JAMES RUSE AGRICULTURAL HIGH SCHOOL

4 Unit Mathematics 1999 Trial HSC Examination

QUESTION 1

- (a) Find $\int x\sqrt{x^2+16}\ dx$
- **(b)** Find $\int \frac{x}{x+1} dx$
- (c) Find $\int \frac{dx}{x^2+4x+13}$
- (d) Using the substitution $u = \cos x$, or otherwise, find $\int \frac{\sin^3 x}{\cos^2 x} dx$
- (e) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{\pi}{3}} \frac{dx}{1 + \cos x \sin x}$.

QUESTION 2

- (a) If z = 2 + 3i and w = 1 i express in the form a + ib
- (i) \overline{z}
- (ii) zw
- (iii) $\frac{z}{w}$
- (b) (i) Express 1 + i in mod/arg form.
- (ii) Hence write $(1+i)^5$ in the form x+iy where x and y are real.
- (c) (i) Find both square roots of -3 + 4i
- (ii) Hence solve $z^2 5z + (7 i) = 0$ giving your answers in the form z = p + iq where p and q are real.

- (a) (i) Prove that $\sin(A+B) + \sin(A-B) = 2\sin A\sin B$.
- (ii) Hence solve $\sin 3\theta + \sin \theta = \sin 2\theta$ for $0 \le \theta \le \pi$.
- (b) Find the volume of the solid formed when the region bounded by $y = \cos x$ and $y = \sin x$ for $0 \le x \le \frac{\pi}{4}$ is rotated one revolution about the x-axis.

- (c) The front face of a solid is an equilateral triangle with sides 4 cm and the end face is an isosceles triangle with base 4 cm and equal sides 14 cm. The solid is 12 cm long and cross-sections parallel to the front face are isosceles triangles with base 4 cm. (See diagram).
- (i) Show that the height (h cm) of a triangular cross-section x cm from the front face is given by $h = \frac{\sqrt{3}}{2}(x+4)$.
- (ii) Hence find the volume of the solid.

- (a) (i) Prove that $\int_{-a}^{a} f(x) dx = \int_{0}^{a} (f(x) + f(-x)) dx$.
- (ii) Using the result of (i) and the definition of odd and even functions prove
- (α) if f(x) is even then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- (β) if f(x) is odd then $\int_{-a}^{a} f(x) dx = 0$.
- (iii) Hence evaluate $\int_{-\pi}^{\pi} x \cos x \ dx$.

(b) A sequence is defined by the formula $a_n = 3 + 33 + 333 + \cdots + 333 \dots 3$ where the last term contains n 3's. Use the principle of mathematical induction to prove that $a_n = \frac{1}{27}(10^{n+1} - 9n - 10)$ for integer $n \ge 1$.

QUESTION 5

- (a) The point $T(ct, \frac{c}{t})$ lies on the hypebola $xy = c^2$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line y = x at R.
- (i) Prove that the tangent at T has equation $x + t^2y = 2ct$.
- (ii) Find the co-ordinates of P and Q.
- (iii) Write down the equation of the normal at T.
- (iv) Show that the x co-ordinate of R is $x = \frac{c}{t}(t^2 + 1)$.
- (v) Prove that $\triangle PQR$ is isosceles.
- (b) A circle is drawn to pass through the vertices of $\triangle ABC$. AM bisects $\angle BAC$ and meets BC at P. (see diagram)
- (i) Prove that $\triangle ABM$ and $\triangle ACP$ are similar.
- (ii) Prove that AB.AC = AP.AM.
- (iii) Explain why BP.PC = AP.PM.
- (iv) Hence prove that $AB.AC BP.PC = AP^2$.

- (a) (i) Sketch $y = \sin(x^2)$ for $-\sqrt{2\pi} \le x \le \sqrt{2\pi}$ showing all intercepts with the co-ordinate axes and turning points.
- (ii) The region bounded by $y = \sin(x^2)$ and the x-axis for $0 \le x \le \sqrt{\pi}$ is rotated one revolution about the y-axis. Find the volume of the solid.

- (b) A conical pendulum is constructed using a 200 gram mass attached to a light string. When the mass moves in a horizontal circle with speed 1.5 m.s⁻¹ the string makes an angle of magnitude $\tan^{-1} \frac{3}{4}$ with the vertical. Taking $g = 10 \ m.s^{-1}$, find
- (i) the tension in the string
- (ii) the length of the string.
- (c) The locus of a point is defined by the equation $|z-2|=2\Re(z-\frac{1}{2})$.
- (i) If z = x + iy explain why $x \ge \frac{1}{2}$.
- (ii) Show that the locus is a branch of the hyperbola $3x^2 y^2 = 3$.
- (iii) Sketch the locus showing its asymptotes and vertex.
- (iv) Find the largest set of possible values for each of |z| and arg z.

- (a) A plane of mass M kg on landing experiences a variable resistive force (due to air resistance) of magnitude Bv^2 Newtons, where v is the speed of the plane, i.e., $M\ddot{x} = -Bv^2$. After the brakes are applied the plane experiences a constant resistive force A Newtons (due to the brakes) as well as the variable resistive force Bv^2 , i.e., $M\ddot{x} = -(A + Bv^2)$.
- (i) Show that the distance (D_1) travelled in slowing from speed V to speed U under the effect of air resistance only is given by: $D_1 = \frac{M}{B} \ln \left(\frac{V}{U} \right)$.
- (ii) After the breaks are applied with the plane travelling at speed U, show that the distance (D_2) required to come to rest is given by: $D_2 = \frac{M}{2B} \ln \left(1 + \frac{B}{A}U^2\right)$.
- (iii) Use the above information to estimate the stopping distance for a 100 tonne plane if it slows from 90 $\rm m.s^{-1}$ to 60 $\rm m.s^{-1}$ under a resistive force of magnitude $125v^2$ Newtons and is finally brought to rest with the assistance of constant braking force of magnitude 75000 Newtons.
- **(b) (i)** Prove that $\frac{x^2}{(x^2+1)^{n+1}} = \frac{1}{(x^2+1)^n} \frac{1}{(x^2+1)^{n+1}}$
- (ii) Given $I_n = \int_0^1 \frac{1}{(x^2+1)^n} dx$, prove that $2nI_{n+1} = 2^{-n} + (2n-1)I_n$.
- (iii) Hence evaluate $\int_0^1 \frac{1}{(x^2+1)^3} dx$.

- (a) (i) Use the substitution u = 1 + x to evaluate $\int_0^1 x(1+x)^n dx$.
- (ii) Use the binomial theorem to write an expansion of $x(1+x)^n$.
- (iii) Prove that $\sum_{r=0}^{r=n} \frac{1}{r+2} \cdot {}^{n}C_{r} = \frac{n \cdot 2^{n+1} + 1}{(n+1)(n+2)}.$
- (iv) Find the largest integer value of n such that $\sum_{r=0}^{r=n} \frac{1}{r+2} \cdot {}^{n}C_{r} < 50$.
- (b) ABC is any triangle. Equilateral triangles ABX, BCY and ACZ are constructed on the sides of $\triangle ABC$. Circles with centres P and Q are drawn to pass through the vertices of $\triangle ABX$ and $\triangle BCY$. The circles meet at B and O. (see diagram)

- (i) Find the size of $\angle AOB$, $\angle BOC$ and $\angle AOC$, giving reasons.
- (ii) Prove that AOCZ is a cyclic quadrilateral.
- (iii) If R is the centre of the circle AOCZ, prove that $\triangle PRQ$ is equilateral.