# Laptop Price Prediction

Presented by: Yash Sahu

# **Table of Contents**

- (1) Introduction & Problem Statement
- Dataset Description
- Data Visualization
- Techniques Used
- Model Training & Evaluation
- Web Application
- Output & Results



## Introduction & Problem Statement

#### Introduction

- Laptop prices vary based on multiple factors like brand, specifications, and market trends.
- Predicting laptop prices helps buyers make informed decisions and assists businesses in pricing strategies.

#### **Problem Statement**

- Manually determining a laptop's fair price is complex due to diverse specifications.
- The goal is to build a machine learning model that predicts laptop prices accurately based on key features.



## **Dataset Description**

#### Overview

- The dataset contains various features influencing laptop prices.
- Key attributes include Brand, Processor, RAM, Storage, Screen Size, GPU, Operating System, and Price.

### **Data Insights**

- There are total 1275 rows and 23 columns.
- There is no any null values in dataset.



## **Dataset Description**

| □ df.head()         |         |                |           |        |        |           |             |          |         |        |         |             |          |                  |                |                  |                    |                      |             |                           |
|---------------------|---------|----------------|-----------|--------|--------|-----------|-------------|----------|---------|--------|---------|-------------|----------|------------------|----------------|------------------|--------------------|----------------------|-------------|---------------------------|
| <u>-</u>            | Company | Product        | TypeName  | Inches | Ram    | OS Weight | Price_euros | Screen   | ScreenW | Retina | Display | CPU_company | CPU_freq | CPU_model        | PrimaryStorage | SecondaryStorage | PrimaryStorageType | SecondaryStorageType | GPU_company | GPU_model                 |
| 0                   | Apple   | MacBook<br>Pro | Ultrabook | 13.3   | 8 mac  | DS 1.37   | 1339.69     | Standard | 2560    |        | Yes     | Intel       | 2.3      | Core i5          | 128            | 0                | SSD                | No                   | Intel       | Iris Plus<br>Graphics 640 |
| 1                   | Apple   | Macbook<br>Air | Ultrabook | 13.3   | 8 mac  | DS 1.34   | 898.94      | Standard | 1440    |        | No      | Intel       | 1.8      | Core i5          | 128            | 0                | Flash Storage      | No                   | Intel       | HD Graphics<br>6000       |
| 2                   | HP      | 250 G6         | Notebook  | 15.6   | 8 No   | DS 1.86   | 575.00      | Full HD  | 1920    |        | No      | Intel       | 2.5      | Core i5<br>7200U | 256            | 0                | SSD                | No                   | Intel       | HD Graphics<br>620        |
| 3                   | Apple   | MacBook<br>Pro | Ultrabook | 15.4   | 16 mac | DS 1.83   | 2537.45     | Standard | 2880    |        | Yes     | Intel       | 2.7      | Core i7          | 512            | 0                | SSD                | No                   | AMD         | Radeon Pro<br>455         |
| 4                   | Apple   | MacBook<br>Pro | Ultrabook | 13.3   | 8 mac  | DS 1.37   | 1803.60     | Standard | 2560    |        | Yes     | Intel       | 3.1      | Core i5          | 256            | 0                | SSD                | No                   | Intel       | Iris Plus<br>Graphics 650 |
| 5 rows × 23 columns |         |                |           |        |        |           |             |          |         |        |         |             |          |                  |                |                  |                    |                      |             |                           |

This is the output of df.head() first five rows of dataset.





**Laptop Company Distribution** 



Top 5 Companies





Top 5 Products



Barchart for Laptop Type





Plots for Screen feature





Plots for CPU Model feature



## Techniques Used

#### Introduction

experimented with multiple regression algorithms to predict laptop prices and evaluated their performance. The models tested include:

- Linear Regression Basic model, but it struggled with complex relationships.
- Decision Tree Regressor Performed better but prone to overfitting.
- Random Forest Regressor Achieved the best performance.
- XGBoost Regressor Showed good results but slightly lower than Random Forest.

#### **Best Model Performance:**

- After testing, Random Forest Regressor provided the highest accuracy:
- R<sup>2</sup> Score on Training Data: 0.98
- R<sup>2</sup> Score on Test Data: 0.87



# Techniques Used

#### **Model Evaluation Metrics**

- R<sup>2</sup> Score Measures model accuracy.
- Mean Squared Error (MSE) Determines prediction errors.



## **Model Training & Evaluation**

#### **Model Training Process:**

- 1. Data Splitting:
- Dataset was split into 80% training data and 20% test data
- 2. Feature Engineering & Preprocessing:
- One-Hot Encoding for categorical variables (e.g., Brand, OS).
- Feature Scaling applied where necessary.
- 3. Model Training:
- Tested multiple algorithms (Linear Regression, Decision Tree, XGBoost, etc.).
- Random Forest Regressor performed the best.

## **Performance Analysis**

- High training accuracy (0.98) suggests a well-fitted model.
- Test accuracy (0.87) indicates good generalization.



## **Model Training & Evaluation**

### **Workflow Steps**

- 1. Data Collection Gather laptop specifications & price dataset.
- 2. Data Preprocessing Handle missing values, apply encoding, and feature scaling.
- 3. Feature Selection Choose key features affecting price (RAM, Processor, Storage, etc.).
- 4. Train-Test Split Split data into training (80%) and testing (20%).
- 5. Model Selection & Training Train multiple models (Linear Regression, Decision Tree, Random Forest, XGBoost).
- 6. Model Evaluation Compare R<sup>2</sup> score & MSE, select the best model.
- 7. Prediction & Output Use the trained model to predict laptop prices.
- 8. Deployment (if applicable) Integrate model into a web app (Flask/Streamlit).



# **Model Training & Evaluation**



Workflow Diagram



## Web Application

### **Web Application**

#### **Framework Used: Streamlit**

- Developed an interactive web application for laptop price prediction using Streamlit.
- Simple and lightweight UI for real-time predictions.

## **Workflow of Web App**

- 1. User enters laptop details in the input form.
- 2. Model processes the input and makes a prediction.
- 3. Predicted price is displayed instantly.



## **Output & Results**

### **Web Application**

• The Random Forest Regressor was the best-performing model.

• R<sup>2</sup> Score:

• Training Data: 0.98

• Test Data: 0.87

#### **Observations**

- Model predicts prices with high accuracy.
- Some slight variations due to feature importance & dataset limitations.
- Further tuning could improve generalization.



# Thank You!

