Cálculo Diferencial. III. Optimización.

Definición

Supóngamos que f es una función diferenciable y x_0 un punto en el dominio de f. Decimos que x_0 es un punto crítico de f si $f'(x_0) = 0$. En este caso el valor $f(x_0)$ se le llama valor crítico.

Ejemplo. Calcular los puntos y valores críticos de la función

$$f(x) = x^3 - 3x + 1$$

Solución. Calculamos la derivada y la igualamos a 0:

$$f'(x) = 3x^2 - 3 = 0$$

factorizando:

$$(x-1)(x+1)=0$$

Por lo tanto los puntos críticos son x = 1 y x = -1. Los valores críticos son f(1) = -1 y f(-1) = 3.

Figura1: Gráfica de la función $x^3 - 3x + 1$

Definición

Sea f una función definida en un conjunto A. $x_0 \in A$ se dice que es un punto máximo (resp. mínimo) de f sobre A, si $f(x_0) \ge f(x)$ (resp. $f(x) \ge f(x_0)$) para todo $x \in A$.

Ejemplo. Indicar mediante la gráfica los puntos máximos y mínimos de $f(x) = \sin(x^2)$ en el conjunto A = [-2, 2].

Teorema

Si f es contínua en un intervalo cerrado [a,b] entonces existen puntos $x_0,x_1\in [a,b]$ tales que

$$f(x_0) \le f(x) \le f(x_1)$$

para cualquier $x \in [a, b]$.

Este teorema nos dice que una función contínua siempre alcanza un máximo y un mínimo.

Nota.

- No se require que la función sea diferenciable, solo que sea contínua.
- Este teorema es válido si cambiamos, en la hipótesis, el intervalo [a, b] por un conjunto A que sea compacto (investigar qué es un conjunto compacto).

Teorema

Sea f una función definida sobre (a,b) si x_0 es un máximo (o mínimo) para f en (a,b) y f es derivable en x_0 , entonces x_0 es un punto crítico de f.

Demostración.

Supongamos que $x_0 \in (a,b)$ es un punto máximo de f, entonces para cualquier h tal que $x_0 + h \in (a,b)$ se tiene que $f(x_0 + h) \le f(x)$, luego $f(x_0 + h) - f(x_0) \le 0$.

$$egin{aligned} rac{f(x_0+h)-f(x_0)}{h} & \leq 0, \quad h > 0 \ rac{f(x_0+h)-f(x_0)}{h} & \geq 0, \quad h < 0 \end{aligned}$$

Calculando los límites:

$$\lim_{h o 0^+} rac{f(x_0 + h) - f(x_0)}{h} \leq 0$$
 $\lim_{h o 0^-} rac{f(x_0 + h) - f(x_0)}{h} \geq 0$

(los límites preservan la desigualdad).

Como f es derivable en x_0 se sigue que $f'(x_0) = 0$.

Ejemplo El recíproco del teorema anterior es falso. **Contraejemplo clásico:** la función $f(x) = x^3$, 0 es un punto crítico de f, pero no es máximo ni mínimo.

Definición. (Máximo y mínimo local) Sea f una función definida en un conjunto A. $x_0 \in A$ es un punto máximo (resp. mínimo) local de

f sobre A, si existe un intervalo abierto I que contiene a x_0 tal que

f tiene un máximo (resp. mínimo) en $I \cap A$.

Ejemplo. Considere la función $f(x) = x \sin^2(x)$. Analizar los máximos y mínimos locales en el intervalo [-10, 10].

Funciones monótonas

Definición. Sea f una función definida en un conjunto S

- ▶ f es creciente si para cualquier $x, y \in S$ con x < y se tiene que $f(x) \le f(y)$. Si se verifica la desigualdad estricta f(x) < f(y) la función se llama *estrictamente creciente*.
- f es decreciente si para cualquier $x, y \in S$ con x < y se tiene que f(x) > f(y). Si se verifica la designaldad estricta f(y) < f(x) la función se llama estrictamente decreciente.

Una función se dice monótona en S si es creciente o decreciente en S.

Ejemplo. Analizar, mediante la gráfica, intervalos donde la función $x \sin^3(x)$ sea creciente y decreciente.

Teorema Sea f una función continua en un intervalo en un abierto cerrado [a, b] y que admite derivada en cada punto de un intervalo abierto (a, b). Tenemos entonces:

- ▶ Si f'(x) > 0 para todo x de (a, b), f es estrictamente creciente en [a, b].
- Si f'(x) < 0 para todo x de (a, b), f es estrictamente decreciente en [a, b].
- ▶ Si f'(x) = 0 para todo x de (a, b), f es constante en (a, b).

Demostración. Sean $x, y \in [a, b]$ tal que x < y, por el Teorema del Valor Medio aplicado al intervalo cerrado [x, y], existe $c \in (x, y)$ tal que

$$f(y) - f(x) = f'(c)(y - x)$$

Como f'(c) > 0 y y - x > 0 se sigue que f(y) - f(x) > 0, esto significa que f(y) > f(x).

La demostración de (b) es parecida.

Para demostrar (c) utilizamos la igualdad anterior haciendo x = a. Ya que f'(c) = 0 tenemos que f(y) = f(a), para todo y en [a, b].

Teorema (*Criterio de la primera derivada*) Supongamos que f es contínua en un intervalo cerrado [a, b] y que existe la derivada f' en todo punto del intervalo abierto (a, b), excepto quizá en un punto c.

- ▶ Si f'(x) es positiva para todo x < c y negativa para todo x > c, entonces f tiene un máximo local en c.
- Si, por otra parte, f'(x) es negativa para todo x < c y positiva para todo x > c, entonces f tiene un mínimo local en c.

Ejemplo Determine los máximos y mínimos locales de la siguiente función

$$f(x) = x^3 - 6x^2 + 9x + 1$$

Solución Derivamos la función y la igualamos a cero:

$$f'(x) = 3x^2 - 12x + 9 = 0$$

Simplificamos y factorizamos

$$x^2 - 4x + 3 = 0$$

$$(x-1)(x-3)=0$$

Obtenemos

$$x = 0$$
 $x = 3$

Los puntos críticos son x = 1 y x = 3.

Luego	determinamos	s los inte	ervalos	donde la	derivada	es	negativa	у

positiva. Para esto evaluamos algunos puntos.

Figura2: Gráfica de f en el intervalo [-3, 5]

Teorema (*Criterio de la segunda Derivada*) Sea c un punto crítico de f en un intervalo abierto (a,b), esto es, supongamos a < c < b y que f'(c) = 0. Supongamos también que existe la segunda

▶ si f''(c) > 0, f tiene un mínimo local en c.

derivada f'' en (a, b). Tenemos entonces:

▶ Si f''(c) < 0, f tiene un máximo local en c.

Ejemplo Sea

$$f(x) = x^4 + \frac{4}{3}x^3 - 4x^2$$

determine los máximos y mínimos locales de f aplicando el criterio de la segunda derivada. Utilice esta información para dibujar la gráfica de f.

Solución. Calculamos la primera y segunda derivada de f:

$$f'(x) = 4x^3 + 4x^2 - 8x$$
 $f''(x) = 12x^2 + 8x - 8$

Calculamos los puntos críticos, los puntos donde f'(x) = 0:

$$4x(x+2)(x-1) = 0$$

 $x = 0$ $x = -2$ $x = 1$

Checamos los signos de la evaluación de los puntos críticos en la segunda derivada:

	f(x)	f'(x)	f"(x)	Conclusión
x = -2	$-\frac{32}{3}$	0	+	f tiene un valor mínimo relativo
x = 0	0	0	-	f tiene un valor máximo relativo
x = 1	$-\frac{5}{3}$	0	+	f tiene un valor mínimo relativo

Nota Si f''(c) = 0 y f'(c) = 0, no se puede determinar si es máximo o mínimo local.

Ejemplo La función $f(x) = x^4$ y $g(x) = -x^4$ tienen un punto crítico en 0, y sus segundas derivadas es 0, pero f tiene un mínimo local en 0 y g tiene un máximo local en 0.

Puntos de inflexión

Definición Sea f una función diferenciable en un intervalo abierto que contiene a c. Entonces

- La gráfica de f es cóncava hacia arriba en (c, f(c)) si f''(c) > 0.
- La gráfica de f es cóncava hacia abajo en (c, f(c)) si f''(c) < 0.

Figura3: Cóncava hacia arriba

Figura4: Cóncava hacia abajo

Definición (Punto de inflexión) Supongamos que f es una función derivable en un intervalo abierto que contiene a c, decimos que el punto (c, f(c)) es un **punto de inflexión** de la gráfica de f si

f''(x) < 0 si x < c y f''(x) > 0 si x > c; of''(x) > 0 si x < c y f''(x) < 0 si x > c..

Teorema Supongamos que f es diferenciable en algún intervalo abierto que contiene a c, y (c, f(c)) es un punto de inflexión de la gráfica de f. Entonces, si f''(c) existe, f''(c) = 0.

Ejemplo Considere la función

$$f(x) = x^3 - 6x^2 + 9x + 1$$

Encuentre el punto de inflexión de la gráfica de f y determine dónde la gráfica es cóncava hacia arriba y dónde lo es hacia abajo. Apoye su respuesta graficando la función y la recta tangente en el punto de inflexión.

Solución. Calculamos la primera y segunda derivada de f

$$f'(x) = 3x^2 - 12x + 9$$
 y $f''(x) = 6x - 12$

Calculamos los puntos donde se anula la segunda derivada: 6x-12=0, x=2. Para determinar si se tiene un punto de inflexión en x=2, debe verificarse si f''(x) cambia de signo, al mismo tiempo se determina la concavidad de la gráfica para los intervalos respectivos. Los resultados se resumen en la Tabla 2.

	f(x)	f'(x)	f''(x)	Conclusión
x < 2			-	La gráfica de f es cóncava hacia abajo
x = 2	3	-3	0	La gráfica de f tiene un punto de inflexión
2 < x			+	La gráfica de f es cóncava hacia arriba

