

1 of 92 Page:

FCC Radio Test Report FCC ID: XMF-MID1016-MK

Original Grant

TB-FCC161443 Report No.

Applicant Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

Tablet PC **EUT Name**

MID1016-MK Model No.

DL1016, MID1016-MA, MID1016-L, DL1016-MK, DL1016MK, Series Model No.

DL10XXXXXX (X can be 0~9, A~Z)

Brand Name

Receipt Date 2018-08-02

2018-08-03 to 2018-08-14 **Test Date**

Issue Date 2018-08-15

Standards FCC Part 15: 2017, Subpart C(15.247)

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

: WAN SU : fugla. **Engineer Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	13
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	NUMBER OF HOPPING CHANNEL	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	20
8.	AVERAGE TIME OF OCCUPANCY	21
	8.1 Test Standard and Limit	
	8.2 Test Setup	

Report No.: TB-FCC161443
Page: 3 of 92

Page:

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	PEAK OUTPUT POWER TEST	23
	10.1 Test Standard and Limit	23
	10.2 Test Setup	23
	10.3 Test Procedure	23
	10.4 EUT Operating Condition	
	10.5 Test Data	23
11.	ANTENNA REQUIREMENT	24
	11.1 Standard Requirement	24
	11.2 Antenna Connected Construction	24
	11.3 Result	24
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATT	ACHMENT B RADIATED EMISSION TEST DATA	29
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
ATT	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	69
ATT	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	75
ATT	ACHMENT G PEAK OUTPUT POWER TEST DATA	87

Page: 4 of 92

Revision History

Report No.	Version	Description	Issued Date
TB-FCC161443	Rev.01	Initial issue of report	2018-08-15
	LOS	TO THE PARTY OF	A COLOR
3 6		LODGE THE PARTY OF	
mn By			WORL WORL
		THE PARTY OF THE P	
	400	THE PARTY OF THE P	MODE
	4000		
1000			13
	0000		6.037
TO THE	57 11	TODAY.	The state of the s
0	3		TI OB
The same	1	MBI MUDI	1 (1)

Page: 5 of 92

1. General Information about EUT

1.1 Client Information

Applicant		Lightcomm Technology Co., Ltd.
Address	:	RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28, AU PUI WAN STREET FO TAN SHATIN NEW TERRITORIES, HONGKONG
Manufacturer		Huizhou Heng Du Electronics Co., Ltd.
Address	:	No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Tablet PC		
Models No.		MID1016-MK, DL1016, MID1016-MA, MID1016-L, DL1016-MK, DL1016MK, DL10XXXXXX (X can be 0~9, A~Z)		
Model Difference		All models are in the same PCB layout interior structure and electrical circuits, The only difference is model name.		
	No. of the last	Operation Frequency:	Bluetooth V4.1: 2402~2480 MHz	
		Number of Channel:	Bluetooth: 79 Channels See Note 2	
Product		Max Peak Output Power:	Bluetooth: -0.377dBm(π /4-DQPSK)	
Description		Antenna Gain:	1.81dBi FPC Antenna	
		Modulation Type:	GFSK (1 Mbps) π /4-DQPSK (2 Mbps) 8-DPSK (3 Mbps)	
Power Supply	•	DC Voltage Supply from Add DC Voltage Supplied by Li-	dapter(TEKA012-0502000UK).	
Power Rating	7	TEKA012-0502000UK: Input: AC 100-240V 50/60Hz 0.35A(MAX) Output: DC 5.0V 2A by adapter DC 3.7V by 5000mAh Li-ion battery		
Software Version	: N/A			
Hardware Version	9	N/A		
Connecting I/O Port(S)		Please refer to the User's Manual		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 92

(2) Channel List:

	Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
08	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

Page: 7 of 92

	TX Mode		
Y V			
		EUT	

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
ADAPTER	TEKA012-0502000UK	Tany	TEKA TECHNOLOGY CO., LTD	V		
	Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	NO	NO	0.8M			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For	For Conducted Test	
Final Test Mode	Final Test Mode Description	
Mode 1	Charging + TX Mode	

