Assignment 3

Theory assignment 1

The following part of assignment is a purely theoretical task that requires no additional tools. The task is to find the largest possible frame size for the cyclic structured scheduler by following requirements 1,2 and 3 for finding the largest frame size. The following three task sets should be used:

- 1. T1(15, 1, 14) T2(20, 2, 26) T3(22, 3)
- 2. T1(4, 1) T2(5, 2, 7) T3(20, 5)
- 3. T1(5, 0.1) T2(7, 1) T3(12, 6) T4(45, 9)

-Provide a written report which should contain:

- Calculations for each step for finding the frame size for each task set
- · Resulting frame size for each task set

Solution 1:

 $F = \frac{H}{f}$ (Cyclic Scheduler)

F = Frame size

H = Hyper Period

f = number of frames that equally divide in hyper period

	Р	е	D
T1	15	1	14
T2	20	2	26
Т3	22	3	22

H(Hyper Period) = LCM of Period of all Task = LCM(15, 20, 22) = 660

Finding f

Criteria 1: f should be large enough that an entire task fits, $(f \ge ei_{max}) \rightarrow f \ge 3$

Criteria 2: f should divide the hyper period equally, $\left(\frac{f}{u}\right) \rightarrow f = 1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660$

Critaria 3: A frame gap should be present between release and deadline $(2f-gcd(Pi,f) \le Di) \rightarrow f=6,5,4,3,2$

Hence final values of f can be 3,4,5,6

Solution 2:

 $F = \frac{H}{f}$ (Cyclic Scheduler)

F = Frame size

H = Hyper Period

f = number of frames that equally divide in hyper period

	Р	е	D
T1	4	1	4
T2	5	2	7
Т3	20	5	20

H(Hyper Period) = LCM of Period of all Task = LCM(4, 5, 20) = 20

Finding f

Criteria 1: f should be large enough that an entire task fits, $(f \ge ei_{max}) \rightarrow f \ge 5$

Criteria 2: f should divide the hyper period equally $(\frac{f}{f}) \rightarrow f = 1, 2, 4, 5, 10, 20$

Criteria 3: A frame gap should be present between release and deadline $(2f-gcd(Pi,f) \le Di) \rightarrow f= 4,2$

Since minimum frame size should be at least 5 as per criteria1.

f=4,2 and the task will have to be split to be accommodated in the frame.

Solution 3:

 $F = \frac{H}{f}$ (Cyclic Scheduler)

F = Frame size

H = Hyper Period

f = number of frames that equally divide in hyper period

	Р	е	D
T1	5	0.1	5
T2	7	1	7
Т3	12	6	12
T4	45	9	45

H(Hyper Period) = LCM of Period of all Task = LCM(5,7,12,45) = 1260

Finding f

Criteria 1: f should be large enough that an entire task fits, $(f \ge e_{max}) \rightarrow f \ge 9$

Criteria 2: f should divide the hyper period equally $(\frac{f}{H}) \rightarrow f = 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260$

Criteria 3: A frame gap should be present between release and deadline $(2f-gcd(Pi,f) \le Di) \rightarrow f=3,2$

Since minimum frame size should be at least 9 as per criteria1.

f=3,2 and the task will have to be split to be accommodated in the frame.

Simulation assignment 1

• What is the utilization factor of the system and what is the value for Urm(3)

Ans: Utilization Factor = 0.7333

Urm = 0.7797

• What is the minimum/maximum/average response time of all tasks?

Ans:

Task	min	avg	max	std dev
TASK T1	0.500	0.500	0.500	0.000
TASK T2	1.700	1.700	1.700	0.000
TASK T3	2.700	2.700	2.700	0.000

• Is any task missing the deadline? Which task? Where?

Ans: No

• If a deadline is missed, could it be avoided by changing the scheduler

Ans: Yes

Results

Gantt:

Simulation assignment 2

• What is the utilization factor of the system and what is the value for Urm(4)

Utilization Factor: 1.25

Urm: 0.7568

• What is the minimum/maximum/average response time of all tasks?

Ans:

Task	min	avg	max	std dev
TASK T1	0.600	0.600	0.600	0.000
TASK T2	2.800	3.100	3.400	0.300
TASK T3	0.100	0.100	0.100	0.000
TASK T4	20.000	20.000	20.000	0.000

• Is any task missing the deadline? Which task? Where?

Ans: Yes Task 4 was missed

Similarly was missed at T2_4,T2_5,T2_6,etc.

• If a deadline is missed, could it be avoided by changing the scheduler?

Ans: Yes

Results

Gantt:

