# Utilizing context in our NLU

#### We need context to handle multi-turn dialogs

- User: Give me directions from Los Angeles
  - Intent classifier: nav.directions
  - Slot tagger: @FROM{Los Angeles}
  - Dialog manager: required slot is missing, where to?
- Agent (assistant): Where do you want to go?
- **User: San Francisco** 
  - Intent classifier: nav.directions
  - Slot tagger: @TO{San Francisco}
  - Dialog manager: okay, here's the route
- Agent (assistant): Here's the route

We need context here

Google

# Let's store all previous utterances in "memory"



## What knowledge is relevant to new utterance?



 $https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/IS16\_ContextualSLU.pdf$ 

## Tagging current utterance with knowledge

• We add knowledge representation in final RNN tagger:



# How to track context (with memory networks)



Chen et al, 2016

- We encode previous utterances to store them in "memory" as dense vectors
- We use **attention** mechanism to retrieve relevant prior knowledge about the conversation

#### How to track context (with memory networks)

- Evaluation results for slot tagger:
  - Multi-turn dataset
  - F1-measure

| Model                 | First turn | Other turns | Overall |
|-----------------------|------------|-------------|---------|
| RNN tagger wo context | 55.8       | 45.7        | 47.4    |
| Memory<br>Network     | 73.2       | 65.7        | 67.1    |

#### Summary

- You can make your NLU context-aware with memory networks
- In the next video we'll take a look at lexicon utilization in our NLU (e.g. a list of music artists)