

A toy case for risk-neutral and risk-averse investment planning problem

(follows Munoz et al. 2017 paper)

Iegor / Thomas

28.11.2020

Model adjustments

min IC +
$$(1 - \omega) \sum_{s=1}^{s} p_s \cdot OC_s + \omega \cdot cvar$$

Par:

 α – confidence level on CVaR

 ω – weight on CVaR

 $\zeta + 1/(1-\alpha) \cdot \sum_{s=1}^{3} p_s \cdot OC_s \le CVaR$

Var:

 ζ – value at risk

 a_s – aux var

CVaR - CVaR

Toy model

- Energy demand is supplied by three potential generating units.
- Energy demand is uncertain, but it may take solely five scenarios.
- Five time periods

121	PARAMETER re	port						
	sl	s2	s 3	s4	s 5	SP		
TC .	24.0	46.0	62.0	104.0	132.0	100.8		
INV.base	1.0	2.0	2.0	3.0	3.0	2.0		
INV.mid	EPS	EPS	1.0	2.0	4.0	4.0		
INV.peak	EPS	EPS	EPS	EPS	EPS	1.0		

	il	i2	i3	14	i 5	
c.	100.8	109.8	115.7	121.1	126.6	
		0.2	0.4	0.6	0.8	
ar.		56.0	46.0	46.0	46.0	
var.		84.0	58.0	58.0	58.0	
124	PARAMETER 1	report RA2				
	il	i2	i 3	14	i 5	
INV.base	2.000	2.000	3.000	3.000	3.000	
NV.mid	4.000	4.000	4.000	4.000	4.000	
NV.peak	1.000	1.000	EPS	EPS	EPS	
C .sl	10.000	10.000	10.000	10.000	10.000	
C .s2	18.000	18.000	18.000	18.000	18.000	
C .s3	26.000	26.000	22.000	22.000	22.000	
C .s4	56.000	56.000	46.000	46.000	46.000	
C .s5	84.000	84.000	58.000	58.000	58.000	
.sl	10.000	EPS	EPS	EPS	EPS	
.s2	18.000	EPS	EPS	EPS	EPS	
.s3	26.000	EPS	EPS	EPS	EPS	
	56.000	EPS	EPS	EPS	EPS	
.s5	84.000	28.000	12.000	12.000	12.000	
.c .base	28.000	28.000	42.000	42.000	42.000	
c .mid	32.000	32.000	32.000	32.000	32.000	
.c .peak	2.000	2.000	EPS	EPS	EPS	6