One Step Forward, Two Steps Back: Foreclosure Dynamics in Tipping Markets

Matteo Courthoud, Gregory Crawford

October 14, 2020

Motivation

- Many foreclosure concerns in recent merger cases
- And fear of mistakes in past cases (e.g. Google-DoubleClick)
- Common denominators:
 - Large tech companies: economies of scale
 - Quickly evolving markets
 - Product complementarities
 - Fear of firm dominance spreading across markets
- In particular: data, source of
 - economies of scale
 - complementarities (sometimes artificial)

Foreclosure definition: "a firm's restriction of output in one market through the use of market power in another market" (Rey and Tirole, 2007).

Motivation

- Many foreclosure concerns in recent merger cases
- And fear of mistakes in past cases (e.g. Google-DoubleClick)
- Common denominators:
 - Large tech companies: economies of scale
 - Quickly evolving markets
 - Product complementarities
 - Fear of firm dominance spreading across markets
- In particular: data, source of
 - economies of scale
 - complementarities (sometimes artificial)

Example: Google # fitbit

Google has a recent history of foreclosure

- Fitbit business: wearables
 - new source of consumer attention
 - and health data
- Google business: monetizing consumer attention using data
- Google would have an incentive to favor its (Wear) operating system for all (non-Apple) wearables
 - 1. establishing a dominant position in health user data
 - 2. protecting its dominant position in non-health user data

Research Question

- Microsoft/Netscape case (2001) spurred rich research on foreclosure in complementary markets
- Theory focused on institutional details of that specific case: sequential entry in complementary markets with integrated monopolist
- How general are these insights?
- What is the role of increasing returns, e.g. economies of scale?
- What are the policy implications?

Research Question

- Microsoft/Netscape case (2001) spurred rich research on foreclosure in complementary markets
- Theory focused on institutional details of that specific case: sequential entry in complementary markets with integrated monopolist
- How general are these insights?
- What is the role of increasing returns, e.g. economies of scale?
- What are the policy implications?

This paper: computational model of dynamic competition (entry, exit, mergers) in complementary markets w/ increasing returns and foreclosure possibilities (with implications for pressing cases in competition policy)

- 1. Endogenous market structure
- 2. Add economies of scale: learning-by-doing
- 3. Policy focus

1. Endogenous market structure

- Instead of taking the market structure as given, we study the full dynamics of the market structure (distribution over market structures)
- E.g. classic foreclosure paper starts with "consider a monopolist facing a potential entrant..."
- Analyze a broader framework where firms can enter, exit, merge
- Nests classical foreclosure papers, e.g. Winston (1989), Carlton & Waldman (2002)
- Seek to trace out mapping of structural parameters governing economic environment into long-run equilibria (competition vs monopoly)
- 2. Add economies of scale: learning-by-doing
- 3. Policy focus

- 1. Endogenous market structure
- 2. Add economies of scale: learning-by-doing
 - Mechanism: firms become more efficient through sales
 - Common framework to study market tipping
 - Compact model, only one decision variable (prices)
 - Results are robust to different forms of increasing returns (e.g. increasing returns in investment, network effects)
- 3. Policy focus

- 1. Endogenous market structure
- 2. Add economies of scale: learning-by-doing
- 3. Policy focus
 - Maps into topical cases (Google-Fitbit, ...)
 - Captures main feature of big tech markets: data
 - High demand from policy
 - EC: gatekeeper regulations
 - UK: creation of digital markets unit
 - US: proposed new antitrust laws
 - Flexible model w.r.t. policy interventions
 - Merger policy
 - Data sharing
 - Ban below-cost pricing
 - Non-discrimination provisions

Results

- 1. Baseline: no learning-by-doing and no bundling
 - Firms have little incentives to integrate

2. Bundling

- Bundling improves firm ability to internalize externalities
- Conventional comp. policy: mergers of complements increase welfare
- BUT market structure more likely to degenerate to monopoly

3. Learning-by-doing

- Learning-by-doing increases firm incentives to internalize externalities
- High incentives for "partial foreclosure": exclusion through pricing

