

Objetivo da aula Discutir, de um ponto de vista macroscópico, as atividades e técnicas relacionadas com o controle da qualidade Ustificativa uma visão abrangente das técnicas de controle da qualidade facilita a compreensão da interdependência entre elas e com os processos de desenvolvimento Fev 2015 Amdt von Stas © LES/DI/PUC-Rio 2

Processo de desenvolvimento

 Software, por mais que nos esforcemos, conterá defeitos, portanto poderá falhar.

- o que você sugere fazer para poder assegurar que o software terá pelo menos qualidade por desenvolvimento satisfatória?
- o que você sugere fazer para poder assegurar que o software terá pelo menos qualidade por manutenção satisfatória?

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

Ciclo de vida total (bem simplificado) LES Solicitações Manutenção exógenas Repositório de versões Registros de Revisão ou Disponibi-Desenvoldemandas Inspeção vimento lização Melhorias, Falhas Teste simples Falhas ou contínuo Novas Avaliação necessidades ao usar Scripts de integração e teste Arndt von Staa © LES/DI/PUC-Rid

Processo visando qualidade e economia

- Todos os artefatos devem ser desenvolvidos procurando, desde o início de seu desenvolvimento, minimizar a possível existência de defeitos
 - quanto menos defeitos existirem antes de se realizar os primeiros testes, mais nos aproximamos do ideal correto por construção
 - quanto mais defeitos existentes forem identificados, diagnosticados e removidos antes de liberar para o uso, mais nos aproximamos do ideal correto por desenvolvimento
 - quanto mais cedo forem identificados, menor será o retrabalho inútil
 - quanto menos recursos forem necessários para controlar a qualidade e corrigir mais econômico será o desenvolvimento

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Objetivos do controle

- O objetivo do controle da qualidade é identificar discrepâncias com relação aos interesses explícitos e implícitos dos usuários e clientes, com relação a
 - requisitos funcionais, não funcionais, de interface humano-sistema e outros
 - o controle deve ser realizado considerando todos os artefatos
 - requisitos
 - arquitetura
 - projeto da interface humano-sistema (look and feel)
 - projeto lógico
 - suítes de teste
 - código
 - documentação para o usuário
 - . . .

IHC <= IHS – interface humano-sistema é mais amplo, pois engloba também as interações que não são estritamente dirigidas a computadores

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

Objetivos do controle: usuários e clientes

- LES
- Identificar (é possível dizer "todas as"?) discrepâncias com relação ao que é esperado pelos usuários e clientes
 - serviços de fato prestados pelo artefato
 - confronto dos serviços com o desejado pelo usuário
 - verificar se é a implementação fidedigna (correta e completa) do problema correto
 - interface com o usuário
 - facilidade de uso
 - facilidade de aprendizado
 - adequação à cultura do usuário
 - segurança
 - capacidade de tolerar e recuperar de erros do usuário (clemência)
 - baixo custo considerando a vida útil
 - CTP custo total de propriedade (TCO total cost of ownership)

- . . .

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Objetivos do controle: especificação

- Identificar discrepâncias com relação à especificação do artefato
 - requisitos funcionais
 - relacionados ao domínio da aplicação
 - requisitos de interface com o usuário
 - requisitos não funcionais
 - em geral são os requisitos de qualidade
 - segurança
 - capacidade de processamento
 - escalabilidade
 - . . .
 - requisitos inversos
 - coisas que não podem acontecer
 - condições de aceitação
 - condições contratuais

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

11

Propriedades do controle: perfeição?

- O controle da qualidade é
 - um filtro imperfeito
 - identifica somente uma parte dos problemas existentes
 - defeitos, deficiências e vulnerabilidades observadas
 - os demais problemas permanecem e são desconhecidos
 - defeitos, deficiências e vulnerabilidades remanescentes
 - na indústria hoje software muito bom tem cerca de 1 defeito para cada 1.000 linhas de código
 - mas pouco software é muito bom \dots
 - o estado da prática precisa melhorar muito!
 - existe gente que trabalha com algo próximo a 1 / 10.000 LOC
 - problema da existência: podemos procurar e encontrar defeitos, mas se não encontrarmos não podemos concluir que não existam
- estado da prática
- o que se pratica costumeiramente nas organizações
- estado da arte
- o nível de desenvolvimento mais avançado que se consegue com o conhecimento atual

