

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education (9-1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

BIOLOGY

0970/31

Paper 3 Theory (Core)

May/June 2018

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) The boxes on the left describe processes carried out by cells.

The boxes on the right contain the names of the cells that carry out these processes.

Draw **one** straight line from each box on the left to a box on the right to link the process to the cell type.

Draw six lines.

An example has been done for you.

(b) Fig. 1.1 shows a section through part of a leaf.

Fig. 1.1

- (i) On Fig. 1.1 draw:
 - a label line to identify one guard cell and label it G
 - a label line to identify one of the stomata and label it S.

(ii) State one function of stomata.

[Total: 9]

[2]

2	(a)	Define the term sexual reproduction.	
			[3

(b) Fig. 2.1 shows some organs in the body of a man.

Fig. 2.1

(i) Complete Table 2.1 by writing in the names of the parts labelled A to D in Fig. 2.1.

Table 2.1

letter on Fig. 2.1	name of part	name of the substance or substances transported
A		faeces
В		sperm
С		sperm and urine
D		urine

[4]

	(ii)	On	Fig.	. 2.1	dra	aw a	lab	el lir	ne to	the	pro	state	e gla	nd a	and I	abel	it P			[1]
(c)	Sta	te th	e fu	nctio	on o	of the	e sc	rotur	n.												
																				Į.	11
																		 	 	[']
																			[To	tal: 9)]

3 This question is about neurones and reflex actions.

Choose words from the list to complete the sentences.

Each word may be used once, more than once, or not at all.

	endocrine		impulse	S						
motor	nervous		receptor	sensory						
	slow	stimuli	synapses							
Neurones are cells	Neurones are cells that are part of the system.									
There are three ty	pes of neurone invo	olved in a sin	nple reflex action: a	sensory neurone, a rela	y					
neurone and a	neurone and a neurone.									
The nerves condu	The nerves conduct electrical									
neurone to the next at junctions called										
A reflex action is automatic, co-ordinated and										

[Total: 5]

BLANK PAGE

(a) Respiration releases energy.

Write the word equation for aerobic respiration.

[2

(b) Fig. 4.1 shows the average daily energy requirement of different groups of males and females.

Fig. 4.1

State the average energy requirement of a five-year-old female.

 kJ per day
[1

(ii)	An eleven-year-old male received only 8000 kJ per day for four months.
	Use the data in Fig. 4.1 to suggest two ways this could affect him.
	1
	2
	[2]
	the data in Fig. 4.1 to make three comparisons between the energy requirements of viduals aged 17 years and adults.
1	
2	
3	
	[3]
Yea	st cells can respire anaerobically.
Biot	echnology makes use of this.
Stat	te two ways that the products of anaerobic respiration in yeast are used by humans.
1	
2	
	[2]
	[Total: 10]
	Use individual of the individu

		10
5	(a) (i)	The sentences in the box describe the feeding relationships between four organisms.
		Hawks obtain their energy from blackbirds.
		A fig tree carries out photosynthesis.
		Blackbirds are secondary consumers.
		Caterpillars are herbivores.
		Use the information in the sentences to write a food chain containing these four organisms.
		Do not draw pictures of the organisms.
		[3]
	(ii)	State the principal source of energy for this food chain.
		[1]
	(iii)	State the type of organism that gains its energy from dead organic material.

© UCLES 2018 0970/31/M/J/18

(b) (i) A species becomes endangered when it is at risk of extinction.

Explain two ways in which a species could become endangered.

(ii)	State one way in which endangered species can be conserved.
	[1]
	[Total: 10]

6 Fig. 6.1 shows a section through a tooth.

Fig. 6.1

(a)	State the names of structures F , G and H .
	Write your answers on Fig. 6.1.

			[ၖ
(b)	(i)	State two functions of teeth.	
		1	
		2	
			 [2
	(ii)	Describe the importance of teeth in the digestion of food.	•

.....[2]

[Total: 7]

 ${\bf 7}~{\rm Fig.}~7.1~{\rm shows}~{\rm sections}~{\rm of}~{\rm two}~{\rm flowers},~{\bf K}~{\rm and}~{\bf L},~{\rm from}~{\rm the}~{\rm same}~{\rm species}.$

Fig. 7.1

(a)	(i)	On flower L in Fig. 7.1, identify and label an ovule and a petal.	[2]
	(ii)	State the names of the parts in Fig. 7.1 that:	
		produce ovules	
		protect the bud of the flower	
			[2]
(b)		Fig. 7.1, draw an arrow to represent the transfer of pollen from flower ${\bf K}$ to flower ${\bf L}$ dur ination.	ring
	po		[2]
(c)	A st	udent said, "Flowers K and L are pollinated by insects."	
	Des	scribe two structures in flowers K and L that support this statement.	
	Use features that are visible in Fig. 7.1.		
	1		
	2		
			[2]

(d)	Describe the pathway water takes in a plant, as it moves from the soil to a leaf.			
	[4]			
	[Total: 12]			

© UCLES 2018

8 During digestion enzymes act on different types of food to produce simpler substances that can be absorbed.

Complete Table 8.1 by inserting the missing information.

Table 8.1

food type	enzyme acting on the food type	simpler substances produced
protein	protease	
	amylase	
		fatty acids and glycerol

[5]

[Total: 5]

9 In an investigation, the carbon dioxide concentration in the air above a crop of maize plants was measured for 24 hours.

There was no wind blowing during the 24 hours of the investigation.

The results of this investigation are shown in Fig. 9.1.

Fig. 9.1

(a)	(i)	State the two times, on Fig. 9.1, at which the carbon dioxide concentration in the air was 37 arbitrary units.
		[1]
	(ii)	Calculate the difference in the carbon dioxide concentration in the air between 04:00 (sunrise) and 12:00 (midday) on Fig. 9.1.
		Space for working.
		arbitrary units [1]
	(iii)	Explain why the concentration of carbon dioxide decreases between 04:00 and 09:00.
		[3]
(b)	Stat	te two environmental factors that would affect the results of this investigation.
	1	
	2	
		[2]
		[Total: 7]

10 Selective breeding of animals is very important to farmers.

Many different breeds of sheep have been produced by selective breeding.

Fig. 10.1 shows a flock of Merino sheep. This breed of sheep was produced by selective breeding.

Fig. 10.1

(a) Sheep are important animals in many parts of the world as they produce meat, wool and milk.
Table 10.1 describes some characteristics of five different breeds of sheep.

Table 10.1

breed of sheep	wool yield	wool quality	meat yield	milk yield
Arapawa	average	good	poor	average
Awassi	average	poor	average	very good
Blackbelly	poor	poor	very good	average
Merino	good	very good	good	poor
Tsurcana	average	good	average	average

	A farmer wants to sell both meat and wool.
	Suggest which breed of sheep in Table 10.1 is the most suitable for this farmer.
	Give a reason for your choice.
	breed of sheep
	reason
	[2]
(b)	Another farmer wants to produce a new breed of sheep with both a very good milk yield and a very good quality of wool.
	The farmer is able to buy any of the breeds of sheep shown in Table 10.1.
	Describe the process this farmer would use to produce the new breed of sheep on her farm.
	[4]

[Total: 6]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.