For Radiated Test			
Final Test Mode Description			
Mode 1	TX GFSK Mode		
Mode 2	TX Mode(GFSK) Channel 00/39/78		
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78		
Mode 4	TX Mode(8-DPSK) Channel 00/39/78		
Mode 5	Hopping Mode(GFSK)		
Mode 6	Hopping Mode(π /4-DQPSK)		

Page: 8 of 92

	11100
Mode 7	Hopping Mode(8-DPSK)

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: # /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	THUE	Cmd.exe	THE PARTY
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	5	5	5
π/4-DQPSK	5	5	5
8-DPSK	5	5	5

Page: 9 of 92

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 11 of 92

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standard Section				_	
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: GFSK: 856.54kHz π/4-DQPSK: 1156.5kHz 8-DPSK: 1152.1KHz	

Page: 12 of 92

3. Test Equipment

					Cal. Due
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar.15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar.15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar.15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar.15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar.15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
13	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
DE Day of	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 13 of 92

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguenov	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 14 of 92

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 15 of 92

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m	(dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 16 of 92

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 92

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 92

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)	
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC161443 Page: 19 of 92

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 20 of 92

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 92

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 92

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 92

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
THE OWNER OF THE OWNER OWNER OF THE OWNER OW	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW ≥ RBW for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

Page: 24 of 92

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.81dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type		
The same	Permanent attached antenna	Con I
a Burn	⊠Unique connector antenna	
D A	Professional installation antenna	MOLE

Page: 25 of 92

Attachment A-- Conducted Emission Test Data

26 of 92 Page:

Page: 27 of 92

Page: 28 of 92

29 of 92 Page:

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25 ℃	63-		Relative I	Humidity:	55%	2 1
Test Voltage:	AC 12	20V/60 Hz	ARTIC		S. Barre		10
Ant. Pol.	Horizo	ontal		4000	-	Altan.	
Test Mode:	TX GF	SK Mode	2402MHz	6			U.A.
Remark:	Only v	worse case	is reported				
80.0 dBuV/m							
					(RF)FCC 15	5C 3M Radiation Margin -6	
			_				
30			4 X	6			www
1 2 X X Y		3	Λ . $^{\sim}$	When I	man man	1 happenson the	
VV-	~~\\ . ad	/ man	, Mh	W			
	4444						
-20							
30.000 40 5	50 60 70		(MHz)	300	400 50	0 600 700	1000.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m		Detector
1 30	.6379	31.77	-13.49	18.28	40.00	-21.72	QP
2 35	.2512	34.46	-16.87	17.59	40.00	-22.41	QP
3 81	.7833	40.82	-22.43	18.39	40.00	-21.61	QP
4 133	3.6188	46.14	-22.46	23.68	43.50	-19.82	QP
5 * 189	9.7385	47.38	-19.83	27.55	43.50	-15.95	QP
6 282	2.9852	40.58	-16.53	24.05	46.00	-21.95	QP
*:Maximum data	x:Over limit	!:over margin	-				
Emission Leve	I= Read L	evel+ Cor	rect Factor				

Report No.: TB-FCC161443
Page: 30 of 92

Page:

Temperature:	25 ℃		a GA	Relative I	Humidity:	55%	1
est Voltage:	AC 120)V/60 Hz	33	ALTO	13.3	- N	MAIN
Ant. Pol.	Vertica	HAR			-	139	
Test Mode:	TX GF	SK Mode 2	402MHz		a W	diam'r	
Remark:	Only w	orse case i	s reported		3	a W	معالا
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiatio	n
						Margin -	6 dB
30 1 2 3 Y X 3			4 X 5 0				
**************************************					<i>M</i>	War war war	mann.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	My	J W	Lumm	Mary Mary Mary Mary Mary Mary Mary Mary	7.7	
	~W\\^	, promon	•	Avo. 1 4 4			
20							
30.000 40 50	60 70		(MHz)	300	400 5	00 600 700	1000.00
		Reading	Correct	Measure-			
No. Mk. F	req.	Level	Factor	ment	Limit	Over	
N	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 35.0	0048	42.03	-16.75	25.28	40.00	-14.72	QP
2 * 37.2	2855	44.80	-17.83	26.97	40.00	-13.03	QP
	7129	44.37	-19.96	24.41	40.00	-15.59	QP
	5592	52.49	-22.46	30.03	43.50	-13.47	QP
	0680	45.57	-20.67	24.90	43.50	-18.60	QP
6 191.	0738	44.69	-19.82	24.87	43.50	-18.63	QP
*:Maximum data x	Over limit	!:over margin	-				

Page: 31 of 92

Above 1GHz(Only worse case is reported)

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		THU:			
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2402MHz					
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the			

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.628	45.15	14.43	59.58	74.00	-14.42	peak
2	*	4803.628	33.94	14.43	48.37	54.00	-5.63	AVG

Page: 32 of 92

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MHz	The same of the				
Remark:	No report for the emission prescribed limit.	which more than 10 dB	3 below the			

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.352	29.63	14.43	44.06	54.00	-9.94	AVG
2		4805.338	43.75	14.44	58.19	74.00	-15.81	peak

Page: 33 of 92

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	COLUMN TO SERVICE OF THE PERSON OF THE PERSO	MAN			
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2441MHz	TX GFSK Mode 2441MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4880.500	29.71	14.89	44.60	54.00	-9.40	AVG
2		4881.436	42.94	14.91	57.85	74.00	-16.15	peak

Page: 34 of 92

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	400	MAN			
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2441MHz					
Remark:	No report for the emission wh	No report for the emission which more than 10 dB below the				
	prescribed limit.	The same				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.134	43.20	14.91	58.11	74.00	-15.89	peak
2	*	4883.134	29.71	14.91	44.62	54.00	-9.38	AVG

Page: 35 of 92

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	W. 17.7.	MAIN		
Ant. Pol.	Horizontal				
Test Mode:	TX GFSK Mode 2480MHz				
Remark:	No report for the emission which more than 10 dB below the				
	prescribed limit.	The same			

No	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.210	43.39	15.39	58.78	74.00	-15.22	peak
2	*	4960.210	29.82	15.39	45.21	54.00	-8.79	AVG

Page: 36 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2480MHz						
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.532	43.66	15.39	59.05	74.00	-14.95	peak
2	*	4961.350	30.11	15.40	45.51	54.00	-8.49	AVG

Page: 37 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	(A) (A)	TO THE PARTY OF				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 24	02MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.822	43.11	14.44	57.55	74.00	-16.45	peak
2	*	4805.500	29.33	14.44	43.77	54.00	-10.23	AVG

Page: 38 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	(IIII)	THU .				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode	2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.988	42.46	14.43	56.89	74.00	-17.11	peak
2	*	4803.988	29.54	14.43	43.97	54.00	-10.03	AVG

Page: 39 of 92

Temperature:	Temperature: 25°C		55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2441	MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.292	42.87	14.91	57.78	74.00	-16.22	peak
2	*	4881.292	29.61	14.91	44.52	54.00	-9.48	AVG

Page: 40 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 2441	MHz					
Remark:	No report for the emission w	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.290	41.27	14.91	56.18	74.00	-17.82	peak
2	*	4883.290	30.01	14.91	44.92	54.00	-9.08	AVG

Page: 41 of 92

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	COURS -	THU:			
Ant. Pol.	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 248	0MHz				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4958.500	42.11	15.39	57.50	74.00	-16.50	peak
2	*	4958.500	29.90	15.39	45.29	54.00	-8.71	AVG

Page: 42 of 92

Temperature:	erature: 25°C Rela		55%				
Test Voltage:	DC 3.7V	WW.	NAME OF THE PARTY				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 2480M	lHz					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.	The same					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4961.194	43.45	15.40	58.85	74.00	-15.15	peak
2	*	4961.230	30.05	15.40	45.45	54.00	-8.55	AVG

Page: 43 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	COUNTY OF THE PARTY OF THE PART	NAME OF THE PARTY				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 8-DPSK Mode 2402MHz	D ON W					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4805.194	42.79	14.44	57.23	74.00	-16.77	peak
2	*	4805.194	29.27	14.44	43.71	54.00	-10.29	AVG

Page: 44 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	(MILLIA)	NAME OF THE PARTY				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 8-DPSK Mode 240	2MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4802.560	42.60	14.42	57.02	74.00	-16.98	peak
2	*	4803.562	29.71	14.43	44.14	54.00	-9.86	AVG

Page: 45 of 92

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 8-DPSK Mode 2441MHz	PAU				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.432	41.52	14.91	56.43	74.00	-17.57	peak
2	*	4882.432	29.94	14.91	44.85	54.00	-9.15	AVG

Page: 46 of 92

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 8-DPSK Mode 2441MHz	PAU					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.252	43.70	14.91	58.61	74.00	-15.39	peak
2	*	4883.326	30.08	14.91	44.99	54.00	-9.01	AVG

Page: 47 of 92

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		NYU.
Ant. Pol.	Horizontal		13.0
Test Mode:	TX 8-DPSK Mode 2480MHz		
Remark:	No report for the emission who prescribed limit.	ich more than 10 dB be	elow the

No.	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.696	43.02	15.40	58.42	74.00	-15.58	peak
2	*	4960.696	29.73	15.40	45.13	54.00	-8.87	AVG

Page: 48 of 92

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	COURT OF THE PARTY	THU:		
Ant. Pol.	Vertical				
Test Mode:	TX 8-DPSK Mode 2480MF	łz			
Remark: No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.124	43.13	15.39	58.52	74.00	-15.48	peak
2	*	4961.230	30.03	15.40	45.43	54.00	-8.57	AVG

Page: 49 of 92

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 50 of 92

Page: 51 of 92

Page: 52 of 92

Page: 53 of 92

Page: 54 of 92

Page: 55 of 92

Page: 56 of 92

Page: 57 of 92

Temperature:	25℃	Relative Humidity	/ : 55%			
Test Voltage:	DC 3.7V		A William			
Ant. Pol.	Horizontal					
Test Mode: TX 8-DPSK Mode 2402MHz						
Remark:	Only worse case is reported					
110.0 dBuV/m						
			3 3			
			4			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	50.05	2.82	52.87	74.00	-21.13	peak
2		2390.000	38.78	2.82	41.60	54.00	-12.40	AVG
3	X	2402.000	99.19	2.87	102.06	Fundamenta	Frequency	peak
4	*	2402.000	87.27	2.87	90.14	Fundamenta	I Frequency	AVG

Page: 58 of 92

Page: 59 of 92

Page: 60 of 92

(2) Conducted Test

Attachment D-- Number of Hopping Channel Test Data

	Temperature:	25℃		Relative Humidity:		55%	
	Test Voltage:	DC	DC 3.7V				
	Test Mode:	Hop	Hopping Mode				
	Frequency Range		Test Mode	Qua	ntity of Hopping	Limit	
			rest Mode		Channel	LIIIIL	
	2402MHz~2480MHz		GFSK		79		
			02MHz~2480MHz п /4-DQPSK		79 >1		
			8-DPSK 79				
				CECK Max	la	·	

π/4-DQPSK Mode

Page: 68 of 92

Page: 69 of 92

Attachment E-- Average Time of Occupancy Test Data

Temper	ature:	25°C Relative Humidity:					55%	MILL		
Test Vo	Test Voltage: DC 3.7V									
Test Mo	de:	Hop	oping Mode (C	SFSK)	N. B		War and the same of the same o			
Test	Chani	nel	Pulse	Total of Dwo	ell	Period Time	Limit	Daguile		
Mode	(MH	z)	Time (ms)	(ms)		(s)	(ms)	Result		
1DH1	244	1	0.377	120.64		31.60	400	PASS		
1DH3	244	1	1.633	261.28		31.60	400	PASS		
1DH5	244	1	2.881	307.31		31.60	400	PASS		

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

GFSK Hopping Mode 1DH5

Page: 71 of 92

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (π /4-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Dogult
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.384	122.88	31.60	400	PASS
2DH3	2441	1.629	260.64	31.60	400	PASS
2DH5	2441	2.884	307.63	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

π /4-DQPSK Hopping Mode 2DH1

π /4-DQPSK Hopping Mode 2DH5

Page: 73 of 92

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	TO DE	NAME OF THE PARTY
Test Mode:	Hopping Mode (8-DPSK)		27.0

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.385	123.20	31.60	400	PASS
3DH3	2441	1.635	261.60	31.60	400	PASS
3DH5	2441	2.886	307.84	31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

8-DPSK Hopping Mode 3DH1

74 of 92 Page:

8-DPSK Hopping Mode 3DH5

Data

Attachment F-- Channel Separation and Bandwidth Test

				6 1 B W
Temperature:	25°	2	Relative Humidity:	55%
Test Voltage:	DC	3.7V		
Test Mode:	TX	Mode (GFSK)		
Channel freque	ncy	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		856.50	921.9	
2441		856.54	923.6	
2480		855.76	928.9	
		GESK T	(Mode	

GFSK TX Mode 2441 MHz SENSE:INT| ALIGN AUTO
Center Freq: 2.441000000 GHz
Trig: Free Run Avg|Hold:>10/10
#Atten: 10 dB Center Freq 2.441000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm Center 2.441 GHz #Res BW 30 kHz Span 2 MHz Sweep 2.667 ms #VBW 100 kHz **Total Power** 7.90 dBm **Occupied Bandwidth** 856.54 kHz **Transmit Freq Error** -7.465 kHz % of OBW Power 99.00 % x dB Bandwidth 923.6 kHz x dB -20.00 dB STATUS **GFSK TX Mode** 2480 MHz 08:45:34 PM Aug 07, 2018 Radio Std: None SENSE:INT ALIGN AUTO

Center Freq: 2.480000000 GHz

Trig: Free Run Avg|Hold:>10/10

#Atten: 10 dB Center Freq 2.480000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm Center 2.48 GHz #Res BW 30 kHz Span 2 MHz Sweep 2.667 ms **#VBW** 100 kHz **Total Power** 7.31 dBm **Occupied Bandwidth** 855.76 kHz **Transmit Freq Error** -9.181 kHz % of OBW Power 99.00 % x dB Bandwidth 928.9 kHz x dB -20.00 dB

STATUS

Page: 77 of 92

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		NAME OF THE PARTY
Test Mode:	TX Mode (π/4-DQPSK)		633
			20dB

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1154.6	1253	835.33
2441	1156.5	1252	834.67
2480	1154.8	1248	832.00

π /4-DQPSK TX Mode

Page: 78 of 92

Page: 79 of 92

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC	3.7V		133
Test Mode:	TX	Mode (8-DPSK)		
Channel frequency 99% OBW (MHz) (kHz)		20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)	
2402		1152.0	1258	838.67
2441		1152.1	1258	838.67
2480		1151.1	1253	835.33
		8-DPSK TX	Mode	

Page: 80 of 92

8-DPSK TX Mode

Page: 81 of 92

Temperature:	25℃		Relative Humid	lity:	55%	
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping I	Hopping Mode (GFSK)				
Channel frequency Separation Read Value			ad Value	Sep	aration Limit	
(MHz)	(MHz)			(kHz)		
2402		990			921.9	
2441		1230			923.6	
2480	2480 990				928.9	
		GFSK Hoppir	g Mode			

SK Hopping Wo

82 of 92 Page:

Page: 83 of 92

Temperature:	25℃		Relative Humidit	y: 55%	
Test Voltage:	DC 3.7V	DC 3.7V			
Test Mode:	Hopping Mode (π /4-DQPSK)				
Channel frequency Separation Read Value Separati			Separation Limit		
(MHz)		(kHz)		(kHz)	
2402		1000		835.33	
2441	990		90	834.67	
2480		13	1300 832.00		
		π /4-DQPSK H	lopping Mode		
		2402	MHz		

Page: 84 of 92

Page: 85 of 92

Temperature:	25℃		Relative	Humidity:	55%	
Test Voltage:	DC 3.7V	DC 3.7V		1	1.1.1	
Test Mode:	Hopping N	Hopping Mode (8-DPSK)				
Channel free	quency	Separation Re	ead Value	ue Separation Limit		
(MHz)	(MHz)		(kHz)		(kHz)	
2402		1010			838.67	
2441		840			838.67	
2480		1170			835.33	
		8-DPSK Hopp	ing Mode			
M Keysight Spectrun	n Analyzer - Swept SA	2402 M				
LXI R	75 Ω AC 2.402500000 GHz	PNO: Wide Trig: Free Ru IFGain:Low Atten: 30 dB		e: Log-Pwr i:>100/100	09:19:30 PM Aug 07, 2018 TRACE 1 2 3 4 5 6 TYPE M MANAWAY DET P N N N N N	
R	ef Offset 3.61 dB ef 23.61 dBm			ΔMk	r1 1.010 MHz 0.513 dB	
10 dB/div R	or zoro i albiii					
		Y ₂	1Δ2	×.		
10 dB/div R Log 13.6 3.61 -6.39		X2	1Δ2	manny man		
10 dB/div R- Log 13.6 -6.39		X2-~~~~~~	1Δ2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

#VBW 300 kHz

0.513 dB 3.427 dBm

1.010 MHz 2.401 813 GHz

86 of 92 Page:

Span 10.00 MHz Sweep 1.333 ms (10001 pts)

Center 2.402000 GHz #Res BW 3.0 MHz

Attachment G-- Peak Output Power Test Data

Temperature:	25℃		Relative Humidity:	55%	
Test Voltage:	DC 3.7V	MUL		1011	
Test Mode:	TX Mode (GFSK)			
Channel freque	ncy (MHz)	Test Result	(dBm)	Limit (dBm)	
2402		-0.386	6		
2441		-0.377		30	
2480		-0.93	5		
	<u> </u>	GFSK TX	Mode		
		2402 M	Hz		
	n Analyzer - Swept SA RF 75 Ω AC	SENSE:INT	ALIGN AUTO		
	2.402000000 GHZ	PNO: Fast Trig: Free Ru IFGain:Low Atten: 30 dB	Avg Type: Log-Pwr n Avg Hold:>100/100	05:50:10 PM Aug 11, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N	
10 dB/div Re	ef Offset 3.61 dB ef 23.61 dBm	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6	
10 dB/div Re	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	
10 dB/div Ro	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	
10 dB/div Re	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	
10 dB/div Re	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	
10 dB/div R4	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	
10 dB/div Re 13.6 3.61	ef Offset 3.61 dB	THO. Tust	n Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN 2.402 026 GHz	

#VBW 8.0 MHz

Page: 88 of 92

Page: 89 of 92

Temperature:	25℃		Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V					
Test Mode:	TX Mode (π /4-DQPSK)						
Channel frequency (MHz) Test Result (dBm)			(dBm) L	imit (dBm)			
2402		-1.080					
2441		-0.972	-0.972				
2480		-1.530					
		# /4 DOBSK T	V Mode				

π /4-DQPSK TX Mode

Page: 90 of 92

91 of 92 Page:

Temperature:	25 ℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	TX Mode (8-DPSK)					
Channel frequency (MHz) Test Result (dBm)			IBm) Lin	nit (dBm)		
2402		-1.118				
2441 -1.014		-1.014	-1.014 21			
2480	2480 -1.484					
	8-DPSK TX Mode					

Report No.: TB-FCC161443 Page: 92 of 92

----END OF REPORT----