

STAT604

Lesson SAS 16

Portions Copyright © 2009 SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC, USA. SAS Institute Inc. makes no warranties with respect to these materials and disclaims all liability therefor.

Chapter 8: Validating and Cleaning Data

- 8.1 Introduction to Validating and Cleaning Data
- 8.2 Examining Data Errors When Reading Raw Data Files
- 8.3 Validating Data with the PRINT and FREQ Procedures
- 8.4 Validating Data with the MEANS and UNIVARIATE Procedures
- 8.5 Cleaning Invalid Data

Chapter 8: Validating and Cleaning Data

- 8.1 Introduction to Validating and Cleaning Data
- 8.2 Examining Data Errors When Reading Raw Data Files
- 8.3 Validating Data with the PRINT and FREQ Procedures
- 8.4 Validating Data with the MEANS and UNIVARIATE Procedures
- 8.5 Cleaning Invalid Data

Objectives

- Identify procedures for validating data.
- Identify techniques for cleaning data.
- Define the business scenario that will be used with validating and cleaning data.

Business Scenario

Additional requirements of non-sales employee data:

- **Employee** ID must be unique and not missing.
- Gender must have a value of F or M.
- **Salary** must be in the numeric range of 24000 500000.
- Job_Title must not be missing.
- Country must have a value of AU or US.
- Birth_Date value must occur before Hire_Date value.
- Hire_Date must have a value of 01/01/1974 or later.

8.02 Quiz

What problems exist with the data in this partial data set?

	Employee_ID	First	Last	Gender	Salary	Job_Title	Country	Birth_Date	Hire_Date
1	120101	Patrick	Lu	М	163E3	Director	AU	18/08/1976	01/07/2003
2	120104	Kareen	Billington	F	46230	Administration Manager	au	11/05/1954	01/01/1981
3	120105	Liz	Povey	F	27110	Secretary I	AU	21/12/1974	01/05/1999
4	120106	John	Hornsey	М	-	Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	Sherie	Sheedy	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU	23/02/1984	01/08/2006
7	120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU	15/12/1986	01/10/2006
8	120110	Dennis	Entwisle	М	28615	Warehouse Assistant III	AU	20/11/1949	01/11/1979
9	120111	Ubaldo	Spillane	М	26895	Security Guard II	AU	23/07/1949	
10	120112	Ellis	Glattback	F	26550		AU	17/02/1969	01/07/1990
11	120113	Riu	Horsey	F	26870	Security Guard II	AU	10/05/1944	01/01/1974
12	120114	Jeannette	Buddery	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	Hugh	Nichollas	М	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14		Austen	Ralston	М	29250	Service Assistant II	AU	13/06/1959	01/02/1980
15	120117	Bill	Modleary	М	31670	Cabinet Maker III	AU	11/09/1964	01/04/1986
16	120118	Darchi	Harteborn	М	28090	Cabinet Maker II	AH	03/06/1959	01/07/198/

Hint: There are nine data problems.

8.02 Quiz – Correct Answer

What problems exist with the data in this partial data set?

	Employee_ID	First	Last	Gender	Salary	Job Title	Country	Birth Date	Hire_Date
1	120101	Patrick	Lu	М	163E3	Director	AU	18/08/1976	01/07/2003
2	120104	Kareen	Billington	F	46230	Administration Manager	au	11/05/1954	01/01/1981
3	120105	Liz	Povey	F	27110	Secretary I	AU	21/12/1974	01/05/1999
4	120106	John	Hornsey	М	-	Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	Sherie	Sheedy	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU	23/02/1984	01/08/2006
7	120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU	15/12/1986	01/10/2006
8	120110	Dennis	Entwisle	М	28615	Warehouse Assistant III	AU	20/11/1949	01/11/1979
9	120111	Ubaldo	Spillane	М	26895	Security Guard II	AU	23/07/1949	
10	120112	Ellis	Glattback	F	26550		AU	17/02/1969	01/07/1990
11	120113	Riu	Horsey	F	26870	Security Guard II	AU	10/05/1944	01/01/1974
12	120114	Jeannette	Buddery	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	Hugh	Nichollas	М	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14		Austen	Ralston	М	29250	Service Assistant II	AU	13/06/1959	01/02/1980
15	120117	Bill	Mccleary	М	31670	Cabinet Maker III	AU	11/09/1964	01/04/1986
16	120118	D archi	Harteborn	hd	28090	Cabinet Maker II	AH	03/06/1959	01/07/198/

Hint: There are nine data problems.

Validating the Data

In general, SAS procedures analyze data, produce output, or manage SAS files.

In addition, SAS procedures can be used to detect invalid data.

The PRINT Procedure

The PRINT procedure can show the job titles that are missing and the hire dates that occur before the birth dates.

0bs	Employee_ ID	Job_Title	Birth_Date	Hire_Date
5 9	120107 120111	Office Assistant III Security Guard II	01/02/1978 23/07/1949	21/01/1953
10	120112		17/02/1969	01/07/1990

The FREQ procedure can show if any genders are not F or M and if any countries are not AU or US.

The FREQ Procedure

Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	110	47.01	110	47.01
G	1	0.43	111	47.44
M	123	52.56	234	100.00

Frequency Missing = 1

Country	Frequency	Percent	Cumulative Frequency	Cumulative Percent
AU	33	14.04	33	14.04
US	196	83.40	229	97.45
au	3	1.28	232	98.72
us	3	1.28	235	100.00

The MEANS Procedure

The MEANS procedure can show if any salaries are not in the range of 24000 to 500000.

The MEANS Procedure						
Analysis Variable : Salary						
N						
N 	Miss	Minimum	Maximum			
234	1	2401.00	433800.00			

The UNIVARIATE Procedure

The UNIVARIATE procedure can show if any salaries are not in the range of 24000 to 500000.

Partial PROC UNIVARIATE Output

The UNIVARIATE Procedure Variable: Salary								
Extreme Observations								
	Lowe	st						
	Value	0bs	Value	0bs				
	2401 2650 24025 24100 24390	20 13 25 19 228	163040 194885 207885 268455 433800	1 231 28 29 27				

Cleaning the Data

After the data is validated, the invalid data needs to be cleaned.

Techniques for cleaning data:

- Editing raw data file outside of SAS
- Interactively editing data set using VIEWTABLE
- Programmatically editing data set using the DATA step
- Programmatically editing data set using the SQL procedure
- Using the SAS DataFlux product dfPower Studio

Chapter 8: Validating and Cleaning Data

- 8.1 Introduction to Validating and Cleaning Data
- 8.2 Examining Data Errors When Reading Raw Data Files
- 8.3 Validating Data with the PRINT and FREQ Procedures
- 8.4 Validating Data with the MEANS and UNIVARIATE Procedures
- 8.5 Cleaning Invalid Data

Objectives

- Validate data by using the PRINT procedure with the WHERE statement.
- Validate data by using the FREQ procedure with the TABLES statement.

