

VCCD

VCC1

DET

RoHS & Pb-Free Product

Features

- 700~2700MHz Operating Range
- 3.3~5.0V Operation
- 26dB Gain (Typ)@1.6GHz
- 34dBm P1dB @VCC=5V
- 280mA Quiescent Current
- >15dB Input Return Loss
- Integrated Output Power Detector
- ESD protection all ports above 1000V HBM

14 13 16 15 RF OUT/ **VCCB** 12 VCC2 11 NC **RF OUT** 10 RF IN **RF OUT** Active Bias 9 NC **RF OUT** 6 VREF1

Functional Block Diagram

Product Description

The YP2233W is a high dynamic range broadband power amplifier in a surface mount package. The two-stage amplifier provides a typical gain of 26dB, while being able to achieve high performance for 0.7–2.7 GHz applications with up to +35dBm of compressed 1dB power, typical bias condition is 5V at 280mA.

The device is manufactured on an advanced InGaP Heterojunction Bipolar Transistor (HBT) process. The device incorporates proprietary bias circuitry to compensate for variations in linearity and current draw over temperature. The YP2233W is assembled in a 16-pin, 4mm×4mm, QFN package. It is internally integrated with ESD protection circuitry on all ports.

Applications

- 802.11b/g/n Access Point
- 2.4GHz ISM Wireless Equipment
- PCS Communication Systems
- Broadband Spread-Spectrum Systems
- High Power Amplifiers Application
- Final Stage Amplifiers for repeaters
- ■BD Compass

Ordering Information

■ YP2233W	BroadBand Power Amplifier
■ YP2233W EVB-1	1.2-1.3GHz Evaluation Board
■ YP2233W EVB-2	1.5-1.7GHz Evaluation Board
■ YP2233W EVB-3	2.4-2.5GHz Evaluation Board

Pin Description

Pin No.	Symbol	Description		
1	VCCB	Supply voltage for bias		
3	RF IN	RF input		
5	VCTR	Power on/off control voltage		
6, 7	VREF1, VREF2	Bias current control voltage		
9, 10, 11, 12	RF OUT (VCC2)	RF output and stage 2 collector voltage		
14	DET	Output power detect		
15	VCCD	Supply voltage for power detector		
16	VCC1	Stage 1 collector voltage		
2, 4, 8, 13	NC/GND	No connection or ground		

Absolute Maximum Ratings

Parameter	Rating	Unit
Input RF Power	+20	dBm
Supply Voltage	-0.5 to +8.0	V
Bias Voltage	-0.5 to +3.0	V
DC Supply Current	2000	mA
Operating Ambient	-40 to +85	°C
Temperature		
Storage Temperature	-40 to +150	°C

Caution! ESD Sensitive Device.

ESD Rating: Class1C

Value: Passes ≥ 1000 V min.

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes ≥1000V min.

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260 °C convection

reflow

Standard: JEDEC Standard J-STD-020

Electrical Specifications

Parameter	Sp	ecificat	ion	Unit	Condition	
Farailletei	Min.	Тур.	Max.	Ollic	Condition	
Frequency Range	1.2	1.25	1.3	GHz		
Output Power@1dB	33.5	34	34.5	dBm	VCC=5V@1.25GHz	
Compression						
Gain	26.5	27	27.5	dB	VCC=5V@1.25GHz	
Power Supply						
Operating Voltage		5.0		V		
Reference Voltage 1(VR1)		2.65		V		
Reference Voltage 2(VR2)		2.65		V		
Quiescent Current (Total)		240		mA	VCC1=VCC2=VCCB=5V, VR1=VR2=2.65V	

Page 2 of 23

Parameter	Sp	ecificat	ion	Unit	Condition	
Farailletei	Min.	Тур.	Max.	Ollic	Condition	
Frequency Range	1.6	1.63	1.65	GHz		
Output Power@1dB	34	34.5	34.7	dBm	VCC=5V@1.63GHz	
Compression						
Gain	25.5	26	26.5	dB	VCC=5V@1.63GHz	
Power Supply						
Operating Voltage		5.0		V		
Reference Voltage 1(VR1)		2.68		V		
Reference Voltage 2(VR2)		2.68		V		
Quiescent Current (Total)		280		mA	VCC1=VCC2=VCCB=5V, VR1=VR2=2.68V	

