Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux

Simon-Raphael Fischer

國家理論科學研究中心

2 November 2023

Table of contents

Singular Foliations

- Singular Foliations
- Yang-Mills connections
- Foliations and Yang-Mills connections
- Conclusion

Singular Foliations

- Gauge Theory (Ex.: Singular foliation ↔ Symmetry breaking → Higgs mechanism)
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- . . .

00000000000000

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is involutive,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

000000000000000

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Foliations and Yang-Mills connections

Singular Foliations

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is locally finitely generated.

000000000000000

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)^r$. $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Definition

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Why finitely generated?

Figure: Infinite Comb

Singular Foliations

Foliations and Yang-Mills connections

Idea: Relation to gauge theory

Theorem (\mathscr{F} -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $\mathsf{Sym}(\tau_{l},\tau_{l'})$.
- For a contractible loop γ_0 at 1: PT_{γ_0} values in Inner (τ_l) .

Example of a transverse foliation τ :

Remarks

- Inner(τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_I and fix the origin

Singular Foliations

Idea

Idea

For all $Y \in \mathcal{F}$:

$$Y = X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Singular Foliations

Idea

Idea

For all $Y \in \mathcal{F}$:

$$Y = X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Singular Foliations 00000000000000

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$\left[\boldsymbol{X}^{\uparrow} + \overline{\nu}, \boldsymbol{X'}^{\uparrow} + \overline{\mu} \right] = \underbrace{\left[\boldsymbol{X}^{\uparrow}, \boldsymbol{X'}^{\uparrow} \right]}_{\text{\sim curvature}} + \underbrace{\left[\boldsymbol{X}^{\uparrow}, \overline{\mu} \right] - \left[\boldsymbol{X'}^{\uparrow}, \overline{\nu} \right]}_{\text{\sim connection}} + \overline{\left[\nu, \mu \right]}$$

Yang-Mills connections

Curved Yang-Mills gauge theories:

Classical Curved
Lie group G Lie group bundle \$\mathcal{S}\$

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0} A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Curved Yang-Mills gauge theories:

Classical Curved
Lie group G Lie group bundle &

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

<u>Definition</u> (LGB actions)

$$\mathscr{T} \stackrel{\phi}{\longrightarrow} \overset{\downarrow}{\mathsf{L}}^{\pi_{\mathcal{S}}}$$

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathscr{T} * \mathscr{G} := \mathscr{T}_{\phi} \times_{\pi_{\mathscr{C}}} \mathscr{G} \to \mathscr{T}, (t,g) \mapsto t \cdot g,$ satisfying the following properties:

$$\phi(t \cdot g) = \phi(t), \tag{1}$$

$$(t \cdot g) \cdot h = t \cdot (gh), \tag{2}$$

$$t \cdot e_{\phi(t)} = p \tag{3}$$

for all $t \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\phi(t)}$, where $e_{\phi(t)}$ is the neutral element of $\mathcal{G}_{\phi(t)}$.

Principal bundles based on Lie group bundle actions

Singular Foliations

Definition (Principal bundle)

A surjective submersion $\pi_{\mathscr{P}} \colon \mathscr{P} \to L'$, with \mathscr{G} -action

$$\mathcal{P} * \mathcal{G} \rightarrow \mathcal{P}$$
 $\mathcal{P} * \mathcal{G}$

simply transitive on $\pi_{\mathscr{P}}$ -fibres of \mathscr{P} , and "suitable" atlas.

Connections as parallel transport

Connection on \mathcal{P} : Idea

But:

$$r_g\colon \mathscr{P}_\mathsf{X} o \mathscr{P}_\mathsf{X}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connections as parallel transport

Connection on \mathcal{P} : Idea

But:

$$r_g\colon \mathscr{P}_{\mathsf{x}} o \mathscr{P}_{\mathsf{x}}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connections as parallel transport

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\Psi(x)}$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathcal{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT^{\mathscr{P}}_{\gamma}$ in \mathscr{P} :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p)\cdot g$$

where $\gamma: I \to L'$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

- $\mathfrak{G}\cong\mathsf{L}\times\mathsf{G}$
- 2 Equip \mathcal{G} with canonical flat connection

Foliations and Yang-Mills connections

Singular Foliations

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

Back to the roots

- $\mathfrak{G}\cong L\times G$
- 2 Equip \mathscr{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal{T}}\colon \mathcal{T}\to L'$ so that one has a commuting diagram

1 Ehresmann connection: \mathscr{G} preserving $\pi_{\mathscr{T}}$ and

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(t \cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(t) \cdot \mathsf{PT}^{\mathscr{G}}_{\Psi \circ \gamma}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathscr{G}_{\phi(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills connections**, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathscr{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On G: Multiplicative Yang-Mills connection
- On \(\mathcal{P} \): Ehresmann connection

This gives rise to a generalised gauge theory by contracting the

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathscr{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On G: Multiplicative Yang-Mills connection
- On \(\mathcal{P} \): Ehresmann connection

Remarks ([S.-R. F.])

This gives rise to a generalised gauge theory by contracting the involved curvatures.

Remarks

There is a simplicial differential δ on $\mathscr{G} \stackrel{\pi_{\mathscr{G}}}{\to} L$ with Lie algebra bundle q

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

Foliations and Yang-Mills connections

such that the definition of the multiplicative Yang-Mills connection is equivalent to the compatibility conditions

- Connection closed
- Curvature exact ([S.-R. F.])