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Contexto

- O grau de qualidade a ser atingido depende do contexto:
 - natureza do sistema, ex.
 - sistema de busca de informação
 - sistema de controle de processo contínuo
 - existência de legislação a ser respeitada, ex.
 - certificação de software automotivo
 - consequências de eventuais erros, ex.
 - aborrecimentos
 - perda de vida
 - tempo de vida esperado, ex.
 - a ser usado poucas vezes, ou por pouco tempo
 - a ser usado por longo tempo
 - a ser usado e substituído por similar durante a existência da organização cliente

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

. .

Propriedades do controle

- Cada técnica de controle da qualidade possui seu domínio de eficácia
 - classe de defeitos mais naturalmente encontrados ao aplicar a técnica
- Como reduzir a chance de defeitos existentes passarem despercebidos?
 - utilize diversas técnicas de controle da qualidade
 - procure usar técnicas rigorosas, ex. argumentação da corretude
 - cuidado com excesso de zelo
 - muitas técnicas rigorosas são caras e não trazem benefícios compatíveis
 - utilize instrumentação para controlar a integridade em tempo de execução

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Propriedades do controle: resultado

- O resultado do controle da qualidade é um laudo
 - relaciona os problemas identificados, falhas, incidentes
- O laudo pode assumir diversas formas
 - relatório em formato livre relacionado com o artefato
 - anotações no próprio artefato
 - ex. acompanhamento de alterações do Word
 - log gerado por ferramentas de controle da qualidade
 - caderno de registro de problemas
 - listas de pendências (to do lists, backlog)
 - ferramentas de registro e acompanhamento: Bugzilla, Jira, ...
 - conjunto de fichas de acompanhamento de problema
 - rascunhos, lembranças → isso é péssimo 🖰

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

15

Propriedades do controle: assegura o que?

- Controle da qualidade não assegura qualidade!
 - controle da qualidade não corrige!
 - como já foi dito, o resultado do controle é um laudo
 - controle da qualidade somente verifica o quanto o artefato se aproxima da qualidade desejada
 - procura encontrar e relatar defeitos, deficiências ou falhas
- Entretanto, saber como será controlado antes de desenvolver induz o desenvolvedor a se aproximar, por construção, da qualidade requerida pelo controle
- Weinberg, G.M.; *The Psychology of Computer Programming*; 2nd edition; Dorset House; 1998 Obs. a primeira versão foi publicada há mais de 30 anos...

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Propriedades do controle

Controle da qualidade não assegura qualidade!

- Porém, a solução dos problemas identificados no laudo pode levar à melhoria da qualidade
 - Cabe à equipe de desenvolvimento resolver os problemas indicados pela gerência
 - de forma completa
 - diagnose para determinar a causa exata (defeito) da falha
 - depuração para eliminar completamente a causa
 - sem gerar novos defeitos !!!
 - procurando aprender com os erros, para evitar cometê-los de novo

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

. _

Propriedades do controle: planejamento?

- O controle da qualidade de cada artefato deve ser planejado (definido) junto com a especificação, arquitetura, projeto e codificação
 - que padrões e normas devem ser obedecidos?
 - como serão verificadas as especificações?
 - as especificações são verificáveis? São testáveis?
 - que controles e quando devem ser aplicados?
 - que ferramentas serão utilizadas?
 - que instrumentação e quando deve ser incluída?
 - como será testado?
 - plano de teste
 - como será aceito?
 - quais são os critérios de aceitação?
 - quando sei que testei o suficiente?

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Propriedades do controle

- Corolário: todos os itens das especificações e dos padrões precisam ser verificáveis!
 - é verificável se for possível mostrar o que vale e o que NÃO vale
 - inclusive os requisitos que tratam de qualidade
 - sem dispor de uma especificação verificável como posso dizer racionalmente o que seria aceitável?
 - implica a manutenção contínua (co-evolução) das especificações
- Ideal: todos os itens das especificações funcionais e não funcionais deveriam ser testáveis
 - de preferência de forma automática
 - teste automático é uma forma verificável de especificação através de exemplos

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

10

Propriedades do controle

- Após cada alteração é necessário repetir o controle da qualidade
 - isso compromete a produtividade
 - gera perdas devido ao retrabalho
 - retrabalho inútil, quando se trata de correção

Custos? Como evitar que cresçam demasiadamente?

