

ÜBUNGEN

zur Veranstaltung Quantencomputing im Studiengang Angewandte Informatik

No. 1 Martin Rehberg

Übungsaufgaben Lineare Algebra - Zur Erinnerung

In der Vorlesung wurde daran erinnert, dass die Multiplikation eines Vektors mit einer (quadratischen) Matrix eine lineare Abbildung beschreibt.

Seien U und V Vektorräume über dem Körper K. Eine Abbildung $F:V\to U$ heißt eine lineare Abbildung (oder lineare Transformation), wenn sie die folgenden Bedingungen erfüllt:

- (1.) Für beliebige $v, w \in V$ gilt F(v + w) = F(v) + F(w).
- (2.) Für beliebige $k \in K$ und beliebige $v \in V$ gilt F(kv) = kF(v).

Aufgabe 1: Zeigen Sie, dass die Abbildung $F: \mathbb{R}^2 \to \mathbb{R}^2$, definiert durch F(x,y) = (x+y,x) linear ist.

Aufgabe 2: Zeigen Sie, dass die Abbildung $F: \mathbb{R}^2 \to \mathbb{R}$, definiert durch F(x,y) = xy nicht linear ist.

Aufgabe 3: Sei V der Vektorraum der $(n \times n)$ -Matrizen über dem Körper K und $M \in V$. Die Abbildung $F: V \to V$ sei für $A \in V$ definiert durch F(A) = AM + MA. Zeigen Sie, dass F linear ist.

Übungsaufgaben Quantencomputing

Aufgabe 1: Machen Sie sich mit den Möglichkeiten unter

- https://oreilly-qc.github.io/
- https://quantum-computing.ibm.com/

vertraut.

Aufgabe 2: Untersuchen Sie die Wirkung der folgenden Transformationen auf ein Qubit im Zustand $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$:

(i)
$$W = \begin{pmatrix} 1 & 0 \\ 0 & 2i \end{pmatrix}$$

(ii)
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(iii)
$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

(iv)
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Prüfen Sie zuvor, ob die angegebenen Matrizen unitär sind.