# Hello DBMS +

# Hello veille ...

Friand d'apprendre de nouvelles choses et particulièrement en science des données, vous souhaitez approfondir vos connaissances sur la donnée, matière première des métiers liés à l'intelligence artificielle.

Vous vous documentez donc et réalisez une veille complète sur les éléments suivants :

A. Qu'est ce qu'une donnée ? Sous quelle forme peut-elle se présenter ?

Les données sont des faits, ou des observations; elles se présentent sous différentes formes cela peut être des images, des sons, du texte ou des chiffres et elles sont collectés dans le but de tirer des conclusions. Les données peuvent être structurées ou non structurées.

Les données structurées sont organisées en éléments prédéfinis et chaque élément correspond à un concept ou à un élément d'information spécifique.

B. Donnez et expliquez les critères de mesure de qualité des données.

On mesure la qualité des données à travers la propreté de ses caractéristiques. Elles peuvent être internes ou externes à l'entreprise mais cela ne doit pas nous empêcher de citer l'exactitude, la cohérence, la validité, l'actualité, la clarté, l'intégrité ou même la sécurité de la donnée.

- C. Définissez et comparez les notions de **Data Lake, Data Warehouse et Lake House**. Illustrez les différences à l'aide de schémas.
- Les données de Data Lake peuvent être aussi bien structurées, non structurées aussi bien que semi-structurées pour une illustration ultérieure.
- Par contre un Data Warehouse possède essentiellement des données traitées et structurées.
- Un Data Lake House combine les avantages des deux précédents avec une architecture de gestion de données hybride qui associe la flexibilité du stockage massif de données brutes du Data Lake avec les performances et la structure optimisée du Data Warehouse.



- D. Donnez une définition et des exemples de systèmes de gestion de bases de données avec des illustrations.
- Le système de gestion de bases de données appelé aussi SGBD est un logiciel qui sert à stocker, manipuler, gérer et partager les données de manière efficace. Il offre des fonctionnalités pour créer, lire, mettre à jour et supprimer des données mais aussi pour définir et manipuler la structure de bases de données. Les SGBD facilitent la gestion des données en fournissant une interface entre les utilisateurs et les bases de données.

Il existent plusieurs SGDB:

My SQL, Oracle Database, SQL Server, MongoDB, etc.

Voici quelques illustrations des SGBD citées:



E. Qu'est ce qu'une base de données relationnelle ? Qu'est ce qu'une base de données non relationnelle ? Donnez la différence entre les deux avec des exemples d'applications.

Une base de données relationnelle est une base de données ou l'information est organisée dans des tableaux à deux dimensions appelés des relations de tables, selon un modèle introduit par Edgar F. Codd en 1960. Selon ce modèle relationnel, une base de données consiste en une ou plusieurs relations.

A contrario, une base de données non relationnelle permet de stocker des données volumineuses. Celles-ci peuvent être regroupées sur plusieurs machines afin de réduire les coûts de maintenance.

La différence entre la base de données relationnelle et celle non rationnelle réside dans la façon de stocker les données. L'une stocke les données dans des tables tandis que l'autre les stockent au format clé-valeur de manière à stocker davantage de quantités.

Exemple d'application : WordPress (CMS); SAP (Système ERP); Oracle Financial Service (Application Financière)

 MongoDB (Base de données de Documents); Redis (Base de données clé-valeur); Apache Cassandra (Base de données de colonnes); Neo4j (Base de données de graphs); Example combiné Polyglotte (Application E-Commerce -

#### Données de Catalogue (Produits) Données de Commande et de Panier )

F. Définissez les notions de clé étrangère et clé primaire.

Les clés primaires servent à identifier une ligne de manière unique. Dans une table nous pouvons avoir une seule clé primaire.

Les clés étrangères permettent de gérer les relations entre plusieurs tables et garantissent la cohérence des données.

G. Quelles sont les propriétés ACID?

ACID est un acronyme désignant les termes de: Atomicité, Cohérence, Isolation et Durabilité.

Ces quatre principes permettent d'assurer que les transactions de bases de données soient traitées de façon fiable.

H. Définissez les **méthodes Merise et UML**. Quelles sont leur utilité dans le monde de l'informatique ? **Donnez des cas précis d'utilisation avec des schémas**.

Merise est une méthode de conception, de développement et de réalisation de projets informatiques. Le but de cette méthode est d'arriver à concevoir un système d'information. Elle est basée sur la séparation des données et des traitements à effectuer en plusieurs modèles conceptuels et physiques.

UML est utilisé dans l'industrie du logiciel pour la conception, la documentation et la communication entre les membres d'une équipe de développement. Il offre une approche visuelle pour décrire les aspects complexes des systèmes logiciels.

I. Définissez **le langage SQL.** Donnez les commandes les plus utilisées de ce langage et les différentes jointures qu'il est possible de faire.

Structured Query Language est un langage informatique conçu pour explorer les bases de données. Il permet de définir, manipuler et protéger les données de manière simple et schématique.

Les commandes les plus utilisées dans SQL sont: SELECT, INSERT, UPDATE, DELETE, CREATE TABLE, ALTER TABLE, DROP TABLE.

Voici quelques jointures qu'il est possible de faire en SQL:

INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN

# Hello SQL...

## Job 1:

Soit la table de données *world* contenant des informations sur différents pays du monde, avec des détails tels que la région, la population, la superficie en miles carrés, la densité de la population, le taux de mortalité infantile, le PIB par habitant ainsi que d'autres informations pertinentes. Elle peut être récupérée <u>ici.</u>

1. Modifiez la requête ci-dessus afin d'afficher la population de "Germany".

```
○ SELECT Population
FROM world
WHERE Country = 'Germany'

123 Population
82 422 299
```

2. Modifiez la requête ci-dessus afin d'afficher le nom et la population des pays "Sweden", "Norway" et "Denmark".

```
SELECT Country, Population
FROM world
WHERE Country = 'Sweden' OR Country = 'Norway' OR Country = 'Denmark'
```

|   | ABC Country | 123 Population |
|---|-------------|----------------|
| 1 | Denmark     | 5 4 5 0 6 6 1  |
| 2 | Norway      | 4610820        |
| 3 | Sweden      | 9016596        |
|   |             |                |

3. Créez une requête permettant d'afficher les pays dont la superficie est supérieure à 200 000 mais inférieure à 300 000.

```
⊖ SELECT Country
FROM world
WHERE "Area (sq. mi.)" > 2000000 AND "Area (sq. mi.)" < 300000
```



# Job 2

Considérons la table world du job précédent :

1. Créez une requête permettant de trouver les noms de pays **commençant par la lettre B**.

```
SELECT Country
FROM world
WHERE Country LIKE 'B%'
```



2. Créez une requête permettant de trouver les noms de pays commençant par "Al".





3. Créez une requête permettant de trouver les noms de pays **finissant par la lettre** y.

# ○ SELECT Country FROM world WHERE Country LIKE '%y



4. Créez une requête permettant de trouver les noms de pays finissant par "land".

SELECT Country
FROM world
WHERE Country LIKE '%land'



5. Créez une requête permettant de trouver les noms de pays contenant la lettre w.

```
⊖ SELECT Country
FROM world
WHERE Country LIKE '%w%'
```

|    | ABC Country      |  |
|----|------------------|--|
| 1  | Botswana         |  |
| 2  | Kuwait           |  |
| 3  | Malawi           |  |
| 4  | New Caledonia    |  |
| 5  | New Zealand      |  |
| 6  | Norway           |  |
| 7  | Papua New Guin   |  |
| 8  | Rwanda           |  |
| 9  | Swaziland        |  |
| 10 | Sweden           |  |
| 11 | Switzerland      |  |
| 12 | Taiwan           |  |
| 13 | Wallis and Futun |  |
| 14 | West Bank        |  |
| 15 | Western Sahara   |  |
| 16 | Zimbabwe         |  |

6. Créez une requête permettant de trouver les noms de pays contenant "oo" ou "ee".

```
⊖ SELECT Country
FROM world
WHERE Country LIKE '%oo%' OR Country LIKE '%ee%'
```

|   | RBC Country  |  |
|---|--------------|--|
| 1 | Cameroon     |  |
| 2 | Cook Islands |  |
| 3 | Greece       |  |
| 4 | Greenland    |  |

7. Créez une requête permettant de trouver les noms de pays **contenant au moins trois fois la lettre a**.

```
SELECT Country
FROM world
WHERE
    (LENGTH(Country) - LENGTH(REPLACE(Country, 'a', ''))) >= 3;
```

|    | RBC Country                |  |
|----|----------------------------|--|
| 6  | Equatorial Guinea          |  |
| 7  | Guatemala                  |  |
| 8  | Jamaica                    |  |
| 9  | Kazakhstan                 |  |
| 10 | Madagascar                 |  |
| 11 | Malaysia                   |  |
| 12 | Marshall Islands           |  |
| 13 | Mauritania                 |  |
| 14 | Nicaragua                  |  |
| 15 | N. Mariana Islands         |  |
| 16 | Panama                     |  |
| 17 | Papua New Guinea           |  |
| 18 | Paraguay                   |  |
| 19 | Saint Vincent and the Gren |  |
| 20 | Saudi Arabia               |  |
| 21 | Tanzania                   |  |
| 22 | Wallis and Futuna          |  |
| 23 | Western Sahara             |  |

8. Créez une requête permettant de trouver les noms de pays **ayant la lettre r comme seconde lettre**.

```
● SELECT Country
FROM world
WHERE Country LIKE '_r%';
```

|    | ABC Country        |
|----|--------------------|
| 1  | Argentina          |
| 2  | Armenia            |
| 3  | Aruba              |
| 4  | Brazil             |
| 5  | British Virgin Is. |
| 6  | Brunei             |
| 7  | Croatia            |
| 8  | Eritrea            |
| 9  | France             |
| 10 | French Guiana      |
| 11 | French Polynesia   |
| 12 | Greece             |
| 13 | Greenland          |
| 14 | Grenada            |
| 15 | Iran               |
| 16 | Iraq               |
| 17 | Ireland            |
| 18 | Sri Lanka          |
| 19 | Trinidad & Tobago  |
| 20 | Uruguay            |

# Job 3

Soit la table **students** définie comme suit :

| student_id | first_name | last_name age grade |
|------------|------------|---------------------|
| 1          | Alice      | Johnson 22 A+       |
| 2          | Bob        | Smith 20 B          |

| 3 | Charlie | Williams 21 C |
|---|---------|---------------|
| 4 | David   | Brown 23 B+   |
| 5 | Eva     | Davis 19 A    |
| 6 | Frank   | Jones 22 C+   |

1. Créez une requête permettant d'afficher toutes les colonnes de la table students.

| ABC first_name | <sup>sec</sup> last_name ▼              | <sup>123</sup> age ▼                                               | <sup>123</sup> note ▼                                                                                                                                                                                 |
|----------------|-----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alice          | Johnson                                 | 22                                                                 | A+                                                                                                                                                                                                    |
| Bob            | Smith                                   | 20                                                                 | A+                                                                                                                                                                                                    |
| Charlie        | Williams                                | 21                                                                 | С                                                                                                                                                                                                     |
| David          | Brawn                                   | 23                                                                 | B+                                                                                                                                                                                                    |
| Eva            | Davis                                   | 19                                                                 | Α                                                                                                                                                                                                     |
| Frank          | Jones                                   | 22                                                                 | C+                                                                                                                                                                                                    |
|                | Alice<br>Bob<br>Charlie<br>David<br>Eva | Alice Johnson  Bob Smith  Charlie Williams  David Brawn  Eva Davis | Alice         Johnson         22           Bob         Smith         20           Charlie         Williams         21           David         Brawn         23           Eva         Davis         19 |

```
sqlite> CREATE TABLE students (
(x1...> student_id INTEGER PRIMARY KEY,
(x1...> id INTEGER,
(x1...> first_name TEXT,
(x1...> last_name TEXT,
(x1...> age INTEGER,
(x1...> note REAL
(x1...> );
sqlite> INSERT INTO students (id, first_name, last_name, age, note) VALUES
...> (1, 'Alice', 'Johnson', 22, 'A+'),
...> (2, 'Bob', 'Smith', 20, 'A+'),
...> (3, 'Charlie', 'Williams', 21, 'C'),
...> (4, 'David', 'Brawn', 23, 'B+'),
...> (5, 'Eva', 'Davis', 19, 'A'),
...> (6, 'Frank', 'Jones', 22, 'C+');
sqlite> students.db -cmd
...> .exit
...> .save students.db
...> .quit
```

 Créez une requête permettant de filtrer la table et d'afficher les élèves âgés de strictement plus de 20 ans.

```
SELECT *
FROM students
WHERE age > 20;
```



3. Créez une requête permettant de faire un classement des élèves selon leur note dans un ordre croissant, puis dans un ordre décroissant.



|   | ¹₩id ▼ | <sup>ABC</sup> first_name ▼ | nec last_name | <sup>123</sup> age ▼ | <sup>123</sup> note ▼ |
|---|--------|-----------------------------|---------------|----------------------|-----------------------|
| 1 | 5      | Eva                         | Davis         | 19                   | Α                     |
| 2 | 1      | Alice                       | Johnson       | 22                   | A+                    |
| 3 | 2      | Bob                         | Smith         | 20                   | A+                    |
| 4 | 4      | David                       | Brawn         | 23                   | B+                    |
| 5 | 3      | Charlie                     | Williams      | 21                   | C                     |
| 6 | 6      | Frank                       | Jones         | 22                   | C+                    |

```
SELECT *
FROM students
ORDER BY CAST(note AS TEXT) DESC;
```

|   | ¹₩id ▼ | <sup>ABC</sup> first_name ▼ | <sup>nec</sup> last_name ▼ | <sup>123</sup> age ▼ | <sup>123</sup> note ▼ |
|---|--------|-----------------------------|----------------------------|----------------------|-----------------------|
| 1 | 6      | Frank                       | Jones                      | 22                   | C+                    |
| 2 | 3      | Charlie                     | Williams                   | 21                   | C                     |
| 3 | 4      | David                       | Brawn                      | 23                   | B+                    |
| 4 | 1      | Alice                       | Johnson                    | 22                   | A+                    |
| 5 | 2      | Bob                         | Smith                      | 20                   | A+                    |
| 6 | 5      | Eva                         | Davis                      | 19                   | Α                     |

## Job 4

Soit la table nobel définie comme suit :

| yr   | subject    | winner                      |
|------|------------|-----------------------------|
| 1960 | Chemistry  | Willard F. Libby            |
| 1960 | Literature | Saint-John Perse            |
| 1960 | Medicine   | Sir Frank Macfarlane Burnet |
| 1960 | Medicine   | Peter Madawar               |
| •••  |            |                             |

1. Créez une requête permettant d'afficher les prix nobels de 1986.

```
● SELECT *
FROM nobel
WHERE

yr = 1986
```

2. Créez une requête permettant d'afficher les prix nobels de littérature de 1967.

```
● SELECT *
FROM nobel
WHERE
yr = 1967
AND subject = "Literature"
```

3. Créez une requête permettant d'afficher l'année et le sujet du prix nobel d'Albert Einstein.

```
⊖ SELECT
yr
subject
FROM nobel
WHERE
winner = 'Albert Einstein '
```

4. Créez une requête permettant d'afficher les détails (année, sujet, lauréat) des lauréats du prix de Littérature de 1980 à 1989 inclus.

```
● SELECT *

FROM nobel

WHERE subject = 'Literature'

AND yr BETWEEN 1980 AND 1989;
```

5. Créez une requête permettant d'afficher les détails des lauréats du prix de Mathématiques. Combien y en a-t-il ?

```
SELECT *
FROM nobel
WHERE subject = 'Mathématique';
```

Nous avons eu un résultat nul car après avoir fait des recherches sur internet pour trouver notre erreur nous nous sommes aperçu que le prix nobel de Mathématiques n'existait pas. A la place nous avons le prix de la médaille Fields et Abel.

## Job 5

Considérons la table world précédente :

1. Créez une requête permettant d'afficher les pays dont la population est supérieure à celle de "Russia".



2. Créez une requête permettant d'afficher les pays d'Europe dont le PIB par habitant est supérieur à celui d' "Italy".

```
SELECT Country, "GDP ($ per capita)", Population

FROM world

WHERE Region = 'WESTERN EUROPE'

AND "GDP ($ per capita)" / Population > (SELECT "GDP ($ per capita)" / Population FROM world WHERE Country = 'Italy');

**Rec Country** | 123 GDP ($ per capita) | 123 Population | 12
```

3. Créez une requête permettant d'afficher les pays dont la population est supérieure à celle du Royaume-Uni mais inférieure à celle de l'Allemagne.

```
SELECT Country, Population
FROM world
WHERE Population >(SELECT Population FROM world WHERE Country = 'United Kingdom')
AND Population >(SELECT Population FROM world WHERE Country = 'Germany')
```

|    | RBC Country   | 123 Population 🔻 |
|----|---------------|------------------|
| 1  | h             | 147 365 352      |
| 2  | Brazil        | 188 078 227      |
| 3  | China         | 1313973713       |
| 4  | India         | 1095351995       |
| 5  | Indonesia     | 245 452 739      |
| 6  | Japan         | 127 463 611      |
| 7  | Mexico        | 107 449 525      |
| 8  | Nigeria       | 131859731        |
| 9  | Pakistan      | 165 803 560      |
| 10 | Philippines   | 89 468 677       |
| 11 | Russia        | 142 893 540      |
| 12 | United States | 298 444 215      |
| 13 | Vietnam       | 84 402 966       |
|    |               |                  |

