Evaluating Machine-Learning Methods

Mark Craven and David Page Computer Sciences 760 Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts

- · bias of an estimator
- test sets
- · learning curves
- · stratified sampling
- cross validation
- · confusion matrices
- TP, FP, TN, FN
- ROC curves
- · precision-recall curves
- recall/sensitivity/true positive rate (TPR)
- precision/positive predictive value (PPV)
- specificity and false positive rate (FPR or 1-specificity)

Test sets revisited

How can we get an unbiased estimate of the accuracy of a learned model?

- when learning a model, you should pretend that you don't have the test data yet (it is "in the mail")*
- if the test-set labels influence the learned model in any way, accuracy estimates will be biased

Learning curves

How does the accuracy of a learning method change as a function of the training-set size?

this can be assessed by plotting learning curves

Figure from Perlich et al. Journal of Machine Learning Research, 2003

^{*} In some applications it is reasonable to assume that you have access to the feature vector (i.e. *x*) but not the *y* part of each test instance.

Learning curves

given training/test set partition

- for each sample size s on learning curve
 - (optionally) repeat *n* times
 - randomly select s instances from training set
 - · learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a) or (s, avg. accuracy and error bars)

Limitations of using a single training/test partition

- we may not have enough data to make sufficiently large training and test sets
 - a <u>larger test set</u> gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - but... a <u>larger training set</u> will be more representative of how much data we actually have for learning process
- a single training set doesn't tell us how sensitive accuracy is to a particular training sample

Using multiple training/test partitions

- · two general approaches for doing this
 - · random resampling
 - · cross validation

Cross validation example

Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	s_2 s_3 s_4 s_5	s ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	s_3	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

accuracy = 73/100 = 73%

Cross validation

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in *stratified* cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning</u> <u>method</u> as opposed to an <u>individual learned model</u>

Is accuracy an adequate measure of predictive performance?

accuracy may not be useful measure in cases where

there is a large class skew

positive

negative

predicted class

(TP)

(FN)

- Is 98% accuracy good when 97% of the instances are negative?
- there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - · Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- · we are most interested in a subset of high-confidence predictions

true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

false positive rate =
$$\frac{FP}{\text{actual neg}}$$
 = $\frac{FP}{TN + FP}$

ROC curves

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

Algorithm for creating an ROC curve

```
let (y^{(i)}, c^{(i)}) \dots (y^{(m)}, c^{(m)}) be the test-set instances sorted according to predicted confidence c^{(i)} that each instance is positive
let num_neg, num_pos be the number of negative/positive instances in the test set
TP = 0, FP = 0
last\_TP = 0
for i = 1 to m
    // find thresholds where there is a pos instance on high side, neg instance on low side
    if (i > 1) and (c^{(i)} \neq c^{(i-1)}) and (y^{(i)} == \text{neg }) and (TP > last\_TP)
                       FPR = FP / num\_neg, TPR = TP / num\_pos
            output (FPR, TPR) coordinate
           last\_TP = TP
    if y^{(i)} == pos
            ++TP
    else
            ++FP
FPR = FP / num\_neg, TPR = TP / num\_pos
output (FPR, TPR) coordinate
```


ROC curves

Does a low false-positive rate indicate that most positive predictions (i.e. predictions with confidence > some threshold) are correct?

suppose our TPR is 0.9, and FPR is 0.01

fraction of instances that are positive	fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

predicting patient risk for VTE

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012

How do we get one ROC/PR curve when we do cross validation?

Approach 1

- make assumption that confidence values are comparable across folds
- · pool predictions from all test sets
- · plot the curve from the pooled predictions

Approach 2 (for ROC curves)

- · plot individual curves for all test sets
- view each curve as a function
- · plot the average curve for this set of functions

Comments on ROC and PR curves

both

- allow predictive performance to be assessed at various levels of confidence
- · assume binary classification tasks
- · sometimes summarized by calculating area under the curve

ROC curves

- insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- can identify optimal classification thresholds for tasks with differential misclassification costs

precision/recall curves

- show the fraction of predictions that are false positives
- well suited for tasks with lots of negative instances