ĐỀ ÔN TẬP Môn thi:

Thời gian: phút Mã đề: 001

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn.

Câu 1. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị f'(x) như hình vẽ. Số điểm cực tiểu của hàm số y = f(x) là

A. 3.

B. 2.

C. 1.

D. 0.

Lời giải.

Hàm số đạt cực tiểu tại các điểm x = -2, x = 3.

Chọn đáp án B □

Câu 2. Tìm giá trị lớn nhất của hàm số $y = \ln(x^2 + 4x + 7)$ trên đoạn [-3; 3].

A. ln 39.

B. ln 3.

C. ln 7.

D. ln 28.

Lời giải.

$$y' = \frac{2x + 4}{x^2 + 4x + 7}.$$

$$y' = 0 \Rightarrow x = -2.$$

$$f(-3) = \ln(4), f(-2) = \ln(3), f(3) = \ln(28).$$

Vậy giá trị lớn nhất của hàm số $y = \ln(x^2 + 4x + 7)$ trên đoạn [-3; 3] bằng ln (28).

Câu 3. Cho hình lập phương ABCD.A'B'C'D' có độ dài cạnh bằng 10a. Tính độ dài vecto $\vec{x} = \overrightarrow{A'B'} + \overrightarrow{A'D'}$ theo a.

A. 20a.

B. 40a.

C. $10\sqrt{2}a$.

D. $10\sqrt{3}a$.

Lời giải.

$$|\vec{x}| = |\overrightarrow{A'B'} + \overrightarrow{A'D'}| = |\overrightarrow{A'C'}| = 10a. \sqrt{2} = 10 \sqrt{2}a.$$

Câu 4. Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vecto $\overrightarrow{A'B'}$ và \overrightarrow{BC} bằng

A. 90° .

B. 60° .

C. 120°.

D. 45°.

Lời giải.

Góc $(\overrightarrow{A'B'}, \overrightarrow{BC}) = 90^{\circ}$.

Câu 5. Cho hai vecto \overrightarrow{m} và \overrightarrow{b} thỏa mãn $|\overrightarrow{m}| = 5$, $|\overrightarrow{b}| = 4$ và \overrightarrow{m} . $|\overrightarrow{b}| = 4$. Tính $|5\overrightarrow{m} - \overrightarrow{b}|$.

A. $\sqrt{601}$.

B. $\sqrt{661}$.

C. $\sqrt{21}$.

Lời giải.

$$|5\overrightarrow{m} - \overrightarrow{b}|^2 = (5\overrightarrow{m} - \overrightarrow{b})^2 = 25\overrightarrow{m}^2 - 10\overrightarrow{m}\overrightarrow{b} + \overrightarrow{b}$$

= 25.5² - 10.4 + 1.4² = 601.

Suy ra $|5\overrightarrow{m} - \overrightarrow{b}| = \sqrt{601}$.

Chon đáp án A

Câu 6. Trong hệ trục tọa độ Oxyz, cho hai vécto $\overrightarrow{d} = (7 - m; -6; -1)$ và $\overrightarrow{w} = (5; 8m; -6)$. Tìm các giá tri của m để vecto \overrightarrow{d} và vecto \overrightarrow{w} vuông góc.

A. $m = \frac{7}{9}$. **B.** $m = \frac{306}{53}$. **C.** $m = \frac{29}{9}$. **D.** $m = \frac{41}{53}$.

Lời giải.

 $\overrightarrow{d} \perp \overrightarrow{w} \Leftrightarrow \overrightarrow{d} \cdot \overrightarrow{w} = 0 \Leftrightarrow (7 - m).5 + (-6)(8m) + (-1).(-6) = 0 \Leftrightarrow m = \frac{41}{53}.$

Câu 7. Trong hê truc toa đô Oxyz, cho hai vécto $\overrightarrow{u}(6; -3; -1)$ và $\overrightarrow{c}(4; -6; -5)$. Toa đô vecto $4\overrightarrow{u} - 6\overrightarrow{c}$

A. (-32; 24; 29) . **B.** (0; 24; 26) .

C. (28; 12; -9). **D.** (10; -9; -6).

Lời giải.

 $4\vec{u} - 6\vec{c} = (0; 24; 26).$

....... Chon đáp án (B)

Câu 8. Trong không gian với hê toa đô Oxyz, cho các điểm A(2; 8; -9), B(7; 9; -14) và C(10; -12; -10). Tìm tọa độ điểm *I* sao cho *ABCI* là hình bình hành.

A. (19;5;-33). **B.** (-15;11;15). **C.** (-1;29;-13). **D.** (5;-13;-5).

Lời giải.

ABCI là hình bình hành khi $\overrightarrow{AB} = \overrightarrow{IC}$. Suy ra: I = (10 + 2 - 7; -12 + 8 - 9; -10 - 9 + 14) = (5; -13; -5).

Câu 9. Cho mẫu số liêu ghép nhóm về điểm thi và số người dư thi như sau:

Điểm thi	[0;3,5)	[3,5;7)	[7; 10,5)	[10,5;14)	[14; 17,5)
Số người dự thi	3	19	17	8	6

Khoảng biến thiên của mẫu số liêu ghép nhóm là.

A. 7, 0.

B. 9.

C. 17, 5.

D. 8,0.

Lời giải.

Khoảng biến thiên của mẫu số liệu ghép nhóm là: 17, 5 - 0, 0 = 17, 5

Câu 10. Cho mẫu số liệu ghép nhóm về lương(triệu đồng) và số nhân viên như bảng sau. Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho.

Lương(triệu đồng)	[7;12)	[12;17)	[17;22)	[22;27)	[27;32)	[32;37)
Số nhân viên	5	3	13	9	15	4

A. 10, 62.

B. 5,31.

C. 5, 31.

D. 19,63.

Lời giải.

Tổng tần số là: N = 49.

Tìm tứ phân vị Q_1 :

Bước 1: Xác định vị trí của Q_1 : Q_1 nằm ở vị trí $\frac{49}{4} = 12.2$.

Bước 2: Xác định lớp chứa Q_1 : Tính tần số tích lũy từ lớp đầu tiên đến khi đạt hoặc vượt qua vị trí của Q_1 ta được lớp [17; 22).

Bước 3: Xác định các thông số của công thức tính Q_1 .

Cận dưới của lớp [17; 22) chứa Q_1 : L = 17

Tổng tần số của các lớp trước lớp chứa Q_1 : F = 8

Tần số của lớp chứa Q_1 : f = 13.

Độ rộng lớp chứa Q_1 : h = 22 - 17 = 5.

Áp dụng công thức: $Q_1 = L + \left(\frac{\frac{N}{4} - F}{f}\right) . h = 17 + \left(\frac{\frac{49}{4} - 8}{13}\right) . 5 = \frac{969}{52}.$

Tìm tứ phân vị Q_3 :

Bước 1: Xác định vị trí của Q_3 : Q_3 nằm ở vị trí $\frac{3.49}{4} = 36.8$.

Bước 2: Xác định lớp chứa Q_3 : tính tần số tích lũy từ lớp đầu tiên đến khi đạt hoặc vượt qua vị trí của Q_3 ta được lớp [27; 32).

Bước 3: Xác định các thông số của công thức tính Q_3 .

Cận dưới của lớp [27; 32) chứa Q_3 : L = 27

Tổng tần số của các lớp trước lớp chứa Q_3 : F = 30

Tần số của lớp chứa Q_3 : f = 15.

Độ rộng lớp chứa Q_3 : h = 32 - 27 = 5.

Áp dụng công thức: $Q_3 = L + \left(\frac{\frac{3N}{4} - F}{f}\right) \cdot h = 27 + \left(\frac{\frac{3.49}{4} - 30}{15}\right) \cdot 5 = \frac{117}{4}$.

Khoảng tứ phân vị là: $\Delta_Q = \frac{117}{4} - \frac{969}{52} = \frac{138}{13} = 10,62.$

Chọn đáp án A

Câu 11. Một đường tròn có bán kính bằng 15 cm. Cung trên đường tròn đó có số đo là 260° thì có độ dài bằng

	65π			
A.	0	•		

B.
$$\frac{65\pi}{3}$$
.

C.
$$\frac{65\pi}{6}$$
.

D.
$$\frac{221\pi}{9}$$
.

Lời giải.

Độ dài của cung tròn là: $l = \frac{15.260}{180} \pi = \frac{65\pi}{3}$.

Chon đáp án (B) ...

Câu 12. Tìm các giá trị của tham số m để phương trình $6 \sin 2x + 3 - m = 0$ có nghiệm.

A.
$$6 \le m \le 3$$
.

B.
$$-3 \le m \le 9$$
.

C.
$$-3 \le m \le 9$$
. **D.** $3 \le m \le 9$.

D.
$$3 < m < 9$$
.

 $6\sin 2x + 3 - m = 0 \Rightarrow \sin 2x = \frac{m-3}{6}$ có nghiệm khi $-1 \le \frac{m-3}{6} \le 1$ \Rightarrow $-6 \le m - 3 \le 6 \Rightarrow -3 \le m \le 9$.

Chon đáp án B

Câu 13. Cho $a = \log 2$, $b = \log 5$. Hãy biểu diễn $\log_{400} 640$ theo a và b.

A.
$$P = \frac{7b}{4a+5}$$
.

A.
$$P = \frac{7b}{4a+5}$$
. **B.** $P = \frac{7b+2}{4a}$. **C.** $P = \frac{b-7}{4a-4}$. **D.** $P = \frac{b+7a}{4a+2b}$.

C.
$$P = \frac{b-7}{4a-4}$$

D.
$$P = \frac{b + 7a}{4a + 2b}$$

$$P = \log_{400} 640 = \frac{\log(5.2^7)}{\log(2^4.5^2)} = \frac{\log 5 + \log 2^7}{\log 2^4 + \log 5^2} = \frac{b + 7a}{4a + 2b}.$$

Chọn đáp án (D)

Câu 14. Nghiệm của phương trình $\log_5(-6x - 1) - \log_5(2x + 6) = 2$ là.

A.
$$x = \frac{129}{56}$$
.

B.
$$x = -\frac{151}{56}$$
. **C.** $x = \frac{73}{56}$. **D.** $x = \frac{185}{56}$.

C.
$$x = \frac{73}{56}$$
.

D.
$$x = \frac{185}{56}$$

Điều kiện: -6x - 1 > 0 và 2x + 6 > 0.

$$\log_5(-6x - 1) - \log_5(2x + 6) = 2 \Leftrightarrow \log_5 \frac{-6x - 1}{2x + 6} = 2 \Leftrightarrow \frac{-6x - 1}{2x + 6} = 5^2$$

$$\Leftrightarrow -6x - 1 = 25(2x + 6) \Leftrightarrow x = -\frac{151}{56}.$$

Kết hợp điều kiện ta được $x = -\frac{151}{56}$

Câu 15. Trong các dãy số (u_n) được cho bởi số hạng tổng quát u_n sau, dãy nào là cấp số cộng

A.
$$u_n = 2^n$$
.

B.
$$u_n = 6n + 6$$
.

C.
$$u_n = 2^{n+1}$$
.

D.
$$u_n = n^2 - 1$$
.

 $u_n = 6n + 6$ là số hạng tổng quát của cấp số cộng vì có $u_{n+1} - u_n = 6$.

Chon đáp án (B)

Câu 16. Cho hàm số $f(x) = \begin{cases} 3x^2 + x + 3 \text{ khi } x \ge 1 \\ 11 - 3x \text{ khi } x < 1 \end{cases}$. Tìm khẳng định đúng.

A. Hàm số liên tục tại x = 1.

B. Hàm số liên tục tại mọi $x \in \mathbb{R}$.

C. Hàm số không liên tục tại x = 3.

D. Hàm số không liên tục tại x = 1.

Lời giải.

Chon đáp án (D)

Câu 17. Cho hình chóp S.ABCD có đáy là hình chữ nhật, $SD \perp (ABCD)$. Biết DA = 2a, DC = 5a. Gọi G là điểm thuộc cạnh SB sao cho SG = 3GB. Tính khoảng cách từ điểm G đến mặt phẳng (SDA).

A. $\frac{3}{2}a$.

B. $\frac{15}{4}a$.

C. 15a.

D. $\frac{8}{3}a$.

Lời giải.

Vì $BA \perp DA$, $BA \perp SD \Rightarrow BA \perp (SDA)$. Suy ra d(B, (SDA)) = BA = 5a.

$$\frac{d(G,(SDA))}{d(B,(SDA))} = \frac{SG}{SB} = \frac{3}{4} \Rightarrow d(G,(SDA)) = \frac{3}{4}d(B,(SDA)) = \frac{3}{4}5a = \frac{15}{4}a.$$

Chọn đáp án B

Câu 18. Một thư viện có 6 cuốn truyện khoa học viễn tưởng và 10 cuốn truyện cổ tích, các cuốn truyện là khác nhau. Chọn ngẫu nhiên 5 cuốn truyện từ thư viện. Tính xác suất của biến cố "Cả 5 cuốn truyện được chọn đều cùng thể loại truyện".

A. $\frac{43}{87360}$.

B. $\frac{1}{728}$.

C. $\frac{3}{52}$.

D. $\frac{43}{728}$.

Lời giải.

Số cách chọn 5 cuốn truyện là: $C_{16}^5 = 4368$.

Số cách chọn 5 cuốn truyện từ cuốn truyện khoa học viễn tưởng là: $C_6^5 = 6$.

Số cách chọn 5 cuốn truyện từ cuốn truyện cổ tích là: $C_{10}^5 = 252$.

Xác suất cần tính là: $P = \frac{6 + 252}{4368} = \frac{43}{728}$

Câu 19. Từ các chữ số {0, 1, 3, 5, 6, 7, 8, 9} có thể lập được bao nhiều số tự nhiên gồm 5 chữ số khác nhau?

A. 56.

B. 6721.

C. 6720.

D. 5880.

Lời giải.

Gọi $\overline{a_1 a_2 a_3 a_4 a_5}$ là số cần lập. Chọn $a_1 \neq 0$ có 7 cách. Mỗi cách chọn một bộ a_2, a_3, a_4, a_5 là một chỉnh hợp chập 4 của 7 phần tử. Số cách lập là: $7.A_7^4 = 5880$.

Chọn đáp án D

PHẦN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho bảng số liệu ghép nhóm về điểm thi và số người dự thi như hình dưới đây. Xét tính đúng-sai của các khẳng đinh sau:

Điểm thi	[2;4,5)	[4,5;7)	[7;9,5)	[9,5;12)	[12; 14,5)	[14,5;17)
Số người dự thi	4	1	11	4	13	2

Xét tính đúng sai của các khẳng định sau.

Phát biểu	Đúng	Sai
a) Khoảng biến thiên của mẫu số liệu là 15.0.	X	
b) Tứ phân vị thứ nhất bằng 7,85.	X	
c) Tứ phân vị thứ ba bằng 13,20.	X	
d) Khoảng tứ phân vị bằng 6,35.		X

Lời giải.

a) Khẳng định đã cho là khẳng định đúng.

Khoảng biến thiên của mẫu số liệu là: 17.0 − 2.0.

b) Khẳng định đã cho là khẳng định đúng.

Tìm tứ phân vị Q_1 :

Tổng tần số là: N = 35.

Bước 1: Xác định vị trí của Q_1 : Q_1 nằm ở vị trí $\frac{35}{4} = 8.8$.

Bước 2: Xác định lớp chứa Q_1 : Tính tần số tích lũy từ lớp đầu tiên đến khi đạt hoặc vượt qua vị trí của Q_1 ta được lớp [7.0; 9.5).

Bước 3: Xác định các thông số của công thức tính Q_1 .

Cận dưới của lớp [7.0; 9.5) chứa Q_1 : L = 7.0

Tổng tần số của các lớp trước lớp chứa Q_1 : F = 5

Tần số của lớp chứa Q_1 : f = 11.

Độ rộng lớp chứa Q_1 : h = 9.5 - 7.0 = 2.5.

Ap dụng công thức:
$$Q_1 = L + \left(\frac{\frac{N}{4} - F}{f}\right) . h = 7.0 + \left(\frac{\frac{35}{4} - 5}{11}\right) . 2.5 = 7,85.$$

c) Khẳng định đã cho là khẳng định đúng.

Tìm tứ phân vị Q_3 :

Tổng tần số là: N = 35.

Bước 1: Xác định vị trí của Q_3 : Q_3 nằm ở vị trí $\frac{3.35}{4} = 26.2$.

Bước 2: Xác định lớp chứa Q_3 : tính tần số tích lũy từ lớp đầu tiên đến khi đạt hoặc vượt qua vị trí của Q_3 ta được lớp [12.0; 14.5).

Bước 3: Xác định các thông số của công thức tính Q_3 .

Cận dưới của lớp [12.0; 14.5) chứa Q_3 : L = 12.0

Tổng tần số của các lớp trước lớp chứa Q_3 : F = 20

Tần số của lớp chứa Q_3 : f = 13.

Độ rộng lớp chứa Q_3 : h = 14.5 - 12.0 = 2.5.

Ap dụng công thức:
$$Q_3 = L + \left(\frac{3N}{4} - F\right) .h = 12.0 + \left(\frac{3.35}{4} - 20\right) .2.5 = 13, 20.$$

d) Khẳng định đã cho là khẳng định sai.

$$Q_1 = L + \left(\frac{\frac{N}{4} - F}{f}\right).h = 7.0 + \left(\frac{\frac{35}{4} - 5}{11}\right).2.5 = \frac{691}{88}.$$

$$Q_3 = L + \left(\frac{\frac{3N}{4} - F}{f}\right).h = 12.0 + \left(\frac{\frac{3.35}{4} - 20}{13}\right).2.5 = \frac{1373}{104}.$$

Khoảng tứ phân vị là: $\Delta_Q = \frac{1373}{104} - \frac{691}{88} = \frac{765}{143} = 5, 3.$

Chọn đáp án a đúng b đúng c đúng d sai□

Câu 2. Cho hình chóp S.ABC có đáy là tam giác đều, $SC \perp (ABC)$. Biết $CA = 4a, SC = 4\sqrt{5}a$.

Xét tính đúng sai của các khẳng định sau

- a) Góc giữa đường thẳng SA và mặt phẳng (ABC) là \widehat{SAC} .
- **b)** Thể tích của khối chóp đã cho bằng $16\sqrt{15}a^3$.
- c) Góc giữa hai mặt phẳng (SAB) và (ABC) bằng 65,91°.
- **d**) Khoảng cách từ điểm A đến mặt phẳng (SCB) bằng $2\sqrt{3}a$.

Lời giải.

a) Khẳng định đã cho là đúng.

Góc giữa đường thẳng SA và mặt phẳng (ABC) là \widehat{SAC} .

$$\tan \widehat{SAC} = \frac{SC}{CA} = \frac{4\sqrt{5}a}{4a} = \sqrt{5} \Rightarrow \widehat{SAC} = 65,91^{\circ}.$$

b) Khẳng định đã cho là sai

$$V = \frac{1}{3}S_{ABC}.SC = \frac{1}{3}.\frac{16\sqrt{3}}{4}a^2.4\sqrt{5}a = \frac{16\sqrt{15}}{3}a^3$$

c) Khẳng định đã cho là khẳng định sai.

Gọi M là trung điểm của AB, $CM = 2\sqrt{3}a$.

Góc giữa (SAB) và (ABC) là \widehat{SCM} .

$$\tan \widehat{SCM} = \frac{SC}{CM} = \frac{4\sqrt{5}a}{2\sqrt{3}a} = \frac{2\sqrt{15}}{3} \Rightarrow \widehat{SCM} = 68,83^{\circ}.$$

d) Khẳng định đã cho là khẳng định đúng.

Gọi M là trung điểm của CB, $AM = 2\sqrt{3}a$.

$$AM \perp CB, AM \perp SC \Rightarrow AM \perp (SCB).$$

$$d(A, (SCB)) = AM = 2\sqrt{3}a.$$

Chọn đáp án a đúng b sai c sai d đúng

PHẨN III. Câu trắc nghiệm trả lời ngắn.

Câu 1. Cho hàm số $f(x) = \frac{3-5x}{x-m}$ với m là tham số. Tìm số giá trị nguyên của m thuộc khoảng (-80; 80) để hàm số nghịch biến trên khoảng $(-\infty; -10)$.

Lời giải.

Tập xác định: $D = \mathbb{R} \setminus \{m\}$.

$$f'(x) = \frac{5m - 3}{(x - m)^2}.$$

Để hàm số nghịch biến trên khoảng $(-\infty; -10)$ thì:

$$\begin{cases} 5m - 3 < 0 \\ m \notin (-\infty; -10) \end{cases} \Leftrightarrow \begin{cases} m < \frac{3}{5} \\ m \ge -10 \end{cases} \Rightarrow -10 \le m < \frac{3}{5}.$$

Số các số nguyên là: 11.

Câu 2. Tại một xí nghiệp chuyên sản xuất vật liệu xây dựng, nếu trong một ngày xí nghiệp sản xuất $x(m^3)$ sản phẩm thì phải bỏ ra các khoản chi phí bao gồm: 7 triệu đồng chi phí cố định; 0,6 triệu đồng chi phí cho mỗi mét khối sản phẩm và $0,003x^2$ triệu đồng chi phí bảo dưỡng máy móc. Biết rằng, mỗi ngày xí nghiệp sản xuất được tối đa $65 m^3$ sản phẩm. Tìm chi phí trung bình (triệu đồng) trên mỗi mét sản phẩm thấp nhất mà xí nghiệp cần bỏ ra (làm tròn đến hàng phần trăm). Đáp án: 0

Lời giải.

Đáp án:0,89.

Tổng chi phí (triệu đồng) để xí nghiệp sản xuất $x(m^3)$ sản phẩm trong một ngày là:

 $C(x) = 7 + 0,6x + 0,003x^2 \text{ v\'oi } 0 \le x \le 65.$

Chi phí trung bình (triệu đồng) trên mỗi mét khối sản phẩm là:

Chi phi trung binn (triệu dong) trên môt mết khốt sản phá
$$\overline{C}(x) = \frac{C(x)}{x} = \frac{7 + 0, 6x + 0,003x^2}{x} = \frac{7}{x} + 0, 6 + 0,003x.$$

$$\overline{C}'(x) = -\frac{7}{x^2} + 0,003 = \frac{0,003x^2 - 7}{x^2}.$$

$$\overline{C}'(x) = 0 \Rightarrow x^2 = \frac{7000}{3} \Rightarrow x = \sqrt{\frac{7000}{3}}.$$

Bảng biến thiên:

х	$0 \qquad \sqrt{\frac{7000}{3}}$	+∞
<i>y</i> ′	- 0 +	
у	0.89	+∞

Từ bảng biến thiên ta thấy chi phí trung bình thấp nhất là:

$$\overline{C}(\sqrt{\frac{7000}{3}}) \approx 0,89$$
 đạt được khi $x = \sqrt{\frac{7000}{3}} \approx 48,0.$

Câu 3. Cho hai vecto \overrightarrow{m} và \overrightarrow{n} thỏa mãn $|\overrightarrow{m}| = 1$, $|\overrightarrow{n}| = 1$ và \overrightarrow{m} . $|\overrightarrow{n}| = 0$. Xét hai vecto $|\overrightarrow{x}| = -2\overrightarrow{m} + 2\overrightarrow{n}|$ và $\overrightarrow{y} = -2\overrightarrow{m} - 2\overrightarrow{n}$. Tính $\cos(\overrightarrow{x}, \overrightarrow{y})$ (kết quả làm tròn đến hàng phần mười). Đáp án: 0

$$\overrightarrow{x}.\overrightarrow{y} = (-2\overrightarrow{m} + 2\overrightarrow{n}).(-2\overrightarrow{m} - 2\overrightarrow{n}) = 4\overrightarrow{m}^2 - 4\overrightarrow{n}^2 + 0\overrightarrow{m}.\overrightarrow{n} = 4.1^2 - 4.1^2 + 0.(0) = 0.$$

$$|\overrightarrow{x}| = \sqrt{\overrightarrow{x}^2} = \sqrt{(-2\overrightarrow{m} + 2\overrightarrow{n})^2} = \sqrt{4\overrightarrow{m}^2 + 4\overrightarrow{n}^2 - 8.\overrightarrow{m}.\overrightarrow{n}} = \sqrt{4.1^2 + 4.1^2 - 8.(0)} = 2\sqrt{2}.$$

$$|\overrightarrow{y}| = \sqrt{\overrightarrow{y}^2} = \sqrt{(-2\overrightarrow{m} - 2\overrightarrow{n})^2} = \sqrt{4\overrightarrow{m}^2 + 4\overrightarrow{n}^2 + 8.\overrightarrow{m}.\overrightarrow{n}} = \sqrt{4.1^2 + 4.1^2 + 8.(0)} = 2\sqrt{2}.$$

$$\cos(\overrightarrow{x}, \overrightarrow{y}) = \frac{\overrightarrow{x}.\overrightarrow{y}}{|\overrightarrow{x}|.|\overrightarrow{y}|} = \frac{0}{2\sqrt{2}.2\sqrt{2}} \approx 0$$

Đáp án: 0

Đáp án: $0 \dots$

Câu 4. Trong không gian Oxyz, cho điểm $N(\frac{5}{2}; -3; -5)$. Biết điểm A thuộc trục Oy và điểm B thuộc mặt phẳng (Oxz) sao cho N là trung điểm của đoạn thẳng AB. Gọi G(m;n;p) là trung điểm của BN. Tính m + n + p (kết quả làm tròn đến hàng phần mười). Đáp án:

Lời giải.

Goi A(0; a; 0), B(b; 0; c).

Vì N là trung điểm của đoạn thẳng AB nên $\begin{cases} \frac{b}{2} = \frac{5}{2} \\ \frac{a}{2} = -3 \implies a = -6, b = 5, c = -10. \\ \frac{c}{2} = -5 \end{cases}$

Suy ra B(5; 0; -10).

G là trung điểm của $BN \Rightarrow G(\frac{15}{4}; -\frac{3}{2}; -\frac{15}{2}).$ $m+n+p=\frac{15}{4}-\frac{3}{2}-\frac{15}{2}=-\frac{21}{4}.$

$$m+n+p=\frac{15}{4}-\frac{3}{2}-\frac{15}{2}=-\frac{21}{4}.$$

Đáp án: -5,2

Câu 5. Cho mẫu số liệu ghép nhóm về cân nặng(kg) và số người như sau:

Cân nặng(kg)	[35;41)	[41;47)	[47;53)	[53;59)	[59;65)	[65;71)
Số người	24	32	5	4	33	15

Tính phương sai của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần mười). Đáp án: 123,7 Lời giải.

Các giá trị đại diện của mẫu số liệu là: 38; 44; 50; 56; 62; 68

Tổng tần số là: n = 113

Số trung bình của mẫu số liệu ghép nhóm là:
$$\overline{x} = \frac{38.24 + 44.32 + 50.5 + 56.4 + 62.33 + 68.15}{113} = 51,86.$$

Phương sai của mẫu số liệu ghép nhóm là:

$$S^2 = \frac{1}{113}(38.24^2 + 44.32^2 + 50.5^2 + 56.4^2 + 62.33^2 + 68.15^2) - 51,86^2 = 123,7.$$
Đán án: 123.7

Đáp án: 123,7

—HÉТ—