Série 8 du jeudi 10 novembre 2016

Exercice 1.

Soient $a \in \mathbb{R}$ et $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en a telle que pour tout couple x, y de \mathbb{R} :

$$f(x+y) = f(x) + f(y).$$

- 1.) Montrer que la fonction f est continue partout.
- 2.) En déduire que pour tout $x \in \mathbb{R}$:

$$f(x) = x f(1).$$

Indications:

Montrer que f(0) = 0 et f est continue en x = 0.

Montrer que f est continue partout,

Montrer que $f(n) = n f(1), \forall n \in \mathbb{Z}$.

Montrer que $f(x) = x f(1), \forall x \in \mathbb{Q}$.

Exercice 2 (rendre).

A chaque entier $n \geq 0$, on associe la fonction polynomiale $P_n : [0,1] \to \mathbb{R}$ définie par $P_0(x) = 0$ et

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} (x - P_n^2(x)).$$

1.) Montrer que pour tout $x \in [0,1]$ et tout entier $n \ge 0$:

$$0 \le P_n(x) \le P_{n+1}(x) \le \sqrt{x}.$$

- 2.) En déduire que la suite $(P_n)_{n=0}^{\infty}$ converge uniformément vers la fonction $f:[0,1]\to\mathbb{R}$ définie par $f(x)=\sqrt{x}$.
- 3.) Montrer qu'il existe une suite de fonctions polynomiales $Q_n: [-1,1] \to \mathbb{R}$ qui converge uniformément vers la fonction $g: [-1,1] \to \mathbb{R}$ définie par g(x) = |x|.

Indication: Commencer par montrer par récurrence que $0 \le P_n(x) \le \sqrt{x}, \ \forall x \in [0,1], \ \forall n = 0,1,2 \dots$

Exercice 3.

Calculer la dérivée de la fonction $f: \mathbb{R} \to \mathbb{R}$ dans les deux situations suivantes:

$$1^{o}) \ f(x) = \frac{x}{1+x^{4}}, \ x \in \mathbb{R},$$

 $f(x)=x^2[x], x\in\mathbb{R}, \text{ où } [x]$ dénote la partie entière de x.

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x^3 & \text{si } x \in \mathbb{Q}, \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Montrer que f est dérivable en 0 nulle part ailleurs.