Recitation # 11: Partial fractions and Improper Integrals

Warm up:

True or False: It is possible for a region to be infinitely long but have a finite area.

Group work:

Problem 1 Without determining the coefficients, write the partial fraction decomposition of the following rational function:

$$\frac{5x^{13} - 6x^{12} + 7x^3 - 5x - 18}{(2x - 3)(5x + 9)^3(x^2 + 9x + 19)(x^2 + 9x + 21)^2}$$

Problem 2 Evaluate:

$$\int \frac{7x^3 + 18x + 9}{x^4 + 9x^2} \, dx$$

Hint: If $f(x) = 7x^3 + 18x + 9$, then f(2) = 101, f(1) = 34, and f(-1) = -16.

Problem 3 Review of limits:

(a)
$$\lim_{x \to -\infty} \left(3x^{-6} + e^{5x} + \frac{\sin x}{x^2 + 3} \right)$$

(b)
$$\lim_{x \to \infty} \frac{x}{\sqrt{9x^2 + 4}}$$

(c) $\lim_{x \to -\infty} \arctan x$

Problem 4 In each of the following, determine if the given integral converges or diverges. If it converges, find the value.

Recitation # 11: Partial fractions and Improper Integrals

(a)
$$\int_{-1}^{\infty} \frac{3}{2x+1} \, dx$$

(b)
$$\int_{-\infty}^{\infty} x e^{-x} dx$$

(c)
$$\int_{6}^{\infty} \frac{2 - 4x}{2x^2 - 13x + 20} \, dx$$

Problem 5 Find the volume of the solid whose base is the region where $x \ge 1$, $y \ge 0$, and below the curve $y = \frac{1}{x^4}$, and whose cross sections perpendicular to the x-axis are squares.