V302

Elektrische Brückenschaltung

 $\begin{array}{ccc} \text{Amelie Hater} & \text{Ngoc Le} \\ \text{amelie.hater@tu-dortmund.de} & \text{ngoc.le@tu-dortmund.de} \end{array}$

Durchführung: 09.01.2024 Abgabe: 16.01.2024

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie 2.1 Vorbereitungsaufgaben	3
3	Durchführung	3
4	Auswertung4.1Wheatstonesche Brücke4.2Kapazitätsmessbrücke4.3Induktivitätsmessbrücke4.4Maxwell-Brücke4.5Wien-Robinson-Brücke4.6Klirrfaktor	7
5	Diskussion	7
Lit	ceratur	7
Ar	nhang Originaldaten	8

1 Zielsetzung

2 Theorie

2.1 Vorbereitungsaufgaben

3 Durchführung

4 Auswertung

Im Folgenden werden die Mittelwerte mit

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

bestimmt. n ist die Anzahl der Daten und x_i die einzelnen Daten. Mit der Gaußschen Fehlerfortpflanzung

$$\varDelta f = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot (\varDelta x_i)^2}$$

werden die Messunischerheiten ausgerechnet, wenn eine Größe von mehreren fehlerbehafteten Größen abhängt.

4.1 Wheatstonesche Brücke

Zunächst wird der unbekannte Widerstand R_{13} verwendet. Die verwendeten und gemessenen Widerstände sind in der Tabelle (1) aufgelistet. Der Widerstand wird mit der Gleichung (??) berechnet. Bei der Berechnung der Messunischerheiten wird der Fehler $\Delta \frac{R_3}{R_4} = 0,005 \cdot \frac{R_3}{R_4}$ verwendet.

Tabelle 1: Widerstände der Wheatstonschen Brücke bei dem unbekannten Widerstand R_{12}

$R_{2}\left[\Omega\right]$	$R_{3}\left[\Omega\right]$	$R_4\left[\Omega\right]$	$R_{13}\left[\Omega ight]$
332	490	510	$(319,0\pm 1,6)$
500	339	611	$(277, 4 \pm 1, 4)$
1000	242	758	$(319, 3 \pm 1, 6)$

Daraus folgt der gemittelte Widerstand

$$R_{13, {
m exp.}} = (305, 2 \pm 0, 9) \ \Omega$$
 .

Der theoretische Wert lautet

$$R_{13,\mathrm{theo.}} = 319, 5\,\Omega$$
.

In der Tabelle (2) sind die verwendeten und gemessenen Widerstände bei einer Durchführung mit dem unbekannten Widerstand R_{14} aufgeführt. Der Widerstand R_{14} berechnet sich erneut aus der Gleichung (??).

Tabelle 2: Widerstände der Wheatstonschen Brücke bei dem unbekannten Widerstand R_{14}

$R_2\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$R_{14}\left[\Omega\right]$
332	732	268	$(906, 8 \pm 4, 5)$
500	644	356	$(904, 5 \pm 4, 5)$
1000	474	526	$(901, 1 \pm 4, 5)$

Aus dieser Tabelle lässt sich der gemittelte Widerstand

$$R_{14,\text{exp.}} = (904, 1 \pm 2, 6) \ \Omega$$

bestimmen. Der theoretische Widerstand beträgt

$$R_{14,\text{theo.}} = 900 \,\Omega$$
.

4.2 Kapazitätsmessbrücke

Bei dieser Durchführung wird wieder der relative Fehler wie im Abschnitt (4.1) benutzt. In der Tabelle (3) sind die verwendeten und gemessenen Kapazitäten und Widerstände der Kapazitätsmessbrücke bei den unbekannten C_{15} und R_{15} aufgelistet. Die unbekannten Werte werden mit den Gleichungen (??) und (??) bestimmt.

Tabelle 3: Kapazität und Widerstände der Kapazitätsmessbrücke bei den unbekannnten Werten C_{15} und R_{15}

$C_2 [\mathrm{nF}]$	$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$C_{15} [\mathrm{nF}]$	$R_{15}\left[\Omega\right]$
399	500	455		$(477, 9 \pm 2, 4)$	
750	332	576	424	$(552, 1 \pm 2, 8)$	$(451, 0 \pm 2, 3)$
994	664	436		$(1285, 8 \pm 6, 4)$	

Die gemittelte ermittelte Kapazität lautet

$$C_{15, {
m exp.}} = (771, 9 \pm 2, 5) \ {
m nF} \, .$$

Der entsprechende theoretische Wert beträgt

$$C_{15,\text{theo.}} = 652 \,\text{nF}$$
.

Aus der Tabelle lässt sich der gemittelte Widerstand

$$R_{15,\text{exp.}} = (460, 6 \pm 1, 3) \ \Omega$$

berechnen. Der theoretische Widerstand ist

$$R_{15,\mathrm{theo.}} = 473\,\Omega$$
.

Die Werte bei einer Durchführung mit den unbekannten Werten C_8 und R_8 sind in der Tabelle (4) aufgeführt. C_8 und R_8 werden ebenfalls mit den Gleichungen (??) und (??) ermittelt.

Tabelle 4: Kapazität und Widerstände der Kapazitätsmessbrücke bei den unbekannnten Werten C_8 und R_8

$C_2 [nF]$	$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	1	$C_8 [\mathrm{nF}]$	$R_{8}\left[\Omega\right]$
399	500	551	449	$(325, 1 \pm 1, 6)$	$(613, 6 \pm 3, 1)$
750	332	667	333	$(374, 4 \pm 1, 9)$	$(665, 0 \pm 3, 3)$
994	664	525	475	$(325, 1 \pm 1, 6)$ $(374, 4 \pm 1, 9)$ $(899, 3 \pm 4, 5)$	$(733,9\pm3,7)$

Daraus folgt die gemittelte Kapazität

$$C_{8, {
m exp.}} = (533, 0 \pm 1, 7) \ {
m nF} \, .$$

Die theoretische Kapazität lautet

$$C_{8, {
m theo.}} = 294, 1\,{
m nF}$$
 .

Außerderm ergibt sich für den Widerstand

$$R_{8, {\rm exp.}} = (670, 8 \pm 1, 9) \ \Omega$$

und der theoretische Widerstand beträgt

$$R_{8,\mathrm{theo.}} = 564\,\Omega$$
 .

4.3 Induktivitätsmessbrücke

Der relative Fehler aus Abschnitt (4.1) gilt auch für diese Durchführung. Die verwendete Induktivität sowie die verwendeten und gemessenen Widerstände der Induktivitätsmessbrücke bei unbekannten L_{19} und R_{19} sind in der Tabelle (5) aufgelistet. Hier werden L_{19} und R_{19} mit den Gleichungen (??) und (??) bestimmt.

Tabelle 5: Induktivität und Widerstände der Induktivitätsmessbrücke bei den unbekannnten Werten L_{19} und R_{19}

$L_2 [\mathrm{mH}]$	$R_2\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$L_{19} [\mathrm{mH}]$	$R_{19}\left[\Omega\right]$
20,1	1000	126		$(139, 4 \pm 0, 7)$	
14,6	664	201	799	$(58, 0 \pm 0, 3)$	$(167, 0 \pm 0, 8)$
14,6	1000	291	709	$(35, 6 \pm 0, 2)$	$(410, 4 \pm 2, 1)$

Aus dieser Tabelle wird die gemittelte Induktivität

$$L_{19,\text{exp.}} = (77,68 \pm 0,26) \text{ mH}$$

bestimmt. Zudem beträgt der theoretische Wert der Induktivität

$$L_{19, \text{theo.}} = 26,96 \, \text{mH}$$
 .

Der gemittelte Widerstand lautet

$$R_{19, {
m exp.}} = (240, 5 \pm 0, 8) \ \Omega$$
.

Außerdem ist der theoretische Widerstand

$$R_{19,\mathrm{theo.}} = 108,7\,\Omega$$

gegeben. Die zugehörigen Werte bei der Durchführung mit der unbekannten Induktivität L_{16} und dem unbekannten Widerstand R_{16} sind in der Tabelle (6) aufgelistet. Die unekannten Werte werden nochmals mit den Gleichungen (??) und (??) berechnet.

Tabelle 6: Induktivität und Widerstände der Induktivitätsmessbrücke bei den unbekannnten Werten L_{16} und R_{16}

$L_{2}[\mathrm{mH}]$	$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	1.	10.	$R_{16}\left[\Omega\right]$
20.1	1000	112	888	$(159, 4 \pm 0, 8)$	$(126, 1 \pm 0, 6)$
14.6	664	85	915	$(157, 2 \pm 0, 8)$	$(61,7\pm0,3)$
14.6	1000	83	917	$(159, 4 \pm 0, 8)$ $(157, 2 \pm 0, 8)$ $(161, 3 \pm 0, 8)$	$(90,5\pm0,5)$

Hieraus ergibt sich für die gemittelte Induktivität

$$L_{16,\text{exp.}} = (159, 3 \pm 0, 5) \text{ mH}$$

und die theoretische Induktivität beträgt

$$L_{16, {\rm theo.}} = 132, 71\,{\rm mH}\,.$$

Die aus der Tabelle ermittelte gemittelte Widerstand lautet

$$R_{16,\text{exp.}} = (92,77 \pm 0,28) \ \Omega$$
.

Der dazugehörige theoretische Widerstand ist

$$R_{16, \mathrm{theo.}} = 411, 2\,\Omega$$
 .

4.4 Maxwell-Brücke

4.5 Wien-Robinson-Brücke

Abbildung 1: Halblogarithmische Darstellung der Frequenz und Spannung.

4.6 Klirrfaktor

5 Diskussion

Die relative Abweichung zwischen dem theoretischen und dem experimentellen Wert wird bestimmt durch

$$\text{rel. Abweichung} = \frac{|\text{exp. Wert} - \text{theo. Wert}|}{\text{theo. Wert}} \,.$$

Literatur

[1] Unknown. Elektrische Brückenschaltungen. TU Dortmund, Fakultät Physik. 2023.

Anhang

Originaldaten