Business Scenario

Additional requirements of non-sales employee data:

- Employee ID must be unique and not missing.
- Gender must have a value of F or M.
- Salary must be in the numeric range of 24000 500000.
- Job_Title must not be missing.
- Country must have a value of AU or US.
- Birth_Date value must occur before
 Hire_Date value.
- Hire_Date must have a value of 01/01/1974 or later.

SAS Procedures for Validating Data

SAS procedures can be used to detect invalid data.

PROC PRINT step with VAR and WHERE statements	detects invalid character and numeric values by subsetting observations based on conditions.
PROC FREQ step with TABLES statement	detects invalid character and numeric values by looking at distinct values.
PROC MEANS step with VAR statement	detects invalid numeric values by using summary statistics.
PROC UNIVARIATE step with VAR statement	detects invalid numeric values by looking at extreme values.

The PRINT Procedure

The PRINT procedure produces detail reports based on SAS data sets.

General form of the PRINT procedure:

```
PROC PRINT DATA=SAS-data-set;
VAR variable(s);
WHERE where-expression;
RUN;
```

- The VAR statement selects variables to include in the report and determines their order in the report.
- The WHERE statement is used to obtain a subset of observations.

The WHERE Statement

For validating data, the WHERE statement is used to retrieve the observations that do not meet the data requirements.

General form of the WHERE statement:

WHERE where-expression;

The where-expression is a sequence of operands and operators that form a set of instructions that define a condition for selecting observations.

- Operands include constants and variables.
- Operators are symbols that request a comparison, arithmetic calculation, or logical operation.

The WHERE Statement

The following PROC PRINT step retrieves observations that have missing values for **Job_Title**.

```
proc print data=orion.nonsales;
   var Employee_ID Last Job_Title;
   where Job_Title = ' ';
run;
```

```
Employee_ Job_
Obs ID Last Title
10 120112 Glattback
```

The WHERE Statement

A WHERE statement might need to reference a SAS date value.

For example, the PRINT procedure needs to retrieve observations that have values of **Hire_Date** less than January 1, 1974.

What is the numeric SAS date value for January 1, 1974?

A SAS date constant is used to convert a calendar date to a SAS date value.

SAS Date Constant

To write a SAS date constant, enclose a date in quotation marks in the form **ddMMMyyyy** and immediately follow the final quotation mark with the letter **d**.

dd	is a one- or two-digit value for the day.
MMM	is a three-letter abbreviation for the month.
уууу	is a four-digit value for the year.
d	is required to convert the quoted string to a SAS date.

Example:

The date constant for January 1, 1974, is '01JAN1974'd

SAS Date Constant

The following PROC PRINT step retrieves observations that have values of **Hire_Date** that are less than January 1, 1974.

```
proc print data=orion.nonsales;
   var Employee_ID Birth_Date Hire_Date;
   where Hire_Date < '01JAN1974'd;
run;</pre>
```

0bs	Employee_ ID	Birth_Date	Hire_Date
5	120107	01/02/1978	21/01/1953
9	120111	23/07/1949	
214	121011	11/03/1944	01/01/1968

8.05 Multiple Choice Poll

Which data requirement cannot be achieved with the PRINT procedure using a WHERE statement?

- a. Employee_ID must be unique and not missing.
- **b.** Gender must have a value of F or M.
- c. Salary must be in the numeric range of 24000 500000.
- d. Job Title must not be missing.
- e. Country must have a value of AU or US.
- f. Birth_Date value must occur before Hire_Date value.
- g. Hire Date must have a value of 01/01/1974 or later.

8.05 Multiple Choice Poll – Correct Answer

Which data requirement cannot be achieved with the PRINT procedure using a WHERE statement?

- (a.) Employee_ID must be unique and not missing.
 - **b.** Gender must have a value of F or M.
 - c. Salary must be in the numeric range of 24000 500000.
 - d. Job Title must not be missing.
 - e. Country must have a value of AU or US.
 - f. Birth_Date value must occur before Hire_Date value.
 - g. Hire Date must have a value of 01/01/1974 or later.

Data Requirements

Data Requirement	where-expression to obtain invalid data
Employee_ID must be unique and not missing.	Employee_ID = . Does not account for uniqueness.
Gender must have a value of F or M.	Gender not in ('F','M')
Salary must be in the range of 24000 – 500000.	Salary not between 24000 and 500000
Job_Title must not be missing.	Job_Title = ' '
Country must have a value of AU or US.	Country not in ('AU','US')
Birth_Date must occur before Hire_Date.	Birth_Date > Hire_Date
Hire_Date must have a value of 01/01/1974 or later.	Hire_Date < '01JAN1974'd

Data Requirements

The following PROC PRINT step accounts for all of the data requirements except the **Employee_ID** being unique.

```
proc print data=orion.nonsales;
   var Employee ID Gender Salary Job Title
       Country Birth Date Hire Date;
   where Employee ID = . or
         Gender not in ('F','M') or
         Salary not between 24000 and 500000
         Job Title = ' ' or
         Country not in ('AU', 'US') or
         Birth Date > Hire Date or
         Hire Date < '01JAN1974'd;</pre>
run;
```


The OR operator is used between expressions. Only one expression needs to be true to account for an observation with invalid data.

Data Requirements

Sixteen observations need the data cleaned.

0bs	Employee_ID	Gender	Salary	Job_Title	Country	Birth_Date	Hire_Date
2	120104	F	46230	Administration Manager	au	11/05/1954	01/01/1981
4	120106	M		Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
9	120111	M	26895	Security Guard II	AU	23/07/1949	
10	120112	F	26550		AU	17/02/1969	01/07/1990
12	120114	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	M	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14		M	29250	Service Assistant II	AU	13/06/1959	01/02/1980
20	120191	F	2401	Trainee	AU	17/01/1959	01/01/2003
84	120695	M	28180	Warehouse Assistant II	au	13/07/1964	01/07/1989
87	120698	M	26160	Warehouse Assistant I	au	17/05/1954	01/08/1976
101	120723		33950	Corp. Comm. Specialist II	I US	10/08/1949	01/01/1974
125	120747	F	43590	Financial Controller I	us	20/06/1974	01/08/1995
197	120994	F	31645	Office Administrator I	us	16/06/1974	01/11/1994
200	120997	F	27420	Shipping Administrator I	us	21/11/1974	01/09/1996
214	121011	M	25735	Service Assistant I	US	11/03/1944	01/01/1968

The FREQ procedure produces one-way to *n*-way frequency tables.

General form of the FREQ procedure:

```
PROC FREQ DATA=SAS-data-set <NLEVELS>;
    TABLES variable(s);
RUN;
```

- The TABLES statement specifies the frequency tables to produce.
- The NLEVELS option displays a table that provides the number of distinct values for each variable named in the TABLES statement.

