

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 10400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                             = 73000 \text{ N/mm}^2
          = 190000 N
Ν
                                                                                                                                                                   G
                                                                                                                       = 200000 \text{ N/mm}^2
          = 15400000 Nmm
                                                                = 11100000 Nmm
                                                      M_{v}
M₊
                                                                                                            Ε
                                                      J_{xv}
                                                                                                            \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                   \sigma_{\text{mises}}=
                                                                                                            \tau(M_t) =
y_{G}
                                                                                                                                                                   \sigma_{\text{st.ven}}=
                                                                                                            σ
                                                      α
                                                                                                            \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                      \sigma(N) =
                                                                                                            \sigma_{\text{II}}
                                                      \sigma(M_x)=
                                                                                                             \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 201000 N	M _×	= 6720000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 15100000 Nmm	M_{v}	= 11800000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 211000 N	M _x	= 6430000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 9970000 Nmm	M_{v}	= 12300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5990000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                 = 73000 \text{ N/mm}^2
        = 149000 N
Ν
                                                                                                                                        G
                                                                                                   = 200000 \text{ N/mm}^2
        = 9750000 Nmm
                                                      = 12700000 Nmm
M_{t}
                                             M_{v}
                                                                                          Ε
                                                                                          \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{mises}}=
                                                                                          \tau(M_t) =
                                                      =
y_{G}
                                                                                                                                        \sigma_{\text{st.ven}}=
                                                                                          σ
                                             α
                                                                                          \sigma_{\text{I}}
J_{xx}
                                             \sigma(N) =
                                                                                          \sigma_{\text{II}}
                                             \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                                  24.05.17
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 73000 \text{ N/mm}^2
         = 178000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 13600000 Nmm
                                                           = 9340000 Nmm
                                                  M_{v}
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}}=
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                                                                       \sigma_{\text{st.ven}}=
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{l}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6200000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                             = 73000 \text{ N/mm}^2
          = 187000 N
Ν
                                                                                                                                                                   G
                                                                                                                       = 200000 \text{ N/mm}^2
          = 13400000 Nmm
                                                                = 9850000 Nmm
                                                      M_{v}
M₊
                                                                                                            Ε
                                                                                                            \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                   \sigma_{\text{mises}}=
                                                                                                            \tau(M_t) =
y_{G}
                                                                                                                                                                   \sigma_{\text{st.ven}}=
                                                                                                            σ
                                                      α
                                                                                                            \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                      \sigma(N) =
                                                                                                            \sigma_{\text{II}}
                                                      \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5910000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                     = 73000 \text{ N/mm}^2
          = 196000 N
Ν
                                                                                                                                                           G
                                                                                                                 = 200000 \text{ N/mm}^2
         = 8820000 Nmm
                                                             = 10200000 Nmm
M_{t}
                                                   M_{v}
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                           \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                           \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                       \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5480000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                               = 73000 \text{ N/mm}^2
          = 137000 N
Ν
                                                                                                                                                                     G
                                                                                                                        = 200000 \text{ N/mm}^2
          = 8620000 Nmm
                                                                 = 10500000 Nmm
M_{t}
                                                      M_{v}
                                                                                                             Ε
                                                                                                             \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                     \sigma_{\text{mises}}=
                                                                                                             \tau(M_t) =
y_{G}
                                                                                                                                                                     \sigma_{\text{st.ven}}=
                                                                                                             σ
                                                      α
                                                                                                             \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                      \sigma(N) =
                                                                                                             \sigma_{\text{II}}
                                                      \sigma(M_x)=
                                                                                                              \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8930000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 165000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 11800000 Nmm
                                                            = 7660000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5680000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 174000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 11600000 Nmm
                                                             = 8040000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                    = 73000 \text{ N/mm}^2
          = 180000 N
Ν
                                                                                                                                                          G
                                                                                                                 = 200000 \text{ N/mm}^2
          = 7670000 Nmm
                                                             = 8330000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                          \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                          \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                       \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4980000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                              = 73000 \text{ N/mm}^2
         = 126000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 7500000 Nmm
                                                           = 8510000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}}=
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8180000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 153000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10000000 Nmm
                                                          = 6130000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5180000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                              = 73000 \text{ N/mm}^2
        = 160000 N
Ν
                                                                                                                                      G
                                                                                                  = 200000 \text{ N/mm}^2
        = 9920000 Nmm
                                                     = 6400000 Nmm
M₊
                                                                                         Ε
                                                                                         \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}}=
                                                                                         \tau(M_t) =
y_{G}
                                                                                         σ
                                                                                         \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
                                                                                         \sigma_{tresca} =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                                24.05.17
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4890000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 165000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 6520000 Nmm
                                                            = 6590000 Nmm
M₊
                                                   M_{v}
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{l}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4480000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                      = 73000 \text{ N/mm}^2
          = 114000 N
Ν
                                                                                                                                                            G
                                                                                                                  = 200000 \text{ N/mm}^2
                                                             = 6690000 Nmm
         = 6370000 Nmm
                                                   M_{v}
M₊
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                            \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                            \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                        \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 209000 N	M _x	= 14200000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
M_t	= 16900000 Nmm	M_{v}	= 9850000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                  = 73000 \text{ N/mm}^2
Ν
          = 215000 N
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 16300000 Nmm
                                                            = 10100000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}}=
                                                                                                     \tau(M_t) =
y_{G}
                                                                                                                                                        \sigma_{\text{st.ven}}=
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8030000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
Ν
          = 218000 N
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 10500000 Nmm
                                                            = 10200000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7060000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 149000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
          = 10000000 Nmm
                                                             = 10200000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 13500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                           = 73000 \text{ N/mm}^2
        = 201000 N
Ν
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 15200000 Nmm
                                                    = 8580000 Nmm
                                           M_{v}
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            24.05.17
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8340000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 73000 \text{ N/mm}^2
         = 206000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 14700000 Nmm
                                                         = 8810000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7570000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9480000 Nmm
                                                          = 8890000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}}=
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6620000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 141000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9000000 Nmm
                                                          = 8820000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

