

RN8207C 用户手册

Data: 2014-3-12 Rev: 1.1

版本更新说明

版本号	修改时间	修改内容
V1.0	2014-3-20	创建
V1.1	2014-8-25	增加内部未开放功能: 三相锰铜表电压相序检测实现方法; 电能寄存器 2A/2C 功能定义更改; 扩展频率测量范围,增加 35H 寄存器; 对 RX 引脚复位功能做补充说明; 修改错误: 2.7 章节关于 Hfconst 寄存器地址的描述错误; 修改一些文字错误;
		廖以 至义于相庆;

目录

1	芯片介绍	4
	1.1 芯片特性	4
	1.2 功能简介	4
	1.3 功能框图	5
	1.4 管脚定义	5
	1.5 典型应用	7
2	系统功能	8
	2.1 电源监测	8
	2.2 系统复位	8
	2.3 模数转换	9
	2.4 有功功率	9
	2.5 无功功率	10
	2.6 有效值	10
	2.7 能量计算	11
	2.8 频率测量	12
	2.9 过零检测	12
	2. 10 中断	12
	2. 12 寄存器	13
3	校表方法	27
4	通信接口	28
	4.1 UART 接口信号说明	28
	4.2 UART 多从机通讯	28
	4.3 UART 数据字节格式	29
	4.4 UART 帧格式	29
	4.5 UART 写操作	31
	4.6 UART 读操作	31
	4.7 UART 接口可靠性设计	32
5	电气特性	33
6	芯片封装	35

1 芯片介绍

1.1 芯片特性

✓ 计量

- 提供两路 Σ - \triangle ADC
- 有功电能误差在 8000:1 动态范围内<0.1%, 支持 IEC62053-22: 2003 标准要求
- 无功电能误差在 8000:1 动态范围内<0.1%, 支持 IEC62053-23: 2003 标准要求
- 提供一路电流和一路电压有效值测量,在 1000:1 动态范围内,有效值误差<0.1%
- 提供一路脉冲频率发生器,可用于对用户自定义功率进行电能量累加积分
- 潜动阈值可调
- 提供反相功率指示
- 提供电压通道频率测量
- 提供电压通道过零检测
- 提供参考基准监测功能
- 不具备无功电能脉冲输出,用于三相锰铜表设计时,由 cpu 读取无功功率值或者无功电能寄存器的值运算并输出无功脉冲,或者将中断口连接到 cpu 由 cpu 输出无功电能脉冲
- 无需过零信号输出,即可通过软件实现三相电压相序检测

✔ 软件校表

- 电表常数(HFConst)可调
- 提供增益和相位校正
- 提供有功、无功、有效值 offset 校正
- 提供小信号校表加速功能
- 提供配置参数自动校验功能
- ✓ 提供 UART 接口,并具备地址片选功能
- ✓ 具有电源监控功能
- ✓ 具备电能寄存器定时冻结功能,可方便 cpu 实现三相合相及分相电能处理。
- ✓ UART 的 RX 输入引脚同时具备管脚复位功能
- ✓ +5V/3.3V 电源供电,功耗典型值为 15mW@5V、8mW@3.3V
- ✓ 内置 1.25V±1% 参考电压,温度系数典型值 5ppm/℃,最大 15ppm/℃
- ✓ 采用 SOP16L 绿色封装

1.2 功能简介

RN8207C 能够测量有功功率、无功功率、有功能量、无功能量,并能提供电流有效值、电压有效值、线频率、过零中断等,可以实现灵活的防窃电方案。

RN8207C 支持全数字的增益、相位和 offset 校正。有功电能脉冲从 PF 管脚输出。无功电

能脉冲可通过中断口经软件处理后输出。

RN8207C 提供串行接口 UART, 固定波特率 4800, 管脚复位与 UART 输入引脚 RX 复用。RN8207C 内部的电源监控电路可以保证上电和断电时芯片的可靠工作。

1.3 功能框图

图 1-1 系统框图

1.4 管脚定义

图 1-3 RN8207C-SOP16L 管脚排列图

表 1-2 RN8207C 管脚功能说明

引脚	标识	特性	功能描述						
1	AVDD	电源	模拟电源引脚。用于给芯片模拟部分供电。该引脚应外接 10μF 电容并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。						
2, 3	V1P, V1N	输入	电流通道的正、负模拟输入引脚。采用完全差分输入方式,正常工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。						
4, 5	V2P, V2N	输入	电压通道的正、负模拟输入引脚。采用完全差分输入方式,正常工作最大输入 Vpp 为±1000mV,最大承受电压为±6V。						
6	REFV	输入/ 输出	1.25V 基准电压的输入、输出引脚。外部基准源可以直接连接到该引脚上。无论使用内部还是外部基准源,该引脚应使用最少 1 µF 电容并联 0.1 µF 电容进行去耦。						
7	A0	输入	串行通信类型和地址选择引脚 A0、A1,用于确定芯片的通信接口类型和地址。内部已有 200K 上拉电阻,外部电路设计需注意。{A1,A0}=11 SPI {A1,A0}=10 UART,地址为 2 {A1,A0}=01 UART,地址为 0						
8	A1	输入							
9	TX	输出	见 A0 说明, 内部已有 200K 上拉电阻,外部电路设计需注意。 该引脚为 UART 的数据输出端 TX,默认输出为高电平。						
10	RX/RSTN	输入	该引脚为 UART 输入端 RX,同时也是复位引脚,当输入信号低电平超过 20ms 时 RN8207C 认为是复位有效。 RN8207C 内部复位电路与 UART 通信电路完全独立,该管脚复位功能完全等同独立的管脚复位。						
11	GND	地	芯片地,注意该引脚不应与 DVDD 去耦电容等数字噪声大的接地点直接连接,而是应尽量距离远一些。						
12	DVDD	电源	数字电源引脚。用于给芯片数字部分供电。该引脚应外接 10μF 电容并联 0.1μF 电容去耦。正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。						
13	OSCI	输入	外部晶体的输入端,或是外灌系统时钟输入。晶体频率典型值为3.579545MHz。外接电容典型值为15pF或22pF,内部已有约4M欧姆的跨接电阻,外部不需要加跨接电阻。要求外部晶体的ESR小于50欧姆。						
14	OSCO	输出	外部晶体的输出端。						
15	IRQ_N /ZX	输出	中断/过零检测输出管脚,复位后,为中断管脚。 Zxcfg=0(EMUCON-bit7)时作为中断请求 IRQ_N; Zxcfg=1(EMUCON -bit7)时作为 ZX: 电压通道过零输出。						
16	PF	输出	有功电能校验脉冲输出,默认状态低电平输出。其频率反映瞬时有 功功率的大小。具有 5mA 的输出和吸电流能力。						

1.5 典型应用

图 1-4 RN8207C 三相锰铜表典型应用

(备注: 无需过零信号 ZX 输出,即可实现三相电压相序检测功能)

2 系统功能

2.1 电源监测

RN8207C 片内包含一个电源监测电路,连续对模拟电源(AVDD)进行监控。当电源电压低于 2.6V±0.1V 时芯片被复位,当电源电压高于 2.75V±0.1V 时芯片正常工作。

图 2-1 电源检测特性

正常应用范围: 3V-5.5V,选定典型供电电压(如 5V 或 3.3V)后,应保证电源波动在±10%范围内。

2.2 系统复位

RN8207C 支持三种全局复位方式:

- 上下电
- RX 引脚复位
- 命令复位

任一全局复位发生时,寄存器恢复到复位初值,外部引脚电平恢复到初始状态。 命令复位之后 15us, 芯片完成复位。

RN8207C 的 RX 引脚同时也是复位引脚,当输入信号低电平超过 20ms 时 RN8207C 认为是复位有效。此功能可在隔离应用情况下可节省光耦数量。RN8207C 内部复位电路与UART 通信电路完全独立,该管脚复位功能完全等同独立的管脚复位。

