A Literate Approach for Improving the Verifiability, Reusability and Reproducibility of Scientific Computing Software

Spencer Smith, Jacques Carette, Dan Szymczak, Steven Palmer

> Computing and Software Department Faculty of Engineering McMaster University

CAIMS 2017, Third Canadian Symposium in Numerical Analysis and Scientific Computing (CSNASC):
Simulation, July 18, 2017

- Goal Improve quality of {SCS}
- Idea Adapt ideas from SE
- Document Driven Design
 - Good improves quality
 - Bad "manual" approach is too much work

Solution

- Capture knowledge
- Generate all things
- Avoid duplication
- Traceability

Showing great promise

- · Significant work yet to do
- Looking for examples/partners

Slide 9 of ??

Motivation: Improve Quality

Slide 10 of ??

"Faked" Rational Design Process

SWHS example at https://github.com/smiths/swhs

Slide 11 of ??

The Challenge

- Documentation provides advantages
 - Improves verifiability, reusability, reproducibility, etc.
 - From ?
 - easier reuse of old designs
 - better communication about requirements
 - more useful design reviews
 - etc.
 - New doc found 27 errors (?)
 - Developers see advantage (?)
- But documentation is felt to be ...
 - Too long
 - Too difficult to maintain
 - Not amenable to change
 - Too tied to waterfall process
 - Reports counterproductive (?)
- The Solution?

Slide 12 of ??

(H╡/|╡¦∛;\/\[€ LTHETHINGS memegenerator.net

Knowledge Capture

Slide 14 of ??

Drasil

Slide 15 of ??

Slide 16 of ??

$J_{\mbox{tol}}$ in SRS.pdf

Refname	DD:sdf.tol
Label	J_{tol}
Units	
Equation	$J_{tol} = \log \left(\log \left(\frac{1}{1 - P_{btol}} \right) \frac{\left(\frac{a}{1000} \frac{b}{1000} \right)^{m-1}}{k \left((E*1000) \left(\frac{h}{1000} \right)^2 \right)^m * LDF} \right)$
Description	J_{tol} is the stress distribution factor (Function) based on Pbtol P_{btol} is the tolerable probability of breakage a is the plate length (long dimension) b is the plate width (short dimension) m is the surface flaw parameter k is the surface flaw parameter E is the modulus of elasticity of glass E is the actual thickness E is the load duration factor

J_{tol} in SRS.tex

```
\noindent \begin{minipage}{\textwidth}
\begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}}
\toprule \textbf{Refname} & \textbf{DD:sdf.tol}
\phantomsection
\label{DD:sdf.tol}
\\ \midrule \\
Label & $J_{tol}$
\\ \midrule \\
Units &
\\ \midrule \\
Equation & $J_{tol}$ = $\log\left(\log\left(\frac{1}{1-P_
    {btol}}\right)\frac{\left(\frac{a}{1000}\frac{b}
    {1000}\right)^{m-1}}{k\left(\left(E*1000\right)\right)}
    (\frac{h}{1000}\right)^{2}\right)^{m}*LDF}\right)$
\\ \midrule \\
Description & $J_{tol}$ is the stress distribution factor
     (Function) based on
              Pbtol\newline$P_{btol}$ is the tolerable
                  probability of breakage ...
\end{minipage}\\
```

J_{tol} in SRS.html

```
<a id="">
<div class="equation">
<em>J<sub>tol</sub></em> = log(log(<div class="fraction">
<span class="fup">
1
</span>
<span class="fdn">
1 − <em>P<sub>btol</sub></em>
</span>
</div>)<div class="fraction">
<span class="fup">
(<div class="fraction">
<span class="fup">
<em>a</em>
</span>
<span class="fdn">
1000
</span>
</div><div class="fraction">
. . .
```

J_{tol} in Python

J_{tol} in Java

J_{tol} in Drasil (Haskell)

```
stressDistFac = makeVC "stressDistFac" (nounPhraseSP
  $ "stress distribution" ++ " factor (Function)") cJ
sdf tol = makeVC "sdf tol" (nounPhraseSP $
  "stress distribution" ++
  " factor (Function) based on Pbtol")
  (sub (stressDistFac ^. symbol) (Atomic "tol"))
tolStrDisFac_eq :: Expr
tolStrDisFac_eq = log (log ((1) / ((1) - (C pb_tol)))
  * ((Grouping (((C plate_len) / (1000)) * ((C
     plate width) / (1000)))) : ^
  ((C sflawParamM) - (1)) / ((C sflawParamK) *
  (Grouping (Grouping ((C mod elas) * (1000)) *
  (square (Grouping ((C act_thick) / (1000))))
  )) : (C sflawParamM) * (C loadDF))))
tolStrDisFac :: ODefinition
tolStrDisFac = mkDataDef sdf tol tolStrDisFac eq
```

J_{tol} without Unit Conversion

1	Reference Material 3 1.1 Table of Units
	1.1 Table of Units 3 1.2 Table of Symbols 3 1.3 Abbreviations and Acronyms 4
2	Introduction 5 2.1 Purpose of Document 5 2.2 Scope of Requirements 5 2.3 Characteristics of Intended Reader 6 2.4 Organization of Document 6
3	Stakeholders 6 3.1 The Client 6 3.2 The Customer 6
4	General System Description 6 4.1 User Characteristics 7 4.2 System Constraints 7
5	Scope of the Project 7 5.1 Product Use Case Table 7 5.2 Individual Product Use Cases 7
6	Specific System Description 8 6.1 Problem Description 8 6.1.1 Terminology and Definitions 8 6.1.2 Physical System Description 10 6.1.3 Goal Statements 10 6.2 Solution Characteristics Specification 10 6.2.1 Assumptions 10 6.2.2 Theoretical Models 12 6.2.3 General Definitions 13 6.2.4 Data Definitions 13 6.2.5 Instance Models 17 6.2.6 Data Constraints 18
7	Requirements 19 7.1 Functional Requirements 19 7.2 Non-Functional Requirements 21
8	Likely Changes 21

Traceability Graph

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	<i>L</i> > 0	1.5 m	10%
$ ho_{P}$	$ ho_P>0$	1007 kg/m ³	10%

$$E_{W} = \int_{0}^{t} h_{C} A_{C} (T_{C} - T_{W}(t)) dt - \int_{0}^{t} h_{P} A_{P} (T_{W}(t) - T_{P}(t)) dt$$

- If wrong, wrong everywhere
- · Sanity checks captured and reused
- · Generate guards against invalid input
- Generate test cases
- Generate view suitable for inspection
- Traceability for verification of change

Slide 26 of ??

Reusability

- De-embed knowledge
- Reuse throughout document
 - Units
 - Symbols
 - Descriptions
 - Traceability information
- Reuse between documents
 - SRS
 - MIS
 - Code
 - Test cases
- Reuse between projects
 - Knowledge reuse
 - A family of related models, or reuse of pieces
 - Conservation of thermal energy
 - Interpolation
 - Etc.

Reproducibility

- Usual emphasis is on reproducing code execution
- However, ? show reproducibility challenges due to undocumented:
 - Assumptions
 - Modifications
 - Hacks
- Shouldn't it be easier to independently replicate the work of others?
- Require theory, assumptions, equations, etc.
- Drasil can potentially check for completeness and consistency

Slide 28 of ??

NO

Future Work

Slide 30 of ??

Drasil Framework for LSS

- SCS has the opportunity to lead other software fields
- Document driven design is feasible
- Requires an investment of time
- Documentation does not have to be painful
- Develop/refactor via practical case studies
- Ontology may naturally emerge

References I

Slide 31 of ??