June, 2010

## eReader System Development

FTF-CON-F0778



## Nik Jedrzejewski Product Manager



## **Session Introduction**

eReader Market is rapidly growing and segmenting. This session will introduce you to the features of the eReader system and how you can develop it with the help of Freescale.



## **Session Objectives**

- ► After completing this session you will be able to:
  - Understand the Freescale eReader processor roadmap
  - Briefly understand EPD technology
  - Recognize different Freescale solutions for different eReader Types



## **Agenda**

- ► Freescale MultiMedia Markets
- ► Processor Roadmap
- ►eReader Technology and Features
- ► System Comparison
- ▶ Fifth Item Covered in this Section





## **Automotive**

- ► Historic leadership in Telematics
- Ramping in radio and infotainment
- Initial designs in advanced clusters









## **Smart Mobile Devices**

- ► Pioneer in portable media players
- ▶ Thought leader for smartbooks
- ► Focused investment in tablets







### **Freescale Multimedia Markets**



### **eReaders**

- Dominant market share in emerging
- ▶eReader market
- Aligned with market leaders







## **Embedded Multimedia**

- Broad traction in the embedded market
- Connected display based devices in
- ▶ consumer and industrial markets









## i.MX Roadmap for eReaders and Tablets





## i.MX Roadmap for eReaders and Tablets





## Next Gen eReader System





## What is Special about an eReader?

## ► A Microencapsulated Electrophoretic Display (EPD)

- Also known as Electronic Paper Display or bubbles
- E Ink Vizplex® is the leading panel solution

### **▶** Low Power

Weeks v. hours

## **►** Sunlight Readable

Reflective v. backlight

## ► Thin and light

Hold it in one hand

## ► Simple to use

- Some 3G enabled
- · No monthly fee
- Easy to download new books





## **Display Requirements**



- Panel PMIC: Must support bi-polar high voltage to move charged particles
- ▶ Temp Sensor: Movement of particles are temperture dependent so a temp sensor is required
- ► EPDC controller: Manipulating display requires special controller
  - This controller can be implemented in SW or hardware



## **Software Implications**

- ► Sub 10Hz display in a 60Hz world
- ►UI must be designed around display
  - Scrolling, quick movements, animation, video and the like are not supported
- Some systems support a smaller LCD screen for control



# Reference design methodology: 1 solution for 3 kinds of developers

- ► Development System
  - Used for early development of application software
  - Performance evaluation
- ► Hardware reference
  - Schematics and layout available as reference to all customers
- ► Reference System: Hardware + BSP + Middleware
  - BSP provided as software starting point for software
  - Middleware is constantly evolving: Power management, acceleration, etc
  - While demo is provided, application development is left to customer or third party
  - System is not meant to be turn-key





## **eReader System Comparisons**



## **Current Generation eReader System**





### i.MX51e eReader Solution



### ► Advantages:

- External EPD controller, DRAM, and associated flash not required
- Cortex A8 decode performance
- Scalable to i.MX508 or media centric eReader enabled tablet



### Next Gen i.MX508 eReader Solution



► Advantages:

Best Performance: Cortex-A8 w/ dedicated internal controller

Tetherina

- Best Power: quickest to do work and turn off
- Lowest system cost:
  - No external controller
  - Targeted eReader apps processor with integration to lower system cost





## i.MX51e: Soft Controller Reference Design



## i.MX51e eBook Development Platform





## **Soft EPD Overview**

- Supported under Linux or Android
- ▶ Initial support for 6" panel 800x600 @ 50-Hz.
- ▶ Support for 4-bit pixel depth.
- Support for full or partial screen updates.
- Support for concurrent screen updates:
  - Max number of concurrent updates is configurable; Most EINK hardware display controllers support 12 to 16 concurrent updates.
  - A ProcessID will be returned to the caller to track progress of each update.
  - Notification provided when update completes.
- Support for collision detection:
  - Collisions will be detected on a per-pixel basis.
  - All pixels that do not collide will be updated.
  - All pixels that do collide will not be updated.
  - Application will be able to determine which update calls collided and will be responsible for resending the data.
- ▶ Support for the 4 update modes:
  - M0 = INIT (3000mS)
  - M1 = DU (320mS) G->B or G->W (e.g. pen input)
  - M2 = GC16 (980mS) High-Fidelity (Flashing)
  - M3 = GC4 (600mS) Used for text (ghosting)





