Systemy operacyjne Wprowadzenie

2019/2020 Jarosław Koźlak

Prowadzący wykład

Prowadzący:

dr hab. inż. Jarosław Koźlak

Kontakt:

– e-mail: kozlak@agh.edu.pl

– www: http://home.agh.edu.pl/~kozlak

- telefon: ... 12 3283308

pokój: : D17, 1 piętro, pokój 2.24

Organizacja wykładu i egzaminu

Lab

dopuszczalna jedna nieobecność nieusprawiedliwiona

Egzamin:

ocena 5.0 z laboratorium dopuszcza do zerowego terminu egzaminu

Tematyka wykładów

- 1. Wprowadzenie. Historia systemów operacyjnych. Struktura systemów komputerowych i systemów operacyjnych.
- 2. Zarządzanie procesami: Procesy, planowanie przydziału procesora
- 3. Zarządzanie procesami: Synchronizacja.
- 4. Zarządzanie procesami: Zakleszczenia
- 5. Komunikacja między procesami
- 6. Zarządzanie pamięcią: informacje wstępne, wymiana
- 7. Zarządzanie pamięcią: pamięć wirtualna, algorytmy wymiany stron, segmentacja.
- 8. Biblioteki statyczne i dynamiczne
- 9. Realizacja systemu plików
- 10. Urządzenia i systemy wejścia-wyjścia
- 11. Przykładu systemów: Unix i Linux
- 12. Przykłady systemów: Windows NT

Literatura. Teoria

- 1. Abraham Silberschatz, Peter B. Galvin, "Podstawy systemów operacyjnych", WNT, 2005 (wyd. 6 zmienione)
 - A. Silberschatz, P.B. Galvin, G. Gagne. "Operating System Concepts. Eighth Edition", John Wiley & Sons Inc, 2009
- 2. William Stallings, "Systemy operacyjne", 2018
 - William Stallings, "Operating Systems. Internals and Design Principles". Ninth Edition, Pearson Prentice Hall, 2017
- 3. Andrew S. Tanenbaum, "Modern Operating Systems", Third Edition, Prentice Hall International, 2008
- 4. Andrew S. Tanenbaum, Albert S. Woodhull, "Operating Systems. Design and Implementation" Prentice-Hall International, Inc., 3rd ed, 2006
- 5. Thomas W. Doeppner, "Operating Systems in Depth", Wiley, 2010
- 6. Thomas Anderson, Michael Dahlin, "Operating Systems. Principles & Practice", Second Edition, 2011-2014

Literatura. Programowanie współbieżne

- Ben-Ari "Podstawy programowania współbieżnego i rozproszonego", Wydawnictwo Naukowo-Techniczne, Warszawa 1996.
- 2. Iszkowski, M. Maniecki "Programowanie współbieżne`", Wydawnictwo Naukowo-Techniczne, Warszawa 1982.
- 3. Z. Weiss, T. Gruźlewski "Programowanie współbieżne i rozproszone w przykładach i zadaniach, Wydawnictwo Naukowo-Techniczne, Warszawa 1994.

Architektura systemu Unix/Linux

- Berny Goodheart, James Cox, "Unix System V Wersja 4 od środka", Wydawnictwo Naukowo-Techniczne, 2001 ("The magic garden explained. The internals of Unix System V Release 4. An open systems design", 1994)
- 2. Uresh Vahalia, "Jądro systemu Unix...", WNT 2001
- 3. Daniel P. Bovet, Marco Cesati, "Understanding the Linux Kernel", Third edition, O'Reilly, 2006
 - Daniel P. Bovet, Marco Cesati, "Linux Kernel", Wydawnictwo RM 2001
- 4. Robert Love, "Linux Kernel Development", Novel Press, Third edition, 2010

Programowanie w systemie Unix

- 1. W. Richard Stevens, "Programowanie w środowisku systemu Unix", WNT, 2002. W. Richard Stevens, Stephen A. Rago, "Advanced programming in the Unix Environment", Third Edition, Addison Wesley Publishing Company, 2013
- 2. Mark Mitchell, Jeffrey Oldham, Alex Samuel, "Linux. Programowanie dla zaawansowanych", Wydawnictwo ReadMe, 2002 (orig: "Advanced Linux Programming", New Riders Publishing, 2001)
- 3. W. Richard Stevens, "Unix: Programowanie sieciowe", t1-t2 WNT, 2000,2001
- 4. Kay A. Robbins, Steven Robbins, "Unix System Programming. Communication, concurrency and threads", Prentice Hall, 2003
- 5. Marc J. Rochkind, "Advanced UNIX Programming", Addison-Wesley, Second edition, 2004
- 6. Michael Kerrisk, A Linux and Unix System Programming Handbook, no starch press. 2010.

Użytkowanie systemu Unix/Linux.

- 1. Matt Welsh, Matthias Kalle Dalheimer, Lar Kaufman, "Linux", Wydawnictwo RM, 2002 (orig: "Running Linux", third edition, 1999)
- 2. M. Tim Jones, GNU/Linux Application Programming, Charles River Media, INC, 2005

Windows

- William R. Stanek, "Windows Server 2008. Inside Out," Microsoft Press, 2008
- Charles Petzold, "Programowanie Windows", RM (orig: Microsoft Press),1999
- 3. Victor Toth, "Programowanie Windows 98/NT", Helion 1999
- 4. Jeffrey Richter, Programowanie aplikacji dla Microsoft Windows, Wydawnictwo RM, 2002
- 5. Mark E. Russinovich, David A. Solomon, Alex Ionescu, "Windows Internals" Part 1-2, Microsoft Press, 2012

Wybrane strony WWW

- Levenez E.: UNIX History, http://www.levenez.com/unix/
- Levenez E.: Windows History, http://www.levenez.com/windows/
- The Open Group: UNIX History and Timeline, http://www.unix.org/what_is_unix/history_timeline.html
- theForger's Win32 API Tutorial, http://www.winprog.org/tutorial/
- POSIX Threads Tutorial, http://math.arizona.edu/~swig/documentation/pthreads/
- POSIX Threads Programming, <u>https://computing.llnl.gov/tutorials/pthreads/</u>
- The Linux Kernel Archives, http://kernel.org/
- <u>Linux Documentation Project</u>, http://mirrors.kernel.org/LDP/

Regulamin laboratorium

Zaliczenie laboratorium uzyskuje się po zrealizowaniu następujących warunków:

- uczęszczanie na laboratoria i realizacja zadanych na nich zadań, bierze się pod uwagę:
 - obecność (dopuszczalna jedna nieobecność nieusprawiedliwiona),
 - przygotowanie do zajęć,
 - realizacja zadań (dopuszczalny 1 tydzień spóźnienia)
- zaliczenie sprawdzianów (tematyka ostatnich ćwiczeń) i 2 x kolokwium (tematyka ostatnich kilku ćwiczeń)

Inne uwagi:

podział na grupy, grupy zrównoważone

Plan laboratorium

- g++/gcc. Make i gdb. Zarządzanie pamięcią. Biblioteki statyczne i dynamiczne. Przydatne funkcje. Pomiar czasu
- 2. Operacje na plikach
- Tworzenie procesów. Środowisko procesu. Sterowanie procesami.
- 4. Sygnaly
- 5. Potoki nazwane i nienazwane
- 6. Kolejki komunikatów (IPC & Posix)
- 7. Semafory i pamięć wspólna (IPC & Posix)
- 8. Wątki (podstawy)
- 9. Wątki (synchronizacja)
- 10. Sokety

Wprowadzenie

Struktura systemu komputerowego

System bankowy	System rezerwacji lotów	Gry przygodowe	Programy aplikacyjne
Kompilatory	Edytory	Interpreter poleceń	
System operacyjny			Programy systemowe
Język maszynowy			Spezot
Mikroprogramowanie			Sprzęt (hardware)
Urządzenia fizyczne			

System komputerowy złożony ze sprzętu, programów systemowych i aplikacji.

Struktura systemu komputerowego 2

- Urządzenia fizyczne: zintegrowane układy elektroniczne, kable danych, kable zasilające itd.
- Mikroprogram: prosty software, który bezpośrednio kontroluje urządzenia fizyczne, zwykle jest ulokowany w pamięci ROM
- Język maszynowy: obejmuje zbiór instrukcji, które mikroprogram potrafi wykonać, typowo 50-300 instrukcji dotyczących przesyłania danych, operacji arytmetycznych, porównywania wartości. Urządzenia WE/WY są obsługiwane przez ładowanie wartości do rejestrów urządzeń
- System operacyjny: ma ukrywać złożoność operacji na sprzęcie i dostarczać wygodniejszy zbiór instrukcji. SO jest częścią oprogramowania, które jest uruchamiane w trybie jądra/trybie użytkownika
- Powyżej systemu operacyjnego: reszta oprogramowania i aplikacje, uruchamiane w trybie użytkownika.

