HO unification from object language to meta language

Enrico Tassi, Davide Fissore Month XX, 202Y

Abstract

Unification is a fundamental process behind goal resolution in logic programming. Two terms t_1 and t_2 unify up to $\eta\beta$ -reduction if it exist a substitution θ such that $\theta t_1 = \theta t_2$. A substitution is a mapping from unification variables to terms and it is the most general, if for all substitution θ' , such that $\theta' t_1 = \theta' t_2$, it exists a substitution θ'' such that $\theta' = \theta\theta''$. Unification has been widely studied in the 90s [here the refs]. In this paper we want to give a framework to reason about unification in meta-programming.

1 intro

we are interested in using a meta language in LF style to write automation, proof search. In various works... they achieve that for a OL which is simpler than the LF, the equational theory is included in the one of the ML. This is exploited to piggy back on the unif of the ML the peculiarity of our setting is that the OL has a richer equational theory of the ML, eg beta eta zeta bla bla. Moreover is HO logic, so quantifies over functions, so unif variable range on that too. We want to piggy back on the ML unif whenever the problem fits in its domain, eg pattern fragment. this is important for practical purposes.

1.1 in a nutshell

example, a rule for theorem

```
forallf: A-> B,..blaf..-> prove(\forall x, fx)blag

type app ..
prove (forall x\ app F x) :- ... bla F ...
on goal
prove (forall x\ app (app g x) x))
would fail since
F != app g x
.
    of course one wants to avoid
prove P S S'' :- ol-unif P S (forall x\ app "F" x) S', ... assignment "F" S' F,
        bla F S' ...
Now, ML has HO variables
```

```
type lam ..
prove (forall x\ F x) :- ... bla F ...

this time

F x != app (app g x) x

has solution

F = a\ app (app g x) x

but F is not a term so bla needs to be adapted,
prove (forall x\ F x) :- ... bla (lam F) ...
bla g.

this is too simplistic since
g != lam x\ app g x
```

1.2 contribution

- prover for HO OL in ML that uses unif
- eta beta
- test on stdpp and TLC

2 Introduction

Meta programming [3] is a programming technique in which a program can treat an other program as its data. This latter program is called object language (ol for short), while the former is called meta language (ml for short). At the heart of meta programming lays the necessity of representing terms of the ol in the ml so that a wide set of program manipulations ranging from interpretation to compilation. Furthermore, since a logic program is a set of clauses, the behavior of the ol can be modified in corsa by simply adding new rules inside the database of the meta program.

Meta programming has various application such as ... where thanks to meta programming it is possible to represent the logic of a language into a formal and formally verify the wanted properties. On the other hand, it is possible to embed a logic programming language into another so that some tasks can be delegated to ml.

The latter situation motivates our works, since we are implementing a type-class solver for the ol coq in the ml elpi (a variant λ -prolog). A type class [1, 4] is a typing structure allowing to introduce ad hoc polymorphism in functional languages. We call «instance» an implementation of a type class. The resolution of a type-class problem can be viewed as a logic program where type classes represent predicates parametrized by their arguments and where instances are rules for those predicates.

3 From the object to the meta language

Even though type-class resolution is the motivating example of this paper, we provide a general framework allowing to solve reproduce the same unification properties of the ol into the ml. In other word, if two terms unify in the ol, then they still unify in the ml.

translate in english

In the following, we consider the ol being able to quantify over higher-order variables and accepts $\eta - \beta$ -reductions. The same unification properties are considered valid for the ml.

