Розрахунок елементів друкованого монтажу

Повірочний розрахунок

При конструюванні ДП вирішуються наступні задачі:

- визначаються габаритні розміри, співвідношення сторін, форма ДП, вибирається матеріал, число шарів, клас точності друкованого монтажу, метод виготовлення ДП тобто користуємося розглянутими критеріями
- визначають мінімальну та максимальну довжину провідників І_{пр} ширина b_{пр} та товщина t_{пр} параметри провідника; діаметри МО, ПО, КМ, розміри КМ для SMD; мінімально допустима відстань між друкованими провідниками, друкованими провідниками та МО, друкованими провідниками та КМ
- виконується розміщення КЕ по ПМ з урахуванням їх установлення
- виконується трасування друкованого монтажу
- оформлюється конструкторська документація: ткстова по результатам розрахунків та графічна по результатам конструювання.

При цьому виконують:

- 1. Конструкторсько-технологічний розрахунок
- 2. Електричний розрахунок ДП
- 3. Розрахунок по змінному струму

Розрахунки виконуються в такій послідовності в різних комбінаціях.

Конструкторсько-технологічний розрахунок ДП виконують з урахуванням виробничого рисунку провідних елементів, фотошаблону, базування, свердління, експонування, тобто з урахуванням технології виготовлення.

Ми з вами вже знаємо, що кожен клас точності друкованого монтажу характеризується краничними параметрами.

Тому при розрахунку використовують граничні значення елементів друкованого монтажу з урахуванням похибки їх виконання.

Граничні значення основних параметрів друкованого монтажу

Параметер		Клас точності				
		2	3	4	5	
Ширина друкованого провідника b _{пр} , мм	0,75	0,45	0,25	0,15	0,10	
Відстань S між краями сусідніх елементів провідного рисунку, мм	0,75	0,45	0,25	0,15	0,10	
Гарантований поясок b _{по} , мм	0,30	0,20	0,10	0,05	0,03	
Відношення К _{дт} номінального діаметру найменшого з металізованих отворів до товщини друкованої плати, мм	0,40	0,40	0,33	0,25	0,20	
Щільність монтажу	мала	середня	середня	висока	висока	

По цим параметрам ви, як спеціалісти, можете визначити клас точності друкованого монтажу.

Значення параметрів в "вузьких місцях" - це ті значення параметрів, менше котрих ми не маємо право робити для даного класу точності друкованого монтажу (**менше граничних значень**)

Класи точності:

- 2 не використовується зовсім (ОДП) в курсовій роботі рекомендую не використовувати
- 3 штирьові компоненти (найбільш розповсюджений)
- 4 багатовиводні SMD (мікромініатюризація)

Зрозуміло, що при розміщені елементів друкованого монтажу (провідники, КМ, ПО, МО і т.д.) відносно ліній та визлів КС ми робимо похибки.

При виконанні, виготовлені елементів друкованого монтажу ми такод робимо похибки. Ці похибки токож обмежені зверху (знизу) і ми не маємо права перевищувати їх відповідних значень.

Допустимі похибки виконання елементів друкованого монтажу

Похибка	Обозначення	Максимальне значення, мм
Зміщення провідників відносно ліній КС	δ_{cn}	0,05
Розташування отворів (всіх) відносно вузлу КС	$\delta_{ ext{o}}$	0,07
Розташування КМ відносно вузлу КС	$\delta_{\scriptscriptstyleKM}$	0.015(0.05)
Фотокопії та фотошаблону	$\delta_{\scriptscriptstyle \Phi\Phi}$	0,06
Розташування КМ відносно вузлу КС на фотошаблоні	$\delta_{\scriptscriptstyle{f ar{f b}}}$	0,05

Похибки різні на різних виробництвах та зележать від використовуваного обладнання.

На закінчення про таблиці.

Значення параметрів в цих таблицях повині бути уточнені на підприємстві згідно технологічного процесу конкретного виробника (обладнання).

Визначемо параметри основних елементів друкованого монтажу.

- визначимо **мінімально допустимий діаметер металізованого отвору** з урахуванням товщини ДП. Цей параметер важливий для поверхневого монтажу. Цей отвір бажано мати мінімального діаметру.

