量子化学

Ira N. Levine

第七版

目录

1	薛定	<mark>谔方程</mark>	1
	1.1	量子化学	1
	1.2	量子力学的历史背景	2
	1.3	不确定性关系	4
	1.4	含时薛定谔方程	6
	1.5	定态薛定谔方程	9
	1.6	概率	10
	1.7	复数	12
	1.8	单位	14
	1.9	微积分学	14
_	<i>~</i> ~		
2	箱中		17
	2.1	DOG 74	17
			18
			23
	2.4	70.753.01 1.13 (-1.3)	24
	2.5	隧穿	25
3	算符	· · · · · · · · · · · · · · · · · · ·	27
	3.1	算符	27
	3.2	本征函数和本征值	30
	3.3	算符和量子力学	32
	3.4	三维多粒子的薛定谔方程。	32
	3.5	三维盒子中的粒子	32
	3.6	简并	32
	3.7	平均值	32
	3.8	波函数的约束条件	32
4	谐振		33
	4.1	5554 74 1-14 14 15 15 14 1	33
			33
	4.3	双原子分子的振动	33
	4.4	一维定态薛定谔方程的数值解法	33

5	角动	量	35
	5.1	Simultaneous Specification of Several Properties	35
	5.2	向量	35
	5.3	单粒子系统的角动量	35
	5.4	角动量梯度算符法	35
6	氢原	구	37
Ü	6.1	· •	37
	6.2	无相互作用的粒子和变量分离	37
	6.3	将双粒子问题简化为两个单粒子问题	37
	6.4	双粒子的刚性转子模型	37
	6.5	氢原子	37
	6.6	束缚态氢原子波函数	37
	6.7	类 氢轨 道	37
	6.8	塞曼效应	37
	6.9	名向薛定谔方程的数值解法	37
7		· · · · · · ·	39
	7.1	符号	39
	7.2	厄米算符	39
	7.3	用本征函数展开	39
	7.4	对易算符的本征函数	39
	7.5	宇称	39
	7.6	测量和态叠加	39
	7.7	坐标本征函数	39
	7.8	量子力学的基本假设	39
	7.9	测量和量子力学解释	39
	7.10	矩阵	39
8	变分	法	41
	8.1	变分理论	41
	8.2	变分法的推广	41
	8.3	行列式	41
	8.4	联立线性方程组	41
	8.5	线性变分函数	41
	8.6	矩阵、本征值和本征向量	41
9	微扰	理论	43
J	9.1		43
	9.2		43
	9.3		43
	9.4	能量简并的微扰理论	43
	9.5		43
		微扰理论求解第一激发态的氦原子	43

	9.7	含时微扰理论
		辐射和物质的相互作用
	9.8	抽别和初灰的相互作用 · · · · · · · · · · · · · · · · · · ·
10	电子	自旋和自旋-统计定理 45
		·····································
		自旋和氢原子
		自旋-统计定理 45
		氦原子
		Pauli 不相容原理
		Slater 行列式
		微扰理论求解基态锂原子
		变分法求解基态锂原子
		自旋磁矩 4
		自此版是 · · · · · · · · · · · · · · · · · · ·
	10.10	''色」日瓞的''''''
11	多电	<mark>子原子</mark> 47
	11.1	Hartree-Fock 自洽场方法
	11.2	轨道和元素周期表
	11.3	电子相关
	11.4	角动量的叠加
		多电子原子的角动量 · · · · · · · · · · · · · · · · · · ·
		自旋-轨道耦合
		原子哈密顿算符
		Condon-Slater 规则
12	分子	对称性 49
	12.1	对称元素和对称操作
	12.2	分子点群 49
10	वन स्ट	7 / 7 th th 7 /t th
13		子分子的电子结构 51
		Born-Oppenheimer 近似
		双原子分子核的运动
		原子单位制 52
		氢分子离子 52
		H ⁺ 离子基态的近似解
		H ⁺ 离子激发态的分子轨道
		同核双原子分子的分子轨道构型
		双原子分子的分子光谱项
		氢分子
		价键理论求解 $ m H_2$
		分子轨道理论和价键理论的比较
		同核双原子分子的分子轨道理论和价键理论波函数 52
	13.13	5H ₂ 分子的激发态
	13.1/	双盾子分子的自没扬方法波函数 59

	13.15分子轨道理论处理异核双原子分子	52
	13.16价键理论处理异核双原子分子	52
	13.17价电子近似	52
14	分子量子力学理论	53
14		53
		53
		53
		53
		53
		53
	• —	
	14.7 静电力定理	53
15	分子的电子结构	5 5
	15.1 从头计算、密度泛函、半经验和分子力学方法	56
	15.2 多原子分子的分子光谱项	56
	15.3 自洽场方法、分子轨道理论求解多原子分子	56
	15.4 基函数	56
	15.5 自洽场方法、分子轨道理论求解 $\mathrm{H_2O}$ 分子	56
	15.6 布居数和键级	56
	15.7 分子静电势、分子表面和原子电荷	56
		56
	15.9 自洽场方法、分子轨道理论求解甲烷、乙烷和乙烯	56
	15.10分子结构学	56
	15.11构象搜寻	56
	15.12分子振动频率	56
	15.13热力学定律	56
	15.14从头计算方法的量子化学程序	56
		56
	15.16快速 Hartree-fock 计算方法	56
		56
	* 7 × m * 4	
16		57 58
	_0	58 58
		58
		58
	10-11/3/1/420 H37 IV	58
	V W	58
	" × (V 11)— 17 / 4	58
	77 W-14-77	58
	11 220	58
	16.11相对论效应	58

	16.12价键理论求解多原子分子	58
	16.13GVB (广义价键波函数)、VBSCF (价键自洽场)、BOVB (呼吸轨道价键)方法	58
	16.14化学反应	58
17	· · 半经验和分子力学方法求解分子	59
	17.1 半经验分子轨道求解平面共轭分子	59
	17.2 Hückel 分子轨道理论	59
	17.3 PPP 方法	59
	17.4 一般的半经验分子轨道和密度泛函方法	59
	17.5 分子力学方法	59
	17.6 经验和半经验方法处理溶剂效应	59
	17.7 化学反应	59
	17.8 量子化学的未来	59
A	附录	61
	A.1 Complex Numbers	61
	A.2 Calculus Formulas	61
В	参考文献	63
\mathbf{C}	部分习题答案	67
D	索引	69

Chapter 1

薛定谔方程

1.1 量子化学

十七世纪末,艾萨克·牛顿(Isaac Newton)创立了**经典力学**,即宏观物体的运动规律。二十世纪初,物理学家发现经典力学无法正确描述原子和分子的电子和原子核等极小粒子的行为。这类粒子的行为由一组称为**量子力学**的定律来描述。

量子化学将量子力学应用于化学问题。量子化学的影响在化学的各个分支中都很明显。物理化学家利用量子力学(借助统计力学)计算气体的热力学性质(如熵、热容量);解释分子光谱,从而通过实验确定分子性质(如分子几何形状、偶极矩、内旋转能垒、同分异构体之间的能量差异);从理论上计算分子性质;计算化学反应中过渡态的性质,从而估算速率常数;理解分子间作用力;以及处理固体中的成键问题。

有机化学家利用量子力学估算分子的相对稳定性,计算反应中间产物的性质,研究化学反应的 机理,以及分析和预测核磁共振谱。

分析化学家广泛使用光谱法。只有利用量子力学,才能正确理解和解释光谱中的谱线频率和强度。

无机化学家使用配体场理论(一种近似量子力学的方法)来预测和解释过渡金属络离子的性质。 虽然重要生物分子的巨大尺寸使得对它们进行量子力学计算极其困难,但生物化学家们正开始 从对生物分子构象、酶与底物结合以及生物分子溶解的量子力学研究中获益。

量子力学决定了纳米材料(至少有一个维度在 1 nm 到 100 nm 之间的物体)的特性,目前正在开发处理纳米材料的计算方法。当材料的一个或多个尺寸小于 100 nm (尤其是小于 20 nm)时,其光学、电子、化学和其它特性就会发生与宏观材料显著不同的巨大变化。一个维度在 1 nm 到 100 nm 之间的半导体或金属物体称为量子阱;两个维度在此范围内的称为量子线;三个维度都在此范围内的称为量子点。这些名称中的"量子"一词表明量子力学在决定此类材料特性方面发挥了关键作用。许多人猜测,纳米科学和纳米技术将带来"下一次工业革命"。

计算机计算速度的迅速提高和分子计算新方法(如密度泛函理论-参见第 16.4 节)的发展,使量子化学成为化学各个领域的实用工具。现在,有几家公司出售用于分子量子化学计算的量子化学软件。这些软件不仅适用于量子化学家,也适用于其他各类化学家。由于量子化学及相关理论和计算方法的作用日益显著,美国化学学会于 2005 年开始出版新的期刊《化学理论与计算杂志》(Journal of Chemical Theory and Computation)。

"量子力学…… 几乎是所有现代科学技术的基础。它支配着晶体管和集成电路的行为…… 并且是…… 现代化学和生物学的基础。"[斯蒂芬·霍金 (Stephen Hawking),《时间简史》,1988年,

Bantam 出版社, 第 4 章)]

1.2 量子力学的历史背景

量子力学的发展起源于 1900 年普朗克 (Planck) 对加热固体发出的光的研究,因此我们首先要讨论 光的本质。

1803 年,托马斯·杨(Thomas Young)通过观察光穿过两个相邻针孔时的衍射和干涉,为光的波动性提供了令人信服的证据。(衍射是波绕障碍物弯曲。干涉是将两个频率相同的波结合在一起,产生一个波,该波在空间每一点的扰动是每个干涉波在该点产生的扰动的代数和或矢量和。参见任何一年级物理课本)。

1864 年,詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)建立了四个方程,即麦克斯韦方程组(Maxwell's equations),统一了电学和磁学定律。麦克斯韦方程预言:加速的电荷会以电磁波的形式辐射能量,电磁波由振荡的电场和磁场组成。麦克斯韦方程预测的这些波的速度与实验测得的光速相同。

1888 年,海因里希·赫兹(Heinrich Hertz)根据麦克斯韦方程组的预测,探测到了电火花中加速电荷产生的无线电波。这使物理学家确信,光确实是一种电磁波。

所有电磁波在真空中都以 $c=2.998\times 10^8~\mathrm{m/s}$ 的速度传播。电磁波的频率 ν 和波长 λ 的关系是

$$\lambda \nu = c \tag{1.1}$$

(方框内的等式应率记; 附录中给出了希腊字母表)。根据电磁波的频率,人们给电磁波进行了分类。按照频率递增的顺序依次为无线电波、微波、红外线辐射、可见光、紫外线辐射、X 射线和 γ 射线。我们用光来表示任何一种电磁辐射。可见光和紫外线辐射的波长以前用埃(Å)来表示,现在用纳米 (nm) 来表示:

$$1 \text{ nm} = 10^{-9} \text{ nm}, \qquad 1 \text{ Å} = 10^{-10} \text{ m} = 0.1 \text{ nm}$$
 (1.2)

19 世纪 90 年代,物理学家测量了在固定温度下加热黑体发出的各种频率的光强度,并在多个温度下进行了这些测量。黑体是一种能吸收落在其上的所有光线的物体。一种对黑体对良好近似是一个带有小孔的空腔。1896 年,物理学家维恩(Wien)提出了黑体辐射与光频和黑体温度的关系式: $I = a \nu^3 / e^{b \nu / T}$,其中 a = b 是经验常数, $I d \nu$ 是黑体在单位时间和单位表面积内辐射的频率在 ν 到 $\nu + d \nu$ 范围内的能量,其中 $d \nu$ 是一个无穷小的频率范围。维恩的公式很好地拟合了 1896 年的黑体辐射数据,但他对该公式的理论论证却不令人满意。

1899-1900 年,对黑体辐射的测量扩展到了比以前更低的频率,维恩公式在低频下显示出较大的偏差。这些偏差促使物理学家马克斯·普朗克(Max Planck)于 1900 年 10 月提出了以下公式 $I = a \nu^3 / (e^{b \nu / T} - 1)$,并发现该公式适用于所有频率的数据。

提出这个公式后,普朗克一直在寻找理论依据。1900 年 12 月,他向德国物理学会提交了他的公式的理论推导。普朗克假定黑体中的辐射发射器和吸收器是与空腔中的电磁辐射处于平衡状态的谐振电荷(谐振子)。他假设频率为 ν 的谐振子的总能量由 N 个不可分割的"能量元素"组成,每个能量元素的大小为 $h\nu$,其中 N 为整数,h (普朗克常数) 是物理学中的一个新常数。普朗克将这些能量元素分布在谐振子中。实际上,每个谐振子的能量必须是 $h\nu$ 的整数倍(尽管普朗克没有明说)。因此,每个谐振子的能量都被量子化了,这意味着谐振子的能量只允许是某些分立的值。普朗克的理论导出了 $a=2\pi h/c^2$ 和 b=h/k,其中 k 是玻尔兹曼(Bolzmann)常量。通过拟合实验中得到的黑体辐射曲线,普朗克常数为 $h=6.6\times 10^{-34}$ J·s。

普朗克的工作通常被认为是量子力学的开端。然而,物理学史学家们一直在争论: 1900 年的普

朗克究竟是将能量量子化视为对物理事实的描述,还是仅仅将其视为一种数学近似,从而使他能够获得正确的黑体辐射公式。[见 O. Darrigol, Centaurus, 43, 219 (2001); C. A. Gearhart, Phys. Perspect., 4, 170 (2002) (可在线查阅: employees.csbsju.edu/cgearhart/Planck/PQH.pdf; S. G. Brush, Am. J.Phys., 70, 119 (2002) (www.punsterproductions.com/sciencehistory/cautious.htm).]。物理历史学家克拉格(Kragh)指出:"如果说 1900 年 12 月物理学发生了一场革命,似乎没有人注意到它。普朗克也不例外,赋予他的工作的重要性在很大程度上是一种历史重构。"(H. Kragh,《物理学世界》, 2000 年 12 月,第 31 页)

能量量子化的概念与以往物理学的所有理念直接相悖。经典力学认为:物质体的能量可以连续变化。然而,只有在能量量子化的假设下,才能得到正确的黑体辐射曲线。

能量量子化的第二个应用是光电效应。在光电效应中,光照射到金属上会导致电子被激发。波 的能量与其强度成正比,而与其频率无关。因此光的电磁波图象会让人想到:发射的光电子的动能 会随着光强度的增加而增加,但不会随着光频率的变化而变化。

