Calc in 3d Notes

$saffron_{\scriptscriptstyle{-}}$

Contents

Chapter 2: Vectors in Space	2
Chapter 3: Vector-Valued Functions	4
Chapter 4: Differentiation	5
Appendix	8

Chapter 2: Vectors in Space

Graphing

convention

sphere:
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 9$$

The Vector

- a quantity with a magnitude and direction
- unit vector $\hat{u} = \frac{\vec{v}}{\|\vec{v}\|}$

Vector Operations

• Addition

$$- \vec{a} = \langle 1, 2 \rangle, \vec{b} = \langle 3, 4 \rangle$$
$$- \vec{a} + \vec{b} = \langle 4, 6 \rangle$$

• Dot Product (also 2d!)

- geom.:

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

$$\vec{u} = \langle u_1, u_2, u_3 \rangle, \ \vec{v} = \langle v_1, v_2, v_3 \rangle$$

 $\vec{u} \cdot \vec{v} = \sum u_i v_i$

$$- \vec{v} \cdot \vec{v} = \|\vec{v}\|^2$$

- two vectors are orthogonal aka \perp iff their dot product is 0

$$-\cos\theta = \frac{\vec{u}\cdot\vec{v}}{\|u\|\,\|v\|} \text{ wtf is equation } 2.5$$
 "unique over this range" on abt

"unique over this rang

$$- \text{ work} = \vec{F} \cdot \vec{D}$$

- comp (scalar projection)

$$\begin{aligned} \operatorname{comp}_{\vec{u}} \vec{v} &= \|\vec{v}\| \cos \theta \\ &= \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|} \end{aligned}$$

proj (vector projection)

$$\operatorname{proj}_{\vec{u}} \vec{v} = \operatorname{comp}_{\vec{u}} \vec{v} \cdot \frac{\vec{u}}{\|\vec{u}\|}$$
$$= \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2} \vec{u}$$

• Scalar Multiplication

$$-\vec{v} = \langle 1, 3 \rangle, \, c = 2$$

 $-c\vec{v} = \langle 2, 6 \rangle$

simple inverses for subtraction and scalar division exist.

• Cross Product (3d)

- geom.:

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

- alg.

$$- \vec{u} \times \vec{v} = \det \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

- result is \perp to both input vectors, direction by right hand rule

- triple scalar product:

$$\vec{u} \cdot (\vec{v} \times \vec{w})$$

$$= (\vec{u} \times \vec{v}) \cdot \vec{w}$$

$$= \det \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

- if \vec{u} and \vec{v} are the sides of a parallelogram, then its area is $\|\vec{u} \times \vec{v}\|$

- if a parallelepiped has edges $\vec{u}, \vec{v}, \vec{w}$, its volume is the absolute value of its triple scalar product

$$- torque = \vec{\tau} = \vec{r} \times \vec{F}$$

Lines

(1) Vector Equation Form

$$\vec{r} = \vec{r_0} + t\vec{v}$$
 eg $\langle x, y, z \rangle = \langle 1, 2, -5 \rangle + t \langle 3, -4, -1 \rangle$

(2) Parametric Equation Form

$$x = 1 + 3t$$
$$y = 2 - 4t$$
$$z = -5 - t$$

(3) Symmetric Equation Form solve for t

$$\frac{x-1}{3} = \frac{y-2}{-4} = \frac{z+5}{-1}$$

(4) Edge Case: 0-component

Let a line be defined by the point and vector (1, -2, 6) and (3, 7, 0). We say the line is:

$$\frac{x-1}{3} = \frac{y+2}{7}, z = 6$$

• point to line distance: use paralleogram area trick

Planes

(1) Vector Equation Form

$$(\vec{r} - \vec{r_0}) \cdot \vec{n} = 0$$

eg $(\langle x, y, z \rangle - \langle 1, 0, 1 \rangle) \cdot \langle 1, 2, -3 \rangle = 0$

(2) Scalar Equation, "General" Form

$$ax + by + cz + d = 0$$

- \bullet point to plane distance: use $\operatorname{comp}_{\vec{u}} \vec{v}$ trick
- angle between planes: same as angle between their normal vectors

