7CCSMDLC: Distributed Ledgers & Cryptocurrencies Lecture 2: Cryptography

Peter McBurney

Professor of Computer Science Department of Informatics King's College London

Email: peter.mcburney@kcl.ac.uk

2021

Outline for today

- Cryptography & Hashing
- Operations of the Bitcoin Blockchain

- Unless otherwise stated, the diagrams are taken from:
 - Andreas Antonopoulos [2017]: Mastering Bitcoin. 2nd Edition. O'Reilly.
 - Version on Github at:

https://github.com/bitcoinbook/bitcoinbook/

- The licence allowing this is the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 - A copy of this license is at: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Any subsequent use of this content is under this this licence.

Cryptography & Hashing

Public & Private Keys

Source: WikiBooks: Communications & Networking

Hashing

- Converts a digital object of arbitrary length (eg, a document, an image) into a single string of fixed length (a hash)
 - Not continuous
 - Two similar documents result in very different hashes.
 - Very hard to reverse engineer
 - Thus, a form of encryption.

See examples next slide.

Hashing in Bitcoin blockchain:

- Hashing of public keys for bitcoin address
- Encryption of private keys
- The work for Proof-of-Work (PoW) (hashcash algorithm)
- Each block contains hash of the merkle root of the transactions in that block.
- Each block contains hash of the header of the previous block
- Payloads may be hashed.

Examples of hashing similar phrases

```
I am Satoshi Nakamoto0 => a80a81401765c8eddee25df36728d732...
Lam Satoshi Nakamoto1 => f7bc9a6304a4647bb41241a677b5345f
Lam Satoshi Nakamoto2 => ea758a8134b115298a1583ffb80ae629
Lam Satoshi Nakamoto3 => bfa9779618ff072c903d773de30c99bd...
l am Satoshi Nakamoto4 => bce8564de9a83c18c31944a66bde992f...
Lam Satoshi Nakamoto5 => eb362c3cf3479be0a97a20163589038e
Lam Satoshi Nakamoto6 => 4a2fd48e3be420d0d28e202360cfbaba
I am Satoshi Nakamoto7 => 790b5a1349a5f2b909bf74d0d166b17a...
Lam Satoshi Nakamoto8 => 702c45e5b15aa54b625d68dd947f1597...
Lam Satoshi Nakamoto9 => 7007cf7dd40f5e933cd89fff5b791ff0
I am Satoshi Nakamoto10 => c2f38c81992f4614206a21537bd634a...
Lam Satoshi Nakamoto11 => 7045da6ed8a914690f087690e1e8d66...
Lam Satoshi Nakamoto12 => 60f01db30c1a0d4cbce2b4b22e88b9b
I am Satoshi Nakamoto13 => 0ebc56d59a34f5082aaef3d66b37a66...
I am Satoshi Nakamoto14 => 27ead1ca85da66981fd9da01a8c6816...
I am Satoshi Nakamoto15 => 394809fb809c5f83ce97ab554a2812c...
```

Hashing used to chain blocks together

Source: Nakamoto 2008

Bitcoin "address"

A bitcoin address is a string of 26-35 alphanumeric characters in Base58Check encoding, beginning with the number 1 or 3:

1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV

or

3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy

- It is a hash of a public key or the hash of a script.
- Two common types of transaction pay to such addresses:
 - P2PKH (Pay-to-Public-Key-Hash)
 - P2SH (Pay-to-Script-Hash)
- The address represents the destination of a payment, and acts to redeem the encumbrance of a payment.

Public key conversion to Bitcoin address

Private and public keys and Bitcoin address

Merkle Tree

Merkle path

To prove transaction K included in hash, need only provide 4 hashes (each 32 bytes long): hashes for L, IJ, MNOP & ABCDEFGH.

Operation of the Bitcoin Blockchain

Bitcoin blockchain - Components

- Bitcoin
 - 1 satoshi = 10^-8 Bitcoin = 0.00000001 Bitcoin = smallest possible unit
 - 1 Bitcoin = 100 million satoshis
 - 1 MilliBit = 0.001 Bitcoin = 100,000 satoshis
- Total number of BTC to be issued: 2,099,999,997,690,000 satoshis
 - Almost 21 million BTC
 - Will be achieved in ca. 2140 (13.4 million blocks)
 - Current number of BTC mined: 18,606,406.25 BTC

Components:

- Users with wallets
- Transactions
- Miners
- Light vs. full clients.

Blockchain assumes a peer-to-peer (P2P) network No node is in control.

Bitcoin core

Bitcoin Scripting Language: Script

- Called "Script"
 - Reverse-Polish notation stack-based execution language
 - Instead of (3+5) X 2, we write 35+2X
 - The syntax of Script is like that of the programming language Forth
- Two stack operations:
 - Push (adds an item to the top of the stack)
 - Pop (removes the item at the top of the stack)
- Items are processed left to right
 - Eg: OP_ADD
 - Pops two items from stack, adds them, and pushes sum to stack.

- Script is deliberately simple & widely applicable
 - Not hardware dependent
 - Enables execution on devices with limited memory (eg, embedded devices)
 - Stateless
 - No state prior to execution, no state saved after execution
- Deliberately does not permit loops or complex program control features
 - This means predictable execution times
 - No infinite loops
 - Makes attacks more difficult
 - Not Turing-complete.
- Ethereum was developed to allow Turing-complete computation over a blockchain.

- Wallet is the primary user interface
 - Controls access to a user's bitcoin
 - Manages keys and addresses
 - Tracks current balance
 - Enables creation and signing of transactions.
- May be held on client machine or on an exchange
- Wallet can keep a copy of the transaction
 - Or can query the chain when needed
- Wallet also refers to the data structure used to store and manage a user's keys and address.

Maturity

When the project was started.

Table

Client	Get Started	Audience	Wallet Security	Network Security	Backups	Setup Time	Disk Space	Maturity	Multi- user	Available for
Airbitz	Download &	Everyone	Encrypted, on-device. Server backup	Partial	Automatic	Instant	20 MB	Oct 2014	Multi- wallet	• •
Armory	Download &	Power users	Encrypted, on-device	Addon	One-time	Hours	150+ GB	Jul 2011	Multi- wallet	∆ X.
Bitcoin Core	Download &	End-users	Encrypted, on-device	Full	Manual	Hours	120+ GB	May 2011	No	∆ X.
Bitcoin Knots	Download &	End-users	Encrypted, on-device	Full	Manual	Hours	5 GB	Dec 2011	Multi- wallet	∆ X.
bitcoind	Download &	Programmers	Encrypted, on-device	Full	Manual	Hours	120+ GB	Aug 2009	No	Δ₩
Bitcoin Explorer	Download &	Power Users	Ephemeral, Multisig Optional	Full w/local node	BIP39	Instant	3 МВ	May 2011	Multi- wallet	ΔX
libbitcoin- explorer	Build It Yourself &	Programmers	Ephemeral, Multisig Optional	Full w/local node	BIP39	Instant	3 МВ	May 2011	Multi- wallet	⊕∆ X
Bitcoin Wallet	Google Play & BlackBerry World &	End-users	Isolated, on-device	Partial	Manual	Instant	15 MB	Mar 2011	on JB tablets	• #3
			Encrypted, on-device,							

⊕ 99%
 ■

Processing of Transactions

Any node Miners

Origination

Broadcast

Validation of transaction and propagation

Transactions aggregated into Block and PoW

Validation of block and Confirmation

- Transactions move value from inputs to outputs
- A transaction has at least 1 input and at least 1 output
- If the Value of Outputs < Value of Inputs</p>
 - Implied difference between outputs and inputs is taken by the miner as a fee for processing the transaction

Transactions as inputs and outputs

	Transaction as Doub	ole-Entry Bookkeeping	
Inputs	Value	Outputs	Value
Input 1 Input 2 Input 3 Input 4	0.10 BTC 0.20 BTC 0.10 BTC 0.15 BTC	Output 1 Output 2 Output 3	0.10 BTC 0.20 BTC 0.20 BTC
Total Inputs:	0.55 BTC	Total Outputs:	0.50 BTC
- //	Inputs 0.55 BTC Outputs 0.50 BTC Difference 0.05 BTC (imp	lied transaction fee)	

Common transaction: one to one plus change

Transaction aggregating funds: Many to one

Transaction distributing funds: one to many

Metaphor — Mixing buckets of water

Images: West Roane County Fire Department

A sequence of transactions

A chain of transactions: Joe to Alice to Bob to Gopesh

Transactions — block explorer view

Transaction View information about a bitcoin transaction

0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2

1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK (0.1 BTC - Output)

97 Confirmations

0.0995 BTC

Summary	
Size	258 (bytes)
Received Time	2013-12-27 23:03:05
ncluded In	277316 (2013-12-27 23:11:54 +9
Blocks	minutes)

Inputs and Outputs	
Total Input	0.1 BTC
Total Output	0.0995 BTC
Fees	0.0005 BTC
Estimated BTC Transacted	0.015 BTC

Thank you!

peter.mcburney@kcl.ac.uk