

Introduction of Bio-nanotechnolgy BT1110

Lecture 2: Biological self-assembly

Himanshu Joshi 2 November 2023

Course contents

- Introduction to nanotechnology and bionanotechnology,
- Biological self-assembly
- Biologically inspired nanostructures introduction to biomimetics
- Nucleic acid nanotechnology
- DNA origami
- Protein engineering
- Lipid nanotechnology
- Chirality in biological systems
- Interaction of nanomaterials with biological systems
- Virology: viruses and vaccines

Self-assembly

- A process in which molecules (or parts of molecules) spontaneously form ordered aggregates and involves no human intervention.
- One of the most wondrous aspects of life is that all living organisms are formed through self assembly, a fundamental biological design process by which an organized structure seemingly builds itself from a disordered collection of smaller parts.

Cause: Thermodynamics and chemical kinetics*

Thermodynamics is the study of the relations between heat, work, temperature, and energy
Kinetics is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions

Matter/Chemical and Energy

What is "matter"

Anything that has mass and occupies space is matter. Matter consists of particles. The particles may be molecules, atoms, or subatomic bits, such as protons, electrons, or leptons. So, basically anything you can taste, smell, or hold consists of matter and is therefore chemical.

What is not matter

Energy, Heat, Light, Thoughts, Forces

Reference https://www.thoughtco.com/

Forces governing the self-assembly of biological matter

Gravitational forces

Weak nuclear Forces

Type of Force	Example	Rupture Force
Breaking of a covalent bond	C-C	≡1600 pN
Breaking of a noncovalent bond.	Biotin/streptavidin	≡160 pN
Breaking of a weak bond.	Hydrogen bond	≡4 pN
Langevin force	on E-coli	0.01 pN (1s)
Stretching dsDNA	to 50% relative extension	0.1 pN
Developped by a molecular motor	Kinesin walking on microtubule	5 pN (max)

Strong nuclear Forces

Electromagnetic forces

Thermal energy 2.479 kJ/mol

Weak electrostatic energy ≈ 0.4 to 4 KJ/mol

DNA molecules Primary, secondary, tertiary and Quaternary

G Qudruplexes

DNA origami

Structure of phospholipid bilayer membranes

Various structure obtained by the self assembly of lipid membranes

Source: Wikipedia

Various structure obtained by the self assembly of lipid membranes

Reference Thesis: Candan Ariöz

Proteins

Primary, secondary, tertiary and Quaternary

Roughly 500 amino acids have been identified in nature, but just 20 amino acids make up the proteins found in the human body

Primary structure of protein

The primary structure of the protein can be obtained by sequencing the gene that encodes the protein or by sequencing the protein itself

A. Amino Acids with Electrically Charged Side Chains

The 20 Amino acids

B. Amino Acids with Polar Uncharged Side Chains

Threonine

Serine

(Ser) 🔇	(Thr) 🕕	(Asn) (N	(Gin) 📵
OH NH2	O= HO-NH	O NH ₂	O NH ₂

Asparagine

Glutamine

C. Special Cases Cysteine Glycine Proline (Cys) (Gly) (Gly) (Pro) (Pro)

D. Amino Acids with Hydrophobic Side Chains

Alanine	Valine	Isoleucine	(Leu)	Methionine	Phenylalanine	Tyrosine	Tryptophan
(Ala) 🙆	(Val) <mark>♡</mark>	(Ile) 🕕		(Met) 🚻	(Phe)	(Tyr) 🕜	(Trp) W
o≠ NH.	0 NH,	O=\(\frac{\frac{1}{1}}{1}\) NH ₂	O=\(\rightarrow \text{NH},	O= NH ₂	O= NH ₂	OH OH	O NH ₂

G	Glycine	Gly
A	Alanine	Ala
L	Leucine	Leu
M	Methionine	Met
F	Phenylalanine	Phe
W	Tryptophan	Trp
K	Lysine	Lys
Q	Glutamine	Gln
E	Glutamic Acid	Glu
S	Serine	Ser
P	Proline	Pro
V	Valine	Val
Ι	Isoleucine	Ile
C	Cysteine	Cys
Y	Tyrosine	Tyr
Н	Histidine	His
R	Arginine	Arg
N	Asparagine	Asn
D	Aspartic Acid	Asp

Threonine

Thr

Reference https://youtu.be/PPJ7C3hcnPw

Structure of Proteins

Proteins

Jbiquitin

dalton or unified atomic mass unit = molar mass of C/12 = 1.66 x 10⁻²⁷ kg

Ubiquitin 76 amino acids 8.5 KDalton

- regulating the survival and death of cancer cells
- its relationship to stress
- its role at mitochondria and its disease implications

Protein channels in membrane and biomimetics

Protein channels regulates some key functions at cellular level like

- Propagation of nerve impulses
- Enabling vital functions like heartbeat
- Brain activity
- Muscle contraction etc

The minimalistic/reductionist and simple approach of nature

- Using only 20 amino acids to create all protein
- Only 5 types of nucleotide bases to all DNA/RNA
- Only handful of lipids and carbohydrates