

МИРЭА – Российский технологический университет Кафедра вычислительной техники

Теория автоматов

Практическая работа №1: Построение счетчиков на D- и ЈК-триггерах

Старший преподаватель: Боронников Антон Сергеевич antboronnikov@mail.ru

Построить счётчики по модулю *М* с шагом *S* в двух вариантах:

- 1. На D-триггерах, комбинационная часть схемы в базисе И-НЕ.
- 2. На ЈК- триггерах, комбинационная часть схемы в базисе ИЛИ-НЕ (функционал ЈК-триггера должен быть использован полностью, т.е. нельзя его использовать в варианте D- или T-триггера).

Схемы должны быть минимизированы.

Содержание отчета:

- 1. Титульный лист;
- 2. Задание;
- 3. Прогнозируемая временная диаграмма работы счётчика;
- 4. Иллюстрация метода минимизации (карты Карно или другой формальный метод) для всех синтезируемых булевских функций;
- 5. Скриншоты схем.

Logisim-win-2.7.1

Загрузить с офф. сайта: http://www.cburch.com/logisim/ru/download.html

Построение счетчика на D-триггерах

Счетчик на D-триггерах по модулю **11** с шагом **2** (комб.часть в базисе «И-НЕ»)

Работа счетчика:

0	0000
2	0010
4	0100
6	0110
8	1000
10	1010
1	0001
3	0011
5	0101
7	0111
9	1001

Временная диаграмма:

С	D	Q(t+1)	действие		
0	Х				
1	Χ	Q(t)	хранение		
	Х				
	Α	Q<=A	запоминание		

Таблица состояний счётчика

		Q			Q'				
	Q_3	Q_2	Q_1	Q_0		Q' ₃	Q' ₂	Q' ₁	Q' ₀
0	0	0	0	0	2	0	0	1	0
1	0	0	0	1	3	0	0	1	1
2	0	0	1	0	4	0	1	0	0
3	0	0	1	1	5	0	1	0	1
4	0	1	0	0	6	0	1	1	0
5	0	1	0	1	7	0	1	1	1
6	0	1	1	0	8	1	0	0	0
7	0	1	1	1	9	1	0	0	1
8	1	0	0	0	10	1	0	1	0
9	1	0	0	1	0	0	0	0	0
10	1	0	1	0	1	0	0	0	1

Так как D-триггер работает по принципу «что на входе, то и на выходе при положительном фронте синхросигнала», то таблица возбудимости триггера соответствует таблице переходов состояний счетчика.

 $Q \rightarrow$ текущее состояние

 $Q' \rightarrow$ следующее состояние

Функции возбуждения D-триггеров будем рассчитывать с помощью МДНФ (так как по заданию необходимо, чтобы комбинационная часть схемы счетчика была построена в базисе «И-НЕ»).

Минимизировать будем с помощью карт Карно.

Расчет функций возбуждения триггеров Q'3 и Q'2

	Q_1Q_0						
Q_3	Q_1Q_0	00	01		11	10	
	00						
	01				1	1	
	11	X	X		Х	Х	
	10	1			X		

$$Q_3' = (Q_2 \cdot Q_1) + (Q_3 \cdot \overline{Q_1} \cdot \overline{Q_0})$$

В базисе И-НЕ:

Берем от МДНФ двойное отрицание. Нижнюю инверсию раскрываем по правилу Де-Моргана.

$$Q_3' = \overline{(x_2 \cdot x_1) + (x_3 \cdot \overline{x_1} \cdot \overline{x_0})} = \overline{(x_2 \cdot x_1)} \& \overline{(x_3 \cdot \overline{x_1} \cdot \overline{x_0})}$$

$$Q_2' = \overline{(Q_2 \cdot \overline{Q_1}) + (\overline{Q_3} \cdot \overline{Q_2} \cdot x_1)} = \overline{(Q_2 \cdot \overline{Q_1})} \& \overline{(\overline{Q_3} \cdot \overline{Q_2} \cdot Q_1)}$$

Расчет функций возбуждения триггеров Q'₁ и Q'₀

Q_1Q_0	00	01	11	10
00	1	1		
01	1	1		
11	Х	Х	Х	х
10	1		X	

$$Q_1' = \overline{(\overline{Q_1} \cdot \overline{Q_0}) + (\overline{Q_3} \cdot \overline{Q_1})} = \overline{(\overline{Q_1} \cdot \overline{Q_0})} \, \& \, \overline{(\overline{Q_3} \cdot \overline{Q_1})}$$

Q_1Q_0				10
Q_1Q_0	00	01	01 11	
00		1	1	
01		1	1	
11	Х	X	Х	х
10			х	1

$$Q_1' = \overline{(\overline{Q_3} \cdot Q_0) + (Q_3 \cdot Q_1)} = \overline{(\overline{Q_3} \cdot Q_0)} \,\&\, \overline{(Q_3 \cdot Q_1)}$$

Построение схемы

Для проверки работы счетчика необходимо переключиться на инструмент в верхней панели

- «изменять значение схемы»

И нажимать на тактовый генератор, подключенный к входам «Clock» D-триггеров.

