INT201 Decision, Computation and Language

Tutorial 4 Dr Yushi Li

1. Prove the following language is not regular

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

- 2. Prove that if we add a finite set of strings to a regular language, the result is a regular language.
- 3. Give context-free grammars that generate the following languages

$$L = \{w \in \{0, 1\}^* \mid w \text{ contains at least three } 1s \}$$

4. Convert the following CFG into an equivalent CFG in Chomsky normal form

$$S \rightarrow BSB \mid B \mid \varepsilon$$

 $B \rightarrow 00 \mid \varepsilon$

1.

Answer: Suppose that A_2 is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = a^p b a^p$. Note that $s \in A_2$ since $s = s^{\mathcal{R}}$, and $|s| = 2p + 1 \ge p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the conditions

- i. $xy^iz \in A_2$ for each $i \geq 0$,
- ii. |y| > 0,
- iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third condition implies that x and y consist only of a's. So z will be the rest of the first set of a's, followed by ba^p . The second condition states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$x = a^{j}$$
 for some $j \ge 0$,
 $y = a^{k}$ for some $k \ge 1$,
 $z = a^{m}ba^{p}$ for some $m > 0$.

Since $a^pba^p = s = xyz = a^ja^ka^mba^p = a^{j+k+m}ba^p$, we must have that j + k + m = p. The first condition implies that $xy^2z \in A_2$, but

$$xy^2z = a^j a^k a^k a^m b a^p$$
$$= a^{p+k} b a^p$$

since j + k + m = p. Hence, $xy^2z \notin A_2$ because $(a^{p+k}ba^p)^{\mathcal{R}} = a^pba^{p+k} \neq a^{p+k}ba^p$ since $k \geq 1$, and we get a contradiction. Therefore, A_2 is a nonregular language.

- 2. Let A be a regular language, and let B be a finite set of strings. We know from class that finite languages are regular, so B is regular. Thus, $A \cup B$ is regular since the class of regular languages is closed under union.
- 3. $G = (V, \Sigma, R, S)$ with set of variables $V = \{S,X\}$, where S is the start variable; set of terminals $\Sigma = \{0, 1\}$; and rules

$$S \to X1X1X1X X \to 0X \mid 1X \mid \epsilon$$

4.

1st step. introduce new start variable S_0 and the new rule $S_0 \rightarrow S$

$$S_0 \rightarrow S$$

$$S \rightarrow BSB \mid B \mid \epsilon$$

$$B \rightarrow 00 \mid \epsilon$$

2nd step. remove ε rules

Removing $B \to \epsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow BSB \mid BS \mid SB \mid S \mid B \mid \epsilon$
 $B \rightarrow 00$

2nd step. remove ϵ rules

Removing $S \to \epsilon$

$$S_0 \rightarrow S \mid \epsilon$$

$$S \rightarrow BSB \mid BS \mid SB \mid S \mid B \mid BB$$

$$B \rightarrow 00$$

3rd step. remove unit rules

Removing $S \rightarrow S$

$$S_0 \rightarrow S \mid \varepsilon$$

 $S \rightarrow BSB \mid BS \mid SB \mid B \mid BB$
 $B \rightarrow 00$

Removing $S \to B$

$$S_0 \rightarrow S \mid \epsilon$$

$$S \rightarrow BSB \mid BS \mid SB \mid 00 \mid BB$$

$$B \rightarrow 00$$

3rd step. remove unit rules

Removing $S_0 \to S$

$$S_0 \rightarrow BSB \mid BS \mid SB \mid 00 \mid BB \mid \epsilon$$

 $S \rightarrow BSB \mid BS \mid SB \mid 00 \mid BB$
 $B \rightarrow 00$

4th step. replaced ill-placed terminals 0 by variable U

$$S_0 \rightarrow BSB \mid BS \mid SB \mid UU \mid BB \mid \epsilon$$

 $S \rightarrow BSB \mid BS \mid SB \mid UU \mid BB$
 $B \rightarrow UU$
 $U \rightarrow 0$

5th step. eliminate all rules having more than two symbols

$$S_0 \rightarrow BA_1 \mid BS \mid SB \mid UU \mid BB \mid \epsilon$$

$$S \rightarrow BA_2 \mid BS \mid SB \mid UU \mid BB$$

$$B \rightarrow UU$$

$$U \rightarrow 0$$

$$A_1 \rightarrow SB$$

$$A_2 \rightarrow SB$$

