VIOLENT CRIMES IN TEXAS

when was it?

A Presentation by: Adil Baksh, Ryan Pope, Griselda Rodriguez and Michael Sanchez

PROJECT OVERVIEW

- For this project, we will analyze Census data alongside the National Incident-Based Reporting System to assess factors related to violent crime in Texas.
- Our goal is to predict the safety of specific cities on a per capita basis. We will employ the classification model Random Forest, and will categorize the data based on various features. Throughout the project, we will leverage Python, Pandas, Matplotlib, and Tableau for different analytical tasks.
- After analyzing the data, our goal changed to predicting the crime rate per 1000 people.

DATA SOURCES

US Census Data ACS 5-year estimate data for all Texas cities reported to the US Census.

National
Incident-Based
Reporting System

Number of crimes against a person for cities in Texas.

Data from 2022

OVERVIEW OF DATA

- Census
 - Utilizes the 2022 ACS 5-year estimate data for all Texas cities reported to the US Census. Total count: 626 cities
- National Incident-Based Reporting System

- Sources from the FBI Website
- Reduces city count to 612 of reporting cities in Texas

INTERACTIVE MAP

TABLEAU

Used Tableau to create an interactive map.

LOCATIONS OF REPORTED TEXAS CITIES

MACHINE LEARNING MODEL OVERVIEW

Code Overview

Objective: Predict Crime Rate based on a dataset of city-related features.

• Process:

- 1. Load and preprocess data.
- 2. Train and tune a RandomForestRegressor model.
- 3. Evaluate the model.
- 4. Analyze feature importance.
- Tools Used: Python, Pandas, Scikit-Learn, SciPy, and logging for tracking steps and errors.

TYPE OF MODEL

- Model: RandomForest
- Target Variable: Crime Rate per 1000
 - Standard notation used by Researchers to determine the rate of crime.
- Changed focus from classifying "safe cities" to predicting the crime rate per 1000 people after initial analysis of data.

TYPE OF MODEL

14 Features Used for Each City:

- Median Household Income
- Poverty Rates
 - Percentage of Males under the Poverty Line
 - Percentage of Females under the Poverty Line
 - Percentage of adults over 25 under the Poverty Line
 - Percentage of Poverty to City Population
- Education Rates
 - Percentage of adults with High School or Less Education
 - Percentage of adults with High School Degree or Equivalent
 - Percentage of adults with Some college and/or Associates
 - Percentage of adults with Bachelor's Degree or more
- Population
- Housing Data
 - Percent of Owner Occupied housing
 - Percent of Renter Occupied housing
 - Median Rent
- Total Offenses of Crime

MACHINE MODEL LEARNING OPTIMIZATION

What Changed?

- Removed Extraneous Column of Index (Left on the Original)
- Removed the Feature "Percentage of Owner Lived" as it was deemed irrelevant and had a stronger than expected pull to the data.
- Utilized a new model to help identify the best fit of important features using GridSearchCV

FINAL MODEL RESULTS

RESULTS

Poverty_Rate

Percent_BS_over

Percent_Some_Col_Assoc

```
2024-10-24 20:57:06,497 - INFO - Mean Squared Error (MSE): 25.75740230317041
2024-10-24 20:57:06,497 - INFO - R-squared (R^2): 0.5670033494463131
2024-10-24 20:57:06,502 - INFO - Results saved to 'model_results.csv'
2024-10-24 20:57:06,502 - INFO - Analyzing feature importances
Mean Squared Error: 25.75740230317041
R^2 Score: 0.5670033494463131
Feature Importances:
                   Feature Importance
         Total\nOffenses
                             0.524622
9
           Percent_Female
                            0.146334
      Percent_Renter_Occ
                             0.080038
             Population1
                             0.069288
        Percent_over_25y
                            0.062498
              Percent_HS
                             0.033471
            Percent_Male
                             0.026887
```

0.021068

0.018051

0.017744

Actual	Predicted	City
9.52813067150635	11.243545379293726	Canton
3.399192691735713	3.5223089171655637	Hallsville
2.930832356389215	2.052592749963237	Bovina
3.554502369668246	2.2574123536259743	Wink
1.7835909631391202	2.748996968551878	Itasca
12.094264117385503	11.76590962163798	Elgin
10.845986984815616	13.273375260642574	San Augustine
17.171476269973763	15.79376110486644	Levelland
4.800768122899664	5.499157117569636	Weimar
19.599075937104104	17.66937279662048	Kilgore
6.5048786589942456	4.33952254597418	Highland Village
8.637612877895563	4.3439122388990485	Hudson Oaks

INTERPRETATION OF RESULTS

- Mean Squared Error: ~25
- R^2 Score: 0.58
- Top contributor to Results:
 - Total Offenses a City Holds
 - Percentage of Female Population under the Poverty Line

***Improvement: adding polynomial features to improve model R-Squared values

FUTURE STUDIES

RATIONALE AND POTENTIAL

- The purpose of the development of this machine learning model is to determine the crime rate of Texas Cities to potentially identify "safe" cities based on a set of features in order to:
 - Allocate resources to identify and alleviate crime in cities that may need while demographics change.
 - Analyze trends that may occur with growing populations and the changes in the economy.
- Future exploration to update and optimize the model would be to:
 - Include a larger set of information to include regions and potentially the entirety of the US cities.
 - Include more features outside of economic factors that may potentially lead to violent crime not considered in this model.

WEBSITES USED

US Census American Community Survey 2022 5-year Estimate

https://data.census.
gov/advanced.

Accessed October, 2024

FBI Crime Data Explorer 2022 for Texas

https://cde.ucr.cj is.gov/LATEST/weba pp/#/pages/downloa ds. Accessed October, 2024

Safewise. "100 Safest Cities in the US"

https://www.safewise.
com/safest-cities-ame
rica/. Accessed
October, 2024

