Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年10月25日

目录

1	第一	章																	3
	1.1	随机事	件 .																3
		1.1.1	现象																3
		1.1.2	随机	试验	•														4
		1.1.3	样本																4
		1.1.4	随机	事件	•														5
	1.2	事件关	系与i	三算															5
	1.3	事件的	概率																6
		1.3.1	古典	概型															7
		1.3.2	几何	概型															8
	1.4	公理化																	10
	1.5	条件概	率与	乘法	公	式													12
	1.6	全概率	公式																13
	1.7	贝叶斯	公式																13
	1.8	独立性																	15

2	一维	随机变量及其分布	17
	2.1	随机变量及其分布函数	17
	2.2	常见分布律	20
	2.3	连续型随机变量	22
	2.4	标准化	24
	2.5	随机变量函数的分布	25
3	多维	随机变量函数及其分布	27
	3.1	二维随机变量及其分布	27
	3.2	二维随机变量的边缘分布函数	29
	3.3	联合分布律	29
	3.4	二维连续性随机变量及其概率特性	30
	3.5	多维随机变量及分布	33
		3.5.1 多维随机变量的独立性	34
4	数字	特征	36
	4.1	数学期望	37
	4.2	数学期望的性质	38
	4.3	方差的性质	40
	4.4	协方差的性质	44
	4.5	相关系数	46
		4.5.1 标准化	46
		4.5.2 性质	46

Lecture 1

09.03

概述

资源

公众号: 狗熊会、大数据文摘, 好玩的数学

MOOC: 爱课程, Coursera, Edx, 网易公开课等

教师要求

教材: 概率论与数理统计第二版

参考: The Lady Tasting Tea,程序员数学之概率统计, ...

学习目的: 自问自答, 自言自语

考核及成绩组成:

期中(10)

作业与考勤(10)

期末 (70)

MOOC (10)

课程简介

概率: Probability

统计: Statistics

概率论与数理统计: Probability theory and Mathematical statistics

Notation. 第一章重要但不突出

从概率到概率论:新增时间(随机事件、样本空间变化)

从统计到数理统计:统计最开始为记录性质,后来衍生出预测,通过数学模型引入数理统计

类似的还有政府统计、经济统计等

2000-2015 年间, IT 时代逐渐转换为 DT(Data Technology) 时代, 大数据逐渐占时代主体

1 第一章

1.1 随机事件

1.1.1 现象

确定性现象:一定条件下必然发生

随机现象强调统计规律性

Notation. 统计规律性:

- 1. 每次试验前不能预测结果
- 2. 结果不止一个
- 3. 大量试验下有一定规律

Example. 星际旅行时宇航员看到的现象不是随机现象:

对星际旅行的人而言, 无法完成大量试验

宇航员观测到的结果无规律,只能称为不确定现象 (Uncertain)

Example. 扔一个骰子不能预测结果,但可以知道结果是 1,2,3,4,5,6 的一个,因此观察扔骰子是随机现象 (Random)

1.1.2 随机试验

随机试验(E): 研究随机现象时进行的实验或观察等

Notation. 随机试验的特性:

- 1. 可以在完全相同的条件下重复进行
- 2. 试验的可能结果在试验前已知
- 3. 试验的结果不可预测

1.1.3 样本

在随机试验中,不可再分的最简单结果成为样本点 ω ,全体样本点组成样本 空间 Ω

Notation. 随机事件是基本事件的集合

Example. 扔骰子存在 6 个基本事件,可以产生 2^6 个随机事件,其中样本空间 $\Omega = \{x | x \in [1, 6], x \in \mathbb{R}\}$

Example. 1. 射击时用 ω_i 表示击中 i 环,样本空间为:

$$\Omega = \{\omega_0, \omega_1, \omega_2, \dots, \omega_{10}\}.$$

2. 微信用户每天收到信息条数的取值范围是 $[0,+\infty)$, 样本空间为无限集:

$$\Omega = \{N | N > 0, N \in \mathbb{R}\}.$$

- 3. 电视机的寿命样本空间为 $\Omega = \{t | t > 0\}$,为连续的非负实数集
- 4. 投掷两枚硬币,样本空间为 $\Omega = \{(x,y) | x,y = 0,1\}$, 其中 0,1 分别代表正面和背面

Notation. 1. 样本点可以不是数

2. 样本空间可以是无限集

1.1.4 随机事件

1.2 事件关系与运算

1.1. $A \subset B$: A 发生必然 B 发生

1.2. $A = B : A \subset B, B \subset A$

2. *A* ∪ *B*: *A* 和 *B* 至少有一个发生

 $2.1 \ A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$

 $3. A \cap B: A 和 B 只发生一个$

4.1. A, B 互斥:不能同时发生: $AB = \emptyset$

4.2. A, B 对立: 非此即彼: $A \cup B = \Omega$

5. A-B: $A\bar{B}$ 或 $A(\Omega-B)$, 或 A 发生但 B 不发生

Notation.
$$A - B = A\bar{B} \subset A, \ B - A = B\bar{A} \subset B$$

 $\stackrel{\text{def}}{=} AB = \emptyset \text{ fr}, \ A - B = A, B - A = B$

Notation. $P(\Omega) = 1, P(\emptyset) = 0, \ \exists \ P(\Omega) + P(\emptyset) = 1, \ \exists \ \Omega \ \exists \ \emptyset \ \exists \ \digamma$

6. 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$

7. 分配律: $(AB) \cup C = (A \cup C) (B \cup C)$, $(AUB) C = AC \cup BC$

8. 交換律: $A \cup B = B \cup A$, AB = BA

Notation. 德摩根律:

$$\frac{\bigcap_{i=1}^{n} A_i}{\bigcap_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}.$$

$$\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i}.$$

Example.

$$\overline{A \cup B} = \overline{A}\overline{B}.$$

$$\overline{(A \cup B) \cup C} = \overline{A \cup B}\overline{C} = \dots$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

1.3 事件的概率

概率分类:

主观概率 统计概率 古典概型 几何概型

Notation. 德摩根、蒲丰、皮尔逊、维纳均进行过投掷硬币的试验,随着试验次数的增加,出现正面的频率逐渐接近 0.5

大数定律说明,该事件的概率为0.5

Definition. 统计概率: A 为试验 E 的一个事件,随着重复次数 n 的增加, A 的 频率接近于某个常数 p, 定义事件 A 的概率为 p, 记为 P(A) = p

频率的特性:

1. 非负性: $f_n(A) \in [0,1]$

2. 规范性: $f_n(\Omega) = 1$

3. 有限可加性: A_i 两两互斥,则 $f_n(\sum_{i=1}^n A_i) = \sum_{i=1}^n f_n(A_i)$

Definition. 主观概率:人对某个事件发生与否的可能性的估计

Definition. 完备事件组: $A_1, A_2, ..., A_n$ 两两互斥, 且

$$P\left(\sum_{i=1}^{n} A_i\right) = 1.$$

或

$$\sum_{i=1}^{n} A_i = \Omega.$$

则称 $A_1 \rightarrow A_n$ 为完备事件组(不重不漏)

Example. A, \bar{A} 是完备事件组

1.3.1 古典概型

古典概型特点:有限等可能性(基本事件数有限,基本事件发生的可能性相等)

Notation. 概率计算:

$$P(A) = \frac{m}{n} = \frac{n(A)}{n(\Omega)}.$$

Example. 某年级有 6 人在 9 月份出生,求 6 个人中没有人同一天过生日的概率

基本事件总数: 306

目标事件: $30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 = P_{30}^6$

概率:

$$P(A) = \frac{P_{30}^6}{30^6}.$$

Example. 有 N 个乒乓球中有 M 个白球、N-M 个白球,任取 n(n < N) 个球,分有放回和不放回,求取到 m 个黄球的概率

1. 不放回:

