HNOI2018 Simulation

dy0607

March 31, 2018

题目名称	Max	Paint	Decompose
源文件名	max	paint	decompose
输入文件名	max.in	paint.in	decompose.in
输出文件名	max.out	paint.out	decompose.out
题目类型	传统型	传统型	传统型
每个测试点时限	3.0s	1.0s	2.0s
空间限制	512MB	512MB	512MB
编译命令	-lm - O2 - std = c + +11		

1 Max

1.1 Description

一个长为n的序列A,从1开始标号,一开始全为0,现在小C想对它进行m次操作.

对第i次操作,他会选定恰好一个二元组 $(j,k),j\in[1,n],k\in[0,c]$,并令 $A_j=A_j+k$,其中选中二元组(j,k)的概率为 $P_{i,j,k}$

小C本来是想问你区间最大值的历史版本和的历史最大值的期望的,但鉴于这是一道签到题,现在他只想知道m次操作后整个序列**最大值**的期望,对 10^9+7 取模.

1.2 Input

从文件max.in中读入数据.

第一行三个整数n, m, c,含义见问题描述.

接下来 $m \wedge n$ 行c+1列的矩阵,第i个矩阵的第j行第k个元素表示 $P_{i,j,k-1}$ 的值,方便起见,这里给出的概率是模意义下的值.

1.3 Output

输出到文件max.out中.

输出一个整数表示答案.

1.4 Sample1

1.4.1 Input

3 1 1

3425 734783767

2345 34674684

19255048 249802373

1.4.2 Output

19260817

1.5 Sample2

见选手目录下的max/max2.in与max/max2.ans.

1.6 Sample3

见选手目录下的max/max3.in与max/max3.ans.

1.7 Subtasks

对于所有数据,有 $1 \le n \le 40, 1 \le m \le 10, 1 \le c \le 3.$ $\forall i, \sum_{j \in [1,n], k \in [0,c]} P_{i,j,k} \equiv 1 \pmod{10^9+7}, 0 \le P_{i,j,k} < 10^9+7.$

- subtask1(17%), n, m = 5.
- subtask2(14%), n = 2.
- subtask3(14%), n = 5.
- subtask4(34%), $c = 1, P_{i,j,0} = 0$.
- subtask5(21%), 没有特殊的约定.

每个subtask只有一组数据.

2 Paint

2.1 Description

小C很喜欢二维染色问题,这天他拿来了一个 $w \times h$ 的二维平面,初始时均为白色. 然后他在上面设置了n个关键点 (X_i,Y_i) ,对于每个关键点他会选择进行下列操作的一个:

- 将 $x > X_i$ 的部分染成黑色.
- 将 $x < X_i$ 的部分染成黑色.
- 将 $y > Y_i$ 的部分染成黑色.
- 将 $y < Y_i$ 的部分染成黑色.

(图示参见样例解释)

他本来是想让你支持单点修改以及可持久化然后把空间限制开成1M的,但鉴于这只是第二题,现在他只想最大化所有操作结束之后白色部分的**周长**(不难发现白色部分一定是个矩形).特别地,如果没有白色部分,设其周长为0.

2.2 Input

从文件paint.in中读入数据。 第一行三个整数w,h,n. 接下来n行每行两个数表示 X_i,Y_i .

2.3 Output

输出到文件paint.out中。 一行一个整数表示最大周长。

2.4 Sample1

2.4.1 Input

10 10 4

- 1 6
- 4 1
- 6 9
- 9 4

2.4.2 Output

36

2.4.3 Explanation

最优解如下图所示:

2.5 Sample2

2.5.1 Input

- 10 10 4
- 2 2
- 4 4
- 7 7
- 9 9

2.5.2 Output

26

2.5.3 Explanation

注意平面边界也可以成为最后得到的矩形的边界.

2.6 Sample3

见选手目录下的paint/paint3.in与paint/paint3.ans.

2.7 Subtasks

对于所有数据,有 $1 \le w, h \le 10^8, 0 \le n \le 2 \times 10^5, 0 \le X_i \le w, 0 \le Y_i \le h.$

- subtask1(17%), $n \le 10$.
- subtask2(16%), $n \le 100$.
- subtask3(15%), $n \le 1500$.
- subtask4(14%), $n \le 7000$.
- subtask5(38%), $n \le 2 \times 10^5$.

3 Decompose

3.1 Description

小C有一棵n个点的树,1号点为根,每个点有L个权值,表示为 $w[u][i], u \in [1, n], i \in [1, L].$

现在他想对这棵树进行树链剖分,于是fatesky教给他一种自创的剖分方法. 具体地,一棵树的剖分可以表示为若干条链 S_1, S_2, \dots, S_k ,满足:

- 每个点属于且仅属于一条链.
- 一条链在树上是一个连通块,即对 $\forall i, u, v \in S_i$,从u到v的简单路径不经过任何不在 S_i 中的节点.
- $\forall i, S_i$ 的长度不超过L.
- 链中所有节点深度不同.

设一条链按深度**从大到小**排序后为 $u_1,u_2,...,u_m$,fatesky定义一条链的权值为 $\sum_{i=1}^m w[u_i][i]$,一种剖分的权值为所有链的权值和. 现在他想最大化剖分的权值.

小C本来是想让你支持链修改,子树查询,以及Link,Cut操作的,但考虑到这不是CTSC模拟题,现在他只需要你支持单点的权值修改. 具体地,他会给出q个修改操作,每个修改操作给出一个点u以及L个值,表示修改之后的w[u][i]. 每个修改操作之后,你需要回答最大的剖分权值.

3.2 Input

从文件decompose.in中读入数据.

第一行三个整数n,q,L.

接下来一行n-1个整数,第i个为 f_{i+1} ,表示树上i+1号点的父亲.

接下来n行,每行L个整数,第i行的第j个整数表示w[i][j].

接下来q行,每行第一个整数为要修改权值的点u,接下来L个整数表示新的w[u][i].

3.3 Output

输出到文件decompose.out中. 输出q行,每行一个整数表示对应询问的答案.

3.4 Sample1

3.4.1 Input

- 4 2 2
- 1 2 2
- 1 0
- -2 5
- 1 100
- 1 100
- 1 -5 10
- 2 -16 0

3.4.2 Output

10

-3

3.4.3 Explanation

```
对于第一组询问,一种剖分方法为\{2,1\},\{3\},\{4\}.对于第二组询问,一种剖分方法为\{1\},\{4,2\},\{3\}.
```

3.5 Sample2

见选手目录下的decompose/decompose2.in与decompose/decompose2.ans.

3.6 Sample3

见选手目录下的decompose/decompose3.in与decompose/decompose3.ans.

3.7 Subtasks

对于所有数据,有1 $\leq n \leq 10^5, 2 \leq L \leq 4, 1 \leq f_i \leq i-1, |w_{i,j}| \leq 10^9,$ $1 \leq q \leq 10^5, q \times (L-1) \leq 10^5, 1 \leq u \leq n.$

- subtask1(13%), $n, q \leq 10$.
- subtask2(7%), $q \le 10$.
- subtask3(8%), f_i 在[1, i-1]内均匀随机.
- subtask4(26%), $f_i = i 1, L = 2$.
- subtask5(11%), $f_i = i 1$.
- subtask6(35%), 没有特殊的约束.