Retail Sales & Inventory Intelligence System

Phase 3: Customer Segmentation using K-Means Clustering

Customers	Segments	Algorithm
$1,\!445$	4	K-Means

Project Phase: RFM Analysis & Machine Learning Clustering **Technique:** K-Means Clustering with StandardScaler Normalization

Date: October 22, 2025

Executive Summary

This document presents the comprehensive customer segmentation analysis for the **Retail Sales & Inventory Intelligence System** using RFM (Recency, Frequency, Monetary) methodology combined with K-Means clustering machine learning algorithm. Following successful SQL database implementation in Phase 2, Phase 3 leverages the v_Sales_Performance_Master view to identify distinct customer personas and deliver actionable marketing strategies.

Success

Phase 3 Achievements:

- RFM Metrics Calculated: Computed Recency, Frequency, and Monetary values for all 1,445 customers
- Machine Learning Implementation: Applied K-Means clustering (k=4) with StandardScaler normalization
- Customer Personas Identified: Segmented customers into Champions, Loyal, New/Potential, and At Risk groups
- 3D Visualization: Created interactive Plotly 3D scatter plot revealing customer distribution patterns
- Business Insights: Generated actionable recommendations for targeted marketing campaigns

Key Takeaways

Statistical Summary - Segment Distribution:

- Loyal Customers (Mid-Value): 130 customers (9.0%) Avg. Recency: 247 days, Avg. Frequency: 2.3 orders, Avg. Monetary: \$3,087
- Champions (High-Value): 129 customers (8.9%) Avg. Recency: 659 days, Avg. Frequency: 1.0 order, Avg. Monetary: \$5,144
- New/Potential Customers: 618 customers (42.8%) Avg. Recency: 483 days, Avg. Frequency: 1.0 order, Avg. Monetary: \$967
- At Risk/Churned: 568 customers (39.3%) Avg. Recency: 888 days, Avg. Frequency: 1.0 order, Avg. Monetary: \$960

Critical Business Insight: Only 9% of customers (130 Loyal Customers) demonstrate repeat purchase behavior (Frequency ; 1), yet this segment combined with 8.9% Champions (129 high-value one-time buyers) drives the majority of revenue. The remaining 82.1% (1,186 customers) represent one-time buyers requiring targeted retention and reactivation campaigns.

Contents

\mathbf{E}_{2}	xecut	ive Summary
1	Int r 1.1	Poduction Phase 3 Objectives
	1.2	RFM Analysis Methodology
	1.3	Technology Stack
2	RFI	M Metric Calculation
	2.1	Data Loading & Preprocessing
	2.2	Recency Calculation
	2.3	Frequency Calculation
	2.4	Monetary Calculation
	2.5	RFM DataFrame Consolidation
3	K-N	Means Clustering Implementation
	3.1	Feature Scaling with StandardScaler
	3.2	K-Means Algorithm Configuration
	3.3	Cluster Distribution
4	Seg	ment Analysis & Business Persona Mapping
	4.1	Cluster Characterization
	4.2	Business Persona Assignment
	4.3	Segment Profiles & Business Strategies
		4.3.1 Cluster 1: Champions (High-Value)
		4.3.2 Cluster 2: Loyal Customers (Mid-Value)
		4.3.3 Cluster 3: New / Potential Customers
		4.3.4 Cluster 0: At Risk / Churned
5	Dat	a Visualizations & Intelligence Dashboards
	5.1	3D Interactive RFM Scatter Plot
	5.2	Customer Segment Characteristics
	5.3	Segment Size & Value Treemap
6	Stat	tistical Summary & Model Performance 23
	6.1	Overall Segmentation Metrics
	6.2	Segment Comparison Matrix
	6.3	Business Impact Analysis
7		ionable Recommendations & Marketing Strategies 24
	7.1	Priority 1: Champions Win-Back Campaign
	7.2	Priority 1: Loyal Customer Retention Program
	7.3	Priority 2: New/Potential Customer Activation
	7.4	Priority 3: At Risk Customer Management
	7.5	Long-Term Strategic Recommendations
8		aclusion 29
	8.1	Phase 3 Deliverables Summary
	8.2	Critical Business Insights 29

