Assignment -2 Data Visualization and Data Pre-processing

Assignment Date	17 September 2022					
Student Name	Manjunathan V					
Student Roll Number	727719EUCS080					
Maximum Marks	2 Marks					

Question-1:

Download the dataset: Dataset

Question-2:

Load the dataset.

Solution:

import pandas as pd
df = pd.read_csv("D://data.csv")
df.head()

	pandas as d.read_csv(d()		ca.csv")										
Number	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
4)

Question-3:

Perform Below Visualizations.

Univariate Analysis

```
import matplotlib.pyplot as plt
plt.scatter(df.index,df['CreditScore'])
plt.show()
```


• Bi - Variate Analysis

```
import seaborn as sns
sns.barplot(x='Gender',y='Age',data=df)
sns.countplot(x='Gender',data=df)
```

<AxesSubplot:xlabel='Gender', ylabel='count'>

• Multi - Variate Analysis

Question-4:

Perform descriptive statistics on the dataset.

df.mean() C:\Users\Manjunathan V\AppData\Local tureWarning: Dropping of nuisance co ric_only=None') is deprecated; in a Select only valid columns before cal df.mean()

RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

df.median()

C:\Users\Manjunathan V\AppData\Local\T
ureWarning: Dropping of nuisance colum
ic_only=None') is deprecated; in a fut
Select only valid columns before calli
 df.median()

RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00

dtype: float64

df.mode()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	C
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	Nŧ
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	Na
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	Na
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	Nŧ
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	Na
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	Nŧ
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	Na

10000 rows × 14 columns

4

-

df.skew() C:\Users\Manjunathan V\AppData\L tureWarning: Dropping of nuisanc ric_only=None') is deprecated; i Select only valid columns before df.skew() RowNumber 0.000000 CustomerId 0.001149 CreditScore -0.071607 Age 1.011320 Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611 dtype: float64 df.kurt() C:\Users\Manjunathan V\AppData\Local tureWarning: Dropping of nuisance co ric only=None') is deprecated; in a Select only valid columns before cal df.kurt() RowNumber -1.200000 CustomerId -1.196113 CreditScore -0.425726 Age 1.395347 Tenure -1.165225 Balance -1.489412 NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 EstimatedSalary -1.181518 Exited 0.165671 dtype: float64

qu=df['EstimatedSalary'].quantile(q=[0.75,0.25])

Question-5:

qu

0.75

0.25

Handle the Missing values.

149388.2475

51002.1100

Name: EstimatedSalary, dtype: float64

sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap="viridis")
#there is no missing values as per heatmap

<AxesSubplot:>

df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balaı
0	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	False	Fa
				•••					
9995	False	False	False	False	False	False	False	False	Fa
9996	False	False	False	False	False	False	False	False	Fa
9997	False	False	False	False	False	False	False	False	Fa
9998	False	False	False	False	False	False	False	False	Fa
9999	False	False	False	False	False	False	False	False	Fa

10000 rows × 14 columns

Question-6:

Find the outliers and replace the outliers

sns.boxplot(df['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\
arning: Pass the following variable as a keyword ar
he only valid positional argument will be `data`, a
without an explicit keyword will result in an error
warnings.warn(

<AxesSubplot:xlabel='Age'>


```
Q1=df.Age.quantile(0.25)
Q2=df.Age.quantile(0.75)
IQR=Q2-Q1
print(IQR)
```

12.0

```
df=df[~((df.Age<(Q1-1.5*IQR))|(df.Age>(Q2+1.5*IQR)))]
df
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bal
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380
2	3	15619304	Onio	502	France	Female	42	8	15966
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12551
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	573€
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7507
9999	10000	15628319	Walker	792	France	Female	28	4	13014

9641 rows × 14 columns

Question-7:

Check for Categorical columns and perform encoding.

d1	
#below six column is encoded	

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	15634602	Hargrave	619	France	0	42	2	0.0	1	1	1	101348.88
1	2	15647311	Hill	608	Spain	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	Onio	502	France	0	42	8	159660.8	3	1	0	113931.57
3	4	15701354	Boni	699	France	0	39	1	0.0	2	0	0	93826.63
4	5	15737888	Mitchell	850	Spain	0	43	2	125510.82	1	1	1	79084.1
9636	9996	15606229	Obijiaku	771	France	1	39	5	0.0	2	1	0	96270.64
9637	9997	15569892	Johnstone	516	France	1	35	10	57369.61	1	1	1	101699.77
9638	9998	15584532	Liu	709	France	0	36	7	0.0	1	0	1	42085.58
9639	9999	15682355	Sabbatini	772	Germany	1	42	3	75075.31	2	1	0	92888.52
9640	10000	15628319	Walker	792	France	0	28	4	130142.79	1	1	0	38190.78

9641 rows × 14 columns

Question-8:

Split the data into dependent and independent variables.

Question-9:

Scale the independent variables

Question-10:

Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
x_train
array([[18],
       [43],
       [47],
       [33],
       [47],
       [34]], dtype=object)
x_test
array([[51],
       [36],
       [41],
       [45],
       [30],
       [39]], dtype=object)
y_train
array([145936.28, 104889.3, 180251.68, ..., 11159.19, 50213.81, 96875.52],
      dtype=object)
y_test
array([109718.44, 130789.6, 163147.99, ..., 143298.06, 41192.95, 94711.43],
      dtype=object)
```