Math 134, Summer 2022

Lecture #17: Linear systems

May 4th

Learning objectives

Today we will discuss:

- ullet The phase space and trajectories of a 2d system.
- Fixed points of 2d systems.
- ullet The linearization of a 2d system about a fixed point.
- Fixed points of linear systems.
- \bullet Eigenvalues and eigenvectors of 2 \times 2 matrices.

Linear systems

An example

Recall the bead in a hoop model

$$\varepsilon \ddot{\phi} + \dot{\phi} = \sin \phi \big[\gamma \cos \phi - 1 \big].$$

2d systems

A solution of the system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

has the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$

Fixed points

We say that $\mathbf{x}^* \in \mathbb{R}^2$ is a **fixed point** of the 2d system

$$\dot{x} = f(x)$$

if $f(x^*) = 0$.

The linearized system

Suppose that x^* is a fixed point of the 2d system

$$\dot{x} = f(x)$$
.

The **linearization** of this system at x^* is the equation

$$\dot{\boldsymbol{\eta}} = \nabla \boldsymbol{f}(\boldsymbol{x}^*) \boldsymbol{\eta}$$

where the gradient

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

An example

Recall the pendulum with $\varepsilon=1$ and $\gamma=0$:

$$\dot{\mathbf{x}} = \begin{bmatrix} x_2 \\ -x_2 - \sin(x_1) \end{bmatrix}.$$

An example

Consider the system

$$\dot{\mathbf{x}} = \begin{bmatrix} x_1 x_2 - 1 \\ x_1^2 - x_2^2 \end{bmatrix}$$

Which of the following is the linearization at the fixed point (1,1)?

A)
$$\dot{\eta} = \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix} \eta$$

B) $\dot{\eta} = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \eta$

C) $\dot{\eta} = \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix} \eta$

D) $\dot{\eta} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \eta$

Linear systems

$$\dot{\mathbf{x}} = A\mathbf{x}$$
 where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

See you next time!