Day 2: Machine Learning Basics (Lab)

May 31, 2018 Prof. Jongwuk Lee

Contents

- > 선형 회귀(Linear Regression) 구현
- > 로지스틱 회귀(Logistic Regression) 구현
- ▶ 선형 회귀(Linear regression) 응용
 - ◆ 세계 행복 지수 예측 (함께하기)
 - 데이터 읽기
 - 모델 학습
 - 모델 평가
 - ◆ 도요자 자동차 가격 예측 (직접 실습하기)
 - ◆ 집 가격 예측 (직접 실습하기)
- ▶ 분류 모델(classification) 응용
 - ◆ 로지스틱 회귀(Logistic regression)
 - ◆ 결정 트리(Decision Tree)
 - ◆ 나이브 베이지안 분류(Naive Bayesian Classification)
- > 평가 방법(Evaluation Metrics)
 - ◆ 각 모델을 다양한 평가 방법으로 비교하기

선형 회귀(Linear Regression) 구현

> main 함수

```
X_train, Y_train = data_load('BloodPressure', 'train')
model = LinearRegression(X_train, Y_train)
model.train(0.0, 1) # Learning rate, epoch

X_test, Y_test = data_load('BloodPressure', 'test')
prediction = model.predict(X_test)

rmse = eval(prediction, Y_test)
print("%.2f"%(rmse))
```

main 함수

> 학습 데이터를 이용하여 모델 학습

```
X_train, Y_train = data_load('BloodPressure', 'train')
model = LinearRegression(X_train, Y_train)
model.train(0.0, 1) # Learning rate, epoch
```

- ◆ data_load(): 데이터를 읽어옴
- ◆ LinearRegression(): LinearRegression 객체 생성
- ◆ LinearRegression.train(): LinearRegression 모델을 학습함

main 함수

> 테스트 데이터를 이용하여 모델 테스트

```
X_test, Y_test = data_load('BloodPressure', 'test')
prediction = model.predict(X_test)
```

- ◆ data_load(): 데이터를 읽음
- ◆ LinearRegression.predict(data): 학습된 모델을 이용하여 data에 대해 선형 회귀를 수행

```
rmse = eval(prediction, Y_test)
print("%.2f"%(rmse))
```

◆ eval(): 예측값과 실제 값의 RMSE를 구함

> data_load 함수

```
def data_load(dana_name, tr_te):
    y = []
   x = []
    if dana name == 'BloodPressure':
        if(tr te == 'train'):
            file = './data/bloodPressure/train.csv'
        elif(tr te == 'test'):
            file = './data/bloodPressure/test.csv'
        with open(file, 'r') as csvfile:
            csv reader = csv.reader(csvfile)
            next(csv reader) # head 건너 뜀
            for row in csv_reader:
                # row[0]: Age, row[1]: Blood Pressure
                x.append([1, float(row[0])]) # 편향(Bias)추가
                y.append([float(row[1])])
return np.array(x), np.array(y)
```

data_load 함수

>데이터 경로 설정

```
if dana_name == 'BloodPressure':
    if(tr_te == 'train'):
        file = './data/bloodPressure/train.csv'
    elif(tr_te == 'test'):
        file = './data/bloodPressure/test.csv'
```

◆ 함수의 인자에 알맞은 데이터 셋을 읽음

data_load 함수

> csv 라이브러리를 이용한 파일 읽기

- ◆ csv.reader(): csv파일 읽기를 지원
- next(): csv파일의 첫 줄을 읽음
- ◆ float(): float 형 데이터로 형 변환

➤ LinearRegression 클래스

```
class LinearRegression():
  def __init__(self, x, y): # 생성자
    self.x = x # 변수 초기화
    self.y = y
    self.num data = self.x.shape[0]
    self.num feature = self.x.shape[1]
    self.w = np.zeros((self.num_feature, 1))
  def predict(self, x):
    # 코드 작성
    return result
  def train(self, lr, epoch):
    for i in range(0, epoch):
       # 코드 작성
```

LinearRegression 클래스

▶ 생성자를 이용한 변수 초기화

```
def __init__(self, x, y): # 생성자
self.x = x # 변수 초기화
self.y = y
self.num_data = self.x.shape[0]
self.num_feature = self.x.shape[1]
self.w = np.zeros((self.num_feature, 1))
```

- ◆ def __init__(): 클래스의 생성자
- ◆ self: 해당 객체를 가리킴(C++의 this와 같음)
- ◆ x.shape: 데이터 x의 차원 정보
- ◆ np.zeros(): 0으로 된 array를 만듦
- ◆ np.zeros((x, y)): x행 y열의 array를 만듦

LinearRegression 클래스

▶ predict()를 이용한 예측과 train()을 이용한 모델 학습

```
def predict(self, x):
# 코드 작성
return result

def train(self, lr, epoch):
for i in range(0, epoch):
# 코드 작성
```

- ◆ predict(self, x): 입력 x에 대한 선형회귀 결과 result를 반환
- ◆ train(self, lr, epoch): 생성자에서 초기화된 훈련 데이터 self.x와 self.y를 이용하여 모델을 학습

> eval 함수

```
def eval(prediction, y):
   inner = np.power((prediction - y), 2)
   return np.sqrt(np.sum(inner, axis=0) / len(y))
```

- ◆ eval(prediction, y): 예측 값 prediction과 실제 값 y를 이용하여 RMSE를 계산
- ◆ np.power(x, 2): x²을 계산
- ◆ np.sum(x, axis): axis(0: 세로, 1:가로)을 기준으로 값을 더함
- ◆ len(y): y의 길이

$$RMSE = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (pred_k - true_k)^2}$$

n: 데이터의 수

 $pred_k$: k번째 데이터의 예측 값 $true_k$: k번째 데이터의 실제 값

> enumerate(): for문에서 사용되는 함수

```
a=['일', '이', '삼', '사', '오']

for num in a:
    print('요소:', num)
    print('------')
```

```
a=['일', '이', '삼', '사', '오']

for i, num in enumerate(a):
    print('인덱스:',i)
    print('요소:', num)
    print('------')
```

이데스트마

한백소: 미
요소: 일
인덱스: 1
요소: 이
인덱스: 2
요소: 삼
인덱스: 3
요소: 사
인덱스: 4
요소: 오

> np.sum() [[0, 1],np.sum([0, 5]], axis=0) [0, 6][[0, 1],np.sum([0, 5]] , axis=1) [1, 5][[0, 1],np.sum([0, 5]], axis=0, keepdims = True) [[0, 6]]np.sum($\begin{bmatrix} 0, 1 \end{bmatrix}$, axis=1, keepdims = True) [[1], [5]]

np.dot(3, 4) 12

> np.dot()

np.dot(
$$\begin{bmatrix} [1, 0], [[4, 1], [[4, 1], [[4, 1]], [2, 2]] \end{bmatrix}$$
) $\begin{bmatrix} [1, 0], [2, 2]] \end{bmatrix}$ np.dot($\begin{bmatrix} [1, 0], [4, 1] \end{bmatrix}$) $\begin{bmatrix} [4, 1], [4, 1] \end{bmatrix}$ $\begin{bmatrix} [4, 1], [4, 1] \end{bmatrix}$ $\begin{bmatrix} [4, 0], [0, 1] \end{bmatrix}$

