Bagging

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

DT problems

- Overfitting
- **▶** Unstable
 - ✓ slight changes of the data => different tree structures

Bias-Variance decomposition

- Expected loss
 - ✓ bias: how wrong the expected prediction is
 - ✓ **variance**: the amount of variability in the predictions
 - ✓ **Bayes error**: the inherent unpredictability of the targets (e.g. noise)

$$\mathbb{E}[(y-t)^2] = (y^* - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t)$$
bias variance Bayes error

Ensembles

- → Set of hypotheses (e.g. classifiers)
 - ✓ individual predictions are combined into a final prediction, e.g. majority vote
- **→** Bagging (bootstrap aggregation)
 - ✓ train models independently (in parallel) on random subsets of data
 - ✓ <u>variance-reduction</u> technique

Boosting

- √ train weak models sequentially, each focusing on examples misclassified by previous models
- ✓ <u>bias-reduction</u> technique

Netflix prize

Bootstrapping

- Assuming a dataset \mathcal{D} with n examples
- Generate *m* datasets
 - ✓ sample n instances from \mathcal{D} with replacement (bootstrap samples)
 - ✓ some elements will appear multiple times
 - ✓ some elements may not appear at all

probability of each element not being selected: $\left(1 - \frac{1}{n}\right)^n$ 36.8% for large n

Exercise

- Write a script that generates a random sequence of N elements and creates M bootstrap samples from that sequence
 - ✓ can use random, randint and random, choices

Random Forests

Random Forest

- **▶** Ensemble
 - ✓ create *m* trees trained from bootstrap "samples"
 - ✓ majority vote for prediction
- ▶ Benefits
 - ✓ reduces overfitting low variance, however it has little effect on bias
- Combines example diversity with feature diversity

Algorithm

Algorithm RandomForest(D, T, d) – train an ensemble of tree models from bootstrap samples and random subspaces.

Input : data set D; ensemble size T; subspace dimension d.

Output: ensemble of tree models whose predictions are to be combined by voting or averaging.

for t = 1 to T do

build a bootstrap sample D_t from D by sampling |D| data points with replacement;

select d features at random and reduce dimensionality of D_t accordingly; train a tree model M_t on D_t without pruning;

end

return $\{M_t | 1 \le t \le T\}$

from: Machine Learning Making Sense of Data, http://people.cs.bris.ac.uk/~flach/mlbook

Issues

- Fitting ensembles can be computationally intensive
 - ✓ can use *max_depth* to alleviate
- Naively averaging or taking a majority both may not be optimal
 - ✓ stay tuned: **boosting**