Построение счетчика на ЈК-триггерах

Таблица истинности

(переход в состояние Q(t+1) по положительному фронту синхросигнала)

J	К	Q(t)	Q(t+1)	действие
0	0	0	0	VP211011140
0	0	1	1	хранение
0	1	0	0	VOT. "O"
0	1	1	0	уст. «0»
1	0	0	1	
1	0	1	1	уст. «1»
1	1	0	1	счетный
1	1	1	0	режим

Таблица возбуждения

Таблица состояний счетчика и функции \$3-\$0 сигналов возбуждения ЈК-триггеров

		Q					Q'			S	3	S	2	S	1	S	0
	Q_3	Q_2	Q_1	Q_0		Q' ₃	Q'2	Q' ₁	Q'0	J	K	J	K	J	K	J	K
0	0	0	0	0	2	0	0	1	0	0	Х	0	Х	1	Х	0	Х
1	0	0	0	1	3	0	0	1	1	0	X	0	Χ	1	Χ	Χ	0
2	0	0	1	0	4	0	1	0	0	0	X	1	X	Χ	1	0	X
3	0	0	1	1	5	0	1	0	1	0	Χ	1	Х	Χ	1	Χ	0
4	0	1	0	0	6	0	1	1	0	0	X	Χ	0	1	Χ	0	X
5	0	1	0	1	7	0	1	1	1	0	X	Χ	0	1	Χ	Χ	0
6	0	1	1	0	8	1	0	0	0	1	X	Χ	1	Χ	1	0	Х
7	0	1	1	1	9	1	0	0	1	1	X	Χ	1	Χ	1	Χ	0
8	1	0	0	0	10	1	0	1	0	Χ	0	0	X	1	Χ	0	Х
9	1	0	0	1	0	0	0	0	0	Χ	1	0	Х	0	Χ	Χ	1
10	1	0	1	0	1	0	0	0	1	Χ	1	0	Χ	Χ	1	1	X

Расчет функций возбуждения входов JK-триггеров будем рассчитывать с помощью МКНФ (так как по заданию необходимо, чтобы комбинационная часть схемы счетчика была построена в базисе «ИЛИ-НЕ»).

Минимизировать будем с помощью карт Карно.

$$S3(j) = Q_2 \& Q_1$$

В базисе ИЛИ-НЕ:

Берем от МКНФ двойное отрицание. Нижнюю инверсию раскрываем по правилу Де-Моргана.

$$S3(j) = \overline{\overline{Q_2} \& Q_1} = \overline{\overline{Q_2} + \overline{Q_1}}$$

Q_1Q_0 Q_3Q_2	00	01	11	10
00	х	Х	х	х
01	Х	х	Х	Х
11	Х	Х	Х	Х
10	0		Х	

$$S3(k) = \overline{\overline{Q_1 + Q_0}}$$

Q_1Q_0 Q_3Q_2	00	00 01 11		10	
00	0	0			
01	01 X		Х	X	
11	Х	Х	Х	Х	
10	0	0	Х	0	

$$S2(j) = \overline{\overline{Q_1} \& \overline{Q_3}} = \overline{\overline{Q_1} + Q_3}$$

Q_1Q_0 Q_3Q_2	00	01	11	10
00	Х	x	X	Х
01	0	0		
11	х	х	X	х
10	Х	х	X	х

$$S2(k) = Q_1$$

Q_1	Q_0	00	l	01	11	I	10	ı
Q_3Q_2	\vdash			01				4
00					X		X	
01					X		X	
11		X		Х	X		X	
10				0	Х		X	
								1

$$S1(j) = \overline{\overline{Q_3} + \overline{Q_0}}$$

Q_1Q_0	00	01	11	10
00	Х	Х		
01	Х	Х		
11	Х	Х	X	Х
10	Х	Х	Х	

$$S1(k) = 1$$

$$SO(j) = \overline{\overline{Q_3 \& Q_1}} = \overline{\overline{Q_3} + \overline{Q_1}}$$

$$S0(k) = Q_3$$

Построение схемы

Карта Карно для 5-ти разрядного входа

$Q_1 Q_0$ $Q_4 Q_3 Q_2$	00	01	11	10
000				
001				
011				
010				
110				
111				
101				
100				