Typical Performance: (Frequency range: 870MHz~890MHz)

Narrowband Gain & Return Loss

Power Gain vs. Input Power

P1dB vs. Frequency

Application Schematic: (Frequency range: 870MHz~890MHz)

(Test Condition: VCC=5.0V, VREF=2.78V, ICC=340mA, T=25°C)

Notes:

- 1. Pin5 is power down pin. Apply >1.5 V_{DC} to power down the three power amplifier stages. Apply $0V_{DC}$ to power up. If function is not desired, pin5 may be connected to GND.
- 2. Pin14, 15 are active power detection circuit ports, if function is not desired, pin14, 15 may be left unterminated (open).

Page 5 of 23

Evaluation Board Layout :(Frequency range: 870MHz~890MHz)

Board Size 50mm×50mm, Board Thickness 1mm, Board Material FR-4 (ε_r =4.5)

Evaluation Board Top View

Layer Detail Physical Characteristics

Circuit Component Designations and Values

Component	Description	Manufacturer
L1,L2	3.9nH Inductor	ATC
C1,C2	9.1pF Chip Capacitor	DLC
C3	5.6pF Chip Capacitor	DLC
C5,C7, C9, C11,C14	100pF Chip Capacitor	TDK
C4,C6,C8,C10,C12	10uF Chip Capacitor	TDK
C13	47uF Capacitor	AVX
R1	57.6ohm	TDK

Typical Performance (Frequency range: 1.2GHz~1.3GHz)

Narrowband Gain & Return Loss

Power Gain vs. Input Power

Application Schematic: (Frequency range: 1.2GHz~1.3GHz)

(Test Condition: VCC=5.0V, VREF=2.65V, ICC=240mA, T=25°C)

Notes:

- 1. Pin5 is power down pin. Apply >1.5 V_{DC} to power down the three power amplifier stages. Apply $0V_{DC}$ to power up. If function is not desired, pin5 may be connected to GND.
- 2. Pin14, 15 are active power detection circuit ports, if function is not desired, pin14, 15 may be left unterminated (open).

Evaluation Board Layout: (Frequency range: 1.2GHz~1.3GHz)

Board Size 50mm×50mm, Board Thickness 1mm, Board Material FR-4 (ε_r =4.5)

Evaluation Board Top View

Layer Detail Physical Characteristics

Circuit Component Designations and Values

Component	Description	Manufacturer
L1,L2	3.9nH Inductor	ATC
C1	3pF Chip Capacitor	DLC
C2	8.2pF Chip Capacitor	DLC
C3,C5,C7, C9, C11	100pF Chip Capacitor	TDK
C4,C6,C8,C10,C12	10uF Chip Capacitor	TDK
C13	47uF Capacitor	AVX

Page 9 of 23

Typical Performance (Frequency range: 1.6GHz~1.63GHz)

Narrowband Gain & Return Loss

35 S11 30 S21 25 -20 -S-Parameter(dB) 15 Gain(dB) 0 -5 -15 -20 --25 -30 -Frequency(GHz)

Power Gain vs. Input Power

P1dB vs. Frequency

Application Schematic: (Frequency range: 1.6GHz~1.63GHz)

(Test Condition: VCC=5.0V, VREF=2.68V, ICC=280mA, T=25°C)

Notes:

- 1. Pin5 is power down pin. Apply >1.5 V_{DC} to power down the three power amplifier stages. Apply $0V_{DC}$ to power up. If function is not desired, pin5 may be connected to GND.
- 2. Pin14, 15 are active power detection circuit ports, if function is not desired, pin14, 15 may be left unterminated (open).

Page 11 of 23

Evaluation Board Layout : (Frequency range: 1.6GHz~1.63GHz)

Board Size 50mm×50mm, Board Thickness 1mm, Board Material FR-4 (ε_r =4.5)

Evaluation Board Top View

Circuit Component Designations and Values

Component	Description	Manufacturer
L1,L2	3.9nH Inductor	ATC
C1	2pF Chip Capacitor	DLC
C2	4.3pF Chip Capacitor	DLC
C3,C5,C7, C9, C11	100pF Chip Capacitor	TDK
C4,C6,C8,C10,C12	10uF Chip Capacitor	TDK
C13	47uF Capacitor	AVX

Typical Performance (Frequency range: 1.9GHz~2.0GHz)

Narrowband Gain & Return Loss

Power Gain vs. Input Power

P1dB vs. Frequency

Application Schematic: (Frequency range: 1.9GHz~2.0GHz)

(Test Condition: VCC=5.0V, VREF=2.78V, ICC=340mA, T=25°C)

Notes:

- 1. Pin5 is power down pin. Apply >1.5 V_{DC} to power down the three power amplifier stages. Apply $0V_{DC}$ to power up. If function is not desired, pin5 may be connected to GND.
- 2. Pin14, 15 are active power detection circuit ports, if function is not desired, pin14, 15 may be left unterminated (open).

Page 14 of 23

Evaluation Board Layout: (Frequency range: 1.9GHz~2.0GHz)

Board Size 50mm×50mm, Board Thickness 1mm, Board Material FR-4 (ε_r =4.5)

Evaluation Board Top View

Circuit Component Designations and Values

Component	Description	Manufacturer
L1,L2	3.9nH Inductor	ATC
C1	0.9pF Chip Capacitor	DLC
C2	2.4pF Chip Capacitor	DLC
C3,C5,C7, C9, C11	100pF Chip Capacitor	TDK
C4,C6,C8,C10,C12	10uF Chip Capacitor	TDK
C13	47uF Capacitor	AVX
R1	57.6ohm	TDK

Typical Performance (Frequency range: 2.1GHz~2.2GHz)

Narrowband Gain & Return Loss

Power Gain vs. Input Power

P1dB vs. Frequency

Application Schematic: (Frequency range: 2.1GHz~2.2GHz)

(Test Condition: VCC=5.0V, VREF=2.83V, ICC=440mA, T=25°C)

Notes:

- 1. Pin5 is power down pin. Apply >1.5 V_{DC} to power down the three power amplifier stages. Apply $0V_{DC}$ to power up. If function is not desired, pin5 may be connected to GND.
- 2. Pin14, 15 are active power detection circuit ports, if function is not desired, pin14, 15 may be connected to GND.

Page 17 of 23

Evaluation Board Layout: (Frequency range: 2.1GHz~2.2GHz)

Board Size 50mm×50mm, Board Thickness 1mm, Board Material FR-4 (ε_r =4.5)

Evaluation Board Top View

Circuit Component Designations and Values

Component	Description	Manufacturer
L1	3.9nH Inductor	ATC
L2	1.6nH Inductor	ATC
C1	0.5pF Chip Capacitor	DLC
C2	2.7pF Chip Capacitor	DLC
C3,C5,C7, C9, C11	100pF Chip Capacitor	TDK
C4,C6,C8,C10,C12	10uF Chip Capacitor	TDK
C13	47uF Capacitor	AVX
R1	57.6ohm	TDK

Packaging Diagram

COMMON DIMENSIONS (UNITS OF MEASURE = MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0	0.02	0.05		
A3	0.203 REF				
b	0.25	0.30	0.35		
D	3.95	4.00	4.05		
E	3.95	4.00	4.05		
D2	2.00	2.15	2.25		
E2	2.00	2.15	2.25		
е	0.60	0.65	0.70		
К	0.375		_		
L	0.35	0.40	0.45		
R	0.09	_	_		

NOTE:

ALL DIMENSIONS REFER TO JEDEC STANDARD MO-220 WEED-4.

Page 19 of 23

PCB Land Pattern and Stencil Outline

(Units: millimeters)

PCB Land Pattern (Top View)

Stencil Outline

Combined PCB Land Pattern and Stencil Outline

Recommended Solder Temperature

Recommended Temperature

Sn95.5Ag4.0Cu0.5

Tape dimensions and Orientation

Reel dimensions and Orientation

4. Surface resistance: 105TO 1010/OHMS/SQ;

5. General tolerances: ±0.25

For additional product information, please contact

sales@innotion.com.cn

or

haoruirong@innotion.com.cn