2絕對值

1. 實數的絕對值:

- (1) 設 a 為實數,則 $|a| = \begin{cases} a, a \ge 0 \\ -a, a < 0 \end{cases}$,故看到絕對值,若「正」照抄,若「負」變號。
- (2) |-a|=|a|,所以絕對值內變號,仍然不改變絕對值的值。
- (3) 幾何意義:數線上兩點 A(a)、 B(b) ,則 \overline{AB} 的距離 = |a-b| ,故絕對值的幾何意義表示為距離。

$$\begin{array}{ccc} & A & B \\ \hline & \downarrow & \\ a & b \end{array} \longrightarrow x$$

(4) 整數的離散性: 已知 $a \cdot b$ 為相異整數,則 $|a-b| \ge 1$ 。

2. 分點公式:

數線上兩點 A(a) 與 B(b) ,若 \overline{AB} 上一點 P(x) 滿足 \overline{AP} : $\overline{PB} = m : n$,則 $x = \frac{na + mb}{m + n}$ 。

例如: $M \triangleq A \cdot B$ 的中點,則 $M = \frac{a+b}{2}$ 。

3. 區間記號:

(1) $a \le x \le b$ 記為[a,b]。(又稱為閉區間,即含兩端點)

$$a \qquad b \rightarrow x$$

(2) $a \le x < b$ 記為[a,b)。

$$a \qquad b \rightarrow x$$

(3) $a < x \le b$ 記為(a,b]。

(4) a < x < b 記為(a,b)。(又稱為開區間,即不含兩端點)

(5) $x \ge a$ 記為[a,∞)。(其中∞是表示無限大的一個記號)

(6) x < a 記為 $(-\infty, a)$ 。

(7) R記為 $(-\infty,\infty)$ 。

4. 絕對值不等式:

 $|x+3| \le 2$ 的解為 $-5 \le x \le -1$ 。

- (1) 代數觀點: $|x+3| \le 2 \Rightarrow -2 \le x+3 \le 2 \Rightarrow -5 \le x \le -1$ 。
- (2) 幾何觀點: $|x+3| \le 2 表 P(x)$ 到 A(-3)的距離小於或等於 2,解為 $-5 \le x \le -1$ 。

5. 反推絕對值不等式:

(1) $\Xi n \le x \le m$,表數線上P(x)到中點 $\left(\frac{m+n}{2} \right)$ 的距離小於或等於 $\frac{m-n}{2}$

$$\Rightarrow \left| x - \frac{m+n}{2} \right| \le \frac{m-n}{2} \circ$$

$$\begin{array}{ccc}
& & & \frac{m-n}{2} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

$$\Rightarrow \left| x - \frac{m+n}{2} \right| > \frac{m-n}{2}$$

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

- (\bigcirc) **1.** 不等式 $|x-3| \le 5$ 與 $|9-3x| \le 15$ 的解相同。
 - 解 絕對值內乘以(-3),不改變。
- (×) **2.** 若 m < n ,且 m 、 n 為有理數,則 $m < \frac{2m+3n}{6} < n$ 必成立。
 - 解 反例: 取 m = 4 , n = 5 ,則 $\frac{2m + 3n}{6} = \frac{23}{6} < m$ 。
- (×) **3.** 已知 x < 1,化簡 |x-1| + (x-1),可得 $|x-1| + (x-1) = -(x-1) + \lceil -(x-1) \rceil = -2x + 2$ 。
- (×) **4.** 已知 0 < x < 1,任簡 $\sqrt{x^2 + \frac{1}{x^2} 2} + \sqrt{x^2 + \frac{1}{x^2} + 2}$, 可得 $\sqrt{x^2 + \frac{1}{x^2} - 2} + \sqrt{x^2 + \frac{1}{x^2} + 2} = \left| x - \frac{1}{x} \right| + \left| x + \frac{1}{x} \right| = 2x$ 。
 - 願 原式 = $\sqrt{\left(x \frac{1}{x}\right)^2} + \sqrt{\left(x + \frac{1}{x}\right)^2} = \left|x \frac{1}{x}\right| + \left|x + \frac{1}{x}\right| = -\left(x \frac{1}{x}\right) + \left(x + \frac{1}{x}\right) = \frac{2}{x}$ (因為 0 < x < 1,則 $x < \frac{1}{x}$)
- (×) **5.** 化簡 $|x-3| \ge 2$,可得 $x-3 \ge \pm 2$ 。
 - $|x-3| \ge 2 \Rightarrow x-3 \ge 2 \stackrel{?}{\boxtimes} x-3 \le -2$, $|x| \ge 5 \stackrel{?}{\boxtimes} x \le 1$ °

一、填充題(每題7分,共70分)

