CS6190: Probabilistic Modeling Homework 1 Exponential Families, Conjugate Priors

Gopal Menon
03 February, 2018

Written Part

1. **Expectation of sufficient statistics:** Consider a random variable X from a continuous exponential family with natural parameter $\eta = (\eta_1, \dots, \eta_n)$. Recall this means the pdf is of the form:

$$p(x) = h(x) \exp (\eta \cdot T(x) - A(\eta))$$

(a) Show that $E[T(x)|\eta] = \nabla A(\eta) = \left(\frac{\partial A}{\partial \eta_1}, \dots, \frac{\partial A}{\partial \eta_d}\right)$.

Hint: Start with the identity $\int p(x)dx = 1$, and take the derivative with respect to η .

$$\int p(x)dx = 1$$

$$\Rightarrow \int h(x) \exp(\eta \cdot T(x) - A(\eta)) dx = 1$$

$$\nabla \left(\int h(x) \exp(\eta \cdot T(x) - A(\eta)) dx \right) = 0$$

$$\int h(x) \exp(\eta \cdot T(x) - A(\eta)) \cdot (T(x) - \nabla A(\eta)) dx = 0$$

$$\int T(x)h(x) \exp(\eta \cdot T(x) - A(\eta)) dx = \nabla A(\eta) \int h(x) \exp(\eta \cdot T(x) - A(\eta)) dx$$

$$\int T(x)p(x)dx = \nabla A(\eta) \int p(x)dx$$

$$E[T(x)] = \nabla A(\eta)$$

(b) Verify this formula works for the Gaussian distribution with unknown mean, μ , and known variance, σ^2 .

Hint: Start by thinking about what the natural parameter η and the function $A(\eta)$ are, then verify that the expectation of the Gaussian is the same as $\nabla A(\eta)$.

The pdf for a Gaussian distribution with unknown mean, μ , and known variance, σ^2 is given by:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[\ln\left(\frac{1}{\sigma}\right)\right] \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\ln\left(\sigma\right) - \frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\ln\left(\sigma\right) - \frac{x^2}{2\sigma^2} + \frac{2x\mu}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[\frac{x\mu}{\sigma^2} - \frac{x^2}{2\sigma^2} - \left(\ln\left(\sigma\right) + \frac{\mu^2}{2\sigma^2}\right)\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[\left[\frac{\frac{\mu}{\sigma^2}}{\frac{1}{2\sigma^2}}\right] \cdot \left[\frac{x}{x^2}\right] - \left(\ln\left(\sigma\right) + \frac{\mu^2}{2\sigma^2}\right)\right]$$

Based on the form of the exponential family pdf, we can see that:

$$A(\eta) = \ln(\sigma) + \frac{\mu^2}{2\sigma^2},$$

$$\eta = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ \frac{1}{2\sigma^2} \end{bmatrix}, \text{ and}$$

$$T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

Based on the equation for E[T(x)] above:

$$\begin{split} E\left[T(x)\right] &= \nabla A(\eta) \\ \Rightarrow E\left[\begin{bmatrix} x \\ x^2 \end{bmatrix}\right] = \begin{bmatrix} \frac{\partial A}{\partial \eta_1} \\ \frac{\partial A}{\partial \eta_2} \end{bmatrix}, \text{ where } \eta_1 = \frac{\mu}{\sigma^2}, \text{ and } \eta_2 = \frac{-1}{2\sigma^2} \\ \begin{bmatrix} E\left[x\right] \\ E\left[x^2\right] \end{bmatrix} &= \begin{bmatrix} \frac{\partial \left(\ln(\sigma) + \frac{\mu^2}{2\sigma^2}\right)}{\partial \eta_1} \\ \frac{\partial \left(\ln(\sigma) + \frac{\mu^2}{2\sigma^2}\right)}{\partial \eta_2} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\partial \left(\ln(\sigma) + \frac{\sigma^2}{2\sigma^2}\right)}{\partial \eta_2} \\ \frac{\partial \left(\ln\left(\sqrt{\frac{-1}{2\eta_2}}\right) - \mu^2 \eta_2\right)}{\partial \eta_2} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\partial \left(\ln(\sigma) + \frac{\sigma^2}{2} \frac{\mu^2}{\sigma^4}\right)}{\partial \eta_1} \\ \frac{\partial \left(\ln\left(\frac{i}{\sqrt{2}\sqrt{\eta_2}}\right) - \mu^2 \eta_2\right)}{\partial \eta_2} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\sigma^2}{2} \cdot 2\eta_1 \\ \frac{\sqrt{2}\sqrt{\eta_2}}{i} \cdot \frac{1}{\sqrt{2}} \cdot \frac{-1}{2}\eta_2^{-\frac{3}{2}} - \mu^2 \end{bmatrix} \\ &= \begin{bmatrix} \frac{\sigma^2}{2} \cdot 2\frac{\mu}{\sigma^2} \\ \frac{1}{2\eta_2} - \mu^2 \end{bmatrix} \\ &= \begin{bmatrix} \mu \\ \sigma^2 - \mu^2 \end{bmatrix} \\ \Rightarrow E\left[x\right] = \mu, \text{ and } \\ E\left[x^2\right] &= \sigma^2 - \mu^2, \text{ which is true since } \sigma^2 = E\left[x^2\right] - \mu^2 \end{split}$$

2. Noninformative priors for the Poisson distribution: Let $X \sim Pois(\lambda)$. Recall that the pmf of the Poisson is

$$P(X = k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

(a) Rewrite the above pmf in exponential family form. What is the natural parameter? What is the sufficient statistic?

$$\begin{split} P(X=k;\lambda) &= \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \frac{1}{k!} \exp\left(\ln \lambda^k e^{-\lambda}\right) \\ &= \frac{1}{k!} \exp\left(k \ln \lambda - \lambda\right) \\ \eta &= \ln \lambda, \text{ natural parameter} \\ h(k) &= k, \text{ sufficient statistic} \end{split}$$

- (b) Give at least two different options for noninformative priors for $p(\lambda)$.
 - i. Uniform Prior: In this case the prior is

$$p(\lambda) = c$$
, for $0 \le x \le \infty$, where c is a constant

ii. **Jeffrey's Prior:** In this case the prior is

$$\mathcal{I}(\lambda) = E\left[\left(\frac{\partial}{\partial \lambda} \ln p(x|\lambda)\right)^{2}\right]$$

$$= -E\left[\left(\frac{\partial^{2}}{\partial \lambda^{2}} \ln p(x|\lambda)\right]\right]$$

$$= -E\left[\left(\frac{\partial^{2}}{\partial \lambda^{2}} \ln \frac{\lambda^{x} e^{-\lambda}}{x!}\right)^{2}\right]$$

$$= -E\left[\left(\frac{\partial^{2}}{\partial \lambda^{2}} (x \ln \lambda - \lambda - \ln x!)\right)^{2}\right]$$

$$= E\left[\frac{\partial}{\partial \lambda} \left(\frac{x}{\lambda} - 1\right)^{2}\right]$$

$$= -E\left[\frac{-x}{\lambda^{2}}\right]$$

$$= E\left[\frac{x}{\lambda^{2}}\right]$$

$$= E\left[\frac{x}{\lambda^{2}}\right]$$

$$= \frac{1}{\lambda^{2}} E\left[x\right]$$

$$= \frac{1}{\lambda^{2}} \sum_{i=1}^{\infty} x p(x)$$

$$= \frac{1}{\lambda^{2}} \sum_{i=1}^{\infty} x \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \frac{e^{-\lambda}}{\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$= \frac{e^{-\lambda}}{\lambda} \left(\frac{\lambda^{0}}{0!} + \frac{\lambda^{1}}{1!} + \frac{\lambda^{2}}{2!} + \dots\right)$$

$$= \frac{e^{-\lambda}}{\lambda} e^{\lambda}$$

$$= \frac{1}{\lambda}$$

$$p(\lambda) = \sqrt{\mathcal{I}(\lambda)}$$

$$= \sqrt{\frac{1}{\lambda}}$$

- (c) What are the resulting posteriors for your two options? Are they proper (i.e., can they be normalized)?
 - i. Uniform Prior: The posterior is

$$\begin{split} p(\lambda|x) &\propto p(x|\lambda)p(\lambda) \\ &= \prod_{i=1}^n \frac{\lambda^{x_i}e^{-\lambda}}{x_i!}.c, \text{based on the assumtion of i.i.d. samples} \\ &\propto \prod_{i=1}^n \frac{\lambda^{x_i}e^{-\lambda}}{x_i!} \end{split}$$

Even though the prior cannot be normalized, since it will not add up to 1, the posterior shown above, where the constant c has been dropped, can be normalized. The reason is that the posterior is the product of distributions that can themselves be normalized.

ii. **Jeffrey's Prior:** The posterior is

$$\begin{split} p(\lambda|x) &\propto p(x|\lambda)p(\lambda) \\ &= \prod_{i=1}^n \frac{\lambda^{x_i}e^{-\lambda}}{x_i!}.\sqrt{\frac{1}{\lambda}}, \text{based on the assumtion of i.i.d. samples} \\ &= \prod_{i=1}^n \frac{\lambda^{x_i-\frac{1}{2}}e^{-\lambda}}{x_i!} \end{split}$$

This can be normalized since it is the product of the likelihood, which is a product of Poisson distributions, and so can be normalized, and the prior, which can also be normalized.