

Inteligência Artificial

Fuzzy

Grau de Crença - Grau de Verdade

Grau de crença:

- População composta de brancos e negros
- Probabilidade de alguém ser branco.
- Grau de verdade:
 - A partir do momento em que escolhemos um indivíduo, a probabilidade se desfaz.
 - População de mestiços
 - Grau de verdade na afirmação "x é negro".
- Qual a probabilidade de alguém ser negro→Estatística
- Realidade Brasil (tudo pardo)→ qual é o grau de negritude de um dado indivíduo (EU)

Lógica Fuzzy

Paradoxo do Careca

- Tirar um fio de cabelo de uma pessoa não a torna careca.
- Uma pessoa, inicialmente não-careca, se torna careca se tirarmos seus fios de cabelo um a um. Mas, em nenhuma das etapas ele se tornou careca.
- Logo, ele se tornou careca sem se tornar careca.
- Este paradoxo desarma a lógica tradicional.

Hierarquia

— Sistemas Nebulosos (implementação)

— Lógica Difusa (formalização)

— Teoria dos Conjuntos Difusos (teoria de base)

Teoria dos Conjuntos Nebulosos

Definição de conjunto nebuloso

Seja X um conjunto (o nosso conjunto universo)

O conjunto difuso, A, será representado pela função de pertinência,

$$\mu_A(x): X \to [0,1]$$

Teoria dos Conjuntos Nebulosos

Exemplo:

- Discreto: No conjunto dos números naturais, o subconjunto dos números primos.
- Nebuloso: No conjunto das pessoas, o subconjunto das pessoas altas.

Grau de Compatibilidade:

- Podemos falar num conjunto listando os seus elementos ou descrevendo uma característica com a qual seus elementos devem ser compatíveis.
- Nos conjuntos nebulosos esta compatibilidade se estende dos dois valores "0" e "1" para o intervalo [0,1].

Considerações Sobre o Domínio

Um conjunto nebuloso...

Considerações Sobre o Domínio

- O mesmo conjunto, com o domínio reorganizado.
- E agora, abstraindo. Os nomes foram substituídos pela informação relevante: a altura.

Operações com Conjuntos Nebulosos

- Intersecção ($\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ AND)
- União(OR) $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$
- Complement ar (NOT) $\mu_{\sim A}(x) = 1 \mu_{A}(x)$

Operações Básicas - Definidas por Zadeh

União:

A função de inclusão $\mu_U(x)$ da união dos conjuntos A e B ($U=A\cup B$) é definida como

$$\mu_U(x) = max(\mu_A(x), \mu_B(x)), x \in X$$

Interseção:

A função de inclusão $\mu_I(x)$ da Interseção dos conjuntos A e B ($U = A \cap B$) é definida como

$$\mu_I(x) = min(\mu_A(x), \mu_B(x)), x \in X$$

Complemento:

A função de inclusão $\mu_{\overline{A}}(x)$ do Complemento do conjunto A é definida como

$$\mu_{\overline{A}}(x) = 1 - \mu_A(x), x \in X$$

Exemplos de Operações

Lógica Nebulosa

- Construída sobre a teoria dos conjuntos nebulosos.
- Estende as Lógicas:
 - Binária
 - Multivalorada.
- Estende a definição dos conectivos:
 - AND, OR, e NOT.

Consistência e Terceiro Excluído

- As regras Consistência e Terceiro excluído falham no contexto de Lógica Nebulosa.
- Consistência: t(p AND ~p) = 0.
- Terceiro Excluído: t(p OR ~p) = 1.

Exemplo:

- Seja p uma proposição que tem como valor verdade 0,8.
- Então, t(~p) = 0,2.
- $t(p AND \sim p) = min(t(p), t(\sim p)) = min(0.2, 0.8) = 0.2.$
- $T(p OR \sim p) = max(t(p), t(\sim p)) = max(0.2, 0.8) = 0.8.$

Principais Lógicas

Dependendo de como são definidos os conectivos AND e OR, uma nova lógica é criada. O conectivo NOT é, em geral, imutável.

	Intersecção (AND)	União (OR)
Zadeh	$Min(\mu_A[x], \mu_B[y])$	$Max(\mu_A[x], \mu_B[y])$
Produto	$\mu_{A}[x] \cdot \mu_{B}[y]$	
Soma Iimitada	$Max[0,\mu_A[x] + \mu_B[y] - 1)$	$Min(1, \mu_A[x] + \mu_B[y])$

Nome	Altura	Idade
Ana	1,74	36
Antonio	1,83	58
João	1,69	64
José	1,87	32
Luiz	1,84	40
Maria	1,59	22
Paulo	1,79	47
Pedro	1,83	25

Supondo que desejamos responder, quais pessoas são altas e de meia idade?

Nome	Altura	Idade
Ana	1,74	36
Antonio	1,83	58
João	1,69	64
José	1,87	32
Luiz	1,84	40
Maria	1,59	22
Paulo	1,79	47
Pedro	1,83	25

Supondo que desejamos responder, quais pessoas são altas e de meia idade?

Nome	Alto	Meia	Alto E
		idade	Meia idade
Ana	1	1	1
Antonio	1	0	0
João	0	0	0
José	1	0	0
Luiz	1	1	1
Maria	0	0	0
Paulo	1	0	0
Pedro	1	0	0

Comparando Operações Clássicas com Nebulosas cont 2

Qualificadores (hedges)

- Mesmo papel que advérbios
- Modifica o gráfico da função de pertinência do conjunto nebuloso.
- É uma função, assim como um conjunto nebuloso
- Aumenta significativamente o nosso poder descritivo.
- Conjuntos nebulosos + Qualificadores = variável lingüística.

Qualificador	Função	
Por volta de, Aproximadamente	Aproxima um escalar	
Bastante, extremamente	Aumenta a precisão do conjunto	
Um pouco	Dilui o conjunto	
Não	Complementar	
Mais que, maior que	Restringe uma região	
Menos que, menor que	Restringe uma região	

O Qualificador "aproximadamente"

O Qualificador "bastante"

O Qualificador "um pouco"

O Qualificador

O Qualificador "mais que"

 Para descrever a medida de um fenômeno do mundo real, como a faixa de renda de uma família, precisamos de juntar vários conjuntos nebulosos.

 Por exemplo, para a renda da família teríamos de definir os conjuntos baixa, média e alta rendas.

- É importante notar que as definições dos conjuntos podem se sobrepor, permitindo que uma família seja classificada como pertencente a dois conjuntos, com graus de inclusão diferentes ou mesmo iguais.
- Este processo de definição inclui escolher as formas das funções de inclusão. Outro ponto importante é definição do Universo de Discurso da variável.
- Uma vez que cada conjunto e a sua forma seja definida temos a definição completa da variável nebulosa.

Variáveis Nebulosas - Definições

Definidas pela quádrupla:

 ${X, R, U, M}$

onde:

 \mathbf{X} é o nome simbólico da variável, por exemplo idade;

 ${f R}$ é o conjunto de rótulos, isto é o conjunto de nomes da variável idade, por exemplo: novo, meia-idade, velho.

U é o Universo de Discurso da sobre o qual a variável está definida, por exemplo 0 até 150.

 \mathbf{M} são as regras semânticas que indicam o significado de cada rótulo em R.

Variáveis Nebulosas - Exemplo

• $R = \{p\acute{e}ssimos, ruins, m\acute{e}dios, bons, excelentes\}$

•
$$U = \{x \in X \mid 0 \le x \le 10\}$$

 $\bullet M = ver \ Figura$

Figura 17: Variável nebulosa correspondente a classificação de um aluno em função de sua nota.

Variável Linguistica

..Termos, grau de relacionamento entre membros, função de pertinência, variáveis básicas.

Um Agente Inteligente com Base de Conhecimento

Agente Inteligente Nebuloso

Módulos do Sistema Difuso

- Base de conhecimento
 - Regras
 - Variáveis Lingüísticas
- Processos de Inferência
 - Processo de fuzzificação
 - Processo de composição
 - Processo de defuzzificação

Base de Conhecimento: Regras

- Condicionais.
 - If x is X then a is A.
 - If x is X and y is Y then a is A.
 - If x is muito X then a is A.
- Incondicionais.
 - a is A.
 - a is mais que A.

Base de Conhecimento: Variáveis Lingüísticas

- Variáveis lingüísticas: Conjuntos nebulosos e Qualificadores.
- Técnica de armazenamento:
 - Guardar a expressão da função.
 - Guardar um par de vetores X e Y

Inferência: Fuzzificação

- Consiste em construir os conjuntos nebulosos relativos às variáveis de saída.
- Mais de um conjunto neuloso pode ser construído para cada variável.
- No passo seguinte (composição), estes conjuntos serão usados para encontrar o conjunto nebuloso final da variável.

Inferência: Composição

- Transforma os conjuntos nebulosos de cada variável de saída em um único.
- Técnicas mais comuns:
 - Regra aditiva (cumulativa): Para encontrar o conjunto nebuloso composto, tomamos a soma limitada:
 - Regra min-max (limiar): Para encontrar o conjunto nebuloso composto, tomamos o máximo:

$$\mu(x) = \min(1, \mu_1(x) + ... + \mu_n(x))$$

$$\mu(x) = \max(\mu_1(x), ..., \mu_n(x))$$

Inferência: Defuzzificação

- Inferir um valor discreto para cada variável, a partir de seu conjunto difuso definido na composição.
- Métodos mais comuns:
 - Máximo (frágil);
 - Média dos máximos;
 - Centróide (mais robusto);

Exemplos

Exemplo: Conjunto Fuzzy

ALTO

- Para cada pessoa no universo de discurso pode ser atribuído um grau de pertinência desta pessoa ao conjunto dos altos.
- Grau de pertinência seja definido pela função
- alto(x) =

