

Test report No.

Page

: 32LE0115-HO-01-A : 1 of 18

Issued date FCC ID : October 2, 2012 : T82-TW800T

RADIO TEST REPORT

Test Report No.: 32LE0115-HO-01-A

Applicant

HERUTU ELECTRONICS CORPORATION

Type of Equipment

POKAYOKE TRANSMITTER

Model No.

: TW-800T

FCC ID

T82-TW800T

Test regulation

FCC Part 15 Subpart C: 2012

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

September 12 and 14, 2012

Representative test engineer:

Motoya Imura Engineer of WiSE Japan, UL Verification Service

Approved by:

Masanori Nishiyama Manager of WiSE Japan,

UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

13-EM-F0429

Page Issued date FCC ID : 2 of 18 : October 29, 2012 : T82-TW800T

PAGE CONTENTS SECTION 2: Equipment under test (E.U.T.) 3 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 8 SECTION 6: 20dB Bandwidth and 99% Occupied Bandwidth9 APPENDIX 2: Test Instruments ······ 16 APPENDIX 3: Photographs of test setup ······ 17

 Page
 : 3 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

SECTION 1: Customer information

Company Name : HERUTU ELECTRONICS CORPORATION

Address : 62-1 TOYOOKA-CHO,KITA-KU,HAMAMATSU-SHI SHIZUOKA-

KEN, 433-8103 JAPAN

Telephone Number : +81-53-438-3555 Facsimile Number : +81-53-438-3411 Contact Person : TAKASHI IKEGAYA

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : POKAYOKE TRANSMITTER

Model No. : TW-800T

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 3.0V (CR2032 coin-type lithium battery)

Receipt Date of Sample : September 7, 2012

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: TW-800T (referred to as the EUT in this report) is the POKAYOKE TRANSMITTER.

General Specification

Clock frequency(ies) in the system : 16MHz

Radio Specification

Equipment Type : Transceiver

Frequency of Operation : 2403MHz - 2478MHz

Channel Spacing : 1MHz Modulation : GFSK

Antenna Type : PWB Pattern antenna (1/4λ Monopole)

Antenna Gain : -3dBi Method of Frequency Generation : Synthesizer

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 4 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : Test specification: FCC Part 15 Subpart C: 2012, final revised on August 13,

2012 and effective September 12, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.249 Operation within the bands 902-928MHz,

2400-2483.5MHz, 5725-5875MHz and 24.0-24.25GHz

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Deviation	Worst margin	Results
1	Conducted Emission	ANSI C63.4:2003 7. AC powerline conducted emission measurements	[FCC] Section 15.207(a) [IC] RSS-Gen 7.2.4	-N/A	N/A	N/A *1)
2	Electric Field Strength of Fundamental Emission	ANSI C63.4:2003 13. Measurement of intentional radiators	[FCC] Section 15.249(a)(e) [IC]	N/A	7.7dB 2441.000MHz, Horizontal, PK with Duty factor	Complied
3	Electric Field Strength of Spurious Emission	ANSI C63.4:2003 13. Measurement of intentional radiators	RSS-210 A2.9 [FCC] Section 15.205(a)(b) Section 15.209(a) Section 15.249(a)(d)(e) [IC] RSS-210 2.5 RSS-210 A2.9	N/A	5.2dB 2400.00MHz, Horizontal, PK with Duty factor	Complied
4	20dB Bandwidth	ANSI C63.4:2003	Reference	N/A	N/A	Complied
5	Frequency Tolerance	ANSI C63.4:2003	[FCC] Section 15.249(b) [IC] RSS-210 A2.9	N/A	N/A	N/A *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

The test was performed with the New Battery (DC3.0V) and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The test is not required since this EUT does not operate with 24.05GHz to 24.25GHz.

^{*}In case any questions arise about test procedure, ANSI C63.4: 2003 is also referred.

Page : 5 of 18

Issued date : October 29, 2012 FCC ID : T82-TW800T

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Bandwidth	IC: RSS-Gen 4.6.1	IC: RSS-Gen 4.6.1	N/A	-	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Radiated emission											
(semi-		(3m*)((<u>+</u> dB)	(1m*)	$(0.5m*)(\underline{+}dB)$							
anechoic chamber)	9kHz -30MHz	30MHz -300MHz	300MHz -1GHz	1GHz -10GHz	10GHz -18GHz	18GHz -26.5GHz	26.5GHz -40GHz					
No.1	4.3dB	5.0dB	5.1dB	4.9dB	5.8dB	4.4dB	4.3dB					
No.2	4.3dB	5.2dB	5.1dB	5.0dB	5.7dB	4.3dB	4.2dB					
No.3	4.6dB	5.0dB	5.1dB	5.0dB	5.7dB	4.5dB	4.2dB					
No.4	4.8dB	5.2dB	5.0dB	5.0dB	5.7dB	5.2dB	4.2dB					

^{*3}m/1m/0.5m = Measurement distance

Radiated emission test(3m)

The data listed in this test report has enough margin, more than the site margin.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 6 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Telephone: +81 596 24	8110	Facsimile: +81 59	0 24 8124		
	FCC Registration Number	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 18

Issued date : October 29, 2012

FCC ID : T82-TW800T

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The mode(s) : Transmitting (Tx)

*Details of Operating Mode(s)

Test Item	Mode	Tested frequency
Electric Field Strength of Fundamental Emission	Transmitting (Tx) ,ANT2	2403MHz
Electric Field Strength of Spurious Emission	PN9	2441MHz
20dB Bandwidth		2478MHz
99% Occupied Bandwidth		

The system was configured in typical fashion (as a customer would normally use it) for testing.

*EUT has the power settings by the software as follows;

Power settings: 0dBm

Software: TW-800RF Test V1.20

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

4.2 Configuration and peripherals

A

Description of EUT and support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	POKAYOKE	TW-800T	01010000011	HERUTU ELECTRONICS	EUT
	TRANSMITTER			CORPORATION	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 18
Issued date : October 29, 2012
FCC ID : T82-TW800T

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 1.

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 and 4m (frequency 9kHz – 30MHz: loop antenna was fixed height at 1.0m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver/spectrum analyzer.

Test Antennas are used as below:

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	9kHz-150kHz	150kHz-30MHz	30MHz-1GHz	Above 1GHz		
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analy	zer	
Detector	QP, AV	QP, AV	QP	PK	AV	
IF Bandwidth	BW 200Hz	BW 9kHz	BW 120kHz	RBW: 1MHz	*1)	
				VBW: 3MHz		
Test Distance	3m	3m	3m	3m (below 10GI	Hz),	
				1m (above 10GI	Hz),	

^{*1)} For Pulse emission: The Average value was calculated by reducing Duty factor from PK (PK value – Duty factor). For Duty factor, please refer to Page 14.

Measurement range : 9kHz-25GHz Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Page : 9 of 18

Issued date : October 29, 2012 FCC ID : T82-TW800T

SECTION 6: 20dB Bandwidth and 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW VBW		Sweep	Detector	Trace	Instrument used			
20dB Bandwidth	3MHz	30kHz	91kHz	Auto	Peak	Max Hold	Spectrum Analyzer			
99% Occupied	3MHz	30kHz	91kHz	Auto	Peak*	Max Hold*	Spectrum Analyzer			
Bandwidth										
*The measurement was performed with Peak detector and Max hold since the duty cycle was not 100%										

Test data : APPENDIX 1

Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 10 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

APPENDIX 1: Data of EMI test

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.2&3 Semi Anechoic Chamber

Report No. 32LE0115-HO-01

 Date
 09/12/2012
 09/14/2012

 Temperature/ Humidity
 20 deg. C / 67% RH
 20 deg. C / 67% RH

 Engineer
 Motoya Imura (above 1GHz)
 Motoya Imura (below 1GHz)

