# LECTURE 14: MOBILITY AND OPPORTUNISTIC NETWORKING



## People Are the Network

### Mobility Pattern

Pattern: most of the studies on animal mobility pattern including experimental data and theoretic analysis found that their mobility pattern follow the Levy flight:

$$\Pr(d) \propto d^{-2}$$



-0g<sub>10</sub> N(x)  $r^2 = 0.92$ 40 35 -1.5 Frequency 30 20 -0.5 $Log_{10} x$ 15 10 11 12 13 14 zooplankton (g m<sup>-3</sup>)

45

0.5

 $\mu = 1.8$ 

Levy flight search patterns of wandering albatrosses, Nature 381, (1996) Revisiting Le´vy flight search patterns of wandering albatrosses, bumblebees and deer, NATURE| Vol 449|25 October 2007

Scaling laws of marine predator search behaviour, Nature (2008)

## **Human Mobility**



D. Brockmann, L. Hufnagel and T. Geisel, The scaling laws of human travel, Nature, 439, 462-465, (2006).

## **Human Mobility**



Understanding individual human mobility patterns Marta C. Gonza´lez, Ce´sar A. Hidalgo & Albert-La´szlo´ Baraba´si, NATURE| Vol 453|5 June 2008

### EXPERIMENTAL SETUP

#### **i**Motes

ARM processor Bluetooth radio 64k flash memory

#### Bluetooth Inquiries

5 seconds every 2 minutes Log {MAC address, start time, end time} tuple of each contact

## Experimental devices





| Experimental data set          | Cambridge04 | Infocom05 | Hong Kong | Cambridge05 | Infocom06 |
|--------------------------------|-------------|-----------|-----------|-------------|-----------|
| Device                         | iMote       | iMote     | iMote     | iMote       | iMote     |
| Network type                   | Bluetooth   | Bluetooth | Bluetooth | Bluetooth   | Bluetooth |
| Duration (days)                | 3           | 3         | 5         | 11          | 3         |
| Granularity (seconds)          | 120         | 120       | 120       | 600         | 120       |
| Number of Experimental Devices | 12          | 41        | 37        | 54          | 98        |
| Number of internal contacts    | 4,229       | 22,459    | 560       | 10,873      | 191,336   |
| Average # Contacts/pair/day    | 10          | 4.6       | 0.084     | 0.345       | 6.7       |
| Number of External Devices     | 148         | 264       | 868       | 11,357      | 14,036    |
| Number of external contacts    | 2,441       | 1,173     | 2,507     | 30,714      | 63,244    |

| User Population             | Toronto   | UCSD    | Dartmouth  | MIT BT     | MIT GSM    |
|-----------------------------|-----------|---------|------------|------------|------------|
| Device                      | PDA       | PDA     | Laptop/PDA | Cell Phone | Cell Phone |
| Network type                | Bluetooth | WiFi    | WiFi       | BT         | GSM        |
| Duration (days)             | 16        | 77      | 114        | 246        | 246        |
| Granularity (seconds)       | 120       | 120     | 300        | 300        | 10         |
| Devices participating       | 23        | 273     | 6648       | 100        | 100        |
| Number of internal contacts | 2,802     | 195,364 | 4,058,284  | 54,667     | 572,190    |
| Average # Contacts/pair/day | 0.35      | 0.034   | 0.00080    | 0.022      | 0.23       |
| Recorded external devices   | N/A       | N/A     | N/A        | N/A        | N/A        |
| Number of external contacts | N/A       | N/A     | N/A        | N/A        | N/A        |

### PAIR WISE RELATIONSHIP

#### Duration of the experiment



### Contacts seen by an iMote

#### **i**Motes

#### Contacts seen by an iMote (MAC address 4B5F42886749)



#### **External Devices**





- x-axis shows the time of the day and the y-axis shows the node ID
- Contacts are sparse
- iMote sees node 28 every night and they stay together the whole night ©

### Heavy Tailed Distributions

#### Inter-contact time distribution



- It compares with a Power law on range [5mn;1day]
   slope α ~ 0.4.
- Internal and external contacts have almost the same law.

### OTHER EXAMPLES



# Implication on Opportunistic Forwarding:

 $\Box$  For  $\alpha > 2$ 

Any stateless algorithm achieves a finite expected delay.

□ For  $\alpha \ge \frac{m+1}{m}$  and  $\# \{ \text{ nodes } \} \ge 2m$ 

There exist a forwarding algorithm with m copies and a finite expected delay.

