

SAR TEST REPORT

No. 2013EEB00524-SAR

For

Aplustec LLP

Card Phone

Model Name: CM1

Marketing Name: CARD

FCC ID: 2ABFR-CM1

with

Hardware Version: C103_V1.0

Software Version: CM1_V1.0

Issued Date: 2013-12-19

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

Revision Version

Report Number	Revision	Date	Memo
2013EEB00524-SAR	00	2013-12-10	Initial creation of test report
2013EEB00524-SAR	01	2013-12-11	Delete "WCDMA"
2013EEB00524-SAR	02	02 2013-12-13	Add Justification for Extended SAR
2013EED00324-3AR	02	2013-12-13	Dipole Calibrations
2013EEB00524-SAR	03	2013-12-19	1

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 Testing Environment	
1.3 PROJECT DATA	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	7
3.2 Manufacturer Information	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	8
4.2 Internal Identification of EUT used during the test	
4.3 Internal Identification of AE used during the test	8
5 TEST METHODOLOGY	9
5.1 APPLICABLE LIMIT REGULATIONS	9
5.2 Applicable Measurement Standards	
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	10
6.2 SAR Definition	
7 TISSUE SIMULATING LIQUIDS	
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	11
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	
8.1 System Setup	
8.2 System Verification.	
8.3 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATIONS	
9 MEASUREMENT PROCEDURES	
9.1 TESTS TO BE PERFORMED	
9.2 GENERAL MEASUREMENT PROCEDURE	
9.4 Power Drift	
10 CONDUCTED OUTPUT POWER	
10.1 Manufacturing tolerance	
10.2 GSM Measurement result	
10.4 BT MEASUREMENT RESULT	

11 SIMULIANEOUS IX SAR CONSIDERATIONS	22
11.1 Introduction	22
11.2 Transmit Antenna Separation Distances	
11.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	24
12 EVALUATION OF SIMULTANEOUS	24
13 SAR TEST RESULT	26
13.1 SAR TEST RESULT	26
14 SAR MEASUREMENT VARIABILITY	27
15 MEASUREMENT UNCERTAINTY	28
15.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHZ-3000MHZ)	28
16 MAIN TEST INSTRUMENTS	29
ANNEX A GRAPH RESULTS	30
ANNEX B SYSTEM VERIFICATION RESULTS	56
ANNEX C SAR MEASUREMENT SETUP	60
C.1 Measurement Set-up	60
C.2 DASY4 OR DASY5 E-FIELD PROBE SYSTEM	61
C.3 E-FIELD PROBE CALIBRATION	61
C.4 OTHER TEST EQUIPMENT.	
C.4.1 DATA ACQUISITION ELECTRONICS(DAE)	
C.4.2 ROBOT	
C.4.3 MEASUREMENT SERVER	
C.4.4 DEVICE HOLDER FOR PHANTOM	
C.4.5 PHANTOM	
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	66
D.1 GENERAL CONSIDERATIONS	66
D.2 BODY-WORN DEVICE	67
D.3 DESKBOTTOM DEVICE	67
D.4 DUT SETUP PHOTOS	68
ANNEX E EQUIVALENT MEDIA RECIPES	69
ANNEX F SYSTEM VALIDATION	70
ANNEX G PROBE CALIBRATION CERTIFICATE	71
ANNEY II DIDOLE CALIDDATION CERTIFICATE	0.4

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address: No. 12building, Shangsha Innovation and Technology Park, Futian

District, Shenzhen, P. R. China

Postal Code: 518048

Telephone: +86-755-33322000 Fax: +86-755-33322001

1.2 Testing Environment

Temperature: $18^{\circ}\text{C} \sim 25^{\circ}\text{C}$, Relative humidity: $30\% \sim 70\%$ Ground system resistance: $< 0.5 \ \Omega$ Ambient noise & Reflection: $< 0.012 \ \text{W/kg}$

1.3 Project Data

Project Leader: Zhang Bojun
Test Engineer: Zhu Zhiqiang

Testing Start Date: November 28, 2013
Testing End Date: December 6, 2013

1.4 Signature

Zhu Zhiqiang

(Prepared this test report)

Zhang Bojun

(Reviewed this test report)

Lu Minniu

Director of the laboratory

(Approved this test report)

0.814W/kg (1g).

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Aplustec LLP Card Phone CM1 are as follows:

Table 2.1: Max. Reported SAR (1g)

	-	· •
Band	Position	Reported SAR 1g (W/Kg)
GSM 850	Head	0.258
	Body	0.336
GSM 1900	Head	0.591
	Body	0.814

All the tests are carried out with a fully charged battery.

