The uComp Protégé Plugin: Crowdsourcing Enabled Ontology Engineering

Florian Hanika ¹ florian.hanika@wu.ac.at **Gerhard Wohlgenannt** ¹ wohlg@ai.wu.ac.at **Marta Sabou**² marta.sabou@ifs.tuwien.ac.at

¹Institute f. Information Business, **Vienna Univ. of Economics (WU)**, Austria ²**Technical University (TU)**, **Vienna**, Austria

EKAW 2014 November 28, 2014

Introduction - What is this about?

- The integration of crowdsourcing into the ontology engineering workflow with the help of a Protégé plugin.
- Certain tasks like validating concept relevance, subClassOf relations, etc. are outsourced to crowd workers.
- Evaluate the impact on quality, cost and time of using crowdsourcing instead of domain experts.

Research Questions

- Which tasks can be crowdsourced? (→ literature review)
- How to support crowdsourcing enabled ontology engineering?
 (→ build a tool)
- ullet Is crowd-based ontology engineering effective and scalable? (ullet evaluation)

Human Computation (HC)

- ... using human input for tasks/problems that computers cannot solve (yet)
- Different types: Games with a Purpose, paid crowdsourcing, and altruism.
- Typical (mechanised labour): paid crowdsourcing to solve micro-tasks, such as:

```
Is every dog a mammal?
```

Related Work / Existing Efforts

Crowdsourcing already widely used in different areas, for example in

- NLP community: GATE Crowdsourcing Plugin [Bontcheva et al, 2014],
- ZenCrowd (entity linking), CrowdMap (ontology alignment)
- Validation of subClassOf relations [Noy et al., 2013]

Why use HC in Ontology Construction / Engineering?

- Ontology creation typically needs domain experts and is expensive and cumbersome
- Ontology learning often used to bootstrap the ontology building process
- Using the crowd is feasible to further reduce cost and effort
- It has been demonstrated that crowd-workers provide high-quality assessments, especially for general knowledge domains [Noy et al., 2013]
- ⑤ Crowdsourcing has been proven useful, but high investments necessary for setting up infrastructure and task → tool support needed, eg. from inside Protégé

Typical Ontology Engineering (OE) Tasks in Literature

Step 1: which OE tasks?

- ... where crowdsourcing has been applied or appears feasible
 - Specification of Term Relatedness: are two terms related?
 - Verification of Relation Correctness
 - Specification of Relation Type
 - Verification of Domain Relevance

The Workflow of the Plugin

Figure: Main Stages when using the uComp Plugin

The uComp API

- REST API
- Communication between the Protégé plugin and the crowdsourcing platforms
- configuration file
 - API key: can be obtained from us
 - Number of judgements per unit
 - \$-cents paid per judgement

The Protégé Plugin

Step 2: Tool Support

Plugins usually done as views in Protégé

 Accessible for download from inside Protégé (via plugin repository) – named uComp Crowdsourcing Validation plugin

Domain Relevance Verification

The user interface

Typical Elements of the UI

- Task-specific information: eg. concept to be verified
- Generic Information: ontology domain, etc. (pre-filled)
- Task description: Predefined descriptions (for CF users) can be extended here
- Recursive control: also verify all subconcepts?
- CrowdFlower or GWAP?
- Calculate cost

The Workflow

Figure: Main stages when using the uComp plugin

subClassOf Relation Validation

Generated CrowdFlower Job Interface

subClassOf Task

Verify that a term is more specific than another

Instructions -

In the domain of Climate Change: Is class study a subclass of science?

- Yes
- O No

Which is the second letter of the first term?

