

FCC Test Report

FCC ID : VQK-F04G

Equipment: Mobile Phone

Model No. : F-04G

Brand Name : FUJITSU

Applicant : FUJITSU LIMITED

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

Standard : 47 CFR FCC Part 15.247

Received Date : Dec. 17, 2014

Tested Date : Mar. 06 ~ Mar. 12, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Ilac-MRA

Tap Testing Laboratory

Report No.: FR4D1701AC Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	6dB and Occupied Bandwidth	17
3.3	RF Output Power	20
3.4	Power Spectral Density	22
3.5	Unwanted Emissions into Restricted Frequency Bands	24
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	48
4	TEST LABORATORY INFORMATION	58

Release Record

Report No.	Version	Description	Issued Date
FR4D1701AC	Rev. 01	Initial issue	Apr. 01, 2015

Report No.: FR4D1701AC Page: 3 of 58

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.575MHz 40.82 (Margin -5.18dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 4924.00MHz	Pass
15.209	INdulated Liffissions	49.78 (Margin -4.22dB) - AV	r ass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 20.17	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR4D1701AC Page: 4 of 58

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name	FUJITSU
Model Name	F-04G
IMEI Code	357241060024329 / 357241060024287
H/W Version	v2.1.0
S/W Version	R21.5e

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
2400-2483.5	b	2412-2462	1-11 [11]	1	1-11 Mbps	
2400-2483.5	g	2412-2462	1-11 [11]	1	6-54 Mbps	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.3 Antenna Details

Ant.	Туре	Gain (dBi)	Connector	Remark
0	λ/4 Monopole	-6.48		
1	1 λ /4 Monopole -7.57			

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	AC adapter: (normal output rating) 5.0Vdc, 1.8A (quick charge output rating) 9.0Vdc, 1.8A Battery: 3.75Vdc
-------------------	--

Report No.: FR4D1701AC Page: 5 of 58

1.1.5 Accessories

No.	Equipment	Description
1	Cradle	Brand Name: Fujitsu Limited Model Name: F50 Input rating: (quick charge) 9.0Vdc, 1.5A Output rating: (quick charge) 9.0Vdc, 1.5A
2	Battery (Unremovable)	Brand Name: NTT Docomo Model Name: CA54310-0061 Power Rating: 3.75Vdc, 3120mAh, 12Wh

1.1.6 Channel List

Frequency band (MHz)			
802.11 b /	g / n HT20		
Channel	Frequency(MHz)		
1	2412		
2	2417		
3	2422		
4	2427		
5	2432		
6	2437		
7	2442		
8	2447		
9	2452		
10	2457		
11	2462		

1.1.7 Test Tool and Duty Cycle

Test Tool	QRCT, version 3.0.54.0		
	Mode	Duty cycle (%)	Duty factor (dB)
Duty Cycle and Duty Factor	11b	100.00%	0.00
Duty Cycle and Duty Factor	11g	98.58%	0.06
	HT20	96.45%	0.16

Report No.: FR4D1701AC Page: 6 of 58

1.1.8 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11b	2412	17
11b	2437	17
11b	2462	17
11g	2412	15
11g	2437	15
11g	2462	15
HT20	2412	14
HT20	2437	14
HT20	2462	14

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Adapter	NTT docomo	AC Adaptor 05					
2	Earphone	APPLE	MD827FE/A	6		1.2m non-shielded w/o core		

Note: Item 1 was provided by client.

Report No.: FR4D1701AC Page: 7 of 58

1.3 Test Setup Chart

Report No.: FR4D1701AC Page: 8 of 58

1.4 The Equipment List

Test Item	RF Conducted										
Test Site	(TH01-WS)										
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until						
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016						
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015						
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015						
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA						
Note: Calibration Interval of instruments listed above is one year.											

Test Item	Radiated Emission										
Test Site	966 chamber 3 / (030	CH03-WS)									
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until						
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015						
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015						
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016						
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016						
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015						
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015						
Preamplifier	EMC	MC EMC02325 980187		Sep. 26, 2014	Sep. 25, 2015						
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015						
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015						
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016						
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016						
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016						
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016						
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016						
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016						
Measurement Software	AUDIX	e3	6.120210g	NA	NA						
Note: Calibration Int	erval of instruments lis	ted above is one year.									

