FROM SQL PANDAS 6

Select all columns

Input table df		
CustID	Name	
1	Doe	
2	Jo	
3	Tod	

SELECT * FROM df;

Output				
CustID	Name			
1	Doe			
2	Jo			
3	Tod			


```
import pandas as pd

data = {
    'CustID': [1, 2, 3],
    'Name': ['Doe', 'Jo', 'Tod']
}

df = pd.DataFrame(data)
```

print(df)

	output	
	CustID	Name
0	1	Doe
1	2	Jo
2	3	Tod

"From SQL to Pandas" By Uzwal

Select specific column


```
CREATE TABLE "df" (
"CustID" INTEGER,
"Name" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Doe'),
(2, 'Jo'),
(3, 'Tod')
;
```

SELECT "Name" FROM "df"

```
Name
Doe
Jo
Tod
```



```
import pandas as pd

data = {
    'CustID': [1, 2, 3],
    'Name': ['Doe', 'Jo', 'Tod']
}

df = pd.DataFrame(data)
```

```
print(df['Name'])
```

```
0 Doe
1 Jo
2 Tod
Name: Name, dtype: object
```

Select specific columns


```
CREATE TABLE "df" (
"CustID" INTEGER,
"FirstName" VARCHAR,
"LastName" VARCHAR
);

INSERT INTO "df" VALUES
(1, 'Doe', 'Pala'),
(2, 'Jo', 'Noice'),
(3, 'Tod', 'Palle');

SELECT

"CustID",
"FirstName"
FROM "df";
```

··· CustID	FirstName
1	Doe
2	Jo
3	Tod


```
import pandas as pd
df = pd.DataFrame(
    columns = [
        'CustID',
        'FirstName',
        'LastName'
df['CustID'] = [1, 2, 3]
df['FirstName'] = ['Doe', 'Jo', 'Tod']
df['LastName'] = ['Pala', 'Noice', 'Palle']
print(df)
 CustID FirstName LastName
    1 Doe Pala
           Jo Noice
                 Palle
           Tod
  print(df[['CustID', 'FirstName']])
  CustID FirstName
0
       1
               Doe
               Jo
              Tod
```


Filter Rows


```
CREATE TABLE "df" (
"CustID" INTEGER,
"Name" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Doe'),
(2, 'Jo'),
(3, 'Tod')
;
```

```
SELECT *
FROM "df"
WHERE "CustID" = '2';
```

CustID	Name ···
2	Jo


```
import pandas as pd

df = pd.DataFrame(
    columns = ['CustID', 'Name']
)

df['CustID'] = [1, 2, 3]

df['Name'] = ['Doe', 'Jo', 'Tod']
```

```
df[df['CustID'] == 2]

CustID Name

1 2 Jo
```


Limit vs Head


```
CREATE TABLE "df" (
"CustID" INTEGER,
"Name" VARCHAR(10)
);

INSERT INTO "df" VALUES
(1, 'Doe'),
(2, 'Jo'),
(3, 'Tod')
;

SELECT *
FROM "df"
LIMIT 1;
```

··· CustID	Name
1	Doe


```
import pandas as pd

df = pd.DataFrame(
    columns = ['CustID', 'Name']
)

df['CustID'] = [1, 2, 3]

df['Name'] = ['Doe', 'Jo', 'Tod']
```

```
print(df.head(1))

CustID Name
0 1 Doe
```


Distinct vs Unique

CREATE TABLE "df" (

```
"CustID" INTEGER,
"Name" VARCHAR
);

INSERT INTO "df" VALUES
(1, 'Doe'),
(2, 'Jo'),
(1, 'Tod');
;

SELECT DISTINCT "CustID"
  FROM "df";
```

```
CustID
1
```



```
import pandas as pd

df = pd.DataFrame(
    columns = ['CustID', 'Name']
)

df['CustID'] = [1, 2, 1]

df['Name'] = ['Doe', 'Jo', 'Tod']

print(df)

CustID Name
0    1 Doe
1    2 Jo
2    1 Tod
```

```
print(df.CustID.unique())
[1 2]
```

