

Auditorne vežbe AU-0[0] Pregled kursa i priprema

Pregled kursa

- □ Platforma: Canvas FTN, kurs AADSP2 https://canvas.ftn.uns.ac.rs/courses/119
- □ Auditorne vežbe (priprema za lab. vežbe)
- □ Laboratorijske vežbe (priprema za finalni projekat)
- ☐ Predispozicije:
 - vladanje C jezikom (i delimično C++)
 - o razumevanje osnova digitalne obrade signala
 - o rad u okruženjima Visual Studio i Eclipse
 - o podsetnici:
 - c_podsetnik.pdf
 - Osnovne_komponente_digitalne_obrade_signala.pdf

Pregled bodova

- ☐ Predispit 60+ bodova (potrebno 31 bod za prolaz):
 - Predispit PE x.0: Testovi u sklopu auditornih vežbi 3 boda
 - Predispit PE x.1: Aktivnost u sklopu lab. vežbi 6 bodova
 - Predispit PE x.2: Predispitni zadatak 6 bodova (2b prolaz)
 - Predispit PE x.3: Finalni projekat 45 bodova (22b prolaz)
 - Predispit PE x.4*: Bonus testovi tokom predavanja (5-7b)
- ☐ Ispit 40 bodova (potrebno 20 bodova za prolaz).
 - Teorijski ispit, online, Canvas FTN.

Raspored vežbi i aktivnosti

Dan	Auditorna priprema	Laboratorijska vežba	Predispitne obaveze
#0 – Pre 07.11.	AU-0		
#1 – 07.11.	AU-1	VE-1	PE 1.0 PE 1.1
#2 – 08.11.	AU-2	VE-2	PE 2.0 PE 2.1
#3 – 09.11.		VE-3	PE 3.1
#4 – 10.11.	AU-4	VE-4	PE 4.0 PE 4.1 PE 4.2
#5 – 14.11.	AU-5	VE-5	PE 5.0 PE 5.1
#6 – 15.11.	AU-6	VE-6	PE 6.0 PE 6.1
#7 – 16.11.	AU-7	VE-7	PE 7.0 PE 7.1
#8 – 17.11.	AU-8	VE-8	PE 8.0 PE 8.1
#9 – 18.11.		VE-9	PE 9.1 PE 9.3*
#10 – 21.11.	AU-A	VE-A	PE A.1

Raspored vežbi i aktivnosti

Dan	Auditorna priprema	Laboratorijska vežba	Aktivnost
#11 – 22.11.			PE 11.3*
#12 – 23.11.			PE 12.3*
#13 – 24.11.			PE 13.3*
#14 – 25.11.			PE 14.3*
#15 – 28.11.			PE 15.3*
#16 – 29.11.			PE 16.3*
#17 – 30.11.			PE 17.3*
#18 – 01.12. i 02.12			PE 18.3 (odbrana projekata)

^{*}PE x.3 – samostalni rad na izradi projektnih zadataka i konsultacije.

AADSP2 nastavno osoblje

- ☐ Predavanja:
 - o Doc. dr Jelena Kovačević: jelena.kovacevic@rt-rk.com
- □ Vežbe:
 - Azra Samac: azra.samac@rt-rk.com
 - Andrej Popović: <u>andrej.popovic@rt-rk.com</u>
 - Nenad Pekez: <u>nenad.pekez@rt-rk.com</u>

Auditorne vežbe AU-0[1]
Pregled komercijalnih uređaja i top-dijagram

Cirrus Logic DSP na tržištu

- ☐ Cirrus Logic DSP CS497xx, CS498xx
- □ AVR

(pojačalo)

□ Saundbar

CS497004 DSP u uređaju

Slika 2.1 – CS497004 DSP u AVR uređaju

Firmverski moduli u CS497xx

Fig. 2. DSP application example [8]

Auditorne vežbe AU-0[2]
ARM FIR vs CS FIR

Zašto CS497xx DSP?

□ Specijalizovana namenska hardverska arhitektura za DSP optimizacije!

FIR filter C


```
/* calc FIR and shift data */
ret val = 0;
for (i = n \text{ coeff} - 1; i >= 0; i--)
    ret val += coeffs[i] * history[state];
    if (++state >= n coeff) /* incr state and check for wrap */
        state = 0;
*p state = state;
                               /* return new state to caller */
# for k=1,..N-1
# out[n]+=h[k]*in[n-k]
```

FIR filter ARM Cortex-M3


```
# C declaration: int64 t fir64 (const int32 t*
       int32_t* x, uint32 t n);
# Parameters:
     r0: coef ptr
    r1: input ptr
      r2: filter length (must be 4, 8,
                          a multiple of 4)
fir64:
    push {r4-r11}
   mov r12, r2
    mov r3, #0
    mov r2, #0
fir64 loop start:
    ldmia r0!, {r4-r7}
    ldmia r1!, {r8-r11}
    smlal r2, r3, r4, r8
    smlal r2, r3, r5, r9
    smlal r2, r3, r6, r10
    smlal r2, r3, r7, r11
    subs r12, r12, #4
    bgt fir64 loop start
    mov r0, r2
    mov r1, r3
    pop {r4-r11}
    bx lr
```

FIR filter CS497xx


```
do (i4),>block loop
                                                i4=i6
                                                x0=ymem[i2]; i2+=n
   a1 =+ x0;
                                                x1=ymem[i2]; i2+=n
   b1 = + x1;
                                                y0=ymem[i4]; i4+=1
             b0=y0*x1; x1=xmem[i0]; i0=1; y0=ymem[i4]; i4+=1
   a0=y0*x0;
   do (i1),>
     a0+=y0*x1; b0+=y0*x0; x0=xmem[i0]; i0-=1; y0=ymem[i4]; i4+=1
                            x1=xmem[i0]; i0-=1; y0=ymem[i4]; i4+=1
%: a0+=y0*x0; b0+=y0*x1;
   a0+=y0*x1; b0+=y0*x0;
                                                i0+=n
   b1 = + a0; a0 = b1
                             xmem[i0]=a1; i0+=1; ymem[i5]=b1; i5+=n
                             xmem[i0]=a0;
                                          ymem[i5]=b0; i5+=n
%block loop:
                                                xmem[i3]=i0
```

Broj instrukcija po bloku

ARM Cortex-M3

- ■8 instructions per tap/coeff
- \Box For taps = 16, 16 * 8 = 128 instructions per sample
- \square For samples = 32, 32 * 128 = **4096** instructions per block

CS497xx

- ■2 instructions per tap + 2 for pre- and post-fill
- \Box For taps = 16, 16 * 2 + 2 = 34 instructions per sample
- \square For samples = 32, 32 * 34 + 8 = 1096instructions per block

MIPS Profiling

- MIPS Millions of instructions per second
- ☐ Formula za računanje MIPS-a:

$$\circ \mathsf{MIPS} = \frac{\left(\frac{Fs}{Bs}\right) * N}{10^{6}}$$

- Fs frekvencija odabiranja (44k1, 48k...)
- Bs broj semplova po bloku obrade
- N broj instrukcija po bloku obrade

MIPS [ARM M3 vs CS497xx]

ARM Cortex-M3

$$\square MIPS = \frac{\left(\frac{44100}{32}\right) *4096}{10^{6}}$$

$$\square$$
MIPS = 5.64

CS497xx

$$\square MIPS = \frac{\left(\frac{44100}{32}\right) *1096}{10^{6}}$$

$$\square$$
MIPS = 1.51