1905 年,爱因斯坦(Einstein)指出:将光视为由粒子状实体(称为光子)组成的集合体,每个光子都具有能量

$$\boxed{E = h\nu} \tag{1.3}$$

就可以解释这些观测结果。当金属中的电子吸收光子时,所吸收的光子能量的一部分被用来克服将电子固定在金属中的力,剩余的能量则转化为电子逸出后的动能。由能量守恒,有 $h\nu=\phi+T$,其中 ϕ 是电子逸出金属表面所需的最小能量(金属的功函数),T 是被激发电子的最大动能。提高光的频率 ν 会增加光子能量,从而增加被激发电子的动能。增加固定频率下的光强度会增加光子撞击金属的速度,从而增加电子的发射速度,但不会改变每个发射电子的动能。(克拉格认为: "可以有力地证明,是爱因斯坦首先认识到了量子理论的本质。"; H. Kragh,《物理世界》,2000 年 12 月,第31 页)

光电效应表明:除了在衍射实验中表现出波动性外,光还可以表现出粒子性。

1907 年,爱因斯坦将能量量子化应用于固体元素中原子的振动。假设每个原子在每个方向 (x,y,z) 上的振动能量被限制为 $h\nu_{vib}$ 的整数倍,其中振动频率 ν_{vib} 是元素的性质。爱因斯坦利用统计力学 推导出固体恒容热容 C_V 的表达式。他的公式与已知的钻石 C_V 与温度的关系数据相当吻合。

现在我们来考虑物质的结构。

19 世纪末,对放电管和自然放射性的研究表明:原子和分子是由带电粒子组成的。电子带有负电荷,而质子带有与电子电荷大小相等但符号相反的正电荷,其质量是电子的 1836 倍。原子的第三种成分-中子(1932 年发现)不带电荷,比质子稍重。

从 1909 年开始,卢瑟福(Rutherford)、盖革(Geige)和马斯登(Marsden)反复将一束 α 粒子穿过薄金属箔,并让它们落在荧光屏上,从而观察到粒子的偏转。 α 粒子是从天然放射性衰变中获得的带正电荷的氦核。大多数 α 粒子通过金属箔时基本上没有发生偏转,但令人惊讶的是,少数粒子发生了很大的偏转,有些粒子向后偏转。如果正电荷遍布整个原子 [正如 J. J. 汤姆逊(Thomson)在 1904 年提出的那样],那么一旦高能 α 粒子穿透原子,斥力就会减弱,根据经典静力学,在原子中心的斥力为零。因此,卢瑟福得出结论:只有当正电荷集中在一个微小而沉重的原子核中时,才会发生如此大的偏转。

原子包含一个极小(半径为 10^{-13} 到 10^{-12} cm)的重核,该核由中子和 Z 个质子组成,其中 Z 是原子序数,原子核外有 Z 个电子,带电粒子的相互作用遵循库仑定律。(核子在原子核内通过强相互作用结合在一起,这与我们无关)原子的半径约为 1 Å,气体动力学理论的结果就表明了这一点。

原子和分子的化学性质是由其电子结构决定的,因此就产生了电子运动和能量的性质问题。由于原子核的质量远大于电子,我们认为原子核的运动与电子的运动相比是微小的。

1911 年,卢瑟福提出了原子的行星模型,其中电子以不同的轨道围绕原子核旋转,就像行星围绕太阳旋转一样。然而,这一模型存在一个根本性的难题。根据经典电磁理论,加速的带电粒子会以电磁波(光波)的形式辐射能量。以恒定速度围绕原子核旋转的电子正在被加速,因为其速度矢量的方向在不断变化。因此,卢瑟福模型中的电子应该不断地通过辐射损失能量,从而向原子核螺旋运动。因此,根据经典(19世纪)的物理学,卢瑟福的原子结构是不稳定的,会发生坍缩。

1913 年,尼尔斯·玻尔(Niels Bohr)将能量量子化的概念应用于氢原子,提出了解决这一难题的可行方法。玻尔假定氢原子中电子的能量是量子化的,电子只能在一系列允许的轨道中的一个轨道上运动。当电子从一个玻尔轨道过渡到另一个玻尔轨道时,一个频率 ν 满足

$$\boxed{E_{upper} - E_{lower} = h\nu} \tag{1.4}$$

的光子被吸收或激发。其中 E_{upper} 和 E_{lower} 是高低两个状态的能量(能量守恒)。玻尔假定电子从自由(电离)态过渡到束缚轨道时会发射出一个光子,其频率是电子在束缚轨道中经典旋转频率的二分之一的整数倍,他利用经典力学推导出了氢原子能级的计算公式。利用 (1.4),他得到了与观测到的氢谱一致的结果。然而,用玻尔理论拟合氦光谱的尝试却失败了。此外,该理论无法解释分子中的化学键。

玻尔模型的失败源于使用经典力学来描述原子中的电子运动。原子光谱显示出离散的频率,这表明只有某些能量的运动是允许的;以及电子能量是量子化的。然而,经典力学允许连续的能量范围。因此,路易斯·德布罗意(Louis de Broglie)在 1923 年提出:电子的运动可能具有波的一面。质量为m、速度为v 的电子将具有波长

$$\lambda = \frac{h}{mv} = \frac{h}{p} \tag{1.5}$$

其中 p 是线性动量。德布罗意通过与光子的类比推理得出公式 (1.5)。根据爱因斯坦的狭义相对论,光子的能量可以用 E=pc 表示,其中 c 是光速,p 是光子的动量。利用 $E_{photon}=h\nu$ 可以得到光子以 c 的速度运动时的 $pc=h\nu=hc/\lambda$ 和 $\lambda=h/p$ 。方程式 (1.5) 是电子相应的方程式。

1927 年,戴维森(Davisson)和格尔默(Germer)通过实验证实了德布罗意的假设,他们从金属中反射电子并观察到衍射效应。1932 年,斯特恩(Stern)在氦原子和氢分子中观察到了同样的效应,从而验证了波效应并非电子所特有,而是微观粒子运动的某种普遍规律的结果。通过衍射光栅可以观察到大至 $C_{48}H_{26}F_{24}N_8O_8$ 的分子的衍射和干涉现象。[T. Juffmann 等,Nat. Nanotechnol.,7,297 (2012)]。有关分子干涉图案形成的影片,请访问 www.youtube.com/watch?v=vCiOMQIRU7I。

因此,电子的行为在某些方面像粒子,而在另一些方面则像波。我们面临着物质(以及光)表面上自相矛盾的"波粒二象性"。电子怎么可能既是粒子(局部实体),又是波(非局部实体)呢?答案是电子既不是波也不是粒子,而是另一种东西。用经典物理学的波或粒子概念来准确描述电子的行为是不可能的。经典物理学的概念是根据宏观世界的经验发展而来的,并不能正确描述微观世界。进化塑造了人类大脑,使其能够理解并有效处理宏观现象。人类神经系统的发展并不是为了处理原子和分子层面的现象,因此我们无法完全理解这些现象也就不足为奇了。

虽然光子和电子都表现出明显的二元性,但它们并不是同一类实体。光子在真空中以c的速度运动,其静止质量为零;而电子始终具有v < c和非零静止质量。光子必须始终按相对论处理,但速度远小于c的电子可以按非相对论处理。

1.3 不确定性关系

让我们来看看波粒二象性对同时测量微观粒子的 x 坐标和线动量 x 分量的尝试有什么影响。我们从一束动量为 p、沿 y 方向运动的粒子束开始,让粒子束落在一个窄缝上。狭缝后面是一块照相

板。见图1.1。

粒子通过宽度为 w 的狭缝时,其 x 坐标的不确定性为 w。我们将这种 x 值的分布称为 Δx ,即 有 $\Delta x = w$ 。

由于微观粒子具有波的特性,它们会被狭缝衍射,在平板上产生衍射图样(就像光束一样)。图 1.1中图形的高度表示到达给定点的粒子数量。衍射图样显示: 当粒子被狭缝衍射时,它们的运动方向发生了改变,因此部分动量被转移到了 x 方向。动量在 x 方向上的分量 p_x 等于动量矢量 \vec{p} 在 x 方向上的投影。向上偏转 α 角的粒子的动量满足 $p_x = p \sin \alpha$; 向下偏转 α 角的粒子的动量满足 $p_x = -p \sin \alpha$ 。由于大多数粒子的偏转范围在 $-\alpha$ 到 α 之间,其中 α 是与衍射图样中第一个最小值的夹角,因此我们将以中心衍射峰中动量值的一般作为动量 x 分量不确定性 Δp_x 的量度: $\Delta p_x = p \sin \alpha$ 。

因此,在狭缝处进行测量,有

$$\Delta x \Delta p_x = p w \sin \alpha \tag{1.6}$$

图 1.1: 狭缝的电子衍射

图 1.2: 计算一级衍射的最小值

第一个衍射最小值出现的角度 α 很容易计算。出现第一个最小值的条件是:通过狭缝上边缘的粒子和通过狭缝中心的粒子所经过的距离之差应等于 $\frac{1}{2}\lambda$,其中 λ 是相关波的波长。这样,从狭缝顶部发出的波与从狭缝中心发出的波正好相位相反,它们相互抵消。从狭缝中点以下距离 d 处发出的

波与从狭缝顶部以下距离 d 处发出的波相互抵消。在图 1.2中画出 AC,使 AD=CD,则路径长度之差为 BC。狭缝到屏幕的距离比狭缝宽度大。因此,由于 AD 和 BD 几乎平行,则 $\angle ACB$ 基本上是直角,因此 $\angle BAC=\alpha$,路径差 BC 就是 $\frac{1}{2}w\sin\alpha$ 。设 BC 等于 $\frac{1}{2}\lambda$,我们就得到了 $w\sin\alpha=\lambda$,公式 (1.6) 就变成了 $\Delta x\Delta p_x=p\lambda$,其中波长 λ 由德布罗意关系式 $\lambda=h/p$ 给出,因此 $\Delta x\Delta p_x=h$ 。由于不确定度尚未精确定义,因此使用等号并不合适。我们可以用

$$\Delta x \Delta p_x \approx h \tag{1.7}$$

来表示 x 方向上的不确定性,同时 p_x 具有与普朗克常数相当的的数量级。

尽管我们只用一种特例证明了 (1.7),但其有效性是普遍的。无论如何尝试,微观"粒子"的波粒二象性都限制了我们同时测量这种粒子的位置和动量的能力。我们对位置的测定越精确,对动量的测定就越不准确。(在图1.1中, $\sin \alpha = \lambda/w$,因此缩小狭缝会增加衍射图样的扩散)这种限制就是沃纳·海森堡(Werner Heisenberg)于 1927 年发现的**不确定性关系**。

由于波粒二象性,测量行为会给被测系统带来不可控制的干扰。我们从粒子具有精确的 p_x 值 (零) 开始。通过施加狭缝,我们测量了粒子的 x 坐标,精确度为 w,但这次测量给粒子的 p_x 值带来了不确定性。测量改变了系统的状态。

1.4 含时薛定谔方程

经典力学只适用于宏观粒子。对于微观"粒子",我们需要一种新的力学形式,即**量子力学**。为简单起见,我们将讨论一个单粒子的一维系统。

在经典力学中, 粒子的运动遵循牛顿第二定律:

$$F = ma = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \tag{1.8}$$

其中 F 是作用在粒子上的合外力,m 是粒子的质量,t 是时间;a 是加速度,由 $a = \mathrm{d}v/\mathrm{d}t = (\mathrm{d}/\mathrm{d}t)(\mathrm{d}x/\mathrm{d}t) = \mathrm{d}^2x/\mathrm{d}t^2$ 给出,其中 v 是速度。方程 (1.8) 包含坐标 x 对时间的二阶导数。为了求解这个方程,我们必须进行两次积分。这就引入了两个积分常量 c_1 和 c_2 ,有

$$x = g(t, c_1, c_2) (1.9)$$

其中 g 是时间的某个函数。我们现在要问:在某一特定时间 t_0 ,我们必须掌握哪些信息才能预测粒子未来的运动?如果我们知道在 t_0 时刻,粒子位于 x_0 处,则有

$$x_0 = g(t_0, c_1, c_2) (1.10)$$

由于我们需要确定两个常数,因此需要更多信息。将 (1.9) 左右两边对时间求导,有

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v = \frac{\mathrm{d}}{\mathrm{d}t}g\left(t, c_1, c_2\right)$$

如果我们也知道在 t_0 时刻,粒子具有速度 v_0 ,那么有进一步的关系

$$v_0 = \left. \frac{\mathrm{d}}{\mathrm{d}t} g(t, c_1, c_2) \right|_{t=t_0} \tag{1.11}$$

知道 x_0 和 v_0 后,我们可以用方程 (1.10) 和 (1.11) 求出 c_1 和 c_2 。知道 c_1 和 c_2 后,就可以用方程 (1.9) 来精确预测粒子在未来的运动。

作为式 (1.8) 至 (1.11) 的例子,考虑一个粒子在地球重力场中的运动。取垂直向上为 x 轴正方

向,则作用在粒子上的合外力方向垂直向下,大小为 -mg,其中 g 是重力加速度。则牛顿第二定律 (1.8) 形式为 $-mg = md^2x/dt^2$,所以 $d^2x/dt^2 = -g$ 。积分一次,有 $dx/dt = -gt + c_1$ 。如果我们知 道粒子在 t_0 时刻的速度为 v_0 ,就可以求出积分常量 c_1 。又由于 v = dx/dt,将 $v_0 = -gt_0 + c_1$ 即 $c_1 = v_0 + gt_0$ 带入,有 $dx/dt = -gt + gt_0 + v_0$ 。再次积分,我们引入了另一个积分常量 c_2 。如果我们知道粒子在 t_0 时刻的位置为 x_0 ,则可以求出 c_2 。因此,我们有 $x = x_0 - \frac{1}{2}g(t - t_0)^2 + v_0(t - t_0)$ 。知道了在 t_0 时刻粒子的 t_0 和 t_0 ,我们就能预测粒子未来的运动轨迹。

在一维范围内运动的粒子的经典力学势能 V 的定义为满足

$$\left| \frac{\partial V(x,t)}{\partial x} = -F(x,t) \right| \tag{1.12}$$

例如,对于一个在地球重力场中运动的粒子,有 $\partial V/\partial x=-F=mg$,积分一次,有 V=mgx+c,其中 c 为积分常量。我们可以任意选择我们想要的零势能面。令 c=0,我们有势能函数 V=mgx。

经典力学中的"**状态**"一词是指系统中每个粒子在某一时刻的位置和速度,以及作用在粒子上的力。根据牛顿第二定律,给定一个系统在任何时候的状态,它的未来状态和未来运动都是完全确定的,如式 (1.9)-(1.11) 所示。牛顿定律在解释行星运动方面取得的巨大成功让许多哲学家将牛顿定律作为哲学决定论的论据。数学家和天文学家拉普拉斯(Laplace)(1749-1827) 假定宇宙是由服从牛顿定律的粒子组成的。因此,给定宇宙在某一时刻的状态,宇宙万物未来的运动是完全确定的。原则上,一个能知道宇宙任何瞬间状态的超级星体可以计算出所有未来的运动。

尽管经典力学是确定性的,但许多经典力学系统(例如,在重力、摩擦力和周期性变化的驱动力影响下摆动的摆)在系统参数的一定范围内表现出混沌行为。在混沌系统中,运动对粒子位置和速度的初始值以及作用力异常敏感,两个初始状态相差一个实验无法检测的量,最终会导致系统的未来行为大相径庭。因此,由于测量初始状态的精度有限,即使系统服从确定性方程,实际上也不可能预测混沌经典力学系统的长期行为。对太阳系行星数千万年轨道的计算机计算表明,行星的运动是混沌的。[I. Peterson,《牛顿的钟:混沌的太阳系》,Freeman, 1993年; J. J. Lissauer, Rev. Mod. 71, 835 (1999)]

只要精确了解经典力学系统的当前状态,我们就能预测其未来状态。然而,海森堡不确定性原理表明:我们无法同时确定微观粒子的精确位置和速度,因此无法获得经典力学所需的数据来预测系统的未来运动。在量子力学中,我们必须满足于对未来精确运动的不完全预测。

我们研究量子力学的方法是假设基本原理,然后利用这些假设推导出实验可检验的结果,例如原子的能级。为了描述量子力学中一个系统的**状态**,我们假设存在一个粒子坐标的函数 Ψ ,称为**状态函数或波函数**(通常写作**波函数**)。由于状态一般会随时间变化,因此 Ψ 也是时间的函数。对于一个单粒子的一维系统,我们有 $\Psi = \Psi(x,t)$ 。波函数包含了一个系统所有可能的信息,因此我们不说"波函数 Ψ 所描述的状态",而只说"状态 Ψ "。牛顿第二定律告诉我们,如何通过对经典力学系统当前状态的了解来找到它的未来状态。而要根据量子力学系统当前的状态找到它未来的状态,我们需要一个方程来告诉我们波函数是如何随时间变化的。对于单粒子的一维系统,将这个方程假定为

$$-\frac{\hbar}{\mathrm{i}}\frac{\partial\Psi\left(x,t\right)}{\partial t} = -\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi\left(x,t\right)}{\partial x^{2}} + V\left(x,t\right)\Psi\left(x,t\right) \tag{1.13}$$

其中常数 ħ (约化普朗克常数) 定义为

$$\hbar \equiv \frac{h}{2\pi} \tag{1.14}$$

1926 年,奧地利物理学家埃尔温·薛定谔(Erwin Schrödinger)(1887-1961)建立了波函数的概念及其随时间变化的方程。这个被称为**含时薛定谔方程**(或**薛定谔波方程**)中,i 是虚数单位,m是粒子的质量,V(x,t) 是系统的势能函数。(量子力学中许多具有重要历史意义的论文可在 dieum-snh.qfb.umich.mx/archivoshistoricosmq 网站上查阅)

含时薛定谔方程包含波函数对时间的一阶导数,如果我们知道 t_0 时刻的波函数,就可以计算出未来任意时刻的波函数 (状态)。

波函数包含了我们可能知道的关于它所描述的系统的所有信息。关于粒子 x 坐标的测量结果, Ψ 给了我们什么信息?我们不能指望 Ψ 会像经典力学系统的状态那样具有涉及位置的明确说明。这个问题的正确答案是在薛定谔发现薛定谔方程后不久,由马克斯·玻恩(Max Born)给出的。玻恩推测:对于单粒子的一维系统,

$$\left|\Psi\left(x,t\right)\right|^{2} \mathrm{d}x\tag{1.15}$$

给出了在 t 时刻,在 x 到 x+dx 范围内找到该粒子的概率。在 (1.15) 中,两条竖线表示绝对值,dx 表示 x 轴上一个无限小的长度。函数 $|\Psi(x,t)|^2$ 是在 x 轴上不同位置找到粒子的**概率密度**。(第 1.6 节回顾了概率)例如,假设在某个特定时间 t_0 ,粒子处于由波函数 $a^2\mathrm{e}^{-2bx^2}$ 描述的特征状态,其中 a 和 b 是实常数。如果我们在 t_0 时刻观测该粒子的位置,会得到任意的 x 值,因为概率密度 $a^2\mathrm{e}^{-2bx^2}$ 处处非零。由于 $|\Psi|^2$ 在原点取到最大值,因此在 x=0 附近的 x 值比其他地方的更有可能被观测到。

为了将 Ψ 与实验测量联系起来,我们需要许多完全相同的非相互作用系统,每个系统都处于相同的状态 Ψ 。如果我们对 n 个系统进行了 n 次测量,令 $\mathrm{d} n_x$ 表示在 x 和 $x+\mathrm{d} x$ 之间找到粒子的测量次数,那么 $\mathrm{d} n_x/n$ 就是在 x 和 $x+\mathrm{d} x$ 之间找到粒子的概率。因此,有

$$\frac{\mathrm{d}n_x}{n} = \left|\Psi\right|^2 \mathrm{d}x$$

而 (1/n) dn_x/dx 与 x 的关系图则给出了概率密度 $|\Psi|^2$ 与 x 的函数关系。也许有人认为,我们可以通过一个处于 Ψ 状态的系统,反复测量粒子的位置来找到概率密度函数。这种方法是错误的,因为测量过程通常会改变系统的状态。我们在讨论不确定性原理(第 1.3 节)时看到过一个这方面的例子。

量子力学是统计性质的。在知道状态的情况下,我们无法准确预测位置测量的结果;我们只能预测各种可能结果的概率。氢原子的玻尔理论规定了电子的精确路径,因此不是正确的量子力学图 暑。

量子力学并没有说电子像波一样分布在空间的很大区域。相反,用于描述电子运动的概率模式(波函数)表现得像波,并满足波方程。

波函数如何为我们提供位置以外的其他属性信息,将在后面的章节中讨论。

热力学公设(热力学第一、第二和第三定律)是由宏观经验提出的,因此相当容易理解。量子力学的公设是从微观世界的角度阐述的,显得相当抽象。不要指望第一次接触就能完全理解量子力学公设。随着我们对各种实例的处理,对这些公设的理解会加深。

我们引入了薛定谔方程,却没有试图证明它的合理性,这可能会让读者感到困惑。通过几何光学和经典力学之间的类比,以及波光学和量子力学之间的类比,我们可以证明薛定谔方程的合理性。几何光学是波光学的近似,在光的波长远小于仪器尺寸时有效。(回忆一下它在处理镜片和镜子时的用途)。同样地,经典力学是波动力学的近似,当粒子的波长远小于仪器的尺寸时有效。我们可以根据已知的几何光学方程和波光学方程之间的关系,猜测如何从经典力学中得到量子力学的正确方程。由于许多化学家对光学并不特别熟悉,因此省略了这些论证。无论如何,这些类比只能使薛定谔方程看起来可信。它们不能用来推导或证明这个方程。薛定谔方程是理论的一个假设,要通过其预测与实验的一致性来检验。(关于薛定谔得出方程的推理细节,请参阅 Jammer,第 5.3 节。参考文献中的作者姓名用斜体标出)

量子力学为微观粒子提供了运动规律。从实验上看,宏观物体遵从经典力学。因此,要使量子力学成为有效的理论,当我们从微观粒子过渡到宏观粒子时,量子力学应还原为经典力学。量子效

应与德布罗意波长 $\lambda = h/mv$ 有关。由于 h 非常小,宏观物体的德布罗意波长近似为零。因此,在 极限 $\lambda \to 0$ 中,我们期望含时薛定谔方程能够还原为牛顿第二定律。我们可以证明这一点(见问题 7.59)。

狭义相对论与经典力学的关系也存在类似的情况。在以 c 为光速的极限 $v/c \to 0$ 中,狭义相对论可还原为经典力学。我们将要发展的量子力学形式将是非相对论的。相对论与量子力学的完全融合尚未实现。

从历史上看,量子力学是由海森堡、玻恩和乔丹(Jordan)于 1925 年首次使用矩阵提出的,比薛定谔于 1926 年使用微分方程提出的量子力学早几个月。薛定谔证明:海森堡公式(称为**矩阵力学**)等同于薛定谔公式(称为**波动力学**)。1926 年,狄拉克和乔丹分别独立地用一种称为变换理论的抽象版本提出了量子力学,它是矩阵力学和波动力学的概括(见《狄拉克》)。1948 年,费曼设计出了量子力学的路径积分公式 [R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948); R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948); R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965]。

1.5 定态薛定谔方程

含时薛定谔方程 (1.13) 看上去很可怕。幸运的是,量子力学在化学中的许多应用都不使用这个方程。取而代之的是更简单的定态薛定谔方程。现在,我们从一维单粒子的含时薛定谔方程导出定态薛定谔方程。

首先,我们只讨论一种特殊情况,即势能 V 不是时间的函数,而只取决于 x。系统没有受到与时间相关的外力作用时会出现此情况。此时,含时薛定谔方程为

$$-\frac{\hbar}{\mathrm{i}}\frac{\partial\Psi\left(x,t\right)}{\partial t}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi\left(x,t\right)}{\partial x^{2}}+V\left(x,t\right)\Psi\left(x,t\right)\tag{1.16}$$

将式 (1.16) 的解假设为时间函数和坐标 x 函数的乘积:

$$\boxed{\Psi(x,t) = f(t)\psi(x)} \tag{1.17}$$

大写的 Ψ 用来表示含时的波函数,而小写的 ψ 表示只与 x 坐标有关的因子。与 (1.17)) 形式的波函数相对应的状态具有某些特性(稍后讨论),这些特性使它们极具吸引力。[并非 (1.16) 的所有解都具有 (1.17) 的形式;见证明 3.51。] 取 (1.17) 的偏导数,我们有

$$\frac{\partial \Psi\left(x,t\right)}{\partial t} = \frac{\mathrm{d}f\left(t\right)}{\mathrm{d}t}\psi\left(x\right), \quad \frac{\partial^{2}\Psi\left(x,t\right)}{\partial x^{2}} = f\left(t\right)\frac{\mathrm{d}^{2}\psi\left(x\right)}{\mathrm{d}x^{2}}$$

带入 (1.16), 有

$$-\frac{\hbar}{\mathrm{i}}\frac{\mathrm{d}f(t)}{\mathrm{d}t}\psi(x) = -\frac{\hbar^2}{2m}f(t)\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)f(t)\psi(x)$$
$$-\frac{\hbar}{\mathrm{i}}\frac{1}{f(t)}\frac{\mathrm{d}f(t)}{\mathrm{d}t} = -\frac{\hbar^2}{2m}\frac{1}{\psi(x)}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)$$
(1.18)

此时方程左右两边同除 $f\psi$ 。一般来说,我们希望 (1.18) 两边各相等的量是 x 和 t 的某个函数。然而,(1.18) 的右边不依赖于 t,所以 (1.18) 两边相等的函数必须与 t 无关。我们称这个常数为 E。 令式 (1.18) 的左边等于 E,我们有

$$\frac{\mathrm{d}f\left(t\right)}{\mathrm{d}t} = -\frac{\mathrm{i}E}{\hbar}\mathrm{d}t$$

左右对时间求积分,有

$$\ln f(t) = -iEt/\hbar + C$$

其中C是任意常数。因此,

$$f(t) = e^C e^{-iEt/\hbar} = A e^{-iEt/\hbar}$$

其中 A 是代替了 \mathbf{e}^C 的任意常数。由于 A 可以作为因子包含在与 f(t) 相乘的函数 $\psi(x)$ 中,因此 A 可以从 f(t) 中略去。所以,

$$f(t) = e^{-iEt/\hbar}$$

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)\psi(x) = E\psi(x)$$
(1.19)

方程 (1.19) 就是质量为 m 的单粒子一维运动的**定态薛定谔方程**。常数 E 有什么意义? 由于 E 在 (1.19) 中作为 [E-V(x)] 出现,E 的维数与 V 相同,因此 E 具有能量的量纲。事实上,我们假设 E 就是系统的能量。(这是后一章将讨论的一个更普遍假设的特例) 因此,在势能仅是 x 的函数的情况下,存在如下形式的波函数

$$\Psi(x,t) = e^{-iEt/\hbar}\psi(x) \tag{1.20}$$

这些波函数对应于恒定能量 E 的状态。在接下来的几章中,我们将主要关注如何找到各种系统的方程 (1.19) 的解。

式 (1.20) 中的波函数是复数函数,但在实验中可观测到的量是概率密度 $|\Psi(x,t)|^2$ 。复数绝对值的平方由复数与其复共轭的乘积给出,复共轭则是在出现 i 的地方用 -i 代替 i (见第 1.7 节)。因此,

$$\boxed{\left|\Psi\right|^2 = \Psi^*\Psi}\tag{1.21}$$

其中, *号表示复共轭。对于波函数 (1.20), 有

$$|\Psi(x,t)|^{2} = \left[e^{-iEt/\hbar}\psi(x)\right]^{*} e^{-iEt/\hbar}\psi(x)$$

$$= e^{iEt/\hbar}\psi^{*}(x) e^{-iEt/\hbar}\psi(x)$$

$$= e^{0}\psi^{*}(x) \psi(x) = \psi^{*}(x) \psi(x)$$

$$|\Psi(x,t)|^{2} = |\psi(x)|^{2}$$
(1.22)

在推导 (1.22) 时,我们假设 E 是实数,即 $E=E^*$ 。这将会在第 7.2 节给出证明。

因此,对于 (1.20) 形式的状态,概率密度由 $|\Psi(x)|^2$ 给出,且不随时间变化。这种状态称为**定态**。由于具有物理意义的量是 $|\Psi(x,t)|^2$,而且对于定态有 $|\Psi(x,t)|^2 = |\psi(x)|^2$,函数 $\psi(x)$ 通常被称为**波函数**,尽管定态的完整波函数是 $\psi(x)$ 与 $\mathrm{e}^{-\mathrm{i}Et/\hbar}$ 的乘积。定态一词不应误导读者,让他们以为处于定态的粒子就是静止的。确定的是概率密度 $|\Psi|^2$,而不是粒子本身。

我们将主要关注能量恒定的状态(定态),因此通常会处理定态薛定谔方程(1.19)。为简单起见,我们将此方程称为"薛定谔方程"。请注意,薛定谔方程包含两个未知数:允许的能量 E 和允许的波函数 ψ 。为了求解这两个未知数,我们除了要求它满足(1.19)以外,还需要有额外的条件(称为边界条件)。边界条件决定了允许的能量,因为只有特定的 E 值才能满足边界条件。这一点在后面章节讨论具体例子时会更加清楚。

