Regular Expressions and Finite Automata

CSCI 3136: Principles of Programming Languages

Agenda

- Motivation
- Regular Expressions
- Deterministic Finite Automata
- 4. Nondeterministic Finite Automata

Programming Language Translation

- Step 1: We must break the input (e.g., a text file) into a stream of "words" which represent the tokens of the language.
- We need some technique to specify these tokens.
- We started to examine Regular Languages because, for most (all?) programming languages, the set of tokens can be defined by a Regular Language.

Regular Languages

We use a recursive Definition ...

- · Base Cases:
 - A (Empty language)
 - $\{\epsilon\}$ (Language consisting of the empty string)
 - $\{a\}$, $a \in \Sigma$ (Language consisting of one symbol)

- Inductive Step: If L1 and L2 are regular then so are
 - L1L2 = $\{\sigma\tau \mid \sigma \in L1, \tau \in L2\}$

concatenation lets us have longer tokens

Specifying Regular Languages

- There are many ways to specify a regular language
 - {a,ab,abc}
 - {a}X
 - {a,ab,abb,abbb,...}X
 - $\{1n0 \mid n > 0\}$
 - Set of all positive integers (base 10)
- · Problems:
 - The specification is not standard.
 - Hard for a program to interpret the specifications

Regular Expressions

- Idea: Regular expressions (REs) are a concise way to specify regular languages
- **Theorem**: L is regular if and only if there is a regular expression R that specifies L.
- Recursive definition of a RE:

Base cases:

- a, a E Σ is a RE
- ε (the empty string) is a RE

Inductive step: If R, R1, and R2, are REs:

• R1 | R2 is a RE (union)

Regular Languages are the same as Regular Expressions

Regular Expression	Regular Language	
	A (Empty language)	
8	{ε} (Empty String)	
a, a $E\Sigma$	$\{a\}$, $a \in \Sigma$	
R1 R2	L1 v L2 = $\{\sigma \mid \sigma \in L1 \lambda \sigma \in L2\}$	
R1R2	L1L2 = $\{\sigma\tau \mid \sigma \in L1, \tau \in L2\}$	
RX	$LX = {\sigma i \mid \sigma \in L, i \ge 0}$	

Examples of Regular Expressions

Corresponding Language

- · ab|c
- · a(b|c)
- · aX
- · (a|b|c)X
- · 11X0
- $\cdot [1-9][0-9]X$
- · aaXbbbXccccX
- $0X(100X)X(1|\epsilon)$

- {ab, c}
- {ab, ac}
- $\{a\}X = \{\varepsilon, a, aa, aaa, aaaa, ...\}$
- $\{a,b,c\}X = \{a,b,c,aa,ab,ac,ba,bb,bc,...\}$
- $\{1n0 \mid n > 0\} = \{10,110,1110,11110,...\}$
- Set of all positive integers
- {aibjck | i>0, j>1, k>2}
- Binary strings with no adjacent 1s
- · [a-z][a-z]X@[a-z][a-z]X(.[a-z][a-z]X) * mail address

Noto: Notation [2-7] - (alblold 17)

The Key Ideas

 Any character defines the language with that character

```
*e.g., a defines {a}
```

- · | means "or" and defines a language with what comes before the bar OR what comes after it
 - *e.g., a|b defines {a,b}
- Concatenation defines the language that has two things side by side
 - *e.g., ab defines {ab}
- · * means zero or more copies of something

Applications and History

· Applications:

- Search (and replace)
- editors, string manipulation libraries,
- scanners
- specification of tokens.
- History
 - Stephen Cole Kleene, 1956
 - "Representation of events in nerve nets and finite automata"
 - Ken Thompson developed editors: QUE, ed, grep
 - Used in awk, emacs, vi, lex, etc...

Defining Tokens

- We can define a programming language's tokens using REs.
- · if, for, while, ... keywords
- (+|-)(0-9)(0-9)* integers
- · (a-zA-Z_\$)(a-zA-Z_\$0-9)* identifiers
- · //(^\n)* comments
- * Note: (^\n) means anything except \n, i.e., "not a newline"
- · "(^"\\)*" string
- * Note: (^"\\) means anything except " or \

How to Build a Scanner

- We now have a standard (machine-friendly) way to specify regular languages.
- So now what?
- We now need a way to decide if a given string σ is in a given regular language L.
- · How do we do this?
- · We use a *Deterministic Finite Automata* (DFA).

