VEKTORI U PROSTORU (II deo)

Mešoviti proizvod tri vektora

Mešoviti proizvod je $(\vec{a} \times \vec{b}) \circ \vec{c}$. Najčešće se obeležava sa $\left[\vec{a}, \vec{b}, \vec{c}\right]$. Dakle : $(\vec{a} \times \vec{b}) \circ \vec{c} = \left[\vec{a}, \vec{b}, \vec{c}\right]$

Kako se on izračunava?

Ako su vektori zadati sa: $\vec{a} = (a_1, a_2, a_3)$, $\vec{b} = (b_1, b_2, b_3)$ i $\vec{c} = (c_1, c_2, c_3)$ onda je:

$$(\vec{a} \times \vec{b}) \circ \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

A dobijenu determinantu rešavamo ili razvijanjem po nekoj vrsti (koloni) ili pomoću Sarusovog pravila.

Čemu služi mešoviti proizvod?

i) Apsolutna vrednost mešovitog proizvoda tri nekomplanarna vektora jednaka je zapremini paralelopipeda konstruisanog nad njima, to jest : $V(\vec{a}, \vec{b}, \vec{c}) = \left| (\vec{a} \times \vec{b}) \circ \vec{c} \right|$

ii) Zapremina trostrane piramide (tetraedra) konstruisane nad nekomplanarnim vektorima a,b,c,je:

$$V = \frac{1}{6} \left| (\vec{a} \times \vec{b}) \circ \vec{c} \right|$$

Zašto $\frac{1}{6}$ u formuli?

Još od ranije znamo da se zapremina piramide računa po formuli:

$$V = \frac{1}{3}BH$$

Kako je baza trougao , njegovu površinu računamo kao : $B = \frac{1}{2} |\vec{a} \times \vec{b}|$, pa je onda:

$$V = \frac{1}{3}BH = \frac{1}{3}\frac{1}{2}|\vec{a} \times \vec{b}|H = \frac{1}{6}|(\vec{a} \times \vec{b}) \circ \vec{c}|$$

Napomena: Često se u zadacima traži visina H neke piramide. Nju ćemo naći tako što najpre nađemo zapreminu preko formule $\frac{1}{6} \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \circ \vec{c} = \frac{1}{6} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$, zatim nadjemo bazu $\mathbf{B} = \frac{1}{2} \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$ pa to zamenimo u $\mathbf{H} = \frac{3V}{B}$.

iii) Uslov komplanarnosti

Vektori $\vec{a}, \vec{b}, \vec{c}$ su komplanarni ako i samo ako je njihov mešoviti proizvod jednak nuli.

Dakle uslov komplanarnosti je :
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

1. Izračunati zapreminu paralelopipeda konstruisanog nad vektorima: $\vec{a}(0,1,1), \vec{b}(1,0,1), \vec{c}(1,1,0)$

Rešenje:

$$V(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} \vec{a} \times \vec{b} & \vec{c} \\ \vec{a} \times \vec{b} \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = ajmo da upotrebimo Sarusovo pravilo = \begin{vmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix}$$

$$(0+1+1)-(0+0+0)=2$$

[pogledaj fajl determinante]

Dakle: V = 2

2. Dati su vektori $\vec{a}(\ln(p-2),-2,6),\vec{b}(p,-2,5),\vec{c}(0,-1,3)$. Odrediti realan broj p , tako da vektori budu komplanarni.

Rešenje:

Kao što rekosmo, uslov komplanarnosti je : $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$, pa je

$$\begin{vmatrix} \ln(p-2) & -2 & 6 \\ p & -2 & 5 \\ 0 & -1 & 3 \end{vmatrix} = \text{razvijemo je po prvoj koloni...} = \ln(p-2)[-6+5] - p[-6+6] = -\ln(p-2)$$

Mora biti $-\ln(p-2) = 0$ [pogledaj logaritmi ,fajl iz druge godine] p-2=1, pa je p=3 traženo rešenje.

3. Dati su vektori $\vec{a}(1,1,-1), \vec{b}(-2,-1,2), \vec{c}(1,-1,2)$

Rastaviti vektor \vec{c} po pravcima vektora \vec{a}, \vec{b} i $\vec{a} \times \vec{b}$

Rešenje: Najpre ćemo naći $\vec{a} \times \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -1 \\ -2 & -1 & 2 \end{vmatrix} = \text{Razvijamo po prvoj vrsti...} = 1 \vec{i} - 0 \vec{j} + 1 \vec{k} = (1,0,1)$$

Postavimo sada razlaganje:

 $\vec{c} = \vec{m} \cdot \vec{a} + \vec{n} \cdot \vec{b} + \vec{p} \cdot (\vec{a} \times \vec{b})$, gde su m,n i p konstante koje moramo naći.

