Note: in this course, \log denotes \log_2 .

Shannon's computation

Suppose we wish to compress a binary message $x_1^n = (x_1, ..., x_n) \in \{0, 1\}^n$. Assume x_1^n is generated by n iid random variables $X_1^n = (X_1, ..., X_n)$ where each X_i is Bernouilli of parameter p, for some $p \in (0, 1)$. We write P for the probability mass function of the X_i , i.e $P(x) = \mathbb{P}(X_i = x)$ for $x \in \{0, 1\}$.

Idea: give more likely strings shorter descriptions.

Question: how is the probability distributed among all such x_1^n ?

Let P^n denote the joint pmf of X_1^n . Then

$$\mathbb{P}(X_1^n = x_1^n) = P^n(x_1^n) = \prod_{i=1}^n P(x_i) = 2^{\log \prod_{i=1}^n P(x_i)}$$

$$= 2^{\sum_{i=1}^n \log P(x_i)}$$

$$= 2^{k \log p + (n-k) \log(1-p)}$$

$$= 2^{-n\left[-\frac{k}{n} \log p - \frac{n-k}{n} \log(1-p)\right]}$$

$$\approx 2^{-n\left[-p \log p - (1-p) \log(1-p)\right]}. \quad \text{(LLN)}$$

Where we have defined k to be the number of 1's in x_1^n . Now we define

$$h(p) = -p \log p - (1-p) \log(1-p)$$

so for large n we have

$$\mathbb{P}(X_1^n = x_1^n) \approx 2^{-nh(p)}$$

with high probability.

This means that for large n, the space $\{0,1\}^n$ of all possible messages consists of:

- 1. non typical strings that have negligible probability of showing up;
- 2. approximately $2^{nh(p)}$ each of similar probability.

Note that the binary entropy function h(p) has a maximum at $p = \frac{1}{2}$ with h(1/2) = 1 and is symmetric through $p = \frac{1}{2}$.

Back to data compression. Consider the following algorithm. Let $B_n \subseteq \{0,1\}^n$ consist of the "typical" strings. Given x_1^n to compress:

- If $x_1^n \notin B_n \to \text{declare "error"};$
- If $x_1^n \in B_n$, then describe it by describing its index j in B_n , where $1 \le j \le |B_n|$. This takes $\log |B_n| \approx nh(p)$ bits

Asymptotic Equipartition Property

Suppose $X_1, X_2, ...$ are iid random variables with values in a finite set, or alphabet, A. Let P denote the PMF of these variables, i.e $P(x) = \mathbb{P}(X_i = x)$, $x \in A$.

Theorem 0.1. Write $X_1^n = (X_1, X_2, ..., X_n)$. Then

$$-\frac{1}{n}\log P^n(X_1^n) = -\frac{1}{n}\log\prod_{i=1}^n P(X_i) = \frac{1}{n}\sum_{i=1}^n \left[-\log P(X_i)\right] \xrightarrow{\mathbb{P}} H \text{ as } n \to \infty$$

where H is the entropy of X.

Proof. Law of large numbers.

Definition. If $X \sim P$ on a finite alphabet A, the *entropy* of X is defined as

$$H(X) = \mathbb{E}[-\log P(X)].$$

Notes.

- 1. $H(X) = \sum_{x \in A} P(x) \log (1/P(x));$
- 2. By convention $0 \log 0 = 0$;
- 3. H(X) is a function of P only, and in fact only depends on the probabilities P(x), not the values of the random variable. In particular, if F is a bijection then H(F(X)) = H(X);
- 4. $H(X) \ge 0$ with equality if and only if X is almost-surely constant;
- 5. For large n, $P^n(X_1^n) \approx 2^{-nH}$, with high probability. More formally,

$$\mathbb{P}\left(\left|-\frac{1}{n}\log P^n(X_1^n) - H\right| \le \varepsilon\right) \to 1 \text{ as } n \to \infty.$$

Equivalently,

$$\mathbb{P}\left(\left\{x_1^n \in A^n : \left| -\frac{1}{n} \log P^n(x_1^n) - H \right| \le \varepsilon\right\}\right) \to 1 \text{ as } n \to \infty$$

or,

$$P^n(B_n^*(\varepsilon)) \to 1 \text{ as } n \to \infty \ \forall \varepsilon > 0$$

where $B_n^*(\varepsilon) = \{x_1^n \in A: 2^{-n(H+\varepsilon)} \le P^n(x_1^n) \le 2^{-n(H-\varepsilon)}\}$ are the "typical strings".

Theorem 0.2 (Asymptotic Equipartition Property). Suppose $(X_n)_{n\geq 1}$ is a sequence of iid random variables with PMF P on A. Then for any $\varepsilon > 0$:

 $\bullet \ (\Rightarrow) \colon |B_n^*(\varepsilon)| \leq 2^{n(H+\varepsilon)} \ for \ all \ n \geq 1, \ and \ \mathbb{P}(X_1^n \in B_n^*(\varepsilon)) \to 1 \ as \ n \to \infty.$

• (\Leftarrow) if $(B_n)_{n\geq 1}$ is a sequence of sets with $B_n\subseteq A^n$ for all $n\geq 1$ such that $\mathbb{P}(X_1^n\in B_n)\to 1$ as $n\to\infty$, then $|B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}$ eventually.

Proof. For (\Rightarrow) we have

$$1 \ge P^n(B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n^*(\varepsilon)} P^n(x_1^n) \ge |B_n^*(\varepsilon)| 2^{-n(H+\varepsilon)}$$

and $\mathbb{P}(x_1^n \in B_n^*(\varepsilon)) \to 1$ by the previous.

For (\Leftarrow) , suppose $P^n(B_n) \to 1$ as $n \to \infty$. Then

$$P^{n}(B_{n} \cap B_{n}^{*}(\varepsilon)) = P^{n}(B_{n}) + P^{n}(B_{n}^{*}(\varepsilon)) - P^{n}(B_{n} \cup B_{n}^{*}(\varepsilon)) \to 1 + 1 - 1 = 1.$$

So eventually,

$$(1 - \varepsilon) \leq P^{n}(B_{n} \cap B_{n}^{*}(\varepsilon))$$

$$\leq \sum_{x_{1}^{n} \in B_{n} \cap B_{n}^{*}(\varepsilon)} P^{n}(x_{1}^{n})$$

$$\leq |B_{n} \cap B_{n}^{*}(\varepsilon)| 2^{-n(H-\varepsilon)}$$

$$\leq |B_{n}| 2^{-n(H-\varepsilon)}.$$

Fixed-rate (lossless) data compression

Definition. A source (X_n) with alphabet A is a collection of random variables taking values in A. The source is memoryless if the X_i are iid with some common PMF P on A.

Definition. A fixed-rate code of block length n on a finite alphabet A is a collection of codebooks (B_n) where $B_n \subseteq A^n$. To compress $x_1^n \in A^n$:

- (i) If $x_1^n \notin B_n$, then send "0" followed by x_1^n in binary. This will take $1 + \lceil \log |A^n| \rceil$ bits;
- (ii) If $x_1^n \in B_n$ then describe it by sending a "1" followed by the index of x_1^n in B_n , in binary. This takes $1 + \lceil \log |B_n| \rceil$ bits.

The error probability of the code is

$$P_e^{(n)} = \mathbb{P}(X_1^n \notin B_n) = P^n(B_n^c)$$

and its rate is

$$\frac{1}{n} (1 + \lceil \log |B_n| \rceil)$$
 bits/symbol.

Question: if we require $P_e^{(n)} \to 0$, what is the best (i.e smallest possible) compression rate.

Theorem 0.3 (Fixed-rate coding theorem). If (X_n) is a memoryless source with PMF P on A then for all $\varepsilon > 0$:

- (\Rightarrow) There is a code $(B_n^*(\varepsilon))$ with $P_e^{(n)} \to 0$ and rate less that or equal to $H + \varepsilon + \frac{2}{n}$ bits/symbol;
- (\Leftarrow) Any code has rate larger than $H \varepsilon$ eventually, where $H = H(X_i)$ is the entropy.

Proof. (\Rightarrow) Let $B_n^*(\varepsilon)$ be the typical sets. Then $P_e^{(n)}=P^n(B_n^*(\varepsilon)^c)\to 0$ by the AEP and the resulting rate is

$$\frac{1}{n}\left(1+\lceil\log|B_n^*(\varepsilon)|\right) \leq \frac{1}{n}+\frac{1}{n}+\frac{1}{n}\log\left(2^{n(H+1)}\right) \leq H+\varepsilon+\frac{2}{n}.$$

(\Leftarrow) By the AEP, any code with $P_e^{(n)} \to 0$ has $|B_n| \ge (1-\varepsilon)2^{n(H-\varepsilon)}$ eventually, so its rate is

$$\frac{1}{n}\left(1+\lceil\log|B_n|\right)\geq \frac{1}{n}+\frac{1}{n}\log\left(1-\varepsilon\right)+H-\varepsilon\geq H-\varepsilon.$$

Relative Entropy & Hypothesis Testing

Definition. Let P,Q be two PMFs on a discrete alphabet A. The *relative* entropy between P&Q is

$$D(P||Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)}.$$

Notes. D(P||Q) is not symmetric and it does not satisfy the triangle inequality. Despite this, we do think of this as a 'distance'.

