1

NCERT 11.15. Q10

EE23BTECH11010 - Venkatesh Bandawar*

Question: For the travelling harmonic wave $y(x, t) = 2.0 \cos 2\pi (10t - 0.0080x + 0.35)$ where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of

Parameter	Description	subquestion	Value
		(a)	6.4π radians
$\Delta \theta$	phase difference	(b)	0.8π radians
Δυ	phase difference	(c)	π radians
		(d)	$\frac{3\pi}{2}$ radians

TABLE 2
Phase differences

- (a) 4*m*
- (b) 0.5m
- (c) $\lambda/2$
- (d) $3\lambda/4$

Solution:

Parameter	Description	Value
k	angular wave number	$2\pi (0.008)$
$\lambda = \frac{2\pi}{k}$	wavelength	125 cm
f	frequency	10
A	amplitude	2.0
φ	phase constant	$2\pi (0.35)$
θ	phase of harmonic wave	
х	position of harmonic wave	
t	time	
		400 cm
$x_2 - x_1$	path difference	50 cm
λ_2 λ_1	path difference	<u>\lambda</u>
		2
		$\frac{3\lambda}{2}$
		4

TABLE 1 Given parameters

General form of harmonic wave:

$$y(x,t) = A\cos(2\pi f t - kx + \phi) \tag{1}$$

$$y(x,t) = 2.0\cos 2\pi (10t - 0.0080x + 0.35)$$
 (2)

Phase of harmonic wave (at x):

$$= (2\pi f t - kx + \phi) \tag{3}$$

Phase difference
$$(\Delta \theta) = \theta_1 - \theta_2$$
 (4)

$$= (2\pi f t - kx_1 + \phi)$$

$$- (2\pi f t - kx_2 + \phi)$$
 (5)

$$= k(x_2 - x_1)$$
 (6)