

판다곰 - 박성은, 신태범

# 목차









### step1 문제정의

어떻게 지연을 예측할 것 인가?



#### 지연예측 효용



#### METRIX 설정



### step2 데이터분석

데이터들은 어떤 특성을 가지고 있는가?



# 항공운항데이터

- AFSNT 운항 실적
- **AFSNT\_DLY** 지연예측 TEST SET

#### 항공기상데이터

- 1시간 단위로 기록된 **METAR 데이터** 이용 (출처: 항공기상청 공항통계자료)
- 데이터 내의 지연과 관련 높은 변수 사용



# 항공기상데이터

#### ● **METAR 데이터**: 1시간 단위

| TM         | WD | VIS | WC   | RN   | CA_TOT |
|------------|----|-----|------|------|--------|
| 2016123124 | 9  | 600 | NULL | NULL | NULL   |
| 2017010101 | 10 | 600 | 10   | NULL | 6      |
| 2017010102 | 9  | 600 | 10   | NULL | 6      |
| 2017010103 | 9  | 290 | NULL | NULL | NULL   |
| 2017010104 | 10 | 320 | NULL | NULL | NULL   |
| 2017010105 | 9  | 230 | NULL | NULL | NULL   |
| 2017010106 | 10 | 280 | 10   | NULL | 6      |
| 2017010107 | 10 | 350 | 10   | NULL | 3      |
| 2017010108 | 13 | 420 | 10   | NULL | 6      |
| 2017010109 | 9  | 420 | 10   | NULL | 7      |

NULL 데이터는 기록이 없다는 것? 전처리시 0으로 변경

# 항공기상데이터



- 모든 공항에 대한 기상 누적 데이터가 존재하지 않음.
- ➡ 데이터가 존재하는 기준으로 직선거리 **가까운 공항끼리 기상데이터 공유**

### step3 데이터전처리

데이터들을 어떻게 가공하였는가?



#### 데이터 전처리

#### ● 범주형 변수

Sklearn.LabelEncoder로 수치화

#### ● Schedule 컬럼 생성

운항데이터 SDT\_YY, SDT\_MM, SDT\_DD, STT 시간 이용

| SDT_YY | SDT_MM | SDT_DD | STT   |
|--------|--------|--------|-------|
| 2017   | 01     | 01     | 10:05 |



| Schedule         |
|------------------|
| 2017-01-01-10:05 |

이 Schedule 컬럼 이용 해 운항데이터와 기상데이터 병합

#### 새로운 열생성

- 각 날짜를 기준으로 각 컬럼을 mean처리 ( data.groupby(date).mean() )
- **Delay** 해당 날짜의 DLY(지연)의 평균이 0.3 이상이면 1, 아니면 0
- **Probability**각 날짜의 기상 데이터를 고려한 지연 확률 xgbclassifier.predict\_proba() 이용
- **DIFF**STT(계획된 출발 시각)와 ATT(실제 출발 시각)의 차이
- **DIFF\_predict** 다른 기상 컬럼을 이용해 예측한 DIFF- xgbregressor 이용

#### step4

# 모델설계

문제해결을 위해 어떤 모델을 만들었는가?



#### 선행 연구

A Deep Learning Approach to Flight Delay Prediction (Kim et al.)

Published in IEEE DASC(Digital Avionics Systems)

#### 선행 연구

Day-Delay-Status를 비행기지연여부예측에 사용

하루가 independent 하다고 가정

#### 모델 설계



#### 모델 설계



# 모델 설계 절차





- 날짜별 지연 Probability 구하기 By XgbClassifier
- DIFF를 날짜별로 예측하기 By XgbRegressor



● 각 편명에 제공되는 정보들을 이용하여 xgb 모형을 만든다.

(정보:AFSNT\_DLY에 있는 컬럼 + 2018년 09월 기상 정보)



● 공항 별 최적 **hyperparameter search** with f1\_score



- **앙상블** 총 5개의 xgb모형을 만들고 결과치를 평균 내서 최적모델 설계.
- 최적모델로 지연여부, 지연률 도출
- AFSNT\_DLY의 범주형 변수 원상 복구 with inverse\_transform() function