Quadric Surfaces

- cylinder: 3d shape consisting of all parallel lines (eg $y = 3x^2$)
- see quadric_surfaces.pdf

Chapter 3: Vector-Valued Functions

Vector-Valued Function

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle, i < t < j$$

Unit Circle Parameterization temp

Limits of VVFs

- pass them into the vec. pretty intuitive
- a VVF $\vec{r}(a)$ is cont. at a iff $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$ (and both are defined)

Calc with VVFs

- derivatives are intuitive. use the corresponding dot/cross/scalar in deriving $\vec{u} \cdot \vec{v}$
- unit tangent vector is the derivative's unit vector
- integrals are intuitive. consider constant vector C instead of scalar constant

Consult exam 1 cheatsheet for notes on the rest of the chapter

Chapter 4: Differentiation

Functions of Multiple Variables

- domain: analyze what values are invalid
- range: image of domain
- level planes/level surfaces/contour maps: setting the function to some constant and drawing out the resulting shape

Limits and Continuity

- limit rules are identical to 2d, including
- limits must be unique. ie, the δ disk around a point must only contain one value. (disprove limit by finding different values through different "paths" to the limit)
- as in 2d, f(x,y) is continuous at (a,b) iff

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

with both defined.

• sum, product, comp of cont functions: cont

Partial Derivatives

- slope of line in a direction, at a point
- Limit definition:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

• four second order partials exist

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = f_{xx}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = f_{yx}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = f_{xy}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = f_{yy}$$

• Clairaut's Thrm: if f_{xy} and f_{yx} are cont near a point, they are equal

Tangent Planes

- if all tangent lines to a point are in the same plane, call that the tangent plane
 - (not true if there is a point)
 - maybe theres a correlation somewhere with differentiability? (p393)
- the tangent plane to z = f(x, y) at (a, b) is

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

- find an approx at (a, b) via the linear approximation plane L(x, y) = RHS (above)
- a function is differentiable at (a, b) iff

$$f(x,y) = RHS + E(x,y)$$

where the error term E satisfies

$$\lim_{(x,y)\to(a,b)} \frac{E(x,y)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0.$$

alternatively, if f, f_x , and f_y exist near (a,b) and are cont. at (a,b), then f is differentiable there.

• let z = f(x, y) with (a, b) in the domain of f, and let Δx and Δy be chosen such that $(a + \Delta x, b + \Delta y)$ is also in the domain of f.

$$dx = \Delta x$$

$$dy = \Delta y$$

$$dz = f_x(a, b)dx + f_y(a, b)dy.$$

dx and dy are differentials, dz the "total differential," and we estimate error with it. notice the similarity to the tangent plane equation.

The Chain Rule

• consider

$$w = f(x, y, z)$$
$$x = x(t, u, v)$$
$$y = y(t, u, v)$$
$$z = z(t, u, v)$$

then,

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial w} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$$

others are left as an exercise to the reader.

Implicit Differentiation

• consider $x^2 + 3y^2 + 4y - 4 = 0$. to find $\frac{dy}{dx}$, we may implicitly differentiate this by taking $\frac{d}{dx}$ of both sides and solving. but we may also define

$$f(x,y) = x^2 + 3y^2 + 4y - 4, f(x,y) = 0.$$

with this in mind, suppose f(x,y) = 0. then,

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

and if f(x, y, z) = 0,

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z}, \frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}.$$

these can be derived from the chain rule.

Directional Derivatives and the Gradient

• the directional derivative of f(x, y) in the direction $\hat{u} = \langle \cos \theta, \sin \theta \rangle$ is

$$D_{\hat{u}}f(a,b) = \lim_{h \to 0} \frac{f(a+h\cos\theta, b+h\sin\theta) - f(a,b)}{h}$$

alternatively, if the partials exist,

$$D_{\hat{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$$
$$= \langle f_x(x,y), f_y(x,y) \rangle \cdot \hat{u}$$
$$= \nabla f(x,y) \cdot \hat{u}.$$