4. L'Allemagne (80 millions d'habitants) est le pays le plus peuplé d'Europe. L'Autriche (8,5 millions d'habitants) compte 11% de la population allemande. Créez une requête permettant d'afficher le nom et la population de chaque pays d'Europe, en pourcentage de la population de l'Allemagne. Exemple :

| name pourcentage |
|------------------|
| Albania 3%       |
| Andorra 0%       |
| Austria 11%      |
| •••              |

```
SELECT
Country AS name,
    printf('%.2f%%', (Population * 100.0 / (SELECT Population FROM world WHERE Country = 'Germany'))) AS percentage
FROM
    world
WHERE
Region = 'WESTERN EUROPE';
```

| _  |               |               |
|----|---------------|---------------|
|    | name 🔻        | ₱₱ percentage |
| 1  | Andorra       | 0.09%         |
| 2  | Austria       | 9.94%         |
| 3  | Belgium       | 12.59%        |
| 4  | Denmark       | 6.61%         |
| 5  | Faroe Islands | 0.06%         |
| 6  | Finland       | 6.35%         |
| 7  | France        | 73.86%        |
| 8  | Germany       | 100.00%       |
| 9  | Gibraltar     | 0.03%         |
| 10 | Greece        | 12.97%        |
| 11 | Guernsey      | 0.08%         |
| 12 | Iceland       | 0.36%         |
| 13 | Ireland       | 4.93%         |
| 14 | Isle of Man   | 0.09%         |
| 15 | Italy         | 70.53%        |
| 16 | Jersey        | 0.11%         |
| 17 | Liechtenstein | 0.04%         |
| 18 | Luxembourg    | 0.58%         |
| 19 | Malta         | 0.49%         |
| 20 | Monaco        | 0.04%         |
| 21 | Netherlands   | 20.01%        |
| 22 | Norway        | 5.59%         |
| 23 | Portugal      | 12.87%        |
| 24 | San Marino    | 0.04%         |
| 25 | Spain         | 49.01%        |
| 26 | Sweden        | 10.94%        |
| 27 | Switzerland   | 9.13%         |
| 28 | United Kingdo | 73.53%        |

5. Créez une requête permettant de trouver le plus grand pays de chaque continent, en indiquant son continent, son nom et sa superficie.

```
● SELECT Country, Region, "Area (sq. mi.)"
FROM world
GROUP BY Region
ORDER BY MAX("Area (sq. mi.)")DESC;
```

|    | 20 20        |                      |                               |                  |
|----|--------------|----------------------|-------------------------------|------------------|
|    | ABC Country  | Region 🔻             | <sup>123</sup> Area (sq. mi.) | ☐ Visionneuse de |
| 1  | Russia       | C.W. OF IND. STATES  | 17 075 200                    | Pour d'a         |
| 2  | Canada       | NORTHERN AMERICA     | 9 9 8 4 6 7 0                 | Russia           |
| 3  | China        | ASIA (EX. NEAR EAST) | 9 5 9 6 9 6 0                 |                  |
| 4  | Brazil       | LATIN AMER. & CARIB  | 8511965                       |                  |
| 5  | Australia    | OCEANIA              | 7 686 850                     |                  |
| 6  | Sudan        | SUB-SAHARAN AFRICA   | 2505810                       |                  |
| 7  | Algeria      | NORTHERN AFRICA      | 2381740                       |                  |
| 8  | Saudi Arabia | NEAR EAST            | 1960582                       |                  |
| 9  | France       | WESTERN EUROPE       | 547 030                       |                  |
| 10 | Poland       | EASTERN EUROPE       | 312 685                       |                  |
| 11 | Lithuania    | BALTICS              | 65 200                        |                  |
|    | 1            |                      |                               |                  |

6. Créez une requête permettant de trouver les continents où tous les pays ont une population inférieure ou égale à 25 000 000.

```
● SELECT Country, Region, Population FROM world
WHERE Population <= 25000000
ORDER BY Population DESC
```

|    | ,,,           | r                    | 1 X 1 1                   |
|----|---------------|----------------------|---------------------------|
|    | ABC Country   | Region 🔻             | <sup>123</sup> Population |
| 1  | Malaysia      | ASIA (EX. NEAR EAST) | 24385858                  |
| 2  | Korea, North  | ASIA (EX. NEAR EAST) | 23 113 019                |
| 3  | Taiwan        | ASIA (EX. NEAR EAST) | 23 036 087                |
| 4  | Ghana         | SUB-SAHARAN AFRICA   | 22 409 572                |
| 5  | Romania       | EASTERN EUROPE       | 22 303 552                |
| 6  | Yemen         | NEAR EAST            | 21 456 188                |
| 7  | Australia     | OCEANIA              | 20 264 082                |
| 8  | Sri Lanka     | ASIA (EX. NEAR EAST) | 20 222 240                |
| 9  | Mozambique    | SUB-SAHARAN AFRICA   | 19 686 505                |
| 10 | Syria         | NEAR EAST            | 18881361                  |
| 11 | Madagascar    | SUB-SAHARAN AFRICA   | 18 59 5 469               |
| 12 | Cote d'Ivoire | SUB-SAHARAN AFRICA   | 17 654 843                |
| 13 | Cameroon      | SUB-SAHARAN AFRICA   | 17 340 702                |

# Job 6

Considérons une nouvelle fois la table world précédente :

1. Créez une requête permettant d'afficher la population totale du monde.



2. Créez une requête permettant d'afficher la population totale de chacun des continents.

```
SELECT Region,
SUM(Population) AS TotalPopulation
FROM world
GROUP BY Region;
```

|    | Region 🔻             | <sup>12</sup> TotalPopulation ▼ |
|----|----------------------|---------------------------------|
| 1  | ASIA (EX. NEAR EAST) | 3 687 982 236                   |
| 2  | BALTICS              | 7 184 974                       |
| 3  | C.W. OF IND. STATES  | 280 081 548                     |
| 4  | EASTERN EUROPE       | 119914717                       |
| 5  | LATIN AMER. & CARIB  | 561 824 599                     |
| 6  | NEAR EAST            | 195 068 377                     |
| 7  | NORTHERN AFRICA      | 161 407 133                     |
| 8  | NORTHERN AMERICA     | 331672307                       |
| 9  | OCEANIA              | 33 131 662                      |
| 10 | SUB-SAHARAN AFRICA   | 749 437 000                     |
| 11 | WESTERN EUROPE       | 396 339 998                     |
|    |                      |                                 |

3. Créez une requête permettant d'afficher le PIB total du continent de chacun des continents.

```
SELECT Region,
SUM("GDP ($ per capita)") AS TotalGDP
FROM world
GROUP BY Region;
```

|    | Region •             | ¹2 TotalGDP ▼ |
|----|----------------------|---------------|
| 1  | ASIA (EX. NEAR EAST) | 225 500       |
| 2  | BALTICS              | 33 900        |
| 3  | C.W. OF IND. STATES  | 48 000        |
| 4  | EASTERN EUROPE       | 117700        |
| 5  | LATIN AMER. & CARIB  | 390 700       |
| 6  | NEAR EAST            | 167 300       |
| 7  | NORTHERN AFRICA      | 27 300        |
| 8  | NORTHERN AMERICA     | 130 500       |
| 9  | OCEANIA              | 173 200       |
| 10 | SUB-SAHARAN AFRICA   | 118 500       |
| 11 | WESTERN EUROPE       | 757 300       |
|    | 1                    |               |

4. Créez une requête permettant d'afficher le PIB total du continent africain.

```
SELECT Region,
SUM("GDP ($ per capita)") AS TotalGDP
FROM world
WHERE Region IN ('SUB-SAHARAN AFRICA', 'NORTHERN AFRICA')
GROUP BY Region

123 TotalGDP
NORTHERN AFRICA
27300
SUB-SAHARAN AFRICA
118500
```

```
SELECT
    'Combined Africa' AS Region,
    SUM("GDP ($ per capita)") AS TotalGDP

FROM
    world
WHERE
    Region IN ('SUB-SAHARAN AFRICA', 'NORTHERN AFRICA');
```



5. Créez une requête permettant d'afficher le nombre de pays ayant une superficie supérieure ou égale à 1 000 000m².

```
● SELECT

COUNT(*) AS NumberOfCountries

FROM

world

WHERE

"Area (sq. mi.)" >= 1000000;
```



6. Créez une requête permettant d'afficher la population totale des pays suivants : Estonia, Latvia, Lithuania.

```
● SELECT
SUM(Population) AS TotalPopulation
FROM
world
WHERE
Country IN ('Estonia', 'Latvia', 'Lithuania');
```



7. Créez une requête permettant d'afficher le nombre de pays de chaque continent.

```
SELECT Region ,
COUNT(*) AS NumberOfCountry
FROM
world
GROUP BY
Region;
```

|    | Region 🔻             | 123 NumberOfCountry | •  |
|----|----------------------|---------------------|----|
| 1  | ASIA (EX. NEAR EAST) |                     | 28 |
| 2  | BALTICS              |                     | 3  |
| 3  | C.W. OF IND. STATES  |                     | 12 |
| 4  | EASTERN EUROPE       |                     | 12 |
| 5  | LATIN AMER. & CARIB  |                     | 45 |
| 6  | NEAR EAST            |                     | 16 |
| 7  | NORTHERN AFRICA      |                     | 6  |
| 8  | NORTHERN AMERICA     |                     | 5  |
| 9  | OCEANIA              |                     | 21 |
| 10 | SUB-SAHARAN AFRICA   |                     | 51 |
| 11 | WESTERN EUROPE       |                     | 28 |

