Combinational Logic Circuits

- ✓ Standard Boolean representation: Sum of Product (SOP)
 - & Product of Sum (POS), Maxterm and Minterm, Conversion between SOP and POS forms, realization using NAND/NOR gates.
- ✓ K-map reduction technique for the Boolean expression:

 Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half and Full Subtractor

Combinational Logic Circuits

Standard Representation

Any logical expression can be expressed in the following two forms:

✓ Sum of Product (SOP) Form

✔ Product of Sum (POS) Form

SOP Form

For Example, logical expression given is;

POS Form

For Example, logical expression given is;

Standard or Canonical SOP & POS Forms

✓ We can say that a logic expression is said to be in the standard (or canonical) SOP or POS form if each product term (for SOP) and sum term (for POS) consists of all the literals in their complemented uncomplemented form.

Standard SOP

Each product term consists all the literals

Standard POS

Each sum term consists all the literals

Examples

Sr. No.	Expression	Туре
1	Y = AB + ABC + ABC	Non Standard SOP
2	$Y = AB + A\overline{B} + \overline{A}\overline{B}$	Standard SOP
3	$Y = (\overline{A} + B).(A + \overline{B}).\overline{(A + B)}$	Standard POS
4	$Y = (\overline{A} + B).(A + B + C)$	Non Standard POS

Conversion of SOP form to Standard SOP

Procedure:

- 1. Write down all the terms.
- 2. If one or more variables are missing in any product term, expand the term by multiplying it with the sum of each one of the missing variable and its complement.
- 3. Drop out the redundant terms

Example 1

Convert given expression into its standard SOP form

$$Y = AB + A\overline{C} + BC$$

$$Y = AB + AC + BC$$

Missing literal is B

Missing literal is C

missing literal & its complement

$$Y = AB.(C + C) + AC.(B + B) + B\overline{C}.(A + A)$$

$$Y = ABC + ABC + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC$$

$$Y = ABC + ABC + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC$$

$$Y = ABC + ABC + \overline{ABC} + \overline{ABC}$$

Standard SOP form
Each product term consists all the literals

Conversion of POS form to Standard POS

Procedure:

- 1. Write down all the terms.
- 2. If one or more variables are missing in any sum term, expand the term by adding the products of each one of the missing variable and its complement.
- 3. Drop out the redundant terms

Example 2

Convert given expression into its standard SOP form

$$Y = (A + B).(A + C).(\overline{B} + C)$$

$$Y = (A + B).(A + C).(\overline{B} + C)$$

$$Y = (A + B + CC).(A + C + BB).(B + C + AA)$$

Term formed by ANDing of missing literal & its complement

$$Y = (A + B + CC).(A + C + BB).(B + C + AA)$$

$$Y = (A + B + C)(A + B + C).(A + B + C)(A + B + C).(A + B + C).(A + B + C)$$

$$+ C)(A + B + C)$$

$$- - - -$$

$$Y = (A + B + C)(A + B + C)(A + B + C)(A + B + C)$$

$$- - - -$$

$$Y = (A + B + C)(A + B + C)(A + B + C)(A + B + C)$$

Standard POS form

Each sum term consists all the literals

Concept of Minterm and Maxterm

Minterm: Each individual term in the

standard SOP form is called as "Minterm".

Maxterm: Each individual term in the

standard POS form is called as "Maxterm".

✓ The concept of minterm and max term allows us to introduce a very convenient shorthand notation to express logic functions

Minterms & Maxterms for 3 variable/literal logic function

Variables		5	Minterms	Maxterms
А	В	С	mi	Mi
0	0	0	$\overline{A}\overline{B}\overline{C} = m_0$	$A + B + C = M_0$
0	0	1	$\overline{ABC} = m_1$	$A+B+\overline{C}=M_{1}$
0	1	0	$\overline{A}B\overline{C} = m_2$	$A + \overline{B} + C = M_2$
0	1	1	$\overline{A}BC = m_3$	$A + \overline{B} + \overline{C} = M_3$
1	0	0	$A\overline{B}\overline{C} = m_4$	$\overline{A} + B + C = M_4$
1	0	1	$A\overline{B}C = m_5$	$\overline{A} + B + \overline{C} = M_5$
1	1	0	$AB\overline{C} = m_6$	$\overline{A} + \overline{B} + C = M_6$
1	1	1	$ABC = m_7$	$\overline{A} + \overline{B} + \overline{C} = M_7$

Minterms and maxterms

- Each minterm is represented by m_i where i=0,1,2,3,......,2ⁿ⁻¹
- ✓ Each maxterm is represented by M_i where i=0,1,2,3,.....,2ⁿ⁻¹

- ✓ If 'n' number of variables forms the function, then number of minterms or maxterms will be 2ⁿ
 - i.e.for 3 variables function f(A,B,C), the
 number of minterms or maxterms are 2³=8

Minterms & Maxterms for 2 variable/literal logic function

Vari	ables	Minterms	Maxterms
А	В	mi	Mi
0	0	$\overline{A}\overline{B} = m_0$	$A + B = M_0$
0	1	$\overline{A}B = m_1$	$A + \overline{B} = M_1$
1	0	$A\overline{B} = m_2$	$- A + B = M_2$
1	1	$AB = m_3$	$- -A + B = M_3$

Representation of Logical expression using minterm

$$Y = ABC + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$
 Logical Expression Corresponding mg minterms

$$Y = m_7 + m_3 + m_4 + m_5$$

$$Y = \Sigma m(3, 4, 5, 0)$$
7)
 $X = f(A, B, C) = \Sigma m(3, 4, 5, 7)$

where ∑denotes sum of products

Representation of Logical expression using maxterm

$$Y = (A + \overline{B} + C).(A + B + C).(A + \overline{B} + \overline{C})$$
 Corresponding maxterms

$$Y = M_{2}.M_{0}.M_{6}$$

$$Y = \Pi M (0, 2, 0)$$
6) R
 $Y = f(A, B, C) = \Pi M (0, 2, 6)$

Conversion from SOP to POS & Vice versa

✓ The relationship between the expressions using minters and maxterms is complementary.

