Introduction to Classification - The basics (kNN,

Daniel Lawson University of Bristol

Lecture 05.1.2 (v1.0.2)

LDA, SVM)

Signposting

- ➤ You should have come here from 05.1.1 Introduction to Classification
- ► This is part 2 of Lecture 5.1, which is split into:
 - ▶ 5.1.1 covers a Classification Introduction and Interpretation
 - ► 5.1.2 covers kNN, LDA, SVM
- In 5.2 we cover boosting and ensemble methods
- ▶ In 6 we cover Tree and Forest methods

Classification

K-Nearest Neighbour classification

- ▶ In Block 4, we introduced K-NN for density estimation.
 - We defined some choices of distance function
 - ▶ We obtained the K nearest neighbours of points in R
- ► Armed with those neighbours, a classifier can be implemented by using majority vote of the labels of all k neighbours.
- ▶ A naive implementation scales poorly with *N*, but an approximate lookup can control complexity.
- See also: Condensed nearest neighbor¹ approaches to reduce the amount of data required at the classification stage.

¹Hart P, The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 18 (1968) 515-516. doi: 10.1109/TIT.1968.1054155

K-Nearest Neighbour example

Linear Discriminant Analysis

- ▶ Developed in 1936 by R. A. Fisher² and extended to the current multi-class form in 1948³.
- \blacktriangleright The goal is to **project** a high dimensional space into K dimensions, maintaining (linear) classification ability.
- Prediction benefit comes only from reducing overfitting
- Strong relationship with PCA, often used in tandem (PCA then LDA)
- Assumes that each class k has a different mean μ_k and a shared covariance matrix Σ
- ► Kernel Discriminant Analysis exists⁴

²Fisher R, "The Use of Multiple Measurements in Taxonomic Problems" (1936) Annals of eugenics (!), now "Annals of Human Genetics"

³Rao C, "Multiple Discriminant Analysis" (1948) JRSSB

⁴Mika, S et al "Fisher discriminant analysis with kernels" (1999) NIPS IX: 41-48

LDA algorithm

- 1. Compute the mean location μ_k for each class k and the overall mean μ , as well as the assignment sets D_k .
- 2. Compute the within-class scatter matrix S_W : $S_W = \sum_{k=1}^K S_k$ where

$$S_k = \sum_{i \in D_k} (\vec{x} - \vec{\mu}_k) (\vec{x} - \vec{\mu}_k)^T$$

3. Compute the **between-class scatter matrix** S_B :

$$S_B = \sum_{k=1}^{K} n_i (\vec{\mu}_k - \vec{\mu}) (\vec{\mu}_k - \vec{\mu})^T$$

- 4. Solve for the eigenvalues λ_k and eigenvectors v_k of $S_W^{-1}S_B$
- 5. Choose a dimension threshold K^* , either using the same methods as for PCA, or cross-validation
- 6. Predict using μ_k ...

LDA prediction

- Class prediction can use any information in the LDA data summary.Options include:
 - ▶ Nearest cluster
 - ▶ Likelihood: $\Pr(\vec{x}|y_k = c) = \text{Normal}(\mu_k, \Sigma)$
 - ▶ Posterior: $\Pr(y_k = c | \vec{x}) \propto \Pr(\vec{x} | y_k = c) p(y_k = c)$; i.e. reweight classes according to their frequency

LDA example

Towards Support Vector Machines

- ► LDA uses all the points for classification, which makes it slow
- ► It is also linear
- (It could be made non-linear by mapping the data to high dimensions, but this is often infeasible)
- Moving towards SVM, we:
 - Can exploit the kernel-trick to make a non-linear decision boundary without explicit mapping
 - Switch focus from group means to making the largest group separation
 - If we only want to discriminate classes, we can only use a subset of the data, the support vectors, for the decision
- ► This makes the method:
 - robust to distributional assumptions
 - non-generative

Support Vector Machine overview

- Find the maximum margin hyperplane separating the classes closest points
- ► Allow soft margins: misclassified points are down-weighted
- Nonlinearity: express distances as inner products, allowing non-linearities via the Kernel trick
- Algorithm: finding the hyperplane is a "quadratic optimisation problem".

