UPLB Eliens - Pegaraw Notebook

Contents

1	Data	Structures 1								
_	1.1	Disjoint Set Union								
	1.2	Minimum Queue								
	1.3	Range Add Point Query								
	1.4	Range Add Range Query								
	1.5	Segment Tree								
	1.6	Segment Tree 2d								
	1.7	Sparse Table								
	1.8	Sparse Table 2d								
	Б	· P								
2	Dyna 2.1	mic Programming 3 Divide And Conquer								
	2.1									
	2.2	Edit Distance								
	2.4	and the second s								
	2.4	Knuth Optimization								
	2.6	Longest Increasing Subsequence								
	2.7	Subset Sum								
	2.1	Subset Sum								
3	Geometry 4									
	3.1	Circle Line Intersection								
	3.2	Convex Hull								
	3.3	Line Sweep								
	3.4	Nearest Points								
4	Graph Theory 5									
	4.1	Articulation Point								
	4.2	Bellman Ford								
	4.3	Bridge								
	4.4	Dijkstra								
	4.5	Dinics								
	4.6	Edmonds Karp								
	4.7	Fast Second Mst								
	4.8	Find Cycle								
	4.9	Floyd Warshall								
	4.10	Ford Fulkerson								
	4.11	Hierholzer								
	4.12	Hungarian								
	4.13	Is Bipartite								
	4.14	Is Cyclic								
	4.15	Kahn								
	4.16	Kosaraju								
	4.17	Kruskals								
	4.18	Kruskal Mst								
	4.19	Kuhn								
	4.20	Lowest Common Ancestor 9								
	4.21	Maximum Bipartite Matching								
	4.22	Min Cost Flow								
	4.23	Prim								
	4.24	Topological Sort								
	4.25	Zero One Bfs								
5	Misco	ellaneous 10								
	5.1									
	5.2	Gauss 10 Ternary Search 11								
		-								
6	Num	ber Theory 11								
	6.1	Extended Euclidean								
	6.2	Find All Solutions								
	6.3	Linear Sieve								
	6.4	Miller Rabin								
	6.5	Modulo Inverse								

```
6.7
                         12
    12
    Tonelli Shanks . . . . . . . . . . . . . . . . . .
                         12
 Strings
                         12
    Count Unique Substrings . . . . . . . . . . . . .
    13
    Group Identical Substrings . . . . . . . . . . . .
                         13
 7.3
    13
 7.4
    Longest Common Prefix . . . . . . . . . . . . . . .
    14
    1 Data Structures
```

1.1 Disjoint Set Union

```
struct DSU {
      vector<int> parent, size;
      DSU(int n) {
        parent.resize(n);
        size.resize(n);
        for (int i = 0; i < n; i++) make_set(i);</pre>
8
      void make_set(int v) {
        parent[v] = v;
        size[v] = 1;
      bool is same(int a, int b) { return find set(a)
           == find_set(b); }
      int find_set(int v) { return v == parent[v] ? v :
            parent[v] = find_set(parent[v]); }
      void union_sets(int a, int b) {
       a = find_set(a);
16
        b = find_set(b);
        if (a != b) {
          if (size[a] < size[b]) swap(a, b);</pre>
          parent[b] = a;
          size[a] += size[b];
22
23 };
```

1.2 Minimum Queue

6

```
11, 11>> &s2) {
     if (s1.empty() || s2.empty()) {
       return s1.empty() ? s2.top().second : s1.top().
       return min(s1.top().second, s2.top().second);
 6
 8 void add_element(ll new_element, stack<pair<ll, ll</pre>
        >> &s1) {
     11 minimum = s1.empty() ? new_element : min(
          new_element, s1.top().second);
     s1.push({new_element, minimum});
11
12 11 remove_element(stack<pair<11, 11>> &s1, stack<
        pair<11, 11>> &s2) {
```

```
if (s2.empty()) {
           while (!s1.emptv()) {
             11 element = s1.top().first;
             11 minimum = s2.empty() ? element : min(
                  element, s2.top().second);
             s2.push({element, minimum});
         11 removed_element = s2.top().first;
         s2.pop();
         return removed_element;
13 24 }
```

1.3 Range Add Point Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return:
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
         lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = 0;
      void range_add(int 1, int r, T x) {
        if (r <= i || j <= 1) return;</pre>
        if (1 <= i && j <= r) {
          val += x;
          return;
        lc->range_add(1, r, x);
        rc->range_add(1, r, x);
      T point_query(int k) {
        if (k < i \mid | j \le k) return IDN;
        if (j - i == 1) return val;
        return val + lc->point_query(k) + rc->
            point_query(k);
   template<typename T, typename InType = T>
    class SegTree {
      SegTreeNode<T, InType> root;
```

SegTree(int n) : root(0, n) {}

1.4 Range Add Range Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val, to_add = 0;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
11
          val = DEF:
          return;
13
14
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
16
         rc = new SegTreeNode<T, InType>(k, j);
17
        val = operation(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
           ) : i(i), j(j) {
20
         if (j - i == 1) {
21
          lc = rc = nullptr;
          val = (T) a[i];
23
          return:
24
25
         int k = (i + j) / 2;
26
        lc = new SegTreeNode<T, InType>(a, i, k);
27
         rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = operation(lc->val, rc->val);
29
      void propagate() {
31
        if (to_add == 0) return;
        val += to add;
        if (j - i > 1) {
34
          lc->to_add += to_add;
35
          rc->to_add += to_add;
36
37
        to\_add = 0;
38
39
      void range_add(int 1, int r, T delta) {
40
        propagate();
41
         if (r <= i || j <= 1) return;</pre>
42
        if (1 <= i && j <= r) {
43
          to_add += delta;
44
          propagate();
45
         } else {
46
          lc->range_add(l, r, delta);
47
           rc->range_add(l, r, delta);
48
          val = operation(lc->val, rc->val);
49
51
      T range_query(int 1, int r) {
        propagate();
53
        if (1 <= i && j <= r) return val;</pre>
54
         if (j <= 1 || r <= i) return IDN;</pre>
         return operation(lc->range_query(l, r), rc->
             range_query(1, r));
```

```
56  }
57  T operation(T x, T y) {}
58  };
59  template<typename T, typename InType = T>
60  class SegTree {
61  public:
62   SegTreeNode<T, InType> root;
63   SegTree(int n) : root(0, n) {}
64   SegTree(const vector<InType>& a) : root(a, 0, a. size()) {}
65   void range_add(int 1, int r, T delta) { root. range_add(1, r, delta); }
66   T range_query(int 1, int r) { return root. range_query(1, r); }
67  };
```

1.5 Segment Tree

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return;
         int k = (i + j) / 2;
         lc = new SegTreeNode<T, InType>(i, k);
         rc = new SegTreeNode<T, InType>(k, j);
         val = op(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
           ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
25
        int k = (i + j) / 2;
         lc = new SegTreeNode<T, InType>(a, i, k);
         rc = new SegTreeNode<T, InType>(a, k, j);
        val = op(lc->val, rc->val);
2.9
30
      void set(int k, T x) {
        if (k < i | | j <= k) return;</pre>
        if (j - i == 1) {
          val = x;
          return;
        1c->set(k, x);
         rc \rightarrow set(k, x);
38
        val = op(lc->val, rc->val);
39
40
      T range_query(int 1, int r) {
        if (1 <= i && j <= r) return val;</pre>
42
        if (j <= 1 || r <= i) return IDN;</pre>
4.3
        return op(lc->range_query(l, r), rc->
             range_query(l, r));
45
      T \circ p(T \times, T y) \{ \}
    };
    template<typename T, typename InType = T>
```

```
48  class SegTree {
49  public:
50    SegTreeNode<T, InType> root;
51    SegTree(int n) : root(0, n) {}
52    SegTree(const vector<InType>& a) : root(a, 0, a. size()) {}
53    void set(int k, T x) { root.set(k, x); }
54    T range_query(int 1, int r) { return root. range_query(1, r); }
55  };
```

```
1.6 Segment Tree 2d
    template<typename T, typename InType = T>
    class SegTree2dNode {
    public:
      int i, j, tree_size;
      SegTree<T, InType>* seg_tree;
      SeqTree2dNode<T, InType>* 1c, * rc;
      SegTree2dNode() {}
      SegTree2dNode(const vector<vector<InType>>& a,
           int i, int j) : i(i), j(j) {
        tree_size = a[0].size();
        if (j - i == 1) {
          lc = rc = nullptr;
          seg_tree = new SegTree<T, InType>(a[i]);
          return:
        int k = (i + j) / 2;
        lc = new SegTree2dNode<T, InType>(a, i, k);
        rc = new SegTree2dNode<T, InType>(a, k, j);
        seg_tree = new SegTree<T, InType>(vector<T>(
             tree size));
        operation_2d(1c->seq_tree, rc->seq_tree);
       ~SegTree2dNode() {
        delete 1c;
        delete rc;
24
      void set_2d(int kx, int ky, T x) {
        if (kx < i || j <= kx) return;</pre>
27
        if (j - i == 1) {
2.8
          seg_tree->set(ky, x);
          return;
        1c->set_2d(kx, ky, x);
32
        rc->set_2d(kx, ky, x);
        operation_2d(lc->seg_tree, rc->seg_tree);
34
      T range_query_2d(int lx, int rx, int ly, int ry)
36
        if (lx <= i && j <= rx) return seg_tree->
             range_query(ly, ry);
        if (j <= lx || rx <= i) return -INF;</pre>
38
        return max(lc->range_query_2d(lx, rx, ly, ry),
             rc->range_query_2d(lx, rx, ly, ry));
39
      void operation_2d(SegTree<T, InType>* x, SegTree<</pre>
           T, InType>* y) {
41
        for (int k = 0; k < tree_size; k++) {</pre>
          seg_tree->set(k, max(x->range_query(k, k + 1)
               , y->range_query(k, k + 1)));
43
4.5
    template<typename T, typename InType = T>
    class SegTree2d {
```

```
48  public:
49    SegTree2dNode<T, InType> root;
50    SegTree2d() {}
51    SegTree2d(const vector<vector<InType>>& mat):
        root(mat, 0, mat.size()) {}
52    void set_2d(int kx, int ky, T x) { root.set_2d(kx, ky, x); }
53    T range_query_2d(int lx, int rx, int ly, int ry)
        { return root.range_query_2d(lx, rx, ly, ry)
        ; }
54    };
```

1.7 Sparse Table 1 11 log2_floor(ll i) { return i ? __builtin_clzll(1) - __builtin_clzll(i vector<vector<ll>> build_sum(ll N, ll K, vector<ll> vector<vector<ll>> st(K + 1, vector<ll>(N + 1)); for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre> for (ll i = 1; i <= K; i++)</pre> for $(11 \ j = 0; \ j + (1 << i) <= N; \ j++)$ st[i][j] = st[i - 1][j] + st[i - 1][j + (1 <<(i - 1))];10 return st; 12 11 sum_query(ll L, ll R, ll K, vector<vector<ll>>> & 11 sum = 0;14 for (11 i = K; i >= 0; i--) { 15 **if** ((1 << i) <= R - L + 1) { 16 sum += st[i][L]; 17 L += 1 << i; 18 19 20 return sum; 21 } vector<vector<ll>> build_min(ll N, ll K, vector<ll>

vector<vector<ll>> st(K + 1, vector<ll>(N + 1));

st[i][j] = min(st[i-1][j], st[i-1][j+(1

for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>

11 min_query(11 L, 11 R, vector<vector<11>> &st) {

return min(st[i][L], st[i][R - (1 << i) + 1]);</pre>

for (11 j = 0; j + (1 << i) <= N; <math>j++)

for (ll i = 1; i <= K; i++)</pre>

 $11 i = log2_floor(R - L + 1);$

<< (i - 1))]);

1.8 Sparse Table 2d

return st;

24

25

26

29

33 }

```
const int N = 100;
int matrix[N][N];
int table[N][N][(int)(log2(N) + 1)][(int)(log2(N) + 1)];

void build_sparse_table(int n, int m) {
   for (int i = 0; i < n; i++)
   for (int j = 0; j < m; j++)
      table[i][j][0][0] = matrix[i][j];
   for (int k = 1; k <= (int)(log2(n)); k++)</pre>
```

```
for (int i = 0; i + (1 << k) - 1 < n; i++)
           for (int j = 0; j + (1 << k) - 1 < m; <math>j++)
             table[i][j][k][0] = min(table[i][j][k -
                  1][0], table[i + (1 << (k - 1))][j][k
                  - 1][0]);
      for (int k = 1; k \le (int)(log2(m)); k++)
        for (int i = 0; i < n; i++)</pre>
           for (int j = 0; j + (1 << k) - 1 < m; <math>j++)
             table[i][j][0][k] = min(table[i][j][0][k -
                  1], table[i][j + (1 << (k - 1))][0][k
                  - 1]);
       for (int k = 1; k <= (int) (log2(n)); k++)</pre>
        for (int 1 = 1; 1 \le (int)(log2(m)); 1++)
18
           for (int i = 0; i + (1 << k) - 1 < n; i++)
19
             for (int j = 0; j + (1 << 1) - 1 < m; j++)
               table[i][j][k][l] = min(
                 min(table[i][j][k-1][l-1], table[i]
                      + (1 << (k - 1))][j][k - 1][1 -
                      1]),
                 min(table[i][j + (1 << (1 - 1))][k -
                      1] [1 - 1], table [i + (1 << (k - 1))
                      ) ] [ \dot{j} + (1 << (1 - 1)) ] [k - 1] [1 -
               );
    int rmq(int x1, int y1, int x2, int y2) {
      int k = log2(x2 - x1 + 1), 1 = log2(y2 - y1 + 1);
      return max (
        \max(table[x1][y1][k][1], table[x2 - (1 << k) +
             1][y1][k][l]),
         \max(\text{table}[x1][y2 - (1 << 1) + 1][k][1], \text{table}[
             x2 - (1 << k) + 1][y2 - (1 << 1) + 1][k][1
             ])
      );
31
```

2 Dynamic Programming

2.1 Divide And Conquer

```
11 m, n;
   vector<ll> dp_before(n), dp_cur(n);
   11 C(11 i, 11 j);
   void compute(ll 1, ll r, ll optl, ll optr) {
      if (1 > r) return;
     11 \text{ mid} = (1 + r) >> 1;
      pair<11, 11 > best = \{LLONG_MAX, -1\};
      for (11 k = opt1; k <= min(mid, optr); k++)</pre>
        best = min(best, \{(k ? dp_before[k - 1] : 0) +
             C(k, mid), k});
      dp_cur[mid] = best.first;
      11 opt = best.second;
      compute(1, mid - 1, opt1, opt);
      compute(mid + 1, r, opt, optr);
14
15 ll solve() {
      for (ll i = 0; i < n; i++) dp_before[i] = C(0, i)</pre>
      for (ll i = 1; i < m; i++) {
        compute (0, n - 1, 0, n - 1);
        dp_before = dp_cur;
      return dp_before[n - 1];
```

2.2 Edit Distance

2.3 Knapsack

2.4 Knuth Optimization

```
1 11 solve() {
     11 N:
     // read N and input
     vector<vector<ll>> dp(N, vector<ll>(N)), opt(N,
          vector<11>(N));
     auto C = [\&](11 i, 11 j) {
       // Implement cost function C.
     };
     for (11 i = 0; i < N; i++) {
       opt[i][i] = i;
       ... // Initialize dp[i][i] according to the
     for (11 i = N - 2; i >= 0; i--) {
       for (11 j = i + 1; j < N; j++) {
         11 \text{ mn} = 11\_\text{MAX}, \text{ cost} = C(i, j);
         for (ll k = opt[i][j-1]; k \le min(j-1,
              opt[i + 1][j]); k++) {
           if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
              opt[i][j] = k;
             mn = dp[i][k] + dp[k + 1][j] + cost;
         }
```

2.5 Longest Common Subsequence

```
1 11 LCS(string x, string y, 11 n, 11 m) {
      vector < vector < 11 >> dp(n + 1, vector < 11 > (m + 1));
      for (ll i = 0; i <= n; i++) {
         for (ll j = 0; j <= m; j++) {</pre>
           if (i == 0 || j == 0) {
             dp[i][j] = 0;
           } else if (x[i - 1] == y[j - 1]) {
             dp[i][j] = dp[i - 1][j - 1] + 1;
             dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
11
        }
13
14
      ll index = dp[n][m];
15
      vector<char> lcs(index + 1);
      lcs[index] = ' \setminus 0';
17
      11 i = n, j = m;
18
      while (i > 0 \&\& j > 0) {
19
        if (x[i-1] == y[j-1]) {
20
           lcs[index - 1] = x[i - 1];
21
           i--;
22
           <del>--;</del>
           index--;
         } else if (dp[i - 1][j] > dp[i][j - 1]) {
25
          <u>i</u>--;
26
        } else {
27
           j--;
28
29
      return dp[n][m];
31 }
```

2.6 Longest Increasing Subsequence

```
1  ll get_ceil_idx(vector<ll> &a, vector<ll> &T, ll l,
          11 r, 11 x) {
      while (r - 1 > 1) {
        11 m = 1 + (r - 1) / 2;
        if (a[T[m]] >= x) {
         r = m:
        } else {
          1 = m:
      return r;
11
    11 LIS(11 n, vector<11> &a) {
      11 len = 1;
14
      vector<11> T(n, 0), R(n, -1);
15
      T[0] = 0;
      for (ll i = 1; i < n; i++) {
17
        if (a[i] < a[T[0]]) {</pre>
         T[0] = i;
19
        } else if (a[i] > a[T[len - 1]]) {
20
          R[i] = T[len - 1];
21
          T[len++] = i;
         } else {
```

2.7 Subset Sum

3 Geometry

3.1 Circle Line Intersection

```
double r, a, b, c; // given as input
    double x0 = -a * c / (a * a + b * b);
    double v0 = -b * c / (a * a + b * b);
    if (c * c > r * r * (a * a + b * b) + EPS) {
      puts ("no points");
    } else if (abs (c *c - r * r * (a * a + b * b)) <</pre>
         EPS) {
      puts ("1 point");
      cout << x0 << ' ' << y0 << '\n';
 8
   } else {
      double d = r * r - c * c / (a * a + b * b);
      double mult = sqrt (d / (a * a + b * b));
      double ax, ay, bx, by;
      ax = x0 + b * mult;
      bx = x0 - b * mult;
      ay = y0 - a * mult;
      by = y0 + a * mult;
      puts ("2 points");
      cout << ax << ' ' << ay << '\n' << bx << ' ' <<
           by << '\n';</pre>
19 }
```

3.2 Convex Hull

```
} else if (v > 0) {
        return +1;
      return 0;
12
13
    bool cw(pt a, pt b, pt c, bool include_collinear) {
      11 o = orientation(a, b, c);
      return o < 0 || (include_collinear && o == 0);</pre>
    bool collinear(pt a, pt b, pt c) {
      return orientation(a, b, c) == 0;
19
   void convex_hull(vector<pt>& a, bool
         include_collinear = false) {
      pt p0 = *min_element(a.begin(), a.end(), [](pt a,
            pt b) {
        return make_pair(a.y, a.x) < make_pair(b.y, b.x</pre>
      });
24
      sort(a.begin(), a.end(), [&p0](const pt& a, const
            pt& b) {
        11 o = orientation(p0, a, b);
        if (o == 0) {
          return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.x)
               a.y) * (p0.y - a.y)
28
               < (p0.x - b.x) * (p0.x - b.x) + (p0.y -
                    b.y) * (p0.y - b.y);
        return o < 0;
      if (include collinear) {
        11 i = (11) a.size()-1;
34
        while (i \geq= 0 && collinear(p0, a[i], a.back()))
              i --:
        reverse(a.begin()+i+1, a.end());
      vector<pt> st;
38
      for (ll i = 0; i < (ll) a.size(); i++) {</pre>
        while (st.size() > 1 && !cw(st[st.size() - 2],
             st.back(), a[i], include_collinear)) {
          st.pop_back();
        st.push_back(a[i]);
      a = st;
45 }
```

3.3 Line Sweep

```
const double EPS = 1E-9;
    struct pt {
     double x, y;
4
   };
    struct seq {
      pt p, q;
      11 id;
      double get_y (double x) const {
        if (abs(p.x - q.x) < EPS) {
          return p.y;
12
        return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x)
             .x);
   bool intersect1d(double 11, double r1, double 12,
         double r2) {
      if (l1 > r1) {
```

```
Pegarav
```

```
17
        swap(11, r1);
18
19
      if (12 > r2) {
20
        swap(12, r2);
21
22
      return max(11, 12) <= min(r1, r2) + EPS;</pre>
23
24 11 vec(const pt& a, const pt& b, const pt& c) {
      double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y)
           ) * (c.x - a.x);
      return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;
27
28 bool intersect(const seg& a, const seg& b) {
29
      return intersect1d(a.p.x, a.g.x, b.p.x, b.g.x) &&
             intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
31
              vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <=
                   . 4 . 0
              vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <=
                   0:
34 bool operator<(const seg& a, const seg& b) {
         double x = max(min(a.p.x, a.q.x), min(b.p.x, b.
36
         return a.get_y(x) < b.get_y(x) - EPS;</pre>
37
38 struct event {
      double x:
40
      11 tp, id;
41
      event() {}
      event (double x, 11 tp, 11 id) : x(x), tp(tp), id(
           id) {}
43
      bool operator<(const event& e) const {</pre>
44
        if (abs(x - e.x) > EPS) {
45
          return x < e.x;
46
47
        return tp > e.tp;
48
49 };
50 set<seg> s;
51 vector<set<seg>::iterator> where;
    set<seg>::iterator prev(set<seg>::iterator it) {
53
      return it == s.begin() ? s.end() : --it;
55 set<seg>::iterator next(set<seg>::iterator it) {
     return ++it;
58 pair<11, 11> solve(const vector<seg>& a) {
     11 n = (11) a.size();
      vector<event> e;
61
      for (ll i = 0; i < n; ++i) {</pre>
        e.push_back(event(min(a[i].p.x, a[i].q.x), +1,
        e.push_back(event(max(a[i].p.x, a[i].q.x), -1,
             i));
      sort(e.begin(), e.end());
      s.clear();
67
      where.resize(a.size());
68
      for (size_t i = 0; i < e.size(); ++i) {</pre>
69
       11 \text{ id} = e[i].id;
        if (e[i].tp == +1) {
          set<seg>::iterator nxt = s.lower_bound(a[id])
               , prv = prev(nxt);
          if (nxt != s.end() && intersect(*nxt, a[id]))
            return make pair(nxt->id, id);
74
75
          if (prv != s.end() && intersect(*prv, a[id]))
```

3.4 Nearest Points

```
struct pt {
      11 x, y, id;
   };
    struct cmp_x {
      bool operator()(const pt & a, const pt & b) const
         return a.x < b.x || (a.x == b.x && a.y < b.y);</pre>
 8
    };
    struct cmp_y {
      bool operator()(const pt & a, const pt & b) const
        return a.y < b.y;</pre>
    };
    11 n;
    vector<pt> a;
    double mindist;
    pair<11, 11> best_pair;
    void upd_ans(const pt & a, const pt & b) {
      double dist = sqrt((a.x - b.x) * (a.x - b.x) + (a.x - b.x)
           .y - b.y) * (a.y - b.y);
      if (dist < mindist) {</pre>
        mindist = dist;
        best_pair = {a.id, b.id};
23
24
    vector<pt> t;
    void rec(ll 1, ll r) {
      if (r - 1 <= 3) {
        for (11 i = 1; i < r; ++i) {</pre>
          for (11 j = i + 1; j < r; ++j) {
            upd_ans(a[i], a[j]);
         sort(a.begin() + 1, a.begin() + r, cmp_y());
        return;
      11 m = (1 + r) >> 1, midx = a[m].x;
      rec(1, m);
      rec(m, r);
      merge(a.begin() + 1, a.begin() + m, a.begin() + m
           , a.begin() + r, t.begin(), cmp_y());
      copy(t.begin(), t.begin() + r - 1, a.begin() + 1)
      11 \text{ tsz} = 0;
      for (11 i = 1; i < r; ++i) {
        if (abs(a[i].x - midx) < mindist) {</pre>
```

4 Graph Theory

4.1 Articulation Point

```
void APUtil(vector<vector<ll>>> &adj, ll u, vector<</pre>
         bool> &visited,
    vector<11> &disc, vector<11> &low, 11 &time, 11
         parent, vector<bool> &isAP) {
      11 children = 0;
      visited[u] = true;
      disc[u] = low[u] = ++time;
      for (auto v : adj[u]) {
        if (!visited[v]) {
8
          children++;
          APUtil(adj, v, visited, disc, low, time, u,
              isAP);
          low[u] = min(low[u], low[v]);
          if (parent != -1 && low[v] >= disc[u]) {
            isAP[u] = true;
        } else if (v != parent) {
          low[u] = min(low[u], disc[v]);
      if (parent == -1 && children > 1) {
        isAP[u] = true;
    void AP(vector<vector<ll>> &adj, ll n) {
      vector<ll> disc(n), low(n);
      vector<bool> visited(n), isAP(n);
      11 time = 0, par = -1;
      for (11 u = 0; u < n; u++) {
        if (!visited[u]) {
2.8
          APUtil(adj, u, visited, disc, low, time, par,
                isAP);
      for (11 u = 0; u < n; u++) {
        if (isAP[u]) {
          cout << u << " ";
34
36
```

4.2 Bellman Ford

```
1 struct Edge {
2   int a, b, cost;
3   };
4   int n, m, v;
```

```
vector<Edge> edges;
    const int INF = 1000000000;
    void solve() {
      vector<int> d(n, INF);
      d[v] = 0;
      vector<int> p(n, -1);
11
      for (int i = 0; i < n; ++i) {</pre>
13
       \mathbf{x} = -1;
        for (Edge e : edges)
         if (d[e.a] < INF)</pre>
            if (d[e.b] > d[e.a] + e.cost) {
17
              d[e.b] = max(-INF, d[e.a] + e.cost);
18
              p[e.b] = e.a;
19
              x = e.b;
20
21
      if (x == -1) cout << "No negative cycle from " <<
            v;
      else {
        int y = x;
25
         for (int i = 0; i < n; ++i) y = p[y];
26
        vector<int> path;
27
        for (int cur = y;; cur = p[cur]) {
28
          path.push_back(cur);
29
          if (cur == y && path.size() > 1) break;
31
        reverse(path.begin(), path.end());
        cout << "Negative cycle: ";</pre>
         for (int u : path) cout << u << ' ';</pre>
35 }
```

4.3 Bridge

```
1 int n;
   vector<vector<int>> adi;
    vector<bool> visited;
   vector<int> tin, low;
 5 int timer;
    void dfs(int v, int p = -1) {
     visited[v] = true;
     tin[v] = low[v] = timer++;
      for (int to : adj[v]) {
       if (to == p) continue;
11
       if (visited[to]) {
        low[v] = min(low[v], tin[to]);
13
      } else {
         dfs(to, v);
         low[v] = min(low[v], low[to]);
16
         if (low[to] > tin[v]) IS_BRIDGE(v, to);
17
18
     }
19 }
20 void find_bridges() {
      timer = 0;
      visited.assign(n, false);
23
      tin.assign(n, -1);
24
      low.assign(n, -1);
      for (int i = 0; i < n; ++i) {
26
       if (!visited[i]) dfs(i);
27
```

4.4 Dijkstra

