Lab Report: Scientific Calculator Using 6×6 Button Matrix

Dhawal ee24btech11015

March 24, 2025

1 Aim

To design and implement a scientific calculator using:

- Arduino microcontroller
- 6×6 button matrix for input
- 16×2 LCD display for output
- Advanced mathematical functions (trigonometric, logarithmic, etc.)

2 Materials Required

2.1 Hardware Components

- Arduino Uno board
- 6×6 button matrix (36 buttons total)
- 16×2 LCD display
- 10k ohm resistors (for pull-up)
- Breadboard and jumper wires
- Potentiometer (for LCD contrast adjustment)

2.2 Software

- Arduino IDE
- AVR GCC compiler
- Custom libraries: parser.h, funcs.h

3 Circuit Connections

3.1 LCD Connections

- Control Pins:
 - RS to PB0
 - E to PB1
 - RW to GND

• Data Pins:

- DB4 to PB2
- DB5 to PB3
- DB6 to PB4
- DB7 to PB5

3.2 Button Matrix Connections

- Rows (Outputs):
 - Rows 1-6 to PC0-PC5
- Columns (Inputs with pull-ups):
 - Columns 1-6 to PD2-PD7

4 System Design

4.1 Button Matrix Layout

The 6×6 matrix is organized into two modes:

Basic Mode	Button Functions						
0-9	Basic numbers						
(,)	Parentheses	f	s (sin)	c (cos)	t (tan)		
+,-,*,/	Basic ops	^ (pow)	! (fact)				
=	Equals		_ (clear)	; (back)	& (mode)		
@ (asin)	# (acos)	\$ (atan)	l (ln)	e	p (π)		

Advanced Mode	Button Functions				
0-9	Basic numbers				
m (mem store)	M (mem recall)	@	#	\$: (tanh)
!	e	р	%	1	(
=		-	i	&)
S	С	t	, (sinh)	? (cosh)	: (tanh)

5 Key Features

5.1 Mathematical Functions

- Basic arithmetic (+, -, *, /)
- Trigonometric (sin, cos, tan)
- Hyperbolic (sinh, cosh, tanh)
- Inverse trigonometric (asin, acos, atan)
- Logarithmic (ln)
- Power and factorial (x^y, x!)
- Memory functions (store/recall)
- Fraction conversion

5.2 Display System

- $\bullet\,$ Two-line 16-character LCD
- Top line shows current expression
- Bottom line shows results
- Special character support $(\pi, \text{ fractions})$
- Scientific notation for large numbers

6 Implementation Details

6.1 Key Algorithms

1. Button Scanning:

- Rows are set low sequentially
- Columns are read to detect presses
- Debouncing implemented in software

2. Expression Evaluation:

- Custom parser handles operator precedence
- Supports nested parentheses
- Converts button codes to mathematical operations

3. Display Handling:

- Special encoding for functions (sin to 's')
- Automatic scrolling for long expressions
- Dual-line display management

7 Observations

7.1 Basic Operation

- System boots with "Calculator ready" message
- Buttons respond within 50ms debounce period
- \bullet Results display with 5 decimal places precision
- Automatic mode switching works reliably

7.2 Performance Metrics

• Scan Rate: 50Hz button matrix scan

• Response Time: ¡100ms for basic operations

• Accuracy: IEEE 754 double precision

• Memory: Uses EEPROM for value storage

8 Challenges and Solutions

8.1 Button Ghosting

• Problem: False presses in matrix

• Solution: Implemented sequential scanning with pull-ups

8.2 Display Limitations

• **Problem**: Limited 16×2 display space

• Solution: Implemented scrolling and abbreviation

8.3 Precision Issues

• **Problem**: Floating point errors

• Solution: Used double precision and proper rounding

9 Conclusion

The scientific calculator successfully implements:

• Comprehensive mathematical operations

• Efficient button matrix scanning

• Clear display output

• Multiple operation modes