Application No.: 10/565,218 Docket No.: 0446-0185PUS1 Page 12 of 20

Supplemental Reply dated July 21, 2010

REMARKS

The present Supplemental Amendment merely adds claims 51-54 to the present

application. Accordingly, the Examiner is respectfully requested to consider these claims

together with the present pending claims as defining an inventive contribution not recognized by

the prior art of record.

Claims 1-22 and 27-54 are now pending in the present application. Claims 1-3, 6-20, 23-

33 and 36-50 have been rejected. Claims 4, 5, 21, 22, 34 and 35 have been withdrawn from

consideration as being directed to a non-elected invention. Claims 1 and 50 are generic. Claims

23-26 have been cancelled.

Claims 51-54 are newly added. Support for these new claims is as follows:

Claims 51-52: page 26, lines 6-24 of the corresponding PCT specification as filed.

Claims 53-54: page 1, lines 5-13 and page 26, lines 6-24 of the corresponding PCT application as

filed.

Process claim 1 has been amended by introducing the subject matter of claims 23, 24 and

26 therein.

A similar amendment has been made to product claim 50. However, the process feature

of monomers being "introduced in two or more sequential feeds" from claim 23 has been

converted into the consequential product feature of the heteropolymeric particles "having a

core/sheath structure". Support for this amendment may be found at least in the paragraph

bridging pages 17 and 18 of the corresponding PCT specification as filed.

Claims 23-26 have consequently been deleted.

BIRCH, STEWART, KOLASCH & BIRCH, LLP

MAA/RCS/njp

Application No.: 10/565,218
Supplemental Reply dated July 21, 2010

Docket No.: 0446-0185PUS1 Page 13 of 20

To appreciate how the subject matter defined by the claims of the application is distinguished over the prior art, it is important to have a good understanding of the somewhat complex process/product features of the invention.

As is described in at least the paragraph bridging pages 5 and 6 of the corresponding PCT application as filed, the applicant surprisingly found that polymer particles comprising the polymerised residues of ionisable and non-ionisable hydrophilic monomers, the likes of which are specifically located throughout the particle composition at specific concentrations, can provide for aqueous dispersions of polymer particles having high viscosity and good levelling and flow properties. Products such as paints formulated using these aqueous dispersions advantageously require little or no additional rheological control additives, are versatile and can attain viscosity while still demonstrating good leveling, flow and gloss properties.

The specific features of the polymer particles in accordance with the invention can be explained in more detail with reference to the simplified cross sectional view illustrated below:



Polymer composition derived from the first monomer feed that gives rise to the "core"

Polymer composition derived from one or more subsequent monomer feeds that gives rise to the "sheath(s)"

With reference to the illustration above, a polymer particle in accordance with the invention comprises a core derived from the first monomer feed and a sheath(s) derived from one or more subsequent monomer feeds.

Application No.: 10/565,218 Docket No.: 0446-0185PUS1 Page 14 of 20

Supplemental Reply dated July 21, 2010

The process according to the invention for preparing the particles includes the following

features:

The monomer composition used to prepare the particles has at any point in time less than

5 wt% of ionisable monomer;

At least a 30 wt% portion of the total amount of monomers polymerised is maintained

with an ionisable monomer content of from 0.5 to less than 5 wt%. This feature gives

rise to polymer particle having a segment or region that represents at least 30 wt% of the

total particle and has a concentration of ionisable monomer of from 0.5 to less than 5

wt%;

The total amount of non-ionisable hydrophilic and ionisable monomer used must

represent at least 75 wt% of the total monomers polymerised to form the particle;

The core of the particle (derived from the first monomer feed) must represent at least 30

wt% of the particle; and

The core of the polymer particle (derived from the first monomer feed) must contain less

than 20 wt% of the total amount of ionisable monomer used to prepare the particle.

The advantageous rheological properties of aqueous dispersions in accordance with the

invention are believed to be derived primarily from unique swelling and deswelling

characteristics of the heteropolymeric particles. Such unique swelling and deswelling

characteristics are in turn believed to be derived from at least the concentration and location

requirements of the ionisable and non-ionisable hydrophilic monomers/monomer residues used

in accordance with the invention.

Turning to the specific numbered rejections raised by the Examiner in the Action:

1. Despite our traversal, the Examiner notes that the requirement for an Election of Species

has been made final. It is believed that the non-elected claims should be rejoined with

BIRCH, STEWART, KOLASCH & BIRCH, LLP

MAA/RCS/njp

Application No.: 10/565,218 Docket No.: 0446-0185PUS1 Page 15 of 20

Supplemental Reply dated July 21, 2010

the remaining pending claims if these claims are considered to be in condition for allowance.