 $\Box$  For  $\alpha$  < 1

No stateless algorithm (even flooding) achieve a bounded delay (Orey's theorem).

# Social Structures Vs Network Structures

### □ Community structures

- Social communities, i.e. affiliations
- Topological cohesive groups or modules

#### □ Centralities

- Social hubs, celebrities and postman
- Betweenness, closeness, inference power centrality

### K-clique Community Definition

- Union of k-cliques reachable through a series of adjacent k-cliques [Palla et al]
- □ Adjacent k-cliques share k-1 nodes
- Members in a community reachable through well-connected well subsets
- Examples
  - 2-clique (connected components)
  - 3-clique (overlapping triangles)
  - Overlapping feature

# K-clique Communities in Cambridge Dataset



# K-clique Communities in Infocom06 Dataset



# K-clique Communities in Infocom06 Dataset



# K-clique Communities in Infocom06 Dataset



### Other Community Detection Methods

- Betweenness [Newman04]
- Modularity [Newman06]
- Information theory[Rosvall06]
- Statistical mechanics[Reichardt]
- Weighted Network Analysis[Newman05]
- Survey Papers[Danon05][Newman04]

### Centrality in Temporal Network

- □ Large number of unlimited flooding
- □ Uniform sourced and temporal traffic distribution
- □ Number of times on shortest delay deliveries
- □ Analogue to Freeman centrality [Freeman]

### Homogenous Centrality



# Within Group Centrality Cambridge Dataset





# Within Group Centrality Reality Dataset



# Regularity and Familiarity



I: Community II. Familiar Strangers III. Strangers IV. Friends



### Interaction and Forwarding

- Third generation human interaction model
- Categories of human contact patterns
- Clique and community
- Popularity/Centrality
  - Dual natures of mobile network
- Social network
- Physical network
  - Benchmark Forwarding strategies
- Flooding, Wait, and Multiple-copy-multiple-hop (MCP), PROPHET

### Design Space



Structure in Degree

### Centrality meets Community

- □ Population divided into communities
- Node has a global and local ranking
- Global popular node like a postman, or politician in a city
- □ Local popular node
- **BUBBLE**



## Centrality meets Community



### Centrality meets Community



### Making Centrality Practical

How can each node know its own centrality in decentralised way?

How well does past centrality predict the future?

# **Approximating Centrality**



- □ Total degree, per-6-hour degree
- Correlation coefficients, 0.7401 and 0.9511

## **Approximating Centrality**

**DEGREE** 

S-Window

### A-Window (Exponential Smoothing)



# **Approximating Centrality**



### Predictability of Human Mobility

Three sessions of Reality dataset

Two sessions using the ranking calculated from the first session







### Distributed Community Detection

```
SIMPLE, K-CLIQUE, MODULARITY
Terminology: Familiar Set (F), Local Community (C)
Update and exchange local information during
encounter
Build up Familiar Set and Local Community

\[
\sumset CommunityAccept(), MergeCommunities()
\]
```

### SIMPLE



We want to see whether v<sub>1</sub> should be added to C<sub>0</sub>



Then we count the number of vertices in both  $v_1$ 's familiar set and also in the local community of  $V_0 = \binom{n}{2}$ 



So we first count the number of vertices in  $v_i$ 's familiar set =  $\left( \bigcirc + \bigcirc \right)$ 

d) 
$$V_i$$
An ve admit  $v_i C_0$  if  $\lambda$ 

$$() > (C + ()) \times \lambda$$

CommunityAccept ( $v_i$ )

### SIMPLE



We only consider merging the two communities  $C_0 \& C_i$  if the fraction of them in common 1/1/1 > V

MergeCommunities ( $C_o$ ,  $C_i$ )

### Results and Evaluations

| Data Set   | SIMPLE    | K-CLIQUE           | MODULARITY         |
|------------|-----------|--------------------|--------------------|
| Reality    | 0.79/0.76 | 0.87               | 0.82               |
| UCSD       | 0.47/0.56 | 0.55               | 0.40               |
| Cambridge  | 0.85/0.85 | 0.85               | 0.87               |
| Complexity | O(n)      | O(n <sup>2</sup> ) | $O(n^4)/O(n^2k^2)$ |

Newman weighted analysis Palla et al, k-Clique

$$\sigma_{Jaccard} = \frac{|\Gamma_i \cap \Gamma_j|}{|\Gamma_i \cup \Gamma_j|}$$

### Distributed BUBBLE RAP (DiBuBB)

