A Comparison of Optimization Methods for Multi-Objective Constrained Bin Packing Problems

P. Olivier¹, A. Lodi¹, G. Pesant¹

¹École polytechnique de Montréal, Montreal, Canada {philippe.olivier, andrea.lodi, gilles.pesant}@polymtl.ca

CPAIOR 2018

XX June 2018

Outline

- The Wedding Seating Problem
- 2 Existing Methods
- 3 CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

Outline

- The Wedding Seating Problem
- 2 Existing Methods
- CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

Outline¹

- The Wedding Seating Problem
- 2 Existing Methods
- 3 CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

Existing Methods

Overview

- Original IP model [Bellows and Petersen, Annals of Improbable Research, 2012].
- Two-stage algorithm using tabu search [Lewis, WorldComp International Conference Proceedings, 2013].
- Improved IP model [Lewis and Carroll, Journal of the Operational Research Society, 2016].

Existing Methods

Two-stage algorithm using tabu search [Lewis, 2013]

Build a graph where nodes represent groups, edges represent relations, and colors represent tables.

- Stage 1: Color nodes to find an initial feasible solution
- Stage 2: Improve this feasible solution with a tabu search

Outline¹

- The Wedding Seating Problem
- 2 Existing Methods
- 3 CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

Branching and Search

Branching heuristic (similar to best fit decreasing):

- Pick the largest group yet unassigned
- Assign that group at the best possible table
- If no table has enough room, open a new table

Branching and Search

Branching heuristic (similar to best fit decreasing):

- Pick the largest group yet unassigned
- Assign that group at the best possible table
- If no table has enough room, open a new table

Large Neighborhood Search (LNS):

- Freeze $\sim 1/3$ of the tables for 10s
- The best tables are more likely to be frozen

Outline¹

- The Wedding Seating Problem
- 2 Existing Methods
- CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

$$x_{ik} := \begin{cases} 1, & \text{if group } i \text{ is assigned to table } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$x_{ik} := \begin{cases} 1, & \text{if group } i \text{ is assigned to table } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$\min \quad \sum_{k \in \mathcal{T}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ik} x_{jk} c_{ij}$$

$$x_{ik} := \begin{cases} 1, & \text{if group } i \text{ is assigned to table } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$\min \quad \sum_{k \in \mathcal{T}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ik} x_{jk} c_{ij}$$

s.t.
$$\sum_{k \in \mathcal{T}} x_{ik} = 1$$
 $\forall i \in \mathcal{G}$

$$x_{ik} := \begin{cases} 1, & \text{if group } i \text{ is assigned to table } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$\min \quad \sum_{k \in \mathcal{T}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ik} x_{jk} c_{ij}$$

s.t.
$$\sum_{k \in \mathcal{T}} x_{ik} = 1 \qquad \forall i \in \mathcal{G}$$

$$x_{ik} + x_{jk} \le 1$$
 $\forall i, j \in \mathcal{G} : c_{ij} = \infty, \quad \forall k \in \mathcal{T}$

$$x_{ik} := \begin{cases} 1, & \text{if group } i \text{ is assigned to table } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$\min \sum_{k \in \mathcal{T}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ik} x_{jk} c_{ij}$$

s.t.
$$\sum_{k \in \mathcal{T}} x_{ik} = 1 \qquad \forall i \in \mathcal{G}$$

$$x_{ik} + x_{jk} \le 1$$
 $\forall i, j \in \mathcal{G} : c_{ij} = \infty, \quad \forall k \in \mathcal{T}$

$$x_{ik} = 0$$
 $\forall i \in \mathcal{G}, \quad \forall k \in \{i+1, \dots, m\}$

$$\sum_{i \in \mathcal{G}} x_{ik} w_i \ge \ell \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_i \le u \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_i \ge \ell \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_i \le u \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{ik} - w/m \le o_k \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{ik} - w/m \ge -o_k \qquad \forall k \in \mathcal{T}$$