8. Créez une requête permettant d'afficher les continents ayant une population totale d'au moins 100 millions d'individus.

```
● SELECT Region,
SUM(Population) AS TotalPopulation
FROM
world
GROUP BY
Region
HAVING
SUM(Population) >= 100000000;
```

|   | Region 🔻             | 123 TotalPopulation |
|---|----------------------|---------------------|
| 1 | ASIA (EX. NEAR EAST) | 3 687 982 236       |
| 2 | C.W. OF IND. STATES  | 280 081 548         |
| 3 | EASTERN EUROPE       | 119914717           |
| 4 | LATIN AMER. & CARIB  | 561 824 599         |
| 5 | NEAR EAST            | 195 068 377         |
| 6 | NORTHERN AFRICA      | 161 407 133         |
| 7 | NORTHERN AMERICA     | 331672307           |
| 8 | SUB-SAHARAN AFRICA   | 749 437 000         |
| 9 | WESTERN EUROPE       | 396 339 998         |
|   |                      |                     |

# Job 7

Soit la base de données **UEFA EURO 2012** constituée des tables suivantes :

#### Game

| id   | mdate           | stadium                      | team1 | team2 |
|------|-----------------|------------------------------|-------|-------|
| 1001 | 8 June<br>2012  | National<br>Stadium, Warsaw  | POL   | GRE   |
| 1002 | 8 June<br>2012  | Stadion Miejski<br>(Wroclaw) | RUS   | CZE   |
| 1003 | 12 June<br>2012 | Stadion Miejski<br>(Wroclaw) | GRE   | CZE   |

| 1004 | 12 June<br>2012 | National<br>Stadium, Warsaw | POL | RUS |
|------|-----------------|-----------------------------|-----|-----|
| ***  |                 |                             |     |     |

## Goal

| matchid | teamid | player             | gtime |
|---------|--------|--------------------|-------|
| 1001    | POL    | Robert Lewandowski | 17    |

| 1001 | GRE | Dimitris Salpingidis  | 51 |
|------|-----|-----------------------|----|
| 1002 | RUS | Alan Dzagoev          | 15 |
| 1002 | RUS | Roman<br>Pavlyuchenko | 82 |
| ***  |     |                       |    |

#### Eteam

| id  | teamname       | coach            |
|-----|----------------|------------------|
| POL | Poland         | Franciszek Smuda |
| RUS | Russia         | Dick Advocaat    |
| CZE | Czech Republic | Michal Bilek     |
| GRE | Greece         | Fernando Santos  |
| ••• |                |                  |

## Modèle relationnel de la base de donnée :



- Observez le schéma relationnel de la base de données UEFA EURO 2012 ci-dessus. Analysez les cardinalités.
- Nous avons dans ce schéma relationnel une description de la relation entre la table Game et Goal qui représente un match qui peut avoir plusieurs buts mais un but appartient à un seul match.
- Nous avons également une relation entre la table Game et la table Eteam. Si une équipe participe à plusieurs matchs elle sera représentée une seule fois dans la table Eteam dans les colonnes référencées sous team1 et team2.
- La relation entre Goal et Game plusieurs buts peuvent appartenir à un seul match mais chaque but est associé à un seul match.
- La relation entre Goal et Eteam est que chaque but est associé à une seule équipe.
- La relation entre Eteam et Game c'est qu' une équipe peut jouer dans plusieurs matchs mais chaque match est associé à une seule équipe.
- 2. La requête ci-dessous permet d'afficher le but marqué par un joueur dont le nom de famille est "Bender". L'astérisque (\*) indique qu'il faut énumérer toutes les colonnes du tableau une façon d'appeler toutes les colonnes de la table goal (matchid, teamid, player, gtime). Modifiez cette requête afin d'afficher le numéro de match et le nom du joueur pour tous les buts marqués par l'Allemagne. Afin d'identifier les joueurs allemands, vérifiez que : teamid = 'GER'.



○ SELECT matching,player FROM Goal WHERE teamid = "GER" 3. Créez une requête permettant d'afficher les colonnes id, stadium, team1, team2 pour le match dont l'id est 1012.

```
SELECT colonnes id, stadium, team1, team2
FROM Game
WHERE id = 2012
```

4. La requête suivante permet de joindre la table game et la table goal sur la colonne id-matchid. Modifiez cette requête afin d'afficher player, teamid, stadium et mdate de chaque but allemand.



```
SELECT player, teamid, stadium, mdate
FROM Game JOIN Goal ON (id = matching)
```

5.Créez une requête permettant d'afficher team1, team2 et player pour chaque but marqué par un joueur appelé Mario.

```
● SELECT team1, team2, player
FROM Game JOIN Goal ON (id = matchid)
WHERE Goal player = "Mario"
```

6. Créez une requête permettant de joindre la table goal et la table eteam sur les clés id - teamid.

```
● SELECT *
FROM Goal JOIN Eteam ON Goal.teamid = Eteam.id
```

7. Créez une requête permettant d'afficher player, teamid, coach, gtime pour tous les buts marqués dans les 10 premières minutes des matchs.

```
○ SELECT player, teamid, coach, gtime
FROM Goal JOIN Eteam ON Goal.teamid = Eteam.id
WHERE Goal.gtime <= 10;
```

8. La requête suivante permet de joindre la table game et la table eteam sur les clés team1 - eteam.id. Créez une requête permettant d'afficher les dates des matches ainsi que le nom de l'équipe dont "Fernando Santos" était le coach de l'équipe team1.

```
SELECT *
FROM game JOIN eteam ON (team1=eteam.id)
```

```
SELECT mdate, teamname
FROM Game JOIN Eteam ON Game.team1 = Eteam.id
WHERE Eteam.coach = 'Fernando Santos';
```

9. Créez une requête permettant d'afficher la liste des joueurs pour chaque but marqué lors d'un match dont le stade était le "National Stadium, Warsaw".

```
○ SELECT matching, player, gtime

FROM Goal JOIN Game ON Goal.matching = Game.id

WHERE Game.stadium = 'National Stadium, Warsaw';
```

10.Créez une requête permettant d'afficher le nombre total de buts marqués pour chaque équipe de la table *goal*.

```
○ SELECT teamid
COUNT(*) AS total_goals,
FROM Goals
GROUP BY teamid
```

11.Créez une requête permettant d'afficher les stades et le nombre de buts marqués dans chacun des stades de la jointure de game-goal.

```
SELECT Game.stadium, COUNT(Goal.matchid) AS goals_scored
FROM Game JOIN Goal ON Game.id = Goal.matchid
GROUP BY Game.stadium;
```

12. Pour chaque match où l'équipe de France a marqué, créez une requête permettant d'afficher l'id du match, la date du match et le nombre de buts marqués par "FRA".

```
SELECT Game.id AS match_id, Game.mdate AS match_date, COUNT(Goal.matchid) AS goals_scored
FROM Game JOIN Goal ON Game.id = Goal.matchid
WHERE Goal.teamid = 'FRA';
```

## Job 8

Soient les tables *Employees* et *Departments* constituants la base de données *SomeCompany* définies comme suit :

- Employees: employee\_id (INT, PK), first\_name (VARCHAR), last\_name (VARCHAR), birthdate (DATE), position (VARCHAR), department\_id (INT, FK).
- 2. <u>Departments</u>: department\_id (INT, PK), department\_name (VARCHAR), department\_head (INT, FK), location (VARCHAR).
- Projects: project\_id (INT, PK), prject\_name (VARCHAR), start\_date(DATE), end\_date(DATE), department\_id (INT, FK).

