MATH3541 INTRODUCTION TO TOPOLOGY SAMPLE SOLUTIONS FOR THE MIDTERM

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG

Q1 [50 marks]

- (a) Let U and V be open sets of \mathbb{R}^{Zar} such that $U \ni 0$ and $V \ni 1$. Nonempty open sets in \mathbb{R}^{zar} are cofinite sets of the form $U = \mathbb{R} \setminus \{x_1, \ldots, x_m\}$ and $V = \mathbb{R} \setminus \{y_1, \ldots, y_n\}$. Since the cardinality of \mathbb{R} is infinite, we can pick some $c \in \mathbb{R} \setminus \{x_1, \ldots, x_m, y_1, \ldots, y_n\}$ so that $c \in U \cap V$. Hence any two open sets around 0 and 1 intersect, and \mathbb{R}^{Zar} is not Hausdorff.
- (b) Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of \mathbb{R}^{Zar} . Since $0 \in \mathbb{R}^{Zar}$, there exists $i_0 \in I$ such that $0 \in U_{i_0}$. Open sets are the complement of finitely many points, so we write $U_{i_0} = \mathbb{R} \setminus \{a_1, \ldots, a_n\}$ for some $n \in \mathbb{N}$. Then since \mathcal{U} is an open cover, there exist $U_{i_k} \in \mathcal{U}$ such that $a_k \in U_{i_k}$ for all $k = 1, \ldots, n$. Now $\{U_{i_0}, U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of \mathcal{U} , so \mathbb{R}^{Zar} is compact.
- (c) A subset $Z \subset \mathbb{R}^2$ is closed in the Zariski topology on \mathbb{R}^2 iff there exists a subset $T \subset \mathbb{R}[x,y]$ such that

$$Z = V(f) = \{(x, y) \in \mathbb{R}^2 \mid \forall f \in T, f(x, y) = 0\}.$$

Note that this already includes $\mathbb{R}^2 = V(\{0\})$ and $\emptyset = V(\{1\})$.

(d) The product topology on $\mathbb{R}^{Zar} \times \mathbb{R}^{Zar}$ is not the same as the Zariski topology on \mathbb{R}^2 . We know that Hausdorffness of \mathbb{R}^{Zar} is equivalent to the diagonal $\{(x,x)\} \subset \mathbb{R}^{Zar} \times \mathbb{R}^{Zar}$ being closed. Then by (a), the diagonal is not closed, but $V(\{x-y\})$ is closed in \mathbb{R}^2 with the Zariski topology.

More explicitly, recall that the product topology on $\mathbb{R}^{Zar} \times \mathbb{R}^{Zar}$ is the coarsest topology such that the projection maps $\pi_i : \mathbb{R}^{Zar} \times \mathbb{R}^{Zar} \to \mathbb{R}^{Zar}$ for i=1,2 are continuous, so the product topology has a basis of open sets given by sets of the form $U \times V$ for two open sets $U, V \subset \mathbb{R}^{Zar}$. Then by the argument in (a), there exists $x \in \mathbb{R}$ such that $(x,x) \in U \times V$. Hence the complement of $V(\{x-y\}) = \{(x,x) \mid x \in \mathbb{R}\}$ is not open in the product topology on $\mathbb{R}^{Zar} \times \mathbb{R}^{Zar}$.

(e) If U_1, U_2 are Zariski open sets in \mathbb{R}^2 , then $U_1 = \mathbb{R}^2 \setminus V(T_1)$ and $U_2 = \mathbb{R}^2 \setminus V(T_2)$ for subsets of polynomials $T_1, T_2 \in \mathbb{R}[x, y]$. Observe that we may assume that $0 \in T_i \neq \emptyset$ as it doesn't change the vanishing set $V(T_i)$. Then note that an open set $U = \mathbb{R}^2 \setminus V(T)$ is non empty

iff $T \neq \{0\}$, so we know that neither of T_1, T_2 are equal to $\{0\}$. Then

$$U_1 \cap U_2 = (\mathbb{R}^2 \setminus V(T_1)) \cap (\mathbb{R}^2 \setminus V(T_1))$$

= $\mathbb{R}^2 \setminus (V(T_1) \cup V(T_2))$
= $\mathbb{R}^2 \setminus (V(T_1T_2))$,

where $T_1T_2 = \{fg \mid f \in T_1, g \in T_2\}$. Since the product of two nonzero polynomials is nonzero, the subset $T_1T_2 \neq \{0\}$, and $U_1 \cap U_2$ is nonempty.

