Chapter 4

Linear DAEs with Time-varying Coefficients

In this section, we consider linear DAEs with *variable* or *time-dependent* coefficients. This means, for matrix-valued functions

$$E \in \mathcal{C}(\mathcal{I}, \mathbb{C}^{m,n}), \quad A \in \mathcal{C}(\mathcal{I}, \mathbb{C}^{m,n})$$

and $f \in \mathcal{C}(\mathcal{I}, \mathbb{C}^m)$, we consider the DAE

$$E(t)\dot{x}(t) = A(t)x(t) + f(t) \tag{4.1}$$

with, possibly, an initial condition

$$x(t_0) = x_0 \in \mathbb{C}^n. \tag{4.2}$$

The same general solution concept applies. Basically x should be differentiable, fulfill the DAE, and, if stated, the initial condition too.

In the constant coefficient case, regularity played a decisive role for the existence and uniqueness of solutions; see, e.g. Section 3.4. Thus it seems natural to extend this concept to the time-varying case, e.g., through requiring that (E(t), A(t)) is a regular matrix pair independent of t. However, the following two examples show that this will not work *out of the box*.

Example 4.1. Let E, A be given as

$$E(t) = \begin{bmatrix} -t & t^2 \\ -1 & t \end{bmatrix}, \quad A(t) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Then

$$\det(\lambda E(t) - A(t)) = (1 - \lambda t)(1 + \lambda t) + \lambda^2 t^2 \equiv 1,$$

34 CHAPTER 4. LINEAR DAES WITH TIME-VARYING COEFFICIENTS

for all $t \in \mathcal{I}$. Still, for every $c \in \mathcal{C}^1(\mathcal{I}, \mathbb{C})$ with $c(t_0) = 0$, the function

$$x \colon t \mapsto c(t) \begin{bmatrix} t \\ 1 \end{bmatrix}$$

solves the *homogeneous* initial value problem (4.1)–(4.2).

This was an example where the pair (E, A) is regular uniformly with respect to t but still allows for infinitely many solutions to the associated DAE. X: What about the initial value? Why it won't help to make the solution unique?

Next we see the contrary - a matrix pair that is singular for any t but defines a unique solution.

Example 4.2. For

$$E(t) = \begin{bmatrix} 0 & 0 \\ 1 & -t \end{bmatrix}, \quad A(t) = \begin{bmatrix} -1 & t \\ 0 & 0 \end{bmatrix}, \quad f(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix},$$

one has

$$\det(\lambda E(t) - A(t)) = 0$$

for all $t \in \mathcal{I}$. Still, if $x = (x_1, x_2)$ denotes the solution, from the first line of the DAE

$$0 = -x_1(t) + tx_2(t) + f_1(t)$$

$$\dot{x}_1 - t\dot{x}_2(t) = f_2(t)$$

one can calculate directly that

$$\dot{x}_1(t) = t\dot{x}_2(t) + x_2 + \dot{f}_1(t)$$

or that

$$\dot{x}_1(t) - t\dot{x}_2(t) = x_2 + \dot{f}_1(t)$$

so that the second line becomes

$$x_2(t)+\dot{f}_1(t)=f_2(t)$$

which uniquely defines

$$x_2(t) = -\dot{f}_1(t) + f_2(t)$$

and also

$$x_1(t) = -t(\dot{f_1}(t) + f_2(t)) + f_1(t).$$

For both examples one can then simply choose $x(t_0)$ in accordance with the right hand side to argue about whether and how a solution exists.

Recall that for the *constant coefficient* case, we were using invertible scaling and state transformation matrices P and Q for the equivalence transformations

$$E\dot{x}(t) = Ax(t) + f(t) \sim \tilde{E}\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{f}(t)$$

with

$$x = Q\tilde{x}, \quad \tilde{E} = PEQ, \quad \tilde{A} = PAQ, \quad \tilde{f} = Pf.$$

For the time-varying case, we will use time-varying transformations and require that they are invertible at every point t in time.

