UNIVERSIDAD NACIONAL DE TRUJILLO

Facultad de Ciencias Físicas y Matemáticas Escuela Académico Profesional de Informática

Monografía que como parte del curso de Tópicos en Procesamiento Paralelo: "Estado del Arte de Cloud Computing"

Nombre de autor(es):

Álvarez Carbajal, Gaby Yuri Cruz Leyva, Segundo Junior Gonza Llaque, Renato Fabrizzio Guevara Lizárraga, María Fernanda Lavado Azabache, Jonatan Esleyter

Nombre del Asesor:

Mg. Mendoza, Edwin

Trujillo - La Libertad 2017

RESUMEN

INTRODUCCIÓN

ÍNDICE GENERAL

LISTA DE TABLAS

LISTA DE FIGURAS

COMPUTACIÓN CLOUD

1.1. Origen De La Computación Cloud

- 1.1.1. Computación Distribuida
- 1.1.2. Beneficios Y Limitaciones De La Computacióon Distribuida
- 1.1.3. Implementaciones
 - a) Clúster
 - b) Grid
 - c) P2P

1.1.4. Evolución Hacia La Computación Cloud

1.2. Concepto De La Computación Cloud

Una definición para la Computación Cloud es que puede ser visto como un sistema de computación distribuido orientado al consumidor. Dicho sistema consiste en una agrupación de ordenadores virtualizados e interconectados que son suministrados dinámicamente y presentados como uno o más recursos computacionales unificados.

1.3. Características De La Computación Cloud

No es necesario disponer de un equipo potente, tan sólo de un aparato con conexión a internet; esto debido a que el dispositivo del usuario no realizaría ningún proceso complejo y los ficheros pueden guardarse en la nube. Los servidores en donde se hallan los programas que se utilicen son los encargados de las tareas complicadas que antes se realizaba localmente.

Algunas características de la Computación Cloud, según [?], son:

- Escalabilidad: El sistema establece un nivel de servicios que crea nuevas instancias de acuerdo a la demanda de operaciones existente de tal forma que se reduzca el tiempo de espera y los cuellos de botella.
- Virtualización: Las aplicaciones son independientes del hardware en el que corran. El usuario es libre de usar la plataforma que desee en su terminal (Windows, Unix, Mac, etc.), al utilizar las aplicaciones existentes en la nube puede estar seguro de que su trabajo conservará sus características bajo otra plataforma.
- Autoreparable: En caso de surgir un fallo, el último respaldo (backup) de la aplicación se convierte automáticamente en la copia primaria y a partir de ésta se genera uno nuevo.
- Seguridad: El sistema permite a diferentes clientes compartir la infraestructura sin preocuparse de comprometer su seguridad y privacidad; de esto se ocupa el sistema proveedor que se encarga de cifrar los datos.
- Disponibilidad: No se hace necesario guardar los documentos del usuario en su computadora o en medios físicos ya que la información radicará en Internet permitiendo su acceso desde cualquier dispositivo conectado a la red.
- Precios: La computación cloud no requiere una inversión adicional. No se requiere ningún gasto de capital. Los usuarios pagan por servicios y capacidad cuando los necesitan.

1.4. Clasificación De Las Soluciones Computación Cloud

1.4.1. Según Modelos De Servicio

La computación en nube puede ser vista como una colección de servicios, la cual puede ser presentada como una arquitectura en capas, como se muestra en la figura 1.1:

Figura 1.1: Arquitectura en capas de computación cloud [?]

- a) IaaS: Se refiere a los recursos informáticos como un servicio. Esto incluye computadoras virtualizadas con potencia de procesamiento garantizada y ancho de banda reservado para almacenamiento y acceso a Internet
- b) PaaS: Es similar a IaaS, pero también incluye sistemas operativos y servicios requeridos para una aplicación particular. En otras palabras, PaaS es IaaS con un stack de software personalizado para la aplicación dada.

- c) SaaS: Que se muestra en la parte superior de la figura 1.1. SaaS permite a los usuarios ejecutar aplicaciones de forma remota desde la nube.
- d) dSaaS: Proporciona almacenamiento que el consumidor utilizará, incluyendo los requisitos de ancho de banda para el almacenamiento.

1.4.2. Según Tipo De Nube

Hay tres tipos de computación cloud, los cuales se muestran en la figura 1.2

Figura 1.2: Tres tipos de computación cloud [?]

- a) Pública: En la nube pública (o en la nube externa), los recursos informáticos se suministran dinámicamente mendiante Internet a través de aplicaciones Web o Servicios Web de un proveedor externo (de terceros). Las nubes públicas son ejecutadas por terceros, y es probable que las aplicaciones de diferentes clientes se mezclen entre sí en los servidores, sistemas de almacenamiento y redes de la nube.
- b) Privada: La nube privada (o nube interna) se refiere a la computación cloud en redes privadas. Las nubes privadas se construyen para el uso exclusivo de un cliente, pro-

porcionando un control total sobre los datos, la seguridad y la calidad del servicio. Las nubes privadas pueden ser construidas y administradas por la propia organización de TI de la empresa o por un proveedor de la nube.

- c) Híbrida: Un entorno de nube híbrido combina los modelos de nube pública y privada.
 Las nubes híbridas introducen la complejidad de determinar cómo distribuir aplicaciones a través de una nube pública y privada
- d) Comunitaria: El modelo de nube comunitaria permite el acceso a un número de organizaciones o consumidores que pertenecen a una comunidad y el modelo se construye para servir a algún propósito común y específico. Es para el uso de alguna comunidad de personas u organizaciones que comparten preocupaciones comunes en funcionalidades empresariales, requisitos de seguridad, etc. Este modelo permite compartir infraestructura y recursos entre múltiples consumidores pertenecientes a una única comunidad y por lo tanto se hace más barato comparado con una nube privada [?]