建议的 RX 引脚软件复位操作方式是: 先将 RX 引脚置低 25ms, 然后再将 RX 引脚置高 20ms, 最后再开始正常的 UART 通信。相关寄存器:

系统状态寄存器中的 RST 是复位标志: 当外部 RST_N 引脚或者上电复位结束时,该位

置 1,读后清零。可用于复位后校表数据请求。

建议 CPU 在初始化计量芯片前使用 RX 引脚复位或者命令复位对计量芯片进行一次复位操作。

2.3 模数转换

RN8207C 包括两路 ADC, 一路用于相线电流采样, 一路用于电压采样。

ADC 采用全差分方式输入,电流、电压通道最大信号输入幅度为峰值 1000mv。

通过配置系统控制寄存器(SYSCON 0x00H)中的 bit5~bit0 位,可以分别对两路 ADC 配置放大倍数,电流通道的 ADC 放大倍数 4 档可选: 1、2、8、16; 电压通道 ADC 放大倍数 3 档可选: 1、2、4。电流通道的增益放大倍数默认为 16 倍。

2.4 有功功率

图 2-2 有功功率框图

RN8207C 提供有功功率的计算和校正,相关寄存器包括相位校正、有功 Offset 校正、有功增益校正和平均功率寄存器。

平均功率 PowerP 还用于判断潜动和启动。启动阈值可以通过 PStart 寄存器配置。

图中的数字高通滤波器主要是用于去除电流、电压采样数据中的直流分量。

图中的 DCI、DCU 用于对 ADC 通道的直流偏置进行校正,RN8207C 用于直流测量应用时,需要对直流偏置进行校正,同时需要将高通滤波器关闭。

2.5 无功功率

图 2-3 无功功率框图

RN8207C 包含无功功率计量电路。其中用于计量的 DataUT 是 DataU 移相 90 度的结果; 平均无功功率 PowerQ 还用于判断启动和潜动,启动阈值可以通过 QStart 寄存器配置。

2.6 有效值

图 2-3 有效值计算框图

RN8207C 提供两个通道的真有效值参数输出,包括 URMS、IRMS。字长为 24bit,每 3.495HZ 或 13.982Hz 更新一次。此外还包括有效值 Offset 寄存器: IRMSOS。

2.7 能量计算

图 2-4 能量计算

能量脉冲输出:

脉冲输出,也即校表脉冲输出,可以直接接到标准电能表进行误差比对。 PF/QF 输出满足下面时序关系:

图 2-5 输出脉冲宽度

注意: 当脉冲输出周期小于 180ms 时, 脉冲以等 duty 形式输出。

PFcnt/DFcnt、HFConst、脉冲输出、能量寄存器的关系:

当 2*|PFcnt| (0x20H)=HFConst (0x02H)时,PF有一个脉冲输出。同时能量寄存器 EnergyP (0x29H)和 EnergyP2 (0x2AH)加 1。

当 2*|DFcnt| (0x21H)=HFConst (0x02H)时, QF 有一个脉冲输出。同时能量寄存器 EnergyD (0x2BH)和 EnergyD2 (0x2CH)加 1。

脉冲输出、能量寄存器和 PRun/DRun 以及 PStart/DStart 的关系:

有功/自定义能量寄存器和 PF/QF 输出还受到 PRun/DRun 以及 PStart/DStart 的控制。

- 当 PRun=0 或者|P|小于 PStart 时, PF 不输出脉冲, PFcnt 和有功能量寄存器不增加。
- 当 DRun=0 或者|DataD|小于 DStart 时,QF 不输出脉冲,DFcnt 和自定义能量寄存器不增加。

自定义脉冲输出:

DataD 的来源默认是 DATAQ(无功功率),也可以选择为 D2FP(用户写入),通过 D2FM 寄存器来选择具体使用哪个功率。

脉冲输出加速:

为加快小信号校正速度,提供脉冲输出加速功能。在小信号校正时可以配置 EMUCON

(0x01H)寄存器的 **CFSUEN** 和 **CFSU[1:0]**位,使 PF/QF 的输出频率提高,最快可以提高 16 倍。 **反向指示:**

当有功或自定义功率为负时, EMUStatus 寄存器的 REVP 位或 REVQ 位会变为 1, REVP 位与 PF 脉冲同步更新, REVO 位与 OF 脉冲同步更新。

2.8 频率测量

RN8207C 可以直接输出线频率参数(UFreq 0x25H 2 字节),测量基波频率,最小测量频率为 6.8Hz,测量带宽 250Hz。

RN8207C 同时提供另外一个线频率参数寄存器(UFreq2 0x35 3 字节),测量基波频率,最小测量频率为1Hz,测量带宽250Hz。

2.9 过零检测

RN8207C 通过配置 ZXCFG(EMUCON.7)选择引脚 IRQ_N/ZX 开启/关闭过零输出。 RN8207C 通过配置 ZXD1(EMUCON.9)、ZXD0(EMUCON.8)寄存器位选择四种过零输出方式。

当软件使用过零测量特殊命令(0xEA/0x&7C,见 2.12.6 章节)时,计量芯片将收到该命令的时刻作为时间基准,测量出电压过零与该时间基准的时间差,时间差保存在 ZXCNT(0x34H)寄存器。当用户使用三个 RN8207C 设计三相表时,通过 UART 的广播命令发送过零测量特殊命令,三个 RN827C 收到命令后同时启动测量,软件根据三个 RN8207C 测量值可实现三相电压相序的判断。

2.10 中断

RN8207C 中断资源包括 1 个中断允许寄存器 IE、2 个中断状态寄存器 IF 和 RIF、一个复用的中断请求管脚 IRO N/ZX。其中 RIF 同 IF,读 RIF 可清 IF,读 IF 也可清 RIF。

1. 中断请求信号 IRQ_N

IRQ_N/ZX 引脚为 IRQ_N 和过零检测输出 ZX 复用,通过配置 EMUCON 寄存器(0x01H)的 ZXCFG 位确定该引脚的用途。

当中断允许寄存器相应的中断允许位使能且中断事件发生时,IRQ_N 引脚为低电平。当 CPU 通过 SPI 接口读 RIF 或 IF,在发完命令字节最后一个比特(LSB)的 SCLK 下降沿,IRQ_N 引脚恢复为高电平。

2. 中断处理过程

硬件:

- RN8207C 的 IRQ_N 通常和 MCU 的外部中断管脚/INT 相连,当 IRQ_N 由高变低时 MCU 产生/INT 中断。
- MCU 作为 UART 主机, RN8207C 作为 UART 从机。

中断处理程序:

步骤一: MCU 中断初始化

- 1. MCU 读 RN8207C RIF, 清 IF 和 RIF 中断标志;
- 2. 配置 RN8207C IE 寄存器, 使能需要的中断允许位以产生 IRQ N;

3.MCU 使能/INT 外部中断,等待 RN8207C 中断事件发生, IRQ_N 输出触发/INT 中断, 跳入/INT 的中断入口地址。

步骤二: MCU 中断服务程序

- 1. 关闭 MCU 全局中断和/INT 中断:
- 2. MCU 通过 SPI 读 RIF 寄存器,清 IF和 RIF 寄存器,将 IRQ_N 恢复到高电平。
- 3. MCU 通过判断 RIF 的中断标志来判断 RN8207C 的中断源,转而执行相应的中断处理程序。
- 4. 执行完中断处理程序,MCU 打开全局中断和/INT 中断,并恢复现场后中断返回。

中断返回后,若检测到/INT 中断标志,程序又进入到外部中断 ISR 中,重复 2。若未检测到/INT 中断标志,说明中断处理过程中未发生中断事件,程序继续运行。

图 2-6 RN8207C 中断处理过程

2.12 寄存器

2.12.1 寄存器列表

表 2-3 RN8207C 寄存器列表

ایا بایا	わわ	D/W		有片店	
地址	名称	R/W	字长	复位值	功能描述
			校表	長参数和计量控	空制寄存器
00H	SYSCON	R/W	2	0003h	系统控制寄存器,写保护
01H	EMUCON	R/W	2	0003h	计量控制寄存器,写保护
02H	HFConst	R/W	2	1000h	脉冲频率寄存器,写保护
03H	PStart	R/W	2	0060h	有功起动功率设置,写保护
04H	DStart	R/W	2	0120h	自定义电能起动功率设置,写保护
05H	GPQ	R/W	2	0000h	功率增益校正寄存器,写保护
06H	保留	R/W	2	0000h	只读,不可写
07H	Phs	R/W	1	00h	相位校正寄存器,写保护
08H	保留	R/W	1	00h	只读, 不可写
09H	QPhsCal	R/W	2	0000h	无功相位补偿,写保护
0AH	APOS	R/W	2	0000h	有功功率Offset校正寄存器,写保护
0BH	保留	R/W	2	0000h	只读,不可写
0CH	RPOS	R/W	2	0000h	无功功率Offset校正寄存器,写保护
0DH	保留	R/W	2	0000h	只读, 不可写
0EH	IRMSOS	R/W	2	0000h	电流有效值Offset补偿,写保护

0FH	保留	R/W	2	0000h	只读,不可写
10H	保留	R/W	2	0000h	只读,不可写
11H	D2FPL	R/W	2	0000h	自定义功率寄存器D2FP的低16bit,写保护
12H	D2FPH	R/W	2	0000h	自定义功率寄存器D2FP的高16bit,用户 需要先写D2FPH,再写D2FPL,然后D2FP
			_		才进行电能积分,写保护。
13H	DCIH	R/W	2	0000h	I通道直流offset校正寄存器的高16bit,写保护
14H	保留	R/W	2	0000h	只读, 不可写
15H	DCUH	R/W	2	0000h	U通道直流offset校正寄存器的高16bit,写保护
					直流offset校正寄存器的低4bit:
16H	DCL	R/W	2	0000h	DCL[11:0]={DCU[3:0],4'H0,DCIL[3:0]} ,
					写保护
17H	EMUCON2	R/W	2	0000h	计量控制寄存器2,写保护
		•	ì	十量参数和状态	· · · · · · · · · · · · · · · · · · · ·
20H	PFCnt	R/W	2	0000h	快速有功脉冲计数,写保护
21H	DFcnt	R/W	2	0000h	自定义电能快速脉冲计数,写保护
22H	IRMS	R	3	000000h	电流有效值
23H	保留	R	3	000000h	只读, 保留位
24H	URMS	R	3	000000h	电压有效值
25H	UFreq	R	2	0000h	电压频率
26H	PowerP	R	4	00000000h	有功功率
27H	保留	R	4	00000000h	只读,保留位
28H	PowerQ	R	4	00000000h	无功功率
29H	EnergyP	R	3	000000h	有功能量,读后清零、不清零可选,默认 为读后不清零
2AH	EnergyP2	R	3	000000h	有功能量读后不清零寄存器或有功能量 冻结寄存器
2BH	EnergyD	R	3	000000h	自定义能量,读后清零、不清零可选,默 认为读后不清零
2CH	EnergyD2	R	3	000000h	自定义能量读后不清零寄存器或能量冻 结寄存器
2DH	EMUStatus	R	3	00EE79h	计量状态及校验和寄存器
30H	SPL_I	R	3	000000h	I通道ADC采样值,24位,二进制补码格式
31H	保留	R	3	000000h	只读, 保留位
32H	SPL_U	R	3	000000h	U通道ADC采样值,24位,二进制补码格式
34H	ZXCNT	R	2	0000h	电压过零计数寄存器
35H	UFreq2	R	3	000000h	电压频率寄存器2,扩展了测频范围,50Hz 时读出值同UFreq(0x25H)
	<u> </u>	<u> </u>	<u>l</u>	中断寄存	1, ,
40H	IE	R/W	1	00h	中断允许寄存器,写保护
41H	IF	R	1	00h	中断标志寄存器,读后清零
	ı	L			

42H	RIF	R	1	00h	复位中断状态寄存器,读后清零	
系统状态寄存器						
43H	SysStatus	R	1		系统状态寄存器	
44H	RData	R	4		上一次UART读出的数据	
45H	WData	R	2		上一次UART写入的数据	
7FH	DeviceID	R	3	820700h	RN8207C Device ID	

2.12.2 校表参数寄存器

系统控制寄存器 SYSCON(0x00)

SYSTE	M Control Regi	ster (SYSC	ON) Add	ress: 0x00 H	Default Value: 0003H			
位	位名称			功能描述				
15	保留	默认为 0, 7	默认为 0,不要对该位写 1					
					h16, 表示当前波特率为 4800			
14-8	Uartbr[6:0]	请注意: ua 率。	rtbr[6:0]参 ^{_1}	ラ校验和计算 。	RN8207C 固定为 4800 波特			
7	保留	默认为 0, 7	不要对该位写					
6	保留	默认为 0, 7	不要对该位写					
5-4	保留	默认为 0, 7	不要对该位写					
3-2	PGAU[1:0]	电压通道模 PGAU1 0 0 1 1	拟增益选择: PGAU0 0 1 0 1	电压通道 PGA=1 PGA=2 PGA=4 PGA=4				
1-0	PGAI[1:0]	电流通道模 PGAI1 0 0 1	拟增益选择 PGAI0 0 1 0	,默认值为 16 电流通道 PGA=1 PGA=2 PGA=8	倍。			

计量控制寄存器

计量控制寄存器用于计量功能的设置。

Energy	Measure Contr	rol Register (EMUCON) Address: 0x01 H Default Value: 0003H
位	位名称	功能描述
15	EnergyCLR	默认为 0 =0: 电能寄存器为累加型; =1: 电能寄存器为读后清零型;

14	保留	默认为 0,7	下要对该位写	1			
		自定义能量	累加方式选择	:			
		QMOD1	QMOD0	累加功率 Qm			
		0	0	Qm=DataQ, 正反向功率都参与累加,			
13-12	QMOD[1:0]			负功率有 REVQ 符号指示。			
13-12	QMOD[1.0]	0	1	只累加正向功率			
		1	0	Qm= DataQ ,正反向功率都参与累加,			
				无负功率符号指示。			
		1	1	Qm=DataQ(保留)			
11-10	PMOD[1:0]			同上表自定义能量累加方式。			
				居 ZXD1 和 ZXD0 的配置输出不同的波形:			
9	ZXD1			的过零点处 ZX 输出发生变化;			
		ZXD1=1,表示在正向和负向过零点处 ZX 输出均发生变化。					
8	ZXD0	ZXD0=0,表示选择正向过零点作为过零检测信号;					
		ZXD0=1,表示选择负向过零点作为过零检测信号。					
7	ZXCFG			/ZX 作为 IRQ_N。			
		ZXCFG =1: 引脚 IRQ_N /ZX 作为 ZX。					
6	HPFIOFF			数字高通滤波器			
				数字高通滤波器			
5	HPFUOFF			道数字高通滤波器			
				道数字高通滤波器	п.Э.		
	CECLIEN		_	向出加速模块的控制位,CFSUEN=1,使能			
4	CFSUEN	冲加速模块,脉冲的输出速率提高 2^(CFSU[1:0]+1)倍。CFSUEN=0, 关闭脉冲加速模块,脉冲正常输出。					
3,2	CECUI1.01			'止吊制出。 月。见 CFSUEN 说明。			
3,2	CFSU[1:0]						
1	DRUN		-	输出和自定义电能寄存器累加; 输出和自定义电能寄存器累加。默认状态	4 -		
1	DRUN	1.	てい」 Qr MY中	他山地日足 义 电配可行奋系加。	Ŋ		
			# AF DE Hiv \hd	输出和有功电能寄存器累加 :			
0	PRUN	_			1		
		PRUN=0,关闭 PF 脉冲输出和有功电能寄存器累加。默认状态为 1。					

脉冲频率寄存器

High Frequency Impulse Const Register (HFConst)				Address:	Address: 0x 02H Default Value : 1000H			
	Bit15	14	13	12	11	10	9	Bit8
Read:	TIPO15	HEC14	HEG12	IIPC12	IJEC11	IIIC10	HEGO	HEGO
Write:	HFC15	HFC14	HFC13	HFC12	HFC11	HFC10	HFC9	HFC8
Reset:	0	0	0	1	0	0	0	0
:	Bit7	6	5	4	3	2	1	Bit0
Read	HEG7	HECK	HEGS	HEC4	HEGS	HEGO	HECI	HECO
Write:	HFC7	HFC6	HFC5	HFC4	HFC3	HFC2	HFC1	HFC0

HFConst 是 16 位无符号数,做比较时,将其与快速脉冲计数寄存器 PFCNT/DFCNT 寄存器值的绝对值的 2 倍做比较,如果大于等于 HFConst 的值,那么就会有对应的 PF/QF 脉冲输出。

潜动与启动阈值寄存器

Start Pow	er Threshold Se	etup Register (PStart)	Address: 0x 03h Default Value : 0060H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	DC15	DC 14	DC 12	DC 12	DC11	DC10	DC 0	DC 0
Write:	PS15	PS 14	PS 13	PS 12	PS11	PS10	PS 9	PS 8
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	PGZ	DG 6	DG 5	DG 4	DG 2	DG 2	DG 1	DG 0
Write:	PS7	PS 6	PS 5	PS 4	PS 3	PS 2	PS 1	PS 0
Reset:	0	1	1	0	0	0	0	0

Start Pow	er Threshold So	etup Register (DStart)	Address: 0x	k 04h Default V	/alue : 0120H		
	Bit15	14	13	12	11	10	9	Bit8
Read:	0015	00.14	00.12	00.12	0011	0010	0.20	00.0
Write:	QS15	QS 14	QS 13	QS 12	QS11	QS10	QS 9	QS 8
Reset:	0	0	0	0	0	0	0	1
	Bit7	6	5	4	3	2	1	Bit0
Read:	0.05	00.5	00.5	00.4	00.0	00.2	00.1	00.0
Write:	QS7	QS 6	QS 5	QS 4	QS 3	QS 2	QS 1	QS 0
Reset:	0	0	1	0	0	0	0	0

启动阈值可由 PStart 和 DStart 寄存器配置。它们是 16 位无符号数,做比较时,将其分别与 PowerP 和 DataD (为 32bit 有符号数)的高 24 位的绝对值进行比较,以作起动判断。

|PowerP|小于 PStart 时, PF 不输出脉冲。

|DataD|小于 DStart 时,QF 不输出脉冲。

增益校正寄存器

Power Gain Register A(GPQ)		Address: 0x0	5h Default Value : 0000H				
	Bit15	14	13	12 3	2	1	Bit0
Read:	CDO 15	CDO 14	CDO 12	CDO 12 CDO 2	CDO 2	CDO 1	CPO 0
Write:	GPQ_15	GPQ_14	GPQ_13	GPQ_12GPQ_3	GPQ_2	GPQ_1	GPQ_0
Reset:	0	0	0	0	0	0	0

该寄存器为二进制补码格式,最高位为符号位。

校正公式为: P1=P0(1+GPQS)

Q1=Q0(1+GPQS)

其中 GPOS 为增益校正寄存器的归一化值。使用方法见第三章校表方法。

相位校正寄存器

Phase Calibration Register (Phs)			Address: 0x 0	7H Default V	alue : 00H				
	Bit7	6	5	5 4 3 2 1 Bit0					
Read:	DL. 7	Dl. C	Die 5	Di 4	Dis. 2	Dis. 2	Di 1	Dis. 0	
Write:	Phs_7	Phs_6	Phs _5	Phs _4	Phs _3	Phs _2	Phs _1	Phs _0	
Reset:	0	0	0	0	0	0	0	0	

该寄存器为带符号二进制补码,Bit0~bit7 有效,其中 bit7 为符号位。使用方法见第三章校表方法。

1 LSB 代表 1/895khz=1.12us/LSB 的延时,在 50HZ 下,1 LSB 代表 1.12 us*360°*50/10^6=0.02° /LSB 相位校正。

相位校正范围: 50HZ 下, ±2.56°

请注意: 计量控制寄存器 2(EMUCON2 地址: 0x17H)新增寄存器位,可将相位校正 刻度提升至 0.01°

无功相位补偿寄存器

Reactive 1	Reactive Power Phase Calibration Register (QPhsCal)			Address: 09H Default Value : 0000H				
	Bit15	14	13	123		2	1	Bit0
Read:	ODC15	ODC14	OPC12	OPCI	a opca	ODCA	ODCI	OPCO
Write:	QPC15	QPC14	QPC13	QPC1.	2 QPC3	QPC2	QPC1	QPC0
Reset:	0	0	0	0	0	0	0	0

无功相位补偿寄存器用于 U 通道 90°移相滤波器在无功计算中的相位补偿。无功相位补偿寄存器采用十六位二进制补码形式,最高位为符号位。使用方法见第三章校表方法。

校正公式: Q2 = Q1-QPhs*P1

其中 P1 为有功功率, Q1 为补偿前的无功功率, Q2 为补偿后的无功功率。

有功 Offset 校正寄存器

Active Power Offset Register (APOS)		Address: 0AH	H Default Value : 0000H				
	Bit15	14	13	12 3	2	1	Bit0
Read:	A DOC 15	A DOG 14	ADOC 12	ADOC 12 ADOC 2	ADOC 2	ADOC 1	A DOG O
Write:	APOS_15	APOS _14	APOS _13	APOS _12APOS _3	APOS _2	APOS _1	APOS _0
Reset:	0	0	0	0	0	0	0

有功 OFFSET 校正适合小信号的精度校正。该寄存器为二进制补码格式,最高位为符号位。使用方法见第三章校表方法。

无功 Offset 校正寄存器

Rective Power Offset Register (RPOS)	Address: 0CH	Default Value : 0000H
--------------------------------------	--------------	-----------------------

	Bit15	14	13	12 3	2	1	Bit0
Read:	DDOC 15	PPOC 14	DDOC 12	RPOS 12RPOS 3	DDOG 2	RPOS 1	DDOS 0
Write:	RPOS_15	RPOS _14	RPOS _13	KFOS _12KPOS _5	RPOS _2	KPOS_I	RPOS _0
Reset:	0	0	0	0	0	0	0

无功 Offset 校正寄存器用于无功小信号精度的校正。该寄存器为二进制补码格式,最高位为符号位。使用方法见第三章校表方法。

有效值 Offset 校正寄存器

IRMS Off	set Register(IRM	ISOS)	Address: 0EH	Default Value : 0000H			
	Bit15 14		13	12 3	2	1	Bit0
Read:	TDMG 15 TDMG 14		IDMC 12	IDMC 12 IDMC 2	IDMC 2	IDMC 1	IDMG 0
Write:	IRMS_15	IRMS _14	IRMS _13	IRMS _12IRMS _3	IRMS _2	IRMS _1	IRMS _0
Reset:	0	0	0	0	0	0	0

有效值 Offset 校正寄存器用于电流有效值小信号精度的校正。该寄存器为二进制补码格式,最高位为符号位。使用方法见第三章校表方法。

自定义功率寄存器

自定义功率寄存器是 32 位有符号数,由 D2FPH(0x12H)和 D2FPL(0x11H)共同组成,其中 D2FPH 为高 16bit , D2FPL 为低 16bit。D2FPH 的最高位是符号位。

如 D2FM 寄存器(EMUCON2 的 bit5~4)配置为自定义功率,当用户往自定义功率寄存器写入功率值, RN8207C 会自动按照脉冲常数设置进行积分,积分得到的电能存放在 EnergyD(0x2BH)和 EnergyD2(0x2CH),积分得到的脉冲从 QF 管脚输出。

用户需要先写 D2FPH,再写 D2FPL,然后 D2FP 才生效。

直流偏置校正寄存器

RN8207C 新增两个通道的直流偏置校正寄存器,用于不需要高通滤波器的计量场合。每个通道的直流偏置校正寄存器为 20 位。直流偏置校正的方法见应用笔记。

计量控制寄存器 2

Energy	Measure Conti	rol Register2 (EMUCON2) Address: 0x17 H Default Value: 0000H						
位	位名称	功能描述						
15~10	保留	只读, 不可写						
13,12	FreqCnt	=00:频率测量的时间为 32 个周波; =01:频率测量的时间为 4 个周波; =10:频率测量的时间为 8 个周波; =11:频率测量的时间为 16 个周波;						
11,9	保留	默认为 0						

8	Phs0	可作为最低位与Phs(0x07H)寄存器共同组成一个9位的相位校正寄存器,将相位校正分辨度从 0.02 度提高到 0.01 度。当该寄存器为 0 时,对相位校正不起作用。
7	upmode	=0,功率及有效值寄存器更新速度为 3.495Hz; =1,功率及有效值寄存器更新速度为 13.982Hz;
6	ZXMODE	=0,过零信号输出源为正常计量的电压信号,谐波没有滤除; =1,过零信号输出源为低通滤波后的电压信号。
5,4	D2FM[1:0]	=00:自定义电能输入选择为无功功率; =01:保留; =10:保留; =11:自定义电能输入选择为自定义功率寄存器 D2FP
3	Energy_fz	=0, 电能寄存器 2 作为读后清零型电能寄存器。 =1, 电能寄存器 2 (地址 2A 和 2C) 启用定时冻结功能, 每隔 572.1793 毫秒 (2048 个晶振周期) 将电能寄存器 1 (地址 29 和 2B) 的值装载 到电能寄存器 2, 同时将电能寄存器 1 清零。
2~0	保留	默认为 0, 用户不要操作该寄存器位

2.12.3 计量参数寄存器

快速脉冲计数器

Active Energy Counter Register (PFCNT)			Address: 0x20h				
	Bit15	14	13	12 3	2	1	Bit0
Read:	DEC15	DEC14	DEC12	DEC12 DEC2	DECO	PFC1	DECO.
Write:	PFC15	PFC14	PFC13	PFC12PFC3	PFC2	PFCI	PFC0
Reset:	0	0	0	0	0	0	0

Reactive 1	Reactive Energy Counter Register (DFCNT)			Address: 0x21h	Address: 0x21h				
	Bit15	14	13	12 3	2	1	Bit0		
Read:	OFC15	OFC14	OFC12	OFG12 OFG2	OFCO	OFGI	OFG0		
Write:	QFC15	QFC14	QFC13	QFC12QFC3	QFC2	QFC1	QFC0		
Reset:	0	0	0	0	0	0	0		

为了防止上下电时丢失电能,掉电时 MCU 将寄存器 PFCnt/DFcnt 值读回并进行保存,然后在下次上电时 MCU 将这些值重新写入到 PFCnt/DFcnt 中去。

当快速脉冲计数寄存器 PFCnt/DFcnt 计数值的绝对值的 2 倍大于等于 HFconst 时,相应的 PF/QF 会有脉冲溢出,能量寄存器的值会相应的加 1。

电流电压有效值寄存器

Current A Rms Register (IARms)	Address:	0x22h

	Bit23	22	21	20 3	2	1	Bit0
Read:	IS23	IS22	IS21	IS20IS3	IS2	IS1	IS0

Voltage R	Voltage Rms Register (Urms)		Address:	0x24h			
	Bit23	22	21	20 3	2	1	Bit0
Read:	US23	US22	US21	US20US3	US2	US1	US0

有效值 Rms 是 24 位有符号数,最高位为 0 表示有效数据,最高位为 1 时读数做零处理;参数更新的频率为 3.495Hz 或 13.982Hz 可选。

电压频率寄存器

Voltage F	Voltage Frequency Register (UFreq)		Address:	0x25h			
	Bit15	14	13	12 3	2	1	Bit0
Read:	Ufreq15	Ufreq14	Ufreq13	Ufreq12Ufreq3	Ufreq2	Ufreq1	Ufreq0

主要测量基波频率,测量带宽 250Hz 左右。

频率值是一个16位的无符号数,参数格式化公式为:

f=CLKIN/8/UFREO

例如,如果系统时钟为 CLKIN=3.579545MHz,UFREQ=8948,那么测量到的实际频率为: f=3579545/8/8948=49.9908Hz。

电压频率测量值默认更新的周期为 0.64s, 可通过计量控制寄存器 2 调整更新时间。

同时提供 UFreq2 电压频率寄存器 2, 地址为 0x35H, 字长为 3 字节, 测量基波频率, 最小测量频率为 1Hz, 测量带宽 250Hz。输入 50Hz 时读出值同 UFreq(0x25H)

平均有功功率寄存器

Active Po	Active Power Register (PowerP)		Address:	0x26h			
	Bit31	30	29	28 3	2	1	Bit0
Read:	AP23	AP22	AP21	AP20AP3	AP2	AP1	AP0

有功功率参数 PowerP 是二进制补码格式,32 位数据,其中最高位是符号位。功率参数更新的频率为3.495Hz 或13.982Hz 可选。

平均无功功率寄存器

Reactive	Reactive Power Register (PowerQ)		Address:	0x28h			
	Bit31	30	29	28 3	2	1	Bit0
Read:	RP31	RP30	RP29	RP28RP3	RP2	RP1	RP0

无功功率参数 PowerQ 是二进制补码格式,32 位数据,其中最高位是符号位。更新频率同 PowerP。

有功电能寄存器

Active En	Active Energy Register (EnergyP)		Address:	0x29h			
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23	EP22	EP21	EP20EP3	EP2	EP1	EP0

EnergyP 寄存器是累加型或清零型有功能量寄存器。当选择为累加型时(**EMUCON 寄存器 bit15=0**),在 0xFFFFFF 溢出到 0x0000000 时,会产生溢出标志 POIF(参见 IF 0x41H)。当选择为清零型时(**EMUCON 寄存器 bit15=1**),寄存器读后清为 0.

电能参数是无符号数, EnergyP 的寄存器值分别代表 PF 脉冲的累加个数。寄存器最小单位代表的能量为 1/EC kWh。其中 EC 为电表常数。

有功电能寄存器 2

Active En	Active Energy Register2 (EnergyP2)		Address:	0x2AH				
	Bit23	22	21	20 3	2	1	Bit0	
Read:	EP23_2	EP22_2	EP21_2	EP20_2EP3_2	EP2_2	EP1_2	EP0_2	

当计量控制寄存器 2 的 energy_fz 位等于 0 时,该寄存器是读后清零型有功电能寄存器;当计量控制寄存器 2 的 energy_fz 位等于 1 时,该寄存器启用定时冻结功能,每隔 572.1793 毫秒(2048 个晶振周期)将有功电能寄存器(地址 29)的值装载到该寄存器,同时将有功电能寄存器清零。

自定义电能寄存器

UserDEII	FNE Energy	y Register	Address:	0x2BH			
(EnergyD))						
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23	EP22	EP21	EP20EP3	EP2	EP1	EP0

EnergyD 寄存器是累加型自定义能量寄存器。当选择为累加型时(EMUCON 寄存器bit15=0),在 0xFFFFFF 溢出到 0x000000 时,会产生溢出标志 QOIF(参见 IF 0x41H)。当选择为清零型时(EMUCON 寄存器 bit15=1),寄存器读后清为 0.

电能参数是无符号数, EnergyD 的寄存器值分别代表 QF 脉冲的累加个数。寄存器最小单位代表的能量为 1/EC kVARh。其中 EC 为电表常数。

EnergyD 默认是无功电能寄存器。可通过 EMUCON2 寄存器进行配置。

自定义电能寄存器 2

UserDEFINE	Energy	Register2	Address:	0x2CH
(EnergyD2)				

	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23_2	EP22_2	EP21_2	EP20_2EP3_2	EP2_2	EP1_2	EP0_2

当计量控制寄存器 2 的 energy_fz 位等于 0 时,该寄存器是读后清零型自定义电能寄存器; 当计量控制寄存器 2 的 energy_fz 位等于 1 时,该寄存器启用定时冻结功能,每隔 572.1793 毫秒(2048 个晶振周期)将自定义电能寄存器(地址 2B)的值装载到该寄存器,同时将自定义电能寄存器清零。

计量状态寄存器

此寄存器包括计量状态寄存器和校验和寄存器两部分。

EMU S	TATUS Register	(EMUStatus) Address: 0x2D 只读寄存器
位	位名称	功能描述
23	保留	只读为0
		只读寄存器,表征 VREF 工作状态。
22	VREFLOW	=1,表示 REFV 引脚的电压值过低,外部电路有异常;
		=0,表示 REFV 引脚的电压值没有出现过低现象。
21	保留	只读为0
20	Noqld	当自定义功率小于起动功率时,NoPld 被置为1;当自定义功率大于
20	rvoqiu	/等于起动功率时 NoPLd 清为 0。
19	19 Nopld	当有功功率小于起动功率时, NoPld 被置为 1; 当有功功率大于/等
19	Nopid	于起动功率时 NoPLd 清为 0。
18	REVQ	反向自定义功率指示标识信号, 当检测到负功率时, 该信号为 1。
10	REVQ	当再次检测到正功率时,该信号为 0。在 QF 发脉冲时更新该值。
17	REVP	反向有功功率指示标识信号,当检测到负有功功率时,该信号为1。
17	KLVI	当再次检测到正有功功率时,该信号为0。在PF发脉冲时更新该值。
		校表数据校验计算状态寄存器。
16	ChksumBusy	ChksumBusy =0,表示校表数据校验和计算已经完成。校验值可用。
		ChksumBusy =1,表示校表数据校验和计算未完成。校验值不可用。
15:0	Chksum	校验和输出

EMUStatus [15:0]是 RN8207C 专门提供一个寄存器来存放校表参数配置寄存器的 16 位校验和,外部 MCU 可以检测这个寄存器来监控校表数据是否错乱。

校验和的算法为双字节累加后取反。对于单字节寄存器 PHSA/PHSB,将其扩展为双字节后累加,扩展的字节为 00H。

RN8207C 参与校验和计算的寄存器地址是 00H-17H, RN8207C 的校验和默认值为: 0xD879。

以下三种情况下,重新开始一次校验和计算:系统复位、00H-17H 某个寄存器发生写操作、EMUStatus 寄存器发生读操作。一次校验和计算需要 11.2us。

过零计数寄存器

地址: 34H; 字长: 2字节

当软件使用过零测量特殊命令(0xEA/0x&7C,见 2.12.6 章节)时,计量芯片将收到该命令的时刻作为时间基准,测量出电压过零与该时间基准的时间差,时间差保存在 ZXCNT(0x34H)寄存器。当用户使用三个 RN8207C 设计三相表时,通过 UART 的广播命令发送过零测量特殊命令,三个 RN827C 收到命令后同时启动测量,软件根据三个 RN8207C 测量值可实现三相电压相序的判断。

该寄存器存放的是时间基准与真实电压过零的时间计数值,最小单位是 256 个晶振周期,即 71.517 微秒(当晶振为 3.579545MHz 时)。启动特殊命令后一个周波完成测量,在下次特殊命令发出前,测量值一直不变。

2.12.4 中断寄存器

中断配置和允许寄存器

当中断允许位配置为1且中断产生时,IRQ_N引脚输出低电平。写保护寄存器,配置该寄存器前需将写使能打开。

Intern	rupt Enable	Register (IE) Address: 0x40H 默认值: 0x00H 可读可写
位	位名称	功能描述
7	保留	保留,读出为0
6	FZIE	FZIE=0: 关闭电能冻结中断; =1: 使能电能冻结中断
5	ZXIE	ZXIE=0: 关闭过零中断; ZXIE=1: 使能过零中断。
4	QEOIE	QEOIE=0: 关闭自定义电能寄存器溢出中断;
4	QEOIE	QEOIE=1: 使能自定义电能寄存器溢出中断。
3	PEOIE	PEOIE=0: 关闭有功电能寄存器溢出中断;
3	TEOIL	PEOIE=1: 使能有功电能寄存器溢出中断。
2	QFIE	QFIE=0: 关闭QF中断; QFIE=1: 打开QF中断。
1	PFIE	PFIE=0: 关闭PF中断; PFIE=1: 打开PF中断。
		DUPDIE=0: 关闭数据更新中断; DUPDIE=1: 使能数据更新中断。
0	DUPDIE	数据 PowerPA/PowerPB、IARMS/IBRMS、URMS 寄存器刷新的频率为
		3.495Hz 或 13.982Hz, 当上述数据更新时,IRQ_N 引脚输出低电平。

中断状态寄存器

Interr	upt Flag Re	gister (IF) Address: 0x41H 只读					
位	位名称	功能描述					
7	Reserved	保留,读出为0					
6	FZIF	FZIF=0: 未发生电能冻结事件; =1: 发生过电能冻结事件					
5	ZXIF	ZXIF =0: 未发生过零事件; ZXIF =1: 发生过零事件。					
4	OEOIE	QEOIF=0: 未发生自定义电能寄存器溢出事件;					
4	4 QEOIF QEOIF=1: 发生自定义电能寄存器溢出事件。						
3	PEOIF	PEOIF=0: 未发生有功电能寄存器溢出事件;					
		PEOIF=1: 发生有功电能寄存器溢出事件。					

2	QFIF	QFIF=0: 未发生 QF 脉冲输出事件;
		QFIF=1: 发生 QF 脉冲输出事件。
1 DETE		PFIF =0: 未发生 PF 脉冲输出事件;
1	PFIF	PFIF =1: 发生 PF 脉冲输出事件。
0	DUDDIE	DUPDIF=0: 未发生数据更新事件;
0	DUPDIF	DUPDIF=1: 发生数据更新事件。

IF 适用于 SPI 和 UART 接口。当某中断事件产生时,硬件会将相应的中断标志置 1。 IF 中断标志的产生不受中断允许寄存器 IE 的控制,只由中断事件是否发生决定。 IF 为只读寄存器,读后清零。

复位中断状态寄存器

Reset Into	Reset Interrupt Flag Register (RIF)			0x42H				
	Bit7	6	5	4	3	2	1	Bit0
Read:	0	FZIF	RZXIF	RQEOIF	RPEOIF	RQFIF	RPFIF	RDUPDIF

该寄存器功能等同 IF。

2.12.5 系统状态寄存器

系统状态寄存器

Syster	n Status Regi	ister (SysStatus) Address: 0x43H 只读					
位	位名称	功能描述					
7-5	Reserved	只读,读出为0.					
4	WREN	写使能标志: =1 允许写入带写保护的寄存器;					
4	WKEN	=0 不允许写入带写保护的寄存器					
3	A1	表征串行通信类型和地址选择引脚 A1 的状态,只读。					
2	A0	表征串行通信类型和地址选择引脚 A0 的状态,只读。					
1	1 GOFFREE 命令复位标志。当命令复位结束时,该位置 1。读后清零。可用于复位						
1	SOFTRST	校表数据请求。					
0	рст	硬件复位标志。当外部 RST_N 引脚或者上电复位结束时,该位置 1。读					
U	RST	后清零。可用于复位后校表数据请求。					

UART 读校验寄存器

RData(0x44H)寄存器保存前次 UART 读出的数据,可用于 UART 读出数据时的校验。

UART 写校验寄存器

WData(0x45H)寄存器保存前次 UART 写入的数据,可用于 UART 写入数据时的校验。

2.12.6 特殊命令

命令名称	命令寄存器	数据	描述
写使能命令	0xEA	0xE5	使能写操作
写保护命令	0xEA	0xDC	关闭写操作
复位命令	0xEA	0xFA	复位命令,等效于外部 PIN 复位;当写使能之后,系统才接受该命令; 建议客户 CPU 对计量初始化前先进行软件复位或者PIN 复位;
过零测量命令	0xEA	0X7C	当软件使用过零测量特殊命令时,计量芯片将收到该命令的时刻作为时间基准,测量出电压过零与该时间基准的时间差,时间差保存在 ZXCNT(0x34H)寄存器。当用户使用三个 RN8207C 设计三相表时,通过 UART 的广播命令发送过零测量特殊命令,三个 RN827C 收到命令后同时启动测量,软件根据三个 RN8207C 测量值可实现三相电压相序的判断。

写保护的范围:

0x00h-0x17h 校表参数配置寄存器、0x20h-0x21h 快速脉冲寄存器、0x40h 中断允许寄存器,用特殊命令写使能后才能写入修改,具体命令格式如上表。

3 校表方法

RN8207C 提供了丰富的校正手段实现软件校表,经过校正的仪表,有功和无功精度均可达 0.5S 级。RN8207C 的校正手段包括:

- 电表常数(HFConst)可调
- 提供增益校正
- 提供相位校正
- 提供有功、无功和有效值 offset 校正
- 提供无功相位补偿
- 提供小信号加速校正功能
- 提供校表数据自动校验功能

具体校表方法参见《锐能微第三代单相计量芯片应用笔记》。

4 通信接口

- 支持 UART 接口,工作在从模式、半双工通讯、9 位 UART (含偶校验位)
- 支持多从机通讯模式,通过硬件管脚配置从机片选地址: 0/1/2 三档可选
- 波特率固定为 4800
- 支持单播/广播两种通信方式
- 帧结构包含 CHIPID 字节和校验和字节,安全可靠

4.1 UART 接口信号说明

TX: UART 从机 (RN8207C) 数据发送管脚; RX: UART 从机 (RN8207C) 数据接收管脚:

B1/B0: 波特率选择管脚,用于配置 RN8207C UART 波特率,B1/B0 不同的配置会导致系统控制寄存器 SYSCON[14:8]的值不同,对应关系如下图所示:

A1/A0: 片选地址配置管脚,注意 A1/A0 不能等于 11,当 A1/A0 不等于 11 时,用于配置当前 RN8207C 芯片的片选地址 CID[1:0]; A1/A0 的值也映射在系统状态寄存器 SysStauts[3:2]中。

图 4-1 UART 典型接线图

4.2 UART 多从机通讯

RN8207C UART 支持多从机总线通信模式,总线上最多可支持三个从机(RN8207C)与 主机(单片机)通讯,RN8207C 通过 A1/A0 配置成不同的片选地址,单片机根据片选地址区分不同的从机(RN8207C)芯片;典型应用如图 4-2 所示:

图 4-2 UART 多从机通讯示意图

4.3 UART 数据字节格式

UART 为 9 位异步通信口,发送、接收一个字节信息由 11 位组成,即起始位(StartBit,

- 0)、数据位(低位在先)、1位偶校验位(Parity Bit, 第9数据位)和1位停止位(Stop Bit,
- 1)。如下图所示:

图 4-6 UART 数据字节格式

4.4 UART 帧格式

CHIPID	CMD	DATA	 DATA	CKSUM
		最高有效字节	最低有效字节	

RN8207C UART 通讯帧格式如下图和表格所示:

名称	解释
CHIPID	片选地址字节,由主机端发送;
	ChipID[7:6]=ChipID[3:2]=[10];

	ChipID[5:4]=ChipID[1:0]=片选地址 CID[1:0]
	与主机端发送的片选地址匹配的 RN8207C 器件将接受后面的命令
	若主机发送的片选地址为11,表示广播地址,如果是写命令,那么写操作对总线上
	所有的从器件都有效;如果是读命令,命令无效,所有的从器件都不做任何反馈。
CMD	命令字节,由主机端发送,
	CMD[7]: 表示命令类别; 0, 读操作, 1: 写操作;
	CMD[6:0]: 表示被选中 RN8207C 器件的内部寄存器地址
	若 CMD[7]=1, 而 CMD[6:0]=0x6A,表示本次操作是特殊命令;
DATA	数据字节;读操作由从机端发送,写操作由主机端发送
	若寄存器地址对应寄存器是多字节寄存器,先传最高有效字节;
CKSM	校验和字节, 读操作由从机端发送, 写操作由主机端发送
	校验和算法如下:
	CheckSum[7:0] = \sim (ChipID+CMD[7:0] + DATAn[7:0] + +DATA1[7:0])
	即将 CMD 和数据相加,抛弃进位,最后的结果按位取反;

命令名称	片选地址字节	命令字节	数据字 节	描述
读命令	{10,CID[1:0], 10,CID[1:0]}	{0,REG_ADR[6:0]}	RDATA	从 片 选 地 址 为 CID [1:0] 的 RN8207C 器 件 中 的 地 址 为 REG_ADR[6:0]的寄存器读数据。 注意: 读无效地址,返回值为 00h。
写命令	{10,CID[1:0], 10,CID[1:0]}	{1,REG_ADR[6:0]}	WDATA	若 CID[1:0]!=0x3: 向片选地址为 CID[1:0]的 RN8207C器件中的地址为 REG_ADR[6:0]的寄存器写数据。 若 CID[1:0]=0x3: 向所有的从机中的地址为 REG_ADR[6:0]的寄存器写数据。
写使能命令	{10,CID[1:0], 10,CID[1:0]}	0xEA	0xE5	若 CID[1:0]!=0x3,命令针对地址 匹配的 RN8207C 器件
写保护命令	{10,CID[1:0], 10,CID[1:0]}	0xEA	0xDC	若 CID[1:0]=0x3, 命令针对总线上 所有的 RN8207C 器件 命令描述"参见 2.12.6 特殊命令章 节。"
软件复位命令	{10,CID[1:0], 10,CID[1:0]}	0xEA	0xFA	软件复位命令,等效于外部 PIN 复位;当写使能之后,系统才接受该命令; 建议客户 CPU 对计量初始化前先进行软件复位或者 PIN 复位;

4.5 UART 写操作

写操作由主机端发起,主机端先发送片选地址字节,总线上的 RN8207C 器件均接收片选地址字节;被选中的 RN8207C 器件会进命令接收状态;接收主机随后发送的命令字节,如果是写命令,从机继续接收主机随后依次发送的数据字节和校验和字节。如下图所示:

注意事项:

- 1. 9位 UART, 字节信息由 11位组成,即起始位(0)、数据位(低位在先)、1位偶校验位(第9数据位)和1位停止位(1)。
- 2. 字节发送端计算并发送校验位,字节接收端根据校验位判断字节传送是否有效;如果字节错误,随后的字节被认为是新的帧的开始;
- 3. 多字节寄存器,先传输高字节内容,再传输低字节内容;
- 4. 主机发送字节之间的时间 t1,由主机端控制,RN8207C 没有限制,t1 大于等于 0ns;
- 5. 帧之间的时间 t4,由主机端控制,RN8207C 没有限制,t4 大于等于 0ns;
- 6. 有写保护功能的寄存器在写操作之前要先写入写使能命令。
- 7. 主机计算并发送校验和,从机根据校验和判断帧传送是否成功

4.6 UART 读操作

读操作由主机端发起,主机端先发送片选地址字节,总线上的 RN8207C 器件均接收片选地址字节;被选中的 RN8207C 器件会进命令接收状态;接收主机随后发送的命令字节,如果是读命令,RN8207C 随后由 TX 发送读数据字节、读校验和字节。如下图所示:

注意事项:

1. 9位 UART,字节信息由 11位组成,即起始位(0)、数据位(低位在先)、1位偶校

验位(第9数据位)和1位停止位(1)。

- 2. 字节发送端计算并发送校验位,字节接收端根据校验位判断字节传送是否有效;如果字节校验错误,字节接收端认为当前帧错误并结束;
- 3. 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 4. 主机发送字节之间的时间 t1,由主机端控制,RN8207C 没有限制,t1 大于等于 0ns 即可:
- 5. 主机发送字节和从机发送字节之间的时间 t2,由从机控制,t2=T/2(T 是每比特的传送时间);
- 6. 从机发送字节之间的时间 t3, 由从机控制, t3=T(T 是每比特的传送时间);
- 7. 帧之间的时间间隔 t4,由主机端控制,RN8207C 没有限制,t4 大于等于 0ns 即可;
- 8. 主机计算并发送校验和,从机根据校验和判断帧传送是否成功

4.7 UART 接口可靠性设计

UART 接口可靠性设计包括以下方面:

- 硬件管脚配置波特率,安全可靠
- UART 数据字节传送具有位校验(偶校验)功能
- UART 通讯帧传输具有校验和功能
- 硬件管脚的配置的结果反映在寄存器中;
- 寄存器校验功能
 - 1. 提供校验寄存器 EMUStatus 用于存放内部校表寄存器的校验和。
 - 2. 提供读校验寄存器 RData, 保存前次读出的数据。
 - 3. 提供写校验寄存器 WData, 保存前次写入的数据。
- 写保护功能

对所有可读可写寄存器有写保护功能。

5 电气特性

精度 (V _{dd} =AV _{dd} =5V±5%,室温)								
	符号	(V _{dd} =A V 最小	_{dd} =3 v ±3/ 典型	。, 至価) 最大	单位	测试条件和注释		
有功电能测量误差	Err	72.7		$\pm 0.1\%$	1 12	常温8000:1的动态范围		
有功电能测量带宽	BW		7		kHz	OSCI=3.579545MHz		
无功电能测量误差	Err			±0.1%		常温8000:1的动态范围		
有效值测量误差	Err			±0.1%		常温1000:1的动态范围		
模拟输入								
最大信号电平	V _{xn}			±1000	mV			
直流输入阻抗	Z_{DC}	300			kΩ			
ADC失调误差	$\mathrm{DC}_{\mathrm{off}}$		1		mV			
-3dB带宽	B_{-3dB}		7		kHz	OSCI=3.579545MHz		
			基准电压					
	$(V_{dd} = AV_{dd})$	=5V±5%	,温度范	围: -40℃~	√+85°C)			
输出电压	V_{ref}		1.25		V			
温度系数	T _c		5	15	ppm/℃			
输入阻抗			4		kΩ			
			时钟输入					
输入时钟频率范围	OSCI	1	3.58	4	MHz			
		数字	输入输出	接口				
UART接口速率			4800		Hz			
RSTN、A0、A1 输入高	T 7	0.7*		DV	V	$DV_{dd} = 5V$, $-40-85$ °C		
电平	V_{IH}	vdd		$\mathrm{DV}_{\mathrm{DD}}$	V			
RSTN、A0、A1输入低电				0.3*		DV _{dd} =5V, -40-85°C		
平	V_{IL}	DGND		Vdd	V	du		
RX输入高电平	V _{IH}	2. 5		$\mathrm{DV}_{\mathrm{DD}}$	V	DV _{dd} =5V, -40-85°C		
RX输入低电平	$V_{\rm IL}$	DGND		1.7	V	DV _{dd} =5V, -40-85℃		
/A 1: 1 ==						DV _{dd} =5V, 室温;		
IRQN/ZX 输出高电平	V_{OH}	4		$\mathrm{DV}_{\mathrm{DD}}$	V	Isource=3.5mA		
						DV _{dd} =5V, 室温;		
IRQN/ZX 输出低电平	V_{OL}			0.5	V	Isink=8mA		
						DV _{dd} =5V,室温;		
PF、TX输出高电平	V_{OH}	4		DV_{DD}	V	Isource=5mA		
PF、TX输出低电平	V _{OL}	DGND		0.5	V	DV _{dd} =5V,室温		
			. 1 . ১			Isink=12mA		
	4	1 4 5	电源	1	* 7	#\$7 .400/		
模拟电源	AV_{DD}	4.5		5.5	V	5V ±10% 或3.3V±10%		
数字电源	$\mathrm{DV}_{\mathrm{DD}}$	4.5		5.5	V	5V±10%		
—————————————————————————————————————	D Λ DD	7.3		3.3	· •	J ¥ ±10/0		

单相多功能防窃电专用计量芯片 RN8207C

	•		1	1		
						或3.3V±10%
模拟电流	AIdd1		1.5		mA	
数字电流	DIdd		1.3		mA	OSCI=3.579545MHz
			极限参数			
数字电源电压	DV_{DD}	-0.3		+7	V	
模拟电源电压	AV_{DD}	-0.3		+7	V	
DV _{DD} to DGND		-0.3		+7	V	
DV _{DD} to AV _{DD}		-0.3		+0.3	V	
V1P,V1N,V2P,V2N		-6		+6	V	
数字输入电压相对于	V_{IND}	-0.3		$\mathrm{DV}_{\mathrm{DD}}$	V	
GND				+0.3	v	
数字输出电压相对于	V_{outD}	-0.3		$\mathrm{DV}_{\mathrm{DD}}$	V	
GND				+0.3	V	
模拟输入电压相对于	V _{INA}	-0.3		AV_{DD}	V	
AGND				+0.3	v	
工作温度范围	T_A	-40		85	$^{\circ}$ C	
存储温度范围	T_{stg}	-65		150	$^{\circ}$ C	

6 芯片封装

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A			1.75
A1	0.05		0.225
A2	1.30	1.40	1.50
A3	0.6	0.65	0.70
b	0.39		0.48
b1	0.38	0.41	0.43
С	0.21		0.26
c1	0.19	0.20	0.21
D	9.70	9.90	10.10
Е	5.80	6.00	6.20
E1	3.70	3.90	4.10
e	1.27BSC		
h	0.25		0.5
L	0. 5		0.8
L1	1.05BSC		
θ	0		8°