- (f) The closure \overline{I} of I in \mathbb{R}^2 with the Zariski topology is the smallest Zariski closed subset of \mathbb{R}^2 containing I. Note that $I \subset V(\{y\})$, and so $\overline{I} \subset V(\{y\})$. Now let $\overline{I} = V(T)$ for some $T \subset \mathbb{R}[x,y]$ so that f((x,0)) = 0 for all $f \in T$ and 0 < x < 1. For any such $f \in T$, consider polynomial $f(x,0) \in \mathbb{R}[x]$ as a polynomial in one variable. This has infinitely many roots, and hence must be equal to the zero polynomial so f(x,0) = 0 for all $x \in \mathbb{R}$, $f \in T$. Thus, the polynomial y divides every $f \in T \subset \mathbb{R}[x,y]$ and $V(y) \subseteq V(T)$. This implies $V(y) = \overline{I}$.
- (g) Consider the preimage of the closed set $\{0\}$ under the addition map. This is the set $\{(x,y) \in \mathbb{R}^{Zar} \times \mathbb{R}^{Zar} \mid x+y=0\} = \{(x,-x) \mid x \in \mathbb{R}\}$. We show, by an argument similar to part (d), that this set is not closed. Suppose U and V are open sets of \mathbb{R}^{Zar} and note that $-V = \{-x \mid x \in V\}$ is then also an open set of \mathbb{R}^{Zar} . By the same arugment as in part (a), there exists $x \in \mathbb{R}$ such that $(x,x) \in U \cap (-V)$, and so $(x,-x) \in U \cap V$. Then the complement of $\{(x,-x) \mid x \in \mathbb{R}\}$ is not open, and hence $(+)^{-1}(0)$ is not closed in the product topology on $\mathbb{R}^{Zar} \times \mathbb{R}^{Zar}$.

There exists a closed set of the target space whose preimage is not closed, which shows the addition map $+: \mathbb{R}^{Zar} \times \mathbb{R}^{Zar} \to \mathbb{R}^{Zar}$ is not continuous.

(h) We need to check that the preimage of a closed set $Z \subset \mathbb{R}^{Zar}$ under the addition map $+: \mathbb{R}^2 \to \mathbb{R}^{Zar}$ is closed. If Z is the empty set, its preimage is empty, which is closed. If Z is the whole space \mathbb{R} , then its preimage is the whole space \mathbb{R}^2 , which is closed. If $Z = \{a_1, \ldots, a_n\}$ is a finite set of real numbers, then its preimage

$$(+)^{-1}(Z) = \{(x,y) \in \mathbb{R}^2 \mid x+y = a_i \text{ for some } i = 1,\dots, n\}$$
$$= \bigcup_{i=1}^n \{(x,y) \in \mathbb{R}^2 \mid x+y = a_i\}$$
$$= \bigcup_{i=1}^n V(x+y-a_i)$$

is a finite union of closed sets, and hence closed.

(a) As we identify $M_{n,n}$ with the metric space \mathbb{R}^{n^2} , we know that $M_{n,n}$ is Hausdorff. As an open subset, $\operatorname{GL}_n(\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ is then Hausdorff with the subset topology. The product of invertible matrices is once again invertible, and the inverse of a matrix is invertible, so $\operatorname{GL}_n(\mathbb{R})$ is closed under matrix multiplication and inversion.

The product of two matrices AB has (i, j)-th entry $\sum k = 1^n a_{ik} b_{kj}$, hence product is a continuous maps as each entry is are determined by polynomials of the coordinate functions.

The inverse of a matrix A has (i, j)-th entry $\frac{C_{ji}}{\det(A)}$ where C_{ji} is the (j, i)-th cofactor, i.e. the determinant of the $(n-1) \times (n-1)$ submatrix of A obtained by removing the j-th row and i-th column. This is a continuous map as each entry is a rational function in the coordinate functions where the denominator doesn't vanish on the domain.

