Smoothing techniques

Xiaodong Lin

Outline

- Smoothing techniques
- Simple exponential smoothing
- Holt's Winters

Smoothing

• Simple exponential smoothing(SES) is suitable for forecasting data with no trend or seasonal patterns.

Models

Previously we discussed the naive method:

$$\hat{y}_{T+h} = y_T$$
 for all h .

Thus the most recent obs. is the only important one for prediction purposes.

• The other method we mentioned, the average method:

$$\hat{y}_{T+h} = \frac{1}{T} \sum_{t=1}^{T} y_t.$$

Thus all obs. are of equal importance for forecasting.

 Naturally, intuition tells us that a better forecasting method should lie in between these two extremes. More recent obs. should be more important and assigned more weights.

SES model

 Forecasts are calculated using weighted averages with exponential decaying weights.

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots + (1-\alpha)^T y_{1|0}.$$

 α is a smoothing parameter.

Obs.	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
УТ	0.2	0.4	0.6	0.8
y_{T-1}	0.16	0.24	0.24	0.16
<i>y</i> _{T−2}	0.128	0.144	0.096	0.032
<i>y</i> T-3	0.1024	0.0864	0.0384	0.0064

• The weight goes down exponentially. When $\alpha = 1$, this reduces to the naive estimate.

Weighted average form

• By definition, the forecast at t+1 equals to a weighted average between the most recent obs. y_t and the most recent forecast:

$$\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}.$$

$$\hat{y}_{2|1} = \alpha y_1 + (1 - \alpha)\ell_0$$

$$\hat{y}_{3|2} = \alpha y_2 + (1 - \alpha)\hat{y}_{2|1}$$

$$\hat{y}_{4|3} = \alpha y_3 + (1 - \alpha)\hat{y}_{3|2}$$

$$\vdots$$

$$\hat{y}_{T+1|T} = \alpha y_T + (1 - \alpha)\hat{y}_{T|T-1}$$

Weighted average form

By substitution we have

$$\hat{y}_{2|1} = \alpha y_1 + (1 - \alpha)\ell_0$$

$$\hat{y}_{3|2} = \alpha y_2 + (1 - \alpha)\hat{y}_{2|1}$$

$$\hat{y}_{4|3} = \alpha y_3 + (1 - \alpha)\hat{y}_{3|2}$$

$$\vdots$$

$$\hat{y}_{T+1|T} = \alpha y_T + (1 - \alpha)\hat{y}_{T|T-1}$$

Weighted average form

Continuing substitution, we have

$$\hat{y}_{3|2} = \alpha y_2 + (1 - \alpha) \left[\alpha y_1 + (1 - \alpha) \ell_0 \right]$$

$$= \alpha y_2 + \alpha (1 - \alpha) y_1 + (1 - \alpha)^2 \ell_0$$

$$\hat{y}_{4|3} = \alpha y_3 + (1 - \alpha) \left[\alpha y_2 + \alpha (1 - \alpha) y_1 + (1 - \alpha)^2 \ell_0 \right]$$

$$= \alpha y_3 + \alpha (1 - \alpha) y_2 + \alpha (1 - \alpha)^2 y_1 + (1 - \alpha)^3 \ell_0$$

$$\vdots$$

$$\hat{y}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1 - \alpha)^j y_{T-j} + (1 - \alpha)^T \ell_0.$$

Component form

- Time series components consist of level, trend, and seasonal component.
- ullet For simple exponential smoothing, only level I_t is needed.

Forecast equation
$$\hat{y}_{t+1|t} = I_t$$

Smoothing equation $I_t = \alpha y_t + (1-\alpha)I_{t-1},$

where l_t is the level of the time series at time t.

Error correction form

• We can rearrange the component form to get the following, where e_t is the one step within-sample forecast error at time t.

$$I_t = I_{t-1} + \alpha (y_t - I_{t-1})$$

= $I_{t-1} + \alpha e_t$

where
$$e_t = y_t - I_{t-1} = y_t - \hat{y}_{t|t-1}$$
 for $t = 1, \dots, T$.

- If the error at time t is negative, then the level at t-1 is over-estimated. The new level is then the previous level adjusted downwards.
- \bullet α controls the smoothness of the level forecast, smaller implies smoother.

Error correction form

We can obtain the optimal α via minimizing the SSE

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 = \sum_{t=1}^{T} e_t^2.$$

- If the time series contains no trend and seasonality, then we can use simple linear smoothing to make short term forecast.
- Degree of smoothing is controlled by alpha.
- The following figure shows the annual rainfall by inches for Lo

- From this plot, the mean stays at constant level, and doesn't have much seasonality.
- Use function HoltWinters(). For simple exponential smoothing, we set the parameters beta=FALSE and gamma=FALSE.
- The following figure shows the fitted line over original data.

