Ψηφιακή Επεξεργασία Σήματος & Εικόνας

Μάθημα 14°

Μετασχηματισμός Z (συνέχεια..) Συνάρτηση Μεταφοράς

Α. Μπακλέζος

abaklezos@hmu.gr

Ελληνικό Μεσογειακό Πανεπιστήμιο

Τμήμα Ηλεκτρονικών Μηχανικών

Μονόπλευρος Μετασχηματισμός Ζ

• Ο μονόπλευρος μετασχηματισμός **Z** (one sided z–transform) μίας ακολουθίας διακριτού χρόνου ορίζεται

$$X^+(z) = \sum_{n=0}^{+\infty} x[n] \cdot z^{-n}$$

δηλαδή το άθροισμα υπολογίζεται μόνο για τις μη αρνητικές τιμές του n.

Ο μονόπλευρος μετασχηματισμός Z μίας ακολουθίας x[n] ταυτίζεται με τον αμφίπλευρο μετασχηματισμό Z της ακολουθίας $x[n] \cdot u[n]$ (αν x[n] δεν είναι αιτιατό σήμα, αν x[n] είναι αιτιατό τότε Z^+ και Z ταυτίζονται)

η Περιοχή Σύγκλισης (ROC) του μονόπλευρου μετασχηματισμού Z μίας ακολουθίας είναι η εξωτερική επιφάνεια ενός κύκλου, δηλαδή της μορφής |z| > |a|

Για τα ζεύγη του μονόπλευρου μετασχηματισμού Ζ χρησιμοποιείται ο συμβολισμός:

$$x[n] \stackrel{\mathrm{Z}^+}{\leftrightarrow} X^+(z)$$

Ο μονόπλευρος μετασχηματισμός Ζ χρησιμοποιείται για την επίλυση γραμμικών εξισώσεων διαφορών με σταθερούς συντελεστές με μη μηδενικές αρχικές συνθήκες.

Ιδιότητες Μονόπλευρου Μετασχηματισμού Ζ

- Οι περισσότερες ιδιότητες του μονόπλευρου μετασχηματισμού Ζ είναι ίδιες με του αμφίπλευρου μετασχηματισμού.
- Διαφέρουν στην ιδιότητα της μετατόπισης στον χρόνο:

Μετατόπιση στον χρόνο - ολίσθηση προς τα δεξιά :

Απόδειξη :

$$y[n] = x[n - n_o] \to Y^+(z) = \sum_{n=0}^{+\infty} y[n] \cdot z^{-n} = \sum_{n=0}^{+\infty} x[n - n_o] \cdot z^{-n} \stackrel{\theta \varepsilon \tau \omega \ m = n - n_o}{\Longleftrightarrow} Y^+(z) = \sum_{n=-\infty}^{+\infty} x[n - n_o] \cdot z^{-n}$$

$$= \sum_{m=-n_o}^{+\infty} x[m] \cdot z^{-(m+n_o)} = z^{-n_o} \sum_{m=-n_o}^{+\infty} x[m] \cdot z^{-m} = z^{-n_o} \sum_{m=-n_o}^{-1} x[m] \cdot z^{-m} + z^{-n_o} \sum_{m=0}^{+\infty} x[m] \cdot z^{-m}$$

$$= z^{-n_o} \sum_{i=1}^{n_o} x[-i] z^i + z^{-n_o} X^+(z)$$

Ιδιότητες Μονόπλευρου Μετασχηματισμού Ζ

Μετατόπιση στον χρόνο - ολίσθηση προς τα αριστερά :

Aν
$$x[n] \overset{\mathbf{Z}^+}{\leftrightarrow} \mathbf{X}^+(z)$$
, ROC τότε $x[n+n_o]$, $n_o > 0 \overset{\mathbf{Z}^+}{\leftrightarrow} z^{n_o} \mathbf{X}^+(z) - z^{n_o} \sum_{i=0}^{n_o-1} x[i] z^{-i}$

