MATH 156 Final Project

Predicting videogame sales with various models

Group 5

University of California, Los Angeles

July 27, 2020

Table of Contents

K Nearest Neighbors Regression

Table of Contents

K Nearest Neighbors Regression

K Nearest Neighbor Regression

Goal: given $x \in \mathbb{R}^d$, predict sales.

- \triangleright Find k nearest data points to x.
- Compute the predicted sales based on these *k* points.

K Nearest Neighbor Regression

Goal: given $x \in \mathbb{R}^d$, predict sales.

- Find k nearest data points to x.
- ► Compute the predicted sales based on these *k* points.

Questions we should think about:

- ▶ How to determine *k*?
- How to find the nearest points efficiently?
- ► How to predict the sales based on the points?

Cross Validation

How to determine *k*?

- Divide the training dataset into two parts (actual training and cross validation).
- Find the optimal *k* with the cross validation set.

KD-Tree

How to find the nearest points efficiently given that the training size is *n* and the test size *k*?

- Naive approach
 - Compare with all data points in the training set
 - ▶ Time Complexity: $\mathcal{O}(kn)$

KD-Tree

How to find the nearest points efficiently given that the training size is *n* and the test size *k*?

- Naive approach
 - Compare with all data points in the training set
 - ▶ Time Complexity: $\mathcal{O}(kn)$
- KD-Tree
 - Construct a KD-Tree and search
 - Time Complexity: $\mathcal{O}(k \log n)$.

Sales Prediction

How to predict sales based on nearest points?

- Mean
- Median
- Linear Regression

Results

- Pros
 - No assumptions about the data
- Cons
 - Localized data when k increases
 - Memory inefficient and slow