✓ We can exploit this complementary relationship to write the expressions in terms of maxterms if the expression in terms of minterms is known and vice versa

Conversion from SOP to POS & Vice versa

✓ For example, if a SOP expression for 4 variable is given by,

$$Y = \Sigma m(0,1,3,5,6,7,11,12,15)$$

✓ Then we can get the equivalent expression using POSctheplementar relationship as follows,

$$Y = \Pi M (2, 4, 8, 9, 10, 13, 14)$$

Examples

Convert the given expression into standard form

$$Y = A + BC + ABC$$

2. Convert the given expression into standard form

$$Y = (A + B).(A + C)$$

✓ In the algebraic method of simplification, we need to write lengthy equations, find the common terms, manipulate the expressions etc., so it is time consuming work.

✓ Thus "K-map" is another simplification technique to reduce the Boolean equation.

✓ It overcomes all the disadvantages of algebraic simplification techniques.

✓ The information contained in a truth table or available in the SOP or POS form is represented on K-map.

- □ K-map Structure 2 Variable
 - ✓ A & B are variables or inputs
 - 0 & 1 are values of A & B
 - ✓ 2 variable k-map consists of 4 boxes i.e. $2^2=4$

□ K-map Structure - 2 Variable

Inside 4 boxes we have enter values of Y i.e. output

K-map & its associated minterms

 Relationship between Truth Table & Kmap

•			B 0 1
A	В	Υ	$\overline{B} \rightarrow 0 \rightarrow 0$
0	0	0	B 1 1
0	1	1 <	
1	0	0 <	$oldsymbol{\overline{B}}$ $oldsymbol{\overline{B}}$ B
1	1	1	$\begin{array}{c c} & & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- □ K-map Structure 3 Variable
 - ✓ A, B & C are variables or inputs
 - ✓ 3 variable k-map consists of 8 boxes i.e.

$$2^3 = 8$$

	AB 00	01	11	10
C 0				
_				
1				

✓ 3 Variable K-map & its associated product terms

AE	5			
c/	00	01	11	10
0	\overline{ABC}	$\overline{A}B\overline{C}$	$AB\overline{C}$	$A\overline{B}\overline{C}$
1	$\overline{A}\overline{B}C$	$\overline{A}BC$	ABC	$A\overline{B}C$
BC	00	01	11	10
BC A			11 <i>ĀBC</i>	

всА	0	1
00	-ABC	ĀBC
01	ABC	$\overline{A}BC$
11	_ABC	ABC
10	$\overline{A}B\overline{C}$	$AB\overline{C}$

✓ 3 Variable K-map & its associated minterms

CAE	00	01	11	10
0	m_0	m_2	<i>m</i> ₆	m_4
1	m_1	m 3	<i>m</i> ₇	<i>m</i> 5
BC	00	01	11	10
BC A	00 m ₀	01 <i>m</i> 1	11 <i>m</i> 3	10 <i>m</i> ₂

0	1
m_0	m_4
m_1	<i>m</i> ₅
m 3	<i>m</i> ₇
m_2	m 6
	m_0 m_1 m_3

- ☐ K-map Structure 4 Variable
 - ✓ A, B, C & D are variables or inputs
 - ✓ 4 variable k-map consists of 16 boxes i.e.
 2⁴=16

✓ 4 Variable K-map and its associated product terms

CD	00	01	11	10	AB	00	01	11	10
00	$ar{ABCD}$	$A\overline{BCD}$	ABCD	\overline{ABCD}	00	\overline{ABCD}	ĀBCD	$\overline{AB}CD$	$ar{ABCD}$
01	$ar{ABCD}$	$A\overline{BCD}$	$Aar{BCD}$	$A\overline{B}CD$	01	$A\overline{B}\overline{C}\overline{D}$	$A\overline{BCD}$	$oxed{ABCD}$	$A\overline{B}\overline{C}$
11	$ar{A}ar{B}CD$	$A\overline{B}CD$	ABCD	$A\overline{B}CD$	11	ABC D	- ABCD	ABCD	ABC D
10	$ar{A}ar{B}Car{D}$	$A\overline{B}C\overline{D}$	$AB\overline{C}D$	$A\overline{B}C\overline{D}$	10	ABC D	ABCD	ABCD	ABC D

✓ 4 Variable K-map and its associated minterms

CD	00	01	11	10
00	m_0	m ₄	m ₁₂	m ₈
01	m ₁	m ₅	m ₁₃	m ₉
11	m ₃	m ₇	m ₁₅	m ₁₁
10	m ₂	m ₆	m ₁₁	m ₁₀

AB	00	01	11	10
00	m _o	m ₁	m_3	m ₂
01	m ₄	m_{5}	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

Representation of Standard SOP form expression on K-map

For example, SOP equation is given as

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

- ✓ The given expression is in the standard SOP form.
- Each term represents a minterm.
- ✓ We have to enter '1' in the boxes corresponding to each minterm as below

Simplification of K-map

- ✓ Once we plot the logic function or truth table on K-map, we have to use the grouping technique for simplifying the logic function.
- Grouping means the combining the terms in adjacent cells.
- ✓ The grouping of either 1's or 0's results in the simplification of Boolean expression.

Simplification of K-map

✓ If we group the adjacent 1's then the result of

simplification is SOP form

✓ If we group the adjacent 0's then

the result of simplification is POS form

Grouping

- ✓ While grouping, we should group most number of 1's.
- ✓ The grouping follows the binary rule i.e we can group 1,2,4,8,16,32,.....number of 1's.
- ✓ We cannot group 3,5,7,....number of 1's
- ✔ Pair: A group of two adjacent 1's is called as Pair
- Quad: A group of four adjacent 1's is called as Quad
- Octet: A group of eight adjacent 1's is called as Octet

Grouping of Two Adjacent 1's: Pair

✓ A pair eliminates 1 variable

Grouping of Two Adjacent 1's: Pair

ВС	\overline{B}^-	$ar{B}$	В	B C
\bar{A} \bar{A} 0	00	01 0	<i>C</i> 14	10
A 1	1	0	0	1

В	BC	BC	BC	BC
AG	00	01	11	10
$ar{A}$ 0	0	1	1	
A 1	0	0	1	0

BC A	\overline{B}^-	\overline{B} C	В С	${B}^-$
\bar{A} 0	00 0	1	18	10 0
A 1	0	1	0	0

Grouping of Two Adjacent 1's: Pair

Possible Grouping of Four Adjacent 1's: Quad

	CD AB	$\overline{C}\overline{D}$	$\overline{\mathcal{C}}$	C D	$C\overline{D}$
\overline{AB}	00	00 0	01 0	18	10
\bar{A}	01	0	0	0	0
$egin{array}{c} B \ A \ B \end{array}$	1	0	0	0	0
$\stackrel{-}{A}$	10		1	1	1

	CD	$\overline{C}\overline{D}$	\overline{C}	C D	$C\overline{D}$
\overline{AB}		00	01	14	10 0
$\frac{00}{A}$	01	0	1	0	0
B A B	11	0	1	0	0
$\stackrel{-}{A}B$	10	0	1	0	0

Possible Grouping of Four Adjacent 1's: Quad

A	CD B	$\overline{C}\overline{D}$	¯C D	C D	$C\overline{D}$
ĀB		00	01 0	14	10 0
00	01	1	1	0	0
$egin{array}{c} B \ A \ B \end{array}$	1 1	1	1	0	0
$\stackrel{-}{A}B$	10	0	0	0	0

A	CD B	$\overline{C}\overline{D}$	$ar{C} \ D$	C D	$C\overline{D}$
ĀB		00	01	11	10 0
00 A B A	01	0	0	0	0
A B	11	0	0	0	0
$\stackrel{-}{B}$	10	0	1	1	0

Possible Grouping of Four Adjacent 1's:

^	CD	$\overline{C}\overline{D}$	¯C D	C D	$C\overline{D}$
\overline{AB}		00 1	01	10	10
\overline{AB} $\overline{D0}$ \overline{A} B	01	0	0	0	0
$egin{array}{c} B \ A \ B \end{array}$	1	0	0	0	0
${A}^-$	10	1	0	0	1

` ^	CD	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\overline{D}$
\overline{AB}		00	01	17	10
00	01	1	0	0	1
A B	11	1	0	0	1
$\stackrel{-}{A}B$	10	0	0	0	0

Possible Grouping of Four Adjacent 1's: Quad

A	CD	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\overline{D}$
\overline{AB}		00	01 0	18	10 0
00	01	0	1	1	1
$\scriptstyle \scriptstyle $	1 1	0	1	1	1
$\stackrel{-}{A}B$	10	0	0	0	0

Possible Grouping of Eight Adjacent 1's: Octet

A Octet eliminates 3 variable

A	CD	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\overline{D}$
\overline{AB}		00 0	01 0	18	10
00 A B	01	0	0	0	0
A B	1 1	1	1	1	1
$\stackrel{-}{A}B$	10	1	1	1	1

	CD	$\overline{C}\overline{D}$	\overline{C}	C D	$C\overline{D}$
\overline{AB}		00	01	1,1	10 0
00	01	0	1	1	0
$egin{array}{c} B \ A \ B \end{array}$	11	0	1	1	0
$\stackrel{-}{A}B$	10	0	1	1	0

Possible Grouping of Eight Adjacent 1's: Octet

A Octet eliminates 3 variable

CD AB	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\overline{D}$
\overline{AB}	00	01 1	17	10
$egin{array}{ccc} oldsymbol{00} & & & \\ \hline A & & \textbf{01} \\ B & & & \end{array}$	0	0	0	0
$\stackrel{-}{A}$ 1 $\stackrel{-}{B}$ 1	0	0	0	0
$egin{array}{ccc} A^{-} & 10 \ B & \end{array}$	1	1	1	1

	CD	<i>CD</i> 00	<i>C D</i> 01	C D 11	<i>C</i> D 10
\overline{AB}		1	0	0	1
00	01	1	0	0	1
A B	11	1	0	0	1
$\stackrel{-}{A}B$	10	1	0	0	1

1. Groups may not include any cell containing a zero.

Not Accepted

Accepted

2. Groups may be horizontal or vertical, but may not be diagonal

Not Accepted

Accepted

3. Groups must contain 1,2,4,8 or in general 2ⁿ cells

A BC	\overline{B}^-	\overline{B} C	B C	B C
\bar{A} 0	00 0	11	T ₄	10
A 1	0	0	0	0

Accepted

Accepted

4. Each group should be as large as possible

Not Accepted

Accepted

5. Each cell containing a one must be in at least one group

6. Groups may be overlap

7. Groups may wrap around the table. The leftmost cell in a row may be grouped with rightmost cell and the top cell in a column may be grouped with bottom cell

BC A	\overline{B}^-	\overline{B}	В С	В
\bar{A} 0		0 1 0	17	10
A 1_	1	0	0	1

8. There should be as few groups as possible, as long as this does not contradict any of the previous rules.

Not Accepted

Accepted

9. A pair eliminates one variable.

10. A Quad eliminates two variables.

11. A octet eliminates three variables

For the given K-map write simplified Boolean expression

\AB	$A\overline{B}^-$	$ar{A}$	\boldsymbol{A}	\overline{A}
c	00	В	В	B
\overline{C}	0	0~1	뚜	14
0 1	0	0	1	0

Simplified Boolean expression

$$Y = B\overline{C} + AB + A\overline{C}$$

For the given K-map write simplified Boolean expression

\AB	$A\overline{B}^-$	\overline{A}	\boldsymbol{A}	\overline{A}
c	00	В	В	B
\overline{C}	1	ص ح	حک	14
0 1	1	0	0	1

Simplified Boolean expression

$$Y = \overline{B} + AC$$

A logical expression in the standard SOP form is as follows;

$$Y = \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC}$$

Minimize it with using the K-map technique

$$Y = \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC}$$

Simplified Boolean expression

$$Y = \overline{AC} + \overline{AB} + AB\overline{C}$$

A logical expression representing a logic circuit is;

$$Y = \Sigma m(0,1,2,5,13,15)$$

Draw the K-map and find the minimized logical expression

$$Y = \Sigma m(0,1,2,5,13,15)$$

Minimize the following Boolean expression using K-map;

$$f(A, B, C, D) = \Sigma m(1, 3, 5, 9,11,13)$$

$$f(A, B, C, D) = \Sigma m(1, 3, 5, 9, 11, 13)$$

Simplified Boolean expression

Minimize the following Boolean expression using K-map;

```
f(A, B, C, D) = \Sigma m(4, 5, 8, 9, 11, 12, 13, 15)
```


Minimize the following Boolean expression using K-map;

$$f_2(A, B, C, D) = \Sigma m(0,1, 2, 3,11,12,14,15)$$

Solve the following expression with K-maps;

```
1. f_1(A, B, C) = \sum m(0,1, 3, 4, 5)
2. f_2(A, B, C) = \sum m(0,1, 2, 3, 6, 7)
```

$$f_1(A, B, C) = \Sigma m(0,1,3,4,5)$$

Simplified Boolean expression_

$$f_1 = \overline{AC} + \overline{B}$$

$$f_2(A, B, C) = \Sigma m(0, 1, 2, 3, 6, 7)$$

Simplified Boolean expression _

$$f_2 = \overline{A} + B$$

Simplify;

```
f(A, B, C, D) = \Sigma m(0,1, 4, 5, 7,8, 9,12,13,15)
```


Simplified Boolean expression f = C + BD

Solve the following expression with K-maps;

```
1. f_1(A, B, C, D) = \sum m(0,1, 3, 4, 5, 7)
2.
```

$$f_2(A, B, C) = \sum m(0,1, 3, 4, 5, 7)$$

$$f_2(A, B, C) = \Sigma m(0,1,3,4,5,7)$$

Simplified Boolean expression

$$f_2 = \overline{B} + C$$

K-map for Product of Sum Form (POS Expressions)

Karnaugh map can also beused for Boolean

expression in the Product of sum form (POS).

The procedure for simplification of

expression by grouping of cells is also similar

K-map for Product of Sum Form (POS Expressions)

✓ The letters with bars (NOT) represent 1 and unbarred

letters represent 0 of Binary.

A zero is put in the cell for which there is a term in

the Boolean expression

Grouping is done for adjacent cells containing zeros.

Simplify;

```
f(A, B, C, D) = \Pi M (0,1, 3, 5, 6, 7,10,14,15)
```

continue.....

$$f = (\overline{A + D})(\overline{B + C})(\overline{A + C} + D)(\overline{A + B} + C)$$

Simplify;

```
f(A, B, C, D) = \Pi M (4, 6, 10, 12, 13, 15)
```


Simplified Boolean expression

$$f = (A + B + C + D)(A + B + D)(A + B + D)(A + B + D)(A + B + D)$$

K-map and don't care conditions

- ✓ For SOP form we enter 1's corresponding to the combinations of input variables which produce a high output and we enter 0's in the remaining cells of the K-map.
- ✓ For POS form we enter 0's corresponding to the combinations of input variables which produce a high output and we enter 1's in the remaining cells of the K-map.

K-map and don't care conditions

- ✔ But it is not always true that the cells not containing 1's (in SOP) will contain 0's, because some combinations of input variable do not occur.
- ✓ Also for some functions the outputs corresponding to certain combinations of input variables do not matter.

K-map and don't care conditions

- ✓ In such situations we have a freedom to assume a 0 or 1 as output for each of these combinations.
- ✓ These conditions are known as the "Don't Care Conditions" and in the K-map it is represented as 'X', in the corresponding cell.
- ✓ The don't care conditions may be assumed to be 0 or 1 as per the need for

K-map and don't care conditions - Example

Simplify;

$$f(A, B, C, D) = \Sigma m(1, 3, 7, 11, 15) + d(0, 2, 5)$$

K-map and don't care conditions - Example

$$f(A, B, C, D) = \Sigma m(1,3, 7,11,15) + d(0, 2,5)$$

Simplified Boolean expression $f = CD + \overline{AB} + \overline{AD}$

Combinational Logic Circuits

- ✓ Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm ,
 Conversion between SOP and POS forms, realization
 using NAND/NOR gates.
- K-map reduction technique for the Boolean expression: Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half Adder and Full Adder, Half and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

- ✓ Half adder is a combinational logic circuit with two inputs and two outputs.
- ✓ It is a basic building block for addition of two single bit numbers.

Truth Table for Half

Adder Input		Output		
A	В	Sum (S)	Carry (C)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

K-map for Sum Output:

$$S = \overline{A}B + A\overline{B}$$

$$S = A \oplus B$$

K-map for Carry Output:

$$C = AB$$

Logic

Diagram:

Logic Diagram using Basic Gates:

Combinational Logic Circuits

- Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm ,
 Conversion between SOP and POS forms, realization
 using NAND/NOR gates.
- K-map reduction technique for the Boolean expression: Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

✓ Full adder is a combinational logic circuit with three inputs and two outputs.

Truth Table

	Inputs		Outputs	
Α	В	Cin	Sum (S)	Carry (C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-map for Sum Output:

$$S = \overline{ABC} + \overline{ABC} + ABC + AB\overline{C}$$

$$S = \overline{ABC} + ABC + \overline{ABC} + AB\overline{C}$$

$$S = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + A\overline{B})$$

$$Let AB + AB = \overline{X}$$

$$\therefore S = C(\overline{X}) + \overline{C}(X)$$

$$S = C \oplus X$$

$$Let X = A \oplus B S =$$

$$\therefore C \oplus A \oplus B$$

K-map for Carry Output:

$$C = AB + BC + AC$$

Logic Diagram:

Full Adder using Half Adders

Combinational Logic Circuits

- Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm ,
 Conversion between SOP and POS forms, realization
 using NAND/NOR gates.
- K-map reduction technique for the Boolean expression: Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half Subtractor and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

- ✓ Half subtractoris a combinational logic circuit with two inputs and two outputs.
- It is a basic building block for subtraction of two single bit numbers.

Truth Table

Input		Output		
A	В	Difference (D)	Borrow (B)	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

K-map for Difference Output:

$$D = \overline{AB} + A\overline{B}$$

$$D = A \oplus B$$

K-map for Borrow Output:

$$B = \overline{A}B$$

Logic Diagram:

Logic Diagram using Basic Gates:

Combinational Logic Circuits

- Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm,
 Conversion between SOP and POS forms, realization
 using NAND/NOR gates.
- K-map reduction technique for the Boolean expression: Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

Full subtractoris a combinational logic circuit with three inputs and two outputs.

Truth Table

	Inputs		Outputs			
Α	В	Bin (C)	Difference (D)	Borrow (B0)		
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

K-map for Difference Output:

$$D = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$D = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$D = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + \overline{AB})$$

$$Let AB + AB = \overline{X}$$

$$\therefore D = C(\overline{X}) + \overline{C}(\overline{X})$$

$$D = C \oplus X$$

$$Let X = A \oplus B D =$$

$$\therefore C \oplus A \oplus B$$

K-map for Borrow Output:

$$B_0 = \overline{AB} + BC + \overline{AC}$$

Logic Diagram:

Full Subtractor using Half Subtractor

Combinational Logic Circuits

- ✓ Airthmetic Circuits: (IC 7483) Adder & Subtractor, BCD Adder
- Encoder/Decoder: Basics of Encoder, decoder, comparison, (IC 7447) BCD to 7- Segment decoder/driver.
- Multiplexer and Demultiplexer: Working, truth table and applications of Multiplexers and Demultiplexers, MUX tree, IC 74151 as MUX, DEMUX tree, DEMUX as decoder, IC 74155 as DEMUX
- ✔ Buffer: Tristate logic, Unidirectional and Bidirectional buffer (IC 74LS244 and IC 74LS245)

Encoder

- Encoder is a combinational circuit which is designed to perform the inverse operation of decoder.
- An encoder has 'n' number of input lines and 'm' number of output lines.
- Anencoder produces an m bit binary code corresponding to the digital input number.
- ✓ The encoder accepts ann input digital word
 and converts it into m bit another digital word

Encoder

Types of Encoders

Priority Encoder

Decimal to BCD Encoder

Octal to BCD Encoder

Hexadecimal to Binary Encoder

Priority Encoder

- This is a special type of encoder.
- Priorities are given to the input lines.
- ✓ If two or more input lines are "1" at the

same time, then the input line with highest

priority will be considered.

