Qspice - Command Reference Guide by KSKelvin

KSKelvin Kelvin Leung

Created on 8-4-2023 Last update on 12-21-2023 .four THD Computation

.four THD Computation

- Syntax: .four FREQ [HARMONICS] [PERIODS] expr1 [expr2 [expr3 [...]]]
 - FREQ: fundamental frequency
 - HARMONICS: number of harmonics to compute (Default HARMONICS=9)
 - PERIODS: number of period to be used to compute THD
 - expr1: expression (e.g. V(out), I(V1) etc...)

- [HARMONICS]
 - Number of harmonics to compute

```
.four 1k 19 v(sgl):
                                                          Magnitude of Fundamental (RMS): 0.450158
                                                          Harmonic Frequency
                                                                               Magnitude
                                                                   1.000e+03
                                                                   2.000e+03
                                                                                5.890e-06
                                                                                          -90.00°
                                                                   3.000e+03
                                                                   5.000e+03
                                                                   6.000e+03
pulse 0 1 0 1n 1n {0.5/frq} {1/frq}
                                                                   7.000e+03
                                                                                           -0.01°
                                                                   9.000e+03
 .param frq=1K
                                                                   1.000e+04
                                                                   1.100e+04
                                                                                           -0.02°
 .tran {50/frq}
                                                                   1.300e+04
 .plot V(sgl)
                                                                   1.400e+04
                                                                   1.500e+04
                                                                                           -0.02°
 four 1K 19 V(sgl)
                                                                   1.700e+04
                                                                                          -89.99°
                                                                   1.900e+04
                                                          THD = 45.686\%(48.3398\%)
```

.four THD Computation

Qspice: THD - basic.qsch

- .four THD
 - [HARMONICS] and [PERIODS] is not necessary input parameters
 - Magnitude and phase are normalized component equal 1 and 0 degree
 - To compare FFT, FFT is to plot magnitude in RMS
 - Therefore, it requires to calculate with Magnitude * Magnitude of Fundamental (RMS) in .four to match calculation in FFT
 - In waveform viewer, right click, select FFT

Calculate V(sgl),rms from .four into FFT chart
Harmonic 1 : Magnitude*RMS = 1.000e+0*0.45 = 0.45
Harmonic 2 : Magnitude*RMS = 2.239e-5*0.45 = 0.00001
Harmonic 3 : Magnitude*RMS = 3.333e-1*0.45 = 0.15

Compare Qspice and LTspice .four log

Qspice

LTspice

.inc Include File

Include File (.inc): HELP > Schematic Capture > Simulator > Include File (.inc)

Qspice: INC demo.qsch

Include File

- To include a file to execute by simulator
- This allow to simplify schematic for directive or reuse purpose

Example

- This example use .inc to include a file called QspiceScript.txt
- This script can
 - Calculate .func
 - Define .plot
 - Calculate .meas

Include a Directory into the Library File **Search Path**

.libpath

.libpath Include a Directory into the Library File Search Path

- .libpath
 - Syntax : .libpath <directory>
 - Search path for library .lib and include .inc directive
 - Search path priority
 - 1. Absolute path in .lib and .include
 - 2. Current working directory
 - 3. .libpath directories
 - 4. Qspice installation directory
 - Normal Install Path : C:\Program Files\QSPICE
 - If .libpath is used, .lib or .inc must after .libpath in netlist
 - Therefore, recommend to use Ctrl-Enter method after .libpath to add .lib / .inc to ensure this sequence

.meas

Measure Statements

Available Syntax for .meas

HELP > Simulator > Command Reference > Measure(.meas)

- Syntax: .meas NAME find EXPRESSION1 at EXPRESSION2
- Syntax: .meas NAME find EXPRESSION1 when EXPRESSION2=EXPRESSION3
- Syntax: .meas NAME find EXPRESSION1 when EXPRESSION2=EXPRESSION3 td=5n cross=10
- Syntax: .meas NAME find EXPRESSION1 when EXPRESSION2=EXPRESSION3 cross=last
- Syntax: .meas NAME deriv EXPRESSION1 at EXPRESSION2
- Syntax: .meas NAME trig EXPRESSION1=EXPRESSION2
- Syntax: .meas NAME targ EXPRESSION1=EXPRESSION2
- Syntax: .meas NAME trig EXPRESSION1=EXPRESSION2 targ EXPRESSION3=EXPRESSION4
- Syntax: .meas NAME trig EXPRESSION1=EXPRESSION2 rise=1 targ EXPRESSION1=EXPRESSION2 rise=11
- Syntax: .meas NAME avg|max|min|pp|rms|integ EXPRESSION1
- Syntax: .meas NAME avg|max|min|pp|rms|integ EXPRESSION1 from EXPRESSION2 to EXPRESSION3
- Syntax: .meas NAME avg|max|min|pp|rms|integ EXPRESSION1 trig EXPRESSION2=EXPRESSION3 targ EXPRESSION4=EXPRESSION5
- Syntax: .meas NAME four FREQ EXPRESSION [...]
- Syntax: .meas NAME fra FREQ INPUT OUTPUT [...]

Example of .meas in .ac analysis

Qspice: meas ac demo 01.qsch

phase@2kHz find phase

at frequency is 2kHz

Example of .meas in .ac analysis for Q-factor

Qspice: meas - Q of LCR Resonant.qsch


```
Output Window
   --- Parameter Evaluations ---
            = 27
 TEMP
                        "CKTTEMP"
            = 10u
                        "10u"
                        "1µ"
            = 1\mu
            = 200M
                        "0.2"
            = 15.8114 "1/R*(L/C)**0.5"
OCAL
C:\QspiceKSKelvin\01 User Guide and Script\01 Qspice Refer
Total elapsed time: 0.129028 seconds.
          In simulation, it has .param calculation results
Output Window
.meas vmax max mag(v(out)):
      ( 0.999914,
                           0) (at Frequency=50350.1)
.meas fo find frequency when mag(v(out))=vmax:
         50350.1,
                                  50350.1
.meas fl find frequency when mag(v(out))=vmax/sqrt(2) rise=1:
         48762.4,
                                  48762.4
.meas fh find frequency when mag(v(out))=vmax/sqrt(2) fall=last:
         51946.8,
                                  51946.8
 .meas bw fh-fl:
         3184.36.
                                    1e+09
.meas q fo/bw:
                                    1e+09
         15.8117,
                 In post process, it has .meas calculation results
I ← → ► N \ Simulation \ Post Process
```

Example of .meas in .ac analysis

Qspice: meas tran demo 01.qsch

kskelvin.net

14

.meas with trig and targ for time different calculation

Qspice: meas tran demo 02.qsch

.meas with four (fourier component)

Qspice: meas fourier demo 01.gsch

```
.four 1k v(sgl):
                                                 Magnitude of Fundamental (RMS): 0.999922
.func rms2pk(in) in*sqrt(2)
                                                 Harmonic Frequency
                                                                          Magnitude
                                                                                        Phase
                                                           1.000e+03
                                                                          1.000e+00
                                                                                         0.00°
    sgl
                                                           2.000e+03
                                                                          3.498e-08
                                                                                      105.41°
                                                           3.000e+03
                                                                                        0.00°
                                                                          5.996e-01
                                  THD (.four)
                                                           4.000e+03
                                                                          1.713e-08
                                                                                        64.78°
                                                           5.000e+03
                                                                          1.996e-01
                                                                                        -0.00°
 sin 0 rms2pk(1) 1K
                                                           6.000e+03
                                                                          1.341e-08
                                                                                       35.02°
                                                           7.000e+03
                                                                          1.292e-06
                                                                                       -8.50°
                                                           8.000e+03
                                                                          2.028e-08
                                                                                       -30.72°
                                                           9.000e+03
                                                                          2.366e-07
                                                                                        -5.73°
 sin 0 rms2pk(0.6) 3K
                                                 THD = 63.1981\%(63.1981\%)
                                                .meas xx four 1k v(sql):
                                                      (1.54886e-07, -0.999999)
                               .meas with four
 sin 0 rms2pk(0.2) 5K
                                                .meas |xx| abs(xx):
                                                                        0.005
                                                        0.999999
.tran 5/1K
.plot V(sgl)
THD Total Harmonic Distortion
                                               V(sgl)
|
|-
|-
.four 1K V(sql)
Fourier component with .meas
.meas xx four 1K V(sql)
                                                -1V<del>-</del>
.meas |xx| abs(xx)
```

Fourier component is a complex number (re+j*im) Magnitude (rms) can be calculated with abs() 0ms 2ms 3ms 4ms 1ms

.meas with four (fourier component) [also with .step]

Qspice: meas fourier demo 02.qsch

```
1N4148
  sin 0 Vamp 1K
.step dec param Vamp 100m 10 2
.tran 2m
.plot V(X)
THD Total Harmonic Distortion
 .four 1K V(X)
 Fourier component with .meas
 .meas xx four 1K V(x) format : complex number
 .meas |xx| abs(xx) convert complex to magnitude
```

```
.meas xx four 1k v(x):
  0 (-7.73763e-08,-0.0707086)
  1 (-2.48947e-07, -0.223511)
  2 (-3.44697e-06, -0.551818)
  3 (-7.78738e-06, -0.698485)
  4 (2.254e-06, -0.797766)
.meas |xx| abs(xx):
     0.0707086
                    0.002
      0.223511
                    0.002
      0.551818
                    0.002
      0.698485
                    0.002
      0.797766
                    0.002
```


Plot .meas data in Waveform Viewer

Qspice: meas waveform viewer.qsch

Method #1:

[1] Add ".meas plot [Name]"

Method #2:

- [1] Run Simulation
- [2] In Output Window Right click in Post Process > Plot these Measurements

[3] X-axis default is .step parameter[4] If you want to display X-axis parameter nameRight click x-axis > add bracket (or curly bracket) to parameter

.meas – FRA: fourier component between OUTPUT and INPUT Qspice: meas - fra demo 01.qsch

- Syntax: .meas NAME fra FREQ INPUT OUTPUT [... range limits ...]
 - FRA: Fourier component of OUT at FREQ divided by the Fourier component of IN at FREQ
 - Range limits can be set with from/to or trig/targ syntax
 - Normalization is to the time domain RMS

.meas – FRA: fourier component between OUTPUT and INPUT Qspice: meas - fra demo 02.qsch

- Frequency response (bode plot) from time domain with use of FRA
 - In this example, .step is used to sweep FRA frequency
 - Time domain simulation is performed at each FRA frequency

10dB 0°
-200
-200
-400
-500
-500
-500
-1000
-1200
-1400
-1400
-1600
-1800
(Fmeas)

fmeas sweep from 100Hz to 10K with 50 points per decade

.model Define Model

.model – ako Aliases (A Kind Of)

Qspice: model - ako.qsch

- ako (undocumented)
 - Aliases (A Kind Of)
 - Syntax : ako:
 - Modify parameters of an existing model
 - Example
 - Smdl_1 aliases model Smdl, but only changed Ron from 40 to 20
- Step model with ako!
 - With ako, it is possible to step a model in simulation
 - .step only accept numerical value
 - .model use numerical value for ako model name
 - Model name of device must be in curly bracket {}

Stochastic Noise

.noise

Analysis

.noise Stochastic Noise Analysis

Qspice: noise - basic.qsch

- .noise
 - Stochastic Noise Analysis
 - noise calculated results
 - Noise spectrum density per unit square root bandwidth (V/\sqrt{Hz})
 - Input : Inoise
 - Output : Onoise
 - Notes
 - Noise analysis is performed without the needs of input voltage
 - In output window, it calculates total integrated output and inputreferenced noise in rms
 - $\sqrt{\int (V_{noise})^2 df}$


```
Output Window (Simulation)

| 1 of 2 steps: .step r=1000
| Total integrated output-referenced noise: 12.8748µV rms
| Total integrated input-referenced noise: 12.8748µV rms
| 2 of 2 steps: .step r=2000
| Total integrated output-referenced noise: 18.2077µV rms
| Total integrated input-referenced noise: 18.2077µV rms
```

.option / .options
Set Simulator Options

Set Simulator Options

Set Simulator Options

Syntax: .option NAME1=VALUE1 [NAME2=VALUE2 [...]]

Recognized Options

Name	Description	Default
ABSTOL	Absolute error tolerance	1e-12A
ACCT	Print accounting information	(not set)
ASCII	ASCII .qraw file	(not set)
BINARY	Override command line switch to use ASCII .qraw file	(not set)
BODEAMPFREQ	Frequency with the minimum perturbation amplitude. Set to 0. for constant amplitude.	(not set)
BODEINPUT ¹	Override input node for transfer function computation(AKA BODEIN)	auto
BODEPERIODS	Maximum number of periods to include in deconvolution	20
BODEREF	Reference node to use for Frequency Response Analysis	Node 0 (global ground)
BODEOUTPUT ¹	Override output node for transfer function computation((AKA BODEOUT)	auto
BODETOL	A Frequency Response Analysis relative tolerance	10.
CAPOP	0: Use model value 1: Use Meyer, >1 Use BSIM1	0
CHGTOL	Charge error tolerance	1e-14C
CSHUNT	Capacitance added from every node to ground(aka CMIN)	0F
DEFAD	Default MOSFET area of drain	0m ²
DEFAS	Default MOSFET area of source	0m ²
DEFL	Default MOSFET length	10µm
DEFW	Default MOSFET width	10µm
FEATHER	Trap integration damping factor	0
GMIN	Minimum conductance	1e-12℧
GMINSTEPS ²	Number of Gmin steps	10
GSHUNT	Conductance added from every node to ground	00
ITL1	DC iteration limit	100
ITL2	DC transfer curve iteration limit	50
ITL4	Transient analysis iteration limit	10
KEEPOPINFO	Record operating point for small-signal analysis	(not set)

(III) KEEPOPINFO	Record operating point for small-signal analysis	(not set)
LAUNCHQUX ³	Open the .qraw file in the waveform viewer after the simulation	(not set)
LIST ⁴	Print an expanded netlist	(not set)
LISTPARAM	Print a list of the evaluated parameters	(not set)
MAXORD	Maximum integration order	2
MAXSTEP	Maximum timestep size for .bode and .tran	infinite
METHOD	Integration method(trap or Gear)	trapezoidal
MINBREAK ⁵	Minimum time between breakpoints	0s
NOOPITER	Go directly to Gmin stepping	(not set)
NUMDGT	Number of significant digits in an ASCII .qraw file	15
PIVREL	Minimum relative matrix pivot	1e-3
PIVTOL	Minimum absolute matrix pivot	1e-13
RELTOL	Relative error tolerance	0.1%
■ RIC ⁶	Impedance of source asserting initial conditions	1mΩ
SAVEPOWERS ⁷	Compute and save the dissipation of components	(not set)
SEED ⁸	Initialize the random number generater used in .param statements	
SEEDCLOCK	Initialize the random number generater with a 10Mhz clock and the process ID number(aka SEEDCLK).	(not set)
SRCSTEPS ²	Number of source steps(aka ITL6)	10
TEMP	Operating temperature	27°C
TNOM	Nominal temperature(aka TREF)	27°C
TRTOL	Truncation error overestimation factor	2.5
TRTOL2	Another dimensionless truncation error guidance	1e-8
TRYTOCOMPACT	Try compaction for LTRA lines	(not set)
VNTOL	Voltage error tolerance	1µV

^{1]} If a resistor is used to indicate where to insert the perturbation, the resistive divider's contribution is excluded.

^{2]} Since an adaptive step size algorithms are used, the value of GMINSTEPS or SRCSTEPS is irrelevant unless set to zero, which means don't try the stepping algorithm.

^{3]} Useful when running simulations from the command line. Don't use it if QSPICE64.exe or QSPICE80.exe are launched from the GUI.

^{4]} Solely for internal diagnostic purposes. Probably not what you're looking for.

^{5]} MINBREAK is automatically computed if left zero.

^{6]} Inductor currents are asserted with the compliance of 1e9 * RIC.

^{7]} Computes the true power dissipation while ignoring displacement currents. Implemented for BJTs, Capacitors, Diodes, Inductors, JFETs, MOSFET level 1, MOSFET level 2010 and VDMOS.

^{8]} Used in .param functions Random() and Gauss(double sigma).

Simulator Options: CSHUNT and GSHUNT

Qspice: option - CSHUNT.qsch; option - GSHUNT.qsch

- CSHUNT
 - Capacitance added from every node to ground (aka CMIN)
 - Default CSHUNT=0F
- Example to explain
 - Cshunt is equivalent to add Cshunt1/2/3 in node a/b/c

- GSHUNT
 - Conductance added from every node to ground
 - Default GSHUNT=0℧
- Example to explain
 - Gshunt is equivalent to add Rshunt1/2/3 = $\frac{1}{GSHUNT}$ in node a/b/c

Simulator Options : Gmin

Qspice: option - Gmin Diode.qsch

Gmin

- Minimum conductance
 - LTspice: Conductivity added to every PNjunction to aid convergence
- Default Gmin=1e-12℧

Explanation

- Upper simulation use Gmin=1e-3 and measure I(V1) profile of D1a/D2a
- Lower simulation force Gmin=0 (no effect of Gmin) and added R2a/R2b = $\frac{1}{1e-3}$, and measure I(V2) profile of D2a/D2b
- This example demonstrate Gmin is equivalent to add shunt conductance for every PNjunction

kskelvin.net 28

2.0ms

2.0ms

Simulator Options: Gmin

Qspice: option - Gmin L (.dc).qsch; option - Gmin L (.tran).qsch

- Gmin
 - Minimum conductance
 - In Qspice, Gmin also applied to inductor in .op and .tran initial inductor current calculation
 - Unlike PN junctions, gmin is only applied in inductor for its initial current calculation, but not added during transient analysis

Simulator Options : KEEPOPINFO

KeepOpInfo

- Record operation point into .qraw for .ac and .tran
- A file with extension .op.qraw is forced to create
 - This .op.qraw file contains DC operating point data
 - Open .op.qraw file with waveform viewer, a list of operating point is generated
- .option keepopinfo is equivalent to use
 - Edit > Preferences
 - Click "Enable operating point display"
 - Hover device to display data only work with this enable

Simulator Options : RIC

Qspice: option - RIC L.qsch

RIC

- Impedance of source asserting initial conditions
- Inductor currents are asserted with the compliance of 1e9 * RIC
- Default RIC= $1m\Omega$

Important note

- RIC only affect inductor current if .ic is used to define inductor initial current
- In this simulation example, initial inductor current is plotted with Gmin=1e-12 and Gmin=1e3 with .ic I(L1)=1
 - When RIC=1e-3 (default), initial current is always equal .ic defined value

Simulator Options : Seed and Seedclock

Qspice: option - Seed Seedclock.qsch

- Seed
 - Initialize the random number generator used in .param statements
 - Same random pattern is generated between Simulation Run

- Seedclock (aka Seedclk)
 - Initialize the random number generator with a 10Mhz clock and the process ID number(aka SEEDCLK)
 - Different random pattern is generated between Simulation Run

Simulator Options : TRTOL

TRTOL

- Truncation error overestimation factor
 - Qspice : TRTOL = 2.5
 - LTspice : TRTOL = 1
 - Other spice simulators : TRTOL = 7
- CSHUNT, GSHUNT, GMIN, TRTOL

.step Step User-Defined Parameter

.step with table : Batch Simulation

Qspice: Step with Table.qsch

- .step with table
 - By using table function, user can step integer N from 1, 2, 3, ... and assign value to different parameters according to table
 - This is an example to sweep upper and lower resistor network with different resistance combination

.tran

Analysis

Non-Linear Transient

Syntax of .tran (Non-Linear Transient Analysis)

- Two syntax of .tran Non-Linear Transient Analysis
 - .tran TSTOP [UIC]
 - If MAXSTEP is required in this syntax, use .options MAXSTEP instead
 - .tran IGNORED TSTOP [TSTART [MAXSTEP]] [UIC]
 - Recommend to fill 0 at IGNORED. This syntax allows to set start recording time and maxstep
 - If need to limit .qraw file size, consider to specify Tstart and limit data to disk .qraw file size

1. Specify only the stop time

Syntax: .tran TSTOP [UIC]

Name	Description	Units
TSTOP	Total amount of time to simulate	S
UIC	Use initial conditions instead of solving for the initial bias point(SKIPBP)	

2. Traditional Berkeley Syntax

Syntax: .tran IGNORED TSTOP [TSTART [MAXSTEP]] [UIC]

Name	Description	Units
IGNORED ²	An ignored value	S
TSTOP	Total amount of time to simulate	S
TSTART	Time to start recording waveform data to disk	S
MAXSTEP	Maximum time step size to allow	S
UIC	Use initial conditions instead of solving for the initial bias point(SKIPBP)	

.tran (Non-Linear Transient Analysis) : Syntax Examples

Only Stop Time Syntax

sin V1
sin 0 1 1
.tran 5 .options MAXSTEP=10µ
.tran 0 5 2 10µ
.plot V(sin)

Only Stop Time Syntax with .option MAXSTEP

```
sin V1
Sin 0 1 1
Use .option to set MaxStep
.tran 5 .options MAXSTEP=10µ
.tran 0 5 2 10µ
.plot V(sin)
```


kskelvin.net

Traditional Berkeley Syntax

.tran (Non-Linear Transient Analysis): No UIC

Qspice:.tran - UIC.qsch

No UIC

No UIC + .IC

No UIC + Instance IC

.tran (Non-Linear Transient Analysis): With UIC

Qspice:.tran - UIC.qsch

With UIC

With UIC + .IC

With UIC + Instance IC

Batch mode Command

Qspice Execution Files

- Qspice execution files
 - Directory (default installation): C:\Program Files\QSPICE
 - Schematic Capture and Waveform Viewer Program (HELP > Waveform Viewer)
 - Execution file : **QUX.exe**
 - Function #1: Convert .qsch schematic to .cir
 - Function #2: Export data from data file .qraw
 - QSPICE Simulator (HELP > Simulator)
 - Execution file: <u>QSPICE64.exe</u> [Enable Fast (less accurate) Math]
 - Execution file: QSPICE80.exe
 - Function: Run simulation from .cir
 - Post Processor (HELP > Post Processor)
 - Execution file : **QPOST.exe**
 - Function: Execute .meas and .four from .graw

Batch command basic workflow

Qspice: Qspice_Batch_Command_LPFexample.bat / LPF Circuit.qsch

- Batch command workflow
 - Run CMD in Windows, in Command Prompt
 - Set path for Qspice program
 - path C:\Program Files\QSPICE\
 - Set variable name for working folder
 - set Oname=LPF Circuit
 - set Qpath=C:\QspiceKSKelvin\Qspice Batch
 - Goto schematic .qsch directory
 - cd %Qpath%
 - Convert .qsch to .cir (netlist)
 - QUX -Netlist "%Qname%.gsch"
 - Run Qspice simulation for .qraw
 - QSPICE64 -binary "%Qname%.cir"
 - QSPICE64 -ascii "%Qname%.cir" -r "%Qname%-ascii.graw"
 - Export data from .qraw to .csv
 - QUX -Export "%Qname%.graw" V(mid), V(out)
 - Post Process .meas and .four
 - QPOST "%Qname%.cir" -o "%Qname%.out"

QUX.exe : Netlist a Schematic (.qsch)

- Syntax for QUX buildtimestamp
 - QUX.exe -buildtimestamp

```
C:\Program Files\QSPICE>QUX.exe -buildtimestamp
C:\Program Files\QSPICE>Build Nov 3 2023 09:11:08
```

- Syntax for -Netlist
 - QUX.exe -Netlist <schematicfile> [-stdout]
 - <schematicfile> : name (+path) of a .qsch schematic, adds " " quotation for filename
 - If "-stdout" is not specified, the name of the netlist(.cir) file is computed from the name of the input .qsch file
 - [-stdout] : the netlist is printed on the console instead of to a file (not recommended since QSPICE employs a character set that most terminals can't handle

```
C:\QspiceKSKelvin\Qspice Batch>QUX -Netlist "%Qname%.qsch" -stdout

C:\QspiceKSKelvin\Qspice Batch>* LPF Circuit.qsch

L1 in mid 1\(\frac{1}{2}\)
C1 mid 0 1\(\frac{1}{2}\)
R1 out 0 1
V1 in 0 AC 1
L2 mid out 1\(\frac{1}{2}\)
.ac dec 100 10K 1Meg
.plot V(mid) V(out)
.MEAS fc FIND frequency WHEN db(mag(V(out)))=-3
.end
```

QUX.exe : Export Datafile (.qraw)

- Syntax for -Export
 - QUX.exe -Export <datafile> <expr1[,expr2[,...]]> [Npoints] [CSV|SPICE|ASCII] [-stdout]
 - <datafile> : name of a .qraw file
 - <expr1[,expr2[,...]]> : expressions of data to extract
 - No space are allowed in the expression
 - Comma-separated expressions
 - [Npoints] : number of equally-spaced data points to extract
 - Default Npoints=1000
 - Npoints=1e308 or Npoints=all: all datapoints are extracted, waveform is not interpolated
 - [CSV|SPICE|ASCII]
 - CSV: Comma-Separated Value file
 - SPICE : .qraw in binary
 - ASCII: .graw in ASCII
 - [-stdout] : extracted data is printed on the console instead of to a file
 - Example
 - QUX -Export "<filepath filename>" expr,expr2 all ascii ← no quotation mark is required for [Npoints] and [CSV|SPICE|ASCII]

QSPICE64.exe and QSPICE80.exe : QSPICE Simulator

- Syntax for output data .qraw name same as netlist .cir name
 - QSPICE64.exe -binary <netlistname> : Binary file format for output data .qraw
 - QSPICE64.exe -ascii < netlistname > : Ascii file format for output data .qraw
 - If 80 bit is used, change QSPICE64 to QSPICE80
- Syntax for specify output data .qraw name
 - QSPICE64.exe -[ascii/binary] <netlistname> -r <path> : specify the name of output data file
 - Example
 - set Qname=LPF Circuit
 - QSPICE64 -ascii "%Qname%.cir" -r "%Qname%-ascii.qraw"
- Syntax to directs the .qraw output to null (not saving a .qraw)
 - QSPICE64.exe < netlistname > -r NUL

.qraw Binary Data format

QPOST.exe: Post Processor to execute .meas and .four

- Syntax for Qpost.exe
 - Qpost <netlistname> -o <consoleoutput>
 - This will write .meas and .four results into a file for the console output
 - This result is equivalent in Qspice Post Process Output Window after Simulation is run

