Θεωρία Δραγμάτων

Εαρινό 2021-2022

Διδάσκουσα: Μ. Παπατριανταφύλλου

Μάθημα 1 - Τρίτη <math>22/02/2022.

Sheaf Theory:

Ορισμός. Μια κατηγορία είναι μια τριάδα $(C, \mathcal{M}, \circ) \equiv C$, όπου

- (1) C κλάση από αντικείμενα.
- (2) Για κάθε $A, B \in \mathcal{C}$ υπάρχει μοναδικό σύνολο $Mor_{\mathcal{C}}(A, B)$ από μορφισμούς από το A στο B και

$$\mathcal{M} = \bigcup_{A,B \in \mathcal{C}} Mor_{\mathcal{C}}(A,B)$$

(3) Για κάθε Α, Β, C αντικείμενα υπάρχει απεικόνιση:

$$\circ: Mor(A, B) \times Mor(B, C) \longrightarrow Mor(A, C)$$

$$(f,g) \longmapsto \circ (f,g) \equiv g \circ f$$

όπου λέγεται σύνθεση, που ικανοποιούν τα αξιώματα:

- $(1) (A_1, B_1) \neq (A_2, B_2) \implies Mor_{\mathcal{C}}(A_1, B_1) \cap Mor_{\mathcal{C}}(A_2, B_2) = \varnothing.$
- (2) Για κάθε $A, B \in \mathcal{C}$ και $f \in Mor_{\mathcal{C}}(A, B)$ και για κάθε $g \in Mor_{\mathcal{C}}(B, C)$ και για κάθε $h \in Mor_{\mathcal{C}}(C, D)$ μπορούμε:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

δηλαδή προσεταιριστική

(3) Για κάθε $A \in \mathcal{C}$ υπάρχει $1_A \in Mor_{\mathcal{C}}(A, A)$:

$$1_A \circ f = f, \quad \forall f : B \to A, \quad \forall B \in \mathcal{C}$$

$$g \circ 1_A = g, \quad \forall g : A \to C, \quad \forall C \in \mathcal{C}$$

Παραδείγματα:

- (1) S = κατηγορία συνόλων με απεικονίσεις και συνήθη σύνθεση.
- (2) $\mathcal{T} =$ κατηγορία τοπολογικών χώρων με συνεχείς απεικονίσεις (και συνήθη σύνθεση, θα εννοείται στο εξής εκτός αν πούμε διαφορετικά).
- (3) G = ομάδες με μορφισμούς ομάδων.
- (4) $Ab = \alpha \beta \epsilon \lambda i \alpha v \epsilon \zeta$ ομάδες με μορφισμούς ομάδων.
- (5) $S_0 =$ κατηγορία σημειωμένων συνόλων, δηλαδή τα αντικείμενα είναι ζεύγη (X,x) με X σύνολο και $x \in X$ και μορφισμοί να είναι απεικονίσεις:

$$f:(X,x)\longrightarrow (Y,y)$$

με f(x) = y.

- (6) $T_0 = σημειωμένοι τοπολογικοί χώροι.$
- (7) $V_{\mathcal{F}} = \delta$ ιανυσματικοί χώροι πάνω από ένα σώμα F με γραμμικές απεικονίσεις.
- (8) R = δαχτύλιοι με ομομορφισμούς δαχτυλίων.

- (9) $\mathcal{R}_1 =$ μοναδιαίοι δακτύλιοι με μορφισμούς τους ομομορφισμούς δακτυλίων που διατηρούν την μονάδα.
- (10) $\mathcal{M}_{R}^{L} =$ αριστερά R-πρότυπα με R-γραμμικές απεικονίσεις.
- (11) Tg = τοπολογικές ομάδες με συνεχείς μορφισμούς ομάδων.
- (12) $\mathcal{E}q =$ αντικείμενα: (X,R) με X σύνολο, R σχέση ισοδυναμίας στο X και μορφισμοί απεικονίσεις:

$$(X,R) \longrightarrow (Y,S)$$

είναι απεικόνιση:

$$f: X \to Y$$

με

$$x_1Rx_2 \implies f(x_1)Sf(x_2)$$

(13) $\mathcal{O}rd =$ αντικείμενα είναι (X,\leq) όπου X σύνολο και \leq σχέση διάταξης στο X και μορφισμοί:

$$(X, \leq_1) \longrightarrow (Y, \leq_2)$$

με απεικόνιση:

$$f: X \to Y$$

όπου ισχύει $a \leq_1 b \implies f(a) \leq_2 f(b)$.