There exist two different ways to encode the ol in the ml, we can either deep embed the ol such that any term of the ol is represented with a corresponding predicate. For example, if f is a function of type A -> B in the ol, then the ml has the predicate p defined as type p A' -> B' -> o, where A' and B' are types corresponding respectively to A and B in the ol. In a theorem prover like coq, we can translate theorems like the following statement

forall
$$F X$$
, $p (f X) (fun x => g x (F x)).$ (1)

where p, f and g are defined constants of the language, into

$$p (f X) (x \setminus g x (F x)).$$
 (2)

However, even if this encoding is quite appealing since it allows to mirror enough straightforwardly the terms of the ${\tt ol}$, we loose the possibility the manipulate the terms of the ${\tt ol}$ into the ${\tt ml}$. In other words, we have no syntax allowing to know if the current term is a constant, an application, a lambda abstraction and so on. This is mainly due to the absence of a syntax in the encoding of the ${\tt ol}$ terms. Moreover, another motivation for using syntax to represent terms of the ${\tt ol}$ is that the typing system of the ${\tt ol}$ could potentially be more expressive than the typing system of the ${\tt ml}^1$.

To simplify the understanding of our encoding, in the following code snippet we give the typing schema of the ol terms represented into terms of the ml.

```
kind tm type.
type app list tm -> tm.
type lam (tm -> tm) -> tm.
type c string -> tm.
type uv nat -> tm.
```

In particular, the type tm is the type of the terms of the ol. The function applications of the ol are represented as a list of tm prefixed by the constructor app. The lam constructor, represent lambda abstractions of the ol binding a tm into an other tm. Constants as strings inside the constructor c. Lastly, unification variables are integers inside the constructor uv, where the integer is the index of the current variable wrt a list of optional tm, standing for the substitution mapping of the ol.

This second encoding of the ol into our ml translate Equation (1) into the term:

$$app[c "p", app[c "f", uv 0], lam x app[c "g", x, app[uv 1, x]]].$$
 (3)

This second encoding of the ol terms is now structured and as a drawback we are restricting the unification of the ol, that is, terms that originally unify at the ol level, do not unify in the ml

For example, let a and b two defined constants and let's try to unify the ol term

$$p (f a) (fun x \Rightarrow g x b)$$
 (4)

corresponding to

¹This is the case for coq wrt elpi, since in we have no immediate way to encode the dependent types of coq into elpi

```
app[c "p", app[c "f", c "a"], lam x \neq p[c "g", x, c "b"]]. (5)
```

with Equation (1) (corresponding to Equation (3)). The unification of the ml is able to instantiate $uv \circ (cf X)$ to c "a", but we are no longer capable to unify the sub-term $app[uv \ 1, \ x]$ (cf F) with c "b".

The result of this translation of terms inside the m1 causes a certain lack of powerfulness while symbolizing higher-order variables. Recall that we are considering a m1 capable to deal with higher-order variables, however, the sub-term app[uv 1, x] is not expressed into the canonical form where a higher-order variable of the m1 is in the pattern fragment [2], i.e. a variable applied to distinct names. Therefore, we need to preprocess the received unification problem $t_1 = t_2$ by (i) compiling the terms into a terms t_1' and t_2' understandable by the m1 (ii) finding a valid substitution for t_1' and t_2' (iii) giving back a valid substitution θ for the o1, such that θ is the most general unifier for T_1 and t_2 in the logic of the o1.

4 Term compilation

and

In order to present the the compilation of the ol terms, so that higher order unification can be performed, we need a second and more powerful representation of the ol terms so that variables have a scope. This specification is shown in the code snippet below.

```
kind ml.tm type.
type ml.app list ml.tm -> ml.tm.
type ml.lam (ml.tm -> ml.tm) -> ml.tm.
type ml.c string -> ml.tm.
type ml.uv nat -> list ml.tm -> ml.tm.
```

In particular a ml.uv term is meant as a unification variable of the meta-language. Therefore, the unification between

```
ml.lam x\ ml.lam y\ ml.uv 1 [x, y]

ml.lam x\ ml.lam y\ ml.uv 0 [x]
```

is supposed to procedure of the substitution $ml.lam x \ ml.lam y \ ml.uv 2 [x] for uv 0 and the substitution <math>ml.lam x \ ml.uv 2 [x]$ for uv 1.

Moreover, if ml.uv stands for meta-variables, the app and the lam constructors are the nodes for the terms of the ol. Therefore, we cannot claim that ml.lam x\ ml.app [ml.c "f", x] and ml.c "f" unify, since, even though the first is the η -expansion of the second, the ml does not know how to $\eta\beta$ -reduce terms of the ol.

In our encoding, we explicitly encode the meta-variables with the ml.uv constructor. This is because we prefer to have the full control of the ml, including the meta-variables instantiation. This way we are able to concretely touch the substitution performed by the ml. In a further section, we show that there is no difference between our custom ml language and any other ml. Of course, a full control on the unification behind meta-variable assignment ask to drag the substitution mapping of the ml and update it each time a variable is refined.

The compilation phase is quite straightforward, each constructor of type tm is mapped to its corresponding version of type ml.tm. A slight different approach is taken in the case of

terms of the form app [uv $N \mid L$], where the term is translated into tm.un M L, that is, a new meta-variable M with scope L.

This latter term transformation is untying the original variable N of the ol from the compiled term in the ml. This means that when M is instantiated into the ml, we need to transfer the substitution to the ol. In order to bridge instantiation of meta-variables with the ol variables, an ad hoc link is crafted between the two variables.

A link, type link nat -> nat -> link, takes two integers: the first stands for the index of variables in the ol and the second is the index of the meta-variables.

For example, if we take back the example in Equation (5), and want to compile it, we obtain the new term:

4.1 First-order unification

Just as an introduction, we briefly show some small example of unification between terms with only first-order unification variables. This way, we would like the reader to become familiar between the communication of the two languages.

Let's take as an example the following unification problem in the obj. lang::

$$f \ x \ 1 \stackrel{\tau}{=} f \ Y \ Z \tag{7}$$

where f, x and 1 are defined constant and Y and Z are both unification variables. By convention we use upper case letter for quantified variables. Moreover, for this first representation we do not really focus on the type of the manipulated objects, since they do not condition the unification algorithm.

It is quite evident that a valid substitution for Equation (7) is $\theta = \{Y \mapsto `x', Z \mapsto `1'\}$. Now let's consider the same problem translated in the meta language.

$$app['f', 'x', '1'] \stackrel{\tau}{=} app['f', Y, Z] \tag{8}$$

The unification of these terms is again quite simple since it is sufficient to do a simple matching sub-term by sub-term so that variables can be instantiated. We can therefore note that the same substitution θ will be produced.

4.2 Higher-order unification

The unification problem treated before was enough easy to be correctly understood by both language representation. We want now to go a bit further and reason with a more complex problem where a variable is a function of higher-order.

We propose two different higher-order unification problem in the following equations where, in the former we have rigid-flexible unification and in the latter we have a flexible-flexible unification.

$$f \ x \ 1 \stackrel{\tau}{=} F \ x \tag{9}$$

$$G \ x \ y \stackrel{\tau}{=} H \ y \ x \tag{10}$$

The two substitutions for the previous examples are $\theta_1 = \{F \mapsto fun \ x \Rightarrow f \ x \ 1\}$ and $\theta_2 = \{H \mapsto fun \ y \ x \Rightarrow G \ x \ y\}$. We can note that to be in the pattern fragment, a functional variable should be applied to distinct names.

If we translate the problem before in the meta language, the unification problems showed above become

$$app['f', 'x', '1'] \stackrel{\tau}{=} app[F, 'x']$$

$$\tag{11}$$

$$app[G, 'x', 'y'] \stackrel{\tau}{=} app[H, 'y', 'x']$$
 (12)

Now, the new unification problems are no more expressed in the logic of the meta language and, therefore, in both cases, unification fails. The procedure we can adopt in order to transform a higher-order unification problem of the object language into the logic of the meta language is to transform the entry of the problem in a problem which can be understood by the meta language. The procedure is made of two steps:

- 1. In the first place, we need to recognize the structure of the pattern fragment expressed in the term received in entry. This means that we need to find all the sub-terms of the form 'app[X | L]', where 'X' is a flexible variable and 'L' is a list of distinct names.
- 2. For any sub-term representing a higher-order unification in the object language, we build a fresh variable 'X' such that the names 'L' are not in the scope of 'X', we call 'X' the twin variable of 'X'.
- 3. We solve the new goal where each pattern fragment problem is replaced with a problem using twin variables and after each of these problems, we add a new premise linking these twin variables. The linking is done using the following criteria: for each abstraction in the resulting term 'X', unify recursively 'X' to a lambda abstraction in the object language.

The previous algorithm can be applied to Equations (9) and (10) to provide the wanting solution. In particular, Equation (9) is transformed into the unification problem:

$$f \ x \ 1 \stackrel{\tau}{=} F' \ x, \ ho - link \ F' \ F \tag{13}$$

$$G' \times y \stackrel{\tau}{=} H' \times x, ho - link G' G, ho - link H' H$$
(14)

For instance, the former unification problem produce the substitution $\theta_1 = \{F' \mapsto (x \setminus f \ x \ 1)\}$. The ho-link function is then applied to transform the substitution of F' into the corresponding term of the object langue: $F \mapsto fun_{-}(x \setminus f \ x \ 1)$ which correspond to the term $fun \ x \Rightarrow f \ x \ 1$. The latter unification problem gives the substitution $\theta_2 = \{H' \mapsto (y \ x \setminus G' \ x \ y)\}$ in the meta language. The first ho-link simply unify G to G' since G' is flexible, whereas H is mapped to $fun \ y \ x \Rightarrow G' \ x \ y$.

The role of the ho-link is not only to instantiate the higher-order variable F of the object language when F is flexible and the twin variable in the meta language is rigid. It may happen that F has already been partially instantiated. The unification problem below gives such an example in the object language:

$$G x y \stackrel{\tau}{=} H y x, H x y \stackrel{\tau}{=} x \tag{15}$$

producing the following substitution $\theta = \{G \mapsto (fun \ x \ y \Rightarrow x); F \mapsto (fun \ x \ y \Rightarrow y)\}$. This unification problem is translated into:

$$G' x y \stackrel{\tau}{=} H' y x, ho - link G' G, ho - link H' H$$

$$H'' x y \stackrel{\tau}{=} x, ho - link H'' H$$
(16)

The first line produces the same substitution as before: $\theta = \{H' \mapsto (x \ y \backslash G' \ y \ x)\}$, where G' is unified with G and H is instantiated to « $fun \ x \ y \Rightarrow G' \ y \ x$ ». While executing the second line, we see H'' instantiated to the function $(x \ y \backslash x)$ in the meta language. The last ho-link is charged to link H'' with H but this time H has already been partially instantiated. In particular the call to this ho-link is as follows: $ho - link \ (x \ y \backslash x) \ (prod \ (x \backslash prod \ (y \backslash app[G', x, y]))$.

Since the two arguments have rigid heads, we start to traverse both terms recursively by eating each lambda-abstraction. At the end of this procedure, the remaining sub-terms are $\underline{\text{now}}$ x and app[G', x, y],

in our code this example though the eta mess error

5 HO unification in typed languages

TODO: ho-link need the type of original term to produce a typed term in the object language, example: $f \times 1 = F \times -> f$ type of F = (A -> Prof) if type of F = (A -> Prof)

6 Proof automation from coq to elpi

TODO: representing a logic programming language into an other: compile rules keeping higher order unification

6.1 Dealing with FO non-syntactical unification

6.2 Dealing with HO unification

References

- [1] P. Wadler and S. Blott. "How to Make Ad-Hoc Polymorphism Less Ad Hoc". In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '89. Austin, Texas, USA: Association for Computing Machinery, 1989, pp. 60-76. ISBN: 0897912942. DOI: 10.1145/75277.75283. URL: https://doi.org/10.1145/75277. 75283.
- [2] Dale Miller. "A logic programming language with lambda-abstraction, function variables, and simple unification". In: *Extensions of Logic Programming*. Ed. by Peter Schroeder-Heister. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 253–281. ISBN: 978-3-540-46879-0.
- [3] Patricia Hill and J Gallagher. "Meta-Programming in Logic Programming". In: (Sept. 1994). DOI: 10.1093/oso/9780198537922.003.0010.
- [4] Matthieu Sozeau and Nicolas Oury. "First-Class Type Classes". In: Theorem Proving in Higher Order Logics. Ed. by Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 278–293. ISBN: 978-3-540-71067-7.

A TC in coq

For instance, if XXX is the type class representing the AAA, then ZZZ and WWW are instances for XXX. In the code snippet below, we give such implementation in coq.

A. TC in coq

Term	ol	ml
Constant	a	'a'
Application	f a_1 a_2 a_n	app['f', 'a_1', 'a_2',, 'a_n']
	$\int \operatorname{fun} (x : T) \Rightarrow f x$	fun 'x' T $(x \mid p[f', x'])$
Variable	X	X

Table 1: ol terms to ml terms representation

```
Inductive sig (A : Type) (P : A -> Prop) : Type := ...

Class Decision (P : Prop) := decide : {P} + {not P}.

Class RelDecision {A B: Type} (R : A -> B -> Prop).

Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

Instance decide_rel: forall (A B : Type) (R : A -> B -> Prop),

   RelDecision R -> forall (x : A) (y : B), Decision (R x y). Admitted.

Instance True_pi : ProofIrrel True. Admitted.

Instance sig_eq_dec: forall (A : Type) (P : A -> Prop),

   (forall x, ProofIrrel (P x)) -> RelDecision (@eq A) ->

   RelDecision (@eq (sig A P)). Admitted.
```

explain compilation of pred and inst? This small set of instances after a first phase of compilation is translated into the following elpi rules:

```
type tc-Decision term -> term -> o.
type tc-RelDecision term -> term -> term -> term -> o.
type tc-ProofIrrel term -> term -> o.

tc-ProofIrrel (`True`) (`True_pi`).
tc-Decision (app [R, X, Y])
  (app [`decide_rel`, A, B, R, P, X, Y]) :-
  tc-RelDecision A B R P.
tc-RelDecision (app [`sig`, A, P])
  (app [`sig`, A, P])
  (app [`eq`, app [`sig`, A, P]])
  (app [`sig_eq_dec`, A, P, P1, P2]) :-
  pi-decl c0 `x` A =>
  tc-ProofIrrel (app [P, c0]) (app [P1, c0]),
  tc-RelDecision A A (app [`eq`, A]) P2.
```

In this paper we do not really want to explain how the translation of the class/instances is performed in our ml, we prefer to focus our attention on unification of terms of the ol in our ml. Although, in Table 1, we provide a simple subset of the typing system used to represent the term of the ol in the ml.

Type-class resolution starts from a query, that is a class applied to some arguments. This coq term is translated into a term of the ml and the search for a solution in the database is started. However, it may happen that the term representation in the ml may hide some unification properties that are true in the ol. In the example above, the goal Decision (Qeq T a b) for some

a and b unifies with Decision (R x y) in the ol but not in its meta representation. Similarly, the goal RelDecision (Qeq (sig T ?P)) where ?P, under the hypothesis RelDecision (Qeq nat), will trying to apply the rule for sig_eq_dec , we fall into an higher order unification problem, where P is applied to the local name x. However, the corresponding rule in the ml exploit a first order variable P. Therefore, after the refinement of the goal to sig_eq_dec , the resolution immediately fail to solve the premise tc-ProofIrrel (app [P, c0]) (app [P1, c0]).