基本事件总数: C_N^n

目标事件: $C_M^m C_{N-M}^{n-m}$

概率:

$$P = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, n = \max\{0, n - (N-M)\}, \dots, \min\{n, M\}.$$

2. 有放回:

$$P = \frac{C_n^m M^m (N - M)^{n - m}}{N^n} = C_n^m \left(\frac{M}{N}\right)^m \left(1 - \frac{M}{N}\right)^{n - m}, m \in [0, n].$$

注意到该概率为伯努利分布 $C_n^m B\left(n, \frac{M}{N}\right)$

匹配问题:

Example. 麦克斯韦-玻尔兹曼统计问题:

n 个质点随机落人 N(N > n) 个盒子,盒子容量不限,设 A 表示指定的 n 个盒子各有一个质点,B 表示恰好有 n 个盒子装一个质点

基本事件总数: Nn

A 考虑顺序, 即:

$$P\left(A\right) = \frac{n!}{N^n}.$$

同理:

$$P\left(B\right) = \frac{\mathcal{C}_{N}^{n}}{N^{n}}.$$

1.3.2 几何概型

几何概型特点:使用事件所对应的几何度量计算

$$P(A) = \frac{m(A)}{m(\Omega)}.$$

Notation. 度量:面积、体积、长度等描述几何量大小的测度方式

Example. 地面铺满 2 dm 的地砖,向地面投掷一个 r=0.5 dm 的光盘,求光盘不与边线相交的概率

如图:

Lecture 1

课后习题: A组8题, B组3题

Example. 两人相约 8-9 点间在某地相见,先到的人等待 20 分钟后离去,求二人会面的概率

设(x,y)分别表示两人到达的时刻

设 G 为样本空间,绘制样本空间:

由题: 两人到达的时间之差的绝对值小于 20 分钟 $(\frac{1}{3}$ 小时), 即:

$$|x - y| \le \frac{1}{3}.$$

将事件绘制:

Lecture 1

$$P(g) = \frac{m(g)}{m(G)} = \frac{S(g)}{S(G)} = \frac{1 - (\frac{2}{3})^2}{1} = \frac{4}{9}.$$

Notation. 几何概型的特点:

1. 非负性:

$$P(A) \in [0,1]$$
.

2. 规范性:

$$P(\Omega) = 1.$$

3. 可列可加性:

$$P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

Lecture 2

1.4 公理化

$$(\Omega, \mathscr{F}, p)$$
.

Definition. Ω : 随机试验所产生的所有样本点的集合

罗:集合内所有子集为元素的集合

P(X): 概率函数

Axiom. 非负性:

$$P(A) \ge 0, A \in \mathscr{F}.$$

Axiom. 规范性:

$$P(\Omega) = 1.$$

Axiom. 可列可加性: 对两两互斥的事件 A_1, A_2, \ldots

$$P\left(\sum_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P\left(A_i\right).$$

从三条公理得出的性质:

Notation. 1. $P(\emptyset) = 0$

2. 有限可加性:

$$\sum_{i=1}^{n} P(A_i) = P\left(\sum_{i=1}^{n} A_i\right).$$

3.
$$P(\bar{A}) = 1 - P(A)$$

4.
$$A \subset B \implies P(B-A) = P(B) - P(A)$$

5.
$$A \subset B \implies P(A) \leq P(B)$$

6.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

Notation. 6.1.

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$
$$-P(AC) + P(ABC).$$

6.2.

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(A_{i}A_{j}) + \sum_{i=1}^{n-2} \sum_{j=i+i}^{n-1} \sum_{k=j+1}^{n} P(A_{i}A_{j}A_{k})$$

$$\dots + (-1)^{n-1} P\left(\prod_{i=1}^{n} A_{i}\right).$$

Example. 从有号码 1, 2, ..., n 的 n 个球中有放回地取 m 个球,求取出的 m 个球中最大号码为 k 的概率

$$P\left\{k=1\right\} = \left(\frac{1}{n}\right)^m.$$

逐个列举计算较复杂,记事件 B_k 为取出的 m 个球最大号码不超过 k,只需保证每次摸出的球都不超过 k 即可:

$$P(B_k) = \frac{k^m}{n^m}.$$

又有 $P(A_k) = P(B_k) - P(B_{k-1}), \; 且 B_{k-1} \subset B_k$
所以:
$$P(A_k) = \frac{k^m}{n^m} - \frac{(k-1)^m}{n^m}.$$

Example. 匹配问题: n 个学生各带有一个礼品,随机分配礼品,设第 i 个人抽到自己的礼品称为一个配对,求至少有一个配对的概率

设 A_i 是第 i 个人抽到自己的礼品, A 为目标事件, 则:

$$A = \bigcup_{i=1}^{n} A_{i}.$$

$$P(A_{i}) = \frac{(n-1)!}{n!} = \frac{1}{n}.$$

$$P(A_{i}A_{j}) = \frac{(n-2)!}{n!} = \frac{1}{P_{n}^{2}}.$$

$$P(A_{i}A_{j}A_{k}) = \frac{1}{P_{n}^{3}}.$$

$$\dots$$

$$P\left(\prod_{i=1}^{n} A_{i}\right) = \frac{1}{n!}.$$

$$P(A) = P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(A_{i}A_{j}) + \dots$$

1.5 条件概率与乘法公式

Definition.

$$P(A) > 0, P(B|A) = \frac{P(AB)}{P(A)}.$$

即:在 A 发生的条件下, B 发生的概率

Definition. 乘法公式:

$$P(AB) = P(A) P(B|A) = P(B) P(A|B).$$

Notation. A, B 独立: P(AB) = P(A) P(B)

结合乘法公式:

$$P(B) = P(B|A)$$
.

$$P(A) = P(A|B)$$
.

1.6 全概率公式

Corollary. 事件 A_1, A_2, \ldots, A_n 为完备事件组,事件 $B \subset \Omega = \bigcup_{i=1}^n A_i$,则:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

Notation. 此时完备事件组的情况应该已知,通过完备事件组 A 的辅助可以求得较复杂事件 B 的概率

1.7 贝叶斯公式

Corollary.

$$P(A_k|B) = \frac{P(A_kB)}{P(B)} = \frac{P(A_k) P(B|A_k)}{\sum_{i=1}^{n} P(A_i) P(B|A_i)}.$$

贝叶斯公式被称为"逆概率公式/后验公式",其中事件 B 更可能是事件的结果,将事件组 A 看作结果出现的原因,则贝叶斯公式是一个从"结果"推"原因"的可能性的公式

Notation. 对比一般公式: 事件 A 导致 B, 求 B 发生的概率 贝叶斯公式: 事件 A 导致 B, A 中的一个事件 A, 导致 B 发生的概率

Axiom. 条件概率的公理:

1. 非负性: $P(A) \in [0,1]$

2. 规范性: $P(\Omega|A)=1$

3. 可列可加性:

$$P\left(\sum_{i=1}^{\infty} B_i | A\right) = \sum_{i=1}^{\infty} P\left(B_i | A\right).$$

Corollary.

$$P(\bar{B}|A) = P(\Omega - B|A) = P(\Omega|A) - P(B|A).$$

Corollary.

$$P(B_1 \cup B_2) = P(B_1) + P(B_2) - P(B_1B_2).$$

$$\implies P(B_1 \cup B_2|A) = P(B_1|A) + P(B_2|A) - P(B_1B_2|A).$$

Corollary. 乘法公式:

$$P(ABC) = P(A(BC)) = P(A) P(BC|A) = P(A) P(B|A) P(C|AB)$$
.