Mode Transmitting mode, 2403MHz

QP or PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Maı	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d]	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
30.300	QP	22.5	22.5	17.9	6.7	28.5	-	18.6	18.6	40.0	21.4	21.4
62.120	QP	22.7	22.7	8.0	7.1	28.6	-	9.2	9.2	40.0	30.8	30.8
142.100	QP	22.1	22.1	14.4	7.8	28.2	-	16.1	16.1	40.0	23.9	23.9
480.600	QP	22.4	22.4	18.1	9.7	28.7	-	21.5	21.5	43.5	22.0	22.0
600.750	QP	22.2	22.2	19.8	10.2	28.8	-	23.4	23.4	46.0	22.6	22.6
803.000	QP	21.6	21.6	22.1	10.9	28.0	-	26.6	26.6	46.0	19.4	19.4
1201.500	PK	59.8	59.7	24.6	1.5	34.4	-	51.5	51.4	73.9	22.4	22.5
2390.000	PK	62.9	62.6	27.4	2.2	32.4	-	60.1	59.8	73.9	13.8	14.1
2400.000	PK	67.2	66.6	27.4	2.2	32.4	-	64.4	63.8	73.9	9.5	10.1
2403.000	PK	103.9	102.8	27.4	2.2	32.4	-	101.1	100.0	113.9	12.8	13.9
4806.000	PK	58.5	58.8	31.6	4.0	31.4	-	62.7	63.0	73.9	11.2	10.9
7209.000	PK	NS	NS	36.3	4.7	32.4	-	-	-	73.9	-	-
9612.000	PK	NS	NS	38.1	5.5	33.0	-	-	-	73.9	-	-
24030.000	PK	NS	NS	37.9	-1.8	31.1	-	-	-	73.9	-	-

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Reading		Ant	Loss	Gain	Duty	Result		Limit	Mai	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
1201.500	PK	59.8	59.7	24.6	1.5	34.4	-15.7	35.8	35.7	53.9	18.1	18.2
2390.000	PK	62.9	62.6	27.4	2.2	32.4	-15.7	44.4	44.1	53.9	9.5	9.8
2400.000	PK	67.2	66.6	27.4	2.2	32.4	-15.7	48.7	48.1	53.9	5.2	5.8
2403.000	PK	103.9	102.8	27.4	2.2	32.4	-15.7	85.4	84.3	93.9	8.5	9.6
4806.000	PK	58.5	58.8	31.6	4.0	31.4	-15.7	47.0	47.3	53.9	6.9	6.6
7209.000	PK	NS	NS	36.3	4.7	32.4	-15.7	-	-	53.9	-	-
9612.000	PK	NS	NS	38.1	5.5	33.0	-15.7	-	-	53.9	-	-
24030.000	PK	NS	NS	37.9	-1.8	31.1	-15.7	-	-	53.9	-	_

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor \ (Refer to \ Duty \ factor \ data \ sheet)$

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}NS: No Signal

^{*} The test above 1GHz was performed with PK detect. Average emission measurements were calculated with PK detect and duty cycle factor.

^{*} Duty Factor was calculated with the assumption of the worst condition in 100msec.

Page : 11 of 18
Issued date : October 29, 2012
FCC ID : T82-TW800T

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.2&3 Semi Anechoic Chamber

Report No. 32LE0115-HO-01

(above 1GHz) (below 1GHz)

Mode Transmitting mode, 2441MHz

QP or PK

VI WIK												
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Mai	rgin
		[dB	uV]	Factor			Factor	[dBuV/m]			[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
30.308	QP	22.5	22.5	17.9	6.7	28.5	-	18.6	18.6	40.0	21.4	21.4
62.098	QP	22.7	22.7	8.0	7.1	28.6	-	9.2	9.2	40.0	30.8	30.8
142.113	QP	22.1	22.1	14.4	7.8	28.1	-	16.2	16.2	40.0	23.8	23.8
488.200	QP	22.3	22.3	18.2	9.7	28.7	-	21.5	21.5	43.5	22.0	22.0
610.250	QP	22.2	22.2	19.9	10.2	28.7	-	23.6	23.6	46.0	22.4	22.4
813.667	QP	21.6	21.6	22.1	11.0	28.0	-	26.7	26.7	46.0	19.3	19.3
1220.500	PK	58.1	58.3	24.6	1.5	34.3	-	49.9	50.1	73.9	24.0	23.8
2441.000	PK	104.5	103.1	27.6	2.2	32.4	-	101.9	100.5	113.9	12.0	13.4
4882.000	PK	58.0	58.9	31.9	3.9	31.4	-	62.4	63.3	73.9	11.5	10.6
7323.000	PK	NS	NS	36.5	4.7	32.5	-	-	-	73.9	-	-
9764.000	PK	NS	NS	38.3	5.5	33.0	-	_	-	73.9	-	•
24410.000	PK	NS	NS	38.0	-1.7	30.9	-	-	-	73.9	-	1

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin		
		[dB	uV]	Factor			Factor	[dBu	[dBuV/m]		[dBuV/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver		
1220.500	PK	58.1	58.3	24.6	1.5	34.3	-15.7	34.2	34.4	53.9	19.7	19.5		
2441.000	PK	104.5	103.1	27.6	2.2	32.4	-15.7	86.2	84.8	93.9	7.7	9.1		
4882.000	PK	58.0	58.9	31.9	3.9	31.4	-15.7	46.7	47.6	53.9	7.2	6.3		
7323.000	PK	NS	NS	36.5	4.7	32.5	-15.7	-	-	53.9	-	-		
9764.000	PK	NS	NS	38.3	5.5	33.0	-15.7	-	-	53.9	-	-		
24410.000	PK	NS	NS	38.0	-1.7	30.9	-15.7	-	-	53.9	-	_		

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}NS: No Signal

^{*}The test above 1GHz was performed with PK detect. Average emission measurements were calculated with PK detect and duty cycle factor.

^{*}Duty Factor was calculated with the assumption of the worst condition in 100msec.

Page : 12 of 18
Issued date : October 29, 2012
FCC ID : T82-TW800T

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.2&3 Semi Anechoic Chamber

Report No. 32LE0115-HO-01

 Date
 09/12/2012
 09/14/2012

 Temperature/ Humidity
 20 deg. C / 67% RH
 20 deg. C / 67% RH

 Engineer
 Motoya Imura (above 1GHz)
 Motoya Imura (below 1GHz)

Mode Transmitting mode, 2478MHz

QP or PK

X												
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
30.312	QP	22.5	22.5	17.9	6.7	28.5	-	18.6	18.6	40.0	21.4	21.4
62.142	QP	22.7	22.7	8.0	7.1	28.6	-	9.2	9.2	40.0	30.8	30.8
142.182	QP	22.1	22.1	14.4	7.8	28.1	-	16.2	16.2	40.0	23.8	23.8
495.600	QP	22.3	22.3	18.3	9.7	28.8	-	21.5	21.5	43.5	22.0	22.0
619.500	QP	22.2	22.2	20.0	10.2	28.7	-	23.7	23.7	46.0	22.3	22.3
826.000	QP	21.6	21.6	22.1	11.0	28.0	-	26.7	26.7	46.0	19.3	19.3
1239.000	PK	56.4	57.4	24.7	1.6	34.3	-	48.4	49.4	73.9	25.5	24.5
2478.000	PK	103.4	103.0	27.7	2.2	32.3	-	101.0	100.6	113.9	12.9	13.3
2483.500	PK	65.2	65.0	27.7	2.2	32.3	-	62.8	62.6	73.9	11.1	11.3
4956.000	PK	57.7	58.7	32.2	3.3	31.4	-	61.8	62.8	73.9	12.1	11.1
7434.000	PK	42.3	44.8	36.7	4.8	32.5	-	51.3	53.8	73.9	22.6	20.1
9912.000	PK	NS	NS	38.6	5.6	33.1	-	-	-	73.9	-	-
24780.000	PK	NS	NS	38.1	-1.7	30.8	-	-	-	73.9	-	-

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Mai	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
1239.000	PK	56.4	57.4	24.7	1.6	34.3	-15.7	32.7	33.7	53.9	21.2	20.2
2478.000	PK	103.4	103.0	27.7	2.2	32.3	-15.7	85.3	84.9	93.9	8.6	9.0
2483.500	PK	65.2	65.0	27.7	2.2	32.3	-15.7	47.1	46.9	53.9	6.8	7.0
4956.000	PK	57.7	58.7	32.2	3.3	31.4	-15.7	46.1	47.1	53.9	7.8	6.8
7434.000	PK	42.3	44.8	36.7	4.8	32.5	-15.7	35.6	38.1	53.9	18.3	15.8
9912.000	PK	NS	NS	38.6	5.6	33.1	-15.7	-	-	53.9	-	-
24780.000	PK	NS	NS	38.1	-1.7	30.8	-15.7	-	-	53.9	-	-

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}NS: No Signal

^{*}The test above 1GHz was performed with PK detect. Average emission measurements were calculated with PK detect and Duty cycle factor.

^{*}Duty Factor was calculated with the assumption of the worst condition in 100msec.

 Page
 : 13 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

20dB Bandwidth

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32LE0115-HO-01
Date 09/14/2012
Temperature/ Humidity 20 deg. C / 67% RH
Engineer Motoya Imura
Mode Transmitting mode

Frequency	20dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
2403	0.571	-
2441	0.683	-
2478	1.056	-

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

 Page
 : 14 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

Duty Cycle

ON time	1 period	Maximum	Maximum	Maximum	Duty	Duty
[ms]	[ms]	Times	ON time[ms]	period[ms]	(On time/Cycle)	[dB]
0.9885	6.0575	16	15.8160	96.92	0.1632	-15.7

 $Duty = 20log_{10}(ON time/Cycle)$

When there is no response, it repeats a maximum of 16 times.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Although we performed duty cycle testing, we calculated the duty value based on the above information provided by the customer, because it was the worst case.

 Page
 : 15 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

99% Occupied Bandwidth

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32LE0115-HO-01

Date 09/14/2012

Temperature/ Humidity
Engineer
Motoya Imura
Mode
Transmitting mode

Frequency [MHz]	99%Occuqied Bandwidth [MHz]	Limit [kHz]
2403	0.516	-
2441	0.646	-
2478	1.335	-

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

 Page
 : 16 of 18

 Issued date
 : October 29, 2012

 FCC ID
 : T82-TW800T

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/24 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12
MJM-15	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2011/11/23 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2012/05/25 * 12
MCC-133	Microwave Cable	HUBER+SUHNER	SUCOFLEX104	336164/4(1m)/	RE	2012/09/05 * 12
				340640(5m)		
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2012/03/29 * 12
MHF-06	High Pass Filter 3.5- 24GHz	TOKIMEC	TF323DCA	601	RE	2012/05/30 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2012/05/21 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2012/06/29 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2012/02/06 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2012/04/06 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2012/04/03 * 12
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA91032008	RE	2011/10/23 * 12
MLA-02	Logperiodic Antenna	Schwarzbeck	USLP9143	201	RE	2011/10/23 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2012/02/16 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2011/11/02 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2012/09/11 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2011/10/19 * 12
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2012/07/27 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D- 2W(1m)	-	RE	2012/02/16 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2012/03/16 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 20dB bandwidth, 99% occupied bandwidth

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN