Статистический анализ данных. Спецкурс.

Лекция 3. Анализ нечисловых данных

Ботанический сад-институт ДВО РАН

Кислов Д.Е. 13 ноября 2016 г.

Особенности:

• нельзя применять арифметические операции (сложение, вычитание и т.п.)

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов
- непременимы многие статистические понятия (среднее, дисперсия и т.п.)

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов
- непременимы многие статистические понятия (среднее, дисперсия и т.п.)

Как обрабатывать:

 проблемно-ориентированный подход: иногда можно назначать нечисловым показателям числовые метки

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов
- непременимы многие статистические понятия (среднее, дисперсия и т.п.)

Как обрабатывать:

- проблемно-ориентированный подход: иногда можно назначать нечисловым показателям числовые метки
- можно работать с таблицами сопряженности признаков

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов
- непременимы многие статистические понятия (среднее, дисперсия и т.п.)

Как обрабатывать:

- проблемно-ориентированный подход: иногда можно назначать нечисловым показателям числовые метки
- можно работать с таблицами сопряженности признаков
- попробовать ввести количественные меры «близости» объектов (учитывая специфику задачи)

Особенности:

- нельзя применять арифметические операции (сложение, вычитание и т.п.)
- не всегда просто судить о сходстве объектов
- непременимы многие статистические понятия (среднее, дисперсия и т.п.)

Как обрабатывать:

- проблемно-ориентированный подход: иногда можно назначать нечисловым показателям числовые метки
- можно работать с таблицами сопряженности признаков
- попробовать ввести количественные меры «близости» объектов (учитывая специфику задачи)
- оценивать вероятности наличия тех или иных признаков на основе предельных теорем

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$\begin{array}{c|cccc} & B & \overline{B} & \sum \\ \hline A & c & a & a+c \\ \hline \overline{A} & b & d & b+d \\ \hline \sum & b+c & a+d & a+b+c+d \end{array}$$

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

	$\mid B \mid$	\overline{B}	$\mid \Sigma \mid$
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
$\overline{\sum}$	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

	$\mid B \mid$	\overline{B}	$\mid \Sigma \mid$
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
\sum	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

	$\mid B \mid$	\overline{B}	\sum
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
$\overline{\sum}$	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$\begin{array}{c} \frac{c}{a+b+c} \text{ (Jaccard,} \\ 1901) \end{array}$$

	$\mid B \mid$	\overline{B}	$ \sum$
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
\sum	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$\begin{array}{c} \bullet & \frac{c}{a+b+c} \\ 1901) \end{array} \text{(Jaccard,}$$

$$\frac{2c}{a+b+2c}$$
 (Чекановский, 1900; Dice, 1945; Sørensen, 1948)

	B	\overline{B}	$ \sum$
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
\sum	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$\begin{array}{c} \bullet & \frac{c}{a+b+c} \\ 1901) \end{array} \text{(Jaccard,}$$

$$\frac{2c}{a+b+2c}$$
 (Чекановский, 1900; Dice, 1945; Sørensen, 1948)

•
$$\frac{c}{a+b}$$
 (Кульчинский, 1927)

	$\mid B \mid$	\overline{B}	$ \sum$
\overline{A}	c	a	a+c
\overline{A}	b	d	b+d
\sum	b+c	a+d	a+b+c+d

$$a = |A - B|$$

$$b = |B - A|$$

$$c = |A \cap B|$$

$$d = |\Omega - A \cup B|$$

$$\begin{array}{c} \bullet & \frac{c}{a+b+c} \\ 1901) \end{array} \text{(Jaccard,}$$

$$\frac{2c}{a+b+2c}$$
 (Чекановский, 1900; Dice, 1945; Sørensen, 1948)

•
$$\frac{c}{a+b}$$
 (Кульчинский, 1927)

$$\frac{c}{c+a}, \frac{c}{c+b}$$
 (Шимкевич, 1926; Simpson, 1943)

Стул и тренога

Имеют 4 и 3 «ноги» соответственно. Общее число ног c=3. Если A – стул, B – тренога, то a=1 и b=0.

Стул и тренога

Имеют 4 и 3 «ноги» соответственно. Общее число ног c=3. Если A – стул, B – тренога, то a=1 и b=0.

ullet мера Жаккара $J = rac{3}{1+0+3} = 0.75$

Стул и тренога

Имеют 4 и 3 «ноги» соответственно. Общее число ног c=3. Если A – стул, B – тренога, то a=1 и b=0.