Theorem 0.4 (Basic entropy bounds).

(i) If X takes values in A, then

$$0 \le H(x) \le \log A$$

with equality in the first inequality if and only if X is uniform.

(ii) $D(P||Q) \ge 0$ with equality if and only if P = Q.

Binary or simple-vs-simple hypothesis testing

Suppose X_1^n has iid entries from either P or Q on A. A hypothesis test is a decision region $B_n \subseteq A^n$ such that

$$x_1^n \in B_n \to \text{ declare } X_1^n \sim P^n \text{ and } x_1^n \notin B_n \to \text{ declare } X_1^n \sim Q^n.$$

The probabilities of error are

$$e_1^{(n)} = \mathbb{P}(\text{declare } P|X_1^n \sim Q^n) = Q^n(B_n)$$

 $e_2^{(n)} = \mathbb{P}(\text{declare } Q|X_1^n \sim P^n) = P^n(B_n^c).$

Question: if we require that $e_2^{(n)} \to 0$ as $n \to \infty$, how small can $e_1^{(n)}$ be?

Theorem 0.5 (Stein's Lemma). Suppose P,Q are PMFs on the same alphabet A such that $D(P||Q) \neq 0, \infty$. Then for all $\varepsilon > 0$

• (\Rightarrow) There are decision regions $B_n^*(\varepsilon)$ such that

$$e_1^{(n)} \le 2^{-(D-\varepsilon)n}$$
 for all n

and $e_2^{(n)} \to 0$ as $n \to \infty$.

• (\Leftarrow) For any decision regions (B_n) such that

$$e_2^{(n)} \to 0 \text{ as } n \to \infty$$

we have $e_1^{(n)} \ge 2^{-n(D+\varepsilon+\frac{1}{n})}$ eventually, where D = D(P||Q).

Proof. (\Rightarrow) Let us look at the likelihood ratio $\frac{P^n(x_1^n)}{Q^n(x_1^n)}$. If $X_1^n \sim P^n$, then

$$\frac{1}{n}\log \frac{P^{n}(X_{1}^{n})}{Q^{n}(X_{1}^{n})} = \frac{1}{n}\sum_{i=1}^{n}\log \frac{P(X_{i})}{Q(X_{i})} \xrightarrow{\mathbb{P}} D(P\|Q)$$

by the Law of Large Numbers.

This motivates the definition

$$B_n^*(\varepsilon) = \{x_1^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)}\}$$

so we have $P^n(B_n^*(\varepsilon)) \to 1$. Hence $e_2^{(n)} = P^n(B_n^*(\varepsilon)^c) \to 0$. Also

$$1 \ge P^{n}(B_{n}^{*}(\varepsilon)) = \sum_{x_{1}^{n} \in B_{n}^{*}(\varepsilon)} P^{n}(x_{1}^{n}) = \sum_{x_{1}^{n} \in B_{n}^{*}(\varepsilon)} Q^{n}(x_{1}^{n}) \frac{P^{n}(x_{1}^{n})}{Q^{n}(x_{1}^{n})}$$
$$\ge 2^{n(D-\varepsilon)} Q^{n}(B_{n}^{*}(\varepsilon)).$$

(\Leftarrow) Suppose $e_2^{(n)}(B_n) = P^n(B_n^c) \to 0$ and recall that also $e_2^{(n)}(B_n^*(\varepsilon)) = P^n(B_n^*(\varepsilon)^c) \to 0$ as $n \to \infty$. Then $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$ as $n \to \infty$, and in particular

$$\frac{1}{2} \le P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{\substack{x_1^n \in B_n \cap B_n^*(\varepsilon) \\ \le 2^{n(D+\varepsilon)}Q^n(B_n \cap B_n^*(\varepsilon))}} Q^n(x_1^n) \frac{P^n(x_1^n)}{Q^n(x_1^n)}$$
$$\le 2^{n(D+\varepsilon)}e_1^{(n)}(B_n).$$

Note. The "likelihood-ratio typical" sets $B_n^*(\varepsilon)$ are asymptotically optimal, in that they achieve the best possible exponent for $e_1^{(n)}$, namely $D=D(P\|Q)$. But they are <u>not</u> optimal for finite n. Indeed, for each n the optimal decision regions are the Neyman-Pearson tests

$$B_{\rm NP} = \{x_1^n \in A^n : P^n(x_1^n) > T\}$$
 for some threshold T.

