TIPE (Océan)

Un phénomène d'hystérésis dans un modèle de circulation thermohaline

Neven Villani (353)

Épreuve de TIPE

Session 2020

Plan de l'exposé

- Introduction
- 2 Construction du modèle
- 3 Résumé des résultats de l'étude analytique
- 4 Simulation numérique
- 6 Conclusion

- Circulation en surface de l'équateur vers le pôle
- Eaux chaudes
- Extension du Gulf Stream
- Inquiétudes liées au rôle climatique :
 - Influence exacte mal connue
 - Inversion possible?
 - Refroidissement local?
 - Phénomène d'hystérésis?

- Circulation en surface de l'équateur vers le pôle
- Eaux chaudes
- Extension du Gulf Stream
- Inquiétudes liées au rôle climatique :
 - Influence exacte mal connue
 - Inversion possible?
 - Refroidissement local?
 - Phénomène d'hystérésis?

- Circulation en surface de l'équateur vers le pôle
- Eaux chaudes
- Extension du Gulf Stream
- Inquiétudes liées au rôle climatique :
 - Influence exacte mal connue
 - Inversion possible?
 - Refroidissement local?
 - Phénomène d'hystérésis?

- Circulation en surface de l'équateur vers le pôle
- Eaux chaudes
- Extension du Gulf Stream
- Inquiétudes liées au rôle climatique :
 - Influence exacte mal connue
 - Inversion possible?
 - Refroidissement local?
 - Phénomène d'hystérésis?

Qu'est-ce que l'hystérésis?

"Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E = f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E = f(C) obtenue à la décroissance de C."

Qu'est-ce que l'hystérésis?

"Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E = f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E = f(C) obtenue à la décroissance de C."

Source de:

- Non linéarité
- Irréversibilité

Premières approximations

- Géométrie simplifiée de l'océan
- Pas d'atmosphère
- Seulement deux compartiments homogènes

Premières approximations

- Géométrie simplifiée de l'océan
- Pas d'atmosphère
- Seulement deux compartiments homogènes

Premières approximations

- Géométrie simplifiée de l'océan
- Pas d'atmosphère
- Seulement deux compartiments homogènes

Le modèle de Stommel

Océan à deux compartiments homogènes

Équateur
$$(T_e(t), S_e(t))$$

Pôle
$$(T_p(t), S_p(t))$$

Forçage

Retour des grandeurs à leur valeur à l'équilibre

$$X^* \underbrace{\qquad \qquad} X(t)$$

$$\mathrm{d}X(t)_{\mathrm{Forçage}} = \frac{X^* - X(t)}{\tau_X} \cdot \mathrm{d}t$$

Le modèle de Stommel

Océan à deux compartiments homogènes

Équation d'état

Densité de l'eau de mer en fonction de sa salinité et de sa température

Le modèle de Stommel

Océan à deux compartiments homogènes

Circulation

Établissement du flux de surface

$$\phi = \lambda \cdot (\rho_p - \rho_e)$$

Le modèle de Stommel

Océan à deux compartiments homogènes

$$\mathrm{d}S_e(t)_{\mathrm{Couplage}} = \frac{S_e(t) \cdot (M_0 - \delta m) + S_p(t) \cdot \delta m}{M_0} - S_e(t)$$

$$\mathrm{d}S_e(t)_{\mathrm{Couplage}} = (S_p(t) - S_e(t)) \cdot \frac{\delta m}{M_0}$$

$$\delta m \equiv |\phi| \cdot \mathrm{d}t$$

$$dS_e(t)_{\text{Couplage}} = \frac{S_e(t) \cdot (M_0 - \delta m) + S_p(t) \cdot \delta m}{M_0} - S_e(t)$$
$$dS_e(t)_{\text{Couplage}} = (S_p(t) - S_e(t)) \cdot \frac{\delta m}{M_0}$$
$$\delta m \equiv |\phi| \cdot dt$$

$$dS_e(t)_{\text{Couplage}} = \frac{S_e(t) \cdot (M_0 - \delta m) + S_p(t) \cdot \delta m}{M_0} - S_e(t)$$
$$dS_e(t)_{\text{Couplage}} = (S_p(t) - S_e(t)) \cdot \frac{\delta m}{M_0}$$
$$\delta m \equiv |\phi| \cdot dt$$
$$dS_e(t) = dS_e(t)_{\text{Couplage}} + dS_e(t)_{\text{Forçage}}$$

