UNCLASSIFIED

AD NUMBER AD907528 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Proprietary Information; OCT 1972. Other requests shall be referred to Naval Material Command, AttN: MAT 0341, Washington, DC 20360. **AUTHORITY** CNM D/N ltr, 14 Aug 1973

DEEP OCEAN TECHNOLOGY PROJECT DEVELOPMENT OBJECTIVES ASSESSMENT

PROPRIETARY INFORMATION; OCTOBER 1972. OTHER REQUESTS
FOR THIS DOCUMENT MUST BE REFERRED TO HEADQUARTERS NAVAL
MATERIAL COMMAND (MAT (224) WASHINGTON, D.C. 20360

VOLUME 1

DEEP OCEAN TECHNOLOGY PROJECT DEVELOPMENT OBJECTIVES ASSESSMENT

VOLUME 1

An assessment of specific technological events, anticipated and/or desired in the near future, required to advance the state-of-the art in ocean engineering for the achievement of Naval objectives.

This study was conducted in support of the Deep Ocean Technology (DOT) Project 43-36X.

October 27, 1972

PREFACE

The U.S. Navy is very grateful to each of the individuals and organizations who participated in the three cycles of the Deep Ocean Technology Development Objectives Assessment. Their enthusiastic contributions have added immensely to the knowledge and results contained in this study. Their generously offered time and experience are sincerely appreciated.

TABLE OF CONTENTS

Section			Page
I		Introduction	1
II		The Selected Assessment Procedure	3
III		Explanation of Statistical Analysis Method and Results Sheet Data Items and Entries	12
IV		Organization of the Technologies, Sub-Technologies, and Events	20
APPENDIX A	-	Materials & Structure	A-1A-57
APPENDIX B	-	Machinery & Equipment	B-1B-24
APPENDIX C	-	Seafloor Construction	C-1C-46
APPENDIX D	-	Power Sources, Conversion & Transmission	D-1D-55
APPENDIX E	-	Propulsion	E-1E-28
APPENDIX F	-	Surveillance and Communication	F-1F-30
APPENDIX G	-	Instrumentation and Display	G-1G-25
APPENDIX H	-	Load Handling and Transportation	H-1H-27
APPENDIX I	-	Life Support and Related Systems	I-1 I-20

I. INTRODUCTION

The Deep Ocean Technology (DOT) Project has as general requirements the <u>definition</u>, <u>analysis</u>, and <u>development</u> of the technological state-of-the art for ocean engineering in the deep ocean environment. The specific requirements for the DOT Project are that there be adequate demonstrated technology options available to support the specific operational requirements for deep ocean programs which are generated in the foreseeable future. Such options are those specific technology developments required to achieve operational systems that will fulfill the Navy's future requirements in manned and unmanned submersible work systems, seafloor construction systems, and weapons support systems. Within these bounds the question naturally arises -- what options are the most suitable and how should their development be undertaken? After four years of development effort in implementation of the original project objectives, and in view of past and current funding limitations, it appeared necessary to reassess the DOT Project development programs to ensure that the most cost-effective approaches were being taken. Another hard look at technology state-of-the-art and the cost and time requirements to advance the state-of-the-art was therefore required.

In assessing the technology base in ocean engineering, it was considered desirable to invite the wider participation of the ocean community in determining the optimum course of action in advancing the present state-of-the art necessary to meet the Navy's needs. Advancements and developments in ocean engineering have and are currently taking place outside the Naval realm. Participants in these outside programs, by virtue of professional interest or otherwise, have an interest in the future developments and requirements in ocean engineering, and the contribution of their current expertise in their technical fields to the development planning required to fulfill the objectives of the DOT Project has been of great value. Due to the nature of the

the DOT Project, the information sought was relatively specific and related to technical or discipline areas, thereby allowing experts to readily contribute without appreciable background briefing. The method selected to obtain this expert advice was a modified DELPHI technique (see Section II).

The objective of the DOT Development Objectives Assessment was to evaluate specific technological events, anticipated and/or desired in the near future, required to advance the state-of-the-art in ocean engineering to achieve Naval objectives.

II. THE SELECTED ASSESSMENT PROCEDURE

DELPHI is the name given to a technique for soliciting and assessing the opinions of a group of people who are especially knowledgeable in specific areas under consideration. The DELPHI procedure has three distinctive characteristics: Anonymity, controlled feedback, and statistical group response.

To maintain anonymity throughout the study, the experts were solicited by means of a coded questionnaire, and at no time was any response referred to by an individual's name or organization. The device of anonymity was used to reduce the effect of a socially dominant or prestigious individual, the bandwagon effect of majority opinion, and the psychological factors of deceptive persuasion commonly apparent in committee or round table discussions.

Controlled feedback was conducted in this study by means of a consensus summary between each of the three cycles, whereby the collected data from the previous cycle were statistically reduced and fed back to the participants along with their original estimates and a new, blank questionnaire which they were to complete in light of what was said by the other experts. The device of controlled feedback, by the use of consensus summary sheets, allows each participant to reappraise his response such that a convergence or consensus may be allowed. Also, those who diverge appreciably from the consensus (outliers) can be detected for future inquiry as to the reasons for their nonconforming estimates.

The statistical group response was conducted by objectively derived, predetermined procedures. The summaries or conclusions determined in any phase of this study were derived by formal statistical methods (i.e., without judgement) to ensure statistically valid and unbiased conclusions.

The selected procedure for the Deep Ocean Technology (DOT)
Project Assessment was in accordance with the following steps:

Step 1. Desired and/or anticipated technological events that are candidates in fulfilling future deep ocean engineering operational requirements of the Navy were generated. These events contained specific hardware performance specifications for systems components. They were specific in the sense that they apply to fundamental components of basic systems or techniques appropriate to advancing the Navy's ocean engineering technology requirements. Of the 286 events generated, 266 were selected for the first cycle. At its conclusion 6 events were added, at the suggestion of the participants, and this total, 272, was maintained throughout the remaining iterations of the study. The 272 events were divided into 9 technology areas and 30 sub-technology areas, as shown in Figure 1.

Step 2. One team of experts was selected for each of the nine technology areas. Each team was composed of members from Naval activities, from other government activities, and from the private and academic sectors. The distribution of team members at the conclusion of the assessment is shown in Figure 2.

Each team of experts was selected from authors of published papers, members of professional societies, recommendations of the National Academy of Engineering-Marine Board, and from the recommendations of program managers within the Navy and other federal agencies. Selection criteria required that each member (a) be currently employed in an endeavor related to at least one of the nine technology areas, (b) have a technical orientation, and (c) where possible, have some project management experience in research and development.

Step 3. The members of each team were asked to evaluate anonymously, by means of a mailed questionnaire, the projected technology events in accordance with the following criteria:

Tech	nology	Su	b-Technology
Ι.	Materials and Structure	D. E. F.	Fiber Reinforced Plastics Concrete Metals
II.	Machinery and Equipment	В.	Remote Unmanned Work Systems Ballast Systems Hydraulic Systems
III.	Seafloor Construction	В. С.	Construction by Divers Site Selection and Preparation On-Bottom Construction In-Bottom Construction
IV.	Power Sources, Conversion and Transmission	В.	Power Sources Electrical Transmission and Conditioning Equipment for Deep Submergence Vehicles Transmission and Conditioning Equipment for Deep Ocean Fixed Installations
v.	Propulsion	C.	Propulsors Power Transmission Integral Energy & Power Sources Propulsion Motors
VI.	Surveillance and Communica- tions	В.	Bottom Positioning Surveillance and Viewing Communications
VII.	Instrumentation and Display	A. B.	Life Support Monitoring Submersible Positioning and Guidance Instrumentation Site Selection Instruments
vIII.	Load Handling and Trans- portation	A. B. C.	Near - Bottom Transport & Positioning Guidance Lifting and Lowering
IX.	Life Support and Related Systems	Α.	Life Support and Related Systems

Figure 1. TECHNOLOGY AND SUBTECHNOLOGY BREAKDOWN

- a. <u>System Criticality</u>: How critical is the development of the system or equipment in achieving a given objective?
- b. <u>Degree of Risk</u>: What degree of risk is involved in achieving a successfully demonstrated prototype/ capability based upon anticipated and unanticipated unknowns.
- c. <u>Desired Course of Action</u>: Disregarding degree of risk, should the development of the event be a short-range, medium-range, long-range, or an undesirable goal?
- d. <u>Probable Timing</u>: What is the earliest, most likely, and latest year in which a prototype will be successfully demonstrated in the environment?
- e. Estimated Costs to Achieve: How much will it cost to develop a prototype capable of operating in the required environment?

The above evaluation criteria are discussed more fully in the following section. Figure 3 illustrates the convenient format of the questionnaire.

Step 4. After the initial round, two additional cycles were made over a period of four months each, allowing each expert to reconsider his previous responses relative to those of the other team members in order to allow, where possible, a consensus of opinion.

The consensus sheet for each iteration was returned to each participant for his own use in accordance with the format shown in Figure 4. The participants were asked to reconsider their previous estimates according to the following procedures:

			Pet's	link for es and to 1.000	2 5 5	24	A wireless split transformer link through a sppropriete material, without penetration mitting two-way sulti-channel digital co at ocean depths down to 10,000 ft.
ronment required.		annel (voice and digital on link capable of secure thies, bottom habitats, and and down to 29,000-ft ocean and reverberation inter-	i, high data rate, communical abitate, and the surfece ter with a light attenuation	two-way voice communica- men divers, habitets, of functioning reliably a range of 1 mile.	ehicles, and the surface, wn to 1,000- ft depths.	fferent body areas) two- se as a means of communi-	It transformer link through a pressure hull of sterial, without penetration, capable of trans- by multi-channel digital communication signals as down to 20,000 ft.
MINIST		>					
TALES STATES			>				
MUR. MIL	-					- 157	
LISCOM JATRIMASTAL		>					
The same of the sa	-	2	-	-			
ierrai as min	L	8					
- MI HIP		88	8				
	L						
199 /3800		``					
JOYNIE SA	۲			-		_	
(3) 11007 23-	H	%∑	35		-		
	PROSESSORY THE BYSEL COT RESIDENT SYSTEL COT RESIDENT SYSTEL COT ROST LATES THE FYELE ROST LATES THE FYELE SOUTHERS FOR THE FYELE SOUTHERS FOR THE FYELE TO SERVE SERVER STANDARD TO SERVE SERVER STANDARD TO SERVE SERVER STANDARD TO SERVE SERVER ROST LATES THE FYELE TO SERVE SERVER STANDARD TO SERVE SERVER ROST LATES THE FYELE TO SERVE SERVER	TESTATING TO STATE OF THE PROPERTY OF THE PRO	accountic, multi-channel (voice and digital as a between the various action into a communications link appelle of secure as between submersibles, bottom habitats, and a between submersibles, bottom habitats, and a communication into a commu	An underwater accurate, multi-channel (voice and digital data), high data rate communications interested and underwater accurate, multi-channel (voice and digital data), high data rate communications between submersibles, bottom habitats, and the surface at 30-mile distances and down to 20, 1000-th communications between submersibles, bottom habitats, and the surface at 30-mile distances and down to 20, 1000-th communications interested and down to 20, 1000-th communications interested and down to 20, 1000-th substants, and the surface with a map of 1, 1000 ft in servater with a light attenuation of 0, 12/meter.	An underwater accuratic, multi-channel (voice and digital date), high data rate communications between the various authors between authors between submervation link capable of secure communication between submervation links. An underwater account communication between submervation links. An underwater account communication between submervation links. An underwater account communication between submervation links. An underwater portable account communication between diverse in a links attenuation communication between diverse in a links attenuation links. An underwater portable account communication between diverse in a links attenuation links. An underwater portable account communication between diverse in a links attenuated of links. An underwater portable account communication between diverse in a links attenuated of links. An underwater portable account communication between diverse in a links attenuated of links. An underwater portable account communication between diverse in a links attenuated of links. An underwater portable account links and over a range of 1 mile.	An underverse accommendations links between the various surface of digital deas), May date are commendations links between the surface and digital deas), May date are communications between submersibles, bottom heistass, bottom heistass, bottom heistass, bottom heistass, bottom heistass, bottom heistass, and down to 20,000-th ocean depths with a manage of 1,000 ft in severate diversibles, heistass, and the surface communications between divers, hebitass, whiches and the surface, topolicies and the surface, topolicies, and the surface topolicies to the cream topolicies, and the surface topolicies to the surface topolicies, and the surface topolicies to the surface topolicies, and the surface topolicies to the surface topolicies to the surface topolicies to the surface topolicies, and the surface topolicies, and the surface topolicies to the su	An underwater accountic to the servicement required. An underwater accountic, multi-channel (voice and digital data), which date are communications to the servicement required. An underwater accountic to the capable of secure communications between divers and the servicement of the capable of secure depths with negligible multi-channel, high data rate, communications between submersables, and the surface. An underwater price at 30-mile distances and down to 20,000° frozen ference. An underwater price at 30-mile distances and down to 20,000° frozen ference. An underwater price and the service communication interpretation int

Figure 3. EXAMPLE FORMAT OF QUESTIONNAIRE

	SHOTTING (S) LIMIT BIMOT	÷.	S	7			,	.0.	2.
**************************************	PROESIGNAL COAL	3.8	ž	203	.0	33	603	55.	403
DESPED COURSE DF ACTION	Jaco Bane Sant	27.8	40x	30%	K0	3.0	30%	23%	403
2	NEONW RANGE COAL	4	20%	10%	38%	23%	10%	8	10%
	Jees Jones Teens	183	27.2	10%	¥29	7.69	*0	\$4%	10%
*	(9431) MART 9314J 19M	73 X=94 16	75 X=84.5 10	79 8-82.5 90	4 X+77 85	74 77 85	77 X=87 00	72 X=R2 00	76 X-91 10
PROSENT TIMES	(8734) A73M7 A50M	73 X-90 00 7	80 88	7=80 85	73 7=75 00 04	200	76 X=80 85 1	X=80 90	X=83 00
	(8734) 15317873	74 76	75 90 74	77 80 77 76	75 75 7	75.74 76	75 78	7=74.5 60 72	7.5 90 74
	(NTABBARA) 8	9% 72	50% 73	74 67%	7.8 2.7	7.2	70%	21%	2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
HEBLE OF BISA	indialous so restric	\$5% 9	29% S	33%	14% 7	36% O	20% 7	36% 2	20%
1	(1300M JATOSMOSIASS) b.	27%	148	ž	65% 1	201	10%	36	*
	(34TTOTODA) 1.	*	¥.	8	148	36.	*	¥.	*
= 5	18422337988	×	. %	48.5% 0	<u>-</u> د	¥.	*5	13%	45.5%
COMERMY) 19YOU 18	ģ	•	45.55	ĕ	ž	ž	748	54.58
	minni	33.8	37.X	*	š	š	E	É	ğ

- a. Read the "sub-technology objective" in the upper left corner of the new questionnaire, and then read each of the events.
- b. Review your previous estimates in the old questionnaire.
- c. Note the cumulative responses in the consensus sheet.
- d. Mark the new questionnaire with your reconsidered opinion, whether changed or unchanged. It is important that all entries be made on the new questionnaire.

Under the headings "System Criticality," "Degree of Risk," and "Desired Course of Action" the participants were given the percentages of responses in each column. Unanswered events were considered as non-responses and not included in the percentages. Therefore the sum of percentages of all columns under each heading equals 100%.

Under the headings "Probable Timing" and "Estimated Cost to Achieve" the participants were given distribution triangles. Shown on the triangle were the two extremes, the mean, and the mode or modes. The two extremes represented the earliest year or lowest cost and the latest year or highest cost expressed under each separate column; the mean represented the average, and the mode(s) represented the most frequent estimate(s) in each column. In some cases, there were no modes (see Figure 5.)

<u>a</u> and <u>c</u> are the two extremes; b_1 and b_2 are the modes; <u>d</u> is the mean. (Note: This example is bimodal.)

III. EXPLANATION OF STATISTICAL ANALYSIS METHOD AND RESULT SHEET DATA ITEMS AND ENTRIES

METHOD OF ANALYSIS

This section delineates the formalized statistical methods used to reduce the data collected from the Objectives Assessment. Opinions and estimates were offered for five basic criteria for each event. Figure 6 is a sample of the line graphs and charts used to illustrate the final assessments. The five criteria were evaluated in the following ways:

1. System Criticality

The experts were asked to estimate how critical the development of an event is in achieving a given subtechnology objective. They were asked to select one of three opinions: (a) essential, (b) desirable, and (c) unnecessary. The data in the results sheet under this heading are the calculated percentages of the responses to these choices. Unanswered events were considered as non-responses and are not included in the percentages. Therefore the sum of the percentages of each event equals 100%. The percentage gain or loss from the second round is given to show the trend of consensus at the conclusion of the assessment; it represents the difference between the percentage of response of the second round and percentage of response of the third round of each of the three individual choices. Thus, it can be determined whether a system was gaining or losing in any one of the three criticality opinions at the conclusion of the assessment. The conclusion as to system criticality for each event was determined by the highest percentage given to one of

EVENT: IIIC08

A raft-type foundation for large, heavy structures (1'0 ft \times 100 ft) with a differential settlement of less than 3 inches under uniform load of 5 lbs per square foot. The sediment is ooze 50 ft deep at water depth of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		,	
N* 10	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL	9		A	0	%	
DESTRABLE		7	Δ	80	%	DESIRABLE
UNNECESSARY		2	Δ	20	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N= 10	LOSS	GAIN	0 25	50	75	100			CONCLUSION
.1 PROTOTYPE			A				0	%	
.4 EXPERIMENTAL		1	Δ				10	%	
.7 SIMULATION	3				Δ		70	%	.7
.9 UNPROVEN		2	Δ				20	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 10	LOSS	GAIN	0 25 50 75	100		CONCLUSION
SHORT RANGE GOAL			Δ	10	%	
MEDIUM	10		Δ	60	%	MEDIUM
LONG			Δ	10	%	
UNDESTRABLE		10	Δ	20	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		2 73.5 75 76.5 78 51 54 87 90 196 1	σ	MODE(S)	MEAN	(FROM 1972)
8	EARLIEST	00	3.4	75	76.3	$2 - 6\frac{1}{2}$ YRS.
8	MOST LIKELY	00	4.1	80	80.1	$5\frac{1}{2} - 11$ YRS.
8	NOT LATER THAN	Q 9	4.8	85	84.3	9 - 151 YRS.

N		•	MODE(S)	MFAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)
<u> </u>			MODELS	INCUIA	(30% CONTIDENCE INTERVAL)
7	LOWER LIMIT	1.1	1 M	1.29 M	.46 - 2.12
7	UPPER LIMIT	2.7	2 M	4,07 M	2.07 - 6.08

Figure 6. EXAMPLE ASSESSMENT RESULTS

the three choices. In the case of ties, the conclusion was determined by selecting the criticality choices that had gained rather than lost percentage points from the second round. If an event resulted in a criticality that was equal in percentage and percent gain or loss, the selected conclusion was then determined to be both choices.

2. Degree of Risk

The experts were asked to estimate how much risk (chance of failure) would be involved if a development effort were undertaken today to achieve a successfully demonstrated prototype of the equipment or system described by the event. Estimates of risk were to be based on the current state-of-the-art. The experts were asked to choose one of the four given risks listed as follows:

- a. .1 System or equipment has been demonstrated in the operational environment as a prototype.
- System or equipment has been demonstrated in an operational or simulated environment as an experimental model.
- c. .7 System or equipment currently has been demonstrated in a competent study or simulation.
- d. .9 System or equipment currently has not been established as feasible.

The data displayed in the result sheet were derived by the methods used for System Criticality.

3. Desired Course of Action

The experts were asked to give an opinion as to what course of action should be assigned to the system or equipment described in the event. They were asked to choose one of the four categories of desired course of action listed as follows:

- a. Short-Range Goal
- Development effort should be undertaken immediately and completed in the near future.
- b. Medium-Range Goal
- Development effort should commence in the near future.
- c. Long-Range Goal
- Development effort should be scheduled for the distant future.
- d. Undesirable Goal
- Development effort should not be undertaken.

The data displayed in the result sheet were derived by the methods used for System Criticality and Degree of Risk.

4. Probable Timing

The experts were asked to make three predictions as to the time the event would probably take place. They are as follows:

- Earliest Year The earliest calendar year in which the event could be accomplished, given high priority and full resources.
- b. Most Likely Year The most likely calendar year of accomplishment, considering probable or moderate assignment of priority and resources.
- d. Not Later Than The calendar year in which
 Year the event is reasonably certain to have been accomplished.

A distribution of dates was collected for each category and since the probability is the same that all the experts would give an estimate differing from the true expected value by the same amount, it is then justifiable to assume that the nature of this distribution is normal. Therefore, the Student's "t" test was best suited as an

analytical method to determine a confidence interval for each of the respective categories. The noted statistician Bartlett and others have shown that the "t" test gives quite good results even for considerable departures from normality. Bartlett says, "Unless the data are very extensive, it is seldom possible to demonstrate that they are not normal. The standard errors of skewness and kartosis are so large with samples of moderate size that only very marked non-normality could be detected." The "t" test has been shown from past experience to be valuable for sample sizes less than 30, which occurred in every event of the assessment. In any case the selection process here employed indicated a normally distributed phenomenon.

A confidence interval of 90% was determined to be the optimum interval since the intervals at 95% and 99% were too large to be meaningful and a confidence interval of 85% or less was less credible than desired.

The data represented in the results sheet under the heading, Development Time, show a 90% confidence interval of the estimated years, rounded to the nearest half-year, and derived from the following formula:

$$\bar{x} - t_{\alpha} \frac{\sigma}{\sqrt{N}} < \mu < \bar{x} + t_{\alpha} \frac{\sigma}{\sqrt{N}}$$

Lower Limit

Upper Limit

⁽¹⁾ Bartlett, M.S., "The Effect of Non-Normality on the t-Distribution," Proc. Camb. Phil. Soc., 31, 1935, pp. 223-31.

⁽²⁾ Bartlett, M.S., "The Use of Transformations," <u>Biometric</u>, 3, 1947, pp. 39-52.

where

 \bar{x} = the mean of the sample

 t_{α} = Student's t statistic calculated at a probability of $\alpha = .05$

 σ = the standard deviation

N = the number of observations

 μ = the true or expected value of the mean

Also, the development time interval is given in year quantities from 1972 as well as chronological calendar years.

Additional data includes:

• the mean (\bar{x}) , calculated according to the following formula:

$$\bar{x} = \sum_{i=1}^{N} \frac{X_i}{N},$$

and indicates the simple average of the sample data. The mean, thus defined, is affected by extreme values.

- the <u>mode</u> or modes which is the most frequent response or responses.
 (Note: In cases where there were three or more modes, the median of the modes was selected as this data item entry)
- the standard deviation (σ) calculated according to the following formula:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} x_i^2 - N\left(\sum_{i=1}^{N} x_i\right)^2}{N}}$$

and indicates the central tendency of the distribution. (i.e. it measures the tendency the data have either to spread out (deviate) from the mean or to cluster about the mean.) The standard deviation is also affected by extreme values.

The standard deviation can serve as a convenient descriptor of the distribution of the estimates given by the experts by use of

the following general rule of thumb: Plus or minus three standard deviations $(\pm 3 \sigma)$ from the mean will include 99.73% of the estimates given by the participants and plus or minus one standard deviation $(\pm 1\sigma)$ will include 68.27% of the given estimates.

• the number of responses (N).

The Calendar Year development time interval, computed at 90% confidence is shown on the logarithmic scale, ranging from 1972 to 1999 and has the same interval width as that of Development Time.

5. Estimated Cost to Achieve

The experts were asked to estimate two costs (lower limit and upper limit). The costs include labor and materials required to achieve a successfully demonstrated prototype of the equipment or system described. A 90% confidence interval was calculated from the data in accordance with the method used for Probable Timing. All intervals are given in millions of dollars. Additional data includes, as above, the mean, the mode or modes, the standard deviation (σ) , and the number of responses N.

RESULTS SHEET DATA ITEMS AND ENTRIES

The following paragraphs explain each of the data items and entries as they appear in Figure 6. At the top of every result sheet is the technology event as it appeared throughout the three cycles of the assessment.

The first three evaluation criteria listed in the left-hand column were analyzed by similar methods and therefore appear on the result sheet in the same form. Immediately to the left of the "Conclusion" column is the calculated percentage that each entry received from the resulting data of the third cycle.

"Final Consensus %," a horizontal line graph with triangular markers, indicates the percentages in each category. These line graphs are included to give a visual representation of the calculated percentages of ease of relative comparison.

The "Percentage Loss/Gain" column indicates the percentage gained or lost from the second cycle in each data category for the event. In cases where there was no percentage gain or loss the column is left blank.

The "N=" listed immediately under the category heading is the number of responses to each of the event criteria.

In the category "Probable Timing," the "Development Time" is based on 1972 and calculated at a 90% confidence interval of the estimated years given by experts. These figures are rounded to the nearest half year. Under the heading "Calendar Years" a 90% confidence interval of the calendar years is displayed on a logarithmic scale ranging from 1972 to 1999. The remaining columns show the mean of the estimates of the experts; the mode or the year most frequently estimated by the participants (in cases where there were three or more modes, the median of the modes was selected at this data item entry); and the standard deviation (σ) calculated from the distribution of estimates given by the experts.

In the category "Estimated Costs to Achieve," the "Development Cost" (in millions) is calculated at a 90% confidence interval of the estimated costs given by the experts. The remaining columns show the mean, the mode, and the standard deviation (σ) , computed as in "Probable Timing."

In order to facilitate executive review of this document, a masking technique has been applied to the supporting data of the DOT Assessment Results sheet in order to emphasize the conclusions. This technique is used to stress the pertinent data that will allow rapid review by management personnel.

IV. ORGANIZATION OF THE TECHNOLOGIES, SUB-TECHNOLOGIES, AND EVENTS

This section delineates the organization of the technologies, subtechnologies, and events and discusses both general and specific parameters.

GENERAL PARAMETERS

- 1. Operational Depths
 - a. Diver depths 1,000 ft
 - b. Continental margin depths 6,000 to 8,000 feet
 - c. Deep ocean depths down to 20,000 feet
- 2. Reliability Specifications
- a. Man-Rated Systems A 99.9% reliability at a 90% lower level of confidence (e.g., no more than one failure in each lot of 1,000 for 90 out of 100 lots tested).
- b. Non-Man-Rated Systems A 95% reliability at a 90% lower level of confidence (e.g., no more than five failures in each lot of 100 for 90 out of 100 lots tested).
- c. Critical Man-Rated Systems A 99.9% reliability at a 95% lower level of confidence (e.g., no more than one failure in each lot of 1,000 for 95 out of 100 lots tested).
- d. Critical Non-Man-Rated System A 95% reliability at a 95% lower level of confidence (e.g., no more than five failures in each lot of 100 for 95 out of 100 lots tested).

The above specifications are based on two operational modes: operations involving permanently emplanted or fixed systems and operations involving mobile deployable and recoverable systems. In the case of fixed systems a life expectancy of 10 years is applied. In the case of the mobile system a cyclic requirement of at least 2,000 cycles is applied.

SPECIFIC PARAMETERS

Specific parameters applied to the respective technology areas are explained in the following paragraphs.

I. Materials and Structures

The materials involved in this technology are massive glass, fiber reinforced plastics, concrete, metals, buoyancy materials, and other miscellaneous materials. The operational mode for these materials, except for concrete, is cyclic to depths of 20,000 feet and for at least 2,000 cycles. The objective of concrete is to achieve a fixed operational capability at a given depth for a period of at least 10 years.

II. Machinery and Equipment

In this technology the components selected are those currently believed to impose limitations and therefore require advancement in the state-of-the-art in order to achieve the stated objectives. The selected components are candidates for undersea systems such as manned, untethered, deep submersible, or remote controlled unmanned systems. The general specifications previously stated are applied in this area.

III. Seafloor Construction

The types of undersea construction operations considered in this technology area are site selection and preparation, construction by divers, on-bottom construction, and in-bottom construction. The parameters of construction by divers are limited by the current or projected operational capabilities of a Naval diver. The other types of construction do not involve the use of divers and are therefore directed toward those advancements required to carry out construction operations beyond diver depths.

IV. Power Sources, Conversion and Transmission

In this technology two basic modes of operation are considered: fixed bottom installations and cyclic submersible operations. The power sources

considered are thermo chemical, electro-chemical, fuel cell, and storage battery systems; neither nuclear or isotope power sources are considered because of regulations of the Atomic Energy Commission (AEC). High power transmission and communications cabling are considered only for fixed bottom installations and deep submergence tethered (cable controlled) vehicles. Integral power sources for mobile free-swimming vehicles are included in technology V, "Propulsion." Conditioning equipment includes connectors, fuses, circuit breakers, through-hull penetrators, junction boxes, alternators, controllers, and inverters for either fixed or cyclic operations.

V. Propulsion

This technology explores the developments necessary to evaluate and design improved propulsors and propulsor systems, transmissions functioning between motor and propulsor, and propulsion motors for untethered vehicles intended for deep submergence operations, and to provide optimum energy/power sources. Nuclear and isotope energy sources are again not considered because of AEC regulations.

The propulsors desired are those that are highly efficient, reliable, and maintainable; that can provide precise maneuverability, free from entanglement and with minimum bottom disturbance; and that can provide six degrees of motion to the vehicle.

The transmissions must provide improved control and performance, as well as step-up or step-down rpm.

The propulsion motors considered are external to the pressure hull and include AC/DC motors, non-water flooded, or seawater flooded. One-atmosphere motors (i.e., within pressure hull or hard-can) are included in those technologies requiring advancements in the state-of-the-art in such components as shaft seals and hull penetrators.

Integral energy sources are for untethered vehicles and are advancements directed toward increasing power density, energy density, reliability, maintainability, automation, with negligible noise and vibration.

VI. Surveillance and Communications

This technology examines the capability to resolve, observe, locate, and track static and moving objects from and below the surface and to communicate real time information between various surface platforms, subsurface vehicles, fixed bottom installations down to 20,000 feet, and divers' communication down to 1,000 feet. Surveillance systems include active and passive methods of observation such as underwater TV, sonar, hydrophones, high sensitivity gradiometer/magnetometers, and suspended sensor arrays. The communication systems shall be real-time, reliable, and high-quality voice and data transmission between the various surface platforms, submersible vehicles, fixed bottom installations, and divers.

VII. Instrumentation and Display

The instruments and equipment of this technology are intended for life support monitoring, submersible positioning and guidance, and construction site selection. Life support instruments are those required for the one-atmosphere chamber of submersibles and are addressed to the problems peculiar to this application; namely, atmospheric contaminant monitoring, limited power consumption, and limited space and weight requirements. This is also true for the submersible positioning and guidance instruments. Construction site selection instruments deal with those instruments necessary to obtain the required environmental data to resolve or select a construction site for a seafloor installation such as an acoustic array or habitat.

VIII. Load Handling and Transportation

This technology explores the capabilities necessary to transport, position, guide, lift, and lower heavy objects to depths of 12,000 feet. It

addresses three problem areas: lifting and lowering, near-bottom transport and positioning, and guidance. The guidance systems presented are those required for lifting and lowering as well as near-bottom transport and positioning.

IX. Life Support and Related Systems

This technology examines the life support systems, including a safe and habitable one-atmosphere environment in a submersible pressure hull for 8 to 10 men capable of operating up to 30 days. Other systems include oxygen supply, carbon dioxide removal, emergency breathing, atmospheric contaminant removal, temperature and humidity control, and waste removal. Although life support systems are often considered well within the state-of-the-art, consideration of the requirements for compact, low-power, long-duration, safe systems are examined in this technology area.

APPENDIX A TECHNOLOGY AREA I. MATERIALS AND STRUCTURES

SUB-TECHNOLOGY AREAS:

- A. Massive Glass
- B. Fiber Reinforced Plastics
- C. Concrete
- D. Metals
- E. Buoyancy Materials
- F. Miscellaneous
- G. Structures

IA Sub-Technology: <u>Massive Glass</u>

Objective: To develop massive glass structures capable of operating down to 20,000-ft depths for at least 2,000 cycles. (The W/D ratio indicates the weight-to-displacement ratio of a spherical hull fabricated from the given material, near-perfect and free of residual stresses, which would collapse at the given depth.).

NOTE: All diameters are outside.

Events IA01 - IA10 address this objective.

EVENT: IA01

Flotation structures (hollow spheres) to 10 inches in diameter. Compressive strength of 10 ksi (kilopounds per square inch); (W/D of 0.46); 95% reliability at a 90% lower level of confidence (e.g., no more than 5 spheres in each lot of 100 will fail during 2,000 cycles for 90 out of 100 lots)

SYSTEM CRITICALITY

	PERCE	NTAGE]	FI	NAL CONSE	NSUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	18		4					0	%	.
DESTRABLE		11				Δ		75	%	DESTRABLE
UNNECESSARY		7		Δ				25	%	

DEGREE OF RISK

N= 11		NTAGE GAIN		FINAL CO	NSENSUS %	100			CONCLUSION
. I PROTOTYPE	9				Δ		64	%	.1
.4 EXPERIMENTAL		9		Δ			36	%	
.7 SIMULATION			4				0	%	
.9 UNPROVEN			4				0	%	

DESIRED COURSE OF ACTION

N= 11		GAIN	0	F1 25	NAL CONSE	NSUS %	100		Γ	CONCLUSION
SHORT RANGE GOAL	1033	GATIV	-				4	100	%	SHORT
MEDIUM	1-14		4					0	%	
LONG			4					0	%	
UNDESTRABLE			Δ.					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 76 81 84 87 10 10 10	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	.6	73	73	1/2 - 11/2YRS.
11 MOST LIKELY	0-0	1.0	74	74	11/2-21/2YRS
11 NOT LATER THAN	90	2.1	74,78	76.2	3 - 5 1/2 YRS.

			(IN MILLONS)			
N		σ	MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]	
9	LOWER LIMIT	.3	.2 M	.30 M	.1347	
10	UPPER LIMIT	.8	.5 M	.93 M	.43 - 1.43	

EVENT: LAO2

Flotation structures (hollow spheres) 10 inches in diameter. Compressive strength of 100 ksi; (W/D of 0.46); 99.9% reliability,...same as IA01...

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	NSUS %				
N= 12	LOSS	GAIN	0 25	50	75	100		12	CONCLUSION
ESSENTIAL			Δ				8	%	
DESTRABLE		8			Δ		75	%	DESTRABLE
UNNECESSARY	8		Δ				17	%	

DEGREE OF RISK

N- 11		NTAGE GAIN	FINAL CONSENSUS %	100			CONCLUSION
. I PROTOTYPE		9	Δ		9	%	
.4 EXPERIMENTAL	15		Δ		55	%	.4
.7 SIMULATION	2		Δ		18	%	
.9 UNPROVEN		8	Δ	1	18	%	

DESIRED COURSE OF ACTION

N= 11	PERCEN LOSS		FIN 25	VAL CONSEN	SUS %	100		ſ	CONCLUSION
SHORT RANGE GOAL			Δ				27	%	
MEDIUM				Δ			55	%	MEDIUM
LONG	15-4	Will L	Δ				9	%	
UNDESTRABLE			Δ				9	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			Miles en	DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
10	EARLIEST	00	2.0	74	74.6	11/2 - 4 YRS.
10	MOST LIKELY	00	3.3	75	76.9	3 - 7 YRS.
9	NOT LATER THAN	00	3.8	80	80.3	6 - 10 1/2 YRS.

				(IN MILLONS)		
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)	
9	LOWER LIMIT	.6	1 N	1.03 M	.67 - 1.40	
10	UPPER LIMIT	1.8	5 N	13.05 M	2.03 - 4.07	

EVENT: IA03

Flotation structures (hollow spheres) 10 inches in diameter. Compressive strength of 300 ksi; (W/D of 0.15); 95% reliability...same as IA02.

SYSTEM CRITICALITY

	PERCE	NTAGE	F	INAL CONS	ENSUS %				
N= 12	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	8		· Δ				17	%	
DESTRABLE			Δ				17	%	
UNNECESSARY		8			Δ		66	%	UNNECESSARY

DEGREE OF RISK

N= 11		NTAGE GAIN	0	FIN 25	IAL CONSE	NSUS % 75	100		Г	CONCLUSION
.I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL				Δ				27	%	
.7 SIMULATION	9		4					0	%	
.9 UNPROVEN		9				Δ		73	%	.9

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %		г	*****
N= 9	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	13		Δ	22	%	
MEDIUM		12	Δ	45	%	MEDIUM
LONG			Δ	11	%	
UNDESTRABLE	1000	1	Δ	22	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	7.	73.5 ,5 76.5 76 81 84 87 90 1 96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	0	7.9	76	78.1	1 - 11 YRS.
8	MOST LIKELY	00	2.3	80	77.8	4 - 71/2 YRS.
8	NOT LATER THAN	00	2.6	80	80.5	6 1/2 - 10 1/2YRS.

N		•	MEAN	[IN MILLONS] [90% CONFIDENCE INTERVAL]	
9	LOWER LIMIT		.5,2 M		
8	UPPER LIMIT	1.8	1 M		

EVENT: IA04 Flotation structures (hollow spheres) 10 inches in diameter. Compressive strength of 300 ksi; (W/D of 0.15); 99.9% reliability...same as IA03.

SYSTEM CRITICALITY

	PERCE	NTAGE	F	INAL CONSENS	US %				
N= 12	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	8		Δ				17	%	
DESTRABLE			Δ				8	%	
UNNECESSARY		8			Δ.		75	%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		F	INAL CONS	ENSUS %			_	
N- 11		GAIN		25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL			4					0	%	
.7 SIMULATION				Δ				18	%	
.9 UNPROVEN		U.S.				Δ		82	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %				
N= 8	LOSS	GAIN	0 25 50 75	100			CONCLUSION
SHORT RANGE GOAL	12.5		4	\Box	0	%	44.444.65
MEDIUM			Δ		50	%	MEDIUM
LONG		12.5	Δ		25	%	
UNDESTRABLE		- 4	Ţ,		25	%	

PR	OBABLE TIMING		(90	100	LENDAR			/AL)					DEVELOPMENT TIME
N		72	73.5			81	84	87 9	93 99	0	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST	100			00					2.3	75,80	76.7	4 - 6 1/2 YRS
7	MOST LIKELY			3	0	(0			3.4	80,85	80.1	5 1/2 - 10 1/2 RS
7	NOT LATER THAN		00				4.5	85	84.0	8 1/2 - 15 1/2/RS.			

L N		a MODE(S) MEA	DEVELOPMENT COSTS (IM MILLONS) (90% CONFIDENCE INTERVAL)
14		MIODEIST MEA	1 (30 % CONTIDENCE INTERVAL)
7	LOWER LIMIT	1.0 1 M1.44	M .69 - 2.20
7	UPPER LIMIT	1.7 5 M3.54	M 2,26 - 4,81

EVENT: IA05 Unmanned equipment capsules 36 inches in diameter. Compressive strength of 100 ksi; (W/D of 0.46); 95% reliability at 95% lower level of confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %						
N= 12	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	9		Δ				8	%	
DESTRABLE		26			Δ		84	%	DESTRABLE
UNNECESSARY	17		Δ		+ + + + + + + + + + + + + + + + + + + +		8	%	

DEGREE OF RISK

	PERCE	NTAGE	FII	NAL CONSENSUS %				
N= 11		GAIN	0 25	50 75	100			CONCLUSION
.I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL	18		Δ			18	%	
.7 SIMULATION		9		Δ		64	%	.7
.9 UNPROVEN		9	Δ			18	%	

DESIRED COURSE OF ACTION

		NTAGE		FINAL CONSE	NSUS %			Г	00401110104
N* 11	LOSS	GAIN	2	5 50		100			CONCLUSION
SHORT RANGE GOAL		9	Δ				9	%	
MEDIUM		1				Δ	91	%	MEDIUM
LONG	10		4				0	%	
UNDESTRABLE			4				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	20			DEVELOPMENT TIME
N 72	73,5 75 76,5 76 N1 N4 N7 N0 Nn	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	2.0	74	75.3	2 - 41/2 YRS
11 MOST LIKELY	00	2.9	76	78.2	4 1/2 - 8 YRS
10 NOT LATER THAN	00	2.4	78	79.3	6 - 8 1/2 YRS

		I MODE (C)	445.431	(IN WITTOWS)		
		WODE (2)	MEAN	(90% CONFIDENCE INTERVAL)		
11 LOWER LIMIT	1.3	.5,2 M	1.62 M	.88 - 2.36		
10 UPPER LIMIT	2.1	5 M	3.56M	2.34 - 4.78		

EVENT: IA06 Unmanned equipment capsules 36 inches in diameter. Compressive strength of 300 ksi; (W/D of 0.15); 95% reliability...same as IA05.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		,		
N= 12	LOSS	GAIN	0 25 50 75	100		CONCLUSION	
ESSENTIAL	8		Δ	17	%		
DESTRABLE			Δ	50	%	DESTRABLE	
UNNECESSARY		8	Δ	33	%		

DEGREE OF RISK

N= 11		NTAGE		FIN 25	AL CONSE	NSUS %	100		Г	CONCLUSION
.I PROTOTYPE	1000	OATIV	4					0	%	
.4 EXPERIMENTAL	9		4	++-			• • •	0	%	
.7 SIMULATION			4	• • •				0	%	
.9 UNPROVEN		9				· · · · · · · · · · · · · · · · · · ·	4	100	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 9		GAIN				CONCLUSION
SHORT RANGE GOAL			4	0	%	
MEDIUM	11.5		Δ	33	%	
LONG		0.5	Δ	45	%	LONG
UNDESTRABLE		11	Δ	22	%	

PR	DBABLE TIMING		(904	CALE CONF	NDAF			(AL)						DEVELOPMENT	TIME
N		72	73.5		5 78	81	84		90	96	0	MODE(S)	MEAN	(FROM 1972	
8	EARLIEST			0	0						1.5	75,76	76.3	3 - 51/2	YRS.
8	MOST LIKELY) - 0,					1.6	80	79.8	61/2 - 9	YRS.
8	NOT LATER THAN						0-0				2.1	85	83.5	10 - 13	YRS.

	TIMATED 00313 TO ROMETE					DEVELOPMENT COSTS (IN MILLONS)
N		0	M	ODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	1.8		2 M	2.56M	1.36 - 3.76
8	UPPER LIMIT	2.7		5 M	5.75M	3.95 - 7.55

EVENT: IA07 Manned spherical structural hulls 7 ft in diameter. Compressive strength of 100 ksi; (W/D of 0.46); 99.9% reliability...same as IA06.

SYSTEM CRITICALITY

		NTAGE		FINAL CONSENSUS %						00401410101
N* 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		8			Δ			58	%	ESSENTIAL
DESTRABLE	8			Δ				25	%	
UNNECESSARY				Δ		-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 		17	%	

DEGREE OF RISK

N= 11		NTAGE	0	F1	NAL CONSE	NSUS %	100		ſ	CONCLUSION
.1 PROTOTYPE	9	DAIN	4	T	T	 		0	%	
.4 EXPERIMENTAL			4					0	%	
.7 SIMULATION	1		4					0	%	
.9 UNPROVEN		9					4	10	0 %	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N* 10	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	11		A	0	%	
MEDIUM		5	Δ	50	%	MEDIUM
LONG	3	5	Δ	30	%	
UNDESTRABLE		9	Δ	20	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96 96	MODE(S)	MEAN	(FROM 1972)
10EARLIEST	00 6.	1 80	82.6	7 - 14 YRS
9 MOST LIKELY	0-0 1.	8 85	84.7	111/2 - 14 YRS
9 NOT LATER THAN	0-0 1.	6 90	89.2	16 - 18 YRS.

N	a MC	DE(S) MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL]
10LOWER LIMIT	9.4 1	0 M 10.9 M	5.42 - 16.38
9 UPPER LIMIT	11.6 10,	20 M 18.11M	10.93 - 25.29

EVENT: IA08 Manned spherical hulls 7 ft in diameter. Compressive strength of 300 ksi; (W/D of 0.15); 99.9% reliability ...same as IA07.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 11	LOSS	GAIN	0 25 50 75	100	CONCLUSION
ESSENTIAL	4.5		Δ	45.5%	ESSENTIAL
DESTRABLE		9	Δ	9 %	
UNNECESSARY	4.5		Δ	45.5%	UNNECESSARY

DEGREE OF RISK

		NTAGE		- FI	NAL CONSE	NSUS %	100		_	
N° 11	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL			A					0	%	
.7 SIMULATION		T VC	1					0	%	
.9 UNPROVEN		mean					4	100	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	VAL CONSEN	ISUS %			_	1000
N* 7	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM	12.5		4					0	%	
LONG	4					Δ		71	%	LONG
UNDESTRABLE		16.5		Δ				29	%	

PROBABLE TIMING		(90% CONFIDENCE INTERVAL)											DEVELOPMENT	TIME
N		72	73,5	75	76,5 78	01	54	67	93 99	•	MODE(S)	MEAN	(FROM 197	2)
7	EARLIEST						-0			3.5	85	81.6	7 - 12	YRS
7	MOST LIKELY						07	-0		2.9	85	85.7	111/2-16	YPS
7	NOT LATER THAN				4, 5			-	-0	2.3	90	91.4	18 - 21	YRS.

	• MODE(S) MEAN	DEVELOPMENT COSTS (IN MILLONS) (80% CONFIDENCE INTERVAL)
7 LOWER LIMIT	10.6 6 M12.57M	
7 UPPER LIMIT	119,210, 1 M2929 M	

EVENT: IA09

Joint design which permits opening and closing of a glass hemisphere to be mated to another glass hemisphere such that the complete structure can mobilize the entire strength of the glass. 99.9% reliability...same as IA08.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	9		Δ	64	%	ESSENTIAL
DESTRABLE		9	Δ	36	%	
UNNECESSARY			4	0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %				
N= 11		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL			Δ		27	- %	
.7 SIMULATION	9		Δ		18	%	
.9 UNPROVEN		9	Δ		55	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %				
N* 10		GAIN	0 25 50 75	100	937		CONCLUSION
SHORT RANGE GOAL		4.5	Δ		50	%	SHORT
MEDIUM	5.5		Δ		40	%	
LONG		1	Δ		10	%	
UNDESTRABLE			4		0	%	`\

PR	OBABLE TIMING	(90% CONFIDENCE INTERVAL)														DEVELOPMENT TIME		
N		72	73,5	75	76.5	8	61	54	67	96 9	9 1	Ø	MODE(S)	ME	N	(FROM 197	/2)	
10	EARLIEST			Ω=:	0							2.6	74	76.	2	$2\frac{1}{2} - 5\frac{1}{2}$	YRS.	
10	MOST LIKELY				.0-		-60					4.3	76.85	79.	9	$5\frac{1}{5} - 10\frac{1}{5}$	YRS.	
6	NOT LATER THAN			Ser.	WALE.					9.74		5.6/	00	02	0	71 141	YPS	

N		CO TM	ODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
10	LOWER LIMIT	THE RESERVE OF THE PARTY OF THE		4.43M	
10	UPPER LIMIT	28.25	.10 M	16.36M	

EVENT: IA10 Joint design which permits a glass hemisphere to be mated to a cylinder fabricated from another material (such as Titanium) and that the complete structure can mobilize the entire strength of both materials. 99.9% reliability... same as IA09.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			The second second
N= 11	LOSS	GAIL	0 25 50 75 10	00		CONCLUSION
ESSENTIAL		9.5	Δ	64	%	ESSENTIAL
DESTRABLE	9.5		Δ	36	%	
UNNECESSARY			4	0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %				
N= 10		GAIN	0 25 50 75	100			CONCLUSION
.I PROTOTYPE	-		4		0	%	
.4 EXPERIMENTAL	8		Δ		20	%	
.7 SIMULATION		4	Δ		40	%	.7
.9 UNPROVEN		4	Δ		40	%	.9

N= 9	NTAGE	FINAL CONSENSUS % 0 25 50 75 100		ſ	CONCLUSION
SHORT RANGE GOAL		Δ	33	%	
MEDIUM	10.5	Δ	56	%	MEDIUM
LONG	2	Δ	11	%	
UNDESTRABLE		Δ	0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME
N		72 73.5 75 76.5 78 81 84 87 90 99 9 MODE(S) MEAN	
9	EARLIEST	00 2.7 74 76.8	$3-6\frac{1}{2}$ YRS.
9	MOST LIKELY	00 3.7 76,85 75.4	5 - 10 YRS.
9	NOT LATER THAN	00 4.8 85 82.6	72 - 132 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N	•	MODE(S)	MEAN	[IN MILLONS] [80% CONFIDENCE INTERVAL]
LO LOWER LIMIT	7.0	1 M	4.53 M	.47 - 8.59
10 UPPER LIMIT	28.2	5,10 M	16.66 M	.32 - 33.00

IB Sub-Technology: Fiber Reinforced Plastics

Objective: To develop fiber reinforced plastic structures capable of operating down to 20,000-ft depths for at least 2,000 cycles of 100 hours each. (The W/D ratio indicates the weight-to-displacement ratio of a cylindrical hull fabricated from the given material, near-perfect and free of residual stresses, which would collapse at the given depth.)

Events IB01 - IB11 address this objective.

EVENT: IB01 Unmanned cylindrical equipment capsules, 6 inches in diameter, fabricated from glass reinforced plastic, with hemispherical end closures fabricated from another material such as Titanium. Compressive strength 150 ksi; (W/D of 0.55); 95% reliability at a 95% lower level of confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %						
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			Δ					10	%	
DESTRABLE							Ā	90	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N* 10		NTAGE GAIN		F1N	VAL CONSEN	SUS %	100			CONCLUSION
.1 PROTOTYPE		10	Δ					10	%	
. 4 EXPERIMENTAL	20			Δ				30	%	
.7 SIMULATION		10			Δ			60	%	.7
.9 UNPROVEN			4					0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	INAL-CONSE	NSUS %			_	
N= 10	LOSS	GAIN	9	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	31/6	10		Δ				20	%	
MEDIUM	10					Δ		80	%	MEDIUM
LONG			4	i ventos				0	%	
UNDESTRABLE			A .					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			1	DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 87 90 96	•	MODE(S)	MEAN	(FROM 1972)
10EARLIEST	00	2.0	75	74.9	11/2-4 YRS
10 MOST LIKELY	00	3.5	78	77.6	3 1/2 - 7 1/2/RS
Q NOT LATED THAN	0==0	13.0	80	79	5 - 9 VPS

			(M MILLONS)			
N SECTION OF SECTION	# MODE(S)	MEAN	190% CONFIDENCE INTERVAL			
10 LOWER LIMIT	5 .1, .2M	.40 M	.0772			
9 UPPER LIMIT	.3 .5 M	.51 M	.3567			

EVENT: IBO2

Unmanned cylindrical equipment capsules, 36 inches in diameter, fabricated from glass reinforced plastic, with hemispherical end closures fabricated from another material such as Titanium. Compressive strength 230 ksi; (W/D of 0.35); 95% reliability...same as IB01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	10			+ + + + + + + + + + + + + + + + + + + +		Δ		70	%	DESTRABLE
UNNECESSARY		10		Δ				30	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %				
N= 10		GAIN		50	75	100			CONCLUSION
.I PROTOTYPE			4				0	%	
. 4 EXPERIMENTAL			Δ				10	%	
.7 SIMULATION					7		60	%	.7
.9 UNPROVEN				Δ			30	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			
N* 10	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	÷ 12 \		4	0	%	
MEDIUM			Δ	60	%	MEDIUM
LONG	10		Δ	10	%	
UNDESTRABLE		10	Δ	30	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME	
N		73,5 75 76,5 78 81 84 87 90 98	ø	MODE(S)	MEAN	(FROM 1972)	
9	EARLIEST	00	2.4	76.80	76.8	3 1/2 - 6 1/2 YRS.	
9	MOST LIKELY	00	4.5	80	80.7	6 - 11 1/2 YRS.	
9	NOT LATER THAN	00	5.7	85	83.9	8 1/2 - 15 1/2YRS.	

N .	0	MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
S LOWER LIMIT	1.9	2 M	1.97 M	.79 - 3.14
9 UPPER LIMIT	3.6	5 M	4.18 M	1.92 - 6.44

EVENT: IB03

Manned cylindrical structural hulls, 7 ft in diamter, fabricated from glass reinforced plastic, with end closures which may be another material. Compressive strength 150 ksi; (W/D of 0.55); 99.9% reliability... same as IB02.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %					
N* 10	LOSS	GAIN	0 4	25 50	75	100			CONCLUSION
ESSENTIAL				Δ			50	%	ESSENTIAL
DESTRABLE	10			Δ			40	%	
UNNECESSARY		10	Δ				10	%	

DEGREE OF RISK

N= 9		NTAGE	FINAL CONSENSUS % 25 50 75	100		Γ	CONCLUSION
.1 PROTOTYPE			4		0	%	
.4 EXPERIMENTAL	15		Δ		45	%	.4
.7 SIMULATION		13	Δ		33	%	
.9 UNPROVEN		2	Δ		22	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FIN	AL CONSENSUS	%			
N- 10	LOSS	GAIN	0 25	50	75 100			CONCLUSION
SHORT RANGE GOAL			4			0	%	
MEDIUM	10			Δ		40	%	
LONG				Δ		50	%	LONG
UNDESTRABLE		10	Δ			10	%	

PR	OBABLE TIMING		(901		ALEN				/AL)						DEVELOPMENT TIME
N		72	73.5	75	76,5	78	81	84	67	90	96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST)	0		M				1.9	75,76	76.8	3 1/2 - 6 YRS
9	MOST LIKELY					0	(5				4.0	80	80.2	5 1/2 - 10 1/2RS
9	NOT LATER THAN	ur tra	No. (SE)		Tary.)——		(6.6	77.82	84.3	8 - 16 1/2 YRS.

N		. o Mo	DE(S)	MEAN	(IM MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	2,8 2	M	2.82 M	1.07 - 4.57
9	UPPER LIMIT	29,5 10) M	17.1 M	0 - 35.38

EVENT: IBO4

Manned cylindrical structural hulls, 7 ft in diameter, fabricated from glass reinforced plastic, with end closures which may be another material. Compressive strength of 230 ksi; (W/D of 0.35); 99.9% reliability... same as IB03.

SYSTEM CRITICALITY

<u></u>		NTAGE	FINAL CONSENSUS %	7.22			CONOL HOLON
N= 10	LOSS	GAIN	0 25 50 75	100			CONCLUSION
ESSENTIAL	10		7		30	%	
DESTRABLE			Δ		30	%	
UNNECESSARY		10	Δ		40	%	UNNECESSARY

DEGREE OF RISK

N= 9		NTAGE GAIN		FIN	AL CONSE	NSUS %	100		Г	CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL	10		4					0	%	
.7 SIMULATION		3		Δ				33	%	
.9 UNPROVEN		7				Δ		67	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N= 9	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL			4	0	%	lt
MEDIUM	19		Δ	11	%	
LONG		4.5	Δ	14.5	%	
UNDESTRABLE		14.5	Δ	4.5	%	UNDESTRABLE

PR	OBABLE TIMING		(90		ALENDA								DEVELOPMENT	TIME
N		72	73,5	75	76,5 71	81	54	67 1	10 146	O	MODE(S)	MEAN	(FROM 197	[2]
7	EARLIEST				. 0-	-0.				1.6	80	79	6 - 8	YRS
7	MOST LIKELY						0	-0.		3.2	85	84.1	10 - 14 1/2	YRS.
7	NOT LATER THAN	F.	17444		VY25	15.0		0	-0	4.3	90	89.9	14 1/2 - 21	YRS.

ESTIMATED COSTS TO ACHIEVE

N		•	MODE(S)	MEAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)
6	LOWER LIMIT	2,9		7.17 M	
6	UPPER LIMIT	31.8	20 M	30 M	3.88 - 56.12

DEVELOPMENT COSTS

EVENT: IB05

Unmanned cylindrical equipment capsules, 36 inches in diameter, fabricated from graphite reinforced plastic, with hemispherical end closures fabricated from another material such as Titanium. Compressive strength 70 ksi; (W/D of 1.1); 95% reliability...same as IB04.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 10	LOSS	GAIN	0 25 50 75 100	3 5 4 4 4 1		CONCLUSION
ESSENTIAL	10		•	0	%	
DESTRABLE			Δ	40	%	
UNNECESSARY		10	Δ	60	%	UNNECESSARY

DEGREE OF RISK

N- 9		NTAGE GAIN	0 25	FINAL CONSEN	ISUS %	100		Г	CONCLUSION
.I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL			Δ				11	%	
.7 SIMULATION	11		Δ				11	%	
.9 UNPROVEN		11			Δ		78	%	.9

DESIRED COURSE OF ACTION

N- 9		NTAGE	o o	F1 25	NAL CONSE	NSUS ♥	100		ſ	CONCLUSION
SHORT RANGE GOAL		0.111	4					0	%	
MEDIUM		3				Δ		78	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE	3	(-TE		Δ				22	%	

PROBABLE TIMING			(90	CALENDAR YEARS (90% CONFIDENCE INTERVAL)										DEVELOPMENT TIME	
N		72	73.5		76.5		81	84	67	91 90	96	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0=		.						1.6	76	75.9	3 - 5 YRS.
9	MOST LIKELY					0=-	٠٥.				211	2.7	77.78	79	5 1/2 - 8 1/2 YRS.
R	NOT LATER THAN	8	the state of				0==					3.8	80	81 8	7 - 12 1/2 YRS.

N		•	MOD	E(S)	MEAN	(M MILLONS) (SO% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.8	.3	M	.81 M	
8	UPPER LIMIT	3.0	2	M	2.33 M	

EVENT: IB06

Unmanned cylindrical equipment capsules, 36 inches in diameter, fabricated from graphite reinforced plastic, with hemispherical end closures fabricated from another material such as Titanium. Compressive strength 130 ksi; (W/D of 0.6); 95% reliability...same as IBO5.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	NSUS %			-	
N= 10	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL			Δ				10	%	
DESIRABLE		10			Δ		80	%	DESIRABLE
UNNECESSARY	10				+ + + + + -+		10	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSEN	ISUS %				
N= 10	LOSS	GAIN	Ĉ.	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL			1					0	%	
.7 SIMULATION	10		1	Δ		****	•	20	%	
.9 UNPROVEN		10				Δ		80	%	.9

		NTAGE	FINAL CONSENSUS %		-	
N= 10	LOSS	GAIN	0 25 50 75 100			. CONCLUSION
SHORT RANGE GOAL	N.B.	WE I	A	0	%	
MEDIUM	7		Δ	60	%	MEDIUM
LONG		8	Δ	30	%	
UNDESTRABLE	1		Δ	10	%	

PR	OBABLE TIMING		(904	CALENDAR CONFIDENCE	R YEARS				DEVELOPMENT TIME
N		72	73.5	75 76,5 76	81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0	0	1,7	77,78	77.7	41/2-61/2/RS.
9	MOST LIKELY		48		00	3.0	80,82	81	7 - 11 YRS.
9	NOT LATER THAN				00	3.6	85	84	10 - 14 YRS.

ES'	TIMATED COSTS TO ACHIEVE						DEVELOPMENT COSTS
N		•	MOD	E(S)	MEAI	V	(IM MILLONS) [90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.4	1	M	1	M	.71 - 1.29
9	UPPER LIMIT	2.7	5	M	3.89	M	2.22 - 5.55

EVENT: IB07

Manned cylindrical structural hulls, 7 ft in diameter, fabricated from graphite reinforced plastic, with end closures which may be another material. Compressive strength 70 ksi; (W/D of 1.1); 99.9% reliability... same as IB06.

SYSTEM CRITICALITY

N= 10		NTAGE GAIN	0	FINAL CONSENSUS %		Г	CONCLUSION
ESSENTIAL	10	GAIN	1	Δ	0	%	
DESTRABLE				Δ	50	%	
UNNECESSARY		10			50	%	UNNECESSARY

DEGREE OF RISK

		NTAGE			FINAL CONS	INSUS %			-	00101110101
N= 9	LOSS	GAIN	L	25	50	75				CONCLUSION
. I PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL	V		Λ					0	%	
.7 SIMULATION				Δ	•			11	%	
.9 UNPROVEN							Δ	89	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL	CONSENSUS	%		_	
N- 8		GAIN	0	25	50	75	100		CONCLUSION
SHORT RANGE GOAL			4					0 %	
MEDIUM	12.5			Δ				12.5%	
LONG	12.5				Δ			50 %	LONG
UNDESTRABLE		25		Δ				37.5%	

PROBABLE TIMING

		0.	(909				TEA E INT		/AL	.)			tel pe		DEVELOPMEN	
N		72	73,5	75	76.5	78	81	84	67	90	93 99	0	MODE(S)	MEAN	FROM 1	172)
8	EARLIEST					0-	0					2,3	178,80	79.5	6 - 9	YRS.
7	MOST LIKELY						0		0			3.8	80	83.6	81/2-14	1/2/RS
7	NOT LATER THAN		対法的主					O.				5.5	85,90	88	12 - 20	YRS.

ESTIMATED COSTS TO ACHIEV	ESTIMATEU	C0212	IV	AUNIEVE
---------------------------	-----------	-------	----	---------

				DEVELOPMENT COSTS (IM MILLONS)
N		● MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	7.7 2,3 M7	156 M	2.53 - 12.60
7	UPPER LIMIT	34.3 5 MZ	.29 M	.75 - 49.82

EVENT: IB08

Manned cylindrical structural hulls, 7 ft in diameter, fabricated from graphite reinforced plastic, with end closures which may be another material. Compressive strength 130 ksi; (W/D of 0.6); 99.9% reliability... same as IB07.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		_	
N= 10	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL	10				0	%	
DESTRABLE		20		Δ	90	%	DESIRABLE
UNNECESSARY	10			Δ	10	%	

DEGREE OF RISK

	PERCE	NTAGE		FIN	IAL CONSEN	ISUS %			_	
N* 10		GAIN	0	25	50	75	100			CONCLUSION
.I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL			1					0	%	
.7 SIMULATION		20		Δ				30	%	
.9 UNPROVEN	20			· · · · · · · · · · · · · · · · · · ·		Δ	\Box	70	%	.9

	PERCE	NTAGE		FI	NAL CONSE	VSIIS %			-	
N* 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MED I JM		1	Δ					11	%	
LONG	2					Δ		78	%	LONG
UNDESTRABLE		1	Δ					11	%	

PR	OBABLE TIMING		(904		LENI					L)	e i					DE	VELO	PMENT	TIME
N	fill owners are	72	73.5	75	76.5	76	81	8	4	h7 94	0 90	j.	σ	MODE(S)	MEAN		(FRC	DM 1972	1
8	EARLIEST					C)	0					3.1	80,85	81.3	7	-	11 1/2	YRS.
8	MOST LIKELY							0-					4.7	85	86	11	-	17	YRS.
8	NOT LATER THAN			77					0		d	3	5.2	90	90.1	14 1	/2	- 21	YRS.

ESTIMATED COSTS TO ACHIEVE	STIMATED	COSTS	TO ACH	HEVE
----------------------------	----------	-------	--------	------

N			MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
8	LOWER LIMIT	8.5		9.25 M	
8	UPPER LIMIT	30.3		28.63 M	

EVENT: IB09

Non-destructive test methods and equipment which ensure that a given fiber reinforced plastic structure will perform as designed.

SYSTEM CRITICALITY

		NTAGE		FI	NAL CONS	ENSUS %			_	20001 110101
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL							3	90	%	ESSENTIAL
DESTRABLE			Δ					10	%	
UNNECESSARY			A	***		+ + + + + + -		0	%	

DEGREE OF RISK

N- 10		NTAGE GAIN	FINAL CONSENSUS % 9 25 50 75 100		Γ	CONCLUSION
I PROTOTYPE				0	%	
.4 EXPERIMENTAL			Δ	60	%	.4
.7 SIMULATION		10	Δ	30	%	
.9 UNPROVEN	10		ΙΔ	10	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	IAL CONSEN	ISUS %				
N* 8		GAIN		25	50	75	100			CONCLUSION
SHORT RANGE GOAL		8				Δ		75	%	SHORT
MEDIUM	8			Δ		5.01-01/21.0		25	*	
LONG			4					0	%	
UNDESTRABLE			A					0	%	

PROBA	BLE TIMING		904			YEA		VAL)						DEVELOPMENT TIME
N		72 73	27779	76.5		81	84	67	90	96	σ	MODE(S)	MEAN	(FROM 1972)
9 EAR	RLIEST		2=	 			<u>-a</u>				8.2	75	78.8	11/2 - 12 YRS.
8 MO	STLIKELY			0-			0			38	3,7	77	78.8	4 1/2 - 9 1/2 RS.
8 NO1	LATER THAN				0-		-0				4,2	80	81.1	61/2 - 12 YRS.

N		(F)	MODE/C)	MEAN	(M. WILLOWS)
N			WOOF(2)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	3.0	1 M	2.48M	.62 - 4.34
8	UPPER LIMIT	15.8	2 M	8.84M	0 - 19.44

EVENT: IB10

Structural design which permits major penetrations (hatches, viewports) in the fiber reinforced plastic structure.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			
N- 10	LOSS	GAIN	0	25 50 75 10	0		CONCLUSION
ESSENTIAL		10		Δ	90	%	ESSENTIAL
DESTRABLE	10		4		0	%	
UNNECESSARY			Δ		10	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 10		GAIN	0 25 50 75 10	0		CONCLUSION
.I PROTOTYPE			A	0	%	
.4 EXPERIMENTAL			$\uparrow \cdots \downarrow {\Delta} \cdots \cdots \downarrow $	30	%	
.7 SIMULATION		10	Δ	40	%	.7
.9 UNPROVEN	10		Δ	30	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 8	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		12.5	Δ	62.5%	SHORT
MEDIUM	5		Д	25 %	
LONG			A	0 %	
UNDESTRABLE	7.5	7-11	Δ	12.5 %	

PR	OBABLE TIMING		(909		ENDA)					DEVELOPMENT TIME
N		72	73,5	75	76,5 78		1 8	67	90	1 96 1	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST		ARTIN	0		o		M.		771	3.4	75	76.9	3 - 7 YRS.
8	MOST LIKELY				0		Ð				4.3	77	79.5	4 1/2 - 10 1/2 _{RS}
8	NOT LATER THAN)		0			4.9	78	82	6 1/2 - 13 1/2YRS.

	0					(IN MILLONS)
N			0	MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]
9	LOWER LIMIT		1.4	1 M	1.70 M	.80 - 2.60
8	UPPER LIMIT		3.0	2 M	3.21 M	1.22 - 5.20

EVENT: IB11

Structural design which permits fiber reinforced plastic end closures for fiber reinforced plastic cylindrical structures.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 10	LOSS	GAIN	0 25 50 75 100)		CONCLUSION
ESSENTIAL	10		Δ	20	%	
DESTRABLE		10		70	%	DESTRABLE
UNNECESSARY			Τ.Δ.	10	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			-	
N= 10		GAIN	0 25 50 75	100			CONCLUSION
.1 PROTOTYPE			4		0	%	
.4 EXPERIMENTAL			Δ		40	%	. 4
.7 SIMULATION		10	Τ		20	%	
.9 UNPROVEN	10		Δ		40	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N* 8	LOSS	GAIN	0 25 50 75 10	0	CONCLUSION
SHORT RANGE GOAL	22		A	0 %	
MEDIUM		20.5	Δ	87.5%	MEDIUM
LONG				0 %	
UNDESTRABLE		1.5	Δ	12.5 %	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME		
N	72	73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 197	2)	
8	EARLIEST	00	3.3	75,80	78.4	4 -	YRS.	
7	MOST LIKELY	00	4.1	77	81.0	6 - 12	YRS.	
7	NOT LATER THAN	00	4.2	80	84	9 - 15	YRS.	

N		•	MODE(S)	MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
9	LOWER LIMIT	1,8		1.73 M	
8	UPPER LIMIT	3.2	None M	3.61 M	1.44 - 5.78

IC Sub-Technology Concrete

Objective: To develop concrete pressure resistant structures capable of fixed operation at the given depth for a period of at least 10 years.

Events IC01 - IC07 address this objective.

EVENT: ICO1

Manned spherical structures 20 ft in diameter, for operation at a depth of 1,000 ft. Compressive strength of 10,000 psi; 99.9% reliability at a 95% lower level confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 8	LOSS	GAIN	25 50 75 10	n	CONCLUSION
ESSENTIAL	4		Δ	25 %	
DESTRABLE		20.5	Λ	62.5%	DESIRABLE
UNNECESSARY	16.5			12.5 %	

DEGREE OF RISK

	PERCE	NTAGE		FII	NAL CONSE	VSUS %				
N= 7		GAIN	0	25	50	75	100			CONCLUSION
.1 PROTOTYPE	17							0	%	
.4 EXPERIMENTAL	4			Λ				29	%	
.7 SIMULATION		7			Λ			57	7.	.7
.9 UNPROVEN		14		<u> </u>				14	%	

N- 6		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		ſ	CONCLUSION
SHORT RANGE GOAL	4		Δ	67	%	SHORT
MEDIUM		4	Δ	33	70	
LONG			A	0	%	
UNDESTRABLE			.	0	%	

PR	OBABLE TIMING	(90)	CALENDAR YEARS (90% CONFIDENCE INTERVAL)						200				DEVELOPMENT TIME		
N		72	73.5	75 7	6,5 78	81	84	67	90	96	0	MODE(S)	MEAN	(FROM 1972)	
7	EARLIEST		0-			0					3.9	75	76.7	2 - 7 1/2 YRS.	
7	MOST LIKELY	W		0				·-c)		8.3	None	81.3	3 - 15 1/2 YRS.	
6	NOT LATER THAN		CHECK	0				,			5.3	None	80.2	4 - 12 1/2 YRS.	

ESTIMATED	AAATA	TA	ACHIEUE
PSTIMATED	CHZIZ		TIME AS
LUIIMAILE	00010		MAINTE

N	1		MOI)E(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
7	LOWER LIMIT	2.0	.5		2.11 M	
6	UPPER LIMIT	17.9	2	M	10.03M	0 - 24.79

EVENT: IC02

Manned cylindrical structures, 10 ft in diameter, for operation at a depth of 1,000 ft. Compressive strength of 10,000 psi; 99.9% reliability...same as IC01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 8	LOSS	GAIN	0 25 50 75	100	CONCLUSION
ESSENTIAL		8.5	Δ	37.5%	
DESTRABLE	7		Δ	50 %	DESTRABLE
UNNECESSARY	1.5			12.5 %	

DEGREE OF RISK

		NTAGE	FINAL CONSENSUS 9	6		_	
N= 7	LOSS	GAIN	0 25 50 79	5 100			CONCLUSION
.I PROTOTYPE	3		Δ		14	%	
. 4 EXPERIMENTAL	4				29	%	
.7 SIMULATION	7		Λ		43	%	.7
.9 UNPROVEN		14	Δ		14	%	

DESIRED COURSE OF ACTION

N= 6	PERCE	NTAGE GAIN	o ·	F 25	INAL CONSE	NSUS % 75	100		Γ	CONCLUSION
SHORT RANGE GOAL	2033	0/1111				Δ		83	%	SHORT
MEDIUM				Δ				17	%	
LONG			4					0	%	
UNDESTRABLE			1					0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72	73.5 75 76.5 78 N1 N4 N7 ND ND	O	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST	0=====0	2.9	75	75.7	1 1/2 - 6 YRS.
7	MOST LIKELY	00	4.4	85	78.9	3 1/2 - 10 YRS
6	NOT LATER THAN	00	5.2	75	80.3	4 - 12 1/2 YRS.

N		g Mon	F(S) MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL]
14		- IIIOD	CIST MENIA	ISON CONLIDENCE INTENANCI
7	LOWER LIMIT	1.5 .5,	2 M 1.56 M	.41 - 2.70
6	UPPER LIMIT	18,1 1	M9.57 M	0 - 24.47

EVENT: IC03

Manned spherical structures, 20 ft in diameter, for operation at a depth of 3,000 ft. Compressive strength of 10,000 psi; 99.9% reliability...same as ICO2.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 8	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL	4		Δ	25 %	
DESTRABLE		5.5		62.5%	DESTRABLE
UNNECESSARY	1.5			12.5%	

DEGREE OF RISK

	PERCE	NTAGE		FII	NAL CONSE	NSUS %			_	
N= 7		GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE	17		A					0	%	
.4 EXPERIMENTAL	4			Δ				29	%	
.7 SIMULATION		9			Δ			42	%	.7
.9 UNPROVEN		12		Α.Δ				29	%	

N• 6	NTAGE GAIN	0	25 25	INAL CONSE	NSUS %	100		Γ	CONCLUSION
SHORT RANGE GOAL			Δ				17	%	
MEDIUM					Δ		83	%	MEDIUM
LONG		4					0	%	
UNDESTRABLE		A .					0	%	

PR	OBABLE TIMING	(90		ALEN				/AL)					DEVELOPMENT TIME	
N		72	73,5	75	74,5	78	81	84	67	40	1 96 1	σ	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST				0-			·O.				5.3	75,77	79.9	4 - 11 1/2 YRS
7	MOST LIKELY		Total (0-				0		7.4	None	83.3	6 -16 1/2 YAS
6	NOT LATER THAN	10.								0		6.2	None	84.3	7 - 17 1/2 yes

ESTIMATED COSTS TO	STIMATED	C0212	10	ACHIEVE
--------------------	----------	-------	----	---------

N			T	MODE(S)	MEAN	(IN MILLONS) (SO% CONFIDENCE INTERVAL)
7	LOWER LIMIT	6.8	ľ		5.33 M	
6	UPPER LIMIT	17.8			10.42M	

EVENT: ICO4

Manned cylindrical structures, 10 ft in diameter, for operation a a depth of 2,000 ft. Compressive strength of 20,000 psi; 99.9% reliability...same as IC03.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N* 8	LOSS	GAIN	0 25 50 75 10	00		CONCLUSION
ESSENTIAL	4		Δ	25	%	
DESTRABLE		8	Δ	50	%	DESIRABLE
UNNECESSARY	4		T	25	%	

DEGREE OF RISK

	PERCE	NTAGE	FIN	NAL CONSENSUS %			_	
N= 7		GAIN		50 75	100			CONCLUSION
.I PROTOTYPE	17					C	%	
.4 EXPERIMENTAL		12	T			29	%	····
.7 SIMULATION	19	2	Λ			14	%	
.9 UNPROVEN		24		Δ		57	%	.9

DESIRED COURSE OF ACTION

N• 6		NTAGE	FINAL CONSENSUS % 100		ſ	CONCLUSION
SHORT RANGE GOAL			A	0	%	
MEDIUM		17	Λ	83	%	MEDIUM
LONG	17			0	%	
UNDESTRABLE		17	Δ	17	%	

PR	OBABLE TIMING		(904				YEA E INT		/AL)					DEVELOPMENT TIME		
N		/2	73,5	75	77,5	78	81	64	h7	n0 1 ne 1	0	MODE(S)	MEAN	(FROM 1972)		
6	EARLIEST)		0				3.4	75	78.3	31/2 - 9 YRS		
6	MOST LIKELY				C)		(5		4.7	None	80.8	5 - 12 1/2 YRS		
6	NOT LATER THAN						0			-0	5.8	None	85.3	8 1/2 - 18 YRS		

N			MODE(S)	MEAN	IM MILLONS) (90% CONFIDENCE INTERVAL)
6	LOWER LIMIT	3.4		2.38M	
6	UPPER LIMIT	17.9	2 M	9.93M	0 - 24.70

EVENT: IC05

Manned spherical structures, 20 ft in diameter, for operation at a depth of 6,000 ft. Compressive strength of 20,000 psi using reinforced concrete or polymer-impregnated concrete; 99.9% reliability...same as IC04.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		
N* 8	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL	4		Δ	25 %	
DES!RABLE	16.5		Τ	12.5%	
UNNECESSARY		20.5		62.5%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FIN	VAL CONSE	NSUS %				
N= 6		GAIN	0	25	50	75	100		_ 1_	CONCLUSION
. I PROTOTYPE	20		4					0	%	
.4 EXPERIMENTAL		13		Δ				33	%	
.7 SIMULATION	20		4	· · · · · · · · · · · · · · · · · · ·				0	%	
.9 UNPROVEN		27				Δ		67	%	.9

N- 6	NTAGE	FINAL CONS.:NSUS % 0 25 50 75 8	00		CONCLUSION
SHORT RANGE GOAL	 OA III			%	
MEDIUM		T	17	%	
LONG		1	33	%	
UNDESTRABLE	17	Δ	50	%	UNDESTRABLE

PR	OBABLE TIMING		(90	- 50			YEA								DEVELOPMENT	TIME
N		72	73,5	75	76.5	78	81	84	87	110	96]	0	MODE(S)	MEAN	(FROM 1972)	
5	EARLIEST			0				- 0.				4.6	75.85	79.4	3 - 12	YRS
5	MOST LIKELY				0				-0			6.1	90		5 - 16 1/2	YRS.
5	NOT LATER THAN	N Fo	1773S		44.7		0				-0	9.1	None	1 No. 10 1	8 - 25 1/2	YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
5	LOWER LIMIT	19.1	1 M	12.46M	0 - 30.68
5	UPPER LIMIT	38.4	2 M	23.92M	0 - 60.53

EVENT: ICO6

Non-destructive test methods and equipment which ensure that a given concrete structure will perform as designed.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %			_	
N= 8	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	11				Δ		75	%	ESSENTIAL
DESTRABLE		12.5	Δ' '				12.5	%	
UNNECESSARY	1.5		Δ		-+-+-+-+-+-		12.5	5 %	

DEGREE OF RISK

N= 6		NTAGE GAIN	o.	F1 25	INAL CONSE	NSUS % 75	100		Г	CONCLUSION
.I PROTOTYPE	17		4					0	%	
.4 EXPERIMENTAL		17				Δ		83	%	.4
.7 SIMULATION			4		+ + + + - + - + - + - + - + - + - + - +			0	%	
.9 UNPROVEN				Δ				17	%	

DESIRED COURSE OF ACTION

N= 7		MTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CONCLUSION
SHORT RANGE GOAL	1033	40	Δ	57	%	SHORT
MEDIUM	23		Δ	43	%	
LONG	17		A	0	%	
UNDESTRABLE			A	0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72	73.5 75 76.5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST	0	8.9	75	80	11/2-141/2RS
6	MOST LIKELY	00	5.1	77	78.8	21/2 - 11 YRS.
6	NOT LATER THAN	0	8.0	80	82.5	4 - 17 YRS.

N		•	MODE(S)	MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
7	LOWER LIMIT	1.6	.5 M	1.34 M	.17 - 2.52
6	UPPER LIMIT	1.8	1 M	2.05 M	.59 - 3.51

EVENT: IC07

Structural design which will permit entry locks as large as 10 ft in diameter in a concrete structure.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N* 8	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		16	Δ	50	%	ESSENTIAL
DESTRABLE	8		Δ	25	%	
UNNECESSARY		8		25	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N [±] 5	LOSS	GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			A		0	%	
.4 EXPERIMENTAL	5		Δ		20	%	
.7 SIMULATION		10	Δ		60	%	.7
.9 UNPROVEN	5		Δ		20	%	

DESIRED COURSE OF ACTION

N- 7		NTAGE GAIN	o.	FINAL CONSENSUS	% 75 10	0	Г	CONCLUSION
SHORT RANGE GOAL		17		Δ		57	%	SHORT
MEDIUM		3		Δ		43	%	
LONG	20		4			0	%	
UNDESTRABLE			A			0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) MODE(S) MEAN [FROM 1972] 6 EARLIEST 73.78 77.5 11/2-91/2YRS ----0 6 MOST LIKELY 5.2 75 80.7 41/2 - 130----0 6 NOT LATER THAN 77.90 86.5 8 - 21 YRS

ESTIMATED COSTS TO ACHIEVE	ESTIMATED	COSTS TO	ACHIEVE
----------------------------	-----------	----------	---------

					DEVELOPMENT COSTS (M MILLONS)
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
7 LOWE	RLIMIT	.6	.1 M	.66 M	.17 - 1.15
6 UPPE	RLIMIT	1.7	1 M	2.20M	.78 - 3.62

ID Sub-Technology: <u>Metals</u>

Objective: To develop metal structures capable of operating down to 20,000-ft depths for at least 2,000 cycles. (The W/D ratio indicates the weight-to-displacement ratio d a spherical hull fabricated from the given material, near-perfect and free of residual stresses, which would collapse at the given depth.)

Events ID01 - ID09 address this objective.

EVENT: ID01

Manned spherical structural hulls 7 ft in diameter, fabricated from Titanium. Yield strength of 100 ksi; (W/D of 0.88); 99.9% reliability at a 95% lower level of confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			-	
N= 12	LOSS	GAIN	0 25 50 75	100			CONCLUSION
ESSENTIAL	9		Δ		50	%	
DESTRABLE		17	$\frac{1}{\Delta}$		50	%	DESTRABLE
UNNECESSARY	8	1 . 1	A :		0	%	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSE	ISUS %				
N= 12		GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE	6			Δ			58	%	.1
.4 EXPERIMENTAL		6		Δ			42	%	
.7 SIMULATION			4				0	%	
.9 UNPROVEN		1	X				0	%	

	PERCE	NTAGE		F	INAL CONSE	NSUS %			_	
N- 12		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		2					Δ	92	%	SHORT
MEDIUM	2		Δ					8	%	
LONG			4					0	%	
UNDESTRABLE			A					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME	
N 7	79,5 75 76,5 78 81 84 67 90 98	ø MOD	E(S) MEAN	(FROM 1972)	
12 EARLIEST	00	1.7 74	73.8	1 - 2 1/2 YRS	
12 MOST LIKELY	00	2.4 74,	75 75.8	21/2 - 5 YRS	
12 NOT LATER THAN	00	3.4 77	77.8	4 - 71/2 YRS.	

N .	• MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	3.9 1,2 M		
11 UPPER LIMIT		3.75 M	

EVENT: ID02

Manned spherical structural hulls 7 ft in diameter, fabricated from Titanium. Yield strength of 150 ksi; (W/D of 0.59); 99.9% reliability...same as ID01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			r	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			Δ					8	%	
DESTRABLE							Δ	92	%	DESIRABLE
UNNECESSARY			4	***	· · · · · · · · ·	 		0	%	

DEGREE OF RISK

N= 12	NTAGE GAIN	FINAL CONSENSUS %	100			CONCLUSION
. I PROTOTYPE		4		0	%	
. 4 EXPERIMENTAL		Δ		58	%	. 4
.7 SIMULATION		Δ		25	%	
.9 UNPROVEN				17	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONSE	NSUS %			-	
N= 12	LOSS	GAIN	0 25	5 50	75	100			CONCLUSION
SHORT RANGE GOAL	1		Δ				17	%	
MEDIUM		1			Δ		83	%	MEDIUM
LONG			4				0	%	
UNDESTRABLE			A				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	2 73,5 75 76,5 78 81 84 87 90 96	σ MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	2.0 75,77	76.5	3 1/2 - 5 1/2 YRS
12 MOST LIKELY	00.	3.0 80	79.7	6 - 9 YRS
12 NOT LATER THAN	00	3.8 85	83.8	10 - 14 YRS.

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11	LOWER LIMIT	7.3	20 M	9.20M	5.24 - 13.16
	UPPER LIMIT	24.1	10 M	25.03M	

EVENT: ID03

Manned spherical structural hulls 7 ft in diameter, fabricated from Titanium. Yield strength of 185 ksi; (W/D of 0.48); 99.9% reliability...same as ID02.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSE	NSUS %				
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE						Δ		75	%	DESTRABLE
UNNECESSARY				Δ				25	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %				
N- 12		GAIN	0 25	50 75	100			CONCLUSION
.I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL			Δ			17	%	
.7 SIMULATION	17		Δ			8	%	
.9 UNPROVEN		17		Δ		75	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	AL CONSE	NSUS %				
N= 12	LOSS	GAIN	0	25	50	75	100	231		CONCLUSION
SHORT RANGE GOAL			Δ					8	%	
MEDIUM					Δ			42	%	MEDIUM
LONG				Δ				25	%	
UNDESTRABLE				Δ				25	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 67 90 95	Ø	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	4.3	77	80.4	6 - 10 1/2 YRS
12 MOST LIKELY	00	5.6	85	84.8	10 - 15 1/2 YRS
1 1 NOT LATER THAN	00	5.7	85.90	88.7	13 1/2 - 20 YRS.

		MODER	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
the property of the property of the control of the		MIODEISI	MEAN	(SO & COMPIDENCE INTERVAL)
11 LOWER LIMIT	13,4	20 M	7.03 M	9.72 - 24.34
10 UPPER LIMIT	24.4	50 M	36.05M	21.91 - 50.19

EVENT: ID04

Unmanned flotation structures (hollow spheres) 20 inches in diameter, fabricated from Titanium. Yield strength of 150 ksi; (W/D of 0.59); 95% reliability...same as ID03.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	NAL CONSE	NSUS %			r	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE		17					4	100	%	DESIRABLE
UNNECESSARY	17		4					0	%	

DEGREE OF RISK

· — — ·	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 12	LOSS	GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	1		Δ		8	%	
.4 EXPERIMENTAL		4	Δ		59	%	.4
.7 SIMULATION		7	Δ		25	%	
.9 UNPROVEN	10		Δ		8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FII	NAL CONSEN	ISUS %			-	
N* 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		16		Δ				25	%	
MEDIUM	16			····		Δ.		75	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		Ĺ		DEVELOPMENT TIME
N 72	93 94	0	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	1.1	75	74.4	2 - 3 YRS.
12 MOST LIKELY	0-0	1.5	77	76.8	4 - 5 1/2 YRS.
12 NOT LATER THAN	00	1.6	80	79.6	7 - 8 1/2 YRS.

N		MODE	51	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL	
11 LOWER LIMIT	.5	1				
11 UPPER LIMIT	Stephen Land Land	2,5		2.66 M		

EVENT: ID05

Manned spherical structural hulls 7 ft in diameter, fabricated from steel. Yield strength of 180 ksi; (W/D of 0.78); 99.9% reliability...same as ID04.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSEN	ISUS %				
N= 12	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL		16			Δ		83	%	ESSENTIAL
DESTRABLE	16		Δ			-	17	%	
UNNECESSARY			4		-1		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %					
N- 12		GAIN	0 25 50 75	100			CONCLUSION	
. I PROTOTYPE			Δ		33	%		
.4 EXPERIMENTAL	8		Δ		25	%		
.7 SIMULATION		8	Δ		42	%	.7	
.9 UNPROVEN			A		0	%		

	PERCE	NTAGE	FII	NAL CONSEN	SUS %				
N- 11		GAIN	0 25	50	75	100			CONCLUSION
SHORT RANGE GOAL	4			Δ			55	%	SHORT
MEDIUM		3		Δ			36	%	
LONG		1	Δ				9	%	
UNDESTRABLE			A				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 67 90 96	0	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	2.7	75	74.6	1 - 4 YRS
12 MOST LIKELY	.00	3.9	78	77.7	3 1/2 - 7 1/2 YRS
12 NOT LATER THAN	00	5.2	80	80.1	5 1/2 - 11 YRS.

ESTIMATED	COSTS TO	ACHIEVE
	uuala lu	AUDILLE

	,	11005/CV		DEVELOPMENT COSTS [IM MILLONS] [80% CONFIDENCE INTERVAL]		
N Committee of the comm	Exercise and the second	WODE(2)	MEAN			
11 LOWER LIMIT	1.9	2 M3	.10 M	2.08 - 4.12		
11 UPPER LIMIT	3.9	10 M7	.47 M	5.35 - 9.59		

EVENT: ID06

Manned spherical structural hulls 7 ft in diameter, fabricated from steel. Yield strength of 210 ksi; (W/D of 0.69); 99.9% reliability...same as ID05.

SYSTEM CRITICALITY

N= 12		NTAGE	FINAL CONSENSUS %		ſ	CONCLUSION
ESSENTIAL	1022	GAIN	Δ	17	%	
DESTRABLE	8		Δ	58	%	DESIRABLE
UNNECESSARY		8	Δ	25	%	

DEGREE OF RISK

N= 12		NTAGE	FINAL CONSENSUS %	100			CONCLUSION
.1 PROTOTYPE	LOSS	GAIN 8	Δ	٦Ť	8	%	CONCLUSION
4 EXPERIMENTAL	8		A	П	0	%	
7 SIMULATION		8	Δ		50	%	.7
.9 UNPROVEN	8		Δ		42	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FI	NAL CONSEI	NSUS %			-	
N= 12	LOSS	GAIN	0 25	50	75	100			CONCLUSION
SHORT RANGE GOAL		8	Δ				8	%	
MEDIUM	25		Δ				17	%	
LONG		8		Δ			50	%	LONG
UNDESTRABLE		9	Δ				25	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	2 73.5 75 76.5 75 81 84 87 90 96 1	0	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0====0	4.7	80	78.9	4 1/2 - 9 1/2YRS
12 MOST LIKELY	00	5.8	85 ·	83.3	8 1/2 - 14 1/2 RS
12 NOT LATER THAN	00	7.4	90	87.7	12 - 19 1/2 YRS.

ESTIMATED COSTS TO ACHIEVE

		TMODELEY	APP AND	(IN MILLONS)		
N		MICUEISI	MEAN	(90% CONFIDENCE INTERVAL)		
11 LOWER LIMIT	9.7	5,20 M	12.41M	7.13 - 7.69		
11 UPPER LIMIT	22.3	40 M	31.24M	19.07 - 43.40		

DEVELOPMENT COSTS

EVENT: ID07

Welding methods for HY 170-210 steels using an automated gas metal-arc (GMA) process rather than the gas tungstenarc (GTA) process.

SYSTEM CRITICALITY

	PERCE	NTAGE	FI	NAL CONSE	NSUS %			r	
N= 10	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL				Δ			40	%	
DESTRABLE				Δ			50	%	DESIRABLE
UNNECESSARY			Δ		· + · · · · · ·		10	%	

DEGREE OF RISK

N= 9		NTAGE GAIN		FINAL CONSEN	NSUS % 75	100		Г	CONCLUSION
.I PROTOTYPE	20	0,,,,,	4				0	%	
.4 EXPERIMENTAL		26	1	Δ		-	56	%	.4
.7 SIMULATION	5	4		Δ			44	%	
.9 UNPROVEN	10		4				0	%	

N- 10		NTAGE GAIN	FINAL CONSEN	ISUS %			CONCLUSION
SHORT RANGE GOAL		10	Δ		20	%	
MEDIUM	10		Δ		60	%	MEDIUM
LONG			Δ		10	%	
UNDESTRABLE			Δ		10	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	je.	<u>ra.</u>		DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 84 67 90 96	0	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	2.1	75,76	76.6	3 1/2 - 6 YRS.
10 MOST LIKELY	0-0	2.0	80	79.9	61/2 - 9 YRS.
10 NOT LATER THAN	0-0	2.6	85	84.3	11 - 14 VRS

ECTIMATER	PRETE II	I AL'HILVE
ESTIMATED	70212 I	JAUNIETE

				DEVELOPMENT COSTS
N The state of the	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9 LOWER LIMIT	,8	1 M	1.30 M	.80 - 1.80
.9 LPPER LIMIT	3.3	2 M	4.39 M	2.37 - 6.41

EVENT: ID08

Welding methods for HY 170-210 steels and Titanium using the electron beam process "out of vacuum" or with the welder and vacuum chamber moving along the joint.

SYSTEM CRITICALITY

[PERCE			FINAL CONSENSUS %			r	004014004
N= 10	LOSS	GAIN	0	25 50 75 100			\perp	CONCLUSION
ESSENTIAL	10		4			0	%	
DESTRABLE		10		Δ	9	0 1	%	DESIRABLE
UNNECESSARY			\Box	Δ	1	0 '	%	

DEGREE OF RISK

	PERCE	NTAGE		. FI	NAL CONSE	NSUS %			_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
.1 PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL		12		Δ				22	%	
.7 SIMULATION	13					Δ		67	%	.7
.9 UNPROVEN		1		Δ				11	%	

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N* 10	LO: 3	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		10	Δ	10	%	
MEDIUM	20		Δ	50	%	MEDIUM
LONG		10	Δ	20	%	
UNDESTRABLE			Δ	20	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 61 64 67 90 96	o MODE(S) A	MEAN (FROM 1972)
10 EARLIEST	00	2.3 75,80 7	7.3 4 - 61/2 YRS.
10 MOST LIKELY	00	3.8 80,85 8	2.2 8 - 12 1/2 YRS.
10 NOT LATER THAN	00	4.0 90 8	37.6 13 1/2 - 18 YRS.

ESTIMATED COSTS TO ACHIEVE

N		0	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	2.8	2 M	2.28M	.55 - 4.01
9	UPPER LIMIT	8.4	2,4 M	7.44M	2.21 - 12.68

EVENT: ID09

Manned spherical structural hulls 7 ft in diameter, fabricated from "Transformation-Induced-Plasticity" (TRIP) steel. Yield strength of 250 ksi; (W/D of 0.58), with a ductility of at least 30%; 99.9% reliability at a 95% lower level of confidence.

SYSTEM CRITICALITY

	PERCENTA	GE	FI	NAL CONSE	NSUS %				
N= 10	LOSS GA	IN º	25	50	75	100			CONCLUSION
ESSENTIAL		4					0	%	
DESTRABLE				Δ			40	%	
UNNECESSARY				Δ	· · · · · · · · · · · · · · · · · · ·		60	%	UNNECESSARY

DEGREE OF RISK

N= 10	PERCEI	0	F11	NAL CONSEN	ISUS %	100		Γ	CONCLUSION
.I PROTOTYPE		4					0	%	
.4 EXPERIMENTAL		A					0	%	
.7 SIMULATION		4					0	%	
.9 UNPROVEN						4	100) %	.9

DESIRED COURSE OF ACTION

N= 10		NTAGE GAIN	FINAL CONSENSUS % 9 25 50 75 100		ſ	CONCLUSION
SHORT RANGE GOAL			4	0	%	
MEDIUM			Δ	10	%	
LONG	14		Δ	30	%	
UNDESTRABLE		14	Δ	60	%	UNDESTRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 67 90 96 0 MODE(S) MEAN	(FROM 1972)
10 EARLIEST	00 6,2 85 85.2	9 1/2 - 17 YRS.
1d MOST LIKELY	00 9.5 90 92.7	15 - 26 YRS.
9 NOT LATEP. THAN	0 11.3 None 97.9	19 - 33 YRS.

ESTIMATED COSTS TO ACHIEVE

		DEVELOPMENT COSTS (M MILLONS)				
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
9 LOWER LIMIT	29.0	20 M	31.72M	13.74 - 49.70		
8 UPPER LIMIT	57.9	100 M	78.25M	39.44 - 117.06		

2004

IE Sub-Technology: <u>Buoyancy Materials</u>

Objective: To develop buoyancy materials capable of operating down to 20,000-ft depths for at least 2,000 cycles and for periods of at least 2 years, with water absorption of less than 1% by weight af a surface-to-volume ratio of 1 inch $^{-1}$.

Events IE01 - IE03 address this objective.

EVENT: IE01 Syntactic foam with a density of 32 lb/ft (Binary packing).

SYSTEM CRITICALITY

		NTAGE		FINAL	CONSENSUS	5 %			r	0010110101
N* 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	6				Δ			64	%	ESSENTIAL
DESTRABLE		6		Δ	•	-		36	%	
UNNECESSARY			4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0	%	

DEGREE OF RISK

	PERCE	NT/ GE	FII	NAL CONSENSUS	%		_	
N= 11		GAIN		50	75 100			CONCLUSION
. I PROTOTYPE	4			7		36	%	
.4 EXPERIMENTAL		5		Δ		55	%	.4
.7 SIMULATION	1		Δ			9	%	
.9 UNPROVEN			4			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	INAL CONSE	VSUS %			_	
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		12				Δ		82	%	SHORT
MEDIUM	12			Δ				18	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	σ MODE(S)	MEAN	(FROM 1972)
1 EARLIEST	00	1.9 73,74	74.1	1 - 3 YRS.
11 MOST LIKELY	00	3.3 74	76.2	21/2 - 6 YRS.
11 NOT LATER THAN	00	5.6 75	78.9	4 - 10 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.3	.l M	.29 M	.1148
11 UPPER LIMIT	1.5	.25 M	1.21 M	.42-2.02

EVENT: IEO2

Syntactic foam with a density of 26 lb/ft³ (Tertiary or higher degrees of packing).

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %			16	
N= 11	LOSS	GAIN	0	25 50 75 10	0			CONCLUSION
ESSENTIAL	11			Δ		9	%	
DESTRABLE		11		Δ	9	1	%	DESTRABLE
UNNECESSARY			4			0	%	

DEGREE OF RISK

N= 11		NTAGE	FINAL CONSENSUS % 0 25 50 75 100		Γ	CONCLUSION
. I PROTOTYPE		0		0	%	
.4 EXPERIMENTAL	12		Δ	18	%	
.7 SIMULATION		4	Δ	64	%	.7
.9 UNPROVEN	- 3	8	Δ	18	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSEN	NSUS %				
N- 10	IUSS	GAIN	Q.	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	10		4					0	%	
MEDIUM	3						Δ	90	%	MEDIUM
LONG		10		Δ				10	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N . 72	73,5 75 76,5 78 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	3.1	74.75	75.9	2 - 5 1/2 YRS
11 MOST LIKELY	00	4.4	75	78.5	4 - 9 YRS
11 NOT LATER THAN	00	6.6	77	82.3	61/2 - 14 YRS.

[N]	0	MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.8		.85 M	
11 UPPER LIMIT	1.9	5 M	2.35 M	1.31 - 3.38

EVENT: IEO3

Active flotation with a system weight/displacement ratio of 0.3. Gas generation which automatically maintains an internal pressure in a thin-walled container at the ambient external pressure.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CON	SENSUS %			1	
N= 11	LOSS	GAIN	0	25 50	75	100			CONCLUSION
ESSENTIAL	10		4				0	%	
DESTRABLE		6		Δ			36	%	
UNNECESSARY		4			Δ		64	%	UNNECESSARY

DEGREE OF RISK

N- 10		NTAGE GAIN	0	FINAL CONSENSUS %	100		Г	CONCLUSION
.I PROTOTYPE			4			0	7.	
. 4 EXPERIMENTAL			1			0	%	
.7 SIMULATION	2.5			Δ		60	%	.7
.9 UNPROVEN		2.5		Δ		40	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		114	
N= 10		GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		10	Δ	10	%	
MEDIUM	2		Δ	20	%	
LONG		7	Δ	40	%	LONG
UNDESTRABLE	15		Δ	30	%	

PR	OBABLE TIMING		(904	CALE				AL)					
N		72	73,5	75 76.	5 78	81	84	87	90 96	ø	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0		-0.				4.4	75	77.9	3 - 8 1/2 YRS.
9	MOST LIKELY				0		3)		5.5	77	81	5 1/2 - 12 1/2YRS.
Q	NOT LATER THAN			= 25 U	177	0			-0	6.7	80	84.6	8 - 17 YRS.

	The Control of the Control	600	1.00	
ESTIMATED	PTPAN	TN	ACH	FVF

N	Springer of Teachers		MOI	DE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	2.9	+		2.90 M	
8	UPPER LIMIT	15.1	5	M	10.90 M	.77 - 21.03

IF Sub-Technology: <u>Miscellaneous Materials</u>

Objective: To develop miscellaneous materials capable of operating down to 20,000-ft depths for a determined period of time.

Events IF01 - IF06 address this objective.

EVENT: IF01

Manned cylindrical structures, 20 ft in diameter, fabricated from steel, capable of fixed operation at a depth of 8,000 ft for at least 2 years. 99.9% reliability at a 95% lower level of confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %				
N- 10	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	12		Δ				10	%	
DESTRABLE		2			Δ		80	%	DESIRABLE
UNNECESSARY		10	4		+-+-+-		10	%	

DEGREE OF RISK

N- 10		NTAGE GAIN		FINA	L CONSEN	SUS %	100		Г	CONCLUSION
. I PROTOTYPE	11	<u> </u>	4		· · · · · · · · · · · · · · · · · · ·			0	%	
. 4 EXPERIMENTAL	6				Δ			50	76	
.7 SIMULATION		17			Δ			50	%	.7
.9 UNPROVEN			A					0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONS	ENSUS %			_	
N- 10	LOSS	GAIN	0	25	50	75	10	0		CONCLUSION
SHORT RANGE GOAL	23		Δ					10	%	
MEDIUM		13				Δ		80	%	MEDIUM
LONG			Δ					0	%	
UNDESTRABLE		10	Δ					10	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		(-t.s	-2	DEVELOPMENT TIME
N	72 73,5 75 76,5 78 85 84 57 90 96	0	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0===0	2.1	75	76	3 - 5 YRS.
10 MOST LIKELY	00	3.7	77	79.6	5 1/2 - 10 YRS.
10 NOT LATER THAN	0	5.8	80	83.3	8 - 14 1/2 YRS.

		DEVELOPMENT COSTS (IN MILLONS)
N company of the contract of t	MODE(S) MEA	N (90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	17.1 20 M18.7	3M 8.82 - 28.64
10 UPPER LIMIT	83.320,80M69.0	6M 20.77 - 117.35

EVENT: IFO2

Seal and gasket materials for use on large locks, capable of 2,000 cyclic operations at a depth of 8,000 ft for a period of at least 2 years.

SYSTEM CRITICALITY

	PERCEN	ITAGE		FIN	NAL CONSE	NSUS %			_	
N* 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL						Δ		67	%	ESSENTIAL
DESTRABLE			1	Λ			++	33	%	
UNNECESSARY			A					0	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %				
N= 9	LOSS	GAIN	0	25 50 75	100			CONCLUSION
. I PROTOTYPE	11		4			0	%	
.4 EXPERIMENTAL	11			Δ		44	%	
.7 SIMULATION		44		Δ		56	%	.7
.9 UNPROVEN	22		4			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %						_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL				Δ				11	%	
MEDIUM							7	89	%	MEDIUM
LONG			4					0	%	<u> </u>
UNDESTRABLE		1 - 1	1					0	%	

 Δ CALENDAR YEARS PROBABLE TIMING DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 73,5 75 76,5 75 N1 54 87 90 3 - 51/2 YRS 9 EARLIEST 75 76.1 2.1 79.6 5 1/2 - 9 1/2 YRS 3.4 77 9 MOST LIKELY 0---0 9 NOT LATER THAN 5.4 90 83.4 8 - 15YRS. 0----

						DEVELOPMENT COSTS (IN MILLONS)
N		0	MODE	(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.4	.5	M	.77 M	.46 - 1.07
9	UPPER LIMIT	2.8	1	M	2.53 M	.82 - 4.25

EVENT: IF03

Protective coatings for metals which will virtually eliminate biological or corrosive damage during continuous exposure for 2 years at a depth of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N- 10	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	4.5		Δ	40	%	
DESTRABLE		5.5		50	%	DESIRABLE
UNNECESSARY	1			10	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			-	
Nº 10		GAIN	0 25 50 75	100		i_	CONCLUSION
. I PROTOTYPE	2		Δ		20	%	
. 4 EXPERIMENTAL		15	Δ		60	%	.4
.7 SIMULATION	2		Δ		20	%	
.9 UNPROVEN	11		4		0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	VAL CONSE	NSUS %			_	
N= 10		GAIN	9	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		6			Δ			50	%	SHORT
MEDIUM	6				Δ			50	%	
LONG			4					0	%	
UNDESTRABLE			A					0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76,5 78 0 10 EARLIEST 2.1 11/2 - 4 YRS. 74 74.6 0---0 10 MOST LIKELY 76 76.8 3 - 73.5 YRS 0----0 10 NOT LATER THAN 5.1 78 4 1/2 - 10 1/2/RS 79.4 0-----

ESTIMATED COSTS TO ACHIEV	ESTIMATED	COSTS	TO	ACHIEVE
---------------------------	-----------	-------	----	---------

					DEVELOPMENT COSTS [IN MILLONS]
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.3	.1,.2 M	.28 M	.1144
9	UPPER LIMIT	1,4	.5 M	1.29 M	.42 - 2.15

EVENT: IF04

Protective coatings for viewports which will prevent fouling (no discernible decrease in visibility) for periods of 30 days in any ocean area.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %				
N* 9	LOSS	GAIN	٥	25 50 75	100			CONCLUSION
ESSENTIAL	11			Δ	\square	78	%	ESSENTIAL
DESTRABLE		11		Δ	П	22	%	
UNNECESSARY		ŧ	4			0	%	

DEGREE OF RISK

UPPER LIMIT

	PERCE	NTAGE	FII	NAL CONSENSE	JS %			_	* Table 1
N- 9	LOSS	GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE	22		Δ				11	%	
.4 EXPERIMENTAL		22					67	%	. 4
.7 SIMULATION			Δ				22	%	
.9 UNPROVEN			A				0	%	

DESIRED COURSE OF ACTION

		NTAGE	_	AL CONSENSUS %	100		Г	COMO! HCION
N= 8	FOSS	GAIN	0 25		100		_	CONCLUSION
SHORT RANGE GOAL		9.5			Δ	87.	5%	SHORT
MEDIUM	9.5		Δ			12.5	5 %	
LONG			4			0	%	
UNDESTRABLE	-		A			0	%	

PR	OBABLE TIMING		(909	CALE CONF				AL)					DEVELOPMENT TIME
N	Lastiers of	72	73,5	75 76	5 78	81	54	67 9	0 1 96 1	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST		0	0						2.3	73	74.2	1-31/2 YRS.
9	MOST LIKELY		0-		0					3.8	74	76.1	2 6 1/2 YRS.
9	NOT LATER THAN			ρ		ρ				5.3	75	78.3	3 9 1/2 YRS.

ESTIMATED COST	S TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL
8 LOWER LIMIT		.1	.2 M	.26 M	. 1833

.5 M .54 M

.40 - .68

EVENT: IF05

Protective coatings for viewports which will prevent fouling (no discernible decrease in visibility) for period of 2 years in any ocean area.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	ISUS %			_	
N= 9	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	11		Δ				11	%	
DESTRABLE		11		••••			89	%	DESTRABLE
UNNECESSARY			A .				0	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	VSUS %			_	
N= 9		GAIN		25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL	11		Δ			-+	$\top \Pi$	11	%	
.7 SIMULATION		22						89	%	.7
.9 UNPROVEN	11		4					0	%	

DESIKED COURSE OF ACTION

	PERCE	NTAGE	FI	INAL CONSENSUS %		_	
N• 9	LOSS	GAIN	0 25	50 75 106		_ 1	CONCLUSION
SHORT RANGE GOAL			Δ		22	%	
MEDIUM		22		Δ	78	%	MEDIUM
LONG	22		4		0	%	
UNDESTRABLE			4		0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76,5 78 0 9 EARLIEST 1.8 77 76.8 3 1/2 - 6 YRS. 0--0 2.7 9 MOST LIKELY 80 79.7 6 - 91/20---0 YRS 83,90 83.6 9 - 14 1/2 NOT LATER THAN 4.4

N		•	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.1		.42 M	
9	UPPER LIMIT	.5	1 M	1.07 M	.78 - 1.35

EVENT: IF06

Acrylic hemispherical viewport 24 inches inside diameter suitable for use in manned structural hulls for fixed operation at a depth of 8,000 ft for periods of 2 years.
99.9% reliability at a 95% level of confidence.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 9	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	4.5		Δ	33	%	
DESTRABLE		4.5	Δ	67	%	DESTRABLE
UNNECESSARY			4	0	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	NAL CONSEN	ISUS %			_	
N= 9		GAIN	0 25	50	75	100			CONCLUSION
.1 PROTOTYPE	1.5		Δ				11	%	
.4 EXPERIMENTAL	3		Δ				22	%	
.7 SIMULATION		4.5			Δ		67	%	.7
.9 UNPROVEN			4				0	%	

DESIRED COURSE OF ACTION

		NTAGE		Fi	NAL CONSENS	US %				
N* 9	LOSS	GAIN	<u></u>	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	15.5			Δ				22	%	
MEDIUM		15.5				Δ		78	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE			A					0	%	

PR	OBABLE TIMING		(909	CALENDAR CONFIDENC	YEARS E INTERVAL)				DEVELOPMENT TIME	
N		72	73,5	75 76,5 78	81 84 87 9	0 96 1	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0			2.0	75,76	75.8	2 1/2 -5 YRS.
9	MOST LIKELY			0	0		3.2	80	79.3	5 1/2 - 9 1/2 YRS.
9	NOT LATER THAN				00		5.1	85	83.4	8 1/2 - 14 1/2/RS.

N	6	MODE(S) MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
9 LOWER LIMIT	.5	.5 M .63 M	
9 UPPER LIMIT	1.1	1 M1.59 M	.97 2.26

IG Sub-Technology: Structures

Objective: To develop new and better methods for evaluating various concepts of pressure hulls constructed from available and projected material relative to performance criteria, fabricability, and configuration analysis verification.

Events IG01 - IG03 address this objective.

EVENT: IG01

Analytical structural calculations which accurately predict static and dynamic stresses and strains for complex structual hull—shapes, appendages and interfaces, including toroids, ring-stiffened hulls, sandwich materials, penetrations, hull intersections, and thick-walled hulls.

SYSTEM CRITICALITY

N= 10	PERCE LOSS	NTAGE GAIN	4	FINAL CONSENSUS %		ſ	CONCLUSION
ESSENTIAL		2		Δ	80	%	ESSENTIAL
DESTRABLE	2			Δ	20	%	to-m
UNNECESSARY		9	1		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	NAL CONSENSUS %			_	
N= 10	LOSS	GAIN	0 25	50 75	100			CONCLUSION
.1 PROTOTYPE		15		Δ		60	%	. 1
.4 EXPERIMENTAL	1		Δ			10	%	
.7 SIMULATION	13		Δ			20	%	
.9 UNPROVEN	1)		Δ			10	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL TONSE	NSUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		1					Δ	90	%	SHORT
MEDIUM			4					0	%	
LONG	1		Δ					10	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) MODE(S) [FROM 1972] MEAN 10 EARLIEST 4.9 72,74 74.6 0 - 51/2YRS. 10 MOST LIKELY 31/2 - 94.9 76 78.2 YRS. 10 NOT LATER THAN 74 82.8 6 - 151/2YRS

ESTIMATED	COSTS	TO	ACHIEVE

N	0	MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
10 LOWER LIMIT	14.4	1 M	7.09 M	
10 UPPER LIMIT	58.3	5 M	25,68 M	0 - 59.46

EVENT: IG02

Unmanned cylindrical internal hydrostatic pressure vessels 20 ft in diameter, capable of 30,000 psi static pressure, and 10,000 psi cyclic pressure (5 million cycles) with simultaneous thermal cycling for 90° F to 28 F. The design is fail-safe such that pressure loss occurs before a catastrophic failure.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS	%		,	
N= 9	LOSS	GAIN	P	25 50 75	5 100			CONCLUSION
ESSENTIAL	1.5			Δ		11	%	
DESTRABLE		1.5	\sqcap	* * * * * * * * * * * * * * * * * * * 	Δ	89	%	DESTRABLE
UNNECESSARY			4			0	%	

DEGREE OF RISK

N* 9		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75	00		Γ	CONCLUSION
. I PROTOTYPE			4	1 [0	%	
.4 EXPERIMENTAL	17		Δ	П	33	%	
.7 SIMULATION		6	Δ	П	56	%	.7
.9 UNPROVEN		11	Δ		11	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	ISUS %		_	
N= 8	LOSS	GAIN	0	25	50	75	100		CONCLUSION
SHORT RANGE GOAL		12.5		Δ				12.5%	
MEDIUM		12.5				Δ		75 %	MEDIUM
LONG	25			Δ				12.5%	
UNDESTRABLE			4					0 %	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONTIDENCE INTERVAL)				DEVELOPMENT TIME
N	7	2 73.5 75 76.5 78 81 64 67 90 96 1	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST		5.4	77	80.3	5 - 11 1/2 YRS.
9	MOST LIKELY	00	7.5	80	84.2	71/2-17 YRS.
a	NOT LATER THAN	0=====0	9.4	85	89 4	11 1 /2 - 23 1 /9RS

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	190% CONFIDENCE INTERVAL
9	LOWER LIMIT	30.1	20 M	25.13 M	6.49 - 43.78
9	UPPER LIMIT	147 1	80 M	95.11 M	3.92 - 186.3

EVENT: IG03

Design of mating systems and appendages to withstand the dynamic loads resulting from joining structural modules and temporarily mating submersibles with other structures.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %			,	
N= 9	LOSS	GAIN	٥	25 50	75	100			CONCLUSION
ESSENTIAL					Δ		78	%	ESSENTIAL
DESTRABLE			П	Δ			22	%	
UNNECESSARY			4	\			0	%	

DEGREE OF RISK

N* 9		NTAGE GAIN		F11 25	NAL CONSEN	SUS %	100			CONCLUSION
. I PROTOTYPE		11			Δ			45	%	.1
.4 EXPERIMENTAL	11			Δ				22	%	101
.7 SIMULATION				Δ		• • • • •		33	%	
.9 UNPROVEN			4		+ + + + + + + + + + + + + + + + + + + +			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONS	SENSUS %	
N= 9	LOSS	GAIN	0 25 50	75 100	CONCLUSION
SHORT RANGE GOAL		19.5	Δ	44.5%	SHORT
MED!UM	30.5		$\overline{\Lambda}$	44.5%	
LŮŃG		11	Δ	11 %	
UNDESTRABLE			A	0 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) MODE(S) **FROM 1972**) MEAN 75 76,5 7h 9 EARLIEST 5.8 72 76.2 1/2 - 8YRS MOST LIKELY 6.2 77 79.8 4 - 111/2YRS NOT LATER THAN 7.5 None 83.6 7 - 16YRS

N		σ MODE(S)	MEAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	15.4 .5,.6 M		
9	UPPER LIMIT		13.48M	

APPENDIX B TECHNOLOGY AREA II. MACHINERY AND EQUIPMENT

SUB-TECHNOLOGY AREAS:

- A. Remote Unmanned Work Systems
- B. Ballast Systems
- C. Hydraulic Systems

IIA Sub-Technology: Remote Unmanned Work System

Objective: To advance the technologies necessary to design and operate work systems at depths of 20,000 ft, which would be capable of accomplishing the following:

O Provide highly versatile manipulators to perform a variety of manual tasks such as lifting and moving objects, or using mechanical or power tools. The manipulators must be capagle of performing both delicate work and work requiring great force, while at the same time achieving a high degree of articulation and control including tactile feedback.

Events IIA01 - IIA08 address this objective.

EVENT: IIA01

A remote controlled (via cabled signals) electromechanical, (eight degrees of freedom) manipulator arm work system with position feedback on all degrees of freedom and force feedback on four degrees of freedom (i.e., three translations and grip) capable of performing mechanical tasks with the aid of a holding arm ar 20,000-ft ocean depths. The system has a 48-inch reach, can lift 25 pounds, has a grip strength of 100 pounds, can apply a wrist torque of 20 pound feet, has a wrist extension of 4 inches, and weighs less than 100 pounds.

SYSTEM CRITICALITY

N= 12		NTAGE GAIN		FINAL CONSENSUS % 25 50 75 100		Г	CONCLUSION
ESSENTIAL			4		0	%	
DESTRABLE		4		Δ	83	%	DESIRABLE
UNNECESSARY	4			Δ	17	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONS	SENSUS %			_	
N- 12	LOSS	GÁIN	2	25 57	75	100			CONCLUSION
. I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL		11		Δ			25	%	
.7 SIMULATION	5				Δ		67	%	.7
.9 UNPROVEN	6		Δ				8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSENSUS %			The state of the state of
N= 12	LOSS	GAIN	0 25	50 75 100)		CONCLUSION
SHORT RANGE GOAL		8	Δ		8	%	
MEDIUM	10			Δ	67	%	MEDIUM
LONG			Δ		8	%	
UNDESTRABLE		2	Δ		17	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME	
N	72 73.5 75 76.5 78 11 84 67 90 94	0	MODE(S)	MEAN	(FROM 1972)	
12 EARLIEST	0-0	.6	74	74.6	2 1/2 - 3YRS	
12 MOST LIKELY	0-0	.9	76	76.6	4 - 5 YRS	
12 NOT LATER THAN	0-0	1.4	80	78.9	6 - 8 YRS.	

		DEVELOPMENT COSTS (IN MILLONS)			
N = compared to the compared t		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)	
11 LOWER LIMIT	.4	1,1.5M	1.18 M	.94 - 1.42	
11 UPPER LIMIT	8	3 M	2.86 M	2.43 - 3.30	

EVENT: IIA02

A remote controlled (via cabled signals), hydraulic, eight degrees of freedom manipulator arm ... same as IIA01 ...

SYSTEM CRITICALITY

N= 12		NTAGE GAIN		FINAL CONSENSUS %	00		ſ	CONCLUSION
ESSENTIAL			4		1 ſ	0	%	
DESTRABLE		12		Δ	П	83	%	DESIRABLE
UNNECESSARY	12			Δ	П	17	%	

DEGREE OF RISK

		NTAGE		FINAL CONSENSUS %	22		COMOL HEIGH
N= 12	LOSS	GAIN	<u> </u>	25 50 75 1	<u> </u>		CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL		1	Δ		8	%	
.7 SIMULATION		5		Δ	84	%	.7
.9 UNPROVEN	6		Δ		8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FIN	VAL CONSENSUS %				
N-12	LOSS	GAIN	0 25	50 75	100			CONCLUSION
SHORT RANGE GOAL			4			0	%	
MEDIUM	ittessor.	4		Δ		66	%	MEDIUM
LONG		2	Δ			17	%	
UNDESTRABLE	6		Δ			17	%	

PROBABLE TIMING **CALENDAR YEARS** DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76,5 78 EARLIEST 2 - 374,75 74.5 8 YRS 3 1/2 - 4 1/2_{RS} 11 MOST LIKELY 77 76.8 0-0 .9 80 51/2 - 80-0 NOT LATER THAN YRS.

#2.00 is				DEVELOPMENT COSTS (M MILLONS)		
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
11 LOWER LIMIT	.3	1 M	1.18 M	.97 - 1.39		
11 UPPER LIMIT	1.4	3 M	3.29 M	2.51 - 4.06		

EVENT: IIA03

A remote controlled (via cabled signals) hydraulic, eight degrees of freedom manipulator arm work system with position feedback for all degrees of freedom and force feedback for four degrees of freedom (i.e., three translations and grip) capable of mechanical tasks with aid of holding arm at 20,000 ft. The system has a 7-ft reach, lifts 150 pounds, has a grip strength of 500 pounds, a wrist torque of 30 pounds/feet, a wrist extension of 6 inches, and no weight limitation other than minimize.

SYSTEM CRITICALITY

N= 12		NTAGE		FINAL CONS	ENSUS %	100		г	CONCLUSION
ESSENTIAL	1022	GAIN 14	<u> </u>	Δ	<u></u>	٦,	50	%	ESSENTIAL
DESTRABLE	22			Δ	+ - + - + - + - + - + - + - + - + - + -		42	%	
UNNECESSARY		8	Δ				8	%	

DEGREE OF RISK

<u> </u>		NTAGE		FI	NAL CONSE	ISUS %			1	00W0WW0W
N= 12	LOSS	GAIN	ို	25	50	75	100			CONCLUSION
. I PROTOTYPE		8		Δ				8	%	
. 4 EXPERIMENTAL	14		4					0	%	
.7 SIMULATION	2					Δ		84	%	. 7
.9 UNPROVEN		8		Δ				8	%	

DESIRED COURSE OF ACTION

		NTAGE		FI	NAL CONSE	ISUS %			-	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		4			Δ			58	%	SHORT
MEDIUM		4		Δ				34	%	
LONG			Δ					8	%	
UNDESTRABLE	8		4					0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N		72 73,5 75 76,5 76 61 64 67 90 96 96 0 MOD	E(S) MEAN	(FROM 1972)
12	EARLIEST	00 .7 7	5 75.0 2	1/2-3 1/2 YRS
11	MOST LIKELY	0-0 1.0 7	6 77.1 4	1/2-5 1/2 YRS
11	NOT LATER THAN	00 1.8 8	0 78.9	6 - 8 YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11	LOWER LIMIT	.6		1.50 M	
11	UPPER LIMIT	8.	3 M	3.23 M	2.76-3.70

EVENT: IIA04

A remote controlled (via cabled signals), electromechanical, eight degrees of freedom manipulator arm ... same as IIA03 ...

SYSTEM CRITICALITY

	PERCE	NTAGE								
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			Δ					8	%	
DESTRABLE	4				Δ			58	%	DESIRABLE
UNNECESSARY		4		Δ				34	%	

DEGREE OF RISK

		NTAGE											
N- 12	LOSS	GAIN	L.	25	50	75	100			CONCLUSION			
. I PROTOTYPE			4					0	%				
.4 EXPERIMENTAL	8		4					0	%				
.7 SIMULATION	1					Δ		83	%	.7			
.9 UNPROVEN		9		Δ				17	%	-			

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N-12	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		8	Δ	17	%	
MEDIUM	4		Δ	33	%	MEDIUM
LONG	2		Δ	25	%	
UNDESTRABLE	2		Д	25	%	

PROBABLE TIMING

	(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 57 90 96	O	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	8.	75	75.1	2 1/2-3 1/2 YRS.
12 MOST LIKELY	00	1.2	77,78	77.25	4 1/2-6 YRS.
12 NOT LATER THAN	00	1.4	80	79.4	6 1/2-8 YRS.

CALENDAD VEADS

		(IM MILLONS)
N E CALLED AND THE STATE OF THE	MODE(S) MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.4 1.5,2M 1.57	M 1.32 - 1.82
11 UPPER LIMIT	.6 3 M3.50	M 3.15 - 3.85

EVENT: IIA05

A remote controlled (via cabled signals), electromechanical, eight degrees of freedom manipulator arm work system with position feedback on all degrees of freedom and force feedback on four degrees of freedom (i.e., three translations and grip) capable of performing mechanical tasks with the aid of a holding arm at 20,000-ft ocean depths. The system has a 10-ft reach, can lift 500 pounds, has a grip strength of 1,000 pounds, can apply a wrist torque of 60 pound/feet, has a wrist extension of 8 inches, and weighs less than 300 pounds.

SYSTEM CRITICALITY

N= 12		NTAGE		FII	NAL CONSE	NSUS %	100			CONCLUSION
ESSENTIAL	1022	GAIN	1	Î	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		0	%	
DESTRABLE	8				Δ			42	%	
UNNECESSARY		8			Δ			58	%	UNNECESSARY

DEGREE OF RISK

N=12		NTAGE GAIN	o	FINAL CONSENSUS 9	6 100		Г	CONCLUSION
.I PROTOTYPE	1000	OATIV	4	• • • • • • • • • • • • • • • • • • •		0	%	
.4 EXPERIMENTAL	14		4	•••••••••••••••••••••••••••••••••••••		0	%	
.7 SIMULATION		21		7		42	%	
.9 UNPROVEN	7			Δ		58	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONS					
N= 12	LOSS	GAIN	0 2	5 50	75	100			CONCLUSION
SHORT RANGE GOAL			4				0	%	
MEDIUM		3	Δ				17	%	
LONG	10			Δ			33	%	
UNDESTRABLE		7		Δ			50	%	UNDESIRABLE

PROBABLE TIMING CALENDAR YEARS (90% CONFIDENCE INTERVAL)									DEVELOPMENT TIME						
N		72	73.5	75	76.5	78	61	64	67 5	10 1 9	12 1	σ	MODE(S)	MEAN	(FROM 1972)
11	EARLIEST				0-0							.8	76	76.2	3 1/2-4 1/2 YRS
11	MOST LIKELY				0	- 0						1.8	80	78.3	5 1/2-7 YRS.
11	NOT LATER THAN						0-	•				2.3	85	82.3	9- 11/1/2 YRS.

		MODERS	AACAAI	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL]
N D CONTRACTOR OF THE CONTRACT		MODELSI	MEMIA	[30 % CONFIDENCE INTERVAL]
10 LOWER LIMIT	.9	3 M	2.45 M	1.91 - 2.99
10 UPPER LIMIT	1.1	4 M	4.85 M	4.21 - 5.49

EVENT: IIA06

A remote controlled (via cabled signals), hydraulic, eight degrees of freedom manipulator arm ... same as IIA05 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL	CONSEN	SUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	7		4					0	%	
DESTRABLE		3	-		• • • •	Δ		75	%	DESIRABLE
UNNECESSARY		4		Δ	• • • •			25	%	

DEGREE OF RISK

N- 12		NTAGE	0	FINAL CONSENSUS %	100		Γ	CONCLUSION
.I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL	14		<u>\</u>			0	%	
.7 SIMULATION		4		Δ		33	%	
.9 UNPROVEN		10		Δ		67	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL			A	0	%	
MEDIUM	9		Δ	27	%	
LONG		+5	Δ	55	%	LONG
UNDESTRABLE		+4	Δ	18	70	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	O	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0-0	.9	76	76.0	3 1/2 - 4 1/ZRS
10 MOST LIKELY	0-0	1.2	78	78.4	5 1/2 - 7 YRS.
10 NOT LATER THAN	0-0	2.3	80	82.0	8 1/2 -11 1/2YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N .	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
1/2 LOWER LIMIT	.9	3 M	2.60 M	2.08 - 3.12
10 UPPER LIMIT	1.0	4 M	5.10M	4.50 - 5.70

EVENT: IIA07

An attachable (e.g., clamps, suction cups, adhesives, etc) lifting device, using chemical gas generation for buoyancy capable of lifting a 250-pound object from the ocean floor at a depth of 20,000 ft to the surface.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS	%		_	
N=12	LOSS	GAIN	0 25 50 7	5 100			CONCLUSION
ESSENTIAL	7		Δ		50	%	ESSENTIAL
DESTRABLE		6	Δ		42	%	
UNNECESSARY		1			8	%	

DEGREE OF RISK

[]		NTAGE	FINAL CONSENSUS %		_	
N* 12	LOSS	GAIN	0 25 50 75		L	CONCLUSION
. I PROTOTYPE	14		4	0	%	
.4 EXPERIMENTAL		6	Δ	42	%	
.7 SIMULATION			Δ	42	%	.7
.9 UNPROVEN		8	Δ	16	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSENSUS %			_	
N* 12		GAIN	0 25	50 75	100			CONCLUSION
SHORT RANGE GOAL		20			Δ	84	%	SHORT
MEDIUM	29		A			0	%	
LONG		8	Δ			8	%	
UNDESTRABLE		1	Δ			8	%	-

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		73,5 75 76,5 76 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11	EARLIEST	0-0	.9	74	74.1	1 1/2 - 2 1/2YRS.
11	MOST LIKELY	00	2.0	76	76.2	3 - 5 1/2 YRS.
11	NOT LATER THAN	00	3.0	78,80	79.4	5 1/2 - 9 YRS.

