Analog Electronic Circuits (EC2.103): Assignment-2

Spring 2024, IIIT Hyderabad, Due date: Wed 17th Jan, 2024 (18:00 hrs) (Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad)

Instructions:

- 1. Submit your assignment as a single pdf (Name_RollNo.pdf) at moodle on or before the due date
- 2. Hand-written/typed (latex/word) submissions are allowed
- 3. Report should be self explanatory and must carry complete solution Answers with schematics, SPICE directives, annotated waveforms, inference/discussion on results
- 4. Post your queries on moodle, discussions are highly encouraged on moodle

1. Two capacitor problem

For the circuit shown in Fig. 1, switch Sw1 is closed at t=0. Initial condition of capacitors are given as $V_{C_1}(0^-) = V_0$ V and $V_{C_2}(0^-) = 0$ V.

Figure 1

- (a) Derive and plot the expression of $V_{C_1}(t)$, $V_{C_1}(t)$ and current I(t) in the network as a function of time. Give plots and intuitive explanation for the cases- i) $C_1 = C_2$, ii) $C_1 = 10 \times C_2$ and iii) $C_1 = \frac{1}{10}C_2$.
- (b) Consider $C_1=10$ nF and $V_{C_1}(0^-)=V_0=1$ V and $V_{C_2}(0^-)=0$ V, R=1 $k\Omega$. Using LTSPICE, run transient analysis and plot $V_{C_1}(t)$, $V_{C_2}(t)$ for the cases 1) $C_1=C_2$, ii) $C_1=10\times C_2$ and iii) $C_1=\frac{1}{10}C_2$.
 - (Hint: To give Initial condition to capacitors C_1 & C_2 , Go to **Edit** \rightarrow **Spice Directive** and write .ic V(N1)=1 V(N2)=0 in the command box and click OK. For implementing switch use SW component (voltage controlled switch) and add spice directive .model SW SW(Ron=1m Roff=1Meg Vt=.5 Vh=0) (Why?) Give Control voltage to switch as PULSE(0 1 10u 10n 10n 1000u 2000u) (why?), run transient for 200 μ s.)
- (c) At time t=0, calculate the energy stored (E_0) in the circuit. (hint:- Energy stored in Capacitor $\frac{1}{2} \times CV^2$). From your simulation plots in the previous part (b), find total energy at steady state $(t=\infty)$ and compare with E_0 for all three cases (give a table). Do you have any answer/thoughts for this paradox?
- (d) Consider $C_1=C_2=10$ nF and $V_{C_1}(0^-)=V_0=1$ V and $V_{C_2}(0^-)=0$ V, plot $V_{C_1}(t)$, $V_{C_1}(t)$ for the cases a) R=10 $k\Omega$, b) R=10 Ω and c) R=1 $m\Omega$. Qualitatively discuss effect of reducing R value on the settling time of $V_{C_1}(t)$ and $V_{C_2}(t)$

Suggested reading: Interested students may have a look, no grades for reading1) R. C. Levine, "Apparent Nonconservation of Energy in the Discharge of an Ideal Capacitor," in IEEE Transactions on Education, vol. 10, no. 4, pp. 197-202, Dec. 1967, doi: 10.1109/TE.1967.4320288.

2) J. Hoekstra, "A Solution of the Two-Capacitor Problem Through its Similarity to Single-Electron Electronics," in IEEE Open Journal of Circuits and Systems, vol. 1, pp. 13-21, 2020, doi: 10.1109/OJCAS.2020.2977216.

2. RC circuits as filters

(a) For the circuit shown in Fig. 2, it is given that $R = 20 \text{ M}\Omega$ and C = 10 pF and $V_C(0^-) = 0$ V (zero initial voltage across capacitor).

Figure 2

- i) As discussed in the lecture, present intuitive explanation for $V_{out}(t)$ as a function of time for a step input $V_{in} = V_0 u(t)$. (V_{out} initial, final type of rise/fall linear/exponential). Also discuss, how it acts as a **low pass filter**.
- ii) Derive the expression for $V_{out}(t)$ and current across the capacitor for the input $V_{in} = V_0 u(t)$. Using LTSPICE simulations, plot the voltage and current with $V_{in} = 5u(t)$ V and verify your theoretical expressions. (Hint:Run Transient analysis for the Step input signal PWL(0 0 1m 5), Run the transient for 20 ms.)
- iii) Write the expression for Transfer Function $\frac{V_{out}(s)}{V_{in}(s)}$. Find the expressions for gain $(|\frac{V_{out}(j\omega)}{V_{in}(j\omega)}|)$ and phase (ϕ) as a function of frequency (ω) and find the $3~\mathrm{dB}$ cut-off frequency.
- iv) Verify your derivation and hand calculations with AC analysis of the circuit by plotting gain and phase w.r.t frequency.

