Convexité

Analyse - Cours

I Définition

1. Théorème:

Soit f une fonction dérivable deux fois sur un intervalle I. Si la fonction dérivée f' est croissante sur I alors la courbe f se situe au dessus de toutes ses tangentes sur I.

Définition :

Une fonction deux fois dérivable sur un intervalle I est dite convexe si elle vérifie les trois proposition suivantes.

2. Théorème:

Pour toute fonction f dérivable deux fois sur un intervalle I, alors les trois propositions suivantes sont équivalentes :

- (i) La fonction dérivée f est croissante sur I.
- (ii) La courbe de f se situe au dessus de toutes ses tangentes sur I.
- (iii) La dérivée seconde f'' est positive sur I.

Exemples:

- La fonction carrée : $\forall x \in \mathbb{R} : f(x) = x^2$; f'(x) = 2x ; f''(x) = 2 > 0 La dérivée seconde f'' est positive sur \mathbb{R} donc f est convexe sur \mathbb{R} .
- La fonction exponentielle : $\forall x \in \mathbb{R} : f(x) = e^x$; $f'(x) = e^x$; $f''(x) = e^x > 0$ La dérivée seconde f'' est positive sur \mathbb{R} donc f est convexe sur \mathbb{R} .
- La fonction inverse: $\forall x \in \mathbb{R}^* : f(x) = \frac{1}{x}$; $f'(x) = \frac{-1}{x^2}$; $f''(x) = \frac{2}{x^3} > 0$ Pour tout x > 0, f'' > 0 donc f est convexe sur \mathbb{R} .

Définition

Une fonction deux fois dérivable sur un intervalle I est dite concave si elle vérifie les trois proposition suivantes.

3. Théorème :

Pour toute fonction f dérivable deux fois sur un intervalle I, alors les trois propositions suivantes sont équivalentes :

- (i) La fonction dérivée f est décroissante sur I.
- (ii) La courbe de f se situe en dessous de toutes ses tangentes sur I.
- (iii) La dérivée seconde f'' est négative sur I.

Exemples:

- La fonction inverse est concave sur] $-\infty$; 0[car $f''(x) = \frac{2}{x^3} < 0$ pour tout x < 0
- La fonction racine carrée : $\forall x \in \mathbb{R}_+^*, f(x) = \sqrt{x}$; $f'(x) = \frac{1}{2\sqrt{x}}$; $f''(x) = \frac{-\frac{1}{\sqrt{x}}}{(2\sqrt{x})^2} < 0$
 - La dérivée seconde f'' est négative sur \mathbb{R}_+^* donc f est concave sur \mathbb{R}_+^* .
- La fonction logarithme népérien : $\forall x \in \mathbb{R}_+^* : f(x) = \ln(x) \; ; \; f'(x) = \frac{1}{x} \; ; \; \frac{-1}{x^2} < 0$ La dérivée seconde f'' est négative sur \mathbb{R}_+^* donc f est concave sur \mathbb{R}_+^* .

Définition:

Soit f une fonction deux fois dérivable sur un intervalle I. Soit $a \in I$. On dit que le point de corrdonnées (a; f(a)) est un point d'inflexion de la courbe de f si f'' change de signe en s'annulant en a.

Remarque : Le point d'inflexion est un point où la courbe de f traverse sa tangente. **Exemple :**

La fonction cube : $\forall x \in \mathbb{R} : f(x) = x^3$; $f'(x) = 3x^2$; f''(x) = 6x Ici, f'' change de signe en s'annulant en x = 0, donc le point (0,0) est un point d'inflexion de la courbe f.

 $\text{Conclusion}: f \text{ est } \begin{cases} \text{concave sur }]-\infty; 0] \\ \text{convexe sur }]0; +\infty[\end{cases}$

Remarque : Les points d'inflexion correspondent à l'endroit où la convexité de la courbe change (passe de concave à convexe ou l'inverse)