Magnetic forces and fields

Sources of magnetic field

Electric field E

- Created by electric charges
- Felt by electric charges.
- Force F due to E: F_e=qE
- The field lines of E are tangent to F
- The E lines begin on positive charges and end on negative charges (or at infinity).
- E proportional to the density of lines.

Magnetic field B

- Created by electric charges in motion (point charges, electric currents, magnets)
- Felt by electric charges in motion.
- Force F due to B: $\mathbf{F}_{m} = q(\mathbf{v} \times \mathbf{B})$
- The field lines of B are perpendicular to F.
- The B lines close upon themselves. In a magnet the B lines go out of the N pole into the S pole
- B proportional to the density of lines.

SI UNIT: Tesla (T)

$$1T = 1\frac{N/C}{m/s} = \frac{Ns}{Cm} = \frac{N}{Am}$$

1 T=104 G (gauss)

Magnets

Magnets are made from materials (ferromagnetic) in which the orientation of electrons (charges in motion!) can be such that the magnetic field created by them adds up in a constructive way. Examples of these materials are Fe, Co and Ni.

More about magnets:

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/magnets/fullarticle.html

More about the magnet Earth: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magearth.html

Magnetic force on a point charge

The force on a point charge due to a B is: $\vec{F}_{mag.} = q \vec{v} \times \vec{B}$

 F_m increases as q, ν and B increase. The direction depends on the sign of the charge q.

 F_m IS PERPENDICULAR TO B and v (so to the plane formed by B AND v).

 $F_{\rm m}$ is maximum when the charge moves perpendicular to the field lines, and is zero when the charge moves parallel to the field lines.

B does not exert any force over charges that are at rest.

$$|F| = qvBSin\theta$$

$$F_m = 0 \text{ if } \begin{cases} \vec{v} = 0 \\ \vec{B} = 0 \\ \vec{v} || \vec{B} \end{cases}$$

of the particle

 F_m is perpendicular to υ so it modifies the trajectory of the particle (which changes the direction of the force!).

 F_m is perpendicular to υ so it does not change the magnitude of υ .

$$F \perp v$$
, $F \parallel a \Rightarrow a \perp v$

 F_m is perpendicular to the trajectory so it does no work on the particle ($\Delta K = 0$).

Vector cross product

$$\overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B}$$

THIS OPERATION **RETURNS A VECTOR!!**

- ☐ Its <u>magnitude</u> is given by:
- given by: $|\vec{A} \times \vec{B}| = AB\sin \alpha$ $|\vec{A} \times \vec{B}| = AB\sin \alpha$ Its direction is:
- Its orientation is described by the right hand rule (cork screw rule).
- It is calculated by solving the determinant:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{u}_x & \vec{u}_y & \vec{u}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \left(A_y B_z - A_z B_y \right) \vec{u}_x + \left(A_z B_x - A_x B_z \right) \vec{u}_y + \left(A_x B_y - A_y B_x \right) \vec{u}_z$$

$$\vec{A} \times \vec{B} = 0$$
 if $\left\{ \vec{A} = 0 ; \vec{B} = 0 \\ \vec{A} \parallel \vec{B} \right\}$

Charged particles in a magnetic field

Uniform B, E=0, v perpendicular to B

UNIFORM CIRCULAR MOTION

The charged particle moves in a circle whose plane is perpendicular to B.

 F_m acts as a centripetal force.

$$|\vec{F}|_{mag} = m \vec{a}$$

$$|\vec{F}|_{mag} = q |\vec{v}| B sin(90^{\circ})$$

$$a_n = \frac{q |\vec{v}| B}{m}$$
 centripetal acceleration: $a_n = |\vec{a}| = \frac{|\vec{v}|^2}{r}$

 $r = \frac{m|\vec{v}|}{qB}$ $\begin{cases} \text{r is proportional to m and v} \\ \text{r is inversely proportional to q and B} \end{cases}$

Radius of the circle

Period of the motion: $T = \frac{2\pi r}{|\vec{v}|} = \frac{2\pi m}{aB}$

Angular frequency:
$$\omega = \frac{v}{r} = \frac{qB}{m}$$

(called cyclotron radius or Larmor radius)

Charged particles in a magnetic field

Uniform B, E=0, v NOT perpendicular to B

υ can be seen as having two components: parallel to B and perpendicular to B. The parallel component does not contribute to the magnetic force.

The motion due to v_{\perp} is a uniform circular motion. The motion due to v_{\parallel} is a uniform linear motion. The result is a helix with its axis parallel to B.

BEWARE!! The expressions for a, R, T, etc, may NOT be the same as before, as only 0, contributes to the circular motion.

Charged particles in a magnetic field

Uniform B and E; v, B and E perpendicular to each other

$$\vec{F} = \vec{F}_{el.} + \vec{F}_{mag.} = q \vec{E} + q \vec{v} \times \vec{B}$$
Lorentz force
$$\vec{F}_{el.} || \vec{E}_{el.} || \vec{E}_{magn.} \perp \vec{B}$$

Magnetic force on electric currents

An electric current is made of moving charges. If a current-carrying wire is in a region in which there is a uniform B, there will be a force on the wire.

The magnetic force acting on a straight segment of wire carrying a current I is:

$$\vec{F} = (q\vec{v} \times \vec{B})N = (q\vec{v} \times \vec{B})nAl = I\vec{l} \times \vec{B}$$

Total number of charges on that segment

Magnetic force on electric currents

TORQUE ON A CURRENT LOOP IN A UNIFORM MAGNETIC FIELD

The force acting on each straight segment is:

$$\vec{F} = I \vec{l} \times \vec{B}$$

- F_1 and F_2 are equal and act on opposite directions \rightarrow force couple
- Net force acting on the loop: $F_{net} = F_1 + F_2 = 0$

However, the loop rotates until it is perpendicular to B (independently on the loop shape)

MAGNETIC FIELD CREATED BY AN ELECTRIC CURRENT

$$\vec{B} = \int d\vec{B} = \int_{L} \frac{\mu_0}{4\pi} \frac{I \, d\vec{l} \times \vec{r}}{r^3}$$

Biot-Savart's Law

 μ_0 : permeability of free space

$$\mu_0 = 4\pi \cdot 10^{-7} T \cdot m / A$$

B created by a current loop of radius R at a point of its axis:

$$\vec{B} = \frac{\mu_0 I R^2}{2 \left(x_0^2 + R^2 \right)^{3/2}} \vec{i}$$

B inside a solenoid of lenght L, at a point of its axis

$$\vec{B} = \frac{\mu_0 In}{2} \left[\frac{(L/2 - x_0)}{((L/2 - x_0)^2 + R^2)^{1/2}} + \frac{(L/2 + x_0)}{((L/2 + x_0)^2 + R^2)^{1/2}} \right] \vec{i}$$

When the solenoid is very long, L>>R \rightarrow $\vec{B}=\mu_0 n \vec{I} \vec{i} (T)$ (far from the edges)

B due to a straigth wire carrying a current along the X axis on any point of the XY plane:

$$\vec{B} = \frac{\mu_0 I}{4 \pi y_0} \left[\frac{a}{\left(a^2 + y_0^2\right)^{1/2}} + \frac{b}{\left(b^2 + y_0^2\right)^{1/2}} \right] \vec{k}$$

When the wire is very long, a, b >> y_0 . $|\vec{B}| = \frac{\mu_0 I}{2\pi y_0}$

There is another way of calculating B for some of these distributions:

Ampère's Law

When a current-carrying conductor has a high symmetry, we can calculate the magnetic field created by that current using Ampère's Law:

The line integral of B along any closed path (C) is proportional to the current passing through the surface enclosed by C:

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I$$

- METHOD: a) Define C
 - $\oint_C \vec{B} \cdot d\vec{l}$ b) Calculate:
 - c) Calculate I_c
 - d) Apply Ampère's Law
 - e) Isolate |B|

Ampère's Law applies to currents which are steady and continuous in space.

BEWARE!! DO NOT CONFUSE WITH GAUSS' LAW

The flux of the magnetic field through any closed surface is zero, as the B lines always close upon themselves: $\Phi_{m} = \oint \vec{B} \cdot d\vec{S} = 0$

$$\Phi_m = \oint \vec{B} \cdot d\vec{S} = 0$$

MAGNETIC FIELD DUE TO AN INFINITE CURRENT-CARRYING 1-D WIRE

$$\oint_{C} \vec{B} \cdot d\vec{l} = \oint_{C} |\vec{B}| |d\vec{l}| \cos \alpha = \oint_{C} |\vec{B}| |d\vec{l}| = |\vec{B}| \oint_{C} |d\vec{l}| = |\vec{B}| 2\pi r$$

$$I_{\mbox{through}} = I_C$$
the surface enclosed by C

$$B2\pi r = \mu_0 I_C$$

$$\vec{B} = \frac{\mu_0 I_C}{2 \pi r} \hat{u}_{\theta}$$

B is NOT radial, it is tangential. We use a unit vector representing the tangential (angular) direction.

MAGNETIC FIELD DUE TO AN INFINITE SOLID WIRE OF RADIUS R CARRYING A UNIFORM CURRENT I

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_C$$

A) B inside

$$|B|$$
 const along L

$$\oint_C \vec{B} \cdot d\vec{l} = \oint_C |\vec{B}| |d\vec{l}| \cos \alpha = \oint_C |\vec{B}| |d\vec{l}| = |\vec{B}| \oint_C |d\vec{l}| = |\vec{B}| 2\pi r$$

$$B \parallel dl$$

$$I_{\rm C} = \frac{I}{\pi R^2} \pi r^2 = \frac{I}{R^2} r^2$$

$$\vec{B}_{ins} = \frac{\mu_0 I}{2\pi R^2} r \,\hat{\mathbf{u}}_{\theta}(T)$$

B) B outside

Total current intensity going through the solid wire

$$\vec{B}_{out} = \frac{\mu_0 I}{2\pi r} \hat{u}_{\theta}(T)$$

MAGNETIC FIELD DUE TO AN INFINITE CURRENT-CARRYING SOLENOID

- B inside the solenoid is constant and parallel to its axis.
- B outside the solenoid is zero.

$$\oint_C \vec{B} \cdot d\vec{l} = \int_1 \vec{B} \cdot d\vec{l} + \dots + \int_4 \vec{B} \cdot d\vec{l}$$

(1)
$$B \parallel dl$$
 $\oint_{C1} |\vec{B}| |d\vec{l}| = |\vec{B}| \oint_{C1} |d\vec{l}| = |\vec{B}| L$
(2) $B \perp dl$ $\oint_{C2,3} \vec{B} \cdot d\vec{l} = 0$
(4) $B = 0$ $\oint_{C4} |\vec{B}| |d\vec{l}| = 0$

$$\oint_C \vec{B} \cdot d\vec{l} = BL$$

N: number of turns going through the surface defined by C

n: number of turns per unit length

$$\mu_0 I_C = \mu_0 NI = \mu_0 nLI$$

$$\vec{B}_{ins} = \mu_0 n \vec{I} \vec{i}$$

MAGNETIC FIELD DUE TO A CURRENT-CARRYING TOROID

- B inside the toroid is tangent to its axis.
- B is ~ const. If (b-a)<<r.
- B outside the toroid is zero.

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_C$$

$$\vec{B} || d\vec{l}$$

$$\oint_C |\vec{B}| |d\vec{l}| = |\vec{B}| \oint_C |d\vec{l}| = |\vec{B}| 2\pi r$$

$$\mu_0 I_{\rm C} = \mu_0 NI$$

$$|\vec{B}| 2 \pi r = \mu_0 NI \Rightarrow |\vec{B}| = \frac{\mu_0 NI}{2 \pi r}$$

MAGNETIC FORCE BETWEEN VERY LONG PARALLEL WIRES

I₁ creates B₁ around it:

 $B_1 = \frac{\mu_0 I_1}{2\pi r}$

At I₂, that is at a distance R $B_1 = \frac{\mu_0 I_1}{2\pi R}$ from I₁:

Current I₂ experiments a force F₁₂ due to B_1

$$\vec{F}_{12} = I_2 \vec{l} \times \vec{B}_1 \Rightarrow |\vec{F}_{12}| = I_2 l B_1 = I_2 l \frac{\mu_0 I_1}{2 \pi R}$$

$$B_2 = \frac{\mu_0 I_2}{2\pi R}$$

 I_2 creates B_2 around it $B_2 = \frac{\mu_0 I_2}{2\pi R}$ I_1 experiments F_{21} due to B_2 $|\vec{F}_{21}| = I_1 l \frac{\mu_0 I_2}{2\pi R}$

$$|\vec{F}_{21}| = |\vec{F}_{12}| = \frac{\mu_0 I_1 I_2}{2 \pi R} l$$
 The magnitude of these forces is equal

Currents circulating along the same direction attract each other Currents circulating along opposite directions repel each other