

Introduction

What is Knowledge-based Visual Question Generation (K-VQG)?

Generating questions from images, that can be answered by looking at the image.

Question	Knowledge-based?
Q: What color is the vehicle in front of the building?A: Silver	✓
Q: How fast can the vehicle go from 0 to 100 km/h? A: 6.4 seconds	*

Motivation

Why is it important?

K-VQG acts as a **bridge** between visual information and natural language, fostering interdisciplinary research.

Potential Application: Educational Content Generation

Motivation Cont.

Potential Application: Dialog System for Car Manuals

Users could ask the system questions related to their car

Research Objective

Develop methods for K-VQG based on:

- Large <u>Multimodal</u> Models (GPT-4 Vision)
 - Sequence-to-sequence models integrated with <u>Semantic Role Labels</u> (SRLs)

Multiple modes of communication or information processing (e.g. Visual, Linguistic)

Linguistic labels that identify the function of words or phrases within a sentence.

Perform comparative analysis between methods

Literature Review

Generating Natural Questions About an Image (2016) [2]

- > System should ask *natural* and engaging questions about a given image.
- Natural questions: Questions about what is inferred, rather than literal.
- ➤ These questions are typically **not** knowledged-based.

[2]

Q: Was anyone injured in the crash?

Literature Review

Visual Question Generation for Class Acquisition of Unknown Objects (2018) [3]

- Purpose: Method for generating questions specifically about objects that have not been previously learned
- Unlike knowledge-based question generation, which typically focuses on generating questions that can be answered by observing the content of an image

[2]

Q: What is the object on the ground in front of the police officer?

Methodology

Seq2seq (SRL) Based Method^[4]

- Used GPT-4V to generate exhaustive description of the images
- Feed this description as input to **Seq2seq** model empowered by Semantic Role Labels, which generates questions from text

Target Image

Methodology

Seq2seq (SRL) Based Method^[4]

- Used GPT-4V to generate exhaustive description of the images
- Feed this description as input to **Seq2seq** model empowered by Semantic Role Labels, which generates questions from text

Methodology Cont.

Vanilla Prompt Engineering Method

- ➤ Given an image, prompts GPT-4V to generate 5 questions and answers from the image, that can be answered by looking at the image
- Serves as **baseline** prompt, to understand the effects of different context additions

Methodology Cont.

1-Shot, 2-shot Prompt Engineering Methods

- When presented with an image, GPT-4V is prompted similarly to the "Vanilla" Prompt method, with the addition of one or two examples, respectively.
- > Example consists of: Image + 5 knowledge-based questions & answers

Methodology Cont.

1-Shot + Categorization Prompt Engineering Method

- > Categorization of image
 - Can be automated (~70% accuracy)

- ➤ Label each image as 1 of 3 types:
 - Item Dictionary
 - Procedural
 - Other

(Procedural)

Questions

Setup

Dataset:

- > 2023 Nissan Ariya (EV) Owner's Manual
- Consists of 451 Images

Creation of Ground Truth:

Curated 132 Knowledge-based questions & answers from 17 images

[5]

Results Cont.

Metric: METEOR Similarity Score

- Considers both lexical (word) and semantic (meaning) similarities
- > Is **sensitive** to the order of words in a question

Results

Metric: Semantic Similarity Score (spacy)

- > Determined by comparing word embeddings, semantic vectors
- > Insensitive to the order of words in a question

Conclusion: Findings & Implications

Method Rankings (for Questions)

- $\overset{\text{W}}{}$
- 1. 2-Shot Prompt Engineering
- 2. 1-Shot Prompt Engineering
- **3.** 1-Shot + Categorization Prompt Engineering
- **4.** Vanilla Prompt Engineering
- 5. Seq2seq w/ SRL

GPT-4V demonstrates optimal performance in K-VQG when supplied with **examples** (few-shot learning) and afforded the flexibility to adapt to them.

Conclusion: Future Work

- Functional Applications:
 - Learning assessments/checks
 - Dialog Systems

- Fine-tuning GPT-4 Vision OR Use different Large Multimodal Models
 - Unavailable: Latest model that can be fine-tuned: gpt-4-0613 (experimental)
 - Other LMMs: Apple's MM1, Google's Gemeni

- Data Collection
 - Bigger Dataset (Potential "Web scraping")

Precision, Recall, F1 Score

For an Image X, Precision, Recall, and F1 Score are defined as follows:

Precision

Recall Recall

F1 Score

Precision = Mean of all Maximums (for each Ground Truth Question)

Recall = Mean of all Maximums (for each Generated Question)

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

F1 Score = Harmonic Mean of Precision and Recall

Example Results

Method	Question
Seq2seq w/ SRL	What is the second half-circle gauge?
Vanilla Prompt Engineering	What time is displayed in the center of the image?
1-Shot Prompt Engineering	What does the 'P' symbol inside a circle on the car dashboard indicate?
2-Shot Prompt Engineering	Is the vehicle in motion according to the image?
1-Shot + Categorization Prompt Engineering	Where is the Fuel Gauge located as per this diagram?

Thanks!

If you have any questions:

ammar.hatiya@ontariotechu.net

https://www.linkedin.com/in/ammar-hatiya/

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

• •

• •

• •

• •

• •

• •

•

Sources

Photodoto. (n.d.). Images on the Internet. Retrieved from https://www.photodoto.com/images-on-the-internet/

Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., & Dai, J. (2019). Generating Natural Questions about an Image. Papers with Code. Retrieved from https://paperswithcode.com/paper/generating-natural-questions-about-an-image

Chen, M., Huang, X., Xiao, Z., Wei, J., & Hwang, W. (2020). Visual Question Generation for Class. Papers with Code. Retrieved from https://paperswithcode.com/paper/visual-question-generation-for-class

Naeiji, A., An, A., Davoudi, H., Delpisheh, M., Alzghool, M. (2023). Question Generation Using Sequence-to-Sequence Model with Semantic Role Labels. Paper to be presented at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Dubrovnik, Croatia, May 2-6, 2023.

Uehara, K., & Harada, T. (2022). K-VQG: Knowledge-aware Visual Question Generation for Common-sense Acquisition. arXiv preprint arXiv:2203.07890.

Nissan Ariya Concept.jpg [Photograph]. (2024, April 17). Retrieved from https://en.wikipedia.org/wiki/Nissan_Ariya

