入力

放射光器微分光规定

機械学習モデル

Input light

予测

働く人かどうか?

働く材料かどうか?

自動解析や埋もれた情報の抽出

Quiz:最も消費電力の低いデバイスは?

Which is the lowest energy consumption?

3 Squared magnetic patterns with different point defect

マテリアルズインフォマティクスによる機能解析

ミクロ組織とマクロ機能を情報空間を通じて双方向接続する。

解析が定性的、解釈の属人性、階層性の問題

Our strategy

- 空間的不均一性の定量化
- ・ミクローマクロの双方向解析
- ・ 管理的な因果関係の構築

Our idea

- トポロシカルデータ解析
- ・解釈性の高い根柢学習
- ・根能の背後にあるエネルギー地形に着目

情報科学を用いた新しい機能解析手法

拡張型ランダウ自由エネルギーモデルによる保磁力解析

磁区構造データ

ランダウ自由エネルギーモデル

磁気ヒステリシス

正方向接続

保强力

不均一性 取扱不可

GL方程式とLLG方程式の理則

Our.idea.

画像を催化の情報とみなし 不均一性を積極活用

拡張型ランダウ自由エネルギーモデル

Physical Descriptor (PD) 特徵量析出 次元州就 EL CONTES PCA マルチスケール解析

保磁力機構の因果解析

物理に根差した記述子

空間不均一性取り扱い可

高い解釈性

情報科学を用いた新しい自由エネルギーモデル

エネルギー地形のモデリング

主成分分析による次元削減結果

磁区構造から抽出した特徴量を用いて、エネルギー地形を描画した

エネルキー地形と記述子変換

従来型ランダウ理論(GL)[11]

拡張型ランダウ理論(ex-GL)[5]

第一主成分(PC1)の微分を用いて、エネルギー障壁を再定義できる

S. Kumi, K. Masuzzawa, A. Fogiatin, C. Mitsumata, and M.Kotsugif, Scientific Reports, (2022) accepted

・ 全エネルギー、静磁エネルギー交換エネルギーの寄与を元の磁区構造に可視化

- 各エネルギーの寄与国子を元の磁区構造に可視化
- Leftが最もエネルギー障壁の小さいデバイス。

人間の目では認識困難な情報

静磁エネルギーがビニング現象を支配していることがわかった。

研究成果の発信(データ班)

S. Kunii, K. Masuzawa, A. Fogiatto, C. Mitsumata, and M Kotsugi*, Scientific Reports, (2022) 12 (2022) 19892.

A. Foggiatto, S. Kunii, C. Mitsumata, and M. Kotsugi, Communications Physics, 5 (2022) 277.

理科大プレスリリース 2022年11月29日

拡張型自由エネルギーモデルシリーズ

エネルギーの知道性を採用し

革新的パワーエレクトロニクス受動素子

○ 文加利学省 № 20007177

東北人、NIMS、トーキン、耐立人、AIST、京大

エネルギー損失のメカニズム解析

科学者の能力を包張する階層的自律探索手法による新材料の創製

NIMB, SPring-B, MREA, REA

スピントロニクスデバイス店用

2次元ホウ素未踏マテリアルの創製と機能開拓

业人、ABT、SPieg-8、民政人、果北人

Beyond-6G 超高速通信への応用

Materials Informatics 科学技術における第4のバラダイム

Tany Hey, MicrosoftTM

Y'll : Materials Genome Initiative (MGI)

EXHI : Novel Materials Discovery (NOMAD)

日本: 賃担請合型物質・材料開発イニシアティブ(1971)

材料科学と情報科学の融合

材料科学のビッグデータの中から 本質的に重要な要素を抽出して 法則や機能を導き出す。

マテリアルズインフォマティクス

□□ : China Materials Genome Instative (CMGI)