Traductor de Pictogramas a Texto

Trabajo de Fin de Grado Curso 2017–2018

Autor Salvador González Álvarez José María López Pulido

Director Virginia Francisco Gilmartín Susana Bautista Blasco

Trabajo de Fin de Grado en Ingeniería del Software Facultad de Informática Universidad Complutense de Madrid

Traductor de Pictogramas a Texto

Trabajo de Fin de Grado en Ingeniería del Software

Autor Salvador González Álvarez José María López Pulido

Director Virginia Francisco Gilmartín Susana Bautista Blasco

Convocatoria: Febrero/Junio/Septiembre 2018 Calificación: Nota

Trabajo de Fin de Grado en Ingeniería del Software Facultad de Informática Universidad Complutense de Madrid

11 de diciembre de 2018

Autorización de difusión

Nombre Del Alumno

11 de diciembre de 2018

Dedicatoria

Texto de la dedicatoria...

Agradecimientos

Texto de los agradecimientos

Resumen

Desde las primeras civilizaciones, el ser humano ha sentido la necesidad de comunicarse, en la actualidad esta necesidad es plasmada día a día en Internet: redes sociales, blogs... el hombre del siglo XXI, es más social y por ese motivo la necesidad de comunicarse es mas importante que nunca. No todas las personas tienen la misma capacidad de expresarse y o comunicarse, y por esta razón nacen los sistemas alternativos de comunicación.

El uso de pictogramas es uno de estos sistemas, en los últimos años hemos visto una evolución en la utilización de pictogramas en el ámbito educativo, en especial en niños con TEA (Trastorno del Espectro Autista) y trastornos del lenguaje en general como puedan ser Asperger, Síndrome de Down, parálisis cerebral, etc.

Por estos motivos hemos decidido crear un servicio web que permita al usuario traducir pictogramas a lenguaje natural. Una aplicación que facilite y ayude a la comunicación entre personas con diferentes capacidades comunicativas.

Palabras clave

Máximo 10 palabras clave separadas por comas

Abstract

Abstract in English.

Keywords

10 keywords max., separated by commas.

Índice

1.	Intr	oduction	1					
1.	1. Introducción							
	1.1.	Motivación	3					
	1.2.	Objetivos	4					
	1.3.		4					
2.	Esta	ado de la Cuestión	5					
	2.1.	Sistemas Aumentativos y Alternativos de Comunicación	5					
	2.2.	Pictogramas	6					
		2.2.1. Sistemas pictográficos	8					
		2.2.2. Comunicación a través de pictogramas	12					
	2.3.	Generación de lenguaje natural	14					
	2.4.	Servicios Web	19					
		2.4.1. Ventajas de los servicios Web	20					
		2.4.2. Inconvenientes de los servicios Web	21					
	2.5.	Sistema de traducción texto-picto	21					
		2.5.1. Araword	21					
		2.5.2. PictoTraductor	21					
		2.5.3. Pictar	23					
3.	Her	ramientas	27					
	3.1.	Django	27					
		3.1.1. ¿Qué es Django?	27					
4.	Con	clusiones y Trabajo Futuro	29					
4.	Con	clusions and Future Work	31					

A. Título	33
B. Título	35
Bibliografía	37

Índice de figuras

2.1.	Pictograma que representa un smarthwatch	7
2.2.	Pictograma que representa pintarse los labios	7
2.3.	Pictograma que representa una espada	8
2.4.	Figura Bliss(1)	9
2.5.	Figura Bliss(2)	9
2.6.	Figura Bliss(3)	10
2.7.	Sistema MinSpeak	10
2.8.	Clasificación de los pictogramas SPC	11
2.9.	Tablero ARASAAC para actividades escolares	12
2.10.	Traducción en pictogramas de la frase Hoy vamos a la montaña	13
2.11.	Diferentes pictogramas con el mismo significado	13
2.12.	Ejemplo de verbos conjugados	14
2.13.	Pictogramas para diferente numero y genero	14
2.14.	Pictogramas de hoy, mañana, y pasado	15
2.15.	Ejemplo de frase con conjunción temporal	15
2.16.	Fases de generación del lenguaje	16
2.17.	Árbol representativo de la fase de macro planificación en GLN.	17
2.18.	Estructura servicios Web	19
2.19.	Ejemplo artículos Araword.	22
2.20.	Ejemplo preposiciones Araword	22
2.21.	Ejemplo yo quiero comer pizza	23
2.22.	Ejemplo artículos PictoTraductor	23
2.23.	Ejemplo preposición PictoTraductor	24
2.24.	Frase en pictoTraductor	24
2.25.	Presentación pictar	25
2.26.	Texto traducido en pictar	25
2.27.	Ejemplo buscador v editor pictar	25

Índice de tablas

Introduction

Introduction to the subject area.

Introducción

"El nombre no alcanza a significar todo lo que la palabra significa"

— San Agustín

1.1. Motivación

La comunicación es una parte fundamental del desarrollo social y humano, pero no es igual de accesible para todos. Las personas con diferentes diversidades funcionales existen muchos obstáculos para una comunicación correcta. La aparición de diferentes vías de comunicación, como por ejemplo los pictogramas, ha supuesto un gran avance para lograr una comunicación efectiva, apoyados gracias a la aparición de diferentes recursos software, como traductores de lenguaje natural a pictogramas, han ayudado a estas personas a poder comunicarse en su día a día. Pero la realidad es que la comunicación sigue estando muy limitada y en ocasiones se reduce a personas con el mismo tipo de diversidad funcional. Este es el caso de usuarios cuya vía de comunicación son los pictogramas, ya que el resto de usuarios desconoce su significado lo que produce que la comunicación quede notablemente reducida o en muchos casos sea completamente imposible.

