

◆ 占种 被 大 学 经济与管理学院

School of Management and Economics of UESTC

计量经济学

Econometrics

电占种 被大学 经济与管理学院

School of Management and Economics of UESTC

第四讲模型设定 (教材第6、7章)

回顾: OLS的基本假设

假设1:回归模型是线性的,模型设定无误且含有误差项

假设2: 误差项总体均值为零 $E(\varepsilon_i)=0$

假设3: 所有解释变量与误差项都不相关 $Cov(X_i, \varepsilon_i)=0$

假设4:误差项观测值互不相关(<u>无序列相关性</u>) $Cov(\varepsilon_i, \varepsilon_j)=0$

假设5:误差项具有同方差(不存在异方差性) $Var(\varepsilon_i)=\sigma^2$

假设6: 任何一个解释变量都不是其他解释变量的完全线性函

数 (不存在完全多重共线性)

- ❖什么是正确的方程?
 - > 正确的解释变量
 - > 正确的函数形式
 - > 正确的随机误差形式

❖模型设定一: 选择正确的解释变量

❖模型设定二: 选择正确的函数形式

怎样选择解释变量?

- ❖ 最重要的选择依据: (经济)理论判断
 - > 某个变量应该作为解释变量,即便统计上是不显著的
 - ▶例:若研究某商品的需求量,应选择那些解释变量?
- ❖若理论上不明确,则可采用统计方法来判断
 - ▶ 遗漏变量 (offitt va ol
 - ▶ 不相干变量 (irrelevant variable)

微观经济理论

 $Y = X_1 \beta_1 + \varepsilon^*$

如何证明?

❖设定偏误:参数估计量有偏且非一致,方差变小

遗漏变量的后果

$$Y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon = X_1 \beta_1 + \varepsilon^*$$

| 假设3: 所有解释变量与误差项都不相关 $Cov(X_i, \varepsilon_i)=0$

如何证明?

- ❖设定偏误:参数估计量有偏宜非一致,方差变小
- ❖ 当回归方程中出现与预期不一致的结果时,可能 存在遗漏变量

请仔细阅读教材p94: 设定偏误示例

 ${\mathbb C}$ 电子科大经管学院 ${\mathbb C}$ 10

例:估计鸡肉需求方程(Table 6-2)

$$Y_{t} = \beta_{0} + \beta_{1}PC_{t} + \beta_{2}YD_{t} + \varepsilon_{t}$$

Sample: 1974 1992

Included observations: 19

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	40.00663	3.762011	10.63437	0.0000
PC	-0.363653	0.091215	-3.986772	0.0011
YD	0.303357	0.013405	22.63077	0.0000
R-squared	0.988404	Mean depend		54.76158
Adjusted R-squared	0.986955	S.D. depende		11.43216

其中,PC是价格,YD是人均可支配收入。假设遗漏了变量YD (人均可支配收入)则回归结果为(存在设定误差):

Sample: 1974 1992 Included observations: 19		不	符合预具	明
Variable	Coefficient	Std	t-Statistic	Prob.
C	-21.13566	14.59173	-1.448469	0.1657
PC	1.394630	0.266365	5.235777	0.0001
R-squared	0.617232	Mean depend		54.76158
Adjusted R-squared	0.594717	S.D. depende		11.43216

原假设: YD不是遗漏变量。

Omitted Variables Test Equation: UNTITLED Specification: Y C PC

Omitted Variables: YD

结论: 拒绝原假设, 接受YD

是遗漏变量。

	Value	df	Probability
t-statistic	22.63077	16	0.0000
F-statistic	512.1516	(1, 16)	0.0000
Likelihood ratio	66.43910	1	0.0000

加入不相干变量的后果

$$Y = X_1 \beta_1 + \varepsilon$$

❖ 参数估计量无偏但非有效(方差增大), t检验失效

加入不相干变量的后果

$$Y = X_1 \beta_1 + \varepsilon = X_1 \beta_1 + X_2 \beta_2 + \varepsilon^{**}$$

14

加入不相干变量的后果

$$Y = X_1 \beta_1 + \varepsilon$$

- ❖ 参数估计量无偏但非有效(方差增大), t检验失效
- ❖调整的判定系数减小

请仔细阅读教材p98: 误选不相干变量的实例

例:估计鸡肉需求方程(Table 6-2)

$$Y_{t} = \beta_{0} + \beta_{1}PC_{t} + \beta_{2}YD_{t} + \varepsilon_{t}$$

Sample: 1974 1992

Included observations: 19

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	40.00663	3.762011	10.63437	0.0000
PC	-0.363653	0.091215	-3.986772	0.0011
YD	0.303357	0.013405	22.63077	0.0000
R-squared	0.988404	Mean depend		54.76158
Adjusted R-squared	0.986955	S.D. depende		11.43216

假设误选了不相干变量TEMP (气温)则回归结果为:

Sample: 1974 1992

Included observations: 19

Variable	Coefficient	Std	不显著	
C PC YD TEMP	40.39477 -0.368092 0.300411 0.009469	3.939 0 849 3.014938 0.018915	10.27714 -3.922184 20.11107 0.500647	0.0000 0.0014 0.0000 0.6239
R-squared Adjusted R-squared	0.988595 0.986314	Mean depend		54.76158 11.43216

原假设: TEMP是冗余变量。

结论:接受原假设,TEMP是 冗余变量。 Redundant Variables Test

Equation: UNTITLED

Specification: Y C PC YD TEMP Redundant Variables: TEMP

	Value	₫f	Probability
t-statistic	0.500647	15	0.6239
F-statistic	0.250647	(1, 15)	0.6239
Likelihood ratio	0.314863	1	0.5747

❖判定系数

$$R^2 = 1 - \frac{RSS}{TSS}$$

$$\overline{R}^2 = 1 - \frac{RSS/(n-k)}{TSS/(n-1)}$$

❖k为待估参数的个数

模型选择准则 (两个或更多模型的选择)

- ❖赤池信息准则(AIC)和施瓦茨信息准则(SC)
- ❖ k为待估参数的个数。

$$AIC = \frac{2k}{n} + \ln\left(\frac{RSS}{n}\right)$$
$$SC = \frac{k}{n}\ln n + \ln\left(\frac{RSS}{n}\right)$$

AIC和SC准则对增加解释变量加大了惩罚,其中SC的惩罚比AIC更严厉。相对而言,AIC和SC的值越低的模型越好(AIC和SC的判定准则)。

Sample: 1974 1992

Included observations: 19

Included observations: 13				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PC	-21.13566 1.394630	14.59173 0.266365	-1.448469 5.235777	0.1657 0.0001
R-squared Adjusted R-squared	0.617232 0.594717	Mean dependent var		54.76158
S.E. of regression Sum squared resid	7.277929 900.4602	Akaike info cr Schwarz criter	6.906870 7.006285	
Wariahla	Coefficient	Std. Error	t-Statistic	Prob.
这个模型更然 YD	子 -0.363653 303357	3.762011 0.091215 0.013405	10.63437 -3.986772 22.63077	0.0000 0.0011 0.0000
		Mean dependent var		
R-squared Adjusted R-squared	0.988 94 0.986955	S.D. depende	ent var	54.76158 11.43216
_		_	ent var riterion	
Adjusted R-squared S.E. of regression	0.986955 1.305729	S.D. depende Akaike info c	ent var riterion	11 43216 3.515339
Adjusted R-squared S.E. of regression Sum squared resid	0.986955 1.305729 27.27884	S.D. depende Akaike info c Schwarz crite	ent var riterion rion	11 43216 3.515339 3.664461
Adjusted R-squared S.E. of regression Sum squared resid Variable C PC YD	0.986955 1.305729 27.27884 Coefficient 40.39477 -0.368092 0.300411	S.D. depende Akaike info c Schwarz crite Std. Error 3.930548 0.093849 0.014938	ent var riterion rion t-Statistic 10.27714 -3.922184 20.11107 0.500647	11.43216 3.515339 3.664461 Prob. 0.0000 0.0014 0.0000

四个重要的模型设定准则

- ❖理论:变量在方程 不能简单地将一个t值 不清的,不显著的变量从方程 中排除
- ❖t 检验:解释变量参数的估计值在预期假设下是不 是显著的?
- ❖调整的判定系数adj-R^2或AIC和SC: 将变量加入 方程后,整体拟合优度是否有所改善?
- ❖偏误:将变量加入方程后,其他变量参数是否有显著变化?

例:估计鸡肉需求方程(Table 6-2)

$$Y_{t} = \beta_{0} + \beta_{1}PC_{t} + \beta_{2}YD_{t} + \varepsilon_{t}$$

Sample: 1974 1992

Included observations: 19

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	40.00663	3.762011	10.63437	0.0000
PC	-0.363653	0.091215	-3.986772	0.0011
YD	0.303357	0.013405	22.63077	0.0000
R-squared	0.988404	Mean depend		54.76158
Adjusted R-squared	0.986955	S.D. depende		11.43216

假设误选了不相干变量TEMP (气温) 则回归结果为:

Sample: 1974 1992

Included observations: 19

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PC YD TEMP	40.39477 -0.368092 0.300411 0.009469	3.930548 0.093849 0.014938 0.018915	10.27714 -3.922184 20.11107 0.500647	0.0000 0.0014 0.0000 0.6239
R-squared Adjusted R-squared	0.988595 0.986314	Mean depend		54.76158 11.43216

误用模型设定准则的实例

巴西咖啡的价格

茶叶价格

$$\hat{C}OFFEE = 9.1 + 7.8P_{bc} + 2.4P_{t} + 0.0035Y_{d}$$

标准误差 (15.6) (1.2) (0.001)

美国对巴西咖啡的 需求量

$$t = 0.5$$

t = 0.5 2.0 3.5 美国可支配收入

$$\overline{R}^2 = 0.6 \ N = 25$$

$$\hat{C}OFFEE = 9.3 + 2.6P_t + 0.0036Y_d$$

(1.0) (0.0009)

$$t = 2.6$$
 4.0

$$\overline{R}^2 = 0.61 \ N = 25$$

误用模型设定准则的实例

哥伦比亚咖啡的价格

巴西咖啡的价格

$$\hat{C}OFFEE = 10 + 8.0P_{cc} - 5.6P_{bc} + 2.6P_{t} + 0.003Y_{d}$$

$$(4.0) \quad (2.0) \quad (1.2) \quad (0.001)$$

$$t = 2.0 \quad -2.8 \quad 2.0 \quad 3.0$$

$$\overline{R}^{2} = 0.65 \quad N = 25$$

请仔细阅读教材p103: 选择解释变量的实例

模型设定搜索

- ❖数据挖掘 (data mining)
 - > 适当的数据挖掘也许有助于揭示 经验规律
 - 不适当的数据挖掘,比什么都不据严刑拷打,它就会屈打成招

- ❖敏感性分析:稳健性(robust)分析
 - > 几乎所有学术论文的必备步骤和分析内容
 - ▶稳健的含义:某种结果对于各种模型设定、变量定义、 数据子集都是显著的(或不显著的)

怎样选择函数形式?

❖第7章模型设定:函数形式的选择(随机抽点)

▶7.1节:常数项的应用和解释

▶7.2节:备选函数形式

>7.5节: 选择错误函数形式存在的问题

本讲小结

- ❖遗漏变量的危害是什么?
- ❖不相干变量的后果是什么?
- ❖模型设定的四个重要准则是什么?
- ❖回归方程能省略常数项吗?
- ❖如何选择回归模型的函数形式?
- ❖在回归方程中,是否需要剔除所有不显著的解释变量?

作业

❖P108: 习题2、4、6

作业

❖P108: 习题2、6

❖P134: 习题12、13、16

怎样选择函数形式?

- *错误函数形式的后果
 - > 影响解释变量的显著性
 - > 解释变量可能有非预期的符号
 - > 严重影响模型解释和变量预测

函数形式的选择

- ❖不含常数项的回归
- ❖回归模型的函数形式
- ❖函数形式的选择

不含常数项的回归

❖不含常数项的回归:

$$Y_i = \beta_1 X_i + \varepsilon_i$$

- ❖ 可以证明:
 - > 残差均值不一定为0
 - > 拟合优度的判定系数可能出现负值

除非有非常强的先验预期,否则还是采取含有常数项的模型为好;即使先验预期为无常数项模型,仍可使用含度数项处理,更是必须其实

不要信赖 (分析) 常数项的估计值

备选函数形式

- ❖线性回归模型能否满足所有问题的需求?
- ❖例1:债券期限对债券价格的影响(现值)、存款期限对存款本息的影响(终值)

备选函数形式

❖例2: 投入对总产量的影响(边际产量递增、递减)

备选函数形式

❖例3:工人年龄对其收入的影响

备选函数形式

- ❖可线性化的非线性函数形式
 - >指数函数
 - > 对数函数
 - > 反函数形式
 - > 多项式形式

回归模型的函数形式

❖ 指数函数

$$y_t = ae^{bx_t + \varepsilon_t}$$

对上式等号两侧同取自然对数,得

$$\ln y_t = \ln a + b x_t + \varepsilon_t$$

令
$$\ln y_t = y_t^*, \ln a = a^*, 则$$

$$y_t^* = a^* + bx_t + \varepsilon_t$$

变量 y_t^* 和 x_t 已变换成为线性关系。

回归模型的函数形式

◆半对数线性模型

考虑如下复利公式:

偏回归系数表示增长率,即给定X的绝对变化引起的Y的相对变化

$$Y_t = Y_0 (1+r)^t e^{\varepsilon_t}$$

可转化成半对数模型

$$\ln Y_t = \ln Y_0 + t \ln(1)$$

$$= \beta_0 + \beta t + \varepsilon_t$$

时间变量*t* 称为 趋势变量

回归模型的函数形式

❖柯布-道格拉斯(Cobb-Douglas)生产函数:

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} e^{\varepsilon}$$

两边取对数有: $\ln Y = \ln \beta_0 + \beta_1 \ln X_1 + \beta_2 \ln X_2 + \varepsilon$

偏回归系数表示<mark>弹性</mark>,即给定X的百分比变化引起的Y的百分比变化。

回归模型的函数形式

❖ 反函数形式

$$Y_i = \beta_0 + \beta_1 \frac{1}{X_i} + \varepsilon_i$$

❖ 多项式形式

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

EViews演示: 变量转换或生成新的变量

EViews演示: GDP增长率

回归模型的函数形式

- ❖如何选择函数形式
 - > 选择经济理论给出的特定函数形式
 - > 所选模型的参数应满足一定的先验预期
 - ▶当多个模型能很好地拟合数据时,研究者往往选择调整的判定系数较高或者AIC和SC较低的模型。然而, 当被解释变量Y被变换时,这些指标不能比较