東南大學

毕业设计(论文)报告

论文题目

题目	论文题目									
软件	院(系)き	专业 专业								
学号	你的学号	<u>1</u>								
学生姓名	你的名字									
指导教师	导师名字									
顾问老师	校内导师名字									
起止日期	毕设起止日	期								
设计地点										

东南大学毕业(设计)论文独创性声明

	本人	.声明所呈	是交的	毕业	(设计)	论文是	我个人	在导师	i指导	下进行	亍的研?	究工作	及取行	导的研
究成	え果。	尽我所知	口,除	了文中	特别加	以标注	和致谢	的地方	外,	论文□	中不包	含其他	人已经	圣发表
或撑	峰写过	的研究成	 、果,	也不包	包含为获	得东南	大学或	其它教	育机	构的气	学位或	证书而	使用证	过的材
料。	与我	一同工作	E的同	志对本	以研究所	做的任	何贡献	均已在	论文	中作、	了明确	的说明	并表え	示了谢
意。														

论文作者签名:	日期:	年	月	日
12人11 日並日:	H ///•		_ / •	

东南大学毕业(设计)论文使用授权声明

东南大学有权保留本人所送交毕业(设计)论文的复印件和电子文档,可以采用影印、缩印或其他复制手段保存论文。本人电子文档的内容和纸质论文的内容相一致。除在保密期内的保密论文外,允许论文被查阅和借阅,可以公布(包括刊登)论文的全部或部分内容。论文的公布(包括刊登)授权东南大学教务处办理。

论文作者签名:				导师签名:		
日期:	年	月	日	日期:	年	 日

摘 要

这里是中文摘要

关键词: 关键字

title ABSTRACT

英文摘要

KEY WORDS: key word

目 录

摘	要 ・・・				•		•	•	•	•	 •	٠	•	•	•	 •	٠	٠	•	•	 •	•	٠	•	•	•	•]
ABSTR	ACT ·											•					•							•				 	I	.]
目	录									•	 •				•						 	•	•					 	II]
第一章	数学公	式																			 							 		1
1.1	行内数	学么	大(1
1.2	数学公	式.																												1
1.3	带有大	括号	計的	数	学と	左之	₿.			-												•								1
第二章	图片												•								 		٠					 		2
2.1	普通图	片.																												2
2.2	子图.																												•	2
第三章	算法								•			•	•				•	•	•	•				•				 		3
第四章	列表											•														•		 		4
4.1	有序列	表 .																												4
4.2	无序列	表 .																												4
第五章	表格											•	•				•			•			•	•				 	í	5
第六章	论文引	用														 •												 	ĺ	6
参考文献	献																											 	,	7
新 油.																													1.	า

第一章 数学公式

这里可以写点东西

1.1 行内数学公式

这是一段话,包含了一个行内公式 $\sum_{t=1}^{T} k_t = \frac{1}{2}\gamma$

1.2 数学公式

这是一个普通的数学公式

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} \sum_{a' \in A} \pi(a'|s') q_{\pi}(a', s')$$
(1.1)

1.3 带有大括号的数学公式

这是一个带有大括号的数学公式

$$p_{ij}^{k} = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha}\left[\eta_{ij}\right]^{\beta}}{\sum_{k \in A}\left[\tau_{ik}(t)\right]^{\alpha}\left[\eta_{ik}\right]^{\beta}} & k \in Available\\ 0 & else \end{cases}$$
(1.2)

第二章 图片

2.1 普通图片

图 2.1 测试图片

2.2 子图

图 2.2 带有子图的图片

第三章 算法

算法 1 ACO 算法解决 TSP 输入:图 G(V,E), d_{ij} 城市 i 与城市 j 的距离, 蚂蚁的集合 M输出: 最短路径, 最短路径的长度 1: **function** constructRoutes 2: for i in $1, \dots, |V| - 1$ do for $\forall k \in M$ do 3: 选择下一个城市 s_k 4: 增加边 $edge(r_k, s_k)$ $r_k \leftarrow s_k$ 6: end for 7: end for 8: for $\forall k \in M$ do 增加边 $edge(r_k, s_k)$ 10: end for 11: 12: end function 13: **function** updatePheromones for $\forall k \in M$ do 14: 计算 L_k 15: 更新 $\tau_{r,s}$ end for 17: 18: end function 19: function main for $\forall dege(r,s) \in E$ do 20: $\tau_{r,s} \leftarrow \tau_0$ 21: $\eta_{r,s} \leftarrow \frac{1}{c_{r,s}}$ 22: end for 23: while 结束条件不满足 do 24: 调用 setInitInfo 函数 25: 调用 constructRoutes 函数 26: 调用 updatePheromones 函数 27: end while 28:

29: end function

第四章 列表

4.1 有序列表

- (1) 随便说点东西
- (2) 随便说点东西
- (3) 随便说点东西

4.2 无序列表

- · 随便说点东西
- · 随便说点东西
- · 随便说点东西

第五章 表格

以下是一个论文中常用的三线表的格式,其中 tabularcccccc,其中每一个 1 表示居左 r 表示居右 c 表示居中,其中用 p 表示每列的宽度,例如 cp5em,表示居中列宽 5em

表 5.1 年龄与工作,房子有无,信贷关系数据表

ID	年龄段	有工作	有自己的房子	信贷情况	类别 (是否给贷款)
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
	•••	•••	•••	•••	
498	老年	是	否	非常好	是
499	老年	否	否	一般	否
500	老年	否	否	非常好	否

第六章 论文引用

这是一段比较有趣的话^[1],因为在这短短的一段文字中,居然有两个引用^[2] 论文引用可以使用 bibtex 或者使用 zotero 集体导出 GB/T 7714-2015 格式的引用 zotero 导出论文引用时,将所有引用论文添加到一个单独拿的文件夹中,右键选择"由所选条目创建引文条目"->"引文目录","复制到剪贴板"

参考文献

- [1] 王亚杰, 邱虹坤, 吴燕燕, 等. 计算机博弈的研究与发展 [J]. 智能系统学报, 2016, 11(6): 788-798.
- [2] 徐心和, 邓志立, 王骄, 等. 机器博弈研究面临的各种挑战 [J]. 智能系统学报, 2008(04): 288-293.

附录 A

随便写点东西

附录 B

标题

Listing 1 Kmeans.py

```
import numpy as np
1
2
    import math as m
3
    import random
    import matplotlib.pyplot as plt
4
    import evaluate as eva
5
6
7
    dataPath = "./data/dataset.txt"
8
9
    # 导入数据
10
    def loadData():
11
12
       points = np.loadtxt(dataPath, delimiter='\t')
13
       return points
14
15
    def calculateDistance(data, clu, k):
16
17
        计算质点与数据点的距离
18
        :param data: 样本点
19
20
        :param clu: 质点集合
21
        :param k: 类别个数
        :return: 质心与样本点距离矩阵
22
       0.00
23
24
       dis = []
25
       for i in range(len(data)):
           dis.append([])
26
27
           for j in range(k):
               {\tt dis[i].append(m.sqrt((data[i, 0] - clu[j, 0])**2 + (data[i, 1] - clu[j, 1])**2))}
28
       return np.asarray(dis)
29
30
31
    def divide(data, dis):
32
33
        对数据点分组
34
        :param data: 样本集合
35
        :param dis: 质心与所有样本的距离
36
37
        :param k: 类别个数
        :return: 分割后样本
38
39
```

```
40
        clusterRes = [0] * len(data)
41
        for i in range(len(data)):
            seq = np.argsort(dis[i])
42
           clusterRes[i] = seq[0]
43
44
45
       return np.asarray(clusterRes)
46
47
    def getCenter(data, clusterRes, k):
48
49
        计算质心
50
        :param group: 分组后样本
51
        :param k: 类别个数
52
        :return: 计算得到的质心
53
54
        clunew = []
55
        for i in range(k):
56
           # 计算每个组的新质心
57
           idx = np.where(clusterRes == i)
58
59
           sum = data[idx].sum(axis=0)
60
           avg_sum = sum/len(data[idx])
           clunew.append(avg_sum)
61
        clunew = np.asarray(clunew)
62
63
        return clunew[:, 0: 2]
64
65
    def kmeans(data, clu, k):
66
67
        迭代收敛更新质心
68
        :param data: 样本集合
69
        :param clu: 质心集合
70
        :param k: 类别个数
71
        :return: 误差, 新质心
72
73
74
        clulist = calculateDistance(data, clu, k)
        clusterRes = divide(data, clulist)
75
76
        clunew = getCenter(data, clusterRes, k)
77
        err = clunew - clu
78
        return err, clunew, k, clusterRes
79
80
81
    def drawPic(data, clusterRes, clusterNum):
82
        结果可视化
83
        :param data:样本集
84
```

```
85
         :param clusterRes:聚类结果
 86
         :param clusterNum: 类个数
 87
         :return:
         0.00
 88
 89
         nPoints = len(data)
 90
         scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
 91
         for i in range(clusterNum):
             color = scatterColors[i % len(scatterColors)]
 92
             x1 = []; y1 = []
 93
             for j in range(nPoints):
 94
 95
                 if clusterRes[j] == i:
                     x1.append(data[j, 0])
 96
                     y1.append(data[j, 1])
 97
             plt.scatter(x1, y1, c=color, alpha=1, marker='+')
98
 99
         plt.show()
100
101
     if __name__ == '__main__':
102
103
         k = 10
                                                         # 类别个数
104
         data = loadData()
105
         clu = random.sample(data[:, 0:2].tolist(), k) # 随机取质心
         clu = np.asarray(clu)
106
         err, clunew, k, clusterRes = kmeans(data, clu, k)
107
108
         while np.any(abs(err) > 0):
             print(clunew)
109
             err, clunew, k, clusterRes = kmeans(data, clunew, k)
110
111
112
         clulist = calculateDistance(data, clunew, k)
113
         clusterResult = divide(data, clulist)
114
115
         nmi, acc, purity = eva.eva(clusterResult, np.asarray(data[:, 2]))
         print(nmi, acc, purity)
116
117
         drawPic(data, clusterResult, k)
```

致 谢

感谢大家