Пояснительная записка

Вычислительные техники решения задач линейного программирования в частично-целочисленной постановке и приемы работы с решателем SCIP

Подвойский А.О.

Содержание

1	Кл	ючевые термины и определения	2				
2	Клі	ючевые компоненты платформы SCIP	3				
	2.1	Решатель SCIP. Общие сведения	3				
		2.1.1 Установка решателя SCIP	3				
		2.1.2 Приемы работы с решателем SCIP в интерактивной оболочке scip	3				
		2.1.3 Приемы работы с решателем SCIP через обертку PySCIPOpt	3				
	2.2	Декомпозиционный решатель GCG. Общие сведения	3				
		2.2.1 Установка решетеля GCG	4				
		2.2.2 Приемы работы с решателем GCG в интерактивной оболочке gcg	4				
		2.2.3 Приемы работы с решателем GCG через обертку PyGCGOpt	4				
3	Вы	явленные баги SCIP и тонкости процедуры поиска решения	4				
	3.1	Недопустимое решение для релаксированной постановки задачи					
	3.2	Неединственность релаксированного решения					
	3.3	Замечание о стабильности работы решателя SCIP на различных операционных си-					
		стемах	5				
4	Прі	иемы поиска решения	5				
	4.1	Прием фиксации бинарно-целочисленных переменных в релаксированном решении					
	4.2	Прием подавления подгруппы первичных эвристик низкой эффективности	6				
	4.3	Прием подбора порога бинаризации для бинарных переменных в релаксированном					
		решении	7				
5	Me	тоды машинного обучения в задачах комбинаторной оптимизации	9				
	5.1	Постановка задачи	9				
	5.2	Концепт матрицы признакового описания бинарных и целочисленных переменных					
	5.3	Стратегии решения задачи	10				
		5.3.1 Стратегия №1. Обнаружение аномалий	10				
		5.3.2 Стратегия №2. Бинарная классификация со слабо выраженным миноритар-					
		ным классом	12				
	5.4	Трансфер выявленного паттерна	12				

6	Опі	исание	вычислительных экспериментов на сценариях группы ИКП	14
	6.1	Поиск	х решения на сценариях <i>без</i> бинарных переменных.	
		Метак	онфигурации SUH, FZBIVSUHPB и ансамбль детекторов аномалий	15
		6.1.1	Сценарий F398266В без бинарных переменных	15
		6.1.2	Сценарий 50197DF7 без бинарных переменных	16
		6.1.3	Сценарий 7FAC4231 без бинарных переменных	17
		6.1.4	Сценарий СА485А55 без бинарных переменных	18
		6.1.5	Сценарий 276 без бинарных переменных	20
		6.1.6	Сценарий 337 без бинарных переменных	22
		6.1.7	Сценарий 13D686AB без бинарных переменных	22
		6.1.8	Сценарий А78СВЕАД без бинарных переменных	23
		6.1.9	Сценарий 496 (hard) без бинарных переменных	25
		6.1.10	Сценарий 514 (hard) без бинарных переменных	26
	6.2	Поиск	решения на сценариях c бинарными переменными.	
		Метак	конфигурация FZBIVSUHPB	27
		6.2.1	Сценарий A78CBEAD с бинарными переменными	28
		6.2.2	Сценарий 7FAC4231 с бинарными переменными	29
		6.2.3	Сценарий 50197DF7 с бинарными переменными	31
		6.2.4	Сценарий F398266B с бинарными переменными	32
		6.2.5	Сценарий 337 с бинарными переменными	34
	6.3	Поиск	решения на базе методов машинного и глубокого обучения	40
		6.3.1	Простое декартово произведение сценариев $\it c$ бинарными переменными	40
7	Опі	исание	вычислительных экспериментов на сценариях группы МВО	40
8	Оп	исание	вычислительных экспериментов	
	на	сценар	иях MIPLIB 2017	40
	8.1	Сцена	рии со статусом «open»	40
		8.1.1	Сценарий DLR2	40
		8.1.2	Сценарий CVRPA-N64K9VRPI	40
	8.2	Сцена	рии со статусом «hard»	41
		8.2.1	Сценарий CRYPTANALYSISKB128N50BJ14	41
	8.3	Сцена	рии со статусом «easy»	41
		8.3.1	Сценарий NEOS-4332801-seret	41
Cı	писо	к иллк	остраций	42
Cı	писо	к табл	иц	43
Cı	писо	к лите	ратуры	43

1. Ключевые термины и определения

Cиенарий — это математическая постановка задачи, описанная в терманах математического программирования (например, линейного)

Сценарий обучающего поднабора — это сценарий из коллекции сценариев, которые используются на обучающей фазе алгоритма машинного обучения

Сценарий тестового поднабора— это сценарий, который используется для построения прогноза с помощью алгоритма машинного обучения

2. Ключевые компоненты платформы SCIP

2.1. Решатель SCIP. Общие сведения

SCIP (Solving Constraint Integer Programs) https://www.scipopt.org/ – решатель, предназначенный для решения задач линейного и нелинейного программирования в частично-целочисленной постановке.

2.1.1. Установка решателя SCIP

Pешатель проще всего установить вместе с оберткой PySCIPOpt https://github.com/scipopt/ PySCIPOpt с помощью менеджеров pip или conda

```
$ pip install pyscipopt
$ conda install -c conda-forge pyscipopt
```

2.1.2. Приемы работы с решателем SCIP в интерактивной оболочке scip

2.1.3. Приемы работы с решателем SCIP через обертку PySCIPOpt

Работа над задачей начинается с создания пустого экземпляра модели

```
import pyscipopt
model = pyscipopt.Model()
```

На созданном экземпляре можно вызывать методы чтения модели, конфигурационного файла параметров решателя и т.д.

```
model.readProblem("./problem.lp")
model.readParams("./scip.set")
...
```

2.2. Декомпозиционный решатель GCG. Общие сведения

GCG https://gcg.or.rwth-aachen.de/#about – это универсальный декомпозиционный решатель для задач линейного программирования в частично-целочисленной постановке, расширающий возможности базового решателя SCIP.

Он выявляет структуры в модели, к которым могут быть применены *переформулировка Данцига-*Вольфе или декомпозиция Бендера.

Модфицированная постановка задачи (после переформулировки Данцига-Вольфе) решается с помощью обобщения метода ветвей-и-границ, а именно с помощью метода ветвей-штрафовсекущих (branch-price-and-cut), включающего различные механизмы поиска решения – превичные эвристики, стратегии ветвления, стратегии стабилизации, стратегии назначения штрафов и пр.

2.2.1. Установка решетеля GCG

Проще всего решатель установить вместе с обреткой PyGCGOpt https://github.com/scipopt/ PyGCGOpt с помощью мендежера пакетов conda

```
$ conda install -c conda-forge pygcgopt
```

2.2.2. Приемы работы с решателем GCG в интерактивной оболочке gcg

Прочитать постановку задачи

```
GCG> read problem.lp
```

Запустить процедуру редуцированния размерности

```
GCG> presolve
```

Запустить процедуру поиска структур в матрице ограничений

```
GCG> detect
```

Записать постановку задачи сниженной размерности для gnuplot

```
GCG> write problem problem_reduced.gp
```

Фрагмент др-файла

```
set encoding utf8
set terminal pdf
set output "problem_reduced.pdf"
set xrange [-1:506441]
set yrange[347788:-1]
set object 1 rect from 0,0 to 506441,183384 fc rgb "#1340C7"
set object 3 rect from 163304,183384 to 163306,183385 fc rgb "#718CDB"
set object 4 rect from 163306,183385 to 163308,183386 fc rgb "#718CDB"
set object 5 rect from 163308,183386 to 163310,183387 fc rgb "#718CDB"
set object 6 rect from 163310,183387 to 163312,183388 fc rgb "#718CDB"
set object 7 rect from 163312,183388 to 163314,183389 fc rgb "#718CDB"
set object 8 rect from 163314,183389 to 163316,183390 fc rgb "#718CDB"
set object 10 rect from 163318,183391 to 163320,183392 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
```

Создать pdf-файл декомпозиции задачи после шага снижения размерности

```
$ gnuplot problem_reduced.gp
```

2.2.3. Приемы работы с решателем GCG через обертку PyGCGOpt

3. Выявленные баги SCIP и тонкости процедуры поиска решения

3.1. Недопустимое решение для релаксированной постановки задачи

По состоянию на 18.06.2022 г. решатель SCIP версии 8.0.0 с оберткой PySCIPOpt версий 4.0.0 и 4.2.0 для операционной системы Windows 10 релаксированную постановку задачи (т.е. при снятых ограничениях на целочисленность переменных) оценивает как неспособную привести к допустимому решению.

SCIP версии 7.0.3 (PySCIPOpt 3.4.0) как на операционной системе Windows 10, так и на Unix-подобных операционных системах (в частности, MacOS Monterey 12.1 и Linux Centos 7) решает задачу в релаксированной постановке корректно.

3.2. Неединственность релаксированного решения

Если эвристические приемы строятся на базе релаксированного решения задачи, важно помнить, что релаксированные решения, полученные с помощью различных решателей с точки зрения распределения значений переменных могут существенно различаться¹, не смотря на то, что во всех случах зазор будет нулевым и целевая функция будет имееть одно и тоже значение (с оговоркой на допуск точности решателя).

