12.11. PROBLEMS 485

where $x = \sum_{i=1}^{n} y_i v_i$, with $\alpha_i > 0$, $\beta_i > 0$, $1 \le i \le r$.

Assume that p > q and derive a contradiction. First consider x in the subspace F spanned by

$$(u_1,\ldots,u_p,u_{r+1},\ldots,u_n),$$

and observe that $\varphi(x,x) \geq 0$ if $x \neq 0$. Next consider x in the subspace G spanned by

$$(v_{q+1},\ldots,v_r),$$

and observe that $\varphi(x,x) < 0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair (p, r - p) is called the *signature* of φ .

(4) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x) = 0$, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n,0) or (0,n). In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem 12.12. Consider the $n \times n$ matrices $R^{i,j}$ defined for all i, j with $1 \le i < j \le n$ and $n \ge 3$, such that the only nonzero entries are

$$\begin{split} R^{i,j}(i,j) &= -1 \\ R^{i,j}(i,i) &= 0 \\ R^{i,j}(j,i) &= 1 \\ R^{i,j}(j,j) &= 0 \\ R^{i,j}(k,k) &= 1, \quad 1 \leq k \leq n, k \neq i, j. \end{split}$$

For example,

(1) Prove that the $R^{i,j}$ are rotation matrices. Use the matrices R^{ij} to form a basis of the $n \times n$ skew-symmetric matrices.