INTRODUCTION

RNA homology comprises the measurement of sequence similarity between RNA molecules towards establishing evolutionary relatedness between species and predicting functions of novel molecules. Homology search is often the first step in studying a new RNA molecule, and has greatly advanced the study of non-coding RNA (ncRNA) and the processes they are implicated in in the cell. To effectively compare RNA molecules, both the primary sequence conservation and secondary structure of the molecules need to be taken into account, as much of the RNA function is dictated by its structure. While current state-of-the-art homology tools are able to model sequence and structure efficiently, they are unable to model important structural motifs called pseudoknots, thus possibly making the models less sensitive to finding homologous sequences. Deep neural networks (NNs) have been increasingly used in biological problems showing high performance. We sought to explore NNs as potential candidates for a homology tool that could be able to fill the gap in the RNA homology search field. For a NN to be able to predict RNA homology, it is important that it is able to model RNA structure arising from long range interactions between nucleotides in base pairs. In this work, we explore different NN architectures and various factors involved in training NNs that influence whether a NN is able to learn RNA secondary structure; our goal is to gain insights towards making an effective deep learning based RNA homology tool.

RNA homology

The discovery and increased study of ncRNAs has elucidated the importance of RNA in many cellular pathways. Before it was discovered that there were different types of RNA that played different roles, it was observed that most RNA in the cell was located in particles that came to be known as ribosomes, and that these particles had to have some relation to protein

synthesis (Crick, 1958). Later, from the observation that there were other RNA molecules that had rapid turnover, the discovery of messenger RNA (mRNA) was made, identifying that RNA served a central role in the coding of proteins. Slowly more RNA types outside of mRNA (and later transfer RNA) were found, but it remained unclear as to what functions they served and to whether they had catalytic abilities. In 1982, Tom Cech's discovery of a self-splicing intron, catalyzed solely by a ncRNA was revolutionary and propagated the idea that ncRNAs were abundant molecules in the cell with important functions. Many types of ncRNAs have been discovered with unique function arising often from intricate structure. For the duration of this work, the term RNA will refer to ncRNA or, more broadly, RNA that perform functions in the cell, with the idea that these molecules have interesting structures.

Homology has been instrumental in the study of newly found RNA molecules and has helped elucidate important biological pathways that rely on functional RNAs (Esteller, 2011). The central idea behind homology is that polynucleotides and polypeptides carry information about the evolutionary history of an organism, and that information is found in regions of molecules that are conserved across evolution, suggesting their importance and perhaps functional implication. This idea set off the advent of molecular phylogeny (Zuckerkandl and Pauling, 1965). Using these ideas in studying homologous ribosomal RNA sequences, Woese and Fox discovered archaea as a distinct, third domain of the tree of life, showing how important the study of RNA homology is to advancing our understanding of phylogeny (Woese and Fox, 1977).

To find regions of conservation, homology tools largely construct alignments of sequences. While pairwise alignments between two sequences at a time provide some similarity information, the construction of multiple sequence alignments (MSAs) provides more general information about well conserved regions across evolutionary time. Here,

multiple sequences are compared to identify regions of similarity, and these regions are aligned such that columns of sites in the alignment reflect conservation information (Figure 1). MSAs can be used to classify groups of homologous RNA as an RNA family. Furthermore, given a novel molecule, statistical comparisons between the sequence and different MSAs provide information as to the classification and thereby possible function of the molecule.

For RNA homology search specifically, it is important to model sequence and structural conservation (Durbin, 1994). In constructing an RNA MSA, aligning only the primary sequence by looking for similar single nucleotides across sequences will provide some information as to short conserved nucleotide sequences (often called motifs) sequence. However, this will lose any structural information, as the conservation of base pairs arises as covarying nucleotides; i.e. while a single site will not have a conserved nucleotide, pairs of sites will conserve base pairing across evolution by compensating substitutions. Figure 1 demonstrates this in a toy MSA, showing sites that don't show conservation down a single nucleotide column, but retain base pairing across all sequences suggesting a conserved base pair. A homology tool must be able to model these covariations as two RNA molecules with highly different sequences could actually be evolutionarily related by a conserved secondary structure.

Figure 1: MSA of toy RNA sequences which have conserved base pairs shown by columns with covarying nucleotides that conserve base pairings. Sites are aligned in columns. Proper alignment of sequences shows the evolutionary conservation of nucleotides across different sequences at similar sites. Columns 3 and 4 show conserved single nucleotides, in which down the column a similar base pair is frequently observed. Two base pairs are shown between sites 1,2 and sites 7,8. These columns individually do not show conservation, but the pairs of nucleotides show conserved base pairings.

One of the most powerful tools used for RNA Homology search is Infernal, which uses a Covariance Model (CM) – a type of stochastic context-free grammar (SCFG) – at its core (Nawrocki and Eddy, 2013, Durbin et al., 1998). SCFGs are a tool borrowed from computational linguistics, that models RNA sequences as sentences derived from a formal grammar (Sakakibara et al., 1994). A grammar is effectively a set of production rules which define the derivation of sequences through the emission of individual nucleotides as well as pairs of nucleotides. Effectively, this allows the model to treat the RNA as a structured sentence instead of a linear sequence, and facilitates the modeling of interacting nucleotides. CMs are able to build a probabilistic representation of an RNA MSA, learning both conserved sequence motifs and base pairs. The base pair information can be used to make predictions on folding patterns and the conserved structure of a homologous family of RNAs.

Despite the efficiency and accuracy of CMs, a major drawback arises from the inability of SCFG based models to model non-nested base pairs. RNA base pairs can either be nested or non-nested (Figure 2). If two base pairs exists between nucleotides *a-b* and *i-j*, it

is said that they are nested if a < i < j < b (that is to say that a is situated before i in the sequence before j and so on). However, if the nucleotides are arranged a < i < b < j, the base pairs are said to be non-nested. In other words, an unclosed base pair is situated between two base paired nucleotides (Koessler et al., 2010, Schirmer et al., 2014). Structural motifs such as hairpin stems and bulges arise from nested base pairs and are the most common source of secondary structure in RNA sequences. In the building of an SCFG model, the sequence profile is constructed from the outside of the sequence inwards. This enforces the constraint that base pairs must be nested within each other. Lengths of non-nested base pairs construct structural motifs called pseudoknots. $\sim 5\%$ of conserved base pairs across all RNA sequences are pseudoknotted and in many molecules, the pseudoknot fold is crucial for the RNA function. Such molecules include many viral ribozymes and indeed the group I self splicing introns discovered by Cech mentioned earlier (Staple and Butcher, 2005).

Figure 2: MSA of toy RNA sequences with columns containing covarying nucleotides that conserve base pairings. Columns 3 and 4 show conserved single nucleotides. Two nested base pairs are shown between sites 1,2 and sites 7,8. A non-nested base pair is also seen between the inner loop (site 5) and site 10. An SCFG would not be able to model the non-nested base pair and thus would not account for it in making predictions of sequence similarity.

Due to the ubiquity of pseudoknot motifs, it would be useful for homology tools to be able to model non-nested base pairs. Extensive progress in building RNA alignment databases has been made possible by the efficiency of CMs. Many RNAs that contain both non-nested and nested base pairs have been studied using CMs under the assumption that modelling the nested base pairs is sufficient for homology classification. However, the greater the number of non-nested base pairs in a structure, the less sensitive a CM is to finding homologous RNAs. The non-nested base pairs provide added information as to the intricacy of a conserved structure, and thus only looking at nested base pairs might over- or underestimate the sequence similarity between RNAs.

Many tools exist for the purpose of predicting and modelling RNAs containing pseudoknots (Schirmer et al., 2014). RNA folding programs that incorporate thermodynamic measurements of possible base pairs and structural motifs are used on a single sequence basis to find optimum structures that can contain pseudoknots. The drawback still remains that these programs are often very slow, but more importantly, folding single sequences at a time gives less general information about a conserved evolutionary structure. This makes it more difficult to incorporate these models into homology search tools to construct multiple sequence alignments at the scale required.

Deep Neural Networks

We propose that Deep Neural Networks have great potential to be incorporated into a homology search tool to address this remaining gap. Neural Networks (NNs) comprise a field of models that have become extensively powerful in fields such as machine vision and natural language processing (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2014). These models are able to learn a functional mapping between input data and output

(Sonoda and Murata, 2017; Cybenko, 1989). As opposed to traditional machine learning methods, the features describing the data do not need to be predefined in the input. This removes the strong assumptions that need to be made about the data. NNs are able to learn a hierarchical representation of the data and autonomously learn the features in the data necessary for prediction. A popular method to train NNs is called supervised learning, in which a model is trained to classify inputs given a set of training targets. During training, the model learns a representation of the training data with the intent of generalizing to unseen test data.

NNs have increasingly been used in genomic applications with high performance. For example, Alipahani et al trained an NN to predict the specificities of RNA binding proteins to different RNA sequences, with their model outperforming existing non-deep learning models in predictive power (Alipanahi et al., 2015). Furthermore, Zhou and Tronskaya applied NNs to predicting chromatin binding features given diverse sequence data, again performing powerfully. They showed that their NN was able to learn the effects of non-coding functional variants at a single-nucleotide resolution (Zhou and Troyanskaya, 2015). Works like these have been able to show that NNs are able to learn nucleotide motifs in sequence data at high resolution. This suggests an NN could also be trained to learn conserved primary sequence motifs, one of the features in RNA sequences necessary for homology search.

However, learning structural information from sequence data is arguably a more difficult task than learning sequence motifs. RNA structure mostly consist of base pairs which are effectively exclusive-or binary functions (XOR problems), as it requires recognition of a purine with a pyrimidine, but not both of either (and there is added complexity with the specificity of which purine pairs with which pyrimidine). Interestingly,

the XOR problem played a large role in the history of artificial intelligence research. In 1969, Minsky and Papert showed that a single perceptron (one of the first stages of neural network machinery) was unable to solve an XOR problem as it was only able to fit linear functions in data, with XOR problems being non-linear classifications (Minsky, 1969). This led to what became known as an "AI winter" in which NN research was significantly slowed due to the belief that these models would not be able to solve simple, but important classification tasks. It wasn't until it was shown that a multilayer perceptron (MLP), a network which uses sets of perceptrons stacked in layers, could solve the XOR problem easily, that NN research recommenced eventually producing the complex NN models that we have today (it should be noted that this revival was also facilitated by the backpropagation algorithm which made training these multi layer networks possible (Rumelhart et al., 1986)). While these models were not created to model RNA structure, it is interesting that these fulcrum questions that heavily influenced the development of NN machinery, are intrinsically linked to the task of learning base pairs.

Knowing this, it is probable that a NN would be able to learn base pairs from sequence data. The power of these models (and indeed what allowed MLPs to overcome the solve the XOR problem) is their ability to perform multiple different linear functions with non-linear activations and combine these to build representations of data with diverse features; this gives NNs the flexibility to independently learn complex information from data. This suggests to us that these models would also be able to learn non-nested base pairs, making NNs a good candidate for a more sensitive homology tool.

Interpreting Neural Networks

Before developing a model for a task, it is important to verify that it is learning the information desired, and not an alternate or incorrect representation of the data. One major difficulty with NNs is that they are difficult to interpret, in part due to the scale of these models - architectures can be easily constructed to contain 1000s - 100,000s of parameters. As a result, NNs are often used as black boxes predictive tools. Nevertheless, they have performed exceptionally well at classification and prediction tasks. However, as is a common problem with models containing many parameters, there is a risk that the model might be overfitting to the data. For example, if an NN is trained on sequence data for a classification task, it is likely that it will perform well with high accuracy, but that does not directly imply the model has learned the interesting biological features of the sequences. This is important for a homology search tool: if an NN is trained on an RNA family, it must learn the characteristic conserved motifs and structure of that family, instead of memorizing the training data, to be able to accurately predict homology of unseen sequences.

There has been recent progress on methods for interpreting NN models in the field of computer vision. One such class of methods is called saliency analysis, in which important features of the data are identified by taking the gradient of the output prediction with respect to the inputs (Simonyan et al., 2013). Put simply, the input data is systematically changed by a small amount and the effect on the output prediction is monitored. If changing a particular character in the input produces a large effect on the prediction, this implies that this character is an important feature. This has proven effective in image classification where input pixel data is continuous, and gradients in output are meaningful. For genomics, sequence data comprises discrete character values (nucleotides) making gradients with respect to the input less interpretable. Thus an analogous method that maintains the discrete quality of the input

data is first order *in silico* mutagenesis (Figure 3). Here, nucleotides in the sequence are mutated *in silico* and these mutant sequences are tested on a trained model to retrieve prediction scores for the mutants. The deviation of the mutant prediction from wild type provides insight into which nucleotides in the sequence are important. This technique has been used to show that NNs can learn binding protein motifs in regulatory sequences, by recapitulating the known motif for a given binding protein (Alipanahi et al., 2015). This method identifies the importance of individual positions, and applied to an NN trained on an MSA, can be used to verify if an NN is learning first order conserved sequence motifs.

Figure 3: Schematic for First Order Mutagenesis on a toy sequence with conserved motif (GUG). For a selected nucleotide site, mutant sequences are generated *in silico* with every possible mutation at that site. These mutant sequences are tested using a trained NN producing a score for each mutant. If the NN has learned that the nucleotide is important for function, it should give the highest score for the WT nucleotide (U). We repeat this for every site in the sequence producing a mutation score vector for each site. These scores can be visualized as saliency logos depicting the proportional importance of each nucleotide in the sequence. These logos show what the NN has learned about the data and can be used to verify if the model is learning relevant biological features.

However structural information, namely base pairing, is a second order feature of the data, thus a different method is needed that is able to verify if a model is learning interactions between nucleotides. While we know that NNs can solve XOR problems (and therefore base pairs), these interactions manifest with complex patterns in RNA sequences. As stated, base pairing follows particular patterns of interaction nucleotides and, furthermore, these interactions occur over long ranges in RNA, with multiple base pairs present in alignments with different degrees of conservation. If we train an NN on sequence data, to verify if it is effectively learning this base pairing information we need second order interpretation methods.

Research goals

We propose that NNs are a good potential candidate for a homology tool. However, before such a tool can be developed, the first step is to understand the extent to which an NN can learn RNA secondary structure from homologous sequences. In particular, it is necessary to verify if these models can learn non-nested base pairs which would make them more sensitive than current methods. The goal of this work is to gain insight into whether an NN can effectively learn RNA secondary structure and furthermore, to explore the factors related to model selection, model training and training data that contribute to a model being able to learn secondary structure.

To explore this, we developed an interpretation method, we call second order *in silico* mutagenesis to verify an NN is learning which pairs of nucleotides are directly base paired. Using a basic MLP architecture we show that MLPs can effectively learn secondary structure information from alignment data. These models are able to learn non-nested base pairs from biological data, identifying pseudoknots that CMs are unable to find. We also explored

Recurrent Neural Networks (RNNs) as a potential candidate model that can learn structure from unaligned, variable length data, and identified factors relating to the size of a training alignment that limit a model's ability to accurately learn base pairs. This work builds up a framework to use NNs to learn secondary structure from biological data towards developing an NN-based homology tool.

RESULTS

Alignment data and training regime

Our goal is to explore how well NNs can learn RNA secondary structure when trained on homologous sequence alignments. In the process of alignment, sequences of varying lengths are made into uniform length sequences by the addition of gaps. These gaps represent insertions or deletions in sequences that allow conserved nucleotides and base pairing sites of all the sequences to be aligned in columns down the alignment. In our use of alignment data we treat gaps as a fifth character in addition to the four nucleotides. Each alignment represents a different RNA family of homologous sequences, with each sequence coming from a different species.

We used 20 alignments that matched well to given PDB structures, so that we had a ground truth to verify the learned structural information from an NN after training. These alignments were taken from Rfam, a popular database of RNA family alignments (Kalvari et al., 2018), and columns in the alignment with >50% gaps were removed. Table 1 lists the families used in addition to details about their size.

We trained our NNs to learn structural information from the alignment data using supervised learning. In supervised learning, a model is given training data with labels, and the NN is trained to classify sequences from each other. We trained our models to perform binary classification in which there is a positive set of sequences and a negative set, and the model needs to learn to distinguish sequences of each set. Towards training an NN to learn secondary structure, we wanted the model to be able to distinguish positive sequences that had structure from negative sequences that did not. We needed the positive set and the negative set to differ only by the presence of structure such that the model would be forced to learn the underlying base pair information in the positive set instead of learning to

discriminate the sequences by some other feature such as nucleotide composition, conserved sequence motifs or gap patterns. To do this we used the reduced Rfam alignments as positive data. To generate negative sequences that were identical to the alignments except for structural information, we calculated a position weight matrix (PWM) from the positive alignment and sampled sequences from the PWM with each site in a sequence independent of the other sites, such that there would be no pairwise covariation suggestive of base pair patterns in the negative set.

The data (positive set and negative set) is then divided into a training set (80% of the total sequences), a validation set and a test set (10% each). Each NN is trained for a 1000 epochs on the training set, and the models' parameters are optimized to perform binary classification between the training sequences (see methods for more details). At every epoch of training, the model is given the validation set to cross validate the model's performance and after a 1000 epochs, the parameters with the highest validation performance is saved. At the end of training, the model is tested on the unseen test set, and the performance on this set gives an idea of how well the model has learned to distinguish sequences that have structure from sequences that don't. The idea with this training design is to make the NNs learn general information about the RNA family structure without overfitting the training data.

Neural Network architecture

To get representative insights into how well a NN would be able to learn secondary structure from alignment data, we used an MLP which is a basic NN architecture. MLPs train relatively quickly compared to more complex architectures. With regards to the model architecture, an MLP consists of an input layer, at least one hidden layer and an output layer (allowing the transformation of the features of the data, thus making the model able to solve

XOR problems). The input layer takes in uniform length sequences. Each hidden layer contains a number of units (or neurons) with individual trained parameters for each character in the input. This makes the model ideal for alignment data in which the conserved base pairs are always in the same sites in the sequence. Each neuron effectively performs a non-linear transformation on the input sequence generating new scores after each layer to feed into the next hidden layer. A final output transformation produces a single score used for classification. We used an MLP with 512 neurons in a single hidden layer for our tests. Empirically we found that this architecture worked well on our alignment data, with a large enough hidden layer to learn structural information, but not too large as to overfit the training data. It should be noted that we did not rigorously explore different MLP architectures and hyperparameter choices as our goal was to gain representative insights on how well an MLP could learn structure comparing against different families and alignments.

MLP had high performance in binary classification task

Separate MLPs were trained on each alignment corresponding to a given RNA family from Rfam using the training procedure described above, and the models were tested on the unseen test data. Table 1 shows the accuracy and the area under the roc curve (AUC-roc) of each model on each family. The accuracy refers to the fraction of test sequences that were classified correctly as either having structure or not having structure. The AUC-roc is another measure of model performance, with high scores indicating the model has high classification power. Most MLPs had high performance with >99% accuracy and 1.0 AUC-ROC. It is of note that the two models that had slightly lower performance were two of the smaller alignments (we will discuss this shortly).

Rfam ID	Name	Length	M	M_{eff}	Accuracy	AUC-roc
RF00002	5.8S ribosomal RNA	155	375612	1197.3	1.0	1.0
RF00005	tRNA	73	298470	3533.2	0.999	1.0
RF00010	Bacterial RNase P class A	359	6397	1215.1	0.999	1.0
RF00017	Metazoan signal recognition particle RNA	300	22685	4358.5	0.998	1.0
RF00023	transfer-messenger RNA	366	5983	1558.9	0.999	1.0
RF00050	FMN riboswitch (RFN element)	135	4516	367.1	0.998	1.0
RF00059	TPP riboswitch (THI element)	105	11197	2249.5	0.999	1.0
RF00162	SAM riboswitch (S box leader)	108	4757	585.7	0.995	1.0
RF00167	Purine riboswitch	103	2427	471.1	0.996	1.0
RF00169	Bacterial small signal recognition particle RNA	99	5622	637.2	0.996	1.0
RF00174	Cobalamin riboswitch	188	9056	3190.6	0.997	1.0
RF00234	glmS glucosamine-6-phosphate activated ribozyme	161	842	203.6	1.0	1.0
RF00380	ykoK leader	170	1493	92.2	0.997	1.0
RF00504	Glycine riboswitch	91	6875	895.1	1.0	1.0
RF01734	crcB RNA	65	1267	351.9	0.933	0.992
RF01786	Cyclic di-GMP-II riboswitch	86	237	81.6	0.896	0.95
RF01831	THF riboswitch	100	598	123.1	1.0	1.0
RF01852	Selenocysteine transfer RNA	91	1959	157.2	0.997	1.0
RF02001	Group II catalytic intron D1-D4-3	174	2450	374.0	0.996	1.0

Table 1: the 20 Rfam alignments used for this work with corresponding Length, Depth (M) and Effective Depth ($M_{\rm eff}$) in addition to the accuracy and AUC-ROC scores of the MLP trained on the alignment. The length corresponds to the number of nucleotides (including gaps) in a sequence after reduction. The depth is the number of total sequences in the alignment. When alignments contain many sequences that are highly related phylogenetically there is less structural information in the alignment than would be suggested by its depth. Thus the effective depth of an alignment corresponds to a weighted depth proportional to how related the sequences are, providing a better indicator of how much structural information the MLP sees during training.

Identifying learned covarying base pairs using Second order in-silico mutagenesis

Despite the high predictive power of these models, it is not certain that this directly corresponds to the model learning the structure of the family, because NNs can easily overfit the data, learning noisy features that we are not interested in to make its classification. Therefore, it is important to interrogate the model to identify what information is being learned. We are interested in learning RNA secondary structure. Much of RNA secondary structure is comprised of nucleotides that interact over long ranges via base pairing. These interactions are present in homologous sequence data through nucleotides that show conserved covariation across the alignment in the patterns of base pairs. For this work we focussed on Watson Crick base pairs that follow the pattern A-U and C-G (while G-U wobble pairs and other base pairs are present we did not focus on these in our interrogation method, however high covariation scores were also found for known non Watson Crick base pairs which we will discuss).

A sequence from a family with a given structure will contain nucleotides that base pair; we expect that a trained model that has learned base pairing covariation will be able to distinguish mutations in the wild type nucleotide pairing that break the base pair, from mutations that constitute a different base pair which maintain the structure. To verify if the model has learned covarying base pairs, we developed a method called second order *in silico* mutagenesis (SoM). Figure 4 depicts the process of SoM. Given a sequence containing base pairs, we systematically mutate every pair of nucleotide sites i and j to every other possible pair of nucleotides (i-j: {A-A, A-C ... U-G, U-U}) (Figure 4(i)). For a select pair of nucleotides in the sequence this produces 15 mutant sequences in addition to the WT. We test these sequences using a trained model, which results in 16 scores which we can order into a 4x4 score matrix corresponding to pairwise mutations between position i and position j while

keeping the rest of the sequence intact. For nucleotides that are base paired, the scores should be high for complementary mutations which maintain the base pair and low for any other sets of mutations that break it (Figure 4(ii)). Each nucleotide pair produces its own 4x4 score matrix. A full all vs. all SoM between every pair of positions in the sequence results in $\frac{L(L-1)}{2}$ unique score matrices, and including duplicates and WT copies in the saturated mutation process, this produces scores with a final dimensionality of LxLx4x4 where L is the length of the sequence.

To make the scores more interpretable, we reduce the dimensionality of the results using what we call a base pair filter (BPfilter). This is a 4x4 matrix with a value of 1 on the off diagonal and 0 otherwise (Figure 4(iii)). We perform element-wise multiplication between the BPfilter and the score matrix and sum the results to get a single number for each nucleotide pair which we call a SoM score. This upweights scores in the score matrix corresponding to complementary nucleotide pairs where the base pair is maintained. The idea is that, using the BPfilter, the highest SoM scores will be matrices that show high scores for all the complementary pairs (Figure 4(iv)). Score matrices which only give high scores for a single complementary pair (eg. A-U only) will also be upweighted but not as significantly. We noticed that SoM performed on a single sequence was noisy, so we averaged the SoM scores from multiple sequences to average down the noise. To remove additional background noise, we used an average product correlation (APC) correction (Dunn et al., 2008) (See Supplementary Figure 1). Although our current procedure is still in development, we found that these steps were mostly sufficient to remove enough background noise to make conclusions on how well an NN is able to learn structure. We plot the denoised SoM LxL scores according to the positions of the mutated pairs in what we call a watson-crick plot (WCplot) (Figure 4(v)).

A high SoM score reflects that the NN has learned that the particular sequence sites that were mutated covary such that complementary nucleotide pairings are conserved, indicating a base pair. If the model has learned the patterns of covariation that reflect the RNA structure, visualizing the SoM scores will show patterns of high scoring pairs which correspond to stems in the structure. Using this method we can identify how well a NN has learned structural information of a given RNA family.

MLPs can learn covariation from base pairs

We employed SoM on each trained MLP for each Rfam family to identify what structural information the models have learned. For the MLPs trained on families with fully nested structures, to validate the results, we compared the SoM scores to the secondary structure (SS) annotation predicted by Infernal (Nawrocki and Eddy, 2013), an SCFG based model which is the state of the art tool used for RNA homology. While Infernal can only model nested base pairs, it models SS highly efficiently and is a good source to validate our results against.

We also compared our SoM scores to the watson crick (WC) base pair annotations extracted from PDB structures by FR3D (a PDB annotation tool) (Sarver et al., 2008).

Nucleotides can interact in many ways; Leontis describes 12 different base pairing types arising from combinations of interactions between the watson crick, sugar and Hoogsteen edges of nucleotides in cis or trans configurations (Leontis and Westhof, 2001). The most common form of base pairing, however, is the cis watson crick - watson crick interaction (which we refer to as WC) which contributes most of the stabilisation energy for RNA folding. Furthermore, while base pairing between most pairs of nucleotides have been found, the most common pairings are the complementary A-U and C-G pairs. Because of this, we

designed SoM to upweight covariation patterns in the score matrices that correspond to showing all four complementary WC base pairs. Notably, the WC annotation does not completely match Infernal's predictions. This arises from WC being only some of the interactions that Infernal is learning, but also this divergence can stem from the fact that the PDB structure was found for RNA from a single species, while Infernal predicts a structure based on homologous information from multiple species (using an MSA). Based on our current design for SoM, we expected that our SoM scores will more closely match the WC annotation, however, it is completely plausible that our MLP is learning all types of nucleotide interactions.

Figure 5 shows two examples of SoM scores from MLPs trained on fully nested structures, compared to Infernal's SS prediction and the WC annotation from a PDB structure for each family. We find that the MLPs are learning the covariation of base paired nucleotides associated with the RNA secondary structure. The model gives higher scores to some base pairs, possibly identifying them as more important for the task of classifying sequences with structure. This variation in score also corresponds to different degrees of covariation in the alignment. For example, tRNA (Figure 5A, RF00005) has a very well conserved structure, with most of the base pairs being equally important with a uniform extent of conservation of covariation. Remarkably, for tRNA, high SoM scores can be found for all of the base pairs predicted by Infernal. Importantly, for Glycine Riboswitch (Figure 5B, RF00504), while there aren't high scores for all predicted base pairs, the MLP has learned at least some base pairs in each stem predicted by Infernal. This suggests that the MLP has learned a general representation of the RNA structure, if not for all base pairs. This is not surprising, as the MLP is trained to perform binary classification between sequences

that have structure and those that do not, so the model might only be learning as much information as it needs to make the classification.

The MLP is also learning many of the base pairs annotated as WC, although despite our expectation that SoM would pull out scores that would better match the WC annotation, the high SoM scores seem to better match Infernals predictions. This is interesting, because despite the design of the BPfilter, it seems SoM is pulling out more general covariation information that the MLP has learned, versus only complementary base pairs. This shows that our intuition for SoM is imperfect, and we acknowledge that our procedure might not be showing a lot of information that the MLP has learned. However, these results still suggest that the MLP is able to learn nested base pairs and some general representation of the stems making up these RNA secondary structures.

MLPs can capture non-nested base pairs that SCFGs cannot

SCFG based models are widely used for RNA homology, however they are limited in that they cannot model non-nested base pairs which make up structural motifs like pseudoknots. Many of the families we tested MLPs on had pseudoknots in their consensus structure. Looking at the SoM scores from the MLPs trained on Bacterial RNase P class A (RF00010) and transfer-messenger RNA (RF00023), we found that an MLP can learn the covariation of nucleotides associated with non-nested base pairs. (Figure 6) We compared both the SoM scores and the predicted secondary structure annotation from Infernal with the WC annotations from representative PDB structures of the two families (Figure 6C and 6D). We also show the secondary structure of each RNA family taken from Rfam which shows the folded nested structure with non-nested pseudoknot regions annotated (Figure 6A and 6B). While Infernal models the nested base pairs, it cannot model the non-nested base pairs of the

pseudoknots. These base pairs are found in the WC annotation and while the number of base pairs does not correspond exactly to the pseudoknot annotation in the Rfam structures, they occur in the expected regions based on the structure. The MLP does learn these non-nested regions showing high SoM scores for the pseudoknotted base pairs. Remarkably, the MLP learns all 4 pseudoknots in transfer-messenger RNA (Figure 6D). Additionally, the SoM results of Bacterial RNase P show very high scores for the few pseudoknotted base pairs that are preferred in the structure, despite being a very large structure with 101 annotated WC base pairs (Figure 6C). Even though we have seen that an MLP will sometimes learn only a few base pairs if that is sufficient for classification (Figure 5B), we see the MLP learn the short pseudoknotted regions with high SoM scores. This suggests an MLP is efficiently able to learn pseudoknotted base pairs and is not hindered by the non-nested structure that prevents Infernal from modelling them.

Validation of SoM scores by comparison to Evolutionary Couplings model

Evolutionary Couplings (EC) is a global maximum entropy model developed by Weinreb et al. EC is essentially a Potts Model which models a family as a distribution over a sequence space where the probability of a sequence takes single-site and pairwise nucleotide dependencies into account (Weinreb et al., 2016). They use the model to generate scores for each nucleotide pair, allowing theme to predict RNA structure *in silico*. The model was tested and shown to be very powerful in predicting covarying nucleotides as a proxy for nucleotide contacts which make up RNA structure. Because the model is constructed to explicitly learn coupling terms for every nucleotide pair using individual trainable parameters it has an advantage by design over neural networks which are expected to learn important characteristics in the data independently towards binary classification. We validated what the

MLP has learned by comparing the results of SoM on each trained MLP to EC's contact predictions as well as contact information from PDB structures used as a ground truth.

We compared the SoM scores from the trained MLPs to the nucleotide pair scores given by EC in contact maps. Figure 7 qualitatively shows that the SoM scores of the four families shown closely follow the gradient of EC scores, i.e. that a nucleotide pair with high SoM score will mostly likely have a high SoM score. This suggests that the MLP is independently able to learn a similar pattern of covarying nucleotides in addition the priority of their importance towards the sequence homology. Interestingly EC also gives high scores to the stretch of nucleotides 36-47 suggesting a stem in RF00059. As seen in Figure 5 this was noteworthy as these were found by the MLP but are not annotated as WW interactions. We know that the EC model is not restricted to WW interactions and is able to learn many kinds of nucleotide interactions that present covariation in a non watson crick pattern (interactions other than A-U and G-C). We compared these scores with the contacts that are

Figure 7: Ranked PPVs and comparative contact maps for SoM on trained MLPs and EC.

<5Å in the representative PDB structure for the RF00059 family and found that, while these are not WW interactions, these nucleotides are indeed in close contact. This was a surprising result, as SoM is designed to highlight nucleotide pairs that covary with watson crick patterns. This suggests that the MLP might also be learning non-WW interactions in the data that SoM cannot robustly elucidate. Unfortunately, these pairs are not given annotations, which may point to a flaw in the PDB structure.</p>

To quantitatively compare how well the MLPs perform compared to EC in learning covarying nucleotides we calculated the Positive Predictive Value (PPV) for a range of thresholds of both models in their prediction of true WW contacts based on the PDB structure. The PPV is the fraction of contacts a model calls positive which are true contacts (where positive contacts are the scores greater than a threshold). Because the scale of scores between models and families are relative and uncomparable, instead of using set threshold ranges we ranked the scores of predicted contacts from SoM and EC, and calculated the PPV of the top i or less scores from i to C, where C is the number of true WW interactions in the PDB structure. The PPV gives an idea of how precise the model is; for the pairs which the model identifies as interacting, how many are actually interacting. Many of the MLPs perform comparably well or better than the EC model of the corresponding Rfam family. RF00050, RF00023 and RF00010 are good examples of MLPs that have learned the structure of the family well. Looking at the ranked PPV graphs, while both EC and the MLP seem to be learning the same number of contacts by the Cth rank, it is noteworthy that for the first contacts predicted, the MLP seems to be finding the WW interactions before EC is suggesting these MLPs more precisely find WW interactions than EC.

Figure 8: Performance of SoM on MLPs against EC compared over all the families tested. The TPR was calculated taking the top 0.7C contacts as positive for both SoM and EC, and these summary TPRs were normalized to 1 and plotted against each other. Points lying below the dotted line correspond to families in which EC performed better than the MLP (7 families), points on the line are where the MLP and EC performed equally well (4 families) and points above the line are where the MLP performed better than EC (6 families).

However, using WW interactions as the ground truth may not be the fairest comparison. As noted, EC is not restricted to finding WW interactions, and thus if its highest scores aren't WW, this does not imply that they are not actual contacts of a different type of interaction. Additionally, some MLPs were not able to learn the structure of the families well and show very unclear contact maps and very low ranked PPV scores relative to EC (see supplement for all results).

To compare the performance of the MLPs and EC for all families simultaneously, we plotted the PPV at the top 0.7C scores of both models for every family. In Figure 8, the SoM and EC score for a given family are plotted against each other. Remarkably, the MLPs perform better than or equally as well as EC for over half of the families. However, it is noteworthy that for families in which EC outperforms the MLP, the difference in PPV is much greater skewed towards EC, i.e when EC outperforms the MLP, the difference is much greater on average than the difference when the MLP outperforms EC. This could point to some characteristic in the consensus structure of the family or possibly a feature of the alignment that is modelled much better by EC than the MLP. We explored the different alignment size variables (length, depth, effective depth) of each family to see if they correlated to the ratio of SoM:EC score, however we did not find any noticeable trend pointing to what types of alignments an MLP might perform better than EC on.

Depth of alignment has an impact on whether an MLP can learn structure

Looking at the SoM results for each trained MLP, we found that the model had varying performance across the families. For some families, the MLP was not able to learn with high precision which base pairs were covarying. This was interesting because most of the models had very high accuracy in the binary classification task. This further shows that the

classification performance is not the best indicator of whether a model has learned relevant information.

We sought to try and understand what factors contributed to whether an MLP could learn structure from an MSA. The influencing characteristics could lie in the particular structure of the RNA family, or in the size of the alignment data (length, depth and effective depth) available for training (note: not all of the sequences available can be used for training, a portion need to be used for validation and testing respectively). Deep learning models are data hungry, requiring lots of training data. In fact much of the recent increased use of deep learning models can be owed to an increase in available data of all forms. Thus, we hypothesised that the depth of the alignment was important for whether a model is able to learn an RNA structure. We predicted that the more sequences available for training, the better a model is able to generalize across the data and learn the consensus structure of the family.

We explored this in Figure 9A comparing the depth and effective depth of each family to the summarized SoM performance of each trained MLP. We calculated the summary True Positive Rate (TPR) of each model. The TPR is the fraction of all the true contacts that are called positive by the model at the set threshold; it is a measure of how sensitive the model is to true base pairs. The summary TPR was calculated for the top 0.7C contacts learned (where C is the number of WW interactions in the annotation). Interestingly, there was no noticeable trend between the summary TPR and depth nor effective depth of the alignment. The peaks are very noisy with sporadic fluctuations. However, we noted that the alignments are of varying lengths, and furthermore each structure is different with different numbers of base pairs, stems and structural motifs, all of which could be confounding factors that affect the performance of the model and confound the trend caused by alignment depth.

To control for the structure of a family and the length of an alignment, we selected alignments that were at least 5000 sequences deep (9 different families), and systematically trained an MLP on smaller training sets of each family. Thus the changes in performance across different training sets, but within a given family reflect only the shallower training data. Figure 9B shows the summary TPR (where top 0.7C contacts are positive) and classification accuracy of each trained model at the lower training sizes. We find that for a given structure and alignment length, shallower training sets do affect the structure learning performance of an MLP. Down to ~1000 sequences in the training set, the performance of the models remains quite constant. However, below 1000 sequences the TPR begins to fall.

Notably, the trend is different for alignments of different lengths. Colouring the lines by the length of the alignment shows that longer alignments (blue) decrease in TPR smoothly and the rate of decrease is greater. However, shorter alignments (red) fluctuate strongly in TPR below 1000 sequences. Looking at the WCplots of the different training size trials for families with shorter alignments, we found that, despite this fluctuation in summary TPR, the SoM results do get noisier as the training size decreases (see supplementary figures). We predict that, because the alignments are shorter and have fewer WW interactions, the noise in the SoM results becomes more uniform across the plot, thus sporadically high scores can appear in positions where there is a true base pair (thus confounding the TPR), even if the WCplot itself doesn't show as much understandable structural information. Thus the fluctuating increase in the TPR values could just be noise. Therefore, even for shorter alignments we observed that with shallower training sets the MLP is less able to learn structure. While the decreasing trend begins at ~1000 sequences, we did find that models trained on full alignments with less than 1000 sequences in the training set (eg. THF Riboswitch - RF01831) can still learn the RNA structure well. Thus, this exploration does

not provide a clear threshold for depth of alignments that can be used to train MLPs. It does however provide insight into the effect that alignment depth can have on an MLPs performance, which should be taken into account when using such models.

Recurrent Neural Networks as a model for unaligned homologous sequences

While we have been using uniform-length, aligned sequences as input, towards the goal of a homology tool it would be advantageous if we had a NN architecture which could take in unaligned, variable length sequences. In homology search, a fully independent homology tool does not start with an alignment. We have unaligned sequences of variable length, which then have to be aligned by the homology model. The model needs to be able to learn the conserved sequence and structural information from the variable length sequences and take that into account during alignment. The homology tool can then use that information and the alignment to make predictions of sequence similarity to build homologous relationships.

While our MLP seems to be able to learn structural information well, a major drawback is that the architecture requires fixed length inputs. Each unit in the hidden layer has individual parameters trained for each individual position in the input sequence. If a test sequence is longer or shorter than the sequences trained on, the MLP cannot add or subtract parameters from its hidden layer to take in the sequence, thus we are required to use an MSA as input. Because of this dependency, the amount of information the MLP can learn from the training alignment is limited by the model used to construct the alignment. If the alignment tool cannot capture the structural information of the sequences during alignment, those conservations may not be present in the MSA columns (thus making it harder for the MLP to learn it). The MSAs we have been using were constructed using Infernal - an SCFG based tool - which is highly efficient at aligning nested base pairs. Our assumption is that if the

larger number of nested base pairs are aligned, then the fewer non-nested pairs are more or less aligned as well. This allows our MLP to learn biologically relevant pseudoknots from these MSAs. However, if there is a lot of information in the sequences that Infernal cannot model, then the alignment it constructs is less useful. If we can use an NN architecture that can take in variable length sequences, we remove this dependency and potential limitation from the alignment tool.

Recurrent Neural Networks (RNNs) are a type of architecture that can take in input sequences of variable length. In contrast to an MLP that takes in the entire sequence at once which individual parameters for each site, an RNN reads each nucleotide site one at a time. An RNN unit also has a hidden layer of neurons, and the model's predictive power comes from its ability to update its hidden layers upon reading an individual nucleotide, while also taking into account the nucleotides it has already seen, thus its final output value takes the entire sequence into account. This allows an RNN to model interactions between sequence sites, however a basic RNN model can only learn short-range interactions. RNA structure is the product of long-range base pair interactions. A Long Short Term Memory (LSTM) model is a modified RNN unit which employs modifications to its update step, including a cell state which the model can update independently of the hidden layer; this affords an LSTM more learning memory, allowing it to model long-range interactions, thus making it a candidate model to learn base pairs from RNA sequences, while also being able to take in variable length sequences.

We sought to explore whether an RNN could learn covarying base pairs from homologous sequences without an alignment. We designed a bi-directional, 2 layer LSTM with 64 units. Two LSTM modules read in the sequence from both directions in the first layer, and then two more modules take in the results of each feed forward in a second layer.

The outputs from the last LSTMs produce a single prediction value. We trained the RNNs equivalently to the MLPs. That is we generated negative sequences from site independent sequence PWMs calculated from an individual RNA MSA, and trained the model to perform binary classification between sequences that have structure and those that don't; the only difference being that we used unaligned sequences (without gaps) to train and test the RNNs.

We trained an RNN on unaligned sequences from the tRNA alignment (RF00005) and performed SoM. Figure shows the WCplots from SoM on the RNNs compared to WCplots from MLPs trained on the same families but the original aligned sequences with gaps (Figure 10A). We found that the RNNs did give high SoM scores in some of the general regions where we expected base pairs to be. Notably, the RNN results are markedly more noisy in comparison to the SoM results from an MLP trained on aligned sequences. In addition to a lot of noise around the true positive scores corresponding to true stems, the RNN also shows high false positives in the diagonal of the WCplot corresponding to pairs of nucleotides that are right next to each other in the primary sequence. The RNN does not find as many base pairs in each stem as the MLP does. While the long-range interactions of the first stem in RF00005 are found, they are given relatively lower scores. This may suggest that our RNN struggle with longer range interactions, and prioritizes learning closer interactions during training. This could also be a limitation of our training procedure, in which the model is only tasked with making a binary classification and thus the model may only be learning enough information to be able to make a prediction (thus prioritizing closer base pairs). Developing the training regime to force the model to learn all base pairs might improve its performance with learning long-range base pairs.

It is unclear whether these results point to the RNNs not learning structure as accurately, or whether the process of SoM as we use it for MLPs is not best suited to pull

learned information from an RNN. In SoM we make mutant sequences with only pairwise mutations to see if an NN is sensitive to these mutations. An MLP trained on aligned sequences is at an advantage in that it has individual trained parameters for each character in the sequence, and is thus more sensitive to small changes in the sequence. Considering an RNN is required to remember individual nucleotides over long ranges to learn base pairs in varying length sequences with a single set of hidden layers, it is remarkable that it can still respond to mutations in individual nucleotides during SoM. The noise in the SoM scores around some of the regions of base pairing may point to the RNN learning general regions of base pairs in the sequence, along with the patterns of WW covariation, lacking higher resolution of exactly which nucleotides are base paired.

An RNN can learn secondary structure with sufficient training data

It is known that RNNs are also highly dependent on the size of training data available. We find that they are much less efficient than MLPs in their ability to learn base pairs from data; that is to say we found our RNN architecture needed far more sequences than the MLP to train properly. This makes intuitive sense as well, as an MLP is fed aligned sequences, in which the base pairs are always in the same site of the sequence, thus it is easier for the MLPs individual parameters to train. However, an RNN needs to be able to find base pairs in variable sequences, thus it would need as much training data as possible to learn how to identify the covariation between base paired nucleotides. We also note that the effective depth of an alignment is much more indicative of the diversity of sequences available. Thus an RNN would need training data with a large effective depth. We notice this dependency with the results of the RNN trained on the tRNA alignment. Despite being one of the deepest alignments (298,470 sequences), it only has an effective depth of 3522, which could explain

why the RNNs SoM results were so noisy. We wanted to see if an RNN could learn base pairs clearly if given more than sufficient sequences.

We sought to train an RNN with input data of a surplus effective depth to see if it was able to learn a more clear structure with sufficient training data. We used Infernal to sample a large number of sequences (100,000) from the Infernal's generative covariance model for RF0005. These sequences would contain the conserved base pairs of the biological alignment. Furthermore, as these sequences were sampled independently they did not have phylogenetic noise and thus the data was very diverse. We trained an RNN to perform binary classification between the positive sequences with structure and negative sequences without structure (sampled from a PWM calculated from the positive data). The RNN was trained on unaligned sequences. We also trained an MLP on the aligned sequences and the unaligned sequences to compare its performance. As mentioned, an MLP requires uniform length sequences as input; to train it on unaligned sequences of variable lengths, we padded the ends of the sequences with gaps such that all the sequences were a uniform length. As all these gaps are at the end, they do not align the conserved nucleotides in columns so the sequences are still unaligned.

We found that the RNN was able to learn the areas of covarying nucleotides corresponding to base pairs in the tRNA structure (Figure 10B). The SoM results are still noisy, owing to the difficulty of the RNN's task in identifying individual covarying nucleotides, but its performance was significantly better than when trained on the Rfam data with lower effective depth. This suggests that an RNN is able to learn base pairs from homologous sequences given enough data. It should also be noted that the performance of the model and its robustness with smaller data could be improved with a more developed model.

Comparing the RNN results to the MLP trained on the alignment we see that the MLP still outperforms the RNN when given aligned data, however when trained on unaligned data, the MLP results become much more noisy. With the tRNA unaligned sequences the MLP does find some of the first stems with reduced confidence. Looking at the tRNA conserved SS annotation we found that most of the variability in the sampled data was after the third stem, with very few insertions and deletions in the first few stems; i.e. even in the unaligned sequences, the nucleotides corresponding to the first few stems remained in similar sites across the sequences while only the nucleotides of the 4th stem were highly scattered. The MLP treats the input as an alignment and looks for sites with conserved covariations. Because the first stems had less variation across the sequence, the MLP was able to learn the general regions of base pairing, but it could not learn the covariation of the 4th stem because these sites did not show any conserved covariation. Overall, the MLP trained on unaligned sequences performs worse than the RNN trained on the same data. This illustrates the advantages of an RNN in its ability to take in variable length sequences and still be able to learn base pairs when sufficient data is available.

DISCUSSION

Overview

We show that neural networks - particularly Multilayer Perceptrons - are able to learn the coevolutionary base pairs from a multiple sequence alignment of homologous RNA sequences. Our MLP architecture can learn nested and non-nested base pairs, allowing them to learn RNA structures containing pseudoknots. On many families, our MLP performed comparably or better than EC, a maximum entropy model, which is encouraging considering EC is designed explicitly to learn coupling terms for the covariation of nucleotide pairs, allowing them to learn base pairs and other nucleotide interactions robustly; remarkably, an MLP is able to learn the importance of these interactions independently when trained to classify sequences that have and don't have structure. Additionally, we have shown that RNNs are able to learn structure from homologous sequences without an alignment, provided sufficient training data. These results suggest that there is potential for a neural network to be used in homology and possibly supplement the current state of the art RNA homology model (an SCFG) with the ability to model non-nested base pairs.

Model fine tuning is important

It is important to note that the results shown here are from relatively simple neural network architectures. More complex architectures can be designed to more efficiently learn the information desired from the data. This work is focussed on learning insights into what neural networks are capable of learning in order to apply them to biological problems. Instead of focusing on fine tuning hyperparameters and designing a more bespoke architecture, we selected a simple architecture to gain a representative idea of whether a neural network can

learn RNA secondary structure. However, in future applications of these models, fine tuning of hyper parameters such as hidden layer size, learning rate and dropout rate is an incredibly important step towards developing an effective model. It is probable that with a well chosen set of hyper parameters, an model could be developed that can perform much better than the results presented here.

Improve SoM to maximize interpretation

We used SoM as an interpretative tool to understand the interactions in the data that the models have learned. Our results show SoM is a useful tool to extract learned information from neural networks. However, more work can be done to improve the amount of information that SoM can elucidate. The use of a bpfilter to condense the results of pairwise mutations into a single score is limited in its intention to only identify patterns associated with complementary nucleotide pairing. However, our results suggest that MLPs are able to learn interactions between nucleotides that aren't necessarily watson crick pairs; this also shows that the procedure is elucidating information we didn't expect, thus our design intuition must be improved. SoM can be developed to look for other patterns of covariation corresponding to alternate interactions such as G-U wobble pairs. Clustering models or correlation statistics can be used to identify signatures in mutation scores that correspond to general patterns of nucleotide interactions, thus circumventing the limitations of a bpfilter.

Validation sources

We validated the SoM scores against Infernals SS predictions and R-scapes covariation scores, also using WC annotations extracted from a PDB structure to compare between models. Choosing which model and information source to validate against is a difficult

question, especially at this stage of development where we haven't tailored the NN training regime for the structure learning task. Comparing the SoM scores to Infernal and R-scape allows us to benchmark against powerful models that are widely used for the purpose of structure learning. However, while using WC annotations from a PDB structure gave us some ground truth that included non-nested base pairs, we found that the annotations are less general predictions made from an MSA across multiple species. Furthermore, WC interactions are only one type of interaction contributing to covariation in the MSA, while R-scape and the NN may be learning many other types of interactions. Thus comparing to the WC annotations as ground truth, underestimates the performance of the models. A better ground truth comparator is needed to fairly validate our results against established models.

Explore other factors of RNA alignments that contribute to an MLPs learning ability

Our results suggest that the depth and effective depth of an alignment could be a limiting factor for a neural network to be able to learn base pairs from aligned sequences. However, there are definitely other factors that contribute to whether a neural network can learn structure from a given alignment. A salient example is the SoM results from the MLP trained on 5.8S Ribosomal RNA (RF00002); while this family had one of the deepest alignments in our datasets with a comparable effective depth to other successful trials, the trained MLP had one of the worst performance from our tests. The model was unable to learn a meaningful structure, where the only base pairs it learned did not correspond to WC annotated nucleotides in the PDB structure. This suggests that there are other confounding factors in the data that the model focussed on during training that occluded relevant base pairs.

Therefore, much work needs to be done in exploring what other factors in alignment data guide a neural networks learning. Additionally, we did not explore what characteristics

of RNA structure the MLP was sensitive to. It may be that particular structural motifs present as covariation signatures in the alignment are favoured by the model. Furthermore, how a model learns base pairs is an important question that we do not explore. What parts of the hidden layer contribute to building these representations of interacting nucleotides?

Understanding these factors will be highly beneficial in developing more effective model architectures and training regimes.

While we tested models on a range of datasets, our sample size was still quite small. It is important that we test the models on a wider range of alignment sizes with a greater diversity of RNA structures. This will provide deeper insight into the characteristics of homologous sequence data that facilitate learning RNA secondary structure.

For RNNs, especially, it is important that we explore the effect of distance between interacting base pairs on the learning performance of the model. As discussed, a big problem with RNNs (which is only partially ameliorated by the LSTM module), is that they struggle with long-range interactions in data. Our RNN trained on both the Rfam tRNA sequences, and the Infernal sampled tRNA sequences did show fairly high SoM scores corresponding to base pairs in the first stem in the tRNA structure (Figure 10); these base pairs spanned the entire length of the sequence (71 nucleotides). However, as discussed the structural learning of the RNN is highly noisy and there are many other confounding factors in the tRNA sequences. We can test the limit of long-range interactions on RNNs more explicitly using synthetic sequences that we construct with all other structural factors controlled, while only varying the length of the sequence and the distance between base pairs. Understanding the relationship between base pair distance and an RNNs ability to learn the interactions, will provide useful insight that could be used to build on a model's architecture towards making it more efficient for a homology purpose.

Transfer learning could make neural networks robust to shallower alignments

One of the biggest limitations of neural networks we found in this work is the need for enough training data. Our RNN, in particular, required a very large number of diverse sequences for it to be able to learn an RNA structure well. Alignments with tens of thousands of sequences with a great diversity of sequences are very rare and thus the inefficiency of the model we used is not reasonable. However, the capacity of RNNs to take in sequences of variable length is highly desirable towards the goal of a homology tool. Thus it would be beneficial to increase the efficiency of training of an RNN to make it usable on training set sizes that are more common with MSAs. Additionally, while the MLP was able to learn clear structures from alignments with a few thousand sequences and even fewer, there are many families in Rfam which have even fewer homologous sequences, and thus increasing the capacity of MLPs could also be useful.

A common method used to train deep learning models in the absence of large amounts of data is transfer learning. Transfer learning involves taking a model pretrained on large datasets related to the objective data and then training parts of the model on the smaller relevant data to make it learn more specific information. It has been shown that deep neural networks learn lower level features of the data in its first hidden layers and then build these features in high layers into informational representations of the data. With smaller amounts of data, it is more difficult for the model to learn these features and build them into a representation of the system. Transfer learning allows the model to simply fine tune pretrained features to make them more specific for the smaller dataset. Transfer learning could have great potential to improve the efficiency of models when a plethora of data isn't available, which is frequently the case with homologous sequence data.

A difficulty of training neural networks on sequence data towards learning structure, is that the model needs to learn the importance of interactions between nucleotides and the patterns of base pairing from the ground up. This is where more specific models like R-scape have an advantage. Applying transfer learning to this problem could allow a model to learn the patterns of base pairing at lower levels of its hidden layers during pretraining on a large amount of general sequence data (which can be generated) and then when training on the smaller sequence data from the objective alignment, the model can build its base pair features to learn the specific structure of a family. In combination with building more complex architectures, transfer learning could be employed to increase the efficiency of training neural networks, and to make them more viable models given the availability of homologous sequence data.

Towards a neural network based homology model

This aim of this work was to gain insights into what representative neural network architectures are able to learn when trained on homologous sequence data. Specifically we are interested in RNA homology. To make homology predictions, a model needs to take primary sequence conservation and, importantly, the secondary structure into consideration. We show here that neural networks can be trained to learn RNA secondary structure. Furthermore, we have shown that an MLP can learn non-nested base pairs constituting pseudoknots, which the current state of the art RNA homology tool, Infernal cannot model. However, we find that our MLP is not robust in its ability to learn structure, and it is limited by the size of its training set. Infernal is significantly more efficient, being able to model structure and sequence conservation from small numbers of homologous sequences. We

imagine that a NN would be useful as a supplement to infernal, as it is able to learn non-nested base pairs. Foreseeably, infernal could be used as the primary model to build an alignment from sequence data, and a fine tuned neural network could be used to learn the pseudoknotted regions in the sequence to add to the homology model and thus enhance its predictive power.

Much work is still needed to use the insights gained from this work into an implementable neural network for homology prediction. For one, we trained our models to perform binary classification via supervised learning. Homology predictions use probabilistic scores, and thus the training regime will have to be modified for the neural network to predict probabilities rather than binary scores. Furthermore, it would be beneficial to implement unsupervised learning in which instead of learning to classify positive sequences from negative sequences, a model learns a generative model of the data. Thus the model could be trained to learn a holistic representation of the sequence data including primary sequence conservation, secondary structure and other characteristics the model finds relevant to the homology profile of a family.

Conclusion

The development of complex neural network architectures for particular tasks is rapid and ongoing. This work serves to expand the understanding of what neural networks are capable of learning from biological data. Combining strong understanding of what neural networks can learn, with insightful design of model architecture promises to expand the variety of biological problems that neural networks can be applied to.

MATERIALS AND METHODS

Data selection and processing

20 Rfam alignments were used in this work that aligned well to available PDB structures used as ground truth comparisons to validate the model. The families and structural data were taken from the supplementary data of Weinreb et al., 2016. The alignments were taken from Rfam 11.0 and reduced to remove columns with >50% gaps. The alignments were processed into onehot representations where each sequence in the alignment was made into a 5xL matrix where L is the length of the sequence and the 5 dimensions correspond to the 4 nucleotides with a gap treated as a 5th character. To generate negative test sequences, for a given alignment the frequencies of each character at a given site in the sequence were calculated to generate a position weight matrix (PWM) profile.

$$P(a_i^F) = \frac{1}{N} \sum_{s=1}^{N} a_{i,s}$$

Here $P(a_i^F)$ is the probability of nucleotide (or gap) a at site i coming from RNA family F where N is the number of sequences in a particular alignment and s is a sequence in a given alignment. In a PWM each family becomes a distribution with each site having a normalized probability of emitting any nucleotide or a gap. Negative sequences were sampled independently from this profile with each site in the nucleotide being sampled independent of the other sites, so that base pair covariations were not present in the negative set.

Neural Network architecture and training

The MLP architecture we used for our tests had a single hidden layer with 512 neurons utilizing rectified linear activation, batch normalization and dropout applied on each neuron

with a 0.5 probability. The output from the hidden layer is then transformed by an output fully connected layer to produce a logit value. A sigmoid activation is performed on the logit value to produce the final output.

The RNN architecture used was a 2 layer bi-directional LSTM using the standard LSTM unit from the tensorflow library (Abadi et al., 2016). Each LSTM had 64 units in the hidden layer with dropout applied with a 0.5 probability. Two LSTM units read through the sequence in opposite directions, emitting an output score after each nucleotide to produce a new transformed feature layer containing the outputs of both directions. Two more LSTM units read in the feature layer in opposite directions, this time outputting a single logit value which undergoes a sigmoid activation to produce the final output score.

A separate model was trained for each Rfam alignment tested. All models were trained by logistic regression to minimize a binary cross-entropy loss function with mini-batch stochastic gradient descent (mini-batch of 128 sequences) with Adam updates using recommended default parameters with a constant learning rate of 0.0003 (Kingma and Ba, 2014). We also used L2-regularization with a strength equal to 10⁻⁶. 80% of each alignment was randomly partitioned for training with 10% for validation and testing each. Each model was trained for 1000 epochs with no patience. Optimal parameters were selected by the epoch which yields the lowest loss on the validation dataset.

SoM scores denoising

In SoM we perform saturated pairwise mutagenesis on a sequence. For a given pair of nucleotides in the sequence, we mutate the pair to every possible pair of nucleotides leaving the rest of the sequence intact producing 15 mutant sequences in addition to the WT.

Systematically mutating every pair of nucleotides produces LxLx4x4 sequences including

duplicates and recapitulated WTs. These sequences are given to the NN and the logit value is retrieved of each mutant to produce the score matrices. We use a BPfilter to reduce the dimensionality of each score matrix to a single number which is our SoM score.

The SoM procedure we describe results in LxL SoM scores for a single sequence. We denoise the results by performing SoM on M sequences from the test set of an alignment and averaging the SoM scores from each pair of nucleotides, where M = min(500, T) and T is the number of positive sequences in the test set. As shown:

$$SoM^*(i,j) = \sum_{s=1}^{M} SoM_s(i,j)$$

where SoM_s is the SoM results from the s^{th} sequence used. We remove further background noise from the scores by performing an average product correlation (APC) correction (Dunn et al., 2008). The APC correction was first employed to remove background scores from information theory based covariation scores, following the intuition that much of the background noise came from phylogenetic covariation between nucleotide pairs that aren't implicate in structure. We noticed that the noise in our SoM^* scores appeared similar to the background phylogenetic noise. In practice, we apply an APC correction by subtracting the normalized row and column averages of a WCplot from each SoM score, as such:

$$SoM^{APC}(i,j) = SoM^*(i,j) - \frac{(\sum\limits_{i''=i} SoM^*(i',j))(\sum\limits_{j''=j} SoM^*(i,j'))}{\sum\limits_{i} \sum\limits_{j''=i} SoM^*(i',j')}$$

These SoM^{APC} scores are plotted in the WCplot.

Validation data: WW annotations, PDB contact distances, EC scores and Infernal SS

The watson crick contact annotations and atomic distances were extracted from a PDB structure file using FR3D (Petrov et al., 2013; Sarver et al., 2008) which were downloaded

from RNA3DHub (http://rna.bgsu.edu/rna3dhub/). These were used in contact maps and ranked PPV graphs to validate the learned information of the model. As further validation we compared the models performance with EC scores taken from the supplementary data of the Marks lab study (see Weinreb et al., 2016 for details on EC model). The secondary structure (SS) annotation by Infernal was taken from the SS annotation in Rfam and matching the positions to the columns in the reduced alignments.

WCplot generation

WCplots showing the SoM scores and R-scape scores were created by plotting the coordinates of each pair of nucleotides in a scatter graph coloured by the SoM/EC score in ascending order of the score. For NN results, the SoM^{APC} scores were plotted with negative scores set to zero as the variation in low scores was just noise. The coordinates of the SS annotation from infernal and the WC annotation from the PDB structure were plotted as a comparison according to the nucleotide positions in the reduced alignments. These were discrete annotations and so no colour gradient was plotted.

Ranked PPV and TPR graphs

The PPV of a model was calculated as the fraction of positive contacts the model found that were true positives. As the gradient of scores was different across each model, contacts were called positive if they were ranked *i* in the sorted SoM scores. For the ranked PPV graphs, the PPV was calculated at increasing values of *i* up to C, where C is the number of true WW interactions in the annotation. For Figure 8, the summary PPV of the MLP and EC was calculated selecting the top 0.7C contacts and plotting them against each other to identify how which model performed better on which Rfam family. 0.7C was selected arbitrarily as

the summary threshold, to get a representative idea for how well the model is learning structure for comparison. For Figure 9 the summary TPR was calculated as the fraction of true positive interactions that the model found in the top 0.7C SoM scores.

REFERENCED WORKS

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. ArXiv:1603.04467 [Cs].

Alipanahi, B., Delong, A., Weirauch, M.T., and Frey, B.J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology *33*, 831–838.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology *215*, 403–410.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. (ACM), pp. 41–48.

Crick, F. (1958). On Protein Synthesis.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems *2*, 303–314.

Dunn, S.D., Wahl, L.M., and Gloor, G.B. (2008). Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics *24*, 333–340.

Eddy, S.R. (2015). Homology searches for structural RNAs: from proof of principle to practical use. RNA *21*, 605–607.

Eddy, S., and Rivas, E. (1999). A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology *285*, 2053–2068.

Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics 12, 861.

Gandhi, S., Lee, L.J., Delong, A., Duvenaud, D., and Frey, B. (2018). cDeepbind: A context sensitive deep learning model of RNA-protein binding. BioRxiv 345140.

Graves, A., Bellemare, M.G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017). Automated Curriculum Learning for Neural Networks. ArXiv:1704.03003 [Cs].

Greenside, P.G., Shimko, T., Fordyce, P., and Kundaje, A. (2018). Discovering epistatic feature interactions from neural network models of regulatory DNA sequences. BioRxiv 302711.

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., Bateman, A., Finn, R.D., and Petrov, A.I. (2018). Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res *46*, D335–D342.

Kingma, D.P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980 [Cs].

Koessler, D.R., Knisley, D.J., Knisley, J., and Haynes, T. (2010). A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinformatics 11, S21.

Koo, P.K., Anand, P., Paul, S.B., and Eddy, S.R. (2018). Inferring Sequence-Structure Preferences of RNA-Binding Proteins with Convolutional Residual Networks. BioRxiv 418459.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, eds. (Curran Associates, Inc.), pp. 1097–1105.

Ledda, M., and Aviran, S. (2018). PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures. Genome Biol. *19*, 28.

Leontis, N.B., and Westhof, E. (2001). Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512.

Minsky, M. (1969). Perceptrons: an introduction to computational geometry (Cambridge, Mass.: MIT Press).

Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics *29*, 2933–2935.

Pearson, W.R. (2013). An Introduction to Sequence Similarity ("Homology") Searching. Curr Protoc Bioinformatics 0 3.

Petrov, A.I., Zirbel, C.L., and Leontis, N.B. (2013). Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19, 1327–1340.

Radecki, P., Ledda, M., and Aviran, S. (2018). Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures. Genes (Basel) *9*.

Rivas, E., Clements, J., and Eddy, S.R. (2017). A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nature Methods *14*, 45–48.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning representations by back-propagating errors. Nature *323*, 533.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjölander, K., Underwood, R.C., and Haussler, D. (1994). Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res. *22*, 5112–5120.

Sarver, M., Zirbel, C.L., Stombaugh, J., Mokdad, A., and Leontis, N.B. (2008). FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol *56*, 215–252.

Schirmer, S., Ponty, Y., and Giegerich, R. (2014). Introduction to RNA Secondary Structure Comparison. RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods 247–273.

Schrider, D.R., and Kern, A.D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics *34*, 301–312.

Simonyan, K., and Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv:1409.1556 [Cs].

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ArXiv:1312.6034 [Cs].

Sonoda, S., and Murata, N. (2017). Neural Network with Unbounded Activation Functions is Universal Approximator. Applied and Computational Harmonic Analysis *43*, 233–268.

Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for Simplicity: The All Convolutional Net. ArXiv:1412.6806 [Cs].

Staple, D.W., and Butcher, S.E. (2005). Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol *3*.

Steeg, E.W. (1993). Neural Networks, Adaptive Optimization, and RNA Secondary Structure Prediction (Chapter 3). In Artificial Intelligence and Molecular Biology, (Menlo Park, Calif.: AAAI Press/the MIT Press), p.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going Deeper with Convolutions. ArXiv:1409.4842 [Cs].

Weinberg, Z., and Breaker, R.R. (2011). R2R--software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics *12*, 3.

Weinreb, C., Riesselman, A., Ingraham, J.B., Gross, T., Sander, C., and Marks, D.S. (2016). 3D RNA and functional interactions from evolutionary couplings. Cell *165*, 963–975.

Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74, 5088–5090.

Zhou, J., and Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep learning–based sequence model. Nat Methods *12*, 931–934.

Zuckerkandl, E., and Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology *8*, 357–366.