3.3. Замечание о стабильности работы решателя SCIP на различных операционных системах

- Вычислительные эксперименты проводились на трех версиях решателя SCIP (7.0.0, 7.0.3, 8.0.0) и трех платформах: Windows 10, MacOS (Monterey 12), Linux (Centos 7). Разброс времени поиска решения для каждой конфигурации решателя оценивается минимум по 3 запускам сценария
- На текущий момент наиболее стабильные и наиболее адекватные результаты получаются
 - -для OC Linux (Centos 7) и OC MacOS (Monterey12) на решателе SCIP версии 7.0.3 (обертка PySCIPOpt 3.4.0) и платформе Ecole версии 0.7.3 , собранных для однопоточной реализации
 - -для OC Windows 10 на решателе SCIP версии 8.0.0 (обертка PySCIPOpt 4.0.0), собранном для однопоточной реализации
- Последняя доступная версия решателя SCIP 8.0.0 (PySCIPOpt 4.1.0) на MacOS (Monterey 12.1) и Linux (Centos 7) при тех же настройках, что и для SCIP версии 7.0.3, как правило, работает значительно медленнее (2.5-2.85 раза) и в большинстве случаев либо не успевает найти решение за отведенное время, либо «просаживает» целевую функцию

4. Приемы поиска решения

4.1. Прием фиксации бинарно-целочисленных переменных в релаксированном решении

Часто фиксация целочисленных переменных 2 в релаксированном решении приводит к приемлемому допустимому целочисленному решению, которое потом можно использовать как «теплый старат» или как базовое решение для других схем фиксации.

```
ZERO = 0.0
...
relax_sol: pd.Series = read_relax_sol(path_to_relax_sol)

model = pyscipopt.Model()
model.readProblem(path_to_lp_file)
model.readParams(path_to_set_file)
```

 $^{^{1}}$ Потому как гиперплоскость целевой функции может касаться политопа не в вершине, а по грани

²Вообще говоря, фиксировать можно не только бинарные и целочисленные переменные

```
all_vars: t.List[pyscipopt.scip.Variable] = model.getVars()
bin_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, BINARY)
int_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, INTEGER)
all_zero_bin_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
 sub_group_vars=bin_vars,
all_zero_int_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
 sub_group_vars=int_vars,
for var in all_zero_bin_vars + all_zero_int_vars:
 model.fixVar(var, ZERO)
model.optimize()
. . .
```

4.2. Прием подавления подгруппы первичных эвристик низкой эффективности

В некоторых случаях отдельные первичные эвристики могут оказаться не способными справится со своей задачей, не оказывая никакого влияния на процедуру поиска решения, и все же потреблять предоставленные ресурсы.

Такие эвристики – условимся их называть первичными эвристиками низкой эффективности (ПЭНЭ) – можно выявить путем анализа статистической сводки stat-файла в разделе Primal Heuristics

Фрагмент файла статистической сводки 337 bin default.stat

Primal Heuristics	:	ExecTime	SetupTime	Calls	Found	Best	
LP solutions	:	0.00	-	-	0	0	
relax solutions	:	0.00	-	-	0	0	
pseudo solution	.s :	0.00	-	-	0	0	
conflictdiving	:	0.00	0.00	0	0	0	
crossover	:	0.00	0.00	0	0	0	
dins	:	0.00	0.00	0	0	0	
distributiondiv	in:	0.00	0.00	0	0	0	
dualval	:	0.00	0.00	0	0	0	
farkasdiving	:	2032.89	0.00	1	0	0 #	<- NB
feaspump	:	882.12	0.00	1	0	O #	<- NB
fixandinfer	:	0.00	0.00	0	0	0	
intdiving	:	0.00	0.00	0	0	0	
intshifting	:	52.99	0.00	1	1	1	

В данном случае ПЭНЭ являются farkasdiving и feaspump. Чтобы подавить эти эвристики при следующем запуске SCIP, достаточно включить следующие строки в конфигурационный файл scip.set³

scip.set

```
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
...
```

Доступ к статистической сводке можно получить либо в сессии SCIP, либо через одну из оберток над решателем (например, с помощью PySCIPOpt)

Фрагмент сессии scip. Получение статистической сводки

```
...
SCIP> read file.lp
SCIP> opt
SCIP> display stat
```

Получение статистической сводки через обертку PySCIPOpt

```
import pyscipopt

model = pyscipopt.Model()
model.readProblem("...")
model.readParams("...")
model.optimize()

model.printStatistics()
```

4.3. Прием подбора порога бинаризации для бинарных переменных в релаксированном решении

Условимся ϕ иксацией называть стратегию инициализации подгруппы переменных x_k (вещественных, бинарных или целочисленных), значения которых задаются на основе каких-либо эврестических соображений, например, касающихся специальных свойств матрицы ограничений, и способных в результате привести к такой постановке задачи, которую, используя механизмы первичных эвристик, сепараторов, пропагаторов и пр. можно развить в ϕ 0 во делочисленное решение.

Базовая идея построения ϕ иксации на бинарных переменных заключается в том, чтобы значения бинарных переменных в релаксированном решении ${rx_k^{(b)}}_{k=1,\dots}$ интерпретировать как степень уверенности решателя в том, что рассматриваемую бинарную переменную можно выставить в единицу.

Если значение k-ой бинарной переменной ${}^rx_k^{(b)}$ превосходит некоторый $nopor\ \theta$, то переменная выставляется в единицу, в противном случае – в ноль. Порог подбирается итерационно, начиная с некоторого нижнего значения θ_l (по умолчанию $\theta_l=0$), увеличивая текущее значение порога на величину шага $\Delta\theta$ и заканчивая верхним значением порога θ_u (по умолчанию $\theta_u=1$).

 $^{^3}$ При запуске интерактивной сесии через утилиту командной строки scip, решатель ищет этот файл в текущей директории и, если находит, автоматически вычитывает. При работе через PySCIPOpt требуется явно передавать путь до файла методу модели readParams()

 $^{^4}$ Верхний левый индекс «r» указывает на релаксированное значение, а верхний правый «(b)» – на то, что речь идет о бинарной переменной

Для практических целей достаточно остановится на наименьшем значении порога θ , который отвечает такой фиксации, которую решатель SCIP не отклоняет как неспособную привести к допустимому целочисленному решению.

Фрагмент лога решателя SCIP для случая фиксации, которую невозможно развить в допустимое целочисленное решение

После того как порог θ подобран, бинарные переменные разбиваются на две подгруппы: подгруппу бинарных переменных, выставленных в ноль $\{x_k^{(b_0)}\}$, и подгруппу бинарных переменных, выставленных в единицу $\{x_k^{(b_1)}\}$. Долю бинарных переменных, выставленных в ноль обозначим через δ_{b_0} , долю бинарных переменных, выставленных в единицу – через δ_{b_1} , а целевую функцию, найденную при заданных долях – через $f_{\theta}(\delta_{b_0}, \delta_{b_1})$.

В результате получаем исследовательский инструмент, который дает возможность управлять решением через подбор долей δ_{b_0} и δ_{b_1} при найденном пороге θ . Часто оказывается эффективным прием управления решением через подбор доли нулевых бинарных переменных δ_{b_0} .

Целевая функция, вычисленная при единичной доле нулевых бинарных переменных $f_{\theta}(\delta_{b_0}=1)$, как правило, значительно уступает целевой функции релаксированного решения f_r . Но тем неменее это решение может быть улучшено, сокращением доли δ_{b_0} (см. рис. 1 и рис. 2).

Рис. 1. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий a78cbead

Как видно из графиков, на кривой изменения верхней границы решения существует точка с наименьшим значением целевой функции $f_{\theta}(\delta_{b_0})$ допустимого целочисленного решения. Эта точка и будет «оптимальной» для рассматриваемого сценария.

Прием подавления подгруппы первичных эвристик низкой эффективности (порог: 0.05) Общее количество переменных: 859230 Количество целочисленных переменных: 173622 Количество бинарных переменных: 155 Количество ограничений: 624637 Верхняя граница (Primal Bound) 4.0479e+10 (CBC+DOH) Нижняя граница (Dual Bound) $\frac{1}{n}\sum_{k=1}^{n}\tau_{k}=25.35$, мин 3.0294e+10 (SCIP+SUH) 3.00 20.0 $|primal_k - dual_k|$ $\sum_{k=1} \frac{|primal_k - aual_k|}{\min(|primal_k| - |dual_k|)} = 3.166\%$ 2.95 0.45 0.50 0.55 0.60 0.65

Рис. 2. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий **337**

5. Методы машинного обучения в задачах комбинаторной оптимизации

5.1. Постановка задачи

Цель: Разработать процедуру построения частично-заданного решения на фиксациях для сценариев с матрицей ограничений произольной структуры.

Вход: произвольная матрица ограничений⁵.

Выход: набор бинарных и целочисленных переменных, фиксация которых в ноль с высокой вероятностью приведет к допустимому целочисленному решению.

База: частично-заданное решение, построенное на фиксациях нулевых бинарных и целочисленных переменных в релаксированном решении.

5.2. Концепт матрицы признакового описания бинарных и целочисленных переменных

В качестве признаков бинарно-целочисленных переменных предлагается использовать:

- 1. 6ажсный признак Значение переменной x_i в «усредненном» релаксированном решении 6 ,
- 2. Модифицированную Z-оценку на «усредненном» релаксированном решении,
- 3. $\underline{\textit{бесполезный признак}}$ Дробную часть значения переменной x_i в «усредненном» релаксированном решении,
- 4. *важный признак* Пороги бинаризации на «усредненном» релаксированном решении (каждый порог это отдельный принак),
- 5. 6ажный признак Число ограничений n_i , в которые входит рассматриваемая переменная x_i ,
- 6. важный признак Число положительных n_i^+ и отрицательных n_i^- коэффициентов в ограничениях, ассоциированных с рассматриваемой переменной x_i ,

 $^{^{5}}$ Предполагается, что матрица ограничений имеет низкую меру обусловленности

⁶Задача линейного программирования в релаксированной постановке решается с использованием различных методов (двойственный симплекс-метод, метод внутренней точки и т.д.), а затем полученные решения усредняются

- 7. Булев маркер удаления переменной x_i после шага снижения размерности задачи,
- 8. важный признак Коэффицент c_i при переменной x_i в целевой функции $\mathbf{c}^T \mathbf{x}$,
- 9. $\frac{\textit{бесполезный признак}}{\textit{признак}}$ Вероятность того, что i-ая бинарная или целочисленная переменная x_i будет выставлена в 1 (индекс «-i» означает без учета i-ой переменной)

$$\mathbf{P}(x_i = 1) = \sigma\left(\frac{1}{t} (\mathbf{c}^T \mathbf{x})_{-i}\right),\,$$

где σ — логистический сигмоид, t — «температура» (чем выше температура, тем случайнее выход), ${\bf c}$ — вектор коэффициентов целевой функции, ${\bf x}$ — вектор значений переменных в релаксированном решении.