1.6 概率

概率在量子力学中起着基础性的作用。本节主要回顾数学中的概率。

关于概率的正确定义一直存在很多争议。其中一个定义如下:如果一个实验有 n 个同样可能的

结果,其中 m 个结果有利于某个事件 A 的发生,那么 A 发生的概率就是 m/n。请注意:这个定义是循环论证,因为它指定了同样可能的结果,而概率才是我们要定义的。它只是假设我们能够识别同样可能发生的结果。另一个定义是基于多次实际操作实验:假设我们进行了 N 次实验,在其中的 M 次实验中,事件 A 发生了。那么将 A 发生的概率定义为

$$\lim_{N \to \infty} \frac{M}{N}$$

因此,如果我们重复抛一枚硬币,随着次数的增加,正面的比例会逐渐接近 1/2。

例如,假设我们想知道从一副包含 13 张红心的 52 张标准牌中随机抽取一张牌时,抽到红心的概率。有 52 张牌,因此有 52 种同样可能的结果。有 13 张红心,因此抽出红心有 13 种可能的结果。所以,m/n=13/52=1/4。即抽到红心的概率为 1/4。

有时我们会关心两个相关事件同时发生的概率。例如,我们可能会问从一副 52 张牌中抽出两张 红心的概率,假设抽出第一张牌后我们不放回去。第一次抽牌有 52 种可能的结果,而每一种可能都 对应 51 种可能的第二次抽牌。我们有 $52 \cdot 51$ 种可能的结果。因为有 13 张红心,所以有 $13 \cdot 12$ 种不同的方法抽出两张红心。期望概率为 $(13 \cdot 12) / (52 \cdot 51) = 1/17$ 。这个计算说明了定理:两个事件 A 和 B 同时发生的概率是 A 发生的概率乘以 B 随后发生的条件概率(计算时假设 A 发生)。因此,如果 A 是第一次抽中红心的概率,那么 A 的概率就是 13/52。如果第一次抽到红心,那么第二次抽到红心的概率是 12/51,因为牌中还有 12 张红心。那么抽到两张红心的概率是 (13/52)(12/51) = 1/17,如前所述。

在量子力学中,我们必须处理涉及连续变量(例如 x 坐标)的概率。谈论在 x=0.5000... 这样一个特定点上发现粒子的概率是没有多大意义的,因为 x 轴上有无数个点,而对于我们进行的任何有限次数的测量来说,精确得到 0.5000... 的概率都是微乎其微的。相反,我们谈论的是在 x 轴上位于 x 和 x+dx 之间的微小区间内找到粒子的概率,dx 是长度的一个无穷小量。这个概率自然与区间的长度 dx 成正比,并且会随着 x 轴的不同区域而变化。因此,粒子在 x 和 x+dx 之间被发现的概率等于 g(x) dx,其中 g(x) 是某个函数,表示概率在 x 轴上的变化情况。函数 g(x) 称为概率密度,因为它是单位长度上的概率。由于概率是实数、非负数,因此 g(x) 必须是一个处处非负的实函数。波函数 Ψ 可以取负值和复值,不是概率密度。因此,量子力学假设概率密度为 $|\Psi|^2$ [公式 (1.15)]。

粒子位于空间的某个有限区域 $a \le x \le b$ 的概率是多少?为了求出这个概率,我们将在位于 a 和 b 之间的所有无限小区域中找到粒子的概率 $|\Psi|^2 dx$ 相加,这就是如下定积分的定义:

$$\int_{a}^{b} |\Psi|^{2} dx = \Pr(a \le x \le b)$$
(1.23)

其中, \Pr 表示概率。概率为 1 则代表必然性。由于粒子肯定位于 x 轴上的某处,因此我们要求

$$\int_{-\infty}^{\infty} |\Psi|^2 \, \mathrm{d}x = 1 \tag{1.24}$$

若波函数 Ψ 满足式 (1.24),则我们说 Ψ 是**归一化的**。对于定态波函数,有 $|\Psi|^2 = |\psi|^2$ 且 $\int_{-\infty}^{\infty} |\psi|^2 dx = 1$ 。

例题:

- 一个单粒子一维系统在 t=0 时刻满足 $\Psi=a^{-1/2}{\rm e}^{-|x|/a}$,其中 a=1.0000 nm。在 t=0 时对粒子的位置进行一次测量。
- (a) 求测量值介于 x = 1.5000 nm 和 x = 1.5001 nm 之间的概率;

- (b) 求测量值介于 x = 0 nm 和 x = 2 nm 之间的概率;
- (c) 求证: Ψ 是归一化的。
- (a) 在这个极小的区间内,x 只变化了 0.0001 nm,而 Ψ 从 $e^{-1.5000}$ nm $^{-1/2}$ = 0.22313 nm $^{-1/2}$ 到 $e^{-1.5001}$ nm $^{-1/2}$ = 0.22311 nm $^{-1/2}$, 所以 Ψ 在这个区间可以近似为常数,将这一区间视为无穷小区间是一个很好的近似方法。带入 (1.15) 给出的期望概率公式,有

$$|\Psi|^2 dx = a^{-1/2} e^{-2|x|/a} dx = (1 \text{ nm})^{-1} e^{-2(1.5 \text{ nm})/(1 \text{ nm})} (0.0001 \text{ nm})$$

= 4.979×10^{-6}

(也可见证明 1.14)

(b) 使用式 (1.23) 以及 $x \ge 0$ 时 |x| = x,有

$$\begin{aligned} \Pr\left(0 \le x \le 2 \text{ nm}\right) &= \int_{0}^{2 \text{ nm}} \left|\Psi\right|^{2} \mathrm{d}x = a^{-1} \int_{0}^{2 \text{ nm}} \mathrm{e}^{-2x/a} \mathrm{d}x \\ &= -\frac{1}{2} \mathrm{e}^{-2x/a} \bigg|_{0}^{2 \text{ nm}} = -\frac{1}{2} \left(\mathrm{e}^{-4} - 1\right) = 0.4908 \end{aligned}$$

(c) 使用 $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$,以及 $x \ge 0$ 时 |x| = x 和 x < 0 时 |x| = -x,有

$$\begin{split} \int_{-\infty}^{\infty} \left| \Psi \right|^2 \mathrm{d}x &= a^{-1} \int_{-\infty}^{0} \mathrm{e}^{2x/a} \mathrm{d}x + a^{-1} \int_{0}^{\infty} \mathrm{e}^{-2x/a} \mathrm{d}x \\ &= a^{-1} \left(\left. \frac{1}{2} a \mathrm{e}^{2x/a} \right|_{-\infty}^{0} \right) + a^{-1} \left(\left. -\frac{1}{2} a \mathrm{e}^{-2x/a} \right|_{0}^{\infty} \right) = \frac{1}{2} + \frac{1}{2} = 1 \end{split}$$

得证。

练习:

对于一个测量时态函数为 $\Psi=\left(32a^3/\pi\right)^{1/4}x\mathrm{e}^{-ax^2}$ 的系统(其中 $a=1.0000~\mathrm{nm}^{-2}$),求测量值 在 $x=1.2000~\mathrm{nm}$ 和 $1.2001~\mathrm{nm}$ 之间的概率。将区间视为无穷小区间。

(答案: 0.0000258。)

1.7 复数

我们已经知道波函数可以是复数,所以我们来回顾一下复数的一些性质。

复数 *z* 具有如下的形式:

$$z = x + iy, \quad \sharp \dot{\mathbf{p}} \, \mathbf{i} \equiv \sqrt{-1} \tag{1.25}$$

且 x 和 y 是**实数**(不涉及负数平方根的数),如果在 (1.25) 中 y=0,则 z 是实数。如果 $y\neq 0$,则 z 是**虚数**。如果 x=0 且 $y\neq 0$,则 z 是**纯虚数**。例如: 6.83 是实数,5.4—3i 是虚数,而 0.60i 是 纯虚数。实数和纯虚数是复数的特例,在 (1.25) 中,x 和 y 分别是 z 的实部和虚部,即 $x=\operatorname{Re}(z)$; $y=\operatorname{Im}(z)$ 。

复数可以代表**复平面** (图 1.3) 上的一个点,其中,z 的实部绘制在横轴上,虚部绘制在纵轴上。这幅图显然提示我们定义两个表征复数 z 的量:点 z 与原点的距离 r 称为 z 的**绝对值**或模;点 z 的 半径矢量与正横轴所成的角度 θ 则称为 z 的相位或辐角。我们有

$$|z| = r = (x^2 + y^2)^{1/2}, \quad \tan \theta = y/x$$
 (1.26)

$$x = r\cos\theta, \qquad y = r\sin\theta$$

所以我们可以把 z = x + iy 写作

$$z = r\cos\theta + i\sin\theta = re^{i\theta} \tag{1.27}$$

由欧拉公式带入。(见证明 4.3)

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.28}$$

以上方程中的 θ 角均采用弧度制。

如果 z = x + iy,则它的**复共轭** z^* 定义为

$$z^* \equiv x - iy = re^{-i\theta} \tag{1.29}$$

图 1.3: (a)复数z = x + iy的图象; (b)复数-2 + i的图象

如果 z 是实数,那么它的虚部为 0。因此,当且仅当 $z=z^*$ 时有 z 是实数。对复数 z 作两次复共轭,我们再次得到了 z,所以 $(z^*)^*=z$ 。将 z 与其复共轭 z^* 作乘积,我们有

$$zz^* = (x + iy) (x = iy) = x^2 + iyx + ixy - i^2y^2$$

$$zz^* = x^2 + y^2 = r^2 = |z|^2$$
 (1.30)

对于两个复数 $z_1 = r_1 e^{i\theta_1}$ 与 $z_2 = r_2 e^{i\theta_2}$ 的积和商,我们有

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}, \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$
 (1.31)

根据复共轭的定义或 (1.31), 我们很容易证明

$$(z_1 z_2)^* = z_1^* z_2^* \tag{1.32}$$

同样地,

$$(z_1/z_2) = z_1^*/z_2^*, \quad (z_1 + z_2)^* = z_1^* + z_2^*, \quad (z_1 - z_2)^* = z_1^* - z_2^*$$
 (1.33)

对于积和商的绝对值,由(1.31)可知

$$|z_1 z_2| = |z_1| |z_2|, \quad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 (1.34)

因此,如果 ψ 是复波函数,我们有

$$\left|\psi^{2}\right| = \left|\psi\right|^{2} = \psi^{*}\psi\tag{1.35}$$

现在我们得到了数字 1 的 n 次根式。我们可以将数字 1 的相位取为 0 或 2π 或 4π ,以此类推。因此 $1=\mathrm{e}^{\mathrm{i}2\pi k}$,其中 k 是任何整数,0、负数或正数。现在考虑数字 ω ,其中 $\omega\equiv\mathrm{e}^{\mathrm{i}2\pi k/n}$,n 为正整数。使用式 (1.31) n 次,我们有 $\omega^n=\mathrm{e}^{\mathrm{i}2\pi k}=1$ 。因此, ω 是 n 次单位根。有 n 个不同的复数 n 次单位根,连续取 n 个整数 k 的值,就可以得到所有这些根:

$$\omega = e^{i2\pi k/n}, \quad k = 0, 1, 2, \dots, n-1$$
 (1.36)

除了 (1.36) 中的 k 值之外,任何其他 k 值所得到的数的相位都与 (1.36) 中的一个数相差 2 的整数倍,因此不是不同的根。对于 (1.36) 中的 n=2,我们得到 1 的两个平方根;对于 n=3,得到 1 的三个立方根;以此类推。

1.8 单位

本书使用国际单位制。在国际单位制 (SI) 中,长度、质量、时间的单位分别是米 (m)、千克 (kg) 和秒 (s)。力的单位是牛顿 (N),能量的单位是焦耳 (J)。描述真空中相距 r 的两个电荷 Q_1 和 Q_2 之间作用力大小的库仑定律,用国际单位制单位表示为

$$F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2} \tag{1.37}$$

其中电荷量 Q_1 和 Q_2 的单位是库仑 (C), ε_0 是常数(真空介电常数),其值为 $8.854 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ 。(物理常数的精确值见附录)

1.9 微积分学

量子化学中大量使用微积分,因此应牢记以下公式。其中 c、n 和 b 为常数,f 和 g 为 x 的函数。

最后一个公式有一个例子: $d \left[\sin \left(cx^2 \right) \right] / dx = 2cx \cos \left(cx^2 \right)$ 。这里 $g(x) = cx^2$ 而 $f = \sin a$

$$\int cf(x) dx = c \int f(x) dx, \quad \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int dx = x, \quad \int x^n dx = \frac{x^{n+1}}{n+1} \not \exists r \mid n \neq -1, \quad \int \frac{1}{x} dx = \ln x$$

$$\int e^{cx} dx = \frac{e^{cx}}{c}, \quad \int \sin cx dx = -\frac{\cos cx}{c}, \quad \int \cos cx dx = \frac{\sin cx}{c}$$

总结

习题

Chapter 2

箱中粒子

单粒子一维系统的定态波函数和能级是通过求解定态薛定谔方程 (1.19) 得到的。在本章中,我们将求解一个简单系统的定态薛定谔方程,即一维盒子中的粒子 (第 2.2 节)。由于薛定谔方程是微分方程,我们首先讨论微分方程。

2.1 微分方程

本节只讨论常微分方程,即只有一个自变量的方程。[偏微分方程有不止一个自变量。含时薛定 谔方程 (1.16) 就是一个例子,其中 t 和 x 都是自变量。] 常微分方程是自变量 x、因变量 y(x) 和 y 的 1、2、…、n 阶导数 $y(y',y'',\dots,y^{(n)})$ 之间的关系式。例如

$$y''' + 2x(y')^{2} + y^{2}\sin x = 3e^{x}$$
(2.1)

微分方程的阶数与方程中最高阶导数的阶数相同。因此,方程(2.1)为三阶微分方程。

线性微分方程是一种特殊的微分方程,其形式为

$$A_{n}\left(x\right)y^{\left(n\right)}+A_{n-1}\left(x\right)y^{\left(n-1\right)}+A_{n-2}\left(x\right)y^{\left(n-2\right)}+\cdots+A_{1}\left(x\right)y'+A_{0}\left(x\right)y=g\left(x\right) \tag{2.2}$$

其中所有的 A_i 和 g (有些可能为零) 只是 x 的函数。在 n 阶线性微分方程 (2.2) 中,y 及其各阶导数的次幂均为一次。不满足式 (2.2) 的微分方程为**非线性**微分方程。如果 (2.2) 中的 g(x) = 0,则线性微分方程是**齐次**的,否则是**非齐次**的。一维定态薛定谔方程 (1.19) 就是二阶线性齐次微分方程。

