Leading PCB Service Provider

HIGH TEMPERATURE PCBs & SOLDERABLE SURFACE FINISHES

NPL / SMART HARSH ENVIRONMENT SEMINAR
July 2014

DENNIS PRICE
MERLIN CIRCUIT TECHNOLOGY LTD.

Leading PCB Service Provider

Laminate Construction

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Laminate Suitability

- Application suitability of laminates is based on consideration of the following parameters:
 - Tg Glass transition temperature.
 - Td Decomposition temperature.
 - Z axis expansion.
 - Maximum working temperature (U.L.).
 - I.S.T performance.
 - T260 and T288 performance.
 - Solder float survivability.
 - Thermal cycling performance.
 - CAF Resistance.
 - Moisture Absorption.

Leading PCB Service Provider

Laminate Properties

Property	Definition	Issue
Glass Transition Temperature, Tg	Ther modynamic change in polymer from a relatively rigid, glassy state, to a softened, more deformable state.	Several properties change as the Tg is exceeded, including the rate at which a material expands versus temper ature. Modulus also decreases significantly as Tg is exceeded.
Z-Axis Expansion	Change in physical dimension (in Z-axis) as a function of temperature, expressed as a 'coefficient of thermal expansion' (CTE) or percentage expansion over a temperature range.	CTE values above Tg are much higher than below Tg. Expansion induces stress on plated vias. The higher temper atures of lead-free assembly result in more total expansion for a given material. Several mature lead-free compatible materials incorporate inorganic fillers that reduce CTE values.
Decomposition Temperature, Td	Measures weight loss from resin degradation as a function of temperature. Td is typically defined as the point at which 5% of the original mass is lost to decomposition, but other levels can also be reported, e.g. 1,%, 2%, or 'onset'.	Resin decomposition can result in adhesion loss and delamination. A 5% level of decomposition is severe, and intermediate levels are important for assessing reliability since peak temperatures in lead-free assembly can reach onset points of decomposition. A high Td by the 5% definition does not guarantee performance. Conversely, a low Td by the 5% definition is not necessarily bad if the onset temperature of decomposition is high enough.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Laminate Properties

Property Property	Definition	Issue
Moisture Absorption	Tendency of a material to absorb moisture from the surrounding environment. Can be assessed by more than one method, including water soak or in an increased pressure & humidity environment.	Vapor pressure of water is much higher at lead-free assembly temperatures. Absorbed moisture can volatilize during thermal cycling and cause voiding or delamination. PWBs that initially pass lead-free assembly testing may exhibit defects after storage in an uncontrolled environment, as a result of moisture absorption. This should be considered when evaluating materials and PWB designs.
Time to Delamination	While not a fundamental property, measures the time for delamination to occur at a specific temperature, e.g. 260°C (T260) or 288°C (T288).	Related to decomposition temperature and adhesion between material components. Thermal expansion and moisture absorption can also influence results. In multilayer PWBs, the treatment of the internal copper surfaces is also critical.

Leading PCB Service Provider

Glass Transition Temperature, Tg

Definition:

A second order thermodynamic change from a glassy solid to an amorphous solid

Test Methods (all give somewhat different values)

Differential Scanning Calorimetry (DSC)

Measures rate of heat absorption

Thermal Mechanical Analysis (TMA)

Measures expansion rate

Dynamic Mechanical Analysis (DMA)

Measures modulus

What happens as Tg is exceeded?

Rapid increase in z-axis expansion

Rapid loss of mechanical performance

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Differential Scanning Calorimeter

DSC measures the difference between heat taken in (endotherm) or heat given out (exotherm) by the sample relative to the reference (normally aluminium).

Leading PCB Service Provider

Thermo Mechanical Analyser

The equipment measures the displacement of the probe during a thermal excursion.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Dynamic Mechanical Analyser

Fibres

This equipment measures the in mechanical properties during rotational stress and temperature.

