BET (Brunauer-Emmett-Teller) Method for Surface Area Determination

Teng-Jui Lin

Department of Chemical Engineering, University of Washington

Surface and Colloid Science

BET isotherms empirically fits adsorption isotherm data

- BET method procedure for determining surface area of finely divided solid by measurements of low-temperature gas adsorption
- BET isotherm

$$rac{V}{V_m} = rac{C(p/p_0)}{(1-p/p_0)[1+(C-1)(p/p_0)]}$$

Linear form of BET isotherm

$$rac{(p/p_0)}{V(1-p/p_0)} = rac{1}{CV_m} + rac{(C-1)(p/p_0)}{CV_m}$$

• Single point method: $C\gg 1$, so intercept pprox 0

Volume: $V_m = V(1 - p/p_0)$

Mass: $X_m = X(1 - p/p_0)$

BET method allows surface area determination

Volume of adsorbate desorbed by sample

$$V_{
m des} = V_c rac{A}{A_c}$$

Mass of adsorbate desorbed

$$X = rac{p_a V_{
m des}}{RT} M_a$$

 Mass of adsorbate desorbed when solid is covered by a single adsorbate monolayer

$$X_m = rac{p_a V_c(A/A_c)}{RT} M_a (1-p/p_0)$$

Total surface area

$$S_t = X_m rac{N_0}{M_a} A_{cs}$$

Specific surface area

$$\Sigma = rac{S_t}{m}$$

Initial configuration of FlowSorb Surface Area Analyzer

Initial configuration

Power: OFF

Toggle valve: open

- Sample holders are installed at DEGAS, TEST, and COLD TRAP locations
- Insulating container is installed at sample holder for COLD TRAP

Startup procedure of FlowSorb Surface Area Analyzer

Startup

- Open inert gas flow (30% nitrogen, 70% helium), wait 5 min
- Adjust flow meter to the calibration mark
- Pour liquid nitrogen into an insulating container, and pour the liquid nitrogen to the insulating container at COLD TRAP, wait for 10 min
- Power switch: ON, wait for 30 min

Preparing activated carbon sample for BET measurement

- Sample preparation
 - Weigh 0.02 g activated carbon in the sample holder
 - Place the sample holder on DEGAS and heat with a heating mantle, wait for 15 min (concurrent with start up)

Calibrating FlowSorb Surface Area Analyzer

Calibration

- Flush gas syringe with evaporated nitrogen gas above the liquid nitrogen at DEGAS
- Fill the gas syringe with 1 mL nitrogen gas
- Wipe needle tip free of frost, set aside needle to equilibrate to room temperature
- Zero the instrument display with course and fine zeros. Switch to surface area (SA), and clear SA display
- Insert needle at INJECT, inject nitrogen gas at moderate rate, and withdraw
- Wait until reading is stabilized, then calibrate the instrument to SA = 2.84
 - Confirm calibration by repeated injection, if necessary

Measuring surface area of activated carbon with the BET method (adsorption)

- Adsorption measurement
 - Exchange sample holders between DEGAS and TEST, so the sample is at TEST
 - Wait until readings stabilize and clear SA display
 - Pour liquid nitrogen into an insulating container
 - Place the insulating container at TEST by immersing the sample holder with liquid nitrogen. Secure the container by flipping on the container holder
 - Nitrogen gas starts to adsorb to activated carbon
 - Wait until reading is stabilized, record the
 value of SA = adsorption surface area

Measuring surface area of activated carbon with the BET method (desorption)

- Desorption measurement
 - Remove the insulating container by putting down the container holder
 - Nitrogen gas starts to desorb form activated carbon
 - Wait until reading is stabilized, record the
 value of SA = desorption surface area

Shutdown procedure of FlowSorb Surface Area Analyzer

- Shutdown
 - Power: OFF
 - Remove the activated carbon from the sample holder, and place the sample holder back on TEST
 - Turn off the inert gas flow

Calculating the specific surface area of activated carbon

Measured

 S_t : Adsorption SA, desorption SA

m: Mass of activated carbon

Calculated

$$\circ \left| \Sigma = rac{S_t}{m}
ight|$$
 - specific SA for adsorption and desorption

Usually use desorption data to report Σ