> np.where()

```
x > 1 을 만족하는 행 인덱스
x = [[0, 1],
    [2, 3]]
np.where(x > 1) (array([1, 1]), array([0, 1]))
                          x > 1 을 만족하는 열 인덱스
x = [0, 1]
np.where(x > 0) (array([1]))
                   x > 1 을 만족하는 인덱스
```

실습:선형 회귀(Linear Regression) 구현

▶ 템플릿 코드의 비어 있는 부분을 채워서 선형회귀가 잘 동작 하는 코드 구현

- 1. 혈압 예측
 - 나이(Age)를 이용하여 혈압 예측
 - 잘 구현된 경우의 RMSE: 13.39
- 2. 물고기 크기 예측
 - 물고기의 나이(일), 물의 온도를 이용하여 물고기의 크기를 예측
 - 잘 구현된 경우 RMSE: 571.01

로지스틱 회귀(Logistic Regression) 구현

> main 함수

```
X_train, Y_train = data_load('Iris', 'train')
model = LogisticRegression(X_train, Y_train)
model.train(0.0, 1) # learning rate, epoch

X_test, Y_test = data_load('Iris', 'test')
prediction = model.predict(X_test)

accuracy = eval(prediction, Y_test)
print("%.2f" % (accuracy))
```

main 함수

> 학습 데이터를 이용하여 모델 학습

```
X_train, Y_train = data_load('Iris', 'train')
model = LogisticRegression(X_train, Y_train)
model.train(0.0, 1) # learning rate, epoch
```

- ◆ data_load(): 데이터를 읽음
- ◆ LogisticRegression(): LogisticRegression 객체 생성
- ◆ LogisticRegression.train(): LogisticRegression 모델을 학습함

main 함수

> 테스트 데이터를 이용하여 모델 테스트

```
X_test, Y_test = data_load('Iris', 'test')
prediction = model.predict(X_test)
```

- ◆ data_load(): 데이터를 읽음
- ◆ LogisticRegression.predict(data): 학습된 모델을 이용하여 data에 대해 로지스틱 회귀를 수행

```
accuracy = eval(prediction, Y_test)
print("%.2f" % (accuracy))
```

◆ eval(): 예측값과 실제 값의 accuracy를 구함

→ data_load 함수

```
def data load(dana name, tr te):
   V = []
   x = []
    if dana name == 'Iris':
       if(tr te == 'train'):
           file = './data/iris/train.csv'
       elif(tr te == 'test'):
           file = './data/iris/test.csv'
       with open(file, 'r') as csvfile:
            csv reader = csv.reader(csvfile)
            next(csv reader) # head 건너 뜀
           for row in csv reader:
                if (row[4] == 'Iris-setosa'):
                   y.append([float(0)])
                else:
                    y.append([float(1)])
               feature = [1] # 편향(Bias)추가
               feature.append(float(row[0])) # sepal Length in cm
               feature.append(float(row[1])) # sepal width in cm
               feature.append(float(row[2])) # petal Length in cm
               feature.append(float(row[3])) # petal width in cm
               x.append(feature)
    return np.array(x), np.array(y)
```

data_load 함수

>데이터 경로 설정

```
if dana_name == 'Iris':
    if(tr_te == 'train'):
        file = './data/iris/train.csv'
    elif(tr_te == 'test'):
        file = './data/iris/test.csv'
```

◆ 함수의 인자에 알맞은 데이터 셋을 읽음

data_load 함수

> csv 라이브러리를 이용한 파일 읽기

- ◆ csv.reader(): csv파일 읽기를 지원
- next(): csv파일의 첫 줄을 읽음
- ◆ float(): float 형 데이터로 형 변환

➤ LogisticRegression 클래스

```
class LogisticRegression():
   def __init__(self, x, y):
       self.x = x
       self.y = y
       self.num_data = self.x.shape[0]
       self.num_feature = self.x.shape[1]
       self.w = np.np.zeros((self.num_feature, 1))
   def _sigmoid(self, z):
       return # 코드 작성
   def predict(self, x):
       # 코드 작성
       index = np.where(predic > 0.5)[0]
       result = np.zeros(predic.shape)
       result[index] = 1
       return result
   def train(self, Ir, epoch):
       for i in range(0, epoch):
           # 코드 작성
```

LogisticRegression 클래스

▶ 생성자를 이용한 변수 초기화

```
def __init__(self, x, y): # 생성자
self.x = x # 변수 초기화
self.y = y
self.num_data = self.x.shape[0]
self.num_feature = self.x.shape[1]
self.w = np.np.zeros((self.num_feature, 1))
```

- ◆ def __init__(): 클래스의 생성자
- ◆ self: 해당 객체를 가리킴(C++의 this와 같음)
- ◆ x.shape: 데이터 x의 차원 정보
- ◆ np.zeros(): 0으로 된 array를 만듦
- ◆ np.zeros((x, y)): x행 y열의 array를 만듦

LogisticRegression 클래스

▶ predict()를 이용한 예측과 train()을 이용한 모델 학습

```
def _sigmoid(self, z):
    return # 코드 작성

def predict(self, x):
    # 코드 작성
    index = np.where(predic > 0.5)[0]
    result = np.zeros(predic.shape)
    result[index] = 1
    return result

def train(self, Ir, epoch):
    for i in range(0, epoch):
    # 코드 작성
```

- ◆ _sigmoid(self, z): x에 대한 sigmoid 결과를 반환
- ◆ predict(self, x): 입력 x에 대한 선형회귀 결과 result를 반환
- ◆ train(self, Ir, epoch): 생성자에서 초기화된 훈련 데이터 self.x와 self.y를 이용하여 모델을 학습

➤ eval 함수

```
def eval(prediction, y):
    hit = 0
    for i, p in enumerate(prediction):
        if p == y[i]:
            hit += 1
    return hit/len(y)
```

- ◆ eval(prediction, y): 예측 값 prediction과 실제 값 y를 이용하여 accuracy를 계산
- ◆ enumerate(x): for문에서 index와 값을 반환
- ◆ len(y): y의 길이
- Accuracy: $\frac{hit}{n}$

hit: 예측과 정답이 같음 n: 데이터의 수

실습:로지스틱 회귀(Logistic Regression) 구현

▶ 템플릿 코드의 비어 있는 부분을 채워서 로지스틱 회귀 가 잘 동작 하는 코드 구현

- 1. 붓꽃 종류 분류
 - 꽃받침의 너비/길이와 꽃잎의 너비/길이를 이용하여 Iris-setosa와 Iris-setosa가 아닌 종류를 분류
 - 잘 구현된 경우의 Accuracy: 1.0
- 2. 타이타닉 생존자 분류
 - 타이타닉호 탑승자의 여객 등급(Pclass), 성별, 나이, 사촌 탑승여부, 가족 탑승여부, 표 값을 이용하여 탑승자의 생존 여부 분류
 - 잘 구현된 경우 Accuracy: 0.82