## i.MX508



## Introducing the i.MX508 SOC for eReaders

## Introducing the i.MX508 SOC for eReaders

The i.MX508 is the first system-on-a-chip (SOC) to combine the latest ARM Cortex-A8 processing core with the latest, integrated E Ink electronic paper display (EPD) controller

### **Lower Cost**

- ▶ 50% less than a similar processor with a standalone EPD controller, the i.MX508 facilitates new price points
- Other system level cost savings from use of RAW NAND, Dual USB PHY, DDR2 memory, etc.

### **Extended Battery Life**

- Special power-saving modes designed for eReaders
- Low power features include the use of the new LP-DDR2 memory
- High performance CPU combined with large L2 cache memory reduces the amount of time processor is on, providing more power efficiency

### **Get Faster Page Flips**

- Increased performance to flip pages faster
- Capability to drive next generation panels for improved reading experience
- Headroom to add new applications and capabilities



## i.MX508 Block Diagram

### **▶** Specifications:

• CPU: ARM Cortex-A8 800MHz

Process: 65nm, LP/GP
Core Voltage: 0.7-1.1V
Temp Range: 0 to 70C
Package: 12x12 0.5mm

### ► Features and Advantages

- High Performance CPU: Cortex-A8
- Advanced power management features
- Integrated E-INK EPD Controller
- LP-DDR2 support for low-power applications
- Managed NAND Flash Support with eMMC 4.4/SDIO
- Raw NAND with up to 32-bit ECC and ONFI2.1/Toggle
- Dual USB PHY support (HS OTG, HS Host)
- Flexible LCD display support up to 1400x1050 @ 60Hz

### ► Schedule:

- Samples Q310
- Production Q410







## **HW EPD: Ultra Low Power Consumption on Page Turn**

i.MX508 accelerates display pre-processing steps resulting in lower power and lower latency between framebuffer update and final display



#### Freescale i.MX508 Assumptions:

- ▶800x600 Display
- ▶GC16 full-screen operation
- ▶i.MX50 running at max 400MHz
- ▶ePXP running at 266MHz
- ▶EPDC bus @ 266MHz with "autoslow" dynamic frequency scaling enabled
- ▶PIXCLK at 17MHz (EPDC TFT I/F)

#### **Competitive Assumptions:**

- ► Cortex-A8 + DSP running at 400MHz
- ► Power consumption is fixed at 250mW during update as CPU/DSP must drive interface

#### **Common Definitions:**

- ▶ Power is SOC only for page turn
- ▶Panel will be similar
- ▶DRAM power will be the same for mDDR and will be less for LPDDR2 on i.MX508.
- ▶ Display pre-processing is CSC, gamma, rotation and updating working buffer
- ▶980ms is max time required for waveform GC16



### Next Gen i.MX508 eReader Solution

### Advantages:

- Best Performance: Cortex-A8 with dedicated Internal controller
- Best Power: quickest to do work and turn off
- Lowest system cost:
  - No external controller (EPDC) or EPDC memory
  - Targeted
     eReader apps
     processor with
     integration to
     lower system cost





## **OS Support**

► Windows® Embedded CE



► Linux<sup>®</sup>



► Android<sup>™</sup>





## Summary

- ► eReader System Development
  - The display adds challenges to both hardware and software
  - Outside display, very similar to a smartphone from a HW perspective
- ► Freescale has SW EPD controller solution available today or next gen HW solution in mid Q3



### For Further Information

- www.freescale.com/imx508
- www.freescale.com/eReaders
- www.smartmobiledevices.wordpress.com



## **Session Closing**

## By now, you should be able to:

- Understand the Freescale eReader processor roadmap
- Briefly understand EPD technology
- Recognize different Freescale solutions for different eReader Types



