

HELGA DÉNES

CALIBRATION

OUTLINE

- Game
- Calibration
 - The tutorials will give you hands on experience

WHY IS CALIBRATION IMPORTANT?

- To get meaningful accurate data/results
- To remove the effects of instrumental and atmospheric factors

WHY IS CALIBRATION IMPORTANT?

FT(Observed Visibilities) ≠ Pretty Images

Relevant physical effects:

- Atmosphere
 - Ionosphere
 - Troposphere

- Digitiser/Correlator
 - Auto leveling
 - sampling efficiency
 - Birdies (internal RFI)

Measurables:

Amplitude

Phase

Delay

Polarization

Spectrum

- ► LNA + conversion chain
 - ▶ Clock
 - Gain, phase, delay
 - frequency response

- Antenna feed
 - On-axis gain/sensitivity vs El
 - Primary beam correction
 - Pointing
 - Position (location)

Key factors: corresponding timescales, frequency dependence, polarimetric properties, **order in signal path**, ...

THE MEASUREMENT EQUATION

The measurement equation (Hamaker, Bregman & Sault) is a matrix formalism for expressing the polarimetric response of an interferometer

THE MEASUREMENT EQUATION

Calibration is the process of perfecting the sky and instrument models

FLAGGING/EDITING

Don't be afraid to throw out data

- Corrupted data can reduce the image quality significantly
- Effect of missing data (even 25%) is often minor and easily corrected in deconvolution

Flag data you know is bad early

- Save your sleuthing skills for the hard stuff
 - See "Error recognition" talk

Visualise your data

- Detailed visual inspection of all data is rapidly becoming impossible
- Collapse, average, difference & automate using scripts

VISIBILITY CORRUPTION

RFI - interference:

Transmitters, Lightning, Solar, Internal RFI

Antenna/Receiver/Correlator failures :

no signal, excess noise, artificial spectral features

Bad weather:

- effects get worse for higher freq.
- decorrelation, noise increase, signal decrease (opacity)

Shadowing:

one antenna (partially) blocked by another

FLAGGING/EDITING

- ▶ 1st pass: use on-line flags (automatic)
 - Flags when antennas are off source or correlator blocks offline.
- > 2nd pass: Use the observing logbook! Saves lots of time later.
 - Note which data is supposed to be good & discard data with setup calibration, failed antennas, observer typos etc.
- **▶** 3rd pass: Use automatic flags
 - Correlator birdies, Common RFI sources (options=birdie, rfiflag)
 - Shadowed data: select=shadow(25)
 - Data with bad phase stability: select=seeing(300)
- ▶ 4th pass: Check calibrators plot amp-time, phase-time, amp-frq
 - investigate outliers & flag, flag source as well if you can't trust data
- ▶ 5th pass: (After calibration) Inspect & flag source data
 - Use Stokes V to flag data with strong sources

RFI 1 - 3 GHZ

https://www.narrabri.atnf.csiro.au/observing/rfi/monitor/rfi_monitor.html#atca

RFI 1 - 3 GHZ

https://www.narrabri.atnf.csiro.au/observing/rfi/monitor/rfi_monitor.html#atca

RFI 1 - 3 GHZ

Weather radar

ATCA CALIBRATION

Observatory – done after reconfiguration

- Bulk delay (cable lengths)
- Baseline (antenna location) good to 1-5 mm
- Antenna Pointing good to 10"-20"

User

- Schedule preparation (observing strategy)
- dcal/pcal/acal: "Real-time" first-pass approximation
- Post-observation calibration

CALIBRATION AT RECONFIGURATION

- antenna pointing (global pointing model derived from sources in all Az/El directions)
 - penerally correct to better than 10", occassional 20" error single antenna
 - may need reference pointing with nearby cal above 10 GHz
- baseline lengths (relative antenna positions)
 - generally correct to better than 1-2 mm (depending on weather)
 - error significant at 3mm correct phase with nearby calibrator
- global antenna delay (bulk transmission delay in cables)

CALIBRATION - SCHEDULE PLANING

- Observe primary calibrator 1934-638(cm), Uranus(mm) 5-15 min, to calibrate the absolute fluxscale

 - cm/1934: can also solve for polarization leakage and bandpass
 - mm:

 - Observe separate bandpass calibratorUse secondary for polarization leakage
- Observe secondary calibrator (close to target)
 1-2 min every 15-60 min (dependent on wavelength)

 - Atmospheric, instrumental phase variation,
 System gain variations; optional: solve leakage, bandpass
- Observe pointing calibrator (for mm observations)
 - a POINTing scan every 30-60 minutes

ATCA & VLA CALIBRATOR LIST

- Ideal secondary calibrator is strong, small $(\theta < \lambda / B_{max})$ and close to the target (<15°)

 ATCA + VLA lists ~1000 sources

 - Calibrator database lets you make the optimal choice
- Primary flux calibrators are also stable with time: PKS1934-638, PKS0823-500
- Above 20GHz, the planets are essentially the only primary flux calibrators
 - all bright compact sources seem to vary at high freq
 - Planets not ideal resolved on longer baselines / seasonal variation

CALIBRATION - STARTING UP

Calibration done at start of observation (usually on the primary calibrator):

Delay calibration

- Correct residual path length for your particular frequency & correlator setup
- Fixes phase slope across band

Amplitude & Phase

- Equalize gains, zero phases, sets Tsys scale
 - helps to detect problems during observation.

Polarization

- zero delay & phase difference between X & Y feeds
- uses noise source on reference antenna to measure phase.
- generally correct to a few degrees at 3-20cm

INITIAL ARRAY CALIBRATION

CALIBRATION - DURING THE OBSERVATION

Observations of secondary calibrator [+ pointing cal]

Tsys correction

- estimates system temp from injected noise
- corrects for e.g., ground pickup & elevation, but not for atmospheric absorption
- At 3mm: use Paddle scan calibration instead

Calibration data recorded during the observation:

- Tsys system temperature
- XY-phase difference on each antenna
- (experimental) Water Vapour Radiometer path length

CALIBRATION RECIPE

After you have all your data:

Primary calibrator

- Solve for complex gain vs time
- Solve bandpass gain vs frequency
- Solve polarization leakage (crosstalk between feeds)

Secondary calibrator(s)

- Apply bandpass and leakage from primary
- Solve for complex gain vs time
- Bootstrap absolute flux scale (from primary)

Sources of interest

- Apply bandpass and leakage from primary and complex gains from secondary
- Use calibrated data in subsequent imaging and analysis

CALIBRATION

- There are different calibration techniques and strategies for
 - different instruments
 - different science goals
 - different frequencies
 - wide band vs. narrow band
 - spectral line continuum observations

RESOURCES

This talk is based on:

- Mark Wieringa's 2012 talk
- George Heald's 2015 talk

Resources:

- The ATCA User Guide (Section 4.3.6. http://www.narrabri.atnf.csiro.au/observing/users_guide/html/atug.html#Calibration2)
- Online available tutorials: e.g. Miriad and CASA tutorials (http://www.atnf.csiro.au/computing/software/miriad/tutorials.html https://casaguides.nrao.edu/index.php/Main_Page)

Books:

- Interferometry and Synthesis in Radio Astronomy
- Tools of Radio Astronomy
- Synthesis Imaging in Radio Astronomy II

THANK YOU!