1.

(a) To find k, we know that the sum of all probabilities in a PMF should equal 1. We have an infinite geometric series where the first term a=k and the common ratio r=(3/4), so the sum S of this series is S=a/(1-r)=1. Solving this equation, we get:

$$k/(1 - 3/4) = 1$$

 $k = 1 - 3/4 = 1/4$

(b) The cumulative distribution function (CDF) is the sum of the probabilities up to a certain value of x. So, for x = 1, 2, 3, ... we have:

$$F(x) = P(1) + P(2) + \dots + P(x)$$

$$F(x) = k * [(3/4)^{1} + (3/4)^{2} + \dots + (3/4)^{x}]$$

$$F(x) = k * [1 - (3/4)^{x}] / [1 - (3/4)]$$

$$F(x) = 1 - (3/4)^{x}$$

2.

We will use the z-score formula $z=(x-\mu)/\sigma$ to standardize each score, where x is the individual score, μ is the mean, and σ is the standard deviation.

(a) $z=(70-80.5)/9.9\approx-1.06$. Looking up this z-score in a standard normal distribution table or using software gives a cumulative probability of ≈ 0.1441 .

(b) $z_1 = (75 - 80.5) / 9.9 \approx -0.56$ and $z_2 = (90 - 80.5) / 9.9 \approx 0.96$. The proportion is $P(z_2) - P(z_1) \approx 0.8315 - 0.2877 \approx 0.5438$.

(c)
$$z = (90 - 80.5) / 9.9 \approx 0.96$$
.

The proportion with hypertension is $1 - P(z) \approx 1 - 0.8315 = 0.1685$.

(d)
$$z = (65 - 80.5) / 9.9 \approx -1.56$$
.

The proportion is $P(z) \approx 0.0594$, which is above 5%, so it's not considered unusual.

3.

(a) Using z-score, z=1.96 for the heaviest 2.5%. The weight that determines the overweight classification is $\mu+z\sigma=10+1.96*0.2\approx10.392$ lbs.

(b)
$$z_1 = (9.8 - 10) / 0.2 = -1$$
 and $z_2 = (10.4 - 10) / 0.2 = 2$. The proportion lost is $P(z_2) - P(z_1) \approx 0.9772 - 0.1587 \approx 0.8185$.

4.

(a) The sampling distribution of the mean is normally distributed with mean μ = 50 and standard error $\sigma = 6/sqrt(40) = 0.94868$.

(b)
$$z = (51 - 50) / (6/sqrt(40)) \approx 1.0541$$

The probability is $1 - P(z) \approx 1 - 0.8543 = 0.1457$.

(c) The probability is more than 5%, so it's not considered unusual.

5.

(a) According to the Central Limit Theorem, the sampling distribution of X is approximately normally distributed with mean μ = 1 and standard error $\sigma = 1/sqrt(70) = 0.119522$.

(b)
$$z = (1.1 - 1) / (1/sqrt(70)) \approx 0.8375$$
.
The probability is $1 - P(z) \approx 1 - 0.7985 = 0.2015$.

(c)
$$z = (1.25 - 1) / (1/sqrt(70)) \approx 2.0948$$

The probability is $1 - P(z) \approx 1 - 0.9818 = 0.0182$.