Advanced Interactive Graph Optimization Challenge

Problem Statement

You are given a dynamic weighted graph with n vertices (numbered from 0 to n-1) that evolves through multiple phases. Your goal is to solve a multi-objective optimization problem involving graph coloring, domination, and resource allocation through strategic interactive queries.

Core Challenge: Multi-Phase Graph Evolution

The graph undergoes 3 distinct phases:

- 1. Discovery Phase: Learn the initial graph structure
- 2. Adversarial Phase: An adversary modifies the graph based on your queries
- 3. Optimization Phase: Solve the final multi-objective problem

Multi-Objective Goals

You must simultaneously optimize:

- 1. **k-Coloring**: Find a proper k-coloring with minimum k ($k \ge 3$)
- 2. Weighted Domination: Find a minimum-weight dominating set
- 3. Resource Allocation: Distribute limited resources across vertices optimally

Interactive Protocol

You have access to 5 different query types with varying costs:

- STRUCTURE x (Cost: 1) Returns neighbors and edge weights for vertex x
- COLOR_CHECK k S (Cost: 2) Check if set S can be k-colored properly
- DOMINATION_WEIGHT S (Cost: 3) Returns total weight of dominating set S
- DISTANCE_MATRIX S (Cost: 5) Returns all-pairs shortest paths within set S
- ADVERSARY_PREDICT (Cost: 10) Get hint about adversary's next move

Dynamic Graph Properties

- Vertex Weights: Each vertex has a weight $w[i] \in [1, 100]$
- Edge Weights: Each edge has weight e[i,j] ∈ [1, 50]
- Capacity Constraints: Each vertex has capacity $c[i] \in [1, 20]$
- Resource Budget: You have R total resources to allocate

Phase-Specific Rules

Phase 1: Discovery (Rounds 1-T₁)

- · Graph is static
- · All query types available
- · Goal: Learn structure efficiently

Phase 2: Adversarial (Rounds T_{1+1-T₂)}

- Adversary can add/remove edges based on your query history
- ADVERSARY PREDICT becomes crucial
- Graph structure changes after every 3 queries

Phase 3: Optimization (Rounds T₂+1-T₃)

- · Graph becomes static again
- · Must solve the multi-objective problem
- · Limited query budget remaining

Constraints and Scoring

• Total Query Budget: 4*n + 20 queries across all phases

• Graph Size: $5 \le n \le 25$

• Time Phases: $T_1 = n, T_2 = 2n, T_3 = 3n$

• Resource Budget: R = 2*n

Scoring Function

```
Score = 1000 - 50*(k-\chi) - 10*W_dom - 5*R_waste - 100*P_violations
```

Where:

- k = colors used, $\chi = chromatic$ number
- W_dom = weight of your dominating set
- R_waste = unused resources
- P_violations = constraint violations

Multi-Objective Constraints

- 1. Coloring Constraint: Adjacent vertices must have different colors
- 2. Domination Constraint: Every vertex must be dominated
- 3. Capacity Constraint: Resources allocated to vertex $i \le c[i]$
- 4. Budget Constraint: Total resources allocated ≤ R

Input/Output Format

Input

- First line: n R T₁ T₂ T₃
- Interactive queries until final answer

Queries

- STRUCTURE x → neighbors, weights, vertex_weight, capacity
- COLOR_CHECK k S → feasible (true/false)
- DOMINATION_WEIGHT S → total_weight, dominates_all
- DISTANCE_MATRIX S → matrix of shortest paths
- ADVERSARY_PREDICT → hint about next adversarial move

Final Answer

```
ANSWER k=[colors] dominating_set=[vertices] allocation=[resources]
```

Example Interaction

Visible Test Case: n=5, R=10

Phase 1 (Discovery):

```
> STRUCTURE 0
< neighbors=[1,2] weights=[(1,5),(2,3)] vertex_weight=10 capacity=4
> STRUCTURE 1
< neighbors=[0,3,4] weights=[(0,5),(3,2),(4,7)] vertex_weight=8 capacity=3
> COLOR_CHECK 3 [0,1,2,3,4]
< feasible=true</pre>
```

Phase 2 (Adversarial):

```
> ADVERSARY_PREDICT
< hint="Will add edge (2,4) if you query vertex 2 again"
> STRUCTURE 3
< neighbors=[1] weights=[(1,2)] vertex_weight=6 capacity=5
[Adversary adds edge (0,3) with weight 4]</pre>
```

Phase 3 (Optimization):

```
> DOMINATION_WEIGHT [1,2]
< total_weight=14 dominates_all=true
> ANSWER k=3 dominating_set=[1,2] allocation=[0,3,2,5,0]
< Score: 850/1000 (k-optimal, good domination, efficient allocation)</pre>
```

Advanced Algorithmic Challenges

This problem requires:

- 1. Multi-Phase Strategy: Adapt query strategy across phases
- 2. Game Theory: Predict and counter adversarial moves
- 3. Multi-Objective Optimization: Balance competing objectives
- 4. Resource Management: Optimize guery budget allocation
- 5. Dynamic Programming: Handle changing graph structure
- 6. Approximation Algorithms: NP-hard subproblems require heuristics

Problem Complexity Analysis

The problem introduces several NP-hard subproblems:

- Graph k-coloring (NP-complete)
- Minimum dominating set (NP-hard)
- Multi-objective optimization under constraints

- Game-theoretic adversarial elements
- Dynamic graph structure handling

Query budget management across phases requires:

- Strategic resource allocation
- Adaptive algorithm selection
- Uncertainty handling and prediction
- Multi-phase optimization coordination