Leading PCB Service Provider

Tg Measurement Comparisons

T I	G 131	T.L. A	R esults					
Test Item	Condition	Unit	IT155G	IT200D	GETEK	FR408	N4000-13	
Dk(R/C=52%)	1 GHz		4.3	3.8	3.9	3.9	3.8	
Df(R/C=52%)	1 GHz	_	0.009	0.009	0.009	0.012	0.01	
Tg	DMA	$^{\circ}\!\mathbb{C}$	175	201	185	199	236	
Tg	DSC	$^{\circ}\!\mathbb{C}$	160	192	175	187	208	
Тσ	TMA	$^{\circ}\!\mathbb{C}$	150	182	150	165	197	
CTE(Z)	TMA(50-260°C)	%	3.2	2.7	4.5	2.9	2.9	
De lamination Test	TMA(260°C)	min	>60	>60	>60	> 60	> 60	
Solder F loat	288°C	min	>5	>5	>5	>5	>5	
Water Absorption	PCT, 1hr	%	0.24	0.35	0.16	0.33	0.36	
Chemical Resistance	NH ₂ /HBF ₄ /H ₂ O ₂	%	0.04	0.046	0.05	0.05	0.08	
Peel Strength(35 μ m)	25 ℃	Kgf/cm	>1.4	> 1.4	>1.4	> 1.3	> 1.4	

Approximately 20 to 40 degrees C variation on a range of FR4 type materials

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Decomposition Temperature, Td

Definition

The temperature at which a 5% weight loss occurs by thermal gravimetric analysis (TGA)

Test Method

ASTMD3850

IPC-TM-650 2.4.24.6

What happens as the decomposition temperature is exceeded?

Accumulative and irreversible degradation / damage of material due to breakdown of chemical bonds

Lower levels of decomposition, especially when exposed to multiple thermal cycles, can significantly degrade reliability.

The point at which this level of decomposition occurs is critical.

Leading PCB Service Provider

Continuous (Maximum) Operating Temperature

Very difficult to quantify – the UL "Relative Thermal Index" (RTI) is an Arrhenius plotting of Time Vs. Temperature for the mathematical extrapolation of data from a four temperature accelerated aging evaluation to a temperature at which the material will operate for 100,000 hours and still retain at least 50% of its original physical or electrical properties.

Typical properties tested by UL are tensile strength, dielectric breakdown resistance etc.

RTI may not represent the PCB designers ultimate material temperature choice but is a good starting point remembering that the rate of any chemical reaction approximately doubles for every 10 degrees C rise.

Leading PCB Service Provider

Time at Temperature Performance

Definition

Many ways to measure

T260/T288 measures time to delamination at specific temperature (i.e. $260^{\circ}\text{C}/288^{\circ}\text{C}$)

Test Method

IPC-TM-650

What happens/What does it mean?

At the test temperature after some period of time the sample will delaminate

Longer T260/T288 times indicate better delamination/measles/blister resistance

Results are dependent on decomposition temperature, component CTE values, inter-laminar adhesion etc.

Leading PCB Service Provider

Delamination Due To Moisture

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Laminate Flammability

- UL 796 Printed Wiring Boards.
- UL 94 Test for Flammability of Plastic Materials.
- Flammability Classifications:
- 94V-0
- 94V-1
- 94V-2
- Horizontal Burning (HB)

Leading PCB Service Provider

Flammability Tests Reference Standards

The FTT UL 94 tests for flammability of plastic materials giving a preliminary indication of their suitability for a particular application. The apparatus is supplied as a complete system incorporating all the features necessary for ease of use and safety. It conforms to all five UL 94 horizontal and vertical Bunsen burner tests and associated international standards. These are: -

- 1. Horizontal Burning Test; UL 94HB (ASTM D 635, ISO 1210, IEC 60695-11-10 or IEC 60707)
- 2. Vertical Burning Test; UL 94V-0, V-1, or V-2 (ASTM D 3801, IEC 60695-11-10, IEC 60707 or ISO 1210).
- 3.500 W (125mm) Vertical Burning Test; 5VA or 5VB (ASTM D 5048, IEC 60695-11-20, IEC 60707 or ISO 9772).
- 4. Thin Material Vertical Burning Test; VTM-0, VTM-1, or VTM-2 (ASTM D 4804 or ISO 9773)
- 5. Horizontal Burning Foamed Material Test; HBF, HF-1, or HF-2 (ASTM D 4986 or ISO 9772).
- 6. Burners (ASTM D 5025, ASTM D 5207, ISO 10093, ISO 10351)

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Horizontal Testing (HB) - Method A

Procedure: A specimen is supported in a horizontal position and is tilted at 45°. A flame is applied to the end of the specimen for 30 seconds or until the flame reaches the 1 inch mark. If the specimen continues to burn after the removal of the flame, the time for the specimen to burn between the 1 and 4 inch marks are recorded. If the specimen stops burning before the flame spreads to the 4 inch mark, the time of combustion and damaged length between the two marks is recorded. Three specimens are tested for each thickness.

Leading PCB Service Provider

Horizontal Flame Test

Horizontal Rating	Requirements
НВ	Specimens must not have a burning rate greater than 1.5 inches/minute for thicknesses between 0.120 and 0.500 inches and 3 inches/minute for thicknesses less than 0.120 inches. Specimens must stop burning before the flame reaches the 4 inch mark.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Vertical Testing (V-0, V-1, V-2) - Method B

Procedure: A specimen is supported in a vertical position and a flame is applied to the bottom of the specimen. The flame is applied for ten seconds and then removed until flaming stops at which time the flame is reapplied for another ten seconds and then removed. Two sets of five specimens are tested. The two sets are conditioned under different conditions.

Leading PCB Service Provider

Vertical Flame Test

Vertical Ratings	Requirements
V-0	 Specimens must not burn with flaming combustion for more than 10 seconds after either test flame application. Total flaming combustion time must not exceed 50 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens must not drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 30 seconds after removal of the test flame.
V-1	 Specimens must not burn with flaming combustion for more than 30 seconds after either test flame application. Total flaming combustion time must not exceed 250 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens must not drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 60 seconds after removal of the test flame.
V-2	 Specimens must not burn with flaming combustion for more than 30 seconds after either test flame application. Total flaming combustion time must not exceed 250 seconds for each set of 5 specimens. Specimens must not burn with flaming or glowing combustion up to the specimen holding clamp. Specimens can drip flaming particles that ignite the cotton. No specimen can have glowing combustion remain for longer than 60 seconds after removal of the test flame.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Laminate CTE Values

Table 4. In-plane CTE of dielectric materials

DIELECTRIC MATERIAL	In Plane CTE (ppm/C)
FR-4 / E-glass	16 to 20
Polyimide/E-glass	15 to 19
Non Woven Aramid/Epoxy	9 to 12
PTFE Ceramic (RO3000)	17.00
Non-PTFE Ceramic (RO4000)	12 to 16

Table 5. Through-plane CTE of dielectric materials

9 1	
DIELECTRIC MATERIAL	Through Plane CTE (ppm/C)
FR-4/E-glass	55 to 60
Polyimide/E-glass	50 to 55
Non Woven Aramid/Epoxy	110 to 120
PTFE Ceramic (RO3000)	25 to 40
Non-PTFE Ceramic (RO4000)	50 to 55

MECIN peb group

Leading PCB Service Provider

Selection Of IMS Laminate Suppliers

- · Laird Technologies, Thermagon, T-Lam
- Bergquist, T-Clad System
- Doosan Corp. DS-44001 & DS-5000
- Asahi, Denka HITT Plate
- Ventec, VT-4B3 etc.

Leading PCB Service Provider

Typical HF Laminate Properties

Suppliers	Arl on (AR320)	GIL	Rogers	Neltec	GE	Arion	Isola	Iso la
					Electro mate rials			
	Ta conic(TLC-32)	(MC5, GM L 1000)	(R0 4003, RO4350)	(N-82 05)	GET EK ML 2000	25N	Gig aver 210	Gigaver 410
Resin/Rein for cement	PTF E	Polyest er/	Ther mo set	Cyan ate Ester/	PPO Epoxy/	Thermoset Olefin	APPE/	APPE/
	Woven EGlas s	Wov en E- Glass	Hydrocarbon/	Wo ven E-Glass	Wo ven E-Glass	Ceramic &	Woven E-Glass	Wov en E-Glass
		w/Random Core	Cera mic & Woven			Wo ven E-Glass		
			E-Glass					
Dielectric Const ant	3.20	3.20, 3.05	3.38, 3.48	3.6	4.2	3.25	3.3	3.3
	(10 GHz)	(10 GHz)	(10 GHz)	(1 MHz)	(1 M Hz)	(1 GHz)	(1 GHz)	(1 GHz)
Dissipat ion factor	0.003	0.014,0004	0.0 022,0.004	0.009	0.015	0.0025	0. 005	0.004
	(10 GHz)	(10 GHz)	(10 GHz)	(1 MHz)	(1 M Hz)	(1 GHz)	(1 GHz)	(1 GHz)
Water Absorption (%)	0.08	0.07, 0.02	0.06, 0.0 6	0.50	0.10	0.08	0.32	0.21
Fle xural Strength (kpsi) Mach	40	28,25	21,31	75	77	-	•	-
Fle xural Strength (kpsi) Cross	35	25.5, 25.5	21, 31	60	52			-
CopperPeelStrength (lb/in)	12.0	6.0, 5.0	4.5, 5.0	8.0	8.0	4.0	7.84-8.96	11 .76-12.32
Glass Transition	NA	140, 135	280, 280	2 40	180	100	> 210	> 200
Temperature(°C)								
CTE (pp m/K) Z <tg></tg> Tg	70	95/ 350, 80/ 4 10	35/ , 50/	65/270	-	70/	80	85
CTEW(ppm/K) XY	9/12	37/35, 40/3 4	11/14, 14 /16	17/17	16/18	17/17	-	-
Specific Gravity (g/cm ³)	2.5	1.71, 1.69	1.77, 1.8 6	1.8	-	1.54	1.6	1.6
T herm al	0.23	0.21, 0.17	0.64, 0.6 2	0.25	0.25	0.45	-	-
con duct ivity (W/(m×K))								
UL Flame Rating (94)	V-O	V-O, V-O	None, V-O	۷٠O	۷٠O		V-O	V-O
Price In dex FR-4	x 5 to 50	x 5 to 10	x 6	x4	x 1.5	x 5 to 10	x2to3	x 4 to 5

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Sample Isola Lead-Free Laminate Properties

	1S4 00	DE1 56	IS4 1 0	IS4 2 0	IS 41 5	IS 50 0	FR4 0 8	IS 62 0	1 S64 O -D	P9 5	P9 6 /P9 7*
Description	150TgFilled	Haloge n Free 1 50 T g	Phenolic Cured 170 Tg	Phe nolic Cured Filled 17 0 Tg	Non P hen olic, No n Dicy-1 9 0 T g	170Tg Halogen Free	18 0 Tg , Low DKL ow Loss	215TgLow DK, Very Low Loss	Ve ry Low DK ve ry Low Loss	>2 50 T g P olyi mide HB	>2 5 0 T g Po lyim ide V 0 /V -1
A pp lications	A ut o &	Haloge n Free	High Re I.lead	Very High Thermal re i.	High Speed, High re liabil ity	High Speed, High rel, halogen free	Hig h Spe ed Di gita I app s	Very High Speed Digital Apps.	Very High Speed Digital Apps.	Military/Com puters, Down Ho le Drilling	M ilita ry/Co
Le ad F re e C ompa tib le	Ye s	Yes	Y es	Yes	Yes	Yes	Yes	Yes	Yes	Y es	Yes
Hal ogen Free	No	Yes	No	No	No	Yes	No	No	No	No	No
C A F resist ant C hem istry	Ye s	Yes	Y es	Y es	Y es	Yes	Y es	Yes	Yes	Y es	Y es
ROHS and WEEE	Ye s	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Thermal Cycling rating IST/TCT/HATS	Ve ry High	Very High	High	V ery High	Very High	Very High	Hig h	Very High	Hig h	Very High	Very High
T g-DSC Deg C	1 50	1 50	1 75	170	190	170	18 0	21 5	22 5	>250	>250
X CIE PP m/C below Tg	13	13	13	13	13	13	13	13	11	14	14
Y CTE PP m/c bel ow T g	14	14	14	14	14	14	14	1.4	10	17	17
Z Alpha 1 CTE PP m/C	45	45	60	40	55	50	65	5 5	NA	55	60
Ove rail ex pansion 20- 288 Deg C Percent	3 .0 0%	3.00%	3.5 0 %	2.8 0 %	2.90%	2. 80 %	3 .50 %	2 .80 %	3 .60 %	1.50%	1.50%
Decom position temp Deg C Onset	3 30	3 80	3 50	340	370	400	36 0	35 3	35 0	416	382
T -2 6 0 M inut es	60	60	60	60	60	60	60	60	60	60	60
T -2 8 8 M inut es	>5	>5	>15	>15	>20	>15	>1 5	>1 5	>1 0	60	60
Peel Strength lb/inch	>7 .4	>6.3	>6.3	>6.3	> 6.3	> 6.3	>5.5	> 6. 3	>5.5	>6.3	> 6. 3
Peel Strength N/mm	>1 .3	>1.1	>1.1	>1.1	>1.1	>1.1	>1.1	>1.1	>1	>1.1	>1.1
Dk - 2 Ghz	4.00	4.00	4.00	4.0 0	3.9 0	3.9 0	3.6 0	3. 60	3 .0- 3 .6	3.90	3.90
Df-2 Ghz	0 .02 0 0	0 .0 20 0	0 .0 21 0	0 .0 20 0	0 .0 16 0	0 .0 16 0	0.0 11 0	0.0 0 80	< .00 4 5	0 0170	0.0170
Dk-10 Ghz	3.90	3 .9 0	3.90	3.9 0	3.8 0	3.8 0	3.5 5	3. 55	3 .0- 3 .6	3.80	3.80
Df-10 Ghz	0 .02 2 0	0 .0 22 0	0 .0 23 0	0 .0 21 0	0 .0 17 0	0 .0 17 0	0.0 12 5	0.0 0 80	<.00 4 5	0 0200	0.0200
	Only F or Euro	pe									

Leading PCB Service Provider

Maximum Operating Temperature (MOT)

Laminate Type	Tg Range	Td Range	мот
FR4 (Standard Tg – Dicy cured)	130C to 145C	300C to 320C	105C
FR4 (Mid Tg – Novolac cured)	150C to 165C	320C to 330C	130C
FR4 (High Tg – Novolac cured)	170C to 185C	330C to 350C	130C
FR4 Blends (PPO, APPE etc.)	170C to 220C	330C to 350C	130C
ВТ Ероху	175C to 220C	325C to 350C	140C-150C
Hydro Carbon (Ceramic filler)	280C	390C to 425C	115C
Cyanate Ester	240C to 250C	370C to 380C	Various
Polyimide (Glass reinforced)	250C to 260C	380C to 420C	Various
PTFE	N/A	327C M-point	180C
Polyimide Flex (DuPont Kapton)	195C to 220C	380C to 420C	180C-200C

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Most Popular High Temperature Laminate Choice

- POLYIMIDE: Typical parameters
 - Tg 260C.
 - Td 380C to 420C.
 - Z axis expansion 50 to 55 ppm/degree C.
 - In plane expansion 15 to 19 ppm/degree C.
 - ED Copper expansion 17 to 18 ppm/degree C.
 - MOT (Isola P96) 210C.
 - Thermal conductivity 0.2 W/mk.
 - Moisture Absorption up to 0.3%.

Leading PCB Service Provider

Most Popular High Temperature Laminate Choice

- POLYIMIDE Popular types:
 - Isola P96 & P95.
 - Arlon 33N, 35N & 85N.
 - Nelco N7000.
 - Ventec VT-901.

Known Major Manufacturing Issues:

- Resin chipping (during NC drill & profile).
- Moisture Absorption.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Laminate Thermal Cycling Results (Calce)

(TTF = Time To Failure)

DEVICE TTF (cycles/days)	FR4 TTF (Cycles/days)	High Tg FR4 TTF (cycles/days)	Polyimide TTF (cycles/days)
LCCC	77/3	112/5	252/12
Resistor 2512	760/32	1,103/46	2,732/114
PBGA	4,523/188	5,524/230	19,490/2.2 years
Resistor 1210	6,208/259	9,007/1.03 years	22,302/2.5 years
LQPF	13,517/563	39,237/4.48 years	> 30 years

Leading PCB Service Provider

Ultimate High Temperature Laminate Choice

- Ceramic:
 - LTCC (Low Temperature Co-fired Ceramic) a multilayer ceramic technology, which possesses the ability to embed the passive elements, such as resistors, capacitors and inductors into a ceramic interconnect package while the active elements are mounted on the outer layers.
 - HTCC (High Temperature Co-fired Ceramic) differs from LTCC by high temperature of 1600C while LTCC uses a temperature of 850C to 950C.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Appearance Of Various Resin Systems

Solder Masks

Standard solder masks are epoxy based products and will oxidise at prolonged temperatures above 150C – this results in a colour change from the original (usually green) to dark brown.

I am only aware of one Polyimide based solder mask but this is not available in a photoimageable format, has limited technical capability and the Tg is only quoted at 165.8C.

www.merlinpcbgroup.com

Merlin PCB Group

Leading PCB Service Provider

Flexible Base Materials

DuPont Pyralux AP Kapton flexible laminate is UL 94V-0 & UL 796 approved to 180C working temperature. Some flex designs can operate up to 220C with flex heater circuits occasionally reaching 260C

Leading PCB Service Provider

PROPERTY	HASL	ENIG, ENIGEG, DIG, ENEPIG, EP,ENEP,	ORGANIC	IMMERSION & ELECTROLESS SILVER, ASIG	IMMERSION TIN
Topography	Not flat	Flat	Flat	Flat	Flat
Solderability/S helf Life	Very good	Very good	Average	Good	Good (if not subjected to heat)
Assembly Risk Compatibility	Compatible with all flux types	Compatible with most flux types	Compatible with most flux types	Compatible with most flux types	Compatible with most flux types
Detriment to P.C.B. integrity	Thermal shock – especially Lead-free	None	None	None	None
SMT pitch	0.5 mm	Any	Any	Any	Any
Ionic cleanliness	Possibly problematic	Good	Good	Good	Good
Fiducial recognition	Possibly problematic	Excellent	Good	Good	Good
Handling	No special handling	No special handling	Requires care	Requires care	Requires some care
Re-work (Fabricator)	Risky	Not possible	Possible	Possible	Possible
Cost	Medium/low	High	Low	Medium	Medium/low

www.merlinpcbgroup.com

Merlin PCB Group

ELECTROLESS NICKEL/IMMERSION GOLD (ENIG)

- ❖ Electroless Nickel barrier (3.0 6.0 microns)
- ❖ Thin gold layer a bsorbed in solder (0.05 0.1 microns)
- ❖ Aluminium wedge wire bondable
- **❖**Flat
- ❖Good shelf life
- Multiple solder operation compatibility
- ❖Solder mask compatibility
- Environmentally unfriendly process
- ❖ Carbon key pad compatible
- ❖ Black pad issues!

Merlin PCB Group Leading PCB Service Provider

Leading PCB Service Provider

THANK YOU FOR YOUR ATTENTION

Further Reading

Everything You Wanted To Know About Laminates ... But Were Afraid To Ask.

By Chet Guiles --- ARLON