TÓPICOS AVANÇADOS EM INTELIGÊNCIA ARTIFICIAL

BACHARELADO EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DE SERRA TALHADA

PROFESSOR: DOUGLAS VITÓRIO (douglas.alisson17@gmail.com)

PRÉ-PROCESSAMENTO AULA 04

PROCESSO DE MINERAÇÃO DE OPINIÃO

PRÉ-PROCESSAMENTO DE DADOS

Informação textual é, comumente, não estruturada e sem regras de padronização.

Para estruturar o texto e convertê-lo em um formato que seja entendível pelos classificadores, algumas técnicas de pré-processamento podem ser utilizadas.

NLTK

- http://www.nltk.org/nltk data/
- http://www.nltk.org/howto/portuguese_en.html

```
21. Portuguese Treebank [download|source]
id: floresta; size: 1882021; author: ; copyright: ; license: Non-commercial use only;

22. FrameNet 1.5 [download|source]
id: framenet_v15; size: 69337891; author: Collin F. Baker; copyright: ; license: May be used for non-commercial purposes.

23. FrameNet 1.7 [download|source]
id: framenet_v17; size: 99207152; author: Collin F. Baker; copyright: ; license: Creative Commons Attribution 3.0 Unported.

24. Gazeteer Lists [download|source]
id: gazetteers; size: 8265; author: ; copyright: ; license: GNU Free Documentation License; or public domain (depending.)

25. Genesis Corpus [download|source]
id: genesis; size: 473239; author: ; copyright: public domain; license: public domain;

26. Project Gutenberg Selections [download|source]
id: gutenberg; size: 4251829; author: ; copyright: public domain; license: public domain;

27. NIST IE-ER DATA SAMPLE [download|source]
id: ieer; size: 166156; author: ; copyright: ; license: ;
```

NLTK

```
33. Lin's Dependency Thesaurus [download | source]
    id: 1in thesaurus; size: 89154019; author: Dekang Lin; copyright: ; license: Distri
34. MAC-MORPHO: Brazilian Portuguese news text with part-of-speech tags [down]
    id: mac morpho; size: 3013904; author: ; copyright: ; license: Distributed with perm
    Carlos, Universidade Federal de São Carlos (UFSCar), Universidade Estadual Pau
35. Machado de Assis -- Obra Completa [download | source]
    id: machado; size: 6151774; author: Machado de Assis; copyright: ; license: Public
                                        97. Word2Vec Sample [download | source]
36. MASC Tagged Corpus [download
                                            id: word2vec_sample; size: 49396025; author: ; copyright: ; license: ;
    id: masc_tagged; size: 1602143; aut
    development, including commercia
                                        98. VADER Sentiment Lexicon [download | source]
                                            id: vader lexicon; size: 90486; author: C.J. Hutto and Eric Gilbert; copyright: ; license: MI
37. Sentiment Polarity Dataset Version
    id: movie reviews; size: 4004848; a
                                        99. Porter Stemmer Test Files [download | source]
                                            id: porter_test; size: 200510; author: ; copyright: ; license: ;
                                       100. RSLP Stemmer (Removedor de Sufixos da Lingua Portuguesa) [download | source]
                                            id: rslp; size: 3805; author: Viviane Moreira Orengo (vmorengo@inf.ufrgs.br) and Christia
                                       101. Snowball Data [download | source]
                                            id: snowball_data; size: 6785405; author: ; copyright: ; license: ;
                                       102. Averaged Perceptron Tagger [download | source]
                                            id: averaged_perceptron_tagger; size: 2526731; author: ; copyright: ; license: ;
```

TOKENIZAÇÃO

Tokenizadores são utilizados para dividir strings em listas de substrings.

Sentence tokenizer: utilizado para dividir um texto em uma lista de sentenças.

Word tokenizer: utilizado para dividir um texto em uma lista de palavras.

REMOÇÃO DE STOPWORDS

Stopwords são palavras comuns em uma língua.

Podem ser filtradas durante o pré-processamento do texto, já que não são muito úteis para identificação de sentimento, por exemplo.

Stopwords para o Português (NLTK): ['a', 'ao', 'aos', 'aquela', 'aquela', 'aquela', 'aquele', 'aqueles', 'aquilo', 'as', …]

STEMMING

Stemming é a técnica de reduzir palavras flexionadas (em gênero, número...) a seu tronco (stem).

É diferente da **lematização**, que converte os verbos para o infinitivo e nomes para o singular.

A biblioteca NLTK disponibiliza o RSLPStemmer para a Língua Portuguesa.

Palavra	Stem
deixa	deix
falar	fal
disse	diss
mentirosa	mentir
realmente	real

Palavra	Stem
piorada	pior
estressada	estress
apaixonou	apaixon
concretizar	concret
morto	mort

MARCAÇÃO DE PARTES DA FALA

Marcação de Partes da Fala (Part-of-Speech tagging; POS tagging) consiste na classificação sintática dos termos de um texto.

Auxilia a compreender o que está sendo dito em uma frase.

MARCAÇÃO DE PARTES DA FALA

Floresta Sinta(c)tica \rightarrow tags gramaticais para o Português.

Syml	ools	Category	
n		noun	
prop		proper noun	
adj		adjective	
n-ad	j	between noun and adjective	
	v-fin	finite verb	
v	v-inf	infinitive verb	
'	v-pcp	participle verb	
	v-ger	gerund verb	
art		article	
	pron-pers	personal pronoun	
pro	pron-det	determinative pronoun	
	pron-indp independent pronoun		
adv		adverb	
num		numeral	
prp		preposition	
intj		interjection	
çon	conj-s	subordinating conjunction	
J	conj-c	coordinating conjunction	

MARCAÇÃO DE PARTES DA FALA

Floresta Sinta(c)tica \rightarrow tags gramaticais para o Português.

```
[('eu', 'pron-pers'), ('não', 'adv'), ('aguento', 'v-
fin'), ('mais', 'adv'), ('ter', 'v-inf'), ('problema',
'n'), ('com', 'prp'), ('minha', 'pron-det'), ('volta',
'n'), ('da', 'n'), ('australiaaaaa', 'n'), ('!', '!'),
('!', '!'), ('para', 'prp'), ('de', 'prp'), ('cancelar',
'v-inf'), ('meus', 'pron-det'), ('voos', 'n'), ('@', 'n'),
('LATAM_BRA', 'n')]
```

Para transformar a lista de tokens em um vetor de números, nós utilizamos o Modelo de Espaço Vetorial (VSM).

No **VSM**, cada **token** (palavra, termo) que apareceu no nosso conjunto de dados se torna uma **característica**.

Pode-se notar que a dimensionalidade se torna ENORME (técnicas de redução são utilizadas).

Imaginemos uma lista de documentos:

1	ele vai comer
2	ele vai sair e eu vou sair
3	eu vou beber e sair

Dessa forma, nossa lista de palavras é:

"ele", "vai", "comer", "sair", "e", "eu", "vou", "beber"

Há três formas básicas de se transformar as palavras em um vetor:

- Com um valor binário:

Documento	ele	vai	comer	sair	е	eu	VOU	beber
1	1	1	1	0	0	0	0	0
2	1	1	0	1	1	1	1	0
3	0	0	0	1	1	1	1	1

Há três formas básicas de se transformar as palavras em um vetor:

- Contando a quantidade de vezes (frequência):

Documento	ele	vai	comer	sair	е	eu	VOU	beber
1	1	1	1	0	0	0	0	0
2	1	1	0	2	1	1	1	0
3	0	0	0	1	1	1	1	1

Há três formas básicas de se transformar as palavras em um vetor:

- TF-IDF:

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

Há três formas básicas de se transformar as palavras em um vetor:

- TF-IDF:

Documento	ele	vai	comer	sair	е	eu	VOU	beber
1	0.058	0.058	0.159	0.000	0.000	0.000	0.000	0.000
2	0.025	0.025	0.000	0.050	0.025	0.025	0.025	0.000
3	0.000	0.000	0.000	0.035	0.035	0.035	0.035	0.095

N-GRAM

O modelo n-gram é um modelo de linguagem probabilístico amplamente utilizado na classificação de texto.

Um n-gram é uma sequência contínua de n itens de um dado (fonemas, personagens, palavras, caracteres, etc.) obtida através de um corpus.

Número de elementos	Nome
1	Unigram
2	Bigram
3	Trigram
4	4-gram
5	5-gram

N-GRAM

O modelo n-gram pode ser utilizado a nível de palavra ou a nível de caractere.

Nível de palavra:

N-GRAM

Nível de palavra:

"sendo muito bem atendido pelo pessoal do @alobradesco"

'sendo muito', 'muito bem', 'bem atendido', 'atendido pelo', 'pelo pessoal', 'pessoal do', 'do @', '@ alobradesco'