STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Lecture # 7

Scribe: Xiaoxuan Xia

1 Fisher Information

Recap:

Example (UMVUE for normal population variance)

Let $X_1, ..., X_n \sim^{i.i.d} N(\mu, \sigma^2)$ with both μ and σ^2 are unknown. Define $s^2 = \sum_{i=1}^n (X_i - \bar{X})^2$.

In this setting, $s^2/(n-1)$ is the UMNUE for σ^2 . The MLE for σ^2 is s^2/n which has a lower mean squared error. In fact, the shrunk estimator $s^2/(n+1)$ has an even lower mean squared error. Therefore, neither UMVUE nor the MLE is admissible.

Question 1:

Suppose we have δ_1 and δ_2 as UMVUEs for $g_1(\theta)$ and $g_2(\theta)$, respectively. Is $\delta_1 + \delta_2$ an UMVUE for $g_1(\theta) + g_2(\theta)$?

If our underlying family of distributions has a complete sufficient statistic, then the answer if yes. (Because Lehman-scheffe Theorem).

Otherwise,...

Theorem 1: (TPE 2.1.7) (Characterization of UMVUEs)

Let $\Delta = \{\delta : E_{\theta}(\delta^2) < \infty\}$. Then $\delta_0 \in \Delta$ is UMVU for $g(\theta) = E(\delta_0)$ if and only if $E(\delta_0(\theta), u) = 0$ for every $u \in \mathcal{U} = \{E(u) = 0\}$.

Proof 1: If δ_0 is an UMVUE, let's consider $\delta_{\lambda} = \delta_0 + \lambda u$ for $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$. Since δ_0 has minimal variance,

$$Var(\delta_{\lambda}) = Var(\delta_{0}) + \lambda^{2}Var(U) + 2\lambda cov(\delta_{0}, u)$$

$$\geqslant Var(\delta_{0})$$

Consider the quadratic form $q(\lambda) = \lambda^2 Var(U) + 2\lambda cov(\delta_0, u)$.

The form q has the roots $\lambda = 0$ and $-2cov(\delta_0, u)/var(u)$.

If the roots are distinct, then the form must be negative at some point, which would violate the inequality above.

Hence, $-2cov(\delta_0, u)/var(u) = 0$ in which case, $E(u\delta_0) = cov(\delta_0, u) = 0$.

To prove the converse result, we assume that $E(u\delta_0)=0$ for all $u\in\mathcal{U}$ and consider any δ unbiased for $g(\theta)$. It follows that $\delta-\delta_0\in\mathcal{U}$. So $E(\delta_0(\delta-\delta_0))=0$.

This implies that $E(\delta_0 \delta) = E(\delta_0^2)$ and subtracting $E(\delta_0)E(\delta_0)$ on both sides, we obtain

$$Var(\delta_0) = cov(\delta_0, \delta) \leqslant \sqrt{Var(\delta_0)Var(\delta)}$$

by Cauchy-Schwarz inequality. Hence, $Var(\delta_0) \leq Var(\delta)$ for any arbitrary unbiased estimator δ and δ_0 . Hence, δ_0 is an UMVUE for $g(\theta)$.

Answer for Question 1: $\forall u \in \mathcal{U}, E((\delta_1 + \delta_2)u) = E(\delta_1 u) + E(\delta_2 u) = 0$. Therefore, $\delta_1 + \delta_2$ is an UMVUE for $g_1(\theta) + g_1(\theta)$).

Variance Bound and Information

Recall: $Cov(X,Y) < \sqrt{Var(X)Var(Y)}$

Using the covariance inequality, if δ is an unbiased estimator for $q(\theta)$ and ψ is an arbitrary random variable, then

$$Var_{\theta}(\delta) \ge \frac{Cov_{\theta}^{2}(\delta, \psi)}{Var_{\theta}(\psi)}$$
 (1)

The trick here is to choose a suitable ψ so that the bound is meaningful in the sense that $Cov_{\theta}(\delta, \psi)$ is the same for all δ that are unbiased for $g(\theta)$.