 $K_{\scriptscriptstyle \mathsf{Л}\mathsf{T}}$ - див. таблицю граничних значень

 $h_{\Pi\Pi}$ - товщина друкованої плати, вибираємо з ряду допустимих товщин: 0.8, 1.0, 1.5, 2 ...

Нагадую $h_{\mathtt{Д} \mathtt{\Pi}}$ **вибирають** (розраховувати непотрібно)

Діаметр ПО виконують аналогічно МО, але у всих випадках стараються зробити їх з мінімальними розмірами, допустимими для конкретного значення $h_{\rm Д\Pi}$. При хорошому оснащенні виробництва можуть бути виконані отвори з діаметром 0.32mm та 0.38mm.

В якості ПО часто використовуються МО - це добре. Але коли приходиться спеціально виготовляти ПО - тоді вони повинні мати мінімальний діаметер.

- діаметер монтажного отвору (MO)

$$d_{\text{MO}} \ge d_{\text{BE}} + 2(h_o + \Delta') + \delta_o$$

$$\Delta = 2\Delta$$

 d_{BE} - діаметер виводу елемента (див. довідник)

$$\Delta = (0.1 \div 0.2) mm$$

 h_o - товщина осадженої міді. $h_o = h_{\rm FM} + h_{\rm XM}$ - тому що вибираємо комбінований позитивний метод виготовлення ДП. $h_{\rm FM}$ - товщина гальванічно осадженої міді; $h_{\rm XM}$ - товщина хімічно осадженої міді

 $\delta_{\scriptscriptstyle o}$ - похибка розташування виводу елементу

Діаметр МО рекомендується вибирати таким чином, щоб різниця між мінімальним значенням діаметру отвору та максимальним значенням діаметру виводу встановленого елементу була в межах (0.2 - 0.4)мм. При цьому переважно діаметри МО вибираються з ряду 0.8; 0.9; 1.0; 1.1; 1.3; ... мм.

- розміри прямокутного КМ

Щоб пайка мала вигляд ввігнутої форму галтелі ширина КМ при будь-якому способі пайки зазвичай робиться на 0.2мм більше відповідного розміру елементу (його виводу) - тобто по 0.1мм на кожну зі сторін.

По довжині плащадка повинна виступати з-під елементу. Величина виступу залежить від способу пайки. Якщо пайка хвилею, то цей розмір повинен бути не менш (0.3 - 0.4)мм.

З іншого боку, **збільшення розміру бульше 1мм недоцільно**: припій розтікається та капля великого розміру (катет більше 1мм) не створюються - *це дуже важливо*.

IC може мати плоский вивід шариною 0.5мм. Мінімальний діаметер МО для IC в корпусі

типу 2 визначається за формулою (див. Ханке):

$$d_{\text{MO}} = d_{\text{B}} + \frac{T_{1}}{2} + (v_{1} + v_{2}) \cdot \sqrt{2}$$

 $T_{\rm l}$ - допуск на діаметер просвердленого отвору МО, $\,T_{\rm l} = \pm\,0.05\,$

 $v_{\rm l}$ - похибка розташування отворів, $v_{\rm l} = \pm\,0.025\,$ - для аксіальних виводів;

 $v_2\,$ - похибка для виводів, $v_2=\pm\,0.05$ - для монтажних отворів

- визначимо **діаметр КМ монтажного отвору** з урахуванням похибки та підтравлювання фольги. КМ знаходиться навколо МО на обох сторонах ДП. Підвищується надійність пайки. Розміщення КМ для SMD елементів визначається параметрами КЕ.

$$d_{\mathrm{K\Pi}} = 2 \bigg(b_{\mathrm{\Pi O}} + \frac{d_{\mathrm{MO}}}{2} \bigg) + \delta_{\mathrm{KM}} + \delta_{\mathrm{\Phi \Phi}} + 1.5 h_{\mathrm{\Phi}}$$

 $\delta_{\scriptscriptstyle \mathsf{KM}}$ - похибка розташування КМ (див. табл.)

 $\delta_{\scriptscriptstyle \Phi\Phi}$ - похибка фотокопії та фотошаблону (див. табл.)

 $1.5h_{\rm \phi}$ - враховує підтравлювання матеріалу фольги. $h_{\rm \phi}$ береться з обозначення матеріалу.

КМ можуть мати довільну форму, але переважно круглу. До КМ підходить зазвичай провідник, але не більше двох.

Всі отвори на ДП виконуються без зеньковки. Допускається у металізованих отворів ДП притуплення гострих кромок та часткового затягування фольги до нематалізованих отворів.

- визначимо **мінімальну ширину провідника** з урахуванням підтравлювання та максимальної міцності зчеплення з основою.

Провідники виконуються по можливості однакової ширини для вільного місця на всьому протязі.

$$b_{
m np\ min}=b_{
m np}^{
m r}+\delta_{
m \varphi\varphi}+\delta_{
m cn}+1.5h_{
m \varphi}$$
 в сторону збільшення

 $b_{\mathsf{np}}^{\mathsf{r}}$ - вибираємо з таблиці, згідно класу точності

 $\delta_{\mathrm{d}\mathrm{d}}$ - дивимося таблицю

 δ_{cn} - похибка зміщення провідників (див. табл.)

Звужувати провідники до мінімального значення допускається тільки в вузьких "місцях" на мінімальній відстані.

Номінальна ширина провідників визначається:

$$b_{\rm np\; H} = b_{\rm np\; min} + \left| \delta_{\rm T} \right|$$

 $\delta_{_{
m T}}$ - граничне відхилення ширини провідника в сторону зменшення: $\delta_{_{
m T}}=0.03\,{\rm MM}$ для комбінованого позитивного методу (див. табл.).

Тип ДП	Клас точності				
	2	3	4		
одп	+ 0.1	+ 0.03	+ 0.03		
	-0,1	-0,05	-0,03		
ддп	+ 0.15	+ 0.1	+ 0.05		
	-0,1	-0,08	-0,05		

Оодні відхилення збільшують ширину провідників, інші - зменшують.

- мінімальна відстань між провідником та КМ з МО

$$l_{\rm nk} = l_{\rm pa} - \left(\frac{d_{\rm KM}}{2} + \delta_{\rm KM} + \frac{b_{\rm np\;min}}{2} + \delta_{\rm cn}\right)$$

 $l_{\rm pa}\,$ - відстань між центрами отвору та друкованого провідника, що є кратним кроку КС. Центр КМ знаходиться в узлі КС; друкований провідник прокладається по лінії КС.

Для SMD елементів - аналогічно.

$$l_{\text{nk}} = l_{\text{pa}} - \left(\frac{b_{\text{KM}}}{2} + \delta_{\text{KM}} + \frac{b_{\text{np min}}}{2} + \delta_{\text{cn}}\right)$$

Тобто формула аналогічна як і для провідника та круглого КМ.

- визначимо мінімальну відстань між двому сусідніми КМ

$$l_{\rm KM~KM} = D_{\rm KC} - \left(D_{\rm max~KM} + 2\delta_{\rm KM}\right)$$

 $D_{
m max\; KM}$ - коли діметри КМ рівні. У випадку, коли вони різні, то цей параметер розраховується як сума 1/2 діаметрів КМ, між якими виконується розрахунок.

Для SMD елементів розрахунок є аналогічним (на рис. виділено червоним).

- визначимо мінімальну відстань між друкованими провідниками - краями.

$$l_{\rm nn} = l_{\rm pa} - \left(b_{\rm np \ min} + 2\delta_{\rm cn} \right)$$

- визначимо **мінімальну відстань прокладання** п провідників між двома КМ металізованих отворів. Повинно забезпечуватися при максимальних діаметрах КМ та максимальній ширині друкованих провідників з урахуванням похибки діаметру КМ та ширини провідника (b_{пр}).

Аналогічно розрахунки проводяться для поверхневого монтажу.

Якщо між центари МО розташовується декілька ліній КС, то необхідно перевіряти по кожній з них чи є можливість прокладання провідника чи є можливість провкласти провідник не по кожній.

Провідники під корпусом IC (для прикладу візьмемо DIP корпус)

При **ККС** (крок KC) = **2.5 мм** під корпусом IC під корпусом допускається проведення **двох провідників**, між виводами **не прокладається**.

При ККС = 1.25 мм під корпусом ІС допускається проведення 5 провідників. Між виводами прокладається один провідник.