Quick Review

	р1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average

	р1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						_
<u>.</u> р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
р1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Single Link

	a	b	c	d	e	f
a	J	12	6	3	25	4
b		9	19	8	14	15
c			9	12	5	18
d				9	11	9
e						7
f						

	ad	b	c	e	f
ad	9	8	6	11	4
b		9	19	14	15
c			9	5	18
e				9	7
f					9

	adf	b	ce
adf	9	8	6
b		0	14
ce			0

	adfce	b
adfce	0	8
b	8	0

Complete Link min(max distances)

	a	b	c	d	e	f
a	4	12	6	3	25	4
b		9	19	8	14	15
c			9	12	5	18
d				9	11	9
e						7
f						

	ad	b	c	e	f
ad	0	12	[12	25	9
b		0	19	14	15
c			9	5	18
e					7
f					

	ad	b	ce	f
ad	0	12	25	9
b			[19	15
ce				[18
f				

Properties of intergroup similarity

Single linkage

- can produce "chaining," where a sequence of close observations in different groups cause early merges of those groups
- Complete linkage has the opposite problem.
 - It might not merge close groups because of outlier members that are far apart.
- Group average represents a natural compromise,
 - but depends on the scale of the similarities. Applying a monotone transformation to the similarities can change the results.

Properties of intergroup similarity

- Single-link is suitable for non-elliptical shape clusters
- But, it is sensitive to noise and may cause a chain effect and produce straggly clusters

Hierarchical Clustering: Time and Space

SPACE

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.

TIME

- O(N³) time in many cases
 - ◆There are N steps, and at each step, the size, N², proximity matrix must be updated and searched
 - ◆Complexity can be reduced to O(N² log(N)) time if we use a special structure like a heap or sorted lists

Hierarchical Clustering: Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- Do not scale well: time complexity of at least O(N² logN), where n is the number of total objects
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Hierarchical Clustering

Two main types of hierarchical clustering

Agglomerative

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive

- Start with one, allinclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance matrix to Merge or split one cluster at a time

Hierarchical Clustering

Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. Until only a single cluster remains

Key operation is the computation of the proximity of two clusters

Different approaches exists to define the distance between clusters

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with an arbitrary vertex (consider it a tree with one vertex)
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q

Algorithm MST Divisive Hierarchical Clustering

- Compute MST for the proximity graph
- Repeat

Create a new cluster by breaking the link corresponding to the

largest distance (smallest similarity)

Until only singleton clusters remain

Remarks

	Partitioning Clustering	Hierarchical Clustering
Time Complexity	O(n)	$O(n^2 \log n)$
Pros	Easy to use and Relatively efficient	Outputs a dendrogram that is desired in many applications.
Cons	Sensitive to initialization; bad initialization might lead to bad results. Need to store all data in memory.	higher time complexity; Need to store all data in memory.

Cluster Validity

Cluster Validity

For cluster analysis, we want to evaluate the "goodness" of the resulting clusters?

But "clusters are in the eye of the beholder"!

- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Measures of Cluster Validity

Numerical measures to judge cluster validity:

- External Index: measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
- Internal Index: measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
- □ Relative Index: Used to compare two different clusterings or clusters.
 - Often, an external or internal index is used for this function, e.g., SSE or entropy

Unsupervised Cluster Evaluation

- Consider two unsupervised approaches for cluster evaluation using the Proximity Matrix
 - Correlation of actual and Ideal Proximity matrices
 - Visualization
- Two matrices
 - Similarity Matrix for the data set
 - Ideal Similarity Matrix (cluster label from cluster analysis)
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters

Measuring Cluster Validity Via Correlation

- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of Ideal and proximity matrices for the K-means clusterings of the following two data sets.

Corr = 0.9235

Corr = 0.5810

 Order the similarity matrix with respect to cluster labels and inspect visually.

Clusters in random data are not so crisp

DBSCAN

Clusters in random data are not so crisp

K-means

Clusters in random data are not so crisp

Complete Link

Internal Measures: SSE

- Clusters in more complicated data aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters

Shows a plot of the SSE vs the no of clusters for a (bisecting) k-means clustering of the data

Internal Measures: SSE

SSE curve for a more complicated data set

SSE of clusters found using K-means

Internal Measures: Cohesion and Separation

Cluster Cohesion: Measures how closely related are objects in

a cluster

Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters

Internal Measures: Cluster Cohesion

Cohesion: Measures how closely related are objects in a cluster

Cohesion (
$$C_i$$
)= $\sum_{x,y \in C_i} proximity(x, y)$

The proximity function can be a similarity or a dissimilarity.

Cohesion can be centroid based

Cohesion
$$(C_i) = \sum_{x \in C_i} proximity(x, m_i)$$

Cohesion is within cluster sum of squares (SSE) if we let proximity to be squared Euclidean distance

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

where C_i is the cluster i, m_i is the mean of cluster i

Internal Measures: Separation

Separation: Measure how distinct or well-separated a cluster is from

Separation $(C_i, C_j) = \sum_{x \in C_i, y \in C_i} proximity(x, y)$

Separation $(C_i, C_i) = proximity(m_i, m_i)$ | Separation $(C_i) = proximity(m_i, m)$

where $|C_i|$ is the size of cluster i, m_i is the mean of cluster i and m is the overall mean of all data points

Internal Measures: Separation

Separation: Measure how distinct or well-separated a cluster is from other clusters

Separation $(C_i) = proximity(C_i, C_j)$

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

Separation is measured by the between cluster sum of squares where $|C_i|$ is the size of cluster i, m_i is the mean of cluster i and m is the overall mean of all data points

Internal Measures: Cohesion and Separation

Example: SSE = WSS(Cohesion) +BSS(separation) = constant

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2 \left| BSS = \sum_{i} |C_i| (m - m_i)^2 \right|$$

$$WSS = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$

$$BSS = 4 \times (3-3)^2 = 0$$

K=2 clusters:
$$WSS = (1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$$

 $BSS = 2 \times (3-1.5)^2 + 2 \times (3-4.5)^2 = 9$

Internal Measures: Combine Cohesion & Separation

- We can combine the idea of cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combines ideas of cohesion & separation
- Silhouette Coefficient for an individual point, i
 - Calculate \mathbf{a} = average distance of i to the points in its cluster
 - Calculate $b = \min$ (average distance of i to points in another cluster)

The silhouette coefficient for a point is

$$s = 1 - a/b$$
 if $a < b$

(or s = b/a - 1 if $a \ge b$, not the usual case)

Typically between 0 and 1. The closer to 1 the better.

Average Silhouette width for a cluster is the average of silhouette coefficients of points in the cluster