Proposition 0.6.

$$B_{NP} = \left\{ x_1^n : D(\hat{P}_n || Q) \ge D(\hat{P}_n || P) + \frac{1}{n} \log T \right\}$$

where

$$\hat{P}_n(a) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{x_i = a\}$$

is the empirical distribution.

Proof. Note that

$$\frac{1}{n} \log \frac{P^{n}(x_{1}^{n})}{Q^{n}(x_{1}^{n})} = \frac{1}{n} \sum_{i=1}^{n} \log \frac{P(x_{i})}{Q(x_{i})}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} \mathbb{1}\{x_{i} = a\} \log \frac{P(a)}{Q(a)}$$

$$= \sum_{a \in A} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{x_{i} = a\} \log \frac{P(a)}{Q(a)}$$

$$= \sum_{a \in A} \hat{P}_{n}(a) \log \left(\frac{P(a)}{Q(a)} \frac{\hat{P}_{n}(a)}{\hat{P}_{n}(a)}\right)$$

$$= \sum_{a \in A} \hat{P}_{n}(a) \log \frac{\hat{P}_{n}(a)}{Q(a)} - \sum_{a \in A} \hat{P}_{n}(a) \log \frac{\hat{P}_{n}(a)}{P(a)}$$

$$= D(\hat{P}_{n} || Q) - D(\hat{P}_{n} || P)$$

Proposition 0.7 (Log-sum inequality). For any $a_1, \ldots, a_n, b_1, \ldots, b_n \geq 0$,

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}.$$

Moreover, we have equality if and only if a_i/b_i is constant over $i \in [n]$.

Proof. Let $f(x) = x \log x$, x > 0, which is strictly convex. Let $A = \sum_{i=1}^{n} a_i$ and $B = \sum_{i=1}^{n} b_i$. Define a random variable X which takes value a_i/b_i with probability b_i/B for $i \in [n]$. Then by Jensen's inequality

$$f(\mathbb{E}X) = f\left(\sum_{i=1}^{n} \frac{a_i}{b_i} \frac{b_i}{B}\right) = \frac{A}{B} \log \frac{A}{B}$$

so

$$\mathbb{E}(f(X)) = \sum_{i=1}^{n} \frac{a_i}{b_i} \log \frac{a_i}{b_i} \frac{b_i}{B} \ge f(\mathbb{E}X) = \frac{A}{B} \log \frac{A}{B}$$

by Jensen's inequality. We have equality if and only if X is constant, i.e a_i/b_i is constant for $i \in [n]$.

Proposition 0.8 (Basic entropy bounds).

- (i) If $X \sim P$ on a finite alphabet A, then $0 \leq H(X) \leq \log |A|$, with equality in the first inequality iff X is constant, and equality in the second indequality iff X is uniform on A.
- (ii) If P, Q are PMFs on the same alphabet A then $D(P||Q) \ge 0$ with equality if and only if P = Q.

Proof.

$$D(P||Q) = \sum_{x \in A}^{n} P(x) \log \frac{P(x)}{Q(x)} \ge \left(\sum_{x \in A} P(x)\right) \log \frac{\sum_{x \in A} P(x)}{\sum_{x \in A} Q(x)} = 0$$

by the previous proposition, with equality if and only if P(x)/Q(x) is constant over $x \in A$, i.e P = Q.

For (i), let Q be uniform on A and apply (ii):

$$0 \le D(P||Q) \le \sum_{x \in A} P(x) \log \frac{P(x)}{1/|A|}$$

so

$$0 \le \sum_{x \in A} P(x) \log P(x) + \sum_{x \in A} P(x) \log |A|$$

i.e $\log |A| - H(x) \ge 0$, with equality if and only if P = Q, i.e P is uniform on A.

Note. We saw that an iid sequence can at best be compressed to approximately $H(x_i)$ bits/symbol. The same source can be described, uncompressed using

$$\frac{1}{n} \lceil \log |A^n| \rceil \approx \log |A| \text{ bits/symbol.}$$

So compression is always possible, unless the source is "maximally" random, i.e iid uniform.

Recall our hypothesis testing setting. Data x_1^n generated iid either from P or Q. Then we had a decision region B_n (declaring P if $x_1^n \in B_n$ and Q otherwise) and error probabilities

$$e_1^{(n)}(B_n) = Q^n(B_n)$$
 and $e_2^{(n)} = P^n(B_n^c)$.