Priority Encoder 8:3

Priority Encoder 8:3

Truth Table:

		Outputs								
D ₇	D ₆	D ₅	D ₄	D_3	D ₂	D ₁	D ₀	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	X	X	Х
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	Х	0	0	1
0	0	0	0	0	1	Х	Х	0	1	0
0	0	0	0	1	Х	Х	Х	0	1	1
0	0	0	1	Х	Х	Х	X	1	0	0
0	0	1	Х	Х	Х	Х	Х	1	0	1
0	1	Х	Х	Х	Х	Х	Х	1	1	0
1	Х	Х	Х	Х	Х	Х	Х	1	1	1

Decimal to BCD Encoder

Decimal to BCD Encoder

Truth Table:

			Outputs									
D ₉	D ₈	D ₇	D ₆	D ₅	D_4	D_3	D ₂	D_1	D	С	В	Α
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	Х	0	0	1	0
0	0	0	0	0	0	1	Х	Х	0	0	1	1
0	0	0	0	0	1	Х	Х	Х	0	1	0	0
0	0	0	0	1	Х	Х	Х	Х	0	1	0	1
0	0	0	1	Х	Х	Х	Х	Х	0	1	1	0
0	0	1	Х	Х	Х	Х	Х	Х	0	1	1	1
0	1	Х	Х	Х	Х	Х	Х	Х	1	0	0	0
1	Х	Х	Х	X	Х	Х	Х	Х	1	0	0	1

Decoder

- ✓ Decoder is a combinational circuit is which designe to perform the inverse of operation
- An decoder has 'n' number of input lines and
 - maximum '2" number of output lines.
- Decoder is identical to a demultiplexer without data input.

Decoder

Typical applications of Decoders

Code Converters

✓ BCD to 7 segment decoders

Nixie tube decoders

Relay actuators

Types of Decoders

✓ 2 to 4 line Decoder

✓ 3 to 8 line Decoder

✓ BCD to 7 Segment Decoder

2 to 4 Line Decoder

2 to 4 Line Decoder

3 to 8 Line Decoder

Block Diagram

3 to 8 Line Decoder

Truth Table

Enabl e i/p		Inputs		Outputs							
E	Α	В	С	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
0	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	

Comparison between Encoder & Decoder

Sr. No.	Parameter	Encoder	Decoder
1	Input applied	Active input signal (original message signal)	Coded binary input
2	Output generated	Coded binary output	Active output signal (original message)
3	Input lines	2 ⁿ	n
4	Output lines	N	2 ⁿ
5	Operation	Simple	Complex
6	Applications	E-mail , video encoders etc.	Microprocessors, memory chips etc.

BCD to 7 Segment Decoder - Seven Segment Display

Seven Segment Display

ON

OFF

ON

ON

ON

		Se	Display	Seven Segment				
а	b	С	d	е	f	g	Number	Display
ON	ON	ON	ON	ON	ON	OFF	0	\odot
OFF	ON	ON	OFF	OFF	OFF	OFF	1	0
ON	ON	OFF	ON	ON	OFF	ON	2	0
ON	ON	ON	ON	OFF	OFF	ON	3	0
OFF	ON	ON	OFF	OFF	ON	ON	4	(1)
ON	OFF	ON	ON	OFF	ON	ON	5	0
ON	OFF	ON	ON	ON	ON	ON	6	8
ON	ON	ON	OFF	OFF	OFF	OFF	7	8
ON	ON	ON	ON	ON	ON	ON	8	A

ON

ON

Types of Seven Segment Display

Common Cathode Display

Common Anode Display

Display Configuration – LTS 542

Display Configuration

Combinational Logic Circuits

- ✓ Airthmetic Circuits: (IC 7483) Adder & Subtractor, BCD Adder
- ✓ Encoder/Decoder: Basics of Encoder, decoder, comparison, (IC 7447) BCD to 7- Segment decoder/driver.
- ✓ Multiplexer and Demultiplexer: Working, truth table and applications of Multiplexers and Demultiplexers, MUX tree, IC 74151 as MUX, DEMUX tree, DEMUX as decoder, IC 74155 as DEMUX
- ✔ Buffer: Tristate logic, Unidirectional and Bidirectional buffer (IC 74LS244 and IC 74LS245)

Multiplexers

- Multiplexer is a circuit which has a number of inputs but only one output.
- Multiplexer is a circuit which transmits large number of information signals over a single line.
- Multiplexer is also known as "Data Selector" or MUX.

Necessity of Multiplexers

- ✓ In most of the electronic systems, the digital data is available on more than one lines. It is necessary to route this data over a single line.
- ✓ Under such circumstances we require a circuit which select one of the many inputs at a time.
- ✓ This circuit is nothing but a multiplexer. Which has many inputs, one output and some select lines.
- Multiplexer improves the reliability of the digital system because it reduces the number of external wired connections.

Advantages of Multiplexers

- It reduces the number of wires.
- So it reduces the circuit complexity and cost.
- We can implement many combinational circuits using Mux.

- ✓ It simplifies the logic design.
- ✓ It does not need the k-map and simplification.

Applications of Multiplexers

- It is used as a data selector to select one out of many data inputs.
- It is used for simplification of logic design.
- ✓ It is used in data acquisition system.
- In designing the combinational circuits.
- ✓ In D to A converters.
- ✓ To minimize the number of connections.

Block Diagram of Multiplexer

Relation between Data Input Lines & Select Lines

✓ In generalmultiplexer contains , n data lines, one output line and m select lines.

✓ Toselect n inputs we needm select lines such that 2^m=n.

Types of Multiplexers

- ✓ 2:1 Multiplexer
- ✓ 4:1 Multiplexer
- ✓ 8:1 Multiplexer
- ✓ 16:1 Multiplexer
- ✓ 32:1 Multiplexer
- ✓ 64:1 Multiplexer

and so o

2:1 Multiplexer

Lines

Truth Table

Enable i/p (E)	Select i/ p (S)	Output (Y)		
0	X	0		
1	0	D_0		
1	1	D_1		

Realization of 2:1 Mux using gates

4:1 Multiplexer

Truth Table

Enable i/p	Sele	ct i/p	Output		
E	S ₁	S ₀	Y		
0	X	X	0		
1	0	0	D ₀		
1	0	1	D ₁		
1	1	0	D_2		
1	1	1	D_3		

Realization of 4:1 Mux using gates

8:1 Multiplexer

Truth Table

Enable i/p	\$	Outp ut		
E	S ₂	S ₁	S ₀	Y
0	Х	Х	Х	0
1	0	0	0	D ₀
1	0	0	1	D ₁
1	0	1	0	D ₂
1	0	1	1	D_3
1	1	0	0	D ₄
1	1	0	1	D ₅
1	1	1	0	D ₆
1	1	1	1	D ₇

16:1 Multiplexer

16:1 Multiplexer	Enable		t Lines	
	E	S ₃	S₂	S ₁
	0	Х	Х	Х
	1	0	0	0
	1	0	0	0
	1	0	0	1
	1	0	0	1
	1	0	1	0
	1	0	1	0
Truth	1	0	1	1
Table	1	0	1	1
	1	1	0	0
	1	1	0	0
	1	1	0	1
	1	1	0	1
	1	1	1	0
	1	1	1	0
	1	1	1	1

X X 0 0 0 1 0 0 0

Output

0

 D_0

 D_1

 D_2

 D_3

 D_4

 D_5

 D_6

 D_7

 D_8

 D_9

 $\overline{\mathsf{D}}_{\underline{10}}$

D_11

D₁₂

D₁₃

D₁₄

S₀

0

0

1

0

1

0

1

0

Mux Tree

- ✓ The multiplexers having more number of inputs can be obtained by cascading two or more multiplexers with less number of inputs. This is called as Multiplexer Tree.
- ✓ For example, 32:1 mux can be realized using two 16:1 mux and one 2:1 mux.

8:1 Multiplexer using 4:1 Multiplexer

8:1 Multiplexer using 4:1 Multiplexer

Realization of Boolean expression using Mux

We can implement any Boolean expression using Multiplexers.

It reduces circuit complexity.

It does not require any simplification

Implement following Boolean expression using multiplexer

$$f(A, B, C) = \sum m(0, 3, 5, 6)$$

- Since there are three variables, therefore a multiplexer with three select input is required
 - i.e. 8:1 multiplexer is required
- ✓ The 8:1 multiplexer is configured as below to implement given Boolean expression

continue.....

Implement following Boolean expression using multiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$$

Since there are four variables, therefore a multiplexer with four select input is required

- i.e. 16:1 multiplexer is required
- The 16:1 multiplexer is configured as below to implement given Boolean expression

continue.....

Combinational Logic Circuits

- ✓ Airthmetic Circuits: (IC 7483) Adder & Subtractor, BCD Adder
- ✓ Encoder/Decoder: Basics of Encoder, decoder, comparison, (IC 7447) BCD to 7- Segment decoder/driver.
- Multiplexer and Demultiplexer: Working, truth table and applications of Multiplexers and Demultiplexers, MUX tree, IC 74151 as MUX, DEMUX tree, DEMUX as decoder, IC 74155 as DEMUX
- ✔ Buffer: Tristate logic, Unidirectional and Bidirectional buffer (IC 74LS244 and IC 74LS245)

De-multiplexer

- ✓ A de-multiplexer performs the reverse operation of a multiplexer i.e. it receives one input and distributes it over several outputs.
- ✓ At a time only one output line is selected by the select lines and the input is transmitted to the selected output line.
- ✓ It has only one input line, n number of output lines and m number of select lines.

Block Diagram of De-multiplexer

Fig. Equivalent Circuit

Relation between Data Output Lines & Select Lines

In generalde-multiplexer contains , n output lines, one input line and m select lines.

✓ To select n outputs we need m select lines such that n=2^m.

Types of De-multiplexers

- ✓ 1:2 De-multiplexer
- ✓ 1:4 De-multiplexer
- ✓ 1:8 De-multiplexer
- ✓ 1:16 De-multiplexer
- ✓ 1:32 De-multiplexer
- ✓ 1:64 De-multiplexer

and so o n.....

1: 2 De-multiplexer

Truth Table

Enable i/p	Select i/p	Outputs			
E	S	Y ₀	Y ₁		
0	X	0	0		
1	0	D _{in}	0		
1	1	0	D		

1:2 De-mux using basic gates

1: 4 De-multiplexer

1:4 De-mux using basic gates

1: 8 De-multiplexer

Block Diagram

1: 8 De-multiplexer

Truth Table											
Enabl e i/p	•	Select i	/p	Outputs							
E	S ₂	S ₁	S ₀	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y
0	X	Х	Х	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	D _{ir}
1	0	0	1	0	0	0	0	0	0	D _{in}	0
1	0	1	0	0	0	0	0	0	D _{in}	0	0
1	0	1	1	0	0	0	0	D	0	0	0
1	1	0	0	0	0	0	D	0	0	0	0
1	1	0	1	0	0	D	0	0	0	0	0

D_{in}

0

0

0

1: 16 De-multiplexer

De-mux Tree

✓ Similar to multiplexer we can construct the de- multiplexer with more number of lines using de- multiplexer having less number of lines. This is call as "De-mux Tree".

1:4 De-mux using 1:2 De-mux

Decoder

- Decoder is a combinational circuit.
- ✓ It converts n bit binary information at its input into a maximum of 2_n output lines.

✓ For example, if n=2 then we can design upto 2:4 decoder

2:4 Decoder

De-multiplexer as Decoder

✓ It is possible to operate a demultiplexer as a decoder.

✓ Let us consider an example of 1:4 de-

mux can be used as 2:4 decoder

1:4 De-multiplexer as 2:4 Decoder

1: 4 Demultiplexer

1: 4 De-multiplexer as 2:4 Decoder

Realization of Boolean expression using De-

mux

- We can implement any Boolean expression using de-multiplexers.
- It reduces circuit complexity.
- It does not require any simplification

Example 1

Implement following Boolean expression using de-multiplexer

$$f(A, B, C) = \sum m(0, 3, 5, 6)$$

- Since there are three variables, therefore a demultiplexer with three select input is required i.
 e. 1:8 de-multiplexer is required
- ✓ The 1:8 de-multiplexer is configured as below to implement given Boolean expression

 $f(A, B, C) = \sum m(0, 3, 5, 6)$

Example 2

Implement following Boolean expression using demultiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$$

- Since there are four variables, therefore a demultiplexer with four select input is required i.
 e. 1:16 de-multiplexer is required
- ✓ The 1:16 de-multiplexer is configured as below to implement given Boolean expression

Multiplexer ICs

IC Number	Description	Output
IC 74157	Quad 2:1 Mux	Same as input
IC 74158	Quad 2:1 Mux	Inverted Output
IC 74153	Dual 4:1 Mux	Same as input
IC 74352	Dual 4:1 Mux	Inverted Output
IC 74151	8:1 Mux	Inverted Output
IC 74152	8:1 Mux	Inverted Output
IC 74150	16:1 Mux	Inverted Output

IC 74151 – General Description

- ✓ This Data Selector/Multiplexer contains full on-chip decoding to select one-of-eight data sources as a result of a unique three-bit binary code at the Select inputs.
- Two complementary outputs provide both inverting and noninverting buffer operation.
- ✓ A Strobe input is provided which, when at the high level, disables all data inputs and forces the Y output to the low state and the
 - *y* output to the high state.
- ✓ The Select input buffers incorporate internal overlap features to ensure that select input changes do not cause invalid output transients.

IC 74151 - Features

- Advancedoxide-isolated, ion-implanted Schottky TTL process
- Switching performance is guaranteed over full temperature and VCC supply range
- Pin and functional compatible with LS family counterpart
- Improved output transient handling capability

De-multiplexer ICs

IC Number	Description
IC 74138	1:8 De-multiplexer
IC 74139	Dual 1:4 De-multiplexer
IC 74154	1:16 De-multiplexer
IC 74155	Dual 1:4 De-multiplexer

IC 74155 – General Description

- ✓ These monolithic TTL circuits feature dual 1 line to 4 line de-multiplexers with individual strobes and common binary address inputs in a single 16 pin package.
- ✓ The individual strobes permit activating or inhibiting each of the 4-bit sections as desired.

IC 74155 - Features

- Input clamping diodes simplify system design.
- ✔ Choice of outputs: Totem pole ('LS155A) or open collector ('LS156).
- Individual strobes simplify cascading for decoding or de- multiplexing larger words.

Applications:

- Dual 2 to 4 Line Decoder
- Dual 1: 4 De-multiplexer
- 3 to 8 line Decoder
- 1 to 8 line de-multiplexer

IC 74155 – Pin Diagram

IC 74154 – General Description

- The M74HC154 high

 CMOS 4 TO 16 LINE
 is an DECODER/
 speed
 with gate
 DEMULTIPLEXER fabricated silicon
 C2MOS
- ✓ ÞÞħÞÞ996de applied to the four inputs (A to D) provides a low level at the selected one of sixteen outputs excluding the other fifteen outputs, when both the strobe inputs, G1 and G2, are held low.
- ✓ When either strobe input is held high, the decoding function is inhibited to keep all outputs high.
- ✓ The strobe function makes it easy to expand the decoding lines through cascading, and simplifies the design of address decoding circuits in memory control systems.

IC 74154 - Features

- ✓ HIGH SPEED: t_{PD} = 16ns (TYP.) at VCC = 6V
- ✓ LOW POWER DISSIPATION: $I_{CC} = 4mA(MAX.)$ at $T_A = 25$ °C
- ✓ HIGH NOISE IMMUNITY: $V_{NIH} = V_{NIL} = 28 \% V_{CC}$ (MIN.)
- ✓ SYMMETRICAL OUTPUT IMPEDANCE:|I_{OH}|= I_{OL}
 - = 4mA (MIN)
- ✓ BALANCED PROPAGATION DELAYS: t_{PLH} @ t_{PHL}
- ✓ WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- ✔ PIN AND FUNCTION COMPATIBLE WITH 74

IC 74154 – Pin Diagram

