1 Mesh Multiplication

Mesh Multiplication je algoritmus pre výpočet násobku dvoch matíc. Obecne algoritmy pre výpočet násobku dvoch matíc očakávajú na vstupe dve matice A a B o rozmeroch $N \times M$ a $M \times K$. Preto je základom algoritmu mriežka $N \times K$ procesorov. Každý procesor P(i,j) obsahuje register $c_{i,j}$ obsahujúci hodnotu na i-tom riadku a j-tom stĺpci výslednej matice C.

Prvky matíc sa privádzajú do procesoru P(1,1). Prvky matíce A sa privádzajú zľava a prvky matíce B sa privádzajú zhora. S tým, že prvky nasledujúceho riadka alebo stĺpca sú o jednu pozíciu posunuté. Teda v prvom kroku sa vynásobia prvky $a_{1,1}$ a $b_{1,1}$, v ďalšom kroku sa prvok $a_{1,1}$ posunie do procesoru P(1,2), kde sa vynásobí s prvkom $b_{1,2}$, a podobne pokračuje ďalej. Obdobne algoritmus funguje aj pre prvky b. Algoritmus končí až sa vynásobia prvky $a_{n,m}$ a $b_{m,k}$.

Obr. 1: Mesh Multiplication (Zdroj: https://web.njit.edu/gilhc/labman/ECE459/e2.htm)

1.1 Zložitosť

Presná optimálna zložitosť algoritmu násobenia matíc nie je známa, ale je približne $O(n^x)$, kde 2 < x < 3. Žiaden algoritmus nemá lepšiu zložitosť ako $O(n^2)$. Prvky $a_{n,1}$ a $b_{1,k}$ potrebujú m + k + n - 2 krokov, aby sa dostali k poslednému procesoru, preto:

- $p(n,k) = n \cdot k = O(n^2)$
- t(n) = m + n + k 2 = O(n)
- $c(n) = t(n) \cdot p(n) = O(n) \cdot O(n^2) = O(n^3)$, čo nie je optimálna cena

2 Vlastná implementácia algoritmu

Výsledná implementácia sa od uvedeného algoritmu mierne líši. Hlavnou zmenou oproti vyššie popísanému algoritmu je, že hodnoty matíc A a B neprichádzajú pre nasledujúce riadky alebo stĺpce oneskorené, ale sú naraz poslané príslušnému procesoru. Akonáhle procesor obdrží hodnoty $a_{i,m}$ a $b_{m,k}$ vypočíta ich súčin, ten pripočíta k aktuálnej hodnote svojho registru C a hodnoty pošle susedným procesorom. Hodnotu a procesoru P(i, j + 1) ak j < k, a hodnotu b procesoru P(i + 1, j) ak i < n.

Komunikácia procesorov je znázornená na nasledovnom sekvenčnom diagrame. Zasielané správy v sekvenčnom diagrame majú formát $v_{i,j}$, kde $v \in \{a,b,c\}$ je hodnota matice A, B alebo C (výsledná matica násobenia) v i-tom riadku a j-tom stĺpci.

Obr. 2: Sekvenčný diagram

2.1 Namerané hodnoty

Na meranie času bola použitá funkcia std::chrono::high_resolution_clock::now() zo štandardnej knižnice C++ chrono. Meranie pre každú veľkosť vstupných dát bolo vykonané 10x na rovnakých maticiach. Násobené boli štvorcové matice rovnakých rozmerov ako výsledná matica. Namerané priemerné hodnoty pre rôzne veľkosti vstupu sú zobrazené v grafe na obrázku 3.

3 Záver

Z nameraných hodnôt znázornených v grafe možno vyvodiť, že implementovaný algoritmus dodržuje teoretickú lineárnu zložitosť algoritmu. Krivka s menšími odchýlkami kopíruje trendovú úsečku. Odchýlky sú spôsobené rozdielmi medzi jednotlivými meraniami, pretože pri niektorých meraniach došlo k 2-3 násobnému spomaleniu oproti ostatným pokusom. Zvýšením počtu meraní by sa dosiahli presnejšie výsledky.

Obr. 3: Namerané časy