EECE 5698 - ST: Reinforcement Learning

HW3

Spring 2023

Problem 1.

Consider the following system with the state space $S = \{A, B\}$, and action space $A = \{a', a'\}$. The state transition diagram is shown below, where $P(s' = B \mid S = A, a = a') = 0.8$, $P(S' = A \mid S = A, a = a') = 0.2$.

a) construct transition matrices M(a1), M(a2) and compute Ro, Rs.

b) Perform matrix-form palicy Iteration method with initial 'policy $\pi'(A)=0^2$, $\pi'(B)=0^1$ and $\delta=0.9$ to compute π^* .

Problem 2.

For the system defined in Problem 2, perform matrix-from Valle Iteration method with $V_0(x)=0$, y=0.9 and $\theta=0.5$ to compute V^* and F^* .

Problem 3.

Consider an MDP with two States [A, B] and two actions [a', a']. The system state transition save governed through the following transition matrices:

$$M(a') = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $M(a^2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

The rawlard is as hollows $\begin{cases} 0 & \text{moving to State 8} \\ 0 & \text{moving to State A} \end{cases}$
 $\begin{cases} -1 & \text{taking action a} \\ 0 & \text{taking action a} \end{cases}$

Consider an initial policy $\mathcal{T} = \begin{bmatrix} \mathcal{T}(A) \\ \mathcal{T}'(B) \end{bmatrix} = \begin{bmatrix} a' \\ a^2 \end{bmatrix}$, $\delta = 0.9$ and episode legth 5. Perform Monte Corlo Policy Iteration method to obtain the best policy.

* you need to show all trajectories, the approximation of Q-values and Policy
Improvement Lill the time that Policies in two Consecutive Iterations Stays the same.

Questions about the HW should be directed to TA, Begum Taskazan, at taskazan.b@northeastern.edu.