- Studies & Siemens Internship
- Phenomenal Package

Présentation VP – 21/09/2015

Artzet Simon

Plan

- Studies & Siemens Internship
- Phenomenal Package :
 - Objectifs
 - OpenAlea / Visualea
 - PhenoArch data input
 - Pipelines Biomass / 2D & 3D Organ
 - Binarization
 - Calibration
 - Multi-View Reconstruction
 - 3D & 2D Skeleton
 - 3D & 2D Segmentation
 - Package & Schedule

Studies

- <u>BTS</u>:
 - IRIS (Informatique et réseaux pour l'industrie et les services techniques)
- Engineer school:
 - EPITA (École pour l'informatique et les techniques avancées)
 - Spéciality : SCIA (Sciences Cognitives et Informatique Avancée)

Siemens Internship - Bibliothèque MrFtk

Mrftk:

- Magnetic Resonance Fusion Toolkit
- Imagerie par résonance magnétique (IRM)
- C++
- Traitement d'image :
 - Algorithme de post-traitement après acquisition :
 - Lent
 - Recalage
 - Segmentation

Siemens Internship – Main task

- Test unitaire et détection de fuites de mémoire :
 - CppUnit
 - Mettre à jour les tests unitaires
 - Validation auprès du service qualité
- Progression et arrêts d'algorithme de traitement d'images :
 - Multithreading
- Segmentation d'une cicatrice située dans le myocarde :
 - Segmentation
 - Recalage

- Objectif:
 - Segmenter la cicatrice située dans le myocarde
 - Segmenter le myocarde
- Lecture d'article scientifique
- Outils Existant :
 - Free Form Deformation
 - Gaussian Local Cross-Correlation

$$P_{r,\sigma}(I_1, I_2) = P_{r,\sigma}(I_{\text{diff}})$$

$$= \frac{1}{N_{I_{\text{diff}}}} \sum_{x,y} \frac{1}{N_r} \sum_{(x-v)^2 + (y-w)^2 \le r^2} \frac{\sigma^2}{\sigma^2 + [I_{\text{diff}}(x,y) - I_{\text{diff}}(v,w)]^2},$$
(4)

Transformation rigide 3D

- Pré-traitement et recalage du contour :
 - Sélection de la slice la plus proche
 - Position dans l'environnement 3D
 - Redimensionnement des images
 - Espacement des pixels
 - Alignement des images
 - Translation et rotation dans l'environnement 3D
 - Sélection de la frame la plus proche
 - Application de la transformation rigide

- Transformation rigide :
 - Pyramide d'optimisation
 - HillClimbing
 - Translation dans l'environnement 3D
 - Fonction de cout :
 - Normal Mutual Information
 - Histogramme conjoint

Siemens Internship - Result

Siemens Internship - Result

Siemens Internship - Result

Phenomenal - Aim

- CDD LEPSE :
 - 01/06/2015

Phenomenal – OpenAlea / Visualea

Phenomenal – PhenoArch data input

- ~ 1600 plants :
 - Images :
 - 12 or 2 side view
 - 1 top view
 - Date

Phenomenal – Pipeline Biomass

Phenomenal – Pipeline Organ 2D

Phenomenal – Pipeline Organ 3D

Phenomenal - Binarisation

• Algorithms:

- Mask / ROI
- Mean shift
- Threshold HSV
 - Hue Saturation Value
- Adaptive Threshold :

$$\mathbf{dst}(x,y) = \left\{ \begin{array}{ll} \mathtt{maxValue} & \mathrm{if} \ \mathtt{src}(x,y) > T(x,y) \\ 0 & \mathrm{otherwise} \end{array} \right.$$

- Mean:
 - T(x,y) = Mean of the blockSize * blockSize neighborhood of (x, y)
- Gaussian :
 - T(x,y) = Weighted sum (crosscorrelation with a Gaussian window) of the blockSize * blockSize neighborhood of (x, y)

Phenomenal - Calibration

Aim :

Project 3d point to 2d image

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

where:

- (X, Y, Z) are the coordinates of a 3D point in the world coordinate space
- (\mathbf{u},\mathbf{v}) are the coordinates of the projection point in pixels
- (cx, cy) is a principal point that is usually at the image center
- fx, fy are the focal lengths expressed in pixel units.

Phenomenal - Calibration

- <u>Calibration manual:</u>
 - Real measure
- Calibration OpenCV :
 - Chessboard :
 - ~ 120 images
 - 3 degree
 - Detect chessboard corners
 - Calibrate Camera
- Calibration with model physic :
 - Find physical parameters associated with a camera, using pictures of a rotating chessboard.

Phenomenal - Multi-View Reconstruction

Algorithm:

- Project each voxel on image
- If projected point on image
 - Keep voxel for the next iteration
- Split voxel in 8
- Out :
 - Voxel
 - Octree
 - Matrix

Phenomenal – 2D Skeleton

- 2D Skeleton:
 - Erode / Dilate
 - Thinning:
 - Successive passes
 - On each pass :
 - border pixels are identified
 - Removed on the condition that they do not break the connectivity of the corresponding object.

Phenomenal – 3D Skeleton

- 3D Skeleton:
 - Fred's Implementation of Xu et al. 07 method for main branching system :
 - PlantGL
 - MTG
 - Point (Segment)
 - <u>3D thinning algorithm :</u>
 - From FIJI implementation
 - Soon

Phenomenal – 3D / 2D Segmentation

- Split in segment
- Detect Stem:
 - Angle orientation
 - Size
- Detect leaves :
 - Close to stem
 - Propagate

Phenomenal – Package

- <u>Git :</u>
 - <u>Library :</u>
 - test
 - <u>example</u>
 - <u>doc</u>
 - src
- Coding sprint :
 - Next Thursday :
 - Install and code review

- Prototype :
 - Functionality
- Beta test
 - Run tests: 1-3 manips, local server
 - First Analysis
 - Acceptance testing
- Finalization :
 - GUI (User, Phis, ...)
 - Article methods

Phenomenal – Schedule

Questions

