Contrôle Final

Durée 2 heures Tout document interdit

Exercice I. (2.5-2.5points)

Donner les grammaires des langages suivants :

```
\begin{array}{l} L_1 \!\! = \! \{ \ a^n b^m \ w \ , \ m \ \! - |w| \! \equiv \! \! 1[3] \ , \ w \in \{d\}^*\}. \\ L_2 \!\! = \! \{ a^{3n} \ b^k c^m \ avec \ n, \! m, \! k \!\! \geq \! 0 \ et \ 3n \!\! + \! m = \! k, \ k \ est \ impair\} \end{array}
```

G1:

$S \rightarrow aS / A$	
A→aaaA / B / aC /aaD	
B→dddB / dd	$//B : m \equiv 0[3]$ dans ce cas on doit avoir $ w \equiv 2[3]$
C→dddC / ε	//C: m =1[3] dans ce cas on doit avoir $ w $ =0[3]
D→dddD /d	//C: m =2[3] dans ce cas on doit avoir $ w = 1[3]$

G2:

$S \rightarrow S1/S2$	//S1 : 3n pair et m impair	
	//S2 : 3n impair et m pair	
$S1 \rightarrow A_1B$	$S2 \rightarrow C_1D$	
$A_1 \rightarrow aaaA_2bbb$	$C_1 \rightarrow aaaC_2bbb / \epsilon$	
$A_2 \rightarrow aaaA_1bbb / \epsilon$	$C_2 \rightarrow aaaC_1bbb$	
B →bb B cc /bc	$B \rightarrow bb B cc / \epsilon$	

Ou bien G2:

0 a 010H 02 .		
$S \rightarrow S1/S2$	//S1 : 3n pair et m impair	
	//S2 : 3n impair et m pair	
$S1 \rightarrow AB$	$S2 \rightarrow CD$	
A →aaaaaa A bbbbbb / ε	C →aaaaaa C bbbbbb / aaabbb	
B →bb B cc /bc	$B \rightarrow bb B cc / \epsilon$	

Exercice II. (2-2points)

Donner les automates les plus adéquats des langages suivants :

 $L_1 est \ le \ complément \ du \ langage \ \{a^nb^nc^n, \ n \geq 0\}$

$$L_2 \!\!= \{a^{3n}c^kb^m \text{ avec n,m,k} \!\! \geq 0 \text{ , 3n+2m=k } \}$$

L'automate de L1:

#S0 b→#SF	bw w∈X*
#S0 c →#SF	Cw
#S0 a →# aS1	
$aS1a \rightarrow aaS1$	// empiler les a
$aS1b \rightarrow S2$	// Comparer les a et b dépiler les a à la lecture
	des b) pour vérifier que i≠j
$aS2b \rightarrow S2$	
aS2c →aSF	$(a^ib^jc^nw i>j)$

#S2b →#SF	$(a^ib^jc^n w i \le j)$	
$aS1b \rightarrow aS3$	// Comparer les a et c pour vérifier que i≠k/	
	On lit les b sans les empiler	
$aS3b \rightarrow aS3$	// je dépasse les b	
$aS3c \rightarrow S4$		
aS4c →S4		
aS4 →aSF	i>k	
#S4c →#SF	i <k< td=""></k<>	
aS4b →aSF	$(a^ib^nc^kb.w i>k)$	
aS4a →aSF	$(a^ib^nc^ka.w i>k)$	
#S4a→#SF	$(a^nb^jc^na.w)$	
#S4b→#SF	$(a^nb^jc^nb.w)$	
#SF a→#SF	Lire le mot jusqu'à la fin	
#SF b→#SF	Lire le mot jusqu'à la fin	
#SF c→#SF	Lire le mot jusqu'à la fin	
aSF a→aSF	Lire le mot jusqu'à la fin	
aSF b→aSF	Lire le mot jusqu'à la fin	
aSF c→aSF	Lire le mot jusqu'à la fin	

L'automate de L2 :

#S0a →#aS1	//S1:Nbr de a = 3n+1
aS1a →aaS2	//S2: Nbr de a = 3n+2
aS2a →aaS3	//S3: Nbr de a = 3n
aS3a →aaS1	
$aS3c \rightarrow S4$	
$aS4c \rightarrow S4$	
$\#S4c \rightarrow \#cS5$	
$cS5c \rightarrow cS6$	
$cS6c \rightarrow ccS5$	On empile un c sur deux (le premier)
$cS6b \rightarrow S7$	
$cS7b \rightarrow S7$	
#S7 →#SF	
#S4→#SF	m=0
#S0 c→#cS5	n=0

Exercice IV. (1-2-2-1-2 Pts)

1. Donner l'automate d'états finis simple déterministe qui reconnait le langage défini par l'expression régulière suivante :

$$E=(a \cup b)^*$$
. aa . $(a \cup b)^*$

$$E/\!/a = (a \cup b)^* /\!/a. \ aa \ . \ (a \cup b)^* \cup aa \ . \ (a \cup b)^* /\!/a = \ (a \cup b)^*. \ aa \ . \ (a \cup b)^* \cup a \ . \ (a \cup b)^* = E1$$

$$E/\!/b = (a \cup b)^* /\!/b. \ aa \ . \ (a \cup b)^* \cup aa \ . \ (a \cup b)^* /\!/b = (a \cup b)^*. \ aa \ . \ (a \cup b)^* = E$$

$$E1//a = = ((a \cup b)^* //a)$$
. aa . $(a \cup b)^* \cup (a \ a \ (a \cup b)^*) //a \cup (a \ (a \cup b)^*)//a = (a \cup b)^*$. aa . $(a \cup b)^* \cup a \ (a \cup b)^* \cup (a \cup b)^* = (a \cup b)^* = E2$

$$E1//b = \left((a \cup b)^*. \ aa \ . \ (a \cup b)^*\right) //b \cup \left(\ aa \ . \ (a \cup b)^*\right) //b \cup \left(\ a \ . \ (a \cup b)^*\right) //b = (a \cup b)^*. \ aa \ . \ (a \cup b)^* = E$$

Ou bien on obtient cet automate informellement sans passer par les dérivées

Et on le rend simple déterministe :

Simple:

Déterministe :

	a	b
S0	S1,S0	S0
S1,S0	S2,S0,S1	S0
S0 ,S1,S2	S0,S1,S2	S0,S2
S0,S2	S0,S1,S2	S0,S2

2/ Soit l'expression E_1 = (ab \cup b)* aa (a \cup b)* Montrer que L(E)= $L(E_1)$

On construit l'automate A1 à partir de E1: $E1//a = b(ab \cup b)^*$ aa $(a \cup b)^* \cup a (a \cup b)^* = E12$

 $E1//b = (ab \cup b)^* aa (a \cup b)^* = E1$

$$E12//a = (a \cup b)^* = E13$$

 $E12//b=E1$
 $E13//a=E13//b=E13$

On obtient le même automate que celui qui reconnait L(E)

On a
$$L(E) = L(A1) = L(E1)$$

Nous avons également accepté d'autres solutions. Il y en a plusieurs.

3/ Donner l'AEF simple déterministe reconnaissant le langage L défini comme suit : L=
$$\{w \in \{a,b\}^* / w = u \text{ aa } v \text{ avec } u,v \in X^* \text{ ou } |w|_b = 2k,\, k \geq 0\}$$

L'automate généralisé

L'automate partiellement généralisé

L'automate Simple :

L'automate Déterministe :

		a	b
A	{S'}	{S0,S01,S3}	{S0,S4}
В	{S0,S01,S3}	{S0,S01,S1,S3}	{S0,S4}
C	{S0,S4}	{S0,S01,S4}	{S0,S3}
D	{S0,S01,S1,S3}	{S0,S01,S1,S3}	{S0,S4,S1}
E	{S0,S01,S4}	{S0,S01,S4,S1}	{S0,S3}
F	{S0,S3}	{ S0,S01,S3}	{S0,S4}
G	{S0,S4,S1}	{S0,S01,S4,S1}	{S0,S3,S1}
Н	{S0,S01,S4,S1}	{S0,S01,S4,S1}	{S0,S3,S1}
I	{S0,S3,S1}	{ S0,S01,S3,S1}	{S0,S4,S1}

4/ Donner la grammaire régulière droite engendrant le complément de L L'automate est complet il suffit d'inverser les états finaux-non finaux

$G < \{a,b\}, A, \{A..I\}, P$:

3 (1,0), 11, (1111), 1
$A \rightarrow aB/bC$
B→aD /bC
C→aE /bF /ε
D→aD /bG
E→aH /bF /ε
F→aB /bC
G→aH/bI
H→aH /bI
I→aD /bG

>

5/ Donner l'AEF du langage L défini comme suit : $L = \{ w \in X^* \, / \, w = u \text{ aa } v, \, u \in X^* \text{et } v \in X^* \text{ et } |w|_b = 2k, \, k {\geq 0} \}$

