Assignment 1

December 5, 2024

This assignment will cover lecture 4 and 5.

Deadline: 11:59 PM on 12.12.2024

General Rules

- The most important rule is that you always show all your workings.
- You can either do the exercise in groups of 2-3 or submit the exercise by yourself.
- You can do the assignment and submit it anyway. Just make sure everything is **readable**.
 - It is good practice if you write the assignment in I₄TEX and submit a PDF as it will help you in your future reports/thesis/assignments especially if you want to pursue master's or PhD.
- If you do it in a group **everyone in the group must submit the same work**. You should include the names in your submission. If there are multiple files kindly upload a .zip.
- If you have any question regarding exercise please post it on course forum: https://wuecampus.uni-wuerzburg.de/moodle/mod/forum/view.php? id=3252043
 - If you find any bugs in the assignments, please report it on forum.

1 Distributional Semantics

1.1 Raw Co-occurrence Vectors

Given the following raw co-occurrence counts of words with contexts *jealous* (c_1) and gossip (c_2) :

	c_1 (jealous)	$c_2 (gossip)$
\mathbf{w}_1	2	5
w_2	3	0
w_3	4	0
w_4	0	4

1. Compute the TF-IDF Weighted Co-occurrence Matrix

Use the following formulas:

$$\operatorname{tf}(w,c) = \log \left(\frac{\operatorname{freq}(w,c)}{\max_{w'} \operatorname{freq}(w',c)} + 1 \right)$$

$$\mathrm{idf}(c) = \log\left(\frac{|V|}{|\{w \in V : \mathrm{freq}(w,c) > 0\}|}\right)$$

Where |V| = 4.

2. Represent Each Word as a TF-IDF Vector

3. Compute the Euclidean Distance Between:

- (a) w_1 and w_2
- (b) w_2 and w_3

4. Discussion:

Based on the Euclidean distances computed, evaluate whether Euclidean distance is an appropriate measure for capturing semantic similarity between word vectors in this context.

1.2 Prediction Based Word Vectors

- 1. Why does Word2Vec use separate input vectors (\mathbf{u}_w) and output vectors (\mathbf{v}_w) for each word, and how does this benefit the model's performance?
- 2. What are the primary differences between the Skip-Gram and Continuous Bag-of-Words (CBOW) models in Word2Vec, and in what scenarios might one outperform the other?
- 3. How does negative sampling improve the efficiency of training Word2Vec models compared to using the full softmax function?
- 4. How does the choice of window size in Word2Vec affect the type of semantic relationships the model captures?

5. What strategies can Word2Vec employ to handle out-of-vocabulary (OOV) words, and what are the implications of these strategies?

2 Topic Modeling

Consider a simple corpus with the following characteristics:

- Vocabulary (V): { apple, banana, cherry }
- Number of Topics (K): 2
- Number of Documents (M): 2

The initial topic distributions over words (ϕ_k) and document distributions over topics (θ_m) are randomly initialized as follows:

$$\phi_1 = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}, \quad \phi_2 = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$$
$$\theta_1 = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}, \quad \theta_2 = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$$

Suppose the documents are:

- Document 1: apple, banana
- Document 2: banana, cherry
- 1. For each word in each document, compute the probability of assigning it to each topic using the current ϕ and θ values. Specifically, calculate

$$P(z_{mn} = k) \propto \phi_k[w] \times \theta_m[k]$$

for each word w in document m.

- 2. Based on the probabilities computed earlier, assign a new topic to each word in each document. Assume you sample deterministically by choosing the topic with the higher probability.
- 3. Update the ϕ_k and θ_m distributions based on the new topic assignments. Compute the new probabilities:

$$P(w|k) = \frac{C(w,k)}{\sum_{w'} C(w',k)}$$

$$P(k|d) = \frac{C(k,d)}{\sum_{k'} C(k',d)}$$

where C(w, k) is the count of word w assigned to topic k across all documents, and C(k, d) is the count of topic k in document d.