

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WFM01_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Summer 2019 WFM01/01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes		Marks
1.	$f(x) = 5 + 4x^2 - \frac{4}{3}x^3 - \frac{7}{2x}$; x	c > 0					
(a)	$f'(x) = 8x - 4x^2 + \frac{7}{2}x^{-2}$	At least one of either $5 + 4x^2 \rightarrow \pm Ax$ or $-\frac{4}{3}x^3 \rightarrow \pm Bx^2$ or $-\frac{7}{2x} \rightarrow \pm Cx^{-2}$; $A, B, C \neq 0$			M1		
		Correct	differenti	ation, v	which can be un-sin	mplified or simplified	A1 (2)
(b)	$f(0.5) = -\frac{7}{6}, f'(0.5) = 17$	or a co				7 or truncated -1.16 or $f'(0.5) = 17$ her $f(0.5)$ or $f'(0.5)$	B1
					-	ied by later working	
	$\left\{\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)}\right\} \Rightarrow \alpha \simeq 0.$	$-5 - \frac{-\frac{7}{6}}{17}$		1	Valid attempt at No	ewton-Raphson using of $f(0.5)$ and $f'(0.5)$	M1
	$\left\{ \alpha = 0.56862745 \text{ or } \frac{29}{51} \right\} \Rightarrow \alpha = 0.569 \text{ (3 dp)}$			С	` '	0.569 on first iteration subsequent iterations)	A1 cso cao
	Correct differentiation followed by 0.569 (with no working seen) scores full marks in part (b)			(3)			
(c) Way 1	$f(3) = \frac{23}{6} = 3.833333$ $f(3.5) = -\frac{25}{6} = -4.166666$				either $f(3) = \frac{23}{6}$ or	both f(3) and f(3.5) awrt 4 or truncated 3 $5) = -\frac{25}{6} \text{ or awrt } -4$	M1
	Sign change {positive, negative continuous} therefore a root { interval {[3, 3.5]}		*	Both		(or truncated) to 1sf, range and conclusion.	A1
							(2)
(d) Way 1	$\frac{\beta-3}{"3.8333"} = \frac{3.5-\beta}{"4.1666"} \text{ or } \frac{\beta-3}{3.5-\beta} = \frac{"3.8333"}{"4.1666"}$ A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.			M1			
	• $\beta = \left(\frac{(3)("4.1666") + (3.5)("3.8333")}{"4.1666" + "3.8333"}\right) = \left(\frac{12.5 + 13.4166}{8}\right)$ • $\beta = 3 + \left(\frac{"3.8333"}{"4.1666" + "3.8333"}\right)(0.5)$ or $\beta = 3 + \left(\frac{"23}{8}\right)(0.5)$ • $\beta = 3 + \left(\frac{"-3.8333"}{"-4.1666" + "-3.8333"}\right)(0.5)$			dM1			
	$\left\{\beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \frac{311}{96}\right\} \Rightarrow \beta = 3.24 \text{ (2dp)} $ (Ignore any subsequent iterations)			A1			
							(3)
							10

Question Number		Scheme	Notes	Marks		
1. (d) Way 2		$\frac{x}{333"} = \frac{0.5 - x}{"4.1666"}$ $\frac{0.5)("3.8333")}{33" + "4.1666"} = 0.239583$	Finds <i>x</i> using a correct method of similar triangles and applies	M1 dM1		
		3 + 0.239583 39583 or $3\frac{23}{96}$ or $\frac{311}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	"3 + their x " awrt 3.24	A 1		
	$\begin{cases} p = 3.2. \end{cases}$	$39383 \text{ or } 3{96} \text{ or } {96} $ $\Rightarrow p = 3.24 \text{ (2dp)}$	awit 3.24	A1 (3)		
1. (d)	0.5	j – r r		(3)		
Way 3	"3.83	$\frac{3-x}{333"} = \frac{x}{"4.1666"}$				
	$x = \frac{0}{3.83}$	$\frac{0.5)("4.1666")}{33" + "4.1666"} = 0.260416$	Finds x using a correct method of	N41 4N41		
	$\Rightarrow \beta = 3$	3.5 – 0.260416	similar triangles and applies "3.5 – their <i>x</i> "	M1 dM1		
	$\left\{\beta = 3.25\right\}$	3.5 - 0.260416 39583 or $3\frac{23}{96}$ or $\frac{311}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	awrt 3.24	A1		
				(3)		
1. (b)	Note	Question 1 No Give full marks in part (b) for correct differentia		war		
11 (0)	11010	in (b) with <u>no</u> working.	tion in (a) followed by the correct and	5 W C1		
	M1	This mark can be implied by applying at least on	ne correct <i>value</i> of either $f(0.5)$ or the	eir		
		f'(0.5) (where $f'(0.5)$ is found using their $f'(x)$	(x)) to 1 significant figure in $0.5 - \frac{f(f)}{f'(f)}$	$\frac{0.5)}{(0.5)}$.		
		So <i>just writing</i> $0.5 - \frac{f(0.5)}{f'(0.5)}$ with an incorrect				
	Note	Give B1M1A0 for a correct $f'(x)$ in (a) followed	d by only $\alpha \approx 0.5 - \frac{f(0.5)}{f'(0.5)} = \frac{29}{51}$ in (1)	b)		
	Note	Differentiating INCORRECTLY to give $f'(x)$	$= 8x - 4x^2 + 14x^{-2}$ leads to			
		$\alpha \simeq 0.5 - \frac{-\frac{7}{6}}{59} = \frac{92}{177} = 0.5197740113 = 0.520 \text{ (3 dp)}$				
		This response should be given B1 M1 A0				
	Note	Differentiating INCORRECTLY to give $f'(x)$				
		$\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.520$ or truncated 0.52 or	0.519 or awrt 0.520 is B1 M1 A0			
(c)	Note	Way 1: correct solution only	5) comport assumt (an Aman control) to 1 of a	المسام ويتنافله		
		Required to state both values for $f(3)$ and $f(3.3)$ a reason and a conclusion. Reference to change		iong with		
		f(3) > 0 > f(3.5) or a diagram or < 0 and > 0		cient		
		reasons. There must be a conclusion, e.g. $\{x \text{ or }\}$	-			
		between 3 and 3.5. Ignore the presence or absen	-			
	Note	A minimal acceptable reason and conclusion is "				
		or "change of sign, so root is between 3 and 3.5"	" or "change of sign, so root"			

		Question 1 Notes Continued
1. (c)	Note	Way 2 The root of $f(x) = 0$ is 3.27491258, so they can choose x_1 which is less than 3.27491258 and choose x_2 which is greater than 3.27491258 with both x_1 and x_2 lying in the interval [3, 3.5]. M1: Finds $f(x_1)$ and $f(x_2)$ with one of these values correct awrt (or truncated) to 1sf A1: Both values correct awrt (or truncated) to 1sf, sign change and conclusion.
	Note	Helpful Table x f(x) 3 3.833333333 3.1 2.58963440 3.2 1.17558333 3.3 -0.41660606 3.4 -2.19474509 3.5 -4.166666666
1. (d)	Note	Condone writing the symbol α in place of β in part (d)
	Note	$\frac{\beta - 3}{3.5 - \beta} = \left \frac{\text{"3.833"}}{\text{"-4.1666"}} \right \text{ is a valid method for the first M mark}$
	Note	Give 1 st M1 for either $\frac{f(3)}{-f(3.5)} = \frac{\beta - 3}{3.5 - \beta}$ or $\frac{f(1.2)}{ f(1.3) } = \frac{\beta - 3}{3.5 - \beta}$ or $\frac{ f(3) }{ f(3.5) } = \frac{\beta - 3}{3.5 - \beta}$
	Note	Give M1 dM1 A1 for the correct statement $\frac{3 f(3.5) + 3.5f(3)}{ f(3.5) + f(3)} = 3.24$
	Note	Give M0 dM0 for $\frac{3 f(3.5) + 3.5f(3)}{ f(3.5) + f(3)} = \frac{3("-4.166") + 3.5("3.8333")}{("-4.166") + ("3.8333")}$
	Note	Give M1 dM1 for the correct statement $\beta = \frac{3.5 + 3k}{k + 1}$,
		where <i>k</i> is defined as $k = \frac{ f(3.5) }{f(3)} = \frac{4.1666}{3.8333} = 1.086957$
	Note	Give M1 dM1 for the correct statement $\beta = \frac{3+3.5c}{c+1}$,
		where c is defined as $c = \frac{f(3)}{ f(3.5) } = \frac{3.8333}{4.1666} = 0.92$
	Note	$\frac{\beta - 3}{3.5 - \beta} = \frac{"3.8333"}{"4.1666"} \Rightarrow \beta = 3.24 \text{ with no intermediate working is M1 dM1 A1}$
	Note	$\frac{\beta - 3}{3.8333} = \frac{3.5 - \beta}{-4.1666} \implies \beta = -2.75 \text{ is M0 dM0 A0}$
	Note	$\frac{\beta - 3}{-3.8333} = \frac{3.5 - \beta}{-4.1666} \implies \beta = 3.24 \text{ is M1 dM1 A1}$
	Note	$\frac{\beta - 3}{3.5 - \beta} = \frac{\text{"4.1666"}}{\text{"3.8333"}} \implies \beta = 3.260416 \text{ is M0 dM0 A0}$

Question Number	Scheme		Notes	Marks
1. (d) Way 4	• $y - \frac{23}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3) \Rightarrow 0 - \frac{23}{6} = \frac{-\frac{25}{6}}{3.5}$ • $y\frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0\frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6}(x - 3.5) \Rightarrow 0 $	25 22	Complete method of finding a line joining the points $(3, f(3)), (3.5, f(3.5))$ followed by setting $y = 0$	M1
	$\Rightarrow x = \dots$ or $\beta = \dots$		ent on the previous M mark ages to give $x =$ or $\beta =$	dM1
	$\left\{ x \text{ or } \beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \frac{311}{96} \right\} \Rightarrow \beta$	3 = 3.24 (2 dp)	awrt 3.24	A1
	·			(3)

Question Number		Scheme		Notes	Marks		
2.	$\mathbf{M} = \begin{pmatrix} k - 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -12 & 3 \\ 4 & k \end{pmatrix}$, where k is a real constant					
	$\left\{ \det(\mathbf{M}) \right.$	$=(k-12)k-4(3)$ and area ratio $=\frac{32k}{20}$	$\frac{0}{0} = 16$				
	20(k(k -	(12) - 4(3) = 320 or 20(k(k-12) - 4(2))	(3)) = -320	20(applied det(M)) = ± 320 , o.e. Note: Allow 320(applied det(M)) = ± 20 , o.e.	M1		
	or $k(k-1)$	$(12) - 4(3) = \frac{320}{20}$ or $k(k-12) - 4(3) =$	$-\frac{320}{20}$	At least one correct equation in <i>k</i> that can be simplified or un-simplified	A1		
		$-12k - 28 = 0, k^2 - 12k + 4 = 0$		or an simplified			
	${20k^2-2}$	$240k - 560 = 0$, $20k^2 - 240k + 80 = 0$					
	(k-14)($(k+2) = 0$ or $(k-6)^2 - 36 + 4 = 0$ to give $k =$	At least or	pendent on the previous M mark ne correct method (e.g. factorising, the quadratic formula, completing the square or calculator) of solving a 3TQ to give $k =$	dM1		
	k	$=14, -2, 6+4\sqrt{2}, 6-4\sqrt{2}$	At	least two of either $k = 14$, $k = -2$, $k = 6 + 4\sqrt{2}$ or $k = 6 - 4\sqrt{2}$	A1		
		, , , , ,	All four correct values of k		A1		
					(5)		
					5		
2.	Note	Allow 1 st M1 for any of	estion 2 No	tes			
	1,000	• $320(k(k-12)-4(3)) = 20$ • $320(k(k-12)-4(3)) = -20$	• $k(k-12)$	$2) - 4(3) = \frac{20}{320}$ $2) - 4(3) = -\frac{20}{320}$			
	Note	which can be simplified or un-simpl	iffed.				
	Note	Allow 1 st M1 for any of • $20(k(k-12)+4(3)) = 320$ • $320(k(k-12)+4(3)) = 20$ or equivalent, which can be simplified	• 320(k(k	(x-12)+4(3))=20			
Note Give 1 st M0 for any of • $(k(k-12)-4(3))=(20)(320)$ • $(k(k-12)+4(3))=(20)(320)$		•					
	Note	te Give dM1 for using a calculator to write down at least one correct root for their 3TQ					
	Note	For the 1 st A1 mark					
		• condone truncated 11.6 or awrt 1	1.7 in place	of $k = 6 + 4\sqrt{2}$			
		• condone awrt 0.34 in place of <i>k</i>					
	Note	Allow $k = 6 + \sqrt{32}$ instead of $k = 6$		or $k = 6 - \sqrt{32}$ instead of $k = 6 - 4\sqrt{32}$	$\sqrt{2}$		
		for any of the final two accuracy ma					
	Note	Allow final A1 (isw) for $k = 14, -2$					
	Note	Give 2 nd A0 (i.e. the penultimate ma rejecting (or ignoring) correct values	*	ng only one correct value for k as a	result of		
	Note	Give final A0 if any of $k = 14, -2,$	$6+4\sqrt{2}, 6-$	$-4\sqrt{2}$ are rejected			
	Note	Give final A0 for extra solutions in a	addition to k	$z = 14, -2, 6 + 4\sqrt{2}, 6 - 4\sqrt{2}$			
L	1	1					

		Question 2 Notes Continued		
2.	Note	$320(k(k-12)-4(3)) = 20$ leads to $16k^2-192k-193=0$ and $k=12.9327, -0.9327$		
		$320(k(k-12)-4(3)) = -20$ leads to $16k^2 - 192k - 191 = 0$ and $k = 12.9236, -0.9236$		
	Note	$20(k(k-12)+4(3)) = 320$ leads to $k^2-12k-4=0$ and $k=12.3245, -0.3245$		
		$20(k(k-12)+4(3)) = -320$ leads to $k^2 - 12k + 28 = 0$ and $k = 8.8284, 3.1715$		
	Note	$320(k(k-12)+4(3)) = 20$ leads to $16k^2 - 192k + 191 = 0$ and $k = 10.9053, 1.0946$		
		$320(k(k-12)+4(3)) = -20$ leads to $16k^2 - 192k + 193 = 0$ and $k = 10.8925, 1.1074$		

Question Number	Scheme		1	Notes		Marks	S
3.	(i) $z^* - 3z = \frac{5i}{3-i}$; (ii) $w = -4 + 5i$, (b) $arg(w+k) =$	$\frac{\pi}{2}$, (c) $ w+a $	$ci =4\sqrt{5}$			
(i) Way 1	${z^* - 3z = } (a - ib) - 3(a + ib)$	Can be imp	lied by e.g	-2a-4bi No	(a-ib)-3(a+ib) ote: Can be seen in their solution	B1	
	$ = \frac{5i}{(3-i)} \frac{(3+i)}{(3+i)}$	Mı			nominator of the $y + 3 + i $ or $-3 - i$	M1	
	$\dots = \frac{15i - 5}{10}$		right-han	* *	$s i^2 = -1$ to give -5 or equivalent	A1	
	So, $-2a-4bi = -\frac{1}{2} + \frac{3}{2}i$		either real p	arts or imagin	B and M marks hary parts to give a = or $b =$	ddM1	
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4} - \frac{1}{4}$	$\frac{3}{8}$ i or $z = 0.2$	25 – 0.375i o	$\mathbf{r} \ z = \frac{1}{4} + \left(-\frac{3}{8}\mathbf{i}\right)$	A1	
(*)			T 0.1	1 '1 '	:1) 2/ ::>		(5)
(i) Way 2	Left hand side = $(a-ib)-3(a-ib)$ $\{z^*-3z=\}$ $(a-ib)-3(a+ib)$ Can be implied by e.g. $-2a-4bi$ Note: Can be				D1		
way 2	${z^* - 3z = } (a - ib) - 3(a + ib)$	Can be imp				B1	
	$(-2a-4bi)(3-i) = \dots$				$\frac{\text{s in their solution}}{-4b\text{i}) \text{ by } (3-\text{i})}$	M1	
	·		Within			IVII	
	$-6a + 2ai - 12bi - 4b = \dots$	$-6a + 2ai - 12bi - 4b = \dots$ Applies $i^2 = -1$ to give left-hand side $= -6a + 2ai - 12bi - 4b$ or equivalent			A1		
	So, $(-6a-4b)+(2a-12b)i=5i$				B and M marks		
	gives $-6a-4b=0$, $2a-12b=5$	_	Equates both real parts and imaginary parts and solves		ddM1		
					a = or b =		
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4}$	$z = \frac{1}{4} - \frac{3}{8}i$ or $z = 0.25 - 0.375i$ or $z = \frac{60}{240} - \frac{15}{40}i$		A 1		
		4	0		240 40		(5)
(ii)(a)	e.g. $\arg w = \pi - \tan^{-1}(\frac{5}{4})$	Hasa triconom	estructo find o	n averagion	for argue so that		· /
	or = $\frac{\pi}{2} + \tan^{-1}(\frac{4}{5})$ or	•	•	•	for arg w so that .) or $(90^{\circ}, 180^{\circ})$	M1	
	- (**/	arg w is i			(-270°, -180°)	IVII	
	$= -\pi - \tan^{-1}\left(\frac{5}{4}\right)$						
	$\arg w = \pi - 0.896055 = 2.245$		1 / /		5 or awrt – 4.04	A1	
	or $\arg w = -\pi - 0.896055 = -4.1$,			or awrt -10.32		(6)
24.5	` `	128.6598° or –	231.3401°	1S M1 A0}		D.	(2)
(b)	$\{\arg(-4+5i+k) = \frac{\pi}{2} \implies -4+k = 0$	$0 \Longrightarrow k = 4$			<i>k</i> = 4	B1	(1)
(c)		Squares and	adds the real	and imaginer	y parts of $w + ci$		(1)
	$\left -4+5\mathrm{i}+c\mathrm{i}\right =4\sqrt{5}$	Squares and		_	· · _	M1	
	$\Rightarrow -4 + (5+c)i = 4\sqrt{5}$		and sets equal to either $(4\sqrt{5})^2$ or $4\sqrt{5}$				
	$\Rightarrow (-4)^2 + (5+c)^2 = (4\sqrt{5})^2$	Allow the	$(-4)^2 + (5+c)^2 = (4\sqrt{5})^2$ o.e. Allow the equivalent result $\sqrt{(-4)^2 + (5+c)^2} = 4\sqrt{5}$			A1	
	$16 + (5+c)^2 = 80 \Rightarrow (5+c)^2 =$	$64 \Rightarrow c = \dots$	_				
	or $16+(5+c)^2 = 80 \Rightarrow c^2 + 10c - c$ $\Rightarrow (c+13)(c)$	$-39 = 0$ $-3) = 0 \implies c = \dots$			revious M mark c to give $c =$	dM1	
	c = -13, 3				c = -13, 3	A1	
							(4)
							12

		Question 3 Notes
3. (i)	Note	Allow alternative ways of defining z. E.g. $z = x + iy$ and $z^* = x - iy$ with $x \equiv a$ and $y \equiv b$
	Note	Give final A0 for defining $z = a + ib$, finding $a = \frac{1}{4}$, $b = -\frac{3}{8}$ but not stating $z = \frac{1}{4} - \frac{3}{8}i$
	Note	Alternative: Some may define $z = x - iy$ and $z^* = x + iy$
		This gives $\{z^* - 3z = \}$ $(x + iy) - 3(x - iy) = -2x + 4yi$
		So, $-2x + 4yi = -\frac{1}{2} + \frac{3}{2}i \implies x = \frac{1}{4}, y = \frac{3}{8} \implies z = \frac{1}{4} - \frac{3}{8}i$
(ii) (a)	Note	Allow M1 (implied) for awrt 2.2, awrt -3.8, truncated -4.0, awrt 129°, truncated 128°
		or awrt -231°
(ii) (c)	Note	$\left -4 + (5+c)i \right = 4\sqrt{5} \Rightarrow (-4)^2 - (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0
	Note	$\left -4 + (5+c)i \right = 4\sqrt{5} \Rightarrow -16 + (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0
	Note	$\left -4 + 5i + ci \right = 4\sqrt{5} \Rightarrow (-4)^2 + (5)^2 + c^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0
	Note	If a 3TQ is formed in c then a correct method (e.g. factorising, applying the quadratic formula,
		completing the square or calculator) of solving a 3TQ is required to give $c =$
	Note	Give dM1 for using a calculator to write down at least one correct root for their 3TQ
	Note	Having achieved a correct $16 + 25 + 10c + c^2 = 80$ give final dM1 A1 marks for writing down $c = -13$, 3 from no working.
	Note	Give final A0 for either
	11010	• $c = -13, 3 \Rightarrow c = 3$
		• $c = -13, 3 \Rightarrow c = -13$
		• $c = 3, c = -13 \text{ (reject)}$
		• $c = 3$ (reject), $c = -13$

Question Number	Scheme		Notes	Marks
4. (a) Way 1	$\sum_{k=0}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k$	Either	$\sum_{r=1}^{3k} 4r \to 4.\frac{1}{2} (3k)(3k+1) \text{ or } \sum_{r=1}^{3k} 1 \to 3k$	M1
way 1	r=1	Corr	ect expression, simplified or un-simplified	A1
	$= 6k(3k+1) + 3k = 18k^2 + 9k$			
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 cso
	ı.		, , , , , , , , , , , , , , , , , , ,	(3)
(a) Way 2	$\sum_{r=1}^{k} (4r+1) = 4 \cdot \frac{1}{2} (k)(k+1) + k$	Both $\sum_{r=1}^{k} 4r \to 4 \cdot \frac{1}{2}(k)(k+1)$ and $\sum_{r=1}^{k} 1 \to k$		M1
	$= 2k(k+1) + k = 2k^2 + 3k$			
	$\sum_{r=1}^{3k} (4r+1) = 2(3k)(3k+1) + 3k = 2(3k)^2$	+3(3k)	Correct expression, simplified or un-simplified	A1
	$=18k^2+9k$			
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 cso
				(3)
(b) Way 1	$\sum_{r=1}^{k} 2r^2 = \sum_{r=1}^{3k} (4r+1)$			
	-1	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	3.54
	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1
			dependent on the previous M mark	
	$\frac{1}{2}(k+1) = 9 \Rightarrow k = 26$		s out two terms or factorises out two terms solves a linear equation in k to give $k =$	dM1
	3	una	k = 26 only	A1
				(3)
(b)	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	M1
Way 2	$ \begin{array}{c c} 2\kappa(\kappa+1)(2\kappa+1) = 3\kappa(2\kappa+1) \\ 6 \end{array} $		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	1011
	$2k^3 + 3k^2 + k = 54k^2 + 27k$	C	dependent on the previous M mark	
	$2k^3 - 51k^2 - 26k = 0$		els out or factorises <i>k</i> and a correct method actorising, applying the quadratic formula,	dM1
	$k(2k^2 - 51k - 26) = 0$	completing the square or calculator)		
	$(2k+1)(k-26) = 0 \Rightarrow k = 26$		of solving a 3TQ to give $k =$ k = 26 only	A1
			. 20 only	(3)
(b)	1	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	
Way 3	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1
	k(k+1)(2k+1) = 27k(2k+1)		dependent on the previous M mark	
	$k(k+1) - 27k = 0 \implies k^2 - 26k = 0$	Cancels out two terms or factorises out two terms		dM1
	$k(k-26) \Rightarrow k = 26$	and	solves a linear equation in k to give $k =$ k = 26 only	A1
				(3)
				6

		Question 4 Notes
4. (a)	Note	Give M1A1 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n$
	Note	Give M1A1A0 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1)$
		without reference to $\sum_{r=1}^{3k} (4r+1) = 9k(2k+1)$
	Note	Give M1A1A1 for
		$\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1) \Rightarrow \sum_{r=1}^{3k} (4r+1) = 9k(2k+1)$
	Note	Way 2: Give M1 for $\sum_{r=1}^{n} (4r+1) = 4 \cdot \frac{1}{2} (n)(n+1) + n$
	Note	Give final A0 for cancelling down their final answer $9k(2k+1)$ in part (a)
		E.g. $\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k = 18k^2 + 9k = 9k(2k+1) = k(2k+1)$ gets M1 A1 A0
	Note	Give M0 A0 A0 for writing
		e.g. $k = 1 \Rightarrow \sum_{1}^{3(1)} (4r+1) = p(1)((2(1)+1)) \Rightarrow 5+9+13=3p \Rightarrow p=9$
		with no evidence of applying $\sum_{r=1}^{3k} 4r \rightarrow 4 \cdot \frac{1}{2} (3k)(3k+1)$ or $\sum_{r=1}^{3k} 1 \rightarrow 3k$
	Note	You can give M1 1st A1 marks in part (a) for work recovered for
		$\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k \text{ in part (b)}$
(b)	Note	Condone giving 1 st M1 for setting $\lambda k(k+1)(2k+1)$ equal to "9" $k(k+1)$ {slip}
	Note	Give A0 for giving more than one value of <i>k</i> as their final answer.
	Note	Where applicable, for A1,
		• $k = 0$ and/or $k = -\frac{1}{2}$ needs to be rejected leaving $k = 26$ as their final answer.
		• $k = 26$ needs to be indicated as their final answer.
	Note	Way 2: Using fractions gives
		$\Rightarrow k = \frac{17 \pm \sqrt{(-17)^2 - 4(\frac{2}{3})(-\frac{26}{3})}}{2(\frac{2}{3})} = \frac{17 \pm \sqrt{\frac{2809}{9}}}{\frac{4}{3}} = \frac{17 \pm \frac{53}{3}}{\frac{4}{3}} \Rightarrow k = 26$
	Note	Way 3: E.g. Give dM0 for $k^2 + k - 27k = 0$ leading directly to $k = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-27)}}{2(1)}$

Question Number	Scheme	Notes	Mar
5.	$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2\sqrt{3} & -7 \\ -4 & 5\sqrt{3} \end{pmatrix}$		
(a)	Rotation	Rotation or rotate (condone turn)	B1
	60 degrees {anti-clockwise}	or 300 degrees clockwise or $\frac{5\pi}{3}$ clockwise	В1 с
	about (0, 0)	This mark is dependent on at least one of the previous B marks being given. about (0, 0) or about O or about the origin	dB1
		60 degrees clockwise o.e.	
(b)	$\{\mathbf{A}^6 = \} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	Correct matrix	B1
(c) Way 1	$\mathbf{B}^{-1} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$	Correct matrix for \mathbf{B}^{-1} , which can be simplified or un-simplified	B1
	$\{\mathbf{C} = \mathbf{B}^{-1}\mathbf{A}\} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \dots$	Applies (their \mathbf{B}^{-1}) \mathbf{A} , where (their \mathbf{B}^{-1}) $\neq \mathbf{B}$, and finds at least one element (or at least one element calculation) of their matrix \mathbf{C} Note: Allow one slip in copying down \mathbf{A}	M1
	$= \frac{1}{2} \begin{pmatrix} 6\sqrt{3} & -4 \\ 5 & -\sqrt{3} \end{pmatrix} \text{or} = \begin{pmatrix} 3\sqrt{3} & -2 \\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	At least 2 elements in C are correct All elements in C are correct	A1 A1
(c) Way 2	$ \begin{cases} \mathbf{BC} = \mathbf{A} \Longrightarrow \\ $	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. Can be implied by the 4 correct equations that are below.	B1
	$2\sqrt{3} a - 7c = \frac{1}{2} , 2\sqrt{3} b - 7d = -\frac{\sqrt{3}}{2}$ $-4a + 5\sqrt{3} c = \frac{\sqrt{3}}{2} , -4b + 5\sqrt{3} d = \frac{1}{2}$ and finds at least one of either a, b, c or d	Applies $\mathbf{BC} = \mathbf{A}$ and attempts to solve simultaneous equations in a and c or \mathbf{b} and d and finds at least one of either a, b, c or d	M1
	$=\frac{1}{2}\begin{pmatrix} 6\sqrt{3} & -4\\ 5 & -\sqrt{3} \end{pmatrix} \mathbf{or} = \begin{pmatrix} 3\sqrt{3} & -2\\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	dependent on the previous B1M1 marks At least 2 elements in C are correct	A1
	or $a = 3\sqrt{3}$, $b = -2$, $c = \frac{5}{2}$, $d = -\frac{1}{2}\sqrt{3}$	All elements in C are correct	A1
ļ			

		Question 5 Notes
5. (a)	Note	Writing "60 degrees" by itself implies by convention "60 degrees anti-clockwise". So,
		• "Rotation 60 degrees about O" is B1 B1 B1
		• "Rotation 60 degrees clockwise about O" is B1 B0 B1
	Note	Writing down "60 degrees anti-clockwise about O" with no reference to "rotation" or "turn" is B0 B1 B1
	Note	"original point" is not acceptable in place of the word "origin".
	Note	Give B0 B0 B0 for a combination of 2 or more transformations.
(b)	Note	Give B0 for writing down I without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
	Note	Allow B1 for writing down I_2 without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
(c)	Note	Allow B1 for $\frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)} \begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix}$ or $\frac{1}{30 - 28} \begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix}$
	Note	Allow B1 for $\binom{5\sqrt{3}}{4} \frac{7}{2\sqrt{3}} \frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)}$ or $\binom{5\sqrt{3}}{4} \frac{7}{2\sqrt{3}} \frac{1}{30 - 28}$
	Note	You can ignore previous working prior to their finding $\mathbf{B}^{-1}\mathbf{A}$ (i.e. you can ignore an incorrect statement such as $\mathbf{A} = \mathbf{C}\mathbf{B}$)

(b)(i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$ $= \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$ $= \left(-\frac{1}{2}\right)^2 - 3\alpha\beta = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots$ or $= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots$ $= \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^2 - 3(2) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^2 - 3(2) = \frac{23}{8}$ $= \alpha^2 + \frac{1}{\beta} + \beta^3 + \frac{1}{\alpha}$ $= \alpha^2 + \beta^3 + \frac{\alpha + \beta}{\alpha\beta}$ $= \frac{\alpha\beta(\alpha^3 + \beta^3) + (\alpha + \beta)}{\alpha\beta}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give and uses at least two of their $\alpha^2 + \beta^3, \alpha + \beta$ or $\alpha\beta$ in an attempt to find a numerical value for the sum of $\alpha^2 + \beta^2 + \frac{1}{\alpha}$ $= (\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$ $= (\alpha\beta)^4 + \alpha\beta(\alpha^2 + \beta^2) + 1$ $= (\alpha\beta)^4 + \alpha\beta(\alpha^$	Question Number	Scheme	Notes		Marks		
(b)(i) $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \dots$ $= \left(\frac{1}{2} \right)^{2} - 2(2) = \frac{15}{4}$ $= \left(\frac{1}{2} \right)^{2} - 2(2) = \frac{15}{4}$ $= \left(\frac{1}{2} \right)^{2} - 2(2) = \frac{15}{4}$ $= \left(\frac{15}{4} \text{ or } - 3.75 \text{ or } - 3\frac{3}{4} \text{ from correct working} \right)$ Al cso $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^{2} - 3\alpha\beta) = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^{2} - 3\alpha\beta) = \dots$ $= \left(-\frac{1}{2} \right)^{3} - 3(2) \left(-\frac{1}{2} \right) = \frac{23}{8}$ $= \left(-\frac{1}{2} \right)^{3} - 3(2) \left(-\frac{1}{2} \right) = \frac{23}{8}$ or $= \left(-\frac{1}{2} \right) \left(-\frac{1}{2} \right)^{2} - 3(2) = \frac{23}{8}$ $= \left(-\frac{1}{2} \right) \left(-\frac{15}{4} - 2 \right) = \frac{23}{8}$ $= \left(-\frac{1}{2} \right) \left(-\frac{15}{4} - 2 \right) = \frac{23}{8}$ $= \alpha^{2} + \beta^{3} + \frac{\alpha + \beta}{\alpha\beta}$ $= \alpha^{2} + \beta^{3} + \frac{\alpha + \beta}{\alpha\beta}$ $= \frac{\alpha\beta(\alpha^{3} + \beta^{3}) + (\alpha + \beta)}{\alpha\beta}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha} \text{ to give}$ and uses at least two of their $\alpha^{3} + \beta^{3}, \alpha + \beta \text{ or } \alpha\beta \text{ in an attempt to find a numerical value for the sum of }$ $\alpha^{3} + \beta^{3}, \alpha + \beta \text{ or } \alpha\beta \text{ in an attempt to find a numerical value for the sum of }$ $\alpha^{3} + \beta^{3}, \alpha + \beta \text{ or } \alpha\beta \text{ in an attempt to find a numerical value for the sum of }$ $\alpha^{2} + \frac{1}{\beta} \text{ in an attempt to find a numerical value for the sum and product. }$ $\alpha^{2} + \beta^{3} + \alpha + \beta \text{ in an attempt to find a numerical value for the sum and product. }$ $\alpha^{2} + \beta^{3} + \alpha^{3} + \alpha^{$	6.	$2x^{2} +$	x+4	= 0 has roots α ,	β		
(b)(i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$ $= \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$ $= \left(-\frac{1}{2}\right)^2 - 3\alpha\beta = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots$ or $= (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots$ or $= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots$ $= \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^2 - 3(2) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^2 - 3(2) = \frac{23}{8}$ $= \alpha^2 + \frac{1}{\beta} + \beta^3 + \frac{1}{\alpha}$ $= \alpha^2 + \beta^3 + \frac{\alpha + \beta}{\alpha\beta}$ $= \frac{\alpha\beta(\alpha^3 + \beta^3) + (\alpha + \beta)}{\alpha\beta}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give and uses at least two of their $\alpha^2 + \beta^3, \alpha + \beta$ or $\alpha\beta$ in an attempt to find a numerical value for the sum of $\alpha^2 + \beta^2 + \frac{1}{\alpha}$ $= (\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$ $= (\alpha\beta)^4 + \alpha\beta(\alpha^2 + \beta^2) + 1$ $= (\alpha\beta)^4 + \alpha\beta(\alpha^$	(a)	$\alpha + \beta = -\frac{1}{2}, \ \alpha\beta = 2$			В	oth $\alpha + \beta = -\frac{1}{2}$ and $\alpha\beta = 2$	
(ii) $ = \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4} \qquad -\frac{15}{4} \text{ or } -3.75 \text{ or } -3\frac{3}{4} \text{ from correct working} \\ \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \dots \\ \mathbf{or} = (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots \\ \mathbf{or} = (\alpha + \beta)(\alpha^2 + \beta)^2 - \alpha\beta = \dots \\ \mathbf{or} = (\alpha + \beta)(\alpha^2 + \beta)^2 - \alpha\beta = \dots \\ \mathbf{or} = \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8} $ $ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - \frac{23}{8}\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{23}{8} \qquad \frac{23}{8} \text{ or } 2.875 \text{ or } 2\frac{7}{8} \text{ from correct working} \\ \mathbf{or} $	(b)(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$		Use		-	M1
$\mathbf{Gr} = (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = \dots$ $\mathbf{or} = (\alpha + \beta)((\alpha^2 + \beta^2 - \alpha\beta) = \dots$ $\mathbf{or} = (\alpha + \beta)((\alpha^2 + \beta^2 - \alpha\beta) = \dots$ $= \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$ $\mathbf{or} = \frac{\alpha^3\beta + 1}{\beta} + \frac{\alpha\beta^3 + 1}{\alpha}$ $\mathbf{or} = \frac{\alpha\beta(\alpha^3 + \beta^3) + (\alpha + \beta)}{\alpha\beta}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$ $\mathbf{or} = \frac{2(\frac{23}{8}) + \frac{1}{4}}{\beta}$ $\mathbf{or} = \frac{2(\frac{23}{8}) + \frac{1}{4}}{\beta}$ $\mathbf{or} = \frac{\alpha\beta(\alpha^3 + \beta^3) + (\alpha + \beta)}{\alpha\beta}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$ $\mathbf{or} = \frac{2(\frac{23}{8}) + \frac{1}{4}}{\beta}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) = \frac{23}{8}$ $\mathbf{or} = \frac{23}{8} + \frac{1}{4} + \alpha + \alpha\beta + \alpha\beta + 1}{\alpha\beta}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) = \frac{23}{8}$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) = \frac{23}{8}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give attemption of ind a numerical value for the sum of a numerical value for the product for the product of the product of the numerical value of the sum and product. Note: "=0" is not required for this mark and such and product. Note: "=0" is not required for the "=0" and "and such and product. Note: "=0" is not required for the "=0" and "and such and "and numerical value of the "=0" and "and "and numerical value of the "=0" and "and "and numerical value of the sum and product. Note: "=0" is not required for this mark and numerical value of the "=0		$= \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$		$-\frac{15}{4}$ or -3.7		_	A1 cso
or $=\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8}$ or $=\left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$ or $=\left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$ $= \alpha^3 + \beta^3 + \frac{1}{\alpha\beta}$ $= \alpha^3 + \beta^3 + \frac{\alpha\beta}{\alpha\beta}$ $= \frac{\alpha\beta(\alpha^3 + \beta^3) + (\alpha + \beta)}{\alpha\beta}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give $\frac{\alpha + \beta}{\alpha\beta}$ (can be implied) and uses at least two of their $\alpha^3 + \beta^3$, $\alpha + \beta$ or $\alpha\beta$ in an attempt to find a numerical value for the sum of $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ $= \left(\alpha\beta\right)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$ $= \left(\alpha\beta\right)^3 + \alpha\beta\left(\alpha^2 + \beta^2\right) + 1$ $= \left(\alpha\beta\right$	(ii)	or = $(\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) = 0$		Use			M1
(c) $\sum = \alpha^{3} + \frac{1}{\beta} + \beta^{3} + \frac{1}{\alpha}$ $= \alpha^{3} + \beta^{3} + \frac{\alpha + \beta}{\alpha \beta}$ $= \frac{\alpha \beta(\alpha^{3} + \beta^{3}) + (\alpha + \beta)}{\alpha \beta}$ $= \frac{\alpha \beta(\alpha^{3} + \beta^{3}) + (\alpha + \beta)}{\alpha \beta}$ Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give and uses at least two of their $\alpha^{3} + \beta^{3}$, $\alpha + \beta$ or $\alpha\beta$ in an attempt to find a numerical value for the sum of $\left(\alpha^{2} + \frac{1}{\beta}\right) \operatorname{and}\left(\beta^{3} + \frac{1}{\alpha}\right)$ $= (\alpha\beta)^{3} + \alpha^{2} + \beta^{2} + \frac{1}{\alpha\beta}$ $= (\alpha\beta)^{3} + \alpha^{2} + \beta^{2} + \frac{1}{\alpha\beta}$ $= (\alpha\beta)^{4} + \alpha\beta(\alpha^{2} + \beta^{2}) + 1$ $= (\alpha\beta)^$		or $= \left(-\frac{1}{2}\right) \left(\left(-\frac{1}{2}\right)^2 - 3(2)\right) = \frac{23}{8}$	-	$\frac{23}{8}$ or 2.8	375 or	$2\frac{7}{8}$ from correct working	A1 cso
$\sum = \frac{\alpha^{3} + \beta^{3} + \frac{\alpha}{\alpha}}{\beta}$ $= \frac{\alpha\beta(\alpha^{2} + \beta^{3}) + (\alpha + \beta)}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta}{\alpha\beta} + \frac{\alpha}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta}{\alpha\beta} + \frac{\alpha}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta}{\alpha\beta} + \frac{\alpha}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta}{\alpha\beta} + \frac{\alpha\beta}{\alpha\beta} + \frac{\alpha\beta}{\alpha\beta}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta}{\alpha\beta} + \frac{\alpha\beta}{\alpha\beta} + \frac{\alpha\beta}{\alpha\beta}$	(c)	1 1	30.1	o. 0 ³ + 1		1 1	(4)
$= (\alpha\beta)^{3} + \alpha^{2} + \beta^{2} + \frac{1}{\alpha\beta}$ $= \frac{\alpha^{4}\beta^{4} + \alpha^{3}\beta + \alpha\beta^{3} + 1}{\alpha\beta}$ $= \frac{(\alpha\beta)^{4} + \alpha\beta(\alpha^{2} + \beta^{2}) + 1}{\alpha\beta}$ $= \frac{(\alpha\beta)^{4} + \alpha\beta(\alpha^{2} $		$= \alpha^3 + \beta^3 + \frac{\alpha + \beta}{\alpha \beta} \qquad = \frac{\alpha \beta}{\alpha}$	$\beta(\alpha^3 + \frac{1}{\alpha^3})$	$\frac{\alpha}{-\beta^3) + (\alpha + \beta)}{\alpha\beta}$		$\frac{\alpha + \beta}{\alpha \beta}$ (can be implied) and uses at least two of their $\alpha^3 + \beta^3, \alpha + \beta \text{ or } \alpha\beta \text{ in an}$ attempt to find a merical value for the sum of	M1
Applies $x^2 - (\text{sum})x + \text{product (can be implied)}$, for their numerical values of the sum and product. Note: "=0" is not required for this mark $8x^2 - 21x + 38 = 0$ $8x^2 - 21x + 38 = 0$ $10x + 19x + 1$		$= (\alpha \beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha \beta} =$	$\frac{\alpha^4 \beta^4}{(\alpha \beta)^4}$	$\frac{+\alpha^{3}\beta + \alpha\beta^{3} + 1}{\alpha\beta}$ $\frac{\alpha\beta}{+\alpha\beta(\alpha^{2} + \beta^{2})}$ $\frac{\alpha\beta}{\alpha\beta}$	+1	$\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right) \text{ to}$ give 4 terms and uses at least one of their $\alpha\beta$ or $\alpha^2 + \beta^2$ in an attempt to find a numerical value	M1
$8x^2 - 21x + 38 = 0$ including the "=0" A1 cso (4)		Applies $x^2 - (\text{sum})x + \text{product (can be implied)},$ for their numerical values of the sum and product.			M1		
		$8x^2 - 21x + 38 = 0$		Any intege	r muli	•	
, I							(4)

		Question 6 Notes
6. (b)(i)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0
	Note	An incorrect $\alpha + \beta = \frac{1}{2}$, $\alpha\beta = 2$ from (a) leading to $\alpha^2 + \beta^2 = \left(\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$ is M1 A0
	Note	Give M1 A1 for writing down $\alpha^2 + \beta^2 = -\frac{15}{4}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)(ii)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta) = \left(-\frac{15}{4}\right)\left(-\frac{1}{2}\right) - (2)\left(-\frac{1}{2}\right) = \frac{23}{8}$
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ is M0
	Note	Give M1 A1 for writing down $\alpha^3 + \beta^3 = \frac{23}{8}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)	ALT	They can use the equation $2x^2 + x + 4 = 0$ with roots α , β to give
		$\begin{cases} 2\alpha^2 + \alpha + 4 = 0 \\ 2\beta^2 + \beta + 4 = 0 \end{cases} \Rightarrow 2\alpha^2 + 2\beta^2 + \alpha + \beta + 8 = 0$
		So, $\alpha^2 + \beta^2 = \frac{1}{2}(-(\alpha + \beta) - 8) = \frac{1}{2}(-\frac{1}{2} - 8) = \frac{1}{2}(\frac{1}{2} - 8) = -\frac{15}{4}$
		$\begin{cases} 2\alpha^3 + \alpha^2 + 4\alpha = 0 \\ 2\beta^3 + \beta^2 + 4\beta = 0 \end{cases} \Rightarrow 2\alpha^3 + 2\beta^3 + \alpha^2 + \beta^2 + 4\alpha + 4\beta = 0$
		So, $\alpha^3 + \beta^3 = \frac{1}{2}(-(\alpha^2 + \beta^2) - 4(\alpha + \beta))) = \frac{1}{2}(-\frac{15}{4} - 4(-\frac{1}{2})) = \frac{1}{2}(\frac{15}{4} + 2) = \frac{23}{8}$
(a)	Note	Give B0 for α , $\beta = \frac{-1 + \sqrt{31}i}{4}$, $\frac{-1 - \sqrt{31}i}{4}$ and then stating that $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$
	Note	Give B0 for $\alpha + \beta = \frac{-1 + \sqrt{31}i}{4} + \frac{-1 - \sqrt{31}i}{4} = -\frac{1}{2}$ and $\alpha\beta = \left(\frac{-1 + \sqrt{31}i}{4}\right)\left(\frac{-1 - \sqrt{31}i}{4}\right) = 2$
(b)(i)	Note	Give M0 A0 for $\alpha^2 + \beta^2 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^2 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^2 = -\frac{15}{4}$
(b)(ii)	Note	Give M0 A0 for $\alpha^3 + \beta^3 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^3 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^3 = \frac{23}{8}$
(b)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha+\beta=-\frac{1}{2}$, $\alpha\beta=2$ followed by
		• $\alpha^2 + \beta^2 = \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$, scores M1 A0 in (b)(i)
		• e.g. $\alpha^3 + \beta^3 = \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$, scores M1 A1 in (b)(ii)
(c)	Note	A correct method leading to $p = 8$, $q = -21$, $r = 38$ without writing a final answer of
		$8x^2 - 21x + 38 = 0 \text{ is final M1 A0}$

		Question 6 Notes Continued
6. (c)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ explicitly to find the sum and product of $\alpha^3 + \frac{1}{\beta}$ and $\beta^3 + \frac{1}{\alpha}$
		• i.e. sum = $\left(\frac{-1+\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1-\sqrt{31}i}{4}\right)} + \left(\frac{-1-\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1+\sqrt{31}i}{4}\right)} = \frac{21}{8}$
		• ie. product = $\left(\left(\frac{-1 + \sqrt{31}i}{4} \right)^3 + \frac{1}{\left(\frac{-1 - \sqrt{31}i}{4} \right)} \right) \left(\left(\frac{-1 - \sqrt{31}i}{4} \right)^3 + \frac{1}{\left(\frac{-1 + \sqrt{31}i}{4} \right)} \right) = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \Rightarrow 8x^2 - 21x + 38 = 0$
		scores M0 M0 M1 A0 in part (c).
	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha+\beta=-\frac{1}{2}$, $\alpha\beta=2$
		and applying $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ can potentially score full marks in (c). E.g.
		• sum = $\alpha^3 + \beta^3 + \frac{\alpha + \beta}{\alpha \beta} = \frac{23}{8} + \frac{\left(-\frac{1}{2}\right)}{2} = \frac{21}{8}$
		• product = $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta} = (2)^3 + \left(-\frac{15}{4}\right) + \frac{1}{2} = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \implies 8x^2 - 21x + 38 = 0$
	Note	Give final M0 for $\sum = \frac{21}{8}$, $\Pi = \frac{19}{4}$ leading to $x^2 - \frac{21}{8} + \frac{19}{4} = 0$ (without recovery)
	Note	Allow final M1 for $\sum = \frac{21}{8}$, $\Pi = \frac{19}{4}$ with $x^2 - (\text{sum})x + (\text{product})$ leading to
		$x^2 - \frac{21}{8} + \frac{19}{4} = 0$
	Note	An alternative method uses a correct $\left(x - \alpha^3 - \frac{1}{\beta}\right) \left(x - \beta^3 - \frac{1}{\alpha}\right) = 0$
	Note	Allow 1 st M1 and/or 2 nd M1 for using an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right) \left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$
	Note	Give final M0 for an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right)\left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$ unless recovered
	Note	When expanding $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$, some will write $\frac{\alpha + \beta}{\alpha\beta}$
		in place of $\frac{1}{\alpha\beta}$
		So, allow 2 nd M1 for expanding $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{\alpha + \beta}{\alpha\beta}$ and
		using at least one of their $\alpha\beta$ or $\alpha^2 + \beta^2$ in an attempt to find a numerical value for the product.

Question Number		Sche	Scheme Notes 1						
7.	$f(z) = z^4$	$-6z^3 + az^2 - 44z + b$; a, b a	are real constants. $z = -1 - 3i$ is given.						
(a)	-1 + 3i			-1 + 3i	B1				
					(1)				
(b)		Attempt to expand $(z \pm (-1-3i))(z \pm "(-1+3i)")$ or any valid method to establish a quadratic factor e.g. $z = -1 \pm 3i \Rightarrow z + 1 = \pm 3i \Rightarrow z^2 + 2z + 1 = -9$ or sum of roots $= -2$ product of roots $= 10$			M1				
		2 122 110	or sum of roots = -2, product of to give $z^2 \pm (\text{their sum})z \pm (\text{their sum})z$						
				$z^2 + 2z + 10$	A1				
			Attempts to find the other que.g. using long divi	adratic factor sion to obtain					
	$\{f(z) = \}$	$(z^2+2z+10)(z^2-8z+18)$	e.g. factorising/equating coeffici $f(z) = (z^2 + 2z + 10)$		M1				
					A1				
	(_2 0_	10 0 -)	$z^2 - 8z + 18 \text{ seen in}$	their working	Al				
	$\{z^8z^-$	+18=0 \Rightarrow \}							
		$\frac{+18=0 \Rightarrow \S}{-8 \pm \sqrt{(-8)^2 - 4(1)(18)}}$ $2(1)$ $^2 -16 + 18 = 0 \Rightarrow z =$	dependent on only the previous Correct method of applying the quadron or completing the square for solving on their 2 nd qu	dM1					
	$\{z = \}$ 4	$\pm\sqrt{2}i$	$4+\sqrt{2}i$:	and $4-\sqrt{2}i$	A1				
					(6				
			0 4 70		•				
- ()	3 .7	G: D1 0 ::1 4 5:	Question 7 Notes						
7. (a)	Note	Give B1 for either $4+\sqrt{2}i$ o		1 11 1.1					
(b)	Note		i.e. $a = 12$, $b = 180$ do not have to be four	nd explicitly.					
	Note	You can assume $x \equiv z$ for s							
	Note	Give final dM1A1 for $z^2 - 8z + 18 = 0 \Rightarrow z = 4 + \sqrt{2}i$, $4 - \sqrt{2}i$ with no intermediate working.							
	Note	They must be solving a 3TQ " A " z^2 +" B " z +" C " where A , B , C are all numerical values $\neq 0$ for the final dM1 mark.							
	Note	give Special Case 3 rd dM1 fo	<i>nadratic</i> factor $z^2 + "B"z + "C"$ can be for correct factorisation leading to $z =$ applying a method of factorisation to solve						
	Note	Reminder: Method mark for solving a 3TQ							
		Formula: $Az^2 + Bz + C = 0$	⇒ Attempt to use the correct formula (w	ith values for A	A, B, C				
		Completing the Square: $z^2 + Bz + C = 0 \Rightarrow \left(z \pm \frac{B}{2}\right)^2 \pm q \pm C = 0, q \neq 0$, leading to							
	Note:	Note: Comparing coefficients: $f(z) = (z^2 + 2z + 10)(z^2 + \alpha z + \beta) \equiv z^4 - 6z^3 + \alpha z^2 - 44z$							
			$2\beta + 10\alpha = -44 \Rightarrow 2\beta - 80 = -44 \Rightarrow \beta$						
		yielding 2 nd quadratic factor							
	Also, constant: $10\beta = b \Rightarrow b = 180$; $z^2 : \beta + 2\alpha + 10 = a \Rightarrow a = 18 - 16 + 10 = 12$								

		Question 7 Notes Continued
7. (b)	Note:	Long division:
		$z^2 - 8z + 18$
		$z^2 + 2z + 10 \mid \overline{z^4 - 6z^3 + az^2 - 44z + b}$
		$z^4 + 2z^3 + 10z^2$
		$-8z^3 + (a-10)z^2 - 44z$
		$-8z^3 -16z^2 -80z$
		$(a+6)z^2+36z+b$
		$18z^2 + 36z + 180$
		0
		Also, note $a = 12, b = 180$
	Note	Ignore errors in long division for the 2 nd A1 mark and/or the 3 rd A1 mark.
	Note	Ignore errors in stating $a = 12$, $b = 180$ for the 2 nd A1 mark and/or the 3 rd A1 mark.
	Note	The solutions $4 \pm \sqrt{2}i$ need to follow on from a correct $z^2 - 8z + 18$ in order to gain the final
		A mark.
	Note	Give final A0 for writing $\frac{8 \pm 2\sqrt{2}i}{2}$ followed by either $4 \pm 2\sqrt{2}i$ or $8 \pm \sqrt{2}i$

Question Number	Scheme			Notes	Mark	cs
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17					
Way 1	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}			f(1) = 17 is the minimum		
	$f(k+1) - f(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - (3^{4k-2} + 2^{6k-3})$			Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - f(k) = 80(3^{4k-2}) + 63(2^{6k-3})$					
	$=80(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$	80	$0(3^{4k-2})$	$+2^{6k-3}$) or $80f(k)$; $-17(2^{6k-3})$	A 1	A 1
	$\mathbf{or} = 63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	63	$8(3^{4k-2})$	$+2^{6k-3}$) or $80f(k)$; $-17(2^{6k-3})$ $+2^{6k-3}$) or $63f(k)$; $+17(3^{4k-2})$	A1;	A1
	$f(k+1) = 80(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) + f(k)$	or		dependent on at least one of the		
	$f(k+1) = 63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) + f(k)$			previous A marks being gained	dM1	
	$f(k+1) = 80f(k) - 17(2^{6k-3}) + f(k)$ or			f(k+1) the subject and expresses	ulvii	
	$f(k+1) = 63f(k) + 17(3^{4k-2}) + f(k)$			rms of $f(k)$ and/or $(3^{4k-2} + 2^{6k-3})$		
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	for $n = k$	$\frac{1+1}{2}$	As the result has been shown to be	A1 c	50
	true for $n=1$, then the re	esult is t	true fo	$rall n \in \mathbb{Z}^+$	AIC	30
						(6)
Way 2	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}			f(1) = 17 is the minimum	B1	
	$f(k+1) = 3^{4(k+1)-2} + 2^{6(k+1)-3}$			Attempts $f(k+1)$	M1	
	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$					
	$=81(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$		$1(3^{4k-2})$	$+2^{6k-3}$) or $81f(k)$; $-17(2^{6k-3})$	A1;	A1
	$\mathbf{or} = 64(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	64	$4(3^{4k-2})$	$+2^{6k-3}$) or $64f(k)$; $+17(3^{4k-2})$,	
	$f(k+1) = 81(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ or			dependent on at least one of the		ļ
	$f(k+1) = 64(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$ or		Makes	previous A marks being gained $f(k+1)$ the subject and expresses	dM1	
	$f(k+1) = 81f(k) - 17(2^{6k-3})$ or			rms of $f(k)$ and/or $(3^{4k-2} + 2^{6k-3})$		
	$f(k+1) = 64f(k) + 17(3^{4k-2})$					
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$				A1 c	so
	true for $n=1$, then the re	esult is t	true for	$\underbrace{\operatorname{rall} n}_{=} (\in \mathbb{Z}^+)$		
Way 2	General Method: Usin	ng f(k =	∟1) _ <i>n</i>	$af(k) m \in \mathbb{Z}$		(6)
Way 3	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}	ing I (K ¬	F1) – II	f(1) = 17 is the minimum	B1	
	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-1})$	-2 ₁ 2 ^{6k} -	-3 \	Attempts $f(k+1) - mf(k)$	M1	
	$\frac{f(k+1) - mf(k) - 3}{f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(4^{4k-2})}$)	Tittempts I(N + I) mI(N)	1011	
	$= (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) \text{ or } (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) - 17$, ,	3 ^{4k-2} _	$\frac{1}{2^{6k-3}}$ or $(81-m)f(k) \cdot -17(2^{6k-3})$		
					A1;	A1
	$= (64 - m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) $ $(64 - m)(3^{4k-2} + 2^{6k-3})$ or $(64 - m)f(k)$; $+ 17(3^{4k-2})$ $f(k+1) = (81 - m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) + mf(k)$ or dependent on at least one of the				<u> </u>	
					l	
	$f(k+1) = (64-m)(3^{-k-2} + 2^{-k-3}) + 1/(3^{-k-2}) + mf(k)$ or Makes $f(k+1)$ the subject and $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$ or expresses it in terms of $f(k+1)$				ulvi	[1
	$f(k+1) = (64-m)f(k) - 17(2^{-k}) + mf(k)$ expresses it in terms of $1(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k)$ and/or $(3^{4k-2} + 2^{6k-3})$					
		for $n = 1$	<u> </u> 		+	
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k + 1}$. As the result has been shown to be $\underline{\text{true for } n = 1}$, then the result is $\underline{\text{true for } n = k + 1}$.			A1	cso	
	ude for $n-1$, then the f	<u> </u>	uue I(<u> </u>	+	(6)
						6
	•					

Question Number	Scheme		Notes	Marks		
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17					
Way 4	General Method: Using $f(k+1)$)-m	$af(k), m \in \mathbb{Z}$			
	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}		f(1) = 17 is the minimum	B1		
	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2} + 2^{6k-3})$	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2} + 2^{6k-3})$ Attempts $f(k+1) - mf(k)$				
	$f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(2^{6k-3})$	$F(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(2^{6k-3})$				
	E 47 . C(1 . 1) 47C(1) 24(24k-2) . 17(26k-3	`	$m = 47$ and $34(3^{4k-2})$	A1		
	E.g. $m = 47 \Rightarrow f(k+1) - 47f(k) = 34(3^{4k-2}) + 17(2^{6k-3})$)	$m = 47$ and $17(2^{6k-3})$	A1		
	$f(k+1) = 34(3^{4k-2}) + 17(2^{6k-3}) + 47f(k)$ previous A makes $f(k)$		dependent on at least one of the previous A marks being gained Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$	dM1		
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be					
	true for $n = 1$, then the result is true	_		A1 cso		
				(6)		
	In Way 4 there are many a					
	See below for examples of alternatives were The A1A1dM1 marks for some alternatives u					
Way 4.1	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$	51118				
vvay m	$= 30(3^{4k-2}) + 30(2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$					
	= 30(3)+30(2)+31(3)+31(2)		$m = 30$ and $51(3^{4k-2})$	A1		
	$= 30(3^{4k-2} + 2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$		$m = 30$ and $34(2^{6k-3})$	A1		
	$f(k+1) = 30(3^{4k-2} + 2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$ or $f(k+1) = 30f(k) + 51(3^{4k-2}) + 34(2^{6k-3})$		dependent on at least one of the previous A marks being gained Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ and/or $(3^{4k-2} + 2^{6k-3})$	dM1		
Way 4.2	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$					
	$= 13(3^{4k-2}) + 13(2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$					
	12(24k-2 + 26k-3 + 69(24k-2 + 51/26k-3 +		$m = 13$ and $68(3^{4k-2})$	A1		
	$= 13(3^{4k-2} + 2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$		$m = 13$ and $51(2^{6k-3})$	A1		
			dependent on at least one of the previous A marks being gained Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ and/or $(3^{4k-2} + 2^{6k-3})$	dM1		

				n 8 Notes			
	Note	$f(n) = 3^{4n-2} + 2^{6n-3}$ can be written	n as $f(n)$	$=3^{4n-2}+8^{2n-1}$			
Way 5	f(n) = 3	$3^{4n-2} + 2^{6n-3} = 3^{4n-2} + 8^{2n-1}$					
	$f(1) = 3^2$	$^{2} + 8^{1} = 17$ {is divisible by 17}		f(1) = 17 is	the minimum	B1	
	f(k+1)	$-f(k) = 3^{4(k+1)-2} + 8^{2(k+1)-1} - (3^{4k-2} - 3^{4k-2})$	$+8^{2k-1}$)	Attempts f	$\frac{f(k+1)-f(k)}{f(k+1)-f(k)}$	M1	
		$-f(k) = 80(3^{4k-2}) + 63(8^{2k-1})$					
	= 80	$0(3^{4k-2} + 8^{2k-1}) - 17(8^{2k-1})$	80	$0(3^{4k-2} + 8^{2k-1})$ or $80f(k)$;	$-17(8^{2k-1})$	A1;	A1
	or = $63(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2})$ $63(3^{4k-2} + 8^{2k-1})$ or $63f(k)$; $+17(3^{4k-2})$						Al
	f(k+1)	$= 80(3^{4k-2} + 8^{2k-1}) - 17(8^{2k-1}) + f(k)$ $= 63(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2}) + f(k)$ $= 80f(k) - 17(8^{2k-1}) + f(k) $ or) or	dependent on at least previous A marks Makes $f(k+1)$ the subject $f(k+1)$	being gained and expresses	dM1	
	` ,	$= 63f(k) + 17(3^{4k-2}) + f(k)$		t in terms of $f(k)$ and/or (
	If the re	esult is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true}}$	e for $n = k$	$\frac{1}{1}$ As the result has been	shown to be	A1 cs	20
		true for $n=1$, then the	result is 1	true for all $n \in \mathbb{Z}^+$		711 0.	30
							(6)
	Note	Some students may set $f(k) = 17M$		· -			
				$f(k+1) = 1377M - 17(2^{6k-3})$			
				$f(k+1) = 1088M + 17(3^{4k-1})$		$M + 3^4$	(k-2)
	Note	Final A1 mark is dependent on a					
	Note	Final A1: There must be a correct		, ,			
		Allow as part of their conclusion "true for all values of n " Allow as part of their conclusion "true for all $n \in \mathbb{N}$ "					
	Note						
	Note						
	Note						
	Note						
	Note	Condone $n \in \mathbb{Z}^*$ as part of their co		` •	,		
	Note	Allow $f(k+1) = 3^4 f(k) - 17(2^{6k-3})$			$=81f(k)-17(2^{\circ})$	6k-3)	
	Note	Allow $f(k+1) = 2^6 f(k) + 17(3^{4k-2})$					
L		1 ' ' ' '	·	` '			

Question Number	Scheme Notes						Marks
9.	$C: y^2 = 4ax; \ P(ap^2,$	2 <i>ap</i>) lies	s on C; circle	$(x-10a)^2$	$x^2 + y^2 = \frac{9}{4}a^2$		
(a)	$y = 2\sqrt{a} x^{\frac{1}{2}} \implies$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{a}$	$x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$	
	$2y\frac{c}{c}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4a$				$ky \frac{\mathrm{d}y}{\mathrm{d}x} = c; k, c \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2ap}\right)$				their $\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\text{their}}$	Condone $t \equiv p$	
	{At $P, x = ap^2, y = 2$	$ap \Rightarrow \} \frac{a}{a}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{p}$	Cor	rect calculus wo	ork leading to $m_T = \frac{1}{p}$	A1
	So, at P , $m_N = -p$	where	m_{τ} is found		m_T	find m_N in terms of p , lied by later working.	M1
	either $y - 2ap = -p(x - ap)$		or		Correct straig	ght line method for an on of a normal, where found using calculus.	M1
		$\Rightarrow x =$	$ap - 0 = -p(ab)$ or $y =$ $10a) \Rightarrow x =$			dependent on the previous M mark mplete method to find x or y coordinate of P	dM1
	either $x = 8a$,				$= 8a \text{ or } y = 4\sqrt{2}$	a or y = awrt 5.66a	A1
	P(8a, 4	$4\sqrt{2}a$		$P(8a, 4\sqrt{2}a)$ or both $x = 8a$ and $y = 4\sqrt{2}a$			A1
	Note: $p = 2$	$\sqrt{2}$ or $\sqrt{8}$	8 . Note: Ign	ore the addi	tional solution P	$(8a, -4\sqrt{2}a)$	(7)
(b) Way 1	Area $SBP = \frac{1}{2}(10a - a)$	$a)(4\sqrt{2}a)$			$\frac{1}{2}(10a -$	$-a$)(their y_P from (a))	M1
	$=18\sqrt{2}a^2$					$18\sqrt{2}a^2$	A1
(c) Way 1	$PB = \sqrt{(10a - "8a")^2} - \frac{1}{2}$	+ ("4 $\sqrt{2}a$	$\frac{1}{(a^{\prime\prime\prime})^2} = \{a\}$			te Pythagoras method for finding length <i>PB</i>	(2) M1
	PR = 6a - 1.5a				dependent on t	he previous M mark $PR = \text{"their } 6a \text{"} - 1.5a$	dM1
	PR = 4.5a					PR = 4.5a	A1
							(3)
(c) Way 2	$p = 2\sqrt{2} \implies l : y = -2\sqrt{2}x + 20\sqrt{2}a$ $(x - 10a)^{2} + (-2\sqrt{2}x + 20\sqrt{2}a)^{2} = \frac{9}{4}a^{2}$ $\implies 36x^{2} - 720ax + 3591a^{2} = 0$ $\implies 9(2x - 21a)(2x - 19a) = 0 \implies x = \dots$		$a^2 = \frac{9}{4}a^2$	equa	tion followed by	ion of l into the circle y a correct method for o give $x =$ or $y =$	M1
	$\Rightarrow R(9.5a, \sqrt{2} a)$ $PR = \sqrt{(9.5a - 8a)^2 + (\sqrt{2}a - 4\sqrt{2} a)^2}$		Cor	mplete applied P	he previous M mark tythagoras method for ten their P and their R	dM1	
	PR = 4.5a					PR = 4.5a	A1 (3)
							(3)

Question Number		Scheme		Notes	Marks	
9. (b) Way 2	Area $SBP = \frac{1}{2} \begin{vmatrix} a & 10a & "8a" & a \\ 0 & 0 & "4\sqrt{2}a" & 0 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} 0 - 0 + 40\sqrt{2}a^2 - 0 + 0 - 4\sqrt{2}a \end{vmatrix}$		a^2	Complete applied method for finding area SBP using $S(a, 0)$, $B(10a, 0)$ and their P from (a)	M1	
		$=18\sqrt{2}a^2$		$18\sqrt{2}a^2$	A1	
					(2)	
9. (c) Way 3	$x_R = 10a - 1.5\cos\left(\tan^{-1}\left(\frac{"4\sqrt{2} a"}{10a - "8a"}\right)\right)$ $y_R = 1.5\sin\left(\tan^{-1}\left(\frac{"4\sqrt{2} a"}{10a - "8a"}\right)\right)$		Use	s their P from (a) in a correct method for writing down either x_R or y_R	M1	
	$\Rightarrow R(9.56)$	$(a, \sqrt{2}a)$				
	$PR = \sqrt{(9)}$	$9.5a - 8a)^2 + (\sqrt{2}a - 4\sqrt{2}a)^2$		dependent on the previous M mark Complete applied Pythagoras method for g the distance between their <i>P</i> and their <i>R</i>	dM1	
	PR = 4.5	PR = 4.5a		A1		
			2 4	0.37	(3)	
_			Question		1	
9. (a)	Note	Allow 1 st M1 1 st A1 (sufficient us	se of calc	ulus) for $\{m_T =\} \frac{4a}{2y}$ which leads to $\{m_T =\}$	$=$ $\}\frac{1}{p}$	
	Note	Allow 1st M1 1st A1 (sufficient us	se of calc	ulus) for $\{m_T = \} \sqrt{\frac{a}{x}}$ which leads to $\{m_T = \}$	=	
	Note	Give 3 rd M1 for either • $2ap = "(-p)"(ap^2) + c \Rightarrow y = "(-p)"(10a) + c \Rightarrow y = "(-p)"($	` • /			
	Note	Writing coordinates the wrong wa	• /			
		E.g. finding $x = 8a$, $y = 4\sqrt{2}a$ f	ollowed 1	by $(4\sqrt{2}a, 8a)$ is final A0		
	Note	Give final A0 for (8 <i>a</i> , 5.65685	a) witho	ut reference to $y = 4\sqrt{2} a$ or $2\sqrt{8} a$		
	Note	Accept $y_P = 2\sqrt{8}a$ written in pla	ace of y _F	$a = 4\sqrt{2} a$ for the final A1 A1 marks		
	Note	Special Case				
		If they write down either $\frac{dy}{dx} = \frac{1}{p}$	If they write down either $\frac{dy}{dx} = \frac{1}{p}$, $m_T = \frac{1}{p}$ or $m_N = -p$ with no evidence of using calculus			
		then they can gain any of or all the final 4 marks in part (a).				
	ALT		Alternative Method for the 3 rd M mark and 4 th M mark			
		$\{B(10a, 0), P(ap^2, 2ap) \Rightarrow \}$ $m_{BP} = \frac{2ap - 0}{ap^2 - 10a} = -p$		Finds gradient of <i>BP</i> and sets the result equal to the gradient of their normal	3 rd M1	
		$\Rightarrow p = \Rightarrow x = \text{ or } y =$	dependent on the previous M mark Complete method to find either the x or y coordinate of P		4 th M1	

		Question 9 Notes Continued
9. (b)	Note	Give A0 25.4558 a^2 without reference to $18\sqrt{2}a^2$
	Note	Condone one slip of either writing 9 for $10a - a$ or writing " $4\sqrt{2}$ " instead of " $4\sqrt{2}a$ "
		for the M mark in (b)
(c)	Note	Way 2: For reference,
		$(x-10a)^2 + (-2\sqrt{2}x + 20\sqrt{2}a)^2 = \frac{9}{4}a^2$
		$x^2 - 20ax + 100a^2 + 8x^2 - 160ax + 800a^2 = \frac{9}{4}a^2$
		$9x^2 - 180ax + 900a^2 = \frac{9}{4}a^2$
		$9x^2 - 180ax + \frac{3591}{4}a^2 = 0 \text{or} 9x^2 - 180ax + 897.75a^2 = 0$
		or $x^2 - 20ax + 99.75a^2 = 0$ or $4x^2 - 80ax + 399a^2 = 0$
		$x = \frac{180a \pm \sqrt{(180a)^2 - 4(9)(\frac{3591}{4})a^2}}{2(9)} = \frac{180a \pm 9a}{2(9)}$
		$x = \frac{189a}{18}, \frac{171a}{18} = 10.5a, 9.5a$
	Note	The method $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be referred to in part (c) or the
		result of $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be used in part (c) to gain the M
		mark in part (c)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom