Esperienza 3

09/12/2021

Indice

1	Obi	ettivo	dell'esperienza	1
2	Stru	ımenti	e materiali	2
3	Onc	la qua	dra	2
	3.1	Dati e	d errori	2
	3.2	Analis	i dati	3
4	Onc	la sinu	soidale	4
	4.1	Funzio	one di trasferimento ai capi di C	4
		4.1.1	Dati ed errori	4
		4.1.2	Analisi dati	5
	4.2	Funzio	one di trasferimento ai capi di R	8
		4.2.1	Dati ed errori	8
		4.2.2	Analisi dati	8
5	Con	clusio	ni	8

1 Obiettivo dell'esperienza

Lo scopo dell'esperienza è quello di calcolare il valore della resistenza e della capacità di un circuito RC. Per farlo si analizza come varia la differenza di potenziale ai capi di R (Figura 1a) e/o ai capi di C (Figura 1b) quando si sottoposto il circuito ad una tensione variabile.

3 Onda quadra Pag. 2

Figura 1: Schema circuito

2 Strumenti e materiali

- Generatore di tensione AC
- Multimetro digitale (utilizzato come ohmetro)
- Oscilloscopio
- Cavi
- Breadboard
- Resistore
- Condensatore

3 Onda quadra

La prima parte dell'esperimento consiste nell'applicare ai capi del circuito una tensione variabile secondo un'onda quadra di ampiezza V_0 . La frequenza dell'onda è stata scelta in modo da permettere al condensatore di completare il regime transitorio, passando da una tensione $V_0/2$ fino ad una tensione $-V_0/2$. La curva osservata nell'oscilloscopio rappresenta la tensione V_C ai capi del condensatore in funzione del tempo t e segue l'Equazione 3.1.

$$V_C = V_0 \cdot e^{-t/RC} - V_0/2 \tag{3.1}$$

Per prendere le misure il sistema di riferimento è stato traslato in modo da porre come 0 delle ordinate il valore $-V_0/2$ e ottenere l'Equazione 3.2.

$$V = V_0 \cdot e^{-t/RC} \tag{3.2}$$

Noto il valore di $R=(1.874\pm0.004)~\mathrm{k}\Omega,$ misurato tramite il multimetro, si vuole ottenere il valore di C.

3.1 Dati ed errori

Attraverso l'oscilloscopio si è fissato il primo cursore in corrispondenza dell'asintoto della curva a $-V_0/2$, questo sarà lo 0 delle ordinale, il secondo cursore è stato fatto variare in modo da ottenere la differenza di potenziale al variere del tempo. Le misure ottenute sono riportate, insieme ai loro errori già arrotondati, nella Tabella 1.

3 Onda quadra Pag. 3

V(V)	$\delta V(V)$	$t (\mu s)$	$\delta t \; (\mu s)$
7.00	0.10	0.0	0.3
6.52	0.10	0.9	0.3
6.00	0.10	2.0	0.3
5.52	0.10	3.1	0.3
5.00	0.10	4.5	0.3
4.52	0.10	5.9	0.3
4.00	0.10	7.5	0.3
3.52	0.10	9.2	0.3
3.00	0.10	11.4	0.5

13.8

17.0

20.8

26.0

35

0.5

0.5

1.0

1.0

3

0.10

0.10

0.10

0.10

0.10

2.52

2.00

1.52

1.00

0.52

Tabella 1: Misure dell'onda quadra

3.2 Analisi dati

$$V = V_0 \cdot e^{-t/RC} \implies \ln(V) = \ln(V_0 \cdot e^{-t/RC}) = \ln(V_0) - \frac{t}{RC}$$

Quindi riportando le misure in un grafico semi-logaritmico, come in Figura 2, ci si aspetta di ottenere una funzione lineare

Figura 2: Grafico semi-logaritmico delle misure dell'onda quadra

La retta di massima pendenza passa per i punti (-0.2,7) e (35,0.6) mentre la retta di minima pendenza passa per i punti (0.2,7) e (34,0.5)

4 Onda sinusoidale $\mathbf{Pag.}\ \mathbf{4}$

$$m_{max} = \frac{\ln(7/0.6)}{-0.2 - 35} = -0.06979$$
 $m_{min} = \frac{\ln(7/0.5)}{0.2 - 34} = -0.07808$

$$m_{best} = \frac{m_{max} + m_{min}}{2} = -0.0739 \approx -0.074$$

$$\delta m = \frac{m_{max} - m_{min}}{2} = 0.0041 \approx 0.004$$

$$m = -0.074 \pm 0.004 \tag{3.3}$$

Essendo $m = \frac{1}{RC}$ e conoscendo il valore di $R = (1.874 \pm 0.004) \text{ k}\Omega$.

$$\varepsilon_R = \frac{0.004}{1.874} = 0.0021 \approx 0.002$$

$$\varepsilon_m = \frac{0.004}{0.074} = 0.054 \approx 0.05$$

$$\varepsilon_C = \sqrt{\varepsilon_R^2 + \varepsilon_m^2} = 0.050$$

$$C = \frac{R}{m} = 25.32 \pm 1.27 \approx (25.3 \pm 1.3) \text{ nF}$$
 (3.4)

4 Onda sinusoidale

La seconda parte dell'esperimento consiste nel sottoporre il circuito a un regime di tensione sinusoidale, variando la frequenza in entrata; abbiamo poi misurato la tensione in uscita del circuito ai capi di C e ai capi di R, così come il tempo di risposta del circuito. Con questi dati abbiamo determinato il modulo della funzione di trasferimento $|A_C|$ e la frequenza di taglio f_0 .

4.1 Funzione di trasferimento ai capi di C

4.1.1 Dati ed errori

Nella Tabella 2 sono riportati i risultati delle misurazioni effettuate con i relativi errori

4 Onda sinusoidale Pag. 5

$V_{in}(V)$	$\delta V_{in} (V)$	$V_{out}(V)$	$\delta V_{out} (V)$	f(kHz)	$t \; (\mu s)$	$\delta t \; (\mu s)$
6.96	0.1	6.920	0.100	0.5155	13.700	0.250
7.04	0.1	6.920	0.100	1.0240	13.500	0.250
7.04	0.1	6.860	0.100	2.4950	13.200	0.250
7.04	0.1	6.750	0.100	3.5250	12.800	0.500
7.04	0.1	6.640	0.100	4.0100	12.700	0.250
7.04	0.1	6.000	0.100	7.0420	11.900	0.250
6.00	0.1	3.340	0.100	15.5500	9.200	0.250
5.72	0.1	2.440	0.050	25.4600	6.760	0.100
5.60	0.1	1.760	0.050	36.3700	5.300	0.250
5.44	0.1	0.628	0.010	104.7000	2.220	0.050
5.44	0.1	0.424	0.010	156.0000	1.520	0.100
5.36	0.1	0.258	0.005	254.1000	0.950	0.050
5.28	0.1	0.181	0.002	356.6000	0.650	0.025
5.24	0.1	0.172	0.005	376.5000	0.636	0.010
5.02	0.1	0.138	0.002	459.1000	0.520	0.025

Tabella 2: Misure dell'onda sinusoidale ai capi di ${\cal C}$

4.1.2 Analisi dati

Con i dati raccolti si calcola il modulo della funzione di trasferimento $|A_C|$ al variare della frequenza utilizzando l'Equazione 4.1

$$|A_C| = \frac{V_{out}}{V_{in}}$$

$$\varepsilon_{|A_C|} = \frac{\delta V_{out}}{V_{out}} + \frac{\delta V_{in}}{V_{in}}$$
(4.1)

Tabella 3: Valori di $|A_C|$

$ A_C $	$d A_C $	f(kHz)
0.994253	0.028653	0.5155
0.982955	0.028167	1.0240
0.974432	0.028046	2.4950
0.958807	0.027824	3.5250
0.943182	0.027602	4.0100
0.852273	0.026311	7.0420
0.556667	0.025944	15.5500
0.426573	0.016199	25.4600
0.314286	0.014541	36.3700
0.115441	0.003960	104.7000
0.077941	0.003271	156.0000
0.048134	0.001831	254.1000
0.034280	0.001028	356.6000
0.032824	0.001581	376.5000
0.027490	0.000946	459.1000

Riportando le misure della Tabella 3 in un grafico logaritmico $|A_C|(f)$ si ottiene la Figura 3

4 Onda sinusoidale Pag. 6

Figura 3: Grafico logaritmico di $|A_C|(f)$

È noto che la funzione di trasferimento in scala logaritmica assuma un andamento lineare a frequenze elevate; è possibile quindi tracciare una retta di pendenza -1 passante per i punti situati all'estrema destra del grafico. Questa retta interseca l'asintoto orizzontale $|A_C| = 1$ alla frequenza di taglio f_0 .

Figura 4: Grafico della stima della frequenza di taglio

Uno zoom sull'intersezione delle rette è riportato in Figura 5

4 Onda sinusoidale Pag. 7

Figura 5: Zoom intersezione rette

$$f_{0 min} = 12.0 kHz$$

$$f_{0 max} = 12.5 kHz$$

$$f_{0 best} = \frac{f_{0 max} + f_{0 min}}{2} = 12.25 \approx 12.3 \ kHz$$

$$\delta f_{0} = \frac{f_{0 max} - f_{0 min}}{2} = 0.25 \approx 0.3 \ kHz$$

Quindi il valore di $f_0 = (12.3 \pm 0.3) \; kHz$

5 Conclusioni Pag. 8

4.2 Funzione di trasferimento ai capi di R

Con i dati raccolti si calcola il modulo della funzione di trasferimento $|A_R|$ al variare della frequenza utilizzando l'

- 4.2.1 Dati ed errori
- 4.2.2 Analisi dati
- 5 Conclusioni