Fyzikální praktikum 1. **pracovní úkol # 5**

FJFI ČVUT V Praze

Měření Poissonovy konstanty a dutých objemů

Michal Červeňák	erveňák	
dátum merania: 17.10. 2016		
skupina: 4		
Klasifikasa		

1 Úkol 1

1.1 Pracovní úkol

- 1. Změřte Poissonovu konstantu metodou kmitajícího pístku.
- 2. Změřte Poissonovu konstantu Clément-Désormesovou metodou. Nezapomeňte provést opravu vašeho měření na systematické chyby.
- 3. Oba výsledky vzájemně porovnejte (procentuálně) a diskutujte, jestli je v rámci chyb můžete považovat za stejná.

1.2 Postup merania

1.2.1 Metoda kmitajícího pístku

- 1. ventilom bol nastavený prúd vzduchu tak aby piest kmital medzi značkami
- 2. bol spustený digitálny čítač kmitov a nastavený na počítanie kmitov po $t=300\,\mathrm{s}.$
- 3. po uplynutí intervalu boli dáta zaznamenané a opätovné spustenie počítanie.

1.2.2 Clémentova-Désormesova metoda

- 1. Nádoba bola natlakovaná pomocou mechu, bol uzavretý prívodný ventil
- 2. tlak v nádobe bol odmeraný
- 3. pomocou ventilu bol tlak vyrovnaný s atmosferickým, pričom bol zaznamenaný čas otvorenia ventilu.
- 4. počkalo sa $\sim 1\,\mathrm{min}$ na ustálenie teplôt v nádobe s okolím a následne bol zmeraný opäť tlak v aparatúre.

1.3 Pomôcky

Barometr, aparatura na měčené Poissonovy konstanty Clément-Désormesovou metodou, aparatura pro měření Poissonovy konstanty metodou kmitajícího pístku.

1.4 Teória

Poissonova konstanta κ j pomer merného tepla C_p pri stálom objeme a pri stálom objeme C_V , teda

$$\kappa = \frac{C_p}{C_V} \,.$$

1.4.1 Clémentova-Désormesova metoda

Metóda určuje Poissonova konstanta z adiabatického deja, pri ktorom vypúšťame plyn z nádoby kde je pretlak h. A po vypustení a ustálení teplôt h'. Pre výpočet κ môžeme odvodiť vzorec

$$\kappa = \frac{h}{h - h'}.$$

1.4.2 Metoda kmitajícího pístku

Pre hodnotu κ môžeme odvodiť vzťah na závislosť do doby kmitu

$$\kappa = \frac{4mV}{T^2pr^4}\,,\tag{1}$$

kde

$$p = b + \frac{mg}{\pi r^2} \,,$$

,
pričom b je atmosferický tlak, hmotnosť piestu je
 $m=4.59\cdot 10^{-3}\,\mathrm{kg}$, objem banky je $V=1.1331\,\mathrm{a}$ priemer piestu je
 $2r=11.9\cdot 10^{-3}\,\mathrm{m}$.

1.5 Výsledky merania

1.5.1 Metoda kmitajícího pístku

V tab. 1 sú zaznamenané počty kmitov za čas $t=300\,\mathrm{s}$, pre jednotlivé merania. Z hodnôt v tab 1 bol vypočítaná priemerná hodnota početu kmitov $\langle N \rangle = 882 \pm 5$. Priemerná hodnota bola dosadená do vzťahu 1 a bola vypočítaná Poissonova konstanta $\kappa=1,68\pm0,01$.

1.5.2 Clémentova-Désormesova metoda

Touto metódou boli namerané 2 "vzorky dát". Prvá v pre otvárací čas pod 200 ms a druhá nad tento čas. Dáta boli vynesené do grafu obr. 1 a každé zvlášť preložené lineárnou funkciou. Následne bola vypočítaná extrapoláciou dat hodnota $\kappa_{(0)}$.

Pre dáta s otváracím časom pod 200 ms je hodnota $\kappa_{(0)} = 1,36 \pm 0,04$ a pre hodnoty s otváracím časom nad 200 ms bola vypočítaná $\kappa_{(0)} = 1,29 \pm 0,03$.

N[1]
877
879
872
876
874
875
877
881
882
884
887
888
888
889
891
892

Tab. 1: Namerané počty kmitov za čas $t = 300 \,\mathrm{s}$

1.6 Diskusia

Pri metóde kmitajúceho piestu spôsobuje hlavný zdroj nepresností a systematických chýb netesnosť medzi piestom a aparatúrou. Ďalej aj pomerne mala dierka na vypúšťanie plynu. Teda expanzia nieje okamžitá a vyrovnanie tlakov úplné. Zaujímavosťou je zvyšovanie počtu kmitov s pripadajúcim časom, mojou teóriou na vysvetlenie tohoto javu je na zahrievanie piestu trením a teda jeho zväčšenie a teda sa zlepšilo tesnenie a neunikalo toľko plynu, pokrajoch.

Clémentova-Désormesova metoda sa však viac približuje očakávanému výsledku $\kappa = \sim 1,40~pre~N_2~alebo~O_2[1]$. Hlavné nepresnosti pri tejto metóde spočívajú v nie dokonalým vyrovnaním teplôt po vypustení plynu. A nevhodná funkcia na extrapoláciu dát.

1.7 Záver

Clémentova-Désormesovou metódou bola $\kappa_{(0)}=1,36\pm0,04,$ a metódou kmitajúceho piestu $\kappa=1,68\pm0,01.$

2 Úkol #2

2.1 Pracovní úkol

- 1. Určete objem láhve metodou vážení.
- 2. Určete objem ťeze láhve pomocí komprese plynu.
- 3. Oba výsledky vzájemně porovnejte.

Obr. 1: extrapolácia nameraných hodnôt pre t=0

2.2 Postup merania

2.2.1 Metóda kompresie plynu

- 1. povolením ventilu bol vyrovnaný tlak v byrete s atmosferickým tlakom.
- 2. Vertikálnym pohybom nádoby s vodou bola hladina v byrete ustálená na úroveň 0 %.
- 3. Ventil pol zatvorený.
- 4. následne sa pohlo nádobou s vodou nahor.
- 5. počkalo sa na ustálenie hladín a boli odčítané hodnoty Δh , V_2 .
- 6. Postup sa opakoval niekoľkokrát pre veľkú nádobu.
- Meraná nádoba bola vymenená za utesnenie a postup bol zopakovaný pre meranie objemu len hadičky.

2.2.2 Metóda vážení

- 1. Nádoba bola odvážená na digitálnych váhach
- 2. Nádoba bola pookraj naplnená vodou a dôkladne osušení jej povrch
- 3. Naplnená nádoba bola opäť odvážená
- 4. Bola odmeraná teplota vody.

2.3 Pomôcky

Fľaška (nádoba), plynová byreta s porovnávacím ramenem, katetometr, teploměr, barometr, digitálne váhy do 5 kg.

3 Teória

3.0.1 Metóda kompresie plynu

Pre metódu kompresie plynu v našom prípade môžeme odvodiť vzťah

$$V = (V_2 - V_1) \frac{p}{\Delta p} + V_2 - V_{100}, \qquad (2)$$

, kde

$$\Delta p = \Delta h \varrho g \,.$$

Pričom V_1 je objem v byrete pri vyrovnaní tlakov. Δh je rozdiel hladín, a V_2 výška hladiny po kompresií.

V našom prípade $V_1=0\,\%$. Pričom $V_{100}=65,6\,\mathrm{cm}^3$

3.0.2 Metóda vážení

Jednotkový objem vody je závisí na teplote t v °C podľa vzťahu

$$V_v = 0.9998 \cdot (1 + 0.00018t) \frac{\text{cm}^3}{\text{g}}.$$
 (3)

Potom objem metódou váženia určíme ako

$$V = (m_n - m_p) V_v. (4)$$

3.1 Výsledky merania

3.1.1 Metóda kompresie plynu

V tab. 2 sú zaznamenané namerané hodnoty V_2 a Δh z ktorých bola vypočítaná hodnota V. V prvej časti tabuľky sú hodnoty pre fľašku v druhej časti je hodnota pre samotnú hadičku.

Objem fľašky po odčítaný objemu hadičky bol určený ako $V=(816.7\pm148.3)~{\rm cm}^3.$

3.1.2 Metóda vážení

Hmotnosť prázdnej suchej nádoby bola určená $m_p = (582 \pm 1)$ g, jednotková hmotnosť vody pri t = 11.8 °C bola určená podľa 3 ako $V_v = 1.002 \, \frac{\text{cm}^3}{\text{g}}$ Hmotnosť po naplnení vodou bola určená $m_n = (1598 \pm 1)$ g. Podľa vzorca 4 bol objem nádoby určený ako $V = (1018 \pm 2) \, \text{cm}^3$.

3.2 Diskusia

Vo výsledkoch vidíme veľmi veľký rozdiel nameraných hodnôt, nepresnosť merania pri metóde kompresie plynu spôsobovali extrémne veľké netesnosti, pri ktorých pretlak z aparatúry veľmi rýchlo unikal. Teda toto meranie bolo zaťažené veľkou systematickou chybou. Aj napriek snahe merať rýchlo sa štatistická chyba pohybuje na úrovni 18 %. Naopak metóda váženia sa ukazuje ako veľmi presná.

$V_2[\%]$	$\Delta h[{ m cm}]$	$V[{ m cm}^3]$
5	3.51	896.08
9	5.85	975.39
6	5.9	619.31
4.5	4, 10	676.69
8	4,68	1089.74
8	6.83	728.29
9	7.41	757.49
7	5.27	833.51
8	5.46	925.44
6.75	5.85	715.14
1	10.34	5.58

Tab. 2: Namerané hodnoty $V_2, \, \Delta h$ a vypočítaný objem V, v prvej časti pre nádobu a v druhej pre hadičku.

3.3 Záver

Metódou váženia bol objem nádoby určený na $V=(1018\pm2)~{\rm cm^3}$. Metódou kompresie plynu bol určený objem $V=(816,7\pm148,3)~{\rm cm^3}$.

Reference

[1] Článok dostupný na https://cs.wikipedia.org/wiki/Poissonova_konstanta#Hodnoty_pro_re.C3.A1ln.C3.A9_plyny