Example. 8 个红球 2 个白球, 求前三次结果是"红红白"的概率:

1. 不放回取 3 个(和一次取三个球相同)

所有可能性: 10×9×8

目标事件: 8×7×2

或使用乘法公式:设 A_i 为第 i 次取到红球,目标事件可表示为 $A_1A_2\bar{A}_3$

概率:

$$P(A_1A_2\bar{A_3}) = P(A_1)P(A_2|A_1)P(\bar{A_3}|A_1A_2) = \frac{8}{10} \times \frac{7}{9} \times \frac{2}{8} = \frac{7}{45}.$$

2. 每次取后放回,并加入两个同色的球,取 3 次(不能使用古典概型)概率:

$$P(A_1A_2\bar{A}_3) = \frac{8}{10} \times \frac{8}{12} \times \frac{2}{14} = \frac{8}{105}.$$

Example. 某疾病的发病率为 0.0004, 患病检测呈阳性的概率为 0.99, 误诊为阴性的概率为 0.01, 误诊为阳性的概率为 0.05, 不患病检测呈阴性概率为 0.95, 一个人检测呈阳性, 求其患病的概率

设阳性为A, 患病为B

则:

$$P(A|B) = 0.99, P(A|\bar{B}) = 0.05, P(B) = 0.0004.$$

要求: P(B|A)

使用贝叶斯公式:

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B) P(A|B)}{P(AB) + P(A\bar{B})}.$$

$$= \frac{P(B) P(A|B)}{P(B) P(A|B) + P(A|\bar{B}) P(\bar{B})} = 0.0079.$$

1.8 独立性

Definition. A, B 独立,则: P(A|B) = P(A)

Notation. 证明独立性:

1. P(A) P(B) = P(AB)

Notation. 独立事件的特点:

- 1. A, B 独立有: A, B 所有的组合(包含补集)均独立
- 2. A, B 独立的充要条件: P(A|B) = P(A) or P(B|A) = P(B)
- $3. \varnothing$ 与任何随机事件独立, Ω 与任何随机事件独立

对于三个事件相互独立:

$$\begin{cases} P(AB) = P(A) P(B) \\ P(AC) = P(A) P(C) \\ P(BC) = P(C) P(C) \\ P(ABC) = P(A) P(B) P(C) \end{cases}$$

对比乘法公式: P(ABC) = P(A)P(B|A)P(C|AB)

Definition. 相互独立:

有 A_1, A_2, \ldots, A_n 事件组, 对 $\forall s \in [2, n]$ 个事件 $A_{k_1}, A_{k_2}, \ldots, A_{k_s}$ 均有:

$$P\left(\prod_{n=1}^{s} A_{k_n}\right) = \prod_{n=1}^{s} P\left(A_{k_n}\right).$$

称事件 A_1, A_2, \ldots, A_n 相互独立

Definition. 两两独立: 对事件 A_1, A_2, \ldots, A_n ,若任意两个事件独立,则称为两两独立

Notation. 相互独立一定两两独立, 反之不一定

Notation. 相互独立事件组的性质:

- 1. 事件 $A_1, A_2, ..., A_n$ 相互独立,将其中任意部分改为对立事件,事件组仍为相互独立
- 2. 事件相互独立,将事件组任意分为两组(或多组),对组内事件进行"并、交、差、补"操作后,事件间依然相互独立

独立重复实验

Definition. E_1 , E_2 中一个试验的任何结果和另一个试验的任何结果相互独立,则试验相互独立; 若 n 个独立试验相互独立且试验相同, 称 E_1 , E_2 , ..., E_n 为 n 次独立重复实验,或 n 重独立试验

Example. 扔硬币和掷骰子为独立试验,其中扔硬币为伯努利试验(只有两个结果)

Definition. n 重独立试验 E 中,每次试验都是伯努利试验(可能结果只有两个),称 E 为 n 重伯努利试验

1. 二项概率公式: 成功 k 次的概率记为 $P_n(k)$,假定前 k 次成功,后 n-k 次失败,则

$$P_i = p^k \left(1 - p\right)^{n - k}.$$

指定事件 A 发生的位置有 C_n^k 种,则:

$$P_n(k) = C_n^k p^k (1-p)^{n-k}$$
.

称为二项概率公式

2. 几何概率公式: 首次成功恰好发生在第 k 次的概率记为 G(k) , 设前 k-1 次失败,则:

$$G\left(k\right) =q^{k-1}p.$$

可以验证: $\sum G(k) = 1$

3. 负二项概率: 需要成功 r 次, 第 r 次成功恰好发生在第 k 次的概率记为 $G_r(k)$, 设前 k-1 次试验有 r-1 次成功,则:

$$G_r(k) = C_{k-1}^{n-1} p^r q^{k-r}.$$

同样有: $\sum G_r(k) = 1$

Lecture 3

2 一维随机变量及其分布

2.1 随机变量及其分布函数

随机变量

Example. 下一个进入教室的同学可能是男是女,分别记为 1,2,则有映射:

将离散的结果映射为坐标轴上离散的数值,所有的数值性的观测结果无需改变,如:下一个进入教室的同学身高为 ω ,则有映射:

$$X(\omega) = \omega$$
.

Definition. 实值变量(无分布函数)使用小写字母,随机变量(有分布函数)使用大写字母

对 $\forall x \in \mathbb{R}$, $\{X \le x\} = \{\omega | X(\omega) \le x, \omega \le \Omega\} \in \mathcal{F}$, 则 X 称为概率空间的随机变量

Example. 对于 $\{M, F\} \rightarrow \{1, 2\}$,取 x = 1 ,写出定义式:

$${X \le 1} = {M}.$$

同时由于 $x \in \mathbb{R}$,取 x = 1.5 时, $\{X \le 1.5\} = \{M\}$ 取 x = 4 时, $\{X \le 4\} = \{M, F\}$

由于 $x \in \mathbb{R}$,则可以引入其他分布函数辅助,继而引用微积分理论对于 (Ω, \mathcal{F}, P) :

$$P:\Omega\to[0,1]$$
.

Notation. X 具有随机性 (样本点具有随机性),是定义在 Ω 上的函数

X 是随机变量时 $\{a \le X \le b\}, a < b, a, b \in \mathbb{R}$ 均为随机事件

X 是随机变量, g(x) 是非单点的实值函数, 则 Y = g(X) 也是随机变量:

$$Y(\omega) = g(X(\omega)).$$

Example. 对灯泡做寿命试验,用 X 表示测得灯泡的寿命,样本空间 $\Omega = [0, +\infty)$,则:

A = "测得灯泡寿命大于 500 h" = $\{X > 500\}$

B = "测得灯泡寿命小于 5000 h" = $\{X \le 5000\}$

分布函数

Definition. 分布函数:记

$$F(x) = P\{X \le x\}, x \in \mathbb{R}.$$

为 X 的分布函数

Example. 3 白 2 黑,不放回取三次球,求取到的黑球个数 X 的分布函数 X 可以取到: 0,1,2

$$P\left\{X=0\right\} = \frac{C_3^3}{C_5^3}, P\left\{X=1\right\} = \frac{C_2^1 C_3^2}{C_5^3}, P\left\{X=2\right\} = \frac{C_2^2 C_3^1}{C_5^3}.$$

