中小企业财务危机预警模型比较研究*

-基于因子分析与 Logistic 回归模型的对比

长汀大学文理学院 陈 芳 长江大学管理学院 吴 杰

摘要:构建科学、合理的财务危机预警模型对提升企业财务风险管理水平有重要影响。在对国 内外财务预警模型的基础上,选取中小企业上市公司为研究样本,经过变量筛选、Wilcoxon 秩和非参 数检验、因子分析等步骤 ,分别构建了纯财务指标 Logistic 回归模型和综合 Logistic 回归模型。与纯财 务指标 Logistic 回归模型相比 ,综合 Logistic 回归模型对 ST 企业、非 ST 企业的财务危机预警能力分 别提升 12.50%、6.25%。结果表明 综合 Logistic 回归模型判别效果更好。

关键词:财务预警模型 Logistic 回归模型 因子分析法

DOI:10.16144/j.cnki.issn1002-8072.2017.05.026

一、引言

中小企业不仅是国民经济有机组成部分,而且为社会 创造大量就业,但中小企业财务管理水平相对较低,财务 危机预警能力较弱。随着世界经济一体化、全球化发展 我 国中小企业面临着前有未有的竞争压力,因财务危机导致 的中小企业上市公司经营困难甚至破产的案例屡见不鲜。 为有效防范和避免经营中的财务危机,有必要构建精准的 财务危机预警模型。

二、文献综述

(一)国外研究 国外学者对财务风险预警进行了大量 研究,其研究方法主要有:单变量预警、多变量预警。 Fitzpatrick(1932)通过20家企业数据分析,提出单变量财务 破产预测模型;William Beaver(1966)以85家企业10年财务 数据为样本,对财务危机误判率进行研究,其提出的单变 量分析模型最为经典,Ohlson等(1980)采用Logistic回归方 法建立了财务预警模型,研究了样本公司在破产概率区间 内的分布情况。

(二)国内研究 受到国内证券市场发展的制约 我国 财务危机预警研究起步较晚。余立凡(2005)认为决策树 法、神经网络法以及回归分析法等都能够对财务危机作预 测 ,但若能够构建混合模型 ,将显著提升预警准确率 ;刘先 伟(2011)通过面板数据分析发现,在ST前3年,多元线性模 型的预测准确率显著高于单变量模型; 岳彩信(2012) 通过 对比发现 Logistic动态分析模型的预测精度更加理想 ;解 秀玉(2013)针对中小企业,将Logistic回归模型、因子分析 方法结合起来 构建了财务危机预警模型。研究结果表明, 随着破产日期来临,企业财务危机误判率越来越小。

本文选取中小企业上市公司为研究样本 构建了纯财 务指标Logistic回归模型和综合Logistic回归模型,并对比了 财务危机预警准确率,以期对提升中小企业财务危机预测 能力有积极意义。

二、企业财务危机预警模型设计

(一)样本选取 鉴于中小企业财务管理规范性、科学

性相对落后、中小企业数据搜集相对容易,本文以中小企 业上市公司为研究对象,共选取40家非金融类上市中小企 业。其中32家非ST企业,将其归类为非财务危机组 :8家ST 企业 将其归类为财务危机组。两组中小企业在资产规模、 主营业务行业方面相近,所搜集数据均来自2013~2015年 深交所公开财务报表。随后通过搜集中小企业财务公开数 据,采用危机预警模型进行分析。对中小企业财务危机现 状进行判定时 将是否达到ST水平作为判定标准。

(二)变量选取

(1)财务变量选取。为了使财务变量的选择范围更全 面 本文借鉴国泰安数据服务中心"中国上市公司财务指 标分析数据库"指标进行分类。本文选取的财务指标包括5 个一级指标,分别为:偿债能力指标、盈利能力指标、营运 能力指标、发展能力指标和现金流指标,见表1。各类型指 标包括若干个2级指标,共计16项。

表1	财务变量(候选)	
指标类型	变量名称	计算编码
	资产负债率	X1
偿债能力指标	利息保障倍数	X2
	现金流量与流动负债比	X3
	营运资本与总资产比	X4
	营业毛利率	X5
盈利能力指标	总资产收益率	X6
	净资产收益率	X7
	留存收益与总资产比	X8
	应收账款周转率	X9
营运能力指标	营运资金周转率	X10
	总资产周转率	X11
	存货周转率	X12
	总资产增长率	X13
发展能力指标	净利润增长率	X14
	净资产增长率	X15
现金流指标	销告净现率	X16