$$\sum_{k \in \mathcal{T}} o_k \ge d_{\min}$$

$$\sum_{k \in \mathcal{T}} o_k \le d_{\max}$$

$$o_k \in \{\ell, ..., u\} \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{i} \ge \ell \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{i} \le u \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{ik} - w/m \le o_{k} \qquad \forall k \in \mathcal{T}$$

$$\sum_{i \in \mathcal{G}} x_{ik} w_{ik} - w/m \ge -o_{k} \qquad \forall k \in \mathcal{T}$$

$$\sum_{k \in \mathcal{T}} o_{k} \ge d_{\min}$$

$$\sum_{k \in \mathcal{T}} o_{k} \le d_{\max}$$

$$o_{k} \in \{\ell, ..., u\} \qquad \forall k \in \mathcal{T}$$

$$x_{ik} \in \{0, 1\} \qquad \forall i \in \mathcal{G}, \forall k \in \mathcal{T}$$

Outline

- The Wedding Seating Problem
- 2 Existing Methods
- CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

IP Model B

Master Problem

S: All subsets of groups that can be assigned at the same table.

$$x_S := \begin{cases} 1, & \text{if table/pattern } S \text{ is selected,} \\ 0, & \text{otherwise.} \end{cases}$$

IP Model B Master Problem

$$\min \quad \sum_{S \in \mathbb{S}} \alpha_S x_S$$

$$\begin{aligned} & \min & & \sum_{S \in \mathbb{S}} \alpha_S x_S \\ & \text{s.t.} & & \sum_{S \in \mathbb{S}: i \in S} x_S = 1 & & \forall i \in \mathcal{G} \\ & & & \sum_{S \in \mathbb{S}} x_S = m \end{aligned}$$

$$\begin{aligned} & \min & & \sum_{S \in \mathbb{S}} \alpha_S x_S \\ & \text{s.t.} & & \sum_{S \in \mathbb{S}: i \in S} x_S = 1 & & \forall i \in \mathcal{G} \\ & & & \sum_{S \in \mathbb{S}} x_S = m \\ & & & & \sum_{S \in \mathbb{S}} \beta_S x_S \geq d_{\min} \\ & & & & \sum_{S \in \mathbb{S}} \beta_S x_S \leq d_{\max} \end{aligned}$$

$$\begin{aligned} & \min & & \sum_{S \in \mathbb{S}} \alpha_S x_S \\ & \text{s.t.} & & \sum_{S \in \mathbb{S}: i \in S} x_S = 1 & & \forall i \in \mathcal{G} \\ & & & \sum_{S \in \mathbb{S}} x_S = m \\ & & & \sum_{S \in \mathbb{S}} \beta_S x_S \geq d_{\min} \\ & & & \sum_{S \in \mathbb{S}} \beta_S x_S \leq d_{\max} \\ & & & x_S \in \{0,1\} & & \forall S \in \mathbb{S} \end{aligned}$$

$$\begin{aligned} & \min & & \sum_{S \in \mathbb{S}} \alpha_S x_S \\ & \text{s.t.} & & \sum_{S \in \mathbb{S}: i \in S} x_S = 1 & \forall i \in \mathcal{G} & \textbf{(y)} \\ & & & \sum_{S \in \mathbb{S}} x_S = m & \textbf{(\zeta)} \\ & & & & \sum_{S \in \mathbb{S}} \beta_S x_S \geq d_{\min} & \textbf{(\gamma)} \\ & & & & \sum_{S \in \mathbb{S}} \beta_S x_S \leq d_{\max} & \textbf{(\delta)} \\ & & & & x_S \in \{0, 1\} & \forall S \in \mathbb{S} \end{aligned}$$

$$\max \quad \sum_{i=1}^{n} y_i + m\zeta + d_{\min}\gamma + d_{\max}\delta$$
 s.t.
$$\sum_{i \in S} y_i + \zeta + \beta_S(\gamma + \delta) \leq \alpha_S \quad \forall S \in \mathbb{S}$$

$$y_i \text{ free} \qquad \forall i \in S$$

$$\zeta \text{ free}$$

$$\gamma \geq 0$$

$$\delta < 0$$

Pricing Problem

$$z_i := \begin{cases} 1, & \text{if group } i \text{ is packed into the new table/pattern,} \\ 0, & \text{otherwise.} \end{cases}$$

