

CDNs and FMB convergence

Everyone in the same network Service content rules

Overlay Networks: Overview

• Networks built using an existing network as substrate (Virtual Networks)

Internet

- Initially an overlay on the POTS (Plain Old Telephone System) network
- Overlays are a (quasi) structured virtual topology above the basic transport protocol level that facilitates deterministic search and guarantees convergence
 - Overlays could consist of routing software installed at selected sites, connected by encapsulation tunnels or direct links
- Examples of overlays:
 - MBone, 6Bone
 - P2P (Napster, FreeNet, Gnutella, Bittorrent)
 - Cooperating Caches
 - Server Farms
 - Content Distribution Networks (CDNs)

Content Distribution Networks

Client-Server and distribution models Caching and load balancing

Learning outcomes

- Understand the purpose of content distribution on a network
- Discuss the rationale for CDNs and comment on differente alternatives
- Describe the architecture of a CDN

More about Web caching

- Proxy server acts as both client and server
- typically proxy server is installed by ISP (university, company, residential ISP)

Why Web caching?

- reduce response time for client request
- reduce traffic on an institution's access link.

Cache Replacement Policies(II)

- LFU: Least Frequently Used
- MPU: Most Probably Used
- LFU and LRU weighted (give a weight to each page)

Why Not Web-only approaches for content networks?

- Integrating file caching in proxies
 - Optimized for 10KB objects
 - $-10GB = 1.000.000 \times 10KB$
- Memory pressure
 - Disk access is 1000 times slower
 - Working sets do not fit in memory
- Waste of resources
 - More servers needed
 - Provisioning is a must

Problems with Server farms and Caching proxies

- Server farms do nothing about problems due to network congestion, or to improve latency issues due to the network
- · Caching proxies serve only their clients, not all users on the Internet
- Content providers (say, Web servers) cannot rely on existence and correct implementation of caching proxies
- Accounting issues with caching proxies.

 For instance, www.cnn.com needs to know the number of hits to the webpage for advertisements displayed on the webpage

Motivation

- IP based networks
- Web based applications have become the norm for corporate internal networks and many business-tobusiness interactions
- Large acceptance and explosive growth
 - Serious performance problems
 - Degraded user experience

For a large set of applications, including VIDEO access

- Improving the performance of networked applications
 - Use many sites at different points within the network
 - Stand alone servers
 - Routers

CDNs basics

- What is a CDN?
 - A network of servers delivering content on behalf of an origin site
 - · A number of CDN companies well established now
 - E.g. Akamai, Digital Island, Speedera, CDN77, Cloudfare, Stackpat
 - · Many companies are exploring CDNs
 - Avoid congested portions of the Internet
- Consist of
 - Edge servers deployed at several ISP (Internet Service Provider) access locations and network exchange points
- Large-file service with no custom client, no custom server, no prepositioning
- Improve the response time of an Internet site
 - Offloading the delivery of bandwidth-intensive objects, such as images and video clips
- Intelligent Internet infrastructure that improves the performance and scalability of distributed applications by moving the bulk of their computation to servers located at the edge of the network
 - Applications are logically split into two components
 - · Executed at an edge server close to the user
 - · Executed on a traditional application server

O Rui L. Aguiar (ruilaa@det.ua.pt) - Uni. Aveiro

30

CDN Generations

- First generation (early 90ies)
 - Accelerate the performance of web sites
 - Support increasing volumes of traffic
 - Key disruption event: 9/11
 - Akamai technologies created
- Second generation (early 2000ies)
 - Support high volumes of multimedia traffic
 - Audio/video intensive networks
 - All ISPs developed/used CDNs
- Third generation (2010+)
 - Cloud computing
 - Amazon cloud (2008)
 - UGC (user generated content)
 - P2P and interactivity
 - AT&T distributed data centers (2011)
 - Mobile support, and device adapted content

No rehosting

No manual provisoning

Model

• Application offload (1st generation concern)

Content distribution networks

- Client attempts to access the main server site for an application
- It is redirected to one of the other sites
- Each site caches information
 - Avoid going to the main server to get the information/application
- Access a closelly located site
 - Avoid congestion on the path to the main server
- Set of sites used to improve the performance of web-based applications collectivelly
 - Content distribution network

Inside a CDN

- · Servers are deployed in clusters for reliability
 - Some may be offline
 - Could be due to failure
 - Also could be "suspended" (e.g., to save power or for upgrade)
- Could be multiple clusters per location (e.g., in multiple racks)
- Server locations
 - Well-connected points of presence (PoPs)
 - Inside of ISPs

Advantages

- Better scalability
- · Higher availability
- Improved response time from a centrally managed solution
- Nodes constituting the distribution network are designed to be
 - Self-configuring
 - Self-managing
 - Self-diagnosing
 - Self-healing

to ensure easy management and operational convenience

Challenges

- Keep consistency among the enterprise data hosted by the offloaded applications
- Share session state among edge and origin application servers
- Distribution, configuration, and management
- Develop programming models consistent with current industry standards such as J2EE
- Application security.
- There is active research into general frameworks to be used to support distributed applications, as well as prototyping the ideas for specific application instances

With CDNs

- Overlay network to distribute content from origin servers to users
 - Avoids large amounts of same data repeatedly traversing potentially congested links on the Internet
 - · Reduces Web server load
 - Reduces user perceived latency
 - Tries to route around congested networks
- CDN is not a cache!
 - Caches are used by ISPs to reduce bandwidth consumption, CDNs are used by content providers to improve quality of service to end users
 - Caches are reactive, CDNs are proactive
 - Caching proxies cater to their users (web clients) and not to content providers (web servers), CDNs cater to the content providers (web servers) and clients
 - CDNs give control over the content to the content providers, caching proxies do not

CDN Components

*Content Delivery Infrastructure: Delivering content from producer to clients by surrogates

- Request Routing Infrastructure: Steering or directing content request from a client to a suitable surrogate Origin Server
- Distribution
 Infrastructure: Moving or replicating content from content source (origin server, content provider) to surrogates
- Accounting Infrastructure: Logging and reporting of distribution and delivery activities

Mapping clients to servers

- CDNs need a way to send clients to the "best" server
 - The best server can change over time
 - And this depends on client location, network conditions, server load, ...
 - What existing technology can we use for this?
- DNS-based redirection
 - Clients request www.foo.com
 - DNS server directs client to one or more IPs based on request IP
 - Use short TTL to limit the effect of caching

DNS Redirection

- Web client's request redirected to 'close' by server
 - Client gets web site's DNS CNAME entry with domain name in CDN network
 - Hierarchy of CDN's DNS servers direct client to 2 nearby servers

- Advantages
 - Uses existing, scalable DNS infrastructure
 - URLs can stay essentially the same
- Limitations
 - DNS servers see only the DNS server IP
 - Assumes that client and DNS server are close. Is this accurate?
 - Content owner must give up control
 - Unicast addresses can limit reliability

Offloading a portal

- Portal servers allow users to access content and applications from a single access point
 - Users can create persistent, customized views of applications and content chosen from the set of applications and content by the portal administrators
- Portal server pages are personalized
- Often include dynamic content
- Significant amount of computation required for page assembly
 - Application offload

Offloading an Enterprise directory

- E.g. a common e-Workplace tool
- The employee data is often stored in a central LDAP directory
 - Separate web-based application providing the interface to the directory

Mobile Networks and the FMBC

The arrival of common services

60

Learning outcomes

- Understand the appearance of mobile networks
- Perceive the technologies underlying the integration of services
- Realize the triple and quad-play concepts.

UMTS: first universal celular data system

- 3G system
- Oriented to generalized service diffusion and its future users trends
 - Combines cellular, wireless, paging, etc. functions
- "multimedia everywhere"
- Developed as an evolution path of 2.5G systems
 - Progressive evolution (GPRS-EDGE-UMTS)
- (Initial) Data rates of UMTS were:
 - 144 kbps for rural
 - 384 kbps for urban outdoor
 - 2048 kbps for indoor and low range outdoor
 - Large rates later, progressively increased

DESSIDATE DE CODEITO

RECELO POLESIA

PEO XIII

/1

Implications

- Any Device
- Any Access Technology
- · Any Where

ALWAYS BEST CONNECTED

- One Network, multiple access technologies
- Common Session Control
- Generic Application Servers
- Single set of services that apply network wide
- Consistent user experience
- Operational efficiency
- New services/applications

Fixed Mobile Broadcast Convergence (FMC)

- One customer service
 - Handles mobile and fixed calls
 - Any network mobile, WiFi, Broadband Cable...
 - Avoid mobile charging when in-building
- Single (customer) number with common suite of services
 - One voice mailbox, one phone directory...
 - Mobile, fixed, conference room
- New services? Irrespective of location, access technology or terminal device
 - Potentially gradative provision

Slide 72

Implementing the FMBC concepts

- Wireless "fixed" line services
 - New (not FMBC) in developing nations, mobile, no handoffs
- IP-PBX or softswitch with mobile network interface
 - Centered in company internal communications
- Unlicensed Mobile Access (UMA)
 - GSM & GPRS services over WiFi or Bluetooth
- Mobile VoIP technology (pre-IMS)
 - emulating mobile network entities
- IP Multimedia Subsystem (IMS)

Mobile network only used when necessary

- "Tunnel" through the mobile network

remote users

- 3G vision of future IP-based mobile communications

Slide 77

Outside the Enterprise Inside the Enterprise Communication Manager enabled IP-PBX Collular Network Wireless Services Manager WLAN Gateway Light Access Points IP-PBX or softswitch is in charge -> directed to company contacts Service hands off to mobile network when out of WLAN range

Voice or text messages generated when necessary to connect enterprise calls to

IP Multimedia Subsystem (IMS)

- New IP-based mobile core network for 3G evolution
- Uses 3GPP variant of SIP & other IP protocols
- "Intelligent Network" over IP?
- New services drive IMS deployment
 - Push-to-Talk, FMC, IP Centrex
- PTT (PoC) & UMA FMC specs already turned over to 3GPP
- Developed by 3GPP for GSM-to-3G evolution
 - Defined in release 5; fully specified in release 6

Assures correctness of SIP messagesInterrogating – CSCF

Secures SIP messages

- domain's contact point for inter-domain SIP signaling
- one or more per domain
- In case there are more than one S-CSCFs in the domain, locates which S-CSCF is serving a user

86

SIP Protocol

- Defined in IETF RFC 3261
 - "... an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences."
- In IMS, SIP is modified to include extra functionality and support a specific set of functions only
 - SIP is to the Internet what SS#7 is to telephony
- At the core of IMS there are several SIP proxies:
 - I-CSCF, S-CSCF, P-CSCF
 - The Call Session Control function (CSCF) is the heart of the IMS architecture
 - The main functions of the CSCF:
 - · provide session control for terminals and applications using the IMS network
 - · secure routing of the SIP messages,
 - subsequent monitoring of the SIP sessions and communicating with the policy architecture to support media authorization.
 - · responsibility for interacting with the HSS.

87

IMS Identity and User Profiles

- IMS uses SIP identity: SIP URIs
 - e.g. sip:ruilaa@ua.pt
 - Opposed to phone numbers
 - A user is uniquely identified in the HSS by his IMPI (Private User Identity).
 - IMPI is a unique global identity defined by the Home operator
 - used only in the process of registration
- to establish communication with a user IMPU (Public User Identity) is necessary.
 - Every user has one or more IMPUs.
 - Each IMPI can have several IMPUs
 - Users can classify their public identities: business, family, friends....
 - E.g. sip:ruilaa@ua.pt, sip:steve.jobs@left.apple.com

