10/594656 IAP2 Rec'd PCT/PTO 27 SEP 2006 PCT/IB2005/051145

•

Probe and system for extracting gases from a process environment .

The present invention relates in general to systems for the regulation and control of chemical processes which involve the production of gas, for example processes of combustion.

Systems are known for the extraction of gases from a furnace, provided with probes to be mounted within the furnace, in which the gases extracted are conveyed to analyser devices.

For the extraction of the gases such systems utilise a small pump of low power and low pressure, in suction (through the probe). This implies treating the gases hot/moist, giving rise to corrosive acids which attack the couplings, the tubes and the various components involved in the flow of gas, aggravating the situation. For the purpose of avoiding the precipitation of condensate in the system (because it draws in hot/moist gas), it is necessary to heat the aspiration tube, the filter and the tube but with declining results (problems of packing, acids etc).

The probes further have serious problems of blockage of the gas aspiration tube, which make operation unreliable.

Moreover, in traditional probes the filtering of dust is achieved solely by the filter which is overloaded and becomes clogged. The cleaning of the probe is achieved by a washing cycle with compressed air (programmable) but often it is insufficient fully to restore it and, moreover, this introduces contamination into the gas to be analysed.

Because of these problems the values of the furnace gas analysis are approximate and irregular, leading to a misunderstanding of a correct management of the line, especially in the presence of alternative fuels. With these latter, even the best probes currently in commercial use show their limits. Only by meticulous and continuous surveillance and maintenance by man is it possible to obtain results, which even then are only just sufficient.

One object of the invention is that of providing a probe for extracting a gaseous fluid to be analysed the extraction of gases from a process environment which is able to prevent or at least reduce the occurrence of clogging of the probe, that is to say to guarantee continuity of use without continual maintenance interventions (with improvements in the gas extraction system and reliability of the analysis).

This object is achieved according to the invention by a probe special fold to be analysed for extracting of gases from a process environment having the characteristics defined in Claim 1.

Preferred embodiments for the probe are defined in the dependent claims.

Another object of the invention is that of providing a system existing and re-injecting a gaseous fluid and to having for the extraction of gases from a process environment, which the characteristics defined in Claim 12 reduces in the most complete manner the ingress of dust and condensate through the probe, as well as guaranteeing continuity and reliability of the analysis.

This object is achieved according to the invention by a system for extracting gases from a process environment, having the characteristics defined in Claim 11.

GB-A-1 445 061, US-A-4 336 722, DE 44 30 378 A1, CA-A1-2 196 846 and US-A-3 938 390 disclose systems for extracting a gaseous fluid to be analysed from a process environment.

In particular, GB-A-1 445 061 discloses a system for extracting a gaseous fluid to be analyzed from a process environment, comprising:

- a probe for extracting said gaseous fluid, comprising a first tubular element, which can be positioned within the interior of the process environment, the said first tubular element having at one end a gas aspiration opening and defining an internal cavity, and a second tubular element extending within the cavity of the first tubular element, the said second tubular element being operable to inject the said gaseous fluid into the interior of the cavity towards the said aspiration opening of the first tubular element and from there again into the process environment,
- aspiration means for aspirating the gaseous fluid from the process environment through the cavity of the said first tubular element of the probe,
- take-off means connected to the said aspiration means for taking-off a fraction of the said gaseous fluid, the said take-off means being further connected to analyzer means for analysis of the said gaseous fluid, and
- re-injection means for re-injecting the said gaseous fluid into the process environment through the second tubular element.

The system of GB-A-1 445 061 solves the problem of preventing the clogging of the probe only in a limited way.

Preferred embodiments of the system are defined in the dependant claims.

This system, by co-operating with the probe according to the invention, lowers the dust (filter less stressed), makes it possible to dry the gas (no clogging and no origination of acids) and is self cleaning without the aid of compressed air but by utilising the same process gas (continuity of analysis since it is not altered).

Its use makes it possible to extract combustion gases from a furnace so that they can be analysed by means of classical analysers. It makes it possible to obtain reliable analysis of the combustion gases of the furnaces. Consequently, there is the possibility of optimising the control of the installation (reducing fuel consumption and improving the quality/quantity of the furnace product) and of monitoring/reducing atmospheric emissions.

<-> from page 5

It is applicable to any type of furnace (in any conditions of use; temperature, dust level, steam, acid etc) with any type of fuel (even alternative/waste disposal fuel) and any type of process material.

The probe has been designed for cement furnaces but can be used in process environments in industries of different type; steelworks, thermo-electric plants, chemical/petrochemical industries, carbon grinding and storage, incinerators, explosive powder storage silos, that is to say in all those sectors where it is required to extract gas for subsequent analysis (furnaces, silos, chimneys, pipework etc).

4

The salient characteristic of the probe and the system according to the invention is the reduced necessity for maintenance. This is achieved by avoiding aspiration of dust/condensate, and thanks to the violent and continuous spraying of compressed gas ensured by the compressor.

The filter has a long life since it is self-cleaning by means of the powerful counter current flow of gas during the rapid discharge for probe cleaning.

Moreover a reduction of dry dust is achieved by using the compressed gas from the furnace and without a water spray. There is moreover a drying of the gas with consequent reduction of acids. The system is self-cleaning with a continuous cycle, again by the effect of the compressed gas, and therefore does not require the washing cycle with compressed air which would falsify the gas analysis (by polluting it) but by using the gas from the furnace. This avoids having to use a large number of control panels for the treatment of the gas (with filters, antacids, bubbling chambers etc), control panels for solenoid valves and various dedicated electrical control panels (with PLC). This leads to a reduction of the associated problems and costs.

For use at high temperatures the probe is water-cooled. It has an anti-condensate interspace for decoupling the hot zone (gas circuit) from the cold zone (cooling water jacket), permitting the gas extracted to maintain its temperature. This arrangement avoids the formation of condensate in the inner wall of the aspiration tube, thereby minimising clogging of the dust. The two chambers for gas and cooling can be separated because they are coupled with flanges. This makes is possible to remove only the gas circuit from the

furnace (for a possible inspection and cleaning, even with the furnace in operation) leaving only the cooling system fixed to the furnace.

The reliability and continuity of the system makes it possible to utilise its output for automatic furnace management (not having compressed air washing which gives rise to 02 peaks). The capacity of the compressor is high, therefore the response is faster than in usual systems, and possible micro-losses have no influence. Consequently a more reliable analysis is achieved.

The probe is easy to install in a short time, not requiring a great deal of work for adaptation of the existing system to be able to connect it. Moreover, it does not require a great deal of care in research for the optimum positioning in the furnace (the minimum dust point etc).

A preferred but non-limitative example of the invention will now be described making reference to the attached drawings, in which;

- Figure 1 is a general diagram of a system for the extraction of burnt gases from a furnace according to the invention;
- Figure 2 is a schematic side view of a probe for extraction of burnt gases from a furnace, according to the invention;
- Figure 3 is a schematic side view of a probe of Figure 2 without the cooling jacket; and
- Figure 4 is a schematic side view of the cooling jacket of the probe of Figure 2.

aspiration tube 2 (second tube) and makes it possible for the gas withdrawn not to be excessively cooled. The gas is aspirated into the chamber CA constituted by the first and second tube 1, 2 and injected again into the interior of the furnace through of the concentric central tube (first tube 1), by means of a compressor C. The furnace side end UG of the central tube is throttled so that the ejected gas is compressed. Preferably, this end has a nozzle.

Alternatively, the same central tube 1 can be designed Yinjectwithe gas towards the probe head TS (for example it can be formed as a capillary tube). In this way the gas acquires a certain pressure and kinetic energy, constituting a barrier against dust and effecting cleaning of the probe head TS. substance the gas is aspirated through the piping 40 returned to the furnace with an adequate pressure velocity through the piping 50, by means of the compressor C. In the gas aspiration and delivery circuit 40, 50 (furnace compressor C - furnace) there is fitted a branch 41 which delivers a small percentage of fluid to be analysed to traditional analysers 02-CO-NOX by means of a pump PM with a take off upstream of the compressor C. V Upstream of the analysers are disposed a regulator RF for the flow of gas to the analysers and a sensor P2g for control of the pressure of the gas to the analysers. These analysers are moreover protected by a filter F3G, which acts as an acid/condensate. Downstream of the analysers is disposed a gas discharge SG exiting from the analysers.

Before reaching the compressor C and the pump PM the gas is suitably filtered by upstream filters F1G and F2G in the aspiration piping 40. The filter F1G is connected to a dust decanter D to reduce the possible dust present in the \(\exists\) circuit. \(\text{The high flow rate of the circulating fluid}\)

guarantees short response times which benefit the management of the furnace.

A sensor Plg for control of the gas pressure of the compressor and a valve VSG for gas overpressure of the compressor C are connected to the delivery of the compressor C.

There are also two reservoirs S1G (depressurized) and S2G (pressurized) in the system, on the aspiration and delivery sides of the compressor C respectively. These perform the function of collecting the condensate and stabilising the pressure/depression of the compressor. In particular, the reservoir S2G forms part of a refrigerator/dryer RE for reducing the condensate. Downstream of the reservoir S2G is connected an automatic condensate discharge valve arranged to discharge the condensate SC. The reservoirs are also furnished with two timing solenoid valves EV1G and EV2G activating the respective servo-valves in a cyclic manner for times which can be set, depending on the requirements. The solenoid valve EV1G is a two-way valve mounted between the depressurized reservoir S1G and the aspiration of the probe S, and has the function of stopping the aspiration from the probe S so that the thrust of its delivery is reinforced to improve the cleaning of the probe head. Downstream of the solenoid valve EV1G is disposed a sensor Fg for control of the flow of gas to the compressor C. The three-way solenoid valve EV2G mounted upstream of the preceding one, has the function of violently discharging, with a full jet, the quantity of fluid in the pressure reservoir S2G, towards the aspiration tube 2. This enormous quantity of fluid flows at high velocity in the opposite direction from the normal flow, sweeping towards the furnace interior any possible deposits

furnace, avoiding transporting them along the analysis installation. This is of benefit to the tubing, the connectors, the compressor, the pump, the analysers, and the control and security sensors, and will result in a greater efficiency and duration of these. Moreover it is possible to make these of more economic commercial type and it is not necessary for them to be of the more expensive anti-acid type. The probe and the system according to the invention reduce dust (less stressed filter), dry the gas (no accretion and no origination of acids) and the probe is self-cleaning without the aid of compressed air but by utilising the same process gas (continuity of analysis since it is not altered).

The strong point of this probe is the compressor central-tube which permits the gas to re-circulate to the furnace with a certain pressure and kinetic energy. Naturally, in place of the compressor it is possible to utilise another type of continuous cycle machine.

With the compressor and the branching principle one obtains; dust-free and dried gas (by the barrier effect) and self-cleaning head without the necessity for the compressed air washing cycle (by means of a continuous cycle without interruption and alteration of the analysis gas).

CLAIMS

1. A system for extracting a gaseous fluid to be analysed from a process environment, comprising

a probe (S) for extracting said gaseous fluid, comprising a first tubular element (2), which can be positioned within the interior of the process environment, the said first tubular element having at one end a gas aspiration opening (TS) and defining an internal cavity (CA), and a second tubular element (1) extending within the cavity (CA) of the first tubular element (2), the said second tubular element being operable to inject the said gaseous fluid into the interior of the cavity (CA) towards the said aspiration opening of the first tubular element (2) and from there again into the process environment,

: .

• • • •

aspiration means (40, C) for aspirating the gaseous fluid from the process environment through the cavity (CA) of the said first tubular element (2) of the probe (S),

take off means (41, PM) connected to the said aspiration means (40, C) for taking off a fraction of the said gaseous fluid, the said take off means being further connected to analyser means (AG) for analysis of the said gaseous fluid, and

re-injection means (50, C) for re-injecting the said gaseous fluid into the process environment through the second tubular element (1),

characterised in that the said aspiration means (40, C) and the said re-injection means (50, C) share compressor means (C), said compressor means having an aspiration side and a delivery side, wherein the said first tubular element is fluidly connected to control valve means (EV2G) operable to fluidly connect said first tubular element selectively

with one of the said aspiration side and said delivery side of the compressor means, and

in that the said second tubular element is disposed in fluid communication with the delivery side of said compressor means through a reservoir (S2G), the said second tubular element being throttled in such a way to accelerate the said gaseous fluid flowing through it and, at the same time, to allow an accumulation of the said gaseous fluid upstream within the said reservoir,

in such a way that the system can assume an aspiration condition, wherein the gaseous fluid is aspirated through the said first tubular element and is partially re-injected through the said second tubular element and partially accumulated by the said reservoir, and a back washing condition, wherein the gaseous fluid is released by the said reservoir through the said first tubular element by means of activation of the said control valve means (EV2G).

1:1

: . :

12

CLAIMS-

- A probe (S) for extracting gases from a process environment comprising a tubular element (2), which can be positioned within the interior of the process environment, the said tubular element having at one end a gas aspiration opening (TS) and defining an internal cavity (CA) by which said process environment can be put into fluid communication with a gas take off system/characterised in that it further includes injection means (1) coupled to the first tubular element (2), operable to inject the said fluid into the interior of the cavity (CA) qaseous accelerated towards the said aspiration opening of the first tubular element (2) and from there again into the process environment.
- 2. A probe according to Claim 1, in which the said injection means comprise a second tubular element (1) extending within the cavity (CA) of the first tubular element (2), formed in such a way as to be able to inject the said accelerated gaseous fluid towards the said aspiration opening of the first tubular element (2) and from there again to the process environment.
- 2 syslem 7
 2. A probe according to Claim 2, in which the end of the second tubular element (1) disposed on the side of the aspiration opening, that is to say the process environment side, is provided with a nozzle (UG).
- 3 system 4. A probe according to Claim 1 or 2, in which the said first (2) and second (1) tubular element are coaxial.

- A probe according to Claim #, including connector elements (CR,T), pierced nuts (DT) and gas tight seals operable to assemble the said first (2) and second (1) tubular element and to render the second tubular element (1) slidable with respect to the first tubular element (2).
- 5 system g. A probe according to any preceding claim, further including a cooling jacket (CRA) disposed around the said first tubular element (2).
- 7 system 5 6
 8. A probe according to Claim 8 or 7, in which the said cooling jacket is assembled in a separable manner from the said first tubular element (2) of the probe (S).
- 8 system 5 7 8. A probe according to any of Claims from \$\mathcal{g}\$ to \$\mathcal{g}\$, in which the said cooling jacket is connected in fluid communication with a low temperature refrigerator with a closed fluid circuit.
- 9 system
 10. A probe according to any preceding claim, further including a shielding element (CP) disposed in proximity to the said aspiration opening (TS).
- 11. A system for extracting gases from a process environment, which can be coupled to a probe according to any preceding claim, comprising means (40, C) for aspirating the gas from the process environment through the said first tubular element (2) of the probe (S), characterised in that

it further includes means (50, C) for re-injecting the said gas into the probe/process environment, disposed in fluid communication with the said injection means (1) of the probe (S).

- 12. The system according to Claim 11, in which the said means for aspirating the gas (40, C) and the said means for re-injecting the gas (50, C) comprise a common continuous cycle machine (C) operable to aspirate, compress and inject the said gas back into the same process environment, that is to say to confer pressure and kinetic energy on the gas.
- 13. A system according to Claim 12, further including a reservoir (S2G) disposed in the delivery of the said continuous cycle machine (C) for stabilising the pressure in the said injection means (1) of the probe (S) and for obtaining a rapid discharge of the gas cyclically for counter-current cleaning of the said first tubular element (2) of the probe (S), that is to say to effect back washing.
- 14. A system according to Claims 11 to 13, further including control means (EV1G/ EV2G), operatively connected to the said means for aspirating the gas (40, C) and the said means for re-injecting the gas (50, C) for effecting probe cleaning cyclically, and continuously with the same process gas.
- 15. A system according to any of Claims 11 to 14, further including take off means (41, PM) connected to the said aspiration means (40, C) for taking off a fraction of the said gas, the said take off means being further connected to analyser means (02-CO-NOX) for analysis of the said gas.

PCT/IB2005/051145

•

;·,

4 : 5

1 1 3

15

oreceding

16. A system according to any of Claims 11 to 15, further and drying means (RE)

including decanter means (D) disposed downstream of the probe and the condensate

(S) in such a way as further to reduce the dust in the said gas.

M. A system according to any of Claims 11 to 16, further including a vacuometer (Vg) connected to the first tubular element (2) of the probe (S) and a manometer (Mg) connected to the injection means (1) of the probe (S) for monitoring the operation conditions of the probe.

12. A method for extracting and re-injecting a gaseous fluid to be analysed from and to a process environment, the said method using

a probe (S) for extracting said gaseous fluid, comprising a first tubular element (2), which can be positioned within the interior of the process environment, the said first tubular element having at one end a gas aspiration opening (TS) and defining an internal cavity (CA), and a second tubular element (1) extending within the cavity (CA) of the first tubular element (2), the said second tubular element being operable to inject the said gaseous fluid into the interior of the cavity (CA) towards the said aspiration opening of the first tubular element (2) and from there again into the process environment,

wherein the method comprise the following step:

aspirating the gaseous fluid from the process environment through the cavity (CA) of the said first tubular element (2) of the probe (S),

taking off a fraction of the said gaseous fluid for analysing it,

re-injecting the said gaseous fluid into the process environment through the said second tubular element (1) of the probe (S),

characterised in that the said gaseous fluid is only partially re-injected into the process environment, a portion of the gaseous fluid being accumulated apart, and

in that the method comprise a back washing step, wherein the accumulated gaseous fluid is released into the process environment through the said first tubular element.

13. A method according to claim 12, wherein the said back washing step is performed cyclically.

INTERNATIONAL SEARCH REPORT

PCT/IB2005/051145

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 GOIN1/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 GO1N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUME	NTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
X	GB 1 445 061 A (BECKMAN INSTRU 4 August 1976 (1976-08-04) page 2, line 11 - line 39 figures 1,3,4	MENTS INC)	1-17
X	US 4 336 722 A (SCHWEITZER ET 29 June 1982 (1982-06-29) column 3, line 45 - line 65 column 4, line 49 - column 5, figure 1		1,11
X	DE 44 30 378 A1 (ERWIN SICK GM OPTIK-ELEKTRONIK, 79183 WALDKI 29 February 1996 (1996-02-29) column 3, line 30 - line 52 figure 1		1,11
χ Furth	er documents are listed in the continuation of box C.	γ Patent family members are listed	n annex.
"A" docume consider of filing de "L" docume which is citation "O" docume other no "P" docume	*T* later document published after the international fiting date or priority date and not in conflict with the application but clted to understand the principle or theory underlying the invention document but published on or after the international filing date invention. *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document is combination being obvious to a person skilled in the art. *X* document published after the international filing date or priority date and not in conflict with the application but clted to understand the principle or theory underlying the invention. *X* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.		the application but early underlying the claimed invention be considered to cument is taken alone claimed invention ventive step when the ore other such docuus to a person skilled
	ctual completion of the international search	Date of malling of the international sea	rch report
20) July 2005	29/07/2005	
Name and m	ailing address of the ISA European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Timonen, T	

INTERNATIONAL SEARCH REPORT

PCT/IB2005/051145

	PC1/1B2005/051145						
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.							
Unation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.						
CA 2 196 846 A1 (GOODFELLOW TECHNOLOGIES INC) 5 August 1998 (1998-08-05) figures 1-7	1-17						
US 3 938 390 A (GREY ET AL) 17 February 1976 (1976-02-17) figure 2	1-17						
EP 0 429 143 A (PROJECT RESEARCH AMSTERDAM B.V) 29 May 1991 (1991-05-29) the whole document	1-17						
US 3 960 500 A (ROSS ET AL) 1 June 1976 (1976-06-01) the whole document	1-17						
	Citation of document, with indication, where appropriate, of the relevant passages CA 2 196 846 A1 (GOODFELLOW TECHNOLOGIES INC) 5 August 1998 (1998-08-05) figures 1-7 US 3 938 390 A (GREY ET AL) 17 February 1976 (1976-02-17) figure 2 EP 0 429 143 A (PROJECT RESEARCH AMSTERDAM B.V) 29 May 1991 (1991-05-29) the whole document US 3 960 500 A (ROSS ET AL) 1 June 1976 (1976-06-01)						

INTERNATIONAL SEARCH REPORT

PCT/IB2005/051145

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
GB 1445061	Α	04-08-1976	CA CH DE	1010382 A1 591276 A5 2438857 A1	17-05-1977 15-09-1977 10-04-1975
US 4336722	Α	29-06-1982	NONE		
DE 4430378	A1	29-02-1996	NONE		
CA 2196846	A1	05-08-1998	NONE		
US 3938390	Α	17-02-1976	NONE		
EP 0429143	Α	29-05-1991	NL EP JP	8902871 A 0429143 A1 3176635 A	17-06-1991 29-05-1991 31-07-1991
US 3960500	Α	01-06-1976	AU BR CA ES FR GB JP JP JP	8611875 A 7507676 A 1036835 A1 442846 A1 2297411 A1 1486098 A 1113225 C 51095891 A 57006057 B	05-05-1977 08-09-1976 22-08-1978 16-04-1977 06-08-1976 14-09-1977 16-09-1982 23-08-1976 03-02-1982