Pricing Problem

$$z_i := \begin{cases} 1, & \text{if group } i \text{ is packed into the new table/pattern,} \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{i=1}^{n} w_{i} z_{i} \geq \ell$$

$$\sum_{i=1}^{n} w_{i} z_{i} \leq u$$

$$\sum_{i=1}^{n} w_{i} z_{i} - w/m \leq \beta$$

$$\sum_{i=1}^{n} w_{i} z_{i} - w/m \geq -\beta$$

IP Model B Pricing Problem

$$z_i + z_j \leq 1 \quad \forall i, j \in \mathcal{G} : c_{ij} = \infty$$

$$z_i \in \{0,1\} \quad \forall i \in \mathcal{G}$$

Pricing Problem

$$z_i + z_j \le 1 \quad \forall i, j \in \mathcal{G} : c_{ij} = \infty$$
 $z_i \in \{0, 1\} \quad \forall i \in \mathcal{G}$

$$\max \sum_{i=1}^{n} y_{i}^{*} z_{i} + \zeta^{*} + \beta(\gamma^{*} + \delta^{*}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} z_{i} z_{j} \quad \text{if } \gamma^{*} + \delta^{*} < 0$$

$$\max \sum_{i=1}^{n} y_{i}^{*} z_{i} + \zeta^{*} - \beta(\gamma^{*} + \delta^{*}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} z_{i} z_{j} \quad \text{if } \gamma^{*} + \delta^{*} > 0$$

IP Model B Column Generation

• Solve the continuous relaxation of the RMP to get the dual values.

Column Generation

- Solve the continuous relaxation of the RMP to get the dual values.
- 2 Solve the PP to generate the most promising new table/column (S^*) .

Column Generation

- Solve the continuous relaxation of the RMP to get the dual values.
- ② Solve the PP to generate the most promising new table/column (S^*) .
- ① Determine if this new column should be added to the RMP. If yes, compute α_{S^*} and β_{S^*} , and add column S^* to the RMP before going back to step 1. Otherwise, the current solution of the continuous relaxation of the RMP is the lower bound of the initial problem.

Outline¹

- The Wedding Seating Problem
- 2 Existing Methods
- CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

25 groups, 600s time limit

50 groups, 6s time limit

50 groups, 600s time limit

50 groups, 600s time limit (costs only)

50 groups, 600s time limit (conflicts only)

	50 groups
	Conflicts only
CP	0.03
CP+LNS	0.03
IP_A	601.11
IP _B	4.64

Comparison With Metaheuristics

Outline¹

- The Wedding Seating Problem
- 2 Existing Methods
- CP Model
- 4 IP Model A
- IP Model B
- 6 Results
- Conclusion

Conclusion

Metaheuristics Model

- + Good early solutions
- + Scales well

Conclusion

Metaheuristics Model

- + Good early solutions
- + Scales well

- No proof of optimality
- Poor balance

Conclusion CP Model

- + Very good early solutions
- + Proves optimality for small instances
- + Quickly proves optimality or infeasibility for all instances when there are no costs

Conclusion CP Model

- + Very good early solutions
- + Proves optimality for small instances
- + Quickly proves optimality or infeasibility for all instances when there are no costs

- Hard to optimize with costs
- Limited symmetry breaking

Conclusion IP Model A

- + Simple model
- + Proves optimality for small instances

Conclusion IP Model A

+ Simple model

+ Proves optimality for small instances

Inefficient

Limited symmetry breaking

Conclusion IP Model B

- + Near-optimal solutions
- + No symmetry
- + Provides a good lower bound

Conclusion IP Model B

- + Near-optimal solutions
- + No symmetry
- + Provides a good lower bound

- Complex
- No proof of optimality
- Poor early solutions