Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000600

International filing date: 19 January 2005 (19.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-091049

Filing date: 26 March 2004 (26.03.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

21.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月26日

出願番号 Application Number: 特願2004-091049

[ST. 10/C]:

[JP2004-091049]

出 願 人 Applicant(s):

旭化成ケミカルズ株式会社

2005年 3月31日

特許庁長官 Commissioner, Japan Patent Office 11

旭化成ケミカルズ株式会社内

旭化成ケミカルズ株式会社内

特許願 【書類名】 X1040331 【整理番号】 特許庁長官 【あて先】 CO8L 59/00 【国際特許分類】 【発明者】 岡山県倉敷市潮通3丁目13番1 【住所又は居所】 園部 健矢 【氏名】 【発明者】 岡山県倉敷市潮通3丁目13番1 【住所又は居所】 谷村 徳孝 【氏名】 【特許出願人】 【識別番号】 303046314 旭化成ケミカルズ株式会社 【氏名又は名称】 【代理人】 100116713 【識別番号】 【弁理士】 酒井 正己 【氏名又は名称】 【選任した代理人】

100094709 【識別番号】

【弁理士】

加々美 紀雄 【氏名又は名称】

【選任した代理人】

100117145 【識別番号】

【弁理士】

小松 純 【氏名又は名称】

【手数料の表示】

165251 【予納台帳番号】 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 要約書 1 【物件名】 0314744 【包括委任状番号】

- - - - - - - -

【書類名】特許請求の範囲

【請求項1】

ポリアセタール樹脂 (A) 100質量部に対して、平均粒径が 0.01μ m $\sim 1\mu$ mで あり、かつ粒子の平均長径(L)と粒子の平均短径(d)の比である平均アスペクト比(L / d)が3以下であり、かつその表面処理剤、付着剤または錯化剤に由来する有機成分が 0. 1%未満である炭酸カルシウム (B) 0. 1~100質量部、カルボン酸 (C) 0. 01~10質量部を配合してなることを特徴とするポリアセタール樹脂組成物。

【請求項2】

炭酸カルシウム (B) が表面処理剤、付着剤または錯化剤によって表面処理をされてい ないことを特徴とする請求項1に記載のポリアセタール樹脂組成物。

【請求項3】

炭酸カルシウム(B)が球状、立方体状、直方体状、不定形およびこれらの混合物であ ることを特徴とする請求項1または2に記載のポリアセタール樹脂組成物。

【請求項4】

ポリアセタール樹脂 (A) がコポリマーであることを特徴とする請求項1から3いずれ か1項に記載のポリアセタール樹脂組成物。

【請求項5】

カルボン酸 (C) が炭素数 8 から 3 6 までの飽和または不飽和脂肪酸であることを特徴 とする請求項1から4いずれか1項に記載のポリアセタール樹脂組成物。

【請求項6】

炭酸カルシウム (B) がポリアセタール樹脂組成物中、最大凝集粒子径において、5 μ m以下で分散していることを特徴とする請求項1から5のいずれか1項に記載のポリアセ タール樹脂組成物。

【請求項7】

請求項1から6のいずれか1項に記載のポリアセタール樹脂組成物からなる成形品。

【請求項8】

ポリアセタール樹脂組成物の製造方法において、ポリアセタール樹脂(A)100質量 部に対して、平均粒径が 0.01μ m $\sim 1\mu$ mであり、かつ粒子の平均長径(L)と粒子 の平均短径(d)の比である平均アスペクト比(L/d)が3以下であり、かつその表面 処理剤、付着剤または錯化剤に由来する有機成分が0.1%未満である炭酸カルシウム (B) 0. 1~100質量部、カルボン酸(C) 0. 01~10質量部の割合で配合するこ とを特徴とするポリアセタール樹脂組成物の製造方法。

【請求項9】

炭酸カルシウム (B) が表面未処理の炭酸カルシウムであることを特徴とする請求項8 に記載のポリアセタール樹脂組成物の製造方法。

【書類名】明細書

【発明の名称】ポリアセタール樹脂組成物

【技術分野】

[0001]

本発明はポリアセタール樹脂と特定の炭酸カルシウムおよびカルボン酸を配合してなる 、剛性、靭性、耐熱性などの機械的特性、さらに耐酸性が改良された、生産性に優れたポ リアセタール樹脂組成物、その製造方法およびその成形品に関する。

【背景技術】

[0002]

ポリアセタール樹脂はその優れた剛性、強度、靭性、耐疲労性、耐薬品性及び摺動性、 耐熱性等に優れ、且つその加工性が容易であることから、エンジニアリングプラスチック スとして、電気機器や電気機器の機構部品、自動車部品及びその他の機構部品を中心に広 範囲にわたって用いられている。

[0003]

近年、各部品の軽量化や小型化の要求から、ポリアセタール樹脂のもつ従来の特徴を活 かしつつ、さらに剛性や強度、耐熱性といった機械的特性の向上が求められつつある。そ こで、一般的な手法として、ポリアミド等他のエンジニアリングプラスチックスの場合と 同様に、ガラス繊維やタルク、ウワラストナイト、炭素繊維などといった無機フィラーを 配合してその機械的特性の向上が図られている。しかしながらポリアセタール樹脂の場合 、ガラス繊維や無機フィラーを配合した場合、剛性、強度、耐熱性の改良には効果がある ものの、外観が低下する傾向にあり、またポリアセタール樹脂の特徴である摺動性や耐疲 労性、さらには靭性が著しく損なわれる場合があり、効果的な手法とはいえなかった。

[0004]

そこで、ポリアセタール樹脂と特定の表面処理を施された炭酸カルシウム又はタルクか らなる樹脂組成物が開示されている(特許文献1)。この結果、従来の無機フィラーを配 合した場合に生じていた靭性の低下を抑え、かつ表面の光沢を抑えることが可能となった 。しかしながら、剛性、耐疲労性の観点では効果的な手法とはいえなかった。同様な例と して、ポリアセタール樹脂に、炭酸カルシウムなどのアルカリ土類金属に特定の接着促進 剤を添加した樹脂組成物も開示されている(特許文献2)。上記技術では、炭酸カルシウ ム等の表面処理を施すための製造行程が必要であることや、表面処理することによって炭 酸カルシウム等が微粉末、または凝集体となる場合があり、生産時の作業、取り扱いに不 便となる場合があった。

[0005]

また、ポリアセタール樹脂と特定の粒径を有する炭酸カルシウム等の無機粉末および特 定の脂肪酸エステルからなる摺動部材用ポリアセタール樹脂組成物(特許文献3)や、ポ リアセタール樹脂に特定の添加剤、マグネシウム又はカルシウムの酸化物又は炭酸塩を配 合してなる熱安定性に優れた組成物が開示されいてるが(例えば特許文献4)、剛性、靭 性などの機械的特性を向上させるのには十分でないことがわかった。

[0006]

この問題を解決すべく、微細シリカや層状ケイ酸塩といった微細な無機フィラーをポリ アセタール樹脂に配合する手法が開示されている(例えば特許文献5から8)。しかしな がら、剛性、強度、耐熱性、摺動性などの改良に効果があるものの、靭性が損なわれる傾 向にあり、電気機器や電気機器の機構部品、自動車部品によっては靭性が十分でないとい う問題があった。また使用する微細シリカや層状ケイ酸塩は微粉末であるため、生産時の 作業、取り扱いに不便となる場合があった。

[0007]

さらに、一般的にポリアセタール樹脂は酸に対する耐性が劣る樹脂であり、成形品自体 が腐食され、機械的物性が低下することが知られている。そのため、例えば水中に含まれ る塩素が原因となり水回り用途での使用が制限されたり、自動車の燃料中に含まれる硫黄 の酸化物が原因となり燃料ポンプでの使用が制限される場合があり、従来の技術では十分 部品の耐久性が得られない場合があった。このような耐酸性を改良する方法としてはポリ アセタール樹脂に対して酸化亜鉛、ポリアルキレングリコールを添加することが知られて いるが(例えば特許文献9及び10)、いずれも機械的強度を改良するまでには至ってい ない。

[0008]

このように従来技術では、ポリアセタール樹脂の特徴である摺動性、耐薬品性、耐疲労 性を保持しつつ、剛性、強度、靭性、耐疲労性、耐熱性、耐酸性等をバランスよく有する ことが困難であり、このようなポリアセタール樹脂組成物が望まれている。

【特許文献1】特許第2140744号公報

【特許文献2】特許第1662366号公報

【特許文献3】特許第2126313号公報

【特許文献4】特開平7-62199号公報

【特許文献5】特開平11-130933号公報

【特許文献6】特開平2000-129080号公報

【特許文献7】特開平2000-336241号公報

【特許文献8】特許第3140502号公報

【特許文献9】特開平7-150005号公報

【特許文献10】特開2001-11284号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、本来ポリアセタール樹脂が持つ特徴を有し、さらに剛性、靭性、耐熱性など の機械的特性および耐酸性に優れ、かつそれらがバランスよく改良され、しかも生産性お よび作業性に優れるポリアセタール樹脂組成物並びにその成形品を提供することを目的と する。

【課題を解決するための手段】

[0010]

本発明者は、上記課題を解決するために鋭意検討した結果、ポリアセタール樹脂と特定 の炭酸カルシウムおよび脂肪酸を配合してなるポリアセタール樹脂組成物が上記課題を解 決できることを見出し、本発明を完成させるに至った。

[0011]

すなわち、本発明は、

- (1) ポリアセタール樹脂 (A) 100質量部に対して、平均粒径が 0.01μ m $\sim 1 \mu$ mであり、かつ粒子の平均長径(L)と粒子の平均短径(d)の比である平均アスペクト 比(L/d)が3以下であり、かつその表面処理剤、付着剤または錯化剤に由来する有機 成分が 0. 1%未満である炭酸カルシウム (B) 0. 1~100質量部、カルボン酸 (C) 0. 01~10質量部を配合してなることを特徴とするポリアセタール樹脂組成物、
- (2) 炭酸カルシウム (B) が表面処理剤、付着剤または錯化剤によって表面処理をされ ていないことを特徴とする上記 (1) に記載のポリアセタール樹脂組成物、
- (3) 炭酸カルシウム (B) が球状、立方体状、直方体状、不定形およびこれらの混合物 であることを特徴とする上記(1)または(2)に記載のポリアセタール樹脂組成物、
- (4) ポリアセタール樹脂 (A) がコポリマーであることを特徴とする上記 (1) から (3) いずれかに記載のポリアセタール樹脂組成物、
- (5) カルボン酸 (C) が炭素数8から36までの飽和または不飽和脂肪酸であることを 特徴とする上記(1)から(4)いずれかに記載のポリアセタール樹脂組成物、
- (6) 炭酸カルシウム (B) がポリアセタール樹脂組成物中、最大凝集粒子径において、 5μm以下で分散していることを特徴とする上記(1)から(5)のいずれかに記載のポ リアセタール樹脂組成物、

[0012]

(7)上記(1)から(6)のいずれかに記載のポリアセタール樹脂組成物からなる成形

品、

- (8) ポリアセタール樹脂組成物の製造方法において、ポリアセタール樹脂(A) 100 質量部に対して、平均粒径が 0.01μ m $\sim 1\mu$ mであり、かつ粒子の平均長径(L)と 粒子の平均短径(d)の比である平均アスペクト比(L/d)が3以下であり、かつその 表面処理剤、付着剤または錯化剤に由来する有機成分が0.1%未満である炭酸カルシウ ム (B) 0. 1~100質量部、カルボン酸 (C) 0. 01~10質量部の割合で配合す ることを特徴とするポリアセタール樹脂組成物の製造方法、
 - (9) 炭酸カルシウム (B) が表面未処理の炭酸カルシウムであることを特徴とする上記
- (8) に記載のポリアセタール樹脂組成物の製造方法、 である。

【発明の効果】

[0013]

本発明のポリアセタール樹脂組成物及びその成形品は生産性、作業性に優れ、本来ポリ アセタール樹脂が持つ特徴を有し、さらに剛性、靭性、耐熱性などの機械的特性、さらに 耐酸性がバランスよく改良された効果を有する。

【発明を実施するための最良の形態】

[0014]

本発明について、以下具体的に説明する。

本発明で用いられるポリアセタール樹脂(A)は、公知のポリアセタール樹脂であって 特に限定されるものではない。例えば、ホルムアルデヒド単量体又はその3量体(トリオ キサン) や4量体 (テトラオキサン) 等のホルムアルデヒドの環状オリゴマーを単独重合 して得られる実質上オキシメチレン単位のみから成るポリアセタールホモポリマーや、ホ ルムアルデヒド単量体又はその3量体(トリオキサン)や4量体(テトラオキサン)等の ホルムアルデヒドの環状オリゴマーとエチレンオキサイド、プロピレンオキサイド、エピ クロルヒドリン、1,3ージオキソランや1,4ーブタンジオールホルマールなどのグリ コールやジグリコールの環状ホルマール等の環状エーテル、環状ホルマールとを共重合さ せて得られたポリアセタールコポリマーを挙げることができる。

[0015]

ここで、ポリアセタールコポリマーのうち、より剛性、靭性、耐熱性のバランスに優れ るといった観点から、好ましい1、3-ジオキソラン等のコモノマーの添加量は、トリオ キサン1mo1に対して0. $1\sim60$ mo1%であり、より好ましくは0. $1\sim20$ mo 1%であり、もっとも好ましくは0.15~10m01%である。

[0016]

また、ポリアセタールコポリマーとして、単官能グリシジルエーテルを共重合させて得 られる分岐を有する分岐型ポリアセタールコポリマーや、多官能グリシジルエーテルを共 重合させて得られる架橋構造を有する架橋型ポリアセタールコポリマーも用いることがで きる。さらに、両末端または片末端に水酸基などの官能基を有する化合物、例えばポリア ルキレングリコールの存在下、ホルムアルデヒド単量体又はホルムアルデヒドの環状オリ ゴマーを重合して得られるブロック成分を有するブロック型ポリアセタールホモポリマー や、同じく両末端または片末端に水酸基などの官能基を有する化合物、例えば水素添加ポ リプタジエングリコールの存在下、ホルムアルデヒド単量体又はその3量体(トリオキサ ン) や4量体 (テトラオキサン) 等のホルムアルデヒドの環状オリゴマーと環状エーテル や環状ホルマールとを共重合させて得られるブロック成分を有するブロック型ポリアセタ ールコポリマーも用いることができる。

[0017]

本発明において、上記ポリアセタール樹脂は一種類、もしくは二種類以上の混合物で用 いても差し支えない。

上記ポリアセタール樹脂のうち、剛性、靭性、熱安定性のバランスに優れるといった観 点から、ポリアセタール樹脂(A)としては、コモノマー成分がランダムに結合したラン ダム型、プロック型、分岐型または架橋型のポリアセタールコポリマーおよびこれらの混 合物が好ましく、さらにコストの観点からランダム型、ブロック型のポリアセタールコポ リマーがより好ましい。

[0018]

本発明において、ポリアセタール樹脂(A)の製造方法は公知のポリアセタール樹脂の 製造方法をとることができ、特に限定されるものではない。例えば、前記ポリアセタール ホモポリマーの場合、高純度のホルムアルデヒドを有機アミン、有機あるいは無機の錫化 合物、金属水酸化物のような塩基性重合触媒を含有する有機溶媒中に導入して重合し、重 合体を濾別した後、無水酢酸中、酢酸ナトリウムの存在下で加熱してポリマー末端をアセ チル化して製造する方法をあげることができる。

[0019]

また、前記ポリアセタールコポリマーの場合、高純度のトリオキサンおよび、エチレン オキシドや1, 3-ジオキソランなどの共重合成分、分子量調整用の連鎖移動剤をシクロ ヘキサンのような有機溶媒中に導入し、三弗化ホウ素ジエチルエーテル錯体のようなルイ ス酸等の重合触媒を用いてカチオン重合した後、触媒の失活と末端基の安定化をおこなう ことによる製造法、あるいは溶媒を全く使用せずに、コニーダー、2軸スクリュー式連続 押出混錬機、2軸パドル型連続混合機等のセルフクリーニング型押出混錬機の中へトリオ キサン、共重合成分、分子量調整用の連鎖移動剤および触媒を導入して塊状重合した後さ らに水酸化コリン蟻酸塩等の第4級アンモニウム化合物を添加して不安定末端を分解除去 して製造する方法等をあげることができる。

[0020]

上記ポリアセタール樹脂のメルトフローインデックスMFI(ASTM-D1238で 測定)は特に限定されるものではないが、加工性の観点から、好ましくは0.1g/10 分~150g/10分、さらに好ましくは0.5g/10分~130g/10分、最も好 ましくは1g/10分~100g/10分である。

[0021]

本発明で用いられる炭酸カルシウム (B) は平均粒径が 0. 0 1 μ m ~ 1 μ m であり、 かつ粒子の平均長径(L)と粒子の平均短径(d)の比である平均アスペクト比(L/d) が3以下であり、その表面処理剤、付着剤または錯化剤に由来する有機成分が0.1%未 満であるものであれば特に限定されるものではなく、例えば、コロイド状炭酸カルシウム 、軽質炭酸カルシウム、乾式または湿式重質炭酸カルシウムなどで上記範囲を満たすもの をあげることができる。

[0022]

ここで、本発明では炭酸カルシウムの粒子のうち、最も長い軸の長さを長径、それと対 応する最も短い軸の長さを短径と定義して用いる。また、平均粒径、平均長径、平均短径 、平均アスペクト比とは、単位体積中に長径Li、短径 d i の炭酸カルシウムがN i 個存 在するとき、

平均粒径=平均長径=ΣLi²Ni/ΣLiNi

平均短径 d = Σ d i ² N i / Σ d i N i

平均アスペクト比L/d= (ΣLi²Ni/ΣLiNi)/(Σdi²Ni/ΣdiNi) と定義して用いる。より具体的には、走査型電子顕微鏡(SEM)を用いて検査する炭酸 カルシウムのサンプリングを行い、これを用いて粒子像を倍率1千倍から5万倍で撮影し 、無作為に選んだ最低100個の炭酸カルシウムの粒子からそれぞれ長さを測定し求める

[0023]

ここで、本発明のポリアセタール樹脂組成物の剛性、靭性のバランスに優れ、また耐疲 労性にも優れるといった観点から好ましい平均粒径は0.05μm~0.8μmであり、 さらに好ましくは 0. 10μ m \sim 0. 40μ m であり、最も好ましくは 0. 13μ m \sim 0. 25 μ m である。さらに、同様の理由から、好ましい平均アスペクト比は2. 0以下で あり、さらに好ましくは1.5以下であり、最も好ましくは1.3以下である。

[0024]

本発明で用いられる炭酸カルシウムは上記平均粒径および平均アスペクト比の範囲内で あるものであればその粒子各々の形状に関しては特に限定されるものではない。例えば、 炭酸カルシウムの各々の形状が球状、立方体状、直方体状、紡錘状、円柱状、板状、針状 、不定形およびこれらの混合物であってよい。ここで、形状は前記形状に数学上正確に分 類されなくとも、類似的に分類されるものであってよい。なかでも、剛性、靭性のバラン スに優れ、また耐疲労性にも優れるといった観点から、好ましい形状としては、球状、立 方体状、直方体状、不定形およびこれらの混合物であり、さらに好ましくは球状、立方体 状、およびこれらの混合物であり、最も好ましくは球状、立方体状のいずれか単独で構成 された形状である。これらの形状は平均粒径、平均アスペクト比を求めたときと同様に走 査型電子顕微鏡(SEM)を用いて炭酸カルシウムの粒子像を倍率1千倍から5万倍で撮 影し、無作為に選んだ最低100個の炭酸カルシウムの粒子の形状観察から判断する。

[0025]

上記炭酸カルシウムは一種類で用いてもよいし、さらに二種類以上、例えば粒径や形状 の異なるものを混合、併用して用いても、混合後の粒子全体において本発明でいう平均粒 径および平均アスペクト比の範囲内に収まるのであれば差し支えない。

本発明で用いられる炭酸カルシウム(B)は、表面処理剤、付着剤または錯化剤に由来 する有機成分が0.1%未満であることが必須である。

[0026]

ここで、表面処理剤、付着剤または錯化剤とは、例えば「分散・凝集の解明と応用技術 、1992年」(北原文雄監修・(株)テクノシステム発行)の232~237ページに 記載されているようなアニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、 非イオン系界面活性剤、ノニオン系界面活性剤などを用いることができる。また、アミノ シラン、エポキシシラン等のシランカップリング剤、チタネート系カップリング剤、さら には脂肪酸(飽和脂肪酸、不飽和脂肪酸)、脂環族カルボン酸及び樹脂酸や金属石鹸をあ げる。従来これら表面処理剤、付着剤、錯化剤は、樹脂との接着性、分散性を向上するた めに添加される場合が多く、その配合量としては炭酸カルシウム等の無機フィラーに対し て、数%から10%が一般的である。

[0027]

しかしながら本発明では表面処理剤、付着剤または錯化剤に由来する有機成分を0.1 %未満、より好ましくは実質上これら表面処理剤等を使用することなく、ポリアセタール 樹脂中への炭酸カルシウムの分散が達成でき、さらに密着性に優れ、それにともなって機 械的物性等の向上を達成することができる点が特徴である。ここで、本発明でいう表面処 理剤、付着剤、錯化剤に由来する有機成分が0.1%未満である炭酸カルシウムとは、例 えば、コロイド状炭酸カルシウムの製造工程において、コロイド状スラリーから炭酸カル シウムを分離、乾燥する際に作業効率上付着剤等が微量に用いられていてもよいというこ とをさしている。

[0028]

そのため本発明では炭酸カルシウムを上記表面処理剤等で処理する製造行程を省略でき る利点がある。また、炭酸カルシウムを表面処理剤等で処理した場合、嵩密度が上昇し、 取り扱い時に大気中に舞いだしたり、もしくは逆に粒子が硬く凝集する傾向がある。その ため、ポリアセタール樹脂組成物の製造時に作業環境が悪化する、作業の手間がかかる等 の問題が生じる場合がある。さらには溶融混練を用いてポリアセタール樹脂組成物を生産 する際、溶融混練機への定量的な供給が困難となり、得られる樹脂組成物の品質的な観点 から問題となる場合がある。本発明によれば上記のような問題が生じることなく、生産性 、すなわち製造工程、作業環境、品質に優れたポリアセタール樹脂組生物を得ることがで きる。

[0029]

本発明で用いられる炭酸カルシウムにおいて、その表面処理剤、付着剤または錯化剤に 由来する有機成分が 0. 1%未満であることは熱重量分析 (TGA) 法によって確認する ことができる。具体的には、炭酸カルシウムを熱重量分析機(TGA)にかけ、100℃ まで100℃/分で昇温し、そのまま10分熱処理し炭酸カルシウムの水分を除去後、5 50℃まで100℃/分で昇温、そのまま60分熱処理を行なう。その後、上記有機成分 の量= [(100℃、10分熱処理完了後の質量)-(550℃、60分熱処理完了後の 質量)] /(100℃、10分熱処理完了後の質量)×100(%)で求めることができ る。ここで、本発明のポリアセタール樹脂組成物の製造上取り扱いが容易であるという観 点から、上記有機成分の量において、好ましくは0.08%未満であり、さらに好ましく は0.05%未満であり、最も好ましくは0.01%未満である。

[0030]

本発明で用いられるカルボン酸(C)としては例えば、脂肪族および芳香族のモノ、ジ 、トリカルポン酸およびこれらの一部が水酸基等の置換基が導入されているものなど、公 知のものであれば特に限定されない。例えば、飽和脂肪酸として、酢酸、プロピオン酸、 酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パ ルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸などを、不飽和脂肪酸として、オ レイン酸、エライジン酸、リノー ル酸、リシノール酸などを、脂環式カルボン酸として ナフテン酸などを、樹脂酸として、アビエチン酸、ピマル酸、パラストリン酸、ネオアビ エチン酸などをあげることができる。

[0031]

なかでもコスト的な観点から好ましくは飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸 、樹脂酸を挙げることができ、さらにポリアセタール樹脂への分散性、および色目に優れ るといった観点から飽和脂肪酸、不飽和脂肪酸が好ましく、さらに樹脂組成物において成 形品表面へのカルボン酸のブリードまたはMDなどの観点から炭素数8から36、さらに 好ましくは10から30、最も好ましくは12から24である飽和脂肪酸、不飽和脂肪酸 が好ましい。

[0032]

本発明のポリアセタール樹脂組成物は、ポリアセタール樹脂(A) 100質量部に対し 径(d)の比である平均アスペクト比(L/d)が3以下であり、かつその表面処理剤、 付着剤または錯化剤に由来する有機成分が0.1%未満である炭酸カルシウム(B)0. 1~100質量部、カルボン酸(C)0.01~10質量部を配合してなることを特徴と する。上記範囲内であれば生産時の作業性に優れ、かつポリアセタール樹脂本来もつ耐熱 性や耐熱水性などの長期耐久性、繰り返し衝撃などの耐疲労性を維持しながら剛性、靭性 が向上し、さらに耐酸性に優れた樹脂組成物を得ることができる。

[0033]

ここで、得られるポリアセタール樹脂組成物が、よりよい剛性、靭性のバランスを有する という観点から好ましい炭酸カルシウム (B) の配合量は、ポリアセタール樹脂 (A) 1 00質量部に対して5.0~80質量部であり、さらに好ましくは10質量部を超えて6 0 質量部であり、さらにより好ましくは15質量部を超えて50質量部であり、最も好ま しくは18質量部を超えて40質量部である。また、得られるポリアセタール樹脂組成物 の着色や熱安定性に優れるといった観点からカルボン酸(C)の配合量は、ポリアセター ル樹脂(A)100質量部に対して0.05~5質量部であり、さらに好ましくは0.1 0~3質量部であり、最も好ましくは0.20~1.5質量部である。

[0034]

本発明において、得られるポリアセタール樹脂組成物が、よりよい剛性、靭性のバラン スを有するという観点から、樹脂組成物中の炭酸カルシウム(B)が、最大凝集粒子径に おいて好ましくは 5μ m以下、さらに好ましくは 3μ m以下、最も好ましくは 2μ m以下 、さらに最も好ましくは1. 0μm以下で分散していることである。さらに理想的には炭 酸カルシウムの平均粒径で単分散していることである。ここで、最大凝集粒径とは、樹脂 組生物中の炭酸カルシウム(B)の二次凝集をおこしている粒子の最大の大きさを表す。 ここで、最大凝集粒子径は、樹脂組成物のペレットからASTMD638のTYPEI試 験片を成形し、この試験片の中央部、樹脂流動方向に垂直な面の薄片をミクロトームなど によって切り出し、透過型電子顕微鏡(TEM)(例えば、写真倍率1. 0万倍から5. 0万倍の範囲で凝集の大きさに応じて選択)により観察し、その値の最大値を示す。

[0035]

本発明のポリアセタール樹脂組成物の製造方法は、ポリアセタール樹脂(A)を溶媒に 溶解させた後に各種成分またはその一部を添加、混合し、溶媒を除去する方法、ポリアセ タール樹脂(A)の加熱溶融物に各種成分またはその一部を添加、混合する方法、予め作 成した各種成分またはその一部をマスターバッチとして添加する方法、またはこれらを組 み合わせた方法など特に限定されるものではない。これらのうち、生産性に優れる観点か ら好ましい製造方法としてはポリアセタール樹脂の加熱溶融物に各主成分を添加、混合す る方法、すなわち溶融混錬法をあげることができる。

[0036]

上記溶融混練により製造する場合、その装置としては、一般に実用されている混練機が 適用できる。例えば、一軸又は多軸混練押出機、ロール、バンバリーミキサー等を用いれ ばよい。中でも、減圧装置、及びサイドフィーダー設備を装備した2軸押出機が最も好ま しい。溶融混練の方法は、全成分を同時に混練する方法、あらかじめ予備混練したブレン ド物を用いて混練する方法、更に押出機の途中から逐次、各成分をフィードし、混練する 方法などをあげることができる。また、炭酸カルシウム(B)をあらかじめ溶媒に分散さ せ、このスラリー状態で添加することも可能である。その場合、液体添加ポンプを用いて フィードすることも可能である。

[0037]

ここで、溶融混練の条件は、特に制限されるものではないが、減圧度に関しては、0~ 0. 07Mpaが好ましい。混練の温度は、JISK7121に準じた示差走査熱量(D SC)測定で求まる融点又は軟化点より1~100℃高い温度が好ましい。より具体的に は180度から240度である。混練機での剪断速度は100(SEC⁻¹)以上であるこ とが好ましく、混練時の平均滞留時間は、1~15分が好ましい。樹脂組成物中の溶媒は 1 質量%以下であることが好ましい。上記範囲内であれば、生産性に優れ、得られるポリ アセタール樹脂組成物の変色を抑える傾向にあり、剛性、靭性、耐熱性、耐酸性にすぐれ た樹脂組成物を得ることができる。

[0038]

本発明において、本発明の目的を損なわない範囲で、更に適当な公知の添加剤を必要に 応じて配合することができる。具体的には、酸化防止剤、熱安定剤、耐侯(光)安定剤、 離型(潤滑)剤、結晶核剤、無機充填材、導電材、熱可塑性樹脂、および熱可塑性エラス トマー、顔料などをあげることができる。

[0039]

上記酸化防止剤は、例えば、ヒンダードフェノール系酸化防止剤、ホスファイト系酸化 防止剤、イオウ系酸化防止剤をあげることができ、中でもヒンダードフェノール系酸化防 止剤がポリアセタール樹脂の酸化劣化を抑えるとともに変色がおこらない傾向にあり好ま しい。

[0040]

上記ヒンダードフェノール系酸化防止剤としては例えば、 n ーオクタデシルー3 - (3 ', 5' -ジーtープチルー4'ーヒドロキシフェニル) ープロピオネート、nーオクタ デシルー3-(3'-メチルー5'-t-ブチルー4'-ヒドロキシフェニル)ープロピ オネート、 nーテトラデシルー3ー (3', 5'ージーtーブチルー4'ーヒドロキシフ エニル) ープロピオネート、1,6-ヘキサンジオールービスー[3-(3,5-ジーt ープチルー4-ヒドロキシフェニル)ープロピオネート]、1,4-ブタンジオールービ スー [3-(3,5-ジーtーブチルー4-ヒドロキシフェニル)ープロピオネート]、 トリエチレングリコールービスー [3-(3-t-ブチルー5-メチルー4-ヒドロキシ フェニル) ープロピオネート]、テトラキス[メチレン-3-(3',5'ージーtープ チルー4'ーヒドロキシフェニル)プロピオネート]メタン、3、9ービス[2- 13-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ -1,