FST	MAT	TFN	COST	OT 2	ACHIEV	F
E 2 11	I I I I I I I I I I	LLU	LU3 I	3 10	AUDILL	_

N		DEVELOPMENT COSTS (IM MILLONS) (90% CONFIDENCE INTERVAL)	
11 LOWER LIMIT	1.3		M .24 - 1.67
11 UPPER LIMIT	5.4	1 M 2.96	M .01 - 5.92

EVENT: IIA08

An attachable (e.g., clamps, suction cups, adhesives, etc) lifting device, using pressure sphere dewatering for buoyancy capable of lifting... same as IIA07 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSER	ISUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	6		Δ					8	7.	
DESTRABLE		20					Δ	92	7.	DESIRABLE
UNNECESSARY	14		4					0	%	

DEGREE OF RISK

N- 12		NTAGE	FINAL CONSENSUS % 0 25 50 75 10	00	Г	CONCLUSION
. I PROTOTYPE	7		•	0	%	
.4 EXPERIMENTAL	3		Δ	33	%	
.7 SIMULATION		9	Δ	59	%	.7
.9 UNPROVEN		1	ıΔ	8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N- 12		GAIN	0 25 50 75 10	00			CONCLUSION
SHORT RANGE GOAL		11	Δ		33	%	
MEDIUM	5		Δ		59	%	MEDIUM
LONG		1	Δ		8	%	
UNDESTRABLE	7		A		0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	2		DEVELOPMENT TIME
N 7	73,5 75 76,5 78 81 84 87 90 96	ø MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	.8 74	74.1	1 1/2-2 1/2YRS
12 MOST LIKELY	00	1.9 75	75.8	3 - 5 YRS.
12 NOT LATER THAN	00	3.1 78	78.6	S - R YRS.

	The same			(IN MILLONS)
		MODE(S)	MEAN	(90% CONFIDERICE INTERVAL)
11 LOWER LIMIT	1.3	.5 M	.84 M	.11 - 1.56
11 UPPER LIMIT	5.5	1 M	2.72 M	0 - 5.72

IIB Sub-Technology: Ballast Systems

Objective: To develop a lightweight, relatively compact (120 lbs/ $\rm ft^3$), highly reliable, efficient ballasting system that has a low-power requirement and can operate at 20,000-ft depths (near silty bottoms, if required). The systems components must be based upon 500 hours unattended and 2,000 hours intermittant operations.

Events IIB01 - IIB10 address this objective.

EVENT: IIB01

A seawater ballast positive displacement pump capable of pumping against the seawater pressure for 2,000 hours intermittant at 20,000-ft ocean depths at a 2.5 gpm rate.

SYSTEM CRITICALITY

	PERCE	NTAGE	F	INAL CONSENSUS %			_	
N= 11	LOSS	GAIN	0 25	50 75	100			CONCLUSION
ESSENTIAL		5			Δ	82	%	ESSENTIAL
DESTRABLE	5		Δ			18	%	
UNNECESSARY			4			0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL (CONSENSUS %			_	
N= 10		GAIN	0 25	50 75	100			CONCLUSION
. I PROTOTYPE	3		Δ			20	%	
. 4 EXPERIMENTAL	3		Δ			20	%	
.7 SIMULATION		6		Δ		60	%	.7
.9 UNPROVEN			A			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	FINAL CONS	ENSUS %			_	
N- 11		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	3					Δ		82	%	SHORT
MEDIUM		3		Δ				18	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	(90% CONFIDENCE INTERVAL)	No. of London	DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 57 90 96	o MODE(S) ME	AN (FROM 1972)
11 EARLIEST	00	.8 74 74	.1 1 1/2-2 1/2 YRS
10 MOST LIKELY	0-0	1.0 75 75	.8 3 - 4 1/2 YRS
10 NOT LATER THAN	00	1.0 78 77	.7 5 - 6 1/2 YRS

	_	IMODE/C)	MEAN	DEVELOPMENT COSTS [IM MILLONS]
	ACARSTONIA Z WIN CONTRACTOR	MODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	.4	.5 M	.625 M	.3689
10 UPPER LIMIT	.8	1 1 M	1.57 M	1.09 - 2.05

EVENT: IIB02

A ballast fluid (oil) positive displacement pump capable of pumping ...same as IIB01 ...

SYSTEM CRITICALITY

N*11		NTAGE		FINAL CONSENSUS %		Г	CONCLUSION
ESSENTIAL	6	GAIN	F	Δ	9	76	
DESTRABLE		5		Δ	82	%	DESIRABLE
UNNECESSARY		1		Δ	9	76	

DEGREE OF RISK

N- 10		NTAGE GAIN	FINAL CONSENSUS % 75	100		Г	CONCLUSION
.1 PROTOTYPE		2	Δ		10	%	
.4 EXPERIMENTAL		12	Τ		50	%	.4
.7 SIMULATION	13		Δ		10	%	
.9 UNPROVEN	1		1 <u></u>		30	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	1	INAL CONSENSUS %			
N* 11	LOSS	GAIN	0 25	50 75 100			CONCLUSION
SHORT RANGE GOAL		6		Δ	73	%	SHORT
MEDIUM	7		Δ		18	%	
LONG			4		0	%	
UNDESTRABLE		1	Δ		9	%	

PROBABLE TIMING

	-	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	77	73,5 75 76,5 78 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11	EARLIEST	0-0	.9	74	74.2	1 1/2-2 1/2 YRS.
10	MOST LIKELY	0-0	1.3	75	75.8	3 - 4 1/2 YRS
10	NOT LATER THAN	00	1.5	77,78	77.8	5 - 6 1/2 YRS

<u></u>			Lugaria		(IN MILLONS)
N		σ	WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
10	LOWER LIMIT	.3	.5 M	.65 M	.4387
10	UPPER LIMIT	1.0	23 M	1.73 M	1.14 - 2.32

EVENT: IIB03

A seawater ballast hydraulic system capable of transferring seawater against ... same as IIB01 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSEN	SUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		6			Δ			60	%	ESSENTIAL
DESTRABLE	6				Δ			40	%	
UNNECESSARY			4					0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL		_			
N- 9		GAIN	0 25	50 75	100			CONCLUSION
. I PROTOTYPE	4		Δ			11	%	
.4 EXPERIMENTAL		7	Δ			22	%	
.7 SIMULATION	3			Δ		67	%	.7
.9 UNPROVEN			A .			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL C	ONSENSUS %			_	
N-10	LOSS	GAIN	0	25 5	0 75	100		i	CONCLUSION
SHORT RANGE GOAL	9				Δ		60	%	SHORT
MEDIUM		9		Δ			40	%	
LONG			4				0	%	
UNDESTRABLE			A				0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] 75 76,5 78 MODE(S) MEAN 81 84 67 90 10 EARLIEST .6 74.3 2 - 2 1/2 74 00 MOST LIKELY .8 76 76.2 3 1/2 - 4 1/2RS 0-0 NOT LATER THAN 78 0-0

N		- TO IN	MODE(S)	ANE A N	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]
9	LOWER LIMIT	.3	.5 M	.81M	.60 - 1.01
8	UPPER LIMIT	.7	2,3 M	2.23M	1.77 - 2.68

EVENT: IIB04

A ballast fluid (oil) hydraulic system capable of transferring fluid against...same as IIB01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	_		
N= 10	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL	7		Δ	10	%	
DESTRABLE		12	Δ	70	%	DESIRABLE
UNNECESSARY	5		Δ	20	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N* 9		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			A		0	%	
.4 EXPERIMENTAL	20		Δ		22	%	
.7 SIMULATION		12	Δ		45	%	.7
.9 UNPROVEN		8	Δ		33	%	

DESIRED COURSE OF ACTION

N= 9		NTAGE	FINAL CONSENSUS % 25 50 75 10	0	Γ	CONCLUSION
SHORT RANGE GOAL	6		Δ	44	76	
MEDIUM		22	Δ	56	%	MEDIUM
LONG	8			0	%	
UNDESTRABLE	8		A	0	%	=1

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) (FROM 1972) MODE(S) MEAN 75 76,5 78 10 EARLIEST .6 74.3 2 - 21/200 74 9 MOST LIKELY .6 76 76.3 4 - 41/2YRS 0-0 1.3 78 78.4 51/2 - 7NOT LATER THAN 0-0 YRS.

	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	ERISSING TRANSPORTS	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.4	.5 M	.82 M	
9	UPPER LIMIT	1.1	2 M	2.08 M	1.39 - 2.77

EVENT: IIB05

A hydraulically-operated, 2-inch seawater valve with a wet weight of less than 50 lbs, highly reliable, and capable of 500 operations of bubble tight shut-off at depths of 20,000 ft against differential pressures of 10,000 psi.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 11		GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	5		Δ	18	%	
DESTRABLE	7		Δ	55	76	DESIRABLE
UNNECESSARY		12	Δ	27	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			-	
N= 10		GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL	8		4					0	%	
.7 SIMULATION		2			Δ			40	9,	
.9 UNPROVEN		6			Δ	· · · · · · · · · · · · · · · · · · ·		60	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS	%		_	
N* 10		GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL	18		Δ		20	%	
MEDIUM		14	Δ		60	%	MEDIUM
LONG			A		C	%	
UNDESTRABLE		4	Δ		20	%	

PR	DBABLE TIMING		(901	CALENDAR		RVAL)					DEVELOPMENT TIME
N		72	73,5	75 76.5 78	81	84 87 90	96	•	MODE(S)	MEAN	(FROM 1972)
11	EARLIEST		0	0				.5	74	74.1	2 - 2 1/2 YRS
10	MOST LIKELY			0-0				1.0	76	76.0	3 1/2-4 1/2 YRS
10	NOT LATER THAN			00				1.8	78	78.0	5 - 7 YRS.

N			MODE(S)	MFAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT		2 M	.25M	
9	UPPER LIMIT	,8	1 M	.99 M	

EVENT: IIB06

An electrically-operated, 2-inch seawater valve ... same as IIB05 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CO	NSENSUS %			_	
N= 11		GAIN	0	25 50	75	100			CONCLUSION
ESSENTIAL			4				0	%	
DESTRABLE	3				Δ		82	%	DESIRABLE
UNNECESSARY		3		Δ			18	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N=10	LOSS	GAIN	0	25 50	75	100			CONCLUSION
. I PROTUTYPE	7		4				0	%	
.4 EXPERIMENTAL		2	Δ				10	%	
.7 SIMULATION		2		Δ			40	%	
.9 UNPROVEN	4			Δ		•	50	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS	%		_	
N= 10	LOSS	GAIN	0 25 50 7	5 100			CONCLUSION
SHORT RANGE GOAL			4		0	%	
MEDIUM		5		Δ	90	%	MEDIUM
LONG			4		0	%	
UNDESTRABLE	5		Δ		10	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 7 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	.8	74	74.3	2 - 2 1/2 YRS.
10 MOST LIKELY	00	1.2	76	76.3	3 1/2 - 5 YRS.
10 NOT LATER THAN	0-0	2.0	78	78.5	51/2 - 71/2ps

		-	,				
N		σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
9	LOWER LIMIT	.3	.2 M	.36 _M	.2053		
9	UPPEP. LIMIT	1.0	.3,1 M	1.16M	.53 - 1.78		

EVENT: IIB07

An hydraulically-operated, 2-inch gas valve ...same as IIB05...

SYSTEM CRITICALITY

N= 11		NTAGE	0	FIN 25	AL CONSENS	SUS %	100		Г	CONCLUSION
ESSENTIAL	1022	1	Δ	<u></u>	T	<u> </u>	7	9	7,	
DESTRABLE	14				Δ			55	76	DESIRABI.E
UNNECESSARY		13		Δ				36	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N= 10		GAIN	0	25 50	75	100			CONCLUSION
.I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL		2	Δ				10	%	
.7 SIMULATION		2		Δ			40	%	
.9 UNPROVEN	4			Δ			50	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 10		GAIN	0 25 50 75	100			CONCLUSION
SHORT RANGE GOAL		5	Δ ,		20	%	
MEDIUM	12		Δ		50	%	MEDIUM
LONG			A		0	%	
UNDESTRABLE		7	Δ		30	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	0% CONFIDENCE INTERVAL)			
N	"	73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	WEYN	(FROM 1972)
9	EARLIEST	00	1.4	74	74.3	1 1/2 - 3 YRS.
9	MOST LIKELY	00	2.0	76	76.1	3 - 5 1/2 YRS.
9	NOT LATER THAN	00	2.8	78	78.11	4 1/2 - 8 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

				DEVELOPMENT COSTS (IN MILLONS)
N		• MODE(S	S) MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.5 .1,.2	M .41 M	.0677
9	UPPER LIMIT	1.7	M1.24 M	.18 - 2.30

EVENT:

IIB08

An electrically-operated, 2-inch gas valve... same as IIB05.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 11	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL			A	0 %	
DESTRABLE	22		Δ	54.5%	DESIRABLE
UNNECESSARY		22	Δ	45.5%	

DEGREE OF RISK

N= 10		NTAGE		NAL CONSENSUS %	100		Г	CONCLUSION
. I PROTOTYPE	1033	GAIN	4			0	%	
.4 EXPERIMENTAL	5		Δ		• • • • • • • • • • • • • • • • • • • •	10	%	
.7 SIMULATION		9		Δ		40	%	
.9 UNPROVEN	4			А		50	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONSE	NSUS %				
N* 10	LOSS	GAIN	0 25	5 50	75	100			CONCLUSION
SHORT RANGE GOAL			4			\Box	0	%	
MEDIUM	9			Δ.	<u> </u>		60	%	MEDIUM
LONG	8		A				0	%	
UNDESTRABLE		17		Δ			40	%	

PROBABLE TIMING

		(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
10	EARLIEST	0-0	1.3	74	74.5	2 - 3 YRS.
9	MOST LIKELY	00	1.7	76	76.6	3 1/2-5 1/2 rrs.
9	NOT LATER THAN	00	2.6	78	78.8	5 - 8 1/2 YRS.

ESTIMATED (COSTS	TO I	ACHIEVE
-------------	-------	------	---------

[N			MODERCI	AACAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
IN			MODELS	INEAN	(30 % CONFIDENCE INTERVAL)
9	LOWER LIMIT	.9	.2,.5M	.57 M	.03 - 1.11
9	UPPER LIMIT	2.9	.2,1 M	1.79 M	.00 - 3.62

EVENT: IIB09

An hydraulically-operated, 2-inch oil valve...same as IIB05.

SYSTEM CRITICALITY

	PERCE	NTAGE	FIN	AL CONSENSUS	%			_	
N= 11	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	6		Δ				9	%	
DESTRABLE		3		Δ			73	%	DESIRABLE
UNNECESSARY		3	Δ				18	%	- west that

DEGREE OF RISK

N- 10		NTAGE	FINAL CONSENSUS %	100			CUNCLUSION
N= 10 .I PROTOTYPE	LOSS	GAIN	25 50 75	100	0	%	CONCLUSION
.4 EXPERIMENTAL		5	Δ		20	%	
.7 SIMULATION		17	Δ		40	%	.7
.9 UNPROVEN	22		Δ		40	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	AL CONSEN	SUS %			,	
N- 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	1			Δ				30	%	
MEDIUM		6			Δ			60	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE	5		Δ					10	%	

PROBABLE TIMING

	(90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76.5 78 81 84 87 40 96	o MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	0-0	.8 74	74.1	1 1/2-2 1/2 YRS.
10 MOST LIKELY	00	1.3 76	76	3 - 5 YRS.
10 NOT LATER THAN	0-0	2.0 78	77.9	5 - 7 YRS.

_					DEVELOPMENT COSTS (IN MILLONS)
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.4	.1,.2M	.36 M	.162
9	UPPER LIMIT	1.7	.2,1 M	1.2 M	.13 - 2.27

EVENT: IIB10

An electrically-operated, 2-inch oil valve...same as IIB05.

SYSTEM CRITICALITY

N= 11		NTAGE		FINAL CONSENSUS %	0			CGNCLUSION
ESSENTIAL	1		1			0	%	
DESTRABLE	1			Δ	1	82	%	DESIRABLE
UNNECESSARY		1		Δ		18	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 10		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			A		0	%	
.4 EXPERIMENTAL		3	Δ		20	%	
.7 SIMULATION		15	Δ		40	%	.7
.9 UNPROVEN	18		Δ		40	%	

DESIRED COURSE OF ACTION

N= 10		NTAGE	o .	F11	NAL CONSE	NSUS %	100		Γ	. CONCLUSION
SHORT RANGE GOAL			4	•				0	%	
MEDIUM		15					Δ	90	%	MEDIUM
LONG	8		4					0	%	
UNDESTRABLE	7		Δ					10	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	0-0	1.0	74	74.4	2 - 3 YRS.
10 MOST LIKELY	00	1.4	76	76.4	3 1/2 - 5 YRS.
10 NOT LATER THAN	0-0	2 0	78	78.5	$5 \frac{1}{2} - 7 \frac{1}{2} = 5$

ESTIMATED COSTS	2 IN WALLIEAS	
-----------------	---------------	--

N			MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
9	LOWER LIMIT		.2,.5M		
9	UPPER LIMIT	.8	.2,1 M	.84 M	.34 - 1.35

DEVELOPMENT COSTS

IIC Sub-Technology: <u>Hydraulic Systems</u>

Objective: To advance the technologies necessary to have 20,000-ft seawater hydraulic systems for use in submersible and remote work systems.

Events IIC01 - IIC02 address this objective.

EVENT: IIC01

A low-pressure (500 psi over ambient pressure) hydraulic system using seawater as the hydraulic fluid. The system is open-ended, and includes cylinders, rotary actuators, hydraulic motors, valves and pressure accumulators. It is undisturbed by fine silt contamination, and is operable for 1,000 hours to ocean depths down to 20,000 ft. Radiated noise of the system regardless of size or speed, should not exceed 30 db above .0002 microbars at a distance of 10 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 12	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	4		Δ	50	%	ESSENTIAL
DESTRABLE		11	Δ	42	%	
UNNECESSARY	7			8	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	VSUS %			_	
N* 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE		2		Δ				18	%	
. 4 EXPERIMENTAL			4					0	%	
.7 SIMULATION		13			Δ			55	%	.7
.9 UNPROVEN	15			Δ				27	%	

N= 11 3		NTAGE	FINAL CONSENSUS %		T	CONCLUSION
SHORT RANGE GOAL	-	GAIN 13	Δ	46	%	SHORT
MEDIUM		2	Δ	27	%	
LONG	16		Δ	9	%	
UNDESTRABLE		1	Δ	18	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	Marian 7	2 73,5 75 76,5 78 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	0-0	. 6	74.75	74.7	2 1/2 - 3 YRS.
9	MOST LIKELY	0-0	.8	77	76.6	4 -5 YRS.
9	NOT LATER THAN	00	3.8	80	79.8	5 1/2 - 10 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	1.7	.6,2 M	2.02M	1.04 - 3.0
10 UPPER LIMIT	14.4	4 M	10.03 M	1.68 - 18.38

EVENT: IIC02

A high-pressure (2,000 psi over ambient pressure) hydraulic system... same as IIC01

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 12	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	14		Δ	25	%	
DESTRABLE		12	Δ	58	%	DESTRABLE
UNNECESSARY		2	Δ	17	%	

DEGREE OF RISK

N- 11		NTAGE GAIN	FINAL CONSEN	SUS %	Γ	CONCLUSION
.I PROTOTYPE		1	Δ	9	%	
.4 EXPERIMENTAL		1	Δ		%	
.7 SIMULATION	7		Δ	27	%	
.9 UNPROVEN		5	À	55	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N- 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		1	Δ	9	%	
MEDIUM		4	Δ	46	%	MEDIUM
LONG	15		Δ	27	%	
UNDESTRABLE		10	Δ	18	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) (FROM 1972) MODE(S) MEAN 75 76,5 78 10 EARLIEST 1.7 75 75.5 1/2 - 4 1/2 YRS 0--- 0 78.5 78 4 - 9 10 MOST LIKELY 0----4.0 YRS NOT LATER THAN 79.6 61/2-81/2 YRS 80 0-0

ESTIMATED COSTS TO ACHIEVE			n kgan Mayara	DEVELOPMENT COSTS (IN MILLONS)
N	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	2.4	5 M	3.2 M	1.82 - 4.58
10 UPPER LIMIT	22.7	3 M	15.44 M	2.31 - 28.57

APPENDIX C TECHNOLOGY AREA III. SEAFLOOR CONSTRUCTION

SUB-TECHNOLOGY AREAS:

- A. Construction by Divers
- B. Site Selection and Preparation
- C. On-Bottom Construction
- D. In-Bottom Construction

IIIA Sub-Technology: Construction by Divers

Objective: To develop the techniques and hardware necessary for divers to conduct underwater construction for extended periods on the continental shelf (to 1,000 ft). The construction capability will include the following:

- O Site selection
- O Site preparation
- O Facility construction

Events IIIA01 - IIIA06 address this objective.

EVENT: IIIA01

Hydraulic systems with attachable tool suits that will provide the conventional construction function, sawing, drilling, torqueing, hammering, holding, positioning, etc., utilizing conventional hydraulic fluids and are specifically designed for use by divers underwater to depths of 1,000 ft.

SYSTEM CRITICALITY

	PERCENTAC	GE	FINAL CONSENSUS %		_	
N= 10	LOSS GA	IN º	25 50 75 100			CONCLUSION
ESSENTIAL			Δ	50	%	ESSENTIAL
DESTRABLE			Δ	50	%	DESIRABLE
UNNECESSARY		4		0	%	

DEGREE OF RISK

N= 10	NTAGE	0	F1	NAL CONSE	NSUS %	100			CONCLUSION
. I PROTOTYPE				Δ			40	%	.1
. 4 EXPERIMENTAL			Δ.				20	%	
.7 SIMULATION				Δ			40	%	.7
.9 UNPROVEN		4					0	%	

N- 10	PERCENTAC LOSS GAI		INAL CONSENSUS %	100			CONCLUSION
SHORT RANGE GOAL				Δ	90	%	SHORT
MEDIUM		Δ			10	%	
LONG		4			0	%	
UNDESTRABLE		14			0	%	

PROBABLE TIMING	. CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 57 90 96	0	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0-0	.9	74	73.9	1 - 2 YRS
10 MOST LIKELY	0-0	1.2	75	75.8	3 - 41 YRS
10 NOT LATER THAN	0-0	2.0	80	78.7	5 - 8 YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	COMMENTS OF THE PARTY OF THE PARTY.	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	1.5	.5 M	.90 M	0 - 1.81
9	UPPER LIMIT	4.4	.5 M	3.06 M	.30 - 5.81

EVENT: IIIA02

Hydraulic tools as in IIIA01, except that seawater is used as the hydraulic fluid in an open cycle.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 10	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL			Λ	20	%	
DESIRABLE	10		Δ	50	%	DESIRABLE
UNNECESSARY		10	Δ	30	%	

DEGREE OF RISK

N= 10		NTAGE GAIN	0	FINAL CONSENSUS % 25 50 75 100			CONCLUSION
. I PROTOTYPE		10		Δ	10	%	
.4 EXPERIMENTAL			4		0	%	
.7 SIMULATION	20			Δ	70	%	
.9 UNPROVEN		10	\prod	Δ	20	%	

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %	55011		_	
N- 9	LOSS	GAIN	0 25 50 75	100			CONCLUSION
SHORT RANGE GOAL	27		Δ		33	%	
MEDIUM		12	Δ		22	%	
LONG		3	Δ		33	%	LONG
UNDESTRABLE		12	Ι. Δ.		12	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N]	72 73.5 75 76.5 78 81 84 87 90 93 99	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	0-0	1,8	75	75.2	$2 - 4\frac{1}{2}$ YRS.
9	MOST LIKELY	0-0	2.4	77,80	79.1	51 - 81 YRS.
9	NOT LATER THAN	0-0	2 9	85	83.7	10 - 13 + YRS

			(IN MILLONS)
N	of a simple control of the	MODE(S) MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	6.4.5,1 M3.06 M	0 - 7.36
8	UPPER LIMIT	15.6 5 M8.88 N	0 - 19,35

EVENT: IIIA03

Tools such as disc and chain saws, drills, hammers, impact wrenches, etc., powered by electricity and specifically designed for underwater use by divers to depths of 1 000 ft.

SYSTEM CRITICALITY

N= 10		NTAGE	0	FINAL CONSENS	US %	100		Г	CONCLUSION
ESSENTIAL	10	GAIN	Δ		<u> </u>	۱۳	10	%	- CONCLUSION
DESTRABLE				Δ			50	%	DESIRABLE
UNNECESSARY		10		Δ			40	%	

DEGREE OF RISK

		NTAGE	FINAL CONSE			-	
N* 10	LOSS	GAIN	25 50	75 100			CONCLUSION
. I PROTOTYPE			Δ		10	%	
.4 EXPERIMENTAL	10		Δ		20	%	
.7 SIMULATION		20		3	60	%	.7
.9 UNPROVEN	10		Δ		10	%	

DESIRED COURSE OF ACTION

N= 9	NTAGE	FINAL CONSENSUS % 0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	GAIN	Δ	56	8	SHORT
MEDIUM	2	Δ	22	%	01.01.1
LONG		A	0	%	
UNDESTRABLE	12	Δ	22	%	

PR	OBABLE TIMING		. (90		ALEND				AL)					_		DEVE	LOPM	ERT	TIME
N		72	73,5	75	76.5	78	81	84	67	90	96	0	MODE(S)	MEA	٧	(F	ROM	1972	<u> </u>
9	EARLIEST			00								.4	75	74.7		2	-,:	3	YRS.
9	MOST LIKELY				0	•						1.6	77,78	74.4		4	- (6 1	YRS.
9	NOT LATER THAN					0		~				2.9	80	81.4		7-	-	11	YRS.

N			MODE(S)	AAFAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	.6_	.5,1 M	.69 M	.30 - 1.09
8	UPPER LIMIT	1.4	1 M	2.09M	1.16 - 3.03

EVENT: IIIA04

An underwater laser surveyeing system specifically designed for diver use, capable of accurate third order angular measurement (vertical and horizontal).

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %		_	
N= 9	LOSS	GAIN	ု	25 50 75 100			CONCLUSION
ESSENTIAL	11		4		0	%	
DESTRABLE		11		Δ	89	%	DESIRABLE
UNNECESSARY				Δ	11	%	

DEGREE OF RISK

	PERCE	PERCENTAGE FINAL CONSEN							
N= 8		GAIN	0	25	50	75	100		CONCLUSION
. I PROTOTYPE			4					0 %	
.4 EXPERIMENTAL		12.5	Δ					12.5%	
.7 SIMULATION		11	T			Δ		62.5%	.7
.9 UNPROVEN	12.5			Δ				25 %	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	NSUS %		_	
N* 8	LOSS	GAIN	<u> </u>	25	50	75	100		CONCLUSION
SHORT RANGE GOAL	25		4					0 %	
MEDIUM		37.5				Δ		87.5 %	MEDIUM
LONG	12.5			Δ				12.5 %	
UNDESTRABLE			A					0 %	

PROBABLE TIMING

PK	UBABLE IIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	4		DEVELOPMENT TIME			
N	,	73,5 75 76,5 78 81 84 67 90 99	σ	MODE(S) MEAN	(FROM 1972)			
8	EARLIEST	00	2.5	75,80 76.9	$3 - 6\frac{1}{2}$ YRS.			
8	MOST LIKELY	0-0	3.6	85 81.5	7 - 12 YRS.			
8	NOT LATER THAN	0-0	4.4	90 86.9	12 - 18 YRS.			

_			(M MITONS)
N		# MODE(S) MEAN	(90% CONFIDENCE INTERVAL)
7	LOWER LIMIT	17.0 .2,.5 M 9.06 M	0 - 21.56
7	UPPER LIMIT	50.6 N/A M26.93 M	0 - 64.12

EVENT: IIIA05

An underwater optical surveying system ... same as ${\tt IIIA04}$

SYSTEM CRITICALITY

N= 9		NTAGE GAIN		FINAL CUNSENSUS % 25 50 75 100		ſ	CONCLUSION
ESSENTIAL	8			Δ	22	%	
DESTRABLE		6		Δ	56	%	DESIRABLE
UNNECESSARY		2		Δ	22	%	

DEGREE OF RISK

	PERCENTAGE FINAL CONSENSUS %						2010110101
N= 9	LOSS	GAIN	e_	25 50 75 100			CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL	10		4		0	%	
.7 SIMULATION		17		Δ	67	%	.7
.9 UNPROVEN	7			Δ	33	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 9	LOSS	GAIN	0 25 50 75 100	·	CONCLUSION
SHORT RANGE GOAL	5.5		Δ	44.5 %	
MEDIUM		4.5	Δ	44.5 %	MEDIUM
LONG			Δ	0 %	
UNDESTRABLE		1	Δ	11 %	

PR	OBABLE TIMING	. CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
8	EARLIEST	00	1.9	75	75.4	$2 - 4\frac{1}{2}$ YRS.
8	MOST LIKELY	0-0	2.9	80	78.9	5 - 9 YRS.
8	NOT LATER THAN	00	4.1	85	82.6	$8 - 13\frac{1}{2}$ YRS.

N		0	MODE(S)	MFAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
14					
7	LOWER LIMIT	3.4	N/A M	1.76M	0 - 4.24
7	UPPER LIMIT	8.5	.5,10 M	6.82 M	.61 - 13.04

EVENT:

IIIA06

An underwater acoustic surveying system ... same as IIIA04 ...

SYSTEM CRITICALITY

	PERCE	ITAGE	FINAL CONSENSUS %	-	
N= 8	LOSS	SAIN	0 25 50 75 10	٥	CONCLUSION
ESSENTIAL		3	Δ	25 %	
DESTRABLE	15.5)	Δ	62.5%	DESIRABLE
UNNECESSARY		12.5		12.5%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 8	LOSS	GAIN	0 25 50 75 10	0	CONCLUSION
. I PROTOTYPE			4	0 %	
.4 EXPERIMENTAL		14	Δ	25 %	
.7 SIMULATION	4.5		Δ	62.5%	. 7
.9 UNPROVEN	9.5		Δ	12.5%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSEN	SUS %			
N= 8	LOSS	GAIN	0 25	50	75	100		CONCLUSION
SHORT RANGE GOAL	17			Δ			50 %	
MEDIUM		28		Δ			50 %	MEDIUM
LONG	11		4				0 %	
UNDESTRABLE			A				0 %	

PR	OBABLE TIMING		(90				YEA		/AL)						DEV	VEL	OPA	AENT	TIME
N		72	73,5	75	76.5	78	81	84	67	90	93 99	σ	MODE(S)	ME	AN		(FF	ROM	1972	2)
8	EARLIEST			00								.6	75	74	.8		2 }	-	3	YRS.
8	MOST LIKELY				0	-0			_			1.3	77	77	.6	V	43	-	61	YRS.
B	NOT LATER THAN					-	-	-0				2 4	81.85	81	.5		8	-	11	VBS

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
7	LOWER LIMIT	2.0	.54	1.98 M	.52 - 3.43
7	UPPER LIMIT	7.4	1 M	6.25M	.84 -11.66

IIIB Sub-Technology: Site Preparation and Selection

Objective: To develop the technologies and techniques by which a seafloor site at 8,000-ft depths can be prepared as a habitat construction site. The following operational objectives are to be undertaken:

- O Excavation, trenching, and dredging of bottom soils
- O Seafloor soil transportation and filling
- O Soil mass stabilization
- O Site appraisal

Events IIIB01 - IIIB06 address this objective.

EVENT: IIIB01

Determination of the stability of a submarine slope at water depths of 20,000 ft, using analytical techniques based on physical measurements of the topography, structure, and strength of the sediment.

SYSTEM CRITICALITY

N= 10		NTAGE		FINAL CONSE	NSUS %	100		Г	CONCLUSION
ESSENTIAL	13				3		60	%	ESSENTIAL
DESTRABLE		11	Δ				20	%	
UNNECESSARY		2	Δ				20	%	

DEGREE OF RISK

N= 10		NTAGE		FINAL CONSENSUS % 25 50 75 100		г	CONCLUSION
.I PROTOTYPE	11033	GAIN	1		0	%	
.4 EXPERIMENTAL	8			Δ	10	%	
.7 SIMULATION		17		Δ	90	%	.7
.9 UNPROVEN	9		Δ		0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 10	LOSS	GAIN	0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL		3	Δ .	30 %	
MEDIUM	5		Δ	50 %	MEDIUM
LONG		2	Δ	20 %	
UNDESTRABLE			4	0 %	

PROBABLE TIMING **CALENDAR YEARS** DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) **FROM 1972** MODE(S) MEAN 75 76,5 78 σ 10 EARLIEST 0-0 .9 75 21 - 31 74.8 YRS. 0-0 80 79.0 $5\frac{1}{2} - 8\frac{1}{2}$ 10 MOST LIKELY 2.8 YRS 80,85 O NOT LATER THAN 0 84.0 10 - 14YRS

ESTIMATED	COSTS TO	ACHIEVE
-----------	----------	---------

			الساليد		(IN WILLONS)
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	1.6	.2 M	1.11 M	.11 - 2.12
9	UPPER LIMIT	3.0	5 M	3.13 M	1.30 - 4.97

EVENT: IIIB02

Stabilization of an area of ocean sediments 100 yds square at a water depth of 8,000 ft, which would otherwise fail in a mass sediment slide when a structure with a submerged weight of 100 tons is placed with a raft foundation on the slope.

SYSTEM CRITICALITY

N= 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75	100		ļ	CONCLUSION
ESSENTIAL	7		Δ		20	%	
DESTRABLE		3	Δ		30	%	
UNNECESSARY		4	$\dot{\Delta}$		50	%	UNNECESSARY

DEGREE OF RISK

- 10-17-1	PERCE	NTAGE		FIN	AL CONSEN	ISUS %				
N= 10		GAIN		25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL		1	Δ					10	%	
.7 SIMULATION		12		Δ				30	%	
.9 UNPROVEN	13				Δ			60	%	.9

N= 10		NTAGE GAIN	FINAL CONSENSUS % c 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		1	Δ	20	%	
MEDIUM		4	Δ	40	%	MEDIUNI
LONG	9		4	0	%	
UNDESTRABLE		4	Δ	40	%	UNDESIRABLE

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	,	72 73,5 75 76,5 78 81 84 67 90 98 99	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	00	3.6	75	76.4	$2 - 6\frac{1}{2}$ YRS.
9	MOST LIKELY	00	5.3	80	81.6	$6\frac{1}{2} - 13$ YRS.
9	NOT LATER THAN	0-0	8.0	85	87.6	101 - 201 YRS.

POTIMATER	COCTC	TO	APHIEVE
ESTIMATED	P0212	10	AUDIETE

N			MODE(S)	MFAN	DEVELOPMENT COSTS (IM MILLONS) [90% CONFIDENCE INTERVAL)
8	LOWER LIMIT		.5,1 M		
8	UPPER LIMIT	3,7		4.31M	

EVENT: IIIB03

A bottom crawling remotely operated vehicle, with a rotary cutter and slurry suction removal system, that performs leveling, excavation, and trenching at a rate of 50 cubic yds/hr in unconsolidated mud and 20 cubic yds/hr in a dense sandy sediment, at a water depth of 8,000 ft on slopes of at least 10° , producing a finished cut with a tolerance of \pm 6 inches.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL	7		Δ	20 %	
DESTRABLE		6	Δ	70 %	DESIRABLE
UNNECESSARY		1	Ι.Δ.	10 %	

DEGREE OF RISK

10		NTAGE		FINAL CON	SENSUS %			_	
N= 10 .I PROTOTYPE	LOSS	GAIN	1	25 50	75	 " [_	-	CONCLUSION
.4 EXPERIMENTAL	6		Ť·	Δ	· · · · · · · · · · · · · · · · · · ·		30	%	
.7 SIMULATION	5			Δ			50	%	.7
.9 UNPROVEN		11		Δ			20	%	

		NTAGE	FINAL CONSENSUS %	_	
N- 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	4		Δ	60 %	SHORT
MEDIUM		3	Δ	30 %	
LONG			A	0 %	
UNDESTRABLE		1	Δ	10 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 87 90 96	•	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0-0	1.7	75	75.7	21 - 41 YRS
10 MOST LIKELY	0-0	2.1	80	80.0	7 - 9 YRS
10 NOT LATER THAN	0-0	4.6	85	85.1	101 - 16 YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N			MODE(S)	MEAN	(55% CONFIDENCE INTERVAL)
9	LOWER LIMIT	2.1	5 M	2.61 _m	1.28 - 3.94
9	UPPER LIMIT	14.2	5 M	11.44 _M	2.61 - 20.27

EVENT: IIIB04

A swimming remotely operated vehicle, with ... same as IIIB03 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %		1	
N= 10	LOSS	GAIN	9	25 50 75	. 00		CONCLUSION
ESSENTIAL			4			0 %	
DESTRABLE	5.5			Δ		40 %	
UNNECESSARY		5.5		Δ		60 %	UNNECESSARY

DEGREE OF RISK

c	PERCE	NTAGE		FIN/	AL CONSENS		_		
N* 10		GAIN	0	25	50	75	100		CONCLUSION
. I PROTOTYPE			4					0 %	
.4 EXPERIMENTAL	9		4				• 11	0 %	
.7 SIMULATION		2	Δ					20%	
.9 UNPROVEN		7			* * * * * * * * * * * * * * * * * * * 	Δ.,		80 %	.9

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N* 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		1	Δ	10%	
MEDIUM	9		Δ	10%	
LONG		14	Δ	50 %	LONG
UNDESTRABLE	6		Δ	30%	

PK	OBABLE TIMING		(901		ENDAR FIDENC			AL)	- N				DEVELOPMENT TIME
N	Fire Verification	72	73.5	75 7	6.5 78	81	84	87 90	95 99	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0-						3.3	75	77.4	$3\frac{1}{2} - 7\frac{1}{2}$ YRS.
9	MOST LIKELY				•	, 	- ò			3.5	80	81.8	$7\frac{1}{2} - 12$ YRS.
9	NOT LATER THAN			B			0	 0		4.2	85	86.8	12 - 17½ YRS.

ES	TIMATED COSTS TO ACHIEVE			100	
					DEVELOPMENT COSTS (IN MILLONS)
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	15.8	1 M	9.44M	0 - 20.02
8	UPPER LIMIT	39.7	5 M	32.13 M	5.51 - 58.74

IIIB05 EVENT:

A vehicle remotely operated with articulated legs, with ... same as IIIB03 ...

SYSTEM CRITICALITY

		NTAGE	1 .	FINAL CONSENSUS %		CONCLUSION
N* 10	LOSS	GAIN	·	25 50 75 100		CONCEDSION
ESSENTIAL			47		0 %	
DESTRABLE		5.5		Δ	60 %	DESIRABLE
UNNECESSARY	5.5			Δ^{k}	40 %	

DEGREE OF RISK

N* 10		NTAGE GAIN		F 25	INAL CONSE	VSUS %	100	Г	CONCLUSION
.I PROTOTYPE	1000		4	 				0 %	
.4 EXPERIMENTAL	9		4					0 %	
.7 SIMULATION	8			Δ				10 %	
.9 UNPROVEN		17					2	90 %	.9

DESIRED COURSE OF ACTION

N= 8		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100	,	CONCLUSION
SHORT RANGE GOAL	1033	GATIN	4	0 %	001102001011
MEDIUM	11		Δ	25%	
LONG		1.5	Δ	37.5%	
UNDESTRABLE		9.5	Δ	37.5%	UNDESIRABLE

PK	RABLE LIMING		(90	CALEN				AL)	277	63				4	PMENT	
N		72	73,5	75 76.5	78	61	54	h7	90 90	1	σ	MODE(S)	MEAN	(FR	OM 1972	2)
9	EARLIEST				•	0				1	3.2	78	78.8	5 -	$-8\frac{1}{2}$	YRS.
9	MOST LIKELY					C		0		Τ	3.8	85	84.1	$15\frac{1}{2}$	$-14\frac{1}{2}$	YRS.
9	NOT LATER THAN							0	-0		4.6	90	89.3	$14\frac{1}{2}$	- 20	YRS.

			- Inoperat way					
N			WODE(S)	MEAN	(90% CONFIDENCE INTERVAL)			
8	LOWER LIMIT	15.7	5 M	11.69 M	1.19 - 22.18			
8	UPPER LIMIT	31.6	10 M	30.38 M	9.18 - 51.57			

EVENT: INBO6

A slurry transport system remotely operated capable of transporting cut sediments a distance of 1 mile at a rate of 50 cubic yds/hr to a controlled fill area at a depth of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %	,	
N= 10	LOSS	GAIN] ်ု	25 50 75 100		CONCLUSION
ESSENTIAL	9] 4		0 %	
DESTRABLE		7	П	Δ	80%	DESIRABLE
UNNECESSARY		2	П	Δ	20 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			
N- 10	LOSS	GAIN	0 25 50 75	100		CONCLUSION
. I PROTOTYPE			A	[0 %	
.4 EXPERIMENTAL		11	Δ		20%	
.7 SIMULATION	5.5		Δ		40%	.7
.9 UNPROVEN	5.5		Δ		40%	.9

N= 8		NTAGE GAIN	FINAL CONSENSUS % 9 25 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL		14	Δ	50%	SHORT
MEDIUM	11		Δ	25 %	
LONG		3.5	Δ	12.5%	
UNDESTRABLE	6.5		Δ	12.5%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72	73,5 75 76,5 /8 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
8	EARLIEST	0-0	2.1	75	75.1	$1\frac{1}{2} - 4\frac{1}{2}$ YRS.
8	MOST LIKELY	0-0	3.2	80	79.3	$5 - 9\frac{1}{2}$ YRS.
Ω	NOT LATER THAN	0-0	4.3	90	85.3	10 - 16 VPS

ESTIMATED	COSTS TO	ACHIEVE
LOIIMAILU	00313 10	AUIIILTE

N)			M	ODF	(2)	MFAN	DEVELOPMENT COSTS (IM MILLONS) [90% CONFIDENCE INTERVAL)			
9	LOWER LIMIT	3.9		1		3.21M				
9	UPPER LIMIT	14.9		10	M	11.28 _M	2.04 - 20.52			

Sub-Technology On-Bottom Construction

IIIC

Objective: To develop the techniques and technologies to assemble, weld, bolt, and/or cement prefabricated components of large structures, to make or emplace foundations and pilings for support of the structures, and/or pour concrete in-place on the seafloor at depths of 8,000 ft.

Events IIIC01 - IIIC24 address this objective.

EVENT: IIIC01

On the basis of seismic response measurements of an ocean floor site and calculated hydrodynamic loads, the capability to design a pressure resistant structure enclosing a volume of 20,000 ft³ (may be interconnected modules) at a depth of 8,000 ft which can survive an earthquake that measures 7.5 on the Richter Scale, with the structure located above or near the epicenter.

SYSTEM CRITICALITY

N= 10		NTAGE		FINAL CONSENSUS % 25 50 75 100		ſ	CONCLUSION
ESSENTIAL	1000	U.T.I.	4		0	%	
DESTRABLE	4		П	Δ	60	%	DESIRABLE
UNNECESSARY		4	П	Δ	40	%	

DEGREE OF RISK

N* 10		NTAGE GAIN	FINAL CONSENSUS %	100	Г	CONCLUSION
. I PROTOTYPE			4		0 %	
. 4 EXPERIMENTAL			A		0 %	
.7 SIMULATION		4	Δ		40 %	
.9 UNPROVEN	4		Δ		60 %	.9

N= 9		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	Ē	CONCLUSION
SHORT RANGE GOAL	1033	UATIV	4	0 %	
MEDIUM	4		Δ	56 %	MEDIUM
LONG		13	Δ	33 %	
UNDESTRABLE	9		Δ	11 %	

N	OBABLE TIMING	72 7	(90% 73,5	CALENE CONFIDE 75 76.5				93 9	, 0	MODE(S)	MEAN		LOPMENT ROM 1972	
9	EARLIEST			0		-0			4.0	78,80	79.6	5	- 10	YRS.
9	MOST LIKELY					0-		0	4.5	85	84.3	9 1	- 15	YRS.
9	NOT LATER THAN				-		0	- 0	4.0	90	89.2	14	$-19\frac{1}{2}$	YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	7.0	5 M	7.50 M	2.83 - 12.17
8	UPPER LIMIT	23.2	15,50M	30.63 M	15.34 - 45.91

EVENT: IIIC02

A concrete overlay, poured in place at a depth of 8,000 ft, following gentle contours of the sediment (may be preleveled), which can support a load of 100 lbs/ft^2 .

SYSTEM CRITICALITY

N= 10	PERCE LOSS	NTAGE	١ ,	FINAL CONSENSUS % 25			CONCLUSION
ESSENTIAL	7			Δ	20	%	
DESTRABLE		5		Λ	60	%	DESIRABLE
UNNECESSARY		2		Δ	20	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %		•	
N= 10	LOSS	GAIN	0 25 50 75 100			CONCLUSION
. I PROTOTYPE			4	0	%	
.4 EXPERIMENTAL		11	Δ	20	%	
.7 SIMULATION	15		Δ	40	%	
.9 UNPROVEN		4	Δ	40	%	.9

DESIRED COURSE OF ACTION

		NTAGE		FINAL CONSENSUS %		_	
N= 10	LOSS	GAIN	0	25 50 75 100			CONCLUSION
SHORT RANGE GOAL		1		Δ	10	%	
MEDIUM		6		Δ	70	%	MEDIUM
LONG	9		4		0	%	
UNDESTRABLE		2		Δ	20	%	

PROBABLE TIMING

			(909	CALENI CONFIDI				AL)					DEVELOPMENT TIME
N		77	73.5	75 76.5	78	K1	84	87 90 J	96 1	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0	ō					1.9	78	76.7	3 1/2 - 6 YRS
9	MOST LIKELY				0		0			3.4	85	80.9	7 - 11 YRS
9	NOT LATER THAN					(5	•		3.9	85,90	84.9	10 1/2 - 15 1/2 _{RS}

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]
8	LOWER LIMIT	3.0	1 M	2.27 M	.22 - 4.32
8	UPPER LIMIT	5.8	10 M	7.78 M	

EVENT: IIIC03

Interlocking preformed concrete slabs assembled at a depth of 8,000 ft, forming a mat following --- same as IIIC02 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS	%	_	
N= 10	LOSS	GAIN	0 25 50	75 100		CONCLUSION
ESSENTIAL			4		0 %	
DESTRABLE	1			Δ	90 %	DESIRABLE
UNNECESSARY		1	Δ		10 %	

DEGREE OF RISK

N= 10		NTAGE GAIN	FINAL CONSENSUS %	100	Г	CONCLUSION
. I PROTOTYPE			4		0 %	
.4 EXPERIMENTAL		10	Δ		10 %	
.7 SIMULATION	13		Δ		60 %	. 7
.9 UNPROVEN		3	Δ		30%	

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 10	LOSS	GAIN	0 25 50 75	00	CONCLUSION
SHORT RANGE GOAL		1	Δ	10 %	
MEDIUM		15	Δ	70 %	MEDIUM
LONG	26		Δ	10 %	
UNDESTRABLE		10	T A	10 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	<u> </u>	DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 98	σ MODE(S) MEAN	(FROM 1972)
10 EARLIEST	0-0	2.2 74,76 76.	3 3 - $5\frac{1}{2}$ YRS
10 MOST LIKELY	0-0	3.1 78 80.	6 7 - $10\frac{1}{2}$ YRS
10 NOT LATER THAN	0-0	4.3 80,90 84.	3 10 - 15 YRS

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	1,9	.5 M	1.63 M	.46 - 2.80
9	UPPER LIMIT	3.7	2,10 M	5.13 M	2.81 - 7.44

EVENT: IIIC04

Large fabric "air-mattress" bags (Fabri-Form) filled with a grout slurry at a depth of 8,000 ft ... same as IIIC02 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		F	INAL CONSE	NSUS %			
N= 10	L058	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL			4					0 %	
DESTRABLE	2					Δ		80%	DESIRABLE
UNNECESSARY		2		Δ				20%	

DEGREE OF RISK

		NTAGE		FINAL CONSENSUS %			
N= 10	LOSS	GAIN	<u> </u>	25 50 75	00		CONCLUSION
.I PROTOTYPE			4] [0 %	
. 4 EXPERIMENTAL	1		<u> </u>		TT	0 %	
.7 SIMULATION	3			Δ		70 %	.7
.9 UNPROVEN		3		Δ	П	30%	

DESIRED COURSE OF ACTION

N= 9		GAIN	0 25	INAL CONSENSUS % 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL	1033	11	Δ		11%	JUNGEOGION
MEDIUM	13			Δ	67 %	MEDIUM
LONG		1	Δ		11%	
UNDESTRABLE	1	1	Δ		11%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) N 73.5 75 76.5 78 81 64 67 90 1 96 0 MEAN 8 EARLIEST 3.4 $2 - 6\frac{1}{2}$ 75 76.1 YRS. 80.0 5 - 11 8 MOST LIKELY 80 4.2 0-YRS 5.2 85 84.9 $9\frac{1}{2} - 16\frac{1}{2}$ 8 NOT LATER THAN 0 0 YRS.

ES	TIMATED COSTS TO ACHIEVE			N.VII	DEVELOPMENT COSTS
N	State of the state	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
6	LOWER LIMIT	1.6	1 M	1.59 M	.25 - 2.94
6	UPPER LIMIT	2.0	5 M	4 59 M	2 27 - 7 11

EVENT: IIIC05

A plastic film overlay placed on easily distrubed sediments to control turbidity. The film is placed by a submersible at a rate of 50 square yds/hr, at a depth of 8,000 ft, and can support a load of 10 lbs/ft².

SYSTEM CRITICALITY

N= 10	PERCE	NTAGE GAIN	FINAL C	ONSENSUS %	100	Г	CONCLUSION
ESSENTIAL		1	Δ			10%	
DESTRABLE		6		Δ	• • • • • • • • • • • • • • • • • • • •	70 %	DESIRABLE
UNNECESSARY	7		$1 \cdot \cdot \cdot \Delta$	·•	• • • • • • • • • • • • • • • • • • • •	20%	

DEGREE OF RISK

N- 10		NTAGE GAIN	o.	FINAL CONSENSUS %	, ,	CONCLUSION
.I PROTOTYPE	1000	0	4		0%	
.4 EXPERIMENTAL	9		1		0%	
.7 SIMULATION		4		Δ	40 %	
.9 UNPROVEN		5		Δ	60 %	.9

	PERCE	NTAGE	FINAL CONSENSUS	%	
N= 10	LOSS	GAIN	0 25 50	75 100	CONCLUSION
SHORT RANGE GOAL	8		Δ	10%	
MEDIUM		5	Δ	60%	MEDIUM
LONG		2	Δ	20%	
UNDESTRABLE		1	Ι.Δ.	10%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 57 90 96	0	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	3.6	76,80	77.2	$3 - 7\frac{1}{2}$ YRS.
10 MOST LIKELY	00	4.9	85	81.6	61-121 YRS
10 NOT LATER THAN	00	6.9	90	85.8	10 - 18 YRS

ES	TIMATED COSTS TO ACHIEVE	dia se			DEVELOPMENT COSTS (IM MILLONS)
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	21.2	.5 M	9.97M	0-24.35
9	UPPER LIMIT	46.1	2 M	27.03 _M	0-55.64

EVENT: IIIC06

A chemical flocculating agent capable of rapid precipitation of suspended particles (sediments, etc) in seawater, eliminating turbid condition for increased visibility. The agent must be capable of increasing the sedimentation rate such that suspended sediments are precipitated within 24 hours and/or prior to the diffusion of the flocculating agent into the surrounding water.

SYSTEM CRITICALITY

<u></u>		NTAGE	1	FINAL CONSENSUS %	ſ	200011101011
N= 10	LOSS	GAIN	l c	25 50 75 100		CONCLUSION
ESSENTIAL		13		Δ	40 %	
DESTRABLE	13		П	Δ	60 %	DESIRABLE
UNNECESSARY			4		0 %	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSEN	ISUS %		_	
N= 10	LOSS	GAIN	0 25	50	75	100		CONCLUSION
. I PROTOTYPE				15. 7. 15. 7			0 %	
.4 EXPERIMENTAL		2	Δ				20%	
.7 SIMULATION		1	Δ				10 %	
.9 UNPROVEN	3				Δ		70 %	.9

DESIRED COURSE OF ACTION

N= 10		NTAGE GAIN	FINAL CONSENSUS % 100	Γ	CONCLUSION
SHORT RANGE GOAL		13	Δ	40 %	SHORT
MEDIUM	7		Δ	30 %	
LONG		3	Δ	30 %	
UNDESTRABLE	9		Δ	0 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE RETERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	0	MODE(S) MEAN	(FROM 1972)
1 EARLIEST	00	3.0	80 77.5	$3\frac{1}{2} - 7\frac{1}{2}$ YRS.
10 MOST LIKELY	0-0	4.3	85 81.3	7 - 12 YRS
10 NOT LATER THAN	0-0	5.3	90 85.4	$10\frac{1}{2} - 16\frac{1}{2}$ YRS.

N	Control of the state	DEVELOPMENT COSTS (IN MILLONS) MODE(S) MEAN (90% CONFIDENCE INTERVA
**		MODE(3) NEAR SOM CONFIDENCE INTERVA
8	LOWER LIMIT	4.8 .5 m 2.65 m 0-5.85
8	UPPER LIMIT	9.5 2,10M 6.92M .54-13.30

EVENT: IIIC07

A manned crawling vehicle, capable of powering, positioning and controlling with interchangeable subsystems (manipulators, excavating head, etc) and capable of accomplishing construction at a depth of 8,000 ft on slopes as great as 10°. The vehicle has a payload capacity of 5 tons submerged weight.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %	_	
N= 10	LOSS	GAIN	(0 25 50 75 100	·	CONCLUSION
ESSENTIAL		12		Δ	30 %	
DESTRABLE	14			Δ	50 %	DESIRABLE
UNNECESSARY		2		Δ	20 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
.I PROTOTYPE			A	0 %	
.4 EXPERIMENTAL		2	Δ	20 %	
.7 SIMULATION		3	Δ	30 %	
9 UNPROVEN	5		Δ	50 %	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL			Δ	50 %	SHORT
MEDIUM	10		Δ	20 %	
LONG			Δ	10 %	
UNDESTRABLE		10.	Δ	20 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) 75 76,5 78 MODE(S) MEAN [FROM 1972] 81 84 67 90 8 EARLIEST 75 3.3 76.9 - 7 YRS. 80 8 MOST LIKELY 4.1 81.1 - 12 YRS 85 4.6 86.5 NOT LATER THAN

ESTIMATED COSTS TO ACHIEVE			DEVELOPMENT COSTS
N	0	MODE(S) MEAN	(90% CONFIDENCE INTERVAL)
7 LOWER LIMIT	1.7	1 M 2,36	1.10 - 3.61
7 UPPER LIMIT	7,1	None M 10.4	5.24 - 15.62

EVENT: IIIC08

A raft-type foundation for large, heavy structures (100 ft \times 100 ft) with a differential settlement of less than 3 inches under uniform load of 5 lbs per square foot. The sediment is ooze 50 ft deep at water depth of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			
N= 10	LOSS	GAIN	0	25 50 75	100		CONCLUSION
ESSENTIAL	9		4			0 %	
DESTRABLE		7		Δ		80 %	DESIRABLE
UNNECESSARY		2		Δ		20 %	

DEGREE OF RISK

N= 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 400	· _ [CONCLUSION
. I PROTOTYPE			A	0 %	
. 4 EXPERIMENTAL		1	Δ	10%	
.7 SIMULATION	3		Δ	70 %	. 7
.9 UNPROVEN		2	Δ	20%	

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N* 10		GAIN	0 25 50 75	00	CONCLUSION
SHORT RANGE GOAL			Δ	10 %	
MEDIUM	10		Δ	60 %	MEDIUM
LONG			Δ	10 %	
UNDESTRABLE	3	10	Δ	20 %	

PR	OBABLE TIMING	(90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N		72 73.5 75 76.5 76 61 04 87 40 146 0 MODE(S)	MEAN	(FROM 1972)
8	EARLIEST	00 3.4 75	76.3	$2 - 6\frac{1}{2}$ YRS
8	MOST LIKELY	00 4.1 80	80.1	$5\frac{1}{2} - 11$ YRS
8	NOT LATER THAN	00 4.8 85	84.3	$9 - 15\frac{1}{2}$ YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
7	LOWER LIMIT	1.1	1 M	1.29M	.46 - 2.12
7	UPPER LIMIT	2.7	2 M	4.07M	2.07 - 6.08

EVENT: IIIC09

A buoyancy controlled foundation (total and differential settlement controlled by varying the buoyancy of the structure at different points) for large, heavy structures ... same as IIIC08 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		34	
N= 10	LOSS	GAIN	Q.	25 50 75	100		CONCLUSION
ESSENTIAL	9		4			0 %	
DESTRABLE	5.5			Δ		40 %	
UNNECESSARY		14.5		Δ		60 %	UNNECESSARY

DEGREE OF RISK

		NTAGE		FINAL CONSENSUS %		_	2010110101
N= 10	LOSS	GAIN] ို	25 50 75 100			CONCILUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL	8			Δ	10	%	
.7 SIMULATION	6		11	Δ	30	%	
.9 UNPROVEN		14	П	Δ	60	%	.9

N= 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	-		Δ	10 %	
MEDIUM	20		Δ	20 %	
LONC		10	Δ	30 %	
UNDESTRABLE		10	Δ	40 %	UNDESIRABLE

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVEL	OPMENT TIME
N		72 73,5 75 76,5 78 81 84 87 90 96	MODE(S)	MEAN (FE	OM 1972)
8	EARLIEST	00	.0 75 7	77.5 2	- 9 YRS.
8	MOST LIKELY	00 6.	.1 80 8	33.0 7	- 15 YRS.
8	NOT LATER THAN	00 6	.0 85,95 8	37.6 11	- 19 TYRS.

ESTIMATED COSTS TO ACHIEV	ESTIMATED	COSTS	TO	ACHIEVE
---------------------------	-----------	-------	----	---------

N			MODE(S)	AAF A N	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)			
**			MODETO	IVETVIA	lan v. court	DEN	OF INTERVAL	
7	LOWER LIMIT	1.0	1 M	2.00 M	1.21	-	2.79	
7	UPPER LIMIT	4.3	3,10M	7.14 M	4.02	-	10.27	

EVENT: IIIC10

A foundation with total and differential settlement controlled by individually extendable piles (telescoping), for ... same as IIIC08 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSEN	ISUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	11				+	Δ		80	%	DESIRABLE
UNNECESSARY		11		Δ				20	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	NAL CONSENSUS %		_	
N* 10		GAIN		50 75	100		CONCLUSION
.1 PROTOTYPE			A			0 %	
.4 EXPERIMENTAL	9		A			0 %	
.7 SIMULATION	2			Δ.		80 %	.7
.9 UNPROVEN		11	À			20 %	

N= 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	. [CONCLUSION
SHORT RANGE GOAL			4	0 %	
MEDIUM	4		Δ	60 %	MEDIUM
LONG	6		Δ	30 %	
UNDESTRABLE		10	Δ	10 %	

PROBABLE TIMING 72		CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
		113 110	σ	MODE(S)	MEAN	[FROM 1972]
9	EARLIEST	00	5.0	75	77.0	2 - 8 YRS.
9	MOST LIKELY	00	5.7	76,80	80.8	5 - 12 1 YRS
9	NOT LATER THAN	00	5.0	85	84.6	91 - 15+ YAS.

ESTIMATED	COSTS TO	ACHIEVE

			DEVELOPMENT COSTS [IM MILLONS]	
N	The state of the s	# MODE	E(S) MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	1.1 1	M1.44 M	.72 - 2.16
8	UPPER LIMIT	3.1 3,1	OM 4.94 M	2.86 - 7.02

EVENT: IIIC11

A pile foundation, drilled to a depth of 200 ft into the sediments, for ... same as IIIC08 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	r	
N* 10	LOSS	GAIN	0 25 50 75	00	CONCLUSION
ESSENTIAL	17		Δ	10 %	
DESTRABLE		23	Δ	50 %	DESIRABLE
UNNECESSARY	6		Δ	40 %	

DEGREE OF RISK

		NTAGE		NAL CONSENS		_	22121121	
N= 10	LOSS	GAIN	0 25	50	75	100		CONCLUSION
. I PROTOTYPE			4				0 %	
.4 EXPERIMENTAL	6			Δ		4	0 %	
.7 SIMULATION		2	Δ			2	0 %	
.9 UNPROVEN		4		Δ		4	0 %	.9

N= 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 - 50 75 10	0	CONCLUSION
SHORT RANGE GOAL			4	0 %	
MEDIUM	20		Δ	40 %	
LONG		10	Δ	40 %	LONG
UNDESTRABLE		10	Δ	20 %	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			,	DEVELOPMENT TIME			
N	,	72 73.5 75 76.5 78 81 84 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)			
7	EARLIEST	00	1.9	75	75.4	2 - 5 YRS.			
7	MOST L!KELY	00	2.9	80	79.3	5 - 91 YRS			
7	NOT LATER THAN	00	4.6	80,90	83.4	8 - 15 YRS.			

ESTIMATED	COCTC	TO	ACHIEVE
F211WY15D	F0212	10	MULLIEVE

N.:	ø MODE(S)	MEAN	(M MILLONS) [80% CONFIDENCE INTERVAL)
7 LOWER LIMIT			.58 - 2.02
7 UPPER LIMIT	3.7 10 M	4.61 M	.1.88 - 7.30

EVENT: IIIC12

A pile foundation, water-jetted to a depth of 200 ft into the sediments for ... same as IIIC08 ...

