Fiche d'entraînement : équations de tangentes

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - 5x + 4$.

- 1) Déterminer f'(x).
- **2)** Déterminer f(3).
- 3) Déterminer f'(3).
- 4) Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 3.

Exercice 2

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 3x - 1$.

- 1) Déterminer f'(x).
- 2) Déterminer f(-2).
- 3) Déterminer f'(-2).
- 4) Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse -2.

Exercice 3

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 3x + 2$.

- 1) Déterminer f'(x).
- **2)** Déterminer f(1).
- 3) Déterminer f'(1).
- 4) Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 1.

Exercice 4

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 2$

- 1) Déterminer f'(x).
- **2)** Déterminer f(-3).
- 3) Déterminer f'(-3).
- 4) Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse -3.

Correction

Exercice 1

1)
$$f'(x) = 6x - 5$$

2)
$$f(3) = 3 \times (3)^2 - 5 \times 3 + 4 = 16$$

3)
$$f'(3) = 6 \times 3 - 5 = 13$$

4) Une équation de la tangente T est y = ax + b.

•
$$a = f'(3) = 13$$

• Le point de contact entre \mathcal{C}_f et T est le point $A(3; \underbrace{16})$.

Or $A \in T$ donc $y_A = ax_A + b$, ce qui donne $16 = 13 \times 3 + b$ et donc 16 = 39 + b et donc 16 - 39 = b et donc b = -23.

• Au final, *T* a pour équation y = 13x - 23.

Exercice 2

1)
$$f'(x) = -4x + 3$$

2)
$$f(-2) = -2 \times (-2)^2 + 3 \times (-2) - 1 = -15$$

3)
$$f'(-2) = -4 \times (-2) + 3 = 11$$

4) Une équation de la tangente T est y = ax + b.

•
$$a = f'(-2) = 11$$

• Le point de contact entre \mathscr{C}_f et T est le point A(-2; -15).

$$f(-2)$$

Or $A \in T$ donc $y_A = ax_A + b$, ce qui donne $-15 = 11 \times (-2) + b$ et donc -15 = -22 + b et donc -15 + 22 = b et donc b = 7.

• Au final, T a pour équation y = 11x + 7

Exercice 3

1)
$$f'(x) = 2x - 3$$

2)
$$f(1) = (1)^2 - 3 \times 1 + 2 = 0$$

3)
$$f'(1) = 2 \times 1 - 3 = -1$$

4) Une équation de la tangente T est y = ax + b.

•
$$a = f'(1) = -1$$

• Le point de contact entre \mathcal{C}_f et T est le point $A(1; \underline{0})$.

Or $A \in T$ donc $y_A = ax_A + b$, ce qui donne $0 = -1 \times 1 + b$ et donc 0 = -1 + b et donc 0 + 1 = b et donc b = 1.

• Au final, T a pour équation y = -x + 1.

Exercice 4

1)
$$f'(x) = -2x + 4$$

2)
$$f(-3) = -(-3)^2 + 4 \times (-3) - 2 = -23$$

3)
$$f'(-3) = -2 \times (-3) + 4 = 10$$

4) Une équation de la tangente T est y = ax + b.

•
$$a = f'(-3) = 10$$

a = f'(-3) = 10
Le point de contact entre \(\mathscr{C}_f\) et T est le point A(-3; \(-23\)).

Or $A \in T$ donc $y_A = ax_A + b$, ce qui donne $-23 = 10 \times (-3) + b$ et donc -23 = -30 + b et donc -23 + 30 = b et donc b = 7.

• Au final, T a pour équation y = 10x + 7.