Übungsblatt 5 zur Linearen Algebra I

Hinweis: $\mathbb N$ ist die Menge der natürlichen Zahlen, $\mathbb Q$ die der rationalen, $\mathbb R$ die der reellen.

Aufgabe 13. Zu Körpern mit 3 und 4 Elementen

a) Für $K = \{0, 1, x\}$ sind folgende Verknüpfungstafeln vorgegeben:

Addition:				
	0	1	x	
0	0	1	Х	
1	1	Х	0	
х	Х	0	1	

Multiplikation:

	0	1	х
0	0	0	0
1	0	1	х
х	0	Х	1

Man zeige, dass K mit der angegebenen Addition und Multiplikation einen Körper bildet.

b) Gibt es einen Körper mit 4 Elementen? Man gebe die Verknüpfungstafeln für Addition und Multiplikation an, sofern es diesen Körper gibt.

Aufgabe 14. Unterkörper von \mathbb{Q} und \mathbb{R}

- a) Man bestimme alle Teilmengen von \mathbb{Q} , die bezüglich der üblichen Addition und Multiplikation rationaler Zahlen einen Körper bilden.

 Hilfe: 0 und 1 sind offensichtlich in jeder solchen Teilmenge enthalten. Aus der 1 lassen sich weitere Zahlen erzeugen, die in einem Körper enthalten sein müssen.
- b) Es sei $K:=\{a+b\sqrt{2}\,|\,a,b\in\mathbb{Q}\}$; K werde mit der üblichen Addition und Multiplikation reeller Zahlen versehen. Man zeige, dass K ein Körper ist.

Ergänzende Bemerkung:

Offensichtlich gilt für K von b) $\mathbb{Q} \subset K \subset \mathbb{R}$. Neben K gibt es weitere Körper zwischen \mathbb{Q} und \mathbb{R} , z.B. $\{a+b\sqrt{3} \mid a,b\in\mathbb{Q}\}$.

Aufgabe 15. *Untervektorräume von* \mathbb{R}^n ?

Welche der folgenden Teilmengen U von \mathbb{R}^n ist ein Untervektorraum des \mathbb{R} -Vektorraums \mathbb{R}^n ? Man gebe jeweils eine Begründung an.

a)
$$U = \{x = (\alpha_1, ..., \alpha_n) \mid \alpha_1 = \alpha_2 = ... = \alpha_n\}$$

b)
$$U = \{x = (\alpha_1, ..., \alpha_n) \mid \alpha_1^2 = \alpha_2^2\}$$

c)
$$U = \{x = (\alpha_1, ..., \alpha_n) \mid \alpha_1 = 1\}$$

d)
$$U = \{x = (\alpha_1, ..., \alpha_n) \mid \alpha_1 + \alpha_2 + ... + \alpha_n = 0\}$$

Aufgabe 16. *Untervektorraum von* $\mathbb{R}^{\mathbb{N}}$?

Es werde der \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{N}}$ (statt $\mathbb{R}^{\mathbb{N}}$ ist auch die Bezeichnung \mathbb{R}^{∞} gebräuchlich) betrachtet:

$$\mathbb{R}^{\mathbb{N}} = \{ x = (\alpha_1, \alpha_2, \dots) \mid \alpha_i \in \mathbb{R} \ \forall i \in \mathbb{N} \}$$

Man gebe mit Begründung an, ob die Teilmenge $U:=\mathbb{R}^{(\mathbb{N})}$ von $\mathbb{R}^{\mathbb{N}}$ ein Untervektorraum von $\mathbb{R}^{\mathbb{N}}$ ist, wobei

$$\mathbb{R}^{(\mathbb{N})} = \{ x = (\alpha_1, \alpha_2, \ldots) \in \mathbb{R}^{\mathbb{N}} \mid \alpha_i \neq 0 \text{ für höchstens endlich viele } i \in \mathbb{N} \}$$