MATH347.003.FA23 Midterm 2

Sara Huston

TOTAL POINTS

33 / 35

Q2 11 pts **QUESTION 1** Q18 pts 2.1 a 4 / 4 \checkmark + 1 pts Columns of A are linearly dependent. 1.1 a 1 / 1 √ + 1 pts Computed RREF of A: \$\$\begin{bmatrix} 1 \checkmark + 1 pts Correct answer of \$\$k=2\$\$. & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}\$\$ OR 1.2 b 1 / 1 other valid/significant work shown √ + 2 pts Provided a non-trivial combination that \checkmark + 1 pts Correct answer of \$\$d=4\$\$. gives zero. 1.3 C 1/1 2.2 **b 2 / 2** \checkmark + 1 pts Correct answer of: \$\$\text{dim}[C(A)]=2\$\$ √ + 1 pts Correct: \$\$rank(A) = 2\$\$ 1.4 d 1 / 1 √ + 1 pts Correct justification: # of pivots \$\$= 2\$\$ √ + 1 pts Correct answer of: 2.3 C 2 / 3 \$\$\text{dim}[N(A^T)]=0\$\$ √ + 2 pts Correct explanation/idea 1.5 **e 4 / 4** 2.4 d 2 / 2 √ + 1 pts Eliminated the matrix into a reduced form √ + 1 pts No or presented justification in determining the free √ + 1 pts Explanation columns/variables. \checkmark + 1.5 pts Determined one of the basis vectors fully **QUESTION 3** correctly. One option is: \$\$\begin{bmatrix}1 \\ -1 \\ 1 Q3 8 pts \\ 0\end{bmatrix}\$\$

3.1 a 6 / 6

\end{bmatrix}\$\$

 \checkmark + 2 pts Eliminated the matrix fully.

choice is: \$\$\begin{bmatrix} -1 \\ -1 \\ 1

 \checkmark + 1.5 pts Found a correct special solution. One

QUESTION 2

1\end{bmatrix}\$\$

 \checkmark + 1.5 pts Determined one of the basis vector fully

correct. One option is: \$\$\begin{bmatrix}0 \\ -1 \\ 0 \\

3.2 **b 2 / 2**

√ + 2 pts Correct basis determined: \$\$\left\{
\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix},
\begin{bmatrix} 2 \\ 5 \\ 9 \\ 8\end{bmatrix}
\right\}\$\$\$

QUESTION 4

4Q47/8

√ + 1 pts (a) Correct

√ + 1 pts (b) Correct

√ + **1 pts** (*c*) Correct

√ + **1 pts** (*d*) Correct

√ + 1 pts (e) Correct

√ + **1 pts** (*f*) Correct

√ + **1 pts** (*h*) Correct

Midterm 2

Time Limit: 50 minutes Instructor: Shiying Li

Print your <u>first and last name</u> neatly in the box below, and print your <u>PID</u> neatly in the box at the bottom of every page .

Name:

Sara Huston

Please read the following directions carefully:

- This exam contains 6 pages (including this cover page) and 4 questions. The point total is 35 points. You have 50 minutes to complete this exam. Manage your time carefully.
- Make sure the order of pages of your exam papers is correct when turning in.
- This is a closed-book closed-note, individual exam. No other aids are allowed, i.e. no calculators, no internet, no textbook etc.
- To receive full credit, please show all relevant work. Partial credit will be for any correct work that is presented.
- Only work written on the exam sheet in the **designated space** for each question will be graded.
- You are not allowed to use your own scratch paper. You may get additional scratch paper from the instructor, if you need it.
- If you have extraneous scratch work in the designated answer space, please make sure to mark out anything you don't want graded.
- Please sign and date the honor pledge below. Your exam cannot be graded if you do not sign below.

Honor Pledge:

I have read and understood the directions on the previous page, and I certify that I have neither given nor received any unauthorized assistance on this exam. Further, I pledge that my conduct on this exam is in full compliance with UNC's Honor Code.

Signature:

Date:

11/6/23

PID:

730459812

1. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Justify your answers. (a) (1 point) The column space C(A) of A is a subspace of \mathbb{R}^k . What is k?

supspace of
$$B_w = 3$$
 # of rows

(b) (1 point) The null space N(A) of A is a subspace of \mathbb{R}^d . What is d?

(c) (1 point) What is the dimension of C(A)?

(d) (1 point) What is the dimension of the left null space $N(A^T)$?

dim
$$N(A^T) = m - r = 0$$

tall matrix $\Rightarrow 0$
 $T_2 T_2$

(e) (4 points) Find a basis for N(A).

PID: 730459812

- 2. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 4 & 10 \end{bmatrix}$.
 - (a) (4 points) Are the columns of A linearly dependent or independent? Explain your answer. If the columns are dependent, demonstrate by finding a non-trivial combination that gives zero.

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 4 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 3 & 4 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 0 & -2 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

(b) (2 points) What is the rank of A? Explain.

rank of A = # of pivot columns (# of NON-sevo rows in RREF) vank(A) = 2OUSO n - # of pree col 3 - 1 = 2 (c) (3 points) Give an example of a vector **b** for which $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions. Explain why your example works.

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 4 & 10 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} = match$$

$$Con be$$

(d) (2 points) Does there exist a vector \mathbf{b} such that the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution? Explain why or why not.

NO! For Ax=0, the solution is not trivial => linearly dependent, one free variable implies that if there is a sol, there are inkinetly many.

3. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 9 & 12 \\ 4 & 8 & 12 \end{bmatrix}$$
.

(a) (6 points) Find the **complete** solution to the system $A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \end{bmatrix}$. (That is, ei-

ther find a unique solution or describe mathematically the entire set of solutions

in the case of infinitely many solutions.)

basis of ((A) = pivot col of ((A))basis $span \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{bmatrix} 2 \\ 5 \\ 9 \\ 8 \end{bmatrix}$ rank = 2

basis

basis

	4. Answer the following multiple choice problems. (Completely fill in the bubbles beside the correct choices.)									e
		(a)	(1 point)	There exists a	set $\{\mathbf{a}_1, \mathbf{a}_2\}$	$\{\mathbf{a}_3,\mathbf{a}_4\}$ of	linear inde	pendent ve	ectors in 🔀)
			0	True		7 /	False			
		(b)	(1 point) space.	The column spa	ace of a 2	× 2 matrix	has the san	me dimensi	on as its row	v
			6	True			O False			
		(c)		Let a be a 3-di		column ve	ector. The	n the proje	ction matrix	c
				$P = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$	17		$\bigcirc P = \frac{8}{8}$			
		(d)	(1 point)	$Let P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. What	at is the ac	tion of P o	on a 3 × 3 1	matrix A?	
			0	exchanging row 1 and row 2 of A	_	exchangi 3 and ro A	•	rov	rdering the vs of A in the ler $3, 1, 2$.	
		(e)		Let S be a 3-dir matrix that has 3×5	/	w)space?	f \mathbb{R}^5 . What $\bigcirc 3 \times 3$		llest possible $\bigcirc 5 \times 5$	
		(f)		What are the p in question (e)?				in R ⁵ that	t are orthog-	-
			0	0) (1)		2)	\bigcirc 3	\bigcirc 4	O 5	
X	X	(g)	(1 point) $N(A)^{\perp}$?	Let A be a $3 \times$	5 matrix.	If dim $C($	(A) = 2, where $(A) = 2$	hat is the d	dimension of $((A) + d$	rim m(l
			0	1)	2	(3)) 4	\bigcirc 5	(1
				$ \text{Let } A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ $				2 × 2 matri	x. What are	
			0	1		2		\bigcirc 3		
i i	0	2 -3	3 -6]	Don't forge	et to sign	the Hon	or Pledge	! [0	23	
				PID:	7304	1802	2	(0	0 -1]	rank