```
const int INF = 1000000000;
   vector<vector<pair<int, int>>> adj;
3 void dijkstra(int s, vector<int> & d, vector<int> &
         p) {
     int n = adj.size();
     d.assign(n, INF);
     p.assign(n, -1);
     d[s] = 0;
     using pii = pair<int, int>;
     priority queue<pii, vector<pii>, greater<pii>> g;
     q.push({0, s});
     while (!q.empty()) {
       int v = q.top().second, d_v = q.top().first;
       if (d v != d[v]) continue;
       for (auto edge : adj[v]) {
16
         int to = edge.first, len = edge.second;
         if (d[v] + len < d[to]) {</pre>
             d[to] = d[v] + len;
             p[to] = v;
             q.push({d[to], to});
```

4.5 Dinics

```
1 struct FlowEdge {
      int v, u;
      11 cap, flow = 0;
      FlowEdge(int v, int u, ll cap) : v(v), u(u), cap(
           cap) {}
5
    struct Dinic {
      const 11 flow_inf = 1e18;
     vector<FlowEdge> edges;
     vector<vector<int>> adj;
     int n, m = 0, s, t;
      vector<int> level, ptr;
      gueue<int> q;
      Dinic(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        level.resize(n);
       ptr.resize(n);
      void add_edge(int v, int u, ll cap) {
19
        edges.emplace_back(v, u, cap);
20
        edges.emplace_back(u, v, 0);
        adj[v].push_back(m);
        adj[u].push_back(m + 1);
        m += 2;
      bool bfs() {
        while (!q.empty()) {
          int v = q.front();
          for (int id : adj[v]) {
            if (edges[id].cap - edges[id].flow < 1)</pre>
                 continue;
            if (level[edges[id].u] != -1) continue;
            level[edges[id].u] = level[v] + 1;
            g.push(edges[id].u);
34
        return level[t] != -1;
```

```
11 dfs(int v, 11 pushed) {
        if (pushed == 0) return 0;
        if (v == t) return pushed;
        for (int& cid = ptr[v]; cid < (int)adj[v].size</pre>
             (); cid++) {
          int id = adj[v][cid], u = edges[id].u;
4.3
          if (level[v] + 1 != level[u] || edges[id].cap
                - edges[id].flow < 1) continue;</pre>
          11 tr = dfs(u, min(pushed, edges[id].cap -
               edges[id].flow));
          if (tr == 0) continue;
          edges[id].flow += tr;
          edges[id ^ 1].flow -= tr;
          return tr;
        return 0:
      11 flow() {
        11 f = 0;
        while (true) {
          fill(level.begin(), level.end(), -1);
          level[s] = 0;
          q.push(s);
          if (!bfs()) break;
59
          fill(ptr.begin(), ptr.end(), 0);
60
          while (ll pushed = dfs(s, flow_inf)) f +=
               pushed;
        return f;
63
64 };
```

4.6 Edmonds Karp

```
vector<vector<int>> capacity;
   vector<vector<int>> adj;
   int bfs(int s, int t, vector<int>& parent) {
    fill(parent.begin(), parent.end(), -1);
     parent[s] = -2;
     queue<pair<int, int>> q;
      g.push({s, INF});
      while (!g.emptv()) {
        int cur = q.front().first, flow = q.front().
             second:
        q.pop();
        for (int next : adj[cur]) {
          if (parent[next] == -1 && capacity[cur][next
              ]) {
            parent[next] = cur;
            int new_flow = min(flow, capacity[cur][next
            if (next == t) return new flow;
            q.push({next, new_flow});
19
21
      return 0;
22
    int maxflow(int s, int t) {
24
     int. flow = 0:
     vector<int> parent(n);
      int new flow:
      while (new_flow = bfs(s, t, parent)) {
       flow += new flow;
29
        int cur = t;
        while (cur != s) {
```

```
int prev = parent[cur];
capacity[prev][cur] -= new_flow;
capacity[cur][prev] += new_flow;
cur = prev;
}

return flow;
}
```

```
4.7 Fast Second Mst
    struct edge {
         int s, e, w, id;
        bool operator<(const struct edge& other) {</pre>
             return w < other.w; }</pre>
    typedef struct edge Edge;
    const int N = 2e5 + 5;
    long long res = 0, ans = 1e18;
    int n, m, a, b, w, id, 1 = 21;
    vector<Edge> edges;
    vector<int> h(N, 0), parent(N, -1), size(N, 0),
         present(N, 0);
    vector<vector<pair<int, int>>> adj(N), dp(N, vector
         <pair<int, int>>(1));
   vector<vector<int>> up(N, vector<int>(1, -1));
    pair<int, int> combine(pair<int, int> a, pair<int,</pre>
         int> b) {
      vector<int> v = {a.first, a.second, b.first, b.
14
           second);
      int topTwo = -3, topOne = -2;
16
      for (int c : v) {
17
        if (c > topOne) {
18
          topTwo = topOne;
19
          topOne = c;
20
         } else if (c > topTwo && c < topOne) topTwo = c</pre>
22
      return {topOne, topTwo};
23
24
    void dfs(int u, int par, int d) {
      h[u] = 1 + h[par];
26
      up[u][0] = par;
27
      dp[u][0] = \{d, -1\};
      for (auto v : adj[u]) {
29
        if (v.first != par) dfs(v.first, u, v.second);
31
    pair<int, int> lca(int u, int v) {
      pair<int, int> ans = \{-2, -3\};
34
35
      if (h[u] < h[v]) swap(u, v);
      for (int i = 1 - 1; i >= 0; i--) {
        if (h[u] - h[v] >= (1 << i)) {
37
          ans = combine(ans, dp[u][i]);
38
          u = up[u][i];
39
40
41
      if (u == v) return ans;
42
      for (int i = 1 - 1; i >= 0; i--) {
43
        if (up[u][i] != -1 && up[v][i] != -1 && up[u][i
             ] != up[v][i]) {
          ans = combine(ans, combine(dp[u][i], dp[v][i
          u = up[u][i];
46
          v = up[v][i];
47
48
```

```
ans = combine(ans, combine(dp[u][0], dp[v][0]));
    int main(void) {
      cin >> n >> m;
       for (int i = 1; i <= n; i++) {</pre>
        parent[i] = i;
        size[i] = 1;
 58
59
       for (int i = 1; i <= m; i++) {</pre>
60
         cin >> a >> b >> w; // 1-indexed
         edges.push_back(\{a, b, w, i - 1\});
62
63
       sort(edges.begin(), edges.end());
       for (int i = 0; i \le m - 1; i++) {
        a = edges[i].s;
        b = edges[i].e;
         w = edges[i].w;
         id = edges[i].id;
         if (unite_set(a, b)) {
           adj[a].emplace_back(b, w);
           adj[b].emplace back(a, w);
           present[id] = 1;
           res += w;
       dfs(1, 0, 0);
       for (int i = 1; i \le 1 - 1; i++) {
         for (int j = 1; j \le n; ++j) {
           if (up[j][i - 1] != -1) {
             int v = up[j][i - 1];
             up[j][i] = up[v][i - 1];
             dp[j][i] = combine(dp[j][i-1], dp[v][i-
                  1]);
83
       for (int i = 0; i \le m - 1; i++) {
        id = edges[i].id;
88
         w = edges[i].w;
         if (!present[id]) {
           auto rem = lca(edges[i].s, edges[i].e);
           if (rem.first != w) {
             if (ans > res + w - rem.first) ans = res +
                  w - rem.first;
           } else if (rem.second != -1) {
             if (ans > res + w - rem.second) ans = res +
                   w - rem.second;
96
       cout << ans << "\n";
       return 0;
100 }
```

4.8 Find Cycle

```
1 bool dfs(ll v) {
2    color[v] = 1;
3    for (ll u : adj[v]) {
4        if (color[u] == 0) {
5            parent[u] = v;
6            if (dfs(u)) {
7                return true;
8        }
9        } else if (color[u] == 1) {
```

```
cycle_end = v;
          cycle start = u;
          return true;
      color[v] = 2;
      return false;
17
18 void find_cycle() {
      color.assign(n, 0);
     parent.assign(n, -1);
      cycle_start = -1;
      for (11 v = 0; v < n; v++) {
       if (color[v] == 0 && dfs(v)) {
          break;
      if (cycle_start == -1) {
        cout << "Acyclic" << endl;</pre>
      } else {
        vector<11> cycle;
        cycle.push_back(cycle_start);
        for (11 v = cycle end; v != cycle start; v =
             parent[v]) {
          cycle.push_back(v);
        cycle.push_back(cycle_start);
        reverse(cycle.begin(), cycle.end());
        cout << "Cycle found: ";</pre>
38
        for (ll v : cycle) {
          cout << v << ' ';
        cout << '\n';
```

4.9 Floyd Warshall

4.10 Ford Fulkerson

