Contents

E	CE 8 Robotics Notes 11-3-22	1
	Move to Matlab	2
	Lecture 12	2
	Example 7 (revisited)	2
	Moved to MATLAB for in class practice	3
	Find μ^* and K	3

ECE 8 Robotics Notes 11-3-22

- Start of class comments:
 - Proportional control
 - Tuesday: Virtual Simulation
 - Last week of classes we do experiments in the labs
 - Important image:

Figure 1: P Control/ Proportional Control - Cruise Control Example

Move to Matlab

• see file CruiseControl.m and CruiseControlv1.m

Lecture 12

• Today we will design the proportional control we introduced in lecture 10 for the cruise control system

Example 7 (revisited)

• From example 7 in lecture 10 we have simulated the previous image with:

Zero inputs
$$\begin{cases} \mu_k = 0 & \text{for all } k \\ h_k = 0 & \text{for all } k \end{cases}$$

- To implement Proportional Control we define the controller block (the block before the velocity model)
 - This issues the control signal by calculating the error between the desired and current velocity

$$\mu_k = K \cdot (v_d - v_k) + \mu^*$$

- -K = Control gain
- $-\mu^* = \text{Constant input/ steady state input}$
- Our design problem:
 - Given parameters of the system:
 - * parameters (related to the physics)
 - m = mass
 - $\cdot b = friction/resistance$
 - * step size (part of the model)
 - · Δ = essentially how much do we want to compute or how fast
 - Given the specifications of the desired speed v_d
 - As a designer we need to find K and μ^*
 - * We want to achieve/our goal for a cruise control algorithm
 - · we want v_k to approach v_d as discrete time increases
- We can show [v_k approaching v_d] mathematically: "limit"
 - (The following is fun facts)
 - See Figure 2
 - v_k approaching v_d can be written mathematically as:
 - * aka Asymptotic convergence to the reference
 - * requires infinitely many steps to arrive

$$\lim_{k \to \infty} v_k = vd$$

- or for discrete case:
 - * aka finite time convergence to the reference
 - * requires a finite amount of steps to arrive

$$\begin{cases} v_{k^*} = v_d & \text{for some } k^* \in \{0, 1, 2, \dots\} \\ v_k = v_d & \text{for all } kk^* \end{cases}$$

Figure 2: Asymptotic convergence (never arrive) vs discrete convergence (rarely occurs)

Moved to MATLAB for in class practice

- See his handwritten notes for explicit definitions from the equations to the code.
- Written in blue, below the boxes

Find μ^* and K

- Recall from lect 10-25-22
 - We found

$$u^* = bv_d K = 0$$

- if we let $v_0 = v_d$ which led to $u_0 = u^*$

IMPORTANT:

• the professor jumps between:

$$u = \mu u^* = \mu^*$$