MINI PROJECT NAME

MINI PROJECT REPORT

Submitted in partial fulfillment of the requirements for the award of the Degree of Bachelor of Technology in Electronics & Communication

Engineering of APJ Abdul Kalam Technological University

By

YOUR NAME

(VI SEMESTER B.TECH, REG No. MDL22XXXX)

MODEL ENGINEERING COLLEGE, THRIKKAKARA

DEPARTMENT OF ELECTRONICS ENGINEERING

CERTIFICATE

This is to certify that the project report entitled "MINI PROJECT NAME" is a bonafide record of the project work done by Your Name (VIII Semester B.Tech, Reg No. MDL23XXX) towards the partial fulfillment of the requirements for the award of the Degree of Bachelor of Technology in Electronics & Communication Engineering of APJ Abdul Kalam Technological University during the year 2025.

PROJECT CO-ORDINATOR

PROJECT GUIDE

COORDINATOR NAME

GUIDE NAME

DESIGNATION

DESIGNATION

DEPT. OF ELECTRONICS

DEPT. OF ELECTRONICS

HEAD OF DEPARTMENT

HOD NAME

DEPT. OF ELECTRONICS ENGINEERING

ACKNOWLEDGEMENT

First of all, I would like to thank the **Lord Almighty** who helped me to finish this project on time.

I express my sincere thanks to, The Principal, Model Engineering College, Thrikkakara, for providing opportunity and the environment to do the project in my college.

I sincerely thank, Head of the Department, Dept. of Electronics, for his encouragement and constant support in making project successful.

I would like to thank my class coordinator **M.**, Asst. Professor, Dept. of Electronics, for giving me timely instruction, for the completion the work.

I would like to thank my project coordinator **M.**, Asst. Professor, Dept. of Electronics, for giving me technical advice, without which I could never been able to complete the work in time.

I also wish to thank my project guide M., Asst. Professor, Dept. of Electronics, for providing valuable guidance.

An excellent group of teaching and non-teaching staff helped me for this project. I owe much the assistance they gave me while doing the project.

Last, but not least I would like to thank my parents and friends for all the moral support and that they have given me.

Your Name (Roll No.)

ABSTRACT

Contents

	List	of Figures	vi
	List	of Tables	⁄ii
	List	of Abbreviations	⁄ii
1	INT	RODUCTION	1
	1.1	Background of the Project	1
		1.1.1 Subsection Name	1
	1.2	Motivation	2
		1.2.1 Subsection Name	2
	1.3	Importance of the problem	2
		1.3.1 Subsection Name	3
	1.4	Objective and Scope	3
		1.4.1 Subsection Name	4
2	LIT	ERATURE REVIEW	5
	2.1	Section Name	5
		2.1.1 Subsection Name	5
	2.2	Equations & Equation arrays	6
	2.3	Sample Table 1	6
3	PRC	RLEM STATEMENT AND PROPOSED SOLUTION	7

	3.1	Section Name	7			
		3.1.1 Subsection Name	7			
	3.2	Figure	8			
4	BLO	OCK DIAGRAM AND EXPLANATION	9			
	4.1	Block Diagram	ç			
	4.2	Section Name	ç			
		4.2.1 Subsection Name	9			
	4.3	Algorithm/Tcolorbox	10			
5	CIR	CUIT DIAGRAM AND EXPLANATION	11			
	5.1	Circuit Diagram	11			
	5.2	Section Name	11			
		5.2.1 Subsection Name	12			
	5.3	Sample Table 2	12			
6	COMPONENTS USED					
	6.1	Arduino Board	13			
	6.2	Section Name	13			
		6.2.1 Subsection Name	14			
7	IMF	PLEMENTATION AND DESIGN	15			
	7.1	PCB Layout / bread board set up details	15			
	7.2	Mechanical Design and Implementation	15			
	7.3	Details of Software used	15			
		7.3.1 Subsection Name	16			
8	EXI	PLANATION OF CODE	17			
	Q 1	Sample Table 2	17			

9	TES	TING AND RESULTS	18
	9.1	Testing Procedure	18
	9.2	Observations and Output	18
	9.3	Performance Analysis	18
		9.3.1 Subsection Name	19
10	APP	LICATIONS, LIMITATIONS AND FUTURE SCOPE	20
	10.1	Applications	20
	10.2	Limitations	20
	10.3	Future Scope	20
		10.3.1 Subsection Name	21
11	CON	NCLUSION	22
	11.1	section Name	22
Bil	oliogr	raphy	23
Ap	pend	ices	24
A	Codi	ing	25
В	Proj	ect Estimate	33
	B.1	Sample Table 4	33
C	Data	asheets	34

List of Figures

Fig. 3.1	Proposed Solution	8
Fig. 4.1	Block Diagram	9
Fig. 5.1	Circuit Diagram	11
Fig. 6.1	Arduino Board	13
Fig. 6.2	Important Sensors	14

List of Tables

2.1	List of Components	6
5.1	List of Devices	12
8.1	List of Items	17
B.1	Bill Of Materials	33

List of Abbreviations

EC Electronics and Communication

EV Electronics and VLSI

EE Electrical and Electronics

INTRODUCTION

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.[1]

1.1 Background of the Project

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque. [2]

- 1. First point.
- 2. Second point.

1.1.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

• First point.

Mini Project, 2025 INTRODUCTION

• Second point.

1.2 Motivation

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- 1. First point.
- 2. Second point.

1.2.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- First point.
- Second point.

1.3 Importance of the problem

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis.

Mini Project, 2025 INTRODUCTION

Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- 1. First point.
- 2. Second point.

1.3.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- First point.
- Second point.

1.4 Objective and Scope

- 1. First point.
- 2. Second point.

Mini Project, 2025 INTRODUCTION

1.4.1 Subsection Name

- First point.
- Second point.

Mini Project, 2025 LITERATURE REVIEW

Chapter 2

LITERATURE REVIEW

2.1 Section Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- 1. First point.
- 2. Second point.

2.1.1 Subsection Name

- First point.
- Second point.

Mini Project, 2025 LITERATURE REVIEW

2.2 Equations & Equation arrays

$$w_{k} = \begin{cases} 0 & \tilde{c}_{i,j} = 2 \times Q \times round\left(\frac{c_{i,j}}{Q}\right) \\ 1 & \tilde{c}_{i,j} = 2 \times Q \times round\left(\frac{c_{i,j}-1}{Q}\right) + Q \end{cases}$$
(2.1)

The Equation 2.1 is above

$$Y = 0.299R + 0.587G + 0.114B (2.2)$$

$$C_b = -0.1687R - 0.3313G - 0.5B + 128 (2.3)$$

$$C_r = 0.5R - 0.4187G - 0.0813B + 128$$
 (2.4)

2.3 Sample Table 1

No	Particular	Quantity	Unit Price	Amount
1	PIC 16F877A	1	150	150
2	Transformer	1	100	100
Tota	1302			

Table 2.1: List of Components

PROBLEM STATEMENT AND PROPOSED SOLUTION

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

3.1 Section Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- 1. First point.
- 2. Second point.

3.1.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

• First point.

• Second point.

3.2 Figure

Figure 3.1: Proposed Solution

BLOCK DIAGRAM AND EXPLANATION

4.1 Block Diagram

Figure 4.1: Block Diagram

4.2 Section Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- 1. First point.
- 2. Second point.

4.2.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna

Mini Project, 2025

tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- First point.
- Second point.

4.3 Algorithm/Tcolorbox

ALGORITHM: An Image Authentication & Reconstruction Scheme

Require: I

Require: $h(), f(), g(), f^{-1}(), g^{-1}()$

Require: $b, B : b \le B$

for $i = 1 \rightarrow N$ do

Reconstruct $I_i^{,}:e_i\neq 1$

CIRCUIT DIAGRAM AND EXPLANATION

5.1 Circuit Diagram

Figure 5.1: Circuit Diagram

5.2 Section Name

- 1. First point.
- 2. Second point.

5.2.1 Subsection Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

- First point.
- Second point.

5.3 Sample Table 2

No	Particular	Quantity	Unit Price	Amount
1	PIC 16F877A	1	150	150
2	Transformer	1	100	100
Tota	1302			

Table 5.1: List of Devices

Mini Project, 2025 COMPONENTS USED

Chapter 6

COMPONENTS USED

6.1 Arduino Board

Figure 6.1: Arduino Board

6.2 Section Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur non velit leo. Nullam dapibus libero condimentum tellus vehicula suscipit. Mauris non finibus augue. Nunc urna tellus, dapibus eu tellus ac, hendrerit pretium quam. Mauris dapibus nec ante nec iaculis. Mauris sodales felis sed neque volutpat venenatis. Morbi pellentesque sit amet dolor a rhoncus. Phasellus interdum augue quis dui vehicula malesuada. Quisque nisl dolor, ornare quis sodales vel, fermentum nec neque.

1. First point.

Mini Project, 2025 COMPONENTS USED

Figure 6.2: Important Sensors

2. Second point.

6.2.1 Subsection Name

- First point.
- Second point.

IMPLEMENTATION AND DESIGN

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum

7.1 PCB Layout / bread board set up details

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- 1. First point.
- 2. Second point.

7.2 Mechanical Design and Implementation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- First point.
- Second point.

7.3 Details of Software used

- 1. First point.
- 2. Second point.

7.3.1 Subsection Name

- First point.
- Second point.

EXPLANATION OF CODE

8.1 Sample Table 3

No	Particular	Quantity	Unit Price	Amount
1	PIC 16F877A	1	150	150
2	Transformer	1	100	100
Tota	1302			

Table 8.1: List of Items

TESTING AND RESULTS

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

9.1 Testing Procedure

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- 1. First point.
- 2. Second point.

9.2 Observations and Output

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- First point.
- Second point.

9.3 Performance Analysis

- 1. First point.
- 2. Second point.

9.3.1 Subsection Name

- First point.
- Second point.

APPLICATIONS, LIMITATIONS AND FUTURE SCOPE

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

10.1 Applications

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- 1. First point.
- 2. Second point.

10.2 Limitations

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- First point.
- Second point.

10.3 Future Scope

- 1. First point.
- 2. Second point.

10.3.1 Subsection Name

- First point.
- Second point.

CONCLUSION

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.[1]

11.1 section Name

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. [2]

- First point.
- Second point.

. . .

Mini Project, 2025 Bibliography

Bibliography

[1] J. S. McLean,, "A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas,", IEEt: Trans. Antennas Propag., AP-44, May 1996, pp. 672-676.

[2] R. F. Harrington,, "Effect of antenna size on gain, bandwidth, and efficiency,", Research National Bureau of Standards-D. Radio Propagation, vol. 640, no. 1, Jan.-Feb. 1960.

Appendices

Appendix A

Coding

```
clc;
close all;
clear all;
n1=input('Enter Starting Point n1: ');
n2=input('Enter End Point n2: ');
n=-n1:1:n2;
% Impulse Signal
amp_impl=[zeros(1,n1) 1 zeros(1,n2)];
figure (1);
subplot (221);
plot(n,amp_impl);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Impulse Signal');
subplot (222);
stem(n,amp_impl);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Impulse Signal');
% Step Signal
amp_stp = [zeros(1, n1) ones(1, n2+1)];
```

```
subplot (223);
stairs (n, amp_stp);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Step Signal');
subplot (224);
stem(n, amp_stp);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Step Signal');
% Ramp Signal
amp_rmp = [zeros(1,n1),n(n1+1:end)];
figure (2);
subplot (221);
plot(n,amp_rmp);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Ramp Signal');
subplot (222);
stem(n,amp_rmp);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Ramp Signal');
% Exponential Signal
n0 = 0 : .1 : n2;
Am_exp=input('Enter Amplitude of Exponential Wave Am:
                                                            ');
b=input('Enter Decaying Factor of Exponential Wave b:
                                                            <sup>'</sup>);
```

```
amp_expl=Am_exp*exp(-b.*n0);
figure (2);
subplot (223);
plot(n0, amp_expl);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Exponential Signal');
subplot (224);
stem (n0, amp_expl);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Exponential Signal');
% Sine Wave
 n = 0: .02:1;
Am_sin=input('Enter Amplitude of Sine Wave Am:
f=input('Enter Frequency of Sine Wave f: ');
amp_sine = Am_sin * sin(2 * pi * f * n);
figure (3)
subplot (221);
plot(n, amp_sine);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Sine Signal');
subplot (222);
stem(n, amp_sine);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Sine Signal');
```

```
% Square Wave
Am_sqre=input('Enter Amplitude of Square Wave Am: ');
f=input('Enter Frequency of Square Wave f: ');
dty=input('Enter Duty Cycle of Square Wave: ');
amp_sqre = Am_sqre * square (2 * pi * f * n, dty);
subplot (223);
stairs (n, amp_sqre);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Square Signal');
subplot (224);
stem(n, amp_sqre);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Square Signal');
% Sawtooth Wave
Am_st=input('Enter Amplitude of Sawtooth Wave Am: ');
f=input('Enter Frequency of Sawtooth Wave f: ');
dty=input('Enter Duty Cycle of Sawtooth Wave: ');
amp_st=Am_st*sawtooth(2*pi*f*n,dty);
figure (4);
subplot (221);
plot(n,amp_st);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Sawtooth Signal');
subplot (222);
```

```
stem(n, amp_st);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Sawtooth Signal');
% Pulse Signal
n01=input('No. of zeros left to gate signal n01: ');
n11=input('No. of ones n11: ');
n02=input('No. of zeros right to gate signal n02: ');
n_sam = n01 + n11 + n02;
n = 0:1:n_sam - 1;
amp_gt = [zeros(1, n01) ones(1, n11) zeros(1, n02)];
subplot (223);
stairs (n, amp_gt);
xlabel('Time');
ylabel('Amplitude');
title ('Continious Gate Signal');
subplot (224);
stem(n, amp_gt);
xlabel('Samples');
ylabel('Amplitude');
title ('Discrete Gate Signal');
```

```
clc;
close all;
clear all;
n_st=input('Enter the Starting Point of the Sequence; n = ');
x=input('Enter the Sequence: x(n) = ');
x_len=length(x);
n_e d = n_s t + x_l e n - 1;
n=n_st:n_ed;
figure (1);
subplot (3,1,1);
stem(n,x);
xlabel('Samples');
ylabel('Amplitude');
title ('Time Shifting');
% Time Shifting (1st method)
k=input('Enter the shifting factor: k = ');
sh_sq01=n+k;
subplot (3,1,2);
stem(sh_sq01,x);
xlabel('Samples');
ylabel('Amplitude');
% Time Shifting (2nd method)
n1=min(n_st, n_st+k);
n2=max(n_ed,n_ed+k);
n_sh=n1:n2;
sh_sq02 = [zeros(1,k) \ x \ zeros(1,-k)];
subplot (3,1,3);
```

```
stem (n_sh, sh_sq02);
xlabel('Samples');
ylabel('Amplitude');
% Time Scaling
a=input('Enter the scaling factor: a = ');
figure (2)
subplot (311);
stem(n,x);
xlabel('Samples');
ylabel('Amplitude');
if a > 1
    b=mod(n,a);
    c = [];
    d = [];
     for i=1:x_len
         if b(i)==0
             c=x(i);
             d=[d c];
         end
    end
    d;
     n_start=ceil(n_st/a);
     n_end = floor(n_ed/a);
     n_sc = n_start : n_end;
else
    e = (x_len/a) - (1/a) + 1;
    d=[zeros(1,e)];
```

```
d(1:1/a:end)=x;
    n_start = n_st/a;
    n_end=n_ed/a;
    n_sc = n_start : n_end;
end
subplot (312);
stem(n_sc,d);
xlabel('Samples');
ylabel('Amplitude');
title ('Time Scaling');
% Time Reversal
х;
n;
nrev = -n;
x_rev = x(end:-1:1);
n_rev=nrev(end:-1:1);
subplot(313);
stem(n_rev, x_rev);
xlabel('Samples');
ylabel('Amplitude');
title ('Time Reversal');
```

Mini Project, 2025 Project Estimate

Appendix B

Project Estimate

B.1 Sample Table 4

No	Particular	Quantity	Unit Price	Amount	
1	PIC 16F877A	1	150	150	
2	Transformer	1	100	100	
Tota	Total				

Table B.1: Bill Of Materials

Mini Project, 2025 Datasheets

Appendix C

Datasheets