91

ANS

RACE AROUND CONDITION IN JK FLIP-FLOP

For JK Jup-Jop, if J=K=1, and if clk=1 jox a long period of time, then a output will toggle as long as clk is high, which makes the output of the Jup-Jop unstable ox uncertain. This problem is called xace around condition in J-K Jup-Jlop. The whole problem can be avoided by ensuring that the clock is at logic '1' only jox a very short time. This introduced the concept of master.

the master slave flip-flop is basically a combination of two JK flip-flops connected together in a series configuration. Out of these, one acts as the "MASTER" and the other as a "slave". The output from the master flip-flop is connected to the two inputs of the slave flip-flop. whose output is fed back to inputs of the master

flip-flop.

In addition to these flip-flops, the circuit also includes an inverter. The inverter is also connected to clock pulse in such a way that the invexted clock pulse is given to the slave flip-flop. In other words if clock pulse = 0 for a master flip-flop, then clock pulse = 1 for a slave flip-flop and if clock pulse = 1 for master flip-flop then it becomes o for slave flip-flop

8,2

STEP 1: Since we have to design MOD-9 counter, 4 flip-ANS glops are needed

STEP 2: TRUTH TABLE

	State	Flip-flop output.				output of	
		8 _D	8c	Ors	BA	Rieset logic	
						-3	
	0	0	0	0	0	1	
	1	0	0	0	1		
	2	0	0)	O	1	
	3	0	0	1	1	1	
	4	0	1	0	0	1	
	5), O	1:	O	1	~ ~ Ī	
	6	O	1 .	1	O		
	7	0	1	1	1	J	
	8	i j	0	0	0	1	
:	9	1	0	O	1	0	
	10	1	0	1	0	0	
	17	l	O	l	1	0.1	
	12	1	1	0	0	0	
	13	١	1	0	1	0	
	14	1	1	1	0	0	
	15	1	1	1	1	0	

States 0 to 8 are valid states and output of xeset Logic is inactive jox them.

States 9 to 15 are invalid states. If countex enters any
of these states then it will neset all flip-flops

Y = Q0 + Qn. QB. Qc

STEP 4: LOGIC DIAGRAM

03 $F(A,B,C,D) = \sum_{m} (0,1,3,6,9,11,12,13,15)$ ANS The design table is as jollows D, P2 D3 D4 D5 D6 D7 INPUT to ĀIOIĄAĀ Multiplener The corresponding logic diagram is. Po Pi 0 P3 8:1 > F (A,B,C,D) Dy MUX DS Da Da LOGIC LOGIC

FOR EDUCATIONAL USE

Sundaram