Package 'fnets'

December 31, 2021

Title Factor-adjusted Network Estimation and Forecasting for High-dimensional Time Series Version 0.1.0
Maintainer Haeran Cho <haeran.cho@bristol.ac.uk></haeran.cho@bristol.ac.uk>
Description Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model.
Depends R (>= 3.1.2)
Imports lpSolve, parallel, doParallel, foreach, MASS, fields, igraph, RColorBrewer
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
common.predict 2 fit.var 3 fnets 5 hl.factor.number 7 idio.predict 8 npar.lrpc 9 par.lrpc 10 plot.fnets 12 predict.fnets 13 sim.common1 14 sim.common2 15 sim.var 16
Index 17

2 common.predict

common.predict

Forecasting the factor-driven common component

Description

Produces forecasts of the common component for a given forecasting horizon by estimating the best linear predictors

Usage

```
common.predict(
  object,
  x,
  h = 1,
  common.method = c("restricted", "unrestricted"),
  r = NULL
)
```

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method

a string specifying the method for common component forecasting; possible

values are:

- "restricted" performs forecasting under a restrictive static factor model
- "unrestricted" performs forecasting under an unrestrictive, blockwise VAR representation of the common component

r

number of static factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein (2013)

Value

a list containing

is in-sample estimator of the common component

fc forecasts of the common component for a given forecasting horizon h

r static factor number
h forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

fit.var 3

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M. & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$$\$$$$data + idio$$$$data
out <- fnets(x, q = NULL, idio.var.order = 1, idio.method = "lasso", lrpc.method = "none")
cpre <- common.predict(out, x, h = 1, common.method = 'restricted', r = NULL)
ipre <- idio.predict(out, x, cpre, h = 1)</pre>
```

fit.var

11-regularised Yule-Walker estimation for VAR processes

Description

Estimates the VAR parameter matrices via 11-regularised Yule-Walker estimation and innovation covariance matrix via constrained 11-minimisation.

Usage

```
fit.var(
    x,
    center = TRUE,
    method = c("lasso", "ds"),
    lambda = NULL,
    var.order = 1,
    cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
    n.iter = 100,
    tol = 0,
    n.cores = min(parallel::detectCores() - 1, 3)
}
```

Arguments

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

method a string specifying the method to be adopted for VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

lambda regularisation parameter; if lambda = NULL, cross validation is employed to select the parameter

fit.var

var.order	order of the VAR process; if a vector of integers is supplied, the order is chosen via cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the regularisation parameter (and VAR order). It contains:
	• n.folds number of folds
	• path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
	• do.plot whether to plot the output of the cross validation step
n.iter	maximum number of descent steps; applicable when method = "lasso"
tol	<pre>numerical tolerance for increases in the loss function; applicable when method = "lasso"</pre>
n.cores	number of cores to use for parallel computing, see makePSOCKcluster ; applicable when method = "ds"

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

a list which contains the following fields:

beta	estimate of VAI	parameter matrix	: each column o	contains par	ameter estimates

for the regression model for a given variable

Gamma estimate of the innovation covariance matrix

lambda regularisation parameter

var.order VAR order

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
idio <- sim.var(n, p)
x <- idio$data

fv <- fit.var(x, center = TRUE, method = 'lasso', var.order = 1)
norm(fv$beta - t(idio$A), 'F')/norm(t(idio$A), 'F')</pre>
```

fnets 5

fnets

Factor-adjusted network estimation

Description

Operating under factor-adjusted vector autoregressive (VAR) model, the function estimates the spectral density and autocovariance matrices of the factor-driven common component and the idiosyncratic VAR process, the impulse response functions and common shocks for the common component, and VAR parameters, innovation covariance matrix and long-run partial correlations for the idiosyncratic component.

Usage

```
fnets(
 х,
  center = TRUE,
  q = NULL,
  ic.op = 5,
  kern.const = 4,
 common.args = list(var.order = NULL, max.var.order = NULL, trunc.lags = 20, n.perm =
  idio.var.order = 1,
  idio.method = c("lasso", "ds"),
 lrpc.method = c("par", "npar", "none"),
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE)
)
```

Arguments

input time series matrix, with each row representing a variable Х center whether to de-mean the input x row-wise number of factors. If q = NULL, the factor number is estimated by an information q criterion-based approach of Hallin and Liška (2007), see hl.factor.number for further details choice of the information criterion, see hl.factor.number for further details ic.op kern.const constant multiplied to floor($(\dim(x)[2]/\log(\dim(x)[2]))^{(1/3)}$) which determines the kernel bandwidth for dynamic PCA common.args a list specifying the tuning parameters required for estimating the impulse re-

- sponse functions and common shocks. It contains:
 - var. order order of the blockwise VAR representation of the common component. If var. order = NULL, it is selected blockwise by Schwarz criterion
 - max.var.order maximum blockwise VAR order for the Schwarz criterion
 - trunc.lags truncation lag for impulse response function estimation
 - n.perm number of cross-sectional permutations involved in impluse response function estimation

idio.var.order order of the idiosyncratic VAR process; if a vector of integers is supplied, the order is chosen via cross validation

6 fnets

idio.method

a string specifying the method to be adopted for idiosyncratic VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

1rpc.method

a string specifying the type of estimator for long-run partial correlation matrix estimation; possible values are:

- "par" parametric estimator based on the VAR model assumption
- "npar" nonparametric estimator from inverting the long-run covariance matrix of the idiosyncratic component via constrained 11-minimisation
- "none" do not estimate the long-run partial correlation matrix

cv.args

a list specifying arguments for the cross validation procedures for selecting the tuning parameters involved in VAR parameter and (long-run) partial correlation matrix estimation. It contains:

- n.folds number of folds
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

Details

See Barigozzi, Cho and Owens (2021) for further details.

Value

an S3 object of class fnets, which contains the following fields:

q number of factors

spec a list containing estimates of the spectral density matrices for x, common and

idiosyncratic components

acv a list containing estimates of the autocovariance matrices for x, common and

idiosyncratic components

common.irf if q >= 1, a list containing estimators of the impulse response functions (as an

array of dimension (p,q,trunc.lags + 2)) and common shocks (an array of

dimension (q,n)) for the common component

idio.var a list containing the following fields:

• beta estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable

- Gamma estimate of the innovation covariance matrix
- lambda regularisation parameter
- var.order VAR order

lrpc see the output of par.lrpc if lrpc.method = 'par' and that of npar.lrpc if lrpc.method

= 'npar'

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

idio.method input parameter
lrpc.method input parameter
kern.const input parameter

hl.factor.number 7

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

See Also

predict.fnets, plot.fnets

Examples

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$\frac{1}{2} \text{dio}$. \text{var} \text{order} = 1, idio.method = "lasso",
lrpc.method = "par", cv.args = list(n.folds = 1, path.length = 10, do.plot = TRUE))
pre <- predict(out, x, h = 1, common.method = 'unrestricted')
plot(out, type = 'granger', display = 'network', threshold = .05)
plot(out, type = 'lrpc', display = 'heatmap', threshold = .05)
## End(Not run)</pre>
```

hl.factor.number

Factor number estimator of Hallin and Liška (2007)

Description

Estimates the number of factors by minimising an information criterion over sub-samples of the data. Currently the three information criteria proposed in Hallin and Liška (2007) (ic.op = 1,2 or 3) and their variations with logarithm taken on the cost (ic.op = 4,5 or 6) are implemented, with ic.op = 5 recommended as a default choice based on numerical experiments.

Usage

```
hl.factor.number(x, q.max = NULL, mm, w = NULL, do.plot = FALSE, center = TRUE)
```

Arguments

X	input time series matrix, with each row representing a variable
q.max	maximum number of factors; if q.max = NULL, a default value is selected as $min(50,floor(sqrt(min(dim(x)[2]-1,dim(x)[1]))))$
mm	integer representing the kernel bandwidth
W	vector of length $2 * mm + 1$ containing symmetric weights; if $w = NULL$, default weights are generated using the Bartlett kernel and mm
do.plot	whether to plot the values of six information criteria
center	whether to de-mean the input x row-wise

8 idio.predict

Details

See Hallin and Liška (2007) for further details.

Value

a list containing

q.hat a vector containing minimisers of the six information criteria

Gamma $_x$ an array containing the estimates of the autocovariance matrices of x at 2 * mm +

1 lags

Sigma_x an array containing the estimates of the spectral density matrices of x at 2 * mm

+ 1 Fourier frequencies

sv a list containing the singular value decomposition of Sigma_x

References

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Examples

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
common <- sim.common2(n, p)
idio <- sim.var(n, p)
x <- common$\data * apply(idio$\data, 1, sd)/apply(common$\data, 1, sd) + idio$\data
hl <- hl.factor.number(x, q.max = NULL, mm = floor(4 * (n/log(n))^(1/3)), do.plot = TRUE)
hl$q</pre>
```

idio.predict

Forecasting idiosyncratic VAR process

Description

Produces forecasts of the idiosyncratic VAR process for a given forecasting horizon by estimating the best linear predictors

Usage

```
idio.predict(object, x, cpre, h = 1)
```

Arguments

object fnets object

x input time series matrix, with each row representing a variable

cpre output of common.predict

h forecast horizon

npar.lrpc 9

Value

a list containing

is in-sample estimator of the idiosyncratic component

fc forecasts of the idiosyncratic component for a given forecasting horizon h

h forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

npar.lrpc

Nonparametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a nonparametric estimate of long-run partial correlations of the VAR process from the inverse of long-run covariance matrix obtained via constrained 11-minimisation.

Usage

```
npar.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  correct.zero = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

```
object fnets object

x input time series matrix; with each row representing a variable

eta regularisation parameter; if eta = NULL, it is selected by cross validation
```

10 par.lrpc

cv.args

a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:

- n.folds number of folds
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

correct.zero

whether to correct for any zero-entries in the diagonals of the inverse of long-run

covariance matrix

n.cores

number of cores to use for parallel computing, see makePSOCKcluster

Value

a list containing

Omega estimated inverse of the long-run covariance matrix

1rpc estimated long-run partial correlation matrix

eta regularisation parameter

Examples

par.lrpc

Parametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a parametric estimate of long-run partial correlations of the VAR process from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained 11-minimisation.

par.lrpc 11

Usage

```
par.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  correct.zero = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object
x	input time series matrix; with each row representing a variable
eta	regularisation parameter; if eta = NULL, it is selected by cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:
	 n. folds number of folds path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value do.plot whether to plot the output of the cross validation step
correct.zero	whether to correct for any zero-entries in the diagonals of the inverse of long-run covariance matrix
n.cores	number of cores to use for parallel computing, see makePSOCKcluster

Details

See Barigozzi, Cho and Owens (2021) for further details.

Value

a list containing

Delta estimated inverse of the innovation covariance matrix

Omega estimated inverse of the long-run covariance matrix

pc estimated innovation partial correlation matrix

lrpc estimated long-run partial correlation matrix

eta regularisation parameter

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

12 plot.fnets

Examples

plot.fnets

Plotting the networks estimated by fnets

Description

Plotting method for S3 objects of class fnets. Produces a plot visualising three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices aggregated across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes.

Usage

```
## S3 method for class 'fnets'
plot(
    x,
    type = c("granger", "pc", "lrpc"),
    display = c("network", "heatmap"),
    names = NA,
    groups = NA,
    threshold = 0,
    ...
)
```

Arguments

x fnets object

type

a string specifying which of the above three networks (i)–(iii) to visualise; possible values are

- "granger" directed network representing Granger causal linkages
- "pc" undirected network representing contemporaneous linkages; available when x\$1rpc.method = "par"

predict.fnets 13

• "lrpc" undirected network summarising Granger causal and contemporaneous linkages; available when x\$lrpc.method = "par" or x\$lrpc.method = "npar"

display

a string specifying how to visualise the network; possible values are:

- "network" as an igraph object, see plot.igraph
- "heatmap" as a heatmap, see imagePlot

names a character vector containing the names of the vertices

groups an integer vector denoting any group structure of the vertices

threshold if threshold > 0, hard thresholding is performed on the matrix giving rise to

the network of interest

.. additional arguments

Details

See Barigozzi, Cho and Owens (2021) for further details.

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

See Also

fnets

predict.fnets

Forecasting by fnets

Description

Produces forecasts of the data for a given forecasting horizon by separately estimating the best linear predictors of common and idiosyncratic components

Usage

```
## S3 method for class 'fnets'
predict(
  object,
    x,
    h = 1,
    common.method = c("restricted", "unrestricted"),
    r = NULL,
    ...
)
```

sim.common1

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible values are:

• "restricted" performs forecasting under a restrictive static factor model

• "unrestricted" performs forecasting under an unrestrictive, blockwise

VAR representation of the common component

number of static factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein

(2013)

... not used

Value

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component idio.pred a list containing forecasting results for the idiosyncratic component

mean.x mean.x argument from object

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

See Also

fnets, common.predict, idio.predict

sim.common1	Simulate data from a dynamic factor model	
-------------	---	--

Description

Simulate the common component following a dynamic factor model that does not admit a static representation; see the model (C1) in the reference.

Usage

```
sim.common1(n, p, q = 2, heavy = FALSE)
```

sim.common2 15

Arguments

n	sample size
p	dimension

q number of dynamic factors

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series q number of factors

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

```
common <- sim.common1(500, 50)</pre>
```

sim.common2

Simulate data from a static factor model

Description

Simulate the common component following a dynamic factor model that admits a static representation; see the model (C2) in the reference.

Usage

```
sim.common2(n, p, q = 2, heavy = FALSE)
```

Arguments

n sample size p dimension

q number of dynamic factors; number of static factors is given by 2 * q

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated seriesq number of factorsr number of static factors

16 sim.var

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

```
common <- sim.common2(500, 50)</pre>
```

sim.var

Simulate a VAR(1) process

Description

Simulate a VAR(1) process; see the reference for the generation of the transition matrix.

Usage

```
sim.var(n, p, Gamma = diag(1, p), heavy = FALSE)
```

Arguments

n sample size p dimension

Gamma innovation covariance matrix; ignored if heavy = TRUE

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
A transition matrix

Gamma innovation covariance matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

```
idio <- sim.var(500, 50)
```

Index

```
common.predict, 2, 8, 14

fit.var, 3
fnets, 5, 13, 14

hl.factor.number, 5, 7

idio.predict, 8, 14
imagePlot, 13

makePSOCKcluster, 4, 10, 11

npar.lrpc, 6, 9

par.lrpc, 6, 10
plot.fnets, 7, 12
plot.igraph, 13
predict.fnets, 7, 13

sim.common1, 14
sim.common2, 15
sim.var, 16
```