Stein's lemma told us that the likelihood ratio-typical decision regions

$$B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\} \text{ where } D = D(P\|Q)$$

are asymptotically optimal, i.e

$$e_1^{(n)}(B_n^*(\varepsilon)) \approx 2^{-nD} \text{ and } e_2^{(n)}(B_n^*(\varepsilon)) \to 0.$$

Recall the Neyman-Pearson decision regions

$$B_{\rm NP} = \left\{ x_1^n : \frac{P(x_1^n)}{Q^n(x_1^n)} \ge T \right\} \text{ for } T > 0$$

turn out to be optimal for finite n.

Theorem 0.9 (Neyman-Pearson Lemma). If $e_2^{(n)}(B_n) \le e_2^{(n)}(B_{NP})$ then $e_1^{(n)}(B_n) \ge e_1^{(n)}(B_{NP})$.

Proof. Observe that for all x_1^n :

$$[\mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n)][P^n(x_1^n) - TQ^n(x_1^n)] \ge 0$$

so summing over all x_1^n we get

$$P^{n}(B_{\rm NP}) - TQ^{n}(B_{\rm NP}) - P^{n}(B_{n}) + TQ^{n}(B_{n}) \ge 0$$

and so

$$1 - e_2^{(n)}(B_{\rm NP}) - Te_1^{(n)}(B_{\rm NP}) - \left[1 - e_2^{(n)}(B_n)\right] + Te_1^{(n)}(B_n) \ge 0$$

giving

$$e_2^{(n)}(B_n) - e_2^{(n)}(B_{NP}) \ge T \left[e_1^{(n)}(B_{NP}) - e_1^{(n)}(B_n) \right].$$

Definition. The type \hat{P}_n r $\hat{P}_{x_1^n}$ of a string $x_1^n \in A^n$ is simply its empirical distribution, i.e

$$\hat{P}_n(a) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{a \in X_i\} \text{ for } a \in A.$$

Recall

Proposition. We have

$$B_{NP} = \{x_1^n \in A^n : D(\hat{P}_n || Q) \ge D(\hat{P}_n || P) + T'\} \text{ where } T' = \frac{1}{n} \log T.$$

Definition. If X, Y are discrete random variables with values in A, B respectively and joint PMF $P_{X,Y}$, we define the *joint entropy*

$$H(X,Y) = \mathbb{E}[-\log P_{X,Y}(X,Y)] = \sum_{\substack{x \in A \\ y \in B}} P_{X,Y}(x,y) \log \frac{1}{P_{X,Y}(x,y)}$$

and similarly for n (not necessarily iid) random variables

$$H(X_1^n) = \mathbb{E}[-\log P_{X^n}(X_1^n)].$$

Example. Suppose $X \sim P_X$ and $Y \sim P_Y$ are independent. Then

$$H(X,Y) = \mathbb{E}[-\log(P_X(X)P_Y(Y))] = \mathbb{E}[-\log P_X(X)] + \mathbb{E}[-\log P_Y(Y)]$$

= $H(X) + H(Y)$.

In general, $P_{XY}(x,y) = P_X(x)P_{Y|X}(y|x)$, so

$$H(X,Y) = \mathbb{E}[-\log P_X(X)] + \mathbb{E}[-P_{Y|X}(Y|X)] = H(X) + H(Y|X).$$

Definition. The conditional entropy of Y given X is

$$H(Y|X) = \mathbb{E}[-\log P_{X|Y}(X|Y)] = \sum_{x,y} P_{XY}(x,y) \log P_{Y|X}(y|x).$$

Note. We also have

$$H(Y|X) = \sum_{x} P_X(x) \sum_{y} P_{Y|X}(y|x) \log P_{Y|X}(y|x)$$
$$= \sum_{x} P_X(x) H(Y|X=x).$$

Hence if Y takes values in A_Y , we have $0 \le H(Y|X) \le \log |A_Y|$, since $0 \le H(Y|X=x) \le \log |A_Y|$.

Proposition 0.10 ('Chain rule'). If X_1^n are n arbitrary discrete random variables, then

$$H(X_1^n) = H(X_1) + H(X_2|X_1) + \dots + H(X_n|X_1^{n-1})$$
$$= \sum_{i=1}^n H(X_i|X_1^{i-1}).$$

If the random variables are independent, then $H(X_1^n) = \sum_{i=1}^n H(X_i)$.

Proof. Since
$$P_{X_1^n}(x_1^n)=\prod_{i=1}^n P_{X_i|X_1^{i-1}}(x_i|x_1^{i-1})$$
 we can just take log-expectations. \Box

Proposition 0.11 ('Conditioning reduces entropy'). We have $H(Y|X) \leq H(Y)$, with equality if and only if X, Y are independent.

Proof.

$$H(Y) - H(Y|X) = \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}[-\log P_{Y|X}(Y)]$$

$$= \mathbb{E}\left(\log\left(\frac{P_{Y|X}(Y)}{P_Y(Y)}\frac{P_X(X)}{P_X(X)}\right)\right)$$

$$= \mathbb{E}\left(\log\frac{P_{XY}(X,Y)}{P_{X(X)}P_{Y(Y)}}\right)$$

$$= D(P_{XY}||P_XP_Y) \ge 0$$

with equality if and only if $P_{XY} = P_X P_Y$, i.e X, Y are independent.

Corollary 0.12 (Subadditivity of entropy). $H(X_1^n) \leq H(X_1) + H(X_2) + ... + H(X_n)$, with equality if and only if the X_i are independent.

Proposition 0.13 (Data processing inequalities for entropy). For any discrete random variable X on A and function f on A:

- (a) H(f(X)|X) = 0;
- (b) $H(f(X)) \le H(X)$ with equality iff f is injective.

Proof.

- (a) We have H(X) = H(X, f(X)) since $x \mapsto (x, f(x))$ is injective. Then H(f(X)|X) = H(X, F(X)) H(X) = 0;
- (b) We have $H(f(X)) = H(X, f(X)) H(X|f(X)) \le H(X, f(X)) = H(X)$ with equality if and only if H(X|f(X)) = 0, i.e f is injective.

Proposition 0.14 (Properties of conditional entropy).

- (a) H(X,Y|Z) = H(X|Z) + H(Y|X,Z);
- (b) H(Y|X,Z) = H(Y|Z);
- (c) $H(X, Y|Z) \le H(X|Z) + H(Y|Z)$.

Furthermore we have equality in (b) and (c) if and only if X and Y are conditionally independent given Z.

Proof. Exercise.
$$\Box$$

Theorem 0.15 (Fano's inequality). Suppose X, Y are discrete random variables taking values in A, B respectively. Let $\hat{X} = f(Y)$ for some function $f: B \to A$ and let $p_e = \mathbb{P}(\hat{X} \neq X)$. Then

$$H(X|Y) \le h(p_e) + p_e \log(|A| - 1)$$

where $h(p) = -p \log p - (1-p) \log(1-p)$.

Proof. Let $E = \mathbb{1}\{X \neq \hat{X}\}$ so that $E \sim \text{Bern}(p_e)$. Then by the chain rule

$$\begin{split} H(X,E|Y) &= H(X|Y) + \underbrace{H(E|X,Y)}_{=0} \\ &= H(E|Y) + H(X|E,Y) \end{split}$$

hence

$$H(X|Y) = H(E|Y) + H(X|E,Y)$$

$$\leq H(E) + \mathbb{P}(E=1) \underbrace{H(X|E=1,Y)}_{\leq \log(|A|-1)} + \mathbb{P}(E=0) \underbrace{H(X|E=0,Y)}_{=0}$$

$$\leq h(p_e) + p_e \log(|A|-1).$$

Proposition 0.16 (Data processing for relative entropy). Suppose $X \sim P_X$ and $Y \sim P_Y$ on A. Let $f: A \to B$ and $f(X) \sim P_{f(X)}$, $f(Y) \sim P_{f(Y)}$. Then $D(P_{f(X)}||P_{f(Y)}) \leq D(P_X||P_Y)$.

Proof. For $z \in B$ define $A_z = f^{-1}(\{z\})$. Then

$$D(P_X || P_Y) = \sum_{x \in A} P_X(x) \log \frac{P_X(x)}{P_Y(x)}$$

$$= \sum_{z \in B} \sum_{x \in A_z} P_X(x) \log \frac{P_X(x)}{P_Y(x)}$$

$$\geq \sum_{z \in B} \left(\sum_{x \in A_z} P_X(x) \right) \log \left(\frac{\sum_{x \in A_z} P_X(x)}{\sum_{x \in A_z} P_Y(x)} \right)$$

$$= \sum_{z \in B} P_{f(X)}(y) \log \frac{P_{f(X)}(y)}{P_{f(Y)}(y)}$$

$$= D(P_{f(X)} || P_{f(Y)}).$$

Definition. The total variation distance between two PMF's P,Q on the same alphabet A is

$$||P - Q||_{TV} = \sum_{x \in A} |P(x) - Q(x)|.$$

Theorem 0.17 (Pinsker's inequality). For PMF's P,Q on the same alphabet A we have

$$||P - Q||_{TV}^2 \le (2\log_e(2))D(P||Q) = 2D_e(P||Q)$$

where $D_e(P||Q) = \sum_{x \in A} P(x) \ln (P(x)/Q(x))$.

