Institute of Informatics – Institute of Neuroinformatics

Lecture 13 Visual Inertial Fusion

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

Lab Exercise 9 – Today afternoon

- > Room ETH HG E 1.1 from 13:15 to 15:00
- > Work description: Bundle Adjustment

Outline

- Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

What is an IMU?

- > Inertial Measurement Unit
 - Gyroscope: Angular velocity
 - Accelerometer: Linear Accelerations

Inertial Measurement Unit 3 accelerometers, 3 gyroscopes

Mechanical Gyroscope

Mechanical Accelerometer

What is an IMU?

- Different categories
 - Mechanical (\$100,000-1M)
 - Optical (\$20,000-100k)
 - MEMS (from 1\$ (phones) to 1,000\$ (higher cost because they have a microchip running a Kalman filter))
- For small mobile robots & drones: MEMS IMU are mostly used
 - Cheap
 - Power efficient
 - Light weight and solid state

MEMS Accelerometer

A spring-like structure connects the device to a seismic mass vibrating in a capacitive divider. A capacitive divider converts the displacement of the seismic mass into an electric signal. Damping is created by the gas sealed in the device.

MEMS Gyroscopes

- MEMS gyroscopes measure the Coriolis forces acting on MEMS vibrating structures (tuning forks, vibrating wheels, or resonant solids)
- Their working principle is similar to the haltere of a fly

Haltere are small structures of some two-winged insects, such as flies. They are flapped rapidly and function as gyroscopes, informing the insect about rotation

of the body during flight.

Why IMU?

- Monocular vision is scale ambiguous.
- Pure vision is not robust enough
 - Low texture
 - High dynamic range
 - High speed motion

"The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky." [The Guardian]

Why vision?

- > Pure IMU integration will lead to large drift (especially cheap IMUs)
 - Will see later mathematically
 - Intuition
 - Integration of angular velocity to get orientation: if there is a bias in angular velocity, the error is proportional to t
 - Double integration of acceleration to get position: if there is a bias in acceleration, the error of position is proportional to t²
 - Worse, the actual position error also depends on the orientation error (see later).

	Accelerometer Bias Error	Horizontal Position Error [m]			
Grade	[mg]	1 s	10s	60s	1hr
Navigation	0.025	0.13 mm	12 mm	0.44 m	1.6 km
Tactical	0.3	1.5 mm	150 mm	5.3 m	19 km
Industrial	3	15 mm	1.5 m	53 m	190 km
Automotive	125	620 mm	60 m	2.2 km	7900 km

Automotive, Smartphone, & Drone acceler,ometers

Why visual inertial fusion?

IMU and vision are complementary

Cameras

- ✓ Precise in slow motion
- ✓ Rich information for other purposes
- X Limited output rate (~100 Hz)
- X Scale ambiguity in monocular setup
- X Lack of robustness

IMU

- ✓ Robust
- ✓ High output rate (~1,000 Hz)
- ✓ Accurate at high acceleration
- X Large relative uncertainty when at low acceleration/angular velocity
- X Ambiguity in gravity / acceleration

What cameras and IMU have in common: both estimate the pose incrementally (known as dead-reckoning), which suffers from drifting over time. Solution: loop detection and loop closure

Outline

- Introduction
- ➤ IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

IMU model: Measurement Model

Measures angular velocity and acceleration in the body frame:

$$\mathbf{\tilde{a}}_{\mathrm{WB}}(t) = \mathbf{B} \mathbf{\omega}_{\mathrm{WB}}(t) + \mathbf{b}^{g}(t) + \mathbf{n}^{g}(t)$$

$$\mathbf{\tilde{a}}_{\mathrm{WB}}(t) = \mathbf{R}_{\mathrm{BW}}(t) (\mathbf{w} \mathbf{a}_{\mathrm{WB}}(t) - \mathbf{w} \mathbf{g}) + \mathbf{b}^{a}(t) + \mathbf{n}^{a}(t)$$
measurements
noise

where the superscript g stands for Gyroscope and a for Accelerometer

Notations:

- Left subscript: reference frame in which the quantity is expressed
- Right subscript {Q}{Frame1}{Frame2}: Q of Frame2 with respect to Frame1
- Noises are all in the body frame

IMU model: Noise Property

- \triangleright Additive Gaussian white noise: $\mathbf{n}^{g}(t)$, $\mathbf{n}^{a}(t)$
- \triangleright Bias: $\mathbf{b}^{g}(t)$, $\mathbf{b}^{a}(t)$

$$\dot{\mathbf{b}}(t) = \sigma_b \mathbf{w}(t) \qquad \mathbf{w}(t) \sim \mathbf{N}(0, 1)$$

i.e., the derivative of the bias is white Gaussian noise (so-called random walk)

