MULTI-CYCLE DATAPATH AND CONTROL

Multi-cycle datapath: summary

Step name	Action for R-type instructions	Action for memory- reference instructions	Action for branches	Action for jumps
Instruction fetch	IR = Memory[PC] PC = PC + 4			
Instruction decode/register fetch	A = Reg [IR[25-21]] B = Reg [IR[20-16]] ALUOut = PC + (sign-extend (IR[15-0]) << 2)			
Execution, address computation, branch/ jump completion	ALUOut = A op B	ALUOut = A + sign-extend (IR[15-0])	if (A == B) then PC = ALUOut	PC = PC [31-28] (IR[25-0]<<2)
Memory access or R-type completion	Reg [IR[15-11]] = ALUOut	Load: MDR = Memory[ALUOut] or Store: Memory [ALUOut] = B		
Memory read completion		Load: Reg[IR[20-16]] = MDR		

Summary of execution steps

Instruction fetch, decode, register fetch same for all instructions

MULTI-CYCLE DATAPATH AND CONTROL

2-bit Signal	Value	Effect	
ALUOp	00	The ALU performs an add operation.	
	01	The ALU performs a subtract operation.	
	10	The funct field of the instruction determines the operation.	
ALUSrcB	00	The second input to ALU comes from the B register.	
	01	The second input to ALU is 4.	
	10	The second input to the ALU is the sign-extended, lower 16 bits of the Instruction Register (IR).	
	11	The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left by 2 bits.	
PCSource	00	Output of the ALU (PC+4) is sent to the PC for writing.	
	01	The contents of ALUOut (the branch target address) are sent to the PC for writing.	
	10	The jump target address (IR[25-0] shifted left 2 bits and concatenated with PC \pm 4[31-28]) is sent to the PC for writing.	