4. Learning-by-doing + bundling

- Firms have both the incentives (LBD) and ability (bundling) to integrate and be aggressive in pricing
- Market tipping extremely likely

Literature

- Foreclosure
 - Literature: Rey, Tirole (2007)
 - Two-period models: Whinston (1990), Choi and Stefanadis (2001), Carlton and Waldman (2002)
- Learning-by-doing
 - Theory: Cabral and Riordan (1994), Cabral (2011)
 - Computation: Besanko, Doraszelski, Satterthwaite and Kryukov (2010), Besanko, Doraszelski and Kryukov (2014), Besanko, Doraszelski and Kryukov (2017)
- Computation Theory
 - Pakes and McGuire, (1994), Ericson and Pakes (1995), Doraszelski and Pakes (2007), Doraszelski and Satterthwaite (2010)
- Recent literature
 - Data: Hagiu, Wright (2020)
 - Google-Fitbit: Chen, Choe, Cong and Matsushima (2020), Condorelli and Padilla (2020a), Condorelli and Padilla (2020b)

Model

Model

- Two markets: A and B
- Complements: consumers demand one unit of each product (system)
- At most two products per market (for now)
- Plus outside option (not in the figures)
- Firms can enter, exit and merge
- No learning-by-doing (yet)

Internalizing Externalities

Two ways of internalizing pricing externalities on products in the other market:

- 1. Ownership: through mergers or cross-market entry
- 2. Ownership + Bundling: own products incompatible with competitor's

Difference:

- Ownership only internalizes pricing incentives w.r.t. outside option
- Why? Own product can be bought in combination with competitor's

Predatory Bundling

- Side effect: bundling also implies zero profits for competitor facing an integrated monopolist
- Carlton & Waldman (2002): bundling to preserve monopoly power and prevent 2-step entry

• If entry is profitable only if entrant sells in both periods, bundling can prevent entry by negating sales in the intermediate period

Carlton & Waldman (2002)

Rows: initial state. Columns: asymptotic distribution over states.

1. If you start in integrated duopoly, you stay there

Carlton & Waldman (2002)

From — To	1 2	1 2	3	3	3 4	3 4	3 4
3 4							1
3		0.8969					0.1031

Rows: initial state. Columns: asymptotic distribution over states.

- 1. If you start in integrated duopoly, you stay there
- 2. If mkt A is competitive (i.e. browsers), mkt B is not (O.S.) and (1)-(2) is jointly owned (Microsoft), most likely outcome is monopoly

Carlton & Waldman (2002)

From — To	1 2	1 2	3	3	3 4	3 4	1 2 3 4
(1) (2) (3) (4)							1
① · · · ② · · · · · · · · · · · · · · ·		0.8969					0.1031
① · · · ②		1					

Rows: initial state. Columns: asymptotic distribution over states.

- 1. If you start in integrated duopoly, you stay there
- 2. If mkt A is competitive (i.e. browsers), mkt B is not (O.S.) and (1)-(2) is jointly owned (Microsoft), most likely outcome is monopoly
- 3. What if A is not yet competitive? Bundling makes entry in A unprofitable in the first place and monopoly the only equilibrium

Market Transitions

Computational model allows us to look at the big picture.

Carlton & Waldman - Without Bundling

	1 2	1 2	1 2	1 2	0 2	1 2	1 2
From — To			(3)	3	(3) (4)	(3) (4)	(3), (4)
0 2							1
<u> </u>							
(1) (2) (3)						0.3896	0.6104
(1° 2°)						0.3896	0.6104
			L				

Rows: initial state. Columns: asymptotic distribution over states.

• Concentration is not natural but a consequence of product bundling

Comparing Market Transitions

Key policy insights:

- Without bundling: market converges to competitive structure
- With bundling: market mostly converges to integrated monopoly
- Bundling does not just impact transitions but also welfare (next slide)

Welfare

	1 2	1 2	1 2	1 2	1 2	1 2	0 2	
No Bundling			3	3	3 4	3 4	3,4	
Price	2.2223	2.4562	2.4828	2.5096	2.3983	2.3981	2.398	
Profits	0.6779	0.7047	0.7634	0.7514	0.3995	0.3994	0.3993	
C Surplus	0.1479	0.2085	0.1964	0.2113	0.7389	0.7391	0.7392	
	Static: welfare increases in integrated duopoly							
Bundling	1 2	1 2	3	3	① 2 3 4	① ② ③ ④	3,4	
Price	2.2223	2.4562	2.4828	2.4562	2.3983	2.2859	2.1996	
Profits	0.6779	0.7047	0.7634	0.7047	0.3995	0.2867	0.1999	
C Surplus	0.1479	0.2085	0.1964	0.2085	0.7389	0.7793	0.8694	

Welfare

No Bundling	1 2	1 2	1 2	1 2 3	3 4	1 2 3 4	1 2 3 4
Price	2.2223	2.4562	2.4828	2.5096	2.3983	2.3981	2.398
Profits	0.6779	0.7047	0.7634	0.7514	0.3995	0.3994	0.3993
C Surplus	0.1479	0.2085	0.1964	0.2113	0.7389	0.7391	0.7392

Dynamic: welfare decreases

	1 2	1 2	1 2	1 2	0 0	1 2	1 2
Bundling			3	3	3 4	3 4	3,4
Price	2.2223	2.4562	2.4828	2.4562	2.3983	2.2859	2.1996
Profits	0.6779	0.7047	0.7634	0.7047	0.3995	0.2867	0.1999
C Surplus	0.1479	0.2085	0.1964	0.2085	0.7389	0.7793	0.8694

Comment: 1 Step Forward, 2 Steps Back

- Conventional competition policy: mergers of complements lower prices (consumer welfare enhancing)
- True in the short run

Example: merger with 4 non-integrated products

	1 2	1 2	1 2	1 2	1 2	1 2	1 2
Bundling			3	3	3 4	3 4	3 4
Price	2.2223	2.4562	2.4828	2.4562	2.3983	2.2859	2.1996
Profits	0.6779	0.7047	0.7634	0.7047	0.3995	0.2867	0.1999
C Surplus	0.1479	0.2085	0.1964	0.2085	0.7389	0.7793	0.8694

1 step forward

Comment: 1 Step Forward, 2 Steps Back

- Conventional competition policy: mergers of complements lower prices (consumer welfare enhancing)
- True in the short run
- Dynamics: market structure most likely to degenerate to monopoly

Example: merger with 4 non-integrated products

	1 2	1 2	1 2	(3)	1 2	<u>1</u> 2	① 2 3 4
Bundling	į į		0	0	0 0	0 0	O ++••
Price	2.2223	2.4562	2.4828	2.4562	2.3983	2.2859	2.1996
Profits	0.6779	0.7047	0.7634	0.7047	0.3995	0.2867	0.1999
C Surplus	0.1479	0.2085	0.1964	0.2085	0.7389	0.7793	0.8694

1 step forward

2 steps back

Learning-by-doing

Endogenous Efficiency: Learning-by-Doing

- Learning-by-doing: firms decrease their marginal cost through sales
 - Only one firm gets a sale in each period
 - The firm that gets the sale decreases its marginal cost
 - Up to a lower bound
- Model: learning-by-doing only in market A
- Learning-by-doing introduces endogenous asymmetries
- ...and changes firms' pricing incentives
 - \bullet Lower price \to higher probability of lower marginal cost in the future
 - Result: aggressive pricing behavior

Comments

- 1. Without bundling: learning-by-doing worsens partial foreclosure
- 2. With bundling: encourages market tipping

Comment 1: Pricing Incentives without Bundling

- Partial foreclosure: excluding rival through pricing behavior
- Setting: integrated firm facing competitor in one market

Without learning-by-doing

- price at marginal cost in competitive market (product 1)
- extract surplus from the other market (product 2)
- product 3 partially foreclosed from the market

Comment 1: Pricing Incentives without Bundling

- Partial foreclosure: excluding rival through pricing behavior
- Setting: integrated firm facing competitor in one market

With learning-by-doing

- Incentive to price below marginal cost
- Result: stronger partial foreclosure
- Note: it happens even if predatory incentives are "shut down", i.e.
 even if the integrated firm does not internalize the effect of its own
 actions on the entry/exit/merger decisions of its competitor

To see it, we have to zoom in the dynamics within market structure

Comment 1: Pricing Incentives without Bundling

- Incumbent prices below marginal cost in market A even without internalizing predatory incentives (*left*)
- If the incumbent internalizes the effect of its pricing on the exit probability of its competitors, it will be much more aggressive (right)
- Result: learning-by-doing magnifies partial foreclosure incentives

Parameters: s=[1:5,1:1], max=3, i=1, O=1, M=1, F=1, d=0.10, s=0.1, k=1, p0=3.0, r=0.7, mc=[1,10], ec=[1,10], ev=[0,1]

${\sf Learning-by-doing} \, + \, {\sf Bundling}$

Comment 2: Pricing Incentives with Bundling

- With bundling, firms fully internalize pricing incentives
- Result: very aggressive pricing to climb the learning curve
- Setting: integrated duopoly

Parameters: s=[1:5,1:1], max=3, I=1, O=1, M=1, F=1, d=0.10, s=0.1, k=1, p0=3.0, r=0.7, mc=[1,10], ec=[1,10], ev=[0,1], max=1, p0=3.0, r=0.7, mc=[1,10], ev=[0,1], ev

• How does it affect then within market state distribution?

Comment 2: Pricing Incentives with Bundling

- Steady state distribution within integrated duopoly
 - ullet W/o bundling, both firms at the top of the learning curve o no exit
 - ullet With bundling, market tipping o exit
- **Result**: learning-by-doing + bundling can transform competition *in* the market to competition for the market.

Steady State Distribution

Parameters: s=[1:5,1:1], max=3, I=1, O=1, M=1, F=1, d=0.10, s=0.1, k=1, p0=3.0, r=0.7, mc=[1,10], ec=[1,10], ev=[0,1]

Next Steps

Test policy interventions

- Merger policy
- Non-discrimination provisions
- Data sharing
- Ban below-cost pricing
- Ban product bundling

Next Steps

Test policy interventions

- Merger policy
- Non-discrimination provisions
- Data sharing
- Ban below-cost pricing
- Ban product bundling

Thank you!

Appendix

Baseline Model - Details

Example setting:

- 2 markets: A and B
- 4 products: A_1 , A_2 , B_1 , B_2
- 4 systems: A_1B_1 , A_1B_2 , A_2B_1 , A_2B_2
- Consumer i utility from system A_1B_1

$$u_{iA_1B_1} = v_i - \alpha(p_{A_1} + p_{B_1}) + \varepsilon_{iA_1B_1}$$

• Demand of product A_1

$$q_{A_1}(\boldsymbol{p}) = \frac{e^{-\alpha p_{A_1}}}{e^{-\alpha p_{A_1}} + e^{-\alpha p_{A_2}} + e^{-\alpha p_0} \left(e^{-\alpha p_{B_1}} + e^{-\alpha p_{B_2}}\right)^{-1}}$$

Where v_i is the value of a product for consumer i, p_{A_1} is A_1 's price, $\varepsilon_{iA_1B_1}$ is consumer i shock for system A_1B_1 .

Objective Function

Firm that produces only product A_1

$$\pi_{A_1} = q_{A_1}(\mathbf{p})(p_{A_1} - c_{A_1})$$

Assume A_1 and B_1 are produced by the same firm:

$$\pi_{A_1} + \pi_{B_1} = q_{A_1}(\boldsymbol{p})(p_{A_1} - c_{A_1}) + q_{B_1}(\boldsymbol{p})(p_{B_1} - c_{B_1})$$

Assume A_1 and B_1 are produced by the same firm and bundled together¹:

$$\pi_{A_1} + \pi_{B_1} = q_{A_1B_1}(\boldsymbol{p})(p_{A_1} - c_{A_1} - c_{B_1})$$

 $^{{}^1}p_{B_1}$ normalized to zero, i.e. $p_{A_1B_1} \equiv p_{A_1}$.

Internalizing Externalities - Details

FOC of firm A_1 :

$$rac{1}{lpha}q_{A_1}(1-q_{A_1})(p_{A_1}-c_{A_1})-q_{A_1}=0$$

Assume A_1 and B_1 are produced by the same firm:

$$\frac{1}{\alpha}q_{A_1}(1-q_{A_1})(p_{A_1}-c_{A_1})-q_{A_1}+\underbrace{\frac{1}{\alpha}(q_{A_1B_1}-q_{A_1}q_{B_1})(p_{B_1}-c_{B_1})}_{\text{partial internalization}}=0$$

Assume A_1 and B_1 are produced by the same firm and bundled together²:

$$\frac{1}{\alpha}q_{A_1B_1}(1-q_{A_1B_1})(p_{A_1}-c_{A_1}-c_{B_1})-q_{A_1B_1}=0$$

 $^{^{2}}p_{B_{1}}$ normalized to zero, i.e. $p_{A_{1}B_{1}}\equiv p_{A_{1}}$.

Comments

Merging without bundling

- ullet Extra term: $rac{1}{lpha}q_{A_1B_1}(q_{A_1B_1}-q_{A_1}q_{B_1})(p_{B_1}-c_{B_1})$
- Firm internalizes the fact that lowering the price of product in market A increases demand (and profits) for product in market B
- But only for joint product A₁B₁

Merging and bundling

- Higher margin: $(p_{A_1} c_{A_1}) \to (p_{A_1} c_{A_1} c_{B_1})$
- Now firms sell only the joint product
- Firms fully internalizes impact on profits in the other market

Learning-by-Doing - Details

- Additional discrete state variable: e_n , firm n stock of know-how
- With probability q_n (demand), firm n wins a sale and increases its stock of know-how by one unit
- A firm-specific forgetting shock f_n decreases the stock of firm n's know-how by one unit with probability

$$\Pr(f_n) = 1 - (1 - \delta)^{e_n}$$

• Law of motion of know-how:

$$e_n'=e_n+q_n-f_n$$

 Firm marginal cost depends on the stock of know-how through a concave learning curve:

$$c(e_n) = \kappa \max\{e_n, M\}^{\rho}$$

where κ is the maximum marginal cost, ρ is the learning rate and M is the know-how upper bound.

Maximization Problem: Learning-by-Doing

Objective function of firm producing A_1 before:

$$\pi_{A_1}(\mathbf{p}) = q_{A_1}(p_{A_1} - c_{A_1})$$

Objective function of firm producing A_1 with learning-by-doing:

$$\begin{aligned} V_{A_1}(\boldsymbol{p}) = & q_{A_1}(p_{A_1} - c_{A_1}) + \beta \mathbb{E}[V'_{A_1}] = \\ = & q_{A_1}(p_{A_1} - c_{A_1}) + \\ & + \beta \left[q_{A_1B_1}V_{A_1}^{A_1B_1} + q_{A_1B_2}V_{A_1}^{A_1B_2} + q_{A_2B_1}V_{A_1}^{A_2B_1} + q_{A_2B_2}V_{A_1}^{A_2B_2} \right] \end{aligned}$$

Where $V_{A_1}^{A_1B_1}$ is the conditional value function, on A_1B_1 being sold.

Now winning a sale has an impact not only on current profits but also on future value.

Pricing Incentives: Learning-by-Doing

FOC of firm producing A_1 before:

$$0=rac{1}{lpha}q_{A_1}(1-q_{A_1})(p_{A_1}-c_{A_1})-q_{A_1}$$

FOC of firm producing A_1 with learning-by-doing:

$$0 = \frac{1}{\alpha} q_{A_1} (1 - q_{A_1}) (p_{A_1} - c_{A_1}) - q_{A_1} + q_{A_1 B_1} (1 - q_{A_1}) V_{A_1 B_1} + q_{A_1 B_2} (1 - q_{A_1}) V_{A_1 B_2} - q_{A_2 B_1} q_{A_1} V_{A_2 B_1} - q_{A_2 B_2} q_{A_1} V_{A_2 B_2}$$

Now firms internalize the fact that by winning a sale today they not only get current profits, but also decrease their future marginal cost.