-1	1			
-1	AMOGH GUPTA			
	312217104609			
	Part B			
	1)			
	· 11 A and R			
	a. Given 2 random variables A and B			
	$\frac{P(A/B) = P(B/A) \cdot P(A)}{P(B)}$			
	P(5)			
	WHAT I MADE TO			
	Ь.			
~	Let P(D) be the probability of			
~	Observing the given data and			
	p(h) be probability of the hypothesis			
	h holding true.			
	according to bayes theorem:			
1	(h/n) = n/n/(1) = n/1			
	$p(h/0) = p(D/h) \cdot p(h)$ $p(D)$			
	Th = gnamex p(h/n)			
	h = argmax p(h/D) h.E.H			
	h = argmax p(D/h)			
	ML heH			

AMOGH GUPTA 312217104009 T, : (Big, Red, circle) consistent with 80 + 5 & So S1 = { < \p, \p, \p > } @ Ilis in consistent with & 84. <3,3,3) minimally more general specific which are than (?,??) consistent are < Small ?,?), (?, Blue,?), (Ta?,?, Triangle). #] s E SI are more specific than above hypotheses. G1 = { (Small??) , <? Blue,?), <?,?, Triangle > } 72: (Small, Red, Circle) only (Small, ? ?) is consisTENT => 42 = { small, Red, circle)} G2 = { (Small, ?, ? > 3 52 = { < small, Red, circle > } T3: Ismall, Red, Triangle) + s ES2 are consistent with T3. => 53 = \$ (small, Red, Circle? } (Small, ?, ?) is NOT CONSISTENT

			A PAREST A SORTA
AMO	OGH GUPTA		5
312	217/04009		
	minimally (Small,?,?)	more general l' consistent with < p,??? < <small,?, circle?<="" td=""><td>small, Blue, ?)</td></small,?,>	small, Blue, ?)
Small, b	(q,?,?) is boundar	vot more general	All It
	=) 63 = {	< small, ?, circle < small, Red, gro) } le > 3
	: (Big Blue	Triangle) -	No
Kanaluska	74 is cons + g ∈ G3.	istent with 456	53 &
	3 S4 = S3 G4 = G3		A. E. C.
T5	· (Small,	Blue, Circle)	- YES
	(Small, Red,	consistent with (Small,?, circle) Circle > E 54 It with TS	is not
	⇒ 55 =	{ (small, ?, cir	cle > 3
	= 6	5	
	1/3/10/10/2		