Continuous time Markov chains

The Markov property

Definition (Alternative definition of CTMCs)

A continuous-time stochastic process $(X_t)_{t\in[0,\infty)}$ with discrete state space S is a Continuous time Markov chain if for all $t,s\in[0,\infty)$ and all $x\in S$ we have

$$P(X_{t+s} = x \mid \mathcal{F}_t^X) = P(X_{t+s} = x \mid X_t)$$

Moreover, as in the discrete time case, we will only consider time homogeneous cases, that is we always assume that

$$P(X_{t+s} = y \mid X_t = x) = P(X_s = y \mid X_0 = x).$$

Construction 1

• We let $(Y_n)_{n\geq 0}$ be a discrete time Markov chain on a state space S. We denote its transition probabilities by

$$r(i,j) = P(Y_{n+1} = j \mid Y_n = i),$$

with the condition that r(i,i) = 0 for all $i \in S$ (unless i is absorbing).

- 2 Let m = 0 and set $X_0 = Y_0$.
- **3** We spend a time $\tau_m \sim \text{Exp}(\lambda(Y_m))$ in state Y_m , the holding time. We assume that τ_m is independent of $(Y_n)_{n\geq 0}$ and all previous holding times.
- After the holding time τ_m we transition to state Y_{m+1} .
- Repeat from step 3.

Construction 2

7. is - - Exp(9(%)

- Let m = 0 and set $Y_0 = X_0$.
- ② For each $j \in S$ with $r(Y_m, j) > 0$ we consider $\tau_j \sim \text{Exp}(q(i, j))$ where

$$q(i,j) = \underbrace{\frac{\lambda(i)}{m}}_{} \cdot \underbrace{r(i,j)}_{}$$

All exponential random variables are independent of each other and of all previous random variables.

- **3** Let $\tau_m = \min_i \{\tau_i\}$ and let Y_{m+1} be the index of the minimum.
- **1** Move to state Y_{m+1} after a holding time equal to τ_m .
- Repeat from step 2.

Are Constructions 1 and 2 complete?

Costruction 1 has a potential problem: we denote by τ_m , m = 0, 1, 2, ..., the holding time in state Y_m , and define the mth jump time $T_m = \sum_{i=0}^{m-1} \tau_i$. Let

$$T_{\infty} = \lim_{m \to \infty} T_m = \sum_{i=0}^{\infty} \tau_i.$$

- If $T_{\infty} = \infty$ then then the process is defined for all $t \ge 0$.
- If $T_{\infty} < \infty$ then we have an explosion and the process is defined (according to Construction 1) only up to T_{∞} .

Definition

If $P_x(T_\infty < \infty) > 0$ for some $x \in S$ then the CTMC is explosive.

If we want to define the process for all times we have different options:

• we can add a "cemetery state" Δ to S and say $X_t = \Delta$ for all $t \geq T_{\infty}$. This is the **minimal** process because it minimizes $P_x(X_t = y)$ for all $x, y \in S$;

Definition

If $P_x(T_\infty < \infty) > 0$ for some $x \in S$ then the CTMC is explosive.

If we want to define the process for all times we have different options:

• we can consider a distribution v on S and restart the process according to

Definition

If $P_x(T_\infty < \infty) > 0$ for some $x \in S$ then the CTMC is explosive.

If we want to define the process for all times we have different options:

• if the process is also "explosive in reverse," that is it has the capability of coming back from infinity in a finite time, then we use this property;

Definition

If $P_x(T_\infty < \infty) > 0$ for some $x \in S$ then the CTMC is explosive.

If we want to define the process for all times we have different options:

• We can set a sequence of starting states $x_1, x_2, x_3,...$ for consecutive explosions. This choice is no longer Markovian.

When do we have explosions? Preliminary:

Theorem

Let $(u_n)_{n=0}^{\infty}$ be a sequence of independent r.v. with $u_n \sim \text{Exp}(\lambda_n)$. Then

$$P\left(\sum_{n=0}^{\infty} u_n < \infty\right) = 1 \quad \iff \quad \sum_{n=0}^{\infty} \frac{1}{\lambda_n} < \infty \qquad \text{and}$$

$$P\left(\sum_{n=0}^{\infty} u_n < \infty\right) = 0 \quad \iff \quad \sum_{n=0}^{\infty} \frac{1}{\lambda_n} = \infty.$$

By the monotone convergence theorem,

$$\mathbb{E}\left[\sum_{n=0}^{\infty}u_{n}\right] = \sum_{n=0}^{\infty}\mathbb{E}[u_{n}] = \sum_{n=0}^{\infty}\frac{1}{\lambda_{n}}.$$

$$\mathbb{P}\left(\sum_{n=0}^{\infty}U_{n} \in \infty\right) > 0 = \mathbb{P}\left[\sum_{n=0}^{\infty}\frac{1}{\lambda_{n}} = \infty\right]$$

Given the embedded Markov chain $\underline{Y_0, Y_1, \cdots}$, each holding time τ_m is exponentially distributed with mean $\frac{1}{\lambda(y_m)}$, independently on the duration of all other holding times.

Due to the previous preliminary result, given the embedded Markov chain Y_0, Y_1, \dots , with probability 1 an explosion occurs if and only if

$$\sum_{m=0}^{\infty} \frac{1}{\lambda(\gamma_m)} < \infty.$$

$$\mathbb{P}\left(\sum_{m=0}^{+\infty} \gamma_m < \infty\right) = 1$$

Explosions: example 1

Consider a pure birth process, that is a CTMC $(X_t)_{t\in[0,\infty)}$ whose embedded DTMC $(Y_n)_{n=0}^\infty$ is a pure birth chain. Suppose that $\lambda(n)=\kappa n^2$ for some constant $\kappa>0$, and let $X_0=Y_0=1$. Since the embedded chain is deterministic, $Y_m=m+1$ and $\tau_m\sim \text{Exp}(\kappa(m+1)^2)$.

$$\sum_{m=0}^{\infty} \frac{1}{\lambda(y_m)} = \sum_{m=0}^{\infty} \frac{1}{\kappa(m+1)^2} < \infty,$$
the process is explosive.

$$\sum_{m=0}^{\infty} \frac{1}{\lambda(y_m)} = \sum_{m=0}^{\infty} \frac{1}{\kappa(m+1)^2} < \infty,$$

we may conclude that the process is explosive.

Explosions: example 1

Here is a couple of simulations of the process (with $\kappa=1$), up to its 200*th* jump. You can see that the process tends to increase very quickly, and it looks like there is a vertical asymptote.

Note that the explosion time is random, therefore different realization by realization.

Theorem

If the holding rates are bounded, (it exists a constant K > 0 with $\lambda(x) \le K$ for any x), then the CTMC is non-explosive.

Indeed, independently on the embedded DTMC,

$$\lambda(*) \leq k$$

$$\sum_{m=0}^{\infty} \frac{1}{\lambda(\underline{Y_m})} \ge \sum_{m=0}^{\infty} \frac{1}{K} = \infty.$$

Corollary

If the state space is finite, then the CTMC is non-explosive.

If the state space is finite, $K = \max_{x \in S} \lambda(x) < \infty$ The proof is then concluded by the previous proposition.

Theorem

If a CTMC $(X_t)_{t \in [0,\infty)}$ is explosive, then the embedded DTMC is transient.

Proof.

We prove here that if the embedded DTMC $(Y_n)_{n=0}^{\infty}$ is recurrent, then necessarily the CTMC is non explosive. Denote by $Y_0=X_0=x_0$ the initial state. If the embedded DTMC is recurrent, then with probability 1 x_0 is visited infinitely many times. Say that for each $k \geq 0$ we have $Y_{n_k}=x_0$. Hence,

$$\sum_{m=0}^{\infty} \frac{1}{\lambda(Y_m)} \geq \sum_{k=0}^{\infty} \frac{1}{\lambda(Y_{n_k})} = \sum_{k=0}^{\infty} \frac{1}{\lambda(x_0)} = \infty.$$

Hence, the chain cannot be explosive.

November 4, 2024

Explosions: example 2

Consider the CTMC on $S = \{1, 2, 3, ...\}$ with the only positive rates

$$q(x,x+1)=x$$
 if $x \ge 1$ and $q(x,x-1)=x$ if $x \ge 2$.

We have $\lambda(x) = 2x$ if $x \ge 2$, and $\lambda(1) = 1$. Is this CTMC explosive? The rates are not bounded, however if $Y_0 = x_0$ we have

$$Y_n \leq x_0 + n$$
.

Since the $\lambda(x)$ are non-decreasing in x, it follows that

$$\lambda(Y_n) \leq \lambda(x_0 + n) \leq 2(x_0 + n).$$

Therefore,

$$\sum_{n=0}^{\infty} \frac{1}{\lambda(Y_n)} \ge \sum_{n=0}^{\infty} \frac{1}{2(x_0 + n)} = \infty,$$

which implies that the chain does not explode.

Transition probabilities

In the context of discrete time Markov chains, we defined the *n*-step transition probabilities $p^{(n)}(x,y)$. Similarly, we define the *transition probability* for a continuous time Markov chain as

$$p_t(x,y) = P(X_t = y | X_0 = x).$$

$$\begin{cases} \xi \in \mathbb{R} \\ \xi \in 1.3\sqrt{2} \\ \xi \in 5.\pi \end{cases}$$

We still have the analogue of the DT Chapman-Kolmogorov equation

Theorem (Chapman-Kolmogorov)

Consider a continuous time Markov chain $(X_t)_{t\geq 0}$. Then, for any real s,t>0

$$p_{s+t}(x,y) = \sum_{k \in S} p_s(x,k) p_t(k,y).$$

D. Cappelletti Processi Stocastici November 4, 2024

Transition probabilities and transition rates

Transition probabilities

The structure of the proof is exactly the same as in the discrete time case. We have

Problem Poster (x, y)
$$P(X_{s+t} = y | X_0 = x) \stackrel{\checkmark}{=} \sum_{k \in S} P(X_{s+t} = y | X_s = k, X_0 = x) P(X_s = k | X_0 = x)$$

$$= \sum_{k \in S} P(X_{s+t} = y | X_s = k) P(X_s = k | X_0 = x) \text{ (by Markov problem)}$$

$$= \sum_{k \in S} P(X_t = y | X_0 = k) P(X_s = k | X_0 = x) \text{ (by homogeneit)}$$

$$= \sum_{k \in S} P(X_t = y | X_0 = k) P(X_s = k | X_0 = x) \text{ (by homogeneit)}$$

$$= \sum_{k \in S} P(X_t = y | X_0 = k) P(X_t = k | X_0 = x) \text{ (by homogeneit)}$$

$$P_{s+e} = P_s \cdot P_e$$

$$P_{s+e} (*,y) = P_{s+e} (*,y) = \sum_{k \in S} P_s (*,k) \cdot P_e (k,y) = (P_s \cdot P_e) (*,y)$$

D. Cappelletti Processi Stocastici November 4, 2024

Let $\tau(x)$ be a holding time in state x. We know that $\overline{\tau(x)} \sim \text{Exp}(\lambda(x))$. Consider a small interval of time [0,h]. Given that $X_0 = x$, the probability that a jump occurs in [0,h] is

$$P(\tau(x) < h) = 1 - e^{-\lambda(x)h} = \chi - \left(\chi - \lambda(x)h + \frac{(\lambda(x)h)^2}{2} + \dots\right) = \lambda(x)h + O(h^2)$$

From the above calculation, in particular we have

$$\lim_{h\to 0}\frac{P(\tau(x)< h)}{h}=\lambda(x)+\lim_{h\to 0}O(h)=\lambda(x).$$

The probability of two or more jumps in [0, h] is $O(h^2)$. Here is why: let Y_0 and Y_1 denote the initial and the second visited states of the chain, respectively:

$$P(2 \text{ or more jumps in}[0,h]|Y_0=x,Y_1=y) = P(\tau(x)+\tau(y)< h)$$

$$\leq P(\tau(x)

$$= P(\tau(x)

$$= \lambda(x)\lambda(y)h^2+O(h^3)=O(h^2)$$$$$$

$$P(2 \text{ or more jumps in}[0,h]|Y_0 = x) = \sum_{y \in S} P(2 \text{ or more jumps in}[0,h]|Y_0 = x, Y_1 = y) \cdot P(Y_1 = y|Y_0 = x)$$

$$= \sum_{y \in S} O(h^2)P(Y_1 = y|Y_0 = x) = O(h^2)$$

The last equality holds due to the dominated convergence theorem.

D. Cappelletti Processi Stocastici November 4, 2024

How many jumps in [0, h] with h small

Take home message: the probability of one jump in one interval [0, h] goes to zero as h. The probability of two or more jumps in [0, h] goes to zero as h^2 .

Theorem

For any $i, j \in S$ (potentially i = j) we have

$$P_{t}^{-1}(i,j) = \frac{dp_{t}(i,j)}{dt}(0) = \lim_{h \to 0} \frac{p_{h}(i,j) - p_{0}(i,j)}{h} = q(i,j).$$

$$q(i,i) = -\lambda(i) = -\sum_{j \neq i} q(i,j)$$

November 4, 2024

Proof.

If
$$x \neq y$$
,

$$\frac{dP(x,y)}{dt} = \lim_{h \to 0} \frac{p_h(x,y) - p_0(x,y)}{h} = \lim_{h \to 0} \frac{p_h(x,y)}{h} = \lim_{h \to 0} \frac{P(X_h = y | Y_0 = X_0 = x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{P(X_h = y, \text{only one jump in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x}{h}\right)$$

$$= \lim_{h \to 0} \left(\frac{P(x_h = y, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x}{h}\right)$$

Proof.

If
$$x = y$$
,
$$\lim_{h \to 0} \frac{p_h(x,x) - p_0(x,x)}{h} = \lim_{h \to 0} \frac{p_h(x,x) - 1}{h} = \lim_{h \to 0} \frac{P(X_h = x | Y_0 = X_0 = x) - 1}{h}$$

$$= \lim_{h \to 0} \left(\frac{P(X_h = x, \text{no jumps in } [0,h] | Y_0 = X_0 = x) - 1}{h} + \frac{P(X_h = x, \text{two or more jumps in } [0,h] | Y_0 = X_0 = x)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{P(\tau(x) > h | Y_0 = X_0 = x) - 1}{h} + \frac{O(h^2)}{h} \right)$$

$$= -\lambda(x) = q(x,x).$$

$$P(\tau(x) > \lambda) - 1 = x - P(\tau(x) < \lambda) - x \rightarrow -\lambda(x)$$

Kolmogorov's equations (from trans. rates to trans. probs.)

If *S* is finite, the transition probabilities $p_t(x,y)$ form a finite matrix that we denote P_t . Remember that $Q = P'_0$ (component-wise) and that by the Ch-K eqns. $P_{t+h} = P_t P_h = P_h P_t$. Therefore

$$P'_{t} = \lim_{h \to 0} \frac{P_{t}P_{h} - P_{t}}{h} = P_{t} \cdot \lim_{h \to 0} \frac{P_{h} - I}{h} = P_{t}Q \implies \underline{P'_{t}} = P_{t}Q$$

$$P'_{t} = \lim_{h \to 0} \frac{P_{h}P_{t} - P_{t}}{h} = \lim_{h \to 0} \frac{P_{h} - I}{h}P_{t} = QP_{t} \implies P'_{t} = QP_{t}$$

that are called *forward* and *backword* Kolmogorov eqns. In components they read

$$\begin{aligned} p_t'(x,y) &= \sum_{k \neq y} p_t(x,k) \underline{q(k,y)} - p_t(x,y) \underline{\lambda(y)} \\ p_t'(x,y) &= \sum_{k \neq x} q(x,k) p_t(k,y) - \lambda(x) p_t(x,y) \end{aligned}$$

Kolmogorov's equations (from trans. rates to trans. probs.)

- If *S* is infinite, but the chain is non explosive the equations in components are still valid and the series there appearing are convergent.
- In the explosive case, however, the backward equation still follows from the Ch-K eqns, but the solution is no longer unique and care has to be taken
- In the explosive case, moreover, the forward equation are not valid to describe $p_t(x, y)$ any more and the series there appearing might not converge.

Explosive chains are treated in details in Chung, *Markov Chains with Stationary Transition Probabilities*, Springer 1967. Whenever we apply the Kolmogorov eqns. (specially the forward one) we assume the non-explosivity of our chain.

Kolmogorov's equations (from trans. rates to trans. probs.)

We focus on Kolmogorov's backward eqn: $P_t' = QP_t$. In dimension 1 it reads $p_t' = qp_t$ with q a constant. We have the solution $p_t = p_0 e^{qt}$. Something similar happens in higher dimension: we can define the *exponential matrix*

$$e^{Qt} = \sum_{k=0}^{\infty} t^k \frac{Q^k}{k!},$$

where $Q^0 = I$. We have that $e^{Q0} = I = P_0$.

Theorem

Let $(X_t)_{t\in[0,\infty)}$ be a non-explosive CTMC. Then, for any $t\geq 0$

$$P_t = e^{Qt}$$
.

Techniques are available to calculate e^{Qt} as a function of t, most symbolic computation software can do that for finite matrices.

Connectivity of CTMCs

Irreducibility

Definition

A CTMC is irreducible if for all $i, j \in S$ there exists t > 0 such that $p_t(i, j) > 0$.

Theorem

A non-explosive CTMC is irreducible if and only if so is the embedded DTMC.

Proof.

By definition of embedded DTMC.

The explosive case

Consider the explosive pure birth CTMC with state space $S = \{1,2,3,...\}$ discussed in the past lecture: $B \in \mathbb{R}^2$

$$q(i, i+1) = i^2$$
 for all $i \in S$ and $q(i, j) = 0$ otherwise.

As a rule, set $X_{T_{\infty}} = 1$ at all explosion times.

e DTHC 1 2 3 4 4

$$Y_0, Y_1, Y_2, \dots = \pm, 2, 3, 4, 5, \dots$$

DET.

NOT IRREDUCIBLE!

Aperiodicity

For CTMCs the notion of periodicity does not exist! We have

Lemma

If X_t is irreducible, then $p_t(i,j) > 0$ for any states i,j (potentially i = j) and for any t > 0.

Proof.

Assume the CTMC is non-explosive. Let $i=i_0,i_1,i_2,\ldots,i_{k-1},j=i_k$ be a sequence of states with $r(i_n,i_{n+1})>0$, $0\leq n\leq k-1$. Let $\tau_n\sim \exp(\lambda(i_n))$. Then

$$p_t(i,j) \geq \left(\prod_{n=0}^{k-1} P\left(\tau_n < \frac{t}{k}\right) r(i_n, i_{n+1})\right) P(\tau_k > t) > 0$$

Similarly for the general case: exponentials can be as short as we need (formal details in the course material). \Box

Stationary distributions

Stationary distributions and measures

Let $(X_t)_{t=0}^{\infty}$ be a CTMC. We say that π is a stationary distribution if it is a probability distribution, and if for all $j \in S$ and all $t \ge 0$.

P(
$$X_t = j \mid X_0 \sim \pi$$
) =
$$\sum_{i \in S} \pi(i) p_t(i,j) = \underline{\pi(j)}$$

Theorem

Let $(X_t)_{t=0}^{\infty}$ be a **non-explosive** CTMC. Then, π is a stationary distribution if and only if $\pi Q = 0$ and π sums up to 1.

Indeed, if $\underline{\pi}$ is stationary, $\pi = \pi P_t$. Taking derivative we have $\pi P_t' = 0$ and applying the forward Kolmogorov eqn. we conclude

$$\pi P_t' = \underbrace{\pi P_t}_{\pi} Q = \pi Q = 0.$$

LIMITI

We skipped the necessary technical details requires if S is infinite, but the result still holds.

On the other hand we have $\pi P_t' = \pi Q P_t$ by the backward eqn. If $\pi Q = 0$, then $\pi P_t' = 0$. Therefore πP_t is constant and $\pi P_t = \pi P_0 = \pi$

Finite irreducible chains

For a finite irreducible chain we can find a stationary distribution if we can solve the linear system

$$\begin{cases} \pi Q = 0 \\ \pi \cdot e = 1 \end{cases} \qquad \mathcal{C} = \begin{pmatrix} \hat{i} \\ \hat{i} \\ \hat{j} \end{pmatrix}$$

Where e is a vector whose length is the same as that of π (the cardinality of S) and all entries are 1.

Example

Then, assume that the transition rate matrix is

$$Q = \left[\begin{array}{rrr} -1/3 & 1/3 & 0 \\ 0 & -1/4 & 1/4 \\ 1 & 0 & -1 \end{array} \right]$$

Then, we can find the stationary distribution by solving $\pi Q=0$, with the additional constraint that π sums to 1. No matter the strategy we use, in this case we obtain

$$\pi=\left(\frac{3}{8},\frac{1}{2},\frac{1}{8}\right).$$

Cosider a two state CTMC with transition rate matrix

$$Q = \begin{pmatrix} -\alpha & \alpha \\ \beta & -\beta \end{pmatrix}$$

EXERCISE!

with $\alpha, \beta \geq 0$ and $\alpha + \beta > 0$. Then, $\pi = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$ is a stationary distribution of the CTMC. The corresponding embedded DTMC has transition matrix

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and its stationary distribution is $\tilde{\pi} = \left(\frac{1}{2}, \frac{1}{2}\right)$. Certainly the two differ. Is there any connections in general?

Theorem

Consider a CTMC with no absorbing states. Then μ is a stationary measure of the embedded DTMC if and only if γ , defined entry-wise by

$$\gamma(j) = \frac{\mu(j)}{\lambda(j)},$$
 Holding PATE

(where $\lambda(j)$ is as usual the rate of the holding time in j), satisfies $\gamma Q = 0$.

Proof.

Since there are no absorbing states, r(j,j) = 0 for all j. μ is a stationary measure of the embedded chain iff $\mu P = \mu$, iff (since $\mu(j) = \gamma(j)\lambda(j)$),

$$(\mu P)(j) = \sum_{i \neq j} \underline{\gamma(i)\lambda(i)} r(i,j) = \gamma(j)\lambda(j) = \mu(j)$$

for all $j \in S$. Using that $r(i,j) = q(i,j)/\lambda(i)$ we have that stationarity of μ is equivalent to

$$\sum_{i\neq j} \gamma(i)q(i,j) = \gamma(j) \underbrace{\lambda(j)}_{-Q(j,j)}$$

for all $j \in S$ and, the latter can be rewritten as

$$(\mathbf{V} \cdot \mathbf{Q})(\mathbf{j}) = \left(\sum_{i \neq j} \gamma(i) Q(i,j)\right) + \gamma(j) Q(j,j) = 0$$

and it holds for any $j \in S$ if and only if $\gamma Q = 0$, concluding the proof.

D. Cappelletti Processi Stocastici November 4, 2024

Why is the previous theorem important?

If the CTMC is non-explosive and $\sum \gamma(i)$ is finite, then we can normalize γ to get a stationary distribution! We can also go in the opposite direction and calculate the stationary distributions (if any!) of the embedded DTMC from those of the CTMC.

Example

Consider again the 2-state CTMC with transition rate matrix

$$Q = \begin{pmatrix} -\alpha & \alpha \\ \beta & -\beta \end{pmatrix}$$

The stationary distribution of the embedded DTMC is $\tilde{\pi}=\left(\frac{1}{2},\frac{1}{2}\right)$. How can we find the stationary distr. of the CTMC, without solving $\pi Q=0$? Define

$$\gamma = \left(\frac{\tilde{\pi}(1)}{\lambda(1)}, \frac{\tilde{\pi}(2)}{\lambda(2)}\right) = \left(\frac{1}{2\alpha}, \frac{1}{2\beta}\right).$$

We know that $\gamma Q = 0$. However, γ is not a distribution. Define

 $M=\gamma(1)+\gamma(2)=rac{lpha+eta}{2lphaeta}$ and let $\pi=rac{1}{M}\gamma=\left(rac{eta}{lpha+eta},rac{lpha}{lpha+eta}
ight)$. Then, π is a stationary distribution for the CTMC since $\pi Q=0$ and $\pi(1)+\pi(2)=1$ and the chain is not explosive.

Corollary

An irreducible CTMC with finitely many states has a **unique** stationary distribution π . Moreover, for every state j we have $\pi(j) > 0$.

The embedded DTMC is irreducible and has finitely many states. Hence, it has a *unique* stationary distribution $\tilde{\pi}$. Moreover, $\tilde{\pi}(j) > 0$ for any j. We first show that π exists and then that is it unique:

Existence: consider the vector γ defined by $\gamma(j) = \frac{\tilde{\pi}(j)}{\lambda(j)}$ for all j. Then we know that $\gamma Q = 0$. Moreover, $\sum_j \gamma(j) = M < \infty$ because the state space is finite. Hence, $\pi = \frac{1}{M} \gamma$ satisfies

$$\pi Q = \frac{1}{M} \gamma Q = 0$$
 and $\sum_{j} \pi(j) = \frac{1}{M} \sum_{j} \gamma(j) = 1$.

Hence, since the continuous time Markov chain is finite and therefore non-explosive, π is a stationary distribution of the continuous time Markov chain. Moreover, for any state j

$$\pi(j) = \frac{1}{M}\gamma(j) = \frac{\mu(j)}{M\lambda(j)} > 0.$$

Uniqueness: Let π and π' be two stationary distributions of the continuous time Markov chain. We want to prove that necessarily $\pi=\pi'$. Let

$$C = \sum_j \pi(j) \lambda(j)$$
 and $C' = \sum_j \pi'(j) \lambda(j)$

Since $\tilde{\pi}$ is unique, we have that for any state j

$$ilde{\pi}(j) = rac{\pi(j)\lambda(j)}{C} = rac{\pi'(j)\lambda(j)}{C'},$$

which implies that for any state j, $\pi(j) = \frac{C'}{C}\pi'(j)$. If are able to show that C'/C = 1 we are done. But this follows from

$$1 = \sum_{j} \pi(j) = \sum_{j} \frac{C'}{C} \pi'(j) = \frac{C'}{C} \sum_{j} \pi'(j) = \frac{C'}{C}$$

so the proof is concluded.