ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea in Ingegneria e Scienze Informatiche

Integrazione di RAG e LLM nello Sviluppo del Software

Tesi di laurea in: Programmazione ad oggetti

Relatore
Prof. Viroli Mirko

Candidato
Bollini Simone

Correlatori

Dott. Aguzzi Gianluca Dott. Farabegoli Nicolas

Abstract

I Large Language Model (LLM) addestrati per sviluppare il codice sono oggi altamente efficaci e in grado di generare soluzioni di qualità. L'addestramento fatto sui modelli è però su fonti generiche, questo non da quindi la possibilità al modello di generare soluzioni su misura per una specifica richiesta utilizzando casistiche già create dal programmatore o dalla propria azienda per casi simili. Da questo nasce l'esigenza di addestrare il modello per personalizzare le soluzioni proposte, contestualizzandole alla propria realtà aziendale e al proprio stile nel programmare. Il fine-tuning di un LLM è un processo molto costoso e non scalabile per essere aggiornato frequentemente. Per rispondere a questa esigenza entra in gioco la Retrieval-Augmented Generation (RAG), che permette aumentare la conoscenza del modello, recuperando informazioni da una base di conoscenza esterna al modello, come librerie specifiche di un azienda, arricchendo il prompt della query di input. Ricercando semanticamente i chunk maggiormente somiglianti a quanto richiesto se trovati, si inseriranno per completare la query inviata al LLM, estendendo la base di informazioni sulla quale genererà l'output con la risposta. Questa tesi approfondisce questi concetti e sperimenta l'integrazione di un RAG e un LLM con lo scopo di ottenere dal LLM risposte personalizzate che solo con la conoscenza del LLM anche se estremamente performante e preparato sarebbe stato impossibile ottenere.

Grazie a tutti voi.

V

Contents

CONTENTS

Abstract							
1	Introduzione						
	1.1	Essere programmatori nel 2025	1				
2	Addestrare un LLM per la Generazione del Codice						
	2.1	Scelta Modello	5				
	2.2	Raccolta e Preparazione dei Dataset	6				
		2.2.1 Pulizia e Pre-Processo	6				
	2.3	Pre-Addestramento	7				
	2.4	Fine-Tuning	8				
		2.4.1 Overfitting	8				
	2.5	Pre-Addestramento vs Fine-Tuning	8				
	2.6	Valutazione e Ottimizzazione	9				
		2.6.1 Metriche di Valutazione	9				
		2.6.2 Tecniche di Ottimizzazione	9				
3	RAG 12						
	3.1	Introduzione	11				
	3.2	Funzionamento	13				
		3.2.1 Creazione Vector Database	14				
		3.2.2 FASE 1: User query e function calling	14				
		3.2.3 Fase 2: Recupero delle Informazioni	15				
		3.2.4 Fase 3: Aumento del Prompt	15				
	3.3	Perchè RAG	15				
4	Implementazione di un Sistema RAG per lo Sviluppo di codice						
_	-	il linguaggio Java	17				
	4.1	Obiettivo	$\frac{17}{17}$				
	4.2	Architettura del Sistema	17				
	4.3	Software Utilizzati	19				

vii

CONTENTS

		4.3.1	Ollama	19			
		4.3.2	LLM				
		4.3.3	LangChain				
		4.3.4	BGE-M3				
		4.3.5	FAISS				
	4.4	Datas					
	4.5		rio base del Caso Studio				
	1.0	4.5.1	Codice di riferimento per rispondere alla query				
		4.5.2	Risultato Atteso				
	4.6		mentazione				
	1.0	4.6.1	Creazione dei Chunk				
		4.6.2	Arricchire i chunk con metadati relativi al codice				
		4.6.3	Generazione degli Embedding				
		4.6.4	Esecuzione di query sul Database FAISS				
		4.6.5	Creazione della Pipeline RAG				
		4.6.6	Risultati del Sistema RAG				
		4.6.7	Valutazione del RAG				
5	Conclusioni 3						
	5.1						
	5.2	-	e Prospettive Future				
				39			
Bi	bliog	graphy		39			

viii CONTENTS

Chapter 1

Introduzione

1.1 Essere programmatori nel 2025

Sono disponibili tantissimi (IDE) per lo sviluppo del codice uno di questi è Visual Studio Code, mentre GitHub può essere lo strumento dove condividere i progetti e lavorare in team. Se richiesta memoria GPU per piccoli progetti accademici è disponibile COLAB che permette di eseguire in remoto codice utilizzando GPU senza costi. Questi esempi sono parte di una panoramica di strumenti sempre più vasta, complessa e in rapita evoluzione, con un frequente cambio di software per realizzare un programma. Inoltre la complessità dei progettti è aumentanta disponendo sempre di più librerie e metodi per realizzare il codice. Un esempio d'utilizzo con gli strumenti sopra elencato potrebbe essere la realizzazione iniziale del progetto in locale utilizzado Visual Studio Code per poi riportare il tutto su GitHub, in un secondo momento il codice viene ripreso e aperto su Colab dove a sua volta il programma viene modificato ed infine rieseguito il Push sul progetto radice presente su GitHub. Ora nel 2025, la cosa che accomuna questi strumenti, è l'implemazione al loro interno di funzioni basate sull'IA, in grado di completare il codice, suggerire correzioni e creare documentazione pertinente. GitHub ha introdotto Copilot, un assistente IA per la scrittura del codice, questo strumento è integrabile per vari IDE tra cui proprio Visual Studo Code. Un esempio semplice ma che offre già un idea della vastità e della potenza di queste funzioni è l'utility di **Github Copilot** 'Generate Commit Message with Copilot' che propone il testo da utilizzare come descrizione di un commit, ho provato a riscontrare quanto fosse contestualizzato e coerente con quanto aggiornato e ho ottenuto il seguente risultato:

Add model files and configuration for Llama-3.2-3B-Instruct

Nel mio caso quanto proposto era corretto ed ho quindi eseguito il Commit con la descrizione proposta. Quanto è riuscito a fare Copilot è strabiliante, in pochi istanti ha analizzato il contesto ritornando come output una risposta semplice ma coerente rispetto a quanto cambiato. L'uso di questi strumenti sta rendendo il lavoro molto più dinamico e veloce, riducendo le interruzioni nel cercare soluzioni o per trovare le giuste parole per descrivere quanto fatto.

