Drone grocery delivery

A PDP problem

Anthony Hermans & Federico Quin

Drones / UAV's

- Two kinds:
 - Lightweight drone (based on DJI matrice 100)
 - Payload: +- 3.5 kg
 - Battery life: 40 min
 - Charging time: 78 min
 - Speed: 17 22 m/s
 - Range: 5 km
 - Heavyweight drone (based on Freefly Alta 8)
 - Payload: 9 kg
 - Battery life: 25 min
 - Charging time: 105 min
 - Speed: 11 22 m/s
 - Range: 3-4 km
- Speed scales linearly with load

The task at hand

- 1. Customer orders groceries (requests)
- 2. Order is composed at the specified supermarket (+- 5 min)
- 3. Parcel is done:
 - a. Pickup window
 - i. Depending on the kinds of purchased goods
 - b. Drone flies to destination
 - i. Taking into account the battery life and load capacity
 - c. Drone drops parcel at the customer's house
 - i. Depending on the timeframe specified by the customer

Possible expansions

Depending on the project progress:

- Prioritized parcels
- Combining parcels
- Dealing with drone crashes

Scale

- Leuven city
 - Different stores
 - A charging station
- Bird's eye view
- Number of drones:
 - Standard 30 drones
 - 20 lightweight
 - 10 heavyweight

Routing for charging point

- Information about central charging point
 - Coordination
 - Occupation
- Charging point
 - Several chargers for each kind of drone
 - o 5 chargers light weight
 - 5 chargers heavy weight

Delegate MAS and BDI

- Each drone has 2 types of ants
- Feasibility ants
 - ≈ charging ants
 - responsible for sending information to the charging point
- Intention ants
 - ≈ pickup ants
 - responsible for communicating with parcels
 - Parcel analyzes incoming intention ants
 - wait a couple of ticks
 - decide which ant/drone to use depending on current pdp window
 - intention ant returns with decision (pickup or discard)

Dynamism

- Depending on load
 - Increase # drones
 - Decrease # drones
- Request arrivals
 - o Poisson?
 - Uniform randomly distributed?
 - o Fixed rate?

Research objectives

1. Study if a drone PDP method is a suitable solution for grocery delivery.

2. Study the effect of increasing/decreasing the amount of drones on the performance.

3. Investigate the performance of drone types.

Research questions for objective 1

- 1. What is the percentage of orders delivered on time during normal circumstances?
 - \bullet H_0 : Less than 80% of the orders are delivered in time during normal circumstances.
 - H_1 : At least 80% of the orders are delivered in time during normal circumstances.
- 2. What is the average delivery time of an order during normal circumstances?
 - H₀: The average time of delivery is 2 minutes or more.
 - H₁:The average time of delivery is less than 2 minutes.
- 3. How high is the average occupation at the charging station?
 - H_0 : The average occupation of the charging station is at most 95%.
 - H₁: The average occupation of the charging station is greater than 95%.
- 4. If a parcel is delivered too late, what is the average time the parcel is overdue?
 - H_0 : The average latency is larger than 1 minute.
 - H₁: The average latency is smaller than 1 minute.

Research questions for objective 2

- 1. How different is the average delivery time when using an increased amount of drones?
 - H_0 : When using 10 additional drones, the average delivery time will increase.
 - H₁: When using 10 additional drones, the average delivery time will decrease.
- 2. What is the effect of more drones on the coordination at the charging station?
 - H₀: When using 10 additional drones, the occupation of the charging station remains the same or lower.
 - \bullet H_1 : When using 10 additional drones, the occupation of the charging station increases.
- 3. What is the occupation of each drone individually when a large amount of drones is used?
 - H_0 : When using 100 drones, the occupation of each drone will be at least 50% or higher.
 - H_1 : When using 100 drones, the occupation of each drone will be at lower than 50%.

Research questions for objective 3

- 1. Does the lightweight drone provide a lower average delivery time?
 - H₀: The heavyweight drone provides a lower average delivery time compared to the lightweight model.
 - H₁: The lightweight drone provides a lower average delivery time compared to the heavyweight model.
- 2. What kind of drone has the highest amount of packages that are too late?
 - H_0 : The lightweight drone delivers the highest percentage of packages too late.
 - H₁: The heavyweight drone delivers the highest percentage of packages too late.
- 3. What kind of drone reduces the stress on the charging station the most?
 - H₀: The heavyweight drone puts less stress on the charging station compared to the lightweight model.
 - H₁: The lightweight drone puts less stress on the charging station compared to the heavyweight model.