10. Важность x_i переменной с точки зрения пресолверов.

5.3. Стратегии решения задачи

5.3.1. Стратегия №1. Обнаружение аномалий

Задачу построения частично-заданного решения на фиксациях предлагается свести к задаче обнаружения аномалий в данных. Бинарные и целочисленные переменные, которые как ожидается примут нулевые значения в допустимом целочисленном решении будем считать «штатным» режимом, а бинарные и целочисленные переменные, которые как ожидается примут ненулевые значения в допустимом целочисленном решении — аномалиями. Такие «аномальные» экзмепляры остаются без рекомендуемого значения для фиксации, а оставшиеся нулевые «штатные» бинарные и целочисленные переменные фиксируются в ноль и на этом процедура построения частично-заданного решения считается завершенной.

Для повышения надежности прогноза предлагается использовать ансамбль детекторов аномалий. Решение о фиксации бинарной или целочисленной переменной в ноль принимается на основании большинства голосов ансамбля детекторов.

Набор данных представляет собой неупорядоченную коллекцию матриц признакового описания, ассоциированных с соответствующими lp/mps-файлами математической постановки задачи (условимся называть их cuenapusmu).

Ансамбль детекторов аномалий обучается по роторной схеме:

- \circ На i-ой итерации все mampuyы npuзнакового описания (всего в наборе S матриц/сценариев) кроме i-ой матрицы используются для обучения детекторов, а на i-ой матрице признакового описания строится прогноз аномальных экземпляров, которые помечаются как «-1». В результате получается коллекция бинарных и целочисленных переменных, помеченных либо как «0», либо как «-1». Построенное решение сравнивается с допустимым целочисленным решением с помощью различных метрик качества (параметрическое гармоническое среднее, каппа Коэна, коэффициент корреляции Метьюса и т.д.). Вычисленные для i-ой матрицы метрики качества и построенное частично-заданное решение на фиксациях сохраняются в директории результатов,
- Затем описанный шаг повторяется для оставшихся матриц признакового описания объекта.
 По окончании процедуры для каждого сценария:
- о будут вычислены метрики качества,

 $^{^{7}}$ Идея построения признака основана на способе вычисления вероятности единичного выхода нейрона в машинах Больцмана [2, стр. 653]

о будет построенно частично-заданное решение на фиксациях,

Полученные частично-заданные решения на фиксациях подаются на вход решателю SCIP. Если SCIP удалось найти решение, обозначаемое как $s_{\rm ML}$, то оно сравнивается с решением $s_{\rm FZB}$, полученным с помощью метаконфигурации FZBIVSUHPB (см. подраздел 6.2), по времени работы и по значению верхней гранцы решения.

Замечание

Как правило, в задачах обнаружения аномалий не выполняют подбор гиперпараметров детектора, но в данном случае кажется полезным изучить поведение детектора хотя бы в зависимости от параметра контаминации. Дело в том, что на практике эффективность детектора может существенно изменяться в зависимости от значений управляющих параметров

На всех сценариях группы ИКП (см. раздел 6) обнаруживается серьезный дисбаланс экземпляров положительного («аномалии», ненулевые значения переменных) и отрицательного («штатные» экземпляры, нулевые значения переменных) классов. Ожидается, что эффективность модели машинного обучения главным образом будет зависеть от способности модели выявлять аномальные экземплеры.

Действительно, *ошибка первого рода* (ложное срабатывание, т.е. когда отрицательный «штатный» экземпляр принимается за «аномальный» положительный) приводит к тому, что нулевая переменная *не будет* зафиксирована в ноль в частично-заданном решении, что с высокой вероятностью снизит производительность решателя SCIP.

Тогда как *ошибка второго рода* (пропуск объекта, т.е. когда «аномальный» положительный экземпляр принимается за «штатный» отрицательный) приводит к тому, что ненулевая переменная в частично-заданном решении будет зафиксирована в ноль. Это сделает частично-заданное решение не способным развиться в допустимое целочисленное, что значительно хуже.

Таким образом, кажется разумным сосредоточить усилия на том, чтобы минимизировать ошибку второго рода, и в результате свести к минимуму число пропусков аномалий.

Проще всего оценить качество модели с учетом большего влияния ошибок второго рода с помощью F_{β} -меры при значениях параметра $\beta>1$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \text{ precision} + \text{recall}},$$

где precision – точность, recall – полнота.

Замечание

Провести анализ приема подбора порога бинаризации. И проработать схему подбора гиперпараметров детекторов

Анализ производительности методов обнаружения аномалий Рекомендуемые значения некотрых гиперпараметров для детекторов некоторых семейств звучат следующим образом [3]:

- \circ для KNN (k Nearest Neighbors⁸) и LOF (Local Outlier Factor): $k = \max(10; 0.03 |D|)$, где |D|
 - число экземпляров в наборе данных,
- \circ для HBOS (Histogram-based Outlier Score): n_bins = $\sqrt{|D|}$,
- о для IForest (Isolation Forest): число деревьев n_estimators=100 и число экземпляров на дерево max_samples=256,

 $^{^{8}}$ Расстояние от k-ого ближайшего соседа рассматривается как мера аномальности экземпляра

- \circ для CBLOF (Clustering-Based Local Outlier Factor): $\alpha = 0.90, \beta = 5$ и k = 10,
- \circ для OCSVM (One-Class Support Vector Machines): ядро RFB($\nu=0.5, \gamma=1/m$), где m число признаков в наборе данных D.

Перечисленные ниже детекторы показали крайне низкую производительность на сценариях группы ИКП:

- o KNN,
- Feature Bagging,
- ABOD (Angle-Based Outlier Detection using approximation)/FastABOD,
- LOCI (Fast outlier detection using the local correlation integral),
- CBLOF (Clustering-Based Local Outlier Factor): достаточно быстрый, но результаты отвратительные (очень низкие значения ключевых метрик качества),
- XGBOOD⁹ (Extreme Boosting Based Outlier Detection): безумно медленный ¹⁰,
- R-Graph (Outlier detection by R-graph).

Главный детектор аномалий предлагается строить с помощью arperatopa $SUOD^{11}$ (Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection) на следующих базовых детекторах:

- ECOD (Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions),
- o COPOD (Copula-Based Outlier Detection),
- IForest (Isolation Forest),
- HBOS (Histogram-based Outlier Score).

5.3.2. Стратегия №2. Бинарная классификация со слабо выраженным миноритарным классом

Задачу построения частично-заданного решения на фиксациях предлагатеся свести к задаче бинарной классификации со слабо выраженным миноритарным классом (данные с сильным дисбалансом).

Раздел в разработке ...

5.4. Трансфер выявленного паттерна

Условимся трансфером выявленного паттерна (или просто трансфером паттерна) называть являение, состоящее в том, что модель, обученная на сценариях одной группы (сценарии обучающего поднабора), оказывается способной строить корректные прогнозы на сценариях другой группы (сценарии тестового поднабора), обладающих четкими дискриминирующими атрибутами (структурные особенности матрицы ограничений и пр.), которые позволяют с высокой степенью уверенности отделять сценарии обучающего поднабора от сценариев тестового поднабора.

Другими словами, в отличие от классической постановки машинного обучения — в которой экземпляры обучающего и тестового поднаборов данных должны быть похожи друг на друга — в данном случае модель машинного обучения предлагается обучать и тестировать на сценариях, которые значимо отличаются друг от друга по каким-то ключевым аттрибутам.

 $^{^9{}m Tpe}$ бует разметки

 $^{^{10}{\}rm B}$ https://github.com/yzhao062/pyod/issues/152 рекомендуется использовать SUOD

¹¹https://www.andrew.cmu.edu/user/yuezhao2/papers/21-mlsys-suod.pdf

Исследование вопроса о трансфере паттерна начнем с рассмотрения простого сценария группы СОП tmpfvpqodxw.lp https://disk.yandex.ru/d/K7bvClpltotqlg, а обучать модель машинного обучения будем в соответствие со стратегией №1 (стр. 10).

В случае сценария tmpfvpqodxw.lp для простоты можно ограничиться рассмотрением только детектора HBOS (без агрегации прогнозов других детекторов с помощью обертки SUOD) и обучать его на сценарии группы ИКП f398266b_bin.lp (см. раздел 6.2.4).

Для того чтобы использовать не ансамбль детекторов аномалий, а лишь какой-то конкретный детектор, достаточно в конфигурационном файле main_config.yaml передать полю use детектора значение False

main_config.yaml. Использовать только детектор HBOS

```
detector_config:
 # Строит ансамбль детекторов аномалий
 SUOD: # Scalable Unsupervised Outlier Detection https://www.andrew.cmu.edu/user/yuezhao2/
   papers/21-mlsys-suod.pdf
   use: !!bool False # <--- NB
    # Допустимые значения 'combination': average, maximization
   combination: !!str average # стратегия агрегации прогнозов ансамбля детектеров
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
   a (0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
   verbose: !!bool True # флаг подробного вывода информации о построении модели
  # Перечень детекторов для SUOD-ансамбля. Если SUOD.use=True, то перечисленные ниже детекторы,
   у которых
  # ampu6ym DETECTOR.use=True, будут добавлены в список SUDD().base_estimators.
  # Ecnu SUOD.use=False, то поиск аномалий будет выполняться с помощью одного из приведенных ниж
    е детекторов,
  # у которого ampuбут DETECTOR.use=True
 COPOD: # Copula Based Outlier Detector
   use: !!bool False # <--- NB
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
   a(0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 ECOD: # Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions
   use: !!bool False # <--- NB
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
   a (0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 IForest: # Wrapper of scikit-learn Isolation Forest with more functionalities
   use: !!bool False # <--- NB
   n_estimators: !!int 250 # число деревьев принятния решений в лесе
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
   a (0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 HBOS: # Histogram-based outlier detection
   use: !!bool True # <--- NB
   n_bins: !!int 10 # число бинов для построения гистограммы
   alpha: !!float 0.05 # параметр регуляризации
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a (0.0; 0.5)
```

Приведенный на рис. 3 график показывает, что

- настройки решателя SCIP, ответственные за выбор переменных при ветвлении ¹² и разрешении конфликтов ¹³, а также прием подавления подгруппы первичных эвристик низкой эффективности помогают снизить временные издержки при незначительном ухудшении целевой функции (зеленая кривая) относительно решения, полученного с помощью решателя SCIP с настройками по умолчанию (красная кривая),
- дополнительное снижение временных затрат можно получить подбором гиперпараметров детектора¹⁴ (синяя кривая).

Сценарий tmpfvpqodxw.lp

Общее количество переменных: 5308
Количество целочисленных переменных: 1197
Количество бинарных переменных: 0
Количество ограничений: 13065

Puc. 3. Сводка результатов вычислительных экспериментов на сценарии группы СОП tmpfvpqodxw.lp

Детектору аномалий HBOS с подбором параметра контаменации (contamination=0.04)¹⁵ удалось снизить количество бинарных переменных – на 98, ограничений – на 177, а временные издержки снизились в 2.38 раза.

6. Описание вычислительных экспериментов на сценариях группы ИКП

На всех сценариях группы ИКП (как с бинарными переменными, так и без них) решения удавалось найти с помощью *метаконфигурации* (см. раздел 6.2), включающей прием подавления подгруппы первичных эвристик низкой эффективности и процедуру построения частично-заданного решения на фиксациях (для нулевых бинарных и целочисленных переменных).

 $^{^{12}\}Pi\mathrm{apamerp}$ branching/preferbinary

 $^{^{13}\}Pi$ apamerp conflict/preferbinar

¹⁴В данном случае подбирался только гиперпараметр контаменации

¹⁵В библиотеке PyOD все детекторы аномалий имеют контаминацию уровня 0.10

6.1. Поиск решения на сценариях без бинарных переменных.

Метаконфигурации SUH, FZBIVSUHPB и ансамбль детекторов аномалий

Метаконфигурация 16 SUH (Suppress Useless Heuristics) процедуры поиска решения сводится к приему подавления подгруппы первичных эвристик низкой эффективности.

Замечание

Решение получено без доменно-ориентированных эвристик, «теплого» старта и подбора параметров решателя

Конфигурация решателя SCIP для всех сценариев группы ИКП (без бинарных переменных) имеет вид

