III The Dining Milosophers Problem

Five Philosophers who think and eat.

When a Philosopher gets (hungry, they grab the 2 Chopskick (closet) and eat.

Fi: do { wait (Chopstick[i]);

wait (Chopstick[i+1)/5]);

eat();

Signal (Chopstick[i]);

Signal (Chopstick[i]);

Signal (Chopstick[i]);

Signal (Chopstick[i]);

While ();

	(3) (2)
Deadlock	=> \(\frac{1}{4}\)
when every	Thilosopher / (0)
grabs the	chopshick
on their	left first.

Soln Toold Philosphers grub left Frist?

Right Fist

K = 2

2) Pick both chopshicks at the Same hime

> Using one mutax

wout (mutur);

grab both.

Signal (muti);

eat();

It set of processus is in a deadlocked state if every process is waiting fox an event that can only happen by another processin the set:

72

Wait (9)

Woult (S)

Pr Wait (s) Wait (9)

Dynamics of execution that determines if a deadlock happens or not.

I System Model

Number of Procures (n)

Number of Resources (group by type).

A process requires a number of resources to Finish (must be less than the total available).

1 Request:	If a resource is not process must wait	available	4
<u> </u>	proces		

2) Use

[3] Release

Conditions For a deadlock

Mutual Exclusion: only I process can use a resource at a time

[2] Hold and Wait: A procus holds a resource While waiting for another

[3] NO-preemphion: A resource cannot be taken tom a procus.

[4] Circular Wait: A closed chain of waiting procures exists.

All 4 Conditions must be present For a deadlock to occur.

Resource Allocation Graphs	5
Directale graph that shows the allocation of resources to processes.	'n
Verhouses (nodes): procures () resource [] Edges: requestr and assignments.	
Prequest R Passignment	
PR dots represent instants of a resour	(<i>(</i>

If graph has no gole (no process is deadlocked)

else A deadlock may exist

If each resource has exactly I instant => a cycle means a deadlock.

Offerwise

May mean adeadlock.

P3 RcPi RA R RBB RB P3 Rc P2 RB

Pr P2 B are Leadlocked

Pr RA P3 RB Pr Cycle No deadlock.