24.05.17

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 12900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                         = 73000 \text{ N/mm}^2
        = 193000 N
Ν
                                                                                                                                G
                                                                                              = 200000 \text{ N/mm}^2
        = 13500000 Nmm
                                                   = 7360000 Nmm
M₊
                                                                                     Ε
                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                \sigma_{\text{mises}} =
                                                                                     \tau(M_t) =
y_{G}
                                                                                     σ
                                          α
                                                                                     \sigma_{l}
                                          \sigma(N) =
                                                                                     \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                         24.05.17
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7880000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 196000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 13100000 Nmm
                                                          = 7550000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7120000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 73000 \text{ N/mm}^2
         = 198000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8420000 Nmm
                                                           = 7580000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6200000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                = 73000 \text{ N/mm}^2
         = 133000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 8000000 Nmm
                                                            = 7480000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 12200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 73000 \text{ N/mm}^2
         = 186000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11900000 Nmm
                                                          = 6160000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7430000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 188000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 11400000 Nmm
                                                          = 6340000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6680000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 73000 \text{ N/mm}^2
         = 188000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 7370000 Nmm
                                                          = 6360000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5770000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 125000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 7000000 Nmm
                                                          = 6230000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 195000 N	M _×	= 9800000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 15400000 Nmm	M_{v}	= 12400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 207000 N	M _×	= 6220000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 15000000 Nmm	M_{v}	= 13200000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5880000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                      = 73000 \text{ N/mm}^2
Ν
          = 218000 N
                                                                                                                                                            G
                                                                                                                  = 200000 \text{ N/mm}^2
         = 9730000 Nmm
                                                              = 13800000 Nmm
M_{t}
                                                    M_{v}
                                                                                                        Ε
                                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                            \sigma_{\text{mises}}=
                                                                                                        \tau(M_t) =
y_{G}
                                                                                                                                                            \sigma_{\text{st.ven}}=
                                                                                                        σ
                                                    α
                                                                                                        \sigma_{\text{I}}
J_{xx}
                                                    \sigma(N) =
                                                                                                        \sigma_{\text{II}}
                                                    \sigma(M_x)=
                                                                                                        \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 155000 N	M _×	= 5350000 Nmm	σ_{a}	= 260 N/mm ²	G	= 73000 1	N/mm ²
M_t	= 9340000 Nmm	M_{v}	= 14200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27	.03.13	}			24.05.17