概率在坐标轴上体现:

$$F(x) = P\left\{X \le x\right\} = \begin{cases} 0, x < 0\\ \frac{1}{10}, x \in [0, 1)\\ \frac{1}{10} + \frac{3}{5} = \frac{7}{10}, x \in [1, 2)\\ 1, x > 2 \end{cases}.$$

图像:

Notation. 分布函数的特性:

- 1. 非负性: $P \in [0,1]$
- 2. 单调不减性
- 3. 右连续性:

$$F\left(x\right) = \lim_{t \to x + 0^{+}} F\left(t\right).$$

- 3.1 不满足左连续,例: $P(0) P(0^{-}) \neq 0$
- 4. 规范性:

$$F\left(-\infty\right) = \lim_{x \to -\infty} F\left(x\right) = 0, F\left(+\infty\right) = \lim_{x \to +\infty} F\left(x\right) = 1.$$

关于 X 的事件都可以使用分布函数表示:

$$\begin{cases} P\{X = a\} = \lim_{\varepsilon \to 0^{+}} P\{a - \varepsilon < X \le a\} = F(a) - F(a - 0^{+}) \\ P\{a \le X < b\} = F(b - 0^{+}) - F(a - 0^{+}) \\ \dots & \dots \end{cases}$$

Example. 在 [a,b] 内随机取一个数 X , 求 X 的分布函数 关键区域: $x \in [a,b)$,

$${X \le x} = {a \le X \le x}.$$

 $F(x) = P{X \le x} = \frac{x - a}{b - a}.$

作业: 预习第 2,3 节

Lecture 4

Notation. 回忆:分布函数有以下特征:

- 1. 非负性
- 2. 规范性
- 3. 右连续性
- 4. $\forall x < y \in \mathbb{R}, F(x) \le F(y)$

计算随机变量的概率可以用分布函数表达:

$$P\{a < X < b\} = F(b) - F(a)$$
.

2.2 常见分布律

- 1. 退化分布
- 2. 两点分布
- 2.1. $0 \sim 1$ 分布 $(X \sim B(1, p))$:

$$P\{X = k\} = p^k (1-p)^{1-k}, k = 0, 1.$$

3. 二项分布 $(X \sim B(n,p))$:

$$P\left\{X=k\right\} = C_n^k p^k (1-p)^k, k=0,1,2,\ldots,n, p \in (0,1).$$

4. 几何分布 $(X \sim G(p))$:

$$P\{X = k\} = p(1-p)^{k-1}, k = 1, 2, 3, \dots, p \in (0, 1).$$

5. 泊松分布 $(X \sim P(\lambda))$: 用于描述稀有事件的发生

$$P\{X = k\} = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots, \lambda > 0.$$

$$e^x = \sum_{i=0}^{+\infty} \frac{x^i}{i!}.$$

可得:

$$\sum_{k=0}^{+\infty} P\{X = k\} = e^{-\lambda} \cdot e^{\lambda} = 1.$$

Notation. 分布律的基本性质:

1. 非负性: $p_i \ge 0$

2. 正则性: $\sum_{i=1}^{+\infty} p_i = 1$,即每一个点的概率都应该知道

Example. 保险问题

若一年中某类保险受保人死亡的概率为 0.005, 现有 10000 人参加保险, 求未来一年中:

1. 40 人死亡的概率

设 X 为未来一年中死亡的人数,有 $X \sim B(10000, 0.005)$, 计算:

$$P\{X = 40\} = C_{10000}^{40} 0.005^{40} \cdot 0.995^{9960} \approx 2.143 \times 10^{-2}.$$

直接计算较为复杂, 可以使用近似计算

有两种近似计算方法: 泊松定理、中心极限定理

Notation. 泊松定理: 二项分布有时可以转化为泊松分布:

如果 $\lim_{n\to+\infty} np_n = \lambda > 0$ (极小但不为 0), 则:

$$\lim_{n \to +\infty} C_n^k p_n^k (1 - p_n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2 \dots$$

前提: n 大 p 小

将保险问题转换为泊松分布:

$$\lambda = np = 50.$$

$$P\{X=40\} = \frac{50^{40}}{40!}e^{-50} \approx 0.02.$$

2. 死亡人数不超过 70 的概率

$$P\{X \le 70\} = \sum_{k=0}^{70} C_{10000}^k 0.005^k \cdot 0.995^{(10000-k)}.$$
$$= \sum_{k=0}^{70} \frac{50^k}{k!} e^{-50} (\lambda = np = 50).$$

Notation. 几何分布具有无记忆性: 当前试验对过去的试验无任何影响, 即:

$$P\{X = k + 1 | X > k\} = P\{X = 1\}.$$

可以使用条件概率证明:

$$P\left\{ X = k + 1 | X > k \right\} = \frac{P\left\{ X = k + 1, X > k \right\}}{P\left\{ X > k \right\}}.$$

由于:

$$P\{X > k\} = \sum_{j=k}^{+\infty} p(1-p)^j = p\sum_{j=k}^{+\infty} (1-p)^j = p(1-p)^k \cdot \frac{1}{1-1+p} = (1-p)^j.$$

2.3 连续型随机变量

Definition.

$$F(x) = \int_{-\infty}^{x} f(x) dx, x \in \mathbb{R}.$$

则 X 为连续型随机变量, f(x) 称为 X 的密度函数

连续型随机变量的性质:

- 1. 非负性: $f(x) \ge 0, x \in \mathbb{R}$
- 2. 规范性:

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$$

3.

$$P\{a < X \le b\} = \int_{b}^{a} f(x) dx, a < b.$$

- 4. F 连续
- 5. F'(x) = f(x)

Notation. 由于连续性随机变量的分布函数 F 处处连续,所以 $\forall x \in \mathbb{R}$,有 $P\{X=x\}=F(x)-F(x-0)=0$,即:概率为 0 的事件不一定是不可能事件

Example.

常见的连续型密度函数:

1. 均匀分布 $(X \sim U[a,b])$:

$$f(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}.$$

对应的分布函数图像:

2. 指数分布 $(X \sim \Gamma(1, \lambda))$:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, x \le 0 \end{cases}.$$

Notation. 指数分布大多数与等待时间有关 指数分布的充分必要条件为

$$\forall s, t \ge 0, P\{X > s + t | X > s\} = P\{X > t\}.$$

即指数分布有无记忆性/无后效型(指数分布的特点)

3. 正态分布 $(X \sim N(\mu, \sigma^2))$:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Notation. σ^2 : 方差, μ : 数学期待

3.1. 标准正态分布 $(X \sim N(0,1))$:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{\sqrt{2}\sigma}}.$$

Lecture 5

Notation. 马尔可夫分布也具有无记忆性

回忆:正态分布(高斯分布)

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

标准正态分布

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}.$$

2.4 标准化

Definition. 标准化将随机变量转化为另一组随机变量

对于 $X \sim N(\mu, \sigma^2)$,移除前者的中心(将中心变为 0),除以标准差,即得到符合标准正态分布的 $Y \sim N(0,1)$

- 1. 去中心化
- 2. 除以标准差

即:

$$Y = \frac{X - E(X)}{\sqrt{D(X)}}.$$

标准化后的随机变量期望为 0, 方差为 1

$$P\left\{ \left| X - \mu \right| < k\sigma \right\} = P\left\{ \left| \frac{x - \mu}{\sigma} \right| < k \right\} = P\left\{ Y < k \right\}.$$

此时 $Y \sim N(0,1)$,即符合标准正态分布 对于原来的 3σ 原则,转化为 $P\{-3 < Y < 3\}$

$$P\{-3 < Y < 3\} = F_Y(3) - F_Y(-3).$$

= $\phi(3) - \phi(-3).$

Notation.

$$\phi\left(-x\right) = 1 - \phi\left(x\right).$$

$$=2\phi(3)-1.$$

Example. 设人的高度符合正态分布 $X \sim N(170, 49)$,问在公共设施处的门需要设计多高才能使至少 90% 的人通过

求门高 H 使得 $P\{X \le H\} \ge 0.9$

$$P\left\{X \leq H\right\} \implies P\left\{\frac{X - 170}{49} \leq \frac{H - 170}{49}\right\}.$$

即:

$$\phi\left(\frac{H-170}{49}\right) \ge 0.9.$$

$$\frac{H-170}{49} \ge 1.28 \implies H \ge 1.80.$$

2.5 随机变量函数的分布

Example.

$$Y = \frac{X - E(X)}{\sqrt{D(X)}}.$$
$$Y = g(X) \sim F_Y(Y).$$

求解 $F_Y(Y)$

Example. $D \sim U[a, b]$ \coprod

$$S = \pi \left(\frac{b}{2}\right)^2 = \frac{\pi \rho^2}{4}.$$

1. X 离散: Y 一般是离散的

2. X 连续: Y 可能连续,可能分段连续(离散)

Example. X 的分布律:

$$\begin{pmatrix} -2 & -1 & 0 & 1 & 2 & 3 \\ 0.15 & 0.1 & 0.1 & 0.2 & 0.3 & 0.15 \end{pmatrix}.$$

求 $Y = X^2$ 的分布律

列举 Y 的分布律: 合并后:

表 1: Y Func										
0.15	0.1	0.1	0.2	0.3	0.15					
4	1	0	1	4	9					

$$\begin{pmatrix} 0 & 1 & 4 & 9 \\ 0.1 & 0.3 & 0.45 & 0.15 \end{pmatrix}.$$

Example. 分析法: $X \sim G(0.5)$ (几何分布), 求 $Y = \sin\left(\frac{\pi}{2}X\right)$ 的分布律 易得: Y 可以取得: 0,1,-1

$$Y = \sin\left(\frac{\pi}{2}X\right) = \begin{cases} -1, X = 4n - 1\\ 0, X = 4n \, \exists \, X = 4n - 2\\ 1, X = 4n - 3 \end{cases}.$$

$$P\left\{Y = -1\right\} = \sum_{n=1}^{+\infty} P\left\{X = 4n - 1\right\} = \sum_{n=1}^{+\infty} 0.5 \times 0.5^{4n - 1 - 1}.$$

同理:

$$P\{Y=0\} = \sum_{n=1}^{+\infty} 0.5 \times 0.5^{2n-1}.$$

$$P\{Y=1\} = \sum_{n=1}^{+\infty} 0.5 \times 0.5^{4n-4}.$$

求得 Y 的分布律:

$$\begin{pmatrix} -1 & 0 & 1 \\ \frac{2}{15} & \frac{1}{3} & \frac{8}{15} \end{pmatrix}.$$

Lecture 6

Corollary. X 是连续性随机变量,密度函数为 $f_X(x)$,随机变量 Y = g(X),且 $\exists D, P\{Y \in D\} = 1, g(x)$ 存在反函数 h(y) 且严格单调可导,则:

$$f_{Y}(y) = \begin{cases} |h'(y)| f_{X}(h(y)), y \in D \\ 0, \text{Others} \end{cases}.$$

Notation. 指数分布 $X \sim \Gamma(1, \lambda)$ 的数学期望 $E(X) = \frac{1}{\lambda}$

3 多维随机变量函数及其分布

在实际问题中,试验结果有时需要使用两个或两个以上的随机变量 (random value, r.v.) 来描述

Example. 天气预报: 温度、湿度、风力、降水等

3.1 二维随机变量及其分布

Definition. 设 Ω 为随机试验的样本空间,则

$$\forall \omega \in \Omega \xrightarrow{\text{\cancel{X}} \to \text{\cancel{Y}}} \exists (X(\omega), Y(\omega)) \in \mathbb{R}^2.$$

或:

$$\left\{ X \leq x, Y \leq y \right\} = \left\{ \omega | X \left(\omega \right) \leq x, Y \left(\omega \right) \leq y, \omega \in \Omega \right\} \in \mathscr{F}.$$

称 (X,Y) 为概率空间 (Ω,\mathcal{F},P) 上的二维随机变量

Notation.
$$\{X \le x, Y \le y\} = \{X \le x\} \cap \{Y \le y\}$$

性质:

- 1. $F(x,y) \in [0,1]$
- 2. 关于每个变量单调不减,即固定 x , 对 $\forall y_1 < y_2$,

$$F(x, y_1) \le F(x, y_2).$$

3. 对每个变量右连续, 即:

$$F(x_0, y_0) = F(x_0 + 0^+, y_0) = F(x_0, y_0 + 0^+).$$

4. 对 $\forall a < b, c < d$,有:

$$F(b,d) - F(b,c) - F(a,d) + F(a,c) \ge 0.$$

即:在任意地方框一个矩形,内部区域的概率必须大于等于0

Example. 性质 4 例题:设

$$F(x,y) = \begin{cases} 0, x + y < 1 \\ 1, x + y \ge 1 \end{cases}.$$

讨论 F(x,y) 能否成为二维随机变量的分布函数

Notation.

$$P\{X > a, Y > c\} \neq 1 - F(a, c)$$
.

3.2 二维随机变量的边缘分布函数

边缘分布: 降一维

$$F_X(x) = P \{X \le x\}$$

$$= P \{X \le x, Y < +\infty\}$$

$$= F(x, +\infty)$$

Example. 设随机变量 (X,Y) 的联合分布函数为

$$F(x,y) = A\left(B + \arctan\frac{x}{2}\right)\left(C + \arctan\frac{y}{2}\right), x, y \in (-\infty, +\infty).$$

求 A, B, C

解: arctan x 的性质:

$$\lim_{x \to \pm \infty} \arctan x = \pm \frac{\pi}{2}.$$

则

$$F(+\infty, +\infty) = A\left(B + \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right) = 1.$$

$$F(-\infty, +\infty) = A\left(B - \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right) = 0.$$

$$F(-\infty, -\infty) = A\left(B - \frac{\pi}{2}\right)\left(C - \frac{\pi}{2}\right) = 1.$$

联立解出 A, B, C

3.3 联合分布律

二维离散随机变量的联合分布函数

$$F(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}.$$

如何求 p_{ij} :

- 1. 古典概型
- 2. 乘法公式:

$$p_{ij} = P\{X = x_i\} P\{Y = y_i | X = x_i\} = P\{X = x_i, Y = y_i\}.$$

		表 2: 联	合分す	乍律						
X	Y									
	b_1	b_2		b_{j}	p_{a} .					
a_1	p_{11}	p_{12}		p_{1j}	$\sum_{\substack{n=1\\j}}^{j} p_{nj}$					
a_2	p_{21}	p_{22}		p_{2j}	$\sum_{n=2}^{j} p_{nj}$					
÷	÷	÷	٠	:	:					
a_i	p_{i1}	p_{i2}		p_{ij}	$\sum_{n=i}^{j} p_{nj}$					
p_{b} .	$\sum_{m=1}^{i} p_{im}$	$\sum_{m=2}^{i} p_{im}$		$\sum_{m=1}^{i} p_{im}$	1					

3.4 二维连续性随机变量及其概率特性

Definition. 若

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv du.$$

则称 f(x,y) 为二维随机变量 (X,Y) 的联合密度函数,称 (X,Y) 为二维连续型随机变量

Notation. 联合密度与联合分布函数的性质:

- 1. $f(x,y) \ge 0$
- 2.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y \mathrm{d}x = 1 = F(-\infty, +\infty).$$

3. 对每个边缘连续, 在 f(x,y) 的连续点处:

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y).$$

从而有: $P(x < X \le x + \Delta x, y < Y \le y + \Delta y) \approx f(x, y) \Delta x \Delta y$

Lecture 7

两个随机变量的独立性

证明. 当 A, B 独立时: P(AB) = P(A) P(B)

$$\forall i, j : P \{X = x_i, Y = y_i\} = P \{X = x_i\} P (Y = y_i).$$

Notation. 离散随机变量独立的情况下: $P_{ij} = P_{i\cdot} \cdot P_{\cdot j}$ 如何证明 X, Y 独立:

$$F(x,y) = P\{X \le x, Y \le y\} = P\{X \le x\} P\{Y \le y\} = F_X(X) \cdot F_Y(y)$$
.

由联合分布律得边缘分布律:

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = \lim_{y_0 \to +\infty} P\left\{X \le x, Y \le y_0\right\}.$$

Notation. 连续性随机变量的区间 D 概率:

$$F(x,y) = P\left\{X \le x, Y \le y\right\} = \iint_{u=x} f(u,v) \, \mathrm{d}x \, \mathrm{d}y.$$

概率函数

Notation. 二维均匀分布:

$$f(x,y) = \begin{cases} \frac{1}{S(D)}, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}.$$

Example.

$$f(x,y) = \begin{cases} Axy, & x \in (0,1), y \in (0,1) \\ 0, & \text{Others} \end{cases}.$$

1. 求 A

$$\iint_{x \in [0,y], y \in [0,1]} Axy \mathrm{d}x \mathrm{d}y = 1.$$

Lecture 7

$$A=8$$
 2. $P\{X+Y \ge 1\}$

$$P\{X + Y \ge 1\} = \iint_{x+y\ge 1} f(x,y) \, dxdy$$
$$= \iint_{x+y\ge 1} 8xy \, dxdy$$
$$= \int_{0.5}^{1} dy \int_{1-y}^{y} 8xy \, dx$$
$$= \frac{5}{6}$$

$$3.1 \ x \in (-\infty, 0), y \in (-\infty, 0)$$

$$3.2 \ x \in [0,1), y \in [0,x)$$

$$3.3 \ x \in [0,1), y \in [x,1)$$

$$3.4 \ x \in [0,1), y \in [1,+\infty)$$

$$3.5 \ x \in [1, +\infty), y \in [0, 1)$$

$$3.6 \ x \in [1, +\infty), y \in [1, +\infty)$$

Lecture 7

$$x \in [0,1), y \in [1, +\infty)$$

$$x \in [1, +\infty), y \in [1, +\infty)$$

$$x \in [0,1), y \in [0,1) \quad x \in [1, +\infty), y \in [0,1)$$

$$x \in (-\infty, 0), y \in (-\infty, 0)$$

分段对 Axy 积分:

$$F(x,y) = \iint_{x \le u, y \le v} f(u,v) \, dx dy$$

3.5 多维随机变量及分布

Definition. 二维推广至多维:

$$F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\}.$$

称 F 为 n 维随机变量的联合分布函数

Definition. 多维联合分布律:

$$P\left\{X_{1}=a_{1k_{1}},X_{2}=a_{2k_{2}},\cdots,X_{n}=a_{nk_{n}}\right\}.$$

联合分布函数和联合分布律的关系:

$$F(x_1, x_2, \dots, x_n).$$

$$= \sum_{a_{1k_1} \le x_1} \sum_{a_{2k_2} \le x_2} \dots \sum_{a_{nk_n} \le x_n} P\{X_1 = a_{1k_1}, X_2 = a_{2k_2}, \dots, X_n = a_{nk_n}\}.$$

Notation. 二项分布推广多项分布:

 A_1, A_2, \dots, A_r 是 E 的完备事件组, $P(A_i) = p_i, i = 1, 2, \dots, r$,对 E 进行 n 次独立重复试验, X_i 表示 A_i 发生的次数,则:

$$P\left\{X_{1}=k_{1},X_{2}=k_{2},\cdots,X_{r}=k_{r}\right\}=\frac{n!}{k_{1}!k_{2}!\cdots k_{r}!}\prod_{i=1}^{r}p_{i}^{k_{i}}.$$

其中
$$k_i \ge 0, \sum_{i=1}^r k_i = n$$
, 当 $n = 2$ 时为二项分布

3.5.1 多维随机变量的独立性

Definition.

$$F(x_1, x_2, \dots, x_n) = \prod_{i=1}^n F_{X_i}(x_i).$$

称随机变量相互独立

等价于:

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i).$$

Lecture 9

10.17

Example. $X \sim U[-1,1]$, 对应的密度函数:

$$f_X(x) = \begin{cases} 0, & x < -1 \text{ or } x > 1\\ \frac{1}{2}, & x \in [-1, 1] \end{cases}.$$

同理 $Y \sim U[-1,1]$, 求 Z = |X - Y| 的分布函数

解: Z 的取值: [0,2]

$$F_{Z}(z) = P \{Z \le z\}$$

$$= P \{|X - Y| \le z\}$$

$$= \begin{cases} 0, & z < 0 \\ 1, & z \ge 2 \\ P \{-z \le X - Y \le z\}, & z \in [0, 2) \end{cases}$$

其中

$$P\left\{z - z \le X - Y \le z\right\} = \iint_{-z \le x - y \le z} f\left(x, y\right) dxdy.$$

通过 f_X 和 f_Y 求联合密度函数: X,Y 独立, 即 $f(x,y) = f_X(x) f_Y(y)$

$$f(x,y) = \begin{cases} 0, & x,y < -1 \text{ or } x,y > 1\\ \frac{1}{4}, & x,y \in [-1,1] \end{cases}.$$

$$P\left\{-z \le X - Y \le z\right\} = \iint_{-z \le x - y \le z, x, y \in [-1, 1]} \frac{1}{4} \mathrm{d}x \mathrm{d}y.$$

画图确认积分区域:

Notation. i.i.d.:独立同分布

Lecture 9

Notation. 伽马分布 $\Gamma(\alpha, \beta)$ 的密度函数:

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, & x \ge 0\\ 0, & x < 0 \end{cases}.$$

Notation. 重点题目: 3.6.2

4 数字特征

数字期望: E(X)方差: D(X) or Var(X)协方差: cov(X,Y)相关系数: $\rho(X,Y)$ 矩: $E(X)^k$ and $E(X-EX)^k$

Notation. $D(X) = E(X - EX)^2$ cov(X, Y) = E((X - EX)(Y - EY)) $\rho(X, Y) = \frac{cov(X, Y)}{\sqrt{DX}\sqrt{DY}}$

Notation. $|\rho_{X,Y}| \in [0,1]$ ρ 越大越线性相关, $\rho > 0.8$ 时基本可以确定为线性相关

Notation. 矩 (moment) 是最一般的概念

矩分为两大类: k 阶原点矩和 k 阶中心矩

原点矩: $E(X)^k$

中心矩: $E(X - EX)^k$

k+l 阶混合中心矩: $E\left((X-EX)^k(Y-EY)^l\right)$

Example. 数学期望为一阶原点矩

方差为一阶中心矩 协方差为二阶混合中心矩 Notation. 可以写出无穷阶的中心矩等同于通过泰勒原理得出分布函数本章重点:如何计算任意随机变量有关函数的数学期望唯一计算公式: 4.1.5 和 4.1.6

4.1 数学期望

Definition. 离散型随机变量 X 的分布律: $P\{X = x_i\} = p_i, i = 1, 2, ...$

若级数 $\sum_{i=1}^{+\infty} x_i p_i$ **绝对收敛** $(\sum_{i=1}^{+\infty} |x_i| p_i < +\infty)$,则 X 的数学期望**存在** $(x_i$ 为取值, p_i 为权重, $p_i \geq 0$)

$$E(X) = EX = \sum_{i=1}^{+\infty} x_i P\{X = x_i\} = \sum_{i=1}^{+\infty} x_i p_i.$$

Rule. 当一个随机变量的密度函数与分布律已知: $X \to f(x), P\{X = x_i\} = p_i$ 即可以求关于 X 函数的数学期望(公式 4.1.5):

$$E(g(X)) = \begin{cases} \sum_{i=1}^{+\infty} g(x_i) P\{X = x_i\}, & X \not \exists \\ \int_{-\infty}^{+\infty} g(x) f(x) dx, & X \not \exists \end{cases}.$$

Rule. 扩展至二阶: $(X,Y) \to P\{X = x_i, Y = y_j\}, f(x,y)$ 关于 (X,Y) 的函数的数学期望(公式 4.1.6):

$$E(g(X,Y)) = \begin{cases} \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} g(x_i, y_j) P\{X = x_i, Y = y_j\}, & \text{βth} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy, & \text{ξth} \end{cases}.$$

Notation. 柯西分布:

$$f(x) = \frac{1}{\pi (1 + x^2)}, x \in \mathbb{R}.$$

常见分布数学期望:

Notation. 伯努利分布 $X \sim B(n, p)$: EX = np 泊松分布 $X \sim P(\lambda)(\lambda > 0)$: $EX = \lambda$

柯西分布: EX 不存在(柯西分布不绝对收敛)

Notation. 柯西活了 68 岁, 21 岁成名(导师拉格朗日),27 岁当选法国科学院 院士

Lecture 10 10.22

Example.
$$(X,Y) \sim N_2(0,1)$$
, $\phi(x,y) = \frac{1}{2\pi} e^{-x^2 + y^2/2}$
 $Z = \sqrt{X^2 + Y^2}$, $\Rightarrow E(Z)$

解:由定理:

Rule.

$$E(g(X,Y)) = \begin{cases} \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} g(x_i, y_j) P\{X = x_i, Y = y_j\}, & \text{β th} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy, & \text{ξ \sharp} \end{cases}.$$

可得数学期望:

$$E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} Z \cdot f(x, y) \, \mathrm{d}x \mathrm{d}y.$$

4.2 数学期望的性质

 $\circ E(aX + bY + c) = E(aX + bY) + c$: 常数的数学期望为其本身

Notation. 什么是数学期望:一个随机变量的中心

方差: 去中心化的随机变量

常数的中心为其本身

$$\circ E(aX + bY) = E(aX) + E(bY) = aE(X) + bE(Y)$$
: 线性性

证明. 已知:

$$\int_{-\infty}^{+\infty} f(x, y) dy = F_X(x).$$

$$\int_{-\infty}^{+\infty} x f(x, y) dx = E(X).$$

$$E(aX + bY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (ax + by) f(x, y) dxdy$$
$$= a \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dxdy + b \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, y) dxdy$$
$$= aE(X) + bE(Y).$$

Example. $E(X) \pm E(Y) = E(X \pm Y)$

 \circ 对于独立的随机变量: $E(XY) = E(X) \cdot E(Y)$

证明. 二重积分转换为二次积分:

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x,y) dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf_X(x) f_Y(y) dxdy$$

$$= \left(\int_{-\infty}^{+\infty} xf_X(x) dx\right) \left(\int_{-\infty}^{+\infty} yf_Y(y) dy\right)$$

$$= E(X) \cdot E(Y).$$

Notation.

$$cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

$$\implies \rho_{X,Y} = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = 0$$

$$\implies X,Y$$
和关(独立).

Lecture 10

Notation. 线性可加性:

$$E\left(\sum_{i=1}^{n} a_{i} X_{i} + c\right) = \sum_{i=1}^{n} a_{i} E\left(X_{i}\right) + c.$$

将 n 重积分转换为一重积分

4.3 方差的性质

$$D(X) = E(X - EX)^2.$$

Notation. 方差是描述数据偏离中心的程度值

○ 常数的方差等于 0: D(c) = 0

Notation. 正态分布的方差 σ 不大: 3σ 准则保证数据方差在可控范围内

。 $D\left(aX+b\right)=D\left(aX\right)=\mathbf{a^2}D\left(X\right)$: 离散程度与整体移动无关证明.

$$D(aX + b) = E(aX + b - E(aX + b))^{2}$$

$$= E(aX + b - aE(X) - b)^{2}$$

$$= E(aX - aE(X))^{2} = D(aX)$$

$$= a(X - E(X)) \cdot aE(X - E(X))$$

$$= a^{2}E(X - E(X))^{2}$$

$$= a^{2}D(X).$$

 $\circ D(X \pm Y) = D(X) + D(Y) \pm E((X - EX) \cdot (Y - EY))$

证明.

$$D(X - Y) = E(X - Y - E(X - Y))^{2}$$

$$= E(X - Y - (EX - EY))^{2}$$

$$= E((X - EX) - (Y - EY))^{2}$$

$$= E((X - EX)^{2} - 2(X - EX)(Y - EY) + (Y - EY)^{2})$$

$$= E(X - EX)^{2} - 2E(X - EX)(Y - EY) + E(Y - EY)^{2}$$

$$= D(X) + D(Y) - 2cov(X, Y).$$

$$cov (X,Y) = E (X - EX) (Y - EY)$$

$$= E (XY - X \cdot EY - Y \cdot EX + EX \cdot EY)$$

$$= E (XY) - E (X \cdot EY) - E (Y \cdot EX) + E (EX \cdot EY)$$

$$= E (XY) - EY \cdot E (X) - EX \cdot E (Y) + EX \cdot EY$$

$$= E (XY) - E (X) \cdot E (Y).$$

当 X,Y 独立时: $\operatorname{cov}(X,Y)=0$,即 D(X-Y)=D(X)+D(Y) ,加法同理

Notation. 当 X = Y 时:

$$cov(X,Y) = cov(X,X)$$

$$= E(X - EX)(X - EX)$$

$$= E(X - EX)^{2}$$

$$= D(X).$$

即协方差退化为方差

Notation. 均方偏离函数: $f(x) = E(X - x)^2 \ge D(X)$, 当且仅当 x = E(X) 时 f(X) = D(X)

。 切比雪夫不等式 (概率论最基础的不等式)

$$P\{|X - EX| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}.$$

或:

$$P\left\{ \left| X - EX \right| > \varepsilon \right\} \ge 1 - \frac{D\left(X \right)}{\varepsilon}.$$

证明时使用:

$$P\left\{ (X - EX)^2 \le \varepsilon^2 \right\} \le \frac{D(X)}{\varepsilon^2}.$$

证明.

