

Autumn Examinations 2019/2020

Course Instance

1CSD1, 1CSD2, 1SPE1, 1MAO2, 1MAI1

Codo(s)	, , , ,
Code(s) Exam(s)	MSc in Computer Science (Data Analytics), MSc in Computer Science (Artificial Intelligence), MSc in Computer Science (Artificial Intelligence) - Online
Module Code(s) Module(s)	CT5120, CT5146 Introduction to Natural Language Processing, Introduction to Natural Language Processing - Online
Paper No. Repeat Paper	1 Yes
External Examiner(s) Internal Examiner(s)	Professor Pier Luca Lanzi Dr. Michael Madden *Dr. Paul Buitelaar, Dr. John McCrae
sec	swer all parts of all questions. There are 4 sections; each tion is worth 25 marks (100 marks total). This is an open-book mination, please upload all answers as a single file
Duration No. of Pages Discipline(s) Course Co-ordinator(2 hours 5 Computer Science b) Dr. Enda Howley, Dr. Michael Schukat, Dr. James McDermott
Requirements:	X
Release in Exam Venu	e Yes No
MCQ	Yes No X
Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials	None None None None None None None
Graphic material in cold	our Yes No

Plagiarism policy

Please include the following statement in your submission:

In submitting this work I confirm that it is entirely my own. I acknowledge that I may be invited to online interview if there is any concern in relation to the integrity of my exam

Introduction to Natural Language Processing

Exam Duration: 2 Hours

You must complete Sections 1 to 4

Section 1: Linguistics	
Instructions: Provide answers for questions 1A, 1B and 1C	
Question 1A	5 Marks
How many tokens are there in this sentence. Explain your reasoning.	
Boris Johnson has been the prime minister of the UK since last year.	
Question 1B	10 Marks
Fill in the blanks in these statements:	
government and govern are morphologically related through	
minister and ministers are morphologically related through	
road and roadmap are morphologically related through	
Question 1C	

Describe in your own words the difference between a parallel and comparable corpus. Give an example of an NLP application that uses such corpora.

PTO

Section 2: Parsing

Instructions: Provide answers for question 2A, 2B and 2C

Question 2A 10 Marks

Consider the following grammar:

Rule	Probability	Rule	Probability
$S \to NPVP$	1.0	$D \to the$	0.5
$NP \to D \; N$	0.4	$D \to a$	0.5
$NP \to N$	0.5	$N \to coffee$	0.3
$NP \to Prn$	0.1	$N \to function$	0.7
$VP \to V$	0.3	$V \to \text{function}$	0.6
$VP \rightarrow Aux VP$	0.2	$V \to can $	0.4
$VP \to Adv \ VP$	0.1	$Prn \to I$	1.0
$VP \rightarrow VPP$	0.4	$Aux \rightarrow can$	1.0
$PP \to Prp\;NP$	1.0	$Adv \to only$	1.0
		$Prp \rightarrow with$	1.0

What is the probability of the following sentence in this grammar?

I can only function with coffee

Show which rules in the grammar were used in the parse tree of this sentence.

Question 2B 10 Marks

Using the grammar of Question 2A, find a sentence that is accepted by the grammar but is not grammatical in English and suggest a modification to the grammar so that this sentence is not generated.

Question 2C 5 Marks

Why do lexical dependencies cause an issue with a simple Probabilistic Context-Free Grammar (PCFG) approach to parsing?

PTO

Section 3: Semantics

Instructions: Provide answers for question 3A, 3B, 3C and 3D

Question 3A 5 Marks

Fill in the blanks in these statements on words that are semantically related by stating the kind of semantic relation:

government, casinet, administration are ____

light and dark are __

Question 3B 5 Marks

Explain in your own words how word senses are represented in WordNet. Give an example.

Guestion 3C 5 Marks

Explain in your own words how word senses are represented in FrameNet. Give an example.

Question 3D 10 Marks

How can Wikipedia be used in word sense disambiguation?

PTO

Section 4: Applications

Instructions: Provide answers for questions 4A, 4B and 4C

Question 4A 10 Marks

Explain in your own words how a knowledge model can be used in information extraction. Give an example.

Question 4B 10 Marks

Given words a,b,c, explain how PMI(a,b) for a given corpus can be higher than PMI(a,c). [PMI = Pointwise Mutual Information]

Question 4C 5 Marks

Discuss a limitation of a lexicon-based approach to sentiment analysis.

END