

Современные нейросетевые технологии

Лекция 2. Линейная классификация изображений

Учебные вопросы

- 1) Линейный классификатор изображений
- 2) Преобразование softmax
- 3) Функция потерь Cross Enthropy Loss

Материалы курса: github.com/balezz/modern_dl Срок сдачи A1 – 10.09.2022 г.

Источники:

- dlcourse.ai
- cs231n.stanford.edu
- cs230.stanford.edu

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

The Problem: Semantic Gap

This image by Nikita is licensed under CC-BY 2.0

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Проблемы классификации

This image is CCO 1.0 public domain

This image is DCD 1.0 public domain.

This image is CCO LO public domain.

Tris inace + CCC 10 public domain

This image is CCD to public comes.

Steuming by passing in townsect under <u>DC-DY-2.0</u>

This image is DOE Lib public charact.

Naïve image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Data driven approach

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Unlike sorting, no obvious way to hard-cod the algorithm for recognizing a cat or other classes

- Collect a dataset of images and labels
- Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Parametric Approach: Linear Classifier

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

Hard cases for a linear classifier

Class 1:

number of pixels > 0 odd

Class 2

number of pixels > 0 even

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1:

Three modes

Class 2:

Everything else

So far: Defined a (linear) score function f(x,W) = Wx + b

airplane

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

-3 45

-0.51

3 12

anplane	5.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Функция потерь

ФИНАНСОВЫЙ УНИВЕРСИТЕТ поит полительной оказачания

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

ı		1	-	9	۱
:	_	10		W.	
ä	1			3	ı
1				1	ı
E	*		and o	1	1

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$|L_i = -\log P(Y = y_i|X = x_i)|$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

Функция потерь Cross Enthropy

Χ

Z-scores

y_prob

y_true

	10
	0
	-6
	25
_	12
_	16
	0
	-6
	-50
	11

$$\frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} =$$

Функция потерь Cross Enthropy

y_prob y_true

0.1	0
0	0
0	0
0.5	1
0.1	0
0.2	0
0	0
0	0
0	0
0.1	0

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Функция потерь Cross Enthropy

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

probabilities