USO DE REDES NEURAIS PARA ANÁLISE DE DADOS NAS DISCIPLINAS DE LABORATÓRIO DE FÍSICA

Gabriela Molina Ciocci¹, Bruno Arthur Basso Silva¹, Eliane de Fátima Chinaglia²

¹,²Centro Universitário FEI

babi.ciocci@outlook.com; echinaglia@fei.edu.br

Resumo: Há muito tempo a formação em engenharia é desenvolvida apenas em sua parte técnica. Porém, o alto avanço da tecnologia implica a necessidade do aluno se tornar mais ativo em seus estudos. Analisar simulações e comparar com dados experimentais, são ótimas opções para tornar o estudante protagonista de seus estudos. Este projeto tem como objetivo treinar uma rede neural desenvolvida em Python para determinar a massa de um objeto em um experimento de física. A rede neural utiliza dados de aceleração e inclinação de um sistema de dois corpos acoplados em um trilho de ar visando classificar uma das massas com base no movimento.

1. Introdução

Existe uma necessidade de mudança no curso de engenharia, na qual necessita fazer com que o aluno seja mais atualizado no cenário da tecnologia, pois à medida que a relevância dessas áreas cresce, se toma fundamental que os engenheiros possuam uma compreensão de como algoritmos funcionam. Para isso, é necessário que novas didáticas de ensino-aprendizagem sejam criadas, fazendo com que o aluno possa se tornar mais ativo em seus estudos.

Esse projeto tem como objetivo ingressar o aluno à conceitos de Inteligência Artificial (IA) e aprendizado de máquina (ML), especificamente agrupamento nãohierárquico e redes neurais, a fim de auxiliá-lo nas experiências realizadas em laboratórios de física. Utilizando Python [1] como linguagem de programação, Scikit-Learn [2] como biblioteca de Redes Neurais e bibliotecas como Matplotlib [3] e Seaborn [4] para esboçar gráficos, o aluno de engenharia poderá entender e visualizar melhor os conceitos. Ao final do projeto, a experiência de laboratório e os algoritmos treinados serão abordados em aulas de física para alunos ingressantes no curso de engenharia com o objetivo de discutir o funcionamento de uma IA e os modelos de aprendizado de máquina.

2. Metodologia

A primeira etapa para o desenvolvimento desse projeto consistiu na aquisição de dados para obter um banco de dados que seja eficiente e confiável para treinar nossa IA. Conforme ilustrado na figura 1, foi utilizado um trilho de ar para a obtenção de dados a fim de minimizar as forças de atrito no movimento de dois corpos de massas diferentes acoplados por um fio em uma polia e quatro sensores ópticos para captar a velocidade em função do tempo. Esse arranjo experimental possibilita a determinação da aceleração do sistema.

Figura 1- Arranjo experimental do trilho de ar

Na tabela 1 está apresentada a variação de valores das massas utilizadas para a aquisição de dados.

Tabela 1 - Variação das massas utilizadas no experimento

m ₁ (kg)	m ₂ (kg)
0,209	0,004 a 0,013
0,309	0,015 a 0,019
0,409	0,021 a 0,031

A aquisição de dados para a execução do projeto foi feita através do software Data Studio, onde foram obtidos os dados de velocidade em função do tempo de forma extremamente precisa, permitindo obter a aceleração. As informações adquiridas foram armazenadas em uma planilha no Excel e utilizada como banco de dados do projeto.

A análise de agrupamento não hierárquico, também conhecido como partição, é uma técnica de aprendizado não supervisionado que busca dividir um conjunto de dados em um número pré-definido de grupos (clusters) de forma que os objetos dentro de cada grupo sejam mais semelhantes entre si do que com os objetos de outros grupos [5]. Neste projeto iremos trabalhar com o método k-Means, que utiliza o cálculo dos centroides de um conjunto de dados. [6].

Redes neurais artificiais são modelos computacionais inspirados no sistema nervoso humano, capazes de aprender e tomar decisões complexas a partir de dados [7]. Os dados de entrada são alimentados na primeira camada e a informação flui através das camadas ocultas até a camada de saída, onde é gerada a resposta final [7]. Durante o treinamento, a rede é exposta a um grande conjunto de dados de treinamento, e os pesos são ajustados iterativamente utilizando algoritmos de otimização.

Ao trabalhar com aprendizado de máquina, é essencial identificar os parâmetros indispensáveis para obter resultados coerentes e auxiliar na seleção dos dados a serem utilizados. Após compreender quais são os melhores parâmetros, foram escolhidas as seguintes variáveis para otimizar a execução do algoritmo de

classificação: a massa m_1 , a aceleração obtida e o ângulo de inclinação, já que o foco dessa IA consiste em fornecer o resultado de uma classificação de massas m_2 .

3. Resultados

Para treinar a Rede Neural, até o momento, foram adquiridos 256 dados, tendo uma variedade grande de valores para m_2 . Foi realizada uma análise inicial dos dados usando o método k-Means. Para determinar a quantidade ideal de clusters em um conjunto de dados, foi utilizado o método de Elbow. O método é chamado dessa forma pois espera-se observar o ponto de inflexão na curva, assemelhando-se ao formato de um cotovelo. Esse método inicia com um único cluster e vai adicionando mais clusters gradativamente. A cada novo cluster, a qualidade da classificação é avaliada e quando a melhora na classificação se torna muito pequena, o processo para [8]. A figura 2 apresenta o gráfico do método utilizado com o banco de dados adquirido através desse projeto.

Figura 2 - Método de Elbow dos dados do projeto.

Após analisarmos o gráfico, foi observado que a quantidade mais eficaz para o projeto até o momento seria de 5 clusters. Assim, o resultado do agrupamento pelo k-Means é apresentado na tabela 2.

Tabela 2- Resultado	do agrupamento po	elo k-Means
---------------------	-------------------	-------------

Cluster	Quantidade de	Valor	Valor
	itens por cluster	mínimo de	máximo de
		m_2	m_2
1	54	0.017	0.020
2	59	0.015	0.021
3	61	0.009	0.021
4	20	0.031	0.031
5	52	0.004	0.004

Analisando os dados, pode-se perceber que os primeiros três clusters estão com uma grande dispersão dos valores da massa m_2 , o que indica uma dificuldade para a identificação correta da massa. Portanto, será necessário a diminuição de variabilidade de massas m_2 para melhorar posteriormente a acurácia inicial da Rede Neural.

4. Conclusões

A coleta de dados experimentais, embora desafiadora, é crucial para o treinamento eficaz da Rede Neural. Para aprimorar o modelo, o próximo passo será otimizar os valores de massa m_2 e adquirir novos dados com o trilho de ar inclinado, com diferentes angulações. Assim, a expectativa é aumentar a quantidade dos dados e melhorar a precisão da classificação, permitindo que a IA estime a massa m_2 com acurácia a partir de dados de massa m_1 , ângulo e aceleração, auxiliando nas aulas de laboratório de Física 1.

5. Referências

- [1] PYTHON. **PYTHON 3.12.4 DOCUMENTATION.** 2001. Disponível em: https://docs.python.org/3/. Acesso em: 05/08/2024.
- [2] SCIKIT-LEARN. SCIKIT-LEARN.ORG. 2007. Disponível em: https://scikitlearn.org/stable/about.html#history. Acesso em: 05/08/2024.
- [3] MATPLOTLIB. **MATPLOTLIB.PYPLOT.** 1991. Disponível em: https://matplotlib.org/3.5.3/api/ as gen/matplotlib.pyplot.html. Acesso em: 05/08/2024.
- [4] SEABORN. **SEABORN DOCUMENTATION.** 2012. Disponível em: https://seaborn.pydata.org/tutorial.html/. Acesso em: 05/08/2024.
- [5] FÁVERO. MANUAL DE ANÁLISE DE DADOS ESTATÍSTICA E MODELAGEM MULTIVARIADA COM EXCEL, SPSS E STATA, v.9.1 v.9.2, p. 300 336, 2022. Acesso em: 05/08/2024.
- [6] GIORDANI, P., FERRARO, M.B., MARTELLA, F. (2020). NON-HIERARCHICAL CLUSTERING. IN: AN INTRODUCTION TO CLUSTERING WITH R. BEHAVIORMETRICS: QUANTITATIVE APPROACHES TO HUMAN BEHAVIOR, VOL 1. Disponível em: https://doi.org/10.1007/978-981-13-0553-5 3 Acesso em: 11/08/2024
- [7] ZHANG, Z. (2018). ARTIFICIAL NEURAL NETWORK. IN: MULTIVARIATE TIME SERIES ANALYSIS IN CLIMATE AND ENVIRONMENTAL RESEARCH. Disponível em: https://doi.org/10.1007/978-3-319-67340-0_1 . Acesso em: 11/08/2024
- [8] SCIKIT. ELBOW METHOD. 2016. Disponível em: https://www.scikityb.org/en/latest/api/cluster/elbow.html. Acesso em: 13/08/2024

Agradecimentos

Ao Centro Universitário FEI pela oportunidade de aprimorar meus conhecimentos através de uma iniciação científica e pelo apoio financeiro.

¹ Aluno de IC do Centro Universitário FEI. Projeto com vigência de 02/2024 a 02/2025 PRO-BID005/23.