Test Item	Conducted Emission											
Test Site	Conduction room 1 / (CO01-WS)											
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until										
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015							
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015							
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015							
Measurement Software	AUDIX	e3	6.120210k	NA	NA							
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.											

Report No.: FR4D1701AC Page: 9 of 58

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247
ANSI C63.10-2013
FCC KDB 558074 D01 DTS Meas Guidance v03r02
FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±34.134 Hz						
Conducted power	±0.808 dB						
Power density	±0.463 dB						
Conducted emission	±2.670 dB						
AC conducted emission	±2.92 dB						
Radiated emission ≤ 1GHz	±3.99 dB						
Radiated emission > 1GHz	±5.52 dB						

Report No.: FR4D1701AC Page: 10 of 58

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	18°C / 76%	Peter Lin
Radiated Emissions	03CH03-WS	20-21°C / 63-64%	Aska Huang
RF Conducted	TH01-WS	22°C / 65%	Brad Wu

➤ FCC site registration No.: 390588➤ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data rate (Mbps) / MCS	Test Configuration	
Conducted Emissions	HT20	2462	MCS 0	1, 2	
Radiated Emissions ≤ 1GHz	HT20	2462	MCS 0	1, 2	
Radiated Emissions > 1GHz	11b 11g HT20	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462	1 Mbps 6 Mbps MCS 0	1	
Fundamental Emission Output Power	11b	2412 / 2437 / 2462	1 Mbps		
6dB bandwidth	11g	2412 / 2437 / 2462	6 Mbps	1	
Power spectral density	HT20	2412 / 2437 / 2462	MCS 0		

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations for radiated emission below 1GHz.
 - 1) Configuration 1: Adapter mode
 - 2) Configuration 2 : Cradle mode
- 3. Adapter and cradle mode had been pretested for radiated emission above 1GHz and found that the adapter mode was the worst case and was selected for final test.

Report No.: FR4D1701AC Page: 11 of 58

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.								

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR4D1701AC Page: 12 of 58

3.1.4 Test Result of Conducted Emissions

Report No.: FR4D1701AC Page: 13 of 58

Modulation		HT20				Test F	req. (N	ЛHz)	2462
Power Phase		Neutra	al			Test C	onfigu	ıration	1
80 Lev 70 60 50	el (dBu\	O Milli Marau	4	JM Jedna .	is Jakkasata Atlikakli	, 8ª	10		ISPR/CNS/VCCI-B PR/CNS/VCCI-B AV
30 20 10								HATAKA PARA PARA PARA PARA PARA PARA PARA P	Mary Mary
0 <mark>□</mark> 0.15	0.2		0.5	1		2 ency (MH	lz)	5 10	20 30
	Freq	Level		Over Limit		LISN factor	cable loss	Remark	
1	MHz 0.157	dBuV 36.35	dBu∀ 	dB 		dB 0.75	dB 	 Average	
3* 4 5 6 7 8 9 10 11 12	2.761 3.406 3.406 3.881	47.84 30.73 36.87 30.99 39.19 34.39 43.14 29.18	46.00 56.00 46.00 56.00 46.00	-19.13 -15.01 -16.81 -11.61 -12.86 -16.82	47.53 30.09 36.23 30.26 38.46	0.18 0.18 0.38 0.46 0.46 0.62 0.62 0.72	0.26 0.27 0.27 0.29 0.29 0.31	QP Average QP Average QP Average QP Average QP Average	
lote 1: Level (dBuV) 2: Over Limit (d) + Cat	ole Loss (dB)).