Remarks

Singular Foliations

On the Lie algebra bundle q we have a connection $\nabla^{\mathscr{G}}$ with

$$\nabla^{\mathscr{G}}(\left[\mu,\nu\right]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad ([\mathsf{S.-R. F.}])$$

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi : TL \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Remarks

On the Lie algebra bundle ${\mathscr Q}$ we have a connection $\nabla^{\mathscr G}$ with

$$\nabla^{\mathscr{G}}(\left[\mu,\nu\right]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \operatorname{ad} \circ \zeta. \qquad ([S.-R. F.])$$

Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Singular Foliations

Definition (Associated bundles, [C. L.-G., S.-R. F.])

Equivalence relation on $\mathscr{P}_{\phi} \times_{\pi_{\mathscr{T}}} \mathscr{T}$

$$(p,t) \sim (p \cdot g, g^{-1} \cdot t)$$

defines the **associated bundle** $\mathscr{P} \tilde{\times} \mathscr{T}$ over L'.

Associated bundles and connections

Singular Foliations

Theorem (Associated connection, [C. L.-G., S.-R. F.])

Given a multiplicative Ehresmann connection on \mathcal{G} , and related Ehresmann connection on \mathcal{P} and \mathcal{T} , then

$$\mathsf{PT}_{\gamma}^{\mathscr{P} ilde{ imes}\mathscr{T}}[p,t] \coloneqq \left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p),\mathsf{PT}_{\Psi\circ\gamma}^{\mathscr{T}}(t)
ight]$$

is a well-defined connection.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof.

We have

$$\begin{split} \left[X^{\uparrow}, \overline{\nu} \right] &= \overline{\nabla}_{X}^{\mathcal{G}} \overline{\nu}, \\ \left[X^{\uparrow}, {X'}^{\uparrow} \right] &= \left[X, X' \right]^{\uparrow} + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathscr G$ and a Yang-Mills connection on ${\mathcal T}$, then there is a natural foliation on ${\mathcal T}$ generated by

$$X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

Proof.

We have

$$\begin{bmatrix} X^{\uparrow}, \overline{\nu} \end{bmatrix} = \overline{\nabla_X^{\mathscr{G}} \nu}, \begin{bmatrix} X^{\uparrow}, {X'}^{\uparrow} \end{bmatrix} = \begin{bmatrix} X, X' \end{bmatrix}^{\uparrow} + \overline{\zeta(X, X')},$$

where $\zeta \in \Omega^2(L; q)$.

Singular Foliations

Fix a point $I \in L$ with transverse model $\left(\mathbb{R}^d, \tau_I\right)$:

- G a subgroup of $\operatorname{Inn}(\tau_l)$
- \bigcirc P a principal G-bundle, equipped with an ordinary connection

Singular Foliations

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{G} := (P \times P) / G$, the **Atiyah groupoid**

Singular Foliations

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- 2 P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- ① $\mathscr{G} := (P \times G) / G$, the inner group bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- 2 P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G)/G$, the inner group bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- 2 P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G)/G$, the inner group bundle
- $\mathcal{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

Singular Foliations

Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- **①** *G* a subgroup of $Inn(\tau_l)$
- $oldsymbol{\circ}$ P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G)/G$, the inner group bundle

Remarks

Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Thus, we have a singular foliation on \mathcal{F} , which, by construction, admits L as a leaf and τ_l as transverse data.

Singular Foliations

 \mathcal{P} comes with two natural projections to L, denoted by t and s

0000000

This extends to the associated bundle

Singular Foliations

 \mathcal{P} comes with two natural projections to L, denoted by t and s

This extends to the associated bundle

$$\begin{array}{ccc}
\mathscr{P}\widetilde{\times}\mathscr{T} & \longrightarrow \mathscr{T} \\
(t,s) \downarrow & \downarrow & \downarrow \\
L \times L & \xrightarrow{\operatorname{pr}_2} & L
\end{array}$$

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of \mathcal{F} -connection!

 \mathcal{P} comes with two natural projections to L, denoted by t and s

This extends to the associated bundle

$$\begin{array}{ccc}
\mathscr{P}\widetilde{\times}\mathscr{T} & \longrightarrow \mathscr{T} \\
(t,s) \downarrow & \downarrow & \downarrow \\
L \times L & \xrightarrow{\operatorname{pr}_2} & L
\end{array}$$

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of \mathcal{F} -connection!

Explicitly, one possible way:

Remarks

Singular Foliations

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

$$\pi_{\mathscr{T}}^{!}\mathsf{Ad}(P) \longrightarrow \pi_{\mathscr{T}}^{!}\mathsf{At}(P) \longrightarrow \mathsf{T}\mathscr{T}$$

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Explicitly, one possible way:

Remarks

Singular Foliations

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

Remarks

Observe

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Ad(P) and At(P) the adjoint and Atiyah bundle of P, respectively:

Remarks (Why **curved** gauge theory?)

- Associated connection invariant under choice of F-connection $\nabla^{\mathscr{F}}$
- Associated connection has the form

$$\nabla^{\mathscr{F}} + A$$

where A is the connection 1-form on \mathcal{P}

Thank you!