# Maximum Map Labeling

Mihajlo Živković Svetozar Iković Septembar 2023.

# Sadržaj

| 1 | Uvo | $^{ m od}$     | 3                                          |  |  |  |  |  |  |  |  |  |  |
|---|-----|----------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|   | 1.1 | Proble         | em                                         |  |  |  |  |  |  |  |  |  |  |
|   | 1.2 | Rešen          | je                                         |  |  |  |  |  |  |  |  |  |  |
| 2 | Opt | imalni         | algoritmi 4                                |  |  |  |  |  |  |  |  |  |  |
|   | 2.1 | Brut f         | force                                      |  |  |  |  |  |  |  |  |  |  |
|   | 2.2 | Brutfo         | oce sa kešom                               |  |  |  |  |  |  |  |  |  |  |
|   | 2.3 | B algo         | ritam                                      |  |  |  |  |  |  |  |  |  |  |
|   |     | 2.3.1          | Faza I:Predobrada                          |  |  |  |  |  |  |  |  |  |  |
|   |     | 2.3.2          | Faza II: Eliminacija nemogućih kandidata 4 |  |  |  |  |  |  |  |  |  |  |
|   |     | 2.3.3          | Faza III: Uključivanje heuristike 4        |  |  |  |  |  |  |  |  |  |  |
| _ | Me  | Metaheuristike |                                            |  |  |  |  |  |  |  |  |  |  |
|   | 3.1 | Genet          | ski algoritam                              |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.1.1          | Hromozom                                   |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.1.2          | Mutacije                                   |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.1.3          | Selekcija, elitizam i ukrštanje            |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.1.4          | Fitnes funkcija                            |  |  |  |  |  |  |  |  |  |  |
|   | 3.2 | Pobolj         | šani genetski algoritam                    |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.2.1          | Hromozom i mutacija                        |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.2.2          | Fitnes funckija                            |  |  |  |  |  |  |  |  |  |  |
|   |     | 3.2.3          | Fitnes                                     |  |  |  |  |  |  |  |  |  |  |
| 4 | Rez | ultati         | 6                                          |  |  |  |  |  |  |  |  |  |  |
| 5 | Zak | ljučak         | 9                                          |  |  |  |  |  |  |  |  |  |  |

## 1 Uvod

Obeležavanje mapa je jedan od klasičnih ključnih problema koji se mora rešiti u procesu proizvodnje mape. Obično proizvođač mape ne želi da prikaže samo tačne geografske pozicije prikazanih objekata, već i da objasniti osobine tih objekata. Ona mora organizovati ovu informaciju na mapi tako da:

- za svaki deo informacije bude intuitivno jasno koji objekat je opisan;
- informacije budu čitljive veličine;
- različiti tekstovi se ne preklapaju.

Sa razvojem internet tehnologija i onlajn mapa, stvara se potreba za načinima za učitavanje i obeležavanje mapa u realnom vremenu.

## 1.1 Problem

Maksimalno obeležavanje mape je problem postavljanja jednakih kvadrata, paralelnih sa x-osom u ravni, najveće moguće dimanzije, tako da se nikoja dva kvadrata ne presecaju. Svaki kvadrat pripada tačno jednoj tački koja se nalazi u jednom od njegovih temena.

## 1.2 Rešenje

Broj potencijalno optimalnih rešenja je ograničen, jer veličine za koje se kvadrati ne dodiruju, mogu sigurno da se prošire (slika 1). Za potencijalne veličine uzimamo razdaljine izmedju tačaka, i njihove polu-razdaljine(slika 2).



Slika 1: Optimalne veličine

Slika 2: polovina razdaljine

Obzirom da imamo ograničen broj potencijalno optimalnih veličina, možemo ih sortirati i binarnom pretragom naći optimalnu.

## 2 Optimalni algoritmi

Zasnivaju se na binarnoj pretrazi mogućih veličina kvadrata. Za svaku veličinu se proverava da li postoji kombinacija orijentacija kvadrata tačaka, tako da nikoja dva nemaju presek.

## 2.1 Brut force

Ovaj algoritam je najintuivniji, ali zato i najsporiji. Zadatak mu je da prođe kroz sve moguće kombinacije kvadrata za datu veličinu i da vrati optimalan raspored ako je moguće.

#### 2.2 Brutfoce sa kešom

Brut force sa kešom je sličan brut force algoritmu, sa dodatnim mehanizmom za čuvanje rešenja za već tražene rasporede tačaka.

## 2.3 B algoritam

Ovaj algoritam je razvijan po ugledu na Franka Vagnera i Aleksadra Volfa[1] u njihovom pokušaju da označe sve podzemne vode grada Minhena.

Validacija se sastoji od tri faze:

Faza I: Predobrada.

Faza II: Eliminisanje kandidata koji ne mogu biti deo rešenja.

Faza III: Za one tačke koje još uvek imaju dva ili više preostalih kandidata, izaberite tačno dva i proverite da li se ovaj preostali problem može rešiti pomoću 2-SAT.

## 2.3.1 Faza I:Predobrada

U ovoj fazi se kreira lista konflikata i izbacuju se kandidati koji sadrže drugu tačku.

#### 2.3.2 Faza II: Eliminacija nemogućih kandidata

Prolazimo kroz sve tačke. Razmatramo sledeće četiri slučaja:

- Ako su svi kandidati trenutne tačke eliminisani, zaustavljamo se i vraćamo "nema rešenja za datu veličinu"programu koji obavlja binarnu pretragu na listi konflikata.
- Ako trenutna tačka ima kandidate koji se ne preklapaju sa drugim kandidatima, biramo proizvoljni od njih i eliminišemo sve druge kandidate date tačke tačke. Pre brisanja kandidata, vršimo sledeće ažuriranja: brišemo njegovu listu informacija o preklapanju i simetrične unose sa svim kandidatima koji se preklapaju s njim.
- Ako trenutna tačka ima samo jednog preostalog kandidata, izvršavamo ista ažuriranja sa svim kandidatima koji se preklapaju sa njim, a zatim ih brišemo.
- Ako trenutna tačka ima kandidata koji se preklapa sa poslednja dva kandidata druge tačke, ažuriramo i eliminišemo tog kandidata.

#### 2.3.3 Faza III: Uključivanje heuristike

Ovde prolazimo kroz sva mesta sa aktivnim kandidatima dva puta. U prvom prolazu, posmatramo samo one sa četiri preostala kandidata, eliminišemo onog sa

najviše konflikata i donosimo sve odluke kao u Fazi II. Tokom drugog prolaza, radimo isto za mesta koja još uvek imaju tri aktivna kandidata. Zatim preostali problem (sastavljen samo od mesta sa tačno dva aktivna kandidata) predajemo 2-SAT.

## 3 Metaheuristike

## 3.1 Genetski algoritam

Jednostavan genetski algoritam, prva varijanta rešenja za koju je najveći problem pravila kompleksnost fitnes funkcije. Ovaj algoritam se slabo pokazao čak i na malom broju tačaka.

#### 3.1.1 Hromozom

Hromozom se sastoji trenutne veličine kvadrata, kao i niza proto kvadrata koji u sebi čuvaju orijentaciju i početnu tačku.

### 3.1.2 Mutacije

Mutacija se dešava sa verovatnoćom 0.01%. U slučaju da treba da se desi mutacija proto kvadrata, promeni mu se orijentacija, a u slučaju da treba da se mutira veličina svih kvadrata, ona se ili povećava (sa verovatnoćom 75%) ili smanjuje za jednu poziciju u nizu mogućih veličina.

#### 3.1.3 Selekcija, elitizam i ukrštanje

Selekcija je turnirska, sa podrazumevanom vrednošću 5, a takodje je implementiran elitizam sa podrazumevanom vrednošću 20%. Implementirano je jednopoziciono i uniformno ukrštanje.

#### 3.1.4 Fitnes funkcija

Prolazi se kroz kombinacije parova niza proto kvadrata, i broji se koilko ima parova pre prvog preseka nekog para. Nakon toga se ovaj postupak ponovi od kraja niza parova, i dobijena dva broja se saberu i pomnože sa trenutnom veličinom.

## 3.2 Poboljšani genetski algoritam

Ovaj algoritam je nadogradnja na prethodni, većina podrazumevanih vrednosti i pomoćnih metoda su mu ostale iste. Razlikuje se doduše u konstrukciji hromozoma kao i fitnes funkcije.

#### 3.2.1 Hromozom i mutacija

Ovde je hromozom pojednostavljen i sastoji se samo od niza orijentacija. Prilikom mutacije određena mutacija se samo promeni nekom drugom.

## 3.2.2 Fitnes funckija

Glavna razlika ova dva algoritma je u fitnes funkciji. Naime, ovde se pronalazi najveća moguća veličina kvadrata koja može da se postavi pri trenutnom nizu orijentacija. Pronalazak je implementiran uz pomoć binarne pretrage po mogućim veličinama kvadrata.

Takodje, prilikom predprocesiranja se za svaku tačku pronađu sve one tačke koje su joj bliže od dvostruke najveće moguće veličine kvadrata. Tako da, umesto da se proverava da li svake dve tačke imaju presek pri datoj orijentaciji i veličini kvadrata, proveravaju se samo one koje su blizu jedna drugoj.

#### 3.2.3 Fitnes

## 4 Rezultati

Tabela 1: Rezultati

| number<br>of<br>points | seed | B<br>size | B<br>elapsed | Genetic<br>size | Genetic elapsed | Improved<br>Genetic<br>size | Improved<br>Genetic<br>elapsed |
|------------------------|------|-----------|--------------|-----------------|-----------------|-----------------------------|--------------------------------|
| 5                      | 0    | 35.3020   | 0.0002       | 22.7321         | 0.1100          | 35.3020                     | 0.0846                         |
| 5                      | 1    | 42.1144   | 0.0002       | 39.7943         | 0.1108          | 42.1144                     | 0.0870                         |
| 5                      | 2    | 61.3179   | 0.0011       | 42.9225         | 0.1371          | 61.3179                     | 0.2088                         |
| 5                      | 3    | 36.9589   | 0.0009       | 25.8712         | 0.1028          | 36.9589                     | 0.2080                         |
| 5                      | 4    | 69.8648   | 0.0008       | 48.9053         | 0.1003          | 69.8648                     | 0.2202                         |
| 5                      | 5    | 59.3896   | 0.0008       | 41.5728         | 0.1451          | 59.3896                     | 0.1914                         |
| 5                      | 6    | 49.8109   | 0.0001       | 48.4583         | 0.1138          | 49.8109                     | 0.0928                         |
| 5                      | 7    | 47.7883   | 0.0008       | 33.9297         | 0.1069          | 47.7883                     | 0.2132                         |
| 5                      | 8    | 55.6683   | 0.0009       | 39.5245         | 0.1361          | 55.6683                     | 0.1998                         |
| 5                      | 9    | 53.5835   | 0.0009       | 38.0443         | 0.1041          | 45.6572                     | 0.1721                         |
| 10                     | 0    | 20.1374   | 0.0027       | 14.6017         | 0.2650          | 19.4759                     | 0.6594                         |
| 10                     | 1    | 26.8340   | 0.0004       | 17.0165         | 0.2730          | 26.8340                     | 0.1957                         |
| 10                     | 2    | 22.4876   | 0.0037       | 13.6350         | 0.2128          | 19.4009                     | 0.4560                         |
| 10                     | 3    | 30.9898   | 0.0038       | 15.4949         | 0.2719          | 30.9898                     | 0.6949                         |
| 10                     | 4    | 29.5408   | 0.0035       | 29.5408         | 0.2752          | 29.5408                     | 0.6761                         |
| 10                     | 5    | 32.0455   | 0.0035       | 16.7846         | 0.2813          | 32.0455                     | 0.5254                         |
| 10                     | 6    | 24.4790   | 0.0034       | 16.0045         | 0.2291          | 21.6525                     | 0.6013                         |
| 10                     | 7    | 25.3977   | 0.0030       | 16.2122         | 0.2888          | 25.3977                     | 0.5525                         |

Continued on next page

Tabela 1: Rezultati (Continued)

| number of points | seed | B<br>size | B<br>elapsed | Genetic<br>size | Genetic elapsed | Improved<br>Genetic<br>size | Improved<br>Genetic<br>elapsed |
|------------------|------|-----------|--------------|-----------------|-----------------|-----------------------------|--------------------------------|
| 10               | 8    | 21.9025   | 0.0039       | 13.1415         | 0.3081          | 21.9025                     | 0.4996                         |
| 10               | 9    | 26.8072   | 0.0031       | 17.3233         | 0.2836          | 26.2364                     | 0.5581                         |
| 20               | 0    | 14.8317   | 0.0109       | 8.2715          | 0.6064          | 10.4326                     | 1.2658                         |
| 20               | 1    | 17.7698   | 0.0124       | 10.0212         | 0.5272          | 17.0165                     | 1.0740                         |
| 20               | 2    | 13.1543   | 0.0148       | 7.5067          | 0.6153          | 12.5291                     | 0.8135                         |
| 20               | 3    | 13.4754   | 0.0133       | 12.3385         | 0.6919          | 12.6793                     | 1.1250                         |
| 20               | 4    | 12.9604   | 0.0147       | 7.5211          | 0.6460          | 8.9035                      | 0.8270                         |
| 20               | 5    | 20.0668   | 0.0110       | 5.2276          | 0.5985          | 16.7846                     | 1.2776                         |
| 20               | 6    | 12.2823   | 0.0115       | 7.4243          | 0.5285          | 10.9630                     | 1.9486                         |
| 20               | 7    | 14.2098   | 0.0116       | 6.1811          | 0.6022          | 11.1956                     | 1.3397                         |
| 20               | 8    | 12.9753   | 0.0135       | 8.4649          | 0.6453          | 12.9753                     | 1.2777                         |
| 20               | 9    | 15.3393   | 0.0141       | 10.2480         | 0.5252          | 15.3393                     | 1.1358                         |
| 100              | 0    | 5.2101    | 0.3394       | 1.0167          | 3.8348          | 2.8310                      | 5.4570                         |
| 100              | 1    | 4.8196    | 0.3330       | 0.8188          | 4.0033          | 3.7424                      | 8.6991                         |
| 100              | 2    | 5.3345    | 0.3498       | 1.4050          | 4.1928          | 3.1100                      | 5.3395                         |
| 100              | 3    | 2.5173    | 0.4301       | 1.0134          | 4.1222          | 2.5173                      | 3.9557                         |
| 100              | 4    | 5.3397    | 0.3273       | 1.4967          | 4.0970          | 2.9960                      | 5.8460                         |
| 100              | 5    | 3.8286    | 0.0436       | 1.3737          | 4.1538          | 3.2918                      | 2.6242                         |
| 100              | 6    | 3.9952    | 0.4073       | 1.2149          | 4.0909          | 3.3872                      | 6.6124                         |
| 100              | 7    | 4.8685    | 0.3644       | 1.2188          | 4.0041          | 3.2676                      | 6.1052                         |
| 100              | 8    | 4.5989    | 0.3733       | 1.2414          | 4.0048          | 3.5007                      | 6.1725                         |
| 100              | 9    | 3.6960    | 0.4050       | 0.9395          | 3.8809          | 3.0161                      | 4.2277                         |
| 200              | 0    | 3.0682    | 1.6054       | 0.7022          | 10.4813         | 1.8340                      | 12.8923                        |
| 200              | 1    | 3.6387    | 1.3792       | 0.6034          | 9.9041          | 1.2897                      | 11.4101                        |
| 200              | 2    | 2.2561    | 1.7651       | 0.4451          | 12.6591         | 1.5089                      | 14.4704                        |
| 200              | 3    | 2.5173    | 1.5510       | 0.3319          | 10.8633         | 1.5361                      | 6.6585                         |
| 200              | 4    | 2.4096    | 1.9593       | 0.7761          | 10.2350         | 1.7333                      | 10.8867                        |
| 200              | 5    | 2.7550    | 1.8628       | 1.0367          | 10.3626         | 1.7471                      | 8.6153                         |

Continued on next page

Tabela 1: Rezultati (Continued)

| number<br>of<br>points | seed | B<br>size | B<br>elapsed | Genetic<br>size | Genetic elapsed | Improved<br>Genetic<br>size | Improved<br>Genetic<br>elapsed |
|------------------------|------|-----------|--------------|-----------------|-----------------|-----------------------------|--------------------------------|
| 200                    | 6    | 2.5865    | 0.1750       | 0.8431          | 10.6476         | 1.4087                      | 5.5453                         |
| 200                    | 7    | 3.8616    | 1.6255       | 0.9269          | 10.3298         | 1.9366                      | 10.0482                        |
| 200                    | 8    | 3.4888    | 1.6036       | 0.7183          | 10.4093         | 1.3351                      | 11.2543                        |
| 200                    | 9    | 2.6795    | 1.8910       | 0.8107          | 10.6949         | 2.0250                      | 9.5496                         |
| 1000                   | 0    | 1.1287    | 62.4307      | 0.2546          | 60.5390         | 0.3597                      | 39.9337                        |
| 1000                   | 1    | 1.0390    | 60.1160      | 0.1624          | 123.8743        | 0.3516                      | 39.5442                        |
| 1000                   | 2    | 1.1521    | 65.5126      | 0.1034          | 89.7775         | 0.3722                      | 34.6695                        |
| 1000                   | 3    | 1.2391    | 4.4660       | 0.1416          | 78.1544         | 0.3069                      | 34.6919                        |
| 1000                   | 4    | 0.4746    | 78.0351      | 0.1222          | 104.4416        | 0.3510                      | 24.7008                        |
| 1000                   | 5    | 1.1983    | 52.1492      | 0.1587          | 92.3268         | 0.3777                      | 45.1977                        |
| 1000                   | 6    | 0.9802    | 56.8678      | 0.2834          | 88.9586         | 0.3884                      | 31.8742                        |
| 1000                   | 7    | 0.9750    | 69.3481      | 0.1155          | 110.8884        | 0.3253                      | 42.0070                        |
| 1000                   | 8    | 1.1280    | 63.5581      | 0.1970          | 70.7388         | 0.3167                      | 41.9968                        |
| 1000                   | 9    | 1.1687    | 58.0488      | 0.1677          | 100.7930        | 0.3446                      | 37.9643                        |
| 2000                   | 0    | 0.5902    | 334.1976     | 0.0421          | 335.1482        | 0.1752                      | 66.2694                        |
| 2000                   | 1    | 0.6949    | 325.7983     | 0.0872          | 241.0173        | 0.1659                      | 67.1866                        |
| 2000                   | 2    | 0.9119    | 308.9079     | 0.2267          | 153.4743        | 0.1872                      | 81.1795                        |
| 2000                   | 3    | 0.6945    | 380.5133     | 0.1180          | 316.2370        | 0.1708                      | 74.4366                        |
| 2000                   | 4    | 0.3922    | 36.8053      | 0.1118          | 224.0539        | 0.2139                      | 31.0206                        |
| 2000                   | 5    | 0.4914    | 30.3630      | 0.1513          | 292.9607        | 0.1968                      | 38.3861                        |
| 2000                   | 6    | 0.6693    | 337.7248     | 0.0452          | 349.7639        | 0.1860                      | 71.6278                        |
| 2000                   | 7    | 0.7234    | 294.3216     | 0.0613          | 369.5315        | 0.2141                      | 82.7554                        |
| 2000                   | 8    | 0.5690    | 366.0344     | 0.0631          | 326.8942        | 0.1356                      | 57.5886                        |
| 2000                   | 9    | 0.8197    | 297.6410     | 0.0519          | 332.8558        | 0.1697                      | 74.9166                        |
| 10000                  | 0    | 0.2859    | 17301.5453   | 0.0564          | 1694.4324       | 0.0379                      | 317.9344                       |
| 10000                  | 1    | 0.2854    | 1065.0139    | 0.0134          | 5370.4632       | 0.0284                      | 264.2074                       |
| 10000                  | 2    | 0.1736    | 21978.9608   | 0.0407          | 2954.1380       | 0.0360                      | 383.1619                       |
| 10000                  | 3    | 0.2518    | 16313.0537   | 0.0150          | 7801.0702       | 0.0385                      | 256.0877                       |



Slika 3: Zadovoljivost reultata



Slika 4: Prosečno vreme

## 5 Zaključak

Popravljeni genetski algoritam se ponaša prihvatljivo pri manjem broju tačaka, ali sa porasom mu opada i preciznost. Sa druge strane vidimo da vreme izvršavanja B algoritma znatno brže raste, i da je prosečno vreme izvršavanja za 10000 tačaka par redova veličine iznad popravljenog genetskog algoritma.

Rezultati ovog rada, što se tiče genetskog algoritma, su dobijeni sa populacijom veličine 100 kroz 50 generacija, tako da je moguće u budućnosti proveriti da li bi algoritam bio precizniji za veći broj generacija i/ili populacije. Obzirom na vremensku neefikasnost B algoritma, pri većem broju tačaka, ima mesta za povećanje kapaciteta popravljenog genetskog algoritma, uz to da ostane idalje brži.

## Literatura

[1] Wagner, F., and Wolff, A. (1995), An efficient and effective approximation algorithm for the map labeling problem Proc. 3rd Ann. European Symp. on Algorithms, Lecture Notes in Comput. Sci. 979, Springer-Verlag, 420-433.