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Propriedades do controle

• Sugestão: automatizar o controle da qualidade

- como fazê-lo com relação a código?
 - é possível ser feito para tudo o que é código?
 - i.e. é possível automatizar o teste de todos os aspectos do código?
- como fazê-lo com coisas que não são código?
 - ex. consistência entre tutoriais e help e a implementação
- como fazê-lo com relação a
 - arquitetura
 - projeto
 - modelos
 - •

Fev 201

rndt von Staa © LES/DI/PUC-Ric

21

Controle passo a passo

- Deve-se assegurar continuamente a coerência entre todos os artefatos
- O controle da qualidade deve envolver todos os tipos de artefatos, ex.
 - programas
 - documentos para o usuário
 - inclusive os de marketing
 - sistemas de instalação
 - sistema de auxílio
 - tutoriais
 - bases de dados inicializadas
 - arquivos de dados persistentes
 - . . .

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Atividades do controle da qualidade

- *Validação*: controla a qualidade dos *inter-relacionamentos* entre artefatos
 - examina se não existem conflitos com outros artefatos
 - em especial com relação às especificações
 - examina se o conjunto de artefatos forma um todo coerente
 - examina se todas as interfaces entre artefatos são respeitadas

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

2 =

Atividades do controle da qualidade

- Se passou pela verificação e pela validação, o artefato estará correto com relação à sua especificação e a outros artefatos, segundo a forma de controle usada.
 - implementação correta do problema especificado
 - infelizmente se a especificação não estiver correta: pode levar à implementação correta do problema errado
 - para o usuário estará errado, tanto faz a causa

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Atividades do controle da qualidade

- Aprovação: controla a qualidade do artefato com relação às atuais necessidades e expectativas explícitas e implícitas dos usuários
 - para especificações (tudo o que está no lado criação do "V"):
 - examina se a solução proposta *poderá vir a* atender às **atuais** necessidades e expectativas do usuário
 - para implementações (tudo que está no lado integração do "V"):
 - examina se o artefato efetivamente atende às atuais necessidades, expectativas do usuário ou potenciais usuários
 - para antecipar a aprovação é recomendado desenvolver de forma incremental
 - ao término de cada incremento examina-se a satisfação das necessidades explícitas e implícitas dos usuários
 - implica que cada incremento leve a alguma coisa útil

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

27

Atividades do controle da qualidade

- Se passou pelas três: verificação, validação e aprovação, o artefato será, em princípio, uma implementação correta do problema correto
 - por que o pé atrás: "em princípio"?

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Laudo, registro de problemaArtefato (construto)

- nome
- versão
- data
- quem
- como:
 - revisão, inspeção
 - caso de teste
 - 1150
 - outros, ex. desenvolvimento de outro artefato
- Tipo do problema reportado
 - código
 - consulta
 - documentação
 - especificação (design)
 - sugestão

Fev 2015

Arndt von Staa © LES/DI/PUC-Ri

Registro de problema

- Severidade
 - Possíveis danos provocados pelo problema
 - É possível continuar a usar?
 - não, provoca danos sérios
 - não, é impossível utilizar os resultados
 - sim, se evitar a região problemática
 - sim, usando outra sequência de trabalho
 - sim, se desprezar alguns resultados
 - sim, pois somente incomoda
- É reprodutível?
 - identificação do problema
 - descrição do problema e como reproduzi-lo
- Sugestão de solução
 - isso nem sempre é desejável

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Registro de problema

- Solução
 - estado da solução
 - datas de mudança de estado
 - responsáveis pelo trabalho nos estados de execução (ver a seguir)
 - descrição da solução
 - artefatos criados, alterados, eliminados
 - versões resultantes
 - possíveis causas das faltas identificadas
- FAP Ficha de acompanhamento de problemas
 - registra o problema e a evolução da solução até ter sido completamente resolvido

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

Técnicas de controle da qualidade

- Técnicas de controle sem execução do artefato
 - Prova formal da corretude
 - demonstração matemática da correspondência exata entre o artefato e a sua especificação formal
 - Argumentação da corretude
 - verificação baseada em matemática da correspondência entre o artefato e a sua especificação suficientemente formal
 - não necessariamente formal
 - utiliza os princípios de prova formal da corretude, mas sem o mesmo rigor
 - ex. assume-se que funções e/ou pseudo-instruções implementam corretamente a sua especificação
 - um programa argumentado correto pode conter defeitos
 - infelizmente a prática mostra o mesmo para programas provados corretos, embora com frequência menor

Yelowitz, L.; Gerhart, S.L.; "Observations of fallibility in applications of modern programming methodologies"; *IEEE Transactions on Software Engineering* 2(9); 1976; pags 195-207

ev 2015

Arndt von Staa © LES/DI/PUC-Ri

22

Técnicas de controle da qualidade

- Técnicas de controle sem execução do artefato
 - Verificação de modelos
 - Revisões
 - leitura do artefato, com ou sem narrações para terceiros
 - Inspeções
 - semelhante a revisões, mas realizadas segundo um procedimento definido, documentado e controlado
 - Desenvolvimento em pares
 - duas pessoas trabalhando juntas em uma mesma estação de trabalho
 - uma digita e a outra controla o que está sendo digitado, dá sugestões, verifica a aderência a padrões, ...

Fev 2015

Arndt von Staa © LES/DI/PUC-Ric

Técnicas de controle da qualidade

- Técnicas de controle sem execução do artefato
 - Teste estático, análise estática
 - exame de propriedades de um artefato sem pô-lo em operação
 - exemplos:
 - verificar se os padrões de programação estão sendo observados
 - verificar se as grandezas envolvidas no cálculo são coerentes
 - verificar se, para cada throw, existe um catch capaz de interceptar a exceção sinalizada
 - verificar se pode ocorrer deadlock ou condição de corrida
 - verificar se as assertivas são asseguradas pelo código
 - » possível só em parte
 - Medição estática
 - obtenção de medidas estruturais relativas ao artefato
 - as medidas indicam a probabilidade da presença de problemas
 → bad smells
 - » ex. complexidade (número) ciclomática (McCabe) correlaciona (supostamente) com a densidade de defeitos

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

35

Técnicas de controle da qualidade

- Técnicas de controle com execução indireta
 - Simulações
 - modelos que permitem predizer ou avaliar propriedades do artefato (especificação)
 - Protótipos
 - versões experimentais e descartáveis de aspectos do artefato
 - não são liberações (*releases*) em um desenvolvimento incremental!

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

Técnicas de controle da qualidade

- Técnicas de controle com execução direta
 - Testes
 - condução de experimentos controlados envolvendo a execução do artefato
 - Medição dinâmica
 - obtenção de medidas relativas ao comportamento do artefato durante a execução
 - Instrumentação
 - código de controle da integridade ou de medição contido nos artefatos
 - código de controle da cobertura dos testes contido nos artefatos
 - Aprovação a cada iteração
 - teste realizado pelo usuário a fim de verificar se o construto corresponde às suas expectativas explícitas e implícitas
 - viabiliza o controle da qualidade de especificações antes de se dispor do sistema completo

Fev 2015

rndt von Staa © LES/DI/PUC-Ric

27

Referências

- Borba, P.; Cavalcanti, A.; Sampaio, A.; Woodcock, J.; eds.; Testing
 Techniques in Software Engineering; Berlin: Springer, Lecture Notes in
 Computer Science; LNCS 6153; 2010
- Staa, A.v.; *Programação Modular*; Rio de Janeiro: Campus; 2000
- Weinberg, G.M.; The Psychology of Computer Programming; 2nd edition;
 Dorset House; 1998
- Yelowitz, L.; Gerhart, S.L.; "Observations of fallibility in applications of modern programming methodologies"; IEEE Transactions on Software Engineering 2(9); 1976; pags 195-207

Fev 2015

Arndt von Staa © LES/DI/PUC-Rio

