Automated planning for fMRI paradigms design using PDDL

Katherine Bianchini Esper katherine.esper@edu.pucrs.br

Graduate Program in Computer Science - School of Technology Pontifical Catholic University of Rio Grande do Sul - PUCRS Porto Alegre, Brazil

Functional Magnetic Resonance Imaging - fMRI

BOLD Signal

Deoxygenated hemoglobin

A. Less neural activity and vasoconstriction

B. More neural activity and vasodilation

BOLD Signal

fMRI Block Design Paradigm

fMRI Design Paradigm

An fMRI experiment relies on precise and effective paradigm design.

- Ensure good experimental design:
 - Design proper task according to the research questions.

Objective

- Design an fMRI paradigm planner:
 - Develop a planner to indicate the proper task according to the research questions.
- PDDL
 - Goal: brain regions to activate;
 - Actions: Paradigms that active this regions.

Dataset

- a. Task database provided by BraIns;
- b. Paradigms that activate areas related to: Motor skills, language, visual, auditive, memory, attention network and default mode network.

Paradigm	Stimuli Blocks	Data (n)	
Calculus	Equation	46	
	Number	46	
Sennum	Fig	51	
	Resp	51	
Words	Regular		
	Iregular	100	
	Pseudo		
Fastloc	Print		
	Falsefont	43	
	Speech	43	
	Vocod		
CHANGE	Change	46	
FalMem	False	40	
	True	49	

3dttest++ - Analysis of Functional NeuroImages (AFNI)

```
3dttest++ -setA Green
sub001 a+tlrc'[3]' \
sub002 b+tlrc'[3]' \
sub003 c+tlrc'[3]' \
```

. . .

Auditory cortex: Left and Right Superior Temporal Gyrus

Task: FASTLOC - block: VOCOD

Task: FASTLOC - Block: VOCOD

Region	Abbreviation	Function	Cerebral Lobe
Middle Temporal Gyrus	MTG	Auditory System	Temporal
Superior Temporal Gyrus	STG	Auditory System	Temporal
Thalamus	THA	Sensory System	Subcortical
Lingual Gyrus	LG	Analysis of logical conditions; encoding visual memories	Occipital

Final Database

- a. 6 paradigms;
- b. 14 blocks;
- c. 22 brain regions;
- d. 5 cerebral lobes.

:predicates

```
(:predicates
  (region ?region)
  (paradigm ?paradigm)
  (block ?block)
  (lobe ?lobe)
  (active ?paradigm ?block ?region)
  (belong ?region ?lobe)
  (actived ?region)
```

```
(:action chosen_paradigm)
(:action chosen_paradigm2)
  (:action cerebral_lobe)
```

```
:action chosen paradigm
 :parameters (?paradigm ?block ?region)
 :precondition (and
    (paradigm ?paradigm)
    (block ?block)
    (active ?paradigm ?block ?region)
 :effect (and
    (actived ?region)
```

```
(:action chosen paradigm2
  :parameters (?paradigm ?block ?region1 ?region2)
  :precondition (and
     (paradigm ?paradigm)
     (block ?block)
     (active ?paradigm ?block ?region1)
     (active ?paradigm ?block ?region2)
  :effect (and
     (actived ?region1)
     (actived ?region1)
```

```
(:action cerebral lobe
  :parameters (?paradigm ?block ?region ?lobe)
  :precondition (and
     (paradigm ?paradigm)
     (lobe ?lobe)
     (block ?block)
     (belong ?region ?lobe)
     (active ?paradigm ?block ?region)
  :effect (and
     (actived ?region)
     (actived ?lobe)
```

PDDL - Problem definition

:init

22 Brain Regions

```
(region AG) ; Angular Gyrus
(region LG) ; Lingual Gyrus
(region THA) ; Thalamus
```

6 Paradigms

```
(paradigm calculus)
(paradigm change)
```

•••

14 Stimuli Blocks

```
(block equation)
(block number)
(block chang)
```

5 Brain Lobes

```
(lobe parietal_lobe)
(lobe temporal_lobe)
```

• • •

PDDL - Problem definition

:init

Activation mapping: 82

```
(active calculus equation AG)
(active calculus equation LG)
(active fastloc vocod MTG)
(active fastloc vocod STG)
(active words regular CUN)
(active words regular LG)
```

