

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Publication number:

0 563 384 A1

12

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

21) Application number: 92900598.1

Date of filing: 16.12.91

International application number:
PCT/JP91/01716

(gr) International publication number: WO 92/11244 (09.07.92 92/17)

(a) Int. CI.5: **C07D 239/54**, C07D 239/553, C07D 239/56, C07D 401/10, C07D 401/12, C07D 403/10, C07D 409/12, C07D 417/10, C07F 7/10, C07F 9/6512, A01N 43/54

Priority: 17.12.90 JP 402753/90
 27.05.91 JP 121420/91
 15.11.91 JP 300341/91

- Date of publication of application: 06.10.93 Bulletin 93/40
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU MC
 NL SE
- Applicant: NISSAN CHEMICAL INDUSTRIES, LIMITED
 7-1, Kanda-Nishiki-cho 3-chome Chiyoda-ku Tokyo 101(JP)
- Inventor: SATOW, Jun, Nissan Chem. Ind. Ltd. Chuokenkyusho,
 722-1 Tsuboicho
 Funabashi-shi, Chiba-ken 274(JP)
 Inventor: FUKUDA, Kenzou, Nissan Chem. Ind.

Ltd. Chuokenkyusho, 722-1, Tsuboicho

Funabashi-shi, Chiba-ken 274(JP)

Inventor: ITOH, Kaoru, Nissan Chem. Ind. Ltd.

Chuokenkyusho, 722-1, Tsuboicho

Funabashi-shi, Chiba-ken 274(JP)

Inventor: KITA, Hiroshi, Nissan Chem. Ind.

Ltd.

Chuokenkyusho, 722-1, Tsuboicho

Funabashi-shi, Chiba-ken 274(JP)

Inventor: KAWAMURA, Yasuo, Nissan Chem.

Ind. Ltd.

Chuokenkyusho,

722-1, Tsuboicho

Funabashi-shi, Chiba-ken 274(JP)

Inventor: SUZUKI, Koichi, Nissan Chem. Ind.

Ltd.

Seibutsukagaku Kenkyusho,

1470, Oozashiraoka

Shiraokacho, Minamisaitama-gun(JP)

Inventor: NAWAMAKI, Tsutomu, Nissan Chem.

Ind. Ltd.

Seibutsukagaku Kenkyusho,

1470, Ooazashiraoka

Shiraokacho, Minamisaitama-gun(JP)

Inventor: WATANABE, Shigeomi, Nissan

Chem. Ind. Ltd.

Seibutsukagaku Kenkyusho,

1470, Oozashiraoka

Shiraokacho, Minamisaitama-gun(JP)

Inventor: ENDO, Toshiharu, Nissan Chem. Ind.

Ltd.

Seibutsukagaku Kenkyusho,

1470, Oozashiraoka

Shiraokacho, Minamisaitama-gun(JP)

Inventor: ISHIKAWA, Kimihiro, Nissan Chem.

Ind. Ltd.

Seibutsukagaku Kenkyusho,

1470, Oozashiraoka

Shiraokacho, Minamisaitama-gun(JP)

Representative: Woods, Geoffrey Corlett et al J.A. KEMP & CO.
14 South Square
Gray's Inn
London WC1R 5EU (GB)

WIRACIL DERIVATIVE.

© Compounds represented by general formula (1), a process for the production thereof, a method of killing weeds or controlling their growth therewith, and a herbicide containing the same as the active ingredient. In formula (1), R^1 represents H, C_1 to C_3 alkyl or C_1 to C_3 haloalkyl; R^2 represents C_1 to C_4 haloalkyl; C_4 represents H, C_5 to C_6 haloalkyl, C_7 represents H, halogen, nitro or cyano; X represents O or S; and Da and Db represent each independently H, C_7 to C_8 alkyl, C_7 to C_8 haloalkyl, C_8 to C_8 cycloalkyl, C_8 to C_8 alkenyl, etc., provided that the cases where both of Da and Db represent H, etc., are excluded. These compounds scarcely inflict chemical injury on crop and have a high herbicidal effect on various weeds even in small doses.

$$\begin{array}{c|c}
R^{1} \\
\downarrow \\
R^{1} \\
\downarrow \\
0 \\
R^{4}
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
N \\
D_{b}
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
0 \\
R^{4}
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
0 \\
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
D_{a} \\
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
D_{a} \\
\end{array}$$

$$\begin{array}{c}
D_{a} \\
\downarrow \\
D_{a} \\
\end{array}$$

$$\begin{array}{c}
D_{a} \\
D_{a} \\
\end{array}$$

(Technical Field)

This invention relates to a novel uracil derivative and a selective herbicide containing the derivative as an effective ingredient.

(Prior Arts)

5

20

25

30

35

40

45

50

55

Many herbicides have heretofore been practically used in order to protect sugar important crops such as rice, soybean, wheat, corn, cotton, sugar, beet, etc. from weeds and to enhance productivities of these important crops. These agents may be roughly classified into three classes depending on application loci, i.e. the agent for upland field, the agent for paddy field and the agent for non-cultivated field. Further, each class can be classified to a soil incorporation treatment type, a pre-emergence soil treatment type, a post-emergence treatment (foliar treatment) type, etc., depending on methods for application of the agents.

In recent years, accompanying with a worldwide increase in population, it is clear that the productivities of the important crops have influence to food economy in respective countries. Accompanying with these changes, it is unavoidable that the form of conventional agriculture will be changed toward the 21th century. Actually, to provide for persons engaged in agriculture a herbicide which can economically and efficiently kill or control the weeds which may be obstacles to crop cultivation becomes increasingly necessary than before.

Such a herbicide is required to have the following requirements:

- (1) it has a high herbicidal effect with a low amount (particularly in view of environmental protection, it is necessary to kill the weeds in the applicatin amount as low as possible);
- (2) it has a suitable residual effect (in recent years, it has become a problem that the agent remaining in soil for a long period damages succeeding crops, thereby it is important to show the suitable residual effect after application);
- (3) it promptly kills the weeds after application (after a short period from a chemical treatment, next crops can be seeded and transplanted).
- (4) a frequency of its application is fewer (for a person engaged in agriculture, it is important to make the frequency of a complicated work for controlling the weeds as fewer as possible).
- (5) its spectrum of controlling the weeds is wide (it is desirable that the agent is capable of controlling weed species of different characteristics such as broad leaf weeds, grassy weeds, perennial weeds, etc. with the single agent).
- (6) it is applied according various methods (more potent herbicidal effects can be obtained by combining a soil treatment effect, a foliar treatment effect, etc.).
- (7) it shows no damage which causes problems against the crops (the agent which can selectively kill only weeds is preferred in the cultivated field where the crops and the weeds mixedly exist).

On the other hand, it has been known that specific compounds of uracil derivative show herbicidal activities. For example, bromacil has been described in The Pesticide Manual, 8th Edition, p. 89, The British Crop Protection Council (1987), etc. as one of the herbicide having an uracil structure.

Further, it has also been known that the following aryl uracil derivatives have the herbicidal activities. For example, the compound represented by the formula:

$$\begin{array}{c|c}
R^{1} \\
\downarrow \\
R^{5}
\end{array}$$

$$\begin{array}{c}
X \\
\downarrow \\
0 \\
R^{4}
\end{array}$$

$$\begin{array}{c}
X \\
COOR^{2} \\
R^{3}
\end{array}$$

in which

 R^1 represents hydrogen, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{2-6} alkoxyalkyl, formyl, C_{2-6} alkoxycarbonyl;

R² represents hydrogen, C₁₋₆ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl or C₂₋₆ alkoxyalkyl,

R3 represents halogen or nitro,

R4 represents hydrogen or halogen,

 R^5 represents hydrogen, halogen, C_{1-4} alkyl, chloromethyl, bromomethyl, hydroxymethyl, (C_{1-5} alkoxy)methyl, (C1-5 alkylthio)methyl, cyano, nitro or thiocyanato,

 R^6 represents hydrogen, C_{1-4} alkyl or C_{1-4} fluoroalkyl, and alternatively R^5 and R^6 represent tri- or tetramethylene in which one methylene group may be replaced by oxygen or sulfur and which may be optionally substituted by C1-3 alkyl, and

X represents oxygen or sulfur,

provided that (I) when R5 represents fluorine, R6 necessarily represents C1-4 alkyl or C1-4 fluoroalkyl, and (II) when R5 represents cyano, R6 necessarily represents hydrogen or C1-4 alkyl and X necessarily represents oxygen, and a salt of the compound wherein R1 and/or R2 represent hydrogen [Japanese Patent Application Laid Open No. 61-221178 (= U.S. Patent No. 4,746,352, U.S. Patent No. 4,760,163)]:

a compound of the formula:

15

25

30

35

20

in which

 R^1 represents hydrogen, $\mathsf{C}_{1\,-4}$ alkyl, $\mathsf{C}_{1\,-4}$ haloalkyl, formyl or $\mathsf{C}_{2\,-6}$ alkanoyl,

R2 represents an ether group, or a residue containing (thio)carbonyloxy group or sulfonyloxy group, the residue being directly bonded to a benzene ring A through oxygen atom,

R3 represents halogen or cyano,

R4 represents hydrogen or halogen,

 R^5 represents hydrogen, halogen or C_{1-4} alkyl,

 R^6 represents C_{1-4} alkyl or C_{1-4} haloalkyl, and alternatively R^5 and R^6 represent tri- or tetramethylene, and a salt of the compound wherein R1 represents hydrogen [Japanese Patent Application Laid Open No. 63-41466 (= U.S. Patent No. 4,859,229)]:

 C_{1-4} alkyl, C_{2-4} alkenyl and C_3 or C_4 alkynylenol ethers of 3-aryluracil represented by the following formula:

40

45

$$\begin{array}{c|c}
R^{5} & H & O \\
R^{4} & N & O \\
R^{4} & 0 & R^{2}
\end{array}$$

in which

 R^1 represents C_{1-8} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{2-8} alkoxyalkyl or

$$-(CH2)m-O-N=C$$

group,

5

R² represents halogen or cyano,

R3 represents hydrogen or halogen,

R4 represents hydrogen, fluorine or C₁₋₄ alkyl,

 R^5 represents C_{1-4} alkyl or C_{1-4} haloalkyl,

and alternatively R4 and R5 represent tri or tetramethylene,

R6 and R7 each independently represents C1-4 alkyl,

m is 1 or 2, and

X represents O, O-C(O), O-C(O)-O or C(O)-O [Japanese Patent Application Laid Open No. 63-107967 (= U.S. Patent No. 4,812,164)]:

compounds diclosed as an aryluracil derivative in Japanese Patent Application Laid Open No. 54-147923 (= U.S. Patent No. 4,266,056, U.S. Patent No. 4,338,318), WO/89-03825, U.S. Patent No. 4,927,451, U.S. Patent No. 4,941,909, etc. may be mentioned.

There have been desired to provide an aryl uracil compound which promptly show high effect against many kinds of weeds including perennial weeds in an extremely low application amount and have the suitable residual effect with substantially no damage against important crops according to either of the soil treatment method or the foliar treatment method.

(Disclosure of the Invention)

We have been studied in order to develop a herbicide showing selectivity against important crops, having excellent herbicidal effect against many weeds in a low application amount, and having both of soil treatment and foliar treatment effects. And as the result, we have found an uracil derivative (hereinafter referred to the compound of the present invention) represented by the formula (1):

25

30

35

45

20

in which

R1 represents a hydrogen atom, a C1 to C3 alkyl group or a C1 to C3 haloalkyl group;

R² represents a C₁ to C₆ haloalkyl group;

40 R³ represents a hydrogen atom, a C₁ to C₅ alkyl group, a C₁ to C₆ haloalkyl group, a hydroxymethyl group, a halogen atom or a nitro group;

R4 represents a hydrogen atom or a halogen atom;

R⁵ represents a hydrogen atom, a halogen atom, a nitro group or a cyano group;

X represents an oxygen atom or a sulfur atom;

 D_a and D_b each independently represents a hydrogen atom, a C_1 to C_8 alkyl group, a C_1 to C_6 haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_4 lalkyl group, a C_5 to C_8 alkynyl group, a C_6 to C_8 haloalkenyl group, a C_8 to C_8 haloalkynyl group, a C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, a C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, a C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, C_8 to C_8 halocycloalkyl group, a C_8 to C_8 halocyc

Ar in which Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more substituents,

-L¹-Ar in which Ar has the same meaning as above, and L¹ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be branched,

Het in which Het represents a 5-membered heterocyclic residue, a 6-membered heterocyclic residue or a fused heterocyclic residue each of which contains, as a ring constituent atom, at least one atom selected from a sulfur atom, an oxygen atom and a nitrogen atom and may be substituted by one or two or more substituents,

-L1-Het in which Het and L1 have the same meanings as above,

-L²-D⁵² in which D⁵² represents a hydrogen atom, a C₁ to C₂₀ alkyl group, a C₁ to C₂₀ haloalkyl group, a C₃

to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl(C_1 to C_4)alkyl group, a C_2 to C_8 alkenyl group, a C_3 to C_8 alkynyl group, a C2 to C8 haloalkenyl group, a C3 to C8 haloalkynyl group, a C3 to C8 halocycloalkyl group, a C3 to C8 halocycloalkyl(C1 to C4)alkyl group, a C1 to C4 alkoxy(C1 to C4)alkyl group,

Ar (Ar has the same meaning as above), -L1-Ar group (Ar and L1 have the same meanings as above), Het (Het has the same meaning as above) or -L 1 -Het (Het and L 1 have the same meanings as above), and L 2 represents -C(O)-, -C(S)-, -SO₂-, -S(O)-, -S-, -O-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S- or - C(O)C(O)O-,

-L 3 -O-D 5 2 in which D 5 2 has the same meaning as above, and L 3 represents a C $_1$ to C $_6$ alkyl chain, a C $_2$ to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be substituted by one or two or more substituents and may be branched, and the substituent may be selected from a C1 to C4 alkyloxycarbonyl group, a C₁ to C₄ haloalkyl group, a C₁ to C₄ alkoxy(C₁ to C₄)alkyl group, a C₁ to C₄ alkylthio group,

Ar (Ar has the same meaning as above), -L1-Ar (Ar and L1 have the same meanings as above), Het (Het has the same meaning as above) and -L1-Het (Het and L1 have the same meanings as above),

- -L3-S-D52 in which D52 and L3 have the same meanings as above,
- -L3-C(O)-D52 in which D52 and L3 have the same meanings as above,
- -L3-C(S)-D52 in which D52 and L3 have the same meanings as above,
 - -L 3 -C(O)O-D 5 2 in which D 5 2 and L 3 have the same meanings as above,
 - -O-L3-C(O)O-D52 in which D52 and L3 have the same meanings as above,
 - -L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,
 - -O-L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,
- -C(O)-ND 52 D 53 in which D 52 has the same meanings as above and D 53 represents a hydrogen atom, a C₁ to C₈ alkyl group,
 - a C_1 to C_8 haloalkyl group, a C_1 to C_6 alkoxy group, a C_1 to C_6 alkylcarbonyl group, a C_1 to C_6 haloalkylcarbonyl group,
- a C_1 to C_6 alkoxycarbonyl group, a C_1 to C_6 alkylsulfonyl group, a C_1 to C_6 haloalkylsulfonyl group, Ar (Ar has the same meaning as above), -L1-Ar (Ar and L1 have the same meanings as above), -C(O)-Ar (Ar has the same meaning as above), -C(S)-Ar (Ar has the same meaning as above) or -SO2-Ar (Ar has the same meaning as above), and alternatively D52 and D53 together with a nitogen atom to which they are attached may form a 5- to 7-membered ring, and the ring constituent atoms are selected from a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom,
- -C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -L 3 -C(O)-ND 5 2D 5 3 in which D 5 2, D 5 3 and L 3 have the same meanings as above,
 - -L³-C(S)-ND⁵2D⁵3 in which D⁵2, D⁵3 and L³ have the same meanings as above,
 - -SO₂-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -SO₂O-D⁵³ in which D⁵³ has the same meaning as above, -SO₂O-Si(CH₃)₃,
- -SO₂-L¹-Si(CH₃)₃ in which L¹ has the same meaning as above, -SO₂CH₂SO₂CH₃,
 - -P(O)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(O)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(O)(OD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
- -P(O)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
- -P(S)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(S)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(S)(OD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
- -P(S)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
- -L³-P(O)(OD⁵2)(OD⁵3) in which D⁵2, D⁵3 and L³ have the same meanings as above,
- -L3-P(O)(OD52)(SD53) in which D52, D53 and L3 have the same meanings as above,
 - -L3-P(O)(OD52)D53 in which D52, D53 and L3 have the same meanings as above, -L³-P(O)(SD⁵²)D⁵³ in which D⁵², D⁵³ and L³ have the same meanings as above,
 - -L³-P(S)(OD⁵³) (OD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above,
 - -L³-P(S)(OD⁵²)(SD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above,
- -L3-P(S)(OD52)D53 in which D52, D53 and L3 have the same meanings as above,
 - -L 3 -P(S)(SD 52)D 53 in which D 52 , D 53 and L 3 have the same meanings as above,
 - $-C(D^{53})(P(0)(OD^{52})_2)_2$ in which D^{52} and D^{53} have the same meanings as above,
 - = CD⁵²D⁵⁴ in which D⁵² has the same meaning as above, and D⁵⁴ represents a hydrogen atom, a halogen atom, a C1 to C6 alkyl group, a C1 to C6 alkoxy group, a C1 to C6 alkylthio group or Ar (Ar has the same meaning as above),
 - -L3-CN in which L3 has the same meaning as above,
 - -ND 52 D 53 in which D 52 and D 53 have the same meanings as above,
 - -CH = N-O-D52 in which D52 has the same meaning as above,

= CD⁵⁴-ND⁵²D⁵³ in which D⁵², D⁵³ and D⁵⁴ have the same meanings as above,

has the above characteristics. The above finding leads to the present invention.

-L²-D⁵⁵ in which L² has the same meaning as above, and D⁵⁵ represents a C₁ to C₆ alkyl group, a C₂ to C₆ alkynyl group each of which may be substituted by one or two or more of a C₁ to C₆ haloalkyl group or one or two or more of a C₁ to C₄ alkyloxycarbonyl group and may be branched, or -L¹-SO₂-D⁵⁶ in which L¹ has the same meaning as above, and D⁵⁶ represents a C₁ to C₆ alkyl group, and alternatively D₂ and D₃ together with a nitrogen atom to which they are attached may form a 3- to 8-

and alternatively D_a and D_b together with a nitrogen atom to which they are attached may form a 3- to 8-membered ring and the ring constituent atoms are selected from a carbon atom,

a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom, and the ring may be substituted: provided that except for the case where D_a and D_b both represent hydrogen atoms, the case where D_a represents -L²-D⁵² (L² represents -SO₂- and D⁵² represents the C₁ to C₄ alkyl group or the C₁ to C₅ haloalkyl group) and D_b represents the hydrogen atom, the C₁ to C₄ alkyl group, the C₂ to C₅ alkenyl group, the C₃ to C₅ alkynyl group, the C₂ to C₅ acyl group, the C₁ to C₄ alkylsulfonyl group or the (C₁ to C₃ alkoxy) C₁ to C₂ alkyl group is excluded,

Characteristic features in the structure of the compound of the present invention are to have a haloalkyl group at 6-position of the uracil ring and have specific combination of R⁴, R⁵ and N(D_a)D_b as the substituents on the benzene ring at 3-position of the uracil ring. By having such a structure, the compound of the present invention has a permeation and translocation and the very high herbicidal activity. As the results, the compound of the present invention has great merits that it can be applied according to either the soil treatment or the foliar treatment against many kinds of weeds including the perennial weeds, that it can develop the high effect promptly even if the application amount is very low, and that it has the suitable residual effect.

Incidentally, the compound of the present invention represented by the formula (1) may be a tautomer as shown below, when the substituent R¹ is the hydrogen atom, and the compound of the present invention includes all of these forms.

$$= \begin{array}{c} R^2 \\ R^3 \\ 0 \\ R^4 \\ \end{array} \begin{array}{c} Da \\ N - Db \\ R^5 \end{array}$$

As the general method for synthesizing an uracil derivative, uracil skeleton can be synthesized by referring to the synthesis method described in, for example, A.R. Katritzky et al., Comprehensive Heterocyclic Chemistry, 3, p. 57 (1984), etc. 3-Amino-4,4,4-trifluorocrotonate ester which is one of starting materials may be synthesized by referring to A.W. Lutz et al., Journal of Heterocyclic Chemistry, 9 (3), p.

30

35

40

45

513 (1972), etc.

including the above methods, the compound of the present invention can be synthesized by, for example, the methods shown in Schemes 1 to 5. R1, R2, R3, R4, R5, X, Da and Db in Schemes 1 to 5 have the same meanings as described in the above, G1 represents an alkyl group having 1 to 4 carbon atoms, G2 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and Hal represents a halogen atom, methanesulfonyloxy group or a paratoluenesulfonyloxy group.

(Scheme 1)

35

40

45

50

55

1. Scheme 1 shows a method for preparing an uracil derivative (1) by reacting phenyliso(thio)cyanate (6) with β -aminoacrylate ester (5) to form an uracil derivative (1a) in a first step, and after isolation of the derivative (1a) or subsequently, without isolation, alkylating 1-position of the uracil ring in a second step.

① Reaction in the first step.

The compound (6) is generally used in an amount of 0.5 to 1.5 equivalent, preferably 0.8 to 1.2 equivalent based on the compound (5).

The reaction may proceed without any solvent, but it is generally promoted by using a solvent. As the solvent, there may be mentioned aliphatic hydrocarbons such as hexane, heptane, ligroin, petroleum ether, etc.; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, etc.; halogenated hydrocarbons such as chloroform, methylene chloride, etc.; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; ketones such as acetone, methyl ethyl ketone, etc.; nitriles such as acetonitrile, isobutyronitrile, etc.; tertiary amines such as pyridine, N,N-diethylaniline, etc.; acid amides such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrrolidone, etc.; sulfur-containing compounds such as dimethylsulfoxide, sulfolane, etc.; water and their mixture, and preferably the aliphatic hydrocarbons, the aromatic hydrocarbons, the acid amides, the sulfur-containing compounds and their mixture.

The reaction may proceed without any base, but generally a base in an amount of 0.5 to 10 equivalents, preferably 1.0 to 3.0 equivalents based on the compound (5) is used. As the base, there may be mentioned nitrogen-containing organic bases such as pyridine, triethylamine, N,Ndimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane, etc.; inorganic bases such as sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc.; and metal alcoholates such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, etc., and preferably sodium hydride, sodium hydroxide and potassium hydroxide.

The reaction temperature is generally -70 to 200 °C, preferably -30 °C to the reflux temperature of the reaction mixture.

The reaction time is generally 5 minutes to 72 hours, preferably 10 minutes to 12 hours.

After the reaction is completed followed by acidifying with a mineral acid such as hydrochloric acid, etc., or an organic acid such as acetic acid, trifluoroacetic acid, p- toluenesulfonic acid, etc., the derivative (1a) can be isolated.

2 The second step

5

10

15

20

25

30

35

40

45

50

55

The alkylating agent is used in an amount of 0.5 to 10 equivalents, preferably 0.8 to 5.0 equivalents based on the derivative (1a). As the alkylating agent, there may be mentioned alkylsulfates such as dimethylsulfate, diethylsulfate, etc.; and halogenated alkyls such as methyl chloride, ethyl chloride, methyl bromide, ethyl iodide, etc.

The reaction may proceed without any solvent, but it is generally promoted by using a solvent. As the solvent, there may be mentioned aliphatic hydrocarbons such as hexane, heptane, ligroin, petroleum ether, etc.; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, etc.; halogenated hydrocarbons such as chloroform, methylene chloride, etc.; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; ketones such as acetone, methyl ethyl ketone, etc.; nitriles such as acetonitrile, isobutyronitrile, etc.; tertiary amines such as pyridine, N,N-diethylaniline, etc.; acid amides such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrrolidone, etc.; sulfur-containing compounds such as dimethylsulfoxide, sulfolane, etc.; water and their mixture, and preferably the aliphatic hydrocarbons, the aromatic hydrocarbons, the ethers, the ketones, the nitriles, the acid amides, the sulfur-containing compounds and their mixture.

A base is generally used in an amount of 0.5 to 10 equivalents, preferably 0.8 to 3.0 equivalents based on the derivative (1a). As the base, there may be mentioned nitrogen-containing organic bases such as pyridine, triethylamine, N,N-dimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)-pyridine, 1,4-diazabicyclo[2.2.2]octane, etc. and inorganic bases such as sodium hydride, potassium hydroxide, sodium carbonate, potassium carbonate, etc., and preferably the inorganic bases such as sodium hydride, potassium carbonate, etc.

The reaction temperature is generally -30 to 150 °C, preferably -10 °C to the reflux temperature of the reaction mixture.

The reaction time is generally 10 minutes to 96 hours, preferably 30 minutes to 48 hours.

(Scheme 2)

25

30

35

40

45

50

55

G²-OCN

R³

$$CO_2G^1$$
 R^4
 R^5
 R^2
 NH_2
 R^3
 R^2
 R^3
 R^4
 R^5
 R^3
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^4
 R^5
 R^5

2. Scheme 2 shows a method for preparing an uracil derivative (1) by reacting N-phenyl(thio)carbamate (7) with β -aminoacrylate ester (5) to form an uracil derivative (1a) in a first step, and after isolation of the derivative (1a) or subsequently, without isolation, alkylating 1-position of the uracil ring in a second step.

① Reaction in the first step

The compound (7) is generally used in an amount of 0.5 to 1.5 equivalent, preferably 0.8 to 1.2 equivalent based on the compound (5).

The reaction generaly requires a solvent. As the solvent, there may be mentioned aliphatic hydrocarbons such as hexane, heptane, ligroin, petroleum ether, etc.; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, etc.; halogenated hydrocarbons such as chloroform, methylene chloride, etc.; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; ketones such as acetone, methyl ethyl ketone, etc.; nitriles such as acetonitrile, isobutyronitrile, etc.; tertiary amines such as pyridine, N,N-diethylaniline, etc.; acid amides such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrrolidone, etc.; sulfur-containing compounds such as dimethylsulfoxide, sulfolane, etc.; alcohols such as methanol, ethanol, propanol, butanol, etc.; water and their mixture, and preferably the aliphatic hydrocarbons, the aromatic hydrocarbons, the acid amides, the sulfur-containing compounds and their mixture.

A base is generally used in an amount of 0.5 to 10 equivalents, preferably 1.0 to 3.0 equivalents based on the compound (5). As the base, there may be mentioned nitrogen-containing organic bases such as pyridine, triethylamine, N,N-dimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)-pyridine, 1,4-diazabicyclo[2.2.2]octane, etc.; inorganic bases such as sodium hydride, potassium hydroxide, sodium carbonate, potassium carbonate, etc.; metal alcoholates such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, etc.; and metal alkylmercaptides such as sodium methylmercaptide, sodium ethylmercaptide, etc., and preferably the inorganic bases such as sodium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc., and the metal alcoholates such as sodium methoxide, etc.

The reaction temperature is generally 0 to 200 °C, preferably the room temperature to the reflux temperature of the reaction mixture.

The reaction time is generally 10 minutes to 72 hours, preferably 30 minutes to 24 hours.

After completion of the reaction followed by acidifying with a mineral acid such as hydrochloric acid, etc., or an organic acid such as acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, etc., the derivative (1a) can be isolated.

② The second step

Alkylation can be carried out under the same reaction conditions as in the second step of Scheme

5 (Scheme 3)

10

15

20

25

30

35

40

45

50

(Scheme 3)

- 3. Scheme 3 shows a method for preparing an uracil derivative (1) by reacting phenyliso(thio)cyanate (6) with N-alkyl- β -aminoacrylate ester (8) in one step and may be carried out under the same reaction conditions as in Scheme 1.
- (Scheme 4)

$$\begin{array}{c|c}
G^{2}-OCN & Da \\
\hline
R^{3} & CO_{2}G^{1} & R^{4} & R^{5} \\
\hline
R^{2} & NHR^{1} & R^{2} & N & Da
\end{array}$$
(8)

4. Scheme 4 shows a method for preparing an uracil derivative (1) by reacting N-phenyl(thio)carbamate (7) with N-alkyl-β-aminoacrylate ester (8) in one step and may be carried out under the same reaction conditions as in Scheme 2.

(Scheme 5)

5

10

15

20

25

30

35

40

45

50

55

$$\begin{array}{c}
Db-Ha1 \\
(11) \\
R^2
\end{array}$$

$$\begin{array}{c}
R^4 \\
N \\
X
\end{array}$$

$$\begin{array}{c}
R^5 \\
Db \\
Dt \\
\end{array}$$

5. Scheme 5 shows a method for preparing an uracil derivative (1) by reacting D_a -Hal (10) with an animo material (9) to form an uracil derivative (1b) in a first step, and after isolation of the derivative (1b) or subsequently, without isolation, reacting D_b -Hal (11) with the derivative (1b) in a second step.

① Reaction in the first step

The compound (10) is generally used in an amount of 0.3 to 10 equivalents, preferably 0.5 to 2.0 equivalents based on the compound (9).

The reaction may proceed without any solvent, but it is generally promoted by using a solvent. As the solvent, there may be mentioned aliphatic hydrocarbons such as hexane, heptane, ligroin, petroleum ether, etc.; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, etc.; halogenated hydrocarbons such as chloroform, methylene chloride, etc.; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; ketones such as acetone, methyl ethyl ketone, etc.; nitriles such as acetonitrile, isobutyronitrile, etc.; tertiary amines such as pyridine, N,N-diethylaniline, etc.; acid amides such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrrolidone, etc.; sulfur-containing compounds such as dimethylsulfoxide, sulfolane, etc., and their mixture.

The reaction may proceed without any base, but generally a base in an amount of 0.3 to 10 equivalents based on the compound (9) is used. Also, it may be used in a very excess amount as a solvent. As the base, there may be mentioned nitrogen-containing organic bases such as pyridine, triethylamine, N,N-dimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)pyridine, 1,4-diazabicyclo-[2.2.2]octane, etc.; inorganic bases such as sodium hydride, potassium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc.; and metal alcoholates such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, etc., and preferably the nitrogen-containing organic bases and the inorganic bases.

The reaction temperature is generally -30 to 160 °C, preferably -10 °C to 130 °C.

The reaction time is generally 10 minutes to 48 hours, preferably 30 minutes to 24 hours.

② The second step

The reaction can be carried out under the same conditions as in the first step of Scheme 5.

Among the compounds of the present invention represented by the formula (1), obtained according to the above methods, the following uracil compounds are preferred.