The SAR values found for the Card Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are:

Table 2.2: The sum of reported SAR values

	Position	GSM	ВТ	Sum
Maximum reported value for Head	Left hand, Touch cheek	0.591	0.032	0.623
Maximum reported SAR value for Body	Toward Ground	0.814	0.016	0.830

According to the above table, the maximum sum of reported SAR values for GSM and BT is **0.830W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name: Aplustec LLP

Address /Post: Blk21,Simei Street 4,#07-39,Singapore(528717)

Contact Ivy Chen

Email ivy.chen@aplustec.com

Telephone: +86 13539090881

Fax /

3.2 Manufacturer Information

Company Name: Aplustec Limited

Address /Post: Industrial Area In Zengtian, ChangAn Town Dongguan, Guangdong,

China

Country: Ivy Chen

Contact ivy.chen@aplustec.com

Telephone: +86 13539090881

Fax /

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Card Phone
Model name:	CM1
Marketing name:	CARD
Operating mode(s):	GSM 850/1900 , BT
Tooted Ty Fraguency:	824.2 – 848.8 MHz (GSM 850)
Tested Tx Frequency:	1850.2 – 1909.8 MHz (GSM 1900)
Test Modulation	(GSM)GMSK
GPRS Multislot Class:	12
GPRS capability Class:	В
EGPRS Multislot Class:	1
Power class:	GSM850: tested with power level 5
Fower class.	GSM1900: tested with power level 0
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	
Hotspot mode:	1
Form factor	$8.5 \mathrm{cm} \times 5.5 \mathrm{cm}$

4.2 Internal Identification of EUT used during the test

EUT ID* SN or IMEI HW Version SW Version EUT1 862813026600141 C103_V1.0 CM1_V1.0

4.3 Internal Identification of AE used during the test

AE ID* Description Model SN Capacity Nominal Voltage Manufacturer

AE1 Battery PL-283
450 / 320mAh 3.7V Shen Zhen BYN Battery

^{*}EUT ID: is used to identify the test sample in the lab internally.

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v05r01: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r02: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB248227 D01 v01r02: SAR Measurement Procedures for 802.11a/b/g transmitters.

KDB941225 D06 v01r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

KDB941225 D01 v02: SAR Measurement Procedures for 3G Devices.

865664 D02 SAR Reporting v01r01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				<u> </u>	
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

					-	
Measurement Date (yyyy-mm-dd)	Type	Frequency	Permittivity £	Drift	Conductivity σ (S/m)	Drift
2013-11-30	Head	835 MHz	41.16	-0.82%	0.88	-2.22%
2013-12-5	Body	835 MHz	53.69	-2.74%	0.97	0.00%
2013-11-28	Head	1900 MHz	38.60	-3.50%	1.43	2.14%
2013-12-6	Body	1900 MHz	51.44	-3.49%	1.55	1.97%

Picture 7-1: Liquid depth in the Head Phantom (835 MHz) (depth=15.6cm)

Picture 7-2: Liquid depth in the Flat Phantom (835 MHz) (depth=17.6cm)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz) (depth=15.3cm)

Picture 7-4 Liquid depth in the Flat Phantom (1900MHz) (depth=17.4cm)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B. The measured value of annex B is tested with the output power of 250mW, so the measured value of Table 8.1&8.2 is 4 times as big as annex B.

Table 8.1: System Verification of Head (1W) Measurement Target value (W/kg) Measured value (W/kg) **Date** Frequency 10 g 10 g 10 g 1 g 1 g

Deviation 1 g (yyyy-mm-dd) **Average Average** Average **Average Average** Average 2013-11-30 835 MHz 6.32 9.62 6.28 9.64 -0.63% 0.21% 2013-11-28 1900 MHz 20.9 40.0 21.28 41.2 1.82% 3.00%

Table 8.2: System Verification of Body (1W)

Measurement		Target value (W/kg)		Measured v	value (W/kg)	Devia	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-12-5	835 MHz	6.26	9.52	6.48	9.84	3.51%	3.36%
2013-12-6	1900 MHz	21.4	40.3	21.36	40.8	-0.19%	1.24%

8.3 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

, , , , , , , , , , , , , , , , , , , ,						
Dipole D835V2 SN: 4d057						
	Head I	Liquid				
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
10/24/2012	-29.5	1	52.1	1		
10/23/2013 -28.4 3.7 50.3 1.8				1.8		
	Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
10/24/2012	-26.2	1	48.1	1		
10/23/2013	-25.8	1.5	46.7	1.4		

Dipole D1900V2 SN: 5d088						
	Head I	Liquid				
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$					
10/17/2012	-24.3	1	52.0	1		
10/16/2013 -23.3 4.1 50.3 1.7				1.7		
	Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
10/17/2012	-24.0	1	48.9	1		
10/16/2013	-23.2	3.3	47.6	1.3		

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz	
Maximum distance from (geometric center of prob		•	5 ± 1 mm		
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1° 20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of to measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the e < the corresponding x or y		
Maximum zoom scan sp	atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 3 - 4 GHz: \leq 5 mm ⁴ 2 - 3 GHz: \leq 5 mm ⁴ 4 - 6 GHz: \leq 4 mm ⁴		
	uniform g	rid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface graded		Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid Δz _{Zoom} (n>1): between subsequent points		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z	ı	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Conducted Output Power

