7.4 关系的性质

本节总假定关系是某一非空集合上的二元关系,这一假定不失一般性。因为任一A到B的关系R,即 $R \subseteq A \times B$, $A \times B \subseteq (A \cup B) \times (A \cup B)$,所以关系R总可看成是 $A \cup B$ 上的关系,它与原关系R具有完全相同的序偶,对它的讨论代替对R的讨论不改变于问题的本质。

一. 五种性质的定义

• 自反性与反自反性

定义7.11 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$,则称R在A上是自反的.($I_A \subseteq R$?)
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$,则称R在A上是反自反的. ($R \cap I_A = \emptyset$?) 实例:

自反关系: 全域关系 E_A , 恒等关系 I_A , 小于等于关系 I_A , 整除关系 D_A . 反自反关系: 实数集上的小于关系、幂集上的真包含关系.

 $A=\{1,2,3\}, R_1, R_2, R_3$ 是A上的关系, 其中

 $R_1 = \{<1,1>,<2,2>,<3,3>,<1,2>\}$ 自反

R₂={<1,3>} 反自反

 $R_3 = \{<1,1>,<2,2>\}$ 既不是自反也不是反自反

一. 五种性质的定义

• 对称性与反对称性

定义7.12设R为A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$,则称 $R \to A$ 上对称的关系. ($R = R^{-1}$?)
- (2) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$,则称 $R \to A \bot$ 的反对称关系.

$$(R \cap R^{-1} \subseteq I_A ?)$$

实例:

对称关系: A上的全域关系 E_A , 恒等关系 I_A 和空关系 \emptyset .

反对称关系: 恒等关系I₄和空关系Ø也是A上的反对称关系.

设 $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都 是 A 上 的 关 系, 其 中$

 $R_1 = \{<1,2>,<1,3>\}$ 反对称但不对称 $R_2 = \{<1,1>,<1,2>,<2,1>\}$ 对称但不是反对称 $R_3 = \{<1,1>,<2,2>\}$ 既对称也反对称 $R_4 = \{<1,2>,<2,1>,<1,3>\}$ 既不对称也不是反对称

一. 五种性质的定义

• 传递性

定义7.13设R为A上的关系,若

 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$, ($R \circ R \subseteq R$?) 则称 $R \not\in A$ 上的传递关系.

实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系Ø

小于等于和小于关系,整除关系,包含与真包含关系

设 $A = \{1,2,3\}, R_1, R_2, R_3, R_4$ 是A上的关系, 其中

$$R_2 = \{<1,2>,<2,3>\}$$
 不是传递关系

传递性定义条件不成立, 蕴含前件为假

【例】设 $A=\{a,b,c\}$,以下各关系

 R_i (i=1, 2, ..., 8) 均为A上二元关系,请判断下列关系是否为自反或者反自反关系。

(1) $R_1 = \{ \langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle c, c \rangle \}$ 自反关系 $R_2 = \{ \langle a, c \rangle, \langle c, a \rangle \}$ 反自反关系 $R_3 = \{ \langle a, a \rangle \}$ 既不自反也不反自反关系 $A \perp \mathrm{in}\Phi$ 关系 反自反关系

当 $A = \Phi$ 时(这时A上只有一个关系 Φ),A上空关系既是自反的,又是反自反的,

反自反: $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R$

请判断下列关系是否为对称或者反对称关系

$$(2)$$
 R_4 = { $\langle a,b \rangle$, $\langle b,a \rangle$ } 对称关系 R_6 = { $\langle a,b \rangle$, $\langle a,c \rangle$ } 反对称关系 R_5 = { $\langle a,c \rangle$, $\langle c,a \rangle$, $\langle a,b \rangle$, $\langle a,a \rangle$ } 既不对称,也不是反对称 A 上的恒等关系 I_A 既对称,也反对称

请判断下列关系是否为传递关系

(3)
$$R_7 = \{ \langle a,b \rangle, \langle b,c \rangle, \langle a,c \rangle, \langle c,c \rangle \}$$
 传递关系 $R_7 - \{ \langle a,c \rangle \}$ 非传递关系 A 上的空关系 Φ , $R_8 = \{ \langle a,b \rangle \}$ 传递关系 因为传递性定义的前提对它们而言均为假: $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$

- (4) 任何非空集合上的空关系都是反自反、对称、 反对称、传递的; 其上的恒等关系是自反、对称、 反对称、传递的; 其上的全域关系是自反、对称、 传递的。
- (5) 三角形的相似关系、全等关系是自反、对称、传递的。
- (6) 正整数集合上的整除关系是自反、反对称、传递的; 但整数集合上的整除关系只有传递性 (<0,0>,<1,-1>)。

判断一个关系是否具有上述某种的性质,除直接用定义,还有下面的充要条件。

二. 关系性质的等价描述

下面给出这五种性质成立的充分必要条件.

定理7.9 设R为A上的关系,则

- (1) R在A上<u>自反</u>当且仅当 I_A $\subseteq R$
- (2) R在A上反自反当且仅当 R $\cap I_A$ =Ø
- (3) R在A上对称当且仅当 $R=R^{-1}$
- (4) R在A上反对称当且仅当 $R\cap R^{-1}\subseteq I_A$
- (5) R在A上传递当且仅当 R∘R⊆R

R在A上<u>自</u>反当且仅当 I_A $\subseteq R$

证明

(1) 必要性.

任取 $\langle x,y \rangle \in I_A$,由于 R 在 A 上自反必有 $x,y \in A \land x = y \Rightarrow \langle x,y \rangle \in R$ 从而证明了 $I_A \subseteq R$

充分性.

任取 x, 有 $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$ 因此 R 在 A 上是自反的.

$R在A上反自反当且仅当 <math>R\cap I_A=\emptyset$

若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$,则称R在A上是反自反的.

(2) 必要性: 用反证法。

假设 $R \cap I_A \neq \Phi$,必存在〈x, y〉 $\in R \cap I_A \Rightarrow \langle x, y \rangle \in I_A$,由于 I_A 是A上的恒等关系,从而有x=y,所以

 $\langle x, x \rangle \in R$,这与R在A上是反自反的相矛盾。

充分性: 任取 $x \in A$,则有 $x \in A \Rightarrow \langle x, x \rangle \in I_A$

⇒ $\langle x, x \rangle \notin R$ (由于 $I_A \cap R = \Phi$),从而证明了R在A上是反自反的。

R在A上对称当且仅当 R=R-1

若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$, 则称R为A上对称的关系

(3) 必要性.

任取 $\langle x,y \rangle$, $\langle x,y \rangle \in R \Leftrightarrow \langle y,x \rangle \in R \Leftrightarrow \langle x,y \rangle \in R^{-1}$ 所以 $R = R^{-1}$ 充分性. 任取 $\langle x,y \rangle$, 由 $R = R^{-1}$ 得 $\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R^{-1} \Rightarrow \langle y,x \rangle \in R$ 所以 R 在 A 上是对称的.

R在A上反对称当且仅当 $R\cap R^{-1}\subseteq I_A$

(4) 必要性.

任取<x,y>, 有

若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y),$ 则称R为A上的反对称关系.

任取
$$\langle x,y \rangle$$
, 有
$$\langle x,y \rangle \in R \cap R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \wedge \langle x,y \rangle \in R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \wedge \langle y,x \rangle \in R$$

$$\Rightarrow x = y \wedge x,y \in A \quad (因为 R 在 A 上是反对称的)$$

$$\Rightarrow \langle x,y \rangle \in I_A$$
这就证明了 $R \cap R^{-1} \subseteq I_A$
充分性.
任取 $\langle x,y \rangle$,
$$\langle x,y \rangle \in R \wedge \langle y,x \rangle \in R$$

$$\Rightarrow \langle x,y \rangle \in R \wedge \langle x,y \rangle \in R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \cap R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \cap R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in I_A \quad (R \cap R^{-1} \subseteq I_A)$$

$$\Rightarrow x = y$$

从而证明了R在A上是反对称的.

R在A上传递当且仅当 $R \circ R \subset R$

必要性. (5)

任取<x,y>有

 $\langle x,y \rangle \in R \circ R$

 $\Rightarrow \exists t \ (\langle x,t \rangle \in R \land \langle t,y \rangle \in R)$

 $\Rightarrow \langle x,y \rangle \in R$ (因为 R 在 A 上是传递的)

 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R$

 $\rightarrow \langle x,z \rangle \in R$),则称R是A上的传递关系.

设R为A上的关系,若

所以 $R \circ R \subset R$.

充分性.

任取 $\langle x,y \rangle$, $\langle y,z \rangle \in R$,则

 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R$

 $\Rightarrow \langle x,z \rangle \in R \circ R$

 $\Rightarrow \langle x,z \rangle \in R$

所以 R 在 A 上是传递的.

