A Brief Report about the τ -MG Paper

Cong Feng

B.Eng. of BUAA, M.Eng. candidate of HRBUST

Mar 2023

Outline

The background of ANNS

The main idea of $\tau\text{-MG}$

Insights and questions

The values and challenges of ANNS

Approximate Nearest Neighbor Search (ANNS)

Values

- Information retrieval (images/documents/songs).
- Machine learning. e.g., kNN classification and regression.
- Recommendation systems.

Challenges

- Growing size of real-world databases. i.e., from million to billion.
- The curse of dimensionality. i.e., data sparsity in high-dimensional spaces.
- Many tradeoffs. i.e., balancing search/index complexities, time/space complexities, accuracy/latency, etc.

The problem setting and taxology of ANNS

Definition of ANNS

Given a database D of n points in m-dimensional space E^m and a query point $q \in E^m$, the goal of the ANNS is to find a point $p \in D$ s.t. $\delta(q,p) \leq (1+\epsilon)\delta(q,\bar{v})$, where $\epsilon \geq 0$ is a small constant and \bar{v} is the exact nearest neighbor of q.

Taxology of ANNS methods

- Tree-based. i.e., KD-tree, Ball-tree.
- Hashing-based. i.e., Locality Sensitive Hashing (LSH).
- Quantization-based. i.e. Product Quantization (PQ),
- Proximity graph-based i.e., DG, NSWG, RNG, MRNG.

The drawbacks of existing ANNS methods

Non-PG methods

- Tree-based methods try to partition (index) the space.
- Hashing-based methods try to retain local similarities in the hamming space.
- They tend to scatter the neighborhood of a node into cells and thus tend to check more points during a search.

Figure: The index structures and an example search route of (a) tree-based, (b) hashing-based, and (c) PG-based methods. [2]

The drawbacks of existing ANNS methods

PG-based methods

- Lacking an error guarantee or search complexity guarantee. i.e., DPG [4], HNSW [5].
- An impractical assumption that $q \in D$. i.e., MRNG [2].
- A high search time complexity due to a long path length. i.e., FANNG [3], MRNG [2], SSG [1].

Figure: The edge occlusion rules of (a) MRNG and (c) τ -MG and a failure case of MRNG when $q \notin D$. [6]

Contributions of the τ -MG paper

Main results

- 1. Proves the length of any greedy routing path in general PGs is $O(n^{2/m} \ln n)$ with probability at least $1 (1/e)^{\frac{m}{4} \left(1 \frac{3}{e^2}\right)}$.
- 2. Proposes τ -MG and a new greedy routing algorithm that guarantees to find \bar{v} in $O(n^{1/m}(\ln n)^2)$ with a great probability given $\delta(q,\bar{v})<\tau$.
- 3. Proposes $\tau\text{-MNG}$, an approximation of $\tau\text{-MG}$ with low index complexity and a high chance of finding the exact \bar{v} .
- 4. Proposes three optimizations to aid the performance bottleneck of $\tau\text{-MNG}$. (i.e., QEO, PDP, and PII)

Key concepts of τ -MG

au-monotonic path

A path P is τ -monotonic for a query q if each step of P gets closer to q by at least τ except the last step.

au-monotonic property

A PG G is τ -monotonic if for any query q given $\delta(q, \bar{v}) < \tau$, G has a τ -monotonic path starting from any point $p \in G$ to \bar{v} .

au-monotonic graph

A τ -MG is τ -monotonic with its edge occlusion rules.

Key concepts of τ -MG

Definition of τ **-MG**

- 1. If $\delta(u, v) \leq 3\tau$ then $(u, v) \in G$.
- 2. Otherwise, either $(u, v) \in G$ or there exists $u' \in ball(u, \delta(u, v)) \cap ball(v, \delta(u, v) 3\tau)$ s.t. $(u, u') \in G$.

Below is an illustration of the case when $\delta(u,v) > 3\tau$ and the edge (u,u') occludes the edge (u,v).

An outline of τ -MG

The idea of τ -MG

- 1. Existing PG-based methods have a long routing path $O(n^{2/m} \ln n)$ since each step of the path only proceeds $\Delta \leq O((1/n)^{1/m})$. (Theorem 1)
- 2. A τ -monotonic path has an expected length $O(n^{1/m} \ln n)$ since each step proceeds at least τ (Theorem 2).
- 3. au-MG guarantees the existence of a au-monotonic path from any starting point to the NN of q given $\delta(q, \bar{v}) < \tau$. (Lemma 2)
- 4. The greedy routing of τ -MG guarantees to find a τ -monotonic path from any starting point to the NN of q. (Lemma 5)

The result

au-MG guarantees to find the exact NN in time $O(n^{1/m}(\ln n)^2)$ given $\delta(q, \bar{v}) < \tau$.

Intuitions of the proofs

Theorem 1

The proof first follows the framework in [2]. Then, a small distance $\sqrt{m} \left(\frac{m}{ng}\right)^{1/m}$ is proved to exist with probability at least

 $1-\left(\frac{1}{e}\right)^{\frac{m}{4}\left(1-\frac{3}{e^2}\right)}$. Thus, Δ is bounded by this value with a great probability.