Definition 4.1. Two pairs (E_i, A_i) , E_i , $A_i \in \mathcal{C}(\mathcal{I}, \mathbb{C}^{m,n})$, i = 1, 2, of matrix functions are called *(globally) equivalent*, if there exist pointwise nonsingular matrix functions $P \in \mathcal{C}(\mathcal{I}, \mathbb{C}^{m,m})$ and $Q \in \mathcal{C}^{(1)}(\mathcal{I}, \mathbb{C}^{n,n})$ such that

$$E_2 = PE_1Q, \quad \underline{A_2} = PA_1Q - PE_1\hat{Q}$$
 (4.3)

for all $t \in \mathcal{I}$. Again, we write $(E_1, A_1) \sim (E_2, A_2)$.

The need of Q being differentiable and the appearance of $E_1\dot{Q}$ in the definition of A_2 comes from the relation

$$E\dot{x}(t) = E\frac{d}{dt}(Q\tilde{x})(t) = E\big(Q(t)\dot{\tilde{x}}(t) + \underline{\dot{Q}(t)}\tilde{\underline{x}}(t)\big)$$

for the transformed state \tilde{x} with the actual state x.

Lemma 4.1. The relation on pairs of matrix functions as defined in Definition 4.1 is an equivalence relation.

Next we will define *local* equivalence of matrix pairs.

Definition 4.2. Two pairs (E_i, A_i) , E_i , $A_i \in \mathbb{C}^{m,n}$, i = 1, 2, of matrices are called *locally equivalent*, if there exist pointwise nonsingular matrices $P \in \mathbb{C}^{m,m}$) and $Q \in \mathbb{C}^{n,n}$ such that as well as matrix $R \in \mathbb{C}^{n,n}$ such that

$$E_2 = PE_1Q, \quad A_2 = PA_1Q - PE_1\mathbf{R}. \tag{4.4}$$

Again, we write $(E_1,A_1)\sim (E_2,A_2)$ and differentiate by context.

Lemma 4.2. The local equivalence as defined in Definition 4.2 is an equivalence relation on pairs of matrices.

We state a few observations:

- Global equivalence implies local equivalence at all points of time t.
- Vice versa, pointwise local equivalence, e.g. at some time instances t_i with suitable matrices P_i , Q_i , R_i , can be interpolated to a continuous matrix function P and a differentiable matrix function Q by $Hermite\ interpolation$, i.e. via

$$P(t_i) = P_i, \quad Q(t_i) = Q_i, \quad \dot{Q}(t_i) = R_i.$$

Cocal equivalence is more powerful than the simple equivalence of matrix pairs (cp. Definition 3.1) for which $\underline{R} = 0$. This means we can expect more structure in a normal form.

4.1 A Local Canonical Form

For easier explanations, we introduce the slightly incorrect wording that a matrix M spans a vector space V to express that the V is the span of the columns of V. Similarly, we will say that M is a basis of V, if the columns of M form a basis for V.

Some more notation:

Notation	Explanation
$V^H \in \mathbb{C}^{n,m}$	the conjugate transpose or Hermitian transpose of a matrix $V \in \mathbb{C}^{m,n}$
$T'\in\mathbb{C}^{n,n-k}$	The complementary space as a matrix. If $T \in \mathbb{C}^{n,k}$ is a basis of V , then T' contains a basis of V' so that $V \oplus V' = \mathbb{C}^n$. In particular, the matrix $[T \ T']$ is square and invertible.

