INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

SEMIGRUPOS

- **Semigrupo:** conjunto S + oper. binária associativa definida sobre S.
 - Sistema algébrico simples.
 - Muitas aplicações importantes.
 - Ex.: máquinas de estados finitos
- **Denotado por** (S, *).
 - Ou simplesmente por S (quando fica claro o que é "*").
- \blacksquare Também nos referimos a a*b como o **produto** de a e b.
- (S,*) é chamado de **comutativo** se * é uma operação comutativa.

Exemplo: $(\mathbb{Z},+)$ é um semigrupo comutativo.

Exemplo: $(P(S), \cup)$ é um semigrupo comutativo.

Exemplo: $(\mathbb{Z}, -)$ não é um semigrupo

pois a subtração não é associativa.

- Exemplo: Seja S um conjunto fixo não-vazio.
 - E seja S^S o conjunto de todas as funções $f: S \to S$
 - Então, sejam f e g dois elementos de S^S :
 - ullet * é uma operação binária associativa sobre S^S
 - Portanto, $(S^S, *)$ é um semigrupo (não-comutativo).

- **Exemplo:** Seja (L, \leq) um reticulado.
 - **●** Definição: $a * b = a \lor b$
 - ullet Então, L é um semigrupo.

- **Exemplo:** Seja $A = \{a_1, a_2, \dots, a_n\}$.
 - Sejam α e β dois elementos de A^* .
 - ▶ Note que concatenação (\cdot) é uma operação binaria sobre A^* .
 - É associativa: se α , β e γ são elementos quaisquer de A^* :

$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

- Logo, (A^*, \cdot) é um semigrupo.
 - · (é o chamado "semigrupo livre gerado por A")

ASSOCIATIVIDADE EM SEMIGRUPOS

- Em um semigrupo (S,*) a propriedade associativa pode ser generalizada:
- **▶ Teorema:** O produto dos elementos a_1, a_2, \ldots, a_n $(n \ge 3)$, de um semigrupo, não depende da inserção de parênteses.
 - Ou seja, este produto pode ser escrito como: $a_1 * a_2 * \cdots * a_n$
- Exemplo: São iguais os produtos:
 - \bullet $((a_1 * a_2) * a_3) * a_4$
 - \bullet $a_1 * (a_2 * (a_3 * a_4))$
 - \bullet $(a_1 * (a_2 * a_3)) * a_4$

IDENTIDADES EM SEMIGRUPOS

Um elemento identidade de um semigrupo satisfaz a:

$$e * a = a * e = a$$
 , $\forall a \in S$

- **Exemplo:** O número 0 é uma identidade do semigrupo $(\mathbb{Z}, +)$.
- **Teorema:** Se um semigrupo (S,*) tem uma identidade, ela é única.
- Prova:
 - ullet Suponha que e e e' são identidades em S.
 - Como e é uma identidade: e*e'=e'
 - Também, como e' é uma identidade: e*e'=e
 - ullet Portanto: e=e'

Monóides

- Monóide: semigrupo que tem identidade.
- **Exemplo:** O semigrupo $(P(S), \cup)$ é um monóide.
 - A identidade é o elemento ∅, pois:

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset = A * \emptyset$$
, $\forall A \in P(S)$

- **Exemplo:** O semigrupo (A^*, \cdot) é um monóide.
 - A identidade é o elemento Λ , pois:

$$\alpha \cdot \Lambda = \Lambda \cdot \alpha = \alpha$$
 , $\forall \alpha \in A^*$

- Exemplo: O conjunto de todas as relações sobre um conjunto A é um monóide sob a operação de composição.
 - ullet A identidade é a relação de igualdade Δ .

SUBSEMIGRUPOS & SUBMONÓIDES

- **S**ejam (S,*) um semigrupo e T um subconjunto de S:
 - (T,*) é um **subsemigrupo** de (S,*) se T for fechado sob *
 - **●** (fechado: $a * b \in T$ sempre que $a, b \in T$)

Similarmente:

- Seja (S, *) um monóide (com identidade e) e seja T um subconjunto de S.
 - (T,*) é um **submonóide** de (S,*) se T for fechado sob * e se $e \in T$.

SUBSEMIGRUPOS & SUBMONÓIDES

- Note que a associatividade vale em qualquer subconjunto de um semigrupo.
- Deste modo, um subsemigrupo (T,*) de um semigrupo (S,*) é por si mesmo um semigrupo.
- Da mesma forma: um submonóide de um monóide é ele próprio um monóide.

SUBSEMIGRUPOS & SUBMONÓIDES

Exemplo:

- Seja (S,*) um semigrupo. Então:
 - (S,*) é um subsemigrupo de (S,*)
- Seja (S,*) um monóide. Então:
 - ullet (S,*) é um submonóide de (S,*)
 - $(\{e\},*)$ também é um submonóide de (S,*)

Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 - p.13/3

POTÊNCIAS EM SEMIGRUPOS

- Seja a um elemento de um semigrupo (S, *)
- ▶ Para $n \in \mathbb{Z}^+$, definimos recursivamente as potências a^n :

 - $a^n = a^{n-1} * a, \qquad n \ge 2$
- Além disto:
 - se (S,*) é um monóide, definimos: $a^0=e$
 - se m e n são inteiros não-negativos: $a^m * a^n = a^{m+n}$

POTÊNCIAS EM SEMIGRUPOS

Exemplo:

- Se (S,*) é um semigrupo e:
 - \bullet $a \in S$
 - $T = \{a^i \mid i \in \mathbb{Z}^+\}$
- Então (T,*) é um subsemigrupo de (S,*).

Exemplo:

- Se (S, *) é um monóide e:
 - \bullet $a \in S$
 - $T = \{a^i \mid i \in \mathbb{Z}^+ \text{ ou } i = 0\}$
- Então (T,*) é um submonóide de (S,*).

POTÊNCIAS EM SEMIGRUPOS

- **Exemplo:** Seja T o conjunto de todos os inteiros pares.
 - Então (T, \times) é um subsemigrupo do monóide (\mathbb{Z}, \times) .
 - Mas não é um submonóide:
 - ightharpoonup a identidade de \mathbb{Z} (o número 1), não pertence a T.

- Sejam (S,*) e (T,*') dois semigrupos.
 - Uma $f: S \to T$ é um isomorfismo de (S, *) para (T, *') se:
 - ullet ela for uma bijeção de S para T
 - $f(a*b) = f(a)*' f(b), \quad \forall a, b \in S$

- ullet Já que f é uma bijeção de S para T:
 - f^{-1} existe e é uma correspondência um-para-um de T para S.
- **▶ Proposição:** f^{-1} é um isomorfismo de (T, *') para (S, *).
- Prova:
 - ullet sejam a' e b' elementos de T
 - já que f é sobrejetiva:
 - ullet devem existir a e b em S tais que f(a)=a' e f(b)=b'
 - então: $a = f^{-1}(a')$ e $b = f^{-1}(b')$

● daí:
$$f^{-1}(a'*'b') = f^{-1}(f(a)*'f(b))$$

$$= f^{-1}(f(a*b))$$

$$= (f^{-1} \circ f)(a*b)$$

$$= a*b$$

$$= f^{-1}(a')*f^{-1}(b')$$

- **▶** Se (S,*) e (T,*') são isomórficos, escrevemos: $S \simeq T$
- Procedimento para mostrar que (S,*) e (T,*') são isomórficos:
 - 1. Defina uma função $f: S \to T$ com Dom(f) = S.
 - 2. Mostre que f é um-para-um (injetiva).
 - 3. Mostre que f é sobrejetiva.
 - 4. Mostre que f(a * b) = f(a) *' f(b).

- **Exemplo:** Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.
 - Passo 1: a função $f: \mathbb{Z} \to T$ é f(a) = 2a
 - \blacksquare Passo 2: mostrando que f é injetiva (um-para-um):
 - ullet suponha que $f(a_1) = f(a_2)$
 - ullet então: $2a_1=2a_2$ \Longrightarrow $a_1=a_2$
 - Passo 3: mostrando que f é sobrejetiva:
 - seja b qualquer inteiro par
 - então: $b/2 = a \in \mathbb{Z}$
 - Passo 4: f preserva relação entre operações:

$$f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)$$

- Em geral:
 - é fácil verificar se uma $f: S \to T$ é ou não um isomorfismo
 - mas é difícil mostrar que dois semigrupos são isomórficos
- Como no caso dos reticulados:
 - quando dois semigrupos são isomórficos, só podem diferir na natureza dos seus elementos
 - suas estruturas de semigrupos devem ser idênticas
- lacksquare Se S e T são semigrupos finitos:
 - operações binárias dadas por tabelas de multiplicação
 - S e T serão isomórficos se, rearranjando e renomeando os elementos de S, obtemos a tabela de T.

- **•** Exemplo: Seja $S = \{a, b, c\}$ e $T = \{x, y, z\}$.
 - Sejam as seguintes tabelas de multiplicação:

*	а	b	С	*'	X	у	Z
а	а	b	С	X	Z	X	У
b	b	С	a	у	X	у	Z
С	С	а	b	Z	у	Z	X

- ullet Fácil verificar que impõem estruturas de semigrupo a S e T.
- Agora, considere a função: f(a) = y f(b) = x f(c) = z
- ullet Substituindo os elementos de S por suas imagens e rearranjando a tabela, obtemos, exatamente, a tabela de T
 - ullet portanto, S e T são isomórficos.

Teorema:

- Sejam os monóides:
 - (S,*), com identidade e
 - (T,*'), com identidade e'.
- Então, se $f: S \to T$ é um isomorfismo, f(e) = e'.

Prova:

- ullet Seja b um elemento qualquer de T.
- ullet Como f é sobrejetiva, há um a em S tal que f(a) = b.
- **●** Então: b = f(a) = f(a * e) = f(a) *' f(e) = b *' f(e)
- Similarmente, como a = e * a, temos que: b = f(e) *' b.
- Ou seja, f(e) é uma identidade para T.
- Daí, como a identidade tem que ser única: f(e) = e'

- Consequência do teorema anterior:
 - Um semigrupo com identidade não pode ser isomórfico a um semigrupo sem identidade.
- Exemplo: Seja T o conjunto dos inteiros pares.
 - Então os semigrupos (\mathbb{Z}, \times) e (T, \times) não são isomórficos.
 - ullet Pois $\mathbb Z$ tem uma identidade e T não.

- Agora vamos tirar da definição de isomorfismo de semigrupos as exigências de que ele seja injetivo e sobrejetivo.
 - Obtemos outro importante método para comparar as estruturas algébricas de dois semigrupos:
- **S**ejam (S,*) e (T,*') dois semigrupos.
 - Uma $f: S \to T$ é um homomorfismo de (S, *) para (T, *') se:

$$f(a*b) = f(a)*'f(b), \quad \forall a, b \in S$$

Nota: se, por acaso, f também for sobrejetiva, dizemos que T é a imagem homomórfica de S.

- $(A*, \cdot)$, onde · é concatenação
- (A, +), onde + é defi nida pela tabela de multiplicação:

■ Agora, seja a função $f: A^* \to A$, defi nida por:

$$f(\alpha) = \begin{cases} 1 & \text{se } \alpha \text{ tem um nro impar de 1s} \\ 0 & \text{se } \alpha \text{ tem um nro par de 1s} \end{cases}$$

- ullet Além disto, f é sobrejetiva, pois: f(0) = 0 e f(1) = 1
- Mas f não é um isomorfi smo, pois não é um-para-um (injetiva).

- Diferença: o isomorfismo tem que ser injetivo e sobrejetivo.
- Para ambos: "imagem de um produto" = "produto das imagens"
- Teorema: Sejam:
 - (S,*) e (T,*') monóides com respectivas identidades e e e'
 - $f: S \to T$ um homomorfismo de (S, *) para (T, *')

Então f(e) = e'.

- A união deste teorema com os dois a seguir mostra que:
 - se um semigrupo (T,*') é a imagem homomórfica do semigrupo (S,*):
 - (T,*') tem uma forte semelhança algébrica com (S,*).

Teorema:

- Seja f um homomorfismo de um semigrupo (S,*) para um semigrupo (T,*')
- e seja S' um subsemigrupo de (S,*).
- Então:

$$f(S') = \{t \in T \mid t = f(s) \text{ para algum } s \in S'\}$$

é um subsemigrupo de (T,*')

• ou seja: "a imagem de S' sob f é um subsemigrupo de (T,*')"

 $prova \rightarrow$

Prova:

- se t_1 e t_2 são elementos quaisquer de f(S'), então:
 - $t_1 = f(s_1)$ e $t_2 = f(s_2)$ para alguns $s_1, s_2 \in S'$

$$\begin{array}{ll} \bullet & \text{da\'i:} & t_1*'t_2 = f(s_1)*'f(s_2) \\ & = f(s_1*s_2) \\ & = f(s_3) \end{array}$$

- aonde: $s_3 = s_1 * s_2 \in S'$
- - ullet portanto: f(S') é fechado sob *'
- além disto, já que a associatividade vale em T, ela vale em f(S')
- assim, f(S') é um subsemigrupo de (T, *').

▶ Teorema: Se f é um homomorfismo de um semigrupo comutativo (S,*) sobre um semigrupo (T,*'), então (T,*') também é comutativa.

Prova:

- ullet sejam t_1 e t_2 elementos quaisquer de T.
- então: $t_1 = f(s_1)$ e $t_2 = f(s_2)$ para alguns s_1 e s_2 em S

• logo:
$$t_1 *' t_2 = f(s_1) *' f(s_2)$$

 $= f(s_1 * s_2)$
 $= f(s_2 * s_1)$
 $= f(s_2) *' f(s_1)$
 $= t_2 *' t_1$

• portanto: (T,*') também é comutativa.

SEMIGRUPOS

Final deste item.

Dica: fazer exercícios sobre semigrupos...