

WM-SG-SM-42 Application Note For Region KR920

Version: 1.0

Contents

1.	The KR920 configuration in device	 ,
2.	AT Command Example for KR920	 (

1. The KR920 configuration in device

1. Preamble Format

Modulation	Sync word	Preamble Length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

2. Default Channels

Frequency(Hz)	Data Rate	Max Power
922100000	DR5 ~ DR0	
922300000	DR5 ~ DR0	14dBm
922500000	DR5 ~ DR0	

3. Data Rate and Output Power Encoding

Data Rate	Configuration	Bit Rate
DR0	LoRa: SF12 / 125KHz	250
DR1	LoRa: SF11 / 125KHz	440
DR2	LoRa: SF10 / 125KHz	980
DR3	LoRa: SF9 / 125KHz	1760
DR4	LoRa: SF8 / 125KHz	3125
DR5	LoRa: SF7 / 125KHz	5470
DR6 ~ DR15	RFU	

4. Power Table

TxPower Configuration

可USI® 探险電氣股份有限公司 Universal Scientific Industrial Co., Ltd.

\ <u></u>		
0	14 dBm	
1	12 dBm	
2	10 dBm	
3	8 dBm	
4	6 dBm	
5	4 dBm	
6	2 dBm	
7	0 dBm	
8 ~ 15	RFU	

5. LinkAdrReq Command

The KR920-Japan LoRaWAN only supports a maximum of 16 channels. When ChMaskCntl field is 0 the chMask field individually enables/disables each of the 16 channels.

ChMaxCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
2	RFU
3	RFU
4	RFU
5	RFU

6. Maximum Payload size

The maximum MACPayload size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional FOpt control field (N) is also given for information only. The value of N might be smaller if the FOpt field is not empty:

Data Rate	M	N
DR0	59	51
DR1	59	51
DR2	59	51
DR3	123	115

DR4	230	222		
DR5	230	222		
DR6 ~ DR15	Not defined			

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional FOpt control field should be:

Data Rate	M	N	
DR0	59	51	
DR1	59	51	
DR2	59	51	
DR3	123	115	
DR4	250	242	
DR5	250	242	
DR6 ~ DR15	Not defined		

7. Receive Window

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as following:

RX1DROffset (Code value)	0	1	2	3	4	5	6	7
Effective	0	1	2	3	4	5	-1	-2

Downstream data rate in RX1 slot = MIN (5, MAX (MinDR, Upstream data rate – Effective_RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are: **921.9** MHz / DR0 (SF12/125KHz).

8. Default Setting

The following parameters are default values in device for the AS923-Thailand band.

ITEM	Value
RECEIVE_DELAY1	1s

USI® 課燈電氣股份有限公司 Universal Scientific Industrial Co., Ltd.

RECEIVE_DELAY2	2s
JOIN_ACCEPT_DELAY1	5s
JOIN_ACCEPT_DELAY2	6s

2. AT Command Example for KR920

1) Configuration command sequence for KR920

```
/* factory reset */
# AT+WDCT=0
# ATZ
                          /* reset module */
# AT+DC=0
                          /* disable duty cycle (optinal) */
                          /* set lora device address */
# AT+ADDR=<dev addr>
                          /* set application eui */
# AT+APPEUI=<app eui>
                          /* set NSK (for ABP) */
# AT+NSK=<nsk>
                          /* set ASK (for ABP) */
# AT+ASK=<ask>
                         /* set AK (for OTAA) */
# AT+AK=<ak>
                         /* save changes to eeprom */
# AT+WDCT
                         /* reset module */
# ATZ
                         /* switch to KR920 Japan BAND */
# AT+BAND=4
# AT+WDCT
                         /* save changes to eeprom */
                         /* reset module */
# ATZ
                         /* change TX data rate to DR2 */
# AT+DR=2
                         /* change RX2 data rate to DR0 */
# AT+RX2DR=0
                         /* save changes to eeprom */
# AT+WDCT
                         /* reset module */
# ATZ
```

2) Join command sequence for OTAA

/* 7: port number, last 0: no ask needed */
/* 000000000000000fa00000000000000005 : payload */