Prüfungsbogen: 0

EvaExam	Exam Machine Learni	ng WS2019/20-2	Electric Paper EVALUATIONS SYSTEME
Bitte so markieren: Korrektur:	□ 🗶 □ □ □ Bitte verwenden Sie einen Kugelschreiber o □ ■ □ 🗶 □ Bitte beachten Sie im Interesse einer optim		
Bitte ausfüllen (Die Angabe des Namens ist freiwillig.):	Matrikelnummer für den Prüfungsbog	en Nr.: 0:
Vorname:		0	
Ihre Prüfungste	ge Zuordnung der Prüfung übertragen Sie bitte ilnehmer-ID gewissenhaft in die dafür	1	
vorgesenenen individualisiert ı	Felder. Alle Seiten sind vollständig und nicht mit anderen Prüfungen tauschbar.	9	
1 Data mai	nipulation with numpy (10P)		
 b) Give c) Give d) Give e) Give f) slice g) set th h) Assu 	a code snippet that prints the number of columns a code snippet that sets every second row of X, s a code snippet that sets columns 1,2 and 7 in X to a code snippet that computes the mean value alo a snippet that creates an array Y of dimensions [14] randomly chosen rows out of X e values at positions (1,2),(2,2) and (3,4) to 10 us ming that the rows of X are target values in one-haces of each class.	starting at 0, to a value of 1.0 of 0 and uses only one assignment operating each column in X and prints the result [1,1,50] whose values are all -1.	t.

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

1. Data manipulation with numpy (10P) [Fortsetzung]

Fortsetzung der Frage "You can assume that numpy is already imported as *np*. Loops are generally forbidden here. We assume that a 2D array X has already been created!

- a) Give a code snippet that prints the number of columns in X that have a sum bigger than 3.0
- b) Give a code snippet that sets every second row of X, starting at 0, to a value of 1.0c) Give a code snippet that sets columns 1,2 and 7 in X to 0 and uses only one assignment operation
- d) Give a code snippet that computes the mean value along each column in X and prints the result.
- e) Give a snippet that creates an array Y of dimensions [1,1,50] whose values are all -1. f) slice 4 randomly chosen rows out of X

- g) set the values at positions (1,2),(2,2) and (3,4) to 10 using a single assignment operation!
 h) Assuming that the rows of X are target values in one-hot format: give a snippet that prints the number of occurrences of each class.":

28.02.2020, Seite 2/12 F19915U0P2PL0V0

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

2. Tensorflow basics (10P)

a) Explain what the method Session.run() does, what the two most typical arguments are and what it returns.
b) Give a code snippet to declare a TF placeholder of 20 rows and a variable number of columns
c) Give a code snippet to declare a TF variable that will later be initialized to a tensor of dimension [3,2]

having a value of 1 everywhere.

d) Give a code snippet that computes and prints out the element-wise sum of two TF tensor_like objects a and b (same shape, supposed to be initialized already)

e) Assuming a TF variable a (supposed to be initialized to a value of [4] on the core): please explain whether or not the ouput of print(a) will give [4] as a result!

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

Electric Paper

Advanced Tensor	Flow	(7P)	
-----------------------------------	------	------	--

3.1	Assuming that an input placeholder X has been created already: implement (in TF) two convolutional layers, each one followed by max-pooling with kernel size 2x2. There are 11 filters of size 3x3 in the first convLayer, and 21				
	filters of size 5x5 in the second one. You do not need to implement DNN layers, or loss functions, or initialize variables, or use sess.run() statements: a TF graph that computes the activities of the two convLayers is sufficient!				

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

4. Classification and error measures (15P)

4.1	Binary	classification	(5P)

A binary classifier is evaluated to have a true negative rate (tnr) of 0.5 and a true positive rate (tpr) of 0.1. Compute the classification error for a dataset in which the ratio of positive to negative samples is 1:1.

> 50 10 20 20 10 **60 20** 10 30 60 0 30 70 0 0

Multi class classification (5P) 4.2

The application of a multi-class classifer to a test set of samples yields the confusion matrix given above. Please compute:

- a) The number of correctly classified samples
- b) the number of samples whose true class is 3c) the number of samples for which the classifier output is 1 or 3
- d) The classification error (probability of incorrect result) under the restriction that the true class is 1
 e) The classification accuracy (probability of correct result) under the restriction that the classifier output is 3

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

0	Electric Paper
	EVALUATIONSSYSTEME

5. PCA

$$C = egin{pmatrix} 1 & 0 \ 0 & 5 \end{pmatrix}$$

		le vector [0, 1] is all eiger	nvector and determine i	ts eigenvalue!
NN basics (20 1	P)			
ONINI- (ED)	: of -: \A	V ⁽⁰⁾ ,H ⁽⁰⁾ ,C ⁽⁰⁾ = 64,64,1. W	e assume that 30 filters	with sizes of $f_x^{(1,2)}$, $f_y^{(1,2)}$ =
A CNN has an and step sizes of kernel. Compute	Thought layer of size V : $\Delta_{\chi}^{(1,2)}$, $\Delta_{\gamma}^{(2,2)} = 1,1$ are apthe dimensions $W^{(1)}$, $H^{(1)}$	oblied in layer 1 and layer 1, C ⁽¹⁾ , C ⁽²⁾ of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	oplied in layer 1 and layer 1, C and layer 1, C of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	oplied in layer 1 and layer 1,	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	pplied in layer 1 and layer 1,	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	Thought layer of size V : $\Delta_{\mathbf{x}}^{(1,2)}, \Delta_{\mathbf{y}}^{(2,2)} = 1,1$ are applied the dimensions $\mathbf{W}^{(1)}, \mathbf{H}$	oplied in layer 1 and layer 1,	layers 1 and 2 after ma	x-pooling!
CNNs (5P) A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	oplied in layer 1 and layer 1,	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	pplied in layer 1 and layer, C ⁽²⁾ of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	pplied in layer 1 and layer, C ⁽²⁾ of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	the dimensions $W^{(1)}$, H	pplied in layer 1 and layer 1, C of and W ⁽²⁾ , H ⁽²⁾ , C of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	Input layer of size V : $\Delta_{\chi}^{(1,2)}$, $\Delta_{\gamma}^{(2)}$ = 1,1 are ap the dimensions $W^{(1)}$,H	pplied in layer 1 and layer, C and layer, C of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	Input layer of size V : $\Delta_{\chi}^{(1)}$, $\Delta_{\gamma}^{(2)}$ = 1,1 are apositive dimensions $W^{(1)}$, H	pplied in layer 1 and layer, C and layer, C of	layers 1 and 2 after ma	x-pooling!
A CNN has an and step sizes of kernel. Compute	Input layer of size V : $\Delta_{\mathbf{x}}^{(1,2)}$, $\Delta_{\mathbf{y}}^{(2,2)} = 1,1$ are ap the dimensions $\mathbf{W}^{(1)}$, \mathbf{H}	pplied in layer 1 and layer 1, C of	layers 1 and 2 after ma	x-pooling!

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

0	Electric Paper
	EVALUATIONSSYSTEME

6. DN	N basics∍	(20P)	[Fortsetzung]
-------	-----------	-------	---------------

$$\frac{\partial a_2^{(l)}}{\partial W_{22}^{(l)}}$$

$$rac{\partial a_k^{(l)}}{\partial a_j^{(l-1)}}$$

6.3

Derivatives 2 (5P) For a transfer function layer I which applies the function $g(x) = \sin(x)$ to all activities in the previous layer I-1: compute the symbolic derivative specified above!

Prüfungsbogen: 0

1 3

3

EvaExam

Exam Machine Learning WS2019/20-2

. Discrete probabilities													
Exp 1	. (X):	1	2	1	2	3	3	3	2	2	2	1	1

1 3 2 2 2

7.1

Exp 2 (Y):

Discrete probabilities (5P) Given the experimental results (above) for the two random variables X and Y: compute the following probabilities: a) p(X = 1) and p(Y = 1)b) p(X = 1,Y = 1) c) p(X = 1,Y = 3) d) p(Y = 1 | X = 2) e) p(X = 1 | Y = 3)

1 3

8. Advanced DNNs (15P)

Fully-connected DNNs (5P)

A fully-connected DNN has layer sizes of 3-3-5-3, where the first layer size represents the input layer. We assume that all layers are affine ones (no ReLU). Give the dimensions of all weight matrices and all bias vectors in the network and compute the total number of free parameters in this DNN!

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

Electric Daner
Electric Paper
EVALUATIONSSYSTEME

0. A	dvanced DNNs (15P) [Fortsetzung]
8.2	DNNs on paper (8P) We consider a DNN with input samples of size $Z^{(0)}$ =3, followed by an affine layer with size $Z^{(1)}$ =2, followed by a ReLU layer, followed by another affine layer of size $Z^{(3)}$ =2. All weight matrix entries are initialized to 1, and all biases to -1: compute the activity vector $\mathbf{a}^{(3)}$ that arises as a reaction to the single input sample $\mathbf{a}^{(0)}$ = [1, -1, -1].
8.3	The loss function and its derivatives (5P) Assume that the output layer activity of a DNN is [0.3,0.7] for a single input. Compute the numerical value of the cross-entropy loss function for a target vector of [1,0], as well as the numerical values for the derivatives of the loss w.r.t. the first and second activities in the output layer.

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

Electric Paper

9. Gradients and gradient descent (13P)

$$f(ec{w}) = 0.5 w_1^2 + 100$$

9.1 **Gradient descent (5P)**Perform two steps of gradient descent (towards a local minimum) for the function given above, using a step size of 0.1 and an initial value of [2,2].

a)
$$h(x) = 15\pi + 200 \ln(e)$$

b) $h(x) = \exp(\cos(x))$
c) $h(x) = \ln(x)x^2$

9.2 Derivatives (5P)
Compute the derivatives of the functions given above. Please also give (where appropriate) the decomposition of each function into simpler functions, and the applicable derivative rule.

Prüfungsbogen: 0

EvaExam

Exam Machine Learning WS2019/20-2

Electric Paper

10. Extra space!!

Prüfungsbogen: 0

EvaExam Exam Machine Learning WS2019/20-2

Electric Paper

11. Extra space!!