Mecánica Cuántica. Tarea 1*†

José Emmanuel Flores Calderón

Fecha: 07/03/2021.

1. Una matriz \hat{X} de 2x2 (no necesariamente Hermitiana ni unitaria) está escrita como

$$\hat{X} = a_0 \mathbb{I} + \hat{\sigma} \cdot \mathbf{a}$$

donde a_0 y $a_{1,2,3}$ son números.

- (a) ¿Cómo están a_0 y a_k (k = 1, 2, 3) relacionadas con $tr(\hat{X})$ y $tr(\sigma_k \hat{X})$?
- (b) Obten a_0 y a_k en términos de los elementos de matriz X_{ij} .

Solución.

Las matrices de Pauli tienen la forma

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. (0.1)

Y además, cumplen con lo siguiente:

$$\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k$$
.

De manera que para a), tenemos

$$\hat{X} = a_0 \delta_{ij} + \sigma_k a_k$$
, con $i, j = 1, 2, k = 1, 2, 3$,

$$\implies \hat{X} = a_0 \delta_{ii} + \sigma_1 a_1 + \sigma_2 a_2 + \sigma_3 a_3,$$

Haciendo la identificación de $\sigma_1=\sigma_x$, $\sigma_2=\sigma_y$ y $\sigma_3=\sigma_z$, tenemos que

$$\hat{X} = a_0 \delta_{ij} + a_1 \sigma_x + a_2 \sigma_y + a_3 \sigma_z, \tag{0.2}$$

o en notación matricial

$$\hat{X} = a_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + a_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + a_3 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\Longrightarrow \hat{X} = \begin{pmatrix} a_0 + a_3 & a_1 - ia_2 \\ a_1 + ia_2 & a_0 - a_3 \end{pmatrix}.$$
(0.3)

Para la traza de \hat{X} , fijemonos en las ecuaciones dadas en (0.1) y notemos que las matrices de Pauli son de traza cero, es decir

^{*}Grupo C011 | Trimestre 21-1

[†]Profesor: Miguel Angel Bastarrachea Magnani | Ayudante: Yoshua Chávez Bolaños

$$tr(\sigma_i) = 0 \ \forall i = 1, 2, 3$$

con lo cual, tenemos

$$tr(\hat{X}) = tr\left(a_0\delta_{ij} + a_1\sigma_x + a_2\sigma_y + a_3\sigma_z\right) = a_0tr(\delta_{ij}) + a_1tr(\sigma_x) + a_2tr(\sigma_y) + a_3tr(\sigma_z),$$

$$\implies tr(\hat{X}) = a_0 tr(\delta_{ii}) = a_0 \delta_{ii} = 2a_0,$$

$$\therefore tr(\hat{X}) = 2a_0$$

Ahora bien, para la $tr(\sigma_k \hat{X})$, sucede

$$\sigma_k \hat{X} = a_0 \sigma_k \delta_{ij} + a_1 \sigma_k \sigma_1 + a_2 \sigma_k \sigma_2 + a_3 \sigma_k \sigma_3$$
, con $k = 1, 2, 3$,

O bien

$$\sigma_1 \hat{X} = a_0 \sigma_1 \delta_{ii} + a_1 \sigma_1 \sigma_1 + a_2 \sigma_1 \sigma_2 + a_3 \sigma_1 \sigma_3, \tag{0.4}$$

$$\sigma_2 \hat{X} = a_0 \sigma_2 \delta_{ij} + a_1 \sigma_2 \sigma_1 + a_2 \sigma_2 \sigma_2 + a_3 \sigma_2 \sigma_3 y$$

$$\tag{0.5}$$

$$\sigma_3 \hat{X} = a_0 \sigma_3 \delta_{ii} + a_1 \sigma_3 \sigma_1 + a_2 \sigma_3 \sigma_2 + a_3 \sigma_3 \sigma_3, \tag{0.6}$$

Para $\sigma_k \delta_{ij}$ tenemos, en notación matricial

$$\sigma_1\delta_{ij}=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\ \sigma_2\delta_{ij}=\left(\begin{array}{cc}0&-i\\i&0\end{array}\right)\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\ y\ \sigma_3\delta_{ij}=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\left(\begin{array}{cc}1&0\\0&1\end{array}\right),$$

de manera que

$$\sigma_1 \delta_{ij} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \sigma_2 \delta_{ij} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ y } '\sigma_3 \delta_{ij} = \sigma_3.$$
 (0.7)

En lugar de hacer los calculos de los productos involucrados en las ecuaciones (0.4), (0.5) y (0.6), notemos lo siguiente: en general sabemos, por las propiedades de las matrices de Pauli, que sucede lo siguiente

$$\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k,$$

Pero ϵ_{ijk} es en general una constante que depende del orden en el que se encuentren i y j, el cual puede ser 0,1 o -1, así que para nuestros propósitos, hagamos $\alpha=i\epsilon_{ijk}$. Por otra parte, en general, el producto $\epsilon_{ijk}\sigma_k$ es alguna matriz de Pauli, llamemosla σ_α , donde el índice α es diferente de los valores que puede tomar i y j, esto es así por las propiedades del símbolo ϵ_{ijk} .

De manera que, con lo discutido anteriormente y con los cambios de variable hechos, tenemos que

$$\sigma_i \sigma_i = \delta_{ii} + \alpha \sigma_{\alpha}$$
.

Ahora bien, tomemos la traza de la ecuación anterior

$$tr(\sigma_i\sigma_j) = tr(\delta_{ij} + \alpha\sigma_\alpha) = tr(\delta_{ij}) + \alpha tr(\sigma_\alpha) = tr(\delta_{ij}).$$

Es decir, la traza de $\sigma_i \sigma_j$ es diferente de cero siempre y cuando i = j.

