

6

IPv6 síťová vrstva

IPK 2020/2021 L

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti
- 2) IPv6 PAKET
- 3) Adresování
 - Administrativní platnost adres
 - Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2
- 5) KOEXISTENCE IPV4 A IPV6
- 6) SMĚROVÁNÍ IPV6
 - RIPng, OSPFv3, Multiprocol BGP
- 7) PROBLÉMY, ZHODNOCENÍ

Motivace

- 1. Larger IP address space
- 2. Better end-to-end connectivity
- 3. Ability for autoconfiguring devices
- 4. Simplified header structures
- 5. Better security (IPSEC ESP, AH)
- 6. Better quality of services
- 7. Better multicast and anycast abilities
- 8. Mobility features
- 9. Ease of administration
- 10. Smooth transition from IPv4

Vlastnosti

- Jedno rozraní má více než jednu IPv6 adresu
- Fragmentace a znovusestavení IP paketu pouze na koncových systémech, nikoliv na směrovačích
 - Zvýšena minimální MTU na 1280
 - Path MTU Discovery for IP version 6 (RFC 1981)
- Zpracování hlavičky nevyžaduje přepočet kontrolního součtu
- Pevná velikost základní hlavičky 40 bytů
- Není podporován broadcast ani neexistují bcast adresy
 - Substituce multicastem

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti

2) IPv6 PAKET

3) Adresování

- Administrativní platnost adres
- Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2

5) KOEXISTENCE IPV4 A IPV6

- přechodové mechanismy
- routing
- 6) PROBLÉMY, ZHODNOCENÍ

Porovnání IPv4 a IPv6

Pevná velikost hlavičky 40 bajtů zjednodušuje

manipulaci s paketem

Version I	HL	Type of Service	Total Length		
Identification			Flags	Fragment Offset	
Time to L	.ive	Protocol	Header Checksum		
Source Address					
Destination Address					
Options				Padding	

IPv6 příklad hlavičky

IPv6 paket

- Verze (Version) 4 bity, obsahuje hodnotu 6
- Třída provozu (Traffic class) 8 bitů, pro potřeby služeb se zajištěnou kvalitou
- **Značka toku (Flow label)** 20 bitů, identifikuje tok (proud souvisejících paketů) (RFC 2460), umožňuje nestandardní prioritizaci přenosu, vysokorychlostní směrování
- **Délka dat (Payload length)** 16 bitů, velikost dat následující hlavičku
- Další hlavička (Next header) 16 bitů, určuje typ případné další volitelné/rozšiřující hlavičky (řetězení hlaviček) nebo identifikuje protokol vyšší vrstvy
- Limit skoků (Hop count) počet možných přeposlání směrovači, snižována o 1 na každém směrovači, při vypšení zrušení paketu, stejně jako TTL u IPv4
- Zdrojová a cílová adresa (Source and destination address) adresa odesílatele a zdroje IP paketu, dostatečně velká?

Řetězení hlaviček

- Rozšiřující hlavičky (Extension headers) se připojují za základní hlavičku paketu, důležité je i pořadí těchto hlaviček [RFC 1883]
 - Hop-by-hop (Next header=0), Destination options (Next header=60), Routing (Next header=43), Fragment (Next header=44) [RFC 2460]
 - Authentication (AH) (Next header=51), Encapsulating Security Payload (ESP) (Next header=50) [RFC-2402],[RFC-2406]
 - No next header (Next header=59)
 - TCP/IP protokoly (TCP=6; UDP=17; OSPF=89 atd.)
- Rozšiřující hlavička obsahuje obvykle položky (Type-Length-Value)
 - další hlavička
 - délka hlavičky
 - data hlavičky
- 2 nejvyšší bity hlavičky určují co s paketem, pokud směrovač typu rozšiřující hlavičky nerozumí (přejít na další hlavičku, zahodit paket, zahodit s upozorněním podle typu adresy příjemce)

Zřetězení hlaviček

Jen IPv6 Základní hlavička, za kterou následuje protokol a data vyšší vrstvy.

Základní hlavička se zřetězenými rozšiřujícími hlavičkami *Hop-By-Hop* a *Hlavičkou fragmentace*, za kterými následují fragmentovaná data.

Základní hlavička se zřetězenými rozšiřujícími *Směrovací hlavičkou* a *Žádnou další (No Next Header)* bez jakýchkoli dat.

Pořadí hlaviček

Pořadí	Next Header	Název + Popis
1.	-	Základní hlavička, tak jak je uvedena v předchozí podkapitole.
2.	0	IPv6 Hop-by-Hop Option obsahuje volby, které vykoná každý hop po cestě ke koncovému příjemci
3.	60	<i>IPv6-Opts</i> pro první cílovou adresu nebo adresy uvedené v hlavičce IPv6-Route.
4.	43	IPv6-Route obsahuje směrovací informace.
5.	44	IPv6-Frag značí, že datagram byl fragmentován na vícero kousků, podrobnější informace o procesu fragmentace jsou v další podkapitole.
6.	51	AH jako autentizace odesilatele, prokázání jeho totožnosti.
7.	50	ESP jako šifrování celého následujícího obsahu paketu za touto hlavičkou a zároveň i autentizace odesilatele.
8.	60	<i>IPv6-Opts</i> v něm jsou obsaženy informace pro konečného příjemce paketu.
9.	135	Mobilita a její podpora pomocí této speciální Rozšiřující hlavičky je nad rámec obsahu této technické zprávy.
10. – 11.	41	IPv6 Encapsulation sdělující, že paket byl odeslán tunelem 6to4.
10. – 11.	140	Shim6 jiný tunelovací mechanismus místo 6to4, detaily k němu jsou k nalezení v [7].
12.	59	IPv6-NoNxt značí, že za kocem této hlavičky nenásleduje nic dalšího (žádný relevantní protokol ani vyšší vrstvy), veškerá za tím parsovaná data pomocí políčka Payload Length jsou ignorována.
13.	jiné	Všechny ostatní protokoly

Fragmenty + Jumbogramy

Fragmenty

- minimální velikot MTU v IPv6 je 1280B (v IPv4 je to 576B)
- v IPv6 fragmentuje výhradně odesilatel
- směrovač s MTU menším než potřebné zahodí paket a odešle ICMPv6 zprávu
- nefragmentovatelná část všechny hlavičky
- fragmentovatelná část obsah paketu
- objevování MTU cesty (RFC1981) je periodické, doporučeno každých 10 minut, používá se ICMPv6
- algoritmus objevování MTU cesty je volitelný, jinak používat 1280B
- Jumbogramy

Ukázka fragmentace

Fragment #3: Bytes 240-269 of Fragmentable Part

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti

2) IPv6 PAKET

3) Adresování

- Administrativní platnost adres
- Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2

5) KOEXISTENCE IPV4 A IPV6

- přechodové mechanismy
- routing
- 6) Problémy, zhodnocení

IPv6 adresa

- Délka 128 bitů (16 bajtů)
- Zápis v šestnáctkové soustavě, čtveřice číslic odděleny dvojtečkou

IPv6 adresa

Původně značná flexibilita zápisu

2001:db8:0:0:1:0:0:1 2001:db8::0:1:0:0:1 2001:0db8:0:0:1:0:0:1

2001:db8::1:0:0:1 2001:dB8:0000:0:1::1 2001:DB8:0:0:1::1

2001:0db8::1:0:0:1 2001:db8:0:0:1::1

Způsoby zápisu upravuje RFC 5952

2001:db8::1:0:0:1

- Úvodní nuly ve čtveřici lze vynechat Odb8 —> db8
- Nejdelší souvislou skupinu nulových čtveřic lze vynechat a nahradit dvěmi dvojtečkami 0000:0000 —> ::
- Hexadecimální znaky se píší malým
- 0000 se zkrátí na 0

Administrativní platnost

- Název síť nebo podsíť je v IPv6 nahrazen pojmem "linka" (link)
- IPv6 uzel má na rozhraní více IPv6 adres
- Adresy mají dosah (scope) a dobu platnosti (lifetime)

IPv6 adresový prostor

- Individuální (Unicast) adresy
 - Adresa nakonfigurována na rozhraní
 - Více různých typů (Link-local, Unique Local, Globální)
- Skupinové (Multicast) adresy
 - Adresace skupiny komunikace one-to-many
 - Efektivní způsob komunikace, pokud je multicast na síti podporován
- Výběrové (Anycast) adresy
 - Identifikují službu nacházející se na více zařízeních než konkrétního hosta

