Introduction to papaja

R Markdown for APA-style manuscripts

Johannes Breuer & Frederik Aust

KU Leuven, 27.-28.04.2022

Scope of the package

Preparing APA Journal Articles

- 1. Designed for APA-style manuscripts
- 2. Templates for PDF and DOCX documents
- 3. Functions to facilitate reporting of results, e.g.
 - apa_print(), apa_num()
 - apa_table()
 - apa_factorial_plot(), theme_apa()

Getting started

Install papaja from GitHub

```
# Install the stable development verions from GitHub
remotes::install_github("crsh/papaja", build_vignettes = TI
# Install the latest development snapshot from GitHub
remotes::install_github("crsh/papaja@devel", build_vignette
```

Ensure the required software is also installed

Document templates

Document templates

```
Untitled1* x
(□□) | 2□ | □□ | ABC Q | 3 Knit → ∅ →
  2 title
                    : "The title"
    shorttitle : "Title"
  5
    author:
     - name
                     : "First Author"
  7
     affiliation : "1"
     corresponding : yes # Define address : "Postal address"
  8
                            # Define only one corresponding author
  9
      email
                   : "my@email.com"
 10
             : "Ernst-August Doelle"
 11
      - name
      affiliation : "1,2"
 12
 13
 14 affiliation:
 15
     - id
                     : "1"
 16
     institution : "Wilhelm-Wundt-University"
 17
 18
      institution : "Konstanz Business School"
 19
 20 authornote: |
 21
     Enter author note here.
 22
 23 abstract: |
    Enter abstract here.
 24
 25
 26 keywords
                     : "keywords"
 27 wordcount
 28
                  : ["r-references.bib"]
 29 bibliography
 30
 31 floatsintext
                     : no
 32 figurelist
                     : no
```

YAML field	Metadata			
author	<pre>list of author information (e.g., name and affiliation; start each new author with -)</pre>			
affiliation	<pre>list of institutional information (id and institution)</pre>			
authornote	automatically contains corresponding author line			
keywords	article keywords			
wordcount	article word count			
note	text to add above author note on the title page (e.g. "Preprint submitted for publication")			

Rendering options

YAML field	Effect
bibliography	List of bibliography files
draft*	Add "DRAFT" watermark across all pages
<pre>figurelist * tablelist * footnotelist *</pre>	Create lists of figure captions, table captions, or footnotes

^{*} Only available for PDF documents

Rendering options

YAML field	Effect		
floatsintext*	Place figures and tables in the text rather than at the end		
linenumbers*	Add line numbers in margins		
mask	Omit identifying information from title page		
classoption*	control the style of the document (e.g., man or doc, see apa6 LaTeX class options)		

^{*} Only available for PDF documents

citeproc is a pandoc extension that formats references

- works well for both PDF and DOCX documents
- requires a separate reference file (e.g., CSL-JSON, Bib(La)TeX, EndNote)

Add the following to the YAML front matter:

```
bibliography: references.bib
```

In papaja, the default citation style is APA, 6th edition.

The reference handle is used to select citations

Citation type	Syntax	Rendered citation		
Citation within parentheses	[@james_1890]	(James, 1890)		
Multiple citations	[@james_1890; @bem_2011]	(Bem, 2011; James, 1890)		
In-text citations	@james_1890	James (1890)		
Year only	[-@bem_2011]	(2011)		

You can add pre- and post-fixes to individual citations

- [e.g., @bem_2011] yields "(e.g., Bem, 2011)"
- [see @bem_2011 for a surprising result]
 yields
 "(see Perm_2011 for a surprising result)"
 - "(see Bem, 2011, for a surpising result)"

Insert citations via

- 1. (Copy-and-paste)
- 2. Visual editor
- 3. RStudio addin citr

Both connect directly to Zotero if the Zotero extension Better Bib(La)TeX is installed and Zotero is running

A quick demonstration!

Reward volunteers who develop R packages for free!;)

```
citation("papaja")
##
##
     Aust, F. & Barth, M. (2020). papaja: Prepare reproducible A
##
     articles with R Markdown. R package version 0.1.0.9999. Ret
     from https://github.com/crsh/papaja
##
##
   Ein BibTeX-Eintrag für LaTeX-Benutzer ist
##
##
     @Manual{,
##
       title = {{papaja}: {Prepare} reproducible {APA} journal a
       author = {Frederik Aust and Marius Barth},
##
##
       year = \{2020\},\
##
       note = \{R \text{ package version } 0.1.0.9999\},
       url = {https://github.com/crsh/papaja},
##
```

- r_refs() creates a BibTeX file with references for all loaded packages (place at the end of document)
- cite_r() automates citing R and R packages

```
r_citations <- cite_r(file = "r-references.bib")
```

```
We used `r r_citations` for all analyses.
```

We used R (Version 4.1.3; R Core Team, 2022) and the R-package papaja (Version 0.1.0.9999; Aust & Barth, 2022) for all analyses.