10.1 Manufacturing tolerance

Table 10.1: GSM Speech

	GSM 850							
Channel	Channel 251	Channel 190	Channel 128					
Target (dBm)	30.9	30.9	30.9					
Tolerance \pm (dB)	0.3	0.3	0.3					
	GSM	1 1900						
Channel	Channel 810	Channel 661	Channel 512					
Target (dBm)	28.9	28.9	28.9					
Tolerance \pm (dB) 0.3		0.3	0.3					

Table 10.2: GPRS (GMSK Modulation)

Table 10.2. GFN3 (GM3N Modulation)							
	GSM 850 GPRS						
	Channel	251	190	128			
1 Txslot	Target (dBm)	30.9	30.9	30.9			
1 1 X SIOL	Tolerance \pm (dB)	0.3	0.3	0.3			
2 Txslots	Target (dBm)	28.9	28.9	28.9			
2 TXSIOIS	Tolerance \pm (dB)	0.3	0.3	0.3			
2Tvolete	Target (dBm)	27.9	27.9	27.9			
3Txslots	Tolerance \pm (dB)	0.3	0.3	0.3			
4 Tuelete	Target (dBm)	26.9	26.9	26.9			
4 Txslots	Tolerance \pm (dB)	0.3	0.3	0.3			
		GSM 1900 GPRS	3				
	Channel	810	661	512			
1 Tyolot	Target (dBm)	28.9	28.9	28.9			
1 Txslot	Tolerance \pm (dB)	0.3	0.3	0.3			
O Tyralata	Target (dBm)	26.9	26.9	26.9			
2 Txslots	Tolerance \pm (dB)	0.3	0.3	0.3			
OTvolete.	Target (dBm)	25.9	25.9	25.9			
3Txslots	Tolerance \pm (dB)	0.3	0.3	0.3			
4 Tyoloto	Target (dBm)	24.9	24.9	24.9			
4 Txslots	Tolerance \pm (dB)	0.3	0.3	0.3			

10.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be within 5% than EMI measurement.

Table 10.6: The conducted power measurement results for GSM850/1900

GSM 850MHZ	Conducted Power (dBm)						
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
	30.76	30.91	31.03				
CCM	Conducted Power (dBm)						
GSM 1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	28.77	28.88	29.05				

Table 10.7: The conducted power measurement results for GPRS and

GSM 850	Measured Power (dBm)			calculation	Averaged Power (dBm)		
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	30.74	30.91	31.01	-9.03dB	21.71	21.88	21.98
2 Txslots	28.12	28.21	28.38	-6.02dB	22.1	22.19	22.36
3Txslots	26.47	26.59	26.85	-4.26dB	22.21	22.33	22.59
4 Txslots	25.87	25.91	26.03	-3.01dB	22.86	22.90	23.02
PCS1900	Measu	red Power	(dBm)	calculation	Averaged Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	28.93	29.00	29.12	-9.03dB	19.9	19.97	20.09
2 Txslots	26.75	26.84	27.03	-6.02dB	20.73	20.82	21.01
3Txslots	25.48	25.56	25.69	-4.26dB	21.22	21.3	21.43
4 Txslots	24.89	24.94	25.02	-3.01dB	21.88	21.93	22.01

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GSM850 and GSM1900.

¹⁾ Division Factors

10.4 BT Measurement result

The conducted Power for BT

	Measured Power (dBm)				
madel\Channel	Ch 0	Ch 39	Ch 78		
model\Channel	2402 MHz	2441 MHz	2480 MHz		
GFSK	-1.99	-2.77	-3.02		
π/4 DQPSK	-3.29	-4.14	-4.35		
8DPSK	-3.24	-3.93	-4.29		

11 Simultaneous TX SAR Considerations

11.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For this device, the BT can transmit simultaneous with other transmitters,

11.2 Transmit Antenna Separation Distances

Antenna Gain: GSM 850: 0.3dBi GSM 1900: 1.2dBi BT antenna: 0dBi

Picture 11.1 Antenna Locations

11.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10m test separation distances is 19mW.

 $\label{eq:Appendix A} Appendix \ A$ SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and \leq 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm	
150	39	77	116	155	194		
300	27	55	82	110	137		
450	22	45	67	89	112		
835	16	33	49	66	82		
900	16	32	47	63	79		
1500	12	24	37	49	61	SAR Test Exclusion	
1900	11	22	33	44	54	Threshold (mW)	
2450	10	19	29	38	48	11110511010 (11111)	
3600	8	16	24	32	40		
5200	7	13	20	26	33		
5400	6	13	19	26	32		
5800	6	12	19	25	31		

Picture 11.2 Power Thresholds

12 Evaluation of Simultaneous

Table 12.1: Summary of Transmitters

Band/Mode	F(GHz)	SAR test exclusion threshold (mW)	RF output power (mW)
Bluetooth	2.441	19	0.76

According to the conducted power measurement result, we can draw the conclusion that: Stand-alone SAR for BT must be estimated according to following to determine simultaneous transmission SAR, and the result is **0.032** W/kg (1g average) for head SAR, **0.016**W/kg (1g average) for body SAR.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{\text{(GHz)}}}$ /x] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Table 12.2: The sum of reported SAR values

	Position	GSM	ВТ	Sum
Maximum reported value for Head	Left hand, Touch cheek	0.591	0.032	0.623
Maximum reported SAR value for Body Toward Ground		0.814	0.016	0.830

According to the above table, the sum of reported SAR values for GSM and BT $\,<$ 1.6W/kg.

13 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan and zoom scan based 1-g SAR estimation.

In this report, measured SAR results are scaled to the maximum tune-up tolerance limit according the power applied to the individual channels, and the results are shown in the column "reported SAR".

13.1 SAR Test Result

Table 13.1: Duty Cycle

	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS for GSM850/1900	1:2
WiFi 2450	1:1

Table 13.2: SAR Values (GSM 850 MHz Band - Head)

Frequ	ency		Test	Conducted	Measured	Reported	Measured	Reported	Power
	<u> </u>	Side		Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	Left	Touch	30.91	0.105	0.112	0.183	0.196	-0.11
836.6	190	Left	Tilt	30.91	0.066	0.071	0.134	0.143	-0.04
836.6	190	Right	Touch	30.91	0.109	0.117	0.195	0.208	0.07
836.6	190	Right	Tilt	30.91	0.040	0.043	0.073	0.078	0.07
848.8	251	Right	Touch	30.76	0.134	0.148	0.233	0.258	-0.04
824.2	128	Right	Touch	31.03	0.093	0.097	0.164	0.171	-0.01

Table 13.3: SAR Values (GSM 850 MHz Band - Body)

Frequ	encv	Mode	Test	Conducted	Measured	Reported	Measured	Reported	Power
	1	(number of	Position	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (4)	Phantom	25.91	0.146	0.196	0.236	0.318	-0.10
836.6	190	GPRS (4)	Ground	25.91	0.110	0.148	0.197	0.265	-0.18
848.8	251	GPRS (4)	Phantom	25.87	0.153	0.208	0.247	0.336	-0.18
824.2	128	GPRS (4)	Phantom	26.03	0.135	0.177	0.217	0.284	-0.18
848.8	251	Speech	Phantom	30.76	0.018	0.020	0.030	0.033	0.02

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 13.4: SAR Values	(GSM 1900	MHz Band - Head)
------------------------	-----------	------------------

Frequency			Toot	Conducted	ed Measured Reported		Measured	Reported	Power
		Side	Test	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	Left	Touch	28.88	0.256	0.276	0.485	0.522	-0.14
1880	661	Left	Tilt	28.88	0.119	0.128	0.232	0.250	-0.02
1880	661	Right	Touch	28.88	0.183	0.197	0.304	0.327	-0.16
1880	661	Right	Tilt	28.88	0.099	0.107	0.176	0.189	-0.14
1909.8	810	Left	Touch	28.77	0.277	0.306	0.535	0.591	0.16
1850.2	512	Left	Touch	29.05	0.278	0.288	0.530	0.549	0.02

Table 13.5: SAR Values (GSM 1900 MHz Band - Body)

							,		
Frequency		Mode	Test	Conducted	Measured	Reported	Measured	Reported	Power
	····• <i>y</i>	(number of	Position	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	GPRS (4)	Phantom	24.94	0.446	0.474	0.694	0.737	-0.03
1880	661	GPRS (4)	Ground	24.94	0.499	0.530	0.767	0.814	-0.12
1909.8	810	GPRS (4)	Ground	24.89	0.489	0.525	0.756	0.812	-0.16
1850.2	512	GPRS (4)	Ground	25.02	0.498	0.519	0.761	0.793	-0.11
1880	661	Speech	Ground	28.88	0.055	0.059	0.086	0.093	-0.01

Note: The distance between the EUT and the phantom bottom is 10mm.

14 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

15 Measurement Uncertainty

15.1 Measurement Uncertainty for Normal SAR Tests (300MHz-3000MHz)

15.	15.1 Measurement Uncertainty for Normal SAR						iests (300MHz-3000MHz)					
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
			value	Distribution		1g	10g	Unc.	Unc.	of		
								(1g)	(10g)	freedo		
										m		
Mea	Measurement system											
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞		
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞		
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞		
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8		
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8		
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	80		
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
			Test	sample related	i	•			•			
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71		
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5		
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8		
			Phan	tom and set-u	p							
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞		
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8		
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43		
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8		
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521		

Combined standard uncertainty	$u'_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.25	9.12	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			18.5	18.2	

16 MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent E5071C	MY46103759	January 15,2013	One year	
02	Power meter	NRVD	101253	March 7 2042	One year	
03	Power sensor	NRV-Z5	100333	March 7,2013		
04	Signal Generator	E4438C	MY45095825	January 15, 2013	One year	
05	Amplifier	VTL5400	0404	No Calibration Requested		
06	BTS	E5515C	GB47460133	September 5, 2013	One year	
07	E-field Probe	SPEAG ES3DV3	3151	July 31, 2013	One year	
08	DAE	SPEAG DAE4	786	November 25, 2013	One year	
09	Dipole Validation Kit	SPEAG D835V2	4d057	October 24,2012	Two year	
10	Dipole Validation Kit	SPEAG D1900V2	5d088	October 17,2012	Two year	

^{***}END OF REPORT BODY***

ANNEX A GRAPH RESULTS

850 Left Cheek Middle

Date/Time: 11/30/2013 1:44:08 PM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Left Cheek Middle/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.235 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.721 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.405 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.197 W/kg

0 dB = 0.197 W/kg = -7.06 dBW/kg

Fig. 1 850MHz CH190

850 Left Tilt Middle

Date/Time: 11/30/2013 2:00:28 PM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Left Tilt Middle/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.147 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.173 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.066 W/kgMaximum value of SAR (measured) = 0.152 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

Fig. 2 850 MHz CH190

850 Right Cheek Middle

Date/Time: 11/30/2013 11:02:38 AM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Right Cheek Middle/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.250 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.173 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.451 W/kg

SAR(1 g) = 0.195 W/kg; SAR(10 g) = 0.109 W/kg

Maximum value of SAR (measured) = 0.210 W/kg

0 dB = 0.250 W/kg = -6.03 dBW/kg

Fig. 3 850 MHz CH190

850 Right Tilt Middle

Date/Time: 11/30/2013 11:18:44 AM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Right Tilt Middle/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0832 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.104 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.040 W/kgMaximum value of SAR (measured) = 0.0818 W/kg

0 dB = 0.0818 W/kg = -10.87 dBW/kg

Fig.4 850 MHz CH190

850 Right Cheek High

Date/Time: 11/30/2013 2:16:55 PM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.889$ S/m; $\varepsilon_r = 40.997$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Right Cheek High/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.309 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.811 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.134 W/kg

Maximum value of SAR (measured) = 0.246 W/kg

0 dB = 0.246 W/kg = -6.09 dBW/kg

Fig.5 850 MHz CH251

Fig. 5-1 Z-Scan at power reference point (850 MHz CH251)

850 Right Cheek Low

Date/Time: 11/30/2013 2:31:13 PM

Electronics: DAE4 Sn786 Medium: Head 900MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

Right Cheek Low/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 15.081 V/m; Power Drift = -0.00 dB Maximum value of SAR (interpolated) = 0.217 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.081 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.093 W/kg

Maximum value of SAR (measured) = 0.172 W/kg

0 dB = 0.172 W/kg = -7.64 dBW/kg

Fig. 6 850 MHz CH128

850 Body Toward Phantom Middle with GPRS

Date/Time: 12/5/2013 8:53:11 AM

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 53.662$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: 4 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

Towards Phantom Middle/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.261 W/kg

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.551 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.373 W/kg

SAR(1 g) = 0.236 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.256 W/kg

0 dB = 0.256 W/kg = -5.92 dBW/kg

Fig. 7 850 MHz CH190

850 Body Toward Ground Middle with GPRS

Date/Time: 12/5/2013 9:07:03 AM

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 53.662$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: 4 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

Towards Ground Middle/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.208 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.979 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.110 W/kg

Maximum value of SAR (measured) = 0.210 W/kg

0 dB = 0.210 W/kg = -6.79 dBW/kg

Fig. 8 850 MHz CH190

850 Body Toward Phantom High with GPRS

Date/Time: 12/5/2013 10:16:35 AM

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.985$ S/m; $\epsilon_r = 53.542$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: 4 slot GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

Towards Phantom High/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.273 W/kg

Towards Phantom High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.904 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.247 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.268 W/kg

0 dB = 0.268 W/kg = -5.72 dBW/kg

Fig. 9 850 MHz CH251

Fig. 9-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Toward Phantom Low with GPRS

Date/Time: 12/5/2013 11:13:54 AM

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.957$ S/m; $\varepsilon_r = 53.776$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: 4 slot GPRS Frequency: 824.2 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

Towards Phantom Low/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.240 W/kg

Towards Phantom Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.903 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.236 W/kg

0 dB = 0.236 W/kg = -6.26 dBW/kg

Fig. 10 850 MHz CH128

850 Body Towards Phantom High with Speech

Date/Time: 12/5/2013 12:10:33 PM

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.985$ S/m; $\epsilon_r = 53.542$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.4 °C Liquid Temperature: 20.9 °C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

Towards Phantom High speech/Area Scan (51x81x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0331 W/kg

Towards Phantom High speech/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.520 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.030 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.0332 W/kg

0 dB = 0.0332 W/kg = -14.79 dBW/kg

Fig. 11 850 MHz CH251

GSM 1900 Left Cheek Middle

Date/Time: 11/28/2013 8:04:42 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.413 \text{ S/m}$; $\varepsilon_r = 38.685$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

Left Cheek Middle /Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.665 W/kg

Left Cheek Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.742 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.950 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.256 W/kgMaximum value of SAR (measured) = 0.516 W/kg

0 dB = 0.516 W/kg = -2.87 dBW/kg

Fig. 12 1900 MHz CH661

GSM 1900 Left Tilt Middle

Date/Time: 11/28/2013 8:18:59 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\varepsilon_r = 38.685$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

Left Cheek Tilt /Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 10.230 V/m; Power Drift = 0.02 dB Maximum value of SAR (interpolated) = 0.296 W/kg

Left Cheek Tilt /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.230 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.119 W/kgMaximum value of SAR (measured) = 0.269 W/kg

0 dB = 0.269 W/kg = -5.70 dBW/kg

Fig. 13 1900 MHz CH661

GSM 1900 Right Cheek Middle

Date/Time: 11/28/2013 8:35:15 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.413 \text{ S/m}$; $\varepsilon_r = 38.685$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

Right Cheek Middle /Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.387 W/kg

Right Cheek Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.337 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.479 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.183 W/kg

Maximum value of SAR (measured) = 0.326 W/kg

0 dB = 0.326 W/kg = -4.87 dBW/kg

Fig. 14 1900 MHz CH661

GSM 1900 Right Tilt Middle

Date/Time: 11/28/2013 8:50:36 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.413 \text{ S/m}$; $\varepsilon_r = 38.685$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

Right Tilt Middle /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.215 W/kg

Right Tilt Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.238 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.283 W/kg

SAR(1 g) = 0.176 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.188 W/kg

0 dB = 0.188 W/kg = -7.25 dBW/kg

Fig. 15 1900 MHz CH661

GSM 1900 Left Cheek High

Date/Time: 11/28/2013 9:08:47 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.443 \text{ S/m}$; $\varepsilon_r = 38.557$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

Left Cheek High/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.696 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.270 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.277 W/kg

Maximum value of SAR (measured) = 0.557 W/kg

0 dB = 0.557 W/kg = -2.54 dBW/kg

Fig. 16 1900 MHz CH810

Fig. 16-1 Z-Scan at power reference point (1900 MHz CH810)

1900 Left Cheek Low

Date/Time: 11/28/2013 9:23:17 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 38.774$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.2°C Liquid Temperature: 20.7 °C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.21, 5.21, 5.21); Calibrated: 7/31/2013

Left Cheek Low/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.664 W/kg

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.222 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.278 W/kgMaximum value of SAR (measured) = 0.550 W/kg

0 dB = 0.550 W/kg = -2.60 dBW/kg

Fig.17 1900 MHz CH512

1900 Body Toward Phantom Middle with GPRS

Date/Time: 12/6/2013 8:44:10 AM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 51.467$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.0°C Liquid Temperature: 19.5 °C

Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013

Towards Phantom Middle/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.748 W/kg

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.520 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.694 W/kg; SAR(10 g) = 0.446 W/kg

Maximum value of SAR (measured) = 0.738 W/kg

0 dB = 0.738 W/kg = -1.32 dBW/kg

Fig. 18 1900 MHz CH661

1900 Body Toward Ground Middle with GPRS

Date/Time: 12/6/2013 8:59:00 AM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 51.467$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.0°C Liquid Temperature: 19.5 °C

Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013

Towards Ground Middle/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.835 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.722 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.499 W/kg

Maximum value of SAR (measured) = 0.807 W/kg

0 dB = 0.807 W/kg = -0.93 dBW/kg

Fig. 19 1900 MHz CH661

Fig. 19-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Toward ground High with GPRS

Date/Time: 12/6/2013 10:47:59 AM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.557 \text{ S/m}$; $\varepsilon_r = 51.434$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.0°C Liquid Temperature: 19.5 °C

Communication System: 4 slot GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013

Towards Ground High/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.813 W/kg

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.836 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.756 W/kg; SAR(10 g) = 0.489 W/kgMaximum value of SAR (measured) = 0.812 W/kg

0 dB = 0.812 W/kg = -0.90 dBW/kg

Fig. 20 1900 MHz CH810

1900 Body Toward Ground Low with GPRS

Date/Time: 12/6/2013 11:02:19 AM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.499$ S/m; $\varepsilon_r = 51.5$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.0°C Liquid Temperature: 19.5 °C

Communication System: 4 slot GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.08018

Probe: ES3DV3 - SN3151 ConvF(4.96, 4.96, 4.96); Calibrated: 7/31/2013

Towards Ground Low/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.824 W/kg

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.863 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.498 W/kg

Maximum value of SAR (measured) = 0.810 W/kg

0 dB = 0.810 W/kg = -0.92 dBW/kg

Fig. 21 1900 MHz CH512

1900 Body Towards Ground Middle with SPEECH

Date/Time: 12/6/2013 11:18:03 AM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 51.467$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.0°C Liquid Temperature: 19.5 °C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013

Towards Ground Speech/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0919 W/kg

Towards Ground Speech/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.298 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.055 W/kgMaximum value of SAR (measured) = 0.0916 W/kg

0 dB = 0.0916 W/kg = -10.38 dBW/kg

Fig. 22 1900 MHz CH810

ANNEX B System Verification Results

835MHz

Date: 11/30/2013

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.883$ S/m; $\varepsilon_r = 41.162$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.4°C Liquid Temperature: 20.9°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13); Calibrated: 7/31/2013

System Validation /Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 2.59 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.240 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (measured) = 2.60 W/kg

0 dB = 2.60 W/kg = 4.15 dBW/kg

Fig.B.1 validation 835MHz 250mW

835MHz

Date: 12/5/2013

Electronics: DAE4 Sn786

Medium: Body 900

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.968$ S/m; $\varepsilon_r = 53.694$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.4°C Liquid Temperature: 20.9°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.1, 6.1, 6.1); Calibrated: 7/31/2013

System Validation /Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 53.566 V/m; Power Drift = -0.02 dB

Maximum value of SAR (interpolated) = 2.67 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 53.566 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.66 W/kg

0 dB = 2.66 W/kg = 4.25 dBW/kg

Fig.B.2 validation 835MHz 250mW

1900MHz

Date: 11/28/2013

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1900 MHz; $\sigma = 1.431 \text{ S/m}$; $\varepsilon_r = 38.648$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.4°C Liquid Temperature: 20.9°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.99, 4.99, 4.99); Calibrated: 7/31/2013

System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 88.972 V/m; Power Drift = 0.09 dB Maximum value of SAR (interpolated) = 11.6 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 88.972 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 19.5 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Fig.B.3 validation 1900MHz 250mW

1900MHz

Date: 12/6/2013

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.552 \text{ S/m}$; $\varepsilon_r = 51.442$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.0°C Liquid Temperature: 19.5°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.83, 4.83, 4.83); Calibrated: 7/31/2013

System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 85.023 V/m; Power Drift = 0.07 dB Maximum value of SAR (interpolated) = 11.7 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 85.023 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg

Fig.B.4validation 1900MHz 250mW

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is sbottomped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

PictureC.5: DASY5 Robot

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 4

Picture C.7 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Lapbottom Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.8-1: Device Holder Kit

Picture C.8-2: Lapbottom Extension

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture C.9: SAM Twin Phantom

The ELI4 phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest standard IEC 62209-2 and all known tissue simulating liquids. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

Picture C.10: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

D.1 General Considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

 W_t Width of the handset at the level of the acoustic

 W_h Width of the bottom of the handset

A Midpoint of the width w_i , of the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4 Test positions for body-worn devices

D.3 Deskbottom device

A typical example of a deskbottom device is a wireless enabled deskbottom computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for deskbottom device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for deskbottom devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Frequency (MHz)	835 Head	835 Body	1900 Head	1900 Body	2450 Head	2450 Body		
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60		
Sugar	56.0	45.0	1	\	\	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18		
Preventol	0.1	0.1	1	\	\	\		
Cellulose	1.0	1.0	1	\	\	\		
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22		
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95		

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation

rubic 1.11. Gyotom vandation								
System No.	Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)			
	3151	Head 850MHz	August. 02, 2013	850 MHz	OK			
	3151	Head 850MHz	August. 02, 2013	900 MHz	OK			
	3151	Head 1800MHz	August. 03, 2013	1800 MHz	OK			
	3151	Head 1900MHz	August. 03, 2013	1900 MHz	OK			
	3151	Head 2000MHz	August. 04, 2013	2000 MHz	OK			
	3151	Head 2100MHz	August. 04, 2013	2100 MHz	OK			
	3151	Head 2450MHz	August. 04, 2013	2450 MHz	OK			
	3151	Head 2550MHz	August. 05, 2013	2550 MHz	OK			
	3151	Head 2600MHz	August. 05, 2013	2600 MHz	OK			
	3151	Body 850MHz	August. 05, 2013	850 MHz	OK			
	3151	Body 850MHz	August. 05, 2013	900 MHz	OK			
	3151	Body 1800MHz	August. 06, 2013	1800 MHz	OK			
	3151	Body 1900MHz	August. 06, 2013	1900 MHz	OK			
	3151	Body 2000MHz	August. 06, 2013	2000 MHz	OK			
	3151	Body 2100MHz	August. 07, 2013	2100 MHz	OK			
	3151	Body 2450MHz	August. 07, 2013	2450 MHz	OK			
	3151	Body 2550MHz	August. 07, 2013	2550 MHz	OK			
	3151	Body 2600MHz	August. 07, 2013	2600 MHz	OK			

ANNEX G Probe Calibration Certificate

Client

TMC(SZ)/CSZIT

Certificate No: J13-2-2313

TMC-CC- 13 -0 2 9-

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3151

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

July 31, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14	
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14	
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14	
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14	
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14	
Reference Probe EX3DV4	SN 3846	20-Dec-12(SPEAG,No.EX3-3846_Dec12)	Dec-13	
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14	
Network Analyzer E5071C	MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14	
- V	Name	Function	Signature	
Calibrated by:	Zhao Jing	SAR Test Engineer	4年1	
Reviewed by: Qi Dianyuan		SAR Project Leader	and I	
Approved by:	Xiao Li	Deputy Director of the laboratory	THE	
		Issued: Augu		
his calibration certificate sh	all not be repro-	fuced except in full without written approval of	of the laboratory	

Certificate No: J13-2-2313

In Collaboration with

e

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossarv:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvE DCP

diode compression point crest factor (1/duty_cycle) of the RF signal CF A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters:

NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor

media. VR is the maximum calibration range expressed in RMS voltage across the diode.

- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Probe ES3DV3

SN: 3151

Calibrated: July 31, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

In Collaboration with

S P e a g

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-6230463-2504 Fax: +86-10-6230463-2504 Fax: +86-10-6230463-2504 Fax: +86-10-62304 Fax: +86-10-6230

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Basic Calibration Parameters

49/61	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	1.15	1.24	1.18	±10.8%
DCP(mV) ⁸	105.4	101.7	102.3	To be a second

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	237.8	±3.0%	
	200	Υ	0.0	0.0	1.0		246.6	
	Z	0.0	0.0	1.0		237.9		

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

AThe uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

In Collaboration with

S P e a g

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.13	6.13	6.13	0.20	2.00	±12%
900	41.5	0.97	6.00	6.00	6.00	0.20	2.18	±12%
1810	40.0	1.40	5.21	5.21	5.21	0.26	2.76	±12%
1900	40.0	1.40	4.99	4.99	4.99	0.28	2.76	±12%
2000	40.0	1.40	4.91	4.91	4.91	0.28	2.75	±12%
2100	39.8	1.49	5.21	5.21	5.21	0.24	3.23	±12%
2450	39.2	1.80	4.55	4.55	4.55	0.40	1.93	±12%
2550	39.1	1.91	4.37	4.37	4.37	0.40	1.89	±12%
2600	39.0	1,96	4.37	4.37	4.37	0.42	1.84	±12%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

In Collaboration with

S P e a g

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.99	6.10	6.10	6.10	0.25	2.07	±12%
900	55.0	1.05	5.96	5.96	5.96	0.27	1.94	±12%
1810	53.3	1.52	4.96	4.96	4.96	0.33	2.35	±12%
1900	53.3	1.52	4.83	4.83	4.83	0.36	2.15	±12%
2000	53.3	1.52	4.79	4.79	4.79	0.31	2.67	±12%
2100	53.2	1.62	4.58	4.58	4.58	0.33	2.57	±12%
2450	52.7	1.95	4.15	4.15	4.15	0.48	1.92	±12%
2550	52.6	2.09	4.03	4.03	4.03	0.51	1.83	±12%
2600	52.5	2.16	3.87	3.87	3.87	0.51	1.85	±12%

 $^{^{\}rm C}$ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. $^{\rm F}$ At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

S p e CALIBRATION LABORATORY

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.emcite.com

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Add: No.52 Hussyuanbei Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

Add: No.52 Huayuanbei Road, Haldian District, Beijing, 100191, China Tel: *86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: J13-2-2313

Page 9 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF) f=1810 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: J13-2-2313

Page 10 of 11

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2504
E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	84.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

ANNEX H Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	STATE OF THE PARTY.
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.62 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1,60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.32 W/kg ± 16.5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.26 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.7 jΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω - 4.4 jΩ
Return Loss	- 26.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.396 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

DASY5 Validation Report for Head TSL

Date: 24.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.185 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

DASY5 Validation Report for Body TSL

Date: 24.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.185 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TMC-SZ (Auden)

Accreditation No.: SCS 108

C

Certificate No: D1900V2-5d088_Oct12

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d088 TMC-CC- 12-03782 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 17, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled	Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12	
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12	
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13	
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13	
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12	
DAE4	SN: 601	27-Jun-12 (No. DAE4-801_Jun12)	Jun-13	
Secondary Standards	ID#	Check Date (in house)	Scheduled	Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house ch	eck: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house ch	eck: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house ch	eck: Oct-13
	Name	Function	Signature	
Calibrated by:	Israe El-Naouq	Laboratory Technician	Irren	El Doone
Annowed by	Kutia Dekoute	Terboled Manager		AND A WINDSTRUMENT

Issued: October 17, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlacher Kalibrierdienst

Service sulsse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF tissue simulating liquid

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	MUNICIPAL PROPERTY
SAR measured	250 mW input power	9.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point		
Return Loss	52.0 Ω + 5.9 jΩ	
	- 24.3 dB	

Antenna Parameters with Body TSL

Impedance tweeters to a		
Impedance, transformed to feed point Return Loss	48.9 Ω + 6.2 jΩ	
	- 24.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	
Cone direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the according to the Standard.

The SAR data are not affected by this change. The overall dipole length is still

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by Manufactured on	SPEAG
	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 17.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.805 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

DASY5 Validation Report for Body TSL

Date: 17.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.805 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.4 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

