

TEST REPORT

Product : Microlife Bluetooth® Patch Thermometer

Trade mark : microlife

Model/Type reference : MT0PC1, PT200

Serial Number : N/A

Report Number : EED32L00008301

FCC ID : U7I-MT0PC1

Date of Issue : Jan. 28, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Peter

Compiled by:

<u>ev in lan</u> Kevin lan

Reviewed by:

Tom chen

Date:

Jan. 28, 2019

D = 10-

Kevin yang

Check No.: 3570141998

Page 2 of 39

2 Version

Version No.	Date	Description
00	Jan. 28, 2019	Original

Page 3 of 39

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

N/A:The device is only battery operated, the test related AC mains is not applicable.

Model No.: MT0PC1, PT200

Only the model MT0PC1 was tested, since the electrical circuit design, layout, components used, internal wiring, software and outer decoration were identical for the above models, with difference being model name.

4 Content

•				
1 CC	OVER PAGE			1
2 VE	RSION			
3 TE	ST SUMMARY			
4 CC	ONTENT			2
5 TE	ST REQUIREMENT			
5.	1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 2 TEST ENVIRONMENT 3 TEST CONDITION			
6 GE	ENERAL INFORMATION			7
6. 6. 6. 6. 6.	1 CLIENT INFORMATION	STANDARD		
	QUIPMENT LIST	and the second		
8 R.A	ADIO TECHNICAL REQUIREMENTS SPECIF	ICATION		11
	Appendix A): 6dB Occupied Bandwidth	rEmissionsionsmental frequency (Radi	ated)	
PHC	TOGRAPHS OF TEST SETUP			29
PHC	TOGRAPHS OF EUT CONSTRUCTIONAL D	DETAILS		31

Page 5 of 39

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment for RF test:				
Temperature:	27°C			
Humidity:	52% RH			
Atmospheric Pressure:	101kPa			

5.3 Test Condition

Test channel:

Toot Mode	Ty/Dy	RF Channel		
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)
CECK	2402MU= - 2490 MU=	Channel 1	Channel 20	Channel 40
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Page 7 of 39

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer: ONBO Electronic (Shenzhen) Co., Ltd.	
Address of Manufacturer:	No. 138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory: ONBO Electronic (Shenzhen) Co., Ltd.	
Address of Factory:	No. 138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

6.2 General Description of EUT

Product Name:	Microlife Bluetooth® Patch Thermometer		
Model No.:	MT0PC1, PT200	(6.)	
Test Model No.:	MT0PC1		
Trade mark:	microlife		
EUT Supports Radios application:	BT 4.0 Single mode, 2402-2480MHz		(61)
Power Supply:	Button battery (CR 2032) 3V		
Sample Received Date:	Jan. 10, 2019		
Sample tested Date:	Jan. 16, 2019 to Jan. 23, 2019	_0_	

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz				
Bluetooth V	ersion:	4.0					
Modulation	Technique:	DSSS	-0.0				-0-
Modulation	Type:	GFSK		\	(4)		
Number of	1654	40	(0)	/	(6)		(6)
Test Power	· Grade:	N/A					
Test Softwa	are of FUT:	N/A					
Antenna Ty		PCB Prin	nted Antenna	(A)	\	13	\
Antenna Ga		-6.2853d	Bi	(0))	(6))
Test Voltag							
	requency eac			,			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Padiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Page 9 of 39

7 Eq<u>uipment List</u>

	RF test system					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020	
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019	

Page 10 of 39

	3M S	emi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
			100938-0		
Receiver Multi device	R&S	ESCI7 NCD/070/107	03	11-23-2018	11-22-2019
Controller	maturo	11112		01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Results List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6536	1.1079	PASS
BLE	МСН	0.6931	1.1318	PASS
BLE	нсн	0.6861	1.1369	PASS

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.515	PASS
BLE	MCH	-4.697	PASS
BLE	НСН	-5.487	PASS

Page 16 of 39

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.618	-60.747	-23.62	PASS
BLE	нсн	-5.806	-55.083	-25.81	PASS

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.629	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.819	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-5.639	<limit< td=""><td>PASS</td></limit<>	PASS

Page 18 of 39

Page 19 of 39

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-16.064	8	PASS
BLE	MCH	-16.941	8	PASS
BLE	НСН	-17.887	8	PASS

Page 21 of 39

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Printed Antenna and no consideration of replacement. The best case gain of the antenna is -6.2853dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

		1 22			27.1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 21/2 4 C 1 I =	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	105
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the antenna was turned from 0 deg e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest	ure as below: on the top of a rochoic camber. The of the highest rate away from op of a variable-hovaried from one movement of the first are set to mission, the EUT to heights from the rees to 360 degreem was set to Perum Hold Mode, and of the restrict of the restrict of the modern of the restrict of the modern of the restrict of the restrict of the modern of the restrict of the restrict of the modern of the restrict of the restrict of the modern of the	tating table was adiation. the interfer neight ante meter to found to be a considered to the constant of the c	e 0.8 meter as rotated 3 ence-recei nna tower. bur meters n. Both hor neasurement aged to its v 4 meters a the maxin Function a	rs above the gas of the growing antenna above the growing antenna above the growing and the rotate and the rotate and specified the transmit is in the restricts.	o, which which which will be the white whi
	g. Different between above to fully Anechoic Chammats 18GHz the distance is h. Test the EUT in the load. The radiation measure Transmitting mode, an j. Repeat above procedure.	ve is the test site aber change form 1 meter and tabl bwest channel, to ements are performed found the X ax	n table 0.8 e is 1.5 me the Highes rmed in X, kis position	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse cas	ove
_imit:	Frequency	Limit (dBµV/	/m @3m)	Rei	mark	
	30MHz-88MHz	40.0)	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	216MHz-960MHz	46.0)	Quasi-pe	eak Value	
	960MHz-1GHz	54.0)	Quasi-pe	eak Value	
	(4)	54.0) (4	Averag	je Value	
	Above 1GHz	74.0		Peak	Value	
est Ambient:	Temp.: 20°C	lumid.: 58%		Press.: 1	01kPa	

Page 24 of 39

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	46.94	50.12	74.00	23.88	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	80.31	83.45	74.00	-9.45	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

N	О	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-42.44	46.99	50.17	74.00	23.83	Pass	Vertical
2	2	2401.7897	32.26	13.31	-42.43	69.42	72.56	74.00	1.44	Pass	Vertical

Page 25 of 39

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	78.09	81.46	74.00	-7.46	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	47.09	50.45	74.00	23.55	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2566	32.37	13.39	-42.40	69.97	73.33	74.00	0.67	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	46.72	50.08	74.00	23.92	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 26 of 39

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
(6)	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 20°C Humid.: 58% Press.: 101kPa

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

Mod	e:	GFSK Tra	nsmitting			Channel:		2480				
Ren	nark:		QP									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	51.8272	12.91	0.81	-32.10	33.26	14.88	40.00	25.12	Pass	Horizontal		
2	127.9798	8.00	1.32	-32.02	36.41	13.71	43.50	29.79	Pass	Horizontal		
3	200.2520	10.91	1.67	-31.94	36.12	16.76	43.50	26.74	Pass	Horizontal		
4	336.0656	13.99	2.18	-31.79	32.78	17.16	46.00	28.84	Pass	Horizontal		
5	687.5318	19.70	3.14	-32.06	37.40	28.18	46.00	17.82	Pass	Horizontal		
6	969.9270	22.52	3.74	-31.02	30.28	25.52	54.00	28.48	Pass	Horizontal		
7	55.4165	12.33	0.84	-32.07	40.93	22.03	40.00	17.97	Pass	Vertical		
8	184.3424	9.41	1.59	-31.98	37.89	16.91	43.50	26.59	Pass	Vertical		
9	200.2520	10.91	1.67	-31.94	46.63	27.27	43.50	16.23	Pass	Vertical		
10	208.8859	11.13	1.71	-31.94	43.47	24.37	43.50	19.13	Pass	Vertical		
11	270.0020	12.60	1.96	-31.88	36.12	18.80	46.00	27.20	Pass	Vertical		
12	687.5318	19.70	3.14	-32.06	34.97	25.75	46.00	20.25	Pass	Vertical		

Transmitter Emission above 1GHz

Mode:			GFSK ⁻	Transmitti	ng		Channel: 2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1831.4831	30.59	3.36	-42.70	51.75	43.00	74.00	31.00	Pass	Н	PK
2	3486.2324	33.39	4.47	-41.82	50.27	46.31	74.00	27.69	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	62.04	60.43	74.00	13.57	Pass	Н	PK
4	4804.0000	34.50	4.55	-40.66	39.88	38.27	54.00	15.73	Pass	Н	AV
5	6371.7748	35.87	5.39	-41.16	48.17	48.27	74.00	25.73	Pass	Н	PK
6	7206.0000	36.31	5.81	-41.02	47.24	48.34	74.00	25.66	Pass	Н	PK
7	9608.0000	37.64	6.63	-40.76	51.23	54.74	74.00	19.26	Pass	Н	PK
8	9608.0000	37.64	6.63	-40.76	35.08	38.59	54.00	15.41	Pass	Н	AV
9	1799.0799	30.37	3.32	-42.71	50.16	41.14	74.00	32.86	Pass	V	PK
10	3170.9614	33.27	4.60	-42.02	49.41	45.26	74.00	28.74	Pass	V	PK
11	4804.0000	34.50	4.55	-40.66	62.01	60.40	74.00	13.60	Pass	V	PK
12	4804.0000	34.50	4.55	-40.66	39.92	38.31	54.00	15.69	Pass	V	AV
13	6309.3706	35.86	5.46	-41.15	46.44	46.61	74.00	27.39	Pass	V	PK
14	7206.0000	36.31	5.81	-41.02	49.79	50.89	74.00	23.11	Pass	V	PK
15	9608.0000	37.64	6.63	-40.76	50.84	54.35	74.00	19.65	Pass	V	PK
16	9608.0000	37.64	6.63	-40.76	35.66	39.17	54.00	14.83	Pass	V	AV

Page	28	of 39
raye	20	01 39

Mode	e:		GFSK Transmi		nsmitting		Channel:	2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2046.7047	31.77	3.55	-42.59	51.12	43.85	74.00	30.15	Pass	Н	PK
2	3083.8556	33.23	4.76	-42.07	50.89	46.81	74.00	27.19	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	57.84	56.54	74.00	17.46	Pass	Н	PK
4	4880.0000	34.50	4.80	-40.60	37.66	36.36	54.00	17.64	Pass	Н	AV
5	6169.6113	35.83	5.24	-41.12	47.90	47.85	74.00	26.15	Pass	Н	PK
6	7320.0000	36.42	5.85	-40.92	44.57	45.92	74.00	28.08	Pass	Н	PK
7	9760.0000	37.70	6.73	-40.62	44.65	48.46	74.00	25.54	Pass	Н	PK
8	2058.1058	31.78	3.56	-42.58	51.63	44.39	74.00	29.61	Pass	V	PK
9	3109.2073	33.24	4.69	-42.05	50.49	46.37	74.00	27.63	Pass	V	PK
10	4880.0000	34.50	4.80	-40.60	56.13	54.83	74.00	19.17	Pass	V	PK
11	4880.0000	34.50	4.80	-40.60	37.66	36.36	54.00	17.64	Pass	V	AV
12	5906.3438	35.65	5.09	-41.00	47.96	47.70	74.00	26.30	Pass	V	PK
13	7320.0000	36.42	5.85	-40.92	45.84	47.19	74.00	26.81	Pass	V	PK
14	9760.0000	37.70	6.73	-40.62	45.87	49.68	74.00	24.32	Pass	V	PK

Mode	e:		GFSK T	Transmitti	ng		Channel:	2480	2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2042.1042	31.76	3.55	-42.60	50.82	43.53	74.00	30.47	Pass	Н	PK
2	3815.1543	33.65	4.37	-41.17	48.87	45.72	74.00	28.28	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	52.74	51.53	74.00	22.47	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	37.01	35.80	54.00	18.20	Pass	Н	AV
5	6054.5536	35.81	5.21	-41.10	48.51	48.43	74.00	25.57	Pass	Н	PK
6	7440.0000	36.54	5.85	-40.82	44.69	46.26	74.00	27.74	Pass	Н	PK
7	9920.0000	37.77	6.79	-40.48	43.34	47.42	74.00	26.58	Pass	Н	PK
8	2102.9103	31.84	3.58	-42.56	51.09	43.95	74.00	30.05	Pass	V	PK
9	3104.0069	33.24	4.71	-42.06	49.77	45.66	74.00	28.34	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	52.15	50.94	74.00	23.06	Pass	V	PK
11	5962.8975	35.74	5.33	-41.06	48.04	48.05	74.00	25.95	Pass	V	PK
12	7440.0000	36.54	5.85	-40.82	45.26	46.83	74.00	27.17	Pass	V	PK
13	9920.0000	37.77	6.79	-40.48	44.74	48.82	74.00	25.18	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 29 of 39

PHOTOGRAPHS OF TEST SETUP

Test model No.: MT0PC1

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 30 of 39

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Close-up)

Page 31 of 39

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: MT0PC1

View of Product-1

Page 32 of 39

View of Product-3

View of Product-4

Page 33 of 39

microlife

View of Product-6

23 24

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-11

View of Product-12

View of Product-13

View of Product14

View of Product-15

View of Product-16

View of Product-17

View of Product-18

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.