InstanceOf Relation Validation

Setup of Feasibility Evaluation

Step 3: Evaluation

First: Feasibility

- Domains: Climate change and finance
- Ontology size: ca 100 concepts, ca 40 subClassOf relations per ontology
- Evaluators: 8 domain experts (Manual setting), 4 experts using CrowdFlower (Crowd setting) instead

Evaluation Tasks

- Domain relevance: For each concept decide if it is relevant for the domain
- Subsumption: For each subClassOf relation verify if it is correct.
- InstanceOf relations

Results – Feasibility – Time and Cost

	Climate Change Ontology		
	Domain Rel	SubClass Validation	
Time Manual	27.4	23.0	
Time Crowd	242	282	
Time Saved	0.11	0.08	
Cost Manual	11.9	9.9	
Cost Crowd	2.1	1.33	
Cost Saved	83%	86%	

Table: Task duration in minutes and costs (in \$)

Results – Feasibility – Agreement

	Climate Change Ontology		
	Concept Relevance	Subclass Val.	
Manual	0.338 (8)	0.502 (8)	
Crowd	0.633 (4)	0.841 (4)	
ManualCrowd	0.392 (12)	0.582 (12)	

Table: Fleiss' Kappa values of inter-rater agreement per setting and when combining the data of the two settings.

Interpretation: The agreement between the crowd and experts is higher than among experts, possibly because crowdsourcing data is the majority view.

Setup of Scalability Evaluation

- Done for SWJ extended version of the paper
- Assess the plugin's effect on the time, cost and quality for large, real-life and domain specific ontologies
- Domain: anatomy (medical) human.owl ontology which represents the human anatomy part of the NCI thesaurus (from Anatomy track of the Ontology Matching Initiative 10)
- Ontology size: 4304 concepts, 3761 subClassOf relations
- Evaluators: time and cost estimations for experts, based on wage of a research scientist of \$26 per hour
- Ontology: we assume it is correct, can use it as a baseline

Introducing Errors

- Domain relevance check: we randomly added 1000 concepts from the domains of tennis and climate change
- Subsumption validation: we randomly selected 800 leaf pairs of concepts, and swapped them → introduce 1600 wrong subClassOf relations

Results - Scalability

	Concept relevance Verification		Subsumption Verification	
	Crowd	Est. Manual	Crowd	Est. Manual
Time (Hours/Days)	19/0.8	19.65/2.5	136/5.6	39.20 (4.9)
Cost (\$)	104+26TF	511	155+39TF	1019
Cost (Percentage)	25%	100%	19%	100%
Quality (Accuracy)	0.99	_	0.895	_

Table: Results of the large scale evaluation for the two tasks. Values of the manual approach are estimated based on the results of the feasibility experiments.

Summary of Evaluation / Interpretation

- Feasibility study:
 - Cost: reduction of 40% to 83% depending on settings used
 - Quality: Comparable with that of tasks performed by ontology engineers
- Large scale / medical domain:
 - good quality results (accuracy of 89% and 99%)
 - Completion Time: similar to domain experts
 - Cost reduction: of 75% to 81%

Quality Control in Crowdsourcing (CrowdFlower)

- Provide Gold units easy questions with predefined answers to filter spammers and bots
- Geographical selection: Eg restrict workers to UK, US, AUS, ...
- Pay reasonably if feeling screwed, crowdworkers will rush through units
- Only accept high-quality (Level 3) CrowdFlower contributors

Conclusions/Contributions

Summary: Presented the uComp Protégé plugin and its evaluation

Contributions:

- Identified ontology engineering task suited for crowdsourcing
- Implemented a Protégé plugin
- Sevaluations show significant cost reduction through crowdsourcing while providing acceptable quality

Future Work

Future work:

- A clearer methodology and guidelines of where crowdsourcing is helpful and where not.
- 2 Towards expert sourcing: Investigate engaging the community in a similar fashion.
- Plugin development: new tasks, improved task monitoring, etc.
- Further scenarios (like ontology matching), extended usability studies.

Thank you!

Results - InstanceOf Verification

	No. instances	Accuracy	Avg. time (Min)	Avg. Cost (\$)
Manual	116	1.0	45.6	19.76
CrowdFl.	116	1.0	120	6.31

Table: Results of the InstanceOf Verification (T2) task.

Results – Relation Type Suggestion

	Climate Change	Tennis
S_Manual	0.536 (5)	0.366 (5)
S_ManualCrowd	0.531 (6)	0.368 (6)

Table: Fleiss' Kappa values of inter-rater agreement for the Specification of Relation Type (T3) task, for two domains.