(1,-1,2) = m(1,1,-1) + n(-2,-1,2) + p(1,0,1) prelazimo u sistem jednačina:

$$1 = 1m - 2n + 1p$$

$$-1 = 1m - 1n + 0p$$

$$2 = -1m + 2n + 1p$$

$$m - 2n + p = 1$$

$$m - n = -1$$

$$-m + 2n + p = 2$$

$$m - n = -1$$

$$-m + 2n + p = 2$$
saberemo prvu i treću...pa je $p = \frac{3}{2}$

Vratimo $p = \frac{3}{2}$ u ostale dve jednačine i dobijamo : $m = -\frac{3}{2}$ i $n = -\frac{1}{2}$

Vratimo se sada u:

$$\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b})$$

$$\vec{c} = -\frac{3}{2} \vec{a} - \frac{1}{2} \vec{b} + \frac{3}{2} (\vec{a} \times \vec{b})$$
 je konačno rešenje

4. Dati su vektori $\vec{a}(m-1,1,1), \vec{b}(-1,m+1,0), \vec{c}(m,2,1)$. Odrediti parametar m tako da vektori $\vec{a}, \vec{b}, \vec{c}$ budu komplanarni a zatim razložiti \vec{a} na komponente u pravcu druga dva.

Rešenje:

Najpre ćemo iskoristiti uslov komplanarnosti:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$
, to jest
$$\begin{vmatrix} m-1 & 1 & 1 \\ -1 & m+1 & 0 \\ m & 2 & 1 \end{vmatrix} = 0$$
, Ovu determinantu razvijemo po trećoj koloni...=

$$= -2 - m(m+1) + (m-1)(m+1) + 1 = 0$$

$$= -2 - m^2 - m + m^2 - 1 + 1 = 0$$
 pa je odavde $m = -2$

Dakle vektori su (kad zamenimo da je m= -2):

$$\vec{a} = (-3,1,1)$$

$$\vec{b} = (-1, -1, 0)$$

$$\vec{c} = (-2,2,1)$$

Idemo na razlaganje:

$$\vec{a} = \mathbf{m} \ \vec{b} + \mathbf{n} \ \vec{c}$$

$$(-3,1,1) = \mathbf{m} (-1,-1,0) + \mathbf{n} (-2,2,1)$$
 prelazimo u sistem jednačina

$$-3 = -m - 2n$$

$$1 = -m + 2n$$

$$1 = 0m + n$$
 odavde je $n = 1$ pa to menjamo u gornje dve jednačine... $m = 1$

Dakle
$$\vec{a} = \mathbf{m} \ \vec{b} + \mathbf{n} \ \vec{c}$$
 pa je $\vec{a} = \vec{b} + \vec{c}$ konačno rešenje

5. Data su temena tetraedra A (2,3,1), B(4,1,-2), C(6,3,7) i D(-5,-4,8).

Odrediti zapreminu tetraedra i dužinu visine spuštene iz temena D na stranu ABC.

Rešenje:

Najpre nacrtamo sliku i postavimo problem:

Oformimo najpre vektore $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$

$$\overrightarrow{AB} = (4-2,1-3,-2-1) = (2, -2, -3)$$

$$\overrightarrow{AC} = (6-2, 3-3, 7-1) = (4, 0, 6)$$

$$\overrightarrow{AD} = (-5-2, -4-3, 8-1) = (-7, -7, 7)$$

Možemo naći zapreminu tetraedra po formuli: $\frac{1}{6} | (\vec{a} \times \vec{b}) \circ \vec{c} | = \frac{1}{6} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 2 & -2 & -3 \\ 4 & 0 & 6 \\ -7 & -7 & 7 \end{vmatrix} = \frac{308}{6}$

Dalje tražimo površinu baze ABC : $B = \frac{1}{2} |\vec{a} \times \vec{b}|$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = -12 \ \vec{i} + 24 \ \vec{j} + 8 \ \vec{k} = (-12, 24, 8)$$

$$B = \frac{1}{2} \sqrt{(-12)^2 + 24^2 + 8^2} = 14$$

Iskoristićemo da je $H = \frac{3V}{B}$.

$$H = \frac{3\frac{308}{6}}{14} = 11$$
 Dakle, tražena visina je H = 11

Napomena:

Ako vam traže neku drugu visinu, recimo iz temena C, postupak je analogan.

Nađete zapreminu, zatim bazu preko $\overrightarrow{AB} \times \overrightarrow{AD}$ i zamenite u H = $\frac{3V}{B}$.