Deep Learning

Recurrent Neural Network

Examples of sequence data

Name entity recognition

"The quick brown fox jumped Speech recognition over the lazy dog." Music generation "There is nothing to like Sentiment classification in this movie." DNA sequence analysis AGCCCCTGTGAGGAACTAG AGCCCCTGTGAGGAACTAG Machine translation Voulez-vous chanter avec Do you want to sing with moi? me? Video activity recognition Running

Yesterday, Harry Potter

met Hermione Granger.

Yesterday, Harry Potter

met Hermione Granger.

Motivating example

Harry Potter and Hermione Granger invented a new spell.

$$x^{<1>} \quad x^{<2>} \quad x^{<3>} \qquad \qquad \dots \qquad \qquad x^{<9>}$$

$$T_x = 9$$

x:

$$T_y=9$$

$$y^{(i)}$$
 $T_X^{(i)}$ $T_Y^{(i)}$

Notation

Representing words

			x:	Harry	Potter	and Her	mione Granger invent	ed a new spell.
				x<1>	x<2>	x<3>	•••	x<9>
	Vocabula [<i>word</i> 1]			۲0٦	[0]	۲0٦		$\begin{bmatrix} 0 \end{bmatrix}$
	and	2		0	0	1		
		.				-		:
								1.1
	harry	4075						
	potter	6015			1.1			
	·							
	wordn	n		Γ01	ГОЛ	r01		r01

RNN

Why not a standard network?

EACH x<i>IS 10000 dim vector because on one hot vector encoding

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

Forward Propagation

Bidirectional RNN

He said, "Teddy Roosevelt was a great President." He said, "Teddy bears are on sale!"

Forward Propagation

Simplified RNN notation

$$a^{< t>} = g(W_{aa}a^{< t>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

RNN Cell

RNN Forward pass

Basic RNN. The input sequence $x = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \dots, x^{\langle T_x \rangle})$ is carried over T_x time steps. The network outputs $y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, \dots, y^{\langle T_x \rangle})$

Example of RNN API

```
softmax
                                                                                                                  a^{\langle 1 \rangle}
rnn = RNN()
y = rnn.step(x)
```

```
class RNN:
 # ...
 def step(self, x):
   # update the hidden state
   self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
   # compute the output vector
   y = np.dot(self.W_hy, self.h)
   return y
```

Example of RNN API


```
class RNN:
    # ...
    def step(self, x):
        # update the hidden state
        self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
        # compute the output vector
        y = np.dot(self.W_hy, self.h)
        return y
```

Simplified RNN notation

$$a^{< t>} = g(W_{aa}a^{< t>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$g(W_a[a^{< t-1>}, x^{< t>}] + b_a)$$

 $W_a = [W_{aa} | W_{ax}]$

Backpropagation through time

Forward propagation and backpropagation

Backpropagation through time

Different types of RNN

Language model and sequence generation

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

 $P(\text{The apple and pair salad}) = 3.2 \times 10^{-13}$

 $P(\text{The apple and pear salad}) = 5.7 \times 10^{-10}$

P(Sentence) = P(
$$\hat{y}^{<1>}$$
, $\hat{y}^{<2>}$, ..., $\hat{y}^{}$)

Language modelling with an RNN

Training set: large corpus of english text.

Tokenization

Cats average 15 hours of sleep a day.
$$y^{<1>}$$
 $y^{<2>}$ $y^{<3>}$ $y^{<4>}$... $y^{<8>}$ $y^{<9>}$

$$x^{} = y^{}$$

The Egyptian Mau is a bread of cat. <EOS>

RNN Language Model

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

Sampling novel sequences

Sampling a sequence from a trained RNN

Vanishing gradients with RNNs

Example 1:The *cat*, which already ate,*was* full.

Example 2:The *cats*, which already ate,*were* full.

Local Influence

LSTM unit Softmax a<t> c<t-1> tanh f<D u<t> č<t> Update gate Output gate Forget gate tanh a<t-1> $\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[\ a^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_f = \sigma(W_f[\ a^{< t-1>}, x^{< t>}] + b_f)$

 $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$

 $a^{< t>} = \Gamma_o * \tanh c^{< t>}$

x<t>

LSTM in pictures

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$
 $\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$
 $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$
 $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$
 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
 $a^{< t>} = \Gamma_o * \tanh c^{< t>}$

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

[Cho et al., 2014. On the properties of neural machine translation: Encoder-decoder approaches] [Chung et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling]

Intuition of vanishing gradient in GRU

$$rac{\partial L}{\partial c^{< t-1>}} = rac{\partial L}{\partial c^{< t>}} \, rac{\partial c^{< t>}}{\partial c^{< t-1>}}$$

and since:

$$rac{\partial c^{< t>}}{\partial c^{< t-1>}} = 1 - \Gamma_u$$

we have:

$$rac{\partial L}{\partial c^{< t-1>}} pprox rac{\partial L}{\partial c^{< t>}}$$
 when $\Gamma_u pprox 0$

In the notation we are using for gradient descent, this means $dc^{< t-1>} pprox dc^{< t>}$

Bidirectional RNN

Getting information from the future

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Bidirectional RNN

https://towardsdatascience.com/pytorch-basics-how-to-train-your-neural-net-intro-to-rnn-cb6ebc594677

Deep RNN