```
q.pop();
        for (11 v = 0; v < n; v++) {
11
          if (!visited[v] && r_graph[u][v] > 0) {
            if (v == t) {
13
              parent[v] = u;
14
              return true;
15
16
             q.push(v);
17
             parent[v] = u;
18
             visited[v] = true;
19
20
        }
21
22
      return false;
23
    11 ford_fulkerson(ll n, vector<vector<ll>> graph,
         ll s, ll t) {
25
      11 u, v;
26
      vector<vector<ll>>> r_graph;
27
      for (u = 0; u < n; u++)
28
        for (v = 0; v < n; v++)
29
          r_{graph[u][v]} = graph[u][v];
      vector<11> parent;
31
      11 \text{ max\_flow} = 0;
      while (bfs(n, r_graph, s, t, parent)) {
33
        11 path_flow = INF;
34
        for (v = t; v != s; v = parent[v]) {
          u = parent[v];
36
          path_flow = min(path_flow, r_graph[u][v]);
38
        for (v = t; v != s; v = parent[v]) {
39
          u = parent[v];
40
          r_graph[u][v] -= path_flow;
41
          r_graph[v][u] += path_flow;
42
43
        max_flow += path_flow;
44
45
      return max_flow;
46 }
```

4.11 Hierholzer

```
void print circuit(vector<vector<ll>> &adj) {
      map<11, 11> edge_count;
      for (ll i = 0; i < adj.size(); i++) {</pre>
         edge_count[i] = adj[i].size();
      if (!adj.size()) {
        return;
      stack<ll> curr path;
      vector<11> circuit;
11
      curr_path.push(0);
12
13
      11 curr v = 0;
      while (!curr_path.empty()) {
14
        if (edge_count[curr_v]) {
15
           curr_path.push(curr_v);
16
           11 next_v = adj[curr_v].back();
17
           edge_count[curr_v]--;
18
          adj[curr_v].pop_back();
19
          curr_v = next_v;
20
21
         } else {
          circuit.push_back(curr_v);
           curr_v = curr_path.top();
23
           curr_path.pop();
24
```

```
26     for (11 i = circuit.size() - 1; i >= 0; i--) {
27         cout << circuit[i] << ' ';
28     }
29    }</pre>
```

4.12 Hungarian

```
vector<int> u (n+1), v (m+1), p (m+1), way (m+1);
    for (int i=1; i<=n; ++i) {</pre>
      p[0] = i;
      int j0 = 0;
      vector<int> minv (m+1, INF);
      vector<bool> used (m+1, false);
        used[j0] = true;
9
        int i0 = p[j0], delta = INF, j1;
        for (int j=1; j<=m; ++j)</pre>
          if (!used[j]) {
12
            int cur = A[i0][j]-u[i0]-v[j];
            if (cur < minv[j]) minv[j] = cur, way[j] =</pre>
14
            if (minv[j] < delta) delta = minv[j], j1 =</pre>
                  j;
16
         for (int j=0; j<=m; ++j)</pre>
          if (used[j]) u[p[j]] += delta, v[j] -= delta
          else minv[j] -= delta;
         j0 = j1;
      } while (p[j0] != 0);
        int j1 = way[j0];
        p[j0] = p[j1];
         j0 = j1;
      } while (j0);
26
    vector<int> ans (n+1);
    for (int j=1; j<=m; ++j)</pre>
      ans[p[j]] = j;
30 int cost = -v[0];
```

4.13 Is Bipartite

```
bool is_bipartite(vector<ll> &col, vector<vector<ll</pre>
         >> &adj, ll n) {
      queue<pair<ll, ll>> q;
      for (11 i = 0; i < n; i++) {
        if (col[i] == -1) {
          q.push({i, 0});
 6
          col[i] = 0;
          while (!q.empty()) {
            pair<11, 11> p = q.front();
            q.pop();
            11 v = p.first, c = p.second;
            for (ll j : adj[v]) {
              if (col[j] == c) {
                return false;
15
              if (col[j] == -1) {
16
17
                col[j] = (c ? 0 : 1);
                q.push({j, col[j]});
            }
```

```
22 }
23 return true;
24 }
```

4.14 Is Cyclic

```
bool is cyclic util(int u, vector<vector<int>> &adj
        , vector<bool> &vis, vector<bool> &rec) {
     vis[u] = true;
     rec[u] = true;
     for(auto v : adj[u]) {
       if (!vis[v] && is_cyclic_util(v, adj, vis, rec)
             ) return true;
6
       else if (rec[v]) return true;
      rec[u] = false;
      return false;
   bool is_cyclic(int n, vector<vector<int>> &adj) {
      vector<bool> vis(n, false), rec(n, false);
      for (int i = 0; i < n; i++)</pre>
       if (!vis[i] && is_cyclic_util(i, adj, vis, rec)
            ) return true;
     return false;
16 }
```

4.15 Kahn

```
void kahn(vector<vector<11>> &adj) {
      11 n = adj.size();
      vector<ll> in_degree(n, 0);
      for (11 u = 0; u < n; u++)
        for (ll v: adj[u]) in_degree[v]++;
      queue<11> q;
      for (ll i = 0; i < n; i++)</pre>
       if (in_degree[i] == 0)
          q.push(i);
      11 \text{ cnt} = 0;
      vector<ll> top_order;
      while (!q.empty()) {
       11 u = q.front();
       q.pop();
       top_order.push_back(u);
        for (11 v : adj[u])
          if (--in_degree[v] == 0) q.push(v);
18
      if (cnt != n) {
       cout << -1 << '\n';
       return;
      // print top_order
```

4.16 Kosaraju

```
9
```

```
void kosaraju(int n, vector<vector<int>>& adj,
         vector<vector<int>>& sccs) {
      vector<bool> vis(n, false);
      stack<int> stk;
      for (int u = 0; u < n; u++) {</pre>
35
       if (!vis[u]) {
36
          topo_sort(u, adj, vis, stk);
38
39
      vector<vector<int>> adj_t = transpose(n, adj);
40
      for (int u = 0; u < n; u++) {
41
       vis[u] = false;
42
43
      while (!stk.empty()) {
44
        int u = stk.top();
45
        stk.pop();
46
        if (!vis[u]) {
47
          vector<int> scc;
48
          get_scc(u, adj_t, vis, scc);
49
          sccs.push_back(scc);
51
52 }
 4.17 Kruskals
    struct Edge {
      int u, v, weight;
      bool operator<(Edge const& other) {</pre>
         return weight < other.weight;</pre>
    };
    int n;
   vector<Edge> edges;
    int cost = 0;
10 vector<Edge> result;
   DSU dsu = DSU(n);
    sort(edges.begin(), edges.end());
    for (Edge e : edges) {
      if (dsu.find_set(e.u) != dsu.find_set(e.v)) {
```

stk.push(u);

return adj_t;

vis[u] = true;

scc.push_back(u);

if (!vis[v]) {

for (int v : adj_t[u]) {

int>>% adi) {

vector<vector<int>> adj_t(n);

for (int u = 0; u < n; u++) {

adj_t[v].push_back(u);

for (int v : adj[u]) {

11 vector<vector<int>>> transpose(int n, vector<vector<</pre>

void get_scc(int u, vector<vector<int>>& adj_t,

get_scc(v, adj_t, vis, scc);

vector<bool>& vis, vector<int>& scc) {

10

13

14

15

16

17

18

22

23

27

28

29

19 }

```
cost += e.weight;
        result.push back(e);
        dsu.union_sets(e.u, e.v);
18
19 }
                                                         34
 4.18 Kruskal Mst
    struct Edge {
      ll u, v, weight;
      bool operator<(Edge const& other) {</pre>
        return weight < other.weight;</pre>
 6
    };
   11 n;
    vector<Edge> edges;
 9 11 cost = 0;
10 vector<11> tree_id(n);
11 vector<Edge> result;
12 for (11 i = 0; i < n; i++) {
    tree_id[i] = i;
14 }
15 sort(edges.begin(), edges.end());
16 for (Edge e : edges) {
      if (tree_id[e.u] != tree_id[e.v]) {
18
        cost += e.weight;
        result.push_back(e);
20
        ll old_id = tree_id[e.u], new_id = tree_id[e.v
        for (ll i = 0; i < n; i++) {
          if (tree_id[i] == old_id) {
            tree_id[i] = new_id;
 4.19 Kuhn
 1 int n, k;
 2 vector<vector<int>> g;
 3 vector<int> mt;
 4 vector<bool> used;
 5 bool try_kuhn(int v) {
     if (used[v]) return false;
      used[v] = true;
 8
      for (int to : g[v]) {
 9
       if (mt[to] == -1 || try_kuhn(mt[to])) {
          mt[to] = v;
          return true;
12
      return false;
15
    int main() {
      mt.assign(k, -1);
        vector<bool> used1(n, false);
        for (int v = 0; v < n; ++v) {
20
          for (int to : g[v]) {
```

if (mt[to] == -1) {

used1[v] = true;

mt[to] = v;

break;