Cite only selected packages or place package citations in a footnote

```
r_citations <- cite_r(
  file = "r-references.bib"
  , pkgs = c("afex", "emmeans", "papaja"), withhold = FALSI
  , footnote = TRUE
)
r_citations</pre>
```

```
## Warning in cite_r(file = "../../exercises/3_papaja_example_ma
## r-references.bib", : File ../../exercises/3_papaja_example_ma
## references.bib not found. Cannot cite R-packages. If knitting
## solve the problem, please check file path.
```

Cite only selected packages or place package citations in a footnote

```
r_citations <- cite_r(
   file = "r-references.bib"
   , pkgs = c("afex", "emmeans", "papaja"), withhold = FALSE
   , footnote = TRUE
)</pre>
```

```
We used `r r_citations$r` for all analyses.
`r r_citations$pkgs`
```

Numerical values reported inline will be rounded

```
Participants mean age was `r age_mean` years (*SD* = `r age_sd`).
```

Participants mean age was 32.35 years (SD = 6.23).

Typeset numerical values for greater control

```
apa_num(c(143234.34557, Inf))
## [1] "143,234.35" "$\\infty$"
apa num(42L, numerals = FALSE, capitalize = TRUE)
## [1] "Forty-two"
apa_num(1.7e10, format = "e")
## [1] "$1.70 \\times 10^{10}$"
```

Special-purpose wrappers for convenience

```
apa_p(c(1, 0.0008, 0))
## [1] "> .999" ".001" "< .001"
apa_df(c(1, 15.93))
## [1] "1" "15.93"
apa_confint(c(0.01, 0.8), conf.int = 0.95)
## [1] "95\\% CI [0.01, 0.80]"
```

Data from Field, Miles, & Field (2012)

```
load("cosmetic surgery.Rdata")
 (cor res <- with(cosmetic surgery, cor.test(Post QoL, BDI))</pre>
##
##
       Pearson's product-moment correlation
##
## data: Post_QoL and BDI
## t = 7.7581, df = 274, p-value = 1.71e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3224754 0.5165716
## sample estimates:
##
         cor
## 0.4243863
```

apa_print() facilitates reporting of results. It returns a
list with the following elements:

- estimate: Effect size estimate
- statistic: Hypothesis test statistic
- full_result: Combined estimates and statistics
- table

```
cor_apa_res <- apa_print(cor_res)
cor_apa_res[c("estimate", "statistic", "full_result")]

## $estimate
## [1] "$r = .42$, 95\\% CI $[.32, .52]$"

##
## $statistic
## [1] "$t(274) = 7.76$, $p < .001$"

##
## $full_result
## [1] "$r = .42$, 95\\% CI $[.32, .52]$, $t(274) = 7.76$, $p <</pre>
```

```
cor_apa_res$table
```

classes

```
apa_print() adjusts behavior according to input

class(cor_res) # Result from cor.test()

## [1] "htest"

?apa_print.htest

methods(apa_print) provides a list of supported
```

A-B	D-L	L-S	S-Z
afex_aov	default	Ismobj	summary.glht
anova	emmGrid	manova	summary.glm
anova.lme	glht	merMod	summary.lm
Anova.mlm	glm	mixed	summary.manova
aov	htest	papaja_wsci	summary.ref.grid
aovlist	list	summary.Anova.mlm	summary_emm
BFBayesFactor	lm	summary.aov	
BFBayesFactorTop	lme	summary.aovlist	

See vignette("extending_apa_print", package = "papaja").

```
lm_res_apa <- apa_print(lm_res, observed = TRUE)</pre>
str(lm res apa, max.level = 2)
## List of 4
## $ estimate :List of 4
## ..$ Intercept: chr "$b = 18.50$, 95\ CI $[13.10, 23.91]$"
## ..$ Base_QoL : chr "$b = 0.59$, 95\\% CI $[0.50, 0.67]$"
## ..$ BDI : chr "$b = 0.17$, 95\\% CI $[0.11, 0.22]$"
## ..$ modelfit :List of 4
   $ statistic :List of 4
##
##
   ..$ Intercept: chr "$t(273) = 6.74$, $p < .001$"
   ..$ Base QoL : chr "$t(273) = 13.23$, $p < .001$"
##
## ..$ BDI : chr "$t(273) = 6.08$, $p < .001$"
## ..$ modelfit :List of 1
##
   $ full result:List of 4
```

lm_res <- lm(Post_QoL ~ Base_QoL + BDI, data = cosmetic_su</pre>

```
## [1] "$b = 18.50$, 95\\% CI $[13.10, 23.91]$" b = 18.50, 95% CI [13.10, 23.91]
```

```
lm_res_apa$full_result$modelfit$r2
```

lm res apa\$estimate\$Intercept

```
## [1] "R^2 = .50, 90\\% CI [0.42, 0.57], F(2, 273) = 136.7
```

$$R^2=.50$$
, 90% CI $[0.42,0.57]$, $F(2,273)=136.78$, $p<.001$

Tables returned by apa_print() have variable labels

```
lm res apa$table
## A data.frame with 6 labelled columns:
##
## term estimate conf.int statistic df p.value
## 1 Intercept 18.50 [13.10, 23.91] 6.74 273 < .001
## 2 Base QoL 0.59 [0.50, 0.67] 13.23 273 < .001
## 3 BDI 0.17 [0.11, 0.22] 6.08 273 < .001
##
## term : Predictor
## estimate : $b$
## conf.int : 95\\% CI
## statistic: $t$
## df : $\\mathit{df}$
## p.value : $p$
```

Tables returned by <ariable labels

```
variable_labels(lm_res_apa$table)
```

```
## $term
## [1] "Predictor"
##
## $estimate
## [1] "$b$"
##
## $conf.int
## [1] "95\\% CI"
##
## $statistic
## [1] "$t$"
##
## $df
```

apa_table() renders tables with variable labels

```
apa_table(
  lm_res_apa$table
  , caption = "Cosmetic surgery regression table."
)
```

Table 1. Cosmetic surgery regression table.

Predictor	b	$95\%\mathrm{CI}$	t	df	p
Intercept	18.50	[13.10, 23.91]	6.74	273	< .001
Base QoL	0.59	[0.50, 0.67]	13.23	273	< .001
BDI	0.17	[0.11, 0.22]	6.08	273	< .001

```
apa_table()
```

- was designed with table examples from the APA manual in mind
- is much more powerful in PDF documents

A quick demonstration!

GitHub folder

Creating figures

```
apa_barplot(), apa_beeplot(), apa_lineplot() can
be used to visualize factorial designs
```

```
apa_barplot(
  id = "ID"
  , dv = "Post_QoL"
  , factors = c("Reason", "Surgery", "Gender")
  , data = cosmetic_surgery
  , ylab = "Quality of life post surgery"
  , las = 1
)
```

Creating figures

apa_barplot(), apa_beeplot(), apa_lineplot() can
be used to visualize factorial designs

```
# This time with bees
apa_beeplot(
 id = "ID"
  , dv = "Post QoL"
  , factors = c("Reason", "Surgery", "Gender")
  , data = cosmetic_surgery
  , ylab = "Quality of life post surgery"
  , las = 1
  , args_legend = list(x = 0.25, y = 30)
  , args_points = list(bg = c("skyblue2", "indianred1"))
  , args_error_bars = list(length = 0.03)
```


All plot functions render variable labels, with some LaTeX math support (see ?latex2exp::TeX)

```
variable labels(cosmetic surgery) <- c(</pre>
 Post_QoL = "Quality of life post surgery ($\\bar{y}_{pos}
apa beeplot(
  id = "ID"
  , dv = "Post QoL"
  , factors = c("Reason", "Surgery", "Gender")
  , data = cosmetic_surgery
  , las = 1
  , args_legend = list(x = 0.25, y = 30)
  , args_points = list(bg = c("skyblue2", "indianred1"))
  , args_error_bars = list(length = 0.03)
```


For ggplot2 users, papaja provides theme_apa()

```
ggplot(
    cosmetic_surgery
    , aes(x = Base_QoL, y = Post_QoL, color = Reason)
  ) +
  geom_point() +
  geom_smooth(method = "lm") +
  labs(
   x = "Baseline quality of life"
    , y = "Quality of life post surgery"
  scale_color_brewer(palette = "Set1") +
  theme_apa(box = TRUE) +
  theme(legend.position = c(0.2, 0.8))
```


Figure and table captions

Add a figure caption with the chunk option fig.cap

- Caption is reused for every figure in a chunk
 - Only one figure per chunk
 - Combine plots into multi-panel figures (e.g., layout(), cowplot::plot_grid(), or the patchwork package)

Figure and table captions

It's recommended to use "text-references"

```
(ref:volcano) This is a caption written as text
reference.
                                              ∰ ≚ ▶
```{r fig.cap = "(ref:volcano)"}
image(volcano)
. . .
```{r}
apa_table(volcano, caption = "(ref:volcano)")
. . .
```

Cross-referencing

To cross-reference figures and tables use

```
\@ref(fig:chunk-label) or
\@ref(tab:chunk-label)
```

- Chunk labels must not contain
- Precede by non-breaking spaces, e.g.
 Figure\ \@ref(fig:chunk-label)

If you are stuck

- 1. Try our work-in-progress manual
- 2. Ask on StackOverflow using the papaja -tag
- 3. Open a GitHub issue

Example manuscript

GitHub folder

Serial response time task

Serial response time task

Process Dissociation

Distinguish implicit and explicit learning

- Implicit: automatic, not controllable
- Explicit: controllable, may be used intentionally

Inclusion

"Generate a sequence that is as *similar* as possible"

Exclusion

"Generate a sequence that is as *dissimilar* as possible"

The present study

Do variants of the PD task differ with respect to "baseline" performance?

- Generation task (free vs. cued generation tasks)
- Types of "random" material (permuted vs. random material)
- Performance without prior task exposure (nolearning group)

(Stahl, Barth, & Haider, 2015)

The present study

The following files are provided:

- The paper manuscript.pdf and manuscript.docx
- Bibliography file references.bib
- Data in the folder data
- Analysis script analyses.R

https://tinyurl.com/rrpp-papaja

Exercise time

Exercise

Solutions