Distinct vs nunique


```
create |table "df" (
  "CustID" INTEGER
);

INSERT INTO df values
(10),
(20),
(10);

SELECT COUNT(DISTINCT "CustID")
FROM df;
```

```
··· COUNT(DISTINCT "CUSTID")
```



```
import pandas as pd

df = pd.DataFrame(
        columns = ['CustID']
)

df['CustID'] = [10, 20, 10]

print(df)

CustID
0     10
1     20
2     10
```

```
print(df.CustID.nunique())
```

in Uzwal Goud Vaddeboina

Total elements in Table/DataFrame

table/dataframe

CustID	Name
10	Doe
20	Jo
30	Tod


```
SELECT COUNT(*) * (
    SELECT COUNT(*)
    FROM INFORMATION_SCHEMA.columns
    WHERE TABLE_CATALOG = 'DATABASE_NAME'
    AND TABLE_SCHEMA = 'SCHEMA_NAME'
    AND TABLE_NAME='df'
) AS "Size"
from "df";
```


df.size

6

Get column names, data types, etc

table/dataframe

CustID	Name
10	Doe
20	Jo
30	Tod

name ···	type	kind
CustID	NUMBER(38,0)	COLUMN
Name	VARCHAR(20)	COLUMN


```
df.info()
```


Descriptive Stats: Pandas | SQL


```
In [21]: df.describe()
Out[21]: count
                 5.0000
                 3.0000
         mean
         std
                 1.5811
         min
                 1.0000
                 2.0000
         25%
         50%
                 3.0000
                 4.0000
         75%
                 5.0000
         max
         Name: AGE, dtype: float64
```


SELECT

```
COUNT(age) AS "count"

, AVG(age) AS "mean"

, STDDEV(age) as "std"

, MIN(age) as "min"

, PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY age) "25%"

, PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY age) "50%"

, PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY age) "75%"

, MAX(age) as "max"
```

FROM desc_stats;

··· count	mean	std	min	25%	50%	75%	max
5	3.000000	1.58113883	1	2.000	3.000	4.000	5

GROUP BY


```
CREATE TABLE "df" (
  "Gender" VARCHAR(1)
, "Population" |INTEGER
);

INSERT INTO "df" VALUES
('M', 1),
('F', 1),
('M', 0),
('F', 1)
;
```

```
SELECT

"Gender"
, SUM("Population")
FROM "df"
GROUP BY "Gender"
;
```

Gender	Population
М	1
F	2


```
: import pandas as pd

df = {
        'Gender': ['M', 'F', 'M', 'F'],
        'Population': [1, 1, 0, 1]
   }

df = pd.DataFrame(df)

df
```

	Gender	Population
0	М	1
1	F	1
2	М	0
3	F	1

```
print(df.groupby('Gender').sum());

Population
Gender
F 2
M 1
```


Sort by Column


```
create or replace table "df" (
"ID" INTEGER,
"Name" VARCHAR(10)
);

INSERT INTO "df" values
(5, 'Joe'),
(2, 'Doe'),
(4, 'Paula'),
(3, 'John'),
(1, 'Terry')
;
```

```
SELECT *
FROM "df"
ORDER BY "ID";
```

 ID	Name
1	Terry
2	Doe
3	John
4	Paula
5	Joe


```
import pandas as pd

df = {
    'ID': [5, 2, 4, 3, 1],
    'NAME': ['Joe', 'Doe', 'Paula', 'John', 'Terry']
}
```

```
df = pd.DataFrame(df)

df.sort_values(by=['ID'])
```

```
1D NAME
4 1 Terry
1 2 Doe
3 3 John
2 4 Paula
0 5 Joe
```


Sort by Multiple Columns


```
SELECT *
FROM "df"
ORDER BY "ID", "AGE";
```

ID	Name	AGE
1	Terry	30
1	John	40
2	Paula	10
2	Doe	50
5	Joe	20


```
import pandas as pd

df = {
    'ID': [5, 2, 2, 1, 1],
    'NAME': ['Joe', 'Doe', 'Paula', 'John', 'Terry'],
    'AGE': [20, 50, 10, 40, 30]
}
```

```
df = pd.DataFrame(df)
df.sort values(by=['ID', 'AGE'])
   ID NAME AGE
               30
        Terry
                     Sorted by default
3
               40
        John:
                     in ascending order
               10
       Paula
               50
        Doe
0 5
         Joe:
               20
```