Esta es la razón, por la que existe la necesidad de crear una herramienta que ayude a la comunicación de los usuarios de pictogramas con su entorno, una software que sea capaz de traducir pictogramas a lenguaje natural. Esta herramienta software permitirá derribar barreras y ayudar a la inclusión social de personas que por una diversidad funcional están en riesgo de exclusión.

El objetivo de este TFG es el de crear un traductor de pictogramas a texto, que permita a usuarios cuya principal vía de comunicación son los pictogramas comunicarse de manera fluida. Para ello crearemos una aplicación que permita la interpretación (no la traducción literal) de mensajes con pictogramas a texto. Los resultados de este trabajo ayudarán a las per-

sonas que presentan problemas de inclusión debido a la necesidad de usar pictogramas para comunicarse.

1.2. Objetivos

El objetivos principal de este trabajo, es la creación de un traductor de pictogramas a lenguaje natural, buscando la interpretación del mensaje y no una traducción literal. Un producto que sea accesible para todos, buscando la facilidad de uso a través de una interfaz cómoda accesible e intuitiva, para de esta manera llegar al máximo publico posible.

Buscamos también afianzar los conocimientos adquiridos durante el grado, además de poder añadir nuestras últimas competencias universitarias, con la realización de este trabajo antes de salir a la vida laboral y aplicar esos conocimientos tanto nuevos como antiguos, utilizando un diseño y visión, sobre el proceso y el producto orientada a la mantenibilidad del mismo, una gran experiencia de uso y durante la realización del producto adquirir nuevos conocimientos, gracias al desarrollo de un trabajo con impacto real. Para ello desarrollaremos un servicio web, que permita introducir un conjunto de pictogramas y devuelva al usuario, una interpretación en lenguaje natural del significado del mensaje introducido. Integraremos este servicio dentro de una aplicación web accesible para todo el mundo.

1.3. Estructura del trabajo

Estado de la Cuestión

A lo largo de este capítulo trataremos los aspectos más importantes que han sido necesarios o forman parte de la base de este trabajo como los Sistemas Aumentativos y Alternativos de Comunicación, pictogramas...

2.1. Sistemas Aumentativos y Alternativos de Comunicación

La comunicación es una necesidad, y en casos de autismo o parálisis cerebral donde el lenguaje oral está gravemente limitado, la utilización de sistemas de comunicación de lenguaje no verbales, sustituyen o sirven de apoyo al lenguaje verbal.

Los Sistemas Aumentativos y Alternativos de Comunicación¹ (SAAC) son distintas formas de expresar el lenguaje oral, que tienen como objetivo aumentar y/o compensar los problemas de comunicación de muchas personas con dificultades para conseguir una expresión verbal funcional.

El término comunicación aumentativa describe las formas en las que se comunica el individuo cuando el uso del lenguaje natural no es suficiente, por el contrario la comunicación alternativa hace referencia a diferentes métodos o vías de comunicación que sustituyen completamente el lenguaje oral, como por ejemplo los pictogramas o la lengua de señas.

Lo que se pretende con los SAAC es conseguir una comunicación funcional, adecuada y generalizable, que permita al individuo expresarse y alcanzar una mayor integración en su entorno social. Los SAAC ayudan a mejorar la calidad de vida de las personas con problemas para comunicarse, al otorgar al individuo una vía para mejorar su comunicación. Cabe destacar que los SAAC no son usados exclusivamente por personas con alteraciones en la comunicación, sino que son utilizados por todos a diario, por ejemplo cuando

¹http://www.arasaac.org/aac.php

empleamos gestos, señales de trafico, etc.

Según la American SpeechLanguage-Hearing Association(Romski y Sevcik), Lloyd y Karlan (1984) además de Carmen Basil (Basil et al., 1990) los SAAC se pueden clasificar en dos grandes grupos:

- 1. SAAC sin ayuda: Sistemas que carecen de soporte físico. Abarca desde el uso de mímica y gestos hasta el uso de signos manuales.
- 2. SAAC con ayuda: sistemas que necesitan un soporte físico independiente del emisor. Este tipo abarca desde sistemas sencillos basados en dibujos o imágenes hasta objetos reales en miniatura o los sistemas de comunicación escritos como el Braile. Están orientados a personas con problemas en el habla o con dificultades cognitivas o de aprendizaje. Dentro de los SAAC con ayuda se encuentran los pictogramas de los cuales hablaremos en la siguiente sección.