Some facts about IMU biases:

- They can change due to temperature change, mechanical pressure, etc.
- They can change every time the IMU is started
- Good news: they can be estimated

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation." https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

IMU model: Integration

$$\mathbf{p}_{\mathrm{Wt}_{2}} = \mathbf{p}_{\mathrm{Wt}_{1}} + (t_{2} - t_{1}) \mathbf{v}_{\mathrm{Wt}_{1}} + \int \int_{t_{1}}^{t_{2}} \mathbf{R}_{\mathrm{Wt}}(t) (\tilde{\mathbf{a}}(t) - \mathbf{b}^{a}(t)) + \mathbf{w} \mathbf{g} dt^{2}$$

per component: {t} stands for {B}ody frame at time t

- Depends on initial position and velocity
- The rotation R(t) is computed from the gyroscope

Camera-IMU System

There can be multiple cameras.

0

Outline

- Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

Different paradigms

> Loosely coupled:

- Treats VO and IMU as two separate (not coupled) black boxes
 - Each black box estimates pose and velocity from visual (up to a scale) and inertial data (absolute scale)

Tightly coupled:

- Makes use of the raw sensors' measurements:
 - 2D features
 - IMU readings
 - More accurate
 - More implementation effort
- In the following slides, we will only see tightly coupled approaches

The Loosely Coupled Approach

The Tightly Coupled Approach

Filtering: Visual Inertial Formulation

System states:

Tightly coupled:
$$\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); \mathbf{w} \mathbf{L}_{1}; \mathbf{w} \mathbf{L}_{2}; ..., \mathbf{v}_{W} \mathbf{L}_{K} \right]$$

Loosely coupled:
$$\mathbf{X} = \begin{bmatrix} \mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t) \end{bmatrix}$$

Outline

- > Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

Closed-form Solution (1D case)

 \triangleright The absolute pose x is known up to a scale s, thus

$$x = s\tilde{x}$$

From the IMU

$$x = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

By equating them

$$s\tilde{x} = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

As shown in [Martinelli'14], for 6DOF, both s and v_0 can be determined in closed form from a single feature observation and 3 views. x_0 can be set to 0.

Closed-form Solution (1D case)

$$\int s\widetilde{x_1} = v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

$$s\widetilde{x_2} = v_0(t_2 - t_0) + \iint_{t_0}^{t_2} a(t)dt$$

$$\begin{bmatrix} \widetilde{x_1} & (t_0 - t_1) \\ \widetilde{x_2} & (t_0 - t_2) \end{bmatrix} \begin{bmatrix} s \\ v_0 \end{bmatrix} = \begin{bmatrix} \iint_{t_0}^{t_1} a(t) dt \\ \iint_{t_0}^{2} a(t) dt \end{bmatrix}$$

Closed-form Solution (general case)

- Considers N feature observations and 6DOF case
- Can be used to initialize filters and smoothers (which always need an initialization point)
- More complex to derive than the 1D case. But it also reaches a linear system of equations that can be solved using the pseudoinverse:

$$AX = S$$

X is the vector of unknowns:

- 3D Point distances (wrt the first camera)
- Absolute scale,
- Initial velocity,
- Gravity vector,
- Biases

 ${\it A}$ and ${\it S}$ contain 2D feature coordinates, acceleration, and angular velocity measurements

$$A = \begin{bmatrix} I_2 & S_2 & I_2 & \mu_1^1 & 0_3 & 0_3 & -\mu_2^2 & 0_3 & 0_3 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & \mu_1^1 & -\mu_1^2 & 0_3 & -\mu_2^1 & \mu_2^2 & 0_3 & 0_3 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & 0_3 & -\mu_1^N & -\mu_2^1 & 0_3 & \mu_2^N & 0_3 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & 0_3 & -\mu_1^N & -\mu_2^1 & 0_3 & \mu_2^N & 0_3 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & -\mu_{n_i}^1 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & -\mu_1^2 & 0_3 & 0_3 & 0_3 & 0_3 & -\mu_{n_i}^1 & 0_3 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & -\mu_1^2 & 0_3 & 0_3 & 0_3 & 0_3 & -\mu_{n_i}^1 & 0_3 & \mu_{n_i}^2 & 0_3 \\ 0_{33} & 0_{33} & 0_{33} & \mu_1^1 & 0_3 & -\mu_1^N & 0_3 & 0_3 & 0_3 & -\mu_{n_i}^1 & 0_3 & \mu_{n_i}^N \end{bmatrix}$$

