ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ							
ПРЕПОДАВАТЕЛЬ							
Доцент, канд. техн.		D. A. K.					
наук		В. А. Кузнецов					
должность, уч. степень, звание	подпись, дата	инициалы, фамилия					
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №2							
Трехмерная анимированная сцена							
Вариант 5							
по курсу: Моделирование трехмерных сцен и виртуальная реальность							

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	4128		Воробьев В. А.
		подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

1	Вве	дение	3
	1.1	Задание	3
	1.2	Вариант	3
2	Выі	полнение работы	4
		Движение фокуса камеры	
		Движение по траектории	
	2.3	Анимация с использование ключей	
	2.4	Моделирование процессов физики твердых тел трехмерной	
		графики	12
	2.5	Система частиц	14
3	ВЫ	ВОД	18

1 Введение

1.1 Задание

Построить анимированную трехмерную сцену, содержащую анимацию, созданную с использованием следующих инструментов:

- Анимация с использованием ключей
- Движение по траектории
- Движение фокуса камеры
- Моделирование процессов физики твердых тел трехмерной графики
- Система частиц

1.2 Вариант

Городская среда - привал монгольского караванщика.

2 Выполнение работы

В ходе работы с помощью различных инструментов и способов была анимирован ранее созданная сцена каравана. Было реализовано движение фокуса камеры, физика кувшина в тележке, перемещение тележки по траектории, вращение колес тележки через ключи анимации и эффект дыма костра с помощью симуляции частиц.

2.1 Движение фокуса камеры

Рисунок 2.1 - Настройка AutoTrack для камеры

Ранее созданному объекту камеры добавляем ограничитель AutoTrack, а в качестве цели (Target) указываем повозку.

Рисунок 2.2 - Фокус камеры на тележке

2.2 Движение по траектории

Создаем объект Path и в режиме редактирование выстраиваем путь для тележки.

Рисунок 2.3 - Объект Path

Устанавливаем колесам в качестве объекта-родителя тележку, чтобы они следовали за ней, но были все еще отдельным объектом.

Рисунок 2.4 - Окно присвоения родителя объекта

В ограничителях тележки указываем ограничитель Follow Path, а в качестве цели выбираем ранее созданный путь. Также указываем параметр Follow Curve для поворота тележки по направлению пути и нажимаем Animate Path.

Рисунок 2.5 - Окно настройки Follow Path тележки

Время проигрывание анимации указываем в настройках Data объекта путь.

Рисунок 2.6 - Настройка продолжительности анимации тележки

Рисунок 2.7 - Тележка в середине анимации

2.3 Анимация с использование ключей

В настройках, в боковой панели, указываем режим вращения Quaternion (WXYZ), который лучше подходит для вращения по ло-кальным осям объекта колеса.

Рисунок 2.8 - Базовое окно настройки, выбор режима вращения

Выделяем колеса и с помощью горячей клавиши I создаем ключи, каждые несколько кадров проворачивая колеса по локальной оси Z, таким образом добиваясь вращения колес.

Рисунок 2.9 - Ключи анимации колес

2.4 Моделирование процессов физики твердых тел трехмерной графики

Заходим в настройки физики объекта кувшин и указываем объекту эффекты Collision и Rigid Body, позволяющие взаимодействовать объектам на физическом уровне с другими объектами, обладающие теми же эффектами. Здесь же указываем массу объекта.

Рисунок 2.10 - Настройка физика кувшина

Тоже самое указываем объекту тележки, но тип Rigid Body указываем Passive, так как объект управляется ключами анимации, а не симуляцией физики, как кувшин. По той же причине в настройках указываем параметр Animated, позволяя системе анимации управлять объектом тележки.

Рисунок 2.11 - Настройка физики тележки

Теперь кувшин и тележка взаимодействуют в симуляции физики.

2.5 Система частиц

Для создания дыма из костра дублируем объект пепелище и придаем ему свойство Fluid, настраивая в параметрах объект как источник дыма.

Рисунок 2.12 - Настройка частиц источника дыма

Затем создаем куб, размещаем его над костром и настраиваем его как контейнер для симуляции дыма.

Рисунок 2.13 - Настройка контейнера для симуляции частиц дыма

Рисунок 2.14 - Источник дыма и контейнер симуляции

3 ВЫВОД

В результате выполнения лабораторной работы была создана сцена на заданную тему, а рендер анимации был выложен на GitHub (URI - https://github.com/vladcto/suai-labs/tree/main/7_semester/3D/2/preview.mkv).

В процессе работы были использованы и изучены такие инструменты и способы анимации как симуляция физики твердых тел и системы частиц, а также более традиционные покадровая анимация с помощью ключей анимации, движения объекта через ограничители.