IV. La Jonction. Jonction PN, diodes et transistors

A. La jonction

- 1. Le premier composant électronique : la diode
 - a. Représentation schématique

Tension U "directe" (dans le bon sens)

& $U > U_T$

Tension U "indirecte" (dans le mauvais sens)

ou $U < U_T$

Equivalent à un interrupteur fermé

Equivalent à un interrupteur ouvert

b. Caractéristiques

C'est une fonction exponentielle de la tension appliquée aux bornes de la diode. Pour simplifier, si $U > U_T$, le courant passe; sinon, il ne passe pas.

Caractéristique de la diode:

$$I = I_{S} \cdot \left[e^{\frac{U}{n \cdot U_{T}}} - 1 \right] (A)$$

 $oxed{I}$: Courant de la diode $oxed{(A)}$

 I_s : Courant inverse de saturation (A)

U: tension aux bornes de la diode (V)

 $\mathbf{U}_{\mathbf{T}}$: tension thermodynamique (\mathbf{V})

n : coefficient d'émission (≈ 1)

2. Comment fonctionne la diode ? La Jonction PN

Soit 2 « portions » de Si dopées P et dopées N. Si ces 2 portions sont jointes l'une à l'autre

Il y a diffusion des h⁺ (très concentrés à gauche) vers la droite et diffusion des e⁻ (très concentrés à droite) vers la gauche

Mais les atomes, eux, sont fixes

ent des zones chargées – et +

La réunon de ces deux zones s'appelle la zone de « charges d'espace, ZCE », de largeur W₀ Il se crée, dans cette ZCE, un champ électrique, dirigé de + vers -

a. La jonction PN en court-circuit :

Que se passe-t-il, en terme d'énergie, dans la ZCE ?

a. La jonction PN en court-circuit :

les 2 niveaux de Fermi (E_{Fp} et E_{Fn}) s'égalisent.

a. La jonction PN en court-circuit :

Les deux parties (P et N) ne sont plus à la même énergie potentielle.

La zone N est tjrs + basse en énergie que la zone P. L'écart dépend des dopages respectifs.

Détails des courants :

La présence d'un champ implique une différence de potentiel, nommée $V\Phi$, donc une barrière d'énergie q $V\Phi$

Il y a alors 2 phénomènes :

1- Un courant dû aux porteurs majoritaires

 I_{M} (les e⁻ d'énergie > E_{c} sautent, ainsi que les h⁺ d'énergie < E_{v})

2- Un courant dû aux porteurs minoritaires entraînés par le champ électrique

l_m

Ces 2 courants se compensent. A l'équilibre,

$$\overrightarrow{l_t} = \overrightarrow{l_M} + \overrightarrow{l_m} = 0$$

b. La jonction PN en polarisation inverse :

Revient à imposer un potentiel V_{inv} + à droite, et – à gauche (donc un champ E_{inv})

c. La jonction PN en polarisation directe:

Revient à imposer un potentiel V_{direct} - à droite, et + à gauche (donc un champ E_{direct})

Cette fois-ci, l'action du champ renforce la polarisation interne.

La barrière de potentiel est bcp. + basse. De nbx. porteurs majoritaires passent dans « le camp adverse **>>**

Dans ce cas, ils se recombinent immédiatement. Cette recombinaison consomme les porteurs.

ly a alors diffusion, pour compenser cette consommation.

B. Les transistors

1. Double jonction NPN: le transistor bipolaire

NPN: correspond à la juxtaposition de 2 jonctions PN, tête-bêche

a. Représentation schématique

b. Fonctionnement

Ex : jonction BE directe ($V_{BE} > 0$), et jonction BC inverse ($V_{BC} < 0$ ou $V_{CB} > 0$) Dans ce cas : du courant rentre dans le collecteur et dans la base, et ressort par l'émetteur.

c. Explications énergétiques

Jonction passante Jonction bloquée Emetteur N ++ Base P Collecteur N Z.C.E. Base Emetteur Z.C.E. Base Collecteur Е électrons injectés dans la base 0 Mouvement des électrons qui ont pu traverser la base sans se faire recombiner W_B ENERGIE B.CRecombinaison des trous dans SiN Electrons venant de l'émetteur qui B.V. s'ajoutent à la population existante Recombinaison faible des électrons dans la B.C. base SiP car L_n >> WB épaisseur de la base B.V. Génération thermique : courant IS BC I_{S BC} courant inverse de saturation de la jonction B C (base – collecteur)

d. Approche calculatoire

Le courant à l'émetteur l_E provient des électrons injectés dans la base.

Le courant au collecteur l_C provient des électrons qui ont traversé la base sans se faire recombiner.