Retail	Sales	&	Inventory	Intelli	gence
iccuaii	Daics	œ	III v CIII UUI y	TIIICIII	goneo

Phase :	3:	Customer	Segme	ntatior

8.3	ROI Projection	30
	Next Steps: Phase 4 Preview	

1 Introduction

1.1 Phase 3 Objectives

Customer segmentation enables data-driven marketing strategies by grouping customers with similar purchasing behaviors. Phase 3 applies RFM analysis combined with unsupervised machine learning to identify actionable customer segments.

Primary Objectives:

- 1. **RFM Metric Calculation:** Compute Recency, Frequency, and Monetary values for each customer
- 2. **K-Means Clustering:** Apply machine learning algorithm to identify natural customer groupings
- 3. **Segment Characterization:** Analyze and name clusters based on business behavior patterns
- 4. Visualization: Create 3D interactive plots and statistical dashboards
- 5. Actionable Recommendations: Develop targeted marketing strategies for each segment

1.2 RFM Analysis Methodology

RFM is a proven customer segmentation technique used in retail, e-commerce, and subscription businesses to predict future customer behavior.

Information

RFM Components:

Recency (R): How recently did the customer make a purchase?

- Measured in days since last order
- Lower recency = Better (recent customers are more engaged)
- Formula: snapshot_date last_order_date

Frequency (F): How often does the customer purchase?

- Measured by count of unique orders
- Higher frequency = Better (repeat customers are loyal)
- Formula: COUNT(DISTINCT order_id)

Monetary (M): How much money does the customer spend?

- Measured by total net sales value
- Higher monetary = Better (high spenders are valuable)
- Formula: SUM(net_sales)

1.3 Technology Stack

Component	Specification
Programming Language	Python 3.10+
Data Manipulation	Pandas 2.0+ (DataFrame operations, groupby aggrega-
	tion)
Machine Learning	Scikit-learn (StandardScaler, KMeans algorithm)
Visualization	Plotly (3D scatter plots, bar charts, treemaps)
Data Source	v_Sales_Performance_Master.csv (exported from
	MySQL)
Input Records	4,325 transaction items (1,445 unique customers)
Output Format	customer_segments.csv (customer_id + RFM + cluster)

Table 1: Phase 3 Technology Specifications

2 RFM Metric Calculation

2.1 Data Loading & Preprocessing

The analysis begins by loading the master sales view exported from MySQL during Phase 2

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import numpy as np

# Load data from CSV
file_path = 'v_Sales_Performance_Master.csv'
df_sales = pd.read_csv(file_path)

# Convert order_date to datetime objects for calculations
df_sales['order_date'] = pd.to_datetime(df_sales['order_date'])

print(df_sales.head())
print(df_sales.info())
```

Listing 1: Data Loading with Date Conversion

Data Validation Results:

- Total Records: 4,325 order line items loaded successfully
- Date Conversion: order_date converted from string to datetime64[ns] format
- Null Values: 170 null values in shipped_date column (as expected from Phase 1)
- Key Columns: customer_id, order_id, order_date, net_sales validated

2.2 Recency Calculation

Recency measures the number of days since a customer's last purchase. Lower recency indicates higher engagement.

```
# Calculate Recency
# Snapshot date = 1 day after the most recent order in dataset
snapshot_date = df_sales['order_date'].max() + pd.Timedelta(days = 1)

# Group by customer and find their last order date
df_recency = df_sales.groupby('customer_id')['order_date'].max().
    reset_index()

# Calculate days between snapshot and last order
df_recency['recency'] = (snapshot_date - df_recency['order_date']).dt.days

print(df_recency.head())
```

Listing 2: Recency Metric Calculation

Recency Statistics:

Metric	Value
Most Recent Customer	1 day ago
Oldest Customer	1,097 days ago (3.0 years)
Average Recency	501.34 days
Median Recency	483 days
Standard Deviation	298.67 days

Table 2: Recency Distribution Summary

2.3 Frequency Calculation

Frequency measures the total number of unique orders a customer has placed. Higher frequency indicates loyalty and repeat purchase behavior.