- **1.** 設數線上兩點 $A(4) \cdot B(7)$,試回答下列問題。
 - (1) 已知點P(x)在 \overline{AB} 上,且 \overline{AP} : \overline{BP} =5:6,則x值為 $\frac{59}{11}$ 。(4分)
 - (2) 已知點Q(y)在 \overline{AB} 外,且 \overline{AQ} : \overline{BQ} =5:6,則y值為 —11 。(3分)
- 解 (1) 點 P(x) 在 \overline{AB} 上,利用分點公式,得 $x = \frac{5 \times 7 + 6 \times 4}{5 + 6} = \frac{59}{11}$ 。
 - (2) 因為Q點在 \overline{AB} 外,又 \overline{AQ} < \overline{BQ} ,所以A介於Q和B之間,可得 \overline{QA} : \overline{BA} =5:1。 利用分點公式,可知 $4 = \frac{5 \times 7 + 1 \times y}{5 + 1}$,解得y = -11。

- **2.** 若 $a \, \cdot \, b$ 為有理數,且 a < b ,試比較 $A = \frac{a+b}{2}$, $B = \frac{2a+b}{3}$, $C = \frac{a+2b}{3}$, $D = \frac{a+3b}{4}$, $E = \frac{2a+3b}{5}$,求五個數的大小順序為 D > C > E > A > B 。
- - (法二) 數字代入法,取a=0、b=1代入 $A=\frac{1}{2}$, $B=\frac{1}{3}$, $C=\frac{2}{3}$, $D=\frac{3}{4}$, $E=\frac{3}{5}$,故D>C>E>A>B。

12 單元 2 絕對值

- **3.** 解方程式 |2x+9|=3,可得 x=-3或 -6。
- 爾 代數解法:因為|2x+9|=3,所以2x+9=3或-3,可得x=-3或-6。

幾何解法:將方程式化為 $\left|x+\frac{9}{2}\right|=\frac{3}{2}$,

因為
$$\left|x+\frac{9}{2}\right| = \frac{3}{2}$$
表示 x 與 $-\frac{9}{2}$ 的距離等於 $\frac{3}{2}$,

由圖可得x = -3或x = -6。

- **4.** 優良學生的票選活動又開跑了,這次共有三位學生出來選拔,已知學生 $A \times B$ 累積支持者分別有 $20 \setminus 33 \setminus 1$ 人,且學生 C 與學生 A 的支持者差距加上學生 C 與學生 B 的支持者差距共 $21 \setminus 1$,試問學生 C 累積支持者有 16×37 人。
- 解 設學生 C 支持者 x 人,|x-20|+|x-33|=21, 分 x>33, $20< x \le 33$, $x \le 20$ 討論

 - ② 當 $20 < x \le 33$ 時,原式 $\Rightarrow (x-20)-(x-33)=21 \Rightarrow 13=21$ (不合),
 - ③ 當 $x \le 20$ 時,原式 $\Rightarrow -(x-20)-(x-33)=21 \Rightarrow x=16$, 故x=16或37。
- **5.** 解不等式 $|2x-3| \ge 15$,可得 x 的範圍為 $x \ge 9$ 或 $x \le -6$,以區間符號表示為 $[9,\infty) \cup (-\infty,-6]$ 。(第 1 格 4 分,第 2 格 3 分)
- 解 代數解法:因為 $|2x-3| \ge 15$,所以 $2x-3 \ge 15$ 或 $2x-3 \le -15$,可得 $x \ge 9$ 或 $x \le -6$ 。

幾何解法:將不等式化為 $\left|x-\frac{3}{2}\right| \ge \frac{15}{2}$,

因為
$$\left|x-\frac{3}{2}\right| \ge \frac{15}{2}$$
表示 x 與 $\frac{3}{2}$ 的距離大於或等於 $\frac{15}{2}$,

由圖可得 $x \ge 9$ 或 $x \le -6$ 。

- **F** $6 \le |-3x+5| < 17 \implies 6 \le -3x+5 < 17 \implies -17 < -3x+5 \le -6$,
 - ① $6 \le -3x + 5 < 17 \Rightarrow 1 \le -3x < 12 \Rightarrow -4 < x \le -\frac{1}{3}$, x 整數為 -1, -2, -3,
 - ② $-17 < -3x + 5 \le -6 \Rightarrow -22 < -3x \le -11 \Rightarrow \frac{11}{3} \le x < \frac{22}{3}$, x 整數為 4, 5, 6, 7, 故總共 7 個。

