Histogram Processing: Equalization

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

Step 1: Compute the discrete PDF (histogram)

Histogram Processing: Equalization

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

Step 1: Compute the discrete PDF (histogram)

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Histogram Processing: Equalization (cont'd) Step 2: Compute the discrete CDF (cumulative histogram)

i	accumulative	accumulative x 7	rounded
s0	0.19	1.33	1
s1	0.44	3.08	3
s2	0.65	4.55	5
s3	0.81	5.67	6
s4	0.89	6.23	6
s5	0.95	6.65	7
s6	0.98	6.86	7
s7	1.00	7.00	7

Histogram Processing: Equalization (cont'd)

Step 2: Compute the discrete CDF (cumulative histogram)

Histogram Processing: Equalization (cont'd)
Step 3: Use the previous table to map the pixels values

Histogram Processing: Equalization (cont'd) Step 3: Use the previous table to map the pixels values

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096
- Obtain an image with an **arbitrary distribution** instead of a uniform distribution

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096
- Obtain an image with an **arbitrary distribution** instead of a uniform distribution
- Target distribution

Histogram Processing: Matching (cont'd)

Step 1: Obtain the scaled histogram equalized values (previous example)

•
$$s0 = 1 s1 = 3 s2 = 5 s3 = 6$$

•
$$s4 = 7 s5 = 7 s6 = 7 s7 = 7$$

Histogram Processing: Matching (cont'd) Step 2: compute the discrete CDF of the target distribution

i	accumulative x 7	rounded
z0	0.00	0
z1	0.00	0
z2	0.00	0
z3	1.05	1
z4	2.45	2
z 5	4.55	5
z6	5.95	6
z 7	7.00	7

Step 2: compute the discrete CDF of the target distribution

Histogram Processing: Matching Step 3: use the previous table to map the pixels values

Step 3: use the previous table to map the pixels values

Histogram Processing: Demo

{histograms.ipnyb}

Filtration in Frequency Domain: Demo

{frequency_filter.ipnyb}