Instituto de Física Gleb Wataghin UNICAMP

F315 Mecânica Geral - Prova 3 - turmas A e B

1o. Semestre de 2012

Nome: GABARITO

RA:

Turma:

Esta prova contém 4 folhas. Pode-se usar o verso destas folhas para a resolução dos exercícios e para rascunho.

 Considerando a ação S de um sistema físico unidimensional definida como:

$$S = \int_{t_1}^{t_2} L\{x(t), \dot{x}(t); t\} dt,$$

onde $L\{x(t),\dot{x}(t);t\}$ é a Lagrangiana do sistema e $\dot{x}(t)=\frac{dx(t)}{dt},$

- (a) (2 pontos) enuncie o Princípio de Hamilton e
- (b) (3 pontos) deduza detalhadamente a Equação de Euler-Lagrange, isto é, as condições sobre $L\{x(t),\dot{x}(t);t\}$ para que o Princípio de Hamilton seja satisfeito.

2. Considere um sistema composto por dois corpos de massa m_1 e m_2 sujeitos à ação da aceleração da gravidade g e conectados por uma corda de comprimento l que passa por uma polia sem massa e sem atrito, como mostrado na figura.

Utilizando o formalismo de Euler-Lagrange, determine:

- (a) (1 ponto) a Lagrangiana do sistema,
- (b) (1 ponto) a equação de vínculo do sistema,
- (c) (2 pontos) as equações do movimento do sistema escritas a partir da Equação de Lagrange com Vínculos,
- (d) (1 ponto) as posições em função do tempo $x_1(t)$ e $x_2(t)$ referentes aos dois corpos, considerando que o sistema parte do repouso da posição onde $x_1(t=0)=0$.

Dado: Equação de Lagrange com Vínculos: $\frac{\partial L}{\partial a_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} + \sum_k \lambda_k(t) \frac{\partial f_k}{\partial q_j} = 0$

a)
$$T_1 = \frac{m_1 \dot{x}_1^2}{2}$$
, $T_2 = \frac{m_2 \dot{x}_2^2}{2}$, $U_1 = -m_1 a_1 x_1$, $U_2 = -m_2 a_1 x_2$ $\Rightarrow L = T_1 + T_2 - U_1 - U_2$

Note one, dadas as undique iniciais $X_{L}(t=0) = \sqrt{1}(t=0) = 0$ e o vínculo,

a situação písica descrita no problema implica que te $m_1 < m_2$, o cirtura está parado em $X_1(t) = 0$ e $X_2(t) = l$