Learning to Optimize in Swarms

(Supporting Information)

Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen

Departments of Electrical and Computer Engineering & Computer Science and Engineering
Texas A&M University, College Station, TX 77840
{cyppsp,wiwjp619,atlaswang,yshen}@tamu.edu

1 Supplemental Results

1.1 Learn to optimize convex quadratic functions

Figure S1: The performance of our meta-optimizer for convex quadratic functions, with or without the posterior term in meta loss.

1.2 Transferability: Learning to optimize non-convex Rastrigin functions from convex optimization

Figure S2: Optimization performance for the 10D Rastrigin function ($\alpha=10$) when the meta-optimizer is trained using Rastrigin family with increasing α (thus increasing ruggedness). $\alpha=0$ corresponds to convex training functions.

2 Training Examples for Protein Docking

Difficulty level	Protein Data Bank (PDB) code
Rigid	1N8O, 7CEI, 1DFJ, 1AVX, 1BVN, 1IQD, 1CGI, 1MAH, 1EZU,
	1JPS, 1PPE, 1R0R, 2I25, 2B42, 1EAW, 2JEL, 1BJ1, 1KXQ, 1EWY
Medium	1XQS, 1M10, 1IJK,1GRN
Flexible	1IBR, 1ATN

Table S1: 4-letter ID of proteins used in the training set.