Dr. Nijat Aliyev

BHOS

Calculus

November 14, 2023

In finding the area of a circle or an ellipse, an integral of the form

$$\int \sqrt{a^2 - x^2} dx$$

arises.

In finding the area of a circle or an ellipse, an integral of the form

$$\int \sqrt{a^2 - x^2} dx$$

arises.

If it were

$$\int x\sqrt{a^2-x^2}dx$$

the substitution $u = a^2 - x^2$ would work.

In finding the area of a circle or an ellipse, an integral of the form

$$\int \sqrt{a^2 - x^2} dx$$

arises.

If it were

$$\int x\sqrt{a^2-x^2}dx$$

the substitution $u = a^2 - x^2$ would work.

If we change the variable from x to θ by the substitution $x=a\sin\theta$, then the identity $1-\sin^2\theta=\cos^2\theta$ leads us to get rid off the root sign since

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$$

We can make the inverse substitution $x=a\sin\theta$ provided that it defines a one-to-one function. This can be accomplished by restricting θ to lie in the interval $[-\pi/2,\pi/2]$.

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

Expression	Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a\sin\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

V EXAMPLE I Evaluate
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$
.

SOLUTION Let $x=3\sin\theta$, where $-\pi/2 \le \theta \le \pi/2$. Then $dx=3\cos\theta\ d\theta$ and

$$\sqrt{9 - x^2} = \sqrt{9 - 9\sin^2\theta} = \sqrt{9\cos^2\theta} = 3|\cos\theta| = 3\cos\theta$$

(Note that $\cos\theta \ge 0$ because $-\pi/2 \le \theta \le \pi/2$.) Thus the Inverse Substitution Rule gives

$$\int \frac{\sqrt{9 - x^2}}{x^2} dx = \int \frac{3 \cos \theta}{9 \sin^2 \theta} 3 \cos \theta d\theta$$
$$= \int \frac{\cos^2 \theta}{\sin^2 \theta} d\theta = \int \cot^2 \theta d\theta$$
$$= \int (\csc^2 \theta - 1) d\theta$$
$$= -\cot \theta - \theta + C$$

We must return back to the original variable.

We must return back to the original variable. One way is to do by trigonometric identities using $x/3=\sin\theta$.

We must return back to the original variable. One way is to do by trigonometric identities using $x/3=\sin\theta$. Or by the diagram

From the diagram

$$\cot \theta = \frac{\sqrt{9-x^2}}{x}$$
 and $\theta = \sin^{-1}(x/3)$. So,

$$\int \frac{\sqrt{9 - x^2}}{x^2} dx = -\frac{\sqrt{9 - x^2}}{x} - \sin^{-1} \left(\frac{x}{3}\right) + C$$

EXAMPLE 2 Find the area enclosed by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

SOLUTION Solving the equation of the ellipse for y, we get

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} = \frac{a^2 - x^2}{a^2}$$
 or $y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$

Because the ellipse is symmetric with respect to both axes, the total area A is four times the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is given by the function

$$y = \frac{b}{a}\sqrt{a^2 - x^2} \qquad 0 \le x \le a$$

and so

$$\frac{1}{4}A = \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} \, dx$$

To evaluate this integral we substitute $x = a \sin \theta$. Then $dx = a \cos \theta \ d\theta$. To change the limits of integration we note that when x = 0, $\sin \theta = 0$, so $\theta = 0$; when x = a, $\sin \theta = 1$, so $\theta = \pi/2$. Also

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a \left| \cos \theta \right| = a \cos \theta$$

since $0 \le \theta \le \pi/2$. Therefore

$$A = 4\frac{b}{a} \int_0^a \sqrt{a^2 - x^2} \, dx = 4\frac{b}{a} \int_0^{\pi/2} a \cos \theta \cdot a \cos \theta \, d\theta$$
$$= 4ab \int_0^{\pi/2} \cos^2 \theta \, d\theta = 4ab \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$
$$= 2ab \left[\theta + \frac{1}{2} \sin 2\theta\right]_0^{\pi/2} = 2ab \left(\frac{\pi}{2} + 0 - 0\right) = \pi ab$$

We have shown that the area of an ellipse with semiaxes a and b is πab . In particular, taking a = b = r, we have proved the famous formula that the area of a circle with radius r is πr^2 .

V EXAMPLE 3 Find
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$
.

SOLUTION Let
$$x=2\tan\theta$$
, $-\pi/2<\theta<\pi/2$. Then $dx=2\sec^2\theta\,d\theta$ and
$$\sqrt{x^2+4}=\sqrt{4(\tan^2\theta+1)}=\sqrt{4\sec^2\theta}=2\,|\sec\theta|=2\sec\theta$$

Thus we have

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \int \frac{2 \sec^2 \theta \, d\theta}{4 \tan^2 \theta \cdot 2 \sec \theta} = \frac{1}{4} \int \frac{\sec \theta}{\tan^2 \theta} \, d\theta$$

To evaluate this trigonometric integral we put everything in terms of $\sin \theta$ and $\cos \theta$:

$$\frac{\sec \theta}{\tan^2 \theta} = \frac{1}{\cos \theta} \cdot \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\cos \theta}{\sin^2 \theta}$$

Therefore, making the substitution $u = \sin \theta$, we have

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \frac{1}{4} \int \frac{\cos \theta}{\sin^2 \theta} d\theta = \frac{1}{4} \int \frac{du}{u^2}$$
$$= \frac{1}{4} \left(-\frac{1}{u} \right) + C = -\frac{1}{4 \sin \theta} + C$$
$$= -\frac{\csc \theta}{4} + C$$

We use Figure 3 to determine that $\csc \theta = \sqrt{x^2 + 4}/x$ and so

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = -\frac{\sqrt{x^2 + 4}}{4x} + C$$

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = -\frac{\sqrt{x^2 + 4}}{4x} + C$$

EXAMPLE 5 Evaluate
$$\int \frac{dx}{\sqrt{x^2 - a^2}}$$
, where $a > 0$.

SOLUTION | We let $x=a\sec\theta$, where $0<\theta<\pi/2$ or $\pi<\theta<3\pi/2$. Then $dx=a\sec\theta$ tan $\theta\,d\theta$ and

$$\sqrt{x^2 - a^2} = \sqrt{a^2(\sec^2\theta - 1)} = \sqrt{a^2\tan^2\theta} = a|\tan\theta| = a\tan\theta$$

Therefore

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta}{a \tan \theta} d\theta$$
$$= \int \sec \theta d\theta = \ln|\sec \theta + \tan \theta| + C$$

The triangle in Figure 4 gives $\tan \theta = \sqrt{x^2 - a^2}/a$, so we have

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|\frac{x}{a} + \frac{\sqrt{x^2 - a^2}}{a}\right| + C$$
$$= \ln|x + \sqrt{x^2 - a^2}| - \ln a + C$$

Writing $C_1 = C - \ln a$, we have

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C_1$$

EXAMPLE 7 Evaluate
$$\int \frac{x}{\sqrt{3-2x-x^2}} dx$$
.

SOLUTION We can transform the integrand into a function for which trigonometric substitution is appropriate by first completing the square under the root sign:

$$3 - 2x - x^2 = 3 - (x^2 + 2x) = 3 + 1 - (x^2 + 2x + 1)$$
$$= 4 - (x + 1)^2$$

This suggests that we make the substitution u = x + 1. Then du = dx and x = u - 1, so

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx = \int \frac{u - 1}{\sqrt{4 - u^2}} \, du$$

We now substitute $u = 2 \sin \theta$, giving $du = 2 \cos \theta d\theta$ and $\sqrt{4 - u^2} = 2 \cos \theta$, so

$$\int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx = \int \frac{2\sin\theta - 1}{2\cos\theta} \, 2\cos\theta \, d\theta$$

$$= \int (2\sin\theta - 1) \, d\theta$$

$$= -2\cos\theta - \theta + C$$

$$= -\sqrt{4 - u^2} - \sin^{-1}\left(\frac{u}{2}\right) + C$$

$$= -\sqrt{3 - 2x - x^2} - \sin^{-1}\left(\frac{x + 1}{2}\right) + C$$

