Introductory Stats Notes

Terry Yu

2021

Contents

1	Basics	1
2	Descriptive Statistics 2.1 Normal Distribution	2 2 2 2 3
§	1 Basics	
	Definition — <u>Population</u> : complete collection of objects, persons, or things under study.	
	Definition — . <u>Parameter</u> : Some measurable characterisc with referene to population	
ı		
	Definition — <u>Sample</u> : is a subset of a population	
ı		
	Definition — <u>Statistic</u> : some measurable characteristic with reference to sample	
ï		
l	Example — A survey of 2104 households ini the United States found that 65 percent subscribe to cable television. What is the population, sample, parameter, and statistic?	;
	olution. Teh population is all the households in the United States, whereas the sample is just the 21 buseholds sampled. The Parameter is	04
	Definition — Types of Data:	
	1. <u>Attributive</u> (Qualitative) Data: data that is not quantifaible (not represented wiht a number)	
	2. Quantitative Data: Countable data with whole numbers, such as # of thigs	
	3. <u>Continuous</u> Dta: Measurable quantities, such as time, height	

§2 Descriptive Statistics

imean median mode

§2.1 Normal Distribution

Standard Deviation — Standard deviation for a sample is

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

whereas for a population is

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$

Z Score — Standard score or Z score makes it possible to compare sores from different distributsions, with different means and different deviations, measuring in sd units

$$z = \frac{x - \mu}{\sigma}$$

§2.2 Binomial Distribution

Notation: $X\tilde{B}(n,p)$ where n is the number of times the same action is repeated, and the p is fixed for which its the probability of success and q = 1 - p is its complement.

Binomial Distribution — Mean:

$$\mu = np$$

sd:

$$\sigma = \sqrt{npq}$$

Probability for exactly x chances of success:

$$p = \binom{n}{x} p^x q^{n-x}$$

§2.3 Geometric Distribution

A random variable that counts the number of trials until the first success: $X\tilde{G}(p)$.

Geometric Distribution — Probability of occurrint x times before succeeding:

$$p=q^{x-1}p$$

Mean:

$$\mu = \frac{1}{p}$$

§2.4 Normal Approximation for Binomial Distribution

Continuity Correction Factor (CCF) — To convert between binomial and normal, have to approximate with ccf

Once approximated, use normal z score and z calculation with the binomial distribution mean and standard deviation.

Theorem (Central Limit Theorem)

The Central limit theorem compares the means in sample and in the population, saying that

- 1. The distribution of \overline{x} is normal
- 2. mean of samples is population mean

$$\mu_{\overline{x}} = \mu$$

3. standard deviation of sample means is

$$\sigma_x = \frac{\sigma}{\sqrt{n}}$$

Definition — Point Estimate: a single number used as a best guess, like the sample mean \overline{x}

Definition — Error: distance bewteen teh point estimate and population mean

Confidence Interval — Confidence intervals are to estimate a population thing from the sample, with error. Error is computed with

$$E=z\frac{\sigma}{\sqrt{n}}$$

with the confidence interval being

$$\overline{x} \pm E$$

Example —