In the formula (1),

R¹ represents a hydrogen atom, a C₁ to C₃ alkyl group, a C₁ to C₃ haloalkyl group;

R² represents a C₁ to C₆ haloalkyl group;

 R^3 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_1 to C_6 haloalkyl group, a hydroxymethyl group, a halogen atom or a nitro group;

R4 represents a hydrogen atom or a halogen atom;

R⁵ represents a hydrogen atom, a halogen atom, a nitro group or cyano group;

X represents an oxygen atom or a sulfur atom;

 D_a and D_b each independently represents a hydrogen atom, a C_1 to C_8 alkyl group, a C_1 to C_6 haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_2 to C_8 alkenyl group, a C_3 to C_8 alkynyl group, a C_2 to C_8 haloalkenyl group, a C_3 to C_8 haloalkynyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, CH(OH)CCl₃,

Ar in which Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more substituents, and the substituent may be selected from a C_1 to C_4 alkyl group, a C_3 to C_6 cycloalkyl group, a C_1 to C_4 haloalkyl group, a C_3 to C_6 halocycloalkyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkylcarbonyl group, a carboxyl group, a C_1 to C_4 alkoxycarbonyl group, an amino group, a C_1 to C_4 alkylamino group, an acetamino group, C_1 to C_4 alkylamino group, and C_1 to C_4 alkylamino group, an acetamino group, C_1 to C_4 alkylamino group, and C_1 to C_4 alkylamino group, and

-L¹-Ar in which Ar has the same meaning as above, and L¹ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be branched,

Het in which Het represents a 5-membered heterocyclic residue, a 6-membered heterocyclic residue or a fused heterocyclic residue each of which contains, as a ring constituent atom, at least one atom selected from a sulfur atom, an oxygen atom and a nitrogen atom and may be substituted by one or two or more substituents, and the substituent may be selected from a C_1 to C_4 alkyl group, a C_3 to C_6 cycloalkyl group, a C_1 to C_4 haloalkyl group, a C_3 to C_6 halocycloalkyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 haloalkoxy group, a C_1 to C_4 alkoxycarbonyl group, an amino group, a C_1 to C_4 alkylamino group, an acetamino group, C_1 to C_4 alkylamino group, an acetamino group, C_1 to C_4 alkylamino group and methanesulfonyl group,

-L1-Het in which Het and L1 have the same meanings as above,

-L²-D⁵² in which D^5 ² represents a hydrogen atom, a C_1 to C_{20} alkyl group, a C_1 to C_{20} haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_2 to C_8 alkenyl group, a C_3 to C_8 haloalkenyl group, a C_3 to C_8 haloalkynyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, a C_1 to C_8 haloalkynyl group, a C_1 to C_1 haloalkynyl group, a C_2 to C_2 haloalkynyl group, a C_2 to C_3 haloalkynyl group, a C_1 to C_2 haloalkynyl group, a C_2 to C_1 haloalkynyl group, a C_2 to C_2 haloalkynyl group, a C_3 to C_3 haloalkynyl group, a C_3 to C_3 haloalkynyl group, a C_2 to C_3 haloalkynyl group, a C_3 t

-L³-O-D⁵² in which D⁵² has the same meaning as above, and L³ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be substituted by one or two or more substituents and may be branched, and the substituent may be selected from a C_1 to C_4 alkyloxycarbonyl group, a C_1 to C_4 haloalkyl group, a C_1 to C_4 alkylthio group,

Ar (Ar has the same meaning as above), -L¹-Ar (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) and -L¹-Het (Het and L¹ have the same meanings as above),

-L3-S-D52 in which D52 and L3 have the same meanings as above,

-L3-C(O)-D52 in which D52 and L3 have the same meanings as above,

-L3-C(S)-D52 in which D52 and L3 have the same meanings as above,

-L $^3\text{-}\text{C}(O)O\text{-}D^{52}$ in which D^{52} and L 3 have the same meanings as above,

-O-L3-C(O)O-D52 in which D52 and L3 have the same meanings as above,

-L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,

-O-L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,

-C(O)-ND⁵²D⁵³ in which D⁵² has the same meaning as above,

and D53 represents a hydrogen atom, a C1 to C8 alkyl group,

a C_1 to C_6 haloalkyl group, a C_1 to C_6 alkoxy group, a C_1 to C_6 alkylcarbonyl group, a C_1 to C_6 haloalkylcarbonyl group.

a C_1 to C_6 alkoxycarbonyl group, a C_1 to C_6 alkylsulfonyl group, a C_1 to C_6 haloalkylsulfonyl group, Ar (Ar has the same meaning as above), -L¹-Ar (Ar and L¹ have the same meanings as above), -C(O)-Ar (Ar has the same meaning as above) or -SO₂-Ar (Ar has the same meaning as above), and alternatively D^{52} and D^{53} together with a nitrogen atom to which they are attached may form a 5- to 7-membered ring and ring constituent atoms are selected from a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom,

-C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,

5

10

15

20

25

30

35

40

45

50

```
-L3-C(O)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
              -L3-C(S)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
              -SO<sub>2</sub>-ND<sup>52</sup>D<sup>53</sup> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
              -SO<sub>2</sub>O-D<sup>53</sup> in which D<sup>53</sup> has the same meaning as above, -SO<sub>2</sub>O-Si(CH<sub>3</sub>)<sub>3</sub>,
              -SO<sub>2</sub>-L<sup>1</sup>-Si(CH<sub>3</sub>)<sub>3</sub> in which L<sup>1</sup> has the same meaning as above, -SO<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub>,
  5
              -P(O)(OD<sup>52</sup>)(OD<sup>53</sup>) in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
              -P(O)(OD<sup>52</sup>)(SD<sup>53</sup>) in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -P(O)(OD<sup>52</sup>)D<sup>53</sup> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -P(O)(SD<sup>52</sup>)D<sup>53</sup> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -P(S)(OD<sup>52</sup>)(OD<sup>53</sup>) in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
 10
             -P(S)(OD<sup>52</sup>)(SD<sup>53</sup>) in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -P(S)(OD<sup>52</sup>)D<sup>53</sup> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -P(S)(SD<sup>52</sup>)D<sup>53</sup> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             -L3-P(O)(OD52)(OD53) in which D52, D53 and L3 have the same meanings as above,
             -L3-P(O)(OD52)(SD53) in which D52, D53 and L3 have the same meanings as above,
 15
             -L3-P(O)(OD52)D53 in which D52, D53 and L3 have the same meanings as above,
             -L3-P(O)(SD52)D53 in which D52, D53 and L3 have the same meanings as above,
             -L^3-P(S)(OD^52)(OD^53) in which D^52, D^53 and L^3 have the same meanings as above,
             -L3-P(S)(OD52)(SD53) in which D52, D53 and L3 have the same meanings as above,
             -L3-P(S)(OD52)D53 in which D52, D53 and L3 have the same meanings as above,
20
             -L3-P(S)(SD52)D53 in which D52, D53 and L3 have the same meanings as above,
             -C(D<sup>53</sup>)(P(O)(OD<sup>52</sup>)<sub>2</sub>)<sub>2</sub> in which D<sup>52</sup> and D<sup>53</sup> have the same meanings as above,
             = CD<sup>52</sup>D<sup>54</sup> in which D<sup>52</sup> has the same meaning as above, and D<sup>54</sup> represents a hydrogen atom, a
             halogen atom, a C1 to C6 alkyl group, a C1 to C6 alkoxy group, a C1 to C6 alkylthio group or Ar (Ar
            has the same meaning as above),
25
            -L3-CN in which L3 has the same meaning as above,
            -ND52D53 in which D52 and D53 have the same meanings as above,
            -CH = N-O-D<sup>52</sup> in which D<sup>52</sup> has the same meaning as above,
             = CD<sup>54</sup>-ND<sup>52</sup>D<sup>53</sup> in which D<sup>52</sup>, D<sup>53</sup> and D<sup>54</sup> have the same meanings as above,
            -L2-D55 in which L2 has the same meaning as above, and D55 represents a C1 to C6 alkyl group, a C2
30
            to C<sub>6</sub> alkenyl group or a C<sub>2</sub> to C<sub>6</sub> alkynyl group each of which may be substituted by one or two or
            more of a C1 to C6 haloalkyl group or one or two or more of a C1 to C4 alkyloxycarbonyl group and
            may be branched.
            or -L1-SO2-D56 in which L1 has the same meaning as above,
            and D56 represents a C1 to C4 alkyl group,
35
            and alternatively Da and Db together with a nitrogen atom to which they are attached may form a 3- to
            8-membered ring and the ring constituent atoms are selected from a carbon atom,
            a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom, and the ring may be
            substituted by one or more substituents and the substituent may be selected from a C1 to C4 alkyl
            group, a C3 to C6 cycloalkyl group, a C1 to C4 haloalkyl group, a C3 to C6 halocycloalkyl group, a
40
            halogen atom, a cyano group, a nitro group, a hydroxy group, a C1 to C4 alkoxy group, a C1 to C4
            haloalkoxy group, a C1 to C4 alkylcarbonyl group, a carboxyl group, a C1 to C4 alkoxycarbonyl group,
            an amino group, a C1 to C4 alkylamino group, an acetamino group, N,N-dimethylamino group and
            methanesulfonyl group:
            provided that except for the case where Da and Db both represent the hydrogen atoms, the case
45
           where D<sub>a</sub> represents -L2-D52 in which L2 represents -SO2- and D52 represents the C1 to C4 alkyl group
           or the C1 to C3 haloalkyl group and Db represents the hydrogen atom, the C1 to C4 alkyl group, the
```

group or the (C₁ to C₃ alkoxy) C₁ to C₂ alkyl group are excluded.

The more preferred compounds are those represented by the formula (I) wherein

R1 represents methyl group;

R² represents trifluoromethyl group;

R³ represents hydrogen atom;

R4 represents hydrogen atom or halogen atom;

⁵⁵ R⁵ represents a halogen atom;

X represents oxygen atom;

 D_a and D_b each independently represents hydrogen atom, C_1 to C_6 alkyl group, C_3 to C_6 alkenyl group, C_3 to C_6 alkynyl group,

C₂ to C₅ alkenyl group, the C₃ to C₅ alkynyl group, the C₂ to C₅ acyl group, the C₁ to C₄ alkylsulfonyl

-L¹-Ar in which L¹ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be branched, and Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more substituents and the substituent may be selected from a C_1 to C_4 alkyl group, a C_1 to C_4 haloalkyl group, a halogen atom, a nitro group, a C_1 to C_4 alkoxy group and a C_1 to C_4 alkoxycarbonyl group,

Het in which Het represents a pyridine ring, a thiophen ring and a furan ring,

- -L1-Het in which Het and L1 have the same meanings as above,
- -L²-D⁵² in which D⁵² represents a hydrogen atom, a C₁ to C₆ alkyl group, a C₁ to C₆ haloalkyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₆ cycloalkyl group, a C₃ to C₆ alkenyl group, a C₃ to C₆ alkenyl group, a C₃ to C₆ alkynyl group, a C₁ to C₄ alkoxy(C₁ to C₄)alkyl group, Ar (Ar has the same meaning as above), -L¹-Ar (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) or -L¹-Het (Het and L¹ have the same meanings as above), and L² represents -C(O)-, -C(S)-, -SO₂-, -S(O)-, -S-, -C(O)O-, -C(O)S-, -C(S)O-, -C(O)C(O)O-,
- -L³-S-D⁵² in which D⁵² has the same meaning as above, and L³ represents a C₁ to C₆ alkyl chain, a C₂ to C₆ alkenyl chain or a C₂ to C₆ alkynyl chain each of which may be substituted by one or two or more of a C₁ to C₄ haloalkyl group or a C₁ to C₄ alkyloxycarbonyl group and may be branched,
- -L3-C(O)O-D52 in which D52 and L3 have the same meanings as above,
- -C(0)-ND⁵²D⁵³ in which D⁵² has the same meaning as above,
- and D53 represents a hydrogen atom, a C1 to C6 alkyl group,
- a C₁ to C₅ alkoxy group, a C₁ to C₄ alkylsulfonyl group, Ar (Ar has the same meaning as above) or -L¹-Ar group (Ar and L¹ have the same meanings as above), and alternatively D⁵² and D⁵³ together with a nitrogen group to which they are attached may form a 5- or 6-membered ring,

تتريب المائد مع

- -C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
- -L3-C(O)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
- -L3-C(S)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
- -P(0)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
- -L³-P(O)(OD⁵²)(OD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above,
- -L3-CN in which L3 has the same meaning as above,
- = CD⁵⁴-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above, and D⁵⁴ repersents a hydrogen atom, a halogen atom, a C₁ to C₆ alkyl group, a C₁ to C₆ alkoxy group, a C₁ to C₄ alkylthio group or Ar (Ar has the same meaning as above),
- -L²-D⁵⁵ in which L² has the same meaning as above, and D⁵⁵ represents a C₁ to C₆ alkyl group, a C₂ to C₆ alkenyl group or a C₂ to C₆ alkynyl group each of which may be substituted by one or two or more of a C₁ to C₄ haloalkyl group or one or two or more of a C₁ to C₄ alkyloxycarbonyl group and may be branched, or -L¹-SO₂-D⁵⁶ in which L¹ has the same meaning as above, and D⁵⁶ represents a C₁ to C₄ alkyl group,
- and alternatively D_a and D_b together with a nitrogen atom to which they are attached may form a ring represented by

provided that except for the case where D_a and D_b both represent hydrogen atoms, the case where D_a represents -L²-D⁵² in which L² represents -SO₂- and D⁵² represents the C₁ to C₄ alkyl group or the C₁ to C₃ haloalkyl group, and D_b represents the hydrogen atom, the C₁ to C₄ alkyl group, the C₂ to C₅ alkenyl group, the C₂ to C₅ acyl group, the C₁ to C₄ alkylsulfonyl group or the (C₁ to C₃ alkoxy) C₁ to C₂ alkyl group are excluded.

The compound of the present invention can be used in treatment methods either of a soil treatment or a foliar treatment, as herbicides for upland field, paddy field and non-cultivated field.

As subjective weeds of the compound of the present invention, there may be mentioned broad-leaved weeds such as Solanum nigrum, Datura nigrum, Abutilon theophrasti, Side spinosa, Ipomoea spps. of Ipomoea purpurea, Amaranthus Iividus, Amaranthus vividis, Xanthium strumarium, Ambrosia artemisiaefolia, Helianthus annuus, Galinsoga ciliata, Cirsium arvense, Senecio vulgaris, Erigeron annus, Rorippa indica,

Sinapis arvensis, Capsella Bursapastris, Polygonum Blumei, Polygonum convolvulus, Portulaca oleracea, Chenopodium album, Chenopodium ficifolium, Kochias coparia, Stellaria media, Veronica persica, Commelina communis, Lamium amplexicaule, Lamium purpureum, Euphorbia supina, Euphorbia maculata, Galium aparine, Rubiaakane, Viola arvensis, Sesbania exaltata, Cassia obtusifolia and Bidens pilosa; Graminaceous weeds such as Sorgham bicolor, Panicum dichotomiflorum, Sorphum halepense, Echinochloa crus-galli, Digitaria adscendens, Avena fatua, Eleusine indica, Setaria viridis and Alopecurus aequalis; Cyperaceous weeds such as Cyperus rotundus; and Alisma canaliculatum, Sagittaria trifolia, Sagittaria pygmaea, Cyperus difformis, Cyperus serotinus, Scirpus juncoides, Eleocharis kuroguwai, Lindemia pyxidaria, Monochoria Vaginalis, Potamogeton distinctus, Rotala indica and Echinochloa oryzicola.

The compound of the present invention contains a compound which can be used safely to wheat, corn, barley, soybean, rice, cotton, sugar, beet, sorghum, etc. which are important crops.

Also, the compound of the present invention is available as a defoliant.

For applying the compound of the present invention as a herbicide, it may be generally applied by mixing with a suitable carrier such as a solid carrier, for example, clay, talc, bentonite, diatomaceous earth, white carbon, etc., or a liquid carrier, for example, water, alcohols including isopropanol, butanol, benzyl alcohol and furfuryl alcohol, aromatic hydrocarbons including toluene and xylene, ethers including anisol, ketones including cyclohexanone and isophoron, esters including butyl acetate, acid amides including N-methylpyrrolidone, or halogenated hydrocarbons including chlorobenzene and the like. If desired, by adding a surfactant, an emulsifier, a dispersant, a penetrating agent, a spreading agent, a thickening agent, an antifreezing agent, an anticaking agent, a stabilizer, etc., it can be provided practically in an optional formulation such as a liquid formulation, an emulsifiable concentrate, a wettable powder, a dry flowable formulation, a flowable formulation, a granule, etc.

The content of the compound of the present invention in the herbicide of the present invention may be an amount which develops the herbicidal activity and not particularly limited, but it is preferably 1 mg to 95 g per 100 g of the herbicide.

If necessary, the compound of the present invention may be mixed with any other herbicides, various insecticides, plant growth regulators, synergists, etc., and applied, when the formulation is prepared or applied.

Particularly, by mixing and applying with the other herbicides, a cost reduction by decreasing an applied dosage, an enlargement in weed control spectrum or an improvement in herbicidal activity due to synergistic effect of mixed agents can be expected. At this time, a plural known herbicides can be combined simultaneously. As a kind of a herbicide to be mixed with the compound of the present invention, there may be mentioned, for example, compounds described in Farm Chemicals Handbook, issued in 1990.

When the compound of the present invention is applied to the soybean, particularly preferred agents to be mixed with the compound of the present invention are trifluralin, pendimethalin, alachlor, metolachlor, metribuzin, linuron; chlorimuron ethyl, imazaquin, imazethapyr, dinoseb, bifenox, clomazone, etc.

When the compound of the present invention is mixed with the other agents, a mixing ratio (by weight) of the compound of the present invention to active components of the other agents is preferably 0.001 to 100: 1 and a content proportion of the compound of the present invention in the mixed agents (herbicides) is preferably 1 mg to 95 g per 100 g of the herbicide.

An applied dosage of the compound of the present invention may vary depending on a locus to be applied, a time to be applied, a method for application, cultivated crops, etc., but generally it is suitable in an amount of about 0.0001 to 10 kg, preferably about 0.001 to 5 kg of active component per hectare (ha).

The compound of the present invention is a compound having the high herbicidal effect and the suitable residual activity with an extremely low dose, killing the weeds promptly after applying, having broad object of controllig the weeds, having many methods for application of agents, and showing substantially no chemical damage against the important crops.

(Best mode for practicing the invention)

In the following, the present invention will be explained in more detail by referring to Examples, but the present invention is not limited by the following Examples so long as not exceeding the gist of the invention.

55

[Examples]

[Example 1]

10

15

20

25

40

45

50

55

5 Synthesis of 3-(4-chloro-2-fluoro-5-(2-thienylsulfonylamino)phenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)pyrimidinedione (Compound D-12)

In 5 ml of pyridine was dissolved 0.32 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and then 0.19 g of 2-thiophensulfonyl chloride was added to the solution at 5 °C or lower. Thereafter, the temperature was increased to room temperature and the reaction was continued overnight. Then, pyridine was removed by distillation and the residue was dissolved in ethyl acetate. The solution was washed successively with water, diluted hydrochloric acid and a saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain a crude product. This was washed with diisopropyl ether to obtain 0.3 g of the desired compound as white crystal.

[Example 2]

Synthesis of 3-(4-chloro-2-fluoro-5-(2,3,4,5-tetrahydroisothiazol-1,1-dioxide-2-yl)phenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-15)

$$CF_3$$
 CH_3
 CH_3
 CF_3
 CH_3
 CF_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

In 5 ml of N,N-dimethylformamide was dissolved 0.25 g of 3-(4-chloro-2-fluoro-5-(3-chloropropansul-fonylamino)phenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.08 g of anhydrous potassium carbonate was added thereto and the mixture was stirred at room temperature for 2 days. After removing N,N-dimethylformamide by distillation, the residue was dissolved in ethyl acetate, washed successively with water and a saturated saline solution, and dried over anhydrous sodium sulfate. By removing ethyl acetate by distillation, a crude product was obtained. This was purified by a preparative thin layer chromatography (developing solvent hexane: ethyl acetate = 3:2) to obtain 0.1 g of the desired compound as white crystal.

10 [Example 3]

15

Synthesis of 3-(4-chloro-2-fluoro-5-(O,O-diethylphosphorylamino)phenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione (Compound D-16)

In 2 ml of pyridine was dissolved 0.50 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and then 0.22 ml of diethylchlorophosphate was added dropwise thereto at 5 °C or lower. Thereafter, the temperature was increased to room temperature and the reaction was continued overnight. Then, pyridine was removed by distillation and the residue was dissolved in ethyl acetate. The solution was washed successively with water, diluted hydrochloric acid and a saturated saline obtain, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain a crude product. This was washed with diisopropyl ether to obtain 0.39 g of the desired compound as white crystal.

45

50

[Example 4]

5

10

15

20

40

45

50

55

Synthesis of 3-(4-chloro-2-fluoro-5-(methoxycarbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-22)

In 5 ml of pyridine was dissolved 0.38 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and then 0.11 g of methyl chloroformate was added thereto at 5 °C or lower. Thereafter, the temperature was increased to room temperature and the reaction was continued overnight. Then, pyridine was removed by distillation and the residue was dissolved in ethyl acetate. The solution was washed successively with water, diluted hydrochloric acid and a saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain a crude product. This was washed with diisopropyl ether to obtain 0.28 g of the desired compound as white crystal.

[Example 5]

Synthesis of 3-(4-chloro-2-fluoro-5-(N-methyl)ethoxycarbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione (Compound D-24)

$$CF_3$$
 CH_3
 CH_3

After adding 0.38 g of 3-(4-chloro-5-ethoxycarbonylamino-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione to a suspension of 0.04 g of sodium hydride in tetrahydrofuran (10 ml), 0.06 ml of methyl iodide was added dropwise thereto. After 2 hours, ice-water was added thereto and the mixture was

extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated saline solution and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain a crude product. This was purified by a preparative thin layer chromatography (developing solvent hexane : ethyl acetate = 5 : 2) to obtain 0.22 g of the desired compound as white crystal.

[Example 6]

5

10

15

20

25

35

Synthesis of 3-(5-acetylamino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-17)

$$\begin{array}{c|c}
CF_3 & F & C \ell \\
\hline
CH_3 & O & F & C \ell \\
\hline
CH_3 & CO_2 & COCH_3 & O & F & C \ell \\
\hline
CH_3 & CO_2 & COCH_3 & O & CH_3 & O & CH_3
\end{array}$$

In 5 ml of benzene was dissolved 2.00 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.61 ml of anhydrous acetic acid was added thereto and the mixture was refluxed for one hour. Benzene was removed by distillation to obtain a crude product. This was washed with hexane to obtain 2.20 g of the desired compound as white crystal.

[Example 7]

Synthesis of 3-(4-chloro-2-fluoro-5-formylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-21)

40

$$F$$
 $C\ell$
 NH_2
 CH_3
 CH_3
 F
 $C\ell$
 CH_3
 CH_3

After stirring 0.080 g of formic acid and 0.180 g of anhydrous acetic acid at 60 °C for one hour, the mixture was cooled to 30 °C. To the mixture was added a mixture of 0.500 g of 3-(5-amino-4-chloro-2-

fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione and 4 ml of chloroform, and the mixture was stirred for one hour. After refluxing for further one hour, 1.3 ml of formic acid was added to the mixture and the mixture was refluxed for one hour. The solvent was removed by distillation using a vacuum pump to obtain a crude product. This was washed with hexane and dried to obtain 0.510 g of the desired compound as brownish white crystal.

[Example 8]

15

20

25

40

. 45

50

55

Synthesis of 3-(4-chloro-5-ethoxalylamino-2 fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-10 pyrimidinedione (Compound D-35)

In 5 ml of pyridine was dissolved 0.39 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.17 g of ethyl oxalyl chloride was added thereto at 5 °C or lower. Thereafter, the temperature was increased to room temperature and the reaction was continued overnight. Then, pyridine was removed by distillation and the residue was dissolved in ethyl acetate. The mixture was washed successively with water, diluted hydrochloric acid and a saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain a crude product. This was washed with diisopropyl ether to obtain 0.29 g of the desired compound as white crystal.

[Example 9]

5

10

15

20

35

Synthesis of 3-(4-chloro-2-fluoro-5-(3-methansulfonylureyen-1-yl)phenyl)-1-methyl-6- trifluoromethyl-2,4-(1H,3H)-pyrimidinedione (Compound D-33)

In 10 ml of dry tetrahydrofuran was dissolved 0.34 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.15 g of methylsulfonylisocyanate was added thereto and the mixture was stirred at 30-40 °C for 2 hours. After cooling by allowing to stand, precipitated crystals were collected by filtration and washed with n-hexane to obtain 0.28 g of the desired compound as white crystal.

[Example 10]

Synthesis of 3-(4-chloro-5-(2,6-dioxo-4-trifluoromethylpiperidin-1-yl)-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-40)

F C
$$\ell$$

NHCOCH₂CH(CF₃)CH₂CO₂H

CF₃

CH₃

F

C ℓ

SOC ℓ

CF₃

NHCOCH₂CH(CF₃)CH₂CO₂H

CF₃

CH₃

CH₃

CF₃

CH₃

CF₃

CH₃

CF₃

CH₃

CH₃

To a solution of 0.50 g of 4-(N-(2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedion-3-yl)phenyl)carbamoyl)-3-trifluoromethylbutyric acid and 7 ml of dry tetrahydrofuran was added dropwise 0.23 g of thionyl chloride at room temperature. After stirring for 2 hours under reflux, the temperature was cooled to room temperature, and the solvent was removed by distillation under reduced

pressure. The resulting crude product was extracted with ethyl acetate, washed successively with water, a saturated aqueous solution of sodium hydrogen carbonate and a saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to obtain 0.50 g of the desired compound as crystal.

[Example 11]

5

10

15

20

25

30

40

45

50

55

056338441 | >

Synthesis of 4-(N-(2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedion-3-yl)phenyl)-carbamoyl)-3-trifluoromethylbutyric acid (Compound D-37)

A mixture of 0.50 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, 0.27 g of 3-trifluoromethylglutaric anhydride and 6 ml of toluene was stirred at 100 °C for one hour. After cooling to room temperature, the solvent was removed by distillation under reduced pressure to obtain 0.7 g of the desired compound as crystal.

35 [Example 12]

Synthesis of methyl 4-(N-(2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedion-3-yl)-phenyl)carbamoyl)-3-trifluoromethylbutyrate (Compound D-38)

$$CF_{3} \xrightarrow{N} 0$$

$$CH_{3} \xrightarrow{CH_{3} I} CF_{3} \xrightarrow{N} 0$$

$$CH_{3} \xrightarrow{K_{2}CO_{3}} CF_{3} \xrightarrow{N} 0$$

$$CH_{3} \xrightarrow{N} 0$$

To a mixture of 0.20 g of 4-(N-(2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedion-3-yl)phenyl)carbamoyl)-3-trifluoromethylbutyric acid, 0.06 g of potassium carbonate and 4 ml of N,N-dimetylformamide was added 0.05 g of methyl iodide at room temperature and the mixture was stirred at room temperature for 3 hours. The mixture was diluted with ethyl acetate and washed successively with water and a saturated saline solution, and dried over anhydrous sodium carbonate followed by removing ethyl acetate by distillation to obtain 0.44 g of the desired compound as crystal.

[Example 13]

Synthesis of 3-(5-(N-acetyl)propargylamino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-20)

F C
$$\ell$$

NHCOCH₃

CF₃

N=CH₂C=CH

NaH

CF₃

NHCOCH₃

F

C ℓ

NHCOCH₃

CH₂C=CH

CH₃

CH₂C=CH

A mixture of 1.05 g of 3⁻(5-acetylamino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione and 9 ml of N,N-dimethylformamide was cooled to 0 °C, and 0.13 g of sodium hydride was added to the solution and the mixture was stirred until the temperature was increased to room temperature. Then, 0.33 g of propargyl bromide was added to the mixture and the mixture was stirred at room temperature for 2 days. The mixture was diluted with ethyl acetate and washed successively with water and a saturated saline solution, and dried over anhydrous sodium carbonate followed by removing ethyl acetate by distillation to obtain 0.93 g of the desired compound as crystal.

40

30

45

50

[Example 14]

5

10

15

20

40

45

50

55

Synthesis of 3-(4-chloro-2-fluoro-5-(N-methanesulfonyl)methoxycarbonylmethylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-13)

$$CF_3$$
 CH_3
 CH_3
 CH_3
 $CH_2CO_2CH_3$
 CF_3
 CF_3
 CH_3
 CF_3
 CH_3
 $CH_2CO_2CH_3$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

In 5 ml of N,N-dimethylformamide was dissolved 0.50 g of 3-(4-chloro-2-fluoro-5-methanesul-fonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.17 g of anhydrous potassium carbonate and 0.11 ml of methyl chloroacetate were added thereto and the mixture was stirred at room temperature overnight. After removing N,N-dimethylformamide by distillation, the residue was dissolved in ethyl acetate, washed successively with water and a saturated saline solution, and dried over anhydrous sodium sulfate. By removing ethyl acetate by distillation, a crude product was obtained. This was purified by a preparative thin layer chromatography (developing solvent hexane : ethyl acetate = 1 : 1) to obtain 0.19 g of the desired compound as colorless viscous oily product.

[Example 15]

Synthesis of 3-(4-chloro-5-(N-ethanesulfonyl)ethoxycarbonylmethylamino-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-14)

In 5 ml of N,N-dimethylformamide was dissolved 0.30 g of 3-(4-chloro-5-ethanesulfonylamino-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.03 g of 60 % sodium hydride and 0.10 g of ethyl chloroformate were added thereto and the mixture was stirred at room temperature for 4

days. After removing N,N-dimethylformamide by distillation, the residue was dissolved in ethyl acetate, washed successively with water and a saturated saline solution, and dried over anhydrous sodium sulfate. By removing ethyl acetate by distillation, a crude product was obtained. This was purified by a preparative thin layer chromatography (developing solvent hexane : ethyl acetate = 3 : 2) to obtain 0.10 g of the desired compound as white crystal.

[Example 16]

Synthesis of 3-(5-benzensulfinamino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-46)

In 5 ml of pyridine was dissolved 0.34 g of 3-(3-amino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.19 g of benzenesulfinyl chloride was added thereto at 5 °C or lower. After
reacting the mixture for one hour, pyridine was removed by distillation and the residue was dissolved in
ethyl acetate. The reaction mixture was washed successively with water, diluted hydrochloric acid and a
saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by
distillation to obtain a crude product. This was purified by a preparative thin layer chromatography
(developing solvent hexane: ethyl acetate = 3:1) and recrystallized from n-hexane to obtain 0.03 g of the

40

15

20

25

45

50

[Example 17]

5

10

15

20

40

45

50

55

Synthesis of 3-(4-chloro-2-fluoro-5-trichloromethylthioaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (Compound D-42)

$$\begin{array}{c|c}
 & F & C \ell \\
\hline
CF_3 & NH_2 \\
\hline
CH_3 & F & C \ell \\
\hline
C \ell SCC \ell_3 & O & F & C \ell \\
\hline
K_2CO_3 & CF_3 & NHSCC \ell_3 \\
\hline
CH_3 & CH_3 & O & CH_3
\end{array}$$

In 5 ml of N,N-dimethylformamide was dissolved 0.73 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.33 g of anhydrous sodium carbonate and 0.44 g of perchloromethylmercaptane were added thereto and the mixture was stirred at room temperature for 1.5 hours. After removing N,N-dimethylformamide by distillation, the residue was dissolved in ethyl acetate, washed successively with water and a saturated saline solution, and dried over anhydrous sodium sulfate. By removing ethyl acetate by distillation, a crude product was obtained. This was purified by a preparative thin layer chromatography (developing solvent hexane ethyl acetate = 3 : 1) to obtain 0.79 g of the desired compound as colorless viscous oily product.

[Example 18]

35 Synthesis of 3-(4-chloro-2-fluoro-5-trichloromethanesulfinaminophenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione (Compound D-43)

CF₃ NHSCC
$$\ell$$
 3

CH₃ F C ℓ

NHSOCC ℓ 3

CH₃ CO₂H CF₃ N 0

CH₃ CH₃

In 10 ml of 70 % acetic acid was dissolved 0.29 g of 3-(4-chloro-2-fluoro-5-trichloromethyl-thioaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.14 g of pyridine-bromine complex was added thereto and the mixture was stirred at room temperature for one hour. After removing

acetic acid by distillation, the residue was dissolved in ethyl acetate, washed successively with water, a saturated aqueous solution of sodium hydrogen carbonate and a saturated saline solution, and dried over anhydrous sodium sulfate. By removing ethyl acetate by distillation, a crude product was obtained. This was purified by a preparative thin layer chromatography (developing solvent hexane : ethyl acetate = 5 : 1) to obtain 0.05 g of the desired compound as white crystal.

[Example 19]

Synthesis 3-(4-chloro-2-fluoro-5-(2-thenoylamino)phenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)pyrimidinedione (Compound D-45)

In 5 ml of pyridine was dissolved 0.34 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-30 trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.17 g of 2-thiophencarbonyl chloride was added thereto at 5 °C or lower. Thereafter, the temperature was increased to room temperature and the reaction was continued overnight. Then, pyridine was removed by distillation and the residue was dissolved in ethyl acetate. The solution was washed successively with water, diluted hydrochloric acid and a saturated saline solution, and dried over anhydrous sodium sulfate followed by removing ethyl acetate by distillation to 35 obtain a crude product. This was washed with diisopropyl ether to obtain 0.30 g of the desired compound

40

25

45

50

[Example 20]

5

10

15

20

35

Synthesis of 3-(4-chloro-2-fluoro-5-(N,N-dimethylmethylideneamino)phenyl)-1-methyl-6-trifluoromethyl-2,4-(1H,3H)-pyrimidinedione (Compound D-44)

$$CF_3$$
 NH_2
 CH_3
 CH_3

In 2 ml of N,N-dimethylformamide was dissolved 0.40 g of 3-(5-amino-4-chloro-2-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, and 0.14 g of N,N-dimethylformamidedimethylacetal was added thereto. After reacting the mixture at 80 °C for 10 hours, N,N-dimethylformamide was removed by distillation to obtain 0.50 g of the desired compound as brownish viscous oily product.

The compounds of the present invention synthesized in accordance with the above scheme or Examples including the compounds synthesized in the above Examples are shown in Tables 1 and 2 with their chemical structures and physical properties, respectively.

Table 1

55

	Compound No	•	R ⁴	R ⁵ R ⁶	
5					
	D - 1	F	C &	NHSO ₂ C ₆ H _{S5.}	
10	D - 2	F	C &	$^{\rm N}$ (CH $_3$) SO $_2$ C $_6$ H $_5$	
	D - 3	F	C &	$NHSO_2 - (4-F-C_6 H_4)$	
15	D - 4	F	C &	NHSO $_2$ - (4 - C ℓ - C $_6$ H $_4$)	
	D - 5	F	C &	NHSO $_2$ - (4-0 CH $_3$ - C $_6$ H $_4$)	
20	D - 6	F	C &	NHSO ₂ - (2-CH ₃ - C ₆ H ₄)	
	D - 7	F	C 2	ин в о ₂ - (3-с н ₃ - с ₆ н ₄)	
25	D - 8	F	C &	$N H S O_2 - (4 - C H_3 - C_6 H_4)$	
30	D — 9	F	C &	$N H S O_2 - (2 - N O_2 - C_6 H_4)$	
	D - 10	F	C <i>l</i>	$N H S O_2 - (3 - N O_2 - C_6 H_4)$	
35	D - 11	F	CL	$N H S O_2 - (4 - N O_2 - C_6 H_4)$	
	D - 12	F	C &	NHSO ₂ -Q ₄	
40	D - 13	F	C &	$N (SO_2 CH_3) CH_2 CO_2 CH_3$	
	D - 14	F	C &	N (SO $_2$ C $_2$ H $_5$) CO $_2$ C $_2$ H $_5$	
45		F	C &	Q 38	
		F	C &	N H P (0) (0C ₂ H ₅) ₂	
50	D - 17	F	C &	NHCOCH ₃	

Table 1 (Contd.)

5	Compound No.	R ⁴	R ⁵	_R 6
10	D - 18	F C &	и н с о с (C e 3
10	D - 19	F C &	NHCOCI	F 3
15	D - 20	F C &	N (C H ₂	с = сн) сосн ₃
	D - 21	F C &	и н с н о	
20	D - 22	F C &	NHCO ₂	сн ₃
	D - 23	F C &	NHCO ₂	C 2 H 5
25	D - 24	F C &	N (CH ₃) CO ₂ C ₂ H ₅
	D - 25	F C &	NHCO ₂	сн ₂ сн ₂ сн ₃
30	D - 26	F C &	N H C O 2	(C H ₂) ₃ C H ₃
	D - 27	F C &	NHCO ₂	сн ₂ сн (сн ₃) ₂
35	D - 28	F C	NHCO ₂	CH ₂ CH ₂ C ₂
	D - 29	F C	NHCO ₂	сн ₂ сс <i>е</i> 3
40	D - 30	F C	NHCO ₂	сн ₂ сн ₂ осн ₃
	D - 31	F C	NHCO ₂	сн ₂ с ₆ н ₅
45	D - 32	F C	n H C O 2	C 6 H 5
	D - 33	F C	NHCON	HSO ₂ CH ₃
50	D - 34	F C	2 NHCON	нсн ₃

Table 1 (Contd.)

5	Compound 1	No.	R ⁴	_R 5	_R 6
	D - 35	F	C 2	NHCOCO	2 ^C 2 ^H 5
10	D - 36	F	C &	NHCOCH	₂ сн (сн ₃) сн ₂ со ₂ н
	D - 37	F	C &	N Н С О С Н	² сн (сг ₃ .) сн ⁵ со ⁵ н
15	D - 38	F	C &	инсосн ,	₂ сн (сг ₃) сн ₂ со ₂ сн ₃
20	D - 39	F	C &	4 - M e - Q 3	3 0
	D - 40	F	C &	4 - C F ₃ -	Q 3 0
25	D - 41	F	C 2	Q 43	
	D - 42	F	C &	N H S C C e	? 3
	D - 43	F	C &	NHSOCC	3
30	D - 44	F	C &	N = C H N (C	H ₃) ₂
35	D - 45	F	C &	N H C O - Q 4	
33	D - 46	H	C &	NHSOC ₆	H 5
	D - 47	C &	F &	мнсосн ₂ с	н (сг _з) сн ₂ со ₂ с ₂ н _{5.}
40	D - 48	H	C &	NHSO ₂ C	6 H 5
45	D - 49	F	C &	NHSO ₂ -	(2-co ₂ c ₂ H ₅ -c ₆ H ₄)
	D - 50	F	C &	N H C (0) S	зсн ₃
5 0	D - 51	F	C &	инсо 2 ст	H ₂ - (4-F-C ₆ H ₄)

Table 1 (Contd.)

Compound No.	R	4	_R 5	_R 6
D - 52	F	C &	NHCO ₂	СН ₂ - (4 - С 2 - С 6 Н 4)
D - 53	F	C &	NHCO ₂	сн ₂ - (4-сн ₃ -с ₆ н ₄)
D - 54	F	C &	NHCO ₂	сн ₂ с (сн ₃) ₃
D - 55	F	C ℓ	инс (о) s с н 2 с 6 н 5
D - 56	F	F	NHSO2	с ₆ н ₅
D - 57	C &	C &	NHSO ₂	С 6 Н 5
D - 58	Н	C &	NHCO ₂	сн ₃
D - 59	F	F	NHCO ₂	сн ₃
D - 60	C 2	C &	NHCO ₂	CH ₃
D - 61	F	B r	NHCO ₂	C 2 H 5
D - 62	F	B r	NHSO ₂	C 6 H 5
D - 63	F	C &	NHCO ₂	CH ₂ - (4-CH ₃ 0 - C ₆ H ₄
D - 64	F	C &	N H C O 2	CH ₂ - (3-CH ₃ - C ₆ H ₄)
D - 65	F	C &	NHCO ₂	$c H_2 - (2 - c H_3 - c_6 H_4)$
D - 66	F	B r	NHCO ₂	сн ₃
D - 67	F	B r	NHCO ₂	сн ₂ сн ₂ сн ₃
D - 68	Н	B r	NHCO ₂	с н 3

Table 1 (Contd.)

5	Compound No		R ⁴	_R 5	R6	
10	D - 69	F	Вг	N H C O 2	сн ₂ с ₆ н ₅	
10	D - 70	F	C &		CH ₂ - (4 - C ₂ H ₅ - C ₆ H ₄)	
15	D - 71	F	C &		CH ₂ - (4-C(CH ₃) ₃ - C ₆ H ₄	
	D - 72	F	C &		CH ₂ - (4-CF ₃ - C ₆ H ₄)	
20	D - 13	F	C &	NHCO ₂	CH ₂ - (4-NO ₂ - C ₆ H ₄)	
	D - 74	F	C &	NHCO ₂	сн ₂ - Q ₁	
25	D - 75	F	C &	NHCO ₂	CH ₂ -Q ₄	
	D - 76	F	C e	NHCO ₂	сн (сн ₃)с ₆ н ₅	
30	D - 17	F	C &	NHCO ₂	сн ₂ сн ₂ с ₆ н ₅	
	D - 78	F	C &	NHCO ₂	сн ₂ сғ ₃	
35	D - 79	F	C 2	NHCO ₂	CH ₂ - (cyclopentyl)	
	D - 80	F	C &	NHCO ₂	CH ₂ CH = CHCH ₃ (trans)	
40	D - 81	F	C &	инсоин	сн ₂ с ₆ н ₅	
	D 82	F	C &	NHCO ₂	CH_2 $CH=CH_2$	
45	D - 83	F	C &	NHCO ₂	CH_2 $CH=CHC_6$ H_5	
	D - 84	F	C 2	NHCO ₂	C H ₂ - Q ₂	
50	D - 85	F	C &	NHCO ₂	СН ₂ - Q ₃	

Table 1 (Contd.)

5	Compound No.	R ⁴		_R 5	_R 6
10	D - 86	F	C &	NHCO ₂	сн ₂ - Q ₄₈
	D - 87	F	C &	NHCO ₂	CH ₂ - (β-naphthyi)
15	D - 88	F	C &	NHCO ₂	- (4-CH ₃ - C ₆ H ₄)
	D - 89	F	C &	инсои (сн ₃) сн ₂ с ₆ н ₅
o	D - 90	F	C e	N Н С О - Q	3 2
	D - 91	F	C &	NHC(S)	осн ₃
5	D - 92	F	C e	NHSO ₂	сн ₂ с 6 н 5
	D - 93	F	C e	инс (s)	scH ₃
o	D - 94	F	C &	инс (s)	осн ₂ с ₆ н ₅
	D - 95	F	C &	и (сно)	сн ₂ со ₂ сн ₃
5	D - 96	F	C &	NHCH ₂	со 2 сн 3
	D - 97	F	C &	инсн (сн ₃) со ₂ сн ₃
0	D - 98	F	C &	инсн (сн ₃) со ₂ с ₂ н ₅
•	D - 99	F	C e	м н с н ₂	P(0)(0C ₂ H ₅) ₂
5	D - 100	F	C e	м н с н ₂	s с н ₃
	D - 101	F	C &	NHCH ₂	SO ₂ CH ₃
0	D - 102	F	C &	NHCH ₂	C N

Table 1 (Contd.)

5	Compound N	No.	R ⁴	_R 5	_R 6
10	D - 103	F	C &	м н с о ₂	CH ₂ - (2, 4-(CH ₃) ₂ -C ₆ H ₃)
	D - 104	F	C 2	NHCO ₂	CH ₂ - (3, 4- (CH ₃) ₂ -C ₆ H ₃)

in which Q_1 , Q_2 , Q_3 , Q_4 , Q_{30} , Q_{32} , Q_{38} , Q_{43} and Q_{48} are as shown below.

50

15

Table 2

5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
o	D - 1		(1 H, s), 7.12 (1 H, d, J = 8 H z),
5		7.39-7.81(7H, m) [CDC2 ₃]	Melting 188-190℃ point 188-190℃
)	D - 2	7.05-7.83(7H, m)	(3H, s), 6.33(1H, s),
5	D - 3	[C D C L 3]	Melting 148-150°C (1H, s), 6.93-7.29(4H, m),
)		7.62-7.88(3H, m)	Melting 190-192°C point
	D - 4	3.52(3H,s), 6.36 [CDCe ₃]	(1H, s), 6.98-7.80(7H, m) Melting point 211-212°C
	D - 5	•	(3H, s), 6.28(1H, s).
		[C D C & 3]	Melting point 178-179℃
	D - 6	6.90-7.80(7H.m)	(3H, s), 6.37 (1H, s).
_		[CDC2 ₃]	Melting 183-185℃ point

Table 2 (Contd.)

5	Compound	No. $^{1}\text{H-NMR}$ δ (ppm) Physical property [solvent]
10	D - 1	2.34(3H, s), 3.52(3H, s), 6.39(1H, s),
		6.87-7.72 (7H, m)
15		[CDC23] Melting 182-184°C
	D - 8	2.38(3H,s), 3.57(3H,s), 6.37(1H,s),
20		7.08-7.33 (3H, m), 7.57-7.78 (4H, m)
		[CDCℓ 3] Melting 194-195℃ point
25	D - 9	3.54(3H, s), 6.27(1H, s), 7.01-7.25(1H, m),
		7.53-7.90 (6H, m)
30		[C D C & 3] Glass-like oily product
	D - 10	3.56(3H, s), 6.37(1H, s), 7.02-8.80(6H, m)
35		[C D C ℓ 3] Glass-like oily product
	D - 11	3.57 (3 H, s), 6.29 (1 H, s), 7.00-7.25 (2 H, m)
40		7. 57-8. 25 (5H, m)
		[CDC23] Melting 210-212°C
45	D - 12	3.58(3H, s), 6.30(1H, s), 6.93-7.31(3H, m),
		7. 45-7.82 (3H, m)
50		[CDCe 3] Melting 173-174°C

Table 2 (Contd.)

Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
D - 13	3.11(3H.s). 3.53(3H.	, s), 3.71 (3H, s).
	4.12(2H, s), 6.34(1H	, s), 7.41 (1H, d, J=9Hz),
	7.80 (1 H. d. J = 7 H z)	
	[CDC& ₃]	Viscous oily product
D - 14	1.36 (3 H, t, J = 7 H z), 1	. 48 (3 H, t, J = 7 H z),
	3.57 (3 H, s), 3.80 (2 H,	q. J = 7 H z), 4. 27 (2 H, q, J = 7 H z)
	6.21(1H, s), 7.31(1H	, s), 7.47 (1 H, d, J = 2 H z)
		Melting 155-157℃ point
D - 15	2.52(2H, q, J=6Hz), 3	3.12-3.79 (4H, m).
	3.47 (3 H, s), 6.19 (1 F	H, s), 7.24(1H, d, J=3Hz),
	7.31 (1 H. brs), 7.41	1 (1 H, d, J = 7 H z)
·	$[CDCe_3]$	Melting 192-193℃ point
D - 16	1.20 (6 H, t, J = 7 H z),	3.38(3H, s),
	2.97 (4H, dq, J=7Hz),	
	6.12(1H, s), 7.04(1H	, d, J = 9 H z), 7, 0 6 (1 H, d, J = 7 H z
	[CDC2 ₃]	Melting 130-132°C point

Table 2 (Contd.)

5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
10	D - 17	2.15(3H, s), 3.47(3H,	s), 6.54(1H, s),
		7.70 (1 H, d, J = 9 H z), 7.	90 (1 H, d, J = 8 H z),
15		9.56 (1 H, brs)	
		[d ₆ - DMSO] ^M	Melting 263-266℃ point
20	D - 18	3.45(3H,s), 6.2(1H,s)	. 7.25 (1 H, d, J = 9 H z),
		8.13(1H, d, J=7Hz), 8.8	36 (1 H, brs)
?5		[CDCe ₃]	Viscous oily product
	D - 19	3.44(3H,s), 6.21(1H,s	i), 7.22(1H, d, J=9Hz),
0		8.04(1 H, d, J = 7 Hz), 8.4	4 (1 H, br s)
		[CDCe 3] M	delting 144-145℃ oint
5	D - 20	1.87(3H,s), 2.20(1H,t	, J = 2 H z) , 3.53 (3 H, s),
			-5.21(1H, m), 6.28(1H, s
)		7. 28 (1 H, d, J = 7 Hz), 7. 35	
	D - 21	pe	elting 169-171℃ oint
	2 61	3. 42 (3 H, s), 6. 28 (1 H, s) 8 17 (1 H d l= 8 Hz) 8 27	·
		[d DMSO] Me	(1H, br s), 9. 67 (1H, br s elting pint 268-270℃

Table 2 (Contd.)

5	Compound	No.	¹ H-NMR δ (ppm) [solvent]	Physical property	
	D - 22	3. 5	1 (3 H, s), 3.72 (3 H, s), 6.30 (1 H, s),	_
10		7.1	0 (1 H, brs), 7.	27 (1 H, d, J = 9 H z).	
		8.1	B (1 H, d, J = 7 Hz)		
15		[C	D C & 3]	Melting 136-138℃ point	
	D - 23	1. 2	6 (3 H, t, J = 7 H z),	3.37 (3 H, s).	
20		4.1	6 (2 H, q, J = 7 H z),	6.45 (1 H, s).	
		7.5	7 (1 H, d, J = 9 H z),	7.77 (1 H, d, J = 7 H z),	
25		9.1	0 (1 H, br s)	·	
		[d	6 - D M S O]	Melting 153-155℃ point	
30	D - 24	1. 1	6 (1 H, t, J = 7 H z),	3.16(3H, s), 3.49(3H, s),	
		3.5	1 (2 H, q, J = 7 H z),	6.24(1H, s),	
35		7.0	7 (1 H, d, J = 7 H z),	7. 23 (1 H, d, J = 9 H z)	
		[C	DC & 3	Melting 144-146℃ point	
40	D - 25			1.70(2H, m), 3.47(3H, s),	
				6. 21 (1 H, s), 6. 95 (1 H, br s) ,
45			(8.06(1H, d, J=7H;) Melting point 152-154°C	

50

Table 2 (Contd.)

;	Compound	No. $^{1}\text{H-NMR} \delta \text{ (ppm)}$ [solvent]	Physical property
)	D - 26	0.98(3H, t, J=6Hz), 1.	18-1.73(4H, m), 3.48(3H, s
		4.12 (2 H, t, J = 6 Hz), 6.	25 (1 H, s), 6.98 (1 H, br s)
i		7.16(1H, d, J=9Hz), 8.	11 (1 H, d, J = 7 H z)
		[CDC23] Mel	lting 117-118°C
	D - 27	0.98(6H, d. J=6Hz), 1.	18-2.25 (1H, m),
		3.50(3H, s), 3.91(2H,	d, J = 6 H z), 6.24 (1 H, s),
		7.00(1H, brs), 7.18(1 H, d, J = 9 H z),
		8.11(1H, d, J=7Hz)	
		[CDCe 3] Mel poi	ting 129-131°C
	D - 28	3.50(3H,s), 3.67(2H,	t, J = 6 H z),
		4.38(2H, t, J=6Hz), 6.	24(1H, s), 7.09(1H, brs),
		7. 18 (1 H, d, J = 9 H), 8. 0	
		[CDC ₂] Mel	lting int 153-154℃
	D - 29	3.49(3H,s), 4.71(2H,	
		7. 17 (1 H, d, J = 8 H z), 7.	22 (1 H, brs),
		8. 00 (1 H, d, J = 7 H z)	ting
		[CDC23] Mel	198-1617

Table 2 (Contd.)

Compound	11 1411	łδ (ppm) lvent]	Physical p	roperty
D - 30	3.36 (3H, s)	. 3.51(3H	, s), 3.55-3.6	9 (2 H. m),
	4.20-4.40 ((2 H, m), 6.	23 (1 H, s).	
	7.10(1H, br	s), 7.16	(1 H, d, J = 9 H z),	•
	8 07 (1 H, d,	J = 7 H z)		
	[C D C &		Melting 119 point	-120°C
D - 31	2.97(3H,s)	, 5.11(2 H	i, s), 6.23 (1 H.	s),
	7.19(1H.d.] = 9 H z),	7.21 (1H, brs).	7.26(5H, s
	8.11(1H, d,	J = 7 H z)		
	[C D C &	3]	Glass-lik	e oily produ
D - 32	3.48(3H.s)	. 6.21(1	H.s), 7.05-7.6	0 (7 H. m),
	8.20(1H, d.	J = 7 H z)		
	[C D C &	3]	Melting [58	-160°C
D - 33	3.22(3H, s)	3.48(3	H, s), 6.23(1H,	s),
	7.20(1H, d.	J = 9 H z),	8.11 (1 H, d, J = 7 F	[z],
	8.28(1H, b	r s)		
	[d ₆ - D	M S O]	Melting 21	1 - 2 1 6 °C

55

Table 2 (Contd.)

5	Compound	No.	¹ H-NMR δ [solven		Physica	1 property
			TSOTVEI			·····
10	D - 34	2.69(3H, brd,	J = 3 H z) ,	3.54(3H, s	;),
		5.62(1 H, br s)	. 6.36(1H, s), 7.1	5 (1H, brs),
15		7.16(1 H, d, J = 9	Hz), 8.2	26 (1H, d, J=	8 H z)
		[C D	C & 3]	Mel poi	ting 2 nt	16-218℃
20	D - 35	1. 43 (3 H, t, J = 6	Hz), 3.5	i 2 (3 H, s),	
		4.38(2	! H, q, J = 6 !	Hz), 6.2	3 (1 H, s),	
25		7. 23 (1	H, d, $J = 91$	Hz), 8.3	4 (1 H, d, J=	7 H z) ,
		9.29(1	H, brs)		·	
30		[C D	C & 3]	Meld poir	ting [27-129°C
	D - 36	0.98-1	. 47 (3 H, a	1), 2.42	(5 H, brs)	. 3.54(3H,s),
<i>3</i> 5		6.37(1	H, s), 7.	38 (1 H, á	, J = 9 H z) ,	7.97 (1H, s),
				(z), 9.5	7 (1 H, br s)	
40	_		C & 3]			ke oily product
	D - 37					6.21(1H, s),
45				z), 7.9	3 (·1 H, d, J =)	10Hz),
		-	H, brs)			
50		[C D	C & 3]	Melt poin	- 1	15-119℃

Table 2 (Contd.)

5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
10	D - 38	2.47-2.94(5H, m), 3	3.47 (3 H, brs),
		3.61(3H,s), 6.21(1	H, s), 7.10 (1H, d, J=9Hz),
15		7.91 (1 H, br s), 8.1	4 (1 H, d, J = 7 H z)
		[CDC&3]	Melting 158-160℃ point
20 .	D - 39	0.79-1.41(3H, m), 2	2.00-3.23(5H, m),
		3.52(3H,s), 6.39(1	H, s), 7.16 (1H, d, $J = 7 H z$),
25		7.46 (1 H, d, J = 9 Hz),	
		$[CDCe_3]$	Melting 161-165℃ point
30	D - 40	2.69-3.35 (5H, m), 3	3.46(3H, s), 6.78(1H, s),
		7. 21 (1 H, d, J = 7 Hz),	
35	_		Melting 253-254℃ point
	D - 41	2.88(4H, s), 3.42(3	•
40		7. $50(1H, d, J=7Hz)$,	
	D - 42	[d ₆ - DMSO]	point [1,8-16] C
45		7. 2 2 (1 H, d, J = 9 H·z),	
50		[C D C & 3]	Oily product

Table 2 (Contd.)

5	Compound	No.	lH-NMR δ (p [solvent	ppm) P	hysical property
10	D - 43	3.53(3 H, s), 6.	32 (1 H, s), (i. 64 (1 H, brs),
		7.28(1	l H, s), 7.	44 (1 H, d, J = 3	H z)
15		[C D	C & 3]	Meltin point	g 165-167℃
	D - 44	2.95(6	H, s), 3.	46 (3H, s), 6	. 20 (1 H, s.),
0		6.63(1	H, d , $J = 7 H$	z), 7.13(1H	, d, J = 9 H z),
		7.31(1	H. s)		
5		[C D	C & 3]		Viscous oily product
	D - 45	3.50(3	H, s), 6.2	25 (1H, s), 6	. 95-7.65 (4H, m),
)		8.10(1	H, brs),	8.42(1H, d,	J = 7 H z)
		[C D	C & 3]	Melting point	1 4 8 - 1 5 0 ℃
	D - 46	3.49(3	H. s), 6.2		65-6.79 (9H, m)
		[C D	C & 3]	Melitng point	220-222 ℃ (decomposition
	D - 47	1.29(3)	H, t, J = 7 Hz), 2.42-3.	B1 (5 H, m),
		3.60(31	H, brs),	4.19(2H, q,	= 7 H z) ,
		6. 41 (1 F	i, s), 7.2	5 (1 H, d, J = 1 (Hz), 8.20(1H, brs)
		[CD	C & 3]	Melting point	7 3 - 7 5 °C

50

Table 2 (Contd.)

D - 49 1. 48 (3 H, d, J = 7 Hz), 3. 58 (3 H, s), 4. 51 (2 H, q, J = 7 Hz), 6. 35 (1 H, s), 7. 20 (1 H, d, J = 9 Hz), 7. 47 - 8. 01 (5 H, s) 8. 62 (1 H, br s) [C D C L 3] Melting 175- D - 50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 Hz), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 Hz)	perty
[d ₆ - D M S O] Melting 217- D - 49 1. 48 (3 H, d, J = 7 H z), 3. 58 (3 H, s), 4. 51 (2 H, q, J = 7 H z), 6. 35 (1 H, s), 7. 20 (1 H, d, J = 9 H z), 7. 47-8. 01 (5 H, s) 8. 62 (1 H, br s) [C D C L 3] Melting point 175- D - 50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 H z), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 H z) [C D C L 3] Melting point 149-	(8 H, m),
D - 49 1. 48 (3 H, d, J = 7 H z), 3. 58 (3 H, s), 4. 51 (2 H, q, J = 7 H z), 6. 35 (1 H, s), 7. 20 (1 H, d, J = 9 H z), 7. 47 - 8. 01 (5 H, s) 8. 62 (1 H, br s) [C D C & 3] Melting point 175 - D - 50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 H z), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 H z) [C D C & 3] Melting point 149 -	
4. 51 (2 H, q, J = 7 Hz), 6. 35 (1 H, s), 7. 20 (1 H, d, J = 9 Hz), 7. 47-8. 01 (5 H, s) 8. 62 (1 H, br s) [CDCL_3] Melting point 175- D-50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 Hz), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 Hz) [CDCL_3] Melting point 149-	219℃
7. 20 (1 H, d, J = 9 Hz), 7. 47-8. 01 (5 H, s) 8. 62 (1 H, br s) [CDCl ₃] Melting 175- D-50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 Hz), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 Hz) [CDCl ₃] Melting 149-	
8. 62 (1 H, br s) [C D C L 3] Melting 175- D - 50 2. 34 (3 H, s), 3. 49 (3 H, s), 6. 21 (1 H, s) 7. 16 (1 H, d, J = 8 Hz), 7. 41 (1 H, br s), 8. 11 (1 H, d, J = 7 Hz) [C D C L 3] Melting 149-	
[CDC23] Melting 175- D-50 2.34(3H,s), 3.49(3H,s), 6.21(1H,s 7.16(1H,d,J=8Hz), 7.41(1H,brs), 8.11(1H,d,J=7Hz) [CDC23] Melting 149-	•
D - 50 2. 34 (3H, s), 3. 49 (3H, s), 6. 21 (1H, s) 7. 16 (1H, d, J = 8Hz), 7. 41 (1H, br s), 8. 11 (1H, d, J = 7Hz) [CDC23] Melting point 149-	1 7 7 90
7.16(1H, d, J=8Hz), 7.41(1H, br s), 8.11(1H, d, J=7Hz) [CDC23] Melting point 149-	
8.11(1H, d, J=7Hz) [CDC23] Melting 149-	, ,
[CDC23] Melting 149-	•
	1 \$ 1 °C
)
6.80-7.51 (6H, m), 8.23 (1H, d, J=7Hz)	
[CDC23] Melting 142-	144℃

50

Table 2 (Contd.)

[solvent] D - 52 3. 50 (3 H, s), 5. 10 (2 H, s), 6. 25 (1 H, s), 7. 11-7. 35 (6 H, m), 8. 11 (1 H, d, J=7 Hz) [C D C L 3]	Compound	No. 1	
D - 52 3. 50 (3 H, s), 5. 10 (2 H, s), 6. 25 (1 H, s), 7. 11-7. 35 (6 H, m), 8. 11 (1 H, d, J=7 H r) [CDCL_3]		-M-MMK O (ppm)	Physical property
7. 11-7. 35 (6H, m). 8. 11 (1H, d, J=7Hz) [CDCL_3]		(303.00.0)	
[CDCl ₃] Melting 134-136° D-53 2.31(3H, s), 3.48(3H, s), 5.54(2H, s), 6.20(1H, s), 6.95-7.25(6H, m), 8.08(1H, d, J=7Hz) [CDCl ₃] Melting 142-143° D-54 1.00(9H, s), 3.56(3H, s), 3.86(2H, s), 6.37(1H, s), 7.09(1H, br s), 7.20(1H, d, J=9Hz), 8.22(1H, d, J=7Hz) [CDCl ₃] Melting 150-152° D-55 3.54(3H, s), 4.19(2H, s), 6.34(1H, s), 7.10-7.41(6H, m), 8.07(1H, d, J=7Hz), 8.61(1H, br s) [CDCl ₃] Melting 192-193°	D - 52	3.50(3H,s), 5.10(2	2H, s), 6.25(1H, s),
D - 53 2. 31 (3H, s), 3. 48 (3H, s), 5. 54 (2H, s), 6. 20 (1H, s), 6. 95-7. 25 (6H, m), 8. 08 (1H, d, J=7Hz) [CDCL3] Melting 142-143 (2H, s), 6. 37 (1H, s), 3. 56 (3H, s), 3. 86 (2H, s), 6. 37 (1H, d, J=9Hz), 8. 22 (1H, d, J=7Hz) [CDCL3] Melting 150-152 (2H, d), 7. 20 (1H, d, J=9Hz), 8. 22 (1H, d, J=7Hz) [CDCL3] Melting 150-152 (2H, d), 7. 10-7. 41 (6H, m), 8. 07 (1H, d, J=7Hz), 8. 61 (1H, br s) [CDCL2] Melting 192-193 (2H, d), 8. 61 (1H, br s)		7. 11-7. 35 (6 H, m), 8	3. 11 (1H, d, J=7Hz)
6. 20 (1H, s), 6. 95-7. 25 (6H, m), 8. 08 (1H, d, J=7Hz) [CDC23] Melting 142-143 % D-54 1. 00 (9H, s), 3. 56 (3H, s), 3. 86 (2H, s), 6. 37 (1H, s), 7. 09 (1H, br s), 7. 20 (1H, d, J=9Hz), 8. 22 (1H, d, J=7Hz) [CDC23] Melting 150-152 % D-55 3. 54 (3H, s), 4. 19 (2H, s), 6. 34 (1H, s), 7. 10-7. 41 (6H, m), 8. 07 (1H, d, J=7Hz), 8. 61 (1H, br s) [CDC23] Melting 192-193 %		$[CDC\ell_3]$	
8. 08 (1H, d, J=7Hz) [CDC23] Melting 142-143°C D-54 1.00 (9H, s), 3.56 (3H, s), 3.86 (2H, s), 6.37 (1H, s), 7.09 (1H, br s), 7.20 (1H, d, J=9Hz), 8.22 (1H, d, J=7Hz) [CDC23] Melting 150-152°C D-55 3.54 (3H, s), 4.19 (2H, s), 6.34 (1H, s), 7.10-7.41 (6H, m), 8.07 (1H, d, J=7Hz). 8.61 (1H, br s) [CDC23] Melting 192-193°C	D - 53	2.31(3H,s), 3.48(3	H, s), 5.54(2H, s).
[CDCl ₃] Melting 142-143°C D-54 1.00(9H, s), 3.56(3H, s), 3.86(2H, s), 6.37(1H, s), 7.09(1H, br s), 7.20(1H, d, J=9Hz), 8.22(1H, d, J=7Hz) [CDCl ₃] Melting 150-152°C D-55 3.54(3H, s), 4.19(2H, s), 6.34(1H, s), 7.10-7.41(6H, m), 8.07(1H, d, J=7Hz), 8.61(1H, br s) [CDCl ₂] Melting 192-193°C		6.20(1H, s), 6.95-7	. 25 (6 H, m),
D - 54 1.00(9H, s), 3.56(3H, s), 3.86(2H, s), 6.37(1H, s), 7.09(1H, br s), 7.20(1H, d, J=9Hz), 8.22(1H, d, J=7Hz) [CDC23] Melting 150-152°C D - 55 3.54(3H, s), 4.19(2H, s), 6.34(1H, s), 7.10-7.41(6H, m), 8.07(1H, d, J=7Hz), 8.61(1H, br s) [CDC23] Melting 192-193°C		8. 08 (1 H, d, J = 7 H z)	
6. 37 (1H, s), 7. 09 (1H, br s), 7. 20 (1H, d, J=9Hz), 8. 22 (1H, d, J=7Hz) [CDC23] Melting 150-152 C D-55 3. 54 (3H, s), 4. 19 (2H, s), 6. 34 (1H, s), 7. 10-7. 41 (6H, m), 8. 07 (1H, d, J=7Hz), 8. 61 (1H, br s) [CDC23] Melting 192-193 C		$[CDCe_3]$	" n / = i / i / i
7. 20 (1H, d, J=9Hz), 8. 22 (1H, d, J=7Hz) [CDCl3] Melting 150-152°C D-55 3. 54 (3H, s), 4. 19 (2H, s), 6. 34 (1H, s), 7. 10-7. 41 (6H, m), 8. 07 (1H, d, J=7Hz), 8. 61 (1H, br s) [CDCl3] Melting 192-193°C	D - 54	1.00(9H,-s), 3.56(3	H. s), 3.86(2H, s),
[CDCl ₃] Melting 150-152°C D-55 3.54(3H,s), 4.19(2H,s), 6.34(1H,s), 7.10-7.41(6H,m), 8.07(1H,d,J=7Hr), 8.61(1H,brs) [CDCl ₃] Melting 192-193°C		6.37(1H, s), 7.09(1	H, brs),
D - 55 3. 54 (3 H, s), 4. 19 (2 H, s), 6. 34 (1 H, s), 7. 10-7. 41 (6 H, m), 8. 07 (1 H, d, J=7 Hz), 8. 61 (1 H, br s) [CDCL2] Melting 192-1937		7.20(1H, d, $J = 9 H z$),	8. 22 (1 H, d, J = 7 H z)
7.10-7.41(6H, m), 8.07(1H, d, J=7Hz), 8.61(1H, br s) [CDCL2] Melting 192-1937		$[CDC\ell_3]$	Melting 150-152°C point
8. 61 (1H, br s) [C D C & 2] Melting 192-1937	D - 55	3.54(3H, s), 4.19(2H	H, s), 6.34 (1H, s),
[CDCl,] Melting 199-1939		7.10-7.41(6H, m), 8.	07 (1 H, d, J = 7 Hz),
[CDCl ,] Melting 192-193°C		8.61(1H, br s)	
point		[CDC ₂]	Melting 192-193℃ point

Table 2 (Contd.)

. 5	Compound No	$^{1}_{H-NMR} \delta (ppm)$ [solvent]	Physical property
10	D - 56	3.59(3H, s), 6.36(1H,	s), 7.35-7.90(8H.m)
		[$d_{\delta} - DMSO$]	Melting 189-191℃ point
15	D - 57	3.48(3H, s), 6.50(1H,	s), 7.38-7.90(8H.m)
		[d ₆ - DMSO]	Melting 211-223℃ point
20	D - 58	3.56(3H, s), 3.80(3H,	s), 6.36 (1H, s),
		6.75-7.66 (3 H, m), 8.2	0 (1 H, brs)
25		$[CDC\ell_3]$	Melting 130-132°C point
	D - 59	3.48(3H, s), 3.74(3H,	s), 6.44(1H, s),
30		7.11-7.96 (3H, m)	•
		[$d_{f} - DMSO$]	Melting 254-256℃ point
35	D - 60	3.53(3H,s), 3.79(3H,	
		7. 38-7. 68 (2H, m), 8. 1	
40	D 24	[d ₆ - D M S O]	
	D - 61	1. 30 (3 H, t, J = 7 Hz), 3.	
45		4. 21 (2H, q, J=(Hz), 6. 7. 44 (1H, d, J=8Hz), 8.	32 (1 H, s), 7.09 (1 H, br s), 20 (1 H, d, l = 7 H, l)
50			point [47-149°C

Table 2 (Contd.)

[CDC2] - DMSO-d 6 Melting 205-207°C D-63 3.51(3H,s), 3.79(3H,s), 5.10(2H,s), 6.31(1H,s), 6.78-7.45(6H,m),	5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]) Physical property
[CDCL3 - DMSO - d 6] Melting 205-207°C D-63 3.51(3H,s), 3.79(3H,s), 5.10(2H,s), 6.31(1H,s), 6.78-7.45(6H,m), 8.22(1H,d,J=7Hz) [CDCL3] Melting 147-148°C D-64 2.38(3H,s), 3.57(3H,s), 5.19(2H,s), 6.33(1H,s), 7.11-7.40(6H,m), 8.26(1H,d,J=8Hz) [CDCL3] Melting 152-154°C D-65 Melting 119-121°C D-66 3.52(3H,s), 3.73(3H,s), 6.27(1H,s), 7.05(1H,brs), 7.36(1H,d,J=8Hz), 8.08(1H,d,J=7Hz) [CDCL2] Melting 114-116°C				
D - 63 3. 51 (3H, s), 3. 79 (3H, s), 5. 10 (2H, s), 6. 31 (1H, s), 6. 78-7. 45 (6H, m), 8. 22 (1H, d, J=7Hz) [C D C L 3] Melting 147-148 °C D - 64 2. 38 (3H, s), 3. 57 (3H, s), 5. 19 (2H, s), 6. 33 (1H, s), 7. 11-7. 40 (6H, m), 8. 26 (1H, d, J=8Hz) [C D C L 3] Melting 152-154 °C Melting 119-121 °C D - 66 3. 52 (3H, s), 3. 73 (3H, s), 6. 27 (1H, s), 7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [C D C L 2] Melting 114-116 °C	o	D - 62	3.49(3H,s), 6.32	(1 H, s), 7.19-8.00(7 H, m)
6. 31 (1H, s), 6. 78-7. 45 (6H, m), 8. 22 (1H, d, J=7Hz) [CDCL3] Melting 147-148°C D-64 2. 38 (3H, s), 3. 57 (3H, s), 5. 19 (2H, s), 6. 33 (1H, s), 7. 11-7. 40 (6H, m), 8. 26 (1H, d, J=8Hz) [CDCL3] Melting 152-154°C Melting 119-121°C D-66 3. 52 (3H, s), 3. 73 (3H, s), 6. 27 (1H, s), 7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [CDCL2] Melting 114-116°C			[cdc2 3 - DMso	- d 6] Melting 205-207℃
8. 22 (1 H, d, J=7Hz) [CDCL_3] Melting 147-148°C D-64 2. 38 (3 H, s), 3. 57 (3 H, s), 5. 19 (2 H, s), 6. 33 (1 H, s), 7. 11-7. 40 (6 H, m), 8. 26 (1 H, d, J=8Hz) [CDCL_3] Melting 152-154°C D-65 Melting 119-121°C D-66 3. 52 (3 H, s), 3. 73 (3 H, s), 6. 27 (1 H, s), 7. 05 (1 H, br s), 7. 36 (1 H, d, J=8Hz), 8. 08 (1 H, d, J=7Hz) [CDCL_3] Melting 114-116°C	i	D - 63	3.51 (3 H, s), 3.79	(3H, s), 5.10(2H, s),
[CDC23] Melting 147-148°C D-64 2.38(3H,s), 3.57(3H,s), 5.19(2H,s), 6.33(1H,s), 7.11-7.40(6H,m), 8.26(1H,d,J=8Hz) [CDC23] Melting 152-154°C Melting 119-121°C D-66 3.52(3H,s), 3.73(3H,s), 6.27(1H,s), 7.05(1H,brs), 7.36(1H,d,J=8Hz), 8.08(1H,d,J=7Hz) [CDC23] Melting 114-116°C			6.31 (1 H, s), 6.78	-7.45 (6 H, m),
D-64 2. 38 (3H, s), 3. 57 (3H, s), 5. 19 (2H, s), 6. 33 (1H, s), 7. 11-7. 40 (6H, m). 8. 26 (1H, d, J=8Hz) [CDCL3] Melting 152-154°C Melting 119-121°C D-66 3. 52 (3H, s), 3. 73 (3H, s), 6. 27 (1H, s), 7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [CDCL2] Melting 114-116°C	ı		8.22 (1 H, d, J = 7 H z)	
6. 33 (1H, s), 7. 11-7. 40 (6H, m), 8. 26 (1H, d, J=8Hz) [CDCL3] Melting 152-154°C Point 119-121°C D-66 3. 52 (3H, s), 3. 73 (3H, s), 6. 27 (1H, s), 7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [CDCL3] Melting 114-116°C			[CDC&3]	
8. 26 (1H, d, J = 8Hz) [CDCl3] Melting 152-154°C D-65 Melting 119-121°C D-66 3. 52 (3H, s), 3. 73 (3H, s), 6. 27 (1H, s), 7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [CDCl2] Melting 114-116°C		D - 64	2.38(3H, s), 3.57	(3H, s), 5.19(2H, s),
[CDCl ₃] Melting 152-154°C D-65 Melting 119-121°C D-66 3.52(3H,s), 3.73(3H,s), 6.27(1H,s), 7.05(1H,brs), 7.36(1H,d,J=8Hz), 8.08(1H,d,J=7Hz) [CDCl ₂] Melting 114-116°C			6.33(1H, s), 7.11	-7.40(6H, m),
D - 65 Melting 119-121°C D - 66 3. 52 (3 H. s), 3. 73 (3 H. s), 6. 27 (1 H. s), 7. 05 (1 H. br s), 7. 36 (1 H. d. J = 8 Hz), 8. 08 (1 H. d. J = 7 Hz) [CDCL2] Melting 114-116°C			8.26 (1 H, d, J = 8 H z)	
point			[CDC ₂]	point '''''
7. 05 (1H, br s), 7. 36 (1H, d, J=8Hz), 8. 08 (1H, d, J=7Hz) [CDC2] Melting 114-116°C		D - 65		
8. 08 (1H, d, J=7Hz) [CDC2] Melting 14-116°C		D - 66	3.52(3H,s), 3.73	(3H, s), 6.27(1H, s),
[CDCl2] Melting 4-1 6°C			7.05 (1H, brs), 7.	36 (1 H, d, J = 8 H z),
[CDCl 3] Melting 114-116°C point			8.08(1H, d, J=7Hz)	
			[CDCe ₃]	

Table 2 (Contd.)

	Compound N	0. ¹ H-NMR δ (ppm) [solvent]	Physical property
_			
	D - 67	0.95 (3 H, t, J = 7 Hz), 1	. 28-1.98 (2H, m),
		3.50 (3 H, brs), 4.10	(2 H, t, J = 7 Hz)
		6.31(1H,s), 7.11(1H	l, brs),
		7.43(1H, d, J=8Hz), 8	1.19 (1 H, d, J = 7 H z)
			elting 154-157℃ oint
	D - 68	3.53(3H, s), 3.79(3H	(, s), 6.36 (1 H, s),
		6.75-8.20(4H, m),	
		[CDCe ₃] Mp	elting 125-126℃
	D - 69	3.54 (3 H, s), 5.11 (2 F	i, s), 6.31 (1H, s),
	·	7.11-7.60(7H, m), 8.	20 (1 H, d, J = 7 Hz)
			Melting 110-112°C
	D - 70	1.23 (3 H, t, J = 7 H z), 2	2.63(2H, q, J=7Hz),
		3.54(3H,s), 5.17(2H	I, s), 6.36 (1 H, s),
		7.20-7.38(6H.m), 8.	29 (1 H, d, J = 7 Hz),
			Melting 131-133℃ point
			•

Table 2 (Contd.)

5	Compound	NO.	1 H-NMR δ (ppm) [solvent]	Physical property
	D - 71	1.3	2 (9 H. s), 3.53 (3	H, s), 5.16(2H, s),
0		6.35	5 (1 H, s), 7.17-7	. 46 (6H, m),
5		8.27	'(1 H, d, J = 7 H z)	
,		[C	D C 2 3 3	Semi-solid
•	D - 72	3.52	(3 H. s), 5.23(2	H, s), 6.34 (1H, s),
		7.30	-7.70(6H, m), 8	. 22 (1 H, d, J = 7 Hz)
		[C	D C & 3]	Melting . 103-104℃ point
	D - 73	3.54	(3 H, s), 5.27(2	H, s), 6.36 (1H, s),
		7.20	-7.70·(4H, m), 8.	10-8.40 (3H, m)
		[C	D C & 3]	Glass-like
	D - 14			f, s), 6.35 (1H, s),
			•	27 (1H, d, J = 7Hz).
			(1H, d, J=5Hz)	•
	D - 75		D C & 3]	Glass-like .s), 6.34(1H,s),
				26 (1H, d, J = 7Hz),
			D C & 3]	Melting 167-169℃

Table 2 (Contd.)

5	Compound N	11 IVIII V (FFVV)	Physical property
		[solvent]	
10	D - 76	1.61(3H, d, J=6Hz), 3.	56 (3H, s).
		5.89 (1 H, q, J = 6 H z), 6	. 38 (1 H, s).
15		7.12-7.55 (7H, m), 8.	2 9 (1 H, d, J = 7 H z)
•			lting 163-164°C
20	D - 77	2.99(2H, t, J=7Hz), 3	. 54 (3H, s),
		4.39 (2 H, t, J = 7 H z), 6	. 35 (1 H, s),
25		7.05-7.40(7H, m), 8.	20 (1 H, d, J = 8 H ⁻ z)
			lting 87-88°C
30	D - 78	3.56(3H,s), 4.60(2H	
		6.38(1H,s), 7.36(1H	, d, J = 9 H z),
35		7.38(1H, brs), 8.19	(1 H, d, J = 7 H z)
		[CDCl ₃] Me	elting 164-165°C
40	D - 79	1.76-2.26(9H, m), 3.	55(3H, s),
		4.15 (2 H, d, J = 6 H z), 6	. 35 (1H, s), 7.15 (1H, br s)
45		7.39 (1 H, d, J = 9 H z). 8	. 26 (1H, d, J=7Hz)
		[CDC23] Mel	lting 116-118°C
50			

Table 2 (Contd.)

5	Compound	No. 1 _H -NMR δ (ppm) [solvent]	Physical property
10	D - 80	1.74(3H, d, J = 5Hz), 3.5	5 (3 H, s),
		4.61(2H, m), 5.59-5.88	(2H, m), 6.39(1H, s),
15		7.18(1H, brs), 7.34(1	H, d, J = 9 H z),
		8. 23 (1 H, d, J = 7 H z),	
20 ·		[CDC2 ₃]	Glass-like
	D - 81	3.52(3H,s), 4.34(2H,d,	J = 5 H z), 5.72 (1 H, br s)
5		6.30(1H, s), 6.99(1H, br	s), 7.08(1H, d, J=9Hz)
		7.20(5H, s), 8.33(1H, d,	J = 7 H z)
)		[CDC2 3] Mel	ting 165-167°C
	D - 82	3.60(3H,s), 4.69(2H,d,	J = 5 H z) ,
		5. 18-6. 13 (3H, m), 6. 41 (1 H, s), 7, 23 (1 H, br s),
		7.36(1 H, d, J = 9 Hz), 8.28	(1 H, d, J = 7 H z)
		poi	
	D - 83	3.57(3H, s), 4.87(2H, d,	
		6. 32-6. 72 (3 H, m), 7. 19-	7.49(7H, m),
		8. 27 (1 H, d, J = 7 Hz)	
		[CDC2 3] Melt	- [[]-[]-[]

Table 2 (Contd.)

Compound N	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
D - 84	3.56(3H,s), 5.25(2	H, s), 6.39(1H, s),
	7.15-8.71 (7H. m)	
	[C D C 2 3]	Melting 170-171°C
D - 85	3.59(3H,s), 5.22(2	H, s), 6.38(1H, s),
	7.12-7.51(4H.m), 8.	21 (1 H, d, J = 7 Hz),
	8.12 (2 H, d, J = 6 H z)	•
	[C D C & 3]	Melting 208-209°C
D - 86	3.55(3H, s), 5.21(2	H, s), 6.40(1H, s),
	7.08-7.49(5H, m), 8	. 30 (1 H. br s)
	[CDC2 ₃]	Melting 155-156°C
D - 87	3.49(3H,s), 5.36(2	H. s), 6.32(1H, s),
	7.21-8.03(9H, m), 8	. 31 (1 H, d, J = 7 Hz)
	[CDC ₂]	Melting 130-132°C point
D - 88	2.34(3H,s), 3.50(3	H, s), 6.29(1H, s),
	6.92-7.55 (6H, m). 8	. 24 (1 H. d. J = 7 H z)
	[CDC _e 3]	Melting 145-147%

Table 2 (Contd.)

5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
		(solvene)	
10	D - 89	3.06(3H, s), 3.53(3 H, s), 4.59 (2 H, s),
		6.34 (1 H, s), 6.90-	7.40(7H, m),
15		8.43(1H, d, J=8Hz)	
		$[CDC\ell_3]$	Melting 143-145°C point
20	D - 90	1.45-1.80(6H, m),	3.28-3.64(7H, m),
		6.28(1H, s), 7.00(1	1 H, br s), 7.29 (1 H, d, J = 9 Hz)
25		8.39 (1 H, d, J = 7 H z)	
	·	$[CDCe_3]$	Melting 99-100 ℃ point
30	D - 91	3.50(3H, s), 4.00(3	H, s), 6.35 (1H, s),
		7.21 (1 H, d, J = 8 H z),	7.85 (1 H, d, J = 7 H z)
35		8.19 (1 H, brs)	,
40		[CDC2 ₃]	Melting 123-125℃ point
40	D - 92	3.57 (3H, s), 4.39 (2	H, s), 6.39(1H, s),
4 5		6.78(1H, brs), 7.2	8 (1 H, d, j = 9 H z)
45		7.30 (5 H, s), 7.68 (1	H, d, J = 7 Hz
		[CDC ₂ 3]	Melting point 160-162℃
50			

Table 2 (Contd.)

5	Compound	No. $1_{H-NMR} \delta$ (ppm) [solvent]	Physical property
10	D - 93	2.59(3H, s), 3.50(3	H. s), 6.22(1H, s),
		7.20 (1 H, d, J = 8 H z),	7. 91 (1 H, d, J = 7 H z),
15		8.07(1H, brs)	
		[CDC _e 3]	Melting 123-125℃ point
20	D - 94	3.53(3H,s), 5.54(2	H.s), 6.34(1H,s),
		7.32(1H, d, J=9Hz).	7.36 (5 H. s),
25		7.98 (1 H, d, J = 9 H z),	8.38(1H, br s)
		$[CDC\ell_3]$	Melting 71-73℃ point
30	D - 95	3.55(3H, s), 3.72(3	H, s), 4.43 (2H, s),
		6.35(1H,s), 7.47(1	H d J = 9 H z
35		7.71 (1 H, d, J = 9 H z),	8.29 (1H. s)
		$[CDCe_3]$	Melting 152-154℃ point
40	D - 96	3.46(3H,s), 3.62(2	H, d, $J = 5 H z$), 3.74 (3 H, s),
		4.91 (1 H, t, J = 5 Hz),	6.26(1H, s),
45		6.35 (1 H, d, J = 7 H z),	7.22(1H, d, J=9Hz)
		$[CDC_{a}]$	Glass-like

Table 2 (Contd.)

5	Compound	No. 1 H-NMR δ (ppm) [solvent]	Physical property
10	D - 97	1.47 (3 H, d, J = 7 Hz),	3.72(3H, s), 3.79(3H, s),
		4.06 (1 H, dq, J = 7, 7 Hz). 4.73 (1H, br s),
15		6.34(1H, s), 6.45(1	H. d. J = 7 H z)
		7. 26 (1 H, d, J = 9 H z)	
20		$[CDCl_3]$	Viscous oily product
	D - 98	1.25 (3 H, t, J = 7 H z),	1.45 (3 H, d, J = 7 Hz),
25		3. 48 (3H, s), 4. 15 (1)	
22		4. 17 (2 H, q, J = 7 Hz),	
30		6. 31 (1 H, s), 6. 45 (1 H	H, d, J = 7 H z),
35		7. 23 (1 H, d, J = 9 H z)	Viscous eilm made
	D - 99	[CDC _e 3]	Viscous oily product
10			
15			
0			

Table 2 (Contd.)

5	Compound No.	<pre>1_H-NMR δ (ppm) [solvent]</pre>	Physical	property
10	D-100			
15	D-101			
20				
25	D-102			
30	D-103	·		
35				
40				
45			· · · · · · · · · · · · · · · · · · ·	

55

Table 2 (Contd.)

5	Compound No.	¹ H-NMR δ	(ppm)	[solvent]	Physical	property
	D-104					
10						
					•	
15						
•		1				

The compounds of the present invention synthesized in accordance with the above scheme or Examples including the compounds synthesized in the above Examples are shown below, but the present invention is not limited by these.

5 CF₃ N 0 C l F

5 CF₃ H O F C

CF₃
$$\stackrel{\text{H}}{\downarrow}$$
 $\stackrel{\text{O}}{\downarrow}$ $\stackrel{\text{R}^6}{\downarrow}$

CF₃ N O R⁶

CF₃
$$\stackrel{H}{\underset{0}{\bigvee}}$$
 $\stackrel{O}{\underset{F}{\bigvee}}$ $\stackrel{R^5}{\underset{}{\bigvee}}$

CF₃
$$\stackrel{H}{\downarrow}$$
 $\stackrel{O}{\downarrow}$ $\stackrel{R^5}{\downarrow}$ $\stackrel{CN}{\downarrow}$

20

5

10

15

in which R₆ represent the following:

(Abreviations indicate respectively the meanings as shown below.

Me: merhyl group, Et: ethyl group, Ph: phenyl group, n-Bu: normal butyl group, s-Bu: secondary butyl group, i-Bu: iso butyl group, t-Bu: tertiary butyl group, n-Pr: normal propyl group, i-Pr: iso propyl group, n-Am: normal amyl group, t-Am: tertialy amyl group, n-Hex: normal hexyl group, c-Pr: cyclopropyl group, c-Bu: cyclobutyl group, c-pen:

cyclopentyl group, c-Hex: cyclohexyl group) $(CF_2)_7\,CF_3\ \ \text{NHSO}_2\,CH_2\,Si(Me)_3\ \ \text{NHSO}_2\,CH_2\,SO_2\,Me\ \ \text{NHSO}_2\,CH_2\,Ph\ \ \text{NHSO}_2\,CH_2\,Ph\ \ \text{NHSO}_2\,CH_2-(2-Rel_2)_2\,Ph\ \ \text{NHSO}_2\,Ph\ \ \ \text{NHSO}_2\,Ph\ \ \ \text{NHSO}_2\,Ph\ \ \text{NHSO}_2\,Ph\ \ \text{NHSO}_2\,Ph\ \ \text{NHSO}$ $(2\text{-I-Ph}) \ \ \mathsf{NHSO_2CH_2-(3\text{-I-Ph})} \ \ \mathsf{NHSO_2CH_2-(4\text{-I-Ph})} \ \ \mathsf{NHSO_2CH_2-(2\text{-Me-Ph})} \ \ \mathsf{NHSO_2CH_2-(3\text{-Me-Ph})} \ \ \mathsf{NHSO_2CH_2-($ $\mathsf{NHSO_2CH_2\text{-}(2\text{-}NO_2\text{-}Ph)}\ \ \mathsf{NHSO_2CH_2\text{-}(3\text{-}NO_2\text{-}Ph)}\ \ \mathsf{NHSO_2CH_2\text{-}(4\text{-}NO_2\text{-}Ph)}\ \ \mathsf{NHSO_2CH_2\text{-}(2\text{-}MeOCO\text{-}Ph)}\ \ \mathsf{NHSO_2CH_2\text{-}(2\text$ $\mathsf{NHSO_2\,NHCO_2\,Me} \quad , \quad \mathsf{NHSO_2\,NHCO_2\,Et} \quad , \quad \mathsf{NHSO_2\,NHCO_2-n-Pr} \quad , \quad \mathsf{NHSO_2\,NHCO_2-i-Pr} \quad , \quad \mathsf{NHSO_2\,OMe} \quad , \quad \mathsf{NHSO_2\,NHCO_2-i-Pr} \quad , \quad \mathsf{NHSO_2\,NHC$ $\mathsf{NHSO_2}\text{-}(2\text{-Br-Ph}) \; \; \mathsf{NHSO_2}\text{-}(3\text{-Br-Ph}) \; \; \mathsf{NHSO_2}\text{-}(4\text{-Br-Ph}) \; \; \mathsf{NHSO_2}\text{-}(2\text{-I-Ph}) \; \; \mathsf{NHSO_2}\text{-}(3\text{-I-Ph}) \; \; \mathsf{NHSO_2}\text{-}(4\text{-I-Ph}) \; \; \mathsf{NHSO_2}\text{-}(3\text{-I-Ph}) \; \; \mathsf{NHSO_2}\text{$ $\label{eq:hex-Ph} \text{Hex-Ph)} \quad \text{NHSO}_2\text{-(2-NO}_2\text{-Ph)} \quad \text{NHSO}_2\text{-(4-NO}_2\text{-Ph)} \quad \text{NHSO}_2\text{-(2-MeOCO-Ph)} \quad \text{NHSO}_2\text{-(2-MeOCO \mathsf{NHSO_2}\text{-}(3\text{-}\mathsf{MeCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(3\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(2,4\text{-}\mathsf{di}\text{-}\mathsf{NO_2}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}\mathsf{HOCO}\text{-}\mathsf{Ph})\;\;\mathsf{NHSO_2}\text{-}(4\text{-}$ $C1-3-NO_2-Ph)$ 、 $NHSO_2-(2-Me-5-NO_2-Ph)$ 、 $NHSO_2-(4-C1-3-HOCO-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ 、 $NHSO_2-(2-MeCONH-Ph)$ HSO_2 -(3-MeCONH-Ph) 、 $NHSO_2$ -(4-MeCONH-Ph) 、 $NHSO_2$ -(2-NO₂-4-CF₃-Ph) 、 $NHSO_2$ -(3,5-di-CF₃-Ph) 、 NHSO₂-(4-(2,2-dichlorocyclopropyl)-Ph) NHSO₂-(3-NO₂-4-t-Bu-Ph) NHSO₂-(4-(1-bromoethyl)-Ph)

 $NHSO_2 - (4-(2,2-\text{dichlorocyclopropy})-\text{Ph}) \qquad NHSO_2 - (3-NO_2 - 4-t-\text{Bu-Ph}) \qquad NHSO_2 - (4-(1-\text{bromoethy})-\text{Ph}) \qquad NHSO_2 - (2,5-\text{di-MeO-Ph}) \qquad NHSO_2 - (4-(1-\text{bromoethy})-\text{Ph}) \qquad NHSO_2 - (2,5-\text{di-MeO-Ph}) \qquad NHSO_2 - (4-C1-3-\text{CF}_3-\text{Ph}) \qquad NHSO_2 - (2,4-\text{di-MeO-Ph}) \qquad NHSO_2 - (4-C1-3-\text{CF}_3-\text{Ph}) \qquad NHSO_2 - (2,4-\text{di-NeO-Ph}) \qquad NHSO_2 - (4-C1-2,5-\text{di-Me-Ph}) \qquad NHSO_2 - (2-C1-6-\text{Me-Ph}) \qquad NHSO_2 - (2-C1-6-\text{Me-Ph}) \qquad NHSO_2 - (2-C1-6-\text{Me-Ph}) \qquad NHSO_2 - (2-C1-4-\text{MeO-Ph}) \qquad NHSO_2 - (2-C1-4-\text{CF}_3-\text{Ph}) \qquad NHSO_2 - (2-C1-4-\text{CF}_3-\text{Ph}) \qquad NHSO_2 - (3-\text{CN-Ph}) \qquad NHSO_2 - (4-\text{CN-Ph}) \qquad NHSO_2 - (5-\text{F-}2-\text{Me-Ph}) \qquad NHSO_2 - (5-C1-2-\text{MeO-Ph}) \qquad NHSO_2 - (2,4-\text{di-i-Pr-Ph}) \qquad NHSO_2 - (3,4-\text{di-MeO-Ph}) \qquad NHSO_2 - (3,4-\text{d$