Se ha demostrado que la utilización de los SAAC tiene múltiples ventajas (Álvarez, 2013) y son indispensables para aquellas personas que en mayor o menor medida, tienen impedido el uso del lenguaje. Sus usuarios potenciales son aquellas personas que por patologías como el autismo, la parálisis cerebral, o lesiones cerebrales, están impedidos para expresarse de manera adecuada o correcta(Warrick, 2010). Además de ser un recurso necesario para estas personas se ha demostrado que tienen múltiples beneficios siendo los principales:

- 1. Ayudan al desarrollo de la comunicación, proporcionando estrategias el usuario.
- 2. Posibilitan el desarrollo personal y social ademas de fomentar las relaciones interpersonales.
- 3. Evitan el aislamiento, fomentando habilidades afectivo-sociales.

Cabe destacar que la complejidad de los SAAC depende del nivel cognitivo del usuario (Abril Abadín, 2010), cada persona es diferente, y por ejemplo en el uso de imágenes, el nivel de abstracción y complejidad deben adecuarse a las necesidades de cada individuo.

2.2. Pictogramas

Se define pictograma como un signo icónico dibujado y no lingüístico, que representa un objeto real o un significado. Se engloban dentro de los SAACS con ayuda, y se aplican a personas que no están alfabetizadas ya sea por causa de la edad o de alguna discapacidad. En la Figura 2.1 podemos observar un ejemplo de pictograma que representa un smartwatch. La

Figura 2.1: Pictograma que representa un smarthwatch.

Figura 2.2: Pictograma que representa pintarse los labios.

utilización de pictogramas para la escritura o pictografía se remonta al neolítico, donde se utilizaban piedras talladas para la representación de signos de cierta semejanza con el objeto que representan. El origen de los sistemas pictogáficos actuales se sitúa en 1981 con Mayer y Johnson y se caracteriza por una facilidad de interpretación.

Las caracteristicas principales de los pictogramas son los siguientes:

- 1. Guardan relación con aquello que representan, tal y como se puede ver en el pictograma de la Figura 2.1 el cual representa un smarthwach.
- 2. Son elementos gráficos que combinados representan el objeto tomado como referente. Por ejemplo en el pictograma de la Figura 2.2 la cara, el lápiz de labios y la mano se juntan en un solo pictograma para representarla acción pintarse los labios.
- 3. La imagen debe de ser comprensible por el mayor número de personas, independientemente de la formación, idioma o discapacidad.
- 4. A la hora de construir un pictograma, se deben de seguir unas reglas que le permitan mantener una coherencia visual, es decir la legibilidad de un pictograma debe de ser inmediata.
- 5. Deben de ser sencillos y representar únicamente los elementos más importantes, evitando posibles estímulos distractores o información irre-

Figura 2.3: Pictograma que representa una espada.

levante. Por ejemplo, en la Figura 2.3 el objeto representado es una espada, el pictograma carece de elementos distractores como podría ser una mano que agarre la espada o un fondo que sirva de contexto.

Existen diferentes colecciones de pictogramas que vamos a analizaren la siguiente subsección.

2.2.1. Sistemas pictográficos

A continuación vamos a ver algunos de los principales sistemas pictográficos existentes, además de explicar en ultimo termino como se realiza la comunicación a través de pictogramas :

2.2.1.1. Bliss

Bliss² fue desarrollado por Charles K. Bliss en 1949 y esta formado por más de 2000 símbolos. Tiene la dificultad de que el usuario debe de conocer el sistema ya que no cumple la relación con el objeto representado tal y como se puede ver en la Figura 2.4, donde los pictogramas de animal o papel, no guardan ninguna referencia con aquello que representan y dado solo el pictograma no puedes conocer que objeto representa.

El sistema pictogáfico Bliss fue creado con la idea de ser un lenguaje global (McDonald, 1985). Está formado por un total de 26 letras en ingles y 28 para el castellano, además de un alfabeto de 26 símbolos básicos, la combinación de estas letras y estos símbolos básicos forman las palabras, es por está razón que la utilización de este sistema pictogáficos requiera de cierto nivel cognitivo tal y como se explica en (Hehner, 1985). Según el nivel de representación de los símbolos los pictogramas se agrupan en tres grandes grupos: pictográficos, ideográficos y arbitrarios:

1. Símbolos pictográficos: la forma del símbolo recuerda las palabras o conceptos que representan. Como podemos observar en el símbolo que

²https://www.uv.es/bellochc/logopedia/NRTLogo8.wiki?6

Figura 2.4: Figura Bliss(1).

Figura 2.5: Figura Bliss(2).

representa la casa en la Figura 2.5

- 2. Símbolos ideográficos: expresan una idea, no describen el objeto, esto se puede observar en la Figura 2.5 aunque si guardan cierta relación con lo que representan en el símbolo que representa el agua.
- 3. Símbolos arbitrarios: expresan un concepto abstracto y el símbolo no guarda ningún relación con el objeto representado, como podemos observar en la Figura 2.5, el significado del pictograma es un concepto abstracto que no guarda ninguna referencia con el símbolo representado.

2.2.1.2. Minspeak

Es un sistema pictográfico, creado por Bruce Baker en 1982 motivado por las carencias que observó en personas sin habla, este sistema no estipula cual

Figura 2.6: Figura Bliss(3).

