Foundation of Financial Data Science (FE 582) (Homework 3)

Prof. Dragos Bozdog

Student Name: Paras Garg

Course Section: FE 582 A

Problem 1 -

Follow the example in Lecture 5 R code to analyze the pair trading strategy for several pairs taken from the following list: PEP, KO, DPS for a period of at least 10 years. You may download stock data from WRDS (you can register and create an account as Stevens student at https://wrds-web.wharton.upenn.edu/wrds/) or other free data sources such that Yahoo. Include transaction cost of 0.1% (or 10 basis points) for each transaction. Discuss the results.

Analysis -

```
# Environment Setup
rm(list = ls())
setwd("E:/FE Assignment/")
```

```
# Read data (downloaded from yahoo)
# URLs:
# PEP:
https://finance.yahoo.com/quote/PEP/history?period1=1167627600&period2=1509854400&in
terval=1d&filter=history&frequency=1d
https://finance.vahoo.com/quote/KO/history?period1=1167627600&period2=1509854400&int
erval=1d&filter=history&frequency=1d
   DPS:
https://finance.yahoo.com/quote/DPS/history?period1=1167627600&period2=1509854400&in
terval=1d&filter=history&frequency=1d
pepData <- read.table(file="PEP.CSV", header = TRUE, sep = ",")</pre>
koData <- read.table(file="KO.CSV", header = TRUE, sep = ",")</pre>
dpsData <- read.table(file="DPS.CSV", header = TRUE, sep = ",")</pre>
# Read data Analysis
head(pepData)
head(koData)
head(dpsData)
# Loaded data summary
summary(pepData)
pepData$Date = as.Date(pepData$Date)
summary(pepData)
summary(koData)
koData$Date = as.Date(koData$Date)
summary(koData)
summary(dpsData)
dpsData$Date = as.Date(dpsData$Date)
summary(dpsData)
```

```
# Combine stocks
formStocksPair = function(df1, df2, stockNames = c(departe(substitute(df1)),
                                                    deparse(substitute(df2)))) {
  inter = intersect(df1$Date, df2$Date)
  df1.sub = df1[which(df1$Date %in% inter), ]
  df2.sub = df2[which(df2$Date %in% inter), ]
  structure(data.frame(Date = as.Date(df1.sub$Date),
                       df1.sub$Adj.Close,
                       df2.sub$Adj.Close),
            names = c("Date", stockNames))
# Next Trade
nextTrade = function(pair, k = 1, start = 1) {
  mpairs = mean(pair)
  sdpairs = sd(pair)
  if (start > 1) {
    pair <- pair[-(1:start - 1)]</pre>
  upperband = mpairs + k * sdpairs
  lowerband = mpairs - k * sdpairs
  meanupband = pair > mpairs
  meandownband = pair < mpairs</pre>
  conditionsSatisfied = pair > upperband | pair < lowerband</pre>
  if (!any(conditionsSatisfied)) {
    return(NA)
  tstart = which(conditionsSatisfied)[1]
  temppair = pair > mpairs | pair < mpairs</pre>
  if (pair[tstart] > mpairs) {
    tend = which(!meanupband[tstart:length(meanupband)])[1] +
      tstart
  } else {
    tend = which(!meandownband[tstart:length(meandownband)])[1] +
      tstart
  if (is.na(tend)) {
    tend = length(pair)
  return(c(tstart, tend) + (start - 1))
# Trade Points
tradePoints = function(pair, k = 1) {
 options(warn = -1)
```

```
start = 1
  tpoint = data.frame(Start = integer(), End = integer())
 while (start < length(pair)) {</pre>
    temp = nextTrade(pair, k, start)
    if (is.na(temp)) {
     break
   tpoint = rbind(tpoint, temp)
    start = temp[2]
  names(tpoint) = c("Start", "End")
 options(warn = 0)
 return(tpoint)
# Plot
plotPos = function(stk1, stk2, k = 1, title = c(deparse(substitute(stk1)),
deparse(substitute(stk2)))) {
 title = paste(paste(title, collapse = " "), "pair", sep = " ")
 stk1stk2 = formStocksPair(stk1, stk2)
 pair = stk1stk2$stk1/stk1stk2$stk2
 mpairs = mean(pair)
  sdpairs = sd(pair)
 plot(stk1stk2$Date, pair, type = "l", col = "grey", ylab = "Price Ration",
       xlab = "Date", main = title)
  abline(h = c(mpairs, mpairs + k * sdpairs, mpairs - k * sdpairs),
         col = c("darkgreen", rep("red", 2 * length(k))), lty = 2)
  tpoints = tradePoints(pair, k)
  invisible(lapply(tpoints$Start, function(x) showPosition(stk1stk2$Date[x],
                                                            pair(x])))
  invisible(lapply(tpoints$End, function(x) showPosition(stk1stk2$Date[x],
                                                          pair[x], fg = "red")))
showPosition = function(x, y, fg = "green") {
  symbols(x, y, fg = fg, circles = 30, add = TRUE, inches = FALSE,
          bg = fg
pofPostion = function(position, pair, stk1stk2, c = 0.01) {
 if (is.data.frame(position)) {
    position = as.vector(as.matrix(position))
 mpair = mean(pair)
 trade = if (pair[position[1]] > mpair) {
   1
  } else {
```

```
unitstk1 <- 1/stk1stk2$stk1[position[1]]</pre>
  unitstk2 <- 1/stk1stk2$stk2[position[1]]</pre>
  amt <- sum(unitstk1 * stk1stk2$stk1[position[2]], unitstk2 *</pre>
                stk1stk2$stk2[position[2]])
  if (trade == 1) {
    prof <- sum(c(1 - unitstk1 * stk1stk2$stk1[position[2]],</pre>
                    unitstk2 * stk1stk2$stk2[position[2]] - 1, -1 * c *
                      amt))
  } else {
    prof <- sum(c(unitstk1 * stk1stk2$stk1[position[2]] -</pre>
                      1, 1 - unitstk2 * stk1stk2$stk2[position[2]], -1 *
                      c * amt))
  return(c(prof))
# Calculate Total Profit
calTotalProfit <- function(stk1, stk2, k = 1, c = 0.01) {</pre>
  stk1stk2 <- formStocksPair(stk1, stk2)</pre>
  pair <- stk1stk2$stk1/stk1stk2$stk2</pre>
  mpairs <- mean(pair)</pre>
  sdpairs <- sd(pair)</pre>
  tpoints <- tradePoints(pair, k)</pre>
  tprofits <- vector()</pre>
  for (i in 1:nrow(tpoints)) {
    tprofits <- c(tprofits, pofPostion(tpoints[i, ], pair, stk1stk2, c = c))</pre>
  return(tprofits)
k <- 1
commision <- 0.010
```

