Vegetable Recognition using Computer Vision and Image Processing Techniques

Higher Diploma in Software Engineering22.2F

Digital Image Processing Module Project

KAHDSE22.2F-020 L.H.M Fernando

School of Computing and Engineering

National Institute of Business Management

Image Processing and Data Augmentation

Image 1 tomato

cropping, and adjusting brightness.

reason-: increase the quality of the image

Input output

Image 2 beans

rotating, adjusting brightness and contrast

reason-: increase the quality of the image

Input output

Data Preprocessing

Application Development

import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import numpy as np, cv2 as cv

```
train_path = '/kaggle/input/vegetable-image-dataset/Vegetable Images/train'
val_path = '/kaggle/input/vegetable-image-dataset/Vegetable Images/validation'
train_ds = tf.keras.utils.image_dataset_from_directory(train_path)
val_ds = tf.keras.utils.image_dataset_from_directory(val_path)
vege_names = train_ds.class_names
vege_names
model = Sequential()
model.add(layers.Rescaling(1./255, input_shape=(256, 256, 3)))
```

```
model.add(layers.Conv2D(16, 3, padding='same', activation='relu'))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(32, 3, padding='same', activation='relu'))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(16, 3, padding='same', activation='relu'))
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(len(vege_names)))
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
hist = model.fit(train_ds, validation_data=val_ds, epochs=10)
acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
```

```
loss = hist.history['loss']
val_loss = hist.history['val_loss']
epochs\_range = range(10)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='upper left')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper left')
plt.title('Training and Validation Loss')
plt.show()
test_path = '/kaggle/input/vegetable-image-dataset/Vegetable Images/test/Bitter_Gourd/1208.jpg'
img = cv.imread(test_path)
rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)
resized = cv.resize(rgb, (256, 256))
img_array = np.expand_dims(resized, 0)
predictions = model.predict(img_array)
```

```
score = tf.nn.softmax(predictions[0])

print(
    "This image most likely belongs to {} with a {:.2f} percent confidence."
    .format(vege_names[np.argmax(score)], 100 * np.max(score))
)

plt.imshow(resized)
plt.show()
```