Reproducible Research: Course Project 2

Sima N May 21, 2020

Synopsis

This report explores the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database to identify when and where major storms and weather events occur in the United States, and what is the estimate of any fatalities, injuries, and property damage.

- 1 which types of events are most harmful to population health?
- 2 which types of events have the greatest economic consequences?

Results show that tornados are the most damaging weather type to population health; and floods are the most damaging weather event.

knitr::opts_chunk\$set(warning=FALSE)

Data Processing

Loading the data into R

```
#add libraries
library(ggplot2)
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.5.3

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

library(knitr)
```

#download data url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2" download.file(url, destfile ='repdata-data-StormData.csv.bz2') #read data stormdata <- read.csv("repdata-data-StormData.csv.bz2") head(stormdata)</pre>

##		STATE		_	_	_			COUNTYNAME		
	1		4/18/1950		0130		ST	97	MOBILE		TORNADO
	2		4/18/1950		0145		ST	3	BALDWIN		TORNADO
##			2/20/1951		1600		ST	57			TORNADO
	4	1	6/8/1951		0900		ST	89	MADISON		TORNADO
##			.1/15/1951 (1500		ST	43	CULLMAN		TORNADO
##			.1/15/1951		2000		ST		LAUDERDALE		TORNADO
##			BGN_AZI B	GN_LOCAT	I END_DAT	E END_T	IME	COUNTY			
	1	6							0	NA	
##		6							0	NA	
##		0							0	NA	
##		0							0	NA	
##		0							0	NA	
##		0							0	NA	
##			END_AZI E	ND_LOCAT							
	1	6			14.0	100 3	9		0	15	25.0
##		6			2.0	150 2	0		0	0	2.5
##		6			0.1	123 2	0		0	2	25.0
##	4	6)		0.0	100 2	0)	0	2	2.5
##		6)		0.0	150 2	0)	0	2	2.5
##	6	6			1.5	177 2	0		0	6	2.5
##		PROPDMGEX	(P CROPDMG (CROPDMGE	XP WFO ST	ATEOFFI	C ZC	NENAME	ES LATITUDE	LONGI	TUDE
##	1		K 0						3040		8812
##	2		K 0						3042		8755
##	3		K 0						3340		8742
##	4		K 0						3458		8626
##			K 0						3412		8642
##	6		K 0						3450		8748
##		LATITUDE_	E LONGITUD	E_ REMAR	KS REFNUM	1					
##	1	305	880	06	1	L					
##	2		0	0	2	<u> </u>					
##	3		0	0	3	3					
##	4		0	0	4	ļ					
##	5		0	0	5	5					
##	6		0	0	6	5					

variables used in the analysis:

EVTYPE: Event Type (Tornados, Flood, ..)

FATALITIES: Number of Fatalities

INJURIES: Number of Injuries

PROGDMG: Property Damage

PROPDMGEXP: Units for Property Damage (magnitudes - K,B,M)

CROPDMG: Crop Damage

CROPDMGEXP: Units for Crop Damage (magnitudes - K,BM,B)

```
varsNedeed <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDM
G", "CROPDMGEXP")
storm <- stormdata[varsNedeed]
dim(storm)</pre>
```

```
## [1] 902297
```

Results

Which events are most harmful to population Health?

Fatalities Data

```
fatalityData <- (subset(stormdata, FATALITIES > 0))[c(8, 23)]
fatalityGroupedData <- aggregate(FATALITIES ~ EVTYPE, data = fatalityData, FUN = "su
m", na.rm = TRUE)
fatalityGroupedData <- fatalityGroupedData[order(fatalityGroupedData$FATALITIES, decre
asing=TRUE), ]
fatalityGroupedData <- fatalityGroupedData[1:5, ]
fatalityGroupedData$EVTYPE <- factor(fatalityGroupedData$EVTYPE, levels=fatalityGroupe
dData$EVTYPE)</pre>
```

Injuries Data

```
injuryData <- (subset(stormdata, INJURIES > 0))[c(8, 24)]
injuryGroupedData <- aggregate(INJURIES ~ EVTYPE, data = injuryData, FUN = "sum", na.r
m = TRUE)
injuryGroupedData <- injuryGroupedData[order(injuryGroupedData$INJURIES, decreasing=TR
UE), ]
injuryGroupedData <- injuryGroupedData[1:5, ]
injuryGroupedData$EVTYPE <- factor(injuryGroupedData$EVTYPE, levels=injuryGroupedData
$EVTYPE)</pre>
```

ploting the results

```
ggplot(fatalityGroupedData, aes(x=EVTYPE, y=FATALITIES)) +
  geom_bar(stat="identity") +
  xlab("Types") +
  ylab("Fatalities") +
  ggtitle("Total Fatalities")
```

Total Fatalities


```
ggplot(injuryGroupedData, aes(x=EVTYPE, y=INJURIES)) +
  geom_bar(stat="identity") +
  xlab("Types") +
  ylab("Injuries") +
  ggtitle("Total Injuries")
```

Total Injuries

Which type of Events have the greatest Economic consequences?

```
#Convert economic impact to monitary value.
damageAmount <- function(amount, magnitude)</pre>
  returnAmount <- 0
  if (toupper(magnitude)[1]=="K")
    returnAmount <- (amount * 1000)
  if (toupper(magnitude)[1]=="M")
    returnAmount <- (amount * 1000000)
  if (toupper(magnitude)[1]=="B")
    returnAmount <- (amount * 100000000)
  return(returnAmount)
damageData <- (subset(stormdata, PROPDMG > 0 | CROPDMG > 0))[c(8, 25, 26, 27, 28)]
damageData$DamageAmount <- ((mapply(damageAmount, damageData$PROPDMG, damageData$PROPD</pre>
MGEXP)) +
                                   (mapply(damageAmount, damageData$CROPDMG, damageData
$CROPDMGEXP)))
damageGroupedData <- aggregate(DamageAmount ~ EVTYPE, data = damageData, FUN = "sum",</pre>
na.rm = TRUE)
damageGroupedData <- damageGroupedData[order(damageGroupedData$DamageAmount, decreasin</pre>
damageGroupedData <- damageGroupedData[1:5, ]</pre>
damageGroupedData$EVTYPE <- factor(damageGroupedData$EVTYPE, levels=damageGroupedData</pre>
$EVTYPE)
#Most harmful events
head(damageGroupedData, 5)
```

```
## EVTYPE DamageAmount
## 72    FLOOD 150319678250
## 197 HURRICANE/TYPHOON 71913712800
## 354    TORNADO 57352113590
## 299    STORM SURGE 43323541000
## 116    HAIL 18758221170
```