Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

СибГУТИ

Кафедра высшей математики

Расчетно-графическая работа № 6.

Методы интегрирования

Выполнила: студентка 1 курса группы ИП-013

Иванов Леонид Дмитриевич

Преподаватель: Терещенко Анастасия Федоровна

Вопрос 1 Неверно Баллов: 0,00 из 1,00 Р Отметить вопрос	Вычислите интеграл $\int \frac{5xdx}{4+x^2}$. В процессе вычисления вы последовательно используете ровно две формулы из таблицы интегралов* В ответ запишите их номера в порядке использования в решении, через запятую. Ответ: 2
	Правильный ответ: 1,8
Вопрос 2 Верно Баллов: 1,00 из	Вычислить, используя приём интегрирования по частям, интеграл $\int rac{x \sin 2x}{\sin^3 x} dx$. В ответ запишите сколько раз вам пришлось применить приём интегрирования по частям в процессе решения (число).
1,00 ₹ Отметить вопрос	Otreet: 1 ✓
	Правильный ответ: 1
Вопрос 3 Верно	Используя универсальную тригонометрическую подстановку, взять интеграл $\int rac{dx}{5+3\cos x}.$
Баллов: 1,00 из 1,00	В ответ записать номер формулы в таблице интегралов*, к которой сводится интеграл в процессе решения. Если формул несколько, выбирайте самую "дальнюю"
Отметить вопрос	Ответ: 8 ✓

$$1) \int \frac{5xdx}{4+x^2}$$

Преобразуем интеграл используя подстановку t =4 + x^2

$$\int \frac{5xdx}{4+x^2} = \frac{5}{2t}dt$$

Используйте свойство интегралов

$$\int a \times f(x) dx = a \times \int f(x) dx$$

$$\frac{5}{2t}dt = \frac{5}{2} \int \frac{1}{t}dt$$

Используем $\int \frac{1}{x} dx = \ln(|x|)$, найдём интеграл

$$\frac{5}{2} \times \ln(|t|)$$

Сделаем обратную замену $t = 4 + x^2$

$$\frac{5}{2} \times \ln(4 + x^2)$$

Ответ :
$$\frac{5}{2} \times \ln(4 + x^2) + C$$

$$2)\int \frac{x\sin 2x}{\sin^3 x} dx$$

Используем $sin(2t) = 2sin(t)\cos(t)$ и запишем в развёрнутом виде

$$\int \frac{x \sin 2x}{\sin^3 x} dx = \int \frac{x 2 \sin(x) \cos(x)}{\sin^3 x} dx = \int \frac{2x \cos(x)}{\sin^2 x} dx$$

Вынесем 2 за интеграл

Свойство $\int a \times f(x) dx = a \int f(x) dx$

$$2\int \frac{x\cos x}{\sin^2 x} dx$$

Используем метод интегрирование по частям

$$\int udv = uv - \int vdu$$

$$2\int \frac{x\cos x}{\sin^2 x} dx = \begin{bmatrix} u = x & du = dx \\ 2\int \frac{x\cos x}{\sin^2 x} dx = dv \end{bmatrix}$$

Найдем $\int dv$

$$2\int \frac{x\cos x}{\sin^2 x} dx = 2\int \frac{d\sin x}{\sin^2 x} dx = 2\int \sin^{-2} x \, d\sin x$$

Используем формулу (1) $x^a dx = \frac{x^{a+1}}{a+1}$

$$2\int \frac{\sin^{-1}}{-1} + C => v = -\frac{1}{\sin x}$$

Теперь подставляем в формулу $\int u dv = uv - \int v du$

$$-\frac{2x}{\sin x} + \int \frac{1}{\sin x} dx$$

Умножим дробь на $\frac{\sin x}{\sin x}$

$$-\frac{2x}{\sin x} + \int \frac{1}{\sin x} \times \frac{\sin x}{\sin x} dx = -\frac{2x}{\sin x} + \int \frac{\sin x}{\sin(x)^2} dx$$

Используем $\sin(x)^2 = 1 - \cos(x)^2$

$$-\frac{2x}{\sin x} + \int \frac{\sin x}{1 - \cos(x)^2} dx = \begin{bmatrix} t = \cos x \\ \end{bmatrix}$$

Используем подстановку t = cosx

$$-\frac{2x}{\sin x} + \int \frac{1}{1-t^2} dt$$

Воспользуемся формулой (10) $\frac{dx}{x^2-a^2}=\frac{1}{2a} \ln \left|\frac{x-a}{x+a}\right|+C$

$$-\frac{2x}{\sin x} + \frac{1}{2} ln \left| \frac{t-a}{t+a} \right|$$

Сделаем обратную замену t=cos(x)

$$-\frac{2x}{\sin x} + \frac{1}{2} ln \left| \frac{1 - \cos x}{1 + \cos x} \right| + C$$

Otbet
$$-\frac{2x}{\sin x} + \frac{1}{2} ln \left| \frac{1 - cosx}{1 + cosx} \right| + C$$

$$(3)\int \frac{dx}{5+3\cos x} = \begin{vmatrix} dx = \frac{2dt}{1+t^2} & \frac{x}{2} = t \\ \cos x = \frac{1-t^2}{1+t^2} \end{vmatrix}$$
 теперь подставим значения

$$\int \frac{2dt}{\frac{1+t^2}{5+3\frac{1-t^2}{1+t^2}}} = 2\int \frac{dt}{\frac{1+t^2}{5+3\frac{1-t^2}{1+t^2}}}$$

Приведём к общему знаменателю

$$2\int \frac{dt}{\frac{1+t^2}{5+3\frac{1-t^2}{1+t^2}}} = 2\int \frac{dt}{5(1+t^2)+3(1-t^2)}$$

В знаменателе раскрываем скобки

$$2\int \frac{dt}{5+5t^2+3-3t^2} = 2\int \frac{dt}{2t^2+8}$$

Вынесем за скобки общий множитель 2 и сократим

$$2 \times \frac{1}{2} \int \frac{dt}{t^2 + 4} = \int \frac{dt}{t^2 + 4}$$

Используем формулу (8) $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C$

$$\int \frac{dt}{t^2 + 4} = \frac{1}{2} \times arctg \frac{t}{2} + C$$

Обратная замена $t = tg \frac{x}{2}$

$$\frac{1}{2} \times arctg \frac{tg \frac{x}{2}}{2} + C$$

Otbet:
$$\frac{1}{2} \times arctg \frac{tg \frac{x}{2}}{2} + C$$