IE 506 Lecture

March 12, 2024

1/83

P. Balamurugan Decision Trees March 12, 2024

- Classification Algorithms
 - Decision Trees

P. Balamurugan Decision Trees March 12, 2024 2/83

Classification Algorithms: Decision Trees

Dataset 1:

Dataset 1.			
Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	NO
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	YES
100	NO	YES	YES

- Rows denote samples.
- Last column denotes the output (or response or dependent) variable or label.
- First three columns denote attributes (also called features).
- **NOTE:** There are only two output values YES and NO for Disease Presence. (recall e-mail spam classification)

P. Balamurugan Decision Trees March 12, 2024 4/83

Dataset 1:

Dataset 1:			
Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	NO
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	YES
100	NO	YES	YES

- Body Temperature attribute takes continuous values. Hence Body Temperature is called continuous attribute.
- Visit to Foreign Countries and Antibodies in blood take only two values. Hence Visit to Foreign Countries and Antibodies in Blood are called binary attribute.
- There are other types of attributes: Nominal, Categorical etc. for which we will see some examples later.

P. Balamurugan Decision Trees March 12, 2024 5/83

Dataset 1:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	NO
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	YES
100	NO	YES	YES

• Aim 1: To learn a classification machine learning model on Dataset 1 using the first three columns of the samples as features and the last column as the output label.

Dataset 1:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	NO
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	YES
100	NO	YES	YES

- Aim 1: To learn a classification machine learning model on Dataset 1 using the first three columns of the samples as features and the last column as the output label.
- Aim 2: Use the learned model to find the status of Disease Presence for a new sample with the attributes Body Temperature, Visit to Foreign Countries and Antibodies in Blood.

P. Balamurugan Decision Trees March 12, 2024 7/83

Dataset 1:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	NO
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	YES
100	NO	YES	YES

- **NOTE:** The Antibodies in Blood feature is perfectly correlated with Disease Presence.
- Hence for Dataset 1, it would be simply possible to indicate Disease Presence just by knowing the status of Antibodies in Blood.

Decision Tree For Dataset 1

Decision Tree For Dataset 1

- So if we have trained using dataset 1, our decision tree finds the status of Disease Presence by simply checking Antibodies in Blood.
- Hence if a new sample is to be tested, the decision tree will examine only the Antibodies in Blood attribute of the new sample and decide Disease Presence accordingly.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

Dataset 2:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

- NOTE: No feature is perfectly correlated with the Disease Presence output.
- Question: How do we construct a decision tree now?

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Dataset 2:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

- Question: How do we construct a decision tree now?
- We will start with the simpler case: Let us ignore Body Temperature attribute for the time being and consider only the attributes Visit to Foreign Countries and Antibodies in blood.

→□▶→□▶→□▶→□▶ □ 900

 Let us check how the splits look when we split on the Visit to Foreign Countries attribute.

Dataset 2:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

Splitting on the Visit to Foreign Countries attribute we have:

Disease Presence:

YES: 2 samples

NO: 2 samples

Disease Presence:

YES: 1 sample

NO: 1 sample

• Splitting on the Visit to Foreign Countries attribute we have:

 Notice that the split produces two nodes corresponding to Visit to Foreign Countries=YES and Visit to Foreign Countries=NO.

- We see that among those who visited foreign countries, 50% have disease and 50% do not have disease.
- Similarly, among those who did not visit foreign countries, 50% have disease and 50% do not have disease.
- Thus vaguely, just by knowing the status of Visit to Foreign Countries attribute, we can only be 50% sure that the person has a disease.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽

 Let us check how the splits look when we split on the Antibodies in Blood attribute.

Dataset 2:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

Splitting on the Antibodies in Blood attribute we have:

Disease Presence:

YES: 2 samples

NO: 1 sample

Disease Presence:

YES: 1 sample

NO: 2 samples

- We see that among those who have antibodies in blood, 66.6% have disease and 33.3% do not have disease.
- Among those who do not have antibodies in blood, 66.6% do not have disease and 33.3% have disease.
- Thus vaguely, just by knowing the status of Antibodies in Blood attribute, we can say with >50% confidence that the person has a disease.

4 D P 4 GP P 4 EP P E 99 Q CP

P. Balamurugan Decision Trees March 12, 2024 19/83

- Thus, splitting using Antibodies in Blood attribute produces somewhat better confidence in classifying the Disease Presence label when compared to Antibodies in Blood attribute.
- Let us now make this intuition more formal.

<ロト <個ト < 重ト < 重ト = 一 の Q ()

 Let us denote Disease Presence using DP, Visit to Foreign Countries as VFC and Antibodies in Blood using AB.

P. Balamurugan Decision Trees March 12, 2024 21/83

Visit to Foreign Countries

Yes No

Disease Presence:

YES: 2 samples

NO: 2 samples

VFC=YES Node

Disease Presence:

YES: 1 sample

NO: 1 sample

VFC=NO Node

 Notice (and recall) that the split produces VFC=YES node (in the left) and VFC=NO node (in the right).

- Note that there are 4 samples at VFC=YES node.
- Now the probability that DP is YES given that VFC is YES is given by: P(DP = YES|VFC = YES) = 2/4 = 0.5.
- We can immediately derive that P(DP = NO|VFC = YES) = 1 P(DP = YES|VFC = YES) = 1 0.5 = 0.5.

P. Balamurugan Decision Trees March 12, 2024 23 / 83

- Note that there are 2 samples at VFC=NO node.
- The probability that DP is YES given that VFC is NO is given by: P(DP = YES|VFC = NO) = 1/2 = 0.5.
- Hence P(DP = NO|VFC = NO) = 1 P(DP = YES|VFC = NO) = 0.5.

P. Balamurugan Decision Trees March 12, 2024 24 / 83

• **Definition**: We define Entropy of the node VFC=YES as:

Entropy(VFC=YES Node) =
$$-P(DP = YES|VFC = YES) \log_2 P(DP = YES|VFC = YES)$$

$$-P(DP = NO|VFC = YES) \log_2 P(DP = NO|VFC = YES).$$

P. Balamurugan Decision Trees March 12, 2024 25 / 83

Definition: We define Entropy of the node VFC=NO as:

$$\begin{split} &\mathsf{Entropy}(\mathsf{VFC} {=} \mathsf{NO} \; \mathsf{Node}) = \\ &- P(\mathit{DP} = \mathit{YES} | \mathit{VFC} = \mathit{NO}) \log_2 P(\mathit{DP} = \mathit{YES} | \mathit{VFC} = \mathit{NO}) \\ &- P(\mathit{DP} = \mathit{NO} | \mathit{VFC} = \mathit{NO}) \log_2 P(\mathit{DP} = \mathit{NO} | \mathit{VFC} = \mathit{NO}). \end{split}$$

P. Balamurugan Decision Trees March 12, 2024 26 / 83

Entropy:

VFC=YES Node

-P(DP=YES|VFC=YES) log P(DP=YES|VFC=YES)

-P(DP=NOIVFC=YES) log P(DP=NOIVFC=YES)

Entropy: VFC=NO Node

-P(DP=YES|VFC=NO) log P(DP=YES|VFC=NO)

-P(DP=NOIVFC=NO) log P(DP=NOIVFC=NO)

- The Entropy value measures the level of **impurity** of a node.
- By impurity, we mean in some sense the amount of confusion present in a node to declare the output value Disease Presence as YES or NO.
- Hence lower impurity value

 low confusion in deciding the output value.

P. Balamurugan Decision Trees March 12, 2024 28 / 83

We can now compute Entropy of the node VFC=YES as:

Entropy(VFC=YES Node) =
$$-P(DP = YES|VFC = YES) \log_2 P(DP = YES|VFC = YES)$$
$$-P(DP = NO|VFC = YES) \log_2 P(DP = NO|VFC = YES).$$
$$= -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -\log_2 0.5 = 1$$

P. Balamurugan Decision Trees March 12, 2024 29 / 83

Similarly, we can compute Entropy of the node VFC=NO is:

Entropy(VFC=NO Node) =
$$-P(DP = YES|VFC = NO) \log_2 P(DP = YES|VFC = NO)$$
$$-P(DP = NO|VFC = NO) \log_2 P(DP = NO|VFC = NO)$$
$$= -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -\log_2 0.5 = 1$$

P. Balamurugan Decision Trees March 12, 2024 30 /83

31 / 83

P. Balamurugan Decision Trees March 12, 2024

• What is special about the Entropy?

32 / 83

P. Balamurugan Decision Trees March 12, 2024

- What is special about the Entropy?
- Note: The probabilities P(DP = YES | VFC = YES) and P(DP = No|VFC = YES) can be represented as p_1 and $1 - p_1$.

March 12, 2024

33 / 83

P. Balamurugan **Decision Trees**

- What is special about the Entropy?
- Note: The probabilities P(DP = YES|VFC = YES) and P(DP = NO|VFC = YES) can be represented as p_1 and $1 p_1$.
- Hence

Entropy(VFC=YES) =
$$-p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$$

P. Balamurugan Decision Trees March 12, 2024 34 / 83

Consider

Entropy(VFC=YES) =
$$-p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$$

- When $p_1 = 1$ or $p_1 = 0$ the Entropy value is 0.
- When p_1 is 0.5 the Entropy is 1.
- Thus when we are sure about an event (indicated by $p_1 = 0$ and $p_1 = 1$), the entropy has a low value.
- Thus when we are not sure (or confused) about an event (indicated by $p_1 = 0.5$), the entropy has a high value.

35 / 83

P. Balamurugan **Decision Trees**

- Thus Entropy is a formal notion for the level of confusion in decision making process.
- ullet High Entropy \Longrightarrow High confusion \Longrightarrow Cannot decide for sure.
- ullet Low Entropy \Longrightarrow Low confusion \Longrightarrow Decision can be done with high confidence.

P. Balamurugan Decision Trees March 12, 2024 36 / 83

Equivalently:

- ullet High Entropy \Longrightarrow High Impurity \Longrightarrow High confusion \Longrightarrow Cannot decide for sure.
- ullet Low Entropy \Longrightarrow Low Impurity \Longrightarrow Low confusion \Longrightarrow Decision can be done with high confidence.

P. Balamurugan Decision Trees March 12, 2024 37/83

Note that before the split, there were 6 samples in total.

P. Balamurugan

 After splitting using VFC, 4 samples have moved to VFC=YES node and 2 samples have moved to VFC=NO node.

Decision Trees March 12, 2024

 Now we can compute the weighted impurity associated with the VFC attribute as:

$$I(VFC) = 4/6 * Entropy(VFC = YES) + 2/6 * Entropy(VFC = NO)$$

= $4/6 * 1 + 2/6 * 1 = 4/6 + 2/6 = 1$.

P. Balamurugan Decision Trees March 12, 2024 39 /83

• **NOTE: Weighted impurity** is associated with an attribute whereas Entropy is associated with a node.

イロト (個) (目) (目) (目) の(0)

- Again we would want the weighted impurity associated with an attribute to be as small as possible.
- Low weighted impurity

 Low confusion in deciding output.

P. Balamurugan Decision Trees March 12, 2024 41/83

 We will now repeat the calculations for the Antibodies in Blood attribute and compute the weighted impurity.

P. Balamurugan Decision Trees March 12, 2024 42/83

- Note that there are 3 samples at AB=YES node.
- Now the probability that DP is YES given that AB is YES is given by: $P(DP = YES | AB = YES) = 2/3 \approx 0.67$.
- We can immediately derive that P(DP = NO|AB = YES) = 1 P(DP = YES|AB = YES) = 1 0.67 = 0.33.

P. Balamurugan Decision Trees March 12, 2024 43 / 83

- Also note there are 3 samples at AB=NO node.
- Now the probability that DP is NO given that AB is NO is given by: $P(DP = NO|AB = NO) = 2/3 \approx 0.67$.
- We can immediately derive that P(DP = YES|AB = NO) = 1 P(DP = NO|AB = NO) = 1 0.67 = 0.33.

P. Balamurugan Decision Trees March 12, 2024 44 / 83

Hence we can compute the entropy for AB=YES node as:

P. Balamurugan

Decision Trees March 12, 2024 45 / 83

Hence we can compute the entropy for AB=YES node as:

$$Entropy(AB=YES\ Node) = 0.914926$$

46 / 83

P. Balamurugan **Decision Trees** March 12, 2024

Also we can compute the entropy for AB=NO node as:

P. Balamurugan

 $Entropy(AB=NO\ Node) = ??$

Decision Trees March 12, 2024 47 / 83

Also we can compute the entropy for AB=NO node as:

P. Balamurugan

$$Entropy(AB=NO\ Node) = 0.914926$$

Decision Trees March 12, 2024 48 / 83

- Before the split there are 6 samples.
- Note that during the split, 3 samples are at AB=YES node and 3 samples are at AB=NO node.
- So weighted impurity for antibodies in blood attribute is:

I(AB) = ??

P. Balamurugan Decision Trees March 12, 2024 49 / 83

We have thus computed weighted impurity of VFC and AB as:

$$I(VFC) = 1$$

 $I(AB) = ??$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

• We have thus computed weighted impurity of VFC and AB as:

$$I(VFC) = 1$$

 $I(AB) = ??$

 Note: We need to choose that attribute which has a lower value of weighted impurity.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

51/83

P. Balamurugan Decision Trees

- If I(AB) < I(VFC) we need to choose Antibodies in blood.
- After splitting on Antibodies in blood attribute, we will have two partitions of the dataset:

Dataset 2 Split on AB attribute:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO

P. Balamurugan Decision Trees March 12, 2024 52 /83

• We need to repeat the split procedure for each of the partitions.

P. Balamurugan Decision Trees March 12, 2024 53/83

Other notions of impurity

We can compute Gini index of the node VFC=YES as:

Gini(VFC=YES Node) =
$$1 - [P(DP = YES|VFC = YES)]^2 - [P(DP = NO|VFC = YES)]^2$$
$$= 1 - 0.5^2 - 0.5^2 = 0.5$$

Other notions of impurity

Similarly, we can compute Gini index of the node VFC=NO as:

Gini(VFC=NO Node) =
$$1 - [P(DP = YES|VFC = NO)]^2 - [P(DP = NO|VFC = NO)]^2$$
$$= 1 - 0.5^2 - 0.5^2 = 0.5$$

Other notions of impurity

 Now we can compute the weighted impurity associated with the VFC attribute as:

$$I_{Gini}(VFC) = 4/6 * Gini(VFC = YES) + 2/6 * Gini(VFC = NO)$$

= $4/6 * 0.5 + 2/6 * 0.5 = (4/6 + 2/6) * 0.5 = 0.5$.

P. Balamurugan Decision Trees March 12, 2024 56 / 83

Other notions of impurity

• Exercise: Compute the gini index for AB=YES and AB=NO node, and hence compute the weighted impurity $I_{Gini}(AB)$ associated with Antibodies in Blood attribute.

Note that we almost forgot Body Temperature attribute.

P. Balamurugan Decision Trees March 12, 2024 58 / 83

- Note that we almost forgot Body Temperature attribute.
- How do we deal with such continuous attributes?

59 / 83

P. Balamurugan Decision Trees March 12, 2024

- Note that we almost forgot Body Temperature attribute.
- How do we deal with such continuous attributes?
- There are multiple ways. We will discuss one possible way.

• For the current dataset partitions, we will convert Body Temperature attribute so that we get a simple binary attribute.

PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
104	YES	YES	YES
99	YES	YES	NO
100	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
(°F)	Foreign Countries	in blood	Presence
100	NO	NO	NO
98	YES	NO	YES
102	YES	NO	NO

 For the current dataset partitions, we will convert Body Temperature attribute so that we get a simple binary attribute.

PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
(>= 100°F)	Foreign Countries	in blood	Presence
YES	YES	YES	YES
NO	YES	YES	NO
YES	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ} F)$	Foreign Countries	in blood	Presence
YES	NO	NO	NO
NO	YES	NO	YES
YES	YES	NO	NO

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

PARTITION 1: PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ}F)$	Foreign Countries	in blood	Presence
YES	YES	YES	YES
NO	YES	YES	NO
YES	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
(>= 100°F)	Foreign Countries	in blood	Presence
YES	NO	NO	NO
NO	YES	NO	YES
YES	YES	NO	NO

 Note that in each of the partitions, the modified Body Temperature attribute is perfectly correlated with the Disease Presence label.

4 □ ▶ 4 個 ▶ 4 분 ▶ 4 분 ▶ 일 · ~ ?

PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
(>= 100°F)	Foreign Countries	in blood	Presence
YES	YES	YES	YES
NO	YES	YES	NO
YES	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
(>= 100°F)	Foreign Countries	in blood	Presence
YES	NO	NO	NO
NO	YES	NO	YES
YES	YES	NO	NO

• We can formalize this correlation using the **weighted impurity** for each attribute in PARTITION 1 and PARTITION 2.

4 B N 4 분 N 4 분 N 9 연

PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ} F)$	Foreign Countries	in blood	Presence
YES	YES	YES	YES
NO	YES	YES	NO
YES	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ} F)$	Foreign Countries	in blood	Presence
YES	NO	NO	NO
NO	YES	NO	YES
YES	YES	NO	NO

- Claim: In each partition, weighted impurity I(BT) of Body Temperature>= 100° F is the lowest.
- Prove this claim! (Homework).

- 4ロト 4個ト 4 差ト 4 差ト - 差 - 夕Qで

PARTITION 1:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ}F)$	Foreign Countries	in blood	Presence
YES	YES	YES	YES
NO	YES	YES	NO
YES	NO	YES	YES

PARTITION 2:

Body Temperature	Visit to	Antibodies	Disease
$(>= 100^{\circ}F)$	Foreign Countries	in blood	Presence
YES	NO	NO	NO
NO	YES	NO	YES
YES	YES	NO	NO

 Thus, each partition will be further split using Body Temperature $>= 100^{\circ}F$ attribute.

 After splitting PARTITION 1 and PARTITION 2 we would get: (check this!)

P. Balamurugan Decision Trees

- **Note:** PARTITION 1.1, 1.2, 2.1 and 2.2 have samples belonging to only one class.
- There is nothing to split after this in PARTITION 1.1, 1.2, 2.1 and 2.2. Hence we can stop the split procedure.

P. Balamurugan Decision Trees March 12, 2024 68 / 83

Decision Tree

Dataset with other types of attributes

Name	Region	Cough	Disease
	Visited	Severity	Presence
Nam1	Africa	Low	NO
Nam2	Europe	Medium	YES
Nam3	Europe	High	YES
Nam4	Australia	High	YES
Nam5	Middle-East	Low	NO
Nam6	USA	Low	YES

- Name is a nominal attribute.
- Name attribute has distinct value for each sample, hence its utility in classification is very less.
- Attributes having distinct values for each sample will be usually ignored from the splitting procedure (because of their high weighted impurity values).

P. Balamurugan Decision Trees March 12, 2024 69 / 83

Decision Tree

Dataset with other types of attributes

Name	Region	Cough	Disease
	Visited	Severity	Presence
Nam1	Africa	Low	NO
Nam2	Europe	Medium	YES
Nam3	Europe	High	YES
Nam4	Australia	High	YES
Nam5	Middle-East	Low	NO
Nam6	USA	Low	YES

- Region Visited is a categorical attribute since it takes multiple categorical values.
- Cough severity is a Ordinal attribute since it takes values that have some ranking (or ordering) associated.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Structure of Decision Tree

- Root node: Has no incoming edges and has two or more outgoing edges.
- Intermediate node: Has one incoming edge and two or more more outgoing edges.
- Leaf node: Has one incoming edge and no outgoing edges.

Note: Each leaf node is associated with a class label.

P. Balamurugan

• Input: Data $D = \{(x^i, y^i)\}_{i=1}^n, x^i \in \mathbb{R}^d, y^i \in \{1, 2, \dots, K\}, \forall i \in \{1, 2, \dots, n\}.$

P. Balamurugan Decision Trees March 12, 2024 72 / 83

- Input: Data $D = \{(x^i, y^i)\}_{i=1}^n, x^i \in \mathbb{R}^d, y^i \in \{1, 2, \dots, K\}, \forall i \in \{1, 2, \dots, n\}.$
- Initialize a node *P* with full data set *D*. Assign *P* as root node of tree.

(ロト 4 國 ト 4 필 ト 4 필 ト · 필 · 쒸익()

P. Balamurugan Decision Trees March 12, 2024 73/83

- Input: Data $D = \{(x^i, y^i)\}_{i=1}^n, x^i \in \mathbb{R}^d, y^i \in \{1, 2, \dots, K\},$ $\forall i \in \{1, 2, \ldots, n\}.$
- Initialize a node P with full data set D. Assign P as root node of tree.
- Create a list L = [P].

March 12, 2024

74 / 83

P. Balamurugan **Decision Trees**

- Input: Data $D = \{(x^i, y^i)\}_{i=1}^n, x^i \in \mathbb{R}^d, y^i \in \{1, 2, \dots, K\}, \forall i \in \{1, 2, \dots, n\}.$
- Initialize a node P with full data set D. Assign P as root node of tree.
- Create a list L = [P].
- While list L is not empty do:
 - Extract the first node in list L as Q.

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

75 / 83

P. Balamurugan Decision Trees March 12, 2024

- Input: Data $D = \{(x^i, y^i)\}_{i=1}^n, x^i \in \mathbb{R}^d, y^i \in \{1, 2, \dots, K\}, \forall i \in \{1, 2, \dots, n\}.$
- Initialize a node P with full data set D. Assign P as root node of tree.
- Create a list L = [P].
- While list L is not empty do:
 - Extract the first node in list L as Q.
 - If all samples in node Q have the same label y, label the node Q as y. Q is a leaf node.

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

P. Balamurugan Decision Trees March 12, 2024 76 / 83

- Input: Data $D = \{(x^i, y^i)\}_{i=1}^n$, $x^i \in \mathbb{R}^d$, $y^i \in \{1, 2, \dots, K\}$, $\forall i \in \{1, 2, \dots, n\}$.
- Initialize a node P with full data set D. Assign P as root node of tree.
- Create a list L = [P].

P. Balamurugan

- While list L is not empty do:
 - Extract the first node in list L as Q.
 - If all samples in node Q have the same label y, label the node Q as y. Q is a leaf node.
 - ▶ If samples in node Q have different labels, construct a split criterion to split the node Q into child nodes Q_1, Q_2, \ldots, Q_m . Add these nodes Q_1, Q_2, \ldots, Q_m at the end of list L.

4 D > 4 B >

March 12, 2024

77 / 83

Decision Trees

Decision Tree Construction

What stopping criterion can be used to stop the splitting process?

P. Balamurugan Decision Trees March 12, 2024 78 / 83

Decision Tree Construction

What stopping criterion can be used to stop the splitting process?

- Depth based
- Threshold on relative impurity levels of child and parent nodes
- Impurity levels of leaf nodes
- Number of samples in the leaf nodes

79 / 83

P. Balamurugan Decision Trees

Decision Tree Construction

What stopping criterion can be used to stop the splitting process?

- Depth based
- Threshold on relative impurity levels of child and parent nodes
- Impurity levels of leaf nodes
- Number of samples in the leaf nodes

Post-pruning process: Sometimes a full tree is constructed and then subtrees are pruned based on grouping procedures.

Decision Tree

Dataset with other types of attributes

Name	Region	Cough	Disease
	Visited	Severity	Presence
Nam1	Africa	Low	NO
Nam2	Europe	Medium	YES
Nam3	Europe	High	YES
Nam4	Australia	High	YES
Nam5	Middle-East	Low	NO
Nam6	USA	Low	YES

• Homework: Try to construct a decision tree for this dataset!

Decision Tree in Software

- 1.10.2. Regression
- 1.10.3. Multi-output problems
- 1.10.4. Complexity

Pruning

- 1.10.5. Tips on practical use
- 1.10.6. Tree algorithms: ID3, C4.5, C5.0 and CART
- 1.10.7. Mathematical formulation
- 1.10.8. Minimal Cost-Complexity

1.10. Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification an model that predicts the value of a target variable by learning simple decision rules inferred from seen as a piecewise constant approximation.

For instance, in the example below, decision trees learn from data to approximate a sine curve wi rules. The deeper the tree, the more complex the decision rules and the fitter the model.

P. Balamurugan Decision Trees March 12, 2024 82 / 83

Thank You!

P. Balamurugan Decision Trees March 12, 2024 83/83