LATEX Workshop Exercise Sheet

December 2022

Exercise 1: Reproduce the following: A **number** is a mathematical object used to count, measure, and label. The original examples are the natural numbers $\underline{1, 2, 3, 4}$, and so forth. Other categories of numbers include:

• Rational numbers: $\frac{1}{2}$

• Transcendental numbers: π

• Irrational numbers: $\sqrt{2}$, $\sqrt[3]{2}$

• Real numbers: 1

• Complex numbers: a + bi

Exercise 2: Reproduce the following:

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in \mathbb{R}) (0 < |x - p| < \delta \implies |f(x) - L| < \varepsilon)$$

Exercise 3: Reproduce the following (the images can be found here and here):

Figure 1: Truer words have never been spoken.

×	1	i	j	k
1	1	i	j	k
i	i	-1	-k	-j
j	j	-k	-1	i
k	k	j	-i	-1

Table 1: Quaterinon multiplication table

Exercise 4: Math expression

$$\exists n \ge 3, x, y, z \in \mathbb{N} \mid x^n + y^n = z^n \tag{1}$$

This result follows naturally from the argument in Figure $\ref{eq:condition}$, and we leave it as an exercise to the reader.

Exercise 5: Matrices and Tables

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix} = \alpha \times \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \beta \times \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix}$$

Exercise 6: Prove that if n^2 is even, then n is even.

Challenge: Let A be the set of solvable problems in polynomial time by a deterministic Turing machine and B the set of solvable problems in polynomial time by a non-deterministic Turing machine. Is A = B? **Reward:** ≤ 100