Recognizers

- A "recognizer" for a language is a construct that determines if a given string is a member of the language.
- · Every language has its own recognizer.
- · For regular languages the recognizers are called "Finite State Automatas" (FA, FSA).
- That is for a language, L, there is a FAL such that for any string, s, used as input for FAL:

FAL(s) = true if s E L and FAL(s) = false otherwise

Deterministic Finite Automata

- · A DFA *M* is a machine that
 - Takes a string $\sigma \in \Sigma X$ as input
 - Either <u>accepts</u> σ if $\sigma \in L$
 - Or <u>rejects</u> σ if σ Z L

M <u>recognizes</u> L if it accepts σ if and only if $\sigma \in L$

A DFA consists of:

- set of states
- · start state
- set of final states
- transition function

Operation of a DFA

A DFA

- · Starts in the start state
- · Reads in string σ one character at a time
- Computes the next state based on current state and character
- · Transitions to the next state $_1$
- · Accepts σ if and only if it is in a final state after reading σ. →

0,1

Finite Automatas

- · Set of states.
- The FA changes states when it "reads" a character from the input.
- Transitions are the arrows between states.
 Each transition is associated with a character.
- One state is special. This is the "start state" that the FA begins in before reading any input.
- Some states are "final." If the FA is in a final state when there is no more input to read, it accepts the input string as a member of L. If it is not in a final state, it must reject the string as

What Language Does this DFA Recognize?

Formal Definition of a DFA

- · A DFA, M, is a 5-tuple: $M = (Q, \Sigma, \delta, q0, F)$
 - Q set of states
 - Σ alphabet
 - δ transition function (complete): δ : $Q \times \Sigma \rightarrow Q$
 - q0 start state, q0 E Q
 - F set of final states, F ë Q
- · A DFA M accepts a string $\sigma E \Sigma X$ if and only if it is in a final state after reading σ .
- A DFA M recognizes language L if and only if it only accepts all the strings in L

Examples of DFAs

- DFA that accepts all binary strings that Mhave, no, co, nse, cutive
- $\Sigma = \{0,1\}$
- $\cdot Q = \{q0,q1,q2\}$

• DFA that accepts L = (0|1)*1

$$M = (\Sigma, Q, \delta, q0, F)$$

$$\Sigma = \{0,1\}$$

$$\cdot Q = \{q0,q1\}$$

· F =	State	Symbol	New State
•	q 0	0	q0
. δ:	q0	1	q1
	q1	0	q0
	q1	1	q1

Nondeterministic Finite Automata (NFA)

· A DFA is deterministic in that it has a single transition for each symbol and state

I.e., A DFA traces a single path for each input

 An NFA is like a DFA except it may have a choice of transitions for a given state and character.

I.e., An NFA may trace multiple paths for an input

- Two kinds of nondeterministic choices:
 - **\varepsilon transition** to another state without reading a character
 - multiple successor states: multiple transitions to

Example of an NFA

NFA that accepts binary strings ending in 01 or 001

$$L = (0|1) \times 0(1|01)$$

$$M = (\Sigma, Q, \delta, q0, F)$$

•	ΣΞ	State	Symbol	New State
•	\circ	q 0	0	q0
	Y	q0	0	q1
•	F	q0	1	q0
•	δ:	q1	0	q2
	U.	q1	3	q2
		q2	1	q3

Formal Definition of an NFA

- · An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q0, F)$
 - Q set of states
 - Σ alphabet
 - δ transition function: δ : $Q \times (\Sigma \vee \{\epsilon\}) \rightarrow 2Q$
 - q0 start state, q0 E Q
 - F set of final states, F ë Q
- · Every input σ induces a set of paths traced by δ as σ is read
- · NFA M accepts a σ if and only if one of the paths ends in a final state

NFA Example 1

• NFA that accepts L = (0|1)*1

$$M = (\Sigma, Q, \delta, q0, F)$$

- $\Sigma = \{0,1\}$
- $\cdot Q = \{q0,q1\}$
- $F = \{q1\}$
- · δ:

State	Symbol	New State
0 p	0	q0
q0	1	q0
q0	1	q1

0,1

NFA Example 2

• NFA that accepts L = (0|1)*(010|101)

$$M = (\Sigma, Q, \delta, q0, F)$$

 $\Sigma = \{0,1\}$

 $\cdot Q = \{q0,q1,q2\}$

· F =	State	Symbol	New State
Г-	0 p	0	q0
. δ:	q0	1	q0
	q0	0	q1
	q0	1	q3
	q1	1	q2
	q2	0	q5
	q3 q4	0	q4 q5
	q4	1	q5

Are these all the same?

- We have discussed a variety of specifications:
 RLs, RE, DFAs, NFAs
 - RLs: a class of languages
 - RE a way to specify RLs
 - DFAs: a way to implement scanners for RLs
 - NFAs: a simpler way to implement scanners for RLs
- · Questions:
 - Are these all of equal power?
 - Are NFAs same as DFAs?
 - Do REs specify only regular languages?

Regular Languages Equivalence Theorem

- Theorem: The following statements are equivalent:
 - i. L is a regular language.
 - ii. L is the language described by a regular expression.
 - iii. L is recognized by an NFA.
 - iv. L is recognized by a DFA.
- · We will prove: (i) \equiv (ii) \equiv (iii) \equiv (iv)

Regular Languages are equivalent to Regular

Expression Squage can be specified by a regular expression.

· Every regular expression specifies a regular

Operation	Regular Language	Regular Expression
Empty Language	A	A
Empty String	{3}	3
Single character	{a}, a Ε Σ	a
Disjunction	L1 ν L2	R1 R2
Concatenation	L1L2	R1R2
Kleene-closure	LX	R*