Números Reales

El cuerpo ordenado de los números reales

Llamaremos *cuerpo ordenado real* a un sistema (\mathbb{R} , +, ., <) formado por:

- (1) Un conjunto \mathbb{R} , cuyos elementos llamaremos *números reales*,
- (2) Una operación binaria +, llamada *suma*, definida sobre \mathbb{R} , a + b se lee "a más b",
- (3) Una operación binaria ., llamada *producto*, definida sobre \mathbb{R} , a . b se lee "a por b",
- (4) Una relación binaria <, definida sobre \mathbb{R} , a < b se lee "a menor que b", de modo tal que, para todo $a, b, c \in \mathbb{R}$ se verifiquen las siguientes propiedades:

$$(S_1) a + (b + c) = (a + b) + c$$

$$(S_2) a + b = b + a$$

$$(S_3) \exists 0 \in \mathbb{R}/\forall a \in \mathbb{R}: 0 + a = a$$

$$(S_4) \ \forall \ a \in \mathbb{R} : \exists (-a) \in \mathbb{R}/a + (-a) = 0$$

$$(M_1) a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(M_2) \ a \ . \ b = b \ . \ a$$

$$(M_3) \exists 1 \in \mathbb{R}, 1 \neq 0 / \forall a \in \mathbb{R} : 1. a = a$$

$$(M_4) \ \forall \ a \in \mathbb{R}, a \neq 0 : \exists \ a^{-1} \in \mathbb{R}/a. \ a^{-1} = 1$$

(D)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$

 (E_1) Para todo $a, b \in \mathbb{R}$ vale una y sólo una de las tres condiciones siguientes:

$$(i)$$
 $a = b$ (ii) $a < b$ (iii) $b < a$

$$(E_2)$$
 $a < b \land b < c \Rightarrow a < c$

$$(E_3)$$
 $a < b \Rightarrow a + c < b + c$

$$(E_4)$$
 $a < b \land 0 < c \Rightarrow a \cdot c < b \cdot c$

La relación ≤ es muy importante y está caracterizada por las siguientes propiedades:

$$(O_1) a \leq a$$

$$(O_2)$$
 $a \le b$ y $b \le a \Rightarrow a = b$

$$(O_3)$$
 $a \le b$ y $b \le c \Rightarrow a \le c$

$$(O_4)$$
 Dados $a, b \in \mathbb{R}$ entonces, $a \le b$ ó $b \le a$

Sea $a \in \mathbb{R}$, diremos que a es *positivo* si a > 0 y que a es *negativo* si a < 0 Escribiremos a < b < c para indicar que a < b y b < c. Análogamente escribiremos $a \le b \le c$ para indicar que $a \le b$ y $b \le c$.

Otras propiedades

De las propiedades anteriores se deducen las siguientes:

$$(P_1) - (-a) = a$$

$$(P_2) a + b = a + c \Rightarrow b = c$$

$$(P_3)$$
 a $b = a$ c , $a \neq 0 \Rightarrow b = c$

$$(P_4) a \cdot 0 = 0$$

$$a.0 = a.(0+0) = a.0+a.0$$
, (1)

$$a.0 = a.0+0$$
, (2)

de (1) y (2),
$$a.0+a.0 = a.0+0 \Rightarrow a.0 = 0$$

$$(P_5)$$
 $a.b = 0 \Rightarrow a = 0 \lor b = 0$

Supongamos que $a \neq 0$. Por (M_4) , a^{-1} . $(a \cdot b) = a^{-1}$.0, esto es, $(a^{-1} \cdot a) \cdot b = 0$.

Luego 1 .
$$b = b = 0$$
.

$$(P_6) a (-b) = (-a) b = -(a b)$$

Probemos que a(-b) = -(ab), es decir, que el simétrico de ab es a(-b). Para esto basta probar que ab + a(-b) = 0. Y en efecto, ab + a(-b) = a(b + (-b)) = 0

En forma análoga se prueba que (-a)b = -(ab)

$$(P_7)(-a)(-b) = a b$$

Aplicar (P_6) dos veces

$$(P_8)(a^{-1})^{-1}=a, a\neq 0$$

$$(P_9) (a b)^{-1} = a^{-1} b^{-1}, a \neq 0, b \neq 0$$

$$(P_{10})\frac{a}{b} = \frac{c}{d} \iff ad = bc; b \neq 0, d \neq 0$$

$$(P_{11})\frac{a}{b} = \frac{ac}{bc}; b \neq 0, c \neq 0$$

$$(P_{12})\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}; b \neq 0, d \neq 0$$

$$\frac{a}{b} + \frac{c}{d} = ab^{-1} + cd^{-1} = add^{-1}b^{-1} + cbb^{-1}d^{-1} == ad(db)^{-1} + cb(bd)^{-1} =$$

$$= ad(bd)^{-1} + bc(bd)^{-1} = (ad+bc)(bd)^{-1} = \frac{ad+bc}{bd}$$

$$(P_{13})\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}; b \neq 0, d \neq 0$$

$$(P_{14}) \frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}; \ b \neq 0$$

Para probar que $\frac{-a}{b} = -\frac{a}{b}$ se debe probar que el simétrico de $\frac{a}{b}$ es $-\frac{a}{b}$

Es similar a (P_6)

$$(P_{15})\frac{a}{b} \neq 0; \ b \neq 0 \implies \left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

$$(P_{16})$$
 $a < b \land c < d \Rightarrow a + c < b + d$

$$a < b \land c < d \Rightarrow a + c < b + c \land c + b < d + b \Rightarrow a + c < b + d \text{ por } E2$$

$$(P_{17}) a + c < b + c \Rightarrow a < b$$

Sumar -c a ambos miembros

$$(P_{18}) \ 0 < a < b \land 0 < c < d \implies a \ c < b \ d$$

Aplicar (E_4)

$$(P_{19}) a < b \implies -b < -a$$

Sumar -b a ambos miembros, y luego -a

$$(P_{20}) \ 0 < a \Rightarrow -a < 0$$

Es un caso particular de (P_{19})

 (P_{21}) $a \neq 0 \Rightarrow a^2 > 0$ (El cuadrado de cualquier número no nulo es positivo)

$$a > 0 \implies a \cdot a > a \cdot 0 \implies a^2 > 0$$

$$a < 0 \Rightarrow -a > 0 \Rightarrow (-a)(-a) > 0 \Rightarrow a^2 > 0$$

$$(P_{22}) 0 < 1$$

Se tiene que
$$1 = 1^2$$
, luego $1 > 0$

$$(P_{23}) a < b \land c < 0 \Rightarrow a c > b c$$

$$c < 0 \implies -c > 0$$

$$a < b \implies a(-c) < b(-c) \implies -ac < -bc \implies ac > bc$$

$$(P_{24}) a < 0 \iff \frac{1}{a} > 0$$

$$a^{-1} > 0 \implies aa^{-1} < 0$$
, de donde $1 < 0$, absurdo.

$$(P_{25}) \ a > 0 \iff \frac{1}{a} > 0$$

$$(P_{26})(1) ab > 0 \iff (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$$

$$(2) ab < 0 \Leftrightarrow (a > 0 \land b < 0) \lor (a < 0 \land b > 0)$$

$$(3) \frac{a}{b} > 0 \Leftrightarrow (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$$

$$(4) \frac{a}{b} < 0 \iff (a > 0 \land b < 0) \lor (a < 0 \land b > 0)$$

$$(P_{27}) \ 0 < a < b \Longrightarrow 0 < \frac{1}{b} < \frac{1}{a}$$

Multiplicar por $a^{-1}b^{-1}$

$$(P_{28}) \ a < b < 0 \Longrightarrow \frac{1}{b} < \frac{1}{a} < 0$$

$$(P_{29}) \ 0 < a < b \Longrightarrow a^2 < b^2$$

$$(P_{30}) \; a < b < 0 \Longrightarrow b^2 < a^2$$

Intervalos de números reales

Sean $a, b \in \mathbb{R}$, a < b. Llamaremos, respectivamente, intervalo abierto, abierto-cerrado, cerrado-abierto y cerrado a los conjuntos siguientes:

$$(a, b) = \{ x \in \mathbb{R} : a < x < b \},\$$

$$(a, b] = \{ x \in \mathbb{R} : a < x \le b \},$$

$$[a, b) = \{ x \in \mathbb{R} : a \le x < b \},$$

$$[a, b] = \{ x \in \mathbb{R} : a \le x \le b \}$$

En todos los casos los números a y b se llaman los extremos del intervalo.

Es cómodo, además, utilizar notaciones como

$$(-\infty, b] = \{ x \in \mathbb{R} : x \leq b \},$$

$$[a, +\infty) = \{x \in \mathbb{R} : x \ge a\},\$$

y sus correspondientes $(-\infty, b)$ y $(a, +\infty)$.

Valor Absoluto

Sea $x \in \mathbb{R}$. El valor absoluto de x (lo notamos |x|) se define como sigue:

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Usando la representación de \mathbb{R} en una recta, el valor absoluto de x tiene una sencilla interpretación geométrica: mide la distancia que hay entre x y 0.

Proposición. El valor absoluto verifica las siguientes *propiedades:*

(1)
$$|x| \ge 0$$
. Además, $|x| = 0 \iff x = 0$

(2)
$$/ - x/ = /x/$$

$$(3) -|x| \le x \le |x|$$

(4)
$$Si \ d \in \mathbb{R}, \ d > 0, \ entonces \ |x| \le d \iff -d \le x \le d$$

Esto es,
$$|x| \le d \iff x \in [-d, d]$$

(5) $Si \ d \in \mathbb{R}, \ d > 0, \ entonces \ |x| \ge d \iff x \le -d \ \lor x \ge d$

Esto es
$$|x| \ge d \iff x \in (-\infty, -d] \cup [d, +\infty)$$

(6)
$$|x + y| \le |x| + |y|$$
 (Designaldad triangular).

(7)
$$|x - y| \ge |/x| - |y|/$$

(8)
$$|x \cdot y| = |x| \cdot |y|$$

$$(9) \left| \frac{x}{y} \right| = \frac{|x|}{|y|} \; ; \; y \neq 0$$

(10)
$$|x| = d \Leftrightarrow x = d \lor x = -d$$

(11)
$$|x - y| = |y - x|$$

(12)
$$|x| = |y| \iff x = y \lor x = -y$$

(13)
$$|x|^2 = x^2 = |x^2|$$

$$(14)\sqrt{x^2} = |x|$$

Observación: Si x e y son dos números reales, la distancia entre x e y es x - y si x > y, y es y - x si x < y. Ahora bien

$$|x - y| = \begin{cases} x - y & \text{si } x - y \ge 0 \\ -(x - y) & \text{si } x - y < 0 \end{cases} = \begin{cases} x - y & \text{si } x \ge y \\ y - x & \text{si } x < y \end{cases}$$

Entonces la distancia entre x e y es igual a |x - y|.