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9090000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                                = 73000 \text{ N/mm}^2
          = 182000 N
Ν
                                                                                                                                                                     G
                                                                                                                         = 200000 \text{ N/mm}^2
          = 13800000 Nmm
                                                                 = 10500000 Nmm
M_{t}
                                                       M_{v}
                                                                                                              Ε
                                                                                                              \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                     \sigma_{\text{mises}}=
                                                                                                              \tau(M_t) =
y_{G}
                                                                                                                                                                     \sigma_{\text{st.ven}}=
                                                                                                              σ
                                                       α
                                                                                                              \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                       \sigma(N) =
                                                                                                              \sigma_{\text{II}}
                                                       \sigma(M_x)=
                                                                                                              \sigma_{tresca}=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 193000 N	M _×	= 5750000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 13400000 Nmm	M_{v}^{λ}	= 11100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{sca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 202000 N	M _x	= 5420000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
M_t	= 8720000 Nmm	M_{v}	= 11600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$.) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4940000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                      = 73000 \text{ N/mm}^2
          = 143000 N
Ν
                                                                                                                                                            G
                                                                                                                  = 200000 \text{ N/mm}^2
         = 8360000 Nmm
                                                             = 11900000 Nmm
M_{t}
                                                   M_{v}
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                            \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                            \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                        \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8390000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 169000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 12200000 Nmm
                                                            = 8810000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5290000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                     = 73000 \text{ N/mm}^2
          = 179000 N
Ν
                                                                                                                                                           G
                                                                                                                 = 200000 \text{ N/mm}^2
          = 11900000 Nmm
                                                             = 9270000 Nmm
                                                   M_{v}
M₊
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                           \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                           \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                       \sigma_{tresca} =
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					ر م	_	2
Ν	= 186000 N	M_{x}	= 4960000 Nmm	σ_a	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 7720000 Nmm	M_y	= 9600000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> .	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		
					_		

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4510000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 131000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 7390000 Nmm
                                                            = 9820000 Nmm
M_{t}
                                                   M_{v}
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7690000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 73000 \text{ N/mm}^2
          = 157000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
         = 10600000 Nmm
                                                             = 7200000 Nmm
                                                   M_{v}
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}}=
                                                             =
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4830000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                     = 73000 \text{ N/mm}^2
          = 164000 N
Ν
                                                                                                                                                           G
                                                                                                                 = 200000 \text{ N/mm}^2
          = 10300000 Nmm
                                                             = 7530000 Nmm
                                                   M_{v}
M₊
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                           \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                           \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                       \sigma_{tresca} =
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4510000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                     = 73000 \text{ N/mm}^2
          = 170000 N
Ν
                                                                                                                                                           G
                                                                                                                 = 200000 \text{ N/mm}^2
         = 6710000 Nmm
                                                              = 7770000 Nmm
M_{t}
                                                   M_{v}
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                           \sigma_{\text{mises}}=
                                                                                                       \tau(M_t) =
y_{G}
                                                                                                                                                           \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                   α
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                       \sigma_{tresca} =
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4070000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                 = 73000 \text{ N/mm}^2
         = 119000 N
Ν
                                                                                                                                                       G
                                                                                                               = 200000 \text{ N/mm}^2
         = 6430000 Nmm
                                                            = 7900000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}}=
                                                            =
                                                                                                     \tau(M_t) =
y_{G}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 16600000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                            = 73000 \text{ N/mm}^2
Ν
         = 217000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16600000 Nmm
                                                          = 8780000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 10300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 73000 \text{ N/mm}^2
Ν
         = 223000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16300000 Nmm
                                                          = 9150000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9670000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 226000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10700000 Nmm
                                                          = 9300000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8730000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 154000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10500000 Nmm
                                                          = 9300000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 15900000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
Ν
         = 211000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 14700000 Nmm
                                                           = 7450000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9890000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
Ν
         = 215000 N
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 14500000 Nmm
                                                          = 7740000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9140000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 73000 \text{ N/mm}^2
Ν
         = 216000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 9480000 Nmm
                                                          = 7910000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8210000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
Ν
         = 147000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9270000 Nmm
                                                           = 7880000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 204000 N	M _×	= 15100000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 12800000 Nmm	M_{v}^{γ}	= 6210000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 208000 N	M _x	= 9410000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
M_t	= 12600000 Nmm	M_{v}	= 6420000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8660000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 73000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8260000 Nmm
                                                           = 6540000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7700000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                              = 73000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8040000 Nmm
                                                           = 6550000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 198000 N	M _x	= 14400000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 10900000 Nmm	M_{v}	= 5050000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 201000 N	M _×	= 8920000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 10700000 Nmm	M_{v}^{λ}	= 5200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =	-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8170000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 73000 \text{ N/mm}^2
         = 200000 N
Ν
                                                                                                                                                     G
                                                                                                            = 200000 \text{ N/mm}^2
         = 7030000 Nmm
                                                           = 5270000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_{\star}) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

