- **1.** Suppose that (f_n) is a sequence of continuous functions from \mathbb{R} to \mathbb{R} that converges uniformly on \mathbb{Q} . Show that it converges uniformly on \mathbb{R} .
- **2.** Carothers 10.20
- 3. Carothers 8.79
- **4.** Let

$$X_K = \left\{ f \in C([0,1]) : f \text{ is Lipschitz with constant } K \text{ and } \int_0^1 |f| \le 1 \right\}.$$

Show that X_K is compact in C([0,1]). Is X_K also compact in $L_1([0,1])$?

- **5.** Let $\{f_n\}$ be a sequence of measurable real-valued functions. Let $E = \{x : (f_n(x)) \text{ converges}\}$. Show that E is measurable.
- **6.** (Riemann integrable functions are continuous almost everywhere.)
 - a) Let (ψ_n) be an increasing sequence of step functions with $|\psi_n| \le M$ for some M. Show that $\lim \psi_n$ is continuous almost everywhere.
 - b) Show that Riemann integrable functions are continuous almost everywhere. Hint: Find functions g and G with $g \le f \le G$ where G = g almost everywhere and where g and G are continuous almost everywhere.
- 7. (The approximate with wild abandon problem.)

Suppose $f \in L^1[a,b]$ and $\int_a^b fg = 0$ for every polynomial g. Show that f = 0 almost everywhere.

Hint: : First show that $\int_I f = 0$ for every interval in [a, b]. Then show that $\int_E f = 0$ for every measurable set in [a, b]. You might find Exercise 18.35 (the "even more is true" part) to be handy, as well.

- **8.** Compute $\lim_{n\to\infty} \int_0^\infty \left(1+\frac{x}{n}\right)^{-n} \cos(x/n) \ dx$.
- **9.** Given $f \in L^1(\mathbb{R})$, let $f_t(x) = f(x t)$. Show that the map taking t to f_t is continuous as a map from \mathbb{R} to $L^1(\mathbb{R})$.
- 10. Consider the series $\sum_{k=1}^{\infty} a_k \sin(kx)$ on the domain $[0, 2\pi]$. Suppose that $\sum_{k=1}^{\infty} (a_k)^2$ converges. Prove that the series converges in $L^2([0, 2\pi])$. Compare this result with the first problem of the midterm.
- **11.** A sequence (f_n) is Cauchy in measure if for every $\epsilon > 0$ there is an index N such that if $n, m \ge M$ then $m(\{|f_n f_m| > \epsilon\}) < \epsilon$.

Show that if (f_n) is Cauchy in measure and has a subsequence that is convergent in measure, then the full sequence is Cauchy in measure.

Rules and format:

- You are welcome to discuss this exam with me (David Maxwell) to ask for hints and so forth.
- You may not discuss the exam with anyone else until after the due date/time.
- You are permitted to reference Carothers but no other text, nor may you consult the internet.
- Each problem is weighted equally.
- If you find a suspected typo, please contact me as soon as possible and I will communicate it to the class if needed.
- The due date/time is absolutely firm.
- We will hold a hint session during finals week, TBA.