 (Hint: Set AC amplitude for Vin voltage source as 1. For AC analysis set Type of Sweep = Decade, Number of points = 1000, Start Frequency = 5 Hz, Stop Frequency = 50 MHz).
- (b) For the circuit given in figure 3, repeat all the analysis from part (a) for $R = 20 \text{ k}\Omega$ and C = 10 pF. Please note that this circuit acts as a **high pass filter**. Give intuitive explanation and derive/calculate/simulate accordingly.

(Hint:For AC analysis Set Type of Sweep = Decade, Number of points = 1000, Start Frequency = 5 Hz, Stop Frequency = 50 MHz.

Figure 3

(c) Fig. 4 depicts a scenario, where Z_1 represents the impedance of a probe and Z_2 represents the impedance of an oscilloscope. Consider that the input voltage $(V_{in}(t))$ is a pulse of width $T_b(>> R_iC_i)$ (i=1,2) as described below:

Figure 4

- i) Intuitively find and explain the values of $V(C_1)$, $V(C_2)$, $I(R_1)$, $I(C_1)$, $I(R_2)$, $I(C_2)$ at $t = 0^-$ and $t = 0^+$, for the two cases given below:
 - A. $(R_1C_1 \text{ not equal to } R_2C_2) R_1 = 10 M\Omega C_1 = 2 pF, R_2 = 5 M\Omega, C_1 = 50 pF.$
 - B. $(R_1C_1 \text{ is equal to } R_2C_2) R_1 = 10 M\Omega C_1 = 2 pF, R_2 = 1 M\Omega, C_1 = 20 pF.$
- ii) Does this circuit allows to pass quick transitions in the input to output (high pass)? What about slow transitions (low pass)? Briefly comment.
- iii) Verify your theoretical/intuitive values by simulating the above circuit using LT-SPICE for both cases (A and B). (Plot $V(C_1), V(C_2), I(R_1), I(C_1), I(R_2), I(C_2)$ as a function of time).

(Hint:Run Transient analysis for the input pulse signal PULSE(2 5 0 1p 1p 200u), Run the transient for 400 μ s).

- iv) Derive the transfer function $\frac{V_{out}(s)}{V_{in}(s)}$ for the given circuit. From the transfer function comment on the nature of the circuit - low-pass, high-pass or all-pass filter?
- v) Give a sinusoidal input(SINE(0.5.5k)) to the above circuit with the values of R,C same as in case-B ($R_1 = 10 \ M\Omega \ C_1 = 2 \ pF$, $R_2 = 1 \ M\Omega$, $C_1 = 20 \ pF$), perform AC analysis and find the -3 dB bandwidth (BW) of the circuit.
- vi) Run transient analysis by varying the frequency of the sinusoidal input and plot the output waveforms. (HintFor AC analysis Set Type of Sweep = Decade, Number of points = 1000, Start Frequency = 5k Hz, Stop Frequency = 5GHz).
- 3. Plot Bode magnitude and phase plots for following functions. T is a constant. (References: Lecture notes. For further readings text books on control system - 1) Linear control system by B.S. Manke, 2) Control System by Nagrath Gopal, 3) Control Systems by Ogata)

(a)
$$H(j\omega) = 1 + j\omega T$$

(b)
$$H(j\omega) = \frac{1}{1+j\omega T}$$

(c)
$$H(j\omega) = \frac{1+j\omega T_1}{1+j\omega T_2}$$

(b)
$$H(j\omega) = \frac{1}{1+j\omega T}$$

(c) $H(j\omega) = \frac{1+j\omega T_1}{1+j\omega T_2}$
(d) $H(j\omega) = \frac{1-j\omega T_1}{1+j\omega T_2}$

(e)
$$H(s) = \frac{10}{(s+1)(s+2)}$$

(f) $H(s) = \frac{(s-1)}{(s+1)(s+2)}$
(g) $H(s) = \frac{2(s+1)}{s^2(s+2)(s+0.5)}$

(f)
$$H(s) = \frac{(s-1)}{(s+1)(s+2)}$$

(g)
$$H(s) = \frac{2(s+1)}{s^2(s+2)(s+0.5)}$$