Залание 11-2. Миг невесомости

Рассмотрим механическую систему, образованную из тонкого гладкого проволочного кольца массой M, стоящего на горизонтальной плоскости (Рис. 1), и двух небольших одинаковых бусинок массой m каждая, насаженных на него. Бусинки могут скользить по кольцу без трения.

В начальный момент времени бусинки находятся вблизи верхней точки кольца (см. Рис. 1), а затем их одновременно отпускают без начальной скорости. Далее бусинки симметрично скользят по кольцу без трения, не опрокидывая его, разъезжаются, удаляясь друг от друга, и одновременно съезжаются в нижней точке кольца.

Будем характеризовать положение каждой бусинки на кольце углом α , образуемым текущим радиусом кольца с вертикалью (Рис. 2). Угол α измеряется в радианах (рад) и при скольжении каждой бусинки изменяется в пределах $0 \le \alpha \le \pi$.

Динамометр G, вмонтированный в горизонтальную плоскость под кольцом (см. Рис. 2), измеряет зависимость веса $P(\alpha)$ всей механической системы от угла α при скольжении бусинок по кольцу.

Сопротивлением воздуха при движении бусинок пренебречь. Ускорение свободного падения $g = 9.81 \, \text{m/c}^2$.

Часть 1. Общая теория

В первой части задачи Вам необходимо вывести формулы для расчёта различных физических параметров системы (силы реакции \vec{N} кольца (Рис. 3), её вертикальной проекции N_y , и т.д.) от угла α . $\vec{N}_{y_1\cdots y_n}\vec{N}$

- **1.1** Получите зависимость модуля силы реакции кольца $N(\alpha) = |\vec{N}(\alpha)|$, действующей на бусинку, от угла α .
- **1.2** Найдите угол α_1 при котором сила реакции кольца $N(\alpha)$, становится равной нулю, т.е. бусинка не давит на кольцо.
- **1.3** Разложите силу реакции \vec{N} кольца на вертикальный и горизонтальный компоненты вдоль стандартных (декартовых осей) $\vec{N} = \vec{N}_y + \vec{N}_x$. Найдите зависимость вертикальной проекции $N_v(\alpha)$ силы реакции кольца от угла α .
- **1.4** Введём понятие приведенной вертикальной проекции N_y^* силы реакции кольца, как функции $N_y^*(\alpha) = N_y(\alpha)/mg$. На выданном бланке постройте график зависимости $N_y^*(\alpha)$ в интервале
- $0 \le \alpha \le \pi$ с шагом по углу h = 0.05 рад.
- **1.5** Выделите характерные этапы и точки построенного графика $N_y^*(\alpha)$ и кратко их прокомментируйте с физической точки зрения.

Часть 2. Работа с графиком

Во второй части задачи Вам предстоит самое сложное — применить формулы, выведенные в первой части задачи, для «расшифровки» графика, полученного с использованием встроенного динамометра G

11 класс. Теоретический тур. Вариант I.

(см. Рис. 2) при движении бусинок.

На графике (Рис. 4) представлена зависимость приведенного веса $P^*(\alpha) = P(\alpha)/m_0 g$ всей механической системы от угла α в некотором диапазоне, где постоянная $m_0 = 10$ г . При этом шкала делений по оси абсцисс отсутствует.

- **2.1** Используя данные графика (см. Рис. 4), найдите массы бусинки m и кольца M.
- **2.2** Вычислите максимальный вес P_{max} системы в процессе движения бусинок. При каком значении угла α_5 он достигается?
- 2.3 Восстановите численные значения по оси абсцисс.