习题 7 参考答案

1. (1)
$$\hat{\lambda} = \frac{1}{\overline{X}}$$
; (2) $\hat{\theta} = \frac{\overline{X}}{1 - \overline{X}}$; (3) $\hat{\beta} = \frac{k}{\overline{X}}$;

(4)
$$\hat{\theta} = \sqrt{B_2}$$
, $\hat{a} = \overline{X} - \sqrt{B_2}$; (5) $\hat{p} = \frac{\overline{X}}{m}$.

2. (1)
$$\hat{\lambda} = \frac{1}{X}$$
; (2) $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i}$;

(3)
$$\hat{\beta} = \frac{k}{\overline{X}}$$
; (4) $\hat{\theta} = \overline{X} - X_{(1)}$, $\hat{a} = X_{(1)}$; (5) $\hat{p} = \frac{\overline{X}}{m}$.

3.
$$\hat{p} = \frac{1}{\overline{X}}$$
. **4.** $\hat{\mu} = 74.002$, $\hat{\sigma}^2 = 0.000006$, $s^2 = 0.000007$.

5.
$$\hat{a} = 10.095$$
, $\hat{b} = 12.3045$, $\hat{a}_L = 10.3$, $\hat{b}_L = 12.2$.

6. (1)
$$\hat{\beta} = \frac{\overline{X}}{\overline{X}-1}$$
; (2) $\hat{a} = \min\{X_1, X_2, \dots, X_n\}$. **7.** $\frac{1}{4}, \frac{5}{16}$.

8.
$$\hat{\mu}_1$$
 最有效; 9. $\frac{1}{2(n-1)}$. 10. 略

11. (1) 略. (2)
$$\overline{X}$$
- nS^2 (不唯一). **12.** 略 **13.** 略.

14. (1) (0.0006,0.0015), (681.5873,1792.3166)(提示:利用习题6第25题的结论);

16.
$$\left(\overline{X} + \frac{u_{a/2}}{2n} \left(u_{a/2} - \sqrt{4n\overline{X} + u_{a/2}^2}\right), \overline{X} + \frac{u_{a/2}}{2n} \left(u_{a/2} + \sqrt{4n\overline{X} + u_{a/2}^2}\right)\right)$$

17.
$$n \geqslant \frac{4\sigma^2}{L^2} u_{a/2}^2$$
.

21. (0.946 2, 6.666 7),
$$D\left(\frac{X^2}{\sigma^3}\right) = \frac{2}{\sigma^2}$$
, $D\left(\frac{X^2}{\sigma^3}\right)$ 的置信区间为(0.300 0, 2.113 7).

22.
$$\left(\overline{X} - \overline{Y} - u_{a/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \overline{X} - \overline{Y} + u_{a/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right), \overline{X} - \overline{Y} + u_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \overline{X} - \overline{Y} - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

25.
$$\left[\frac{\frac{1}{n_{1}}\sum_{i=1}^{n_{1}}(X_{i}-\mu_{1})^{2}}{F_{\alpha/2}(n_{1},n_{2})\frac{1}{n_{2}}\sum_{i=1}^{n_{2}}(Y_{i}-\mu_{2})^{2}}, \frac{\frac{1}{n_{1}}\sum_{i=1}^{n_{1}}(X_{i}-\mu_{1})^{2}}{F_{1-\alpha/2}(n_{1},n_{2})\frac{1}{n_{2}}\sum_{i=1}^{n_{2}}(Y_{i}-\mu_{2})^{2}}\right],$$

$$\frac{\frac{1}{n_{1}}\sum_{i=1}^{n_{1}}(X_{i}-\mu_{1})^{2}}{F_{\alpha}(n_{1},n_{2})\frac{1}{n_{2}}\sum_{i=1}^{n_{2}}(Y_{i}-\mu_{2})^{2}}, \frac{\frac{1}{n_{1}}\sum_{i=1}^{n_{1}}(X_{i}-\mu_{1})^{2}}{F_{\alpha}(n_{1},n_{2})\frac{1}{n_{2}}\sum_{i=1}^{n_{2}}(Y_{i}-\mu_{2})^{2}}.$$