Ainsi, $I_C < I_E$ puisque une partie est recombinée en passant dans la base.

S'ajoute le courant venant de la base I _{S BC}

On peut alors écrire :

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E + I_{SBC}$$

 $\alpha < 1$: coefficient de transfert en courant

Donc,
$$I_E = \alpha I_E + I_{SBC} + I_B$$
 $I_E = \alpha I_E + I_B$ si on néglige I_{SBC} (très faible) $I_E (\alpha-1) = I_B$ $I_E = 1/(\alpha-1) I_B$ Puis Soit $I_E = \beta I_B$ avec $\beta = 1/(\alpha-1)$

Puisque α est proche de 1, β est grand (100 ou 1000)

Le transistor amplifie donc le courant de base d'un facteur β , dans l'émetteur. La base pilote l'émetteur.

e. Configuration PNP

Ex : jonction BE inverse ($V_{BE} < 0$), et jonction BC directe ($V_{CB} < 0$)

Dans ce cas : du courant rentre dans l'émetteur, et ressort par la base et par le collecteur.

Le PNP est strictement inverse au NPN.

f. Leurs inconvénients et leur remplaçant

Les transistors bipolaires (NPN et PNP) sont aujourd'hui peu utilisés.

- Trops gros
- Trops lents (met en jeu 2 types de porteurs : les e⁻ et h⁺)
- Trops chers

On leur préfère maintenant les transistors unipolaires (FET)

FET = Field Effect Transistor (ne met en jeu qu'1 seul type de porteur, n <u>ou</u> p)

Il existe de nbx. types de FET. Le + répandu : le MIS (Metal-Insulator-Semicon)

En techno Si: MOS (Metal – Oxide – Semicon)

Oxyde: SiO₂ (oxyde de silicium / silicon oxide (gap SiO₂ vers 9 eV : très bon isolant)

2. Le transistor unipolaire (FET)

Autrement appelé : transistor à effet de champ

a. Représentation "physique"

A noter : le pMOS est sur substrat n / le nMOS sur substrat p

pMOS: MOS à canal p / nMOS: MOS à canal n

Voir le fonctionnement ci-après

Comment faire pour que Source et Body, ou Drain et Body, ne soient pas en court-circuit ??

b. Représentation schématique

Les représentations d'un pMOS et d'un nMOS ne diffèrent que pas la présence d'un "petit rond" au niveau de la Grille.

Mais attention, leur fonctionnement est strictement inversé.

c. Fonctionnement

Représentation par les charges piégées

(exemple d'un **pMOS** (pFET))

La diode P+N source-substrat est polarisée en inverse → pas de courant

Zone peuplée P par inversion

- s - + D

Etat ON - S + D

Le courant circule de S vers D

Représentation énergétique

Les deux "représentations théoriques" conduisent aux mêmes effets :

(exemple d'un pMOS)

La diode P+N source-substrat est polarisée en inverse → pas de courant

Le courant circule de S vers D

Prenons maintenant l'exemple d'un nMOS (nFET)

La diode P+N source-substrat est polarisée en inverse \rightarrow pas de courant

Le courant circule de D vers S

Pour résumer :

Pour un **nMOS** (nFET)

$$V_G = 0$$
Etat OFF
$$-S + C$$

Le courant circule de D vers S

Pour un **pMOS** (pFET)

$$V_{G} = 0$$
Etat OFF - S + D

Le courant circule de S vers D

Туре	Grille	Etat
nMOS	$V_G = 0$ ou < 0	Off
	$V_G > 0$	On
pMOS	$V_G = 0$ ou > 0	Off
	$V_G < 0$	On

d. Exemple d'application : portes logiques

Cas le plus simple : l'inverseur logique

 V^+ : alimentation positive ($V^+ > 0$) V^- : alimentation négative ($V^- < 0$)

Entrée (Input)	Sortie (Output)
$E = 0 \ (V_E = V^-)$	$S = 1 \ (V_S = V^+)$
$E = 1 \ (V_E = V^*)$	$S = 0 \ (V_S = V^-)$

Туре	Grille	Etat
nMOS	$V_G = 0$ ou < 0	Off
	$V_G > 0$	On
pMOS	$V_{G} = 0 \text{ ou} > 0$	Off
	$V_G < 0$	On

Туре	Grille	Etat
nMOS	$V_G = 0$ ou < 0	Off
	V _G > 0	On
pMOS	$V_{G} = 0 \text{ ou } > 0$	Off
	$V_G < 0$	On

Entrée (Input)	Sortie (Output)
$E = 0 \ (V_E = V^-)$	$S = 1 \ (V_S = V^+)$
$E = 1 \ (V_E = V^+)$	$S = 0 \ (V_S = V^-)$

Туре	Grille	Etat
nMOS	$V_G = 0$ ou < 0	Off
	V _G > 0	On
pMOS	$V_{G} = 0 \text{ ou } > 0$	Off
	V _G < 0	On

Entrée (Input)	Sortie (Output)
$E = 0 \ (V_E = V^-)$	$S = 1 \ (V_S = V^+)$
$E = 1 \ (V_E = V^+)$	$S = 0 \ (V_S = V^-)$

La porte NAND

Entrée		Sortie
А	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

La porte AND

Entrée		Sortie
Α	В	A ET B
0	0	0
0	1	0
1	0	0
1	1	1

e. Intégration

Dans les circuits utilisant la techno. MOS, il y a combinaison de nMOS et pMOS

Technologie C-MOS (C : complementary)

Cette techno. permet d'utiliser 1 même Body pour les 2 types de transistors, en les isolant les uns des autres par une jonction PN

On dope N (on diffuse un dopant N) sur une partie (qui constitue un caisson N dans un substrat P). On a partout une jonction PN qui, polarisée en court-circuit, sera bloquée.

On diffuse ensuite les S et D en P⁺ (⁺ car contact avec Al, dopant N ...) On diffuse ensuite la grille (qui sera enterrée dans le SiO₂) A faire en exercice: avec un substrat Si N, construire un nMOS

Voir bouquin NGO

Ne pas faire cela en cours :

En général, on relie la source à la masse, ainsi que le substrat. On porte le drain à un potentiel supérieur de ceux de la source et du substrat, créant ainsi un champ électrostatique entre la source, le substrat et le drain.

Au repos, deux cas sont possibles :

Ou bien la capacité grille/substrat est flottante à vide : il n'y a quasiment pas de porteurs pour conduire un éventuel courant, les deux jonctions source-substrat et substrat-drain sont polarisées en inverse ; dans ce cas, on parle d'un MOSFET à enrichissement ; Ou bien la capacité grille/substrat est en inversion, ce qui signifie que des électrons du substrat sont attirés au voisinage de l'oxyde. Ceux-ci constituent un afflux de porteurs minoritaires qui vont être disponible pour conduire le courant entre source et drain ; le transistor est normalement conducteur, on parle de MOSFET à déplétion (ou à appur le de mosfet de la capacité grille/substrat est en inversion, ce qui signifie que des électrons du substrat sont attirés au voisinage de l'oxyde.

Dans les deux cas, le courant source-drain est modulé par la tension de grille. Dans le type à entraissement, il faut appliquer une tension positive à la grille pour amener la capacité grille-substrat en inversion : le transiste de luit partir d'un certain seuil. Dans le type à déplétion, le transistor est conducteur lorsque la grille est à la masse, il faut donc par le tension négative pour faire cesser la conduction.

Lorsque le transistor conduit, une augmentation de la polarisation entre le drain de a some augmente le courant (non-linéairement). À partir d'une tension de drain supérieure à la tension de grille mois la tension de viul à champ électrostatique entre le substrat et la grille s'inverse localement au voisinage du drain. Le canal d'électrons prispartit, le courant sature. Toute augmentation de la tension de drain au-delà de la tension de saturation conduit à une de tritle en le plus précoce du canal d'électrons, et à une augmentation faible de numer du curant.

À tension source-drain constante, le course le serration varie comme le carré de la tension grille-substrat.

Zone linéaire

$$I_{D} = \beta \left(V_{GS} - \frac{1}{2} V_{DS} \right) V_{DS}$$

$$\beta = L$$

W: largeur du canal L: longueur du canal

 μ : mobilité des porteurs de charge (mobilité des électrons dans le cas d'un MOSFET à canal N)

 C_{ox} : capacité d'oxyde de grille

$$I_{DS_{SAT}} = \frac{1}{2}\beta (V_{GS} - V_{TH})^{2}$$

$$I_{DS} = I_{DS_{SAT}} \frac{L}{L - \lambda}$$

$$\lambda = \lambda_{0} ln \left(1 + \frac{V_{DS} - V_{DS_{SAT}}}{V_{DS_{SAT}}} \right)$$

$$\lambda_{0} = \sqrt{\frac{\epsilon_{si}}{\epsilon_{ox}} x_{j} T_{ox}}$$

On se souvient du 1er cours :

4. LED (Light Emitting Diode)

On reprend le schéma de la jonction PN (diode)

5. Cellule photovoltaïque

On reprend le schéma de la jonction PN