24.05.17

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 133000 N	M _x	= 7240000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 6850000 Nmm	M_{v}	= 5240000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_G	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Ν $= 200000 \text{ N/mm}^2$ = 15100000 Nmm = 12800000 Nmm M_{t} M_{v} Ε $\sigma(M_v)=$ X_{G} σ_{mises} = $\tau(M_t) =$ y_{G} $\sigma_{\text{st.ven}}$ = σ α σ_{I} J_{xx} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$ $\sigma_{tresca} =$

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					9		2
Ν	= 208000 N	M_{x}	= 5880000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 14500000 Nmm	M_{v}	= 13500000 Nmm		$= 200000 \text{ N/mm}^2$		
\mathbf{x}_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	sca=		
					_		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i aconanyo. i	4PP1 00	ornaro ramaamonto aoi		o. tangonziani			•
Ν	= 220000 N	M_x	= 5500000 Nmm	σ_{a}	= 260 N/mm ²	G	= 73000 1	N/mm ²
M_t	= 9360000 Nmm	M_{v}	= 14100000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M	,)=	σ_{mise}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_{v}	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27.	.03.13				24.05.17

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ic	.pp.000	ornaro rariaarriorno aor		or tarigoriziani			•
Ν	= 156000 N	M_x	= 4930000 Nmm	σ_{a}	= 260 N/mm ²	G	= 73000 N	√mm²
M_t	= 8880000 Nmm	M_{v}	= 14600000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	$\sigma(M_v)$,)=	σ_{mise}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)$)=	σ_{tresc}	_a =			
	dolfo Zavelani Rossi, F	Politecr	nico di Milano, vers.27.	03.13				24.05.17

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8650000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                    = 73000 \text{ N/mm}^2
         = 183000 N
Ν
                                                                                                                                           G
                                                                                                     = 200000 \text{ N/mm}^2
         = 13500000 Nmm
                                                       = 10800000 Nmm
M_{t}
                                              M_{v}
                                                                                            Ε
                                                                                            \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{mises}}=
                                                                                            \tau(M_t) =
y_{G}
                                                                                                                                           \sigma_{\text{st.ven}}=
                                                                                            σ
                                              α
                                                                                            \sigma_{\text{I}}
J_{xx}
                                              \sigma(N) =
                                                                                            \sigma_{\text{II}}
                                              \sigma(M_x)=
                                                                                             \sigma_{tresca} =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                                      24.05.17
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 193000 N	M _×	= 5440000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 73000 \text{ N/mm}^2$
M_t	= 13100000 Nmm	M_{v}	= 11400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		