- (b) The set $\mathbb{R} \setminus \{0\} = \mathbb{R}_{<0} \cup \mathbb{R}_{>0}$ is disconnected as union of disjoint, nonempty, open subsets. Then $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ is the preimage of a disconnected set under a continuous map, and is hence disconnected as it can be covered by $\det^{-1}(\mathbb{R}_{<0})$ and $\det^{-1}(\mathbb{R}_{>0})$.
- (c) Note that if $(x, y, z) \in V = \{(x, y, z) \mid xy z > 0\}$, we cannot simultaneously have x = z = 0 as otherwise 0 > 0. Hence we can cover V by two open sets $V \cap \{x \neq 0\}$ and $V \cap \{z \neq 0\}$. We can refine this open cover to a cover of three sets which we denote

$$V_{x>0} = V \cap \{x > 0\}, V_{x<0} = V \cap \{x < 0\}, \text{ and } V_{z<0} = V \cap \{z < 0\}.$$

Observe that $V_{x>0}$ is homeomorphic to $\mathbb{R} \times (\mathbb{R}_{>0})^2$ which is connected as a product of connected sets. A homeomorphism given explicitly by $(x,y,z) \mapsto (y;x,xy-z)$ and inverse $(s;t,u) \mapsto (t,s,st-u)$. Similarly, $V_{x<0}$ is homeomorphic to $\mathbb{R} \times (\mathbb{R}_{>0})^2$ with a homeomorphism given explicitly by $(x,y,z) \mapsto (y;-x,xy-z)$ and inverse $(s;t,u) \mapsto (-t,s,st-u)$. Finally, $V_{z<0}$ is homeomorphic to $\mathbb{R} \times (\mathbb{R}_{>0})^2$ with a homeomorphism given explicitly by $(x,y,z) \mapsto (y;-x,xy-z)$ and inverse $(s;t,u) \mapsto (-t,s,st-u)$.

Then the intersections $(1,1,-1) \in V_{x>0} \cap V_{z<0}$ and $(-1,-1,-1) \in V_{x>0} \cap V_{z<0}$ are nonempty, and so $V_{x>0} \cup V_{z<0}$ and $V_{x<0} \cap V_{z<0}$ are connected as the union of connected open sets with nonempty intersection. These have nonempty intersection, namely $V_{z<0}$, and hence their union V is connected.

[Alternative solution using path connectedness.] Alternatively, we show that V is path connected by constructing a path from any $(x, y, z) \in V$ to the point $(0, 0, -1) \in V$.

First suppose that z > 0. Then for any z' < z, we have xy - z' > xy - z > 0 and hence $(x, y, z') \in V$. Then

$$\gamma : [0,1] \to V, \quad t \mapsto (x, y, (1-t)z - t)$$

is a path within V connecting (x, y, z) to (x, y, -1) inside V.

Next, if z < 0, we have that for any $t \in [0, 1]$, we have $txy - z > tz - z > (t - 1)z \ge 0$. So $t \mapsto (tx, y, z)$ is a path connecting (x, y, z) to (0, y, z) inside V. Similarly, $t \mapsto (0, ty, z)$ is a path connecting (0, y, z) to (0, 0, z).

At this stage, if z=-1 we are done, but if z<0 is not equal to -1, we can use one final path $t\mapsto (0,0,(1-t)z-t)$ to connect (0,0,z) with (0,0,-1). As the third coordinate is negative throughout, we check $0\times 0-((1-t)z-t)=t+(1-t)z>0$ to see that the path stays in V. Hence any point is path connected to (0,0,-1), and V is path connected.