```
# Calculate Frequency
# Count unique order IDs for each customer

df_frequency = df_sales.groupby('customer_id')['order_id'].
    nunique().reset_index()

df_frequency.columns = ['customer_id', 'frequency']

print(df_frequency.head())
```

Listing 3: Frequency Metric Calculation

Frequency Statistics:

Frequency Value	Customer Count	Percentage
1 order (One-time buyers)	1,315	91.0%
2 orders	89	6.2%
3 orders	34	2.4%
4 orders	6	0.4%
5+ orders	1	0.1%
Total	1,445	100%

Table 3: Frequency Distribution Summary

Warning

Critical Finding: 91% of customers (1,315 out of 1,445) are one-time buyers. Only 130 customers (9%) have made repeat purchases, indicating significant customer retention challenges.

2.4 Monetary Calculation

Monetary measures the total net sales value (revenue after discounts) contributed by each customer across all their orders.

```
# Calculate Monetary
# Sum all net_sales for each customer

df_monetary = df_sales.groupby('customer_id')['net_sales'].sum().
    reset_index()

df_monetary.columns = ['customer_id', 'monetary']

print(df_monetary.head())
```

Listing 4: Monetary Value Calculation

Monetary Statistics:

Metric	Value
Highest Spender	\$33,652.44
Lowest Spender	\$30.72
Average Monetary Value	\$1,527.48
Median Monetary Value	\$967.06
Standard Deviation	\$2,105.63
Total Revenue	\$2,207,015.62

Table 4: Monetary Value Distribution Summary

2.5 RFM DataFrame Consolidation

The three separate RFM component dataframes are merged into a single consolidated RFM dataset.

```
# Merge R, F, and M tables into one DataFrame
df_rfm = df_recency[['customer_id', 'recency']].merge(
          df_frequency, on='customer_id'
).merge(
          df_monetary, on='customer_id'
)
print("\n--- RFM DataFrame Head ---")
print(df_rfm.head())
```

Listing 5: Merging RFM Components

Sample RFM Output:

${f customer_id}$	recency	frequency	monetary
1	41	3	\$5,339.97
2	264	3	\$3,298.38
3	69	3	\$5,271.07
4	255	3	\$12,952.46
5	256	3	\$1,829.07

Table 5: RFM DataFrame Sample (First 5 Customers)

3 K-Means Clustering Implementation

3.1 Feature Scaling with StandardScaler

K-Means clustering is sensitive to feature magnitude. StandardScaler normalizes all features to have mean=0 and standard deviation=1, ensuring equal weight in distance calculations.

```
# Perform K-Means Clustering
# Select RFM columns for clustering
rfm_for_clustering = df_rfm[['recency', 'frequency', 'monetary']]

# Standardize the features (mean=0, std=1)
scaler = StandardScaler()
rfm_scaled = scaler.fit_transform(rfm_for_clustering)

print("Original RFM values:")
print(rfm_for_clustering.head())
print("\nScaled RFM values:")
print("ffm_scaled[:5])
```

Listing 6: Feature Standardization

Why Scaling is Critical:

- Recency: Ranges from 1 to 1,097 days
- Frequency: Ranges from 1 to 5 orders (much smaller scale)
- Monetary: Ranges from \$30.72 to \$33,652.44 (largest scale)
- Without scaling, Monetary would dominate distance calculations, causing Recency and Frequency to be ignored

3.2 K-Means Algorithm Configuration

```
# Configure K-Means
k = 4  # Number of clusters
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)

# Fit the model and assign cluster labels
kmeans.fit(rfm_scaled)
df_rfm['cluster'] = kmeans.labels_

print("\n--- RFM DataFrame with Clusters ---")
print(df_rfm.head())
print(f"\nCluster distribution:")
print(df_rfm['cluster'].value_counts().sort_index())
```

Listing 7: K-Means Clustering Execution

K-Means Hyperparameters:

Parameter	Value & Justification
n_clusters	4 (optimal for retail RFM: Champions, Loyal, New, At
	Risk)
random_state	42 (ensures reproducible cluster assignments)
n_init	10 (runs algorithm 10 times with different initializations,
	selects best)
algorithm	auto (Lloyd's algorithm for k=4 is efficient)
max_iter	300 (default, sufficient for convergence)

Table 6: K-Means Configuration Parameters

3.3 Cluster Distribution

Cluster ID	Customer Count	Percentage
0	568	39.3%
1	129	8.9%
2	130	9.0%
3	618	42.8%
Total	1,445	100%

Table 7: Raw Cluster Assignment Distribution

4 Segment Analysis & Business Persona Mapping

4.1 Cluster Characterization

After clustering, we analyze the average RFM values for each cluster to understand customer behavior patterns.

```
# Analyze the Segments
cluster_analysis = df_rfm.groupby('cluster')[['recency', 'frequency', 'monetary']].mean()
print(cluster_analysis.sort_values(by='monetary', ascending=False))
```

Listing 8: Cluster Statistical Analysis

Cluster Analysis Results (Sorted by Monetary Value):

Cluster	Avg. Recency (days)	Avg. Frequency	Avg. Monetary (\$)
1	658.88	1.00	5,143.91
2	247.21	2.30	3,086.78
3	483.21	1.00	967.06
0	887.66	1.00	960.43

Table 8: Average RFM Values by Cluster (Ranked by Monetary)

4.2 Business Persona Assignment

Based on RFM characteristics, clusters are mapped to actionable business segments.

```
# Create a mapping dictionary for segment names
segment_mapping = {
    1: 'Champions (High-Value)',
    2: 'Loyal Customers (Mid-Value)',
    3: 'New / Potential Customers',
    0: 'At Risk / Churned'
}
# Apply the new names
df_rfm['segment_name'] = df_rfm['cluster'].map(segment_mapping)
```

Listing 9: Segment Naming Logic

4.3 Segment Profiles & Business Strategies

4.3.1 Cluster 1: Champions (High-Value)

Segment	Champions (High-Value)
Customer Count	129 (8.9%)
Average Recency	659 days
Average Frequency	1.0 order (one-time buyers)
Average Monetary	\$5,143.91 (highest spending)
Total Revenue Contribution	\$663,564.39 (30.1% of total)

Table 9: Champions Segment Profile

Key Takeaways

Business Interpretation:

Who They Are: High-value customers who made a single large purchase approximately 1.8 years ago but never returned. They represent the highest average spending per customer (\$5,144).

Business Risk: These customers are at high risk of permanent churn. Despite contributing 30% of total revenue, they haven't engaged in nearly 2 years.

Recommended Actions:

- Priority 1: Win-back campaign with personalized outreach
- Offer: 20% discount or exclusive early access to new products
- Channel: Email with subject line "We miss you! Here's an exclusive offer"
- Messaging: Emphasize new products, improved services, or loyalty rewards
- Goal: Convert to repeat buyers (move to Loyal Customers segment)

4.3.2 Cluster 2: Loyal Customers (Mid-Value)

Segment	Loyal Customers (Mid-Value)
Customer Count	130 (9.0%)
Average Recency	247 days (most recent)
Average Frequency	2.3 orders (only repeat buyers)
Average Monetary	\$3,086.78
Total Revenue Contribution	\$401,281.40 (18.2% of total)

Table 10: Loyal Customers Segment Profile

Success

Business Interpretation:

Who They Are: The only segment with repeat purchase behavior (avg. 2.3 orders). They are the most recently active customers (avg. 8 months since last purchase) and represent the foundation of the business.

Business Value: This is the "engine" of the business. Despite being only 9% of the customer base, they demonstrate true loyalty and consistent engagement.

Recommended Actions:

- Priority 1: Retain and nurture this segment at all costs
- Loyalty Program: Create VIP tier with exclusive benefits
- Engagement: Send personalized product recommendations based on purchase history
- Rewards: Offer points-based system, birthday discounts, early access to sales
- Communication: Monthly newsletters with relevant content (not just promotions)
- Goal: Increase frequency from 2.3 to 3+ orders per year

4.3.3 Cluster 3: New / Potential Customers

Segment	New / Potential Customers		
Customer Count	618 (42.8%)		
Average Recency	483 days (1.3 years ago)		
Average Frequency	1.0 order (one-time buyers)		
Average Monetary	\$967.06		
Total Revenue Contribution	\$597,643.08 (27.1% of total)		

Table 11: New/Potential Customers Segment Profile

Information

Business Interpretation:

Who They Are: The largest customer segment (42.8%). They made a single purchase about 1.3 years ago with relatively low spending (\$967). They represent untapped potential.

Business Opportunity: While individually low-value, this massive segment collectively contributes 27% of revenue. Converting even 10% to repeat buyers would significantly impact revenue.

Recommended Actions:

- Priority 2: Moderate investment in reactivation campaigns
- Offer: 10-15% discount on next purchase
- Channel: Email campaign with clear call-to-action
- Messaging: "Complete your collection" or "You might also like..."
- Segmentation: Further segment by product category purchased
- Goal: Move to Loyal Customers segment with second purchase

4.3.4 Cluster 0: At Risk / Churned

Segment	At Risk / Churned
Customer Count	568 (39.3%)
Average Recency	888 days (2.4 years ago)
Average Frequency	1.0 order (one-time buyers)
Average Monetary	\$960.43 (lowest spending)
Total Revenue Contribution	\$545,524.24 (24.7% of total)

Table 12: At Risk/Churned Segment Profile

Warning

Business Interpretation:

Who They Are: Customers who made a single low-value purchase nearly 2.5 years ago and never returned. They represent the "lost customers" segment. Business Reality: These customers are effectively churned. The cost of reactivation likely exceeds potential lifetime value.

Recommended Actions:

- Priority 3: Low investment include in general marketing only
- Strategy: Add to monthly newsletter distribution (low cost)
- Budget Allocation: Do not spend paid advertising budget on this segment
- Focus: Redirect resources to Champions and Loyal Customers segments
- Long-term: Remove from active marketing lists after 3 years of inactivity

5 Data Visualizations & Intelligence Dashboards

5.1 3D Interactive RFM Scatter Plot

The 3D scatter plot reveals the spatial distribution of all 1,445 customers across the three RFM dimensions.

```
import plotly.express as px
2
  # Create 3D scatter plot
  fig_3d = px.scatter_3d(
      df_rfm,
      x='recency',
6
      y='frequency',
      z='monetary',
      color='segment_name',
      color_discrete_map={
10
           'Champions (High-Value)': '#107C10',
11
           'Loyal Customers (Mid-Value)': '#0078D4',
                                                          # Blue
12
           'New / Potential Customers': '#FFB900',
                                                          # Yellow
           'At Risk / Churned': '#D83B01'
                                                         # Red/Orange
14
      },
15
      title='3D Interactive RFM Customer Segments',
16
      hover_data=['customer_id']
17
  )
19
  fig_3d.update_layout(
20
      margin=dict(1=0, r=0, b=0, t=40),
21
      legend_title_text='Customer Segment'
22
  fig_3d.show()
```

Listing 10: 3D Plotly Visualization Code

3D Interactive RFM Customer Segments

Figure 1: 3D Interactive RFM Customer Segments - Spatial Distribution

Visual Insights:

- Loyal Customers (Blue): Only segment floating above frequency=1 "floor", clustered near low recency (front of plot) visually confirms recent, repeat buyers
- Champions (Green): Tall dots (high monetary) on frequency=1 floor, pushed toward back (high recency) confirms high-value, one-time shoppers at risk
- New/Potential (Yellow) & At Risk (Red): Both on frequency=1 floor, short height (low monetary), separated only by recency depth

5.2 Customer Segment Characteristics

The bar chart dashboard compares average RFM values across segments.

```
import plotly.graph_objects as go
from plotly.subplots import make_subplots
```

```
# Create 3 subplots (one for R, one for F, one for M)
  fig_bars = make_subplots(
      rows=1, cols=3,
      subplot_titles=('Average Recency (Days)',
                      'Average Frequency (Orders)',
                      'Average Monetary Value ($)')
9
  )
10
11
  # Add bar plots for each RFM component
12
  # ... (bar plot code continues)
13
14
  fig_bars.update_layout(
15
      title_text='Customer Segment Characteristics',
16
      showlegend=False
17
18
19 fig_bars.show()
```

Listing 11: Segment Characteristics Bar Charts

Customer Segment Characteristics

Figure 2: Customer Segment Characteristics - RFM Comparison Dashboard

Key Observations:

- Recency Chart: Loyal Customers have lowest bar (~247 days) = best score; At Risk has highest (~888 days) = worst
- Frequency Chart: Loyal Customers is ONLY segment with bar above 1.0 (avg. 2.3 orders) dramatically split between repeat vs. one-time buyers
- Monetary Chart: Champions have highest bar (~\$5,144) despite frequency=1; Loyal Customers second (~\$3,087)

5.3 Segment Size & Value Treemap

The treemap visualizes both customer count (rectangle size) and total revenue contribution (color intensity).

Calculate segment sizes and total value

```
df_rfm_counts = df_rfm.groupby('segment_name').agg(
      customer_count=('customer_id', 'count'),
      total_value=('monetary', 'sum')
4
  ).reset_index()
  # Create treemap
  fig_tree = px.treemap(
      df_rfm_counts,
      path=[px.Constant("All Customers"), 'segment_name'],
10
      values='customer_count',
11
      color='total_value',
12
      color_continuous_scale='Greens',
13
      title='Customer Segment Size (by Count) & Total Value (by
14
         Color)',
      hover_data={'customer_count': True, 'total_value': ':.2f'}
15
16
17
  fig_tree.show()
```

Listing 12: Treemap Visualization Code

Figure 3: Customer Segment Size & Total Revenue Contribution Treemap

Segment Distribution Summary:

Segment	Count	% of Total	Total Revenue
New / Potential Customers	618	42.8%	\$597,643
At Risk / Churned	568	39.3%	\$545,524
Loyal Customers (Mid-Value)	130	9.0%	\$401,281
Champions (High-Value)	129	8.9%	\$663,564
Total	1,445	100%	\$2,207,015

Table 13: Segment Distribution - Count vs. Revenue Contribution

Key Takeaways

Critical Business Insight from Treemap: The 80/20 Rule Validated:

- 82.1% of customers (1,186 New/Potential + At Risk) contribute only 51.8% of revenue
- 17.9% of customers (259 Loyal + Champions) contribute 48.2% of revenue
- \bullet The smallest segment by count (Champions, 8.9%) contributes the highest total revenue (30.1%)
- \bullet This Pareto distribution confirms focus on high-value segments yields maximum ROI

6 Statistical Summary & Model Performance

6.1 Overall Segmentation Metrics

Metric	Value
Total Customers Segmented	1,445
Number of Clusters (k)	4
Clustering Algorithm	K-Means (Lloyd's)
Feature Scaling Method	StandardScaler (z-score normalization)
Random State (Reproducibility)	42
Algorithm Convergence	Achieved in ¡10 iterations

Table 14: Segmentation Model Configuration Summary

6.2 Segment Comparison Matrix

Metric	Champions	Loyal	New/Potential	At Risk
Customer Count	129	130	618	568
% of Total Customers	8.9%	9.0%	42.8%	39.3%
Avg. Recency (days)	659	247	483	888
Avg. Frequency (orders)	1.0	2.3	1.0	1.0
Avg. Monetary (\$)	5,144	3,087	967	960
Total Revenue (\$)	663,564	401,281	597,643	545,524
% of Total Revenue	30.1%	18.2%	27.1%	24.7%
Customer Lifetime Value	High	High	Low	Low
Churn Risk	Critical	Low	Medium	Churned
Marketing Priority	Priority 1	Priority 1	Priority 2	Priority 3

Table 15: Comprehensive Segment Comparison Matrix

6.3 Business Impact Analysis

Business Question	Answer	Action
Who are our most valuable customers?	Champions (129)	Win-back campaign
Who drives repeat revenue?	Loyal (130)	Retention program
What % are one-time buyers?	91% (1,315)	Fix onboarding
What % haven't bought in 2+ years?	$39.3\% \ (568)$	Remove from CRM
Which segment has highest ROI?	Champions	Focus budget here

Table 16: Business Questions Answered by Segmentation

7 Actionable Recommendations & Marketing Strategies

7.1 Priority 1: Champions Win-Back Campaign

Success

Campaign Objective: Reactivate 129 high-value customers who haven't purchased in 659 days (1.8 years)

Target Segment: Champions (High-Value)

Potential Revenue Impact:

- If 20% reactivate (26 customers) \times \$5,144 avg. spend = \$133,744 potential revenue
- If converted to repeat buyers (Loyal segment), lifetime value increases $2.3 \times$

Campaign Tactics:

- 1. **Email Series:** 3-email sequence over 2 weeks
 - Email 1: "We miss you" emotional reconnection
 - Email 2: "See what's new" product showcase
 - Email 3: "Exclusive 20% off" compelling offer with urgency
- 2. **Personalization:** Reference previous purchase category in subject line
- 3. Offer: 20% discount + free shipping (expires in 7 days)
- 4. Channel: Email + Facebook/Instagram retargeting ads
- 5. **Budget:** Allocate 40% of marketing budget to this campaign

Success Metrics:

- Email open rate ¿ 25%
- Click-through rate 7, 5%
- Conversion rate j. 15%
- Target: Reactivate 26+ customers (20% of segment)

7.2 Priority 1: Loyal Customer Retention Program

Success

Program Objective: Increase purchase frequency from 2.3 to 3.5 orders per year for 130 loyal customers

Target Segment: Loyal Customers (Mid-Value)

Revenue Impact:

- Current: 130 customers \times 2.3 orders \times \$1,342 avg. order = \$401,281/year
- Target: 130 customers \times 3.5 orders \times \$1,342 = \$610,610/year
- Potential Increase: \$209,329 (52\% revenue growth from this segment)

Retention Tactics:

1. VIP Loyalty Program:

- Points system: 1 point per \$1 spent, 100 points = \$10 reward
- Exclusive early access to new products (48 hours before public)
- Birthday month 15% discount
- Free shipping on all orders

2. Personalized Communication:

- Monthly newsletter with product recommendations based on purchase history
- Quarterly check-in email: "How are you enjoying [previous purchase]?"

3. Exclusive Events:

- Invite to private online product demos
- VIP-only flash sales (24-hour access)

Success Metrics:

- Loyalty program enrollment ; 80% (104 customers)
- Average order frequency increase to 3.0+ within 6 months
- Churn rate; 5% annually

7.3 Priority 2: New/Potential Customer Activation

Information

Campaign Objective: Convert 10% of 618 New/Potential customers to repeat buyers

Target Segment: New / Potential Customers

Revenue Impact:

- Target: 62 customers (10%) make second purchase at \$967 avg. = \$59,954 new revenue
- \bullet If converted to Loyal segment, future lifetime value increases 2.3×

Activation Tactics:

- 1. Segmented Campaigns by Product Category:
 - Analyze first purchase category (Mountain Bikes, Road Bikes, etc.)
 - Send targeted emails: "Complete your [category] collection"
- 2. Moderate Discount: 10-15% off second purchase
- 3. Social Proof: Include customer reviews for recommended products
- 4. **Urgency:** Limited-time offer (expires in 10 days)

Budget Allocation: 30% of marketing budget

7.4 Priority 3: At Risk Customer Management

Warning

Strategy: Minimal investment - let natural attrition occur

Target Segment: At Risk / Churned (568 customers, 888 days inactive)

Rationale:

- Average monetary value = \$960 (lowest of all segments)
- Frequency = 1.0 (never demonstrated repeat behavior)
- Reactivation cost likely exceeds lifetime value
- Marketing budget better spent on Champions and Loyal segments

Low-Cost Actions:

- 1. Include in monthly newsletter (zero marginal cost)
- 2. Remove from paid advertising audiences (saves budget)
- 3. Archive from active CRM after 3 years inactivity

Budget Allocation: 5% of marketing budget (passive communication only)

7.5 Long-Term Strategic Recommendations

Key Takeaways

Strategic Priorities for Next 12 Months:

1. Fix Customer Retention Problem (Critical):

- $\bullet~91\%$ one-time buyer rate is unsustainable
- Root Cause Analysis: Investigate why customers don't return
- Potential Issues: Product quality, pricing, customer service, shipping experience
- Action: Customer satisfaction survey for recent buyers

2. Optimize Customer Onboarding:

- Implement post-purchase email sequence (Days 3, 7, 14, 30)
- Include product usage tips, cross-sell recommendations
- Goal: Increase second purchase rate from 9% to 20%

3. Dynamic Segment Monitoring:

- Re-run RFM clustering quarterly
- Track customer migration between segments
- Alert system when Loyal customers show signs of becoming At Risk

4. Predictive Churn Modeling (Phase 4):

- Build machine learning model to predict churn risk
- Features: RFM + product category + season + discount sensitivity
- Proactive intervention before customers become At Risk

8 Conclusion

8.1 Phase 3 Deliverables Summary

Phase 3 successfully applied machine learning techniques to segment 1,445 customers into four actionable business personas.

Success

Key Accomplishments:

- RFM Analysis: Calculated Recency, Frequency, and Monetary metrics for all customers
- K-Means Clustering: Applied unsupervised learning with k=4 clusters and StandardScaler normalization
- Segment Identification: Named clusters as Champions, Loyal, New/Potential, and At Risk
- 3D Visualization: Created interactive Plotly scatter plot revealing spatial distribution
- Business Intelligence: Generated treemap showing segment size and revenue contribution
- Actionable Strategies: Developed targeted marketing campaigns for each segment

8.2 Critical Business Insights

Key Takeaways

Top 5 Insights from Customer Segmentation:

- 1. Customer Retention Crisis: 91% one-time buyer rate indicates fundamental business problem requiring immediate attention
- 2. Champions at Risk: 129 customers (\$663K revenue, 30% of total) haven't purchased in 1.8 years highest priority for win-back campaign
- 3. Loyal Customers are Gold: Only 9% of customers (130) demonstrate repeat behavior, yet they generate 18% of revenue protect this segment at all costs
- 4. Pareto Principle Confirmed: 17.9% of customers (Champions + Loyal) contribute 48.2% of revenue focus marketing budget here
- 5. Massive Untapped Potential: 618 New/Potential customers (42.8%) could be converted with targeted reactivation even 10% conversion = \$60K revenue

8.3 ROI Projection

Campaign	Investment	Projected Revenue	ROI
Champions Win-Back	\$15,000	\$133,744	792%
Loyal Retention Program	\$25,000	\$209,329	737%
New/Potential Activation	\$10,000	\$59,954	500%
Total	\$50,000	\$403,027	706%

Table 17: Projected ROI from Segmentation-Based Campaigns

8.4 Next Steps: Phase 4 Preview

With customer segmentation complete, the foundation is set for advanced predictive analytics.

- 1. Churn Prediction Model: Build classification model to predict which Loyal customers will become At Risk
- 2. **Lifetime Value Prediction:** Regression model to forecast customer LTV based on first purchase behavior
- 3. **Product Recommendation Engine:** Collaborative filtering to personalize cross-sell campaigns
- 4. **Power BI Integration:** Connect segmentation results to interactive dashboards with drill-down capabilities
- 5. **Automated Monitoring:** Schedule quarterly re-segmentation and track customer migration patterns

End of Phase 3: Customer Segmentation using K-Means Clustering

Segmentation Complete - Ready for Targeted Marketing Campaigns