A Discontinuous Galerkin Method for Diffusion Flames

Embedded in a low-Mach solver framework

Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) Vorgelegte Dissertation von Juan Francisco Gutiérrez Jorquera aus Santiago, Chile Tag der Einreichung: 29. September 2022, Tag der Prüfung: 29. September 2022

Erstreferent: Prof. Dr.-Ing Martin Oberlack

Koreferent: Gutachter 2

Darmstadt

Fachbereich Maschinenbau Fachgebiet für Strömungsdynamik A Discontinuous Galerkin Method for Diffusion Flames Embedded in a low-Mach solver framework

Vorgelegte Dissertation von Juan Francisco Gutiérrez Jorquera

Tag der Einreichung: 29. September 2022 Tag der Prüfung: 29. September 2022

Darmstadt

Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-1234

URL: http://tuprints.ulb.tu-darmstadt.de/12345 DOI: https://doi.org/10.25534/tuprints-1234

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung 4.0 International https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License: Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/

Erklärungen laut Promotionsordnung

§ 8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version übereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.	
Darmstadt, 29. September 2022	

Abstract

Abstract

Zusammenfassung

Zusammenfassung

Acknowledgements

Acknowledgements

Contents

List of Figures	X
List of Tables	xvi
List of Abbreviations	cix
List of Symbols	xx
Curriculum vitae	3

List of Figures

Streamlines of the heated cavity configuration with $\epsilon=0.6.\dots 1$

List of Tables

List of Abbreviations

 \mathbf{u}_{ext}

Extension-velocity field

List of Symbols

Ω

 $\partial\Omega$ Domain boundary \mathfrak{A} Bulk phase A \mathfrak{B} Bulk phase B Bulk phase, species s $\Omega \setminus \mathfrak{I}$ Bulk Interface Singular surface velocity vector \mathbf{w} Normal component of the singular surface velocity wMaterial interface velocity vector $\mathbf{u}_{\mathfrak{I}}$ Outer boundary normal vector $\mathbf{n}_{\partial\Omega}$ Interface normal vector $\mathbf{n}_{\mathfrak{I}}$ Normal vector \mathbf{n} Tangent vector $\mathbf{P}_{\mathfrak{I}}$ Interface projection tensor Projection tensor Velocity vector u Pressure pKinetic energy $e_{\mathbf{kin}}$ Surface energy General field/physical property ψ \mathbf{f} Flux vector Dynamic viscosity μ Kinematic viscosity Surface tension coefficient Mean curvature κ \mathbf{D} Rate of deformation tensor \mathbf{S} Stress tensor θ Apparent contact angle θ_{stat} Static contact angle Contact line L $l_{\mathbf{cap}}$ Capillary length Slip length $l_{\mathbf{s}}$ Contact line normal vector \mathbf{n}_L Contact line velocity U_L Coefficient of friction β Specific heat capacity of the mixture c_p

Domain of interest, computational domain

xxi

 $c_{p,k}$ Specific heat capacity of species k

T Temperature

 $T_{\rm sat}$ Saturation temperature

q Heat flux vectorc Specific heat capacityk Thermal conductivity

 ρ Density

 \dot{m} Mass transfer rate

 $h_{
m vap}$ Enthalpy/(latent) heat of vaporization

D Diffusion coefficient

 ν_k Stoichiometric coefficient of species k

k Total degree of the polynomial space

 α Aggregation threshold

 ϕ Basis function

 \mathbb{P}_k Broken polynomial space

K Numerical cell $K^{\mathbf{X}}$ Numerical cut-cell

X Cut

 Δt Time step size

 $\Gamma_{\rm D}$ Edge imposed with Dirichlet boundary condition

 Γ_{int} Internal edge

 $\Gamma_{\rm N}$ Edge imposed with Neumann boundary condition

 Γ Edge

 $\begin{array}{ll} h & \text{Numerical mesh size} \\ \mathfrak{K}_{\mathbf{cc}} & \text{Set of cut-cells} \\ \mathfrak{K}_{\mathbf{far}} & \text{Set of far-field cells} \\ \mathfrak{K}_{\mathbf{near}} & \text{Set of cut-cell neighbours} \\ \mathfrak{K}_{h}^{\mathbf{X}} & \text{Numerical cut-cell mesh} \end{array}$

 \mathfrak{K}_h Numerical mesh φ Level-set function Edg Logical edge M Mass matrix \mathbf{n}_{Γ} Edge normal field

 $\mathbf{n}_{\mathfrak{I},\Gamma}$ Edge normal field including the interface normal vector

 \hat{F} Numerical flux

 φ^{dg} Level-set function represented by a DG field

 $\varphi^{\mathbf{c}\mathbf{0}}$ Constrained level-set function represented by a DG field

 η Penalty parameter

 $\mathbb{V}_{\mathbf{k}}^{\mathbf{X}}$ Sum of broken polynomial spaces

 ϑ General test function

Test function for the continuity equation qTest function for the heat equation Test function for the momentum equation **ER** Expansion ratio the backward-facing step Eo tvös number Laplace number La Peclet number Pe Froude number Fr Oscillation frequency ω λ Wavelength Wavenumber kg Gravity vector h Channel heigth of the backward-facing step \hat{h} Convective heat transfer coefficient λ Heat conductivity Specific enthalpy of k species. h_k Y_k Mass fraction of species k Mean molecular weight of the mixture WMolecular weight of species k W_k NTotal number of species in the mixture Nusselt number Nu Nusselt number, local Nu_{loc} Net rate of production of species k ω_k Pr Pradntl number Pressure p \mathcal{R} Universal gas constant Re Reynolds number S Step heigth of the backward-facing step Viscous tensor Time tVelocity vector u Diffusion coefficient D U Diffusion velocity vector

Figure 1: Streamlines of the heated cavity configuration with $\epsilon=0.6$.

Curriculum vitae

Vor- und Nachname

Persönliche Daten

Geburtsdatum: Geburtsort: Staatsangehörigkeit: -

Schulbildung

Jahr - Jahr - Jahr - -

Studium

Jahr - Jahr -

Wissenschaftliche

Tätigkeit

Jahr - Jahr Wissenschaftlicher Mitarbeiter am Fachgebiet für Strömungs-

dynamik im Fachbereich Maschinenbau der TU Darmstadt,

Promotion und Lehrtätigkeit

3