ÜBUNGSBLATT 11 DIENSTAG

Aufgabe 1 (AGS 15.17 b, 15.1 a)

(a) Gegeben sei folgender $\mathrm{AM}_1\text{-}\mathrm{Code}\colon$

```
1: INIT 1; 10: MUL; 19: READ(global,1);
2: CALL 18; 11: STOREI(-3); 20: LOADA(global,1);
3: INIT 0; 12: LOAD(lokal,-2); 21: PUSH;
4: LOAD(lokal,-2); 13: LIT 1; 22: LOAD(global,1);
5: LIT 0; 14: SUB; 23: PUSH;
6: GT; 15: STORE(lokal,-2); 24: CALL 3;
7: JMC 17; 16: JMP 4; 25: WRITE(global,1);
8: LIT 2; 17: RET 2; 26: JMP 0;
9: LOADI(-3); 18: INIT 0;
```

Dokumentieren Sie 12 Schritte der AM_1 mit der Startkonfiguration $\sigma=(22,\varepsilon,1:3:0:1,3,\varepsilon,\varepsilon).$

(B2,	DK ,	Laufzeitkeller	, REF	3	Inp	,	Out	=)
(22 ,	٤ ,	1:3: D:1	, 3	,	3)	3)
(23 ,	1,	1: 3: p:1	, 3	,	ક	,	3)
(२५,	٤,	1:3:0:1:1	, 3	,	3	,	3)
(3,	ε,	1:3:0:1:1:25:3	, 7	,	3	,	3)
(4 ,	, 3	1:3:0:1:1:25:3	7	,	3	,	3)
(5 ,	1	1:3:0:1:1:25:3	, 7	,	3	,	3)
(6)	170? 0:1,	1:3:0:1:1:25:3	, 7	,	3	,	3)
(7,	1 ,	1:3:0:1:1:25:3	, 7	,	3	,	3)
(8,	٤ ,	1:3:0:1:1:25:3	<u>,</u> 7	,	E	•	દ)
(9)	2 ,	1: 3: 0: <u>1</u> :1:25:3	, 7	,	દ	,	3)
(10)	1:2	1:3:0:1:1:25:3	्रं न	,	٤	,	3)
(11 ,	2	1:3:0:1:25:3	, 7	,	3)	3)
(12,	ε,	2:3:0:1:1:25:3	, , 7	, J	٤		3)
(13 ,	1 ,	2:3:0:1: 1:25:3	, ₇	,	E	,	E)

(b) Gegeben sei folgendes C₁-Programm:

1 #include <stdio.h>

```
2 int b:
                                        11
                                        12 void main() {
        3 void f(int a, int *b) {
        4
            int c;
                                        13
                                              int a;
            c = a;
                                        14
                                              scanf("%i", &a);
        5
        6
            while (c > 0) {
                                        15
                                              b = 1;
        7
               *b = *b * 2;
                                        16
                                              f(a, &b);
                                                                      activation record für f:
               c = c - 1;
                                        17
                                              printf("%d", b);
        9
             }
                                        18 }
      Übersetzen Sie das Programm mittels trans in ein AM_1-Programm mit Baumstrukturi-
      erten Adressen. Geben Sie zunächst die Symboltabellen tab_{\mathtt{main}} und tab_{\mathtt{f}} zur Übersetzung
      der Statements in den Funktionen main bzw. f mittels stseqtrans an. Geben Sie keine
                                                                                     REF
      weiteren Zwischenschritte an.
      tabmain = [ }/(proc, 1), b/(var, global, 1), a/(var, lokal, 1)]
      tab = [ {/(proc, 1), (globale Variable wird durch lokale "überschrieben")
                     a/(var, lokal, -3), b/(var-reg, -2), c/(var, lokal, 1)]
                 (Speicher für globale Variable b)
  INIT 1;
  CALL 2;
                 (Aufruf der main-Funktion)
                  (Programmende, wenn main fertig)
  JMP
                                                         / Übersetzung von main
  / Dibersetzung von f
  1:
        INIT 1;
                              (lok. Variable)
                                                          2:
                                                                INIT 1;
                                                                                  (lok. Variable)
        LOAD (lokal, -3);
                                                                READ(lokal, 1)
        STORE (lokal, 1);
                                                                 LIT 1;
                                                                STORE ( global, 1).
1.2.1: LOAD (lokal, 1);
        LIT O;
                                                                LOAD (lokal, 1);
        GT;
                                                                 PUSH :
                                                                LDADA (global, 1); } } (a,&b)
        JMC 1.2.2;
        LOADI (-2);
                                                                PUSH;
                                                                CALL 1:
        LIT 2;
                                                                wRITE (global, 1);
        MUL;
        STOREI (-2);
                                                                 RET O;
        LOAD (lokal, 1);
        LIT 1;
        SUB;
        STORE (lokal, 1);
        JMP 1.2.1;
1.2.2: RET 2; (zwei Parameter-Speicherplätze von & befreien)
```

