

$$A = \begin{bmatrix} 1 & 8 & 4 \\ 4 & -4 & 7 \\ 8 & 1 & -4 \end{bmatrix}.$$

- a) Zeigen Sie, dass die Spaltenvektoren von A orthogonal sind.
- b) Zeigen Sie, dass die Spaltenvektoren von A linear unabhängig sind.
- c) Geben Sie eine QR-Zerlegung von A an.
- 2. [6 Punkte] Gegeben sei das Differentialgleichungssystem erster Ordnung $\dot{y} = A y$, wobei

$$A = \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 0 & -2 \\ 1 & -2 & 1 \end{bmatrix}.$$

- a) Bestimmen Sie eine Transformationsmatrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$.
- b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems $\dot{y}=A\,y$, indem Sie die neuen Variablen $x(t)=T^{-1}y(t)$ einführen.
- c) Bestimmen Sie die spezielle Lösung des Differentialgleichungssystems $\dot{y}=A\,y\,$ zu den Anfangsbedingungen

$$y(0) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

3. [6 Punkte] Gegeben sei die Matrix A und der Vektor b wie folgt:

$$A = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 5 \\ 10 \\ 1 \end{bmatrix}.$$

Wir wollen die Singulärwertzerlegung von A finden, also $A = U\Sigma V^{\top}$.

- a) Bestimmen Sie Σ .
- **b)** Bestimmen Sie V und U.
- c) Berechnen Sie $\min_{v \in \mathbb{R}^1} ||Av b||_2$ und geben Sie ein x an, sodass $||Ax b||_2 = \min_{v \in \mathbb{R}^1} ||Av b||_2$.

[6 Punkte] Seien $\mathcal{G}_3 = \text{span}\{1, t, t^2\}$ und $\mathcal{U}_3 = \text{span}\{1, t, t^2\}$ zwei Vektorräume von Polynomen. Betrachten Sie die folgende Abbildung \mathcal{A} von \mathcal{G}_3 nach \mathcal{U}_3 :

$$\mathcal{A}: \quad \mathcal{G}_3 \quad \longrightarrow \qquad \qquad \mathcal{U}_3$$
$$x(t) \quad \longmapsto \quad x(0) + t \cdot x'(0) + \frac{1}{2}t^2 \cdot x''(0),$$

das heisst, für $x \in \mathcal{G}_3$ ist $\mathcal{A}x \in \mathcal{U}_3$ gegeben durch $(\mathcal{A}x)(t) = x(0) + t \cdot x'(0) + \frac{1}{2}t^2 \cdot x''(0)$.

- a) Zeigen Sie, dass \mathcal{A} eine lineare Abbildung ist.
- b) Durch welche Matrix A wird A beschrieben bezüglich der Monomialbasis in den beiden Räumen \mathcal{G}_3 und \mathcal{U}_3 ?
- c) Zeigen Sie, dass $\{p_1, p_2, p_3\}$ und $\{q_1, q_2, q_3\}$ Basen von \mathcal{G}_3 beziehungsweise \mathcal{U}_3 sind, wobei

$$p_1(t) = 1 + t,$$
 $p_2(t) = 1 - t,$ $p_3(t) = 1 + t + t^2,$

und

$$q_1(t) = t$$
, $q_2(t) = 1 + t^2$, $q_3(t) = 1 - t^2$.

- d) Welches ist die neue Matrix B, durch die \mathcal{A} nach dem Basiswechsel in die neuen Basen $\{p_1, p_2, p_3\}$ und $\{q_1, q_2, q_3\}$ aus Teilaufgabe \mathbf{c}) beschrieben wird?
- 5. [6 Punkte] Seien $A, B, C \in \mathbb{C}^{n \times n}$. Zeigen Sie die folgende Aussage:

Es gilt AB = AC, genau dann wenn gilt $A^{H}AB = A^{H}AC$.

Punkte] Multiple-Choice: Auf dem Extrablatt "Richtig" oder "Falsch" ankreuzen.

a) Der folgende Code beschreibt einen Algorithmus in Matlab mit Input A:

```
>> [m, n] = size(A);
>>B = zeros([m, n]);
>>C = zeros([n, n]);
>>for j = 1 : m
>>
      vj = A(:, j);
      for i = 1 : j
>>
          C(i, j) = B(:, i).' * A(:, j);
>>
                  = vj - C(i, j) * B(:, i);
>>
>>
      end
>>
      C(j, j) = norm(vj);
>>
      B(:, j) = vj / C(j, j);
>>end
```

Dieser Algorithmus beschreibt ein Verfahren zur Diagonalisierung der Matrix A.

- b) Sei A eine reelle $n \times n$ Matrix, dessen Kern die Dimension 0 hat. Somit ist $\det(A) \neq 0$.
- c) Seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ gegeben. Falls m < n, dann hat das lineare Gleichungssystem Ax = b mindestens eine Lösung $x \in \mathbb{R}^n$.
- d) Seien $A, B \in \mathbb{R}^{n \times n}$ symmetrische Matrizen, und sei A zusätzlich invertierbar. Dann ist $A^{-1}B$ symmetrisch.
- e) Sei A eine reelle, invertierbare $n \times n$ Matrix, und sei I + A invertierbar. Dann ist $(I + A)^{-1} = I - A^{-1}$.
- **f**) Die reelle $n \times n$ Matrix A hat n reelle Eigenwerte $\lambda_1, \ldots, \lambda_n$. Somit gilt $\det(A^{-1}) = 1/(\lambda_1 \cdot \ldots \cdot \lambda_n)$.

Name:

D-ITET, D-MATL, RW Lineare Algebra

Extrablatt: Aufgabe 6

Tragen Sie auf dieses	Extrablatt die	e Lösungen zu den	"Richtig oder	Falsch"-Fragen	aus Aufgabe

6 ein, indem Sie das Kästchen **ankreuzen**, welches der korrekten Antwort entspricht. Tragen Sie oben Ihren Namen ein.

Bewertungsschema: Jede *korrekte* Antwort gibt einen Punkt, jedes *nicht korrekt gesetzte* Kreuz gibt einen Punkt Abzug. Für jede Teilaufgabe, für die *kein Kreuz* gemacht wurde, gibt es 0 Punkte. Die Summe der Punktzahlen für die ganze Aufgabe 6 wird, falls negativ, auf 0 aufgerundet.

Teilaufgabe	Richtig	Falsch
a)		
b)		
c)		
d)		
e)		
f)		