1-ジメチルエチル] 2, 4, 8, 10ーテトラオキサスピロ(5, 5)ウンデカン、<math>N, N' ービスー3-(3', 5' -ジ-t-ブチル-4' -ヒドロキシフェニル)プロピ オニルヘキサメチレンジアミン、N, N' -テトラメチレンービス-3-(3' -メチル -5'-t-ブチル-4'-ヒドロキシフェノール)プロピオニルジアミン、N, N'- \vec{v} スー $[3-(3,5-\vec{v}-t-\vec{v}+\nu-4-\vec{v}+\nu)$ プロピオニル] ヒ ドラジン、N - サリチロイルーN' ーサリチリデンヒドラジン、3 ー (N ーサリチロイル) アミノー1,2,4ートリアゾール、N,N' ービス[2- {3-(3,5-ジーt-ブチルー4ーヒドロキシフェニル)プロピオニルオキシ エチル]オキシアミド等をあげ ることができる。中でもより好ましくは、トリエチレングリコールービスー[3-(3tープチルー5ーメチルー4ーヒドロキシフェニル) ープロピオネート] 及びテトラキス [メチレン・3-(3', 5'-ジーt-ブチルー4'-ヒドロキシフェニル) プロピオ ネート]メタンである。これらは一種類、もしくは二種類以上の混合物で用いてもよい。

[0041]

上記熱安定剤とは、ポリアセタール樹脂に熱がかかった場合、樹脂中に残留する、もし くは樹脂が分解して発生するホルムアルデヒド、およびホルムアルデヒドが酸化されて生 じるギ酸を捕捉する捕捉剤であって、公知のものであれば特に限定されるものではない。 ホルムアルデヒドやギ酸の捕捉剤としては、(イ)ホルムアルデヒド反応性窒素を含む 化合物および重合体、(ロ)アルカリ金属又はアルカリ土類金属の水酸化物、無機酸塩、 カルボン酸塩およびアルコキシド等をあげることができる。

[0042]

上記(イ)ホルムアルデヒド反応性窒素を含む化合物および重合体としては、(1)ジ シアンジアミド、 (2) アミノ置換トリアジン、 (3) アミノ置換トリアジンとホルムア ルデヒドとの共縮合物、(4)ポリアミド樹脂、(5)アクリルアミド及びその誘導体又 はアクリルアミドおよびその誘導体と他のビニルモノマーとを金属アルコラートの存在下 で重合して得られる重合体、(6)アクリルアミド及びその誘導体又はアクリルアミド及 びその誘導体と他のビニルモノマーとをラジカル重合の存在下で重合して得られる重合体 (7)アミン、アミド、尿素、ヒドラジン誘導体及びウレタン等窒素基を含有する化合 物、および重合体などをあげることができる。

[0043] 上記(2)アミノ置換トリアジンとしては、例えば、グアナミン(2,4-ジアミノー sym-トリアジン)、メラミン(2、4、6ートリアミノー<math>sym-トリアジン)、<math>Nープチルメラミン、N-フェニルメラミン、N,N-ジフェニルメラミン、N,N-ジア リルメラミン、N, N', N''ートリフェニルメラミン、Nーメチロールメラミン、N, N' - \forall λ \neq D \wedge N \wedge ミン (2, 4-ジアミノー6-フェニルーsymートリアジン)、2, <math>4-ジアミノー6ーメチルーsymートリアジン、2,4ージアミノー6ープチルーsymートリアジン、 2, 4-ジアミノー6-ベンジルオキシーsym-トリアジン、2, 4-ジアミノー6-プトキシーsymートリアジン、2,4-ジアミノー6-シクロヘキシルーsym-トリ アジン、2,4-ジアミノー6-クロローsym-トリアジン、2,4-ジアミノー6-メルカプトーsymートリアジン、2,4-ジオキシー6-アミノーsym-トリアジン (アメライト)、2-オキシー4,6ージアミノーsymートリアジン(アメリン)、<math>N, N^{\prime} , N^{\prime} ーテトラシアノエチルベンゾグアナミン等をあげることができる。

[0044]

上記(3)アミノ置換トリアジンとホルムアルデヒドとの共縮合物としては、例えば、 メラミンーホルムアルデヒド重縮合物等がある。これらの中で、ジシアンジアミド、メラ ミン及びメラミンーホルムアルデヒド重縮合物が好ましい。

上記(4)ポリアミド樹脂としてはポリアミド46、ポリアミド6、ポリアミド66、 ポリアミド610、ポリアミド612、ポリアミド12等及びこれらの共重合物、例えば 、ポリアミド6/66、ポリアミド6/66/610、ポリアミド6/612、または混 合物(プレンド品)をあげることができる。

[0045]

上記 (5) アクリルアミド及びその誘導体又はアクリルアミドおよびその誘導体と他の ビニルモノマーとを金属アルコラートの存在下で重合して得られる重合体としては、ポリ - β-アラニン共重合体をあげることができる。これらのポリマーは特公平 6-1225 9号、特公平5-87096号、特公平5-47568号及び特開平3-234729号 の各公報記載の方法で製造することができる。

上記 (6) アクリルアミド及びその誘導体又はアクリルアミド及びその誘導体と他のビ ニルモノマーとをラジカル重合の存在下で重合して得られる重合体は、特開平3-282 6 0 号公報記載の方法で製造することができる。

[0046]

上記(ロ)アルカリ金属又はアルカリ土類金属の水酸化物、無機酸塩、カルボン酸塩お よびアルコキシドとしては、例えば、ナトリウム、カリウム、マグネシウム、カルシウム もしくはバリウムなどの水酸化物、該金属の炭酸塩(ただし炭酸カルシウムを除く)、り ん酸塩、けい酸塩、ほう酸塩、カルボン酸塩、さらには層状複水酸化物をあげることがで きる。該カルボン酸塩のカルボン酸は、脂肪族酸(飽和脂肪酸、不飽和脂肪酸)、脂環族 カルボン酸、芳香族カルボン酸などをあげることができるが、熱安定性にすぐれ、またポ リアセタールへの分散性に優れるといった観点から10~36個の炭素原子を有する脂肪 酸(飽和脂肪酸、不飽和脂肪酸)が好ましく、これらの脂肪酸はヒドロキシル基で置換さ れていてもよい。上記飽和脂肪族カルボン酸としては、カプリン酸、ラウリン酸、ミリス チン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘニン酸、リグノセリン酸、セ ロチン酸、モンタン酸、メリシン酸、セロプラスチン酸をあげることができる。上記不飽 和脂肪族カルボン酸は、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エ ルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオ ール酸、ステアロール酸などをあげることができる。また、アルコキシドとして、上記金 属のメトキシド、エトキシドなどをあげることができる。

[0047]

上記層状複水酸化物としては例えば下記一般式で表されるハイドロタルサイト類をあげ ることができる。

 $[(M^{2+})_{1-x}(M^{3+})_{x}(OH)_{2}]_{x}^{+}[(A^{n-})_{x/n}\cdot mH_{2}O]_{x}^{-}$ [式中、 M^{2+} は2価金属、 M^{3+} は3価金属、 A^{n-} はn価(nは1以上の整数)のアニオン 表わし、xは、 $0 < x \le 0$. 33の範囲にあり、mは正の数である。〕

一般式 (1) において、M²+の例としてはMg²+、Mn²+、Fe²+、Co²+、Ni²+、 $C\,u^{2+}$ 、 $Z\,n^{2+}$ 等、 M^{3+} の例としては、 $A\,l^{3+}$ 、 $F\,e^{3+}$ 、 $C\,r^{3+}$ 、 $C\,o^{3+}$ 、 $I\,n^{3+}$ 等、 $A\,$ $_{n}^{-}$ の例としては、OH-、F-、C1-、Br-、NO $^{3-}$ 、CO $_{3}^{2-}$ 、SO $_{4}^{2-}$ 、Fe (CN) 6³⁻、CH₃COO⁻、シュウ酸イオン、サリチル酸イオン等をあげることができる。特に 好ましい例としては CO_3^{2-} 、 OH^- をあげることができる。具体例としては、Mg0.75A10.25 (〇H)2 (СО3)0.125・0.5 H2 〇で示される天然ハイドロタルサイト、Mg 4.5 A12 (OH) 13 CO3・3. 5 H2 O、Mg4.3 A12 (OH) 12. 6 CO3等で示される 合成ハイドロタルサイトをあげることができる。これらのハイドロタルサイト類は一種類 、もしくは二種類以上の混合物で用いてもよい。

[0048]

上記耐候(光)安定剤としては、(イ)ベンゾトリアゾール系物質、(ロ)シュウ酸ア ニリド系物質および(ハ)ヒンダードアミン系物質をあげることができる。

上記(イ)ベンゾトリアゾール系物質としては、例えば2-(2′-ヒドロキシ-5′ ーメチルーフェニル)ベンゾトリアゾール、2-[2′-ヒドロキシー3,5-ジーt-ブチルーフェニル] ベンゾトリアゾール、2- [2′-ヒドロキシ-3, 5-ジーイソア ミルーフェニル] ベンゾトリアゾール、2-[2'-ヒドロキシー3,5-ビスー(α,シー4′ーオクトキシフェニル) ベンゾトリアゾール等が挙げられ、好ましくは2- [2 ′ーヒドロキシー3,5ービスー(α,αージメチルペンジル)フェニル]-2H-ベン ゾトリアゾール、2- [2´ーヒドロキシー3, 5-ジーtーブチルーフェニル] ベンゾ トリアゾールである。

[0049]

上記(ロ)シュウ酸アニリド系物質としては、例えば、2-エトキシー2′-エチルオ キザリックアシッドビスアニリド、2-エトキシ-5-t-ブチル-2´-エチルオキザ リックアシッドビスアニリド、2-エトキシ-3′ードデシルオキザリックアシッドビス アニリド等をあがることができる。これらの物質はそれぞれ単独で用いても良いし、2種 以上を組み合わせて用いても良い。

[0050]

上記(ハ)ヒンダードアミン系物質としては、4-アセトキシー2,2,6,6-テト ラメチルピペリジン、4ーステアロイルオキシー2,2,6,6ーテトラメチルピペリジ ン、4ーアクリロイルオキシー2,2,6,6ーテトラメチルピペリジン、4ー(フェニ ルアセトキシ) -2, 2, 6, 6-テトラメチルピペリジン4-ベンゾイルオキシ-2, 2, 6, 6ーテトラメチルピペリジン、4ーメトキシー2, 2, 6, 6ーテトラメチルピ ペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シク ロヘキシルオキシー2, 2, 6, 6ーテトラメチルピペリジン、4ーベンジルオキシー2 , 2, 6, 6ーテトラメチルピペリジン、4ーフェノキシー2, 2, 6, 6ーテトラメチ ルピペリジン、4- (エチルカルバモイルオキシ) -2, 2, 6, 6-テトラメチルピペ リジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピ ペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリ ジン、ビス(2,2,6,6ーテトラメチルー4ーピペリジン)ーカーボネート、ビス(2, 2, 6, 6ーテトラメチルー4ーピペリジル) ーオキサレート、ビス(2, 2, 6, 6ーテトラメチルー4ーピペリジル)ーマロネート、ビス(2, 2, 6, 6ーテトラメチ ルー4ーピペリジル) ーセバケート、ビス(2, 2, 6, 6ーテトラメチルー4ーピペリ ジル) ーアジペート、ビス (2, 2, 6, 6ーテトラメチルー4ーピペリジル) ーテレフ タレート、1, 2ービス(2, 2, 6, 6ーテトラメチルー4ーピペリジルオキシ)ーエ タン、α, α' ービス (2, 2, 6, 6ーテトラメチルー4ーピペリジルオキシ) ーρー キシレン、ビス(2, 2, 6, 6ーテトラメチルー4ーピペリジル)トリレンー2, 4ー ジカルバメート、ビス(2,2,6,6ーテトラメチルー4ーピペリジル)ーヘキサメチ レンー1, 6ージカルバメート、トリス(2, 2, 6, 6ーテトラメチルー4ーピペリジ ル) ーベンゼンー1, 3, 5ートリカルボキシレート、トリス(2, 2, 6, 6ーテトラ メチルー4ーピペリジル)ーベンゼンー1,3,4ートリカルボキシレート等が挙げられ 、好ましくはビス(2,2,6,6-テトラメチル-4-ピペリジル)-セバケートであ る。上記ヒンダードアミン系物質は一種類、または二種類以上混合して用いても良い。ま た上記ベンゾトリアゾール系物質、シュウ酸アニリド系物質とヒンダードアミン系物質の 組合せが最も好ましい。

[0051]

前記離型(潤滑)剤として、アルコール、およびアルコールと脂肪酸のエステル、アル コールとジカルボン酸とのエステル、脂肪酸アミド、ポリオキシアルキレングリコール、 平均重合度が10~500であるオレフィン化合物、シリコーンオイルをあげることがで きる。

[0052]

アルコールとしては1価アルコール、多価アルコールがあり、例えば1価アルコールの 例としては、オクチルアルコール、カプリルアルコール、ノニルアルコール、デシルアル コール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチ ルアルコール、ベンタデシルアルコール、セチルアルコール、ヘブタデシルアルコール、 ステアリルアルコール、オレイルアルコール、ノナデシルアルコール、エイコシルアルコ ール、ペヘニルアルコール、セリルアルコール、メリシルアルコール、2 - ヘキシルデカ **ノール、2-イソヘプチルイシウンデカノール、2-オクチルドデカノール、2-デシル** テトラデカノール、2 ーラチルステアリンアルコール、ユニリンアルコールをあげること ができる。多価アルコールとしては、2~6個の炭素原子を含有する多価アルコールであ り、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プ ロピレングリコールジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキ サンジオール、グリセリン、ジグリセリン、トリグリセリン、トレイトール、エリスリト ール、ペンタエリスリトール、アラビトール、リビトール、キシリトール、ソルバイト、 ソルビタン、ソルビトール、マンニトールをあげることができる。

[0053]

アルコールと脂肪酸のエステルとしては脂肪酸化合物の内、好ましくはパルミチン酸、 ステアリン酸、ベヘン酸、モンタン酸から選ばれた脂肪酸とグリセリン、ペンタエリスリ トール、ソルビタン、ソルビトールから選ばれた多価アルコールとから誘導された脂肪酸 エステルがある。これらの脂肪酸エステル化合物の水酸基は有っても良いし、無くても良 い。例えば、モノエステルであってもジエステル、トリエステルで有っても良い。またホ ウ酸等で水酸基が封鎖されていても良い。

[0054]

好ましい脂肪酸エステルとしては、例えばグリセリンモノパルミテート、グリセリンジ パルミテート、グリセリントリパルミテート、グリセリンモノステアレート、グリセリン ジステアレート、グリセリントリステアレート、グリセリンモノベヘネート、グリセリン ジベヘネート、グリセリントリベヘネート、グリセリンモノモンタネート、グリセリンジ モンタネート、グリセリントリモンタネート、ペンタエリスリトールモノパルミテート、 ペンタエリスリトールジパルミテート、ペンタエリスリトールトリパルミテート、ペンタ エリスリトールテトラパルミテート、ペンタエリスリトールモノステアレート、ペンタエ リスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリ トールテトラステアレート、ペンタエリスリトールモノベヘネート、ペンタエリスリトー ルジベヘネート、ペンタエリスリトールトリベヘネート、ペンタエリスリトールテトラベ ヘネート、ペンタエリスリトールモノモンタネート、ペンタエリスリトールジモンタネー ト、ペンタエリスリトールトリモンタネート、ペンタエリスリトールテトラモンタネート 、ソルビタンモノパルミテート、ソルビタンジパルミテート、ソルビタントリパルミテー ト、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレ ート、ソルビタンモノベヘネート、ソルビタンジベヘネート、ソルビタントリベヘネート 、ソルビタンモノモンタネート、ソルビタンジモンタネート、ソルビタントリモンタネー ト、ソルビトールモノパルミテート、ソルビトールジパルミテート、ソルビトールトリパ ルミテート、ソルビトールモノステアレート、ソルビトールジステアレート、ソルビトー ルトリステアレート、ソルビトールモノベヘネート、ソルビトールジベヘネート、ソルビ トールトリベヘネートソルビトールモノモンタネート、ソルビトールジモンタネート、ソ ルビトールトリモンタネートである。また、ホウ酸等で水酸基を封鎖した脂肪族エステル 化合物としてグリセリンモノ脂肪酸エステルのホウ酸エステルもあげられる。

[0055]

アルコールとジカルボン酸のエステルは、アルコールとしてメチルアルコール、エチル アルコール、プロピルアルコール、nーブチルアルコール、イソブチルアルコール、tー プチルアルコール、 n ー アミルアルコール、 2 ーペンタノール、 n ー ヘプチルアルコール 、n-オクチルアルコール、n-ノニルアルコール、ラウリルアルコール、ミリスチルア ルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール等の飽和・不 飽和アルコールと、ジカルボン酸としてシュウ酸、マロン酸、コハク酸、グルタル酸、ア ジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカニン酸、プラ シリン酸、マレイン酸、フマール酸、グルタコン酸等とのモノエステル、ジエステルであ る。

[0056]

脂肪酸アミドとしては、炭素数16以上の脂肪族カルボン酸と脂肪族アミンもしくは脂 肪族ジアミンよりなる脂肪族アミド化合物が用いられる。かかる脂肪族アミドを構成する カルボン酸としては、パルミチン酸、イソパルミチン酸、ステアリン酸、イソステアリン 酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸 、ラクセル酸、セトレイン酸、エルカ酸等をあげることができる。また、アミンおよびジ アミンとしてはアンモニア、エチレンジアミン等をあげることができる。かかるアミド化 合物の例としてはステアリルアミド、パルミチルアミド、オレイルアミド、メチレンビス ステアロアミド、エチレンビスステアロアミド、エチレンビスオレイルアミド等をあげる ことができる。

[0057]

ポリオキシアルキレングリコールとして、例えば第一のグループとして、アルキレング リコールをモノマーとする重縮合物をあげることができる。例えば、ポリエチレングリコ ール、ポリプロピレングリコール、ポリエチレングリコールポリプロピレングリコールブ ロックポリマー等をあげることができる。これらの重合モル数の好ましい範囲は5~10 00、より好ましい範囲は10~500である。

[0058]

第二のグループは、第一のグループと脂肪族アルコールとのエーテル化合物である。例 えば、ポリエチレングリコールオレイルエーテル(エチレンオキサイド重合モル数5~5 0)、ポリエチレングリコールセチルエーテル(エチレンオキサイド重合モル数5~20)、ポリエチレングリコールステアリルエーテル(エチレンオキサイド重合モル数5~3 0)、ポリエチレングリコールラウリルエーテル(エチレンオキサイド重合モル数5~3 0)、ポリエチレングリコールトリデシルエーテル(エチレンオキサイド重合モル数5~ 30)、ポリエチレングリコールノニルフェニルエーテル (エチレンオキサイド重合モル 数2~100)、ポリエチレングリコールオキチルフェニルエーテル(エチレンオキサイ ド重合モル数4~50) 等をあげることができる。

[0059]

第三のグループは、第一のグループと高級脂肪酸とのエステル化合物である。例えば、ポ リエチレングリコールモノラウレート(エチレンオキサイド重合モル数2~30)、ポリ エチレングリコールモノステアレート(エチレンオキサイド重合モル数2~50)、ポリ エチレングリコールモノオレエート(エチレンオキサイド重合モル数2~10)等をあげ ることができる。

[0060]

平均重合度が10~500であるオレフィン化合物とは下記一般式で示される化合物で ある。

$(CH_2R^1R^2C)_n$

(式中、R¹、R²は水素、アルキル基、アリール基、エーテル基より選ばれ、各々同一で も異なっていても良い。 n は平均重合度で10~500である。)

アルキル基としては、例えばエチル基、プロピル基、ブチル基、ヘキシル基、オクチル 基、デシル基、ラウリル基、セチル基、ステアリル基等であり、アリール基としては、例 えばフェニル基、pープチルフェニル基、pーオクチルフェニル基、pーノニルフェニル 基、ベンジル基、pープチルベンジル基、トリル基、キシリル基等がある。またエーテル 基としては例えばエチルエーテル基、プロピルエーテル基、プチルエーテル基等がある。 具体的にオレフィン化合物を構成するモノマーとしてはエチレン、プロピレン、1ープテ ン、2-ブテン、イソブチレン、1-ペンテン、2-ペンテン、2-メチル-1-ブテン 、3-メチル-1-ブテン、2-メチル-2-ブテン、1-ヘキセン、2,3-ジメチル - 2 - プテン、1 - ヘプテン、1 - オクテン、1 - ノネン、1 - デセン等で表されるオレ フィン系モノマー、又は、アレン、1,2-ブタジエン、1,3-ブタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、シクロペンタジエン等で 表されるジオレフィン系モノマーがある。

[0061]

これらオレフィン系モノマー、ジオレフィン系モノマーの2種以上を共重合して得られる 化合物であってもかまわない。オレフィン化合物がジオレフィン系モノマーを重合して得 られる化合物である場合は熱安定性向上の観点から慣用の水素添加法を用いて炭素ー炭素 不飽和結合を極力少なくしたオレフィン化合物を用いる方が好ましい。オレフィン化合物 を構成するオレフィン単位の平均重合度 n は 1 0 ~ 5 0 0 の間にある必要があり、好まし くは15~300の範囲である。平均重合度nが10より小さい場合は長期の潤滑特性が 低下すると共に金型汚染性へも悪影響を与えるため好ましくない。nが500より大きい 場合は、初期の潤滑特性が大きく低下するため好ましくない。

[0062]

上記シリコーンオイルとしては下記一般式で示されるポリジメチルシロキサン、ポリメ チルフェニルシロキサンが代表として好ましく用いられる。

R³ R³ R³ S i O (R³ R³ S i O) _m S i O R³ R³ R³

(式中、 R^3 はメチル基であるが、その一部がアルキル基、フェニル基、ハロゲン化アル キル基、ハロゲン化フェニル基、ポリアルキレングリコール等であっても良い。) また、ジメチルシロキサンのメチル基の一部が、クロロフェニル基に代表されるハロゲン 化フェニル基、C8以上のアルキル基、ポリエチレングリコール含有基、C8以上の脂肪 族カルボン酸の誘導体である高級脂肪族エステル基、トリフルオロメチル基に代表される ハロゲン化アルキル基などの各種置換基に代替された変性ポリオルガノシロキサンについ ても使用可能である。本発明において用いられるシリコンオイルは動粘度(25℃)が1 00~10万cstの範囲のものが好ましい。

[0063]

前記無機充填剤は繊維状、粉粒子状、板状及び中空状の充填剤が用いられる。繊維状充 填剤としては、ガラス繊維、アスベスト繊維、炭素繊維、シリコン繊維、シリカ・アルミ ナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウム繊 維、さらにステンレス、アルミニウム、チタン、銅、真鍮等の金属繊維等の無機質繊維が あげられる。また、繊維長の短いチタン酸カリウムウイスカー、酸化亜鉛ウイスカー等の ウイスカー類も含まれる。なお、芳香族ポリアミド樹脂、フッ素樹脂、アクリル樹脂等の 高融点有機繊維状物質も使用する事が出来る。

[0064]

粉粒子状充填剤としては、カーボンブラック、シリカ、石英粉末、ガラスビーズ、ガラ ス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラ ストナイトの如き珪酸塩、酸化鉄、酸化チタン、アルミナの如き金属酸化物、硫酸カルシ ウム、硫酸バリウムの如き金属硫酸塩、炭酸マグネシウム、ドロマイト等の炭酸塩、その 他炭化珪素、窒化硅素、窒化硼素、各種金属粉末等があげられる。板状充填剤としてはマ イカ、ガラスフレーク、各種金属箔があげられる。中空状充填剤としては、ガラスバルー ン、シリカバルーン、シラスバルーン、金属バルーン等があげられる。

[0065]

これらの充填剤は1種又は2種以上を併用して使用することが可能である。これらの充 填剤は表面処理されたもの、未表面処理のもの、何れも使用可能であるが、成形表面の平 滑性、機械的特性の面から表面処理の施されたものの使用のほうが好ましい場合がある。 表面処理剤としては従来公知のものが使用可能である。例えば、シラン系、チタネート系 、アルミニウム系、ジルコニウム系等の各種カップリング処理剤が使用できる。具体的に はN-(2-rミノエチル) -3-rミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、イソプロピルトリスステアロイルチタネート、ジイソプ ロポキシアンモニウムエチルアセテート、nーブチルジルコネート等が挙げられる。

[0066]

上記顔料としては、無機顔料及び有機顔料がある。無機顔料とは樹脂の着色用として一 般的に使用されているものをいい、例えば、硫化亜鉛、酸化亜鉛、酸化チタン、硫酸バリ ウム、チタンイエロー、酸化鉄、群青、コバルトブルー、燃成顔料、炭酸塩、りん酸塩、 酢酸塩やカーボンブラック、アセチレンブラック、ランプブラツク等をいい、有機顔料と は縮合アゾ系、イソインドリン系、モノアゾ系、ジアゾ系、ポリアゾ系、アンスラキノン 系、複素環系、ペンノン系、キナクリドン系、チオインジコ系、ベリレン系、ジオキサジ ン系、フタロシアニン系等の顔料である。

[0067]

本発明で得られるポリアセタール樹脂組成物は、従来ポリアセタール樹脂が持つ長期耐 久性を有し、かつ剛性、靭性、耐熱性、さらには耐酸性に優れるため、様々な用途の成形 品に使用することが可能である。

[0068]

かかる成形品は、ギア、カム、スライダー、レバー、アーム、クラッチ、フェルトクラ ッチ、アイドラギアー、プーリー、ローラー、コロ、キーステム、キートップ、シャッタ ー、リール、シャフト、関節、軸、軸受け及び、ガイド等に代表される機構部品、アウト サート成形の樹脂部品、インサート成形の樹脂部品、シャーシ、トレー、側板、プリンタ - 及び複写機に代表されるオフィスオートメーション機器用部品、VTR (VideoTapeRec order)、ビデオムービー、デジタルビデオカメラ、カメラ及び、デジタルカメラに代表 されるカメラ、またはビデオ機器用部品、カセットプレイヤー、DAT、LD(Lase rDisk), MD (MiniDisk), CD (CompactDisk) (CD-R OM (ReadonlyMemory), CD-R (ReCordable), CD-R W(Rewitable)を含む]、DVD (DigitalVideoDisk) (DV D-ROM, DVD-R, DVD-RW, DVD-RAM (RandommAcess M emory)、DVD-Audioを含む]、その他光デイスクドライブ、MFD、MO 、ナビゲーションシステム及びモバイルパーソナルコンピュータに代表される音楽、映像 または情報機器、携帯電話およびファクシミリに代表される通信機器用部品、電気機器用 部品、電子機器用部品、自動車用の部品として、ガソリンタンク、フュエルポンプモジュ ール、バルブ類、ガソリンタンクフランジ等に代表される燃料廻り部品、ドアロック、ド アハンドル、ウインドウレギュレータ、スピーカーグリル等に代表されるドア廻り部品、 シートベルト用スリップリング、プレスボタン等に代表されるシートベルト周辺部品、コ ンビスイッチ部品、スイッチ類及び、クリップ類の部品、さらにシャープペンシルのペン 先及び、シャープペンシルの芯を出し入れする機構部品、洗面台及び、排水口及び、排水 栓開閉機構部品、自動販売機の開閉部ロック機構及び、商品排出機構部品、衣料用のコー ドストッパー、アジャスター及び、ボタン、散水用のノズル及び、散水ホース接続ジョイ ント、階段手すり部及び、床材の支持具である建築用品、使い捨てカメラ、玩具、ファス ナー、チェーン、コンベア、バックル、スポーツ用品、自動販売機、家具、楽器及び住宅 設備機器に代表される工業部品として好適に使用できる。

[0069]

[実施例] 以下、本発明を実施例により更に詳細に説明するが、本発明は、以下の実施例に制限さ れるものではない。なお、以下の実施例、比較例において記載した評価は、以下の方法に より実施した。

(1) メルトフローインデックス (MFI:g/10分)

ASTMD1238により東洋精機(株)製のMELT INDEXERを用いて19 0℃、2160gの条件下で測定した。

[0070]

(2) 走査型電子顕微鏡 (SEM) 観察

炭酸カルシウムの粒子の平均粒径、平均アスペクト比(平均長径および平均短径の測定) および形状の観察には以下の装置を用いて求めた。

ファインコーター:日本電子(株)製JFC-1600

コーティング条件は30mA、60秒間で行った。

走査型電子顕微鏡:日本電子(株)製JSM-6700F

測定条件は加速電圧9.00kV、印加電流10.0μAで行った。

平均粒径は、得られた粒子像から無作為に選択した最低100個の粒子についてそれぞ れの長径を計測し、平均粒径=平均長径= Σ Li 2 Ni $/\Sigma$ LiNiの式に従って求めた。 平均アスペクト比は、得られた粒子像から無作為に選択した最低100個の粒子について それぞれの長径、短径を計測し、平均長径= Σ Li 2 Ni / Σ Li 1 Ni、平均短径 d = Σ d

i²N i / Σ d i N i 、平均アスペクト比L/ d = (ΣL i²N i / ΣL i N i) / (Σ d i² Ni/ΣdiNi)の式に従って求めた。

[0071]

(3) 炭酸カルシウムに付着の有機成分の量

パーキンエルマー (株) 製のTGA-7を用いて炭酸カルシウム約10mgを100℃ まで100℃/分で昇温、そのまま10分間熱処理し、その後550℃まで100℃/分 で昇温、そのまま60分熱処理し、その後の下記の式から有機成分の量を求めた。

有機成分の量= [(100℃、10分熱処理完了後の質量)-(550℃、60分熱処 理完了後の質量)] / (100℃、10分熱処理完了後の質量) ×100 (%)

[0072]

(4) ポリアセタール樹脂組成物の生産性、作業性の評価

ポリアセタール樹脂と炭酸カルシウムおよび酸化防止剤等の添加剤を目的の成分量とな るよう計量および添加し、その後溶融混練しポリアセタール樹脂組成物を生産する際、そ の生産性を評価した。

(4-1) 計量、配合時

特に問題も必要なく計量、配合ができた場合 ○

炭酸カルシウムが微粉末となり大気中に舞いだし作業環境が悪くなる、または炭酸カル シウムが凝集し、粉砕する必要がある等、計量、配合に問題を要した場合 ×

(4-2) 溶融混練時

溶融混練時に異臭等が発生するか否かを確認した。

異臭なく溶融混練ができた場合 ○

異臭を感じた場合 △

異臭が発生し、目にしみる、のどが痛む等の作業環境上問題が発生した場合 ×

[0073]

(5) 無機灰分の含有量(質量部/100質量部ポリアセタール樹脂組成物)

ポリアセタール樹脂樹脂組成物を80±10℃で8時間乾燥し冷却する。磁器のルツボ に、乾燥した樹脂組成物を1gとり、550±10℃の電気炉で60分間灰化し、冷却後 、その質量をはかり、無機灰分の含有量を定量した。

[0074]

