1 a = (x, 2, -1) と b = (-2, -4, y) が平行になるような x,y を求めなさい.

 $a \ge b$ が平行となるのは、a = kbとなるときに限る【4点】 つまり

$$(x, 2, -1) = k(-2, -4, y) = (-2k, -4k, ky)$$

より,

$$x = -2k$$
, $2 = -4k$, $-1 = ky$

である。第 2 式より, $k = -\frac{1}{2}$. よって,第 1 式より x = $-2 \times \left(-\frac{1}{2}\right) = \mathbf{1}$ 【3 点】,第 2式より $y = -\frac{1}{k} = \mathbf{2}$ 【3 点】 を得る.

 $\mathbf{2}$ $\mathbf{a} = (1, -1, 2, 0)$ と $\mathbf{b} = (0, -2, 1, 2)$ に対し、大きさ |a|, |b| と内積 (a,b) を求めなさい。 さらに、a と b の なす角 θ の余弦 $\cos\theta$ の値を求めなさい.

$$|\mathbf{a}| = \sqrt{1^2 + (-1)^2 + 2^2 + 0^2} = \sqrt{6}$$
 【5 点】
 $|\mathbf{b}| = \sqrt{0^2 + (-2)^2 + 1^2 + 2^2} = \sqrt{9} = 3$ 【5 点】
 $(\mathbf{a}, \mathbf{b}) = 1 \times 0 + (-1) \times (-2) + 2 \times 1 + 0 \times 2 = 4$ 【5 点】
 $\cos \theta = \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{a}| |\mathbf{b}|} = \frac{4}{3\sqrt{6}} = \frac{2\sqrt{6}}{9}$ 【5 点】

$$m{u}_1 = rac{1}{|m{a}_1|} m{a}_1 = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \ 1 \ 0 \end{array}
ight)$$
. 【5 点】

 $u_2' = a_2 - (a_2, u_1)u_1$

$$= \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{2}} \times \left(-\frac{1}{\sqrt{2}} \right) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix} \quad [3 \text{ id}],$$

$$m{u}_2 = rac{1}{|m{u}_2'|}m{u}_2' = rac{1}{\sqrt{6}} \left(egin{array}{c} 1 \ -1 \ 2 \end{array}
ight)$$
. 【2 点】

 $u_3' = a_3 - (a_3, u_1)u_1 - (a_3, u_2)u_2$

$$= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \left(\frac{1}{\sqrt{2}}\right)^2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \left(\frac{1}{\sqrt{6}}\right)^2 \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}$$
[3 点]

$$u_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
. 【2 点】

集合 $W = \{(a, b, 1) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}$ が \mathbb{R}^3 の部分空間 であるか否か判定しなさい.

部分空間ではない. 【5点】

 $x_1 = (a_1, b_1, 1), x_2 = (a_2, b_2, 1)$ に対し、 $x_1 + x_2 = (a_1 + a_2)$ $a_2, b_1 + b_2, 2$) となり、第3成分が1でないので、W のベク トルではない. 【5点】

5 次の写像 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ が線形写像なら、表現行列を求めなさい。線形写像でないなら、その理由を述べなさい。

$$(1)$$
 $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ に対し、 $f(\mathbf{x}) = \begin{pmatrix} 2x - y \\ x + y \end{pmatrix}$ 線形写像である. 【5 点】 表現行列は $\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$. 【5 点】

(2)
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 に対し、 $f(\boldsymbol{x}) = \begin{pmatrix} xy \\ x \end{pmatrix}$

線形写像ではない. 【5点】

線形写像ならば、任意の実数 k に対して、 $f(kx)=k\,f(x)$ が成り立つが、この写像の場合、 $k\neq 1$ では成り立たない (別解あり). 【5点】

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$

固有多項式は

$$f_A(t) = \begin{vmatrix} 3-t & 4 \\ 2 & 1-t \end{vmatrix} = t^2 - 4t - 5 = (t+1)(t-5).$$

よって, 固有値は -1 と 5 である. 【2点】

固有値
$$-1$$
 に対する固有ベクトルは $k \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 【2点】,

固有値 5 に対する固有ベクトルは $l \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 【2 点】

である (k,l は 0 でない実数). したがって、固有空間はそれぞれ、

$$\left\langle \left(\begin{array}{c}1\\-1\end{array}\right)\right\rangle, \left\langle \left(\begin{array}{c}2\\1\end{array}\right)\right\rangle$$

である(各【2点】).

7 2 次形式 $2x^2 - 2xy + 2y^2$ の標準形を求めなさい.

$$2x^2 - 2xy + 2y^2 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 【3点】

$$A = \left(egin{array}{cc} 2 & -1 \ -1 & 2 \end{array}
ight)$$
 とおいて、これを直交行列で対角化する.

$$f_A(t) = \begin{vmatrix} 2-t & -1 \\ -1 & 2-t \end{vmatrix} = t^2 - 4t + 3 = (t-1)(t-3).$$

よって, 固有値は 1,3 である. 【3 点】

固有ベクトルはそれぞれ $k\begin{pmatrix} 1\\1 \end{pmatrix}$, $l\begin{pmatrix} 1\\-1 \end{pmatrix}$ である (各【2点】)

したがって, $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ とおくと,P は直交行列

で,
$$P^TAP = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
である. 【3点】

ここで、
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} X \\ Y \end{pmatrix} = P \boldsymbol{X}$$
 とおくと、

$$2x^2 + 2y^2 - 2xy = \mathbf{x}^T A \mathbf{x} = (P\mathbf{X})^T A P \mathbf{X} = \mathbf{X}^T (P^T A P) \mathbf{X}$$

$$= \begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$= X^2 + 3Y^2. \qquad \boxed{2 \text{ in }}$$