(d) A connected component is a maximal (by inclusion) connected subset. Since the continuous image of a connected component is connected, if U is a connected component of $GL_2(k)$ we must have $\det(U) \subset \mathbb{R}_{>0}$ or $\det(U) \subset \mathbb{R}_{<0}$, so $U \subseteq \operatorname{GL}_2^-(\mathbb{R})$ or $\operatorname{GL}_2^+(\mathbb{R})$. It remains to show that $\operatorname{GL}_2^-(\mathbb{R})$ and $\operatorname{GL}_2^+(\mathbb{R})$ are connected. Note that these two spaces are homeomorphic under a map which negates one column/row. Explicitly this can given by left multiplication by a $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, and multiplying again gives its continuous inverse, so this is a homeomorphism. Hence it suffices to prove connectedness of one of these sets, and we will do $\operatorname{GL}_2^+(\mathbb{R})$. Note that we can cover

$$\operatorname{GL}_{2}^{+}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc > 0 \right\}$$

by four open sets $U_b^+ = \{b>0\}$, $U_b^- = \{b<0\}$, $U_d^+ = \{d>0\}$, and $U_d^- = \{d<0\}$. From part (c), we have that $V = \{(x,y,z) \in \mathbb{R}^3 \mid xy-z>0\}$ is connected and hence $V \times \mathbb{R}_{>0}$ is connected as the product of two connected spaces. Observe that,

$$\phi_b^+: V \times \mathbb{R}_{>0} \to U_b^+, \quad (x, y, z; t) \mapsto \begin{pmatrix} x & t \\ z & yt \end{pmatrix}$$

is a continuous surjective map onto U. Indeed, xyt-zt=t(xy-z)>0, and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is mapped onto by (a,d/t,c;b). So U_b^+ is connected as the image of a connected set under a continuous map. Similarly, we have continuous surjections onto U_b^- , U_d^+ , and U_d^- by the maps

$$\begin{split} \phi_b^- : & V \times \mathbb{R}_{>0} \to U_b^-, \quad (x,y,z;t) \mapsto \begin{pmatrix} x & -t \\ -z & ty \end{pmatrix}, \\ \phi_d^+ : & V \times \mathbb{R}_{>0} \to U_d^+, \quad (x,y,z;t) \mapsto \begin{pmatrix} -z & -xt \\ y & t \end{pmatrix} \\ \phi_d^- : & V \times \mathbb{R}_{>0} \to U_d^-, \quad (x,y,z;t) \mapsto \begin{pmatrix} z & -xt \\ y & -t \end{pmatrix} \end{split}$$

Then notice that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in U_b^+ \cap U_d^+ \neq \emptyset$, so $U_b^+ \cup U_d^+$ is connected. Similarly, $\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \in U_b^- \cap U_d^- \neq \emptyset$, so $U_b^{+-} \cup U_d^-$ is connected.

Finally, $\operatorname{GL}_2^+(\mathbb{R})$ is covered by both $(U_b^+ \cap U_d^+)$ and $(U_b^- \cap U_d^-)$, which have nonempty intersection (for example $\begin{pmatrix} 1 & -1 \\ 01 & \end{pmatrix}$), and thus we conclude that $\operatorname{GL}_2^+(\mathbb{R})$ is connected.

- (e) Consider the matrices $\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, and denote their equivalence classes in $M_{2,4}/\mathrm{GL}_2(\mathbb{R})$ by $[\mathbf{0}]$ and [A]. Let $p:M_{2,4} \to M_{2,4}/\mathrm{GL}_2(\mathbb{R})$ denote the quotient map. Let U be an open set of $[\mathbf{0}]$, then $p^{-1}(U)$ is an open set around $\mathbf{0}$. So there exists an $\varepsilon > 0$ such that the open ball $B(\mathbf{0}, \varepsilon) \subset U$. Now note that $\begin{pmatrix} 1/t & 0 & 0 \\ 0 & 1/t \end{pmatrix} A = \begin{pmatrix} 1/t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is a representative of [A] which for $t > 1/\varepsilon$ will be in $B(\mathbf{0}, \varepsilon)$. Hence, any open set of $[\mathbf{0}]$ contains [A], so these points cannot be separated by disjoint open sets and $M_{2,4}/\mathrm{GL}_2(\mathbb{R})$ is not Hausdorff.
- (f) The space $X=M_{2,4}^1/GL_2(\mathbb{R})$ is neither open nor closed inside $M_{2,4}/\mathrm{GL}_2(\mathbb{R})$. It is not closed as in part (e) we showed that any open set of $\mathbf{0}$ intersects X, and yet $\mathbf{0}$ is of rank 0 so $\mathbf{0} \notin X$. Next, we show that X is not open in $M_{2,4}/GL_2(\mathbb{R})$. Again consider the point $[A] \in X$ where $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Let $U \subset M_{2,4}/\mathrm{GL}_2(\mathbb{R})$ be an open set containing [A]. Then since U is open, its preimage $p^{-1}(U)$ is open in $M_{2,4}$. Let $\varepsilon > 0$ be such that $B(A,\varepsilon) \subset p^{-1}(U)$. Then observe that $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \varepsilon/2 & 0 & 0 \end{pmatrix} \in B(A,\varepsilon)$, and so $[B] \in U$. But B is a matrix of rank 2, and so $[B] \notin X$. Hence X contains non-interior points, and is not open.
- (g) We construct a map $\varphi: M^1_{2,4}/\mathrm{GL}_2(\mathbb{R}) \to \mathbb{RP}^3$ recalling that for 3 dimensional projective space we have homeomorphisms