Theorem 2

The proof is similar to Theorem 1 with the constant au replacing Δ .

Intuitions of the proofs I

Lemma 2

The proof is done by case analysis.

- 1. If $(v_0, \bar{v}) \in G$, proof is done trivially.
- 2. Otherwise, if $\delta(v_0, \bar{v}) < 6\tau$, then v_0 has a neighbor v_1 s.t. $\delta(v_1, \bar{v}) < 3\tau$. Thus, $(v_1, v_0) \in G$ and it can be shown that the path $[v_0, v_1, \bar{v}]$ is τ -monotonic by geometric properties.
- 3. If $\delta(v_0, \bar{v}) \geq 6\tau$, there exists v_1 s.t. $\delta(v_1, \bar{v}) < \delta(v_0, \bar{v}) 3\tau$, so it gets closer to \bar{v} by 3τ and closer to q by τ (this is similar to the second case). This continues until for some i it has $\delta(v_i, \bar{v}) < 6\tau$, which falls into the second case.

Intuitions of the proofs II

Figure: An illustration of the second case when $\delta(v_0, \bar{v}) < 6\tau$. It can be verified that the path $[v_0, v_1, \bar{v}]$ is τ -monotonic.

Intuitions of the proofs I

Lemma 5

The proof is done by contradiction.

- 1. If $\bar{v} \notin ball(u, 3\tau)$ then either $(u, \bar{v}) \in G$ or there exists $u' \in ball(u, \delta(u, \bar{v})) \cap ball(\bar{v}, \delta(u, \bar{v}) 3\tau)$ s.t. $(u, u') \in G$.
- 2. In the case of $(u, \overline{v}) \in G$, \overline{v} is not farther from q than u, which is a contradiction.
- 3. In the second case, it can be verified from geometric properties that $\delta(u',q) < \delta(u,q)$, which is also a contradiction.

Intuitions of the proofs II

Figure: An illustration of the second case when there exists an edge $(u,u')\in G$ occluding (u,\bar{v}) . It can be verified that $\delta(u',q)<\delta(u,q)$.

The pros of τ -MG

- Low search latency. It is the fastest PG method so far.
- Practical assumption. $\delta(q, \bar{v}) < \tau$ holds for most real-world databases.

The cons of τ -MG

- Larger index space. It takes $O(n \ln n)$ index space but τ -MNG mitigates this problem ¹.
- High index time of $O(n^2 \ln n)$. But τ -MNG lowers it to $O(nh^2 \ln h)$.

 $^{^1 \}text{The index space complexity of } \tau\text{-MNG}$ is much lower than $\tau\text{-MG}$.

Insights and questions

Insights

- It is possible to shorten the expected routing path by a carefully designed PG and a proper assumption.
- The monotonic property of MSNET [2] only guarantees to find the exact NN but not a lower search time.
- A useful technique for the approximation of PGs is the restriction from considering two arbitrary nodes to one node and its arbitrary neighbor.

 $^{^2}$ It is shown that the path length expectation on a general PG is almost the same as that on MSNET.

Insights and questions I

Q1: Worst-case query

What happens if $\delta(q, \bar{v}) > \tau$ for some q? When a new user enters a system or when there aren't enough points in the database, $\delta(q, \bar{v})$ is likely to be large. What can we do in this case?

Q2: Approximation gaps

How to analyze the performance gaps between $\tau\text{-MG}$ and its approximation $\tau\text{-MNG}$ since it is impractical to directly construct $\tau\text{-MG}$ on large-scale databases?

Insights and questions II

Q3: Online τ -MG

au-MG is very suitable for searching in large-scale offline databases (i.e., massive points have been collected in D). Is it meaningful to consider an online version of au-MG ? (i.e., the updates are very frequent or the usage pattern is *insert if not found*.)

Q4: Larger step of routing

Is it possible that each step of the path proceeds $O(\ln n)$ instead of τ ? Since τ can vary for different databases, can it be a function of n?

Thanks for a Patient Hearing!

Reference

 $[1] \quad \mathsf{Cong} \; \mathsf{Fu}, \; \mathsf{Changxu} \; \mathsf{Wang}, \; \mathsf{and} \; \mathsf{Deng} \; \mathsf{Cai}.$

High dimensional similarity search with satellite system graph: Efficiency, scalability, and unindexed query compatibility. *IEEE Trans. Pattern Anal. Mach. Intell.*, 44(8):4139–4150, 2022.

[2] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.

 $\label{prox:prox:mate:neighbor:search with the navigating spreading-out graph.}$

Proc. VLDB Endow., 12(5):461-474, 2019.

[3] Ben Harwood and Tom Drummond.

FANNG: Fast Approximate Nearest Neighbour Graphs.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5713–5722, Las Vegas, NV, USA, June 2016. IEEE.

- [4] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin. Approximate nearest neighbor search on high dimensional data - experiments, analyses, and improvement. IEEE Trans. Knowl. Data Eng., 32(8):1475–1488, 2020.
- [5] Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell., 42(4):824–836, 2020.
- [6] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases. Proc. the ACM SIGMOD International Conference on Management of Data (SIGMOD '23), June 2023.