Билет №72

Извлечение корней из комплексных чисел

Извлечение корня n-й степени определяется как действие, обратное возведению в натуральную степень.

Корнем n-ой степени из комплексного числа z называется комплексное число ω , удовлетворяющее равенству $\omega^n=z$, т. е. $\sqrt[n]{z}=\omega$, если $\omega^n=z$.

Если положить $z=r(\cos\varphi+i\sin\varphi)$, а $\omega=p(\cos\theta+i\sin\theta)$, то, по определению корня и формуле Муавра, получаем:

$$z = \omega^n = p^n(\cos n\theta + i\sin n\theta) = r(\cos \varphi + i\sin \varphi)$$

Отсюда имеем $p^n=r$, $n\theta=\varphi+2\pi k$, k=0,-1,1,-2,2,... То есть $\theta=\frac{\varphi+2\pi k}{n}$ и $p=\sqrt[n]{r}$ (арифметический корень).

Поэтому равенство $\sqrt[n]{z} = \omega$ принимает вид:

$$\sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right), k = 0, 1, ..., n - 1.$$

Получим n различных значений корня. При других значениях k, в силу периодичности косинуса и синуса, получатся значения корня, совпадающие с уже найденными. Так, при k = n имеем:

$$\omega_n = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) = \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + 2\pi \right) + i \sin \left(\frac{\varphi}{n} + 2\pi \right) \right) =$$

$$= \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} \right) + i \sin \left(\frac{\varphi}{n} \right) \right) = \omega_0 \left(k = 0 \right)$$

Итак, для любого $z \neq 0$ корень n-й степени из числа z имеет ровно n различных значений.

Корни п-ой степени из единицы

Пусть n – любое натуральное число, отличное от нуля.

Определение. Комплексное число ω , удовлетворяющее условию $\omega^n=1$, называется **корнем n-ой степени из единицы**.

Теорема. Существует точно n различных корней n-ой степени из единицы и все они получаются по формуле:

$$\omega_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, k = 0, 1, ..., n - 1$$

Следствие. Точки комплексной плоскости, изображающие корни n-ой степени из единицы, являются вершинами правильного n-угольника, вписанного в окружность единичного радиуса с центром в начале координат, причём одна из вершин находится в точке (0, 1).

Определение. Комплексное число ω называется первообразным корнем n-ой степени из единицы ($n \geq 1$), если множество чисел $\{\omega^0, \omega^1, \dots, \omega^{n-1}\}$ является множеством всех решений уравнения $z^n = 0$.