Assignment 2 - Group B

Problem Statement

Perform the following operations using Python on the Air quality data sets

- a. Data cleaning
- b. Data integration
- c. Data transformaton
- d. Error correcting
- e. Data model building

In [175...

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading data from CSV file

In [176	<pre>Tej = pd.read_csv("C:\\Users\\Shree\\Desktop\\dsbdl_lab\\airquality.csv")</pre>	
In [177	Теј	

Out[177]:		Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
_	0	1	41.0	190.0	7.4	67	5	1	High
	1	2	36.0	118.0	8.0	72	5	2	Low
	2	3	12.0	149.0	12.6	74	5	3	High
	3	4	18.0	313.0	11.5	62	5	4	Medium
	4	5	NaN	NaN	14.3	56	5	5	High
	•••								
	148	149	30.0	193.0	6.9	70	9	26	High
	149	150	NaN	145.0	13.2	77	9	27	Low
	150	151	14.0	191.0	14.3	75	9	28	High
	151	152	18.0	131.0	8.0	76	9	29	Medium
	152	153	20.0	223.0	11.5	68	9	30	High

153 rows × 8 columns

```
Tej.head
In [178...
           <bound method NDFrame.head of</pre>
                                                Unnamed: 0 Ozone Solar.R Wind Temp Month
Out[178]:
           Day Humidity
                                                               5
                          1
                              41.0
                                       190.0
                                               7.4
                                                       67
                                                                     1
                                                                           High
           1
                          2
                              36.0
                                       118.0
                                               8.0
                                                       72
                                                               5
                                                                     2
                                                                            Low
           2
                          3
                              12.0
                                       149.0 12.6
                                                       74
                                                               5
                                                                     3
                                                                           High
           3
                                                               5
                          4
                              18.0
                                       313.0 11.5
                                                       62
                                                                     4
                                                                         Medium
           4
                          5
                                                               5
                                                                     5
                               NaN
                                         NaN 14.3
                                                       56
                                                                           High
                               . . .
                                         . . .
                        . . .
                                               . . .
                                                                            . . .
           148
                        149
                              30.0
                                       193.0
                                               6.9
                                                       70
                                                               9
                                                                   26
                                                                           High
           149
                        150
                               NaN
                                       145.0 13.2
                                                       77
                                                               9
                                                                   27
                                                                            Low
           150
                        151
                              14.0
                                       191.0 14.3
                                                       75
                                                                   28
                                                                           High
                                                       76
                                                                   29
                                                                         Medium
           151
                        152
                              18.0
                                       131.0
                                              8.0
                                                               9
           152
                        153
                              20.0
                                       223.0 11.5
                                                       68
                                                               9
                                                                   30
                                                                           High
           [153 rows x 8 columns]>
In [179...
           Tej.shape
           (153, 8)
Out[179]:
In [180...
           Tej.isnull().sum()
           Unnamed: 0
                           0
Out[180]:
           0zone
                          37
           Solar.R
                           7
           Wind
                           0
           Temp
                           0
           Month
                           0
                           0
           Day
           Humidity
                           4
           dtype: int64
```

Data Cleaning

Removing unwanted columns

```
In [181... Tej.drop(Tej.iloc[: , [0]], axis=1 , inplace=True)
In [182... Tej
```

Out[182]:		Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
-	0	41.0	190.0	7.4	67	5	1	High
	1	36.0	118.0	8.0	72	5	2	Low
	2	12.0	149.0	12.6	74	5	3	High
	3	18.0	313.0	11.5	62	5	4	Medium
	4	NaN	NaN	14.3	56	5	5	High
	•••							
	148	30.0	193.0	6.9	70	9	26	High
	149	NaN	145.0	13.2	77	9	27	Low
	150	14.0	191.0	14.3	75	9	28	High
	151	18.0	131.0	8.0	76	9	29	Medium
	152	20.0	223.0	11.5	68	9	30	High

153 rows × 7 columns

Replacing Numerical Null values

```
In [183... Tej['Ozone']=Tej['Ozone'].fillna(Tej['Ozone'].mean())
    Tej['Solar.R']=Tej['Solar.R'].fillna(Tej['Solar.R'].mean())
    Tej["Wind"] = Tej["Wind"].fillna(Tej["Wind"].mean())
```

Replacing Categorical Null values

```
In [184...
           Tej['Humidity']=Tej['Humidity'].fillna(Tej['Humidity'].mode()[0])
           Tej.isnull().sum()
          0zone
Out[184]:
           Solar.R
                       0
          Wind
                       0
           Temp
          Month
          Day
          Humidity
          dtype: int64
In [185...
          Tej.dtypes
          0zone
                       float64
Out[185]:
                       float64
           Solar.R
          Wind
                       float64
           Temp
                         int64
          Month
                         int64
                         int64
          Day
          Humidity
                        object
          dtype: object
```

Data Transformation

Using Label Encoding on Humidity column

```
In [186...
          from sklearn.preprocessing import LabelEncoder
          label=LabelEncoder()
          Tej['Humidity']=label.fit_transform(Tej['Humidity'])
          Tej['Humidity'].unique()
          array([0, 1, 2])
Out[186]:
          Tej.dtypes
In [187...
                       float64
          0zone
Out[187]:
          Solar.R
                      float64
          Wind
                       float64
                         int64
          Temp
          Month
                         int64
          Day
                         int64
          Humidity
                         int32
          dtype: object
```

