

PREDICTION OF EXTREME EVENTS USING IMAGES FROM PRECIPITATION RADAR

SUPERVISORS:

- Prof. Dr. Andreas Rausch
- Dr. Stefan Wittek
- MS.c Dhananjeyan Jeyaraj
- PRODUCED BY:
- Arman Abouali

PROJECT METHODOLOGY

1. Preprocessing

- Finding coordinates of the target location using QGIS software.
- DWD_Bot: A pipeline for downloading and extracting radar imagery data from the DWD website and storing it for future processing.

2. Data Analysis

- Evaluation of the calculated location on an image file.
- Comparison of the measurement of the precipitation by the radar image data with the measurements of the sensor in the same location.

3. Data Modeling

Implementation of deep learning models to the image radar data to assess its effectiveness in forecasting a rare event. (Use case: Flood on 26th July 2017, Goslar, Niedersachsen, Germany)

INITIAL APPROACH

- •Investigated how to configure and set base layers to obtain coordinates for the area of interest in QGIS software.
- •Implemented using Bokeh tool from an extracted image file.
 - **■** Failures:
 - Zooming in causes the image to become blurry.
 - low accuracy of the extracted coordinate values.
- The sized sliced window was 40 by 70 pixels.

SECTION ONE: FINDING TARGET COORDINATES AND ADJUST THE GRID LOCATION

SECTION ONE: FINDING TARGET COORDINATES AND ADJUST THE GRID LOCATION

SECTION ONE: FINDING TARGET COORDINATES AND ADJUST THE GRID LOCATION

- Write down ID values of these edge points.
- Reshape them into 901 rows and 1101 columns to be matched with the image coordinates.
- Reduced size of the sliced window to an 8 by 8 window.
- Last but not least, use these coordinate values to slice images into a smaller window.

SECTION TWO: FUNCTIONALITIES OF THE DWD_BOT

- i. Downloading data from the DWD website and storing them in a specified address by the user.
- ii. Extract the downloaded files in order to get the data for a month.
- iii. Unzip the extracted files to get files for the days of the month.
- iv. Extract data to obtain ASCII files for each day.
- v. Aggregate every 3 images into 1, to make it comparable with sensor data.
- vi. Compress original files in a .zip format.
- vii. Slice a new window based on the calculated coordinate of x and y.
- viii. A pipeline to automate the procedure.
- ix. A functionality is available to access the zip files of step 6, unzip them, and slice them according to a new coordinate.

SECTION TWO: FUNCTIONALITIES OF THE DWD_BOT

Outcome of the Bot:

- Preserve images in their initial dimension (1100 * 900) for reprocessing purposes.
- Possibility of processing a single data.
- All of the image-sliced window files will be stored and maintained in a parquet file.

Why Parquet file:

- Compressed 35 GB of data into 5 MB while preserving data quality and structure.
- Easily convertible and processable using a Pandas data frame.

SECTION ONE: EVALUATION OF THE CALCULATED LOCATION ON AN IMAGE FILE

SECTION ONE: EVALUATION OF THE CALCULATED LOCATION ON AN IMAGE FILE

- •Calculate the coordinates of a 1*1 window from image data from a particular place where the "Granetalsperre" sensor is situated.
- Run the procedure in pipeline to download and extract data from Nov 2003 to Dec 2017.
- Comparing precipitation measured by the sensor and image in this particular location.
- Correlation result = 0.23

SECTION TWO: COMPARISON

Goal:

To conduct a comparative analysis of the precipitation data obtained from the sensors and the image data.

Procedure:

- The sum of each sensor's precipitation measurement column is stored in the 'Sensor_Sum' column.
- Compute the total precipitation quantity across all cells in each image and store the result in the 'Image_Sum' column.
- **8% of the cases 'Image_Sum' < 'Sensor_Sum'</pre>

SECTION TWO: COMPARISON

Statistical analysis of their calculated subtraction.

Mean	Max	Min	Median	Mode
0.85	44.1	5.55×10^{-17}	0.4	0.3

- Mean (0.85) Greater than Median (0.4) and Mode (0.3).
- Maximum Value (44.1) Significantly Higher.
- Therefore, "common" events are low in magnitude and "rare" events are very high in magnitude.

DATA MODELING

CNN-LSTM MODEL

- Input data, [Aug 2016 -Aug 2017].
- Both sensor and image data are involved.
- low error rate statistical findings allows us to evaluate the model as 'GOOD'.

Model: "sequential"

Layer (type)	Output Shape	Param #
conv (TimeDistributed)	(None, 4, 69, 39, 32)	320
maxpool (TimeDistributed)	(None, 4, 34, 19, 32)	θ
conv2 (TimeDistributed)	(None, 4, 32, 17, 64)	18496
maxpool2 (TimeDistributed)	(None, 4, 16, 8, 64)	Θ
flatten (TimeDistributed)	(None, 4, 8192)	Θ
lstm (LSTM)	(None, 4, 64)	2113792
lstm2 (LSTM)	(None, 32)	12416
output (Dense)	(None, 2)	66

Total params: 2145090 (8.18 MB) Trainable params: 2145090 (8.18 MB)

Non-trainable params: 0 (0.00 Byte)

Actual vs Predicted for Sennhuette Pegel now

DATA MODELING CNN MODEL

- Only image data is involved.
- ■Input data, [Aug 2016 Aug 2017].
- Statistical findings as well as the prediction plot allows us to evaluate the model as 'BAD'.
- Size of the sliced window is 40 * 70

Layer (type)	Output Shape			Param #
conv2d (Conv2D)	(None,	8, 8,	64)	640
max_pooling2d (MaxPooling2 D)	(None,	4, 4,	64)	Θ
conv2d_1 (Conv2D)	(None,	4, 4,	32)	18464
max_pooling2d_1 (MaxPoolin g2D)	(None,	2, 2,	32)	θ
flatten (Flatten)	(None,	128)		Θ
dense (Dense)	(None,	128)		16512
dense_1 (Dense)	(None,	64)		8256
dense_2 (Dense)	(None,	1)		65

Total params: 43937 (171.63 KB) Trainable params: 43937 (171.63 KB) Non-trainable params: 0 (0.00 Byte)

DATA MODELLING SENNHUETTE LSTM MODEL PREDICTION

CONCLUSION AND FUTURE WORKS

- Parquet files were used to solve the image file storage issue.
- Automate Bot, to prepare required data.
- In Phase of analysis,
 - Investigated on evaluation of the calculated coordinates on the target location.
 - Investigated on finding a comparison between image and sensor data.
- In phase of modeling,
 - Experienced with several models' architecture.
 - Models have ample opportunity for improvement at all times.

Thank You for Listening

Any Questions?

