第五章 PCB的电磁兼容设计

脉冲信号的频谱

地线和电源线上的噪声

电源线、地线噪声电压波形

线路板走线的电感

L = 0.002S(2.3lg (2S/W) + 0.5) μH

 $L = (L_1L_2 - M^2) / (L_1 + L_2 - 2M)$

若: $L_1 = L_2$ $L = (L_1 + M)/2$

地线网格

电源解耦电容的正确布置

尽量使电源线与地线靠近

解耦电容的选择

$$C = \frac{dI dt}{dV}$$

各参数含义:

在时间dt内,电源线上出现 了瞬间电流dI,dI导致了电 源线上出现电压跌落dV。

增强解耦效果的方法

线路板的两种辐射机理

-

电流环路产生的辐射

近场区内: $H = IA / (4\pi D^3)$

A/m

$$\mathbf{E} = \mathbf{Z_0} \mathbf{I} \mathbf{A} / (2\lambda \mathbf{D}^2)$$

V/m

$$\mathbf{Z}_{\mathrm{W}} = \mathbf{Z}_{\mathrm{0}} (2\pi \mathbf{D}/\lambda)$$

 Ω

远场区内:

$$\mathbf{H} = \pi \mathbf{I} \mathbf{A} / (\lambda^2 \mathbf{D})$$

A/m

$$\mathbf{E} = \mathbf{Z_0} \, \pi \, \mathbf{IA} \, / \, (\lambda \, ^2\mathbf{D})$$

V/m

$$Z_{W} = Z_{0} = 377$$

 Ω

随频率、距离增加而增加

4

导线的辐射

近场区内:
$$\mathbf{H} = \mathbf{I} \mathbf{L} / (4\pi \mathbf{D}^2)$$

A/m

$$E = Z_0 I L \lambda / (8 \pi^2 D^3)$$
 V/m

$$\mathbf{Z}_{\mathbf{W}} = \mathbf{Z}_{\mathbf{0}} \ (\lambda/2\pi\mathbf{D})$$

 Ω

远场区内:

$$\mathbf{H} = \mathbf{I} \mathbf{L} / (2\lambda \mathbf{D})$$

A/m

随频率、距离增加而减小

$$\mathbf{E} = \mathbf{Z_0} \mathbf{I} \mathbf{L} / (2\lambda \mathbf{D})$$

V/m

实际电路的辐射

$$Z_C = Z_G + Z_L$$

环路面积 = A

近场:
$$Z_C \ge 7.9 \, D \, f$$
 $E = 7.96 VA / D^3$ ($\mu V/m$)

$$Z_C \le 7.9 D f$$
, $E = 63 I A f / D^2$ ($\mu V/m$)

$$H = 7.96IA / D^3$$
 ($\mu A/m$)

远场:

$$E = 1.3 I A f^2/D$$
 ($\mu V/m$)

常用的差模辐射预测公式

考虑地面反射时:

 $E = 2.6 I A f^2/D$

 $(\mu V/m)$

脉冲信号差模辐射的频谱

不同逻辑电路为了满足EMI指标要求 所允许的环路面积

逻辑	上升	电流	不同时钟频率允许的面积(cm²)			
系列	时间		4MHz	10	30	100
4000B	40	6	1000	400		
74HC	6	20	50	45	18	6
74LS	6	50	20	18	7.2	2.4
74AC	3.5	80	5.5	2.2	0.75	0.25
74F	3	80	5.5	2.2	0.75	0.25
74AS	1.4	120	2	0.8	3	0.15

仅代表了一个环路的辐射情况,若有N个环路辐射,乘以√N。因此,可能时,分散时钟频率。

如何减小差模辐射?

电路中的强辐射信号

所有电路加电工作

只有时钟电路加电工作

$$\mathbf{Z} = \mathbf{R} + \mathbf{j}\omega \mathbf{L}$$

$$L = \Phi / I \quad \Phi \propto A$$

单层或双层板如何减小环路的面积

不良布线举例

随便设置的地线没有用

在线路板上没有布线的地方全部铺上地线是EMC设计吗?

多层板能减小辐射

地线面上的缝隙的影响

 $L: 0 \sim 10cm$

 $V_{AB}: 15 \sim 75 \text{mV}$

线路板边缘的一些问题

扁平电缆的使用

最好

较好

差

较好,但端接困难

•••••••

•••••••

000000000

两端设备都接地的情况

$$Z_{CM} = R_W + j\omega L + R_L + 1/j\omega C$$

悬浮电缆

近场区内: $E = 1430I L / (f D^3)$ $\mu V/m$

远场区内: E = 0.63 I L f / D $\mu V/m$

考虑地面反射: E = 1.26 I L f / D $\mu V/m$

 $L > \lambda/2$ 或 $\lambda/4$ 时: E = 120I / D $\mu V/m$

怎样减小共模辐射

平衡接口电路

增加共模回路的阻抗

改善量 =
$$20 \lg(E_1/E_2) = 20 \lg(I_{CM1}/I_{CM2})$$

= $20 \lg[(V_{CM}/Z_{CM1})/(V_{CM}/Z_{CM2})]$
= $20 \lg(Z_{CM2}/Z_{CM1})$
= $20 \lg(1 + Z_L/Z_{CM1})$ dB

滤波器电容量的选择

用屏蔽电缆抑制共模辐射

屏蔽电缆的评估

不同屏蔽层的传输阻抗

电缆屏蔽层的正确端接

