1 Heat equation

1.1 PDE form

The (1-dimensional) heat equation in generality is a time-dependent parabolic partial differential equations of the form

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

note that the thermal diffusivity D > 0 and

1.2 Known analytical solutions

- (1) Thermal diffusivity: Free to choose any D > 0
 - Domain:
 - Spatial: $x \in [-1, 1]$
 - Time-evolution: $t \in [0, 1]$
 - Boundary conditions:
 - -u(-1,t)=0
 - -u(1,t)=0
 - Initial conditions: $u(x,0) = \sin(\pi x)$
 - Solution: $u(x,t) = \sin(\pi x)e^{-D\pi^2 t}$

Remark. An example PINN model was already developed to solve and benchmark with this case.

- (2) Thermal diffusivity: Free to choose any D > 0
 - Domain:
 - Spatial: $x \in [0,1]$
 - Time-evolution: $t \in [0, 1]$
 - Boundary conditions:
 - $-u(-1,t)=e^{-\pi t}$
 - $-u(1,t)=e^{-\pi t}$
 - Initial conditions: $u(x,0) = \cos(\pi x)$
 - Solution: $u(x,t) = \cos(\pi x)e^{-D\pi^2 t}$
- (3) Recall the hyperbolic cosine is $\cosh(x) = \frac{e^x + e^{-x}}{2}$.
 - Thermal diffusivity: Free to choose any D > 0
 - Domain:
 - Spatial: $x \in [A, B]$ for any choice of A < B
 - Time-evolution: Free to range $0 < t < \infty$ (but keep the domain compact meaning for computation meaning limit t to a finite number).
 - Boundary conditions:
 - $u(A,t) = 2e^{Dt} \cosh(A)$
 - $u(B,t) = 2e^D \cosh(B)$
 - Initial conditions: $u(x,0) = 2\cosh(x)$
 - Solution: $u(x,t) = 2e^{Dt} \cosh(x)$
- (4) Here's a nice wild-card polynomial problem: Pick you favorite cubic (or degree 3) polynomial, in the most general form: $f(x) = ax^3 + bx^2 + cx + d$ for real numbers $a, b, c, d \in \mathbb{R}$. Then you can prove that u(x, t) = f(x) + Dtf''(x) is the solution of the heat equation for any D > 0 subject to the initial condition u(x, 0) = f(x).

1