Cerebral lobes: 22

```
(belong AG parietal_lobe)
(belong LG occipital_lobe)
(belong MTG temporal_lobe)
(belong STG temporal_lobe)
(belong CUN occipital_lobe)
```

• • •

PDDL - Problem definition

:goal

```
(:goal (and
  (actived THA)
  (actived MOG)
  (actived CUN)
  (actived occipital lobe)
  (actived subcortical)
```

PDDL tools

Web Planner

0.4020s

```
(:goal (and
    (actived THA)
    (actived MOG)
    (actived CUN)
    (actived occipital_lobe)
    (actived subcortical)
))
```

```
(chosen_paradigm fastloc falsefont mog)
(cerebral_lobe fastloc vocod tha subcortical)
(cerebral_lobe palavras regular cun occipital_lobe)
```

PDDL tools

PDDL Editor

0.02s

```
(:goal (and
     (actived THA)
     (actived MOG)
     (actived CUN)
     (actived occipital_lobe)
     (actived subcortical)
))
```

```
(cerebral_lobe fastloc falsefont mog occipital_lobe)
(cerebral_lobe fastloc vocod tha subcortical)
(cerebral_lobe palavras pseudo cun occipital_lobe)
```

Alteration

```
(:action cerebral lobe
  :parameters (?paradigm ?block ?region ?lobe)
  :precondition (and
     (paradigm ?paradigm)
     (lobe ?lobe)
     (block ?block)
     (belong ?region ?lobe)
     (active ?paradigm ?block ?region)
  :effect (and
    (actived ?region)
     (actived ?lobe)
```

PDDL tools

Web Planner

10.2711s

```
(:goal (and
      (actived THA)
      (actived MOG)
      (actived CUN)
      (actived occipital_lobe)
      (actived subcortical)
))
```

```
(chosen_paradigm fastloc falsefont mog)
(chosen_paradigm2 palavras regular tha cun)
(cerebral_lobe calculo equation lg occipital_lobe)
(cerebral lobe calculo equation hip subcortical)}
```

PDDL tools

PDDL Editor

```
0.032s
```

```
(:goal (and
      (actived THA)
      (actived MOG)
      (actived CUN)
      (actived occipital_lobe)
      (actived subcortical)
))
```

```
(chosen_paradigm2 palavras pseudo cun mog)
(cerebral_lobe calculo equation lg occipital_lobe)
(cerebral_lobe calculo equation hip subcortical)
(chosen paradigm2 fastloc vocod tha mtg)
```

Conclusions

- This is the initial step for the automated planning of fMRI paradigms. The brain activation region mapping, according the presentation of a task, is essential for further work.
- In this study, we develop and use the planner, using PDDL language, to identify the paradigm block that activates certain brain regions or lobes.

Future Work

- Still studying the best actions to this domain;
- Include other parameters associated to the paradigms;
- The metric planning to minimize the planner costs;
- Plugins in the PDDL Editor tool: *Planimation*.

References

- [1] G. H. Glover, "Overview of functional magnetic resonance imaging.," *Neurosurg. Clin. North Am.*, vol. 22, no. 2, p. 133–9, vii, Apr. 2011.
- [2] N. Logothetis and B. Wandell, "Interpreting the BOLD signal.," *Annu. Rev. Physiol.*, vol. 66, no. 1, pp. 735–769, 2003.
- [3] E. Amaro and G. J. Barker, "Study design in fMRI: basic principles," *Brain Cogn.*, vol. 60, no. 3, pp. 220–32, 2005.
- [4] J. S. James, P. Rajesh, A. V. Chandran, and C. Kesavadas, "fMRI paradigm designing and post-processing tools.," *Indian J. Radiol. & Imaging*, vol. 24, no. 1, pp. 13–21, Jan. 2014.
- [5] H. Geffner and B. Bonet, "A Concise Introduction to Models and Methods for Automated Planning," *Synth. Lect. Artif. Intell. Mach. Learn.*, vol. 7, no. 2, Jun. 2013.
- [6]M. Ramirez and H. Geffner, "Plan recognition as planning", *Twenty-First International Joint Conference on Artificial Intelligence*.2009.