STAT 380:

Classification: Logistic Regression

Subhadip Pal

Outlook of the unit

Prediction and Classification Approaches

- Classification Techniques
 - Logistic regression
 - Discriminant analysis
- Evaluating Performance of a Classification Technique
- Tree-based methods: Decision trees
 - Classification trees
 - Regression trees

Classification
Technique: Logistic
Regression

A Few Examples of classification

Banking: determining whether a transaction is fraudulent.

E-commerce: forecasting whether a particular order will be paid for or which customer will buy a specific product.

National security: identifying whether a certain behavior indicates a possible thread.

Tourism: determining the rating a hotel should be awarded.

Medicine: diagnosing whether a particular disease is present.

Assumptions

- Extracting knowledge from massive data sets assumes that they contain non-random, useful information.
- Classification algorithms, especially predictions, do not have further assumptions about how the data was generated.
- Most classical statistical methods are not valid if their assumptions are not fulfilled.

This does not mean that big data is always good data.

Notations

n: number of observations in a sample

p: number of predictor variables (features)

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$
:matrix of predictor variables

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \text{ vector of response (dependent / target) variable}$$

Data : $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, where x_i is a vector of length p, represents the observed data from which a statistical model is built.

Classification Rule

Classification employs a set of p inputs to explain a value of an outcome variable y.

- x is an object in an object space X
- y = y(x) is the response in a response space \mathbb{Y}
- Algorithm a(x) is a function from X to Y

In classification, \mathbb{Y} is a set of discrete categories, $\{C_1, C_2, ..., C_K\}$, exclusively and exhaustively defining possible states of an element. $\mathbb{Y} = \{C_1, C_2\}$ binary classification

 $\mathbb{Y} = \{C_1, C_2, ..., C_K\}$ multiclass classification

Reminder (Types of Data)

Bernouli Distribution: A probability distribution for the Binary random Variables

$Y \sim \mathsf{Bernouli}(\pi)$

Support of the random variable: $Y \in \{0, 1\}$

Probabilities: $P(Y = 1) = \pi$ and $P(Y = 0) = 1 - \pi$

$$E(Y) = \pi$$
 and $Var(Y) = \pi(1 - \pi)$

Terminology: Often, in terms of notation we say:

"Y = 1" \equiv "Success" / "Survived" / "Accepted" / "Win"

"Y = 0" = "Failure" / "NotSurvived" / "NotAccepted" / "Loss"

Bernouli Distribution: A probability distribution for the Binary random Variables

$Y \sim \mathsf{Bernouli}(\pi)$

Support of the random variable: $Y \in \{0, 1\}$

Probabilities: $P(Y = 1) = \pi$ and $P(Y = 0) = 1 - \pi$

$$E(Y) = \pi$$
 and $Var(Y) = \pi(1 - \pi)$

Terminology: Often, in terms of notation we say:

"Y = 0" \equiv "Failure" / "NotSurvived" / "NotAccepted" / "Loss"

Definition: Odds of "Success"

Odds: The odds of success are defined as the ratio of the probability of success (say, π) over the probability of failure $(1 - \pi)$.

Odds("Success") =
$$\frac{\pi}{1-\pi}$$

Example: In a Game of rolling a fair dice twice. A player wins if both throws result in same number.

$$Prob(Win) = \pi = \frac{6}{36} = \frac{1}{6}$$
,

$$Prob(Loss) = 1 - \pi = 1 - \frac{1}{6}$$

Odds("Win") =
$$\frac{Prob(Win)}{Prob(Loss)} = \frac{\pi}{1-\pi} = \frac{\frac{1}{6}}{\frac{5}{6}} = \frac{1}{5}$$

Example: In a Game of rolling a fair dice twice. A player wins if both throws result in same number.

$$Prob(Win) = \pi = \frac{6}{36} = \frac{1}{6}$$

$$Prob(Loss) = 1 - \pi = 1 - \frac{1}{6}$$

$$\mathsf{Odds}(\mathsf{``Win"}) = \frac{\mathit{Prob}(\mathit{Win})}{\mathit{Prob}(\mathit{Loss})} = \frac{\pi}{1-\pi} = \frac{\frac{1}{6}}{\frac{5}{6}} = \frac{1}{5}$$

Example: Probability of 15 years "survival" of a patient after a critical medical procedure is "0.9"

$$Prob(Survival) = \pi = 0.9$$
,

$$1 - \pi = 1 - 0.9 = 0.1$$

Odds("Survival") =
$$\frac{Prob(Win)}{Prob(Loss)} = \frac{\pi}{1-\pi} = \frac{0.9}{0.1} = 9$$

Odds of 15 year survival of the patient after the medical procedure is 9 to 1

Example: Probability of 15 years "survival" of a patient after a critical medical procedure is "0.9"

$$Prob(Survival) = \pi = 0.9$$
,

$$1 - \pi = 1 - 0.9 = 0.1$$

$$\mathsf{Odds("Survival")} = \frac{\mathit{Prob(Win)}}{\mathit{Prob(Loss)}} = \frac{\pi}{\mathsf{1} - \pi} = \frac{\mathsf{0.9}}{\mathsf{0.1}} = \mathsf{9}$$

Odds of 15 year survival of the patient after the medical procedure is 9 to 1

Definition: Logit Function

Logit: Logit is the natural log of an odds; That is, the logit of a number π between 0 and 1 is given by the formula:

$$\mathsf{Logit}(\pi) = \mathsf{log}\left(\mathsf{Odds}(\pi)\right) = \mathsf{log}\left(\frac{\pi}{1-\pi}\right)$$

The range of Logit(π) is $-\infty$ to ∞ when the range of π is between 0 and 1.

Definition: Expit Function

Expit: Expit of a number x between $-\infty$ and ∞ is given by:

$$\mathsf{Expit}(x) = \frac{e^x}{1 + e^x}$$

The range of Expit(x) is 0 to 1 when the range of x is between $-\infty$ and ∞ .

'Expit' and 'Logit' are Inverse Function to each other

$$\mathsf{Expit}(x) = \pi \implies x = \mathsf{Logit}(\pi)$$

 $\mathsf{Logit}(\pi) = x \implies \pi = \mathsf{Expit}(x)$

'Expit' and 'Logit' are Inverse Function to each other

In a logistic regression, $\mathsf{Logit}(\pi)$ is modelled instead of a direct modelling of π .

Logistic Regression

Why There is a Need Logistic Regression?

We have already discussed the **linear regression model** and their estimation.

Why do we need additional regression methods?

- In standard linear regression we assume that the Response variable is continuous.
- What if the Response variable is categorical? in nature?

Examples of Binary Variables

Let's imagine independent observations y_1, \ldots, y_n of a variable of interest Y, which can take **only two values** (e.g. 0 and 1), e.g.:

- Workpiece is defective(1)/not defective(0)
- Banking: A customer is considered creditworthy: yes(1)/no(0)
- Health Science: Therapy is successful: yes(1)/no(0).

: Is the standard linear regression **appropriate** for modeling binary response/dependent variables?

Reminder: The SLR and Response Type

- The random sample of size n is denoted as $\{\underbrace{\mathbf{y}_i},bx_i\}_{i=1}^n$ where the respone $\underbrace{\mathbf{y}_i}\in\mathbb{R}$.
 - The simple linear regression line is given by

$$Y = \alpha + \beta X + \varepsilon.$$

$$arepsilon \sim \mathsf{N}(\mathsf{0}, \sigma^{\mathsf{2}})$$

- The simple linear regression is not applicable when \mathbf{y}_i NOT continuous.
- Specifically, we use the logistic regression when the data is of following type: random sample of size n is denoted as $\{\underline{\mathbf{y}}_i, \underline{\mathbf{x}}_i\}_{i=1}^n$ where $\underline{\mathbf{y}}_i \in \{\mathbf{0}, \mathbf{1}\}$ are responses and $\underline{\mathbf{x}}_i$ pertains to numerical or continuous covariates.

Reminder: The SLR and Response Type

- The random sample of size n is denoted as $\{\underline{\mathbf{y}}_i, bx_i\}_{i=1}^n$ where the respone $\underline{\mathbf{y}}_i \in \mathbb{R}$.
- The simple linear regression line is given by

$$\mathbf{Y} = \alpha + \beta \mathbf{X} + \varepsilon.$$

$$arepsilon \sim \mathsf{N}(\mathsf{0}, \sigma^{\mathsf{2}})$$

- The simple linear regression is not applicable when \mathbf{y}_i NOT continuous.
- Specifically, we use the logistic regression when the data is of following type: random sample of size n is denoted as $\{\underbrace{\mathbf{y}_i}_{i}, \underbrace{\mathbf{x}_i}_{i=1}^n$ where $\underbrace{\mathbf{y}_i}_{i} \in \{0,1\}$ are responses and $\underbrace{\mathbf{x}_i}_{i}$ pertains to numerical or continuous covariates.

Different Data Types

- For standard Linear regression: Response variable is Continuous.
- Methods are available for Discrete random variables. Also, the variations of the continuous random variables are also possible.
- The Logistic regression is applicable when: Response variable is Categorical.
- Multicategory logistic regression are available when more than two categories are present in the Ordinal, Nominal Response variable.
- Standard Logistic regression is commonly used to analyze binary data.
- Other Binary regression models: <u>Probit</u> regression model, Complementary log-log model.

Reminder: Bernouli Distribution to model the Response

 $Y \sim \mathsf{Bernouli}(\pi)$

Support of the random variable: $Y \in \{0, 1\}$

Probabilities: $P(Y = 1) = \pi$ and $P(Y = 0) = 1 - \pi$

In-stead of modeling Y directly we model the probabilities π

In particular: In a logistic regression, $\mathsf{Logit}(\pi)$ is assumed to be a function of the covariates.

The Logistic Regression

The random sample of size n is denoted as $\{\mathbf{y}_i, bx_i\}_{i=1}^n$ where

 $\underline{\mathbf{y}}_i \in \{0,1\}$ and $\underline{\mathbf{x}}_i$ can be of any type numerical or categorical.

$$\mathbf{y}_i \sim \mathsf{Bernouli}(\pi_i), 0 < \pi_i < 1.$$

$$\pi_i = Prob(Y_i = 1)$$

Model

$$\mathsf{Logit}\left(\pi_i\right) = \mathbf{x}_i^T \mathbf{\beta}$$

A Few Results & Terminology in Logistic Regression

'Logit Link' and Probability of "Success" Logistic Regression

'Logit' and 'Expit'

$$\mathsf{Logit}\left(\pi_{i}\right) = \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}$$

$$\implies \pi_i = \operatorname{Expit}\left(\mathbf{x}_i^T \mathbf{\beta}\right)$$

'Logit' and 'Expit'

$$\mathsf{Logit}(\pi_i) = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}$$

$$\implies \pi_i = \mathsf{Expit}\left(\mathbf{\underline{x}}_i^T \mathbf{\underline{\beta}}\right)$$

Explanation of 'Logit' Link

$$\pi_{i} = \mathsf{Expit}\left(\mathbf{x}_{i}^{\mathsf{T}} \mathbf{\beta}\right) = \frac{\mathsf{exp}\left(\mathbf{X}_{i}^{\mathsf{T}} \mathbf{\beta}\right)}{1 + \mathsf{exp}\left(\mathbf{X}_{i}^{\mathsf{T}} \mathbf{\beta}\right)}$$

'Logit' and 'Odds' in Logistic Regression

Reminder: Odds of "Success"

Odds: The odds of success are defined as the ratio of the probability of success (say, π) over the probability of failure $(1 - \pi)$.

$$\mathsf{Odds}(\mathsf{``Success''}) = \frac{\pi}{\mathsf{1} - \pi}$$

'Logit' and 'Oddds'

$$\mathsf{Logit}(\pi_i) = \mathbf{\underline{x}}_i^T \mathbf{\underline{\beta}} \implies \mathsf{log}\left(\frac{\pi_i}{1 - (\pi_i)}\right) = \mathbf{\underline{x}}_i^T \mathbf{\underline{\beta}}$$

$$\implies \log\left(\operatorname{Odds}(\pi_i)\right) = \mathbf{x}_i^T \mathbf{\beta} \implies \operatorname{Odds}(\pi_i) = e^{\mathbf{x}_i^T \mathbf{\beta}}$$

$$\mathsf{Logit}(\pi_i) = \mathbf{\underline{x}}_i^T \underline{\beta} \implies \mathsf{Odds}(\pi_i) = \mathsf{exp}\left(\mathbf{\underline{x}}_i^T \underline{\beta}\right)$$

'Odds' and the 'Logit' Link

$$\mathsf{Odds}(\pi_i) = \mathsf{exp}(\mathbf{X}_i^\mathsf{T} \underline{\boldsymbol{\beta}})$$

