Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

# Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

CUNY Graduate Center/Hunter College

Friday April 24th 2015

#### Motivation Behind Quantum Info Science

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

- When you receive information, you'd like to be able to read out the text.
- Inability to fully distinguish quantum states has been exploited in quantum cryptography
- Quantum Simulations.

# Quantum State Discrimination: 2 pure states

State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Quantum

Andi Shehu

Two non-orthogonal pure states can be represented in 2D



Figure: 2 pure states

$$|\psi_1\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle$$

$$|\psi_2\rangle = \cos\theta |0\rangle - \sin\theta |1\rangle$$

## Quantum State Discrimination: 2 pure states

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

• Imagine two detectors  $\Pi_1$  and  $\Pi_2$  which unambiguously detect the two pure states. The detectors span the Hilbert space:

$$\Pi_1 + \Pi_2 = I \tag{1}$$

• The detector  $\Pi_i$  unambiguously detects the state  $|\psi_i\rangle$   $i=1,\,2$ , such that  $\Pi_i\,|\psi_j\rangle=0$ 

$$\langle \psi_1 | (\Pi_1 + \Pi_2) | \psi_1 \rangle = \langle \psi_1 | \psi_1 \rangle$$
  
 $p_1 = 1$ 

• Similarly it can be shown that  $p_2=1$ . However multiplying l.h.s by  $\langle \psi_1|$  and r.h.s by  $|\psi_2\rangle$  results in  $\langle \psi_1|$   $|\psi_2\rangle=0$ , orthogonal states.

#### Unambiguous Discrimination

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

 Unambiguous State Discrimination is still possible if a third detector is added:

$$\Pi_1 + \Pi_2 + \Pi_0 = I \tag{2}$$

• The condition  $\Pi_i |\psi_j\rangle = 0$  still holds. Multiplying 2 by  $\langle \psi_i|$  from l.h.s and  $|\psi_i\rangle$ :

$$\langle \psi_i | (\Pi_1 + \Pi_2 + \Pi_0) | \psi_i \rangle = \langle \psi_i | \psi_i \rangle,$$
  
 $p_i + q_i = 1,$ 

where:  $p_i$  rate of successfully identifying the state,  $q_i$  failure rate.

## Unambiguous Discrimination

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu



Figure: UD with three detectors

• The task is to minimize the average failure rate:  $Q=\eta_1q_1+\eta_2q_2,\ \eta_i$  the a-priori rates of input states. The optimum Q is:

$$Q_0^{IDP} = 2\sqrt{\eta_1\eta_2}s \tag{3}$$

#### Minimum Error

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

• The detectors can make a mistake, but are not allowed to abstain from giving an answer.

$$\Pi_1 + \Pi_2 = I \tag{4}$$

Multiplying Eq. (4) by 
$$\langle \psi_i |$$
 from l.h.s and  $|\psi_i \rangle$ :  $\langle \psi_i | (\Pi_1 + \Pi_2) | \psi_i \rangle = \langle \psi_i | \psi_i \rangle \Rightarrow p_i + r_i = 1$ 

• Minimize the average failure rate[1]:  $P_F^{min} = \eta_1 r_1 + \eta_2 r_2 = \frac{1}{2} [1 - \sqrt{1 - 4\eta_1 \eta_2 |\langle \psi_1 | \psi_2 \rangle|^2}]$ 

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu



Figure: ME

#### **FRIO**

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

- The error rate in the Helstrom bound can be lowered if we relax a constrained and allow for some FRIO.
- Bagan et al [2] solved the problem first by transforming the three out

$$\Pi_1 + \Pi_2 = I - \Pi_0 \equiv \Omega$$

$$\tilde{\Pi}_1 + \tilde{\Pi}_2 = I$$
(5)

where  $\tilde{\Pi}_i \equiv \Omega^{-1/2} \Pi_i \, \Omega^{-1/2}$ . The optimization to Eq. (5) is that of Helstrom with new normalized probabilities

$$\begin{split} \tilde{P}_E &= \frac{1}{2} \left[ 1 - \sqrt{1 - 4 \tilde{\eta}_1 \tilde{\eta}_2 |\langle \tilde{\psi}_1 | \tilde{\psi}_2 \rangle|^2} \right] \\ P_E^{min} &= \frac{1}{2} \left\{ (1 - Q) - \sqrt{(1 - Q)^2 - (Q_0 - Q)^2} \right\} \end{split}$$

#### **FRIO**

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu



Figure: FRIO: Error rate interpolates between 0, for failure rate  $Q=Q_0$ , and the Helstrom  $P_E^{helstrom}$  for zero failure rate Q=0. The graph has prior probabilities  $\eta_1=0.3,\ \eta_2=0.7$  and overlap s=0.2.

