Plan du chapitre 4, partie 1

Produit scalaire, distance et norme

Orthogonalité, théorème de Pythagore

Projection orthogonale

Produit scalaire (1)

On définit le **produit scalaire** entre 2 vecteurs \mathbf{u} et \mathbf{v} de \mathbb{R}^n comme

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{v} = \begin{pmatrix} u_1, u_2, \dots, u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Exercice

Calculer les produits scalaires $\langle \mathbf{u}, \mathbf{v} \rangle$ et $\langle \mathbf{v}, \mathbf{u} \rangle$ pour

$$\mathbf{u} = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \text{ et } \mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$

Produit scalaire (2)

Propriétés du produit scalaire

Soient 3 vecteurs \mathbf{u} , \mathbf{v} et \mathbf{w} de \mathbb{R}^n et c un nombre réel alors

- $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$, et $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si et seulement si $\mathbf{u} = \mathbf{0}$.

Longueur d'un vecteur

Pour
$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
, la **longueur** ou la **norme** de \mathbf{v} est le réel positiv ou nul $\|\mathbf{v}\|$

défini par

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \ \text{et} \ \|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle.$$

Exercice

- ► Montrer que, si c est un réel positif et \mathbf{v} est un vecteur de \mathbb{R}^n , $\|c\mathbf{v}\| = c \|\mathbf{v}\|$.
- $Pour \mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$
 - ightharpoonup calculer $\|\mathbf{v}\|$

et trouver un vecteur u colinéaire
à v qui a pour norme 1.

Distance dans \mathbb{R}^n

La distance entre \mathbf{u} et \mathbf{v} dans \mathbf{R}^n est définie par

$$\mathsf{dist}\left(\mathbf{u},\mathbf{v}\right) = \left\|\mathbf{u} - \mathbf{v}\right\|.$$

Soient $\mathbf{u} = (u_1, u_2)$ et $\mathbf{v} = (v_1, v_2)$ alots $\mathbf{u} - \mathbf{v} = (u_1 - v_1, u_2 - v_2)$ et

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(u_1 - v_1, u_2 - v_2)\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$$

Exercice

Calculer la distance entre $\mathbf{u} = \begin{pmatrix} 7 & 1 \end{pmatrix}^{\top}$ et $\mathbf{v} = \begin{pmatrix} 3 & 2 \end{pmatrix}^{\top}$.

Calculs sur les distances

Exercice

Soient \mathbf{u} et \mathbf{v} deux vecteurs de \mathbb{R}^n :

On peut écrire

$$\left[\mathsf{dist}\left(\mathbf{u},\mathbf{v}\right)\right]^{2} = \left\|\mathbf{u} - \mathbf{v}\right\|^{2} = \left\langle\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v}\right\rangle = \left\|\mathbf{u}\right\|^{2} + \left\|\mathbf{v}\right\|^{2} - 2\langle\mathbf{u}, \mathbf{v}\rangle.$$

Dans l'autre sens, on obtient

$$\left[\mathsf{dist}\left(\mathbf{u},-\mathbf{v}\right)\right]^{2}=\left\|\mathbf{u}+\mathbf{v}\right\|^{2}=\left\|\mathbf{u}\right\|^{2}+\left\|\mathbf{v}\right\|^{2}+2\langle\mathbf{u},\mathbf{v}\rangle.$$

Montrer les égalités précédentes.

Exercice

Vérifier la loi du parallélogramme pour ${\bf u}$ et ${\bf v}$ dans ${\mathbb R}^n$

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

Vecteurs orthogonaux et théorème de Pythagore

Si ${\bf u}$ et ${\bf v}$ ont des directions perpendiculaires

alors
$$[{\sf dist}\,({\bf u},{\bf v})]^2=[{\sf dist}\,({\bf u},-{\bf v})]^2$$
, on a donc
$$\langle {\bf u},{\bf v}\rangle=0$$

et on dit que \mathbf{u} et \mathbf{v} sont orthogonaux.

Théorème de Pythagore

Deux vecteurs \mathbf{u} et \mathbf{v} sont orthogonaux si et seulement si

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Compléments orthogonaux

Quand un vecteur \mathbf{z} est orthogonal à tous les vecteurs d'un sous-espace W de \mathbf{R}^n , alors \mathbf{z} est **orthogonal** à W.

L'ensemble des vecteurs orthogonaux à W est appelé le complément orthogonal de W et est noté W^{\perp} (on dit "W orthogonal").

Exercice Soit $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$. Décrire l'ensemble $(\mathsf{Vect}(\mathbf{v}))^\perp$ des vecteurs orthogonaux \mathbf{v}

Projection orthogonale

Théorème de la projection orthogonale

Soit W un s.e.v de \mathbb{R}^n . Chaque vecteur \mathbf{y} de \mathbb{R}^n s'écrit de manière unique comme

$$\mathbf{y} = \mathsf{Proj}^W(\mathbf{y}) + \mathbf{z}$$

avec $\operatorname{Proj}^W(y) \in W$ et $\mathbf{z} \in W^\perp$. On appelle l'unique $\operatorname{Proj}^W(\mathbf{y})$ la projection orthogonale de y sur W.

Exercices sur la projection orthogonale

Exercice Soient

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ et } \mathbf{y} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}.$$

Quelle est la projection orthogonale de y sur $W = Vect(\mathbf{u}_1, \mathbf{u}_2)$?

Exercice

Soient \mathbf{u}_1 et \mathbf{u}_2 deux vecteurs orthogonaux de \mathbb{R}^3 et $W = \mathsf{Vect}(\mathbf{u}_1\,,\mathbf{u}_2)$. Soit \mathbf{v} un vecteur de \mathbb{R}^3 .

- ightharpoonup Quel est le projeté orthogonal de \mathbf{v} sur W?
- Vérifier avec l'exercice précédent.

Exercice

Soient \mathbf{u}_1 , \mathbf{u}_2 et \mathbf{v} trois vecteurs de \mathbb{R}^3 et $W = \mathsf{Vect}(\mathbf{u}_1, \mathbf{u}_2)$. Quel est le vecteur $w \in W$ le plus proche de \mathbf{v} ?

Propriétés de la projection orthogonale

Idempotence

- ightharpoonup W un s.e.v. de \mathbb{R}^n
- ightharpoonup y un vecteur de \mathbb{R}^n

Si $\mathbf{y} \in W$ alors $Proj^W(\mathbf{y}) = y$.

Meilleure approximation

Soient

- \triangleright W un sev de \mathbb{R}^n
- ightharpoonup un vecteur de \mathbb{R}^n
- et $\operatorname{Proj}^W(\mathbf{y})$ la projection orthogonale de \mathbf{y} sur W alors $\operatorname{Proj}^W(\mathbf{y})$ est le point de W le plus proche de \mathbf{y} .