Prüfung Differentialgleichungen 1 (Melenk) 29.4.2021

Matrikelnr.:	Familienname:
Platznr.:	Vorname:

1:	2:	3:	4:	5:	Summe:

Bemerkungen:

- 0) Dauer: 2h.
- 1) Unterlagen sind nicht erlaubt.
- 2) Taschenrechner mit einzeiligem Display (keine Graphik) sind erlaubt.
- 3) Insgesamt können 20 Punkte erreicht werden.
- 4) Berechnungen und Ergebnisse müssen nachvollziehbar sein. Besser zu viel als zu wenig hinschreiben.

1. (5 Punkte) Betrachten Sie

$$y'(t) = Ay(t), \qquad A = \begin{pmatrix} -1 & 0 & 0 & 2\\ 1 & \gamma & 2 & 3\\ -1 & 0 & \gamma & 0\\ -1 & 0 & 0 & -4 \end{pmatrix}$$

- a) Untersuchen Sie das Stabilitätsverhalten der Ruhelage $(0,0,0,0)^{\top}$ in Abhängigkeit vom Parameter $\gamma \in \mathbb{R}$.
- b) Bestimmen Sie die allgemeine Lösung für $\gamma = 0$.
- 2. (3 Punkte) Geben Sie eine (nichttriviale) Funktion F mit F(t,y(t))=0, falls y die Differentialgleichung

$$4ty + 4y^4 + (2t^2 + 5ty^3)y' = 0$$

löst. Hinweis: integrierender Faktor von der Form $\varphi(t,y) = t^{\alpha}y^{\beta}$.

- 3. (4 Punkte)
 - a) Bestimmen Sie die allgemeine Lösung der homogenen Differentialgleichung

$$x^{2}y''(x) - 3xy'(x) + 3y(x) = 0$$
 auf (1, 2).

b) Für welche Werte von $\alpha \in \mathbb{R}$ ist das Randwertproblem

$$x^{2}y''(x) - 3xy'(x) + 3y(x) = f(x)$$
 auf $(1, 2)$
 $y(1) + y'(1) = \gamma_{1}$
 $y(2) + \alpha y'(2) = \gamma_{2}$

für beliebige $f \in C([1,2]), \gamma_1, \gamma_2 \in \mathbb{R}$ eindeutig lösbar?

- c) Geben Sie eine Formel an, mit der sich eine Partikulärlösung für $f(x)=2x^3$ bestimmen ließe.
- 4. (3 Punkte) Betrachten Sie die Differentialgleichung

$$y'(t) = t^2 + y^2(t),$$
 $y(0) = 1$

- a) Zeigen Sie mithilfe einer Unterlösung, dass der rechte Rand T^+ des maximalen Existenzintervalls höchstens 1 sein kann.
- b) Zeigen Sie nun mithilfe einer geeigneten Oberlösung, dass der rechte Rand T^+ des maximalen Existenzintervalls mindestens 1 ist.

Bitte umdrehen!

5. (5 Punkte) Betrachten Sie das System

$$x' = x + xy - (x + y)\sqrt{x^2 + y^2},$$

$$y' = y - x^2 + (x - y)\sqrt{x^2 + y^2},$$

welches in Polarkoordinaten die Form

$$r' = r(1-r), \qquad \varphi' = (1-\cos\varphi)r$$

hat.

- a) Bestimmen Sie die Ruhelagen. Sind diese stabil? Begründen Sie.
- b) Skizzieren Sie das Phasenportrait.
- c) Zeigen Sie, dass für $R_1 < 1 < R_2$ die Kreisringe $\{(x,y) \mid R_1^2 \le x^2 + y^2 \le R_2^2\}$ invariante Menge sind.
- d) Zeigen Sie, dass die Lösungen für beliebigen Startwert global in der Zeit existieren.
- e) Gibt es periodische Lösungen? Gibt es Grenzzyklen? Begründen Sie.