Figura 2.7: Sistema MinSpeak.

es el significado de los símbolos, ya que este significado se establece entre el logopeda y el usuario, de ahí que en un sistema MinSpeak el pictograma que representa un arco iris puede significar felicidad pero en otro puede significar lluvia. Bruce Baker se inspiro en el lenguaje Chino donde cualquier frase puede tener 12 caracteres o menos(Marín y Pérez, 2003), y de esa manera definió que su sistema se centraría en la combinación de esta manera a través de la combinación de diferentes símbolos, normalmente la utilización de dos o tres símbolos junto con un conjunto de reglas y patrones sirve para la representación de una palabra o frase, como se puede observar en la Figura 2.7, el simbolo que representa una casa y la cama adquieren el significado de habitación. Se considera un sistema muy accesible ³ dado que el usuario debe de aprender un número limitado de pictogramas que suelen ir desde los 40 hasta los 80 pictogramas, las palabras ademas quedan clasificadas por grupos semanticos, es decir: verbos, adjetivos... Permite desarrollar un lenguaje a través de la construcción de frases o secuencias que son fáciles de entender, pero tiene la desventaja de que el usuario necesita recordar la secuencia de símbolos necesarios para la generación de la respuesta correcta.

³https://minspeak.com/

Figura 2.8: Clasificación de los pictogramas SPC.

2.2.1.3. SPC

El Sistema Pictografico de Comunicación (SPC) ⁴ fue desarrollado por Roxana Mayer-Jhonson en 1981, busca a través de un diseño de pictrogramas simples, la similitud con aquello que representan. Los pictogramas están catalogados en seis grupos cada uno con un color para ayudar a la clasificación, como podemos ver en la Figura 2.8, personas en amarillo, verbos en verde, pictogramas descriptivos en azul, sustantivos en naranja, letras, números letras y miscelánea con fondo blanco y actos sociales como saludarse en rosa, en total el sistema SPC lo forman un conjunto de 3000 pictogramas.

Los usuarios pueden comunicarse utilizando SPC señalando imágenes los pictogramas en tableros, o en un libro o pueden coger los pictogramas pegarlos en un panel o utilizar tablets o pantallas a modo de tablero.

Esto supone un problema dado que la comunicación queda limitada a los pictogramas seleccionables, además carece de sintaxis lo que simplifica la construcción de frases.

2.2.1.4. ARASAAC

ARASAAC (Portal Aragonés de la Comunicación Aumentativa y Alternativa)⁵, en su sitio web (www.arasaac.org) se ofrece recursos gráficos, material y herramienta para la comunicación de aquellas personas con algún tipo de discapacidad. ARASAAC nace en el año 2007, financiado por el Departamento de Educación Cultura y Deporte del Gobierno de Aragón y

⁴http://masquemayores.com/magazine/psicologia/tipos-de-sistemas-alternativos-y-aumentativos-de-la-comunicacion-sistemas-pictograficos-de-comunicacion/

⁵http://www.arasaac.org

Figura 2.9: Tablero ARASAAC para actividades escolares.

coordinado por la Dirección General de Innovación, Equidad y Participación de dicho departamento. Este proyecto nace con el objetivo de romper las barreras en la comunicación. ARASAAC cuenta con más de 33.000 pictogramas únicos, repartidos entre pictogramas a color, en blanco y negros y con traducciones en más de quince idiomas entre ellos el castellano.

Actualmente, ARASAAC se ha convertido en un sistema pictograma reconocido internacionalmente, entre otros factores porque sus recursos están bajo la licencia Creative Commons. Dentro de estos recursos cabe destactar sus bibliotecas de pictogramas, el acceso a diferentes herramientas software como un generador de tableros, y software especifico que utilizan recursos de ARASAAC como AraWord⁷ y más herramientas que facilitan no solo la inclusión social de personas con discapacidades en el habla, si no también el desarrollo de herramientas para este propósito.

2.2.2. Comunicación a través de pictogramas

Comúnmente la comunicación con pictogramas se realiza a través de tableros, de manera que el usuario señala uno a uno los pictogramas en dicho tablero hasta completar la frase. En la Figura 2.9 podemos observar un tablero de ejemplo con relación a actividades desarrolladas en el colegio, además podemos ver dos pictogramas uno que representa un pulgar hacía arriba y otro hacía abajo, que sirven para comunicar si o no respectivamente, el

⁶http://www.arasaac.org/herramientas.php

⁷http://www.arasaac.org/software.php?id_software=2

Figura 2.10: Traducción en pictogramas de la frase Hoy vamos a la montaña

Figura 2.11: Diferentes pictogramas con el mismo significado

conjunto inferior de los pictogramas guardan relación con acciones que cualquier alumno podría encontrarse en el colegio, leer, hacer un examen, dibujar, ejercicios de caligrafía... uno de los problemas que podemos observar, es la limitación que supone el uso

Una palabra puede tener varios pictogramas, como podemos observar en la Figura 2.11 la palabra vamos tiene diferentes pictogramas, ya que la elección del pictograma debe de ser adecuado al usuario, teniendo en cuenta: la complejidad del pictograma, la frase en la que se incluye.

Los verbos carecen de conjugación como podemos observar en la Figura 2.12, de manera que los tiempos verbales: presente, pasado o futuro quedan determinados por otros pictogramas, como podemos observar en la Figura 2.14 que representa diferentes conjugaciones verbales del verbo ir: fuimos, vamos, iremos, el tiempo verbal queda determinado por el primer pictograma de la frase, en la Figura 2.14 podemos ver los diferentes pictogramas para hoy, mañana y pasado, estos pictogramas son la forma de dar tiempo verbal a la frase. Cabe destacar que dado que los pictogramas de verbo carecen de conjugación tanto en tiempo por esa razón la Figura 2.14 y la Figura 2.11 aportan el mismo significado.

Sin embargo no pasa lo mismo para representar el genero y numero donde si existen diferentes variaciones del pictogramas, como podemos observar en la Figura 2.13, los diferentes pictogramas significan profesor, profesora, profesor y profesoras, dándole una mayor riqueza y exactitud a la frase al otorgar esta diferenciación. Aún así las frases con pictogramas suelen tener

Figura 2.12: Ejemplo de verbos conjugados

Figura 2.13: Pictogramas para diferente numero y genero

una complejidad reducida, limitándose casi siempre a sujeto verbo y objeto, utilizando solo palabras significativas, por ejemplo en la figura 2.10, podemos observar que la preposición a y el determinante la, no tienen un pictograma como tal si no una imagen con la palabra 8 .

Como hemos dicho anteriormente la comunicación con pictogramas se reduce a palabras significativas, es decir palabras que por si mismas poseen significado y es por está razón por la que determinantes, conjunciones, preposiciones no suelen tener cabida dentro de la comunicación con pictogramas, aunque ciertas conjunciones sobretodo conjunciones temporales que sirven para aportar información si existen dentro de los pictogramas tal y como podemos ver en la Figura 2.15, el primer pictograma significa antes y aporta información sobre cuando debe realizarse la acción definida en el segundo pictograma, en este caso la frase representada seria literalmente antes comer.

2.3. Generación de lenguaje natural

La Generación de Lenguaje Natural (GLN) es un campo de la Inteligencia Artificial para crear programas informaticos que generan lenguaje natural ya

⁸www.pictotraductor.com

Figura 2.14: Pictogramas de hoy, mañana, y pasado

Figura 2.15: Ejemplo de frase con conjunción temporal

sea hablado o escrito⁹.

La GLN se engloba dentro de la lingüística computacional aunque engloba muchas otras áreas de estudio fuera de la informática como la lingüística o la psicología. Se busca que el programa generador se comunique igual que si de una persona se tratare(Dale et al., 2000; Vicente et al., 2015).

Para que la generación del lenguaje sea efectiva la inteligencia artificial ademas necesita poder, procesar el lenguaje natural (Generacion de Lenguaje Natural GLN), es decir, poder entender y analizar el significado de aquello que se dice y también necesita entender el lenguaje natural es decir comprender el propósito de aquello que se le comunica.

Falsamente podemos pensar que lo más importante de la generación del lenguaje es la generación de un texto gramaticalmente correcto, pero lo más importante de la comunicación es que el texto generado explique aquello que se desea transmitir, por eso podemos concluir que el proceso de generación se podría resumir en la construcción de un mensaje en lenguaje natural que transmite un mensaje de manera clara.

Existe dos maneras de que un programa informático se comunique con

 $^{^9\,}https://searchdatacenter.techtarget.com/es/definicion/Generacion-de-lenguajenatural-o-NLG$

Figura 2.16: Fases de generación del lenguaje.

un usuario. La primera forma es a través de mensajes estáticos definidos en el código, este acercamiento si bien es valido, genera un sistema cerrado y no flexible en el cual no cabe lugar la interpretación del lenguaje. La segunda vía, es la generación de lenguaje basada en conocimiento o deep generation donde es el propio sistema el encargado de generar el lenguaje a través de su conocimiento basándose en el conocimiento lingüístico del que dispone (Carlos García Ibáñez, 2004).

Los sistemas generadores de lenguaje natural se pueden clasificar siguiendo diferentes criterios. Si tenemos en cuenta la entrada del sistema los sistemas se pueden clasificar en:

- De datos a texto (o D2T). Se parte de datos que pueden ir desde datos numéricos como pueden ser aquellos dato provenientes de sensores, hasta corpus de datos como podría ser la respuesta de una base de datos,
- 2. Texto a texto (o T2T). Este tipo puede tener como entrada textos u oraciones. Ejemplos de este tipo pueden ser aplicaciones de resúmenes como por ejemplo Resoomer ¹⁰.

Durante la generación del lenguaje se puede abstraer el proceso y encapsularlo en diferentes fases que describiremos brevemente a continuación (Vicente et al., 2015):

1. Macro planificación. Etapa donde se debe seleccionar el contenido que se desea convertir. Después de seleccionar dicho contenido, el sistema debe estructurarlo, para que el texto generado sea coherente es preciso

¹⁰ https://resoomer.com/es/

Figura 2.17: Árbol representativo de la fase de macro planificación en GLN.

estructurar el contenido del mismo en el orden correcto. La salida de esta fase es el denominado plan del documento, una estructura de datos que suele ser un árbol, donde en cada nodo se encapsula la información más importante que debe formar parte de un párrafo o de una frase, además de información de como se relaciona con el resto de nodos. En la Figura 2.17 podemos ver un ejemplo de la salida de esta etapa.

- 2. Micro planificación. Partiendo de la salida de la macro planificación, se determinan que partes formaran el texto resultado, agregando las estructuras que formaran parte de este, el léxico que se utilizara para expresar los conceptos y los hechos recogidos en la primera etapa y la generación de expresiones que aparecerán en el texto.
- 3. Realización. Se parte del resultado de la fase de micro planificación, el objetivo de esta fase es la realización de las oraciones finales que se utilizaran, así como la estructura final que tendrá el texto. La generación o realización del texto se puede dividir en dos partes realización lingüística en la que se determina la representación en palabras del texto de salida es decir se forman las oraciones, y la realización de la estructura en la que se genera el texto en el formato correcto para su visualización en un medio determinado, como puede ser HTML, o un documento Latex.

La herramienta SimpleNLG es una biblioteca Java que permite generar y transformar texto al lenguaje natural, tiene como fin producir texto comprensible para el usuario, para ello posee tres componentes conectadas entre sí (Jozef Trzpis, 2015).

Planificador del documento Es el primer componente en donde se escoge el tipo de información que se generará en el texto.

- <u>Determinación del contenido</u>: Elige que tipo de información saldrá como resultado, dependiendo del tipo de de público objetivo, la información que se le propondrá como entrada y de otras restricciones posibles, por ejemplo no saldrá el mismo tipo de información si el texto está pensado para niños o para adultos.
- Estructura del documento: Toma la decisión de como deben agruparse los trozos que se han introducido en la entrada, y el orden en el que saldrán, para que el texto tenga un sentido la estructura será sujeto, verbo y complementos.

Microplanificador Es la segunda fase en la producción de texto, se encarga de clasificar las diferentes partes del texto para poder dotarle de un significado completo.

- <u>Lexicalización</u>: Deciden las palabras específicas para expresar el contenido. En este apartado se encargan de elegir los nombres, verbos, adjetivos... que aparecerán en el texto, es donde se decide que perro es sustantivo, ir es un verbo, etc.
- Expresiones de referencia: Decide las expresiones que se deben utilizar para hacer referencia a determinadas palabras, es decir, existen algunas expresiones que pueden ser denominadas de diferentes maneras, por ejemplo:
 - 11/2018
 - Noviembre
- Agregación: Establece las combinaciones que se han de realizar entre los elementos para dar lugar a oraciones y, por tanto, completa el orden en el que se deben expresar.

Realización Es el componente final en donde se encarga de realizar la oración final una vez ya clasificada en las otras dos fases anteriores.

- <u>Lingüística</u>: Utiliza las reglas gramaticales morfológicas y sintácticas para convertir las representaciones abstractas en un texto real.
- <u>Estructural</u>: Convierte frases y párrafos en elementos marcados cuando se mostrará el texto.

Figura 2.18: Estructura servicios Web.

2.4. Servicios Web

El WC3 (World Wide Web Consortium) define un Servicio Web como¹¹:

Un sistema software diseñado para soportar la interacción máquina-a-máquina, a través de una red, de forma interoperable. Cuenta con una interfaz descrita en un formato procesable por un equipo informático (específicamente en WSDL), a través de la que es posible interactuar con el mismo mediante el intercambio de mensajes SOAP, típicamente transmitidos usando serialización XML sobre HTTP conjuntamente con otros estándares web.

Un Servicio Web es un componente accesible mediante peticiones Web estándar tales como GET o POST. Normalmente se denomina servicio web a una colección de procedimientos accesibles desde Internet. La gran ventaja de los servicios web es que al acceder desde el navegador a un servicio web este nos devuelve el contenido con un formato estándar como puede ser XML.

Los servicios Web fueron creados para solucionar el problema de la interoperabilidad entre las distintas aplicaciones. En los 90, el gran objetivo era poder integrar aplicaciones distintas dentro de un mismo servicio. Estas aplicaciones pueden estar desarrolladas en muchos lenguajes de programación como pueden ser: C++, Java, etc. Y ejecutarse tanto en Unix, en un PC, o un computador mainframe. Por estas razones, no existía una forma fácil de comunicar todas las aplicaciones entre sí. Gracias al desarrollo de XML, propició poder compartir datos entre ellas a través de la red, o de Internet.

A nivel técnico, los servicios Web pueden ser dos tipos.

 $[\]overline{^{11}} https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211$

- Servicios Web SOAP. Utilizan el lenguaje XML para poder comunicarse utilizando el protocolo SOAP (Simple Object Access Protocol), este lenguaje es usado tanto para definir la arquitectura como el formato de los mensajes. Estos tipos de servicios deben contener un lenguaje legible para la máquina con la descripción de operaciones ofrecidas por el servicio escrito en WSDL (Web Services Description Language), el cuál está basado también en XML con el fin de definir interfaces sintácticamente.
- Servicios Web Restfull (Representational State Transfer Web Services). Los servicios Web Restfull utilizan lenguajes muy conocidos como SML, URI, MIME, y sobre todo HTML. Además posee una infraestructura la cuál podríamos llamar "ligera", ya que consiguen utilizar herramientas mínimas para formar estos servicios. Por ello, el desarrollo de este tipo de servicios son baratos y su adaptación es poco costosa. Son más adecuados para integraciones básicas ad-hoc. Estos servicios suelen mezclarse mejor con HTTP que los basados en SOAP, ya que no necesitan mensajes XML ni definiciones WSDL.

En una arquitectura de Servicios Web se pueden distinguir tres partes fundamentales para el establecimiento de la comunicación¹²:

- Proveedor de servicios web. Es el encargado de enviar al publicador del servicio un fichero WSDL con la información báscica de dicho servicio.
- Publicador del servicio. Una vez la información llega al publicador este descubre quien es el proveedor (protocolo WSDL), y se pone en contacto con él (protocolo SOAP).
- Proveedor del servicio. Acepta la petición del servicio y envía los datos estructurados en formato XML usando SOAP.

2.4.1. Ventajas de los servicios Web

Las tres principales ventajas de usar web son¹³:

- Ayudan a mejorar la conexión y operabilidad entre dos aplicaciones software sin importar sus propiedades o sino comparten plataforma de instalación.
- Favorecen los protocolos y estándares basados en texto, ya que estos facilitan acceder y comprender su contenido.
- Permiten y facilitan que software y servicios de diferentes compañías se puedan combinar formando un servicio funcional.

¹²http://www.jtech.ua.es/j2ee/publico/servc-web-2012-13/sesion01-apuntes.html

 $^{^{13} \}rm https://sites.google.com/site/preyectodetics/home/servicios-web$

2.4.2. Inconvenientes de los servicios Web

Las tres principales desventajas de los servicios son¹⁴:

- Las transacciones que llevan consigo estos servicios están mucho menos desarrolladas que otros estándares abiertos.
- Su rendimiento es bajo comparado con otros modelos de computación distribuida, debido sobre todo a adoptar un formato basado en texto.
- Al estar muy ligados con HTTP, las medidas de seguridad que tratan de bloquear la comunicación entre programas se pueden burlar fácilmente.

2.5. Sistema de traducción texto-picto

En esta sección se presentan los sistemas de traducción texto a picto existentes, ya que no se ha encontrado ningún sistema que haga la traducción de picto-texto, objetivo principal de este trabajo.

2.5.1. Araword

Araword¹⁵ es una aplicación gratuita creada por Arasacc (Portal Aragonés de la Comunicación Aumentativa y Alternativa), que permite la traducción simultanea de texto a pictograma.

Esta herramienta tiene como objetivo principal facilitar la elaboración de materiales con pictogramas. Se parece a un editor de textos, se comienza con un documento en blanco y se van escribiendo frases en lenguaje natural se van traduciendo a pictogramas. Cada vez que se introduce una palabra en el editor, la propia herramienta es la que se encarga de traducirla a pictograma automáticamente. Cuando Las palabras que tienen varios pictogramas como significado, Araword te muestra una de esas imágenes dando la posibilidad de poder elegir otro pictograma si este no lo consideras adecuado. En Araword las preposiciones y los artículos son muy variados, diferenciando el género y número en el caso de los artículos sin traducir literalmente la palabra, como podemos ver en la (Figura 2.19). Y en las preposiciones teniendo un pictograma para cada una de ellas , como aparece en la 2.20).

Por último, se puede ver en la (Figura 2.21) un ejemplo de la traducción hecha por Araword del texto.

2.5.2. PictoTraductor

PictoTraductor¹⁶ es una aplicación web pensada y desarrollada para facilitar la comunicación con personas que poseen dificultades para expresarse

 $^{^{14} {}m http://fabioalfarocc.blogspot.com/}$

¹⁵ http://www.arasaac.org/software.php

¹⁶ https://www.pictotraductor.com/

Figura 2.19: Ejemplo artículos Araword.

Figura 2.20: Ejemplo preposiciones Araword.

de forma oral y que se comunican mediante pictogramas. Principalmente está dirigido a padres y profesionales, para traducir textos a pictogramas y así poder comunicarse con sus hijos o pacientes que solo entienden pictogramas y no lenguaje natural.

La interfaz de la aplicación se puede ver en la (Figura 2.24). Consta de una barra de búsqueda en la que se introduce el texto que se quiere traducir a pictogramas. A medida que se va escribiendo una palabra se va mostrando el pictograma que representa el texto introducido en la parte inferior. Las palabras que tengan más de un pictograma para poder ser traducido, la herramienta da la opción de elegir la que más guste al usuario mediante las flechas que aparecen encima del picto traducido. Para los artículos PictoTraductor deja por defecto la traducción literal de la palabra, pero como acabamos de mencionar deja la opción de poder cambiarlo a gusto del

Figura 2.21: Ejemplo yo quiero comer pizza.

Figura 2.22: Ejemplo artículos PictoTraductor.

usuario, como vemos en la 2.22). En las preposiciones cada traducción tiene su pictograma, a diferencia de los artículos en PictoTraductor solo hay un pictograma para cada una de las preposiciones. 2.23).

Esta herramienta permite el registro de usuarios, personalizar la aplicación, por ejemplo, guardando sus pictogramas favoritos, fotografías o imágenes y compartir algunas de sus traducciones en las redes sociales. (Figura 2.24).

2.5.3. Pictar

Pictar (Martín Guerrero, 2018) es una aplicación web que permite traducir de texto a pictogramas, presentando un aspecto tal y como se muestra

Figura 2.23: Ejemplo preposición PictoTraductor.

Figura 2.24: Frase en pictoTraductor

en la 2.25).

El usuario introduce el texto que desea traducir y al pulsar el botón buscar se generan los pictogramas adecuados para la frase introducida, tal y como se puede ver en la (Figura 2.26).

La búsqueda de artículos y preposiciones es muy parecida a la de PictoTraductor, poniendo en la barra de texto las palabras deseadas, una vez pinchado el botón de búsqueda aparecen los pictogramas y mediante el uso de flechas se puede ir cambiando hasta encontrar el tipo de pictograma que el usuario considere idóneo.

Esta aplicación además ofrece la posibilidad de buscar pictogramas. El usuario introduce una palabra y en la parte inferior aparecen los pictogramas encontrados en el buscador. Una vez encontrados los pictogramas deseados, el usuario puede moldearlos a su gusto arrastrando con el ratón el pictograma a la rejilla de edición. En ella se podrá desde cambiar el color del pictograma hasta poder añadir texto debajo de ellos con su significado, como se puede ver en la (Figura 2.27).

Figura 2.25: Presentación pictar

Figura 2.26: Texto traducido en pictar

Figura 2.27: Ejemplo buscador y editor pictar

Herramientas

A lo largo de este capítulo analizaremos las diferentes herramientas utilizadas para el desarrollo de este TFG.

3.1. Django

3.1.1. ¿Qué es Django?

Es un framework de desarrollo web¹ de código abierto escrito en Python, respetando el patrón de diseño conocido como Modelo-Vista-Controlador (M-V-C). La meta principal de esta aplicación es facilitar la creación de sitios web. En Django es muy importante el re-uso de código, la conectividad y el desarrollo rápido.

- Django da soporte de base de datos permitiendo crear los modelos de datos necesarios y a través de su API administrar y gestionar dicha base de datos. Además concede al usuario la posibilidad de poder ejecutar sus propias consultas SQL.
- 2. En la parte de servicios Web, Django incluye un servidor ligero que ofrece la posibilidad de realizar pruebas y trabajar en una etapa de desarrollo. Para una etapa más de producción sería más conveniente contar con otra aplicación como puede ser Apache.

¹https://tutorial.djangogirls.org/es/django/

Conclusiones y Trabajo Futuro

Conclusiones del trabajo y líneas de trabajo futuro.

Conclusions and Future Work

Conclusions and future lines of work.

Título

Contenido del apéndice

	_		
1	-		
1			
	-		
1			
'A / !!			
Anandica			
Apéndice			

Título

Bibliografía

Y así, del mucho leer y del poco dormir, se le secó el celebro de manera que vino a perder el juicio. Miguel de Cervantes Saavedra

- ABRIL ABADÍN, V. C. A., I. DELGADO SANTOS C. Comunicación Aumentativa y Alternativa. CEAPAT, 3º edición, 2010.
- ÁLVAREZ, L. L. Los sistemas Alternativos y/o Aumentativos de Comunicación: la Comunicación Bimodal como recurso en el aula de Audición y Lenguaje. Tfg, Universidad de Valladolid, 2013.
- Basil, C., Almirall, C. y de la Bellacasa, R. Comunicación aumentativa: curso sobre sistemas y ayudas técnicas de comunicación no vocal. Colección Rehabilitación. Instituto Nacional de Servicios Sociales, 1990. ISBN 9788486852566.
- Carlos García Ibáñez, P. G., Raquel Hervás Ballesteros. Una arquitectura software para el desarrollo de aplicaciones de generación de lenguaje natural. 2004.
- Dale, R., Moisl, H. y Somers, H. Handbook of Natural Language Processing. Taylor & Francis, 2000. ISBN 9780824790004.
- HEHNER, B. Símbolos Bliss. Diccionario guía. Subdirección General de Educación Especial, 1985.
- Jozef Trzpis, D. Adaptación de una herramienta de Generación de Lenguaje Natural al idioma Español. Phd, Universidad Politécnica de Madrid, 2015.
- Marín, F. y Pérez, F. Tecnologías de ayuda en personas con trastornos de comunicación. Colección Logopedia e Intervención Series. Nau Llibres, 2003. ISBN 9788476426821.

38 Bibliografía

MARTÍN GUERRERO, A. PICTAR: una herramienta de elaboración de contenido para personas con TEA basada en la traducción de texto a pictogramas. Phd, Universidad Complutense de Madrid, 2018.

- McDonald, E. Sistema Bliss. Enseñanza y uso: enseñanza y uso. Ministerio de Educación y Ciencia, Subdirección General de Educación Especial, 1985. ISBN 9788436911763.
- ROMSKI, M. A. y Sevcik, R. A. Augmentative and alternative communication for children with developmental disabilities. *Mental Retardation and Developmental Disabilities Research Reviews*, vol. 3(4), páginas 363–368, ????
- VICENTE, M., BARROS, C., PEREGRINO, F. S., AGULLÁ, F. y LLORET, E. La generación de lenguaje natural: Análisis del estado actual. *Computación y Sistemas*, vol. 19, páginas 721 756, 2015. ISSN 1405-5546.
- WARRICK, A. Comunicación sin habla. CEAPAT, 3º edición, 2010. ISBN 0-9684186-0-0.

-¿Qué te parece desto, Sancho? - Dijo Don Quijote - Bien podrán los encantadores quitarme la ventura, pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced. -No es menester firmarla - dijo Don Quijote-, sino solamente poner mi rúbrica.

> Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes