STAT 253 Final Project: Analysis of COVID-19

Max Dodge

Data Context

The New York Times

New York Times Data:

- County level case and death data for each day from December 1st 2020 to April 4th 2021.
- Mask usage by county. Survey conducted July 2020.

CDC Data:

 State level data for weekly vaccine allotment for each of the big three vaccines. (Pfizer, Moderna, Jenssen).

US Census Bureau Data:

2019 estimated population by county.

Variables

Location/Date:

date, county, state, fips (county-state identifier)

COVID:

cases, deaths, cases_per10k (population adjusted), severe_outbreak

Demographics:

pop_county, pop_state, prop_statepop (relative population)

Mask Usage:

NEVER, RARELY, FREQUENTLY, ALWAYS

Vaccine Data:

 janssen_doses, pfizer_dose_1, pfizer_dose_2, moderna_dose_1, moderna_dose_2, total_doses, estimated_doses (population adjusted)

Research Questions

Regression Task:

• Do areas with high mask usage and vaccine distribution correspond to lower levels of covid cases?

Classification Task:

• Which counties are high risk, >50% likelihood of a severe covid outbreak of >2,000 cases per 10,000?

HW3 Investigations - Methods (linear)

OLS

First run used almost all the variables, almost certainly overfit. MAE
 = 199.86

LASSO

 Identified date, NEVER, ALWAYS, SOMETIMES, pop_county as the most important variables. MAE almost identical.

Forward Stepwise

 Identified date, ALWAYS, RARELY, FREQUENTLY as the most important variables. MAE almost the same again.

HW3 Investigations - Results (linear)

- Residual plots showed clear nonlinearity. Without penalization OLS will be overfit.
- LASSO and Forward stepwise had much simpler models with very similar error metrics.
- Non-linearity needs to be addressed.

HW3 Investigations - Nonlinear

 Same LASSO and Stepwise as before, just using natural cubic splines with three degrees of freedom.

LASSO

 Different variables deemed important in the nonlinear model. (date, NEVER, RARELY, ALWAYS, FREQUENTLY, SOMETIMES, pop_county, estimated_doses). MAE drops.

Stepwise

 Different variables deemed important in the nonlinear model. (date, ALWAYS). MAE drops.

HW3 Investigations - Summary

Clear nonlinearity.

Mask usage seems to be important.

Vaccine distribution not as important as expected.

"Best" model is the LASSO made from splines.

Summary Statistics

Linear LASSO

	alpha	lambda	RMSE	Rsquared	MAE	RMSESD	RsquaredSD	MAESD
	<dbl></dbl>							
1	1	0	267.5049	0.3021016	199.866	1.68471	0.005026059	0.9463669

RMSE

15 x 1 sparse Matrix of class "dgCMatrix"

(Intercept) -6.726769e+04 date 3.652825e+00 NEVER 4.800653e+02 ALWAYS -4.185640e+02 5.616530e+02 SOMETTMES

RARELY FREQUENTLY janssen_doses pfizer_dose_1

pfizer_dose_2 moderna dose 1 moderna_dose_2 total_doses

pop_county 3.683885e-05 estimated_doses

Linear Stepwise

nvmax

	<int></int>	<001>	<001>	: <	abi> <abi></abi>	<001>	
1	10	267.9129	0.299959	200.3	3371 1.70537	0.004239484	
(In	tercept)	date	Al	LWAYS	RARELY	FREQUENTLY	
-6901	.0.563822	3.775993	-964.3	25357	-534.458787	-594.191041	

MAE

RMSESD

RsquaredSD

MAESD

0.5701235

<dbl>

Rsquared

Summary Statistics

LASSO with Splines

43 x 1 sparse Matrix of	class "dgCMatrix"	ns(FREQUENTLY, 3)1	10.5171180	ns(moderna_dose_1, 3)1	
	1	ns(FREQUENTLY, 3)2		ns(moderna_dose_1, 3)2	
(Intercept)	561.9656913	ns(FREQUENTLY, 3)3	-20.6338843	ns(moderna_dose_1, 3)3	134
ns(date, 3)1	338.1709954	ns(pfizer_dose_1, 3)1		ns(moderna_dose_2, 3)1	8.0
ns(date, 3)2	659.6580277	ns(pfizer_dose_1, 3)2		ns(moderna_dose_2, 3)2	13.
ns(date, 3)3	289.9358191	ns(pfizer_dose_1, 3)3		ns(moderna_dose_2, 3)3	
ns(NEVER, 3)1	152.0726435	ns(pfizer_dose_2, 3)1		ns(pop_county, 3)1	7.8789069
ns(NEVER, 3)2	43.7043213	ns(pfizer_dose_2, 3)2	×	ns(pop_county, 3)2	
ns(NEVER, 3)3	73	ns(pfizer_dose_2, 3)3	134	ns(pop_county, 3)3	
ns(RARELY, 3)1	4	ns(janssen_doses, 3)1	8.	ns(total_doses, 3)1	
ns(RARELY, 3)2	14.3109165	ns(janssen_doses, 3)2	73	ns(total_doses, 3)2	134
ns(RARELY, 3)3	•	ns(janssen_doses, 3)3		ns(total_doses, 3)3	
ns(ALWAYS, 3)1	-118.2638710	ns(SOMETIMES, 3)1	157.2126077	ns(estimated_doses, 3)1	-288.7775369
ns(ALWAYS, 3)2	-53.4088592	ns(SOMETIMES, 3)2	106.1637009	ns(estimated_doses, 3)2	
ns(ALWAYS, 3)3	-178.0984231	ns(SOMETIMES, 3)3	0.2094672	ns(estimated_doses, 3)3	

	alpha <dbl></dbl>	lambda <dbl></dbl>	RMSE <dbl></dbl>	Rsquared <dbl></dbl>	MAE <dbl></dbl>	RMSESD <dbl></dbl>	RsquaredSD <dbl></dbl>	MAESD <dbl></dbl>
1	1	0	263.73	0.3216572	195.858	1.888258	0.004812359	0.8371789

Summary Statistics

Stepwise with Splines

```
(Intercept) ns(date, 3)1 ns(date, 3)2 ns(date, 3)3 ns(ALWAYS, 3)3
409.9869 354.3039 712.1190 310.0315 -388.2847
```

	nvmax <int></int>	RMSE <dbl></dbl>	Rsquared <dbl></dbl>	MAE <dbl></dbl>	RMSESD <dbl></dbl>	RsquaredSD <dbl></dbl>	MAESD <dbl></dbl>
1	10	264.8274	0.3160049	196.9682	1.673656	0.004735475	0.7865038

Classification Analysis - Methods

Logistic Regression

 Cutoff was 50% or higher, used a LASSO logistic regression model to predict high/low risk counties. 10 fold CV.

Trees

 Used a random forest model with 50 trees to predict counties where outbreaks were present.

Classification Analysis - Results

Logistic Regression:

 Variable Importance echos the variable importance from the cubic splines LASSO. Pretty High accuracy but also high and similar NIR.

Random Forest:

 Mask usage again comes up as important. Vaccines not so much.

Classification Analysis - Summary

Logistic Regression

alpha <dbl< th=""><th></th><th>AUC <dbl></dbl></th><th>Sens <dbl></dbl></th><th>Spec <dbl></dbl></th><th>Accuracy <dbl></dbl></th><th>AUCSD <dbl></dbl></th><th>SensSD <dbl></dbl></th><th>SpecSD <dbl></dbl></th><th>AccuracySD <dbl></dbl></th></dbl<>		AUC <dbl></dbl>	Sens <dbl></dbl>	Spec <dbl></dbl>	Accuracy <dbl></dbl>	AUCSD <dbl></dbl>	SensSD <dbl></dbl>	SpecSD <dbl></dbl>	AccuracySD <dbl></dbl>
:	1 0	0.7660099	0.9420646	0.2192787	0.770469	0.002483562	0.001337234	0.004927102	0.001758362
	severe_outbreak <chr></chr>				n <int></int>				
1	Not_Severe				298643	[1] 0.7625914			
2	Severe				92973				

Random Forests

```
Call:
```

 Not_Severe
 Severe
 class.error

 Not_Severe
 298120
 523
 0.001751255

 Severe
 1092
 91881
 0.011745345

Variable Importance

Logistic Regression

```
15 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
                -4.361385e+02
date
                 2.329714e-02
NEVER
                 3.717505e+00
ALWAYS
                -1.803531e+00
SOMETIMES
                 4.199349e+00
RARELY
                 1.147487e+00
FREQUENTLY
janssen_doses
pfizer_dose_1
pfizer_dose_2
moderna_dose_1
                 1.598996e-07
moderna_dose_2
                 4.900417e-20
total_doses
pop_county
                 1.826308e-07
estimated_doses
```

Random Forest

	<pre>predictor <chr></chr></pre>	MeanDecreaseGini <dbl></dbl>
ALWAYS	ALWAYS	21657.21041
pop_county	pop_county	21128.64861
date	date	20792.37165
SOMETIMES	SOMETIMES	19174.20377
NEVER	NEVER	18861.87501
RARELY	RARELY	18362.74993
FREQUENTLY	FREQUENTLY	17606.16673
estimated_doses	estimated_doses	322.50068
total_doses	total_doses	206.89655
moderna_dose_1	moderna_dose_1	206.25595

Conclusion

Cubic Splines LASSO is the best regression model, Random Forest is the preferred classification model. Reason it is likely so accurate is because cases are cumulative, makes it easier to split by date and get a very accurate prediction.

Mask usage seems to be very important in predicting how many cases a particular county will see.

Vaccine data seems less strong as a predictor.

More variables are likely needed. Such as population density and political leanings would be interesting.

Changing cases from cumulative to new cases would likely help make analyses more understandable.