

DyTox: Transformers for Continual Learning with Dynamic Token expansion (CVPR 2022)

- Young Jo Choi
- Department of Digital Analytics

Abstract

- Transformer를 Incremental learning 분야에 처음으로 적용
- ViT와 다르게 Encoder / Decoder를 다 씀

Continual Learning

Transformers (ViT)

Transformers (ViT)

Token Embedding 수식

Figure 1: The Transformer - model architecture.

Figure 2: **DyTox transformer model**. An image is first split into multiple patches, embedded with a linear projection. The resulting patch tokens are processed by 5 successive Self-Attention Blocks (SAB) (Sec. 3.1). For each task $(t=1\dots T)$, the processed patch tokens are then given to the Task-Attention Block (TAB) (Sec. 3.2): each forward through the TAB is modified by a different task-specialized token θ_t for $t \in \{1\dots T\}$ (Sec. 3.3). The T final embeddings are finally given separately to independent classifiers Clf_t each predicting their task's classes C^t . All $|C^{1:T}|$ logits are activated with a sigmoid. For example, at task t=3, one forward is done through the SABs and three task-specific forwards through the unique TAB.

- Patch tokenizer
- Self-Attention (SA) based encoder
- Task-Attention Block

Symbol	Meaning
(x_i^t, y_i^t)	Input sample & its label from the t^{th} task
C^t	Label set of the t^{th} task
$C^{1:t}$	All labels from all seen tasks
$oldsymbol{ heta}_t$	Task token of the t^{th} task
Clf_t	Independent classifier of the t^{th} task
SAB_l	l th Self-Attention Block
TAB	Task-Attention Block

 Dynamic task token expansion (task specific)

Algorithm 1 DyTox's forward pass at step t

Input: x_0 (initial patch tokens), y (ground-truth labels) **Output:** $\hat{y}_{1:t}$ (predictions for all classes of $\mathcal{C}^{1:t}$)

```
1: x_L \leftarrow SAB_{l=L} \circ ... SAB_{l=1}(x_0) \triangleright Sec. 3.1
```

2: for
$$i \leftarrow 1$$
; $i \leq t$; $i++$ do

3:
$$e_i \leftarrow \text{TAB}([\boldsymbol{\theta}_i, x_L])$$
 $\triangleright \text{Sec. 3.2}$

4:
$$\hat{y}_i \leftarrow \text{Clf}_i(e_i)$$
 $\triangleright \text{Sec. 3.3}$

5: end for

6:
$$\hat{y}_{1:t} \leftarrow [\hat{y}_1, \ldots, \hat{y}_t]$$

- Context
- Losses

Experiments

details

Hyperparameter	CIFAR	ImageNet		
# SAB		5		
# CAB		1		
# Attentions Heads	12			
Embed Dim	3	84		
Input Size	32	224		
Patch Size	4	16		

Table 1: **DyTox's architectures** for CIFAR and ImageNet. The only difference between the two architectures is the patch size, as the image sizes vary between datasets.

Experiments - Result

	ImageNet100 10 steps					ImageNet1000 10 steps				
	# P	top-1		top-5		# P	top-1		top-5	
Methods	# -	Avg	Last	Avg	Last	"-	Avg	Last	Avg	Last
ResNet18 joint	11.22	-	-	-	95.10	11.68	-	-	-	89.27
Transf. joint	11.00	-	79.12	-	93.48	11.35	-	73.58	-	90.60
E2E [5]	11.22	-	-	89.92	80.29	11.68	-	-	72.09	52.29
Simple-DER [48]	-	-	-	-	-	28.00	66.63	59.24	85.62	80.76
iCaRL [59]	11.22	-	-	83.60	63.80	11.68	38.40	22.70	63.70	44.00
BiC [32]	11.22	-	-	90.60	84.40	11.68	-	-	84.00	73.20
WA [81]	11.22	-	-	91.00	84.10	11.68	65.67	55.60	86.60	81.10
RPSNet [56]		-	_	87.90	74.00	-	-	-	_	-
DER w/o P [76]	112.27	77.18	66.70	93.23	87.52	116.89	68.84	60.16	88.17	82.86
DER [†] [76]	-	76.12	66.06	92.79	88.38	-	66.73	58.62	87.08	81.89
DyTox	11.01	77.15	69.10	92.04	87.98	11.36	71.29	63.34	88.59	84.49

Experiments - Result

20 steps

Avg

Last

81.49

		10 steps		
Methods	#P	Avg	Last	#P
ResNet18 Joint	11.22	-	80.41	11.22
Transf. Joint	10.72	-	76.12	10.72
iCaRL [59]	11.22	65.27 ± 1.02	50.74	11.22
UCIR [32]	11.22	58.66 ± 0.71	43.39	11.22
BiC [75]	11.22	68.80 ± 1.20	53.54	11.22
WA [81]	11.22	69.46 ± 0.29	53.78	11.22
PODNet [19]	11.22	58.03 ± 1.27	41.05	11.22
RPSNet [56]	56.5	68.60	57.05	-
DER w/o P [76]	112.27	75.36 ± 0.36	65.22	224.5
DER [†] [76]	-	74.64 ± 0.28	64.35	-
DyTox	10.73	73.66 ± 0.02	60.67 ± 0.34	10.74
DyTox+	10.73	75.54 ± 0.10	62.06 ± 0.25	10.74

50 steps

Last

81.74

Avg

Improved training procedure

	1 step	50 steps				
Training Last (†)		Last (†)	Forgetting (\downarrow)			
DyTox	76.12	52.34	33.15			
DyTox+	77.51 +1.39	57.09 +4.75	31.50-1.65			

Overhead

- Memory overhead
- Computational overhead
- Training procedure introspection

Ablation study

		 ₹ novi	ledge Dis	dillation dillation Toker	I.E.KPansis	gence Cla	ssifter Hepen Classiff Avg	څ Last
	ner						60.69	38.87
	sfor	1					61.62	39.35
XO.	Transformer	✓	✓				63.42	42.21
DyTox	ic	1	/	/			67.30	47.57
	Dynamic	1	✓	✓	✓		68.28	49.45
	Dy	✓	✓	✓	✓	✓	70.20	52.34

Conclusion