선형회귀(Linear Regression) 응용

Happiness 데이터 소개

> 국가 별 각종 지표에 대한 정보 및 행복지수 포함

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
1	Country	Region	Happiness	Happiness	Lower Cor	Upper Cor	Economy	Family	Health	Freedom	Trust	Generosity	Dystopia
2	Ukraine	Central an	123	4.324	4.236	4.412	0.87287	1.01413	0.58628	0.12859	0.01829	0.20363	1.50066
3	Somalilan	Sub-Sahar	97	5.057	4.934	5.18	0.25558	0.75862	0.33108	0.3913	0.36794	0.51479	2.43801
4	Iran	Middle Ea	105	4.813	4.703	4.923	1.11758	0.38857	0.64232	0.22544	0.0557	0.38538	1.99817
5	Tanzania	Sub-Sahar	149	3.666	3.561	3.771	0.47155	0.77623	0.357	0.3176	0.05099	0.31472	1.37769
6	Zambia	Sub-Sahar	106	4.795	4.645	4.945	0.61202	0.6376	0.23573	0.42662	0.11479	0.17866	2.58991
7	Chile	Latin Ame	24	6.705	6.615	6.795	1.2167	0.90587	0.81883	0.37789	0.11451	0.31595	2.95505
8	Romania	Central an	71	5.528	5.427	5.629	1.1697	0.72803	0.67602	0.36712	0.00679	0.12889	2.45184
9	Taiwan	Eastern As	34	6.379	6.305	6.453	1.39729	0.92624	0.79565	0.32377	0.0663	0.25495	2.61523
10	North Cyp	Western E	62	5.771	5.67	5.872	1.31141	0.81826	0.84142	0.43596	0.16578	0.26322	1.93447
11	Chad	Sub-Sahar	144	3.763	3.672	3.854	0.42214	0.63178	0.03824	0.12807	0.04952	0.18667	2.30637

Happiness 데이터 소개

> 국가 별 각종 지표에 대한 정보 및 행복지수 포함

- ◆ 데이터 수 : 총 157개
- ◆ 변수(features)
 - 독립 변수: Economy (1인당 GDP), Family (가족 수), Health (기대 수명), Freedom (자유), Trust (정부 신뢰도), Generosity (관대함), Dystopia (미래 불안 지수)
 - 종속 변수: Happiness Score (행복지수)

▶실습 목표

◆ 각 국가 별로 관찰된 독립 변수를 바탕으로 그 국가의 행복지수를 예측하는 선형 회귀 모델 구현

데이터 읽어 오기

```
import pandas as pd
import numpy as np
train input = pd.read csv("Happiness train.csv")
test_input = pd.read_csv("Happiness_test.csv")
features = ['Economy', 'Family', 'Health', 'Freedom',
'Trust', 'Generosity', 'Dystopia']
x train = np.array(train input[features])
y_train = np.array(train_input['Happiness Score'])
x_test = np.array(test_input[features])
y_test = np.array(test_input['Happiness Score'])
```

데이터 읽어 오기

- > read_csv
 - ◆ csv 파일을 읽어서 DataFrame 형태로 저장하는 pandas 함수

```
train_input = pd.read_csv("Happiness_train.csv")
test_input = pd.read_csv("Happiness_test.csv")
```

◆ 읽은 데이터가 어떤 구조를 이루는지 파악하기

```
print(train_input.head())
```

• DataFrame 변수의 전체 데이터 중 앞부분 일부만 출력

	Country	Region	Happiness Rank	Happiness Score	Lower Confidence Interval	Upper Confidence Interval	Economy	Family	Health	Freedom	Trust	Generosity	Dystopia
0	Ukraine	Central and Eastern Europe	123	4.324	4.236	4.412	0.87287	1.01413	0.58628	0.12859	0.01829	0.20363	1.50066
1	Somaliland Region	Sub-Saharan Africa	97	5.057	4.934	5.180	0.25558	0.75862	0.33108	0.39130	0.36794	0.51479	2.43801
2	Iran	Middle East and Northern Africa	105	4.813	4.703	4.923	1.11758	0.38857	0.64232	0.22544	0.05570	0.38538	1.99817
3	Tanzania	Sub-Saharan Africa	149	3.666	3.561	3.771	0.47155	0.77623	0.35700	0.31760	0.05099	0.31472	1.37769
4	Zambia	Sub-Saharan Africa	106	4.795	4.645	4.945	0.61202	0.63760	0.23573	0.42662	0.11479	0.17866	2.58991

35

데이터 읽어 오기

> DataFrame 파싱

◆ DataFrame에서 특정 column에 해당하는 데이터를 호출

```
y_train = train_input['Happiness Score']
```

◆ 호출한 데이터를 np.array의 형태로 저장

```
y_train = np.array(train_input['Happiness Score'])
```

• DataFrame 변수를 array로 형변환

	Country	Region	Happiness Rank	Happiness Score	Lower Confidence Interval	Upper Confidence Interval	Economy	Family	Health	Freedom	Trust	Generosity	Dystopia
0	Ukraine	Central and Eastern Europe	123	4.324	4.236	4.412	0.87287	1.01413	0.58628	0.12859	0.01829	0.20363	1.50066
1	Somaliland Region	Sub-Saharan Africa	97	5.057	4.934	5.180	0.25558	0.75862	0.33108	0.39130	0.36794	0.51479	2.43801
2	Iran	Middle East and Northern Africa	105	4.813	4.703	4.923	1.11758	0.38857	0.64232	0.22544	0.05570	0.38538	1.99817
3	Tanzania	Sub-Saharan Africa	149	3.666	3.561	3.771	0.47155	0.77623	0.35700	0.31760	0.05099	0.31472	1.37769
4	Zambia	Sub-Saharan Africa	106	4.795	4.645	4.945	0.61202	0.63760	0.23573	0.42662	0.11479	0.17866	2.58991

٠.

데이터 읽어 오기

> DataFrame 파싱

◆ 참조하고자 하는 모든 변수 명을 취합한 리스트를 정의하여 데 이터를 리스트 단위로 호출

```
features = ['Economy', 'Family', 'Health', 'Freedom',
'Trust', 'Generosity', 'Dystopia']
x_train = np.array(train_input[features])
```

	Country	Region	Happiness Rank	Happiness Score	Lower Confidence Interval	Upper Confidence Interval	Economy	Family	Health	Freedom	Trust	Generosity	Dystopia
0	Ukraine	Central and Eastern Europe	123	4.324	4.236	4.412	0.87287	1.01413	0.58628	0.12859	0.01829	0.20363	1.50066
1 3	Somaliland Region	Sub-Saharan Africa	97	5.057	4.934	5.180	0.25558	0.75862	0.33108	0.39130	0.36794	0.51479	2.43801
2	Iran	Middle East and Northern Africa	105	4.813	4.703	4.923	1.11758	0.38857	0.64232	0.22544	0.05570	0.38538	1.99817
3	Tanzania	Sub-Saharan Africa	149	3.666	3.561	3.771	0.47155	0.77623	0.35700	0.31760	0.05099	0.31472	1.37769
4	Zambia	Sub-Saharan Africa	106	4.795	4.645	4.945	0.61202	0.63760	0.23573	0.42662	0.11479	0.17866	2.58991

• •

```
from sklearn.linear_model import LinearRegression

model = LinearRegression() # 모델 정의

model.fit(x_train, y_train) # 모델 학습

pred = model.predict(x_test) # 모델 예측
```

▶모델 정의

◆ 선형 회귀 학습을 진행하는 모델을 정의

```
model = LinearRegression()
```

➤ LinearRegression()의 주요 파라미터

- fit_intercept (Boolean)
 - 모델이 intercept(편향) 변수를 추가하여 학습할 것인지를 결정
 - default 값은 True

```
model = LinearRegression(fit_intercept=False)
# 파라미터 적용 예시
```

▶모델 학습 (Fit)

◆ Train data에서 추출된 데이터들을 모델에 제공하여 학습 진행

```
model.fit(x_train, y_train)
```

◆ 독립변수의 분포 x_train을 바탕으로 종속변수(행복 지수) y_train을 예측하는 학습을 진행

▶모델 예측 (Prediction)

◆ Train data로 주어지지 않은 test 데이터에 대해 학습 완료된 모델을 이용하여 예측

```
pred = model.predict(x test)
```

정확도 평가 방법

- ▶ 제곱 평균 제곱근 (Root Mean Square Error, RMSE)
 - ◆ 각 데이터의 오차의 제곱의 평균의 제곱근으로서, 실제 값(true) 과 추정 값(pred)의 평균적 오차를 확인하는 데 사용하는 지표

$$RMSE = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (pred_k - true_k)^2}$$

정확도 평가

- ▶모델 평가 (Evaluation)
 - ◆ 모델이 예측한 값 pred와 실제 값인 y_test 사이의 오차를 계산

```
from sklearn.metrics import mean_squared_error
import math

rmse = math.sqrt(mean_squared_error(pred, y_test))
print("%.6f" % rmse)
```

• Result: 0.000266

모델 평가

▶ 학습된 가중치 확인

◆ 학습이 완료된 모델이 각 변수 별로 측정한 가중치 값과 편향 값을 확인하기

```
print("weights:", model.coef_) # 변수 별 가중치
print("intercept:", model.intercept_) # 편향
```

weights: [0.99994962 0.99996256 0.99997291 1.0002023 0.99973521 1.00011789

0.99995951]

intercept: 0.000113448913716

▶ 학습된 가중치 확인

◆ 학습된 모델로 테스트 진행 시 값을 어떻게 예측하는지 확인하기

```
example = x_test[0]
print("example:", example)
print("calculation:", np.dot(example, model.coef_) +
model.intercept_) # 예측값 직접 계산
print("prediction:", pred[0]) # 예측값 추출
```

calculation: 5.83495757186 prediction: 5.83495757186

- np.dot(U,V): 동일한 크기의 1차원 배열 U,V의 각 요소의 곱을 전부 더한 값
 - $\sum_{i=1}^{n} U_i V_i$ (n: 배열의 크기)

모델 평가

> 학습된 가중치 확인

◆ 학습이 완료된 모델이 각 변수 별로 측정한 가중치 값과 편향 값 을 확인하기

	Economy	Family	Health	Freedom	Trust	Generosity	Dystopia
테스트 케이 스 <i>x</i>	1.24585	1.04685	0.69058	0.4519	0.055	0.14443	2.20035
			×	<			
가중치 w	0.999950	0.999963	0.999973	1.000202	0.999735	1.000118	0.999960
			=	=			
wx	1.245787	1.046811	0.690561	0.451991	0.054985	0.144447	2.2200261
			+	-			
편향 <i>b</i>				0.000113			
			=	=			
최종 예측값				5.834958			

>독립변수 선택

- ◆ 입력으로 사용할 독립변수의 종류 및 수를 조절하여 성능 변화 를 관찰
 - 단일 변수를 선택 시, 각 변수 별 영향력의 차이를 확인 가능

features = ['Economy']

Case	Feature	Result: RMSE
#1	Economy	0.6835
#2	Family	0.8284
#3	Health	0.6918
#4	Freedom	0.8391
#5	Trust	0.8967
#6	Generosity	1.0045
#7	Dystopia	0.8789

>독립변수 선택

- ◆ 입력으로 사용할 변수의 종류 및 수를 조절하여 성능 변화를 관 찰
 - 복수 변수를 선택 시, 예측에 도움이 되는 변수의 조합을 판단 가능

features = ['Economy', 'Health']

Case	Feature	Result: RMSE
#1	Economy, Health	0.6269
#2	Freedom, Dystopia	0.7594
#3	Freedom, Trust, Generosity, Dystopia	0.6658
#4	Economy, Family, Generosity, Dystopia	0.1783

>그래프 확인

◆ 특정 1개의 변수로 학습 시, 모델이 예측한 1차함수를 그래프로 그려 확인

```
import matplotlib.pyplot as plt

features = ['Economy'] # 단일 변수 # 모델 학습 및 예측

plt.scatter(x_test, y_test) # 실제 데이터 산포도 plt.plot(x_test, pred, color='red') # 예측 데이터 선형그래프 plt.xlabel('Economy') # x축 명 plt.ylabel('Happiness Score') # 기래프 출력
```

>그래프 확인

◆ 특정 1개의 변수로 학습 시, 모델이 예측한 1차함수를 그래프로 그려 확인

실습1: 도요타 자동차 가격 예측

▶ 자동차들의 각 주어진 특징을 바탕으로 자동차의 가격을 예측하는 선형 회귀 모델을 작성

1		Α	В	С	D	E	F	G	Н	T.	J	K	L
1	ld		Model	Price	Age_08_04	Mfg_Mon	Mfg_Year	KM	Fuel_Type	HP	Met_Color	Automatic	С
2		914	TOYOTA (8950	60	9	1999	58269	Petrol	110	1	0	1600
3		1135	TOYOTA (7750	71	10	1998	107516	Petrol	110	1	0	1600
4		1313	TOYOTA (7500	76	5	1998	70039	Petrol	110	1	0	1600
5		1379	TOYOTA (6750	76	5	1998	57263	Petrol	110	1	0	1600
6		1380	TOYOTA (7950	75	6	1998	57144	Petrol	110	1	0	1600
7		610	TOYOTA (7500	59	10	1999	190900	Diesel	72	1	0	2000
8		1257	TOYOTA (8950	77	4	1998	78435	Petrol	86	0	0	1300
9		447	TOYOTA (11750	48	9	2000	75045	Petrol	110	1	0	1600
10		573	TOYOTA (13000	49	8	2000	36000	Petrol	110	0	0	1600
11		1397	TOYOTA (8500	73	8	1998	52000	Petrol	110	1	1	1600
12		1004	TOYOTA (10950	57	12	1999	40214	Petrol	86	0	0	1300
13		922	TOYOTA (8950	65	4	1999	57374	Petrol	110	1	0	1600
14		1334	TOYOTA (8950	78	3	1998	65500	Petrol	86	1	0	1300
15		924	TOYOTA (9995	61	8	1999	57169	Petrol	110	1	0	1600
16		1069	TOYOTA (5740	74	7	1998	159908	Petrol	110	0	0	1600
17		1076	TOYOTA (7750	70	11	1998	151300	Diesel	72	1	0	2000
18		631	TOYOTA (8950	65	4	1999	132807	Diesel	72	1	0	2000
19		517	TOYOTA (10500	56	1	2000	52448	Petrol	97	0	0	1400
20		467	TOYOTA (8750	49	8	2000	68565	Petrol	110	1	0	1600
21		1152	TOYOTA (6900	74	7	1998	101773	Petrol	110	0	0	1600

• • •

실습1: 도요타 자동차 가격 예측

▶참고 사항

◆ DataFrame에서 열(column) 명을 구체적으로 언급하는 대신 번호 로 연속적인 범위를 지정함으로써 데이터 호출 가능

```
x_train = np.array(train_input.iloc[:, 3:])
```

◆ 변수 중 'Fuel_Type' 변수(H열)는 정수가 아닌 문자열이다. 이 변수는 'Diesel' 또는 'Petrol'을 값으로 포함하고 있으며, 이를 0과 1의 정수 값으로 치환한 후 모델을 학습시켜야 한다.

실습2: 집 가격 예측

▶ 집들의 각 주어진 특징을 바탕으로 집의 가격을 예측하는 선형 회귀 모델을 작성

	Α	В	С	D	E	F	G	Н	1	J	К	L
1	id	date	price	bedrooms	bathroom	sqft_living	sqft_lot	floors	waterfront	view	condition	grade
2	3.65E+09	201405147	543000	3	2.5	2090	7640	1	0	0	3	7
3	7.93E+08	201412187	360000	3	1.25	2350	6200	1	0	0	4	7
4	2.47E+09	201409047	350000	3	2.25	2470	10290	2	0	0	3	8
5	7.15E+09	201502117	235000	4	1.75	1720	10137	2	0	0	3	7
6	8.86E+09	201406261	350000	3	2.25	1780	16290	2	0	0	4	8
7	6.84E+09	201408291	402000	3	2.5	1520	3425	2	0	0	3	7
8	2.04E+08	201503247	595000	3	2.75	2150	31238	2	0	0	3	9
9	6.79E+09	201407141	476000	3	1.75	1650	9600	1	0	0	4	7
10	1.33E+09	201504271	864000	4	2.5	3720	105850	2	0	0	4	10
11	3.24E+09	201408221	600000	3	2.5	4930	77536	2	0	0	3	9
12	9.24E+09	201503197	699000	5	2.75	2970	36817	2	0	0	4	8
13	4.06E+09	201410071	750000	2	2	2180	21392	2	0	0	3	8
14	9.25E+08	201408191	604950	3	2.5	2110	5608	1	0	0	3	8
15	9.23E+09	201501237	418500	2	1	790	5800	1	0	0	3	6
16	9.2E+09	201405071	618080	3	2.5	2030	6500	2	0	0	3	8
17	9.55E+09	201504147	750000	3	2.5	2560	9182	2	0	0	3	9
18	3.4E+09	201407111	250000	2	1	1030	8786	1	0	0	3	6
19	1.1E+09	201410261	755000	3	2.5	2420	8856	1	0	3	3	9
20	2.02E+09	201504287	978000	4	2.75	2890	7821	2	0	0	3	9
21	8.86E+09	201405217	332500	3	2.25	1800	10500	2	0	0	3	7

...

로지스틱 회귀(Logistic Regression) 응용

WineQuality 데이터 소개

- 〉 각 와인의 성분 및 그에 따른 등급 평가에 대한 정보를 포함
 - ◆ 데이터 수 : 총 1599개
 - ◆ 변수(features)
 - 독립 변수: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol
 - 종속 변수: quality (등급)
 - 값: [3, 4, 5, 6, 7, 8]
- >실습 목표
 - ◆ 각 와인 별로 관찰된 성분을 바탕으로 와인의 등급을 분류하는 로지스틱 회귀 모델 구현

데이터 읽어 오기

```
import pandas as pd
import numpy as np

train_input = pd.read_csv("WineQuality_train.csv")
test_input = pd.read_csv("WineQuality_test.csv")

x_train = np.array(train_input.iloc[:, 0:11])
y_train = np.array(train_input['quality'])
x_test = np.array(test_input.iloc[:, 0:11])
y_test = np.array(test_input['quality'])
```

데이터 읽어 오기

> DataFrame 파싱

◆ DataFrame에서 열(column) 명을 구체적으로 언급하는 대신 번호 로 연속적인 범위를 지정함으로써 데이터 호출 가능

```
x_train = np.array(train_input.iloc[:, 0:11])
```

◆ iloc[]: DataFrame 내 특정 위치(범위)의 데이터를 찾는 함수

	0	1	2	3	4	5	6	7	8	9	10	11
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	quality
0	6.0	0.33	0.32	12.9	0.054	6.0	113.0	0.99572	3.30	0.56	11.5	4
1	9.9	0.25	0.46	1.7	0.062	26.0	42.0	0.99590	3.18	0.83	10.6	6
2	9.3	0.48	0.29	2.1	0.127	6.0	16.0	0.99680	3.22	0.72	11.2	5
3	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.99460	3.39	0.47	10.0	7
4	7.2	0.63	0.00	1.9	0.097	14.0	38.0	0.99675	3.37	0.58	9.0	6

56

```
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(C=1000.0, solver='newton-cg',
multi_class='multinomial', max_iter=500) # 모델 정의
model.fit(x_train, y_train) # 모델 학습
pred = model.predict(x_test) # 모델 예측
```

>모델 정의

◆ 로지스틱 회귀 학습을 진행하는 모델을 정의

model = LogisticRegression()

▶ LogisticRegression()의 주요 파라미터

- solver: {'liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga'}
 - 학습에 사용할 알고리즘 선택
 - default 값은 'liblinear'이며, 주로 클래스가 2개인 이분법 학습에 사용됨
 - 클래스가 3개 이상인 다중클래스 학습을 진행하려면 다른 알고리 증을 선택하는 것을 권장
 - 참고자료: http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

▶ LogisticRegression()의 주요 파라미터

- C (Float)
 - 모델의 정규화(regularization) 비중의 역수 값으로, 0에 가깝게 작을 수록 정규화의 비중이 커짐
 - default 값은 1.0
- multi_class: {'ovr', 'multinomial'}
 - 'ovr': default 값, 클래스가 2개인 이분법 학습을 적용
 - 'multinomial': 클래스가 3개 이상인 다중클래스 학습을 적용
 - solver를 'liblinear'로 설정했다면, multi_class를 'multinomial'로 설정할 수 없음
- max_iter (int)
 - 모델의 최대 학습 회수에 대한 값으로, default 값은 100
 - 만약 모델이 주어진 max_iter 회수 내에 학습을 완료하지 못한다면, 이 값을 증가시켜줘야 함

```
model = LogisticRegression(C=1000.0, solver='newton-cg', multi_class='multinomial', max_iter=500) # 파라미터 적용 예시
```

▶모델 학습 (Fit)

◆ Train data에서 추출된 데이터들을 모델에 제공하여 학습 진행

```
model.fit(x_train, y_train)
```

◆ 모델은 x_train으로 제공된 와인 별 독립변수의 분포를 바탕으로 y_train으로 제공되는 종속변수(와인 등급)를 예측하는 학습을 진행

>모델 예측 (Prediction)

◆ Train data로 주어지지 않은 test 데이터에 대해 학습 완료된 모델을 이용하여 예측

```
pred = model.predict(x_test)
```