10 }

Aufgabe 2 (AGS 15.16 a, AGS 15.18 b)

(a) Gegeben sei folgendes Fragment eines C_1 -Programms:

Übersetzen Sie die Sequenz der Statements im Rumpf von g in entsprechenden AM_1 -Code mit baumstrukturierten Adressen (mittels stseqtrans). Sie brauchen keine Zwischenschritte anzugeben. Geben Sie zunächst die benötigte Symboltabelle $tab_{\mathfrak{g}}$ an.

```
taby = [ { /(proc, 1), g / (proc, 2),

X / (var, global, 1), y / (var, global, 2),

a / (var, lokal, -3), b / (var-ref, -2), c / (var, lokal, 1)]
 LIT 3;
 STORE (lokal, 1);
 LDAD (lokal, 1);
 LOADI (-2);
 EQ;
JMC 2.2.1;
Fkt. g 2.Statement in g
     2.2.2.1: LDAD (lokal, -3);
then 2 weig LIT 0;
Schleifenbed. GT;
                      Jnc 2.2.2.2
                                  LDADA (lokal, -3);
                                 PUSH;
LOAD (lokal, -2);
Schleifenrumpf
PUSH;
                                 PUSH;
                                 CALL 1;
                                  JMP 2.2.2.1;
```

2.2.1:

2.2.2.2:

(b) Gegeben sei folgender AM₁-Code:

```
1: INIT 1;
                       8: LOADI(-2);
                                             15: LOADA(global, 1);
2: CALL 13;
                       9: LIT 2;
                                             16: PUSH;
3: INIT 0;
                      10: DIV;
                                             17: CALL 3;
                                             18: WRITE(global, 1);
4: LOADI(-2);
                          STOREI(-2);
                      11:
                      12: RET 1;
5: LIT 2;
                                             19:
                                                 JMP 0;
                      13:
6: GT;
                          INIT 0;
7: JMC 12;
                      14: READ(global, 1);
```

Erstellen Sie ein Ablaufprotokoll der AM_1 , indem Sie sie schrittweise ablaufen lassen, bis die Maschine terminiert. Die Anfangskonfiguration sei $(14, \varepsilon, 0:0:1,3,4,\varepsilon)$. Sie müssen nur Zellen ausfüllen, deren Wert sich im Vergleich zur letzten Zeile geändert hat.

	DK,	Lowfeeitkeller,	REF,	Inp,	00t)
(14,	ε,	0:0:1	3,	ч,	3)
(15,	٤,	4: 0:1 ,	3,	ε,	3)
(16,	1.	4: o:1 ,	3,	€,	3)
(17,	ε,	4: 0: 1: 1,	3,	ε,	3)
(3	2.	4:0:1:1:18:3,	6 ,	٤,	3)
(4,	ε,	<u>4</u> : 0:1: <u>1</u> :18:3,	6,	, 3	3)
(5,	4,←	4:0:1:1:18:3,	G,	ε,	3)
(6,	2:4,	4: D: 1:1:18:3,	6,	٤,	${m \varepsilon}$)
(7,	472? 1,	4: D: 1:1:18:3,	6 ,	8,	3)
(8,	ε,	<u>4</u> : 0: 1: <u>1</u> : 18:3,	G ,	€,	${m \varepsilon}$)
(9,	4, 🕕	4:0:1:1:18:3,	6,	٤,	3)
(10,	2:4,	4: 0: 1:1:18:3,	G,	٤,	3)
(11,	4/2 = 2,	<u>ዛ</u> ፡ 0፡ 1፡ <u>1</u> ፡18፡3,	6,	٤,	3)
(12,	ε,	2: 0: 1 : 1 : 18:3,	G,	٤,	3)
(18,	€,	2: o: 1 ,	3,	٤,	3)
(19,	ε,	$\underline{2}$: 0: 1,	3,	٤,	2)
(o,	ε,	2:0:1,	3,	€,	2)