Interpretation of a Regression Coefficient: Intercept

Interpretation of the Intercept

Let the fitted model be

Logit
$$(\pi_i) = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}$$

$$Odds(\pi_i) = \exp\left(\frac{\beta_0}{\beta_0} + \beta_1 X_{i,1} + \ldots + \beta_p X_{i,p}\right)$$

$$\Rightarrow \frac{\mathsf{Odds}(\pi_i) = \mathsf{exp}\left(\beta_0 + \beta_1 \times 0 + \ldots + \beta_p \times 0\right) = \mathsf{exp}\left(\beta_0\right)}{\mathsf{when} \ x_{i,1} = 0, x_{i,2} = 0, \ldots, x_{i,p} = 0.}$$

 e^{β_0} : Odds that the corresponding Response is 1 when al the covariate values are zero.

Interpretation of the Intercept

Let the fitted model be

$$Logit(\pi_i) = \frac{\beta_0}{\beta_0} + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}$$

$$Odds(\pi_i) = \exp\left(\frac{\beta_0}{\beta_0} + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}\right)$$

$$\Longrightarrow \begin{cases} \mathsf{Odds}(\pi_i) = \exp\left(\frac{\beta_0}{\beta_0} + \beta_1 \times 0 + \ldots + \beta_p \times 0\right) = \exp\left(\frac{\beta_0}{\beta_0}\right) \\ \mathsf{when} \ x_{i,1} = 0, x_{i,2} = 0, \ldots, x_{i,p} = 0. \end{cases},$$

 e^{β_0} : Odds that the corresponding Response is 1 when al the covariate values are zero.

Interpretation of the Intercept

Let the fitted model be

$$Logit(\pi_i) = \frac{\beta_0}{\beta_0} + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}$$

$$\Longrightarrow \begin{cases} \mathsf{Odds}(\pi_i) = \exp\left(\frac{\beta_0}{\beta_0} + \beta_1 \times 0 + \ldots + \beta_p \times 0\right) = \exp\left(\frac{\beta_0}{\beta_0}\right) \\ \mathsf{when} \ x_{i,1} = 0, x_{i,2} = 0, \ldots, x_{i,p} = 0. \end{cases},$$

 e^{β_0} : Odds that the corresponding Response is 1 when all the covariate values are zero.

Interpretation of a Regression Coef.: A Numerical Covariate

Interpretation of a regression coefficient: numerical variable

Logit
$$(\pi_i) = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}$$

Assuming: $x_{i,1}$ to be

a numerical covariate.

Odds
$$(\pi_i)|_{X_{i,1}=X} = \exp\left(\beta_0 + \frac{\beta_1}{x} + \beta_2 x_{i,2} \dots + \beta_p x_{i,p}\right)$$

$$Odds(\pi_i)|_{X_{i,1}=X+1} = \exp\left(\beta_0 + \frac{\beta_1}{x} (x+1) + \beta_2 x_{i,2} \dots + \beta_p x_{i,p}\right)$$

$$\frac{\operatorname{Odds}(\pi_i) \mid_{X_{i,1} = X + 1}}{\operatorname{Odds}(\pi_i) \mid_{X_{i,1} = X}} = \exp(\beta_1).$$

Interpretation of a regression coefficient: numerical variable

Logit
$$(\pi_i) = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}$$

Assuming: $x_{i,1}$ to be

a numerical covariate.

Odds
$$(\pi_i)|_{X_{i,1}=X} = \exp\left(\beta_0 + \frac{\beta_1}{x} + \beta_2 x_{i,2} \dots + \beta_p x_{i,p}\right)$$

Odds
$$(\pi_i)|_{X_{i,1}=X+1} = \exp\left(\beta_0 + \frac{\beta_1}{\beta_1}(x+1) + \beta_2 x_{i,2} \dots + \beta_p x_{i,p}\right)$$

$$\frac{\left(\operatorname{Odds}(\pi_{i})\right|_{X_{i,1}=X+1}}{\left(\operatorname{Odds}(\pi_{i})\right|_{X_{i,1}=X}}=\exp(\frac{\beta_{1}}{\beta_{1}}).$$

Interpretation of a regression coefficient corresponding to a numerical variable

$$\frac{\left| \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X + 1}}{\left| \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X}} = \mathsf{exp}(\frac{\beta_1}{\beta_1}).$$

$$\left.\mathsf{Odds}(\pi_i)\right|_{X_{i,1}=X+1} = \mathsf{exp}(\frac{\beta_1}{\beta_1}) \left.\mathsf{Odds}(\pi_i)\right|_{X_{i,1}=X}.$$

 e^{β_1} : If all other variables remain fixed, the Odds of "Success ($Y_i = 1$)" is changed by the factor e^{β_1} when the $x_{1,i}$ is **increased by 1**.

Interpretation of a regression coefficient corresponding to a numerical variable

$$\frac{\left| \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X + 1}}{\left| \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X}} = \mathsf{exp}(\frac{\beta_1}{\beta_1}).$$

$$\left. \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X + 1} = \mathsf{exp}(\frac{\beta_1}{\beta_1}) \left. \mathsf{Odds}(\pi_i) \right|_{X_{i,1} = X}.$$

 e^{β_1} : If all other variables remain fixed, the Odds of "Success ($Y_i = 1$)" is changed by the factor e^{β_1} when the $x_{1,i}$ is **increased by** 1.

Finally: Interpretation of a regression coefficient corresponding to a numerical variable

$$rac{\left| egin{array}{c} \mathsf{Odds}(\pi_i) \
ight|_{X_{i,1} = \ X} + 1 \ \hline \left| \mathsf{Odds}(\pi_i) \
ight|_{X_{i,1} = \ X} \end{array}
ight| = \mathsf{exp}(\ eta_1 \ igr).$$

$$\frac{\mathsf{Odds}(\pi_i)\mid_{X_{i,1}=X+1}}{\mathsf{Odds}(\pi_i)\mid_{X_{i,1}=X}} \times \mathsf{100\%} = \left(\frac{e^{\beta_1}}{}-1\right) \times \mathsf{100\%}.$$

 $(e^{\beta_1}-1) \times 100\%$: If all other variables remain fixed, the Odds of "Success ($Y_i=1$)" is increased (decreased if it is a negative number) by $(e^{\beta_1}-1) \times 100\%$ when the variable $x_{1,i}$ is **increased by** 1.

Finally: Interpretation of a regression coefficient corresponding to a numerical variable

$$rac{\left. \mathsf{Odds}(\pi_i) \mid_{X_{i,1} = X + 1} \right.}{\left. \mathsf{Odds}(\pi_i) \mid_{X_{i,1} = X} \right.} = \exp(rac{eta_1}{eta_1}).$$

$$\frac{\mathsf{Odds}(\pi_i)\mid_{X_{i,1}=X+1} - \left|\mathsf{Odds}(\pi_i)\mid_{X_{i,1}=X}\right|}{\left|\mathsf{Odds}(\pi_i)\mid_{X_{i,1}=X}\right|} \times 100\% = \left(\frac{e^{\beta_1}}{} - 1\right) \times 100\%.$$

 $(e^{\beta_1}-1)\times 100\%$: If all other variables remain fixed, the Odds of "Success ($Y_i=1$)" is increased (decreased if it is a negative number) by $(e^{\beta_1}-1)\times 100\%$ when the variable $x_{1,i}$ is **increased by** 1.

Interpretation of Regression Coefficient: A Categorical Covariate

Interpretation of a reg. coeff.: Categorical Covariate

Logit
$$(\pi_i) = \beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{\beta_2} x_{i,2} + \ldots + \beta_p x_{i,p}$$
 Assume: $x_{i,2}$ to be a

Categorical Gender variable. $x_{i,2} = 1$ for Female and $x_{i,2} = 0$ for Male.

$$\mathsf{Odds}(\pi_i) \mid_{\prime_{\mathit{Male'}}} = \exp \left(\beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{\beta_2} \mathbf{0} \right) + \beta_2 x_{i,2} \ldots + \beta_p x_{i,p}$$

$$\mathsf{Odds}(\pi_i) \mid_{r_{\mathsf{Female'}}} = \exp \left(\beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{\beta_2} \left(1 \right) + \beta_2 x_{i,2} \dots + \beta_p x_{i,p} \right)$$

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\mathsf{`Female'}}}{\mathsf{Odds}(\pi_i)\mid_{\mathsf{`Male'}}} = \mathsf{exp}(\beta_2).$$

Interpretation of a reg. coeff.: Categorical Covariate

Logit
$$(\pi_i) = \beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{2} x_{i,2} + ... + \beta_p x_{i,p}$$
 Assume: $x_{i,2}$ to be a

Categorical Gender variable. $x_{i,2} = 1$ for Female and $x_{i,2} = 0$ for Male.

$$\mathsf{Odds}(\pi_i) \mid_{\prime_{\mathit{Male'}}} = \exp \left(\beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{\beta_2} \mathbf{0} \right) + \beta_2 x_{i,2} \ldots + \beta_p x_{i,p} \right)$$

$$\mathsf{Odds}(\pi_i) \mid_{r_{\mathsf{Female'}}} = \exp \left(\beta_0 + \beta_1 x_{i,1} + \frac{\beta_2}{2} \left(1 \right) + \beta_2 x_{i,2} \dots + \beta_p x_{i,p} \right)$$

$$\frac{\left| \mathsf{Odds}(\pi_i) \right|_{\cdot_{\mathit{Female'}}}}{\left| \mathsf{Odds}(\pi_i) \right|_{\cdot_{\mathit{Male'}}}} = \mathsf{exp}(\frac{\beta_2}{}).$$

Interpretation: Regression Coefficient for a Categorical Covariate

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Female'}}}}{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}} = \mathsf{exp}(\frac{\beta_2}{}).$$

$$\frac{\mathsf{Odds}(\pi_i) \mid_{\mathsf{`Female'}}}{\mathsf{exp}(\beta_2)} = \mathsf{exp}(\beta_2) \left(\frac{\beta_2}{\mathsf{Odds}} \right) \left(\frac$$

 e^{β_2} : Assuming all other variables remain fixed, the Odds of "Success ($Y_i=1$)" for a datapoint corresponding to the category 'Female' is e^{β_2} times the Odds of a data point with the category 'Male'

Interpretation: Regression Coefficient for a Categorical Covariate

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Female'}}}}{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}} = \mathsf{exp}(\frac{\beta_2}{}).$$

$$Odds(\pi_i) \mid_{Female'} = exp(\frac{\beta_2}{}) Odds(\pi_i) \mid_{Male'}$$
.

 e^{β_2} : Assuming all other variables remain fixed, the Odds of "Success ($Y_i = 1$)" for a datapoint corresponding to the category 'Female' is e^{β_2} times the Odds of a data point with the category 'Male'

Finally: Interpretation: Regression Coefficient for a Categorical Covariate

$$rac{ \mathsf{Odds}(\pi_i) \mid_{\mathsf{`Female'}} }{ \mathsf{Odds}(\pi_i) \mid_{\mathsf{`Male'}} } = \mathsf{exp}(rac{eta_2}{eta_2}).$$

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Female'}}} - \mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}}{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}} \times 100\% = \left(\frac{e^{\beta_1}}{} - 1\right) \times 100\%.$$

 $(e^{\beta_1}-1)\times 100\%$: If all other variables remain fixed, the Odds/Chance of "Success $(Y_i=1)$ " for a 'Female' is $(e^{\beta_1}-1)\times 100\%$ more (less if it is a negative number) compared to the corresponding Odds/Chance for a 'Male'.

Finally: Interpretation: Regression Coefficient for a Categorical Covariate

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Female'}}}}{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}} = \mathsf{exp}(\frac{\beta_2}{}).$$

$$\frac{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Female'}}} - \mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}}{\mathsf{Odds}(\pi_i)\mid_{\cdot_{\mathit{Male'}}}} \times 100\% = \left(\frac{e^{\beta_1}}{} - 1\right) \times 100\%.$$

 $(e^{\beta_1}-1)\times 100\%$: If all other variables remain fixed, the Odds/Chance of "Success $(Y_i=1)$ " for a 'Female' is $(e^{\beta_1}-1)\times 100\%$ more (less if it is a negative number) compared to the corresponding Odds/Chance for a 'Male'.

Interpretation of coefficients: Summary

- The direct interpretation of the $\hat{\beta}$ is highly nontrivial and often non-intuitive.
- Therefore, in Logistic regression, it is common practice to interpret the $\exp(\hat{\beta})$ which has a straightforward interpretation with Odds.

$-\hat{eta}$	$Odds(\pi_i) = \frac{P(Y_i=1)}{P(Y_i=0)}$	%change in Odds	$P(Y_i=1)$
$\hat{\beta} > 0$	increases by $\exp(\hat{\beta})$	$(\exp(\hat{eta}) - 1) \times 100\%$	increases
$\hat{eta} < 0$	decreases by $\frac{\exp(\hat{\beta})}{\exp(\hat{\beta})}$	$(\exp(\hat{eta})-1) imes 100\%$	decreases
$\hat{\beta} = 0$	remains the same	0%	same

Awards Data


```
model.lr < -glm(Award \sim Read, data = performance, family = "binomial") \\ summary(model.lr)
```

```
Call:
qlm(formula = Award ~ Read, family = "binomial", data = performance)
Deviance Residuals:
   Min
             10 Median 30 Max
-2.0332 -0.6785 -0.3506 -0.1565 2.6143
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.79394 1.48174 -6.610 3.85e-11 ***
Read 0.15634 0.02561 6.105 1.03e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 222.71 on 199 degrees of freedom
Residual deviance: 167.07 on 198 degrees of freedom
AIC: 171.07
Number of Fisher Scoring iterations: 5
```

Reminder: Interpretation of coefficients

- The direct interpretation of the $\hat{\beta}$ is highly nontrivial and often non-intuitive.
- Therefore, in Logistic regression, it is common practice to interpret the $\exp(\hat{\beta})$ which has a straightforward interpretation with Odds.

\hat{eta}	$Odds(\pi_i) = \frac{P(Y_i = 1)}{P(Y_i = 0)}$	%change in Odds	$P(Y_i=1)$
$\hat{\beta} > 0$	increases by $\exp(\hat{\beta})$	$(\exp(\hat{\beta}) - 1) \times 100\%$	increases
$\hat{eta} < 0$	decreases by $\exp(\hat{\beta})$	$(\exp(\hat{eta})-1) imes 100\%$	decreases
$\hat{\beta} = 0$	remains the same	0%	same

- Model to be estimated: $P(AWARD = 1 \mid READ) = \frac{\exp(\beta_0 + \beta_1 * Read)}{1 + \exp(\beta_0 + \beta_1 * Read)}$
- Estimated parameter: $\hat{\beta}_1 = 0.15634$ (Regression coefficient corresponding to the variable 'Read')
- $e^{\hat{\beta}_1} = \exp(0.15634) = 1.1692$: For each hour increment in the variable 'Read' (Study time aiming the award), on average, the Odds/chance for a student to win the prize in increased by a factor of 1.1692 times.
- $(e^{\hat{\beta}_1-1)\times 100\%} = 16.92\%$: For each hour increment in the variable 'Read' (Study time aiming the award), on average, a student have 16.92 % more Odds/chance to win the prize.

- Model to be estimated: $P(AWARD = 1 \mid READ) = \frac{\exp(\beta_0 + \beta_1 * Read)}{1 + \exp(\beta_0 + \beta_1 * Read)}$
- Estimated parameter: $\hat{\beta}_1 = 0.15634$ (Regression coefficient corresponding to the variable 'Read')
- $e^{\hat{\beta}_1} = \exp(0.15634) = 1.1692$: For each hour increment in the variable 'Read' (Study time aiming the award), on average, the Odds/chance for a student to win the prize in increased by a factor of 1.1692 times.
- $(e^{\hat{\beta}_1-1)\times 100\%}=16.92\%$: For each hour increment in the variable 'Read' (Study time aiming the award), on average, a student have 16.92 % more Odds/chance to win the prize.

- Model to be estimated: $P(AWARD = 1 \mid READ) = \frac{\exp(\beta_0 + \beta_1 * Read)}{1 + \exp(\beta_0 + \beta_1 * Read)}$
- Estimated parameter: $\hat{\beta}_0 = -9.79394$ (Regression coefficient corresponding to the variable 'Read')
- $e^{\hat{\beta}_0}=\exp(-9.79394)<0.00006$: On an average, the Odds/Chance for a student to win the Award is less than 0.00006 if he/she spends 0 hours of Reading.

What is the estimated probability of wining the prize for a student, if she/she spends 70 hours of Read?

 $\frac{\exp{(-9.8+0.16*70)}}{1+\exp{(-9.8+0.16*70)}}=0.8$: The estimated probability of wining the prize for a student, if she/she spends 70 hours of Read is 0.80.