$$\mathbb{RP}^3 \cong (\mathbb{R}^4 \setminus \{0\}) / (x \sim \lambda x) \cong S^3 / \{\pm 1\}.$$

Let $A \in M_{2,4}^1$ be of rank 1, then the row vectors $w_1, w_2 \in \mathbb{R}^4$ are proportionate, and their span $\langle w_1, w_2 \rangle$ is a one dimensional subspace of \mathbb{R}^4 , i.e., a point in \mathbb{RP}^3 .

Note that $\overline{\varphi}$ is invariant under the $GL_2(\mathbb{R})$ action on $M_{2,4}^1$ as row operations don't change the span of the rows. Hence, $\overline{\varphi}$ induces a well defined function $\varphi: X \to \mathbb{RP}^3$ such that $\overline{\varphi}(A) = \varphi(p(A))$.

Let U be an open set of \mathbb{RP}^3 . Up to taking a smaller open set, we may assume that one of the coordinates doesn't vanish on U. Without loss of generality, we then have

$$U \subset \{[x_1:x_2:x_3:x_4] \in \mathbb{RP}^3 \mid x_4 \neq 0\} \cong \mathbb{R}^4 \cap \{x_4 = 1\} \cong \mathbb{R}^3.$$

Then U is homeomorphic to some open subset \overline{U} of \mathbb{R}^3 under the identification above.

Now consider the preimage U under $\overline{\varphi}$. This is the set matrices in $M_{2,4}^1$ whose row span intersects with $\overline{U} \subset \mathbb{R}^4 \cap \{x_4 = 1\}$, i.e.

$$\overline{\varphi}^{-1}(U) = \left\{ \begin{pmatrix} t_1 v_1 & t_1 v_2 & t_1 v_3 & t_1 \\ t_2 v_1 & t_2 v_2 & t_2 v_3 & t_2 \end{pmatrix} \in M_{2,4}^1 \, \middle| \, \begin{array}{c} (t_1, t_2) \neq (0, 0), \\ (v_1, v_2, v_3, 1) \in \overline{U} \end{array} \right\}.$$

To see this is an open set of $M_{2,4}^1$, fix

$$A_0 = \begin{pmatrix} s_0w_1 & s_0w_2 & s_0w_3 & s_0 \\ t_0w_1 & t_0w_2 & t_0w_3 & t_0 \end{pmatrix} \in \overline{\varphi}^{-1}(U).$$

Here, at least one of s_0 or t_0 is nonzero. Let's assume WLOG that $s_0 \neq 0$, the case of $t_0 \neq 0$ is identical with swapped letters. Note that as $\overline{U} \subset \mathbb{R}^3$ is open, there is an $\varepsilon > 0$ such that $(v_1, v_2, v_3, 1) \in \overline{U}$ if $|v_i - w_i| < \varepsilon$ for each i = 1, 2, 3.

Now take some $A' = \begin{pmatrix} sv_1 & sv_2 & sv_3 & s \\ tv_1 & tv_2 & tv_3 & t \end{pmatrix}$ which differs from A_0 by at most some $\delta > 0$ in each entry, so we have bounds $|sv_i - s_0w_i| < \delta$ and $|tv_i - t_0w_i| < \delta$ for i = 1, 2, 3, and $|s - s_0| < \delta$, $|t - t_0| < \delta$. Note that the reverse triangle inequality gives that $||s| - |s_0|| < \delta$, and so for $\delta < \frac{|s_0|}{2}$ we have $s \neq 0$. Then for each i = 1, 2, 3 we have that

$$|v_{i} - w_{i}| = |v_{i} - \frac{s_{0}}{s}w_{i} + \frac{s_{0}}{s}w_{i} - w_{i}|,$$

$$\leq \frac{1}{|s|} (|sv_{i} - s_{0}w_{i}| + |s_{0}w_{i} - sw_{i}|),$$

$$\leq \frac{1}{|s_{0}| - \delta} (\delta + \delta|w_{i}|) \leq \frac{\delta}{|s_{0}| - \delta} (1 + |w_{i}|) < \varepsilon$$

where the last inequality can be attained for sufficiently small δ . One can check that we need $\delta < \frac{\varepsilon |s_0|}{\varepsilon + 1 + |w_i|}$ for each i.

Thus, the map $\overline{\varphi}$ is continuous. Further, as $\overline{\varphi} = \varphi \circ p$, we have $\overline{\varphi}^{-1}(U) = p^{-1}(\varphi^{-1}(U))$. Hence, $\varphi^{-1}(U)$ is open by the definition of the quotient topology and we conclude that $\varphi : X \to \mathbb{RP}^3$ is continuous.

Next, suppose $\overline{\varphi}(A) = [w] = \overline{\varphi}(A')$ for two matrices $A \in M^1_{2,4}$, then picking a representative $w \in S^3$, we can write $A = (t_1w, t_2w)^T$ and $A' = (t'_1w, t'_2w)^T$ for some constants $t_1, t_2, t'_1, t'_2 \in \mathbb{R}^4$. As not both of t_1, t_2 can be zero, if $t_1 = 0$, we can left multiply A by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ to get $A = (t_2w, t_1w)^T$ and swap t_1 and t_2 . Now assuming WLOG that $t_1 \neq 0$, we have $A' = \begin{pmatrix} t'_1/t_1 & 0 \\ (t'_2-t_2)/t_1 & 1 \end{pmatrix} A$. So the map $\varphi : X \to \mathbb{RP}^3$ is injective.

Also, $\varphi: X \to \mathbb{RP}^3$ is surjective as for any point $[w] \in \mathbb{RP}^3$, it is mapped onto by the matrix $(w,0)^T \in M^1_{2,4}$ under the map $\overline{\varphi}$ and hence mapped onto by its equivalence class under φ . Thus, we have a continuous bijection between X and \mathbb{RP}^3 . It remains to see that this inverse $[w] \mapsto [(w,0)^T]$ is continuous.

Let $\overline{\psi}: S^3 \to M_{2,4} \cong \mathbb{R}^8$ be given by $w \mapsto (w,0)^T$. This is a continuous map as each entry is given by coordinate functions (alternatively, it's a composition of the embeddings $S^3 \hookrightarrow \mathbb{R}^4 \hookrightarrow \mathbb{R}^8$). As $w \neq 0$ for $w \in S^3$ and only one row is nonzero $(w,0)^T$, the image is contained inside $M_{2,4}^1$. So we have $\overline{\psi}: S^3 \to M_{2,4}^1$. Observe that the matrices $(w,0)^T$ and $(w',0)^T$ are row transformation equivalent if and only if $w = \pm w'$, i.e. either the same point or antipodal

points on the sphere S^3 . Therefore, we composing with p, we get a continuous map

$$\psi = p \circ \overline{\psi} : S^3 \to X, \quad w \mapsto [(w, 0)^T],$$

which maps w and -w to the same point in X. Then by the quotient property for $\mathbb{RP}^3 \cong S^3/\{\pm 1\}$, we get a well defined continuous map

$$\overline{\overline{\psi}}: \mathbb{RP}^3 \to X, \quad [w] \mapsto [(w,0)^T].$$