```
In [1]: import numpy as np
    import seaborn as sns
    import pandas as pd
    import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
```

CRIM: Per capita crime rate by town

ZN: Proportion of residential land zoned for lots over 25,000 sq. ft

INDUS: Proportion of non-retail business acres per town

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX: Nitric oxide concentration (parts per 10 million)

RM: Average number of rooms per dwelling

AGE: Proportion of owner-occupied units built prior to 1940 **DIS:** Weighted distances to five Boston employment centers

RAD: Index of accessibility to radial highways **TAX:** Full-value property tax rate per \$10,000

PTRATIO: Pupil-teacher ratio by town

B: 1000(Bk — 0.63)², where Bk is the proportion of [people of African American descent] by town

LSTAT: Percentage of lower status of the population

```
In [2]: # Importing Data
from sklearn.datasets import load_boston
boston_data = load_boston()
```

In [3]: boston = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston.head()

Out[3]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

```
In [4]: #Now we'll add price column
boston['Price'] = boston_data.target
boston.head()
```

Out[4]:

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0 0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1 0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2 0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3 0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4 0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [5]: boston.describe()

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.12
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.10
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.20
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.18
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.12
4								>

In [6]: boston.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
CRIM
           506 non-null float64
ΖN
           506 non-null float64
           506 non-null float64
INDUS
CHAS
           506 non-null float64
           506 non-null float64
NOX
RM
           506 non-null float64
           506 non-null float64
AGE
DIS
           506 non-null float64
           506 non-null float64
RAD
TAX
           506 non-null float64
PTRATIO
           506 non-null float64
           506 non-null float64
В
LSTAT
           506 non-null float64
Price
           506 non-null float64
dtypes: float64(14)
```

```
In [7]: # splitting data to training and testing dataset
        # Input Data
        x = boston data.data
         # Output Data
        y = boston_data.target
        xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,
                                                              random_state = 0)
         print("xtrain shape : ", xtrain.shape)
        print("xtest shape : ", xtest.shape)
print("ytrain shape : ", ytrain.shape)
        print("ytest shape : ", ytest.shape)
        xtrain shape : (404, 13)
        xtest shape : (102, 13)
        ytrain shape: (404,)
        ytest shape : (102,)
In [8]: # Fitting Multi Linear regression model to training model
        lr = LinearRegression()
         lr.fit(xtrain, ytrain)
         # predicting the test set results
        y pred = lr.predict(xtest)
In [9]: # Results of Linear Regression.
         from sklearn import metrics
        from sklearn.metrics import r2_score
        print('Mean Absolute Error : ', metrics.mean_absolute_error(ytest, y_pred))
         print('Mean Square Error : ', metrics.mean_squared_error(ytest, y_pred))
        print('RMSE', np.sqrt(metrics.mean_squared_error(ytest, y_pred)))
         print('R squared error', r2_score(ytest, y_pred))
        Mean Absolute Error: 3.8429092204444983
        Mean Square Error: 33.44897999767656
        RMSE 5.783509315085138
        R squared error 0.5892223849182504
```

```
In [10]: plt.scatter(ytest, y_pred, c = 'red')
    plt.xlabel("Price: in $1000's")
    plt.ylabel("Predicted value")
    plt.title("True value vs predicted value : Linear Regression")
    plt.show()
```


Now Ridge Regression

```
In [13]: # predicting the test set results
y_pred2 = clf.predict(xtest)

print('Mean Absolute Error : ', metrics.mean_absolute_error(ytest, y_pred2))
print('Mean Square Error : ', metrics.mean_squared_error(ytest, y_pred2))
print('RMSE', np.sqrt(metrics.mean_squared_error(ytest, y_pred2)))
print('R squared error', r2_score(ytest, y_pred2))
```

Mean Absolute Error : 3.833302523389471 Mean Square Error : 33.736190768885855 RMSE 5.808286388332264

R squared error 0.5856952293627944

```
In [14]: plt.scatter(ytest, y_pred2, c = 'red')
    plt.xlabel("Price: in $1000's")
    plt.ylabel("Predicted value")
    plt.title("True value vs predicted value : Ridge Regression")
    plt.show()
```

