ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 2

1. Η επιτάχυνση της βαρύτητας μπορεί να μετρηθεί ρίχνοντας μια μπάλα προς τα πάνω και

μετρώντας το χρόνο που χρειάζεται να περάσει δύο σημεία τα οποία βρίσκονται σε συγκεκριμένο ύψος κατά την άνοδό της και την κάθοδό της. Να δείξετε ότι αν ο χρόνος που απαιτείται ώστε το σώμα να περάσει μια οριζόντια γραμή Α και από τις δυο κατευθύνσεις είναι Τ Α και ο χρόνος που χρειάζεται για να περάσει από μια ορ ιζόντια γραμμή Β και από τις δυο κατευθύνσεις είναι ΤΒ τότε υποθέτοντας ότι η επιτάχυνση είναι σταθερή, το μέτρο της δίνεται από τη

σχέση $g=\frac{8h}{T_{_A}^2-T_{_B}^2}$, όπου h είναι το ύψος της γραμμής B πάνω από την A.

Όταν το εώμα βαναπεριά από το επμεία Α κατεβαίνοντας, π Θέος από την (1) Θα είναι 3=9μ. Ο χρόνος που πρειάστηκε για να περάσει πάθι από το Α είναι ΤΑ, οπότε:

Ο χρόνος που χρειάζεται το είντα να καλίψει το ύφος h και να φθάζει στο σημείο B είναι απλά $t = \frac{1}{2} (T_A - T_B)$.

Enopieros kas nante anó en (1) avenantecimens VA rai t= TA-TB

∂a ègate:

$$h = V_A \left(\frac{T_A - T_B}{2}\right) - \frac{1}{2}g\left(\frac{T_A - T_B}{4}\right)^2 = \frac{1}{2}gT_A \left(\frac{T_A - T_B}{2}\right) - \frac{1}{8}g\left(\frac{T_A + T_B^2}{2} - \frac{1}{8}T_A + \frac{1}{8} - \frac{1}{8}T_A + \frac{1}{8}T_A +$$

2. Ένας ανελκυστήρας ξεκινώντας από το έδαφος αρχίζει να ανεβαίνει προς τα πάνω με ομοιόμορφη ταχύτητα. Τη στιγμή Τ₁ ένα αγόρι που βρίσκεται στον ανελκυστήρα ρίχνει μια μπάλα προς το έδαφος μέσω του δαπέδου του ανελκυστήρα. Η μπάλα πέφτει υπό την επίδραση της επιτάχυνσης της βαρύτητας, g=9.8m/s², και χτυπά στο έδαφος μετά από T₂ secs. Να βρεθεί το ύψος στο οποίο βρίσκεται ο ανελκυστήρας τη χρονική στιγμή T₁.

Ουσιαστικό ξιετράξιε το χρόνο ως προς Τη, τη στιγμή που τα αχόρι άφησε τη μπάλα. Τη στιγμή εκείνη η μπάλα είχαι αρχικό ύφος h, όσο και του ανελωστήρα, και αρχική ταχύτητα όση και ο ανελωστήρας και αρχική ταχύτητα.

To sayling mou grana see édados éxoutre y=\$ non t-T_1=T_2

April o aveducciópas uveran fre 16=67ad => h=16.T1 >>

$$\Rightarrow V_0 = \frac{h}{T_1}$$

Avenue descrives ignore: $0 = h + \frac{h}{T_1} T_2 - \frac{1}{2} g T_2^2 \Rightarrow$

$$\Rightarrow h \cdot \left(\frac{T_1 + T_2}{T_1}\right) = \frac{1}{2}gT_2^2 \Rightarrow h = \frac{1}{2}g\frac{T_2^2T_1}{(T_1 + T_2)}$$

- 3. Σχετική ταχύτητα ορίζουμε τη ταχύτητα ως προς ένα ορισμένο σύστημα συντεταγμένων (ο όρος ταχύτητα από μόνος του γίνεται αντιληπτός σχετικά με το σύστημα συντεταγμένων του παρατηρητή).
 - (α) Ένα σημείο A παρατηρείται να έχει ταχύτητα V_A ως προς το σύστημα συντεταγμένων
 - Α. Να βρεθεί η ταχύτητά του σχετικά με το σύστημα συντεταγμένων
 - Β, το οποίο είναι μετατοπισμένο ως προς το Α κατά \vec{R} (θεωρήστε ότι το \vec{R} μπορεί να αλλάζει με το χρόνο).
 - (β) Δυο υλικά σημεία α και β κινούνται με κυκλική ταχύτητα ω και σε αντίθετες κατευθύνσεις πάνω σε μια κυκλική στεφάνη όπως φαίνεται στο σχήμα. Τη χρονική στιγμή t=0 και τα δυο σώματα βρίσκονται στη θέση $\vec{r}=l\ \hat{j}$ όπου l η ακτίνα της κυκλικής στεφάνης. Να βρεθεί η ταχύτητα του σημείου α ως προς το β.

$$\vec{\nabla}_{A} = \vec{\nabla}_{B} + \vec{R} \Rightarrow$$

$$\frac{d\vec{\nabla}_{A}}{dt} = \frac{d\vec{\nabla}_{B}}{dt} + \frac{d\vec{R}}{dt} \Rightarrow$$

$$\Rightarrow \vec{\nabla}_{B} = \vec{\nabla}_{A} - \vec{\nabla}_{CX}$$

$$\Rightarrow \vec{R} = 2l \sin(\omega t) \cdot \hat{L} \Rightarrow$$

$$\vec{\nabla}_{A} = \vec{\nabla}_{B} + 2l \omega \cos(\omega t) \hat{L}$$

$$\vec{\nabla}_{A} = \vec{\nabla}_{B} + 2l \omega \cos(\omega t) \hat{L}$$

4. Τη χρονική στιγμή t=0, μια εξωτερική δύναμη της μορφής $F(t)=F_0cos(\omega t)$ ασκείται σε κάποιο σώμα μάζας m. Αν η αρχική ταχύτητα και θέση του σώματος είναι u_0 και x_0 αντίστοιχα, να βρεθεί η u(t) και x(t).

Ano to 2° volue con Newton Example:
$$F = ma$$
 \Rightarrow

$$\Rightarrow F_0 \cos \omega t = m \frac{dv}{dt} \Rightarrow \int \frac{dv}{dt} = \int \frac{F_0}{m} \cos \omega t \, dt \Rightarrow$$

$$\Rightarrow V - V_0 = \frac{F_0}{m} \frac{d}{\omega} \sin \omega t \Big|_{0}^{t} \Rightarrow V(t) = V_0 + \frac{F_0}{m\omega} \sin \omega t \Big|_{0}^{t}$$

$$\Rightarrow V - V_0 = \frac{dx}{dt} \Rightarrow dx = v dt \Rightarrow \int_{0}^{x} dx = \int_{0}^{t} v dt \Rightarrow x - x_0 = \int_{0}^{t} (v_0 + \frac{F_0}{m\omega} \sin \omega t) dt$$

$$\Rightarrow x - x_0 = v_0 t + \frac{F_0}{m\omega} \left(-\frac{1}{\omega} \right) \cos \omega t \Big|_{0}^{t} \Rightarrow x - x_0 + v_0 t - \frac{F_0}{m\omega^2} \left(\cos \omega t - 1 \right) \Rightarrow$$

$$\Rightarrow x - x_0 = v_0 t + \frac{F_0}{m\omega} \left(-\frac{1}{\omega} \right) \cos \omega t + \frac{F_0}{m\omega^2} \left(\cos \omega t - 1 \right) \Rightarrow$$

5. Στη μηχανή Atwood του σχήματος, ποια θα πρέπει να είναι η τιμή της μάζας Μ ώστε το σύστημα να παραμένει ακίνητο; Θα πρέπει να εκφράσετε την απάντησή σας συναρτήσει των m₁ και m₂.

Οι τάσεις εχετίβοναι όπως δείχνει το εχήμα Από τη στιγμή που η μάβα Μ είναι σε ιτορροπία

T=Mg

και τα νήματα που κρατούν τις his fes mg και mg
στρέπει να έχουν τά ευς Mg/2 (Outubire ano
τη δωλεβη 8 ω. 10)

kàzw q_{0} q_{0}

And the efigured tou govopou tou Newton you as higher my war my exame:

$$m_1: T_1 - m_1 g = m_1 a_1 \Rightarrow \frac{Mg}{2} - m_1 g = m_1 a_1 \Rightarrow a_1 = \frac{Mg}{2m_1} - g$$

Αφού το νήμα είναι τεντωμένο τα 2 σώματα θα πρέπει να κινούνεαι με την ίδια επιτάχυνες και επομένως $a_1 = a_2$. Από ① Λ② έχουμε:

$$\frac{M_{0}}{2m_{1}} - 3 = -\frac{M_{0}}{2m_{0}} + 3 \Rightarrow M\left(\frac{1}{2m_{1}} + \frac{1}{2m_{0}}\right) = 2 \Rightarrow$$

$$\Rightarrow M\left(\frac{2(m_{2} + m_{1})}{24(m_{1} + m_{0})}\right) = 2 \Rightarrow M = \frac{4m_{1}m_{0}}{m_{1} + m_{0}}$$

6. Θεωρείστε την μηχανή Atwood του παρακάτω σχήματος, με δυο μάζες m. Το κεκλιμένο επίπεδο είναι λείο και έχει κλίση 30° με την οριζόντια διεύθυνση. Βρείτε τις επιταχύνσεις των μαζών.

	a T T T T T 37 T 33 T 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Av y tacy sto exo	vi sivae T, rore
	TIT	ין דמובץ לפט באסונוסו	ano to onois xpilicros
	¥37	to gilla m (Gry TE	Jeneria rpogadia) civar
	30	3T. Auro baive	con ani to Suigpafifice
		Edustion aibaras	
7.00		Careta pur esquares.	T 17 T
		Elevelipor Gifuaros: Ti-37=00 [T=37]	$\int_{\mathcal{I}}$
1	Ari "Saring - 1	' \ ' (a	
7	Από "διατήρηση του νήματως" αν η μίσα στου πρίμεται κινηθεί προς τα		
1			
	da sopenes va fictaring	Dei wara fue anoscas	39. Auro year
	τ κίνηση της πρώτης μάζας θα δημουρχήσει ένο μήκος ο στο μεσαίο σχοινί και το ίδω μήκοι ο στο αριστερό και δεβί σκανί. Αγα εμφανίβται ένα μήκος σχοινού 3ο κατά το οποίο θα πρέπει να μετοκινήθων μάζα στα αριστερά (πάκω στο κεκθιμένο επίπεδο). Επομένως αν η μάζα στο κεκθιμένο επίπεδο έχει επιτάχινος αι		
-			
	TOTE 2 xpelialisty for	is a sa igu entaxury	1a1/3 = a9
	Ochardire ou ag=	$\frac{qt}{q} \wedge = \frac{qt}{q} \left(\frac{qt}{q} \times \right) = \frac{qt}{q} \left(\frac{qt}{q} \right)$	$\frac{\left(\frac{3}{4}\right)}{\left(\frac{3}{4}\right)} = \frac{3}{1} \frac{d}{dt} \left(\frac{dx_1}{dt}\right) = \frac{1}{3} \alpha_1.$
Σες μάβα στο μενθημένο επίπεδο ενερχώ το βάρος και . επίσης και η τάση Τ του σχανιού:			
	£ 1		
mgsing	with magazono finish : IFx = -	ma1 = mg sin0 - T =>	$mg\frac{1}{2}-T=m\alpha_1$
	taga 2: IFy =-	maz = mg - Tz => mg	3-31 =-mag
	⇒ $mg - 9T = 9ma_1 7 = 3mg - 6T = 6ma_1 70$ $mg - 3T = -m \frac{a_1}{3} \times 2 \frac{9mg - 6T = -9ma_1}{3}$ $mg - 3T = -m \frac{a_1}{3} \times 2 \frac{9mg - 6T = -9ma_1}{3}$		
			7 20 8
	Il pigla 2 xweicar e	enopiews for $\alpha_2 = \frac{\alpha_1}{3}$ examination from $\alpha_2 = \frac{\alpha_1}{3}$	02 - 20 %
	It Siewourcy ten 2 en	raxiveeur Eivar onus	Scilia Contraction of the Contra
		600	Lut have

7. Ένας κουβάς με νερό έχει μάζα 4.80kgr και επιταχύνεται προς τα πάνω με ένα σχοινί αμελητέας μάζας, του οποίου το όριο αντοχής χωρίς να σπάσει είναι 75.0N. Βρείτε ποια είναι η μέγιστη επιτάχυνση προς τα πάνω που μπορεί να δοθεί στο κουβά χωρίς να σπάσει το σκοινί.

(B) IF =
$$m\alpha \Rightarrow T$$
- $mg = m\alpha \Rightarrow m\alpha = T$ - $mg \Rightarrow m\alpha \leq 75$ - mg
 $T = 75N$ re frighted the following the constraints of the constraints $m\alpha \leq 75$ - $mg \Rightarrow 4.8\alpha \leq 75$ - $4.8\cdot 9.8 \Rightarrow \alpha \leq 5.83 \text{ m/sec}^2$

(a) Au Sev unipple to exorvi Trou envoir ca Sio toubla, tôte co κιδώτιο με τη μικρότερη μάβα θα επιταχίνονταν χρηγορότερα, γιατί O GUZE REGETS Epilos le civar funçorepos (finopeire va anodeifece γρηγορα ότι η επιτόχυνες ενός και μόνο κιβωτίου σε καιλιμένο enineso Sivera ono g (sino-proso)). Ezer zo expersi da παραφένει τεντωμένο και τα δύο κιβώτα δα πινούνται με την ίδια

Enizajousy. And

Avaliante ers Suratiers se afores x nai y mapa Pando nas madeas ses nevelitiers eninedo IEN Siewdowen y Ser unapper wingen war 2 correction Siratery ciras of Englishers Da

Example: $N_1 - m_1 g \cos \theta = \emptyset$ } $\Rightarrow N_3 = m_1 g \cos \theta$ $N_2 - m_2 g \cos \theta = \emptyset$ } $\Rightarrow N_3 = m_1 g \cos \theta$

Or Swapers zorbis for na for Da einer enqueros: Sto = 41 = 41 Mo = 42 mg coso

Osupinvas a successio en Súa taibhur sar éva successia, Da Spa na vu Tou his Sively F=ma onou m=m1+m2 Enopèrous:

F= ma = (m1+m2)a = (m1 g sin0 - f1) + (m2 sin0 - f2) = Inhereror ou 2 tacy

$$\Rightarrow (8+4)a = 9.8 \cdot \sin 30^{\circ} (8+4) - 9.8 \cdot \cos 30^{\circ} (0.95 \cdot 4 + 0.35 \cdot 8) \Rightarrow$$

$$\Rightarrow \boxed{a = 9.91 \text{ m/s}^{2}}$$

$$\Rightarrow \cos 30^{\circ} (0.95 \cdot 4 + 0.35 \cdot 8) \Rightarrow$$

Αυτό είναι το διάγραφητα ελεύθερου σύτροσος γιο σο τούβθο ficifas 4 kgr σα είνα σύστημα. Παρατηρώστε ότι τώρα η τάση Τι του σχοινιού είναι εξωτερική δύναμη για το τούβθο και εποβένως πρέπει να τη θάβαψε υπόψην.

A covicration Sivator raca fignos con resultation enine Son airas:

Adda bonnafie 600 (a) oa nemicajunen eivar a= 2.91m/s2

Harriveren finopei va embebamili ppapovear en aveiceoixo F=m·a esicuen ya co coublos fiasas 8 kgr.

(χ) Αν ενα Πάβουμε τις θέσως των 2 τούβλων, το μικρό τούβλο βρίσκεται τώρα ετη πίσω θέση και θα φθάσει το μεγαλύτερης μάβας τούβλο γιατί ετηταχύνεται χρηχορότερα (ο συντελιστής τριβής είναι μικρότερος) Το σχοινί επομένως θα χα λαρώσω και τα δύο τούβλα θα συγκρουστών. Η επιτάχυνεη του μικρού τούβλου είναι g(sinθ-μεσοθ) = 2.78 m/s²

Evis 7 Enitaxuray con heyarbu toil for ivan / g(sint-hycost)= 1.93m/s2

Ima H zách Ser unappe adoù onus papapete, zo spowi eiva galapo IF=ma= massino-timas coso => a= g(sino-timoso) 9. Δυο κιβώτια συνδέονται με ένα σχοινί και βρίσκονται πάνω σε μια οριζόντια επιφάνεια όπως στο σχήμα. Το κιβώτιο Α έχει μάζα μα ενώ το κιβώτιο Β έχει μάζα m_B. Ο συντελεστής της κινητικής τριβής μεταξύ του κάθε κιβωτίου και της οριζόντιας επιφάνειας είναι μκ. Τα κιβώτια σύρονται προς τα δεξιά

με σταθερή ταχύτητα εξαιτίας μιας οριζόντιας δύναμης F. Συναρτήσει των m_A, m_B και μ_κ υπολογίστε (α) το μέτρο της δύναμης F και (β) τη τάση στο σχοινί που συνδέει τα κιβώτια. Να συμπεριλάβετε τα διαγράμματα ελευθέρου σώματος ή οποιαδήποτε διαγράμματα χρησιμοποιείτε για να προσδιορίσετε τις απαντήσεις σας.

(a) Dempiere o Joie Ispo co everapa na pung Seize Els Escrepais Swapers Gorr
opplovera Siewdower. H Swaper Feira προς τα Sefra, evi or Sio Surapers τριβών είναι προς τα αριστερά Η οριβόνεια επιτάχινες είναι μηδέν αφού το εύετημα κινείται με εταθρή ταχύτητα. 'Apa εχουμε' IFx = 0 = max => F-4mag-4mag=0 => F=4(mx+ma)g (β) Μπορείτε να θεωρήσετε ένα οποιοθήποτε κιβώτιο, έστω το Α.
Οι οριβόντιες δυνάξεις που δρουν πάνω του είναι η τάση του σχοινια Kain zpibý : Ξέρουμε ότι αχ=0 αρα IFX=0 ⇒ > T- fimag =0 ⇒ T= fimag Eiva adivaco va bpoine en Thorasovas ono co cicanta, Justi n T évai Eswespinis Sinafin. Tra va booifie en T, Da ripéries n Sivatin T va eiva Escrepius Sivatin 600 200-6isonfra Ewhatur 2000 Escripoupe.

10. Μια σφήνα μάζας Μ μένει ακίνητη πάνω σε μια λεία οριζόντια επιφάνεια. Ένα τούβλο μάζας m τοποθετείται πάνω στη σφήνα και μια οριζόντια δύναμη F εξασκείται στη σφήνα όπως στο διπλανό σχήμα. Ποιο πρέπει να είναι το μέτρο της δύναμης F αν

θέλουμε το τούβλο να παραμένει σε σταθερό ύψος πάνω από την επιφάνεια;

Τα διαχράμματα εθενθέρου εώξιατος για τα δύο εώματα ζεχωριετώ var que odiondopo to sissopha civar ta anolouda: 1 NESagous Tobblo:

6 driva:

To roible Ser èxe entragerer con Siendrany y van enoficiens ay=0

Onòre IFy = may = 0 = Ny - mg => Ny = mg => Ncosa = mg?

Στη x-Siciolucy: ΣFx=max = Nx > max = Nsina.

=> max = ma sina => ax=qtana

Η επιτάχινες αυτή όμως είναι η επιτάχινες όλου του ευετήματος:

SFx = Move *ax => SFx = (M+m) g tana = F

11. Θεωρήστε το σύστημα τροχαλιών του παρακάτω σχήματος (οι τροχαλίες και σχοινιά θεωρούνται αβαρή). Το σώμα σε σχήμα L έχει μάζα M, ενώ το άλλο σώμα έχει μάζα m, και ο συντελεστής κινητικής τριβής μεταξύ των δυο σωμάτων είναι μ . Το έδαφος M είναι λείο.

(α) Σχεδιάστε τα διαγράμματα ελευθέρου σώματος για τα δυο σώματα. Θα πρέπει να συμπεριλάβετε όλες τις δυνάμεις. (β) Να βρεθεί η επιτάχυνση του σώματος με το L-σχήμα.

77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
(a) Ester T n toing ceo exposi (eine n i Sia ravrois adoù co
(a) Έστω Τη τάση σεο σχοινί (είναι η ίδια παντού αφού σο νήμα είναι αβαρές όπως και οι τροχαδίες)
Ta Svagpafifiara Edendépour enfiarem évac:
mg Tou vipatos mou Teproir and the Fig Topoxalia Fig Topoxalia Fig Topoxalia Fig Topoxalia Fig Topoxalia
Tou villatos mou
mg FT Tpoxalia FTp mg
7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$/ + z_p = \mu / /$
(B) It Fy elieway xua zo 4-6istra Ser borda.
(B) It Fy esieurs que zo 1-60/20 Den bordi. Enopievus porchonomique za zpeis estembers:
(1) Fx years hiefa M: 2T-N= Ma } ouries or a civarises (2) Fx years hiefa m: N=ma 60 enaby.
(1) Tx yeary haja M: 21-11 = Ma (ouris or a evarices
(2) Fx years hala m: N = ma J Epocor ta cirpata sival
GE ENADY.
(3) Fy you on fie a m: mg-T-fin=may = m (2a)
Η επιτάχυνος αμ = 2 α θόχω "διατήρησης του υήματος". Αν η Μ κινείται από ετακη d στα δεβιά, τότε συνοθικό μήκος 20 του νήματος εβαφανίβεται από την οριβόντια διεύθυνος (κάτω μπάνω τρήμα) > 2d μήκος πρίπει να εμφανιστεί στο κατακόρυφο τρήμα
Villator Eladori Etor and the college Siente (return thing
ztrýha) > 2d trýmos πρίπα να εμφανιστά στο καταπόρυφο τίπο α
Java ano en liaja m
H (1) & (2) Sivour: 2T-ma = Ma > T = \frac{1}{2} (M+m)a
Avairadiscouvers conv (3) $\Rightarrow mg - \frac{1}{2}(M+m)\alpha - \frac{1}{2}(m\alpha) = m(2\alpha) \Rightarrow$ $\Rightarrow 2mg = ((M+m) + 2 + m + 4m)\alpha \Rightarrow \alpha = \frac{2mg}{M+(5+2+1)m}$
2 ma = ((11m) + 9) m + 1m) as = 2mg Nam +0
M+(5+24)m

- 12. Θεωρήστε τη μηχανή Atwood του διπλανού σχήματος, με μάζες m, m, m, και 2m.
 - (α) Να γράψετε τις τέσσερεις F=ma εξισώσεις. Θεωρήστε σα θετική τη διεύθυνση προς τα πάνω για όλες τις μάζες.
 - (β) Χρησιμοποιήστε διατήρηση του νήματος για να βρείτε μια σχέση μεταξύ των τεσσάρων επιταχύνσεων.
 - (γ) Βρείτε τις επιταχύνσεις και των τεσσάρων μαζών.

(a) EGTW T & takey GEO UNIOTEPO EXOIVI. ETOLIEVUS & TAKEY TOO GUNDÉEL ZIS 2 Xaprilòtepes Epopalius Da civar 27 man έτα η τάση στο χαμηθότερο σχοινί θα είναι Τ

Enopieros or eficioses F=ma xua ò les IIS m- fiajes de civai! (i) es igour idia en april

Tamo = ma; az=az=az=a. Tra en haja 2m n eficuser da eira: T-2mg=2may

(b) Écou ou on 2 pases cuis von lotepes apoxalies eivan 1 mar 2 evis

Enopierus Da exporpe: $-\frac{a_1+a_2}{2}=\frac{a_3+a_4}{2}$ yrazi káde þia arió

TIS ENOPAGES CONTROL LE ENVENITATIVES TON 2 xaten d'oregon rogaline.

Aurò essie enersi ro hèco vyos zur Sio xalendorepur hafir (344) βρίσκεται σε συχκεκριμένο ύψος από την χαμιπθότερη τροχαθία

Av n his sa "1" avebairer nata y, nar n his sa "2" avebairer nata y2, tôte or Sio xapendo repes rooxa dies neprour nata (y, 142)/2 => $\Rightarrow -\left(\frac{a_1+a_2}{2}\right)$ $\Rightarrow -\left(\frac{a_1+a_2}{2}\right)$ And in early now $a_1=a_2=a_3=a_3$ Troco Trapanava Growing

 $-\left(\frac{a+a}{2}\right) = \frac{a+ay}{2} \Rightarrow \boxed{ay = -3a}$ Therefore our Suripriers

mares le as highers