EE-222: Microprocessor Systems

AVR Microcontroller:
Program Counter
and
Program ROM Space

Instructor: Dr. Arbab Latif

Program Counter (PC)

- Program Counter (PC)
 - The most important register in the AVR microcontroller
 - Points to the address of the next instruction to be executed
 - Is incremented automatically to point to the next instruction
 - The wider the PC is, the more memory locations it can access
 - For example:
 - 14-bit PC = 16K locations
 - 15-bit PC = 32K locations
 - 16-bit PC = 64K locations

AVR On-Chip ROM Size and Address Space

- In AVR Microcontroller each Flash Memory location is 2-bytes wide
 - Correspondingly the flash is organized as shown in the last column of the table below
 - This arrangement will also change the address range
 - see the second last column in the table below
 - Example in next slide
 - Address 0 is always the first rom address

	On-chip Code ROM (Bytes)	Code Address Range (Hex)	ROM Organization
ATtiny25	2K	00000-003FF	$1K \times 2$ bytes
ATmega8	8K	00000-00FFF	4K × 2 bytes
ATmega32	32K	00000-03FFF	16K × 2 bytes
ATmega64	64K	00000-07FFF	$32K \times 2$ bytes
ATmega128	128K	00000-0FFFF	64K × 2 bytes
ATmega256	256K	00000-1FFFF	$128K \times 2$ bytes

ROM Memory Address Range

Total ROM Size = 2KB

Total ROM Size = 16KB

Total ROM Size = 64KB

Notice the memory organization and the start and end address

AVR PC

- Program counter in the AVR family can be a maximum of 22-bits
 - Correspondingly, no member of the AVR family can access more than 4M words [do the maths!]

- The ATmega16A Program Counter (PC) is 13 bits wide,
 - thus addressing the 8K program memory locations.

Wake-Up Address

- At what address does the CPU wake-up when power is applied?
 - AVR microntroller wakes up at memory address 0000
 - PC (program counter) has the value of 00000 in it
 - It expects the first opcode must be burned into memory location \$00000
 - Achieve this by using the .ORG statement

Endianness

- Endianness is the sequential order in which bytes are arranged into larger numerical values when stored in memory:
 - Little Endian
 - Big Endian

AVR Endianness

Loading the value: 12345678h

0000:	78
0001:	56
0002:	34
0003:	12

- AVR Microcontroller store and retrieve data from memory using little-endian order (low to high).
 - The least significant byte is stored at the first memory address allocated for the data.

Placing Code in Program ROM: Your Lab Program

```
000000 ef0f
                                      ldi R16, 0xFF
000001 ef1f
                                     ldi R17, 0xFF
                                  ; set DDRA as output
000002 bb1a
                                     out DDRA, R17
                                  ; code to toggle LEDs
                                  toggler:
000003 5f0f
                                     subi R16, 0xFF
                                     out 0x3B, R16
000004 bf0b
                                     rjmp idle_loop
000005 c000
                                  ; delay loop
                                  idle loop:
000006 e13f
                                     ldi R19, 0x1F
000007 e040
                                     ldi R20, 0x00
                                     ldi R21, 0x01
000008 e051
                                  idle loop 0:
                                  idle loop 1:
                                  idle loop 2:
                                     dec R19
000009 953a
00000a f7f1
                                     brne idle loop 2
00000b 954a
                                     dec R20
                                     brne idle loop 1
00000c f7e1
00000d 955a
                                     dec R21
00000e f7d1
                                     brne idle_loop_0
00000f cff3
                                  rjmp toggler
```

Flash memory and PC register [ATmega16a]

Reading

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter-2: Complete

THANK YOU