(2)非财务变量选取。企业财务危机不仅受到财务变 量影响,进行危机预警时还需要考虑适当非财务变量。与 财务变量不同,非财务变量的类型、计算方法都存在较大 的模糊度。结合国内外其他学者的研究方法,本文从中小 上市企业微观层面选择了4类非财务变量,分别为股权结 构、代理水平、董事会结构和审计意见,见表2。各类非财务 变量指标又包含若干二级变量,共计6项。

表2	非财务	B变量(候选	₫)
指标类型	变量名称	计算编码	备注
	最大股东持股占比	Y1	
股权结构	Z- 指数	Y2	最大股东持股占比:第二 大股东持股占比
代理水平	管理费用占比	Y3	管理费用 :主营业务规模
	董事会人数	Y4	
董事会结构	独立董事占比	Y5	独立董事人数:董事会成 员总数
审计意见	意见类别	Y6	为虚拟变量;若标准误保留,则记为1,否则,记为0

三、企业财务危机预警模型实证分析

(一)变量筛选 为降低计算复杂度并确保模型显著 性,须对上文22个候选指标作筛选处理。筛选程序如下:首 先 ,计算Kolmog or ov-smirnov ,对各指标作正态性检验 ;若 变量符合正态分布,计算其T值;若变量不符合正态分布, 计算其Wilcoxon秩,并进行非参数检验;最后,依据特定显 著水平标准,对各变量作显著性判断,从而确定模型变量。

(1)显著性检验。Kolmog or ov-smirnov值是反映分布函 数F (Y) 在特定范围内满足正态分布标准的概率。表3为 Kolmog or ov-smirnov检验及显著性检验结果。由表3可知, P<0.05时,各单变量显著性水平都接近0,远远小于显著性 水平0.5 此时各变量均不服从正态分布。

表3	单变量正态性、显著性检验结果			
变量编码	变量	K-S 检验值	显著性水平	
X1	资产负债率	0.615	0	
X2	利息保障倍数	5.321	0.001	
X3	现金流量与流动负债比	2.354	0	
X4	营运资本与总资产比	3.415	0	
X5	营业毛利率	6.796	0	
X6	总资产收益率	7.313	0	
X7	净资产收益率	6.424	0	
X8	留存收益与总资产比	4.206	0.006	
X9	应收账款周转率	3.263	0	
X10	营运资金周转率	2.828	0	
X11	总资产周转率	5.636	0	
X12	存货周转率	3.906	0	
X13	总资产增长率	2.462	0	
X14	净利润增长率	5.893	0	
X15	净资产增长率	4.362	0	
X16	销售净现率	4.294	0	
Y1	第一大股东持股比例	6.248	0	
Y2	Z指数	4.592	0.004	
Y3	管理费用率	2.409	0	
Y4	董事会规模	1.518	0	
Y5	独立董事比例	6.408	0	

(2)Wilcoxon秩与非参数检验。将企业财务危机被ST前 一年记为T-1。Wilcoxon秩计算结果以Z-value表示;非参数 检验显著性水平判定基准为0.5。根据各单变量Wilcoxon秩 和非参数检验结果,发现存货周转率(X12)显著性水平为 0.973 ,大于基准值0.5 ,该变量应当剔除 ;第一大股东持股比 例(Y1)显著性水平为0.576,大于基准值0.5,该变量应当剔 除 Z指数(Y2)显著性水平为0.516应该剔除 ;董事会规模 (Y4)显著性水平也为0.516,须剔除。其余18个指标变量分 组差异显著性水平低于0.50,作为财务危机预警模型变量。

(二)因子分析 在确保企业财务危机信息充足的前提 下,为进一步减少计算量,需要对模型变量进行因子分析。 通过因子分析,提取出剩余15个财务指标变量的公共因 子,将其作为Logistic财务预警模型的变量。由于非财务指 标不能进行因子分析,可将剩余3个非财务指标变量直接 纳入Logistic模型变量。

(1)KMO检验。利用KMO结果对财务指标变量是否适 合因子分析进行判断。KMO值分布在区间[0,1]上,KMO值 越大 表明变量相关性越强。若KMO值大于0.9 则变量非常 适合作因子分析;当KMO值分布在[0.8,0.9]时,变量比较 适合作因子分析;当KMO值分布在[0.7,0.8]时,变量可用 于因子分析;当KMO值分布在[0.6,0.7]时,变量因子分析 效果较差;当KMO值分布在[0.5,0.6]时,变量因子分析效 果很差;当KMO值分布在[0.0,0.5]时,变量不适合作因子 分析。对15个财务指标变量进行巴特利检验,卡方值为 1193.35 ,自由度为102 ,置信度P为0。财务指标变量的KMO 值为0.794,位于[0.8,0.9]。可见,剩余15个财务指标比较适 合作因子分析。

(2)公共因子计算。表4为15个财务指标公共因子分析 结果。由表4可知,15个财务指标变量共计算出了5个公共 因子,对被解释变量(财务危机)累积贡献率为82.517%。其 中,前4个公共因子对被解释变量(财务危机)累积贡献率 为78.902%。可见,可用前4个公共因子作为原财务指标的 替代变量 将其分别记为F1、F2、F3、F4。

财务指标公共因子特征值、贡献率计算结果

P .	X3 X3 3 A 7 X A 3 A 3 A 3 A 4 A 7 X			
因子序号	特征值	贡献率(%)	贡献率累积(%)	
1	4.645	32.098	32.098	
2	2.578	21.071	53.169	
3	1.483	16.185	69.354	
4	1.238	9.548	78.902	
5	0.944	3.616	82.518	

(3)载荷系数计算。表5为4个公共因子和15个财务指 标原始变量间的载荷系数计算结果。公共因子与变量之间 载荷系数绝对值大于0.50时,认为该公共因子可以由对应 变量进行解释。由表5可知:公共因子F1可以由X5、X6、X7 和X8解释,对应变量所能够反映的企业应力能力信息;公 共因子F2可以由X1、X2、X3和X4解释,对应变量所能够反 映的企业偿债能力信息;公共因子F3可以由X9、X10、X11 和X13、X14、X15解释,对应变量所能够反映的企业营运能 力、发展能力信息;公共因子F4可以由X16解释,对应变量 所能够反映的企业现金流信息。

(三)财务危机预警模型构建

(1)财务指标Logistic回归模型。运用SPSS13.1软件,对 40家公司被ST前一年财务数据作回归分析,结果如表6所 示。由表6可知,在p=0.05水平下,4个公共因子通过显著性 检验。可见 Logistic回归模型拟合度较高。于是 ,得到如下 财务危机预警Logistic回归模型:

变量编码	变量	载荷系数			
		F1	F2	F3	F4
X1	资产负债率	0.217	0.831	-0.044	-0.228
X2	利息保障倍数	0.033	0.912	-0.072	0.193
X3	现金与流动负债比	0.193	0.786	0.103	-0.026
X4	营运资本与总资产比	0.385	0.862	0.265	-0.371
X5	营业毛利率	0.729	0.262	-0.054	0.132
X6	总资产收益率	0.637	0.401	0.043	0.072
X7	净资产收益率	0.872	-0.248	0.194	-0.357
X8	留存收益与总资产比	-0.662	-0.028	0.285	0.206
X9	应收账款周转率	0.013	0.117	-0.847	0.312
X10	营运资金周转率	0.267	-0.024	0.782	-0.013
X11	总资产周转率	0.113	0.143	0.627	-0.273
X13	总资产增长率	0.248	0.162	0.672	0.127
X14	净利润增长率	-0.092	-0.224	-0.552	0.015
X15	净资产增长率	-0.173	0.382	0.601	-0.183
X16	销售净现率	0.362	0.052	0.374	0.814

表6	财务指标变量Logistic回归模型			
变量	系数	标准误 SE	WALD 检验	显著性水平
F1	-3.264	0.511	16.246	0
F2	-1.636	0.486	6.814	0
F3	-1.824	0.622	15.862	0
F4	-2.317	0.811	10.557	0.001
常数	-3.175	0.372	1.448	0.372

$$1n\frac{p}{1-p}$$
 = -3.175 - 3.264F1 - 1.636F2 - 1.824F3 - 2.317F4

(2)综合Logistic回归模型。如表7所示,加入非财务指标Y3、Y5和Y6后,可得综合Logistic回归模型。

表7	综合Logistic回归模型			
变量	系数	标准误 SE	WALD 检验	显著性水平
F1	-2.828	0.514	16.518	0
F2	-1.269	0.417	7.279	0.001
F3	-0.838	0.619	14.917	0
F4	-1.468	0.591	10.725	0.001
Y3	-3.172	1.024	4.281	0.035
Y5	-5.272	2.591	5.824	0.021
Y6	-2.151	0.913	5.023	0.025
常数	5.328	1.473	9.236	0.003

由表7可知,在p=0.05水平下,各因子通过显著性检验,模型拟合度理想。财务危机预警综合Logistic回归模型:

$$1n\frac{p}{1-p} = 5.328 - 2.828F1 - 1.269F2 - 0.838F3 - 1.468F4 -$$

3.172Y5-2.151Y6

(四)结果分析

(1)纯财务指标Logistic回归模型。对财务指标Logistic回归模型作检验,检验结果见表8。可见,采用纯财务指标Logistic回归模型对ST企业、非ST企业进行财务危机预警的准确率分别为75.0%、84.375%。

表8	纯财务指标检验结果			
实际值	判别值		准确率	
	ST 企业	非 ST 企业		
ST 企业	6.0	2.0	q=6/8=75.0%	
非 ST 企业	5.0	27.0	q=27/32=84.375%	

(2)综合Logistic回归模型。对加入非财务指标后的综合 Logistic回归模型作检验,检验结果见表9。可见,综合 Logistic回归模型对ST企业、非ST企业财务危机预警的准确 率分别为87.50%、90.625%。与纯财务指标Logistic回归模型相比,综合Logistic回归模型财务危机预警能力分别提升12.50%、6.25%。

表9	综合模型检验结果			
实际值	判别值		准确率	
	ST 企业	非 ST 企业		
ST 企业	7.0	1.0	q=6/8=87.50%	
非 ST 企业	3.0	29.0	q=27/32=90.625%	

四、结论

中小企业财务管理水平相对较低,财务危机预警能力较弱。为有效防范和避免经营中的财务危机,有必要构建适合自身实际的财务危机预警模型。本文选取40家非金融类中小企业上市公司,其中32家非ST企业,8家ST企业。经过变量筛选、Wilcoxon秩和非参数检验、因子分析等步骤,分别构建了纯财务指标Logistic回归模型和综合Logistic回归模型。结果表明:

纯财务指标Logistic回归模型对ST企业、非ST企业财务 危机预警准确率分别为75.0%、84.375%;综合Logistic回归 模型对ST企业、非ST企业财务危机预警准确率分别为 87.5%、90.625%;与纯财务指标Logistic回归模型相比,综合 Logistic回归模型财务危机预警能力分别提升12.50%、 6.25%。

*本文系国家社会科学基金项目(项目编号:13BJY108) 阶段性研究成果。

参考文献:

[1]余立凡、曾五一《上市公司财务危机预警的Logistic 模型》《东南学术》2005年第2期。

[2]刘先伟、陶萍《基于Logistic回归模型的建材业上市公司财务预警研究》《工程管理学报》2011年第4期。

- [3]解秀玉、管西三:《企业财务风险预警模型研究——基于制造业数据》《南京审计学院学报》2013年第4期。
- [4]李春玲、刘梁《航空公司财务危机预警模型研究》, 《财会通讯》2015年第1期。
- [5]曾繁荣、蒙良、张洁:《上市公司财务危机预警模型 实证对比分析——基于引入非财务指标的视角》《财会通讯》2013年第11期。
- [6]岳彩信:《国有企业财务危机预警模型实证研究》, 《会计之友》2012年第6期。
- [7] Fitzpatrick P J. A Comparison of the Ratios of Successful Industrial Enterprises with those of Failed Companies An á lise Molecular Do Gene Wwox ,1932.
- [8] Beaver W H. Financial ratios as predictors of failure, Journal of Accounting Research ,1966.
- [9]Ohlson. Financial Ratios and the Probabilistic Prediction of Bankruptcy Journal of Accounting Research ,1980. (编辑 成方)

108 好公通仇 2017 年第 5 期