Теорема Маркова о финальных вероятностях

Некоторые смежные области

Закон больших чисел Слабая зависимость

Испытания, связанные в цепь Матрицы переходов Уравнения Чепмена-Колмогорова Однородные цепи Инвариантные распределения Итерации Спектр матрицы

Повторение

Однородные цепи определяются условием

$$Q_{S+u}^{t+u} = Q_S^t$$

и, следовательно,

$$Q_s^t = Q_0^{t-s}.$$

 $Q_s^t = Q_0^{t-s}$. При этом в записи

нижний индекс, как правило, не пишут (хотя и подразумевают), а уравнения Чепмена-Колмогорова записывают в форме $Q^{s}Q^{t} = Q^{s+t}$ где $s \ge 0, t \ge 0$, и используют для изучения процесса свойства возникающей полугруппы операторов.

Существенную роль играют инвариантные распределения π , для которых $\pi Q^t = \pi, \ t \ge 0,$

Все испытания *однородной* цепи имеют одинаковое число атомов (может быть, бесконечное), и все матрицы перехода — квадратные.

Элементы матрицы перехода однородной цепи иногда удобно связать с графом, вершины которого – состояния цепи.

Динамика одномерных распределений однородной цепи определяется итерациями $\pi_{k+1} = \pi_1 Q^k$

Формулировка теоремы Маркова

Пусть все элементы переходной матрицы однородной цепи с конечным числом состояний $\,N\,$ положительны:

min
$$q_{i,j} = c > 0$$
, $1 \le i, j \le N$

Тогда

1. Существуют пределы
$$B = \lim_{k \to \infty} Q^k$$
, $k \to \infty$

2. Предельная матрица $\,B\,$ подчиняется уравнениям

$$Q B = B = B Q, \qquad B = B^2$$

$$bQ = b$$

имеет единственное нормированное решение $\,b$, все строчки предельной матрицы $B\,$ совпадают с $\,b.$

4.

Распределения $\pi_{k+1} = \pi_1 Q^k$ имеют предел – распределение π

которое автоматически будет стационарным и может быть найдено как решение знакомого уравнения

$$\pi Q = \pi$$

Допуская вольность речи, говорят, что стечением временем стирается зависимость и устанавливается стационарный режим