Réactions de précipitation

Au programme

Savoirs

- \diamond Constante de l'équation de dissolution, produit de solubilité K_s
- ♦ Solubilité et condition de précipitation, domaine d'existence, facteurs influençant la solubilité.

Savoir-faire

- ♦ Déterminer la valeur de la constante d'équilibre pour une équation de réaction, combinaison linéaire d'équations dont les constantes thermodynamiques sont connues.
- ♦ Déterminer la composition chimique du système dans l'état final, en distinguant les cas d'équilibre chimique et de transformation totale, pour une transformation modélisée par une réaction chimique unique.
- ♦ Prévoir l'état de saturation ou de non saturation d'une solution.
- ♦ Utiliser les diagrammes de prédominance ou d'existence pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
- ♦ Exploiter les courbes d'évolution de la solubilité d'un solide en fonction d'une variable.
- ♦ Illustrer un procédé de retraitement, de recyclage, de séparation en solution aqueuse.

Sommaire

Ι	Équilibre d'un solide en solution	3
	I/A Dissolution et précipitation	3
	I/B Équilibre	4
	I/C Condition d'existence d'un précipité $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	5
II	Facteurs influençant la solubilité	7
	II/A Température	7
	II/B Effet d'ions communs	7
	II/C Influence du pH	8

	Liste des définitions Définition 4.1 : Solubilité
i I	
	Liste des rappels Rappel 4.1 : Dissolution
	Liste des propriétés Propriété 4.1 : Condition d'existence d'un précipité
	Liste des applications Application 4.1 : Calcul de solubilité
	Liste des remarques Remarque 4.1 : Solides usuels
	Liste des exemples Exemple 4.1 : Solubilités usuelles
	Liste des points importants Important 4.1 : Méthode pour calculer une solubilité
	Liste des erreurs communes Attention 4.1 : Produit de solubilité

I | Équilibre d'un solide en solution

I/A Dissolution et précipitation

Rappel 4.1 : Dissolution

Une espèce solide $X_{(s)}$ est capable d'être dissoute, c'est-à-dire passer en solution 1 :

Remarque 4.1 : Solides usuels

- ♦ Le plus souvent, le solide se décompose en ions, et ce sont ces derniers qui seront solvatés.
- ♦ Chimiquement, la dissolution consiste en la séparation des molécules de X par le solvant, grâce aux interactions moléculaires :

Définition 4.1 : Solubilité

Un solide ne pourra souvent pas se dissoudre totalement dans l'eau, et il y aura à un moment une **saturation**. On appelle alors **solubilité** la **concentration maximale d'espèce dissoute** :

Unité

Remarque 4.2 : Solubilités tabulées

Souvent, les données tabulées utilisent le $g \cdot mol^{-1}$. Pour passer de l'une à l'autre, il faut simplement convertir grâce à :

Exemple 4.1 : Solubilités usuelles

Tableau 4.1 – Solubilités de quelques solides dans l'eau

Solide	Solubilité $(g \cdot mol^{-1})$
NaCl (sel)	357
Saccharose	2000
$O_{2(g)}$	1120

 $^{1.\,}$ Dans notre cas, le solvant sera toujours l'eau.

Définition 4.2 : Précipité et précipitation

Un précipité est un **dépôt solide** en **équilibre** avec la phase aqueuse, qui apparaît lorsqu'une solution est **saturée** en composés ionique ou moléculaire.

On appelle **précipitation** la réaction de formation du solide à partir de ses composés ioniques :

Manipulation 4.1 : Précipitation d'hydroxyde de cuivre

https://www.youtube.com/watch?v=G-o2zF1Kbxo

Lorsque l'on ajoute de la soude (Na⁺,HO⁻) à une solution de sulfate de cuivre (Cu²⁺,SO₄²⁻), un précipité solide d'hydroxyde de cuivre Cu(OH)₂ apparaît. On peut le filtrer et l'isoler.

On retrouve cette situation pour beaucoup d'autres solutions, avec de nombreux précipités : AgCl, Zn(OH)₂, etc.

Il y a deux façons d'obtenir un précipité:

- 1) En introduisant un excès de solide dans l'eau : si on dissout du sel dans l'eau, passé une certain quantité le sel ne se dissout plus : il reste du solide au fond de la solution ;
- 2) En mélangeant deux solutions contenant les espèces constituantes du précipité : c'est le cas de l'expérience présentée.

Définition 4.3 : Produit de solubilité

Le produit de solubilité est la constante d'équilibre de la **réaction de dissolution**, noté K_s . Par exemple :

On définira également $pK_s = -\log K_s$.

Attention 4.1 : Produit de solubilité

Le produit de solubilité est associé à la réaction de dissolution!

Important 4.1: Méthode pour calculer une solubilité

- 1 Écrire la réaction de dissolution et dresser le tableau d'avancement en supposant la saturation;
- 2 Exprimer s en fonction de ξ_{eq} puis les concentrations en fonction de s;
- $\boxed{3}$ Exprimer K_s en fonction de s et résoudre.

Application 4.1 : Calcul de solubilité

Calculer la solubilité en $\text{mol} \cdot L^{-1}$ puis en $g \cdot L^{-1}$ pour les espèces suivantes :

- 1) NaCl_(s) de $K_s = 36$ avec $M_{\text{NaCl}} = 58,44 \,\text{g} \cdot \text{mol}^{-1}$;
- 2) $PbI_{2(s)}$ de $pK_s = 7.5$ avec $M_{PbI_2} = 461.01 \text{ g} \cdot \text{mol}^{-1}$.

1) [1]	Équation		=	= -	+
	Initial	$\xi = 0$			
	Final	$\xi_f =$			

2

3

2) 1	Équation		=	= -	+
	Initial	$\xi = 0$			
	Final	$\xi_f = \xi_{\rm eq}$			

2

3

I/C Condition d'existence d'un précipité

Application 4.2 : Précipitation ou non?

On ajoute $n=10^{-5}\,\mathrm{mol}$ d'ions Cl $^-$ dans $V_0=10\,\mathrm{mL}$ de nitrate d'argent (Ag $^+,\mathrm{NO_3}^-$) à $c_0=10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}.$ On donne p $K_s(\mathrm{AgCl})=9.8.$

Obtient-on un précipité de chlorure d'argent AgCl?

Propriété 4.1 : Condition d'existence d'un précipité

 $\Rightarrow \mathbf{Dissolution}: \qquad \mathbf{A}_p \mathbf{B}_{q(\mathbf{s})} = p \mathbf{A}_{(\mathbf{aq})}^+ + q \mathbf{B}_{(\mathbf{aq})}^-$

 K_{s}

- Solide = équilibre = saturation
 ⇒ Pas de solide = pas d'équilibre
 ⇒ solide totalement dissout
- \diamond **Précipitation** : $pA_{(aq)}^+ + qB_{(aq)}^- = A_pB_{q(s)}$ $K^{\circ} =$
- ▶ Solide = équilibre
 ⇒ suffisamment d'ions
 ▶ Pas de solide = pas d'équilibre
 ⇒ pas assez d'ions

Exemple 4.2 : Rupture d'équilibre de dissolution

En reprenant l'application 4.1, s'il n'y a pas de solide ça veut dire qu'il a été entièrement consommé; alors,

Important 4.2: Diagramme d'existence d'un solide

Pour un solide, soit il existe soit il n'existe pas : on ne parle pas de prédominance mais d'existence. La construction d'un tel diagramme reflète ce qui a été déterminé plus tôt :

Un précipité existe si la solution est chargée en ions

On trace donc les domaines d'un solide A_pB_q en fonction de la concentration d'un de ses ions via pA ou pB.

Méthode: On détermine le p A_{lim} d'apparition du solide en se plaçant à la **limite de la précipitation**: on suppose que la première molécule de solide vient d'apparaitre, donc l'équilibre $Q_{eq} = K_s$ est vérifié, mais les concentrations des ions ne sont pas modifiées par la précipitation.

Application 4.3: Diagramme d'existence AgCl

Tracer le diagramem d'existence de $AgCl_{(s)}$ en fonction de pCl, pour une solution de Ag^+ à $c_0 = 0.10 \,\mathrm{mol \cdot L^{-1}}$.

On reprend le résultat de l'application 4.2 avec $[\mathrm{Ag}^+]_i = c_0$:

FIGURE 4.2 – Diagramme d'existence de AgCl

II | Facteurs influençant la solubilité

II/A Température

Propriété 4.2 : Influence de la température

La solubilité dépend de la température car le produit de solubilité dépend de la température $(K_s(T))$. La plupart du temps, la solubilité augmente 2 avec T

Exemple 4.3: Utilistion pratique

On peut se servir de cette propriété à des fins de purification. Supposons que l'on dispose d'un mélange d'un composé A avec une impureté B dont on veut se débarasser. Si on trouve un solvant dans lequel <u>les impuretés sont plus solubles</u> que le composé principal, on peut réaliser une recristallisation :

- 1) On dissout le mélange dans la plus petite quantité de **solvant chaud** pour bien dissoudre le mélange, apportant ainsi une solution **saturée**;
- 2) La solution est ensuite laissée à refroidir;
- 3) Comme la solution refroidit, la solubilité des composés diminue, et le composé désiré cristallise tandis que les impuretés restent en solution.

II/B Effet d'ions communs

Propriété 4.3 : Effet d'ions communs

Lors d'une dissolution, si la solution contient déjà l'un des ions du solide alors la saturation appraît plus tôt : la solubilité diminue.

^{2.} Contre-exemple : le calcaire.

Application 4.4: Effet d'ions communs sur AgCl_(s)

Calculer la solubilité de $AgCl_{(s)}$ s'il y a déjà $c = 0.1 \text{ mol} \cdot L^{-1}$ de Cl^- en solution et comparer la solubilité obtenue au résultat attendu sans. On donne $pK_s(AgCl) = 9.75$.

1	Équation		=	= -	+
	Initial	$\xi = 0$			
	Final	$\xi_f =$			

2

3

II/C Influence du pH

Propriété 4.4 : Influence du pH

Lorsque les espèces en jeu appartiennt en plus à un couple acide-base, le pH a rôle sur la solubilité :

- ♦ Un solide basique aura une plus grande solubilité en milieu acide ;
- ♦ Un solide acide aura une plus frand solubilité en milieu basique.

Exemple 4.4: Dissolution d'oxyde d'aluminium en fonction du pH

 $Al(OH)_{3(s)}$ appartient au coule acide-base

$$Al(OH)_{3(s)}/Al(OH)_4^{-}_{(aq)}$$

Étudions sa dissolution dans l'eau:

Équation	_	+ -		H
$\xi = 0$				
$\xi_{ m eq} =$				

Figure 4.3 – Graph ps-pH