Ph) NHSO₂-(3,5-di-MeO-Ph) NHSO₂-(2,5-di-MeO-Ph) NHSO₂-(2,6-di-MeO-Ph) NHSO₂-(2,3-di-MeO-Ph) Ph) \ NHSO2-(2,4-di-C1-Ph) \ NHSO2-(3,5-di-C1-Ph) \ NHSO2-(2,5-di-C1-Ph) \ NHSO2-(2,5-di-C1 $NHSO_2$ -(2,6-di-C1-Ph) $NHSO_2$ -(2,3-di-C1-Ph) $NHSO_2$ -(2,4,6-tri-C1-Ph) $NHSO_2$ -(2,4-di-F-Ph) $NHSO_2$ -(2,4-di-F-Ph) (3,4-di-F-Ph) 、NHSO₂-(3,5-di-F-Ph) 、NHSO₂-(2,5-di-F-Ph) 、NHSO₂-(2,6-di-F-Ph) 、NHSO₂-(2,5-di-Br-Ph) 、 NHSO₂-(3,4-di-Br-Ph) 、NHSO₂-(2-Ct-4-F-Ph) 、NHSO₂-(3-Ct-4-F-Ph) 、NHSO₂-(pentafluoro-Ph) 、NHSO₂-(pentamethyl-Ph) 、NHSO₂-(2,4,6-tri-Me-Ph) 、NHSO₂-(2,4,6-tri-i-Pr-Ph) 、NHSO₂-(2,3,5,6-tetra-Me-Ph) 、 $\mathsf{NHSO}_2\text{-}(2,4\text{-}di\text{-}Me\text{-}Ph)\ \ \mathsf{NHSO}_2\text{-}(3,5\text{-}di\text{-}Me\text{-}Ph)\ \ \mathsf{NHSO}_2\text{-}(2,5\text{-}di\text{-}Me\text{-}Ph)\ \ \mathsf{NH$ (2,6-di-Me-Ph) $\ NHSO_2-(2,3-di-Me-Ph)$ $\ NHSO_2-Q1$ $\ NHSO_2-Q2$ $\ NHSO_2-Q3$ $\ NHSO_2-Q4$ $\ NHSO_2-Q5$ $\ NHSO_2-Q5$ $\ NHSO_2-Q6$ $\ NHSO_2-Q6$ 10 Q13 NHSO₂-(3-CF₃-Q1) NHSO₂-(3-CON(Me)₂-Q1) NHSO₂-(2-CL-Q2) NHSO₂-(2-CL-Q3) NHSO₂-(4,5-di-Br-Q4) \ NHSO₂-(2,5-di-C1-Q4) \ NHSO₂-(4,5-di-C1-Q4) \ NHSO₂-(5-C1-Q4) \ NHSO₂-(5-Br-4-C1-Q4) Q4) \ NHSO₂-(4-Br-5-Ct-Q4) \ NHSO₂-(3-Br-5-Ct-Q4) \ NHSO₂-(7-Ct-Q5) \ NHSO₂-(7-Me-Q5) \ NHSO₂-(3,5-di-Me-Q8) 、NHSO₂-(3-Me-5-Ct-Q8) 、NHSO₂-(3-Me-5-MeOCO-Q8) 、NHSO₂-(4-MeOCO-Q9) 、NHSO₂-(4-MeOCO-Q10) 、NHSO₂-(2,4-di-Me-Q11) 、NHSO₂-(3,5-di-Me-Q12) 、NHSO₂-COMe 、N(COMe)Me 、N- CH_2Ph 、NHCO-i-Pr 、NHCO-i-Pr 、NHCO-i-Bu 、NHCO-s-Bu 、NHCO-i-Bu 、NHCO-i $NHCOC(Me) = CH_2$ $NHCOCH_2CH = CH_2$ $NHCOCH_4CH = CH_2$ $NHCOC(Me)_2CH = CH_2$ NHCOCH2C=CH \ NHCOCH(Me)C=CH \ NHCOC(Me)2C=CH \ NHCO-(cyclopropyl) \ NHCOCH(Me)-n-Bu \ NHCOPh 、NHCOCH2Ph 、NHCOCH2C1 、NHCOCH2Br 、NHCOCHC12 、NHCOCC13 、NHCOCF3 、 NHCOCH2CH(Me)CH2CO2Me \ NHCOCH2CH(CF3)CH2CO2H \ NHCOCH2CH(CF3)CH2CO2Me \ N(SO2Me)- $COC(Me) = CH_2$, $N(SO_2Me)COCH_2CH = CH_2$, $N(SO_2Me)COCH(Me) = CH_2$, $N(SO_2Me)COC(Me)_2CH = CH_2$ $N(SO_2Me)COCH_2C=CH$ $N(SO_2Me)COCH(Me)C=CH$ $N(SO_2Me)COC(Me)_2C=CH$ $N(SO_2Me)CO-CH(Me)_2C=CH$ $N(SO_2Me)CO-CH(Me)_2C=CH$ (cyclopropyl) \ N(SO₂Me)COCH(Me)-n-Bu \ N(SO₂Me)COPh \ N(SO₂Me)COCH₂Ph \ N(SO₂Me)COCH₂CL \ $N(SO_2Me)COCH_2Br$, $N(SO_2Me)COCHCL_2$, $N(SO_2Me)COCCL_3$, $N(SO_2Me)COCF_3$, $N(SO_2Me)COCF_4$ $\mathsf{COCH_2COMe} \quad \mathsf{N(SO_2Me)} \quad \mathsf{COCH_2CH_2CH_2CO_2} \quad \mathsf{H} \quad \mathsf{N(SO_2Me)} \quad \mathsf{COCH_2CH_2CH_2CO_2Me} \quad \mathsf{N(SO_2Me)}$ COCH2CH(Me)CH2CO2H 、N(SO2Me) COCH2CH(Me)CH2CO2Me 、N(SO2Me) COCH2CH(CF3)CH2CO2H 、 $N(SO_2Me)$ $COCH_2CH(CF_3)CH_2CO_2Me$ $N(SO_2Et)COC(Me) = CH_2$ $N(SO_2Et)COCH_2$ $CH = CH_2$ $N(SO_2Et)-COCH_2$ CH_2 $\mathsf{COCH}(\mathsf{Me})\mathsf{CH} = \mathsf{CH}_2 \quad \mathsf{N}(\mathsf{SO}_2\mathsf{Et})\mathsf{COC}(\mathsf{Me})_2\mathsf{CH} = \mathsf{CH}_2 \quad \mathsf{N}(\mathsf{SO}_2\mathsf{Et})\mathsf{COCH}_2\mathsf{C} = \mathsf{CH} \quad \mathsf{N}(\mathsf{SO}_2\mathsf{Et})\mathsf{COCH}(\mathsf{Me}) = \mathsf{CH} \quad \mathsf{N}(\mathsf{SO}_2\mathsf{Et}) = \mathsf{CH} \quad \mathsf{N}(\mathsf{S$ $N(SO_2Et)COC(Me)_2C=CH$ $N(SO_2Et)CO-(cyclopropyl)$ $N(SO_2Et)$ $COCH(Me)CH_2CH_2CH_2Me$ $N(SO_2Et)-(cyclopropyl)$ $N(SO_2Et)$ $COCCL_3$ 、 $N(SO_2Et)COCF_3$ 、 $N(SO_2Et)COCH_2COMe$ 、 $N(SO_2Et)$ COCH₂CH₂CH₂CO₂H 、 $N(SO_2Et)$ COCH2CH2CH2CO2Me N(SO2Et) COCH2CH(Me)CH2CO2H N(SO2Et) COCH2CH(Me)CH2CO2Me N- $(SO_2Et) \quad COCH_2CH(CF_3)CH_2CO_2H \quad N(SO_2Et) \quad COCH_2CH(CF_3)CH_2CO_2Me \quad NHCOH \quad N(COH)Me \quad N-COH_2CH(CF_3)CH_2CO_2Me \quad N-COH_2CH(CF_3)CH_2CH(CF_3)$ (COH)Et) 、N(COH)-n-Pr 、N(COH)-i-Pr 、N(COH)-n-Bu 、N(COH)-s-Bu 、N(COH)-i-Bu 、N(COH)-t-Bu 、N- $(COH)C(Me) = CH_2$, $N(COH)CH_2CH = CH_2$, $N(COH)CH(Me)CH = CH_2$, $N(COH)C(Me)_2CH = CH_2$, $N(COH)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH = CH_2$, $N(COH)CH(Me)CH(Me)CH(Me)CH(Me)CH = CH_2$, N(COH)CH(Me)CH(Me)CH(Me)CHN(COH)Ph 、N(COH)CH2Ph 、N(COH)CH2Ct 、N(COH)CH2Br2 、N(COH)CHCt2 、N(COH)CCt3 、N(COH)- CF_3 、 $N(COH)CH_2COMe$ 、N(COH) $CH_2CH_2CH_2CO_2H$ 、N(COH) $CH_2CH_2CH_2CO_2Me$ 、 $N(COH)CH_2CH(Me)$ - $\mathsf{CH_2CO_2H} \quad \mathsf{N}(\mathsf{COH})\mathsf{CH_2CH}(\mathsf{Me})\mathsf{CH_2CO_2Me} \quad \mathsf{N}(\mathsf{COH})\mathsf{CH_2CH} \quad (\mathsf{CF_3})\mathsf{CH_2CO_2H} \quad \mathsf{N}(\mathsf{COH})\mathsf{CH_2CH} \quad (\mathsf{CF_3})\mathsf{CH_2CO_2H} \quad \mathsf{N}(\mathsf{COH})\mathsf{CH_2CH} \quad (\mathsf{CF_3})\mathsf{CH_2CO_2H} \quad \mathsf{N}(\mathsf{COH})\mathsf{CH_2CH} \quad \mathsf{COH} \quad$ $(COH)SO_2$ -s-Bu 、 $N(COH)SO_2$ -i-Bu 、 $N(COH)SO_2$ -t-Bu 、 $N(SO_2CF_3)_2$ 、 $NHCO_2Me$ 、 $NHCO_2Et$ 、 $NHCO_2$ -n-Pr 、NHCO₂-i-Pr 、NHCO₂-n-Bu 、NHCO₂-s-Bu 、NHCO₂-i-Bu 、NHCO₂-t-Bu 、N(Me)CO₂Me 、N(Me)CO₂Et 、 $N(Me)CO_2$ -n-Pr 、 $N(Me)CO_2$ -i-Pr 、 $N(Me)CO_2$ -n-Bu 、 $N(Me)CO_2$ -s-Bu 、 $N(Me)CO_2$ -i-Bu · $N(Me)CO_2$ -i-Bu $(SO_2Et)CO_2Et$ 、 $N(SO_2Et)CO_2-n-Pr$ 、 $N(SO_2Et)CO_2-i-Pr$ 、 $N(SO_2Et)CO_2-n-Bu$ 、 $N(SO_2Et)CO_2-s-Bu$ 、 $N-CO_2Et)CO_2-n-Pu$ 、 $N-CO_2Et)CO_2-n-Pu$ (SO₂Et)CO₂-i-Bu $N(SO_2Et)CO_2-t-Bu$ NHCO₂CH₂-t-Bu NHCO₂-n-Am $NHCO_2CH_2(CH_2)_5\,Me \quad , \quad NHCO_2CH_2(CH_2)_8\,Me \quad , \quad NHCO_2CH_2(CH_2)_{1\,4}\,Me \quad , \quad NHCO_2CH_2(CH_2)_{1\,6}\,Me \quad , \quad NHCO$ $NHCO_2CH = CH_2 \quad , \quad NHCO_2CH_2CH = CH_2 \quad , \quad NHCO_2CH(Me)CH = CH_2 \quad , \quad NHCO_2C(Me)_2CH = CH_2$ $NHCO_2CH_2C=CH$ 、 $NHCO_2CH(Me)C=CH$ 、 $NHCO_2C(Me)_2C=CH$ 、 $NHCO_2CH_2Ph$ 、 $N(Me)CO_2CH=CH_2$ 、 $N-CO_2CH_2Ph$ $(Me)CO_2CH_2CH = CH_2$, $N(Me)CO_2CH(Me)CH = CH_2$, $N(Me)CO_2C(Me)_2CH = CH_2$, $N(Me)CO_2CH_2C = CH_2$ $\mathsf{NHCO_2CH_2CF_3} \quad \mathsf{NHCO_2CH(F)CF_3} \quad \mathsf{NHCO_2(CF_2)_3CF_3} \quad \mathsf{NHCO_2(CF_2)_5CF_3} \quad \mathsf{NHCO_2(CF_2)_7CF_3}$ NHCO2CH2CC13 NHCO2CH2CH2C1 NHCO2CC13 . NHCO₂CHCl₂ , NHCO₂CH₂Cl NHCO2CH2CH2CH2CL 、NHCO2CH2CH(CL)Me 、NHCO2CH2CH2OMe 、NHCO2CH2CH2OEt 、NHCO2Ph 、 $N(Me)CO_2Ph$ $NHCO_2$ -(2-F-Ph) $NHCO_2$ -(3-F-Ph) $NHCO_2$ -(4-F-Ph) $NHCO_2$ -(2-C1-Ph) $NHCO_2$ -(3-C1-Ph) $NHCO_2$ -(3-C1-Ph) $NHCO_2$ -(3-C1-Ph) $NHCO_2$ -(3-C1-Ph)

 $\mathsf{NHCO_2}\text{-}(3\text{-}\mathsf{I-Ph})\ \ \mathsf{NHCO_2}\text{-}(4\text{-}\mathsf{I-Ph})\ \ \mathsf{NHCO_2}\text{-}(2\text{-}\mathsf{Me-Ph})\ \ \mathsf{NHCO_2}\text{-}(3\text{-}\mathsf{Me-Ph})\ \ \mathsf{NHCO_2}\text{-}(4\text{-}\mathsf{Me-Ph})\ \ \mathsf{NHCO_2}\text{-}(4\text{-}\mathsf{Me-Ph})\$ (4-i-Pr-Ph) 、 $NHCO_2-(4-n-Bu-Ph)$ 、 $NHCO_2-(4-s-Bu-Ph)$ 、 $NHCO_2-(4-i-Bu-Ph)$ 、 $NHCO_2-(4-t-Bu-Ph)$ 、 $NHCO_2-(4-t-Bu-Ph)$ (4-t-Am-Ph) 、 $NHCO_2-(4-n-Hex-Ph)$ 、 $NHCO_2-(2-NO_2-Ph)$ 、 $NHCO_2-(3-NO_2-Ph)$ 、 $NHCO_2-(4-NO_2-Ph)$ $\mathsf{NHCO_2\text{-}(2\text{-}MeOCO\text{-}Ph)}\ \ \mathsf{NHCO_2\text{-}(3\text{-}MeOCO\text{-}Ph)}\ \ \mathsf{NHCO_2\text{-}(4\text{-}MeOCO\text{-}Ph)}\ \ \mathsf{NHCO_2\text{-}(2\text{-}CF_3\text{-}Ph)}\ \ \mathsf$ $\mathsf{NHCO_2}\text{-}(4-\mathsf{CF_3}\mathsf{CF_2}\mathsf{O}\text{-Ph})\ \ \mathsf{NHCO_2}\text{-}(3-\mathsf{MeCO}\text{-Ph})\ \ \mathsf{NHCO_2}\text{-}(3-\mathsf{HOCO}\text{-Ph})\ \ \mathsf{NHCO_2}\text{-}(4-\mathsf{HOCO}\text{-Ph})\ \ \mathsf{NHCO_2}\text{-}(4-\mathsf{HOCO}\text{-P$ $(2,4-di-NO_2-Ph)$ 、 $NHCO_2-(4-C1-3-NO_2-Ph)$ 、 $NHCO_2-(2-Me-5-NO_2-Ph)$ 、 $NHCO_2-(4-C1-3-HOCO-Ph)$ 、 NHCO₂-(2-MeCONH-Ph) 、NHCO₂-(3-MeCONH-Ph) 、NHCO₂-(4-MeCONH-Ph) 、NHCO₂-(2-NO₂-4-CF₃-Ph) $\label{eq:nhco2-(3.5-di-CF3-Ph)} $$ NHCO_2-(4-(2,2-dichlorocyclopropyl)-Ph) $$ NHCO_2-(3-NO_2-4-t-Bu-Ph) $$ NHCO_2-(3-NO_2-4-t-Bu {\sf CF_3-Ph)} \quad {\sf NHCO_2-(2,4-di-Me-3-NO_2-Ph)} \quad {\sf NHCO_2-(2,4-di-C1-5-Me-Ph)} \quad {\sf NHCO_2-(4-C1-2,5-di-Me-Ph)} \quad {\sf NHCO_2-(4-C$ $Ph) \ \ \mathsf{NHCO_2}\text{-}(5-C1-2-MeO-Ph) \ \ \mathsf{NHCO_2}\text{-}(2,4-di-i-Pr-Ph) \ \ \mathsf{NHCO_2}\text{-}(6-MeO-3-Me-Ph) \ \ \mathsf{NHCO_2}\text{-}(2,4-di-MeO-2-1) \$ HCO_2 -(2,4-di-F-Ph) 、 $NHCO_2$ -(3,4-di-F-Ph) 、 $NHCO_2$ -(3,5-di-F-Ph) 、 $NHCO_2$ -(2,5-di-F-Ph) 、 $NHCO_2$ -(2,6-di-F-Ph) Ph) 、NHCO2-(2,5-di-Br-Ph) 、NHCO2-(3,4-di-Br-Ph) 、NHCO2-(2-C ℓ -4-F-Ph) 、NHCO2-(3-C ℓ -4-F-Ph) $\mathsf{NHCO_2}\text{-}(2,3,5,6\text{-}\mathsf{tetra}\text{-}\mathsf{Me}\text{-}\mathsf{Ph}) \ \ \mathsf{NHCO_2}\text{-}(2,4\text{-}\mathsf{di}\text{-}\mathsf{Me}\text{-}\mathsf{Ph}) \ \ \mathsf{NHCO_2}\text{-}(3,5\text{-}\mathsf{di}\text{-}\mathsf{Me}\text{-}\mathsf{Ph}) \ \ \mathsf{NHCO_2}\text{-}(3,5\text{-}\mathsf{di}\text{-}\mathsf{Ph}) \ \ \mathsf{NHCO_2}\text{-}(3,5\text{-}\mathsf{Ph}) \ \ \mathsf{NHCO_2}\text{-}(3,5\text{$ $NHCO_2\text{-}(2,5\text{-}di\text{-}Me\text{-}Ph) \quad , \quad NHCO_2\text{-}(2,6\text{-}di\text{-}Me\text{-}Ph) \quad , \quad NHCO_2\text{-}(2,3\text{-}di\text{-}Me\text{-}Ph) \quad , \quad NHCO_2\text{-}(2,5\text{-}di\text{-}Me\text{-}Ph) \quad , \quad NHCO$ $\mathsf{NHCO_2CH_2\text{-}(3\text{-}F\text{-}Ph)} \; \; \mathsf{NHCO_2CH_2\text{-}(4\text{-}F\text{-}Ph)} \; \; \mathsf{NHCO_2CH_2\text{-}(2\text{-}C1\text{-}Ph)} \; \; \mathsf{NHCO_2CH_2\text{-}(3\text{-}C1\text{-}Ph)} \; \; \mathsf{NHCO_2CH_$ $\mathsf{NHCO_2CH_2\text{-}(3\text{-}l\text{-}Ph)} \ \ \mathsf{NHCO_2CH_2\text{-}(4\text{-}l\text{-}Ph)} \ \ \mathsf{NHCO_2CH_2\text{-}(2\text{-}Me\text{-}Ph)} \ \ \mathsf{NHCO_2CH_2\text{-}(3\text{-}Me\text{-}Ph)} \ \ \mathsf{NHCO_2CH_$ Et-Ph) $\$ NHCO $_2$ CH $_2$ -(4-n-Pr-Ph) $\$ NHCO $_2$ CH $_2$ -(4-i-Pr-Ph) $\$ NHCO $_2$ CH $_2$ -(4-n-Bu-Ph) $\$ NHCO $_2$ CH $_2$ -(4-s-Bu-Ph) $Ph) \ \ \mathsf{NHCO_2CH_2-(4-i-Bu-Ph)} \ \ \mathsf{NHCO_2CH_2-(4-i-Bu-Ph)}$ NHCO₂CH₂-(2-NO₂-Ph) NHCO₂CH₂-(3-NO₂-Ph) NHCO₂CH₂-(4-NO₂-Ph) NHCO₂CH₂-(2-MeOCO-Ph) $\mathsf{NHCO_2\,CH_2\text{-}(3\text{-}MeOCO\text{-}Ph)} \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(3,4\text{-}di\text{-}Me\text{-}Ph)} \ \ \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(2,4\text{-}di\text{-}Me\text{-}Ph)} \ \ \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(4\text{-}Me\text{-}Ph)} \ \ \ \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(4\text{-}Me\text{-}Ph)} \ \ \ \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(4\text{-}Me\text{-}Ph)} \ \ \ \ \ \ \mathsf{NHCO_2\,CH_2\text{-}(4\text{-}Me\text{-}Ph)} \ \$ $\label{eq:meoco-ph} \mbox{MeOCO-Ph)} \ \ \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(2-CF}_3\mbox{-Ph)} \ \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(2-CH}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(2-CH}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{CH}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{-Ph}_2\mbox{-(4-CF}_3\mbox{-Ph)} \ \ \mbox{NHCO}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{-Ph}_2\mbox{ CF_3O-Ph) \quad \text{NHCO}_2CH_2-(3-CF_3O-Ph) \quad \text{NHCO}_2CH_2-(4-CF_3O-Ph) \quad \text{NHCO}_2CH_2 \quad -(4-CF_3CF_2O-Ph) \quad -(4-CF_3CF_2O-Ph) \quad \text{NHCO}_2CH_2 \quad -(4-CF_3CF_2O-Ph) \quad \text{NHCO}_2CH_2 \quad -(4-CF_3CF_2O-Ph) \quad -($ NHCO₂CH₂-(3-MeCO-Ph) 、NHCO₂CH₂-(3-HOCO-Ph) 、NHCO₂CH₂-(4-HOCO-Ph) 、NH(CO)SMe 、NH(CO)- ${\sf SEt} \ \ \mathsf{NHCOCO_2Me} \ \ \mathsf{NHCOCO_2Et} \ \ \mathsf{NHCOCO_2-n-Pr} \ \ \mathsf{NHCOCO_2-i-Pr} \ \ \mathsf{NHCOCO_2-n-Bu} \ \ \mathsf{NHCOCO_2-s-Bu}$ $\mathsf{COCO_2}\text{-}\mathsf{n-Pr} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\text{-}\mathsf{i-Pr} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\text{-}\mathsf{n-Bu} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\text{-}\mathsf{s-Bu} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\text{-}\mathsf{i-Bu} \ \ \mathsf{i-Bu} \ \ \ \mathsf{i-Bu} \ \ \ \mathsf{i-Bu} \ \ \ \mathsf{i-Bu} \$ $t\text{-Bu} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\mathsf{CH_2}\mathsf{Ph} \ \ \mathsf{N}(\mathsf{Et})\mathsf{COCO_2}\mathsf{Ph} \ \ \mathsf{NHS}(\mathsf{C})_3 \ \ \mathsf{NHS}(\mathsf{O})\mathsf{CC1_3} \ \ \mathsf{NHS}(\mathsf{O})\mathsf{Me} \ \ \mathsf{NHS}(\mathsf{O})\mathsf{Et} \ \ \mathsf{NHS}(\mathsf{O})_2 \ \ \mathsf{NHS}(\mathsf{O})_3 \ \ \mathsf{NHS}(\mathsf{O})_4 \ \ \mathsf{NHS}(\mathsf{O})_4 \ \ \mathsf{NHS}(\mathsf{O})_4 \ \ \mathsf{NHS}(\mathsf{O})_5 \ \ \mathsf{NHS}(\mathsf{O})_6 \ \ \mathsf{O}_6 \ \ \ \mathsf{O}_6 \ \ \mathsf{O}_$ n-Pr 、NHS(O)-i-Pr 、NHS(O)-n-Bu 、NHS(O)-s-Bu 、NHS(O)-i-Bu 、NHS(O)-t-Bu Nu NHS(O)-t-Bu Nu NHS $(\mathsf{Me})\mathsf{S}(\mathsf{O})\text{-}\mathsf{n}\text{-}\mathsf{Bu}\ \ \mathsf{N}(\mathsf{Me})\mathsf{S}(\mathsf{O})\text{-}\mathsf{i}\text{-}\mathsf{Bu}\ \ \mathsf{N}(\mathsf{Me})\mathsf{S}(\mathsf{O})\text{-}\mathsf{i}\text{-}\mathsf{Bu}\ \ \mathsf{N}(\mathsf{Me})\mathsf{S}(\mathsf{O})\mathsf{C}\mathsf{H}_2\mathsf{Ph}\ \ \mathsf{N}(\mathsf{Me})\mathsf{S}(\mathsf{O})\mathsf{Ph}\ \ \mathsf{N}(\mathsf{N}\mathsf{O})\mathsf{Ph}\ \ \mathsf{N}(\mathsf{N}$ $N(Et)SCC1_3 \ \ N(Et)S(O)CC1_3 \ \ N(Et)S(O)Me \ \ N(Et)S(O)Et \ \ N(Et)S(O)-n-Pr \ \ N(Et)S(O)-i-Pr \ \ N$ $\mathsf{NHSO_2N(Me)_2} \ \ \mathsf{NHSO_2NHMe} \ \ \mathsf{NHSO_2NH-n-Pr} \ \ \mathsf{NHSO_2NH-i-Pr} \ \ \mathsf{NHSO_2NH-n-Bu} \ \ \mathsf{NHSO_2NH$ $\mathsf{NHCONHe}_2\ \ \mathsf{NHCONHe}_2\ \ \mathsf{NHCONHe}_1\ \ \mathsf{NHCONHe}_1\ \ \mathsf{NHCONHe}_2\ \ \mathsf{NHCONHe}_3\ \ \mathsf{NHCONHe}_4\ \ \mathsf{NHCONHe}_4\ \ \mathsf{NHCONHe}_3\ \ \mathsf{NHCONHe}_4\ \ \mathsf{NHCONHe}_4$ $\mathsf{NHCON}(\mathsf{Me})\mathsf{Ph} \ \ \mathsf{NHCON}(\mathsf{OMe})\mathsf{Ph} \ \ \mathsf{N} = \mathsf{C}(\mathsf{OMe})\mathsf{N}(\mathsf{Me})_2 \ \ \mathsf{N} = \mathsf{C}(\mathsf{SMe})\mathsf{N}(\mathsf{Me})_2 \ \ \ \mathsf{NHCONHSO}_2\mathsf{Me} \ \ \mathsf{NHCONH$ HSO_2Et 、 $NHCONHSO_2$ -n-Pr 、 $NHCONHSO_2$ -i-Pr 、 $NHCONHSO_2$ -n-Bu 、 $NHCONHSO_2$ -s-Bu 、 $\mathsf{NHCSN}(\mathsf{Me})_2\ \ \mathsf{NHCSNHe}\ \ \mathsf{NHCSNHEt}\ \ \mathsf{NHCSNH-n-Pr}\ \ \mathsf{NHCSNH-i-Pr}\ \ \mathsf{NHCSNH-i-I-Pr}\ \ \mathsf{NHCSNH-i-Pr}\ \ \mathsf{NHCSNH-i-P$ n-Bu 、NHCSNH-s-Bu 、NHCSNH-i-Bu 、NHCSNH-t-Bu 、NHCSNHCH₂ Ph 、NHCSNHPh 、NHCONHCOMe 、 NHCONHCOEt 、NHCONHCO-(2,6-di-Ct-Ph) 、NHCONHCO-(2,6-di-F-Ph) 、NHCSNHCO-(2,6-di-Ct-Ph) 、 $\mathsf{NHCSNHCO}\text{-}(2,6\text{-}\mathsf{di}\text{-}\mathsf{F}\text{-}\mathsf{Ph})\ \ ,\ \ \mathsf{N}=\mathsf{CHN}(\mathsf{Me})_2\ \ ,\ \ \mathsf{N}=\mathsf{CHN}(\mathsf{Et})_2\ \ ,\ \ \mathsf{N}=\mathsf{CHN}(\mathsf{Et})\mathsf{Me}\ \ ,\ \ \mathsf{N}=\mathsf{CHN}(\mathsf{Et})\mathsf{Ph}\ \ ,\ \ \mathsf{N}=\mathsf{C}(\mathsf{OMe})^{-1}$ Ph $\ N = C(Me)Ph \ -Q30 \ -(4-Me-Q30) \ -(4-CF_3-Q30) \ -(4-Ph-Q30) \ -Q31 \ -Q32 \ -(4-Me-Q32) \$

Q33) 、-(4-H-Q33) 、-Q34 、-(2,6-di-Me-Q34) 、-Q35 、-(2,6-di-Me-Q35) 、-Q36 、-(3-Me-Q36) 、-Q37 、-Q38 、 -(3-Me-Q38) 、-(4-Me-Q38) 、-(5-Me-Q39) 、-(6-Me-Q39) -(6-Me-Q39) -(6-Me--(6-Me-Q40) 、-(6-H-Q40) 、-(6,3-di-Me-Q40) 、-(6,4-di-Me-Q40) 、-(6,5-di-Me-Q40) 、-Q41 、-Q42 、-(2,5-di-CH₂CO₂Me-Q47) 、-(4-CO₂Me-Q47) 、NH-(4,6-di-MeO-Q14) 、NH-(4,6-di-Me-Q14) 、CONH-(4,6-di-MeO-Q14) 、CONH-(4,6-di-Me-Q14) 、NH-(5-CF₃-3-Ct-Q1) 、NHP(0)(OMe)₂ 、NHP(0)(OEt)₂ 、NHP(0)(OEt)₃ 、NHP(0)(OEt)₄ 、NHP(0)(OEt)₅ 、NHP(0)(OEt)₆ 、NHP(0)(OEt)₇ 、NHP(0)(OEt)₈ 、NHP(0)(OEt)₉ NHP(0)(OEt)₉ NHP(0)(OET 、NHP(O)(OEt)SPh 、NHP(O)(OEt)O-n-Pr 、NHP(O)(O-i-Pr)2 、NHP(O)(O-n-Pr)2 、NHP(S)(OMe)2 、NHP(S)-(OEt)₂ 、NHP(S)(OEt)S-n-Pr 、NHP(S)(OEt)SPh 、NHP(S)(OEt)O-n-Pr 、NHP(S)(O-i-Pr)₂ 、NHP(S)(O-n-Pr)₂ 、 NHP(O)(OMe)Me 、NHP(O)(OEt)Me 、NHP(O)(OEt)Ph 、NHP(O)(O-i-Pr)Me 、NHP(O)(O-n-Pr)Me 、NHP(S)-(OMe)Me 、NHP(S)(OEt)Me 、NHP(S)(OEt)Ph 、NHP(S)(O-i-Pr)Me 、NH(S)(O-n-Pr)Me 、NHP(O)(OMe)OH 、 NHP(O)(OEt)OH 、NHCH2CO2H 、NHCH2CO2Me 、NHCH2CO2Et 、NHCH2CO2-i-Pr 、NHCH2CO2-i-Pr 、 $\mathsf{NHCH_2CO_2\text{-}n\text{-}Bu} \ \ \ \ \mathsf{NHCH_2CO_2\text{-}i\text{-}Bu} \ \ \ \ \ \mathsf{NHCH_2CO_2\text{-}i\text{-}Bu} \ \ \ \ \ \mathsf{NHCH_2CO_2\text{-}i\text{-}Bu} \ \ \ \ \ \mathsf{NHCH_2CO_2\text{-}i\text{-}Bu} \ \ \mathsf{NHCH_2CO_2\text{ \mathsf{HCH_2CO_2\text{-}n\text{-}Am} \ \ \mathsf{NHCH_2CO_2\text{-}n\text{-}Hex} \ \ \ \mathsf{NHCH_2CO_2CH_2(CH_2)_6} \ \mathsf{Me} \ \ \ \mathsf{NHCH_2CO_2CH_2Ph} \ \ \ \mathsf{NHCH_2CO_2Ph} \$ (COMe)CH₂CO₂Et 、N(COPh)CH₂CO₂Me 、N(COPh)CH₂CO₂Et 、NHCH(Me)CO₂H 、NHCH(Me)CO₂Me 、 $NHCH(Me)CO_2-i-Pr\ \ \ NHCH(Me)CO_2-i-Pr\ \ \ \ NHCH(Me)CO_2-n-Bu\ \ \ \ \ NHCH(Me)CO_2-s-Bu$ 、NHCH(Me)CO2-i-Bu 、NHCH(Me)CO2-t-Bu 、NHCH(Me)CO2-t-Am 、NHCH(Me)CO2-n-Am 、NHCh(Me)-CO₂-n-Hex 、NHCH(Me)CO₂CH₂(CH₂)₅ Me 、NHCH(Me)CO₂CH₂Ph 、NHCH(Me)CO₂Ph 、NHCH(Me)-CO2CH2Me 、NHCH(Me)CO2CH2CO2Et 、NHCH(Me)CO2CH(Me)CO2Me 、NHCH(Me)CO2CH(Me)CO2Et 、 N(Me)CH(Me)CO₂Me 、N(Me)CH(Me)CO₂Et 、N(Et)CH(Me)CO₂Me 、N(Et)CH(Me)CO₂Et 、N(COMe)CH(Me)-NHCH(Et)CO₂Me 、NHCH(Et)CO₂Et 、NHCH(Et)CO₂-n-Pr 、NHCH(Et)CO₂-i-Pr 、NHCH(Et)CO₂-n-Bu 、 NHCH(Et)CO2-s-Bu \ NHCH(Et)CO2-i-Bu \ NHCH(Et)CO2-t-Bu \ NHCH(Et)CO2-t-Am \ NHCH(Et)CO2-n-Am \ (CH₂OMe)CO₂H 、NHCH(CH₂OMe)CO₂Me 、NHCH(CH₂OMe)CO₂Et 、NHCH(CH₂OMe)CO₂-n-Pr 、NHCH-(CH₂OMe)CO₂-i-Pr 、NHCH(CH₂OMe)CO₂-n-Bu 、NHCH(CH₂OMe)CO₂-s-Bu 、NHCH(CH₂OMe)CO₂-i-Bu 、 NHCH(CH₂OMe)CO₂-t-Bu 、NHCH(CH₂OMe)CO₂-t-Am 、NHCH(CH₂OMe)CO₂-n-Am 、NHCH(CH₂OMe)CO₂n-Hex NHCH(CH2OMe)CO2CH2(CH2)6 Me NHCH(CH2OMe)CO2CH2Ph NHCH(CH2OMe)CO2Ph NHCH(CH2OMe)CO2Ph NHCH(CH₂OEt)CO₂H 、NHCH(CH₂OEt)CO₂Me 、NHCH(CH₂OEt)CO₂Et 、NHCH(CH₂OEt)CO₂-n-Pr 、NHCH- $(CH_2OEt)CO_2$ -i-Pr 、NHCH $(CH_2OEt)CO_2$ -n-Bu 、NHCH $(CH_2OEt)CO_2$ -s-Bu 、NHCH $(CH_2OEt)CO_2$ -i-Bu 、 Hex 、NHCH(CH2OEt) CO2CH2(CH2)6 Me 、NHCH(CH2OEt)CO2CH2Ph 、NHCH(CH2OEt)CO2Ph 、NHCH-(SMe)CO2H 、NHCH(SMe)CO2Me 、NHCH(SMe)CO2Et 、NHCH(SMe)CO2-n-Pr 、NHCH(SMe)CO2-i-Pr 、 NHCH(SMe)CO₂-n-Bu 、NHCH(SMe)CO₂-s-Bu 、NHCH(SMe)CO₂-i-Bu 、NHCH(SMe)CO₂-t-Bu 、NHCH $(SMe)CO_2$ -t-Am 、 NHCH $(SMe)CO_2$ -n-Am 、 NHCH $(SMe)CO_2$ -n-Hex 、 NHCH $(SMe)CO_2$ CH2 $(CH_2)_6$ Me 、 NHCH(SMe)CO₂CH₂Ph 、NHCH(SMe)CO₂Ph 、NHCH(i-Pr)CO₂Me 、NHCH(i-Pr)CO₂Et 、NHCH(i-Pr)CO₂-n-Pr 、NHCH(i-Pr)CO₂-i-Pr 、NHCH(n-Pr)CO₂Me 、NHCH(n-Pr)CO₂Et 、NHCH(n-Pr)CO₂-n-Pr 、NHCH(n-Pr)-CO2-i-Pr、NHCH(Ph)CO2Me、NHCH(Ph)CO2Et、NHCH(Ph)CO2-n-Pr、NHCH(Ph)CO2-i-Pr、NHCH2CONH2 NHCH₂CONHMe NHCH₂CONHEt NHCH₂CONH-n-Pr NHCH₂CONH-i-Pr NHCH₂CONH-n-Bu NHCH₂CONH-n-Bu NHCH₂CONH-n-Bu NHCH₂CONH-n-Bu NHCH2 CONH-s-Bu 、NHCH2 CONH-i-Bu 、NHCH2 CONH-t-Bu 、NHCH2 CONH-t-Am 、NHCH2 CONH-n-Am 、 NHCH₂CONH-n-Hex 、NHCH₂CONHCH₂ (CH₂)₅ Me 、NHCH₂CONHCH₂Ph 、NHCH₂CONHPh 、 $\mathsf{NHCH_2CONHCH_2CO_2Me} \ \ \mathsf{NHCH_2CONHCH_2CO_2Et} \ \ \mathsf{NHCH_2CONHCH(Me)CO_2Me} \ \ \mathsf{NHCH_2CONHCH(Me)-CO_2Me} \ \ \mathsf{NHC$ CO₂Et 、N(Me)CH₂CONHMe 、N(Me)CH₂CONHEt 、N(Et)CH₂CONHMe 、N(Et)CH₂CONHEt 、N(COMe)-CH2CONHMe \ N(COMe)CH2CONHEt \ N(COPh)CH2CONHMe \ N(COPh)CH2 CONHEt \ NHCH(Me)-CONH₂ 、NHCH(Me)CONHMe 、NHCH(Me)CONHEt 、NHCH(Me)CONH-n-Pr 、NHCH (Me) CONH-i-Pr 、 NHCH(Me)CONH-n-Bu 、NHCH(Me)CONH-s-Bu 、NHCH(Me)CONH-i-Bu 、NHCH(Me)CONH-t-Bu 、NHCH-(Me)CONH-t-Am 、NHCH(Me)CONH-n-Am 、NHCH(Me)CONH-n-Hex 、NHCH(Me)CONHCH2(CH2)₅ Me 、 NHCH(Me)CONHCH₂Ph 、NHCH(Me)CONHPh 、NHCH(Me)CONHCH₂CO₂Me 、NHCH(Me)CONHCH₂CO₂Et NHCH(Me)CONHCH(Me)CO₂Me NHCH(Me)CONHCH(Me)CO₂Et NHCH(Me)CONHCH(Me)Ph N(Me)-CH(Me)CONHMe 、N(Me)CH(Me)CONHEt 、N(Et)CH(Me)CONHMe 、N(Et)CH(Me)CONHEt 、N(COMe)CH-(Me)CONHMe 、N(COMe)CH(Me)CONHEt 、N(COPh)CH(Me)CONHMe 、N(COPh)CH(Me)CONHEt 、NHCH-(Et)CONH₂ 、NHCH(Et)CONHMe 、NHCH(Et)CONHEt 、NHCH(Et)CONH-n-Pr 、NHCH(Et)CONH-i-Pr 、 NHCH(Et)CONH-n-Bu 、NHCH(Et)CONH-s-Bu 、NHCH(Et)CONH-i-Bu 、NHCH(Et)CONH-t-Bu 、NHCH(Et)-CONH-t-Am 、NHCH(Et)CONH-n-Am 、NHCH(Et)CONH-n-Hex 、NHCH(Et)CONHCH₂ (CH₂)₅ Me 、NHCH(Et)-CONHCH₂Ph 、NHCH(Et)CONHPh 、NHCH(CH₂OMe)CONH₂ 、NHCH(CH₂OMe)CONHMe 、NHCH-Bu 、NHCH(CH₂OMe)CONH-s-Bu 、NHCH(CH₂OMe)CONH-i-Bu 、NHCH(CH₂OMe)CONH-t-Bu 、NHCH-

(CH₂OMe)CONH-t-Am 、NHCH(CH₂OMe)CONH-n-Am 、NHCH(CH₂OMe)CONH-n-Hex 、NHCH(CH₂OMe)-CONHCH₂ (CH₂)₅ Me、NHCH(CH₂OMe)CONHCH₂ Ph、NHCH(CH₂OMe)CONHPh、NHCH(CH₂OEt)COCH₂、 NHCH(CH₂OEt)CONHMe、NHCH(CH₂OEt)CONHEt、NHCH(CH₂OEt)CONH-n-Pr、NHCH(CH₂OEt)CONH-i-Hex 、NHCH(CH₂OEt)CONHCH₂(CH₂)₅ Me 、NHCH(CH₂OEt)CONHCH₂Ph 、NHCH(CH₂OEt)CONHPh 、 NHCH(SMe)CONH₂ NHCH(SMe)CONHMe 、NHCH(SMe)CONHEt 、NHCH(SMe)CONH-n-Pr 、NHCH(SMe)-CONH-i-Pr 、NHCH(SMe)CONH-n-Bu 、NHCH(SMe)CONH-s-Bu 、NHCH(SMe)CONH-i-Bu 、NHCH(SMe)-CONH-t-Bu 、NHCH(SMe)CONH-t-Am 、NHCH(SMe)CONH-n-Am 、NHCH(SMe)CONH-n-Hex 、NHCH(SMe)- $\mathsf{CONHCH_2}(\mathsf{CH_2})_{\!5}\,\mathsf{Me}\,\,\,\mathsf{CONHCH_2}\,\mathsf{Ph}\,\,\,\mathsf{CONHCH_2}\,\mathsf{Ph}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\,\mathsf{CONHPh}\,\,\mathsf{CONHPh$ Pr)CONHEt 、NHCH(i-Pr)CONH-n-Pr 、NHCH(i-Pr)CONH-i-Pr 、NHCH(n-Pr)CONHMe 、NHCH(n-Pr)CONHEt 、NHCH(n-Pr)CONH-n-Pr、NHCH(n-Pr)CONH-i-Pr、NHCH(Ph)CONHMe、NHCH(Ph)CONHEt、NHCH(Ph)-(Me)CN 、N(Me)C(Me)₂CN 、NHCH₂CH₂CO₂Me 、NHCH(Me)CH₂CO₂Me 、NHCH₂CH₂CH₂CO₂Me 、 $\mathsf{NHCH_2CH_2} \ \ \mathsf{CH_2CH_2CO_2Me} \ \ \ \ \ \mathsf{NHCH_2CH_2CO_2Et} \ \ \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \ \ \mathsf{NHCH_2CO_2Et} \ \ \mathsf{NHCH_2CO_2$ $\mathsf{NHCH_2CH_2} \ \mathsf{CH_2CH_2CO_2Et} \ \ \mathsf{NHCH_2P(O)}(\mathsf{OMe})_2 \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{OEt})_2 \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_2 \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_2 \ \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_2 \ \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_2 \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_2 \ \ \ \mathsf{NHCH_2P(O)}(\mathsf{O-i-Pr})_$ (O)(OMe)Me 、NHCH₂P(O)(OEt)Me 、NHCH₂P(O)(O-i-Pr)Me 、NHCH₂P(O)(O-n-Pr)Me 、NHCH₂P(S)(OMe)-(O)(O-i-Pr)Me 、 NHCH₂CH₂P(O)(O-n-Pr)Me 、 NHCH₂CH₂P(S)(OMe)Me 、 NHCH₂CH₂P(S)(OEt)Me NHCH₂CH₂P(S)(O-i-Pr)Me 、NHCH₂CH₂P(S)(O-n-Pr)Me 、NHCH₂CH₂P(O)(OMe)OH 、NHCH₂CH₂P(O)(OEt)- $\mathsf{OH} \ \ \mathsf{NHCH_2CH_2P(O)(OH)_2} \ \ \mathsf{NHCH(P(O)(OMe)_2)_2} \ \ \ \mathsf{NHCH(P(O)(OEt)_2)_2} \ \ \ \mathsf{NHCH(P(O)(O-i-Pr)_2)_2} \ \ \ \ \mathsf{NHCH(P(O)(OH)_2Pr)_2P(OH)_2P($ $(O)(O-n-Pr)_2)_2 \quad \text{NHCH}(P(O)(OH)_2)_2 \quad \text{NHCH}(P(O)(OMe)_2)(P(O)(OH)_2) \quad \text{NHCH}(P(O)(OH)_2) \quad \text{NHCH}($ $(O)(OMe)_2)$ $(P(O)(OH)_2)$ \setminus NHC(Me)(P(O)(OEt)_2) $(P(O)(O)(OH)_2)$ \setminus NHC(Me)(P(O)(O-i-Pr)_2) $(P(O)(OH)_2)$ \setminus NHC(Me)(P(O)(OH)_2) \setminus NHC(Me $NHC(Me)(P(O)(O-n-Pr)_2) \ (P(O)(OH)_2) \ \ \ N(SO_2Me)CH_2CO_2H \ \ \ \ N(SO_2Me)CH_2CO_2Et$ $, \ N(SO_2Me)CH_2CO_2-n-Pr \ , \ N(SO_2Me)CH_2CO_2-i-Pr \ , \ N(SO_2Me)CH_2CO_2-n-Bu \ , \ N(SO_2Me)CH_2CO_2-s-Bu \ , \ N(SO_2Me)C$ $(SO_{2}Me)CH_{2}CO_{2}-n-Hex \quad , \quad N(SO_{2}Me)CH_{2}CO_{2}CH_{2}(CH_{2})_{6}Me \quad , \quad N(SO_{2}Me) \quad CH_{2}CO_{2}CH_{2}Ph \quad , \quad N(SO_{2}Me)-Hex \quad , \quad N(SO$ CH_2CO_2Ph 、 $N(SO_2Me)CH_2CONH_2$ 、 $N(SO_2Me)CH_2CONHMe$ 、 $N(SO_2Me)CH_2CONHEt$ 、 $N(SO_2Me)CH_2CONHEt$ 、 $N(SO_2Me)CH_2CONHMe$ $(SO_2Me)CH_2CONH-i-Bu\ \ \ \ N(SO_2Me)CH_2CONH-t-Bu\ \ \ \ N(SO_2Me)CH_2CONH-t-Am\ \ \ \ N(SO_2Me)CH_2CONH-n-Reserved (SO_2Me)CH_2CONH-t-Bu\ \ \ \ \ N(SO_2Me)CH_2CONH-t-Reserved (SO_2Me)CH_2CONH-t-Reserved (SO_2Me)CH_2CONH-t$ $CO_2\text{-s-Bu} \quad \text{N(SO}_2\text{Me)CH(Me)CO}_2\text{-i-Bu} \quad \text{N(SO}_2\text{Me)CH(Me)CO}_2\text{-t-Bu} \quad \text{N(SO}_2\text{Me)CH(Me)CO}_2\text{-t-Am} \quad \text{N-Polymorphism}$ $(SO_2Me)CH(Me)CO_2-n-Am$ $N(SO_2Me)CH(Me)CO_2-n-Hex$ $N(SO_2Me)CH(Me)CO_2CH_2(CH_2)_6Me$ $N-CO_2Me)CH(Me)CO_2CH_2(CH_2)_6Me$ $(SO_2Me)CH(Me)CO_2CH_2Ph \quad N(SO_2Me)CH(Me)CO_2Ph \quad N(SO_2Me)CH(Me)CONH_2 \quad N(SO_2Me)CH(Me)CH(Me)CONH_2 \quad N(SO_2Me)CH(Me)CONH_2 \quad N(SO_2Me)CH(Me)CH(M$ $(SO_2Me)CH(Me)CONH-n-Bu$ 、 $N(SO_2Me)CH(Me)CONH-s-Bu$ 、 $N(SO_2Me)CH(Me)CONH-i-Bu$ 、 $N(SO_2Me)-me$ CH(Me)CONH-t-Bu 、N(SO₂Me)CH(Me)CONH-t-Am 、N(SO₂Me)CH(Me)CONH-n-Am 、N(SO₂Me)CH(Me)- $N(SO_2Et)CH_2CO_2-i-Pr \quad \\ N(SO_2Et)CH_2CO_2-n-Bu \quad \\ N(SO_2Et)CH_2CO_2-s-Bu \quad \\ N(SO_2Et)CH_2CO_2-i-Bu \quad \\ N-2CO_2-i-Bu \quad$ $(SO_2Et)CH_2CO_2-t-Bu \quad , \\ N(SO_2Et)CH_2CO_2-t-Am \quad , \\ N(SO_2Et)CH_2CO_2-n-Am \quad , \\ N(SO_2Et)CH_2CO_2-n-Hex \quad , \\ N(SO_2ET$ $N(SO_2Et)CH_2CONH-t-Am \qquad , \qquad N(SO_2Et)CH_2CONH-n-Am \qquad , \qquad N(SO_2Et)CH_2CONH-n-Hex \qquad , \qquad N(SO_2Et)-t-M(SO_2Et)CH_2CONH-n-Hex \qquad , \qquad N(SO_2Et)-t-M(SO_2Et)CH_2CONH-n-Hex \qquad , \qquad N(SO_2Et)-t-M(SO_2Et)CH_2CONH-n-Hex \qquad , \qquad N(SO_2Et)-t-M(SO_2Et)CH_2CONH-n-Hex \qquad , \qquad N(SO_2Et)-t-M(SO_2ET)-t CH_2CONHCH_2(CH_2)_6\,Me~~N(SO_2Et)CH_2CONHCH_2Ph~~N(SO_2Et)CH_2CONHPh~~N(SO_2Et)CH(Me)CO_2H~~N(SO_2Et)CH_2CONHCH_2Ph~~N(SO_2Et)CH_2CONHPh~~N(SO_2Et)CH_2CONHPh~~N(SO_2Et)CH_2CONHCH_2Ph~~N(SO_2Et)CH_2CONHPH~~N(SO_2Et)CH_2CONHPH~~N(SO_2Et)CH$ $N(SO_2Et)CH(Me)CO_2-n-Pr$ 、 $N(SO_2Et)CH(Me)CO_2-n-Bu$ 、 $N(SO_2Et)CH(Me)CO_2-s-Bu$ 、 $N(SO_2Et)CH(Me)-m-Pr$ $CO_2\text{-i-Bu} \quad \text{N(SO}_2\text{Et)CH(Me)CO}_2\text{-t-Bu} \quad \text{N(SO}_2\text{Et)CH(Me)CO}_2\text{-t-Am} \quad \text{N(SO}_2\text{Et)CH(Me)CO}_2\text{-n-Am} \quad \text{N-Polymorphism}$

CONH-s-Bu 、N(SO₂Et)CH(Me)CONH-i-Bu 、N(SO₂Et)CH(Me)CONH-t-Bu 、N(SO₂Et)CH(Me)CONH-t-Am 、 $N(SO_2Et)CH(Me)CONH-n-Am\ \ \ \ N(SO_2Et)CH(Me)CONH-n-Hex\ \ \ \ \ N(SO_2Et)CH(Me)CONHCH_2(CH_2)_5\,Me\ \ \ \ \ N-Hex$ (SO₂Et)CH(Me)CONHCH₂Ph 、N(SO₂Et)CH(Me)CONHPh 、NHMe 、NHEt 、NH-n-Pr 、NH-i-Pr 、NH-n-Bu 、 $NH-(2-NO_2-Ph)$ 、 $NH-(4-NO_2-Ph)$ 、 $NH-(2,4-di-NO_2-Ph)$ 、 $NH-(2-NO_2-4-CF_3-Ph)$ 、 $NH-(4-NO_2-2-CF_3-Ph)$ 、 $NH-(4-NO_2-2-CF_3-Ph)$ C&-Ph) \ NHCH2-(2-F-Ph) \ NHCH2-(3-F-Ph) \ NHCH2-(4-F-Ph) \ NHCH2-(2-C&-Ph) \ NHCH2-(3-C&-Ph) \ \ 10 NHCH2-(4-C1-Ph) 、NHCH2-(2-Br-Ph) 、NHCH2-(3-Br-Ph) 、NHCH2-(4-Br-Ph) 、NHCH2-(2-I-Ph) 、NHCH2-(3-Br-Ph) 、NHCH2-(3-Br-Ph) 、NHCH2-(3-Br-Ph) 、NHCH2-(4-Br-Ph) 、NHCH2-(2-I-Ph) 、NHCH2-(3-Br-Ph) NHCH2-(3-Br-Ph) NH $\mathsf{NHCH_2-(4-n-Bu-Ph)} \ \ \mathsf{NHCH_2-(4-s-Bu-Ph)} \ \ \ \mathsf{NHCH_2-(4-i-Bu-Ph)} \ \ \ \ \mathsf{NHCH_2-(4-t-Bu-Ph)} \ \ \ \ \mathsf{NHCH_2-(4-t-Am-Ph)} \ \ \ \ \ \mathsf{NHCH_2-(4-t-Bu-Ph)} \ \ \mathsf{NHCH_2-(4-t-Bu-Ph)} \ \ \ \mathsf{NHCH_2-(4-t-Bu-Ph)} \ \ \mathsf{NHCH_2-(4-t-Bu-P$ $NHCH_2$ -(4-n-Hex-Ph) 、 $NHCH_2$ -(2-NO₂-Ph) 、 $NHCH_2$ -(3-NO₂-Ph) 、 $NHCH_2$ -(4-NO₂-Ph) 、 $NHCH_2$ -(2-MeOCO-Ph) ($NHCH_2$ -(2-M Ph) NHCH2-(3-MeOCO-Ph) NHCH2-(4-MeOCO-Ph) NHCH2-(2-CF3-Ph) NHCH2-(3-CF3-Ph) NHCH2- $(4-CF_3-Ph) \setminus NHCH_2-(2-CF_3O-Ph) \setminus NHCH_2-(3-CF_3O-Ph) \setminus NHCH_2-(4-CF_3O-Ph) \setminus NHCH_2-(4-CF_3CF_2O-Ph) \setminus NHCH_2-(4-CF_3C-Ph) \setminus NH$ $\mathsf{NHCH_2\text{-}(3\text{-}MeCO\text{-}Ph)} \ \ \mathsf{NHCH_2\text{-}(3\text{-}HOCO\text{-}Ph)} \ \ \ \mathsf{NHCH_2\text{-}(4\text{-}HOCO\text{-}Ph)} \ \ \ \mathsf{NHCH(Me)Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \ \mathsf{NHCH_2\text{-}Ph} \ \ \ \ \ \mathsf{NHCH_2\text$ (Me)2 、N(Et)2 、N(n-Pr)2 、N(i-Pr)2 、N(Me)Et 、N(n-Bu)2 、N(s-Bu)2 、N(i-Bu)2 N(t-Bu)2 、N(t-Am)2 、N(n-Am)₂ 、NHCH₂CF₃ 、NHCH₂CF₃ 、NHCH(Me)CF₃ 、NHCH(F₉)₂ 、NHCH(F)CF₃ 、NHCH(F₂)- $_3$ CF $_3$ 、NH(CF $_2$) $_5$ CF $_3$ 、NH(CF $_2$) $_7$ CF $_3$ 、NHCCL $_3$ 、NHCHCL $_2$ 、NHCH $_2$ CL $_3$ 、NHCH $_2$ CL $_3$ 、NHCH $_2$ CL $_4$ 、NHCH $_2$ CL $_5$ 、NHCH $_5$ CL $_5$ NHCH $_$ NHCH2CH2CH2CL NHCH2CH(CL)Me NHCH2C(CL) = CH2 NHCH(OH)CCL3 NHCh = CH2 NHCh $\mathsf{NHCH_2CH} = \mathsf{CH_2} \ \ \, \mathsf{NHCH(Me)CH} = \mathsf{CH_2} \ \ \, \mathsf{NHC(Me)_2CH} = \mathsf{CH_2} \ \ \, \mathsf{NHCH_2C=CH} \ \ \, \mathsf{NHCH(Me)C=CH} \ \ \, \mathsf{NHC-CH(Me)C=CH} \ \ \, \mathsf{NHCH(Me)C=CH} \ \ \, \mathsf{NHC$ $(Me)_2C = CH \setminus NHCH_2C(Me) = CH_2 \setminus N(CH_2CH = CH_2)_2 \setminus N(CH_2C = CH)_2 \setminus NH-c-Pr \setminus NH-c-Bu \setminus NH-c-Pen \setminus NH-c-Pr \setminus NH-c-Pr$ NH-c-Hex NHCH2-c-Pr NHCH2-c-Bu NHCH2-c-Pen NHCH2-c-Hex NHCH2OMe NHCH2OEtra $\mathsf{NHCH_2O}\text{-}\mathsf{n}\text{-}\mathsf{Pr}\;\;\mathsf{NHCH_2O}\text{-}\mathsf{i}\text{-}\mathsf{Pr}\;\;\mathsf{NHCH_2O}\text{-}\mathsf{i}\text{-}\mathsf{Bu}\;\;\mathsf{NHCH_2O}\text{-}\mathsf{i}\text{-}\mathsf{$ t-Am 、NHCH $_2$ O-n-Am 、NHCH $_2$ O-n-Hex 、NHCH $_2$ OCH $_2$ (CH $_2$) $_6$ Me 、NHCH $_2$ OCH $_2$ Ph 、NHCH $_2$ OPh 、 $\mathsf{NHCH_2CH_2O\text{-}s\text{-}Bu} \ \ \, \mathsf{NHCH_2CH_2O\text{-}i\text{-}Bu} \ \ \, \mathsf{NHCH_2CH_2O\text{-}t\text{-}Bu} \ \ \, \mathsf{NHCH_2CH_2O\text{-}t\text{-}Am} \ \ \ \, \mathsf{NHCH_2CH_2O\text{-}t\text{-}Am} \ \ \, \mathsf$ $NHCH_2CH_2O-n-Hex\ \ \ NHCH_2CH_2OCH_2(CH_2)_5\,Me\ \ \ \ NHCH_2CH_2OCH_2Ph\ \ \ \ NHCH_2CH_2OPh\ \ \ \ NHCH(Me)-Hex$ CH2OMe NHCH(Me)CH2OEt NHCH(Me)CH2O-n-Pr NHCH(Me)CH2O-i-Pr NHCH(Me)CH2O-n-Bu NHCH(Me)CH2O-n-Bu $NHNHSO_2-i-Bu \quad , \quad NHNHSO_2-t-Bu \quad , \quad NHNHSO_2-t-Am \quad , \quad NHNHSO_2-n-Am \quad , \quad NHNHSO_2-n-Hex \quad , \\ NHNHSO_2CH_2(CH_2)_6 Me \quad , \quad NHNHSO_2CH_2Ph \quad , \quad NHNHSO_2Ph \quad , \quad NHN(SO_2Me)_2 \quad , \quad NHN(SO_2Et)_2 \quad , \quad NHN(SO_2-n-Hex)_2 \quad , \quad NHN(SO_2-n-Hex)_2 \quad , \quad NHN(SO_2-n-Hex)_3 \quad , \quad NHN(SO_2-n-Hex)_4 \quad , \quad NHN(SO_2-n-Hex)_5 \quad , \quad NHN(SO_2-n Pr)_2$ 、 $NHN(SO_2-i-Pr)_2$ 、 $NHN(SO_2-r-Bu)_2$ 、 $NHN(SO_2-s-Bu)_2$ 、 $NHN(SO_2-i-Bu)_2$ 、 $NHN(SO_2-r-Bu)_2$ $NHN(SO_{2}Ph)_{2}\ \ \backslash\ N(NH_{2})SO_{2}Me\ \ \backslash\ N(NH_{2})SO_{2}Et\ \ \backslash\ N(NH_{2})SO_{2}-n-Pr\ \ \backslash\ N(NH_{2})SO_{2}-i-Pr\ \ \backslash\ N(NH_{2})SO_{2}-n-Bu\ \ \backslash\ N-Pr\ \ \backslash\ N(NH_{2})SO_{2}-i-Pr\ \ \backslash\ N(NH_{2})SO_{2}-n-Pr\ \ \backslash\ N(NH_{2})SO_{2}-n$ $(NH_2)SO_2-s-Bu\ ,\ N(NH_2)SO_2-i-Bu\ ,\ N(NH_2)SO_2-t-Bu\ ,\ N(NH_2)SO_2-t-Am\ ,\ N(NH_2)SO_2-n-Am\ ,\ N(NH_2)SO_2-n-Am\ \ \, N(NH_2)SO_2-n-Am\ \$ CH2OEt 、N(COCH2C1)CH2O-i-Pr 、N(COCH2Br)CH2O-i-Pr 、N(COCH2C1)CH2O-n-Bu 、N(COCH2Br)CH2On-Bu 、N(COCH₂Ct)CH₂O-i-Bu 、N(COCH₂Br)CH₂O-i-Bu 、N(COCH₂Ct)CH₂CO₂Me 、N(COCH₂Br)- $\mathsf{CH_2CO_2Et} \ \setminus \ \mathsf{N(COCH_2C1)CH(Me)CH_2OMe} \ \setminus \ \mathsf{N(COCH_2Br)CH(Me)CH_2OMe} \ \setminus \ \mathsf{N(COCH_2OMe)CH(Me)CO_2Me}$ N(COCH₂OMe)-CH(Me)CO₂Et N(COCH₂OMe)-Q15 N(COCH₂OMe)-Q17 N- $(\mathsf{COCH_2OMe}) - \mathsf{Q17} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{N(CO-Q16)CH(Me)CO_2Me} \quad , \quad \mathsf{N(CO-Q16)CH(Me)CO_2Me} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{N(CO-Q16)CH(Me)CO_2Me} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{N(CO-Q16)CH(Me)CO_2Me} \quad , \quad \mathsf{N(COCH_2OMe)} - \mathsf{Q19} \quad , \quad \mathsf{Q19} \quad , \quad$ $(\mathsf{COCH_2CL}) - \mathsf{Q17} \ \ \, \mathsf{N}(\mathsf{COCH_2Br}) - \mathsf{Q17} \ \ \, \mathsf{N}(\mathsf{COCH_2CL}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2Br}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2CL}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2Br}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2CL}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2Br}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2CL}) - \mathsf{Q15} \ \ \, \mathsf{N}(\mathsf{COCH_2CL})$ 、N(COCH₂Ph)CH(Me)CO₂Et 、N(COCH₂Ph)CH(Me)CO₂Me 、N(COCH₂Ph)CH(Me)CO₂Et 、N(CO-c-Pr)-Q15 $\label{eq:co-c-pr} $$ \ N(CO-c-Pr)-Q15 \ N(CO-Q18)CH(Me)CO_2Me \ N(CO-Q18)CH(Me)CO_2Et \ NHCOCH_2OMe \ NHCOCH_2OEt \ NHCOCH_2O$ NHCH = NOMe NHCH = NOEt NHCH2CON(Me)-(6-MeO-Q1) NHCH2CON(Me)-(6-Me-Q1) NHCH2CON(Me)Ph 、NHCOCH2CH(Me)CH2CO2H 、NHCOCH2CH(Me)CH2CO2Me 、NHCOCH2CH(Me)- $\mathsf{CH_2CO_2Et} \quad \mathsf{NHCOCH_2CH} \quad (\mathsf{CF_3}) \mathsf{CH_2CO_2H} \quad \mathsf{NHCOCH_2CH}(\mathsf{CF_3}) \quad \mathsf{CH_2CO_2Me} \quad \mathsf{NHCOCH_2CH}(\mathsf{CF_3})$ CH_2CO_2Et 、 $NHCH_2SMe$ 、 $NHCH_2SO_2Me$ 、 $NHCH_2SEt$ 、 $NHCH_2SO_2Et$ 、 $NHCH_2CN$ in which Q1 to Q47 are as shown below.

5 Ŋ, Q 3 Q 1 Q 2 10 15 Q 5 Q 6 20 25 Q7 30 35 Q10 Q11 Q12 40 CH₃

Q13

50

45

55

Q14

Q15

Next, formulation examples of preparations using the compound of the present invention are shown specifically. The formulation examples of the present invention are not limited only to these. In the following formulation examples, all "part"s mean part by weight.

[Wettable powder]

45	The compound of the present invention Solid carrier Surfactant Others	5 - 80 parts 10 - 85 parts 1 - 10 parts 1 - 5 parts
----	---	--

As the others, there may be mentioned, for example, an anticaking agent.

55

[Emulsifiable concentrate]

The compound of the present invention	1 - 30 parts
Liquid carrier	30 - 95 parts
Surfactant	5 - 15 parts

o [Flowable formulation]

5

15

20

25

35

40

45

50

The compound of the present invention	5 - 70 parts
Liquid carrier	15 - 65 parts
Surfactant	5 - 12 parts
Others	5 - 30 parts

As the others, there may be mentioned, for example, an antifreezing agent, a thickening agent, etc.

[Granular wettable formulation (Dry flowable formulation)]

The compound of the present invention	20 - 90 parts
Solid carrier	10 - 60 parts
Surfactant	1 - 20 parts

30 [Granule]

The compound of the present invention	0.01 - 10 parts
Solid carrier	90 - 99.99 parts
Others	0 - 5 parts

[Formulation example 1] Wettable powder

	Present compound D-12 Zeeklite PFP	50 parts 43 parts
Ī	(Kaolin series clay: produced by Zeeklite Kogyo K.K., tradename)	

Sorpol 5050	2 parts
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)	

55	Runox 1000C	3 parts
	(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd	

Carplex #80 (Anticaking agent)	2 parts
(White carbon: produced by Shionogi & Co., Ltd., tradename)	

The above components were uniformly mixed and pulverized to prepare a wettable powder.

[Formulation example 2] Emulsifiable concentrate

10

15

5

Present compound D-12	3 parts
Xylene	76 parts
Isophorone	15 parts
Sorpol 3005X	6 parts

The above components were uniformly mixed to prepare an emulsifiable concentrate.

[Formulation example 3] Flowable formulation

25

20

Present compound D-12	35 parts
Agrizole S-711	8 parts
(Nonionic surfactant: produced by Kao Corporation, tradename)	

30

Runox 1000C	0.5 part
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)	

35

1 % Rodopole water	20 parts
(Thickening agent: produced by Rhone-Poulenc S.A., tradename)	

40

Ethylene glycol (Antifreezing agent)	8 parts
Water	28.5 parts

The above components were uniformly mixed to prepare a flowable formulation.

[Formulation example 4] Granular wettable powder (Dry flowable formulation)

50

45

Present compound D-12	75 parts
Isobam No. 1	10 parts
(Anionic surfactant: produced by Kuraray Isopr	rene Chemical Co., Ltd., tradename)

Vanilex N	5 parts
(Anionic surfactant: produced by Sanyo	Kokusaku Pulp Co., Ltd., tradename)

Carplex #80 10 parts
(White carbon: produced by Shionogi & Co., Ltd., tradename)

The above components were uniformly mixed and finely pulverized to prepare a dry flowable formulation.

[Formulation example 5] Granule

5

10

15

20

25

30

35

40

45

50

55

Present compound D-12 0.1 part
Bentonite 55.0 parts
Talc 44.9 parts

The above components were uniformly mixed and pulverized, and then a small amount of water was added and the mixture was stirred, mixed and kneaded, and granulated by an extrusion type granulating machine and dried to prepare granule.

[Formulation example 6] Wettable powder

Present compound D-15
Zeeklite PFP

(Kaolin series clay: produced by Zeeklite Kogyo K.K., tradename)

Sorpol 5050 2 parts

(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)

Runox 1000C 3 parts

(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)

Carplex #80 (Anticaking agent) 2 parts
(White carbon: produced by Shionogi & Co., Ltd., tradename)

The above components were uniformly mixed and pulverized to prepare a wettable powder.

5	Present compound D-15 Xylene Isophorone Sorpol 3005X	3 parts 76 parts 15 parts 6 parts
10	(Mixture of an nonionic surfactant and ar Chemical Industry Co., Ltd., tradename)	anionic surfactant: produced by Toho

The above components were uniformly mixed to prepare an emulsifiable concentrate.

[Formulation example 8] Flowable formulation

Present compound D-15	35 parts
Agrizole S-711	8 parts
(Nonionic surfactant: produced by Kao Corporation, tradename)	

	Runox 1000C	0.5 part
Į	(Anionic surfactant: produced by Toho Che	emical Industry Co., Ltd., tradename)

30	1 % Rodopole water	20 parts (Thickening agent: produced by Rhone-Poulenc S.A., tradename	∌)
			_

Ethylene glycol (Antifreezing agent) Water	8 parts 28.5 parts

The above components were uniformly mixed to prepare a flowable formulation.

[Formulation example 9] Granular wettable powder (Dry flowable formulation)

45	Present compound D-15 Isobam No. 1	75 parts 10 parts
(Anionic surfactant: produced by Kuraray Isoprene Chemical Co.		e Chemical Co., Ltd., tradename)

50	Vanilex N	5 parts	
	(Anionic surfactant: produced by Sanyo	Kokusaku Pulp Co., Ltd., tradename)	

55	Carplex #80	10 parts
	(White carbon: produced by Shio	nogi & Co., Ltd., tradename)

20

25

The above components were uniformly mixed and finely pulverized to prepare a dry flowable formulation.

[Formulation example 10] Granule

5

10

15

20

25

30

40

45

50

Present compound D-15	0.1 part
Bentonite	55.0 parts
Talc	44.9 parts

The above components were uniformly mixed and pulverized, and then a small amount of water was added and the mixture was stirred, mixed and kneaded, and granulated by an extrusion type granulating machine and dried to prepare granule.

[Formulation example 11] Wettable powder

Present compound D-16 Zeeklite PFP	50 parts 43 parts	
(Kaolin series clay: produced by Zeeklite Kogyo K.K., tradename)		

	Sorpol 5050	•	* *	2 parts
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)				

Runox 1000C	3 parts		
(Anionic surfactant: produced by Toho Che	(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)		

Carplex #80 (Anticaking agent)	2 parts	
(White carbon: produced by Shionogi & Co., Ltd., tradename)		

The above components were uniformly mixed and pulverized to prepare a wettable powder.

[Formulation example 12] Emulsifiable concentrate

Present compound D-16	3 parts
Xylene	76 parts
Isophorone	15 parts
Sorpol 3005X	6 parts

The above components were uniformly mixed to prepare an emulsifiable concentrate.

[Formulation example 13] Flowable formulation

5

10

15

20

25

45

50

55

Present compound D-16	35 parts
Agrizole S-711	8 parts
(Nonionic surfactant: produced by Kao Co	rporation, tradename)

Runox 1000C	0.5 part	
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)		

1 % Rodopole water	20 parts
(Thickening agent: produced by Rhone	-Poulenc S.A., tradename)

Ethylene glycol (Antifreezing agent) Water	8 parts 28.5 parts

The above components were uniformly mixed to prepare a flowable formulation.

[Formulation example 14] Granular wettable powder (Dry flowable formulation)

30		
	Present compound D-16 Isobam No. 1	75 parts 10 parts
(Anionic surfactant: produced by Kuraray Isoprene Chemical Co., Ltd.		e Chemical Co., Ltd., tradename)
35		

Vanilex N	5 parts	
(Anionic surfactant: produced by Sanyo Kokusaku Pulp Co., Ltd., tradename)		

Carplex #80	10 parts	
(White carbon: produced by Shionogi & Co., Ltd., tradename)		

The above components were uniformly mixed and finely pulverized to prepare a wettable powder.

[Formulation example 15] Granule

Present compound D-16	0.1 part
Bentonite	55.0 parts
Talc	44.9 parts

The above components were uniformly mixed and pulverized, and then a small amount of water was added and the mixture was stirred, mixed and kneaded, and granulated by an extrusion type granulating

machine and dried to prepare granule.

[Formulation example 16] Wettable powder

4	۰	•	

Present compound D-22	50 parts
Zeeklite PFP	43 parts
(Kaolin series clay: produced by Zeeklite Kogyo K.K., tradename)	

10

Sorpol 5050	2 parts
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)	

20

15

Runox 1000C	3 parts
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)	

25

Carplex #80 (Anticaking agent)	2 parts	
(White carbon: produced by Shionogi & Co., Ltd., tradename)		

The above components were uniformly mixed and pulverized to prepare a wettable powder.

30 [Formulation example 17] Emulsifiable concentrate

Present compound D-22	3 parts
Xylene	76 parts
Isophorone	15 parts
Sorpol 3005X	6 parts

40

35

The above components were uniformly mixed to prepare an emulsifiable concentrate.

[Formulation example 18] Flowable formulation

45

Present compound D-22	35 parts
Agrizole S-711	8 parts
(Nonionic surfactant: produced by Kao Corporation, tradename)	

50

Runox 1000C	0.5 part
(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)	

1 % Rodopole water	20 parts
(Thickening agent: produced by Rhone-Poulenc S.A., tradename)	

5

Ethylene glycol (Antifreezing agent)	8 parts
Water	28.5 parts

The above components were uniformly mixed to prepare a flowable formulation.

[Formulation example 19] Granular wettable powder (Dry flowable formulation)

15

10

Present compound D-22	75 parts
Isobam No. 1	10 parts
(Anionic surfactant: produced by Kuraray Isoprene Chemical Co., Ltd., tradename)	

20

Vanilex N	5 parts
(Anionic surfactant: produced by Sanyo	Kokusaku Pulp Co., Ltd., tradename)

25

Carplex #80	10 parts
(White carbon: produced by Shio	nogi & Co., Ltd., tradename)

30

The above components were uniformly mixed and finely pulverized to prepare a wettable powder.

[Formulation example 20] Granule

35

Present compound D-22	0.1 part
Bentonite	55.0 parts
Talc	44.9 parts

40

The above components were uniformly mixed and pulverized, and then a small amount of water was added and the mixture was stirred, mixed and kneaded, and granulated by an extrusion type granulating machine and dried to prepare granule.

_

[Formulation example 21] Wettable powder

50

45

Present compound D-24 Zeeklite PFP	50 parts 43 parts
(Kaolin series clay: produced by Zeeklite	Kogyo K.K., tradename)

Sorpol 5050	2 parts
(Anionic surfactant: produced by Toho Ch	emical Industry Co., Ltd., tradename)

Runox 1000C 3 parts

(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)

Carplex #80 (Anticaking agent) 2 parts
(White carbon: produced by Shionogi & Co., Ltd., tradename)

The above components were uniformly mixed and pulverized to prepare a wettable powder.

[Formulation example 22] Emulsifiable concentrate

5

10 .

15

20

25

35

40

45

50

55

Present compound D-24

Xylene
Isophorone
Sorpol 3005X

(Mixture of an nonionic surfactant and an anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)

30 The above components were uniformly mixed to prepare an emulsifiable concentrate.

[Formulation example 23] Flowable formulation

Present compound D-24	35 parts
Agrizole S-711	8 parts
(Nonionic surfactant: produced by Kao	Corporation, tradename)

Runox 1000C 0.5 part

(Anionic surfactant: produced by Toho Chemical Industry Co., Ltd., tradename)

1 % Rodopole water	20 parts
(Thickening agent: produced by Rho	ne-Poulenc S.A., tradename)

Ethylene glycol (Antifreezing agent)	8 parts
Water	28.5 parts

The above components were uniformly mixed to prepare a flowable formulation.

[Formulation example 24] Granular wettable powder (Dry flowable formulation)

Present compound D-24 75 parts
Isobam No. 1 10 parts

(Anionic surfactant: produced by Kuraray Isoprene Chemical Co., Ltd., tradename)

Vanilex N 5 parts

(Anionic surfactant: produced by Sanyo Kokusaku Pulp Co., Ltd., tradename)

Carplex #80 10 parts
(White carbon: produced by Shionogi & Co., Ltd., tradename)

The above components were uniformly mixed and finely pulverized to prepare a wettable powder.

[Formulation example 25] Granule

25

40

20

5

10

15

Present compound D-24	0.1 part
Bentonite	55.0 parts
Talc	44.9 parts

The above components were uniformly mixed and pulverized, and then a small amount of water was added and the mixture was stirred, mixed and kneaded, and granulated by an extrusion type granulating machine and dried to prepare granule.

For practical use, the wettable powder, the emulsifiable concentrate, the flowable formulation and the granular wettable powder are diluted 50 to 1000-fold with water and applied so that the dose of an effective component is 0.0001 to 10 kg per one hectare (ha).

Next, availability of the compounds of the present invention as a herbicide is explained specifically by referring to the following test examples.

[Test example 1] Test of herbicidal effect by soil treatment

In a plastic box having a length of 15 cm, a width of 22 cm and a depth of 6 cm was charged a sterilized diluvial soil, and Echinochloa crus-galli (barnyardgrass), Digitaria adscendens (Crabgrass), Cyperus microira (annual sedge), Solanum nigrum (black nightshade), Galinsoga ciliata (hairy galinsoga), Rorippa indica (indian field cress), rice, corn, wheat, soybean and cotton were sewed mixedly and after covering with soil about 1 cm, chemicals were applied uniformly using a small sized spray on the surface of the soil so that the dose of the effective ingredient is as predetermined. The chemical liquor at applying was used by diluting the preparation prepared according to the above formulation examples, etc., with water and this was applied. After 3 weeks from the application of the chemical liquor, herbicidal effect against respective weeds and crops were examined according to the following judgement standard. The results are shown in Table 3.

Judgement standard

- Weed killing rate 90 % or more (substantially completely killed)
- 4 Weed killing rate 70 to 90 %
- 3 Weed killing rate 40 to 70 %
- 2 Weed killing rate 20 to 40 %
- 1 Weed killing rate 5 to 20 %

0 Weed killing rate 5 % or lower (substantially no effect)

The above weed killing rate was obtained by the following equation by after measuring an above-ground green forage weight in the chemical treated area and an above-ground green forage weight in the non-treated area.

Weed killing rate = (1 - (above-ground green forage weight in chemical treated area/above-ground green forage weight in non-treated area)) x 100

[Test example 2] Test of herbicidal effect by foliar treatment

10

5

In a plastic box having a length of 15 cm, a width of 22 cm and a depth of 6 cm was charged a sterilized diluvial soil, and seeds of Echinochloa crus-galli (barnyardgrass), Digitaria adscendens - (Crabgrass), Cyperus microira (annual sedge), Solanum nigrum (black nightshade), Galinsoga ciliata (hairy galinsoga), Rorippa indica (indian field cress), rice, corn, wheat, soybean, cotton and sugar beet were spot-sewed and after covering with soil about 1 cm. Each kinds of plants were reached to 2 to 3-leaf stage, chemicals were applied uniformly to the foliar portion so that the dose of the effective ingredient is as predetermined.

The chemical liquor at applying was used by diluting the preparation prepared according to the above formulation examples, etc., with water and this was applied using a small sized spray to whole surface of the foilar portion. After 4 weeks from the application of the chemical liquor, herbicidal effect against respective weeds and crops were examined according to the judgement standard in Test example

- 1. The results are shown in Table 4.
- 5 [Test example 3] Test of herbicidal effect under watering condition

In 1/5000 are Wagner pot was placed a diluvial soil and water was charged therein and mixed to make a watering condition with a water depth of 2 cm. Each seed of Echinochloa crus-galli (barnyardgrass), Monochoria vaginalis (ducksalad), Rotala indica (toothcap) and Scirpus juncoides (bulrush) was sewed mixedly in the above pot. Also, root of Sagittaria pygmaea (arrowhead) and Cyperus serotinus (perennial flat sedge) were placed therein and rice seedlings at 2.5-leaf stage was transplanted. The pot was placed in a green house at 25 to 30 °C to grow plants, and 2 days after sewing, diluted chemical solution was added dropwise to the water surface with a messpipet so that the dose of the chemical as predetermined. After 3 weeks from the dropping of the chemical liquor, herbicidal effect against respective weeds and crops were examined according to the judgement standard in Test example 1. The results are shown in Table 5.

Symbols in the respective tables mean as shown below.

- N: Echinochloa crus-galli (barnyardgrass)
- M: Digitaria adscendens (crabgrass)
- K: Cyperus microiria (annual sedge)
- H: Solanum nigrum (black nightshade)
 - D: Galinsoga ciliata (hairy galinsoga)
 - I: Rorippa indica (Indian field grass)
 - R: rice
 - T: corn
 - W: wheat
 - S: soybean
 - C: cotton
 - B: sugar beet
 - a: Scirpus juncoides (bulrush)
 - b: Monochoria vaginalis (ducksalad)
 - c: Rotala indica (toothcap)
 - d: Sagittaria pygmaea (arrowhead)
 - e: Cyperus serotinus (perennial flat sedge)
 - f: transplanted rice

55

40

45

Table 3

5														
-	Compound	Dose	N	M	K	Н	D	I	R	Ţ	W	\$	С	
10	D - 1	0.4	3	2	5	5	5	5	0	0	0	0	1	_
	D - 2	0.4	3	2	5	5	2	5	1	0	0	0	0	
15	D - 3	0.4	2	3	5	5	5	5	0	0	0	0	0	
	· D - 4	0.4	4	5	5	5	5	5	0	0	0	0	0	
20	D - 5	0.4	2	4	5	5	5	5	1	0	0	0	1	
	D - 6	0.4	2	3	4	5	5	5	0	0	0	0	i	
25	D - 7	0.4	4	3	5	5	5	5	1	0	0	0	0	
	D - 8	0.4	2	2	4	5	5	5	0	. 0	0	0	0	
30	D - 9	0.4	2	4	5	5	5	5	0	Û	. 0	0	0 .	
	D - 1 0	0.4	1	2	4	5	5	5	0	0	0	0	0	
35	D - 1 1	0.4	2	2	3	5	5	5	0	0	0	0	0	
	D - 1 2	0.4	4	5	5	5	5	5	1	0	. 0	0	2 .	
40	D - 1 3	0.4	2	4	4	5	5	5	0	0	0	0	1	
	D - 1 4	0.1	5	5	5	5	5	5	1	0	0	0	0	
4E	D - 1 5	0.4	4	5	5	5	5	5 .	1	1	0	1	2	
45	D - 1 6	0.1	1	3	5	5	5	5	1	0	Ö	0	0	
	D - 17	0.4	1	2	1	5	4	5	0	0	0	0	1	
50	D - 18	0.4	2	1	5	5	5	5	0	0	0	0	0	

Table 3 (Contd.)

5	Compound	Dose											
	No.	(g/a)	N	M	K	H	D	j	R	T	W	S	C
10	D - 1 9	0.4	3	4	5	5	5	5	0	0	0	0	0
	D - 2 0	0.1	3	5	5	5	5	5	1	0	0	0	1
15	D - 2 1	0.4	3	5	5	5	5	5	0	0	0	ı	2
	D - 2 2	0.1	5	5,	5	5	5	5	1	1	1	0	0
20	D - 2 3	0.1	4	5	5.	จ์	5	5	0	1	0	0	1
20	D - 2 4	0.1	4	5	5	5	5	5	1	0	1	0	1
	D - 2 5	0.1	3	4	5	5	5	5	1	0	0	0	1 .
25	D - 2 6	0.1	3	4	5	5.	5	5	0	0	0	0	0
	D - 2 7	0.1	4	3	5	ā	5	5	0	1	0	0	1
30	D - 2 8	0.1	3	4	5 ·	5	5	5	0	0	0	0	0
	D - 2 9	0.4	1	2	2	5	5	5	0	0	0	0	0
35	D - 3 0	0.4	3	.4	5	5	5	5	i	0	1	0	1
•	D - 3 1	0.4	4	5	5	5	5	5	0 .	0	0	0	0.
40	D - 3 2	0.4	2	3	5	5	5	5	0	0	0	0	0
	D - 3 3	0.4	1.	2	3	4	5 .	5	0	0	0	0	0
45	D - 3 4	0.4	1	2	4	5	5	5	0	0	0.	0	0
	D - 3 5	0.4	1	3	5	5	3	5	0	. 0	0	0	0
50	D - 3 6	1.6	1	2	5	ā	3	5	0	0	0	0	0

Table 3 (Contd.)

5	Compound	Dose											
	No.	(g/a)	N	M	K	H	D	I	R	T	W	S	C
10	D - 3 7	1.6	2	3	5	5	5	5	1	0	0	0	0
	D - 3 8	1.6	2	4	5	5	5	5	0	0	0	0	0
15	D - 3 9	1.6	4	5	5	5	5	5	0	0	0	1	1
	D - 4 0	1.6	3	4	5	5	5	5	0	1	1	0	1
20	D - 4 1	0.4	3	4	5	5	5	5	0	0	0	0	0
	D - 4 2	1.6	2	4	5	5	5.	5	0	0	0	0	0
25	D - 4 3	1.6	3	4	5	5	5	5	0	0	0	0	0
20	D - 4 4	0.4	3	4	5	5	5	5	0	.0	0	0	0
	D - 4 8	0.4	1	1	5	5	5	5	0	0	0	0	0
30	D - 4 9	0.4	1	3	5	5	5	5	I	0	0	0	0
	D - 5 0	0.4	4	4	5	5	5	5	2	0	1	0	0
35	D - 5 1	0.4	3	3	5	5	5	5	0	. 0	0	0	0
	D - 5 2	0.4	2	2	5	5	2	5	0	0	0	0	0
40	D - 5 3	0.4	3	3	5	5	5	5	ı	0	i	0	0
	D - 5 4	0.4	1	2	4	5	5	5	0	1	1	i	0
5	D - 5 5	0.4	0	1	2	5	5	5	0	0	o.	0	0
	D - 5 6	0.4	i	1	5	5	5	5	0	. 0	0	0	0
)	D - 5 7	0.4	i	1	5	5	5	5	0	0	0	0	0

Table 3 (Contd.)

Compound	Dose (g/a)	N	M	K	H	D	i	R	T	W	S	С
D - 5 8	0.4	4	5	5	5	5	5	0	0	1	1	1
D - 5 9	0.4	4	5	5	5	5	5	0	1	i	1	1
D - 6 0	0.4	2	4	5	5	3	5	0	0	0	0	0
D - 6 1	0.1	. 5	5	5	5	5	5	3	2	2	1	2
D - 6 2	0.4	4	4	5	5	5	5	1	0	0	0	2
D - 6 3	0.4	3	2	5	5	5	5	0	0	0	0	0
D - 6 4	0.4	2	1	5	5	5	5	0	0	0	0	0
D - 6 5	0.4	1	2	5	5	5	5	0	0	1	0	0
D - 6 6	0.1	5	5	5	5	5	5	0	0	0	0	0
D - 6 7	0.1	1	2	5	5	5	5	0	0	0	0	0
D - 6 8	0.4	5	5	5	5	5	5	1	0	0	2	2
D - 6 9	0.4	5	5	5	5	5	5	0	0	3	0	3
D - 7 0	1.6	4	5	5	5	5	5	0	0	0	0	0
D - 7 1	1.6	0	2	5	5	5	5	0	0	0	0	1
D - 7 2	1.6	4	4	5	5	5	5	0 -	0	0	0	0
D - 7 3	1.6	5	5	5	5	5	5	0	0	Í	0	0
D - 7 4	0.4	5	5	5	5	5	5	1	1	0	1	1
D - 7 5	1.6	5	5	5	5	5	5	1	1	1	i	1

Table 3 (Contd.)

_														
5	Compound No.	Dose _(g/a)	N	M	K	Н	D	ī	R	T	W	s	С	
10	D - 7 6	0.4	5	5	5	5	5	5	0	0	0	0	0	_
	D - 7 7	0.4	5	5	5	5	5	5	0	0	0	0	0	
15	D - 7 8	0.4	5	5	5	5	5	5	1	2	1	3	3	
	D - 7 9	1.6	5	5	5	5	5	5	2	1	0	3	1	
20	D - 8 0	0.4	5	5	5	5	5	5	0	0	0	0	0	
	D - 8 1	1.6	2	3	5	5	5	5	1	0	0	0	0	
25	D - 8 2	0.4	5	5	5	5	5	5	3	1	2	1	0	
20	D - 8 3	1.6	2	5	5	5	5	5	0	0	0	3	3	
	D - 8 4	1.6	3	5	5	5	5	5	1	0	0	0	0	
30	D - 8 5	1.6	4	4	5	5	4	5	0	0	0	0	0	
	D - 8 6	0.4	5	5	5	5	5	5	0	1	0	0	0	
35	D - 8 7	1.6	2	2	4	5	3	5	0	0	0	0	0	
	D - 8 8	0.4	1	2	5	5	5	5	0	0	0	0	0	
40	D - 8 9	0.1	2	4	5	5	5	5	0	0	0	0	0	
	D - 9 0	1.6	5	5	5	5	5	5	0	0	0	0	0	•
4 5	D - 9 1	0.4	5	5	5	5	5	5	1	ı	0.	1	i	
	D - 9 2	0.4	3	1	5	5	5	5	0	0	0	0	1	
50	D - 9 3	1.6	5	5	5	5	5	5	0	0	0	0	0.	

Table 3 (Contd.)

Compound	Dose				••					***		
No.	(q/a)	N	Ħ	K	H 	D		K			2	C
D - 9 4	1.6	2	5	5	5	5	5	1	0	1	0	0
D - 9 5	6.3	2	5	5	5	5	5	1	0	0	0	5
D - 9 6	1.6	5	5	5	5	5	5	2	0	2	2	2
D - 9 7	0.4	5	5	5	5	5	5	0	0	0	0	3
D - 9 8	0.4	5	5	5	5	5	5	0	0	0	0	1

Table 4

5	Compound	Dose						- 			-				
	No	(g/a)	N	M	K	H	D	1	R	T	¥	S	C	В	
10	D - 1	0.4	2	1	5	5	5	5	1	1	0 .	4	5	5	-
	D - 2	0.4	2	1	5	5	3	2	0	2	0	3	4	5	
15	D - 3	0.4	2	i	5	5	5	5	0	1	0	3	5	. 5	
	D - 4	0.4	4	5	5	5	5	5	1	3	0	5	5	5 .	
20	D - 5	0.4	2	3	5	5	5	5	1	2	0	4	4	5	
	D - 6	0.4	2	3	5	5	5	. 5	1	1	0	4	5	5	
25	D - 7	0.4	3	3	5	5	5	5 ·	2	2	0	5	5	5	
	D - 8	0.4	2	1	5	5	5	5	. 0	0.	0	3	5	5	
30	D - 9	0.4	2	3	5	5	5	5	i	2	0	3	4	5	
	D - 1 0	0.4	2	2	5	. 5	5	5	0	0	0	2	5	5	
35	D-11	0.4	3	3	5	5 .	5	4	1	2	1	4	4	4	
	D - 1 2	0.1	4	3	5	5	5	5	0	2	0	3	4	5.	
40	D - 1 3	0.4	2	1	5	5	5	. 4	0	2	1	2	5	5	
40	D - 1 4	0.1	3	2	5	5	5	5	1	2	1	5	5	. 5	
	D - 1 5	0.4	2	3	5	5	5	5	1	2	0	5	5	5	
45	D - 1 6	0.1	2	2	4	5	5	2	1	1	0	2	5	5	
	D - 1 7	1.6	1	2	1	5	5	5	0	0	0	3	2	3	
50	D - 1 8	0.4	2	2	5	5	5	5	0	0	0	3	5	5	

Table 4 (Contd.)

	Compound	Dose	,											
	No.	(g/a)	H	M	K	H	D	i	R	T	¥	S	C	В
D	-19	1.6	4	2	.5	5	5	5	0	1	2	4	5	4
D	- 2 0	0.4	3	4	5	5	5	5	2	3	1	3	4	4
D	- 2 1	0.4	2	2	2	5	5	3	0	0	0	3	2	3
D	- 2 2	0.1	2	3	5	5	5	5	1	2	0	5	5	5
D	- 2 3	0.1	2	5	5 -	5	5	5	1	2	. 0	5	5 .	5
D	- 2 4	0.1	2	3	5	5	5	4	1	1	2	4	5	5
D	- 2 5	0.1	2	4	5	5	5	4	1	2	1	4	5	5
D	- 2 6	0.1	2	3	5	5	5	4	1	1	0	4	5	5
D	- 2 7	0.1	3	3	5	5	5	4	1	1	1	-5	5	5
D	- 2 8	0.1	2	. 3	5 [.]	5	5	5	1	1	0	5	5	5
D	- 2 9.	0.4	2	3	5	5	5	5	0	0	0	2	4	3
D.	- 3 0	0.4	4	3	5	5	5	5	1	1	0	4	5	5
D	- 3 1	0.4	3	2	5	5	5	. 5	0	1	0	3	5	5
D	- 3 2	0.4	2	2	5	5	5	5	0	1	0	2	5	4
D	- 3 3	1.6	4	2	2	5	5	5	i	0	0	4	5	5
D	- 3 4	1.6	2	2	5	5	5	5	i	2	1	4	5	5
D	- 3 5	0.4	2	3	5	5	5	5	0	0	0	- 3	2	2
D	- 3 6	0.4	2	2	5	5	5	3	Ó	0	0	3	5	3

Table 4 (Contd.)

5	CompoundNo.	Dose (g/a)	N	И	K	Н	D	i	R	Ţ	¥	s	С	В
10	D - 3 7	0.4	2	3	5	5	5	2	0	0	0	3	5	5
	D - 3 8	0.4	2	2	5	5	5	4	0	1	0	4	5	5
15	D - 3 9	1.6	3	4	5	5	5	5	0	2	0	5	5	5
	D - 4 0	1.6	2	3	5	5	5	5	0	2	1	4	5	5
20	D - 4 1	0.4	3	4	2	5	5	5	1	3	0	5	4	3
	D - 4 2	1.6	2	2	5	5	5	5	0	1	0	2	4	3
25	D - 4 3	1.6	3	2	5	5	5	4	1	1	0	2	5	5
25	D - 4 4	0.4	1	2	2	5	\$	5	0	0.	0	2	3	3
	D - 4 8	0.4	i	1	5	5	5	5	0	0	0	2	5	3
30	D - 4 9	0.4	2	1	5	5	5	5	1	2	ı	5	5	5
	D - 5 0	0.4	2	1	5	5	5	5	2	2	1	4	5	5
35	D - 5 1	0.4	5	2	5	5	5	5	1	4	4	5	5	5
	D - 5 2	0.4	4	2	5	5	5	5	1	3	1	5	5	5
40	D - 5 3	0.4	5	2	5	5	5	5	1	3	1	5	5	5
	D - 5 4	0.4	2	1	5	5	5	5	1	3	1	5	5	5
45	D - 5 6	0.4	1	ı	5	5	5	2	0	0	0.	3	5	5
	D - 5 7	1.6	1	1	5	5	5	ā	0	1	1	1	5	4
50	D - 5 8	0.4	2	4	5	5	5	5	Ö	1	1	4	5	5
50	D - 5 7	1.6	1	1	5	5	5	õ	0	1	1	1		5

Table 4 (Contd.)

