术语表

英文简称	中文术语	英文术语	
	第一性	ab initio	
DFT	密度泛函理论	density functional theory	
DFA	密度泛函近似	density functional approximation	
WFT	波函数理论	wavefunction theory	
SCF	自洽场	self-consistent field	
post-SCF	后自洽场	post self-consistent field	
post-HF	波函数理论 post-SCF	post Hartree-Fock	
	规范原点	gauge origin	
	无(电子)相互作用体系	noninteracting system	
	N 可表示性	N-representability	
xc	交换相关效应	exchange-correlation effect	
LDA	局域密度近似	local density apprioximation	
LSDA	局域密度近似	local spin-density apprioximation	
GGA	广义梯度近似	generalized gradient approximation	
meta-GGA	广义梯度的梯度近似	meta-generalized gradient approximation	
hyb	杂化(泛函)	hybrid (functional)	
NL	离域	non-local	
	半定域	semi-local	
RSH	长短程分离杂化(泛函)	range-separate hybrid (functional)	
	局域混合(泛函)	local hybrid (functional)	
DH	双杂化(泛函)	doubly hybrid (functional)	
xDH	XYG3型双杂化(泛函)	XYG3-type doubly hybrid (functional)	
bDH	B2PLYP型双杂化(泛函)	B2PLYP-type doubly hybrid (functional)	
RPA	无规相近似	random phase approximation	
OO	轨道优化	orbital-optimized	
SS	自旋相同	same-spin	
OS	自旋相反	opposite-spin	
SCS	自旋组分缩放	spin-component-scaled	

英文简称	中文术语	英文术语	
DSD	弥散矫正的 SCS DH	dispersion corrected SCS DH	
AC	绝热路径	adiabatic connection	
RI	恒等算符简化(近似)	resolution-of-identity (approximation)	
CBS	完备基组(极限)	complete basis set (limit)	
FPA		focal-point analysis	
QMC	量子蒙特卡洛	quantum Monte Carlo	
HOMO	最高占据分子轨道	highest occupied molecular orbital	
LUMO	最低非占分子轨道	lowest unoccupied molecular orbital	
HOMO/LUMO gap	HOMO 与 LUMO 能级差	energy gap between HOMO and LUMO	
CC	偶合簇	coupled-cluster	
CI	组态相互作用	configuration interaction	

电子结构方法与基组表

波函数方法

方法简称	方法全程	参考文献
HF	Hartree-Fock	1–3
MPn	n-th order Møller-Plesset perturbation	4
CCSD	coupled-cluster singles and doubles	5–6
CCSD(T)	CCSD with perturbative triplets	7
IEPA	independent electron-pair approximation	8–9
sIEPA	screened IEPA	10
MP2/cr	(scheme I of) corrected MP2	11

参考文献

- [1] HARTREE D R. The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra[J/OL]. Math. Proc. Cambridge Philos. Soc., 1928, 24(3): 426-437[2022-06-26]. https://www.cambridge.org/core/product/identifier/S0305004100015954/type/journal_article. DOI: 10.1017/S0305004100015954.
- [2] FOCK V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J/OL]. Z. für Phys., 1930, 61(1-2): 126-148[2022-06-26]. http://link.springer.com/10.1007/BF01340294.
- [3] SLATER J C. A Simplification of the Hartree-Fock Method[J/OL]. Phys. Rev., 1951, 81(3): 385-390[2022-06-26]. https://link.aps.org/doi/10.1103/PhysRev.81. 385.
- [4] MøLLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems[J/OL]. Phys. Rev., 1934, 46(7): 618-622[2021-07-15]. https://link.aps.org/doi/10.1103/PhysRev.46.618.
- [5] ČížEK J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J/OL]. J. Chem. Phys., 1966, 45(11): 4256-4266 [2022-06-16]. http://aip.scitation.org/doi/10.1063/1.1727484.
- [6] ČížEK J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules[M/OL]//LEFEBVRE R, MOSER C. Advances in Chemical Physics: Vol. 14. Hoboken, New Jersey: John Wiley & Sons, Inc., 1969: 35-89[2021-07-15]. https://onlinelibrary.wiley.com/doi/10.1002/9780470143599.ch2.
- [7] RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories[J/OL]. Chem. Phys. Lett., 1989, 157(6): 479-483[2022-03-02]. https://linkinghub.elsevier.com/retrieve/pii/S0009 261489873956. DOI: 10.1016/S0009-2614(89)87395-6.

- [8] SINANOğLU O. Many-Electron Theory of Atoms, Molecules and Their Interactions[M/OL]//Advances in Chemical Physics: Advances in Chemical Physics. 1964: 315-412[2023-03-09]. https://doi.org/10.1002/9780470143520.ch7.
- [9] NESBET R K. Electronic Correlation in Atoms and Molecules[M/OL]//Advances in Chemical Physics: Advances in Chemical Physics. 1965: 321-363[2023-03-09]. https://doi.org/10.1002/9780470143551.ch4.
- [10] ZHANG I Y, RINKE P, PERDEW J P, et al. Towards Efficient Orbital-Dependent Density Functionals for Weak and Strong Correlation[J/OL]. Phys. Rev. Lett., 2016, 117(13): 133002[2020-09-10]. https://link.aps.org/doi/10.1103/PhysRev Lett.117.133002.
- [11] DYKSTRA C E, DAVIDSON E R. Enhanced second-order treatment of electron pair correlation[J/OL]. Int. J. Quantum Chem., 2000, 78(4): 226-236. http://dx.doi.org/10.1002/(SICI)1097-461X(2000)78:4<226::AID-QUA4>3.0.CO;2-N.