```
for (int v = 0; v < n; ++v) {
          if (used1[v]) continue;
          used.assign(n, false);
          try_kuhn(v);
        for (int i = 0; i < k; ++i)
          if (mt[i] != -1)
            printf("%d %d\n", mt[i] + 1, i + 1);
36 }
4.20 Lowest Common Ancestor
    struct LCA {
      vector<ll> height, euler, first, segtree;
      vector<bool> visited;
      LCA(vector<vector<ll>> &adj, ll root = 0) {
        n = adj.size();
        height.resize(n);
        first.resize(n);
        euler.reserve(n * 2);
        visited.assign(n, false);
        dfs(adj, root);
        11 m = euler.size();
        segtree.resize(m * 4);
        build(1, 0, m - 1);
      void dfs(vector<vector<11>> &adj, 11 node, 11 h =
        visited[node] = true;
        height[node] = h;
        first[node] = euler.size();
        euler.push_back(node);
        for (auto to : adj[node]) {
          if (!visited[to]) {
            dfs(adj, to, h + 1);
            euler.push_back(node);
      void build(ll node, ll b, ll e) {
        if (b == e) segtree[node] = euler[b];
        else {
          11 \text{ mid} = (b + e) / 2;
          build(node << 1, b, mid);</pre>
          build(node << 1 | 1, mid + 1, e);</pre>
          11 1 = segtree[node << 1], r = segtree[node</pre>
                << 1 | 1];
          segtree[node] = (height[1] < height[r]) ? 1 :</pre>
      11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
        if (b > R | | e < L) return -1;</pre>
        if (b >= L && e <= R) return segtree[node];</pre>
        11 \text{ mid} = (b + e) >> 1;
        11 left = query(node << 1, b, mid, L, R);</pre>
        11 right = query(node << 1 | 1, mid + 1, e, L,</pre>
             R);
        if (left == -1) return right;
        if (right == -1) return left;
        return height[left] < height[right] ? left :</pre>
             right;
48
      ll lca(ll u, ll v) {
        11 left = first[u], right = first[v];
```

4.21 Maximum Bipartite Matching

```
bool bpm(ll n, ll m, vector<vector<bool>> &bpGraph,
          11 u, vector<bool> &seen, vector<11> &matchR)
      for (11 \ v = 0; \ v < m; \ v++)  {
        if (bpGraph[u][v] && !seen[v]) {
          seen[v] = true;
          if (matchR[v] < 0 || bpm(n, m, bpGraph,</pre>
               matchR[v], seen, matchR)) {
             matchR[v] = u;
            return true;
        }
10
11
      return false;
12
13 11 maxBPM(11 n, 11 m, vector<vector<bool>> &bpGraph
      vector<11> matchR(m, -1);
      11 \text{ result} = 0;
      for (11 u = 0; u < n; u++) {
17
        vector<bool> seen(m, false);
18
        if (bpm(n, m, bpGraph, u, seen, matchR)) {
19
          result++;
21
22
      return result;
```

4.22 Min Cost Flow

```
struct Edge {
      int from, to, capacity, cost;
 4 vector<vector<int>> adj, cost, capacity;
    const int INF = 1e9;
    void shortest_paths(int n, int v0, vector<int>& d,
         vector<int>& p) {
      d.assign(n, INF);
      d[v0] = 0;
      vector<bool> inq(n, false);
      queue<int> q;
      q.push(v0);
      p.assign(n, -1);
      while (!q.empty()) {
        int u = q.front();
15
        q.pop();
16
        inq[u] = false;
17
        for (int v : adj[u]) {
18
          if (capacity[u][v] > 0 && d[v] > d[u] + cost[
               u][v]) {
            d[v] = d[u] + cost[u][v];
20
            p[v] = u;
            if (!ing[v]) {
22
              ing[v] = true;
23
              q.push(v);
24
          }
```

```
28
   int min_cost_flow(int N, vector<Edge> edges, int K,
          int s, int t) {
      adj.assign(N, vector<int>());
      cost.assign(N, vector<int>(N, 0));
      capacity.assign(N, vector<int>(N, 0));
      for (Edge e : edges) {
        adj[e.from].push back(e.to);
        adj[e.to].push_back(e.from);
        cost[e.from][e.to] = e.cost;
        cost[e.to][e.from] = -e.cost;
38
        capacity[e.from][e.to] = e.capacity;
39
      int flow = 0;
      int cost = 0;
      vector<int> d, p;
      while (flow < K) {
        shortest_paths(N, s, d, p);
        if (d[t] == INF) break;
        int f = K - flow, cur = t;
        while (cur != s) {
         f = min(f, capacity[p[cur]][cur]);
          cur = p[cur];
        flow += f;
        cost += f * d[t];
        cur = t;
        while (cur != s) {
         capacity[p[cur]][cur] -= f;
          capacity[cur][p[cur]] += f;
          cur = p[cur];
58
59
60
      if (flow < K) return -1;</pre>
      else return cost;
62
```

4.23 Prim

```
1 const int INF = 10000000000;
 2 struct Edge {
      int w = INF, to = -1;
      bool operator<(Edge const& other) const {</pre>
        return make_pair(w, to) < make_pair(other.w,</pre>
             other.to);
 6
    };
8
    int n;
    vector<vector<Edge>> adj;
    void prim() {
      int total_weight = 0;
      vector<Edge> min_e(n);
      \min_{e[0].w = 0;}
      set<Edge> q;
      q.insert({0, 0});
      vector<bool> selected(n, false);
      for (int i = 0; i < n; ++i) {
        if (q.empty()) {
19
          cout << "No MST!" << endl;</pre>
2.0
          exit(0);
        int v = q.begin()->to;
        selected[v] = true;
        total_weight += q.begin()->w;
        q.erase(q.begin());
```

4.24 Topological Sort

```
1 void dfs(11 v) {
     visited[v] = true;
     for (ll u : adj[v]) {
       if (!visited[u]) {
         dfs(u);
8
     ans.push_back(v);
10 void topological_sort() {
     visited.assign(n, false);
     ans.clear();
     for (11 i = 0; i < n; ++i) {
       if (!visited[i]) {
         dfs(i);
18
     reverse(ans.begin(), ans.end());
19 1
```

4.25 Zero One Bfs

```
1  vector<int> d(n, INF);
2  d[s] = 0;
3  deque<int> q;
4  q.push_front(s);
5  while (!q.empty()) {
6   int v = q.front();
7   q.pop_front();
8   for (auto edge : adj[v]) {
9    int u = edge.first, w = edge.second;
10   if (d[v] + w < d[u]) {
11    d[u] = d[v] + w;
12   if (w == 1) q.push_back(u);
13   else q.push_front(u);
14  }
15  }
16 }</pre>
```

5 Miscellaneous

5.1 Gauss

```
11 n = (11) a.size(), m = (11) a[0].size() - 1;
      vector<11> where (m, -1);
      for (11 col = 0, row = 0; col < m && row < n; ++
           col) {
        11 sel = row:
        for (11 i = row; i < n; ++i) {</pre>
          if (abs(a[i][col]) > abs(a[sel][col])) {
11
12
13
        if (abs (a[sel][col]) < EPS) {</pre>
14
          continue;
15
16
         for (ll i = col; i <= m; ++i) {</pre>
17
          swap(a[sel][i], a[row][i]);
18
19
        where[col] = row;
20
         for (11 i = 0; i < n; ++i) {
         if (i != row) {
            double c = a[i][col] / a[row][col];
23
            for (11 j = col; j <= m; ++j) {</pre>
24
              a[i][j] = a[row][j] * c;
25
26
27
28
        ++row;
29
      ans.assign(m, 0);
      for (11 i = 0; i < m; ++i) {
        if (where[i] != -1) {
33
          ans[i] = a[where[i]][m] / a[where[i]][i];
34
35
      for (11 i = 0; i < n; ++i) {
37
        double sum = 0;
38
        for (11 j = 0; j < m; ++j) {
39
         sum += ans[j] * a[i][j];
40
41
        if (abs (sum - a[i][m]) > EPS) {
          return 0:
43
44
45
      for (11 i = 0; i < m; ++i) {
46
        if (where[i] == -1) {
47
          return INF;
48
49
      return 1;
51 }
```

5.2 Ternary Search

```
1  double ternary_search(double 1, double r) {
2   double eps = 1e-9;
3   while (r - 1 > eps) {
4    double m1 = 1 + (r - 1) / 3;
5    double m2 = r - (r - 1) / 3;
6    double f1 = f(m1);
7    double f2 = f(m2);
8    if (f1 < f2) {
9        1 = m1;
10    } else {
1        r = m2;
12    }
13    }
14    return f(1);
15 }</pre>
```

6 Number Theory

6.1 Extended Euclidean

```
1 ll gcd_extended(ll a, ll b, ll &x, ll &y) {
2    if (b == 0) {
3         x = 1;
4         y = 0;
5         return a;
6    }
7    ll x1, y1, g = gcd_extended(b, a % b, x1, y1);
8    x = y1;
9    y = x1 - (a / b) * y1;
10    return g;
11 }
```

6.2 Find All Solutions

```
1 bool find_any_solution(ll a, ll b, ll c, ll &x0, ll
          &v0, 11 &g) {
      g = gcd_extended(abs(a), abs(b), x0, y0);
      if (c % q) {
        return false;
 6
      x0 \star = c / q;
      y0 \star = c / q;
 8
      if (a < 0) {
       x0 = -x0;
      if (b < 0) {
       y0 = -y0;
14
      return true;
15
    void shift_solution(ll & x, ll & y, ll a, ll b, ll
        cnt) {
      x += cnt * b;
18
     y -= cnt * a;
19
    11 find all solutions (11 a, 11 b, 11 c, 11 minx, 11
          maxx, 11 miny, 11 maxy) {
      11 x, y, g;
      if (!find_any_solution(a, b, c, x, y, g)) {
23
        return 0:
2.4
25
      a /= g;
      b /= q;
      11 \text{ sign}_a = a > 0 ? +1 : -1;
      11 \text{ sign } b = b > 0 ? +1 : -1;
      shift_solution(x, y, a, b, (minx - x) / b);
      if (x < minx) {</pre>
        shift_solution(x, y, a, b, sign_b);
33
      if (x > maxx) {
34
        return 0;
3.5
36
      11 \ 1x1 = x;
      shift_solution(x, y, a, b, (maxx - x) / b);
      if (x > maxx) {
        shift_solution(x, y, a, b, -sign_b);
39
40
      shift_solution(x, y, a, b, -(miny - y) / a);
      if (y < miny) {
```

```
shift_solution(x, y, a, b, -sign_a);
      if (y > maxy) {
        return 0;
48
      11 \ 1x2 = x;
      shift_solution(x, y, a, b, -(maxy - y) / a);
      if (y > maxy) {
        shift_solution(x, y, a, b, sign_a);
      11 \text{ rx2} = x;
      if (1x2 > rx2) {
        swap(1x2, rx2);
58
      11 1x = max(1x1, 1x2), rx = min(rx1, rx2);
      if (1x > rx) {
60
       return 0;
61
      return (rx - 1x) / abs(b) + 1;
63
```

6.3 Linear Sieve

6.4 Miller Rabin

```
1 bool check_composite(u64 n, u64 a, u64 d, 11 s) {
     u64 x = binpower(a, d, n);
      if (x == 1 | | x == n - 1) {
       return false;
      for (11 r = 1; r < s; r++) {
      x = (u128) x * x % n;
       if (x == n - 1) {
          return false:
      return true;
   bool miller_rabin(u64 n) {
     if (n < 2) {
       return false:
18
     11 r = 0:
      u64 d = n - 1:
      while ((d & 1) == 0) {
       d >>= 1;
22
        r++;
```

```
Pegaraw
```

6.5 Modulo Inverse

```
1  11 mod_inv(11 a, 11 m) {
       if (m == 1) {
         return 0;
      11 \text{ m0} = \text{m}, \text{ x} = 1, \text{ y} = 0;
      while (a > 1) {
        11 q = a / m, t = m;
       m = a % m;
        a = t;
        t = y;
        y = x - q * y;
        x = t;
      if (x < 0) {
        x += m0;
16
17
       return x;
18 }
```

6.6 Pollard Rho Brent

```
1 11 mult(11 a, 11 b, 11 mod) {
       return (__int128_t) a * b % mod;
 3
 4 11 f(11 x, 11 c, 11 mod) {
      return (mult(x, x, mod) + c) % mod;
 6
    ll pollard_rho_brent(ll n, ll x0 = 2, ll c = 1) {
      11 \times = \times 0, q = 1, q = 1, \times s, y, m = 128, 1 = 1;
      while (g == 1) {
        y = x;
         for (ll i = 1; i < 1; i++) {</pre>
          x = f(x, c, n);
13
         11 k = 0:
         while (k < 1 \&\& q == 1) {
          xs = x;
           for (ll i = 0; i < m && i < 1 - k; i++) {
            x = f(x, c, n);
19
             q = mult(q, abs(y - x), n);
20
           g = \underline{gcd}(q, n);
22
           k += m;
24
25
26
         1 *= 2;
       if (q == n) {
27
         do {
28
           xs = f(xs, c, n);
29
           g = \underline{gcd}(abs(xs - y), n);
         } while (g == 1);
```

```
return q;
 6.7 Range Sieve
    vector<bool> range_sieve(ll 1, ll r) {
      11 n = sqrt(r);
      vector<bool> is_prime(n + 1, true);
     vector<ll> prime;
     is_prime[0] = is_prime[1] = false;
      prime.push_back(2);
      for (11 i = 4; i <= n; i += 2) {
       is_prime[i] = false;
9
10
      for (11 i = 3; i <= n; i += 2) {
       if (is_prime[i]) {
          prime.push_back(i);
          for (11 j = i * i; j <= n; j += i) {
           is_prime[j] = false;
          }
16
       }
18
      vector<bool> result(r - 1 + 1, true);
```

for (11 j = max(i * i, (1 + i - 1) / i * i); j

6.8 Segmented Sieve

if (1 == 1) {

return result;

23

26

for (ll i : prime) {

result[0] = false;

<= r; j += i) {

result[j - l] = false;

```
vector<ll> segmented_sieve(ll n) {
     const 11 S = 10000;
     11 nsgrt = sgrt(n);
     vector<char> is_prime(nsqrt + 1, true);
     vector<1l> prime;
     is_prime[0] = is_prime[1] = false;
     prime.push_back(2);
8
     for (11 i = 4; i <= nsqrt; i += 2) {</pre>
9
      is_prime[i] = false;
     for (11 i = 3; i <= nsqrt; i += 2) {</pre>
      if (is_prime[i]) {
         prime.push_back(i);
         for (ll j = i * i; j \le nsqrt; j += i) {
           is_prime[j] = false;
     vector<ll> result;
     vector<char> block(S);
     for (11 k = 0; k * S \le n; k++) {
      fill(block.begin(), block.end(), true);
       for (ll p : prime) {
         for (11 j = max((k * S + p - 1) / p, p) * p -
               k * S; j < S; j += p) {
           block[j] = false;
```

```
27     }
28     if (k == 0) {
29         block[0] = block[1] = false;
30     }
31     for (ll i = 0; i < S && k * S + i <= n; i++) {
32         if (block[i]) {
33             result.push_back(k * S + i);
34         }
35     }
36     }
37     return result;
38 }</pre>
```

6.9 Tonelli Shanks

```
1  ll legendre(ll a, ll p) {
      return bin_pow_mod(a, (p - 1) / 2, p);
    11 tonelli_shanks(ll n, ll p) {
      if (legendre(n, p) == p - 1) {
        return -1;
      if (p % 4 == 3) {
        return bin_pow_mod(n, (p + 1) / 4, p);
      11 Q = p - 1, S = 0;
      while (Q \% 2 == 0) {
        0 /= 2;
        S++:
      11 z = 2;
      for (; z < p; z++) {</pre>
        if (legendre(z, p) == p - 1) {
19
          break;
20
21
      11 M = S, c = bin_pow_mod(z, Q, p), t =
           bin_pow_mod(n, Q, p), R = bin_pow_mod(n, Q)
           + 1) / 2, p);
      while (t % p != 1) {
        if (t % p == 0) {
          return 0;
        11 i = 1, t2 = t * t % p;
        for (; i < M; i++) {</pre>
          if (t2 % p == 1) {
            break;
          t2 = t2 * t2 % p;
        11 b = bin_pow_mod(c, bin_pow_mod(2, M - i - 1,
              p), p);
        M = i;
        c = b * b % p;
        t = t * c % p;
38
        R = R * b % p;
40
      return R;
41
```

7 Strings

7.1 Count Unique Substrings

```
int count_unique_substrings(string const& s) {
       int n = s.size();
       const int p = 31;
       const int m = 1e9 + 9;
       vector<long long> p_pow(n);
       p_pow[0] = 1;
       for (int i = 1; i < n; i++) p_pow[i] = (p_pow[i -</pre>
             1] * p) % m;
       vector<long long> h(n + 1, 0);
       for (int i = 0; i < n; i++) h[i + 1] = (h[i] + (s)
            [i] - 'a' + 1) * p_pow[i]) % m;
       int cnt = 0:
11
       for (int 1 = 1; 1 <= n; 1++) {
12
        unordered_set<long long> hs;
13
         for (int i = 0; i \le n - 1; i++) {
14
           long long cur_h = (h[i + 1] + m - h[i]) % m;
15
           \operatorname{cur}_h = (\operatorname{cur}_h * \operatorname{p_pow}[n - i - 1]) % m;
16
           hs.insert(cur_h);
17
18
        cnt += hs.size();
19
20
       return cnt;
21
```

7.2 Finding Repetitions

