Advanced Python AI Techniques

Core Libraries and Frameworks

Python has become the dominant language for AI development due to its simplicity, readability, and flexibility. The ecosystem of libraries and frameworks provides powerful tools for implementing advanced AI solutions.

NumPy for Advanced Al

NumPy is a fundamental library that provides support for large, multi-dimensional arrays and matrices. It forms the foundation of many AI applications through:

```
import numpy as np

# Creating advanced matrix operations for neural networks
matrix = np.random.rand(3,3)
inverse = np.linalg.inv(matrix) # Matrix inversion
eigenvalues, eigenvectors = np.linalg.eig(matrix) # Eigendecomposition

# Implementing custom activation functions
def advanced_activation(x):
    return np.where(x > 0, x, np.exp(x) - 1) # ELU-like function

# Optimized tensor operations
tensor1 = np.random.randn(100, 100, 100)
tensor2 = np.random.randn(100, 100, 100)
result = np.tensordot(tensor1, tensor2, axes=([1,2], [0,1]))
```

Pandas for AI Data Processing

Pandas provides sophisticated data manipulation capabilities essential for AI preprocessing:

```
import pandas as pd

# Advanced feature engineering
df = pd.read_csv('data.csv')
df['log_feature'] = np.log1p(df['feature'])
df['interaction'] = df['feature1'] * df['feature2']

# Time series processing for sequential models
```

```
df['rolling_mean'] = df['value'].rolling(window=7).mean()
df['expanding_std'] = df['value'].expanding().std()

# Efficient categorical encoding
df = pd.get_dummies(df, columns=['category_feature'], drop_first=True)
```

Scikit-learn for Advanced ML

Scikit-learn provides sophisticated machine learning algorithms and tools:

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
# Advanced pipeline with dimensionality reduction
pipeline = Pipeline([
  ('scaler', StandardScaler()),
  ('pca', PCA(n_components=10)),
  ('classifier', RandomForestClassifier(n_estimators=100))
1)
# Stacking ensemble for superior performance
estimators = [
  ('rf', RandomForestClassifier(n_estimators=100)),
  ('svm', SVC(probability=True))
stacking_clf = StackingClassifier(
  estimators=estimators,
  final_estimator=LogisticRegression()
)
```

Deep Learning Superpower Techniques

TensorFlow and PyTorch Advanced Patterns

```
import tensorflow as tf

# Custom gradient computation
@tf.custom_gradient
def custom_activation(x):
    result = tf.math.tanh(x)
    def grad(dy):
```

```
return dy * (1 - tf.square(result)) * 1.05 # Gradient boosting
  return result, grad
# Advanced model architecture with residual connections
class ResidualBlock(tf.keras.layers.Layer):
  def __init__(self, filters, kernel_size=3):
    super(ResidualBlock, self). init ()
    self.conv1 = tf.keras.layers.Conv2D(filters, kernel_size, padding='same')
    self.bn1 = tf.keras.layers.BatchNormalization()
    self.conv2 = tf.keras.layers.Conv2D(filters, kernel_size, padding='same')
    self.bn2 = tf.keras.layers.BatchNormalization()
  def call(self, inputs, training=False):
    x = self.conv1(inputs)
    x = self.bn1(x, training=training)
    x = tf.nn.relu(x)
    x = self.conv2(x)
    x = self.bn2(x, training=training)
    return tf.nn.relu(x + inputs) # Skip connection
```

PyTorch Dynamic Computation Graphs

```
import torch
import torch.nn as nn
import torch.nn.functional as F
# Dynamic computation graph with conditional execution
class DynamicNet(nn.Module):
  def init (self):
    super(DynamicNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
    self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
    self.fc1 = nn.Linear(128 * 8 * 8, 512)
    self.fc2 = nn.Linear(512, 10)
  def forward(self, x, use_residual=True):
    x1 = F.relu(self.conv1(x))
    x2 = self.conv2(x1)
    # Dynamic residual connection based on runtime condition
    if use_residual and x1.size() == x2.size():
      x = F.relu(x2 + x1)
    else:
      x = F.relu(x2)
    x = F.adaptive\_avq\_pool2d(x, (8, 8))
    x = x.view(-1, 128 * 8 * 8)
    x = F.dropout(F.relu(self.fc1(x)), training=self.training)
```

Advanced Reinforcement Learning

