Exercise Sheet 5

Exercise 1. A surface of revolution

We recall that the Schwarzschild solution on $M = \mathbb{R} \times (2m, +\infty) \times S^2$ is given by:

$$g = -\left(1 - \frac{2m}{r}\right) dt^2 + \left(1 - \frac{2m}{r}\right)^{-1} dr^2 + r^2 d\sigma^2$$

where $d\sigma^2$ is the line element (i.e. metric) on S^2 , which is given in spherical coordinates (θ, φ) by $d\sigma^2 = d\theta^2 + \sin^2\theta \, d\varphi^2$.

- (1) Show that the subset $S \subseteq M$ defined by $\{t = t_0, \theta = \pi/2\}$ (where t_0 is a constant) is an embedded surface in M. Write down the induced metric on S. Is it Lorentzian?
- (2) Find a function z = z(r) such that the map $f(r, \varphi) = (r \cos \varphi, r \sin \varphi, z(r))$ defines an isometric embedding from S to \mathbb{R}^3 . Draw a picture of the embedded surface in \mathbb{R}^3 .

Exercise 2. Schwarzschild solution with cosmological constant

For this exercise we use the setting, notations, and results of §3.1 of Prof. KGB's course notes: *Spherically symmetric static Lorentz manifolds*.

(1) Let us call $\{\lambda_i\}$ the eigenvalues of the Ricci tensor, more precisely, λ_1 , λ_2 , $\lambda_3 = \lambda_4 \in \mathbb{R}$ are defined by $\text{Ric}(\partial_t, \partial_t) = \lambda_1 g(\partial_t, \partial_t)$, $\text{Ric}(\partial_\rho, \partial_\rho) = \lambda_2 g(\partial_\rho, \partial_\rho)$, and $\text{Ric}(X, X) = \lambda_3 g(X, X)$ for any tangent vector X along the S^2 factor. Recall why such λ_i 's exist and why their values are:

$$\lambda_{1} = -\frac{a''}{a} - 2\frac{a'b'}{ab}$$

$$\lambda_{2} = -\frac{a''}{a} - 2\frac{b''}{b}$$

$$\lambda_{3} = \lambda_{4} = \frac{1}{b^{2}} - \frac{b'^{2}}{b^{2}} - \frac{b''}{b} - \frac{a'b'}{ab}$$

- (2) Argue that Einstein's equations in the vacuum with cosmological constant Λ are equivalent to $\lambda_1 = \lambda_2 = \lambda_3 = \Lambda$.
- (3) Show that the equation $\lambda_1 = \lambda_2$ leads to a = Cb' where C is a constant, and one can assume C = 1 after rescaling the t-coordinate.
- (4) Show that the equations $\lambda_3 = \lambda_2 = \Lambda$ lead to $\frac{b'''}{b'} + 2\frac{b''}{b} = -\Lambda$.
- (5) Show that $m := b^2b'' + \frac{\Lambda}{3}b^3$ is constant. Show that b satisfies the first order ODE

$$b'^2 = 1 - \frac{2m}{b} - \frac{\Lambda}{3}b^2$$
.

(6) Show that after the change of coordinates r = b, the Schwarzschild metric is:

$$g = -\left(1 - \frac{2m}{r} - \frac{\Lambda}{3}r^2\right)dt^2 + \left(1 - \frac{2m}{r} - \frac{\Lambda}{3}r^2\right)^{-1}dr^2 + r^2d\sigma^2$$

Exercise 3. Sectional curvatures of the Schwarzschild metric

Consider the manifold $M = \mathbb{R} \times (0, +\infty) \times S^2 \approx \mathbb{R} \times (\mathbb{R}^3 - \{0\})$ with coordinates (t, r, p). We recall that the Schwarzschild metric g is defined on the open set $U \subseteq M$ defined by $\{r > 2m\}$.

- (1) Show that the Schwarzschild metric cannot be extended to a smooth Riemannian metric in M.
- (2) Compute (or recover from the course notes) all the sectional curvatures of the Schwarzschild metric (with or without cosmological constant). Show that the sectional curvatures remain bounded when $r \to 2m$.
- (3) Show that there exists a proper isometric analytic embedding of (U,g) is a Lorentzian manifold N. Think of the Kruskal-Szekeres spacetime.
- (4) (*) In what sense is the singularity of the Schwarzschild solution at r = 2m an "apparent singularity"? Come up with a convincing mathematical and physical explanation in your own words.

Exercise 4. Falling straight into a blackhole

The goal of this exercise is to show that it takes finite proper time for a particle falling straight into a blackhole to reach the event horizon.

Consider the Schwarzschild metric in the (t, ρ, p) -coordinates where $(t, \rho, p) \in \mathbb{R} \times (\rho_0, +\infty) \times S^2$. We refer to the course notes for more details. Consider a curve $c(s) = (t(s), \rho(s), p(s) = p_0)$ where p_0 is some fixed point on S^2 with $\theta(p_0) = \pi/2$.

(1) Show that the geodesic equations for such a curve are:

$$\ddot{t} + 2\frac{b''(\rho)}{b'(\rho)}\dot{t}\dot{\rho} = 0$$
$$\ddot{\rho} + b'(\rho)b''(\rho)\dot{t}^2 = 0$$
$$\ddot{\theta} = 0$$
$$\ddot{\varphi} = 0$$

Show that there such geodesics exist and are determined by their initial condition $c(0) = (t(0), \rho(0), p_0)$ and $\dot{c}(0) = (\dot{t}(0), \dot{\rho}(0), 0)$.

Consider the maximal interval of existence $[0, \beta)$ of such a geodesic c where $\beta \in [0, +\infty]$. The goal of the exercise is to show that $\beta < +\infty$ and $\lim_{s \to \beta} \rho(s) = \rho_0$. (We recall that ρ_0 is characterized by $b'(\rho_0) = 0$).

- (2) From now on we assume that c as before is a geodesic with $\dot{\rho}(0) < 0$. Show that $\ddot{\rho}(s) \le 0$ and $\dot{\rho}(s) \le \dot{\rho}(0) < 0$ for all $s \ge 0$. Conclude that $\beta < +\infty$ (hint: don't forget that ρ must stay $> \rho_0$ for all s). Extend the argument to the case $\dot{\rho}(0) = 0$.
- (3) It remains to show that $\lim_{s\to\beta} \rho(s) = \rho_0$. By contradiction, assume not. Explain why it is enough to argue that t(s) remains bounded when $s\to\beta$ in order to reach a contradiction. First observe that $b'(\rho(s))$ remains bounded. Then derive from the first geodesic equation that $i(s)b'(\rho(s))^2$ is constant. (Is this expected? Recall the energy of a Schwarzschild geodesic!). Conclude.
- (4) (*) *Optional*. Assume additionally that c is timelike. Show that $\lim_{s\to\beta} t(s) = +\infty$. Hint: start by deriving from the fact that $i(s)b'(\rho(s))^2$ is constant that $i(s) = O((\rho(s) \rho_0(s))^{-2})$ when $s \to \beta$.
- (5) Is the Schwarzschild metric complete?

Exercise 5. Energy and angular momentum for Schwarzschild geodesics, Noether's theorem

- (1) Recall the definition of the energy E and the angular momentum L of a Schwarzschild geodesic.
- (2) Noether's theorem states that for any Killing vector field X and for any geodesic γ in a semi-Riemannian manifold (M,g), the quantity $g(\gamma',X)$ is constant along the geodesic.
 - (a) Prove Noether's theorem.
 - (b) Explain why in a physical setting, symmetries for the Lagrangian (e.g. the integrand of the Hilbert-Einstein functional) will typically produce Killing vector fields, and therefore invariant quantities along geodesics.
 - (c) Show that the energy E and the angular momentum L of a Schwarzschild geodesic are constant as an application of Noether's theorem.

Exercise 6. (*) Tidal forces and spaghettification

(1) Read the Wikipedia article *Spaghettification*:

https://en.wikipedia.org/wiki/Spaghettification

(2) Explain the phenomenon of spaghettification with the following mathematical setup. Consider two particles $c_0(s)$ and $c_1(s)$ falling straight into a blackhole as in Exercise 4. These particles represent, say, the two extremities of a rope (or a human body). The goal is to understand the difference in relative acceleration between $c_0(s)$ and $c_1(s)$ with a qualitative argument. In between these two geodesics, there is a family of geodesics $c_\theta(s)$ for $\theta \in [0,1]$. Therefore we get a Jacobi field...