scip.set. Сценарии группы ИКП без бинарных переменных

```
# критерии останова и перезапуска
limits/time = 7200
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

6.1.1. Сценарий F398266В без бинарных переменных

Статистика

Общее количество переменных: 774901

Количество целочисленных переменных: 172449

Количество бинарных переменных: 0 Количество ограничений: 650263

lp-файл: https://disk.yandex.ru/d/o_eAb9475u5ueg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/URRnZ8soTaJEgQ

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/N2tfhj1N6RczzA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/-y7p5FyJyYirkw

 $^{^{16}}$ Под метаконфигурацией понимается совокупность конфигурации решателя и набора эвристических приемов

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/1JaMC9aFjubDbA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.063% лучше в смысле целевой функции и на 10.20% — в смысле временных издержек (рис. 4).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.155% лучше в смысле целевой функции и на 65.27% – в смысле временных издержек (табл. 1).

Синим цветом обозначен выигрыш в процентах.

Таблица 1. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий f398266b без бинарных переменных

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	21.38	5.905048
SCIP+SUH	19.27 + 9.87%	5.842154 +1.065%
SCIP+FZB	9.43 +55.89%	5.836815 +1.155%

Сценарий input_f398266b-093b-ec11-a2d4-005056a5ee74.json

Рис. 4. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий f398266b без бинарных переменных

6.1.2. Сценарий 50197DF7 без бинарных переменных

Статистика

Общее количество переменных: 718464

Количество целочисленных переменных: 159332

Количество бинарных переменных: 0

Количество ограничений: 595797

lp-файл: https://disk.yandex.ru/d/KO_xj9dkgUdcog

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/R4B1fkTx-nE3tg

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/BLvUmZ43vtMFKg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/yMFLr-6mLfdPAw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/XiRSvteL9xC4pg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.25% лучше в смысле целевой функции и на 46.43% — в смысле временных издержек (рис. 5).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.191% лучше в смысле целевой функции и на 82.13% – в смысле временных издержек (табл. 2).

Синим цветом обозначен выигрыш в процентах.

Таблица 2. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 50197df7 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	18.35	3.585532
SCIP+SUH	9.83 +46.43%	3.540567 + 1.252%
SCIP+FZB	3.28 +82.13%	3.542843 +1.191%

6.1.3. Сценарий 7FAC4231 без бинарных переменных

Статистика

Общее количество переменных: 737585

Количество целочисленных переменных: 147789

Количество бинарных переменных: 0 Количество ограничений: 540018

lp-файл: https://disk.yandex.ru/d/qiZAmraUNK1Peg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

Сценарий input 50197df7-ff50-ec11-a2d7-005056a5ee74.json

Общее количество переменных: 718464

Количество целочисленных переменных: 159332 Количество бинарных переменных: 0 Количество ограничений: 595797 1e10 3.64 SCIP без "теплого" старта CBC+DOH (USE_RECAL_ON_FLOW=false) 3.62 доменно-ориентированных эвристик и Отклонение $U\Phi = -0.72\%$ БРН=97.4232% подбора параметров решателя! функции 3.60 CBC+DOH ■ 5PH=97.5855% целевой 3.58 SCIP 7.0.3 Linux (Centos 7) п 3.56 3.56 3.54 Отклонение ЦФ=+1.11% SCIP 7.0.3+SUH Linux (Centos 7) БРН=97.6227% Отклонение ЦФ=+1.25% БРН=97.6508% SCIP 7.0.3 MacOS (Monterey 12) SCIP 8.0.0 Windows 10 Отклонение ЦФ=+1.03% БРН=97.6124% Отклонение ЦФ=+1.09% БРН=97.6328% 3.52 3.50 35 10 15 20 25 30

Рис. 5. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 50197df7 без бинарных переменных

Полное время расчета t, мин

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/20NeMuQ7NF_ccA

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/QxE0HoREHzgHQQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/FHZGj_Kyg8dDiw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/8H1vw6zkQS7DAg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 5.22% лучше в смысле целевой функции и на 27.10% – в смысле временных издержек (рис. 6).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 5.452% лучше в смысле целевой функции и на 90.16% – в смысле временных издержек (табл. 3).

Синим цветом обозначен выигрыш в процентах.

6.1.4. Сценарий СА485А55 без бинарных переменных

Статистика

Общее количество переменных: 718601

Количество целочисленных переменных: 140858

Таблица 3. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 7fac4231 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	16.05	1.087609
SCIP+SUH	11.67 +27.29%	1.030866 + 5.222%
SCIP+FZB	3.58 + 77.69%	1.028349 + 5.452%

Сценарий input 7fac4231-5951-ec11-a2d7-005056a5ee74.json

Общее количество переменных: 737585
Количество целочисленных переменных: 147789
Количество бинарных переменных: 0
Количество ограничений: 540018

Рис. 6. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 7fac4231 без бинарных переменных

Количество бинарных переменных: 0

Количество ограничений: 514229

lp-файл: https://disk.yandex.ru/d/iSP6xrh4K_wHEQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/_WzkmgoueNb2Bg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/sLUW51xmpMBpcw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/3Ls6QrAWVUMdZw

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных

решений (OC Linux Centos 7) на 0.683% лучше в смысле целевой функции и на 46.48% – в смысле временных издержек (рис. 7).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.244% лучше в смысле целевой функции и на 88.53% – в смысле временных издержек (табл. 4).

Синим цветом обозначен выигрыш в процентах.

Таблица 4. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий са485а55 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	20.05	4.597048
SCIP+SUH	10.73 +46.48%	4.565579 + 0.683%
SCIP+FZB	4.34 + 78.35%	4.539819 + 1.244%

Сценарий input_ca485a55-0485-ec11-a2db-005056a5ee74.json

Общее количество переменных: 718601 Количество целочисленных переменных: 140858 Количество бинарных переменных: 0 Количество ограничений: 514229 1e10 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-5.70% 49 SCIP без "теплого" старта. доменно-ориентированных эвристик и БРН=92.8286% подбора параметров решателя! Значение целевой функции 9.7 2.7 8.8 8.8 SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-4.97% 5PH=93.036% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.65% БРН=94.3883% CBC+DOH БРН=94.8141% SCIP 7.0.3 MacOS (Monterey 12) SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+0.34% Отклонение $Ц\Phi = +0.683\%$ БРН=94.6821% БРН=94.7174% 4 5 15 35 40 45 10 20 25 30 Полное время расчета t, мин

Рис. 7. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий са485а55 без бинарных переменных

6.1.5. Сценарий 276 без бинарных переменных

Статистика

Общее количество переменных: 809224

Количество целочисленных переменных: 162562

Количество бинарных переменных: 0 Количество ограничений: 602190

lp-файл: https://disk.yandex.ru/d/QaS5kd7VRZQ66A

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/M2V88djiiGM5PA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/G0ustAVT619CeA

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/YBXB5GCECJiBIA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 3.67% лучше в смысле целевой функции и на 51.56% – в смысле временных издержек (рис. 8).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 4.86% лучше в смысле целевой функции и на 78.35% – в смысле временных издержек (табл. 5).

Синим цветом обозначен выигрыш в процентах.

Таблица 5. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 276 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	29.87	1.430789
SCIP+SUH	14.47 + 51.56%	1.378299 + 3.669%
SCIP+FZB	3.95 + 78.35%	1.361368 + 4.857%

Сценарий input_276.json

Общее количество переменных: 809224 Количество целочисленных переменных: 162562 Количество бинарных переменных: 0 Количество ограничений: 602190 1e10 SCIP 8.0.0 Windows 10 1.9 SCIP без "теплого" старта, Отклонение ЦФ=-28.64% БРН=94.885% доменно-ориентированных эвристик и подбора параметров решателя! 1.8 SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-26.73% БРН=94.9826% Значение целевой функции SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-24.11% БРН=94.9386% 1.7 1.6 CBC+DOH (USE RECAL ON FLOW=false) 1.5 Отклонение ЦФ=-0.92% БРН=96.5865% CBC+DOH БРН=96.6934% SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+3.67% 1.3 БРН=96.7882% 15 5 20 35 40 10 25 30 45 Полное время расчета t, мин

Рис. 8. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276 без бинарных переменных

6.1.6. Сценарий 337 без бинарных переменных

Статистика

Общее количество переменных: 859075

Количество целочисленных переменных: 173622

Количество бинарных переменных: 0 Количество ограничений: 624327

lp-файл: https://disk.yandex.ru/d/keyQLAagsD7Sbw

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/ZUIEo3dDq77FjA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/0nUXIrIKuzqZlw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/UONCnMQN1akHUA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 22.12% лучше в смысле целевой функции и на 18.32% – в смысле временных издержек (рис. 9).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 22.59% лучше в смысле целевой функции и на 70.84% – в смысле временных издержек (табл. 6).

Синим цветом обозначен выигрыш в процентах.

Таблица 6. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий **337** без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	20.85	3.825042
SCIP+SUH	17.03 +18.32%	2.978782 + 22.123%
SCIP+FZB	6.08 + 70.84%	2.961019 + 22.588%

6.1.7. Сценарий 13D686AB без бинарных переменных

Статистика

Общее количество переменных: 786020

Количество целочисленных переменных: 168857

Количество бинарных переменных: 0 Количество ограничений: 598414

Сценарий input_337.json

Общее количество переменных: 859075

Количество целочисленных переменных: 173622 Количество бинарных переменных: 0 Количество ограничений: 624327 1e10 **4** 0 CBC+DOH (USE RECAL ON FLOW=false) SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-0.11% БРН=91.413% SCIP 8.0.0 Windows 10 Отклонение ЦФ=+1.73% БРН=89.8608% Отклонение ЦФ=+1.92% 3.8 БРН=89.894% CBC+DOH БРН=91.4849% Значение целевой функции SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=+2.23% 3.6 БРН=89.8154% SCIP без "теплого" старта, доменно-ориентированных эвристик и подбора параметров решателя! SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+22.12% БРН=92.1124% 3.0 10 15 35 40 45 20 25 30

Рис. 9. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337 без бинарных переменных

Полное время расчета t, мин

lp-файл: https://disk.yandex.ru/d/3KkYKzNl3PjGdg

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/EXylMeX6Ytz4tg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/dXUMVbSWRbqeDQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/Knavj89muxGw-w

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 9.40% лучше в смысле целевой функции и на 33.03% — в смысле временных издержек (рис. 10).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 10.44% лучше в смысле целевой функции и на 75.82% – в смысле временных издержек (табл. 7).

Синим цветом обозначен выигрыш в процентах.

6.1.8. Сценарий А78СВЕАD без бинарных переменных

Статистика

Общее количество переменных: 795400

Количество целочисленных переменных: 180160

Таблица 7. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 13d686ab без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeнus, \times 10^9$
CBC+DOH	28.82	8.774743
SCIP+SUH	19.30 +33.03%	7.949568 + 9.403%
SCIP+FZB	6.97 + 75.82%	7.858548 + 10.441%

Сценарий input 13d686ab-9e77-ec11-a2da-005056a5ee74.json

Общее количество переменных: 786020 Количество целочисленных переменных: 168857 Количество бинарных переменных: 0

Рис. 10. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 13d686ab без бинарных переменных

Количество бинарных переменных: 0

Количество ограничений: 658339

lp-файл: https://disk.yandex.ru/d/vTPPa1H3VFD7tA

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/fARVcHb66ToHxQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/4DItEZTja77cog

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/vn1K834mY5MEng

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к приему на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.57% лучше в смысле целевой функции и на 23.30% – в смысле временных издержек (рис. 11).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к приему построения решения на доменно-ориентированных эвристиках дает решение задачи, которое на 1.39% лучше в смысле целевой функции и на 81.04% – в смысле временных издержек (табл. 8).

Синим цветом обозначен выигрыш в процентах.

Таблица 8. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий a78cbead без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	26.05	3.801546
SCIP+SUH	19.98 +23.30%	3.741685 + 1.576%
SCIP+FZB	4.94 +81.04%	3.748890 +1.386%

Сценарий input a78cbead-073b-ec11-a2d4-005056a5ee74.json

Рис. 11. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий a78cbead без бинарных переменных

6.1.9. Сценарий 496 (hard) без бинарных переменных

Статистика¹⁷

Общее количество переменных: 864743 (48862) (90762)

Количество целочисленных переменных: 177365 (5008) (25872)

Количество бинарных переменных: 0 (332) (27) Количество ограничений: 610819 (25438) (39119) lp-файл: https://disk.yandex.ru/d/CUA7wSn35k7Gbw

Решение задачи было найдено с помощью первичной эвристики INTSHIFTING.

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.

vandex.ru/d/tbMiAbYmaAOrhg

 $^{^{17}}$ В первых скобках указана размерность задачи после шага пресолвинга с фиксацией FZBIVSUHPB, а во вторых – с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/AQptE3s3NF4bug

Файл решения задачи (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/VMZLFWoT8OftXA

Файл статистической сводки (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/KckqXgoKfv2fyQ

Решение SCIP+ML получено с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов.

Вывод по сценарию: метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к приему на доменно-ориентированных эвристиках CBC+DOH дает решение задачи, которое на 9.823% лучше в смысле целевой функции и на 69.13% – в смысле временных издержек (табл. 9).

Решение, полученное с помощью ансамбля детекторов аномалий, обученного на сценарии f398266b_bin.lp, на 9.678% превосходит CBC+DOH в смысле целевой функции и на 71.82% – в смысле временных издержек.

Синим цветом обозначен выигрыш в процентах.

Таблица 9. Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и ансамбля детекторов аномалий. Сценарий 496 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^7$
CBC+DOH	5.00	6.536728
SCIP+FZB	1.54 +69.13%	5.894658 + 9.823%
SCIP+ML	1.41 + 71.82%	5.904120 + 9.678%

6.1.10. Сценарий 514 (hard) без бинарных переменных

Статистика¹⁸

Общее количество переменных: 775879 (77367) (120764)

Количество целочисленных переменных: 145292 (5817) (32895)

Количество бинарных переменных: 0 (30) (14) Количество ограничений: 541040 (45892) (61074)

lp-файл: https://disk.yandex.ru/d/jQqSqBKb6iG-vw

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- RENS.

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/1N2FdsqwEQcVTQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/iIdbACgh59EpVg

Файл решения задачи (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/5kRy0UsIOatHsQ

¹⁸В первых скобках указана размерность задачи после шага пресолвинга с фиксацией FZBIVSUHPB, а во вторых – с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

Файл статистической сводки (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/rNUU8HmeBGLFRQ

Решение SCIP+ML получено с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов.

Вывод по сценарию: метаконфигурация FZBIVSUHPB (подробнее в разделе 6.2) по отношению к приему построения решения на доменно-ориентированных эвристиках CBC+DOH дает решение задачи, которое на 18.616% лучше в смысле целевой функции и на 51.82% хуже в смысле временных издержек (табл. 10).

Решение, полученное с помощью ансамбля детекторов аномалий 19 , обученного на сценарии $f398266b_bin.1p$, на 19.562% превосходит CBC+DOH в смысле целевой функции и на 6.31% – в смысле временных издержек.

Синим цветом обозначен выигрыш в процентах, а красным – проигрыш.

Таблица 10. Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и ансамбля детекторов аномалий. Сценарий 514 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^9$
CBC+DOH	13.00	5.243829
SCIP+FZB	26.98 +51.82%	4.267692 +18.616%
$\overline{\text{SCIP+ML}(0.10)}$		4.219194 +19.539%
$\frac{\text{SCIP} + \text{ML}(0.05)}{\text{SCIP} + \text{ML}(0.05)}$	7.5 +42.31%	4.214460 +19.629%

6.2. Поиск решения на сценариях c бинарными переменными. Метаконфигурация FZBIVSUHPB

На ранних стадиях изучения проблемы высокоразмерных сценариев с бинарными переменными, поиск решения осуществлялся в семь шагов:

- 1. Подавить подгруппу первичных эвристик низкой эффективности (см. раздел 4.2),
- 2. При разрешении конфликтов и ветвлении²⁰ отдавать предпочтение бинарным переменным,
- 3. Найти релаксированное решение задачи,
- 4. Подобрать порог бинаризации на релаксированном решении для бинарных переменных (см. раздел 4.3),
- 5. Зафиксировать *нулевые* 0-bin и *единичные* 1-bin *бинарные переменные*; подать фиксацию решателю,
- 6. В решении, найденном на предыдущей итерации, зафиксировать *нулевые целочисленные* 0-int и *единичные бинарные* 1-bin *переменные*; полученную фиксацию подать на вход решателю,
- 7. В решении, полученном на предыдущей итерации, зафиксировать *нулевые бинарные* 0-bin и *целочисленные* 0-int *переменные*; фиксацию подать на вход решателю.

Процедура поиска оказалась чувствительной к параметру autorestartnodes. Графическая интерпретация результатов вычислительных экспериментов с разверткой процедуры поиска верхней границы решения во времени приведена на рис. 12, 13, 14 и 15.

 $^{^{19}}$ Решение принудительно останавливалось на 250 секунде (параметр limits/softtime = 250)

 $^{^{20}{}m K}$ сожалению, на сценариях группы ИКП с бинарными переменными решателю SCIP не удается найти решение в корне дерева

Позже описанную процедуру удалось упростить и свести к следующей метаконфигурации FZBIVSUHPB (Fixed Zero Binary and Integer Variables, Suppress Useless Heuristics, Prefer Binary):

- 1. Подавить подгруппу первичных эвристик низкой эффективности,
- 2. При разрешении конфликтов и ветвлении отдавать предпочтение бинарным переменным,
- 3. Зафиксировать *нулевые бинарные* 0-bin и *нулевые целочисленные* 0-int *переменные* в релаксированном решении (см. раздел 4.1).

Конфигурация решателя SCIP для всех сценариев группы ИКП (с бинарными переменными) имеет вид

scip.set. Сценарии группы ИКП с бинарными переменными

```
# критерии останова и перезапуска
limits/time = 7200
limits/autorestartnodes = -1
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# управление стратегиями анализа конфликтов и ветвления
conflict/preferbinary = True
branching/preferbinary = True

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/farkasdiving/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Все эксперименты проводились на виртуальной машине Linux (Centos 7) Intel Core[™] i7 (8 CPUs), $3.6 \mathrm{GHz}$, RAM $16 \mathrm{Gb}$.

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

Кодовая база решения доступна по ссылке https://gitdp.zyfra.com/ds_and_math_users/ml-dl-in-operations-reaseearches.git

6.2.1. Сценарий А78СВЕАО с бинарными переменными

Статистика

Общее количество переменных: 797818

Количество целочисленных переменных: 180160

Количество бинарных переменных: 2418

Количество ограничений: 663175

lp-файл: https://disk.yandex.ru/d/JbT3KR5Yi1ZomQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- o ONEOPT,
- o GINS.

Фргамент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
               | primalbound | gap
    dualbound
                                       | compl.
d1790s | 1881 | 1668 | 1010k | 296.9 | distribu | 93 | 50k |
                                                           43k|
                                                                 43k|
                                                                        0 | 1 | 385 | 3585 |
   3.757279e+10 | 3.894342e+10 |
                                  3.65%
                                           7.70%
d1790s| 1881 | 1668 | 1010k| 296.9 |distribu| 93 |
                                                                        0 | 1 | 385 | 3585 |
                                                     50k|
                                                           43k|
                                                                 43k|
   3.757279e+10 | 3.894341e+10 |
                                  3.65%
                                           7.70%
i1792s| 1882 | 1667 | 1011k| 297.0 | oneopt| 93 |
                                                     50k|
                                                           43k|
                                                                 43k|8612 | 0 | 385 |3585 |
   3.757279e+10 | 3.893993e+10 |
                                  3.64%|
                                           7.70%
                                                                43k|8644 | 1 | 387 |3585 |
1796s | 1900 | 1687 | 1016k | 297.0 | 3669M | 93 |
                                                    50k|
                                                          43k|
   3.757279e+10 | 3.893993e+10 |
                                  3.64%|
                                           2.82%
L1902s| 1982 | 1769 | 1090k| 313.4 |
                                                           43k| 43k|8935 | 1 | 398 |3590 |
                                         gins| 93 |
                                                     50k|
   3.757279e+10 | 3.875897e+10 |
                                  3.16%
                                           2.83%
                                         gins| 93 | 50k|
L1912s | 1982 | 1769 | 1090k | 313.4 |
                                                           43k|
                                                                 43k|8935 | 1 | 398 |3590 |
   3.757279e+10 | 3.864257e+10 | 2.85%|
                                           2.83%
                                                                 43k | 8935 | 1 | 398 | 3590 |
i1920s| 1982 | 1769 | 1099k| 316.2 | oneopt| 93 | 50k|
                                                           43k|
   3.757279e+10 | 3.864241e+10 |
                                  2.85%
                                           2.83%
1954s| 2000 | 1787 | 1133k| 325.5 | 3731M | 93 | 50k|
                                                          43k|
                                                                43k|9004 | 1 | 398 |3591 |
   3.757279e+10 | 3.864241e+10 |
                                  2.85%
                                           2.83%
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/6FPE-S5VupA6iw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/9G-v54ywEK1TJA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.46% лучше в смысле целевой функции и на 19.64% – в смысле временных издержек (табл. 11).

В табл. 11 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 11. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий a78cbead с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	39.82	3.961502
SCIP+MC (a)	29.83 + 25.09%	3.894342 +1.70%
$\overline{\text{SCIP+MC}(b)}$	32.00 +19.64%	3.864241 + 2.46%

6.2.2. Сценарий 7FAC4231 с бинарными переменными

Статистика

Общее количество переменных: 740251

Количество целочисленных переменных: 147789

Количество бинарных переменных: 2666

Количество ограничений: 545350

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT.
- o GINS,
- CROSSOVER,
- o ALNS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
               | primalbound | gap
                                       | compl.
                341 | 91171 | 102.3 | intshift | 309 | 41k | 33k | 34k | 2788 | 5 | 57 | 3711 |
         372 |
   1.053077e+10 | 1.309195e+10 | 24.32%|
                                           0.78%
                340 | 91171 | 102.0 | oneopt| 309 | 41k| 33k| 34k|2788 | 0 | 57 |3711 |
i 454sl
         373 |
   1.053077e+10 | 1.308634e+10 | 24.27%|
                                           0.78%
463s1
       400 l
             369 | 93623 | 101.3 | 2493M | 309 | 41k| 33k| 34k|2950 | 1 | 57 |3761 |
   1.053077e+10 | 1.308634e+10 | 24.27%| 0.29%
        473 |
                442 | 106991 | 113.9 |
                                         gins | 309 | 41k | 33k | 34k | 3084 | 1 | 57 | 3813 |
   1.053077e+10 | 1.297515e+10 | 23.21% | 0.29%
                                         gins| 309 | 41k| 33k|
                442 | 106991 | 113.9 |
                                                                 34k|3084 | 1 | 57 |3813 |
I. 512sl
         473 |
   1.053077e+10 | 1.292548e+10 | 22.74%|
                                           0.29%
                                         gins| 309 | 41k|
L 522s|
         473 |
                442 | 106991 | 113.9 |
                                                            33k|
                                                                  34k|3084 | 1 |
                                                                                  57 | 3813 |
   1.053077e+10 | 1.289283e+10 | 22.43%|
                                           0.29%
L 525sl
         473 |
                442 | 106991 | 113.9 |
                                         gins| 309 |
                                                      41k|
                                                            33k|
                                                                  34k|3084 | 1 |
                                                                                  57 | 3813 |
   1.053077e+10 | 1.286340e+10 | 22.15%|
                                           0.29%
                442 |112279 | 125.1 | oneopt| 309 | 41k|
i 529sl
         473 |
                                                            33k|
                                                                 34k|3084 | 1 | 57 |3813 |
   1.053077e+10 | 1.285668e+10 | 22.09%|
                                           0.29%
                443 | 120630 | 142.5 | intshift | 309 | 41k | 33k | 34k | 3084 | 1 | 58 | 3813 |
r 531sl 474 l
   1.053077e+10 | 1.197786e+10 | 13.74%|
                                           0.29%
                373 | 124926 | 151.6 | oneopt | 309 | 41k | 33k | 34k | 3084 | 1 | 58 | 3813 |
i 532s| 474 |
   1.053077e+10 | 1.197230e+10 | 13.69%|
                                          0.29%
536s|
       500 l
               399 | 126496 | 146.9 | 2579M | 309 | 41k | 33k | 34k | 3181 | 1 | 58 | 3822 |
   1.053077e+10 | 1.197230e+10 | 13.69%|
                                          0.29%
             499 | 158520 | 175.8 | 2613M | 309 | 41k | 33k | 34k | 3641 | 1 | 60 | 3933 |
567s|
       600 l
   1.053095e+10 | 1.197230e+10 | 13.69% | 0.29%
                554 | 189783 | 207.6 |
                                         gins| 309 | 41k| 33k| 34k|4060 | 1 | 62 |3978 |
L 739sl
         659 l
   1.053095e+10 | 1.191898e+10 | 13.18%|
                                           0.29%
                555 | 198453 | 220.4 | oneopt | 309 | 41k | 33k | 34k | 4060 | 1 | 62 | 3981 |
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                           0.30%
             595 | 236166 | 261.7 | 2689M | 309 | 41k | 33k | 34k | 4418 | 1 | 62 | 4010 |
794sl
       700 l
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                           0.32%
             695 | 277232 | 280.4 | 2728M | 309 | 41k | 33k | 34k | 4757 | 1 | 64 | 4027 |
836s1
       800 l
    1.053219e+10 | 1.191889e+10 | 13.17%|
                                           0.32%
                693 | 295017 | 281.5 | crossove | 309 | 41k | 33k | 34k | 5000 | 1 | 64 | 4059 |
   1.053219e+10 | 1.154287e+10 |
                                 9.60%|
                                           0.32%
                693 | 300734 | 288.1 | oneopt | 309 | 41k | 33k | 34k | 5000 | 1 | 64 | 4059 |
i 968s|
         860 |
   1.053219e+10 | 1.154284e+10 |
                                  9.60%|
                                           0.32%
             733 |312921 | 288.9 | 2793M | 309 | 41k | 33k | 34k |5288 | 1 | 64 |4139 |
       900 |
   1.053219e+10 | 1.154284e+10 | 9.60%|
                                          0.33%
1042s| 1000 | 823 | 346085 | 293.2 | 2816M | 309 | 41k| 33k| 34k|5725 | 1 | 65 | 4281 |
   1.053219e+10 | 1.154284e+10 | 9.60%|
                                           0.33%
L1083s| 1003 | 826 |347173 | 293.4 |
                                         alns | 309 | 41k | 33k | 34k | 5747 | 2 | 65 | 4284 |
   1.053219e+10 | 1.153273e+10 | 9.50% | 0.33%
```

```
| i1084s | 1004 | 827 | 352908 | 298.8 | oneopt | 309 | 41k | 33k | 34k | 5747 | 1 | 65 | 4284 | 1.053219e+10 | 1.118743e+10 | 6.22% | 0.33% | 1113s | 1100 | 699 | 373504 | 291.4 | 2860M | 309 | 41k | 33k | 34k | 6055 | 3 | 65 | 4323 | 1.053219e+10 | 1.118743e+10 | 6.22% | 0.44% | 1140s | 1 | 0 | 419115 | - | 3039M | 0 | 41k | 34k | 34k | 0 | 0 | 65 | 4323 | 1.053219e+10 | 1.118743e+10 | 6.22% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/TmA6hqFV87eGTg
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/CsGV_oal40Tx0Q

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 3.38% лучше в смысле целевой функции и на 33.07% – в смысле временных издержек (табл. 12).

В табл. 12 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 12. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 7fac4231 с бинарными переменными

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	27.00	1.157865
SCIP+MC (a)	18.05 +33.15%	1.153273 +0.40%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 33.07%	1.118743 + 3.38%

6.2.3. Сценарий 50197DF7 с бинарными переменными

Статистика

Общее количество переменных: 720954

Количество целочисленных переменных: 159332

Количество бинарных переменных: 2490

Количество ограничений: 600777

lp-файл: https://disk.yandex.ru/d/qWeSKb2WEs6kQA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT,
- GINS.

Фрагмент лога сессии SCIP

```
...

time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr|
dualbound | primalbound | gap | compl.
```

```
r 836sl
                 948 | 155676 | 53.5 | intshift | 409 | 41k | 34k | 35k | 4367 | 1 | 69 | 7354 |
   3.554610e+10 | 3.676991e+10 | 3.44%| unknown
                947 | 155676 | 53.5 | oneopt | 409 | 41k |
i 836s|
         964 |
                                                            34k| 35k|4367 | 0 | 69 |7354 |
   3.554610e+10 | 3.676497e+10 | 3.43% | unknown
846s| 1000 |
             985 | 157559 | 53.4 | 2577M | 409 | 41k | 34k | 35k | 4396 | 1 | 69 | 7444 |
   3.554610e+10 | 3.676497e+10 | 3.43% | unknown
L 885s | 1064 | 1049 | 157869 | 50.5 |
                                         gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7484 |
   3.554610e+10 | 3.659894e+10 |
                                  2.96% | unknown
                                          gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7484 |
L 931s | 1064 | 1049 | 157869 | 50.5 |
   3.554610e+10 | 3.656967e+10 |
                                  2.88% | unknown
i 962s| 1064 | 1049 | 161589 | 54.0 | oneopt| 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7484 |
   3.554610e+10 | 3.656967e+10 |
                                  2.88% | unknown
969s| 1100 | 1085 | 161769 | 52.4 | 2620M | 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7532 |
   3.554610e+10 | 3.656967e+10 |
                                  2.88% | unknown
                                         gins| 409 |
L 988s | 1164 | 1149 | 161992 | 49.7 |
                                                      41k| 34k| 35k|4397 | 1 | 69 |7557 |
   3.554610e+10 | 3.630031e+10 |
                                  2.12% | unknown
L 993s | 1164 | 1149 | 161992 | 49.7 |
                                         gins| 409 |
                                                      41k|
                                                            34k|
                                                                  35k|4397 | 1 | 69 |7557 |
   3.554610e+10 | 3.625804e+10 |
                                  2.00% | unknown
                                                            34k | 35k | 4397 | 1 | 69 | 7557 |
L1000s| 1164 | 1149 | 161992 | 49.7 |
                                          gins| 409 |
                                                      41kl
   3.554610e+10 | 3.623675e+10 |
                                   1.94% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/2_FDqS70q0UBqA Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/SkRLoRYzQDI-Aw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.87% лучше в смысле целевой функции и на 36.08% — в смысле временных издержек (табл. 13).

В табл. 13 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 13. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 50197df7 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	28.27	3.730552
$\overline{\text{SCIP+MC}(a)}$	13.93 +50.73%	3.676991 + 1.44%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 36.08%	3.623675 + 2.87%

6.2.4. Сценарий F398266В с бинарными переменными

Статистика

Общее количество переменных: 777271

Количество целочисленных переменных: 172449

Количество бинарных переменных: 2370

Количество ограничений: 655003

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING.
- ONEOPT,
- CROSSOVER.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                | primalbound | gap
                                        | compl.
    dualbound
                                                             48k|
                                                                  49k|
                                                                          0 | 1 | 17 | 1387 |
         433 l
                 434 |462507 | 790.8 |distribu| 51 |
                                                       59k|
    5.857793e+10 | 6.054807e+10 |
                                   3.36% | unknown
d1164s|
         433 |
                 434 |462644 | 791.1 |distribu| 51 |
                                                       59k|
                                                             48k|
                                                                   49k|
                                                                          0 | 1 | 17 | 1387 |
    5.857793e+10 | 6.054779e+10 |
                                   3.36% | unknown
                                                                         0 | 1 | 17 |1387 |
d1164sl
         433 |
                 434 |462746 | 791.3 |distribu| 51 |
                                                       59k|
                                                             48k|
                                                                   49k|
    5.857793e+10 | 6.054778e+10 |
                                   3.36% unknown
                                                                          0 | 1 | 17 | 1387 |
d1164s|
         433 |
                 434 |462780 | 791.4 |distribu| 51 |
                                                       59k|
                                                             48k|
                                                                   49k|
   5.857793e+10 | 6.054776e+10 |
                                   3.36% unknown
                                                                          0 | 1 | 17 | 1387 |
                434 |462801 | 791.4 |distribu| 51 |
                                                                   49k|
d1164s|
         433 |
                                                       59k|
                                                             48k|
    5.857793e+10 | 6.054776e+10 |
                                   3.36% unknown
                434 |462836 | 791.5 |distribu| 51 |
                                                                   49k|
                                                                          0 | 1 | 17 | 1387 |
d1165s1
         433 |
                                                       59k|
                                                             48k|
   5.857793e+10 | 6.054776e+10 |
                                   3.36% unknown
         433 |
                 434 |462856 | 791.6 |distribu| 51 |
                                                             48k|
                                                                   49k|
                                                                          0 | 1 | 17 | 1387 |
                                                       59k|
   5.857793e+10 | 6.054774e+10 |
                                   3.36% unknown
         434 |
                433 |463020 | 790.1 | oneopt| 51 |
                                                             48k|
                                                                  49k|4333 | 0 | 17 |1387 |
i1167sl
                                                       59k|
    5.857793e+10 | 6.053918e+10 |
                                   3.35% | unknown
                                                                 49k|4529 | 1 | 26 |1402 |
1250s|
        500 | 501 |531180 | 822.2 | 3321M | 51 |
                                                      59k|
                                                            48k|
    5.857793e+10 | 6.053918e+10 |
                                   3.35% | unknown
        600 I
                601 |663342 | 905.6 | 3398M | 51 |
                                                      59k|
                                                            48k|
                                                                  49k|5175 | 1 | 36 |1426 |
    5.857932e+10 | 6.053918e+10 |
                                   3.35% | unknown
L1892s|
                                                                   49k|5448 | 2 | 41 |1433 |
         634
                 635 |704819 | 922.5 |crossove| 55 |
                                                       59k|
                                                             48k|
    5.858028e+10 | 6.021605e+10 |
                                   2.79% | unknown
i1895s|
         634 |
                 635 |715376 | 939.1 | oneopt | 55 |
                                                       59k|
                                                             48k|
                                                                   49k|5448 | 2 | 41 |1433 |
   5.858028e+10 | 6.021603e+10 |
                                   2.79% unknown
                                                                  49k|5644 | 1 | 50 |1442 |
                701 | 770566 | 929.4 | 3457M | 63 |
                                                            48k|
1952sl
        700 l
                                                      59k|
   5.858050e+10 | 6.021603e+10 |
                                   2.79% | unknown
        800 |
                801 |879949 | 950.0 | 3489M | 65 |
                                                      59k|
                                                            48k|
                                                                  49k|5964 | 1 | 62 |1476 |
    5.858065e+10 | 6.021603e+10 |
                                   2.79% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/KXzdrUx6TZbXEw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/FERoaFsr5zbkjA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 0.97% лучше в смысле целевой функции и на 56.24% – в смысле временных издержек (табл. 14).

В табл. 14 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepsomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 14. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий f398266b с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	72.17	6.080841
$\overline{\text{SCIP+MC}(a)}$	19.38 + 73.15%	6.054807 + 0.43%
$\overline{\text{SCIP+MC}(b)}$	31.58 + 56.24%	6.021603 + 0.97%

6.2.5. Сценарий 337 с бинарными переменными

Статистика

Общее количество переменных: 859230

Количество целочисленных переменных: 173622

Количество бинарных переменных: 155

Количество ограничений: 624637

lp-файл: https://disk.yandex.ru/d/Kc11p9v7D-kxYA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- RENS,
- ONEOPT.

Фрагмент лога сессии SCIP

time node left LP iter LP it/n mem/heur mdpt vars cons rows cuts sepa confs strbr
dualbound primalbound gap compl.
r 107s 1 0 55407 - intshift 0 56k 43k 45k 1799 13 0 0
2.947544e+10 4.344720e+10 47.40% unknown
L 247s 1 0 55407 - rens 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022206e+10 2.53% unknown
249s 1 0 55407 - 2785M 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022206e+10 2.53% unknown
i 250s 1 0 58839 - oneopt 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022205e+10 2.53% unknown
250s 1 0 58839 - 2809M 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022205e+10 2.53% unknown
251s 1 0 58891 - 2813M 0 56k 43k 45k 1820 14 0 0
2.947544e+10 3.022205e+10 2.53% unknown
251s 1 0 58900 - 2813M 0 56k 43k 44k 1824 15 0 0
2.947544e+10 3.022205e+10 2.53% unknown
253s 1 0 59074 - 2816M 0 56k 43k 44k 1824 15 0 12
2.947544e+10 3.022205e+10 2.53% unknown
254s 1 0 59236 - 2821M 0 56k 43k 44k 1918 16 0 12
2.948327e+10 3.022205e+10 2.51% unknown
254s 1 0 59300 - 2821M 0 56k 43k 44k 1945 17 0 12
2.948327e+10 3.022205e+10 2.51% unknown
255s 1 0 59321 - 2821M 0 56k 43k 44k 1945 17 0 19
2.948327e+10 3.022205e+10 2.51% unknown
256s 1 0 59349 - 2825M 0 56k 43k 44k 1959 18 0 19
2.948327e+10 3.022205e+10 2.51% unknown
256s 1 0 59352 - 2825M 0 56k 43k 44k 1964 19 0 19
2.948327e+10 3.022205e+10 2.51% unknown
·

```
258s|
                  0 | 59368 |
                                  - | 2825M |
                                                      56k | 43k | 44k | 1964 | 19 |
                                                                                          35 I
          1 |
   2.957927e+10 | 3.022205e+10 |
                                    2.17% | unknown
259s|
          1 |
                  0 | 59451 |
                                  - |
                                       2829M |
                                                 0 |
                                                      56k|
                                                            43k| 44k|2014 | 20 |
                                                                                     0 |
                                                                                          35 I
   2.957927e+10 | 3.022205e+10 |
                                    2.17% unknown
259s|
         1 |
                  0 | 59466 |
                                  - | 2829M |
                                                 0 |
                                                      56k|
                                                            43k|
                                                                  44k|2024 | 21 |
                                                                                     0 |
                                                                                          35 I
   2.957927e+10 | 3.022205e+10 |
                                    2.17% | unknown
259s|
                  2 | 59466 |
                                       2829M |
                                                      56k|
                                                            43k|
                                                                   44k|2024 | 21 |
                                                                                          35 |
   2.957927e+10 | 3.022205e+10 |
                                    2.17% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/zwVhKYKEMlMlQw Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/T9sAbRH6uWh4Uw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на ...% лучше в смысле целевой функции и на ...% – в смысле временных издержек (табл. 15).

В табл. 15 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 15. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 337 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	18.00	4.047865
$\overline{\text{SCIP+MC}(a)}$	4.12 +77.11%	3.022206 +25.34%
$\overline{\text{SCIP+MC}(b)}$	4.30 + 76.11%	3.022205 +25.34%

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json (1-ая и 2-ая фазы поиска решения)

от значения параметра autorestartnodes. Сценарий input_a78cbead. Первая и вторая фазы поиска решения Рис. 12. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 13. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья фаза поиска решения

Сценарий input_50197df7-ff50-ec11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 14. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья фаза поиска решения

Сценарий input_7fac4231-5951-ес11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 15. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости 30 Порог бинаризаации: 0.19, релаксированное решение: СОРТ Общее количество переменных: 740251 Количество целочисленных переменных: 147789 Количество бинарных переменных: 2666 Количество ограничений: 545350 28 Полное время расчета, мин. 24

от значения параметра autorestartnodes. Сценарий 7fac4231. Третья фаза поиска решения

6.3. Поиск решения на базе методов машинного и глубокого обучения

Условимся *сценарием обучающего поднабора* называть сценарий (математическую постановку задачи, описанную в терманах математического программирования) из коллекции сценариев, которые используются на *обучающей фазе* модели машинного обучения.

Сценарием тестового поднабора условимся называть сценарий, который используется для построения прогноза с помощью модели машинного обучения.

6.3.1. Простое декартово произведение сценариев c бинарными переменными

Рассмотрим *некоммутативные* пары вида «сценарий обучающего поднабора – сценарий тестового поднабора» подгруппы сценариев с бинарными переменными (см. раздел 6.2):

- o 7fac4231_bin.lp,
- o a78cbead_bin.lp,
- o f398266b_bin.lp,
- o 50197df7_bin.lp,
- o 337_bin.lp.

Если коллекция сценариев содержит n сценариев, то существует n(n-1) возможных некоммутативных пар.

обучение на сценарии 7fac4231_bin.lp, тестирование на сценарии 50197df7_bin.lp ... обучение на сценарии f398266b_bin.lp, тестирование на сценарии 50197df7_bin.lp ... обучение на сценарии 337_bin.lp, тестирование на сценарии 50197df7_bin.lp ...провал обучение на сценарии 7fac4231_bin.lp, тестирование на сценарии 50197df7_bin.lp

7. Описание вычислительных экспериментов на сценариях группы MBO

8. Описание вычислительных экспериментов на сценариях MIPLIB 2017

- 8.1. Сценарии со статусом «open»
- 8.1.1. Сценарий DLR2

https://miplib.zib.de/WebData/instances/dlr2.mps.gz

8.1.2. Сценарий СVRPA-N64К9VRPI

https://miplib.zib.de/WebData/instances/cvrpa-n64k9vrpi.mps.gz

8.2. Сценарии со статусом «hard»

8.2.1. Сценарий CRYPTANALYSISKB128N50BJ14

https://miplib.zib.de/WebData/instances/cryptanalysiskb128n5obj14.mps.gz

8.3. Сценарии со статусом «easy»

8.3.1. Сценарий NEOS-4332801-seret

https://miplib.zib.de/WebData/instances/neos-4332801-seret.mps.gz

Список иллюстраций

1	Зависимость верхней границы решения от доли оппарных переменных, выставлен-	
	ных в ноль. Сценарий a78cbead	8
2	Зависимость верхней границы решения от доли бинарных переменных, выставлен-	
	ных в ноль. Сценарий 337	9
3	Сводка результатов вычислительных экспериментов на сценарии группы СОП tmpfvpc	odxw.lp 14
4	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	f398266b без бинарных переменных	16
5	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	50197df7 без бинарных переменных	18
6	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	7fac4231 без бинарных переменных	19
7	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	са485а55 без бинарных переменных	20
8	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276	
	без бинарных переменных	21
9	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337	
	без бинарных переменных	23
10	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	13d686ab без бинарных переменных	24
11	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	a78cbead без бинарных переменных	25
12	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий input_a78cbead.	
	Первая и вторая фазы поиска решения	36
13	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья	
	фаза поиска решения	37
14	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья	
	фаза поиска решения	38
15	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья	
	фаза поиска решения	39
Спис	сок таблиц	
1	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий f398266b без бинарных переменных	16
2	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 50197df7 без бинарных переменных	17
3	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 7fac4231 без бинарных переменных	19

4	Сводка результатов анализа эффективности метаконфигурации 50 п и г догу 50 п г д.	
	Сценарий са485а55 без бинарных переменных	20
5	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 276 без бинарных переменных	21
6	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 337 без бинарных переменных	22
7	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 13d686ab без бинарных переменных	24
8	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий a78cbead без бинарных переменных	25
9	Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и	
	ансамбля детекторов аномалий. Сценарий 496 без бинарных переменных	26
10	Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и	
	ансамбля детекторов аномалий. Сценарий 514 без бинарных переменных	27
11	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий a78cbead с бинарными переменными	29
12	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 7fac4231 с бинарными переменными	31
13	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 50197df7 с бинарными переменными	32
14	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий f398266b с бинарными переменными	34
15	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 337 с бинарными переменными	35

Список литературы

- 1. Иванов Конспект по обучению с подкреплением, 2022
- 2. *Жерон, О.* Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: конецепции, инструменты и техники для создания интеллектуальных систем. СПб.: ООО «Альфакнига», 2018. 688 с.
- 3. Soenen J. etc. The Effect of Hyperparameter Tuning on the Comparative Evaluation of Unsupervised Anomaly Detection Methods, 2021