TMA4140 - Homework Set 2

Basic structures: Sets, Functions, Sequences and Sums

RETTES

Henry S. Sjøen

September 17, 2018

Contents

1	Chapter 2.1 - Sets			
	1.1	Exercise 5	2	
	1.2	Exercise 24	2	
2	Chapter 2.2 - Set Operations			
	2.1	Exercise 18c	3	
	2.2	Exercise 18d		
		Exercise 46		
3	Chapter 2.3 - Functions			
	3.1	Exercise 12c	7	
	3.2	Exercise 38	7	
		Exercise 42		
4	Cha	apter 2.4 - Sequences and Summations	8	
	4.1	Exercise 12c	8	
		Exercise 33d		
5	Cha	apter 2.5 - Cardinality of Sets	9	
	5.1	TODO: Exercise 16	9	

1 Chapter 2.1 - Sets

1.1 Exercise 5

Determine whether each of these pairs are equal.

- a) $\{1, 3, 3, 3, 5, 5, 5, 5\}, \{5, 3, 1\} \Rightarrow True.$
- b) $\{\{1\}\}, \{1, \{1\}\} \Rightarrow False.$
- c) \emptyset , $\{\emptyset\} \Rightarrow False$

1.2 Exercise 24

Determine wether each of these sets is the power set of a set, where a and b are distinct elements.

- a) \emptyset , is False. $P(\emptyset) = {\emptyset {\emptyset}}$
- b) $\{\emptyset, \{a\}\}\$, is True. $P(\{a\}) = \{\emptyset, \{a\}\}\$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}\$, is False.
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$, is True.

The powerset of any set S is the set of all subsets of S, including the empty set \emptyset and S itself. ¹ If a and b are distinct elements of a set A. $A = \{a, b\}$ Then the powerset of A is $p(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$

 $^{^1}Wikipedia,\,2018\text{-}09\text{-}14,\,13\text{:}54,\,\texttt{https://en.wikipedia.org/wiki/Power_set}$

2 Chapter 2.2 - Set Operations

2.1 Exercise 18c

Let A, B and C be sets. Show that: $(A \cap B) \subseteq (A \cup B \cup C)$

Figure 1: $(A \cup B \cup C)$

As illustrated in figure 1 we can se the venndiagram for $(A \cup B \cup C)$. Coloring out $(A \cap B)$, as shown in figure 2, we can see that $(A \cap B)$ is a subset of $(A \cup B \cup C)$.

2.2 Exercise 18d

Let A, B and C be sets. Show that: $(A - B) - C \subseteq A - C$

Figure 3: (A - B) - C

Figure 4: A - C

We can see that (A - B) - C is a subset of A - C, see figure 3 and 4.

2.3 Exercise 46

Show that if A, B, and C are sets, then:²

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \quad (1)$$

Figure 5: |A| + |B| + |C|

Here we have counted some elements more than once (figure 5), lets correct that.

Figure 6: $|A|+|B|+|C|-(|A\cap B|-|A\cap C|-|B\cap C|)$

²This is a special case of the inclusion-exclusion principle, which will be studied in Chapter 8. Also... Wikipedia https://en.wikipedia.org/wiki/Inclusion-exclusion_principle

But now, the intersection of A,B and C is not counted. (figure 6 on the preceding page). Lets count the intersection once $|A \cap B \cap C|$ as shown in figure 7.

Figure 7: $|A| + |B| + |C| - (|A \cap B| - |A \cap C| - |B \cap C|) + |A \cap B \cap C|$

We have now shown that and we can intuitively see that it's the same as counting all elements inside the union of the three sets: $|A \cup B \cup C|$. (figure 8)

Figure 8: Union of the sets A,B and C

3 Chapter 2.3 - Functions

3.1 Exercise 12c

Determine whether each of these functions from Z to Z is one-to-one.

True. $f(n) = n^3$, is One-to-One, because it passes both the vertical and horizontal line test.³

3.2 Exercise 38

Let f(x) = ax + b and g(x) = cx + d, where a,b,c, and d are constants. Determine necessary and sufficient conditions on the constants a,b,c, and d so that $f \cdot g = g \cdot f$.

$$f \cdot g = g \cdot f = a(cx+d) + b = acx + ad + b$$

$$g \cdot f = g(f(x)) = c(ax+b) + d = acx + cb + d$$

$$f \cdot g = g \cdot f \Leftrightarrow ad + b = cb + d$$
(2)

3.3 Exercise 42

Let f be the function from R to R defined by $f(x) = x^2$. Find:

- a) $f^{-1}(\{1\}) = \pm 1$
- b) $f^{-1}(\{x|0 < x < 1\}) = \pm \{x|-1 < x < 1 \land x \neq 0\}$
- c) $f^{-1}(\{x|x>4\}) = \{x|-2>x \land x>2\}$

 $^{{}^3\}mathtt{http://www.mathwords.com/o/one_to_one_function.htm}$

4 Chapter 2.4 - Sequences and Summations

4.1 Exercise 12c

Show that the sequence a_n is a solution of the recurrence relation $a_n = -3a_{n-1} + 4a_{n-2}$ if $a_n = (-4)^n$

$$a_{n} = -3a_{n-1} + 4a_{n-2} = (-4)^{n}$$

$$= -3a_{n-1} + 4a_{n-2}$$

$$= (-4)^{n-1} + 4(-4)^{n-2}$$

$$= (-4)^{n-2}[(-3)(-4) + 4]$$

$$= (-4)^{n-2}(16)$$

$$= (-4)^{n-2}(-4)^{2}$$

$$= (-4)^{n}$$
(3)

4.2 Exercise 33d

Compute the double sum

$$\sum_{i=0}^{2} \sum_{j=1}^{3} ij = (0*1+0*2+0*3) + (1*1+1*2+1*3) + (2*1+2*2+2*3)$$

$$= (0+0+0) + (1+2+3) + (2+4+6)$$

$$= 0+6+12$$

$$= 18$$
(4)

5.1 TODO: Exercise 16

TMA4140: Homework Set 2

Exercise: Show that a subset of a countable set is also countable. Answer: A set is countable if it is finite or is the same size as \mathbb{N} . To show that A is countable, it is sufficient to show that there is an injection from A

to \mathbb{N} .