Value Count


```
create or replace table "df" (
"NAME"     VARCHAR(10)
);

INSERT INTO "df" values
('Joe'),
('Doe'),
('Paula'),
('Joe'),
('Doe');

SELECT "NAME", COUNT(*)
FROM "df"
GROUP BY "NAME"
ORDER BY COUNT(*) DESC;
```

NAME	··· COUNT(*)
Joe	2
Doe	2
Paula	1


```
import pandas as pd

df = ['Joe', 'Doe', 'Paula', 'Joe', 'Doe']

df = pd.DataFrame(df)
```

```
df.value_counts()

Doe 2
Joe 2
Paula 1
Name: count, dtype: int64
```


Drop Duplicates - If All Columns Duplicated

 ID	NAME
1	Joe
2	Jack
3	Paula


```
: import pandas as pd
df = {
     'ID': [1, 2, 3, 1],
     'Name': ['Joe', 'Jack', 'Paul', 'Joe']
df = pd.DataFrame(df)
: df
     ID Name
  2 3 Paul
  3 1 Joe
  df.drop_duplicates()
      ID Name
   0 1
            Joe
           Jack
           Paul
```


Drop Duplicates - If Key Column Duplicated


```
create or replace table "df" (
"ID" INTEGER,
"NAME"
        VARCHAR (10)
INSERT INTO "df" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula'),
(1, 'Doe')
DELETE FROM "df" T1
USING
    SELECT
       ID,
       NAME
    FROM "df"
    QUALIFY ROW_NUMBER() OVER (PARTITION BY ID ORDER BY ID ASC) = '2'
WHERE T1. "ID" = T2. "ID" AND T1. "NAME" = T2. "NAME"
SELECT *
FROM "df"
```

 ID	NAME
1	Joe
2	Jack
3	Paula


```
import pandas as pd

df = {
    'ID': [1, 2, 3, 1],
    'Name': ['Joe', 'Jack', 'Paul', 'Doe']
}

df = pd.DataFrame(df)

df

ID Name
    0     1     Joe
    1     2     Jack
    2     3     Paul
    3     1     Doe
```

```
df.drop_duplicates(subset=['ID'])

ID Name

0 1 Joe

1 2 Jack
2 3 Paul
```

INNER JOIN


```
create or replace table "df1" (
"ID"
         INTEGER.
"NAME" VARCHAR(10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID"
       INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df1".ID, NAME, AGE
FROM "df1"
INNER JOIN "df2"
ON "df1".ID = "df2".ID;
```

 ID	NAME	AGE
1	Joe	10
2	Jack	20


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='inner')
df
```

Age	Name	ID	
10	Joe	1	0
20	Jack	2	1

in Uzwal Goud Vaddeboina

LEFT JOIN


```
create or replace table "df1" (
"ID"
          INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID" INTEGER.
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df1".ID, NAME, AGE
FROM "df1"
LEFT JOIN "df2"
ON "df1".ID = "df2".ID;
```

ID	NAME	AGE
1	Joe	10
2	Jack	20
3	Paula	null


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='left')
df
```

	ID	Name	Age
0	1	Joe	10.0
1	2	Jack	20.0
2	3	Paula	NaN

RIGHT JOIN


```
create or replace table "df1" (
"ID"
          INTEGER.
"NAME" VARCHAR(10)
) :
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3. 'Paula'):
create or replace table "df2" (
"ID" INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4, 40);
SELECT "df2".ID, NAME, AGE
FROM "df1"
RIGHT JOIN "df2"
ON "df1".ID = "df2".ID:
```

ID	NAME ···	AGE
1	Joe	10
2	Jack	20
4	null	40


```
: import pandas as pd
```

```
df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='right')
df
```

```
    ID Name Age
    1 Joe 10
    2 Jack 20
    4 NaN 40
```


FULL JOIN


```
create or replace table "df1" (
"ID"
         INTEGER,
"NAME" VARCHAR(10)
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack'),
(3, 'Paula');
create or replace table "df2" (
"ID"
       INTEGER,
"AGE" INTEGER
);
INSERT INTO "df2" values
(1, 10),
(2, 20),
(4.40):
SELECT COALESCE("df1".ID, "df2".ID) AS ID,
       NAME.
      AGE
FROM "df1"
FULL JOIN "df2"
ON "df1".ID = "df2".ID;
ORDER BY 1:
```

