Chemistry: What is it good for?

- To understand the properties of all matter
- To understand the interactions of materials
- To understand biological processes
- To develop new drugs (antibiotics, anti-cancer agents...)
- To develop new materials (plastics, ceramics...)

The first synthetic chemists

(making new molecules)

1828; Wohler prepares urea

$$NH_4$$
 OCN Heat H_2N NH_2 Ammonium cyanate Urea

 1857; Perkin makes 'mauveine' from coal tar

$$H_3C$$
 H_2N
 $N\oplus$
 NH
 $CH_3CO_2^{\ominus}$
 CH_3

Chemical Bonds and Structure

 In addressing the properties of different compounds it is useful to group them into two classes:

Ionic compounds;

typically inorganic componds (salts etc.)

Covalent compounds;

typically organic componds

Table salt; Na⁺Cl⁻

Table sugar;

Ionic Compounds

 Complete transfer of one or more electrons occurs, creating ions.

 lons are held together (in a lattice) by strong electrostactic forces

Covalent Compounds

- Bonding electrons are 'shared' between atoms
- Overlap of electronic orbitals gives rise to bonding orbitals, or covalent bonds

What are covalent bonds?

Two electrons shared between two atoms

Electronic Configuration

 Describes the orbitals occupied by electrons for a given element

Element	Atomic Number	Electron Configuration
н	1	1s1
He	2	1s2
Li	3	1s2 2s1
Ве	4	1s2 2s2
В	5	1s2 2s2 2p1
С	6	1s2 2s2 2p2
N	7	1s2 2s2 2p3
0	8	1s2 2s2 2p4
F	9	1s2 2s2 2p5
Ne	10	1s2 2s2 2p6
©Brooks/Cole Pu	blishing Company/ITP	

Orbital Theory

 The space around a nucleus in which an electron is most likely to be residing is termed an *orbital*

What does an orbital look like?

 The further from the nucleus, the higher the energy of the orbital

What does an orbital look like?

The shape of an orbital varies with type

Electronic Configuration

Energy levels of orbitals...

Formation of covalent bonds

- A covalent bond is formed by the sharing between atoms of unpaired electrons
- Unpaired electrons are always in the outer (valence) shell highest energy occupied orbitals
- Two theories used to describe covalent bond formation;
 - Valence bond theory
 - Molecular orbital theory

Valence bond theory

- overlap of two singly-occupied orbitals gives a bonding orbital
- bonds formed by head-on overlap of orbitals are σ -bonds

Molecular orbital theory

- combination of2 atomic orbitals gives2 molecular orbitals
- 'additive' combination gives bonding molecular orbital (filled, low energy)
- 'subtractive' combination gives anti-bonding molecular orbital (not filled, high energy)

Formation of covalent bonds

 A covalent bond is formed by the sharing between atoms of unpaired outer shell electrons

Oxygen: 1s² 2s² 2p⁴

Lewis structures

- A simple way of representing covalent bonds is by Lewis structures;
 - valence electrons are represented by dots
 - a stable molecule exists when an inert gas configuration is achieved for all atoms (stable octet rule)

Lewis structures

methane

methanol

Orbital theory and carbon?

 The ground state configuration of carbon contains only two unpaired electrons...

Carbon: 1s² 2s² 2p²

 yet carbon forms four covalent bonds to achieve a 'stable octet' ...

methane, CH₄

Excited state configuration

ground state

excited state

Carbon: 1s² 2s² 2p²

Carbon: 1s² 2s¹ 2p³

two unpaired valence electrons

four unpaired valence electrons

Bonding in carbon

• But...

bonding in this state would give 3 equivalent bonds (from the 2p orbitals) and 1 different bond (from the 2s orbital).

How do we account for experiments that confirm that all four bonds in methane are of the same length and strength?

Hybridisation

• The 2s, 2p_x, 2p_{y, &} 2p_z orbitals are 'hybridised' to generate four equivalent sp³ orbitals

Carbon: 1s² 2s¹ 2p³

state' 'excited

Carbon: 1s² [2sp³]⁴ possible 'bonding state'

Hybridisation

The four sp³ orbitals have a tetrahedral arrangement around the nucleus

This can be determined mathematically (Schroedinger equation), and/or can be thought of as the arrangement that places the four orbitals as far apart as possible (VSEPR theory).

Tetrahedral geometry

Methane, CH₄

• Ethane, C₂H₆

Tetrahedral geometry

Oxygen and nitrogen can also be sp³-hybridised;

Representation of molecules

- Lewis structure;
 - confusing even with small molecules

- Н Н-С-Н Н-С-О-Н Н-С-Н Н
- Kekule structure (Structural formula);
 - covalent bonds represented as lines
 - cumbersome for larger molecules

- ÇH₃ ÇH-OH CH₃
- Condensed structural formula;
 - group H's together

Representation of molecules

So what is this molecule?

cholesterol

Line structure;

- C-C bonds drawn as lines
- C-H bonds omitted
- non-C,H atoms drawn
- only H's not bonded to C shown

Alkanes

Names of Stra	ight-Chain Alkar	nes
Number of Carbons(n)	Name	Formula
		(C _n H _{2n + 2})
1	Methane	CH ₄
2	Ethane	C ₂ H ₆
3	Propane	C ₃ H ₈
4	Butane	C ₄ H ₁₀
5	Pentane	C ₅ H ₁₂
6	Hexane	C ₆ H ₁₄
7	Heptane	C ₇ H ₁₆
8	Octane	C ₈ H ₁₆
9	Nonane	C ₉ H ₂₀
10	Decane	C ₁₀ H ₂₂
11	Undecane	C ₁₁ H24
12	Dodecane	C ₁₂ H ₂₅
13	Tridecane	C ₁₃ H ₂₈
20	Icosane	C ₂₀ H ₄₂
21	Henicosane	C ₂₁ H ₄₄
30 ©Brooks/Cole Publishin	Triacontane g Company/ITP	C ₃₀ H ₆₂

The number of carbons in the longest chain containing the functional group

Parent Ending

The functional group present

e.g. octane

an alkane
eight carbons

Structural isomers

- Alkanes with four or more carbons can exist as structural isomers
- Structural isomers have the same molecular formula, but have different bond connectivity

$$CH_3CH_2CH_2CH_3$$

CH₃CH₂CH₂CH₃

CH₃CHCH₃

b.p. 0 °C

b.p. -12 °C

 Structural isomers may have different physical and chemical properties

$$C_6H_{14}$$

Structural isomers...

ormula	Number of isomers
6H ₁₄	5
C ₇ H ₁₆	9
C ₈ H ₁₈	18
С ₉ Н ₂₀	35
ormula	Number of isomers
C ₁₀ H ₂₂	75
C ₁₅ H ₃₂	4,347
C ₂₀ H ₄₈	366,319
20''48	

Structural isomers

C₉H₈O₄

- aspirin and acetozone are structural isomers with different chemical properties
- it is not possible to derive molecular structures from their 'trivial' names
- systematic names are required

Nomenclature - the rules

- Identify the longest carbon chain (parent chain)
- Identify the substituent(s)
- Number the longest chain to give the lowest possible numbering for the substituent(s)
- Allocate a number to every substituent
- List substituents in alphabetical order
- Identical substituents are indicated by prefixes: di (2), tri (3), tetra (4)
 ...then write it all out as one word

Isomers of hexane

· To name substituents just replace the ending -ane with -yl

Alkane

propane Chempentane Ch

CH₃CH₂CH₃ CH₃CH₂CH₂CH₂CH₃ Alkyl substituent

propyl CH₃CH₂CH₂-

pentyl CH₃CH₂CH₂CH₂CH₂-

2-methylpentane

3-methylpentane

2,3-dimethylbutane

2,2-dimethylbutane

isooctane...

2,2,4-trimethylpentane

• a more complicated example...

4-ethyl-2,2,6,8-tetramethylnonane

not

6-ethyl-2,4,8,8-tetramethylnonane 2,2,6,8-tetramethyl-4-ethylnonane

Functional groups

Organic molecules may incorporate functional groups...

```
    alcohol
    Halide
    F,CI,Br,I
    CH<sub>3</sub>CH<sub>2</sub>OH
    CHodomethane
    Carboxylic acid
    CO<sub>2</sub>H
    CH<sub>3</sub>CO<sub>2</sub>H
    CHanoic acid
    CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>
    Cethylamine
```

... and many others

Nomenclature

2,2-dimethyl-1-propanol

3-bromo-2,4-dimethylpentane

3-bromo-2-fluoro-2,4-dimethylpentane