2722

MAR 2 7 2000 S

862.3196

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) ·				•	
TOMOO IIZUMI ET AL.	:)	Examiner:	NYA			
Application No.: 09/471,192	:	Group Art	Unit:	2722		
Filed: December 23, 1999	:) :			TECH		
For: IMAGE PROCESSING METHOD, AND STORAGE MEDIUM	;	March 24,	2000	CENTER	MAR 29	KECEIVE
Assistant Commissioner for Patent Washington, D.C. 20231	ts			२ २७००	2000	ŒD

CLAIM TO PRIORITY

Sir:

Applicant hereby claims priority under the International Convention and all rights to which he is entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Applications:

11-000683 filed January 5, 1999 11-358026 filed December 16, 1999

Certified copies of the priority documents are enclosed.

Applicant's undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicant

Registration No. 25/823

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200

NY_MAIN 71227 v 1

(translation of the front page the driority document of Japanese Patent Application No.11-000583)

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: January 5, 1999

Application Number : Patent Application 11-000683

Applicant(s) : Canon kabushiki Kaisha

January 28, 2000

Commissioner,

Patent Office

Takahiko KONDO

Certification Number 2000-3001945

日本国特許庁 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 1月 5日

出 願 番 号 Application Number:

平成11年特許願第000683号

出 願 人 Applicant (s):

キヤノン株式会社

MAR 29 2000
RECH CENTER 2700

CERTIFIED COPY OF PRIORITY DOCUMENTY BEST AVAILABLE COPY

2.000年 1月28日

特許庁長官 Commissioner, Patent Office

近 藤 隆

【書類名】

特許願

【整理番号】

3672011

【提出日】

平成11年 1月 5日

【あて先】

特許庁長官殿

【国際特許分類】

G06K 15/00

【発明の名称】

画像処理装置及びその制御方法、及び画像処理システム

【請求項の数】

22

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

飯泉 知男

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

村田 昌彦

【特許出願人】

【識別番号】

000001007

【氏名又は名称】

キヤノン株式会社

【代理人】

【識別番号】

100076428

【弁理士】

【氏名又は名称】

大塚 康徳

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】

100093908

【弁理士】

【氏名又は名称】

松本 研一

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】

100101306

【弁理士】

【氏名又は名称】 丸山 幸雄

【電話番号】

03-5276-3241

【手数料の表示】

【予納台帳番号】 003458

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9704672

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像処理装置及びその制御方法、及び画像処理システム 【特許請求の範囲】

【請求項1】 画像データを入力する入力手段と、

入力された画像データを展開して描画する第1及び第2の描画手段と、

前記第1の描画手段によって第1の形式で描画された画像データを第2の形式 に変換する変換手段と、

前記変換手段で変換された第2の形式の画像データと、前記第1及び第2の描 画手段によって第2の形式で描画された画像データのいずれかを、前記入力手段 により入力された画像データの形式に基づいて選択する選択手段と、

を有することを特徴とする画像処理装置。

【請求項2】 前記選択手段は、前記入力手段により入力された画像データが第1の形式である場合には前記変換手段で変換された第2の形式の画像データを選択し、前記入力手段により入力された画像データが第2の形式である場合には前記第1及び第2の描画手段によって第2の形式で描画された画像データを選択することを特徴とする請求項1記載の画像処理装置。

【請求項3】 更に、前記選択手段により選択された画像データを記録媒体 上に印刷する印刷手段を有することを特徴とする請求項2記載の画像処理装置。

【請求項4】 前記第2の形式は、前記印刷手段において処理可能な形式であることを特徴とする請求項3記載の画像処理装置。

【請求項5】 前記第2の形式はYMCK形式であることを特徴とする請求項4記載の画像処理装置。

【請求項6】 前記第1の形式はRGB形式であることを特徴とする請求項5記載の画像処理装置。

【請求項7】 前記第1の描画手段は、前記入力手段により入力された画像 データの形式に応じて、RGBの色成分毎の描画と、YMCの色成分毎の描画の いずれかを行なうことを特徴とする請求項6記載の画像処理装置。

【請求項8】 前記第2の描画手段は、K成分の描画を行なうことを特徴と する請求項7記載の画像処理装置。 【請求項9】 前記第1及び第2の描画手段は、各色毎に、

画像データを所定のバンド単位で保持する複数の保持手段と、

前記保持手段の一方にバンド単位の画像データを描画する描画データ作成手段 と、

前記保持手段の他方に既に描画されているバンド単位の画像データを出力する 描画データ出力手段と、

を有することを特徴とする請求項3記載の画像処理装置。

【請求項10】 前記保持手段は、ビットマップデータを保持することを特徴とする請求項9記載の画像処理装置。

【請求項11】 更に、前記変換手段によって第2の形式に変換された画像 データを前記印刷手段に応じて各色毎に遅延させる遅延手段を備え、

前記選択手段は、前記入力手段により入力された画像データが第1の形式である場合に、前記遅延手段で遅延された第2の形式の画像データを選択することを 特徴とする請求項3記載の画像処理装置。

【請求項12】 更に、前記選択手段によって選択された画像データを前記 印刷化手段に応じて各色毎に遅延させる遅延手段を備えることを特徴とする請求 項3記載の画像処理装置。

【請求項13】 更に、前記第1の描画手段による1バンド分の画像データの描画時間を予測し、該描画時間が前記印刷手段における1バンド分の画像データの印刷時間よりも短い場合に、前記印刷手段による印刷を行なうように制御する制御手段を有することを特徴とする請求項9記載の画像処理装置。

【請求項14】 前記入力手段は、外部装置から転送されてきた画像データを入力し、

前記制御手段は、前記描画時間が前記印刷時間以上である場合に、前記印刷手段による印刷を中止し、前記外部装置に印刷の中止を通知することを特徴とする 請求項13記載の画像処理装置。

【請求項15】 前記制御手段は、前記外部装置に印刷の中止を通知すると同時に、前記第2の形式による画像データの転送を促すことを特徴とする請求項14記載の画像処理装置。

【請求項16】 前記制御手段は、前記描画時間が前記印刷時間よりも短い場合に、前記第1の描画手段により第1の形式で画像データを描画し、前記描画時間が前記印刷時間以上である場合に、前記第1及び第2の描画手段により第2の形式で画像データを描画するように制御することを特徴とする請求項13記載の画像処理装置。

【請求項17】 前記制御手段は更に、画像データの解像度に基づいて、前記第1の形式及び第2の形式のいずれの形式により画像データを描画するかを制御することを特徴とする請求項16記載の画像処理装置。

【請求項18】 前記制御手段は更に、画像データの階調に基づいて、前記第1の形式及び第2の形式のいずれの形式により画像データを描画するかを制御することを特徴とする請求項16記載の画像処理装置。

【請求項19】 前記制御手段は更に、画像データの遅延量に基づいて、前記第1の形式及び第2の形式のいずれの形式により画像データを描画するかを制御することを特徴とする請求項16記載の画像処理装置。

【請求項20】 ホストデバイスと画像処理装置とを接続した画像処理システムであって、該画像処理装置は、

前記ホストデバイスから転送されてきた画像データを入力する入力手段と、

入力された画像データを展開して描画する第1及び第2の描画手段と、

前記第1の描画手段によって第1の形式で描画された画像データを第2の形式 に変換する変換手段と、

前記変換手段で変換された第2の形式の画像データと、前記第1及び第2の描 画手段によって第2の形式で描画された画像データのいずれかを、前記入力手段 により入力された画像データの形式に基づいて選択する選択手段と、

該選択された画像データを記録媒体上に印刷する印刷手段と、

を有することを特徴とする画像処理システム。

【請求項21】 入力された画像データを印刷出力する画像処理装置における制御方法であって、

前記入力された画像データが第1の形式であった場合に、該画像データを展開 して第1の形式で描画する第1の描画工程と、 前記第1の描画工程において第1の形式で描画された画像データを第2の形式 に変換する変換工程と、

