CSE 241 Class 8

Jeremy Buhler

September 21, 2015

Today: QuickSort!

1 Partitioning an Array

Partitioning is the basis of algorithms for

- sorting (famous QuickSort algorithm)
- order statistics (for example, "find the third largest element in this array")

Partition Algorithm

- input: array $A[p \dots r]$
- **job**: rearrange A into left and right parts [**not necessarily halves**] such that every element in left part is < all elements in right part
- **returns**: index of a *partition element*, placed at end of left part and ≥ every element on left
- In this implementation, partition around (initially) last element A[r].

```
\begin{aligned} & \operatorname{PARTITION}(A,\,p,\,r) \\ & i \leftarrow p - 1 \\ & j \leftarrow p - 1 \\ & \mathbf{do} \\ & j + + \\ & \mathbf{if} \ A[j] \leq A[r] \\ & i + + \\ & \mathbf{swap}(A[i],\,A[j]) \\ & \mathbf{while} \ j < r - 1 \\ & \mathbf{swap}(A[i+1],A[r]) \\ & \mathbf{return} \ i + 1 \end{aligned}
```

2 Partition Example

3 Correctness of Partition

Partition is a rather funky algorithm. It can move an element multiple times! Is it correct?

Claim: After running z = Partition(A, p, r), every element in $A[p \dots z]$ is < any element in $A[z+1 \dots r]$.

Proof: Will first prove following *loop invariant*: after any number of loop iterations, every element in A[p...i] is $\leq A[r]$, and every element in A[i+1...j] is A[r]. (By induction on # of iterations.)

- Base: after 0 iterations, i < p and j < p, so no elements in $A[p \dots i]$ or $A[i+1 \dots j]$. Invariant holds vacuously.
- Ind: Suppose invariant holds after k iterations. At this point, j = p 1 + k, so every elt in $A[p \dots i]$ is \leq any elt in $A[i + 1 \dots p + k 1]$. At start of next iteration, $j \leftarrow p + k$.
 - 1. If A[p+k] > A[r], we do *not* swap and *i* does not move. Only upper range A[i+1...j] extended, and new elt is A[r], so invariant still holds.
 - 2. If $A[p+k] \leq A[r]$... Let x = A[p+k] and y = A[i+1] at beginning of loop. We have that $x \leq A[r]$ and (by i.h.) that y > A[r]. At end of loop (after i increment and swap),

$$A[i] = x \le A[r]$$

$$A[j] = y > A[r]$$

so invariant still holds for both extended ranges.

Hence, invariant holds after k+1 iterations, and i.h. is proven.

- Conclude that after all loop iterations, $A[p \dots i] \leq A[r]$, and $A[i+1 \dots r-1] > A[r]$.
- In last step, we swap A[r] with A[i+1]. By construction, A[i+1] > A[r] before swap. After swap, A[1 ... i+1] is \leq partition elt, and A[i+2 ... r] is > partition elt.
- Hence, after final swap, $A[p ... i + 1] \le A[r]$ and A[i + 2 ... r] > A[r]. We return z = i + 1, so the claim holds. QED

4 QuickSort

Partitioning can be used to sort an array. Sort occurs **in-place** – don't need extra storage as for, e.g., merge sort. Idea is divide-and-conquer:

- 1. partition array into high and low parts.
- 2. All elts in high part are now greater than any elt in low part (but parts are not yet sorted).
- 3. Recursively sort the two parts. (Must leave out partition elt so that both parts are always smaller than input.)

```
Quicksort(A, p, r)

if p < r

z \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, z - 1)

Quicksort(A, z + 1, r)
```

To prove correctness, check inductively that the following property holds after sorting for all array lengths:

For all pairs of indices $i, j, p \le i, j \le r$, if $A[i] \ne A[j]$,

$$A[i] > A[j] \text{ iff } i > j.$$

5 Efficiency of Quicksort

Let's write down a recurrence for QUICKSORT.

- Partitioning takes time $\Theta(n)$.
- But, how large are the two parts it produces? Unknown.
- In worst case, could partition A into parts of size n and 0.

• Recursive calls would be of sizes n-1, 0 (because partition element at end of lower part isn't passed to either call).

Assume worst case occurs on every partition. Then running time is given (for asymptotic purposes) by recurrence

$$T(n) = cn + T(n-1).$$

Sketching recursion tree, we get

$$T(n) = \sum_{k=0}^{n-2} c(n-k) + c_0$$

$$= cn(n-1) - \frac{c(n-1)(n-2)}{2} + c_0$$

$$= \Theta(n^2).$$

Can worst case actually occur? Yes!

- Suppose input is already sorted.
- For any subarray $A[x \dots y]$, A[y] is largest element.
- Partition splits around A[y].
- Result: partitioned array is same as input, z = r
- Parts are of sizes n-1 and 0

In general, if we consistently pick largest or smallest element of A for partition, running time will be $\Theta(n^2)$.