$$a + x \longrightarrow y + b$$

a -> b
Proj ejec

charge is conserved

Conservation of Energy, P, L

$$\frac{\left(K_{y} + K_{b} - K_{a}\right)}{\left(K_{y} + K_{b} - K_{a}\right)} = \left(M_{a} + M_{x} - M_{b} - M_{b}\right) C^{2}$$

$$C(C^{12},C^{3})C^{2}$$

$$C^{12}\left(C,C^{3}\right)C^{2}$$

IXN

on to therm ic

Table 14.1 Q Values for Nuclear Reactions Involving Light Nuclei

Reaction ^a	Measured Q Value (MeV)
² H(n, γ) ³ H	6.257 ± 0.004
${}^{2}H(d, p){}^{3}H$	4.032 ± 0.004
$^6\text{Li}(p, \alpha)^3\text{H}$	4.016 ± 0.005
⁶ Li(d, p) ⁷ Li	5.020 ± 0.006
7 Li(p, n) 7 Be	-1.645 ± 0.001
$^{7}\text{Li}(p, \alpha)^{4}\text{He}$	17.337 ± 0.007
${}^{9}\text{Be}(n, \gamma){}^{10}\text{Be}$	6.810 ± 0.006
${}^{9}\text{Be}(\gamma, n){}^{8}\text{Be}$	-1.666 ± 0.002
⁹ Be(d, p) ¹⁰ Be	4.585 ± 0.005
9 Be(p, α) 6 Li	2.132 ± 0.006
10 B(n, α) 7 Li	2.793 ± 0.003
10 B(p, α) 7 Be	1.148 ± 0.003
$^{12}C(n, \gamma)^{13}C$	4.948 ± 0.004
$^{13}C(p, n)^{13}N$	-3.003 ± 0.002
$^{14}N(n, p)^{14}C$	0.627 ± 0.001
$^{14}N(n, \gamma)^{15}N$	10.833 ± 0.007
$^{18}O(p, n)^{18}F$	-2.453 ± 0.002
19 F(p, α) 16 O	-8.124 ± 0.007

^{ar}The symbols n, p, d, α , and γ denote the neutron, proton, deuteron, alpha particle, and photon, respectively. From C. W. Li, W. Whaling, W. A. Fowler, and C. C. Lauritsen, *Phy. Rev.*, 83:512, 1951.

cross Section area
$$6 = Tr^{2}$$

$$6 = Tr_{o}^{2} + Tr_{o}$$

iowing notation.

$$R_0$$
 = Rate at which incident particles strike the foil (particles/s)

R = Rate at which reaction events occur (reactions/s) $n = \text{Number of target nuclei per unit volume (particles/m}^3)}$

$$\frac{R}{R} = \frac{N G^{\text{the above}}}{M G^{\text{the above}}} = \frac{N}{V} V G$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N}{V} V G$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = G N X$$

$$= \frac{N G A V}{A} = \frac{N G A$$

$$\overline{\nu} + p \longrightarrow e^+ + n$$
 $(\sigma = 10^{-19} b)$

Weak interootion

$$n + {}^{127}I \longrightarrow {}^{127}I^* + n$$
 $(\sigma = 4 b)$

$$n + {}^{129}Xe \longrightarrow {}^{129}Xe^* + n$$
 $(\sigma = 4 b)$

inelastic Stron interaction

$$n + \chi \longrightarrow \chi + \delta$$
 newtion calture $2 N = 2 N+1$

Slow - thermal - isotps

T1/2 = 7.04 X 10 8 yr

6.72%

100% & - emiter

235

Figure 14.4 The distribution of fission products versus mass number for the fission of ²³⁵U bombarded with slow neutrons. Note that the ordinate has a logarithmic scale.

$$\frac{1}{0}n + \frac{235}{92}U \xrightarrow{\text{Week}^{10}} \xrightarrow{141} \text{Ba} + \frac{92}{36} \text{Kr} + 3\frac{1}{0}n$$

Self - Sustains Chain reaction

Prompt n - Sost

reproduction constant K, number of n

K= 1 ____ critical

K<1 -> Subcritcal, dies out

K71 ->> Supercritical

nuclear Wate more Fnergy than Sission VP to 56

$${}_{1}^{1}H + {}_{1}^{1}H \longrightarrow {}_{1}^{2}H + {}_{1}^{0}e^{+} + \nu$$

$${}_{1}^{1}H + {}_{1}^{2}H \longrightarrow {}_{2}^{3}He + \gamma$$

$${}_{1}^{1}H + {}_{2}^{3}H \longrightarrow {}_{2}^{4}He + {}_{1}^{0}e^{+} + \nu$$
 ${}_{2}^{3}He + {}_{2}^{3}He \longrightarrow {}_{2}^{4}He + {}_{1}^{1}H + {}_{1}^{1}H$

T should be 15MK

Reactors: ${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{3}_{2}He + {}^{1}_{0}n \qquad Q = 3.27 \text{ MeV}$ ${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{3}_{1}H + {}^{1}_{1}H \qquad Q = 4.03 \text{ MeV}$ ${}^{2}_{1}H + {}^{3}_{1}H \longrightarrow {}^{4}_{2}He + {}^{1}_{0}n \qquad Q = 17.59 \text{ MeV} \quad \checkmark \text{ best}$ $\bigcirc - \bigcirc - \bigcirc \text{reaction}$

what you need is:

O Heat Talok

1) Pressure, to increse the Prob of hithing

6) high number of atoms

(4) Heat and Pressure Should stay long time

n T >> n nt7/100 5 to have high output Lawson's Certin Magnetic confirmt. Magnific field to Squeeze to the center tolkomak - Squzzing output = input lo reak ever outlut > infut

i Drition

inertial confinement Lazers