Matrices en Python Partie II : Calcul matriciel

Rappels sur les matrices

Créer une matrice "à la main"

Après avoir importé numpy as np:

Créer des matrices particulières

Après avoir importé numpy as np:

- np.zeros((n,p)) crée une matrice de taille $n \times p$ contenant des 0.
- np.ones((n,p)) crée une matrice de taille $n \times p$ contenant des 1.
- | np.eye(n) | crée la matrice identité I_n .

■ Accéder à un coefficient / une ligne / une colonne

Si $A = (a_{i,j})$ est une matrice :

- A[i,j] est le coefficient $a_{i+1,j+1}$.
- A [i, :] est un vecteur (ligne) contenant la (i+1)-ème ligne de A.
- A[:,j] est un vecteur (ligne!) contenant la (j+1)-ème colonne de A.

On peut ainsi afficher ou même modifier les coefficients/lignes/colonnes de A.

Remarque 1

Les opérations A * B et A ** k se font "coefficient par coefficient" et ne correspondent pas du tout aux produits matriciels AB et A^k !

Opérations matricielles : produit, transposition, puissance, inverse

■ Produit matriciel et transposition

Après avoir importé numpy as np :

- | np.dot(A,B) | calcule le "vrai" produit matriciel AB (quand il a un sens!)
- np.transpose(A) renvoie la matrice transposée tA .

♠ Exercice 1

Définir dans la console :

```
>>> A = np.array([[1,1,2],[1,0,1],[0,0,1]])
>>> B = np.array([[0,0,-1],[1,1,0],[0,0,0]])
>>> X = np.array([[1],[1],[-1]])
```

Déterminer à l'aide de Python les matrices suivantes :

$$A =$$
, $B =$, $X =$

$$AB =$$
 , $AX =$, ${}^tXB =$

Pour les puissances matricielles et le calcul de l'inverse, on a besoin d'une nouvelle bibliothèque d'"algèbre linéaire" (abrégé al) :

Importation de la bibliothèque numpy.linalg

Importation recommandée : import numpy.linalg as al

Puissances d'une matrice, rang, inverse résolution de système

- al.matrix_power(A,n) | calcule la "vraie" puissance d'une matrice carrée A^n .
- al.matrix_rank(A) calcule le rang d'une matrice A (cf cours plus tard...)
- [al.inv(A)] calcule l'inverse A^{-1} d'une matrice carrée inversible A.
- X = al.solve(A, Y) renvoie l'unique solution X du système linéaire AX = Y lorsque A est une matrice carrée inversible. Autrement dit, cela calcule $X = A^{-1}Y$. Attention : les inconnues X et le second membre Y sont donnés ici en vecteurs lignes (et non en colonne)!

Exercice 2

On considère la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

1. A l'aide de Python, calculer rapidement les puissances :

$$A = A^2 = A^3 = A^4 =$$

$$A^4 =$$

Par exemple, pour A^3 on tape dans la console :

- 2. Conjecturer, pour tout $n \in \mathbb{N}$, l'expression de $A^n =$
- 4. Prévoir ainsi la valeur de A^{10} et vérifier avec Python : $A^{10} =$

Exercice 3

- 1. Définir en Python les matrices $B = \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$.
- 3. A l'aide de Python, calculer la matrice $D = P^{-1}BP$.

$$D =$$

4. Pour tout $n \in \mathbb{N}$, compléter l'expression de $D^n =$

Remarque : On montrerait ensuite par récurrence que $\forall n \in \mathbb{N}, \ B^n = PD^nP^{-1}$ et on en déduirait alors l'expression de B^n

Exercice 4

On admet que le système suivant est de Cramer.

$$\begin{cases} x - y + z &= 1\\ x + z &= -1\\ x + y + 2z &= 3 \end{cases}$$

1. Déterminer son unique solution à l'aide de al.solve.

```
>>> import numpy.linalg as al
>>> A =
>>> Y =
```

ECG1 Maths Appro. - Angelo Rosello

```
>>> print( al.solve(A,Y) )
```

L'unique solution est : (x, y, z) =

2. Comparer avec le résultat obtenu en calculant $X = A^{-1} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ avec Python :

```
>>> Z = np.array([[1],[-1],[3]])
>>> X =
```

On obtient: X =

Exercice 5

BONUS: On donne le programme suivant :

```
def truc(n):
    x=np.arange(1,n+1); y=np.ones(n)
    return np.dot(x,np.transpose(y))
```

Déterminer, mathématiquement, l'expression de truc(n) en fonction de n. Prévoir ainsi la valeur de truc(100).