Co to jest system operacyjny?

- Popularne określenie zakresu systemu operacyjnego:
 - To, co dostawca przysyła w odpowiedzi na nasze zamówienie "systemu operacyjnego"
- System operacyjny przypomina rząd: Nie wykonuje sam żadnej użytecznej funkcji, ale ma za zadanie przygotować środowisko, w którym inne programy mogą wykonywać pożyteczne funkcje.

Różne spojrzenia na system operacyjny

System operacyjny jako Rozszerzona Maszyna

- architektura komputerów na poziomie języka maszynowego jest trudna do użycia w programach (szczególnie: operacje wejścia/wyjścia)
- zadaniem systemu operacyjnego jest ukrycie tej złożoności i dostarczenie programiście bardziej przyjaznego interfejsu
- system operacyjny udostępnia maszynę rozszerzoną /maszynę wirtualną, łatwiejszą do programowania

System Operacyjny jako Zarządca Zasobów

- różne rodzaje zasobów w systemie: procesory, pamięć, zegary, dyski, terminale, napędy taśmy magnetyczne, drukarki itd.
- komputer ma za zadanie udostępniać zasoby użytkownikowi, kontrolować dostęp do nich i zapobiegać chaosowi i konfliktom między programami (i użytkownikami)

System operacyjny jako program sterujący:

 Nadzoruje działanie programów użytkownika, przeciwdziała błędom i zapobiega niewłaściwemu użyciu komputera.

Cele systemu operacyjnego

- wygoda użytkownika (!)
- efektywne działanie systemu komputerowego (szczególnie istotne w rozbudowanych, wielodostępnych systemach z podziałem czasu)

możliwe sprzeczności między powyższymi celami

- początkowo: przedkładano wydajność nad wygodę
- obecnie: najczęściej przedkłada się wygodę nad wydajność

Historia systemów operacyjnych: Proste systemy wsadowe

Cecha charakterystyczna: brak bezpośredniego nadzoru ze strony użytkownika podczas wykonywania jego zadania

Struktura systemu komputerowego:

- wielkie fizycznie maszyny obsługiwane przez konsolę
- urządzenia wejściowe: czytniki kart i przewijaki taśm
- urządzenia wyjściowe: drukarki wierszowe, przewijaki taśm, perforatory kart
- użytkownik przygotowywał zadanie (program, dane i informacje sterujące zapisane na kartach) i przekazywał je operatorowi
- wyniki były uzyskiwane po pewnym czasie (min., godz., dni)

Historia systemów operacyjnych: Proste systemy wsadowe 2

Struktura systemu operacyjnego:

- SO rezyduje na stałe w pamięci operacyjnej
- obowiązek SO: automatyczne przekazywanie sterowania od jednego zadania do następnego
- w celu przyspieszenia przetwarzania, zadania o podobnych wymaganiach grupowane razem i wykonywane w formie tzw. wsadu (batch), sortowanie dokonywane przez operatora
- jednostka centralna często pozostaje bezczynna w wyniku wolnej pracy mechanicznych urządzeń WE/WY

Historia systemów operacyjnych: Proste systemy wsadowe

Modyfikacje:

- wprowadzono dyski, co pozwoliło na zastosowanie spooling'u (Simultaneous Peripheral Operation On-Line – jednoczesna, bezpośrednia praca urządzeń)
- spooling pozwala na jednoczesne wykonywanie obliczeń jednego zadania i operacji WE/WY innego
- dysk bufor, pozwala na czytanie z maksymalnym wyprzedzeniem z urządzeń WE i przechowywanie plików wyjściowych, aż urządzenia WY będą je mogły przyjąć
- zawartość karty nie była po odczytaniu z czytnika ładowana bezpośrednio do pamięci, ale przechowywana na dysku, a system operacyjny przechował tablicę opisującą rozmieszczenie obrazów kart na dysku
- podobnie komunikaty wyjściowe były zapisywane do bufora systemowego i na dysku, a drukowane dopiero po zakończeniu zadania

Historia systemów operacyjnych: Wieloprogramowane systemy wsadowe

- Ze spoolingiem jest związana pula zadań (job pool): zadania, które zostały odczytane na dysk, gdzie czekają na wykonanie
- Istnieje możliwość wyboru przez system zadania do wykonania, spośród zadań przechowywanych na dysku.
- Wybór zadania jest związany z użyciem planowania zadań (szeregowania zadań, ang. job scheduling)
- Najważniejszy aspekt planowania zadań: wieloprogramowanie
- Wieloprogramowanie: w tym samym czasie system operacyjny przechowuje w pamięci kilka zadań – część z zadań zgromadzonych w puli zadań
- Przesłanki stosowania wieloprogramowania: jedno zadanie jednego użytkownika na ogół nie jest w stanie utrzymać cały czas w aktywności procesora lub urządzeń WE/WY

Historia systemów operacyjnych: Systemy z podziałem czasu

Wady systemów wsadowych:

- użytkownik nie może ingerować w zadanie podczas jego wykonywania się, musi zatem przygotować karty sterujące dla wszystkich możliwych zdarzeń.
- następne kroki wykonania zadania mogą zależeć od wcześniejszych wyników (np. kompilacja, uruchamianie...)
- trudności w testowaniu, programista nie może na bieżąco zmieniać programu w celu obserwacji jego zachowań

Wielozadaniowość i systemy z podziałem

czasu

- Wielozadaniowość (ang. multitasking): procesor wykonuje na przemian wiele zadań, przełączenia między nimi występują tak często, że użytkownicy mogą mogą współdziałać ze swymi programami podczas ich wykonania.
- System z podziałem czasu (ang. time-sharing systems) wielu użytkowników, każdy uzyskuje dostęp do procesora przez pewną małą porcję czasu; każdy użytkownik ma przynajmniej jeden proces w pamięci
- Bezpośredni dostęp do systemu plików (ang. on-line file system) umożliwia wygodne korzystanie z danych i oprogramowania.
- Plik (ang. file) zestaw powiązanych informacji, zdef. prze twórcę
- Interakcyjny/bezpośredni (ang. hands on) system komputerowy umożliwia bezpośredni dialog użytkownika z systemem
- Wejście (zazwyczaj): klawiatura,
- Wyjście (zazwyczaj): ekran (np. monitora)
- "instrukcje sterujące" przekazywane ze pośrednictwem klawiatury
- Czas odpowiedzi (ang. response time) powinien być krótki max.
 rzędu sekund

Systemy wsadowe, a systemy interakcyjne

- systemy wsadowe są odpowiednie dla wielkich zadań, których wykonanie nie wymaga bezpośredniego dozoru
- zadanie interakcyjne składa się z wielu krótkich działań, a rezultaty poszczególnych poleceń mogą być nieprzewidywalne
- Rozbudowane mechanizmy: kolejkowanie, pamięć wirtualna itd.

Systemy operacyjne dla komputerów osobistych

- spadek cen sprzętu komputerowego -> stworzenie (znów) systemów komputerowych dla indywidualnych użytkowników (lata 70-te)
- Zmiany urządzeń WE/WY:
 - pulpity przełączników, czytniki kart -> klawiatury (wzór. na maszynach do pisania) i myszki
 - drukarki wierszowe i perforatory kart -> monitory ekranowe i małe, szybkie drukarki
- początkowo procesory są pozbawione cech potrzebnych do ochrony systemu operacyjnego przed programami użytkowymi, systemy operacyjne nie są wielostanowiskowe ani wielozadaniowe
- w rozwoju położono nacisk na maksimum wygody użytkowania i szybkość kontaktu z użytkownikiem
- z czasem –ze wzrostem możliwości sprzętu i podłączeniem mikrokomputerów do sieci- początkowo cechy dużych maszynach, są adoptowane do mikrokomputerów (ochrona plików, wielozadaniowość)

Systemy równoległe

- systemy wieloprocesorowe (systemy ściśle powiązane)
- systemy wieloprocesorowe (ang. multiprocessor systems) – pewna liczba procesorów współpracuje ze sobą dzieląc szynę, zegar i (czasami) pamięć i urządzenia zewnętrzne
- takie systemy: systemy ściśle powiązane (tightly coupled)
- Zalety systemów wieloprocesorowych:
 - przyspieszenie pracy (ale przy n procesorach < n)
 - zwiększenie niezawodności
 - fault tolerant systems systemy tolerujące awarie
 - właściwość łagodnej degradacji (ang. graceful degradation) -- system jest w stanie kontynuować pracę po awarii części sprzętu

Modele działania systemów wieloprocesorowych:

sprzętowe i programowe podwojenie funkcji

 – 2 identyczne procesory z lokalną pamięcią: procesor podstawowy i zapasowy, każdy proces ma 2 kopie na maszynie podstawowej i zapasowej, w ustalonych punktach kontrolnych stan informacji o każdym zadaniu jest kopiowany z maszyny podst. do zapasowej; kosztowne rozwiązanie

wieloprzetwarzanie symetryczne (ang. symmetric multiprocessing) -

- na każdym procesorze działa identyczna kopia systemu operacyjnego, które komunikują się w zależności od potrzeb:
- zaleta: równocześnie może pracować wiele procesów, bez pogarszania działania całego systemu
- wada: może dojść do sytuacji, że jedne procesory będą przeciążone, a inne

 słabo obciążone, dlatego procesory mogą korzystać z pewnych
 wspólnych struktur danych; np. Solaris

wieloprzetwarzanie asymetryczne (ang. asymmetric multiprocessing) –

 każdy procesor ma przypisane inne zadanie, istnieje wyróżniony procesor główny, który zarządca systemem – najczęściej występuje w bardzo wielkich systemach, w których najwięcej czasu zajmują oper WE/WY -> zastosowanie procesora czołowego (front-end processor), który działa jak bufor między końcówką konwersacyjną i procesorem głównym;

Systemy rozproszone (ang. distributed systems)

inna nazwa: luźno połączone (ang. loosely coupled)

- wiele procesorów, procesory nie dzielą pamięci ani zegara
- każdy procesor ma własną pamięć lokalną
- komunikacja między procesorami przy użyciu linii komunikacyjnych
- procesory w takim systemie mogą być nazywane: stanowiska (sites), węzły (nodes),

Przyczyny tworzenia systemów rozproszonych:

- podział zasobów użytkownik jednego stanowiska może korzystać z zasobów (np. plików, drukarek) dostępnych na innych
- przyspieszanie obliczeń
 - jeżeli obliczenie można rozłożyć na zbiór obliczeń cząstkowych, które mogą być wykonywane współbieżnie, to można je przydzielić do poszczególnych stanowisk
 - jeżeli stanowisko jest przeciążone zadaniami, to część z nich można przenieść do innego, mniej obciążonego – dzielenie obciążeń (ang. load sharing)
- niezawodność -- w przypadku awarii jednego stanowiska, pozostałe mogą kontynuować pracę
- komunikacja możliwość wymiany informacji, okna (X), poczta elektroniczna (ang. electronic mail),

Systemy czasu rzeczywistego (ang. real time systems)

- stosowane, gdzie istnieją surowe wymagania na czas wykonania operacji lub przepływu danych
- Przykład: sterownik w urządzeniu np. przy nadzorowaniu eksperymentów naukowych, obrazowaniu badań medycznych, sterowaniu procesami przemysłowymi, systemach wizualizacji
- komputer pozyskuje dane z czujników o musi je analizować i regulować działanie kontrolowanego obiektu, w zależności od jego stanu
- Wymaganie systemu czasu rzeczywistego: przetwarzanie danych musi się zakończyć przed upływem określonego czasu
- W systemie z podziałem czasu: szybkie uzyskanie odpowiedzi jest pożądane (ale nie jest konieczne)
- W systemie wsadowym: nie ma ograniczeń czasowych