Report No.: FR4D1701AC Page: 14 of 58

odulation	HT20		Test F	req. (M	2462	2462	
wer Phase	Line	Test C	onfigu	2	2		
a Level (dBu	ava						
80 Level (dbu							
70							
						CISPR/CNS/VCC	LB
60						SISPRICINS/VCC	-6
50					CIS	PR/CNS/VCCI-B	AV
W 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1			ıı ı Na	1.01404.1			
40		Mile and the state of the			u		
30	<u> </u>	TO THE PROPERTY OF THE PROPERT	ייןן און		Pural production of the state o	Mary Marie	
	1 1			"	11 71 11	, "July WW	
20		 				11 11	M _{UN} M
10							
00.150.2	0.5	1 Frequ	2 iency (MH		5 10	20	30
Freq	Level Limit		LISN	cable			
MHz			factor dB	loss dB	Remark		
1 0.169 2 0.169			0.63 0.63	0.08	Average QP		
3 0.236			0.23	0.09	Average		
4 0.236 5 0.535		-15.45 46.45 -6.36 39.36	0.23	0.09 0.13	QP		
6 0.535			0.15 0.15	0.13	Average QP		
7* 0.565			0.15		Average		
		-15.72 40.00	0.15	0.13	QP		
9 0.633 10 0.633		-19.57 26.16 -19.40 36.33	0.14	0.13 0.13	Average QP		
11 2.899		-15.96 29.33			Qr Average		
		-16.01 39.28		0.28			
te 1: Level (dBuV) = Re	ad Level (dRi	ıV) + HSN Fac	tor (dR)) + Cah	le l nee (dB	١)	

Report No.: FR4D1701AC Page: 15 of 58

Report No.: FR4D1701AC Page: 16 of 58

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup

Report No.: FR4D1701AC Page: 17 of 58

3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation	N	Eron (MU=)		6dB Bandv	vidth (MHz)		Limit (ItU=)
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (kHz)
11b	1	2412	7.59				500
11b	1	2437	7.54				500
11b	1	2462	8.00				500
11g	1	2412	16.35				500
11g	1	2437	16.35				500
11g	1	2462	15.94				500
HT20	2	2412	16.70	16.99			500
HT20	2	2437	17.22	17.57			500
HT20	2	2462	16.93	17.57			500

Report No.: FR4D1701AC Page: 18 of 58

Modulation	N	Freq.		99% Occupied Bandwidth (MHz)						
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3				
11b	1	2412	13.17							
11b	1	2437	13.11							
11b	1	2462	13.41							
11g	1	2412	16.51							
11g	1	2437	16.55							
11g	1	2462	16.52							
HT20	2	2412	17.62	17.61						
HT20	2	2437	17.66	17.60						
HT20	2	2462	17.62	17.62						

Report No.: FR4D1701AC Page: 19 of 58

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

Antenna gain > 6dBi

Non Fixed, point to point operations.
The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB

Fixed, point to point operations
Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

- 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
- 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
- 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

Nower meter

- A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power (For reference only)

Nower meter

 A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR4D1701AC Page: 20 of 58

3.3.4 Test Result of Maximum Output Power

Modulation	Modulation N _{TX} Freq. (MHz)		Peak		d output p 3m)	Total Power	Total Power	Limit (dBm)	
Wode		(IVITIZ)		Chain 3	(mW)	(dBm)	(ubili)		
11b	1	2412	16.57				45.394	16.57	30.00
11b	1	2437	16.85				48.417	16.85	30.00
11b	1	2462	18.22				66.374	18.22	30.00
11g	1	2412	17.19				52.360	17.19	30.00
11g	1	2437	17.22				52.723	17.22	30.00
11g	1	2462	18.40				69.183	18.40	30.00
HT20	2	2412	15.96	15.85			77.905	18.92	30.00
HT20	2	2437	16.12	16.08			81.477	19.11	30.00
HT20	2	2462	17.13	17.18			103.881	20.17	30.00

Modulation	N _{TX}	Freq.	Conduc	•	age) outpu 3m)	t power	Total Power	Total Power	Limit	
Mode		(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)	
11b	1	2412	14.11				25.763	14.11	30.00	
11b	1	2437	14.42				27.669	14.42	30.00	
11b	1	2462	15.96				39.446	15.96	30.00	
11g	1	2412	11.38				13.740	11.38	30.00	
11g	1	2437	11.48				14.060	11.48	30.00	
11g	1	2462	13.03				20.091	13.03	30.00	
HT20	2	2412	10.26	10.08			20.803	13.18	30.00	
HT20	2	2437	10.49	10.49			22.389	13.50	30.00	
HT20	2	2462	11.82	11.51			29.363	14.68	30.00	

Note: Conducted average output power is for reference only.