```
import gym
import numpy as np
from collections import deque
import random
# Implementing Double Q-learning with experience replay
class AdvancedDQNAgent:
  def init (self, state size, action size):
    self.state_size = state_size
    self.action_size = action_size
    self.memory = deque(maxlen=100000)
    self.gamma = 0.99 # discount rate
    self.epsilon = 1.0 # exploration rate
    self.epsilon_min = 0.01
    self.epsilon_decay = 0.995
    self.learning rate = 0.001
    self.model = self._build_model()
    self.target_model = self._build_model()
    self.update_target_model()
  def build model(self):
    # Neural Net for Deep-Q learning Model
    model = tf.keras.Sequential([
      tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'),
      tf.keras.layers.Dense(24, activation='relu'),
      tf.keras.layers.Dense(self.action_size, activation='linear')
    ])
    model.compile(loss='mse',
optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
    return model
  def update target model(self):
    # copy weights from model to target model
    self.target_model.set_weights(self.model.get_weights())
  def remember(self, state, action, reward, next_state, done):
    self.memory.append((state, action, reward, next_state, done))
  def act(self, state):
    if np.random.rand() <= self.epsilon:</pre>
      return random.randrange(self.action_size)
    act_values = self.model.predict(state)
    return np.argmax(act_values[0])
```

```
def replay(self, batch_size):
    minibatch = random.sample(self.memory, batch_size)
    for state, action, reward, next_state, done in minibatch:
        target = reward
        if not done:
            # Double DQN: select action using model, evaluate using target model
            a = np.argmax(self.model.predict(next_state)[0])
            target = reward + self.gamma * self.target_model.predict(next_state)[0][a]
        target_f = self.model.predict(state)
        target_f[0][action] = target
        self.model.fit(state, target_f, epochs=1, verbose=0)
    if self.epsilon > self.epsilon_min:
        self.epsilon_decay
```

Generative AI and Transformers

```
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Advanced text generation with control codes
class ControlledTextGenerator:
  def __init__(self, model_name="gpt2-medium"):
    self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
    self.model = GPT2LMHeadModel.from_pretrained(model_name)
    self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    self.model.to(self.device)
  def generate_controlled_text(self, prompt, control_code, max_length=100):
    # Prepend control code to guide generation
    input_text = f"{control_code} {prompt}"
    input_ids = self.tokenizer.encode(input_text,
return_tensors="pt").to(self.device)
    # Generate with nucleus sampling for more creative outputs
    output = self.model.generate(
      input_ids,
      max_length=max_length,
      num_return_sequences=1,
      do_sample=True,
      top_p=0.92,
      top_k=50,
      temperature=0.85,
      repetition_penalty=1.2,
      no_repeat_ngram_size=2
    )
    return self.tokenizer.decode(output[0], skip_special_tokens=True)
```

Advanced Computer Vision Techniques

```
import torch
import torch.nn as nn
import torchvision.models as models
# Feature extraction and transfer learning with attention
class AttentionFeatureExtractor(nn.Module):
  def __init__(self, pretrained=True):
    super(AttentionFeatureExtractor, self).__init__()
    # Use pretrained ResNet as base
    resnet = models.resnet50(pretrained=pretrained)
    self.base = nn.Sequential(*list(resnet.children())[:-2])
    # Channel attention module
    self.channel_attention = nn.Sequential(
      nn.AdaptiveAvgPool2d(1),
      nn.Conv2d(2048, 512, kernel_size=1),
      nn.ReLU(),
      nn.Conv2d(512, 2048, kernel_size=1),
      nn.Sigmoid()
    )
    # Spatial attention module
    self.spatial_attention = nn.Sequential(
      nn.Conv2d(2048, 1, kernel_size=1),
      nn.Sigmoid()
    )
  def forward(self, x):
    features = self.base(x)
    # Apply channel attention
    channel_weights = self.channel_attention(features)
    features = features * channel_weights
    # Apply spatial attention
    spatial_weights = self.spatial_attention(features)
    features = features * spatial_weights
    return features
```

Sources

- Advanced Python Techniques for AI: Using NumPy, Pandas, and Scikit-learn with Examples
- Advanced Techniques for Artificial Intelligence with Python