Απόδειξη:

$$y[n] = x[n + n_o] \to Y^+(z) = \sum_{n=0}^{+\infty} y[n] \cdot z^{-n} = \sum_{n=0}^{+\infty} x[n - n_o] \cdot z^{-n} \stackrel{\theta \varepsilon \tau \omega}{\Longleftrightarrow} Y^+(z) = \sum_{n=-\infty}^{+\infty} x[n - n_o] \cdot z^{-n}$$

$$= \sum_{m=n_o}^{+\infty} x[m] \cdot z^{-m+n_o} = z^{n_o} \sum_{m=-n_o}^{+\infty} x[m] \cdot z^{-m} = z^{n_o} \sum_{m=0}^{+\infty} x[m] \cdot z^{-m} - z^{n_o} \sum_{m=0}^{n_o-1} x[m] \cdot z^{-m}$$

$$= z^{n_o} \sum_{m=0}^{+\infty} x[m] \cdot z^{-m} - z^{n_o} \sum_{i=0}^{n_o-1} x[i] z^{-i} = z^{n_o} X^+(z) - z^{n_o} \sum_{i=0}^{n_o-1} x[i] z^{-i}$$

Ιδιότητες Μονόπλευρου Μετασχηματισμού Ζ

Παράδειγμα:

Το σήμα
$$x[n] = \left(\frac{1}{2}\right)^n u[n], x[-1] = 1$$
 έχει μονόπλευρο μετασχηματισμό $X^+(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}, |z| > \frac{1}{2}$

Τότε το σήμα $y[n] = x[n-1] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$ έχει μονόπλευρο μετασχηματισμό Ζ:

$$\Upsilon^{+}(z) = z^{-1}X^{+}(z) + x[-1] = z^{-1}\frac{1}{1 - \frac{1}{2}z^{-1}} + 1 = \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{1}{2}z^{-1}}, |z| > \frac{1}{2}$$

Μετατόπιση στον χρόνο - ολίσθηση προς τα δεξιά :
$$\text{Aν } x[n] \overset{Z^+}{\leftrightarrow} \textbf{X}^+(z), \textit{ROC} \text{ τότε } x[n-n_o], n_o > 0 \overset{Z^+}{\leftrightarrow} z^{-n_o} \textbf{X}^+(z) + z^{-n_o} \sum_{i=1}^{n_o} x[-i] z^i$$

- Κάθε LTI σύστημα με κρουστική απόκριση h[n] και είσοδο x[n] παράγει απόκριση y[n] = h[n] * x[n]
- Ο μετασχηματισμός z, H(z) , της κρουστικής απόκρισης h[n] ενός γραμμικού χρονικά αμετάβλητου (LTI) συστήματος ονομάζεται συνάρτηση μεταφοράς (transfer function):

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n] \cdot z^{-n}$$

Προφανώς ισχύει ότι $\Upsilon(z) = H(z) \cdot X(z)$

Κάθε γραμμικό χρονικά αμετάβλητο σύστημα (LTI) περιγράφεται από μία γραμμική εξίσωση διαφορών με σταθερούς συντελεστές

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k]$$

Αν πάρουμε τον μετασχηματισμό Ζ στα δύο μέλη:

$$\Upsilon(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) - \sum_{k=1}^{N} a_k z^{-k} Y(z) \to \Upsilon(z) = X(z) \sum_{k=0}^{M} b_k z^{-k} - Y(z) \sum_{k=1}^{N} a_k z^{-k} \to \Upsilon(z) + Y(z) \sum_{k=1}^{N} a_k z^{-k} = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} b_k z^{-k} \to \Upsilon(z) \left(1 + \sum_{k=0}^{N} a_k z^{-k}\right) = X(z) \sum_{k=0}^{M} a_k z^{-k}$$

η συνάρτηση μεταφοράς αρκεί για να περιγράψει ένα LTI σύστημα στο πεδίο της συχνότητας.

Παράδειγμα 1: Δίνεται η εξίσωση διαφορών με σταθερούς συντελεστές, που περιγράφει ένα LTI σύστημα y[n] = 2x[n] + 3x[n-2] - 4y[n-1] + 5y[n-2]. Να υπολογιστεί η συνάρτηση μεταφοράς.

$$y[n] = 2x[n] + 3x[n-2] - 4y[n-1] + 5y[n-2] \stackrel{Z}{\leftrightarrow} Y(z) = 2X(z) + 3z^{-2}X(z) - 4z^{-1}Y(z) + 5z^{-2}Y(z) \rightarrow Y(z)(1 + 4z^{-1} - 5z^{-2}) = X(z)(2 + 3z^{-2}) \rightarrow H(z) = \frac{\Upsilon(z)}{\chi(z)} = \frac{2 + 3z^{-2}}{1 + 4z^{-1} - 5z^{-2}}$$

Παράδειγμα 2: Δίνεται η εξίσωση διαφορών με σταθερούς συντελεστές, που περιγράφει ένα LTI σύστημα y[n] = x[n] - x[n-1] + x[n-2] + 5y[n-1] - 4y[n-2]. Να υπολογιστεί η συνάρτηση μεταφοράς.

$$y[n] = x[n] - x[n-1] + x[n-2] + 5y[n-1] - 4y[n-2]$$

Από την εξίσωση διαφορών προκύπτει ότι πρόκειται για ΙΙΡ φίλτρο με Μ=2 και Ν=2 και ότι οι σταθεροί συντελεστές είναι:

$$b_0 = 1, b_1 = -1, b_2 = 1, a_1 = -5, a_2 = 4$$

Άρα

$$H(z) = \frac{\Upsilon(z)}{\Upsilon(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} = \frac{1 - z^{-1} + z^{-2}}{1 - 5z^{-1} + 4z^{-2}}$$

Παράδειγμα 3: Δίνεται η συνάρτηση μεταφοράς $H(z) = \frac{3-6z^{-2}}{1-2z^{-1}-5z^{-2}}$. Να βρεθεί η εξίσωση διαφορών με σταθερούς συντελεστές που περιγράφει το LTI σύστημα.

Από την εξίσωση διαφορών προκύπτει ότι είναι ΙΙΡ φίλτρο με Μ=2 και N=2

με σταθερούς συντελεστές $b_o=3$, $b_1=0$, $b_2=-6$, $a_1=-2$, $a_2=-5$

Άρα
$$y[n] = 3x[n] - 6x[n-2] + 2y[n-1] + 5y[n-2]$$

Παράδειγμα 4: Δίνεται η συνάρτηση μεταφοράς $H(z)=\frac{1-z^{-1}+\frac{3}{16}z^{-2}}{1-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}$. Να γίνει το διάγραμμα πόλων-μηδενικών της συνάρτησης

μεταφοράς.

$$H(z) = \frac{1 - z^{-1} + \frac{3}{16}z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = \frac{z^{2} - z + \frac{3}{16}}{z^{2} - \frac{3}{2}z + \frac{1}{2}} = \frac{\left(z - \frac{1}{4}\right)\left(z - \frac{3}{4}\right)}{\left(z - \frac{1}{2}\right)(z - 1)}$$

υπάρχουν δύο μηδενικά στα σημεία $z=\frac{1}{4}$ και $z=\frac{3}{4}$ και δύο πόλοι στα σημεία $z=\frac{1}{2}$ και z=1

Σύνδεση συστημάτων σε σειρά:

LTΙ σύστημα με Συνάρτηση Μεταφοράς $H_1(z)$ συνδέεται σε σειρά με ένα LTΙ σύστημα με **Συνάρτηση Μεταφοράς** $H_2(z)$. Το πρώτο σύστημα έχει είσοδο x[n] με M/T z X(z) και έξοδο w[n] με M/T z W(z). Το δεύτερο σύστημα έχει είσοδο την έξοδο του πρώτου συστηματος w[n] με M/T z W(z) και έξοδο y[n] με M/T z Y(z). Η σύνδεση σε σειρά των δύο συστημάτων είναι ισοδύναμη με ένα LTΙ σύστημα με συνάρτηση μεταφοράς $H(z) = H_1(z)H_2(z)$

Απόδειξη:

$$Y(z) = H_2(z)W(z)$$

$$W(z) = H_1(z)X(z)$$

$$Y(z) = H_2(z)W(z) = H_2(z)(H_1(z)X(z)) = (H_2(z)H_1(z))X(z)$$

Όμως
$$Y(z) = H(z)X(z)$$

Άρα

$$H(z) = H_1(z)H_2(z)$$

Σύνδεση συστημάτων παράλληλα:

LTI σύστημα με Συνάρτηση Μεταφοράς $H_1(z)$ συνδέεται παράλληλα με ένα LTI σύστημα με Συνάρτηση Μεταφοράς $H_2(z)$. Το πρώτο σύστημα έχει είσοδο x[n] με M/T z X(z) και έξοδο w[n] με M/T z W(z). Το δεύτερο σύστημα έχει είσοδο x[n] με M/T z X(z) και έξοδο v[n] με M/T z V(z). Η σύνδεση παράλληλα των δύο συστημάτων είναι ισοδύναμη με ένα LTI σύστημα με Συνάρτηση Μεταφοράς $H(z) = H_1(z) + H_2(z)$

Απόδειξη:

$$V(z) = H_2(z)X(z)$$

$$W(z) = H_1(z)X(z)$$

$$Y(z) = V(z) + W(z) = H_2(z)X(z) + H_1(z)X(z) = (H_2(z) + H_1(z))X(z)$$

Όμως
$$Y(z) = H(z)X(z)$$

Άρα

$$H(z) = H_1(z) + H_2(z)$$

Επίλυση εξισώσεων διαφορών μέσω μετασχηματισμού Ζ

Κάθε γραμμικό χρονικά αμετάβλητο σύστημα περιγράφεται από μία γραμμική εξίσωση διαφορών με σταθερούς συντελεστές:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k]$$

Και αρχικές συνθήκες εξόδου y[-1], y[-2], y[-N] και αρχικές συνθήκες εισόδου x[-1], x[-2], x[-3], x[-M]

Η γραμμική εξίσωση διαφορών με σταθερούς συντελεστές είναι ένας ανοικτός τύπος υπολογισμού της απόκρισης του συστήματος, δεδομένων των σταθερών συντελεστών.

Επομένως συνιστά έναν επαναληπτικό τρόπο υπολογισμού της εξόδου. Για να υπολογιστεί η έξοδος y[0] απαιτούνται οι αρχικές συνθήκες.

Η επίλυση μπορεί να γίνει μέσω του μετασχηματισμού Ζ και μάλιστα λόγω των αρχικών συνθηκών του **μονόπλευρου μετασχηματισμού z**.

Επίλυση εξισώσεων διαφορών μέσω μετασχηματισμού Ζ

μονόπλευρος μετασχηματισμός z και στα δύο μέλη της εξίσωσης διαφορών:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k]$$

$$Y^+(z) = \sum_{k=0}^{M} b_k \left[z^{-k} X^+(z) + z^{-k} \sum_{i=1}^{k} x[-i] z^i \right] - \sum_{k=1}^{N} a_k \left[z^{-k} Y^+(z) + z^{-k} \sum_{i=1}^{k} y[-i] z^i \right]$$

Ισχύει ότι

$$\Upsilon^{+}(z) = H(z)X^{+}(z) + H_{\chi}(z) + H_{y}(z)$$

$$H(z) = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1 + \sum_{k=1}^{N} a_{k} z^{-k}}$$

$$H_{\chi}(z) = \frac{\sum_{k=1}^{M} \left[\sum_{i=1}^{M} b_{i} z^{k-i}\right] x[-k]}{1 + \sum_{k=1}^{N} a_{k} z^{-k}}$$

$$H_{y}(z) = \frac{\sum_{k=1}^{N} \left[\sum_{i=1}^{N} a_{i} z^{k-i}\right] y[-k]}{1 + \sum_{k=1}^{N} a_{k} z^{-k}}$$

Επίλυση εξισώσεων διαφορών μέσω μετασχηματισμού Ζ

$$\Upsilon^{+}(z) = H(z)X^{+}(z) + H_{\chi}(z) + H_{y}(z)$$

- ❖ Ο πρώτος όρος εξαρτάται από τη συνάρτηση μεταφοράς, που αποτυπώνει τη συμπεριφορά του συστήματος για μηδενικές αρχικές συνθήκες εισόδου και εξόδου
- ❖ Ο δεύτερος όρος εξαρτάται από τις αρχικές συνθήκες εισόδου. Αν το σύστημα είναι αιτιατό, τότε οι αρχικές συνθήκες εισόδου είναι μηδενικές και ο όρος μηδενίζεται.
- ❖ Ο τρίτος όρος εξαρτάται από τις αρχικές συνθήκες εξόδου και αντιστοιχεί στην απόκριση του συστήματος για μηδενική είσοδο
- ❖ Παίρνοντας τον αντίστροφο μετασχηματισμό Z προκύπτει η απόκριση του συστήματος

Παράδειγμα : Δίνεται ένα αιτιατό σύστημα με γραμμική εξίσωση διαφορών με σταθερούς συντελεστές:

$$y[n] = x[n] + \frac{1}{2}y[n-1]$$
 με αρχική συνθήκη $y[-1] = \frac{1}{4}$

- 1) Να βρεθεί η κρουστική απόκριση. 2) Να βρεθεί η βηματική απόκριση
- 1) Η κρουστική απόκριση $\mathbf{h}[n]$ είναι η έξοδος του φίλτρου με είσοδο $x[n] = \delta[n]$ και μηδενικές αρχικές συνθήκες.

Χρησιμοποιώντας τον αμφίπλευρο μετασχηματισμό z έχουμε X(z)=1

Από την εξίσωση διαφορών
$$Y(z) = X(z) + \frac{1}{2}z^{-1}Y(z) \rightarrow Y(z) - \frac{1}{2}z^{-1}Y(z) = X(z) \rightarrow Y(z)(1 - \frac{1}{2}z^{-1}) = X(z)$$

Άρα η συνάρτηση μεταφοράς είναι
$$\mathrm{H}(z)=\frac{\mathrm{Y}(z)}{\mathrm{X}(z)}=\frac{1}{(1-\frac{1}{2}z^{-1})}$$
, $|z|>\frac{1}{2}$

Η κρουστική απόκριση είναι
$$\mathbf{h}[n] = \left(\frac{1}{2}\right)^n u[n] \sqrt{\frac{1}{2}}$$

Παράδειγμα(συνέχεια) : Δίνεται ένα αιτιατό σύστημα με γραμμική εξίσωση διαφορών με σταθερούς συντελεστές:

$$y[n] = x[n] + \frac{1}{2}y[n-1]$$
 με αρχική συνθήκη $y[-1] = \frac{1}{4}$

- 1) Να βρεθεί η κρουστική απόκριση. 2) Να βρεθεί η βηματική απόκριση
- 2) Η βηματική απόκριση είναι η έξοδος του φίλτρου $\mathbf{s}[\mathbf{n}]$ με είσοδο $\mathbf{x}[n] = u[n]$ με αρχική συνθήκη $\mathbf{y}[-1] = \frac{1}{4}$

Χρησιμοποιώντας τον μονόπλευρο μετασχηματισμό z έχουμε $X^+(z)=\frac{1}{(1-z^{-1})}$, |z|>1

Από την εξίσωση διαφορών $Y^+(z) = X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) \cdot \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}y[-1] + X^+(z) \rightarrow X^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) \rightarrow Y^+(z) + \frac{1}{2}(z^{-1}Y^+(z) + y[-1]) + \frac{1}{2}(z^{-1}Y^+($

$$Y^{+}(z)\left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{(1 - z^{-1})} = \frac{\frac{9}{8} - \frac{1}{8}z^{-1}}{(1 - z^{-1})} \to$$

$$Y^{+}(z) = \frac{\frac{9}{8} - \frac{1}{8}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - z^{-1})}, |z| > 1$$

Παράδειγμα (συνέχεια):

2)
$$Y^+(z) = \frac{\frac{9}{8} - \frac{1}{8}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - z^{-1})}$$
, $|z| > 1$ που αναλύεται σε :

$$Y^{+}(z) = \frac{-\frac{7}{8}}{\left(1 - \frac{1}{2}z^{-1}\right)} + \frac{2}{(1 - z^{-1})}$$

Άρα η βηματική απόκριση του φίλτρου είναι

$$s[n] = \left(-\frac{7}{8}\right) \left(\frac{1}{2}\right)^n u[n] + 2u[n]\sqrt{2}$$

$$X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}}$$

Παράδειγμα (συνέχεια):

Παρατήρηση:

Παρατήρηση:
$$\Sigma \text{το βήμα 2) είδαμε ότι } Y^+(z) \left(1 - \frac{1}{2}z^{-1}\right) = \frac{1}{2}\frac{1}{4} + \frac{1}{(1-z^{-1})} \rightarrow Y^+(z) = \frac{1}{2}\frac{1}{4}\frac{1}{1-\frac{1}{2}z^{-1}} + \frac{1}{(1-z^{-1})} \left(\frac{1}{1-\frac{1}{2}z^{-1}}\right)$$

$$\Upsilon^{+}(z) = H(z)X^{+}(z) + H_{\chi}(z) + H_{y}(z)$$

 $H_{\nu}(z)$

- lacktriangle Ο όρος H(z) εξαρτάται από την συνάρτηση μεταφοράς που αποτυπώνει την συμπεριφορά του συστήματος για μηδενικές αρχικές συνθήκες εισόδου και εξόδου.
- Επειδή το σύστημα είναι αιτιατό, δεν υπάρχει ο όρος που εξαρτάται από τις αρχικές συνθήκες εισόδου.
- riangle Ο όρος $H_{v}(z)$ εξαρτάται από τις αρχικές συνθήκες εξόδου και αντιστοιχεί στην απόκριση του συστήματος για μηδενική είσοδο.

Α. Μπακλέζος

Συνάρτηση Μεταφοράς

Παράδειγμα (συνέχεια):

Παρατήρηση:

$$Y^{+}(z) = \frac{1}{2} \frac{1}{4} \frac{1}{1 - \frac{1}{2}z^{-1}} + \underbrace{\left(\frac{1}{1 - z^{-1}}\right)}_{1 - \frac{1}{2}z^{-1}} + \underbrace{\frac{1}{8} \frac{1}{1 - \frac{1}{2}z^{-1}}}_{1 - \frac{1}{2}z^{-1}} + \underbrace{\frac{2}{(1 - z^{-1})}}_{1 - \frac{1}{2}z^{-1}}$$

Άρα η απόκριση είναι

$$y[n] = \frac{1}{8} \left(\frac{1}{2}\right)^n u[n] + \left(-1\right) \left(\frac{1}{2}\right)^n u[n] + 2u[n]$$

$$X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}}$$

με συντελεστές $A_k = [(1 - p_k z^{-1}) \cdot X(z)]_{z=p_k}$

$$\left(1 - \frac{1}{2}z^{-1}\right)(1 - z^{-1}) = 0 \rightarrow p_1 = \frac{1}{2}, p_2 = 1$$

απόκριση του συστήματος για μηδενική είσοδο (zero input response)

απόκριση του συστήματος για μηδενικές αρχικές συνθήκες εισόδου και εξόδου (zero state response)

Α. Μπακλέζος

Καλό Πάσχα με υγεία,

Καλά να περάσετε!

(συνέχεια μαθήματος & εργαστηρίου στις 26/4.)

Ψηφιακή Επεξεργασία Σήματος & Εικόνας

Α. Μπακλέζος

abaklezos@hmu.gr