

ILMU KOMPUTER

PENGANTAR STATISTIKA

03. Probability and Sample - Distribution of Sample Mean

Pengajar:

- Prof. Achmad Nizar Hidayanto
- Ave Adriana Pinem
- Bayu Distiawan
- Ika Chandra Hapsari

- Fathia Prinastiti Sunarso
- Muhammad Mishbah
- Nabila Clydea
- Pramitha Dwi Larasati

LEARNING OBJECTIVES

- Define the distribution of sampling means
- Describe distribution by shape, expected value, and standard error
- Describe the location of sample mean M by z-score
- Determine probabilities corresponding to the sample mean using z-scores, unit normal table

What you need from prev. chapters

- Random sampling (Chapter 6)
- Probability and the normal distribution (Chapter 6)
- z-Scores (Chapter 5)

Samples and Population

- The location of a score in a sample or in a population can be represented with a *z*-score
- Researchers typically want to study entire samples rather than single scores
- · Sample provides estimate of the population
- Tests involve transforming sample mean to a *z*-score

Sampling Error

- Error does not indicate a mistake was made
- Sampling error is the natural discrepancy, or the amount of error, between a sample statistic and its corresponding population parameter
- · Samples are variable; two samples are very, very rarely identical

Distribution of Sample Means

- Samples differ from each other
 - Given a random sample it is unlikely that sample means would always be the same
 - Sample means differ from each other
- The distribution of sample means is the collection of sample means for all the possible random samples of a particular size (n) that can be obtained from a population

Sampling distribution

- Distributions in earlier chapters were distributions of scores from samples
- "Distribution of Sample Means" is called a sampling distribution
 - The "Distribution of Sample Means" is a special kind of population
 - It is a distribution of sample means obtained by selecting all the possible samples of a specific size (n) from a population

Figure 7.1 Population Frequency Distribution Histogram

Figure 7.2 Distribution of Sample Means (*n*=2)

Important Characteristics of Distributions of Sample Means

- · The sample means pile up around the population mean
- The distribution of sample means is approximately normal in shape

Central Limit Theorem

- Applies to any population with mean μ and standard deviation σ
- Distribution of sample means approaches a normal distribution as *n* approaches infinity
- Distribution of sample means for samples of size n will have a mean of μ_M
- Distribution of sample means for samples of size n will have a standard deviation = σ / \sqrt{n}

Shape of the Distribution of Sample Means

- The distribution of sample means is almost perfectly normal in either of two conditions
 - The population from which the samples are selected is a normal distribution or
 - The number of scores (n) in each sample is relatively large—at least 30

Expected Value of M

- Mean of the distribution of sample means is μ_M and has a value equal to the mean of the population of scores, μ
- Mean of the distribution of sample means is called the $\emph{expected}$ \emph{value} of M
- M is an <u>unbiased statistic</u> because μ_M , the expected value of the distribution of sample means is the value of the population mean, μ

Standard Error of M

- Variability of a distribution of <u>scores</u> is measured by the standard deviation
- Variability of a distribution of sample <u>means</u> is measured by the standard deviation of the sample means, and is called the <u>standard error of M</u> and written as σ_M
- In journal articles or other textbooks, the standard error of *M* might be identified as "standard error," "*SE*," or "*SEM*"

Standard Error of M

- The $\underline{standard\ error\ of\ M}$ is the standard deviation of the distribution of sample means
- The <u>standard error of M</u> provides a measure of how much distance is expected on average between M and μ

Standard Error Magnitude

• Law of large numbers: the larger the <u>sample size</u>, the more probable it is that the sample mean will be close to the population mean

• Population variance: The smaller the *variance* in the population, the more probable it is that the sample mean will be close to the population mean

Figure 7.3 Standard Error and Sample Size Relationship

Standard distance between a sample mean and the population mean

(b) A sample of $n = 25 \, \text{IQ}$ scores.

(c) The distribution of sample means, Sample means for all the possible random samples of $n=25\ \text{IQ}$ scores.

Probability and the Distribution of Sample Means

- Primary use of the distribution of sample means is to find the probability associated with any particular sample (sample mean)
- Proportions of the normal curve are used to represent probabilities
- A z-score for the sample mean is computed

Figure 7.5 Distribution of Sample Means for n = 25

A z-Score for Sample Means

- Sign tells whether the location is above (+) or below (-) the mean
- Number tells the distance between the location and the mean in standard deviation (standard error) units

· z-formula:
$$z = \frac{M - \mu}{\sigma_M}$$

Figure 7.6 Middle 80% of the Distribution of Sample Means

Learning Check

• A population has $\mu = 60$ with $\sigma = 5$; the distribution of sample means for samples of size n = 4 selected from this population would have an expected value of _____

A	• 5
В	• 60
C	• 30
D	• 15

Learning Check - Answer

• A population has $\mu = 60$ with $\sigma = 5$; the distribution of sample means for samples of size n = 4 selected from this population would have an expected value of _____

Learning Check

• Decide if each of the following statements is True or False

T/F

 The shape of a distribution of sample means is always normal

T/F

• As sample size increases, the value of the standard error decreases

Learning Check - Answer

False

• The shape is normal *only* if the population is normal or $n \ge 30$

True

 Sample size is in the denominator of the equation so as n grows larger, standard error decreases

More about Standard Error

- There will usually be discrepancy between a sample mean and the true population mean
- This discrepancy is called <u>sampling error</u>
- · The amount of sampling error varies across samples
- The variability of sampling error is measured by the standard error of the mean

Figure 7.7 Example of typical distribution of sample means

Figure 7.8 Distribution of Sample Means when n = 1, 4, and 100

In the Literature

- Journals vary in how they refer to the standard error but frequently use:
 - *SE*
 - SEM
- Often reported in a table along with *n* and *M* for the different groups in the experiment
- May also be added to a graph

Figure 7.9 Mean (±1 *SE*) in Bar Chart

Figure 7.10 Mean (±1 *SE*) in Line Graph

Looking Ahead to Inferential Statistics

- Inferential statistics use sample data to draw general conclusions about populations
 - Sample information is not a perfectly accurate reflection of its population (sampling error)
 - Differences between sample and population introduce uncertainty into inferential processes
- Statistical techniques use probabilities to draw inferences from sample data

Figure 7.11 Conceptualization of research study in Example 7.5

Figure 7.12 Untreated Sample Means from Example 7.5

Learning Check

• A random sample of n = 16 scores is obtained from a population with $\mu = 50$ and $\sigma = 16$. If the sample mean is M = 58, the z-score corresponding to the sample mean is ____?

$$\bullet z = 1.00$$

B •
$$z = 2.00$$

$$z = 4.00$$

Cannot determine

Learning Check - Answer

• A random sample of n = 16 scores is obtained from a population with $\mu = 50$ and $\sigma = 16$. If the sample mean is M = 58, the z-score corresponding to the sample mean is ____?

```
A • z = 1.00
```

B •
$$z = 2.00$$

C •
$$z = 4.00$$

Cannot determine

Learning Check

• Decide if each of the following statements is True or False

T/F

• A sample mean with z = 3.00 is a fairly typical, representative sample

T/F

• The mean of the sample is always equal to the population mean

Learning Check - Answers

False

 A z-score of 3.00 is an extreme, or unlikely, z-score

False

 Individual samples will vary from the population mean

Figure 7.13 Sketches of Distribution in Demonstration 7.1

THANK YOU