Ορισμός. Μια κατηγορία (C, M, \circ) λέγεται μικρή αν C είναι σύνολο.

Παραδείγματα:

- (14) (G,*) ομάδα $(C = \{G\}, \mathcal{M} = G, \circ = *)$
- (15) (X, \leq) διατεταγμένο σύνολο με:

$$\left(\mathcal{C} = X, \quad M = \bigcup_{x,y \in X} Mor(x,y), \quad \circ \right)$$

όπου:

$$Mor(x,y) = \begin{cases} \{(x,y)\}, & \text{an } x \leq y \\ \varnothing, & \text{diagoretiká} \end{cases}$$

και η σύνθεση του $\{(x,y)\}$ με το $\{(y,z)\}$ δίνει το $\{(x,z)\}$, ενώ η σύνθεση με \varnothing δίνει \varnothing .

(16) Ομοίως για (X, R) σύνολο με σχέση ισοδυναμίας.

Ορισμός. $\mathcal{C} \equiv (\mathcal{C}, \mathcal{M}, \circ)$ και $\mathcal{C}_0 \equiv (\mathcal{C}_0, \mathcal{M}_0, *)$ κατηγορίες, θα λέμε \mathcal{C}_0 είναι <u>υποκατηγορία</u> της $\mathcal{C} \iff \mathcal{C}_0 \subseteq \mathcal{C}$ και για κάθε $A, B \in \mathcal{C}_0$ να ισχύει:

$$Mor_{\mathcal{C}_0}(A, B) \subseteq Mor_{\mathcal{C}}(A, B)$$

 $και * είναι ο περιορισμός της <math>\circ$.

 $A\nu$ για κάθε $A,B\in\mathcal{C}_0$ ισχύει ότι $Mor_{\mathcal{C}_0}(A,B)=Mor_{\mathcal{C}}(A,B)$ τότε λέγεται πλήρης υποκατηγορία της \mathcal{C} .

 $\pi.\chi.$

(1) Ab πλήρης υποκατηγορία της G.

(2) \mathcal{R}_1 υποκατηγορία της \mathcal{R} , όχι πλήρης.

Ορισμός. C, \mathcal{D} κατηγορίες. Ένας (συναλλοίωτος) συναρτητής $F: \mathcal{C} \to \mathcal{D}$ (όχι απεικόνιση) είναι ένα ζεύγος (F_1, F_2) :

$$F_1:\mathcal{C}\longrightarrow\mathcal{D}$$

$$F_2:\mathcal{M}_{\mathcal{C}}\longrightarrow\mathcal{M}_{\mathcal{D}}$$

 $\mu\epsilon$

(1) Για κάθε $A, B \in \mathcal{C}$ και $f \in Mor_{\mathcal{C}}(A, B)$:

$$F_2(f) \in Mor_{\mathcal{D}}(F_1(A), F_1(B))$$

(2) $\Gamma u \kappa d\theta \epsilon A \in C$:

$$F_2(1_A) = 1_{F_1(A)}$$

(3) Για κάθε $A,B,C\in\mathcal{C}$ και $f:A\to B,\quad g:B\to C$ ισχύει ότι:

$$F_2(g \circ f) = F_2(g) \circ F_2(f)$$

 $\pi.\chi.$

(1) Ο ελεύθερος συναρτητής $\mathcal{S} \longrightarrow \mathcal{V}_F$ με

$$S \longrightarrow \langle S \rangle = \delta$$
ιανυσματικός χώρος

των τυπικών γραμμικών συνδυασμών με βάση S και πάει μια $f:S\to T$ σε γραμμική επέκτασή της.

(2) Επιλήσμων συναρτητής (forgetful functor):

$$F: \mathcal{T} \to \mathcal{S}$$

$$F:\mathcal{G}\to\mathcal{S}$$

$$F: \mathcal{T}g \to \mathcal{G}$$

ξεχνάει μέρος της δομής.

(3) \mathcal{C} έχει αντιχείμενα τα $U\subseteq\mathbb{R}^n$ ανοιχτά, $n\in\mathbb{N}$, σημειωμένα (U,x) με $x\in U$ και μορφισμοί

$$f:(U,x)\to (V,y)$$

διαφορίσιμη με f(x) = y.

Θεωρούμε την $\mathcal{D} = \mathcal{V}_{\mathbb{R}}$, τότε ορίζουμε:

$$F_1(U,x) = \mathbb{R}^m, \quad U \subseteq \mathbb{R}^m$$

$$f: (U, x) \longrightarrow (Y, y)$$

$$F_2(f) = Df(x) : \mathbb{R}^m \to \mathbb{R}^m$$

Μάθημα 2 - Πέμπτη 24/02/2022.

Ορισμός. Ένα δράγμα (πάνω από τον X) είναι μια τριάδα (S, π, X) όπου S, X είναι τοπολογικοί χώροι και

$$\pi: \mathcal{S} \longrightarrow X$$

είναι τοπικός ομοιμορφισμός. Δηλαδή, για κάθε $s \in \mathcal{S}$ υπάρχει ανοιχτή περιοχή $V \in \mathcal{N}_s$ με το $\pi(V)$ να είναι ανοιχτό υποσύνολο του X και

$$\pi|_V:V\longrightarrow\pi(V)$$

να είναι ομοιομορφισμός.

Στο εξής, θα αναφερόμαστε στο X ως βάση, στο π ως προβολή και στο $\mathcal S$ ως ολικό χώρο.

Λήμμα. Έστω (S, π, X) δράγμα, τότε η προβολή είναι ανοιχτή απεικόνιση.

 $Aπόδειξη. Θα δείξουμε ότι αν <math>V\subseteq \mathcal{S}$ ανοιχτό $\Longrightarrow \pi(V)\subseteq X$ ανοιχτό. Έστω ένα τέτοιο $V\subseteq \mathcal{S}$ και έστω $x\in \pi(V)$, τότε υπάρχει $z\in V$ με $\pi(z)=x$. Από τον ορισμό του δράγματος, για το $z\in \mathcal{S}$ υπάρχει V_0 ανοιχτό υποσύνολο του \mathcal{S} με $z\in V_0$ και $\pi(V_0)$ να είναι ανοιχτό υποσύνολο του X, καθώς και $\pi|_{V_0}:V_0\to \pi(V_0)$ ομοιομορφισμός. Έχουμε ότι $z\in V\cap V_0$ που είναι ανοιχτό υποσύνολο του V_0 (στην τοπολογία που επάγεται από τον X, όταν όλα είναι ανοιχτά στην μεγάλη τοπολογία δεν έχουμε πρόβλημα και μπορούμε να περιορίζουμε και άλλο την π), τότε $\pi(V\cap V_0)$ είναι ανοιχτό υποσύνολο του $\pi(V)$ και $x=\pi(z)\in \pi(V\cap V_0)$, δηλαδή το $\pi(V\cap V_0)$ είναι ανοιχτή περιοχή του x στο $\pi(V)$. Αυτό είναι ανοιχτό στον X, άρα το $\pi(V\cap V_0)$ είναι ανοιχτή περιοχή του x στον X.

Λήμμα. Εστω (S, π, X) δράγμα, τότε το

$$\mathcal{B} = \{V \subseteq \mathcal{S} \text{ ανοιχτό: } \pi(V) \text{ ανοιχτό, } \pi|_V : V \to \pi(V) \text{ ομοιομορφισμός}\}$$

είναι βάση της τοπολογίας του S.

Aπόδειξη. Έστω $A\subseteq \mathcal{S}$ ανοιχτό και $x\in A$, τότε υπάρχει από τον ορισμό του δράγματος V ανοιχτή περιοχή του x με $\pi(V)$ ανοιχτό και $\pi|_V:V\to\pi(V)$ ομοιομορφισμό. Το $V\cap A\subseteq A$ είναι ανοιχτή περιοχή του x και περιέχεται στο \mathcal{B} αφού περιορίζοντας την $\pi|_V$ στο $V\cap A$ δεν χαλάει η ιδιότητα του ομοιομορφισμού.

Ορισμός. Εστω (S, π, X) δράγμα, για κάθε $x \in X$ το $S_x = \pi^{-1}(x)$ θα λέγεται νήμα πάνω από το x.