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %		-	
N= 10	LOSS	GAIN	0	25 50 75	100		CONCLUSION
ESSENTIAL	9		4			0 %	
DESTRABLE		6		Δ		70 %	DESIRABLE
UNNECESSARY	N N	3		Δ	\sqcap	30 %	

DEGREE OF RISK

N= 10		NTAGE GAIN	0 25	NAL CONSENSUS %	100		CONCLUSION
.I PROTOTYPE			4			0	%
.4 EXPERIMENTAL		2	$\dot{\Delta}$		• • • • • • • • • • • • • • • • • • • •	20	%
.7 SIMULATION	17		Δ			10	%
.9 UNPROVEN		15		Δ		70	% .9

N= 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL			4	0 %	
MEDIUM	10		Δ	70 %	MEDIUM
LONG			Δ	20 %	
UNDESTRABLE		10	Δ	10 %	

PR	OBABLE TIMING		(90	CA 6 CON	LEND										DEVI	ELOF	PMENT	TIME
N		72	73.5	75	76.5	78	81	64	67	90	1 10	O	MODE(S)	MEAN	1	FRO	M 1972	2)
8	EARLIEST			0-0)							.5	75	75.0	2	-	31/2	YRS.
8	MOST LIKELY					0-	0					2.6	80	80.0	6-2	-	91/2	YRS.
8	NOT LATER THAN							5	•0			3.1	85	84.4	10	-	$14\frac{1}{2}$	YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)		
N		0	MODE(S)	MEAN	190% CONFIDENCE INTERVAL		
8	LOWER LIMIT	1.0	.5,2 M	1.17M	.51 - 1.82		
8	UPPER LIMIT	4.0	2,10M	4.94M	2.28 - 7.60		

EVENT: IIIC13

A pile foundation, vibrated to a depth of 200 ft into the sediment for...same as IIIC08.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	NSUS %		_	
N= 10	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL	9		4				0 %	
DESTRABLE		17			4		90 %	DESIRABLE
UNNECESSARY	8		À				10 %	

DEGREE OF RISK

N- 10		NTAGE GAIN	FINAL CONSENSUS % 9 25 50 75	100	CONCLUSION
. I PROTOTYPE			4	0	%
.4 EXPERIMENTAL	8		Δ	10	%
.7 SIMULATION		3	Δ	30	%
.9 UNPROVEN		5	Δ	60	% .9

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 10	LOSS	GAIN	0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL			A	0 %	
MEDIUM	10		Δ	70 %	MEDIUM
LONG			Τ	20 %	·
UNDESTRABLE		10	Τ Δ	10 %	

PR	OBABLE TIMING		(90		ALEN				/AL		<u>, </u>	¥		DEV	ELOF	MENT	TIME
N		72	73,5	75	75.5	78	81	84	67	96	•	MODE(S)	MEAN		FRO	M 197	2)
8	EARLIEST			0-	0						.6	75	75.1	2:	-	3 1	YRS.
8	MOST LIKELY					0-	0				1,8	80	79.4	6	-	8 2	YRS.
8	NOT LATER THAN						C)	0		3.2	85	84.4	10	-	14	YRS.

ESTIMATED	COCTE TO	ACHIEVE
COLLEGE	F0212 III	AUDIETE

				DEVELOPMENT COSTS (IN MILLONS)			
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
8	LOWER LIMIT	1.5	.5,1 M	1.29M	.27 - 2.30		
8	UPPER LIMIT	4.0	2,10 M	4.94M	2.28 - 7.60		

EVENT: IIIC14

A pile foundation, driven to a depth of 200 ft. into the sediment for...same as IIIC08.

SYSTEM CRITICALITY

N= 10		NTAGE	0	FIN 25	AL CONSENS	SUS % 75	100	ſ	CONCLUSION
ESSENTIAL			4	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			0 %	
DESTRABLE	12					3		70 %	DESIRABLE
UNNECESSARY		12		Δ				30 %	

DEGREE OF RISK

N= 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	· [CONCLUSION
.I PROTOTYPE	1		4	0 %	
.4 EXPERIMENTAL	8		Δ	10 %	
.7 SIMULATION		4	Δ	40 %	
.9 UNPROVEN		4	Δ	50 %	.9

N= 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	Γ	CONCLUSION
SHORT RANGE GOAL			4	0 %	
MEDIUM	20		Δ	50 %	MEDIUM
LONG	10		ΙΔ	10 %	
UNDESTRABLE		30	Δ	40 %	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N]	72 73,5 75 76,5 78 81 54 67 90 396	σ	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST	0-0	.3	75	74.9	$2\frac{1}{2} - 3$ YRS.
7	MOST LIKELY	00	2.0	80	78.9	$5\frac{1}{2} - 8\frac{1}{2}$ YRS
7	NOT LATER THAN	00	4.5	85,90	84.0	81 - 151 YRS.

F2	TIMATED COSTS TO ACHIEVE			E	DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
7	LOWER LIMIT			1.81 M	
7	UPPER LIMIT	6.5	2,10 M	6.77 _M	1.99 - 11.55

EVENT: IIIC15

A vibratory anchor capable of holding 20,000 lbs at depths to 20,000 ft in bottom conditions ranging from coze to coarse sand and slopes up to 10 degrees, to be installed with a remote retrievable/reuseable power unit.

SYSTEM CRITICALITY

	PERCE	NTAGE)	FINAL CONSENSUS %			
N* 9	LOSS	GAIN	0	25 50 75 10			CONCLUSION
ESSENTIAL		16		Δ	56	%	ESSENTIAL
DESTRABLE	16		Π.	Δ	44	%	
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 9	LOSS	GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE		1	Δ		11	%	
.4 EXPERIMENTAL		2	Δ		22	%	
.7 SIMULATION	5		Δ		45	%	.7
.9 UNPROVEN		2	Δ		22	%	

		NTAGE		FINAL CONSENSUS %			AANAI HAIAN
N= 9	LOSS	AIN	l L	25 50 75 100			CONCLUSION
SHORT RANGE GOAL		9		Δ	89	%	SHORT
MEDIUM	10		4		0	%	
LONG		1		Δ	11	%	
UNDESTRABLE			4		0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME
N	1 2 2 2	2 73.5 75 76,5 78 81 84 67 90 96 σ MC	ODE(S) MEAN [FROM 1972]
9	EARLIEST	00	74 75.2 $2-4\frac{1}{2}$ YRS.
8	MOST LIKELY	00 3.1	76 78.5 $4\frac{1}{2} - 8\frac{1}{2}$ YRS.
8	NOT LATER THAN	00 3.8	80 81.4 7 - 12 YRS.

ESTIMATED	COSTS TO	ACHIEVE
LUIIMAILU	00010 10	MUIIIETE

[N			MOD	E/S)	AACAAI	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
IN			עטוזו	[[]	MEAN	(30 % COMPIDENCE INTERVAL)
8	LOWER LIMIT	1.6	.2	M	.88M	0 - 1.93
8	UPPER LIMIT	4.6	1	M	2.85 M	0 - 5.95

EVENT: IIIC16

A vibratory anchor capable of holding 300,000 lbs ... same as IIIC15 ...

SYSTEM CRITICALITY

N= 8	PERCE LOSS	NTAGE GAIN	FINAL CONSENSUS % 50 75 100		CONCLUSION
ESSENTIAL		14	Δ	25 %	
DESTRABLE	15.5		Δ	62.5 %	DESIRABLE
UNNECESSARY		1.5	Δ	12.5%	

DEGREE OF RISK

N= 8		NTAGE GAIN	0 25	FINAL CONSEN	SUS %	100	Γ	CONCLUSION
.I PROTOTYPE			4				0 %	
.4 EXPERIMENTAL			<u> </u>				0 %	
.7 SIMULATION	20.5		Δ				12.5%	
.9 UNPROVEN		20.5			Δ		87.5%	.9

DESIRED COURSE OF ACTION

	PERCENTAG		FINAL CONSE	NSUS %		_	
N≈ 8	LOSS GAIL		5 50	75	100		CONCLUSION
SHORT RANGE GOAL	22	4				0 %	
MEDIUM	20.			Δ		37.5%	MEDIUM
LONG		4				0 %	
UNDESTRABLE	1.	Δ				12.5%	

PROBABLE TIMING

	-		(905	_			E INT		/AL)						DEV	ELOPMENT	TIME
N		72	73,5	75	76.5	78	N1	54	h7	110	1 1	1	σ	MODE(S)	MEAN		[FROM 1972	2)
7	EARLIEST			0	0							7	1.0	75,76	75.9	3	$-4\frac{1}{2}$	YRS.
7	MOST LIKELY					0	-0		110				1.4	80	79.7	$6\frac{1}{2}$	$-8\frac{1}{2}$	YRS
7	NOT LATER THAN						0		0				2.9	85	94.6	102	$-14\frac{1}{2}$	YRS.

N		σ	MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL)
7	LOWER LIMIT	3.3	1 M	1.99M	0 - 4.41
7	UPPER LIMIT	6.4	2 M	4.64M	0 - 9.35

EVENT: IIIC17

A waterjet anchor capable of holding 20,000 lbs ... same as IIIC15 ...

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	SENSUS %		Ē	
N≈ 8	LOSS	GAIN	0	25 50	75	100		CONCLUSION
ESSENTIAL		1.5	Δ				12.5%	
DESTRABLE	3				Δ		75 %	DESIRABLE
UNNECESSARY		1.5	Δ	• • • • • • • •			12.5%	

DEGREE OF RISK

	PERCE	NTAGE	FIN	AL CONSENSUS %		· ·	
N* 8		GAIN	0 25	50 75	100		CONCLUSION
. I PROTOTYPE		1.5	Δ		\Box	12.5%	
. 4 EXPERIMENTAL	11		4			0 %	
.7 SIMULATION	8		Δ			25 %	
.9 UNPROVEN		17.5		Δ		62.5%	.9

DESIRED COURSE OF ACTION

N* 8		NTAGE	FINAL CONSENSUS % 9 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	1033	15.5	Δ	37.5%	SHORT
MEDIUM	18.5		Δ	37.5%	- 01-27-17-77-11
LONG		1.5	Δ	12.5%	
UNDESTRABLE		1.5	Δ	12.5%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) (FROM 1972) MODE(S) MEAN N 75 76,5 78 σ 0-0 7 EARLIEST .4 75 75.3 $3 - 3\frac{1}{2}$ YRS. MOST LIKELY 0-0 1.2 79.0 6 - 880 YRS. 0---0 NOT LATER THAN 2.7 85 82.1 8 - 12 YRS.

ES.	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS	
N			MODE(S)	MEAN	190% CONFIDENCE INTERVAL	
7	LOWER LIMIT	1.5	1 M	1.31M	.19 - 2.44	
7	UPPER LIMIT	3.8	1,5 M	3.79 _M	1.01 - 6.56	

EVENT: IIIC18

A waterjet anchor capable of holding 300,000 lbs ... same as IIIC15 ...

SYSTEM CRITICALITY

N= 8		NTAGE	0	FINAL CONSENSUS % 25 50 75 100	í	CONCLUSION
ESSENTIAL	1000	OATIV	4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 %	
DESTRABLE	4.5			Δ	62.5%	DESIRABLE
UNNECESSARY		4.5		Δ	37.5%	

DEGREE OF RISK

N= 9		NTAGE	0	FI	NAL CONSE	NSUS %	100	_	CONCLUSION
.I PROTOTYPE	1022	GAIN	1			<u> </u>	Ϊ̈ г	0 %	CONOCOSION
.4 EXPERIMENTAL		11	1	Δ				22%	
.7 SIMULATION	22		4					0 %	
.9 UNPROVEN		11	1			Δ		78%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N* 9	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		11	Δ	11%	
MEDIUM	11		Δ	45%	MEDIUM
LONG		11	Δ	11%	
UNDESTRABLE	11		Δ	33%	

PROBABLE TIMING

r N	UDADLE TIMING		(909)		LENDA				AL)					DEVELO)PM	ENT TIME
N		72	73.5	75	76.5 7	6 61	1 1	54	57 9K	1 96	σ	MODE(S)	MEAN	[FR	OM	1972)
7	EARLIEST				0	-0					2.2	80	78.1	$4\frac{1}{2}$	-	7 1 YRS.
7	MOST LIKELY					C) - -	-0			2.4	85	83.0	9	-	13 YRS
7	NOT LATER THAN								0-0		2.5	90	87.9	14	=	17 1 YRS.

ESTIMATED	2T200	TO	ACHIEVE
E911MM IED	61919	10	MUNIETE

N		•	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
5	LOWER LIMIT	3.7	.5,1 M	2.60 M	0 - 6.13
5	UPPER LIMIT	7.1	2 M	6.00 M	0 - 12.80

EVENT: IIIC19

An explosive anchor capable of holding 20,000 lbs at depths to 20,000 ft in bottom conditions ranging from ooze to hard rock, and slopes up to 10 degrees, to be remotely installed.

SYSTEM CRITICALITY

		NTAGE	FINA	AL CONSENSUS %			_	
N= 9	LOSS	GAIN	0 25	50 75	100		Ĺ	CONCLUSION
ESSENTIAL	J.	10.5		Δ		56	%	ESSENTIAL
DESTRABLE	10.5			Δ		44	%	
UNNECESSARY			A :			0	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	INAL CONSENSUS	%		_	
N= 9	LOSS	GAIN	0 25	50	75 100			CONCLUSION
.I PROTOTYPE		1	Δ			11	%	
.4 EXPERIMENTAL		15		Δ		45	%	.4
.7 SIMULATION	17		Δ			33	%	
.9 UNPROVEN		1	Δ			11	%	

	PERCE	NTAGE	1	FINAL CONSENSUS %			_	
N= 9	LOSS	GAIN	0	25 50 75	100			CONCLUSION
SHORT RANGE GOAL		9		Δ		89	%	SHORT
MEDIUM	10		4			0	%	
LONG		1		Δ		11	%	
UNDESTRABLE			7			0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 54 57 90 1 96	0	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	00	1.8	75	75.2	2 - 41 YRS.
9	MOST LIKELY	00	2.6	77	78.7	5 - 81 YRS.
9	NOT LATER THAN	00	3.8	80	81.8	$7\frac{1}{2} - 12$ YRS.

52	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IM MILLONS]
N		7	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	1.5	.5 M	1.23 M	.20 - 2.25
8	UPPER LIMIT	3.1	1 1	2.78 M	

EVENT:

IIIC20

An explosive anchor capable of holding 300,000 lbs at depths to...same as IIIC19.

SYSTEM CRITICALITY

N= 9		NTAGE GAIN	0 25 F	INAL CONSENSUS %	100	Γ	CONCLUSION
ESSENTIAL	12000	11	Δ		-	11 %	
DESTRABLE	12			Δ		78 %	DESIRABLE
UNNECESSARY		1	Δ			11 %	

DEGREE OF RISK

N= 9		NTAGE GAIN		CONSENSUS %	100	CON	CLUSION
. I PROTOTYPE			Δ) %	
.4 EXPERIMENTAL		1	Δ		13	%	
.7 SIMULATION		2	Δ		22	%	
.9 UNPROVEN	3			Δ	67	%	9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONSE	VSUS %		_	
N* 8		GAIN	0 25	50	75	100	1 1	CONCLUSION
SHORT RANGE GOAL				Δ			50	SHORT
MEDIUM	2.5			Δ			37.5 %	
LONG			4				0 %	
UNDESTRABLE		2.5	Δ				12.5 %	

PROBABLE TIMING

			(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME		
N		72	73,5 75 76,5 7h h1 h4 h7 110 1 111 1	σ	MODE(S)	MEAN	(FROM 1972)		
8	EARLIEST		00	1.8	76	77.0	4 - 6 YRS.		
8	MOST LIKELY		00	2.9	82	80.9	7 - 11 YRS		
8	NOT LATER THAN		00	3.8	85	84.5	10 - 15 YRS.		

		DEVELOPMENT COSTS [IN MILLONS]			
N Section 1	σ MODE(S) MEAN	(90% CONFIDENCE INTERVAL)			
7 LOWER LIMIT	3.4.4,.5 M 2.54 N	.04 - 5.05			
7 UPPER LIMIT	6.5 2 M 5.70 N	.94 - 10.46			

EVENT: IIIC21

An automatic remote rock bolt driving device capable of holding 300,000 lbs at depths to 20,000 ft in coral or rock bottoms of up to 10 degrees slope. To be installed by means of a retrievable/reuseable power unit.

SYSTEM CRITICALITY

N= 9		NTAGE GAIN	0 z	FINAL CONSENSUS %	, [CONCLUSION
ESSENTIAL		1	Δ		11 %	
DESTRABLE	2			Δ	78 %	DESIRABLE
UNNECESSARY		1	Δ		11 %	

DEGREE OF RISK

N= 8		NTAGE GAIN		FINAL CONSENSUS % 25 50 75 100			CGNCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL	10		4		0	%	
.7 SIMULATION	20		4		Ů	%	
.9 UNPROVEN		30		<u> </u>	100	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 7	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	6		Δ	14 %	
MEDIUM	7		Δ	43 %	MEDIUM
LONG		9	Δ	29 %	
UNDESTRABLE		4	Δ	14 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76,5 78 81 84 87 90 0--0 7 EARLIEST 1.4 77 77.1 YRS 4 - 6 0--0 7 MOST LIKELY 2.4 80,82 80.7 7 - 103 YRS. 0--0 NOT LATER THAN 3.3 85 84.3 10 - 14 YRS

					DEVELOPMENT COSTS (IN MILLONS)				
N	The state of the s		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)				
7	LOWER LIMIT	3.2	1 M	2.46 M	.14 - 4.79				
17	UPPER LIMIT	7.6	5 M	7.18 M	1.59 - 12.77				

EVENT:

IIIC22

The development of a padlock anchor to hold 20,000 lbs at depths to 20,000 ft in bottom conditions ranging from ooze to coarse sand and slope up to 10 degrees, to be installed by means of a remote or retrievable/reuseable power unit.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINA	L CONSENSI	JS %		_	
N= 8	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL			4					0 %	
DESTRABLE		9.5		· • • • • • • • • • • • • • • • • • • •		Δ		87.5%	DESIRABLE
UNNECESSARY	9.5		Δ					12.5 %	

DEGREE OF RISK

N= 8		NTAGE GAIN		25 25	INAL CONSE	NSUS %	100	Γ	CONCLUSION
.I PROTOTYPE			4					0 %	
.4 EXPERIMENTAL		1.5	Δ	++	++++			12.5 %	
.7 SIMULATION	4.5		1		+	Δ		62.5 %	.7
.9 UNPROVEN		3		Δ				25 %	

DESIRED COURSE OF ACTION

N= 8	PERCE	NTAGE GAIN	o 25	INAL CONSEN	ISUS %	100	[-	CONCLUSION
SHORT RANGE GOAL		1.5	Δ				12.5%	
MEDIUM		17.5			Δ		62.5%	MEDIUM
LONG	9.5		Δ				12.5%	
UNDESTRABLE	9.5		Δ				12.5 %	

PROBABLE TIMING		(90% CONFIDENCE INTERVAL)												DEVELOPA			
N		72	73.5	75	76,5	7h	81	54	h7		1 40 1	ø	MODE(S)	MEAN	(FROM	1972	2]
8	EARLIEST			0	-0							.9	75	75.75	3 -	41/3	YRS.
8	MOST LIKELY					0	0					1.2	80	79.75	7 -	81	YRS.
8	NOT LATER THAN						0	c)			2.1	85	83.9	$10\frac{1}{2}$	$13\frac{1}{2}$	YRS.

			Twosers	1	DEVELOPMENT COSTS (IN MILLONS)
N			WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT	1.	5 .5 M	1.06 M	.04 - 2.08
8	UPPER LIMIT	3.	1 1,5 M	3.09 M	.99 - 5.19

EVENT: IIIC23

The development of a padlock anchor to hold 100,000 lbs ... same as IIIC22 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	FII	VAL CONSENS	SUS %			
N= 8	LOSS	GAIN	0 25	50	75	100	_	CONCLUSION
ESSENTIAL		12.5	Δ				12.5%	
DESTRABLE	8		$1 \qquad \Delta$				25 %	
UNNECESSARY	4.5			Δ			62.5%	UNNECESSARY

DEGREE OF RISK

N= 8		NTAGE GAIN		FINAL CONS	ENSUS %	100	Г	CONCLUSION
. I PROTOTYPE			4				0 %	
.4 EXPERIMENTAL		1.5	Δ			12.	5 %	
.7 SIMULATION	7			Δ	+	37.	5 %	
.9 UNPROV N		5.5		Δ		5	0%	.9

N= 8		NTAGE GAIN	FINAL CONSENSUS %	100		CONCLUSION
SHORT RANGE GOAL	3.7.3		4	11	0%	
MEDIUM		15.5	Δ		37.5%	
LONG	9.5		Δ		12.5%	
UNDESTRABLE	6		Δ		50%	UNDESIRABLE

PR	OBABLE TIMING		(904)	CALENDAR								DEVE	OPM	ENT	TIME
N		72	73.5	75 76,5 78	81	64	h7 40	1 96 1	ø	MODE(S)	MEAN	(FI	ROM	1972	1
5	EARLIEST			00					1.9	80	78.0	4	- 8	3	YRS.
5	MOST LIKELY				0	0			1.6	82	82.2	81	- 1	1 3	YRS.
5	NOT LATER THAN	3				6-	-0		2.3	87	86.4	12	-16	5 2	YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N State of the sta	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
5 LOWER LIMIT	1.9	5 M	2.70 M	.85 - 4.55
5 UPPER LIMIT	4.2	10 M	6.60 M	2.62 - 10.58

EVENT: IIIC24

A very stable tri-moored platform, moored in 20,000 ft of water with the platform at a water depth of 2,000 ft. The platform is a sphere 12 ft in diameter, and has a buoyancy of 30,000 lbs, and will remain in fixed position for two years.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FI	NAL CONSE	NSUS %		,	
N° 9	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL	10		4					0 %	
DESTRABLE	2			· · · · · · · ·		Δ		78 %	DESIRABLE
UNNECESSARY		12		Δ	+		• • • • • • • • • • • • • • • • • • • •	22 %	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS	%		_	
N* 9		GAIN		25 50	75 100			CONCLUSION
. I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL	10		4		• • • • • • • • • • • • • • • • • • • •	0	%	
.7 SIMULATION		7		Δ	• • • • • • • • • • • • • • • • • • • •	67	%	.7
.9 UNPROVEN		3		Δ		33	%	

DESIRED COURSE OF ACTION

N* 9		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		11	Δ	11 %	
MEDIUM	15		Δ	45 %	MELIM
LONG		3	Δ	33 %	
UNDESTRABLE	1	Ι	Δ	11 %	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72	73.5 75 76.5 78 h1 h4 h7 40 44 44	0	MODE(S)	MEAN	(FROM 1972)
8	EARLIEST	00	2.1	76	76.6	3 - 6 YRS.
8	MOST LIKELY	0~=-0	2.9	78	80.5	61 - 101 YRS
8	NOT LATER THAN	00	3.9	82	34.5	10 - 15 YRS.

N			MOD	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]			
_	LOWER LIMIT	4.7	5		4.59M			
7	UPPER LIMIT	11.8	10	M	12.56M	3.89 - 21.23		

IIID Sub-Technology: In-Bottom Construction

Objective: To develop the technologies and techniques to construct an in-bottom habitat consisting of a vertical shaft beginning at the bottom of the ocean at a depth of at least 8,000 ft, and extending downward hundreds of feet joining a horizontal tunnel complex which extends from dry land under the seafloor. The technologies required are as follows:

- O Vertical drilling
- O Tunneling
- O Inside-Out Drilling
- O Rock and Muck Removal
- O Formation Probing

Events IIID01 - IIID05 address this objective.

EVENT: IIID01

A vertical drilling machine, capable of cutting a vertical shaft 10 ft in diameter, 300 ft deep, under 8,000 ft of water, in a competent rock formation; remove all rock and muck, construct a lock, and dewater the shaft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 9	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL	8		Δ	22 %	
DESTRABLE	4		Δ	5 6 %	DESIRABLE
UNNECESSARY		12	Δ	22 %	

DEGREE OF RISK

	PERCE	NTAGE		F	INAL CONSEN	VSUS %				
N° 9	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL			4					0	%	
.7 SIMULATION			Δ				,	11	%	
.9 UNPROVEN							7	89	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			Δ					11	%	
MEDIUM			Δ					11	%	
LONG	11					Δ		67	%	LONG
UNDESTRABLE		11	Δ					11	%	

PK	RABLE LIMING		(90	-		-	YEA E INT		/AL)					DEVELOPMENT	TIME
N		72	73,5	75	76,5	7h	61	64	h7	10	199 199	ø	MODE(S)	MEAN	(FROM 1972	1
8	EARLIEST			00						3.3	80,85	80.1	$6 - 10\frac{1}{2}$	YRS.		
R	MOSTLIKELY		0()						O T		3.9	90	85.9	$11 - 16\frac{1}{2}$	YRS	

92.9

 $15 - 26\frac{1}{3}$

ESTIMATED COSTS TO ACHIEVE

NOT LATER THAN

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
6	LOWER LIMIT	4.7	5 M	5.08 M	1.24 - 8.93
6	UPPER LIMIT	9.9	10,20 M	16.67 M	8.56 - 24.78

EVENT: IIID02

A tunneling machine capable of cutting a horizontal tunnel complex (10 ft in diameter) in competent rock, and join this complex with a vertical shaft ... same as IIID01 ...

SYSTEM CRITICALITY

	PERCE	NTAGE	F	INAL CONSE	NSUS %		-	
N= 9	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL	8		Δ				22 %	
DESTRABLE	4			Δ			56 %	DESIRABLE
UNNECESSARY		12	Δ				22 %	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSEN	ISUS %				
N* 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE				Δ				22	%	
. 4 EXPERIMENTAL			4					0	%	
.7 SIMULATION			Δ					11	%	
.9 UNPROVEN						Δ		67	%	.9

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 9		GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL			Δ	22	%
MEDIUM		11	Δ	22	%
LONG	22		Δ	45	LONG
UNDESTRABLE		11	Δ	11	%

PR	OBABLE TIMING	(90% CONFIDENCE INTERVAL)										DEVELOPMENT TIME			
N		72	73,5	75	76,5	76	81	54	F7		96	σ	MODE(S)	MEAN	(FROM 1972)
8	EARLIEST			00				4.1	80	79,0	41 - 91 YRS				
8	MOST LIKELY			00						5.4	90	84.25	81 - 16 YRS		
8	NOT LATER THAN		4.5) - -		0	6.4	95	89.7	13 - 22½ YPS

ESTIMATED COSTS TO ACHIEVE			DEVELOPMENT COSTS (IN MILLONS)
N at the state of	ø MODE	(S) MEAN	(90% CONFIDENCE INTERVAL)
6 LOWER LIMIT	1.7 1,5	M 2.58 M	1.15 - 4.02
6 UPPER LIMIT	5.6 10	M9.50M	4.90 - 14.10

EVENT: IIID03

An inside-out driller capable of machine cutting a large opening from a one-atmosphere environment of an in-bottom facility through the seafloor at ocean depths down to 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	NAL CONSEN	VSUS %			
N= 8	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL			4					0 %	
DESTRABLE	15.5					Δ		62.5 %	DESIRABLE
UNNECESSARY		15.5			Δ			37.5 %	

DEGREE OF RISK

N= 8	PERCENTA LOSS GA		FINAL CONS	ENSUS %	100			CONCLUSION
. I PROTOTYPE		1				0	%	
.4 EXPERIMENTAL		4				0	%	
.7 SIMULATION	12	. 5	Δ			37.5	%	
.9 UNPROVEN	12.5			Δ		62.5	%	. 9

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 8		GAIN	0 25 50 75	00		CONCLUSION
SHORT RANGE GOAL			4		0 %	
MEDIUM		12.5	Δ	П	50 %	MEDIUM
LONG	25		Δ	П	25 %	
UNDESTRABLE		12.5	Δ	П	25 %	

PR	OBABLE TIMING		(905		NEN				/AL)						SEVELOPI	MENT	TIME
N		72	73,5	75	76.5	7h	81	54	h7	90	1 40 1	0	MODE(S)	MEAN	FROM	197	2)
6	EARLIEST				0-			-0				4.8	80	80.0	4 -	12	YRS
6	MOST LIKELY	T					0			0		5.4	None	85.5	9 -	18	YRS
5	NOT LATER THAN								o		-0	5.9	None	90.6	13 - 3	24	YRS.

	ESTIMATED	COSTS TO	ACHIEVE
--	------------------	----------	---------

<u></u>			I uonere I	43544	IN MILLONS
N	·		MODE (2)	MEAN	(90% CONFIDENCE INTERVAL)
3	LOWER LIMIT	6.6	1 M	5.67 M	0 - 16.79
3	UPPER LIMIT	17.8	None M	25.00 M	0 - 55.00

EVENT: IIID04

A formation prober capable of exploring rock masses lying ahead of an excavation machine and can remotely determine the geological and engineering characteristics of the ahead formation, and is capable of functioning in ocean depths to 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSEN	ISUS %			
N= 9	LOSS	GAIN	2	25	50	75	100		CONCLUSION
ESSENTIAL	9		Δ					11%	
DESTRABLE		9				1	7	89 %	DESIRABLE
UNNECESSARY		,	4			++++		0 %	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %		-	
N° 9		GAIN	0	25 50 75	100		CONCLUSION
. I PROTOTYPE			4			0 %	
. 4 EXPERIMENTAL	10		A			0%	
.7 SIMULATION		14		Δ		44%	
. 9 UNPROVEN	4			Δ		56%	. 9

	PERCE	NTAGE		FINAL CON	SENSUS %		-	
N= 9	LOSS	GAIN	0	25 50	75	100		CONCLUSION
SHORT RANGE GOAL			4				0%	
MEDIUM	4				Δ		56%	MEDIUM
LONG		4		Δ			44%	
UNDESTRABLE			4				0%	

PR	OBABLE TIMING		(909	CALEN				AL)					DEVELOPMENT TIME
N		72	73.5	75 76,5	78	81	84	67 90	98 99	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST				0-		5			3.2	78	79.6	51 - 91 YRS.
9	MOST LIKELY						0	-0		4.0	90	84.9	101 - 151 YRS.
8	NOT LATER THAN			4501				0	-0	4.8	85,90	90.0	141 - 21 YRS.

ESTIMAT	PPA .	COCTC	TO	CUI	EVE
F211MV	ZU	PA 2 1 2	10 /	NUM	EVE

N	1	neucois .	T _N	AODE(S)	AMEAN	DEVFLOPMENT COSTS MILLONS) (90% JUNFIDENCE INTERVAL)
110			<u> "</u>	HODEIST	MENIA	(SO W COMMONDE INTERANT)
7	LOWER LIMIT	8.2		1 M	5.07M	0 - 10.98
7	UPPER LIMIT	15.5		10 M	12.93M	1.56 - 24.29

EVENT: IIID05

A rock and muck removal system capable of removing rock and muck from a one-atmosphere in-bottom tunneling operation into the ambient environment at ocean depths of 8,000 ft.

SYSTEM CRITICALITY

		NTAGE	FINA	L CONSENSUS %		-	
N- 9	LOSS	GAIN	0 25	50 75	100		CONCLUSION
ESSENTIAL		1	Δ			11%	
DESTRABLE	3	1		Δ		67 %	DESIRABLE
UNNECESSARY		2	Δ			22 %	

DEGREE OF RISK

	PERCE	NTAGE		F	INAL CONSE	NSUS %		_	
N* 9		GAIN	0	25	50	75	100		CONCLUSION
. I PROTOTYPE			4					0 %	
.4 EXPERIMENTAL		11	1	/				11 %	
.7 SIMULATION				Δ				22 %	
.9 UNPROVEN	11		1			Δ		67 %	. 9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CON	SENSUS %		_	
N= 9	LOSS	GAIN	25 50	75	100		CONCLUSION
SHORT RANGE GOAL			Δ		\prod	11%	
MEDIUM			Δ		Π	45 %	MEDIUM
LONG	11		Δ		Π	22 %	
UNDESTRABLE		11	Δ		П	22 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) 75 76,5 76 Nt N4 N7 NO MODE(S) MEAN [FROM 1972] EARLIEST 5.4 75 79.6 3 - 11 -YRS. 0----0 7 MOST LIKELY 6.4 $8 - 17\frac{1}{2}$ 80 84.6 YRS 0----0 6.5 NOT LATER THAN 85 88.7 $11\frac{1}{2} - 22$ YRS

ES	TIMATED COSTS TO ACHIEVE			di.	DEVELOPMENT COSTS
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
5	LOWER LIMIT	1.9	5 M	3.40M	1.53 - 5.27
5	UPPER LIMIT	6.1	15 M	12.40M	6.60 - 18.20

APPENDIX D

TECHNOLOGY AREA IV. POWER SOURCES, CONVERSION, AND TRANSMISSION

SUB-TECHNOLOGY AREAS:

- A. Power Sources
- B. Electrical Transmission and Conditioning Equipment for Deep Submergence Vehicles
- C. Transmission and Conditioning Equipment for Deep Ocean Fixed Installations

IVA

Sub-Technology:

Power Sources

Objective: To develop bottom supported power facilities with a capacity of 100 to 300 kw to provide power for such bottom operations as seafloor construction, active acoustic array, etc.

NOTE: Nuclear and isotope power sources are not considered.

Events IVB01 - IVB08 address this objective.

EVENT: IVA01

A one-atmosphere, bottom-supported, thermochemical power system using hydrocarbon/oxidizer fuel (e.g., diesel oil-hydrogen peroxide) capable of driving generators producing 100 to 300 kw of electrical power in ambient conditions at 8,000-ft ocean depths. The system can operate for up to 1 month self-sustained with unattended operation.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %		
N- 19	LOSS	GAIN	0 25	50	75	100	CONCLUSION
ESSENTIAL		0.5	Δ			10.5 %	
DESTRABLE	6		1		Λ	79 %	DESTRABLE
UNNECESSARY		5.5	Δ			10.5 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %				- 771
N* 19		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	5		Δ	\Box	5	%	
. 4 EXPERIMENTAL	34		Δ	11	26	%	
.7 SIMULATION		33	Δ		58	%	.7
.9 UNPROVEN		6	Ι Δ		11	7.	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N° 19		GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	9		Δ	26	%	
MEDIUM		3	Δ	63	%	MEDIUM
LONG			A	0	%	
UNDESTRABLE		6	Δ	11	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 75,5 75 76,5 78 81 64 67 10 116	MODE(S) MEAN	(FROM 1972)
18 EAR! IEST	00	1.1 75 75.4	3 - 4 YRS
18 MOST LIKELY	0-0	1.4 78 77.7	5 - 6 YRS
18 NOT LATER THAN	0-0	1.4 80 80.6	8 - 9 YRS.

	J. 100 100 100 100 100 100 100 100 100 10		(M MILLONS)
N	ø MODE(S) MEAN	190% CONFIDENCE INTERVAL
18 LOWER LIMIT	6.6 5	M 5.99 M	3.28 - 8.71
18 UPPER LIMIT	14,2 15	M14.78M	8.94 - 20.62

EVENT: IVA02

A one-atmosphere, bottom-supported, thermochemical power system using exotic fuel/oxidizer (e.g., hydrozine-hydrogen peroxide, metal slurry-oxidant), capable of driving...same as IVA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	NAL CONSE	NSUS %			-	
N° 19	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE						4	-	79	%	DESTRABLE
UNNECESSARY				Δ	• • • • •			21	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL	CONSEN	SUS %				
N* 19		GAIN		25	50	75	100			CONCLUSION
.1 PROTOTYPE			A					0	%	
. 4 EXPERIMENTAL	5		Λ					16	%	
.7 SIMULATION					• • • •	Δ		68	%	.7
.9 UNPROVEN		5	Δ					16	%	

	PERCE	NTAGE	F	INAL CONSEN	SUS %				
N= 17		GAIN	0 25	50	75	160			CONCLUSION
SHORT RANGE GOAL			4				0	%	
MEDIUM		6			Δ		82	%	MEDIUM
LONG	12		Δ				6	%	
UNDESTRABLE		6	Δ				12	%	

PROBABLE TIMING	(90% CONFIDENCE INTERVAL)	CALENDAR YEARS (90% CONFIDENCE INTERVAL)							
N	72 73,5 75 76,5 75 81 84 87 90 1 96	0	MODE(S)	MEAN	(FROM 1972)				
18 EARLIEST	0-0	.9	76	76.3	4 - 4 1/2 YRS				
18 MOST LIKELY	0-0	1.3	80	79.3	61/2 - 8 YRS				
18 NOT LATER THAN	0-0	2.2	85	82.9	10 - 12 YRS				

ESTIMATED	COSTS	TO	ACHIEVE
-----------	-------	----	---------

N		MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL		
18 LOWER LIMIT		5,10 M				
18 UPPER LIMIT	14.2		21.56M			

EVENT: IVA03

A one-atmosphere, bottom-supported fuel cell power system (e.g., hydrogen/oxygen) capable of driving... same as IVA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	NSUS %		- 1	
Nº 19	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL		0.5	Δ				10.5%	
DESTRABLE		4	1		Δ	**	79 %	DESTRABLE
UNNECESSARY	4.5		Δ				10.5%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %				
N- 18	LOSS	GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE			Δ				11	%	
. 4 EXPERIMENTAL		9			Δ		67	%	. 4
.7 SIMULATION	9		Δ				17	%	
.9 UNPROVEN			Δ				5	%	

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N= 17		GAIN	0 25 50 75 100	_		CONCLUSION
SHORT RANGE GOAL			Δ	29	%	
MEDIUM	6		Δ	42	%	MEDIUM
LONG		6	Δ	29	%	
UNDESTRABLE			A	0	%	

PK	OBABLE TIMING -		(901	CALENDAR YEARS (90% CONFIDENCE INTERVAL)							a. 1				DEVELOPMENT TIME		
N		72	73,5	75	76.5	78	81	84	67		96	0	MODE(S)	MEAN	(FROM 1972)		
17	EARLIEST			0-	٥.							1.3	76	75.4	3 - 4 YRS.		
17	MOST LIKELY				0)					2.0	78,80	77.7	5 - 6 1/2 YRS.		
17	NOT LATER THAN					C)	.				3.3	82,85	80.7	7 1/2 - 10 YRS.		

ESTIMATED COSTS TO ACHIEVE	1 12 Lan		DEVELOPMENT COSTS (IN MILLONS)
N	ø Mo	DDE(S) MEAN	(90% CONFIDENCE INTERVAL)
17 LOWER LIMIT	5.7 8	,20M 7.97M	5.55 - 10.39
17 UPPER LIMIT	11.6 1	5 M 18.68M	13.76 - 23.60

EVENT: IVAO4

An ambient pressure, bottom-supported, fuel cell power system (e.g., hydrogen/oxygen) capable of driving... same as IVA03.

SYSTEM CRITICALITY

N 19		NTAGE	0	FIN 25	VAL CONSE	NSU3 %	100		Г	CONCLUSION
ESSENTIAL	10	GAIN	1 7	· · · · ·			[16	%	
DESTRABLE		15			· · · · · · · · · · · · · · · · · · ·	Δ		84	%	DESIRABLE
UNNECESSARY	5		4					0	%	

DEGREE OF RISK

N- 19		NTAGE GAIN	FINAL CONSENSUS %	100	Г	CONCLUSION
.I PROTOTYPE	6		4		0 %	
.4 EXPERIMENTAL	1		Δ		21 %	
.7 SIMULATION		7.5	Δ		68.5%	.7
.9 UNPROVEN	0.5		Δ		10.5%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	ISUS %			-	
N- 17	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	6		4					0	%	
MEDIUM		6			Δ			47	%	MEDIUM
LONG					Δ			53	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73,5 75 76,5 78 61 64 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
19 EARLIEST	0-0	1.5	75	76,3	31/2 - 5 YRS.
19 MOST LIKELY	00	2.3	80	79.1	7 - 8 YRS.
19 NOT LATER THAN	0-0	3.2	85	83.1	10 - 12 1/2 YRS

	a More	SI MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
	MODE	31 MEAIL	(30 % CONTIDENCE INTERVAL)
18 LOWER LIMIT	10.2 10	M 11.95M	7.78 - 16.13
18 UPPER LIMIT	17.3 20	M 22.68 M	15.58 - 29.78

EVENT: IVA05

A remote control system capable of controlling a 300 kw seafloor plant (as in IVA01 thru IVA04) at 3,000-ft depths from the surface or shore via cables.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N- 19	LOSS	GAIN	0 25 50 75 10	0		CONCLUSION
ESSENTIAL	6		Δ	26	%	
DESTRABLE		6	Δ	69	%	DESTRABLE
UNNECESSARY			Δ	5	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %				
N- 19		GAIN	0 25	50	75	100			CONCLUSION
.I PROTOTYPE	2		Δ				21	76	
.4 EXPERIMENTAL	13		Δ				5	%	
.7 SIMULATION		16			Δ		69	%	.7
.9 UNPROVEN	1		Δ				5	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N- 18		GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	12		Δ	61 %	SHORT
MEDIUM		3	Δ	28 %	
LONG		5.5	Δ	5.5%	
UNDESTRABLE	1.5		Δ	5,5%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
18 EARLIEST	0-0	1.3	75	75.1	2 1/2 - 3 1/2/RS.
18 MOST LIKELY	0-0	1.9	76,80	77.2	4 1/2 - 6 YRS.
18 NOT LATER THAN	00	12.5	80	80.1	7 - 11 YRS.

N September 1		MODE(S)	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]
30.0000.11112		-		
18 LOWER LIMIT	4.7	2 M	3.38M	1.47 - 5.28
18 UPPER LIMIT	10.5	5 M	8.28 M	3.99 - 12.57

EVENT: IVA06

An ambient pressure, bottom-supported, storage battery power system rechargeable on the seafloor with an integral battery charger and powered intermittently or continuously via cable from surface or shore utilities. The system can operate up to one year at 3,000-ft ocean depths and have an ene.gy capacity between recharges of 2500 kwh at 5 kw.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENS	US %				
N= 17	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL		1	Δ				18	%	
DESTRABLE		10			Δ		82	%	DESTRABLE
UNNECESSARY	11		A				0	%	

DEGREE OF RISK

N= 16		NTAGE GAIN	F1	NAL CONSENSUS %	100		Γ	CONCLUSION
. I PROTOTYPE	12		Δ			19	%	
.4 EXPERIMENTAL		6		Δ		69	%	. 4
.7 SIMULATION		6	Δ			12	%	
. 9 UNPROVEN			A			0	%	

	PERCE	NTAGE		FI	NAL CONSE	VSUS %			_	
N= 16	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		1		-0/2/11 V		Δ		81	%	SHORT
MEDIUM		6		Δ				19	%	
LONG			4					0	%	
UNDESTRABLE	7		4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 49	σ	MODE(S)	MEAN	(FROM 1972)
16 EARLIEST	0-0	.8	74	74.3	2 - 2 1/2 YRS.
16 MOST LIKELY	0-0	1.0	76	76.5	4 - 5 YRS
16 NOT LATER THAN	0-0	1.7	80	78.8	6 - 8 YRS.

201	PIAA A	TEN	CUC.	ге т		РШ	EVE
E 2	'IMA'	I E U	LU2	19 1	UB	υMI	IEVE

N		MODE(S)	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]
15 LOWER LIMIT	3,1			1.03 - 3.85
14 UPPER LIMIT	5.1	3 ·M	4.28 M	1.87 - 6.68

EVENT: IVAO7

An ambient pressure, bottom-supported high energy density electrochemical power system (e.g., consumable magnesium anode seawater battery, alumium-peroxide battery or hydrazine-hydrogen peroxide fuel cell) capable of providing 100 watts of power with a total energy capacity of 1000 kwh at ocean depths to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FIN	AL CONSENS	SUS %			-	
N= 19	LOSS	GAIN	0 25	50	75	. 100			CONCLUSION
ESSENTIAL	4		Δ				16	%	
DESTRABLE		4			Δ		74	%	DESTRABLE
UNNECESSARY			Δ				10	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	VSUS %				
N= 18		GAIN		25	50	75	100			CONCLUSION
. I PROTOTYPE	6		4					0	%	
.4 EXPERIMENTAL	6			Δ				22	%	
.7 SIMULATION		6				Δ		72	%	.7
, 9 UNPROVEN		6	Δ					6	%	

DESIRED COURSE OF ACTION

N= 18		NTAGE GAIN	0 25	FINAL CONSENSUS %	100		Γ	CONCLUSION
SHORT RANGE GOAL	5		Δ		7 [17	%	
MEDIUM				Δ		67	%	MEDIUM
LONG			Δ			11	%	
UNDESTRABLE	3	5	Δ			5	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME		
N 7	2 73.5 75 76.5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)		
18 EARLIEST	90	.8	75	75.3	3 - 3 1/2 YRS.		
18 MOST LIKELY	.0-0	1.6	77	77.8	5 - 6 1/2 YRS.		
18 NOT LATER THAN	0-0	2.5	80	80.9	8 - 10 YRS.		

				(IM MILLONS)
N	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
17 LOWER LIMIT	5.1	5 M	4.52M	2.36 - 6.69
17 UPPER LIMIT	8.9	10 M	10.75 M	6.98 - 14.53

EVENT: IVA08

An ambient pressure, lithium power cell, capable of providing...same as IVA07.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSE	NSUS %			ř	
N° 16	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	5			$\overline{\Delta}$				19	%	
DESTRABLE		10				,		62	%	DESIRABLE
UNNECESSARY	5			$\overline{\Delta}$	· · · · · · · · · · · · · · · · · · ·			19	%	

DEGREE OF RISK

N= 16	NTAGE GAIN	o	FINAL CONSENSUS % 25 50 75 100		Γ	CONCLUSION
. I PROTOTYPE		4		0	%	
. 4 EXPERIMENTAL			Δ	50	%	.4
.7 SIMULATION		1	Δ	44	%	
.9 UNPROVEN		T	Δ	6	%	

DESIRED COURSE OF ACTION

N= 16		NTAGE GAIN	0	FINAL CONSE	NSUS %	100	Γ	CONCLUSION
SHORT RANGE GOAL	7.5		Δ				12.5%	
MEDIUM		8.5			Δ		62.5%	MEDIUM
LONG	0.5		Δ				12.5%	
UNDESTRABLE	0.5		Ι. Δ.				12.5%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FRUM 1972] MODE(S) MEAN 16EARLIEST .9 3 - 4YRS 75 75.4 00 MOST LIKELY 1.4 78 77.8 5 - 6 1/2 YRS 0-0 NOT LATER THAN 2.5 80.6 7 1/2 - 9 1/2 YRS 80 0-0

N			MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
15	LOWER LIMIT	4.9		4.23 M	
15	UPPER LIMIT	10.2	10 M	10.60 M	5.97 - 15.23

IVB

Sub-Technology:

Electrical Transmission and Conditioning
Equipment for Deep Submergence Vehicles

Objective: To advance the technologies necessary for the transmission and conditioning of electrical energy required by deep submergence vehicles undergoing cyclic ambient conditions down to 20,000-ft ocean depths:

Events IVB01 - IVB24 address this objective.

EVENT: IVB01

Electrical cabling capable of conducting 115 volts, 400 Hz, 150 to 200 amperes, AC, while subjected to cyclic conditions down to ocean depths of 20,000 ft. The cabling has a 0.9 probability of no failure at a 90% lower confidence limit based upon an operating period of one year at 250 operation cycles per year.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		,	
N= 14	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL		4		Δ	57	%	ESSENTIAL
DESTRABLE		3		Δ	43	%	
UNNECESSARY	7		1		0	%	

DEGREE OF RISK

	PERCE	NTAGE		FIN	IAL CONSE	VSUS %				
N= 14	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE		7				Δ		64	%	. 1
.4 EXPERIMENTAL				Δ				29	%	
.7 SIMULATION			Δ	· · · · · · · · · · · · · · · · · · ·	****			7	%	
.9 UNPROVEN	7		A .					0	%	

DESIRED COURSE OF ACTION

N= 14	NTAGE GAIN		25	FINAL CONSE	NSUS %	100			CONCLUSION
SHORT RANGE GOAL						Δ	93	%	SHORT
MEDIUM			Δ				7	%	
LONG		4		 			0	%	
UNDESTRABLE		4	_				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	2 73,5 75 76,5 78 61 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
14 EARLIEST	0-0	.9	73	73.1	1/2 - 11/2YRS
13 MOST LIKELY	00	.5	78	74.8	21/2 - 3 YRS
13 NOT LATER THAN	0-0	.9	77	76.7	4 - 5 YRS.

COTIMATED	OACTC TO	ACUIEVE
ESTIMATED	FD212 ID	AUSSETE

N	o	MODE(S)	(IN MILLONS) [90% CONFIDENCE INTERVAL]			
14 LOWER LIMIT	.2	.5 M	.41 M	.3051		
14 UPPER LIMIT	.5	1 M	.89 M	.65 - 1.13		

DEVELOPMENT COCTO

EVENT: IVB02

Electrical cabling capable of conducting 115 volts, 300 to 400 amperes, while subjected to...same as IVB01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %				
N= 14	LOSS	GAIN	0 25 50 75 10	0 _			CONCLUSION
ESSENTIAL	6		Δ		21	%	
DESTRABLE		12	Δ		72	%	DESTRABLE
UNNECESSARY	6		Δ		7	%	

DEGREE OF RISK

N= 13		NTAGE GAIN	0	FINAL CONS	ENSUS %	100		Г	CONCLUSION
. I PROTOTYPE	1033	1		Δ			31	%	
. 4 EXPERIMENTAL		7	1		Δ		61	%	.4
.7 SIMULATION			Δ				8	%	
.9 UNPROVEN	8	ž E	A				0	%	

	PERCE	NTAGE	FI	NAL CONSENSUS %		_	
N= 14		GAIN	0 25	50 75 100			CONCLUSION
SHORT RANGE GOAL				Δ	72	%	SHORT
MEDIUM		7	Δ		14	%	
LONG	7		Δ		7	%	
UNDESTRABLE			Δ		7	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 73 61 64 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	00	1.2	74	73.8	1 - 2 1/2 YRS
12 MOST LIKELY	0.0	.4	75	75.1	3 - 3 1/2 YRS
12 NOT LATER THAN	0-0	1.3	77,78	77.1	4 1/2 - 5 1/2 YRS

CCTIMATED	COCTC TO	ACHIEVE
ESTIMATED	C0212 IA	AUDIETE

N	in tion I	MODE	e i I	MEAN	DEVELOPMENT COSTS [IN MILLONS]		
N		MODE	3/	MEAN	(90% CONFIDENCE INTERVAL)		
13 LOWER LIMIT	.3	.5	M	.45 M	.2862		
13 UPPER LIMIT	,6	1	M	.96 M	.66 - 1.27		

EVENT: IVB03

An electro-mechanical single coaxial cable, capacity 50 kva/3,000 volts, 60-400 Hz, AC, length 25,000 ft., working strength 50,000 lbs (not including cable weight). Carrier frequency 12 mHz with a 65 db maximum attenuation. The cable has a 99% reliability at a 95% lower confidence limit, based on a 10-day mission with 5 days of continuous operation at ocean depths of 25,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL C	ONSENSUS %				
N= 14	LOSS	GAIN	0	25	50 75	100			CONCLUSION
ESSENTIAL		8		Δ	``		21	%	
DESTRABLE	8				Δ		79	%	DESTRABLE
UNNECESSARY			Δ				0	%	

DEGREE OF RISK

N= 14		NTAGE		AL CONSENSUS %	100		Γ	CONCLUSION
. I PROTOTYPE		7	Δ		1 [7	%	
. 4 EXPERIMENTAL		12		Δ		72	%	.4
.7 SIMULATION	6		Δ			21	%	
.9 UNPROVEN	13		A		П	0	%	

DESIRED COURSE OF ACTION

N= 14		NTAGE GAIN		FINAL CONSENSUS %	100		Г	CONCLUSION
SHORT RANGE GOAL	2000	1	Δ			21	%	
MEDIUM		18	1	Δ		65	%	MEDIUM
LONG	19		Δ			14	%	
UNDESTRABLE			A			0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N ,	2 73.5 75 76.5 78 61 64 67 90 365	σ	MODE(S)	MEAN	(FROM 1972)
14 EARLIEST	00	1,5	75	74.3	11/2 - 3 YRS.
14 MOST LIKELY	0-0	1.4	76,77	76.1	3 1/2 - 4 1/2YRS
14 NOT LATER THAN	0-0	2.0	80	78.3	5 1/2 - 7 1/2YRS.

N ,	σ	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)		
14 LOWER LIMIT	.8	1 M	1.12 M	.77 - 1.47		
14 UPPER LIMIT	1.5	2,3 M	2.42 M	1.71 - 3.13		

EVENT: IVB04

Single, coaxial electrical cabling, capacity 50 kva/3,000 volts, AC, buoyant and flexible, carrier frequency 12 mHz with a .0026 db per ft maximum attenuation. The cable has a 99% reliability at a 95% lower confidence limit, based on a 10 day-mission with 5 days of continuous operation at ocean depths down to 25,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 14	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL		1	Δ	14	%	
DESTRABLE		5	Δ	79	%	DESTRABLE
UNNECESSARY	6		Δ	7	%	

DEGREE OF RISK

		NTAGE	FIN	AL CONSENSUS %			_	
N= 14	LOSS	GAIN	0 25	50 75	100 -			CONCLUSION
. I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL	6		Δ			21	%	
.7 SIMULATION		12		Δ		72	%	.7
.9 UNPROVEN	6		Δ			7	%	

		NTAGE		FINAL CONSENSUS %			
N= 14	LOSS	GAIN	0	25 50 75 100			CONCLUSION
SHORT RANGE GOAL	7		4		0	%	45
MEDIUM		7		Δ	50	%	MEDIUM
LONG				Δ	50	%	
UNDESTRABLE	12		4		0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			¥	DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
14 EARLIEST	0-0	1.4	75	75.6	3 - 4 YRS
13 MOST LIKELY	0-0	1.0	77	77.2	4 1/2 - 5 1/2 YRS
14 NOT LATER THAN	00	2.3	80	80.1	6 1/2 - 9 1/2 YRS

CCTIMA	ATEN	rnete '	rn aruieve
E211M1	AILU	P0212	TO ACHIEVE

	1		Ta,	ODEIC	AFAN.	DEVELOPMENT COSTS [IN MILLONS]
N			IW	ODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14	LOWER LIMIT	."6		1 M	1.04 M	.75 - 1.33
14	UPPER LIMIT	1.4		2 _ M	2.07 M	1.42 - 2.72

EVENT: IVB05

An operational undersea electrical connector with both in-air and underwater make/break capability (dead cable) for use on 115 volts, 150 to 200 amps, 400 Hz systems. The connector has a 0.9 probability of failure free operation for one year at a lower confidence limit of 90% based upon 250 immersion cycles to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL	CONSENS	SUS %			,	
N° 15	LOSS	GAIN	C .	25	50	75	100			CONCLUSION
ESSENTIAL	12			4	$\overline{\Delta}$			47	%	
DESTRABLE		12		• • • • • •	Δ			53	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N- 15		NTAGE GAIN		F1	NAL CONSEN	SUS %	100		ſ	CONCLUSION
.1 PROTOTYPE	11		1	7		*****		13	%	
.4 EXPERIMENTAL	8			Δ	 			27	%	
.7 SIMULATION		19			Δ	- 		60	%	.7
.9 UNPROVEN			4					0	%	

N= 15		NTAGE GAIN	0	FIN	AL CONSI	ENSUS %	100		Γ	CONCLUSION
SHORT RANGE GOAL	4					Δ		67	%	SHORT
MEDIUM		4		Δ				33	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 H1 h4 h7 90 9h	σ	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	00	.6	74	73.9	11/2 - 2 YRS.
15 MOST LIKELY	0-0	.5	75	75.1	3 - 3 1/2 YRS.
15 NOT LATER THAN	9-0	1.4	77	77.0	4 1/2 - 5 1/2 YRS.

EST	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
15	LOWER LIMIT	,2	.3 M	.35 M	.2544
15	UPPER LIMIT	.3	1 M	.76 M	.6092

EVENT: IVB06

An operational undersea electrical connector with both in-air and underwater make/break capability (dead cable) for use on 112 volts, 300 to 400 amps, DC electrical system. The connector has a ...same as IVB05.

SYSTEM CRITICALITY

N= 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100	0	Γ	CONCLUSION
ESSENTIAL	1		Δ	40	%	ESSENTIAL
DESTRABLE	1		Δ	40	%	DESIRABLE
UNNECESSARY		2	Δ	20	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %			_	
N= 14	LOSS	GAIN	0	25 50 75 ł00				CONCLUSION
. I PROTOTYPE		1		Δ		7	%	
. 4 EXPERIMENTAL		1		Δ	T	64	%	.4
.7 SIMULATION		4		Δ	T	29	%	
.9 UNPROVEN	6		1		Τ	0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 15	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		8	Δ	73	%	SHORT
MEDIUM	10		Δ	13	%	
LONG		1	Δ	7	%	
UNDESTRABLE		1	Δ	7	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) 81 84 87 90 1 96 [FROM 1972] MODE(S) 73.5 75 76.5 78 MEAN EARLIEST 1.2 73.7 1 - 2 1/2 YRS 74 MOST LIKELY . 6 75 75.1 3 - 3 1/2 YRS 00 1.4 NOT LATER THAN 77.1 41/2 - 6 YRS. 76 0-0

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N ,	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14 LOWER LIMIT	.1	.3 M	.28 M	.2234
14 UPPER LIMIT	.3	1 M	.67 M	.5381

EVENT: IVB07

Electromagnetic circuit breakers, 150 to 400 ampere (AC and/or DC) rating, capable of instantaneous and/or delayed response and providing over and under current circuit and/or remote reset and can function in ambient conditions down to ocean depths of 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			,	
N= 12	LOSS	GAIN	1	25 50 75 1	100			CONCLUSION
ESSENTIAL		15		Δ	7 [75	%	ESSENTIAL
DESTRABLE	15	á		Δ		25	%	
UNNECESSARY		15	4			0	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSEN	SUS %			_	
N* 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE	2	G.		Δ				25	%	
.4 EXPERIMENTAL	2				Δ			58	%	.4
.7 SIMULATION	1	4		Δ				17	%	
.9 UNPROVEN			4					0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	INAL CONSER	ISUS %			_	
N= 12		GAIN	0	25	50	75	100		J	CONCLUSION
SHORT RANGE GOAL	3					Δ		83	%	SHORT
MEDIUM		3		Δ				17	%	
LONG	1		4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	(90% CONFIDENCE INTERVAL)							
N	72 73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)				
12 EARLIEST	00	1.3	74	73.4	1 - 2 YRS.				
11 MOST LIKELY	0.0	.6	75	75.1	2 1/2 - 3 1/2 YRS				
11 NOT LATER THAN	0-0	1.3	76	76.9	4 - 51/2 YRS				

		MODE(S)	AAC A LI	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
11		MODELST	MEMIA	(30 % CONFIDENCE INTERVAL)
12 LOWER LIMIT	.3	.3 M	.29 M	.1641
12 UPPER LIMIT	.3	.5 M	.54 M	.4267

EVENT: IVB08

Hydraulic magnetic circuit breakers...same as IVB07.

SYSTEM CRITICALITY

N= 13		NTAGE GAIN	0 25	FINAL CONSI	ENSUS %	100			CONCLUSION
ESSENTIAL		10	Δ		<u> </u>		23	%	
DESTRABLE	12		Δ				15	%	
UNNECESSARY		2	1		Λ		62	%	UNNECESSARY

DEGREE OF RISK

N= 10		NTAGE GAIN		FINAL CONSI	NSUS %	100		ſ	CONCLUSION
. I PROTOTYPE		61			Δ		70	%	.1
. 4 EXPERIMENTAL	35		Δ				20	%	
.7 SIMULATION	17		Δ				10	%	
.9 UNPROVEN	9		Δ				0	%	

DESIRED COURSE OF ACTION

N= 12		NTAGE GAIN	o	FINA 25	L CONSEN	SUS %	100		П	CONCLUSION
SHORT RANGE GOAL	6		-	Δ		* * * * * * * * * * * * * * * * * * * 		17	%	
MEDIUM	6		\top	Δ		• • • • • •		25	%	
LONG	7			Δ				8	%	
UNDESTRABLE		19			Δ			50	%	UNDESTRABLE

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) MODE(S) [FROM 1972] MEAN 81 84 87 110 j 10 EARLIEST 1 - 21/21.4 74 73.8 YRS 0---3 - 41/21.3 9 MOST LIKELY 75 75.6 YRS 0--0 9 NOT LATER THAN 76 1.8 77.3 4 - 61/20--0

ESTIMATED	COSTS	TO ACHIEVE
-----------	-------	------------

N	1	<u></u>	TAAC	DE(S)	I ASSAN	DEVELOPMENT COSTS (IN MILLONS)
W			MIC	JUE (2)	MEAN	(90% CONFIDENCE INTERVAL)
10	LOWER LIMIT	.1	1.3	3 M	.29 M	.2037
10	UPPER LIMIT	.2	.5	M	.58 M	.4670

EVENT: IVB09

Fuses, 50 to 150 ampere (AC and/or DC), capable of circuit interruption at the designed overcurrent while subjected to ambient conditions of 0° to 50° C and 0 to 13,000 psi.

SYSTEM CRITICALITY

	PERCE	NTAGE	FIN	AL CONSTNSUS %			_	
N= 13	LOSS	GAIN	0 25	50 75	100			CONCLUSION
ESSENTIAL		18		Δ		62	%	ESSENTIAL
DESTRABLE	2		Δ	 		23	%	
UNNECESSARY	16		Δ			15	%	

DEGREE OF RISK

N= 12		NTAGE GAIN		F 25	INAL CONSENS	SUS %	100		Г	CONCLUSION
.I PROTOTYPE	14	OATN		Δ				17	%	
.4 EXPERIMENTAL		14			- •	Δ	* 1	75	%	.4
.7 SIMULATION			4		+ + + + +-			0	%	
.9 UNPROVEN			Δ					8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSEN	NSUS %			_	
N= 12		GAIN		25	50	75	100			CONCLUSION
SHORT RANGE GOAL		7					Δ	92	%	SHORT
MEDIUM		8		Δ				8	%	
LONG			4					0	%	
UNDESTRABLE	15		4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	2 73,5 75 76,5 78 81 84 87 40 44 4	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	1.2	74	73.3	1/2 - 2 YRS.
12 MOST LIKELY	0-0	1.1	75	74.7	2 - 3 YRS.
12 NOT LATER THAN	00	1.7	76	76.2	3 1/2 - 5 YRS.

N		MODE	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]			
12 LOWER LIMIT		.1	M	MEAN .15 M	.1120	
12 UPPER LIMIT	.1	.3	M	.33 M	.2640	

EVENT: IVB10

 Λ solid state 50 to 150 ampere circuit protection device capable of...same as IVB09.

SYSTEM CRITICALITY

		NTAGE	4	FINAL CONSENSUS %		ſ	OONOL HOLON
N= 12	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL		2		Δ	59	%	ESSENTIAL
DESTRABLE	3		П	Δ	33	%	
UNNECESSARY		1	П	Δ	8	%	

DEGREE OF RISK

N= 11		NTAGE GAIN	0	F 25	INAL CONS	ENSUS %	100			CONCLUSION
.! PROTOTYPE		3		Δ				18	%	
.4 EXPERIMENTAL	4		4			Δ		73	%	. 4
.7 SIMULATION			4					0	%	
.9 UNPROVEN		1	Δ					9	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FII	NAL CONSE	NSUS %				
N* 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		6					7	91	%	SHORT
MEDIUM	6		1	7				9	%	
LONG			4					0	%	
UNDESTRABLE			λ.					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	2 73,5 75 76,5 76 H1 84 57 90 196	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.1	73,74	73.2	1/2 - 2 YRS
11 MOSTLIKELY	00	1.1	75	74.7	2 - 3 1/2 YRS
11 NOT LATER THAN	00	1.5	75	76.5	3 1/2 - 5 1/2 YRS

EVENT: IVB11

A 1/2 inch, 20-wire through-hull penetrator, cross-talk free, with a 25 ampere total capacity capable of functioning in 20,000 ft ocean depths.

SYSTEM CRITICALITY

PERCENTAGE FINAL CONSENSUS %									_	
N= 14	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		3		Δ				43	%	
DESTRABLE		3			Δ			50	%	DESIRABLE
UNNECESSARY	6		Δ					7	%	

DEGREE OF RISK

N- 13		NTAGE	0	FINAL CONSE	NSUS %	100		-Г	CONCLUSION
. I PROTOTYPE			Δ				8	%	
.4 EXPERIMENTAL	1				Δ		76	%	.4
.7 SIMULATION	7		Δ				8	%	
.9 UNPROVEN		8	Δ		. 0. 7. 2		8	%	

N- 13		ENTAGE FINAL CONSENSUS %							Г	CONCLUSION
SHORT RANGE GOAL	1033	15		<u> </u>	·	4		69	%	SHORT
MEDIUM	7			Δ				23	%	
LONG			Δ		****	· ····································		8	%	
UNDESTRABLE	8		4					0	%	

PROBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 N1 N4 N7 ND 1 N1 1	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	.4	74	73.9	11/2 - 2 YRS
12 MOST LIKELY	00	.6	75	75.3	3 - 3 1/2 YRS
12 NOT LATER THAN	0-0	1.3	76	76.6	4 - 5 YRS

ESTIMATED COSTS TO	ACHIEVE
--------------------	---------

N			MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)		
ĽIJ			MICUEISI	MENIA	190 W COMLIDENCE IMIEKANT		
13	LOWER LIMIT	.1	.2 M	.20 M	.1623		
13	UPPER LIMIT		.5 M	.42 M	.3648		

EVENT: IVB12

A 1 1/2 inch, 84-wire through-hull penetrator...same as IVB11.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	NAL CONSE	NSUS %			,	
N= 14	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	6		1					14	%	
DESTRABLE	i i	6				Δ		79	%	DESTRABLE
UNNECESSARY	8		Δ					7	%	

DEGREE OF RISK

(h)		NTAGE	•	FII	NAL CONSE	NSUS %			_	20MOLUCION
N= 13	LOSS	GAIN		25	50		100			CONCLUSION
.I PROTOTYFE	8		Δ					0	%	
. 4 EXPERIMENTAL	10	2				Δ		69	%	. 4
.7 SIMULATION	2			Δ				23	%	
.9 UNPROVEN	8	8	Δ					8	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
Nº 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL				Δ				15	%	
MEDIUM						Δ		77	%	MEDIUM
LONG			Δ					8	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 k1 k4 k7 90 3 96	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	.6	74	74.3	2 - 2 1/2 YRS
12 MOST LIKELY	00	.6	75	75.5	3 - 4 YRS
12 NOT LATER THAN	0-0	1.4	76.78	77.3	41/2-6 YRS.

ES	rimated costs to achieve				DEVELOPMENT COSTS (IN MILLORS)
N		σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13	LOWER LIMIT	.1	.4 M	.25 M	.1931
13	UPPER LIMIT	.1	.5 M	.46 M	.3954

EVENT: IVB13

A wireless split transformer link through a pressure hull of appropriate material, without penetration, capable of transmitting 50 watts at ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			ī	
N* 12	LOSS	GAIN	0 25 50 75	100			CONCLUSION
ESSENTIAL		4	Δ	7	25	%	
DESTRABLE			Δ		50	%	DESTRABLE
UNNECESSARY	4		Δ		25	%	

DEGREE OF RISK

N= 13		NTAGE GAIN	F1N 25	IAL CONSE	NSUS %	100		Г	CONCLUSION
. I PROTOTYPE	8						0	%	
. 4 EXPERIMENTAL	j	2			Δ		69	%	. 4
.7 SIMULATION		6	Δ				23	%	
.9 UNPROVEN			Δ				8	%	

DESIRED COURSE OF ACTION

N* 13		NTAGE	٥	F 25	INAL CONSE	NSUS %	100		Г	CONCLUSION
SHORT RANGE GOAL	F022	GAIN 10	Ť		50	$\frac{1}{\Delta}$		70	%	SHORT
MEDIUM		8		Δ				15	%	
LONG	13		4					0	%	
UNDESTRABLE	5			Δ				15	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) (FROM 1972) MODE(S) MEAN N 75 76,5 74 ø 11EARLIEST 73.9 1 - 2 1/2 YRS. 1.5 74 0---0 1.5 75 75.4 21/2-411 MOST LIKELY 0--0 YRS 1.4 11 NOT LATER THAN 78 77.3 41/2 - 6YRS 9-9

ESTIMATED	COSTS	TO	ACHIEVE

N	0	MODE(S)	MEAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.1	.1 M	.16 M	
11 UPPER LIMIT	,2	.6 M	.42 M	.3054

DEVELOPMENT COCTO

EVENT: T/B14

A wireless microwave/electrical link through a pressure hull of appropriate material, without penetration capable of transmitting 50 watts at ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CO	NSENSUS %				
N= 13	LOSS	GAIN	0	25 50	75	100			CONCLUSION
ESSENTIAL		1	Δ				15	%	
DESTRABLE		12			Δ		62	%	DESIRABLE
UNNECESSARY	13	ĵ		$\overline{\Delta}$			23	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENS	SUS %			1	
N* 11	LOSS	GAIN	°.	25 50	75	100			CONCLUSION
. I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL		2	T	Δ			27	%	
.7 SIMULATION	6			Δ			27	%	
.9 UNPROVEN		4		Δ			46	%	, 9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N* 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	1	1		Δ				15	%	
MEDIUM		3			Δ			39	%	MEDIUM
LONG	_ 1	2		Δ				31	%	
UNDESTRABLE	6			Δ				15	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 76 51 64 67 90 961	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	0-0	,9	75	75.1	2 1/2 - 3 1/2 YRS.
11 MOST LIKELY	0-0	1.3	78	77.3	4 1/2 - 6 YRS
1 1 NOT LATER THAN	0-0	2.0	80	79.5	6 1/2 - 8 1/2 YRS.

			DEVELOPMENT COSTS [IN MILLONS]
N	ø MOD	E(S) MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	2 .3,	5 M .32 M	.2441
12 UPPER LIMIT	.3 1	M .64 M	.4880

EVENT: IVB15

A wireless optical/electrical link (e.g.,laser) through a pressure hull of appropriate material, without penetration, capable of transmitting 50 watts at ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSEN	ISUS %			r	
N= 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		2	Δ					8	%	
DESTRABLE		2		••••		Δ		77	%	DESTRABLE
UNNECESSARY	4		Δ					15	%	

DEGREE OF RISK

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %			_	
N* 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE		1	4					0	%	
. 4 EXPERIMENTAL	13		4					0	%	
.7 SIMULATION	7	:		Δ				33	%	
.9 UNPROVEN		20				Δ		67	%	.9

N= 12		NTAGE	F1 0 25	NAL CONSENSUS %	100		ſ	CONCLUSION
SHORT RANGE GOAL		1	Δ			8	%	
MEDIUM	3		Δ		\Box	17	%	
LONG		2		Δ		75	%	LONG
UNDESTRABLE			A			0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 67 90 96 1	0	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	1.4	78	76.4	3 1/2 - 5 YRS
12 MOST LIKELY	00	1.7	80	78.8	6 - 71/2 YRS
12 NOT LATER THAN	0	2.3	80	81.5	8 1/2 - 10 1/2YRS

COTIMA	TER	CACTE '	TA AA	MICHE
ESTIMA	ILU	P0212	IU AL	MIEVE

		DEVELOPMENT COSTS (IN MILLONS)						
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)				
12 LOWER LIMIT	.3	,3 M	.48 M	.3363				
12 UPPER LIMIT	. 8	1,2 M	1.14 M	.73 - 1.54				

EVENT: IVB16

Junction box, pressure compensated, with easy accessibility for maintenance, 100 ampere capacity, capable of operations at 20,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			-	
N= 13	LOSS	GAIN	0	25 50 75	100			CONCLUSION
ESSENTIAL		8	ŀΓ	Δ		77	%	ESSENTIAL
DESTRABLE	8			Δ		23	%	
UNNECESSARY			4			0	%	

DEGREE OF RISK

	PERCENTAGE FINAL CONSENSUS %									
N= 13	LOSS	GAIN	0	25	50	75	. 100			CONCLUSION
. I PROTUTYPE		11			Δ			61	%	. 1
. 4 EXPERIMENTAL	6.5			Δ				31	%	
.7 SIMULATION	4.5		Δ		+ + - + - + - + - +		•	8	%	
.9 UNPROVEN			4					0	%	

DESIRED COURSE OF ACTION

		NTAGE		FINAL CONSENSUS %	_	
N= 12	LOSS	GAIN!	Q.	25 50 75 100		CONCLUSION
SHORT RANGE GOAL		12.5		4	100 %	SHORT
MEDIUM	12.5		4		0 %	
LONG			1		0 %	
UNDESTRABLE			4		0 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)								
N	72 73.5 75 76.5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FRGM 1972)				
13 EARLIEST	00	1,0	73	73.0	1/2-11/2 YRS.				
12 MOST LIKELY	0-0	,8	75	74.6	2 - 3 YRS				
12 NOT LATER THAN	0-0	1,2	76	75.9	3 1/2 - 4 1/2 YRS.				

Leg .	● MODE(S)		DEVELOPMENT COSTS [IN MILLONS]
N ,	MODE	31 WEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	1.1	M .11 M	,8 - ,15
13 UPPER LIMIT	1 .2, .3	M .24 M	.1930

EVENT: IVB17

Junction box, pressure compensated, with easy accessibility for maintenance, 400 ampere capacity...same as IVB16.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CO	ONSENSUS %			
N= 13	LOSS	GAIN	0	25 5	75 100			CONCLUSION
ESSENTIAL		8			Δ	77	7.	ESSENTIAL
DESTRABLE		4		Δ		23	%	
UNNECESSARY	12		. \			0	7/0	

DEGREE OF RISK

	NTAGE	NSUS %			,					
N= 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE	9			4				31	%	
. 4 EXPERIMENTAL		14			1	١		61	%	. 4
.7 SIMULATION	5		77					8	%	
.9 UNPROVEN			Λ.					0	%	

N= 12		NTAGE GAIN	0	F 25	INAL CONSEN	ISUS %	100		Γ	CONCLUSION
SHORT RANGE GOAL		2				Δ		83	%	SHORT
MEDIUM	2			Δ				17	%	
LO1 G			1					0	%	
UNDESTRABLE			A					0	%	

PROBABLE TIMING	(90	CALENDAP							DEVELOPMENT T	TIME
N :	2 23	75 76,5 76	51	54	13 16	σ	MODE(S)	MEAN	(FROM 1972)	
13 EARLIEST	0=-					1.2	74	73.4	1 - 2	YRS.
12 MOST LIKELY						.7	75	75.0	2 1/2 - 3 1/2	YRS
12 NOT LATER THAN		.00				1.2	76	76.3	3 1/2 - 5	YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	.1	.1 M	.13 M	.0917
13 UPPER LIMIT	.1	.2 M	.27 M	.2133

EVENT: IVB18

A solid-state inverter with no moving parts, pressure compensated, capable of producing a minimum of 150 kw, AC, at ambient conditions down to 20,000-ft ocean depths.

SYSTEM CRITICALITY

N= 12		NTAGE	F 25	INAL CONSEI	NSUS %	100		ſ	CONCLUSION
ESSENTIAL	7 (-11)	3	Δ		- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		17	%	
DESTRABLE	4		+-+-+	+-+-+-+	Δ		75	%	DESTRABLE
UNNECESSARY		1	Δ	*****	+ + + + + + + + + + + + + + + + + + + +		8	%	

DEGREE OF RISK

		NTAGE		FINAL CONS	ENSUS %			_	0011010101
N= 11	LOSS	GAIN	0	25 50	75	100			CONCLUSION
. I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL		7			Δ		82	%	. 4
.7 SIMULATION	8		4				0	%	
.9 UNPROVEN		1	Δ				18	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI.	NAL CONSE	NSUS %			_	
N- 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		7				Δ		82	%	SHORT
MEDIUM	7	V.—		Δ				18	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS				
	(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	2 73,5 75 76,5 78 81 84 67 90 96	0	MODE(S)	MEAN	[FROM 1972]
11 EARLIEST	0-0	.6	74,75	74.4	2 - 21/2 YRS.
11 MOST LIKELY	0-0	.9	76	76.1	3 1/2 - 4 1/2 YRS
1 1 NOT LATER THAN	0=0	1.4	78	78 3	51/2 - 7 YPS

N	 	•	MODE(S)	MEAN	IN MILLONS [IN MILLONS] [90% CONFIDENCE INTERVAL]
11	LOWER LIMIT	.1	.5 M	.40 M	.3445
10	UPPER LIMIT	,2	1 M		.5986

EVENT: IVB19 An alternator, pressure compensated,...same as IVB18.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINA	L CONSEN	ISUS %			نے	·
N= 12	LOSS	GAIN	Ó	25	50	75	100			CONCLUSION
ESSENTIAL		1	Δ					16	%	
DESTRABLE		3			$\overline{\Delta}$			42	%	DESTRABLE
UNNECESSARY	4				Δ			42	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	ISUS %			-	
N* 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL		10				Δ		80	%	.4
.7 SIMULATION	10		4					0	%	
.9 UNPROVEN				Δ				20	%	

	PERCE	NTAGE	FINAL CONSENSUS %			-	
N= 10	LOSS	GAIN	0 25 50 75	100		i	CONCLUSION
SHORT RANGE GOAL		10	Δ		50	%	SHORT
MEDIUM			Δ		30	%	
LONG	10		4		0	%	
UNDESTRABLE			Δ		20	%	•

	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N ?	73,5 75 76,5 78 81 84 87 90 1 96 1	σ	MODE(S)	MEAN	(FROM 1972)
9 EARLIEST	0:0	1.9	75	74.4	11/2-31/2 YRS.
8 MOST LIKELY	00	1.5	76	76.4	3 1/2 - 5 1/2 YRS.
8 NOT LATER THAN	00	1.6	77	77.9	5 - 7 YRS.

ESTIMATED	COSTS	TO ACHIEVE
-----------	-------	------------

_		_	· · · · · · · · · · · · · · · · · · ·		DEVELOPMENT COSTS (IM MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.2	.2 M	.38 M	.2253
9	UPPER LIMIT	.3	1 M	.81 M	.59 - 1.03

EVENT: IVB20

An alternator, ambient pressure, seawater flooded, capable of..same as IVB18.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %				
N* 12	LOSS	GAIN	٥	25 50 75	100	_		CONCLUSION
ESSENTIAL	8		4			0	%	
DESTRABLE		2		Δ		33	%	
UNNECESSARY		6		Δ		67	%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSEI	NSUS %			_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL		11				Δ		78	%	.4
.7 SIMULATION	11		4		· · · · · · · · · · · · · · · · · · ·			0	%	
.9 UNPROVEN				Δ				22	%	

	PERCE	NTAGE		Fil	NAL CONSE	NSUS %				
N* 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	8			Δ				22	%	
MEDIUM		13		Δ				33	%	
LONG	10		4					0	%	
UNDESTRABLE		5			Δ			45	%	UNDESTRABLE

PR	OBABLE TIMING	CALENDAR YEARS				
N	γ,	(90% CONFIDENCE INTERVAL) 73,5 75 76,5 78 81 84 87 90 1 96 1	0	MODE(S)	MEAN	DEVELOPMENT TIME (FROM 1972)
8	EARLIEST	0	1.7	75	74.3	1 - 21/2 YRS.
7	MOST LIKELY	00	1.2	76	76.4	2 1/2 - 5 1/2 YRS.
7	NOT LATER THAN		1.3	77	78.1	5 - 7 YRS.

CCTIMATED	COCTO	TO	ACHIEVE	
ESTIMATED	CO212	10	AUMIEVE	

N		•	I	MODE	(S)	MEAN	DEVELOPMENT COSTS (IM MILLONS) (SO% CONFIDENCE INTERVAL)
8	LOWER LIMIT		I	.5	M	.46 A	M .3556
8	UPPER LIMIT	.3	I	.8	M	.89 A	M .70 - 1.07

EVENT: IVB21

An AC motor controller, pressure compensated, for a 50 hp motor, capable of functioning in ambient conditions down to 20,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	VAL CONSE	NSUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		4		Δ		,		25	%	
DESTRABLE	4				••••	Δ		75	%	DESTRABLE
UNNECESSARY			4		*********			0	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSEN	ISUS %			_	
N= 12		GAIN		50	75	100			CONCLUSION
.I PROTOTYPE	6		Δ				8	%	
.4 EXPERIMENTAL		3			Δ.		75	%	. 4
.7 SIMULATION			4				0	%	
.9 UNPROVEN		3	Δ				17	%	

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %				
N= 10		GAIN	0	25	50	75	100		- 1	CONCLUSION
SHORT RANGE GOAL		16				Δ		70	%	SHORT
MEDIUM	16			Δ				30	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.4	74	73.8	1 - 21/2 YRS.
11 MOST LIKELY	00	1.7	76	75.5	2 1/2 - 4 1/2 YRS.
1 1 NOT LATER THAN	00	1.6	78	77.5	4 1/2 - 6 1/2 yes

ESTIMATED	COSTS	TO	ACHIEVE
-----------	-------	----	---------

	_			(IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.2	.2 M	.34 M	.2444
12 UPPER LIMIT	.3	.5 M	.71 M	.5389

EVENT: IVB22

An AC motor controller, ambient pressure, seawater flooded for a 50 hp motor...same as IVB21.

SYSTEM CRITICALITY

	PERCE	NTAGE	FI	NAL CONSEN	SUS %			•	
N= 12	LOSS	GAIN	0 25	5C	75	100			CONCLUSION
ESSENTIAL		2	Δ				17	%	
DESTRABLE	4			- + - + - + - + - + - + - + - + - + - +	Δ		66	%	DESIRABLE
UNNECESSARY		2	Δ				17	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			-	
N* 12		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	7		Δ		8	%	
.4 EXPERIMENTAL	6		Δ		33	%	
.7 SIMULATION		11	Δ		42	%	.7
.9 UNPROVEN		2	Δ		17	%	

DESIRED COURSE OF ACTION

N- 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100		ſ	CONCLUSION
SHORT RANGE GOAL	2033	14	Δ	50	75	SHORT
MEDIUM		1	Δ	20	%	
LONG	6		Δ	30	%	
UNDESTRABLE	9		A	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N ,	2 75.5 75 74.5 78 81 84 87 90 98 99	0	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.2	74	74.9	2 1/2 - 3 1/2/RS.
11 MOST LIKELY	00	1.7	76	76.9	4 - 6 YRS
10 NOT LATER THAN	0-0	1.4	77,78	78.5	5 1/2 - 7 1/2 YES

[7]		Tunners	AAFAN	(IN MILLONS)
NI	<u> </u>	MODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.3	.5 M	.51 M	.3765
11 UPPER LIMIT	.7	1 M	1.12 M	.73 - 1.52

EVENT: IVB23

A DC motor controller, pressure compensated, for a 50 hp motor, capable of functioning in ambient conditions down to 20,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			-	
N- 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		4		Δ				25	%	
DESTRABLE		3				Δ		75	%	DESTRABLE
UNNECESSARY	7		4					0	%	

DEGREE OF RISK

		NTAGE		F	INAL CONSE	NSUS %			_	
N- 12	LOSS	GAIN	<u>. </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE	1250		4					0	%	
. 4 EXPERIMENTAL						Δ		83	%	. 4
.7 SIMULATION			4					0	%	
.9 UNPROVEN				Δ				17	%	

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %			_	
N- 12		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		3				Δ		67	%	SHORT
MEDIUM	3		2 0,7	Δ				33	%	
LONG			4					0	%	
UNDESTRABLE			4	G 200 FG				0	*	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.4	74	73.7	1 - 21/2 YRS
11 MOST LIKELY	00	1.5	75	75.5	21/2-41/2 YRS
11 NOT LATER THAN	00	11.7	77.78	77.4	4 1/2 - 6 1/2 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		MODE(S)	MEAN	190% CONFIDENCE INTERVAL
12 LOWER LIMIT	.2	.2, .5 M	.38 M	.2847
12 UPPER LIMIT	,3	1 M	.71 M	.5885

EVENT: IVB24

A DC motor controller, ambient pressure, seawater flooded, for a 50 hp motor...same as IVB23.

SYSTEM CRITICALITY

N= 12		NTAGE			NAL CONSE	NSUS %	100		f	CONCLUSION
ESSENTIAL	10SS	GAIN	<u> </u>		50		;	0	%	CONCLUSION
DESTRABLE		6		· · · · · · · · · · · · · · · · · · ·		Δ	•	75	%	DESTRABLE
UNNECESSARY		2		Δ		-+-+-		25	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N- 12		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	14		4		0	%	
.4 EXPERIMENTAL		4	Δ		33	%	
.7 SIMULATION		6	Δ		42	%	.7
.9 UNPROVEN		4	Δ		25	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSU	IS %		-	
1 11	LOSS	GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL	9		Δ		37	%	SHORT
MUIDEM		9	Δ		27	%	
LONG			Δ		27	%	
UNDESTRABLE			Δ		9	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 73,5 75 76,5 78 81 84 67 90 Ø 11 EARLIEST .9 75 75.1 2 1/2 - 3 1/2YRS 0.0 11 MOST LIKELY 41/2 - 61.5 76 77.3 0-0 10 NOT LATER THAN 1.8 78.6 5 1/2 - 7 1/2 YRS

00

78

ESTIMATED COSTS TO ACHIEVE DEVELOPMENT COSTS IM MILLONS) MODE(S) MEAN (90% CONFIDENCE INTERVAL) 12 LOWER LIMIT .34 - .72.3 .3 M .53 M UPPER LIMIT M 1.03 M .65 - 1.42

IVC

Sub-Technology:

Transmission and Conditioning Equipment for Deep Ocean Fixed Installations

Objective: To advance the technologies necessary to transmit and condition electrical energy required by deep ocean fixed installation, at ambient conditions of 8,000 ft depths for installations with a life expectancy of up to 10 years.

Events IVC01 - IVC15 address this objective.

EVENT: IVC01

Electrical cabling capable of conducting 480 volts, 400 Hz, 50 ampere alternating current with a 95% probability of a 10 year life at a lower confidence limit of 90% while functioning at 8,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		1	
N= 14	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	2		Δ	29	%	
DESTRABLE		8	Δ	64	%	DESTRABLE
UNNECESSARY	6			7	%	

DEGREE OF RISK

N- 12		NTAGE GAIN		NAL CONSENSUS	% 75 100		Г	CONCLUSION
.I PROTOTYPE	1033	3	Δ			33	%	
.4 EXPERIMENTAL		5		Δ		59	%	.4
.7 SIMULATION			Δ			8	%	
.9 UNPROVEN	8		A			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FII	NAL CONSEI	NSUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		14				Δ		75	%	SHORT
MEDIUM	6			Δ				25	%	
LONG	8		4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) (FROM 1972) MODE(S) MEAN 75 76,5 78 84 87 90 12 EARLIEST 1.3 74 0--0 73.7 1 - 21/2YRS. 12 MOST LIKELY .7 75,76 75.3 3 - 31/2YRS. 00 12 NOT LATER THAN 1.3 77 76.8 4 - 51/20-0 YRS.

ESTIMATED COSTS TO ACHIEVE

N)		MODE(S)	AACAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)			
		MIODEISI	MENIA	(80 % CONTIDENCE INTERVAL)			
12 LOWER LIMIT	.3	. 17.5 M	.34 M	.2148			
12 UPPER LIMIT	.3	.5, 1 M	.73 M	.5491			

EVENT: IVC02

Electrical cabling capable of conducting 15,000 volts, 400 Hz, 150 ampere alternating current with a 95% probability...same as IVC01.

SYSTEM CRITICALITY

N= 13		NTAGE	0 2	FINAL CONS	SENSUS %	100		Г	CONCLUSION
ESSENTIAL	1033	1	Δ	<u> </u>			8	%	
DESTRABLE	10				Δ		69	%	DESIRABLE
UNNECESSARY		9	Δ				23	%	

DEGREE OF RISK

N= 13		NTAGE GAIN		FIN.	AL CONSEN	ISUS %	100			CONCLUSION
.I PROTOTYPE			4	- **				0	%	
.4 EXPERIMENTAL	21	1	4		· · · · · · · · · · · · · · · · · · ·			0	%	
.7 SIMULATION		19				Δ		69	%	.7
.9 UNPROVEN		2		Δ				31	%	

	PERCE	NTAGE		FINAL CONSENSU	S %			_	
N= 12		GAIN		50	75	100			CONCLUSION
SHORT RANGE GOAL			Δ				8	%	
MEDIUM	14		Δ				17	%	
LONG		14			Δ		75	%	LONG
UNDESTRABLE			4				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FF:0M 1972)
12 EARLIEST	00.	1.6	75	75.4	21/2 - 4 YRS.
12 MOST LIKELY	00	2.5	77	77.4	4 - 61/2 YRS.
1 1 NOT LATER THAN	<u> </u>	11.3	80	79. D	61/2-71/2 yes

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IM AMLLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.7	1 M	.87 M	.49 - 1.25
12 UPPER LIMIT	1.2	2 M	1.68 M	1.06 - 2.31

EVENT: IVC02a Electrical cabling capable of conducting 15,000 volts, 60 Hz, ...same as IVC02.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %			
N* 13	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL			Δ	1	5 %	
DESTRABLE		7	Δ	7	7 %	DESTRABLE
UNNECESSARY	7		Δ	T	8 %	

DEGREE OF RISK

N= 13		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CONCLUSION
. I PROTOTYPE	9		Δ	8	%	
. 4 EXPERIMENTAL	17		Δ	8	%	
.7 SIMULATION		28	Δ	69	%	.7
.9 UNPROVEN	2		Δ	15	%	

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N* 11		GAIN		50	75	100			CONCLUSION
SHORT RANGE GOAL			Δ				9	%	
MEDIUM		9			Δ		64	%	MEDIUM
LONG	9		Δ				27	%	
UNDESTRABLE			4				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME	
N 7	2 73,5 75 76,5 78 81 84 87 90 96	ø	MODE(S)	MEAN	(FROM 1972)	
12 EARLIEST	00	1.2	75	75.0	21/2 - 31/2RS.	
12 MOST LIKELY	00	2.2	76,77	76.8	3 1/2 - 6 YRS.	
12 NOT LATER THAN	00	3.5	77.80	79.5	5 1/2 - 9 1/2 YRS.	

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.7	1 M	.80 M	.42 - 1.18
12 UPPER LIMIT	1.2	2 M	1.53M	.90 - 2.15

EVENT: IVC03

Electrical cabling capable of conducting 5,000 volts, 400 Hz, 50 ampere alternating current with a 95% probability...same as IVC01.

SYSTEM CRITICALITY

		NTAGE		FII	NAL CONSE	NSUS %			_	
N= 14	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENT!AL	71	2		Δ				21	%	
DESTRABLE		3	1			Δ		72	%	DESTRABLE
UNNECESSARY	5		Δ					7	%	

DEGREE OF RISK

		NTAGE		FI	INAL CONSE	NSUS %				
N* 13	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE	7		4					0	%	
. 4 EXPERIMENTAL		26		• • • •	• • • • •	Δ		69	%	. 4
.7 SIMULATION	13			Δ				23	%	
. 9 UNPROVEN	6		Δ		• • • • • •			8	%	

DESIRED COURSE OF ACTION

N= 11		NTAGE	Ģ	FINAL CONSENSUS % 25 50 75 100		Γ	CONCLUSION
SHORT RANGE GOAL	2000	1		Δ	9	%	
MEDIUM		7		Δ	91	%	MEDIUM
LONG	8		4		0	%	
UNDESTRABLE			4		0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 61 64 67 90 96	Ø	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	.6	75	74.5	2 - 3 YRS.
12 MOST LIKELY	00	1.3	76	76.1	3 1/2 - 5 YRS.
12 NOT LATER THAN	0-0	2.3	77	78.3	5-71/2 YRS.

CII			(IM MILLONS)			
N Section 1		WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)		
12LOWER LIMIT	.6	1 M	.81 M	.49 - 1.14		
12 UPPER LIMIT	1.2	2 M	1.66 M	1.02 - 2.30		

EVENT: IVC03a

Electrical cabling capable of conducting 5,000 volts, 60 Hz, ...same as IVC03.

SYSTEM CRITICALITY

N= 1.4		NTAGE GAIN	FINAL CONSENSUS %	100	Г	CONCLUSION
ESSENTIAL	1033	1	Δ	21	%	
DESIRABLE		5		72	%	DESIRABLE
UNNECESSARY	6		Δ	7	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %				
N= 12		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE		8	Δ		25	%	
.4 EXPERIMENTAL		8	Δ		50	%	. 4
.7 SIMULATION	16		Δ		17	%	
.9 UNPROVEN			Δ	* * * *	8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FII	NAL CONSEN	ISUS %			-	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		C.,		Δ				25	%	
MEDIUM						Δ		75	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76.5 78 σ EARLIEST 1 1/2 - 2 1/2YRS .8 74 74.1 0-0 12 MOST LIKELY .6 76 75.4 3 - 31/2YRS 00 77

0-0

77.3

41/2-6

YRS.

ESTIMATED COSTS TO ACHIEVE

NOT LATER THAN

N	•	MODE(S)	MFAN	(SO% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.4		.61 M	
12 UPPER LIMIT	.6	1 M	1.17 M	.83 - 1.51

EVENT: IV CO4

Electrical cabling capable of conducting 480 volts, 400 Hz, 50 ampere alternating current with a 95% probability of a 10 year life at a lower confidence limit of 90% while functioning at 20,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSE	ISUS %				
N= 14		CAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		1	Δ					7	%	
DESTRABLE		5				Δ		86	%	DES IRABLE
UNNECESSARY	6		Δ					7	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N= 13		GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE		1	Δ				8	%	
.4 EXPERIMENTAL		9			Δ		76	%	.4
.7 SIMULATION	5		Δ				8	%	
.9 UNPROVEN	5		Δ				8	%	

	PERCE	NTAGE	FINAL CONSENS	US %		-	
N* 13	LOSS	GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL		10	Δ		23	4	
MEDIUM	6		Δ		54	%	ME DIUM
LONG	5		Δ		15	%	
UNDESTRABLE		1	Δ		8	%	

PROBABLE TIMING		DEVELOPMENT TIME			
N 72	73.5 75 76.5 76 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0-0	.8	74.75	74.6	2 - 3 YRS.
12 MOST LIKELY	0-0	1.4	75	76.3	3 1/2 - 5 YRS.
13 NOT LATER THAN	00	2.3	77	78.7	51/2-8 YRS.

CCTIMATED	COCTC TO	ACHIEVE
ESTIMATED	CO313 10	AUDIETE

N A STATE OF THE S		•	MODEIS) MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
13 LOWER LIMIT	William William Artifects	.6		N .85 M	
13 UPPER LIMIT		1.5	2 1	N 1.90 M	

EVENT: IVC05

Electrical cabling capable of conducting 250 volts, 400 Hz, 50 ampere direct current with a 95% probability...same as IVC04.

SYSTEM CRITICALITY

		NTAGE	FINAL CONSENSUS %		r	
N= 14	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		1.5	Δ	14	%	
DESTRABLE		2.5	Δ	65	%	DESTRABLE
UNNECESSARY	4		Δ	21	%	

DEGREE OF RISK

	PERCE	NTAGE		FIN	VAL CONSE	VSUS %		_	
N* 12	LOSS	GAIN	0	25	50	75			CONCLUSION
. I PROTOTYPE	5		Δ				8	%	
. 4 EXPERIMENTAL		29				Δ	76	%	.4
.7 SIMULATION	12		Δ				8	%	
.9 UNPROVEN	12		Δ				8	%	

N= 11		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Γ	CONCLUSION
SHORT RANGE GOAL		14	Δ	36	%	
MEDIUM		5	Δ	55	%	MEDIUM
LONG	14		4	0	%	
UNDESTRABLE	5		Δ	9	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			1	DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 64 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	1.3	74	74.6	2 - 3 1/2 YRS
12 MOST LIKELY	00	4.0	76	77.1	3 - 7 YRS
12 NOT LATER THAN	00	6.2	78	79.8	4 1/2 - 11 YRS.

ES	TIMATED COSTS TO ACHIEVE					DEVELOPMENT COSTS (IN MILLONS)
N	cells. Venezue en la cellecte		MODE	(S)	MEAN	(90% CONFIDENCE INTERVAL)
12	LOWER LIMIT	.3	5	M	.45 M	.3061
12	UPPER LIMIT	.8	5	M	1 06 M	66 - 1 46

EVENT: IVC05a

An electro-mechanical, multiplex, <u>multiconductor</u> communication cable, near neutrally buoyant, non-twisting, non-kinking, carrier frequency of 700 kHz with a maximum attenuation of 2db per 1,000-ft with a 95% probability...same as IVC04.

SYSTEM CRITICALITY

	PERCE	NTAGE	FIN	AL CONSENSUS %			-	
N= 13	LOSS	GAIN	0 25	50 75	100			CONCLUSION
ESSENTIAL	8		Δ	Δ		15	%	
DESTRABLE		16				70	%	DESIRABLE
UNNECESSARY	8		Δ			15	%	

DEGREE OF RISK

N= 12		NTAGE GAIN	0	FINAL CONSENSUS %	100		Г	CONCLUSION
. I PROTOTYPE			1		٦ ٢	0	%	
. 4 EXPERIMENTAL		6		Δ		42	%	.4
.7 SIMULATION		6		Δ	П	42	%	.7
.9 UNPROVEN	12			Δ	П	16	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL	CONSENSUS %			_	
N= 12	LOSS	GAIN	0 25 '	50 75	100			CONCLUSION
SHORT RANGE GOAL	1		Δ			17	%	
MEDIUM		12		Δ		58	%	MEDIUM
LONG	10		Δ			17	%	
UNDESTRABLE	1		Δ			8	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) **IFROM 1972**1 MODE(S) MEAN 75 76.5 75 ø 12 EARLIEST 75.0 21/2-31/2YRS 0--0 12 MOST LIKELY 4.4 78.1 4 - 91/2 YRS 76 0----NOT LATER THAN 6.7 80 81.0 5 1/2 - 12 1/2 YRS

		I MODE/EX	AAT A SI	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
	SAMELY THE REAL ASSOCIATIONS	MODEIST	MEAN	(SO & COMPINENCE INTEXAVE)
12 LOWER LIMIT	.7	1 M	.87 M	.73 - 1.02
12 UPPER LIMIT	1.5	.1.5 M	1.95 M	1,16 - 2,73

EVENT: IVC05b

An electro-mechanical, multiplex, single <u>coaxial</u> communication cable...same as IVC05a.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %			ř	The second second
N- 13	LOSS	GAIN	0	25 50	75	100			CONCLUSION
ESSENTIAL	8		Δ				15	%	
DESTRABLE		16			Δ		70	%	DESIRABLE
UNNECESSARY	8		À				15	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSE	NSUS %			_	
N= 12		GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE		4	4				0	%	
. 4 EXPERIMENTAL		20			Δ		75	%	.4
.7 SIMULATION	19		Δ				1.7	%	
.9 UNPROVEN	1		Δ				8	%	

DESIRED COURSE OF ACTION

N= 12		NTAGE GAIN	1911	ONSENSUS %	0	ſ	CONCLUSION
SHORT RANGE GOAL	2		Δ		25	%	
MEDIUM		12		Δ	67	%	MEDIUM
LONG	9		Δ		0	%	
UNDESTRABLE	1		Δ		8	%	

PROBABLE TIMING **CALENDAR YEARS** DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN σ 12 EARLIEST 1.3 75 74.6 2 - 3YRS. 0-0 12 MOST LIKELY 76 77.3 3 - 71/20----0 4.0 YRS. 78 80.2 5 - 111/212 NOT LATER THAN 0----0 YRS.

ESTIMATED COSTS TO ACHIEVE DEVELOPMENT COSTS IM MILLONS N MODE(S) MEAN (90% CONFIDENCE INTERVAL) 12 LOWER LIMIT .3 .5 M .49 M 29 - .68 UPPER LIMIT 2.5 .5,1 M 1.81 M .49 - 3.13

EVENT: IVC06

A 100 kVDC high voltage undersea long-distance high power transmission cable system with source and load terminal power conditioning equipment for bottom supported 250 kva, AC, electrical loads at 8,000-ft depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	NAL CONSE	NSUS %				
N= 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	7		4					0	%	
DESTRABLE		13		••			Δ	92	%	DESIRABLE
UNNECESSARY	6		Δ	• • • • • • •				8	%	

DEGREE OF RISK

N		NTAGE	Fi	NAL CONSENSUS %	400		_	CONCLUSION
N= 12 .I PROTOTYPE	LOSS	GAIN	Å		- 	0	%	CONCLUSION
.4 EXPERIMENTAL		18	*************************************		+	75	%	.4
.7 SIMULATION	21		Δ			8	%	
.9 UNPROVEN		3	Δ			17	%	

	PERCE	NTAGE		FI	NAL CONSE	VSUS %			-	
N= 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		1		Δ				23	%	
MEDIUM		1		Δ				8	%	
LONG	3							61	%	LONG
UNDESTRABLE		1		Δ				8	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 87 90 98 96	O	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0-0	.9	75	75.4	3 - 4 YRS.
13 MOST LIKELY	00	3.6	77	78.5	41/2-8 YRS
13 NOT LATER THAN	00	6.2	80	82.0	7 - 13 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

				(IN MILLONS)
N	A second	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	.6	1 M	.96 M	.65 - 1.27
13 UPPER LIMIT	3.1	2 M	3.32 M	1.77 - 4.87

EVENT: IVC07

A pressure compensated line voltage regulator and power factor correction system for insertion at intervals in long AC high-power undersea transmission cables at 8,000-ft ocean depths.

SYSTEM CRITICALITY

N= 11		NTAGE	0	FINAL CONSENSUS	% 75	100		Γ	CONCLUSION
ESSENTIAL	14	OATIV		Δ		41	9	%	
DESTRABLE		14		· · · · · · · · · · · · · · · · · · ·	Δ	•	91	%	DESIRABLE
UNNECESSARY			4				0	%	

DEGREE OF RISK

N= 11		NTAGE GAIN	0 25	FINAL CONSEN	ISUS %	100		Г	CONCLUSION
. I PROTOTYPE		1	Δ				9	%	
.4 EXPERIMENTAL		4			Δ		73	%	.4
.7 SIMULATION	6		Δ				9	%	
.9 UNPROVEN		1	Δ				9	%	

N- 11		NTAGE	FINAL CONSENSUS % 0 25 50 75 100		Ī	CONCLUSION
SHORT RANGE GOAL	6	OATIV	Δ	36	%	
MEDIUM	14		Δ	28	%	
LONG		20	Δ	36	%	LONG
UNDESTRABLE			A	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 67 90 96	O	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.9	75	74.7	11/2-31/2YRS.
11 MOST LIKELY	00	2.0	75	76.6	3 1/2 - 5 1/2 YRS.
1 O NOT LATER THAN	00	2.1	78.79	78.7	51/2 - 8 YRS.

				DEVELOPMENT COSTS (IN MILLONS)
N	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.2	.3 M	.42 M	.3054
11 UPPER LIMIT	.3	.7,1 M	.78 M	.6096

EVENT: IVC08

A fully torque-balanced, lightweight, flexible, electro-mechanical support cable capable of power transmissions up to 10,000 kw and supporting 50-ton submerged loads (at 8,000 ft) from a surface support platform.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		-	22001112001
N= 13	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		4	Δ	31	%	
DESTRABL'.		1	Δ	54	%	DESTRABLE
UNNECESSARY	5			15	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 12		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			A		0	%	
. 4 EXPERIMENTAL	3		Δ		25	%	
.7 SIMULATION		23	Δ		67	%	.7
.9 UNPROVEN	20		Δ		8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSE	NSUS %			_	
N= 12		GAIN		50	75	100			CONCLUSION
SHORT RANGE GOAL		3	Δ				17	%	
MEDIUM		4		7			33	%	
LONG				Δ			50	%	LONG
UNDESTRABLE	7		4	3,-112,			0	%	

PROBABLE TIMING

TROUBLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	9(3.)			DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	.9	75	75.1	2 1/2 - 3 1/2 YRS.
12 MOST LIKELY	0-6	1.5	78	77.3	4 1/2 - 6 YRS.
12 NOT LATER THAN	00	2.7	80	79.9	6 1/2 - 9 1/2 YRS.

				DEVELOPMENT COSTS (IM MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.5	1,5 M	.71 M	.4597
12 UPPER LIMIT	1.3	1 M	1.68 M	1.01 - 2.35

EVENT: IVC09

Buoyant or neutrally buoyant electrical cabling capable of power transmission up to 10,000 kw in ocean depths down to 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N- 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	7		4					0	%	
DESTRABLE		6					Δ	92	%	DESTRABLE
UNNECESSARY		1	Δ					8	%	

DEGREE OF RISK

N= 13		NTAGE	Q 25	FINAL CONSE	NSUS %	100		Г	CONCLUSION
. I PROTOTYPE		97.110	4				0	%	
.4 EXPERIMENTAL	13		4				0	%	
.7 SIMULATION		18				Δ	92	%	.7
.9 UNPROVEN	5	7	Δ				8	%	

DESIRED COURSE OF ACTION

N= 13		NTAGE GAIN	FINAL CONSENSUS % 9 25 50 75 #	00	ſ	CONCLUSION
SHORT RANGE GOAL				0	%	
MEDIUM	2		Δ	38	%	
LONG		2	Δ	62	%	LONG
UNDESTRABLE			A	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N ?	75.5 75 76.5 78 81 84 87 90 96	•	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	œ ·	.4	75	75.0	3 - 3 YRS
13 MOST LIKELY	0-0	1.1	77	77.2	4 1/2 - 5 1/2 YRS
13 NOT LATER THAN	00	2.3	80	80.5	7 1/2 - 9 1/2 YRS.

m ·		MODERS	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
M				
13 LOWER LIMIT	.3	1 M	.70 M	.5485
13 UPPER LIMIT	1.2	1 M	1.63 M	1.05 - 2.22

EVENT: IVC 10

A pressure compensated 200 amp battery charger system to be integrally mounted with seafloor supported storage batteries at 8,000-ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE	F	INAL CONSE	NSUS %			-	
N= 11	LOSS	GAIN	0 25	50		100	_		CONCLUSION
ESSENTIAL		13			Δ		73	%	ESSENTIAL
DESTRABLE	2		Δ				18	%	
UNNECESSARY	11		Λ		-+++		9	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	INAL CONSENSUS %			_	
N- 11		GAIN		50 75	100			CONCLUSION
. I PROTOTYPE	8		4			0	%	
. 4 EXPERIMENTAL		14		Δ		64	%	.4
.7 SIMULATION	7		Δ			18	%	
.9 UNPROVEN		1	Δ			18	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		l)	FINAL	CONSEN:	SUS %			_	
N- 10	LOSS	GAIN	0	25		50	75	100			CONCLUSION
SHORT RANGE GOAL	1							Δ	90	%	SHORT
MEDIUM		1		Δ					10	%	
LONG			4						0	%	
UNDESTRABLE			4						0	%	

PROBABLE TIMING CALENDAR YEARS

	(90% CONFIDENCE INTERVAL)							
N 7	2 73,5 75 76,5 78 81 84 57 90 96 1	σ	MODE(S)	MEAN	(FROM 1972)			
10 EARLIEST	0===0.	1.4	74	73.9	1 - 21/2 YRS.			
10 MOST LIKELY	?-Q	1.0	75	75.7	3 - 41/2 YRS.			
10 NOT LATER THAN	00	1.5	76	77.3	41/2 - 6 YRS.			

		(IN MILLONS)
N State of the second stat	MODE(S) MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	.1 .5 M .39 M	.3345
10 UPPER LIMIT	.4 1 M.88 M	.62 - 1.13

EVENT: IVC11

A pressure compensated power line/multiplex decoupling-cricuit to isolate control signals carried on high voltage (5,000 volt) high current (50 amp) power cable functioning in ambient conditions at 8,000-ft ocean depths.

SYSTEM CRITICALITY

		NTAGE	FINAL CONSENSUS %			
N- 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		9	Δ	55	%	ESSENTIAL
DESTRABLE	10		Δ	36	%	
UNNECESSARY		1	Δ	9	%	

DEGREE OF RISK

N- 10		NTAGE	o	FINAL CONSENSUS %	100		Γ	CONCLUSION
. I PROTOTYPE	-	1		Δ	71	10	%	
.4 EXPERIMENTAL	6			Δ		30	%	
.7 SIMULATION		5	\top	Δ	П	60	%	.7
.9 UNPROVEN			4			0	%	

		NTAGE		INAL CONSENSUS %		_	
N- 10	LOSS	GAIN	0 25	50 75			CONCLUSION
SHORT RANGE GOAL		3		Δ	70	%	SHORT
MEDIUM	3		Δ		30	%	
LONG			4		0	%	
UNDESTRABLE			4		0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			13	DEVELOPMENT TIME
N	2 73,5 75 76,5 78 81 84 87 90 96 96	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	1.2	74	73.6	1 - 2 1/2 YRS
10 MOST LIKELY	00	1.3	75,76	75.3	21/2-4 YRS
10 NOT LATER THAN	00	1.7	76	77.3	4 1/2 - 6 1/2 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT		.3 M	.33 M	.2342
10 UPPER LIMIT	.2	.5 M	.70 M	.5881

EVENT: IVC12

An operational undersea electrical power connector with both in-air and underwater make/break capability (dead cable) for use on 250 kw (50 ampere, 5,000 volts AC) transmission system to depths of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FI	INAL CONSE	NSUS %			r	
N* 14	LOSS	GAIN	0	25	50	75	100		1	CONCLUSION
ESSENTIAL	17			Δ				21	%	
DESTRABLE		17			• • • • • •	Δ		79	%	DESTRABLE
UNNECESSARY			4		 	+++++		0	%	

DEGREE OF RISK

		NTAGE		NAL CONSENSUS %	50.0			0000000000
N= 14	LOSS	GAIN	0 25	50 75				CONCLUSION
. I PROTOTYPE	5.5		Δ			7	%	
. 4 EXPERIMENTAL		16		Δ		72	%	.4
.7 SIMULATION		2	Δ			21	%	
.9 UNPROVEN	12.5		4			0	%	· · · · · · · · · · · · · · · · · · ·

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSENSUS %			
N= 13		GAIN	0 25	50 75 100			CONCLUSION
SHORT RANGE GOAL		4		Δ	77	%	SHORT
MEDIUM		2	Δ		15	%	
LONG	7		A		0	%	
UNDESTRABLE		1	Δ		8	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 8t 84 67 90 96	o MODE(S)	MEAN (FROM 1972)
14 EARLIEST	0-0	1.1 74	73.7 1 - 21/2 YRS.
13 MOST LIKELY	0-0	1.6 74,76	75.5 3-4 YRS.
13 NOT LATER THAN	00	2.7 75	77.2 4-61/2 YRS.

	carrier -			(IN MILLONS)
N.		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14 LOWER LIMIT		.4 M	.31 M	.2437
14 UPPER LIMIT	.2	.6 M	.67 M	.5777

EVENT: IVC 13

Circuit breakers, 500 ampere capacities, with automatic and/or remote reset, capable of functioning in ambient conditions down to ocean depths of 8,000 ft (0° to 50°C and 3600 psi).

SYSTEM CRITICALITY

	PERCE	NTAGE]	FI	NAL CONSEI	NSUS %			_	
N* 13	LOSS	GAIN	0	25	50	75	100	1-1		CONCLUSION
ESSENTIAL		4				Δ		77	%	ESSENTIAL
DESTRABLE	4			Δ				23	%	
UNNECESSARY			4					0	%	

DEGREE OF RISK

	PERCE	NTAGE		FII	NAL CONSE	NSUS %		_	
N- 13	LOSS	GAIN	0 L	25	50	75			CONCLUSION
. I PROTOTYPE	5		Δ				8	%	
.4 EXPERIMENTAL		3				Δ	76	%	.4
.7 SIMULATION		1	Δ				8	%	
.9 UNPROVEN		1	Δ				8	%	

	PERCE	NTAGE		ı	FINAL CONSE	NSUS %			_	
N= 13		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	1						Δ	92	%	SHORT
MEDIUM		1	Δ					8	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	o M	DDE(S) MEAN	(FROM 1972)
13 EARLIEST	0-0	,9	74 74.2	11/2-21/2 YRS.
13 MOST LIKELY	00	1.6	75 76.0	3 - 5 YRS.
13 NOT LATER THAN	00	2.5	76 77.8	41/2 - 7 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	.1	. 2 M	.28 M	.2334
13 UPPER LIMIT	.2	.5 M	.59 M	.4870

EVENT: IVC 14

A transformer, pressure compensated, capable of stepping down 15,000 volts to 440 volts, 60-400 Hz, and 250 kva, in ambient conditions at ocean depths of 8,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N= 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL	5		Δ	18	%	
DESTRABLE		10	Δ	64	%	DESIRABLE
UNNECESSARY	5	î	Δ	18	%	

DEGREE OF RISK

N= 10		NTAGE GAIN		F 25	INAL CON	SENSU	IS % 75	100		Г	CONCLUSION
.I PROTOTYPE	17	OAII							0	%	
.4 EXPERIMENTAL		13	1	-+	• • • •		Δ	•••	80	0,	.4
.7 SIMULATION		2	Δ					•	10	%	
.9 UNPROVEN		2	Δ						10	76	

	PERCE	NTAGE	FII	NAL CONSENS	SUS %		_	
N• 10	LOSS	GAIN	0 25	50	75 100			CONCLUSION
SHORT RANGE GOAL	2			Δ		40	%	
MEDIUM		8		Δ		50	%	MEDIUM
LONG		2	Δ			10	%	
UNDESTRABLE	8		A			0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 1 16	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0-0	.8	75	74.1	11/2 - 21/2YPS
10 MOST LIKELY	9-0	.8	76	75.6	3 - 4 YRS
10 NOT LATER THAN	0-0	1.4	78	77.9	5 - 61/2 YRS.

ESTIMATED COS	TS TO	ACHIEVE
---------------	-------	---------

			ULL 7	DEVELOPMENT COSTS (IN MILLONS)
N Maria de la companya della companya della companya de la companya de la companya della company		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	,2	.3,.5 M	.46 M	.3259
10 UPPER LIMIT	7	1 M	1.01 M	.59 - 1.42

EVENT: IVC 15

A transformer, ambient pressure, seawater flooded, capable of stepping down...same as IVC14.

SYSTEM CRITICALITY

	PERCE	NTAGE)	FINAL CONSENSUS %				
N= 11	LOSS	GAIN	'	25 50 75	100			CONCLUSION
ESSENTIAL	8		4			0	%	
DESTRABLE		4		Δ		27	%	
UNNECESSARY		4		Δ	П	73	%	UNNECESSARY

DEGREE OF RISK

N= 3		NTAGE	o a	FINAL CON	SENSUS %	100		Г	CONCLUSION
. I PROTOTYPE			4	 	<u> </u>		0	%	
.4 EXPERIMENTAL	10		A	+			0	%	
.7 SIMULATION		11			Δ		56	%	. 7
.9 UNPROVEN	1			Δ			44	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 10	LOSS	GAIN	,0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL			Δ	0	%	
MEDIUM	6		Δ	40	%	MEDIUM
LONG		3	Δ	30	%	
UNDESTRABLE		3	Δ	30	%	

PR	OBABLE TIMING		(90		LENDA								DEVELOPMENT TIME
N	Landau de la companya	72	73,5	75	76,5 76	81	84	67 9	0 96	6	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0-	ο.					1.0	7â	75.7	3 - 41/2 YRS.
9	MOST LIKELY				.0-	•				1.5	78	78.0	5 - 7 YRS
9	NOT LATER THAN					0	0			2.0	80	80 4	7 - 10 1 /2 YRS

		BALL TO	L			DEVELOPMENT COSTS (IN MILLONS)		
N	the fact of the first of the second of the	0	MC	DE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
8	LOWER LIMIT	.5]	M	.83 M	.47 - 1.19		
8	UPPER LIMIT	1.0	2	M	1.59 M	.88 - 2.29		

APPENDIX E TECHNOLOGY AREA V. PROPULSION

SUB-TECHNOLOGY AREAS:

- A. Propulsors
- B. Power Transmission
- C. Integral Energy and Power Sources
- D. Propulsion Motors

VA Sub-Technology: <u>Propulsors</u>

Objective: To develop the technologies necessary to evaluate and design improved propulsors and propulsor systems for deep submergence vehicles that will provide the following:

- O Greater efficiency
- O Precise maneuverability in all directions
- O Free of entanglement
- O Minimum bottom disturbance
- O Have increased reliability and maintainability
- O Provide 6 degrees of motion to vessel

Events VA01 - VA04 address this objective.

EVENT: VA01

Cycloidal propellers for systems up to 60 hp designed for submersible use at 20,000 ft. ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		Fil	NAL CONSEN	SUS %			_	
N= 12	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	8		4					0	%	
DESTRABLE		14				Δ		75	%	DESIRABLE
UNNECESSARY	6			Δ				25	%	

DEGREE OF RISK

	PERCENTAGE FINAL CONSENSUS %								
N- 12	LOSS	GAIN	0 25	50	75				CONCLUSION
. I PROTOTYPE			Δ				8	%	
.4 EXPERIMENTAL	9		Δ				8	%	
.7 SIMULATION		9			Δ		67	%	.7
.9 UNPROVEN			Δ				17	%	

DESIRED COURSE OF ACTION

N* 12	PERCENTAGE LOSS GAIN		Г	CONCLUSION
SHORT RANGE GOAL		Δ	17 %	
MEDIUM		Δ	50 %	MEDIUM
LONG		Δ	17 %	
UNDESTRABLE		Δ	17 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 84 57 90 96	σ M	ODE(S) MEAN	(FROM 1972)
12 EARLIEST	00	1.5	75 74.25	1 - 3 YRS
11 MOST LIKELY	0-0	1.4	78 77.5	$5-6\frac{1}{2} \text{ YRS}$
12 NOT LATER THAN	00	2.5	80 80.1	7 - 9 YRS.

N	•	MODE(S)	MEAN	DEVELOPMENT COSTS (M MILLONS) (90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.6	2 M	1.39 M	1.09 - 1.68
12 UPPER LIMIT	1.2	4 M	3.13 M	2.49 - 3.76

EVENT: VA02

Variable pitch propellers for systems up to 60 hp ... same as VA01.

SYSTEM CRITICALITY

N- 12		NTAGE	0	F1	NAL CONSE	NSUS %	100		Γ	CONCLUSION
ESSENTIAL	6			Δ	<u> </u>			17	%	
DESTRABLE		6			• • • • • •	Δ		75	%	DESIRABLE
UNNECESSARY						· · · · · · · · · · · · · · ·		8	%	

DEGREE OF RISK

Nr. 12		NTAGE	•	FII	NAL CONSEN	ISUS %			r-	CONCLUSION
N- 12	LOSS	GAIN			50	/3	¹⁰⁰ F		_	CONCEDSION
. I PROTOTYPE			<u> </u>	Δ				25	%	
.4 EXPERIMENTAL		17			Δ			59	%	. 4
.7 SIMULATION	17		Δ					8	%	
.9 UNPROVEN			Δ					8	%	

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %		r	CONCLUCION
N* 12	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		8	Δ	67	%	SHORT
MEDIUM	8		Δ	25	%	
LONG			Δ	0	%	
UNDESTRABLE			Ι.Δ	8	%	

PROBABLE TIMING

CALENDAR YEARS

(90% CONFIDENCE INTERVAL)

72 73,5 75 76,5 76 81 84 87 80 198 0 MODE(S) MEAN

	_	(SOR CONFIDENCE IN ERVAL)				
N		72 73,5 75 76,5 78 81 84 87 90 90	0	MODE(S)	MEAN	(FROM 1972)
12	EARLIEST	00	1.2	74	73,25	$\frac{1}{3}$ - 2 YRS.
11	MOST LIKELY	90	.8	76	75.6	3 - 4 YRS.
12	NOT LATER THAN	00	2.1	80	78.25	5 - 7 YRS.

DEVELOPMENT TIME

N		[·	MODE(S)	MEAN	DEVELOPMENT COSTS (IM MILLONS) (90% CONFIDENCE INTERVAL)
12	LOWER LIMIT	.3	.5 M		
12	UPPER LIMIT	.7	2 M	1.75M	1.37 - 2.14

EVENT: VA03

Waterjet propulsors for systems up to 60 hp designed for submersible use at ocean depths of 20,000 ft.

SYSTEM CRITICALITY

		NTAGE	FINAL CONSENSUS %		_	
N= 12	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL	14		Δ	17	%	
DESTRABLE		28	Δ	66	%,	DESIRABLE
UNNECESSARY	14		Ι. Δ	17	%	

DEGREE OF RISK

N= 12		NTAGE GAIN	o	FINAL CONSENSUS (% 5 100		Г	CONCLUSION
.I PROTOTYPE	9		Δ			8	%	
.4 EXPERIMENTAL		9		Δ		59	%	.4
.7 SIMULATION				Δ		33	%	
.9 UNPROVEN			4			0	%	

	PERCE	NTAGE		F	INAL CONSEN	ISUS %				
N= 12	LOSS	GAIN	, °L .	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	1					Δ		66	%	SHORT
MEDIUM		9		Δ				17	%	
LONG			4					0	%	
UNDESTRABLE	8			Δ				17	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	σ	MODE(S) MEAN	(FROM 1972)
12 EARLIEST	00	1.2	73 73.2	2 - 2 YRS.
11 MOST LIKELY	0-0	.9	75/76 75.4	3 - 4 YRS.
11 NOT LATER THAN	00	2.0	80 78.4	51 - 71 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

	Libited Salars		DEVELOPMENT COSTS [IN MILLONS]	
N	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	.3	.5 M	.50 M	.3764
12 UPPER LIMIT	.5	1.5 M	1.28 M	1.00 - 1.55

EVENT: VA04

A tandem propeller propulsor for systems up to 60 hp designed for submersible use ... same as VA03.

SYSTEM CRITICALITY

		NTAGE	FINAL CONSENSUS %			
N* 12	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL			A		0 %	
DESTRABLE	6		Δ		25 %	
UNNECESSARY		6	Δ		75 %	UNNECESSARY

DEGREE OF RISK

N* 11		NTAGE GAIN	FINAL CONSE	NSUS % 75 100		Γ	CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL	18		Δ		18	%	
.7 SIMULATION		18		Δ	73	%	.7
.9 UNPROVEN			Δ		9	%	

DESIRED COURSE OF ACTION

N= 12		NTAGE	FINAL CONSENSUS % 0 25 50 75	100	Г	CONCLUSION
SHORT RANGE GOAL		GAIN	Δ	· 'j'	8 %	CONCLUSION
MEDIUM		8.5	Δ	•	33.5%	MEDIUM
LONG	8.5		Δ		33.5%	
UNDESTRABLE			Δ		25 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73.5 75 76.5 78 81 64 67 10 116	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	0-0	.9	75	74.8	21 - 31 YRS
11 MOST LIKELY	00	2.1	75	77.2	4 - 61 YRS
11 NOT LATER THAN	00	3.1	80	80.5	61 - 10 YRS.

N to the second		MODE(S)	(IN MILLONS) [SO% CONFIDENCE INTERVAL)	
11 LOWER LIMIT	.6	1/2 M	1.09M	.72 - 1.45
11 UPPER LIMIT	2.3	.5/3 M	2.95M	1.72 - 4.18

Sub-Technology: Power Transmission

VB Sub-Technology:

Objective: To develop the technologies necessary to evaluate and design transmissions functioning between the motor and propulsor or motor and mechanism in the deep ocean that will improve control and performance characteristics, and where necessary, either step-up or step-down rpm.

Events VB01 - VB07 address this objective.

EVENT: VB01

An encapsulated mechanical transmission including shaft seals capable of transmitting 40 hp at ocean depths of 20,000 ft.

SYSTEM CRITICALITY

		NTAGE		FINAL CONSENSUS %				
N= 11	LOSS	GAIN	0	25 50 75	100			CONCLUSION
ESSENTIAL			4			0	%	
DESTRABLE			1	Δ		64	%	DESIRABLE
UNNECESSARY		001-		Δ		36	%	

DEGREE OF RISK

		NTAGE		FI	NAL CONSE	NSUS %			_	
N* 11	LOSS	GAIN	Ĉ.	25	50	75	. 100			CONCLUSION
.I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL				Δ				27	7.	
.7 SIMULATION				Δ	+-+			18	%	
.9 UNPROVEN					Δ			55	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSE	VSUS %				
N* 11		GAIN	0 25 50	75	100			CONCLUSION
SHORT RANGE GOAL			Δ			9	%	
MEDIUM	9		Δ			55	%	MEDIUM
LONG		9	Δ			18	%	
UNDESTRABLE			Δ			18	%	٠

PROBABLE TIMING

TRODADEL TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	_		- Long Long Top	DEVELOPMENT TIME
N 7	73,5 75 76,5 78 88 84 67 90 96 1	0	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	.6	75	74.5	2 - 3 YRS.
11 MOST LIKELY	0-0	1.2	78	76.6	4 - 52 YRS.
11 NOT LATER THAN	00	1.5	80	79.1	61 - 8 YRS.

ESTIMATED	COSTS TO	ACHIEVE
COLIMBIEN	LUGIG IV	AUNILTE

N	[a]	MODE(S)	AAF A NI	DEVELOY RENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
III .		HOULIST	IVEAN	(00 % COM MEMOR MICHANE)
11 LOWER LIMIT	.4	1 M	.92M	.69 - 1.15
11 UPPER LIMIT	1.1	3 M	2.58M	1.95 - 3.21

EVENT: VB02

A non-water flooded, pressure compensated mechanical transmission with efficiencies comparable to conventional transmissions and capable of transmitting ... same as VB01.

SYSTEM CRITICALITY

		NTAGE		FI	NAL CONSE	ISUS %			_	
N= 11	LOSS	GAIN	0	25	50	75	ا 100		\perp	CONCLUSION
ESSENTIAL		9				Δ		73	%	ESSENTIAL
DESTRABLE	9			Δ				18	%	
UNNECESSARY				Δ				9	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			-	
N- 11		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			Δ	\Box	18	%	
.4 EXPERIMENTAL			Δ		18	%	
.7 SIMULATION			Δ		55	%	.7
.9 UNPROVEN			Δ		9	%	

DESIRED COURSE OF ACTION

		NTAGE		F	INAL CON	ISENSU	JS %				
N- 11	LOSS	GAIN.	0	25	50		75	100			CONCLUSION
SHORT RANGE GOAL		13				A 6 -4-	Δ		73	%	SHORT
MEDIUM	21		Δ						9	%	
LONG		9	Δ						9	%	
UNDESTRABLE	1		Δ						9	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		72 73,5 75 76,5 79 81 84 57 90 96	0	MODE(S)	MEAN	(FROM 1872)
11	EARLIEST	0-0	.9	74	74.0	$1\frac{1}{2} - 2\frac{1}{2}$ YRS
11	MOST LIKELY	00	1.4	75	75.5	$3 - 4\frac{1}{2}$ YRS.
11	NOT LATER THAN	00	2.2	80	78.1	5 - 71 YRS.

		and in	65 (4)	(IN MILLONS)
N Secretaria de la companya della companya della companya de la companya della co	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.2	.5 M	.65M	.5278
11 UPPER LIMIT	.6	2 M	1.95M	1.60 - 2.31

EVENT: VBU3 A seawater flooded mechanical transmission capable of ... same as VB01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FII	NAL CONSE	NSUS %			_	
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	9		Δ					9	%	
DESTRABLE		9				Δ		73	%	DESIRABLE
UNNECESSARY				Δ				18	%	

DEGREE OF RISK

11 UPPER LIMIT

N= 11		NTAGE	0	25	INAL CONSE	NSUS %	100		Г	CONCLUSION
.I PROTOTYPE		11	4					0	%	
.4 EXPERIMENTAL				Δ				18	%	
.7 SIMULATION		9	\top	Δ				18	%	
.9 UNPROVEN	9					Δ		64	%	.9

DESIRED COURSE OF ACTION

N= 11		NTAGE	FINAL CONSENSUS % 9 25 50 75 100		Ē	CONCLUSION
SHORT RANGE GOAL	-		Δ	9	%	
MEDIUM	4		Δ	46	%	MEDIUM
LONG		8	Δ	18	%	
UNDESTRABLE		7	Δ	27	%	

PROBABLE TIMING	(90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 67 110 116 0 MODE	(S) MEAN [FROM 1972]
11 EARLIEST	0-0 .8 75	75.0 $2\frac{1}{2} - 3\frac{1}{2}$ YRS
11 MOST LIKELY	0-0 1.8 76/8	30 77.7 5 - $6\frac{1}{2}$ YRS
11 NOT LATER THAN	00 2.5 82	81.2 8 - 10 YRS

ESTIMATED COSTS TO	D ACHIEVE				DEVELOPMENT COSTS [IM MILLONS]
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT		.8	1.5/2M	1.70M	1.27 - 2.14
11 UPPER LIMIT		1.6	3 M	3.70M	2.81 - 4.60

EVENT: VB04

A hydraulic transmission using conventional fluids, pressure compensated capable of...same as VB01.

SYSTEM CRITICALITY

PERCENTAGE FINAL CONSENSUS %										
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL				Δ				27	%	
DESTRABLE			T			Δ		64	%	DESIRABLE
UNNECESSARY			Δ					9	%	

DEGREE OF RISK

N= 11		NTAGE GAIN	FINAL C	ONSENSUS %)	Г	CONCLUSION
. I PROTOTYPE	9		Δ		9	%	
.4 EXPERIMENTAL		18		Δ	73	%	. 4
.7 SIMULATION	9		Δ		18	%	
.9 UNPROVEN			4		0	%	

DESIRED COURSE OF ACTION

N- 11	NTAGE GAIN	O	FINAL CONSENSUS	5 % 75 100		Γ	CONCLUSION
SHORT RANGE GOAL	UATIV	-	Δ		36	%	
MEDIUM	14		Δ		64	%	MEDIUM
LONG		4			0	%	
UNDESTRABLE		Δ			0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	5			DEVELOPMENT TIME
N	2 73,5 75 76,5 78 81 84 h7 90 96	•	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	0-0	.8	74	73.7	1 - 2 YRS
11 MOST LIKELY	0-0	.9	75	75.0	2 - 3 YRS
11 NOT LATER THAN	00	1.7	78	77.4	41 - 61 YRS.

		DEVELOPMENT COSTS (M MILLONS)		
N , see the second seco		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.3	1 M	.76M	.6092
11 UPPER LIMIT	.8	2 M	1.79 M	1.37 - 2.22

EVENT: VB05

A hydraulic transmission using seawater at ambient conditions capable of...same as VB01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %							
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION	
ESSENTIAL	8		Δ					9	%		
DESTRABLE		7				Δ		73	%	DESIRABLE	
UNNECESSARY		1		$\overline{\Delta}$		 		18	%		

DEGREE OF RISK

N= 11		NTAGE GAIN		FIN/	AL CONSENS	SUS %	100		Γ	CONCLUSION
. I PROTOTYPE	9		4			* 		0	%	
. 4 EXPERIMENTAL				Δ			•	18	%	
.7 SIMULATION			4					0	%	
.9 UNPROVEN		9				Δ		82	%	.9

	PERCE	NTAGE	FINAL CON	SENSUS %		_	<u> </u>
N* 11		GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL	11		Δ		9	%	
MEDIUM			A		0	%	
LONG		13		Δ	73	%	LONG
UNDESTRABLE	2	2000	Δ		18	%	

PROBABLE TIMINO	(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 54 87 10 196	0	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	99	1.4	75	75.7	3 - 42 YRS
11 MOST LIKELY	0-0	2.0	77/79	78.1	5 - 7 YRS.
1 1 NOT LATED THAN	00	3.6	80	81.8	8 - 12 ves

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.5	2 M	1.61 M	1.30 - 1.93
11 UPPER LIMIT	1.7	5 M	3.98 M	3.05 - 4.90

EVENT: VB06

A torque converter using conventional fluids, pressure compensated, capable of transmitting 100 hp at ocean depths of 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %			-	
N= 11	LOSS	GAIN	0 25	5 50	75	100			CONCLUSION
ESSENTIAL			Δ				18	%	
DESTRABLE					Δ		73	%	DESIRABLE
UNNECESSARY			Δ		-+-+-+		9	%	

DEGREE OF RISK

N- 11		NTAGE	0	F 25	INAL CONSE	NSUS %	100			CONCLUSION
. I PROTOTYPE	1022	GAIN	Δ			· · · · · · · · · · · · · · · · · · ·	٦ آ	9	%	- OGROCION
.4 EXPERIMENTAL			Δ				• • • • • • • • • • • • • • • • • • • •	9	%	
.7 SIMULATION			1			Δ	•	82	%	• 7
.9 UNPROVEN			Δ			· · · · · · · · · · · · · · · · · · ·		0	%	

	PERCE	NTAGE	FINAL CONSENSUS %			
N* 11	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	1		Δ	9	%	
MEDIUM	6		Δ	64	%	MEDIUM
LONG		7	Δ	27	%	
UNDESTRABLE			A	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	o MODE(S) MEA	N (FROM 1972)
11 EARLIEST	00	1.0 75 74.	4 2 - 3 YRS
11 MOST LIKELY	00	2.0 77 76.	8 3 - 6 YRS
11 NOT LATER THAN	00	3.2 80 79.	5 71 - 9 YRS

				(IN MILLONS)
N DEPARTMENT OF THE PARTY OF TH	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	.3	1 M	.92 M	.75 - 1.10
11 UPPER LIMIT	1.1	3 M	2.70 M	2.08 - 3.33

EVENT: VB07

A torque converter using seawater at ambient pressure capable of ...same as VB06.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONS	ENSUS %		. 4	
N= 11	LOSS	GAIN	0	25 50	75	100		CONCLUSION
ESSENTIAL			Δ				9 %	
DESTRABLE	9.5			Δ			45.5%	DESIRABLE
UNNECESSARY		9.5		Δ			45.5%	UNNECESSARY

DEGREE OF RISK

N= 11		NTAGE GAIN		FINAL CONSI	ENSUS %	100		Г	CONCLUSION
.I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL	1		Δ				9	%	
.7 SIMULATION	11		Δ				9	%	
.9 UNPROVEN		12			Δ		82	%	.9

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %	100			COMOL HEION
N- 11		GAIN	25 50 /5	100		_	CONCLUSION
SHORT RANGE GOAL			4		0	%	
MEDIUM	11		Δ		9	%	-0
LONG		4	Δ		64	%	LONG
UNDESTRABLE		7	Δ		27	%	

PROBABLE TIMING	DEVELOPMENT TIME			
N	72 73,5 75 76,5 78 81 64 67 90 96	σ MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	1.5 75	76.1	3 - 5 YRS.
10 MOST LIKELY	00	2.5 77	79.0	51 - 81 YRS.
11 NOT LATER THAN	00	4.2 80	82.6	84 - 13 YRS.

			DEVELOPMENT COSTS (IN MILLONS)
N	MODE(S)	MEAN	(80% CONFIDENCE INTERVAL)
11 LOWER LIMIT	1.1 2 M	2.11 M	1.50 - 2.73
11 UPPER LIMIT	2.3 5 M	4.91 M	3.64 - 6.17

VC Sub-Technology: Integral Energy and Power Sources

Objective: To provide optimum energy/power sources for untethered vehicles and devices in accordance with the following:

- Increased power dentisy (power/lb, power/ft³)
 Increased energy density (power/hr/_{lb}, power/hr/_{ft}3)
 Increased reliability and maintainability
- 0
- 0
- Increased automation 0
- 0 Negligible noise and vibration

NOTE: Nuclear and isotope energy sources are not to be considered.

Events VC01 - VC06 address this objective.

EVENT: VC01

An encapsulated thermochemical power system using hydrocarbon-oxidizer reactants (e.g., diesel oil-hydrogen peroxide) capable of a specific energy of 100 watt hrs/lb, and an energy density of 10 kilowatt hrs/ft³. The system is capable of a 30 hour duration delivering 50 kw/unit and can operate at 20,000 ft depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL				Δ				18	%	
DESTRABLE						Δ		82	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N* 11		NTAGE GAIN		FINAL CONSENSUS %)		CONCLUSION
.1 PROTOTYPE			4			0 %	
.4 EXPERIMENTAL	1			Δ	2	7 %	
.7 SIMULATION		9		Δ	7	73 %	.7
.9 UNPROVEN	9		4			0 %	

N- 11		NTAGE GAIN	FINAL CONSENSUS 9	100	CONCLUSION
SHORT RANGE GOAL	9		Δ	64 %	SHORT
MEDIUM		18	Δ	18 %	
LONG	18		Δ	9 %	
UNDESTRABLE		9	Δ.	9 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 61 84 87 90 1 96	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	.8	75	74.5	2 - 3 YRS
11 MOST LIKELY	0-0	1.5	78	76.9	4 - 51 YRS
1 NOT LATER THAN	00	2.3	80/81	79.9	64 - 9 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MALLONS)
N D MATERIAL STATES	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	2.2	2 M	2.85 M	1.59 - 4.11
10 UPPER LIMIT	4.0	5 M	7.00 M	4.67 - 9.33

EVENT: VC02

An encapsulated thermochemical power system using exotic fuel-oxidizer (e.g., Hydrazine-hydrogen peroxide, Metal Slurry-Oxidant), capable of a specific energy of 500 watt hrs/lb and an energy density of 55 kw hrs/ft³. The system ... same as VC01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N= 11	LOSS	GAIN	0 25 50 75 100	0		CONCLUSION
ESSENTIAL		9	Δ	27	%	
DESTRABLE	9		Δ	55	%	DESIRABLE
UNNECESSARY			Δ	18	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 11		GAIN	0 25 50 75 100)		CONCLUSION
. I PROTOTYPE			A	0	%	
.4 EXPERIMENTAL			Δ	18	%	
.7 SIMULATION		18	Δ	73	%	.7
.9 UNPROVEN	18		Δ	9	%	

	PERCE	NTAGE		FINAL CONSE	NSUS %				
N- 11		GAIN	0 25	50	75	100			CONCLUSION
SHORT RANGE GOAL	9		4				0	%	
MEDIUM		9	Δ		50 113 0-1		27	%	
LONG				Δ			55	%	LONG
UNDESTRABLE			Δ.				18	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	ø MODE(S)	MEAN (FROM 1972)
11 EARLIEST	0~=0	1.5 75	76.0 3 - 5 YRS.
11 MOST LIKELY	0-0	2.4 78/80	79.2 6 - 81 YRS
11 NOT LATER THAN	00	The second secon	84.0 91 - 141 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

				(IM MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	3.2	2 M	4.404	2.55 - 6.25
10 UPPER LIMIT	4.6	10 M	10.90M	8.24 - 13.60

EVENT: VC03

An encapsulated fuel cell power system capable of a specific energy of 200 watt hrs/lb and an energy density of 10 kw hrs/ft 3 . The system is capable of a 20-hour duration delivering 50 kw/unit and can operate at 20,000-ft depths, and has a system life expectancy of 2,000 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 11	LOSS	GAIN	0 25 50 75	100	CONCLUSION
ESSENTIAL		2	Δ	27 %	
DESTRABLE		6	Δ	64 %	DESIRABLE
UNNECESSARY	8		Ι.Δ	9 %	

DEGREE OF RISK

N- 11		NTAGE GAIN	0	25	FINAL CONSE	NSUS %	100		Г	CONCLUSION
.I PROTOTYPE	1033	OAIN	4	· · · · · · · · ·				0	%	
. 4 EXPERIMENTAL		15				Δ		73	%	. 4
.7 SIMULATION	7			Δ				18	%	
.9 UNPROVEN	8		Δ					9	%	

N- 11		NTAGE	FINAL CONSENSUS % 0 25 50 75 10	• Г	CONCLUSION
SHORT RANGE GOAL	_	3.5	Δ	36.5%	SHORT
MEDIUM	13.5		Δ	36.5%	
LONG		18	Δ	18 %	
UNDESTRABLE	8		4	9 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	73 79,5 75 76,5 78 81 84 87 90 96	•	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	.7	75	74.5	2 - 3 YRS
10 MOST LIKELY	00	1.7	78	77.4	41 - 61 YRS
10 NOT LATER THAN	00	3.1	80/85	81.4	$7\frac{1}{2} - 11$ vas.

ESTIMATED COSTS TO ACKIEVE				DEVELOPMENT COSTS (IM MILLONS)		
N		MODE(S)	MEAN	190% CONFIDENCE INTERVAL		
10 LOWER LIMIT	3.1	5 M	4.85M	3.06 - 6.64		
10 UPPER LIMIT	6.5	10/2QM	11.2QM	7.41 - 14.99		

EVENT: VC04

An ambient pressure fue! cell power system capable of a specific energy of 300 watt hrs/lb and an energy density of 18 kw hrs/ft^3 . The system is capable of a 20 hour duration delivering 50 kw/unit and can operate at 20,000 ft depths, and has a system life expectancy of 9,000 hours.

SYSTEM CRITICALITY

N- 11	PERCE	NTAGE GAIN	O 25	FINAL CONSE	NSUS %	100	Γ	CONCLUSION
ESSENTIAL			*******	Δ			36 %	
DESTRABLE		9			Δ		64 %	DESIRABLE
UNNECESSARY	9		A				0 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CO	NSENSUS %		_	
N= 11	LOSS	GAIN	0 25 50	75			CONCLUSION
.I PROTOTYPE			4) %	
. 4 EXPERIMENTAL	7		Δ			%	
.7 SIMULATION		22		Δ	64	1 %	.7
.9 UNPROVEN	15		Δ		27	7 %	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONSEN	NSUS %	_	
N= 11	LOSS	GAIN	0 25	50	75 1	00	CONCLUSION
SHORT RANGE GOAL	7		4			0 %	
MEDIUM		3.5		Δ		45.5%	MEDIUM
LONG		3.5		Δ		45.5%	LONG
UNDESTRABLE			4			0 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 75 76.5 78 11 EARLIEST 1.4 76 76.5 0--0 YRS MOST LIKELY 0-0 1.2 80 78.7 6 - 73 YRS. 2.7 81/85 NOT LATER THAN 83.4 10 0-0 YRS

N		MODE(S)	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]			
"							
10 LOWER LIMIT	5.4	3 M	6.30M	3.18 - 9.42			
10 UPPER LIMIT	10.5	15 M	15.60M	9.53 - 21.67			

EVENT: VC05

A solid propellant energy source controllable and operable in ambient pressures down to 20,000 ft with a specific energy of 500 watt hrs/lb with an energy density of 60 kw hrs/ft³ and capable of a 20-hour duration delivering 50 kw/unit.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		_	
N= 11	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL			4		0	%	
DESTRABLE		7	П	Δ	82	%	DESIRABLE
UNNECESSARY	7			Δ	18	%	

DEGREE OF RISK

N= 10		NTAGE GAIN		FINAL CONSENSUS 9	6 5 100		Γ	CONCLUSION
. I PROTOTYPE			4	······································		0	%	
.4 EXPERIMENTAL	10		4			0	%	
.7 SIMULATION		10		Δ		40	%	
.9 UNPROVEN				Δ		60	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	F	INAL CONSENSUS %		_	
N* 10	LOSS	GAIN	0 25	50 75	100		CONCLUSION
SHORT RANGE GOAL			4			0 %	
MEDIUM	10		Δ			10 %	
LONG		10			7	80 %	LONG
UNDESTRABLE			Δ			10 %	

PRO	BABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	7	73.5 75 76.5 78 81 84 87 90 396	•	MODE(S)	MEAN	(FROM 1972)
10	EARLIEST	00	2.1	80	77.4	4 - 6 YRS
9	MOST LIKELY	00	3.1	82/85	80.4	62 - 102 YRS
10	NOT LATER THAN	00	4.2	90	85.7	111 - 16 YRS

	4			DEVELOPMENT COSTS (IM MILLONS)				
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)			
9	LOWER LIMIT	2.4	5 M	4.22M	2.71 - 5.73			
9	UPPER LIMIT	7.1	10 M	11.89M	7.51 - 16.27			

EVENT: VC06

A secondary battery capable of a specific energy greater than 60 watt hrs/lb and an energy density of 7.8 kw hrs/ft³, operable in ambient conditions for 20,000-ft ocean depths and capable of a 40-hr duration delivering 50 kw/unit, and capable of 200 charging cycles.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %		
N= 11	LOSS	GAIN	9	25 50 75 10	00	CONCLUSION
ESSENTIAL		2		Δ	27 %	
DESTRABLE	3			Δ	64 %	DESIRABLE
UNNECESSARY		1		Δ	9 %	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %			
N= 11	LOSS	GAIN	0 25	50 75	100		CONCLUSION
.1 PROTOTYPE			4		0 9	%	
. 4 EXPERIMENTAL	8		Δ		9 9	%	
.7 SIMULATION		16		Δ	82	%	.7
.9 UNPROVEN	8		Δ		9 4	6	

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N* 11	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		13	Δ	55 %	SHORT
MEDIUM		3	Δ	36 %	
LONG	17		Δ	0 %	
UNDESTRABLE		1	Δ	9 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)					
N	72 73,5 75 76,5 78 81 64 67 90 96	σ MODE(S)	MEAN	(FROM 1972)		
10 EARLIEST	00	1.1 74/76	74.8	2 - 31 YRS.		
10 MOST LIKELY	00	1.8 78/79	77.7	41 - 61 YRS		
10 NOT LATER THAN	0-0	3.3 83	81.6	71 -111 YRS.		

					DEVELOPMENT COSTS [IN MILLONS]		
N		σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
10	LOWER LIMIT	1.2	3 M	1.89M	1.20 - 2.59		
10	UPPER LIMIT	2.8	8 M	5.85M	4.21 - 7.49		

VD

Sub-Technology:

Propulsion Motors

Objective: To advance the technologies necessary to develop various externai (outside the pressure hull) propulsion motors that can be used to drive propulsors or other mechanisms with the desired performance characteristics in ambient conditions down to 20,000-ft ocean depths.

Events VD01 - VD06 address this objective.

EVENT: VD01

A 40 hp, AC motor, ambient pressure compensated, non-water flooded capable of 500 hours unattended and 2,000-hours intermittent operation at ocean depths of 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		_	
N= 10	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL				Δ	50	%	ESSENTIAL
DESTRABLE				Δ	50	%	DESIRABLE
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSU	IS %		_	
N= 10	LOSS	GAIN	0 25 50	75 100			CONCLUSION
. I PROTOTYPE		10	Δ		30	%	
. 4 EXPERIMENTAL	10		Λ		30	%	
.7 SIMULATION	1		$\frac{1}{\Delta}$		40	%	.7
.9 UNPROVEN			A :		0	%	

N- 10		NTAGE	0	F1	NAL CONSE	NSUS %	100		Г	CONCLUSION
SHORT RANGE GOAL	10	GAIN				Δ		80	%	SHORT
MEDIUM		10		Δ				20	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

	OBABLE TIMING		(905		ALEN				/AL)		S4 (5)(C)				DEVELOPMENT TIME
N		72	73,5	75	76.5	78	81	84	67	90	196	•	MODE(S)	MEAN	(FROM 1972)
10	EARLIEST	I	00									1.4	73	73.5	1 - 21 YRS
10	MOST LIKELY			Ó	-0							1.3	75	75.7	3 - 41 YRS.
1	NOT LATER THAN	T				0	0					2.2	78	78.6	51 - 8 YRS.

ESTIMATED	COSTS TO	ACHIEVE
FO I IMPLIED	44414 14	MAINETE

				DEVELOPMENT COSTS (IN MILLONS)		
N		MODE(S)	MEAN	(80% CONFIDENCE INTERVAL)		
10 LOWER LIMIT	.4	.5 M	.55 M	.3277		
10 UPPER LIMIT	.8	1 M	1.25 M	.80 - 1.70		

EVENT: VD02 A 40 hp, AC motor, ambient pressure, seawater flooded ... same as VD01.

SYSTEM CRITICALITY

	PERCE	NTAGE		f	_	201011101			
N= 10	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL	10			1				10 %	
DESTRABLE		10		+++			7	90 %	DESIRABLE
UNNECESSARY			4					0 %	

DEGREE OF RISK

		NTAGE	FINAL CONSENSUS		-	CONCLUSION
N= 10	LOSS	GAIN	25 50 7	5 100		CONCLUSION
. I PROTOTYPE		10	Δ		10 %	
.4 EXPERIMENTAL	10		Δ		30 %	
.7 SIMULATION	10		Δ		40 %	.7
.9 UNPROVEN		10	Δ.		20%	

N* 10		NTAGE GAIN	FINAL CONSENSUS % 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		10	Δ	10%	
MEDIUM	30		Δ	50 %	MEDIUM
LONG		20	Δ	40 %	
UNDESTRABLE		- (2)	4	0%	

PROBABLE TIMING		DEVELOPMENT TIME					
N ,	2 73,5 75 76,5 78 NE 54 N7 110 1 110 1	σ	MODE(S)	MEAN	(FROM 1972)		
10 EARLIEST	00	1.1	74	74.7	2 - 3 YRS		
10 MOST LIKELY	00	1.8	75	76.9	4 - 6 YRS		
1 O NOT LATER THAN	00	2.3	80	80.9	74 - 104 YRS		

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IM MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	.7	1 M	1.21 M	.78 - 1.64
10 UPPER LIMIT	1.6	2 M	2.75 M	1.80 - 3.69

EVENT: VD03

A 40 hp, DC motor, ambient pressure compensated, non-water flooded ... same as VD01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		10						60	%	ESSENTIAL
DESTRABLE				Δ				20	%	
UNNECESSARY	10			Δ				20	%	

DEGREE OF RISK

N= 10		NTAGE GAIN	FI 0 25	NAL CONSEN	SUS %	100		Г	CONCLUSION
. I PROTOTYPE		10		Δ			50	%	.1
.4 EXPERIMENTAL		10		Δ			40	%	
.7 SIMULATION	20		Δ				10	%	
.9 UNPROVEN			4				0	%	

N= 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 10	00		CONCLUSION
SHORT RANGE GOAL			Δ	1 🗆	40 9	
MEDIUM		10	Δ		60 9	MEDIUM
LONG	10		A		0 9	
UNDESTRABLE			A		0 9	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 1 96	O M	ODE(S) MEAN	(FROM 1972)
10 EARL!EST	00	1.4	73 73.3	- 2 YRS.
10 MOST LIKELY	0-0	1.2	74 75.2	21 - 4 YRS.
10 NOT LATER THAN	00	1.9	80 78.4	5 - 7 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (M MILLONS)
N			MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	,6	,2 M	.67 M	.32 - 1.01
10 UPPER LIMIT	1.2	1 M	1.53 M	82 - 2.24

EVENT: VD04

A 40 hp, DC motor, with electronic commutation, 10 hp ambient pressure, seawater flooded ... same as VD01.

SYSTEM CRITICALITY

PERCENTAGE FINAL CONSENSUS %								20101110001	
N= 10	LOSS	GAIN	2	25	50	75	100		CONCLUSION
ESSENTIAL			4					0 %	
DESTRABLE							Δ	100 %	DESIRABLE
UNNECESSARY			4					0 %	

DEGREE OF RISK

N= 10		NTAGE GAIN		NAL CONSENSUS %	100		Γ	CONCLUSION
.I PROTOTYPE			4			C	4 0	
.4 EXPERIMENTAL	20		Δ			10	%	
.7 SIMULATION		20	1	Δ		60	%	.7
.0 UNPROVEN			Δ			30	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 10	LOSS	GAIN	o .	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM				Δ				20	%	
LONG						Δ		80	%	LONG
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 76 61 64 67 100 1 101	•	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	1.0	75	74.9	2 - 3 YRS
10 MOST LIKELY	0-0	1.6	77	77.9	5 - 7 YRS
10 NOT LATER THAN	00	3.4	80	82.1	8 12 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N description of the second	•	MODE(S)	MEAN	190% CONFIDENCE INTERVAL
10 LOWER LIMIT	1.1	.2 M	1.70 M	1.08 - 2.32
10 UPPER LIMIT	2.2	1 M	4.10 M	2.82 - 5.38

EVENT: VD05 A 100 hp, DC motor, ambient pressure compensated, non-water flooded ... same as VD01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-			
N= 10	loss	GAIN	0 25 50 75	100	CGNCLUSION		
ESSENTIAL		10	Δ	20 %			
DESTRABLE			Τ	40 %	DESIRABLE		
UNNECESSARY	10		Δ	40 %			

DEGREE OF RISK

N- 10		NTAGE	FINAL CONSENSUS %	100		CONCLUSION
.I PROTOTYPE	1022	GAIN 10	Δ	٦٣٦	20%	OMOLUSION
.4 EXPERIMENTAL		10	Δ		10%	
.7 SIMULATION	30		Δ		60 %	.7
.9 UNPROVEN		10	Δ		10 %	

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N- 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		10	Δ	10%	
MEDIUM	10		Δ.	20%	
LONG		10	Δ	60%	LONG
UNDESTRABLE	10		Δ	10%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 75,5 75 76,5 78 81 84 67 90 98	0	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	1.8	75	74.6	12 - 32 YRS
10 MOST LIKELY	00	2.2	80	77.9	42 - 7 YRS
10 NOT LATER THAN	00	13.7	80	82.0	8 - 12 YRS

ESTIMATED COSTS TO ACHIEVE			20.7	DEVELOPMENT COSTS (IN MILLONS)
N Comment of the comm	en la	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	1.0	1/2 M	1.55 M	.98 - 2.12
10 UPPER LIMIT	1.9	3 M	3.20 M	2.11 - 4.29

EVENT: VD06

A 100 hp, DC motor, with electronic commutation, ambient pressure, seawater flooded ... same as VD01.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	1	CONCLUCION		
N- 10	LOSS	GAIN	0 25 50 75	100	CONCLUSION		
ESSENTIAL			Δ	20 %			
DESTRABLE	20		Δ	30 %			
UNNECESSARY		20	Δ	50 %	UNNECESSARY		

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %		_			
N- 10		GAIN		25 50 75	100		CONCLUSION		
.I PROTOTYPE			4			0 %			
.4 EXPERIMENTAL			4			0 %			
.7 SIMULATION	10			Δ		40 %			
.9 UNPROVEN		10		Δ		60 %	.9		

	PERCE	NTAGE	FINAL	CONSENSUS %		_			
N- 10		GAIN	0 25	50 75	100		CONCLUSION		
SHORT RANGE GOAL			4			0%			
MEDIUM			4			0 %			
LONG	20			Δ		70%	LONG		
UNDESTRABLE		20	Δ			30%			

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 87 110 110 110	ø MOI	DE(S) MEAN	(FROM 1972)
10 EARLIEST	0-0	1.1	75 75.8	3 - 4+ YRS.
10 MOST LIKELY	00	2.3	80 79.7	61 - 9 YRS
10 NOT LATER THAN	0=0	3.2	80 83 B	10 - 13 yes

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (M. MILLONS)
N		MODE(S)	MEAN	(CO% CONFIDENCE INTERVAL)
10 LOWER LIMIT	1.0	2 M	3.10 M	2.49 - 3.71
10 UPPER LIMIT	2.6	5 M	6.30 M	4.79 - 7.81

APPENDIX F TECHNOLOGY AREA VI. SURVEILLANCE AND COMMUNICATIONS

SUB-TECHNOLOGY AREAS:

- A. Bottom Positioning
- B. Surveillance and Viewing
- C. Communications

VIA Sub-Technology:

Bottom Positioning

Objective: To develop the capability to resolve a small object (5 ft in diameter) at a 20,000-ft depth for precision work employing various types of underwater work systems.

Events VIA01 - VIA02 address this objective.

EVENT: VIA01

A surface-mounted, 3-dimensional, active acoustic system capable of locating an on-bottom or above-bottom object at least 5 ft in diameter to an accuracy of \pm 200 ft in range, azimuth, and depth, at depths to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %					
N= 14	LOSS	GAIN	0	25	50	75	ـ انس		CONCLUSION
ESSENTIAL	6		4					0 %	
DESTRABLE		4				Δ		79%	DESIRABLE
UNNECESSARY		2		Δ				21%	

DEGREE OF RISK

	PERCE	NTAGE		F	INAL CONS	ENSUS %		_	
N- 14	LOSS	GAIN	0	25	50	75	100		CONCLUSION
.I PROTOTYPE			4					0 %	
.4 EXPERIMENTAL	5		Δ					7%	
.7 SIMULATION	5		Δ					14%	
.9 UNPROVEN		10				Δ		79%	.9

DESIRED COURSE OF ACTION

N= 14	RCENTAGE FINAL CONSENSUS % OSS GAIN, 0 25 50 75 100					Г	CONCLUSION
SHORT RANGE GOAL		1	· · · · · ·		<u> </u>	0%	OUNDEDSION
MEDIUM	1.5	Δ				14%	
LONG	 9.5			Δ		72%	LONG
UNDESTRABLE	1.5	Δ				14%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 67 90 98 96	o MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	00	2.6 78	76.5	31 - 6 YRS.
13 MOST LIKELY	0	4.2 75/80	80.1	6 - 10 YRS
12 NOT LATER THAN	00	6.2 80	85.5	101 - 161 YRS.

		DEVELOPMENT COSTS (IN IMLLONS)				
N The second sec		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
14 LOWER LIMIT	3.6	1 M	4.25M	2.56 - 5.94		
14 UPPER LIMIT	15.6	5 M	14.29M	6.92 - 21.65		

EVENT: VIA02

A surface-mounted, 3-dimensional, active acoustic system employing a transponder on the submerged device, capable of locating the on-bottom or above-bottom device to an accuracy of \pm 100 ft in range, azimuth, and depth, to depths of 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	NAL CONSEN	ISUS %			_	
N= 14	LOSS	GAIN	ê.	25	50	75	100			CONCLUSION
ESSENTIAL	2					Δ		64	%	ESSENTIAL
DESTRABLE		2		Δ				29	%	
UNNECESSARY			Δ					7	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %					
N• 14	LOSS	GAIN	0 25 5	10 75	100			CONCLUSION
. I PROTOTYPE		2	Δ			29	%	
.4 EXPERIMENTAL		2	Δ			35	%	. 4
.7 SIMULATION	4		۵			29	%	
.9 UNPROVEN			Δ			7	%	

DESIRED COURSE OF ACTION

		NTAGE		FINAL CONS	ENSUS %			_	
N- 14	LOSS	GAIN	0	25 50	75	100			CONCLUSION
SHORT RANGE GOAL		7	1		Δ		72	%	SHORT
MEDIUM		7	Δ				14	%	
LONG ,	7		Δ				7	%	
UNDESTRABLE	7		Δ				7	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 73.5 75 76,5 78 • 13 EARLIEST 00 .9 YRS 73/75 74.0 0--0 12 MOST LIKELY 1.9 75 76.4 $3\frac{1}{4} - 5\frac{1}{4}$ YRS 2.6 78 NOT LATER THAN 0--0 78.9

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N N N N N N N N N N N N N N N N N N N	Maria Republica	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	2.6	.5 M	1.66M	.37 - 2.95
13 UPPER LIMIT	12.0	1 M	6.58M	

VIB Sub-Technology: Surveillance and Viewing

Objective: To develop active/passive, acoustic and visual methods for observation, location, and tracking of static and moving objects from beneath the surface down to ocean depths of 20,000 ft.

Events VIB01 - VIB15 address this objective.

EVENT: VIB01

A head coupled television system, using conventional underwater TV, which has a remotely controlled TV camera in a work vehicle at a 20,000 ft depth. The viewing CRT screen is mounted on the head of a surface operator and the remote TV camera moves in synchronization with the head movement of the operator. The system includes a two-way, multiplex link via a single coaxial cable between a surface control center and the remote work vehicle. The system, using conventional underwater TV has a 20-ft to 30-ft range and is used in conjunction with quartz-iodide 250 with lamps or equivalent for illumination.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 13	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL		1	Δ	8%	
DESTRABLE	5		Δ	61%	DESIRABLE
UNNECESSARY		4	Δ	31%	

DEGREE OF RISK

N= 13		NTAGE GAIN	0	FINA 25	L CONSENSUS	% 75	100		Г	CONCLUSION
. I PROTOTYPE	1033	OATIV					7	0	%	
.4 EXPERIMENTAL	1		1		Δ	-++		46	%	.4
.7 SIMULATION	1		7		Δ			46	%	.7
.9 UNPROVEN		2	Δ			1		8	%	

	PERCE	NTAGE	FINAL CONSENSUS %		_		
N= 13	LOSS	GAIN	0 25 50 75 100			CONCLUSION	
SHORT RANGE GOAL		3	Δ	23	%		
MEDIUM	9		Δ	38	%	MEDIUM	
LONG		2	Δ	8	%		
UNDESTRABLE		4	Δ	31	%		

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		•		DEVELOPMENT TIME
N 7	73,5 75 76,5 78 81 64 67 90 96	ø	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	1.0	75	74.4	2 - 3 YRS.
12 MOST LIKELY	00	1.8	78	76.5	3 - 5 YRS.
12 NOT LATER THAN	00	2.7	80	78.8	52 - 8 YRS.

ESTIMATED	COSTS TO	ACHIEYE
-----------	----------	---------

N	ı	MODE(S)	MEAN	DEVELOPMENT COSTS (W MILLONS) (90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	1.6		1.83M	
12 UPPER LIMIT	5.2	1.5/3M	5.92M	3.21 - 8.62

EVENT: VIB02

A directional ranging sonar system with a 180-yard range and a forward field of view of 160 degrees in azimuth and 17 degrees vertical. The system has a visual display mounted on the operator's console. The system is remotely operated by a surface operator, via a transmission cable, and can function on a platform at 20,000 ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL	CONSENSI	JS %		_	
N= 13	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL	5	•	Δ					8 %	
DESTRABLE	y.	4				Δ		84 %	DESIRABLE
UNNECESSARY		. 1	Δ					8 %	

DEGREE OF RISK

N= 13		NTAGE GAIN	FINAL CONSENSUS %	100	C	ONCLUSION
. I PROTOTYPE		2	Δ	15	%	
.4 EXPERIMENTAL		2	Λ	62	%	. 4
.7 SIMULATION	4		Δ	23	%	
.9 UNPROVEN			/	0	%	

DESIRED COURSE OF ACTION

	ERCENTAGE DSS GAIN	FINAL CONSENSUS % 0 25 50 75	100	Г	CONCLUSION
SHORT RANGE GOAL		Δ		54 %	SHORT
MEDIUM		Δ		31 %	
LONG		Δ		15 %	
UNDESTRABLE		A		0 %	

PROBABLE TIMING

	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	in hor			DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 81 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	00	.9	74	74.2	11 - 21 YRS.
12 MOST LIKELY	0-0	1.6	75/77	76.3	. 31 - 5 YRS
12 NOT LATER THAN)-O	1.0	80	79.2	6 - 81 YRS

		Luonere	445.444	[IN MILLONS]
N	0	WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	.9	1 M	1.08 M	.66 - 1.51
13 UPPER LIMIT	4.5	3 M	3,95 M	1.75 - 6,16

EVENT: VIBO3

A directional passive binaural hydrophone system with a capability of positioning an 80dB sound (0.0002 microbars) up to 1,000 ft distances with a beam width of 3 degrees at approximately 10 KHz. The system is remotely operated by a surface operator via a single phase coaxial cable. The system can function on a platform at 20,000 ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	NSUS %			
N= 13	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL	5		Δ				8 %	
DESTRABLE	1			Δ			46 %	
UNNECESSARY		6		Δ			46 %	UNNECESSARY

DEGREE OF RISK

	PERCE	NI'AGE	F	INAL CONSENSUS %	1		
N- 12		GAIN	0 25	50 75	100		CONCLUSION
. I PROTOTYPE	7		4			0 %	
.4 EXPERIMENTAL		15		Δ		58%	.4
.7 SIMULATION	11	1	Δ			25%	
.9 UNPROVEN		3	Δ			17 %	

DESIRED COURSE OF ACTION

N- 12		NTAGE GAIN	FINAL CONSENSE	JS % 75 100	CONCLUSION
SHORT RANGE GOAL		4	Δ	25%	
MEDIUM	12		Δ	17%	
LONG			4	0 %	
UNDESTRABLE		8	Δ	58 %	UNDESIRABLE

PROBABLE TIMING

	(90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME		
N	72 73.5 75 76.5 78 81 84 87 90 96	O	MODE(S)	MEAN	(FROM 1972)		
12 EARLIEST	00	2.2	74	74.8	1 - 4 YRS.		
12 MOST LIKELY	00	3.6	75	77.3	3 - 7 YRS.		
12 NOT LATER THAN	00	5.6	77	80.3	51 - 11 YRS.		

		7		DEVELOPMENT COSTS (IM MILLONS)
N The state of the		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	2.2	1 M	1.73M	.60 - 2.87
12 UPPER LIMIT	5.2	2 M	4.53 M	1.85 - 7.21

EVENT: VIBO4

A narrow field of view (FOV) TV system with FOV variable from 2.5° to 20° and having a field depth of \pm 20 ft. System can resolve a 1-inch, 25% reflecting target against a black background anywhere within FOV (for FOV=5°) at a signal-to-noise ratio of unity for a target distance of up to 100 ft in water with an attenuation coefficient of .25/meter. Resolution will not be degraded by platform motions of 6 kts. System weight in water will not exceed 150 lbs and system will be capable of operation at a duty cycle of 1 for 40 hrs with a total input power of 25 kw hrs.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 12	LOSS	GAIN	0 25 50 75	100		CONCLUSION
ESSENTIAL			Δ		8 %	
DESTRABLE	2		Δ		67%	DESIRABLE
UNNECESSARY		2			25%	

DEGREE OF RISK

	PERCE	NTAGE	FINA	L CONSENSUS %		_	
N= 12	LOSS	GAIN	0 25	50 75	100		CONCLUSION
. I PROTOTYPE		9	Δ			17%	
. 4 EXPERIMENTAL		2	Δ			25%	
.7 SIMULATION	15		Δ			8 %	
.9 UNPROVEN		4		Δ		50%	.9

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 11	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		3	Δ	28%	
MEDIUM	6		Δ	36%	
LONG			Δ	0 %	
UNDESTRABLE		3	Δ	36%	UNDESIRABLE

PROBABLE TIMING 7	CALENDAR YEARS (90% CONFIDENCE INTERVAL) 72 73,5 75 76,5 78 81 64 67 90 96 96	σ	MODE(S)	MEAN	DEVELOPMENT TIME (FROM 1972)
11 EARLIEST	00	2.5	75	75.5	2 - 5 YRS
11 MOST LIKELY	00	5.2	77	79.4	$4\frac{1}{2} - 10$ YRS
11 NOT LATER THAN	0	8.0	80	83.5	7 - 16 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N Commence of the commence of	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	7.5	1 M	7.07M	2.99 - 11.15
11 UPPER LIMIT	17.7	3,50 M	17.77M	8.09 - 27.50

EVENT: VIBOS

Same as VIB04 except that total input power available is 30 kw and maximum range shall be 125 ft. Weight requirements will be those appropriate to towed fish or submersible.

SYSTEM CRITICALITY

		NTAGE		FI	NAL CONSE	NSUS %		r	
N= 12	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL			4					0 %	
DESTRABLE		2				Δ		75 %	DESTRABLE
UNNECESSARY	2			Δ				25 %	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSENSU	S %		
N* 12		GAIN	0 25	50	75	100	CONCLUSION
. I PROTOTYPE	1	77. 22.	Δ			8 %	
.4 EXPERIMENTAL		8	Δ			8 %	
.7 SIMULATION	10		Δ			17 %	
.9 UNPROVEN		3		Δ		67 %	.9

N- 12		NTAGE GAIN	FINAL CONSENSUS %	100		CONCLUSION
SHORT RANGE GOAL		8	Δ	٦ آ	17%	0011012001011
MEDIUM	13		Δ		33%	
LONG	===,,	8	Δ		17%	
UNDESTRABLE	3	100	Δ		33%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% SONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 2	73.5 75 76.5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
11 EARLIEST	00	3.6	76	76.9	3 - 7 YRS.
11 MOST LIKELY	00	6.4	77/78	80.7	5 - 12 YRS.
1 1 NOT LATER THAN	00	8.5	80	84 9	81 - 171 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N .		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	8.3	2 M	8.73M	4.19 - 13.27
11 UPPER LIMIT	28.4	3 M	23.36M	7.87 - 38.86

EVENT: VIBO6

A wide field TV system having a 100° x 100° FOV (employing rotating optics). System shall resolve a 25% reflecting 4-inch object against a black background anywhere within FOV at a signal-to-noise ratio of unity at a 70 ft receiver-to-target plane distance in water with an attenuation coefficient of .33/meter. Depth of field is ± 20 ft across FOV. Image will not be degraded by platform speeds of up to 6 knots. Input power, weight, duty cycle same as VIB04.

SYSTEM CRITICALITY

N= 10		NTAGE GAIN		FINAL CONS	SENSUS %	100		CONCLUSION
ESSENTIAL			4			[0 %	
DESTRABLE	3				Δ		70 %	DESIRABLE
UNNECESSARY		3		Δ			30 %	

DEGREE OF RISK

N= 9		NTAGE GAIN		FIMAL CONSENSUS %	100		Γ	CONCLUSION
. I PROTOTYPE			4		7.	0	%	
.4 EXPERIMENTAL			4			0	%	
.7 SIMULATION	N.	4		Δ	\Box	44	%	
.9 UNPROVEN	4			Δ	\prod	56	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	1	
N* 10	LOSS	GAIN	0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL	8		Δ	10%	
MEDIUM		3	Δ	30 %	
LONG		2	Δ	20 %	
UNDESTRABLE		3	Δ	40 %	UNDESIRABLE

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MEAN MODE(S) N 75 76,5 78 σ 9 EARLIEST 2.4 75/80 - 6 76.4 80.6 - 11 TYRS 4.5 78 9 MOST LIKELY 0---- 0 0----0 6.7 NONE NOT LATER THAN 84.7

N		0	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	8.5		7.44M	
9	UPPER LIMIT	16.3	3,10 M	16.67M	6.58 - 26.76

EVENT: VIBO7

Same as VIB06 except available power is 30 kw and maximum range is 85 ft. Weight and size suitable for towed fish or submersible.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL			4	0 %	
DESTRABLE	5,5		Δ	40 %	
UNNECESSARY		5,5	Δ	60 %	UNNECESSARY

DEGREE OF RISK

N- 8		NTAGE GAIN	FINAL CONSENSUS %	Г	CONCLUSION
. I PROTOTYPE			4	0 %	
.4 EXPERIMENTAL		·	4	0 %	
.7 SIMULATION		8.5	Δ	37.5%	
.9 UNPROVEN	8.5		Δ	62.5%	.9

N- 10		NTAGE	FINAL CONSENSUS % 0 25 50 75 100	[CONCLUSION
SHORT RANGE GOAL	17	0	Δ	10%	
MEDIUM		10	Ι Δ	10%	
LONG		2	Δ	20%	
UNDESTRABLE		5	Δ	60%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS			DEVELOPMENT TIME
N	(90% CONFIDENCE INTERVAL) 72 73.5 75 76.5 78 81 84 87 90 1 96 1	ø MOD	E(S) MEAN	(FROM 1972)
8 EARLIEST	00	3.0 8	0 77.0	3 - 7 YRS.
8 MOST LIKELY	00	5.2 8	5 81.0	5 - 12 YRS
8 NOT LATER THAN	00	7.7 9	0 85.5	81 - 181 YRS.

FOLIMATED AGOLD IN MOUNTED	ESTIMATED	COSTS	TO	ACHIEVE
----------------------------	-----------	-------	----	---------

				(M MILLONS)
N Committee of the comm	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
8 LOWER LIMIT	7.4	10M	9.13 _M	4.19 - 14.10
8 UPPER LIMIT	17.1	10 M	23.75 _M	12.30 - 35.20

EVENT: VIB08

A 5° FOV TV system using expendable underwater flares which will image a 1 inch 25% reflecting target against a black background anywhere within FOV for a targer distance of up to 160 ft in water with an attenuation coefficient of .25/meter. Resolution will not be degraded by vehicle motions of up to 6 knots. System will be provided with 100 flares which can be fired automatically to ranges of up to 160 ft and each flare will last at least 30 seconds. Weight of system shall not exceed 150 lbs in water.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %		
N= 11	LOSS	GAIN	0	25 50 75 100		CONCLUSION
ESSENTIAL			4		0%	
DESTRABLE	6		П	Δ	36%	
UNNECESSARY		6	П	Δ	64%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONS	ENSUS %			
N= 10		GAIN	0	25 50	75	100		CONCLUSION
. I PROTOTYPE			4				0%	
. 4 EXPERIMENTAL			4			7.1	0%	
.7 SIMULATION	7				Δ		60%	.7
.9 UNPROVEN		7		Δ			40%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		·
N* 11	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL			A	0%	
MEDIUM	6		Δ	27%	
LONG		1	Δ	9%	
UNDESTRABLE		5	Δ	64%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	0	MODE(S)	MEAN	(FROM 1972)
1 CEARLIEST	0	4.7	75	76.6	2 - 7 YRS
10 MOST LIKELY	00	5.7	78/80	80.3	$5 - 11\frac{1}{2} \text{ yrs}$
10 NOT LATER THAN	00	6.9	90	83.5	$7\frac{1}{2} - 15\frac{1}{2}$ YRS.

	And the latest			DEVELOPMENT COSTS (IN MILLONS)	
N N		MODE(S)	MEAN	190% CONFIDENCE INTERVAL	
10 LOWER LIMIT	4.8	1 M	4.65M	1.86 - 7.44	
10 UPPER LIMIT	20.0	3,5 M	16.30M	4.68 - 27.92	

EVENT: VIB09

A high sensitivity gradiometer/magnetometer system capable of locating and tracking small anomolies (i.e., a moving submersible) to within ± 20 ft. The system is capable of operating from or beneath the surface and can track objects down to ocean depths of 20,000 ft.

SYSTEM CRITICALITY

N= 11	PERCE	NTAGE	FINAL CONSENSUS % 0 25 50 75 100	Г	CONCLUSION
ESSENTIAL		5	Δ	36%	
DESTRABLE	5		Δ	64%	DESIRABLE
UNNECESSARY			A	0 %	

DEGREE OF RISK

N= 11		NTAGE		INAL CONSEN	100	_ [CONCLUSION
. I PROTOTYPE			4		1 [0%	
.4 EXPERIMENTAL			4		 П	0%	
.7 SIMULATION	3.5			Δ	 5	4.5%	.7
.9 UNPROVEN		3.5		Δ	 4.	5.5%	

	PERCE	NTAGE	FINAL CONSENSUS %		
N* 10		GAIN	0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL			Δ	20%	
MEDIUM	13		Δ	20%	-
LONG		10	Τ	50%	LONG
UNDESTRABLE		3	Τ Δ	10%	•

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 67 90 96	ø MODE	(S) MEAN	(FROM 1972)
1 CEARLIEST	00	7.6 7	78.2	2 - 10 YRS
9 MOST LIKELY	00	3.3 75/	79.0	5 - 9 YRS
O NOT LATER THAN	00	4.9 83/9	90 83.1	8 - 14 YRS.

ESTIMATED	COSTS	TO /	ACHIEVE
-----------	-------	------	---------

N	MODE(S) MEAN	DEVELOPMENT COSTS (IM MILLONS) (90% CONFIDENCE INTERVAL)
11 LOWER LIMIT		M 1.93 - 33.84
11 UPPER LIMIT	140.6 5 M63.73	M 0 - 140.52

EVENT: VIB10

A focused imaging system using a 100×100 element or equivalent hydrophone array capable of resolving a 24-inch effective target against a neutral background at a 100-ft range.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N* 13	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL		1	Δ	15 %	
DESTRABLE	3		Δ	54 %	DESIRABLE
UNNECESSARY		2	Δ	31 %	

DEGREE OF RISK

N- 13		NTAGE GAIN	FINAL CONSENSUS %	100	Г	CONCLUSION
. I PROTOTYPE	1000	ONTIN	4		0 %	
.4 EXPERIMENTAL		7	Δ	- 11	54 %	.4
.7 SIMULATION	7		Δ		31 %	
.9 UNPROVEN			Δ		15 %	

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N- 13	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	6		Δ	23 %	
MEDIUM	1000	2	Δ	39 %	MEDIUM
LONG		2	Δ	15 %	
UNDESTRABLE		2	Δ	23 %	

PR	OBABLE TIMING	(90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 84 67 90 96 0 MODE(S) MEAN	(FROM 1972)
13	EARLIEST	0-0 1.4 74/75 74.8	2 - 31 YRS.
11	MOST LIKELY	00 2.0 76 77.2	4 - 61 YRS.
13	NOT LATER THAN	00 3.3 78/85 80.3	$6\frac{1}{2} - 10 \text{ YRS.}$

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	2.6	1 M	2.50 M	1.22 - 3.78
13 UPPER LIMIT	6.5	3 M	6.27 M	3.04 - 9.50

EVENT: VIB11 A focused holographic imaging system ... same as VIB10.

SYSTEM CRITICALITY

N= 12	PERCE	NTAGE		FINAL CONSENSUS %	Г	CONCLUSION
ESSENTIAL	1033	OAIN	4	***************************************	0 %	
DESTRABLE				Δ	67 %	DESIRABLE
UNNECESSARY				Δ	33 %	

DEGREE OF RISK

		NTAGE	FINAL CONSENSUS		_	
N= 11	LOSS	GAIN	0 25 50	75 100 _		CONCLUSION
.I PROTOTYPE			A		0 %	
.4 EXPERIMENTAL	1		Δ		9 %	
.7 SIMULATION	4		Δ		36 %	
.9 UNPROVEN		5	Δ		55 %	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 12	LOSS	GAIN	0 25 50 75 100	22.7	CONCLUSION
SHORT RANGE GOAL			Δ	17 %	
MEDIUM	8		Δ	0 %	
LONG		8	Δ	58 %	LONG
UNDESTRABLE			Δ	25 %	

PR	OBABLE TIMING		(901)		NEN				/AL)					DEVELO)P¥	IENT	TIME
N		72	73.5	75	76,5	78	81	84	67	90	1 96 1	•	MODE(S)	MEAN	(FR	OM	1972	:1
11	EARLIEST				0-	-0						1.9	75	77,3	4	_	61	YRS.
11	MOST LIKELY						0	-0				4.1	85	81.8	7-	-	12	YRS.
11	NOT LATER THAN		117					o		0		6.8	80	86.4	10	-	18	YRS.

			DEVELOPMENT COSTS (IN MILLONS)		
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
11	LOWER LIMIT	7.1	2,3 M	6.9 M	3.00 - 10.73
11	UPPER LIMIT	18.0	10 M	17.7 M	7.81 - 27.55

EVENT: VIB12

A focused acoustic imaging system using a 100×100 element hydrophone array capable of resolving a 24-inch effective target against a neutral background at a 300-ft range.

SYSTEM CRITICALITY

(NTAGE	FINAL CONSENSUS %		OOMOL HEIOM
N= 12	LOSS	GAIN	0 25 50 75 13	00	CONCLUSION
ESSENTIAL			A	0 %	
DESTRABLE	2			83 %	DESIRABLE
UNNECESSARY		2	Δ	17 %	

DEGREE OF RISK

N- 12		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75	100	Г	CONCLUSION
. I PROTOTYPE	8		4		0 %	
.4 EXPERIMENTAL			Δ	\Box	8 %	
.7 SIMULATION			Δ		67 %	.7
.9 UNPROVEN		8	Δ		25 %	

N= 12		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL	8	U. I.I.	4	0 %	
MEDIUM	14		Δ	17 %	
LONG		20	Τ	66 %	LONG
UNDESTRABLE		2	Δ	17 %	

PROBABLE TIMING			(901	CALENDAR YEARS % CONFIDENCE INTERVAL)							DEVELOPMENT TIME				
N		72	73.5	75	76.5	78	81	84	67	90	96 1	σ	MODE(S)	MEAN	(FROM 1972)
12	EARLIEST			. ()		0					4.1	76	77.8	3 - 8 YRS.
12	MOST LIKELY		00				5.1	77	80.4	6 - 11 YRS					
12	NOT LATER THAN						0		0			6.1	85	83.6	81 - 141 YRS

ESTIMATED COSTS TO ACHIEVE		la la		DEVELOPMENT COSTS (IN MILLONS)
N , and the second seco	•	MODE(S)	MEAN	190% CONFIDENCE INTERVAL)
12 LOWER LIMIT	13.2	2 M	8.21M	1.35 - 15.07
12 UPPER LIMIT	27.5	5 M	18.33M	4.07 - 32.60

EVENT: VIB13 A focused acoustic holographic ranging system ... same as VIB12.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %					_		
N= 11	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE		5				Δ		82	%	DESIRABLE
UNNECESSARY				Δ				18	%	

DEGREE OF RISK

	PERCE	NTAGE	FIN	AL CONSENSUS %		1	
N= 10	LOSS	GAIN	0 25	50 75	100		CONCLUSION
.1 PROTOTYPE			4			0 %	
.4 EXPERIMENTAL	1		Δ			10 %	
.7 SIMULATION		7		Δ		40 %	
.9 UNPROVEN	6			Δ.		50 %	.9

DESIRED COURSE OF ACTION

N- 11	PERCE	NTAGE GAIN	F1 0 25	INAL CONSENSU	S % 75	100		CONCLUSION
SHORT RANGE GOAL			4				0 %	
MEDIUM			Δ				9 %	
LONG					Δ		3 %	LONG
UNDESTRABLE			Δ				8 %	y

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 87 90 98 96	ON	MODE(S) MEAN	(FROM 1972)
10 EARLIEST	00	5.7	80 80-2	5 - 111 ras
10 MOST LIKELY	00	6.5	78/85 84.2	81 - 16 YRS
10 NOT LATER THAN	00	7.4	90 87.9	11 20 YRS.

				DEVELOPMENT COSTS (IN MILLONS)		
N		• MODE(S)	MEAN IS	10% CONFIDENCE WITERVAL)		
10	LOWER LIMIT	21,3 3,8 M14	.55M	2.21 - 26.89		
10	UPPER LIMIT	42.5 15,500 3	2.00M	7.36 - 56.64		

EVENT: VIB14

A sensor system capable of covert, real-time monitoring of the physical positions of an array of individually suspended passive ASW surveillance hydrophone during surveillance operations throughout a five-year operating life of the array. The system would be capable of determining the relative positions of the acoustic elements within \pm 0.8 ft displacement in any direction per 100 ft of length along the array.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %	-	Tautia
N= 11	LOSS	GAIN	0 25 50 75	100	CONCLUSION
ESSENTIAL	5		Δ	18 %	
DESTRABLE			Δ	46 %	DESIRABLE
UNNECESSARY		5	Δ	36 %	

DEGREE OF RISK

N= 10		NTAGE GAIN	FINAL CONSENSUS %	100	CONCLUSION
. I PROTOTYPE			A	0 %	
.4 EXPERIMENTAL	5		Λ	20 %	
.7 SIMULATION		12	Δ	70 %	.7
.9 UNPROVEN	7		Δ	10 %	

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N= 11	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	6		Δ	9 %	
MEDIUM		4	Δ	27 %	
LONG	2		Δ	37 %	LONG
UNDESTRABLE		4	Δ	27 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 67 90 96 1	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	2.3	74/78	76.7	$3\frac{1}{2}-6 \text{ YRS.}$
10 MOST LIKELY	00	4.4	78	80.5	6 - 11 YRS.
10 NOT LATER THAN	00	6.6	80	84 5	At - 16typs

	-	-	ACHIENE
ESTIMATED	CO212	IU	ACHIEVE

N	∂ ²	MODE(S)	AACAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
		MODE(3)	MENIA	(SON COMPIDENCE INTERVAL)
10 LOWER LIMIT	4.2	5 M	5.00M	2.59 - 7.41
10 UPPER LIMIT	13.0	10 M	14.45M	6.89 - 22.01

EVENT: VIB15

A sensor system capable of covert, real-time monitoring of the physical positions of an array of individually suspended passive ASW surveillance hydrophone during the installation of an array to water depths of 20,000 ft. The system would ... same as VIB14.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS	%	r	
N= 10	LOSS	GAIN	0	25 50 7	5 100		CONCLUSION
ESSENTIAL	3	Uni		Δ		30 %	
DESTRABLE		11		Δ		70 %	DESIRABLE
UNNECESSARY	8		4			0 %	

DEGREE OF RISK

N= 10		NTAGE	0	FINAL CONSENSUS % 25 50 75 100)	Γ	CONCLUSION
. I PROTOTYPE	9		4		0	%	
.4 EXPER!MENTAL		3		Δ	30	%	
.7 SIMULATION		15		Δ	70	%	•7
.9 UNPROVEN	9		A		0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	-	
N= 10	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		2	Δ	20 %	
MEDIUM	16		Δ	30 %	
LONG		23	Δ	50 %	LONG
UNDESTRABLE	9		A	0 %	

PROBABLE TIMING

	•	DEVELOPMENT TIME				
N		72 73,5 75 76,5 78 81 84 57 90 96	0	MODE(S)	MEAN	(FROM 1972)
10	EARLIEST	00	2.	5 74	75.7	2 - 5 YRS.
10	MOST LIKELY	00	3.	6 77/80	78.7	41 - 9 YRS.
10	NOT LATER THAN	00	5.	0 80	81.9	7 - 13 YRS.

CALENDAR YEARS

				DEVELOPMENT COSTS (IM MILLONS)
N	director to the second	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	6.0	2,5 M	6.75M	3.30 - 10.20
10 IIPPER LIMIT	16.0	5,10 M	16.15 M	6.86 - 25.40

VIC Sub-Technology: <u>Communications</u>

Objective: To advance the technologies necessary for real-time, reliable, quality voice and data communications links between the various surface and bottom facilities and vehicles in the environment required.

Events VIC01 - VIC09 address this objective.

EVENT: VIC01

An underwater acoustic, multi-channel (voice and digital data), high data rate communication link capable of secure communications between submersibles, bottom habitats, and the surface at 20-mile distances and down to 20,000 it ocean depths with negligible multi-path and reverberation interference.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSEN	ISUS %		_	
N* 13	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL		5			Δ			62 %	ESSENTIAL
DESTRABLE	5			Δ				38%	
UNNECESSARY			4					0 %	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSENSUS %		_	
N= 13		GAIN	0 25	50 75	100		CONCLUSION
. I PROTOTYPE		1	Δ			8 %	
. 4 EXPERIMENTAL		1	Δ			15 %	
.7 SIMULATION		9.5		Δ		38.5%	.7
.9 UNPROVEN	11.5			Δ		38.5%	

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %	CONSENSUS %		
N= 14	LOSS	GAIN	0 25 0 75			CONCLUSION
SHORT RANGE GOAL	13		Δ		14%	
MEDIUM		16	Δ		36%	•
LONG		10	Δ		50%	LONG
UNDESTRABLE	13		A		0 %	

	-	•				 T	 	•
•	-		11.	-	-			

PRUDADLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME	
N 7	73.5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	00	2.0	75	76.3	31 - 51 YRS.
13 MOST LIKELY	00	4.3	80	80.5	61 - 101 YRS
13 NOT LATER THAN	00	6.6	90	84.8	91 - 16 YRS.

ESTIMATED COSTS TO ACHIEVE

				(IN MILLONS)
N ,	σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	12.8	3 M	10.23 _M	3.92 - 16.55
13 UPPER LIMIT	33.0	_ 5 M	28.85M	12.53 - 45.17

REVELOPMENT CACTE

EVENT: VICO2

An underwater laser multi-channel, high data rate, communication link between submersibles, habitats, and the surface with a range of 1,000 ft in seawater with a light attenuation coefficient of 0.12/meter.

SYSTEM CRITICALITY

N= 10		NTAGE GAIN	0	FINAL CON	SENSUS %	100		CONCLUSION
ESSENTIAL	1033	1	Δ		· · · · · · · · · · · · · · · · · · ·		10 %	
DESTRABLE	5.5			Δ			40 %	
UNNECESSARY		4.5		Δ			50 %	UNNECESSARY

DEGREE OF RISK

N= 9	NTAGE GAIN	0	FINAL CONSENSUS %	100		Γ	CONCLUSION
. I PROTOTYPE		4			0	%	
.4 EXPERIMENTAL		4			0	%	
.7 SIMULATION		7	Δ		33	%	
.9 UNPROVEN			Δ		67	%	9

DESIRED COURSE OF ACTION

N= 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	10	U.VIII	4	0 %	
MEDIUM		10	Δ	20 %	
LONG	10		Δ	20 %	
UNDESTRABLE	1	10	Δ	60 %	UNDESIRABLE

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		2 73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	0 0	3.1	76	77,4	$3\frac{1}{2} - 7\frac{1}{2}$ YRS.
9	MOST LIKELY	00	5.4	78	81.6	$6\frac{1}{2} - 13$ YRS.
9	NOT LATER THAN	00	7.9	80/85	85.9	9 - 19 YRS

N	1		Ţ	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	14.7	ľ		8.61M	
9	UPPER LIMIT	28.4	Ï	10 M	20.22M	2.58-37.86

EVENT: VIC03

An underwater portable acoustic, two-way voice communications link for communications between divers, habitats, vehicles and the surface, capable of functioning reliably down to 1,000 ft depths and over a range of 1 mile.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %			
N= 13	LOSS	GAIN	٥	25 50 75 100	·		CONCLUSION
ESSENTIAL		5		Δ	69	%	ESSENTIAL
DESTRABLE	5			Δ	31	%	
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FIN	AL CONSENS	US %			-	
N= 13	LOSS	GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE		9	Δ				23	%	
.4 EXPERIMENTAL	11			Δ			54	%	. 4
.7 SIMULATION		1	Δ			\mathbf{I}	15	%	
.9 UNPROVEN		1	Δ				8	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	INAL CONSE	NSUS %			
N* 12	LOSS	GAIN	0	25	50	75	100	_	CONCLUSION
SHORT RANGE GOAL		21				Δ		83 %	SHORT
MEDIUM	21			Δ				17 %	
LONG			4					0 %	
UNDESTRABLE			4					0 %	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) [FROM 1972] MODE(S) MEAN 73.5 75 76.5 78 EARLIEST 73.7 - 2 73 YRS. 0-0 9

1.9 74/75 MOST LIKELY 0-0 75.4 $2\frac{1}{2} - 4\frac{1}{2}$ YRS. 77.4 NOT LATER THAN YRS 0--- 0

ESTIMATED	COSTS TO	D ACHIEVE

N			MODE(S)	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]
-	· · · · · · · · · · · · · · · · · · ·		MODELS	MEMIA	(30 / CONTIDENCE INTERVAL)
13	LOWER LIMIT	1.2	.5 M	.97 M	.38 - 1.56
13	UPPER LIMIT	2.5	5 M	3.30 M	2.03 - 4.56

EVENT: VIC04 A helium-speech unscrambler for two-way voice communications between divers, habitats, vehicles, and the surface, capable of functioning reliably down to 1,000-ft depths.

SYSTEM CRITICALITY

N= 13		NTAGE		FINAL CONSENSUS % 25 50 75 100		CONCLUSION
ESSENTIAL	3			Δ	61 %	ESSENTIAL
DESTRACLE		2	П	Δ	31%	
UNNECESSARY		1	П	Δ	8 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			
N= 13	LOSS	GAIN	0 25 50 75	100		CONCLUSION
. I PROTOTYPE		18	Δ		54 %	.1
.4 EXPERIMENTAL	5		Δ		23 %	
.7 SIMULATION	13		Δ		23 %	
.9 UNPROVEN			A		0 %	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FIN	AL CONSENSUS %	-	
N= 12	LOSS	GAIN	0 25	50 75 100		CONCLUSION
SHORT RANGE GOAL		6		Δ	75%	SHORT
MEDIUM	6		Δ		17%	
LONG			Δ		0 %	
UNDESTRABLE			Δ		8 %	

PROBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 87 90 96	σ^2	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0-0	1.0	73/74	73.9	$1\frac{1}{2} - 2\frac{1}{2}$ YRS
13 MOST LIKELY	0 0	1.9	74	75.5	22 - 42 YRS.
13 NOT LATER THAN	00	3.1	75	77.2	$3\frac{1}{2} - 7$ YRS.

[ii]			[HODE/C)	1 405 4 11	(IN MILLONS)
N	\		MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]
13 LOWER	LIMIT	.5	.5 M	.62 M	.3787
13 UPPER	LIMIT	1.7	1 M	1.84 M	.98 - 2.70

EVENT: VICO5 A tactile (physical stimulus of different body areas) twoway communications system for use as a means of communications.

SYSTEM CRITICALITY

N= 12		NTAGE		FIN 25	IAL CONSE	NSUS %	100		ļ	CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	5			Δ				33	%	
UNNECESSARY		5				Δ		67	%	UNNECESSARY

DEGREE OF RISK

N* 10		NTAGE	FINAL 25	CONSENSUS %	100		Г	CONCLUSION
. I PROTOTYPE			4		7 [0	%	
.4 EXPERIMENTAL	10		4			0	%	
.7 SIMULATION			Δ			20	%	
.9 UNPROVEN		10		À	\prod	80	%	.9

DESIRED COURSE OF ACTION

		NTAGE		F	NAL CONSE	NSUS %			
N= 12	LOSS	GAIN	<u></u>	25	50	75	100		CONCLUSION
SHORT RANGE GOAL			4]]	0 %	
MEDIUM		7		Δ				17 %	
LONG		3		Δ				33 %	
UNDESTRABLE	10				Α	**************************************		50 %	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	2 73,5 75 76,5 78 81 84 87 90 96	ø MOD	E(S) MEAN	(FROM 1972)
10 EARLIEST	00	2.4 78/	80 76.6	3 - 6 YRS.
10 MOST LIKELY	00	3.3 80/	85 80.4	62 - 102YRS.
10 NOT LATER THAN	00	5.9 9	0 84.6	9 - 16 yas

					DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	3.0	.5, 5 M	3.16M	1.28 - 5.03
9	UPPER LIMIT	5.4	1,10 M	4.61M	1.84 - 7.38

EVENT: VICO6

A wireless split transformer link through a pressure hull of appropriate material, without penetration, capable of transmitting two-way multi-channel digital communication signals at ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

N= 13		NTAGE GAIN	FI 0 25	NAL CONSENSUS %	, [CONCLUSION
ESSENTIAL		2	Δ		15 %	
DESTRABLE		3		Δ	77 %	DESIRABLE
UNNECESSARY	5		Δ		8 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			107 - 507
N= 12	LOSS	GAIN	0 25 50 75	100		CONCLUSION
. I PROTOTYPE		1	Δ	\Box [8 %	
.4 EXPERIMENTAL	11		Δ		25 %	
.7 SIMULATION		6	Δ		42 %	.7
.9 UNPROVEN		4	Δ		25 %	

DESIRED COURSE OF ACTION

N- 12		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL		13	Δ	67 %	SHORT
MEDIUM		9	Δ	17%	District Control
LONG	15		Δ	8 %	
UNDESTRABLE	7		Δ	8 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	1	DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	σ ² MODE(S) MEAN	(FROM 1972)
12 EARLIEST	00	2.6 73/75 74.7	$1\frac{1}{2} - 4$ YRS
11 MOST LIKELY	00	5.3 74 78.6	31 - 91 YRS
12 NOT LATER THAN	00	8.4 76 81.9	52 - 142 YRS

			I		DEVELOPMENT COSTS (IN MILLONS)
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12	LOWER LIMIT	2.9	1 M	3.55 M	1.50 - 5.61
12	UPPER LIMIT	5.3	3,15 M	4.36M	1.57 - 7.16

EVENT: VIC07 A wireless, microwave/electrical link ... same as VIC06.

SYSTEM CRITICALITY

	PERCENTAGE]	FINAL CONSE	NSUS %		_	
N= 11	LOSS GAIN	0 2:	5 50	75	100		CONCLUSION
ESSENTIAL		4				0 %	
DESTRABLE	27.5			Δ		82 %	DESIRABLE
UNNECESSARY	27.5	Δ				18 %	

DEGREE OF RISK

N= 11		NTAGE GAIN	0	FINAL CONSEN	0	Γ	CONCLUSION
. I PROTOTYPE	- XV X		4			0 %	
.4 EXPERIMENTAL			A			0 %	
.7 SIMULATION		25.5		Δ	45	5.5%	
.9 UNPROVEN	25.5			Δ.	 54	1.5%	.9

DESIRED COURSE OF ACTION

No. 11		NTAGE	FINAL CONSENSUS %	<u></u>	CONCLUSION
N- 11 SHORT RANGE GOAL		GAIN 8	0 25 50 75 100	18%	CONCLUSION
MEDIUM	10	-	<u> </u>	0 %	
LONG	10	15	Δ	55 %	LONG
UNDESTRABLE	13		Δ	27%	

PROBABLE TIMING	(90% CONFIDENCE INTERVAL)	DEVELOPMENT TIN
N	72 73,5 75 76,5 78 81 84 87 90 95 0 MODE(S) MEAN	(FROM 1972)
10 EARLIEST	00 3.9 76 78.0	$3\frac{1}{2} - 8\frac{1}{2} $ Y
	بقر وموجود بسوير والمراجع والمحارك ويروي والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	

10 EARLIEST	0 0	3.9	76	78.0	3 - 8 YRS.
11 MOST LIKELY	00	6.5	76/78	81.6	6 - 13 YRS.
10 NOT LATER THAN	00	9.6	2000	88.5	11 - 22 YRS.

		License	· · · · · · · · · · · · · · · · · · ·	(IN MILLONS)
N		WODE(2)	MEAN	(80% CONFIDENCE INTERVAL)
11 LOWER LIMIT	3.7	1 M	3.64M	1.62 - 5.66
11 UPPER LIMIT	8.4	5,10 M	10.23M	5.62 - 14.83

EVENT: VICO8 A wireless, optical/electrical link ... same as VICO6.

SYSTEM CRITICALITY

		NTAGE		FII	NAL CONSE	NSUS %	_	
N= 12	LOSS	GAIN	<u> </u>	25	50	75		CONCLUSION
ESSENTIAL			Δ				8 %	
DESTRABLE		8				Δ	75%	DESIRABLE
UNNECESSARY	8			7			17%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSEN	ISUS %				
N= 12		GAIN	٥	25 50	75	100		CONCLU	SION
.I PROTOTYPE		8	Δ				8 %		
.4 EXPERIMENTAL			4			11	0 %		
.7 SIMULATION				Δ			42 %		
.9 UNPROVEN	8			Δ			50%	.9	

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 12	LOSS	GAIN	0 25 50 75 10	0	CONCLUSION
SHORT RANGE GOAL	1		Δ	8%	
MEDIUM	2		Δ	25%	
LONG		4	Δ	50%	LONG
UNDESTRABLE	1		Δ	17%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 75.5 75 76.5 78 81 84 67 90 96	o MODE(S) A	NEAN (FROM 1972)
11 EARLIEST	U0	2.5 76 7	$76.6 3\frac{1}{2} - 6 YRS$
12 MOST LIKELY	00	4.4 78 7	$79.8 5\frac{1}{2} - 10 \text{ YRS}$
11 NOT LATER THAN	00	8.0 80/90 8	$9\frac{1}{2} - 18\frac{1}{2}$ YRS

ESTIMATED	COSTS TO	ACHIEVE
-----------	----------	---------

				DEVELOPMENT COSTS (IN MILLONS)
N ,	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
12 LOWER LIMIT	3.3	1,5 M	3.60M	1.89 - 5.31
12 UPPER LIMIT	11.4	3,10 M	11.42 _M	5.52 - 17.31

EVENT: VIC09 A wireless, acoustical, remotely-controlled electrical link ... same as VIC06.

SYSTEM CRITICALITY

	PERCE	NIAGE	F	INAL CONSEN	ISUS %		_	
N- 13	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL	14		Δ				15 %	
DESTRABLE		14			Δ		85 %	DESIRABLE
UNNECESSARY			A				0 %	

DEGREE OF RISK

12 NOT LATER THAN

N= 13		NTAGE GAIN	FINAL CONSENSUS %	100		CONCLUSION
. I PROTOTYPE			4	7 [0 %	
.4 EXPERIMENTAL		2	Δ		31%	
.7 SIMULATION	3		Δ		61 %	.7
.9 UNPROVEN		1	Δ		8%	

DESIRED COURSE OF ACTION

N• 13	NTAGE GAIN	FIN.	AL CONSENSUS %	100		CONCLUSION
SHORT RANGE GOAL		Δ			15%	
MEDIUM	5		Δ		70%	MEDIUM
LONG	1	Δ			15%	
UNDESTRABLE		A			0%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) MODE(S) MEAN (FROM 1972) N 73 76,5 78 75.5 21 - 41 YRS. 12 EARLIEST 0---0 2.3 75 13 MOST LIKELY 78 78.3 0----4.4

80

82.0

0----

ESTIMATED	COSTS	TO	ACHIEVE	

		MODE(S)	MAN	DEVELOPMENT COSTS (WI MILLONS) (90% CONFIDENCE INTERVAL)		
N		MODEISI	MEAN	(so v commence missaur)		
13 LOWER LIMIT	2.8	.5 M	2.02 M	.64 - 3.40		
13 UPPER LIMIT	7.7	2 M	5.52 M	1.72 - 9.31		

APPENDIX G TECHNOLOGY AREA VII. INSTRUMENTATION AND DISPLAY

SUB-TECHNOLOGY AREAS:

- A. Life Support Monitoring
- B. Submersible Positioning and Guidance Instrumentation
- C. Site Selection Instruments

AIIV

Sub-Technology:

Life Support Monitoring

Objective: To develop the technologies to continuously monitor major parameters of a life-support system including automatic warning devices.

Events VIIA01 - VIIA03 address this objective.

EVENT: VIIA01

A carbon dioxide indicator for use in normal atmosphere manned submersibles. The unit indicates the partial pressure of CO_2 from 0 to 30.0 mm hg, and has a settable high level warning signal. The minimum reading is 1.0 mm hg, and the accuracy is within \pm 10 mm hg (0 to 4% CO_2 in increments of .13%). The instrument is approximately $8 \times 10 \times 12$ inches, weighs less than 4 pounds, and requires less than 10 w. at 28 VDC. The instrument will remain within calibration for 1,000 hrs without maintenance, and the MTBF is 5,000 hrs of operation.

SYSTEM CRITICALITY

N= 6		NTAGE		FIN L CONSENSUS %		1	CONCLUSION
ESSENTIAL	4.5	GAIN	Ì	Δ	33	%	CONCLUSION
DESTRABLE		4.5		Δ	67	%	DESIRABLE
UNNECESSARY			1		0	%	

DEGREE OF RISK

		NTAGE		F	FINAL CONSE	NSUS %			_	
N= 6	LOSS	GAIN	0 —	25	50	75	100			CONCLUSION
.I PROTOTYPE	8			Δ				17	%	
.4 EXPERIMENTAL		8				Δ		83	%	.4
.7 SIMULATION			4					0	%	
.9 UNPROVEN			4					0	%	

N= 5		NTAGE GAIN		FINAL CONSEN	NSUS %	100		ſ	CONCLUSION
SHORT RANGE GOAL	2.5			Δ	\		60	%	SHORT
MEDIUM	5		Δ				20	%	
LONG		7.5	Δ				20	%	
UNDESTRABLE			A				0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	,	2 73,5 75 76,5 75 61 h4 h7 90 96	σ	MODE(S)	MEAN	(FROM 1972)
6	EARLIEST	0-0	.3	73	73.2	1 - 11/2 YRS.
6	MOST LIKELY	00	.9	74	74.3	11/2 - 3 YRS
6	NOT LATER THAN	00	.9	75	75 7	3 - 41/2 YRS

ESTIMATED	2T200	TO	ACHIEVE
CO IIMAI EU	60313	10	ACHIETE

N	±-		MODE(S)	AAC A A1	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
IV			NODE(3)	MEAN	(SU % COMPIDENCE INTERVAL)
6	LOWER LIMIT	.2	05 M	.17 M	.0331
6	UPPER LIMIT	1.0 N	ione M	.91 M	.05 - 1.77

EVENT: VIIA02

An instrument as described VIIA01, but which does not require any electrical power, except for the warning signal which is fail-safe.

SYSTEM CRITICALITY

	PERCE	NTAGE	ì	FI	NAL CONSE	NSUS %			-	
N* 5	LOSS	GAIN	2	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE		25					4	100	%	DESTRABLE
UNNECESSARY	25		4			-+		0	%	

DEGREE OF RISK

N° 5		NTAGE		F1	NAL CONSE	ISUS %	100		ſ	CONCLUSION
.I PROTOTYPE	1022	GAIN 6		Δ		<u></u>		20	7,	0011010101
.4 EXPERIMENTAL	9			Δ				20	%	
.7 SIMULATION	14		4	+	+			0	%	
.9 UNPROVEN		17			Δ			60	%	.9

DESIRED COURSE OF ACTION

	PERCE	RCENTAGE FINAL CONSENSUS %								
N* 2	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	25		4					G	%	
MEDIUM		50					Δ	100	%	MEDIUM
LONG	25		4					0	%	
UNDESTRABLE			4					0	5	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)									
N	7	73,5 75 76 5 78 Rt b4 67 90 96	0	MGDE(S)	MEAN	[FROM 1972]					
5	EARLIEST	00	1.0	74	74.4	11/2-31/2 YRS					
5	MOST LIKELY	00	1.7	75,78	76.0	21/2-51/2 YRS					
5	NOT LATER THAN	00	1.9	76	77.2	3 1/2 - 7 YRS.					

<u></u>	1		IMODE(S)	AAC AAL	(M ATTOM2) DEASTG
IN			MODEIZI	MEAN	(90% CONTIDENCE INTERVAL)
5	LOWER LIMIT	.6	NoneM	.55 M	0 - 1.12
5	UPPER LIMIT	2.2	5 M	2.36 M	.29 - 4.43

VIIA03 A multipurpose atmospheric contaminant indicator for use in normal atmosphere manned submersibles, which senses and indicates the concentrations of carbon monoxide, hydrogen, Freons, and general hydrocarbons. (The instrument has an indication, specific to methane.) The ranges and sensitivities are listed below:

Contaminant	Range	Min. Sensitivity
Carbon Monoxide	0 - 200 ppm	5 ppm
Hydrogen	0 - 3%	.25%
Freons	0 - 500 ppm	25 ppm
Methane	0 - 10%	.5%
Hydrocarbons	0 - 200 ppm	5 ppm

The instrument is approximately 8 x 10 x 12 inches, weighs less than 10 pounds and requires 20 w at 28 VDC. The instrument will remain in calibration for 1,000 hours without maintenance and the MTBF is 5,000 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %					_	
N= 5	1.055	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	7					\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>		60	%	DESIRABLE
UNNECESSARY		7			Δ			40	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONS 1					
N= 5		GAIN		25 50	75	100			CONCLUSION
. I PROTOTYPE			4				0	%	
.4 EXPERIMENTAL			Δ				0	1/6	
.7 SIMULATION		7		Δ			40) %	
.9 UNPROVEN	7			Δ		• • • • • • • • • • • • • • • • • • • •	60) %	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %						_	
N= 3		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM			4					0	%	
LONG							4	100	%	LONG
UNDESTRABLE			4					0	%	

PR	OBABLE TIMING	CALENDAR YEARS		DEVELOPMENT TIME
N		72 73,5 75 76,5 76 N1 N4 N7 N0 N1 N1 M	DDE(S) MEAN	[FROM 1972]
4	EARLIEST	00	75 75.0	2 - 4 YRS.
4	MOST LIKELY	00 1.1 No	one 77.5	4 - 7 YRS
4	NOT LATER THAN	00 1.6 No	one 80.0	6 - 10 YRS.

ES	N 4 LOWER LIMIT				DEVELOPMENT COSTS
N		•	MODE(S)	MEAN	190% CONFIDENCE INTERVAL
4	LOWER LIMIT	.2	1 M	.80 M	.55 - 1.05
4	UPPER LIMIT	2.8	NoneM	3.13M	0 - 6.46

VIIB

Sub-Technology:

Submersible Positioning and Guidance Instrumentation

Objective: To advance the technologies necessary to accurately traverse preplanned tracks across the bottom and at various altitudes in the water column.

· Events VIIB01 - VIIB06 address this objective.

EVENT: VIIBO 1

A gyroscopic compass of the marine type which is completely self-contained in a 12 x 12 x 8 inch volume, weighs less than 30 pounds, and requires less than 40 w at 28 VDC. The instrument can be brought up to speed and aligned to true north in 30 minutes, after which it will hold its heading within \pm 10 for 30 days, and MTBF is at least 10,000 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE		F	INAL CONSE	NSUS %			,	
N= 7	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		16				Δ		86	%	ESSENTIAL
DESTRABLE	16		П	Δ				14	%	
UNNECESSARY			A					0	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %		_	
N= 7		GAIN	0	25 50 75 100			CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL		1		Δ	71	%	. 4
.7 SIMULATION	1			Δ	29	%	
.9 UNPROVEN			4		0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FINAL CONSENS	SUS %			•	
N* 7	LOSS	GAIN	0	25 50	75	100			CONCLUSION
SHORT RANGE GOAL		11			Δ		71	%	SHORT
MEDIUM	1			Δ			29	%	
LONG	10		4				0	%	
UNDESTRABLE			4				0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		4		DEVELOPMENT TIME
N	72	73,5 75 76,5 78 81 k4 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)
7	EARLIEST	00	.8	73	73,9	1 - 21/2 YRS
7	MOST LIKELY	00	2.1	74,75	76.1	2 1/2 - 5 1/2 YRS
7	NOT LATER THAN	00	3.4	75	78.7	4 - 9 YRS

N		0	MODE(S)	MEAN	(IN MILLONS) [90% CONFIDENCE INTERVAL]
7	LOWER LIMIT	.7	.2 M	.64 M	.11 - 1.16
7	UPPER LIMIT	2.6	.5 M	2.86M	.94 - 4.78

EVENT: VIIB02

An absolute velocity and path over the bottom indicator based on the doppler sonar method. In addition to digital readouts, the instrument provides an actual trace of the submersibles' path on a map of the bottom. The instrument operates accurately at heights up to 400 ft. over the bottom and is self-compensating for vehicle pitch and roll. The complete system weighs less than 100 pounds, occupies 3 cubic feet, and requires 200 w at 28 VDC. MTBF for the system is at least 400 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %				
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	7		Δ					10	%	
DESTRABLE		7					Δ	90	%	DESTRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N° 10		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100			CONCLUSION
. I PROTOTYPE		2	Δ	20	%	
.4 EXPERIMENTAL		2	Δ	20	%	
.7 SIMULATION	4		Δ	60	%	.7
.9 UNPROVEN	7 3	6.	A	0	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %				
N= 10	LOSS	GAIN	0	25	50	75	100		L	CONCLUSION
SHORT RANGE GOAL		2	Δ					10	%	
MEDIUM	4					Δ		80	%	MEDIUM
LONG		2	Δ					10	%	
UNDESTRABLE			Δ					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	0-0	.6	74	74.2	2 - 21/2 YRS
10 MOST LIKELY	0-0	1.1	76	76.0	3 1/2 - 4 1/2 YRS
10 NOT LATER THAN	00	1.8	78	78.2	5 - 7 1/2 YRS

ESTIMATED	COSTS TO	ACHIEVE
-----------	----------	---------

						DEVELOPMENT COSTS (IN MILLONS)
N		0	MODE	MEAN	(80% CONFIDENCE INTERVAL)	
10	LOWER LIMIT	.5	.3	M	.62 M	.3292
	UPPER LIMIT	2.6	1	M	2.38 M	.86 - 3.90

EVENT: VIJB03

A relative velocity indicator that displays and records the relative speed and direction of a submersible through the water, based on direct sensing of water movement. The instrument will show direction in 3 dimensions to $\pm 1.0^{\circ}$, and speed from 0 to 10 knots with an accuracy of ± 0.1 knot at the low end of the scale and an overall maximum error of 0.25 knots. The sensor is of rugged construction and resiliently mounted. Total system weight is less than 20 pounds; the display and recorder units are less than 8 x 12 x 15 inches, weigh under 15 pounds, and power consumption is less than 50 w. The system retains its calibration for 1,000 hours and MTBF is at least 5,000 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		1	
N= 10	LOSS	GAIN	P	25 50 75 100			CONCLUSION
ESSENTIAL	9		1 4) %	
DESTRABLE		18	П	<u> </u>	10	0 %	ESSENTIAL
UNNECESSARY	9		4		() %	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS	5 %		_	
N* 9	LOSS	GAIN	0	25 50	75 100			CONCLUSION
. I PROTOTYPE		1	ΙГ	Δ		11	%	
.4 EXPERIMENTAL	4	7		Δ		67	%	.4
.7 SIMULATION	8			Δ		22	%	
.9 UNPROVEN			Δ			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		F	INAL CONSE	NSUS %				
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL				Δ				22	%	
MEDIUM						Δ		78	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING CALENDAR YEARS DEVELOPMENT TIME (90% CONFIDENCE INTERVAL) **IFROM 1972**1 MODE(S) MEAN **EARLIEST** .5 74 73.9 | 11/2 - 2MOST LIKELY .9 76 75.9 3 1/2 - 4 1/2 YRS 0-0 NOT LATER THAN 3 78 78.3 5 1/2 - 7 YRS

ESTIMATED	COSTS TO	ACHIEVE
LOIIMAILU	00313 10	MAINTAL

<u> </u>	1				DEVELOPMENT COSTS (IN MILLONS)
N		0	MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]
9	LOWER LIMIT	.3	.3 M	.38 M	.2254
9	UPPER LIMIT	1.3	1 M	1.29 M	.46 - 2.13

EVENT: VIIBO4

An instrument ad described in VITB03 but based on electromagnetic induction.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %				
N= 9	LOSS	GAIN	0	25 50 75 10	00			CONCLUSION
ESSENTIAL			1			0	%	
DESTRABLE		9			1	100	%	DESIRABLE
UNNECESSARY	9	9	٨			0	%	

DEGREE OF RISK

N= 9		NTAGE GAIN	FINAL CONSENSUS % 50 75	100		ſ	CONCLUSION
. I PROTOTYPE	8		Δ		22	%	
.4 EXPERIMENTAL		12	Δ		22	%	
.7 SIMULATION	6	61	Δ		34	%	.7
.9 UNPROVEN		2	Δ		22	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	4.5				Δ			33	%	
MEDIUM		6			Δ			56	%	MEDIUM
LONG	1.5		Δ					11	%	
UNDESTRABLE			4					0	%	

PK	OBABLE TIMING	CALENCAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	77	73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	0-0	.9	75	74.1	11/2 - 21/2 YRS
9	MOST LIKELY	00	1.4	77	75.9	3 - 5 YRS
9	NOT LATER THAN	00	3.0	80	78.4	41/2-81/2 YRS

FSTIMA	TEN	COSTS	TO	ACH	FVF

	1		Lucor	ric v	145.431	(IN MILLONS)
N			MODE	(2)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.3	.1	M	.35 M	.1852
9	UPPER LIMIT	1.3	1	M	1.31 M	.47 - 2.15

EVENT: VIIBOS

A depth variation indicator which determines depth by pressure and shows variations as small as \pm 2 ft in depth after being set at the desired depth. The instrument is accurate down to 20,000 ft. and will maintain a fixed setting with a 20 - ft. (10 psi) range for 24 hours. It weighs 25 pounds, occupies 8 x 10 x 12 inches, requires 40 w. at 28 VDC, and MTBF is 4,000 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FII	NAL CONSE	NSUS %			•	
N* 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE			П				4	100	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N= 10		NTAGE GAIN		FINAL CONSENS	75 100		_[CONCLUSION
. I PROTOTYPE		13		Δ		40	%	
. 4 EXPERIMENTAL		5		$\dot{\Delta}$		60	%	. 4
.7 SIMULATION	18	, ,	4	• • • • • •		0	%	
.9 UNPROVEN			4			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI FI	NAL CONSE	VSUS %			_	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		20		2 7 7 7 8		Δ		80	%	SHORT
MEDIUM	10			Δ				20	%	
LONG	10		4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 N1 N4 N7 110 113 111	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	1.1	73	72.8	0 - 11/2 YRS
10 MOST LIKELY	00	1.9	74	74.2	1-31/2 YRS
10 NOT LATER THAN	00	3.0	75	75.8	2 - 5 1/2 YRS

N	0	MODE(S)	MEAN	DEVELOPMENT FOSTS [IK MILLONS] [90% CONFIDENCE INTERVAL]
10 LOWER LIMIT	.1	.1 M	.10 M	.0614
10 UPPER LIMIT	.2	.5 M	.41 M	.2953

EVENT: VIIB06

A rate of descent or ascent indicator which senses the change in pressure and provides a readout in feet per minute. The instrument has two scales: (1) a sensitive scale reading 0 to 30 feet per minute with a sensitivity of 0.5 ipm and (2) a coarse scale reading 0 to 200 fpm with a sensitivity of 5 fpm. The unit occupies a space of $8 \times 10 \times 14$ inches, weighs 25 pounds, and requires 40 w. at 28 VDC. MTBF is not less than 400 hours.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSEN	ISUS %				
N= 10	LOSS	GAIN	U	25	50	75	100			CONCLUSION
ESSENTIAL	7			Δ				10	%	
DESTRABLE	É	15					1	90	%	DESIRABLE
UNNECESSARY	8		Ć.					0	%	

DEGREE OF RISK

N= 10	PERCE	NTAGE		FINAL CONSENSUS %	1		1	CONCLUSION
.I PROTOTYPE	8	GAIN	ľ		ِ ا	0	%	CONCESSION
.4 EXPERIMENTAL		23	43	Λ	\dagger	90	%	. 4
.7 SIMULATION	7			Δ	\dagger	10	%	-
.9 UNPROVEN	8		4			0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FIN	IAL CONSENSUS	%		•	
N= 10	LOSS	GAIN	0 25	50	75 100			CONCLUSION
SHORT RANGE GOAL	16		Δ			20	%	
MEDIUM		14		Δ		60	%	MEDIUM
LONG		11	Δ			20	%	
UNDESTRABLE	9		Λ			0	%	

PROBABLE TIMING

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 77	73,5 75 76,5 78 81 84 87 90 14,	σ	MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	.8	73	73.3	1 - 2 YRS
10 MOST LIKELY	0-0	1.2	75	75.0	2 1/2 - 3 1/2 YRS
10 NOT LATER THAN	00	2.3	76,77	76.9	3 1/2 - 6 YRS

N	0	MODE(S)	MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
10 LOWER LIMIT	.1	.2 M	.16 M	
10 UPPER LIMIT	.3	.5 M	.53 M	.3670

VIIC

Sub-Technology: Site Selection Instruments

Objective: To develop and advance the technologies and methods involved to produce instrument systems that can survey in detail potential construction sites.

Events VIIC01 - VIIC12 address this objective.

EVENT: VIIC01

A sediment density and water content probe system that can measure the seidment density and water content of seafloor sediments to 10-ft sediment depths, and is capable of operating in 20,000 - ft ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %			
N° 9	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL	9		1		0	%	
DESTRABLE		9	П	4	10	0 %	DESTRABLE
UNNECESSARY			4.) %	

DEGREE OF RISK

N= 9		NTAGE		25 F	INAL CON	SENSUS %		100		ſ	CONCLUSION
. I PROTOTYPE			4					1	0	%	
.4 EXPERIMENTAL	1						Δ	П	89	%	. 4
.7 SIMULATION	- 1	1		1			+++	\Box	11	%	
.9 UNPROVEN			4					П	0	%	

DESIRED COURSE OF ACTION

		NTAGE		F	INAL CONS	ENSUS %			_	
N= 9	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	10		4					0	%	
MEDIUM		10					4	100	%	MEDIUM
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING

- R	UDABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		73 73,5 75 76,5 76 n1 n4 h7 100 1 105	σ	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	00	.4	73	73.3	1 - 11/2 YRS
9	MOST LIKELY	0-0	.8	75	75.3	3 - 4 YRS
9	NOT LATER THAN	0-0	1.1	78	77.7	5 - 6 1/2 YRS

N		•	MODE(S	MEAN	DEVILOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.1	.1 N	1.18 M	.1027
9	UPPER LIMIT	.5	.8 N	.63 M	.2999

EVENT: VIIC02

A core sampler that can take an undisturbed core sample (suitable for laboratory strength measurement) of seafloor sediment 100 ft. down into the sediment and is capable of operation in ocean depths of 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FII	NAL CONSE	NSUS %			•	
N= 10	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE							4	100	%	DESTRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

	PERCE	NTAGE		FINAL CONSENSUS %			
N= 10	LOSS	GAIN	0	25 50 75 100			CONCLUSION
. I PROTOTYPE			4		0	%	
.4 EXPERIMENTAL		6		Δ	70	%	. 4
.7 SIMULATION	6			Δ	30	76	
.9 UNPROVEN			A		0	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			-	
N= 10	LOSS	GAIN	0	25	50	75	100		1	CONCLUSION
SHORT RANGE GOAL		2		Δ				20	%	
MEDIUM	4				Δ			60	%	MEDIUM
LONG		2		Δ				20	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N	72 73,5 75 76,5 76 N1 N4 N7 190 196	o	MODE(S)	MEAN	[FROM 1972]
10 EARLIEST	00	.5	74	73.9	11/2-2 YRS
10 MOST LIKELY	0-0	1.3	76	76.3	3 1/2 - 5 YRS
10 NOT LATER THAN	0-0	1.8	78	78.3	5 1/2 - 8 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	,2	.1,.3 M	.28 M	.1739
10 UPPER LIMIT	.3	1 M	.85 M	.65 - 1.05

EVENT: VIICO3

An acoustic/seismic seafloor sub-bottom strata profiler that penetrates the sub-bottom to 1,000 ft while giving a resolution of 1 meter, towable to 20,000 - ft ocean depths.

SYSTEM CRITICALITY

N= 9	PERCE	NTAGE	4	FINAL CONSENSUS %	00		I	CONCLUSION
ESSENTIAL	9		4		1	0	7.	
DESTRABLE		9			1	100	7,	DESTRABLE
UNNECESSARY			A		Γ	0	%	

DEGREE OF FISK

N= 9		NTAGE		25	FINAL CON	SENSUS %	100		Γ	CONCLUSION
. PROTOTYPE	1033	UATIV	4	* * * * * * *				0	7.	
. 4 EXPERIMENTAL		1		Δ				11	%	
.7 SIMULATION		19		+ + + + +	* * * * * *		Δ	89	7,	.7
.9 UNPROVEN	20		4			-		0	%	

	PERCE	NTAGE	F	INAL CONSENSUS	%		_	
N= 9	LOSS	GAIN	0 25	50	75 10	00		CONCLUSION
SHORT RANGE GOAL		1	Δ			11	%	
MEDIUM		28			Δ	78	%	MEDIUM
LONG	29		Δ			11	%	
UNDESTRABLE			4			0	%	

PROBABLE TIMING		CALENDAR YEARS				DEVELOPMENT TIME
N		72 73,5 75 76,5 78 81 N4 N7 N0 101 101	σ	MODE(S)	MEAN	(FR9M 1972)
9	EARLIEST	00.	.5	74	74.1	2 - 2 1/2 YRS
9	MOST LIKELY	0-0	.8	76	76.3	4 - 5 YRS
9	NOT LATER THAN	00	1.5	78	78.8	6 - 7 1/2 YRS

ESTIMATED	C0212	TO	ACHIEVE

	1		I MODE (E)	AAFAN	[IN MILLONS]
IN			MODELZI	MEAN	190% CONFIDENCE INTERVAL)
9	LOWER LIMIT	.2	.5 M	.42 M	.2857
9	UPFER LIMIT	1.3	1 M	1.53M	.73 - 2.33

EVENT: VIIC04

A proton magnetometer with a range of 20,000 to 100,000 gamma and a resolution of \pm 0.01 gamma, towable and can make measurements in ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %		_	
N= 6	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL			1		0	%	
DESTRABLE		11	П	4	100	%	DESIRABLE
UNNECESSARY	11		4		0	%	100

DEGREE OF RISK

	PERCE	NTAGE		F	INAL CONSI	ENSUS %			_	
N= 6	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL	8			Δ				17	%	
.7 SIMULATION		8				Δ		83	%	.7
.9 UNPROVEN			A					0	%	

	PERCE	NTAGE		FINAL CONSEN	SUS %			_	
N= 6	LOSS	GAIN	0	25 50	75	100			CONCLUSION
SHORT RANGE GOAL			4				0	%	
MEDIUM		7		Δ			50	%	MEDIUM
LONG	7			Δ			50	%	
UNDESTRABLE			A				0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		2 73,5 75 76,5 78 61 84 87 90 186 1	σ	MODE(S)	MEAN	(FROM 1972)
5	EARLIEST	0-0	.5	75	74.6	2 - 3 YRS
5	MOST LIKELY	00	1.0	78	77.2	41/2 - 6 YRS
5	NOT LATER THAN	00	6.0	None	83.2	51/2 - 17 YRS

ES.	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
6	LOWER LIMIT	.1	.3 M	.29 M	.1939
6	UPPER LIMIT	.6	NoneM	.98 M	.49 - 1.48

EVEN: VIIC05 A cesium magnetometer/gradiometer...same as VIIC04

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	NAL CONSE	NSUS %				
N* 4	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE		8				Δ		75	%	DESTRABLE
UNNECESSARY	8			Δ				25	%	

DEGREE OF RISK

	PERCE	NIAGE		FII	NAL CONSE	NSUS %			_	
N* 4		GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL		5		Δ				25	%	
.7 SIMULATION	10				Δ			50	%	.7
.9 UNPROVEN		5		Δ				25	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FII	NAL CONSE	ISUS %				
N= 4	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM		10			Δ			50	%	MEDIUM
LONG	15			Δ				25	%	
UNDESTRABLE		5		Δ				25	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N		72 73,5 75 76,5 76 81 64 67 90 996	0	MODE(S)	MEAN	(FROM 1972)
2	EARLIEST	0	0	74	74.0	2 - 2 YRS.
2	MOST LIKELY	0	0	76	76.0	4 - 4 YRS
2	NOT LATER THAN	00	1.0	None	79.0	2 1/2 - 11 1/2 YRS

r	,		.		(D) MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
3	LOWER LIMIT	.1	Nonem	.22 M	.0439
3	UPPER L'MIT	.5	Nonem	.80 M	0 - 1.70

EVENT: VIICO6

A transmitting and/or recording seismometer, bottom implanted and recoverable at a 20,000-ft. ocean depth that continuously measures the accelerations, resonant frequencies magnitudes, and direction of a seismic disturbance occurring in the deep ocean.

SYSTEM CRITICALITY

	PERCE	NTAGE		F	NAL CONSE	NSUS %			-	
N° 6	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	4.5				• • • • • •	Δ		83	%	DESTRABLE
UNNECESSARY		4.5		Δ				17	%	

DEGREE OF RISK

	PERCE	NTAGE		FII	NAL CONSE	NSUS %			,	
N= 5	LOSS	GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4			100 000		0	%	
.4 EXPERIMENTAL	23				Δ			60	%	. 4
.7 SIMULATION		23			Δ			40	%	
.9 UNPROVEN			1					0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N* 5		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	20		4					0	%	
MEDIUM		20					Δ	100	1 %	MEDIUM
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PR	OBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N	72	78.5 75 76.5 78 NI 54 57 ND No.	σ	MODE(S)	MEAN	(FROM 1972)
5	EARLIEST	0-0	.4	74	74.2	2 - 2 1/2 YRS
5	MOST LIKELY	00	.8	76	76.6	4 - 5 1/2 YRS
5	NOT LATER THAN	00	1 8	78.80	79.8	6 - 9 1/2 YRS

N	1	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]			
5	LOWER LIMIT	.04	.2 M	.23 M	.1927
5	UPPER LIMIT	.3	1 M	.67 M	.4094

EVENT: VIICO7

A vane shear and cone penetrometer that can measure the bottom and sub-bottom seidment shear strength to a sediment depth of 10 ft, range 0.1 to 10 psi, resolution \pm 0.1 psi, and can function in ocean depths down to 20,000 ft.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %				
N= 5	LOSS	GAIN	Ŷ.	25	50	75	100			CONCLUSION
ESSENTIAL	14		4					0	%	2222000000
DESTRABLE	1 1	14			• • • • • • • • • • • • • • • • • • • •		4	100	96	DESTRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSEN	ISUS %			_	
N* 5		GAIN		50	75	100			CONCLUSION
. I PROTOTYPE		3		Δ			60	%	. 1
. 4 EXPERIMENTAL	3			Δ	• • • • •		40	%	
.7 SIMULATION			4				0	%	
.9 UNPROVEN			4	 			0	%	

N- 5		NTAGE	o .	FIN.	AL CONSEN	SUS %	100		Г	CONCLUSION
SHORT RANGE GOAL	20				Δ			40	%	
MEDIUM		40			Δ			60	%	MEDIUM
LONG	20		4					0	%	
UNDESTRABLE			A					0	%	

PR	OBABLE TIMING	(90		ALEN				AL)			41-2			DEVELOPM	NT TIME
N	72	73,5	75	76.5	76	61	84	67	90	36 L	0	MODE(S)	MEAN	(FROM	1972)
5	EARLIEST	0-0									.4	73	73.2	1 - 11	/2 YRS
5	MOST LIKELY		0-	0							.4	75	75.2	3 - 3 1	/2 YRS
5	NOT LATER THAN)	0					.8	77,78	77.8	5 - 61	2 YRS

		A CAMELLE
ESTIMATED	racte in	AI'MIL VE
E STIMM FED	LUSIS IU	ALINETE

					DEVELOPMENT COSTS [IM MILLONS]
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
5	LOWER LIMIT	.06	.1 M	.13 M	.0719
5	UPPER LIMIT	.3	NoneM	.64 M	.3494

EVENT: VIIC08

A vane shear and cone penetrometer that can measure the bottom and sub-bottom sediment shear strength to a sediment depth of 100 ft,...same as VIIC07.

SYSTEM CRITICALITY

N* 5		NTAGE GAIN		F11	NAL CONSE	NSUS %	100			CONCLUSION
ESSENTIAL			4					$\lceil 0 \rceil$	%	
DESTRABLE	23			Δ				20	%	
UNNECESSARY		23				Δ.		80	%	UNNECESSARY

DEGREE OF RISK

N= 4		NTAGE	FIN 25	NAL CONSENSUS %	100		Г	CONCLUSION
. I PROTOTYPE	1033	GAIN	A			0	%	OONOLUGIO
.4 EXPERIMENTAL			Δ		•••	25	%	
.7 SIMULATION		25		$\dot{\Delta}$		75	%	.7
.9 UNPROVEN	25		A			0	%	

	PERCE	NTAGE		FII	VAL CONSE	VSUS %			_	
N= 4		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM						Δ		75	%	MEDIUM
LONG		25		Δ				25	%	
UNDESTRABLE	25		4					0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	,	72 73,5 75 76,5 78 81 84 87 90 1 96	ø	MODE(S)	MEAN	(FROM 1972)
4	EARLIEST	00	.5	74.75	74.5	2 - 3 YRS
4	MOST LIKELY	00.	.8	76	76.75	4 - 5 1/2 YRS
4	NOT LATER THAN	00	1.5	None	79.75	6 - 9 1/2 YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N		0	MODE(S)	MEAN	190% CONFIDENCE INTERVAL
4	LOWER LIMIT	.07	None M	.29 M	.2037
4	UPPER LIMIT	.6	None M	1.23 M	.53 - 1.92

EVENT: VIICO9

A direct shear device that can measure...same as VIIC08.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %		_	
N° 4	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL			1		0	%	
DESTRABLE	17	٠	4		0	%	
UNNECESSARY		17		· · · · · · · · · · · · · · · · · · ·	10	0 %	UNNECESSARY

DEGREE OF RISK

N= 1	NTAGE	o .	F1 25	NAL CONSEI	NSUS %	100		Г	CONCLUSION
.I PROTOTYPE	 V. III	4					0	%	
.4 EXPERIMENTAL		4					0	%	
.7 SIMULATION		4				•	0	%	
.9 UNPROVEN						4	100	%	.9

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N* 1		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4					0	%	
MEDIUM			4					0	%	
LONG			4					0	%	
UNDESTRABLE							4	10	0 %	UNDESTR ABLE

PR	OBABLE TIMING		(90		ENDAR			AL)						DEVELOPMENT	TIME
N		72	73,5	75	76,5 78	11	84	67 9	0 46	····	0	MODE(S)	MEAN	(FROM 197	21
1	EARLIEST	4									0	None	74	2	YRS
1	MOST LIKELY	4									0	None	76	4	YRS
1	NOT LATER THAN	A					_				0	None	78	6	YRS

ESTIMATE	PTPAT A	TO AC	MIEVE
	u uusis		

		IH.			(IN MILLONS)
N			WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)
2 LOWER I	LIMIT	.3	Nonem	.65 M	0 - 2.21
2 UPPER	LIMIT	4.7	NoneM	5.3 M	0 - 26.28

EVENT: VIIC10

A self-contained recording current meter using an electromagnetic flux sensing technique without moving parts capable of threshold readings at 0.01 kts from 0 to 20,000-ft. ocean depths.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		r	
N= 8	LOSS	GAIN	O.	25 50 75 100			CONCLUSION
ESSENTIAL		12		Δ	50	%	ESSENTIAL
DESTRABLE	12			Δ	50	%	
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE] F11	NAL CONSE	ISUS %			_	
N= 11	LOSS	GAIN	0 25	50	75	100	_		CONCLUSION
. I PROTOTYPE		12	Δ				27	%	
.4 EXPERIMENTAL	1			Δ			46	%	. 4
.7 SIMULATION	11		Δ				27	%	
.9 UNPROVEN			4				0	%	

	PERCE	NTAGE		FINAL CO	NSENSUS %			_	
N= 11		GAIN		25 50	75	100			CONCLUSION
SHORT RANGE GOAL	3				Δ		64	%	SHORT
MEDIUM		2		Δ			27	%	ee dram deale
LONG		1	Δ				9	%	-
UNDESTRABLE			4				0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,3 78 B1 B4 B7 90 96	σ	MODE(S)	MEAN	(FROM 1972)
1 EARLIEST	00	1.5	75	74.3	11/2 - 3 YRS
11 MOST LIKELY	00	1.9	75	76.1	3 - 5 YRS
11 NOT LATER THAN	00	2.9	78	78.6	5 - 8 YRS

ESTIMATED	COSTS	TO	ACHIEVE

	MODE(S) MEAN	AAC A AI	DEVELOPMENT COSTS (IM MILLONS) [90% CONFIDENCE INTERVAL)	
		MIODEIST	MEAN	(SO A CONFIDENCE INTERVAL)
11 LOWER LIMIT	.2	.5 M	.26 M	.1636
11 UPPER LIMIT	.8	1 M	.85 M	

EVENT: VIIC11 A self-contained recording current meter using an acoustic doppler flow echo sensing technique...same as VIIC10.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %					•	
N= 10	LOSS	GAIN	0	25	50	75	100		i	CONCLUSION
ESSENTIAL		1	Δ					10	%	
DESTRABLE	2					Δ		80	%	DESIRABLE
UNNECESSARY		1	Δ					10	%	

DEGREE OF RISK

,	PERCE	NTAGE	FINAL CONSENSUS %				
N= 10	LOSS	GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	5		Δ		20	%	
. 4 EXPERIMENTAL		7	Δ		40	%	.4
.7 SIMULATION	5		Δ		20	%	
.9 UNPROVEN		3	Δ		20	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FI	NAL CONSE	VSUS %			_	
N= 8		GAIN		25	50	75	100			CONCLUSION
SHORT RANGE GOAL	14.5			Δ				12.	5 %	
MEDIUM		7.5				Δ		62.5	%	MEDIUM
LONG		25		Δ				25	%	
UNDESTRABLE	18		4					0	%	

PR	OBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	4			DEVELOPMENT TIME
N	14	2 73,5 75 76,5 78 81 84 87 90 98 9	•	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST	.00	1.0	75	74.3	11/2 - 3 YRS
8	MOST LIKELY	0-0	1.2	76	76.4	3 1/2 - 5 YRS
9	NOT LATER THAN	0-0	1.8	80	79.2	6 - 8 1/2 YRS

	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS
N			MODE(S	MEAN	(90% CONFIDENCE INTERVAL)
8	LOWER LIMIT		.5 A	1 .36 M	.2646
8	UPPER LIMIT	1.4	1 1	1.28 M	.32 - 2.24

EVENT: VIIC12

A self-contained recording current meter using a nuclear spin echo sensing technique capable of...same as VIIC 10.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %				
N= 7	LOSS	GAIN	0	25 50 75	100			CONCLUSION
ESSENTIAL			4			0	%	
DESTRABLE	13			Δ		43	%	
UNNECESSARY		13		Δ		57	%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FIN	AL CONSEN	ISUS %			r	
N* 6	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL			A					0	%	
.7 SIMULATION		8		Δ				33	%	
.9 UNPROVEN	8					Δ		67	%	.9

		NTAGE		FINAL CONSE	NSUS %	-71			
N= 6	LOSS	GAIN	0 25	50	75	100			CONCLUSION
SHORT RANGE GOAL			4				0	%	/
MEDIUM	12		Δ				17	%	
LONG		21		Δ			50	%	LONG
UNDESTRABLE	9			Δ			33	%	

PR	OBABLE TIMING	CALENDAR YEARS				DEVELOPMENT TIME
N		2 73,5 75 76,5 78 N1 N4 N7 N0 N1	0	MODE(S)	MEAN	(FROM 1972)
5	EARLIEST	0-0	.8	75.76	75.2	2 1/2 - 4 YRS
5	MOST LIKELY	00	1.5	77	77.8	41/2 - 7 YRS
5	NOT LATER THAN	00	2.6	None	81.4	7 - 12 YRS

ESTIMATED	COCTE IN	APUIEVE
	1.11313 111	AL DIE VE

N	0	MODE(S)	MEAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]	
6	LOWER LIMIT	.3	.3, 1 M	.56 M	.2983
6	UPPER LIMIT	3.4	1,5 M	3.75 M	.98 - 6.52

APPENDIX H

TECHNOLOGY AREA VIII. LOAD HANDLING AND TRANSPORTATION

SUB-TECHNOLOGY AREAS:

- A. Near Bottom Transport and Positioning
- B. Guidance
- C. Lifting and Lowering

VIIIA Sub-Technology: Near Bottom Transport and Positioning

Objective: To develop the technologies necessary to accurately position heavy loads on the bottom in accordance with the following minimum specifications:

0	Depth	8,000 ft
0	Load capacity	30 tons (submerged weight)
_	mich Sales A. and and 1914.	
0	Transport capability	600 ft
0	Alignment tolerance (translational)	0.5 ft
0	Alignment tolerance (rotational)	3 degrees
0	Attitude tolerance (vertical)	3 degrees
0	Minimum ocean current tolerance	2 knots

Events VIIIA01 - VIIIA06 address this objective.

EVENT: VITIA01

An underwater bottom resting crane, using an underwater winch and cables, capable of lifting a 30-ton load to a height of 100 ft off the seafloor, transporting it 600 ft across the bottom and positioning the load with the use of a guidance system in an exact predetermined position.

SYSTEM CRITICALITY

N- 25		NTAGE	,	FINAL CONSENSUS %	CONCLUSION		
N= 15	FOSS	GAIN	Ιĭ	25 30 75 	- - 100		CONCLUSION
ESSENTIAL			4			0 %	
DESTRABLE	21		П	Δ		20 %	
UNNECESSARY		21	П	Δ		80 %	UNNECESSARY

DEGREE OF RISK

N= 14		NTAGE GAIN	0	FINAL CONSEN	SUS %	100		Г	CONCLUSION
.1 PROTOTYPE		i	4				0	%	
. 4 EXPERIMENTAL			Δ				7	%	
.7 SIMULATION		5			Δ		71	%	.7
.9 UNPROVEN	5			Δ			22	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N* 15	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	6		4	0 %	
MEDIUM	6		Δ	7 %	
LONG		2	Δ	27 %	
UNDESTRABLE		10	Δ	66 %	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 76 81 64 67 40 96	o MO	DE(S) MEAN	(FROM 1972)
12 EARLIEST	0-0	1.4 8	78.75	$6 - 7\frac{1}{2}$ YRS
12 MOST LIKELY	0-0	2.1 8	82, 75	$9\frac{1}{2} - 12$ YRS
12 NOT LATER THAN	0-0	3.3 g	0 87.9	$14 - 17\frac{1}{2}$ YRS

	·	DEVELOPMENT COSTS [IN MILLONS]				
N ,	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
12LOWER LIMIT	11.6	10 M	17.7 M	11.6 - 23.7		
12 UPPER LIMIT	26.9	50 M	58.0 M	44.07 - 71.93		

EVENT: VIIIA02

An underwater, bottom resting, mechanical lifting system (e.g., fork lift device) capable of lifting ... same as VIIIA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	IAL CONSE	NSUS %			ı	
N= 15	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
ESSENTIAL			4					0	%	
DESTRABLE	22		Δ					7	%	
UNNECESSARY		22					Δ	93	%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FINA	AL CONSEN	ISUS %			-	
N* 14		GAIN	0	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL	7		4					Ü	%	-
.7 SIMULATION		3		Δ				36	%	
.9 UNPROVEN		4				Δ		64	%	. 9

N= 15		NTAGE GAIN	0 z	FINAL CONSEN	ISUS %	100		CONCLUSION
SHORT RANGE GOAL	6		4				0 '	
MEDIUM		1	Δ				7 '	k
LONG			Δ				13	K
UNDESTRABLE		5			Δ		80	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
12 EARLIEST	0-0	1.8	80	78.1	5 - 7 YRS
12 MOST LIKELY	oo	2.2	85	82.4	91 - 111 YRS
12 NOT LATER THAN	00	3.4	90	87.7	14 - 171 YRS.

ESTIMATED	COCTE TO	ACHIEVE

		,		(M MILLONS)
N Lesson Land Land Land Land Land Land Land Lan	•	MODE(S)	MEAN	[90% CONFIDENCE INTERVAL]
12 LOWER LIMIT	11.7	15 M	16.58M	10.49 - 22.67
12 UPPER LIMIT	27.8	50 M	53.08M	38.65 - 67.52

EVENT: VIIIA03

An underwater near-bottom propulsion lifting system (e.g., near-bottom sea helicopter) capable of lifting ... same as VIIIA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS	%			
N* 15	LOSS	GAIN	0	25 50	75 100			CONCLUSION
ESSENTIAL	5		Δ			7	%	
DESTRABLE		11		Δ		40	%	
UNNECESSARY	6			Δ		53	%	UNNECESSARY

DEGREE OF RISK

		NTAGE	_		AL CONSE	NSUS %			r	0010110101
N* 15	LOSS	GAIN	· · · · ·	25	50	75	100			CONCLUSION
. I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL		1	Δ					7	%	
.7 SIMULATION	4				$\dot{\Delta}$			40	%	
.9 UNPROVEN		3			Δ			53	%	.9

	PERCE	NTAGE	FINAL CONSENSUS %		· · · · · · · · · · · · · · · · · · ·
N* 15	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	12		4	0 %	
MEDIUM		8	Δ	20 %	
LONG		6	Δ	47 %	LONG
UNDESTRABLE	2		Δ	33 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	o MODE(S) MEAN	(FROM 1972)
13 EARLIEST	00	1.9 80 77.5	42 - 62 YRS
13 MOST LIKELY	00	2.8 80 81.3	8 - 10½ YRS
13 NOT LATER THAN	0-0	3.2 85 85.8	12 - 151 YRS.

	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13	LOWER LIMIT	8.2	5 M	14.00M	9.92 - 18.08
13	UPPER LIMIT	31.3	20/50M	50.69M	35.22 - 66.17

EVENT: VIIIA04

An underwater near-bottom buoyancy control lifting system, using propulsive power for movement (i.e., waterjets, propellers, etc), and chemical gas generation for buoyancy capable of lifting ... same as VIIIA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIN	AL CONSEN	ISUS %			_	
N* 15	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		1	1 F		Δ			60	%	ESSENTIAL
DESTRABLE	1	8		(7			40	%	
UNNECESSARY			Λ					0	%	

DEGREE OF RISK

N= 15		NTAGE GAIN	0	F1	NAL CONSE	NSUS %	100		Γ	CONCLUSION
. I PROTOTYPE			4					0	%	
. 4 EXPERIMENTAL		11					Δ	93	%	.4
.7 SIMULATION	11		Δ					7	%	
.9 UNPROVEN			4					0	%	

DESIRED COURSE OF ACTION

N= 15		NTAGE GAIN	0	F1	INAL CONSE	NSUS %	100		CONCLUSION
SHORT RANGE GOAL		14		T .		Δ	1	73 %	SHORT
MEDIUM	3			Δ				20 %	
LONG	11		Δ					7 %	
UNDESTRABLE			4					0 %	

PROBABLE TIMING			(90% CONFIDENCE INTERVAL)											DEVEL	OP1	WENT	TIME
N		72	73.5	75	76.5 78	81	64	67	90	1 96	0	MODE(S)	MEAN	[FI	ON	197	2]
15	EARLIEST			00							7	75	75.1	3	•	· 3 }	YRS.
15	MOST LIKELY				0-0	100					1.5	80	78.3	5	-	- 7	YRS
15	NOT LATER THAN	100				0-0)				2.3	80	81.6	8	-	- 10	YRS.

N			MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
15	LOWER LIMIT	4.7		7.97M	
15	UPPER LIMIT	14.1	25 M	28.00M	21.57 - 34.43

EVENT: VIIIA05

An underwater near-bottom buoyancy control lifting system, using propulsive power for movement (i.e., waterjets, propellers, etc), and a seawater ballast pumping system for buoyancy capable of lifting ... same as VIIIA01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			-	
N= 15	LOSS	GAIN	0 25	5 50	75	100		CONCLUSION
ESSENTIAL	12		A				0 %	
DESTRABLE	7	11			Δ .		87 %	DESIRABLE
UNNECESSARY		1	Δ.				13 %	

DEGREE OF RISK

N= 14		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		F	CONCLUSION
. I PROTOTYPE	9.5		Δ	14	%	
.4 EXPERIMENTAL		2	Δ	43	%	.4
.7 SIMULATION		12.5	Δ	36	%	
.9 UNPROVEN	5		Δ	7	%	

N= 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CONCLUSION
SHORT RANGE GOAL	1033	1	Δ	20	%	
MEDIUM		10	Δ	60	%	MEDIUM
LONG	12		Δ	13	%	
UNDESTRABLE		1	Δ	7	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	σ MODE(S) ME	AN [FROM 1972]
15 EARLIEST	00	2.8 75/76 76	$3\frac{1}{2} - 6$ YRS
15 MOST LIKELY	00	3.4 80 80	$6\frac{1}{2} - 9\frac{1}{2}$ YRS
15 NOT LATER THAN	0-0	4.3 82 84	1.0 10 - 14 YRS

ES.	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
15	LOWER LIMIT	5.2	5 M	8.73M	6.35 - 11.12
15	UPPER LIMIT	17.0	10 M	27.67M	19.93 - 35.40

EVENT: VIIIA06

An underwater near-bottom buoyancy control lifting system, using propulsive power for movement (i.e., waterjets, propellers, etc), and a non-seawater fluid and expandable bladder system for buoyancy capable of lifting --- same as VIIIA01.

SYSTEM CRITICALITY

		NTAGE		FINAL CONSENS	US %	•	
N= 15	LOSS	GAIN	0	25 50	75		CONCLUSION
ESSENTIAL			4			0 %	
DESTRABLE	J.	17		Δ		53 %	DESIRABLE
UNNECESSARY	N.	//		Δ		47 %	

DEGREE OF RISK

	PERCE	NTAGE	F	INAL CONSENS	SUS %			_	
N= 15	LOSS	GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE	18		Δ				13	%	
.4 EXPERIMENTAL	V.	7	Δ				13	%	
.7 SIMULATION		23			Δ		67	%	. 7
.9 UNPROVEN	12		Δ				7	%	

N= 14		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		1	Δ	7	%
MEDIUM	17		Δ	21	%
LONG		15	Δ	21	%
UNDESTRABLE		1	Δ	51	% UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 74 61 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	00	3.5	78	78.1	41 - 71 YRS.
15 MOST LIKELY	00	4.2	80	81.8	$8 - 11\frac{1}{2} \text{VRS}.$
15 NOT LATER THAN	00	4.9	85	86.2	12 - 16 TYRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS [IN MILLONS]
N	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
15 LOWER LIMIT	10.0	10 M	14.40M	9.86 - 18.94
15 UPPER LIMIT	28.2	50 M	46.33M	33.51 - 59.15

VIIIB Sub-Technology: <u>Guidance</u>

Objective: To develop the technology necessary to provide guidance to loads being lowered or raised at 8,000-ft ocean depths in order to accurately control the ascent and descent to a predetermined position, and a near bottom guidance system for positioning loads being moved across the seafloor to a predetermined position.

Events VIIIB01 - VIIIB10 address this objective.

EVENT: VIIIB01

A guidance system using taut anchored flexible guidelines for controlling the attitude of a 600-ton (submerged weight) load during ascent or descent from the surface down to 8,000-ft ocean depths. The guidance system is capable of exact positioning of the load to ± 1 ft in the desired attitude at a predetermined position on the seafloor.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			
N* 13	LOSS	GAIN	(0 25 50 75 10	0 _		CONCLUSION
ESSENTIAL		2		Δ		15 %	
DESTRABLE		5		Δ		38 %	
UNNECESSARY	7			Δ		47 %	UNNECESSARY

DEGREE OF RISK

N= 13		NTAGE	0 25	INAL CONSE	NSUS %	100		Γ	CONCLUSION
. I PROTOTYPE		1	Δ				8	%	
.4 EXPERIMENTAL		2	Δ				23	%	
.7 SIMULATION	14		Δ			• • • • • • • • • • • • • • • • • • • •	15	%	
.9 UNPROVEN		11		Δ.			54	%	.9

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 13		GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	1	2	Δ	15 %	
MEDIUM		2	Δ	15 %	
LONG	9	6	Δ	47 %	LONG
UNDESTRABLE	10		Δ	23 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 76 81 54 87 90 196	σ	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0 0	2.0	75	75.5	21 - 41 YRS
13 MOST LIKELY	00	2.2	78	78.9	6 - 8 YRS
13 NOT LATER THAN	0-0	2.7	80	82.1	9 - 11 YRS

ESTIMATED COSTS TO	ACHIEVE
--------------------	---------

				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	27.1	10 M	24.00M	10.59 - 37.41
13 UPPER LIMIT	132.9	10 M	93.85M	28.18 - 159.51

EVENT: VIIIB02 A guidance system using rigid members for controlling ... same as VIIIB01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %				
N= 13	LOSS	GAIN	0	25 50 75	100			CONCLUSION
ESSENTIAL		8		Δ		15	%	
DESTRABLE			4			0	%	
UNNECESSARY	8			Δ		85	%	UNNECESSARY

DEGREE OF RISK

N= 12		NTAGE GAIN	0	F1	NAL CONSE	NSUS %	100		Γ	CONCLUSION
. I PROTOTYPE		9		Δ				17	%	
.4 EXPERIMENTAL			4					0	%	
.7 SIMULATION	15			Δ				8	%	
.9 UNPROVEN		6				Δ		75	%	.9

	PERCE	NTAGE		FINAL CO	ONSENSUS	%				
N= 13		GAIN	0	25 5	0	75	100			CONCLUSION
SHORT RANGE GOAL		8	Δ				\prod	15	%	
MEDIUM	7		4					0	%	
LONG		8	Δ					15	%	
UNDESTRABLE	9				Δ			70	%	UNDESIRABLE

PRUDADLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME		
N 72	73.5 75 76.5 78 81 64 67 90 96	σ	MODE(S)	MEAN	(FROM 1972)	
11 EARLIEST	0 0	2.1	75	75.8	21 - 5 YRS.	
11 MOST LIKELY	00	2.6	80	79.5	6 - 9 YRS.	
11 NOT LATER THAN	00	3.5	85	83.4	91 - 131 YRS.	

ESTIMAT	 2007	A TA	404	
		> 111	AL:N	UP VP
		-		

N	0 M	ODE!S)	MEAN	DEVELOPMENT COSTS (IM MILLONS) [90% CONFIDENCE INTERVAL)
11 LOWER LIMIT	27.7 3	5 M	30.08	14.92 - 45.17
11 UPPER LIMIT	137.4 5	0/W	113.7M	

EVENT: VIIIB03

A guidance system tethered (slack hard wire) for positioning and attitude control of a propulsion system (e.g., thrusters, propellers) attached to the load, for controlling ... same as VIIIB01.

SYSTEM CRITICALITY

N= 13		NTAGE		FINAL CONSENSUS % 25 50 75 100			CONCLUSION
ESSENTIAL			4		0	%	
DESTRABLE		7		Δ	54	%	DESIRABLE
UNNECESSARY	7			Δ	46	%	

DEGREE OF RISK

N= 13		NTAGE GAIN		INAL CONSENSUS %	100		Г	CONCLUSION
. I PROTOTYPE			4			0	%	
.4 EXPERIMENTAL	7	Ö .	4			0	%	
.7 SIMULATION		13			Δ	85	%	.7
.9 UNPROVEN	8	y .	Δ			15	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSE	NSUS %		
N= 13		GAIN	0 25 50	75 100		CONCLUSION
SHORT RANGE GOAL			4		0 '	%
MEDIUM	12		Δ		38	76
LONG		24	Δ		38	LONG
UNDESTRABLE	12		Δ		24	6

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME			
N	72 73.5 75 76.5 78 81 64 67 90 96	0	MODE(S)	MEAN	(FROM 1972)			
13 EARLIEST	0-0	1.1	75	75.5	3 - 4 YRS			
13 MOST LIKELY	00	1.9	80	79.4	61 - 81 YRS			
13 NOT LATER THAN	0-0	2.2	85	83.6	101 - 121 YRS.			

	Post of the second			DEVELOPMENT COSTS (IM MILLONS)				
N			MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)			
13	LOWER LIMIT	12.5	10 M	14.77M	8.61 - 20.93			
13	UPPER LIMIT	26.2	16,25 M	39.23M	26.27 - 52.19			

EVENT: VIIIB04

A guidance system using acoustic transmission for positioning and remote control of an attitude control propulsion system (e.g., thrusters, propellers) attached to the load for controlling ... same as VIIIB01.

SYSTEM CRITICALITY

N= 13		NTAGE	4	FINAL CONSENSUS %		ſ	CONCLUSION
ESSENTIAL	12	UATIV		Δ	8	%	
DESTRABLE		12		Δ	92	%	DESIRABLE
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE		FIN	AL CONSEN	ISUS %			_	
N= 13	LOSS	GAIN	<u> </u>	25	50	75	100			CONCLUSION
. I PROTOTYPE	7		4					0	%	
. 4 EXPERIMENTAL		19				Δ		69	%	. 4
.7 SIMULATION	12			Δ				31	%	
.9 UNPROVEN			4					0	%	

DESIRED COURSE OF ACTION

N= 13		NTAGE GAIN		INAL CONSENSUS %	。 г	CONCLUSION
SHORT RANGE GOAL	7	O/(III	Δ		8 %	
MEDIUM				Δ	77 %	MEDIUM
LONG		7	Δ		15 %	
UNDESTRABLE			4		0 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 44 67 90 1 96	σ	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0-0	1.1	75	75.5	3 - 4 YRS
13 MOST LIKELY	0-0	1.7	80	78.5	51 - 71 YRS
13 NOT LATER THAN	0-0	2.2	82	82 1	9 - 11 YRS

	### DEVELOPMENT COSTS (IN MILLONS) ### MODE(S) MEAN (90% CONFIDENCE INTERVAL
N	
13 LOWER LIMIT	11.7 5 M 11.00M 5.24 - 16.76
13 UPPER LIMIT	22.720/25M29.23M 18.02 - 40.44

EVENT: VIIIBO5

A guidance system using an automated acoustic system (i.e., positioning by pinging a reference reflector or transponder) for direct control of a propulsion system, attached to the load, for controlling ... same as VIIIB01.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %			
N= 13	LOSS	GAIN	P	25 50 75 100			CONCLUSION
ESSENTIAL	7		4			0 %	
DESTRABLE		7	П	<u> </u>	10	00 %	DESIRABLE
UNNECESSARY			4			0 %	

DEGREE OF RISK

N* 13		NTAGE GAIN	0	FIN 25	AL CONSEN	ISUS %	100		Γ	CONCLUSION
.I PROTOTYPE	13		4					0	%	
.4 EXPERIMENTAL		29				Δ		68	%	. 4
.7 SIMULATION	9			Δ				31	%	
.9 UNPROVEN	7		1					0	%	

	PERCE	NTAGE		£1	NA_ CONSE	VSUS %			_	
N= 13	LOSS	GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	15		4					0	%	
MEDIUM		15					Δ	85	%	MEDIUM
LONG				Δ				15	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	O N	ODE(S) MEAN	(FROM 1972)
13 EARLIEST	00	1.5	75 75.8	$3 - 4\frac{1}{2}$ YRS
13 MOST LIKELY	0-0	2.3	78 78.8	52 - 8 YRS
13 NOT LATER THAN	0-0	2.9	82 82.5	9 - 12 YRS.

ES	TIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	or which a limit be at I	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13	LOWER LIMIT	4.1	10 M	8,92M	6.90 - 10.94
13	UPPER LIMIT	13.9	20 M	25.92M	19.05 - 32.79

EVENT: VIIIB06

A guidance system using a laser beam as a reference to exercise direct control of a propulsion system, attached to the load, for controlling ... same as VIIIB01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	NSUS %			
N= 13	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL			4				0 %	
DESTRABLE	12		Δ				15 %	
UNNECESSARY		12			Δ		85 %	UNNECESSARY

DEGREE OF RISK

N- 12		NTAGE		25	FINAL CONSEI	NSUS % 75	100		Г	CONCLUSION
. I PROTOTYPE	1033	OATIV	4					0	%	
. 4 EXPERIMENTAL	7		4					0	%	
.7 SIMULATION	13		Δ			· · · · · · · · · · · · · · · · · · ·		8	%	
.9 UNPROVEN		20					Δ	92	%	.9

DESIRED COURSE OF ACTION

N= 13		NTAGE GAIN	F1 0 25	INAL CONSENSUS 50 75	% 5 100			CONCLUSION
SHORT RANGE GOAL			4			0	%	
MEDIUM			Δ			8	%	
LONG	14		Δ			15	%	
UNDESTRABLE	11.55	20			Δ	77	%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 67 90 96	o MODE(S) MEAN	(FROM 1972)
10 EARLIEST	0-0	1.6 80 78.6	51 - 71 YRS
10 MOST LIKELY	00	2.1 85 82.5	91 - 111 YRS
10 NOT LATER THAN	0-0	2.8 85/90 86.8	13 - 161 YRS.

					DEVELOPMENT COSTS (IN MILLONS)
N		σ	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
10	LOWER LIMIT	6.4	10 M	13.20M	9.48 - 16.92
10	UPPER LIMIT	25.5	50 M	47.6QM	32.79 - 62.41

EVENT: VIIIB07

An underwater near-bottom guidance system, using rigid guide rails, in conjunction with a near-bottom lifting device capable of positioning a large object with an alignment tolerance of \pm 0.5 ft translational, \pm 1 degree rotational (vertical axis), and \pm 1 ft rotational (horizontal axis).

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %				
N= 13	LOSS	GAIN	0 25	50	75	100		CONCLUSION
ESSENTIAL	5		Δ				15 %	
DESTRABLE	13		4				0 %	
UNNECESSARY		18			Δ		85 %	UNNECESSARY

DEGREE OF RISK

N= 12		NTAGE GAIN	0	F1	NAL CONSEI	NSUS %	100		Γ	CONCLUSION
. I PROTOTYPE	7		4					0	%	
. 4 EXPERIMENTAL	6		Δ					8	%	
.7 SIMULATION		1	Δ					8	%	
.9 UNPROVEN		12				Δ		84	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS	5 %	
N= 13	LOSS	GAIN	0 25 50	75 100	CONCLUSION
SHORT RANGE GOAL	20		A	0	%
MEDIUM		3	Δ	23	%
LONG		2	Δ	15	%
UNDESTRABLE		15	Δ	62	% UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS			DEVELOPMENT TIME
N 7	2 73,5 75 76,5 78 81 64 87 90 96	ø MODE(S)	MEAN	(FROM 1972)
10 EARLIEST	00	2 78	77.2	$4 - 6\frac{1}{2} \text{ YRS}$
10 MOST LIKELY	00	2.5 80	80.4	7 - 10 YRS
10 NOT LATER THAN	0-0	3.2 85	84.3	101 - 14 YRS.

		· · · · · ·	,	DEVELOPMENT COSTS (IM MILLONS)
N	0	MODE(S)	S) MEAN	(90% CONFIDENCE INTERVAL)
10 LOWER LIMIT	13.4	2 M	13.80M	6.02 - 21.58
10 UPPER LIMIT	23.6	25 M	36.00M	22.30 - 49.70

EVENT: VIIIB08

An underwater near-bottom guidance system, using flexible guide wires in conjunction with a near-bottom lifting device capable of positioning ... same as VIIIB07.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %						
N= 13	LOSS	GAIN	0	25 50	75	ICO		CONCLUSION	
ESSENTIAL		2	Δ				15%		
DESTRABLE	19		Δ				8%		
UNNECESSARY		17			Δ		77%	UNNECESSARY	

DEGREE OF RISK

N= 12		NTAGE GAIN		NAL CONSENSUS %	100	Γ	CONCLUSION
. I PROTOTYPE			4			0%	
.4 EXPERIMENTAL	6		Δ			8%	
.7 SIMULATION	12		Δ]	7%	
.9 UNPROVEN		18		À	7	7 5%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %		
N= 13	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL		1	Δ	1 5%	
MEDIUM	13		Δ	8%	
LONG		8	Δ	1 5%	
UNDESTRABLE		4	Δ	62%	UNDESIRABLE

PR	PROBABLE TIMING CALENDAR YEARS (90% CONFIDENCE INTERVAL)							DEVELOPMENT TIME			
N		72	73,5	75 76.5	78 B	1 84 87 90 96	σ	MODE(S)	MEAN	(FRO	M 1972)
10	EARLIEST			0	- 0		2.2	76,78	77.0	3	- 61 YRS
10	MOST LIKELY				0	-0	3.5	80	81.4	7-	- 11 2 YRS
10	NOT LATER THAN					0 0	4.4	85	85.0	101	- 154YRS

	The State of the S				(IN MILLONS)		
N		0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)		
10	LOWER LIMIT	3.3	10 M	8.80M	6.90 - 10.70		
10	UPPER LIMIT	12.1	30 M	26.90M	19.91 - 33.89		

EVENT: VIIIB09

An underwater near-bottom guidance system, using a laser beam directional system, in conjunction with a near-bottom lifting device capable of positioning ... same as VIIIB07.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	_ [FINAL CONSE	NSUS %		i	
N* 13	LOSS	GAIN] ℃	25	50	75	100		CONCLUSION
ESSENTIAL	7		14					0 %	
DESTRABLE	12			Δ				8 %	
UNNECESSARY		19					Δ	92 %	UNNECESSARY

DEGREE OF RISK

		NTAGE		FINAL CONSEN	NSUS %		r	
N= 12	LOSS	GAIN	0 25	50	75			CONCLUSION
. I PROTOTYPE	7		A				0 %	
.4 EXPERIMENTAL			4	*******			0 %	
.7 SIMULATION	6		Δ				8 %	
.9 UNPROVEN		13				Δ	92%	.9

N= 13		NTAGE GAIN	FINAL CO	ONSENSUS %		CONCLUSION
SHORT RANGE GOAL			4		0%	
MEDIUM	29		A		0%	
LONG		1	Δ		8%	
UNDESTRABLE		28		Δ	92%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 64 67 90 96	o MODE(S)	MEAN (FROM 1972)
10 EARLIEST	0- 0	2.8 80	80.0 62 - 92 YRS
10 MOST LIKELY	0- 0	3.5 85	84.4 102 - 142 YRS
10 NOT LATER THAN	00	4.3 90	88.6 14 - 19 YRS.

FSTIM	ATED	COSTS	TO	ACHIEVE
	2 I L U	uuala		AUIIILTE

		DEVELOPMENT COSTS {IN IMILONS}
N = Long Edward Meiling Edward	# MODE(S) MEA	N [90% CONFIDENCE INTERVAL]
10 LOWER LIMIT	13.7 15 M 20.6	12.65 - 28.55
10 UPPER LIMIT	32.3 80 M 53.5	QM 34.80 - 72.20

EVENT: VIIIB10

An anti-rotation system for preventing a suspended load from spinning or turning while it is being lowered from a surface ship to the ocean floor in water depths to 8,000 ft. The device would also monitor and control the orientation of the suspended load.

SYSTEM CRITICALITY

	PERCE	NTAGE		F	INAL CONSE	NSUS %			_	
N= 13	LOSS	GAIN	O °	25	50	75	100		_1_	CONCLUSION
ESSENTIAL		18				Δ		85	%	ESSENTIAL
DESTRABLE	5			Δ				15	%	
UNNECESSARY	13		4					0	%	

DEGREE OF RISK

N- 13		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100	Γ	CONCLUSION
.I PROTOTYPE		9	Δ	38 %	
.4 EXPERIMENTAL		1	Δ	8 %	
.7 SIMULATION	3		Δ	54 %	.7
.9 UNPROVEN	7		Δ	0 %	

	PERCENTAGE FINAL CONSENSUS %						_	
N= 12	LOSS	GAIN	C 25	50 75	100			CONCLUSION
SHORT RANGE GOAL		17			Δ	84	%	SHORT
MEDIUM	14		Δ			8	%	
LONG	3		Δ			8	%	
UNDESTRABLE			4			()	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	79,5 75 76,5 78 81 84 87 90 96	U	MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	00	1.6	74	74.2	$1\frac{1}{2} - 3$ YRS.
13 MOST LIKELY	0- 0	1.9	75	76.6	3 - 5 YRS
13 NOT LATER THAN	00	3.2	76	79.5	6 - 9 YRS.

ESTIMATED COSTS TO ACHIEVE	52					
N .		MODE(S)	MEAN	(IN MILLONS) [80% CONFIDENCE INTERVAL)		
13 LOWER LIMIT	2.5	1,2 M	2.68M	1.43 - 3.93		
13 UPPER LIMIT	12.2	10 M	10.14M	4.12 - 16.15		

VIIIC Sub-Technology:

Lifting and Lowering

Objective: To develop the technology necessary to design systems (multiple or single) that can lower and lift loads of 300 to 600 tons (submerged weight) to 12,000-ft ocean depths with a lifting/lowering rate of 4 ft/second and a maximum vertical oscillation of 1.0 in a Sea State 4 condition.

Events VIIIC01 - VIIIC07 address this objective.

EVENT: VIIIC01

A surface platform winch system, using single or multiple lifting lines as required, and having vertical motion compensation, capable of lifting and lowering loads of 600 tons down to 8,000-ft ocean depths. The system is capable of a lifting rate of 4 ft per second while allowing only a maximum vertical oscillation of 1.0 ft in a Sea State 4 condition.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 15	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		6	Δ	47	%	ESSENTIAL
DESTRABLE		16	Δ	40	%	
UNNECESSARY	22		Γ	13	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %					
N* 15		GAIN	0 25	50	75 100			CONCLUSION
.I PROTOTYPE	5.5		Δ			7	%	
.4 EXPERIMENTAL		22		Δ		53	%	.4
.7 SIMULATION	5.5		Δ			7	%	
.9 UNPROVEN	11			Δ		33	%	

N= 15		NTAGE GAIN	FINAL CONSENSUS %	100			CONCLUSION
SHORT RANGE GOAL	5		Δ	1 [33	%	
MEDIUM		23	Δ		54	%	MEDIUM
LONG			4		0	%	
UNDESTRABLE	18		Δ		13	%	

PROBABLE TIMING	DEVELOPMENT TIME			
N	72 73,5 75 76,5 78 81 64 67 90 96	σ MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	00	1.5 75	75.9	3 - 41 YRS
13 MOST LIKELY	0-0	2.0 80	79.6	61 - 81 YRS
13 NOT LATER THAN	0-0	3.0 85	83.5	10 - 13 YRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	13.8	20 M	2.31M	16.25 - 29.90
13 UPPER LIMIT	36.3	50 M	73.85M	55.92 - 91.76

EVENT: VIIIC02

A water sheel type winch (hydrodynamic winch) system, using single or multiple lifting lines as required and having vertical motion compensation, capable of lifting ... same as VIIIC01.

SYSTEM CRITICALITY

	PERCE	NTAGE]	i i	FINAL CONSI	ENSUS %			
N= 13	LOSS	GAIN] ို	25	50	75	100		CONCLUSION
ESSENTIAL	6		14					0 %	
DESTRABLE	15		П	Δ				8 %	
UNNECESSARY		21					Δ	92%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FINA	L CONSENS	US %			The state of the s
N= 12		GAIN	0	25	50	75	100		CONCLUSION
. I PROTOTYPE	6		4					0 %	
.4 EXPERIMENTAL	13		4					0 %	
.7 SIMULATION		2		Δ				33 %	
.9 UNPROVEN		17				7		67%	.9

N* 13		NTAGE	FINAL CONSE	VSUS % 100		CONCLUSION
SHORT RANGE GOAL					0%	
MEDIUM	7		A		0%	
LONG	9	1201117-0	Δ		31%	
UNDESTRABLE		16		Δ	69%	UNDESIRABLE

PK	OBABLE TIMING		(909	CALENDAR S CONFIDENCE	E INTERVAL)				DEVELOPMENT TIME
N	Д	72	73.5	75 76.5 78	81 84 87 90 96	Ø	MODE(S)	MEAN	(FROM 1972)
9	EARLIEST			0-	0	3.9	78	80.7	6 - 11 YRS.
9	MOST LIKELY				00	4.8	82	84.4	91 - 151 YRS.
9	NOT LATER THAN				00	5.2	85/90	89.1	14 - 20 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

					(IN MILLONS)
N		•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
9	LOWER LIMIT	26.5	50 M	38.78M	22.36 - 55.19
9	UPPER LIMIT	55.1	150 M	107.22 M	73.04 - 141.40

EVENT: VIIIC03

A surface winch system, using single or multiple lifting lines as required, and mounted on a minimum response surface platform (e.g., mass traps), capable of lifting ... same as VIIIC01.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		
Nº 15	LOSS	GAIN] 0	25 50 73 100		CONCLUSION
ESSENTIAL	5		П	Δ	13 %	
DESTRABLE		14	П	Δ	67 %	DESIRABLE
UNNECESSARY	9			Δ	20 %	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 15		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE			A		0	%	
.4 EXPERIMENTAL		2.5	Δ		40	%	.4
.7 SIMULATION		2.5	Δ		40	%	.7
.9 UNPROVEN	5		Δ		20	%	

N* 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL	6		4	0 %	
MEDIUM		17	Δ	73 %	MEDIUM
LONG	6		Δ	7 %	
UNDESTRABLE	5		Δ	20 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	σ MODE(S)	MEAN	(FROM 1972)
13 EARLIEST	0-0	1.7 75	76.8	$4 - 5\frac{1}{2}$ YRS.
13 MOST LIKELY	0- 0	2.3 80	80.2	7 - 91 YRS
13 NOT LATER THAN	0-0	3.0 82/85	84.0	101 - 131 YRS.

ESTIMATED COSTS TO ACHIEVE	ESTIMATED	COSTS T	O ACHIEVE
----------------------------	------------------	---------	-----------

				(IN WILLONS)
N	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	12.7	20 M	22.08M	15.79 - 28.36
13 UPPER LIMIT	27.5	50/100	65.77M	52.17 - 79.37

EVENT: VIIIC04

A buoyancy controlled lifting system using controlled (remote or tethered) seawater pumping from a rigid pontoon, capable of lifting or lowering 300-ton loads down to 800-ft ocean depths. The system is capable of lifting at a controlled rate.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		
N* 15	LOSS	GAIN	0 25 50 75 100		CONCLUSION
ESSENTIAL	15		Δ	20%	
DESTRABLE		14	Δ	67 %	DESIRABLE
UNNECESSARY		1	Δ	13 %	

DEGREE OF RISK

N= 14	PERCE	NTAGE GAIN	FINAL CONSENSUS	% 5 100	Г	CONCLUSION
.I PROTOTYPE	5.5	OATIV	Δ	<u> </u>	7 %	
.4 EXPERIMENTAL	16.5		Δ		21%	
.7 SIMULATION		22	Δ		72 %	.7
.9 UNPROVEN			 		0%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSUS %	_	
N• 15	LOSS	GAIN	0 25 50 75 100		CONCLUSION
SHORT RANGE GOAL	4.5		Δ	33%	
MEDIUM		16.5	Δ	54%	MEDIUM
LONG	12.5		A	0 %	
UNDESTRABLE		1	Δ	13 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 99	Ø	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	0- 0	1.1	75	75.2	2 - 3 YRS
15 MOST LIKELY	0-0	1.5	80	79.0	61 - 71 YRS
15 NOT LATER THAN	0-0	2.4	83/85	82.6	9 11- YRS.

	a Money	S) MEAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
10	Model	31 MEAN	(90% COMMINENCE MICKANE)
15 LOY'SR LIMIT	6.9 5	M9.43 M	5.37 - 13.49
15 UPPER LIMIT	17.110/20	M20.87M	13.07 - 28.66

EVENT: VIIIC05

A buoyancy controlled lifting system using controlled gas generation from liquid nitrogen dewars for dewatering rigid pontoons, capable of lifting and lowering 300 ton loads down to 2,500-ft ocean depths. The system is capable of ... same as VIIIC04.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %		r	
N* 15	LOSS	GAIN	Q.	25 50 75 100			CONCLUSION
ESSENTIAL	12		4		0	%	
DESTRABLE		10	П	Δ	80	%	DESIRABLE
UNNECESSARY		2		Δ	20	%	

DEGREE OF RISK

N		NTAGE	FINAL CONSENSUS %		Г	CONCLUSION
N= 14		GAIN	25 50 75 10	Ĩ	<i>a</i>	CONCLUSION
.1 PROTOTYPE .4 EXPERIMENTAL	12	,	- 	36	%	
.7 SIMULATION		14	Δ	43	%	.7
.9 UNPROVEN	3		Δ	21	%	

DESIRED COURSE OF ACTION

N= 15		GAIN	FINAL CONSENSUS % 0 25 50 75 100	Г	CONCLUSION
SHORT RANGE GOAL	8	OATH	Δ	27 %	
MEDIUM		9	Δ	33 %	MEDIUM
LONG	2		Δ	27 %	
UNDESTRABLE		1	Δ	13 %	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 57 90 96	o MODE(S) MEA	N (FROM 1972)
14 EARLIEST	00	2.6 75 76.	4 3 - 5 YRS
14 MOST LIKELY	00	2.9 80 80.	4 7 - 10 YRS
14 NOT LATER THAN	00	3.5 85 84.	4 101 - 14 YRS

N ,	σ			DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]		
14 LOWER LIMIT		10 M				
14 UPPER LIMIT	9.7	30 M	26.57M	22.00 - 31.18		

EVENT: VIIICO6

A buoyancy controlled lifting system using controlled gas generation by Hydrazine decomposition (catalitic reactor) for dewatering rigid pontoons, capable of lifting or lowering 300-ton loads down to 12,000-ft ocean depths. The system is capable of ... same as VIIIC04.

SYSTEM CRITICALITY

	PERCE	NTAGE		F	INAL CONSE	NSUS %		_	
N= 15	LOSS	GAIN	0	25	50	75	100		CONCLUSION
ESSENTIAL	6		4					0 %	
DESTRABLE		11				Δ		87 %	DESIRABLE
UNNECESSARY	5		Δ			 	•	13 %	

DEGREE OF RISK

·····	PERCE	NTAGE	ı	FINAL CONSEN	SUS %			
N= 15	LOSS	GAIN	0 25	50	75	100		CONCLUSION
. I PROTOTYPE	6		4				0 %	
.4 EXPERIMENTAL		7.5	Δ				20%	
.7 SIMULATION	2				Δ		67 %	.7
.9 UNPROVEN		.5	Δ				13 %	

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	AL CONSEN	SUS %		-	
Nº 15	LOSS	GAIN	0	25	50	75	100		CONCLUSION
SHORT RANGE GOAL	12		Δ					7 %	
MEDIUM		9			Δ			53 %	MEDIUM
LONG		2		Δ				27%	
UNDESTRABLE		1	Δ					13%	

PR	DBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72	73.5 75 76.5 78 81 84 87 90 3 96	Ø	MODE(S)	MEAN	(FROM 1972)
14	EARLIEST	00	2.8	75	77.2	4 - 61 YRS.
14	MOST LIKELY	0-0	3.2	80	81.4	8 - 11 YRS.
14	NOT LATER THAN	00	4.5	85	85.8	111 - 16 YRS.

	[MODE(S)] M	DEVELOPMENT CUSTS [IN MILLONS] (SO% CONFIDENCE INTERVAL)
N I I I I I I I I I I I I I I I I I I I	o modelat n	JEVIA [[90% COMINGENCE INTERANT]
14 LOWER LIMIT	5.0 10 M12.	36 M 10.00 - 14.73
14 UPPER LIMIT	11.2 30 MB1	.43M 26.10 - 36.75

EVENT: VIIIC07

A buoyancy controlled lifting system using controlled gas generation for inflation of inflatable pontoons (gas bags) capable of lifting or lowering 10-ton loads down to 8,000-ft ocean depths. The system is capable of ... same as VIIIC04.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %		
N° 15	LOSS	GAIN	1	25 50 75 10	00	CONCLUSION
ESSENTIAL		26		Δ	739	ESSENTIAL
DESTRABLE	8			Δ	279	6
UNNECESSARY	18		4		07	6

DEGREE OF RISK

N= 15		NTAGE GAIN	FIN 25	NAL CONSENSUS %	100		CONCLUSION
. I PROTOTYPE	1000	.5	Δ			13%	
. 4 EXPERIMENTAL		18		Δ		74%	.4
.7 SIMULATION	6		Δ			13%	
.9 UNPROVEN	12.5		4			0%	

DESIRED COURSE OF ACTION

. 15		NTAGE	FINAL CONSENSUS		22421424
N= 15	LOSS	GAIN	0 25 50 75	100	CONCLUSION
SHORT RANGE GOAL		26	Δ	67%	SHORT
MEDIUM	8		Δ	33%	
LONG			A	0	
UNDESTRABLE	18		A	0%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 96	o MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	00	2 75	75.6	$2\frac{1}{2} - 4\frac{1}{2}$ YRS
15 MOST LIKELY	0-0	2.7 76	78.3	5 - 71 YRS
15 NOT LATER THAN	0-0	4.0 78/80	81.9	8 - 11 yrs

N	•	MODE(S)	MEAN	(IN MILLONS) (90% CONFIDENCE INTERVAL)		
15 LOWER LIMIT	3.4	-		4.32 - 7.41		
15 UPPER LIMIT	6.8	15 M	14.40M	11.33 - 17.47		

APPENDIX I TECHNOLOGY AREA IX. LIFE SUPPORT AND RELATED SYSTEMS

SUB-TECHNOLOGY AREA:

A. Life Support and Related Systems

IXA Sub-Technology: <u>Life Support and Related Systems</u>

Events IXA01 - IXA18 address this objective.

EVENT:

IXA01 An oxygen supply system for manned deep submergence vehicles using compressed gaseous oxygen providing the requirements of 3 to 10 men for periods of 1 to 30 days. When fully charged the system weighs less than 30 pounds for each 10 lbs of stored oxygen and occupies less than 1.5 cubic feet for each 10 pounds of stored oxygen. Routine maintenance interval is no less than every 30 days and overhaul interval is no less than one year.

SYSTEM CRITICALITY

N= 18		NTAGE GAIN		FINAL CONSENSUS %	0		CONCLUSION
ESSENTIAL	8.5			Δ		44.5%	
DESTRABLE		8.5		Δ		55.5%	DESIRABLE
UNNECESSARY			4			0 %	

DEGREE OF RISK

N= 18		NTAGE GAIN		00		Ė	CONCLUSION
.1 PROTOTYPE	1	4	Δ	4	5	%	.1
.4 EXPERIMENTAL	2		Δ	2	2	%	
.7 SIMULATION	2		Δ	3	3	%	
.9 UNPROVEN			4		0	%	

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 18		GAIN	Ŷ.	25	50	75	100			CONCLUSION
SHORT RANGE GOAL		14				Δ		83	%	SHORT
MEDIUM	14			Δ				17	%	
LONG			4					0	%	
UNDESTRABLE			4					0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 64 67 90 96 0	MODE(S) MEAN	(FROM 1972)
18 EARLIEST	0-0	73 73.2	$1-1\frac{1}{2}$ YRS
17 MOST LIKELY	0-0 .8	75 74.9	2 - 3 YRS
17 NOT LATER THAN	8.	76 76.5	4 - 5 YRS.

ESTIMATED CO	ISTS TO	ACHIEVE
--------------	---------	---------

			-91.4	DEVELOPMENT COSTS (IM MILLONS)
N .	0	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
17 LOWER LIMIT	.2	.2 M	.27 M	.1837
17 UPPER LIMIT	.4	1 M	.80 M	.60 - 1.00

EVENT:

IXA02 A system as in IXA01 using cryogenic liquid oxygen. When fully charged the system occupies less than 0.7 cubic feet for each 10 pounds of stored oxygen. The normal boil-off rate is less than 10% in 30 days. The system can be completely shut off for periods up to 10 hours without hazard. Routine maintenance is required on a 30-day basis and overhaul interval is required annually.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			
N* 18	LOSS	GAIN	o .	25 50 75 100			CONCLUSION
ESSENTIAL	6		4		0	%	
DESTRABLE		6		Δ	78	%	DESIRABLE
UNNECESSARY				Δ	22	%	

DEGREE OF RISK

	PERCE	ENTAGE	FINAL CONSENSUS %		-	
N= 18		GAIN	0 25 50 75	100		CONCLUSION
. I PROTOTYPE	12		Δ		17 %	
. 4 EXPERIMENTAL		4	Δ		33 %	
.7 SIMULATION		8.5	Δ		44.5%	.7
.9 UNPROVEN	.5		Δ		5.5%	

N- 18		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CGXCLUSION
SHORT RANGE GOAL		1.5	Δ	39	%	SHORT
MEDIUM		1.5	Δ	39	%	MEDIUM
LONG		3	Δ	22	%	
UNDESTRABLE	6		A	0	%	

PROBABLE TIMING		(904				YEA E INT		AL.)					DEVEL	.0P1	MENT	TIME
N	72	73,5	75	76.5	78	81	84	57	90	93 99	0	MODE(S)	MEAN	(FI	ROM	197	2)
18 EARLIEST		0-	-0			73					1.7	74	74.3	1	-	3	YR6
17 MOST LIKELY			0	0		۳.					2.0	75/76	76.4	3-	-	5	YRS
15 NOT LATER THAN	1 7			C)	0					2.4	76/78	77.9		-	7	YRS.

ESTIMATED	COSTS	TO	ACHIEVE

N		Luonere	445.4.4	DEVELOPMENT COSTS (IN MILLONS)		
N sand a series and a series of		WODE(2)	MEAN	190% CONFIGENCE INTERVAL		
17 LOWER LIMIT	.4	.1 M	.52 M	.3172		
16 UPPER LIMIT	.9	1 M	1.44M	1.02 - 1.85		

EVENT-

IXA03

A system as in IXA01, using a chemical reaction oxygen generation method. The fully charged system weighs less than 20 pounds per 10 lbs of stored oxygen and occupies less than 0.5 cubic feet for each 10 pounds of stored oxygen and can be stopped and restarted as often as required. Routine maintenance is required on a 30-day basis and overhaul interval is no less than one year.

SYSTEM CRITICALITY

	PERCE	NTAGE]	FINAL CONSENSUS %			_	
N- 17	LOSS	GAIN		25 50 75 10	0 _			CONCLUSION
ESSENTIAL		6		Δ	Γ	6	%	
DESTRABLE			П	Δ	T	94	%	DESIRABLE
UNNECESSARY	6		4			0	%	

DEGREE OF RISK

N- 16		NTAGE GAIN	FINAL CO	ONSENSUS %	100		Γ	CONCLUSION
.1 PROTOTYPE	.5		Δ			12.5	76	
.4 EXPERIMENTAL		9		Δ		56	%	.4
.7 SIMULATION	1		Δ			19	%	
.9 UNPROVEN	7.5		Δ			12.5	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FIN	IAL CONSENSUS %			_	
N= 17	LOSS	GAIN	0 25	50 75	100			CONCLUSION
SHORT RANGE GOAL	1		Δ		\Box	12	%	
MEDIUM		3		Δ		70	%	MEDIUM
LONG	2		Δ			18	%	
UNDESTRABLE			4			0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 67 90 96	σ MODE(S) MEAN	(FROM 1972)
17 EARLIEST	0-0	1.1 73/75 74.1	$1\frac{1}{2} - 2\frac{1}{2}$ YRS
16 MOST LIKELY	00	1.1 76 75.9	3 1 - 41 YRS
15 NOT LATER THAN	00	1.4 77/80 78.1	5 - 7 YRS.

N	•	MODE(S)	MEAN	DEVELOPMENT COSTS (IM MILLONS) [90% CONFIDENCE INTERVAL)
15 LOWER LIMIT	.7	1 M	.84 M	
15 UPPER LIMIT	1.3	1 M	2.15 M	1.53 - 2.78

EVENT:

MA04 A system as above IXA01, including a carbon dioxide removal system which utilizes a combined reaction method for both functions. The fully charged system weighs less than 30 pounds per 10 lbs of stored oxygen and occupies less than 1.5 cubic feet for each 10 lbs of stored oxygen. The system can be stopped and started as often as required. Routine maintenance is required on a 30-day basis and overhual interval is no less than one year

SYSTEM CRITICALITY

	PERCE	NTAGE		F	INAL CONSE	VSUS %			_	
N= 17	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL			Δ	1				12	%	
DESTRABLE		6				Δ		82	%	DESIRABLE
UNNECESSARY	6		Δ					6	%	

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSE	NSUS %				
N= 17		GAIN		25	50	75	100			CONCLUSION
. I PROTOTYPE	6		4					0	%	
.4 EXPERIMENTAL		7				Δ		82	%	.4
.7 SIMULATION			Δ					6	%	
.9 UNPROVEN	1		1 6	7				12	%	

DESIRED COURSE OF ACTION

N- 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CONCLUSION
SHORT RANGE GOAL			Δ	20	%	
MEDIUM	0	8	Δ	27	%	
LONG		3	Δ	53	%	LONG
UNDESTRABLE			4	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 87 90 98 99	σ MODE(S)	MEAN	(FROM 1972)
17 EARLIEST	0-0	1.4 74	74.6	2 - 3 YRS.
15 MOST LIKELY	0-0	1.5 75/77	76.4	31 - 5 YRS.
15 NOT LATER THAN	00	1.8 78	79.2	61 - 8 YRS.

		MODERCI	AFAN	DEVELOPMENT COSTS [IM MILLONS] [90% CONFIDENCE INTERVAL]
W	to the second of markets and the second	MICUEISI	MEAN	(90% COMPANIE MIENANE)
15 LOWER LIMIT	1.4	2 M	1.53 M	.86 - 2.20
15 UPPER LIMIT	3.6	3 M	3.60 M	2.01 - 5.27

EVENT:

DXA05 A carbon dioxide removal system for manned deep submergence vehicles using a chemical absorbent similar to lithium hydroxide (Li OH) for crews of 3 to 10 men for periods of 1 to 30 days. The system will remove 1.0 pounds of CO2 for each pound of absorbent, for an atmosphere containing 0.7% CO2. The system capacity requirement is 2.0 pounds per hour; noise level requirement is less than 50 db (above 0.0002 microbars); power consumption is less than 100 w; the mechanical hardware weighs less than 25lbs and occupies less than 3 cubic ft. The density of the absorbent

material is greater than 20 pounds per cubic foot.

SYSTEM CRITICALITY

	PERCE		FINAL CONSENSUS %		_	
N= 18	LOSS	GAIN	0 25 50 75 100			CONCLUSION
ESSENTIAL		10	Δ	55	%	ESSENTIAL
DESTRABLE	5		Δ	28	%	
UNNECESSARY	5			17	7.	

DEGREE OF RISK

	PERCE	NTAGE	FINAL CONSENSUS %			_	
N= 18		GAIN	0 25 50 75	100			CONCLUSION
. I PROTOTYPE	1	. ,	Δ	4.0	28	7.	
.4 EXPERIMENTAL		2	Δ		61	%	.4
.7 SIMULATION	1		Δ		11	%	
.9 UNPROVEN			A		0	%	

	PERCE	NTAGE		FINAL CONSENSUS %					
N- 18		GAIN	9	25	50 75	100			CONCLUSION
SHORT RANGE GOAL		8			Δ		61	%	SHORT
MEDIUM	13			Δ			22	%	
LONG			4				0	%	
UNDESTRABLE		5		Δ			17	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)			DEVELOPMENT TIME		
N	72 73,5 75 76,5 78 81 84 87 90 98 96	0	MODE(S)	MEAN	(FROM 1972)	
17 EARLIEST	0-0	.7	73	73.1	1 - 1 1 YRS	
16 MOST LIKELY	0-0	.7	75	74.9	21 - 3 YRS	
14 NOT LATER THAN	0-0	1.3	76	76.7	4 - 5 YRS	

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (W MILLONS)		
N	•	MODE(S) MEAN	MEAN	(90% CONFIDENCE INTERVAL)		
16 LOWER LIMIT	.3	.5 M	.36 M	.2547		
16 UPPER LIMIT	.7	1 M	1.10 M	.78 - 1.42		

EVENT:

IXA06

A system as in IXA05, using the "LIMEA" system, as in nuclear submarines. The complete system weighs less than 400 pounds, occupies less than 20 cubic feet, and requires less than 2 kw for operation. When operating the noise level of the system is below 50 db. The system has a capacity of 2 pounds of $\rm CO_2$ per hour from an atmosphere containing 0.7% $\rm CO_2$. A pump requirement is included for outboard disposal of $\rm CO_2$ down to depths of 20,000 feet.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSEN	SUS %				
N= 16	LOSS	GAIN	0 25	50	75	100			CONCLUSION
ESSENTIAL	1		Δ				6	%	
DESTRABLE		2.			Δ		81	%	DESIRABLE
UNNECESSARY	1		Δ		+-++		13	%	

DEGREE OF RISK

	PERCE	NTAGE	FINAL	CONSENSUS 9	6		_	
N= 15	LOSS	GAIN	0 25	50 7!	5 100			CONCLUSION
.I PROTOTYPE	2		Δ			19	%	
.4 EXPERIMENTAL		7		Δ		50	%	.4
.7 SIMULATION	4		Δ			25	%	
.9 UNPROVEN	1		Δ			6	%	

	PERCE	NTAGE	FINAL CONSENSU	JS %			
N= 15	LOSS	GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL	7	h 27	Δ		7	%	
MEDIUM		9	Δ		59	%	MEDIUM
LONG	1	5	Δ		27	%	
UNDESTRABLE	7		Δ		7	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 84 87 90 93 96	O	MODE(S)	MEAN	(FROM 1972)
16 EARLIEST	0-0	.8	75	74.2	2 - 2 YRS.
15 MOST LIKELY	0-0	1.2	76/77	76.1	31 - 41 YRS.
13 NOT LATER THAN	0-0	1.6	80	78.3	51 - 7 YRS.

ESTIMATED	COSTS	TO	ACHIEVE

N)	[N			(IN MILLONS) (90% CONFIDENCE INTERVAL)
1 S LOWER LIMIT	_	.5/1M	******	
15 UPPER LIMIT	1.4	+	1.91 M	

EVENT.

IXA07

A system as in IXA05, using synthetic zeolites or "molecular sieves." The system has a maximum capacity of 2 pounds of CO_2 per hour from an atmosphere containing 0.7% CO_2 , and when operating or recycling the noise level does not exceed 50 db. The system is completely self-contained, including equipment for recycling the zeolite; it weighs less then 400 pounds, occupies less than 40 cubic feet, and requires not more than 1 kw of power. The system includes a pump for outboard disposal of CO_2 down to depth of 20,000 feet.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSE	NSUS %			-	
N= 16	LOSS	GAIN	0 2	25 50	75	100			CONCLUSION
ESSENTIAL	7		Δ				6	%	
DESTRABLE		21			Δ		81	%	DESIRABLE
UNNECESSARY	14		Δ				13	%	

DEGREE OF RISK

	PERCE	PERCENTAGE FINAL CONSENSUS %						
N= 15	LOSS	GAIN	Õ	25 50 75	100			CONCLUSION
. I PROTOTYPE	7		4			0	%	
.4 EXPERIMENTAL		6		Δ		27	%	
.7 SIMULATION	3			Δ		40	%	.7
.9 UNPROVEN		4		Δ		33	%	

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %		_	
N= 16	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		6	Δ	6	%	
MEDIUM	2		Δ	31	%	
LONG	7,-	3	Δ	57	%	LONG
UNDESTRABLE	7		Δ	6	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL) 72 73.5 75 76.5 78 81 84 87 90 1 96 1	C AMU	DE(S) MEAN	DEVELOPMENT TIME (FROM 1972)		
16 EARLIEST	0-0	1.5 7				
15 MOST LIKELY	0-0	1.7 7	8 77.7	5 - 61 YRS		
13 NOT LATER THAN	0-0	2.1 8	0 80.2	7 - 9 YRS		

		·		(IN MILLONS)
N P P P P P P P P P P P P P P P P P P P	•	MUDE(S)	MEAN	(90% CONFIDENCE INTERVAL)
15 LOWER LIMIT	.7	.5/1 N	.95M	.62 - 1.28
UPPER LIMIT	1.9	2 M	2.58 _M	1.69 - 3.47

EVENT: IXA08 A system as in IXA07 using the "freeze-out" principle. The system is for use in conjunction with cryogenic oxygen supply systems and will use the vaporization of the oxygen to provide most of the refrigeration for the freeze-out process. The system weighs less than 300 pounds, occupies less than 30 cubic feet of space, and requires less than 1 kw of power for operation. The system has a minimum capacity of 2 pounds of CO₂ per hour from an atmosphere containing 0.7% CO₂. It includes a pump for outboard disposal of condensed CO₂ at depths to 20,000 feet. A refrigeration system for the required additional cooling capacity and the noise level of the system, when operating, is below 50 db.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %				
N= 15	LOSS	GAIN	٩	25 50 75	100			CONCLUSION
ESSENTIAL	7		4			0	%	
DESTRABLE		0		Δ		27	%	
UNNECESSARY		7	П	Δ		73	%	UNNECESSARY

DEGREE OF RISK

	PERCE	NTAGE		FI	NAL CONSEN	ISUS %			_	
N= 15		GAIN	0	25	50	75	100			CONCLUSION
.I PROTOTYPE			4					0	%	
.4 EXPERIMENTAL	13		Δ					7	%	
.7 SIMULATION	6			Δ				27	%	
.9 UNPROVEN		19				Δ		66	%	.9

DESIRED COURSE OF ACTION

	PERCE	NTAGE		FIN	IAL CONSEN	ISUS %				
N= 15		GAIN	0	25	50	75	100			CONCLUSION
SHORT RANGE GOAL	-		4					0	%	·
MEDIUM	7		4					0	%	
LONG					Δ			40	%	
UNDESTRABLE		14			Δ			60	%	UNDESIRABLE

PROBABLE TIMING	(90% CONFIDENCE INTERVAL)		DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 54 57 90 95	o MODE(S)	MEAN (FROM 1972)
14 EARLIEST	0-0	1.0 75	75.3 3 - 4 YRS.
14 MOST LIKELY	00	1.7 76/78	77.8 5 - 61 YRS.
12 NOT LATER THAN	00	2.7 80	80.5 7 - 10 YRS.

N		T.	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) (90% CONFIDENCE INTERVAL)
2.2			MODEIST	MEAN	
13 LOWER LIMIT		.5	1 M	.97 M	.71 - 1.23
13 UPPER LIMIT	#	2.4	2 M	3.42M	2.23 - 4.60

EVENT: IXA09

A system as in IXA05, including an oxygen regeneration system using an electrolytic/catalytic process. The system removes up to 3 pounds of CO₂ per hour from an atmosphere containing 0.7% CO₂ and by means of electric power converts the CO₂ into free oxygen and carbon powder. The unit is completely self-contained, weighs less than 400 pounds, occupies less than 40 cubic feet, and requires less than 2 kw. Its noise level, when operating, is less than 50 db. The solid carbon is stored onboard until the end of the mission.

SYSTEM CRITICALITY

	PERCE	NTAGE	FIN	AL CONSENSUS %				
N= 15	LOSS	GAIN	0 25	50 75	100			CONCLUSION
ESSENTIAL	7		4			0	%	
DESTRABLE		7	Δ			27	%	
UNNECESSARY				Δ		73	%	UNNECESSARY

DEGREE OF RISK

UPPER LIMIT

N- 15	NTAGE GAIN	0	F1N/ 25	AL CONSENS	SUS %	100		Γ	CONCLUSION
. I PROTOTYPE	7.111			*****			0	%	
.4 EXPERIMENTAL		Δ	***				7	%	
.7 SIMULATION			 	Δ			60	%	.7
.9 UNPROVEN			Δ				33	%	

DESIRED COURSE OF ACTION

N• 15		NTAGE GAIN	FINAL CONSENSUS %	100			CONCLUSION
SHORT RANGE GOAL		UATIN		7	0	%	333200.00
MEDIUM			ΙΔ		7	%	
LONG	16		Δ		27	%	
UNDESTRABLE		16	Δ		66	%	UNDESIRABLE

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73,5 75 76,5 78 81 64 67 90 96	•	MODE(S)	MEAN	(FROM 1972)
14 EARLIEST	00	2.0	75	76.4	$3\frac{1}{2} - 5\frac{1}{2}$ YRS.
14 MOST LIKELY	0-0	2.6	78	79.5	61 - 9 YRS
12 NOT LATER THAN	00	3.7	80	82.8	9 - 12 YRS.

ESTIMATED COSTS TO ACHIEVE DEVELOPMENT COSTS (IN MILLONS) MODE(S) MEAN (90% CONFIDENCE INTERVAL) 14 LOWER LIMIT 1.1 2 M 1.74M 1.22 - 2.26

2.87 - 6.03

EVENT: IXA10

An emergency breathing system for use by personnel (in manned deep submergence vehicles). The system is a 100% oxygen closed circuit rebreather. It is made up of one-man carry-around units with full-face masks having internal oral-nasal fittings. Each unit is self-sufficient for 5 hours and can be connected directly to the ship's main oxygen supply if more time is required. The units weigh less than 8 pounds each and can be used as SCUBA gear for emergency escape in shallow water. The face masks are designed so that the face seal leakage is less than 0.3 cubic feet per hour and the masks can be worn for periods up to 8 hours with reasonable comfort.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	INAL CONSE	VSUS %			-	
N= 17	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	10			Δ				18	%	
DESTRABLE		10				Δ		82	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

N- 17		NTAGE GAIN	FINAL CONSENSU 9 25 50	S % 100		Г	CONCLUSION
.I PROTOTYPE	1000	UNIT	Δ		18	%	
.4 EXPERIMENTAL	6		Δ		64	%	.4
.7 SIMULATION			Δ		12	%	
.9 UNPROVEN		6	Δ		6	%	

DESIRED COURSE OF ACTION

N= 17		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Γ	CONCLUSION
SHORT RANGE GOAL		6	Δ	59	%	SHORT
MEDIUM	5		Δ	35	%	
LONG	1	HEALTH	Δ	6	%	
UNDESTRABLE			4	0	%	

PROBABLE TIMING

PRODABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N	72 73.5 75 76.5 78 81 84 67 90 96	0	MODE(S)	MEAN	(FROM 1972)
17 EARLIEST	0-0	.8	74	73.9	$1\frac{1}{2} - 2\frac{1}{2}$ YRS.
16 MOST LIKELY	0-0	.9	76	75.7	$3\frac{1}{2}-4 \text{YRS.}$
14 NOT LATER THAN	00	1.7	77	77.9	$5-6\frac{1}{2} \text{ YRS.}$

	-	-	AGMENT
ESTIMATED	CO212	10	AUNIEVE

	<u> </u>	MODEIS	An- AN	(IN MILLONS) (SO% CONFIDENCE INTERVAL)
		MODETS	MEVIA	ISON COMMINENCE INTERANT
16 LOWER LIMIT	3	.5 M	.38 M	.2649
16 UPPER LIMIT	1.0	1 M	1.35 M	.90 - 1.81

EVENT: IXA11

An electrically heated catalytic burner for the removal of carbon monoxide, hydrogen, and hydrocarbons from the atmosphere of a manned deep submergence vehicle, adequate for a crew of 3 to 10 men for periods of 1 to 30 days. The unit has an airflow of 50 CFM, a noise level below 50 db, and requires 0.5 kw for operation. The unit is less than 2 cubic feet in volume, weighs 30 pounds, and requires routine maintenance on a weekly basis.

SYSTEM CRITICALITY

	PERCE	NTAGE	}	FINAL CONSENSUS %		_	
N= 15	LOSS	GAIN	P	25 50 75 100	_		CONCLUSION
ESSENTIAL		7	П	Δ	60	%	ESSENTIAL
DESTRABLE				Δ	40	%	
UNNECESSARY	7		4		0	%	

DEGREE OF RISK

<u> </u>	PERCENTAGE FINAL CONSENSUS %					COMOLUCION
N*	LOSS	GAIN	0 25 50 75 K	<u> </u>		CONCLUSION
. I PROTOTYPE		14	Δ	6	7 %	.1
.4 EXPERIMENTAL			Δ	2) %	
.7 SIMULATION	7		Δ	1:	3 %	
.9 UNPROVEN	7		4) %	

DESIRED COURSE OF ACTION

N- 15		NTAGE GAIN	FINAL CONSENSUS % 25 50 75 100		Γ	CONCLUSION
SHORT RANGE GOAL		13	Δ	60	%	SHORT
MEDIUM	14		Δ	33	%	
LONG		1	Δ	7	%	
UNDESTRABLE			4	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	.00.	.7	74	73.9	$1\frac{1}{2}-2 \qquad \text{YPS}$
14 MOST LIKELY	00	.8	75	75.4	3 - 3 1 YRS
12 NOT LATER THAN	0-0	1.2	78	77.3	41 - 6 YRS.

		MODE(S)	AAFAN	DEVELOPMENT COSTS [IN MILLONS] [90% CONFIDENCE INTERVAL]
N CONTRACTOR OF THE CONTRACTOR		MIODEIST	MEAN	SAN COMMINENCE INTERANT
14 LOWER LIMIT	.5	.5 M	.52 M	.2975
14 UPPER LIMIT		1.5 M	1.35 M	.90 - 1.80

EVENT:

IXA12 A unit as previously described except that it includes a particle filter and a carbon odor control canister. The unit volume is 3 cubic feet and it weighs 40 pounds.

SYSTEM CRITICALITY

	PERCE	NTAGE		FIF	VAL CONSE	NSUS %			_	
N= 15	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL		6		Δ				33	%	
DESTRABLE					4			60	%	DESTRABLE
UNNECESSARY	6		Δ					7	%	

DEGREE OF RISK

N= 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		Г	CONCLUSION
. I PROTOTYPE		13	Δ	46	%	.1
.4 EXPERIMENTAL		7	Δ	27	%	
.7 SIMULATION	13		Δ	27	%	
.9 UNPROVEN	7			0	%	

N= 14		NTAGE	FINAL CONSENSUS %	100		ſ	CONCLUSION
SHORT RANGE GOAL		9	Δ		36	%	
MEDIUM	10		Δ		50	%	MEDIUM
LONG		1	Δ		14	%	
UNDESTRABLE			Δ		0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 84 87 90 96	•	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	0-0	.6	74	74.0	$1\frac{1}{2} - 2\frac{1}{2}$ YRS.
14 MOST LIKELY	00	.9	76	75.6	3 - 4 YRS.
12 NOT LATER THAN	0-0	1.4	78	77.7	5 - 61 YRS.

ESTIMATED	COSTS	TO	ACHIEVE
-----------	-------	----	---------

				DEVELOPMENT COSTS (IM MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14 LOWER LIMIT	.5	.1/1M	.62 M	.3787
14 UPPER LIMIT	1.0	2 M	1.49 M	1.02 - 1.96

EVENT: IXA13

A temperature and humidity control system for use on manned deep submergence vehicles having crews of 3 to 10 men for missions of 1 to 30 days duration. The system will maintain the temperature in the personnel spaces at $75 \pm 5^{\circ}$ F, and the relative himidity at $65 \pm 10\%$ RH. The system operates on the thermoelectric principle and rejects heat directly through the pressure hull wall. The system occupies 8 cubic feet, weighs 150 pounds, and requires 1,000 w of power for 3 men and 10,000 BTU heat rejection capability.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	NSUS %			_	
N= 15	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL								60	%	ESSENTIAL
DESTRABLE					Δ			40	%	
UNNECESSARY			4					0	%	

DEGREE OF RISK

N- 15		NTAGE GAIN		FINAL CONSENSUS %	00		ſ	CONCLUSION
.I PROTOTYPE	7	OAIN		Δ	1	7	%	
.4 EXPERIMENTAL	2			Δ	П	27	%	
.7 SIMULATION		9		Δ	П	66	%	.7
.9 UNPROVEN			4		П	0	%	

DESIRED COURSE OF ACTION

	PERCE	NTAGE	FINAL CONSENSU	S %		_	
N* 15		GAIN	0 25 50	75 100			CONCLUSION
SHORT RANGE GOAL	5_		Δ		60	%	SHORT
MEDIUM		6	Δ		20	%	
LONG	1		Δ		20	%	
UNDESTRABLE			4		0	%	

PR	OBABLE TIMING		(905		LEN				AL)						DEVELOPMENT	TIME
N		72	73,5	75	76.5	78	81	84	67	90	96	~	MODE(S)	MEAN	(FROM 197	2)
14	EARLIEST		0	c								3,	74	74.6	$2 - 3\frac{1}{2}$	YRS.
13	MOST LIKELY				0-0							1.6	76	76.5	$3\frac{1}{2} - 5\frac{1}{2}$	YRS.
12	NOT LATER THAN				C	0						1.9	78	78.3	$5\frac{1}{2} - 7\frac{1}{2}$	YRS.

			77.574	(IN MILLONS)
N	- O N	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14 LOWER LIMIT	1.6	.2 M	1.43M	.69 - 2.18
14 UPPER LIMIT	3.9	1/5 M	3.96M	2.09 - 5.84

EVENT: IXA14 A system as in IXA13 but operating on the vapor compression system, using a non-toxic fluid.

SYSTEM CRITICALITY

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 14	LOSS	GAIN	0 25 50 75 100	_		CONCLUSION
ESSENTIAL		12	Δ	43	%	ESSENTIAL
DESTRABLE	3		Δ	43	%	
UNNECESSARY	9		Δ	14	%	

DEGREE OF RISK

N= 15		NTAGE		AL CONSENSUS %		Г	CONCLUSION
.I PROTOTYPE	1		Δ		7	%	
.4 EXPERIMENTAL		3		Δ	80	%	.4
.7 SIMULATION	2		Δ		13	%	
.9 UNPROVEN			A		0	· %	

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N* 15	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL		3	Δ	53	%	SHORT
MEDIUM			Δ	33	%	
LONG	10		Δ	7	%	
UNDESTRABLE		7	Δ	7	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 7	73.5 75 76.5 78 81 84 87 90 96	σ	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	0.0	1.3	74	74.1	1 - 2 YRS.
14 MOST LIKELY	0.0	.9	76	75.6	3 - 4 YRS.
1 3 NOT LATER THAN	0-0	1.3	78	77.8	5 - 6 VRS.

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (M MILLONS)
N		MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
14 LOWER LIMIT	.6	.5 M	.64 M	.3693
14 UPPER LIMIT	1.0	3 M	1.79 M	1.31 - 2.28

EVENT:

IXA15

A cloth material suitable for making coveralls and other garments, bedding, cushion covers, etc., which has the feel of cotton, is comfortable, order free, mildew resistant and fireproof in atmospheres with oxygen concentrations up to 40%

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %							
N- 15	LOSS	GAIN	C.	25	50	75	100			CONCLUSION	
ESSENTIAL	19			Δ				27	%		
DESTRABLE		19				Δ		73	%	DESIRABLE	
UNNECESSARY			4					0	%		

DEGREE OF RISK

PERCENTAGE			FINAL CONSENSUS %						
N* 15		GAIN	0 25	50	75	100			CONCLUSION
. I PROTOTYPE	15		Δ				27	%	
. 4 EXPERIMENTAL		18		Δ			60	%	. 4
.7 SIMULATION		5	Δ				13	%	
.9 UNPROVEN	8		4				0	%	

	PERCE	NTAGE	FINAL CONSENSUS %		_	
N= 15	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	8		Δ	67	%	SHORT
MEDIUM		8	Δ	33	%	
LONG			4	0	%	
UNDESTRABLE			4	0	%	

PROBABLE TIMING	CALENDAR YEARS (90% CONFIDENCE INTERVAL)	DEVELOPMENT TIME			
N ,	2 73,5 75 76,5 78 81 84 87 90 96 1	σ	MODE(S)	MEAN	[FROM 1972]
15 EARLIEST	00	1.5	74	73.9	1 - 2 + YRS
14 MOST LIKELY	00	1.8	75	75.6	2 - 4 YRS
13 NOT LATER THAN	00	2.5	76	77.4	4 - 6 1 YRS

ESTIMATED COSTS TO ACHIEVE				DEVELOPMENT COSTS (IN MILLONS)
N	•	MODE(S)	MEAN	(90% CONFIDENCE INTERVAL)
13 LOWER LIMIT	.3	.5 M	.38M	.2550
1 2 HODED LIMIT	A	I M	1.064	96 - 1 26

EVENT: I

IXA16

A resilient padding material suitable for stuffing cushions and mattresses which is comfortable to recline on, permeable to moisture, non-hygroscopic, mildew resistant, odorless, and fireproof in atmospheres with oxygen concentrations up to 40%.

SYSTEM CRITICALITY

	PERCE	NTAGE		FI	NAL CONSE	SUS %			-	
N= 15	LOSS	GAIN	0	25	50	75	100			CONCLUSION
ESSENTIAL	7			Δ				20	%	
DESTRABLE		7				Δ		80	%	DESIRABLE
UNNECESSARY			4					0	%	

DEGREE OF RISK

12		NTAGE	FINAL CONSENS			_	
N= 13	LOSS	GAIN	0 25 50	75 100			CONCLUSION
.I PROTOTYPE	18		4		0	%	
.4 EXPERIMENTAL		27	Δ		54	%	. 4
.7 SIMULATION		1	Δ		38	%	
.9 UNPROVEN	10		Δ		8	%	

	PERCE	NTAGE	FINAL CONSENSUS %		-	
N- 14	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	5		Δ	57	%	SHORT
MEDIUM		13	Δ	43	%	
LONG	8		4	0	%	
UNDESTRABLE			4	0	%	

PROBABLE TIN	AING		CALENDAR YEARS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME		
N	72	73,5 75 76,5 78	81 84 87 90 96	0	MODE(S)	MEAN	(FROM 19		
14 EARLIEST		0-0		.8	74	73.9	$1\frac{1}{2} - 2$	YRS.	
12 MOST LIKEL	Υ	90		.6	76	75.5	3 - 4	YRS.	
11 NOT LATER T	HAN	0-0		1.7	78	78.1	5 - 7	YRS.	

ESTIMATED	COSTS	TO	ACHIEVE

		Lucario		(IN MILLONS)			
N A SAME OF THE SA	•	WODE(2)	MEAN	(90% CONFIDENCE INTERVAL)			
11 LOWER LIMIT	.3	.5 M	.38 M	.2453			
11 UPPER LIMIT	.6	1 M	1.28 M	.93 - 1.64			

EVENT: IXA17

A fire extinguishing system suitable for type A and type C fires which is either automatic or manually controlled with discharge nozzles that can be strategically located to reach critical locations. The extinguishing medium is electrically non-conductive, non-toxic, and does not evolve any toxic material or large quantities of irritating vapors or dust when in contact with surface temperatures up to 1,000°F. The system is effective in oxygen concentrations up to 40% and after use the residue is readily removable.

SYSTEM CRITICALITY

	PERCE	NTAGE		FINAL CONSENSUS %			
N= 15	LOSS	GAIN	0	25 50 75 100			CONCLUSION
ESSENTIAL		10		Δ	53	76	ESSENTIAL
DESTRABLE	10			Δ	47	%	•
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE	FI	NAL CONSENSUS	%		_	
N- 14		GAIN	0 25	50 7	5 100			CONCLUSION
. I PROTOTYPE	1	5	Δ			14	%	
.4 EXPERIMENTAL		12		Δ		58	%	.4
.7 SIMULATION	11		Δ			7	%	
.9 JNPROVEN	6		Δ			21	%	

DESIRED COURSE OF ACTION

N- 15		NTAGE GAIN	FINAL CONSENSUS % 0 25 50 75 100		٢	CONCLUSION
SHORT RANGE GOAL	1033	10	Δ	60	%	SHORT
MEDIUM	17		Δ	33	%	
LONG		7	Δ	7	%	
UNDESTRABLE			4	0	%	

PROBABLE TIMING				DEVELOPMENT TIME	
N 72	73,5 75 76,5 78 81 84 87 90 36 36 1	O	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	00	.9	74	74.5	2 - 3 YRS
13 MOST LIKELY	0=0	1.8	75	76.5	31 - 51 YRS
1 2 NOT LATER THAN	00	2 4	70	70 4	e al ves

	MAN TO SECOND		Imoneres	100000	DEVELOPMENT COSTS (IN MILLONS)
N,			MODEIZA	MEAN	(90% CONFIDENCE INTERVAL)
13	LOWER LIMIT	8	.5 M	.86M	.48 - 1.24
13	UPPER LIMIT	2.4	2 M	2.18 M	.99 - 3.38

EVENT:

IXA18

A waste containment and control system for manned deep submergence vehicles which will hold and sterilize garbage, waste water, and urine and fecal material in a device which traps all odors. The basic system weighs 10 pounds, and it requires 1.5 cubic feet for each 6-man day of storage capacity. The system seals each day's waste into a separate plastic container and sterilizes it to prevent the development of gas, ordors, and bacteria. The bags can be either retained until the vehicle surfaces or disposed at depth.

SYSTEM CRITICALITY

	PERCE	NTAGE	1	FINAL CONSENSUS %			
N= 15	LOSS	GAIN	0	25 50 75 10	00		CONCLUSION
ESSENTIAL	6		lſ	Δ	47	%	_
DESTRABLE		6	П	Δ	53	%	DESIRABLE
UNNECESSARY			4		0	%	

DEGREE OF RISK

	PERCE	NTAGE		FII	NAL CONSE	VSUS %			_	
N= 14		GAIN		2.5	50	75	100			CONCLUSION
. I PROTOTYPE			Δ					7	%	
.4 EXPERIMENTAL						Δ		64	%	.4
.7 SIMULATION			4					0	%	
.9 UNPROVEN				Δ				29	%	

DESIRED COURSE OF ACTION

		NTAGE	FINAL CONSENSUS %		_	
N= 15	LOSS	GAIN	0 25 50 75 100			CONCLUSION
SHORT RANGE GOAL	3		Δ	33	%	
MEDIUM		4	Δ	54	%	MEDIUM
LONG	1		Δ	13	%	
UNDESTRABLE			4	0	%	-

PROBABLE TIMING	CALENDAR YEÀRS (90% CONFIDENCE INTERVAL)				DEVELOPMENT TIME
N 72	73,5 75 76,5 78 81 64 67 90 346	0	MODE(S)	MEAN	(FROM 1972)
15 EARLIEST	00	1.3	74	74.5	2 - 3 YRS.
13 MOST LIKELY	00	1.5	76	76.2	$3\frac{1}{2}-5 \qquad \text{YRS}.$
12 NOT LATER THAN	00	1.9	78	78.1	E 7 YRS.

N	·	MODE(S)	MEAN	DEVELOPMENT COSTS (IN MILLONS) [90% CONFIDENCE INTERVAL)
14 LOWER LIMIT	.8	.8 M	.89 M	
14 UPPER LIMIT	1.6	1/2 M	1.96M	1.21 - 2.72

o System Criticality

o Degree of Risk

o Desired Course of Action

o Probable Timing

o Estimated Costs to Achieve

UNCLASSIFIED Security Classification

Security Classification	LIN	K A	L. IN	В	LINKC		
KEY WORDS	ROLE	WT	ROLE	wT	ROLE WT		
Technology Assessment							
Deep Submergence				D			
Ocean Engineering			2				
DELPHI Forecast							
Undersea Materials & Structures							
Undersea Machines and Equipments	F:	ļ					
Undersea Constructions							
Undersea Power							
Undersea Surveillance & Communication							
Undersea Instrumentation		<u>.</u>					
Undersea Load Handling							
Undersea Life Support							
Undersea Propulsion	·			1			
	*			2			
		•					
				Ĭ.			
			= ;				
1, _ 0							
	2		. ,				
		110					
			1 4				
		05/101					
		1 2					
		W.E					

UNCLASSIFIED
Security Classification