Title: DEVELOPING A LOGIC CIRCUIT

Materials:

- [1] 7408 2-input AND gate IC
- [1] 7432 2-input OR gate IC

Procedure:

- 1. On a separate piece of paper, **draw** a logic circuit for the Boolean expression A+(BC)=Y in Fig. 4-4. Use the correct logic symbols for the AND and OR gates. Label the switches A, B, and C and also label the led as Y.
- 2. Insert a 7432 and 7408 IC into the breadboard.
- 3. Wire the logic circuit you drew in Fig. 4-4.
- 4. Move the input switches to each combination shown in the input section of Table 4-1. Record the results in the output column. **Get Instructor's Signature.**

Inputs			Outputs
A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 4-1. Truth Table for A+BC=Y

Questions (answer on a separate piece of paper – "Draw" means you must use a template):

- 1. The Boolean expression $\overline{AB} + A\overline{BC} = Y$ is called a _____ (maxterm, minterm) or also a _____ of-___ expression.
- 2. The Boolean expression $\overline{AB} + A\overline{BC} = Y$ can be implemented with an _____ (AND-OR, OR-AND) pattern of logic gates.
- 3. **Draw** a logic diagram for the Boolean expression $\overline{AB} + \overline{ABC} = Y$.
- 4. **Draw** a three-variable truth table for the Boolean expression $\overline{AB} + \overline{ABC} = Y$.