Atividade de aplicação: Transformação de variáveis aleatórias Introdução

Com frequência, o conjunto de grandezas que se pretende determinar com uma medida é diferente daquele obtido no ajuste dos parâmetros do modelo aos dados experimentais. A forma prática de realizar a transformação é usar as fórmulas (3.16) e (3.17) da seção 3.4, especialmente quando as covariâncias entre os parâmetros *não* são nulas.

Este exercício inicia com o ajuste dos parâmetros de uma função $y(\vec{b}\,;\theta)$ de três parâmetros, $\vec{b}=\{b_0,b_2,b_4\}$, a dados $\{(\theta_i,y_i,\sigma_i),i=1..N\}$, com σ_i o desvio-padrão de y_i , que simulam resultados de um experimento de correlação angular, com vistas a determinar valores interpolados da função para certos ângulos. Depois, calculam-se os coeficientes da expansão dessa função em funções especiais, $y(\vec{a}\,;\theta)=\sum_{\kappa}a_{\kappa}P_{\kappa}(\cos\theta)$, pela regra de transformação $\vec{a}=\mathbf{C}\vec{b}$, com a matriz \mathbf{C} apropriada. Finalmente, determina-se a matriz de covariância de \vec{a} que, junto com a função y nessa outra forma, permitirá calcular os mesmos valores interpolados e sua matriz de covariância. Se o procedimento for correto, a representação da função não interferirá nesses resultados. Além disso, o ajuste direto dos parâmetros \vec{a} aos dados experimentais deve resultar em coeficientes e matriz de covariância idênticos aos obtidos pela transformação de coeficientes efetuada.

Descrição do problema

Em uma medida de correlação angular típica, determina-se o número de eventos de detecção simultânea de duas partículas produzidas simultaneamente, uma em cada um de dois detetores, em função do ângulo entre eles, para um mesmo tempo — veja figura 1.

Figura 1. Arranjo de dois detetores para medida de correlação angular. O detetor A é mantido fixo, enquanto B pode ser posicionado em diversos ângulos θ relativamente ao primeiro.

Assim, os dados experimentais consistem no conjunto $\{(\theta_i,y_i,\sigma_i),i=1..N\}$. Nesta atividade, a função modelo é

$$y(\vec{b};\theta) = b_0 + b_2(\cos\theta)^2 + b_4(\cos\theta)^4 \qquad (1)$$

que também pode ser escrita

$$y(\vec{a};\theta) = a_0 + a_2 P_2(\cos\theta) + a_4 P_4(\cos\theta)$$
 (2)

com

$$P_2(\cos\theta) = \frac{1}{2}(3(\cos\theta)^2 - 1)$$
 (3)

$$P_4(\cos\theta) = \frac{1}{8}(35(\cos\theta)^4 - 30(\cos\theta)^2 + 3) \tag{4}$$

A substituição das expressões (3) e (4) em (2) permite determinar os coeficientes b_0 , b_2 , b_4 a partir de a_0 , a_2 , a_4 . As relações obtidas podem ser arranjadas na forma de matriz

$$\vec{h} = \mathbf{R}\vec{a}$$

em que **B** é uma matriz quadrada.

Como primeira etapa do trabalho, determine a matriz ${\bf B}$ e, a partir dela, determine a matriz ${\bf C}$ que faz a transformação inversa,

$$\vec{a} = \mathbf{C}\vec{b} \tag{5}$$

O método dos mínimos quadrados permite determinar estimativas $\hat{\vec{b}}$ dos parâmetros da função da fórmula (1) a partir dos dados $\{(\theta_i,y_i),i=1..N\}$, bem como determinar sua matriz de covariância, $\mathbf{V}_{\hat{b}}$. Com esses resultados $-\hat{\vec{b}}$ e $\mathbf{V}_{\hat{b}}$ – pode-se determinar $\hat{\vec{a}}$ e $\mathbf{V}_{\hat{a}}$, em que $\mathbf{V}_{\hat{a}}$ é a matriz de variância de $\hat{\vec{a}}$.

Pode-se interpolar valores para vários ângulos, como os do conjunto $\phi = \{\varphi_j, j = 1..M\}$, usando repetidamente a fórmula (1). Sua matriz de covariância pode ser calculada pelas fórmulas (3.6) e (3.7), neste caso

$$\mathbf{V}_{\nu(\phi)} = \mathbf{F} \, \mathbf{V}_{\hat{b}} \, \mathbf{F}^t \tag{6}$$

com os elementos de matriz de F dados pela fórmula (3.17), portanto

$$F_{j\kappa} = \left(\cos\varphi_j\right)^{2(\kappa-1)}$$

que é uma matriz de M linhas (tantas quantos valores de φ) e três colunas (tantas quantos parâmetros ajustados).

Execução da atividade

Procure no arquivo dadosAtividade1.dat, na tarefa do moodle correspondente a esta atividade, o seu nome. Os dados que você deve analisar estão logo em seguida. Os ângulos foram fornecidos com muitos dígitos porque representam múltiplos exatos de $\pi/6$, e sua incerteza deve ser ignorada. As etapas da análise são:

- i. obter os coeficientes $\hat{\vec{b}}$ ajustados aos seus dados pelo Método dos Mínimos Quadrados. Testar a qualidade do ajuste pelo gráfico dos resíduos normalizados e pelo teste de qui-quadrado.
- ii. determinar os valores da função para os ângulos do conjunto $\phi = \{20^\circ, 40^\circ, 70^\circ, 85^\circ\}$, junto com sua matriz de covariância, usando os resultados obtidos $(\hat{\vec{b}} \in \mathbf{V}_{\hat{b}})$.

- iii. Determinar os coeficientes $\hat{\vec{a}}$ com a fórmula (5), bem como a matriz de covariâncias $\mathbf{V}_{\hat{b}}$, com uma fórmula análoga à (6), usando \mathbf{C} no lugar de \mathbf{F} . Verificar graficamente que $y(\hat{\vec{a}};\theta)=y(\hat{\vec{b}};\theta)$ para todos ângulos.
- iv. determinar os valores da função para os ângulos do conjunto $\phi = \{20^\circ, 40^\circ, 70^\circ, 85^\circ\}$, junto com sua matriz de covariância, usando os resultados obtidos ($\hat{\vec{a}} \in \mathbf{V}_{\hat{a}}$).
- v. Verificar a compatibilidade dos resultados dos itens ii e iv.
- vi. obter os coeficientes $\hat{\vec{a}}$ ajustados aos seus dados pelo Método dos Mínimos Quadrados e comparar com os resultados do item iii.

Síntese escrita

Escreva uma síntese do trabalho, que possa ser compreendida sem a leitura deste roteiro. Em particular:

- Inclua os dados, gráficos e tabelas dos valores obtidos para as diversas grandezas.
- Interprete os resultados dos testes de qualidade do ajuste.
- Discuta as comparações entre os resultados obtidos nos diversos cálculos.
- Inclua em um anexo o programa usado para o cálculo.

Toda sugestão para enriquecer este trabalho, de modo a ampliar seu alcance, ou para atingir o mesmo objetivo de maneira mais simples, será muito bem-vinda.