# 1.0A 具有 USB 接口兼容的线性电池管理芯片

## ■ 产品概述

XT2052 是可以对单节可充电锂电池进行恒流/恒压充电的充电器电路。该器件内部包括功率晶体管,应用时不需要外部的电流检测电阻和阻流二极管。XT2052 只需要极少的外围元器件,并且符合 USB 总线技术规范,非常适合于便携式应用的领域。

热调制电路可以在器件的功耗比较大或者环境温度比较高的时候将芯片温度控制在安全范围内。内部固定的恒压充电电压为 4.2V,充电电流通过一个外部电阻设置。当输入电压(交流适配器或者 USB 电源) 掉电时, XT2052 自动进入低功耗的睡眠模式,此时电池的电流消耗小于 0.1µA。内置防反灌保护电路,当电池电压高于输入电压时,自动关闭内置功率 MOSFET。其它功能包括输入电压过低锁存,自动再充电,内置 OVP 保护以及充电状态/充电结束状态指示等功能。

XT2052 采用散热增强型的 8 管脚小外形封装 eSOP-8 或 eMSOP-8。

## ■ 产品特点

- 可编程使充电电流可达 1.0A
- 不需要外部 MOSFET, 传感电阻和阻流二极管
- 小的尺寸实现对锂离子电池的完全线形充电管理
- 恒电流/恒电压运行和热度调节使得电池管理效率最高,没有热度过高的危险
- 从 USB 接口管理单片锂离子电池
- 充电电流输出监控
- 充电状态指示标志和充满状态标志
- 1/10 充电电流终止
- 自动再充电
- 停止工作时提供 40μA 电流
- 2.9V 涓流充电阈值电压
- 软启动限制浪涌电流电流
- OVP 保护功能,输入高于 6.8V,停止充电
- 当拔掉 VIN 时, IC 不消耗电池能量
- 输出端具有防反灌保护功能
- 采用 eSOP8,eMSOP8 以及客户订制的封装形式

### ■ 用途

- 移动电话
- 数码相机
- MP4 播放器
- 蓝牙应用
- 电子词典
- 便携式设备
- 各种充电器
- 移动电源

## ■ 封装

• eSOP-8/PP



eMSOP-8/PP



## ■ 订购信息

### XT205212345

| 标号  | 描述           | 标记 | 描述      |
|-----|--------------|----|---------|
| 1)  | 类型           | Х  | 无涓流充电   |
| 1)  |              | Y  | 有涓流充电   |
|     | 调整器输出电压的第一部分 | 0  | 4.0     |
| 2   |              | 1  | 4.1     |
|     |              | 2  | 4.2     |
|     | 调整器输出电压的第二部分 | Α  | ②00     |
| 3   |              | В  | ②25     |
| (3) |              | С  | ②50     |
|     |              | D  | 275     |
| 4   | 封装类型         | S  | eSOP-8  |
|     |              | Q  | eMSOP-8 |
| (5) | 器件方向         | R  | 正面      |
|     |              | L  | 反面      |

### ■ 引脚功能

● <u>ISET(引脚2)</u>: 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为1%的接到地的电阻控制。在恒定充电电流 状态时,此端口提供1V的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流。

$$I_{BAT} = (V_{ISET}/R_{ISET}) \times 1000$$

ISET 端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的  $3\mu A$  电流源拉高 ISET 端口电压。当 ISET 电压超过 1.21V 时,充当器进入停止工作状态,充电结束,输入电流降至  $25\mu A$ 。此端口夹断电压大约为 2.4V。通过使 ISET 电阻与地端结合,充电器回到正常状态。

- **GND (引脚 3):** 接地端,EXPOSED 管脚也需要跟引脚 3 相连。
- <u>VIN (引脚 4)</u>: 提供正电压输入。VIN 管脚必须有至少 1µF 的旁路电容。当 VIN 降到 BAT 端电压 30 mV 以内时,XT2052 停止充电,此时 BAT 端口的消耗电流小于 0.1uA。
- **BAT (引脚5)**: 将电池的正端连接到此管脚。在充满时,如果VIN没有移除,BAT消耗电流大约为2uA。在充电过程中,如果移除VIN,则BAT管脚的消耗电流小于0.1uA。
- **DONE (引脚6)**: 当充电结束时,DONE管脚被内部开关拉到低电平,表示充电已经结束;否则DONE管脚处于高阻态。
- <u>CHRG (引脚7)</u>: 当充电器向电池充电时,CHRG管脚被内部开关拉到低电平,表示充电正在进行;否则CHRG管脚处于高阻态。

## ■ 打印信息

#### • eSOP-8/eMSOP-8



### ①②③表示晶圆版本号

\*\*\*\*\*:数量若干,表示质量跟踪信息!

# ■ 绝对最大额定值

| 参数       | 标号              | 最大额定值                                     | 单位 |
|----------|-----------------|-------------------------------------------|----|
| 输入电压     | V <sub>cc</sub> | V <sub>SS</sub> -0.3∼V <sub>SS</sub> +7   |    |
| ISET 端电压 | Vprog           | V <sub>SS</sub> -0.3∼V <sub>cc</sub> +0.3 |    |
| BAT 端电压  | Vbat            | Vss-0.3∼6                                 | V  |
| DONE 端电压 | Vdone           | V <sub>SS</sub> -0.3∼V <sub>SS</sub> +7   |    |
| CHAG 端电压 | Vchrg           | V <sub>SS</sub> -0.3∼V <sub>SS</sub> +7   |    |
| BAT 端电流  | lbat            | 1500                                      | mA |
| ISET 端电流 | Iprog           | 1500                                      | μΑ |
| 工作外围温度   | Тора            | -40∼+85                                   | °C |
| 存储温度     | Tstr            | -65∼+125                                  | C  |

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

# ■ 功能框图



图 1

# ■ 典型应用电路

### ● 恒流/恒压电压 4.2V 充电应用



# ■ 电学特性参数

(Ta=25℃,除非特殊指定)

| 参数                                     | 标号        | 条件                                                                                                            | 最低    | 典型   | 最高    | 单位 |
|----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|-------|------|-------|----|
| 输入电压                                   | Vcc       |                                                                                                               | 4.25  |      | 6.5   | V  |
|                                        | Icc       | Charge mode,Riset=10K                                                                                         |       | 200  | 2000  | μA |
| 输入电流                                   |           | Standby mode                                                                                                  |       | 200  | 500   | μA |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | Shutdown mode(Riset not connected,Vcc <vbat or="" td="" vcc<vuv)<=""><td>25</td><td>70</td><td>μΑ</td></vbat> |       | 25   | 70    | μΑ |
| 输出控制电压                                 | Vfloat    | 0°C≤TA≤85°C,IBAT=40mA                                                                                         | 4.158 | 4.2  | 4.342 | ٧  |
|                                        |           | Riset=10k,Current mode                                                                                        | 90    |      | 110   | mA |
|                                        |           | Riset=1k,Current mode 1900                                                                                    |       | 1000 | 1100  | mA |
| BAT端电流                                 | lbat      | Standby mode,Vbat=4.2V 0                                                                                      |       | -2.5 | -6    | μΑ |
|                                        |           | Shutdown mode                                                                                                 |       |      | ±0.1  | μΑ |
|                                        |           | Sleep mode,Vcc=0V                                                                                             |       |      | ±0.1  | μA |
| 涓流充电电流                                 | Itrikl    | Vbat <vtrikl,rprog=2k< td=""><td>90</td><td>100</td><td>110</td><td>mA</td></vtrikl,rprog=2k<>                | 90    | 100  | 110   | mA |
| 涓流充电极限电压                               | Vtrikl    | Riset=10K, Vbat Rising                                                                                        | 2.8   | 2.9  | 3.0   | V  |
| 涓流充电迟滞电压                               | Vtrhys    | Riset=10k                                                                                                     | 60    | 80   | 110   | mV |
| 电源低电闭锁阈值电压                             | Vuv       | From Vcc low to high                                                                                          | 3.7   | 3.8  | 3.93  | V  |
| 电源低电阈值电压迟滞电压                           | Vuvhys    |                                                                                                               | 150   | 200  | 300   | mV |
| 五斗子四河传五丁                               | ) (magada | Iset pin rising                                                                                               | 1.15  | 1.21 | 1.30  | V  |
| 手动关闭阈值电压                               | Vmsd      | Iset pin falling                                                                                              | 0.9   | 1.0  | 1.1   | V  |
| VI VI VIÇ I TIKVAK DE                  | Vasd      | Vcc from low to high                                                                                          |       | 100  | 140   | mV |
| Vcc-Vbat停止工作阈值电压                       |           | Vcc from high to low                                                                                          | 5     | 30   | 50    | mV |
|                                        | Iterm     | Riset=10k                                                                                                     | 8     | 10   | 12    | mA |
| C/10 终断阈值电流                            |           | Riset=2k                                                                                                      | 40    | 50   | 65    | mA |
| PROG端电压                                | Vprog     | Riset=10k, Current mode                                                                                       | 0.93  | 1.0  | 1.07  | V  |
| DONE端最小输出电压                            | Vdone     | Idone=5mA                                                                                                     |       | 0.35 | 0.6   | V  |
| CHRG端最小输出电压                            | Vchrg     | Ichrg=5mA                                                                                                     |       | 0.35 | 0.6   | V  |
| 电池再充电迟滞电压                              | ∆ Vrecg   | VFLOAT - VRECHRG                                                                                              |       | 150  | 200   | mV |