三、关系性质的三种等价条件

	自反性	反自反性	对称性	反对称性	传递性
集合表 达式	I _A ⊆R	$R\cap I_A=\varnothing$	$R=R^{-1}$	$R\cap R^{-1}\subseteq I_A$	R∘R <u>⊂</u> R
关系矩阵	主对角线	主对角线	矩阵是	若 r _{ij} =1, 且	对 M^2 中1所在
	元素全是	元素全是	对称矩阵	$i\neq j$,则 $r_{ji}=0$	位置, M 中相应
	1	0			位置都是1
关系图	每个顶点	每个顶点	如果两个顶点	如果两点之	如果顶点 x_i 到 x_j
	都有环	都没有环	之间有边,是一	间有边,是一	有边, x_j 到 x_k 有
			对方向相反的	条有向边(无	边,则从 x_i 到 x_k
			边(无单边)	双向边)	也有边

向量三角形

例 判断下图中关系的性质, 并说明理由.

- (1) 不是自反也不是反自反的;对称的,不是反对称的;不是传递的.
- (2) 是反自反但不是自反的; 是反对称的但不是对称的; 是传递的.
- (3) 是自反但不是反自反的; 是反对称的但不是对称的; 不是传递的.

【例】设 R_i 是 $A=\{1,2,3\}$ 上的二元关系(如图7.4.1所示),判断它们各具有什么性质?并说明理由。

解 根据关系图的特征,我们可判断下列各关系具有的性质。

R₁具有反自反性、对称性、反对称性、传递性。因为每一结点处均无环,既无双边又无单边,也无三角形。

R₃具有自反性、对称性、传递性。因为每一结点处有一环,有边就有双边,有三角形就是向量三角形。

R₄具有反对称性、传递性。因为无双边, 无三角形。

 R_5 具有对称性。因为无单边。

R₆具有反自反性、反对称性。因为每一结点处均无环。

R₇具有自反性、传递性。因为每一结点处有一环,有三角形,且是向量三角形。

R₈具有反自反性、反对称性、传递性。因为每一结点处均无环,有三角形,且是向量三角形。

 R_9 均不具备。

四. 五种性质对基本运算的封闭性

关系是序偶的集合,可作交、并、差、逆、复合运算。

如果已知某些关系具有某一性质, 经过关系运算后的 结果仍具有这一性质, 我们称该性质对这一运算封闭。

定理7.4.2 设 R_1 、 R_2 是A上的自反关系,则 R_1 -1、 R_1 ∩ R_2 、 R_1 ∪ R_2 、 R_1 0 R_2 0 也是A上的自反关系。证明留给读者。

定理7.4.3 设 R_1 、 R_2 是A上的对称关系,则 R_1 -1、 R_1 ∩ R_2 、 R_1 ∪ R_2 、 R_1 - R_2 也是A上的对称关系。

证明仅证对称性对并运算封闭。

设 R_1 , R_2 对称要证 $R_1 \cup R_2$ 对称。任取〈x, y〉 $\in R_1 \cup R_2$,那么〈x, y〉 $\in R_1$ 或〈x, y〉 $\in R_2$ 。由 R_1 , R_2 对称知〈y, x〉 $\in R_1$ 或〈y, x〉 $\in R_1$ 或〈y, x〉 $\in R_2$,因而〈y, x〉 $\in R_1 \cup R_2$ 。 $R_1 \cup R_2$ 对称性得证。

若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$,则称R为A上对称的关系

定理7.4.4 设 R_1 、 R_2 是A上的传递关系,则 R_1 -1、 R_1 $\cap R_2$ 是A上的传递关系。但 R_1 $\cup R_2$ 不一定 是传递的。 $(R_1 = \{<1,3>\}, R_2 = \{<3,4>\})$

证明(1)证传递性对求逆运算封闭。

 $设R_1$ 传递,要证 R_1 -1传递,设有〈x, y〉 $\in R_1$ -1,〈y, z〉 $\in R_1$ -1,那么〈y, x〉 $\in R_1$,〈z, y〉 $\in R_1$ 。由 R_1 具有传递性可得〈z, x〉 $\in R_1$,即〈x, z〉 $\in R_1$ -1。

 R_1 -1在A上是传递的,得证。

设R为A上的关系,若 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R$ $\rightarrow \langle x,z \rangle \in R$),则称R是A上的传递关系.

(2) 证传递性对交运算封闭。

定理7.4.5 设 R_1 、 R_2 是A上的反对称关系,则 R_1^{-1} 、 $R_1 \cap R_2$ 、 R_1 - R_2 是A上的反对称关系。但 $R_1 \cup R_2$ 不一定是反对称的。 $R_1 = \{<1,3>\}, R_2 = \{<3,1>\}$ 证明仅证反对称性对差运算封闭。

设 R_1 , R_2 反对称,要证 R_1 - R_2 反对称。

设 $\langle x, y \rangle \in (R_1-R_2)$ 且 $\langle y, x \rangle \in (R_1-R_2)$,因而 $\langle x, y \rangle \in R_1$, $\langle y, x \rangle \in R_1$,从而由 R_1 的反对称性得x=y。这就完成了 R_1-R_2 反对称的证明。

若 \forall x \forall y(x,y \in A \land <x,y> \in R \land <y,x> \in R \rightarrow x=y),则称R为A上的反对称关系.

定理7.4.6 设 R_1 、 R_2 是A上的反自反关系,则 R_1^{-1} 、 R_1 이 R_2 、 R_1 ∪ R_2 、 R_1 - R_2 是A上的反自反关系。

证明留给读者。

我们举例说明反自反性、对称性、反对称性、传递性对复合运算均不封闭。

【例7.4.3】 $A = \{a, b, c\}$, 讨论在下列各种情况下 $R \circ S$ 是否具有原有的性质。 $R \circ S = \{\langle a, a \rangle\}$

- (1) $R=\{\langle a,b\rangle\}$, $S=\{\langle b,a\rangle\}$, R、S是反自反的。不是反自反
- (2) $R=\{\langle a,b\rangle,\langle b,a\rangle\}$, $R \circ S = \{\langle a,c\rangle\}$, 不是对称 $S=\{\langle b,c\rangle,\langle c,b\rangle\}$, $R \setminus S$ 是对称的。
- (3) $R = \{ \langle a, b \rangle, \langle b, c \rangle \}$, $R \circ S = \{ \langle a, b \rangle, \langle b, a \rangle \}$, 对称 $S = \{ \langle b, b \rangle, \langle c, a \rangle \}$, $R \circ S = \{ E$ 及对称的。
- (4) $R = \{ \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle \}$, $S = \{ \langle b, a \rangle, \langle b, c \rangle, \langle c, a \rangle \}$, $R \setminus S$ 是传递的。 $R \circ S = \{ \langle a, a \rangle, \langle b, a \rangle, \langle a, c \rangle \}$, 不是传递的

补充练习(课后完成)。

- (1)设A={1,2,3,4,6,12}, A中"整除"关系记为R,问:R是自反的?反自反的?对称的?反对称的?传递的?
- (2)设A={2,3,4,6,12,24,36}, A中"整除"关系记为R, 求R-1及R的关系矩阵, 说明R-1的属性。
- (3)设A= $\{a,b,c,d\}$,判定下列关系的性质

五、关系的性质和运算之间的联系.

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	√	$\sqrt{}$	V	V	V
$R_1 \cap R_2$	V	$\sqrt{}$	V	√	V
$R_1 \cup R_2$	√	\	1	×	×
R_1 – R_2	×	V	√	V	×
$R_1 \circ R_2$	√	×	×	×	×

7.5 关系的闭包

闭包运算是关系运算中一种比较重要的特 殊运算,是对原关系的一种扩充。在实际应用 中,有时会遇到这样的问题,给定了的某一关 系并不具有某种性质,要使其具有这一性质, 就需要对原关系进行扩充, 而所进行的扩充又 是"最小"的。这种关系的扩充就是对原关系 的这一性质的闭包运算。

一、闭包定义

定义 7.14 设 R 是非空集合 A 上的关系, R 的自反 (对称或传递) 闭包是 A 上的关系 R', 使得 R'满足以下条件:

- (1) R'是自反的(对称的或传递的)
- (2) $R \subseteq R'$
- (3) 对 A 上任何包含 R 的自反(对称或传递)关系 R'' 有 R'⊆R''.

一般将R的自反闭包记作r(R),对称闭包记 作s(R),传递闭包记作t(R)。它们分别是具有自 反性或对称性或传递性的R的"最小"超集合。 称r、s、t为闭包运算,它们作用于关系R后, 分别产生包含R的、最小的具有自反性、对称 性、传递性的二元关系。这三个闭包运算也可 由下述定理来构造。

二、闭包的构造方法

1. 集合表示

定理 设R为A上的关系,则有

- (1) $r(R)=R \cup R^0$
- (2) $s(R) = R \cup R^{-1}$
- (3) $t(R)=R \cup R^2 \cup R^3 \cup ...$

- (1) R'是<u>自反</u>的(<u>对称</u>的或<u>传递</u>的)
- $(2) R \subset R'$
- (3) 对A上任何包含R的自反(对称或传递)关系R''有R'⊆R''.

证明思路:

- (1) 和 (2):证明右边的集合满足闭包定义的三个条件.
- (3) 采用集合相等的证明方法. 证明左边包含右边,即 t(R)包含每个 R^n . 证明右边包含左边,即 $R \cup R^2 \cup R^3 \cup ...$ 具有传递的性质.