Významné adresy a prefixy

Nespecifikovaná adresa ::/128 ~ 0.0.0.0

Loopback ::1/128 ~ 127.0.0.1

Link-local FE80::/10 ~ 169.254.*.*

Multicast adresy FF00::/8 ~ třída D

IPv4 mapované adresy ::ffff:A.B.C.D

Unique local FC00::/7 ~ 192.168.**

- Všechny ostatní jsou globální unicast adresy
 - až na pár výjimek v podobě rezervovaných prefixů pro technologie jako 6to4,Teredo, ISATAP

Rezervované adresy

Address block (CIDR)	First address	Last address	Number of addresses	Usage	Purpose
::/0	::	ffff:ffff:ffff:ffff:ffff:ffff:ffff	2 ¹²⁸	Routing	Default route (no specific route)
::/128	:-	::	1	Software	Unspecified address
::1/128	::1	::1	1	Host	Loopback address—a virtual interface that loops all traffic back to itself, the <i>local host</i>
::ffff:0:0/96	::ffff:0.0.0.0	::ffff:255.255.255	2 ¹²⁸⁻⁹⁶ = 2 ³² = 4 294 967 296	Software	IPv4-mapped addresses
::ffff:0:0:0/96	::ffff:0:0.0.0.0	::ffff:0:255.255.255	2 ³²	Software	IPv4 translated addresses
64:ff9b::/96	64:ff9b::0.0.0.0	64:ff9b::255.255.255.255	2 ³²	Global Internet	IPv4/IPv6 translation[16]
100::/64	100::	100::ffff:ffff:ffff	2 ⁶⁴	Routing	Discard prefix ^[17]
2001::/32	2001::	2001::ffff:ffff:ffff:ffff:ffff	2 ⁹⁶	Global Internet	Teredo tunneling
2001:20::/28	2001:20::	2001:2f:ffff:ffff:ffff:ffff:ffff	2 ¹⁰⁰	Software	ORCHIDv2 ^[18]
2001:db8::/32	2001:db8::	2001:db8:ffff:ffff:ffff:ffff:ffff	2 ⁹⁶	Documentation	Addresses used in documentation and example source code ^[19]
2002::/16	2002::	2002:1111:1111:1111:1111:1111	2112	Global Internet	The 6to4 addressing scheme (deprecated) ^[9]
fc00::/7	fc00::	fdff:ffff:ffff:ffff:ffff:ffff:ffff	2121	Private internets	Unique local address ^[20]
fe80::/10	fe80::	fe80::ffff:ffff:ffff	264	Link	Link-local address
ff00::/8	ff00::	###:###:###:###:###:###	2 ¹²⁰	Global Internet	Multicast address

Global Unicast and Anycast Addresses

- Global Unicast a Anycast adresa se nedají rozlišit
 - Global Routing Prefix
 - Subnet Prefix
 - Interface ID
- GRP and Subnet Prefix nemají pevně danou strukturu

Přidělování adres

- IANA přiděluje prefix Regionálním registrátorů délky /12 bitů
- RIPE NCC přiděluje lokálním registrům prefixy délky /32 bitů
- Lokální registr má k dispozici 16 bitů pro rozlišení svých zákazníků (65536 zákazníků)
- Délka zákaznického prefixu je standardně /48
 - přidělován většině připojených sítí (malé i velké instituce, domácí sítě a podobně).
 - Prefix délky 64 bitů přidělovat v případech, kdy je zcela jisté, že dotyčná instalace nebude vyžadovat podsítě.
 - Pokud bude zcela jisté, že se připojuje jen jediné zařízení, lze přidělit prefix délky
 128 bitů, tedy jedinou adresu.
- http://www.iana.org/assignments/ipv6-unicast-address-assignments

Ukázka alokace

Ukázka alokace

IPv6 Global Unicast Address

- Globální směrovací prefix (GRP) identifikuje globální směrovací koncovou síť. Je síti přidělen lokálním internetovým registrem.
- Identifikátor podsítě (Subnet ID) slouží k rozlišení jednotlivých podsítí v rámci dané sítě. Spravuje administrátor sítě.
- Identifikátor rozhraní (Interface ID) umožňuje v jedné podsíti rozlišit 18e10 různých rozhraní.