### **Employees**

| employee_id | first_name | last_name | birthdate  | position                  | departme<br>nt_id |
|-------------|------------|-----------|------------|---------------------------|-------------------|
| 1           | John       | Doe       | 1990-05-15 | Software<br>Engineer      | 1                 |
| 2           | Jane       | Smith     | 1985-08-20 | Project<br>Manager        | 2                 |
| 3           | Mike       | Johnson   | 1992-03-10 | Data Analyst              | 1                 |
| 4           | Emily      | Brown     | 1988-12-03 | UX Designer               | 1                 |
| 5           | Alex       | Williams  | 1995-06-28 | Software<br>Developer     | 1                 |
| 6           | Sarah      | Miller    | 1987-09-18 | HR Specialist             | 3                 |
| 7           | Ethan      | Clark     | 1991-02-14 | Database<br>Administrator | 1                 |

| 8  | Olivia  | Garcia | 1984-07-22 | Marketing<br>Manager | 2 |
|----|---------|--------|------------|----------------------|---|
| 9  | Emilia  | Clark  | 1986-01-12 | HR Manager           | 3 |
| 10 | Daniel  | Taylor | 1993-11-05 | Systems<br>Analyst   | 1 |
| 11 | William | Lee    | 1994-08-15 | Software<br>Engineer | 1 |
| 12 | Sophia  | Baker  | 1990-06-25 | IT Manager           | 2 |

## **Departments**

| department_id | department_name | department_head | location     |
|---------------|-----------------|-----------------|--------------|
| 1             | IT              | 11              | Headquarters |

| 2 | ProProject Management | 2 | Branch Office West |
|---|-----------------------|---|--------------------|
|   |                       |   |                    |

3

1. Créez la base de données SomeCompany à l'aide d'une requête, ajoutez une condition sur l'existence de SomeCompany.

```
sqlite> .open SomeCompany.db
sqlite>
```

## CREATE DATABASE IF NOT EXISTS 'SomeCompany'

2. Créez la table Employees.

```
CREATE TABLE Employees(
 employee_id INT PRIMARY KEY,
 first name VARCHAR,
 last name VARCHAR,
 birthdate DATE,
 position VARCHAR,
 department id INT
 );
```

3. Créez la table Departments.

```
□ CREATE TABLE Departments(
 department_id INT PRIMARY KEY,
 department_name VARCHAR,
 department_head INT,
 location VARCHAR
 );
```

```
INSERT INTO Departments (department id, department name, department head, location)
 VALUES
 (1, 'IT', 11, 'Headquarters'),
 (2, 'Project Management', 2, 'Branch Office West'),
(3, 'Human Resources', 6, 'Branch Office East');
```



#### 4. Insérez 6 à 9 nouveaux employés dans la table Employees.

```
■ INSERT INTO Employees (employee_id, first_name, last_name, birthdate, position, department_id)

VALUES

(1, 'John', 'Doe', '1990-05-15', 'Software Engineer', 1),
(2, 'Jane', 'Smith', '1985-08-20', 'Project Manager', 2),
(3, 'Mike', 'Johnson', '1992-03-10', 'Data Analyst', 1),
(4, 'Emily', 'Brown', '1988-12-03', 'UX Designer', 1),
(5, 'Alex', 'Williams', '1995-06-28', 'Software Developer', 1),
(6, 'Sarah', 'Miller', '1987-09-18', 'HR Specialist', 3),
(7, 'Ethan', 'Clark', '1991-02-14', 'Database Administrator', 1),
(8, 'Olivia', 'Garcia', '1984-07-22', 'Marketing Manager', 2),
(9, 'Emilia', 'Clark', '1986-01-12', 'HR Manager', 3),
(10, 'Daniel', 'Taylor', '1993-11-05', 'Systems Analyst', 1),
(11, 'William', 'Lee', '1994-08-15', 'Software Engineer', 1),
(12, 'Sophia', 'Baker', '1990-06-25', 'IT Manager', 2);
```

|    | ¹²₫ employee_id ▼ | ABC first_name | ABC last_name | <sup>ABC</sup> birthdate ▼ | position -             | <sup>123</sup> department_id | •   |
|----|-------------------|----------------|---------------|----------------------------|------------------------|------------------------------|-----|
| 1  | 1                 | John           | Doe           | 1990-05-15                 | Software Engineer      |                              | 1   |
| 2  | 2                 | Jane           | Smith         | 1985-08-20                 | Project Manager        |                              | 2   |
| 3  | 3                 | Mike           | Johnson       | 1992-03-10                 | Data Analyst           |                              | 1   |
| 4  | 4                 | Emily          | Brown         | 1988-12-03                 | UX Designer            |                              | 1   |
| 5  | 5                 | Alex           | Williams      | 1995-06-28                 | Software Developer     |                              | 1   |
| 6  | 6                 | Sarah          | Miller        | 1987-09-18                 | HR Specialist          |                              | 3   |
| 7  | 7                 | Ethan          | Clark         | 1991-02-14                 | Database Administrator |                              | 1   |
| 8  | 8                 | Olivia         | Garcia        | 1984-07-22                 | Marketing Manager      |                              | 2   |
| 9  | 9                 | Emilia         | Clark         | 1986-01-12                 | HR Manager             |                              | 3   |
| 10 | 10                | Daniel         | Taylor        | 1993-11-05                 | Systems Analyst        |                              | 1   |
| 11 | 11                | William        | Lee           | 1994-08-15                 | Software Engineer      |                              | 1   |
| 12 | 12                | Sophia         | Baker         | 1990-06-25                 | IT Manager             |                              | 2   |
| 11 | 11                | William        | Lee           | 1994-08-15                 | Software Engineer      |                              | 1 2 |

5. Récupérez le nom et le poste de tous les employés.

```
SELECT last_name, position FROM Employees
```

| _  | - ''                       | 1                      |
|----|----------------------------|------------------------|
|    | <sup>ABC</sup> last_name ▼ | abc position           |
| 1  | Doe                        | Software Engineer      |
| 2  | Smith                      | Project Manager        |
| 3  | Johnson                    | Data Analyst           |
| 4  | Brown                      | UX Designer            |
| 5  | Williams                   | Software Developer     |
| 6  | Miller                     | HR Specialist          |
| 7  | Clark                      | Database Administrator |
| 8  | Garcia                     | Marketing Manager      |
| 9  | Clark                      | HR Manager             |
| 10 | Taylor                     | Systems Analyst        |
| 11 | Lee                        | Software Engineer      |
| 12 | Baker                      | IT Manager             |
|    |                            |                        |

6. Mettez à jour le poste d'un employé dans la table Employees.

```
⊕UPDATE Employees
SET position = 'New Job'
WHERE employee_id = 3;
```



7. Supprimez un employé de la table *Employees*.

```
DELETE FROM Employees
WHERE employee_id = 6;
```

|    | ¹⅔ employee_id ▼ | <sup>ABC</sup> first_name ▼ | <sup>ABC</sup> last_name ▼ | asc birthdate 🔻 | asc position -         | <sup>123</sup> department_id | • |
|----|------------------|-----------------------------|----------------------------|-----------------|------------------------|------------------------------|---|
| 1  | 1                | John                        | Doe                        | 1990-05-15      | Softwere Engineer      |                              | 1 |
| 2  | 2                | Jane                        | Smith                      | 1985-08-20      | Project Manager        |                              | 2 |
| 3  | 3                | Mike                        | Johnson                    | 1992-03-10      | New Job                |                              | 1 |
| 4  | 4                | Emily                       | Brown                      | 1988-12-03      | UX Designer            |                              | 1 |
| 5  | 5                | Alex                        | Williams                   | 1995-06-28      | Software Developer     |                              | 1 |
| 6  | 7                | Ethan                       | Clark                      | 1991-02-14      | Database Administrator |                              | 1 |
| 7  | 8                | Olivia                      | Garcia                     | 1984-07-22      | Marketing Manager      |                              | 2 |
| 8  | 9                | Emilia                      | Clark                      | 1986-01-12      | HR Manager             |                              | 3 |
| 9  | 10               | Daniel                      | Taylor                     | 1993-11-05      | Systems Analyst        |                              | 1 |
| 10 | 11               | William                     | Lee                        | 1994-08-15      | Software Engineer      |                              | 1 |
| 11 | 12               | Sophia                      | Baker                      | 1990-06-25      | IT Manager             |                              | 2 |

8. Affichez le nom, le département et le bureau de chaque employé.





9. Affichez, à l'aide d'un filtre, les membres de l'équipe IT, puis le management, puis les ressources humaines.

```
■ SELECT E.first_name, E.last_name, D.department_name
FROM Employees E JOIN Departments D ON E.department_id = D.department_id
WHERE D.department_name IN ('IT');
```

|   | <sup>ASC</sup> first_name ▼ | ABC last_name | asc department_name |
|---|-----------------------------|---------------|---------------------|
| 1 | John                        | Doe           | IT                  |
| 2 | Mike                        | Johnson       | IT                  |
| 3 | Emily                       | Brown         | IT                  |
| 4 | Alex                        | Williams      | IT                  |
| 5 | Ethan                       | Clark         | IT                  |
| 6 | Daniel                      | Taylor        | IT                  |
| 7 | William                     | Lee           | IT                  |
|   | 1                           |               |                     |

```
SELECT E.first_name, E.last_name, D.department_name
FROM Employees E JOIN Departments D ON E.department_id = D.department_id
WHERE D.department_name IN ('Project Management');
```

|   | asc first_name | ADC last_name | <sup>ABC</sup> department_name ▼ |
|---|----------------|---------------|----------------------------------|
| 1 |                | Smith         | Project Management               |
| 2 | Olivia         | Garcia        | Project Management               |
| 3 | Sophia         | Baker         | Project Management               |
|   |                |               |                                  |

```
● SELECT E.first_name, E.last_name, D.department_name
FROM Employees E JOIN Departments D ON E.department_id = D.department_id
WHERE D.department_name IN ('Human Resources');
```



10. Affichez **les départements de SomeCompany** dans l'ordre alphabétique, avec les managers respectifs de chaque département.

```
● SELECT department_name,
department_head AS manager
FROM
Departments
ORDER BY
department_name;
```



