Memory Circuits and System Report HW1

Butterfly Curve of SNM

1. 1:1:1 FinFET SRAM

2. 1:2:2 FinFET SRAM

Butterfly Curve of RSNM

1. 1:1:1 FinFET SRAM

2. 1:2:2 FinFET SRAM

Write Noise Margin (WNM) Curve

1. 1:1:1 FinFET SRAM

2. 1:2:2 FinFET SRAM

Analysis:

從兩種不同比例 FinFET 的 VDD=0.7V 狀態下來看,在 Hold mode、Read mode,有差別的地方在 metastable operation point,1:2:2 的電壓值較低,也就是 1:2:2 的 SRAM 比較快達到操作動作,而 Write mode 則只有 Monostable operation。

從 SNM 來看,Hold mode 兩者差異不大,Read mode 下 1:1:1 的 SNM 較大,最後 Write mode 則是 1:2:2 的 SNM 較大。

Static Noise Margin Analysis

- 1. 1:1:1 FinFET SRAM
- different supply voltages from 0.7V to 0.4V

A. SNM

Analysis:

在 Hold mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢略趨於線性,因此當 VDD 越高,其抗干擾能力越強。

B. RSNM

Analysis:

在 Read mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 VDD 越低,其抗干擾能力會越來越差。

C. WNM

VDD	cross_point	min_1	min_2	snm
0.7	0.4950	0.3120	0.3120	0.2206
0.6	0.4243	0.2350	0.2350	0.1662
0.5	0.3536	0.1424	0.1424	0.1007
0.4	0.2828	0.0482	0.0482	0.0341

Analysis:

在 Write mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 VDD 越低,其抗干擾能力越來越差。

different wordline voltages

A. RSNM

Analysis:

在 Read mode 下,當 WL_V 越低時,其 SNM 會跟著變大,增加趨勢略趨 於線性,因此當 WL_V 越低,其抗干擾能力越強,但相對的 metastable operation point 也會隨之下降,所以當電壓超過一定值時,state 便會改變,在控制穩定上也會不好控制。

B. WNM

WL_V	cross_point	min_1	min_2	snm
0.9	0.4950	0.4979	0.4979	0.3521
0.8	0.4950	0.4237	0.4237	0.2996
0.7	0.4950	0.3120	0.3120	0.2206
0.6	0.4950	0.1035	0.1035	0.0732
0.5	0.4950	failed	failed	failed

Analysis:

在 Write mode 下,當 WL_V 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 WL_V 越低,其抗干擾能力越低,且當達到 WL_V=0.5V 時,便會 write failed。

2. 1:2:2 FinFET SRAM

• different supply voltages from 0.7V to 0.4V

A. SNM

VDD	cross_point	max_1	max_2	snm
0.7	-0.4950	0.4359	0.4359	0.3082
0.6	-0.4243	0.3746	0.3746	0.2649
0.5	-0.3536	0.3074	0.3074	0.2173
0.4	-0.2828	0.2386	0.2386	0.1687

Analysis:

在 Hold mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢略趨於線性,因此當 VDD 越高,其抗干擾能力越強。

B. RSNM

Analysis:

在 Read mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 VDD 越低,其抗干擾能力會越來越差。

C. WNM

Analysis:

在 Write mode 下,當 VDD 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 VDD 越低,其抗干擾能力越來越差。

different wordline voltages

A. RSNM

Analysis:

在 Read mode 下,當 WL_V 越低時,其 SNM 會跟著變大,增加趨勢略趨 於線性,因此當 WL_V 越低,其抗干擾能力越強,但相對的 metastable operation point 也會隨之下降,所以當電壓超過一定值時,state 便會改變,在控制穩定上也會不好控制。

B. WNM

Analysis:

在 Write mode 下,當 WL_V 越低時,其 SNM 會跟著變小,減小趨勢越來越大,因此當 WL_V 越低,其抗干擾能力越低,且當達到 WL_V=0.5V 時,便會 write failed。

Conclusion:

不同 VDD 在 SNM 上,Hold mode 下 1:2:2 的表現較好一些,但沒有顯著 差異,Read mode 下 1:1:1 的表現較好一些也沒有顯著差異,而 Write mode 下 1:2:2 的抗干擾表現明顯比 1:1:1 來的好許多。

不同 WL_V 在 SNM 上, Read mode 下 1:1:1 的表現較好一些,但沒有顯著差異,而 Write mode 下 1:2:2 的抗干擾表現明顯比 1:1:1 來的好許多。

所以整體來看 1:2:2 的 FinFET 在 Hold mode、Write mode 表現較好,1:1:1 的 FinFET 則是 Read mode 表現較好。