$$\dot{T}_e = (T_p - T_e) \cdot \frac{\phi}{M_0} + \frac{T_e^* - T_e}{\tau_T}$$
 (1)

$$\dot{T}_p = (T_e - T_p) \cdot \frac{\phi}{M_0} + \frac{T_p^* - T_p}{\tau_T}$$
(2)

$$\dot{S}_e = (S_p - S_e) \cdot \frac{\phi}{M_0} + \frac{S_e^* - S_e}{\tau_S}$$
 (3)

$$\dot{S}_p = (S_e - S_p) \cdot \frac{\phi}{M_0} + \frac{S_p^* - S_p}{\tau_S}$$
 (4)

$$\phi = \lambda \cdot \Delta \rho \tag{5}$$

$$\Delta \rho = \rho_0 \cdot [\beta (S_e - S_p) - \alpha (T_e - T_p)] \tag{6}$$

$$\dot{T}_e = (T_p - T_e) \cdot \frac{\phi}{M_0} + \frac{T_e^* - T_e}{\tau_T}$$
(1)

$$\dot{T}_p = (T_e - T_p) \cdot \frac{\phi}{M_0} + \frac{T_p^* - T_p}{\tau_T}$$
 (2)

$$\dot{S}_e = (S_p - S_e) \cdot \frac{\phi}{M_0} + \frac{S_e^* - S_e}{\tau_S}$$
 (3)

$$\dot{S}_p = (S_e - S_p) \cdot \frac{\phi}{M_0} + \frac{S_p^* - S_p}{\tau_S}$$
 (4)

$$\phi = \lambda \cdot \Delta \rho \tag{5}$$

$$\Delta \rho = \rho_0 \cdot [\beta(S_e - S_p) - \alpha(T_e - T_p)] \tag{6}$$

$$\dot{T}_e = (T_p - T_e) \cdot \frac{\phi}{M_0} + \frac{T_e^* - T_e}{\tau_T}$$
 (1)

$$\dot{T}_p = (T_e - T_p) \cdot \frac{\phi}{M_0} + \frac{T_p^* - T_p}{\tau_T}$$
 (2)

$$\dot{S}_e = (S_p - S_e) \cdot \frac{\phi}{M_0} + \frac{S_e^* - S_e}{\tau_S}$$
 (3)

$$\dot{S}_p = (S_e - S_p) \cdot \frac{\phi}{M_0} + \frac{S_p^* - S_p}{\tau_S}$$
 (4)

$$\phi = \lambda \cdot \Delta \rho \tag{5}$$

$$\Delta \rho = \rho_0 \cdot [\beta(S_e - S_p) - \alpha(T_e - T_p)] \tag{6}$$

Résolution

Recherche de l'équilibre

$$\widehat{\alpha} = \left(1 + \left|\widehat{\phi}\right|\right) \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left|\widehat{\phi}\right|}\right)$$

Position d'équilibre

Allure de $\widehat{\phi} = f(\widehat{\alpha})$ et influence des paramètres

Position d'équilibre

Confirmation par la simulation de la stabilité

Évolution du système Diminution d'intensité du Gulf Stream

Évolution du système

Inversion brutale du sens de circulation

Évolution du système

Refroidissement aux pôles

Hystérésis

Irréversibilité de l'évolution

Hystérésis Cycle complet

Conclusion

Équation d'état Influence de la pression

Circulation

Loi de Fick et établissement du flux de surface

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{dn}{dx}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\phi = \lambda \cdot \Delta \rho$$

Circulation

Loi de Fick et établissement du flux de surface

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{dn}{dx}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\phi = \lambda \cdot \Delta \rho$$