Compound	Dose				•								•
No.	(g/a)	N	K	K	H	D	l	R	Ť	W	\$	C	
D - 5 9	1.6	3	4	5	5	5	5	2	2	1	5	5	
D - 6 0	1.6	2	3	5	5	4	3	1	2	1	5	5	
D - 6 1	0.1	2	1	5	5	5	5	2	3	2	3	5	
D - 6 2	0.4	2	1	5	5	5	5	1	2	1	5	5	
D - 6 3	0.4	2	2	5	5	5	5	1	2	1	3	5	
D - 6 4	0.4	2	1	5	5	5	5	i	3	1	4	5	
D - 6 5	0.4	2	1	5	5	5	5	1	3	2	5	5	
D - 6 6	0.1	3	2	5	5	5	5	1	2	0	5	3	
D - 6 7	0.1	1	1	5	5	5	5	0	2	1	4	5	
D - 6 8	0.4	3	1	ż	5	5	5	0	0	0	3	3	
D - 6 9	0.4	٦4.	0	2	5	5	5	1	3	3	5	5	
D - 7 0	1.6	· 1	1	2	5	5	- 5	1	3	0	i	2	
D - 7 1	1.6	0	0	2	5	5	5	0	2	0	4	3	
D - 7 2	1.6	2	0	2	5	5	4	1	1	0	3	3	
D - 7 3	1.6	3	0	2	5	5	5	1	2	1	3	3	
D - 7 4	0.4	2	0	1	5	5	5	1	ı	ľ	. 3	3	
D - 7 5	1.6	4	0	0	5	4	4	1	3	1	3	3	
D - 7 6	0.4	2	0	1	5	5	5	0	2	0	2	4	

Table 4 (Contd.)

Compound	Dose												·
No.	(q/a)	N	M	K .	H	D	I	R	Ţ	W	S	C	В
D - 7 7	0.4	3	0	2	5	5	5	0	2	0	5	3	2
D - 7 8	0.4	3	0	2	5	5	5	1	3	1	3	3	2
D - 7 9	1.6	5	i	5	5	5	5	2	4	1	4	ā	2
D - 8 0	0.4	4	0	3	5	5	5	1	2	0	3	3	1
D - 8 1	1.6	1	0	1	5	5	5	1	1	0	3	3	1
D - 8 2	0.4	4	1	2	5	5	4	2	3	1	4	3	1
D - 8 3	1.6	1	1	3	5	5	5	1	2	0	4	4	i
D - 8 4	1.6	2	1	0	5	5	5	3	1	1	2	3	2
D - 8 5	1.6	0	0	0	5	4	5	0	0	0	i	0	0
D - 8 6	0.4	1	0	i	5	4	3	0	2	0	ı	2	0
D - 8 7	1.6	0	0	1	5	. 4	5	0	1	0	0	1	0
D - 8 8	0.4	1	1	4	5	5	5	0	0	0	2 .	2	2
D - 8 9	0.1	2	i	4	5	5	5	0	0	0	4	3	2
D - 9 0	1.6	i	1	2	5	5	5	1	1	0	3	3	3
D - 9 1	0.4	4	1	2	5	5	5	1	1.	0	4	3	2
D - 9 2	0.4	1	1	2	5	5	5	0	1	0	2	5	2
D - 9 3	1.6	1	1	1	5	5	5	0	0	0	3	3	3
D - 9 4	1.6	2	3	3	5	5	5	1	1	2	3	5	0

Table 4 (Contd.)

5	Compound	Dose							_				_	
	No.	(q/a)	N	M	K	H 	D	I	R		W	<u> </u>		B
10	D - 9 5	6.3	2	1	3	5	5	5	0	0	0	2	5	2
	D - 9 6	1.6	- 5	2	5	5	5	5	2	0	2	3	5	3
15	D - 9 7	0.4	5	2	5	5	5	5	5	0	4	5	5	5
	D - 9 8	0.4	5	3	5	5	5	5	5	0	5	4	5	5

Table 5

5	Compound	Dose								_
	No.	(g/a)	N	3	b	c	d	e	f	
10	D - 3 1	0.4	5	5	5	5	4	5	0	-
	D - 5 3	0.4	5	5	5	5	4	5	0	
15	D - 5 4	0.4	5	5	5	5	5	5	0	
	D - 6 1	0.4	5	5	5	5	5	5	0	
20	D - 6 2	0.4	5	5	5	5	5	5	0	
	D - 6 3	0.4	5	5	5	5	5	5	0	
	D - 6 4	0.4	5	5	5	5	5	5	0	
25	D - 6 5	0.4	5	5	5	5	5	5	0	
	D - 6 6	0.4	5	5	5	5	5	5	0	
30	D - 6 7	0.4	5	. 5	5	5	5	5	0	
	D - 6 9	0.4	5	5	5	5	5	5	0	
35	D - 7 0°	0.4	. 5	5	5	5	4	5	0	
	D - 7 6	0.4	5	5	5	5	4	5	0	
40	D - 7 7	0.4	5	5	5	5	5	5	0	
	D - 8 0	0.4	5	4	5	5	5	5	0	
45	D - 8 2	0.4	5	5	5	5	5	4.	0	
	D - 8 9	0.4	5	4	5	5	5	5	0	
50	D - 9 1	0.4	5	5	5	5	5	4	0	
	D - 9 6	0.4	5	5	5	5	5	4	0	

55 (Utilizability in industry)

The uracil derivative represented by the formula (I) of the present invention can be used for important crops with safety and shows high herbicidal effect agains many weeds with low dose, and is available as an

active ingredient for a selective herbicide.

Claims

10

15

20

25

30

35

45

50

55

1. An uracil derivative represented by the formula (1):

in which

R1 represents a hydrogen atom, a C1 to C3 alkyl group or a C1 to C3 haloalkyl group;

R² represents a C₁ to C₆ haloalkyl group;

 R^3 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_1 to C_6 haloalkyl group, a hydroxymethyl group, a halogen atom or nitro group;

R4 represents a hydrogen atom or a halogen atom;

R⁵ represents a hydrogen atom, a halogen atom, a nitro group or a cyano group;

X represents an oxygen atom or a sulfur atom;

 D_a and D_b each independently represents a hydrogen atom, a C_1 to C_8 alkyl group, a C_1 to C_6 haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_2 to C_8 alkenyl group, a C_3 to C_8 alkynyl group, a C_2 to C_8 haloalkenyl group, a C_3 to C_8 haloalkynyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, a C_3 to C_8 halocycloalkyl group, CH(OH)CCI₃,

Ar in which Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more substituents,

-L¹-Ar in which Ar has the same meaning as above, and L¹ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkynyl chain each of which may be branched,

Het in which Het represents a 5-membered heterocyclic residue, a 6-membered heterocyclic residue or a fused heterocyclic residue each of which contains, as a ring constituent atom, at least one atom selected from a sulfur atom, an oxygen atom and a nitrogen atom and may be substituted by one or two or more substituents,

-L1-Het in which Het and L1 have the same meanings as above.

-L²-D⁵² in which D⁵² represents a hydrogen atom, a C₁ to C₂₀ alkyl group, a C₁ to C₂₀ haloalkyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₈ alkenyl group, a C₃ to C₈ haloalkenyl group, a C₃ to C₈ haloalkynyl group, a C₃ to C₈ haloalkyl group, a C₃ to C₈ halocycloalkyl group, a C₃ to C₄ alkoxy(C₁ to C₄)alkyl group,

Ar (Ar has the same meaning as above), -L¹-Ar group (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) or -L¹-Het (Het and L¹ have the same meanings as above), and L² represents -C(O)-, -C(S)-, -SO₂-, -S(O)-, -S-, -O-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S- or - C(O)C-(O)O-,

-L³-O-D⁵² in which D⁵² has the same meaning as above, and L³ represents a C₁ to C₆ alkyl chain, a C₂ to C₆ alkenyl chain or a C₂ to C₆ alkynyl chain, each of which may be substituted by one or two or more substituents and may be branched, and the substituent may be selected from a C₁ to C₄ alkyloxycarbonyl group, a C₁ to C₄ haloalkyl group, a C₁ to C₄ alkoxy(C₁ to C₄)alkyl group, a C₁ to C₄ alkylthio group, Ar (Ar has the same meaning as above), -L¹-Ar (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) and -L¹-Het (Het and L¹ have the same meanings as above)

-L3-S-D52 in which D52 and L3 have the same meanings as above,

-L3-C(O)-D52 in which D52 and L3 have the same meanings as above,

-L3-C(S)-D52 in which D52 and L3 have the same meanings as above,

- -L3-C(O)O-D52 in which D52 and L3 have the same meanings as above, -O-L3-C(O)O-D52 in which D52 and L3 have the same meanings as above, -L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,
- -O-L3-C(O)S-D52 in which D52 and L3 have the same meanings as above,
- -C(O)-ND⁵²D⁵³ in which D⁵² has the same meaning as above, and D⁵³ represents a hydrogen atom, a 5 C₁ to C₈ alkyl group,
 - a C_1 to C_8 haloalkyl group, a C_1 to C_6 alkoxy group, a C_1 to C_6 alkylcarbonyl group, a C_1 to C_6 haloalkylcarbonyl group,
 - a C1 to C6 alkoxycarbonyl group, a C1 to C6 alkylsulfonyl group, a C1 to C6 haloalkylsulfonyl group, Ar (Ar has the same meaning as above), -L1-Ar group (Ar and L1 have the same meanings as above), -C-(O)-Ar (Ar has the same meaning as above), -C(S)-Ar (Ar has the same meaning as above) or -SO2-Ar (Ar has the same meaning as above), and alternatively D52 and D53 together with a nitrogen atom to which they are attached may form a 5- to 7-membered ring, and the ring constituent atoms are selected from a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom,
- -C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above, 15
 - -L3-C(O)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
 - -L3-C(S)-ND52D53 in which D52, D53 and L3 have the same meanings as above,
 - -SO₂-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -SO₂O-D⁵³ in which D⁵³ has the same meanings as above, -SO₂O-Si(CH₃)₃,
 - -SO₂-L¹-Si(CH3)₃ in which L¹ has the same meaning as above, -SO₂CH₂SO₂CH₃,
 - -P(O)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(O)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(O)(OD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -P(O)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,

 - -P(S)(OD 52)(OD 53) in which D 52 and D 53 have the same meanings as above,
 - -P(S)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above,
 - -P(S)(OD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -P(S)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -L³-P(O)(OD⁵²)(OD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above,
 - -L3-P(O)(OD52)(SD53) in which D52, D53 and L3 have the same meanings as above,
 - -L³-P(O)(OD⁵2)D⁵3 in which D⁵2, D⁵3 and L³ have the same meanings as above,
 - -L3-P(O)(SD52)D53 in which D52, D53 and L3 have the same meanings as above,
 - -L3-P(S)(OD52)(OD53) in which D52, D53 and L3 have the same meanings as above,
 - -L³-P(S)(OD⁵²)(SD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above,
 - -L³-P(S)(OD⁵²)D⁵³ in which D⁵², D⁵³ and L³ have the same meanings as above,
 - -L³-P(S)(SD 52)D 53 in which D 52 , D 53 and L³ have the same meanings as above,
 - -C(D⁵³)(P(O)(OD⁵²)₂)₂ in which D⁵² and D⁵³ have the same meanings as above,
 - = CD⁵²D⁵⁴ in which D⁵² has the same meaning as above, and D⁵⁴ represents a hydrogen atom, a halogen atom, a C1 to C6 alkyl group, a C1 to C6 alkoxy group, a C1 to C6 alkylthio group or Ar (Ar has the same meaning as above),
 - -L3-CN in which L3 has the same meaning as above,
 - -ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,
 - -CH = N-O-D⁵² in which D⁵² has the same meaning as above,
 - = CD^{54} - $ND^{52}D^{53}$ in which D^{52} , D^{53} and D^{54} have the same meanings as above,
- -L2-D55 in which L2 has the same meaning as above, and D55 represents a C_1 to C_6 alkyl group, a C_2 45 to C₆ alkenyl group or a C₂ to C₆ alkynyl group each of which may be substituted by one or two or more of a C1 to C6 haloalkyl group or one or two or more of a C1 to C4 alkyloxycarbonyl group and may be branched, or
 - -L¹-SO₂-D⁵⁶ in which L¹ has the same meaning as above, and D⁵⁶ represents a C₁ to C₆ alkyl group; and alternatively Da and Db together with a nitrogen atom to which they are attached may form a 3- to 8-membered ring and the ring constituent atoms are selected from a carbon atom,
 - a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom, and the ring may be substituted:
- provided that except for the case where D_a and D_b both represent hydrogen atoms, the case where D_a represents -L2-D52 (L2 represents -SO2-, and D52 represents the C1 to C4 alkyl group or the C1 to C3 55 haloalkyl group) and D_b represents the hydrogen atom, the C_1 to C_4 alkyl group, the C_2 to C_5 alkenyl group, the C3 to C5 alkynyl group, the C2 to C5 acyl group, the C1 to C4 alkylsulfonyl group or a (C1 to C₃ alkoxy) C₁ to C₂ alkyl group are excluded.

10

20

25

30

35

40

2. An uracil derivative according to Claim 1, which is represented by the formula (1):

in which

5

10

15

20

25

30

35

40

45

50

55

R1 represents a hydrogen atom, a C1 to C3 alkyl group or a C1 to C3 haloalkyl group;

R² represents a C₁ to C₆ haloalkyl group;

 R^3 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_1 to C_6 haloalkyl group, a hydroxymethyl group, a halogen atom or a nitro group;

R4 represents a hydrogen atom or a halogen atom;

R⁵ represents a hydrogen atom, a halogen atom, a nitro group or a cyano group;

X represents an oxygen atom or a sulfur atom;

 D_a and D_b each independently represents a hydrogen atom, a C_1 to C_8 alkyl group, a C_1 to C_6 haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 alkynyl group, a C_2 to C_8 haloalkenyl group, a C_3 to C_8 haloalkynyl group, a C_3 to C_8 haloalkynyl group, a C_9 to C_8 halocycloalkyl group, a C_9 to C_9 halocycloalkyl group, a C_9 halocycloalkyl group, a C_9 to C_9 halocycloalkyl group, a

Ar in which Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more substituents and the substituent may be selected from a C_1 to C_4 alkyl group, a C_3 to C_6 cycloalkyl group, a C_1 to C_4 haloalkyl group, a C_3 to C_6 halocycloalkyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkylcarbonyl group, a carboxyl group, a C_1 to C_4 alkoxycarbonyl group, an amino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group and a methanesulfonyl group, C_1 -Ar in which Ar has the same meaning as above, and C_1 represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be branched,

Het in which Het represents a 5-membered heterocyclic residue, a 6-membered heterocyclic residue or a fused heterocyclic residue each of which contains, as a ring constituent atom, at least one atom selected from a sulfur atom, an oxygen atom and a nitrogen atom and may be substituted by one or two or more substituents, and the substituent may be selected from a C_1 to C_4 alkyl group, a C_3 to C_6 cycloalkyl group, a C_1 to C_4 haloalkyl group, a C_3 to C_6 halocycloalkyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 haloalkoxy group, a C_1 to C_4 alkoxycarbonyl group, an amino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group and a methanesulfonyl group,

-L1-Het in which Het and L1 have the same meanings as above,

-L²-D⁵² in which D⁵² represents a hydrogen atom, a C_1 to C_{20} alkyl group, a C_1 to C_{20} haloalkyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_8 cycloalkyl group, a C_2 to C_8 alkenyl group, a C_2 to C_8 haloalkenyl group, a C_3 to C_8 haloalkyl group, a C_3 to C_8 halocycloalkyl group, a C_9 to C_9 halocycloalkyl group, a C_9 halocycloalkyl group, a

Ar (Ar has the same meaning as above), -L¹-Ar group (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) or -L¹-Het (Het and L¹ have the same meanings as above), and L² represents -C(O)-, -C(S)-, -SO₂-, -S(O)-, -S-, -O-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S- or - C(O)C-(O)O-,

-L³-O-D⁵² in which D⁵² has the same meaning as above, and L³ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be substituted by one or two or more substituents and may be branched and the substituent may be selected from a C_1 to C_4 alkyloxycarbonyl group, a C_1 to C_4 haloalkyl group, a C_1 to C_4 alkylthio group,

Ar (Ar has the same meaning as above), $-L^1$ -Ar group (Ar and L^1 have the same meanings as above), Het (Het has the same meaning as above) and $-L^1$ -Het (Het and L^1 have the same meanings as above),

-L3-S-D52 in which D52 and L3 have the same meanings as above,

- -L 3 -C(O)-D 5 2 in which D 5 2 and L 3 have the same meanings as above, -L3-C(S)-D52 in which D52 and L3 have the same meanings as above, -L3-C(O)O-D52 in which D52 and L3 have the same meanings as above, -O-L3-C(O)O-D52 in which D52 and L3 have the same meanings as above, 5 -L3-C(O)S-D52 in which D52 and L3 have the same meaning as above, -O-L3-C(O)S-D52 in which D52 and L3 have the same meanings as above, -C(C)-ND⁵²D⁵³ in which D⁵² has the same meaning as above, and D⁵³ represents a hydrogen atom, a C₁ to C₈ alkyl group, a C_1 to C_8 haloalkyl group, a C_1 to C_6 alkoxy group, a C_1 to C_6 alkylcarbonyl group, a C_1 to C_6 10 haloalkylcarbonyl group. a C_1 to C_6 alkoxycarbonyl group, a C_1 to C_6 alkylsulfonyl group, a C_1 to C_6 haloalkylsulfonyl group, Ar (Ar has the same meaning as above), -L1-Ar group (Ar and L1 have the same meanings as above), -C-(O)-Ar (Ar has the same meaning as above), -C(S)-Ar (Ar has the same meaning as above) or -SO₂-Ar (Ar has the same meaning as above), and alternatively D52 and D53 together with a nitrogen atom to 15 which they are attached may form a 5- to 7-membered ring, and ring constituent atoms are selected from a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom, -C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above, -L³-C(O)-ND⁵2D⁵3 in which D⁵2, D⁵3 and L³ have the same meanings as above, -L³-C(S)-ND⁵2D⁵3 in which D⁵2, D⁵3 and L³ have the same meanings as above, 20 -SO₂-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above, -SO₂O-D⁵³ in which D⁵³ has the same meaning as above, -SO2O-Si(CH3)3, -SO₂-L¹-Si(CH₃)₃ in which L¹ has the same meaning as above, -SO₂ CH₂ SO₂ CH₃. -P(O)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above, -P(O)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above, -P(O)(OD 52)D 53 in which D 52 and D 53 have the same meanings as above, -P(O)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above, -P(S)(OD 52)(OD 53) in which D 52 and D 53 have the same meanings as above, -P(S)(OD⁵²)(SD⁵³) in which D⁵² and D⁵³ have the same meanings as above, -P(S)(OD 52)D 53 in which D 52 and D 53 have the same meanings as above, -P(S)(SD⁵²)D⁵³ in which D⁵² and D⁵³ have the same meanings as above, -L³-P(O)(OD⁵²)(OD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above, -L³-P(O)(OD⁵²)(SD⁵³) in which D⁵², D⁵³ and L³ have the same meanings as above, -L3-P(O)(OD52)D53 in which D52, D53 and L3 have the same meanings as above, -L³-P(O)(SD⁵²)D⁵³ in which D⁵², D⁵³ and L³ have the same meanings as above, -L 3 -P(S)(OD 5 2)(OD 5 3) in which D 5 2, D 5 3 and L 3 have the same meanings as above, -L3-P(S)(OD52)(SD53) in which D52, D53 and L3 have the same meanings as above, -L3-P(S)(OD52)D53 in which D52, D53 and L3 have the same meanings as above, -L3-P(S)(SD 52)D 53 in which D 52 , D 53 and L3 have the same meanings as above, $-C(D^{53})(P(O)(OD^{52})_2)_2$ in which D^{52} and D^{53} have the same meanings as above, = CD⁵²D⁵⁴ in which D⁵² has the same meaning as above, and D⁵⁴ represents a hydrogen atom, a halogen atom, a C1 to C6 alkyl group, a C1 to C6 alkoxy group, a C1 to C6 alkylthio group or Ar (Ar has the same meaning as above), -L3-CN in which L3 has the same meaning as above, -ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above, -CH = N-O-D⁵² in which D⁵² has the same meaning as above, = CD⁵⁴-ND⁵²D⁵³ in which D⁵², D⁵³ and D⁵⁴ have the same meanings as above,
- -L2-D55 in which L2 has the same meaning as above, and D55 represents a C_1 to C_6 alkyl group, a C_2 50 to C₆ alkenyl group or a C₂ to C₆ alkynyl group each of which may be substituted by one or two or more of a C₁ to C₅ haloalkyl group or one or two or more of a C₁ to C₄ alkyloxycarbonyl group and may be branched, or
 - -L1-SO₂-D⁵⁶ in which L1 has the same meaning as above, and D⁵⁶ represents a C₁ to C₆ alkyl group; and alternatively D_a and D_b may form a 3- to 8-membered ring and the ring constituent atoms are selected from a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom, and the ring may be substituted by one or two or more of a substituent, and the substituent may be selected from a C_1 to C_4 alkyl group, a C_3 to C_6 cycloalkyl group, a C_1 to C_4 haloalkyl group, a C_3 to

25

30

35

40

45

 C_6 halocycloalkyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxycarbonyl group, an amino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group, an acetamino group, a C_1 to C_4 alkylamino group and a methanesulfonyl group:

provided that except for the case where D_a and D_b both represent hydrogen atoms, the case where D_a represents -L²-D⁵² (L² represents -SO₂-, and D⁵² represents the C₁ to C₄ alkyl group or the C₁ to C₄ haloalkyl group) and D_b represents the hydrogen atom, the C₁ to C₄ alkyl group, the C₂ to C₅ alkenyl group, the C₃ to C₅ alkynyl group, the C₂ to C₅ acyl group, the C₁ to C₄ alkylsulfonyl group or the (C₁ to C₃ alkoxy) C₁ to C₂ alkyl group are excluded.

3. An uracil derivative according to Claim 1, which is represented by the formula (1):

in which

5

10

15

20

25

30

35

40

45

50

55

R1 represents a methyl group;

R² represents a trifluoromethyl group;

R³ represents a hydrogen atom;

R4 represents a hydrogen atom or a halogen atom;

R5 represents a halogen atom;

X represents an oxygen atom;

 D_a and D_b each independently represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_3 to C_6 alkenyl group, a C_3 to C_6 alkynyl group,

-L¹-Ar in which L¹ represents a C_1 to C_6 alkyl chain, a C_2 to C_6 alkenyl chain or a C_2 to C_6 alkynyl chain each of which may be branched, and Ar represents a phenyl group or a naphthyl group each of which may be substituted by one or two or more of a substituent, and the substituent may be selected from a C_1 to C_4 alkyl group, a C_1 to C_4 haloalkyl group, a halogen atom, a nitro group, a C_1 to C_4 alkoxy group and a C_1 to C_4 alkoxycarbonyl group,

Het in which Het represents a pyridine ring, a thiophene ring and a furan ring,

-L1-Het in which Het and L1 have the same meanings as above,

-L²-D⁵² in which D⁵² represents a hydrogen atom, a C₁ to C₆ alkyl group, a C₁ to C₆ haloalkyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₈ cycloalkyl(C₁ to C₂)alkyl group, a C₃ to C₆ alkenyl group, a C₃ to C₆ alkenyl group, a C₁ to C₄ alkoxy(C₁ to C₄)alkyl group, Ar (Ar has the same meaning as above), -L¹-Ar (Ar and L¹ have the same meanings as above), Het (Het has the same meaning as above) or -L¹-Het (Het and L¹ have the same meanings as above), and L² represents -C(O)-, -C(S)-, -SO₂-, -S(O)-, -S-, -C-(O)O-, -C(S)O-, -C(S)O-, -C(S)S- or -C(O)C(O)O-,

 $^{-}$ L 3 -O-D 52 in which D 52 has the same meaning as above, and L 3 represents a C $_{1}$ to C $_{6}$ alkyl chain, a C $_{2}$ to C $_{6}$ alkenyl chain or a C $_{2}$ to C $_{6}$ alkynyl chain each of which may be substituted by one or two or more of a C $_{1}$ to C $_{4}$ haloalkyl group or a C $_{1}$ to C $_{4}$ alkyloxycarbonyl group and may be branched,

-L3-C(O)-D52 in which D52 and L3 have the same meanings as above,

-C(S)-ND⁵²D⁵³ in which D⁵² and D⁵³ have the same meanings as above,

-L3-C(O)-ND52D53 in which D52, D53 and L3 have the same meanings as above,

-L3-C(S)-ND52D53 in which D52, D53 and L3 have the same meanings as above,

-P(O)(OD⁵²)(OD⁵³) in which D⁵² and D⁵³ have the same meanings as above,

-L3-P(O)(OD52)(OD53) in which D52, D53 and L3 have the same meanings as above,

-L3-CN in which L3 has the same meaning as above,

= CD^{54} - $ND^{52}D^{53}$ in which D^{52} and D^{53} have the same meanings as above, and D^{54} repersents a hydrogen atom, a halogen atom, a C_1 to C_6 alkyl group, a C_1 to C_6 alkoxy group, a C_1 to C_4 alkylthio group or Ar (Ar has the same meaning as above),

-L 2 -D 55 in which L 2 has the same meaning as above, and D 55 represents a C $_1$ to C $_6$ alkyl group, a C $_2$ to C $_6$ alkenyl group or a C $_2$ to C $_6$ alkynyl group each of which may be substituted by one or two or more of a C $_1$ to C $_4$ haloalkyl group or one or two or more of a C $_1$ to C $_4$ alkyloxycarbonyl group and may be branched, or

-L¹-SO₂-D⁵⁶ in which L¹ has the same meaning as above, and D⁵⁶ represents a C₁ to C₄ alkyl group; and alternatively D_a and D_b together with a nitrogen atom to which they are attached may form a ring represented by

provided that except for the case where D_a and D_b both represent hydrogen atoms, the case where D_a represents -L²-D⁵² (L² represents -SO₂-, and D⁵² represents the C₁ to C₄ alkyl group or the C₁ to C₃ haloalkyl group), and D_b represents a hydrogen atom, a C₁ to C₄ alkyl group, a C₂ to C₅ alkenyl group, a C₃ to C₅ alkynyl group, a C₂ to C₅ acyl group, a C₁ to C₄ alkylsulfonyl group or a (C₁ to C₃ alkoxy) C₁ to C₂ alkyl group are excluded.

- 4. A herbicide comprising the uracil derivative as defined in Claim 1 as an effective ingredient.
- 30 5. A herbicide comprising the uracil derivative as defined in Claim 2 as an effective ingredient.
 - 6. A herbicide comprising the uracil derivative as defined in Claim 3 as an effective ingredient.
- 7. A method for killing weeds and inhibiting their growth, which comprises applying the uracil derivative as defined in Claim 1 in an amount effective for killing the weeds.
 - 8. A method for killing weeds and inhibiting their growth which comprises applying the uracil derivative as defined in Claim 2 in an amount effective for killing the weeds.
- 40 9. A method for killing weeds and inhibiting their growth which comprises applying the uracil derivative as defined in Claim 3 in an amount effective for killing the weeds.
 - 10. A process for preparing the uracil derivative as defined in Claim 1, which comprises reacting a β-acrylate ester represented by the formula (5):

$$\begin{array}{c}
\mathbb{R}^3 & \mathbb{C}0_2\mathbb{G}^1 \\
\mathbb{R}^2 & \mathbb{NH}_2
\end{array}$$
(5)

in which G¹ represents a C₁ to C₄ alkyl group or an N-alkyl-β-acrylate ester represented by the formula (8):

5

10

15

20

25

45

$$\mathbb{R}^3 \longrightarrow \mathbb{CO}_2 \mathbb{G}^1$$

$$\mathbb{R}^2 \longrightarrow \mathbb{NHR}^1$$
(8)

with a phenyliso(thio)cyanate represented by the formula (6):

or an N-phenyl(thio)carbamate represented by the formula (7):

in which G^2 represents a C_1 to C_4 alkyl group or a phenyl group, and, if necessary, reacting the resulting product with an alkylating agent.

11. A process for preparing the uracil derivative as defined in Claim 1, which comprises reacting an aminoaryl uracil compound represented by the formula (9):

$$R^3$$
 R^4
 R^5
 NH_2

(9)

with a D_a -halogen compound, and then reacting the resulting product with a D_b -halogen compound.

5

10

15

20

25

30

35

40

45

50

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP91/01716

I. CLAS	SIFICATIO	N OF SUBJECT MATTER (IT	saveral classif	Mication symbols soply, indicate all) *
Accordin	g to Internet	ional Patent Classification (IPC)	or to both Natio	
				401/10, 401/12, 403/10, 409/12
417	7/10.	C07F7/10 C07F9	/6512	ACIN43/54, 43/80, 47/02, 47/04
II. FIELD	S SEARCE	HED	703127	ACIN43/34, 43/80, 41/02, 41/04
		Minis	num Documen	ntation Searched?
Classificat	on System			Classification Symbols
		C07D239/54 2		
IF	PC	409/12 417/1	37/353 ,	, 239/56, 401/10, 401/12, 403/
	•	43/80 47/02	0, 00/2	F7/10, C07F9/6512, A01N43/54,
		Documentation Ser	04, 4//	/20, 47/30, 55/00, 57/24, 57/32 than Minimum Documentation
		to the Extent that suc	h Documents	ser included in the Fields Searched 9
	146470 0			
A tegory *		ONSIDERED TO BE RELEVA		
	75	Si di Socument, " With Indicate	in, where appr	propriete, of the relevant passages If Relevant to Claim Ne. II
A	Octob	1, 61-221178 (F.	. Hoffm	mann - La Roche AG), 1-10
	21101	ber 1, 1986 (01.	. 10. 8	86),
	& ED	, A, 4746352 & t , A, 195346	JS, A,	4760163
	'	, w. 193340		
A	JP, ;	A. 63-41466 (F.	Hoffma	ann - La Roche AG), 1-10
	Febru	lary 22, 1988 (2	22. 32.	ann - La Roche AG), 1-10
	& US	A, 4859229 & E	EP. A.	255047
	•		,,	233047
A	JP, A	4, 63-107967 (F.	. Hoffm	mann - La Roche AG), 1-10
	may 1	L4, 1988 (12. DS	5.88).	•
	& US,	A, 481264 & ER	P, A, 2	260621 : `
				ţ
				; t
				: •
j				
- 1				
	•			
1				
Special	Categories o	f clied documents: +0		
'A DOCL	ment defina	ng the general state of the art wi	hich la nei	To later document published after the international filling date phority date and not in conflict with the application but cited
COTE	BOBLEO ID DE	of particular relevance		understand the principle or theory underlying the invention
14: -16	0816	I but published on or after the in		"X" document of particular relevance; the claimed invention can be considered novel or cannot be considered to involve
"L" Jocu	ment which	may throw doubts on priority of	claim(s) or	inventive step document of particular relevance; the claimed invention can
	CONT OF CUIDAR	establish the publication date special reason (as specified)		be considered to involve an inventive step when the occum-
OCH OCH	iment refe <i>rr</i> i r means	ng to an oral disclosure, use, ex	chibities or	is combined with one or more other such cocuments, su combination being obvious to a person skilled in the art
P" 30CU	ment publis	hed prior to the international filin	ng date but	"&" document member of the same patent family
10.00	Than the pro	only date claimed		
		npletion of the International Searce		
VI DH			1	Date of Mailing of this International Search Report
3.0	ch 24.	1992 (24. 03.	92)	April 14, 1992 (14. 04. 92)
				<u>L</u>
	al Searching	Authority		Signature of Authorized Officer
iteme tte o	al Searching	Authority Patent Office	+	Signature of Authorized Officer

Form PCT/ISA/218 (second sheet) (January 1985)

BEST AVAILABLE COPY