Learning Theory Sample Complexity Examples

Ariel Shamir Zohar Yakhini

Outline

- The true error
- Consistent hypotheses, consistent learners
- Complexity of learning
- Sample complexity
- Bound on the sample complexity for finite H
- Examples:
 - Finite spaces of Boolean vectors
 - Circles, rectangles
- VC dimension

General setting

- Instances come from $\Omega = (X, Y, \pi)$
- The learning algorithm L takes training data $D \in \Omega^m$
- It works with some set of hypotheses, H
- It returns a hypothesis (or a model) $L(D) = h \in H$

Example from last class (disjnxns and Bool vectors)

$$m \ge \frac{1}{\varepsilon} \ln \frac{|H|}{\delta} = \frac{1}{\varepsilon} \left(\ln|H| + \ln \frac{1}{\delta} \right)$$

- n = 20 attributes in the same setting
- We get $|H| = 3^{20} \sim 3.5 * 10^9$
- In this case, we can obtain 95% certainty that our hypothesis will have error < 10% when using

$$m > \frac{1}{0.1} (\ln 3.5*10^9 + \ln \frac{1}{0.05}) = 10(22+3) = 250 \text{ instances}$$

• Note that here $|X| = 2^{20} \approx 10^6$

When |H| increases exponentially with the number of features then sample complexity increases linearly. The required fraction of the full population decreases.

PAC Learnability

- Consider a class C of possible target concepts defined over a space of instances X, and a learning algorithm L using hypothesis space H.
- Definition

C is PAC-learnable by L using H

if for all $0 < \varepsilon < \frac{1}{2}$, $0 < \delta < \frac{1}{2}$, and for all $c \in \mathbf{C}$ and distributions π over \mathbf{X} , the following holds:

with data drawn independently according to π , **L** will output, with probability at least (1- δ), a hypothesis $h \in \mathbf{H}$ such that $\operatorname{error}_{\pi}(h) \leq \varepsilon$,

L operates in time (and sample) complexity that is polynomial in $1/\epsilon$, $1/\delta$ (and in other possible parameters).

$$X = \mathbb{R}^2$$

Different training dataset lead to a different output hypotheses.

$$h = L(D), D \in (X, P)^m$$

Different training dataset lead to a different output hypotheses.

$$h = L(D), D \in (X, P)^m$$

A bound on sample complexity

- For every $c \in C$
- We will now characterize (bound) the collection of all training datasets , D, that can conceivably lead to h=L(D) with ${\rm Err}(h,c)>\varepsilon$
- We will show that this collection (a subset of X^m) is contained in a union of a small number of sets $(B_i$, subsets of X^m) characterizable by regions that their elements (points in X^m) do not visit.

A bound on the sufficient sample complexity, cont

- We will then estimate the probability (π^m) of each such set of datasets as well as that of their union.
- From here we will infer an upper bound on sufficient sample complexity, as a function of ε and δ , of the form

$$m(\varepsilon, \delta) \in O(f(\varepsilon), g(\delta))$$

Consider training data, $D \in X^m$.

Assume that D visits each one of the 4 sets B_i defined above.

What can we say about $\operatorname{Err}(h,c)$? $(P(B_i) \leq \frac{\varepsilon}{4})$

19

Not visiting one of the regions B_i

Sufficient sample size

$$m(\varepsilon, \delta) = \frac{4}{\varepsilon} \cdot \ln \frac{4}{\delta}$$

Yakhini, IDC 22

Summary

- Sample complexity
- Consistent learners for finite hypotheses spaces
- Directly calculating bounds on the sample complexity of consistent learners
- Concepts in \mathbb{R}^n use the geometry!
- VC dimension a more general formula
- In the recitation
 - More sample complexity examples
 - VC examples