SVM illustration: solution space

Planar geometry

- lacktriangle The data are $ec{x} \in D$ containing N examples
- ▶ The labels are $y_i \in (-1, 1)$
- A hyperplane is defined via:
 - $ightharpoonup ec{w}$, the coordinates of the plane
 - $ightharpoonup ec{w}_0$, a point on the plane chosen such that $ec{w}_0$ is perpendicular to $ec{w}$:

$$\vec{w} \cdot (\vec{x} - \vec{w}_0) = \vec{w} \cdot \vec{x} + b = 0$$

SVM margins

► The distance of a point to the line is the residual after the point is projected onto the line:

$$d_{\vec{w}}(\vec{x}) = \vec{n} \cdot (\vec{x} - \vec{x}') = \frac{|\vec{w} \cdot \vec{x} + b|}{|\vec{w}|}$$

► For a given hyperplane, the minimum margin is

$$M_{\vec{w}} = \operatorname{argmin}_{x \in D} d_{\vec{w}}(\vec{x})$$

The maximum margin hyperplane is therefore:

$$\operatorname{argmax}_{\vec{w}} \operatorname{argmin}_{x \in D} d_{\vec{w}}(\vec{x})$$

SVM illustration: SVM solution

Computing the margins

- This is a classic Quadratic Programming problem⁵
- Broadly:
 - quadratic penalty: distance to the plane \propto squared norm of the hyperplane vector $\frac{1}{2} |\vec{w}|^2$
 - Innear inequalities: none of the data are closer than $M_{\vec{w}}$. So $\forall i: y_i(\vec{w}\cdot\vec{x}+b) \geq 1$
- ▶ and pass these to a standard QP solver
- ► A computational trick: only evaluate the points on the margins

⁵For this course, you need to know what QP can do for you. You don't need to know how it works.

SVM problem

Imperfect classification with SVM

To account for data the wrong side of the margins, the penalty is changed to:

$$\frac{1}{2} |\vec{w}|^2 + C \sum_{i=1}^{N} \epsilon_i$$

• where ϵ_i is the "distance" needed to move the point to the correct decision boundary, i.e.

$$\vec{w} \cdot \vec{x}_i + b \ge 1 - \epsilon_i$$
 if: $y_i = 1$ (I)

$$\vec{w} \cdot \vec{x}_i + b \le -1 + \epsilon_i$$
 if: $y_i = -1$ (2)

 \blacktriangleright and $\epsilon_i=0$ if already inside it, so also requiring the constraint $\epsilon_i\geq 0$

SVM example

kernel SVM example

Wrapup

- Logistic regression is the go-to straw man classifier in machine learning:
 - ▶ It is easy to implement
 - It is a natural predictive model
 - It does reasonably well in many settings
- ▶ k-NN is the interpolation method to beat
- Linear Discriminant Analysis is also widely used:
 - ▶ It is easy to bolt onto PCA
 - Clusters are more interpretable than logistic regression
- SVMs remain an important competitor at the bleeding edge:
 - A hyperplane is a natural discriminatory model
 - ► Feature engineering can allow complex non-linear models
 - Low-complexity classifier once training is performed
- Neighbourhoods are always competitive, but are costly at test time

Reflection

- Why is LDA used with PCA, and not instead-of?
- How would you imagine an approximate lookup for k-NN would work?
- ► How sparse should the SVM solution be? In what sense is SVM efficient? When would it be cutting edge?
- ▶ By the end of the course, you should:
 - ▶ Be able to navigate the many approaches to classification
 - ▶ Understand and be able to explain the high level function of:
 - Logistic Regression, Nearest Neighbour classification, LDA, SVMs

Signposting:

- In this Block's workshop we'll experiment with these and other classifiers on cyber data, as well as introducing boosting.
- In the following Block we'll introduce Random Forests, as well as boosted decision and regression trees. Naive Bayes comes in Block 7 with other Bayesian Methods.
- References:
- k-Nearest Neighbours:
 - Chapter 13.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- Linear Discriminant Analysis:
 - ► Sebastian Raschka's PCA vs LDA article with Python Examples
 - ► Chapter 4.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- SVMs:
 - ▶ Jason Weston's SVMs tutorial
 - ▶ e1071 Package for SVMs in R
 - ► Chapter 12 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).