Subnetting vs Supernetting:

- **Subnetting:** Divide one larger network into smaller networks.
 - **Example:** Breaking 200.100.50.0/24 into /25 subnets.
- **Supernetting:** Combining multiple smaller networks into one larger network.
 - Often used in route summarization to reduce the size of routing tables.

LAN & WAN Protocols:

- LAN Protocols → Typically Ethernet (IEEE 802.3). Works at Layer 2 (Data Link).
- WAN Protocols → Used for long-distance, point-to-point connections:
 - **HDLC** (High-Level Data Link Control)
 - ATM (Asynchronous Transfer Mode)
- The Internet relies on IP (Layer 3) and routers for packet forwarding.

Switching & Addressing:

- Layer 2 Switch (Basic switch) → Works only with MAC addresses.
- Layer 3 Switch (or multilayer switch) → Works with both MAC (Layer 2) and IP (Layer 3) addresses.

SUBNETTING

Example Network: 200.100.50.0/24

- This is a **Class C** network.
- $/24 \text{ means} \rightarrow 24 \text{ network bits} + 8 \text{ host bits}.$
- Total addresses = $2^8 = 256$.
- Usable addresses = $2^8 2 = 254$ (network + broadcast excluded).
- Usable range: $200.100.50.1 \rightarrow 200.100.50.254$.

Example: Subnetting for Two Branches

Suppose we have two branches (A and B), each requiring around 120 IP addresses.

We are given the network: 200.100.50.0/24.

A /24 network has:

- 8 host bits \rightarrow 2^8 2 = 254 usable hosts.
- That's enough for one branch, but since we need **two separate networks**, we must subnet.

Step 1: Borrow host bits

Step 2: Calculate new capacity

- Hosts per subnet = 2^7 2 = 126 usable.
- This is enough for ~120 users + router/switch IPs.

Step 3: Subnet ranges

Subnet $1 \rightarrow 200.100.50.0/25$

Network: 200.100.50.0

Usable range: 200.100.50.1 → 200.100.50.126

Broadcast: 200.100.50.127

Assign to Branch A.

Router IP example: 200.100.50.1

Switch management IP example: 200.100.50.2 Hosts: 200.100.50.3 → 200.100.50.126

Subnet $2 \rightarrow 200.100.50.128/25$

Network: 200.100.50.128

Usable range: 200.100.50.129 → 200.100.50.254

Broadcast: 200.100.50.255

Assign to Branch B.

Router IP example: 200.100.50.129

Switch management IP example: 200.100.50.130 Hosts: 200.100.50.131 → 200.100.50.254

Note that this kind of subnetting is called

Fixed Length Subnet Mask

Variable Length Subnet Masking

Suppose we have 4 branches connected through routers:

- **Branch 1:** Have 120 users
- **Branch 2:** Have 60 users
- **Branch 3:** Have 30 users
- **Branch 4:** Have 14 users

And our ISP has given us the block:

200.100.100.0/24 (256 Addresses, 254 Usable).

We will use Variable Length Subnet Masking so we don't waste addresses.

Step 1 Arrange by size:

Always start with largest branch first so we don't block ourselves later.

So order = 124, 60, 30, 14.

Step 2 Subnet Branch 1:

Branch 1 needs 124 hosts.

Formula = required hosts + 2(for network and broadcast)

$$124 + 2 = 126$$
.

So:

			128	64	32	16	8	4	2	1
200	100	100	0	0	0	0	0	0	0	0

We will borrow the left most bit from the Host octet in this case

We will get two IPs from this which are:

200.100.100.0/25 and 200.100.100.128/25

The second IP we found will be used in further subnetting.

So branch 1 IP will be: 200.100.100.0/25

Range: 0 - 127.

Usable Hosts: 1 – 126 (126 usable)

Broadcast: 127.

Step 3 Subnet Branch 2:

Now we will use the Second IP we got while subnetting for Branch 1 and further do subnetting on that IP: 200.100.128/25

Branch 2 needs 60 hosts.

Formula = required hosts + 2(for network and broadcast)

$$60 + 2 = 62$$

So:

			64	32	16	8	4	2	1
200	100	100	0	0	0	0	0	0	0

We will borrow the left most bit from the Host octet in this case:

We will get two IPs from this which are:

200.100.100.128/26 and 200.100.100.192/26

The second IP we found will be used in further subnetting.

So branch 2 IP will be: 200.100.100.128/26.

Range: 128 – 191.

Usable Host: 129 – 190 (62 usable)

Broadcast: 191.

Step 4 Subnet Branch 3:

Now we will use the Second IP we got while subnetting for Branch 2 and further do subnetting on that IP: **200.100.192/26**

Branch 3 needs 30 hosts

Formula = required hosts + 2(for network and broadcast)

$$30 + 2 = 32$$
.

So:

10	32	16	8	4	2	1
200 100 100	0	0	0	0	0	0

We will borrow the left most bit from the Host octet in this case:

32 0

We will get two IPs from this which are:

200.100.100.192/27 and 200.100.100.224/27

The second IP we found will be used in further subnetting.

So branch 3 IP will be: 200.100.100.192/27.

Range: 192 – 223.

Usable Host: 193 – 222 (30 usable)

Broadcast: 223.

Step 5 Subnet Branch 4:

Now we will use the Second IP we got while subnetting for Branch 3 and further do subnetting on that IP: **200.100.100.224/27**

Branch 4 needs 14 hosts

Formula = required hosts + 2(for network and broadcast)

$$14 + 2 = 16$$
.

So:

			16	8	4	2	1
200	100	100	0	0	0	0	0

We will borrow the left most bit from the Host octet in this case:

We will get two IPs from this which are:

200.100.100.224/28 and 200.100.100.240/28

So branch 4 IP will be: 200.100.100.224/28.

Range: 224 – 239.

Usable Host: 225 – 238 (14 usable)

Broadcast: 239

Step 7 what's left:

After Branch 4 we still have left over **200.100.100.240/28** (**16 addresses, 14 usable**). This can be kept for future expansion.

Mulhammadi ahadesi Andria di ahadi a