Question 2: How to find proper ψ ?

Let $\mathcal{P} = \{p_{\theta} : \theta \in \Omega\}$ be a dominated family with densities $p_{\theta} : \theta \in \Omega \in \mathbb{R}$.

To begin, $E_{\theta+\Delta}(\delta) - E_{\theta}(\delta)$ gives the same value $g(\theta+\Delta) - g(\theta)$, for any unbiased δ .

Here, Δ must be chosen so that $\theta + \Delta \in \Omega$.

Next, we write $E_{\theta+\Delta}(\delta) - E_{\theta}(\delta)$ as a covariance under p_{θ} .

This step involves the use of the "likelihood ratio". We assume here that $p_{\theta+\Delta}(x)=0$ whenever $p_{\theta}(x)=0$.

Define $L(x) = \frac{p_{\theta+\Delta}(x)}{p_{\theta}(x)}$ when $p_{\theta}(x) > 0$, and L(x) = 1 otherwise. We have

$$L(x)p_{\theta}(x) = \frac{p_{\theta+\Delta}(x)}{p_{\theta}(x)}p_{\theta}(x) = p_{\theta+\Delta}(x), a.e.x$$

and so, for any function h integrable under $p_{\theta+\Delta}$, we have

$$E_{\theta+\Delta}h(x) = \int hp_{\theta+\Delta}d\mu = \int hLp_{\theta}d\mu$$
$$= E_{\theta}(L(x)h(x)).$$

Take h=1, $E_{\theta}L=1$ (because $\int \frac{p_{\theta+\Delta}(x)}{p_{\theta}(x)} p_{\theta}(x) dx = \int_{\theta+\Delta} dx = 1$). Take $h=\delta$, $E_{\theta+\Delta}\delta=E_{\theta}(L\delta)$, so if we define $\psi(x)=L(x)-1$ (answer for Question 2), then we can see that

$$E_{\theta}(\psi(x)) = E_{\theta}(L-1) = 1 - 1 = 0$$

and

$$E_{\theta+\Delta}(\delta) - E_{\theta}(\delta) = E_{\theta}(L\delta) - E_{\theta}(\delta) = E_{\theta}(\psi\delta) = Cov_{\theta}(\delta,\psi)$$

 $(E_{\theta}(\psi \delta) = Cov_{\theta}(\delta, \psi) \text{ because } \psi = L - 1).$

As a result,

$$Cov_{\theta}(\delta, \psi) = g(\theta + \Delta) - g(\theta)$$

for any unbiased estimator δ . With this particular choice of ψ , the inequality of Equation 1 can be written as:

$$Var_{\theta}(\delta) \ge \frac{\{g(\theta + \Delta) - g(\theta)\}^2}{Var_{\theta}(\psi)} = \frac{\{g(\theta + \Delta)\}^2}{E_{\theta}\left(\frac{p_{\theta + \Delta}(x)}{p_{\theta}(x)} - 1\right)^2},\tag{2}$$

which is known as the *Hammersley-Chapman-Robbins inequality*.

Under suitable conditions, we can show that

$$\lim_{\Delta \to 0} \frac{\left\{\frac{g(\theta + \Delta) - g(\theta)}{\Delta}\right\}^2}{E_{\theta} \left(\frac{\left\{p_{\theta + \Delta}(x) - p_{\theta}(x)\right\}/\Delta}{p_{\theta}(x)}\right)^2} = \frac{(g'(\theta)^2)}{E_{\theta} \left(\frac{\partial p_{\theta}(x)/\partial \theta}{p_{\theta}(x)}\right)^2}.$$
 (3)

The denominator here is known as **Fisher Information**, denoted as $I(\theta)$ and is given by

$$I(\theta) = E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right)^{2} \tag{4}$$

