Process Improvement Project – Graphing Time Reduction

Mike - MBC 638

Process Improvement Project – Cooking Optimization

Process owner: Neil

Key Dates --->Define
FebMeasure
MarchAnalyze
MarchImprove
MarchControl
May

DEFINE

- Optimize the governing factors of cooking, with considerations being the taste and cost.
- 2 types of dishes- A & B
- A & B have a fixed amount of chicken, carrots, tomatoes, capsicum, onion.
- Chilies and Garlic also, but varying quantity.

S-Money (Myself) & Wegmans (Ingredients)

Ingredients, Utensils, Electric Stove

Cooking Process

O- Dish A & B

C- Volunteers

BUSINESS IMPACT

To save money while still maintaining taste of the dishes

MEASURE

Taste of Dish B

SUMMARY OUTPUT		
Regression Sta	itistics	
Multiple R	0.961183	
R Square	0.923874	
Adjusted R Square	0.771621	
Standard Error	0.577931	
Observations	16	

ANALYZE

	Dish A	Dish B
Mean	12.49375	13.4075
Variance	0.035252	0.072767
Observatio	16	16
Pooled Var	0.054009	
Hypothesiz	О	
df	30	
t Stat	-11.1209	_
$P(T \le t)$ one	1.82E-12	,
t Critical or	1.310415	
P(T<=t) two	3.64E-12	
t Critical tw	1.697261	

Dish B>Dish A, avg. means (even with less ingredients)

DISH A

	Coefficients	andard Erro	t Stat	P-value
Intercept	8.475946	3.326206	2.548232	0.063424
Oil	6.925075	14.30528	0.484092	0.653631
Salt	-97.6778	30.61652	-3.19036	0.033205
Garlic	-0.25219	2.210084	-0.11411	0.914649
Chilli	1.982741	1.655498	1.197671	0.297162
Oyster Sauce	-1.33654	8.535989	-0.15658	0.883163
Soy Sauce	-13.1329	5.225875	-2.51306	0.065842
Vinegar	-133.494	52.54363	-2.54063	0.063938
Sugar	56.30255	22.41828	2.511456	0.065955
TIME (0: <20min, 1	-0.87867	0.416752	-2.10838	0.102678
0: Frying Pan, 1: Po	-0.70553	0.444811	-1.58613	0.187895
0: Lunch, 1: Dinner	-1.64182	0.753891	-2.17779	0.094979

DISH B

	.oejjicients	unuuru Erre	t Stat	P-value
Intercept	4.284399	2.546402	1.682531	0.153291
Oil	14.61448	8.934605	1.635716	0.162826
Salt	-119.228	25.44542	-4.68565	0.005406
Garlic	6.650005	2.115406	3.143606	0.025562
Chilli	-0.1598	1.46335	-0.1092	0.917288
Siracha	-16.2184	5.156419	-3.14528	0.025514
Chilli Powder	-7.05818	6.386648	-1.10515	0.319417
Spring Onion	12.03818	3.795757	3.171482	0.024774
TIME (0: <20min, 1	0.725191	0.404223	1.794039	0.132773
0: Frying Pan, 1: Po	-1.27077	0.490818	-2.58909	0.048891
0: Lunch, 1: Dinner	0.952884	0.493137	1.932289	0.111164

When Y = cost, all ingredients are significant; but when Y = Taste above inputs are significant

IMPROVE

Keeping the ingredients which have significance to cost and taste in mind, with preferences to taste; I run the test again with less quantity of salt, garlic, siracha, soy sauce, sugar and vinegar.

	Variable 1	Variable 2
Mean	12.08563	12.86
Variance	0.01078	0.030907
Observatio	16	16
Pooled Var	0.020843	
Hypothesiz	O	
df	30	
t Stat	-15.171	
P(T<=t) one	6.48E-16	
t Critical or	1.310415	
P(T<=t) two	1.3E-15	
t Critical tw	1.697261	

CONTROL

We can see from the new t-test that the mean cost of the dish A & B now have lower avg. means and only chili & garlic are in excess (acceptable).

Purchase Coordination Sheet – Cycle Time

Process owner: Landon

Process Improvement Project - for Widget Assembly

Nelson

DEFINE

Key Dates --->

Problem statement: Due to high cycle times we cannot get the desired amount of throughput for the Widget assembly. The average cycle time for each part is less than 44 seconds. Defects are inherent because of improper line balancing and bottleneck in the system.

Team

Launch

= 2.752

Why is SQL less? What can be done better? What factors shall we measure, analyze and improve?

Define 2/02/2017 Measure 2/16/2017

50

40

20

10

Solution 1

Solution 3

Solution 4

Because the Station 5 has the highest

takes the highest time. So we need to

Easy to implement Resources Cost Process impact

To reduce number of activites at station 5 and distribute them equally

Increase one more station and equally dstirubte the activites at station 5

Reduce one station form the process line and combine two stations

To implemet Solution 1 and Solution 3 together

hence to reduce cycle time

Analyze 03/23/2017 **Improve** 04/13/2017

Control 04/20/2017

MEASURE

Percent of Total				
Variance Ratio				
EV	7.21			
AV	3.65			
R&R	10.86			
PV	89.14			

R&R = 10.86% < 30%. Measurement plan is okay

Ho :Mean cycle time for part >= 44 seconds

Ha :Mean cycle time for part < 44 seconds Sample size 36 Sample mean 45.036 Standard Deviation 2.681 Hypothesized mean 44 > 44 seconds 2.318537859 Test Statistic (Z)

P-value

From the above result P-value is greater than 0.05 thus we do not reject the Null hypothesis and thus the Mean cycle time is greater than 44 seconds. Hence we need to analyze what's wrong

IMPROVE <u>ANALYZE</u>

Mean	47.94	45.30
Known Variance	10.37	3.57
Observations	36.00	44.00
Hypothesized Mean Difference	0.00	
z	4.36	
P(Z<=z) one-tail	0.00	
z Critical one-tail	1.64	
P(Z<=z) two-tail	0.00	
z Critical two-tail	1.96	

Here the p-value = 0.00 < 0.05. Hence we reject the null hypothesis and we can say the Cycle time before is greater then the cycle time after improvement. Hence we have improved our process considerably

number of activities being done and thus it equally divide the number of activities solution.

Complexity Total

23.5

26.5

100%

80%

60%

40%

20%

fourth proposed solution from the matrix and thus we need to improve the process based upon the selected

We have finalized

CONTROL

chart and Xbar chart for the control of the process because the sub group size is only two for my process. Now as we can see the R chart seems to be under control. Only some of the points on Xbar chart are out of control for the process. Thus we need to double check what wrong at those points and figure out a way to get the process under control.

Here we have selected the F

Also from the Cp and Cpk values we can see that our process is capable to be undertaken but there is still scope of improvement to make it more capable.

Cp = 1.16Cpk = 1.08

Solution 1 Solution 2 Solution 3 Solution 4

0.989789946

Process Improvement Project – Cycle Time Reduction

Process owner: Dan

PROJECT TEAM:

Dan • Mary • Karen • Linda • Peter

Increase Monthly Income of Check Cashing Business

Process owner: Yanni

Key Dates --->

Project Launch 2/2

Define 2/3

Measure 2/11

Analyze 3/16

Improve 4/6 Control 4/15

DEFINE

Problem Statement

Revenue varies by month.

Weekly average of check
Cashed amount= \$80k
Variability:

Cashed amount= \$45-50k

Business Impact

Increase yearly cashed amount by \$60K-70K by reducing the variability per month by.

That will improve monthly average income.

<u>MEASURE</u>

..... Linear (Cashed Amount)

ANALYZE

Stratification Factors X Variables	Measurements
X1= Day of the week	Avg cashed check on Friday-Sat and on remaining days
X2= Holidays	Ayg cashed check amount on holidays.
X3= no of people waiting in queue	Number of people waiting in queue
	How many
X5=Advertisements	How many
X6=No of employers	How many
X7=Old or New Customer	%of new and old customer of total
X8=Bounce Checks Amount	money lost due to check bounce
X9=Weather Condition	Avg daily temp or other things rain, snow
	X Variables X1= Day of the week X2= Holidays X3= no of people waiting in queue dly Check Amount =f(X) X3=Advertisements X6=No of employers X7=Old or New Customer X8=Bounce Checks

Multiple Linear Regression Analysis

- Advertisements
- Money Lost due to Fraud Checks

IMPROVE

		Selection Criteria and Weight				
	4	1.5	2.5	5		
Proposed Solution	Time to implement	Difficulty to implement	Cost	Accuracy	Total	Rank
Train your empoyees	2	4	4	3	39	2
Hire Check Specilist	3	4	1	3	35.5	3
Buy Advanced Check checking Equipment	5	2	1	5	50.5	1

CONTROL

- Monitor the Run chart weekly.
- Implement advanced check cashing equipment and keep track of Bounced checks.
- Increase newspaper and flyer advertising.

Finding the **Skinny** on Thin Film Sensor Reject Rates

DEFINE - 5/15/11

1) Problem Statement:

Production reject rate of thin film sensors increases after process change.

2) Work on largest category of defect for MAXIUM IMPACT

3) Business Impact:

Reducing/eliminating frequency rejects will prevent reworking of part, extra inventory and labor from 100% testing which could potentially save

MEASURE - 6/1/11

4) Out-of-Control:

Process is highly variable to begin w/ but much worse after change.

5) Change of Focus

The change did cause an increase in variability, but the process is not very good to start w/ a **DPMO of** 19,263! Finding the root cause of the inherent process variability should solve the new issue.

Cause & Effect Matrix

6) Identify Primary Inputs (Y)

8	Scoring:1=low, 3 = med, 5=high, ce to Customer (sensors w/ correct frequency) = 1 Scoring:1=low, 3 = med, 5=high, ce to Customer (sensors w/ correct frequency) = 1 Fifect Rating Probability Score						
om		Effect	Rating	Probability	Score		
	Vendor frequency sorting quality	Allow accurate calculation of thickness	5	High, makes adjustments when providing thickness data to techs	25		
	Fixture Geometry	Even coating thickness	5	High, location determines the thickness of the coating.	25		
Matn:							

Thanks to the teams-Rick, Steve & Production Staff

ANALYZE - 7/1/11

7) Probable Cause 1 - Raw Material Supply

The r² shows that the amount of raw material used from Vendor A explains 46.6 % of the change in reject rate.

Constructing a control chart of measurements taken by QC of frequency illustrates that the vendors process is out of control

8) Probable Cause 2 – Evaporation Fixture Geometry,

The sensors are held in a fixture positioned over a evaporation source that coats them with metal. I performed a test run to measure baseline performance. The data revealed that the metallic coating has too much variation in thickness w/ a mean of 2235 Å, but the range should be 500 Å. This could be caused by the position of the source, size of mask or angle of the holding fixture.

H_0 : Test 1 thickness variability \leq Test 2

$$Z = \frac{x_{1}-x_{2}}{\sqrt{\frac{51^{2}}{n} + \frac{52^{2}}{n}}} = \frac{\frac{2235-2264}{\sqrt{\frac{333^{2}}{252} + \frac{242^{2}}{252}}}}{\sqrt{\frac{252}{252} + \frac{242^{2}}{252}}}$$

$$Z = -1.19 \quad P = 1-Z = 1-1.19 = 0.86 = 86\%$$

A second run was done to test if a centered evaporation source would decrease thickness variability (Ha). A one-tail test was performed & the P value was high, thus it did not significantly improve the process. This points to the mask size & fixture as the root cause of the variation

IMPROVE - 8/1/11

9) Solution to Probable Cause 1

-Receipt of material from Vendor A was halted. A comparison of their measurements vs. ours found a 7.6 KHz difference!

They recalibrated their instruments & next shipment was markedly improved with a mean very close to the center of our specification range of 6.055 as shown on this histogram.

10) Solution to Probable Cause 2

I'm working with engineering to develop a new fixture that will improve the geometry.

Thickness Monitor
Mask & Holding
Fixture

Evaporation Source

Control - 8/8/11

10) Changes to be Made:

- ✓QC technician does acceptance testing of raw materials w/ zero tolerance.
- ✓ Vendor supplies Certificate of Analysis w/ test statistics.
- ✓ Control chart created for raw materials.
- ✓ New fixture for more uniform thickness to prevent any frequency

reject