Interface ID

Privacy Extension

CGA

Adresní stavy

Tentative

- fáze DAD
- unicast komunikace je zakázaná
- z multicastu je povelen jen NA

Valid

- adresa je unikátní a může být používaná
- validní adresa je ve dvou stavech Preferred and Deprecated
 - Preferred adresa je používaná

 Deprecated – adresa je používaná v rámci stávajících spojení, ale žádná nová na tuto adresu nesmí být vytvářena

Invalid

- po uplynutí
 Valid Lifetime
- adresa nemůže být používána

Příklad

C:\Users\Wrathion>netsh interface ipv6 show addresses
Interface 3: Ethernet

```
Valid Life Pref. Life Address
Addr Type DAD State
Dhcp
          Preferred
                         1h4m42s
                                      30m57s 2001:67c:1220:80e:4a:2148:aa92:da50
Temporary Deprecated
                         3d26m48s
                                         0s 2001:67c:1220:80e:20ef:9b34:690e:7999
Temporary Deprecated
                         5d21m44s
                                         0s 2001:67c:1220:80e:28b7:4f72:c62e:1dce
Public
           Preferred 29d23h59m49s 6d23h59m49s 2001:67c:1220:80e:3574:1271:1faf:6c48
Temporary Preferred
                         6d19m12s
                                      16m45s 2001:67c:1220:80e:d872:9eed:c14:bd76
Temporary
          Deprecated
                         4d24m16s
                                          0s 2001:67c:1220:80e:fd62:a061:c1c7:cfee
Other
           Preferred
                         infinite
                                   infinite fe80::3574:1271:1faf:6c48%3
```

C:\Users\Wrathion>netsh interface ipv6 show dnsservers

Configuration for interface "Ethernet"

DNS servers configured through DHCP: 2001:67c:1220:809::93e5:92b

2001:67c:1220:808::93e5:92b

Register with which suffix: Primary only

C:\Users\Wrathion>netsh interface ipv6 show joins
Interface 3: Ethernet

Scope	References	Last	Address
0	0	Yes	ff01::1
0	0	Yes	ff02::1
0	1	Yes	ff02::c
0	1	Yes	ff02::fb
0	1	Yes	ff02::1:3
0	1	Yes	ff02::1:ff0e:7999
0	1	Yes	ff02::1:ff14:bd76
0	1	Yes	ff02::1:ff2e:1dce
0	1	Yes	ff02::1:ff92:da50
0	2	Yes	ff02::1:ffaf:6c48
0	1	Yes	ff02::1:ffc7:cfee

Realita s počtem adres

Link-Local Address

- Link-local address has specific FE80::/10
 - random 54 bits (usually zero) and Interface ID in EUI-64 format or created by Privacy extensions
- Mandatory address for communication between two IPv6 devices
- Automatically assigned as soon as IPv6 is enabled
- Also used for next-hop calculation in routing protocols
- Unique and valid only in one broadcast domain
 - Usage of zone to differentiate interface --> fe80::9abc%10/64

ULA adresy

a.k.a. "privátní" a.k.a <u>Unique Local IPv6 unicast Address</u>

ULA address generator

Pseudo-Random Global ID Algorithm:

- 1) Obtain the current time of day in 64-bit NTP format
- 2) Obtain EUI-64 identifier (from MAC for example) or any suitably unique ID
- 3) Concatenate the time (1) with the system ID (2)
- 4) Compute SHA-1 digest of (3) and use the least significant 40 bits as 15 Global ID
- https://www.sixxs.net/tools/grh/ula/

Skupinové adresy

Příklady MA

	Meaning		Scope
FF02::1	All nodes	X	Link-local
FF02::2	All routers	X	Link-local
FF02::9	All RIP routers	X	Link-local
FF02::1:FFXX:XXXX	Solicited-node	X	Link-local
FF05::101	All NTP servers		Site-local

Solicited-Node MA

IPv6 Address

- Solicited-node multicast address consists of prefix FF02::1:FF:/104 + lower 24 bits corresponding unicast or anycast address of the node
- Used by ICMPv6
 - ICMPv6 is encapsulated in IPv6 packet, Solicited-Node address is used as destination IPv6 address
- Address with link-local scope

Princip anycast

Formát pro rezervované výběrové adresy definuje
 RFC 2526, teoreticky může být i individuální adresa.

Reálný příklad anycastu

DNS kořenové servery https://www.iana.org/domains/root/servers

Domain Names

Overview

Root Zone Management

Overview

Root Database

Hint and Zone Files

Change Requests

Instructions & Guides

Root Servers

.INT Registry

.ARPA Registry

IDN Practices Repository

Root Key Signing Key (DNSSEC)

Reserved Domains

Root Servers

The authoritative name servers that serve the DNS root zone, commonly known as the "root servers", are a network of hundreds of servers in many countries around the world. They are configured in the DNS root zone as 13 named authorities, as follows.

List of Root Servers

HOSTNAME	IP ADDRESSES	MANAGER
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	199.9.14.201, 2001:500:200::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
I.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

Reálný příklad anycastu

DNS kořenové servery http://www.root-servers.org/

Poznámky k anycastu

Motivace k zavedení

- Přibližné rozkládání zátěže dotazy z určité části sítě se sejdou vždy na jednomz uzlů poskytujících výběrově adresovanou služu. Dochází k rozdělení sítě na spádové oblasti.
- Zrychlení doby odezvy díky kratší cestě mezi klientem a serverem.
- Lepší odolnost proti útokům typu DoS a DDoS útočníci jsou schopni "dosáhnout" jen na servery, v jejichž spádových obastech se sami nacházejí.
- Zmenšení počtu adres, na nichž je služba poskytována.

Problémy

- výběrová adresa je z rozsahu globální unikátních adres
- směrování
 - v rámci sítě
 - v rámci Internetu
- stavové informace služeb

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti
- 2) IPv6 PAKET
- 3) Adresování
 - Administrativní platnost adres
 - Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2

5) KOEXISTENCE IPV4 A IPV6

- přechodové mechanismy
- routing
- 6) Problémy, zhodnocení

ICMPv6

- IPv6 vyžaduje podobně jako IPv4 řídicí protokol pro zasílání informačních a chybových zpráv [RFC 2463]
- Součástí jsou i podpůrné protokoly
 - ICMP
 - IGMP
 - ARP

ICMP Informace o uzlu

- RFC4620: IPv6 Node Information Queries
- získání informací o uzlech v síti:
 - jméno uzlu (plně kvalifikované doménové jméno)
 - seznam IPv6 adres
 - seznam IPv4 adres
- Možné použití při objevování počítačů v síti
 - Bezpečnost (ping sweeping)?

```
informace o uzlu
139 dotaz na informace
140 odpověď s informacemi
```

Objevování sousedů

 Tento protokol řeší spoustu provozních otázek souvisejících s vrstvami L2 a L3

NDP zprávy

- Router Advertisment (RA)
 - periodické zprávy směrovače oznamující jeho existenci, specifické paramerty jako prefix linky, MTU
 - vysílány také jako odpovědi na SA
- Router Solicitation (RS)
 - požadavek hosta na zaslání RA
- Neighbor Solicitation (NS)
 - požadavek na získání linkové adresy, pro detekci duplikované adresy
- Neighbor Advertisment
 - odpověď na NS
 - při změně linkové adresy vyšle unsolicited NA
- Redirect přesměrování na jiný směrovač
- Inverzní objevování sousedů

NDP Ilustrace

RA ve Wireshark

```
Source
                                Destination
                                              Protocol Info
   9 fe80::c000:11ff:fe50:0
                                              ICMPv6 Router Advertisement from c2:00:11:50:00:00
                                ff02::1
# Frame 9: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface 0

⊞ Ethernet II, Src: c2:00:11:50:00:00 (c2:00:11:50:00:00), Dst: IPv6mcast_00:00:00:01 (33:33:00:00:00:01)

Internet Protocol Version 6, Src: fe80::c000:11ff:fe50:0 (fe80::c000:11ff:fe50:0), Dst: ff02::1 (ff02::1)

☐ Internet Control Message Protocol v6

   Type: Router Advertisement (134)
   code: 0
   Checksum: 0x809b [correct]
   Cur hop limit: 64

∃ Flags: 0x00

      0... = Managed address configuration: Not set
     .O.. .... = Other configuration: Not set
      .. 0. .... = Home Agent: Not set
      ... 0 0... = Prf (Default Router Preference): Medium (0)
     .... .0.. = Proxy: Not set
      .... .. 0. = Reserved: 0
    Router lifetime (s): 1800
    Reachable time (ms): 0
    Retrans timer (ms): 0
 ☐ ICMPv6 Option (Source link-layer address : c2:00:11:50:00:00)
     Type: Source link-layer address (1)
     Length: 1 (8 bytes)
     Link-layer address: c2:00:11:50:00:00 (c2:00:11:50:00:00)

☐ ICMPv6 Option (MTU: 1500)

     Type: MTU (5)
     Length: 1 (8 bytes)
     Reserved
     MTU: 1500

☐ ICMPv6 Option (Prefix information : 2001:db8:cafe:b0::/64)

     Type: Prefix information (3)
     Length: 4 (32 bytes)
     Prefix Length: 64

∃ Flag: 0xc0

       1... = On-link flag(L): Set
        .1.. ... = Autonomous address-configuration flag(A): Set
        .... = Router address flag(R): Not set
        ...0 0000 = Reserved: 0
     Valid Lifetime: 2592000
     Preferred Lifetime: 604800
      Reserved
      Prefix: 2001:db8:cafe:b0:: (2001:db8:cafe:b0::)
```

NDP a Solicited-Node adresy

NDP ve Wiresharku

Neighbor Cache

- Instead of ARP table, there is Neighbor Cache for IPv6 hosts
- Command
 - ndp -a on unix
 - netsh interface ipv6 show neighbors

```
Terminál
Soubor Upravit Zobrazit Terminál Nápověda
[ivesely@pcvesely /usr/home/ivesely]$
[ivesely@pcvesely /usr/home/ivesely]$ arp -a
pcdrahansky.fit.vutbr.cz (147.229.12.94) at 00:0f:fe:76:5d:25 on em0 [ethernet]
? (147.229.13.255) at (incomplete) on em0 [ethernet]
pcvesely.fit.vutbr.cz (147.229.13.223) at 00:1c:c0:59:20:b5 on em0 permanent [ethernet]
strade.fit.vutbr.cz (147.229.12.188) at 00:21:85:62:7a:09 on em0 [ethernet]
scminolta.fit.vutbr.cz (147.229.12.83) at 00:20:6b:38:6a:04 on em0 [ethernet]
bda-boz.fit.vutbr.cz (147.229.12.1) at 00:04:96:1d:34:20 on em0 [ethernet]
[ivesely@pcvesely /usr/home/ivesely]$ ndp -a
Neighbor
                                    Linklayer Address Netif Expire S Flags
ip6-boz.fit.vutbr.cz
                                    0:30:48:d6:ad:4b
                                                          em0 23h55m47s S R
fe80::230:48ff:fed6:ad4a%em0
                                    0:30:48:d6:ad:4b
                                                          em0 23h55m42s S R
2001:718:802:80c:21c:c0ff:fe59:20b5 0:1c:c0:59:20:b5
                                                          emO permanent R
fe80::21c:c0ff:fe59:20b5%em0
                              0:1c:c0:59:20:b5
                                                          em0 permanent R
[ivesely@pcvesely /usr/home/ivesely]$
```

Správa skupin pro multicast v IPv6

- Využívá ICMPv6
- Protokoly MLDv1 a MLDv2 (Multicast Listener Discovery)
- Typy oznamovacích zpráv:
 - Membership Query
 - Membership Report
 - Done Report
- Protokoly odvozeny od IGMPv2
- Směrovač posílá periodicky dotazy na zjištění MC skupin, které chce host přijímat.

Multicast Listener Discovery

FE80::209:5BFF:FE08:A674 FE80::250:8BFF:FE55:78DE **H1** H₂ Destination: Destination: FF3E:40:2001:DB8:C003:1109:1111:1111 FF3E:40:2001:DB8:C003:1109:1111:1111 ICMPv6 Type: 131 ICMPv6 Type: 131 FE80::207:85FF:FE80:692 H1 sends a REPORT for the group rtr-a H2 sends a REPORT for the group Source

Group:FF3E:40:2001:DB8:C003:1109:1111:1111

Multicast Listener Discovery

Group:FF3E:40:2001:DB8:C003:1109:1111:1111

MLDv1 ve Wiresharku

Připojení IP zařízení

- IPv4
 - DHCP
- IPv6
 - LL
 - DAD
 - RS RA
 - GL
 - DAD

Link local adresa

MLD Report

Globální adresa

Globální adresa

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti

2) IPv6 PAKET

- 3) Adresování
 - Administrativní platnost adres
 - Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2

5) KOEXISTENCE IPV4 A IPV6

- přechodové mechanismy
- routing
- 6) Problémy, zhodnocení

Dual Stack

 Dual stack is an integration method where a node has "implementation and connectivity" to both an IPv4 and IPv6 network.

