Computational Number Theory

HW 2

CS20BTECH11042

1 Question 1

- Using Chinese Remainder Theorem, we can say that solutions of $x^2 1$ in \mathbb{Z}_{17} and $x^2 1$ in \mathbb{Z}_{19} are the solutions we require.
- \mathbb{Z}_{17}

$$(x-1)(x+1) = 0 \mod 17$$
$$\Rightarrow x = 1, 16 \mod 17$$

 \bullet \mathbb{Z}_{19}

$$(x-1)(x+1) = 0 \mod 19$$
$$\Rightarrow x = 1, 18 \mod 19$$

- $\mathbb{Z}_{17\times19}$
 - $-x=1 \mod 17$ and $x=1 \mod 19 \Rightarrow x=1 \mod 17 \times 19$
 - $-x = 16 \mod 17$ and $x = 1 \mod 19 \Rightarrow x = 305 \mod 17 \times 19$
 - $-x=1 \mod 17$ and $x=18 \mod 19 \Rightarrow x=18 \mod 17 \times 19$
 - $-x = 16 \mod 17 \text{ and } x = 18 \mod 19 \Rightarrow x = 322 \mod 17 \times 19$
- Therefore, the roots of $x^2 1$ in $\mathbb{Z}_{17 \times 19}$ are $\{1, 18, 305, 322\}$

2 Question 2

- We observe that 41 is a prime number and $7 \nmid 41$
- Using Euclids lemma, we find k=23 satisfies the equation, $7k = 1 \mod 40$
- Now, raising both sides of $x^7 = 2 \mod 41$ to the power of 23, we get,

$$\begin{aligned} x^{7\times 23} &= 2^{23} \mod 41 \\ x^{161} &= 2^{23} \mod 41 \\ x &= 2^{23} \mod 41 \ (\because \text{Fermat's Little Theorem}) \\ x &= 8 \mod 41 \end{aligned}$$

3 Question 3

- Given, p is an odd prime number and d|(p-1)
- Let $S : \{ a \in \mathbb{Z}_p : a^d = 1 \}$
- Let $T: \{a^{(p-1)/d}: a \in \mathbb{Z}_p\}$. Here, since p is prime, $\mathbb{Z}_p = \mathbb{Z}_p^*$
- Now, for every element $x \in T$, we can see that $x^d = (a^{(p-1)/d})^d = a^{p-1} = 1$. Therefore, $\forall x \in T, x \in S \Rightarrow T \subset S$
- Consider the equation $x^d 1 = 0$, which has p 1 roots in \mathbb{Z}_p , denoted by the set S.
- \bullet We know that this equation has d distinct roots in \mathbb{Z}_p and we see that

4 Question 4

4.1 Part a

- Given $dk \equiv 0 \mod n$, it implies n divides dk. Therefore, k must be a multiple of $\frac{n}{\gcd(d,n)}$.
- Hence, let f(d) represents the count of multiples of $\frac{n}{\gcd(d,n)}$ within the range $0 \le k \le n-1$.
- The count of multiples of m within $0 \le k \le n-1$ is given by $\lfloor \frac{n}{m} \rfloor$.
- $\Longrightarrow f(d) = \left| \frac{n}{\frac{n}{\gcd(d,n)}} \right| = \gcd(d,n).$
- Therefore, $|\{0 \le k \le n-1 : dk \equiv 0 \mod n\}| = \gcd(d, n).$

4.2 Part b

- Given that $x^d = 1 \mod p$
- We raise both sides by k to get: $x^{dk} = 1 \mod p$
- $\implies dk = \gcd(d, p-1) \mod p 1$
- From part a, we know that the number of solutions to above equation is gcd(d, p-1)
- That is if we find an arbitrary solution as a primitive root, then the rest of the solutions are powers of the primitive root.
- Therefore, the number of roots of $x^d 1$ in Zp is gcd(d, p 1)

5 Question 5

- We need to find the roots of the equation $x^2 4$ in \mathbb{Z}_{343}
- Z₇

$$(x-2)(x+2) = 0 \mod 7$$
$$\Rightarrow x = 2, 5 \mod 7$$

- \mathbb{Z}_{49} , we use **Hensel Lifting**,
 - Let x be of the form 7y + b where $b \in \{2, 5\}$
 - Now, when b = 2,

$$x^{2} = 4 \mod 49$$

$$\Rightarrow (7y+2)^{2} = 4 \mod 49$$

$$\Rightarrow 28y+4=4 \mod 49$$

$$\Rightarrow 28y=0 \mod 49$$

$$\Rightarrow y=7k, k \in \mathbb{Z}$$

$$\Rightarrow x=2$$

- Now, when b = 5,

$$x^{2} = 4 \mod 49$$

$$\Rightarrow (7y+5)^{2} = 4 \mod 49$$

$$\Rightarrow 70y+25 = 4 \mod 49$$

$$\Rightarrow 70y = -21 \mod 49$$

$$\Rightarrow 10y = -3 \mod 7$$

$$\Rightarrow y = 7k + 6$$

$$\Rightarrow x = 47$$

- \mathbb{Z}_{343} , we use **Hensel Lifting** again
 - Let x be of the form 49y + b where $b \in \{2, 47\}$
 - Now, when b = 2,

$$x^{2} = 4 \mod 343$$

$$\Rightarrow (49y + 2)^{2} = 4 \mod 343$$

$$\Rightarrow 98y + 4 = 4 \mod 343$$

$$\Rightarrow 98y = 0 \mod 343$$

$$\Rightarrow y = 7k, k \in \mathbb{Z}$$

$$\Rightarrow x = 2$$

- Now, when b = -2, we can see that $x = 341 \mod 343$

Therefore, the roots of $x^2 - 4$ in \mathbb{Z}_{343} are $\{2, 341\}$