CornellEngineering

Civil and Environmental Engineering

CEE 4540

Sustainable municipal drinking water treatment

Instruction: YuJung Chang

YuJung.Chang@cornell.edu

Class #4 09/10/2018 2:55 - 4:10pm

Quick Review: Intake; Screening; & Coagulation

Coagulation Type and Dosage Calculations

- Goal:
 - Form strong and settleable flocs
 - Remove enough % of Total Organic Carbon (TOC) for DBP control

- Consider the following WQ Parameters
 - Raw Water
 - Alkalinity (coagulants are usually acidic, could drive pH down and reduce H2CO3)
 - opH of finished water
 - TOC (how much TOC removal is required?)
 - Coagulated Water
 - Residual TOC level
 - Final pH may needs to be adjusted for downstream distribution system pipeline corrosion control
 - Jar testing and pilot testing are required

Jar Testing

- Establish testing matrix
 - pH range (e.g., pH 5 pH 10)
 - Coagulant dose range (e.g., 1 ppm to 10 ppm)
 - Polymer dose range (e.g., 0.1 ppm to 1 ppm)
- Add same quantity of water to each jar (2L)
- Turn on mixer to appropriate speed
 - Single speed if just for adsorption (e.g., TOC, arsenic, etc.)
 - Adjust speed based on G-force desired at various stage
- Add coagulant and adjust pH to each jar according to testing plan

Jar Testing (continued)

- Stop the mixer
- Take water sample from different depth after certain time to measure turbidity
- Filter water sample from each jar with 0.45 micron filters
- Analyze for TOC and/or other desired water quality parameters
- Plot testing results
 - TOC vs. coagulant dose
 - TOC vs. pH
 - Turbidity vs. coagulant dose
- Determine optimal coagulation scheme

Coagulation Chemistry

 Both Ferric and Aluminum based coagulants are "acidic" and will consume the alkalinity in the water; thereby lowering pH in the treated water

$$FeCl_3 + 3H_2O \rightarrow Fe(OH)_{3\downarrow} + \underline{3H^+} + 3Cl^-$$

$$\text{Fe}_2(\text{SO}_4)_3 \cdot 9\text{H}_2\text{O} \to 2\text{Fe}(\text{OH})_{3\downarrow} + 6\text{H}^+ + 3\text{SO}_4^{2-} + 3\text{H}_2\text{O}$$
 (9-13)

$$Al_2(SO_4)_3 \cdot 14H_2O \rightarrow 2Al(OH)_{3\downarrow} + \underline{6H^+} + 3SO_4^{2-} + 8H_2O$$
 (9-11)

of associated hydration water could change

Enhanced Coagulation

- Typical goal of coagulation is to achieve particle de-stabilization and sedimentation
- For public health protection from TTHM & HAAs, Enhanced Coagulation is required to remove certain % of TOC from the water. Coagulant dose will be higher that what's required for particle de-stabilization. Actual TOC removal % depending water alkalinity. Water with lower pH can remove more TOC, and water with lower alkalinity is easier to adjust pH lower either with acid or with coagulant itself (FeCl₃ and Al₂ (SO₄)₃ are acidic).

Table 3-3 Required Removal of Total Organic Carbon by Enhanced Coagulation and Enhanced Softening for Step 1 Compliance						
Source Water TOC	Source Water Alkalinity (mg/L as CaCO ₃)					
(mg/L)	0-60	>60–120	>120			
>2.0-4.0	35.0%	25.0%	15.0%			
>4.0–8.0	45.0%	35.0%	25.0%			
>8.0	50.0%	40.0%	30.0%			

Sludge Production

- Enhanced Coagulation could lead to additional sludge generated
- Solid calculations

Homework: Calculate solid generation from coagulation using ferric chloride

- Plant Capacity: 10 mgd
- Coagulant dose is 10 mg/L as FeCl₃
- Assume water content in the dewatered sludge is 75%
 Q: How many lbs of dewatered solid will be generated daily?

Hint: Mwt. for Fe is 55.85 and Mwt. For Cl is 35.45. When FeCl3 is hydrolyzed ferric hydroxides solid $Fe(OH)_3$ is formed.

Steps of Flocculation

- Perkinetic/Microscale Flocculation (Browning Motion)
 - Aggregation of micro particles (in seconds)
- Orthokinetic/Macroscale Flocculation assisted with mixing energy

- Mechanical

Pitched-blade turbine

14

Mechanical Mixing to Facilitate Flocculation

- Agitators shall be used to assist flocculation at different stages without breaking larger flocs
- Tapered mixing speed. Driven by variable speed drives with the peripheral speed of paddles ranging from 0.5 to 3.0 feet per second; faster at the front & slower in the back

Flocculation Basin

- The flocs are getting larger and larger as it passes from stage to stage.
- The mixing intensity is generally reduced as flow passes through the compartments
- Overall detention time is around 30 min with a flow-through velocity of 0.5 1.5
 ft/min

Flocculation

Hydraulic Flocculators

Horizontal Shaft Flocculation

Vertical Turbine Flocculation

Hydraulic Flocculation

Selection of Proper Flocculation Approach

Include justification in your design

Table 9-10Comparison of basic approaches to flocculation

Process Issue	Horizontal Shaft with Paddles	Vertical-Shaft Turbines	Hydraulic Flocculation
Type of floc produced Head loss Operational flexibility Capital cost Construction difficulty Maintenance effort Compartmentalization	Large and fluffy None Good, limited to low \overline{G} Moderate to high Moderate Moderate Moderate compartmentalization	Small to medium, dense None Excellent Moderate Easy to moderate Low to moderate Excellent compartmentalization	Very large and fluffy 0.05-0.15 m Moderate to poor Low to moderate Easy to difficult Low to moderate Excellent compartmentalization, some designs nearly plug flow

Typical design criteria for mechanical flocculators

Table 9-11
Typical design criteria for horizontal-shaft paddles and vertical-shaft turbines

Design Parameter	Unit	Horizontal Shaft with Paddles	Vertical-Shaft Turbines
Velocity gradient, \overline{G} Tip speed, maximum Rotational speed Compartment ^a dimensions (plan)	s ⁻¹	5–40	10-80
	m/s	<0.5	1-3
	rev/min	0.5–3	5-20
Width Length Number of stages Variable-speed drives	m	3-25	3–8
	m	3-8	3–8
	No.	2-6	2–4
	—	Common	Common

^aThe compartment is the region influenced by an individual flocculator. Horizontal-shaft flocculators often have multiple paddle wheel assemblies on a single flocculator shaft. Vertical turbine flocculators may or may not have baffle walls between the compartments in a single stage.

Horizontal Shaft Flocculation

Vertical Turbine Flocculation

Hydraulic Flocculation

