Recurrence Relations

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number	S	COI	re
Order 1			
Question 1	1	/	1
Question 2	1	/	1
Question 3	1	1	1
Order 2			
Question 4	1	/	1
Question 5	1	/	1
Total	5	1	5 (100%)

Well done. You have passed the self-assessment.

Please print the results summary by clicking on "Print this results summary" and saving to pdf. You will need to include it in your lesson review

Performance Summary

Exam Name:	Recurrence Relations
Session ID:	111485533594
Exam Start:	Sat May 25 2024 18:31:21
Exam Stop:	Sat May 25 2024 18:45:54
Time Spent:	0:14:32

Question 1

Find the closed form of the relations:

$$\left\{ egin{array}{ll} a_0 & = -29 \ a_n & = -9a_{n-1} - 20 \end{array}
ight.$$

Note the index! $a_n =$

-27*(-9)^n - 2
$$-27(-9)^n - 2$$
 \checkmark Expected answer: $-27*(-9)^n - 2 -27(-9)^n - 2$

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Score: 1/1 **✓**

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which will be a geometric sequence).
- 2. Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0=a_1-a_0$.

•
$$a_0 = -29$$

•
$$a_1 = -9a_0 + (-20) = 241$$
.

So,
$$b_0 = 241 - -29 = 270$$
.

For the recurrence formula, we have

$$egin{aligned} b_n &= a_{n+1} - a_n \ &= -9a_n - 20 - (-9a_{n-1} - 20) \ &= -9b_{n-1} \end{aligned}$$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = 270(-9)^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$b_n = a_{n+1} - a_n \ 270(-9)^n = -9a_n - 20 - a_n \ = -9a_n - 20 - a_n \ 270(-9)^n + 20 = -10a_n \ -27(-9)^n - 2 = a_n$$
 divide both sides by -10

And so we find the closed form for a_n .

Question 2

Find the closed form of the relations:

$$\left\{egin{array}{ll} a_0&=-7\ a_n&=9a_{n-1}-16 \end{array}
ight.$$

Note the index! $a_n =$

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Score: 1/1 **✓**

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which *will* be a geometric sequence).
- Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0=a_1-a_0$.

•
$$a_0 = -7$$

•
$$a_1 = 9a_0 + (-16) = -79$$
.

So,
$$b_0 = -79 - -7 = -72$$
.

For the recurrence formula, we have

$$egin{aligned} b_n &= a_{n+1} - a_n \ &= 9a_n - 16 - (9a_{n-1} - 16) \ &= 9b_{n-1} \end{aligned}$$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = -72 \times 9^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$egin{aligned} b_n &= a_{n+1} - a_n \ -72 imes 9^n &= 9a_n - 16 - a_n \ &= 9a_n - 16 - a_n \ -72 imes 9^n + 16 &= 8a_n \ -9 imes 9^n + 2 &= a_n \end{aligned}$$

divide both sides by 8

And so we find the closed form for a_n .

Question 3

Find the closed form of the relations:

$$\begin{cases} a_0 = 4 \\ a_n = 2a_{n-1} + 2 \end{cases}$$

Note the index! $a_n =$

6 * 2^n - 2
$$6 \times 2^n - 2$$
 \checkmark Expected answer: 6*2^n - 2 $6 \times 2^n - 2$

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Score: 1/1 **✓**

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which will be a geometric sequence).
- 2. Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0=a_1-a_0$.

- $a_0 = 4$
- $a_1 = 2a_0 + 2 = 10$.

So,
$$b_0 = 10 - 4 = 6$$
.

For the recurrence formula, we have

$$egin{aligned} b_n &= a_{n+1} - a_n \ &= 2a_n + 2 - (2a_{n-1} + 2) \ &= 2b_{n-1} \end{aligned}$$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = 6 \times 2^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$egin{aligned} b_n &= a_{n+1} - a_n \ 6 imes 2^n &= 2a_n + 2 - a_n \ &= 2a_n + 2 - a_n \ 6 imes 2^n - 2 &= 1a_n \ 6 imes 2^n - 2 &= a_n \end{aligned}$$

divide both sides by 1

And so we find the closed form for a_n .

Question 4

Solve the recurrence relation given by:

$$\left\{egin{array}{ll} a_0 &= 2 \ a_1 &= 20 \ a_n &= 6a_{n-1} + 40a_{n-2} \end{array}
ight.$$

Note the index! $a_n =$

2 * 10^n
$$2 imes 10^n$$
 Expected answer: $2*10^n$ $2 imes 10^n$

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Score: 1/1 **✓**

Advice

To find the closed form of a linear recurrence of order 2, we have to follow three steps:

- 1. Find the characteristic equation.
- 2. Solve the characteristic equation to obtain the general form of the sequence.

3. Find the specific parameters by solving a system of simultaneous equations.

Finding the characteristic equation.

To find the characteristic equation, we first need to rewrite ther recurrence relation to have 0 on the right hand side.

$$a_{n+2} = 6a_{n-1} + 40a_{n-2} \ a_n - (6a_{n-1} + 40a_{n-2}) = 0$$

Since this relation must be true for every $n \ge 2$, it must also apply for n = 2:

$$a_2 - 6a_1 - 40a_0 = 0$$

Now, we substitute each a_i with x^i , to get the characteristic equation:

$$x^2 - 6x - 40 = 0$$

.

Solving the characteristic equation.

We can solve the characteristic equation using the quadratic formula:

$$rac{-b\pm\sqrt{b^2-4ac}}{2}.$$

Here we have a=1, b=-6 and c=-40. So the quadratic formula gives us two solutions to that equation: $x_1=-4$ and $x_2=10$. Make sure to verify your intermediate result at this stage by plugging these values back into your equation.

The general form of the sequence is therefore:

$$a_n = s_1 imes 6^n + s_2 imes 40^n.$$

Finding the parameters s_1 and s_2 .

To find the parameters s_1 and s_2 we use the values of the elements a_0 and a_1 .

• For n=0, we know that $a_0=2$, and our general form gives us that this must be equal to $a_0=s_0*(-4)^0+s_2*(10)^0$.

• For n=1, we know that $a_1=20$, and our general form gives us that this must be equal to $a_1=s_1*(-4)^1+s_2*(10)^1$.

And so we obtain the simultaneous equations:

$$\left\{egin{array}{ll} s_1 + s_2 &= 2 \ 10s_2 - 4s_1 &= 20 \end{array}
ight..$$

We can solve this system of linear equations, for example by elimination. Let's eliminate s_2 :

- 1. Multiply the top equation by 10 (the coefficient of s_2 in the bottom equation): $10s_1+10s_2=20$.
- 2. Subtract the second equation from the first:

$$14s_1 = 0.$$

- 3. Solve for s_1 using the equation we just obtained: $s_1 = 0$.
- 4. Substitute the value of s_1 into the top equation: $s_2 = 2 s_1 = 2$.

We find that $s_1=0$ and $s_2=2$. Make sure to verify your intermediate result at this stage by plugging these values back into the two simultaneous equations.

Therefore the closed form is

$$a_n=2 imes 10^n.$$

Evaluate at least a_0 , a_1 and a_2 with your closed form solution before entering it into the quiz.

Question 5

Solve the recurrence relation given by:

$$\left\{ egin{array}{ll} a_0 &= 3 \ a_1 &= 20 \ a_n &= 15a_{n-1} - 50a_{n-2} \end{array}
ight.$$

Note the index! $a_n =$

10^n + 2 * 5^n
$$10^n + 2 \times 5^n$$
 \checkmark Expected answer: 2*5^n + 10^n $2 \times 5^n + 10^n$

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Score: 1/1 **✓**

Advice

To find the closed form of a linear recurrence of order 2, we have to follow three steps:

- 1. Find the characteristic equation.
- 2. Solve the characteristic equation to obtain the general form of the sequence.
- 3. Find the specific parameters by solving a system of simultaneous equations.

Finding the characteristic equation.

To find the characteristic equation, we first need to rewrite ther recurrence relation to have 0 on the right hand side.

$$a_{n+2} = 15a_{n-1} - 50a_{n-2} \ a_n - (15a_{n-1} - 50a_{n-2}) = 0$$

Since this relation must be true for every $n \geq 2$, it must also apply for n = 2:

$$a_2 - 15a_1 + 50a_0 = 0$$

Now, we substitute each a_i with x^i , to get the characteristic equation:

$$x^2 - 15x + 50 = 0$$

.

5/25/24, 6:57 PM Recurrence Relations

Solving the characteristic equation.

We can solve the characteristic equation using the quadratic formula:

$$rac{-b\pm\sqrt{b^2-4ac}}{2}.$$

Here we have a=1, b=-15 and c=50. So the quadratic formula gives us two solutions to that equation: $x_1=5$ and $x_2=10$. Make sure to verify your intermediate result at this stage by plugging these values back into your equation.

The general form of the sequence is therefore:

$$a_n = s_1 imes 15^n + s_2 (-50)^n.$$

Finding the parameters s_1 and s_2 .

To find the parameters s_1 and s_2 we use the values of the elements a_0 and a_1 .

- For n=0, we know that $a_0=3$, and our general form gives us that this must be equal to $a_0=s_0*(5)^0+s_2*(10)^0$.
- For n=1, we know that $a_1=20$, and our general form gives us that this must be equal to $a_1=s_1*(5)^1+s_2*(10)^1$.

And so we obtain the simultaneous equations:

$$\left\{egin{array}{ll} s_1 + s_2 &= 3 \ 5s_1 + 10s_2 &= 20 \end{array}
ight..$$

We can solve this system of linear equations, for example by elimination. Let's eliminate s_2 :

- 1. Multiply the top equation by 10 (the coefficient of s_2 in the bottom equation): $10s_1+10s_2=30$.
- 2. Subtract the second equation from the first:

$$5s_1 = 10.$$

- 3. Solve for s_1 using the equation we just obtained: $s_1=2$.
- 4. Substitute the value of s_1 into the top equation: $s_2=3-s_1=1$.

We find that $s_1=2$ and $s_2=1$. Make sure to verify your intermediate result at this stage by plugging these values back into the two simultaneous equations.

Therefore the closed form is

$$a_n = 2 \times 5^n + 10^n.$$

Evaluate at least a_0 , a_1 and a_2 with your closed form solution before entering it into the quiz.

Created using Numbas (https://www.numbas.org.uk), developed by Newcastle University (http://www.newcastle.ac.uk).