证

(1) 由 $I_A = R^0 \subseteq R \cup R^0$ 可知 $R \cup R^0$ 是自反的,且满足 $R \subseteq R \cup R^0$ 设 R'' 是 A 上包含 R 的自反关系,则有 $R \subseteq R''$ 和 $I_A \subseteq R''$ 从而 $R \cup R^0 \subseteq R''$

综上所述 $R \cup R^0$ 满足闭包定义的三个条件,所以 $r(R)=R \cup R^0$.

(3) 先证 $R \cup R^2 \cup ... \subseteq t(R)$ 成立.

方法: 用归纳法证明对任意正整数 n 有 $R^n \subseteq t(R)$ n=1 时有 $R^1=R \subseteq t(R)$.

假设 $R^n \subseteq t(R)$ 成立,那么对任意的 $\langle x,y \rangle$ 有

$$\langle x,y \rangle \in R^{n+1} = R^n \circ R$$

$$\Rightarrow \exists t (\langle x, t \rangle \in \mathbb{R}^n \land \langle t, y \rangle \in \mathbb{R})$$

$$\Rightarrow \exists t (\langle x, t \rangle \in t(R) \land \langle t, y \rangle \in t(R))$$

$$\Rightarrow \langle x,y \rangle \in t(R)$$
 (因为 $t(R)$ 是传递的)

这就证明了 $R^{n+1} \subseteq t(R)$. 由归纳法命题得证.

也可以从三个条件入手,t(R)可以看做A上任何包含R的传递关系R":

(1) RUR²U…是传递的

(2) $R \subseteq RUR^2U...$

(3) 对A上任何包含R的传递关系R'' 有 $RUR^2U...$ $\subseteq R''$.

再证 $t(R) \subseteq R \cup R^2 \cup ...$ 成立,为此只须证明 $R \cup R^2 \cup ...$ 是传递的. 任取 $\langle x,y \rangle, \langle y,z \rangle$,则

 $\langle x,y \rangle \in R \cup R^2 \cup ... \land \langle y,z \rangle \in R \cup R^2 \cup ...$

- $\Rightarrow \exists t (\langle x,y \rangle \in R^t) \land \exists s (\langle y,z \rangle \in R^s)$
- $\Rightarrow \exists t \exists s (\langle x,z \rangle \subseteq R \ ^t \circ R^s)$
- $\Rightarrow \exists t \exists s (\langle x, z \rangle \in R^{t+s})$
- $\Rightarrow \langle x,z \rangle \in R \cup R^2 \cup \dots$

从而证明了 $R \cup R^2 \cup ...$ 是传递的.

依据定义, t(R)为包含R 且具有传递性的最小集合。

```
【例7.5.1】 设A = \{1, 2, 3\}, R_1 = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle
                                                   \langle 1, 3 \rangle, \langle 1, 1 \rangle }, R_2 = \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle \},
                                R_3=\{\langle 1,2\rangle \},求它们的闭包。
解 r(R_1)=I_A\cup R
                                            =\{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle,
                                                  \langle 1, 3 \rangle
                                                    s(R_1)=R\cup R^{-1}
                                   =\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,1\rangle,\langle 1,1\rangle\}
                                                     t(R_1)=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,1\rangle,\langle 2,2\rangle,
                                                                                                                                                                                    \langle 1,3 \rangle, \langle 2,3 \rangle }
```

$$r(R_{2}) = I_{A} \cup R$$

$$= \{ \langle 1, 1 \rangle , \langle 2, 2 \rangle , \langle 3, 3 \rangle , \langle 1, 2 \rangle , \langle 2, 1 \rangle \}$$

$$s(R_{2}) = R \cup R^{-1} = \{ \langle 1, 2 \rangle , \langle 2, 1 \rangle \} = R_{2}$$

$$t(R_{2}) = \{ \langle 1, 2 \rangle , \langle 2, 1 \rangle , \langle 1, 1 \rangle , \langle 2, 2 \rangle \}$$

$$r(R_{3}) = I_{A} \cup R = \{ \langle 1, 2 \rangle , \langle 1, 1 \rangle , \langle 2, 2 \rangle , \langle 3, 3 \rangle \}$$

$$s(R_{3}) = R \cup R^{-1} = \{ \langle 1, 2 \rangle , \langle 2, 1 \rangle \}$$

$$t(R_{3}) = \{ \langle 1, 2 \rangle \} = R_{3}$$

2. 矩阵表示和图表示

矩阵表示:

设关系 R, r(R), s(R), t(R)的关系矩阵分别为 M, M_r , M_s 和 M_t , 则 $M_r = M + E$ $M_s = M + M'$ $M_t = M + M^2 + M^3 + \dots$

其中 E 是和 M 同阶的单位矩阵, M'是 M 的转置矩阵.

