Lecture 12: Dielectrics and the Equation of Continuity

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

- Polarization and Dielectric Constant
- Dielectric Breakdown
- 3 Conservation of Charge and the Equation of Continuity
- Boundary Condtions for Electrostatics

Polarization of a Dielectric

Dielectric Breakdown

The **dielectric strength** is the maximum electric field that a dielectric can withstand without electrical breakdown.

Table of Dielectrics

Material	Dielectric constant ϵ_r	Dielectric strength ($ imes 10^6$ V/m)
Vacuum	1	∞
Dry air (1 atm)	1.00059	3.0
Teflon TM	2.1	60 to 173
Paraffin	2.3	11
Silicon oil	2.5	10 to 15
Polystyrene	2.56	19.7
Nylon	3.4	14
Paper	3.7	16
Fused quartz	3.78	8
Glass	4 to 6	9.8 to 13.8
Concrete	4.5	_
Diamond	5.5	2,000
Mica	6.0	118
Water	80	_
Titanium dioxide	86 to 173	_
Strontium titanate	310	8
Barium titanate	1,200 to 10,000	_
Calcium copper titanate	> 250,000	-

Conservation of Charge and the Equation of Continuity

Charges cannot be created or destroyed.

What is the circuit equivalent of this law?

Relaxation Time

Consider a problem where charges are introduced into the interior of a conductor during the time t < 0. What happens for t > 0?

Relaxation Time

Relaxation time is the time it takes a charge density placed in the interior of a material to drop to $e^{-1} = 36.8\%$ of its original value.

Boundary Conditions: Dielectric-Dielectric Interface

Consider an interface between two dielectric materials, and apply

$$\oint_C \mathbf{E} \cdot d\mathbf{\ell} = 0$$

Boundary Conditions: Dielectric-Dielectric Interface

Consider an interface between two dielectric materials, and apply **Gauss'** Law.

Boundary Conditions: Dielectric-Conductor Interface

