

1 **CLAIMS:**

2 1. A method of forming an aluminum comprising line having a
3 titanium nitride comprising layer thereon, the method comprising:

4 forming a first layer comprising at least one of elemental aluminum or
5 an aluminum alloy over a substrate;

6 forming a second layer comprising an alloy of titanium and the
7 aluminum from the first layer, the alloy having a higher melting point than
8 that of the first layer;

9 forming a third layer comprising titanium nitride over the second layer;
10 and

11 forming the first, second and third layers into a conductive line.

12
13 2. The method of claim 1 wherein the titanium nitride of the third
14 layer is formed in contact with the second layer.

15
16 3. The method of claim 1 wherein an outermost portion of the first
17 layer is deposited at a temperature of at least about 400°C.

18
19 4. The method of claim 1 wherein an outermost portion of the first
20 layer is deposited at a temperature of at least about 450°C.

21
22 5. The method of claim 1 comprising forming the second layer to
23 have a thickness of from about 50 Angstroms to about 150 Angstroms.

1 6. The method of claim 1 comprising forming the second layer to
2 have a thickness of from about 100 Angstroms to about 200 Angstroms.

3
4 7. The method of claim 1 wherein temperature of at least an outer
5 portion of the first layer is at least about 360°C during forming of the
6 second layer.

7
8 8. The method of claim 1 wherein temperature of at least an outer
9 portion of the first layer is at least about 360°C during forming of the third
10 layer.

11
12 9. The method of claim 1 wherein the first layer consists essentially
13 of elemental aluminum.

14
15
16
17
18
19
20
21
22
23
24

1 10. A method of forming an aluminum comprising line having a
2 titanium nitride comprising layer thereon, the method comprising:

3 physical vapor depositing a first layer comprising at least one of
4 elemental aluminum or an aluminum alloy over a substrate;

5 physical vapor depositing at least one of elemental titanium or a
6 titanium alloy on the first layer and forming therefrom a second layer
7 comprising an alloy of titanium and the aluminum from the first layer, the
8 alloy having a higher melting point than that of the first layer;

9 physical vapor depositing a third layer comprising titanium nitride over
10 the second layer; and

11 photopatterning the first, second and third layers into a conductive line.

12
13 11. The method of claim 10 wherein the titanium nitride of the third
14 layer is deposited in contact with the second layer.

15
16 12. The method of claim 10 wherein the second layer forms during
17 the elemental titanium deposition.

18
19 13. The method of claim 10 wherein essentially all the physical
20 vapor deposited titanium alloys with the aluminum of the first layer.

21
22 14. The method of claim 10 comprising physical vapor depositing
23 each of the first layer, titanium, and third layer in different deposition
24 chambers of the same processing tool.

1 15. The method of claim 10 comprising physical vapor depositing the
2 titanium and third layer in the same deposition chamber.

3
4 16. The method of claim 10 comprising physical vapor depositing the
5 first layer in two different chambers of the same processing tool, and physical
6 vapor depositing the titanium and third layer in a common chamber of the
7 same processing tool.

8
9 17. The method of claim 10 comprising physical vapor depositing the
10 titanium and the third layer in the same deposition chamber without moving
11 the substrate therefrom intermediate the titanium and third layer depositions.

12
13 18. The method of claim 10 wherein an outermost portion of the
14 first layer is deposited at a temperature of at least about 400°C.

15
16 19. The method of claim 10 wherein an outermost portion of the
17 first layer is deposited at a temperature of at least about 450°C.

18
19 20. The method of claim 10 comprising depositing the second layer
20 to have a thickness of from about 50 Angstroms to about 150 Angstroms.

21
22 21. The method of claim 10 comprising depositing the second layer
23 to have a thickness of from about 100 Angstroms to about 200 Angstroms.

1 22. The method of claim 10 wherein the first layer consists
2 essentially of elemental aluminum, an aluminum alloy, or a mixture thereof.

3
4 23. The method of claim 10 wherein the first layer consists
5 essentially of elemental aluminum.

6
7 24. The method of claim 10 wherein the physical vapor depositing
8 at least one of elemental titanium or a titanium alloy comprises physical
9 vapor depositing elemental titanium.

10
11 25. The method of claim 10 wherein temperature of at least an outer
12 portion of the first layer is at least about 360°C during the physical vapor
13 depositing of the elemental titanium.

14
15 26. The method of claim 10 wherein temperature of at least an outer
16 portion of the first layer is at least about 360°C during the physical vapor
17 depositing of the third layer.

1 27. A method of forming an aluminum comprising line having a
2 titanium nitride comprising layer thereon, the method comprising:

3 in a processing tool, physical vapor depositing a first layer comprising
4 at least one of elemental aluminum or an aluminum alloy over a substrate
5 in a first chamber;

6 physical vapor depositing at least one of elemental titanium or a
7 titanium alloy on the first layer in a second chamber of the processing tool
8 while at least an outer portion of the first layer is at a temperature of at
9 least about 360°C, and forming therefrom a second layer comprising an alloy
10 of titanium and the aluminum from the first layer in the second chamber
11 during said depositing, the alloy having a higher melting point than that of
12 the first layer;

13 physical vapor depositing a third layer comprising titanium nitride on
14 the second layer in the second chamber of the processing tool;

15 removing the substrate from the processing tool after depositing the
16 third layer; and

17 photopatterning the first, second and third layers into a conductive line.

18
19 28. The method of claim 27 wherein essentially all the physical
20 vapor deposited titanium alloys with the aluminum of the first layer.

21
22 29. The method of claim 27 comprising depositing the second layer
23 to have a thickness of from about 50 Angstroms to about 150 Angstroms.

1 30. The method of claim 27 comprising depositing the second layer
2 to have a thickness of from about 100 Angstroms to about 200 Angstroms.

3
4 31. The method of claim 27 wherein the first layer consists
5 essentially of elemental aluminum, an aluminum alloy, or a mixture thereof.

6
7 32. The method of claim 27 wherein the first layer consists
8 essentially of elemental aluminum.

9
10 33. The method of claim 27 wherein the physical vapor depositing
11 at least one of elemental titanium or a titanium alloy comprises physical
12 vapor depositing elemental titanium.

13
14 34. The method of claim 27 wherein temperature of at least an outer
15 portion of the first layer is at least about 360°C during the physical vapor
16 depositing of the third layer.