Week 1

Inertial Measurement Unit (IMU)

IMU Intro

Today: IMU

- Goal: measure quad pose
- Wire IMU to PI
- Getting gyro / accel data
- Convert raw data to useful format
- Getting roll and pitch angle from Accel.
- Gyro and Angle Calibration Milestone1

Electronics

- Main electronics consist of:
 - Pi zero 2W
 - BMI088 IMU
- Power only in the port marked "PWR"
- Don't let IMU touch PI
 - You will make me sad if you destroy IMU :(
 - You will make me sad if you destroy the PI :(
- <u>Don't let IMU or PI touch any metal</u> <u>surface</u>
 - You will make me sad if you destroy IMU :(
 - You will make me sad if you destroy the PI :(
- Don't unplug/plug boards without checking with me, you can damage them.
 - You will make me sad if you destroy IMU :(
 - You will make me sad if you destroy the PI :(

Setup

- 1. Place sd card in Pl
- 2. When ready to power (after checking with me) attach usb cable to "power" port and to computer.
- 3. After about 15 seconds of power, you should be able to see a ssid of "quadxy" where xy corresponding to the number with the sd card
- 4. Connect with password "quadxyxy"
- 5. Dhcp should be set as "automatic"

More Setup

- Ssh into pi at
 - 10.42.0.1 user:pi password:raspberry
- Windows users suggested to use mobaxterm program (need to download)
 - Mac maybe Xquartz??
 - Can transfer in putty command line:
 pscp -pw raspberry week1_student.cpp pi@ 10.42.0.1 :/home/pi/flight_controller/student.cpp
- Keep all your files in the flight controller directory
- Test imu is connected by running :
 - i2cdetect –y 1
 - You should detect something connected at address 19 and 69
- Compile code
 - gcc –o name name.cpp –lwiringPi –lm
 - (type this, don't copy/paste)
- Run code
 - ./name

DEMO

12C interface

- Each device has an address
 - Accelerometer is at 0x19
 - Gyro is at 0x69
- Read/write memory locations
- Example from data sheet

5.3.21 Register 0x7D: ACC_PWR_CTRL

Switches accelerometer ON or OFF. Required to do after every reset in order to obtain acceleration values.

Bit	Name	Access	Reset value	Description	
[7:0]	acc_enable	RW	0x00		
				acc_enable	Filter setting
				0x00	Accelerometer off
				0x04	Accelerometer on

Reading from I2C

- Connect to I2C address:
 - int accel_address=wiringPil2CSetup (0x19);
 - Details in week1 student code
- Raw Z accelermoter values are at locations 0x16,0x17
- Read it:
 - Uint16_t az=wiringPil2CReadReg16(accel_address,0x16)
 - take 2's complement
- Now values range from -32768 to +32767 ... what does this mean?

Convert to "G's"

- What is our acceleration range?
 - Hint look at address 0x41 in datasheet.
 - For example if default Range is +-2 g
 - -- -32768 to +32767 corresponds to -2 to +2 g

Convert to degrees / sec

- What is our sensed angular velocity range?
 - Hint look at address 0x0f in datasheet
 - Set range to 1000 degrees/second
 - So -32768 to +32767 corresponds to -1000 to +1000 dps

Drift

• When stationary, what is the gyro output supposed to be?

Drift

- When stationary, what is the gyro output supposed to be?
- Find average stationary value over 1000 samples in calibrate_imu() subtract from gyro output in read_imu() so stationary value is very close to zero.
- Do this for all 3 gyro DOF
- Use x_gyro_calibration, y_gyro_calibration, z_gyro_calibration global variables

Pitch and roll

Getting Pitch and Roll

- Get acceleration in X,Y,Z;
- Use Y,X values to compute pitch
 - Hint:atan2() then convert to degrees
 - Check signs, gyro and accel should match, i.e. if gyro is
 +, accel angle should be getting bigger
 - If using math, also include the –lm flag
- Use Z,X values for rotation on roll

Pitch and Roll Calibration

 What are pitch and roll values supposed to be when flat on table?

Pitch and Roll Calibration

- What are pitch and roll values supposed to be when flat on table?
- Find average flat value in calibrate_imu() over 1000 samples, subtract from pitch and roll values in read_imu() so stationary value computed by the accel. is very close to zero.
 - Note this is angle, not acceleration values
- Use roll_calibration, pitch_calibration global variables

Milestone 1

- Print calibrated values to screen; 3 gyro values, roll, pitch (use printf) every call of read_imu() sample. Print the values continuously.
- Make format readable
 - All in one line / reading, nice spacing
 - Hint use %10.5f to help with spacing