

电动助力转向系统(C-EPS)

目录

1.	EPS 系统概述	 	 	 . 2
	EPS 系统电路及引脚定义图			
	EPS 系统自诊断及故障排除			. 3
4	维修注意事项			. 5
5	转角标定和软件配置		<u> </u>	 . 5
	抵 制和安装			6

1. EPS 系统概述

1.1 系统介绍

EPS(Electric Power Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统是由传感器(扭矩转角传感器)、控制器(EPS 电子控制单元)、执行器(EPS 电机)以及相关机械部件组成。

1.2 系统功能

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分: EPS 电子控制单元、扭矩及转角传感器、EPS 电机系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统由电机提供助力,助力大小由 EPS 电子控制单元实时调节与控制,根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

① 助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。EPS 的助力特性采用分段型助力特性,根据转向盘偏离方向施加助力转矩,以保证低速时转向轻便,高速时操作稳定并获得较好的路感;

② 回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。EPS 系统在机械转向机构的基础上,增加了 EPS 电机和减速机构。EPS 系统通过 EPS 电子控制单元对 EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转矩沿某一方向使转向轮返回到中间位置;

③ 阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进行阻尼控制,增强驾驶员路感,改善车辆高速行驶情况下转向的稳定性。

1.3 工作原理

汽车转向时,扭矩及转角传感器把检测到的扭矩及角度信号的大小、方向经处理后传给 EPS 电子控制单元,EPS 电子控制单元同时接收车速信号,然后根据车速信号、转角和扭矩信号决定电机的旋转方向和助力扭矩的大小。同时电流传感器检测电路的电流,对驱动电路实施监控,最后由驱动电路驱动电机工作,实施助力转向。其工作原理如下图所示:

2. EPS 系统电路及引脚定义图

2.1 EPS 系统电路原理图

图 2-1 EPS 系统电路原理图

2.2 EPS 引脚定义和接插件

连接器类型	管脚	功能	信号类型
电器正负极接插	1	供电端正极	电平信号,模拟信号
件 (B51)	2	供电端负极	电平信号,模拟信号
	1	N/A	
	2	N/A	
	3	N/A	
	4	N/A	
CAN/IG 接插件	5	CAN_H	CAN 总线高电平,数字信号
(G86)	6	CAN_L	CAN 总线低电平,数字信号
	7	N/A	
	8	IG 电	电平信号,模拟信号
	9	N/A	
	10	N/A	

3 EPS 系统自诊断及故障排除

3.2 一般故障检修信息

当启动车辆后,EPS指示灯会点亮,并保持2~3秒后熄灭,此时说明EPS指示灯及系统运行正常。车辆启动后,如果系统有任何问题,则故障报警灯应持续显示,且伴随仪表文字提示"请检查转向系统"和报警声音。

3.3 故障排除表

故障排除表有助于找到故障的原因,表中数字表明了引起故障的可能情况,请按顺序检查每一个零件。必要时,请修理或更换有故障的零件或进行调整。

症状	可能原因	症状	可能原因
转向沉重	3) 转向节(磨损) 5) 转向管柱总成(有故障) 6) 电动助力转向器总成(有故障)	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨损) 3)转向器(有故障) 1)减速机构(磨损)
回位不足	1)	异常噪声 	2)转向节(磨损) 3)电动助力转向器总成(有故障) 1)电动助力转向器总成(有故障) 2)转向管柱总成(有故障)

3.4 自诊断故障排除方法

当 EPS 系统发生故障时,用诊断设备读取 EPS 模块的故障码,根据读出来的故障码按对应的故障排查方法排查。

各故障码排除方法

DTC	故障描述	故障分析	故障排除流程
C1B8417 C1B8416	诊断过压 诊断欠压	EPS 供电异常、EPS 控制单元内部故 障	1. 测试 EPS 电源电压(B-51 接插件)是否 异常,正常情况下 B-51 插件的 1 号引脚 电压与地之间应处于 14V(9~16V 之间属 于正常)左右,B-59 插件的 2 号引脚与 地间是否导通;否: 2 2. EPS 控制单元故障
U029D00	车速报文丢失	CAN 通信系统异常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否;2 2. EPS 控制单元故障
U029E00	轮速报文丢失	CAN 通信系统异常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否:22. EPS 控制单元故障
U1F0E87	前驱动电机控制模块命 令报文丢失	CAN 通信系统异常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障

			比亚迪 SC 纯电初于至维修于加
U1F0887	前驱动电机控制模块遥 控驾驶报文丢失	CAN 通信系统异常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障
U1F0987	前驱动电机控制模块状 态报文丢失	CAN 通信系统异常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障
U1F0A87	档位报文丢失	CAN 通信系统异常	1. 检查档位控制器是否异常;否:2 2. EPS 控制单元故障
U1F0B87	仪表报文丢失	CAN 通信系统异常	1. 检查仪表是否异常; 否: 2 2. EPS 控制单元故障
U1F0D29	转向模式无效	CAN 通信系统异常	1. 检查多媒体是否异常; 否: 2 2. EPS 控制单元故障
C1B1000	ESP 信号无效	CAN 通信系统异常	1. 检查 ESP 系统是否异常; 否: 2 2. EPS 控制单元故障
U1F0C29	全地形模式无效	CAN 通信系统异常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障
U014787	发动机报文丢失	CAN 通信系统异常	1. 检查发动机是否异常(针对燃油车);否: 2 2. EPS 控制单元故障
U014729	发动机信号无效	发动机系统异常	1. 检查发动机是否异常(针对燃油车);否: 2 2. EPS 控制单元故障
C1B8600	控制器配置信息未写入	EPS 系统异常	1. 需要用诊断设备,对车辆写入配置(具体操作见下 EPS 配置操作规范),成功写入配置后,清除故障码,重新上下电后检查故障是否仍然存在;否:2 2. EPS 控制单元故障
C1B9200	TAS Angle 未标定	EPS 系统异常	1. 需要用诊断设备,对车辆按照要求标定转
C1B9100	TAS Angle Sensor 错误	3	向(具体操作见下 EPS 标定操作规范),成功标定后,清除故障码,重新上电后检查故障是否仍然存在;否:2 2. EPS 控制单元故障
C1B8900 C1B8A00 C1B8B00	ECU EEPROM 数据移植故障 ECU 车辆标定参数错误 ECU 内部电子故障		
C1B8C00 C1B8D00 C1B8E00 C1B8800	ECU 标定参数丢失故障 ECU 标定参数下载故障 ECU 内部故障 电机控制/助力监控故障	EPS 系统异常	更换 EPS 总成
C1B9000	供电丢失	整车供电异常	检查 EPS 的供电端(B-59 接插件)线束是否 异常
C1B8704	扭矩传感器故障	传感器异常	1. 检查 EPS 的扭矩转角传感器的线束和接插件是否完好;否:2 2. 更换 EPS 总成
C1B8F00	系统过热	EPS 自身电机或 ECU 温度过高	 读取 EPS 模块数据流中的系统温度和 ECU 温度,若温度过高(超过 90℃),则等 待温度降低后,查看助力是否恢复正常, 故障码是否可以成功清除;否:2 更换 EPS 总成

C1B9500	MPC 扭矩请求值错误	MPC 系统异常	1. 检查 MPC 系统; 否: 2
	(LKA)		2. 更换 EPS 总成
C1B9600	激活退出条件监控成立	MPC 系统异常	1. 检查 MPC 系统; 否: 2
	(LKA)		2. 更换 EPS 总成
U024687	MPC 报文丢失(LKA)	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
			2. 更换 EPS 总成
U024683	MPC 报文 Checksum or	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
	Counter 错误 (LKA)		2. 更换 EPS 总成
U014087	BCM 电源状态报文丢失	CAN 通讯异常	1. 检查 BCM 系统是否异常; 否: 2
			2. 更换 EPS 总成
U029187	档位报文丢失 (燃油)	CAN 通讯异常	1. 检查档位系统是否异常;否:2
			2. 更换 EPS 总成

4 维修注意事项

(1) SRS气囊系统操作注意事项

本车配备有安全气囊(SRS),如果不按正确的顺序操作,可能会引起安全气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定要阅读安全气囊系统的注意事项。

(2)本车的电动助力转向系统带有主动回正控制功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆四轮定位,并标定转角信号。标定转向盘零点信号以后,车辆重新上ON档电,清除残留故障码。

注意:转角信号标定前,禁止进行遥控驾驶操作,否则可能会引起相关损坏故障。 用诊断设备进行标定操作时:

注意:车辆轮胎要朝正前方;方向盘要对准中间位置;双手手离开转向盘,转向盘不能受外在力的 影响。

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,EPS电子控制单元,EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
 - ② 移动助力转向器总成时,请勿拉拽线束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
- ④断开转向管柱或者中间轴之前,车辆处于断电状态。断开上述部件后,不要移动车轮。不遵循这些程序会使某些部件在安装过程中定位不准。
 - ⑤转向盘打到极限位置的持续时间不要太长,否则可能会损坏助力电机。

5 转角标定和软件配置

5.1 转角标定

- 1. 转角标定前提: 方向盘、万向节、转向管柱、转向器拆装更换或重做四轮定位后,都需要重新标定 EPS 系统的转角。
- 2. 标定注意事项:
- (1) 胎压正常,正常负载状况,车辆由自身车轮支撑,仅司机一人必须坐于车内;
- (2) 进入 EPS 系统标定前车辆已经完成四轮定位;
- (3) 车辆不能有明显震动,如不能关车门、关发动机罩等干扰,人手勿要操作方向盘或施加力矩在方向盘上;

- (4) 检查确认方向盘机械位置处于正中零点;
- (5) 以上条件均满足后,由标定人员点击 EPS 标定设备命令对 EPS 转角传感器进行标定操作;
- (6) 转角传感器数值(转角标定完成后以设备读取 EPS 内部角度为准,偏差范围 0±3°)
- (7) 标定完成后,清除 EPS 系统故障码,重新上下电,查看 EPS 系统是否存在故障码。

5.2 软件配置

- 1. 软件配置前提: 车辆的整个转向总成更换之后,需要对车辆的转向系统的软件重新进行配置。
- 2. 软件配置注意事项:
- (1) 在整车更换转向总成,进行四轮定位,对车辆进行转角标定操作之后:
- (2) 整车上电, 勿要操作方向盘
- (3)通过诊断设备自带的软件(针对更换过转向总成的售后车辆,对转向参数进行配置),对车辆的转向系统进行配置。
- (4) 配置完成后,清除故障码,整车重新上下电,查看 EPS 系统是否正常

6 拆卸和安装