The following PROC FREQ step will show whether there are any invalid values for **Gender** and **Country**.

```
proc freq data=orion.nonsales;
  tables Gender Country;
run;
```

Without the TABLES statement, PROC FREQ produces a frequency table for each variable.

Two observations need the data cleaned for **Gender** and six observations need the data cleaned for **Country**.

The FREQ Procedure								
Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
F	110	47.01	110	47.01				
G	1	0.43	111	47.44				
M	123	52.56	234	100.00				
	_		Cumulative	Cumulative				
Country	Frequency 	Percent 	Frequency	Percent 				
AU	33	14.04	33	14.04				
US	196	83.40	229	97.45				
au	3	1.28	232	98.72				
us	3	1.28	235	100.00				

This PROC FREQ step will show whether there are any duplicates for **Employee_ID**.

```
proc freq data=orion.nonsales;
    tables Employee_ID;
run;
```

Partial PROC FREQ Output

	The	FREQ Proce	dure		
Employee_ID	Frequency	Percent	Cumulative Frequency	Cumulativ Percent	
120101	1	0.43	1	0.43	- ative
120104	1	0.43	2	0.86	cent
120105	1	0.43	3	1.29	
120106 120107	1	0.43 0.43	4 5	1.72 2.15	
120107	2	0.45	5 7	2.15	.57
120110	1	0.43	8	3.43	.00
120111	1	0.43	9	3.86	. 42 . 85
120112	1	0.43	10	4.29	.28
120113	1	0.43	11	4.72	.71
1	121146	1	0.43	232	99.14
1	121147	1	0.43	233	99.57
1	121148	1	0.43	234	100.00
35		Frequency	Missing = 1		

The NLEVELS Option

If the number of desired distinct values is known, the NLEVELS option can help to determine whether there are any duplicates.

```
proc freq data=orion.nonsales nlevels;
  tables Gender Country Employee_ID;
run;
```

The *NLEVELS option* displays a table that provides the number of distinct values for each variable named in the TABLES statement.

The NLEVELS Option

The Number of Variable Levels table appears before the individual frequency tables.

Partial PROC FREQ Output

	The FREQ F	Procedure	
Ī	Number of Vari	iable Levels	
Variable	Levels	Missing Levels	Nonmissing Levels
Gender	4	1	3
Country	4	0	4
Employee_ID	234	1	233

There are 235 employees but there are only 234 distinct **Employee_ID** values. Therefore, there is one duplicate value for **Employee_ID**.

Chapter 8: Validating and Cleaning Data

- 8.1 Introduction to Validating and Cleaning Data
- 8.2 Examining Data Errors When Reading Raw Data Files
- 8.3 Validating Data with the PRINT and FREQ Procedures
- 8.4 Validating Data with the MEANS and UNIVARIATE Procedures
- 8.5 Cleaning Invalid Data

Objectives

- Validate data by using the MEANS procedure with the VAR statement.
- Validate data by using the UNIVARIATE procedure with the VAR statement.

The MEANS procedure produces summary reports that display descriptive statistics.

General form of the MEANS procedure:

```
PROC MEANS DATA=SAS-data-set <statistics>;
VAR variable(s);
RUN;
```

- The VAR statement specifies the analysis variables and their order in the results.
- The statistics to display can be specified in the PROC MEANS statement.

This PROC MEANS step shows default descriptive statistics for **Salary**.

```
proc means data=orion.nonsales;
  var Salary;
run;
```

The MEANS Procedure							
Analysis Variable : Salary							
N	Mean	Std Dev	Minimum	Maximum			
234	43954.60	38354.77	2401.00	433800.00			

Without the VAR statement, PROC MEANS analyzes all numeric variables in the data set.

By default, the MEANS procedure creates a report with N (number of nonmissing values), MEAN, STDDEV, MIN, and MAX.

For validating data, the following descriptive statistics are beneficial:

- N, number of nonmissing values
- NMISS, number of missing values
- MIN
- MAX

The following PROC MEANS step shows whether there are any **Salary** values not in the range of 24000 through 500000.

```
proc means data=orion.nonsales n nmiss min max;
  var Salary;
run;
```

The MEANS Procedure							
Analysis Variable : Salary							
N	N Miss	Minimum	Maximum				
234	1	2401.00	433800.00				

The UNIVARIATE procedure produces summary reports that display descriptive statistics.

General form of the UNIVARIATE procedure:

PROC UNIVARIATE DATA=SAS-data-set;
VAR variable(s);
RUN;

The VAR statement specifies the analysis variables and their order in the results.

The following PROC UNIVARIATE step shows default descriptive statistics for **Salary**.

```
proc univariate data=orion.nonsales;
  var Salary;
run;
```

Without the VAR statement, SAS will analyze all numeric variables.

The UNIVARIATE procedure can produce the following sections of output:

- Moments
- Basic Statistical Measures
- Tests for Locations
- Quantiles
- Extreme Observations
- Missing Values

For validating data, the Extreme Observations and Missing Values sections are beneficial.

Partial PROC UNIVARIATE Output

	Extreme O	bservations							
Low	est	High	est						
Value	Obs	Value	Obs						
2401	20	163040	1						
2650	13	194885	231						
24025	25	207885	28						
24100	19	268455	29						
24390	228	433800	27						
	Missing Values								
Missing		Percen	t Of Missing						
Value	Count	All Obs	Obs						
•	1	0.43	100.00						

Chapter 8: Validating and Cleaning Data

- 8.1 Introduction to Validating and Cleaning Data
- 8.2 Examining Data Errors When Reading Raw Data Files
- 8.3 Validating Data with the PRINT and FREQ Procedures
- 8.4 Validating Data with the MEANS and UNIVARIATE Procedures
- 8.5 Cleaning Invalid Data

Objectives

- Clean data by using the Viewtable window.
- Clean data by using assignment statements in the DATA step.
- Clean data by using IF-THEN/ELSE statements in the DATA step.

Invalid Data to Clean

The **orion.nonsales** data set contains invalid data that needs to be cleaned.

	Employee_ID	First	Last	Gender	Salary	Job_Title	Country	Birth_Date	Hire_Date
1	120101	Patrick	Lu	М	163E3	Director	AU	18/08/1976	01/07/2003
2	120104	Kareen	Billington	F	46230	Administration Manager	au	11/05/1954	01/01/1981
3	120105	Liz	Povey	F	27110	Secretary I	AU	21/12/1974	01/05/1999
4	120106	John	Hornsey	М	-	Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	Sherie	Sheedy	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU	23/02/1984	01/08/2006
7	120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU	15/12/1986	01/10/2006
8	120110	Dennis	Entwisle	М	28615	Warehouse Assistant III	AU	20/11/1949	01/11/1979
9	120111	Ubaldo	Spillane	М	26895	Security Guard II	AU	23/07/1949	
10	120112	Ellis	Glattback	F	26550		AU	17/02/1969	0170771990
11	120113	Riu	Horsey	F	26870	Security Guard II	AU	10/05/1944	01/01/1974
12	120114	Jeannette	Buddery	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	Hugh	Nichollas	М	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14		Austen	Ralston	М	29250	Service Assistant II	AU	13/06/1959	01/02/1980
15	120117	Bill	Mccleary	М	31670	Cabinet Maker III	AU	11/09/1964	01/04/1986
16	120118	Derebi	Harteborn	М	22090	Cahinet Maker II	AH	03/06/1959	01/07/198/

After you validate the data and find the invalid data, the correct data values are needed.

