Анализа 1 - И смер, Септембар 1, 18. 8. 2020.

- 1. Нека је низ (x_n) дефинисан са: $x_0 \in (0,1), x_{n+1} = 1 2x_n + 3x_n^2 x_n^3, n \ge 0.$
 - (а) Доказати да $x_n \in (0,1)$ за све $n \in \mathbb{N}$.
 - (б) Показати да за све $x \in [0,1]$ важи: $1 2x + 3x^2 x^3 \ge x$.
 - (в) Испитати конвергенцију низа (x_n) .
- 2. Дата је функција $f(x) = \arctan \frac{(x-1)^2}{x^2-2x}$.
 - (a) Испитати ток и скицирати график функције f.
 - (б) Одредити слику домена $f(D_f)$ ове функције.
- 3. Нека је $f(x) = \begin{cases} 1 e^{-\lambda x}, & x \ge 0 \\ \ln(\lambda + x^2), & x < 0 \end{cases}$, $\lambda > 0$.
 - (a) Одредити λ тако да f буде непрекидна на \mathbb{R} .
 - (б) За нађено λ испитати диференцијабилност функције f.
- 4. Нека је $f: \mathbb{R} \to \mathbb{R}$ непрекидна и ограничена функција. Доказати да за свако $n \in \mathbb{N}$ постоји $c \in \mathbb{R}$ такво да је $f(c) = c^{2n-1}$.

Анализа 1 - И смер, Септембар 1, 18. 8. 2020.

- 1. Нека је низ (x_n) дефинисан са: $x_0 \in (0,1), x_{n+1} = 1 2x_n + 3x_n^2 x_n^3, n \ge 0.$
 - (a) Доказати да $x_n \in (0,1)$ за све $n \in \mathbb{N}$.
 - (б) Показати да за све $x \in [0,1]$ важи: $1 2x + 3x^2 x^3 \ge x$.
 - (в) Испитати конвергенцију низа (x_n) .
- 2. Дата је функција $f(x) = \arctan \frac{(x-1)^2}{x^2-2x}$.
 - (a) Испитати ток и скицирати график функције f.
 - (б) Одредити слику домена $f(D_f)$ ове функције.
- 3. Нека је $f(x) = \begin{cases} 1 e^{-\lambda x}, & x \ge 0 \\ \ln(\lambda + x^2), & x < 0 \end{cases}$, $\lambda > 0$.
 - (a) Одредити λ тако да f буде непрекидна на $\mathbb R.$
 - (б) За нађено λ испитати диференцијабилност функције f.
- 4. Нека је $f: \mathbb{R} \to \mathbb{R}$ непрекидна и ограничена функција. Доказати да за свако $n \in \mathbb{N}$ постоји $c \in \mathbb{R}$ такво да је $f(c) = c^{2n-1}$.