

Hardware/Software Codesign

Vestavěný systém pro filtraci a segmentaci obrazu

2. ledna 2014

Autoři: Pavel Macenauer, xmacen02

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

Analýza algoritmu z programu gprof	2
Rozdělení aplikace mezi software a hardware	3
Využití adresového prostoru sdílené paměti	3
Vlastnosti obvodu uvnitř FPGA	4
Porovnání softwarové a rozdělené implementace	4
Shrnutí	4

Analýza algoritmu z programu gprof

Čas [%]	Jméno funkce
58,97	median
11,5	gen_pixel
8,67	clip_window
5,77	shift_window
4,94	buffer
4,45	pixel_processing
2,69	system_input
1,6	main
0,67	thresholding
0,32	histogram_clean
0,23	otsu
0,19	update_base_pos

Tabulka 1: Podíl celkového času běhu programu pro jednotlivé funkce

Obrázek 1: Podíl celkového času běhu programu pro jednotlivé funkce

Rozdělení aplikace mezi software a hardware

Původní funkce	Přesunuto na HW
na MCU	
otsu	NE
median	ANO
buffer	ANO
clip_window	ANO
shift_window	ANO
system_input	ANO
histogram_clean	NE
thresholding	ANO
print_results	NE
pixel_processing	ANO
update_base_pos	ANO, realizováno komponentou
	Generátor pixelů
gen_pixel	ANO, realizováno komponentou
	Generátor pixelů

Tabulka 2: Rozdělení aplikace mezi software a hardware

Využití adresového prostoru sdílené paměti

Adresa	Jméno	Poznámka	MCU
0	MCU_DATA_HISTO	První položka histogramu	vstup
1	MCU_DATA_HIST1		vstup
2	MCU_DATA_HIST2		vstup
3	MCU_DATA_HIST3		vstup
4	MCU_DATA_HIST4		vstup
5	MCU_DATA_HIST5		vstup
6	MCU_DATA_HIST6		vstup
7	MCU_DATA_HIST7	Poslední položka histo-	vstup
		gramu	
8	MCU_DATA_THRESHOLD	MCU zde ukládá nově vy-	výstup
		počtený práh, FPGA si ho	
		načítá	
9	MCU_FLAG_OTSU_START	Příznak, který určuje, že se	vstup
		má vypočíst nová hodnota	
		prahu	

Tabulka 3: Využití adresového prostoru sdílené paměti

Vlastnosti obvodu uvnitř FPGA

- Inicializační interval smyčky (PIPELINE_INIT_INTERVAL) 4
- Latence obvodu 4 (při periodě 40 ns)

Number of Slice Flip	394 out of 1,536	25%
Flops		
Number of 4 input	914 out of 1,536	59%
LUTs		
Number of occupied	610 out of 768	79%
Slices		
Total Number of 4 in-	1,002 out of 1,536	65%
put LUTs		
Number used as logic	914	
Number used as a	88	
route-thru		

Tabulka 4: Využití a rozdělení obvodu

Porovnání softwarové a rozdělené implementace

	Software	Rozdělená aplikace
Doba zpracování pi-	182	0,16
$xelu [\mu s]$		
Zpracovaných pixelů	5494	6250000
za sekundu [px/s]		
Zrychlení	1x	1137x

Tabulka 5: Porovnání čistě softwarové a rozdělené aplikace mezi hardware a software

Shrnutí

Ukázalo se, že čistě softwarová implementace je v praxi nepoužitelná, protože řešení vygeneruje 0,07 framů za sekundu (fps) při rozlišení 320x240. Při použití FPGA (hardwaru) se aplikace výrazně zrychlila a byla schopná vygenerovat 81 fps, což splňuje požadavek minimálně 60 fps.

Pravděpodobně by šlo přesunout i výpočet prahu metodou otsu z MCU na FPGA, ale výsledek by to mělo pouze na výslednou kvalitu obrazu, protože bychom byli schopni aktualizovat práh častěji. Není to tak potřeba a může probíhat víceméně asynchronně na MCU.

Úzkým hrdlem mi přišlo především omezení počtu zápisu a čtení do/ze sdílené paměti, kdy se musely redukovat veškeré pomocné příznaky na minimum. Pro složitější algoritmy zpracování obrazu, využívající více zdrojů, by se tak musel výrazně zvýšit inicializační interval smyčky.