

Project Idea and Motivation

1

Residential safety places nearby the university

2

Understand and analyze the criminal activities in city area

 Crime incidences in city of Chicago from 2001 to present

- https://catalog.data.gov/dataset/crime s-2001-to-present-398a4
 - Dataset size: 1.6GB
 - 6.65 million reported crimes
- Databricks
 - Faster processing
 - Handles big data

Exploratory Data Analysis

Yearly - Decreasing crime rate

Monthly - Periodic and decreasing rate

Hourly – Maximum crime rates at 12 noon and midnight.

Minimum crime rate at 5am

Crime Occurrence

Trends for Various Crime Types

Heatmap Monthly Crime count

- Gradual decrease in crime rates
- Most crimes occur between May and October
- February has the lowest crime count

Hourly Crime Type

Before and After Renormalization

Finding Data Discrepancies

Evolution of Crime

- Decrease in crime rate
- Increase in percent arrest
- Gap between crime rate and arrest rate is reducing meaning more criminals are arrested for the crime committed

Peak Time for Criminal Activities

- 12AM, 12PM and 8PM
- Least criminal activities at 5AM

Top 10 unsafe Locations

crimes.groupBy(['location_description']).count().orderBy('count', ascending=False).show(10)

▶ (1) Spark Jobs

+	
	1749370
RESIDENCE	1126950
APARTMENT	685713
SIDEWALK	657105
OTHER	252611
LOT/GARAG	191109
ALLEY	148926
PUBLIC, B	141360
DENCE-GARAGE	130152
RETAIL STORE	116787
	STREET RESIDENCE APARTMENT SIDEWALK

Worst Days of the Month

- Highest crime rates are observed at start of the month (Pay Day)
- Theft being the most contributing crime

Top 10 worst days of the month

```
month_day_crime_counts_pddf.sort_values(by='count', ascending=False).head(10)
```


Feature Selection For Logistic Regression

- Location Description
- Arrest
- Domestic
- Beat
- District
- Ward
- Community Area
- Hour
- Week
- Day
- Year
- Month
- Date

Model Accuracy = 69.37%

Primary Type	recall_rate	true_positive_ra	ate f	_measure	false_positive_	rate	precision_	rate
Theft	0.933	0.	0.933	0.778		0.12	0	.6674
Narcotis	0.837	0.).837	0.68		0.073		0.573

Time Series Analysis ARIMA Modelling

- Average and Standard Deviation of crime count by date
- Stationarity Check

check_stationarity_data(x)

```
Results of Dickey-Fuller Test:
Test Statistic
                                  0.489843
p-value
                                  0.984561
#Lags Used
                                  6.000000
Number of Observations Used
                                551.000000
Critical Value (5%)
                                 -2.866800
Critical Value (1%)
                                 -3,442274
Critical Value (10%)
                                 -2.569571
dtype: float64
```


 Calculated P values and statistics

```
1 check_stationarity_data(ts_log_ewma_diff)
```

```
Results of Dickey-Fuller Test:
Test Statistic
                                 -2.797224
p-value
                                  0.058671
#Lags Used
                                  5.000000
Number of Observations Used
                                552.000000
Critical Value (5%)
                                 -2.866790
Critical Value (1%)
                                 -3.442252
Critical Value (10%)
                                 -2.569566
dtype: float64
```


Time Series Decomposition

Trend – Shows increasing and decreasing crime values in the time series Residual – Accounts for random variations in series

Poor ARIMA Model performance

Seasonal ARIMA Model (SARIMAX)

- Improving the crime prediction using SARIMAX by choosing the best parameter combination
- SARIMAX(1,1,1)x(1,1,1,12) yields the lowest AIC value 75783.3

/databricks/python/local/lib/python2.7/site-packages/statsmodels/tsa/base/tsa_model.py:171 % freq, ValueWarning)

	coef	std err	Z	P> z	[0.025	0.975]			
ar.L1	0.2375	0.009	25.115	0.000	0.219	0.256			
ma.L1	-0.9046	0.005	-165.217	0.000	-0.915	-0.894			
ar.S.L12	-0.0698	0.013	-5.561	0.000	-0.094	-0.045			
ma.S.L12	-1.0000	1.367	-0.732	0.464	-3.679	1.679			
sigma2	8302.0806	1.14e+04	0.731	0.465	-1.39e+04	3.06e+04			

Producing and Visualizing Crime Forecasts

- Compared the observed crime count to the forecasted crime count
- Forecast start at 2015-01-01 to present
- Captured seasonality towards the end of the year

References

- https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
- https://www.kaggle.com/currie32/crimes-in-chicago
- https://datascienceplus.com/spark-dataframes-exploring-chicago-crimes/
- https://datascienceplus.com/spark-dataframes-exploring-chicago-crimes/
- https://github.com/ajitkoduri/Chicago-Crime-Analysis/blob/master/Chicago%20Sex%20Crimes%20Analysis.ipynb
- https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysis-and-forecasting-with-python-4835e6bf050b

Conclusion

- Exploratory Analysis on Criminal Activities in Chicago City
- Found data discrepancies and corrected them
- Most occurring crimes by hour, month, year crime type and location
- Calculated Crime and Arrest Rates using Logistic Regression with 69% accuracy score
- Time Series Forecasting using ARIMA and improving model accuracy Seasonal ARIMA model to predict future crime rate
- Expand the analysis for any demographic region

```
if questions:
    try:
        answer()
    except RuntimeError:
        pass
else:
    print ('Thank You.')
```