通过除以 y'' 的系数,我们可以将每一个二阶线性齐次微分方程化为以下形式

$$y'' + P(x)y' + Q(x)y = 0 (2.3)$$

设 y_1 和 y_2 是两个满足方程 (2.3) 的独立函数。"独立"的意思是 y_2 并不是 y_1 的简单倍数。因此,线性齐次微分方程 (2.3) 的通解为

$$y = c_1 y_1 + c_2 y_2 \tag{2.4}$$

其中 c_1 和 c_2 是任意常数。将式 (2.4) 带入 (2.3) 的左边即可轻松证明:

$$\begin{split} c_{1}y_{1}^{\prime\prime}+c_{2}y_{2}^{\prime\prime}+P\left(x\right)c_{1}y_{1}^{\prime}+P\left(x\right)c_{2}y_{2}^{\prime}+Q\left(x\right)c_{1}y_{1}+Q\left(x\right)c_{2}y_{2}\\ &=c_{1}\left[y_{1}^{\prime\prime}+P\left(x\right)y_{1}^{\prime}+Q\left(x\right)y_{1}\right]+c_{2}\left[y_{2}^{\prime\prime}+P\left(x\right)y_{2}^{\prime}+Q\left(x\right)y_{2}\right]\\ &=c_{1}\cdot0+c_{2}\cdot0=0 \end{split} \tag{2.5}$$

其中我们用到了 y_1 和 y_2 是方程 (2.3) 的解。

n 次微分方程的通解通常有 n 个任意常数。为了确定这些常数,我们可能需要**定解条件**,即规定 y 或其各阶导数在某一点或多点的值的条件。例如:如果 y 是固定在两点上的振动弦的位移,我们就知道 y 在这两点上必须为零。

一个重要的特例是二阶常系数线性齐次微分方程:

$$y'' + py' + qy = 0 (2.6)$$

其中 p 与 q 是常数。为了解这个方程 (2.6),我们暂且假定解的形式是 $y = e^{sx}$ 。我们正在寻找一个导数与常数相乘会与原函数相互抵消的函数。指数函数在微分时会重复,因此是正确的选择。将其代入 (2.6) 即可得出

$$s^{2}e^{sx} + pse^{sx} + qe^{sx} = 0$$

$$s^{2} + ps + q = 0$$
(2.7)

方程 (2.7) 称为**特征方程**。它是一个有两个根 s_1 和 s_2 的一元二次方程,只要 s_1 和 s_2 不相等,就能给出 (2.6) 的两个独立解。因此,(2.6) 的通解为

$$y = c_1 e^{s_1 x} + c_2 e^{s_2 x}$$
 (2.8)

例如,对于方程 y''+6y'-7y=0,其特征方程为 $s^2+6s-7=0$ 。解这个特征方程,有 $s_1=1$, $s_2=-7$,所以通解为 $y=c_1\mathrm{e}^x+c_2\mathrm{e}^{-7x}$ 。

2.2 一维盒子中的粒子

本节求解一维盒子中粒子的定态薛定谔方程。我们所说的粒子是指受到特定势能函数作用的粒子,该势能函数沿x轴的任何位置都为无穷大,只有长度为l的线段除外,在该线段上势能为零。这样的系统在物理上似乎是不真实的,但这种模型可以成功地应用于某些共轭分子;见问题2.17。我们把原点放在线段的左端(图2.1)。

图 2.1: 一维盒子中粒子的势函数 V(x)

我们需要考虑三个区域。在区域 I 和 III 中,势能 V 为无穷大,此处的定态薛定谔方程 (1.19) 为

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = (E - \infty)\,\psi$$

与 ∞ 相比, E 的大小可以忽略不计。我们略去 E, 有

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = \infty\psi, \quad \psi = \frac{1}{\infty} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}$$

因此,在盒子的外侧, ψ 为零:

$$\psi_I = 0, \quad \psi_{II} = 0 \tag{2.9}$$

对于区域 II, x 在 0 和 l 之间时, 势能 V 为零, 定态薛定谔方程 (1.19) 为

$$\frac{\mathrm{d}^2 \psi_{II}}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} E \psi_{II} = 0 \tag{2.10}$$

其中 m 是粒子的质量,E 是能量。我们将方程 ($\frac{2.10}{2.10}$) 视为一个二阶常系数线性齐次微分方程。其特征方程由 ($\frac{2.7}{2.10}$) 给出:

$$s^2 + 2mE\hbar^{-2} = 0$$

$$s = \pm \left(-2mE\right)^{1/2} \hbar^{-1} \tag{2.11}$$

$$s = \pm i (2mE)^{1/2} \hbar^{-1} \tag{2.12}$$

其中 i 是虚数单位。使用 (2.8), 我们有

$$\psi_{II} = c_1 e^{i(2mE)^{1/2} x/\hbar} + c_2 e^{-i(2mE)^{1/2} x/\hbar}$$
(2.13)

我们姑且令

$$\theta \equiv \left(2mE\right)^{1/2} x/\hbar$$

$$\psi_{II} = c_1 e^{i\theta} + c_1 e^{-i\theta}$$

由 $e^{i\theta} = \cos\theta + i\sin\theta$ [1.28] 以及

$$\cos(-\theta) = \cos\theta \text{ and } \sin(-\theta) = -\sin\theta$$
 (2.14)

我们有 $e^{-i\theta} = \cos(-\theta) + i\sin(-\theta) = \cos\theta - i\sin\theta$ 。因此,

$$\begin{split} \psi_{II} &= c_1 \cos \theta + \mathrm{i} c_1 \sin \theta + c_2 \cos \theta - \mathrm{i} c_2 \sin \theta \\ &= (c_1 + c_2) \cos \theta + (\mathrm{i} c_1 - \mathrm{i} c_2) \sin \theta \\ &= A \cos \theta + B \sin \theta \end{split}$$

其中, A 和 B 是新的任意常数。则

$$\psi_{II} = A \cos \left[\hbar^{-1} (2mE)^{1/2} x \right] + B \sin \left[\hbar^{-1} (2mE)^{1/2} x \right]$$
 (2.15)

现在通过定解条件,我们来求出 A 和 B。假设波函数是连续的,也就是说,它的值不会突然跳变,这似乎是合理的(见图 3.4)。如果 ψ 在 x=0 处连续,那么有 ψ_I 和 ψ_{II} 在 x=0 处的极限相同:

$$\begin{split} \lim_{x \to 0} \psi_I &= \lim_{x \to 0} \psi_{II} \\ 0 &= \lim_{x \to 0} \left\{ A \cos \left[\hbar^{-1} \left(2mE \right)^{1/2} x \right] + B \sin \left[\hbar^{-1} \left(2mE \right)^{1/2} x \right] \right\} \\ 0 &= A \end{split}$$

由于

$$\sin 0 = 0, \quad \cos 0 = 1 \tag{2.16}$$

将 A = 0 带入 (2.15), 有

$$\psi_{II} = B \sin \left[(2\pi/h) (2mE)^{1/2} x \right]$$
 (2.17)

又由函数在 x = l 处连续, 我们有

$$B\sin\left[\left(2\pi/h\right)\left(2mE\right)^{1/2}l\right] = 0\tag{2.18}$$

因为我们不能令波函数处处为零-得到一个空箱子, 所以 B 不能为零。有

$$\sin\left[\left(2\pi/h\right)\left(2mE\right)^{1/2}l\right]=0$$

 \sin 函数的零点位于 $0, \pm \pi, \pm 2\pi, \cdots, \pm n\pi$ 。则

$$(2\pi/h) (2mE)^{1/2} l = \pm n\pi$$
 (2.19)

n=0 是一种特殊情况。由(2.19),n=0 意味着 E=0。若 E=0 则特征方程(2.12)有两个相等的根,且式(2.13)不是薛定谔方程的完全解。为了找到完全解,我们回到(2.10),其中 E=0 有 $fracd^2\psi_{II}dx^2=0$ 。积分一次,有 $d\psi_{II}/dx=c$;再积分一次,有 $\psi_{II}=cx+d$,其中 c 和 d 都是常数。由于 x=0 时有 $\psi_{II}=0$,所以 d=0;又由于 x=l 时也有 $\psi_{II}=0$,所以 c=0。因此, $\psi_{II}=0$ 推出 E=0,则 E=0 不是允许的能量值。即 n=0 是不允许的。

从方程 (2.19) 中解出 E, 我们有

$$E = \frac{n^2 h^2}{8ml^2}, \quad n = 1, 2, 3 \dots$$
 (2.20)

只有能量值满足式 (2.20) 的波函数 ψ ,才能符合在 x=l 处连续的定解条件。定解条件的应用 迫使我们得出能量值是量子化的结论(图 2.2)。这与经典结果形成了鲜明对比,经典结果认为盒子中的粒子可以具有任何非负能量。请注意:粒子的能量有一个大于零的最小值。能量最小的状态称为**基态**。能量高于基态能量的状态为**激发态**。(在经典力学中,粒子在盒子中的最低能量为零。经典粒子在盒内静止不动时,动能为零,势能为零)。

图 2.2: 一维盒子中粒子能量最低的四个能级

例题:

有一质量为 2.00×10^{-26} g 的粒子在长度 4.00 nm 的势箱中运动。求该粒子从 n=3 能级进入 n=2 能级时发射光子的频率和波长。

根据能量守恒,发射光子的能量等于两个定态之间的能量差 [公式 (1.4); 另见第 9.9 节]:

$$h\nu = E_{upper} - E_{lower} = \frac{n_u^2h^2}{8ml^2} - \frac{n_l^2h^2}{8ml^2} \label{eq:lower}$$

$$\nu = \frac{\left(n_u^2 - n_l^2\right)h}{8ml^2} = \frac{\left(3^2 - 2^2\right)\left(6.626 \times 10^{-34}\;\mathrm{J\cdot s}\right)}{8\left(2.00 \times 10^{-29}\;\mathrm{kg}\right)\left(4.00 \times 10^{-9}\;\mathrm{m}\right)^2} = 1.29 \times 10^{12}\;\mathrm{s^{-1}}$$

其中 u 和 l 分别代表高能级和低能级。由 $\lambda\nu=c$,有 $\lambda=2.32\times10^{-4}$ m。(学生常见的错误是将 $h\nu$ 设为其中一个状态的能量,而不是状态间的能量差)

练习:

对于某个在一维盒子中运动的电子,其能级跃迁的最长波长为 400 nm。求盒子的长度。

答案: 0.603 nm

将 (2.19) 带入 (2.17), 解出波函数为

$$\psi_{II} = B \sin\left(\frac{n\pi x}{l}\right), \quad n = 1, 2, 3 \cdots \tag{2.21}$$

在 $n\pi$ 前面使用负号并不能得到另一个独立的解。因为 $\sin(-\theta) = -\sin\theta$,我们只会得到一个常数 -1,乘以带正号的解。

公式 (2.21) 中的常数 B 仍然是任意的。为了将其确定下来,我们使用公式 (1.24) 和 (1.22) 对 ψ_{II} 进行归一化:

$$\int_{-\infty}^{\infty} |\Psi|^2 dx = \int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

$$\int_{-\infty}^{0} |\psi_I|^2 dx + \int_{0}^{l} |\psi_{II}|^2 dx + \int_{l}^{\infty} |\psi_{III}|^2 dx = 1$$

$$|B|^2 \int_{0}^{l} \sin^2 \left(\frac{n\pi x}{l}\right) dx = 1 = |B|^2 \frac{l}{2}$$
(2.22)

其中的积分是用附录中的公式 (A.2) 求得的。我们有

$$|B|^2 = (2/l)^{1/2}$$

注意我们只求出了 B 的绝对值,但 B 可以取 $\pm (2/l)^{1/2}$ 。此外,B 也不必是实数,我们可以取任何模为 $(2/l)^{1/2}$ 的复数。所以,我们可以说 $B = (2/l)^{1/2} e^{i\alpha}$,其中 α 是 B 的辐角,可以取 0 到 2π 之间的任何值(第 1.7 节)。取辐角为 0,则箱中粒子的定态波函数为

$$\psi_{II} = \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{n\pi x}{l}\right), \quad n = 1, 2, 3 \dots$$
 (2.23)

波函数和概率密度的图如图 2.3 和 2.4 所示。

能量(2.20)和波函数(2.23)中的数字 n 称为**量子数**。量子数 n 的每个不同值都会产生不同的波函数和不同的状态。

波函数在某些点为零,这些点被称为**节点**。量子数 n 每增加 1,波函数 ψ 就多一个节点。 ψ 和 $|\psi|^2$ 中节点的存在似乎令人惊讶。因此,图 (2.4) 表明:对于 n=2,在箱的中点 x=2/l 处找到粒子的概率为零。粒子怎么可能从盒子的一侧运动到另一侧,而在任何时候都不会出现在盒子的中心呢?这个明显的悖论产生于我们试图用宏观粒子运动的日常经验来理解微观粒子的运动。然而,正如第 1 章所指出的:电子和其他微观"粒子"无法用宏观世界的经典物理学概念来完整、正确地描述。

图 2.4 显示,在盒子的不同位置找到粒子的概率与经典结果截然不同。从经典角度看,一个固定能量的粒子在盒子中以恒定的速度在两壁之间弹性地来回弹跳。因此,在盒子中的任何一点发现它的可能性都是相同的;从量子力学角度看,我们会发现在盒子中心的最低能级出现概率最大。随

图 2.3: 三种能量最低的盒中粒子状态的 ψ 曲线图

图 2.4: 三种能量最低的盒中粒子状态的 $|\psi|^2$ 曲线图

着能级越来越高,节点越来越多,概率的最大值和最小值就会越来越接近,而沿着盒子长度方向的概率变化最终会变得难以察觉。当量子数非常大时,我们就获得了接近于经典的均匀概率密度结果。

这一结果,即在大量子数极限下量子力学与经典力学的关系,被称为玻尔对应原理。由于牛顿力学适用于宏观物体(运动速度远小于光速),我们期望非相对论量子力学能给出与经典力学对宏观物体相同的答案。由于普朗克常数极其微小,能量的量子化对于宏观物体来说是不可观测的。由于粒子的质量和盒子长度的平方出现在式 (2.20) 的分母中,因此在宏观盒子中具有宏观运动能量的宏观物体将具有巨大的 n 值,那么根据对应原理,宏观物体将显示出经典行为。

现在,我们有了一整套波函数,每个波函数对应不同的能量,并以量子数 n(正整数)为特征。 让下标 i 表示量子数为 n_i 的特定波函数:

$$\psi_i = \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{n_i\pi x}{l}\right), \quad 0 < x < l$$

$$\psi_i = 0, \quad 其他区域$$

由于波函数已归一化, 我们有

现在我们想知道,当我们使用对应于不同能级的波函数时,这个积分的值是多少:

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \mathrm{d}x = \int_0^l \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{n_i \pi x}{l}\right) \left(\frac{2}{l}\right)^{1/2} \sin\left(\frac{n_j \pi x}{l}\right) \mathrm{d}x, \quad n_i \neq n_j$$

