Circuits Description

Luís Paulo Santos, Jul.2025

Summary

This document describes the classes of quantum circuits and respective data, available at https://github.com/luisps/ExperimentalData.git

Índice

Summary	1
Class SU - variational EfficientSU2	1
Circuit SU5: 5 qubits, 1 rep	2
Circuit SU15: 15 qubits, 2 rep	2
Circuit SU25: 25 qubits, 2 rep	2
Class HSC - Hidden Shift Circuits	3
Circuit 41256- Hidden shift: 256 qubits, hidden string = 1023	3
Circuit 411024- Hidden shift: 1024 qubits, hidden string = 1023	3
Circuit 414096- Hidden shift: 4096 qubits, hidden string = 1023	3
Class IQP Inversion test	3
Circuit IQP5: 5 qubits	3
Circuit IQP15: 15 qubits	4
Circuit IQP25: 25 qubits	4
Class RND - Random Circuits	4
Circuit RND8- Random: 8 qubits, nCycles = 6	4
Circuit RND10- Random: 10 qubits, nCycles = 7	4
Circuit RND512- Random: 12 qubits, nCycles = 8	5

Class SU – variational EfficientSU2

This class of circuits corresponds to the so-called "hardware efficient" ansatz for variational circuits. It is obtained with the Qiskit method:

```
EfficientSU2(num_qubits, entanglement='linear', reps=reps)
```

The number of qubits and the number of layer repetitions is varied for the different circuit instances below.

Circuit SU5: 5 qubits, 1 rep

8 layers

3.436e+10 paths =
$$2^{(5*(8-1))} = 2^{35}$$

 $\langle 0|U|0 \rangle = -0.00172150 + 0.00127863 j$

Circuit SU15: 15 qubits, 2 rep

22 layers

6.675e+94 paths =
$$2^{(15*(22-1))} = 2^{315}$$

 $\langle 0|U|0 \rangle = 0.00364578+0.00060584j$

Circuit SU25: 25 qubits, 2 rep

32 layers

2.e+233 paths =
$$2^{(25*(32-1))}$$

 $\langle 0|U|0\rangle = -0.00012 + 0.00007j$

Class HSC – Hidden Shift Circuits

Deterministic circuits, in the sense that only one basis state in the output has an amplitude different from 0 (= 1.0).

These are based on the algorithm (and code) presented in Peres, Filipa 2023 (sec 4.1) https://arxiv.org/pdf/2203.01789.pdf

Circuit 41256- Hidden shift: 256 qubits, hidden string = 1023

```
43 layers paths = 2^{(256*(43-1))} \langle 1023|U|0\rangle = 1.0 + 0.0j
```

Circuit 411024- Hidden shift: 1024 qubits, hidden string = 1023

```
43 layers

paths = 2^{(1024*(43-1))}

\langle 1023|U|0\rangle = 1.0 + 0.0j
```

Circuit 414096- Hidden shift: 4096 qubits, hidden string = 1023

```
43 layers 2^{(4096*(43-1))} \langle 1023|U|0 \rangle = 1.0 + 0.0 \dot{7}
```

Class IQP Inversion test

Inversion test of two random states encoded using IQP. The probability of $P(|0>^n)$ is the overlap between the states.

Circuit IQP5: 5 qubits

17 layers

1.209e+24 paths =
$$2^{(5*(17-1))} = 2^{80}$$

 $\langle 0|U|0 \rangle = -0.104462+0.106694j$

Circuit IQP15: 15 qubits

55 layers

6.828e+243 paths =
$$2^{(15*(55-1))} = 2^{810}$$

 $\langle 0|U|0 \rangle = -0.00128171-0.00008649 \dot{\eta}$

Circuit IQP25: 25 qubits

97 layers

paths =
$$2^{(25*(97-1))} = 2^{2400}$$

 $\langle 0|U|0 \rangle = -0.00013443-0.00022139j$

Class RND – Random Circuits

Randomly generated circuits. These are based on the algorithm (and code) presented in Peres, Filipa 2023 (sec 4.2)

https://arxiv.org/pdf/2203.01789.pdf

Circuit RND8- Random: 8 qubits, nCycles = 6

9 layers

1.845e+19 paths =
$$2^{(8*(9-1))} = 2^{64}$$

 $\langle 0|U|0 \rangle = -0.04419417+0.10669417 j$

Circuit RND10- Random: 10 qubits, nCycles = 7

13 layers

paths =
$$2^{(10*(13-1))} = 2^{120}$$

 $\langle 0|U|0\rangle = 0.02209709+0.05334709j$

Circuit RND512- Random: 12 qubits, nCycles = 8

15 layers paths = $2^{(12*(15-1))} = 2^{168}$ $\langle 16|U|0\rangle = 0.009153-0.022097j$