Report No.: FR4D1701AC Page: 21 of 58

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 100kHz, VBW = 300 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.\

3.4.3 Test Setup

Report No.: FR4D1701AC Page: 22 of 58

3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
11b	1	2412	-8.25	8.00
11b	1	2437	-8.71	8.00
11b	1	2462	-7.76	8.00
11g	1	2412	-14.32	8.00
11g	1	2437	-13.69	8.00
11g	1	2462	-13.10	8.00
HT20	2	2412	-14.03	8.00
HT20	2	2437	-13.48	8.00
HT20	2	2462	-11.88	8.00

Note: Test result for HT20 is bin-by-bin summing measured value of each TX port.

Report No.: FR4D1701AC Page: 23 of 58

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit								
Frequency Range (MHz)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR4D1701AC Page: 24 of 58

3.5.3 Test Setup

Report No.: FR4D1701AC Page: 25 of 58

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AC Page: 26 of 58

Modulation	HT20	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	45.52	34.31	40.00	-5.69	47.14	-12.83	Peak		
2	103.72	22.23	43.50	-21.27	39.99	-17.76	Peak		
3	142.52	25.60	43.50	-17.90	39.25	-13.65	Peak		
4	266.68	25.49	46.00	-20.51	39.52	-14.03	Peak		
5	281.23	24.79	46.00	-21.21	38.16	-13.37	Peak		
6	782.72	35.38	46.00	-10.62	38.15	-2.77	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AC Page: 27 of 58

Modulation	HT20	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	2

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	46.49	25.57	40.00	-14.43	38.42	-12.85	Peak		
2	60.07	26.55	40.00	-13.45	40.82	-14.27	Peak		
3	110.51	23.83	43.50	-19.67	40.41	-16.58	Peak		
4	537.31	25.46	46.00	-20.54	32.68	-7.22	Peak		
5	599.39	25.73	46.00	-20.27	31.46	-5.73	Peak		
6	780.78	32.73	46.00	-13.27	35.53	-2.80	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AC Page: 28 of 58

Modulation	HT20	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	45.52	31.54	40.00	-8.46	44.37	-12.83	Peak		
2	87.23	24.32	40.00	-15.68	43.22	-18.90	Peak		
3	216.24	20.83	46.00	-25.17	36.99	-16.16	Peak		
4	247.28	23.14	46.00	-22.86	37.86	-14.72	Peak		
5	382.11	22.75	46.00	-23.25	33.29	-10.54	Peak		
6	780.78	34.94	46.00	-11.06	37.74	-2.80	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AC Page: 29 of 58

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 30 of 58

Modulation	11b	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
_									
1	1500.00	35.72	54.00	-18.28	39.55	-3.83	Average		
2	1500.00	48.78	74.00	-25.22	52.61	-3.83	Peak		
3	2390.00	37.43	54.00	-16.57	38.65	-1.22	Average		
4	2390.00	50.36	74.00	-23.64	51.58	-1.22	Peak		
5	4824.00	47.72	54.00	-6.28	40.71	7.01	Average		
6	4824.00	52.00	74.00	-22.00	44.99	7.01	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 31 of 58

Modulation	11b	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.72	54.00	-18.28	39.55	-3.83	Average		
2	1500.00	48.33	74.00	-25.67	52.16	-3.83	Peak		
3	4874.00	49.05	54.00	-4.95	42.24	6.81	Average		
4	4874.00	53.56	74.00	-20.44	46.75	6.81	Peak		
5	7311.00	38.52	54.00	-15.48	27.56	10.96	Average		
6	7311.00	49.60	74.00	-24.40	38.64	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 32 of 58

