We claim:

1	1. A method for visually configuring a product by placing a plurality of
2	selectable components into a plurality of slots, comprising:
3	(a) initializing a configuration layout with proper state;
4	(b) receiving a selection of one of the plurality of selectable objects, and of one of
5	the plurality of slots in which the selected object may be placed;
6	(c) providing visual feedback indicating a validity of the selections;
7	(d) receiving a placement of the selected object;
8	(e) receiving input regarding the placement from a remote inference engine;
9	(f) updating the visual feedback as needed based on the received input; and
10	(g) repeating steps (b) through (f) until no more selections are received.
1	2. A method for visually configuring a product by placing a plurality of
2	selectable components into a plurality of slots, comprising:
3	(a) initializing a configuration layout with proper state;
4	(b) receiving a selection of one of the plurality of selectable objects, and of one of
5	the plurality of slots in which the selected object may be placed;
6	(c) looking up a set of constraints on the placement of the selected object;
7	(d) receiving a placement of the selected object;
8	(e) receiving input regarding the placement from a remote inference engine;
9	(f) implementing the received input;
10	(g) storing a new set of constraints based on the placement of the selected

11		object; and
12	(h) rep	eating steps (b) through (g) until no more selections are received.
1	3.	The method of claim 2, further comprising:
2	transm	itting information regarding the placement of the object to the inference
3		engine.
· 1	4.	The method of claim 2, wherein the step of looking up constraints
2	comprises loo	king up a forward-looking rules table.
1	5.	The method of claim 4, wherein the step of storing a new set of constraints
2	comprises stor	ring a new forward-looking rules table.
1	6.	The method of claim 2, wherein the input is received from an inference
2	engine.	
1	7.	The method of claim 2, wherein the selection of one of the plurality of
2	selectable obje	ects, and of a slot in which the selected object may be placed, is received
3	via a user inte	rface.
1	8.	The method of claim 2, wherein the received input is implemented in a
2	user interface.	
1	9.	A system for visually configuring a product from a plurality of selectable
2	components, c	comprising:

3	a user interface for displaying the plurality of selectable components and a
4	plurality of slots into which the plurality of selectable components can be
5	placed and
6	a user intelligence communicatively coupled to the user interface, for receiving a
7	set of constraints from a remote inference engine and implementing the set
8	of constraints.
1	10. The system of claim 9, wherein the visual user interface comprises:
2	donors depicting the plurality of selectable components;
3	receptors depicting the plurality of slots into which the donors can be placed;
4	a graphical manipulation enabler for implementing drag and drop behavior of the
5	donors into the receptors; and
6	a configuration conflicts displayer, for updating a visual display responsive to at
7	least one of the plurality of donors being put into at least one of the
8	plurality of slots such that at least one constraint stored on the user
9	intelligence is violated.
1	The system of claim 9, wherein the user intelligence comprises:
2	an interpretor for receiving a set of constraints from an inference engine;
3	a storage for storing the set of constraints;
4	an implementor for implementing the forward-looking rules stored in the table;
5	and
6 ·	an encoder for encoding and sending data regarding a user's current selection

7	from the plurality of donors and the plurality of receptors to the inference
8	engine.
1	12. A system for visually configuring a product from a plurality of selectable
2	components, comprising:
3	on a client device:
4	a visual user interface for displaying the plurality of selectable
5	components and a plurality of slots into which the plurality of
6	selectable components can be placed;
7	a user intelligence communicatively coupled to the visual user interface
8	for determining, by using a forward-looking rules table, the
9	validity of placement of one of the plurality of selectable
10	components into one of the plurality of slots; and
11	on a remote host device:
12	an inference engine communicatively coupled to the user intelligence, for
13	storing rules and constraints governing placement of the plurality
14	of selectable components, and for generating the forward-looking
15	rules table.
1	13. The system of claim 12, wherein the client device further comprises a web
1	13. The system of claim 12, wherein the client device further comprises a web
2	browser which is communicatively coupled to the remote host device via a network
3	service.

1	14. A computer program embodied in a tangible medium and capable of being
2	executed by a computer for performing a method for visually configuring a product by
3	placing a plurality of selectable components into a plurality of slots, comprising:
4	(a) initializing a configuration layout with proper state;
5	(b) receiving a selection of one of the plurality of selectable objects, and of one of
6	the plurality of slots in which the selected object may be placed;
7	· (c) providing visual feedback indicating a validity of the selections;
8	(d) receiving a placement of the selected object;
9	(e) receiving input regarding the placement from a remote inference engine;
10	(f) updating the visual feedback as needed based on the received input; and
11	(g) repeating steps (b) through (f) until no more selections are received.
1	15. A computer program embodied in a tangible medium and capable of being
2	executed by a computer for performing a method for visually configuring a product by
3	placing a plurality of selectable components into a plurality of slots, comprising:
4	(a) initializing a configuration layout with proper state;
5	(b) receiving a selection of one of the plurality of selectable objects, and of one of
6	the plurality of slots in which the selected object may be placed;
7	(c) looking up a set of constraints on the placement of the selected object;
8	(d) receiving a placement of the selected object;
9	(e) receiving input regarding the placement from a remote inference engine;
10	(f) implementing the received input;

- 12 (g) storing a new set of constraints based on the placement of the selected object; and
- (h) repeating steps (b) through (g) until no more selections are received.