Ahora bien, usando el resultado anterior junto con las ecuaciones dadas en (0.7) y aplicandolo a las ecuaciones (0.4), (0.5) y (0.6), tenemos

$$tr(\sigma_1 \hat{X}) = tr \left(a_0 \sigma_1 \delta_{ij} + a_1 \sigma_1 \sigma_1 + a_2 \sigma_1 \sigma_2 + a_3 \sigma_1 \sigma_3 \right) = tr \left(a_0 \sigma_1 \delta_{ij} + a_1 \sigma_1 \sigma_1 \right),$$

$$\implies tr(\sigma_1 \hat{X}) = a_1 tr \left(\sigma_1 \sigma_1 \right) = a_1 tr(\delta_{11}) = 2a_1$$

$$\therefore tr(\sigma_1 \hat{X}) = 2a_1.$$

Para $\sigma_2 \hat{X}$, tenemos

$$tr(\sigma_2 \hat{X}) = tr \left(a_0 \sigma_2 \delta_{ij} + a_2 \sigma_2 \sigma_2 \right) = a_2 tr(\sigma_2 \sigma_2) = a_2 tr(\delta_{22})$$
$$\implies tr(\sigma_2 \hat{X}) = 2a_2.$$

Mientras que para el $\sigma_3 \hat{X}$, tenemos

$$tr(\sigma_3\hat{X}) = tr\left(a_0\sigma_3\delta_{ij} + a_3\sigma_3\sigma_3\right) = a_0tr(\sigma_3) + a_3tr(\sigma_{33}) = 2a_3tr(\delta_{33}),$$
$$\implies tr(\sigma_3\hat{X}) = 2a_3tr(\delta_{33}).$$

Por lo tanto, tenemos el siguiente resultado: si k = 1, 2, 3, entonces

$$tr(\sigma_k \hat{X}) = 2a_k$$
.

Para **b)**, fijemonos en la ecuación (0.3).

Es claro que

$$\hat{X}_{11} + \hat{X}_{22} = a_0 + a_3 + a_0 - a_3 = 2a_0,$$

$$\therefore a_0 = \frac{1}{2} \left(\hat{X}_{11} + \hat{X}_{22} \right).$$

Para a_1 , tenemos

$$\hat{X}_{12} + \hat{X}_{21} = a_1 - ia_2 + a_1 + ia_2 = 2a_1,$$

$$\therefore a_1 = \frac{1}{2} (\hat{X}_{12} + \hat{X}_{21}).$$

Por otra parte, para a_2 , tenemos

$$-\hat{X}_{12} + \hat{X}_{21} = -a_1 + ia_2 - a_1 + ia_2 = 2ia_2,$$

$$\therefore a_2 = \frac{1}{2i} (\hat{X}_{21} - \hat{X}_{12}).$$

Finalmente, para a_3 , tenemos

$$\hat{X}_{11} - \hat{X}_{22} = a_0 + a_3 - a_0 + a_3 = 2a_3,$$

$$\therefore a_3 = \frac{1}{2} (\hat{X}_{11} - \hat{X}_{22}).$$

2. Construya $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ tal que

$$\mathbf{S} \cdot \hat{\mathbf{n}} | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle = \frac{\hbar}{2} | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle$$

donde \hat{n} está dada en coordenadas esféricas, con β el ángulo polar y α el ángulo azimutal. Exprese su respuesta como una combinación lineal de $|+\rangle$ y $|-\rangle$.

Solución.

Siendo α el ángulo azimutal y β el ángulo polar, podemos escribir al vector $\hat{\bf n}$ de la siguiente manera

$$\hat{\mathbf{n}} = \sin(\alpha)\cos(\alpha)\hat{\mathbf{x}} + \sin(\alpha)\sin(\beta)\hat{\mathbf{y}} + \cos(\alpha)\hat{\mathbf{z}},$$

con lo cual, tenemos que el producto $\mathbf{S} \cdot \hat{\mathbf{n}}$ esta dado por

$$\mathbf{S} \cdot \hat{\mathbf{n}} = S_x \sin(\alpha) \cos(\alpha) + S_y \sin(\alpha) \sin(\beta) + S_z \cos(\alpha).$$

Por otra parte, la representación matricial de los operadores S_x , S_y , S_z en la base de S_z esta dada por

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ y $S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

de manera que el producto $\mathbf{S} \cdot \hat{\mathbf{n}}$, en notación matricial, queda escrito como

$$\mathbf{S} \cdot \hat{\mathbf{n}} = \frac{\hbar}{2} \sin(\beta) \cos(\alpha) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \frac{\hbar}{2} \sin(\beta) \sin(\alpha) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{\hbar}{2} \cos(\beta) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\implies \mathbf{S} \cdot \hat{\mathbf{n}} = \frac{\hbar}{2} \begin{pmatrix} \cos(\beta) & \sin(\beta)\cos(\alpha) - i\sin(\beta)\sin(\alpha) \\ \sin(\beta)\cos(\alpha) + i\sin(\beta)\sin(\alpha) & -\cos(\beta) \end{pmatrix},$$

o bien

$$\mathbf{S} \cdot \hat{\mathbf{n}} = \frac{\hbar}{2} \left(\begin{array}{cc} \cos(\beta) & \sin(\beta) \exp(-i\alpha) \\ \sin(\beta) \exp(i\alpha) & -\cos(\beta) \end{array} \right).$$

Ahora bien, debemos construir $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ de tal manera que cumpla con

$$\frac{\hbar}{2} \begin{pmatrix} \cos(\beta) & \sin(\beta) \exp(-i\alpha) \\ \sin(\beta) \exp(i\alpha) & -\cos(\beta) \end{pmatrix} |\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle = \frac{\hbar}{2} |\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle, \tag{0.8}$$

pero sabemos que podemos expresar al ket $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ como una combinación lineal de los ket base $|+\rangle$ y $|-\rangle$. De manera que, sea

$$|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle = \mathcal{C}_{+}|+\rangle + \mathcal{C}_{-}|-\rangle,$$

o bien, en notación matricial como $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle = \begin{pmatrix} \mathcal{C}_+ \\ \mathcal{C}_- \end{pmatrix}$, con lo cual, la ecuación (0.8) queda escrita como

$$\frac{\hbar}{2} \begin{pmatrix} \cos(\beta) & \sin(\beta) \exp(-i\alpha) \\ \sin(\beta) \exp(i\alpha) & -\cos(\beta) \end{pmatrix} \begin{pmatrix} \mathcal{C}_{+} \\ \mathcal{C}_{-} \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} \mathcal{C}_{+} \\ \mathcal{C}_{-} \end{pmatrix},$$

o bien

$$\left(\begin{array}{c} C_{+}\cos(\beta) + C_{-}\sin(\beta)\exp(-i\alpha) \\ C_{+}\sin(\beta)\exp(i\alpha) - C_{-}\cos(\beta) \end{array}\right) = \left(\begin{array}{c} C_{+} \\ C_{-} \end{array}\right),$$

lo cual nos conduce a las siguientes ecuaciones

$$C_{+}\cos(\beta) + C_{-}\sin(\beta)\exp(-i\alpha) = C_{+}, \tag{0.9}$$

$$C_{+}\sin(\beta)\exp(i\alpha) - C_{-}\cos(\beta) = C_{-}. \tag{0.10}$$

Antes de continuar, recordemos que el ket $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ debe estar normalizado, lo cual se traduce en

$$\|\langle +; \mathbf{S} \cdot \hat{\mathbf{n}} | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle\| = \mathcal{C}_{+}^{2} + \mathcal{C}_{-}^{2} = 1. \tag{0.11}$$

Ahora bien, manipulemos un poco la ecuación (0.9)

$$C_{+}\cos(\beta) + C_{-}\sin(\beta)\exp(-i\alpha) = C_{+} \implies C_{+}(1-\cos(\beta)) = C_{-}\sin(\beta)\exp(-i\alpha),$$

recordemos que en general $C_+,C_-\in\mathbb{C}$, de manera que multiplicando cada uno por su respectivo complejo conjugado, tenemos

$$\mathcal{C}_+^2 \left(1 - \cos(\beta)\right)^2 = \mathcal{C}_-^2 \sin^2(\beta).$$

Ahora bien, usando la identidad $\sin^2(\beta/2)=1/2\left(1-\cos(\beta)\right)$ y la relación $\mathcal{C}_-^2=1-\mathcal{C}_+^2$, tenemos

$$4C_{+}^{2}\sin^{4}(\beta/2) = \left(1 - C_{+}^{2}\right)\sin^{2}(\beta). \tag{0.12}$$

Ahora usemos la siguiente identidad $\sin(\theta)\cos(\phi)=1/2(\sin(\theta+\phi)+\sin(\theta-\phi))$ con $\theta=\beta/2$ y $\phi=\beta/2$, teniendo así

$$\sin\left(\frac{\beta}{2}\right)\cos\left(\frac{\beta}{2}\right) = \frac{1}{2}\left(\sin\left(\beta\right) + \sin(0)\right) \implies \sin\left(\beta\right) = 2\sin\left(\frac{\beta}{2}\right)\cos\left(\frac{\beta}{2}\right),$$

$$\implies \sin^2{(\beta)} = 4\sin^2{\left(\frac{\beta}{2}\right)}\cos^2{\left(\frac{\beta}{2}\right)},$$

sustituyendo el resultado anterior en la ecuación (0.12), tenemos

$$4\mathcal{C}_{+}^{2}\sin^{4}(\beta/2) = 4\left(1 - \mathcal{C}_{+}^{2}\right)\sin^{2}\left(\frac{\beta}{2}\right)\cos^{2}\left(\frac{\beta}{2}\right),$$

$$\implies \mathcal{C}_{+}^{2}\sin^{2}\left(\frac{\beta}{2}\right) = \left(1 - \mathcal{C}_{+}^{2}\right)\cos\left(\frac{\beta}{2}\right) \implies \mathcal{C}_{+}^{2}\sin^{2}\left(\frac{\beta}{2}\right) + \mathcal{C}_{+}^{2}\cos^{2}\left(\frac{\beta}{2}\right) = \cos^{2}\left(\frac{\beta}{2}\right),$$

$$\implies \mathcal{C}_{+}^{2}\left(\sin^{2}\left(\frac{\beta}{2}\right) + \cos^{2}\left(\frac{\beta}{2}\right)\right) = \cos^{2}\left(\frac{\beta}{2}\right) \implies \mathcal{C}_{+}^{2} = \cos^{2}\left(\frac{\beta}{2}\right),$$

$$\therefore \mathcal{C}_{+} = \cos\left(\frac{\beta}{2}\right)$$

Por otra parte, para la constante C_- , nuevamente, fijemonos en la ecuación (0.9), de la cual tenemos

$$C_{-}\sin(\beta)\exp(-i\alpha) = C_{+}(1-\cos(\beta)).$$

Y usando las relaciónes antes deducidas $\sin^2(\beta/2) = 1/2(1-\cos(\beta))$ y $\sin(\beta) = 2\sin(\beta/2)\cos(\beta/2)$, tenemos

$$2C_{-}\sin(\beta/2)\cos(\beta/2)\exp(-i\alpha) = 2C_{+}\sin^{2}(\beta/2),$$

$$\implies C_{-}\cos(\beta/2)\exp(-i\alpha) = C_{+}\sin(\beta/2),$$

pero $C_+ = \cos\left(\frac{\beta}{2}\right)$, entonces

$$C_{-}\cos(\beta/2)\exp(-i\alpha) = \cos\left(\frac{\beta}{2}\right)\sin(\beta/2), \implies C_{-}\exp(-i\alpha) = \sin(\beta/2),$$

$$\therefore C_{-} = \sin\left(\frac{\beta}{2}\right)\exp(i\alpha) \tag{0.13}$$

Por lo tanto, el ket $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ expresado en los kets base $\{|+\rangle, |-\rangle\}$ esta dado por

$$|\mathbf{S}\cdot\hat{\mathbf{n}};+
angle = \cos\left(rac{eta}{2}
ight)|+
angle + \sin\left(rac{eta}{2}
ight)\exp(ilpha)|-
angle.$$

- 3. Un sistema de spín 1/2 es sabido que está en un autoestado $\mathbf{S} \cdot \hat{\mathbf{n}}$ con autovalor de $\frac{\hbar}{2}$, donde \hat{n} es un vector unitario que yace en el plano-xz que genera un ángulo γ con el eje-z positivo.
 - (a) Suponga que medimos S_x . ¿Cuál es la probabilidad de obtener $\frac{\hbar}{2}$?
 - (b) Evalua la dispersión en S_x . Esto es

$$\langle (S_x - \langle S_x \rangle)^2 \rangle.$$

Solución.

Usemos la solución del problema anterior con los siguientes cambios, $\beta \to \gamma$ y $\alpha = 0$, que son los datos dados aquí. Entonces, el vector de estado para este problema, expresado en la base $\{|+\rangle, |-\rangle\}$ está escrito como

 $|\mathbf{S}\cdot\mathbf{\hat{n}};+\rangle=\cos\left(\frac{\gamma}{2}\right)|+\rangle+\sin\left(\frac{\gamma}{2}\right)|-\rangle.$

Ahora bien, sabemos que dado un ket arbitrario $|\alpha\rangle$, la probabilidad de que colapse en algún ket base $|a\rangle$ está dada por

$$\mathcal{P}(|a\rangle) = |\langle a|\alpha\rangle|^2$$
.

En nuestro caso, la probabilidad de que al medir S_x obtengamos $\frac{\hbar}{2}$ es la probabilidad de que el ket $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ colapse en $|S_x; +\rangle$. Entonces

$$\mathcal{P}\left(S_x;+\right) = \left|\left\langle S_x;+\left|\mathbf{S}\cdot\hat{\mathbf{n}};+\right\rangle\right|^2.$$

Por otra parte, sabemos que el ket $|S_x; +\rangle$ esta dado por

$$|S_x;+\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle.$$

De manera que

$$\langle S_x; + | = \frac{1}{\sqrt{2}} \langle + | + \frac{1}{\sqrt{2}} \langle - |,$$

con lo cual tenemos lo siguiente

$$\langle S_x; + | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle = \left(\frac{1}{\sqrt{2}} \langle + | + \frac{1}{\sqrt{2}} \langle - | \right) \left(\cos \left(\frac{\gamma}{2} \right) | + \rangle + \sin \left(\frac{\gamma}{2} \right) | - \rangle \right),$$

$$\implies \langle S_x; + | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle = \frac{1}{\sqrt{2}} \cos \left(\frac{\gamma}{2} \right) \langle + | + \rangle + \frac{1}{\sqrt{2}} \sin \left(\frac{\gamma}{2} \right) \langle + | - \rangle + \frac{1}{\sqrt{2}} \cos \left(\frac{\gamma}{2} \right) \langle - | + \rangle + \frac{1}{\sqrt{2}} \sin \left(\frac{\gamma}{2} \right) \langle - | - \rangle$$

Ahora bien, usando las propiedades de ortogonalidad de los kets base, tenemos que

$$\langle S_x; + | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle = \frac{1}{\sqrt{2}} \cos\left(\frac{\gamma}{2}\right) + \frac{1}{\sqrt{2}} \sin\left(\frac{\gamma}{2}\right).$$

De manera que

$$\mathcal{P}\left(S_{x};+\right) = \left|\frac{1}{\sqrt{2}}\cos\left(\frac{\gamma}{2}\right) + \frac{1}{\sqrt{2}}\sin\left(\frac{\gamma}{2}\right)\right|^{2} = \frac{1}{2}\left(\cos^{2}\left(\frac{\gamma}{2}\right) + \sin^{2}\left(\frac{\gamma}{2}\right) + 2\sin\left(\frac{\gamma}{2}\right)\cos\left(\frac{\gamma}{2}\right)\right),$$

$$\implies \mathcal{P}\left(S_{x};+\right) = \frac{1}{2}\left(1 + 2\sin\left(\frac{\gamma}{2}\right)\cos\left(\frac{\gamma}{2}\right)\right),$$

pero, usando la identidad $2\sin\left(\frac{\gamma}{2}\right)\cos\left(\frac{\gamma}{2}\right)=\sin\left(\gamma\right)$, tenemos

$$\mathcal{P}\left(S_x;+\right)=\frac{1}{2}\left(1+\sin\left(\gamma\right)\right).$$

Ahora bien, para **b)** tenemos que el operador S_x está dado por

$$S_x = \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right)$$
,

entonces $\langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}}$ está dado por

$$\langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \langle \mathbf{S} \cdot \hat{\mathbf{n}}; + | S_x | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle$$

$$\langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar}{2} \left(\cos \left(\frac{\gamma}{2} \right) \langle +| + \sin \left(\frac{\gamma}{2} \right) \langle -| \right) (|+\rangle \langle -| + |-\rangle \langle +|) \cos \left(\frac{\gamma}{2} \right) |+\rangle + \sin \left(\frac{\gamma}{2} \right) |-\rangle,$$

desarrollando el producto del segundo parentesis por el tercero, tenemos

$$([2]) ([3]) = \left(\cos\left(\frac{\gamma}{2}\right)|+\rangle\langle-|+\rangle + \cos\left(\frac{\gamma}{2}\right)|-\rangle\langle+|+\rangle + \sin\left(\frac{\gamma}{2}\right)|+\rangle\langle-|-\rangle + \sin\left(\frac{\gamma}{2}\right)|-\rangle\langle+|-\rangle\right),$$

$$\implies ([2]) ([3]) = \left(\cos\left(\frac{\gamma}{2}\right)|-\rangle + \sin\left(\frac{\gamma}{2}\right)|+\rangle\right).$$

En donde nuevamente, hemos hecho uso de las propiedades de ortogonalidad. De manera que

$$\langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar}{2} \left(\cos \left(\frac{\gamma}{2} \right) \langle +| + \sin \left(\frac{\gamma}{2} \right) \langle -| \right) \left(\cos \left(\frac{\gamma}{2} \right) | - \rangle + \sin \left(\frac{\gamma}{2} \right) | + \rangle \right),$$

$$\implies \langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar}{2} \left(\cos^2 \left(\frac{\gamma}{2} \right) \langle +| - \rangle + \cos \left(\frac{\gamma}{2} \right) \sin \left(\frac{\gamma}{2} \right) \langle +| + \rangle + \sin \left(\frac{\gamma}{2} \right) \cos \left(\frac{\gamma}{2} \right) \langle -| - \rangle + \sin^2 \left(\frac{\gamma}{2} \right) \langle -| + \rangle \right),$$

$$\implies \langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar}{2} \left(2 \cos \left(\frac{\gamma}{2} \right) \sin \left(\frac{\gamma}{2} \right) \right) \implies \langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar}{2} \sin \left(\gamma \right).$$

Por lo tanto

$$\langle S_x \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}}^2 = \frac{\hbar^2}{4} \sin^2{(\gamma)}.$$

Por otra parte, para S_x^2 , tenemos

$$S_x^2 = S_x S_x = \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right) \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right),$$

$$\implies S_x^2 = \frac{\hbar^2}{4} \left[\left(|+\rangle \langle -|+\rangle \langle -| \right) + \left(|+\rangle \langle -|-\rangle \langle +| \right) + \left(|-\rangle \langle +|+\rangle \langle -| \right) + \left(|-\rangle \langle +|-\rangle \langle +| \right) \right].$$

De la expresión anterior, el primer y ultimo término son cero, debido a la ortogonalidad de los estados, de manera que

$$S_x^2 = \frac{\hbar^2}{4} \left(\left| + \right\rangle \left\langle + \right| + \left| - \right\rangle \left\langle - \right| \right).$$

Por lo tanto, el valor esperado para el operador anterior en el estado de interes esta dado por

$$\left\langle S_{x}^{2}\right\rangle _{\mathbf{S}\cdot\hat{\mathbf{n}}}=\frac{\hbar^{2}}{4}\left(\cos\left(\frac{\gamma}{2}\right)\left\langle +|+\sin\left(\frac{\gamma}{2}\right)\left\langle -|\right)\left(|+\rangle\left\langle +|+|-\rangle\left\langle -|\right)\left(\cos\left(\frac{\gamma}{2}\right)|+\rangle+\sin\left(\frac{\gamma}{2}\right)|-\rangle\right),$$

desarrollando la expresión del producto del segundo con el tercer parentesis, tenemos

$$\left(\left[2\right]\right)\left(\left[3\right]\right) = \cos\left(\frac{\gamma}{2}\right)\left|+\right\rangle\left\langle+\right|+\right\rangle + \sin\left(\frac{\gamma}{2}\right)\left|+\right\rangle\left\langle+\right|-\right\rangle + \cos\left(\frac{\gamma}{2}\right)\left|-\right\rangle\left\langle-\right|+\right\rangle + \sin\left(\frac{\gamma}{2}\right)\left|-\right\rangle\left\langle-\right|-\right\rangle$$

$$\implies \left(\left[2 \right] \right) \left(\left[3 \right] \right) = \cos \left(\frac{\gamma}{2} \right) \left| + \right\rangle + \sin \left(\frac{\gamma}{2} \right) \left| - \right\rangle,$$

entonces

$$\begin{split} \left\langle S_{x}^{2} \right\rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} &= \frac{\hbar^{2}}{4} \left(\cos \left(\frac{\gamma}{2} \right) \left\langle + \right| + \sin \left(\frac{\gamma}{2} \right) \left\langle - \right| \right) \left(\cos \left(\frac{\gamma}{2} \right) \left| + \right\rangle + \sin \left(\frac{\gamma}{2} \right) \left| - \right\rangle \right), \\ \Longrightarrow \left\langle S_{x}^{2} \right\rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} &= \frac{\hbar^{2}}{4} \left(\cos^{2} \left(\frac{\gamma}{2} \right) \left\langle + \right| + \right\rangle + \cos \left(\frac{\gamma}{2} \right) \sin \left(\frac{\gamma}{2} \right) \left\langle + \right| - \right\rangle + \sin \left(\frac{\gamma}{2} \right) \cos \left(\frac{\gamma}{2} \right) \left\langle - \right| + \right\rangle + \sin^{2} \left(\frac{\gamma}{2} \right) \left\langle - \right| - \right\rangle \right), \\ \Longrightarrow \left\langle S_{x}^{2} \right\rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} &= \frac{\hbar^{2}}{4} \left(\cos^{2} \left(\frac{\gamma}{2} \right) + \sin^{2} \left(\frac{\gamma}{2} \right) \right), \implies \left\langle S_{x}^{2} \right\rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} &= \frac{\hbar^{2}}{2}. \end{split}$$