- **7.** 設 $x \cdot y$ 為實數,若 $|x+3| \le 1$ 且 $|2y-7| \le 11$,求下列各小題的範圍,並以區間符號表示。
 - (1) x + y 的範圍為 [-6,7] 。(2分)
 - (2) x-y的範圍為 $\begin{bmatrix} -13,0 \end{bmatrix}$ 。(2分)
 - (3) *xy* 的範圍為 [-36,8] 。(2分)
 - (4) $x^2 + y^2$ 的範圍為 [4,97] 。(1分)
- $|x+3| \le 1 \Rightarrow -1 \le x+3 \le 1 \Rightarrow -4 \le x \le -2$, $|2y-7| \le 11 \Rightarrow -11 \le 2y-7 \le 11 \Rightarrow -2 \le y \le 9$
 - (1) $-6 \le x + y \le 7$ °
 - (2) $-9 \le -y \le 2$, $to -13 \le x y = x + (-y) \le 0$
 - $(3)-36 \le xy \le 8 \quad (-36=(-4)\times 9, 8=(-4)\times (-2))$
 - (4) $4 \le x^2 \le 16$, $0 \le y^2 \le 81$, $24 \le x^2 + y^2 \le 97$

14 單元2 絕對值

- 8. 解不等式 $|x-3|-|x+1| \ge 0$,得 x 的範圍為 $x \le 1$ 。
- $|x-3|-|x+1| \ge 0 \Rightarrow |x-3| \ge |x+1|$,兩邊平方得 $x^2-6x+9 \ge x^2+2x+1 \Rightarrow 8x \le 8 \Rightarrow x \le 1$ 。

- **9.** 不等式 |x+1|-|x-2| < x+2 的解為 x > -5 。
- 解 分成三段討論: ① $x \ge 2$ ② $-1 \le x < 2$ ③x < -1
 - ① 若 $x \ge 2$ 時, $(x+1)-(x-2) < x+2 \Rightarrow x > 1$,得 $x \ge 2$ 。

 - ③ 若x < -1時, $-(x+1)+(x-2) < x+2 \Rightarrow x > -5$,得-5 < x < -1。 由①②③得知x > -5。

- **10.** 設 $a \cdot b$ 為實數,已知不等式 $|ax-5| \le b$ 的解為 $-\frac{14}{3} \le x \le \frac{4}{3}$,則數對 (a,b) = (-3,9) 。
- 解 如圖,由解反推不等式,可得 $\left|x+\frac{5}{3}\right| \le 3$,兩邊同乘以3,可得 $\left|3x+5\right| \le 9$,再將絕對值內的式子變號,可得 $\left|-3x-5\right| \le 9$,故數對 (a,b)=(-3,9)。

二、素養混合題(共20分)

第 11 至 12 題為題組

《Cytus》是一款由臺灣研發的音樂遊戲,可用來訓練玩家對於節奏感的敏銳度,這款遊戲的規則為依照節奏點擊音符,當玩家在點擊音符時,電腦會依照玩家所按下的時間點,去判定每個音符的準確度,依序評定給予 PERFECT (完美)、BAD (不佳)、MISS (失誤)。

假設玩家按下節奏音符的誤差值為t秒,若誤差值t的範圍為 ± 1.5 (含1.5)則評定為 PERFECT;範圍為-2.5 < t < -1.5或1.5 < t < 2.5則評定為 BAD;範圍為 $t \le -2.5$ 或 $t \ge 2.5$ 則評定為 MISS。

(B) **11.** 阿萱是一個新手玩家,已知在音樂 60 秒處有一個節奏音符「RE」,且阿萱在這個節奏音符被評定為 BAD,試寫出阿萱按下節奏時的秒數範圍並以a < |x+k| < b 表示,其中x 為音樂進行時的時間秒數,求a+b+k 之值為何?(單選題,10 分)

$$(A) - 64$$
 $(B) - 56$ $(C) 56$ $(D) 61$ $(E) 64$

12. 已知阿萱選擇的這首歌,最後的評定方法是以 MISS 個數判斷玩家等級為金牌、銀牌、銅牌或參加獎,設 MISS 個數為 *n* 個,以下為各等級的範圍:

等級	金牌	銀牌	銅牌	參加獎
n	$ n-19 \leq 19$	$ n-57 \leq 18$	$ n-88 \leq 12$	n > 100

若阿萱在這首歌中最後獲得銀牌,且得到的 MISS 個數 n 滿足 |-2n+21| < 63,試問阿萱得到的 MISS 個數可能是幾個?(非選擇題,10 分)

解 11. 被評為 BAD⇒1.5<

 $\left|x-60\right|$ < 2.5 ,和 60 秒相差秒數,即為 t

得 k = -60 , a = 1.5 , b = 2.5 , 所以 a+b+k=1.5+2.5-60=-56 。

12. 已知阿萱得到銀牌,

表示她得到的 MISS 數滿足 $|n-57| \le 18 \Rightarrow -18 \le n-57 \le 18 \Rightarrow 39 \le n \le 75$,

又滿足|-2n+21|<63

 $\Rightarrow |2n-21| < 63 \Rightarrow -63 < 2n-21 < 63 \Rightarrow -42 < 2n < 84 \Rightarrow -21 < n < 42$

故同時滿足 $39 \le n \le 75$ 及 -21 < n < 42,

得 $39 \le n < 42$,又n為正整數,則n可能為 $39 \times 40 \times 41$ 。