EC3322

Industrial Organization I Semester 1, 2015-2016

Tutorial #6

SOLUTIONS

2.

Player 2

		a,c	b,c	a,d	b,d
	L,x	3,2	2,1	3,2	2,1
Player 1	L,y	1,2	2,1	1,2	2,1
	R,x	1,4	1,4	2,3	2,3
	R,y	1,4	1,4	2,3	2,3

Nash Equilibria: ((L,x), (a,c)) and ((L,x),(a,d))

- 3. Pre-merger HHI is 2472, and in class we estimated the counterfactual price to be \$.88.
 - (a) Post-merger HHI = 4520, $\Delta HHI = 2048$, $\bar{c} = .74$, p = 1.04
 - (b) Post-merger $HHI = 2864, \Delta HHI = 392, \bar{c} = .74, p = 0.91$
 - (c) Post-merger HHI = 2728, $\Delta HHI = 256$, $\bar{c} = .73$, p = 0.89
- 4. The marginal revenue of firm 1 is

$$MR_1 = 30 - 2q_1 - q_2.$$

Set MR_1 equal to MC = 0 and impose symmetry $(q_1 = q_2)$ to find the Nash-equilibrium $q_1^* = 10$ and $q_2^* = 10$. Price is $p^* = 10$ and profit per firm is $\pi^* = 100$.

- 5. (a) Marginal revenue for firm i is $MR_i = 100 2q_i Q_{-i}$, and marginal cost is $MC_i = 2q_i$. The q_i such that $MR_i = MC_i$ is $q_i^* = \frac{100 Q_{-i}}{4}$. Imposing symmetry, $q_i^* = q^*$ for all i, we find $q^* = \frac{100}{3+N}$, $Q^* = Nq^* = \frac{100N}{3+N}$, and $p^* = 100 Q^* = \frac{300}{3+N}$. Profit is $\pi^* = p^*q^* q^{*2} F = \frac{20000}{(3+N)^2} F$.
 - (b) With entry and exit, firm profit will be driven to zero. Set profit equal to zero and solve for N: $\pi^* = \frac{20000}{(3+N)^2} F = 0 \Rightarrow N^* = \sqrt{\frac{20000}{F}} 3$.