Data Integration

Subset Creation (Row-wise)

```
In [188...
           #Subset-1
           s1 = Tej.iloc[[1,2,3,6,12,28],:]
           s1
Out[188]:
               Ozone Solar.R Wind Temp Month Day Humidity
            1
                 36.0
                        118.0
                                8.0
                                       72
                                                5
                                                               1
            2
                 12.0
                        149.0
                                12.6
                                       74
                                                5
                                                     3
                                                               0
            3
                 18.0
                        313.0
                               11.5
                                       62
                                                5
                                                     4
                                                               2
                                                   7
                                                               0
            6
                 23.0
                        299.0
                                8.6
                                       65
                                                5
           12
                 11.0
                        290.0
                                9.2
                                       66
                                                    13
                                                               0
                 45.0
                                                               0
           28
                        252.0
                               14.9
                                       81
                                                5
                                                    29
In [189...
           #Subset-2
           s2 = Tej.iloc[[70,81,95,105,123,137,149],:]
           s2
```

Out[189]:		Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
	70	85.00000	175.000000	7.4	89	7	10	0
	81	16.00000	7.000000	6.9	74	7	21	1
	95	78.00000	185.931507	6.9	86	8	4	2
	105	65.00000	157.000000	9.7	80	8	14	1
	123	96.00000	167.000000	6.9	91	9	1	2
	137	13.00000	112.000000	11.5	71	9	15	1
	149	42.12931	145.000000	13.2	77	9	27	1

Merging Subsets

merge = pd.concat([s1,s2]) In [190...

In [191...

merge

Out[191]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
1	36.00000	118.000000	8.0	72	5	2	1
2	12.00000	149.000000	12.6	74	5	3	0
3	18.00000	313.000000	11.5	62	5	4	2
6	23.00000	299.000000	8.6	65	5	7	0
12	11.00000	290.000000	9.2	66	5	13	0
28	45.00000	252.000000	14.9	81	5	29	0
70	85.00000	175.000000	7.4	89	7	10	0
81	16.00000	7.000000	6.9	74	7	21	1
95	78.00000	185.931507	6.9	86	8	4	2
105	65.00000	157.000000	9.7	80	8	14	1
123	96.00000	167.000000	6.9	91	9	1	2
137	13.00000	112.000000	11.5	71	9	15	1
149	42.12931	145.000000	13.2	77	9	27	1

Deriving correlation between Columns

In [192... corr = Tej.corr()

In [193...

corr

Out[193]:			r.R	Wind	٠	Temp	Мо	nth	Day	Humidity		
	Ozone	Ozone 1.000000 0.302970					0.60	08742	0.149	081	-0.011355	-0.012681
	Solar.R	0.30	2970	1.000000 -0.0		.055245 0.262569		52569	-0.072	904	-0.145621	-0.020428
	Wind	Wind -0.530936 Temp 0.608742		-0.0552	245 1	.000000	0.45	7988	-0.178	293	0.027181	0.090264
	Temp			0.2625	669 -0	.457988	3 1.00	00000	0.420	947	-0.130593	0.008397
	Month 0.149081 Day -0.011355		081 -0.072904 -0		.178293	0.42	20947	1.000	000	-0.007962	0.043569	
			1355	-0.1456	521 0	.027181	-0.13	30593	-0.007	962	1.000000	-0.038271
	Humidity	-0.01	2681	-0.0204	128 0	.090264	0.00	08397	0.043	569	-0.038271	1.000000
Out[194]:	<pre>sns.heatmap(corr, <axessubplot:></axessubplot:></pre>			<pre>s.heatmap(corr, vmin = -1, vmax = 1, a xesSubplot:></pre>				annot=	•			
	Ozone -	1	0.3	-0.53	0.61	0.15	-0.011	-0.013		1.00		
	Solar.R -	0.3	1	-0.055	0.26	-0.073	-0.15	-0.02		0.75		
	Wind -	-0.53	-0.055	1	-0.46	-0.18	0.027	0.09		0.25		
	Temp -	0.61	0.26	-0.46	1	0.42	-0.13	0.0084	-	0.00		
	Month -	0.15	-0.073	-0.18	0.42	1	-0.008	0.044	-	-0.25	5	
	Day -	-0.011	-0.15	0.027	-0.13	-0.008	1	-0.038		-0.50		
	Humidity -	-0.013	-0.02	0.09	0.0084	0.044	-0.038	1		-0.75		
	'	Ozone	Solar.R	Wind	Temp	Month	Day I	lumidit		-1.00)	

Building Data Model

Using Linear Regression

```
In [195... x = Tej[["Ozone"]]
y = Tej[["Temp"]]

In [196... from sklearn.model_selection import train_test_split

In [197... x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

In [198... from sklearn.linear_model import LinearRegression

In [199... lr = LinearRegression()

In [200... model = lr.fit(x_train, y_train)
```

```
In [201... y_predict = model.predict(x_test)
```

Plotting Graph

```
In [202... import matplotlib.pyplot as plt

In [203... plt.scatter(x_train, y_train, color="red")
    plt.plot(x_train, lr.predict(x_train), color="blue")
    plt.xlabel("Ozone")
    plt.ylabel("Temperature")
    plt.title("Ozone vs Temperature Graph")
    plt.show()
```


Calculating Metrics

```
In [213...
          from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
          import numpy as np
In [214...
          MSE = mean_squared_error(y_test,y_predict)
          MAE = mean_absolute_error(y_test,y_predict)
          r2_score = r2_score(y_test,y_predict)
          RMSE = np.sqrt(MSE)
          print("MSE : {} \nMAE : {} \nMAE : {} \nR2 Score : {}".format(MSE, RMSE, MAE, r2_s
In [215...
          MSE: 58.75683748803407
          RMSE: 7.665300873940571
          MAE : 5.3610432690122485
          R2 Score: 0.33559267613488397
 In [ ]:
 In [ ]:
```