Estatística e Informática

Aula 04 - Distribuição de Frequência

Alan Rodrigo Panosso alan.panosso@unesp.br

Departamento de Engenharia e Ciências Exatas FCAV/UNESP

(06-05-2021)

Distribuição de Frequência

Distribuição de frequência de uma variável

Quando se estuda uma variável (qualitativa ou quantitativa), deve-se conhecer a distribuição de frequência dessa variável por meio de suas possíveis realizações (dados). Portanto, o objetivo dessa aula será apresentar as prinicpais formas e visualização de variáveis quali e quantitativas.

Exemplo: Considerando os Dados (exemplo_dados.xlsx) amostrados da turma de Estatística e Informática, temos:

	A	В	С	D	Е	F	
1	id	sexo	cor_cabelo	GA	altura	idade	
2	1	F	CC	mais_social	1.68	19	
3	2	F	CE	nao_consome	1.59	20	
4	3	F	CC	pouco	1.7	49	
5	4	F	CE	socialmente	1.5	20	
6	5	M	CE	mais_social	1.76	23	
7	6	M	CC	pouco	1.6	28	
8	7	M	L	nao_consome	1.84	19	

Carregando os dados no R

Para carregar o banco de dados da turma no R, siga os passos:

- 1.Faça o Download dos Dados.
- 2.Salve em uma pasta do seu computador (no exemplo a pasta é "Downloads").

3.Na aba **Environment** do RStudio selecione **Import Dataset/From Excel...** como apresentado abaixo.

4. Selecione **Browse** (destacado em vermelho no canto direito superior).

5.Na próxima janela busque o arquivo da base de dados **dados_turmas.xlsx** que salvamos na pasta **Downloads**Selecione o arquivo de clique em **Open**.

6.Na janela serão apresentados os dados, **NÃO CLIQUE EM IMPORT**, ao invés disso, selecione e copie os código para a importação dos dados. Após isso **CLIQUE EM CANCEL**.

7.Cole o código no seu script do R e o execute. Os dados serão salvos no objeto dados_turmas. Se necessário, instale o pacote readxl com as opções da aba **Packages/Install** ou com o código install.packages("readxl").

```
library(readxl)
dados_turmas <- read_excel("C:/Users/Usuario/Downloads/dados_turmas.xlsx")
View(dados_turmas)</pre>
```

Tamanho da População (N)

O tamanho da população N é o número total dos elementos alvos da pesquisa. Muitas veses não conhecemos esse valor. Em nosso exemplo, poderíamos entender como N o número de todos os alunos da Unesp que estão no segundo ano de sua graduação.

Tamanho da amostra (n)

É o número total de registros de sua base de dados, ou seja o número total de elementos amostrados da população. O comando glimpse permite que veriquemos o tamanho do banco de dados em linhas (Rows - n) e columas (Columns - variáveis). Onde chr representa variáveis do tipo **strings**, ou seja textos e dbl representa variáveis numéricas.

```
library(tidyverse) # não esqueça de instalar o tidyverse para ter o glimpse
glimpse(dados_turmas) # vislumbre, resumo rápido dos dados
```

Exemplo da base de dados das turmas

Construir uma tabela de frequências para a variável sexo contendo as frequências absolutas e relativas e a porcentagem para as categoria existentes. Após isso, realizar uma visualização de dados com gráficos de Colunas, Barras e Setores (Pizza oi *Pie*).

Para isso vamos utilizar o R para contar as frequências absolutas das classes presentes na variável qualitativa nominal sexo. Precisaremos fazer algumas operações nos dados das turmas e para isso vamos usar o operador PIPE (%>%) feito com o atalho CTRL + SHIFT + M. Vamos utilizar a função n() para contar cada ocorrencia das diferentes categorias de sexo

```
tab <- dados_turmas %>%
          group_by(sexo) %>%
          summarise(ni=n())
tab
```

```
#> # A tibble: 2 x 2
#> sexo ni
#> <chr> <int>
#> 1 F 17
#> 2 M 32
```

- group_by() a grupa as categorias da variável sexo.
- summarise vai criar o resumo dos dados, ou seja, contará o valor de cada categoria e mostrará em ni.

Frequência Absoluta $\left(n_i ight)$

É definida como o número de realizações no conjunto de dados pertencentes à uma categoria ou classe da variável em questão.

Então temos $n_F=17$ e $n_M=32$, cuja soma é n=49

Assim temos a primeira regra da análise de nossa base de dados, a soma da frequência absoluta das classes (k) da variável cetegória é igual a n.

$$\sum_{i=1}^k n_i = n$$

Onde k é o número de categorias da variável em questão, no caso do sexo, temos duas ategorias (M e F).

Frequência Relativa $\left(f_{i} ight)$ ou proporção

É definida como a proporção de cada realização em relação ao Total de observações (n), ou seja:

$$f_i = rac{n_i}{n}$$

Vamos, mais uma vez, utilizar o R para esses cálculos

```
tab <-dados_turmas %>%
         group_by(sexo) %>%
         summarise(ni=n()) %>%
         mutate(fi = ni/sum(ni))
tab
```

```
#> # A tibble: 2 x 3
#> sexo ni fi
#> <chr> <int> <dbl>
#> 1 F 17 0.347
#> 2 M 32 0.653
```

 mutate() permitirá criarmos mais uma coluna na nossa tabela de resumo, no caso a frequência relativa

Portanto:
$$f_F=rac{17}{49}=0,347$$
 e $f_M=rac{32}{49}=0,653$

Assim, temos que a soma das frequências relativas sempre é igual a 1:

$$\sum\limits_{i=1}^k f_i=1$$

onde k é o número de categorias da variável sexo, ou seja, 2.

Porcentagem de frequência $(perc \ \mathrm{ou} \ \%)$

Definida como o resultado da multiplicação da frequência relativa (proporção) por 100.

```
tab<-dados_turmas %>%
    group_by(sexo) %>%
    summarise(ni=n()) %>%  # Frequência Absoluta
    mutate(fi = ni/sum(ni),  # Frequência relativa
        perc = fi*100)  # Porcentagem de freuqência
tab
```

OBS: A soma das Porcentagens de frequência é igual a 100%.

Agora, a partir das tabelas de frequências, poderemos criar representações gráficas que nos auxiliarão na apresentação e interpretação do comportamento dos dados da variável estudada.

Essa etapa é a **Visualização de Dados**.

Visualização de Dados

(Variáveis Qualitativas)

Visualização dos dados

Os tipos de gráficos podem variar de acordo com o tipo de variável, geralmente, para as variáveis qualitativas utilizamos gráficos de Barras, Colunas ou de Setores (Pizza ou Pie).

Para isso, vamos utilizar a funções do pacote ggplot2 que é carregado junto com o pacote tidyverse, e serão construídos a partir da tabela tab anterior.

O ggplot funciona com camadas gráficas de represetação e formatação, que são adicionadas à base gráfica por meio do operador de adição + digitado ao final da linha.

Gráfico de Colunas para Sexo

Deve ser utilizado para variáveis categóricas (qualitativas ordinais ou nominais).

```
tab %>%
  ggplot(aes(x=sexo, y=fi)) +
  geom_col()
```

Gráfico de Colunas para Sexo

Gráfico de Barras para Sexo

Semelhante ao gráfico de colunas, contudo, com as barras na horizontal, facilita a leitura do nome das categorias, pois muitas vezes esses podem ser extensos.

```
tab %>%
  ggplot(aes(x=fi,y=sexo)) +
  geom_col(fill="aquamarine4")
```

• o argumento fill = "aquamarine4" permite que possamos alterar a cor do preenchimeto (fill) da barra para a cor "aquamarine4", outras cores são possíveis tente algumas das cores do R.

Gráfico de Setores para Sexo

Também conhecido como gráfico de Pizza (ou torta em inglês *pie*), ele representa cada valor de frequência (relativa ou absoluta) das diferentes categoras da variável em uma circunferência.

```
tab %>%
  ggplot(aes(x="",y=fi, fill=sexo)) +
  geom_bar(stat="identity") +
  coord_polar("y", start=0) +
  theme_void()
```

 A função geom_bar() associada à coord_polar() permite a transformação do gráfico de barras no gráfico de pizza. -A função theme_void() retira elementos como linhas e nomes e números da representação gráfica.

Tabela de Frequência e para a variável Cor de cabelo

Vamos, mais uma vez, utilizar o R para conseguirmos as tabelas e a representação gráfica. Observe que esse é o mesmo código daquele apresentado no slide 13, mas com o nome da coluna cor_cabelo ao invés de sexo dentro da função group_by()

Gráfico de Colunas para Cor de cabelo

- ao passarmos o argumento fill=cor_cabelo dentro da função aes() estamos pedindo o mapeamento das cores de cabelo a partir de cores de preeenchimento diferentes.
- aes () representa a estética do gráfico, ou seja, quem é x, quem é y e quem deve ser mapeado.

Gráfico de Barras para Cor de cabelo

Gráfico de Setores para cor_cabelo

Visualização dos dados

(variáveis quantitativas)

Tabela de frequência e visualização para Idade em anos (discreta)

Quando a variável quantitativa for discreta, os mesmos gráficos de variáveis qualitativas podem ser utilizados. Porém, recomendamos a utilização dos gráficos boxplot e o histograma.

```
tab <-dados_turmas %>%
          group_by(idade_anos) %>%
          summarise(ni=n()) %>%
          mutate(fi = ni/sum(ni),
                perc = fi*100)
View(tab)
```

$idade_anos$	ni	fi	perc
18	8	0.1632653	16.326531
19	14	0.2857143	28.571429
20	11	0.2244898	22.448980
21	3	0.0612245	6.122449
22	3	0.0612245	6.122449
23	6	0.1224490	12.244898
24	1	0.0204082	2.040816
27	1	0.0204082	2.040816
28	1	0.0204082	2.040816
49	1	0.0204082	2.040816

Gráfico Boxplot

Conhecido como gráfico dos 5 números representa um resumos dos valores mínimo, primeiro quartil, mediana, terceiro quartil e máximo de uma variável. É construído a partir de geom_boxplot().

Observe que dentro da função ggplot() não é necessário passar o x, somente é atribuído a y a variável discreta idade_anos.

```
dados_turmas %>%
  ggplot(aes(y=idade_anos)) +
  geom_boxplot()
```


25 / 35

- O boxplot é uma caixa que vai do 25º percentil ao 75º percentil da distribuição, uma distância conhecida como a amplitude interquartil (IIQ).
- No meio da caixa há uma linha que exibe a mediana, isto é, 50º percentil, da distribuição. Essas três linhas lhe dão um sentido da dispersão da distribuição e se ela é ou não simétrica sobre a mediana ou enviesada para um lado.
- Pontos visuais que exibem observações são aqueles que cairam em mais do que 1,5 vez o IIQ de cada limite da caixa. Esses pontos fora da curva, denominados **outliers** são incomuns, então são plotados individualmente.

-Uma linha (ou bigode de gato, dai o nome *Box and Whiskers*) que se estende de cada lado da caixa e vai até o ponto mais distante da distribuição que não seja um valor incomum **outlier**.

Suas coordenadas podem ser transpostas trocando y por x no código anterior e o tamanho da caixa, nesse caso, pode ser controlado por coord_cartesian(ylim=c(-1,1)).

```
dados_turmas %>%
   ggplot(aes(x=idade_anos)) +
   geom_boxplot()+
   coord_cartesian(ylim=c(-1,1))
```


Outra alternativa para exibir a distribuição de uma variável quntitativa, é desmembrá-la por uma variável categórica aqui no boxplot.

Tabela de frequência e visualização para Altura em m (contínua)

Quando a variável quantitativa for contínua, recomendamos a utilização dos gráficos boxplot e o histograma.

Devemos, inicialmente construir a tabela de frequência da variável. Devemos lembrar que seus valores não se repetem, pois não sabemos o valor real da observação e sim temos apenas uma aproximação dada pelo instrumento de medida.

Assim, vamos criar 5 classes de alturas a partir da função cut().

classes_altura	ni	fi	perc
(1.5,1.58]	5	0.1020408	10.20408
(1.58,1.66]	8	0.1632653	16.32653
(1.66,1.75]	12	0.2448980	24.48980
(1.75,1.83]	17	0.3469388	34.69388
(1.83,1.91]	7	0.1428571	14.28571

Amplitude Total

Para entendermos como a função $\mathsf{cut}()$ funciona, será necessário conhecermos mais algumas medidas para a construção do histograma. Vamos iniciar com a Amplitude total (Δ) , definida como a diferença entre os valores máximo menos o mínimo da variável.

$$\Delta = M$$
á $ximo - M$ í $nimo$

Para os dados de altura temos:

$$\Delta=M$$
á $ximo-M$ í $nimo=1,91~m-1,50~m=0,41~m$

No R podemos calcular a amplitude total com as funções do pacote base, para isso deveremos, primeiramente, extrair de dados_turmas a variável (coluna) altura por meio do operador de acesso de listas \$.

```
altura <- dados_turmas$altura
```

Agora vamos encontrar o máximo e o mínimo e calcular a diferença.

```
D <- max(altura) - min(altura)
D
```

Número de intervalos de classes (k)

Definiremos k como sendo o número de **subintervalos** da Amplitude Total, uma boa representação apresenta um k **NUNCA** inferior a 5 ou superior a 15, pois com um pequeno número de classes, perde-se informação, e com um grande número de classes, o objetivo de resumir os dados fica prejudicado.

Amplitude de classe (Δ_i)

É o tamanho de cada um dos k=5 subintervalos, dado pela amplitude total dividida pelo número de intervalos.

$$\Delta_i = rac{\Delta}{k}$$

Para os dados de altura:

$$\Delta_i=rac{\Delta}{k}=rac{0.41\ m}{5}=0,082\ m$$

```
Di = D/k
Di
```

#> [1] 0.082

Cada um dos 5 intervalos terá uma amplitude de 0,082 m. Ou seja, o cálculo dos limites das classes é feito a partir da adição ao valor Mínimo o valor de $\Delta_i \ k$ vezes:

```
limites <- min(altura)+ 0:k * Di
limites</pre>
```

Obervem que foi essa a metodologia qua a função cut() utilizou para calcular os limites de classes, e essa é a metodologia clássica para lidar com dados contínuos e os agrupar em classes.

classes_altura	ni	fi	perc
(1.5,1.58]	5	0.1020408	10.20408
(1.58,1.66]	8	0.1632653	16.32653
(1.66,1.75]	12	0.2448980	24.48980
(1.75,1.83]	17	0.3469388	34.69388
(1.83,1.91]	7	0.1428571	14.28571

#> [1] 1.500 1.582 1.664 1.746 1.828 1.910

Agora podemos criar um gráfico de barras para cada uma dessas classes, denominado hitograma:

Gráfico histograma (frequências absolutas)

A partir da tabela anterior, pode-se construir o gráfico de frequência de cada classe de valor de altura, denominado Histograma.

O código acima gera um histograma com 5 barras onde o eixo y será a frequência absoluta, ou seja, a contagem (..count..) de quantos valores de altura estão dentro de uma determinada classe.

A opção breaks = limites deixa o histograma igual ao observado na tabela anterior.

Gráfico histograma (frequências relativas)

Ao longo de nosso curso, vamos estudar que a frequência relativa f_i é uma estimativa empírica da probabilidade P(X=xi), assim é interessante que a área total da figura do histograma seja igual a 1, correspondendo à soma total das frequências relativas (f_i) .

Então, para construção do histograma, sugere-se usar no eixo das ordenadas os valores de fi/Δ_i (denominado densidade de frequência), ou seja, da medida que indica qual a concentração por unidade da variável.

Para isso utilizamos y=..density...

Densidade de frequência $\left(d_{i} ight)$

Agora vamos atualizar a tabela com o valor de densidade de frequência, dado por:

$$d_i = rac{f_i}{\Delta_i}$$

classes_altura	ni	fi	perc	di
(1.5,1.58]	5	0.1020408	10.20408	1.244400
(1.58,1.66]	8	0.1632653	16.32653	1.991040
(1.66,1.75]	12	0.2448980	24.48980	2.986560
(1.75,1.83]	17	0.3469388	34.69388	4.230961
(1.83,1.91]	7	0.1428571	14.28571	1.742160