Exercise Sheet 2 Stochastics (AAI)

Exercise 2.1 (H)

- a) Specify a discrete probability space that serves as a model for tossing a fair coin independently three times. Model the number of "heads" and "tails" as random variables X_1 and X_2 , respectively, and determine their probability mass functions.
- b) Consider the situation of Example II.4.3 (fair die rolled twice independently).
 - i) Let $Y = \max(X_1, X_2)$ and $Z = \min(X_1, X_2)$. Determine the probability mass functions p_Y and p_Z .
 - ii) Compute $P_Y(\{1,2\})$, $P(\{Z=5\})$, and $P_{(Y,Z)}(\{1,2\}\times\{5\})$.

Exercise 2.2 (H)

Let $X_1, X_2: \Omega \to \{0, 1, 2\}$ be random variables satisfying the following table (cf. Remark II.4.16):

X_2				
X_1				
	$p_{0,0}$	0.2	0.3	0.6
	0.2	0.1	$p_{1,2}$	$p_{1,\bullet}$
	$p_{2,0}$	$p_{2,1}$	$p_{2,2}$	0
	$p_{\bullet,0}$	$p_{ullet,1}$	$p_{ullet,2}$	

- a) Complete the table.
- b) Compute $P(\{X_2 = 0\} | \{X_1 \le 1\})$.
- c) Determine the probability mass function p_{X_2} .
- d) Prove or disprove: X_1 and X_2 are independent.

Exercise 2.3 (H)

Let $X_1, X_2, X_3 : \Omega \to \{1, 2, 3\}$ be independent random variables with

$$p_{X_1}(1) = 1/3, \quad p_{X_1}(2) = 1/3, \quad p_{X_1}(3) = 1/3,$$

 $p_{X_2}(1) = 1/4, \quad p_{X_2}(2) = 1/4, \quad p_{X_2}(3) = 1/2,$

$$p_{X_3}(1) = 1/5$$
, $p_{X_3}(2) = 1/5$, $p_{X_3}(3) = 3/5$.

Compute $P({X_1 + X_2 + X_3 = 8})$ and $P({\min(X_1, X_2, X_3) = 2})$.

Exercise 2.4 (H)

Let $X_1, X_2, X_3 \colon \Omega \to \{0, 1\}$ be independent random variables. Moreover, we define the random variables $Y_1 = X_1 + X_2$ and $Y_2 = \exp(X_3)$. Show that Y_1 and Y_2 are independent.