$$P\{|X - EX| \ge \varepsilon\} = \int_{|x - EX| \ge \varepsilon} f(x) dx$$

$$\le \int_{|x - EX| \ge \varepsilon} \frac{|x - EX|^2}{\varepsilon^2} f(x) dx$$

$$\le \int_{-\infty}^{+\infty} \frac{|x - EX|^2}{\varepsilon^2} f(x) dx$$

$$= \frac{1}{\varepsilon^2} \int_{-\infty}^{+\infty} (x - EX)^2 f(x) dx$$

$$= \frac{1}{\varepsilon^2} E(X - EX)^2$$

$$= \frac{D(X)}{\varepsilon^2}.$$

Notation. 切比雪夫不等式 \Longrightarrow 马尔可夫不等式 \Longrightarrow 协方差不等式 \Longrightarrow 阶乘不等式 \Longrightarrow ...

$$D(X) = 0$$
 的充要条件为 $P = 1$

Lecture 11

10.24

Review:

Notation. 数学期望的性质:

- 1. E(c) = c
- 2. E(cX) = cE(X)
- 3. E(X + Y) = E(X) + E(Y)
- 3.1 E(E(Y)X) = E(Y)E(X)
- 4. X, Y 相互独立, E(XY) = E(X) E(Y)

协方差:
$$cov(X,Y) = E(X - EX)(Y - EY) = E(XY) - E(X)E(Y)$$
 若 X,Y 独立则 $cov(X,Y) = 0$

Notation. 方差的性质:

1.
$$D(c) = 0$$

2.
$$D(cX) = c^2 D(X)$$

2.1.
$$D(X) = E(X - EX)^2 = E(X^2) - E(X)^2$$

3. X, Y 相互独立, D(X + Y) = D(X) + D(Y)

$$cov(X,Y) = E(X - EX)(Y - EY)$$

当 $X = Y$, $cov(X,Y) = cov(X,X) = E(X - EX)^2 = D(X)$
或: $cov(X,Y) = E(XY) - E(X)E(Y) = E(X^2) - E(X)^2$

Example. D(aX + bY + c) = D(aX + bY)

$$D(aX + bY) = E((aX + bY) - E(aX + bY))^{2}$$

$$= E(a(X - EX) + b(Y - EY))^{2}$$

$$= E(a^{2}(X - EX)^{2} + 2ab(X - EX)(Y - EY) + b^{2}(Y - EY)^{2})$$

$$= a^{2}D(X) + b^{2}D(Y) + 2abcov(X, Y).$$

。切比雪夫不等式:已知一个随机变量的方差可以估算出数学期望

Question. 一个随机变量 X 分布未知, 已知 $\mu = 18, \sigma = 2.5$, 求 $P\{X \in (8, 28)\}$

解:由切比雪夫不等式:

$$P\{X \in (8,28)\} = P\{X - 18 \in (-10,10)\}$$

$$= P\{|X - 18| < 10\}$$

$$= P\{|X - \mu| < \varepsilon\}$$

$$\geq 1 - \frac{\sigma^2}{\varepsilon^2}$$

$$= 1 - \frac{2.5^2}{10^2} = 0.9375.$$

。马尔可夫不等式

Example. $X_1, X_2, \dots, X_n : i.i.d, X \sim N(\mu, \sigma^2)$, 证明:

1.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

2. 设
$$Y_i = \frac{X_i - \mu}{\sigma}, i = 1, 2, ..., n$$
 则 $E\left(\sum_{i=1}^n Y_i^2\right) = n$

证明. 1. 由线性性:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(E\overline{X}, D\overline{X}\right).$$

由于 X 之间相互独立,有 $D(X_1 + X_2) = D(X_1) + D(X_2)$

$$E\overline{X} = \frac{1}{n} \sum_{i=1}^{n} EX_i = \mu, \quad D\overline{X} = \frac{1}{n^2} \sum_{i=1}^{n} DX_i = \frac{\sigma^2}{n}.$$

2. 由题: $EY_i = 0, DY_i = 1$

$$E\left(\sum_{i=1}^{n} Y_{i}^{2}\right) = \sum_{i=1}^{n} EY_{i}^{2}.$$

Notation. Y_i^2 符合自由度为 1 的卡方分布: $Y_i^2 \sim X^2$ (1)

$$\mathbb{H}: \sum_{i=1}^{n} E\left(Y_{i}^{2}\right) = nE\left(Y_{i}^{2}\right)$$

由方差的定义: $D(Y_i) = E(Y_i^2) - E(Y_i)^2$:

$$EY_i^2 = D(Y_i) + E(Y_i)^2 = 1 + 0^2 = 1$$

$$\sum_{i=1}^n E(Y_i^2) = nE(Y_i^2) = n.$$

4.4 协方差的性质

$$\circ \operatorname{cov}(X, Y) = \operatorname{cov}(Y, X)$$
 (对称性)
 $\circ \operatorname{cov}(aX, bY) = ab\operatorname{cov}(X, Y)$

证明. 已知:
$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$cov(aX,bY) = E(aXbY) - E(aX)E(bY)$$

$$= abE(XY) - abE(X)E(Y)$$

$$= abcovE(X,Y).$$

$$\circ \operatorname{cov}\left(c,X\right) = 0$$

Notation. 协方差用于衡量随机变量之间的线性关系,常数和其他随机变量不存在线性关系

证明.

$$cov(cX) = E(cX) - E(c)E(X)$$
$$= cE(X) - cE(X)$$
$$= 0.$$

Notation. cov(c, c) = D(c) = 0

$$\circ cov(aX + bY, cZ) = accov(X + Y) + bccov(Y + Z)$$
 (分配律)

证明.

$$\begin{aligned} \cos\left(aX + bY, cZ\right) &= E\left(\left(aX + bY\right)cZ\right) - E\left(aX + bY\right)E\left(cZ\right) \\ &= E\left(acXZ + bcYZ\right) - cEZ\left(aEX + bEY\right) \\ &= acE\left(XZ\right) + bcE\left(YZ\right) - acEXEZ - bcEYEZ \\ &= ac\cos\left(X, Z\right) + bc\cos\left(Y, Z\right). \end{aligned}$$

Notation.
$$\operatorname{cov}\left(\sum_{i=1}^{n}a_{i}X_{i},b_{i}Z\right)=\sum_{i=1}^{n}a_{i}b_{i}\operatorname{cov}\left(X_{i},Z\right)$$

Notation. $D\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i=1}^{n}a_{i}^{2}DX_{i}+\sum_{i=1}^{n}\sum_{j=1,j\neq i}^{n}a_{i}a_{j}\operatorname{cov}\left(X_{i},X_{j}\right)$

Lecture 11

4.5 相关系数

4.5.1 标准化

$$X^* = \frac{X - EX}{\sqrt{DX}}.$$

标准化后的变量 $EX^* = 0, DX^* = 1$

Definition. X^*, Y^* 的协方差 $cov(X^*, Y^*)$ 为 X, Y 的相关系数 $\rho(X, Y)$

$$cov(X^*, Y^*) = cov\left(\frac{X - EX}{\sqrt{D(X)}}, \frac{Y - EY}{\sqrt{DX}}\right)$$
$$= \frac{1}{\sqrt{DX}\sqrt{DY}}cov(X - EX, Y - EY).$$

易得 cov(X - EX, Y - EY) = cov(X, Y)

$$cov(X^*, Y^*) = \frac{cov(X, Y)}{\sqrt{DX}\sqrt{DY}}$$
$$= \rho(X, Y).$$

4.5.2 性质

$$\circ |\rho(X,Y)| \leq 1$$

。
$$P\left\{X^* = \pm Y^*\right\} = 1$$
 是 $\rho\left(X,Y\right) = \pm_1$ 的充要条件