Amendments to the claims:

1. (Previously presented) A method for treating a subject with an allergic condition, said method comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of formula (I) below:

wherein:

is hydrogen, azido, halogen, C₁₋₅ alkoxy, hydroxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R⁷R⁸N, C ₂₋₈ acyl, R⁹OC=O, R¹⁰R¹¹NC=O, or R¹⁰R¹¹NSO₂; or R¹ is taken together with W as described below;

is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, C₁₋₅ haloalkyl, cyano, or R⁴⁸R⁴⁹N; alternatively, R¹ and R² can be taken together to form an optionally substituted 5- to 7- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;

each of R³ and R⁴ is independently hydrogen or C₁₋₅ alkyl;

each of R^5 and R^6 is independently hydrogen, $C_{1\text{-}5}$ alkyl, $C_{2\text{-}5}$ alkenyl, $C_{1\text{-}5}$ alkoxy,

C₁₋₅ alkylthio, halogen, or a 4-7 membered carbocyclyl or heterocyclyl; alternatively, R⁵ and R⁶ can be taken together to form an optionally substituted 6-membered carbocyclic ring, which ring may be unsaturated or aromatic, and may be optionally substituted with between one and three substituents independently selected from halo, cyano, amino, nitro, R⁴⁰, R⁴⁰O-, R⁴⁰S-, R⁴⁰O(C ₁₋₅ alkylene)-, R⁴⁰O(C=O)-, R⁴⁰(C=O)-, R⁴⁰(C=S)-,

- $R^{40}(C=O)O-$, $R^{40}O(C=O)(C=O)-$, $R^{40}SO_2$, $NHR^{62}(C=NH)-$, $NHR^{62}SO_2-$, and $NHR^{62}(C=O)-$;
- is H, C ₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, benzyl, phenethyl, C ₁₋₅ heterocyclyl, (C ₁₋₅ heterocyclyl)C ₁₋₅ alkylene, amino, or mono- or di(C ₁₋₅ alkyl)amino, or R⁵⁸OR⁵⁹-, wherein R⁵⁸ is H, C ₁₋₅ alkyl, C ₂₋₅ alkenyl, phenyl, benzyl, phenethyl, C ₁₋₅ heterocyclyl, or (C ₁₋₅ heterocyclyl)C ₁₋₆ alkylene and R⁵⁹ is C ₁₋₅ alkylene, phenylene, or divalent C ₁₋₅ heterocyclyl; and
- R⁶² can be H in addition to the values for R⁴⁰;
- R⁷ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C₂₋₈ acyl, aroyl, R²⁷OC=O, R²⁸R²⁹NC=O, R²⁷SO, R²⁷SO₂, or R²⁸R²⁹NSO₂;
- R⁸ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C ₁₋₅ heterocyclyl; alternatively, R⁷ and R⁸ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- R⁹ is C₁₋₅ alkyl, phenyl, naphthyl, or C ₁₋₅ heterocyclyl;
- R²¹ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R³⁰OC=O, R³¹R³²NC=O, R³⁰SO, R³⁰SO₂, or R³¹R³²NSO₂;
- R²² is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²¹ and R²²can be taken together to form an optionally substituted 4- to 7-membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- each of R^{23} , R^{26} , R^{27} , R^{30} , R^{33} , R^{44} , R^{45} , and R^{50} is C_{1-5} alkyl, phenyl, naphthyl, or C_{1-5} heterocyclyl;
- R²⁴ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R³³OC=O, R³⁴R³⁵NC=O, R³³SO, R³³SO₂, or R³⁴R³⁵NSO₂;
- R²⁵ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²⁴ and R²⁵ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- each of R^{10} and R^{11} is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;

alternatively, R¹⁰ and R¹¹ or can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

- each of R²⁸, R²⁹, R³¹, R³², R³⁴, R³⁵, R⁴⁶, R⁴⁷, R⁵¹ and R⁵² is independently hydrogen, C₁₋₅ alkyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²⁸ and R²⁹, R³¹ and R³², R³⁴ and R³⁵, R⁴⁶ and R⁴⁷, or R⁵¹ and R⁵², independently, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- n is 1;
- represents C_{3-6} alkenediyl or C_{3-6} alkanediyl, optionally substituted with hydroxy, halogen, C_{1-5} alkyl, C_{1-5} alkoxy, oxo, hydroximino, CO_2R^{60} , $R^{60}R^{61}NCO_2$, (L)-C ₁₋₄ alkylene-, (L)-C₁₋₅ alkoxy, N₃, or [(L)-C ₁₋₅ alkylene]amino;
- each of R^{60} and R^{61} is independently hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, phenethyl, or C_{1-5} heterocyclyl; alternatively R^{60} and R^{61} , can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- is amino, mono- or di- C_{1-5} alkylamino, pyrrolidinyl, morpholinyl, piperidinyl homopiperidinyl, or piperazinyl, where available ring nitrogens may be optionally substituted with C_{1-5} alkyl, benzyl, C_{2-5} acyl, C_{1-5} alkylsulfonyl or C_{1-5} alkyloxycarbonyl;
- X is nitrogen or R¹²C;
- Y is nitrogen or R¹³C;
- Z is nitrogen or R¹⁴C;
- R¹² is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R²¹R²²N, C ₂₋₈ acyl, C₁₋₅ haloalkyl, C ₁₋₅ heterocyclyl, (C ₁₋₅ heterocyclyl)C ₁₋₅ alkylene, R²³OC=O, R²³O(C=O)NH-, R²³SO, R²²NHCO-, R²²NH(C=O)NH-, R²³(C ₁₋₄ alkylene)NHCO-, R²³SO₂, or R²³SO₂NH-;
- R¹³ is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, nitro, $R^{42}R^{43}N$, C_{2-8} acyl, C_{1-5} haloalkyl, C_{1-5} heterocyclyl, $(C_{1-5}$ heterocyclyl) C_{1-5}

- ⁵ alkylene, R⁴⁴OC=O, R⁴⁴O(C=O)NH-, R⁴⁴SO, R⁴³NHCO-, R⁴³NH(C=O)NH-, R⁴⁴(C ₁₋₄ alkylene)NHCO-, R⁴⁴SO₂, or R⁴⁴SO₂NH-;
- is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R²⁴R²⁵N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, R²⁶OC=O, R²⁶O(C=O)NH-, R²⁶SO, R²⁵NHCO-, R²⁵NH(C=O)NH-, R²⁶(C₁₋₄ alkylene)NHCO-, R²⁶SO₂, or R²⁶SO₂NH-; alternatively, R¹² and R¹³ or R¹² and R² or R¹³ and R¹⁴ can be taken together to form an optionally substituted 5- to 6- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;
- Ar represents a monocyclic or bicyclic aryl or heteroaryl ring, optionally substituted with between 1 and 3 substituents selected from halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, azido, nitro, R¹⁵R¹⁶N, R¹⁷SO₂, R¹⁷S, R¹⁷SO, R¹⁷OC=O, R¹⁵R¹⁶NC=O, C₁₋₅ haloalkyl, C₁₋₅ haloalkoxy, C₁₋₅ haloalkylthio, and C₁₋₅ alkylthio;
- R^{15} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{53}OC=O$, $R^{54}R^{55}NC=O$, $R^{53}SO$, $R^{53}SO_2$, or $R^{54}R^{55}NSO_2$;
- R¹⁶ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, benzyl, or C₁₋₅ heterocyclyl; alternatively, R¹⁵ and R¹⁶ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- each of R^{17} and R^{53} is C_{1-5} alkyl, phenyl, or C_{1-5} heterocyclyl;

saturated, unsaturated or aromatic;

- each of R⁵⁴ and R⁵⁵ is independently hydrogen, C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, benzyl, or C ₁₋₅ heterocyclyl; alternatively, R⁵⁴ and R⁵⁵ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be
- W represents SO₂, C=O, CHR²⁰, or a covalent bond; or W and R¹, taken together with the 6-membered ring to which they are both attached, form one of the following two formulae:

$$(I)(a) \qquad \qquad (I)(b)$$

wherein X_a is O, S, or N; and X_b is O, S or SO_2 ;

R²⁰ is hydrogen, C₁₋₅ alkyl, phenyl, benzyl, naphthyl, or C ₁₋₅ heterocyclyl;

R⁴² is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R⁴⁵OC=O, R⁴⁶R⁴⁷NC=O, R⁴⁵SO, R⁴⁵SO₂, or R⁴⁶R⁴⁷NSO₂;

R⁴³ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C ₁₋₅ heterocyclyl; alternatively, R⁴² and R⁴³can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

R⁴⁴ is C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, naphthyl, or C ₁₋₅ heterocyclyl;

R⁴⁸ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R⁵⁰OC=O, R⁵¹R⁵²NC=O, R⁵⁰SO, R⁵⁰SO₂, or R⁵¹R⁵²NSO₂;

R⁴⁹ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R⁴⁸ and R⁴⁹ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic; and

wherein each of the above hydrocarbyl or heterocarbyl groups, unless otherwise indicated, and in addition to any specified substituents, is optionally and independently substituted with between 1 and 3 substituents selected from methyl, halomethyl, hydroxymethyl, halo, hydroxy, amino, nitro, cyano, C ₁₋₅ alkyl, C ₁₋₅ alkoxy, -COOH, C ₂₋₆ acyl, [di(C ₁₋₄ alkyl)amino]C ₂₋₅ alkylene, [di(C ₁₋₄ alkyl)amino] C ₂₋₅ alkyl-NH-CO-, and C ₁₋₅ haloalkoxy;

or a pharmaceutically acceptable salt, ester, or amide thereof.

- 2. (Previously presented) A method of claim 1, wherein each of R^3 and R^4 is hydrogen; Ar represents a six membered ring, optionally substituted with between 1 and 2 substituents selected from halogen, C_{1-5} alkyl, cyano, nitro, $R^{15}R^{16}N$, CF_3 and OCF_3 ; R^{12} is hydrogen, $R^{23}SO_3$, or $R^{23}SO_4$; R^{13} is hydrogen, $R^{44}SO_4$, or $R^{44}SO_4$; R^{14} is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, cyano, nitro, or $R^{24}R^{25}N$; and G is G_3 alkanediyl, optionally substituted with hydroxy, G_{1-5} alkyloxy-, or G_{1-5} alkylamino.
 - 3. (Previously presented) A method of claim 2, wherein Ar is phenyl.
 - 4. (Canceled)
 - 5. (Canceled)
- 6. (Currently amended) A method of claim 1, wherein said compound is selected from :
- 1-[3-(3,4-Dichloro-phenyl)-pyrazol-1-yl]-3-(4-o-tolyl-piperazin-1-yl)-propan-2-ol.
 - 7. (Canceled)

- 8. (Previously presented) A method of claim 1, wherein said pharmaceutical composition is formulated in a dosage amount appropriate for the treatment of an allergic condition.
- 9. (Original) A method of claim 1, wherein said condition is asthma.
- 10. (Original) A method of claim 2, wherein said condition is asthma.
- 11. (Original) A method of claim 3, wherein said condition is asthma.
- 12. (Original) A method of claim 7, wherein said condition is asthma.