Lösungsvorschläge und Erläuterungen

Klausur zur Vorlesung Grundbegriffe der Informatik 19. März 2019

Klausur	-ID								
	L		1						
Nachname:									
Vorname:									
MatrNr.:									
Diese Klausur	2. Versu	ch in (GBI						
nur falls 2. Ver	Email-Adr.:								
	Postanschrift:								
A 6 1	1		0	4					
Aufgabe	1	2	3	4	5	6	7		
max. Punkte	8	5	7	7	5	6	6		
tats. Punkte									
				_					
Gesamtpunkt		/ 44		Note:					

Aufgabe 1 (2+1+2+1+1+1=8 Punkte)a) Ist $\sqrt{2^n 3^n} \in \Omega(2^n)$? Begründen Sie Ihre Antwort: / 2 Ja, denn $\sqrt{2^n3^n} \ge \sqrt{2^n2^n} = 2^n \in \Omega(2^n)$. / 1 b) Ist die folgende Aussage richtig? Für jede Turing-Maschine T ist die Sprache L(T) genau dann entscheidbar, wenn T für jede Eingabe hält. nein: 🖳 / 2 c) Es sei $A = \{a, b\}$. Geben Sie eine Sprache $L \subseteq A^*$ an, sodass $L^* = A^*$ aber $(L^2)^* \neq (A^2)^*$ ist. L = $\{\varepsilon, a, b\}$ d) Es sei M eine Menge und R eine binäre Relation auf M (also R ⊆ / 1 $M \times M$), die transitiv ist. Ist $R \circ R$ dann auch immer transitiv? ja: 🔽 nein: L / 1 e) Beschreiben Sie mit einem regulären Ausdruck R die formale Sprache aller Wörter über dem Alphabet $A = \{a, b\}$, die die Eigenschaft haben, dass an keiner Stelle ein a vorkommt, wenn sowohl irgendwo weiter links als auch irgendwo weiter rechts ein b steht. R =a*b*a* / 1 f) Gibt es einen Graphen G = (V, E), der zwar azyklisch aber kein Baum ist? Falls ja, geben Sie einen solchen Graphen an; andernfalls begründen Sie, warum das nicht sein kann. Antwort: b

Es gibt viele Möglichkeiten; z.B.:

Aufgabe 2 (1 + 1 + 3 = 5 Punkte)

Es sei $A = \{a,b\}$ ein Alphabet und eine Abbildung $f: A^* \to A^*$ wie folgt definiert:

$$\forall w \in A^* : f(w, \varepsilon) = \varepsilon$$
$$\forall w \in A^* : f(\varepsilon, w) = \varepsilon$$

$$\forall x_1, x_2 \in A \ \forall w_1, w_2 \in A^* : f(x_1w_1, x_2w_2) = \begin{cases} x_1 f(w_1, w_2) & \text{falls } x_1 = x_2 \\ \epsilon & \text{falls } x_1 \neq x_2 \end{cases}$$

/ 1

a) Berechnen Sie schrittweise f(abb, abaa).

$$f(abb, abaa) = af(bb, baa) = abf(b, aa) = ab\varepsilon = ab$$

/ 1

b) Beschreiben Sie anschaulich präzise $f(w_1, w_2)$.

das längste gemeinsame Präfix von w_1 und w_2

/ 3

c) Beweisen Sie induktiv, dass für jedes $w_1 \in A^*$ gilt: Für jedes $w_2 \in A^*$ ist $f(w_1, w_2)$ ein Präfix von w_1 .

Lösung 2

Durch vollständige Induktion über $n = |w_1| \in \mathbb{N}_0$:

- IA. n = 0. Dann ist $|w_1| = 0$, also $w_1 = \varepsilon$. Für jedes $w_2 \in A^*$ gilt $f(w_1, w_2) = f(\varepsilon, w_2) = \varepsilon$, was Präfix von $w_1 = \varepsilon$ ist.
- **IS.** Es gelte die Behauptung für alle Wörter der Länge kleiner gleich n, wobei n fest ist. (IV)

