ÁLGEBRA LINEAL COMPUTACIONAL

1er Cuatrimestre 2023

Práctica N° 4: Sistemas lineales.

Ejercicio 1. Sean $A \vee B \in K^{n \times n}$. Probar que:

- (a) Si A y B son triangulares superiores, AB es triangular superior.
- (b) Si \mathbf{A} y \mathbf{B} son diagonales, $\mathbf{A}\mathbf{B}$ es diagonal.
- (c) Si \boldsymbol{A} es estrictamente triangular superior (es decir, $a_{ij} = 0$ si $i \geq j$), $\boldsymbol{A}^n = 0$.

Ejercicio 2. Sea $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$

(a) Escalonar la matriz \boldsymbol{A} multiplicándola a izquierda por matrices elementales $\boldsymbol{T}^{ij}(a)$, $a \in \mathbb{R}, 1 \leq i, j \leq 4$, con $i \neq j$.

Recordar que $T^{ij}(a) \in K^{n \times n}$ se define como:

$$T^{ij}(a) = I_n + aE^{ij}, \quad 1 \le i, j \le n, \quad i \ne j, \quad a \in K,$$

siendo E^{ij} las matrices canónicas de $K^{n\times n}$.

- (b) Hallar la descomposición LU de A.
- (c) Usando la descomposición del ítem anterior resolver el sistema Ax = b,

$$\text{para } \boldsymbol{b} = \begin{pmatrix} 1 \\ -7 \\ -5 \\ 1 \end{pmatrix}.$$

Ejercicio 3. Escribir funciones de Python que calculen la solución de un sistema:

- (a) Ly = b, siendo L triangular inferior.
- (b) Ux = y, siendo U triangular superior.

Ejercicio 4. Escribir funciones de Python que realicen las siguientes tareas:

- (a) Calcular la descomposición LU de una matriz dada \boldsymbol{A} , asumiendo que no es necesario realizar pivoteos.
- (b) Resolver un sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, utilizando la función del ítem anterior y las del ejercicio 3. Aplicar esta función para resolver el ítem c. del ejercicio 2

Ejercicio 5. Considerar la matriz: $\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

- (a) Probar que \boldsymbol{A} no admite descomposición $\boldsymbol{L}\boldsymbol{U}$.
- (b) Hallar la descomposición LU de PA para alguna matriz de permutación P adecuada.

Ejercicio 6. Se quiere calcular la solución del sistema lineal:

$$10^{-3}x + 2y = 8$$
$$x + y = 2$$

utilizando eliminación gaussiana sin pivoteo, con aritmética de punto flotante de 3 dígitos y sistema de redondeo.

- a) Analizar si el resultado difiere significativamente de la solución real.
- b) Repetir el método de eliminación gaussiana eligiendo el pivote más conveniente.

Ejercicio 7. Considerar la matriz

$$\left(\begin{array}{ccc} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{array}\right).$$

Mostrar que es definida positiva y calcular su descomposición de Cholesky.

Ejercicio 8. Sea $B = \{v_1, \dots, v_n\}$ una base de K^n $(K = \mathbb{R} \circ \mathbb{C})$.

(a) Probar que si B es ortogonal, entonces

$$\mathbf{C}_{EB} = egin{pmatrix} \cdots & rac{oldsymbol{v}_1^*}{\|oldsymbol{v}_1\|_2^2} & \cdots \ \cdots & rac{oldsymbol{v}_2^*}{\|oldsymbol{v}_2\|_2^2} & \cdots \ dots \ dots & dots \ \cdots & rac{oldsymbol{v}_n^*}{\|oldsymbol{v}_n\|_2^2} & \cdots \end{pmatrix}$$

- (b) Probar que si B es ortonormal, entonces $\mathbf{C}_{EB} = \mathbf{C}_{BE}^*$.
- (c) Concluir que si B es ortonormal, entonces las coordenadas de un vector \boldsymbol{v} en base B son:

$$(oldsymbol{v})_B = (oldsymbol{v}_1^*oldsymbol{v}, oldsymbol{v}_2^*oldsymbol{v}, \ldots, oldsymbol{v}_n^*oldsymbol{v}).$$

(d) Calcular $(\boldsymbol{v})_B$ siendo $\boldsymbol{v}=(1,-i,3),\,B=\{(\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(-\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(0,0,i)\}.$

Ejercicio 9. Aplicar el algoritmo de Gram-Schmidt para calcular bases ortonormales de los subespacios generados por las siguientes bases:

2

(a)
$$B = \{(1,0,1), (0,1,1), (0,0,1)\}$$

(b)
$$B = \{(i, 1 - i, 0), (i, 1, 0)\}$$

(c)
$$B = \{(1, -1, 0, 1), (0, 1, 1, 0), (-1, 0, 1, 1)\}.$$

Ejercicio 10. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla:

i)
$$\operatorname{Im}(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$$

ii)
$$Nu(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$$

iii)
$$\operatorname{Nu}(f) = \{(x_1, x_2, x_3)/3.x_1 - x_3 = 0\} \in \operatorname{Im}(f) = \langle (1, 1, 1) \rangle$$

Ejercicio 11.

(a) Sea $B = \{(1, -1, 0), (0, 1, -1), (0, 0, 1)\}$ base de \mathbb{R}^3 y sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que:

$$f(1,-1,0) = (1,-1,0), \quad f(0,1,-1) = (0,1,-1) \quad \text{y} \quad f(0,0,1) = (0,0,0).$$

Calcular $[f]_B$ y comprobar que f es un proyector.

(b) Construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\operatorname{Nu}(f) = \langle (1,1,1) \rangle$ e $\operatorname{Im}(f) = \{x \in \mathbb{R}^3 / x_1 + x_2 - 3x_3 = 0\}$. ¿Es f una proyección ortogonal?

Ejercicio 12. Sea $\boldsymbol{v} \in \mathbb{C}^n$ un vector columna tal que $\|\boldsymbol{v}\|_2 = 1$. Probar que:

- (a) La transformación lineal definida por la matriz vv^* es la proyección ortogonal sobre $\langle v \rangle$.
- (b) Si $\{v_1, \ldots, v_m\}$ es una base ortonormal del subespacio S, entonces: $\mathbf{A} = \sum_{i=1}^m \mathbf{v}_i \mathbf{v}_i^*$ es la proyección ortogonal sobre S.
- (c) Si \boldsymbol{A} es como en el ítem anterior, $\boldsymbol{I} \boldsymbol{A}$ es la proyección ortogonal sobre S^{\perp} .
- (d) Eligiendo $\mathbf{v} \in \mathbb{R}^2$ tal que $\|\mathbf{v}\|_2 = 1$, corroborar gráficamente en Python que $R = \mathbf{I} 2\mathbf{v}\mathbf{v}^*$ es la reflexión respecto de $\langle \mathbf{v} \rangle^{\perp}$.

Ejercicio 13. Sea $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$. Calcular la matriz de la proyección ortogonal sobre $\operatorname{Im}(\mathbf{A})$.

Ejercicio 14. Hallar la factorización QR de las siguientes matrices

$$a) \mathbf{A} = \begin{pmatrix} 0 & -4 \\ 0 & 0 \\ -5 & -2 \end{pmatrix}, b) A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}.$$

Ejercicio 15. Implementar dos programas que calculen la descomposición QR de una matriz:

- 1. Aplicando de manera directa el método de ortonormalización de Gram-Schmidt.
- 2. Utilizando transformaciones de Householder.

Generar algunas matrices aleatorias y comparar las descomposiciones arrojadas por estos programa con las dadas por el comando np.linalg.gr. ¿Qué se observa?

Ejercicio 16. Implementar un programa que resuelva un sistema Ax = b a partir de la descomposición QR de A.