

Robust Estimation of bottom friction Parameter control in the presence of uncertainties

VICTOR TRAPPLER s151431

Master Thesis Defence

DTU Aqua

National Institute of Aquatic Resources

The AIRSEA team, Grenoble, FRANCE

The AIRSEA team, Grenoble, FRANCE

- Modelling Oceanic and Atmospheric flows: parametrization and coupling of the equations
- Model reduction, multiscale algorithms
- High-performance computing
- Dealing with uncertainties

The AIRSEA team, Grenoble, FRANCE

- Modelling Oceanic and Atmospheric flows: parametrization and coupling of the equations
- Model reduction, multiscale algorithms
- High-performance computing
- Dealing with uncertainties

Introduction

Outline

- Introduction
- Deterministic Framework
- Global sensitivity analysis
- Robust Optimization
- Conclusion

Deterministic Framework

Deterministic Framework

- Introduction
- Deterministic Framework
 - The 1D Shallow Water Equations
 - Adjoint-based optimization
- Global sensitivity analysis
- Robust Optimization
- Conclusion

The 1D Shallow Water Equations

1D-SWE

$$\partial_t \mathbf{h} + \partial_x \mathbf{q} = 0$$
 (Conservation)

$$\partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2} g h^2 \right) = -g h \partial_x Z - S$$
 (Momentum)

The 1D Shallow Water Equations

1D-SWE

$$\partial_t h + \partial_x q = 0$$
 (Conservation)

$$\partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - S \tag{Momentum}$$

Quadratic Friction

$$S = -\mathbf{K}|q|qh^{-\eta}, \quad \eta = 7/3$$

K: control parameter. Either a scalar value or a vector

Computer code

- 1D Shallow water equations
 - K: Bottom friction
 - Boundary conditions (considered fixed and known)
- Output W(K): $W_i^n(K) = [h_i^n(K) \quad q_i^n(K)]^T \text{, for } 0 \leq i \leq N_x \text{ and } 0 \leq n \leq N_t$

Data assimilation

$$K_{\mathrm{ref}}$$
 and $\mathcal H$ observation operator We have $Y=\mathcal HW(K_{\mathrm{ref}})=\{h_i^n(K_{\mathrm{ref}})\}_{i,n}$
$$j(K)=\frac12\|\mathcal HW(K)-Y\|^2$$

Data assimilation

$$K_{\mathrm{ref}}$$
 and $\mathcal H$ observation operator We have $Y=\mathcal HW(K_{\mathrm{ref}})=\{h_i^n(K_{\mathrm{ref}})\}_{i,n}$
$$j(K)=\frac12\|\mathcal HW(K)-Y\|^2$$

$$\operatorname*{arg\,min}_{K\in\mathcal{K}}j(K)?$$

 \bullet Gradient-free: Simulated annealing, Nelder-mead, . . . \to High number of runs. Very expensive in practice

שוט

Data assimilation

 K_{ref} and $\mathcal H$ observation operator We have $Y=\mathcal HW(K_{\mathrm{ref}})=\{h_i^n(K_{\mathrm{ref}})\}_{i,n}$ $j(K)=\frac12\|\mathcal HW(K)-Y\|^2$

$$\underset{K \in \mathcal{K}}{\operatorname{arg\,min}} j(K)?$$

- \bullet Gradient-free: Simulated annealing, Nelder-mead, . . . \to High number of runs. Very expensive in practice
- ullet Gradient-based: gradient-descent, (quasi-) Newton method $\ldots o$ Less number of runs, but need to derive adjoint code

Estimation procedure no gradient

Estimation procedure adjoint-based gradient

Introducing uncertainties

 $oldsymbol{X}_e$ random vector with realizations $oldsymbol{x}_e \in \mathbb{X}$

V	ariable	mean.h	ampli	period	phase
	$oldsymbol{X}_e$	$\mathcal{U}([19.5, 20.5])$	$\mathcal{U}([4.9, 5.1])$	$\mathcal{U}([49.9, 50.1])$	$\mathcal{U}([-0.001, 0.001])$
:	$oldsymbol{x}_{e, ext{ref}}$	20.0	5.0	50.0	0.000

$$W(K)$$
 becomes $W(\boldsymbol{x}_e,K)$

We have $Y = \mathcal{H}W(\boldsymbol{x}_{e,\mathrm{ref}},K_{\mathrm{ref}})$ The (deterministic) quadratic error is now

$$j(\boldsymbol{x}_e, K) = \frac{1}{2} \|\mathcal{H}W(\boldsymbol{x}_e, K) - Y\|^2$$

 \longrightarrow sample one $oldsymbol{x}_e$ and min w.r.t. K ?