2-5. The Examiner contends that the claims of the application are anticipated by, or in the alternative, obvious over US 3,875,099 of Kurth et al. under 35 USC 102(b) and under 35 USC 103(a). These rejections are respectfully traversed. Withdrawal of these rejections and allowance of the claims are requested.

2-5. It is believed that the claims of the application in their amended form are clearly distinguished over the disclosure and teachings of Kurth et al.

Kurth et al relates to a method for preparing high-viscosity, shear-stable, freeze-thaw stable, and electrolyte-stable dispersions of synthetic acrylic resins.

The specified properties of the acrylic resins are said to be derived by preparing the resins with a relatively low carboxylic acid content that is present only in one portion of the polymer that forms the resin (see at least column 1, lines 53-57).

Notably, the compositional requirements of the acrylic resins disclosed and taught in Kurth et al are different from the compositional requirements of heteropolymeric particles claimed in accordance with the present invention. This difference in compositional requirements is in fact reflected by the different properties exhibited by the polymer according to each invention.

With regard to compositional requirements, the acrylic resins prepared in accordance with Kurth et al require at least 70 % of the carboxylic acid monomer to be added to the polymerisation vessel in a manner such that the acid portion added is at any given time between 3 and 15 % by weight of the total amount of monomers being concurrently added (see at least the paragraph bridging columns 2 and 3). As is described at least at column 4, lines 30-46, addition of the acid monomer in this manner is intended to provide Application No.: 10/565,218

Supplemental Reply dated July 21, 2010

Docket No.: 0446-0185PUS1 Page 16 of 20

for "polymer portions relatively <u>rich</u> in carboxyl groups, which fact is of considerable importance to the properties of the dispersion" (emphasis added).

In other words, despite having an overall relatively low acid monomer content, the properties of the acrylic resins according to Kurth et al are predicated upon having at least a portion of polymer with a relatively high concentration of acid monomer residues (i.e., as high as 15%).

As is outlined above, the claims according to the present invention not only require that the heteropolymeric particles have a relatively low overall ionisable monomer content (i.e., less than 5 wt %), but the reaction medium at any point in time must comprise less than 5 wt % of the ionisable monomer. Accordingly, unlike the acrylic resin according to Kurth et al, the heteropolymeric particles in accordance with the present invention specifically teach away from forming a portion of the polymer particles having a relatively high concentration of acid monomer.

An important feature of the claims according to the present invention is that the total amount of non-ionisable hydrophilic ethylenically unsaturated monomers and ionisable ethylenically unsaturated monomers polymerised constitutes at least 75 wt % the total amount of monomers polymerised to form the heteropolymeric particles.

Notably, Kurth et al fails to disclose or suggest any such relationship between the ionisable and non-ionisable hydrophilic monomer content. Furthermore, except for Example 11, all examples of the acrylic resins disclosed in Kurth et al demonstrate an ionisable and non-ionisable hydrophilic monomer content well below the required 75 wt % according to the claims of the present application.

Example 11 in Kurth et al does inadvertently disclose an acrylic resin composition having an ionisable and non-ionisable hydrophilic monomer content of at least 75 wt %. Application No.: 10/565,218 Docket No.: 0446-0185PUS1 Supplemental Reply dated July 21, 2010

However, as noted above, the heteropolymeric particles according to the present invention derive their unique properties from a combination of features.

In addition to the aforementioned "at least 75 wt %" requirement, the claims according to the present invention also require that the "reaction medium have a composition which is maintained with an ionisable ethylenically unsaturated monomer content of from 0.5 to less than 5 wt % throughout polymerisation of at least 30 wt % of the total amount of monomers polymerised to form the heteropolymeric particles" (emphasis added). Furthermore, the first feed of the polymerisation <u>must</u> comprise <u>less than 20 wt %</u> of the total amount of ionisable monomers polymerised to form the heteropolymeric particles.

Example 11 in Kurth et al demonstrates at best a reaction medium having a composition which is maintained with ionisable monomer of about 3 wt % through only 25 wt % of the total amount of monomers polymerised to form the resin. Furthermore, the first feed according to Example 11 comprises more than 75 wt % of the total amount of ionisable monomers that are polymerised to form the acrylic resin.