- Martinelli, Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination, TRO'12
- Martinelli, Closed-form solution of visual-inertial structure from motion, Int. Journal of Comp. Vision, JCV'14
- Kaiser, Martinelli, Fontana, Scaramuzza, Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation, IEEE RAL'17

Outline

- Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

Different paradigms

Filtering	Fixed-lag Smoothing	Full smoothing
Only updates the most recent state • (e.g., extended Kalman filter)	Optimizes window of statesMarginalizationNonlinear least squares optimization	Optimize all statesNonlinear Least squares optimization
×1 Linearization	✓ Re-Linearize	✓ Re-Linearize
×Accumulation of linearization errors	×Accumulation of linearization errors	✓ Sparse Matrices ✓ Highest Accuracy
*Gaussian approximation of marginalized states	×Gaussian approximation of marginalized states	
√Fastest	✓Fast	×Slow (but fast with GTSAM)

Filtering: Visual Inertial Formulation

System states:

Tightly coupled:
$$\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{\text{WB}}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); \mathbf{w} \mathbf{L}_{1}; \mathbf{w} \mathbf{L}_{2}; ..., \mathbf{k}_{K} \right]$$

Loosely coupled:
$$\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t) \right]$$

Process Model: from IMU

- Integration of IMU states (rotation, position, velocity)
- Propagation of IMU noise
 - needed for calculating the Kalman Filter gain

Filtering: ROVIO

- EKF state: $\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); \mathbf{w} \mathbf{L}_{1}; \mathbf{w} \mathbf{L}_{2}; ..., \mathbf{v}_{W} \mathbf{L}_{K} \right]$
- Minimizes the photometric error instead of the reprojection error

Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback", IJRR'17

Filtering: Problems

- Wrong linearization point:
 - Linearization depends on the current estimates of states, which may be erroneous

- Complexity of the EKF grows quadratically in the number of estimated landmarks,
 - → a **few landmarks** (~20) are typically tracked to allow real-time operation
- > Alternative: MSCKF [Mourikis & Roumeliotis, ICRA'07]: used in Google ARCore
 - Keeps a window of recent states and updates them using EKF
 - incorporate visual observations without including point positions into the states

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO'16 Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual—inertial odometry, IJRR'13

Filtering: Google ARCore

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO'16 Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual—inertial odometry, IJRR'13

Outline

- Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- Camera-IMU extrinsic calibration and Synchronization

Smoothing methods

VIO solved as a graph optimization problem over:

$$X = \{x_1, \dots x_N\}$$
: Robot states (pose, velocity, acceleration) $L = \{l_1, \dots, l_M\}$: 3D Landmarks

 $x_k = f(x_{k-1}, u)$ is the state transition function; u is the set of IMU measurements $z_{i_k} = \pi(x_k, l_i)$ is the reprojection of the landmark i in the camera frame k

$$\{\mathsf{X}, \mathsf{L}\} = argmin_{\{\mathsf{X}, \; \mathsf{L}\}} \left\{ \sum_{k=1}^{N} \lVert f(x_{k-1}, u) - x_{k} \rVert_{\varLambda_{k}}^{2} + \sum_{k=1}^{N} \sum_{i=1}^{M} \lVert \pi(x_{k}, l_{i}) - z_{i_{k}} \rVert_{\varSigma_{i_{k}}}^{2} \right\}$$

IMU residuals

Reprojection residuals

 Λ_k is the covariance from the IMU integration Σ_{i_k} is the covariance from the noisy 2D feature measurements

[Jung, CVPR'01] [Sterlow'04] [Bryson, ICRA'09] [Indelman, RAS'13] [Patron-Perez, IJCV'15] [Leutenegger, RSS'13-IJRR'15] [Forster, RSS'15, TRO'17]

Fixed-lag smoothing: OKVIS

OKVIS: Open Keyfram-based Visual-Inertial SLAM

A reference implementation of:

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart and Paul Timothy Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015.

Full Smoothing: SVO+GTSAM & IMU Pre-integration

Solves the same optimization problem but:

- Keeps all the frames (from the start of the trajectory)
- > To make the optimization efficient
 - it makes the graph sparser using keyframes
 - pre-integrates the IMU data between keyframes
- Optimization salved using factor graphs (GTSAM)
 - Very fast because it only optimizes the poses which are affected by a new observation

$$\{\mathsf{X}, \mathsf{L}\} = argmin_{\{\mathsf{X}, \; \mathsf{L}\}} \left\{ \sum_{k=1}^{N} \lVert f(x_{k-1}, u) - x_{k} \rVert_{\varLambda_{k}}^{2} + \sum_{k=1}^{N} \sum_{i=1}^{M} \lVert \pi(x_{k}, l_{i}) - z_{i_{k}} \rVert_{\varSigma_{i_{k}}}^{2} \right\}$$

IMU residuals

Reprojection residuals

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics (TRO), Feb. 2017, **Best Paper Award 2018**.

Full Smoothing: SVO+GTSAM & IMU Pre-integration

IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation

Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza

rpg.ifi.uzh.ch borg.cc.gatech.edu

SVO + IMU Preintegration

Accuracy: 0.1% of the travel distance

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics, Feb. 2017.

Recap

- Closed form solution:
 - for 6DOF motion both s and v_0 can be determined **1 feature observation and at least 3 views** [Martinelli, TRO'12, IJCV'14, RAL'16]
 - Can be used to initialize filters and smoothers
- Filters: update only last state \rightarrow fast if number of features is low (~20)
 - [Mourikis, ICRA'07, CVPR'08], [Jones, IJRR'11] [Kottas, ISER'12][Bloesch, IROS'15] [Wu et al., RSS'15], [Hesch, IJRR'14], [Weiss, JFR'13]
 - Open source: ROVIO [Bloesch, IROS'15, IJRR'17], MSCKF [Mourikis, ICRA'07] (i.e., Google ARCore)
- ightharpoonup **Fixed-lag smoothers:** update a window of states \rightarrow slower but more accurate
 - [Mourikis, CVPR'08] [Sibley, IJRR'10], [Dong, ICRA'11], [Leutenegger, RSS'13-IJRR'15]
 - Open source: OKVIS [Leutenegger, RSS'13-IJRR'15]
- **Full-smoothing methods:** update entire history of states → slower but more accurate
 - [Jung, CVPR'01] [Sterlow'04] [Bryson, ICRA'09] [Indelman, RAS'13] [Patron-Perez, IJCV'15]
 [Forster, RSS'15, TRO'16]
 - Open source: SVO+IMU [Forster, TRO'17]

Open Problem: consistency

- > Filters
 - Linearization around different values of the same variable may lead to error
- Smoothing methods
 - May get stuck in local minima

Outline

- Introduction
- ➤ IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods
- > Camera-IMU extrinsic calibration and Synchronization

Camera-IMU calibration

> Goal: estimate the rigid-body transformation T_{BC} and delay t_d between a camera and an IMU rigidly attached. Assume that the camera has already been intrinsically calibrated.

> Data:

- Image points of detected calibration pattern (checkerboard).
- IMU measurements: accelerometer $\{a_k\}$ and gyroscope $\{\omega_k\}$.

Camera-IMU calibration - Example

<u>Data acquisition</u>: Move the sensor in front of a static calibration pattern, exciting all degrees of freedom.

Camera-IMU calibration

Approach: Minimize a cost function (Furgale'13):

- Unknowns: T_{BC} , t_d , g_w , $T_{WB}(t)$, $b_{acc}(t)$, $b_{gyro}(t)$
 - g_w = Gravity,
 - $T_{WB}(t)$ = 6-DOF trajectory of the IMU,
 - $b_{acc}(t)$, $b_{gyro}(t)$ = 3-DOF biases of the IMU
- Continuous-time modelling using splines for $T_{WB}(t)$, $b_{acc}(t)$, ...
- Numerical solver: Levenberg-Marquardt (i.e., Gauss-Newton).

Camera-IMU calibration - Example

- Software solution: Kalibr (Furgale'13).
 - Generates a <u>report</u> after optimizing the cost function.

Residuals:

Reprojection error [px]: 0.0976 ± 0.051 Gyroscope error [rad/s]: 0.0167 ± 0.009 Accelerometer error [m/s^2]: 0.0595 ± 0.031

Transformation T_ci: (imu to cam): [[0.99995526 -0.00934911 -0.00143776 0.00008436] [0.00936458 0.99989388 0.01115983 0.00197427] [0.00133327 -0.0111728 0.99993669 -0.05054946] [0. 0. 0. 1.]]

Time shift (delay *d*) cam0 to imu0: [s] (t_imu = t_cam + shift) 0.00270636270255

Gravity vector in target coords: [m/s^2] [0.04170719 -0.01000423 -9.80645621]

Understanding Check

Are you able to answer the following questions?

- Why is it recommended to use an IMU for Visual Odometry?
- Why not just an IMU?
- How does a MEMS IMU work?
- What is the drift of an industrial IMU?
- What is the IMU measurement model?
- What causes the bias in an IMU?
- How do we model the bias?
- How do we integrate the acceleration to get the position formula?
- What is the definition of loosely coupled and tightly coupled visual inertial fusions?
- How can we use non-linear optimization-based approaches to solve for visual inertial fusion?