Package 'fnets'

October 14, 2022

Type Package
Title Factor-adjusted Network Estimation and Forecasting for High-dimensional Time Series
Version 0.1.1
Maintainer Haeran Cho <haeran.cho@bristol.ac.uk></haeran.cho@bristol.ac.uk>
Description Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model.
Depends R (>= $4.1.0$)
Imports lpSolve, parallel, doParallel, foreach, MASS, fields, igraph, RColorBrewer
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
R topics documented:
bn.factor.number 2 common.predict 3 fnets 5 fnets.factor.model 8 fnets.var 10 hl.factor.number 12 idio.predict 14 npar.lrpc 15 par.lrpc 16

2 bn.factor.number

Index	2.
	sim.var
	sim.unrestricted
	sim.restricted
	predict.fnets
	predict.fm
	plot.fnets

bn.factor.number

Factor number estimator of Bai and Ng (2002)

Description

Estimates the number of restricted factors by minimising an information criterion. Currently the five information criteria proposed in Bai and Ng (2002) (ic.op = 1, ..., 5) are implemented, with ic.op = 2 recommended as a default choice based on numerical experiments.

Usage

```
bn.factor.number(
    x,
    lam = NULL,
    f = NULL,
    q.max = NULL,
    ic.op = 2,
    do.plot = FALSE,
    center = TRUE
)
```

Arguments

X	input time series matrix, with each row representing a variable		
lam, f	loading and factor matrices; if lam = NULL or f = NULL, these are obtained with PCA		
q.max	maximum number of factors; if $q.max = NULL$, a default value is selected as $min(50, floor(sqrt(min(dim(x)[2] - 1, dim(x)[1]))))$		
ic.op	chosen information criterion		
do.plot	whether to plot the value of the information criterion		
center	whether to de-mean the input x row-wise		

Details

See Bai and Ng (2002) for further details.

common.predict 3

Value

```
a list containing

q.hat the mimimiser of the chosen information criteria

lam loading matrix

f factor series

q.max maximum number of factors

ic vector of information criteria values
```

References

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

Examples

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
idio <- sim.var(n, p)
x <- common$$\fractarrow{\text{sim.var}(n, p)}{\text{sim.var}(n, p)}$$
the common of the comm
```

common.predict

Forecasting the factor-driven common component

Description

Produces forecasts of the common component for a given forecasting horizon by estimating the best linear predictors

Usage

```
common.predict(
  object,
  x,
  h = 1,
  common.method = c("restricted", "unrestricted"),
  r = NULL
)
```

4 common.predict

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible

values are:

• "restricted" performs forecasting under a restrictive restricted factor model

• "unrestricted" performs forecasting under an unrestrictive, blockwise

VAR representation of the common component

number of restricted factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein

(2013)

Value

r

a list containing

is in-sample estimator of the common component

fc forecasts of the common component for a given forecasting horizon h

r restricted factor number

h forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M. & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$\frac{1}{2}\text{data}
out <- fnets(x, q = NULL, idio.var.order = 1, idio.method = "lasso", lrpc.method = "none")
cpre <- common.predict(out, x, h = 1, common.method = "restricted", r = NULL)
ipre <- idio.predict(out, x, cpre, h = 1)</pre>
```

fnets 5

fnets

Factor-adjusted network estimation

Description

Operating under factor-adjusted vector autoregressive (VAR) model, the function estimates the spectral density and autocovariance matrices of the factor-driven common component and the idiosyncratic VAR process, the impulse response functions and common shocks for the common component, and VAR parameters, innovation covariance matrix and long-run partial correlations for the idiosyncratic component.

Usage

```
fnets(
  Χ,
  center = TRUE,
  factor.model = c("unrestricted", "restricted"),
  q = NULL
  q.method = c("bn", "er"),
  ic.op = NULL,
  kern.const = 4,
 common.args = list(var.order = NULL, max.var.order = NULL, trunc.lags = 20, n.perm =
  idio.var.order = 1,
  idio.method = c("lasso", "ds"),
  idio.args = list(tuning = c("cv", "ic"), n.iter = 100, tol = 0, n.cores =
    min(parallel::detectCores() - 1, 3)),
  idio.threshold = FALSE,
  lrpc.method = c("par", "npar", "none"),
  lrpc.adaptive = FALSE,
 cv.args = list(n.folds = 1, penalty = NULL, path.length = 10, do.plot = FALSE)
)
```

Arguments

q

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

factor.model a string specifying the method to be adopted for factor model estimation; possible values are:

- "unrestricted" unrestricted factor model
- "restricted" restricted factor model

number of unrestricted factors. If q = NULL, the factor number is estimated by an information criterion-based approach of Hallin and Liška (2007) or Bai and Ng (2002), or eigenvalue ratio, see hl.factor.number and bn.factor.number for further details

6 fnets

q.method

a string specifying the factor number selection method when factor.model = "restricted"; possible values are:

- "bn" information criteria of Bai and Ng (2002)
- "er" eigenvalue ratio

ic.op

choice of the information criterion, see hl.factor.number and bn.factor.number for further details

kern.const

constant multiplied to floor($(\dim(x)[2]/\log(\dim(x)[2]))^(1/3)$) which determines the kernel bandwidth for dynamic PCA

common.args

a list specifying the tuning parameters required for estimating the impulse response functions and common shocks. It contains:

- · var. order order of the blockwise VAR representation of the common component. If var. order = NULL, it is selected blockwise by Schwarz criterion
- max.var.order maximum blockwise VAR order for the Schwarz criterion
- trunc.lags truncation lag for impulse response function estimation
- n.perm number of cross-sectional permutations involved in impulse response function estimation

idio.var.order order of the idiosyncratic VAR process; if a vector of integers is supplied, the order is chosen via tuning

idio.method

a string specifying the method to be adopted for idiosyncratic VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

idio.args

a list specifying the tuning parameters required for estimating the idiosyncratic VAR process. It contains:

- tuning a string specifying the selection procedure for idio.var.order and lambda; possible values are:
 - "cv" cross validation
 - "ic" information criterion
- n.iter maximum number of descent steps; applicable when idio.method = "lasso"
- tol numerical tolerance for increases in the loss function; applicable when idio.method = "lasso"
- n. cores number of cores to use for parallel computing, see makePSOCKcluster; applicable when idio.method = "ds"

idio.threshold whether to perform adaptive thresholding of beta with threshold

1rpc.method

a string specifying the type of estimator for long-run partial correlation matrix estimation; possible values are:

- "par" parametric estimator based on the VAR model assumption
- "npar" nonparametric estimator from inverting the long-run covariance matrix of the idiosyncratic component via constrained 11-minimisation
- "none" do not estimate the long-run partial correlation matrix

lrpc.adaptive

whether to use the adaptive estimation procedure

fnets 7

cv.args

a list specifying arguments for tuning for selecting the tuning parameters involved in VAR parameter and (long-run) partial correlation matrix estimation. It contains:

- n.folds if tuning = "cv", number of folds
- penalty if tuning = "ic", penalty multiplier between 0 and 1; if penalty = NULL, defaults to 1/(1+exp(dim(x)[1])/dim(x)[2]))
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

Details

See Barigozzi, Cho and Owens (2021) for further details. List arguments do not need to be specified with all list components; any missing entries will be filled in with the default argument.

Value

an S3 object of class fnets, which contains the following fields:

q	number of factors
spec	if factor.model = "unrestricted" a list containing estimates of the spectral density matrices for x, common and idiosyncratic components
acv	a list containing estimates of the autocovariance matrices for x, common and idiosyncratic components
common.irf	if factor.model = "unrestricted" and $q \ge 1$, a list containing estimators of the impulse response functions (as an array of dimension $(p, q, trunc.lags + 2)$) and common shocks (an array of dimension (q, n)) for the common component
lam	<pre>if factor.model = "restricted", factor loadings</pre>
f	<pre>if factor.model = "restricted", factor series</pre>
idio.var	a list containing the following fields:
	 beta estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable
	Gamma estimate of the innovation covariance matrix
	lambda regularisation parameter
	 convergence returned when idio.method = "lasso"; indicates whether a convergence criterion is met
	• var.order VAR order
lrpc	<pre>see the output of par.lrpc if lrpc.method = 'par' and that of npar.lrpc if lrpc.method = 'npar'</pre>
mean.x	if center = TRUE, returns a vector containing row-wise sample means of x; if center = FALSE, returns a vector of zeros
idio.method	input parameter
1rpc.method	input parameter
kern.const	input parameter

8 fnets.factor.model

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

See Also

predict.fnets, plot.fnets

Examples

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$\frac{data}{data} + idio$\frac{data}{data}
out <- fnets(x,
    q = NULL, idio.var.order = 1, idio.method = "lasso",
    lrpc.method = "par", cv.args = list(n.folds = 1, path.length = 10, do.plot = TRUE)
)
pre <- predict(out, x, h = 1, common.method = "unrestricted")
plot(out, type = "granger", display = "network", threshold = .05)
plot(out, type = "lrpc", display = "heatmap", threshold = .05)
## End(Not run)</pre>
```

fnets.factor.model

Factor model estimation

Description

Unrestricted and restricted factor model estimation

Usage

```
fnets.factor.model(
    x,
    center = TRUE,
    factor.model = c("unrestricted", "restricted"),
    q = NULL,
    q.method = c("bn", "er"),
    ic.op = NULL,
```

fnets.factor.model 9

Arguments

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

factor.model a string specifying the method to be adopted for factor model estimation; possi-

ble values are:

"unrestricted" unrestricted factor model

• "restricted" restricted factor model

q number of factors. If q = NULL, the factor number is estimated by an information

criterion-based approach of Hallin and Liška (2007) or Bai and Ng (2002), see

hl.factor.number and bn.factor.number for further details

q.method a string specifying the factor number selection method when factor.model =

"restricted"; possible values are:

• "bn" information criteria of Bai and Ng (2002)

• "er" eigenvalue ratio

ic.op choice of the information criterion, see hl.factor.number or bn.factor.number for

further details

kern.const constant multiplied to $floor((dim(x)[2]/log(dim(x)[2]))^(1/3)))$ which

determines the kernel bandwidth for dynamic PCA

common.args a list specifying the tuning parameters required for estimating the impulse re-

sponse functions and common shocks. It contains:

var.order order of the blockwise VAR representation of the common component. If var.order = NULL, it is selected blockwise by Schwarz criterion

- max.var.order maximum blockwise VAR order for the Schwarz criterion
- trunc.lags truncation lag for impulse response function estimation
- n.perm number of cross-sectional permutations involved in impulse response function estimation

Details

See Barigozzi, Cho and Owens (2021) for further details.

Value

an S3 object of class fm, which contains the following fields:

q number of factors

spec if factor.model = "unrestricted" a list containing estimates of the spectral

density matrices for x, common and idiosyncratic components

10 fnets.var

a list containing estimates of the autocovariance matrices for x, common and idiosyncratic components

common.irf if if factor.model = "unrestricted" and q >= 1, a list containing estimators of the impulse response functions (as an array of dimension (p, q, trunc.lags + 2)) and common shocks (an array of dimension (q, n)) for the common component

lam if factor.model = "restricted" factor loadings

f if factor.model = "restricted" factor series

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica. 70: 191-221.

Examples

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
x <- common$\data
out <- fnets.factor.model(x, factor.model = "restricted")
## End(Not run)</pre>
```

fnets.var

11-regularised Yule-Walker estimation for VAR processes

Description

Estimates the VAR parameter matrices via 11-regularised Yule-Walker estimation and innovation covariance matrix via constrained 11-minimisation.

fnets.var 11

Usage

```
fnets.var(
    x,
    center = TRUE,
    method = c("lasso", "ds"),
    lambda = NULL,
    var.order = 1,
    cv.args = list(tuning = c("cv", "ic"), n.folds = 1, path.length = 10, do.plot =
        FALSE),
    idio.threshold = FALSE,
    n.iter = 100,
    tol = 0,
    n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

method a string specifying the method to be adopted for VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

lambda regularisation parameter; if lambda = NULL, tuning is employed to select the

parameter

var.order order of the VAR process; if a vector of integers is supplied, the order is chosen

via tuning

cv.args a list specifying arguments for tuning for selecting the regularisation parameter (and VAR order). It contains:

- tuning a string specifying the selection procedure for idio.var.order and lambda; possible values are:
 - "cv" cross validation
 - "ic" information criterion
- n.folds if tuning = "cv", number of folds
- penalty if tuning = "ic", penalty multiplier between 0 and 1; if penalty = NULL, defaults to 1/(1+exp(dim(x)[1])/dim(x)[2]))
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

idio.threshold whether to perform adaptive thresholding of beta with threshold

n.iter maximum number of descent steps; applicable when method = "lasso"

tol numerical tolerance for increases in the loss function; applicable when method = "lasso"

n.cores number of cores to use for parallel computing, see makePSOCKcluster; applicable when method = "ds"

12 hl.factor.number

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

a list which contains the following fields:

beta estimate of VAR parameter matrix; each column contains parameter estimates

for the regression model for a given variable

Gamma estimate of the innovation covariance matrix

lambda regularisation parameter

convergence returned when method = "lasso"; indicates whether a convergence criterion is

met

var.order VAR order

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Examples

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
idio <- sim.var(n, p)
x <- idio$data

fv <- fnets.var(x,
    center = TRUE, method = "lasso", var.order = 1,
    cv.args = list(tuning = "cv", n.folds = 1, path.length = 10, do.plot = TRUE)
)
norm(fv$beta - t(idio$A), "F") / norm(t(idio$A), "F")</pre>
```

hl.factor.number

Factor number estimator of Hallin and Liška (2007)

Description

Estimates the number of factors by minimising an information criterion over sub-samples of the data. Currently the three information criteria proposed in Hallin and Liška (2007) (ic.op = 1, 2 or 3) and their variations with logarithm taken on the cost (ic.op = 4, 5 or 6) are implemented, with ic.op = 5 recommended as a default choice based on numerical experiments.

hl.factor.number

Usage

```
hl.factor.number(x, q.max = NULL, mm, w = NULL, do.plot = FALSE, center = TRUE)
```

Arguments

X	input time series matrix, with each row representing a variable
q.max	maximum number of factors; if $q.max = NULL$, a default value is selected as $min(50, floor(sqrt(min(dim(x)[2] - 1, dim(x)[1]))))$
mm	integer representing the kernel bandwidth
W	vector of length $2 * mm + 1$ containing symmetric weights; if $w = NULL$, default weights are generated using the Bartlett kernel and mm
do.plot	whether to plot the values of six information criteria

center whether to de-mean the input x row-wise

Details

See Hallin and Liška (2007) for further details.

Value

a list containing	
q.hat	a vector containing minimisers of the six information criteria
Gamma_x	an array containing the estimates of the autocovariance matrices of x at 2 \star mm + 1 lags
Sigma_x	an array containing the estimates of the spectral density matrices of x at 2 \star mm + 1 Fourier frequencies
sv	a list containing the singular value decomposition of Sigma_x

References

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Examples

14 idio.predict

					•	
٦d	110	١ (nr	PA	1	ct

Forecasting idiosyncratic VAR process

Description

Produces forecasts of the idiosyncratic VAR process for a given forecasting horizon by estimating the best linear predictors

Usage

```
idio.predict(object, x, cpre, h = 1)
```

forecast horizon

Arguments

object	fnets object
x	input time series matrix, with each row representing a variable
cpre	output of common.predict

Value

h

a list containing

is in-sample estimator of the idiosyncratic component

fc forecasts of the idiosyncratic component for a given forecasting horizon h

h forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$\frac{1}{2}\text{ idio}$\text{ data}
out <- fnets(x, q = NULL, idio.var.order = 1, idio.method = "lasso", lrpc.method = "none")
cpre <- common.predict(out, x, h = 1, common.method = "restricted", r = NULL)
ipre <- idio.predict(out, x, cpre, h = 1)</pre>
```

npar.lrpc 15

npar.lrpc	Nonparametric estimation of long-run partial correlations of factor-adjusted VAR processes

Description

Returns a nonparametric estimate of long-run partial correlations of the VAR process from the inverse of long-run covariance matrix obtained via constrained 11-minimisation.

Usage

```
npar.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  do.correct = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object	
х	input time series matrix; with each row representing a variable	
eta	regularisation parameter; if eta = NULL, it is selected by cross validation	
cv.args	a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. contains:	
	 n. folds number of folds path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value do.plot whether to plot the output of the cross validation step 	
do.correct	whether to correct for any negative entries in the diagonals of the inverse of long-run covariance matrix	
n.cores	number of cores to use for parallel computing, see makePSOCKcluster	

Value

a list containing

	·	
Omega		estimated inverse of the long-run covariance matrix
lrpc		estimated long-run partial correlation matrix
eta		regularisation parameter

par.lrpc

Examples

par.lrpc

Parametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a parametric estimate of long-run partial correlations of the VAR process from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained 11-minimisation.

Usage

```
par.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  lrpc.adaptive = FALSE,
  eta.adaptive = NULL,
  do.correct = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object
x	input time series matrix; with each row representing a variable
eta	regularisation parameter; if eta = NULL, it is selected by cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:

par.lrpc 17

- n.folds number of folds
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

lrpc.adaptive whether to use the adaptive estimation procedure

eta.adaptive regularisation parameter for Step 1 of the adaptive estimation procedure; if

eta.adaptive = NULL, defaults to 2 * sqrt(log(dim(x)[1])/dim(x)[2])

do.correct whether to correct for any negative entries in the diagonals of the inverse of

long-run covariance matrix

n. cores number of cores to use for parallel computing, see makePSOCKcluster

Details

See Barigozzi, Cho and Owens (2021) for further details, and Cai, Liu and Zhou (2016) for further details on the adaptive estimation procedure.

Value

a list containing

Delta estimated inverse of the innovation covariance matrix

Omega estimated inverse of the long-run covariance matrix

pc estimated innovation partial correlation matrix

lrpc estimated long-run partial correlation matrix

eta regularisation parameter

lrpc.adaptive was the adaptive procedure used

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. Cai, T. T., Liu, W., & Zhou, H. H. (2016). Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488.

Examples

18 plot.fnets

```
plot(out, type = "lrpc", display = "heatmap", threshold = .05)
## End(Not run)
```

plot.fnets

Plotting the networks estimated by fnets

Description

Plotting method for S3 objects of class fnets. Produces a plot visualising three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices summed across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes.

Usage

```
## S3 method for class 'fnets'
plot(
    x,
    type = c("granger", "pc", "lrpc"),
    display = c("network", "heatmap"),
    names = NA,
    groups = NA,
    threshold = 0,
    ...
)
```

fnets object

Arguments

X

type

a string specifying which of the above three networks (i)–(iii) to visualise; possible values are

- "granger" directed network representing Granger causal linkages
- "pc" undirected network representing contemporaneous linkages; available when x\$1rpc.method = "par"
- "lrpc" undirected network summarising Granger causal and contemporaneous linkages; available when x\$lrpc.method = "par" or x\$lrpc.method = "npar"

display

a string specifying how to visualise the network; possible values are:

- "network" as an igraph object, see plot.igraph
- "heatmap" as a heatmap, see imagePlot

names

a character vector containing the names of the vertices

groups

an integer vector denoting any group structure of the vertices

predict.fm 19

```
threshold if threshold > 0, hard thresholding is performed on the matrix giving rise to the network of interest
... additional arguments
```

Details

See Barigozzi, Cho and Owens (2021) for further details.

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

See Also

fnets

predict.fm

Forecasting for factor models

Description

Produces forecasts of the data for a given forecasting horizon by estimating the best linear predictors of the common component

Usage

```
## $3 method for class 'fm'
predict(
  object,
    X,
  h = 1,
    common.method = c("restricted", "unrestricted"),
    r = NULL,
    ...
)
```

Arguments

```
object fm object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible values are:
```

• "restricted" performs forecasting under a restricted factor model

20 predict.fnets

• "unrestricted" performs forecasting under an unrestrictive, blockwise VAR representation of the common component

r

number of restricted factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein (2013)

... not used

Value

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component idio.pred a list containing forecasting results for the idiosyncratic component

mean.x mean.x argument from object

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

See Also

fnets.factor.model, common.predict

predict.fnets

Forecasting by fnets

Description

Produces forecasts of the data for a given forecasting horizon by separately estimating the best linear predictors of common and idiosyncratic components

Usage

```
## S3 method for class 'fnets'
predict(
  object,
  X,
  h = 1,
  common.method = c("restricted", "unrestricted"),
  r = NULL,
  ...
)
```

sim.restricted 21

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible

values are:

• "restricted" performs forecasting under a restricted factor model

• "unrestricted" performs forecasting under an unrestrictive, blockwise

VAR representation of the common component

number of restricted factors; if common.method = "restricted" and r = NULL,

it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein

(2013)

... not used

Value

r

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component a list containing forecasting results for the idiosyncratic component

mean.x mean.x argument from object

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

See Also

fnets, common.predict, idio.predict

sim.restricted Simulate data from a restricted factor model

Description

Simulate the common component following an unrestricted factor model that admits a restricted representation; see the model (C2) in the reference.

22 sim.unrestricted

Usage

```
sim.restricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n sample size p dimension

q number of unrestricted factors; number of restricted factors is given by 2 * q heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
q number of factors

r number of restricted factors

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Examples

```
common <- sim.restricted(500, 50)</pre>
```

sim.unrestricted

Simulate data from an unrestricted factor model

Description

Simulate the common component following an unrestricted factor model that does not admit a restricted representation; see the model (C1) in the reference.

Usage

```
sim.unrestricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n sample size p dimension

q number of unrestricted factors

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

sim.var 23

Value

a list containing

data generated series q number of factors

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110

Examples

```
common <- sim.unrestricted(500, 50)</pre>
```

sim.var

Simulate a VAR(1) process

Description

Simulate a VAR(1) process; see the reference for the generation of the transition matrix.

Usage

```
sim.var(n, p, Gamma = diag(1, p), heavy = FALSE)
```

Arguments

n sample size
p dimension

Gamma innovation covariance matrix; ignored if heavy = TRUE

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
A transition matrix

Gamma innovation covariance matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

24 sim.var

Examples

idio <- sim.var(500, 50)

Index

```
bn.factor.number, 2, 5, 6, 9
common.predict, 3, 14, 20, 21
fnets, 5, 19, 21
fnets.factor.model, 8, 20
fnets.var, 10
hl.factor.number, 5, 6, 9, 12
idio.predict, 14, 21
imagePlot, 18
makePSOCKcluster, 6, 11, 15, 17
npar.lrpc, 7, 15
par.lrpc, 7, 16
plot.fnets, 8, 18
{\tt plot.igraph}, {\tt \it 18}
predict.fm, 19
predict.fnets, 8, 20
sim.restricted, 21
\verb|sim.unrestricted|, 22|
sim.var, 23
threshold, 6, 11
```