Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Criteri di stabilità per sistemi lineari e non lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

- ▶ Teorema di linearizzazione per la stabilità di sistemi non lineari

Stabilità di sistemi lineari a t.c.

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, \forall i$$
 \Longrightarrow sistema asintoticamente stabile

$$\begin{array}{ll} \Re[\lambda_i] \leq 0, \ \forall i \ \mathrm{e} \\ \nu_i = g_i \ \mathrm{se} \ \Re[\lambda_i] = 0 \end{array} \qquad \Longrightarrow \qquad \mathrm{sistema \ semplicemente \ stabile}$$

$$\begin{array}{ll} \exists \, \lambda_i \text{ tale che } \Re[\lambda_i] > 0 \\ \text{o } \Re[\lambda_i] = 0 \text{ e } \nu_i > g_i \end{array} \qquad \Longrightarrow \qquad \text{sistema instabile}$$

Stabilità di sistemi lineari a t.d.

$$x(t+1) = Fx(t)$$
, $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, \forall i$$
 \Longrightarrow sistema asintoticamente stabile

$$\begin{array}{ll} |\lambda_i| \leq 1, \ \forall i \ \mathrm{e} \\ \nu_i = g_i \ \mathrm{se} \ |\lambda_i| = 1 \end{array} \qquad \Longrightarrow \qquad \mathrm{sistema \ semplicemente \ stabile}$$

$$\exists \lambda_i ext{ tale che } |\lambda_i| > 1$$
 $o |\lambda_i| = 1 ext{ e } \nu_i > g_i$ sistema instabile

G. Baggio

Lez. 11: Stabilità di sistemi lineari e non lineari

17 Marzo 2022

Stabilità vs. BIBO stabilità

$$\dot{x}(t) = Fx(t) + Gu(t) \qquad \qquad x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t) + Ju(t)$$

$$y(t) = Hx(t) + Ju(t)$$

Definizione: Un sistema lineare si dice BIBO stabile se per ogni vettore d'ingresso con componenti limitate in t la corrispondente uscita forzata ha componenti limitate in t.

Teorema: Siano $\{p_i\}_{i=1}^r$ i poli della matrice di trasferimento del sistema ridotta ai minimi termini, *cioè dopo tutte le possibili cancellazioni zero-polo dei suoi elementi*. Il sistema è BIBO stabile se e solo se $\Re[p_i] < 0$ per ogni $i = 1, 2, \ldots, r$.

Stabilità asintotica ⇒ BIBO stabilità

Teorema di linearizzazione a t.c.

 $\dot{x}(t) = f(x(t))$: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia $\dot{\delta}_x(t) = F\delta_x(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile ($\Re[\lambda_i] < 0$, $\forall i$), allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- **2** Se il sistema linearizzato ha un autovalore con parte reale positiva ($\exists i$ tale che $\Re[\lambda_i] > 0$), allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

Caso critico: $\Re[\lambda_i] \leq 0$, $\forall i$, e $\exists i$: $\Re[\lambda_i] = 0$

G. Baggio

Lez. 11: Stabilità di sistemi lineari e non lineari

17 Marzo 2022

Teorema di linearizzazione a t.c.: esempi

1.
$$\dot{x} = \sin x$$
 $\ddot{x} = 0$ $\ddot{x} = \pi$ \Rightarrow $\ddot{x} = 0$ instabile $\ddot{x} = \pi$ stabile

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \bar{x} \text{ instabile}$$

3.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$ \Longrightarrow caso critico!

G. Baggio

Lez. 11: Stabilità di sistemi lineari e non lineari

17 Marzo 2022

Teorema di linearizzazione a t.d.

x(t+1) = f(x(t)): sistema non lineare con punto di equilibrio \bar{x}