Φυσικά, $\mathcal{S}=\bigcup_{x\in X}$ η οποία ένωση είναι ξένη, αν $x\neq y$ τότε $\mathcal{S}_x\cap\mathcal{S}_y=\varnothing$, δηλαδή τα νήματα διαμερίζουν τον ολικό χώρο.

Λήμμα. Έστω (S, π, X) δράγμα και $x \in X$, τότε το νήμα S_x σαν τοπολογικός υπόχωρος του S είναι διακριτός.

Aπόδειξη. Έστω $z\in\mathcal{S}_x$. Θα δείξουμε ότι το $\{x\}$ είναι ανοιχτό υποσύνολο του \mathcal{S}_x . Παίρνουμε $V\in\mathcal{N}_z$ από ορισμό δράγματος και το $U=V\cap\mathcal{S}_x$ είναι ανοιχτό υποσύνολο του \mathcal{S}_x . Έχουμε ότι η $\pi|_U:U\to\pi(U)$ είναι ομοιομορφισμός αφού $U\subseteq V$, δηλαδή 1-1 στο U με $z\in U$. Αν υπάρχει και άλλο στοιχείο στο U, αφού θα ανήκει στο νήμα θα προβάλλεται και αυτό στο x το οποίο είναι άτοπο. Άρα $U=\{z\}$ και $\pi(U)=\{x\}$ ανοιχτό υποσύνολο του \mathcal{S}_x .

Δηλαδή, με την ανοιχτή περιοχή είναι σαν να κόβουμε μια φέτα στο παραπάνω σχήμα και έτσι να κρατάμε ένα σημείο του νήματος.

Ορισμός. Έστω (S, π, X) δράγμα. Ένα υποδράγμα είναι μια τριάδα (A, π_A, X) όπου $A \subseteq S$ ανοιχτό (πάντα διατηρούμε τα ανοιχτά).

Ορισμός. Έστω $(S, \pi, X), (T, \rho, X)$ δράγματα. Ένας μορφισμός δραγμάτων $(S, \pi, X) \to (T, \rho, X)$ είναι μια απεικόνιση $f: S \to T$ συνεχής, με την ιδιότητα $\rho \circ f = \pi$, δηλαδή να κάνει το παρακάτω τρίγωνο μεταθετικό:

Παρατήρηση.

$$\rho \circ f = \pi \iff \rho(f(z)) = \pi(z) \quad \forall z \in \mathcal{S}$$

$$\iff \forall z \in \mathcal{S}_x \quad \rho(f(z)) = \pi(z)$$

$$\iff \forall z \in \mathcal{S}_x \quad f(z) \in \mathcal{T}_x$$

$$\iff f(\mathcal{S}_x) \subseteq \mathcal{T}_x$$

δηλαδή στην ουσία οι μορφισμοί δραγμάτων απαιτούμε να βάζουν τα νήματα μέσα σε νήματα. Θα λέμε έτσι ότι η f διατηρεί τα νήματα και ότι ο μορφισμός δραγμάτων είναι μια συνεχής απεικόνιση μεταξύ των ολικών χώρων η οποία διατηρεί τα νήματα.

Λήμμα. Εστω $(S, \pi, X), (T, \rho, X)$ δράγματα και $f: S \to T$ μορφισμός δραγμάτων. Τότε η f είναι τοπικός ομοιομορφισμός, δηλαδή το (S, f, T) είναι δράγμα.

Aπόδειξη. Έστω $z\in\mathcal{S}$, τότε $f(z)\in\mathcal{T}$ και άρα υπάρχουν ανοιχτές περιοχές $V\in\mathcal{N}_z,W\in\mathcal{N}_{f(z)}$ με ομοιομορφισμούς

$$\pi|_V:V\longrightarrow \pi(V)\subseteq X$$
 ανοιχτό

$$\rho|_W:W\longrightarrow \rho(W)\subseteq X$$
 ανοιχτό

Και f συνεχής, άρα για το $W \in \mathcal{N}_{f(z)}$ μπορούμε να θεωρήσουμε (μικραίνοντας το V) ότι $f(V) \subseteq W$. Χρησιμοποιώντας την σχέση $\rho \circ f = \pi$ παίρνουμε το παρακάτω διάγραμμα:

και άρα f(V) ανοιχτό και $f|_V = \left(\rho|_{f(V)}\right)^{-1} \circ \pi|_V$, είναι ομοιμορφισμός ως σύνθεση ομοιομορφισμών. \Box

Θα ορίσουμε την κατηγορία Sh_X των δραγμάτων πάνω από έναν τοπολογικό χώρο X. Ω ς αντικείμενα θα έχουμε τα δράγματα πάνω από τον χώρο X και ως μορφισμούς τους μορφισμούς δραγμάτων που ορίσαμε παραπάνω.

Παρατήρηση. Η σύνθεση στην Sh_X είναι η συνήθης σύνθεση απεικονίσεων.

Έχουμε $g\circ f:\mathcal{S}\to\mathcal{P}$ συνεχής ως σύνθεση συνεχών. Θέλουμε να ισχύει $\mathfrak{p}\circ (g\circ f)=\pi.$ Πράγματι $\mathfrak{p}\circ (g\circ f)=(\rho\circ g)\circ f=\rho\circ f=\pi.$ Αρχεί να ελέγξει κανείς ότι $id_{\mathcal{S}}:\mathcal{S}\to\mathcal{S}$ είναι μορφισμός δραγμάτων και $id_{\mathcal{S}}\circ f=f,g\circ id_{\mathcal{S}}=g$ κλπ.

Ορισμός. Σε μια κατηγορία \mathcal{C} ένας μορφισμός $f:A\to B$ λέγεται ισομορφισμός αν υπάρχει $g:B\to A$ έτσι ώστε:

$$f \circ g = 1_B$$

$$g \circ f = 1_A$$

Πρόταση. Έστω ο μορφισμός στην Sh_X:

$$f: (\mathcal{S}, \pi, X) \longrightarrow (\mathcal{T}, \rho, X)$$

Τα ακόλουθα είναι ισοδύναμα:

- (1) f ισομορφισμός.
- (2) f ισομορφισμός στα νήματα.

(3) f 1-1 $\kappa ai \in \pi i$.

Aπόδειξη. Το ότι η f είναι ισομορφισμός είναι ισοδύναμο με το να αντιστρέφεται και η f^{-1} να είναι μορφισμός δραγμάτων. Έπεται ότι η f είναι 1-1 και επί, άρα 1-1 και επί στα νήματα. Το μόνο που χρειάζεται να αποδείξουμε είναι το $(3) \Longrightarrow (1)$. Αφού f 1-1 και επί, τότε υπάρχει $f^{-1}: \mathcal{T} \to \mathcal{S}$ και είναι μορφισμός αφού $\rho \circ f = \pi \Longrightarrow \rho = \pi \circ f^{-1}$. Επιπλέον, η f^{-1} είναι συνεχής αφού η f είναι τοπικός ομοιομορφισμός.

Παραδείγματα:

(1) Τετριμμένο δράγμα (θα προκύπτει αρκετά στην συνέχεια). Έστω X τοπολογικός χώρος και M ένα σύνολο το οποίο κάνουμε τοπολογικό χώρο με την διακριτή τοπολογία. Τότε έχουμε το δράγμα:

$$\pi_X: M \times X \longrightarrow X$$

που θεωρούμε την τοπολογία γινόμενο και άρα η προβολή π_X είναι συνεχής και για κάθε $m\in M$ το $V=\{m\}\times X$ είναι ανοιχτό με

$$\pi_X|_V:V\longrightarrow X$$

ομοιομορφισμό.

(2) Έλικα $\mathcal{S}=\{(\cos t,\sin t,t):\quad t\in\mathbb{R}\}$ και $X=S^1$ με

$$\pi: \mathcal{S} \longrightarrow X$$

 $(\cos t, \sin t, t) \longmapsto (\cos t, \sin t)$

(3) Οι χώροι επικάλυψης είναι δράγματα.

Ορισμός. Έστω (S, π, X) δράγμα και $U \subseteq X$ (όχι απαραίτητα ανοιχτό). Μια τομή του S πάνω από το U είναι μια συνεχής απεικόνιση $s: U \to S$ έτσι ώστε να ισχύει $\pi(s(x)) = x$ για κάθε $x \in U$.

Ισοδύναμα: Για κάθε $x \in U$ να ισχύει $s(x) \in \mathcal{S}_x$. Δηλαδή, να έχουμε $\pi \circ s = id_U$ ή αλλιώς το παρακάτω διάγραμμα να είναι μεταθετικό:

$$U \xrightarrow{i} X$$