- For each year, we can compute the error between the observed value and fitted value, thus the in sample sum of square errors(for all the years we have data with)
 - > rainseriesforecasts\$SSE [1] 1828.855
- For simple exponential smoothing, we use the first value (23.56) as the initial value. This can be specified in HoltWinters using "I.start" option.
- Once the model is fitted, we can use the forecast function to obtain future rainfall values.

```
> forecast(rainseriesforecasts, h=2)
    Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1913     24.67819 19.17493 30.18145 16.26169 33.09470
1914     24.67819 19.17333 30.18305 16.25924 33.09715
```

One can plot the predictions using plot.forecast

Forecasts from HoltWinters

 Now we can check the residuals and find out whether we have taken care of all the autocorrelations.

Series rainseriesforecasts2\$residuals

• To formally test if there are non-zero autocorrelations at lags 1-20, we can use the Box-Ljung test.

```
> Box.test(rainseriesforecasts2$residuals,
lag=20, type="Ljung-Box")
```

Box-Ljung test

```
data: rainseriesforecasts2$residuals
X-squared = 17.4008, df = 20, p-value = 0.6268
```

• The P-value is 0.63, thus we do not reject the null hypothesis that the autocorrelations from lag 1-20 are 0.

- If the time series contains certain trend but no seasonality, then we can use Holt's exponential smoothing to make short term forecast.
- Smoothing is controlled by α and β . α is controlling the level of the smoothing, and β is controlling the slope of the smoothing.

- From this plot, the mean does not stay at constant level, which means trend exists. But there doesn't seem to be much seasonality.
- For Holt's exponential smoothing, we set the parameter gamma=FALSE.

```
> skirtsseriesforecasts
```

Holt-Winters exponential smoothing with trend and without season
HoltWinters(x = skirtsseries, gamma = FALSE)

Smoothing parameters:

alpha: 0.8383481

beta: 1

gamma: FALSE

- The forecasts agree well with the real data.
- For Holt's exponential smoothing, we can specify the initial values for level and slope in HoltWinters using "I.start" and "b.start" option.

- We can forecast several steps ahead as in simple exp. smoothing.
- > forecast(skirtsseriesforecasts, h=2)

```
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1912 534.9990 509.5521 560.4460 496.0813 573.9168
1913 540.6895 491.0105 590.3685 464.7120 616.6670
```

Forecasts from HoltWinters

Check the residuals.

```
> Box.test(skirtsseriesforecasts2$residuals,
lag=20, type="Ljung-Box")
Box-Ljung test
data: skirtsseriesforecasts2$residuals
X-squared = 19.7312, df = 20, p-value = 0.4749
```

Series skirtsseriesforecasts2\$residuals

- If the time series contains both trend and seasonality, then we can use Holt-winters exponential smoothing to make short term forecast.
- Smoothing is controlled by α , β and γ . α is controlling the level of the smoothing, and β is controlling the slope of the smoothing, and γ is controlling seasonality.

• Clearly the variance is not stable, we do log transformation.

 From this plot, the mean does not stay at constant level, which means trend exists. There also exists clear seasonality.

```
souvenirtimeseriesforecasts=HoltWinters(logsouvenirtimeseries)
> souvenirtimeseriesforecasts
Holt-Winters exponential smoothing with trend and additive s
HoltWinters(x = logsouvenirtimeseries)
```

Smoothing parameters:

alpha: 0.413418

beta: 0

gamma: 0.9561275

Meaning of the parameters

 The forecasts agree well with the real data, especially the seasonal peaks.

Holt-Winters filtering

- We can forecast several steps ahead as in simple exp. smoothing.
- > forecast(souvenirtimeseriesforecasts, h=2)

```
Point Forecast
                           Lo 80
                                     Hi 80
                                               Lo 95
                                                         Hi 95
               9.597062 9.381514 9.812611 9.267409
Jan 1994
                                                      9.926715
Feb 1994
               9.830781 9.597539 10.064024 9.474068 10.187495
```

Forecasts from HoltWinters

- Check the residuals.
- > Box.test(souvenirtimeseriesforecasts2\$residuals, lag=20, type="Ljung-Box")

```
souvenirtimeseriesforecasts2$residuals
data:
X-squared = 17.5304, df = 20, p-value = 0.6183
```

Series souvenirtimeseriesforecasts2\$residuals

