Inverse Propensity Weighting

David S. Rosenberg

NYU: CDS

February 3, 2021

Contents

Recap and Warmup

- 2 Inverse propensity weighting (IPW): Introduction
- 3 IPW on MCAR: example and simulation

Recap and Warmup

Recap: Missing at random (MAR) setting

- Full data: $(X_1, Y_1), ..., (X_n, Y_n)$
- Observed data: $(X_1, R_1, R_1, Y_1), \dots, (X_n, R_n, R_n, Y_n)$
 - where $R_1, \ldots, R_n \in \{0, 1\}$ is the response indicator.
- In missing at random (MAR) setting, $R_i \perp \!\!\! \perp Y_i \mid X_i$
- Probability of response is given by the propensity score function:

$$\pi(x) = \mathbb{P}(R_i = 1 \mid X_i = x) \quad \forall i.$$

Exercise: $\mathbb{E}[R_i \mid X_i] = \pi(X_i)$

Show
$$\mathbb{E}[R_i \mid X_i] = \pi(X_i)$$

- Let $f(x) = \mathbb{E}[R_i \mid X_i = x]$. (So $\mathbb{E}[R_i \mid X_i] = f(X_i)$.)
- Then

$$f(x) = 1 \cdot \mathbb{P}(R_i = 1 \mid X_i = x) + 0 \cdot \mathbb{P}(R_i = 0 \mid X_i = x)$$

= $\pi(x)$

• So $\mathbb{E}[R_i \mid X_i] = \pi(X_i)$.

Inverse propensity weighting (IPW): Introduction

Observed responses represent multiple unobserved responses

- Suppose $\mathcal{X} = \{0, 1\}$ corresponding to two types of people.
- e.g. $X_i = 1$ [individual i has previously responded to a survey]
- When $X_i = 1$, response probability $\pi(1) = \mathbb{P}(R_i = 1 \mid X_i = 1) = 0.2$
- When $X_i = 0$, response probability $\pi(0) = \mathbb{P}(R_i = 1 \mid X_i = 0) = 0.1$
- If we observe Y_i for an individual with $X_i = 1$,
 - That individual represents roughly 5 people from the full data.
- If we observe Y_i for an individual with $X_i = 0$,
 - That individual represents roughly 10 people from the full data.

Inverse propensity weighted (IPW) Mean

• When $\pi(x) > 0 \ \forall x \in \mathcal{X}$, we can define the **IPW mean estimator** for $\mathbb{E}Y$:

$$\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i:R_i=1} \frac{Y_i}{\pi(X_i)}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)}$$

- We'll show that this is unbiased and asymptotically does the right thing.
- Though it has some issues, which we'll also explore

¹We assume here and everywhere below that $\pi(x) > 0 \ \forall x \in \mathcal{X}$.

IPW: Lemmas

• In the MAR setting, where $Y_i \perp \!\!\! \perp R_i \mid X_i$, we have for a generic term in the mean:

$$\mathbb{E}\left[\frac{RY}{\pi(X)}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{RY}{\pi(X)} \mid X\right]\right] \quad \text{Adam's Law}$$

$$= \mathbb{E}\left[\frac{1}{\pi(X)}\mathbb{E}[RY \mid X]\right] \quad \text{Taking out what is known}$$

$$= \mathbb{E}\left[\frac{1}{\pi(X)}\mathbb{E}[R \mid X]\mathbb{E}[Y \mid X]\right] \quad \text{By MAR assumption}$$

$$= \mathbb{E}\left[\mathbb{E}[Y \mid X]\right] \quad \text{since } \mathbb{E}[R \mid X] = \mathbb{P}(R = 1 \mid X) = \pi(X)$$

$$= \mathbb{E}Y \quad \text{Adam's Law}$$

IPW: Unbiased and Consistent

• The estimator $\hat{\mu}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)}$ is **unbiased** for $\mathbb{E} Y$, since

$$\mathbb{E}\hat{\mu}_{\text{ipw}} = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{R_{i}Y_{i}}{\pi(X_{i})}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\frac{R_{i}Y_{i}}{\pi(X_{i})}\right] = \mathbb{E}Y.$$

• The estimator $\hat{\mu}_{ipw}$ is "consistent" That is,

$$\hat{\mu}_{\mathsf{ipw}} \overset{P}{ o} \mathbb{E} Y \text{ as } n o \infty$$

by the Law of Large Numbers, since $\left(\frac{R_i Y_i}{p(R_i|X_i)}\right)_{i=1}^n$ are i.i.d. with expectation μ .

- Unbiased and consistent are nice properties to have,
 - but does NOT mean it's a great estimator....

IPW on MCAR: example and simulation

Recap: MAR, MCAR, and IPW estimators

- We started by talking about the MCAR setting
 - i.e. Response indicator R_i independent of response Y_i
- We discussed the complete case estimator for $\mathbb{E} Y$:

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}$$

- In the MAR setting, R_i and Y_i can be dependent, so $\hat{\mu}_{cc}$ may be quite biased.
- \bullet We introduced $\hat{\mu}_{ipw}$ and showed it's unbiased in the MAR setting.
- But how good is $\hat{\mu}_{ipw}$?
- Let's see how it compares to $\hat{\mu}_{cc}$ in the simple MCAR setting.

IPW Mean: MCAR example

Let's consider how

$$\hat{\mu}_{\text{ipw}} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)}$$

works in a trivial MCAR example $(R_i \perp \!\!\!\perp Y_i)$.