1.4.3. Según Por Agentes Intervinientes En El Negocio

Los agentes intervinientes en el negocio según [?], se muestran en la figura ??

Figura 1.3: Agentes intervinientes en el negocio [?]

- a) Habilitador: Enfocados a ofrecer una serie de servicios Hardware o Software a otros proveedores.
- b) Proveedor: Los servicios que presta a los intermediarios y clientes, o bien los genera directamente el, o los contrata a otros proveedores o habilitadores.
- c) Auditor: Las funciones a desarrollar por los auditores, son las de llevar a cabo evaluaciones de los servicios, rendimientos y seguridad de las operaciones en el uso de las soluciones Cloud.
- d) Intermediario: Los intermediarios adecuan las soluciones para los clientes negociando los distintos servicios, añadiéndole en muchos casos ciertos servicios adicionales como pueden ser algunos apoyos en formación, implementación, etc.
- e) Cliente: Dentro del esquema de los agentes intervinientes, es aquel que va a contratar los servicios del resto de los agentes.

VENTAJAS, DESVENTAJAS Y RETOS

2.1. Ventajas

Las ventajas de este nuevo paradigma son notables tanto para empresas privadas, como para organizaciones publicas y de investigacion y para los ciudadanos. El conjunto de ventajas que ofrece son de tipo economico, tecnologico, ambiental y social, esto es gracias a su rapidez, flexibilidad, disponibilidad, etc. De entre todas las ventajas, las más notables para los usuarios son el ahorro en costes y la facilidad para aumentar los recursos disponibles.

Los ahorros en costes son debidos a que es posible evitar los gastos tanto en hardware, como en software, soporte y seguridad. Por otro lado, la flexibilidad y la escalabilidad de los recursos se hace de una manera muy sencilla y en el momento que el cliente lo requiera, de forma que puede aumentar o disminuir los recursos que está utilizando en cualquier momento y ademas pagando solo por lo que usa. Otra de las ventajas más atrayentes es la capacidad de recuperación ante problemas, o desastres.

Podemos decir que gracias a todas las ventajas que ofrece el paradigma del cloud computing frente a los metodos tradicionales, estahaciendo que aumente la productividad de las empresas, se mejore en los servicios públicos y la calidad de vida.

2.1.1. Ventajas para las empresas

Actualmente el cloud computing es un instrumento acelerador para que una empresa logre evolucionar en su competividad proporcionando ventajas estrategicas, tecnicas, para la sostenibilidad y economicas que ya se mencionaron antes.

a) Ventajas estrateģicas:

- Creacion de nuevos productos y servicios: Esto es posible debido a la reduccion
 de costes, que hace que sea posible que las empresas creen nuevos productos y/o
 servicios, que antes no resultaban rentables.
- Trabajo colaborativo: La computación en la nube permite que muchas personas a la vez puedan trabajar sobre la misma herramienta, aplicación o documento, de esta manera se fomenta la productividad, comunicación y colaboración entre empleados.
- Mejora de la productividad: Como los recursos estań disponibles para acceder a ellos desde cualquier ubicacioń fisica, se puede trabajar sobre los recursos de forma online, desde cualquier lugar, haciendo que aumente la flexibilidad de la empresa para trabajar a distancia y la productividad de sus empleados.
- Innovacioń: El ahorro en costes hace que la empresa pueda centrar sus esfuerzos en desarrollar su activadad de negocio, haciendo posible que la empresa tenga maś posibilidades de invertir en innovacioń.

b) Ventajas tećnicas:

- La nube es una plataforma que permite a los usuarios disponer de la tecnologiá maś actual, lo que hace que no haya riesgo de pefdida de competitividad por obsolescencia tecnologíca. Ademaś de esto el tiempo de adopcion de nuevos servicios, infraestructuras o tecnologías es mucho menor.
- Los proveedores de cloud computing también ofrecen soporte y redundancia en los sistemas que sus clientes contratan, de manera que existe una gran resistencia a desastres y buena capacidad de recuperación ante fallos.

c) Ventajas para la sostenibilidad:

■ La reducción en el consumo de energía es notable, debido a que la empresa necesita de menos equipamiento propio, ya que lo contrata al proveedor. Esto es posible porque la empresa no dispone de un exceso de recursos informáticos, sino que la plataforma que contrata se adapta a las necesidades de su entidad. Los centros de datos utilizan diseños de infraestructuras avanzados, de forma que los sistemas de refrigeración y de acondicionamiento de energía se aprovechen bien y no haya pérdidas.

- 2.1.2. Ventajas para la economia
- 2.1.3. Ventajas para las administraciones publicas
- 2.1.4. Ventajas para la investigación cientifica
- 2.1.5. Ventajas para los ciudadanos
- 2.1.6. Ventajas para la educación
- 2.2. Desventajas
- **2.3. Retos**
- 2.3.1. Disponibilidad del servicio
- 2.3.2. Restricciones geograficas
- 2.3.3. Seguridad y privacidad de datos
- 2.3.4. Amortizacioń tecnologica

TITULO DEL CAPITULO 3

TITULO DEL CAPITULO 4

CONCLUSIONES

Podemos concluir muchas cosas v:

Bibliografía