```
vector<int> z_function(string const& s) {
      int n = s.size();
      vector<int> z(n);
      for (int i = 1, l = 0, r = 0; i < n; i++) {
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
             z[i]++;
        if (i + z[i] - 1 > r) {
          1 = i;
          r = i + z[i] - 1;
10
12
      return z;
13
    int get_z(vector<int> const& z, int i) {
      if (0 <= i && i < (int) z.size()) return z[i];</pre>
16
      else return 0;
17 }
18 vector<pair<int, int>> repetitions;
    void convert_to_repetitions(int shift, bool left,
         int cntr, int 1, int k1, int k2) {
      for (int 11 = \max(1, 1 - k2); 11 \le \min(1, k1);
           11++) {
        if (left && l1 == 1) break;
22
        int 12 = 1 - 11;
        int pos = shift + (left ? cntr - 11 : cntr - 1
             -11+1):
        repetitions.emplace_back(pos, pos + 2 * 1 - 1);
25
26
27
    void find_repetitions(string s, int shift = 0) {
28
      int n = s.size();
29
      if (n == 1) return;
     int nu = n / 2;
31
      int nv = n - nu;
32
      string u = s.substr(0, nu);
     string v = s.substr(nu);
      string ru(u.rbegin(), u.rend());
35
      string rv(v.rbegin(), v.rend());
      find_repetitions(u, shift);
      find_repetitions(v, shift + nu);
```

```
vector<int> z1 = z_function(ru);
      vector<int> z2 = z_function(v + '#' + u);
40
      vector<int> z3 = z_function(ru + '#' + rv);
      vector<int> z4 = z_function(v);
      for (int cntr = 0; cntr < n; cntr++) {</pre>
        int 1, k1, k2;
        if (cntr < nu) {</pre>
         1 = nu - cntr;
          k1 = get_z(z1, nu - cntr);
          k2 = get_z(z2, nv + 1 + cntr);
        } else {
          1 = cntr - nu + 1;
          k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu))
          k2 = get_z(z4, (cntr - nu) + 1);
        if (k1 + k2 >= 1) convert_to_repetitions(shift,
              cntr < nu, cntr, 1, k1, k2);</pre>
54
55 }
```

7.3 Group Identical Substrings

```
vector<vector<int>>> group_identical_strings(vector
string> const& s) {

int n = s.size();

vector<pair<long long, int>> hashes(n);

for (int i = 0; i < n; i++) hashes[i] = {
    compute_hash(s[i]), i};

sort(hashes.begin(), hashes.end());

vector<vector<int>>> groups;

for (int i = 0; i < n; i++) {

if (i == 0 || hashes[i].first != hashes[i - 1].
    first) groups.emplace_back();

groups.back().push_back(hashes[i].second);

return groups;

return groups;

}
</pre>
```

7.4 Hashing

7.5 Knuth Morris Pratt

```
vector<ll> prefix_function(string s) {
    11 n = (11) s.length();
    vector<ll> pi(n);

for (11 i = 1; i < n; i++) {
    11 j = pi[i - 1];
    while (j > 0 && s[i] != s[j]) j = pi[j - 1];
    if (s[i] == s[j]) j++;
    pi[i] = j;
```

```
9  }
10  return pi;
11  }
12  // count occurences
13  vector<int> ans(n + 1);
14  for (int i = 0; i < n; i++)
15   ans[pi[i]]++;
16  for (int i = n-1; i > 0; i--)
17  ans[pi[i-1]] += ans[i];
18  for (int i = 0; i <= n; i++)
19  ans[i]++;</pre>
```

7.6 Longest Common Prefix

```
vector<int> lcp_construction(string const& s,
         vector<int> const& p) {
      int n = s.size();
      vector<int> rank(n, 0);
      for (int i = 0; i < n; i++) rank[p[i]] = i;</pre>
      int k = 0;
      vector<int> lcp(n-1, 0);
      for (int i = 0; i < n; i++) {
        if (rank[i] == n - 1) {
          k = 0:
          continue;
        int j = p[rank[i] + 1];
        while (i + k < n \&\& j + k < n \&\& s[i + k] == s[
             \frac{1}{1} + k]) k++;
        lcp[rank[i]] = k;
        if (k) k--;
      return lcp;
18 }
```

7.7 Manacher

```
vector<int> manacher_odd(string s) {
      int n = s.size();
      s = "$" + s + "^";
      vector<int> p(n + 2);
      int 1 = 1, r = 1;
      for (int i = 1; i \le n; i++) {
        p[i] = max(0, min(r - i, p[l + (r - i)]));
        while (s[i - p[i]] == s[i + p[i]]) p[i]++;
        if(i + p[i] > r) 1 = i - p[i], r = i + p[i];
11
      return vector<int>(begin(p) + 1, end(p) - 1);
12
   vector<int> manacher(string s) {
14
      string t;
      for(auto c: s) t += string("#") + c;
      auto res = manacher_odd(t + "#");
      return vector<int>(begin(res) + 1, end(res) - 1);
18 }
```

7.8 Rabin Karp

```
vector<11> p_pow(max(S, T));
      p pow[0] = 1;
      for (ll i = 1; i < (ll) p_pow.size(); i++) p_pow[</pre>
           i] = (p_pow[i-1] * p) % m;
      vector<11> h(T + 1, 0);
      for (ll i = 0; i < T; i++) h[i + 1] = (h[i] + (t[
           i] - 'a' + 1) * p_pow[i]) % m;
      11 h_s = 0;
      for (11 i = 0; i < S; i++) h_s = (h_s + (s[i] - '
           a' + 1) * p pow[i]) % m;
11
      vector<11> occurences;
      for (11 i = 0; i + S - 1 < T; i++) {
13
        11 \text{ cur}_h = (h[i + S] + m - h[i]) % m;
14
        if (cur_h == h_s * p_pow[i] % m) occurences.
             push back(i);
15
16
      return occurences;
17 }
```

7.9 Suffix Array

```
if (s[p[i]] != s[p[i-1]]) classes++;
    c[p[i]] = classes - 1;
  vector<int> pn(n), cn(n);
  for (int h = 0; (1 << h) < n; ++h) {
    for (int i = 0; i < n; i++) {
      pn[i] = p[i] - (1 << h);
      if (pn[i] < 0)
        pn[i] += n;
    fill(cnt.begin(), cnt.begin() + classes, 0);
    for (int i = 0; i < n; i++) cnt[c[pn[i]]]++;</pre>
    for (int i = 1; i < classes; i++) cnt[i] += cnt</pre>
         [i - 1];
    for (int i = n-1; i >= 0; i--) p[--cnt[c[pn[i
         ]]]] = pn[i];
    cn[p[0]] = 0;
    classes = 1;
    for (int i = 1; i < n; i++) {
      pair<int, int> cur = {c[p[i]], c[(p[i] + (1)
           << h)) % n]};
      pair<int, int> prev = \{c[p[i-1]], c[(p[i-1]] +
            (1 << h)) % n];
      if (cur != prev) ++classes;
      cn[p[i]] = classes - 1;
    c.swap(cn);
  return p;
vector<int> build_suff_arr(string s) {
  s += "$";
  vector<int> sorted_shifts = sort_cyclic_shifts(s)
       ;
```

24

25

26

28

29

39

7.10 Z Function

Pegaraw Pegaraw

4() 0(())	100 7							
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$						
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general: $ \begin{array}{cccc} $						
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$						
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}.$						
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:						
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$						
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$						
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n + n = n + n = n = n = n = n = n = n = $						
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$						
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$						
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,						
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an <i>n</i> element	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, $5.$ $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,						
	set into k non-empty sets.	6. $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$, 7. $\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}$,						
$\left\langle {n\atop k}\right\rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$						
$\left\langle\!\!\left\langle {n\atop k}\right\rangle\!\!\right\rangle$	2nd order Eulerian numbers.	$10. \begin{pmatrix} n \\ k \end{pmatrix} = (-1)^k \binom{k-n-1}{k}, \qquad 11. \begin{Bmatrix} n \\ 1 \end{Bmatrix} = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1,$						
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,						
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$)!, $ 15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1) $	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$						
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \ \binom{n}{n-1}$							
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$ 22. \ \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, $ $ 23. \ \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, $ $ 24. \ \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle, $							
$25. \ \left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{array} \right. $ $26. \ \left\langle \begin{array}{c} n \\ 1 \end{array} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{array}{c} n \\ 2 \end{array} \right\rangle = 3^n - (n+1)2^n + \left(\begin{array}{c} n+1 \\ 2 \end{array} \right)$								
$25. \ \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0 \text{ otherwise}} \right. $ $26. \ \left\langle {n \atop 1} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle {n \atop 2} \right\rangle = 3^n - (n+1)2^n + $ $28. \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, $ $29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, $ $30. \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n} $								
		32. $\left\langle \left\langle {n\atop 0} \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n} \right\rangle \right\rangle = 0$ for $n \neq 0,$						
$34. \left\langle\!\!\left\langle {n\atop k} \right\rangle\!\!\right\rangle = (k + 1)^n$	(-1) $\binom{n-1}{k}$ $+ (2n-1-k)$ $\binom{n-1}{k}$							
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$						

16 Pegaraw

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \bmod n.$$

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

)ef			

Loop An edge connecting a vertex to itself.

Directed Each edge has a direction. SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

ComponentΑ maximal connected

subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)

y = mx + b(m, -1, b)x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{x \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

17 Pegaraw

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} ix^{ii},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^{n}x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{1!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + (\frac{n+2}{2})x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(i)},$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{126}x^4 + \cdots = \sum_{i=0}^{\infty} (\frac{i+n}{i})x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} (\frac{2i}{i})x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} (\frac{2i}{i})x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} H_i x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} H_i x^i,$$

$$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker