Basic Statistics-2

Bollina Jaya Chandra

November, 2024

Data

A total of 15 print-heads were randomly selected and tested until failure. The durability of each print-head (in millions of characters) was recorded as follows: 1.13, 1.55, 1.43, 0.92, 1.25, 1.36, 1.32, 0.85, 1.07, 1.48, 1.20, 1.33, 1.18, 1.22, 1.29

Solution

a. Build 99% Confidence Interval Using Sample Standard Deviation

```
Sample standard deviation (s) = 0.18661427836285438 Degree of Freedom (df) = 14 t-critical for 99 confidence level with df of 14 = 2.976842734370834 Margin of error (mor) = t-critical * (s/\sqrt{n}) = 0.14343499804054372
```

99% CI for above sample is $(\bar{X} - \text{mor}, \bar{X} + \text{mor}) = (1.095231668626123, 1.3821016647072102)$

b. Build 99% Confidence Interval Using Known Population Standard Deviation

```
Population standard deviation (\sigma) = 0.2
z-critical for 99 confidence level = 2.5758293035489004
Margin of error (mor) = z-critical * (\sigma/\sqrt{n}) = 0.13301525327090588
```

99% CI for above Data is $(\bar{X} - \text{mor}, \bar{X} + \text{mor}) = (1.1056514133957607, 1.3716819199375725)$

Conclusion

The CI of known standard deviation is narrower compared to CI of sample standard deviation, because in known standard deviation, we are dealing with more certain parameter (σ) compared to sample standard deviation (s).