

RADIO TEST REPORT

Report No.: DL-20210624009-4E

Applicant: Nebra Ltd

Address: Unit 4 Bells Yew Green Business Court, Bells Yew Green, East Sussex, United Kingdom

Manufacturer: Shenzhen Eastech Company Limited.

Address: 2nd floor, 3rd building, Baishixia Development Area, Fuyong Street, Bao'an District,

Shenzhen City, Guangdong Province, China.

EUT: 150Mbps 2 in 1 Bluetooth wifi adapter

Trade Mark: N/A

Model Number: FX-8723B

Date of Receipt: Jun. 17, 2021

Test Date: Jun. 17, 2021 - Jun. 24, 2021

Date of Report: Jun. 24, 2021

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong

Street, Longgang District, Shenzhen, Guangdong, China

Applicable

Standards: ETSI EN 300 328 V2.2.2 (2019-07)

Test Result: Pass

Report Number: DL-20210624009-4E

Prepared (Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Approved

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 1 of 40

TABLE OF CONTENT

Tes	st Report Declaration Page
	VERSION
2.	TEST SUMMARY
3.	
	TEST INSTRUMENT USED1
5.	RF OUTPUT POWER12
6.	DUTY CYCLE, TX-SEQUENCE, TX-GAP14
7.	ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE15
8.	HOPPING FREQUENCY SEPARATION17
9.	ADAPTIVITY18
10.	OCCUPIED CHANNEL BANDWIDTH20
11.	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN2
12.	
13.	RECEIVER SPURIOUS EMISSIONS28
14.	RECEIVER BLOCKING32
15.	GEO-LOCATION CAPABILITY3
16.	SETUP PHOTOGRAPHS36
17	FUT PHOTOGRAPHS 3

Report No.: DL-20210624009-4E

1. VERSION

Version No.	Date	Description		
00	Jun. 24, 2021	Original		
9				
- Or	20 x 0 c			

2. TEST SUMMARY

No	Test Item	Clause No	Result
\Diamond_{\wedge}	Transmitter Paramete	ers	Or cost
1	RF output power	4.3.1.2	PASS
2	Duty Cycle, Tx-sequence, Tx-gap	4.3.1.3	N/A
	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	4.3.1.4	PASS
4	Hopping Frequency Separation	4.3.1.5	PASS
5 0	Medium Utilization (MU) factor	4.3.1.6	N/A
6	Adaptivity (Adaptive FHSS)	4.3.1.7	N/A
© 7 °	Occupied Channel Bandwidth	4.3.2.8	PASS
8	Transmitter unwanted emissions in the out-of-band domain	4.3.2.9	PASS
9	Transmitter unwanted emissions in the spurious domain	4.3.2.10	PASS
art.	Receiver Parameter	s c	
9	Receiver spurious emissions	4.3.2.11	PASS
10	Receiver Blocking	4.3.2.12	PASS
11	Geo-location capability	4.3.2.13	N/A

Note: (1)" N/A" denotes test is not applicable in this Test Report

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street,

Longgang District, Shenzhen, Guangdong, China

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 3 of 40

⁽²⁾ Test Facility: Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20210624009-4E

3. GENERAL INFORMATION

3.1 Description of Device (EUT)

EUT: 150Mbps 2 in 1 Bluetooth wifi adapter

Trade Mark: N/A

Model Number: FX-8723B
Test Model: FX-8723B

Model difference: N/A

Power Supply: DC 5V from USB

Receiver Category: 3

Operation Frequency: 2402~2480 MHz

Modulation Type: GFSK, PI/4 DQPSK, 8DPSK

Number of Channel: 79

Bit Rate of Transmitter: 1/2/3Mbps

Antenna Type: Internal Antenna

Antenna Gain: 2dBi
Receiver Category: 1
Hardware Version: --Software Version: ---

Note1: For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

v (Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	21	2423	40	2442	<i></i> 61	2463	
01	2403	22	2424	∂ 41	2443	62	2464	
02	2404	23	2425	42	2444	63	2465	
~~	.X~	O ~ 6	2 ~	~~	× ~	2 ~ CO	~	
18	2420	37	2439	58	2460	76	2478	
19	2421	38	2440	59	2461	77	2479	
_20	2422	39	2441	60	2462	78	2480	

ANNEX E.2

a) The type of wideband data transmission equipment:

FHSS

☐ non-FHSS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 40

Report No.: DL-20210624009-4E

b) In case of FHSS:	
•In case of non-Adaptive FHSS equipment:	
The number of Hopping Frequencies:	
•In case of Adaptive FHSS equipment:	
The maximum number of Hopping Frequencies: 79	
The minimum number of Hopping Frequencies: 79	
•The (average) dwell time:	
c) Adaptive / non-adaptive equipment:	
☐ non-adaptive Equipment	
adaptive Equipment without the possibility to switch to a non-adaptive mode	
adaptive Equipment which can also operate in a non-adaptive mode	
d) In case of adaptive equipment:	
The Channel Occupancy Time implemented by the equipment: ms	
☐ The equipment has implemented an LBT mechanism	
In case of non-FHSS equipment:	
☐ The equipment is Frame Based equipment	
☐ The equipment is Load Based equipment	
☐ The equipment can switch dynamically between Frame Based and Load Based ed	_l uipment
The CCA time implemented by the equipment: µs	
■ The equipment has implemented a DAA mechanism	
☐ The equipment can operate in more than one adaptive mode	
e) In case of non-adaptive Equipment:	
The maximum RF Output Power (e.i.r.p.): -0.73dBm	
The maximum (corresponding) Duty Cycle: %	
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the diffe	erent combinations of
duty cycle and corresponding power levels to be declared):	
f) The worst case operational mode for each of the following tests:	
RF Output Power	
GFSK	
Power Spectral Density	
GFSK O	
Duty cycle, Tx-Sequence, Tx-gap	
GFSK	
Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for	FHSS equipment)
No. 6 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Hopping Frequency Separation (only for FHSS equipment)	
Medium Utilisation	
Wedum ounsation	
Adaptivity & Receiver Blocking	
Adaptivity & Receiver Blooking	
Nominal Channel Bandwidth	
1MHz	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 40

Transmitter unwanted emissions in the OOB domain

Report No.: DL-20210624009-4E

GFSK

Transmitter unwanted emissions in the spurious domain	
S GFSK S S S S S S S S S S S S S S S S S S	
Receiver spurious emissions	
GFSK S S S S S S S S S S S S S S S S S S	
The different transmit operating modes (tick all that apply):	
■ Operating mode 1: Single Antenna Equipment	
■ Equipment with only one antenna	
☐ Equipment with two diversity antennas but only one antenna active at any moment in time	
☐ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only of	ne
antenna is used (e.g. IEEE 802.11™ legacy mode in smart antenna systems)	
☐ Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming	
☐ Single spatial stream/Standard throughput/(e.g. IEEE 802.11™ legacy mode)	
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2	
NOTE1: Add more lines if more channel bandwidths are supported.	
☐ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming	
☐ Single spatial stream/Standard throughput (e.g. IEEE 802.11™ legacy mode)	
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2	
NOTE2: Add more lines if more channel bandwidths are supported.	
In case of Smart Antenna Systems:	
The number of Receive chains:	
The number of Transmit chains:	
☐ symmetrical power distribution	
☐ asymmetrical power distribution	
In case of beam forming, the maximum (additional) beam forming gain: dB	
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.	
Operating Frequency Range(s) of the equipment:	
Operating Frequency Range 1: 2402 MHz to 2480 MHz	
Operating Frequency Range 2: MHz to MHz	
NOTE: Add more lines if more Frequency Ranges are supported.	
Occupied Channel Bandwidth(s):	
Nominal Channel Bandwidth 1: 0.877MHz	
Nominal Channel Bandwidth 2: 1.231MHz	
NOTE: Add more lines if more channel bandwidths are supported.	
Type of Equipment (stand-alone, combined, plug-in radio device, etc.):	
■ Stand-alone	
☐ Combined Equipment	
☐ Plug-in radio device	
☐ Other	
The normal and the extreme operating conditions that apply to the equipment:	
Normal operating conditions (if applicable):	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 6 of 40

Operating temperature:25° C

Report No.: DL-20210624009-4E

Other (please specify	re range: Minimu		imum 55°C
Details provided are			
Provided die		ined (or host) equ	
	_ test jig		× OV cet
intended combina	Y O		ower settings and one or more antenn
emblies and their c	() ~0		
Antenna Type			
■ Integral Antenna	(information to be	e provided in case	of conducted measurements)
Antenna Gain: 2 d	dBi⊘		
If applicable, addi	tional beamformi	ing gain (excludin	g basic antenna gain): dB
☐ Temporary RF co			
☐ No temporary RF	. /		
 Dedicated Antenr 	nas (equipment w	rith antenna conn	ector)
☐ Single power leve	el with correspond	ding antenna(s)	
Multiple power se	ttings and corres	ponding antenna	(s)
Number of differe	nt Power Levels:	D	
Power Level 1:	dBm		
Power Level 2:	dBm		
Power Level 2: Power Level 3:			
Power Level 3:	dBm	ne equipment has	more power levels.
Power Level 3: NOTE 1: Add mor	dBm re lines in case th		more power levels. evels (at antenna connector).
Power Level 3: NOTE 1: Add more NOTE 2: These p	dBm re lines in case th ower levels are c	conducted power I	
Power Level 3: NOTE 1: Add more NOTE 2: These per person of the Power person in th	dBm re lines in case the ower levels are controller er Levels, provide	conducted power le the intended and	evels (at antenna connector).
Power Level 3: NOTE 1: Add more NOTE 2: These per person of the Power Powe	dBm re lines in case the ower levels are common terms are common terms. In the common design of the commo	conducted power le the intended and	evels (at antenna connector). tenna assemblies, their corresponding ga
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p.	dBm re lines in case the lower levels are controller er Levels, provide levels also taking dBm	conducted power I e the intended and g into account the	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0.	dBm re lines in case the lower levels are controller er Levels, provide levels also taking dBm	conducted power I e the intended and g into account the	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable
Power Level 3: NOTE 1: Add more NOTE 2: These period of the Power Level 1: -0. Number of antenna	dBm re lines in case the ower levels are controller tevels, provided levels also taking dBm assemblies provided	conducted power I the intended and g into account the rided for this power	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These period of the Power Level 1: -0. Number of antenna	dBm re lines in case the ower levels are controller tevels, provided levels also taking dBm assemblies provided	e the intended and g into account the vided for this power.	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These per per each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly #	dBm re lines in case the lines in case the lower levels are common levels also taking dBm assemblies provided assemblies provided levels also taking dBm	e the intended and g into account the vided for this power e.i.r.p. (dBm)	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly #	dBm re lines in case the lines in case the lower levels are common levels also taking dBm assemblies provided assemblies provided levels also taking dBm	e the intended and g into account the vided for this power e.i.r.p. (dBm)	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly #	dBm re lines in case the lines in case the lower levels are common levels also taking dBm assemblies provided assemblies provided levels also taking dBm	e the intended and g into account the vided for this power e.i.r.p. (dBm)	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These per per each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly # 1 2 3 4	dBm re lines in case the lines in case the lower levels are considered also taking assemblies provided assemblies provid	e the intended and g into account the vided for this powe e.i.r.p. (dBm) -0.73	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level:
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly # 1 2 3 4	re lines in case the lower levels are common devels are common devels. Provided levels also taking devels al	e the intended and g into account the vided for this powe e.i.r.p. (dBm) -0.73	evels (at antenna connector). tenna assemblies, their corresponding ga beamforming gain (Y) if applicable er level: Part number or model name
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly # 1 2 3 4 NOTE 3: Add more	dBm re lines in case the lines in case the lower levels are considered by the levels also taking assemblies provided by the lambda by the levels also taking assemblies provided by the lambda by the	e the intended and g into account the vided for this power e.i.r.p. (dBm) -0.73	levels (at antenna connector). Itenna assemblies, their corresponding gas beamforming gain (Y) if applicable Iten assemblies, their corresponding gas beamforming gain (Y) if applicable Iter level: Part number or model name Inblies are supported for this power level.
Power Level 3: NOTE 1: Add more NOTE 2: These p For each of the Power the resulting e.i.r.p. Power Level 1: -0. Number of antenna Assembly # 1 2 3 4 NOTE 3: Add more Power Level 2:	dBm re lines in case the lines in case the lower levels are considered by the levels also taking assemblies provided by the lambda by the levels also taking assemblies provided by the lambda by the	e the intended and g into account the vided for this power e.i.r.p. (dBm) -0.73	levels (at antenna connector). Itenna assemblies, their corresponding gas beamforming gain (Y) if applicable er level: Part number or model name Inblies are supported for this power level.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 40

3

NOTE 4: Add more rows in case more antenna assemblies are supported for this power level.

Report No.: DL-20210624009-4E

Power Level 3: dBm Number of antenna assemblies provided for this power level: Assembly # Gain (dBi) e.i.r.p. Part number or model name (dBm) 2 3 4 NOTE 5: Add more rows in case more antenna assemblies are supported for this power level. n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined equipment or test jig in case of plug-in devices: Details provided are for the:

stand-alone equipment combined equipment ☐ test jig Supply Voltage ☐ AC mains State AC voltage DC State DC voltage: 5V In case of DC, indicate the type of power source ☐ Internal Power Supply ☐ External Power Supply or AC/DC adapter □ Battery: V ☐ Other: o) Describe the test modes available which can facilitate testing: The EUT can be into the Engineer mode for testing. p) The equipment type (e.g. Bluetooth®, IEEE 802.11™, IEEE 802.15.4™, proprietary, etc.): Bluetooth q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: ☐ The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user No **ANNEX E.3** From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment. Unless otherwise specified in ETSI EN 300 328, this power setting is to be used for testing against the requirements of ETSI EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also ETSI EN 300 328, clause 5.3.2.3. Highest overall e.i.r.p. value: dBm

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 40

Report No.: DL-20210624009-4E

Corresponding Antenna assembly gain: dBi	Antenna Assembly #:
Corresponding conducted power setting: dBm	Listed as Power Setting #:
(also the power level to be used for testing)	O CON THE STATE OF
× 0 , 5	x OV col
ANNEX E.4.1	
ITU Class(es) of emission:	
Can the transmitter operate unmodulated? ☐ yes ☐	no x
ANNEX E.4.2	
The transmitter is intended for: Continuous duty	
☐ Intermittent duty	
Continuous operation	n possible for testing purposes
ANNEX E.4.3	
The equipment submitted are representative producti	ion models
If not, the equipment submitted are pre-production m	
	production equipment will be identical in all respects wit
the equipment tested	Co.
☐ If not, supply full details	
ANNEX E.4.4	
Spare batteries (e.g. for portable equipment)	
☐ Battery charging device	
☐ External Power Supply or AC/DC adapter	
☐ Test jig or interface box	
RF test fixture (for equipment with integrated antenna	as)
Combined equipment Manufacturer:	at O' CON ST. ST.
Model #:	
Model name:	
☐ User Manual	
☐ Technical documentation (Handbook and circuit diag	rams)
3.2 Tested System Details	
None.	
3.3 Block Diagram of Test Set-up	
Sie Biest Biagram of 1991 Oct up	
EUT	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 9 of 40

Report No.: DL-20210624009-4E

3.4 Test Mode Description

Mode	data rate (Mbps)	Channel	Frequency (MHz)	
-90	\$ D C C C C C C C C C C C C C C C C C C	Low: CH1	2402	
GFSK	0° , 1 0°	Middle: CH39	2441	
	G 1	High: CH78	2480	
Č., Č.	2	Low: CH1	2402	
PI/4 DQPSK	2	Middle: CH39	2441	
	200	High: CH78	2480	
	≥ ♦3 €	Low: CH1	2402	
8DPSK	3 0	Middle: CH39	2441	
	3	High: CH78	2480	

3.5 Test Conditions

	Normal Conditions		Conditions
Tomporatilira rango	25℃	HTHV	DC 5.5V, 55℃°
Temperature range		HTLV C	DC 5.5V, -20C°
Dower oundly	DC 5V	LTLV	DC 4.5V, -20C°
Power supply		C LTHV	DC 4.5V, 55C°

Note 1: The test procedure described in clause 5.1of EN300 328 was used for extreme test procedure. 2: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.6 Test Uncertainty

2.50dB 3.04dB 3.02dB	Polarize: V
	Polarize: V
3.02dB	
	Polarize: H
3.56dB	Polarize: H
3.84dB	Polarize: V
1×10 ⁻⁹	
0.65dB	
0.6C°	
1%	Co
<u>)</u>	0.65dB 0.6C°

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 40

Report No.: DL-20210624009-4E

4. TEST INSTRUMENT USED

For All Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Comprehensive Tester	ROHDE&SCHWAR Z	CMW500	106504	Dec. 07, 2020	Dec. 06, 2021		
Spectrum Analyzer	KEYSIGHT	N9020A	MY55370280	Dec. 07, 2020	Dec. 06, 2021		
Signal Source	Agilent	N5182A	MY46240766	Dec. 07, 2020	Dec. 06, 202		
Signal Source	Agilent	83752B	3610A01631	Dec. 07, 2020	Dec. 06, 202		
Probe	KEYSIGHT	U2021XA	MY55210018	Dec. 07, 2020	Dec. 06, 202		
Attenuator	MAIWEI	MANASR0206S 2	DLE-160	Dec. 07, 2020	Dec. 06, 202		
RF Control Box	MAIWEI	MW100-RFCB	DLE-179	Dec. 07, 2020	Dec. 06, 202		
RF Control Box	MAIWEI	MW200-RFCB	DLE-180	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	18054391	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19051973	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19051987	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19051988	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19063251	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19063254	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19063257	Dec. 07, 2020	Dec. 06, 202		
RF Cable	MAIWEI	Z302S	19063259	Dec. 07, 2020	Dec. 06, 202		
DC power	LODESTAR	LP532DE	LP1908158	Dec. 07, 2020	Dec. 06, 202		
966 Chamber	ChengYu	966 Room	966	Nov. 25, 2019	Nov. 24, 2022		
Spectrum Analyzer	Agilent	E4408B	MY50140780	Dec. 07, 2020	Dec. 06, 202		
EMI Receiver	R&S	ESRP7	101393	Dec. 07, 2020	Dec. 06, 202		
Amplifier	Schwarzbeck	BBV9743B	00153	Dec. 07, 2020	Dec. 06, 202		
Amplifier	EMEC	EM01G8GA	00270	Dec. 07, 2020	Dec. 06, 202		
active Loop Antenna	Daze	ZN30900A	SEL0097	Dec. 07, 2020	Dec. 06, 202		
Broadband Trilog Antenna	Schwarzbeck	VULB9162	00306	Nov. 28, 2020	Nov. 27, 202		
Horn Antenna	Schwarzbeck	BBHA9120D	02139	Nov. 28, 2020	Nov. 27, 202		
966 Cable 1#	ChengYu	966	004	Dec. 07, 2020	Dec. 06, 202		
966 Cable 2#	ChengYu	966	003	Dec. 07, 2020	Dec. 06, 202		
Temperature Controller	Terchy	MHQ	120	Dec. 07, 2020	Dec. 06, 202		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 40

5. RF OUTPUT POWER

5.1 Block Diagram of Test Setup

Temperature Chamber

Report No.: DL-20210624009-4E

Variable AC or DC power supply

5.2 Limit

The RF output power for non-FHSS equipment shall be equal to or less than 20 dBm.

Notes: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (seeclause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirement for the Medium Utilization (MU) factor further described in clause 4.3.2.5. This is verified by the conformance test referred to in clause 4.3.2.5.4.

For non-adaptive non-FHSS equipment, where the manufacturer has declared an RF output power of less than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value.

5.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.2.2.1.2

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 40

5.4 Test Result

			Total e.i.r	np (dBm)	Result			
	Toot CU		Condition				Limit	Dogult
Mode	Test CH	Normal	HTLV	LTLV	LTHV	HTHV	(dBm)	Result
OV cert	Low	-0.92	-0.96	-0.87	-0.84	-0.83	20.00	Pass
GFSK	Middle	-0.96	-0.94	-0.87	-0.80	-0.75	20.00	Pass
	High	-0.97	-0.91	-0.88	-0.83	-0.76	20.00	Pass
3,12	Low	-0.97	-0.73	-0.87	-0.84	-0.81	20.00	Pass
PI/4DQPSK	Middle	-0.98	-0.74	-0.77	-0.80	-0.78	20.00	Pass
	High	-0.87	-0.75	-0.88	-0.83	-0.74	20.00	Pass
) Cer	Low	-0.87	-0.81	-0.77	-0.84	-0.83	20.00	Pass
8DPSK	Middle	-0.88	-0.87	-0.87	-0.80	-0.88	20.00	Pass
	High	-0.87	-0.78	-0.87	-0.82	-0.75	20.00	Pass

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 40

6. DUTY CYCLE, TX-SEQUENCE, TX-GAP

6.1 Block Diagram of Test Setup

6.2 Limit

Non-adaptive FHSS equipment shall comply with the following:

- The Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer.
- The maximum Tx-sequence time shall be 5 ms.
- The minimum Tx-gap time shall be 5 ms.

NOTE: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (see clause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirements for the Medium Utilization (MU) factors further described in clause 4.3.1.6. This is verified by the conformance test referred to in clause 4.3.1.6.4.

Report No.: DL-20210624009-4E

6.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.2.2.1.3

6.4 Test Result

The equipment's output power is below 10dBm, no requirements for this item.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 40

ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Report No.: DL-20210624009-4E

7.1 Block Diagram of Test Setup

72 Limit

For Non-adaptive FHSS equipment

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

In order for the FHSS equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the Hopping Sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The probability that each hopping frequency is occupied shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The Hopping Sequence(s) shall contain at least N hopping frequencies where N is either 5 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

NOTE: See also clause 4.3.1.5.3.1 for the Hopping Frequency Separation applicable to non-adaptive FHSS equipment.

Non-Adaptive FHSS equipment, may blacklist some but not all hopping frequencies. From the N hopping frequencies defined above, the equipment shall transmit on at least one hopping frequency. For the blacklisted frequencies, the equipment has to occupy these frequencies for the duration of the average dwell time (see also definition for blacklisted frequency in clause 3.1).

For Adaptive FHSS equipment

Adaptive FHSS equipment shall be capable of operating over a minimum of 70 % of the band specified in table 1.

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

In order for the FHSS equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the Hopping Sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The Hopping Sequence(s) shall contain at least N hopping frequencies at all times, where N is either 15 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 40

Shenzhen DL Testing Technology Co., Ltd. Report No.: DL-20210624009-4E

NOTE: See also clause 4.3.1.5.3.2 for the Hopping Frequency Separation applicable to adaptive FHSS equipment.

For Adaptive FHSS equipment, from the N hopping frequencies defined above, the equipment shall consider at least one hopping frequency for its transmissions. Providing that there is no interference present on this hopping frequency with a level above the detection threshold defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, then the equipment shall have transmissions on this hopping frequency. For Adaptive FHSS equipment using LBT, if a signal is detected during the CCA, the equipment may jump immediately to the next hopping frequency in the Hopping Sequence (see clause 4.3.1.7.2.2, point 2) provided the limit for Accumulated Transmit Time on the new hopping frequency is respected.

7.3 Test Procedure Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.4

7.4 Test Result

Mode	Channel	Pulse time (ms)	Dwell time(ms)	Mini frequency occupation Time(ms)	Dwell time Limit (ms)	Number of hopping channel	Result
	Low	0.32	108.80	435.20	0, 0		Pass
GFSK	Middle	0.32	108.80	435.20	0	COL	Pass
	High	0.32	108.80	435.20			Pass
PI/4	Low	1.51	244.80	979.20	e ^X	, Co.	Pass
DQPSK	Middle	1.51	244.80	979.20	<400ms	79	Pass
DQPSK	High	1.51	244.80	979.20	Co. X	OV	Pass
	Low	2.73	289.07	1254.40	Or Cell	¥	Pass
8DPSK	Middle	2.73	289.07	1254.40	0)/	- O'T	Pass
Or ce	High	2.73	289.07	1254.40		, X	Pass

Note1: DH1=1600/(79*(DH))*79*0.4* Pulse time .(DH1=2, DH3=4, DH5=6)

2: Mini frequency occupation Time(ms)=4*Dwell time(ms)

Mode	Operating hopping Bandwidth (MHz)	Hopping sequence	Limit	Result
GFSK	81.78	97.95%	·	Pass
PI/4 DQPSK	81.64	97.82%	>70%	Pass
8DPSK	81.83	98.01%	x. O	Pass
Note1: Hopping Se	quence(%) = (20dB BW/8	33.5)*100		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 40

8. HOPPING FREQUENCY SEPARATION

8.1 Block Diagram of Test Setup

8.2 Limit

For Non-adaptive FHSS equipment:

For non-adaptive FHSS equipment, the Hopping Frequency Separation shall be equal to or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz.

Report No.: DL-20210624009-4E

For FHSS equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive FHSS equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p., the Hopping Frequency Separation shall be equal to or greater than 100 kHz.

For Adaptive FHSS equipment:

For adaptive FHSS equipment, the minimum Hopping Frequency Separation shall be 100 kHz. Adaptive FHSS equipment that switched to a non-adaptive mode for one or more hopping frequencies because interference was detected on each of these hopping frequencies with a level above the threshold level defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, does not have to comply with the Hopping Frequency Separation provided in clause 4.3.1.5.3.1 for non-adaptive FHSS equipment. If the Hopping Frequency Separation is below the Occupied Channel Bandwidth but greater than 100 kHz, the equipment is allowed to continue to operate with this Hopping Frequency Separation as long as the interference remains present on these hopping frequencies. As this relaxed Hopping Frequency Separation only applies to adaptive FHSS equipment, the FHSS equipment shall continue to operate in an adaptive mode on all other hopping frequencies.

Adaptive FHSS equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit for Hopping Frequency Separation for non-adaptive FHSS equipment defined in clause 4.3.1.5.3.1 (first paragraph) for these hopping frequencies.

8.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.5

8.4 Test Result

Mode	Channel	Channel Frequency Separation		Result
GFSK	Low/Mid/High	0.98	>0.1	Pass
PI/4 DQPSK	Low/Mid/High	1.01	>0.1	Pass
8DPSK	Low/Mid/High	1.01	>0.1	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 40

9. ADAPTIVITY

9.1 Block Diagram of Test Setup

Report No.: DL-20210624009-4E

Figure 5: Test set-up for verifying the adaptivity of an equipment

9.2 Limit

Adaptive FHSS equipment using LBT shall comply with the following minimum set of requirements:

- 1) At the start of every dwell time, before transmission on a hopping frequency, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The CCA observation time shall be not less than 0,2 % of the Channel Occupancy Time with a minimum of 18 µs. If the equipment finds the hopping frequency to be clear, it may transmit immediately.
- 2) If it is determined that a signal is present with a level above the detection threshold defined in step 5 the hopping frequency shall be marked as 'unavailable'. Then the equipment may jump to the next frequency in the hopping scheme even before the end of the dwell time, but in that case the 'unavailable' channel cannot be considered as being 'occupied' and shall be disregarded with respect to the requirement of the minimum number of hopping frequencies as defined in clause 4.3.1.4.3.2. Alternatively, the equipment can remain on the frequency during the remainder of the dwell time. However, if the equipment remains on the frequency with the intention to transmit, it shall perform an Extended CCA check in which the (unavailable) channel is observed for a random duration between the value defined for the CCA observation time in step 1 and 5 % of the Channel Occupancy Time defined in step 3. If the Extended CCA check has determined the frequency to be no longer occupied, the hopping frequency becomes available again. If the Extended CCA time has determined the channel still to be occupied, it shall perform new Extended CCA checks until the channel is no longer occupied.
- 3) The total time during which an equipment has transmissions on a given hopping frequency without reevaluating the availability of that frequency is defined as the Channel Occupancy Time. The Channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 40

Occupancy Time for a given hopping frequency, which starts immediately after a successful CCA, shall be less than 60 ms followed by an Idle Period of minimum 5 % of the Channel Occupancy Time with a minimum of 100 µs.

Report No.: DL-20210624009-4E

After the Idle Period has expired, the procedure as in step 1 shall be repeated before having new transmissions on this hopping frequency during the same dwell time.

For LBT based adaptive FHSS equipment with a dwell time < 60 ms, the maximum Channel Occupancy
Time is limited by the dwell time.

- 4) 'Unavailable' channels may be removed from or may remain in the Hopping Sequence, but in any case:
- apart from Short Control Signalling Transmissions referred to in clause 4.3.1.7.4, there shall be no transmissions on 'unavailable' channels;
- a minimum of N hopping frequencies as defined in clause 4.3.1.4.3.2 shall always be maintained.
- 5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / P_{\text{out}})$ (P_{out} in mW e.i.r.p.)

6) The equipment shall comply with the requirements defined in step 1 to step 4 of the present clause in the presence of an unwanted CW signal as defined in table 2.

Table 2: Unwanted Signal parameters

Wanted signal mean power from companion device		Unwanted CW signal frequency (MHz)	Unwanted CW signal power (dBm)	
sufficient t	o maintain the link	2 395 or 2 488,5	-35	
(see note	2)	(see note 1)	(see note 3)	
NOTE 1:	The highest freque	ncy shall be used for testing operation	ng channels within the	
range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.				
NOTE 2:	A typical conducted	d value which can be used in most c	ases is -50 dBm/MHz.	
NOTE 3:	71			

9.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.6

9.4 Test Result

Not applicable

Note: The maximum output power of EUT less than 10dBm, so not applicable.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 40

10. OCCUPIED CHANNEL BANDWIDTH

10.1 Block Diagram of Test Setup

10.2 Limit

The Occupied Channel Bandwidth shall be within the band given in 2.4GHz to 2.4835GHz..

In addition, for non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth shall be equal to or less than 20MHz.

Report No.: DL-20210624009-4E

10.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.7

Connect the UUT to the spectrum analyzer and use the following settings:

Centre Frequency:	The centre frequency of the channel under test
RBW	~ 1 % of the span without going below 1 %
VBW	3 × RBW
Frequency Span:	2 × Nominal Channel Bandwidth
Detector Mode:	RMS
Trace Mode:	Max Hold
Sweep time:	is at

10.4 Test Result

Test	Test	Occupied	Measured	Frequency	Limit	Result
Mode	Channel	Bandwidth	$F_L(MHz)$	F _H (MHz)	LIIIII	Nesuit
GFSK	Low	0.874	2401.356		>2400MHz And	Pass
GFSK	High	0.876	Con 1	2480.778	<2483.5MHz	Pass
PI/4	Low	1.102	2401.365		>2400MHz And	Pass
DQPSK	High	1.105	10	2480.851	<2483.5MHz	Pass
0DDCK	Low	1.231	2401.353	Let.	>2400MHz	Pass
8DPSK High	1.227		2480.843	And <2483.5MHz	Pass	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 40

11. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

11.1 Block Diagram of Test Setup

Variable AC or DC power supply

Report No.: DL-20210624009-4E

11.2 Limit

The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3.

Figure 3: Transmit mask

11.3 Test Procedure

C: Spurious Domain limits

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.8.

Connect the UUT to the spectrum analyzer and use the following settings:

RBW/VBW	1MHz/3MHz	Or cert	7
Span	0Hz		Ó, Če
Filter mode	Channel filter		× 0,

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 40

Sweep mode	Continuous
Sweep Points	5000
Detector	RMS
Trace mode	Clear/Write
Trigger Mode	Video trigger

Report No.: DL-20210624009-4E

11.4 Test Result

	Test	Lower Band Edge		Higher Band Edge		
Test Mode	Condition	Segment A	Segment B	Segment A	Segment B	
	A Total	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	
GFSK	Normal	-50.51	-54.35	-50.78	-50.52	
PI/4 DQPSK	Normal	-50.34	-54.63	-51.07	-50.78	
8DPSK	Normal	-50.13	-53.94	-50.43	-50.14	
Li	lmit	-10	-20	-10	-20	
Cond	clusion	0 -0	P/	ASS	Or cell	

Remark1: All modulations of EUT have been tested, but only show the test data of the worst case in this report.

2: The plots only show the worst mode data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 40

GFSK Low Channel

GFSK High Channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 40

12. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

12.1 Block Diagram of Test Setup Below 1GHz

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 40

12.2 Limit

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

Table 12: Transmitter limits for spurious emissions

Report No.: DL-20210624009-4E

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

12.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

12.4 Test Result

Below 1GHz

				0	
	Spurio	us Emission	Test Data		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result
35.85	Vertical	-62.45	<i>⊙</i> -36	-26.45	Pass
58.47	Vertical	-64.44	-54	-10.44	Pass
186.69	Vertical	- 63.71	-54	-9.71	Pass
231.52	Vertical	-63.39	-36	-27.39	Pass
489.43	Vertical	-61.45	-54	-7.45	Pass
835.22	Vertical	-63.71	-36	-27.71	Pass
44.57	Horizontal	-63.45	- 0 -36	-27.45	Pass
125.31	Horizontal	-62.29	-36	-26.29	Pass
313.64	Horizontal	-63.54	2-36	-27.54	Pass
485.56	Horizontal	-64.52	-54	-10.52	Pass
598.35	Horizontal	-60.82	-54	-6.82	Pass
713.52	Horizontal	-62.68	-36	-26.68	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 40

Above 1GHz

	Биомилоного	- Parituo Ellii	ssion Test Data		
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
/ - o'\	4804	Vertical	-43.41	-30.00	Pass
OFCK	7206	Vertical	-46.05	-30.00	Pass
GFSK	9608	Vertical	-48.97	-30.00	Pass
Low Channel	4804	Horizontal	-43.63	-30.00	Pass
Channel	7206	Horizontal	-47.26	-30.00	Pass
	9608	Horizontal	-49.65	-30.00	Pass
-0,1	4882	Vertical	-43.31	-30.00	Pass
VOEDIK N	7323	Vertical	-45.46	-30.00	Pass
GFSK	9764	Vertical	-50.63	-30.00	Pass
Middle	4882	Horizontal	-42.51	-30.00	Pass
Channel	7323	Horizontal	-46.65	-30.00	Pass
	9764	Horizontal	-49.77	-30.00	Pass
	4960	Vertical	-42.90	-30.00	Pass
, Co x.	7440	Vertical	-44.82	-30.00	Pass
GFSK High	9920	Vertical	-48.37	-30.00	Pass
Channel	4960	Horizontal	-42.87	-30.00	× Pass <
07:0	7440	Horizontal	-46.14	-30.00	Pass
	9920	Horizontal	-49.90	-30.00	Pass
× 0	4804	Vertical	-42.98	-30.00	Pass
PI/4	7206	Vertical	-45.55	-30.00	Pass
DQPSK	9608	Vertical	-48.49	-30.00	Pass
Low	4804	Horizontal	-43.20	-30.00	Pass
Channel	7206	Horizontal	-46.86	-30.00	Pass
\(\frac{1}{2}\)	9608	Horizontal	-49.13	-30.00	Pass
	4884	Vertical	-42.92	-30.00	Pass
PI/4	7326	Vertical	-45.04	-30.00	Pass
DQPSK	9768	Vertical	-50.15	-30.00	Pass
Middle	4884	Horizontal	-42.07	-30.00	Pass
Channel	7326	Horizontal	-46.23	-30.00	Pass
O, Co	9768	Horizontal	-49.26	-30.00	Pass
PI/4 DQPSK High	4960	Vertical	-42.45	-30.00	Pass
	7440	Vertical	-44.37	-30.00	Pass
	9920	Vertical	-47.87	-30.00	Pass
	4960	Horizontal	-42.44	-30.00	Pass
Channel	7440	Horizontal	-45.67	-30.00	Pass
) (S)	9920	Horizontal	-49.39	-30.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 40

		Spurious E	mission Test Data		
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
Col	4804	Vertical	-44.75	-30.00	Pass
oppour	7206	Vertical	-47.43	-30.00	Pass
8DPSK	9608	Vertical	-50.41	-30.00	Pass
Channel	4804	Horizontal	-44.95	-30.00	Pass
Channel	7206	Horizontal	-48.84	-30.00	Pass
	9608	Horizontal	-51.26	-30.00	Pass
O. C.	4884	Vertical	-44.36	-30.00	Pass
00001	7326	Vertical	-46.45	-30.00	Pass
8DPSK	9768	Vertical	-52.38	-30.00	Pass
Middle	4884	Horizontal	-43.40	-30.00	Pass
Channel	7326	Horizontal	-48.11	-30.00	Pass
	9768	Horizontal	-51.25	-30.00	Pass
,	4960	Vertical	-44.20	-30.00	Pass
Š	7440	Vertical	-46.18	-30.00	Pass
8DPSK High Channel	9920	Vertical	-49.83	-30.00	Pass
	4960	Horizontal	<u>-44.17</u>	-30.00	Pass
	7440	Horizontal	-47.54	-30.00	Pass
	9920	Horizontal	-51.41	-30.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 27 of 40

13. RECEIVER SPURIOUS EMISSIONS

13.1 Block Diagram of Test Setup Below 1GHz

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 40

13.2 Limit

The spurious emissions of the receiver shall not exceed the values given in table 13.

Table 13: Spurious emission limits for receivers

Report No.: DL-20210624009-4E

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

13.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

13.4 Test Result

Below 1GHz

Receiver Spurious Emissions Test Data							
Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result			
Vertical	-68.35	-57.00	-11.35	Pass			
Vertical	-69.62	-57.00	-12.62	Pass			
Vertical	-69.51	-57.00	-12.51	Pass			
Vertical	-69.64	-57.00	-12.64	Pass			
Vertical	-69.75	-57.00	-12.75	Pass			
Vertical	-68.68	-57.00	-11.68	Pass			
Horizontal	-69.38	-57.00	-12.38	Pass			
Horizontal	-68.45	-57.00	-11.45	Pass			
Horizontal	-69.15	-57.00	-12.15	Pass			
Horizontal	-70.41	-57.00	-13.41	Pass			
Horizontal	-70.83	-57.00	-13.83	Pass			
Horizontal	-72.53	-57.00	-15.53	Pass			
	Polarization Vertical Vertical Vertical Vertical Vertical Vertical Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal	Polarization Level (dBm) Vertical -68.35 Vertical -69.62 Vertical -69.51 Vertical -69.64 Vertical -69.75 Vertical -68.68 Horizontal -69.38 Horizontal -68.45 Horizontal -70.41 Horizontal -70.83	Polarization Level (dBm) Limit (dBm) Vertical -68.35 -57.00 Vertical -69.62 -57.00 Vertical -69.51 -57.00 Vertical -69.64 -57.00 Vertical -69.75 -57.00 Vertical -68.68 -57.00 Horizontal -69.38 -57.00 Horizontal -69.45 -57.00 Horizontal -69.15 -57.00 Horizontal -70.41 -57.00 Horizontal -70.83 -57.00	Polarization Level (dBm) Limit (dBm) Marging (dB) Vertical -68.35 -57.00 -11.35 Vertical -69.62 -57.00 -12.62 Vertical -69.51 -57.00 -12.51 Vertical -69.64 -57.00 -12.64 Vertical -69.75 -57.00 -12.75 Vertical -68.68 -57.00 -11.68 Horizontal -69.38 -57.00 -12.38 Horizontal -69.15 -57.00 -11.45 Horizontal -70.41 -57.00 -13.41 Horizontal -70.83 -57.00 -13.83			

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 40

Report No.: DL-20210624009-4E

Above 1GHz

		Receiver Spurious	Emissions Test Dat	a	
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
GFSK	4804	Vertical	-54.12	-47.00	Pass
	7206	Vertical	-54.41	-47.00	Pass
	9608	Vertical	-61.35	-47.00	Pass
Low Channel	4804	Horizontal	-53.48	-47.00	Pass
Channel	7206	Horizontal	-60.44	-47.00	Pass
35	9608	Horizontal	-59.12	-47.00	Pass
	4884	Vertical	-58.23	-47.00	Pass
, Co	7326	Vertical	-58.35	-47.00	Pass
GFSK	9768	Vertical	-53.82	-47.00	Pass
Middle	4884	Horizontal	-53.73	-47.00	Pass
Channel	7326	Horizontal	-59.54	-47.00	Pass
,	9768	Horizontal	-60.98	-47.00	Pass
X.	4960	Vertical	-58.13	-47.00	Pass
,	7440	Vertical	-60.15	-47.00	Pass
GFSK	9920	Vertical	-56.63	-47.00	Pass
High	4960	Horizontal	-56.07	-47.00	Pass
Channel	7440	Horizontal	-55.85	-47.00	Pass
	9920	Horizontal	-57.99	-47.00	Pass
X O	4804	Vertical	-53.60	-47.00	Pass
<u> </u>	7206	Vertical	-53.52	-47.00	Pass
PI/4DQPSK	9608	Vertical	-60.42	-47.00	Pass
Low	4804	Horizontal	-52.94	-47.00	Pass
Channel	7206	Horizontal	-59.83	-47.00	Pass
O, C	9608	Horizontal	-59.25	-47.00	Pass
	4884	Vertical	-57.67	-47.00	Pass
	7326	Vertical	-57.78	-47.00	Pass
PI/4DQPSK	9768	Vertical	-53.22	-47.00	Pass
Middle	4884	Horizontal	-53.23	-47.00	Pass
Channel	7326	Horizontal	-58.91	-47.00	Pass
Or Car	9768	Horizontal	-60.36	-47.00	Pass
	4960	Vertical	-58.34	-47.00	Pass
	7440	Vertical	-59.30	-47.00	Pass
PI/4DQPSK High	9920	Vertical	-56.66	-47.00	Pass
	4960	Horizontal	-55.54	-47.00	Pass
Channel	7440	Horizontal	-55.31	-47.00	Pass
SV ceit	9920	Horizontal	-57.42	-47.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 30 of 40

	F	Receiver Spurious	Emissions Test Dat	a	
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
× <	4804	Vertical	-51.58	-47.00	Pass
ODDOK	7206	Vertical	-51.50	-47.00	Pass
8DPSK	9608	Vertical	-58.14	-47.00	Pass
Low	4804	Horizontal	-50.95	-47.00	Pass
Channel	7206	Horizontal	-57.59	-47.00	Pass
	9608	Horizontal	-57.00	-47.00	Pass
. 0	4884	Vertical	-55.48	-47.00	Pass
ODDOK	7326	Vertical	-55.58	-47.00	Pass
8DPSK	9768	Vertical	-51.28	-47.00	Pass
Middle Channel	4884	Horizontal	-51.24	-47.00	Pass
Channel	7326	Horizontal	-56.75	-47.00	Pass
0, 0	9768	Horizontal	-58.08	-47.00	Pass
0/	4960	Vertical	-56.11	-47.00	Pass
ODDCK -	7440	Vertical	-57.34	-47.00	Pass
8DPSK High Channel	9920	Vertical	-53.95	-47.00	Pass
	4960	Horizontal	-53.32	-47.00	Pass
	7440	Horizontal	-53.52	-47.00	Pass
	9920	Horizontal	-55.26	-47.00	Pass

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 31 of 40

14. RECEIVER BLOCKING

14.1 Block Diagram of Test Setup

Report No.: DL-20210624009-4E

14.2 Limit

Table 14 contains the Receiver Blocking parameters for Receiver Category 1 equipment.

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 32 of 40

Table 15 contains the Receiver Blocking parameters for Receiver Category 2 equipment.

Table 15: Receiver Blocking parameters receiver Category 2 equipment

Report No.: DL-20210624009-4E

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal	
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	cw	
TE 1: OCBW is in Hz. TE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P _{min} + 26 dB where P _{min} is the minimum level of wanted signal required to meet the minimum performance crite				

as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16 contains the Receiver Blocking parameters for Receiver Category 3 equipment.

Table 16: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + $10 \times log_{10}(OCBW) + 20$ dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	cw

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

14.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.11.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 33 of 40

14.4 Test Results

. oot i toodito					
Mode	Wanted	Blocking	Blocking	Measured	Limit
	Power(dBm)	Frequency (MHz)	Power(dB)	PER (%)	(%)
	-74	2380	-34	0.22	⊘ 10
GFSK	-74	2504	-34	0.35	10-0
GFSK	-74	2300	-34	0.43	10
	-74	2584	-34	0.44	10
, Če	-74	2380	-34	0.31	10
PI/4DQPSK	·74	2504	-34	0.33	<u>~</u> 10
FI/4DQF3K	-74	2300	-34	0.38	10
S	-74	2584	-34	0.63	10
8DPSK	-74	2380	-34	0.21	10 6
	-74	2504	-34	0.34	10
	-74	2300	-34	0.28	10
	-74	2584	-34	0.51	10
	~ O`	. 7	0, ~0,	. 7	X

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 34 of 40

15. GEO-LOCATION CAPABILITY

15.1 Definition and Requirements

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

Report No.: DL-20210624009-4E

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

15.2 Test Results

This product doesn't support Geo-location.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 35 of 40

16. SETUP PHOTOGRAPHS

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 36 of 40

17. EUT PHOTOGRAPHS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 37 of 40

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 38 of 40

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 39 of 40

**** END OF REPORT ****

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 40 of 40