Por lo tanto

$$\langle (S_x - \langle S_x \rangle)^2 \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \langle (\Delta S_x)^2 \rangle_{\mathbf{S} \cdot \hat{\mathbf{n}}} = \frac{\hbar^2}{4} - \frac{\hbar^2}{4} \sin^2(\gamma) = \frac{\hbar^2}{4} \left(1 - \sin^2(\gamma) \right),$$

o bien

$$\left\langle \left(\Delta S_{x}\right)^{2}\right\rangle _{\mathbf{S}\cdot\hat{\mathbf{n}}}=\frac{\hbar^{2}}{4}\cos^{2}\left(\gamma\right).$$

4. Dos observables A_1 y A_2 que no depeden explícitamente del tiempo se conocen por no conmutar

$$[A_1, A_2] \neq 0.$$

Aún así, sabemos que conmutan con el Hamiltoniano: $[A_1, H] = 0$ y $[A_2, H] = 0$. Pruebe que las energías de los autoestados están, en general, degeneradas. ¿Existen excepciones? Piense en el problema de la fuerza central $H = \frac{\mathbf{p}^2}{2m} + V(r)$, con $A_1 \to L_z$ y $A_2 \to L_x$.

Solución.

Otra forma de escribir la proposición anterior es la siguiente: sean A_1 y A_2 dos observables que no dependen del tiempo y se cumple que $[A_1, H] = 0$ y $[A_2, H] = 0$, pero $[A_1, A_2] \neq 0$, entonces los eigenkets de H están degenerados.

La demostración de la proposición anterior la haremos por contradicción.

En efecto, supongamos que se cumplen las premisas de la proposición anterior y los eigenkets de H no están degenerados. Esto es, el conjunto de eigenkets $\{|e_i\rangle\}$ que cumple con $H|e_i\rangle=E_i|e_i\rangle$ $\forall i$, son tales manera que para los eigenvalores se cumple que $E_i\neq E_j$ $\forall i\neq j$.

Ahora bien, consideremos al ket $|e_1\rangle$, sabemos que cumple con

$$H|e_i\rangle = E_1|e_i\rangle$$
,

pero

$$[A_1, H] = 0 \implies A_1 H = HA_1 \implies A_1 H |e_1\rangle = HA_1 |e_1\rangle,$$

$$\implies HA_1 |e_1\rangle = A_1 H |e_1\rangle = A_1 E_1 |e_1\rangle,$$

$$\implies HA_1 |e_1\rangle = E_1 A_1 |e_1\rangle,$$

de manera que el ket $A_1 | e_1 \rangle$ es eigenket de H.

Por otra parte, dado que H y A_1 son compatibles, esto implica que si $|e_1\rangle$ es eigenket de H, entonces $|e_1\rangle$ también es eigenket de A_1 . Esto es, existe un α_1 tal que

$$A_1 |e_1\rangle = \alpha_1 |e_1\rangle$$
.

De manera análoga, como A_2 es compatible con H, entonces existe un α_2 tal que

$$A_2 |e_1\rangle = \alpha_2 |e_1\rangle$$
.

En donde α_1 y α_2 son escalares dentro del campo en el cual estan definidos los kets del espacio vectorial en cuestion. Ahora bien, calculemos lo siguiente

$$A_1A_2|e_1\rangle = A_1\alpha_2|e_1\rangle = \alpha_2A_1|e_1\rangle = \alpha_1\alpha_2|e_1\rangle$$

y por otra parte, tenemos

$$A_2A_1|e_1\rangle = A_2\alpha_1|e_1\rangle = \alpha_1A_2|e_1\rangle = \alpha_1\alpha_2|e_1\rangle.$$

Por lo tanto

$$A_1A_2|e_1\rangle = A_2A_1|e_1\rangle \implies A_1A_2 = A_2A_1.$$

Lo cual es una contradicción, ya que habiamos supuesto que $[A_1, A_2] \neq 0$.

En conclusión tenemos que los eigenkets de H están degenerados.

Por otra parte, si consideramos el problema de fuerza central dado por el Hamiltoniano

$$H = \frac{\mathbf{p}^2}{2m} + V(r),$$

sabemos que éste conmuta con los operadores de momento angular L_x , L_y y L_z , sin embargo, éstos no conmutan entre sí.

5. a) Calcula

$$\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2$$

donde el valor esperado se toma para el estado S_z+ . Usando tu resultado revisa la relación de incertidumbre generalizada

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} \left| \langle [A, B] \rangle \right|^2$$

con $A \to S_x$ y $B \to S_y$. b) Revisa la relación de incertidumbre con $A \to S_x$ y $B \to S_y$ para el estado S_x +. **Solución.**

 S_x , S_y y S_z , en términos de los kets base $\{|+\rangle, |-\rangle\}$, están escritos como

$$S_x = rac{\hbar}{2} \left(|+
angle \langle -|+|-
angle \langle +|
ight),$$
 $S_y = rac{\hbar}{2} \left(-i |+
angle \langle -|+i |-
angle \langle +|
ight),$ $S_z = rac{\hbar}{2} \left(|+
angle \langle +|-|-
angle \langle -|
ight).$

De manera que el valor esperado de S_x y S_y para el estado S_z +, el cual escribiremos como $|+\rangle$, viene dado por

$$\langle S_x \rangle_+ = \langle + | S_x | + \rangle = \langle + | \frac{\hbar}{2} (|+\rangle \langle -|+|-\rangle \langle +|) | + \rangle,$$

$$\implies \langle S_x \rangle_+ = \frac{\hbar}{2} (\langle +|+\rangle \langle -|+\rangle + \langle +|-\rangle \langle +|+\rangle),$$

pero sabemos que estos kets cumplen con $\langle +|+\rangle=1$, $\langle -|-\rangle=1$, y $\langle +|-\rangle=\langle -|+\rangle=0$. Con lo cual, tenemos que

$$\langle S_x \rangle = 0 \implies \langle S_x \rangle^2 = 0.$$
 (0.14)

Por otra parte, para S_x^2 , tenemos

$$S_x^2 = S_x S_x = \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right) \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right),$$

$$\implies S_x^2 = \frac{\hbar^2}{4} \left[\left(|+\rangle \langle -|+\rangle \langle -| \right) + \left(|+\rangle \langle -|-\rangle \langle +| \right) + \left(|-\rangle \langle +|+\rangle \langle -| \right) + \left(|-\rangle \langle +|-\rangle \langle +| \right) \right].$$

De la expresión anterior, el primer y ultimo término son cero, debido a la ortogonalidad de los estados, de manera que

$$S_x^2 = \frac{\hbar^2}{4} \left(\left| + \right\rangle \left\langle + \right| + \left| - \right\rangle \left\langle - \right| \right).$$

Ahora bien, calculemos el valor esperado de la expresión anterior para el estado $|+\rangle$

$$\langle + | S_x^2 | + \rangle = \frac{\hbar^2}{4} \left(\langle + | + \rangle \langle + | + \rangle + \langle + | - \rangle \langle - | + \rangle \right) = \frac{\hbar^2}{4},$$

$$\implies \left\langle S_x^2 \right\rangle_+ = \frac{\hbar^2}{4}.$$

Con lo cual

$$\langle (\Delta S_x)^2 \rangle_+ = \frac{\hbar^2}{4} - 0, \implies \langle (\Delta S_x)^2 \rangle_+ = \frac{\hbar^2}{4}.$$
 (0.15)

Ahora bien, para revisar el resultado

$$\langle (\Delta S_x)^2 \rangle \langle (\Delta S_y)^2 \rangle \geq \frac{1}{4} \left| \langle [S_x, S_y] \rangle \right|^2$$

Sabemos queen general, se cumple la siguiente relación

$$[S_i, S_j] = i\epsilon_{ijk}S_k,$$

de manera que, en nuestro caso, tenemos

$$[S_x, S_y] = iS_z.$$

Para calcular $(\Delta S_y)^2$ procederemos de manera análoga que para $(\Delta S_x)^2$, entonces

$$\langle +|S_y|+\rangle = \frac{\hbar}{2} \left(-i\langle +|+\rangle\langle -|+\rangle + i\langle +|-\rangle\langle +|+\rangle\right) \implies \langle S_y\rangle_+ = 0.$$

En donde hemos usado nuevamente las propiedades de ortogonalidad de los kets base. Ahora bien, construyamos S_y^2

$$S_y^2 = S_y S_y = \frac{\hbar}{2} \left(-i|+\rangle \langle -|+i|-\rangle \langle +| \right) \frac{\hbar}{2} \left(-i|+\rangle \langle -|+i|-\rangle \langle +| \right),$$

$$\implies S_y^2 = \frac{\hbar^2}{4} \left(-|+\rangle \langle -|+\rangle \langle -|+|+\rangle \langle -|-\rangle \langle +|+|-\rangle \langle +||+\rangle \langle -|-|-\rangle \langle +||-\rangle \langle +|),$$

$$\implies S_y^2 = \frac{\hbar^2}{4} \left(|+\rangle \langle +|+|-\rangle \langle -| \right),$$

en donde nuevamente se ha hecho uso de las propiedades de ortogonalidad de los kets base. De manera que

$$\left\langle + |\, S_y^2 \,| + \right\rangle = \frac{\hbar^2}{4} \left(\left\langle + | + \right\rangle \left\langle + | + \right\rangle + \left\langle + | - \right\rangle \left\langle - | + \right\rangle \right) \implies \left\langle S_y^2 \right\rangle_+ = \frac{\hbar^2}{4}.$$

Con lo cual

$$\langle (\Delta S_y)^2 \rangle_+ = \frac{\hbar^2}{4} - 0, \implies \langle (\Delta S_y)^2 \rangle_+ = \frac{\hbar^2}{4}.$$
 (0.16)

Ahora bien, para $\langle [S_x, S_y] \rangle_+$ tenemos

$$\langle [S_x, S_y] \rangle_+ = i \langle S_z \rangle_+,$$

$$\implies \langle S_z \rangle_+ = \frac{\hbar}{2} \left(\langle +|+\rangle \langle +|+\rangle - \langle +|-\rangle \langle -|+\rangle \right) = \frac{\hbar}{2}.$$

$$\implies i \langle S_z \rangle_+ = i \frac{\hbar}{2} \implies |\langle [S_x, S_y] \rangle| = \frac{\hbar^2}{4}.$$

$$(0.17)$$

Ahora bien, juntando los resultados dados en las ecuaciones (0.15), (0.16) y (0.17), tenemos

$$\frac{\hbar^2}{16} = \frac{\hbar^2}{4} \frac{\hbar^2}{4} \ge \frac{1}{4} \frac{\hbar^2}{4} = \frac{1}{4} \left(\frac{\hbar}{2}\right)^2,$$

$$\implies \langle (\Delta S_x)^2 \rangle \langle (\Delta S_y)^2 \rangle \ge \frac{1}{4} \left| \langle [S_x, S_y] \rangle \right|^2.$$

Para **b)** basicamente tenemos que hacer el mismo procedimiento, pero ahora para un estado diferente, para el estado S_x+ , el cual, en términos de la base $\{|+\rangle, |-\rangle\}$ esta dado por

$$|S_x;+\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle. \tag{0.18}$$

De manera que

$$\langle S_x; +|S_x|S_x; +\rangle = \langle S_x \rangle_{x+},$$

$$\implies \langle S_x \rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) (|+\rangle \langle -| +|-\rangle \langle +|) \left(\frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle \right),$$

desarrollando el producto del segundo por el tercer parentesis, tenemos lo siguiente

$$\implies \langle S_x \rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} |+\rangle \langle -| +\rangle + \frac{1}{\sqrt{2}} |+\rangle \langle -| -\rangle + \frac{1}{\sqrt{2}} |-\rangle \langle +| -\rangle + \frac{1}{\sqrt{2}} |-\rangle \langle +| -\rangle \right),$$

simplificando y operando por la izquierda tenemos

$$\implies \langle S_x \rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} | + \rangle + \frac{1}{\sqrt{2}} | - \rangle \right),$$

$$\implies \langle S_x \rangle_{x+} = \frac{\hbar}{4} \left(\langle +| + \rangle + \langle +| - \rangle + \langle -| + \rangle + \langle -| - \rangle \right) = \frac{\hbar}{4} 2,$$

$$\therefore \langle S_x \rangle_{x+}^2 = \frac{\hbar^2}{4}.$$

Ahora bien, para el valor esperado de S_x^2 procedemos como de costumbre

$$\begin{split} \left\langle S_x^2 \right\rangle_{x+} &= \frac{\hbar^2}{4} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) (|+\rangle \, \langle +| + |-\rangle \, \langle -|) \left(\frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle \right), \\ \Longrightarrow \left\langle S_x^2 \right\rangle_{x+} &= \frac{\hbar^2}{4} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} |+\rangle \, \langle +| +\rangle + \frac{1}{\sqrt{2}} |-\rangle \, \langle -| +\rangle + \frac{1}{\sqrt{2}} |+\rangle \, \langle +| -\rangle + \frac{1}{\sqrt{2}} |-\rangle \, \langle -| -\rangle \right), \end{split}$$

de manera que

$$\begin{split} \left\langle S_x^2 \right\rangle_{x+} &= \frac{\hbar^2}{4} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} | + \rangle + \frac{1}{\sqrt{2}} | - \rangle \right), \\ \Longrightarrow \left\langle S_x^2 \right\rangle_{x+} &= \frac{\hbar^2}{4} \frac{1}{2} \left(\langle +| + \rangle + \langle -| + \rangle + \langle +| - \rangle + \langle -| - \rangle \right) = \frac{\hbar^2}{4}, \\ & \therefore \left\langle S_x^2 \right\rangle_{x+} &= \frac{\hbar^2}{4}. \end{split}$$

Por lo tanto, tenemos que

$$\left\langle \left(\Delta S_x\right)^2\right\rangle_{x+} = \frac{\hbar^2}{4} - \frac{\hbar^2}{4} = 0$$

De manera que para que la igualdad se satisfaga, es necesario que $\langle S_z \rangle_{x+} = 0$. En efecto, queremos verificar que

$$\left\langle \left(\Delta S_{x}\right)^{2}\right\rangle_{x+}\left\langle \left(\Delta S_{y}\right)^{2}\right\rangle_{x+}\geq\frac{1}{4}\left|\left\langle \left[S_{x},S_{y}\right]\right\rangle_{x+}\right|^{2},$$

pero acabamos de ver que $\left\langle \left(\Delta S_x\right)^2\right\rangle_{x+}=0$, de manera que es necesario que $\left\langle \left[S_x,S_y\right]\right\rangle_{x+}=0$, pero sabemos que $\left\langle \left[S_x,S_y\right]\right\rangle_{x+}=i\left\langle S_z\right\rangle_{x+}$.

Así que ahora calculemos $\langle S_z \rangle_{x+}$

$$\langle S_{z}\rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) (|+\rangle \langle +| -|-\rangle \langle -|) \left(\frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle \right),$$

$$\implies \langle S_{z}\rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} |+\rangle \langle +| +\rangle - \frac{1}{\sqrt{2}} |-\rangle \langle -| +\rangle + \frac{1}{\sqrt{2}} |+\rangle \langle +| -\rangle - \frac{1}{\sqrt{2}} |-\rangle \langle -| -\rangle \right),$$

$$\implies \langle S_{z}\rangle_{x+} = \frac{\hbar}{2} \left(\frac{1}{\sqrt{2}} \langle +| + \frac{1}{\sqrt{2}} \langle -| \right) \left(\frac{1}{\sqrt{2}} |+\rangle - \frac{1}{\sqrt{2}} |-\rangle \right),$$

$$\implies \langle S_{z}\rangle_{x+} = \frac{\hbar}{4} \left(\langle +| +\rangle + \langle -| +\rangle - \langle +| -\rangle + \langle -| -\rangle \right) = \frac{\hbar}{4} \left(1 - 1 \right) = 0.$$

Por lo tanto

$$\left|\left\langle \left[S_x,S_y\right]\right\rangle_{x+}\right|=0,$$

y en consecuencia, tenemos que se satisface la relación de incertidumbre.