

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI COURSE HANDOUT WORK INTEGRATED LEARNING PROGRAMMES

Part A: Content Design

Course Title	Zero Level Mathematical Foundations
Course No(s)	AIML_MFML
Credit Units	NO CREDITS; This is an audit course
Course Author	G. Venkiteswaran
Version No	1.0
Minor Edits	

Course Description

The goal of the course is to strengthen students' foundation in basic mathematical concepts such as matrices, vectors, calculus, and linear systems. This will help them gain the necessary background for understanding advanced topics in data science, machine learning, AI, and engineering.

Course Objectives

No	Objective	
CO1	Introduce students to the foundational concepts in matrices, vectors, and algebra.	
CO2	Enable students to apply elementary row operations, matrix properties, and solve linear systems.	
CO3	Familiarize students with the fundamentals of calculus including continuity, differentiation, and optimization techniques.	
CO4	Provide a basic understanding of linear programming and its graphical solution.	

Textbook(s)/Reference(s):

No	Author(s), Title, Edition, Publishing House	
T1	Thomas and Finney – Calculus and Analytic Geometry, 9th Edition, Pearson Education.	
T2	Gilbert Strang – Introduction to Linear Algebra, 5th Edition, Wellesley-Cambridge Press.	
R1	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers.	
R2	S.C. Malik and Savita Arora – Mathematical Analysis, New Age International Publishers.	

Part B: Modular Content Structure

Session	Topics	Reference
	Sunday, July 13, 2025, (4 Hours)	
1	Matrices and Vectors	Class Notes, T2, R1
	Definition and types of matrices	
	Vectors and their representation	
	Algebra of matrices (addition, subtraction, scalar multiplication)	
	Matrix multiplication	
	Transpose of a matrix	
2	Elementary Row Operations and Rank	Class Notes, T2, R1
	Elementary row operations	
	Echelon form and reduced echelon form	
	Rank of a matrix	
3	Determinants and Inverse	Class Notes, T2, R1
	Minors and cofactors	
	Determinants of 2x2 and 3x3 matrices	
	Properties of determinants	
	Inverse of a matrix using adjoint and determinant	
4	Systems of Linear Equations	Class Notes, T2, R1
	Solving linear systems using matrix methods	
	Gauss elimination and Gauss-Jordan methods	
	Consistency of systems	
	Linear dependence and independence	
5	Vector Algebra	Class Notes, T2, R1
	Dot product and cross product	
	Projection of one vector on another	

Sunday, July 20, 2025, (2 Hours)			
6	Calculus - Continuity and Differentiation	Class Notes, T1, R2	
	Concept of limits and continuity		
	Definition of differentiability		
	Rules of differentiation		
	Higher order derivatives		

7	Applications of Derivatives	Class Notes, T1, R2
	Rate of change	
	Maxima and minima	
	Increasing and decreasing functions	
	Applications in real-life problems	
8	Linear Programming	Class Notes, T1, R1 R2
	Formulation of LPP	
	Graphical method	
	Feasible and infeasible regions	
	Optimal solution	

Additional Reading

- **Paul Dawkins** *Linear Algebra* (Lamar University Online Notes) https://tutorial.math.lamar.edu/
- **Schaum's Outline of Linear Algebra** *S. Lipschutz and M. Lipson*, McGraw-Hill https://www.mheducation.com/highered/product/schaum-s-outline-linear-algebra-lipschutz-lipson/M9780071794565.html
- MIT OpenCourseWare Calculus and Linear Algebra Lectures https://ocw.mit.edu