- ullet мера Жаккара $J = rac{3}{1+0+3} = 0.75$
- ullet мера Дайса $D=rac{2\cdot 3}{1+0+2\cdot 3}=6/7pprox 0.857$

Стул и тренога

Имеют 4 и 3 «ноги» соответственно. Общее число ног c=3. Если A – стул, B – тренога, то a=1 и b=0.

$$ullet$$
 мера Жаккара $J = rac{3}{1+0+3} = 0.75$

$$ullet$$
 мера Дайса $D = rac{2 \cdot 3}{1 + 0 + 2 \cdot 3} = 6/7 pprox 0.857$

$$ullet$$
 мера Кульчинского $K=rac{3}{1+0}=3$

Стул и тренога

Имеют 4 и 3 «ноги» соответственно. Общее число ног c=3. Если A – стул, B – тренога, то a=1 и b=0.

- ullet мера Жаккара $J = rac{3}{1+0+3} = 0.75$
- ullet мера Дайса $D = rac{2 \cdot 3}{1 + 0 + 2 \cdot 3} = 6/7 pprox 0.857$
- мера Кульчинского $K = \frac{3}{1+0} = 3$

Вычисления на R

library(sets)
set_similarity(set(1,2,3,4),set(1,2,5),method="Jaccard")
[1] 0.4

Параметризация мер сходства

Двухпараметрическое семейство мер (Б.И. Семкин, 2010):

$$K_{\tau;\eta} = \left(\frac{K_{\tau}^{\eta}(A, B) + K_{\tau}^{\eta}(B, A)}{2}\right)^{1/\eta},$$

$$K_{\tau}(A, B) = \frac{|A \cap B|}{(1 + \tau)|A| - \tau|A \cap B|},$$

$$K_{\tau}(B, A) = \frac{|A \cap B|}{(1 + \tau)|B| - \tau|A \cap B|},$$

$$-1 < \tau < \infty, -\infty < \eta < \infty$$

В этом случае $K_{0;-1}$ и $K_{1;-1}$ совпадают с коэффициентами Сёренсена-Дайса и Жаккара соответственно.

Параметризация мер сходства

Двухпараметрическое семейство мер (Б.И. Семкин, 2010):

$$K_{\tau;\eta} = \left(\frac{K_{\tau}^{\eta}(A, B) + K_{\tau}^{\eta}(B, A)}{2}\right)^{1/\eta},$$

$$K_{\tau}(A, B) = \frac{|A \cap B|}{(1 + \tau)|A| - \tau|A \cap B|},$$

$$K_{\tau}(B, A) = \frac{|A \cap B|}{(1 + \tau)|B| - \tau|A \cap B|},$$

$$-1 < \tau < \infty, -\infty < \eta < \infty$$

В этом случае $K_{0;-1}$ и $K_{1;-1}$ совпадают с коэффициентами Сёренсена-Дайса и Жаккара соответственно.

Вывод

Используемые меры имеют много общего, они в определенном смысле «эквивалентны»

Задача

Исследуется вопрос об эффективности обработки с целью последующего проращивания жёлудей. В результате эксперимента построена следующая таблица сопряженности:

	не взошел	взошел	\sum
обработано	1	10	11
не обработано	4	3	7
\sum	5	13	18

Целесообразно ли применение данной обработки, или «увеличение» всхожести в результате обработки вполне могло возникнуть случайно?

Задача

Исследуется вопрос об эффективности обработки с целью последующего проращивания жёлудей. В результате эксперимента построена следующая таблица сопряженности:

	не взошел	взошел	$\sum_{i=1}^{n}$
обработано	1	10	11
не обработано	4	3	7
\sum	5	13	18

Целесообразно ли применение данной обработки, или «увеличение» всхожести в результате обработки вполне могло возникнуть случайно?

Решение

Нужно вычислить вероятность реализации таблицы [(1,10),(4,3)], а также более «худшего» варианта, [(0,11),(5,2)], т.е. когда после обработки вообще все семена взошли. Если сумма этих вероятностей будет мала, то, вероятно, что обработка (а не случайность) определяет исход прорастания.

Решение

$$\begin{split} \frac{C_5^1 \cdot C_{13}^{10}}{C_{18}^{11}} + \frac{C_5^0 C_{13}^{11}}{C_{18}^{11}} = \\ \frac{1430}{31824} + \frac{78}{31824} \approx 0.047 \end{split}$$

Решение

$$\frac{C_5^1 \cdot C_{13}^{10}}{C_{18}^{11}} + \frac{C_5^0 C_{13}^{11}}{C_{18}^{11}} = \frac{1430}{31824} + \frac{78}{31824} \approx 0.047$$

Таким образом, вероятность наблюдать исход экспериента, или даже исход, когда все желуди взошли вследствие случая (а не действия обработки), равна около 4.7%; это весьма маленькое значение, поэтому результаты наблюдений следует интерпретировать, что имеет место значимое влияние обработки на результат прорастания желудей.

Общий случай

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
$\overline{\sum}$	a+c	b+d	a+b+c+d

$$P(a,b;c,d) = \frac{C_{a+c}^a \cdot C_{b+d}^b}{C_n^{a+b}} = \frac{(a+c)!(b+d)!(a+b)!(c+d)!}{a!b!c!d!n!},$$

$$n = a+b+c+d$$

Общий случай

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
$\overline{\sum}$	a+c	b+d	a+b+c+d

$$P(a,b;c,d) = \frac{C_{a+c}^a \cdot C_{b+d}^b}{C_n^{a+b}} = \frac{(a+c)!(b+d)!(a+b)!(c+d)!}{a!b!c!d!n!},$$

$$n = a+b+c+d$$

Односторонний тест: «усугубление» наблюдаемой ситуации

$$\sum_{j=0}^a P(j, ilde{b}; ilde{c}, ilde{d})$$
, при условии: $j+ ilde{c}=a+c$, $ilde{b}+ ilde{d}=b+d$, $ilde{b}+j=a+b$, $j+ ilde{b}+ ilde{c}+ ilde{d}=n$

Общий случай

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
$\overline{\sum}$	a+c	b+d	a+b+c+d

$$P(a,b;c,d) = \frac{C_{a+c}^a \cdot C_{b+d}^b}{C_n^{a+b}} = \frac{(a+c)!(b+d)!(a+b)!(c+d)!}{a!b!c!d!n!},$$

$$n = a+b+c+d$$

Двусторонний тест

Общий случай

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
$\overline{\sum}$	a+c	b+d	a+b+c+d

$$P(a,b;c,d) = \frac{C_{a+c}^a \cdot C_{b+d}^b}{C_n^{a+b}} = \frac{(a+c)!(b+d)!(a+b)!(c+d)!}{a!b!c!d!n!},$$

$$n = a+b+c+d$$

Двусторонний тест: что считать «усугублением»?

Общий случай

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
\sum	a+c	b+d	a+b+c+d

$$P(a,b;c,d) = \frac{C_{a+c}^a \cdot C_{b+d}^b}{C_n^{a+b}} = \frac{(a+c)!(b+d)!(a+b)!(c+d)!}{a!b!c!d!n!},$$

$$n = a+b+c+d$$

Двусторонний тест: что считать «усугублением»?

 $\sum\limits_{\tilde{a},\tilde{b},\tilde{c},\tilde{d}}P(\tilde{a},\tilde{b};\tilde{b},\tilde{d})$, суммирование при условиях:

$$P(\tilde{a}, \tilde{b}; \tilde{c}, \tilde{d}) \le P(a, b; c, d), \ \tilde{a} + \tilde{b} = a + b, \ \tilde{c} + \tilde{d} = c + d \dots$$

Точный тест Фишера: приближенные вычисления

	не взошел	взошел	$ \sum$
обработано	a	b	a+b
не обработано	c	d	c+d
$\overline{\sum}$	a+c	b+d	a+b+c+d

Гипотеза: наблюдаемое распределение a,b,c,d результат случая

Аппроксимация распределением χ^2 (с поправкой Ейтса)

$$\chi^2_{\text{выч.}} = \frac{n \left(|ad - bc| - \frac{n}{2} \right)^2}{(a+b)(a+c)(b+d)(c+d)}$$
 $n = a+b+c+d$

условия применимости: $a, b, c, d \ge 5, n \ge 40$

Гипотеза отвергается на уровне значимости α , если $\chi^2_{\rm Bыч.}>\chi^2_{1-\alpha}(1)$ (в частности, $\chi^2_{0.95}(1)\approx 3.85,\ 1$ – число степеней свободы для таблицы 2×2)

Метод графов

Задачи

• определение и визуализация сложных зависимостей;

Метод графов

Задачи

- определение и визуализация сложных зависимостей;
- идентификация и анализ сходных групп объектов зависимостей;

Формулировка задачи

Возможно ли пройти по всем ребрам графа лишь один раз?

Ответ

Нет

Графы, для которых ответ «да», носят название эйлеровых графов.

Определения

• Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} – множество вершин, а \mathcal{E} – множество ребер;

- Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} множество вершин, а \mathcal{E} множество ребер;
- Граф называется взвешенным, если реберам присвоены веса;

Определения (нестрогие)

- Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} множество вершин, а \mathcal{E} множество ребер;
- Граф называется взвешенным, если реберам присвоены веса;

 Граф называется ориентированным, если указывается направления ребер, которые соединяют вершины;

- Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} множество вершин, а \mathcal{E} множество ребер;
- Граф называется взвешенным, если реберам присвоены веса;

- Граф называется ориентированным, если указывается направления ребер, которые соединяют вершины;
- Граф называется полным, если все вершины друг с другом соединены ребрами;

- Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} множество вершин, а \mathcal{E} множество ребер;
- Граф называется взвешенным, если реберам присвоены веса;

- Граф называется ориентированным, если указывается направления ребер, которые соединяют вершины;
- Граф называется полным, если все вершины друг с другом соединены ребрами;
- Вершина называется изолированной, если из нее не исходит ни одного ребра;

- Графом называется совокупность $(\mathcal{V}, \mathcal{E})$, где \mathcal{V} множество вершин, а \mathcal{E} множество ребер;
- Граф называется взвешенным, если реберам присвоены веса;

- Граф называется ориентированным, если указывается направления ребер, которые соединяют вершины;
- Граф называется полным, если все вершины друг с другом соединены ребрами;
- Вершина называется изолированной, если из нее не исходит ни одного ребра;
- Граф называется связным, если между любыми двумя вершинами существует путь по его ребрам;

Представление графов в памяти ЭВМ

Матрица смежности

Если между вершинами i и j существует ребро, то элемент $a_{i,j}$ матрицы смежности полагается равным 1, в противном случае 0.

Пример матрицы смежности

$$M = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

Представление графов в памяти ЭВМ

Матрица инциденций

Номер столбца матрицы соответствует номеру ребра. Номер строки – номеру вершины графа. Единицы ставятся в случае, если ребро инцидентно двум вершинам (т.е. соединяет две вершины).

Пример матрицы инциденций

$$M = \left(\begin{array}{ccccc} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array}\right)$$

Ориентированные графы

Ориентированные графы

Для представления графов в ЭВМ применяются различные варианты несимметричных матриц смежности, а также матрицы инциденций;

визуализация, структуризация данных;

- визуализация, структуризация данных;
- 2 поиск компонент связности;

- визуализация, структуризация данных;
- 2 поиск компонент связности;
- поиск минимального остовного дерева (пути во взвешенном связном графе, проходящем через все вершины);

- визуализация, структуризация данных;
- 2 поиск компонент связности;
- поиск минимального остовного дерева (пути во взвешенном связном графе, проходящем через все вершины);
- классификационные задачи;

- визуализация, структуризация данных;
- 2 поиск компонент связности;
- поиск минимального остовного дерева (пути во взвешенном связном графе, проходящем через все вершины);
- классификационные задачи: деревья решений;
- поиск оптимальных потоков;

- визуализация, структуризация данных;
- 2 поиск компонент связности;
- поиск минимального остовного дерева (пути во взвешенном связном графе, проходящем через все вершины);
- классификационные задачи: деревья решений, дендрограммы;
- поиск оптимальных потоков;

Программные пакеты для работы с графами

Python

- NetworkX (https://networkx.github.io/)
- SciPy (https://scipy.org)

R

• • gRBase (https://cran.rproject.org/web/packages/gRbase/vignettes/gRbasegraphs.pdf)

Программные пакеты для работы с графами

Python

- NetworkX (https://networkx.github.io/)
- SciPy (https://scipy.org)
- Google search: python workign with graphs

R

- • gRBase (https://cran.rproject.org/web/packages/gRbase/vignettes/gRbasegraphs.pdf)
- Search: workign with graphs, graphs