정확도 평가 방법

> Accuracy_score

◆ 각 주어진 실제 클래스에 대해 모델이 성공적인 클래스 예측을 진행한 데이터의 비율을 평가

from sklearn.metrics import accuracy_score

```
p = [0, 2, 2, 1, 1, 2]
t = [0, 1, 2, 2, 1, 2]
print("%.6f" % accuracy_score(y_true=t, y_pred=p))
```

예측 (pred)	실제 (true)	정답 여부
0	0	0
2	1	X
2	2	0
1	2	X
1	1	0
2	2	0

Result: 0.666667

정확도 평가

- ▶모델 평가 (Evaluation)
 - ◆ 모델이 예측한 값 pred와 실제 값인 y_test 사이의 오차를 계산

```
from sklearn.metrics import accuracy_score
print("%.6f" % accuracy_score(y_true=y_test,
y_pred=pred))
```

• Result: 0.626959

모델 평가

> 파라미터 변형

- ◆ LogisicRegression()의 파라미터를 다양하게 적용시켜 성능 변화를 관찰
 - 명시되지 않은 파라미터들은 각 파라미터 별 default 값으로 설정 됨
 - LogisicRegression(): 모든 파라미터를 default로 설정

Case	모델 정의	Result: Accuracy
#1	LogisticRegression()	0.5925
#2	LogisticRegression(C=1000.0)	0.6144
#3	LogisticRegression(solver='newton-cg', multi_class='multinomial')	0.6113
#4	LogisticRegression(solver='lbfgs', multi_class='multinomial')	0.6019
#5	LogisticRegression(solver='saga', multi_class='multinomial', max_iter=5000)	0.6082

실습: 대출 가능 여부 판단

▶ 고객들의 각 주어진 특징을 바탕으로 해당 고객이 대출 가능한 고객인지 판단하는 로지스틱 회귀 모델을 작성

	Α	В	С	D	E	F	G	Н	T.	J	K	L	М	N
1	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal L	Securities	CD Accou	Online	CreditCard
2	2470	43	18	89	92780	1	0.1	2	307	0	0	0	0	1
3	968	55	30	73	92675	4	3.8	2	0	0	0	0	1	0
4	729	45	20	114	94720	2	4.4	2	0	1	0	0	0	0
5	327	52	27	80	95616	1	1.3	3	0	0	0	1	1	1
6	679	52	27	61	92101	4	1.8	3	207	0	0	0	0	0
7	1197	37	13	71	94609	2	2.7	1	94	0	0	0	1	0
8	1396	47	23	190	92831	4	0.3	3	305	1	0	0	0	0
9	1288	42	18	54	94010	4	2.2	2	0	0	0	0	0	0
10	2276	40	16	115	94305	1	3.4	1	0	0	0	0	1	0
11	513	39	14	54	95035	3	3	1	108	0	0	0	0	1
12	840	39	15	79	92646	4	2.4	1	0	0	0	0	0	0
13	1650	29	4	73	95039	1	0.8	2	0	0	0	0	1	0
14	197	48	24	165	93407	1	5	1	0	0	0	0	0	1
15	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0
16	31	59	35	35	93106	1	1.2	3	122	0	0	0	1	0
17	2197	51	24	189	95211	4	4.75	2	0	1	0	0	1	0
18	682	34	9	164	94720	1	6	3	0	1	0	0	1	0
19	2379	30	5	61	95605	1	0.8	2	251	0	1	1	1	0
20	490	53	28	43	91380	2	2.1	3	0	0	0	1	1	1
21	463	29	4	183	91423	3	8.3	3	0	1	0	0	1	0

•••

실습: 대출 가능 여부 판단

▶참고 사항

- ◆ 대출 가능 여부를 표시해주는 'Personal Loan'은 0 또는 1로 이루 어진 이분법 클래스이다.
- ◆ 타겟인 'Personal Loan' 열이 표의 처음이나 끝이 아닌 중간(J열)에 존재하다. 추출해야 하는 독립 변수가 한 범위에 있지 않고 분할 되어있다.
- ◆ 추출하고자 하는 변수의 열 번호의 목록을 배열로 작성함으로써, 연속적이지 않은 범위의 변수를 호출할 수 있다.

```
x_train = np.array(train_input.iloc[:, [1, 2, 3, 4, 5, 6,
7, 8, 10, 11, 12, 13]])
```

결정 트리(Decision Tree) 응용

```
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier(max_depth=30,
max_features=6, random_state=0) # 모델 정의
model.fit(x_train, y_train) # 모델 학습
pred = model.predict(x_test) # 모델 예측
```

▶모델 정의

◆ 결정 트리 학습을 진행하는 모델을 정의

model = DecisionTreeClassifier()

➤ DecisionTreeClassifier()의 주요 파라미터

- max_depth (int or None)
 - 트리의 최대 깊이
 - default 값은 None이며, 이 경우에는 트리 생성에 깊이 제한이 없음
- max_features (int or None)
 - 한번의 트리 분할에 고려하는 최대 변수(feature) 수
 - default 값은 None이며, 이 경우에는 입력된 변수의 가짓수와 동일

➤ DecisionTreeClassifier()의 주요 파라미터

- max_leaf_nodes (int or None)
 - 트리 생성 시 잎 노드 수의 개수 제한
 - default 값은 None이며, 이 경우에는 트리 생성에 잎 노드 제한이 없음
- random_state (int or None)
 - 무작위 난수 생성에 사용할 seed
 - default 값은 None이며, 트리 생성을 매번 무작위로 진행
 - 특정 정수 값(0 등)을 입력할 경우, 같은 값을 입력한 경우에 대해 반복적인 테스트를 진행해도 동일한 결과를 얻을 수 있음

```
model = DecisionTreeClassifier(max_depth=30, max_features=6, random_state=0) # 파라미터 적용 예시
```

정확도 평가

- ▶모델 평가 (Evaluation)
 - ◆ 모델이 예측한 값 pred와 실제 값인 y_test 사이의 오차를 계산

```
from sklearn.metrics import accuracy_score
print("%.6f" % accuracy_score(y_true=y_test,
y_pred=pred))
```

Result: 0.658307

모델 평가

> 파라미터 변형

◆ DecisionTreeClassifier()의 파라미터를 다양하게 적용시켜 성능 변화를 관찰

Case	모델 정의	Result: Accuracy
#1	DecisionTreeClassifier(random_state=0)	0.6426
#2	DecisionTreeClassifier(max_depth=20, random_state=0)	0.6395
#3	DecisionTreeClassifier(max_features=6, random_state=0)	0.6583
#4	DecisionTreeClassifier(max_leaf_nodes=200, random_state=0)	0.6614
#5	DecisionTreeClassifier(max_depth=20, max_leaf_nodes=500, random_state=0)	0.6677

▶ 생성된 트리를 그래프로 관찰

◆ graphviz 설치

pip install python-graphviz

```
from sklearn.tree import export_graphviz import graphviz

model = DecisionTreeClassifier(max_depth=10, max_leaf_nodes=50, random_state=0)  # accuracy = 0.5925 model.fit(x_train, y_train)

dot_data = export_graphviz(model, out_file=None, feature_names=train_input.columns[0:11]) # dot 데이터 생성 graph = graphviz.Source(dot_data) # 그래프 데이터 생성 graph.format = 'png' # 데이터 저장 포맷을 png로 지정 graph.render(filename='tree') # 그래프 데이터 저장
```

모델 분석

▶ 생성된 트리를 그래프로 관찰

tree.png

•••

실습: 스팸메일 판단

각 메일의 단어 분포를 바탕으로 해당 메일이 스팸 메일 인지 아닌지를 판단하는 결정 트리 모델을 작성

	Α	В	С	D	E	F	G	Н	1	BF
1	word_freq	spam								
2	0	0	0.45	0	0.22	0.22	0	0	0.67	<u>.</u>
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0.19	0.59	0	0.19	0	0	0	0	0
6	0	0	0.32	0	0.64	0.64	0.64	0.32	0.32	1
7	0.56	0	0.32	0	1.13	0.08	0	0	0.16	1
8	0	0.53	0.53	0	0.53	0	0	0	0	1
9	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0.75	0
11	0	0	0	0	0	0	1.25	0	0	1
12	0.72	0	0	0	0	0	0	0	0	0
13	0	0	0.06	0	0	0	0	0.06	0.13	0
14	0	0	0	0	0	0	0	0	0	0
15	0.1	0.72	0.62	0	0.62	0.1	0.2	0.2	0	0
16	0	0	0	0	0	0.57	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0
18	0	0	1.2	0	0	0	0	0	0	0
19	0	0	0.68	0	0	0	0	1.36	0	1
20	0.2	0.1	0.7	0	1.1	0.2	0	0.3	0	1
21	0.02	0.02	0	0	0	0	0	0	0.05	0

•••

실습: 스팸메일 판단

▶ 참고 사항

◆ 각 데이터 당 58개의 변수가 존재하는 방대한 데이터이다. 마지막 변수인 'spam'을 제외하고는 모두 독립변수인 점을 감안하여, 'spam'을 제외한 모든 열을 검색하는 코드를 작성하는 것이 더간편하다.

```
x_train = np.array(train_input.loc[:,
train_input.columns != 'spam']])
```

- ◆ loc[]: DataFrame 내 특정 열(column) 이름을 가진 데이터를 찾는 함수
 - iloc[]은 열 번호를 입력한다는 점에서 차이를 보임

나이브 베이지안 분류 응용 (Naive Bayesian Classification)

```
from sklearn.naive_bayes import GaussianNB

model = GaussianNB() # 모델 정의
model.fit(x_train, y_train) # 모델 학습
pred = model.predict(x_test) # 모델 예측
```

▶모델 정의

- ◆ 나이브 베이지안 분류 학습을 진행하는 모델을 정의
- ◆ 확률 계산 알고리즘에 따라 GaussianNB, MultinomialNB, BernoulliNB가 존재

```
from sklearn.naive_bayes import GaussianNB,
MultinomialNB, BernoulliNB

model1 = GaussianNB()
model2 = MultinomialNB()
model3 = BernoulliNB()
```

>모델 정의

◆ 나이브 베이지안 분류는 클래스(y) 별 각 독립변수 x_i (i = 1 ... n) 의 발현 비율 $P(x_i|y)$ 를 구하는 것을 목적으로 한다.

$$P(y|x_1, x_2, ..., x_n) = \frac{P(y) \cdot P(x_1|y) \cdot P(x_2|y) \cdot ... \cdot P(x_n|y)}{P(x_1, x_2, ..., x_n)}$$

- GaussianNB()
 - 주어진 변수가 정규분포(평균 $\mu_{i,y}$, 표준편차 $\sigma_{i,y}$)를 이룬다고 가정하며, 연속적인 값을 지닌 독립변수를 처리할 때 사용

•
$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_{i,y}^2}} \exp\left(-\frac{(x_i - \mu_{i,y})^2}{2\sigma_{i,y}^2}\right)$$

>모델 정의

- MultinomialNB()
 - 전체 데이터 대비 단순 출현 비율을 계산하는 모델이며, 이산적인 값을 지닌 독립변수를 처리할 때 사용
 - $P(x_i|y) = \frac{x_i}{4} \frac{\text{tion } 2\pi \text{ or } 5\pi \text{ or$
- BernoulliNB()
 - 주어진 변수가 베르누이분포(1일 확률 $p_{i,y}$)를 이룬다고 가정하며, 값이 0 혹은 1만 존재하는 이분법 독립변수를 처리할 때 사용
 - $P(x_i|y) = \begin{cases} p_{i,y} & (x_i = 1) \\ 1 p_{i,y} & (x_i = 0) \end{cases}$
 - 입력되는 변수가 이분법 데이터가 아닐 경우, 내부 파라미터 설정에 따라 강제로 이분법 데이터로 치환된다.
- ◆ 참고자료: http://scikit-learn.org/stable/modules/naive_bayes.html

정확도 평가

- ▶모델 평가 (Evaluation)
 - ◆ 모델이 예측한 값 pred와 실제 값인 y_test 사이의 오차를 계산

```
from sklearn.metrics import accuracy_score
print("%.6f" % accuracy_score(y_true=y_test,
y_pred=pred))
```

Model	Accuracy Score
GaussianNB()	0.5737
MultinomialNB()	0.4859
BernoulliNB()	0.4201

모델 분석

>확률 예측값 출력

- ◆ 주어진 변수에 따라, 각 클래스 별 확률이 어떻게 분포되는지 관 찰
- ◆ 예제: x_test[0]

fixed acidity 7.50000 volatile acidity 0.58000 citric acid 0.20000 2.00000 residual sugar 0.07300 chlorides 34.00000 free sulfur dioxide 44.00000 total sulfur dioxide 0.99494 density ρН 3.10000 0.43000 sulphates 9.30000 a Looho L 5.00000 quality.

print(model.predict_proba(x_test[0].
reshape(1,-1)))

	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8
확률	4.2e-08	3.2e-03	7.3e-01	2.6e-01	1.2e-03	1.8e-04

 predict_proba()에 들어가는 변수는 반드시 2차원 배열이어야 한다.
 1차원 배열을 사용하고 싶을 경우, reshape(1,-1)을 사용함으로 써 2차원 배열로 만들 수 있다.

실습: 문장 긍정/부정 분석

→ 각 문장의 단어 분포를 바탕으로 해당 문장이 긍정 문장 인지 부정 문장인지 분석하는 나이브 베이지안 모델을 작성

	A	В
1	sentence	label
2	don't waste your time here	0
3	no i'm going to eat the potato that i found some strangers hair in it	0
4	and considering the two of us left there very full and happy for about \$20 you just can't go wrong	1
5	an extensive menu provides lots of options for breakfast	1
6	the jalapeno bacon is soooo good	1
7	i just wanted to leave	0
8	all in all ha long bay was a bit of a flop	0
9	we waited for forty five minutes in vain	0
10	the food is very good for your typical bar food	1
11	i'll definitely be in soon again	1
12	this place is good	1
13	did not like at all	0
14	5 stars for the brick oven bread app	1
15	always a great time at dos gringos	1
16	i do love sushi but i found kabuki to be over priced over hip and under services	0
17	the block was amazing	1
18	worst thai ever	0
19	the vegetables are so fresh and the sauce feels like authentic thai	1
20	thoroughly disappointed	0
21	we had fantastic service and were pleased by the atmosphere	1

•••

실습: 문장 긍정/부정 분석

▶참고 사항

◆ 문장(string)으로 주어진 데이터를 분석하기 위해 tf-idf 분류를 선행하는 것을 권장한다.

```
from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np

train_input = pd.read_csv("SentimentSentence_train.csv")
test_input = pd.read_csv("SentimentSentence_test.csv")

x_train_input = np.array(train_input['sentence'])
x_test_input = np.array(test_input['sentence'])

tfidf = TfidfVectorizer()  # Tf-idf 계산 함수
tfidf.fit(x_train_input)
x_train = tfidf.transform(x_train_input).toarray()
x_test = tfidf.transform(x_test_input).toarray()
```

평가 방법(Evaluation Metrics)

```
from sklearn.metrics import precision_score

model = ...
model.fit(x_train, y_train)
pred = model.predict(x_test)

print(precision_score(y_true=y_test, y_pred=pred, average=None))
```

▶ 정밀도 측정 예시

pred	0	0	1	1	1	2	2	2	2	2
true	0	2	1	1	0	0	0	1	1	2

- average='binary'
 - 클래스가 2개일 때 이분법으로 정밀도를 계산
 - default 값이기 때문에, 다중클래스 문제를 다룰 경우 이 부분을 생략하면 안 된다.
- average=None
 - 각 클래스 별 정밀도의 계산 결과를 반환
 - Result: [0.5 0.6667 0.2]
 - 0으로 예측한 데이터 중 50%가 정답
 - 1로 예측한 데이터 중 66.7%가 정답
 - 2로 예측한 데이터 중 20%가 정답

▶정밀도 측정 예시

pred	0	0	1	1	1	2	2	2	2	2
true	0	2	1	1	0	0	0	1	1	2

- average='micro'
 - 클래스 구분 없이 모든 데이터에 대해 정밀도를 반환
 - Result: 0.4
 - 전체 10개 데이터 중 40%가 정답
 - accuracy_score()와 동일한 기능을 수행함
- average='macro'
 - 각 클래스 별 정밀도의 평균을 반환
 - Result: 0.4556
 - 각 클래스에 대해 [0.5 0.6667 0.2] 의 정밀도가 관찰되었을 때, 이들의 평균값은 0.4556

> 각 모델 별 정밀도 측정

- ◆ WineQuality 데이터를 학습한 각 모델에 대해 각 클래스 별 정밀 도 측정
 - average=None: 각 클래스 별 정밀도
 - average='macro': 평균 정밀도

Model	Accuracy Score	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	평균 정밀도
LogisticRegression (solver='newton-cg', multiclass='multinomial')	0.6113	0	0	0.6772	0.5548	0.4667	0	0.2682
LogisticRegression (solver='newton-cg', multiclass='multinomial', class_weight='balanced')	0.4577	0.05	0.1515	0.6780	0.5652	0.3462	0.1111	0.3170
DecisionTreeClassifier (max_depth=30, max_features=6, random_state=0)	0.6583	0	0.1429	0.7113	0.6585	0.6047	0.3333	0.4084
GaussianNB()	0.5737	0	0.3	0.6746	0.5390	0.5429	0	0.3427

```
from sklearn.metrics import recall_score

model = ...
model.fit(x_train, y_train)
pred = model.predict(x_test)

print(recall_score(y_true=y_test, y_pred=pred, average=None))
```

▶ 재현율 측정 예시

pred	0	0	1	1	1	2	2	2	2	2
true	0	2	1	1	0	0	0	1	1	2

- average='binary'
 - 클래스가 2개일 때 이분법으로 재현율 계산
 - default 값이기 때문에, 다중클래스 문제를 다룰 경우 이 부분을 생 략하면 안 된다.
- average=None
 - 각 클래스 별 재현율의 계산 결과를 반환
 - Result: [0.25 0.5 0.5]
 - 0 클래스의 데이터 중 25%를 정확히 예측함
 - 1 클래스의 데이터 중 50%를 정확히 예측함
 - 2 클래스의 데이터 중 50%를 정확히 예측함

▶ 재현율 측정 예시

pred	0	0	1	1	1	2	2	2	2	2
true	0	2	1	1	0	0	0	1	1	2

- average='micro'
 - 클래스 구분 없이 모든 데이터에 대해 재현율을 반환
 - Result: 0.4
 - 전체 10개 데이터 중 40%를 정확히 예측
 - accuracy_score()와 동일한 기능을 수행함
- average='macro'
 - 각 클래스 별 재현율의 평균을 반환
 - Result: 0.4167
 - 각 클래스에 대해 [0.25 0.5] 의 재현율이 관찰되었을 때, 이들 의 평균값은 0.4167

> 각 모델 별 재현율 측정

- ◆ WineQuality 데이터를 학습한 각 모델에 대해 각 클래스 별 재현 율 측정
 - average=None: 각 클래스 별 재현율
 - average='macro': 평균 재현율

Model	Accuracy Score	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	평균 재현율
LogisticRegression (solver='newton-cg', multiclass='multinomial')	0.6113	0	0	0.7985	0.6480	0.1628	0	0.2682
LogisticRegression (solver='newton-cg', multiclass='multinomial', class_weight='balanced')	0.4577	0.5	0.4167	0.5970	0.3120	0.4186	1	0.5407
DecisionTreeClassifier (max_depth=30, max_features=6, random_state=0)	0.6583	0	0.0833	0.7537	0.6480	0.6047	0.3333	0.4038
GaussianNB()	0.5737	0	0.25	0.6343	0.6080	0.4419	0	0.3224

F1 점수(F1 Score)

```
from sklearn.metrics import f1_score

model = ...
model.fit(x_train, y_train)
pred = model.predict(x_test)

print(f1_score(y_true=y_test, y_pred=pred, average=None))
```

◆ average 파라미터 옵션은 앞의 정밀도 함수, 재현율 함수와 동일 하다.

F1 점수(F1 Score)

> 각 모델 별 F1 점수 측정

- ◆ WineQuality 데이터를 학습한 각 모델에 대해 각 클래스 별 F1 점 수를 측정
 - average=None: 각 클래스 별 F1 점수
 - average='macro': 평균 F1 점수

Model	Accuracy Score	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	평균 F1
LogisticRegression (solver='newton-cg', multiclass='multinomial')	0.6113	0	0	0.7329	0.5978	0.2414	0	0.2620
LogisticRegression (solver='newton-cg', multiclass='multinomial', class_weight='balanced')	0.4577	0.0909	0.2222	0.6349	0.4021	0.3789	0.2	0.3215
DecisionTreeClassifier (max_depth=30, max_features=6, random_state=0)	0.6583	0	0.1053	0.7319	0.6532	0.6047	0.3333	0.4047
GaussianNB()	0.5737	0	0.2727	0.6538	0.5714	0.4872	0	0.3309

실습: 각 데이터 분석

- ▶ 앞서 실습한 3개의 데이터(대출 가능 여부 데이터, 스팸메일 데이터, 문장 긍정/부정 데이터)를 분류하는 각 모델을 작성
- > 각 모델의 정밀도, 재현율, F1 점수를 비교분석

