Name:.		
Roll No.		
Invigilate	or's Signature :	
	CS / B.TECH (EE-NEW) / SEM-5 / EE-503 / 2010-1	1
	2010-11	
	CONTROL SYSTEM-I	
Time All	otted: 3 Hours Full Marks: 70	١ .
2	The figures in the margin indicate full marks.	
Candid	lates are required to give their answers in their own words	
	as far as practicable.	
	GROUP - A	
	(Multiple Choice Type Questions)	
1. Cho	oose the correct alternatives for any ten of the following:	
	$10 \times 1 = 10$	0
i)	The characteristic equation of a system is $s^2 + 2s + 2 = 0$. The system is	3
	a) critically damped	
	b) underdamped	
	c) overdamped	
	d) unstable.	
ii)	Addition of a pole to the closed loop transfer function	
· ·	a) increases rise time b) decreases rise time	
· · · · · · · · · · · · · · · · · · ·	c) increases overshoot d) has no effect.	
5104	[Turn over]

- iii) The type of transfer function denotes the number of
 - a) zeros at origin
- b) poles at infinity
- c) poles at origin
- d) none of these.
- iv) The phase lead compensation is used to
 - a) increase rise time & decrease overshoot
 - b) decrease both rise time & overshoot
 - c) increase both rise time & overshoot
 - d) decrease rise time & overshoot.
- v) In torque-current analogy, displacement is analogous to
 - a) flux

b) moment of inertia

c) voltage

- d) current.
- vi) Phase margin of a system is used to specify
 - a) time response
- b) frequency response
- c) absolute stability
- d) relative stability.
- vii) The phase margin of the system $GH(jw) = \frac{1}{(1+jw)^3}$ is
 - a) $-\pi$

_b) π

c) 0

d) $\frac{\pi}{2}$

5104

	viii)	The potentiometer converts linear rotational
		displacement into
		a) current b) power
		c) voltage , d) torque.
	ix)	When a human being tries to approach an object, his
		brain acts as
	•	a) an error measuring device
		b) a controller
		c) an actuator
		d) an amplifier.
	x)	An AC servo motor is basically a
		a) universal motor
		b) single phase induction motor
		c) two phase induction motor
		d) three phase induction motor.
•	xi)	A system has a pole at origin. Its impulse response wi
		be 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
		a) constant b) ramp
	. (c) exponential d) oscillatory.
510	4	3 [Turn over

- xii) The natural frequency of oscillation of the output of the equation $\frac{d^2x}{dt^2} + 1 \cdot 5\frac{dx}{dt} + 4x = 1$ is
 - a) 0 rad / sec
- b) 1.5 rad / sec
- c) 2 rad / sec
- d) 4 rad / sec.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Find $\frac{C}{R}$ of the following signal flow graph using Mason's gain formula:

3. Using Routh criterion, determine the range of values of k for stability for the following system:

$$\frac{C(S)}{R(S)} = \frac{k}{S(S^2 + S + 1)(S + 4) + k}$$

5104°

4. For the system shown below

- a) find K_p, K_v, K_a
- b) find steady state error for an input of $5t^2u(t)$.
- c) state the system type number.
- 5. Derive the transfer function of armature controlled DC motor.
- 6. The open loop transfer function of a system with unity feedback gain is given as $G(S) = \frac{20}{S^2 + 5S + 6}$. Determine the damping ratio, maximum overshoot, rise time & peak time.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Obtain the transfer function of the mechanical system shown below:

5104

5

[Turn over]

b) Find $\frac{C}{R}$ for the block diagram shown below. Use block diagram reduction techniques.

8 + 7

8. Draw the root locus for the unity feedback system whose open loop transfer function is $G(S) = \frac{k(S+1)}{(S-1)(S+2)(S+4)}$

Find the range of k for which the system is stable. Show all relevant steps of calculation.

9. Construct the Bode plots for a unity feedback system whose open loop transfer function is given by

$$G(S) = \frac{10}{S(1+S)(1+0.02S)}.$$

From the Bode plot determine

- a) gain & phase Cross-over frequencies
- b) gain & phase margin
- c) stability of the closed loop system.

.

5104

- 10. a) What is compensation? What is compensated system? What is compensator?
 - b) Write short note on P, PI & PID control.

6 + 9

- 11. a) State & explain Nyquist stability criterion.
 - b) Sketch polar plot for the unity feedback system with open loop transfer function $G(S) = \frac{1}{S(S+2)}$. 5 + 10

============