Lecture Notes: Differential 1-Forms and Scalar Projections on Curves

Mathematical Structures of Differential Forms

1. A 1-Form on \mathbb{R}^2 as a Scalar Projection

Let $C \subseteq \mathbb{R}^2$ be a smooth curve defined locally as the graph of a function $f : \mathbb{R} \to \mathbb{R}$, i.e.,

$$C = \{(x, f(x)) \mid x \in \mathbb{R}\}.$$

Let $p = (a, f(a)) \in C$ be a fixed point on the curve. The derivative of f at a, denoted f'(a), determines the tangent vector

$$\vec{v} = \langle 1, f'(a) \rangle \in T_p C.$$

Thus, the tangent space to the curve at point p, denoted T_pC , is

$$T_pC = \operatorname{span} \{\langle 1, f'(a) \rangle\}.$$

We aim to describe a differential 1-form on \mathbb{R}^2 that projects tangent vectors at p onto the line in direction \vec{v} , i.e., the scalar projection.

2. Geometric Identification

Point vs. Tangent Vector Distinction:

- A point $p \in C \subseteq \mathbb{R}^2$ is a geometric location in space. - A vector $\vec{w} \in T_pC \subseteq \mathbb{R}^2$ is an element of the tangent space at p; it encodes a direction and magnitude but is anchored at the point p.

3. Coordinate Systems

Define a coordinate system on C locally near p via the chart:

$$(x,y):C\to\mathbb{R}^2,\quad q\mapsto (x(q),y(q))=(x,f(x)).$$

On the tangent space T_pC , the natural dual basis of the cotangent space is given by the differentials:

$$\langle dx, dy \rangle : T_p C \to \mathbb{R}, \quad \vec{w} \mapsto (dx(\vec{w}), dy(\vec{w})).$$

More abstractly:

$$x, y: C \to \mathbb{R}, \quad dx, dy: T_pC \to \mathbb{R}.$$

4. Scalar Projection as a 1-Form

Define a unit vector in the direction of \vec{v} :

$$\hat{v} = \frac{1}{\sqrt{1 + (f'(a))^2}} \langle 1, f'(a) \rangle.$$

The differential 1-form $\omega \in \Omega^1(\mathbb{R}^2)$ which projects vectors onto \vec{v} is defined by:

$$\omega = \frac{1}{\sqrt{1 + (f'(a))^2}} (dx + f'(a) \, dy).$$

Then for any vector $\vec{w} \in T_pC$, the evaluation $\omega(\vec{w})$ gives the scalar projection of \vec{w} onto the direction of \vec{v} .

5. Summary

- The 1-form ω captures the infinitesimal scalar projection onto the tangent line of the curve. - The construction uses the differential of coordinate functions and normalization by the Euclidean norm. - This provides a clear geometric interpretation of a 1-form as a linear functional evaluating directional components of tangent vectors.

Geometric Setting and 1-Form Construction

Let $C \subseteq \mathbb{R}^2$ be a curve given locally by the graph of a smooth function f(x), with

$$C = \{ (x, f(x)) \mid x \in \mathbb{R} \}.$$

Let $p = (a, f(a)) \in C$, and let f'(a) be the derivative at x = a. Then the tangent vector at p is

$$\vec{v} = \langle 1, f'(a) \rangle$$
.

The tangent space is

$$T_pC = \operatorname{span} \{\langle 1, f'(a) \rangle\}.$$

We define a 1-form $\omega \in \Omega^1(\mathbb{R}^2)$ by

$$\omega = \frac{1}{\sqrt{1 + (f'(a))^2}} (dx + f'(a) dy),$$

so that for any $\vec{w} \in T_p \mathbb{R}^2$, $\omega(\vec{w})$ gives the scalar projection onto the line in direction \vec{v} .

TikZ Visualization

$$\omega = \frac{1}{\sqrt{1 + f'(a)^2}} (dx + f'(a) \, dy)$$

Interpretation

- The red vector \vec{v} is the tangent to the curve C at point p.
- The vector $\vec{w} \in T_p \mathbb{R}^2$ is arbitrary.
- The 1-form ω computes the scalar projection of \vec{w} onto the direction of \vec{v} .
- The 1-form has constant coefficients along the direction of \vec{v} , normalized to unit length.