Estimation procedure with uncertainties no gradient

Estimation procedure with uncertainties adjoint-based gradient

Influence of \boldsymbol{X}_e ? Minimizing $j(\boldsymbol{x}_e,K)$ wrt K ? Computational cost ?


```
\begin{array}{ll} \text{Influence of } \textbf{$X_e$ ?} & \longrightarrow \text{Sensitivity analysis} \\ \text{Minimizing } j(\textbf{$x_e$}, K) \text{ wrt } K ? & \longrightarrow \text{Robust optimization} \\ \text{Computational cost ?} & \longrightarrow \text{Use of surrogate} \end{array}
```

Global sensitivity analysis

Sensitivity Analysis

- Introduction
- Deterministic Framework
- Global sensitivity analysis
 - Definition
 - SA of different outputs of the model
- Robust Optimization
- Conclusion

Sobol Indices [Sobol, 2001]

Let $\mathcal{J}=J(\boldsymbol{X})$ a rv, with $\boldsymbol{X}=(X_1,\ldots X_p)$ uniformly distributed on $[0;1]^p$ and components independent.

$$\mathbb{E}[\mathcal{J}|X_i=\alpha]$$

Sobol Indices [Sobol, 2001]

Let $\mathcal{J}=J(\boldsymbol{X})$ a rv, with $\boldsymbol{X}=(X_1,\ldots X_p)$ uniformly distributed on $[0;1]^p$ and components independent.

$$Var[\mathbb{E}[\mathcal{J}|X_i]]$$

Sobol Indices [Sobol, 2001]

Let $\mathcal{J}=J(\boldsymbol{X})$ a rv, with $\boldsymbol{X}=(X_1,\ldots X_p)$ uniformly distributed on $[0;1]^p$ and components independent.

$$S_i = \frac{\mathbb{V}\mathrm{ar}[\mathbb{E}[\mathcal{J}|X_i]]}{\mathbb{V}\mathrm{ar}[\mathcal{J}]}$$

Sobol Indices [Sobol, 2001]

Let $\mathcal{J}=J(\boldsymbol{X})$ a rv, with $\boldsymbol{X}=(X_1,\ldots X_p)$ uniformly distributed on $[0;1]^p$ and components independent.

$$S_i = \frac{\mathbb{V}\mathrm{ar}[\mathbb{E}[\mathcal{J}|X_i]]}{\mathbb{V}\mathrm{ar}[\mathcal{J}]}$$

Variance of the ANOVA decomposition

$$1 = \sum_{i=1}^{p} S_i + \sum_{1 \leq i < j \leq p} S_{ij} + \dots + \underbrace{S_{1...p}}_{\text{Interaction order } p}$$

[Gilquin et al., 2017, Sudret, 2015]

Sobol' indices of the cost function

 $j(\boldsymbol{X}_e, K)$

Sobol' indices of the response

1st order indices

2nd order indices

Sobol' indices of the gradient of cost function

 $\frac{\mathrm{d}j}{\mathrm{d}K}(\boldsymbol{X}_e,K)$

Sobol' indices of the gradient

1st order indices

2nd order indices

Robust Optimization

Robust Optimization

- Introduction
- Deterministic Framework
- Global sensitivity analysis
- Robust Optimization
 - Concepts of robustness
 - Metamodeling
 - Adaptative sampling
- Conclusion

A first example

$$(x_e,K)\mapsto f(x_e,K)= ilde{f}(x_e+K)$$
 and $X_e\sim\mathcal{N}(0,s^2)$ truncated on $[-3;3]$

Different approaches for the minimization of f

A first example

$$(x_e,K)\mapsto f(x_e,K)= ilde{f}(x_e+K)$$
 and $X_e\sim\mathcal{N}(0,s^2)$ truncated on $[-3;3]$

Different approaches for the minimization of f

A first example

$$(x_e,K)\mapsto f(x_e,K)= ilde{f}(x_e+K)$$
 and $X_e\sim\mathcal{N}(0,s^2)$ truncated on $[-3;3]$

Different approaches for the minimization of f

Robust Optimization

Different Notions of robustness

ullet Global Optimum: $\min j(oldsymbol{x}_e,K) \longrightarrow \mathsf{EGO}$

Different Notions of robustness

- ullet Global Optimum: $\min j(oldsymbol{x}_e,K) \longrightarrow \mathsf{EGO}$
- ullet Worst case: $\min_K \max_{oldsymbol{x}_e} j(oldsymbol{x}_e,K) \longrightarrow \mathsf{Explorative}$ EGO

Different Notions of robustness

- Global Optimum: $\min j(x_e, K) \longrightarrow \mathsf{EGO}$
- ullet Worst case: $\min_K \max_{oldsymbol{x}_e} j(oldsymbol{x}_e,K) \longrightarrow \mathsf{Explorative} \ \mathsf{EGO}$
- ullet M-robustness: $\min \mu(K)$, constraint on $\sigma^2(K) \longrightarrow \text{iterated LHS}$

- Global Optimum: $\min j(\boldsymbol{x}_e, K) \longrightarrow \mathsf{EGO}$
- ullet Worst case: $\min_K \max_{oldsymbol{x}_e} j(oldsymbol{x}_e,K) \longrightarrow \mathsf{Explorative} \ \mathsf{EGO}$
- M-robustness: $\min \mu(K)$, constraint on $\sigma^2(K) \longrightarrow$ iterated LHS
- ullet V-robustness: $\min \sigma^2(K)$, constraint on $\mu(K) \longrightarrow \text{gradient-descent}$ with PCE

- Global Optimum: $\min j(x_e, K) \longrightarrow \mathsf{EGO}$
- ullet Worst case: $\min_K \max_{oldsymbol{x}_e} j(oldsymbol{x}_e,K) \longrightarrow \mathsf{Explorative} \; \mathsf{EGO}$
- M-robustness: $\min \mu(K)$, constraint on $\sigma^2(K) \longrightarrow$ iterated LHS
- V-robustness: $\min \sigma^2(K)$, constraint on $\mu(K) \longrightarrow \text{gradient-descent with PCE}$
- ρ -robustness: $\min \rho(\mu(K), \sigma^2(K)) \longrightarrow \text{gradient-descent with PCE}$

- Global Optimum: $\min j(\boldsymbol{x}_e, K) \longrightarrow \mathsf{EGO}$
- Worst case: $\min_K \max_{\boldsymbol{x}_e} j(\boldsymbol{x}_e, K) \longrightarrow \mathsf{Explorative} \; \mathsf{EGO}$
- M-robustness: $\min \mu(K)$, constraint on $\sigma^2(K) \longrightarrow$ iterated LHS
- V-robustness: $\min \sigma^2(K)$, constraint on $\mu(K) \longrightarrow \text{gradient-descent with PCE}$
- ullet ho-robustness: $\min
 ho(\mu(K), \sigma^2(K)) \longrightarrow \text{gradient-descent with PCE}$
- ullet Multiobjective: choice within Pareto frontier $\longrightarrow 1L/2L$ kriging

- Global Optimum: $\min j(\boldsymbol{x}_e, K) \longrightarrow \mathsf{EGO}$
- Worst case: $\min_K \max_{\boldsymbol{x}_e} j(\boldsymbol{x}_e, K) \longrightarrow \mathsf{Explorative} \; \mathsf{EGO}$
- M-robustness: $\min \mu(K)$, constraint on $\sigma^2(K) \longrightarrow \text{iterated LHS}$
- V-robustness: $\min \sigma^2(K)$, constraint on $\mu(K) \longrightarrow \text{gradient-descent with PCE}$
- ullet ho-robustness: $\min
 ho(\mu(K), \sigma^2(K)) \longrightarrow \text{gradient-descent with PCE}$
- ullet Multiobjective: choice within Pareto frontier $\longrightarrow 1L/2L$ kriging

Why surrogates?

- Model → expensive to run
- High dimensional problem + taking into account uncertainties ?

Why surrogates?

- Model → expensive to run
- High dimensional problem + taking into account uncertainties ?

Comparison between PCE and Kriging

	Polynomial Chaos	Kriging
Surrogate	$J(\boldsymbol{X}) = \sum_{\boldsymbol{lpha} \in \mathcal{A}} \hat{J}_{\boldsymbol{lpha}} \boldsymbol{\Phi}_{\boldsymbol{lpha}}(\boldsymbol{X})$	$ar{J}(oldsymbol{x}) \sim \mathcal{N}(\hat{m}(oldsymbol{x}), \hat{s}^2(oldsymbol{x}))$
Estim.	Numerical quadrature/Regression	Regression
Quantity	Statistical moments	estimate $+ CI$
Ref.	[Wiener, 1938, Sudret, 2015]	[Krige, 1951, Matheron, 1969]

Comparison between PCE and Kriging

	Polynomial Chaos	Kriging
Surrogate	$J(\mathbf{X}) = \sum_{\alpha \in \mathcal{A}} \hat{J}_{\alpha} \Phi_{\alpha}(\mathbf{X})$	$ar{J}(oldsymbol{x}) \sim \mathcal{N}(\hat{m}(oldsymbol{x}), \hat{s}^2(oldsymbol{x}))$
Estim.	Numerical quadrature/Regression	Regression
Quantity	Statistical moments	estimate $+$ CI
Ref.	[Wiener, 1938, Sudret, 2015]	[Krige, 1951, Matheron, 1969]

DTU

Principle of adaptative sampling

Based on kriging model \longrightarrow mean and variance How to choose a new point to evaluate ? Criterion $\kappa(x)$ \longrightarrow "potential" of the point

$$\boldsymbol{x}_{\text{new}} = \arg \max \kappa(\boldsymbol{x})$$

EGO [Jones et al., 1998] Global Optimum

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

DTU

EGO [Jones et al., 1998] *Global Optimum*

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

$$j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)$$

DTU

EGO [Jones et al., 1998] *Global Optimum*

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

$$\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}$$

DTU

EGO [Jones et al., 1998] Global Optimum

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

$$EI(\boldsymbol{x}_e, K) = \mathbb{E}[\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}]$$

EGO [Jones et al., 1998] Global Optimum

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

Expected improvement

$$EI(\boldsymbol{x}_e, K) = \mathbb{E}[\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}]$$

EGO iteration

$$(\tilde{\boldsymbol{x}}_e, \tilde{K}) = \arg \max EI(\boldsymbol{x}_e, K)$$

$$\mathcal{P}_{N+1} = \mathcal{P}_N \cup (\tilde{\boldsymbol{x}}_e, \tilde{K})$$

$$\bar{J}_{N+1}(\boldsymbol{x}_e, K) \sim \mathcal{N}\left(\hat{m}_{N+1}(\boldsymbol{x}_e, K), \hat{s}_{N+1}^2(\boldsymbol{x}_e, K)\right)$$

Example of an EGO iteration

EGO

Explorative EGO [Lehman et al., 2004] Worst-case scenario

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

$$EI(\boldsymbol{x}_e, K) = \mathbb{E}[\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}]$$

DTU

Explorative EGO [Lehman et al., 2004] Worst-case scenario

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

Expected improvement

$$EI(\boldsymbol{x}_e, K) = \mathbb{E}[\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}]$$

Explorative EGO iteration

$$\begin{split} (\tilde{\boldsymbol{x}}_e, \tilde{K}) &= \arg \max EI(\boldsymbol{x}_e, K) \\ \boldsymbol{x}_e^* &= \arg \max_{\boldsymbol{x}_e} d\left((\boldsymbol{x}_e, \tilde{K}), \mathcal{P}_N\right) \\ \mathcal{P}_{N+1} &= \mathcal{P}_N \cup (\boldsymbol{x}_e^*, \tilde{K}) \\ \bar{J}_{N+1}(\boldsymbol{x}_e, K) \sim \mathcal{N}\left(\hat{m}_{N+1}(\boldsymbol{x}_e, K), \hat{s}_{N+1}^2(\boldsymbol{x}_e, K)\right) \end{split}$$

DTU

Explorative EGO [Lehman et al., 2004] *Worst-case scenario*

 \mathcal{P}_N experimental design on $\mathbb{X} \times \mathcal{K}$, $\mathcal{Y}_N = j(\mathcal{P}_N)$.

$$\bar{J}_N(\boldsymbol{x}_e,K) \sim \mathcal{N}\left(\hat{m}_N(\boldsymbol{x}_e,K),\hat{s}_N^2(\boldsymbol{x}_e,K)\right)$$

$$j_{\min}^N = \min \mathcal{Y}_N$$

Expected improvement

$$EI(\boldsymbol{x}_e, K) = \mathbb{E}[\max\{0, j_{\min}^N - \bar{J}_N(\boldsymbol{x}_e, K)\}]$$

Explorative EGO iteration

$$\begin{split} (\tilde{\boldsymbol{x}}_e, \tilde{K}) &= \arg\max EI(\boldsymbol{x}_e, K) \\ \boldsymbol{x}_e^* &= \argmax_{\boldsymbol{x}_e} d\left((\boldsymbol{x}_e, \tilde{K}), \mathcal{P}_N\right) \\ \mathcal{P}_{N+1} &= \mathcal{P}_N \cup (\boldsymbol{x}_e^*, \tilde{K}) \\ \bar{J}_{N+1}(\boldsymbol{x}_e, K) &\sim \mathcal{N}\left(\hat{m}_{N+1}(\boldsymbol{x}_e, K), \hat{s}_{N+1}^2(\boldsymbol{x}_e, K)\right) \end{split}$$

31

DTU

Explorative EGO iterations [Lehman et al., 2004]

Iterated LHS *M-robustness*

to build $\hat{\mu}(K)$ and $\hat{\sigma}^2(K)$

Iterated LHS M-robustness

to build $\hat{\mu}(K)$ and $\hat{\sigma}^2(K)$

Estimate of the mean

$$\mathbb{E}[J(\boldsymbol{X}_e,K)|K] \xrightarrow{\text{estimator}} \hat{\mu}(K) = n_e^{-1} \sum_{i=1}^{n_e} J(\boldsymbol{X}_e^i,K) \text{ (r.v.)}$$

$$\mathbb{V}\text{ar}[J(\boldsymbol{X}_e,K)|K] \xrightarrow{\text{estimator}} \hat{\sigma}^2(K) = (n_e-1)^{-1} \sum_{i=1}^{n_e} (J(\boldsymbol{X}_e^i,K) - \hat{\mu}(K))^2 \text{ (r.v.)}$$

$$\mathbb{E}[\hat{\mu}(K)] = \mathbb{E}[J(\boldsymbol{X}_e,K)|K] \quad \text{and} \quad \mathbb{V}\text{ar}[\hat{\mu}(K)] = \frac{\mathbb{V}\text{ar}[J(\boldsymbol{X}_e,K)|K]}{n_e} \approx \frac{\hat{\sigma}^2(K)}{n_e}$$

Estimated mean as a random variable

$$\hat{\mu}(K) \sim \mathcal{N}\left(\mathbb{E}[J(\boldsymbol{X}_e, K)|K], \frac{\hat{\sigma}^2(K)}{n_e}\right)$$

(CLT approximation)

Idea [Rullière et al., 2013] :

- ullet Add a new point K_{new} and estimate $\mathbb{E}[J(oldsymbol{X}_e,K)|K=K_{\mathrm{new}}]$
- ullet OR Reduce the variance by increasing n_e

(CLT approximation)

Estimated mean as a random variable

$$\hat{\mu}(K) \sim \mathcal{N}\left(\mathbb{E}[J(\boldsymbol{X}_e, K)|K], \frac{\hat{\sigma}^2(K)}{n_e}\right)$$

Idea [Rullière et al., 2013] :

- ullet Add a new point K_{new} and estimate $\mathbb{E}[J(oldsymbol{X}_e,K)|K=K_{\mathrm{new}}]$
- ullet OR Reduce the variance by increasing n_e

In an adaptative sampling strategy: $K^* = \arg\max_{K \in \mathcal{K}} \kappa(K)$

- ullet if K^* "close" to an existing point \longrightarrow increase n_e
- ullet if not \longrightarrow add K^* to the design

DTU

Knowledge-gradient criterion

Metamodel of the estimated mean:

Based on \mathcal{P}_N , an experimental design of N points on \mathcal{K} .

$$\bar{\mu}_N(K) \sim \mathcal{N}\left(\hat{m}_N(K), \hat{s}_N^2(K)\right)$$

DTU Aqua

Knowledge-gradient criterion

Metamodel of the *estimated* mean:

Based on \mathcal{P}_N , an experimental design of N points on \mathcal{K} .

$$\bar{\mu}_N(K) \sim \mathcal{N}\left(\hat{m}_N(K), \hat{s}_N^2(K)\right)$$

In the presence of noise in the kriging model:

Definition of the KG [Frazier et al., 2008]

$$KG(\tilde{K}) = \min_{K' \in \mathcal{K}} \hat{m}_N(K') - \mathbb{E}\left[\min_{K' \in \mathcal{K}} \hat{m}_{N+1}(K') \middle| \tilde{K}\right]$$

where \hat{m}_{N+1} is the kriging mean computed based on $\mathcal{P}_N \cup \{\tilde{K}\}$

Conclusion

Wrapping up

- Notion of robustness
- $\bullet \ \ \text{Metamodelling techniques} \ \to \ \text{include uncertainties}$
- Balance between precision and number of runs

Perspective and future work

- Better numerical model
 - 2D
 - Better numerical scheme
- ullet Influence of observation operator ${\cal H}$
 - Y as real measurements
- ullet Extension to K multidimensional
- Choice of metamodel:
 - Kriging
 - not adapted to high-dimensional input space
 - Adaptative sampling in multidimensional case?
 - PC
 - ullet adapted to K multidimensional
 - "Fixed" grid to evaluate
 - May need more evaluation in some cases + adjoint

Thank you for your attention

- Introduction
 - AIRSFA team
 - Context and scope of the project
- Deterministic Framework
 - The 1D Shallow Water Equations
 - Adjoint-based optimization
- Global sensitivity analysis

- Definition
- SA of different outputs of the model
- Robust Optimization
 - Concepts of robustness
 - Metamodeling
 - Adaptative sampling
- Conclusion

- Dellino, G., Kleijnen, J. P., and Meloni, C. (2012).

 Robust optimization in simulation: Taguchi and krige combined.

 INFORMS Journal on Computing, 24(3):471–484.
- Frazier, P. I., Powell, W. B., and Dayanik, S. (2008). A knowledge-gradient policy for sequential information collection. *SIAM Journal on Control and Optimization*, 47(5):2410–2439.
- Gilquin, L., Arnaud, E., Prieur, C., and Janon, A. (2017).

 Making best use of permutations to compute sensitivity indices with replicated designs.

 Submitted on June 28th.
- Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455–492.

- Frige, D. G. (1951).
 - A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG Krige.
- Lehman, J. S., Santner, T. J., and Notz, W. I. (2004). Designing computer experiments to determine robust control variables. *Statistica Sinica*, 14(2):571–590.
- Matheron, G. (1969). Le krigeage universel.
- Miranda, J., Kumar, D., and Lacor, C. (2016).

 Adjoint-based robust optimization using polynomial chaos expansions.
- Rullière, D., Faleh, A., Planchet, F., and Youssef, W. (2013). Exploring or reducing noise? A global optimization algorithm in the presence of noise.
 - Structural and Multidisciplinary Optimization, 47(6):921-936.

Sobol, I. M. (2001).

Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates

Mathematics and computers in simulation, 55(1):271–280.

Sudret, B. (2015).

Polynomial chaos expansions and stochastic finite element methods. In Kok-Kwang Phoon, J. C., editor, Risk and Reliability in Geotechnical Engineering, pages 265-300. CRC Press.

Wiener, N. (1938).

The homogeneous chaos.

American Journal of Mathematics, 60(4):897–936.

Let us assume that we have the (formal) model

$$J(W(K),K) \qquad \qquad \text{(Cost function)}$$
 s.t. $R(W(K),K)=0$ (Model equation (SWE))

Let us assume that we have the (formal) model

$$J(W(K),K) \qquad \qquad \text{(Cost function)}$$
 s.t. $R(W(K),K)=0$ (Model equation (SWE))

$$\frac{\mathrm{d}J}{\mathrm{d}K} = ? \tag{1}$$

Let us assume that we have the (formal) model

$$J(W(K),K) \qquad \qquad \text{(Cost function)}$$
 s.t. $R(W(K),K)=0$ (Model equation (SWE))

$$\frac{\mathrm{d}J}{\mathrm{d}K} = ? \tag{1}$$

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} \tag{2}$$

$$\frac{\mathrm{d}R}{\mathrm{d}K} = \frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} = 0 \tag{3}$$

Let us assume that we have the (formal) model

$$J(W(K),K) \qquad \qquad \text{(Cost function)}$$
 s.t. $R(W(K),K)=0$ (Model equation (SWE))

$$\frac{\mathrm{d}J}{\mathrm{d}K} = ? \tag{1}$$

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} \tag{2}$$

$$\frac{\mathrm{d}R}{\mathrm{d}K} = \frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} = 0 \tag{3}$$

And by introducing a Lagrange multiplier λ

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} - \lambda^T \left(\frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} \right)$$

$$= \left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W} \right) \frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial K} - \lambda^T \frac{\partial R}{\partial K} \right)$$
(5)

$$=0$$
 if λ is choosen wisely

Adjoint model

$$\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T \tag{6}$$

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} - \lambda^T \left(\frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} \right) \tag{4}$$

$$= \underbrace{\left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W} \right)}_{=0 \text{ if } \lambda \text{ is choosen wisely}} \frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial K} - \lambda^T \frac{\partial R}{\partial K} \right) \tag{5}$$

Adjoint model

$$\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T \tag{6}$$

For a value K:

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} - \lambda^T \left(\frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} \right) \tag{4}$$

$$= \underbrace{\left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W} \right)}_{=0 \text{ if } \lambda \text{ is choosen wisely}} \frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial K} - \lambda^T \frac{\partial R}{\partial K} \right)$$

Adjoint model

$$\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T \tag{6}$$

For a value K:

• solve R(W(K), K) = 0 for W

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} - \lambda^T \left(\frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} \right)$$

$$= \left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W} \right) \frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial K} \right)$$
(5)

$$= \underbrace{\left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W}\right)}_{=0 \text{ if } \lambda \text{ is choosen wisely}} \underbrace{\frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial K} - \lambda^T \frac{\partial R}{\partial K}\right)}_{(5)}$$

Adjoint model

$$\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T \tag{6}$$

For a value K:

- solve R(W(K), K) = 0 for W
- solve $\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T$ for λ

$$\frac{\mathrm{d}J}{\mathrm{d}K} = \frac{\partial J}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial J}{\partial K} - \lambda^T \left(\frac{\partial R}{\partial W} \frac{\partial W}{\partial K} + \frac{\partial R}{\partial K} \right) \tag{4}$$

$$= \underbrace{\left(\frac{\partial J}{\partial W} - \lambda^T \frac{\partial R}{\partial W}\right)}_{=0 \text{ if } \lambda \text{ is choosen wisely}} \underbrace{\frac{\partial W}{\partial K} + \left(\frac{\partial J}{\partial K} - \lambda^T \frac{\partial R}{\partial K}\right)}_{=0 \text{ if } \lambda \text{ is choosen wisely}}$$
(5)

Adjoint model

$$\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T \tag{6}$$

For a value K:

- solve R(W(K), K) = 0 for W
- solve $\left(\frac{\partial R}{\partial W}\right)^T \lambda = \left(\frac{\partial J}{\partial W}\right)^T$ for λ
- compute $\frac{\mathrm{d}J}{\mathrm{d}K}$

Appendix

DTU

Orthogonal Polynomials in a Hilbert space

$$X$$
, $J(X)$ r.v., such that $\mathbb{E}[X^2], \mathbb{E}[J(X)^2] < +\infty$

 \rightarrow Expand J on a basis of orthogonal polynomials with respect to a specific inner product [Wiener, 1938, Sudret, 2015].

Appendix

Orthogonal Polynomials in a Hilbert space

$$X$$
, $J(X)$ r.v., such that $\mathbb{E}[X^2], \mathbb{E}[J(X)^2] < +\infty$

 \rightarrow Expand J on a basis of orthogonal polynomials with respect to a specific inner product [Wiener, 1938, Sudret, 2015].

Functional inner product:

$$\langle f, g \rangle = \int_{D_X} f(\xi)g(\xi)p_X(\xi) d\xi$$

Family of orthogonal polynomials

$$\langle \varphi_i, \varphi_j \rangle = \|\varphi_i\|^2 \delta_{ij}$$

Family	D_X	p.d.f.	Distribution
Legendre	[-1;1]	$p_X(\xi) = \frac{1}{2}$	$\mathcal{U}([-1;1])$
Hermite	\mathbb{R}	$p_X(\xi) = e^{-\xi^2/2}$	$\mathcal{N}(0,1)$
Laguerre	$[0,+\infty[$	$p_X(\xi) = e^{-\xi}$	Exp

DTU

The expansion as a surrogate model

Polynomial Chaos Expansion, 1D

$$\mathcal{J} = J(X) = \sum_{i=0}^{+\infty} \hat{J}_i \varphi_i(X) \approx \sum_{i=0}^{P} \hat{J}_i \varphi_i(X)$$

The expansion as a surrogate model

Polynomial Chaos Expansion, 1D

$$\mathcal{J} = J(X) = \sum_{i=0}^{+\infty} \hat{J}_i \varphi_i(X) \approx \sum_{i=0}^{P} \hat{J}_i \varphi_i(X)$$

$$\boldsymbol{\alpha} = (\alpha_1, \dots \alpha_p), \quad |\boldsymbol{\alpha}| = \sum_i \alpha_i$$

$$\Phi_{\boldsymbol{\alpha}}(\boldsymbol{X}) = \prod_i \varphi_{\alpha_i}(X_i)$$

Polynomial Chaos Expansion, multidimensional

$$\mathcal{J} = J(\boldsymbol{X}) = \sum_{|\boldsymbol{\alpha}|=0}^{+\infty} \hat{J}_{\boldsymbol{\alpha}} \Phi_{\boldsymbol{\alpha}}(\boldsymbol{X}) \approx \sum_{|\boldsymbol{\alpha}| \leq P} \hat{J}_{\boldsymbol{\alpha}} \Phi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

Statistical moments using PCE

PCE allows us to get easily the statistical moments:

Mean and variance of ${\mathcal J}$ using the coefficients of the expansion

$$\mathbb{E}[\mathcal{J}] = \hat{J}_0 \|\mathbf{\Phi}_0\|^2 = \hat{J}_0$$

$$\mathbb{V}\mathrm{ar}[\mathcal{J}] = \mathbb{E}[\mathcal{J}^2] - \mathbb{E}[\mathcal{J}]^2 = \sum_{|\boldsymbol{\alpha}| \le P} \hat{J}_{\boldsymbol{\alpha}}^2 \|\mathbf{\Phi}_{\boldsymbol{\alpha}}\|^2 - \hat{J}_0^2 = \sum_{0 < |\boldsymbol{\alpha}| \le P} \hat{J}_{\boldsymbol{\alpha}}^2 \|\mathbf{\Phi}_{\boldsymbol{\alpha}}\|^2$$

PCE on the response

Principle of Kriging

$$\mathcal{X} = \{oldsymbol{x}^{(1)}, \dots, oldsymbol{x}^{(n_s)}\}$$
 and $\mathcal{Y} = j(\mathcal{X})$

We assume that the deterministic model $j(\boldsymbol{x})$ is the realization of a GP [Krige, 1951, Matheron, 1969]:

Kriging formalism

$$\begin{split} \underbrace{J(\boldsymbol{x})}_{\text{r.v.}} &= \underbrace{f(\boldsymbol{x})^T \boldsymbol{\beta}}_{\text{deter}} + \underbrace{\varepsilon(\boldsymbol{x})}_{\text{r.v.}} \\ \mathbb{E}[\varepsilon(\boldsymbol{x})] &= 0 \quad \text{ and } \quad \text{Cov}(\varepsilon(\boldsymbol{x}), \varepsilon(\boldsymbol{x'})) = \sigma_J^2 \underbrace{R(\boldsymbol{x}, \boldsymbol{x'})}_{\text{Chosen}} \\ \bar{J}(\boldsymbol{x}) \sim J(\boldsymbol{x}) | \mathcal{Y} \end{split}$$

Kriging predicator

$$F = \{f_j(\boldsymbol{x}^{(i)})\}_{\substack{1 \le i \le n_s \\ 1 \le j \le n_\beta}}$$

$$R = \{R(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})\}_{1 \le i, j \le n_s}$$

$$r(\boldsymbol{x}) = \left[R(\boldsymbol{x}^{(1)}, \boldsymbol{x}), \dots, R(\boldsymbol{x}^{(n_s)}, \boldsymbol{x})\right]^T$$

Joint distribution of ${\cal Y}$ and J

$$\begin{bmatrix} \mathcal{Y} \\ J(\boldsymbol{x}) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{F} \hat{\boldsymbol{\beta}} \\ \boldsymbol{f}(\boldsymbol{x})^T \hat{\boldsymbol{\beta}} \end{bmatrix}, \sigma_J^2 \begin{bmatrix} \boldsymbol{R} & \boldsymbol{r}(\boldsymbol{x}) \\ \boldsymbol{r}(\boldsymbol{x})^T & 1 \end{bmatrix} \right)$$

Kriging predicator \bar{J}

$$ar{J}(oldsymbol{x}) \sim J(oldsymbol{x}) | \mathcal{Y} \ \sim \mathcal{N}(\hat{m}_J(oldsymbol{x}), \hat{s}_J^2(oldsymbol{x}))$$

Kriging predicator

$$F = \{f_j(\boldsymbol{x}^{(i)})\}_{\substack{1 \le i \le n_s \\ 1 \le j \le n_\beta}}$$

$$R = \{R(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})\}_{1 \le i, j \le n_s}$$

$$r(\boldsymbol{x}) = \left[R(\boldsymbol{x}^{(1)}, \boldsymbol{x}), \dots, R(\boldsymbol{x}^{(n_s)}, \boldsymbol{x})\right]^T$$

Joint distribution of \mathcal{Y} and J

$$\begin{bmatrix} \mathcal{Y} \\ J(\boldsymbol{x}) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{F} \hat{\boldsymbol{\beta}} \\ \boldsymbol{f}(\boldsymbol{x})^T \hat{\boldsymbol{\beta}} \end{bmatrix}, \sigma_J^2 \begin{bmatrix} \boldsymbol{R} & \boldsymbol{r}(\boldsymbol{x}) \\ \boldsymbol{r}(\boldsymbol{x})^T & 1 \end{bmatrix} \right)$$

Kriging predicator J

$$ar{J}(oldsymbol{x}) \sim J(oldsymbol{x}) | \mathcal{Y} \ \sim \mathcal{N}(\hat{m}_J(oldsymbol{x}), \hat{s}_J^2(oldsymbol{x}))$$

Example of kriging

Example of kriging

Figure: Kriging with and without trend of the estimate mean. Variance of observations based on the variance of the estimate

Multi-objective problem: general vocabulary

Vector of objective functions $\mathbf{f} = (f_1, \dots, f_r)$:

Pareto domination relation

$$m{f}(m{x}) \prec m{f}(m{x}') ext{ if } egin{cases} f_j(m{x}) \leq f_j(m{x}') & orall j \leq r \ f_j(m{x}) < f_j(m{x}') & ext{ for one } j \leq r \end{cases}$$

Multi-objective problem: general vocabulary

Vector of objective functions $\mathbf{f} = (f_1, \dots, f_r)$:

Pareto domination relation

$$m{f}(m{x}) \prec m{f}(m{x}') ext{ if } egin{cases} f_j(m{x}) \leq f_j(m{x}') & orall j \leq r \ f_j(m{x}) < f_j(m{x}') & ext{ for one } j \leq r \end{cases}$$

Pareto set, front

Pareto set:

$$\mathfrak{P} = \{oldsymbol{x} ext{ s.t. }
extcolor{black}{\#oldsymbol{x}', oldsymbol{f}(oldsymbol{x}')} \prec oldsymbol{f}(oldsymbol{x})\}$$

Pareto front:

$$\{oldsymbol{z} ext{ s.t. } \exists oldsymbol{x} \in \mathfrak{P}, oldsymbol{z} = oldsymbol{f}(oldsymbol{x})\}$$

Appendix

DTU

Kriging to estimate the Pareto front [Dellino et al., 2012]

Minimization of the vector $(\mu(K), \sigma^2(K))$ Idea: Replace expensive computations of $(\mu(K), \sigma^2(K))$ by cheap computations of the metamodel

Kriging to estimate the Pareto front [Dellino et al., 2012]

Minimization of the vector $(\mu(K), \sigma^2(K))$ Idea: Replace expensive computations of $(\mu(K), \sigma^2(K))$ by cheap computations of the metamodel

ullet Initial design on $\mathcal K$, compute for each one $\hat\mu$ and $\hat\sigma^2$, and generate a surrogate

DTU

Kriging to estimate the Pareto front [Dellino et al., 2012]

Minimization of the vector $(\mu(K), \sigma^2(K))$ Idea: Replace expensive computations of $(\mu(K), \sigma^2(K))$ by cheap computations of the metamodel

- Initial design on K, compute for each one $\hat{\mu}$ and $\hat{\sigma}^2$, and generate a surrogate
- \bullet Initial design on $\mathbb{X}\times\mathcal{K}\text{,}$ and use a surrogate to estimate mean and variance

Pareto frontier, 1L Kriging

56

57

2-layers kriging: variance

Steepest descent using PCE [Miranda et al., 2016]

For a given K, expansion of $J(\boldsymbol{X}_e,K)$ and $\frac{\partial J}{\partial K}(\boldsymbol{X}_e,K)$

$$J(\boldsymbol{X}_e,K) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \hat{J}_{\boldsymbol{\alpha}}(K) \Phi_{\boldsymbol{\alpha}}(\boldsymbol{X}_e) \quad \text{ and } \quad \frac{\partial J}{\partial K}(\boldsymbol{X}_e,K) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \hat{G}_{\boldsymbol{\alpha}}(K) \Phi_{\boldsymbol{\alpha}}(\boldsymbol{X}_e)$$

Relation between $\hat{J}_{\alpha}(K)$ and $\hat{G}_{\alpha}(K)$

$$\Rightarrow \frac{\mathrm{d}J_{\alpha}}{\mathrm{d}K}(K) = \hat{G}_{\alpha}(K), \quad \forall \alpha \in \mathcal{A}$$

Steepest descent using PCE [Miranda et al., 2016]

Recalling that

$$\hat{\sigma}_J^2(K) = \sum_{\alpha \in \mathcal{A}} \hat{J}_{\alpha}(K)^2 \|\Phi_{\alpha}\|^2$$

By differentiating with respect to K:

Gradient of the variance

$$\frac{\mathrm{d}\hat{\sigma}_J^2}{\mathrm{d}K}(K) = 2\sum_{\alpha \in \mathcal{A}} \hat{J}_{\alpha}(K) \frac{\mathrm{d}\hat{J}_{\alpha}}{\mathrm{d}K}(K) \|\Phi_{\alpha}\|^2 = 2\sum_{\alpha \in \mathcal{A}} \hat{J}_{\alpha}(K) \hat{G}_{\alpha}(K) \|\Phi_{\alpha}\|^2$$

We have the gradient of the mean \hat{G}_0 and the gradient of the variance \Rightarrow Gradient descent algorithm.

Expansion for different K

Gradient descent algorithm on ρ

$$\rho(K,\lambda) = \lambda \mu(K) + (1-\lambda)\sigma(K)$$

Result of the optimization of $\rho(K,\lambda)$