Rodzaje systemów czasu rzeczywistego

- rygorystyczny system czasu rzeczywistego (ang. hard real-time system) – gwarantuje terminowe wypełnianie krytycznych zadań, systemy o specjalnej konstrukcji np. dane w pamięci o krótkim czasie dostępu lub w pamięci ROM, z reguły brak pamięci wirtualnej.
- Żaden z istniejących, uniwersalnych systemów operacyjnych nie umożliwia działania w czasie rzeczywistym.
- łagodny system czasu rzeczywistego (ang. soft real time system) – krytyczne zadanie do obsługi w czasie rzeczywistym otrzymuje pierwszeństwo przed innymi zadaniami i zachowuje je aż do swojego zakończenia, opóźnienia muszą być ograniczone --zadanie nie może czekać w nieskończoność na usługi jądra
- zastosowanie w przemyśle i robotyce jest ryzykowne, przydatne w technikach multimedialnych, kreowaniu sztucznej rzeczywistości, zaawansowanych projektach badawczych (wyprawy planetarne, badania podmorskie)
- Większość współczesnych systemów operacyjnych (w tym Unix) może spełniać te wymagania

Struktura systemów komputerowych

Elementy składowe systemu komputerowego:

- jednostka centralna (ang. central processor unit CPU)
- pewna liczba sterowników urządzeń (ang. device controllers)
- pamięć operacyjna
- szyna systemowej łączącej poszczególne elementy

Elementy systemu komputerowego

- PC licznik rozkazów
- IR rejestr instrukcji
- MAR specyfikuje adresy w pamięci dla następnej operacji odczytu lub zapisu,
- MBR zawiera dane zapisywane do pamięci lub odczytywane z pamięci
- I/OAR określ konkretne urządzenie We/Wy
- I/OBR używane do wymiany danych między modułem We/Wy i procesorem

Przykładowe wykonanie programu komputerowego

 Wykonanie programu, dodanie zawartości adresu 940 do zawartości adresu 941

Hierarchia pamięci

- Wraz z przemieszczaniem się w dół hierarchii
 - Maleje koszt każdego bitu
 - Wzrasta pojemność
 - Wzrasta czas dostępu
 - Wzrasta częstość dostępu do pamięci przez procesor

Elementy składowe systemu

- zarządzanie procesami tworzenie i usuwanie procesów użytkowych i systemowych, wstrzymywanie i wznawianie procesów, mechanizmy synchronizacji procesów, mechanizmy komunikacji między procesami, mechanizmy obsługi zakleszczeń
- zarządzanie pamięcią operacyjną utrzymywanie ewidencji aktualnie zajętych części pamięci, wybór procesów ładowanych do wolnych obszarów pamięci, stosowne do potrzeb przydzielanie i zwalnianie obszarów pamięci
- zarządzanie plikami tworzenie i usuwanie plików i katalogów, dostarczanie operacji do manipulowania plikami i katalogami, odwzorowywanie plików na obszary pamięci pomocniczej, składowanie plików na stałych nośnikach pamięci
- zarządzanie systemem WE/WY obsługa buforowania, pamięci podręcznej i spoolingu, obsługa ogólnego interfejsu do modułów sterujących urządzeń, obsługa modułów sterujących poszczególnych urządzeń
- zarządzanie pamięcią pomocniczą -zarządzanie obszarami wolnymi, przydzielanie pamięci, planowanie przydziału obszarów pamięci dyskowej

Elementy składowe systemu 2

- praca sieciowa dostęp do sieci, zasobów dzielonych
- system ochrony nadzorowanie dostępu do programów, procesów i plików
- system interpretacji poleceń tworzenie procesów, zarządzanie procesami, obsługa WE/WY, administrowanie pamięcią operacyjną i pomocniczą, dostęp do plików, ochrony, sieci

Usługi systemu operacyjnego (1)

Usługi dla użytkownika:

- wykonanie programu załadowanie do pamięci, uruchomienie, zakończenie
- operacje WE/WY na pliku lub urządzeniu
- manipulowanie systemem plików tworzenie, usuwanie, zapisywanie, odczytywanie plików
- komunikacja pamięć wspólna i komunikaty
- wykrywanie błędów

Usługi systemu operacyjnego (2)

Usługi do optymalizacji działania systemu:

- przydzielanie zasobów
- rozliczanie przechowywanie danych o tym, jak użytkownicy korzystają z zasobów systemu - do wystawiania rachunków lub celów statystycznych
- ochrona nadzór nad dostępami do zasobów systemu, zabezpieczenie systemu przed niepożądanymi czynnikami zewnętrznymi użytkownik musi uwierzytelnić w systemie swoją tożsamość