18MAB302T-Discrete Mathematics

Unit-IV

Group Theory

1. If G is a gro	up of order n then, ord	er of identity element	is
i) 1	ii) > 1	iii) <1	iv) n
2. If G is a gro	oup , then for all a,b $^{\in}$ G	ì	
i) (ab) ⁻¹ =a ⁻¹	ii) (ab)⁻¹=b⁻¹a	iii) (ab) ⁻¹ =ab	iv) (ab) ⁻¹ =ba
3. In a group (G,for each element a $^{\in}$	G, there is	
i)No invers	ie ii) Unique inve	e rse iii) Two inverse	es iv) Many inverses
4. The identit	y permutation is		
i) Even per r	mutation ii) odd perm	utation iii) Neither e	even nor odd iv) None of these
5. The inverse	e of an odd permutatior	n is	
It i) Odd	ii) Even	iii) Even or odd	iv) Neither even nor odd
6. The produc	et of (1 2 4 5)(3 2 1 5 4)	is	
i) (2 3)	ii)(1 5)	iii)(3 4 1)	iv)(1 5 3 1)
7. If G is a gro	\sup and a^{\in} G such that	a ² =a then a is	
i) Identity	ii) Inverse	iii)Zero element	iv) non identity
8. If G is a gro	up of even order for all	$a \neq e$ if $a^2=e$ then G is	
i) Abelian	ii)Subgroup	iii)Normal group	iv)Quotient group
9. Every group	p of prime order is		
i) Cyclic	ii) Abelian	iii)Subgroup	iv)Normal group
10. The numb	per of elements in a gro	up is	
i) Identity	ii) Order of group	iii) Inverse	iv)order of an element

11. In a group G for all a in G is						
i) (a⁻¹)⁻¹ =a	ii) $(a^{-1})^{-1} = a^2$	iii) (a ⁻¹) ⁻¹ =1/a	iv) (a ⁻¹) ⁻¹ =-a			
12. If G is a finite	e group of order n, th	nen for every a in G ,w	ve have			
i) a ⁿ =a ⁻¹	ii) a ⁿ =a	iii) a ⁿ =e	iv) a ⁿ =-a			
13.If a, a ⁻¹ in G, a	a group and order of	a and a ⁻¹ are m and n	respectively the	en		
i)m>n	ii) m=n	iii)m <n< td=""><td>iv) m≠n</td><td></td></n<>	iv) m≠n			
14.If G={1,-1,-i, i} is a group,then order of i is						
i) 1	ii) 2	iii) 3	iv) 4			
15. The permutation $\begin{pmatrix} 1 & 2 & 5 & 3 & 4 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$ is						
i) (1 5)(1 3)(2 4)	ii) (1)(2)(3)	iii) (1 3 5)(5 6	iv) (1	4 2)(3 5)		
16. A: All cyclic groups are abelian B: Order of cyclic group is same as the order of its generator						
i) A and B are false ii) A and B are true iii) A is true iv) B is False						
17. A ring R is an integral domain if						
i) R is commutative ring						
ii) R is commutative ring with zero divisors						
iii) R is commutative ring with non-zero divisors						
iv) R is a ring with zero divisors						
18. The non zero elements a ,b of a ring R are called zero divisors if						
i) a.b=0	ii) a.b=1	iii) a.b ≠ 0	iv) a.b≠1			
19.HK is a subgroup of G iff						

20.If H and K are two right cosets of subgroup G then						
i) H	ϕ or H=K	ii) H∩K=	- φ iii	i) H [∪] K= <i>φ</i>	iv) H \neq K and H \cap K \neq ϕ	
21. If x =	= 1011, y = 0	101, then H(x,y) is			
i) 3 ii) 2	iii) 4	iv) 1			
22. A de	vice is used t	o improve the	efficiency o	of the commu	nication channel is	
i) Chann	ii) E	ncoder ii) Decoder	iv) Noise		
23. The intersection of two subgroups of a group G is also						
i) Homomor	ohism ii)	Subgroup	iii) Half N	Multiplier iv) Normal subgroup	
 24. A code can correct all combinations of k errors or fewer errors if and if the minimum distance between any two code is i) atmost (2k + 1) ii) atleast (2k + 1) iii) exactly (k + 1) iv) exactly (2k + 1) 25. A code can detect atmost k errors if and if the minimum distance between any two code is i) atmost (k + 1) ii) atleast (k + 1) iii) exactly (k + 1) iv) atmost (2k + 1) 26. If G={1,-1,-i, i} is a group, then order of -1 is 						
i) 1	ii) 2	2	iii) 3	i	v) 4	
27. A semigroup (G,*) with identity is called as						
i) Quasi	ii) Mono	id iii) group	iv) cyclic g	roup		
28. (N,+	-) where N is	a set of all nat	ural numbe	ers , is		
i) Qua	si ii) Mond	oid iii) group	iv)	semi group		
29. In the set $G=\{1,-1,i,-i\}$ under multiplication is a group ,an inverse element of -1 of G is						
i) 1	ii) -:	L	iii) i	iv	v) —i	
30. (R,*) is defined as $x*y=x+y+2xy$ for all x,y in R , an identity element is						
i) 1	ii) 0		iii) 2	iv	·) -1	

i) **HK=KH** ii) $HK \subseteq KH$ iii) $HK \supseteq KH$ iv) $HK \ne KH$

31. Let {1,3,7,9} is an abelian group under multiplication modulo 10. Then Inverse element of 9 is					
i) 1	ii) 3	iii) 7	iv) 9		
32. The necessary and sufficient condition that a nonempty subset H of a group G to be a subgroup is					
i) a*b [∈] H	[∈] H ii) a*b -¹ [∈] H		iii) a*b ∉ H	iv) a*b ⁻¹ ∉ H	
33. If $f: G \rightarrow G'$ is a homomorphism then ker $f=\{e\}$ iff f is					
i) onto	ii) 1-1	iii) into		iv) many to one	
34. Any two left cosets of H in G are					
i) disjoint	ii) identical	iii) disjoint a	nd identical	iv) either disjoint or identical	
35.The order of any element of a finite group G divides					
i) order of a subgroup ii) order of a group iii) order of an another element					
iv) None of these					
36. Let H and K be two subgroups of a group G.Then HUK is a subgroup iff					
i) only H⊆ K	ii) only K⊆	H iii) H=K	iv) either H ⊆	K or K \subseteq H	

Answers

1. (i)	11. (i)	21.(i)	31.(iv)
2. (ii)	12. (iii)	22.(ii)	32.(ii)
3. (ii)	13. (ii)	23.(ii)	33.(ii)
4. (i)	14. (iv)	24.(ii)	34.(iv)
5. (i)	15. (i)	25.(ii)	35.(ii)
6. (i)	16. (ii)	26.(ii)	36.(iv)
7. (i)	17. (iii)	27.(ii)	
8. (i)	18. (i)	28.(iv)	
9. (i)	19. (i)	29.(ii)	
10.(ii)	20. (i)	30.(ii)	