Pseudo Code for Repair Algorithm

Arthur Feng

March 22, 2019

1 Input

- A problem P^0 with n binary variables x, objective function cx (min), constraint set C^0 with an optimal solution x^0 .
- A problem P^1 with n binary variables x, objective function cx (min), constraint set C^1 , such that $C^0 \subseteq C^1$.

2 Output

• An optimal solution x^1 to P^1 .

3 General Idea

We propose to solve P^1 by reusing the optimal solution x^0 to P^0 . In order to achieve this, we define a new problem Q with constraint set C^1 and objective function

$$\min cx + \alpha |x - x^0|,$$

where $|x - x^0| = \sum_{i=0}^{n-1} |x_i - x_i^0|$, and α is a *penalty* term for deviating from the input solution x^0 . This would tentatively help the search for a good solution to P^1 . However, unless x^0 is feasible for P^1 , an optimal solution to Q will in general not be optimal for P^1 .

To remedy this problem, we will instead solve a sequence of problems Q^0, Q^1, \ldots , where the penalty factor α will gradually decrease until it reaches 0, say at iteration k, in which case $Q^k = P^1$. This sequence of problems can be efficiently solved using a technique called *reoptimisation*, which is implemented in the MIP solver SCIP.

4 Pseudo Code

5 MIP

5.1 Mixed Integer Programming

Definition 5.1. (Mixed Integer Programming)

Let $m, n \in \mathbb{N}$, The given matrix $A \in \mathbb{R}^{m \times n}$, vectors $b \in \mathbb{R}^m$, and the vector $c \in \mathbb{R}^n$, and a set $\mathcal{I} \subseteq N = \{1, \ldots, n\}$. the problem

(MIP)
$$c^* = \min c^T x$$
$$s.t. \quad Ax \ge b$$
$$x_i \in \mathbb{Z}_{\ge 0} \quad \forall_i \in \mathcal{I}$$
$$x_j \in \mathbb{R}_{\ge 0} \quad \forall_i \in \mathcal{N} \setminus \mathcal{I}$$

is called mixedinteger program with the objective function c^Tx and constraints $A_ix \geq b_i$ for all $i=1,\ldots,m$. A vector $x \in X_{MIP} = \{x \in \mathbb{R} \geq 0^n \mid A_x \geq b, x_i \in \mathbb{Z}_{\geq 0} \, \forall i \in \mathcal{I} \}$ is called feasiable solution and X_{MIP} the set of feasible solutions. A feasible x^* is called optimal, if x^* satisfies $c^* = c^Tx^*$