11. Ajoutez un nouveau département à la table *Department* (Marketing peut-être?), ajoutez ou mettez à jour les employés de ce nouveau département.

```
□ INSERT INTO Departments (department_id, department_name, department_head, location)
VALUES (4, 'Marketing', 7, 'Branch Office Sud');
```

|   | ¹¾ department_id ▼ | <sup>ABC</sup> department_name ▼ | <sup>123</sup> department_head ** | ABC location T     |
|---|--------------------|----------------------------------|-----------------------------------|--------------------|
| 1 | 1                  | IT                               | 11                                | Headquarters       |
| 2 | 2                  | Project Management               | 2                                 | Branch Office West |
| 3 | 3                  | Human Resources                  | 6                                 | Branch Office East |
| 4 | 4                  | Marketing                        | 7                                 | Branch Office Sud  |
|   |                    |                                  |                                   |                    |

|    | ¹¹₫ employee_id ▼ | nec first_name | asc last_name | asc birthdate | asc position 🔻         | <sup>123</sup> department_id | • |
|----|-------------------|----------------|---------------|---------------|------------------------|------------------------------|---|
| 1  | 1                 | John           | Doe           | 1990-05-15    | Softwere Engineer      |                              | 1 |
| 2  | 2                 | Jane           | Smith         | 1985-08-20    | Project Manager        |                              | 2 |
| 3  | 3                 | Mike           | Johnson       | 1992-03-10    | New Job                |                              | 1 |
| 4  | 4                 | Emily          | Brown         | 1988-12-03    | UX Designer            |                              | 1 |
| 5  | 5                 | Alex           | Williams      | 1995-06-28    | Software Developer     |                              | 1 |
| 6  | 7                 | Ethan          | Clark         | 1991-02-14    | Database Administrator |                              | 1 |
| 7  | 8                 | Olivia         | Garcia        | 1984-07-22    | Marketing Manager      |                              | 2 |
| 8  | 9                 | Emilia         | Clark         | 1986-01-12    | HR Manager             |                              | 3 |
| 9  | 10                | Daniel         | Taylor        | 1993-11-05    | Systems Analyst        |                              | 1 |
| 10 | 11                | William        | Lee           | 1994-08-15    | Software Engineer      |                              | 1 |
| 11 | 12                | Sophia         | Baker         | 1990-06-25    | IT Manager             |                              | 2 |
| 12 | 13                | Laura          | Johnson       | 1990-09-25    | Marketing Specialist   |                              | 4 |

12.Créez **une nouvelle table Project** : project\_id (INT, PK), project\_name (VARCHAR), start\_date (DATE), end\_date (DATE), departement\_id (INT, FK).

```
□ CREATE TABLE Projects(
   project_id INT PRIMARY KEY,
   project_name VARCHAR,
   start_date DATE,
   end_date DATE,
   depatement_id INT
);
```

Ajoutez des observations à cette nouvelle table, analysez la productivité des départements en IT et du nouveau département créé précédemment.

Analyse du nombre total de projets pour le département Marketing:



Analyse du nombre total d'employés pour le département Marketing :

Calcul du nombre moyen de projets par employés pour le département Marketing:

```
SELECT COUNT(P.project_id) / COUNT(E.employee_id) AS productivity

FROM Projects P

LEFT JOIN Employees E ON P.department_id = E.department_id

WHERE P.department_id = (SELECT department_id FROM Departments WHERE department_name = 'Marketing');
```

Mise à jour de la table Projects avec la colonne project\_name qui corresponds à la colonne department\_name pour faire des comparaisons:

```
OUPDATE Projects
SET project_name =
    CASE
    WHEN project_id = 1 THEN 'Marketing'
    WHEN project_id = 2 THEN 'IT'
    WHEN project_id = 3 THEN 'Project Management'
    WHEN project_id = 4 THEN 'Human Resources'
    WHEN project_id = 5 THEN 'Marketing'
    ELSE project_name
END;
```



Analyse de la productivité des départements en IT et Marketing

```
D.department_name,
COUNT(P.project_id) AS nombre_de_projets,
COUNT(E.employee_id) AS nombre_d_employes,
COUNT(P.project_id) * 1.0 / COUNT(E.employee_id) AS productivite

FROM
Departments D

LEFT JOIN
Projects P ON D.department_id = P.department_id

LEFT JOIN
Employees E ON D.department_id = E.department_id

WHERE
D.department_name IN ('IT', 'Marketing')

GROUP BY
D.department_name;
```

|   |   | acc department_name | 123 nombre_de_projets | 123 nombre_d_employes | • | 123 productivite | • |
|---|---|---------------------|-----------------------|-----------------------|---|------------------|---|
|   | 1 | IT                  | 7                     |                       | 7 |                  | 1 |
| J | 2 | Marketing           | 1                     |                       | 1 |                  | 1 |
|   |   |                     |                       |                       |   |                  |   |

## Job 9

Considérons une dernière fois la table *world*. Il existe plusieurs colonnes de cette table que nous n'avons pas pu analyser. Étudiez au moins 6 autres variables de *world*, à l'aide de différentes fonctions et commandes SQL, afin d'obtenir des insights pertinents (Literacy, Net migration, Birthrate, Deathrate, Infant mortality, Arable, Crops, ...).

- Calcul du pourcentage de pays ayant une Literacy supérieure à 80%:

```
SELECT COUNT(*) AS count_high_literacy
FROM world
WHERE "Literacy (%)" > 80;

| 123 count_high_literacy | 1 | 227
```

- Calcul de la migration nette totale:

```
SELECT SUM("Net migration") AS total_het_migration FROM world
```



- Calcul du taux de natalité moyen:

```
SELECT AVG(Birthrate) AS average_birthrate
FROM world

123 average_birthrate
1 21,3083700441
```

- Pays qui ont un taux de mortalité infantile supérieur à 50 pour 1000 naissances:



#### Le tableau ne représente pas la totalité des résultats

- Calcul de la superficie totale Arable:



- Pays ou la superficie cultivée est supérieure à 20% de la superficie totale:

| е | SELECT<br>FROM W | Countr | у, "( | Cro | ps  | (%)" |
|---|------------------|--------|-------|-----|-----|------|
|   | WHERE            | "Crops | (%)"  | >   | 20; |      |

|   | asc Country 💌     | <sup>123</sup> Crops (%) ▼ |
|---|-------------------|----------------------------|
| 1 | Afghanistan       | 0,22                       |
| 2 | Albania           | 4,42                       |
| 3 | Algeria           | 0,25                       |
| 4 | Angola            | 0,24                       |
| 5 | Antigua & Barbuda | 4,55                       |

## Le tableau ne représente pas la totalité des résultats

## Big job: Calculateur d'Empreinte Carbone

L'empreinte carbone (ou le contenu carbone) d'une activité humaine est une mesure des émissions de effet de serre d'origine anthropique, c'est-à-dire lui être

Soucieux de l'environnement et de chère planète, vous avez outil

imputées.

pour comprendre cette afin de la

diminuer et minimiser son

vous lancez dans le développement d'un calculateur d'empreinte carbone, visant à aider à l'évaluation et à la compensation de l'empreinte carbone, en particulier dans le contexte de la production d'énergie électrique.



gaz à

qui peuvent

notre eu l'idée d'un

empreinte

impact. Vous

1. Vous récupérez les données d'intérêt ici. Vous avez à votre disposition un dataset

composé de deux tables, *Country* et *World*. Elles recensent le pourcentage d'utilisation de différentes sources d'énergie (charbon, gaz, pétrole, nucléaire, ...) en 2015 pour la production d'électricité par pays dans la table *Country*, puis par région du monde dans la table *World*.

2. Créez la base de données CarbonFootprint, puis les tables Country et World.

```
sqlite> .open CarbonFootprint.db

sqlite> .mode csv

sqlite> .import carbon-footprint-data.csv CarbonFootprint.db

carbon-footprint-data.csv:26: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:28: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:29: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:40: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:59: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:69: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:70: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:79: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:138: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:140: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:140: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:140: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:140: expected 1 columns but found 2 - extras ignored

carbon-footprint-data.csv:140: expected 1 columns but found 2 - extras ignored
```

## **Table Country**

|     | ABC Country          | <sup>ABC</sup> Coal ▼ | <sup>ABC</sup> Gas ▼ | <sup>ABC</sup> Oil ▼ | ABC Hydro | Renewable • | ABC Nuclear |
|-----|----------------------|-----------------------|----------------------|----------------------|-----------|-------------|-------------|
| 115 | South Sudan          | 0.0                   | 0.0                  | 99.6                 | 0.0       | 0.4         | 0.0         |
| 116 | Spain                | 16.5                  | 17.2                 | 5.1                  | 14.2      | 25.9        | 20.8        |
| 117 | Sri Lanka            | 25.7                  | 0.0                  | 35.1                 | 36.5      | 2.7         | 0.0         |
| 118 | Sudan                | 0.0                   | 0.0                  | 21.7                 | 78.3      | 0.0         | 0.0         |
| 119 | Suriname             | 0.0                   | 0.0                  | 37.7                 | 62.3      | 0.0         | 0.0         |
| 120 | Sweden               | 0.6                   | 0.3                  | 0.2                  | 41.5      | 14.3        | 42.3        |
| 121 | Switzerland          | 0.0                   | 0.7                  | 0.1                  | 54.3      | 3.8         | 39.3        |
| 122 | Syrian Arab Republic | 0.0                   | 64.4                 | 21.8                 | 13.8      | 0.0         | 0.0         |
| 123 | Tajikistan           | 0.0                   | 2.9                  | 0.0                  | 97.1      | 0.0         | 0.0         |
| 124 | Tanzania             | 0.0                   | 42.2                 | 15.5                 | 41.6      | 0.6         | 0.0         |
| 125 | Thailand             | 21.6                  | 68.3                 | 1.0                  | 3.2       | 5.9         | 0.0         |
| 126 | Togo                 | 0.0                   | 0.0                  | 12.0                 | 84.5      | 3.5         | 0.0         |
| 127 | Trinidad and Tobago  | 0.0                   | 99.8                 | 0.2                  | 0.0       | 0.0         | 0.0         |

**Table World** 

|   | ABC Country                | <sup>123</sup> Coal ▼ | <sup>123</sup> Gas • | <sup>123</sup> Oil ▼ | <sup>123</sup> Hydro | 123 Renewable | 123 Nuclear |
|---|----------------------------|-----------------------|----------------------|----------------------|----------------------|---------------|-------------|
| 1 | World                      | 40,7                  | 21,6                 | 4,1                  | 16,2                 | 6             | 10,6        |
| 2 | East Asia & Pacific        | 60,6                  | 13,5                 | 2,2                  | 15                   | 4,2           | 3,8         |
| 3 | Europe & Central           | 24,1                  | 24,3                 | 1,3                  | 16,6                 | 10,5          | 22,4        |
| 4 | Latin America & Caribbean  | 6,5                   | 26                   | 10,6                 | 46,5                 | 6,4           | 1,9         |
| 5 | Middle East & North Afrika | 3,4                   | 64,1                 | 28,8                 | 2,6                  | 0,4           | 0,3         |
| 6 | North America              | 35,7                  | 24,6                 | 1                    | 12,9                 | 6,6           | 18,9        |
| 7 | South Asia                 | 65,7                  | 9,1                  | 5,2                  | 11,6                 | 4,6           | 2,8         |
| 8 | Sub�Saharan Africa         | 51,4                  | 8,6                  | 4,3                  | 21,2                 | 1,7           | 3           |

3. Utilisez des requêtes SQL afin d'analyser les données recueillies et tirez un maximum d'informations sur les émissions en carbone. Qu'est ce que vous observez ? Notez ces observations pour la suite.

## Émissions totales par pays

```
SELECT Country,
SUM(Coal + Gas + Oil + Hydro + Renewable + Nuclear) AS TotalEmissions
FROM Country
GROUP BY Country;
```

|   | ABC Country | 123 TotalEmissions |  |
|---|-------------|--------------------|--|
| 1 | Albania     | 100                |  |
| 2 | Algeria     | 100                |  |
| 3 | Angola      | 100                |  |
| 4 | Argentina   | 100                |  |
| 5 | Armenia     | 100                |  |
| 6 | Australia   | 100                |  |
| 7 | Austria     | 99                 |  |
| 8 | Azerbaijan  | 99,8               |  |

#### Émissions totales mondiales

```
○ SELECT SUM(Coal + Gas + Oil + Hydro + Renewable + Nuclear) AS TotalWorldEmissions FROM World;
```



#### Pays avec les émissions les plus élevées

```
SELECT Country,
SUM(Coal + Gas + Oil + Hydro + Renewable + Nuclear) AS TotalEmissions
FROM Country
GROUP BY Country
ORDER BY TotalEmissions DESC
LIMIT 1;

ABC Country

123 TotalEmissions
1 Uzbekistan
100,1
```

## Moyenne des émissions par source d'énergie





4. Créez une application Flask où vous présenterez le contexte de ce mini projet et les observations faites précédemment.

Notre analyse est faite sur une base de données de 141 pays et 8 régions. Nous avons un jeu de données concernant différentes émissions de charbon, gaz, Petrol, électricité, solaire et nucléaire et nous avons fait des comparaison selon les pays qui consomment le plus et les différentes sources.

Pensez à afficher un aperçu de votre jeu de données *CarbonFootprint*.

## **Calculateur d'Empreinte Carbone**

#### Country

| Country   | Coal | Gas  | Oil  | Hydro | Renewable | Nuclear |
|-----------|------|------|------|-------|-----------|---------|
| Albania   | 0.0  | 0.0  | 0.0  | 100.0 | 0.0       | 0.0     |
| Algeria   | 0.0  | 97.8 | 1.8  | 0.4   | 0.0       | 0.0     |
| Angola    | 0.0  | 0.0  | 46.8 | 53.2  | 0.0       | 0.0     |
| Argentina | 2.9  | 47.7 | 13.8 | 29.0  | 2.5       | 4.1     |
| Armenia   | 0.0  | 42.4 | 0.0  | 25.7  | 0.1       | 31.8    |

#### World

| Country                    | Coal | Gas  | Oil  | Hydro | Renewable | Nuclear |
|----------------------------|------|------|------|-------|-----------|---------|
| World                      | 40.7 | 21.6 | 4.1  | 16.2  | 6.0       | 10.6    |
| East Asia & Pacific        | 60.6 | 13.5 | 2.2  | 15.0  | 4.2       | 3.8     |
| Europe & Central           | 24.1 | 24.3 | 1.3  | 16.6  | 10.5      | 22.4    |
| Latin America & Caribbean  | 6.5  | 26.0 | 10.6 | 46.5  | 6.4       | 1.9     |
| Middle East & North Afrika | 3.4  | 64.1 | 28.8 | 2.6   | 0.4       | 0.3     |

5. Le tableau suivant montre les émissions de CO2 de différentes sources de production d'électricité d'après une étude réalisée par le Groupe d'experts intergouvernemental sur l'évolution du climat datée de 2014. Par exemple, pour l'électricité produite à partir du charbon, les émissions de CO2 par kilowattheure varient de 740 grammes (au minimum) à 910 grammes (au maximum), avec une médiane de 820 grammes. Calculez le pourcentage de contribution des différentes sources du tableau aux émissions totales de CO2 lors de la production d'électricité pour tous les pays de Country.

Indice: Contribution du charbon aux émissions totales de CO2 d'un pays = Pourcentage d'utilisation du charbon du pays x Emission de gCO2 par kWh du charbon.

| Source       | Min de gCO2/kWh | Médiane de gCO2/kWh | Max de<br>gCO2/kWh |
|--------------|-----------------|---------------------|--------------------|
| Charbon      | 740             | 820                 | 910                |
| Gaze naturel | 410             | 490                 | 650                |

| Pétrole                    | 620 | 740 | 890  |
|----------------------------|-----|-----|------|
| Hydro                      | 1   | 24  | 2200 |
| Renouvelabl<br>e (Solaire) | 26  | 41  | 60   |
| Nucléaire                  | 3.7 | 12  | 110  |

| Contribution des Sources aux Émissions de CO2 |        |  |  |
|-----------------------------------------------|--------|--|--|
| Source                                        | Valeur |  |  |
| Charbon                                       | 205.76 |  |  |
| Gaz                                           | 180.67 |  |  |
| Huile                                         | 173.39 |  |  |
| Hydro                                         | 9.41   |  |  |
| Renouvelable                                  | 3.61   |  |  |
| Nucléaire                                     | 0.87   |  |  |

6. Modifiez votre application Flask afin de pouvoir filtrer vos données selon un pays (ou une région du monde) sélectionnable depuis une selection box.

| Contribution des Sources aux Émissions de CO2  Sélectionner un pays: Bangladesh Filtrer |        |  |  |
|-----------------------------------------------------------------------------------------|--------|--|--|
| Source                                                                                  | Valeur |  |  |
| Coal                                                                                    | 0.24   |  |  |
| Gas                                                                                     | 2.34   |  |  |
| Oil                                                                                     | 1.02   |  |  |
| Hydro                                                                                   | 0.07   |  |  |
| Renewable                                                                               | 0.01   |  |  |
| Nuclear                                                                                 | 0.00   |  |  |

7. Créez un tableau montrant, pour chaque pays sélectionné depuis la selection box créée précédemment, le pourcentage d'utilisation de différentes ressources, l'émission médiane en gCO2kWh de ces ressources et la contribution spécifique de ses ressources aux émissions totales de CO2 lors de la production d'électricité.

Par exemple, si l'on sélectionne l'Albanie depuis la selection box, le tableau doit afficher les éléments suivants :

| Source de production | % d'utilisation Médiane de<br>gCO2/kW<br>h | Contribution en<br>émission gCO2/kWh |
|----------------------|--------------------------------------------|--------------------------------------|
| Charbon              | 0 820                                      | 0% x 820 = 0                         |
| Gaze Naturel         | 0 490                                      | 0% x 490 = 0                         |
| Pétrole              | 0 740                                      | 0% x 740 = 0                         |
| Hydro                | 100 24                                     | 100% x 24 = 24                       |
| Renouvelable         | 0 41                                       | 0 % x 41 = 0                         |
| Nucléaire            | 0 12                                       | 0 % x 12 = 0                         |

| Contribution des Sources aux Émissions de CO2  Sélectionner un pays : Albania Filtrer |                 |                     |                                   |
|---------------------------------------------------------------------------------------|-----------------|---------------------|-----------------------------------|
| Source de production                                                                  | % d'utilisation | Médiane de gCO2/kWh | Contribution en émission gCO2/kWh |
| Coal                                                                                  | 0               | 820                 | 0% x 820 = 0                      |
| Gas                                                                                   | 0               | 490                 | 0% x 490 = 0                      |
| Oil                                                                                   | 0               | 740                 | 0% x 740 = 0                      |
| Hydro                                                                                 | 100             | 24                  | 100% x 24 = 24                    |
| Renewable                                                                             | 0               | 41                  | 0% x 41 = 0                       |
| Nuclear                                                                               | 0               | 12                  | 0% x 12 = 0                       |

| Sélectionner un pays : Bolivia Filtrer |                 |                     |                                   |
|----------------------------------------|-----------------|---------------------|-----------------------------------|
| Source de production                   | % d'utilisation | Médiane de gCO2/kWh | Contribution en émission gCO2/kWh |
| Coal                                   | 0               | 820                 | 0% x 820 = 0                      |
| Gas                                    | 100             | 490                 | 100% x 490 = 490                  |
| Oil                                    | 100             | 740                 | 100% x 740 = 740                  |
| Hydro                                  | 100             | 24                  | 100% x 24 = 24                    |
| Renewable                              | 100             | 41                  | 100% x 41 = 41                    |
| Nuclear                                | 0               | 12                  | 0% x 12 = 0                       |

8. Calculez et affichez l'émission totale des différentes sources d'un pays sélectionné : émissions totales = émission de charbon + émission de gaze + ... + émission de nucléaire. Par exemple : 0 + 0 + 0 + 24 +... + 0 = 24 gCO2/kWh.



Emission totale CO2 par Pays selectionné
Résultat Émissions totale CO2 par Pays selectionné : 99.90 KgCO2/kWh

9. Calculez et affichez l'émission totale annuelle pour un pays (toujours depuis une selection box). On définit la formule permettant de calculer cette valeur comme suit :

Émissions annuelles totales de CO2 = Émissions totales en kgCO2/kWh x nombre d'heures dans une année x consommation électrique, où la consommation électrique en kw doit être spécifiée par l'utilisateur.

Afin d'y voir pour clair, faisons ce calcul pour l'Albanie, on a :

- 1. Émissions totales de l'Albanie en kgCO2/kWh : 0,024 (kgCO2/kwh)
- 2. Nombre d'heures dans une année : 24 x 365

3. Puissance électrique consommée de manière continue par l'Albanie (donnée choisie par l'utilisateur) : 1 (kw)

On calcule donc à l'aide de **la formule précédente**, les émissions en CO2 de l'Albanie durant une année pour la production d'électricité consommée de 1 (kw) par heure, par jour : **0,024 x 24 x 365 x 1 = 210,24 (kg of CO2)**.

| Calcul des émissions annuelles pour un Pays |          |                                                     |                              |
|---------------------------------------------|----------|-----------------------------------------------------|------------------------------|
| Sélectionner un pays : E                    | Botswana | ∨ Consommation électrique par heure (kW) : [0,03] : | Calculer Émissions Annuelles |

Cette partie du code je n'ai pas réussi à la finir. Le résultat ne s'affiche pas je n'arrive pas à le récupérer. Je me pencherais dessus plus tard car nous devons rendre le devoir ce soir.

10. Pour finir, en sachant qu'un arbre absorbe environ 25 kg de CO2 par an, affichez le nombre nécessaire d'arbres à planter afin d'absorber le CO2 engendré par un pays (sélectionné depuis la selection box, et oui) durant la production d'électricité.



# (BONUS) Et encore du SQL...

Après avoir fini les 11 jobs précédents, vous souhaitez encore vous exercer sur SQL, vous êtes bien courageux! Vous réalisez donc les jobs facultatifs suivants en ayant

pour but de parfaire vos connaissances.

## Job Video Games Sales

Soit l'ensemble de données **Video Games Sales** contenant une liste de jeux vidéo vendus à plus de 100 000 exemplaires, scrappé depuis le site internet **vgchartz.com** (spécialisé dans la compilation de ventes de jeux vidéo). Récupérez le jeu de données depuis <u>ce lien</u> et **analysez le** en répondant aux questions suivantes :

- 1. Quelles sont les valeurs minimales et maximales pour chaque colonne numérique (Year, NA\_Sales, EU\_Sales, JP\_Sales, Other\_Sales) ?
- 2. Quelles sont les ventes totales en Amérique du Nord, en Europe, au Japon et dans d'autres régions ?
- 3. Quelle est la répartition des ventes dans chaque région?
- 4. Combien de jeux ont été publiés chaque année ?
- 5. Quel est le jeu ayant les ventes totales les plus élevées, et sur quelle plateforme a-t-il été le plus vendu ?
- 6. Quelle plateforme a le plus grand total de ventes ?
- 7. Quel genre a la plus grande moyenne de ventes ?
- 8. Comment évoluent les ventes au fil des années ?
- 9. Quelle est la part de marché de chaque éditeur en termes de ventes totales ?
- 10. Qui sont les principaux éditeurs en termes de ventes ?

- 11. Quels sont les jeux avec les meilleures ventes dans chaque genre de jeu?
- 12. Voyez-vous une autre problématique à analyser pour ce jeu de données ?

## Job Google Play Store Apps

Soit l'ensemble de données Google Play Store, constitué de 10

000 applications du Play Store scrappées dans le but afin

d'**analyser le marché d'applications sur Android**. Récupérez le



jeu de données depuis <u>ce lien</u> et <u>analysez le</u> en répondant aux questions suivantes :

- 1. Quelle est la note moyenne de toutes les applications du Play Store ?
- 2. Quelle est la **note la plus élevée et la plus basse** du jeu de données ? 3.

Quelle est la proportion d'applications gratuites et d'applications payantes?

- 4. Quelle est la moyenne du nombre d'avis pour les applications gratuites et payantes ?
- 5. Combien d'applications y a-t-il dans chaque catégorie?
- 6. Quelle est la **note moyenne pour chaque catégorie** ?
- 7. Quelle catégorie d'applications a la moyenne la plus élevée d'avis?
- 8. Quelle est la taille moyenne des applications dans chaque catégorie?
- 9. Semble-il y avoir une corrélation entre la taille de l'application et le nombre d'installations ?
- 10. Combien d'applications existent pour chaque évaluation du contenu ?
- 11. Quelle est la note moyenne pour chaque évaluation du contenu ?

- 12. Quelle évaluation du contenu a le plus grand nombre d'installations?
- 13. Quels sont les genres les plus courants dans le jeu de données ?
- 14. Combien d'applications appartiennent à plusieurs genres ?
- 15. Semble-il y avoir une corrélation entre le fait d'avoir plusieurs genres et des notes plus élevées ?
- 16. Quel est le prix moyen des applications payantes dans chaque catégorie?
- 17. Combien d'applications gratuites existent dans chaque catégorie?
- 18.Quelles sont les **5 meilleures applications** avec le **plus grand nombre** d'installations ?
- 19. Quelles sont les 5 meilleures applications gratuites avec les notes les plus élevées ?
- 20. Semble-il y avoir une corrélation entre la taille d'une application et sa note?
- 21.Les applications plus petites sont-elles plus susceptibles d'être gratuites?
- 22. Semble-il y avoir une corrélation entre le prix d'une application et sa note?

# Compétences visées

- → Systèmes de gestion de base de données
- → SOL
- → Flask

## Rendu

Votre travail devra être sauvegardé dans un repository sur github appelé **hello-DBMS**. Ce repository devra contenir les éléments suivants :

• La veille scientifique réalisée dans votre fichier **README** (en plus du contexte du

projet, comme à votre habitude).

- Les scripts SQL des différents jobs de la section Hello SQL. Faites en sorte de nommer chaque script selon le job (job1.sql, job2.sql,...).
- Le script Python de l'application Flask du big job ainsi que les scripts HTML et
   CSS (l'application doit être un minimum plaisante à regarder).

# Base de connaissances

- Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025
- Qu'est-ce qu'un système de gestion de base de données
- MySQL The Basics // Learn SQL in 23 Easy Steps
- SQL Tout savoir sur le langage de programmation des bases de données
- SQL.sh Apprendre le SQL
- Practice SQL
- SQL Cheatsheet
- NoSQL: Tout comprendre sur les bases de données non relationnelles
- <u>7 Database Paradigms</u>