L'intelligenza artificiale sta rivoluzionando il modo in cui il software viene sviluppato, strumenti come Copilot utilizzando tutto il loro potenziale, possono creare la spina dorsale di un progetto in poco tempo lasciando al programmatore il compito di verificare e correggere solo in parte il codice proposto. In progetti complessi questo non riduce il ruolo del programmatore, anzi lo eleva a compiti di precisione e ad alto valore aggiunto delegando la stesura di parti del codice semplici e ripetitive

al software stesso. Per questi motivi capire come funzionano oggi questi strumenti è importante, sapere come chiedere e formulare correttamente le domande al LLM è fondamentale, esplicitando nel dettaglio con parole chiave mirate come deve essere realizzato il codice per indirizzarlo nell'elaborazione e ragionamento corretto. Altro compito complesso per il programmatore è non farsi troppo ammaliare dalle soluzioni proposte perché non sempre necessarie per quanto richiesto oppure diverse da quanto già conosciuto per realizzare una determinata funzione. Questo nuovo modo di lavorare permette di conoscere nuove soluzioni ma comporta test e tempo non sempre disponibile, il programmatore deve sempre avere il controllo del progetto, accettando generazione del codice automatica solo dove consapevole di quanto proposto e del suo impatto anche in casi di revisione e manutenzione futuri. Il codice deve rimanere rapidamente leggibile e coerente in tutte le sue parti, far generare il codice in automatico può portare ad una perdità di coerenza e leggibilità. Proprio per questo l'ultimo miglio da percorrere per sfruttare questi strumenti è la personalizzazione delle risposte del LLM, per ottenere risposte rimanendo nel contesto e nello stile di quanto già realizzato e conosciuto, per fare questo entra in gioco il **Fine-Tuning** e i **RAG** che verrano ampiamente approfonditi.

Chapter 2

Addestrare un LLM per la Generazione del Codice

L'addestramento di LLM per la generazione del codice di programmazione richiede una serie di passaggi complessi e costi significativi. Conoscere questo processo, senza addentrarsi nel dettaglio, è utile per poter poi comprendere al meglio la successiva implementazione con le tecniche di **RAG**. La procedura si divide nelle seguenti fasi:

2.1 Scelta Modello

Gli LLM utilizzano tipicamente architetture basate su trasformatori, che sono particolarmente efficaci nell'elaborazione di sequenze di dati, come il testo e il codice. I trasformatori utilizzano meccanismi di auto-attenzione per valutare l'importanza di diversi elementi in una sequenza, permettendo al modello di comprendere le relazioni tra parole o token. Questa capacità è fondamentale nella generazione del codice, poiché le dipendenze tra variabili e funzioni possono estendersi su ampie sezioni del codice, richiedendo al modello di considerare un ampio contesto per trovare le risposte corrette. L'architettura del modello scelto influenzerà in maniera decisiva tutte le successive fasi di addestramento. È utile notare che sebbene i trasformatori siano attualmente lo standard, esistono anche altri approcci come le reti neurali ricorrenti (RNN e LSTM) e nuove tecniche in continua evoluzione

come i Large Concept Models [WFS⁺24].

2.2 Raccolta e Preparazione dei Dataset

La qualità e la quantità dei dati per l'addestramento è di primaria importanza per prepare un modello alla generazione di codice in maniera efficace. È quindi essenziale utilizzare per il training codice proveniente da molteplici fonti tra cui codice sorgente, file readme, documentazione tecnica, commenti nel codice, pagine Wiki, API e discussioni su forum specializzati in programmazione, arricchendo così il dataset con esempi pratici e ricchezza terminologica. In rete è possibile trovare diverso materiale open source tra cui dataset già etichettati. Alcuni dataset hanno un valore altissimo, per tutelare il costo per produrli per certi dataset è previsto il diritto d'autore. I dati si dividono in due tipologie:

- Dati Strutturati: seguono un formato specifico e predefinito, seguono la struttora in coppie (descrizione, codice).
- Dati non Strutturati: non sono organizzati e sono quindi più difficili da interpretare dal modello.

2.2.1 Pulizia e Pre-Processo

La raccolta di dati va visionata con cura, se non si conosce la provenienza del codice è possibile che contenga bug o codice obsoleto che possono essere trasmessi al modello. Con la rapida evoluzione del codice molte librerie e tecniche vengono rapidamente deprecate e superate per questo anche utilizzando i più noti modelli LLM ad oggi disponibili, può capitare di ricevere come output codice obsoleto che risolve il quesito ma con soluzioni contenti tecniche, api e librerie deprecate o non più disponibili. Per questo motivo i dati raccolti devono essere quindi puliti e pre-processati per rimuovere errori e informazioni non pertinenti, garantendo così un dataset di alta qualità per l'addestramento.

Il modello per poter elaborare il dataset ha bisogno che quest'ultimo venga diviso in parti più piccole chiamate token per mantenere l'integrita del dato [Sta24], i token

possono essere parole, parti di parole o singoli caratteri, e questa suddivisione è fondamentale per:

- Gestione del contesto: mantenere la relazione semantica tra i diversi elementi del codice
- Efficienza computazionale: processare grandi quantità di testo in modo ottimizzato
- Limitazioni del modello: rispettare i limiti massimi di input del modello (tipicamente tra 512 e 4096 token)
- Preservazione della struttura: mantenere la struttura sintattica del codice sorgente

Ad esempio, nel codice Java, i token potrebbero includere:

- Parole chiave (public, class, static)
- Identificatori (nomi di variabili e metodi)
- Operatori e simboli (+, =, {, })
- Stringhe letterali e commenti

2.3 Pre-Addestramento

Il pre-addestramento di un LLM specializzato nella generazione di codice ha lo scopo di fornire al modello una conoscenza generale della sintassi e delle strutture logiche dei linguaggio di programmazione. Durante questa fase il modello impare a generare codice partendo da dati non etichettati utilizzando tecniche come il language modeling autoregressivo per insegnare al modello di predire il token successivo in una sequenza. Questo approccio rende la generazione contestualmente e coerente di codice, sfruttando la capacità del modello di "ricordare" il contesto anche su ampie sequenze di dati.

2.4 Fine-Tuning

Il fine-tuning è la fase in cui il modello già pre-addestrato viene ulteriormente specializzato per la generazione di codice adattando e migliorando il modello per specifici domini di applicazione. Durante questa fase, il modello affina le sue capacità attraverso dataset specializzati composti da coppie descrizione-codice, documentazione tecnica e commenti, esempi di bug-fixing e refactoring. **Tecniche di Apprendimento**:

- Supervisionato: Training su coppie input-output predefinite, il modello impara a mappare input di descrizione con linguaggio naturale a output di codice corrispondente.
- Per Rinforzo: Ottimizzazione basata su feedback e metriche di qualità
- Few-shot Learning: Adattamento a nuovi contesti con pochi esempi

2.4.1 Overfitting

Il processo di fine-tuning richiede un attento bilanciamento nell'apprendere dai dati di addestramento cercando di evitare di incorrere in overfitting. L'overfitting si verifica quando il modello si specializza troppo sui dati di addestramento, riducendo la sua capacità di generalizzazione producendo risposte errate o incoerenti su nuovi dati. Per evitare l'overfitting vengono utilizzati set di validazione, regolarizzazione e tecniche di dropout.

2.5 Pre-Addestramento vs Fine-Tuning

È importante comprendere la distinzione tra queste due fasi:

Pre-Addestramento

Il pre-addestramento è la fase iniziale dove il modello:

- Acquisisce una comprensione **generale** del linguaggio di programmazione
- Viene addestrato su grandi quantità di codice sorgente generico

- Impara le strutture base e la sintassi del linguaggio
- Non è ancora specializzato per compiti specifici

Fine-Tuning

Il fine-tuning è invece la fase di specializzazione dove il modello:

- Si adatta a un dominio specifico o a compiti particolari
- Utilizza dataset specifici e composti da dati strutturati

2.6 Valutazione e Ottimizzazione

Una volta addestrato, il modello deve essere rigorosamente valutato utilizzando metriche specifiche per la generazione di codice, come la correttezza sintattica, la funzionalità e l'efficienza del codice prodotto. I risultati della valutazione possono essere utilizzati per ulteriori ottimizzazioni, come aggiustamenti dei pesi del modello, modifiche all'architettura o includere dati di addestramento aggiuntivi per affrontare eventuali carenze.

2.6.1 Metriche di Valutazione

- Correttezza Sintattica: Verifica che il codice generato sia sintatticamente corretto.
- Funzionalità: Verifica che il codice generato realizzi la funzionalità desiderata.
- Efficienza: Valuta le prestazioni del codice in termini di tempo di esecuzione e utilizzo delle risorse.

2.6.2 Tecniche di Ottimizzazione

• Aggiustamento dei Pesi: Modifica dei pesi del modello per migliorare le prestazioni.

2.6. VALUTAZIONE E OTTIMIZZAZIONE

- Modifiche all'Architettura: Introduzione di nuove componenti o modifiche a quelle esistenti.
- Integrazione di Dati Aggiuntivi: Utilizzo di ulteriori dati di addestramento per migliorare le prestazioni.

Chapter 3

RAG

3.1 Introduzione

RAG Retrieval-Augmented Generation, (in italiano Generazione Aumentata tramite Recupero) è un sistema che permette di migliorare l'output di un LLM estendendo la sua conoscenza con nuove informazioni, al di fuori dai suoi dati di addestramento allo scopo di:

- ottenere risposte mirate e personalizzate contenti knowledge relativa a librerie e codice custom;
- migliorare il codice generato rendendolo più specifico al dominio riducendo le allucinazioni;
- facilitare l'assistenza da parte del modello nella fase di debugging migliorando la sua comprensione di sistemi complessi;

3.1. INTRODUZIONE

- supportare la creazione di documentazione aggiornata;
- permettere all'interno di un Team di migliorare la coerenza del codice scritto da diversi programmatori proponendo librerie e standard comuni;
- evitare risposte imprecise a causa della confusione terminologica, in cui diverse fonti utilizzano la stessa terminologia per parlare di cose diverse.

3.2 Funzionamento

Il sistema RAG si integra al LLM attivando un meccanismo di recupero delle informazioni per aumentare il prompt della richiesta. Il funzionamento si articola in diverse fasi qui sotto illustrate:

3.2.1 Creazione Vector Database

La propria *knowledge base* deve essere salvata in un database vettoriale, in modo da poter essere interrogata in maniera efficiente dal sistema RAG. Per creare questo database vengono utilizzati dati esterni al training set originale del LLM, provenienti da diverse fonti come:

- API e database interni
- Archivi documentali
- File di testo e codice

La creazione di un database ben strutturato e la parte più importante di tutto il processo, dividere il codice in chunk correttamente etichettando ogni elemento con i corretti metadati è fondamentale per la sucessiva fase di interrogazione. Il processo di creazione del Vector Database segue la seguente pipeline:

- Chunking: Divisione del codice in chunk
- Embedding: Conversione dei chunk in vettori numerici
- Vector Store: Memorizzazione degli embedding in un database vettoriale

3.2.2 FASE 1: User query e function calling

Data la query d'input da parte dell'utente, il sistema RAG è avviato da una chiamata di funzione per ricercare nel Vector Database i chunk più rilevanti per la query. Nei modelli più complessi in RAG è di fatto un agente integrato nel sistema che viene chiamato all'occorreza qunado la base di conoscenza del LLM non è sufficiente per fornire una risposta adeguata, in questo modo viene anche razionalizzato e ottimizzato il costo computazionale del processo, attivato solo quando strettamente neceassario. Rimane comunque questo passaggio una scelta configurabile in base allo specifico utilizzo del sistema, ad esempio per un azienda che utilizza il LLM solo per compiti specifici può essere configurato il sistema in modo che chiamii la funzione RAG sempre.

3.2.3 Fase 2: Recupero delle Informazioni

Quando l'utente sottopone una query:

- La domanda viene convertita in un vettore
- Il sistema cerca nel database vettoriale le informazioni più pertinenti
- Viene calcolata la rilevanza attraverso calcoli matematici vettoriali

3.2.4 Fase 3: Aumento del Prompt

Se trovate, il sistema RAG arricchisce il prompt dell'utente con le informazioni recuperate, fornendo al LLM un contesto più ampio e dettagliato per generare una risposta coerente.

3.3 Perchè RAG

Il RAG permette di superare le limitazioni di conoscenza dei LLM, fornendo risposte accurate e contestualizzate grazie all'integrazione di conoscenze interne e personalizzate. Dopo aver costruito un sistema RAG è possibile eseguire rapidamente aggiornamenti al **Vector database**, cosa che sarebbe molto più difficile da ottenere con il fine-tuning, che richiede tempo e risorse significative. Avere un LLM addestrato fin da subito su misura per le proprie sarebbe fantastico ma per quasi tutte le aziende richiede risorse impossibili da sostenere ed è quindi molto più facile costruire un RAG che intervenire direttamente sulla conoscenza del LLM solitamente di proprietà di terzi.

Chapter 4

Implementazione di un Sistema RAG per lo Sviluppo di codice per il linguaggio Java

4.1 Objettivo

Questo caso studio si propone di verificare il livello di personalizzazione e qualità delle risposte di un LLM potenziando la query nel prompt di input attraverso la creazione di un sistema RAG di supporto, analizzando singolarmente le varie fasi che compongono il processo. Il sistema RAG è testato con della classi JAVA uniche create appositamente per il caso studio.

Problematica da affrontare:

Chiamate a più livelli di classi e metodi, dove il RAG potrebbe non essere in grado di estrapolare le informazione necessarie da inserire nel prompt per ottenere dal LLM risposte coerenti con quanto richiesto.

4.2 Architettura del Sistema

Il sistema RAG implementa un'architettura modulare composta da cinque componenti principali:

Figure 4.1: Architettura del sistema RAG

1. Text Processor (Chunking):

- Suddivide i file Java in chunk di un numero definito appositamente di token
- Gestisce sovrapposizione di token tra chunk
- Preserva il contesto del codice

2. Embedder (BGE-M3):

- Converte i chunk in vettori numerici
- Utilizza il modello BGE-M3 per la generazione degli embedding
- Normalizza i vettori per ottimizzare la ricerca

3. Vector DB (FAISS):

- Memorizza gli embedding in un database vettoriale
- Ottimizza la ricerca per similarità
- Garantisce recupero efficiente dei chunk rilevanti

4. Retriever:

- Esegue query semantiche sul database
- Recupera i k chunk più rilevanti
- Prepara il contesto per il LLM

5. LLM Interface (CodeQwen e Llama 3.2):

- Interfaccia con i modelli CodeQwen e Llama 3.2
- Genera risposte basate sul contesto recuperato
- Ottimizza il prompt per la generazione di codice

4.3 Software Utilizzati

4.3.1 Ollama

Ollama [Oll24] è un software che permette di utilizzare in locale LLM senza dover dipendere da servizi cloud esterni. Il software è stato scelto per la sua flessibilità, permettendo di integrare facilmente i modelli LLM nel sistema RAG.

4.3.2 LLM

Ogni LLM è specializzato per determinati scopi, per questo motivo per rendere più completa la ricerca sono stati utilizzati due modelli con caratteristiche differenti:

Llama 3.2

Llama 3.2 3B [AI24b], un modello di linguaggio open source. Il modello, con 3 miliardi di parametri, è ottimizzato per compiti di dialogo multilingue e si distingue per le sue capacità di recupero e sintesi delle informazioni. La scelta è ricaduta su questa versione per il suo equilibrio tra prestazioni e requisiti computazionali che permottono il suo utilizzo senza hardware troppo potente.

Codequen 1.5

Codequen [Tea24b] è un modello di linguaggio open source specializzato nella generazione di codice e documentazione tecnica. Con 7 miliardi di parametri, il

modello è stato addestrato su un ampio dataset di codice sorgente e documentazione tecnica, permettendo di generare codice coerente e ben strutturato. La scelta di questo modello è stata dettata, a differenza di llama3.2, dalla sua specializzazione nella programmazione e dalla sua capacità di generare codice di alta qualità.

4.3.3 LangChain

LangChain [Tea24a] è un framework open source progettato per costruire applicazioni basate su LLM. Fornisce strumenti avanzati per integrare modelli con dati esterni ed API, creare pipeline con chain e gestire database vettoriali, supportando l'implementazione di sistemi RAG.

4.3.4 BGE-M3

BGE-M3 [BAA24] è un modello di embedding testuale open source per la gestione di dati strutturati e non strutturati multilingue. Il modello permettendo di convertire testo in vettori numerici ad alta dimensionalità.

4.3.5 FAISS

FAISS (Facebook AI Similarity Search) [AI24a] è una libreria open source per la ricerca efficiente di similarità e il clustering di vettori densi. Progettata per gestire dataset su larga scala, FAISS supporta operazioni di ricerca anche su insiemi di vettori che superano la capacità della RAM, grazie a tecniche di indicizzazione avanzate e ottimizzazioni computazionali.

4.4 Dataset

Il dataset creato appositamente è composto da tre classi Java:

DateUtilCustom.java Classe personalizzata per gestire le date

Giorni Magici, java Classe per calcolare in maniera particolare dei giorni

BasketballStats.java Classe per calcolare statistiche relative al mondo del basket.

4.5 Scenario base del Caso Studio

La classe BasketballStats.java non ha nessuna relazione con le altre due classi, mentre DateUtilCustom.java e GiorniMagici.java sono strettamente correlate infatti GiorniMagici.java richiama metodi presenti in DateUtilCustom.java. Andremo a testare il sistema RAG con la seguente query:

• Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?

4.5.1 Codice di riferimento per rispondere alla query

In GiorniMagici.java è presente la seguente funzione:

Listing 4.1: Metodo segnaleWow in GiorniMagici.java

Questa funzione richiama il metodo getMessaggioMagico presente in DateUtil-Custom.java:

Listing 4.2: Metodo getMessaggioMagico in DateUtilCustom.java

```
public static String getMessaggioMagico(LocalDate datamagica) throws

DateTimeParseException {

DayOfWeek giornoSettimana = datamagica.getDayOfWeek();

switch(giornoSettimana) {

case MONDAY: return "La magia inizia nel silenzio...";

case TUESDAY: return "Il sussurri degli antichi si fanno sentire.";

case WEDNESDAY: return "Il velo tra i mondi e' sottile oggi.";

case THURSDAY: return "L'energia magica e' potente e chiara.";

case FRIDAY: return "Attenzione agli incantesimi del crepuscolo.";

case SATURDAY: return "Il giorno perfetto per scoprire segreti nascosti.";

case SUNDAY: return "Riposa e rigenera il tuo potere magico.";

default: return "Il giorno e' avvolto nel mistero...";

}

}
```

4.5.2 Risultato Atteso

Essendo il 10 gennaio 2025 un venerdì, ci aspettiamo come risposta:

"il tuo segnale Wow è: Attenzione agli incantesimi del crepuscolo."

4.6 Implementazione

4.6.1 Creazione dei Chunk

I modelli di embedding hanno limiti massimi di input (512-4096 token) per questo spezzare il codice in chunk di dimensioni adeguate è obbligatorio oltre ad essere in ogni caso fondamentale. Inoltre occorre prestare attenzione alla dimensione dei chunk generati, se troppo piccoli riducono il contesto disponibile per il modello mentre se troppo grandi perdono focalizzazione semantica. Per suddividere il file Java in chunk viene utilizzata la libreria langchain_text_splitters. Il seguente codice Python mostra come suddividere i file Java in chunk di dimensione fissa, salvando i risultati in un file JSON.

Listing 4.3: Codice Python per la suddivisione dei file Java in chunk

```
from langchain_text_splitters import RecursiveCharacterTextSplitter
       import json
3
       # Funzione per caricare e suddividere un file Java
4
       def process_file(file_path):
5
           with open(file_path, "r", encoding="utf-8") as f:
6
            lines = f.readlines()
           # Ricostruisce il testo mantenendo le informazioni sulle linee
10
           text = ''.join(lines)
11
           splitter = RecursiveCharacterTextSplitter(
12
13
           chunk_size=512,
            chunk_overlap=128,
15
           separators=[
                "\n}\n\npublic", # I seguenti separatori sono stati usati per provare
16
                     a mantenere i metodi uniti
               "\n}\n\nprivate",
17
               "\n}\n\nprotected",
18
               "\n}\n//",
                                  # Nuovo separatore per commenti
20
                "\nclass ",
```

```
# Cattura le implementazioni di interfacce
                "\n@Override",
21
22
                "\n@Test",
                                    # Per eventuali test case
23
                "\n/**",
                                    # Separatore per Javadoc
24
                "\n * ",
                "\n"
25
           1.
26
            keep_separator=True,
27
28
            is_separator_regex=False
29
30
            chunks = splitter.split_text(text)
31
            # Calcola le linee esatte per ogni chunk
32
33
            chunk_metadata = []
            cursor = 0
34
            for chunk in chunks:
35
                start_line = text.count('\n', 0, cursor) + 1
36
37
                chunk_length = len(chunk)
38
                end_line = text.count('\n', 0, cursor + chunk_length) + 1
39
                chunk_metadata.append({
                    "start_line": start_line,
40
                    "end_line": end_line,
41
                    "text": chunk
42
                })
43
                cursor += chunk_length
44
45
            return chunk_metadata
46
47
        # Carica e suddividi i file Java
48
        files = ["my_project/DateUtilCustom.java", "my_project/GiorniMagici.java", "
49
           my_project/BasketballStats.java"]
50
        all_chunks = []
51
        for file_path in files:
            chunks_info = process_file(file_path)
53
54
            for chunk_info in chunks_info:
                chunk_text = chunk_info["text"]
56
                # Aggiungi contesto strutturale
57
                class_context = ""
58
                if "class " in chunk_text:
59
                    class_name = chunk_text.split("class ")[1].split("{")[0].strip()
                    class_context = f"Classe: {class_name}\n"
61
62
                all_chunks.append({
63
                    "id": len(all_chunks) + 1,
64
65
                    "text": f"// File: {file_path}\n{class_context}{chunk_text}",
                    "source": file_path,
66
                    "type": "code",
67
                    "start_line": chunk_info["start_line"],
68
                    "end_line": chunk_info["end_line"],
69
```

```
"class": class_context.replace("Classe: ", "") if class_context
else ""
})

** Salva i chunk in un file JSON
with open("chunks.json", "w", encoding="utf-8") as f:
json.dump(all_chunks, f, indent=4, ensure_ascii=False)
```

Il chunking è costruito in maniera specifica per **codice java**, i separatori sono stati scelti per tentare di segmentare il codice secondo la struttura tipica dei metodi e delle classi, garantendo che il chunk contenga blocchi di codice "interi". L'opzione keep_separator=True fa sì che il separatore venga mantenuto nel chunk risultante. Per ciascun chunk, se nel testo è presente la stringa class, il codice estrae il nome della classe (prendendo il testo che segue class fino al primo {) e lo utilizza per creare un contesto strutturale (es Classe: NomeClasse). Questo contesto viene preappeso al testo del chunk e salvato anche come valore nel campo "class".

Il risultato nel file chunks.json è il seguente:

Listing 4.4: Esempio di chunks generati

```
"id": 1,
3
                  "text": "// File: my_project/DateUtilCustom.java\
                   nClasse: DateUtilCustom\npublic class
                   DateUtilCustom {\n
                                          public static String
                   getMessaggioMagico(LocalDate datamagica) throws
                   DateTimeParseException {\n
                                                      DayOfWeek
                   giornoSettimana = datamagica.getDayOfWeek();\n
                           switch(giornoSettimana) {\n
                   case MONDAY: return \"La magia inizia nel
                    silenzio...\";\n
                                                case TUESDAY: return
                   \"I sussurri degli antichi si fanno sentire.\";\n
                                case WEDNESDAY: return \"Il velo tra
                   i mondi e' sottile oggi.\";\n
                   THURSDAY: return \"L'energia magica e' potente e
                    chiara.\";\n
                                            case FRIDAY: return \"
                   Attenzione agli incantesimi del crepuscolo.\";\n
                               case SATURDAY: return \"Il giorno
```

```
perfetto per scoprire segreti nascosti.\";\n
                                case SUNDAY: return \"Riposa e
                     rigenera il tuo potere magico.\";\n
                     default: return \"Il giorno e' avvolto nel
                     mistero...\";\n
                                             }\n
                                                    }\n}",
                    "source": "my_project/DateUtilCustom.java",
                    "type": "code",
6
                    "start_line": 1,
                    "end_line": 29,
                    "class": "DateUtilCustom"
10
11
                    "id": 2,
12
                    "text": "// File: my_project/GiorniMagici.java\
13
                     nClasse: GiorniMagici\npublic class GiorniMagici
                            public static String segnaleWow(LocalDate
                                       String wow = \"il tuo segnale
                     Wow e': \" + DateUtilCustom.getMessaggioMagico(
                     date); \n
                                     return wow; \n
                                                       }\n}",
                    "source": "my_project/GiorniMagici.java",
14
                    "type": "code",
15
                    "start_line": 1,
16
                    "end_line": 8,
17
                    "class": "GiorniMagici"
18
19
                     .....continua
20
           ]
```

Ogni chunk mantiene:

- Il riferimento al file sorgente
- Il nome della classe
- Le righe di inizio e fine nel file originale
- Il contenuto del codice con la sua struttura

4.6.2 Arricchire i chunk con metadati relativi al codice

Oltre al testo del codice, è importante mantenere informazioni aggiuntive per facilitare la ricerca e l'interpretazione dei chunk. La seguente funzione extract_method_name aggiunge una stringa contestuale per ogni chunk che include:

- Il nome del metodo o della classe
- La classe di appartenenza
- Le righe di inizio e fine del codice

Listing 4.5: Funzione extract_method_name

```
import re
      def extract_method_name(text):
2
3
          # Pattern per la firma di un metodo in Java
          method_pattern = r'(?:public|private|protected|static|final|synchronized|
              # Pattern per i costruttori
6
          # Cerca la firma di un metodo
          matches = re.findall(method_pattern, text)
          if matches:
11
              return matches[0] # Restituisce il primo metodo trovato
12
13
14
          # Cerca costruttori
15
          constr_matches = re.findall(constructor_pattern, text)
          if constr_matches:
16
              return constr_matches[0] + " (costruttore)"
17
18
19
          # Cerca chiamate a metodi
          method_calls = re.findall(r' \setminus (w+) \setminus s* \setminus (', text)
20
21
          if method_calls:
              return f"Chiamata a: {method_calls[-1]}"
22
23
          return "unknown_method" # Default se non trova nulla
24
```

4.6.3 Generazione degli Embedding

Gli embedding trasformano i chunk in rappresentazioni vettoriali che catturano il significato semantico. Il seguente codice Python mostra come generare gli embedding e creare un database Faiss. Come precedentemente descritto, il modello

di embedding utilizzato è BGE-M3, questo modello usa due rappresentazioni per complementarietà, la rappresentazione denza cattura relazioni semantiche mentre quella sparsa cattura relazioni sintattiche. Mentre sul database FAISS ad alta dimensionalità verrà settata la ricerca di somiglianza utilizzando la distanza euclidea tra i vettori.