Note. If we let $B = \{x : P(x) > Q(x)\}$ we can write

$$||P - Q||_{TV} = \sum_{x \in B} |P(x) - Q(x)| + \sum_{x \in B^c} |P(x) - Q(x)|$$

$$= \sum_{x \in B} (P(x) - Q(x)) + \sum_{x \in B^c} (Q(x) - P(x))$$

$$= P(B) - Q(B) + Q(B^c) + P(B^c)$$

$$= 2(P(B) - Q(B)).$$

Proof. First suppose $P \sim \text{Bern}(p)$ and $Q \sim \text{Bern}(q)$ with $0 \le q \le p \le 1$ wlog (otherwise take $p \mapsto 1-p$ and $q \mapsto 1-q$). Let $\Delta(p,q) = 2D_e(P\|Q) - \|P-Q\|_{TV}^2$. Fix p and note that $\Delta(p,p) = 0$. Then (using the previous note to simplify $\|P-Q\|_{TV}$)

$$\Delta(p,q) = 2p \log p - 2p \log q + 2(1-p) \log(1-p) - 2(1-p) \log(1-q) - (2(p-q))^2$$

so differentiating Δ with respect to q gives

$$-2\frac{p}{q} + 2\frac{1-p}{1-q} + 8(p-q) = 2(q-p)\left[\frac{1}{q(1-q)} - 4\right] \le 0.$$

Therefore $\Delta(p,q) \geq 0$, so we have the Bernouilli case.

In the general case $X \sim P$ and $Y \sim Q$, let $B = \{x: P(x) > Q(x)\}$ and $x' = \mathbb{1}\{X \in B\}, Y' = \mathbb{1}\{Y \in B\}$, so that $X' \sim \operatorname{Bern}(P(B)), Y' \sim \operatorname{Bern}(Q(B))$. Then

$$\begin{split} \|P - Q\|_{TV}^2 &= (2(P(B) - Q(B)))^2 = \|P_{X'} - P_{Y'}\|_{TV}^2 \\ &\leq 2D_e(P_{X'}\|P_{Y'}) \qquad \text{(Bernouilli case)} \\ &\leq 2D_e(P\|Q). \qquad \text{(Data processing)} \end{split}$$

Poisson Appoximation

Suppose $X_1, \ldots, X_n \sim \operatorname{Bern}(\lambda/n)$ are iid. Then $S_n = \sum_{i=1}^n X_i \sim \operatorname{Bin}(n, \lambda/n)$ and we have $P_{S_n} \to \operatorname{Poi}(\lambda)$ as $n \to \infty$. This phenomenon is in fact much more general.

If $X_1, \ldots, X_n \sim \text{Bern}(p_i)$ and $S_n = \sum_{i=1}^n X_i \sim P_{S_n}$. Then $P_{S_n} \approx P_0(\lambda)$ as long as:

- (i) The p_i are small;
- (ii) The X_i ae only weakly dependent.

Theorem 0.18 (Poisson Approximation). Suppose $X_i \sim \text{Bern}(p_i)$, $i \in [n]$, and let $S_n = \sum_{i=1}^n X_i \sim P_{S_n}$ and $\lambda = \sum_{i=1}^n p_i$. Then

$$D_e(P_{S_n} || \text{Poi}(\lambda)) \le \sum_{i=1}^n p_i^2 + \left[\sum_{i=1}^n H(X_i) - H(X_1^n) \right].$$

Example. In the classical case this gives

$$||P_{S_n} - \operatorname{Poi}(\lambda)||_{TV} \le \frac{2\lambda}{\sqrt{n}}.$$

Proof. Let $Z_i \sim \text{Poi}(p_i)$ be independent for $i \in [n]$. Then $T_n = \sum_{i=1}^n Z_i \sim \text{Poi}(\lambda)$. Now

$$\begin{split} &D_{e}(P_{S_{n}}\|\operatorname{Poi}(\lambda)) = D_{e}(P_{S_{n}}\|P_{T_{n}}) \\ &\leq D_{e}(P_{X_{1}^{n}}\|P_{Z_{1}^{n}}) \\ &= \mathbb{E}\left(\ln\left(\frac{P_{X_{1}^{n}}(X_{1}^{n})}{P_{Z_{1}^{n}}(X_{1}^{n})} \times \frac{\prod_{i=1}^{n} P_{X_{i}}(X_{i})}{\prod_{i=1}^{n} P_{X_{i}}(X_{i})}\right)\right) \\ &= \mathbb{E}\left(\ln\prod_{i=1}^{n} \frac{P_{X_{i}}(X_{i})}{P_{Z_{i}}(X_{i})}\right) - \mathbb{E}\left(\ln\left(\prod_{i=1}^{n} P_{X_{i}}(X_{i})\right)\right) + \mathbb{E}\left(\ln P_{X_{1}^{n}}(X_{1}^{n})\right) \\ &= \sum_{i=1}^{n} \mathbb{E}\left(\ln\frac{P_{X_{i}}(X_{i})}{P_{Z_{i}}(X_{i})}\right) + \sum_{i=1}^{n} \mathbb{E}\left(-\ln P_{X_{i}}(X_{i})\right) - H(X_{1}^{n}) \\ &= \sum_{i=1}^{n} \underbrace{D_{e}(\operatorname{Bern}(p_{i})\|\operatorname{Poi}(p_{i}))}_{< p_{i}^{2}} + \sum_{i=1}^{n} H(X_{i}) - H(X_{1}^{n}). \end{split}$$

Mututal Information

Definition. If X, Y are two discrete random variables, the *mutual information* between X and Y is

$$I(X;Y) = H(X) - H(X|Y).$$

Proposition 0.19.

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = \mathbb{E}\left[\log \frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right]$$

= $D(P_{XY}||P_XP_Y)$.

Proof. Trivial.

Note. This implies the mutual information is symmetric, i.e I(X;Y) = I(Y;X). **Proposition 0.20.**

1. $I(X;Y) \ge 0$ with equality if and only if X,Y are independent;

2.
$$I(X;Y) \leq H(X)$$
.

Proof. Trivial.

Definition. The conditional mututal information H(X;Y|Z) is defined by

$$H(X;Y|Z) = H(X|Z) - H(X|Y,Z).$$

Note. Conditional mutual information satisfies properties analogous to those of the usual mutual information. For example $I(X;Y|Z) \ge 0$ with equality iff X, Y are conditionally independent given Z.

Proposition 0.21 (Chain rule for mutual information).

$$I(X_1^n; Y) = \sum_{i=1}^n H(X_i; Y | X_1^{i-1}).$$

Proof. Trivial.

Proposition 0.22 (Data processing). If Z = f(Y) or, more generally, if X-Y-Z (X, Z are conditionally independent given Y), then

1.
$$I(X;Y) \ge I(X;Z);$$

2.
$$I(X;Y) \ge I(X;Y|Z)$$
.

Proof.

$$I(X,Y;Z) = I(X;Y) + \underbrace{I(X;Z|Y)}_{=0}$$
 (chain rule)

$$= I(X; Z) + I(X; Y|Z).$$
 (chain rule)

Hence

$$I(X;Y) = I(X;Z) + I(X;Y|Z).$$

Synergy

Definition. The synergy between X and Y_1, Y_2 is

$$S(X; Y_1, Y_2) = I(X; Y_1, Y_2) - [I(X; Y_1) + I(X; Y_2)]$$

= $I(X; Y_2|Y_1) - I(X; Y_2)$.

Remark. The synergy can be either positive or negative.

Proposition 0.23. Consider the following scheme

Then if $S(X; W_1, W_2) > 0$, we have

$$I(X; W_1, W_2) > I(X; Z_1, Z_2).$$

Proof. We have

$$I(X; W_2|W_1) > I(X; W_2) = I(X; Z_2).$$

Hence

$$I(X; W_2|W_1) \ge I(X; Z_2|Z_1)$$
 (data processing)

also

$$I(X; W_1) = I(X; Z_1)$$

which, by combining and the chain rule, these we have

$$I(X; W_1, W_2) > I(X; Z_1, Z_2).$$

Theorem 0.24 (Maximum Entropy Property of Poisson).

$$H(\operatorname{Po}(\lambda)) = \sup \left\{ H(P_{S_n}) : S_n = \sum_{i=1}^n X_i, \ X_i \sim \operatorname{Bern}(p_i) \text{ indep}, \sum_{i=1}^n p_i = \lambda, \ n \ge 1 \right\}.$$

Proof.

$$\sup \left\{ H(P_{S_n}) : S_n = \sum_{i=1}^n X_i, \ X_i \sim \text{Bern}(p_i) \text{indep}, \sum_{i=1}^n p_i = \lambda \right\}$$

$$= \sup_{n \ge 1} H(\text{Bin}(n, \lambda/n)) \tag{1}$$

$$= \lim_{n \to \infty} H(\operatorname{Bin}(n, \lambda/n)) \tag{2}$$

 $= H(Po(\lambda))$