

Clustering: Introduction

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- What is cluster analysis?
- Why clustering?
- What is good clustering?
- How to manage data types?
- What are the major clustering approaches?

- □ A cluster is a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - ► Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering = Unsupervised learning: Finds "natural" grouping of instances given un-labeled data

- Many different method and algorithms:
 - For numeric and/or symbolic data
 - Deterministic vs. probabilistic
 - ► Exclusive vs. overlapping
 - ▶ Hierarchical vs. flat
 - ► Top-down vs. bottom-up

Clusters: exclusive vs. overlapping

Overlapping

Non-overlapping

Clustering: Evaluation

- Manual inspection
- Benchmarking on existing labels
- Cluster quality measures
 - distance measures
 - high similarity within a cluster, low across clusters

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- □ City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

- A good clustering consists of high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation
- ☐ The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- ☐ There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, Boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- ☐ It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data

Outlook	Temperature	Humidity	Windy	Play	
Sunny	Hot	High	False	No	
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	Normal	False	Yes	

Dissimilarity matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Data matrix

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

- Standardize data
 - Calculate the mean absolute deviation,

$$S_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

- where $m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$
- ► Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- Distances are normally used to measure the similarity or dissimilarity between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

- □ where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer
- \square If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

 \square If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \ge 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- ☐ Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Contingency table for binary data:

	1	0	sum	
1	а	b	a+b	
0	С	d	c+d	
sum	a+c	b+d	p	

□ Distance measure for symmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c}$$

□ Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Example of Dissimilarity in Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Υ	Ν	Р	N	Ν	N
Mary	F	Υ	N	Р	N	Р	N
Jim	M	Υ	Р	N	N	N	N

- Gender is a symmetric attribute
- Remaining attributes are asymmetric binary
- Let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

- □ A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

- An ordinal variable can be discrete or continuous
- ☐ Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace xif by their rank

$$r_{if} \in \{1, ..., M_f\}$$

map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for intervalscaled variables

- □ Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

treat them as continuous ordinal data treat their rank as interval-scaled

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- ▶ f is binary or nominal: $d_{ii}(f) = 0$ if $x_{if} = x_{if}$, or $d_{ij}(f) = 1$ otherwise
- ▶ f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks rif and
 - and treat z_{if} as interval-scaled $Z_{if} = \frac{V_{if} 1}{M_f 1}$

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$$

A variant: Tanimoto coefficient

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$$

- Partitioning approach:
 - ► Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - ► Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - ▶ Typical methods: DBSACN, OPTICS, DenClue

- ☐ Grid-based approach
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based
 - ▶ A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - ▶ Typical methods: EM, SOM, COBWEB
- Frequent pattern-based
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- User-guided or constraint-based
 - Clustering by considering user-specified or applicationspecific constraints
 - ▶ Typical methods: COD (obstacles), constrained clustering

- Clusters are collection of data objects
- Objects should be
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis searches for similarities between data according to the characteristics found in the data and groups similar data objects into clusters
- □ Similarity is defined in terms of distance between objects and between clusters
- Several approaches: partition-based, hierarchical, density-based, model-based, etc.