ID	NAME	AGE
1	Joe	10
2	Jack	20
3	Paula	null
4	null	40


```
import pandas as pd

df1 = {
    'ID': [1, 2, 3],
    'Name': ['Joe', 'Jack', 'Paula']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 2, 4],
    'Age': [10, 20, 40],
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, on='ID', how='outer')
df
```

```
    ID
    Name
    Age

    0
    1
    Joe
    10.0

    1
    2
    Jack
    20.0

    2
    3
    Paula
    NaN

    3
    4
    NaN
    40.0
```

in Uzwal Goud Vaddeboina

CROSS JOIN


```
create or replace table "df1" (
"ID"
         INTEGER.
"NAME"
        VARCHAR (10)
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
create or replace table "df2" (
"ID" INTEGER,
"AGE" INTEGER
INSERT INTO "df2" values
(1, 10),
(2, 20):
SELECT *
FROM "df1"
CROSS JOIN "df2"
```

10)	NAME	ID_2	AGE
	1	Joe	1	10
	1	Joe	2	20
	2	Jack	1	10
	2	Jack	2	20


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': ['1', '2'],
    'AGE': [10, 20]
}

df2 = pd.DataFrame(df2)
```

```
df = pd.merge(df1, df2, how='cross')
df
```

	ID_x	Name	ID_y	AGE
0	1	Joe	1	10
1	1	Joe	2	20
2	2	Jack	1	10
3	2	Jack	2	20

UNION ALL - Specific Columns


```
CREATE OR REPLACE TABLE "df1" (
"TD"
     INTEGER,
"NAME" VARCHAR(10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID" INTEGER.
"NAME" VARCHAR(10)
);
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT NAME
FROM "df1"
UNION ALL
SELECT NAME
```

FROM "df2"

```
Joe
Jack
Joe
Doe
```



```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1['Name'], df2['Name']], ignore_index=True)
# ignore_index=True will reindex the dataframe
df
```

```
    Joe
    Jack
    Joe
    Doe
```


UNION ALL - All Columns


```
CREATE OR REPLACE TABLE "df1" (
"ID"
         INTEGER.
"NAMF" VARCHAR(10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"TD"
         INTEGER,
"NAME" VARCHAR (10)
);
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT *
FROM "df1"
UNION ALL
SELECT *
FROM "df2"
```

ID	NAME
1	Joe
2	Jack
1	Joe
4	Doe


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1, df2], ignore_index=True)
# ignore_index=True will reindex the dataframe
df
```

	ID	Name
0	1	Joe
1	2	Jack
2	1	Joe
3	4	Doe

UNION - Specific Column


```
CREATE OR REPLACE TABLE "df1" (
"TD"
          INTEGER.
"NAME" VARCHAR (10)
):
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
          INTEGER.
"NAME" VARCHAR(10)
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT NAME
FROM "df1"
UNION
SELECT NAME
FROM "df2"
```

```
Joe
Jack
Doe
```



```
import pandas as pd

df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}
```

```
df = pd.concat([df1['Name'], df2['Name']], ignore_index=True).drop_duplicates()
# ignore_index=True will reindex the dataframe
df
```

```
0 Joe
1 Jack
3 Doe
```

df2 = pd.DataFrame(df2)

UNION - All Columns


```
CREATE OR REPLACE TABLE "df1" (
"ID"
          INTEGER.
"NAME" VARCHAR (10)
);
INSERT INTO "df1" values
(1, 'Joe'),
(2, 'Jack');
CREATE OR REPLACE TABLE "df2" (
"ID"
         INTEGER.
"NAME" VARCHAR (10)
INSERT INTO "df2" values
(1, 'Joe'),
(4, 'Doe');
SELECT *
FROM "df1"
UNION
SELECT *
FROM "df2"
```

ID	NAME	
1	Joe	
2	Jack	
4	Doe	


```
import pandas as pd
```

```
df1 = {
    'ID': [1, 2],
    'Name': ['Joe', 'Jack']
}

df1 = pd.DataFrame(df1)

df2 = {
    'ID': [1, 4],
    'Name': ['Joe', 'Doe']
}

df2 = pd.DataFrame(df2)
```

```
df = pd.concat([df1, df2],ignore_index=True).drop_duplicates()
df
```

```
    ID Name
    1 Joe
    1 2 Jack
    3 4 Doe
```


Found this post helpful?

for tips on SQL, Python, and Data Analytics.