	Lab-9 DATE:
AIM	Algorithm by Using Genetic
	Item weight(kg) value A 5 12
	B 3 5
	C S - 7 DQ 10
	D 2 7
	Lating i convince in the
	These are sour items. Each item is
	associated with some weight (w) and
	value at item(V).
	Value ax ixemety.
	There is a knapsack k with limited
	There is a knapsack h with himself 12 kg
	capacity that can hold almost 12 kg
	PRoblem
	The Problem is that which item should
	be kept in the knapsack so as it will
Cun !	maximizes knapsack value without breaking
	Knapsack.
and A	
Stepl	chromosomes Encoding
	Lets tuke c
	consider an array ci represents all
	items togetnes
	120115 LOGATICS
	Ci
none	A B C D
CV341	wene o - sepsesents absence of item in
	the unapsacu

Value of knapsack - value of B + value of 5+10 300 300 15 May 500 weight of knapsack = weight of B + weight of item C 2007101 7100 = 3+7 2250010 = 10 kg Knapsack capacity = 12 kg as 12kg 710kg so, c, is accepted -) Similury Check 508 Cz, Cz, Cz, Cu aceneration 1 C, 0 1 1 0 C₂ 0 1 0 1 5 12 C_3 1 1 0 110 24 C4 1 1 1 1 step3: selection -) Next step is to collect the filtes individual and wake up the next generation chromosome

By using Roulette wheel selection

spin the Roulette wheel and whenever the wheel stops, the individual gets selected at that point.

The individual that has the highest streess value gets larger shall of the wheel

e.g. Total sitness value = 15+12+24+0

sitness value of 3 = 24; largest sitness so, 3 occupies half of the wheel as

24/51

the highest probability of getting selected in the next generation

/				221HIDON		
Besos	re a	PPLYI	ng n	nutution		
0.5,	1	1	0	0		
OSZ	0	1				
<i>c</i> ₃	1	1	0			
CL	0	1	0	1		
ASTER	appl	ying	mu	tution	fit	ness
					ω	V
05,	0	1	0	0	3	5
052	0	0			9	17
C3	1		0		10	21
CZ	0		0		5	1
, ,	Total	sitne	ss vo	uue = 5	5+17+20	4+12