前記変換手段において変換された画像データを印刷出力する第1の出力工程と

前記入力された画像データが第2の形式であった場合に、該画像データを展開 して第2の形式で描画する第2の描画工程と、

前記第2の描画工程において描画された画像データを印刷出力する第2の出力 工程と、

を有することを特徴とする画像処理装置の制御方法。

【請求項22】 入力された画像データを印刷出力する画像処理装置における制御プログラムを記録した記録媒体であって、該制御プログラムは、

前記入力された画像データが第1の形式であった場合に、該画像データを展開 して第1の形式で描画する第1の描画工程のコードと、

前記第1の描画工程において第1の形式で描画された画像データを第2の形式 に変換する変換工程のコードと、

前記変換手段において変換された画像データを印刷出力する第1の出力工程の コードと、

前記入力された画像データが第2の形式であった場合に、該画像データを展開 して第2の形式で描画する第2の描画工程のコードと、

前記第2の描画工程において描画された画像データを印刷出力する第2の出力 工程のコードと、

を含むことを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は入力画像データの形式に応じて画像を形成する画像処理装置及びその 制御方法、及び画像処理システムに関する。

[0002]

【従来の技術】

従来より、多色画像の印刷を行なう画像処理装置としては、イエロー(Y),マゼンタ(M),シアン(C),ブラック(K)等の複数色の記録剤を用いて記録媒体上に画像を形成するものが多い。

[0003]

このような画像処理装置とホストコンピュータとを接続したシステムにおいては、一般にホストコンピュータ側において画像データが作成されるために、CR T等に表示可能なレッド(R), グリーン(G), ブルー(B)の色成分からなる画像データが作成され、該RGB形式の画像データ(以下、RGBデータと称する)が画像処理装置側へ転送されることが多い。

[0004]

画像処理装置側においては、転送されてきたRGBデータに基づいて、以下に示す方法により印刷を行なっていた。

[0005]

例えば、まずRGB形式による1ページ分の描画を行った後に、YMCK形式に一括変換していた。そして、該1ページ分のYMCK形式の画像データ(以下、YMCKデータ)に対して必要に応じて圧縮等の処理を施した後にメモリ等に貯え、印刷開始に伴ってエンジン部へYMCKデータを転送することにより、記録媒体上への印刷を行っていた。

[0006]

または、ホストコンピュータから転送されてきたRGBデータをまずYMCK データに変換した後、1ページ分の印刷データの作成を印刷色であるYMCKの 各色毎に行なうことにより、印刷を行っていた。

[0007]

また、従来の画像処理装置においては、印刷の際に必要となる画像メモリ量を 削減するために、1ページあたりの印刷内容を複数のバンドに分割し、記録媒体 上への実際の印刷動作と、印刷データの作成処理とをバンド単位に並行して行な う方法(バンディング)が知られている。

[0008]

【発明が解決しようとする課題】

しかしながら、上記従来の画像処理装置においては、入力される画像データの 形式がRGB形式又はYMCK形式のいずれかであることを前提として構成され ていた。従って、例えばRGB形式による入力が設定された画像処理装置におい ては、最終的にYMCK形式での印刷を行なうにも関わらず、直接YMCK形式 の画像データを入力することはできなかった。

[0009]

本発明は上記問題を解決するためになされたものであり、入力される画像データの形式に関わらず、適切な画像形成及び印刷を可能とする画像処理装置及びその制御方法、及び画像処理システムを提供することを目的とする。

[0010]

また、装置内のメモリ量を増やすことなく高品位な印刷を可能とする画像処理 装置及びその制御方法、及び画像処理システムを提供することを目的とする。

[0011]

【課題を解決するための手段】

上記目的を達成するための一手段として、本発明の画像処理装置は以下の構成 を備える。

[0012]

即ち、画像データを入力する入力手段と、入力された画像データを展開して描画する第1及び第2の描画手段と、前記第1の描画手段によって第1の形式で描画された画像データを第2の形式に変換する変換手段と、前記変換手段で変換された第2の形式の画像データと、前記第1及び第2の描画手段によって第2の形式で描画された画像データのいずれかを、前記入力手段により入力された画像データの形式に基づいて選択する選択手段と、を有することを特徴とする。

[0013]

例えば、前記選択手段は、前記入力手段により入力された画像データが第1の 形式である場合には前記変換手段で変換された第2の形式の画像データを選択し 、前記入力手段により入力された画像データが第2の形式である場合には前記第 1及び第2の描画手段によって第2の形式で描画された画像データを選択するこ とを特徴とする。 [0014]

更に、前記選択手段により選択された画像データを記録媒体上に印刷する印刷 手段を有することを特徴とする。

[0015]

例えば、前記第2の形式はYMCK形式であり、前記第1の形式はRGB形式であることを特徴とする。

[0016]

【発明の実施の形態】

以下、本発明に係る一実施形態について図面を参照して詳細に説明する。

[0017]

<第1実施形態>

●全体構成

図1は、本実施形態の画像処理装置の構成を示すブロック図である。同図において、26はコントローラ部、28はエンジン部を示し、コントローラ部26は 外部装置であるホストコンピュータ1と接続されている。

[0018]

コントローラ部26において、2は画像処理装置全体を統括的に制御するCPU、3はCPU2によって実行されるプログラム等を保持するROM、4はCPU2の作業領域となり、後述するディスプレイリストを保持するRAM、5はRAM4からディスプレイリストを読み出してレンダラに転送するためのDMAコントローラ、6はホストコンピュータ1とのデータ転送を制御するインタフェースである。

[0019]

7, 8, 9, 10はディスプレイリストに基づいてそれぞれがR及びY, G及びM, B及びC, Kの描画を行うレンダラである。11はRレンダラ7、Gレンダラ8、Bレンダラ9からそれぞれ出力された1バンド分のRGBデータを、エンジン部28における印刷データ形式にあわせてYMCK色空間に変換する色空間変換部、12, 13, 14は色空間変換部11において変換されたYMCKデータのそれぞれを、印刷する際のタイミングに合わせて遅延させるための遅延回

路である。遅延回路12,13,14にはそれぞれMデータ,Cデータ,Kデータが入力され、T時間,2T時間,3T時間分の遅延がなされる。即ちYMCKの各色毎に、T時間づつの差を持つように遅延される。15~18はセレクタであり、遅延回路12~14の出力とレンダラ7~10の出力を、CPU2の制御に基づいて切り替え、エンジン部28へ出力する。

[0020]

エンジン部28において、19~22は各色毎の画像データを記録剤を用いて 現像する現像器であり、23は各色毎に現像された画像を重畳して1ページ分の 多色画像を完成する転写ベルトであり、24は転写ベルト23上に形成された多 色画像を記録媒体25に転写する転写ローラである。

[0021]

●レンダラ構成

図2は、Rレンダラ7の詳細構成を示すブロック図である。尚、各レンダラ7 ~10は同様の構成からなるため、ここではRレンダラ7のみについて説明する

[0022]

図2において、100はFIFO、101は画像の外形形状を発生させる外形発生器、102は色レジスタである。外形発生器101で生成された外形データに対して色レジスタ102で指定された色との論理積を取ることにより、新たに書き込み対象となる画像データ(以下、書き込みデータと称する)が生成される。103は装置内に予め保持されているビットマップデータと書き込みデータとの描画論理を保持するレジスタ、104はビットマップデータと書き込みデータとの合成比率を保持する係数レジスタである。

[0023]

これら各レジスタの内容は、ホストコンピュータから入力されたディスプレイ リストに基づいて設定される。

[0024]

105は実際にビットマップデータと書き込みデータとの論理演算を行うBP U(ビットプロセシングユニット)であり、まず外形発生器101で生成された 外形データに対して色レジスタ102で指定された色との論理積を取ることにより書き込みデータを発生し、該書き込みデータに対して描画論理レジスタ103 と係数レジスタ104に保持されたパラメータに従ってビットマップデータとの 論理演算を行い、該演算結果を新たなビットマップデータとして保持する。

[0025]

106及び109はセレクタであり、バンド単位でビットマップデータを保持する2つのバンドメモリ107,108に対して、一方を描画データ作成用バッファとして、他方を既に完成した1バンド分のビットマップデータを出力するための出力バッファとして、交互に使用するように制御する。

[0026]

110はビデオシッパであり、画像の描画タイミングに従ってビットマップデータを出力するために、出力バッファであるバンドメモリ107,108のアドレスの作成やバス幅の変換等の制御を行う。

[0027]

●ディスプレイリスト詳細

本実施形態における画像データはホストコンピュータ1において作成されて所 定形式でホストインタフェース6に入力される。該所定形式の画像データはCP U2で解釈されることによりディスプレイリストに展開されて、RAM4に格納 される。以下、本実施形態におけるディスプレイリストについて詳細に説明する

[0028]

図3はディスプレイリストのデータ構成の一例を示す図であり、図4は実際の 画像データに対応したディスプレイリストの内容例を示す図である。

[0029]

ディスプレイリストの1要素は、画像データ内の1文字単位に作成される。図3に示すディスプレイリストの構成例において、200は描画する画像単位(文字等)をバンドの基準となる開始点からどの位置に描画するかを示す描画座標、201は描画する画像の外形形状を示す番号、202は描画論理で、描画しようとするビットマップと画像データとについて、どのような論理演算を適用するか

を示す。描画論理202としては例えば、論理和演算を示す"OR"や、画像の反転を指示する"EXOR"等が、ホストからの描画指示に従って設定される。203は描画外形につける色情報を示す色データであり、RGB形式または、YMCK形式にて色情報が指定される。

[0030]

204,205は、それぞれ描画高さ及び書き出しライン情報を示し、描画外形201で指定された外形形状のうち、どのラインから何ライン分描画を行うのかを設定する。例えば2バンドに跨がった文字の描画を行なう場合、描画高さ204及び書き出しライン205は、上側のバンドにおいては該文字の外形形状の開始ラインを示し、描画高さ204は該開始ラインから該バンドの最終ラインまでの高さを示す。また下側のバンドにおいては、書き出しライン205は該ラインの開始ラインを示し、描画高さ204は該開始ラインから該画像外形の最終ラインまでの高さを示す。

[0031]

また206は、描画論理202で示される論理演算に基づいてビットマップと 画像データを合成する際に必要となる透過率、即ち合成比率を示す。

[0032]

上述したディスプレイリストの各要素について、図4を参照して具体的に説明 する。

[0033]

まず、図4の(a)に示す文字画像に対するディスプレイリストを例として考える。図4(a)に示す文字画像はバンド207,208の2バンドからなり、ディスプレイリストの1要素は、例えばバンド207内において要素番号#1~#5で示されるような1文字単位で作成され、その例を図4の(b)に示す。

[0034]

例えば、図4の(a)において要素番号#1及び#2で示す文字について、そのバンド207内における座標が図4の(c)に示す通りであるとする。この場合、図4の(b)において要素番号#1の要素は、まず描画座標200が"(X1, Y1)"で示される。そして描画外形201については、例えば図4の(d)に示す外形リ

ストに基づいて、文字「C」を示す"F1"が設定される。尚、要素番号#3と#5については、対応する文字の外形が同じ「n」であるので、これらは、図4の(d)に基づき"F3"がそれぞれ指示される。

[0035]

次に描画論理202については、書き込みデータ(Dist)とビットマップデータ (Obj)との"OR"演算が設定されている。また色データ203は、RGB形式の 各色成分毎に設定されている。尚、図4(b)においては、描画高さ204及び書き出しライン205の設定内容については省略されており、最後に透過率が100%に設定されている。

[0036]

尚、図3に示すディスプレイリストを構成する各項目は、以下のようにレンダラ内の各レジスタに保持される。即ち、描画座標200,描画外形201,描画高さ204及び書き出しライン205は外形発生器101へ、色データ203は色レジスタ102へ、描画論理202は描画論理レジスタ103へ、透過率206は係数レジスタ104へ保持される。

[0037]

尚、1ページ分の印刷データは、バンド単位に分割されてディスプレイリスト に変換される。

[0038]

●バンディング判定処理

本実施形態においては、印刷の際に必要となる画像メモリ量を削減するために、CPU2の制御に基づいてバンディング処理を行なう。即ち、1ページあたりの印刷内容を複数のバンドに分割し、バンディング記録媒体上への印刷処理と印刷データの描画処理とをバンド単位に並行して行なうことにより、印刷する。

[0039]

上述したようにして1ページ分のディスプレイリストが完成すると、CPU2 はバンディングによる印刷が可能であるか否かを判定し、該判定結果に基づく印 刷を行なう。この詳細を図5のフローチャートに示す。

[0040]

まずステップS300において、ディスプレイリストの内容を展開して描画データを生成し、これを描画するのに要する時間をバンド単位に計算してバンド描画時間を得る。またこの際に、ROM3等に予め設定されている、バンド印刷時間に対するバンド描画時間の余裕度(係数)を読み込んでおく。

[0041]

そしてステップS301において、バンド描画時間の和に対して上記係数を乗じることにより、1バンドあたりの描画予想時間(バンド描画予想時間)を算出する。

[0042]

そしてステップS302において、算出されたバンド描画予想時間が、1バンドを印刷するのに要する時間(以下、バンド印刷時間と称する)内に収まるか否かを判断する。即ち、バンド描画予想時間がバンド印刷時間内に収まるのであれば、バンディングによる印刷が可能であると判断され、ステップS303のバンディング印刷を実行する。一方、バンド描画予想時間がバンド印刷時間よりも長い場合には、1バンドを描画しながら次のバンドを平行して印刷すること、即ちバンディングによる印刷が不可能であると判断される。そしてステップS304に進み、非バンディング印刷処理を実行する。例えば、印刷処理を中止してバンディング印刷が不可能である旨をホストコンピュータ1に通知するか、または画像処理装置の不図示の操作部によってオペレータに報知したり、または、印刷データが多値画像であれば低階調へ変換する等、印刷内容そのものの変更等、印刷が正しく行われるための処理を行なっても良い。

[0043]

尚、本実施形態においては、RGB形式でのバンディング印刷が不可能な場合であっても、後述するようにYMCK形式によるバンディング印刷が可能である場合がある。従って、ステップS304でバンディング印刷が不可能である旨をホストコンピュータ1に通知する際に、YMCK形式で画像データを転送することによる印刷の可能性を同時に通知することも有効である。

[0044]

即ち、ステップS302でRGB形式でのバンディング印刷が可能であると判

定されれば、ステップS303でRGB形式のバンディング印刷を実行し、不可能であると判定されれば、ステップS304でYMCK形式のバンディング印刷を行なうことができる。

[0045]

●バンディング印刷処理

以下、ステップS303におけるバンディング印刷処理について詳細に説明する。

[0046]

CPU2においてバンディング印刷が可能であると判断されると、DMAコントローラ5は必要なディスプレイリストをRAM4から読み出して、バス27を経由してR,G,Bの各レンダラ7,8,9にそれぞれ書き込む。

[0047]

例えばRレンダラ7内においては、まず入力されたディスプレイリストがFIFO100に一旦蓄積された後、該ディスプレイリストに含まれる各パラメータが、外形発生器101,色レジスタ102,描画論理レジスタ103,係数レジスタ104のそれぞれにセットされる。パラメータが揃ったら、BPU105はバンドメモリ107及び108のうち、描画データの作成対象である方を選択し、書き込みデータとの演算を行なう対象となる、描画位置のビットマップデータをセレクタ106を介して読み込む。ここでは、バンドメモリ107が選択されたとして説明する。

[0048]

するとBPU105は、選択されたバンドメモリ107から読み込まれた描画 位置のビットマップデータに対して、外形発生器101や色レジスタ102、画 像論理レジスタ103、係数レジスタ104で指定されたパラメータを用いて書 き込みデータとの演算を行なうことにより描画データを生成し、バンドメモリ1 07の描画位置に書き込む。

[0049]

例えば、ある書き込みデータを示すディスプレイリストの要素が、透過率206が[0.4]、色データ203が[R=0E0h]、描画論理[202が[L]書き]を

それぞれ示し、対応する描画位置のビットマップデータが「R=010h」である場合、BPU105は下式に示す演算を行なう。

[0050]

 $0 E 0 h \times 0$. $4 + 0 1 0 h \times (1 - 0$. 4)

即ちこの場合「63」が、バンドメモリ107の描画位置に書き込まれる。

[0051]

この時、描画データの作成に使用していないバンドメモリ(この場合バンドメモリ108)には、以前のバンドにおける描画データが既に完成されて格納されているため、ビデオシッパ110は、セレクタ109を介してバンドメモリ108の先頭から描画データを順次読出し、印刷すべき描画データとしてRレンダラ7から出力する。

[0052]

各レンダラ7~9から出力された描画データがRGB形式である場合には、エンジン部28での印刷処理の際に使用される色空間に変換するために、色空間変換部11においてRGB描画データをYMCKの4プレーンに変換する。尚、各プレーンの変換は同時に行われる。

[0053]

ここで、エンジン部28においてYMCKの各プレーンの画像を記録媒体上に 形成する際には、各画像形成部の物理的な構成に起因して、プレーン毎に所定の 時間差が発生する。従って、4色のうちの1色を除いて遅延回路12~14を介 することにより、プレーン毎の画像形成タイミングを調整する。例えば、各色の 現像器19~22が等間隔で配設されており、その1区間を記録媒体が搬送され るのに丁時間を要するとすると、はじめの画像プレーンから次の画像プレーンま では丁時間、次の画像プレーンまでは丁の2倍である2T、さらに最後のプレー ンまでは3T分の遅延回路が必要になる。従って、遅延回路12~14は、それ ぞれて、2T、3Tの遅延を行ない、それぞれて下時間、2T時間、3T時間の間 に描画される画像データを保持する手段(バッファ)を備えている。

[0054]

●入力データ形式による制御

本実施形態においては、入力された画像データの形式に基づいて、以下のよう な制御を行なうことを特徴とする。

[0055]

まず、ホストコンピュータ1からRGB形式の画像データが転送されてきた場合には、上述したように、各レンダラ7~9がそれぞれRGBの画像を描画し、色空間変換部11においてYMCK形式に変換した後、バンディング印刷を行なう。この際に、Kレンダラ10は使用しない。尚、この場合、各レンダラ7~9において同じタイミングでディスプレイリストが読み込まれ、それぞれのレジスタ内に必要なデータが取り込まれる。

[0056]

一方、ホストコンピュータ1から画像データがYMCK形式で転送されてきた場合には、各レンダラ7~9がそれぞれYMCの画像を描画し、レンダラ10がKを描画する。そして、各レンダラ7~10のYMCK出力は、色空間変換部11における変換の必要がないため、直接セレクタ15~18へ入力される。従ってレンダラの出力は遅延されないため、各レンダラ内において、ディスプレイリストを読み込んで画像を作成するタイミングをTずつずらす必要がある。

[0057]

尚、上述したように遅延回路 1 2~1 4 においては、それぞれ下時間,2 T時間,3 T時間の間に描画される画像データを保持するためにバッファを備えている。従って、形成画像の階調や解像度を高くする等の高品位な印刷を行ないたい場合には、遅延回路 1 2~1 4 においてより大容量のバッファを搭載する必要が生じ、コストがかかってしまう。

[0058]

そこで本実施形態によれば、通常の階調又は解像度による印刷を行なう際には RGBによる描画を行い、より高品位な印刷を行なう際にはYMCKによる描画 を行なうことにより、遅延回路12~14におけるバッファを大きくする必要が なくなる。即ち、遅延回路12~14が保持すべきバッファとしては、RGBに よる通常の階調または解像度による印刷に十分な容量があれば十分である。また 、高品位の印刷を行なう場合にはYMCKによる描画を行なうことにより、色空 間変換も行なう必要がなくなり、画像処理装置において最適なコストパフォーマンスを得ることができる。

[0059]

また同様に、RGB形式では遅延回路のバッファ量が足りないために印刷が不可能である場合であっても、YMCK形式であれば印刷が可能となる場合がある

[0060]

尚、いずれの形式の画像データを転送するかの制御はホストコンピュータ1において行なえば良い。即ち、高品位印刷を行ないたい場合、またはRGB形式ではバンディング印刷が不可能であることが通知された場合には、画像データをYMCK形式で画像処理装置に転送すれば良い。

[0061]

以上説明したように本実施形態の画像処理装置によれば、ホストコンピュータから入力される画像データがRGB形式、YMCK形式のいずれである場合にも、描画データを適切に作成し、印刷出力することができる。

[0062]

また、RGB形式でのバンディング印刷が不可能である場合でも、YMCK形式でのバンディング印刷が可能となり、少ないメモリで高品位な画像の印刷出力が可能となる。

[0063]

また、YMCK形式の画像データを入力して印刷出力する場合、装置内のメモリ量を増やすことなく高品位な印刷出力が可能となる。

[0064]

<第2実施形態>

以下、本発明に係る第2実施形態について詳細に説明する。

[0065]

図6は、第2実施形態における画像処理装置の構成を示すブロック図であり、 上述した第1実施形態に示す図1と同様の構成については同一番号を付し、説明 を省略する。図6においては即ち、図1に示す遅延回路12~14が、セレクタ 16~18の後に備えられることを特徴とする。

[0066]

従って第2実施形態においては、YMCK形式の画像データが入力された場合でも、各レンダラ内において、ディスプレイリストを読み込んで画像を作成するタイミングをTずつずらす必要がなくなる。即ち、第1実施形態で説明したRGBによる描画と同様に、YMCKの各プレーンの描画も同時に行うことが可能となる。従って、各色のレンダラ7~10において、外形データを同時に読み込むことが可能になるため、バス27における負荷を低減することができる。

[0067]

図7はバス27における負荷状況を表わしたものであり、図7の(a)はYMC Kの各プレーン毎に描画タイミングをずらすことにより、異なるバンドを描画する場合、図7の(b)は各プレーンで同じバンドを描画する場合を示す。図7の(b)によれば、各レンダラ7~10が同一の外形データ(MASK)を同時に読み込むことにより、図7の(a)に示す異なるバンドを描画する場合と比べてバス27の負荷が軽減され、描画パフォーマンスの向上が計れる。

[0068]

以上説明したように第2実施形態によれば、第1実施形態で示した効果に加えて、YMCK形式の画像データが入力された場合でも、各レンダラ内において遅延制御を行なう必要がなくなる。従って、YMCKの各プレーンの描画を同時に行うことができるため、バス27における負荷を低減することができる。

[0069]

【他の実施形態】

なお、本発明は、複数の機器(例えばホストコンピュータ、インタフェイス機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用してもよい。

[0070]

また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納

されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。

[0071]

この場合、記憶媒体から読出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。

[0072]

プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

[0073]

また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0074]

さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートに対応するプログラムコードを格納することになる。

[0075]

【発明の効果】

以上説明した様に本発明によれば、入力される画像データの形式に関わらず、 適切な画像形成及び印刷が可能となる。

[0076]

また、装置内のメモリ量を増やすことなく高品位な印刷が可能となる。

[0077]

【図面の簡単な説明】

【図1】

本発明に係る一実施形態における画像処理装置の構成を示すブロック図である

【図2】

レンダラの詳細構成を示すブロック図である。

【図3】

ディスプレイリストの構成を示す図である。

【図4】

ディスプレイリストの内容を説明するための図である。

【図5】

バンディング判定処理を示すフローチャートである。

【図6】

第2実施形態における画像処理装置の構成を示すブロック図である。

【図7】

第2実施形態におけるバスシーケンスを示す図である。

【符号の説明】

- 1 ホストコンピュータ
- 2 CPU
- 3 ROM
- 4 RAM
- 5 DMAC
- 6 HOST I/F
- 7 Y/Rレンダラ
- 8 M/Gレンダラ
- 9 C/Bレンダラ
- 10 Kレンダラ

- 11 色空間変換部
- 12, 13, 14 遅延回路
- 15~18 セレクタ
- 19~22 現像器
- 23 転写ベルト
- 24 転写ローラ
- 2 5 記録媒体
- 26 コントローラ
- 27 バス
- 28 エンジン部
- 100 FIFO
- 101 外形発生器
- 102 色レジスタ
- 103 描画論理レジスタ
- 104 係数レジスタ
- 105 BPU
- 106, 109 セレクタ
- 107, 108 バンドメモリ
- 110 ビデオシッパ

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

文字外形 FI C F2 a (d) F3 n F4 e

【図5】

【図6】

【図7]

(b)
Y レンダラ MASK Y
M レンダラ MASK M
C レンダラ MASK C
K レンダラ MASK C

【書類名】 要約書

【要約】

【課題】 RGB形式による入力が設定された画像処理装置においては、最終的にYMCK形式での印刷を行なうにも関わらず、直接YMCK形式の画像データを入力することはできなかった。

【解決手段】 ホストコンピュータ1からRGBデータが入力された場合、レンダラ7~9でRGB毎に描画して色空間変換部11でYMCKデータに変換した後、エンジン部28に出力する。一方、YMCKデータが入力された場合、レンダラ7~10でYMCK毎に描画し、そのままエンジン部28に出力する。

【選択図】 図1

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社