Listing 4.6: Codice Python per la generazione degli embedding e la creazione di un database FAISS

```
import json
            from sentence_transformers import SentenceTransformer
            from langchain_community.vectorstores import FAISS
5
            # 1. Carica i chunk dal file JSON
            with open("chunks.json", "r", encoding="utf-8") as f:
6
                chunks_data = json.load(f)
            chunks = [item["text"] for item in chunks_data]
10
            # 2. Carica il modello BGE-M3 e genera gli embedding
11
            embedder = SentenceTransformer('BAAI/bge-m3')
12
            embeddings = embedder.encode(
13
14
                [f"METHOD:{extract_method_name(c['text'])} CLASS:{c['class']} LINES:{c
                    ['start_line']}-{c['end_line']} CONTENT:{c['text']}"
                 for c in chunks_data],
15
                show_progress_bar=True
           )
17
            # 3. Crea un database FAISS
19
            vector_store = FAISS.from_embeddings(
20
                text_embeddings=list(zip(chunks, embeddings)), # Abbina testi e
21
                    embedding
                embedding=embedder, # Modello per future operazioni
22
23
24
            # 4. Salva il database
25
            vector_store.save_local("./faiss_db")
26
27
            print("Database FAISS creato e salvato in ./faiss_db.")
```

Il metodo encode() del modello BGE-M3 genera gli embedding per ogni chunk, chiamando la funzione $extract_method_name$ per arricchire il contesto e creare vettori con relazioni semantiche strutturate.

4.6.4 Esecuzione di query sul Database FAISS

Una volta creato il database FAISS, è possibile eseguire ricerche semantiche sui chunk memorizzati:

Listing 4.7: Esecuzione di una query sul database FAISS

```
from langchain_community.vectorstores import FAISS
       from langchain_huggingface import HuggingFaceEmbeddings
3
       # 1. Carica il modello di embedding nel formato corretto
4
       embedder = HuggingFaceEmbeddings(
5
           model_name="BAAI/bge-m3",
           model_kwargs={'device': 'cpu'},
           encode_kwargs={'normalize_embeddings': True}
9
10
       # 2. Carica il database FAISS esistente
11
       vector_store = FAISS.load_local(
13
           folder_path="./faiss_db",
           embeddings=embedder,
14
           allow_dangerous_deserialization=True
15
16
17
       # 3. Query di esempio
18
       query = "Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"
19
20
       # 4. Cerca i chunk piu' simili
21
       docs = vector_store.similarity_search_with_score(
22
           query,
           k=5.
24
           score_threshold=0.90, # bassa similarita'
25
            search_type="similarity", # Piu' efficace per il codice
26
27
           lambda_mult=0.5
                                  # Bilancia diversita'/rilevanza
28
       # 5. Stampa i risultati con relativo score
30
       for i, (doc, score) in enumerate(docs):
31
           print(f"Risultato {i+1} (Score: {score:.4f}):")
32
33
           print(doc.page_content)
           print("-" * 40)
```

Risultati con query base (senza alcun riferimento al metodo utilizzato all'interno di segnale Wow)

• Query:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"

• Output: viene restituito il chunk corretto con uno score di similarità di 0.6547. Questo valore, basato sulla cosine similarity, non è particolarmente alto ma sufficiente per identificare il chunk corretto.

Nota: È importante riscontrare che viene restituito un solo chunk nonostante k=5. Questo accade perché nessun altro chunk supera la soglia di similarità impostata. Tale comportamento evidenzia una criticità: la funzione segnaleWow richiama un metodo presente nella libreria DateUtilCustom che non viene estratto dal Dataset.

Riformulazione query (aggiungendo riferimento al metodo utilizzato all'interno di segnale Wow)

• Per risolvere questo problema, la query è stata riformulata:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?"

- L'output fornisce 5 risultati:
 - Primo chunk (score: 0.5276): contiene la funzione segnaleWow
 - Secondo, terzo e quarto chunk (scores: 0.7188, 0.7258, 0.7605):
 contengono la funzione getMessaggioMagico
 - Quinto chunk (score: 0.8958): funzione non rilevante relativa alle date

Conclusione: Sono state riscontrate due problematiche molto rilevanti, la prima riguarda la mancanza di estrazione di metodi da librerie esterne se non esplicitate nella query. Mentre la seconda guarda i chunck estratti, lo score ottenuto non è particolarmente alto e questo con un database più ampio potrebbe portare a risultati non coerenti. Per il secondo punto questa analisi ha portato alla decisione di abbassare score_threshold da 0.90 a 0.80, questa piccola correzione risolve in

parte la problematica o almeno evita di propagarla ulteriormente preferendo non ottenere risultati piuttosto che ricevere risposte non coerenti.

4.6.5 Creazione della Pipeline RAG

Listing 4.8: Pipeline RAG

```
from langchain_community.vectorstores import FAISS
       from langchain_huggingface import HuggingFaceEmbeddings
       from langchain_ollama import OllamaLLM
3
       from langchain.chains import create_retrieval_chain
       from langchain.chains.combine_documents import create_stuff_documents_chain
5
6
       from langchain.prompts import PromptTemplate
       # Configurazione embedding
       embedder = HuggingFaceEmbeddings(
9
           model_name="BAAI/bge-m3",
10
           model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
13
14
       # Caricamento database FAISS
       vector_store = FAISS.load_local(
16
           folder_path="./faiss_db",
17
           embeddings=embedder,
18
19
           allow_dangerous_deserialization=True
20
       # Aggiunta del database FAISS al retriever
21
       retriever=vector_store.as_retriever(
22
                search_kwargs={
                                               # Piu' documenti per contesto
24
                    "score_threshold": 0.80, # medio-bassa similarita' inizialmente
25
                        era 0.90
                    "search_type" :"similarity", # Piu' efficace per il codice
26
27
                    "lambda_mult":0.5
                                           # Bilancia diversita'/rilevanza
                }
29
30
       # Configurazione Template del prompt specifici per i modelli
       LLAMA_TEMPLATE = """ < | begin_of_text | >
32
       <|start_header_id|>system<|end_header_id|>
       Contesto: {context}<|eot_id|>
34
       <|start_header_id|>user<|end_header_id|>
35
       Domanda: {input}<|eot_id|>
36
       <|start_header_id|>assistant<|end_header_id|>"""
37
       CODEQWEN_TEMPLATE = """<|im_start|>system
40
       {context}<|im_end|>
```

```
{{ if .Functions }} < | im_start| > functions
41
42
        {{ .Functions }}<|im_end|>{{ end }}
43
        <|im_start|>user
44
        {input}<|im_end|>
        <|im_start|>assistant
45
46
47
        COMMON_PARAMS = {
48
            "temperature": 0.3, #lasciamo una bassa creativita' non vogliamo che
49
                inventi risposte
            "top_p": 0.85, # Bilancia creativita'/controllo nei token generati
50
            "system": "Rispondi in italiano come esperto di programmazione ma solo se
51
                sei sicuro."
53
        # Caricamento modello
54
        def load_model(model_name):
56
            models = {
57
                "llama3.2": {
                     "template": LLAMA_TEMPLATE,
58
                     "params": COMMON_PARAMS
59
                },
60
                "codeqwen": {
61
                     "template": CODEQWEN_TEMPLATE,
62
                     "params": COMMON_PARAMS
63
                }
64
            }
65
            if model_name not in models:
66
                raise ValueError(f"Modello non supportato: {model_name}")
67
68
            return OllamaLLM(
69
                model=model_name ,
                **models[model_name]["params"]
70
            ), PromptTemplate(
71
                template=models[model_name]["template"],
72
                input_variables=["input", "context"]
73
74
            )
75
        # Inizializza il modello
76
        llm, prompt = load_model("codeqwen")
77
78
79
        # Catena RAG
        document_chain = create_stuff_documents_chain(llm, prompt)
80
        rag_chain = create_retrieval_chain(
81
            retriever,
82
            document_chain
83
84
85
        # Funzione query
86
87
        def ask_ollama(question):
88
            try:
```

```
result = rag_chain.invoke({"input": question})
89
90
                print("DOMANDA:", question)
                print("RISPOSTA:")
91
92
                print(result["answer"])
                print("FONTI:")
93
                for i, doc in enumerate(result["context"], 1):
94
                     print(f"{i}. {doc.page_content[:150]}...")
95
                     if 'source' in doc.metadata:
96
                         print(f" Fonte: {doc.metadata['source']}")
                     print("-" * 80)
98
            except Exception as e:
99
                print(f"ERRORE: {str(e)}")
100
101
        # Esempio d'uso
103
        if __name__ == "__main__":
            ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))
                che utilizza la funzione getMessaggioMagico() della libreria
                DateUtilCustom?")
            #ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))
                ?")
```