## ■ 应用信息

#### ● 设定充电电流

在恒流模式,计算充电电流的公式为: ISET=1000V/RISET。其中,ISET表示充电电流,单位为安培,RISET表示ISET管脚到地的电阻,单位为欧姆。例如,如果需要500毫安的充电电流,可按下面的公式计算: RISET=1000V/0.5A=2KΩ为了保证良好的稳定性和温度特性,RISET建议使用精度为1%的金属膜电阻。

#### ● 同时应用 USB 和交流电适配器充电

XT2052 不但可以利用 USB 接口为电池充电,也可以利用墙上适配器为电池充电。图 3 示出一个同时使用 USB 接口和交流电适配器通过 XT2052 对电池进行充电的例子,当二者共同存在时,交流电适配器具有优先权。M1 为 P 沟道 MOSFET,M1 用来阻止电流从墙上适配器流入 USB 接口,肖特基二极管 D1 可防止 USB 接口通过 1K 电阻消耗能量。



图 3. 同时使用交流电适配器和 USB 接口

#### ● 使能设计

通过控制 ISET 管脚电阻是否与地连接,可以达到关闭 XT2052 的功能。如图 4 所示。



图 4. XT2052的使能设计

#### ● 漏极开路状态指示输出端

XT2052 有两个漏极开路状态指示端,CHRG 和 DONE,这两个状态指示端可以驱动发光二极管或单片机端口。CHRG 用来指示充电状态:在充电时,CHRG 为低电平;DONE 用来指示充电结束状态,当充电结束时,DONE 为低电平。当电池的温度处

于正常温度范围之外超过 0.15 秒时, CHRG 和 DONE 管脚都输出高阻态。

当电池没有接到充电器时,充电器很快将输出电容充电到恒压充电电压值,由于电池电压 Kelvin 检测 BAT 管脚的漏电流,BAT 管脚的电压将慢慢下降到再充电阈值,这样在 BAT 管脚形成一个纹波电压为 150mv 的波形,同时 CHAG 输出脉冲信号表示没有安装电池。当电池连接端 BAT 管脚的外接电容为 4.7μF 时,脉冲的周期大约为 2Hz。因此在实际应用中,要求 BAT 端至少接一个 4.7μF 电容。

下表列出了 CHAG 和 DONE 管脚在各种情况的状态:

| 状态   | 充电 | 充满 | 无电池 | 出错 |
|------|----|----|-----|----|
| CHAG | 常亮 | 常灭 | 闪烁  | 常灭 |
| DONE | 常灭 | 常亮 | 常亮  | 常灭 |

注: 1、无电池时CHAG闪烁的频率跟外接电容有关,一般建议4.7µF,电容越大闪烁频率越小。

2、出错的情况有:超出工作温度范围(温度过高或过低),lset端悬空,Vin<Vbat,Vin<3.8V等。

#### ● 大电流输出设计

由于 XT2052 采用了内部恒定功率技术,因此当输入 VIN 和 BAT 压差过大时,会导致最大电流的 BAT 电压区间变小,从而充电时间会变长,为了使最大电流充电的区间变大,可以通过外部串联电阻或者肖特基的方法来实现。

假设 XT2052 的 SOP8/PP 封装内部最大允许功率为 1.2W, 充电最大电流设置为 1.2A。如果采用的是电阻,我们假设采用的是 0.5 欧姆(1W)电阻,在大电流充电时,电阻上的压降为 0.5\*1.2=0.6V,XT2052 的真正工作电压为 4.4V。于是,在此状态下,(VIN-VBAT)\*1.2<1.2W,因此 VBAT>3.4V,电池电压为 3.4V 以上都支持 1.2A 充电,低于 3.4V,则 XT2052 会自动减小充电电流以维持芯片内部功率平衡。

如果采用的是肖特基,根据肖特基在不同电流下的压降可以做出类似的计算。

另外在大电流应用中需要注意 XT2052 在 PCB 布线设计时,必须考虑增加 EXPOSED PAD 的面积,并将 EXPOSED PAD 与 GND 相连,以此提高散热性能,保证芯片稳定工作。



# ■ 封装信息

## ● eMSOP-8/PP







| Symbol    | Dimensions In Millimeters |       | Dimensions In Inches |       |  |
|-----------|---------------------------|-------|----------------------|-------|--|
| 3y 111001 | Min                       | Max   | Min                  | Max   |  |
| A         | 0.820                     | 1.100 | 0.032                | 0.043 |  |
| A1        | 0.020                     | 0.150 | 0.001                | 0.006 |  |
| A2        | 0.750                     | 0.950 | 0.030                | 0.037 |  |
| b         | 0.250                     | 0.380 | 0.010                | 0.015 |  |
| С         | 0.090                     | 0.230 | 0.004                | 0.009 |  |
| D         | 2.900                     | 3.100 | 0.114                | 0.122 |  |
| D1        | 1.700                     | 1.900 | 0.067                | 0.075 |  |
| e         | 0.65 (BSC)                |       | 0.026(BSC)           |       |  |
| Е         | 2.900                     | 3.100 | 0.114                | 0.122 |  |
| E1        | 4.750                     | 5.050 | 0.187                | 0.199 |  |
| E2        | 1.450                     | 1.650 | 0.057                | 0.065 |  |
| L         | 0.400                     | 0.800 | 0.016                | 0.031 |  |
| θ         | 0 °                       | 6°    | 0 °                  | 6°    |  |

## ● eSOP-8/PP







| 字符 | Dimensions In Millimeters |        | Dimensions In Inches |        |  |
|----|---------------------------|--------|----------------------|--------|--|
|    | Min                       | Max    | Min                  | Max    |  |
| Α  | 1. 350                    | 1. 750 | 0. 053               | 0. 069 |  |
| A1 | 0. 050                    | 0. 150 | 0. 002               | 0. 006 |  |
| A2 | 1. 350                    | 1. 550 | 0. 053               | 0. 061 |  |
| b  | 0. 330                    | 0. 510 | 0. 013               | 0. 020 |  |
| С  | 0. 170                    | 0. 250 | 0. 007               | 0. 010 |  |
| D  | 4. 700                    | 5. 100 | 0. 185               | 0. 200 |  |
| D1 | 3. 202                    | 3. 402 | 0. 126               | 0. 134 |  |
| Е  | 3. 800                    | 4. 000 | 0. 150               | 0. 157 |  |
| E1 | 5. 800                    | 6. 200 | 0. 228               | 0. 244 |  |
| E2 | 2. 313                    | 2. 513 | 0. 091               | 0. 099 |  |
| е  | 1. 270 (BSC)              |        | 0. 050 (BSC)         |        |  |
| L  | 0. 400                    | 1. 270 | 0. 016               | 0. 050 |  |
| θ  | 0°                        | 8°     | 0°                   | 8°     |  |