Sample space: The set of all possib	le outcomes		
L> denoted by S			
is delicted by 5			
Le List all the elements, e.g. t	oss a coin S= {H,T}		
: (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	-{x & Z : " }}		
1. Specify the elements, e.g. S:	- {x: 0 ≤ x ≤ 3 }		
la Disassia sanata sanas Sia			
La Discrete sample space: S is	countable		
· Finite: Si = {1,2, 10}			
· Countably infinite: S2=	11, 2, 3,}		
Cartinua Samela 488-4	S is not say, sakis		
L. Continuous sample space:	3 is not countable		
· Uncountably infinite: Sa	= fx ER : 0 < x < 1}		
Event: An event is a subset of the	. sample space S where	the outcome satisfies	a specific condition
0.0000000000000000000000000000000000000			
la An event A corresponds to a	n experiment E, e.g.		
· E: Select a ball from an	urn containing balls number	ed from 1 to 10	
• A: An even-numbered ball	is selected		
S= \$1, 2,3, 10} A= \$2,4			
5=11,2,5, lot A=12,	, 0, 0, 10 1		
La Certain events: when A=S,i.e	2: an event that always occ	urs	
La Impossible or null event; when	Α=φ		
Funda alores A adjusting of such a			
Event classes: A collection of events, i	e: a set of sets		
La If the class C consists of sets	A., Ak, then C= { A., , A	ki e	
Probability Models:			
Probability as a frequency: Consider	les purhability. Os a magazin	a at the francisco of	
Propubling us a Frequency: Consider	ler produbility as a measu	re of the trequency of	CUMPTENCE
4 If we have a probability	PCk) that experiment will res	bult in the outcome k, then	Ofter repeating this experiment
a large number of times.	the fraction of times that koc	curs will approximate PCK)	
In Evennele, late con alected at	ne probability of observing "h	ande" in a case file by case	oting the number of heads
			ming the number of negas
observed after n trials. As	n approaches infinity, we have	PCH) = n+00 # of heads	
La Let NKCN) be the numbe	r of times in which outcome.	is equal to k after a t	ials lub must have that

0 <	Nkcn) :	şn.∀	k ES										
	ding by				e have	O&P(k)						
	sum o							to KE	s Nacn') = ŋ			
₽ As	before,	this lea	ads to	the co	nclusio	n Kes	Рск) = 1						