Math 415 Homework 1

Problem 1. Write each of the following as a first-order autonomous system of ODEs.

- (a) $\ddot{x} + t\sqrt{1 + x^2} = 0$.
- (b) $\ddot{y} + y\ddot{y} = 3$.

Problem 2. Consider a particle of mass m > 0 and charge $q \neq 0$ traveling in 3 dimensions under the influence of a time-dependent magnetic field of magnitude B(t), pointing in the direction of the z-axis. The position vector $\mathbf{r}(t)$ of the particle at time t is governed by the equation

$$m\ddot{\mathbf{r}}(t) = q\dot{\mathbf{r}}(t) \times \begin{bmatrix} 0\\0\\B(t) \end{bmatrix}.$$

Write this as a first-order autonomous system of ODEs. (Hint: Consider the equations satisfied by the components u, v, w of the velocity vector $\dot{\mathbf{r}}$.)

Problem 3. For each of the following systems: Draw the phase portrait, classify all of the fixed points, and sketch various solutions x(t).

- (a) $\dot{x} = x(x-1)^2$.
- (b) $\dot{x} = \frac{1}{2} \cos x$.

Problem 4. For each of the following systems: Draw the phase portrait, classify all of the fixed points, and sketch various solutions x(t).

- (a) $\dot{x} = 1 |x|$.
- (b) $\dot{x} = x \ln |x|$.

Problem 5. The velocity v(t) of a skydiver falling to the ground is governed by

$$m\dot{v} = mg - kv^2,$$

where m > 0 is the mass of the skydiver, g > 0 is the acceleration due to gravity, and k > 0 is a constant related to the amount of air resistance.

- (a) Find the exact solution v(t) when v(0) = 0. (Hint: Partial fraction decomposition.)
- (b) Find the limit of v(t) as $t \to \infty$. This limiting velocity is called the *terminal velocity*.
- (c) Draw the phase portrait for this system, and thereby re-derive a formula for the terminal velocity. (Notice how much easier this is compared to parts (a) and (b)!)

Problem 6. Consider the system

$$\dot{x} = +x^k$$

- (a) For each integer k = 1, 2, ... and each choice of + or -, determine the stability of the fixed point $x_* = 0$.
- (b) Restricting to the cases where $x_* = 0$ is stable, find the exact solution x(t) when x(0) = 1. Does making k larger result in faster or slower convergence to the fixed point? (Hint: Check that your answer makes sense with the graph of \dot{x} as a function of x.)

1