

Isolation of Non-Cytopathic (NCP) VSV Mutants

Figure 1

Cell Rounding Phenotypes of M Protein Mutants of VSV

Isolation and Sequencing of NCP-M

Protein Mutant cDNAs

Purify NCP virus from culture supernatants of plaque purified NCP isolates

Isolate genomic RNA and perform RT-PCR using M gene specific primers

Subclone cDNAs into plasmid pBS-SK+

Sequence individual clones and identify mutations present in M_{NCP} cDNAs

NCP mutations are M33A; MS1A; T133A; & S226G
Designated M_{NCP12.1}

Subclone M_{NCP12.1} into pVSV-FL(+)2

Figure 3

Recovery of rVSV-M_{NCP12.1}

Obtain plaque isolates, generate stocks and characterize growth properties, and cell round

Figure 4

rVSV/M_{NCP12.1} is Defective in Cell Rounding

Phase Contrast

Anti-VSV N protein MAB

Infect BHK-21 cells

wtrVSV

Examine @ 12 hrs p.i.

rVSV
NCP-12.1

Figure 5

Transient Expression of M_{NCP-12.1}

wt M

NCP-12.1

NCP-12.1

mock

Figure 6

rVSV/M_{NCP-12.1} Infection of Different Cell Types

BHK @ 24 hr CV-1 @ 24 hr Hela @ 12 hr Vero @ 24 hr

Figure 7

Use of M_{NCP-12.1} to Recover ΔM-VSV

Figure 8

Recovery of rVSV- Δ M

Figure 9

Sample #176, 3 Days Post-infection

Infection of islet Prep#176 at day 3 post infection

Figure 10

Sample #163, 3 Days Post-infection

Infection of islet Prep#163 at day 3 post infection

Figure 11

Sample #176, 3 Days Post-infection

Figure 12

Sample #163, 3 Days Post-infection

Figure 13

Sample #176, 8 Days Post-infection

Figure 14

Sample #176, 8 Days Post-infection

Figure 15

Sample #163, 8 Days Post-infection

Figure 16

Sample #163, 8 Days Post-infection

Figure 17

Sample #176, 3 Days Post-infection

Figure 18

Sample #176, 8 Days Post-infection

Figure 19

Figure 20.

Figure 21

Figure 22

Figure 23

Figure 24

B

A

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

A

Figure 30

Figure 31:

Figure 32

Figure 33

0 hr

10 hr

24 hr

48 hr

Figure 34

Figure 35

A

Substantia Nigra
(SN)

Striatum

Cortex
(Cx)

B**C****D****E**

Figure 36

Figure 37

VSV-wt w/ no IFN

A

VSV-wt w/ 1,000u IFN

B

VSV-wt w/ 1,000u IFN on C6 co-cx

C

normal slice w/ IFN only

Figure 38

Figure 39

MAP2 Immunohistochemistry

Figure 40

Figure 41

A

B

C

D

E

F

Figure 42