

AUTOMOTIVE GRADE

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Low V_{CE (on)} Trench IGBT Technology
- Low Switching Losses
- 6µs SCSOA
- Square RBSOA
- 100% of the parts tested for ILM [®]
- Positive V_{CE (on)} Temperature Coefficient
- Soft Recovery Co-pak Diode
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

Benefits

- · High Efficiency in a Wide Range of Applications
- Suitable for Applications in the Low to Mid-Range Frequencies
- Rugged Transient Performance for Increased Reliability
- Excellent Current Sharing in Parallel Operation
- Low EMI

G	С	E
Gate	Collector	Emitter

Bara Bart Namelan	Davidson Toma	Standard P	ack	Ondership Bord Namehan
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
AUIRGPS4067D1	PG-TO274-3-903	Tube	25	AUIRGPS4067D1

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	240⑤	
I _C @ T _C = 100°C	Continuous Collector Current	160	
I _{NOMINAL}	Nominal Current	120	
I _{CM}	Pulse Collector Current, V _{GE} = 15V	360	Α
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	480	
I _{F NOMINAL}	Diode Nominal Current ②	120⑤	
I _{FM}	Diode Maximum Forward Current ②	480	
$V_{\sf GE}$	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate-to-Emitter Voltage	±30	V
P _D @ T _C = 25°C	Maximum Power Dissipation	750	W
P _D @ T _C = 100°C	Maximum Power Dissipation	375	VV
T_J	Operating Junction and	FF to 147F	
T _{STG}	Storage Temperature Range	-55 to +175	°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R ₀ JC (IGBT)	Thermal Resistance Junction-to-Case (each IGBT) ④		0.20	
R _{θJC} (Diode)	Thermal Resistance Junction-to-Case (each Diode) ®		0.44	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)	0.24		C/VV
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)		40	

^{*} Qualification standards can be found at www.infineon.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{GE} = 0V, I _C = 500μA ③
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage	_	0.27		V/°C	$V_{GE} = 0V, I_{C} = 15mA (25^{\circ}C-175^{\circ}C)$
		_	1.7	2.05		$I_C = 120A$, $V_{GE} = 15V$, $T_J = 25$ °C
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	2.15	_	V	$I_C = 120A$, $V_{GE} = 15V$, $T_J = 150$ °C
		_	2.20	_		$I_C = 120A$, $V_{GE} = 15V$, $T_J = 175$ °C
$V_{GE(th)}$	Gate Threshold Voltage	4.0	_	6.5	V	$V_{CE} = V_{GE}$, $I_C = 5.6$ mA
$\Delta V_{GE(th)}/\Delta TJ$	Threshold Voltage temp. coefficient	_	-17		mV/°C	$V_{CE} = V_{GE}, I_{C} = 20 \text{mA} (25^{\circ}\text{C}-175^{\circ}\text{C})$
gfe	Forward Transconductance	_	85		S	$V_{CE} = 50V, I_{C} = 120A$
1	Collector-to-Emitter Leakage Current	_	2.3	200	μΑ	$V_{GE} = 0V, V_{CE} = 600V$
ICES		_	9.4		mA	$V_{GE} = 0V, V_{CE} = 600V, T_{J} = 175^{\circ}C$
\/	Diada Faryard Voltaga Dran	_	1.9	2.2	V	I _F = 120A
V_{FM}	Diode Forward Voltage Drop	_	2.0		V	I _F = 120A, T _J = 175°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V

