

中华人民共和国密码行业标准

GM/T 0001.1—2012

祖冲之序列密码算法第1部分:算法描述

ZUC stream cipher algorithm—
Part 1: Description of the algorithm

2012-03-21 发布 2012-03-21 实施

目 次

前言	***********	Ш
1 范围		1
2 术语和约定		1
3 符号和缩略语		1
4 算法描述		2
4.1 算法整体结构		2
4.2 线性反馈移位寄存器 LFSR		3
4.3 比特重组 BR ···································		3
4.4 非线性函数 F ······		3
4.5 密钥装入		
4.6 算法运行		4
附录 A (规范性附录) S 盒 ··································		6
附录 B (资料性附录) 模 $2^{31}-1$ 乘法和模 $2^{31}-1$ 加法的实现		8
附录 C (资料性附录) 算法计算实例		9
参考文献		13

前 言

GM/T 0001《祖冲之序列密码算法》包括三部分:

第1部分:算法描述;

第2部分:基于祖冲之算法的机密性算法;

第3部分,基于祖冲之算法的完整性算法。

本部分为 GM/T 0001 的第1部分。

GM/T 0001 的本部分依据 GB/T 1.1 2009 给出的规则起草。

本部分内容同 3GPP LTE 机密性和完整性算法标准 ZUC 规范(ETSI/SAGE TS 35.222)保持一致性。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本部分附录 A 为规范性附录, 附录 B 和附录 C 为资料性附录。

本部分由国家密码管理局提出并归口。

本部分起草单位:中国科学院软件研究所、中国科学院数据与通信保护研究教育中心。

本部分主要起草人:冯登国、林东岱、冯秀涛、周春芳。

祖冲之序列密码算法第1部分:算法描述

1 范围

GM/T 0001 的本部分描述了祖冲之序列密码算法,可用于指导祖冲之算法相关产品的研制、检测和使用。

2 术语和约定

以下术语和约定适用于本文件。

2.1

比特 bit

二进制字符0和1称之为比特。

2.2

字节 byte

由8个比特组成的比特串称之为字节。

2.3

字 word

由 2 个以上(包含 2 个)比特组成的比特串称之为字。本部分主要使用 31 比特字和 32 比特字。

2.4

字表示 word representation

本部分字默认采用十进制表示。当字采用其他进制表示时,总是在字的表示之前或之后添加指示符。例如,前缀 0x 指示该字采用十六进制表示,后缀下角标 2 指示该字采用二进制表示。

2.5

高低位顺序 bit ordering

本部分规定字的最高位总是位于字表示中的最左边,最低位总是位于字表示中的最右边。

3 符号和缩略语

3.1 运算符

+ 算术加法运算

mod 整数取余运算

⊕ 按比特位逐位异或运算

田 模 232 加法运算

字符串连接符

· 用 取字的最高 16 比特

・L 取字的最低 16 比特

<<< k 32 比特字左循环移 k 位

>>k 32 比特字右移 k 位

$a \rightarrow b$ 向量 a 赋值给向量 b,即按分量逐分量赋值

3.2 符号

下列符号适用于本部分:

50,51,52, …,515 线性反馈移位寄存器的 16 个 31 比特寄存器单元变量

 X_0, X_1, X_2, X_3 比特重组输出的 4 个 32 比特字

 R_1, R_2 非线性函数 F 的 $2 \cap 32$ 比特记忆单元变量

W非线性函数 F 输出的 32 比特字Z算法每拍输出的 32 比特密钥字

k 初始种子密钥

iv 初始向量

D 用于算法初始化的字符串常量

3.3 缩略语

下列缩略语适用于本部分:

ZUC 祖冲之序列密码算法或祖冲之算法

LFSR 线性反馈移位寄存器

 BR
 比特重组

 F
 非线性函数

4 算法描述

4.1 算法整体结构

祖冲之算法逻辑上分为上中下三层,见图 1。上层是 16 级线性反馈移位寄存器(LFSR);中层是比特重组(BR);下层是非线性函数 F。

图 1 祖冲之算法结构图

4.2 线性反馈移位寄存器 LFSR

4.2.1 概述

LFSR 包括 16 个 31 比特寄存器单元变量 50,51, ...,515。

LFSR 的运行模式有 2 种:初始化模式和工作模式。

4.2.2 初始化模式

在初始化模式下,LFSR接收一个 31 比特字 u。u 是由非线性函数 F 的 32 比特输出 W 通过舍弃最低位比特得到,即 u-W>>1。在初始化模式下,LFSR 计算过程如下:

```
LFSRWithInitialisationMode(u) {
    (1) v-2^{15}s_{15}+2^{17}s_{13}+2^{21}s_{10}+2^{20}s_4+(1+2^8)s_0 \mod (2^{31}-1);
    (2) s_{16}-(v+u) \mod (2^{31}-1);
    (3) 如果 s_{16}-0,则置 s_{16}-2^{31}-1;
    (4) (s_1,s_2,\cdots,s_{15},s_{16}) \rightarrow (s_0,s_1,\cdots,s_{14},s_{15}).
}
```

4.2.3 工作模式

在工作模式下,LFSR 不接收任何输入。其计算过程如下:

```
LFSRWithWorkMode()
{
    (1) s_{16} - 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1 + 2^8) s_0 \mod (2^{31} - 1);
    (2) 如果 s_{16} - 0,则置 s_{16} - 2^{31} - 1;
    (3) (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15}).
}
```

4.3 比特重组 BR

比特重组从 LFSR 的寄存器单元中抽取 128 比特组成 4 个 32 比特字 X_0 、 X_1 、 X_2 、 X_3 。 BR 的具体计算过程如下:

```
BitReconstruction() { (1) \ X_0 - s_{15H} \parallel s_{14L}; \\ (2) \ X_1 - s_{11L} \parallel s_{9H}; \\ (3) \ X_2 - s_{7L} \parallel s_{5H}; \\ (4) \ X_3 - s_{2L} \parallel s_{0H}. }
```

4.4 非线性函数 F

F包含 2 个 32 比特记忆单元变量 R_1 和 R_2 。 F的输入为 3 个 32 比特字 X_0 、 X_1 、 X_2 ,输出为一个 32 比特字 W。F的计算过程如下。 $F(X_0,X_1,X_2)$ {

GM/T 0001.1-2012

```
(1) W - (X_0 \oplus R_1) \boxplus R_2;

(2) W_1 - R_1 \boxplus X_1;

(3) W_2 - R_2 \oplus X_2;

(4) R_1 - S(L_1(W_{1L} \parallel W_{2H}));

(5) R_2 - S(L_2(W_{2L} \parallel W_{1H})).
```

其中 S 为 32 比特的 S 盒变换,定义在附录 Λ 中给出; L_1 和 L_2 为 32 比特线性变换,定义如下:

$$\begin{array}{c} L_1(X) - X \oplus (X <<<\!2) \ \oplus (X <<<\!10) \ \oplus (X <<<\!18) \ \oplus (X <<\!24) \,, \\ L_2(X) - X \oplus (X <<<\!8) \ \oplus (X <<<\!14) \ \oplus (X <<\!22) \ \oplus (X <<<\!30) \,. \end{array}$$

4.5 密钥装入

}

密钥装入过程将 128 比特的初始密钥 k 和 128 比特的初始向量 iv 扩展为 16 个 31 比特字作为 LFSR 寄存器单元变量 s_0 , s_1 , \cdots , s_{15} 的初始状态。设 k 和 iv 分别为

$$k_0 \parallel k_1 \parallel \cdots \cdots \parallel k_{15}$$

和

$$iv_0 \parallel iv_1 \parallel \cdots \cdots \parallel iv_{15}$$
,

其中 k_i 和 iv_i 均为 8 比特字节,0 $\leqslant i \leqslant 15$ 。密钥装入过程如下:

(1) D 为 240 比特的常量,可按如下方式分成 16 个 15 比特的子串,

$$D-d_0 \| d_1 \| \cdots \| d_{15}$$
,

 $d_0 = 100010011010111_2$,

其中:

$$d_1 - 010011010111100_2$$
, $d_2 - 110001001101011_2$, $d_3 - 001001101011110_2$, $d_4 - 101011110001001_2$, $d_5 - 011010111100010_2$, $d_6 - 111000100110101_2$, $d_7 - 000100110101111_2$, $d_8 - 1001101011110001_2$, $d_9 - 010111100010011_2$, $d_{10} - 110101111000100_3$, $d_{11} - 001101011110001_2$, $d_{12} - 101111000100110_2$, $d_{13} - 011110001001101_2$, $d_{14} - 11110001001101_2$, $d_{15} - 100011110101100_3$.

(2) 对 $0 \le i \le 15$,有 $s_i - k_i \parallel d_i \parallel iv_i$ 。

4.6 算法运行

4.6.1 初始化阶段

首先把 128 比特的初始密钥 k 和 128 比特的初始向量 iv 按照 4.5 的密钥装入方法装入到 LFSR 的寄存器单元变量 s_0 , s_1 , …, s_{15} 中, 作为 LFSR 的初态, 并置 32 比特记忆单元变量 R_1 和 R_2 为全 0。然

后执行下述操作:

重复执行下述过程 32 次:

- (1) BitReconstruction();
- (2) $W = F(X_0, X_1, X_2)$;
- (3) LFSRWithInitialisationMode (W>>1).

4.6.2 工作阶段

首先执行下列过程一次,并将 F 的输出 W 舍弃:

- (1) BitReconstruction();
- (2) $F(X_0, X_1, X_2)$;
- (3) LFSRWithWorkMode().

然后进入密钥输出阶段。在密钥输出阶段,每运行一个节拍,执行下列过程一次,并输出一个 32 比特的密钥字 Z:

- (1) BitReconstruction();
- (2) $Z = F(X_0, X_1, X_2) \oplus X_3$;
- (3) LFSRWithWorkMode().

附 录 A (规范性附录) *S* 盒

32 比特 S 盒 S 由 4 个小的 8×8 的 S 盒并置而成,即 $S - (S_0, S_1, S_2, S_3)$,其中 $S_0 - S_2$, $S_1 - S_3$ 。 S_0 和 S_1 的定义分别见表 1 和表 2。设 S_0 (或 S_1)的 8 比特输入为 x。将 x 视作两个 16 进制数的连接,即 $x - h \parallel l$,则表 1(或表 2)中第 h 行和第 l 列交叉的元素即为 S_0 (或 S_1)的输出 $S_0(x)$ (或 $S_1(x)$)。

设S 盒S 的 32 比特输入X 和 32 比特输出Y 分别为:

 $X - x_0 \parallel x_1 \parallel x_2 \parallel x_3,$ $Y - y_0 \parallel y_1 \parallel y_2 \parallel y_3,$

其中 x_i 和 y_i 均为8比特字节,i-0,1,2,3。则有 $y_i-S_i(x_i)$,i-0,1,2,3。

表 1 S_0 盒

	0	1	2	3	4	5	6	7	8	9	Λ	В	С	D	E	F
0	3E	72	5B	47	СЛ	E0	00	33	04	D1	54	98	09	B9	6D	СВ
1	7B	1B	F 9	32	ΛF	9D	6Λ	Λ5	B8	2D	FC	1D	08	53	03	90
2	4D	4E	84	99	E4	CE	D9	91	DD	B6	85	48	8B	29	6E	ΛC
3	CD	C1	F 8	1E	73	43	69	C6	B5	BD	FD	39	63	20	D4	38
4	76	7D	B2	Λ7	CF	ED	57	C5	F 3	2C	BB	14	21	06	55	9B
5	E3	EF	5E	31	4F	7 F	5Λ	Λ4	OD	82	51	49	5 F	ВΛ	58	1C
6	4Λ	16	D5	17	Λ8	92	24	1 F	8C	FF	D8	ΛE	2E	01	D3	ΛD
7	3B	4B	DΛ	46	EB	C9	DE	9Λ	8 F	87	D7	3Λ	80	6F	2 F	C8
8	Bl	B4	37	F 7	0Λ	22	13	28	7C	CC	3C	89	C7	С3	96	56
9	07	BF	7E	F0	0B	2B	97	52	35	41	79	61	Λ6	4C	10	FE
Λ	BC	26	95	88	8Λ	B0	Λ3	FB	C0	18	94	F2	El	E5	E9	5D
В	DO	DC	11	66	64	5C	EC	59	42	75	12	F 5	74	9C	ΛΛ	23
С	0E	86	ΛВ	BE	2Λ	02	E7	67	E6	44	Λ2	6C	C2	93	9 F	Fl
D	F6	FΛ	36	D2	50	68	9E	62	71	15	3D	D6	40	C4	E2	0F
E	8E	83	77	6B	25	05	3 F	0C	30	EΛ	70	B7	Λ1	E8	Λ9	65
F	8D	27	1Λ	DB	81	B 3	Λ0	F4	45	7Λ	19	DF	EE	78	34	60

表 2 S_1 盒

	0	1	2	3	4	5	6	7	8	9	Λ	В	С	D	E	F
0	55	C2	63	71	3B	C8	47	86	9 F	3C	DΛ	5B	29	ΛΛ	FD	77
1	8C	C5	94	0C	Λ6	1Λ	13	00	E3	Λ8	16	72	40	F 9	F8	42
2	44	26	68	96	81	D9	45	3E	10	76	C6	Λ7	8B	39	43	Εl
3	3Λ	B5	56	2Λ	C0	6D	B 3	05	22	66	BF	DC	0B	FΛ	62	48

表 2 (续)

	0	1	2	3	4	5	6	7	8	9	Λ	В	С	D	E	F
4	DD	20	11	06	36	C9	C1	CF	F 6	27	52	BB	69	F 5	D4	87
5	7 F	84	4C	D2	9C	57	Λ4	BC	4F	9Λ	DF	FE	D6	8D	7Λ	EB
6	2B	53	D8	5C	Λ1	14	17	FB	23	D5	7D	30	67	73	08	09
7	EE	В7	70	3 F	61	B2	19	8E	4E	E5	4B	93	8 F	5D	DB	Λ9
8	ΛD	F1.	ΛE	2E	СВ	οD	FC	F4	2D	46	6E	1D	97	E8	Dl	E9
9	4D	37	Λ5	75	5E	83	9E	ΛВ	82	9D	B9	1C	E0	CD	49	89
Λ	01	B6	BD	58	24	Λ2	5 F	38	78	99	15	90	50	B8	95	E4
В	D0	91	C7	CE	ED	0 F	B4	6 F	Λ0	CC	F 0	02	4Λ	79	C3	DE
С	Λ3	EF	EΛ	51	E6	6B	18	EC	1B	2C	80	F 7	74	E7	FF	21
D	5Λ	6Λ	54	1E	41	31	92	35	C4	33	07	0Λ	ВΛ	7E	0E	34
E	88	Bl	98	7C	F 3	3D	60	6C	7B	СЛ	D3	1 F	32	65	04	28
F	64	BE	85	9B	2F	59	8Λ	D7	B0	25	ΛC	ΛF	12	03	E2	F2

注: S_0 盒和 S_1 盒数据均为十六进制表示。

附 录 B

(资料性附录)

模 231-1 乘法和模 231-1 加法的实现

B.1 模 231-1 乘法

两个 31 比特字模 $2^{31}-1$ 乘法可以快速实现。特别地,当其中一个字具有较低的汉明重量时,可以通过 31 比特的循环移位运算和模 $2^{31}-1$ 加法运算实现。例如,计算 $ab \mod(2^{31}-1)$,其中 $b-2^i+2^j+2^k$,则

 $ab \mod (2^{31}-1)-(a <<<<_{31}i)+(a <<<<_{31}j)+(a <<<_{31}k) \mod (2^{31}-1)$,其中<<<<₃₁表示 31 比特左循环移位运算。

B.2 模 231-1 加法

在 32 位处理平台上,两个 31 比特字 a 和 b 模 $2^{31}-1$ 加法运算 $c-a+b \mod (2^{31}-1)$ 可以通过下面的两步计算实现:

- 1) c-a+b;
- 2) $c = (c \& 0 \times 7 FFFFFFF) + (c > 31)$.

附 录 C (资料性附录) 算法计算实例

C.1 测试向量 1(全 0)

输入:

输出:

z₁:27bede74 z₂:018082da

初始化:

线性反馈移位寄存器初态:

í	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	0044d700	0026bc00	00626b00	00135e00	00578900	0035e200	00713500	0009a100
8	004d7800	002[1300	006bc400	001af100	005e2600	003c4d00	00789a00	0047ac00
t	X_0	X_1	X_2	X_3	R_1	R_z	W	S_{15}
0	00819a00	ſ100005e	a100006b	6Ъ000089	67822141	62a3a55f	00819a00	4563cb1b
1	8ac7ac00	260000d7	780000e2	5e00004d	474a2e7e	119e94bb	41e932a0	28652a0f
2	50cacblb	4d000035	13000013	890000c4	c29687a5	e9b6eb51	291f7a20	74641744
3	e8c92a01	9a0000bc	c400009a	e2000026	29c272[3	8cac715d	141698ՐԵ	3[5644ba
4	7eac[744	ac000078	f100005e	350000af	2c85a655	24259cb0	e41b0514	006al44c
5	00d444ba	cb1b00f1	260000d7	al00006b	cbfbc5c0	44cl0b3a	19177703	07038b9b
6	0e07144c	2a010081	4d000035	780000e2	e083c8d3	7ab17679	0abddcc6	69b90e2b
7	d3728b9b	17448ac7	9a0000bc	13000013	147e14f4	b669e72d	aeb0b9cl	62a913ea
8	c5520e2b	44ba50ca	ac000078	c400009a	982834a0	1095d694	8796020c	7b591cc0
9	16b213ea	144ce8c9	cb1 b00f1	ſ100005e	e14727d6	d0225869	51211dde	70e21147
8	b							

初始化后线性反馈移位寄存器状态:

i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	7cel5b8b	747ca0c4	6259dd0b	47a94c2b	3a89c82e	32b4331c	231ea13f	31711e42
8	4ccce955	3fb6071e	161d3512	7114b136	5154d452	78c69a74	4126ba6b	3e1b8d6a

有限状态机内部状态:

 $R_1 = 14 \text{cfd} 44 \text{c}$

 $R_2 = 8c6 de800$

GM/T 0001.1-2012

密钥流:

ı	X_0	X_1	X_2	X_3	R_1	R_z	11.20	S_{15}
0	7c37ba6b	b1367f6c	le426568	dd0b19c2	3512bf50	a0920453	286 dafe5	7ſ08e141
1	fell8d6a	d4522c3a	e955463d	4c2be8f9	c7ee7f13	0c0[a817	27 bede74	3d383d04
2	7a70el41	9a74e229	071e62e2	c82ec4b3	dde63da7	b9dd6a41	018082da	13d6d780

C.2 测试向量 2(全 1)

输入:

输出:

 $z_1:0657cla0$

z2:7096398b

初始化:

线性反馈移位寄存器初态:

í	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	$S_{5+\epsilon}$	S_{6+i}	S_{7+i}
0	7[c4d7[[7fa6bcff	7fe26bff	7[935e][71d78911	7fb5e2ff	71113511	7[89a[[[
8	7[cd78[[7[a[13[[7febc4ff	7[9a[1[[71de2611	7fbc4dff	7[[89a[[71c7acl1
t	X_0	X_1	X_2	X_3	R_1	R_{z}	W	S_{15}
0	[[8[9a]]	llllll5e	alllll6b	6P111189	b51c2110	30a3629a	[[8[9a]]	76e49ala
I	edc9acll	261111d7	781111e2	5elll14d	a75b6f4b	la079628	89781089	5e2d8983
2	bc5b9ala	4d[[[[35	13111113	891111c4	9810b315	99296735	35088b79	5b9484b8
3	Ъ7298983	9alllfbc	c4IIII9a	e2111126	4 c5bd8eb	2d577790	c862alcb	2db5c755
4	5b6b84b8	acIIII78	1111115e	35]]][a]	al3dcb66	21d09391	4487d3e3	60579232
5	c0afc755	9ala[[[]	261111d7	alllll6b	cc5ce260	0c50a8e2	83629fd2	29d4e960
6	53a99232	18118888	4d[[[35	78[[[[e2	dada0730	b516b128	ac461934	5e02d9e5
7	bc05e960	84 b8 edc9	9allllbc	13111113	2bbe53a4	12a8a16e	1b169178	7904dddc
8	1209d9e5	c755bc5b	ac[[[[78	c4[[[[9a	4a90d661	d9c744b4	ec602bal	0c3c9016
9	1879dddc	9232b729	9ala[[[]	[1][[[5e	76 bc1 3d7	a49ea404	2cb05071	0b9d257b

初始化后线性反馈移位寄存器状态:

í	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	09a339ad	1291d190	25554227	36c09187	0697773b	443c19cd	6a4cd899	49e34bd0
8	56130b14	20e8f24c	7a5bldcc	0c3cc2d1	1cc082c8	7[5904a2	55b61ce8	1fe46106

有限状态机内部状态:

 $R_1 = b8017bd5$

 $R_2 = 9 \text{ce} 2 \text{de} 5 \text{c}$

密钥流:

t	X_0	X_1	X_2	X_3	R_1	R_z	"Z	S_{15}
0	3[c8]ce8	c2d141d1	4bd08879	42271346	aal31b11	09d7706c	116854866	13[56db[
1	27ea6106	82c8f4b6	0b14d499	91872523	251e7804	caac5d66	0657cfa0	0c0fe353
2	181l6dbl	04a21879	124c93c6	773b4aaa	d94e9228	91d88fba	7096398b	10fleecf

C.3 测试向量 3(随机)

输入:

密钥 k:3d 4c 4b e9 6a 82 ld ae b5 8l 64 ld bl 7b 45 5b 初始向量 iv:84 3l 9a a8 de 69 l5 ca ll 6b da 6b lb d8 c7 66

输出:

z₁:14f1c272 z₂:3279c419

初始化:

线性反馈移位寄存器初态:

	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	$S_{5+\epsilon}$	S_{6+i}	S_{7+i}
)	lec4d784	2626bc31	25e26b9a	74935ea8	355789de	4135e269	7el13515	5709alca
3	5acd781f	47a[136b	326 bc4da	0e9al16b	58de26fb	3dbc4dd8	22[89ac7	2dc7ac66
ĝ.	X_0	X_1	X_2	X_3	R_1	R_z	W	S_{15}
)	5b8[9ac7	f16b8f5e	alca826b	6b9a3d89	9c628291	5df00831	5b8[9ac7	3c7b93c0
	7817ac66	261b64d7	781ffde2	5ea84c4d	3d533[3a	80[[][a[4285372a	41901ee9
3	832093c0	4dd81d35	136bae13	89de4bc4	2ca57e9d	d1db72f9	3172cca9	411ela99
}	823dlee9	9ac7blbc	c4dab59a	e269e926	0e8dc401	60921a4ſ	8073d36d	24b3[49[
Ļ	4967[a99	ac667b78	[16b8[5e	35156aaf	16c81467	da8e7d8a	a87c58e5	74265785
5	e84c[49[93c045[1	261b64d7	alca826b	50c9eaa4	3c3b2dfd	d9135e82	481c5b9d
;	90385785	lee95b8f	4dd81d35	781[[de2	59857b80	be0[bdcl	ſd2ceble	4b7187ed
7	96115b9d	1a997817	9ac7blbc	136bae13	9528[8ea	bcc717eb	8d89ddde	0e633ce7
3	1cc687ed	14918320	ac667b78	c4dab59a	c59d2932	e1098a64	46b67612	643ae5a6
)	c8753ce7	5785823d	93c045f1	[16b8[5e	755ebae8	319e6e86	eesla039	625ac5d7

初始化后线性反馈移位寄存器状态:

í	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{s+i}	S_{6+i}	S_{7+i}
0	10da5941	5b6acb16	17060cel	35368174	5cf4385a	479943dſ	2753bab2	73775d6a
8	43930a37	77b4a[31	15b2e89f	24[[6e20	740c40b9	026a5503	194b2a57	7a9alcff

有限状态机内部状态:

 $R_1 = 860a7dfa$

 R_z — bloeoffc

GM/T 0001.1-2012

密钥流:

t	X_0	X_1	X_2	X_3	R_1	R_z	71 Z	S_{15}
0	15342a57	6e20e169	5d6a8f32	Oce121b4	129d8b39	2d7cdcel	3ead461d	3d4aa9e7
1	7a951cff	40b92b65	0a374ea7	8174b6d5	ab7c1688	c1598aa6	$14 \mathrm{f1}\mathrm{c272}$	71db1828
2	e3b6a9e7	550349ſe	af3le6ee	385a2e0c	3cecla4a	9053cc0e	3279c419	258937da

注:上述祖冲之算法计算实例中数据全部采用十六进制表示。

参考文献

- [1] ETSI/SAGE TS 35. 221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 1:128-EEA3 and 128-EIA3 Specification.
- [2] ETSI/SAGE TS 35. 222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2, ZUC Specification.
- [3] ETSI/SAGE TS 35. 223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 3; Implementor's Test Data.
- [4] ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4:Design and Evaluation Report.

中华人民共和国密码 行业 标准 祖冲之序列密码算法 第1部分:算法描述

GM/T 0001.1 2012

中国标准出版社出版发行 北京市朝阳区和平里西街甲 2号(100013) 北京市西城区三里河北街 16 号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946

> 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1.25 字数 23 千字 2012年8月第一版 2012年8月第一次印刷

书号: 155066 • 2-23744 定价 21.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

