Final Exam – due today by 12:00 PM midnight

The exam has **4 problems** on **4 pages**. The maximum credit of the exam is **320 points**. Please submit your exam as a single file (not multiple files) using blackboard, Course Materials / Final Exam.

Problem 1) Sphere rolling on track [80 points]

A solid sphere of mass M = 1 kg with gravitational potential energy U(y) = Mgy rolls without slipping on the track shown below, starting from <u>rest</u> at point A. Here y is the height of the bottom of the sphere over ground and $g = 9.8 \frac{\text{m}}{\text{s}^2}$ is Earth's acceleration of gravity.

1. Assume that the sphere is rolling with linear speed v.

Show that the total kinetic energy of the sphere is $T = \frac{7}{10} M v^2$.

Hint: The moment of inertia of a solid sphere of mass M and radius R is $I = \frac{2}{5}MR^2$.

Use the no-slip condition $\omega = \frac{v}{R}$ where ω is the angular velocity of the rolling sphere.

- 2. Find the total mechanical energy, E, in units of joules (J), of the sphere.
- 3. Find the linear speed, v, of the sphere at point B.

Problem 2) Line integral of a vector function [80 points]

Consider the vector function $\vec{\mathbf{F}}(x, y, z) = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$.

- 1. Calculate $\nabla \times \mathbf{F}$. Is \mathbf{F} conservative?
- 2. Consider the scalar function U(x, y, z) = -xyz. Show: $\vec{\mathbf{F}} = -\vec{\nabla}U$.
- 3. Use the result from part 2 to find the line integral $\int_C d\vec{\mathbf{r}} \cdot \vec{\mathbf{F}}(\vec{\mathbf{r}})$ along an arbitrary curve

 $C: O \to \vec{P}$ from the origin $O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ to an arbitrary point $\vec{P} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ (see figure below).

Hint: It is not required to calculate the line integral. You may directly express $\int_C d\vec{\mathbf{r}} \cdot \vec{\mathbf{F}}(\vec{\mathbf{r}})$ in terms of U by interpreting $\vec{\mathbf{F}}$ as a force and U as the associated potential energy.

Problem 3) Kepler problem [80 points]

Consider a planet of mass m with position vector $\vec{\mathbf{r}}(t) = r(t)\hat{\mathbf{r}}(t)$ moving in the xy - plane. The planet is subject to the attractive gravitational force towards the star at the origin O of the xy - plane. The potential energy of the planet is $U(r) = -\frac{k}{r}$ with a constant k > 0.

1. Find the angular momentum $\vec{L} = \vec{r} \times \vec{p}$ of the planet using polar coordinates.

Hint: Use
$$\vec{\mathbf{r}} = r \, \hat{\mathbf{r}}$$
, $\vec{\mathbf{p}} = m \frac{d}{dt} \vec{\mathbf{r}}$, $\frac{d}{dt} \hat{\mathbf{r}} = \dot{\phi} \hat{\phi}$, and $\hat{\mathbf{r}} \times \hat{\phi} = \hat{\mathbf{z}}$. Result: $\vec{\mathbf{L}} = L_z \hat{\mathbf{z}}$ with $L_z = m r^2 \dot{\phi}$.

- 2. Find the force $\vec{\mathbf{F}} = -\vec{\nabla}U(r)$ on the planet.
- 3. Find the Lagrange function $\mathcal{L}(r,\dot{r},\dot{\phi}) = T U$ for the two coordinates r,ϕ .
- 4. Find the Euler-Lagrange (EL) equation for ϕ (the ϕ equation) for the Lagrange function found in part 3. Show that the ϕ equation implies that L_z from part 1 is conserved.
- 5. Find the EL equation for r (the r- equation) for the Lagrange function found in part 3. Show that the r- equation can be brought into the form $m\ddot{r} = -\frac{d}{dr}U_{eff}(r)$ with the effective potential $U_{eff}(r) = -\frac{k}{r} + \frac{L_z^2}{2m} \frac{1}{r^2}$ with L_z from part 1.
- 6. Qualitatively sketch the effective potential $U_{\it eff}(r)$ found in part 5 as a function of r.
- 7. Consider the special case of a <u>circular</u> orbit with constant radius R. The radius R corresponds to the minimum of $U_{eff}(r)$ found in part 5. Use the condition $\frac{d}{dr}U_{eff}(r)\bigg|_{r=R}=0 \quad \text{to find the (constant) angular velocity } \omega=\dot{\phi} \text{ of the circular orbit.}$

Problem 4) Two carts connected by springs [80 points]

Two carts with equal mass m can move on a horizontal track. The left cart is attached to a fixed wall by a spring with force constant k_1 and the two carts are attached to each other by a spring with force constant k_2 . Assume that $k_1 = 3k_2/2$ by writing $k_1 = 3k$ and $k_2 = 2k$ (with the same constant k for both carts). The displacements from the equilibrium positions of the two carts are k_1 and k_2 , respectively (see figure below).

- 1. Find the Lagrange function $\mathcal{L}(x_1, x_2, \dot{x}_1, \dot{x}_2)$ of the system.
- 2. Bring the Lagrange function to the form $\mathcal{L} = \frac{1}{2} \dot{\vec{x}} \cdot M \dot{\vec{x}} \frac{1}{2} \vec{x} \cdot K \vec{x}$ with the vector $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and identify the mass matrix M and spring matrix K.

Result:
$$M = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$$
, $K = \begin{pmatrix} 5k & -2k \\ -2k & 2k \end{pmatrix}$.

- 3. Find the two eigenfrequencies ω_1 , ω_2 from $\det(K \omega^2 M) = 0$.
- 4. Find the associated eigenvectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$ from $\left(K \omega^2 M\right) \vec{\mathbf{v}} = 0$ with $\omega = \omega_1$ and $\omega = \omega_2$, respectively. Describe the normal modes of the system associated with these eigenvectors.