TD 5 bis

Théorèmes d'inversion locale et des fonctions implicites

Exercice 1 - TFI => TIL.

On suppose que le théorème des fonctions implicites est vrai. Soit f définie sur un ouvert U d'un espace de Banach E et à valeur dans F, espace de Banach telle que f soit de classe C^1 et telle qu'il existe $a \in U$ tel que df(a) soit un isomorphisme. On note b = f(a).

- a) Vérifier que les hypothèses du théorème des fonctions implicites s'appliquent à la fonction $\Phi: U \times F \to F$ définie par $\Phi(x, y) = y f(x)$.
- b) En déduire l'existence de voisinages de a et de b et de f^{-1} définie sur un de ces voisinages.
- c) Conclure.

Exercice 2 - TIL=>TFI.

On suppose que le théorème d'inversion locale est vrai. On se donne trois espaces de Banach E, F, G et on considère f définie sur un ouvert U de $E \times F$ à valeur dans G et de classe C^1 . On suppose qu'il existe $(a,b) \in U$ vérifiant f(a,b) = 0 et tel que la différentielle partielle par rapport à y en (a,b) c'est-à-dire $d_y f(a,b)$ soit un isomorphime.

- a) Montrer que la fonction $\Psi: U \to E \times G$ définie par $\Psi(x,y) = (x,f(x,y))$ est de classe \mathcal{C}^1 et calculer sa différentielle.
- b) Vérifier que cette différentielle est inversible en (a, b), montrer en utilisant le théorème d'inversion locale que Ψ est un \mathcal{C}^1 -difféomorphisme sur des espaces que l'on précisera.
- c) Reprendre les questions précédentes dans le cas où $E=\mathbb{R}^n$ et $F=G=\mathbb{R}^p$
- **d)** En remarquant que l'on peut écrire $\Psi^{-1}(x,z)$ sous la forme(x,q(x,z)), conclure.

Exercice 3 – Inversion globale. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 telle que pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$, on ait $||f(x) - f(y)|| \ge k||x - y||$ avec k > 0 constante.

- a) Montrer que f est injective.
- **b)** Montre $f(\mathbb{R}^n)$ est fermé.
- c) Montrer que df(x) est inversible pour tout x.
- d) Conclure.
- **e)** Application à $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (\sin(\frac{y}{2}) x, \sin(\frac{x}{2}) y)$. On prendra la norme $\|\cdot\|_1$.

Exercice 4 – Inversion globale. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y, y/x, z/x).

- a) Trouver un ouvert U de \mathbb{R}^3 sur lequel f est différentiable. Calculer sa différentielle.
- **b)** Soit $V = \{(x, y, z) \in \mathbb{R}^3 / x > 0, x + y > 0\}$. f est-elle un \mathcal{C}^1 -difféomorphisme de V sur f(V)?

Exercice 5 – Inversion. Soit H un espace de Hilbert de dimension fini, muni d'un produit scalaire euclidien $\langle \cdot, \cdot \rangle$ et de la norme associée $\| \cdot \|$ et soit $f: H \to H$ une application différentiable. On suppose qu'il existe 0 < k < 1 tel que l'application $\phi: H \to H$ définie par $\phi(x) = f(x) - x$ soit k-lipschitzienne.

- a) Montrer que f est injective.
- **b)** Montrer que $\forall x \in H, ||d\phi(x)|| \leq k$.
- c) En déduire que $\forall x \in H$, df(x) est inversible.
- **d)** Montrer que pour tout x de H, on a

$$(1-k)||x|| - ||f(0)|| \le ||f(x)||$$

- e) On fixe $y \in H$ et on définit $h(x) = ||f(x) y||^2$. Soit $m = \inf\{h(x) \mid x \in H\}$. Déduire de la question précédente qu'il existe $z \in H$ tel que m = h(z).
- f) Montrer que la différentielle de h en z est nulle.
- **g)** En déduire que m=0.
- **h)** Que peut-on conclure sur f?
- i) Quelle est la conclusion dans le cas où f est de classe \mathcal{C}^1

Exercice 6 – Immersion. Soient U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^p$ une application de classe C^1 . On suppose qu'en un point a de U la différentielle Df(a) est une application linéaire *injective* de \mathbb{R}^n dans \mathbb{R}^p (donc $n \leq p$).

a) Montrer qu'après permutation des coordonnées de \mathbb{R}^p (si nécessaire), les relations

$$\begin{cases} y_i = f_i(Y_1, ..., Y_n) & si \ 1 \leqslant i \leqslant n \\ y_i = f_i(Y_1, ..., Y_n) + Y_i & si \ n+1 \leqslant i \leqslant p \end{cases}$$

définissent un changement de coordonnées locales $y \mapsto Y$ sur l'espace d'arrivée \mathbb{R}^p .

b) Montrer que f admet (localment) un inverse à gauche, i.e une application g de classe C^1 telle que g(f(x)) = x.