 $\{0, \text{ se altura}(x) < 1,60\}$

(1,85-altura(x)/0,25, se entre 1,60 e 1,85 e

1, se altura(x) > 1.85

	Altura	ALTO		
João	1,58	0		
Mário	1,7	0,4		
Cláudio	1,75	0,6		
Pedro	1,8	0,8		
Felipe	1,85	1		
Maria	1,9	1		

Exemplo: Conjunto Fuzzy

Assuma que menores de 18 não são velhos (de jeito algum!!!) e maiores de 60 podem ser considerados definitivamente velhos. Então:

```
velho (x) =
{ 0, se idade(x) < 18 anos
  (idade(x)-18)/(60-18), se entre 18 e 60 e
  1, se idade(x) > 60 anos }
```


Exemplo: Operações Lógicas

- Como interpretar???
 - "X é BAIXO " significa em lógica nebulosa que é verdade (não ALTO)
 - Y é ALTO ou (not Z é MEDIUM)
 - truth (not x) = 1.0 truth (x)
 - truth (x and y) = minimum (truth(x), truth(y))
 - truth (x or y) = maximum (truth(x), truth(y))
 - Existem outras maneiras de implementar o E e o OU, mas parece universal a maneira de implementar o NÃO

4

Exemplo: Operações Lógicas

■ Mário é Baixo:

1- (Mário é ALTO) = 1-0,4=0,6

Pedro é ALTO ou Mário é Baixo

Max{ 0,8 0,6}= 0,8

Exemplo: Operações Lógicas

- a = X é ALTO e X é VELHO
- b = X é ALTO ou X é VELHO
- c = not (X é ALTO)

	Idade	Altura	X é ALTO	X é VELHO	а	b	С
João	60	1,58	0	1,00	0,00	1,00	1
Mário	40	1,7	0,4	0,52	0,40	0,52	0,6
Cláudio	25	1,75	0,6	0,17	0,17	0,60	0,4
Pedro	20	1,8	0,8	0,05	0,05	0,80	0,2
Felipe	16	1,85	1	0,00	0,00	1,00	0
Maria	15	1,9	1	0,00	0,00	1,00	0

Exemplo: (Formulação)

- Seja um sistema que controla a segurança de uma caldeira.
- As entradas são a temperatura (t) e a pressão (p) no interior da caldeira.
- As saídas são o ângulo da válvula de escape (a) e o fluxo do jato de água que banha a caldeira (f).
- As regras devem ser definidas por um especialista.

Formulação

t: temperatura

p: pressão

a: ângulo

f: fluxo

- Construir os conjuntos nebulosos fundamentais (Variáveis Lingüísticas sem qualificador).
- Construir os qualificadores.
- Definir as estratégias para o passo de composição e de defuzzificação.
- Construir as regras:
 - Condicionais.
 - Incondicionais.

- Construindo os conjuntos nebulosos fundamentais
- Temperatura

- Construindo os conjuntos nebulosos fundamentais
- Pressão

- Construindo os conjuntos nebulosos fundamentais
- Angulo de abertura

- Construindo os conjuntos nebulosos fundamentais
- Fluxo

- Construindo o qualificador.
- Muito.

- Escolhendo a estratégia de composição:
 - min-max ou aditiva
 - Vamos escolher aditiva.
- Escolhendo a estratégia de defuzzificação:
 - centróide, máximos, ou etc...
 - Vamos escolher centróide.

Construir as regras incondicionais.

- a is Fechado
- f is fraco

- Construir as regras condicionais.
 - If t is frio and p is media then a is muito entreaberto
 - If t is frio and p is alta then a is aberto
 - If t is morno and p is media then a is entreaberto
 - If t is morno and p is alta then a is muito aberto
 - If t is quente then f is forte
 - If t is quente then a is aberto

Execução

- Suponha a seguinte situação:
 - t = 60°C
 - p = 4 atm
- O agente vai inferir os valores de a e f, a partir de t e p.
- Os três passos serão realizados:
 - Fuzzificação
 - Composição
 - Defuzzificação

Fuzzificação

If t is morno and p is alta then a is muito aberto

50% and 100% 50%

Composição

Defuzzificação

Exemplo

- Se x1 = A1 e := B1 Então yC1
- Se x1 = A2 e x2
 B2 Então y = C2

Considerações Finais

- Lógica Binária vs. Lógica Multivalorada vs. Lógica Difusa
- Quanto mais geral o modelo, mais difícil e complexo.
 - Se o modelo simples resolve, n\u00e3o use o complicado
- Generalidade da Teoria Difusa.
 - Zadeh, o criador de Lógica difusa, afirma que a teoria difusa pode ser usada para generalizar qualquer área do conhecimento baseada no discreto, e não apenas a lógica.

Bibliografia

- Cox, E. The Fuzzy Systems Handbook (disponível na internet);
- Kartalopoulos, S. V. Understanding Neural Networks and Fuzzy Logic. IEEE PRESS, 1996;
- L. Godo, P. Hajek: Deductive systems of fuzzy logic.

On-Line

- FAQ: http://www.csa.ru/ai/faq/kantrowitz/fuzzy/faq.html;
- Hájek's home page: http://www.uivt.cas.cz/~hajek/;