

- e) $B \cup C$
- **j)** $(A \cap B) \cup C$

- **13)** Dados $A = \{0, 1, 2, 3\}, B = \{1, 2, 3\}$ e $C = \{2, 3, 4, 5\},$ determine:
 - a) A B
- f) $(A \cap B) C$ f) C_{A^B}

- **b)** A C
- g) $(A-C)\cap (B-C)$ g) $\mathcal{C}_{A^{(B\cap C)}}$

- c) B-C
- h) $A \emptyset$
- **h**) $(\emptyset B) \cup \mathcal{C}_{C^{\emptyset}}$
- 14) Diga qual proposição é verdadeira e qual é falsa:
 - a) $A \cap \emptyset$
 - b) $A \emptyset$
 - c) $\emptyset A = \emptyset$
 - **d)** $(A A) \cup A = A$

- **f)** $(A A) \cap A = A$
- **g)** $(A \cap A) \cup \emptyset = \emptyset$
- $\mathbf{h)} \ \ \mathbf{\hat{C}}_{A^{(\mathbf{\hat{C}}_{A^B})}} = B \ \mathrm{com} \ B \subset A$

Gabarito

1)	a) Finito,	b) Infinito,		c) Vazio				
2)	a) $A \subset B$,	b) $A \subset C$,		c) $B \not\subset C$				
3)	a) V,f) V,		1	,		d) F,		e) V,
4)	$A=\{1,2,3\} \in B$	$= \{3, 4, 5\}$						
5)	$X = \{1, 2, 3, 4, 5\}$	$e Y = \{1,$	2}					
6)	a) {0,1,2,3,5},d) {0,2,3,4,5,6,8	8},	, (0, 1, 2, 3, 4 0, 2, 3, 5, 7			c) {0,1,2, f) {0,2,4	3, 5, 7, 9}, , 5, 6, 7, 8, 9}
7)	, , , , , , , , , , , , , , , , , , , ,	b) e)				3}		
8)	a) disjuntos,	b	3,	c) :	zero			
9)	a) {0,1,2,3,5},d) {0,2,3},		b) {0, 2, e) {0, 1,	3}, 2,3},				
10)	a) $A = \{1, 2, 3, 5\}$ d) 6.	,	b) <i>B</i>	$= \{1, 2, 3$, 5, 6, 10,	15, 30},		c) $\{1, 2, 3, 6\}$
11)	a) {3,6,15,30},d) {6,30},		b) B,e) {1, 2, 3		, , , , ,	15, 30},		
12)	a) {1,2,3,4,6,7,9} d) {2,6} g) {1,2,3,4,5,6,7} j) {2,4,5,6,8,9}		b) {2,4} e) {2,4} h) {2,4}	5, 6, 7, 8, 9) },		c) {1,2,3f) {2},i) {2,9},	,4,5,6,8,9},
13)	a) {0},e) {1},i) {2,3,4,5}	b) {0, 1 f) {0, 1	}, ,2,3},	c) { g) {	-		l) {1}, n) {0,1},	
14)	a) V,f) F,	b) V, g) V	(e) V,		d) V,		e) F,