#### Implementation of FRIO

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu



Figure: Dual rail representation of a photon and six port

Choosing the basis of our Hilbert space:  $a_1^\dagger\,|000\rangle=|100\rangle\equiv|1\rangle$   $a_2^\dagger\,|000\rangle=|010\rangle\equiv|2\rangle$  .

Two non-orthogonal input states can be expressed as:

$$|\psi_1\rangle_{in} = |1\rangle, \ |\psi_2\rangle_{in} = \cos\theta|1\rangle + \sin\theta|2\rangle.$$

#### Unitary

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

In Schrodinger picture the in and out states are related by:  $U\left|in\right\rangle = \left|out\right\rangle$ .

$$U|1\rangle = \sqrt{p_1}|1\rangle + \sqrt{r_1}|2\rangle + \sqrt{q_1}|3\rangle,$$
  

$$U(\cos\theta|1\rangle + \sin\theta|2\rangle) = \sqrt{r_2}|1\rangle + \sqrt{p_2}|2\rangle + \sqrt{q_2}|3\rangle$$

The first column is:

$$\begin{aligned} &\langle 1|U|1\rangle = U_{11} = \sqrt{p_1}, \\ &\langle 2|U|1\rangle = U_{21} = \sqrt{q_1}, \\ &\langle 3|U|1\rangle = U_{31} = \sqrt{r_1}. \\ &\text{Second Column:} \\ &U_{12} = \frac{\sqrt{r_2} - \sqrt{p_1}\cos\theta}{\sin\theta}, \\ &U_{22} = \frac{\sqrt{p_2} - \sqrt{r_1}\cos\theta}{\sin\theta}, \\ &U_{32} = \frac{\sqrt{q_2} - \sqrt{q_1}\cos\theta}{\sin\theta}, \end{aligned}$$

#### Unitary

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

$$U = \begin{pmatrix} \sqrt{p_1} & \frac{\sqrt{r_2} - \sqrt{p_1} \cos \theta}{\sin \theta} & -\frac{\sqrt{\sin^2 \theta - p_1 - r_2 + 2\sqrt{p_1 r_2} \cos \theta}}{\sin \theta} \\ \sqrt{r_1} & \frac{\sqrt{p_2} - \sqrt{r_1} \cos \theta}{\sin \theta} & -\frac{\sqrt{\sin^2 \theta - r_1 - p_2 + 2\sqrt{p_2 r_1} \cos \theta}}{\sin \theta} \\ \sqrt{q_1} & \frac{\sqrt{q_2} - \sqrt{q_1} \cos \theta}{\sin \theta} & +\frac{\sqrt{\sin^2 \theta - q_1 - q_2 + 2\sqrt{q_1 q_2} \cos \theta}}{\sin \theta} \end{pmatrix} .$$
(6)

The coefficients  $r_i$  and  $p_i$  however are not determined in the Bagan solution. We solve the FRIO problem using Neumark setup.

#### Unitary

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

$$U|1\rangle = \sqrt{p_1}|1\rangle + \sqrt{r_1}|2\rangle + \sqrt{q_1}|3\rangle,$$

$$U(\cos\theta|1\rangle + \sin\theta|2\rangle) = \sqrt{r_2}|1\rangle + \sqrt{p_2}|2\rangle + \sqrt{q_2}|3\rangle$$

The inner product:

$$s = \sqrt{p_1 r_2} + \sqrt{p_2 r_1} + \sqrt{q_1 q_2},\tag{7}$$

Minimize  $P_E = \eta_1 r_1 + \eta_2 r_2$  subject to the constraint in (7) can be solved with the use of Lagrange multipliers

$$F = \eta_1 r_1 + \eta_2 r_2 + \lambda (s - \sqrt{(1 - r_1 - q_1)r_2} - \sqrt{(1 - r_2 - q_2)r_1} - \sqrt{q_1 q_2})$$

#### Solution to Lagrange Multipliers

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

$$r_{i} = \frac{1}{2} \left[ \left( 1 - \frac{Q}{2\eta_{i}} \right) - \frac{\left( 1 - \frac{Q}{2\eta_{i}} \right) (1 - Q) - \frac{1}{2\eta_{i}} (Q_{o} - Q)^{2}}{\sqrt{(1 - Q)^{2} - (Q - Q_{o})^{2}}} \right],$$

$$(8)$$

$$p_{i} = \frac{1}{2} \left[ \left( 1 - \frac{Q}{2\eta_{i}} \right) + \frac{\left( 1 - \frac{Q}{2\eta_{i}} \right) (1 - Q) - \frac{1}{2\eta_{i}} (Q_{o} - Q)^{2}}{\sqrt{(1 - Q)^{2} - (Q - Q_{o})^{2}}} \right].$$

$$(9)$$

#### Reck-Zeilinger Algorithm

Quantum
State Discrimination
and
Quantum
Cloning
Schemes:
Optimization
and Implementation

Andi Shehu

Any discrete finite-dimensional unitary operator can be can be constructed in the lab using optical devices [3]. Following the Reck-Zeilinger algorithm the unitary calculated in (6) can be decomposed in terms of three beam splitters  $U=M_1M_2M_3$  where:

$$M_{1} = \begin{pmatrix} \sin \omega_{1} & \cos \omega_{1} & 0 \\ \cos \omega_{1} & -\sin \omega_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$M_{2} = \begin{pmatrix} \sin \omega_{2} & 0 & \cos \omega_{2} \\ 0 & 1 & 0 \\ \cos \omega_{2} & 0 & -\sin \omega_{2} \end{pmatrix},$$

$$M_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sin \omega_{3} & \cos \omega_{3} \\ 0 & \cos \omega_{3} & -\sin \omega_{3} \end{pmatrix}.$$

#### Reck-Zeilinger Algorithm

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

The reflective and transmittance coefficients are calculated and expressed in terms of  $\eta_i$ , s, and FRIO Q.

$$\cos \omega_1 = \sqrt{\frac{r_1}{1 - Q/2\eta_1}} \text{, } \sin \omega_1 = \sqrt{\frac{p_1}{1 - Q/2\eta_1}},$$

$$\cos \omega_2 = \sqrt{Q/2\eta_1}, \sin \omega_2 = \sqrt{1 - Q/2\eta_1},$$

$$\cos \omega_3 = -\frac{\sqrt{Q/2\eta_2} - \frac{Q_o}{2\eta_1} \sqrt{Q/2\eta_2}}{\sqrt{(1 - Q/2\eta_1)(1 - Q_o^2/4\eta_1\eta_2)}},$$

$$\sin \omega_3 = \frac{\sqrt{1 - Q_o^2/4\eta_1\eta_2 - Q/(2\eta_1\eta_2) + Q_o/(2\eta_1\eta_2)}}{\sqrt{(1 - Q/2\eta_1)(1 - Q_o^2/4\eta_1\eta_2)}}.$$
where  $r_1$  and  $r_2$  are given in (8) and (9)

where  $r_i$  and  $p_i$  are given in (8) and (9).

#### Quantum Cloning

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

Let's try a different approach to state discrimination: Clone the states first then perform a measurement:

Given a state from a set of non-orthogonal quantum states  $\{\ket{\psi_1},\,\ket{\psi_2}\}$  make a large number of copies:

$$U |\psi_1\rangle = |\psi_1\rangle |\psi_1\rangle \dots |\psi_1\rangle = |\psi_1\rangle^N$$
  

$$U |\psi_2\rangle = |\psi_2\rangle |\psi_2\rangle \dots |\psi_2\rangle = |\psi_2\rangle^N$$

Now perform a measurement scheme: ME or UD

$$P_E = \frac{1}{2} \left[ 1 - \sqrt{1 - 4\eta_1 \eta_2 |\langle \psi_1 | \psi_2 \rangle|^{2N}} \right] ,$$

$$Q = 2\sqrt{\eta_1 \eta_2} |\langle \psi_1 | \psi_2 \rangle|^N$$

In the asymptotic limit the error rate and the failure rate reduce to zero

#### No-Cloning Theorem

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

It was shown by Wootters, Zurek [4] and Dieks [5] that deterministic quantum cloning is not possible. Imagine a unitary operator which would copy the state  $|\psi_i\rangle$  into  $|0\rangle$ :

$$U|\psi_1\rangle|0\rangle = |\psi_1\rangle|\psi_1\rangle$$

$$U|\psi_2\rangle|0\rangle = |\psi_2\rangle|\psi_2\rangle$$
(10)

Inner product:  $\langle \psi_2 | \psi_1 \rangle \langle 0 | 0 \rangle = |\langle \psi_2 | \psi_1 \rangle|^2 \Rightarrow s = s^2$ . The condition can be satisfied only if s = 0, states are orthogonal, or s = 1, the two states are the same.

#### Beyond the no-cloning theorem

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

- M.Hillery and V. Bužek make clones [6, 7, 8]!
- Two main quantum cloning machines (QCM): Universal and State Dependent
- Universal QCM: independent of the input
- State Dependent QCM: Probabilistic or Deterministic.
- Deterministic SD-QCM: produce approximate clones on demand while optimizing the fidelity between clones and input states.
- Probabilistic SD-QCM: produce exact clones with some rate of abstention.

#### Probabilistic SD-QCM

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

Given a pair non-orthogonal quantum states  $\{|\psi_1\rangle,\,|\psi_2\rangle\}$  a probabilistic QCM produces  $\{|\psi_1\rangle|\psi_1\rangle,\,|\psi_2\rangle|\psi_2\rangle\}$ 

$$\begin{array}{lcl} U|\psi_1\rangle|i\rangle & = & \sqrt{p_1}|\psi_1\rangle^N\,|\alpha\rangle + \sqrt{q_1}|\Phi\rangle\,|0\rangle\,, \\ U|\psi_2\rangle|i\rangle & = & \sqrt{p_2}|\psi_2^N\rangle|\alpha\rangle + \sqrt{q_2}|\Phi\rangle\,|0\rangle\,, \end{array}$$

where  $p_i + q_i = 1$ .

Unitarity constrained:  $s = \sqrt{p_1 p_2} s^2 + \sqrt{q_1 q_2}$ .

Equal priors [9]:  $s = ps^2 + q \Rightarrow q = \frac{s}{1+s}$ 

#### State Separation

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

Probabilistic cloning turns out to be a special case of state separation:

$$U|\psi_1\rangle|i\rangle = \sqrt{p_1}|\phi_1\rangle|\alpha\rangle + \sqrt{q_1}|\Phi\rangle|0\rangle,$$

$$U|\psi_2\rangle|i\rangle = \sqrt{p_2}|\phi_2\rangle|\alpha\rangle + \sqrt{q_2}|\Phi\rangle|0\rangle,$$
(11)

The unitarity constraint:  $s = \sqrt{p_1 p_2} s' + \sqrt{q_1 q_2}$ . (one to two exact cloning is equivalent to setting  $s' = s^2$ )

Optimize the average rate of failing to separate the input states:  $Q = \eta_1 q_1 + \eta_2 q_2$ 

$$| \psi_1 \rangle \\ | \psi_1 \rangle \\ | \psi_2 \rangle \\ | \phi_2 \rangle$$

# Geometric solution to state separation

Quantum
State Discrimination
and
Quantum
Cloning
Schemes:
Optimization
and Implementation

Andi Shehu



Figure: Unitarity curves  $s^m = \sqrt{p_1p_2} \ s^n \alpha + \sqrt{q_1q_2}$  and the associated sets  $S_\alpha = \{(q_1,q_2): \sqrt{p_1p_2} \ s^n \alpha + \sqrt{q_1q_2} - s^m \geq 0\}$  for values of  $\alpha$  positive (solid/light gray), zero (dashed/medium gray), and negative (dotted/dark gray). The figure also shows the optimal straight segment  $Q = \eta_1q_1 + \eta_2q_2$  and its normal vector  $(\eta_1,\eta_2)_2$ 

Quantum State Discrimination and Quantum Cloning

Schemes: Optimization and Implementation

Andi Shehu

Parametrize the unitary constraint:  $s = \sqrt{p_1 p_2} s' + \sqrt{q_1 q_2}$  using  $p_1 p_1 = t^2$ ,  $q_1 q_2 = z^2$ . The condition becomes:

- z = s s't, 0 < t, z < 1, 0 < s' < s.
  - From the first equation

 $t^2 = (1 - q_1)(1 - q_2) = 1 + z^2 - q_1 - q_2$ . We now solve for  $q_1$  (similarly for  $q_2$ ) and obtain

$$q_{1,2} = \frac{1 + z^2 - t^2 \pm \sqrt{(1 + z^2 - t^2)^2 - 4z^2}}{2}.$$

• The condition  $Q = \eta_1 q_1 + \eta_2 q_2$  becomes  $2Q = 1 + z^2 - t^2 \pm (\eta_1 - \eta_2) \sqrt{(1 + z^2 - t^2)^2 - 4z^2}$ . Solve for  $z^2$ 

$$z^{2} = \frac{2\eta_{1}\eta_{2}(1+\tau) - 1 + Q + \sqrt{(1-4\eta_{1}\eta_{2})[(1-Q)^{2} - 4}}{2\eta_{1}\eta_{2}}$$

$$\equiv \zeta(\tau)$$

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Imple-

mentation
Andi Shehu

The derivative  $d\zeta/d\tau$  is immediate. We find that the maximum is located at

$$t_{\min} = \left\{ \begin{array}{ll} \sqrt{\left(1-\frac{Q}{2\eta_1}\right)\left(1-\frac{Q}{2\eta_2}\right)}, & \quad \text{if} \quad \quad 0 \leq Q \leq 2\eta_1 \\ \\ 0, & \quad \quad \text{if} \quad \quad 2\eta_1 < Q \leq 1. \end{array} \right.$$

The corresponding values of z are

$$z_{\min} = \left\{ egin{array}{ll} rac{Q}{2\sqrt{\eta_1\eta_2}}, & ext{if} & 0 \leq Q \leq 2\eta_1 \\ \\ \sqrt{rac{Q-\eta_1}{\eta_2}}, & ext{if} & 2\eta_1 < Q \leq 1. \end{array} 
ight.$$

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

$$s'(t) = -\frac{dz}{dt} = -\frac{t\zeta'(t^2)}{\sqrt{\zeta(t^2)}}, \qquad t_{\min} \le t \le 1 - Q,$$

and next ii. define

$$s(t) = z + ts'(t) = \sqrt{\zeta(t^2)} + ts'(t), \qquad t_{\min} \le t \le 1 - Q.$$

where

$$\zeta'(\tau) = 1 - \frac{\sqrt{1 - 4\eta_1 \eta_2}}{\sqrt{(1 - Q)^2 - 4\eta_1 \eta_2 \tau}}$$

For  $s < z_{\rm min}$  is is always possible to separate the initial states, i.e.,  $|\psi_1\rangle$  and  $|\psi_2\rangle$  can be made orthogonal. We note that the condition  $s=z_{\rm min}$  is equivalent to the unambiguous discrimination result

$$Q = 2\sqrt{\eta_1 \eta_2} s$$
,  $Q = \eta_1 + \eta_2 s^2$ .

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Imple-

mentation
Andi Shehu

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu



Figure: The plot is for  $\eta_1=0.1$ . As  $\eta_1$  approaches 1/2 the curves approach a straight line. The difference is more noticeable for very small values of  $\eta_1$ .

Quantum State Discrimination and Quantum Cloning Schemes: Optimization and Implementation

Andi Shehu

- Carl W. Helstrom.
  - Quantum detection and estimation theory.
  - Journal of Statistical Physics, 1(2):231–252, 1969.
  - E. Bagan, R. Muñoz Tapia, G. a. Olivares-Rentería, and J. a. Bergou.
    - Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes.
    - Physical Review A Atomic, Molecular, and Optical Physics, 86(4):1–5, 2012.
- Michael Reck and Anton Zeilinger.
  Experimental realization of any discrete unitary operator, 1994.
- W. K. Wootters and W. H. Zurek.
  A single quantum cannot be cloned, 1982.