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{dn}{dx}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\phi \equiv j \cdot m \cdot S$$

$$\rho \equiv m \cdot n$$

$$\phi = \lambda \cdot \Delta \rho$$

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{dn}{dx}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\phi \equiv j \cdot m \cdot S \qquad \rho \equiv m \cdot n$$

$$\phi = \lambda \cdot \Delta \rho$$

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} \, n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} \, n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\mathrm{d}n}{\mathrm{d}x}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\lambda \equiv \frac{D \cdot S}{\Delta x} \qquad \phi \equiv j \cdot m \cdot S \qquad \rho \equiv m \cdot n$$

$$\phi = \lambda \cdot \Delta \rho$$

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} \, n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} \, n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\mathrm{d}n}{\mathrm{d}x}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\lambda \equiv \frac{D \cdot S}{\Delta x} \qquad \phi \equiv j \cdot m \cdot S \qquad \rho \equiv m \cdot n$$

$$\phi = \lambda \cdot \Delta \rho$$

$$\Delta_{i \to f} U = m \cdot c \cdot (T^f - T^i)$$

$$\Delta_{i \to f} U_1 + \Delta_{i \to f} U_2 = 0$$

$$\cdot T_1^f + m_2 \cdot T_2^f = m_1 \cdot T_1^i + m_2 \cdot T_2^i$$

$$m_1 \cdot T^i + m_2 \cdot T^i$$

$$\underset{i \to f}{\Delta} M^{\text{sel}} = m \cdot (S^f - S^i)$$

$$m_1 \cdot S_1^f + m_2 \cdot S_2^f = m_1 \cdot S_1^i + m_2 \cdot S_2^i$$

$$S^f = \frac{m_1 \cdot S_1^i + m_2 \cdot S_2^i}{m_1 + m_2}$$

$$\underset{i \to f}{\Delta} U = m \cdot c \cdot (T^f - T^i)$$

$$\underset{i \to f}{\Delta} U_1 + \underset{i \to f}{\Delta} U_2 = 0$$

$$m_1 \cdot T_1^f + m_2 \cdot T_2^f = m_1 \cdot T_1^i + m_2 \cdot T_2^i$$

$$T^f = \frac{m_1 \cdot T_1^i + m_2 \cdot T_2^i}{m_1 + m_2}$$

$$\underset{i \to f}{\Delta} M^{\rm sel} = m \cdot (S^f - S^i)$$

$$\underset{i \to f}{\Delta} M_1^{\rm sel} + \underset{i \to f}{\Delta} M_2^{\rm sel} = 0$$

$$m_1 \cdot S_1^f + m_2 \cdot S_2^f = m_1 \cdot S_1^i + m_2 \cdot S_2^i$$

$$S^f = \frac{m_1 \cdot S_1^i + m_2 \cdot S_2^i}{m_1 + m_2}$$

$$\underset{i \to f}{\Delta} U = m \cdot c \cdot (T^f - T^i)$$

$$\underset{i \to f}{\Delta} U_1 + \underset{i \to f}{\Delta} U_2 = 0$$

$$m_1 \cdot T_1^f + m_2 \cdot T_2^f = m_1 \cdot T_1^i + m_2 \cdot T_2^i$$

$$T^f = \frac{m_1 \cdot T_1^i + m_2 \cdot T_2^i}{m_1 + m_2}$$

$$\underset{i \to f}{\Delta} M^{\rm sel} = m \cdot (S^f - S^i)$$

$$\underset{i \to f}{\Delta} M_1^{\text{sel}} + \underset{i \to f}{\Delta} M_2^{\text{sel}} = 0$$

$$m_1 \cdot S_1^f + m_2 \cdot S_2^f = m_1 \cdot S_1^i + m_2 \cdot S_2^i$$

$$S^f = \frac{m_1 \cdot S_1^i + m_2 \cdot S_2^i}{m_1 + m_2}$$

$$\Delta_{i \to f} U = m \cdot c \cdot (T^f - T^i) \qquad \Delta_{i \to f} M^{\text{sel}} = m \cdot (S^f - S^i)$$

$$\Delta_{i \to f} U_1 + \Delta_{i \to f} U_2 = 0 \qquad \Delta_{i \to f} M_1^{\text{sel}} + \Delta_{i \to f} M_2^{\text{sel}} = 0$$

$$m_1 \cdot T_1^f + m_2 \cdot T_2^f = m_1 \cdot T_1^i + m_2 \cdot T_2^i \qquad m_1 \cdot S_1^f + m_2 \cdot S_2^f = m_1 \cdot S_1^i + m_2 \cdot S_2^i$$

$$T^f = \frac{m_1 \cdot T_1^i + m_2 \cdot T_2^i}{m_1 + m_2} \qquad S^f = \frac{m_1 \cdot S_1^i + m_2 \cdot S_2^i}{m_1 + m_2}$$

Découplage des équations

(2) - (1)
$$\frac{d(T_p - T_e)}{dt} = \frac{T_p^* - T_e^* + T_e - T_p}{\tau_T} - \frac{2|\phi|}{M_0}(T_p - T_e)$$

(4) - (3)
$$\frac{d(S_p - S_e)}{dt} = \frac{S_p^* - S_e^* + S_e - S_p}{\tau_S} - \frac{2|\phi|}{M_0}(S_p - S_e)$$

$$\frac{\mathrm{d}\widehat{T}}{\mathrm{d}\widehat{t}} = 1 - \widehat{T} - \left|\widehat{\phi}\right| \cdot \widehat{T} \qquad \frac{\mathrm{d}\widehat{S}}{\mathrm{d}\widehat{t}} = \widehat{\delta}(1 - \widehat{S}) - \left|\widehat{\phi}\right| \cdot \widehat{S}$$

$$\widehat{T} \equiv \frac{T_p - T_e}{T_p^* - T_e^*} \qquad \widehat{S} \equiv \frac{S_p - S_e}{S_p^* - S_e^*} \qquad \widehat{t} \equiv \frac{t}{\tau_T} \qquad \widehat{\delta} \equiv \frac{\tau_T}{\tau_S} \qquad \widehat{\phi} \equiv \frac{2\tau_T}{M_0} \phi$$

Découplage des équations

(2) - (1)
$$\frac{d(T_p - T_e)}{dt} = \frac{T_p^* - T_e^* + T_e - T_p}{\tau_T} - \frac{2|\phi|}{M_0}(T_p - T_e)$$

(4) - (3)
$$\frac{d(S_p - S_e)}{dt} = \frac{S_p^* - S_e^* + S_e - S_p}{\tau_S} - \frac{2|\phi|}{M_0}(S_p - S_e)$$

$$\frac{\mathrm{d}\widehat{T}}{\mathrm{d}\widehat{t}} = 1 - \widehat{T} - \left|\widehat{\phi}\right| \cdot \widehat{T} \qquad \frac{\mathrm{d}\widehat{S}}{\mathrm{d}\widehat{t}} = \widehat{\delta}(1 - \widehat{S}) - \left|\widehat{\phi}\right| \cdot \widehat{S}$$

$$\widehat{T} \equiv \frac{T_p - T_e}{T_p^* - T_e^*} \qquad \widehat{S} \equiv \frac{S_p - S_e}{S_p^* - S_e^*} \qquad \widehat{t} \equiv \frac{t}{\tau_T} \qquad \widehat{\delta} \equiv \frac{\tau_T}{\tau_S} \qquad \widehat{\phi} \equiv \frac{2\tau_T}{M_0} \phi$$

Découplage des équations

(2) - (1)
$$\frac{d(T_p - T_e)}{dt} = \frac{T_p^* - T_e^* + T_e - T_p}{\tau_T} - \frac{2|\phi|}{M_0}(T_p - T_e)$$

(4) - (3)
$$\frac{d(S_p - S_e)}{dt} = \frac{S_p^* - S_e^* + S_e - S_p}{\tau_S} - \frac{2|\phi|}{M_0}(S_p - S_e)$$

$$\frac{\mathrm{d}\widehat{T}}{\mathrm{d}\widehat{t}} = 1 - \widehat{T} - \left|\widehat{\phi}\right| \cdot \widehat{T} \qquad \qquad \frac{\mathrm{d}\widehat{S}}{\mathrm{d}\widehat{t}} = \widehat{\delta}(1 - \widehat{S}) - \left|\widehat{\phi}\right| \cdot \widehat{S}$$

$$\widehat{T} \equiv \frac{T_p - T_e}{T_p^* - T_e^*} \qquad \widehat{S} \equiv \frac{S_p - S_e}{S_p^* - S_e^*} \qquad \widehat{t} \equiv \frac{t}{\tau_T} \qquad \widehat{\delta} \equiv \frac{\tau_T}{\tau_S} \qquad \widehat{\phi} \equiv \frac{2\tau_T}{M_0} \phi$$

Expression du flux

$$\widehat{\phi} = \frac{2\tau_T}{M_0} \phi$$

$$= \frac{2\tau_T}{M_0} \lambda \rho_0 \left[-\alpha (T_p^* - T_e^*) \widehat{T} + \beta (S_p^* - S_e^*) \widehat{S} \right]$$

$$= \widehat{\alpha} \widehat{T} - \widehat{\beta} \widehat{S}$$

$$\widehat{\alpha} = \frac{2\tau_T}{M_0} \lambda \rho_0 \alpha (T_e^* - T_p^*) > 0$$

$$\widehat{\beta} = \frac{2\tau_T}{M_0} \lambda \rho_0 \beta (S_e^* - S_p^*) > 0$$

Expression du flux

$$\widehat{\phi} = \frac{2\tau_T}{M_0} \phi$$

$$= \frac{2\tau_T}{M_0} \lambda \rho_0 \left[-\alpha (T_p^* - T_e^*) \widehat{T} + \beta (S_p^* - S_e^*) \widehat{S} \right]$$

$$= \widehat{\alpha} \widehat{T} - \widehat{\beta} \widehat{S}$$

$$\widehat{\alpha} = \frac{2\tau_T}{M_0} \lambda \rho_0 \alpha (T_e^* - T_p^*) > 0$$

$$\widehat{\beta} = \frac{2\tau_T}{M_0} \lambda \rho_0 \beta (S_e^* - S_p^*) > 0$$

Recherche de l'équilibre

$$\frac{d\widehat{T}}{d\widehat{t}} = 1 - \widehat{T} - \left| \widehat{\phi} \right| \cdot \widehat{T} = 0 \qquad \Longrightarrow \qquad \widehat{T} = \frac{1}{1 + \left| \widehat{\phi} \right|}$$

$$\frac{d\widehat{S}}{d\widehat{t}} = \widehat{\delta}(1 - \widehat{S}) - \left| \widehat{\phi} \right| \cdot \widehat{S} = 0 \qquad \Longrightarrow \qquad \widehat{S} = \frac{\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

$$\widehat{\phi} = \frac{\widehat{\alpha}}{1 + \left| \widehat{\phi} \right|} - \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

Recherche de l'équilibre

$$\widehat{\phi} = \frac{\widehat{\alpha}}{1 + \left| \widehat{\phi} \right|} - \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

$$\widehat{\alpha} = \left(1 + \left| \widehat{\phi} \right| \right) \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|} \right)$$

$$\frac{\mathrm{d}\widehat{\alpha}}{\mathrm{d}\widehat{\phi}} = \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left|\widehat{\phi}\right|}\right) \frac{\mathrm{d}\left|\widehat{\phi}\right|}{\mathrm{d}\widehat{\phi}} + \left(1 + \left|\widehat{\phi}\right|\right) \left(1 - \frac{\widehat{\beta}\widehat{\delta}}{\left(\widehat{\delta} + \left|\widehat{\phi}\right|\right)^{2}} \frac{\mathrm{d}\left|\widehat{\phi}\right|}{\mathrm{d}\widehat{\phi}}\right)$$

Recherche de l'équilibre

$$\begin{split} \frac{\mathrm{d}\widehat{\alpha}}{\mathrm{d}\widehat{\phi}}\Big|_{\widehat{\phi}\approx 0} &\approx 1 - \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right)\frac{\mathrm{d}\left|\widehat{\phi}\right|}{\mathrm{d}\widehat{\phi}} \\ \frac{\mathrm{d}\widehat{\alpha}}{\mathrm{d}\widehat{\phi}}\Big|_{\widehat{\phi}\geq 0} &\approx 1 - \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) \qquad \frac{\mathrm{d}\widehat{\alpha}}{\mathrm{d}\widehat{\phi}}\Big|_{\widehat{\phi}\leq 0} \approx 1 + \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) \\ 0 &< \widehat{\delta} < 1 \\ \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) > 1 \end{split}$$