Tunneling IPv6 in IPv4 (1)

 Tunneling is an integration method where an IPv6 packet is encapsulated within another protocol, such as IPv4. This method of encapsulation is IPv6in-IPv4 protocol 41:

- This includes a 20-byte IPv4 header with no options and an IPv6 header and payload
- Dual stack routers are necessary

IPv6 směrovací protokoly

Adaptace existujících protokolů pro IPv4

RIPng

 funkčně shodný s RIPv2 s malými odlišnostmi, podporuje jen IPv6, multicast FF02::9, UDP port 521, do směrovací tabulky se jako next-hop ukládá link-local adresa [RFC 2080]

OSPFv3

 funkčně shodný s OSPFv2, směrovače mají pořád identifikátor 32-bitový. Jiný formát OSPF paketů. Multicast na FF02::5 a FF02::6, podpora jen IPv6 [RFC 2740]

Multiprotocol BGP

• [RFC 2528, RFC 2545], nové atributy

Obsah

1) ÚVODNÍ INFORMACE

- Motivace
- Nové vlastnosti

2) IPv6 PAKET

- 3) Adresování
 - Administrativní platnost adres
 - Unicast, Multicast a Anycast adresy

4) Podpůrné protokoly pro IPv6

- ICMPv6
 - NDP, MLDv1, MLDv2

5) KOEXISTENCE IPV4 A IPV6

- přechodové mechanismy
- routing
- 6) PROBLÉMY, ZHODNOCENÍ

Zhodnocení

- Oddelovač v adrese : byla vhodná volba?
 - V URL http://[2001::8:800:200C:4713]:8080/index.html
- NDP se dá (nedá) zabezpečit pomocí IPSec
- Možnost zneužití ICMPv6 pro přenos "jiných" dat viry …
- Odolnost vůči reconnaissance útokům útoky téměř nemožné, velký rozsah adres.
- Zpracování IPv6 adresy: regulární výraz?

Router Advertisement flood

- Posílání velkého množství RA paketů
- thc-toolkit (http://thc.org/thc-ipv6/):

- Windows Vista/7/8, MAC zamrznout/spadnou
- Linux útok ustojí
- O problému se ví cca 3 roky

http://6lab.cz/article/ipv6-ra-flood-dos-attack-in-windows-8/

Bypassing RA guard

Rozšířené hlavičky!

http://6lab.cz/article/rogue-router-advertisement-attack/

Objective Design of IPv6

- Larger IP address space
- Better end-to-end connectivity
- 3. Ability for autoconfiguring devices
- 4. Simplified header structures
- 5. Better security (IPSEC ESP, AH)
- 6. Better quality of services
- 7. Better multicast and anycast abilities
- 8. Mobility features
- 9. Ease of administration
- 10. Smooth transition from IPv4

After Several Years

- 1. Larger IP address space
- 2. Better end-to-end connectivity
- 3. Ability for autoconfiguring devices
- 4. Simplified header structures
- 5. Better security (IPSEC ESP, AH)
- 6. Better quality of services
- 7. Better multicast and anycast abilities
- 8. Mobility features
- 9. Ease of administration
- 10. Smooth transition from IPv4

Statistiky

- Brno University of Technology is leading IPv6 in CZ
 - http://www.zive.cz/clanky/pet-internetovych-zebricku-ze-kterychcechum-naroste-ego/sc-3-a-172279/default.aspx
 - http://6lab.cz/live-statistics/ipv6-brno-university-of-technology/

Studijní materiály

- M. Grégr: USER ACCOUNTING IN NEXT GENERATION NET-WORKS, http://www.fit.vutbr.cz/study/DP/PD.php?id=448&file=t
- Kurose J.F., Ross K.W.: Computer Networking, A Top-Down Approach Featuring the Internet. Addison-Wesley, 2003.
- Puzmanova, R.: Routing and Switching, Time of Convergence?
 Addison-Wesley, 2003.
- Jeff Doyle, Jennifer De Haven-Carroll: Routing TCP/IP. Cisco Press 2006.
- Pavel Satrapa: IPv6, cz.nic, 2008, <u>http://knihy.nic.cz/files/nic/edice/pavel_satrapa_ipv6_2008.pdf</u>