- For i = 1, ..., n
 - Let R_i be independent of (X_i, Y_i) .
 - Let $Y_i \in \{0, 1\}$ with $\mathbb{P}(Y_i = 1) = 0.75$ and
 - $\pi(x) = \mathbb{P}(R_i = 1 \mid X_i = x) \equiv 0.1.$

DS-GA 3001: Tools and Techniques for ML LIPW on MCAR: example and simulation

☐IPW Mean: MCAR example

• In MCAR, we **could** have R_i depend on X_i . If that were the case, then X_i and Y_i would need to be independent, since for MCAR we need $R_i \perp \!\!\! \perp Y_i$.

IPW for MCAR example: n = 1 case

- Suppose n = 1:
- If $Y_1 = 0$ or $R_1 = 0$, then $\hat{\mu}_{ipw} = \frac{R_1 Y_1}{0.1} = 0$.
- If $Y_1 = 1$ and $R_1 = 1$, then $\hat{\mu}_{ipw} = \frac{R_1 Y_1}{0.1} = \frac{1}{0.1} = 10$.
- The good: $\mathbb{E}\hat{\mu}_{ipw} = 10 \cdot \mathbb{P}(Y_i = 1) \mathbb{P}(R_i = 1) = 10 \cdot \frac{3}{4} \cdot \frac{1}{10} = 0.75$, so unbiased.
- The bad: We can get $\hat{\mu}_{ipw} = 10$ even though $Y_i \in \{0,1\}$.

IPW for MCAR example, continued

- Now let *n* grow.
- Suppose $R_1 = Y_1 = 1$, but $R_2 = \cdots = R_n = 0$.
- Then

$$\hat{\mu}_{\text{ipw}} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_i Y_i}{\pi(X_i)} = \frac{1}{n} \left(\frac{1 \cdot 1}{0 \cdot 1} + \underbrace{0 + \dots + 0}_{(n-1)} \right) = \frac{10}{n}$$

- So the IPW estimate starts at 10, and then decreases like O(1/n) towards 0.
- Our estimate keeps changing even though we don't have new observations of Y.

IPW for MCAR example visualized

DS-GA 3001: Tools and Techniques for ML LPW on MCAR: example and simulation

└─IPW for MCAR example visualized

- The green dots represent observed values of Y_i .
- We can see that we had no observations of Y until $Y_9 = 1$.
- The horizontal red line shows the true mean of the Y_i 's.
- The blue dots show $\hat{\mu}_{ipw}$ as n increases.
- Note the large jumps in $\hat{\mu}_{ipw}$ whenever we get an observation with $Y_i = 1$. This is because each observed Y_i is scaled up by an inverse propensity weight of 10.
- Also note that between observations with $Y_i = 1$, ipw_mean decays like 1/n towards 0.

IPW vs complete case mean

DS-GA 3001: Tools and Techniques for ML LIPW on MCAR: example and simulation

└─IPW vs complete case mean

- We've added in the orange line here, which represent the mean of the complete cases.
- Note that the orange line is constant between observations, and jumps whenever we get a new observation.

IPW vs complete case mean, 5000x

- We repeat the experiment² above 5000 times (n = 100 samples in each) and get the following.
- Recall that the true mean is $\mu = 0.75$.

estimator	mean	SD	SE	bias	RMSE
mean ipw_mean			0.002036 0.003708		

²In the very rare event that the sample in a particular repetition has 0 complete cases, we take $\hat{\mu}_{cc} = 0$.

To generate this table, we repeated the following 5000 times:

- 1. Get a sample of size n = 100 from the distribution described previously.
- 2. Evaluate the estimators on this sample.
 - The table then displays various summary statistics of the performance of these estimators across the 5000 repetitions.
- Mean and SD are just the mean and SD of the estimate across the repeats.
- The SE is the uncertainty of the mean as an estimator $\mathbb{E}\hat{\mu}_{ipw}$ and $\mathbb{E}\hat{\mu}_{cc}$ (depending on the row) so SE = SD / sqrt(num_repeats=5000).
- ullet "Bias" is computed as the difference between the mean of the estimators and the true mean μ .
- The SE is also the uncertainty of this bias.
- ullet For each repeat we compute the RMS difference between the estimate and μ .

IPW vs Complete case mean, 5000x (continued)

estimator	mean	SD	SE	bias	RMSE
mean ipw_mean		0.1.00.0	0.002036 0.003708	0.00-00.	0

- Both estimators have
 - bias within 1 SE of 0 (i.e. indistinguishable from 0).
 - SD is orders of magnitude larger than bias (and essentially equals the RMS error).
- Complete case mean is better than ipw_mean in RMSE for this MCAR distribution.

☐ IPW vs Complete case mean, 5000x (continued)

IPW vs Complete case mean, 5000x (continued)

ipw mean 0.752540 0.262224 0.003708 0.002540 0.262237

0.751654 0.143943 0.002036 0.001654 0.143953 bias within 1 SE of 0 (i.e. indistinguishable from 0). SD is orders of magnitude larger than bias (and essentially equals the RMS error

a Complete case mean is better than insu-mean in RMSF for this MCAF

- The bias of mean (the mean of the observations) and ipw mean are both within 1 SE of 0. so we can't conclude from this data that there's bias.
- Indeed, we know theoretically that the IPW estimator is unbiased.
- In both cases, the bias is orders of magnitude smaller than the SD, which is what drives the RMSE.
- For this dataset, it seems like the complete case mean is the clear winner, between the two.
- Recall that $RMSE^2 = SD^2 + bias^2$.
- This explains why the contribution of the bias to the RMSE is even less than one might expect from looking at the relative magnitudes of SD and bias.