(6) 透過型電子顕微鏡 (TEM) 観察

炭酸カルシウムの最大凝集粒子径の観察

射出成形機(住友重機械工業(株)製SH─75)を用いて、シリンダー温度200℃ 、金型温度70℃に設定し、射出15秒、冷却25秒の射出成形条件でASTMD638 のTYPEI試験片を成形し、ReichertNissei製クライオミクロトームを 用いて試験片の中央部、樹脂流動方向に垂直な面から約50nmの超薄切片を作成した。 透過型電子顕微鏡(TEM)観察は、日立製作所(株)製HF2000用いて、5000 ~3. 0万倍の明視野像を撮影し、二次凝集粒子各々についてその最大の大きさを測定し 、その値の最大値を最大凝集粒子径とした。ただし、凝集を形成する各粒子の大きさが、 添加した炭酸カルシウムの平均粒径よりも明らかに大きい場合は他の添加剤であると判断 し、測定からはずした。

[0075]

(7) ポリアセタール樹脂組成物の物性

射出成形機(住友重機械工業(株)製SH─75)を用いて、シリンダー温度200℃ 、金型温度70℃に設定し、射出15秒、冷却25秒の射出成形条件で評価用ダンベル片 、短冊片を得た。

(71)曲げ弾性率(GPa)および曲げ強度(MPa)

ASTM D790に準じて行った。

(72) 引張り強度 (MPa) および引張り伸度 (%)

ASTM D638に準じて行った。

(73) ノッチ付き I z o d衝撃強度

ASTM D256に準じて行った。

[0076]

(7-4) 耐酸性試験

射出成形機(住友重機械工業(株)製SH─75)を用いて、シリンダー温度200℃ 、金型温度70℃に設定し、射出15秒、冷却25秒の射出成形条件でJIS3号タイプ の評価用ダンベル片を得た。このダンベル片をガラス製耐圧ビンに入れ、ここに0.1N ギ酸水溶液と 0. 1 N硫酸水溶液をそれぞれ等体積量まぜあわせて作成した混合水溶液を 加えて密閉し、130±5℃で6時間加熱処理を行った。その後、ダンベル片を流水で洗 浄し、23℃、湿度50%で48時間乾燥した。その際の質量減、引っ張り伸度保持率、 引っ張り強度保持率を以下の式に従って算出した。

質量減= (試験後のダンベル片の質量) / (試験前のダンベル片の質量) × 1 0 0 (%) 引っ張り伸度または引っ張り強度保持率=(試験後の引っ張り伸度または引っ張り強度) / (試験前の引っ張り伸度または引っ張り強度) ×100 (%)

[0077]

(7-5) ホルムアルデヒド発生速度(ppm/min)の測定方法

窒素気流下(50NL/hr)において、230℃、90分間加熱溶融し、ポリアセタ ール樹脂組生物から発生するホルムアルデヒドガスを水に吸収した後、亜硫酸ソーダ法に より滴定し、加熱開始から90分までのホルムアルデヒド発生速度を求めた。この際発生 するホルムアルデヒドは、ポリアセタール樹脂組成物に残留するホルムアルデヒド、およ びポリアセタール樹脂の不安定末端の分解もしくは主鎖の分解によって発生するホルムア ルデヒド由来であり、この値が低いほど耐熱性に優れる。

[0078]

また、実施例、比較例には下記成分を用いた。

<ポリアセタール樹脂>

熱媒を通すことができるジャケット付きの2軸パドル型連続重合機を80℃に調整し、 トリオキサンを4kg/hr、コモノマーとして1,3-ジオキソランを42.8g/h (トリオキサン1molに対して、1.3mol%)、連鎖移動剤としてメチラールを5 . 1g/h連続的に添加した。さらに、重合触媒として三フッ化硼素ジェブチルエーテラ ートを連続的に添加し、重合を行なった。重合機より排出されたポリアセタールをトリエ チルアミン 0. 1%水溶液中に投入し重合触媒の失活を行なった。

[0079]

失活されたポリアセタールを遠心分離機でろ過した後、ポリアセタール100質量部に 対して、第4級アンモニウム化合物として水酸化エチルコリン蟻酸塩(トリエチルー2-ヒドロキシエチルアンモニウムフォルメート)を含有した水溶液1質量部を添加して均一 に混合した後120℃で乾燥した。水酸化エチルコリン蟻酸塩の添加量は、添加する水酸 化エチルコリン蟻酸塩を含有した水溶液中の水酸化エチルコリン蟻酸塩の濃度を調整する ことにより行い、窒素量に換算して20質量ppmとした。乾燥後、ベント付き2軸スク リュー式押出機に供給し、押出機中の溶融しているポリアセタール100質量部に対して 水を0.5質量部添加し、押出機設定温度200℃、押出機における滞留時間7分で不安 定末端部分の分解を行なった。不安定末端部分の分解されたポリアセタールは、ベント真 空度20Torrの条件下に脱揮され、押出機ダイス部よりストランドとして押出され、 ペレタイズされた。得られたペレットのMFIは9.5g/10minであった。

[0080]

<炭酸カルシウム>

(b-1) 白石工業(株) 製Brilliant-15

平均長さ0.20μm アスペクト比1.0 立方体状 有機成分量 0.05%未満

(b-2) 丸尾カルシウム (株) 製カルテックス 5

平均長さ1µm アスペクト比1.0 不定形 有機成分量 0.05%未満

(b-3) 丸尾カルシウム (株) 製スーパーS

平均長さ4μm アスペクト比1.0 不定形 有機成分量 0.05%未満

(b-4) 白石工業(株) 製R重炭

平均長さ40μm アスペクト比1.0 不定形 有機成分量 0.05%未満

(b-5) 白石工業(株) 製PC

平均長さ1. 2μm アスペクト比2.5 紡錘状 有機成分量 0.05%未満

[0081]

比較のために上記の炭酸カルシウム(b-1)、(b-3)、(b-4)、(b-5) を用いて、表面処理を予め施した炭酸カルシウム (b-6)、(b-7)、(b-8) (b-9) を作成した。表面処理は炭酸カルシウム100質量部に対してステアリン酸(川 研ファインケミカル(株)製Fー3)を3質量部加えてヘンシェルミキサーにて95±5 ℃、2000rpmで加熱、攪拌を行い、その後冷却し、表面処理を施した。

(b-6) ステアリン酸処理済炭酸カルシウムー1

平均長さ0.20μm アスペクト比1.0 立方体状 有機成分量 2.9%

(b-7) ステアリン酸処理済炭酸カルシウム-2

平均長さ4 μ m アスペクト比1.0 不定形 有機成分量 2.9%

(b-8) ステアリン酸処理済炭酸カルシウム-3

平均長さ40μm アスペクト比1.0 不定形 有機成分量 2.9%

(b-9) ステアリン酸処理済炭酸カルシウム-4

平均長さ1.2 μ m アスペクト比2.5 紡錘状 有機成分量 2.9%

[0082]

<カルボン酸>

ステアリン酸 (川研ファインケミカル (株) 製F-3)

その他の添加剤

<酸化防止剤>

トリエチレングリコールービスー [3-(3-t-ブチルー5-メチルー4-ヒドロキ シフェニル) -プロピオネート] (チバスペシャルティケミカルズ (株) 製IRGANO X245

[0083]

<熱安定剤>

ポリアミド66

50質量%のポリアミド66の原料(ヘキサメチレンジアミンとアジピン酸との等モル 塩) の水溶液300g作成した。さらに分子量調整用の酢酸0.744g(0.0124 mol) とヘキサメチレンジアミン 0.869g (0.0075mol) を加えて、攪拌 機を有する容量500mlのオートクレーブに仕込み、55℃の温度で十分攪拌した。そ の後、窒素で置換した後、撹拌しながら温度を55℃から約270℃まで昇温した。この 際、オートクレープ内の圧力は、ゲージ圧にして約1.77Mpaになるが、圧力が1. 77Mpa以上にならないよう水を系外に除去しながら加熱を約1時間続けた。その後、 約1時間をかけ、圧力を大気圧まで降圧し、その後加熱を止め、系を密封してから一昼夜 放置して室温まで冷却した。オートクレーブを開け、ポリマーを取出し、粉砕機により粉 砕した。

ステアリン酸カルシウム (川研ファインケミカル (株) 製CS-2) ハイドロタルサイトM g 4.3 A l 2 (O H) 12. 6 C O3 (協和化学工業 (株) 製DHT -4 (C)

<離型剤>

エチレングリコールジステアレート(日本油脂(株)製ユニスターE275)

[0084]

[実施例1~9]

表1に示した割合で、各成分を計量、混合し、二軸押し出し機(池貝(株)製PCM-30)を用いて、押出機のトップから添加して溶融混練し、それぞれポリアセタール樹脂 組成物を得た。その際、溶融混錬条件は温度200度、回転数150rpmで行った。評 価結果を表1に示す。

[0085]

[比較例1~21]

表2、3に示した割合で、各成分を計量、混合し、二軸押し出し機(池貝(株)製PC M-30)を用いて、押出機のトップから添加して溶融混練し、それぞれポリアセタール 樹脂組成物を得た。その際、溶融混錬条件は温度200度、回転数150rpmで行った 。評価結果を表2、3に示す。

表1から3から明らかなように本発明のポリアセタール樹脂組成物は、剛性、靭性、耐 熱性、耐酸性にすぐれていることがわかる。

[0086]

また、実施例3および比較例1について摺動試験を行った。測定には、東洋精密工業(株)製ピン/プレート試験機AFT-15MSを用いて、ピン側SUS314、プレート 側実施例 6 、および比較例 1 のダンベル片、往復速度 3 0 mm/s、往復距離 2 0 mm、 荷重 2 Kg、温度25度、湿度50%の条件で行った。その結果、往復回数1回から1万 回後までにおいて、実施例3では摩擦係数が0.09から0.29へ、そのときのダンベ ル片の磨耗深さが10μmであるのに対し、比較例1では摩擦係数が0.16から0.4 1へ、そのときのダンベル片の磨耗深さが73μmであった。このことから、本発明のポ リアセタール樹脂組成物は、本来ポリアセタール樹脂が持つ、優れた摺動性が更に向上し ているいることがわかる。

[0087]

さらに、実施例3および比較例1について引っ張りクリープ試験を行った。測定には、 東洋精密製作所(株)製クリープ試験機100-6を用いて、荷重6および8MPa、温 度130度の条件で引っ張り試験片が破断するまでの時間を比較した。その結果、実施例 6では、荷重 6 M P a のとき 9 1 0 0 分、 8 M P a のとき 3 0 0 0 分、比較例 1 では荷重 6MPaのとき7300分、8MPaのとき2700分であった。このことから、本発明 のポリアセタール樹脂組成物は、本来ポリアセタール樹脂が持つ、優れた耐疲労性(耐ク リープ性)が更に向上していることがわかる。

[0088]

		₩ ₩ ₩	B 44 /21	金佐鱼	明特色	研符包	実施例	東插劍	哭陋例	米話名
	単位	· 100 - 100	米島で	X 25 5	4	5	9	7	8	6
- 1	1	- 5	4 5	2	2	100	9	100	100	100
ポリアセタール樹脂 (A)	加爾頭	3	3	3	3 7	Z	<u>1</u> -4	P-2	b-2	p-2
炭酸カルシウム(B)	種類	<u>-</u>		- 6	5 8		50	10	20	40
	質量部	2	10	07	200	} {	3 -	0	9 0	1.2
カラボン酸 (C)	質量部	0. 15	0.3	0.0	6.0	1.6	-	5		
その他の添加				100	20	20.0	25	0.35	0.35	0.35
IRGANOX 2 4 5	質量部	0.35	0.35	0.35	0. 33	0. 35	20.00	0 025	0.025	0.025
ポリアミド66	質量部	0.025	0.025	0.025	0. 023	0.020	10	0 10	0.10	0.10
ステアリン酸カルシウム	質量即	0. 10	0 0	2 6	2 6	2 0	0 0	0 02	0.02	0.02
114 FD9JV#4 F	質量部	0.02	70.05	20.00	9 0	5 6	0.05	0.05	0.05	0.05
エチレングリコールンスナアレート	位面面	3	3	3						
生産性の評価		(c	C	С	0	0	0
配合時))					C	C	0	٥
溶融混練時		0	0	5						
樹脂組成物の特徴				7 9,	0 00	28.2	33.0	80	16.4	28.2
無機成分	8	4.4	æ ;	9 0	0.77	20.6	98	1 20	1.85	3.80
最大凝集粒子径	μm	0.30	0.34	0. 4 -	3 5	2 2	4 15	9 69	3 21	3.70
曲げ弾性率	GPa	2.81	3.05	3.21	3.34	6.65	2 2	9	8	18
曲げ強度	MPa	91	92	8	8	5	3,6	299	S	\$
引張強度	₽	23	3	2	\$ 2	3 8	3 4	37	43	37
引張伸度	≫	34	\$	76	- 6	8 8	2 0	6	63	43
ノッチ付き lzod	(J/m)	99	72	=	6	\$	F	3		
耐酸試験					7	4	2	15.8	10.3	6.8
重量減	%	26.1	15.3	70.7	5	- 5	30		92	91
引っ張り伸度保持率	≥ €	16	92	76	76	28	5 6	2	24	25
	æ	<u>C</u>	2	\$7	5 0	2 5	i E	P	9	19
ホルムアルデヒド発生速度	ppm/min.	4	4	2	»	2	2	-	·\	

表1

[0089]

【表 2 】

			14 17	1.44/70	工作	西指土	主教室	子野空	计数值	比較倒	比較例	比較回
	単位	光酸 -	数を変え	5.000000000000000000000000000000000000	L #X89	2 2	6	7	8	6	10	11
		-	7 9	2	. 5	5	100	9	92	100	100	100
ポリアセタール樹脂 (A)	質量部	3	3	3	3	3	2 -	V-4	₽-4	3	5-5	6-5 -5
非酸カルシウム(B)	種類	1	<u>-</u>	23	2	3	3		5	2	2	8
WENT TO THE PARTY OF THE PARTY	四号机	0	9	2	8	10	22	2	3	2	3 6	}
(S) 41. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	を記れる	0	0	0	0	0.3	0.6	0.3	9.0	0.3	0. b	7:-
コアドノ政(5)	ATT THE PLANT OF T											
4のもの形台		,	70	26.0	36 0	0 25	0.35	0.35	0.35	0.35	0.35	0.35
I RGANOX 245	質量部	O. 33	0.35	U. 33	2 2	20.00	20.00	0 05	0 025	0 075	0.025	0.025
ポリアミド66	質量部	0.025	0.025	0.025	0. 023	0.020	0.063	2 0		0 10	0 10	0.10
ステアリン酸カルシウム	質量部	0.10	0.10	0. 10	0 10	0. 10	0.0	2 8	2 8	2 2	2 6	0 0
ングドロないサイト	質量部	0.02	0.02	0.02	0.05	0.02	0.05	0.02	0.02	20.0	2 2	3 6
エチレングリコールジステアレート	質量部	0.05	0.05	0.05	0.05	0.05	0.02	0.02	0.05	0.00	0. 02	0.0
生産性の専備										(C
- 1 "		С	0	0	0	0	0	0	0	0)	>
中间、巴口西			, ,	<	×	C	×	0	×	0	0	۵
溶融混練時			,	1		,				_		
樹脂組成物の特徴		ļ	0	0 0	16.4	8	16.4	8.8	16.4	80.80	16.4	28.2
無機成分	%	0	0 0	9 0	2 0	2 12	2 7	82	120	2.9	3.8	5.5
最大凝集粒子径	μB	,	0.40	ρ.i.	7.0		2 5	o 70	90	2 95	3.26	3.88
曲げ弾性率	GPa	2. 78	2.96	7.97	3.23	70.7	2 2	2 6	200	g	88	82
曲げ強度	MPa	95	9	16	3 3	8 5	8	2 2	\$ 0	95	2	43
引張強度	MPa	62	22	26	76	8 8	2	5 6	42	9	43	43
引張伸度	~ 2	37	32	3/	47	07	+7 2c	25	34	2 9	63	46
ノッチ付き Izod	(J/m)	20	88	2/	9	8	S	3	5			
耐酸試験				١	,	6	11 7	25.2	7	16 4	10.5	6.5
重量減	æ	35.2	15. /	16.3	2 8	7.70		3 2	2 8	6	94	93
引っ張り伸度保持率	≥ €	8	5	88	3 6	28	38	\$ 8	42	21	22	13
引っ張り強度保持率	3 2	6	4	2 5	3 5	3 5	3 8	=	21	9	2	23
ホルムアルデヒド発生速度	ppm/min.	9	8	7,6	S		3					

[0090]

単位		15 -	24.5					
日本 100 100 100 100 100 100 100 100 100 10	++++	,	9	_	<u>~</u>	19	20	21
西部 100 100 100 100 100 100 100 100 100 10		٤	5	100	9	100	100	100
開題 b-6 10.3 2 2 日 10.3 2 2 2 2 4 2 2 3 4 2 3 2 3 2 2 3 4 2 3 4 3 2 3 2		3 5	3 -	2	ع ا	6-4	6-4	6-q
国部 10.3 2 2 回動 0.35 0 回動部 0.025 0 回動部 0.025 0 0 回動部 0.02 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	3	5 5	2 2	40.2	20 6	41.2
回部 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10.3	20.6	5.3	0.07	2	2	-
国語 0.035 0 0.05 0 0.	+	0	0	>	>	>	,	,
国部 0.35 (0 国部 0.025 0 国部 0.02 (0 国部 0.05 (0 (国部	_				100	26.0	25.0	0 35
国部 0.025 0 (回動部 0.025 0 (回動部 0.02 (0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	_	0.35	0.35	0.35	CS .0	20.00	200	0 025
国部 0.10 (国部 0.02 (日間 0.05 (0.025	0.025	0.025	0.025	0.023	0.023	10
国部 0.02 (1 国部 0.05 (1 国部 0.05 (1 W m 0.38 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0. 10	0. 10	0. 10	0. 10	2 8	2 8	2 2	6 0
語的 0.05 × × × × O O O O O O O O O O O O O O O	0.02	0.05	0.02	0.05	70.0	7 0	3 2	3 6
× O 8.8 8.8 9.0 0.38 90 90 30 2.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.05	0.05	0.05	0.05	0.05	co O	50.00	3
× O 8.8 0.38 90 30 70					,	,	×	×
8. 8 0. 38 0. 38 30 70	×	×	0	×	<			c
8.8 0.38 2.94 90 56 30	0	0	×	0	×			
8.8 0.38 2.94 90 56 30 70							16.4	90
0.38 2.94 90 90 30 70	28. 2	8.8	16.4	ω ώ	16. 4	χ χ ζ	2 6	707
2.94	0.55	5.6	9.0	98	129	0 2	8 6	2 2
30 30 70	3 79	2.81	2.94	2.77	2.84	3.01	3.70	ر م
30 00 00 00 00 00 00 00 00 00 00 00 00 0	+	22	84	98	æ	88	88	82
30 07	3 5	2 12	6	55	49	57	51	42
70	74	8 8	6	21	9	42	44	24
0/	70	3 8	35	35	34	57	9	8
	ā	99	8	3				
	+	25.2	10 1	22.0	12.3	17.3	11.0	7.0
21.5	+	20.5	j	ā	6	92	96	93
-	26	5 8	* 66	5 8	2 2	2	29	15
% 19 24	25	3	3 8	3 2	8 8	2	000	14
ppm/min. 6 7	10	اءِ	32	17	₽ -	,		

23/E ページ:

【産業上の利用可能性】

[0091]

本発明で得られるポリアセタール樹脂組成物は、本来ポリアセタール樹脂が持つ特徴を 有し、剛性、靭性、耐熱性、さらには耐酸性に優れ、かつ生産性、作業性に優れるために 、自動車、電気電子、その他工業などの分野で好適に利用できる。

【曹類名】要約曹

【要約】

【課題】本来ポリアセタール樹脂が持つ特徴を有し、剛性、靭性、耐熱性、さらには耐酸 性に優れ、かつ生産性、作業性に優れたポリアセタール樹脂組成物及びその成形品を提供

【解決手段】ポリアセタール樹脂(A)100質量部に対して、平均粒径が 0. 0 1 μ m \sim $1~\mu$ mであり、かつ粒子の平均長径(L)と粒子の平均短径(d)の比である平均アス ペクト比(L/d)が3以下であり、かつその表面処理剤、付着剤または錯化剤に由来す る有機成分が0.1%未満である炭酸カルシウム(B)0.1~100質量部、カルボン 酸(C) 0.01~10質量部を配合してなることを特徴とするポリアセタール樹脂組成 物。

【選択図】選択図なし

特願2004-091049

ページ: 1/E

認定・付加情報

特許出願の番号 特願2004-091049

受付番号 50400501578

書類名 特許願

担当官 第六担当上席 0095

平成16年 3月29日 作成日

<認定情報・付加情報>

【提出日】 平成16年 3月26日

特願2004-091049

出願人履歴情報

識別番号

[303046314]

1. 変更年月日 [変更理由]

2003年 8月20日 新規登録

住 所 氏 名

東京都千代田区有楽町一丁目1番2号

旭化成ケミカルズ株式会社

- - - - - - - -