

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4190 Introduction to Topology				
Academic contact during examination: Gereon Que Phone: 48501412	ick			
Examination date: 31 May 2018				
Examination time (from-to): 09:00-13:00				
Permitted examination support material: D: No prinallowed. A specific basic calculator is allowed.	nted or hand-wri	tten support material is		
Other information: All answers must be justified.				
Language: English				
Number of pages: 2				
Number of pages enclosed: 0				
		Checked by:		
Informasjon om trykking av eksamensoppgave				
Originalen er: 1-sidig □ 2-sidig ⊠				
sort/hvit ⊠ farger □	Date	Signature		
skal ha flervalgskjema □		-		

Problem 1

a) Show that the map

$$f: \mathbb{R} \to \mathbb{R}^2, \ t \mapsto \left(\frac{e^t + e^{-t}}{2}, \frac{e^t - e^{-t}}{2}\right)$$

is an embedding.

b) We define the map q by

$$g: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^2 - y^2.$$

Determine the set of regular values of g, and determine the set of critical values of g. Is g a submersion?

c) Is the set Im (f), the image of f in \mathbb{R}^2 , a manifold? Is the set $(g \circ f)^{-1}(1)$ a manifold?

Problem 2 Let Z be the subset of \mathbb{R}^4 defined by

$$Z := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2^2 + x_3^3 + x_4^4 = 0\}$$

- a) Show that Z is a manifold in \mathbb{R}^4 . What is the dimension of \mathbb{Z} ?
- b) Let $S^3 \subset \mathbb{R}^4$ denote the three-dimensional sphere. Show that $Z \cap S^3$ is a manifold. What is the dimension of $Z \cap S^3$?

Problem 3 Let
$$X = \{(x, y) \in \mathbb{R}^2 : x \ge -1\}, Y = \mathbb{R}$$
 and

$$f \colon X \to Y, \ (x,y) \mapsto x^2 + y^2.$$

- a) What is the boundary of X? Show that 1 is a regular value of f. Is 1 a regular value of $\partial f = f_{|\partial X}$?
- **b)** Determine $\partial(f^{-1}(1))$ and $f^{-1}(1) \cap \partial X$. Why does the answer not contradict the assertion of the Preimage Theorem for manifolds with boundary?

Problem 4 Let $f: X \to Y$ be a smooth map between smooth manifolds with X compact, Y connected and dim $X = \dim Y$.

- a) Show that, if $\deg_2(f) \neq 0$, then f is surjective.
- b) Show that if Y is not compact, then $\deg_2(f) = 0$. (Hint: You may use the fact that the image of a compact space under a continuous map is compact, and you may use the result of a) if needed.)
- c) Let $X = Y = S^1 \subset \mathbb{R}^2$ be the unit circle and assume that $f \colon S^1 \to S^1$ is a smooth map without fixed points. Show that f is surjective.

(Hint: Show that f is homotopic to the antipodal map $\alpha \colon S^1 \to S^1$, $x \mapsto -x$. What is $\deg_2(\alpha)$? You may use the results of a) and b) if needed.)