注意在上述等式中矩阵的元素相加时使用逻辑加.

图表示方法:

设关系 R, r(R), s(R), t(R)的关系图分别记为 G, Gr, Gs, Gt, 则 Gr, Gs, Gt 的 顶点集与 G 的顶点集相等. 除了 G 的边以外,以下述方法添加新的边. 考察 G 的每个顶点,如果没有环就加上一个环. 最终得到的是 Gr. r(R) 考察 G 的每一条边,如果有一条 xi 到 xj 的单向边, $i \neq j$,则在 G 中加一条 xi 到 xi 的反方向边. 最终得到 Gs. s(R) 考察 G 的每个顶点 xi,找从 xi 出发的所有 2 步,3 步,…,n 步长的路径 (n 为 G 中的顶点数).设路径的终点为 xj1,xj2,...,xjk,如果没有从 xi 到 xjl (l=1,2,...,k)的边,就加上这条边. 当检查完所有的顶点后就得到图 Gt. t(R)

因为在R的关系图中,任意两个顶点之间不含回路的路 径最多n步长,而含有回路的路径不会产生新的路径。

【例7.5.2】设R是集合A={a,b,c,d}上的二元关系 $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle\}$ 。求R的闭包: r(R)、s(R)、t(R),并画出对应的关系图。 $\langle b, b \rangle$, $\langle c, c \rangle$, $\langle d, d \rangle$ $s(R)=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle c,b\rangle,$ $\langle d, c \rangle$ } $t(R)=\{\langle a,b\rangle, \langle b,a\rangle, \langle b,c\rangle, \langle c,d\rangle, \langle a,a\rangle,$ $\langle a,c\rangle$, $\langle b,b\rangle$, $\langle b,d\rangle$, $\langle a,d\rangle$ } 其对应的关系图分别如图7.5.1(a)、(b)、(c)所示。

图 7.5.1

练习 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,b\rangle\}$, R 和 r(R), s(R), t(R)的关系图如下图所示.

从以上讨论可以看出,传递闭包的求取是很复杂的。但是,当集合A为有限集时,A上二元关系的传递闭包的求取便可大大简化。

推论 A为非空有限集合,|A|=n。R是A上的关系,则存在正整数 $k \le n$,使得

$$t(R)=R^{+}=R\cup R^{2}\cup ...\cup R^{k}$$

 $M_{t}=M+M^{2}+...+M^{k}$

因为在R的关系图中,任意两个顶点之间不含回 路的路径最多n步长 补充:设A={1,2,3,4,5}, A中关系R={<1,2>,<2,3>,<4,5>,<5,2>}, 求t(R)

解: $R^2=\{<1,3>,<4,2>,<5,3>\}$

 $R^3 = \{ <4, 3> \}$

 $R^4 = \Phi \qquad R^k = \Phi, k > 4$

 $t(R) = R \cup R^2 \cup R^3 \cup R^4$

={<1, 2>, <2, 3>, <4, 5>, <5, 2>, <1, 3>, <4,2>,<5, 3>,<4, 3>} 下列算法是求取R+的有效算法。

Warshall(沃夏尔) 算法: 设R为有限集A上的二元关系,|A|=n,M为R的关系矩阵,可如下求取R+的关系矩阵 W。

- (1) 置 W为M。
- (2) 置*i*=1。
- (3) 对所有j, $1 \leq j \leq n$, 做

- ① 如果W[j,i]=1,则对每-k=1,2,...,n, 置W[j, k]为 $W[j, k] \lor W[i, k]$,即当第j行、 第i列为1时,对第j行每个分量重新置值,取其
 - ②否则对下一j值进行①。

当前值与第i行的同列分量之析取。把i看成组带元素,当前值与第i行的同列分量之析取。把i看成组带元素,当W[j,i]·W[i,k]=1时,那么 从j到k的路径可以经过i, W[j,k]=1,即复合结果会包含 序偶<j,k>。

- (4) 置i为i+1(遍历所有"纽带"元素)。
- (5) 若*i*≤*n*, 回到步骤(3), 否则停止。

```
for i \leftarrow 1 to n do
   for j \leftarrow 1 to n do
        for k \leftarrow 1 to n do
                if W[j, i] == 1 then
                     W[j,k] = W[j,k] \vee W[i,k]
最后两行代码也等价于
 W[j,k] = W[j,k] \lor (W[j,i] \cdot W[i,k])
```

• 原理

- 第i个循环中,将第i个结点看成<mark>纽带</mark>结点,对于任意两个结点(遍历*j*, *k*)之间,统计关系图中只经过{*x*₁,*x*₂,...,*x*_i}中结点的路径。这些路径分为两类:
 - (1) 只经过 $\{x_1, x_2, ..., x_{i-1}\}$ 的路径,即W[j, k] = 1(已经为1)
 - (2) 经过组带结点i, 即*W*[*j*, *i*] · *W*[*i*, *k*]

两类路径取并集: $W[j,k] = W[j,k] \lor (W[j,i] \cdot W[i,k])$

- 通过遍历*i*,从而统计关系图中经过越来越大结点集合的路径(**因** 此*i* 是最外面的循环),当遍历*i=n*后,即得到所有可能的路径。

```
【例4.5.3】 设A=\{1, 2, 3, 4\} , R=\{\langle 1, 1 \rangle ,
    \langle 1, 2 \rangle , \langle 2, 3 \rangle , \langle 3, 4 \rangle , \langle 4, 2 \rangle }, 则
R^2 = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 4 \rangle, 
     \langle 3, 2 \rangle, \langle 4, 3 \rangle }
R^{3}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,
        \langle 2,2\rangle, \langle 3,3\rangle, \langle 4,4\rangle
R^{4}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,
        \langle 2,3\rangle, \langle 3,4\rangle, \langle 4,2\rangle }
```

因此
$$R^{+}=R\cup R^{2}\cup R^{3}\cup R^{4}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle,\langle 4,2\rangle,\langle 4,3\rangle,\langle 4,4\rangle\}$$

现用Warshall算法求取R+。

显然,
$$M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

以下使用Warshall算法求具

(1) W以M为初值。

- (2) 当i=1时,由于 W中只有W[1,1]=1,故需将第一行各元素与其本身作逻辑和,并把结果送第一行。即重新置值为 W[1,k] \vee W[1,k] = W[1,k],但 W事实上无改变。
- (3) 当i=2时,由于 W [1, 2] = W [4, 2] = 1, 故需将第一行和第四行各分量重新置值为 W [1, k] \vee W [2, k] 和 W [4, k] \vee W [2, k] 。于是有:

$$W = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

(4) 当i=3时,由于 W[1, 3]=W[2, 3]=W[4, 3]=1,故需将第一、二、四行各分量重新置值,分别为 $W[1, k] \vee W[3, k]=W[1, k]$, $W[2, k] \vee W[3, k]=W[2, k]$, $W[4, k] \vee W[3, k]=W[3, k]$ 。 于是有:

$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

(5) 当i=4时,由于W[1, 4]=W[2, 4]=W[3, 4] = W[4, 4] = 1, 故需将第一、二、三、四行各分量重新置值,分别为W[1,k] $\vee W [4, k] = W [1, k], W [2, k] \vee W$ $[4, k] = W[2, k], W[3, k] \vee W[4, k]$ =W [3, k], W [4, k] \vee W [4, k] = W[4, k]。最终W为

$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

故
$$R^{+}$$
={ $\langle 1, 1 \rangle$, $\langle 1, 2 \rangle$, $\langle 1, 3 \rangle$, $\langle 1, 4 \rangle$, $\langle 2, 2 \rangle$, $\langle 2, 3 \rangle$, $\langle 2, 4 \rangle$, $\langle 3, 2 \rangle$, $\langle 3, 3 \rangle$, $\langle 3, 4 \rangle$, $\langle 4, 2 \rangle$, $\langle 4, 3 \rangle$, $\langle 4, 4 \rangle$ }。

下面几个定理给出了闭包的主要性质。

定理 7.11 设R是集合A上任一关系,那么

- (1) R自反当且仅当R=r(R)。
- (2) R对称当且仅当R=s(R)。
- (3) R传递当且仅当R=t(R)。

证明(1)、(3)的证明留给读者,现证(2)。(2)的充分性由s(R)定义立得。

为证必要性,设R对称,那么 $R=R^{-1}$ 。 另一方面, $s(R)=R\cup R^{-1}=R\cup R=R$,故s(R)=R。

定理7.12 对非空集合A上的关系 R_1 、 R_2 ,若 $R_1 \subseteq R_2$,则

- $(1) \quad r(R_1) \subseteq r(R_2)$
- $(2) \quad s(R_1) \subseteq s(R_2)$
- $(3) \quad t(R_1) \subseteq t(R_2)$

证明 (1) 和 (2) 的证明留作练习,下面仅证明 (3) 。 因为 $t(R_2)$ 传递,且 $R_2 \subseteq t(R_2)$,但 $R_1 \subseteq R_2$,故 $R_1 \subseteq t(R_2)$ 因 $t(R_1)$ 是包含 R_1 的最小传递关系,所以 $t(R_1) \subseteq t(R_2)$ 。

定理对非空集合A上的关系 R_1 、 R_2 ,则

(1)
$$r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$$

(2)
$$s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$$

$$(3) \quad t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$$

证明 (1) 和 (2) 的证明留作练习,下面仅证明(3)。 因为 $R_1 \subset R_1 \cup R_2$,由定理7.12知

$$t(R_1) \subseteq t(R_1 \cup R_2)$$

同理
$$t(R_2) \subseteq t(R_1 \cup R_2)$$

所以
$$t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$$

定理7.13设R是集合A上任意二元关系,则

- (1) 如果R是自反的,那么s(R)和t(R)都是自反的。
- (2) 如果R是对称的,那么r(R)和t(R)都是对称的。
 - (3) 如果R是传递的,那么r(R)是传递的。

证明

- (1) 是显然的。
- (2) 由于
- $r(R)^{-1}=(I_A \cup R)^{-1}=I_A^{-1} \cup R^{-1}=I_A \cup R=r(R)$, 故r(R)是对称的。 另外,由于对任意自然数n,

 $(R^{n})^{-1}=(R^{-1})^{n}$,又由于R对称, 故 $(R^{n})^{-1}=R^{n}$ 。 因此,对任意 $\langle x, y \rangle \in t(R)$,总有i使 $\langle x, y \rangle \in R^{i}$, 从而 $\langle y, x \rangle \in (R^{i})^{-1}=R^{i}$, 即 $\langle y, x \rangle \in t(R)$ 。 故t(R)对称。

 $t(R)=R\cup R^2\cup ...$

(3) 本式证明留给读者。请注意,R传递并不保证s(R)传递。例如, $R=\{\langle a,b\rangle\}$ 是传递的,但是 $s(R)=\{\langle a,b\rangle$, $\langle b,a\rangle$ }却不是传递的。

定理 7.14 设R为集合A上的任一二元关系,那么

$$(1) rs(R) = sr(R)$$

(2)
$$rt(R) = tr(R)$$

$$(3)$$
 $st(R) \subseteq ts(R)$

证明

(1)
$$sr(R) = s(I_A \cup R) = I_A \cup R \cup (I_A \cup R)^{-1}$$

= $I_A \cup R \cup R^{-1} = I_A \cup s(R) = rs(R)$

(2) 易证
$$(I_A \cup R)^n = I_A \cup \bigcup_{i=1}^n R^i$$

可以采用数学归纳法证明

对一切正整数n均成立, 于是

$$tr(R) = t(I_A \cup R) = \bigcup_{i=1}^{\infty} (I_A \cup R)^i$$

$$= \bigcup_{i=1}^{\infty} (I_A \cup \bigcup_{j=1}^{i} R^j)$$

$$= I_A \cup \bigcup_{i=1}^{\infty} R^i$$

$$= I_A \cup t(R) = rt(R)$$

(3) 由定理7.12可知, 任一闭包运算 Δ 和任意二元关系 R_1 、 R_2 ,如果 $R_1 \subseteq R_2$,那么 $\Delta(R_1) \subseteq \Delta(R_2)$; 又据闭包定义,对任意二元关系R有R \subseteq s(R),故t(R) \subseteq ts(R),st(R) \subseteq sts(R) = ts(R) (由定理7.13,ts(R)是对称的,所以sts(R)=ts(R) (定理7.11))。于是可得到 $st(R) \subseteq ts(R)$

【例7.5.4】 设R是集合X上的二元关系,X={a, b, c},R={ $\langle a, b \rangle$, $\langle b, c \rangle$ }。求st(R)和ts(R),并画出关系图。

解
$$t(R) = \{ \langle a, b \rangle , \langle b, c \rangle , \langle a, c \rangle \}$$
 $st(R) = \{ \langle a, b \rangle , \langle b, c \rangle , \langle a, c \rangle , \langle b, a \rangle ,$ $\langle c, b \rangle , \langle c, a \rangle \}$ $s(R) = \{ \langle a, b \rangle , \langle b, c \rangle , \langle b, a \rangle , \langle c, b \rangle \}$ $ts(R) = \{ \langle a, b \rangle , \langle b, c \rangle , \langle b, a \rangle , \langle c, b \rangle , \langle a, c \rangle ,$ $\langle a, a \rangle , \langle b, b \rangle , \langle c, a \rangle , \langle c, c \rangle \}$ $st(R)$ 和 $ts(R)$ 的关系图分别如图7.5.2(a)、(b)所示。

 $st(R) \subseteq ts(R)$

图 7.5.2

课后作业

- 21
- 22
- 24 R₁-R₂对自反性的封闭性、R₁UR₂对反对称性和传递性的封闭性分别给出反例。
- 25
- 29
- 30