It will be appreciated from these comments that the compositional requirements of the acrylic resin disclosed in Kurth et al are vastly different from those of the heteropolymeric particles in accordance with the present invention. Such differences in composition are not merely coincidental, but instead are by design. It is submitted that Kurth et al specifically sets out to prepare acrylic resins having different properties to those exhibited by the heteropolymeric particles in accordance with the invention. This position may be supported at least by reference to the disclosure in Kurth et al at column 2, lines 43-55. Here, Kurth et al points out that the invention disclosed therein is distinguished over the prior art "either in that monomers containing a carboxy group are added in a relatively high overall concentration or in that the largest portion of the acid monomers is added either before the other monomers or is first added in the last polymerisation stage". Kurth et al goes on to point out disadvantages associated with

Page 17 of 20

Application No.: 10/565,218
Supplemental Reply dated July 21, 2010

such different features in that "dispersions are produced the viscosity of which increases extraordinarily rapidly at pH values above 8-9 or the stability of which is unsatisfactory".

Docket No.: 0446-0185PUS1

Page 18 of 20

Kurth *et al* is not at all interested in preparing an acrylic resin with rapid swelling properties. In addition to the comments set forth directly above, this is reflected by the resins produced according to the Examples in Kurth *et al* which typically require extended periods of time at elevated temperature (2 hours at 80 °C) under basic conditions in order to promote swelling.

Notably, an advantage according to the present invention is the unique rapid swelling and deswelling properties of the heteropolymeric particles. Contrary to the teaching in Kurth *et al*, such particles may in fact be prepared where the acid monomer is "first added in the last polymerisation stage" (see the examples of the present application where the acid monomer is only introduced in the second and last stage of the polymerisation).

Accordingly, Kurth *et al* clearly teaches away from certain essential features that give rise to the advantageous properties of the heteropolymeric particles according to the present invention.

The claims of the present application are therefore believed to be distinguished over Kurth *et al*.

6-7. The Examiner has rejected claims 12 and 13 under 35 USC 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which the applicant regards as the invention. In particular, the Examiner notes possible tension between the 55 wt % and 75 wt % features of these claims, respectively, and the feature in claim 1 of "wherein the monomers in said reaction medium at any point in time comprise less than 5 wt % of ionisable ethylenically unsaturated monomer".

Application No.: 10/565,218

Supplemental Reply dated July 21, 2010

Docket No.: 0446-0185PUS1

Page 19 of 20

From the comments above concerning the features of the polymer particles, it can be appreciated that the Examiner's rejection appears to stem from a misunderstanding of the

relevant features in the claims.

Thus, the feature in the claim of "the monomers in said reaction medium at any point in time comprise less than 5 wt % of ionisable ethylenically unsaturated monomer" in effect prevents the resulting polymer particles from having a section or region of a relatively high concentration of ionisable monomer residue. In other words, this feature simply relates to the concentration of ionisable monomer allowed in any of the monomer feeds.

The next feature in claim 1 states that "for <u>at least part of the polymerisation</u> the monomers in said reaction medium have a composition which is maintained with an ionisable ethylenically unsaturated monomer content of from 0.5 to less than 5 wt % throughout polymerisation of at least 30 wt % of the total amount of monomers polymerised to form the heteropolymeric particles" (emphasis added). This feature of the claim provides for a minimum proportion of the heteropolymeric particles which have an ionisable monomer residue content of from 0.5 to less than 5 wt %.

Claims 12 and 13 simply extend this portion of the heteropolymeric particle to at least 55 wt % or at least 75 wt %, respectively. When considering the construction of these claims, it is to be noted that the language of claim 12 clearly makes reference to the "said at least part of the polymerisation" defined in claim 1.

Claims 12 and 13 are therefore in no way considered to cause any tension with the subject matter defined in claim 1.

It is believed that this application is now in condition for allowance. In view of the above amendments and remarks, reconsideration of the rejections and favorable action on the claims are respectfully requested.

Application No.: 10/565,218 Docket No.: 0446-0185PUS1 Page 20 of 20

Supplemental Reply dated July 21, 2010

Should there be any outstanding matters that need to be resolved in the present application, the Examiner is respectfully requested to contact Raymond C. Stewart, Registration No. 21066, at the telephone number of the undersigned below to conduct an interview in an effort to expedite prosecution in connection with the present application.

If necessary, the Director is hereby authorized in this, concurrent, and future replies to charge any fees required during the pendency of the above-identified application or credit any overpayment to Deposit Account No. 02-2448.

Dated: July 21, 2010

Respectfully submitted,

Registration No.: 21,066

BIRCH, STEWART, KOLASCH & BIRCH, LLP

8110 Gatehouse Road, Suite 100 East

P.O. Box 747

Falls Church, VA 22040-0747

703-205-8000