Variable	Obs	Invalid Value	Correct Value
Employee ID	7	120108	120109
Employee_ID	14		120116
Gender	12	G	F
Gender	101		F
Job_Title	10		Security Guard I
Country	2, 84, 87, 125, 197, and 200	au or us	AU or US
	4	-	26960
Salary	13	2650	26500
	20	2401	24015
	5	21/01/1953	21/01/1995
Hire_Date	9		01/11/1978
	214	01/01/1968	01/01/1998

Interactively Cleaning Data

If you are using the SAS windowing environment, the Viewtable window can be used to interactively clean data.

Use the Viewtable window to interactively clean the following five observations:

Variable	Obs	Invalid Value	Correct Value
Employee ID	7	120108	120109
Employee_ID	14	•	120116
	12	O	F
Gender	101		F
Job_Title	10		Security Guard I

Interactively Cleaning Data

The Viewtable window enables you to browse, edit, or create SAS data sets.

	Employee_ID	First	Last	Gender	Salary	Job_Title	Country	Birth_Date	Hire
1	120101	Patrick	Lu	М	163040	Director	AU	18/08/1976	××××
2	120104	Kareen	Billington	F	46230	Administration Manager	au	11/05/1954	××××
3	120105	Liz	Povey	F	27110	Secretary I	AU	21/12/1974	××××
4	120106	John	Hornsey	М		Office Assistant II	AU	23/12/1944	xxxx
5	120107	Sherie	Sheedy	F	30475	Office Assistant III	AU	01/02/1978	xxxx
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU	23/02/1984	xxxx
7	120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU	15/12/1986	××××
В	120110	Dennis	Entwisle	М	28615	Warehouse Assistant III	AU	20/11/1949	××××
9	120111	Ubaldo	Spillane	М	26895	Security Guard II	AU	23/07/1949	
0	120112	Ellis	Glattback	F	26550		AU	17/02/1969	××××
1	120113	Riu	Horsey	F	26870	Security Guard II	AU	10/05/1944	××××
2	120114	Jeannette	Buddery	G	31285	Security Manager	AU	08/02/1944	xxxx
3	120115	Hugh	Nichollas	М	2650	Service Assistant I	AU	08/05/1984	××××
4		Austen	Ralston	М	29250	Service Assistant II	AU	13/06/1959	××××
5	120117	Bill	Mccleary	М	31670	Cabinet Maker III	AU	11/09/1964	××××
6	120118	Darshi	Hartshorn	М	28090	Cabinet Maker II	AU	03/06/1959	××××
7	120119	Lal	Elleman	М	30255	Electrician IV	AU	21/12/1969	××××
8	120120	Krishna	Peiris	F	27645	Electrician II	AU	05/05/1944	××××
9	120190	Ivor	Czernezkyi	М	24100	Trainee	AU	05/12/1984	××××
:0	120191	Jannene	Graham-Rowe	F	2401	Trainee	AU	17/01/1959	××××
1	120192	Anthony	Nichollas	М	26185	Trainee	AU	08/05/1984	××××
2	120193	Russell	Streit	М	24515	Trainee	AU	06/12/1984	××××
13	120194	Reece	Harwood	М	25985	Trainee	ΔΠ	23/09/1984	×××××

This demonstration illustrates using the Viewtable window to clean the values of four observations.

8.06 **Quiz**

- Open the VIEWTABLE window for orion.nonsales.
- Use the VIEWTABLE window to interactively clean the following observation:

Variable	Obs	Invalid Value	Correct Value
Job_Title	10		Security Guard I

8.06 Quiz – Correct Answer

- Open the VIEWTABLE window for orion.nonsales.
- Use the VIEWTABLE window to interactively clean the following observation:

VIEW1	ABLE: Orion.No	ABLE: Orion.Nonsales							
	Employee_ID	First	Last	Gender	Salary	Job_Title ▲			
1	120101	Patrick	Lu	М	163040	Director			
2	120104	Kareen	Billington	F	46230	Administration Manager			
3	120105	Liz	Povey	F	27110	Secretary I			
4	120106	John	Hornsey	М		Office Assistant II			
5	120107	Sherie	Sheedy	F	30475	Office Assistant III			
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II			
7	120109	Gabriele	Baker	F	26495	Warehouse Assistant I			
8	120110	Dennis	Entwisle	М	28615	Warehouse Assistant III			
9	120111	Ubaldo	Spillane	М	26895	Security Guard II			
10	120112	Ellis	Glattback	F	26550	Security Guard I			
11	120112	Di	Horoou	Е	20070	Security Guard II			

Programmatically Cleaning Data

The DATA step can be used to programmatically clean the invalid data.

Use the DATA step to clean the following observations:

Variable	Obs	Invalid Value	Correct Value
Country	2, 84, 87, 125, 197, and 200	au or us	AU or US
	4		26960
Salary	13	2650	26500
	20	2401	24015
	5	21/01/1953	21/01/1995
Hire_Date	9	•	01/11/1978
	214	01/01/1968	01/01/1998

The assignment statement evaluates an expression and assigns the resulting value to a variable.

General form of the assignment statement:

variable = expression;

- variable names an existing or new variable.
- expression is a sequence of operands and operators that form a set of instructions that produce a value.

The Assignment Statement Expression

Operands are

- character constants
- numeric constants
- date constants
- character variables
- numeric variables.

Operators are

- symbols that represent an arithmetic calculation
- SAS functions.

The Assignment Statement Expression

Examples:

SAS Functions

A SAS *function* is a routine that returns a value that is determined from specified arguments.

The *UPCASE function* converts all letters in an argument to uppercase.

General form of the UPCASE function:

UPCASE(argument)

The argument specifies any SAS character expression.

All the values of **Country** in the data set **orion.nonsales** need to be uppercase.

```
data work.clean;
    set orion.nonsales;
    Country=upcase(Country);
run;
```

PDV

Employee_ID	Job_Title	Country	
120101	 Director	AU	• •

All the values of **Country** in the data set **orion.nonsales** need to be uppercase.

```
data work.clean;
   set orion.nonsales;
   Country=upcase(Country);
run;
```

PDV

```
Employee_ID
120101 ... Director AU ...

upcase (au)
```

All the values of **Country** in the data set **orion.nonsales** need to be uppercase.

```
data work.clean;
    set orion.nonsales;
    Country=upcase(Country);
run;
```

PDV

Employee_ID	Job_Title	Country	
120104	 Administration Manager	au	• • •

65

All the values of **Country** in the data set **orion.nonsales** need to be uppercase.

```
data work.clean;
   set orion.nonsales;
   Country=upcase(Country);
run;
```

PDV

```
Employee_ID
120104 ... Administration Manager AU
... upcase(au)
```

```
proc print data=work.clean;
    var Employee_ID Job_Title Country;
run;
```

Partial PROC PRINT Output

	Employee_	•	
0bs	ID	Job_Title	Country
84	120695	Warehouse Assistant II	AU
85	120696	Warehouse Assistant I	AU
86	120697	Warehouse Assistant IV	AU
87	120698	Warehouse Assistant I	AU
88	120710	Business Analyst II	US
89	120711	Business Analyst III	US
90	120712	Marketing Manager	US
91	120713	Marketing Assistant III	US

The assignment statement executed for every observation regardless of whether the value needed to be uppercased or not.

Programmatically Cleaning Data

The DATA step can be used to programmatically clean the invalid data.

Use the DATA step to clean the following observations:

Variable	Obs		Invalid Value	Correct Value			
Country◀	The assignment statement was applied to all observations.						
_	4)		26960			
Salary	13		2650	26500			
	20		•	ent statement			
	5			e applied to servations.			
Hire_Date	9	'		01/11/1978			
	214		01/01/1968	01/01/1998			

8.07 **Quiz**

Which variable can be used to specifically identify the observations with invalid salary values?

0bs	Employee_ID	Gender	Salary	Job_Title	Country	Birth_Date	Hire_Date
2	120104	F	46230	Administration Manager	au	11/05/1954	01/01/1981
4	120106	M		Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
9	120111	M	26895	Security Guard II	AU	23/07/1949	-
10	120112	F	26550		AU	17/02/1969	01/07/1990
12	120114	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	M	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14	-	M	29250	Service Assistant II	AU	13/06/1959	01/02/1980
20	120191	F	2401	Trainee	AU	17/01/1959	01/01/2003
84	120695	M	28180	Warehouse Assistant II	au	13/07/1964	01/07/1989
87	120698	M	26160	Warehouse Assistant I	au	17/05/1954	01/08/1976
101	120723		33950	Corp. Comm. Specialist II	I US	10/08/1949	01/01/1974
125	120747	F	43590	Financial Controller I	us	20/06/1974	01/08/1995
197	120994	F	31645	Office Administrator I	us	16/06/1974	01/11/1994
200	120997	F	27420	Shipping Administrator I	us	21/11/1974	01/09/1996
214	121011	М	25735	Service Assistant I	US	11/03/1944	01/01/1968

8.07 Quiz – Correct Answer

Which variable can be used to specifically identify the observations with invalid salary values?

0bs	Employee_ID	Gender	Salary	Job_Title	Country	Birth_Date	Hire_Date
2	120104	F	46230	Administration Manager	au	11/05/1954	01/01/1981
4	120106	M		Office Assistant II	AU	23/12/1944	01/01/1974
5	120107	F	30475	Office Assistant III	AU	01/02/1978	21/01/1953
9	120111	M	26895	Security Guard II	AU	23/07/1949	
10	120112	F	26550		AU	17/02/1969	01/07/1990
12	120114	G	31285	Security Manager	AU	08/02/1944	01/01/1974
13	120115	M	2650	Service Assistant I	AU	08/05/1984	01/08/2005
14	•	M	29250	Service Assistant II	AU	13/06/1959	01/02/1980
20	120191	F	2401	Trainee	AU	17/01/1959	01/01/2003
84	120695	M	28180	Warehouse Assistant II	au	13/07/1964	01/07/1989
87	120698	M	26160	Warehouse Assistant I	au	17/05/1954	01/08/1976
101	120723		33950	Corp. Comm. Specialist I	I US	10/08/1949	01/01/1974
125	120747	F	43590	Financial Controller I	us	20/06/1974	01/08/1995
197	120994	F	31645	Office Administrator I	us	16/06/1974	01/11/1994
200	120997	F	27420	Shipping Administrator I	us	21/11/1974	01/09/1996
214	121011	М	25735	Service Assistant I	US	11/03/1944	01/01/1968

Employee ID because the values are unique.

Programmatically Cleaning Data

The DATA step can be used to programmatically clean the invalid data.

Use the DATA step to clean the following observations:

Variable	Obs	Invalid Value	Correct Value
Country	2, 84, 87, 125, 197, and 200	au or us	AU or US
	4	•	26960
Salary	13	2650	26500
	20	2401	24015
	5	21/01/1953	21/01/1995
Hire_Date	9	•	01/11/1978
	214	01/01/1968	01/01/1998

IF-THEN Statements

The *IF-THEN* statement executes a SAS statement for observations that meet specific conditions.

General form of the IF-THEN statement:

IF expression **THEN** statement;

- expression is a sequence of operands and operators that form a set of instructions that define a condition for selecting observations.
- statement is any executable statement such as the assignment statement.

IF-THEN Statements

All the values of **Salary** must be in the range of 24000 – 500000.

```
data work.clean;
    set orion.nonsales;
    if Employee_ID=120106 then Salary=26960;
    if Employee_ID=120115 then Salary=26500;
    if Employee_ID=120191 then Salary=24015;
run;
```

PDV

Employee_ID		Salary	Job_Title
120105	• • •	27110	Secretary I

IF-THEN Statements

When an IF expression is TRUE in this IF-THEN statement series, there is no reason to check the remaining IF-THEN statements when checking **Employee ID**.

```
data work.clean;
set orion.nonsales;

if Employee_ID=120106 then Salary=26960;
if Employee_ID=120115 then Salary=26500;
if Employee_ID=120191 then Salary=24015;
run;
```

The word ELSE can be placed before the word IF, causing SAS to execute conditional statements until it encounters the first true statement.

IF-THEN/ELSE Statements

All the values of **Salary** must be in the range of 24000 – 500000.

```
data work.clean;
   set orion.nonsales;
   if Employee_ID=120106 then Salary=26960;
   else if Employee_ID=120115 then Salary=26500;
   else if Employee_ID=120191 then Salary=24015;
run;
```

PDV

Employee_ID	Salary	Job_Title			
120106	 •	Office Assistant II			

IF-THEN/ELSE Statements

All the values of **Salary** must be in the range of 24000 – 500000.

PDV

Employee_ID		Salary	Job_Title			
120106	• • •	26960	Office Assistant II			

Programmatically Cleaning Data

The DATA step can be used to programmatically clean the invalid data.

Use the DATA step to clean the following observations:

Variable	Obs	Invalid Value	Correct Value
Country	2, 84, 87, 125, 197, and 200	au or us	AU or US
	4		26960
Salary	13	2650	26500
	20	2401	24015
	5	21/01/1953	21/01/1995
Hire_Date	9	•	01/11/1978
	214	01/01/1968	01/01/1998

IF-THEN/ELSE Statements

All the values of **Hire_Date** must have a value of 01/01/1974 or later.

```
data work.clean;
  set orion.nonsales;
  Country=upcase(Country);
  if Employee ID=120106 then Salary=26960;
 else if Employee ID=120115 then Salary=26500;
  else if Employee ID=120191 then Salary=24015;
  else if Employee ID=120107 then
          Hire Date='21JAN1995'd;
  else if Employee ID=120111 then
          Hire Date='01NOV1978'd;
  else if Employee ID=121011 then
          Hire Date='01JAN1998'd;
run;
```

Chapter 6: Reading Excel Worksheets

6.1 Using Excel Data as Input **6.2** Doing More with Excel Worksheets

Chapter 6: Reading Excel Worksheets

6.1 Using Excel Data as Input **6.2** Doing More with Excel Worksheets

Objectives

- Use the DATA step to create a SAS data set from an Excel worksheet.
- Use the SAS/ACCESS LIBNAME statement with PC Files Server to read from an Excel worksheet as though it were a SAS data set.

An existing data source contains information on Orion Star sales employees from Australia and the United States.

A new SAS data set needs to be created that contains a subset of this existing data source.

This new SAS data set must contain the following:

- only the employees from Australia who are Sales Representatives
- the employee's first name, last name, salary, job title, and hired date
- labels and formats in the descriptor portion

Reading SAS **Data Sets** Reading Excel Worksheets Reading Delimited Raw Data Files

libname_____ data _____; Reading SAS set_____; **Data Sets** run; libname_____; data _____; Reading Excel set_____; Worksheets run; data _____; infile _____; Reading Delimited input _____; Raw Data Files run;

Business Scenario Syntax

Use the following statements to complete the scenario:

```
LIBNAME libref 'physical-file-name';
DATA output-SAS-data-set;
    SET input-SAS-data-set;
    WHERE where-expression;
    KEEP variable-list;
    LABEL variable = 'label'
            variable = 'label'
            variable = 'label';
    FORMAT variable(s) format ;
RUN;
```

sales.xls

The LIBNAME Statement (Review)

The LIBNAME statement assigns a library reference name (libref) to a SAS data library.

General form of the LIBNAME statement:

LIBNAME *libref* 'SAS-data-library' <options>;

Example:

The SAS/ACCESS LIBNAME Statement

The SAS/ACCESS LIBNAME statement extends the LIBNAME statement to support assigning a library reference name (libref) to Microsoft Excel workbooks.

General form of the SAS/ACCESS LIBNAME statement:

LIBNAME *libref* <*engine*> '*physical-file-name*' <*options*>;

This enables you to reference worksheets directly in a DATA step or SAS procedure, and to read from and write to a Microsoft Excel worksheet as though it were a SAS data set.

The SAS/ACCESS LIBNAME Statement

SAS/ACCESS Interface to PC File Formats and PC Files Server is required in order to use the SAS/ACCESS LIBNAME statement to access Excel workbooks.

SAS Explorer Window

Each worksheet in the Excel workbook is treated as though it is a SAS data set.

Worksheet names appear with a dollar sign at the end of the name.

The CONTENTS Procedure

```
proc contents data=orionxls._all_;
run;
```

```
The CONTENTS Procedure
        Directory
  Libref
                ORIONXLS
  Engine
         EXCEL
  Physical Name sales.xls
  User
                Admin
                       DBMS
               Member
                       Member
Name
               Type
                       Type
Australia$
               DATA
                       TABLE
UnitedStates$
               DATA
                       TABLE
```

The CONTENTS Procedure

Data Set Name	ORIONXLS.'Australia\$'n	Observations	
Member Type	DATA	Variables	9
Engine	EXCEL	Indexes	0
Created	•	Observation Length	0
Last Modified	•	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			

Data Representation Default

Default

Encoding

Alphabetic List of Variables and Attributes

#	Variable	Type	Len	Format	Informat	Label
8 7 1 2 4 9 6 3 5	Birth_Date Country Employee_ID First_Name Gender Hire_Date Job_Title Last_Name Salary	Num Char Num Char Char Num Char Num	8 2 8 10 1 8 14 12 8	DATE9. \$2. \$10. \$1. DATE9. \$14. \$12.	DATE9. \$2. \$10. \$1. DATE9. \$14. \$12.	Birth Date Country Employee ID First Name Gender Hire Date Job Title Last Name Salary

The CONTENTS Procedure

Data Set Name	ORIONXLS.'UnitedStates\$'n	Observations	•
Member Type	DATA	Variables	9
Engine	EXCEL	Indexes	0
Created	•	Observation Length	0
Last Modified	•	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	Default		

Alphabetic List of Variables and Attributes

Default

#	Variable	Type	Len	Format	Informat	Label
8 7 1	Birth_Date Country Employee ID	Num Char Num	8 2 8	DATE9. \$2.	DATE9. \$2.	Birth Date Country Employee ID
2	First_Name	Char	12	\$12.	\$12.	First Name
4	Gender	Char	1	\$1.	\$1.	Gender
9	Hire Date	Num	8	DATE9.	DATE9.	Hire Date
6	Job Title	Char	20	\$20.	\$20.	Job Title
3	Last Name	Char	18	\$18.	\$18.	Last Name
5	Salary	Num	8			Salary

Encoding

SAS Name Literals

By default, special characters such as the \$ are not allowed in data set names.

SAS name literals enable special characters to be included in data set names.

A SAS name literal is a name token that is expressed as a string within quotation marks, followed by the letter n.

The PRINT Procedure

```
proc print data=orionxls.'Australia$'n;
run;
```

Partial PROC PRINT Output

	Employee_							Birth_
0bs	ID	First_Name	Last_Name	Gender	Salary	Job_Title	Country	Date Hire_Date
1	120102	Tom	Zhou	М	108255	Sales Manager	AU	11AUG1969 01JUN1989
2	120103	Wilson	Dawes	М	87975	Sales Manager	AU	22JAN1949 01JAN1974
3	120121	Irenie	Elvish	F	26600	Sales Rep. II	AU	02AUG1944 01JAN1974
4	120122	Christina	Ngan	F	27475	Sales Rep. II	AU	27JUL1954 01JUL1978
5	120123	Kimiko	Hotstone	F	26190	Sales Rep. I	AU	28SEP1964 010CT1985
6	120124	Lucian	Daymond	M	26480	Sales Rep. I	AU	13MAY1959 01MAR1979
7	120125	Fong	Hofmeister	M	32040	Sales Rep. IV	AU	06DEC1954 01MAR1979
8	120126	Satyakam	Denny	M	26780	Sales Rep. II	AU	20SEP1988 01AUG2006
9	120127	Sharryn	Clarkson	F	28100	Sales Rep. II	AU	04JAN1979 01NOV1998
10	120128	Monica	Kletschkus	F	30890	Sales Rep. IV	AU	14JUL1986 01NOV2006
11	120129	Alvin	Roebuck	M	30070	Sales Rep. III	AU	22NOV1964 010CT1985
12	120130	Kevin	Lyon	M	26955	Sales Rep. I	AU	14DEC1984 01MAY2006
13	120131	Marinus	Surawski	M	26910	Sales Rep. I	AU	25SEP1979 01JAN2003
14	120132	Fancine	Kaiser	F	28525	Sales Rep. III	AU	05APR1949 010CT1978
15	120133	Petrea	Soltau	F		Sales Rep. II	AU	22APR1986 010CT2006
						•		

6.01 Quiz

Which PROC PRINT step displays the worksheet containing employees from the United States?

```
a. proc print data=orionxls.'UnitedStates';
run;
```

- b. proc print data=orionxls.'UnitedStates\$';
 run;
- C. proc print data=orionxls.'UnitedStates'n;
 run;
- d. proc print data=orionxls.'UnitedStates\$'n;
 run;

6.01 Quiz – Correct Answer

Which PROC PRINT step displays the worksheet containing employees from the United States?

- proc print data=orionxls.'UnitedStates';
 run;
- b. proc print data=orionxls.'UnitedStates\$';
 run;
- C. proc print data=orionxls.'UnitedStates'n;
 run;
- d. proc print data=orionxls.'UnitedStates\$'n;
 run;

Create a temporary SAS data set named **Work**. **subset2** from the Excel workbook named **sales**. **xls**.

```
libname orionxls pcfiles type=excel
path='s:\workshop\sales.xls';
data work.subset2;
   set orionxls.'Australia$'n;
   where Job Title contains 'Rep';
   keep First Name Last Name Salary
        Job Title Hire Date;
   label Job Title='Sales Title'
         Hire Date='Date Hired';
   format Salary comma10. Hire Date weekdate.;
run;
```

```
proc contents data=work.subset2;
run;
```

Partial PROC CONTENTS Output

	Alp	habetic	List of	Variables an	d Attributes	
#	Variable	Type	Len	Format	Informat	Label
1	First_Name	Char	10	\$10.	\$10.	First Name
5	Hire Date	Num	8	WEEKDATE.	DATE9.	Date Hired
4	Job_Title	Char	14	\$14.	\$14.	Sales Title
2	Last_Name	Char	12	\$12.	\$12.	Last Name
3	Salary	Num	8	COMMA10.		Salary

```
proc print data=work.subset2 label;
run;
```

Partial PROC PRINT Output

```
Obs First Name Last Name
                             Salary Sales Title
                                                          Date Hired
  1 Irenie
               Elvish
                              26,600 Sales Rep. II
                                                      Tuesday, January 1, 1974
  2 Christina
                              27,475 Sales Rep. II
                                                        Saturday, July 1, 1978
               Ngan
  3 Kimiko
               Hotstone
                              26,190 Sales Rep. I
                                                      Tuesday, October 1, 1985
                              26,480 Sales Rep. I
  4 Lucian
               Daymond
                                                       Thursday, March 1, 1979
  5 Fong
               Hofmeister
                              32,040 Sales Rep. IV
                                                      Thursday, March 1, 1979
                                                       Tuesday, August 1, 2006
  6 Satyakam
               Denny
                              26,780 Sales Rep. II
               Clarkson
  7 Sharryn
                              28,100 Sales Rep. II
                                                      Sunday, November 1, 1998
                              30,890 Sales Rep. IV
  8 Monica
               Kletschkus
                                                   Wednesday, November 1, 2006
  9 Alvin
               Roebuck
                              30,070 Sales Rep. III
                                                      Tuesday, October 1, 1985
 10 Kevin
                              26,955 Sales Rep. I
               Lyon
                                                           Monday, May 1, 2006
               Surawski
                              26,910 Sales Rep. I Wednesday, January 1, 2003
 11 Marinus
 12 Fancine
               Kaiser
                              28,525 Sales Rep. III
                                                       Sunday, October 1, 1978
```

Disassociating a Libref

If SAS has a libref assigned to an Excel workbook, the workbook cannot be opened in Excel. To disassociate a libref, use a LIBNAME statement and specify the libref and the CLEAR option.

```
libname orionxls pcfiles type=excel
path='s:\workshop\sales.xls';

data work.subset2;
   set orionxls.'Australia$'n;
   ...
run;

libname orionxls clear;
```

SAS disconnects from the data source and closes any resources that are associated with that libref's connection.

Chapter 6: Reading Excel Worksheets

6.1 Using Excel Data as Input **6.2 Doing More with Excel Worksheets**

Objectives

- Use the DATA step to create an Excel worksheet from a SAS data set.
- Use the COPY procedure to create an Excel worksheet from a SAS data set.
- Use the IMPORT Wizard and procedure to read an Excel worksheet.
- Use the EXPORT Wizard and procedure to create an Excel worksheet.

Creating Excel Worksheets

In addition to reading an Excel worksheet, the SAS/ACCESS LIBNAME statement with the DATA step can be used to create an Excel worksheet.

```
libname orionxls pcfiles type=excel
path='s:\workshop\qtr2007a.xls';
data orionxls.qtr1 2007;
   set orion.qtr1 \overline{2007};
run;
data orionxls.qtr2 2007;
   set orion.qtr2 \overline{2007};
run;
proc contents data=orionxls. all ;
run;
libname orionxls clear;
```

Creating Excel Worksheets

Partial SAS Log

```
70
     data orionxls.qtr1 2007;
71
        set orion.qtr1 2007;
72
73
     run;
NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.
NOTE: There were 22 observations read from the data set ORION.QTR1 2007.
NOTE: The data set ORIONXLS.qtr1 2007 has 22 observations and 5 variables.
74
     data orionxls.qtr2 2007;
75
        set orion.qtr2 2007;
76
     run;
NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.
NOTE: There were 36 observations read from the data set ORION.QTR2 2007.
NOTE: The data set ORIONXLS.gtr2 2007 has 36 observations and 6 variables.
```