Theorem 4.1. Let $E, A \in \mathbb{C}^{m,n}$ and let

Ex=AX+

 $corange(Z^HAT)$

(4.5)

ET=0

be

\overline{Matr}	ix as the basis of	وآ
\overline{T}	\sim kernel E	
Z	$corange E = kernel E^H$	
T'	$\operatorname{cokernel} E = \operatorname{range} E^H$	

then the quantities

$$r, a, s, d, u, v$$
 (4.6)

M=[V1..., Ve] ~M= spun (V1...Ve) TelRule defined as

$\overline{Quantity}$	Definition	Name	
\overline{r}	$\operatorname{rank} E$	rank	
a	$\operatorname{rank}(Z^HAT)$	algebraic part	21.11.1
s	$\operatorname{rank}(V^H Z^H A T')$	strangeness	Schiefhat
d	r-s	differential part	•
u	n-r-a	undetermined variables	
v	m-r-a-s	vanishing equations	

are invariant under local equivalence transformations and (E, A) is locally equivalent to the canonical form

where all diagonal blocks are square, except maybe the last one.

Proof. To be provided. Until then, see Theorem 3.7 in Kunkel/Mehrmann.

Some remarks on the spaces and how the names are derived for the case $E\dot{x} =$ Ax + f with constant coefficients. The ideas are readily transferred to the case with time-varying coefficients.

Let

$$x(t) = Ty(t) + T'y'(t),$$

where y denotes the components of x that evolve in the range of T and y' the respective complement. (Since [T|T'] is a basis of \mathbb{C}^n , there exist such y and y'that uniquely define x and vice versa). With T spanning ker E we find that

$$E\dot{x}(t) = ET\dot{y}(t) + ET'\dot{y}'(t) = ET'\dot{y}'(t)$$

so that the DAE basically reads

$$ET'\dot{y}'(t) = ATy(t) + AT'y'(t) + f,$$

i.e. the components of x defined through y are, effectively, not differentiated. With \underline{Z} containing exactly those v, for which $v^H E = 0$, it follows that

$$Z^H Z T' \dot{y}'(t) = 0 = Z^H A T y(t) - Z^H A T' y'(t) + Z^H f,$$

E(t) x(+) E(t)T(t)=0

or
$$Z^{H}ATy(t) = -Z^{H}AT'y(t) - Z^{H}f,$$

so that rank Z^HAT indeed describes the number of purely algebraic equations and variables in the sense that it defines parts of y (which is never going to be differentiated) in terms of algebraic relations (no time derivatives are involved).

With the same arguments and with $V = \text{corange } Z^H AT$, it follows that

$$\label{eq:controller} \begin{array}{c} V^HZ^HAT'y'(t) = -V^HZ^HATy(t) - V^HZ^Hf = -V^HZ^Hf, \end{array}$$

is the part of $E\dot{x}=Ax+f$ in which those components y' that are also differentiated are algebraically equated to a right-hand side. This is the strangeness (rather in the sense of skewness) of DAEs that variables can be both differential and algebraic. Accordingly, rank V^HZ^HAT' describes the size of the skewness component.

Finally, those variables that are neither *strange* nor purely algebraic, i.e. those that are differentiated but not defined algebraically, are the *differential* variables. There is no direct characterization of them, but one can calculate their number as $r-\underline{s}$, which means number of differentiated minus number of *strange* variables.

Outlook: If there is no strangeness, the DAE is called strangeness-free. Strangeness can be eliminated through iterated differentiation and substitution. The needed number of such iterations (that is independent of the the size s of the strange block here) will define the strangeness index.

Example 4.3. With a basic state transformation

$$\begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \tilde{x}_3 \end{bmatrix} = \begin{bmatrix} x_3 - x_2 \\ x_2 - x_1 \\ x_3 \end{bmatrix},$$

one finds for the coefficients of Example 1.2 that:

$$(\underline{E},\underline{A}) \backsim \left(\begin{bmatrix} \underline{C} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{R} & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

We compute the subspaces as defined in (4.5):

Matrix	as the basis of/computed as	
$T = \begin{bmatrix} 0 \\ I_2 \end{bmatrix}$	$\operatorname{kernel} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix}$	

Matrix	as the basis of/computed as	
$Z = \begin{bmatrix} 0 \\ I_2 \end{bmatrix}$	$\operatorname{corange} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix} = \operatorname{kernel} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix}^H$	
$T' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ 0 & 0 \end{bmatrix}$	$\operatorname{cokernel} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix} = \operatorname{range} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix}^H$	10741-07167
$Z^H A T = \underline{I_2}$	$\begin{bmatrix} 0 \\ I_2 \end{bmatrix}^H \begin{bmatrix} 0 & \frac{1}{R} & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ I_2 \end{bmatrix}$	-> [°] ([°] [°] [°]
$V = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\operatorname{corange}(Z^HAT) = \operatorname{kernel} I_2^H$	
$V^H Z^H A T' = [0]$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}^H \begin{bmatrix} 0 \\ I_2 \end{bmatrix}^H \begin{bmatrix} 0 & \frac{1}{R} & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	

and derive the quantities as defined in (4.6):

Name	Value	Derived from
rank	r = 1	$\operatorname{rank} E = \operatorname{rank} \begin{bmatrix} C & 0 \\ 0 & 0_2 \end{bmatrix}$
algebraic part strangeness	a = 2 $s = 0$	$\operatorname{rank} Z^{H}AT = \operatorname{rank} I_{2}^{-1}$ $\operatorname{rank} V^{H}Z^{H}AT' = \operatorname{rank} [0]$
differential part undetermined variables	d = 1 $u = 0$	d = r - s = 1 - 0 u = n - r - a = 3 - 2 - 1
vanishing equations	v = 0	v = m - r - a - s = 3 - 2 - 1 - 0

Example 4.4. With more involved scalings and state transforms, one finds for the coefficients of the linearized and spatially discretized Navier-Stokes equations (see Exercise I) that:

$$(\mathcal{E},\mathcal{A}) = \left(\begin{bmatrix} \underline{M} & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \underline{A} & B^H \\ B & 0 \end{bmatrix} \right) \backsim \left(\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \right).$$

We compute the subspaces as defined in (4.5):

Matrix	as the basis of/computed as	
$T = \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$	$\text{kernel} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
$Z = \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$	$ \text{corange} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix} $	
$\underline{T'} = \begin{bmatrix} I_{n_1} & 0\\ 0 & I_{n_2}\\ 0 & 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$Z^HAT=0_{n_1}$	$\begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}^H \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$	
$V=I_{n_1}$	$\operatorname{corange}(Z^HAT) = \operatorname{kernel} 0^H_{n_1}$	
$Z^HAT' = \\ \begin{bmatrix} I_{n_1} & 0_{n_1\times n_2} \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}^H \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix}$	

and derive the quantities as defined in (4.6):

Name	Value	Derived from
rank	$r = \\ n_1 + n_2$	$\operatorname{rank} E = \operatorname{rank} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
algebraic part	a = 0	$\operatorname{rank} Z^H A T = \operatorname{rank} 0_{n_1}$
strangeness	$s = n_1$ $d = n_2$	$\operatorname{rank} V^H Z^H A T' = \operatorname{rank} \begin{bmatrix} I_{n_1} & 0_{n_1 \times n_2} \end{bmatrix}$
differential part	$d = n_2$	$d = r - s = (n_1 + n_2) - n_1$
undetermined variables	$u = n_1$	u = n - r - a =
	- -	$(n_1+n_2+n_1)-(n_1+n_2)-0 \\$
vanishing equations	v = 0	v = m - r - a - s =
		$(n_1+n_2+n_1)-(n_1+n_2)-n_1 \\$

4.2 Don't read any further

Theorem 4.2 (see Kunkel/Mehrmann, Thm. 3.9). Let $E \in \mathcal{C}^l(I, \mathbb{C}^{m,n})$ with rank E(t) = r for all $t \in I$. Then there exist smooth and pointwise unitary (and, thus, nonsingular) matrix functions U and V, such that

$$U^H E V = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$