Modulation	11b	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.65	54.00	-18.35	39.48	-3.83	Average		
2	1500.00	48.78	74.00	-25.22	52.61	-3.83	Peak		
3	4874.00	49.67	54.00	-4.33	42.86	6.81	Average		
4	4874.00	53.05	74.00	-20.95	46.24	6.81	Peak		
5	7311.00	38.92	54.00	-15.08	27.96	10.96	Average		
6	7311.00	50.71	74.00	-23.29	39.75	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 33 of 58

Modulation	11b	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.49	54.00	-18.51	39.32	-3.83	Average		
2	1500.00	48.72	74.00	-25.28	52.55	-3.83	Peak		
3	2483.50	37.64	54.00	-16.36	38.53	-0.89	Average		
4	2483.50	51.84	74.00	-22.16	52.73	-0.89	Peak		
5	4924.00	48.96	54.00	-5.04	42.36	6.60	Average		
6	4924.00	52.86	74.00	-21.14	46.26	6.60	Peak		
7	7386.00	38.84	54.00	-15.16	27.72	11.12	Average		
8	7386.00	50.20	74.00	-23.80	39.08	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 34 of 58

Modulation	11b	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

	Freq. I	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.51	54.00	-18.49	39.34	-3.83	Average		
2	1500.00	48.83	74.00	-25.17	52.66	-3.83	Peak		
3	2483.50	37.76	54.00	-16.24	38.65	-0.89	Average		
4	2483.50	49.43	74.00	-24.57	50.32	-0.89	Peak		
5	4924.00	49.78	54.00	-4.22	43.18	6.60	Average		
6	4924.00	53.13	74.00	-20.87	46.53	6.60	Peak		
7	7386.00	39.00	54.00	-15.00	27.88	11.12	Average		
8	7386.00	50.87	74.00	-23.13	39.75	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 35 of 58

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR4D1701AC Page: 36 of 58

Modulation	11g	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.74	54.00	-18.26	39.57	-3.83	Average		
2		48.92			52.75	-3.83	Peak		
3	2390.00	37.19	54.00	-16.81	38.41	-1.22	Average		
4	2390.00	50.59	74.00	-23.41	51.81	-1.22	Peak		
5	4824.00	32.42	54.00	-21.58	25.41	7.01	Average		
6	4824.00	45.77	74.00	-28.23	38.76	7.01	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 37 of 58

Modulation	11g	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.60	54.00	-18.40	39.43	-3.83	Average		
2	1500.00	48.69	74.00	-25.31	52.52	-3.83	Peak		
3	4874.00	32.39	54.00	-21.61	25.58	6.81	Average		
4	4874.00	45.08	74.00	-28.92	38.27	6.81	Peak		
5	7311.00	36.57	54.00	-17.43	25.61	10.96	Average		
6	7311.00	49.60	74.00	-24.40	38.64	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 38 of 58

Modulation	11g	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.47	54.00	-18.53	39.30	-3.83	Average		
2	1500.00	48.69	74.00	-25.31	52.52	-3.83	Peak		
3	4874.00	32.35	54.00	-21.65	25.54	6.81	Average		
4	4874.00	45.44	74.00	-28.56	38.63	6.81	Peak		
5	7311.00	36.44	54.00	-17.56	25.48	10.96	Average		
6	7311.00	49.68	74.00	-24.32	38.72	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 39 of 58

Modulation	11g	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.69	54.00	-18.31	39.52	-3.83	Average		
2	1500.00	48.53	74.00	-25.47	52.36	-3.83	Peak		
3	2483.50	39.26	54.00	-14.74	40.15	-0.89	Average		
4	2483.50	52.24	74.00	-21.76	53.13	-0.89	Peak		
5	4924.00	32.14	54.00	-21.86	25.54	6.60	Average		
6	4924.00	45.17	74.00	-28.83	38.57	6.60	Peak		
7	7386.00	36.54	54.00	-17.46	25.42	11.12	Average		
8	7386.00	49.73	74.00	-24.27	38.61	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 40 of 58

Modulation	11g	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.62	54.00	-18.38	39.45	-3.83	Average		
2	1500.00	48.85	74.00	-25.15	52.68	-3.83	Peak		
3	2483.50	38.23	54.00	-15.77	39.12	-0.89	Average		
4	2483.50	51.00	74.00	-23.00	51.89	-0.89	Peak		
5	4924.00	32.04	54.00	-21.96	25.44	6.60	Average		
6	4924.00	45.22	74.00	-28.78	38.62	6.60	Peak		
7	7386.00	36.73	54.00	-17.27	25.61	11.12	Average		
8	7386.00	49.92	74.00	-24.08	38.80	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 41 of 58

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 42 of 58

Modulation	HT20	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.78	54.00	-18.22	39.61	-3.83	Average		
2	1500.00				52.86	-3.83	Peak		
3	2390.00	37.64	54.00	-16.36	38.86	-1.22	Average		
4	2390.00	50.58	74.00	-23.42	51.80	-1.22	Peak		
5	4824.00	33.24	54.00	-20.76	26.23	7.01	Average		
6	4824.00	45.75	74.00	-28.25	38.74	7.01	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 43 of 58

Modulation	HT20	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.46	54.00	-18.54	39.29	-3.83	Average		
2	1500.00	48.42	74.00	-25.58	52.25	-3.83	Peak		
3	4874.00	33.32	54.00	-20.68	26.51	6.81	Average		
4	4874.00	45.73	74.00	-28.27	38.92	6.81	Peak		
5	7311.00	36.44	54.00	-17.56	25.48	10.96	Average		
6	7311.00	49.58	74.00	-24.42	38.62	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 44 of 58

Modulation	HT20	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.51	54.00	-18.49	39.34	-3.83	Average		
2	1500.00	48.88	74.00	-25.12	52.71	-3.83	Peak		
3	4874.00	33.38	54.00	-20.62	26.57	6.81	Average		
4	4874.00	45.23	74.00	-28.77	38.42	6.81	Peak		
5	7311.00	36.45	54.00	-17.55	25.49	10.96	Average		
6	7311.00	49.57	74.00	-24.43	38.61	10.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 45 of 58

Modulation	HT20	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.60	54.00	-18.40	39.43	-3.83	Average		
2	1500.00	48.49	74.00	-25.51	52.32	-3.83	Peak		
3	2483.50	39.10	54.00	-14.90	39.99	-0.89	Average		
4	2483.50	53.25	74.00	-20.75	54.14	-0.89	Peak		
5	4924.00	33.03	54.00	-20.97	26.43	6.60	Average		
6	4924.00	45.57	74.00	-28.43	38.97	6.60	Peak		
7	7386.00	36.59	54.00	-17.41	25.47	11.12	Average		
8	7386.00	49.50	74.00	-24.50	38.38	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 46 of 58

Modulation	HT20	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1500.00	35.78	54.00	-18.22	39.61	-3.83	Average		
2	1500.00	48.76	74.00	-25.24	52.59	-3.83	Peak		
3	2483.50	38.47	54.00	-15.53	39.36	-0.89	Average		
4	2483.50	51.24	74.00	-22.76	52.13	-0.89	Peak		
5	4924.00	33.57	54.00	-20.43	26.97	6.60	Average		
6	4924.00	45.08	74.00	-28.92	38.48	6.60	Peak		
7	7386.00	36.93	54.00	-17.07	25.81	11.12	Average		
8	7386.00	49.17	74.00	-24.83	38.05	11.12	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AC Page: 47 of 58

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

Report No.: FR4D1701AC Page: 48 of 58

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

802.11b

Report No.: FR4D1701AC Report Version: Rev. 01

Report No.: FR4D1701AC Page: 50 of 58

Report No.: FR4D1701AC Page: 51 of 58

Report No.: FR4D1701AC Page: 52 of 58

Report No.: FR4D1701AC Page: 53 of 58

Report No.: FR4D1701AC Page: 54 of 58

802.11n HT20

Report No.: FR4D1701AC Page: 55 of 58

Report No.: FR4D1701AC Page: 56 of 58

Report No.: FR4D1701AC Page: 57 of 58

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd

Hsien 333, Taiwan, R.O.C.

St., Kwei Shan Hsiang, Tao Yuan

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR4D1701AC Page: 58 of 58