K-Means Clustering

K-means Clustering for Unsupervised Learning

Welcome to this presentation on K-means Clustering, a powerful technique for unsupervised learning.

by Nisha A K

Introduction to Unsupervised Learning

Unlabeled Data

Unsupervised learning deals with data that lacks predefined labels or categories.

Pattern Discovery

The goal is to uncover hidden patterns, structures, and relationships within the data.

The Need for Clustering Algorithms

Organize Chaos

Clustering algorithms help to group similar data points together.

Identify Groups

They provide insights into natural groupings or segments within data.

Simplify Complexity

Clustering helps to make sense of complex datasets by identifying meaningful patterns.

Understanding the K-means Algorithm

Iterative Process

K-means involves an iterative process of assigning data points to clusters and updating cluster centroids.

Centroid-Based

The algorithm uses cluster centroids, representing the center of each cluster, to guide the assignment process.

Distance Minimization

Data points are assigned to the cluster with the closest centroid, minimizing the overall distance between points and their cluster centers.

Choosing the Optimal Number of Clusters (K)

Initializing Cluster Centroids

Spjp) - Sxittertæs (etielartsifiite

Mageth summed flach scrponly platty centoids, rensionervolly caardallity passed for different.

Moed, is assignment fach port clusters, am pefect or tryor assignment of data, and chilling clusters.

1

Random Initialization

Centroids are randomly chosen from the dataset.

2

K-means++

A more sophisticated initialization method, designed to improve convergence.

Initial Assignment

Data points are initially assigned to the closest centroid.

Iterative Optimization of Cluster Assignments

Recalculating Centroids Centroids are recalculated as the average of all data points assigned to each cluster. **Reassigning Points** Data points are reassigned to the closest centroid based on the updated centroids. Convergence 3 The algorithm continues iterating until cluster

assignments stabilize, indicating convergence.

Evaluating Cluster Quality

Silhouette Score

Measures how similar a data point is to its own cluster compared to other clusters.

Davies-Bouldin Index

Evaluates the ratio of within-cluster distances to between-cluster distances.

Calinski-Harabasz Index

Measures the ratio of between-cluster variance to within-cluster variance.

Title

Image compression

K-meanns Clustering

Applications of K-means Clustering

1

Customer Segmentation

Group customers into distinct segments based on their purchasing behavior.

2

Image Compression

Reduce the number of colors in an image, resulting in a smaller file size.

3

Document Categorization

Organize documents into different categories based on their content.

Conclusion and Key Takeaways

K-means clustering is a powerful tool for unsupervised learning. It helps us uncover hidden patterns in unlabeled data, offering valuable insights for various applications.