With enough regularity to interchange integration and differentiation,

$$0 = \frac{\partial}{\partial \theta}(1) = \frac{\partial}{\partial \theta} \int p_{\theta}(x) d\mu(x) = \int \frac{\partial}{\partial \theta} p_{\theta}(x) d\mu(x)$$
$$= \int \frac{\partial \log p_{\theta}(x)}{\partial \theta} p_{\theta}(x) d\mu(x) = E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right)$$

and so

$$I(\theta) = E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right)^{2} - \left\{ E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right) \right\}^{2} = Var \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right).$$
 (5)

Furthermore, since

$$\int \frac{\partial^2 \log p_{\theta}(x)}{\partial \theta^2} d\mu(x) = E_{\theta} \left(\frac{\partial^2 p_{\theta}(x) / \partial \theta^2}{p_{\theta}(x)} \right) = 0$$

We can see that

$$\frac{\partial^2 \log p_{\theta}(x)}{\partial \theta^2} = \frac{\partial^2 p_{\theta}(x)/\partial \theta^2}{p_{\theta}(x)} - \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta}\right)^2$$

$$\Rightarrow I(\theta) = -E_{\theta} \left(\frac{\partial^2 \log p_{\theta}(x)}{\partial \theta^2}\right) \tag{6}$$

Therefore,

$$Var_{\theta}(\delta) \ge \frac{\{g'(\theta)\}^2}{I(\theta)}, \theta \in \Omega$$

Theorem 2 Let $\mathcal{P} = \{p_{\theta} : \theta \in \Omega\}$ be a dominated family with Ω and open set in \mathbb{R} and densities p_{θ} differentiable with respect to θ . If $E_{\theta}(\psi) = 0$, and $E_{\theta}(\delta^2) < \infty$, then

$$Var_{\theta}(\delta) \ge \frac{\{g'(\theta)\}^2}{I(\theta)}, \theta \in \Omega$$
 (7)

This result is called the **Cramer**-**Rao**, or **information bound**.

Example (Exponential Families)

Let ${\mathcal P}$ be a one parameter exponential family in canonical form and density p_η given by

$$p_{\eta}(x) = \exp\{\eta T(x) - A(\eta)\}h(x)$$

Then,

$$\frac{\partial \log p_{\eta}(x)}{\partial \eta} = T(x) - A'(\eta)$$

By the previous results, we have

$$I(\eta) = Var_{\eta}(T(x) - A'(\eta)) = Var_{\eta}(T(x)) = A''(\eta)$$
(8)

because $\frac{\partial^2 \log p_{\eta}(x)}{\partial \eta^2} = -A''(\eta)$.

If the family is parameterized instead by $\mu=A'(\eta)=E_{\eta}(T(x))$. Then,

$$A^{''}(\eta) = I(\mu) \{A^{''}(\eta)\}^2$$

and so, because $A''(\eta) = Var(T)$, we have

$$I(\mu) = \frac{1}{Var_n(T)} \tag{9}$$

observe also that because T is UMVUE for μ . The lower bound variance $Var_{\mu}(\delta) \geq 1/I(\mu)$ for an unbiased estimator δ of μ is sharp.

Example (Location Family)

Suppose q is an absolutely continuous random variable with density f. The family of distributions $\mathcal{P} = \{p_{\theta} : \theta \in \mathbb{R}\}$. With p_{θ} the distribution of $\theta + \varepsilon$ is called a **location family**.

$$\int g(x)dP_{\theta}(x) = E_{\theta}(g(x)) = E_{\theta}(g(\theta + \varepsilon))$$
$$= \int g(\theta + \varepsilon)f(\varepsilon)d\varepsilon = \int g(x)f(x - \theta)dx$$

So P_{θ} has density $p_{\theta}(x) = f(x - \theta)$.

The corresponding Fisher Information for this family is

$$I(\theta) = E_{\theta} \left(\frac{\partial \log f(x - \theta)^{2}}{\partial \theta} \right)^{2} = E \left(-\frac{f'(x - \theta)}{f(x - \theta)} \right)^{2}$$

$$= E \left(\frac{f'(\varepsilon)}{f(\varepsilon)} \right)^{2} = \int \frac{\{f'(x)\}^{2}}{f(x)} dx$$
(10)

So, for the location family $I(\theta)$ is constant with respect to θ .

Question 3: If two (or more) independent vectors are observed, what is the total Fisher Information?

Answer to Question 3:

If two (or more) independent vectors are observed, then the total Fisher Information is the sum of the Fisher Information provided by the individual observations.

Suppose X and Y are independent, and that X has density p_{θ} and Y has density q_{θ} . The Fisher Information from X is

$$I_X(\theta) = Var_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right).$$

Correspondingly, the Fisher Information from Y is

$$I_Y(\theta) = Var_{\theta} \left(\frac{\partial \log q_{\theta}(y)}{\partial \theta} \right).$$

Then

$$I_{X,Y}(\theta) = Var_{\theta} \left(\frac{\partial \log\{p_{\theta}(x)q_{\theta}(y)\}}{\partial \theta} \right)$$

$$= Var_{\theta} \left(\frac{\partial \log\{p_{\theta}(x)\}}{\partial \theta} + \frac{\partial \log\{q_{\theta}(y)\}}{\partial \theta} \right)$$

$$= Var_{\theta} \left(\frac{\partial \log\{p_{\theta}(x)\}}{\partial \theta} \right) + Var_{\theta} \left(\frac{\partial \log\{q_{\theta}(y)\}}{\partial \theta} \right)$$

$$= I_{X}(\theta) + I_{Y}(\theta).$$

Suppose we have $X_1,...,X_n \stackrel{i.i.d}{\sim} p_{\theta}, I_{\mathbf{x}} = I_{X_1}(\theta) + \cdots + I_{X_n}(\theta) = nI_{X_1}(\theta)$. Then

$$Var_{\theta}(\delta) \ge \frac{g'(\theta)}{nI(\theta)}.$$
 (11)

Multi-dimensional Fisher Information:

Suppose θ takes values in \mathbb{R}^k , then the Fisher Information will become a matrix defined in regular case by

$$\{I(\theta)\}_{i,j} = E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta_{i}} \frac{\partial \log p_{\theta}(x)}{\partial \theta_{j}} \right)$$

$$(E_{\theta}(\nabla_{\theta} \log p_{\theta}(x)) = 0)$$

$$= Cov_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta_{i}}, \frac{\partial \log p_{\theta}(x)}{\partial \theta_{j}} \right)$$

$$= -E_{\theta} \left(\frac{\partial^{2} \log p_{\theta}(x)}{\partial \theta_{i} \partial \theta_{j}} \right).$$

$$I(\boldsymbol{\theta}) = E_{\boldsymbol{\theta}}(\{\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x)\} \{\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x)\}^{\top})$$

$$= Cov(\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x)) = -E_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{2} \log p_{\boldsymbol{\theta}}(x)$$
(12)

Where ∇_{θ} is the gradient with respect to θ and ∇^2_{θ} is the Hessian matrix for the second order derivatives.

The lower bound for the variance of an unbiased estimator δ of $g(\theta)$, where $g:\Omega\to\mathbb{R}$ is

$$Var_{\boldsymbol{\theta}}(\delta) \ge \{\nabla g(\boldsymbol{\theta})\}^T I^{-1}(\boldsymbol{\theta})\{\nabla g(\boldsymbol{\theta})\}.$$
 (13)

3 Next Lecture

Average Risk Optimality: Originally, we have

$$R(\theta, \delta) = E_{\theta}(L(\theta, \delta(x)))$$

The average risk:

$$r(\Lambda,\delta) = \int R(\theta,\delta) d\Lambda(\theta)$$

where, $\Lambda(\theta)$ is the prior distribution on θ . We aim to find

$$r(\Lambda, \delta^*) \le r(\Lambda, \delta).$$