- $\nabla f(x,y)$ is called the gradient and points toward the greatest increase of a function. it's perpendicular to the graph's level curves (if the partials are cont. near the points)
- suppose z = f(x, y) diffbl at (a, b).
 - if $\nabla f(a,b) = \vec{0}$, then $D_{\hat{u}}f(a,b) = 0$ for any \hat{u}
 - if $\nabla f(a,b) \neq \vec{0}$, then $D_{\hat{u}}f(a,b)$ is max when \hat{u} is in the same direction as $\nabla f(a,b)$.

max of
$$D_{\hat{u}}f(a,b)$$
 is $\|\nabla f(a,b)\|$

- if $\nabla f(a,b) \neq \vec{0}$, then $D_{\hat{u}}f(a,b)$ is min when \hat{u} is in the opposite direction as $\nabla f(a,b)$.

min of
$$D_{\hat{u}}f(a,b)$$
 is $-\|\nabla f(a,b)\|$

• yes, these work for multivar funcs.

TODO do example 4.34-5 on page 429 and onwards

Finding Maxima/Minima

- like 2d, critical points (a, b) exist iff
 - $-f_x(a,b) = f_y(a,b) = 0$
 - or the partials there don't exist
- local extrema are crit points
- Second Derivative Test (for 3d calc) let z = f(x, y) where the first and second order partials are cont near a point (a, b)

$$D = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^{2}$$

- -D > 0 and $f_{xx}(a,b) > 0$
 - $\Rightarrow f$ has a local min at (a, b)
- -D > 0 and $f_{xx}(a,b) < 0$
 - $\Rightarrow f$ has a local max at (a, b)
- -D < 0
 - $\Rightarrow f$ has a saddle point at (a, b)
- -D = 0
 - \Rightarrow the test is inconclusive
- to find local extrema:
 - 1. find crit points. discard if a partial DNE
 - 2. find discriminant D for each point
 - 3. apply 2nd derivative test
- Extreme Value Theorem
 - a cont function on a closed and bounded set has an abs min and abs max in the set
- the abs max and abs min will be either at a critical point or on a boundry
- to analyze the boundry, consider parameterizing line segments/ellipses or using Lagrange multipliers

Lagrange Multipliers

- Theory: consider an objective function and a constraint function. when they are tangent, their gradients must be in the same direction. so, we say they are different by λ, the Lagrange multiplier.
- Let f(x,y) and g(x,y) have cont partials along g(x,y)=0. if f has a local extrema on g(x,y)=0 at (a,b) and $\nabla g(a,b)\neq 0$, then

$$\nabla f(a,b) = \lambda \nabla g(a,b)$$

- to use λ (yes, f and g may be fin of 3 vars):
 - 1. find the objective function f(x,y), constraint function g(x,y).
 - 2. solve for a and b using

$$\nabla f(a,b) = \lambda \nabla g(a,b)$$
$$g(a,b) = 0$$

- 3. largest value of f will be largest among all f(a,b) found. similar for smallest.
- alternatively, with two constraints:

let obj fn be w = f(x, y, z), and constraint fns g(x, y, z) = 0, h(x, y, z) = 0. solve for

$$\nabla f(a, b, c) = \lambda_1 \nabla g(a, b, c) + \lambda_2 \nabla h(a, b, c)$$
$$g(a, b, c) = 0$$
$$h(a, b, c) = 0.$$

Appendix

matrices, 3x3 determinants

In depth lesson:

• https://www.mathcentre.ac.uk/resources/uploaded/sigma-matrices9-2009-1.pdf

Recall that a elements of a matrix are enumerated a_{ij} where i is column and j is row, both 1-indexed.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Recall that the minor of the matrix element here is the 2 by 2 determinant when you take away the row and column of the element in a 3 by 3 matrix. Picking an arbitrary row (or even column), with a_{ij} being an element and M_{ij} being a minor, a 3 by 3 determinant is calculated by

$$\sum_{j=1}^{3} (-1)^{i+j} a_{ij} M_{ij}$$

In the figure media/3x3determinant.png, $(-1)^{i+j}$ is in green, a_{ij} in orange, and M_{ij} in blue.

cross/dot products

- see:
 - media/cross_prod_area_ex.png
 - media/scalar_projection_composition_ex.png
 - media/scalar_triple_prod_parallelepiped_ex.png