WTW 124 CLASS TEST 1

Show your steps clearly and note that this is a closed book test.

1. Consider the vectors $\bar{u} = \langle 1, 1, 2 \rangle$, $\bar{v} = \langle 0, 1, 0 \rangle$ and $\bar{w} = \langle 0, 1, 1 \rangle$ in \mathbb{R}^3 . Find (if possible) the value of $\bar{u} + (\bar{v} \cdot \bar{w})$.

2. Let \bar{u} and \bar{v} be vectors in \mathbb{R}^n . Prove that if \bar{u} and \bar{v} are not parallel and $a\bar{u}+b\bar{v}=a_1\bar{u}+b_1\bar{v}$ for $a,a_1,b,b_1\in\mathbb{R}$, then $a=a_1$ and $b=b_1$.

3. Find α such that the vectors $\bar{u} = \langle -3, \alpha, 2 - \alpha \rangle$ and $\bar{v} = \langle 2, \alpha, \alpha - 2 \rangle$ are orthogonal. [2]

4. Consider the lines

$$L_1 = \{ \langle 1+t, 2, 3+2t \rangle : t \in \mathbb{R} \} \text{ and } L_2 = \{ \langle 1, 2, 2+s \rangle : s \in \mathbb{R} \}.$$

[3]

Show in details that $L_1 \neq L_2$.