Coordinate descent Algorithm:

Let us say we want to optimize function $f(d_1)d_2, \dots d_n$ dis where if fl,2. ..., my one independent Variables.

Assume: No constagints on dis.

Algouithm:

Respect centil convergence of FOR i=1 to m

de == ang min f (dridg. (die) dn)

Z

Problems: Coordinate descent alga for linear suggression.

Let $f(x) = \frac{1}{2} \|Ax - y\|^2$ be the cost function to Minimize, where $y \in \mathbb{R}^n$, $A \in \mathbb{R}^n$ with columns $A_1, \dots A_p$ $X \in \mathbb{R}^p$

Consider minimizing over $X_{i,j}$ with all $X_{i,j}$ to (ixed Allegert i) $0 = \nabla_{i} f(X) = A_{i}(AX - Y) = A_{i}(A_{i}X_{i} + A_{-i}X_{-i} - Y)$ $A_{i}^{T} A_{i}X_{i} + A_{i}^{T} A_{-i}X_{-i} = A_{i}^{T} Y$ $X_{i} = A_{i}T_{i}Y_{i} - A_{i}X_{-i}$

Algorithm is as follows:

Repeat until Convergence &

$$X_{i} := \frac{A_{i}^{T}(y - A_{-i}X_{-i})}{A_{i}^{T}A_{i}}$$

3

time Complexicity Analysis:

SMO (sequentially Minimul Offimization)

How to Apply coopyingte descent Algorithm to Constraint Optimization

In sum Dual Problem:

$$\Theta_{\mathbf{D}}(\mathbf{x}) = \min_{\omega,b} \mathcal{L}(\omega,b,\mathbf{x})$$

max
$$(\theta_D(\alpha) = \sum_{i=1}^m d_i - \sum_{i=1}^m \sum_{j=1}^m d_i d_j y^{(i)} y^{(j)} - x^{(i)}, x^{(i)})$$
 $d_i > 0$ $\forall i \in d_{i/2}$ $p_i = 0$
 $i = 1$ $\forall i \neq 0$ $\forall i \neq 0$ $\forall i \neq 0$

be can change only one $d_i \in \{\mu_{ceping}, \mu_{est}, \mu_{est}\}$
 $d_i = 1$ $d_i = 1$

Splution: instead of chamging 1'd at a time.

Change a dis at a time. This is called

SMO. Sequential minimal optimization

(2 dis) (7 Minimum dis)

Select Ki, of (how recrostics)

HOW all dies fixed except K + i, j

Optimize O(a) wat to di, di Subject to all constraints

Let us change OD(d) worth dida

$$a' A_{(1)} + a' A_{(3)} = -\sum_{m}^{i=3} a' A_{(j)} = \sum_{m}^{6} -D$$
 $a' A_{(1)} + a' A_{(3)} + \cdots + a' A_{(m)} = 0$

For L1 noam Soft margin SVM:

So, we can express ob(d) as

OD is a function of only of rest all are fixed

$$\theta_{D} = \sum_{i=1}^{m} d_{i} - \sum_{i=1}^{m} \sum_{j=1}^{m} d_{i} d_{j} y^{i} y^{j} < \chi^{i} y^{j} < \chi^{i} y^{j} >$$

If this will become Similar to $a \times \lambda^{1} b \times t = 0$

Soptime this function