Qualifying Exam

D. Zack Garza

Friday 15th May, 2020

Contents

1	Question 1 (UW 2008 #1)	1
2	Question 2 (UW 2007 #1)	1
3	Question 3 (UW 2016 #6)	2
4	Question 4 (UW 2012 #3)	2
5	Question 5 (UW 2015 #7)	2
6	Question 6 (UW 2011 #2)	2
7	Question 7 (UW 2010 #7)	2
8	Question 8 (UGA 2019 #5)	3
9	Question 9 (UW 2011 #3)	3
10	Question 10 (UW 2017 #1)	3

1 Question 1 (UW 2008 #1)

Let f(x) be an irreducible polynomial of degree 5 over the field \mathbb{Q} of rational numbers with exactly 3 real roots.

- Show that f(x) is not solvable by radicals.
- Let E be the splitting field of f over \mathbb{Q} . Construct a Galois extension K of degree 2 over \mathbb{Q} lying in E such that no field F strictly between K and E is Galois over \mathbb{Q} .

2 Question 2 (UW 2007 #1)

Let K be a field of characteristic zero and L a Galois extension of K. Let f be an irreducible polynomial in K[x] of degree 7 and suppose f has no zeroes in L. Show that f is irreducible in L[x].

3 Question 3 (UW 2016 #6)

Let $A = \mathbb{C}[x, y]/(y^2 - (x - 1)^3 - (x - 1)^2)$.

- Show that A is an integral domain and sketch the \mathbb{R} -points of Spec A.
- Find the integral closure of A. Recall that for an integral domain A with fraction field K, the integral closure of A in K is the set of all elements of K integral over A.

4 Question 4 (UW 2012 #3)

Let R be a (commutative) principal ideal domain, let M and N be finitely generated free R-modules, and let $\varphi: M \to N$ be an R-module homomorphism.

- Let K be the kernel of φ . Prove that K is a direct summand of M.
- Let C be the image of φ . Show by example (specifying R, M, N, and φ) that C need not be a direct summand of N.

5 Question 5 (UW 2015 #7)

Let G be a non-abelian group of order p^3 with p a prime.

- Determine the order of the center Z of G.
- Determine the number of inequivalent complex 1-dimensional representations of G.
- Compute the dimensions of all the inequivalent irreducible representations of G and verify that the number of such representations equals the number of conjugacy classes of G.

6 Question 6 (UW 2011 #2)

In this problem, as you apply Sylow, Theorem, state precisely which portions you are using.

- Prove that there is no simple group of order 30.
- Suppose that G is a simple group of order 60. Determine the number of p-Sylow subgroups of G for each prime p dividing 60, then prove that G is isomorphic to the alternating group A_5 .

Note: in the second part, you needn,t show that A_5 is simple. You need only show that if there is a simple group of order 60, then it must be isomorphic to A_5 .

7 Question 7 (UW 2010 #7)

Let F be a field of characteristic zero, and let K be an algebraic extension of F that possesses the following property: every polynomial $f \in F[x]$ has a root in K. Show that K is algebraically closed.\ **Hint:** if $K(\theta)/K$ is algebraic, consider $F(\theta)/F$ and its normal closure; primitive elements might be of help.

8 Question 8 (UGA 2019 #5)

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$\operatorname{Tor}(m) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example where Tor(M) is not a submodule of M.
- (c) If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

9 Question 9 (UW 2011 #3)

Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$.

10 Question 10 (UW 2017 #1)

Let R be a Noetherian ring. Prove that R[x] and R[[x]] are both Noetherian. (The first part of the question is asking you to prove the Hilbert Basis Theorem, not to use it!)