Plot

plotPos(pepData, koData, k, title = "Pepsico and Coke")

Profit calTotalProfit(pepData, koData, k = k, c = commission) #Profit

[1] 0.09671643 0.08714430 0.15745969 0.03331101

Plot

plotPos(pepData, dpsData, k, title = "Pepsico and Dr Pepper")

Pepsico and Dr Pepper pair

Profit

calTotalProfit(pepData, dpsData, k = k, c = commision) #Profit

[1] 0.4965158 0.1071199

Plot

plotPos(koData, dpsData, k, title = "Coke and Dr Pepper")

Coke and Dr Pepper pair

Profit

calTotalProfit(koData, dpsData, k = k, c = commision) #Profit

[1] 0.3572142 -0.0105423

Problem 2 -

Use the dataset "Default.csv" which has 7,000 observations on the following 4 variables:

- Default: A factor with levels No and Yes indicating whether the customer defaulted in their debt
- Student: A factor with levels No and Yes indicating whether the customer is a student
- Balance: The average balance that the customer has remaining on their credit card after making their monthly payment.
- Income: Income of customer

Apply logistic regression, linear discriminant analysis, quadratic discriminant analysis and K-nearest neighbor classification methods to predict customers that are likely to default in DefaultPredict.csv dataset. Please use several values of K in the KNN classification method such that you can minimize the errors. Compare the errors for all the methods and draw conclusions.

Analysis -

```
# Environment Setup#
rm(list = ls())
setwd("E:/FE Assignment/")

# Import data from the csv file
defaultData <- read.csv("Default.csv")
defaultPredictData <- read.csv("DefaultPredict.csv")
# Removing the index column
defaultData <- defaultData[,!names(defaultData)%in%"index"]
defaultPredictData <- defaultPredictData[,!names(defaultPredictData)%in%"index"]</pre>
```

Logistic Regression

```
# Logistic Regression
logRegFit <- glm(default ~ student + balance + income, data = defaultData,family = binomial)
logRegPredict <- predict(logRegFit, defaultPredictData, type = "response") > 0.5
logRegPredictedDefault <- rep("No", length(logRegPredict))
logRegPredictedDefault[logRegPredict] <- "Yes"
logRegPredict <- cbind(logRegPredictedDefault, defaultPredictData)
logRegPredict</pre>
```

```
No 3754.2430820 73466.31
```

Linear discriminant Analysis

```
# Linear discriminant Analysis
library("MASS")
ldaFit <- lda(default ~ student + balance + income, data = defaultData)
ldaPredictedDefault <- predict(ldaFit, defaultPredictData)$class
ldaPredicted <- cbind(ldaPredictedDefault, defaultPredictData)
ldaPredicted</pre>
```

	ldaPredictedDefault	student	balance	income
		No Yes	1823.6626760	24905.04
		No No	343.9838524	46100.00
		No Yes	1543.4079290	20567.95
		No No	1509.2208760	61052.94
5	1	No No	1237.5958490	89252.07

Quadratic discriminant Analysis

```
# Quadratic discriminant Analysis
qdaFit <- qda(default ~ student + balance + income, data = defaultData)
qdaPredictedDefault <- predict(qdaFit, defaultPredictData)$class
qdaPredicted <- cbind(qdaPredictedDefault, defaultPredictData)
qdaPredicted</pre>
```

qdaPredictedDefaul	t stude.	nt	balance	income
	No	Yes	1823.6626760	24905.04
	No	No	343.9838524	46100.00
	No	Yes	1543.4079290	20567.95
	No	No	1509.2208760	61052.94
	No	No	1237.5958490	89252.07
6	No	No	1020.1992510	74755.64
	No	No	1772.5240950	79278.65
8	No	No	1662.3205560	59916.36
9	No	Yes	801.9435528	22976.07
10	No	No	2184.5639060	
	No	No	0.3595209	62587.41
	No	Yes	1993.8585060	30085.52
	No	No	752.7173224	38130.18
14	No	No	1308.0362050	82266.06
15	No	No	2218.2017980	68288.28
16	No		1874.5182410	
	No		368.7584176	
18	No		1421.8435040	
19	No	No	1494.3217040	29474.88
20	No		1705.0553350	
21	No	No	3135.8374280	
22	No	Yes		
	No		2981.7718800	
	Yes		4409.0833880	
25			3555.4169680	
26	No		3754.2430820	
	No		3805.1029400	
28	No		3143.6118200	
	Yes		3937.9976140	
30	No		3052.2599140	
31	No		3283.1186320	
	Yes		4009.0920100	
33	No		3100.8985280	
34	No		2655.6774620	
35	No		3400.5958060	
36	No		2236.2194820	
37	No		2265.0498860	
38	No		3961.4604460	
39	No		3417.4048280	
40	No		2914.0248860	
41	No		3534.3202820	
42	No	yes	3518.2155900	23970.18

K Nearest Neighbor

```
# K nearest neighbor
library(class)
defaultData$student <- as.character(defaultData$student)</pre>
defaultData$student[defaultData$student == "Yes"] <- 1</pre>
defaultData$student[defaultData$student == "No"] <- 0</pre>
defaultData$student <- as.numeric(defaultData$student)</pre>
alpha <- defaultData[2:4]</pre>
defaultData_class <- defaultData[, 1]</pre>
student <- defaultPredictData$student</pre>
defaultPredictData$student <- as.character(defaultPredictData$student)</pre>
defaultPredictData$student[defaultPredictData$student == "Yes"] <- 1</pre>
defaultPredictData$student[defaultPredictData$student == "No"] <- 0</pre>
defaultPredictData$student <- as.numeric(defaultPredictData$student)</pre>
# For 3 nearnest neighbour, k = 3
knnPredictedDefault <- knn(alpha, defaultPredictData, defaultData_class,k = 3)</pre>
knnPredictedDefault <- cbind(knnPredictedDefault, student,defaultPredictData[2:3])</pre>
knnPredictedDefault
```

	knnPredictedDefaul	t student	balance	income
:		No Ye	s 1823.6626760	24905.04
	2	No N	o 343.9838524	46100.00
:	3	No Ye	s 1543.4079290	20567.95
4	4	No N	o 1509.2208760	61052.94
!	5	No N	o 1237.5958490	89252.07
(5	No N	o 1020.1992510	74755.64
	7	No N	o 1772.5240950	79278.65
8	8	No N	o 1662.3205560	59916.36
9	9	No Ye	s 801.9435528	22976.07
1	10	No N	o 2184.5639060	68203.29
1	11	No N	o 0.3595209	62587.41
1	12	No Ye	s 1993.8585060	30085.52
1		No N	o 752.7173224	38130.18
1	14	No N	o 1308.0362050	82266.06
1	15	No N	o 2218.2017980	68288.28
:	16	No N	o 1874.5182410	85044.05
:		No Ye	s 368.7584176	22493.03
:	18	No N	o 1421.8435040	79505.71
:	19	No N	o 1494.3217040	29474.88
2	20	No N	o 1705.0553350	87942.50
2	21	No N	o 3135.8374280	55002.50
2	22	No Ye	s 374.9970976	25328.89
	23	No Ye	s 2981.7718800	26849.13
	24	No Ye	s 4409.0833880	21464.55
	25	No Ye	s 3555.4169680	30544.68
	26	No N	o 3754.2430820	73466.31

27	No	Yes 3805.1029400 30862.90
28	No	Yes 3143.6118200 22366.74
29	No	No 3937.9976140 58626.83
30	No	No 3052.2599140 45013.13
31	No	No 3283.1186320 70227.38
32	Yes	No 4009.0920100 63244.56
33	No	No 3100.8985280 84387.15
34	No	No 2655.6774620 52079.36
35	No	No 3400.5958060 45687.20
36	No	Yes 2236.2194820 32826.19
37	No	No 2265.0498860 55863.57
38	Yes	No 3961.4604460 42202.05
39	Yes	No 3417.4048280 57525.88
40	No	No 2914.0248860 88047.15
41	No	No 3534.3202820 69314.53
42	No	Yes 3518.2155900 23970.18