Spiegazione Pipeline del RAG

Seguendo la struttura precedentemente creata, per eseguire l'embedder della query di input viene utilizzato il modello BAAI/bge-m3 e caricato il database FAISS contenente la **knowledge base**. La chiamata iniziale alla funzione $ask_ollama()$ richiede come parametro **la query di input** che verrà processata dalla pipeline RAG. Sfruttando le funzionalità della libreria LangChain [Lan24b], result sarà un array contente la risposta("answer") e il contesto("context") fornito alla query.

rag_chain.invoke()

Questa funzione esegue la catena RAG creata tramite il metodo *create_retrieval_chain()* che prende come parametri il retriever e il document chain.

- la funzione **create_stuff_documents_chain()** carica una catena di documenti prendendo in input il modello LLM e il template del prompt.
- load_model() carica il modello LLM e il template del prompt in base al modello scelto sfruttando OllamaLLM e PromptTemplate.

Temperature

Per i due LLM è stata data una temperature molto bassa **0.3** in modo da garantire da parte dei LLM risposte coerenti e precise senza provi ad inventarle.

Top_p

Il parametro top_p è stato impostato a 0.85 per bilanciare creatività e controllo nei token generati.

System

Come parametro di sistema da passare al LLM è stato esplicitamente richiesto di rispondere in italiano come esperto di programmazione ma solo se è sicuro.

4.6.6 Risultati del Sistema RAG

Query Base con informazioni incomplete

Come query di test è stata utilizzata:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"

Fonti aggiunte al prompt

Il RAG aggiunge solo il chunk dove è presente la funzione segnaleWow e non il chunk con la funzione getMessaggioMagico della libreria DateUtilCustom per questo le risposte dei due modelli sono incomplete.

Output con LLM Llama3.2

L'output ottenuto utilizzando il modello Llama3.2 è stato:

Il metodo **segnaleWow** restituisce una stringa che contiene un messaggio Wow specifico in base al giorno indicato. Tuttavia, non è chiaro come il messaggio sia calcolato.

Listing 4.9: Implementazione del metodo segnaleWow

In questo caso, il messaggio Wow viene calcolato chiamando l' metodo 'getMessaggioMagico' di 'DateUtilCustom', che non è mostrato nel codice fornito. Tuttavia, possiamo supporre che questo metodo restituisca un valore di tipo stringa.

Il problema è che il metodo 'segnaleWow' non contiene alcun calcolo per determinare il segnale Wow in base al giorno indicato. Pertanto, senza conoscere il comportamento del metodo 'getMessaggioMagico', non possiamo dire con certezza cosa ritorni il metodo 'segnaleWow'.

Tuttavia, se supponessimo che 'DateUtilCustom.getMessaggioMagico' restituisca un valore di tipo stringa che contiene una data o un numero, allora il risultato del metodo 'segnaleWow' dipenderebbe dal comportamento di questo metodo.

Per esempio, se 'DateUtilCustom.getMessaggioMagico' restituisce la data corrente, il metodo 'segnaleWow' potrebbe restituire un messaggio Wow che contiene la data del 10 gennaio 2025: "'java public static String segnaleWow (LocalDate date) String wow = "il tuo segnale Wow è :" + DateUtilCustom.getMessaggioMagico(date); return wow; "'

In questo caso, il risultato del metodo 'segnaleWow' con l'input 'Local-Date.of(2025, 1, 10)' sarebbe: "'java public static String segnaleWow (LocalDate date) String wow = "il tuo segnale Wow è :" + DateUtil-Custom.getMessaggioMagico(date) ; return wow; "' In questo caso, il risultato sarebbe: "'java "il tuo segnale Wow è :2025-01-10" "'

Tuttavia, senza conoscere il comportamento di 'DateUtilCustom.getMessaggioMagico', non possiamo essere certi del risultato.

Output con LLM CodeQwen

Utilizzando invece il modello CodeQwen, la risposta ottenuta è stata:

Se si chiama il metodo 'segnaleWow' con un'istanza di 'LocalDate' che corrisponde a "2025-01-10", il metodo restituirà una stringa che indica il segnale Wow associato ad tale data.

"java String result = GiorniMagici.segnaleWow(LocalDate.of(2025, 1, 10)); System.out.println(result);

Il risultato sarà: "il tuo segnale Wow è : L'anno 2025 ha un giorno magico che non è un numero perfetto." Questo è perchè la data specificata (2025-01-10) corrisponde ad un anno che non ha un numero perfetto come il 28 febbraio del 2024, quindi il metodo utilizza il messaggio "L'anno 2025 ha un giorno magico che non è un numero perfetto." proveniente da 'DateUtilCustom.getMessaggioMagico(date)'.

Query Completa con tutte le informazioni richieste

''Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?''

Fonti aggiunte al prompt

In questo caso il RAG aggiunge 4 chunk ovvero oltre a quello relativo alla funzione segnaleWow anche i chunk relativi alla funzione getMessaggioMagico della libreria DateUtilCustom. Ne consegue che le risposte date dai due modelli sono coerenti a quanto aspettato.

Output con LLM Llama3.2

RISPOSTA: Il metodo 'segnaleWow(LocalDate.of(2025, 1, 10))' ritorna un segnale Wow specifico in base al giorno indicato.

Per determinare il segnale Wow, il metodo 'getMessaggioMagico()' della libreria 'DateUtilCustom' viene chiamato con la data 'LocalDate.of(2025, 1, 10)' come argomento.

La funzione 'getMessaggioMagico()' restituisce un messaggio magico in base al giorno della settimana di una data. In questo caso, il giorno è sabato (giorno 7), quindi il messaggio ritornato sarà:

"Il giorno perfetto per scoprire segreti nascosti."

Quindi, il metodo 'segnaleWow(LocalDate.of(2025, 1, 10))' restituirà la stringa "il tuo segnale Wow è : Il giorno perfetto per scoprire segreti nascosti.".

Output con LLM CodeQwen

Se si chiama il metodo 'segnaleWow' con una data di 10 gennaio 2025, utilizzando la funzione 'getMessaggioMagico()' della libreria 'DateUtilCustom', il risultato sarà:

"" "il tuo segnale Wow è :Il giorno perfetto per scoprire segreti nascosti." ""

Questo è poiché, inizialmente, viene recuperata la data di 10 gennaio 2025 utilizzando 'LocalDate.of(2025, 1, 10)'. Quindi, viene richiamato il metodo 'getMessaggioMagico()' passando questa data come parametro.

Il metodo 'getMessaggioMagico()' restituisce un messaggio magico in base al giorno della settimana di tale data. In questo caso, la data 10 gennaio 2025 cade mercoledì, quindi viene restituito il messaggio "Il giorno perfetto per scoprire segreti nascosti."

4.6.7 Valutazione del RAG

Sfruttando l'approccio "llm as a judge" per valutare automaticamente quanto prodotto dal sistema RAG operiamo una valutazione automatica delle risposte prodotte.

Chapter 5

Conclusioni

da completare

5.1 Impatto sullo Sviluppo Software

L'integrazione di strumenti basati su AI nel processo di sviluppo software sta rivoluzionando il settore. Durante il periodo di sviluppo di questa tesi (Ottobre 2024 - Gennaio 2025), abbiamo osservato:

- Rapida evoluzione degli strumenti di AI per lo sviluppo software
- Crescente disponibilità di soluzioni open source
- Miglioramento continuo nelle capacità di generazione e comprensione del codice

5.2 Sfide e Prospettive Future

Bibliography

- [AI24a] Meta AI. Faiss: A library for efficient similarity search, 2024. Facebook AI Similarity Search library documentation. URL: https://faiss.ai/.
- [AI24b] Meta AI. Llama-3.2-3b: Open foundation and fine-tuned chat models, 2024. URL: https://huggingface.co/meta-llama/Llama-3.2-3B.
- [BAA24] BAAI. Bge-m3: A multi-modal model understanding images and text, 2024. HuggingFace model repository for BGE-M3, a multi-modal model for image and text understanding. URL: https://huggingface.co/BAAI/bge-m3.
- [Doc24] Huggingface Docs. Lora, dec 2024. URL: https://huggingface.co/docs/diffusers/training/lora.
- [Doc25]GitHub Docs. Asking github copilot questions ide, 2025. URL: in your jan https://docs. github.com/en/copilot/using-github-copilot/ asking-github-copilot-questions-in-your-ide# ai-models-for-copilot-chat.
- [Fac24a] Hugging Face. Llm judge: Automated evaluation cookbook, 2024. Guide for automated LLM evaluation using judge models. URL: https://huggingface.co/learn/cookbook/llm_judge.
- [Fac24b] Hugging Face. Rag evaluation cookbook, 2024. Guide for evaluating Retrieval Augmented Generation systems. URL: https://huggingface.co/learn/cookbook/rag_evaluation.

BIBLIOGRAPHY 39

BIBLIOGRAPHY

- [FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020. URL: https://arxiv.org/ abs/2002.08155.
- [Git24] GitHub. Github copilot is more than a tool, it's an ally, dec 2024. URL: https://www.linkedin.com/pulse/github-copilot-more-than-tool-its-ally-github-qhnoc/.
- [JWS⁺24] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models for code generation, 2024. URL: https://arxiv.org/abs/2406.00515, doi:10.48550/ARXIV. 2406.00515.
- [Lan24a] LangChain. Langchain integration: Ollama, 2024. Documentation for LangChain Ollama integration. URL: https://python.langchain.com/docs/integrations/llms/ollama/.
- [Lan24b] LangChain. Langchain retrieval chain documentation, 2024. Create Retrieval Chain API reference. URL: https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html.
- [Met24] Meta. Llama-3.3-70b-instruct, dec 2024. URL: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct.
- [Oll24] Ollama. Ollama documentation, 2024. GitHub repository. URL: https://github.com/ollama/ollama/tree/main/docs.
- [Res24]Restack. Understanding tokenization in machine learn-2024. ing, Guide to tokenization concepts and implementation ML. URL: https://www.restack.io/p/ tokenization-knowledge-answer-machine-learning-cat-ai.
- [SBO23] Ahmed R. Sadik, Sebastian Brulin, and Markus Olhofer. Coding by design: Gpt-4 empowers agile model driven development, 2023.

40 BIBLIOGRAPHY

BIBLIOGRAPHY

- URL: https://arxiv.org/abs/2310.04304, doi:10.48550/ARXIV. 2310.04304.
- [Sta24] Stanford University. Code generation with large language models, 2024. CS224G Course Materials. URL: https://web.stanford.edu/class/cs224g/slides/Code%20Generation%20with%20LLMs.pdf.
- [Tea24a] LangChain Team. Langchain documentation, 2024. URL: https://python.langchain.com/docs/introduction/.
- [Tea24b] Qwen Team. Codeqwen1.5: A code-specialized language model, 2024. URL: https://qwenlm.github.io/blog/codeqwen1.5/.
- [Tea24c] Qwen Team. Qwen2.5-coder-3b: A code-specialized language model, 2024. URL: https://huggingface.co/Qwen/Qwen2.5-Coder-3B.
- [WDS+20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45. Association for Computational Linguistics, 2020. URL: https://huggingface.co/docs/transformers/index.
- [WFS+24] Ziyi Wang, Hui Fang, Weiyi Sun, Moshi Wu, Yixin Chen, and Rui Wang. A survey of code llms: A journey from code completion to ai-powered programming. arXiv preprint arXiv:2412.08821, 2024. URL: https://arxiv.org/abs/2412.08821, doi:10.48550/arXiv.2412.08821.

BIBLIOGRAPHY 41