Switching	Characteristics @ T _J = 25°C (unless other	wise spe	cified)			
	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	240	360		I _C = 120A
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	69	104	nC	$V_{GE} = 15V$
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	90	135		V _{CC} = 400V
Eon	Turn-On Switching Loss	_	8.2	10		
E _{off}	Turn-Off Switching Loss	_	2.9	3.2	mJ	
E _{total}	Total Switching Loss	_	11.1	13.2		$I_C = 120A$, $V_{CC} = 400V$, $V_{GE} = 15V$
$t_{d(on)}$	Turn-On delay time	_	69	82		$R_G = 4.7\Omega$, L = 87µH, $T_J = 25$ °C
t _r	Rise time	_	65	82	ns	Energy losses include tail & diode
$t_{d(off)}$	Turn-Off delay time	_	198	230		reverse recovery
t _f	Fall time	_	38	48	1	-
E _{on}	Turn-On Switching Loss	_	10	_		
E _{off}	Turn-Off Switching Loss	_	3.8	_	mJ	
E _{total}	Total Switching Loss	_	13.8	_		$I_C = 120A$, $V_{CC} = 400V$, $V_{GE} = 15V$
$t_{d(on)}$	Turn-On delay time	_	63	_		$R_G = 4.7\Omega$, L = 87µH, T _J = 175°C
t _r	Rise time	_	64	_	ns	Energy losses include tail & diode
$t_{d(off)}$	Turn-Off delay time	_	230	_	1	reverse recovery
t _f	Fall time	_	51	_		
C _{ies}	Input Capacitance	_	7780	_		$V_{GE} = 0V$
C _{oes}	Output Capacitance	_	505	_	pF	$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	_	245	_		f = 1.0Mhz
						$T_J = 175^{\circ}C$, $I_C = 480A$
RBSOA	Reverse Bias Safe Operating Area	FUL	L SQUA	RE		V _{CC} = 480V, Vp ≤ 600V
						Rg = 4.7Ω , V_{GE} = +20V to 0V
SCSOA	Short Circuit Safe Operating Area	6			116	V _{CC} = 400V, Vp ≤ 600V
					μs	Rg = 1.0Ω , V_{GE} = +15V to 0V
Erec	Reverse Recovery Energy of the Diode		2440		μJ	T _J = 175°C
t _{rr}	Diode Reverse Recovery Time	_	360	_	ns	$V_{CC} = 400V, I_F = 120A$
Irr	Peak Reverse Recovery Current		53	_	Α	$V_{GE} = 15V$, Rg = 4.7 Ω , L = 87 μ H

Notes:

- $V_{\text{CC}} = 80\% \; (V_{\text{CES}}), \; V_{\text{GE}} = 20V, \; L = 0.87 \mu H, \; R_{\text{G}} = 50 \Omega \; \text{tested in production ILM} \leq 400 A.$
- ② Pulse width limited by max. junction temperature.
- R_{θ} is measured at T_{J} approximately 90°C.
- Calculated continuous current based on maximum allowable junction temperature. Package IGBT current limit is 195A. Package diode current limit is120A. Note that current limitations arising from heating of the device leads may occur.

Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

Fig. 3 - Forward SOA $T_C = 25^{\circ}C$, $T_J \le 175^{\circ}C$; $V_{GE} = 15V$

Fig. 5 - Typ. IGBT Output Characteristics $T_J = -40^{\circ}\text{C}$; tp = 30 μ s

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 4 - Reverse Bias SOA $T_J = 175^{\circ}\text{C}$; $V_{GE} = 20\text{V}$

Fig. 6 - Typ. IGBT Output Characteristics T_J = 25°C; tp = 30µs

Fig. 7 - Typ. IGBT Output Characteristics $T_J = 175^{\circ}\text{C}$; tp = 30 μ s

Fig. 9 - Typical V_{CE} vs. V_{GE} $T_J = -40^{\circ}C$

Fig. 11 - Typical V_{CE} vs. V_{GE} T_J = 175°C

Fig. 8 - Typ. Diode Forward Characteristics tp = 30µs

Fig. 10 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

Fig. 12 - Typ. Transfer Characteristics V_{CE} = 50V; tp = 10 μ s

4

Fig. 13 - Typ. Energy Loss vs. I_C

 $T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 400V, \ R_{G} = 5.0\Omega; \ V_{GE} = 15V \\ T_{J} = 175^{\circ}C; \ L = 0.087mH; \ V_{CE} = 100V, \ R_{G} = 15V \\ T_{J} = 175^{\circ}C; \ L = 100087mH; \ V_{CE} = 100V, \ R_{G} = 100V,$

Fig. 17 - Typ. Diode I_{RR} vs. I_F $T_{J} = 175^{\circ}C$

Fig. 14 - Typ. Switching Loss vs. I_C

Fig. 18 - Typ. Diode I_{RR} vs. R_G T_J = 175°C

Fig. 19 - Typ. Diode I_{RR} vs. diF/dt V_{CC} = 400V; V_{GE} = 15V; I_{F} = 120A; T_{J} = 175°C

Fig. 21 - Typ. Diode E_{RR} vs. I_F T_J = 175°C

Fig. 23 - Typ. Capacitance vs. V_{CE} V_{GE} = 0V; f = 1MHz

Fig. 24 - Typical Gate Charge vs. V_{GE} I_{CE} = 120A

Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

Fig 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

Gate Charge Circuit

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.5 - Resistive Load Circuit

RBSOA Circuit

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.6 - BVCES Filter Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF3 - Typ. Diode Recovery Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF4 - Typ. S.C. Waveform @ T_J = 25°C using Fig. CT.3

Case Outline and Dimensions-PG-TO274-3-903 Dimensions are shown in millimeters (inches))

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS b1, b3, b5, c1 & c3 APPLY TO BASE METAL ONLY.
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER EXTREMES OF THE PLASTIC BODY.
- 4.- ALL DIMENSIONS SHOWN IN MILLIMETERS.
- 5.- CONTROLLING DIMENSION: MILLIMETER.
- 6.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-274AA

S	DIMENSIONS				N
M B	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN.	IN. MAX. N		MAX.	E S
Α	4.50	5.50	.177	.217	
A1	1.45	2.15	.057	.085	
A2	1.65	2.35	.065	.093	
b	1.45	1.60	.054	.063	
ь1	1.40	1.50	.055	.059	2
b2	2.00	2.40	.079	.094	
b3	1.95	2.35	.077	.093	2
b4	3.00	3.15	.118	.124	
b5	2.95	3.35	.116	.132	2
С	1.10	1.30	.043	.051	
c1	0.90	1.10	.035	.043	2
c2	0.65	0.85	.026	.033	
с3	0.50	0.70	.020	.028	2
D	19.80	20.80	.780	.819	3
D1	15.50	16.10	.610	.634	
D2	0.70	1.30	.028	.051	
D3	0.75	1.25	.030	.049	
E	15.10	16.10	.594	.634	3
E1	13.30	13.90	.524	.547	
E2	2.25	2.70	.089	.109	
E3	1.20	1.70	.047	.067	
E4	2.00	3.00	.079	.118	
e	5.45	BSC	.215	BSC	
L	13.80	14.80	.535	.583	
L1	1.00	1.60	.039	.063	
L2	3.85	4.25	.152	.167	
R	2.00	3.00	.079	.118	

LEAD ASSIGNMENTS

<u>MOSFET</u>

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4. DRAIN

<u>IGBT</u>

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER 4.- COLLECTOR

PG-TO274-3-903 -Part Marking Information

Qualification Information

		Automotive (per AEC-Q101)			
Qualification Leve	-	This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Sensitivity Level		PG-TO274-3-903 N/A			
	Machine Model		Class M4(+/- 400) [†] AEC-Q101-002		
ESD	Human Body Model	Class H3B(+/- 8000) [†] AEC-Q101-001			
	Charged Device Model	Class C5 (+/- 1000) [†] AEC-Q101-005			
RoHS Compliant			Yes		

[†] Highest passing voltage.

Revision History

Date	Comments			
	 Updated datasheet with corporate template. Corrected the reference of "SUPER-247" to "PG-TO274-3-903" to align with IFX nomenclature on pages 1,10,11. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.