Es sei dann ein Wort $w_1 \in A^*$ der Länge $|w_1| = n + 1$ gegeben sowie $w_2 \in A^*$ beliebig. Zudem seien $x_1, x_2 \in A$ sowie $w_1', w_2' \in A^*$ mit $w_i = x_i w_i'$ für $i \in \{1, 2\}$ gegeben; es folgt insbesondere $|w_1'| = n$. Wenn $x_1 \neq x_2$, so ist $f(w_1, w_2) = \varepsilon$ und damit (trivialerweise) Präfix von w_1 . Wenn $x_1 = x_2$ ist, dann gilt

$$f(w_1, w_2) = f(x_1w_1', x_2w_2') = x_1f(w_1', w_2')$$

und nach IV (da $|w_1'| = n$) ist $f(w_1', w_2')$ Präfix von w_1' . Damit ist $f(w_1, w_2) = x_1 f(w_1', w_2')$ Präfix von $x_1 w_1' = w_1$.

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (4 + 1 + 2 = 7 Punkte)

a) Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	6	11	27	9	2	34

- / 4
- (i) Zeichnen Sie den Huffman-Baum.
- / 1
- (ii) Geben Sie die Huffman-Codierung des Wortes bad an, die sich aus Ihrem Huffman-Baum ergibt.
- / 2
- b) Für $k \ge 2$ sei ein Alphabet $A = \{a_0, a_1, \dots, a_{k-1}\}$ mit k Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2ⁱ vorkommt für $0 \le i < k$.

Geben Sie die Huffman-Codierungen aller Symbole a_i an.

Lösung 3

a)

- (ii) 0001 010 10
- b) $a_0 = 0^{k-1}$ und $a_i = 0^{k-i-1} 1$ für $i \in \{1, \dots, k-1\}$.

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (2 + 1 + 2 + 2 = 7 Punkte)

Es sei $A=\{0,1\}$ ein Alphabet. Für jedes $n\in \mathbb{N}_0$ sei $V_n=A^n$ sowie E_n die Menge

 $\left\{ \{w_1, w_2\} \mid \exists i, j \in \mathbb{Z}_n : (i \neq j \land \forall k \in \mathbb{Z}_n : (k \notin \{i, j\} \leftrightarrow w_1(k) = w_2(k))) \right. \right\}$

und es sei G_n der ungerichtete Graph (V_n, E_n) .

/ 2

a) Zeichnen Sie G_n für $n \in \{0, 1, 2, 3\}$. Beschriften Sie alle Knoten.

/ 1

b) Geben Sie die Adjazenzmatrix A_2 und die Wegematrix W_2 von G_2 an. Geben Sie bei A_2 für jede Zeile und Spalte an, welchem Knoten sie entspricht.

/ 2

c) (In der Originalklausur war an dieser Stelle die Formulierung einer unlösbaren Aufgabe. Für das Archiv der alten Klausuren zum Lernen wurde diese Teilaufgabe entfernt.)

/ 2

d) Zeigen oder widerlegen Sie: $\forall n \in \mathbb{N}_0 : (E_n)_g = (E_n)_g^*$.

Hinweis. R^* bezeichnet die reflexiv-transitive Hülle einer binären Relation R.

Lösung 4

a) G₀:

G₁:

1

G₂:

(01) (10)

b) Adjazenzmatrix: $\begin{array}{c}
00 \\
01 \\
10 \\
11
\end{array}$ $\begin{array}{c}
00 \\
0 \\
0 \\
1 \\
0
\end{array}$ $\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}$ $\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1
\end{array}$

Wegematrix:
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- c) —
- d) Die Aussage ist falsch.

Es gibt mehrere Begründungen, u.a.:

- $(E_n)_g$ ist nicht reflexiv (und zwar für jedes $n \in \mathbb{N}_0$).
- Für n = 3 ist $(E_n)_g$ nicht transitiv: $(011,000) \in (E_n)_g$ und $(000,101) \in (E_n)_g$, aber $(011,101) \notin (E_n)_g$.
- analog z. B. für n = 4.

 $(E_n)_g^*$ ist damit im Allgemeinen weder reflexiv noch transitiv, also es kann nicht gleich der reflexiv-transitiven Hülle $(E_n)_g^*$ gleich sein.

Aufgabe 5 (2 + 1 + 2 = 5 Punkte)

Es sei das Alphabet $X=\{a,b\}$ gegeben. Betrachten Sie die Grammatiken $G_1=(\{S_1,A_1\},X,S_1,P_1)$ und $G_2=(\{S_2,A_2,B_2\},X,S_2,P_2)$ mit

$$ext{P}_1 = \{ \; S_1
ightarrow \mathtt{aa} S_1 \mid \mathtt{b} A_1 \mid \epsilon, \ A_1
ightarrow \mathtt{a} S_1 \mid \mathtt{b} \; \}$$

und
$$P_2 = \{ \ S_2 \to S_2 S_2 \mid A_2 B_2,$$

$$A_2 \to ab,$$

$$B_2 \to baS_2 \mid \epsilon \ \}$$

/ 2

a) Geben Sie zu G_i jeweils einen regulären Ausdruck R_i an (wobei $i \in \{1,2\}$), sodass $\langle R_i \rangle = L(G_i)$ ist.

$$R_1 = |(aa|ba)*(\emptyset*|bb)$$

$$R_2 = (abba)*ab((abba)*ab)*$$

Hinweis. Sie dürfen die üblichen Klammereinsparungsregeln ausnutzen. Aber beschränken Sie sich ansonsten auf die Notationsmöglichkeiten aus der Definition regulärer Ausdrücke und benutzen Sie keine Abkürzungen wie a⁺.

/ 1

b) Die Grammatik G_1 ist rechtslinear, die Grammatik G_2 nicht. Geben Sie eine rechtslineare Grammatik $G_3=(N_3,X,S_3,P_3)$ mit höchstens 3 Nichtterminalsymbolen (also $|N_3|\leq 3$) an, sodass $L(G_3)=L(G_2)$ ist.

/ 2

c) Geben Sie eine Grammatik $G_4 = (N_4, X, S_4, P_4)$ an, die die Sprache $L(G_4) = L(G_1) \cup L(G_2)$ erzeugt. Ihre Grammatik darf höchstens 4 Nichtterminalsymbole haben (also $|N_4| \le 4$).

Lösung 5

b)
$$N_3 = \{S_3, A_3\}$$
 und

$$\begin{array}{c} P_3 = \{ \; S_3 \rightarrow \mathtt{abba} S_3 \mid \mathtt{ab} A_3 \text{,} \\ A_3 \rightarrow S_3 \mid \epsilon \; \} \end{array}$$

c)
$$N_4 = \{S_1, S_3, S_4\}$$
 und

$$P_4 = \{ \ S_1
ightarrow \mathtt{aa} S_1 \mid \mathtt{ba} S_1 \mid \mathtt{bb} \mid \epsilon, \ S_3
ightarrow \mathtt{abba} S_3 \mid \mathtt{ab} S_3 \mid \mathtt{ab}, \ S_4
ightarrow S_1 \mid S_3 \ \}$$

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (2 + 1 + 3 = 6 Punkte)

Es sei das Alphabet $X = \{a, b\}$ und die formale Sprache

$$L = \{ w \in X^* \mid \exists k \in \mathbb{N}_0 : N_b(w) = 3k + 1 \}$$

gegeben.

 $N_b(w)$ bezeichne dabei die Anzahl der Vorkommen des Zeichens b in w.

/ 2

a) Geben Sie einen endlichen Akzeptor an, der L erkennt.

Es sei jetzt A ein beliebiger endlicher Akzeptor mit Zustandsmenge Z und dessen Eingabealphabet gleich X ist, und für den L(A) = L gilt.

/ 1

b) Zeigen Sie, dass $|Z| \neq 1$ ist.

/ 3

c) Zeigen Sie, dass $|Z| \neq 2$ ist.

Hinweis. Führen Sie einen Widerspruchsbeweis durch. Sie dürfen dabei annehmen, dass Teilaufgabe b) schon bewiesen worden ist.

Lösung 6

b) Sei |Z| = 1. Also ist $Z = \{s\}$ und s ist der Startzustand von A.

Für die Zustandsüberführungsfunktion $f: Z \times X \to Z$ muss f(s, a) = f(s, b) = s gelten. Folglich, wenn s akzeptierend ist, dann ist $L(A) = X^*$; wenn s nicht akzeptierend ist, so gilt $L(A) = \emptyset$.

Es gilt aber $L \neq \emptyset$ (da bspw. $b \in L$) und $L \neq X^*$ (da bspw. $\epsilon \notin L$).

c) Sei |Z|=2. Wir nehmen an, dass L=L(A) ist.

Es sei wie vorher $s \in Z$ der Startzustand von A sowie $Z = \{s, q\}$ und $f \colon Z \times X \to Z$ die Zustandsüberführungsfunktion von A. Ferner sei F die Menge akzeptierender Zustände von A.

Wenn |F| = 0, so ist $L(A) = \emptyset \neq L$. Wenn |F| = 2, dann ist $L(A) = X^*$. Wie in Teilaufgabe b) ist weder das eine noch das andere möglich. Es folgt damit |F| = 1.

Da $\varepsilon \notin L$, so gilt s $\notin F$, d.h. q ist der (einzige) akzeptierende Zustand.

 $Da\;b\in L\;aber\;s\not\in F\text{, so ist }f(s,b)=q.$

Ferner, da bb $\not\in$ L, so gilt $f_{**}(s,bb)=f(q,b)=s.$

Es gilt aber dann:

$$f_{**}(s,bbb) = f_{**}(q,bb) = f_{**}(s,b) = q$$

Es folgt bbb $\in L(A)$ aber bbb $\not\in L$. Widerspruch!

/ 6 Au

Aufgabe 7 (3 + 1 + 2 = 6 Punkte)

Betrachten Sie folgende Turing-Maschine T mit Eingabealphabet {a, b}:

/ 3

a) Simulieren Sie die ersten 14 Schritte von T für das Eingabewort w= abab. Vervollständigen Sie dazu folgende Tabelle:

Schritt	Konfiguration					ı	Schritt	Konfiguration					
0		Α					7		F				
		a	b	a	b		/		b	a			
1			В				8	F					
			b	a	b		0		b	a			
2				В			9		A				
			b	a	b		9		b	a			
3					В		10			D			
			b	a	b		10			a			
4						В	11				D		
			b	a	b		11			a			
5					C		12			Ε			
			b	a	b		12			a			
6				F			13		F				
			b	a			13						
							14			A			
							14						

b) Geben Sie Funktionen f, g: $\mathbb{N}_+ \to \mathbb{N}_+$ an, sodass für die Zeitkomplexität Time $_T : \mathbb{N}_+ \to \mathbb{N}_+$ und Platzkomplexität Space $_T : \mathbb{N}_+ \to \mathbb{N}_+$ von T gilt: Time $_T \in \Theta(f)$ und Space $_T \in \Theta(g)$.

Hinweis. Für die Definition von f und g dürfen Sie nur die Grundrechenarten, Logarithmen und Exponentialfunktionen und Kompositionen davon verwenden.

$$f(n) = n^2$$

$$g(n) = n$$

/ 2

c) Geben Sie eine hinreichende und notwendige Bedingung dafür an, dass ein Wort $w \in \{a,b\}^+$ in L(T) liegt, d.h. von T akzeptiert wird.

Hinweis. Sie dürfen dabei keinen Bezug auf T nehmen.

Lösung 7

f: $\{a,b\} \to \{a,b\}$ bezeichne die Abbildung mit f(a) = b und f(b) = a. Ferner sei h_f : $\{a,b\}^* \to \{a,b\}$ der von f induzierte Homomorphismus und rev: $\{a,b\}^* \to \{a,b\}^*$ die Abbildung, die ein Wort auf Ihr Spiegelbild abbildet (d.h. $rev(\epsilon) = \epsilon$ und rev(xw) = rev(w)x für alle $x \in \{a,b\}$ und $w \in \{a,b\}^*$). Dann ist

$$L(T) = \{w \cdot x \cdot h_f(rev(w)) \mid w \in \{a,b\}^*, x \in \{\epsilon,a,b\}\}.$$

Alternativ ist L(T) = L(G), wobei $G = (\{S\}, \{a, b\}, S, P)$ eine Grammatik mit

$$P = \{ S \rightarrow aSb \mid bSa \mid a \mid b \mid \epsilon \}$$

ist.

Weiterer Platz für Antworten zu Aufgabe 7: