Number Theory Homework V

RDB

August 17, 2021

This is likely our last homework! Homework is the most important part of our class. I hope that these assignments have been enlightening and fun. To commemorate the occasion, I have produced an *extra fun* homework assignment. Once more unto the breach, dear students.

Exercise 1 Let f be a multiplicative function. That is, f(ab) = f(a)f(b) whenever gcd(a, b) = 1. Prove that f(1) = 1, or f = 0.

Solution 1

If $f(x_0) \neq 0$ for some integer x_0 , then $f(x_0) = f(1 \cdot x_0) = f(1)f(x_0)$ since $gcd(1, x_0) = 1$ for all x_0 . Therefore $f(1) \neq 0$. But also $f(1) = f(1 \cdot 1) = f(1)^2$, so dividing by f(1) gives f(1) = 1.

Exercise 2 Prove or provide a counterexample to the following statement: If n is composite, then $gcd(n, \phi(n)) > 1$.

Solution 2

The smallest counterexample is n = 15, since $\phi(15) = 8$ and $\gcd(15, 8) = 1$. Numbers n such that $\gcd(n, \phi(n)) = 1$ are called *cyclic*. It turns out that n is cyclic iff it is the product of distinct primes $p_1p_2\cdots p_r$ where no p_i divides any $p_j - 1$. For example, $n = 2 \cdot 3$ is *not* cyclic, because 2 divides 3 - 1, but $n = 3 \cdot 5$ is, because 3 does not divide 5 - 1 and 5 does not divide 3 - 1.

Exercise 3

(a) Let f and g be two multiplicative functions. Prove that f = g iff $f(p^k) = g(p^k)$ for all prime powers p^k .

(b) Prove that

$$\frac{n}{\phi(n)} = \sum_{d|n} \frac{\mu^2(d)}{\phi(d)}.$$

[Hint: Both sides are multiplicative (why?).]

Solution 3

(a) If f = g then obviously $f(p^k) = g(p^k)$ for all prime powers p^k . On the other hand, if $f(p^k) = g(p^k)$, then any integer n can be written in terms of its prime factorization $n = p_1^{e_1} \cdots p_r^{e_r}$, and

$$f(n) = f(p_1^{e_1}) \cdots f(p_r^{e_r})$$

= $g(p_1^{e_1}) \cdots g(p_r^{e_r})$
= $g(n)$,

since f and g are multiplicative.

(b) First, note that the left-hand side is multiplicative. If a and b are relatively prime, then

$$\frac{ab}{\phi(ab)} = \frac{a}{\phi(a)} \frac{b}{\phi(b)}.$$

Similarly, $\mu^2(d)/\phi(d)$ is multiplicative, so by the divisor-sum theorem, this implies that $\sum_{d|n} \mu^2(d)/\phi(d)$ is as well. Therefore, by the previous part, it suffices to check the identity when $n=p^k$ is a prime power.

If $n = p^0 = 1$, then the equation reads

$$\frac{1}{\phi(1)} = \frac{\mu^2(1)}{\phi(1)},$$

which is true. If n = p, then the equation reads

$$\frac{p}{\phi(p)} = \frac{\mu^2(1)}{\phi(1)} + \frac{\mu^2(p)}{\phi(p)},$$

which is true since $\phi(p) = p - 1$ and $\mu^2(p) = 1$. Finally, if $n = p^k$ with $k \ge 2$, then the left-hand side is

$$\frac{p^k}{\phi(p^k)} = \frac{p^k}{p^k - p^{k-1}} = \frac{p}{p-1},$$

while the right-hand side is

$$\frac{\mu^2(1)}{\phi(1)} + \frac{\mu^2(p)}{\phi(p)} + 0 = 1 + \frac{1}{p-1} = \frac{p}{p-1}.$$

Since both sides are multiplicative and equal on prime powers, they are equal everywhere.

Exercise 4 Prove that $\phi(n)$ is even for $n \geq 3$.

Solution 4

Suppose that n is divisible by some odd prime p with exponent e_p . That is, $n = p^{e_p} n'$, where p does not divide n'. Then

$$\phi(n) = (p^{e_p} - p^{e_p - 1})\phi(n'),$$

and $p^{e_p} - p^{e_p-1}$ is even since p is odd.

If n is divisible by no odd primes, then $n = 2^k$ for some integer k, and we have

$$\phi(n) = 2^{k-1},$$

which is even unless k=1. But if $n \geq 3$, then k is at least 2. Therefore $\phi(n)$ is even for $n \geq 3$.

Exercise 5 Compute

$$\sum_{d|10^{10000}} \phi(d).$$

Solution 5

Since

$$\sum_{d|n} \phi(d) = n,$$

$$\sum_{d|10^{10000}} \phi(d) = 10^{10000}.$$

Exercise 6 This exercise involves programming.

Let

$$A(n) = \frac{1}{n} \sum_{\substack{k=1 \\ \gcd(k,n)=1}}^{n} k$$

be the average integer relatively prime to n.

- (a) Write a program avgRelPrime(n) which computes the average integer relatively prime to n. (Note that A(n) is not necessarily an integer.)
- (b) Compute A(n) for $3 \le n \le 20$. Look these numbers up in the OEIS. What entry do you find? Can you formulate a conjecture involving A(n) and an arithmetic function we've discussed in class?

Solution 6

(a) Here's a relatively simple program:

```
from math import gcd
def avgRelPrime(n):
    s = sum(k for k in range(1, n + 1) if gcd(n, k) == 1)
    return s // n
```

It turns out that A(n) is an integer, so we're justified in integer dividing by n.

When I look these up in the OEIS, I get A23022, which seems to be the *half-totient function*. In other words, I conjecture that

$$A(n) = \frac{\phi(n)}{2}.$$

Amazingly, this is true!

Exercise 7 Given a multiplicative function f, the Bell series of f with respect to p, or simply the Bell series of f, is defined as

$$f_p(x) = \sum_{k \ge 0} f(p^k) x^k.$$

(a) Prove that

$$\mu_p(x) = 1 - x.$$

- **(b)** Prove that $(\mu^2)_p(x) = 1 + x$.
- (c) Let u(n) = 1 for all $n \ge 1$. Prove that

$$u_p(x) = \frac{1}{1-x}.$$

(d) Prove that the coefficient on x^n in $f_p(x)g_p(x)$ is $\sum_{j=0}^n f(p^j)g(p^{n-j})$.

Solution 7

(a) Since $\mu(1) = 1$, $\mu(p) = -1$, and $\mu(p^k) = 0$ for $k \ge 2$, we have $\mu_p(x) = \sum_{k \ge 0} \mu(p^k) x^k = 1 - x + 0 = 1 - x.$

- (b) This is the same as the previous part, except $\mu^2(p) = 1$.
- (c) This is just the geometric series formula:

$$u_p(x) = \sum_{k>0} u(p^k)x^k = \sum_{k>0} x^k = \frac{1}{1-x}.$$

(d) A power of x^n is achieved in $f_p(x)g_p(x)$ by multiplying a term of the $f(p^i)x^i$ with a term of the form $g(p^{n-i})x^{n-i}$, where $0 \le i \le n$. Adding all of these terms together gives that the coefficient on x^n is

$$\sum_{j=0}^{n} f(p^j)g(p^{n-j}).$$

Exercise 8 Let v(n) be the number of distinct prime factors of n.

- (a) Prove that $b(n) = 2^{v(n)}$ is multiplicative.
- (b) Prove that the Bell series of b is

$$b_p(x) = \frac{1+x}{1-x} = (\mu^2)_p(x)u_p(x)$$

Solution 8

(a) If r and s are relatively prime, then they share no prime factors. Therefore v(rs) = v(r) + v(s), which gives

$$b(rs) = 2^{v(rs)} = 2^{v(r)}2^{v(s)} = b(r)b(s),$$

so b is multiplicative. [In fact, $t^{v(n)}$ is multiplicative for any real t.]

(b) Note that v(1) = 0 and $v(p^k) = 1$ for $k \ge 1$, so

$$b_p(x) = 1 + \sum_{k>1} 2^1 x^k.$$

This simplifies as follows:

$$1 + \sum_{k \ge 1} 2x^k = 1 + 2(\sum_{k \ge 0} x^k - 1)$$
$$= 1 + 2\left(\frac{1}{1 - x} - 1\right)$$
$$= 1 + \frac{2x}{1 - x}$$
$$= \frac{1 + x}{1 - x}.$$

Then, since $(\mu^2)_p(x) = 1 + x$ and $u_p(x) = 1/(1-x)$, it's obvious that

$$b_p(x) = (\mu^2)_p(x)u_p(x).$$