1179: Probability Lecture 23 — MGFs, Covariance, and Properties of Bivariate Normal

Ping-Chun Hsieh (謝秉均)

December 8, 2021

Announcements

- HW3 is now available on E3!
 - Due on 12/17 (Friday), 1pm

Quick Review

$$\int_{V_1 V_2} (v_1, v_2) = \frac{1}{\operatorname{det}(A)} \cdot \int_{V_1 V_2} (A \cdot [v_1])$$

$$\int_{V_1 V_2} (v_1, v_2) = \frac{1}{\operatorname{det}(A)} \cdot \int_{V_1 V_2} (A \cdot [v_1])$$

• Linear transformation of 2 random variables? $\begin{bmatrix} \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{bmatrix}$

▶ How to find the distribution of X + Y? (X, Y independent)

This Lecture

1. Moment Generating Functions

2. Covariance and Correlation Coefficient

3. Nice Properties of Bivariate Normal

Reading material: Chapter 10.2-10.5 and 11.1

Recall: There are still a few remaining questions about bivariate normal...

- (Q1) Is X_2 a normal random variable? What is the PDF? MGF and sum of independent random variables
- (Q2) What is " ρ " in the joint PDF of bivariate normal?
 - Covariance and correlation coefficient
- (Q3) Why is bivariate normal useful? Any nice properties?
 - 4 nice properties

(Q1) Moment Generating Functions

Moment Generating Function (Formally)

Moment Generating Function (MGF): For a random variable

$$X$$
, define

$$M_X(t) = E[e^{tX}], t \in \mathbb{R}$$

• Remark: If X is discrete with PMF $p_X(x)$, then

$$M_X(t) = \sum_{q \mid 1 \times} P_X(x) \cdot e^{tx}$$

• Remark: If X is continuous with PDF $f_X(x)$, then

$$M_X(t) = \int_{-\infty}^{+\infty} \int_{-\infty} (x) \cdot e^{-tx} dx$$

Nice Properties of MGF?

Let X_1, X_2 be two random variables:

- 1. ____ Suppose $M_{X_1}(t) = M_{X_2}(t)$, for all $t \in \mathbb{R}$. Do X_1 and X_2 always have the same distribution (i.e., the same CDF)?
- 2. ____ Could we find moments $E[X_1^n]$ by using $M_{X_1}(t)$?
- 3. ____ Suppose X_1, X_2 are independent. Could we express $M_{X_1+X_2}(t)$ in terms of $M_{X_1}(t), M_{X_2}(t)$?

Nice Property (I): MGF Uniqueness Theorem

• MGF Uniqueness Theorem: Let X_1 and X_2 be two random variables with MGFs $M_{X_1}(t)$ and $M_{X_2}(t)$, respectively. If $M_{X_1}(t) = M_{X_2}(t)$ for all t in some interval $(-\alpha, \alpha)$, then X_1 and X_2 follow the same distribution, i.e.

$$P(X_1 \le u) = P(X_2 \le u)$$
, for all $u \in \mathbb{R}$

- Remark: More details in the following reference
 - J. H. Curtiss, "A note on the theory of moment generating functions," 1942
 - https://projecteuclid.org/download/pdf_1/euclid.aoms/1177731541

Example: Find CDF from MGF

ightharpoonup Example: Suppose the MGF of a random variable X is

$$M_X(t) = \frac{1}{6}e^{-2t} + \frac{1}{3}e^{-t} + \frac{1}{4}e^{t} + \frac{1}{4}e^{2t}$$

• Question: $P(|X| \le 1) = ?$

$$P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -2 \\ \frac{1}{3}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = 2 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -2 \\ \frac{1}{3}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -2 \\ \frac{1}{3}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -1 \\ \frac{1}{4}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} P_{X}(x) = \begin{cases} \frac{1}{6}, & \text{if } x = -1 \\ 0, & \text{otherwise} \end{cases}$$

$$M_{X}(t) = E[e^{tX}]$$

$$= \int \sum_{q \mid l \times} \frac{f_{X}(x) \cdot e^{tx}}{f_{X}(x) \cdot e^{tx}} dx$$

$$P(|X| \le 1) = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$

MGF of Special Random Variables

Distribution	Moment-generating function $M_X(t)$
Degenerate δ_a	e^{ta}
Bernoulli $P(X=1)=p$	$1-p+pe^t$
Geometric $(1-p)^{k-1}p$	$egin{aligned} rac{pe^t}{1-(1-p)e^t}\ orall t<-\ln(1-p) \end{aligned}$
Binomial $B(n,p)$	$(1-p+pe^t)^n$
Negative Binomial $NB(r,p)$	$\frac{(1-p)^r}{(1-pe^t)^r}$
Poisson $Pois(\lambda)$	$e^{\lambda(e^t-1)}$
Uniform (continuous) $U(a,b)$	$\dfrac{e^{\overline{tb}}-e^{ta}}{t(b-a)}$
Uniform (discrete) $DU(a,b)$	$\frac{e^{at}-e^{(b+1)t}}{(b-a+1)(1-e^t)}$
Laplace $L(\mu,b)$	$\frac{e^{t\mu}}{1-b^2t^2}, \ t <1/b$
Normal $N(\mu, \sigma^2)$	$e^{t\mu + \frac{1}{2}\sigma^2 t^2}$

Example: If $M_X(t) = \frac{1}{2} + \frac{1}{2}e^t$, then what kind of r.v. is X?

$$\chi \sim \beta ernan/li(P=\frac{1}{z})$$

Example: If $M_Z(t) = e^{2t^2-t}$, then what kind of r.v. is Z?

$$Z \sim N(M=-1, \delta^2+1)$$

(By Uniqueness Theorem)

Nice Property (II): From Sum to Product

• MGF and Sum of 2 Independent Random Variables: Given 2 independent random variables X_1, X_2 with MGFs $M_{X_1}(t)$

and
$$M_{X_2}(t)$$
, the MGF of $X_1 + X_2$ is

$$M_{X_1+X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t)$$

Proof:
$$M_{X_1 t X_2}(t) = E[e^{t(X_1 t X_2)}]$$

$$= E[e^{tX_1} e^{tX_2}]$$

$$= E[e^{tX_1} e^{tX_2}]$$

$$= [e^{tX_1}] \cdot E[e^{tX_2}]$$

$$= [e^{tX_1}] \cdot M_{X_1}(t)$$

$$= [e^{tX_2}]$$

Example: MGF of Sum of 2 Normal R.V.s

- Example: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 - lacksquare X_1 and X_2 are assumed to be independent
 - Question: What is the MGF of $X_1 + X_2$? What is the PDF of

$$X_1 + X_2?$$
 $M_{X_1}(t) = C + M_1 + \frac{1}{2}\sigma_1^2 t^2$
 $M_{X_2}(t) = C + M_2 + \frac{1}{2}\sigma_2^2 t^2$
 $M_{X_2}(t) = C$

$$X_{1} \wedge N(M_{1}, \sigma_{1}^{2})$$
 $X_{2} \sim N(M_{2}, \sigma_{2}^{2})$
 $X_{3} \sim N(M_{2}, \sigma_{2}^{2})$
 $X_{4} \sim N(M_{4}, \sigma_{1}^{2})$
 $X_{5} \sim N(M_{4}, \sigma_{1}^{2})$
 $X_{6} \sim N(M_{4}, \sigma_{1}^{2})$
 $X_{6} \sim N(M_{4}, \sigma_{1}^{2})$
 $X_{1} \sim N(M_{4}, \sigma_{1}^{2})$
 X_{1

$$M_{X_1 + X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t) = C$$

$$X_{1}+X_{2} \sim \mathcal{N}(M_{1}+M_{2},\sigma_{1}+\sigma_{2}^{2})$$

Nice Property (III): Why Is $M_X(t)$ Called the MX(4) needs to be différentiable around Moment Generating Function?

- Recall: What is the "n-th moment" of X?
- Use MGF to Find Moments: Let X be a random variable with MGF $M_X(t)$. Then, for every $n \in \mathbb{N}$, we have

$$E[X^{n}] = \frac{d^{n}}{dt^{n}} M_{X}(t)|_{t=0}$$

$$|X| = \frac{d}{dt^{n}} M_{X}(t)|_{t=0}$$

Example: Moments of $Exp(\lambda)$

▶ What is the MGF of X?

Use MGF to verify that $E[X] = \frac{1}{\lambda}$ and $Var[X] = \frac{1}{\lambda^2}$?

$$M_{X}(t) = E[e^{tX}] = \begin{cases} t & f_{X}(x) \cdot e^{tX} \\ f_{X}(x) \cdot e^{t$$

$$E[X] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{(\lambda - t)^2} = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda^2} = \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda - t}$$

$$E[X^2] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda^2} = \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda - t}$$

$$E[X^2] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda - t} = \frac{\lambda}{\lambda - t}$$

$$E[X^2] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda - t} = \frac{\lambda}{\lambda - t}$$

$$E[X^2] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda - t} = \frac{\lambda}{\lambda - t}$$

$$E[X^2] = \frac{1}{dt} \left(\frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{t = 0} = \frac{\lambda}{\lambda - t} = \frac{\lambda}{\lambda - t}$$

(Q2) Covariance

Motivating Example for "Covariance"

- Example: Bus #2 (NCTU Mackay Train Station)
 - ullet X = traveling time from NCTU to Mackay
 - ightharpoonup Y = traveling time from Mackay to Train Station
 - We want to know Var[X + Y]

Covariance and Where to Find Them

Covariance Property: $Var[aX + bY] = a^{2}Var[X] + b^{2}Var[Y] + 2abE[(X - E[X])(Y - E[Y])]$ Var[aX+bY] = E[(aX+bY) - E[aX+bY])2] = E[(aX-E[aX])+(bY-E[bY])) $= E \left(a \times - E \left(a \times \right) \right) + \left(b \times - E \left(b \times \right) \right) + 2 \left(a \times - E \left(a \times \right) \right) \left(b \times - E \left(b \times \right) \right)$

Covariance

• Covariance: Let X, Y be two random variables. Then, the covariance of X and Y is defined as /

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

- $Cov(X,X) = \sqrt{\sqrt{X}}$
- $Cov(X, Y) = 0: X, Y \text{ are said to be } \underline{Uh Corvelated}$
- Cov(X, Y) > 0: X, Y are said to be positively correlated
- Cov(X, Y) < 0: X, Y are said to be negatively correlated
- Intuition:

Another Expression of Covariance EXXI-EXX

Let X, Y be two random variables. Then, the covariance of Xand Y can also be written as 素積的平均 平均的乘積

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

Question: How to show this?

Question: How to show this?

$$C_{N}(X,Y) = \underbrace{E[(X-EXX)(Y-E[Y])]}_{=P(XA)P(YEB)}$$

$$= E[XY - EXXY-X-E[Y] + EXXE[Y]$$

$$= E[XY] - EXXE[Y]$$

- Question: If X, Y are independent, then Cov(X, Y) =
- Question: How about the converse argument?

Example: Uncorrelated ⇒ Independence

- Example: The pair of random variables (X, Y) takes the values (1,0), (0,1), (-1,0), (0,-1), each with probability $\frac{1}{x}$
 - Cov(X, Y) = ?
 - ► Are *X*, *Y* independent?

$$G_{\text{OV}}(X,Y) = \underbrace{E[XY]}_{D} - \underbrace{E[XY]}_{D} = 0$$

A={1}
$$P(X \in A, Y \in B) = 0$$

$$P(X \in A) = \frac{1}{4}$$

$$P(Y \in B) = \frac{1}{4}$$

A Property of Covariance

Property:

$$(Cov(X, Y))^2 \le Var[X] \cdot Var[Y]$$

Question: How to show this?

Any Issue With Covariance?

- Example: Bus #2 (NCTU Mackay Train Station)
 - From NCTU to Mackay: X minutes
 - From Mackay to Train Station: <u>Y minutes</u>
 - Question: Cov(X, Y) = ?
 - Question: What if time is measured in "seconds"? Any change in the covariance?

Covariance is Sensitive to the Units

- Property: $Cov(aX, aY) = a^2 \cdot Cov(X, Y)$
 - a: scaling factor due to change of unit

Question: Any suggested solution?

Correlation Coefficient

• Correlation Coefficient: Let X, Y be two random variables with finite variance $\sigma_X^2 > 0$ and $\sigma_Y^2 > 0$. Then, the correlation coefficient of X and Y is defined as

$$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

• Question: Do we have $\rho(X, Y) = \rho(aX, aY)$, for any $a \neq 0$?

A Property of Correlation Coefficient

Property:

$$-1 \le \rho(X, Y) \le 1$$

Question: How to prove this?

A Brief Summary of Covariance

(Q3) Nice Properties of Bivariate Normal

Properties of Bivariate Normal R.V.

- Suppose the joint PDF of X_1, X_2 is bivariate normal as

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

Then we have:

- 1. Marginal: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
- 2. Conditional: $X_2 | X_1 = x_1 \sim \mathcal{N}\left(\mu_2 + \frac{\rho \sigma_2(x_1 \mu_1)}{\sigma_1}, (1 \rho^2)\sigma_2^2\right)$
- 3. Correlation coefficient: $\rho(X_1, X_2) = \rho$
- 4. If X_1, X_2 are uncorrelated ($\rho = 0$), then X_1, X_2 are independent

1. Marginal: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)}\right]$$

$$\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)} = \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} + \frac{1}{2\sigma_2^2}\left(\frac{(x_2 - \mu_2) - \rho(x_1 - \mu_1)}{\sqrt{1 - \rho^2}}\right)^2$$

Take X_1 for example (X_2 would be similar)

$$f_{X_1}(x_1) =$$

2. Conditional: $X_2 | X_1 = x_1 \sim \mathcal{N}\left(\mu_2 + \frac{\rho \sigma_2(x_1 - \mu_1)}{\sigma_1}, (1 - \rho^2)\sigma_2^2\right)$

$$f_{X_1 X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)}\right]$$

$$f_{X_1}(x_1) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}\right]$$

$$f_{X_2|X_1}(x_2|x_1) =$$

3. Correlation Coefficient: $\rho(X_1, X_2) = \rho$

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

$$\text{Cov}(X_1, X_2) = E[(X_1-\mu_1)(X_2-\mu_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1-\mu_1)(x_2-\mu_2)f_{X_1X_2}(x_1, x_2)dx_1dx_2$$

$$\text{Hint: } f_{X_2|X_1} = \frac{f_{X_1X_2}}{f_{X_1}} \Rightarrow f_{X_1X_2} = f_{X_2|X_1}f_{X_1}$$

$$\text{Cov}(X_1, X_2) =$$

4. Uncorrelated ($\rho = 0$) Implies Independence

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

• If
$$\rho = 0$$
:
$$f_{X_1 X_2}(x_1, x_2) =$$

$$f_{X_1 X_2}(x_1, x_2) =$$

Final Remark: X_1, X_2 Normal $\Rightarrow X_1, X_2$ Bivariate Normal

- ightharpoonup Example: Let Y and Z be two independent standard normal r.v.s
 - $X_1 = |Y| \cdot \operatorname{sign}(Z)$
 - $X_2 = Y$
- Question:
 - Are X_1 and X_2 normal?
 - Are X_1 and X_2 bivariate normal?