使用附录中的公式 (A.5), 我们有

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \mathrm{d}x = \frac{2}{l} \left[\frac{\sin\left[\left(n_i - n_j\right)\pi\right]}{2\left(n_i - n_j\right)\pi/l} - \frac{\sin\left[\left(n_i + n_j\right)\pi\right]}{2\left(n_i + n_j\right)\pi/l} \right] = 0$$
 (2.25)

由于当 m 是整数时有 $\sin m\pi = 0$, 则

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \mathrm{d}x = 0, \quad i \neq j$$
 (2.26)

当 (2.26) 成立时,我们说对 $i \neq j$ 的波函数 ψ_i 和 ψ_j 是互相**正交**的。将 (2.24) 与 (2.26) 相结合,我们有

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \mathrm{d}x = \delta_{ij} \tag{2.27}$$

其中 δ_{ij} 是 **Kronecker 符号**(由数学家的名字命名)。当 i 和 j 相等时,它等于 1; 当 i 和 j 不相等时,它等于 0:

$$\delta_{ij} \equiv \begin{cases}
0, & i \neq j; \\
1, & i = j.
\end{cases}$$
(2.28)

波函数的特性 (2.27)) 称为**正交归一性**。我们只证明了粒子盒内波函数的正交归一性。我们将在第7.2 节更广泛地证明它。

您可能会对式 (2.26) 感到困惑,不明白为什么我们要将一个状态的波函数乘以另一个状态的波函数。我们稍后会看到(例如第7.3节),使用包含一个系统所有波函数之和的方程通常很有帮助,而这样的方程会导致像(2.26)这样的积分。

研究无限深势阱中粒子的一个更严谨的方法是: 首先处理粒子在壁箱中的势能有限跃迁, 然后当 V 的跃迁变得无限大时求取极限。取极限时的结果与(2.20) 和(2.23) 相同(2.20)。

我们只考虑了粒子在一维盒子中的定态。该系统的非稳态示例,请参见第7.8节末尾的示例。

关于粒子在盒子中的在线计算机模拟,请访问 www.chem.uci.edu/undergraduate/applets/dwell/dwell.htm(显示了在盒子中间引入高度和宽度可变的屏障时对波函数和能级的影响); web. williams. edu/wpetc/chemistry/dbingemann/Chem153/particle.html(通过绘制薛定谔方程在能量变化和盒子长度变化时的解来显示量子化); 以及 falstad.com/qm1d/(同时显示含时薛定谔方程和定态薛定谔方程; 见 7.47)。

2.3 一维自由粒子

我们所说的自由粒子是指不受任何力作用的粒子。对于自由粒子,对(1.12)的积分表明,无论 x 的值是多少,势能都保持不变。由于基态能量的选择是任意的,我们可以设定 V(x)=0。则薛定 谔方程 (1.19) 变为

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + \frac{2m}{\hbar} E\psi = 0 \tag{2.29}$$

式 (2.29) 与式 (2.10) 相同 (定解条件除外)。因此, (2.29) 的通解为 (2.13):

$$\psi = c_1 e^{i(2mE)^{1/2}x/\hbar} + c_2 e^{-i(2mE)^{1/2}x/\hbar}$$
(2.30)

我们可以使用什么边界条件呢?似乎可以合理地假设(因为 $\psi^*\psi$ dx 代表一种概率),当 x 趋于 $\pm\infty$ 时, ψ 将保持有限值。那么如果能量 E 小于零,那么就违反了这个边界条件,因为对于 E<0,我们有

$$\mathrm{i}\left(2mE\right)^{1/2}=\mathrm{i}\left(-2m\left|E\right|\right)^{1/2}=\mathrm{i}\cdot\mathrm{i}\cdot\left(2m\left|E\right|\right)^{1/2}=-\left(2m\left|E\right|\right)^{1/2}$$

因此,当 x 接近负无穷大时,((2.30))中的第一项将变为无穷大。同样,如果 (E) 为负值,当 (x) 接近正无穷大时,((2.30)) 中的第二项也将变为无穷大。因此,对于一维自由粒子,定解条件要求

$$E \ge 0 \tag{2.31}$$

波函数是振荡的,是一个正弦项和一个余弦项的线性组合 [公式 (2.15)]。对于自由粒子,能量没有量子化,所有非负能量都是允许的。在这种情况下,由于我们规定 V=0,能量 E 全为动能。如

果我们想通过归一化的方式求出常数 c_1 和 c_2 ,会发现积分 $\int_{-\infty}^{\infty} \psi^*(x) \psi(x) dx$ 的值为无穷大。换句话说,自由粒子的波函数在通常意义上是不可归一化的。这在物理上是意料之中的,因为当 x 变为 $\pm \infty$ 时,找到自由粒子的概率没有理由趋近于零。

自由粒子问题是一种不真实的情况,因为我们实际上不可能有一种粒子与宇宙中的任何其他粒子没有相互作用。

2.4 矩形势阱中的粒子

考虑在一个具有有限势垒的一维盒子中的粒子(图 2.5 a)。势能函数为当 x < 0 和 x > l 时 $V = V_0$,而 $0 \le x \le l$ 时有 $V_0 = 0$ 。需要考虑两种情况,即粒子的能量高于或低于 V_0 。

图 2.5: (a) 一维矩形势阱中粒子的势能。(b) 该势能的基态波函数。(c) 第一激发态的波函数。

我们首先考虑 $E < V_0$ 的情况。区域 I 和区域 III 的薛定谔方程为 $\mathrm{d}^2\psi/\mathrm{d}x^2 + (2m/\hbar^2)\,(E-V_0)\,\psi = 0$ 。 这是一个常系数齐次线性微分方程,其特征方程(2.7)为 $s^2 + (2m/\hbar^2)\,(E-V_0) = 0$,特征根为 $s = \pm \left(2m/\hbar^2\right)^{1/2}\,(V_0-E)^{1/2}$ 。因此,

$$\begin{split} \psi_I &= C \exp\left[\left(2m/\hbar^2\right)^{1/2} \left(V_0 - E\right)^{1/2} x\right] + D \exp\left[-\left(2m/\hbar^2\right)^{1/2} \left(V_0 - E\right)^{1/2} x\right] \\ \psi_{III} &= F \exp\left[\left(2m/\hbar^2\right)^{1/2} \left(V_0 - E\right)^{1/2} x\right] + G \exp\left[-\left(2m/\hbar^2\right)^{1/2} \left(V_0 - E\right)^{1/2} x\right] \end{split}$$

其中 C、D、F 和 G 都是常数。

如第 2.3 节所述,当 $x\to -\infty$ 时,我们必须阻止 ψ_I 趋于无穷。由于我们假设 $E< V_0$,则 $(V_0-E)^{1/2}$ 是正实数,当 $x\to -\infty$ 时,为了满足 ψ_I 的值为有限值,我们必须有 D=0。同样地,当 $x\to +\infty$ 时,为了满足 ψ_{III} 的值为有限值,我们有 F=0。因此,

$$\psi_{I} = C \exp \left[\left(2m/\hbar^{2} \right)^{1/2} \left(V_{0} - E \right)^{1/2} x \right], \quad \psi_{III} = G \exp \left[- \left(2m/\hbar^{2} \right)^{1/2} \left(V_{0} - E \right)^{1/2} x \right]$$

在区域 II 中, V=0, 薛定谔方程与 (2.10) 一致, 其通解为 (2.15)

$$\psi_{II} = A \cos \left[\left(2m\hbar^2 \right)^{1/2} E^{1/2} x \right] + B \sin \left[\left(2m\hbar^2 \right)^{1/2} E^{1/2} x \right] \tag{2.32}$$

为了完整解决这个问题,我们需要用到定解条件。与无限深势阱中粒子的情况类似,我们需要波函数在 x=0 和 x=l 处连续,则 $\psi_I(0)=\psi_{II}(0)$, $\psi_{II}(l)=\psi_{III}(l)$ 波函数有四个任意常数,因此需要的定解条件不止这两个。除了需要 ψ 连续以外,我们还需要其一阶导数 $\mathrm{d}\psi/\mathrm{d}x$ 处处连续。为了证明这一要求的合理性,我们假设如果 $\mathrm{d}\psi/\mathrm{d}x$ 在某点处不连续,则其导数 $(\psi$ 的二阶导数的瞬时变化率)在该点处会趋于无穷。然而,对于矩形势阱中的粒子,其薛定谔方程 $\mathrm{d}^2\psi/\mathrm{d}x^2=(2m/\hbar^2)(V-E)\psi$ 的右侧不包含任何趋于无穷的因子。所以 $\mathrm{d}^2\psi/\mathrm{d}x^2$ 不可能趋于无穷 [更严谨的论证,见 D. Branson,

Am. J. Phys., 47, 1000(1979)]。因此,我们在 x=0 时有 $\mathrm{d}\psi_I/\mathrm{d}x=\mathrm{d}\psi_{II}/\mathrm{d}x$,在 x=l 时有 $\mathrm{d}\psi_{II}/\mathrm{d}x=\mathrm{d}\psi_{III}/\mathrm{d}x$ 。

由 $\psi_I(0)=\psi_{II}(0)$,我们有 C=A。由 $\psi_I'(0)=\psi_{II}'(0)$,我们有 $B=(V_0-E)^{1/2}A/E^{1/2}$ 。由 $\psi_{II}(l)=\psi_{III}(l)$,我们得到了一个复杂的等式,可以根据 A 求出 G。常数 A 由归一化计算求出。

用 $\psi'_{II}(l) = \psi'_{III}(l)$ 除以 $\psi_{II}(l) = \psi_{III}(l)$,再用 A 表示 B,就得到下面的能级方程(问题 2.21b):

$$\left(2E-V_{0}\right)\sin\left[\left(2mE\right)^{1/2}/\hbar\right]=2\left(V_{0}E-E^{2}\right)^{1/2}\cos\left[\left(2mE\right)^{1/2}l/\hbar\right] \tag{2.33}$$

[虽然 E=0 也满足 (2.33),但会导致 $\psi=0$,所以它不是允许的能量。(见问题 2.21 b] 定义无量纲的常数 ε 和 b 满足

$$\varepsilon \equiv E/V_0 , \quad b \equiv (2mV_0)^{1/2} l/\hbar$$
 (2.34)

用 V_0 除以 (2.33), 我们有

$$(2\varepsilon - 1)\sin(b\varepsilon^{1/2}) - 2(\varepsilon - \varepsilon^2)^{1/2}\cos(b\varepsilon^{1/2}) = 0$$
(2.35)

只有满足 (2.33) 的粒子的能量才有连续和连续导数的波函数,所以能级量子化的条件为 $E < V_0$,为了找到允许的能级,我们可以在 $0 < \varepsilon < 1$ 的条件下绘制 (2.35) 左侧表达式与 ε 的关系图,并找出曲线与横轴交叉的点(另见问题 4.31c)。详细研究(Merzbacher,第 6.8 节)表明: $E < V_0$ 的允许能级数为 N,其中 N 满足以下条件

$$N - 1 < b/\pi \le N$$
, $\sharp \mapsto b \equiv (2mV_0)^{1/2} l/\hbar$ (2.36)

例如,如果 $V_0 = h^2/ml^2$,那么 $b/\pi = 2\left(2^{1/2}\right) = 2.83$,即 N = 3。图 (2.5) 显示了最低两个能级的 ψ 。波函数在盒内是振荡的,而在盒外则呈指数衰减。事实证明:每提高一个能级,节点数就增加一个。

到目前为止,我们只考虑了 $E < V_0$ 的状态。对于 $V_0 < E$, $(V_0 - E)^{1/2}$ 是虚数,并且波函数 ψ_I 和 ψ_{III} 在 $x \to \pm \infty$ 时不会趋于零,而是会振荡(类似于自由粒子)。我们也再也没有理由将 ψ_I 中的 D 和 ψ_{III} 中的 F 设为零了,这些额外的常数可以满足 ψ 和 ψ' 的定解条件,我们会发现不需要限制 E 就可以得到符合条件的波函数。因此,上述所有能量都是允许的。

 $x \to \pm \infty$ 时 $\psi \to 0$ 的状态称为**束缚态**。对于束缚态,只有在有限的空间区域内才有可能找到 粒子。对于**非束缚态**,当 $x \to \pm \infty$ 时 ψ 不会趋于零,且无法归一化。对于在有限深矩形势阱中的 粒子, $E < V_0$ 的状态是束缚态,而 $E > V_0$ 的状态是非束缚态。而在无限深势阱中的粒子则所有的状态都为束缚态,自由粒子则全为非束缚态。

要在线模拟粒子在势阱中的情况,请访问 www.falstad.com/qm1d ,并在"设置"框中选择"有限势阱"。您可以改变势阱的宽度和深度,查看对能级和波函数的影响。

2.5 隊穿

对于有限深矩形势阱中的粒子(第 2.4 节)图 (2.5),波函数 ψ_I 和 ψ_{III} 表明:就束缚态而言,在粒子总能量 E 小于其势能 $V=V_0$ 的区域 I 和 III 中找到粒子的概率不为零。经典上,这是不允许的。经典方程 E=T+V 且 $T\geq 0$,其中 T 是动能,则经典力学中 E 是不可能比 V 小的。

考虑一个在有限宽度和深度盒子中作一维运动的粒子,从经典角度看,除非粒子的能量大于势能势垒 V_0 ,否则粒子无法逸出。然而,量子力学的处理方法(此处省略)表明,在盒子外发现总能量小于 V 的粒子的概率是不为零的。

隧穿(tunneling)一词表示粒子穿透经典禁区(如图 2.5 所示),或粒子穿过高度超过粒子能量

的能垒。由于隧穿是一种量子效应,因此粒子的行为越背离经典力学,其发生的概率就越大。因此,质量小的粒子最容易发生隧穿现象 (注意: 质量 m 越大,第 2.4 节中的 ψ_I 和 ψ_{II} 函数趋于零的速度就越快)。电子很容易发生隧穿。氢原子和离子比更重的原子更容易发生隧穿。放射性原子核发射 α 粒子时, α 粒子要通过子核与 α 粒子之间的短程核吸引力和库仑斥力所产生的势能势垒才能发生隧穿。NH3 是金字塔形分子,分子反转存在势能障碍,平面构型时势能最大。氢原子可以穿透这个势垒,从而使分子倒转。在乙烷分子中,内旋转存在障碍,在氢的黯淡位置存在势能最大值。氢原子可以从一个交错位置隧穿到下一个位置。电子的隧穿在氧化还原反应和电极过程中非常重要。隧穿通常对涉及氢原子转移的化学反应的速率有很大贡献。参见 R. P. Bell, The Tunnel Effect in Chemistry,Chapman & Hall, 1980。

图 2.6: 有限高度和宽度的一维盒子中粒子的势能函数

某些酶催化反应中会出现 H 原子的隧穿现象; 见《酶催化反应中的量子隧穿》, R. Allemann 和 N. Scrutton (编), RSCP Publishing 出版社, 2009 年。

扫描隧穿显微镜发明于 1981 年,它利用电子在极细的金属丝尖端与导电固体表面之间的空间 隧穿,生成固体表面单个原子的图像。在固体和金属丝之间施加一个微小的电压,当针尖以几 Å 的高度在表面上移动时,针尖的高度会进行调整,以保持电流恒定。根据针尖高度与位置的关系绘制出表面图像。

总结

习题

Chapter 3

算符

3.1 算符

现在,我们以一种比以前更一般的方式来发展量子力学理论。首先,我们将单粒子一维定态薛 定谔方程 (1.19) 写成以下形式

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + V(x) \right] \psi(x) = E\psi(x)$$
(3.1)

(3.1) 中括号内的实体是一个算符。方程(3.1) 表明我们有一个能量算符,它对波函数起作用后,波函数又回来了,不过是乘以一个允许的能量值。因此,接下来我们讨论算符。

算符是一种将给定函数转换为另一个函数的规则。例如,让 \hat{D} 算符来表示对关于 x 的函数求导。我们用一个字母上的小尖号来表示算符。给定一个可导函数 f(x),则将 \hat{D} 作用到 f(x) 上即可表示为 $\hat{D}f(x)=f'(x)$ 。例如, $\hat{D}(x^2+3\mathrm{e}^{2x})=2x+6\mathrm{e}^{2x}$ 。如果 $\hat{3}$ 是将函数乘以 3 的算符,那么 $\hat{3}(x^2+3\mathrm{e}^x)=3x^2+9\mathrm{e}^x$ 。如果 tan 是取函数正切值的算符,那么将 tan 应用于函数 x^2+1 ,我们得到了 tan (x^2+1) 。如果算符 \hat{A} 将函数 f(x) 转换为另一个函数 g(x),我们将其写作 $\hat{A}f(x)=g(x)$ 。

我们将两个算符 \hat{A} 和 \hat{B} 的和与差定义为

$$\left(\hat{A} + \hat{B}\right) f(x) \equiv \hat{A}f(x) + \hat{B}f(x)$$

$$\left(\hat{A} - \hat{B}\right) f(x) \equiv \hat{A}f(x) - \hat{B}f(x)$$
(3.2)

例如, 若 $\hat{D} \equiv d/dx$, 那么

$$\left(\hat{D}+\hat{3}\right)\left(x^{3}-5\right)=\hat{D}\left(x^{3}-5\right)+\hat{3}\left(x^{3}-5\right)=3x^{2}+\left(3x^{3}-15\right)=3x^{3}+3x^{2}-15$$

一个算符也可以涉及多个变量。例如、算符 $\partial^2/\partial x^2 + \partial^2/\partial y^2$ 具有如下性质:

$$(\partial^2/\partial x^2 + \partial^2/\partial y^2) q(x,y) = \partial^2 q/\partial x^2 + \partial^2 q/\partial y^2$$

两个算符的积定义为

$$\widehat{\hat{A}\hat{B}f}(x) = \widehat{A}\left[\widehat{B}f(x)\right]$$
(3.3)

换句话说,我们先将乘积右边的算符作用到函数 f(x) 上,然后将左边的算符作用到得到的函数上。例如, $\hat{3}\hat{D}f(x)=\hat{3}\left[\hat{D}f(x)\right]=\hat{3}f'(x)=3f'(x)$

算符 $\hat{A}\hat{B}$ 和 $\hat{B}\hat{A}$ 可能不会有同样的效果。例如,考虑算符 d/dx 和 \hat{x} (\hat{x} 表示将函数乘以 x):

$$\hat{D}\hat{x}f(x) = \frac{\mathrm{d}}{\mathrm{d}x}\left[xf(x)\right] = f(x) + f'(x) = \left(\hat{1} + \hat{x}\hat{D}\right)f(x) \tag{3.4}$$

$$\hat{x}\hat{D}f(x) = \hat{x}\left[\frac{\mathrm{d}}{\mathrm{d}x}f(x)\right] = xf'(x)$$

在这个例子中, $\hat{A}\hat{B}$ 和 $\hat{B}\hat{A}$ 是不同的算符。

我们可以建立如下的**算符代数**。若对任意的函数 f,有 $\hat{A}f = \hat{B}f$,则我们说算符 \hat{A} 和算符 \hat{B} 是相等的。相等的算符作用到给定的函数上时,会有相同的结果。例如,式 (3.4) 表明

$$\hat{D}\hat{x} = 1 + \hat{x}\hat{D} \tag{3.5}$$

算符 $\hat{1}$ (乘以 1) 称作**单位算符**。算符 $\hat{0}$ (乘以 0) 称作**空算符**。我们通常省略简单常数算符顶上的小尖号。我们还可以将算符从算符方程的一边转移到另一边(问题 3.7)。因此,式 (3.5) 与 $\hat{D}\hat{x}-\hat{x}\hat{D}-1=0$ 等价,其中省略了空算符和单位算符上的小尖号。

算符运算遵循结合律:

$$\hat{A}\left(\hat{B}\hat{C}\right) = \left(\hat{A}\hat{B}\right)\hat{C} \tag{3.6}$$

式 (3.6) 的证明见问题 3.10。例如,令 $\hat{A} = d/dx$, $\hat{B} = \hat{x}$,而 $\hat{C} = 3$ 。使用式 (3.5),我们有

$$\begin{split} \left(\hat{A}\hat{B}\right) &= \hat{D}\hat{x} = 1 + \hat{x}\hat{D}, \quad \left[\left(\hat{A}\hat{B}\right)\hat{C}\right]f = \left(1 + \hat{x}\hat{D}\right)3f = 3f + 3xf' \\ \left(\hat{B}\hat{C}\right) &= 3\hat{x}, \quad \left[\hat{A}\left(\hat{B}\hat{C}\right)\right]f = \hat{D}\left(3xf\right) = 3f + 3xf' \end{split}$$

算符代数与普通代数的一个主要区别是:数的运算遵守乘法的交换律,但算符不一定。例如:若a 和 b 都是数,那么有 ab=ba;但是 $\hat{A}\hat{B}$ 和 $\hat{B}\hat{A}$ 不一定相等。我们定义算符 \hat{A} 和 \hat{B} 的**交换子** $[\hat{A},\hat{B}]$ 为 $\hat{A}\hat{B}-\hat{B}\hat{A}$:

$$\left[\hat{A}, \hat{B} \right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} \tag{3.7}$$

如果有 $\hat{A}\hat{B} = \hat{B}\hat{A}$,那么 $\left[\hat{A},\hat{B}\right] = 0$,则我们说算符 \hat{A} 和 \hat{B} 是**可对易的**。如果 $\hat{A}\hat{B} \neq \hat{B}\hat{A}$,那么 \hat{A} 和 \hat{B} 是不可对易的。注意 $\left[\hat{A},\hat{B}\right]f = \hat{A}\hat{B}f - \hat{B}\hat{A}f$ 。由于我们作用算符 3 和 d/dx 的顺序没有区别,因此我们有

$$\left[\hat{3}, \frac{\mathrm{d}}{\mathrm{d}x}\right] = \hat{3}\frac{\mathrm{d}}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x}\hat{3} = 0$$

从式 (3.5), 我们有

$$\left[\frac{\mathrm{d}}{\mathrm{d}x},\hat{x}\right] = \hat{D}\hat{x} - \hat{x}\hat{D} = 1 \tag{3.8}$$

那么算符 d/dx 和 \hat{x} 是不可对易的。

例题:

求 $[z^3, \mathrm{d/d}z]$ 。

为了求出 $[z^3, d/dz]$,我们需要将其作用到任意一个函数 g(x) 上。由式 (3.7) 交换子的定义及算符差和乘积的定义,我们有

$$\begin{split} \left[z^3, \mathrm{d}/\mathrm{d}z\right]g &= \left[z^3 \left(\mathrm{d}/\mathrm{d}z\right) - \left(\mathrm{d}/\mathrm{d}z\right)z^3\right]g = z^3 \left(\mathrm{d}/\mathrm{d}z\right)g - \left(\mathrm{d}/\mathrm{d}z\right)\left(z^3g\right) \\ &= z^3q' - 3z^2q - z^3q' = -3z^2q \end{split}$$

删去任意的函数 g,我们有算符方程 $[z^3, d/dz] = -3z^2$ 。

练习:

求 $[d/dx, 5x^2 + 3x + 4]$ 。(答案: 10x + 3)

算符的**平方**定义为算符和它本身的乘积: $\hat{B}^2 = \hat{B}\hat{B}$ 。我们来求求导算符的平方:

$$\begin{split} \hat{D}^2 f\left(x\right) &= \hat{D}\left(\hat{D}f\right) = \hat{D}f' = f'' \\ \hat{D}^2 &= \mathrm{d}^2/\mathrm{d}x^2 \end{split}$$

再比如:取函数复共轭的算符的平方等于单位算符,因为取两次复共轭可以得到原始函数。算符 \hat{B}^n $(n=1,2,3\cdots)$ 定义为连续应用 n 次算符 \hat{B} 。

事实表明,量子力学中出现的算符都是线性的。当且仅当算符 \hat{A} 具有以下两个性质时,它是**线性算符**:

$$\hat{A}\left[f\left(x\right) + g\left(x\right)\right] = \hat{A}f\left(x\right) + \hat{A}g\left(x\right)$$
(3.9)

$$\hat{A}\left[cf\left(x\right)\right] = c\hat{A}f\left(x\right) \tag{3.10}$$

其中 f 和 g 是任意函数,c 是任意常数(可以不必是实数)。线性算符的例子有 \hat{x}^2 、d/dx 和 d^2/dx^2 。 非线性算符有 \cos 和 $(\)^2$,其中 $(\)^2$ 是对作用的函数求平方。

例题:

d/dx 是线性算符吗? $\sqrt{}$ 是线性算符吗?

我们有

$$(d/dx) [f(x) + g(x)] = dfdx + dg + dx = (d/dx) f(x) + (d/dx) g(x)$$
$$(d/dx) [cf(x)] = cdf(x) / dx$$

d/dx 符合式 (3.9) 和 (3.10), 是线性算符。然而,

$$\sqrt{f\left(x\right)+g\left(x\right)} \neq \sqrt{f\left(x\right)} + \sqrt{g\left(x\right)}$$

所以 / 不是线性算符。

练习: 算符 $x^2 \times$ (乘以 x^2) 是线性算符吗? (答案: 是)

线性算符运算中有用的算符有

$$(3.11)$$

$$\hat{A}\left(\hat{B}+\hat{C}\right) = \hat{A}\hat{B}+\hat{A}\hat{C}$$
(3.12)

例题:证明线性算符满足分配律 (3.11)。

开始证明的好方法是先写下给出的内容和要证明的内容。已知 \hat{A} 、 \hat{B} 和 \hat{C} 是线性算符, 求证 $(\hat{A}+\hat{B})\hat{C}=\hat{A}\hat{C}+\hat{B}\hat{C}$ 。

为了证明算符 $(\hat{A} + \hat{B})\hat{C}$ 等于算符 $\hat{A}\hat{C} + \hat{B}\hat{C}$,我们必须证明这两个算符作用到任意函数 f 上的结果是相等的。即

$$\left[\left(\hat{A} + \hat{B} \right) \hat{C} \right] f = \left(\hat{A} \hat{C} + \hat{B} \hat{C} \right) f$$

我们从左边 $\left[\left(\hat{A}+\hat{B}\right)\hat{C}\right]f$ 开始。这个表达式包含了算符 \hat{A} 与 \hat{B} 的乘积及算符 \hat{C} 。将算符乘 积的定义 (3.3) 中的 \hat{A} 用 $\hat{A}+\hat{B}$ 替代, \hat{B} 用 \hat{C} 替代,得出 $\left[\left(\hat{A}+\hat{B}\right)\hat{C}\right]f=\left(\hat{A}+\hat{B}\right)\left(\hat{C}f\right)$ 。

将 $\hat{C}f$ 整体视为一个函数,使用式 (3.2) 关于两个算符 \hat{A} 与 \hat{B} 的和 $\hat{A}+\hat{B}$ 的定义,得出 $(\hat{A}+\hat{B})(\hat{C}f)=\hat{A}(\hat{C}f)+\hat{B}(\hat{C}f)$ 。因此,

$$\left[\left(\hat{A}+\hat{B}\right)\hat{C}\right]f=\left(\hat{A}+\hat{B}\right)\left(\hat{C}f\right)=\hat{A}\left(\hat{C}f\right)+\hat{B}\left(\hat{C}f\right)$$

使用式 (3.3) 给出的算符积的定义,有 $\hat{A}(\hat{C}f) = \hat{a}\hat{C}f$ 及 $\hat{B}(\hat{C}f) = \hat{B}\hat{C}f$ 。则

$$\left[\left(\hat{A} + \hat{B} \right) \hat{C} \right] f = \hat{A}\hat{C}f + \hat{B}\hat{C}f \tag{3.13}$$

将算符和的定义 (3.2) 中的 \hat{A} 用 $\hat{A}\hat{C}$ 替代, \hat{B} 用 $\hat{B}\hat{C}$ 替代,得出 $\left(\hat{A}\hat{C}+\hat{B}\hat{C}\right)f=\hat{A}\hat{C}f+\hat{B}\hat{C}f$,则式 (3.13) 变成了

$$\left[\left(\hat{A} + \hat{B} \right) \hat{C} \right] f = \left(\hat{A} \hat{C} + \hat{B} \hat{C} \right) f$$

这就是我们要证明的。因此, $(\hat{A} + \hat{B})\hat{C} = \hat{A}\hat{C} + \hat{B}\hat{C}$ 。

注意我们没有用到 \hat{A} 、 \hat{B} 和 \hat{C} 是线性算符这一条件,事实上,式 (3.11) 对任意算符都成立。但式 (3.12) 只在 \hat{A} 是线性算符时成立。(问题 3.17)

例题: 求算符 $d/dx + \hat{x}$ 的平方。

为了求 $(d/dx + \hat{x})^2$, 我们将其作用到任意一个函数 f(x) 上。令 $\hat{D} \equiv d/dx$, 我们有

$$\begin{split} \left(\hat{D}+\hat{x}\right)^2f\left(x\right) &= \left(\hat{D}+\hat{x}\right)\left[\left(\hat{D}+\hat{x}\right)f\right] = \left(\hat{D}+\hat{x}\right)\left(f'+xf\right) \\ &= f''+f+xf'+xf'+x^2f = \left(\hat{D}^2+2\hat{x}\hat{D}+\hat{x}^2+1\right)f\left(x\right) \\ &\left(\hat{D}+\hat{x}\right)^2 = \hat{D}^2+2\hat{x}\hat{D}+\hat{x}^2+1 \end{split}$$

计我们只使用算符方程重复这一计算:

$$(\hat{D} + \hat{x})^2 = (\hat{D} + \hat{x})(\hat{D} + \hat{x}) = \hat{D}(\hat{D} + \hat{x}) + \hat{x}(\hat{D} + \hat{x})$$

$$= \hat{D}^2 + \hat{D}\hat{x} + \hat{x}\hat{D} + \hat{x}^2 = \hat{D}^2 + \hat{x}\hat{D} + 1 + \hat{x}\hat{D} + \hat{x}$$

$$= \hat{D}^2 + 2\hat{x}\hat{D} + \hat{x}^2 + 1$$

其中用到了式 (3.11)、(3.12) 和 (3.5),并省略了"乘以 x"算符上的小尖号。在彻底掌握算符之前,最安全的做法是在进行算符操作时,始终保持算符对任意函数 f 进行操作,然后在最后删除 f。

练习:

求 $(d^2/dx^2)^2$ 。(答案: $d^4/dx^4 + 2xd^2/dx^2 + 2d/dx + x^2$)

3.2 本征函数和本征值

假设某线性算符 \hat{A} 作用在某个函数 f(x) 上的结果是对 f(x) 乘上一个常数 k。我们说 f(x) 是 \hat{A} 的一个**本征函数**,k 是**本征值**。作为定义的一部分,我们将要求本征函数 f(x) 不等于零。我们的意思是说,尽管 f(x) 可能在不同点上消失,但它并非处处为零。我们有

$$\left| \hat{A}f\left(x \right) = kf\left(x \right) \right| \tag{3.14}$$

例如,函数 e^{2x} 是算符 d/dx 的一个本征函数,其本征值为 2:

$$(d/dx) e^{2x} = 2e^{2x}$$

然而 $\sin 2x$ 不是 d/dx 的本征函数,因为 $(d/dx)(\sin 2x) = 2\cos 2x$,不等于一个常数乘以 $\sin 2x$ 。

例题:如果函数 f(x) 是线性算符 \hat{A} 的一个本征函数, c 是任意常数。求证: cf(x) 也是算符 \hat{A} 的本征函数, 并与 f(x) 有相同的本征值。

了解如何进行证明的一个好方法是按以下步骤进行:

- 1. 写下给定的信息,并将这些信息从文字转化为等式。
- 2. 用一个或多个方程的形式写下要证明的内容。
- 3. (a) 处理步骤 1 中的给定方程,将其转化为步骤 2 中的所需方程。(b) 或者,从我们要证明的方程的一边开始,使用步骤 1 中的给定方程来处理这一边,直到它转化为要证明的方程的另一边。

我们有三个条件: f(x) 是算符 \hat{A} 的本征函数; \hat{A} 是线性算符; c 是常数。将这些表述转化为方程 [见方程 (3.14)、(3.9) 和 (3.10)], 我们有

$$\hat{A}f = kf \tag{3.15}$$

$$\hat{A}(f+g) = \hat{A}f + \hat{A}g,$$
 及 $\hat{A}(bf) = b\hat{A}f$ (3.16)
$$c = a \text{ (常数)}$$

其中 k 和 b 是常数, f 和 g 是函数。

我们想要证明 cf(x) 也是算符 \hat{A} 的本征函数且有相同的本征值,将其写成方程,即

$$\hat{A}(cf) = k(cf)$$

使用策略 (3) 的 (b),我们从待证明方程的左侧 $\hat{A}(cf)$ 出发,尝试证明它等于 k(cf)。由线性算符定义 (3.16) 的第二个方程,我们有 $\hat{A}(cf)=c\hat{A}f$ 。使用本征方程 (3.15),有 $c\hat{A}f=ckf$ 。因此,

$$\hat{A}\left(cf\right) = c\hat{A}f = ckf = k\left(cf\right)$$

得证。

例题: (a) 求算符 d/dx 的本征函数及对应的本征值; (b) 如果我们假设定解条件为本征函数在 $x \to \pm \infty$ 时为有限值,求对应的本征值。

(a) 将算符 $\hat{A} = d/dx$ 带入方程 (3.14),有

$$\frac{\mathrm{d}f\left(x\right)}{\mathrm{d}x} = kf\left(x\right)$$

$$\frac{1}{f}\mathrm{d}f = k\mathrm{d}x$$
(3.17)

求积分,有

$$\ln f = kx + \text{常}$$

$$f = e^{\text{常} } e^{kx}$$

$$f = ce^{kx} (3.18)$$

算符 d/dx 的本征函数由 (3.18),本征值为 k,它可以是任何数字,而 (3.17) 仍然成立。本征函数包含一个任意的常数 c。这对每个线性算符的特征函数都是正确的,正如前面的例子所证明的。(3.18) 中 k 的每个不同值都会产生不同的特征函数。然而,k 值相同而 c 值不同的特征函数并不是相互独立的。

(b) 由于 k 可以是复数,我们可以写作 k=a+ib,其中 a 和 b 是实数。我们有 $f(x)=ce^{ax}e^{ibx}$ 。若 a>0,则当 x 趋于无穷时因子 e^{ax} 也趋于无穷。若 a<0,则 $x\to-\infty$ 时 $e^{ax}\to\infty$ 。因此,这两个定解条件要求 a=0,所以本征值 k=ib,其中 b 是实数。

在第 3.1 节的第一个例题中,我们知道对任意的函数 g,有 $[z^3, \mathrm{d/d}z] g(z) = -3z^2 g(z)$,所以 $[z^3, \mathrm{d/d}z] = -3z^2$ 。相反地,本征方程 $\hat{A}f(x) = kf(x)$ [式 (3.14)] 却不一定对任意函数 f(x) 成立,从这个方程中我们并不能得出 $\hat{A} = k$ 。因此,结论 $(\mathrm{d/d}x) \, \mathrm{e}^{2x} = 2\mathrm{e}^{2x}$ 并不意味着 $\mathrm{d/d}x$ 与乘以 2 相等。

3.3 算符和量子力学

Key operators in quantum mechanics:

Position:
$$\hat{x} = x$$
 (3.19)

Momentum:
$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$
 (3.20)

Hamiltonian:
$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})$$
 (3.21)

- 3.4 三维多粒子的薛定谔方程
- 3.5 三维盒子中的粒子
- 3.6 简并
- 3.7 平均值
- 3.8 波函数的约束条件

总结

谐振子

- 4.1 微分方程的幂级数解
- 4.2 一维谐振子
- 4.3 双原子分子的振动
- 4.4 一维定态薛定谔方程的数值解法

总结

角动量

- 5.1 Simultaneous Specification of Several Properties
- 5.2 向量
- 5.3 单粒子系统的角动量
- 5.4 角动量梯度算符法

总结

氢原子

- 6.1 单粒子中心力问题
- 6.2 无相互作用的粒子和变量分离
- 6.3 将双粒子问题简化为两个单粒子问题
- 6.4 双粒子的刚性转子模型
- 6.5 氢原子
- 6.6 束缚态氢原子波函数
- 6.7 类氢轨道
- 6.8 塞曼效应
- 6.9 径向薛定谔方程的数值解法

总结

量子力学理论

- 7.1 符号
- 7.2 厄米算符
- 7.3 用本征函数展开
- 7.4 对易算符的本征函数
- 7.5 宇称
- 7.6 测量和态叠加
- 7.7 坐标本征函数
- 7.8 量子力学的基本假设
- 7.9 测量和量子力学解释
- 7.10 矩阵

总结

变分法

- 8.1 变分理论
- 8.2 变分法的推广
- 8.3 行列式
- 8.4 联立线性方程组
- 8.5 线性变分函数
- 8.6 矩阵、本征值和本征向量

总结

微扰理论

- 9.1 微扰理论
- 9.2 非简并微扰理论
- 9.3 微扰理论求解基态氦原子
- 9.4 能量简并的微扰理论
- 9.5 久期方程的简化
- 9.6 微扰理论求解第一激发态的氦原子
- 9.7 含时微扰理论
- 9.8 辐射和物质的相互作用

总结

电子自旋和自旋-统计定理

- 10.1 电子自旋
- 10.2 自旋和氢原子
- 10.3 自旋-统计定理
- 10.4 氦原子
- 10.5 Pauli 不相容原理
- 10.6 Slater 行列式
- 10.7 微扰理论求解基态锂原子
- 10.8 变分法求解基态锂原子
- 10.9 自旋磁矩
- 10.10 电子自旋的梯度算符

多电子原子

- 11.1 Hartree-Fock 自洽场方法
- 11.2 轨道和元素周期表
- 11.3 电子相关
- 11.4 角动量的叠加
- 11.5 多电子原子的角动量
- 11.6 自旋-轨道耦合
- 11.7 原子哈密顿算符
- 11.8 Condon-Slater 规则

总结

分子对称性

- 12.1 对称元素和对称操作
- 12.2 分子点群

总结

双原子分子的电子结构

- 13.1 Born-Oppenheimer 近似
- 13.2 双原子分子核的运动
- 13.3 原子单位制
- 13.4 氢分子离子
- 13.5 H_2^+ 离子基态的近似解
- 13.6 H_2^+ 离子激发态的分子轨道
- 13.7 同核双原子分子的分子轨道构型
- 13.8 双原子分子的分子光谱项
- 13.9 氢分子
- 13.10 价键理论求解 H_2
- 13.11 分子轨道理论和价键理论的比较
- 13.12 同核双原子分子的分子轨道理论和价键理论波函数
- 13.13 H₂ 分子的激发态
- 13.14 双原子分子的自洽场方法波函数
- 13.15 分子轨道理论处理异核双原子分子
- 13.16 价键理论处理异核双原子分子
- 13.17 价电子近似

分子量子力学理论

- 14.1 电子概率密度
- 14.2 偶极矩
- 14.3 分子的 Hartree-Fork 方法
- 14.4 Virial 理论
- 14.5 Virial 理论和化学键
- 14.6 Hellmann-Feynman 理论
- 14.7 静电力定理

总结

分子的电子结构

- 15.1 从头计算、密度泛函、半经验和分子力学方法
- 15.2 多原子分子的分子光谱项
- 15.3 自洽场方法、分子轨道理论求解多原子分子
- 15.4 基函数
- 15.5 自洽场方法、分子轨道理论求解 H₂O 分子
- 15.6 布居数和键级
- 15.7 分子静电势、分子表面和原子电荷
- 15.8 离域分子轨道
- 15.9 自洽场方法、分子轨道理论求解甲烷、乙烷和乙烯
- 15.10 分子结构学
- 15.11 构象搜寻
- 15.12 分子振动频率
- 15.13 热力学定律
- 15.14 从头计算方法的量子化学程序
- 15.15 进行从头计算
- 15.16 快速 Hartree-fock 计算方法
- 15.17 溶剂效应

电子关联方法

- 16.1 关联能
- 16.2 组态相互作用
- 16.3 多体微扰理论
- 16.4 耦合簇方法
- 16.5 密度泛函理论
- 16.6 能量计算的复合方法
- 16.7 扩散量子 Monte Carlo 法
- 16.8 非共价相互作用
- 16.9 NMR 屏蔽常数
- 16.10 碎裂法
- 16.11 相对论效应
- 16.12 价键理论求解多原子分子
- 16.13 GVB (广义价键波函数)、VBSCF (价键自洽场)、BOVB (呼吸轨道价键)方法
- 16.14 化学反应

半经验和分子力学方法求解分子

- 17.1 半经验分子轨道求解平面共轭分子
- 17.2 Hückel 分子轨道理论
- 17.3 PPP 方法
- 17.4 一般的半经验分子轨道和密度泛函方法
- 17.5 分子力学方法
- 17.6 经验和半经验方法处理溶剂效应
- 17.7 化学反应

17.8 量子化学的未来

20 世纪 50 年代,人们普遍认为,除了非常小的分子之外,对所有分子性质进行有意义的从头计算法是不可能的。在这一时期撰写的量子化学书籍中,有这样的表述:"我们永远无法指望(对有机化合物)进行令人满意的从头计算法","对于比氢分子离子更复杂的系统,从一开始就放弃获得薛定谔方程精确解的尝试是明智的"。1959 年,Mulliken 和 Roothaan 发现了多原子分子量子力学精确计算的"瓶颈",即评估多中心积分的困难。现在,这一瓶颈已被消除。

对中等尺寸分子进行 Hartree-Fork 从头计算法和几何优化已成为常规工作,并可采用计算效率较高的方法(如 DFT、MP2 和 SCS-MP2)将电子相关性包括在内。各种量子力学方法和基集的可靠程度已通过大量计算得到证实。可以进行精确从头计算法或密度泛函计算的分子大小受到现有电子计算机的速度和存储容量的限制。随着更大、更快计算机的开发,处理更大的分子将变得可行。

近年来,量子化学取得了长足进步,量子力学计算已成为帮助解决各种实际化学问题的重要工具。多年前,有关分子的量子力学计算主要局限于理论化学家阅读的期刊,而现在,这类计算经常出现在各种化学家阅读的期刊上,如《美国化学会志》。量子化学正被应用于溶液中离子的水合、表面催化、反应中间产物的结构和能量、生物分子的构象以及酶催化反应的研究等问题。在许多情况下,理论计算可能无法给出明确的答案,但它们往往足以让理论与实验进行富有成效的互动。此外,

伍德沃德-霍夫曼规则等定性概念也为化学反应过程和化学键的研究提供了重要启示。

1998 年诺贝尔化学奖由沃尔特·科恩(Walter Kohn)(密度函数理论的开发者之一)和约翰·波普尔(John A. Pople)(高斯系列程序和广泛使用的高斯基集、PPP 方法、CNDO 和 INDO 方法的开发者之一,以及最早将 MP 和 CC 方法应用于分子计算的人之一)分享。诺贝尔奖委员会指出:计算量子化学正在"彻底改变整个化学"。

附录 A

附录

A.1 Complex Numbers

A complex number z=x+iy can be expressed as:

$$z = re^{i\theta}, \quad r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}(y/x)$$
 (A.1)

A.2 Calculus Formulas

Key differentiation and integration formulas:

$$\frac{\mathrm{d}}{\mathrm{d}x}(e^{ax}) = ae^{ax} \tag{A.2}$$

$$\int \sin(ax) \, \mathrm{d}x = -\frac{1}{a} \cos(ax) + C \tag{A.3}$$

附录 B

参考文献

参考文献

[1] Levine, I. N. (2014). Quantum Chemistry (7th ed.). Pearson.

附录 C

部分习题答案

附录 D

索引