Теория вероятности

Быстрое введение в базовые понятия теорвера

Стецук Максим Николаевич tulenchikplay@yandex.ru

РГПУ им. А.И.Герцена ИВТ-3 1гр.2п.гр.

Обзор содержания презентации

1 Основные определения и понятия

- События и их классификация
- Классическое определение вероятностей
- Свойства вероятностей и относительная частота

2 Формулы комбинаторики

- Основные формулы
- Пример решения задачи

3 Теоремы сложения и умножения вероятностей

- Сложение вероятностей
- Умножение вероятностей
- Независимые и противоположные события
- Появления хотя бы одного события
- Пример решения задачи

События и их виды

Определение

Событием в теории вероятностей называется всякий факт, который может произойти в результате некоторого испытания. Наблюдаемые нами события можно подразделить на следующие три вида: достоверные, невозможные, случайные.

Событие достоверное, если при всех испытаниях рассматриваемое событие всегда наступает.

Событие невозможное, если при всех испытаниях событие никогда не наступает.

Событие случайное, если в результате испытания событие может появиться или не появиться. Например, выигрываем на купленный билет лотереи.

Классическое определение вероятностей

Определение

Пространством элементарных исходов называется множество всех взаимно исключающихся исходов испытания. Его обозначают Ω .

Те исходы, при которых интересующее нас событие наступает, назовем <mark>благоприятствующими</mark> этому событию.

Определение

Вероятностью события называется отношение числа m благоприятствующих этому событию исходов к общему числу n равновозможных несовместных элементарных исходов испытания и обозначается p(A), т.е. $p(A) = \frac{m}{n}$.

Свойства вероятностей и относительная частота

Свойства вероятностей

- 1 Вероятность достоверного события равна единице.
- 2 Вероятность невозможного события равна нулю.
- **3** Вероятность случайного события заключена между нулем и единицей: $0 \le p(A) \le 1$

Определение

Относительной частотой события Относительной частотой события называется отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний и обозначается w(A).

Основные формулы комбинаторики

- **Перестановками** называют комбинации, состоящие из одних и тех же различных элементов и отличающихся только порядком следования. Число всех возможных перестановок из п различных элементов равно $P_n = n!$.
- Размещениями называют комбинации, составленные из n различных элементов по k, которые отличаются либо составом элементов, либо порядком следования. Число возможных размещений из n различных элементов по k равно $A_n^k = \frac{n!}{(n-k)!}$.
- **Сочетаниями** называют комбинации, составленные из n различных элементов по k, которые отличаются составом элементов. Число возможных сочетаний из n различных элементов по k равно $C_n^k = \frac{n!}{k!(n-k)!}$.

Пример

Условие задачи

В партии из 10 деталей 7 стандартных. Найти вероятность, что среди 6 взятых наудачу деталей 4 стандартных.

Решение

Общее число возможных элементарных исходов равно числу способов, которыми можно взять 6 деталей из 10, т.е. $n=C_{10}^6$. Подсчитаем исходы, благоприятствующие интересующему нас событию: 4 стандартных из 7 можно взять C_7^4 способами, при этом остальные 2 детали должны быть нестандартными, их можно взять из 3 нестандартных деталей C_3^2 способами. Следовательно, число благоприятствующих исходов равно $C_7^4 * C_3^2$. Искомая вероятность равна $p(A) = \frac{C_7^4 * C_3^2}{C_{10}^6} = \frac{5*6*7*8*24}{6*7*8*9*10} = 0,5$.

Сложение вероятностей

Суммой A + B двух событий A и B называют событие, состоящее в появлении хотя бы одного из них.

Суммой нескольких событий $A_1 + A_2 + \cdots + A_n$ называют событие, которое состоит в появлении хотя бы одного из этих событий.

Теорема (Сложения вероятностей несовместимых событий)

Вероятность появления одного из двух несовместимых событий, равна сумме вероятностей этих событий: p(A+B)=p(A)+p(B).

Следствие

Вероятность появления одного из нескольких несовместных событий равна сумме вероятностей этих событий:

$$p(A_1 + A_2 + \cdots + A_n) = p(A_1) + p(A_2) + \cdots + p(A_n).$$

Умножение вероятностей

Произведением двух событий A и B называют событие AB, состоящее в их одновременном осуществлении. Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий.

Условной вероятностью $P_A(B)$ называют вероятность события B, вычисленную в предположении, что событие A уже наступило.

Теорема (Умножения вероятностей)

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло $p(AB) = p(A) * p_A(B)$.

Умножение вероятностей

Следствие

Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже произошли $p(A_1A_2\cdots A_n)=p(A_1)*p_{A_1}(A_2)\cdots p_{A_1A_2\cdots A_{n-1}}(A_n)$.

Независимые и противоположные события

Независимые события

Событие B называют независимым от события A, если появление события A не изменяет вероятности события B, т.е. $p_A(B)=p(B)$. Для независимых событий вероятность совместного появления равна произведению вероятностей этих событий: p(AB)=p(A)*p(B) Несколько событий называют независимыми в совокупности, если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Если события A_1, A_2, \cdots, A_n независимы в совокупности, то $p(A_1A_2\cdots A_n)=p(A_1)*p(A_2)*\cdots*p(A_n)$

Противоположные события

Событие \overline{A} называется противоположным событию A, если оно наступает тогда, когда A не наступает. Для противоположных событий справедливо равенство: $p(A)+p(\overline{A})=1$

Появления хотя бы одного события

Вероятность появления хотя бы одного из событий A_1,A_2,\cdots,A_n , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий $\overline{A_1},\overline{A_2},\cdots,\overline{A_n}$

$$p(A) = 1 - p(\overline{A_1}) * \cdots * p(\overline{A_n})$$

В частности, если события A_1,A_2,\cdots,A_n , имеют одинаковую вероятность p, то вероятность появления хотя бы одного из этих событий равна $p(A)=1-q^n$, где q=1-p.

Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании.

Теорема (Сложения вероятностей совместных событий)

Вероятность появления хотя бы одного из двух совместных событий равна p(A+B)=p(A)+p(B)-p(AB)

Пример

Условие задачи

В урне 5 белых и 6 черных шаров. Из урны извлекаются шары до появления черного шара. Найти вероятность, что произведено ровно три извлечения, если: а) после каждого извлечения шар возвращается в урну; б) извлеченные шары откладываются в сторону.

Решение

Обозначим через A_i событие, состоящее в появлении черного шара при i -ом извлечении. Тогда интересующее нас событие $A=\overline{A_1}*\overline{A_2}*A_3$. Но в пункте a) эти события независимы, поэтому $p(A)=p(\overline{A_1})*p(\overline{A_2})*p(A_3)=\frac{5}{11}*\frac{5}{11}*\frac{6}{11}=\frac{150}{1331}\approx 0,11$. А в пункте б) эти события зависимы, поэтому $p(A)=p(\overline{A_1})*p_{\overline{A_1}}(\overline{A_2})*p_{\overline{A_1A_2}}(A_3)=\frac{5}{11}*\frac{4}{10}*\frac{6}{9}=\frac{4}{33}\approx 0,12$

На этом наше введение в

Продолжать разбор и сильнее погружаться в теорию вероятности мы будем на следующих занятиях)

основы теорвера заканчивается