Creating Excel Worksheets

Partial PROC CONTENTS Output

Creating Excel Worksheets

38	dicrosoft Exce	el - qtr2007a.xls					_ _	I X
20	<u>File</u> <u>E</u> dit	<u>V</u> iew <u>I</u> nsert F	ormat <u>T</u> ools	<u>D</u> ata <u>W</u> indow	v <u>H</u> elp		_ 8	×
) 📂 🔛 l 😅	i 🔼 [💝 👯 [₽ ₽ • •9	- [🖳 Σ -	A ↓ [1	" B S	3 ∰ -). T
	G33	▼ f _x		- G	2 + 🔤 🙂		· · · ·	- F
	A	В В	С	D	Е	F	G	
	Order_ID	Order_Type	_		Delivery_Date		<u> </u>	
2	124105477		24	1/2/07	1/5/07			
3	124106373		89	1/3/07	1/4/07			
4	124106621		171	1/4/07	1/4/07			
5	124108605	2 3	53	1/6/07	1/9/07			
6	124114764	1 1	53	1/13/07	1/13/07			
7	124123528	1 1	171	1/23/07	1/30/07			
8	124124429	7 1	111	1/24/07	1/24/07			
9	124126317	2 3	3959	1/25/07	1/26/07			
10	124128643	2 3	27	1/28/07	2/2/07			
11	124129813	1 2	2806	1/29/07	2/8/07			
12	124135999	7 1	12	2/5/07	2/5/07			
13	124137114	5 1	171	2/7/07	2/7/07			
14	124139044	0 1	41	2/9/07	2/9/07			
15		6 1	18	2/16/07	2/17/07			
16			171	2/28/07	2/28/07			
17			24	3/6/07	3/9/07			
18		-	70100	3/9/07	3/13/07			
19		-	27	3/9/07	3/14/07			
20	124168621	0 1	10	3/13/07	3/19/07			
I¶ ·	(▶ N qtr1	2007 / qtr2_200	07 /	24607	1 0 H C 10 7)	
Rea						NUM		//

Creating Excel Worksheets

As an alternative to the DATA step, the COPY procedure can be used to create an Excel worksheet.

```
libname orionxls pcfiles type=excel
path='s:\workshop\qtr2007b.xls';
proc copy in=orion out=orionxls;
   select qtr1 2007 qtr2 2007;
run;
proc contents data=orionxls. all ;
run;
libname orionxls clear;
```

Creating Excel Worksheets

Partial SAS Log

```
82 proc copy in=orion out=orionxls;
83 select qtr1_2007 qtr2_2007;
84 run;

NOTE: Copying ORION.QTR1_2007 to ORIONXLS.QTR1_2007 (memtype=DATA).
NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.
NOTE: There were 22 observations read from the data set ORION.QTR1_2007.
NOTE: The data set ORIONXLS.QTR1_2007 has 22 observations and 5 variables.
NOTE: Copying ORION.QTR2_2007 to ORIONXLS.QTR2_2007 (memtype=DATA).
NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.
NOTE: There were 36 observations read from the data set ORION.QTR2_2007.
NOTE: The data set ORIONXLS.QTR2_2007 has 36 observations and 6 variables.
```

Import/Export Wizards and Procedures

The Import/Export Wizards and IMPORT/EXPORT procedures enable you to read and write data between SAS data sets and external PC files.

The Import/Export Wizards and procedures are part of Base SAS and enable access to delimited files. If you have a license to SAS/ACCESS Interface to PC File Formats, you can also access Microsoft Excel, Microsoft Access, dBASE, JMP, Lotus 1-2-3, SPSS, Stata, and Paradox files.

Import/Export Wizards and Procedures

The wizards and procedures have similar capabilities; the wizards are point-and-click interfaces and the procedures are code-based.

To invoke the wizards from the SAS windowing environment, select <u>File</u> and <u>Import Data</u> or **Export Data**.

The Import Wizard enables you to read data from an external data source and write it to a SAS data set.

Steps of the Import Wizard:

- 1. Select the type of file you are importing.
- 2. Locate the input file.
- 3. Select the table range or worksheet from which to import data.
- 4. Select a location to store the imported file.
- 5. Save the generated PROC IMPORT code. (Optional)

1. Select the type of file you are importing.

2. Locate the input file.

3. Select the table range or worksheet from which to import data.

4. Select a location to store the imported file.

5. Save the generated PROC IMPORT code. (Optional)

SAS Log

NOTE: WORK.SUBSET2A data set was successfully created.

```
proc print data=work.subset2a;
run;
```

Partial PROC PRINT Output

	Employee_ Birth_								
0bs	ID	First_Name	Last_Name	Gender	Salary	Job_Title	Country	Date Hire_Date	
1	120102	Tom	Zhou	M	108255	Sales Manager	AU	11AUG1969 01JUN1989	
2	120103	Wilson	Dawes	M		Sales Manager	AU	22JAN1949 01JAN1974	
3	120121	Irenie	Elvish	F	26600	Sales Rep. II	AU	02AUG1944 01JAN1974	
4	120122	Christina	Ngan	F	27475	Sales Rep. II	AU	27JUL1954 01JUL1978	
5	120123	Kimiko	Hotstone	F	26190	Sales Rep. I	AU	28SEP1964 010CT1985	

```
proc contents data=work.subset2a;
run;
```

Partial PROC CONTENTS Output

	Alpha	betic Li	st of V	ariables a	nd Attribute	es
#	Variable	Туре	Len	Format	Informat	Label
8	Birth_Date	Num	8	DATE9.	DATE9.	Birth Date
7	Country	Char	2	\$2.	\$2.	Country
1	Employee ID	Num	8			Employee ID
2	First Name	Char	10	\$10.	\$10.	First Name
4	Gender —	Char	1	\$1.	\$1.	Gender
9	Hire Date	Num	8	DATE9.	DATE9.	Hire Date
6	Job Title	Char	14	\$14.	\$14.	Job Title
3	Last Name	Char	12	\$12.	\$12.	Last Name
5	Salary	Num	8	·	·	Salary

The IMPORT Procedure

The program **p106d04a** was created from the Import Wizard.

The Export Wizard reads data from a SAS data set and writes it to an external file source.

Steps of the Export Wizard:

- 1. Select the data set from which you want to export data.
- 2. Select the type of data source to which you want to export files.
- 3. Assign the output file.
- 4. Assign the table name.
- 5. Save the generated PROC EXPORT code. (Optional)

1. Select the data set from which you want to export data.

2. Select the type of data source to which you want to export files.

3. Assign the output file.

4. Assign the table name.

5. Save the generated PROC EXPORT code. (Optional)

SAS Log

```
NOTE: File "S:\Workshop\qtr2007c.xls" will be created if the export process succeeds.

NOTE: "qtr1" table was successfully created.
```


The EXPORT Procedure

The program **p106d04b** was created from the Export Wizard.

```
PROC EXPORT DATA= ORION.QTR1_2007
OUTFILE= "S:\Workshop\qtr2007c.xls"
DBMS=EXCELCS REPLACE;
SHEET="qtr1";
RUN;
```

 ✓ The RANGE statement is not supported and is ignored in the EXPORT procedure.