lme mods

Jacob Salminen

2024-04-19

Packages & Setup

```
# install.packages(c("tidyverse", "purrr", "R.matlab", "readxl", "dplyr"))
library(readxl);
library(purrr)
library(tidyverse);
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.0
                       v tibble
                                   3.2.1
## v lubridate 1.9.3
                                   1.3.1
                       v tidyr
## -- Conflicts -----
                                          ## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tibble)
library(knitr);
library(gtsummary)
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
library(lme4)
## Loading required package: Matrix
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
      expand, pack, unpack
##
```

GTSUMMARY THEME

```
# my_theme <-
  list(
#
      "tbl_summary-str:default_con_type" = "continuous2",
      "tbl_summary-str:continuous_stat" = c(
#
#
        "\{median\} (\{p25\} - \{p75\})",
        "{mean} ({sd})",
#
#
        "{min} - {max}"
#
#
     "tbl_summary-str:categorical_stat" = "{n} / {N} ({p}%)",
#
      "style number-arg:big.mark" = "",
#
      "tbl_summary-fn:percent_fun" = function(x) style_percent(x, digits = 3)
   )
#
# my_theme <-
  list()
# qtsummary::set_qtsummary_theme(my_theme)
gtsummary::set_gtsummary_theme(theme_gtsummary_journal("jama"))
## Setting theme 'JAMA'
## Setting theme 'JAMA'
# reset qtsummary theme()
```

load table

get unique entries

```
clusters = unique(eegt$cluster_id);
subjects = unique(eegt$subj_char);
groups = unique(eegt$group_char);
kin_measures = c('mean_APexc_COV', 'mean_APexc_mean', 'mean_MLexc_COV', 'mean_MLexc_mean', 'mean_StepDur','eeg_measures = c('theta_avg_power', 'alpha_avg_power', 'beta_avg_power', 'aperiodic_exp', 'aperiodic_offset
```

get speeds only

```
eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('0.25','0.5','0.75','1.0')))
flat_speeds = unique(eegt$cond_char)
eegt$cond_char <- as.numeric(eegt$cond_char)
eegt$speed_cond_num <- as.numeric(eegt$cond_char)
eegt <- mutate(eegt,across(c('subj_char'), factor))</pre>
```

Cluster:	3								
	EEG '	Γheta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.63 (0.37 to 0.89)	< 0.001	< 0.001	1.4 (0.59 to 2.2)	< 0.001	0.002	1.2 (0.70 to 1.6)	< 0.001	< 0.001
speed_cond_num	0.15 (0.04 to 0.26)	0.007	0.010	-0.24 (-0.42 to -0.07)	0.006	0.009	-0.29 (-0.39 to -0.19)	< 0.001	< 0.001
group_char		0.027	0.027		0.82	0.82		0.44	0.44
H1000's	_			_			_		
H2000's	-0.51 (-0.88 to -0.14)			0.37 (-0.83 to 1.6)			0.37 (-0.29 to 1.0)		
H3000's	-0.18 (-0.56 to 0.19)			0.29 (-0.91 to 1.5)			-0.03 (-0.68 to 0.63)		
subj_char.sd(Intercept)	0.56 (NA to NA)			1.8 (NA to NA)			1.0 (NA to NA)		
Residual.sdObservation	0.23 (NA to NA)			0.36 (NA to NA)			0.21 (NA to NA)		

¹ CI = Confidence Interval

get terrains only (if applicable)

```
# eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('flat','low','med','high')))
# eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('high')))
# eegt$terr_ord_speed <- cut(eegt$speed_ms, 4, ordered = TRUE)</pre>
```

convert speeds to ordered & groups to factors

```
eegt <- mutate(eegt,across(c('group_char'), factor))</pre>
eegt$speed_ord <- cut(eegt$cond_char, 4, ordered = TRUE)</pre>
eegt <- mutate(eegt,across(c('cond_char'), factor))</pre>
head(eegt)
## # A tibble: 6 x 139
     speed_ms subj_id subj_cl_ind subj_char comp_id design_id cond_id cond_char
                                              <dbl> <chr>
##
        <dbl> <chr>
                       <dbl> <fct>
                                                             <chr>
                                                                       <fct>
## 1
         1.2 5
                                1 H1011
                                                  4 2
                                                                       0.25
## 2
        0.69 8
                                2 H1017
                                                  3 2
                                                                       0.25
                                                              1
        0.51 10
                                3 H1019
                                                  4 2
                                                                       0.25
                                                              1
## 4
        0.76 11
                                4 H1020
                                                  6 2
                                                                       0.25
                                                              1
## 5
        0.59 12
                                5 H1022
                                                  6 2
                                                                       0.25
                                                              1
        0.8 15
## 6
                                6 H1027
                                                                       0.25
                                                  3 2
## # i 131 more variables: group_id <chr>, cluster_id <chr>, aperiodic_exp <dbl>,
       aperiodic_offset <dbl>, central_freq_1 <dbl>, central_freq_2 <dbl>,
## #
## #
       central_freq_3 <dbl>, power_1 <dbl>, power_2 <dbl>, power_3 <dbl>,
       r squared <dbl>, theta avg power <dbl>, alpha avg power <dbl>,
## #
## #
       beta_avg_power <dbl>, theta_1 <dbl>, theta_2 <dbl>, theta_3 <dbl>,
       theta_4 <dbl>, theta_5 <dbl>, theta_6 <dbl>, theta_7 <dbl>, theta_8 <dbl>,
## #
## #
       'alpha_ 1' <dbl>, 'alpha_ 2' <dbl>, 'alpha_ 3' <dbl>, 'alpha_ 4' <dbl>, ...
eegt$group_speed_code = paste(eegt$group_char,eegt$cond_char,sep="_")
```

LME EEG \sim 1+speed+group

LME KIN \sim 1+speed+group+speed:group

² False discovery rate correction for multiple testing

Cluster:	4								
	EEG	Theta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.43 (0.09 to 0.77)	0.013	0.039	4.2 (3.1 to 5.2)	< 0.001	< 0.001	2.7 (2.1 to 3.2)	< 0.001	< 0.001
speed_cond_num	0.04 (-0.07 to 0.15)	0.45	0.51	-0.68 (-0.96 to -0.40)	< 0.001	< 0.001	-0.46 (-0.61 to -0.31)	< 0.001	< 0.001
group_char		0.51	0.51		0.64	0.64		0.17	0.17
H1000's	_			_			_		
H2000's	-0.32 (-0.86 to 0.23)			-0.17 (-1.9 to 1.5)			0.82 (-0.08 to 1.7)		
H3000's	-0.16 (-0.64 to 0.32)			-0.71 (-2.2 to 0.80)			0.52 (-0.28 to 1.3)		
subj_char.sd(Intercept)	0.81 (NA to NA)			2.5 (NA to NA)			1.4 (NA to NA)		
Residual.sdObservation	0.24 (NA to NA)			0.61 (NA to NA)			0.33 (NA to NA)		

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	5								
	EEG '	Γheta		EEG A	Alpha		EEG Beta		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.68 (0.34 to 1.0)	< 0.001	< 0.001	2.5 (1.5 to 3.5)	< 0.001	< 0.001	2.2 (1.4 to 3.0)	< 0.001	< 0.001
speed_cond_num	0.23 (0.10 to 0.36)	< 0.001	< 0.001	-0.28 (-0.51 to -0.04)	0.021	0.032	-0.32 (-0.47 to -0.16)	< 0.001	< 0.001
group_char		0.063	0.063		0.58	0.58		0.067	0.067
H1000's	_			_			_		
H2000's	-0.50 (-1.0 to 0.01)			-0.84 (-2.4 to 0.75)			0.54 (-0.71 to 1.8)		
H3000's	-0.49 (-0.96 to -0.03)			-0.26 (-1.7 to 1.2)			1.3 (0.21 to 2.5)		
subj_char.sd(Intercept)	0.75 (NA to NA)			2.4 (NA to NA)			1.9 (NA to NA)		
Residual.sdObservation	0.28 (NA to NA)			0.51 (NA to NA)			0.34 (NA to NA)		

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing $\,$

Cluster:	6								
	EEG	Theta		EEG A	Alpha		EEG Beta		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.46 (0.11 to 0.81)	0.011	0.016	4.8 (4.0 to 5.6)	< 0.001	< 0.001	2.7 (2.3 to 3.1)	< 0.001	< 0.001
speed_cond_num	-0.12 (-0.28 to 0.04)	0.14	0.14	-0.53 (-0.79 to -0.27)	< 0.001	< 0.001	-0.22 (-0.35 to -0.08)	0.002	0.002
group_char		< 0.001	< 0.001		0.070	0.070		0.006	0.006
H1000's	_			_			_		
H2000's	0.66 (0.16 to 1.2)			-1.2 (-2.4 to -0.05)			-0.67 (-1.3 to -0.05)		
H3000's	1.2 (0.77 to 1.7)			-1.0 (-2.1 to 0.03)			-0.92 (-1.5 to -0.34)		
subj_char.sd(Intercept)	0.85 (NA to NA)			2.0 (NA to NA)			1.1 (NA to NA)		
Residual.sdObservation	0.39 (NA to NA)			0.64 (NA to NA)			0.33 (NA to NA)		

¹ CI = Confidence Interval ² False discovery rate correction for multiple testing

Cluster:	7								
	EEG '	Γheta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.29 (0.03 to 0.55)	0.027	0.040	3.5 (2.4 to 4.6)	< 0.001	< 0.001	3.1 (2.5 to 3.7)	< 0.001	< 0.001
speed_cond_num	0.16 (0.06 to 0.26)	0.001	0.003	-0.52 (-0.84 to -0.20)	0.001	0.002	-0.51 (-0.68 to -0.34)	< 0.001	< 0.001
group_char		0.10	0.10		0.62	0.62		0.030	0.030
H1000's	_			_			_		
H2000's	-0.44 (-0.85 to -0.03)			-0.88 (-2.6 to 0.89)			0.87 (-0.14 to 1.9)		
H3000's	-0.24 (-0.60 to 0.13)			-0.37 (-1.9 to 1.2)			1.2 (0.28 to 2.1)		
subj_char.sd(Intercept)	0.63 (NA to NA)			2.7 (NA to NA)			1.6 (NA to NA)		
Residual.sdObservation	0.22 (NA to NA)			0.73 (NA to NA)			0.38 (NA to NA)		

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	8								
	EEG	Theta		EEG .	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.86 (0.47 to 1.3)	< 0.001	< 0.001	1.4 (0.80 to 2.0)	< 0.001	< 0.001	0.82 (0.31 to 1.3)	0.002	0.002
speed_cond_num	0.38 (0.24 to 0.53)	< 0.001	< 0.001	-0.19 (-0.44 to 0.06)	0.14	0.14	-0.19 (-0.31 to -0.08)	< 0.001	0.002
group_char		0.068	0.068		0.052	0.078		0.041	0.041
H1000's	_			_			_		
H2000's	-0.62 (-1.2 to -0.07)			-0.32 (-1.2 to 0.52)			0.51 (-0.21 to 1.2)		,
H3000's	-0.48 (-1.0 to 0.09)			0.74 (-0.12 to 1.6)			0.96 (0.21 to 1.7)		
subj_char.sd(Intercept)	0.84 (NA to NA)			1.3 (NA to NA)			1.1 (NA to NA)		
Residual.sdObservation	0.29 (NA to NA)			0.51 (NA to NA)			0.24 (NA to NA)		

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	9								-
	EEG	Theta		EEG .	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.50 (0.23 to 0.77)	< 0.001	< 0.001	2.8 (1.8 to 3.8)	< 0.001	< 0.001	1.6 (1.0 to 2.2)	< 0.001	< 0.001
speed_cond_num	0.25 (0.10 to 0.39)	< 0.001	0.001	-0.21 (-0.47 to 0.05)	0.12	0.14	-0.24 (-0.36 to -0.11)	< 0.001	< 0.001
group_char		0.41	0.41		0.14	0.14		0.24	0.24
H1000's	_			_			_		
H2000's	-0.22 (-0.61 to 0.16)			0.18 (-1.4 to 1.7)			0.74 (-0.13 to 1.6)		
H3000's	-0.23 (-0.63 to 0.17)			-1.4 (-2.9 to 0.22)			0.19 (-0.72 to 1.1)		
subj_char.sd(Intercept)	0.61 (NA to NA)			2.5 (NA to NA)			1.4 (NA to NA)		
Residual.sdObservation	0.31 (NA to NA)			0.56 (NA to NA)			0.27 (NA to NA)		

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	10									
	EEG	Theta		EEG .	Alpha		EEG Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	
(Intercept)	1.3 (0.92 to 1.7)	< 0.001	< 0.001	0.69 (0.30 to 1.1)	< 0.001	0.002	1.4 (0.94 to 1.8)	< 0.001	< 0.001	
speed_cond_num	0.26 (0.10 to 0.42)	0.001	0.002	0.01 (-0.15 to 0.16)	0.91	0.91	-0.23 (-0.33 to -0.14)	< 0.001	< 0.001	
group_char		0.081	0.081		0.76	0.91		0.69	0.69	
H1000's	_			_			_			
H2000's	-0.62 (-1.2 to -0.05)			0.12 (-0.46 to 0.70)			0.29 (-0.38 to 0.95)			
H3000's	-0.47 (-1.1 to 0.14)			-0.12 (-0.74 to 0.49)			0.15 (-0.56 to 0.86)			
subj_char.sd(Intercept)	0.96 (NA to NA)			0.97 (NA to NA)			1.1 (NA to NA)			
Residual.sdObservation	0.35 (NA to NA)			0.35 (NA to NA)			0.21 (NA to NA)			

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	11								
	EEG '	Theta		EEG A	Alpha		EEG Beta		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.45 (0.01 to 0.89)	0.047	0.14	3.7 (2.5 to 4.8)	< 0.001	< 0.001	1.9 (1.4 to 2.5)	< 0.001	< 0.001
speed_cond_num	0.05 (-0.08 to 0.19)	0.44	0.44	-0.42 (-0.73 to -0.11)	0.008	0.013	-0.24 (-0.42 to -0.07)	0.007	0.010
group_char		0.19	0.29		0.40	0.40		0.44	0.44
H1000's	_			_			_		
H2000's	-0.20 (-0.86 to 0.46)			-1.1 (-2.8 to 0.67)			-0.34 (-1.1 to 0.46)		
H3000's	0.41 (-0.22 to 1.0)			0.02 (-1.6 to 1.7)			-0.49 (-1.3 to 0.28)		
subj_char.sd(Intercept)	0.90 (NA to NA)			2.4 (NA to NA)			1.1 (NA to NA)		
Residual.sdObservation	0.26 (NA to NA)			0.60 (NA to NA)			0.34 (NA to NA)		

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	12								
	EEG	Theta		EEG A	Alpha		EEG Beta		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.56 (0.24 to 0.88)	< 0.001	0.002	1.9 (0.91 to 2.8)	< 0.001	< 0.001	0.98 (0.52 to 1.4)	< 0.001	< 0.001
speed_cond_num	0.01 (-0.13 to 0.16)	0.85	0.92	-0.35 (-0.60 to -0.11)	0.005	0.007	-0.15 (-0.25 to -0.04)	0.008	0.012
group_char		0.92	0.92		0.053	0.053		0.71	0.71
H1000's	_			_			_		
H2000's	0.10 (-0.39 to 0.58)			1.6 (0.15 to 3.1)			-0.02 (-0.73 to 0.70)		
H3000's	0.02 (-0.41 to 0.46)			1.3 (-0.02 to 2.7)			-0.25 (-0.89 to 0.39)		
subj_char.sd(Intercept)	0.63 (NA to NA)			2.0 (NA to NA)			0.94 (NA to NA)		
Residual.sdObservation	0.27 (NA to NA)			0.46 (NA to NA)			0.20 (NA to NA)		

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	13								
	EEG	Theta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.01 (-0.28 to 0.30)	0.94	0.94	2.8 (1.8 to 3.7)	< 0.001	< 0.001	1.3 (0.87 to 1.7)	< 0.001	< 0.001
speed_cond_num	0.33 (0.17 to 0.49)	< 0.001	< 0.001	-0.35 (-0.67 to -0.03)	0.030	0.045	-0.17 (-0.34 to 0.00)	0.053	0.080
group_char		0.094	0.14		0.46	0.46		0.17	0.17
H1000's	_			_			_		
H2000's	0.40 (-0.15 to 0.96)			-0.85 (-2.8 to 1.1)			0.01 (-0.83 to 0.84)		
H3000's	0.45 (0.01 to 0.89)			-0.88 (-2.4 to 0.65)			-0.61 (-1.3 to 0.06)		
subj_char.sd(Intercept)	0.64 (NA to NA)			2.3 (NA to NA)			0.97 (NA to NA)		
Residual.sdObservation	0.30 (NA to NA)			0.59 (NA to NA)			0.32 (NA to NA)		

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	14								
	EEG	Theta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.42 (0.09 to 0.75)	0.012	0.036	4.4 (3.5 to 5.3)	< 0.001	< 0.001	2.8 (2.2 to 3.3)	< 0.001	< 0.001
speed_cond_num	0.09 (0.01 to 0.17)	0.034	0.050	-0.28 (-0.52 to -0.04)	0.021	0.032	-0.18 (-0.32 to -0.04)	0.010	0.014
group_char		0.58	0.58		0.43	0.43		0.74	0.74
H1000's	_			_			_		
H2000's	-0.20 (-0.70 to 0.31)			-0.91 (-2.4 to 0.54)			-0.23 (-1.0 to 0.57)		
H3000's	0.08 (-0.41 to 0.57)			-0.66 (-2.1 to 0.74)			0.10 (-0.67 to 0.87)		
subj_char.sd(Intercept)	0.84 (NA to NA)			2.4 (NA to NA)			1.3 (NA to NA)		
Residual.sdObservation	0.18 (NA to NA)			0.55 (NA to NA)			0.31 (NA to NA)		

¹ CI = Confidence Interval ² False discovery rate correction for multiple testing

	3 Beta (95% Ci 18 (15 to 21)	See COV) p-va <0.0	ne q-valu	e B	ta (95% C)	APeac) p-v 9) <0	alse q-	radiae 0.001	Beta (95% 6 12 (9.3 to 1-	ILexe COV T) p-vali (0.00	se q-valu	e Beta (95% CI) 0.13 (0.12 to 0.14	fLess: p-valu <0.00	e q-valu	Beta (95% CI 1.6 (1.5 to 1.7)	tep Dur p-valu <0.00	ne q-value 1 <0.001	UD Beta (95% CI) 22 (21 to 24)	p-value	q-value <0.001	Beta (95% CI) 0.01 (0.00 to 0.01)	Deac p-value <0.001	q-value <0.001	Beta (95% 2.4 (2.3 to 2	Stance De	ur -value q- :0.001 <	value :0.001	Gairt Beta (95% CI) 3.2 (3.9 to 3.3)	Sycle Dur p-value <0.001	q-value <0.001	Peak Beta (95% Cl 0.00 (-0.03 to 0.0	UpD 1)
	-3.7 (-7.2 to -0.1	<0.0	0.054	-0.00	(-0.05 to -0	(02)	1001 <	0.001	4.2 (1.4 to 7. 4.3 (-7.7 to -0	0.00	0.007	-0.07 (-0.08 to -0.0	0.007	0.007	-1.1 (-1.2 to -0.9)	(0.00 (0.00	1 <0.001	-16 (-18 to -14) 	<0.001 0.25	<0.001 0.25	0.00 (0.00 to 0.00) 0.03 (0.03 to 0.03)	<0.001 0.94	<0.001 0.94	-1.8 (-1.9 to -	0.50) <	0.001 < 0.001 <	0.001	-2.1 (-2.3 to -1.9) -0.89 (-1.1 to -0.6)	<0.001	<0.001	0.35 (0.36 to 0.4	(05)
char 000's	12 (8.2 to 16)	0.2	0.20	0.0	(-0.05 to -0	(03) <(0 4)	.001 <	.001	-1.9 (-5.2 to 1 6.4 (2.2 to 1	0.01	0.014	-0.00 (-0.00 to -0.00	0.002	0.002	0.45 (0.30 to 0.5)	(0.00 (0.00	1 <0.001	-1.0 (-3.4 to 1.4) 0.42 (-2.5 to 3.3)	0.047	0.063	0.00 (0.00 to 0.00)	0.58	0.78	-1.0 (-1.2 to -1	(36) (36)	:0.001 <	:0.001	-1.3 (-1.6 to -1.1) 0.90 (0.61 to 1.2)	<0.001	<0.001	0.02 (-0.01 to 0.0	(20 (20
ction fo	3.3 (NA to NA 4.5 (NA to NA or multiple testing			0.0	1 (NA to N/	3			2.7 (NA to N 3.6 (NA to N	0		0.02 (NA to NA)		Ħ	0.07 (NA to NA 0.13 (NA to NA			2.0 (NA to NA) 2.5 (NA to NA)			0.00 (NA to NA) 0.00 (NA to NA)			0.08 (NA to) 0.22 (NA to)	NA)			0.13 (NA to NA) 0.25 (NA to NA)	=		0.04 (NA to NJ 0.04 (NA to NJ	()
_	4	ese COV		1		A.Penc		1	M	Lesse COV		I M	Lenoc		I Sec	o Dur		UDes	E COV			Desc			Stance Du		_	Guitt	Ovde Dur		I Prok	k Uni
	Beta (95% CI 18 (15 to 21) -3.1 (-6.3 to 0.0)	<0.00 <0.00 <0.00	e q-value 1 <0.001 0.067 <0.001	0.0s	a (95% CI) (0.05 to 0.05 (-0.05 to -0.1	p-va) <0.0 4) <0.0 <0.0	due q-v 001 <0 001 <0 001 <0	001 001 001	Seta (95% C 11 (9.1 to 14) 5.0 (2.4 to 7.6	<0.001 <0.001 <0.001 0.13	<0.001 <0.001 0.13	Beta (95% CI) 0.12 (0.11 to 0.14) -0.07 (-0.08 to -0.06)	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	Beta (95% CI) 1.5 (1.5 to 1.6) -1.0 (-1.1 to -0.93)	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	Beta (95% CI) 23 (21 to 24) -16 (-18 to -14)	<0.001 <0.001 0.68	<0.001 <0.001 0.00	Beta (95% CI) 0.01 (0.01 to 0.01) 0.03 (0.02 to 0.03)	<0.001 <0.001 0.58	q-value <0.001 <0.001 0.58	2.3 (2.2 to 2. -1.7 (-1.9 to -1	(1) p- (1) < (5) <	0.001 < 0.001 < 0.001 <	0.001 0.001 0.001	Beta (95% CI) 31 (30 to 32) -20 (-22 to -15)	p-value <0.001 <0.001 <0.001	<0.001 <0.001 <0.001	Beta (95% CI 0.01 (-0.01 to 0.0 0.37 (0.34 to 0.3	34) 29)
	6.7 (2.4 to 11) 9.7 (5.9 to 13)	0.70	0.70	-0.02 -0.03	-0.03 to -0.0	1)	W -0	-3	 17 (-7.3 to -0.0 3.81 (-4.0 to 2	7)	0.003	0.04 (0.02 to 0.06) 0.01 (-0.01 to 0.02)	-0.000	-0.001	-0.37 (-0.45 to -0.26 -0.56 (-0.65 to -0.46)	-0.00	0.62 (-2.2 to 3.4) -0.65 (-3.2 to 1.9)	0.000	0.000	0.00 (-0.01 to 0.00) 0.00 (-0.01 to 0.00)		0.0	-0.58 (-0.76 to -	0.39)	0.001		0.74 (-0.96 to -0.52 -1.1 (-1.3 to -0.92)	9	-0.003	0.01 (-0.03 to 0.0	(5) (5)
2000/x 3000/x pt)	-1.9 (-6.1 to 4.1 -1.6 (-6.1 to 3.0 3.7 (NA to NA	0.10	0.13	0.03	(0.00 to 0.0) (0.02 to 0.0) (NA to NA		200	0	LS (0.62 to 9.0 L00 (-3.8 to 3.) L3 (NA to NA)	0.002	-0.04 (-0.06 to -0.02 -0.01 (-0.02 to 0.01) 0.02 (NA to NA)	(3090	(0.001	0.37 (0.23 to 0.52) 0.54 (0.40 to 0.67) 0.07 (NA to NA)		Cital	-0.37 (-3.8 to 3.1) 3.2 (0.09 to 6.2) 2.3 (NA to NA)	0.00	0.000	0.00 (0.00 to 0.01) 0.00 (0.00 to 0.01) 0.00 (NA to NA)	9.33	0.42	0.60 (0.34 to 0 0.87 (0.64 to 1 0.08 (NA to 3	(A)			9.74 (0.45 to 1.0) 1.1 (0.81 to 1.3) 9.14 (NA to NA) 0.95 (NA to NA)		3,000	0.02 (-0.02 to 0.0 0.02 (-0.02 to 0.0 0.04 (NA to NA	36) A)
val orrection fo	or multiple testing																															
	5 Beta (95% Cl 17 (15 to 20)	p-val	e q-value 1 <0.001	Be	ta (95% CI (0.08 to 0.0	APrax p-vi) <0.	alue q-s	abae I	M Seta (95% C 11 (8.7 to 14)	Less COV) p-value <0.001	<0.001	Beta (95% CI) 0.12 (0.11 to 0.14)	p-value <0.001	q-value <0.001	Sta Beta (95% CI) 1.6 (1.5 to 1.7)	p-value c0.001	q-value <0.001	UDe: Heta (95% CI) 22 (30 to 23)	cr COV p-value <0.001	q-value <0.001	Beta (95% CI) 0.01 (0.01 to 0.01)	Desc p-value <0.001	q-value <0.001	Beta (95% 2.4 (2.2 to 2	Stance De	-value q-	-value :0.001	Gairt Beta (95% CI) 3.2 (3.0 to 3.3)	Cycle Dur p-value <0.001	q-value <0.001	Peak Beta (95% Cl 0.01 (-0.01 to 0.0	Up (3)
	7.4 (3.3 to 12) 11 (6.8 to 14)	< 0.00	1 < 0.001	-0.02	(-0.03 to -0.1	<0.	001 <0	.001	15 (-7.4 to 0.5	0.20	0.23	0.04 (0.02 to 0.06)	<0.001	<0.001	-0.44 (-0.55 to -0.33	<0.001	<0.001	3.1 (0.35 to 5.7)	0.083	0.10	0.00 (-0.01 to 0.00)	0.34	0.34	-0.69 (-0.87 to	0.51)	:0.001 <	0.001	-0.88 (-1.1 to -0.67	<0.001	< 0.001	0.00 (-0.04 to 0.0	03)
o_char 2000's 2000's	-2.0 (-7.2 to 3.2 -2.9 (-7.6 to 1.9	0.48	0.48	0.00	(0.01 to 0.00 (0.01 to 0.00	(2) (0. (0.	001 <0	001	3.6 (-1.3 to 8.5 3.41 (-4.9 to 4	0.23	0.23	-0.03 (-0.05 to -0.01)	0.002	0.002	0.45 (0.31 to 0.60) 0.55 (0.42 to 0.60)	<0.001	<0.001	-2.6 (-6.0 to 0.83) 1.1 (-2.0 to 4.2)	0.10	0.10	0.01 (0.00 to 0.01) 0.00 (0.00 to 0.01)	0.024	0.031	0.73 (0.47 to 0 0.87 (0.64 to	0.08) 0.98)	:0.001 <	0.001	0.90 (0.61 to 1.2) 1.1 (0.84 to 1.4)	< 0.001	< 0.001	0.04 (0.00 to 0.0 0.01 (-0.02 to 0.0	18) 05)
etion fe	3.3 (NA to NA 4.4 (NA to NA or multiple testin			0.0	I (NA to NA I (NA to NA	+			1.2 (NA to NJ 1.1 (NA to NJ			0.02 (NA to NA) 0.02 (NA to NA)			0.06 (NA to NA) 0.12 (NA to NA)			2.0 (NA to NA) 2.9 (NA to NA)			0.00 (NA to NA) 0.00 (NA to NA)			0.07 (NA to) 0.22 (NA to)	NA)	_		0.25 (NA to NA)	<u>+-</u>		0.03 (NA to NJ 0.03 (NA to NJ	9
	6 A Beta (95% Ci Is (16 to 21)	Proc COV	ne q-valu	ю В	ta (95% C	APeac	alue q-	rabse) Beta (95% C	Lenc COV	e q-value	Beta (95% CI)	Lenc p-value	q-value	St Beta (95% CI)	ep Dur	e q-value	UD: Beta (95% CI)	oc COV	q-value	Beta (95% CI)	Deax p-value	q-value	Beta (95%	Stance De	ur -value q-	value	Gaint Beta (95% CI)	Oycle Dur	q-value	Posk Beta (95% Cl	: U ₁
	18 (16 to 21) -3.8 (-6.9 to -0.6	<0.0 2) 0.00 <0.0	01 <0.00 0.025 01 <0.00	-0.0	s (0.08 to 0.0 i (-0.05 to -0	9) <0	L001 <	0.001 0.001 0.001	11 (9.1 to 1) 5.0 (2.6 to 7.	<0.00 (0.008	<0.001 <0.005	-0.07 (-0.08 to -0.06	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	1.6 (1.5 to 1.6) -1.0 (-1.1 to -0.96	<0.001 <0.001	<0.001 <0.001 <0.001	23 (21 to 24) -16 (-18 to -14)	<0.001 <0.001 0.27	<0.001 <0.001 0.27	0.01 (0.00 to 0.01) 0.03 (0.02 to 0.03)	<0.001 <0.001 0.54	<0.001 <0.001 0.54	-1.7 (-1.9 to -	4) <	0.001 < 0.001 <	0.001 0.001 0.001	3.1 (3.9 to 3.3) -2.1 (-2.2 to -1.9)	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.00 (-0.02 to 0.0 0.37 (0.35 to 0.3	13)
char	6.0 (2.1 to 9.8 9.6 (6.0 to 13)	0.6	0.62	-0.0	(-0.03 to -0 (-0.04 to -0 2 (0.01 to 0.0	(01) (02) <(0	1001 <	0.001	-4.0 (-6.9 to -1 0.02 (-2.7 to 2 7.3 (3.6 to 1)	(0.00	<0.001	0.03 (0.02 to 0.05) 0.01 (0.03 to 0.02)	<0.001	< 0.001	-0.43 (-0.52 to -0.3 -0.57 (-0.66 to -0.4 -0.42 (0.30 to 0.54	(0.001	<0.001	1.4 (-0.90 to 3.6) -0.45 (-2.6 to 1.7) -0.40 (-3.2 to 2.4)	0.020	0.026	0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)	0.15	0.20	-0.65 (-0.90 to -0.86 (-1.0 to -0.66 (0.44 to 1	0.50) 0.72) (0.87)	:0.001 <	:0.001	0.85 (-1.0 to -0.67 -1.1 (-1.3 to -0.98) 0.83 (0.59 to 1.1)	<0.001	< 0.001	0.00 (-0.04 to 0.0 0.02 (-0.01 to 0.0 0.04 (0.01 to 0.0	10)
1) n	4.6 (NA to NA 4.6 (NA to NA	0		0.0	2 (0.01 to 0.0 0 (NA to N) 0 (NA to N)	3)		1	0.04 (-3.4 to 2 2.6 (NA to N 3.5 (NA to N	4)		-0.01 (-0.02 to 0.01 0.02 (NA to NA) 0.02 (NA to NA)			0.55 (0.43 to 0.66 0.06 (NA to NA) 0.12 (NA to NA)			3.1 (0.48 to 5.8) 2.1 (NA to NA) 2.7 (NA to NA)			0.00 (0.00 to 0.00) 0.00 (NA to NA) 0.00 (NA to NA)			0.87 (0.67 to 0.07 (NA to 0.21 (NA to	1.1) XA) XA)			1.1 (0.87 to 1.3) 0.12 (NA to NA) 0.24 (NA to NA)			0.01 (-0.03 to 0.0 0.04 (NA to NJ 0.04 (NA to NJ	(A)
rection fo	or multiple testin																															
	7 Beta (95% C) 18 (16 to 21) -3.7 (-7.0 to -0.4	(0.00 COV	no q-xadu 1 <0.00	n Be	ta (95% Ci 6 (0.08 to 0.0 1 (-0.05 to -0.	APeaz) p-v 9) <0	ahan q- 0001 <	nlue 1	Beta (95% C 9.8 (7.8 to 12 5.9 (3.4 to 8.	Less: COV I) p-valu <0.00) <0.00	e q-value <0.001	Beta (95% CI) 0.13 (0.12 to 0.14) -0.08 (-0.09 to -0.07	p-value <0.001 <0.001	<0.001 <0.001	St Beta (95% CI) 1.5 (1.5 to 1.6) -1.0 (-1.1 to -0.93	p-value c0.001 <0.001	<0.000 <0.000 <0.000	UDe Beta (95% CI) 22 (20 to 24) -36 (-17 to -14)	p-value <0.001 <0.001	q-value <0.000 <0.000	U: Beta (95% CI) 0.01 (0.00 to 0.01) 0.03 (0.02 to 0.03)	p-value <0.001 <0.001	q-value <0.001 <0.001	Beta (95% C 2.3 (2.2 to 2 -1.7 (-1.8 to -1	Stance Du 3) p-1 () <1 5) <1	r vadae q-1 0.001 <0	0.001 0.001	GairC Beta (95% CI) 31 (3.0 to 3.2) -20 (-2.2 to -1.9)	p-value c0.001 <0.001	q-value <0.001 <0.001	Peak Beta (95% CI 0.00 (-0.02 to 0.0 0.37 (0.34 to 0.3	(U) (03) (31)
	4.9 (0.53 to 9.3 9.1 (5.2 to 13)	<0.0	(0.00	-0.0	(-0.02 to 0.1 (-0.03 to -0.1	(0)	U001 <	1.001	-2.1 (-5.4 to 1 1.4 (-1.5 to 4	0.12 2)	0.12	0.02 (0.01 to 0.04) 0.00 (-0.02 to 0.01)	0.020	0.010	-0.31 (-0.41 to -0.2 -0.51 (-0.90 to -0.4	< 0.001	<0.000	1.8 (-0.75 to 4.4) 0.27 (-2.0 to 2.5)	0.36	0.36	0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)	0.96	0.96	-0.49 (-0.66 to -1	1.32)	0.001 <	0.001	0.62 (-0.82 to -0.42 -1.0 (-1.2 to -0.84)	<0.001	<0.001	0.01 (-0.03 to 0.0	05
0000x	1.1 (-4.2 to 6.4 -0.44 (-5.1 to 4 3.7 (NA to NA	0.8	0.85	0.0	1 (0.00 to 0.0 2 (0.01 to 0.0 0 (NA to NA	2)	001 0	.001	4.8 (0.80 to 8. 0.95 (-4.5 to 2 2.7 (NA to N.	0.036	0.021	-0.03 (-0.05 to -0.01 0.00 (-0.02 to 0.01) 0.02 (NA to NA)	0.001	0.002	0.30 (0.16 to 0.43 0.45 (0.36 to 0.60 0.06 (NA to NA)	< 0.000	<0.000	-1.7 (-4.7 to 1.4) 2.3 (-0.45 to 5.0) 2.3 (NA to NA)	0.040	0.054	0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (NA to NA)	0.85	0.96	0.49 (0.25 to 0. 0.77 (0.56 to 0. 0.07 (NA to N	73) 99) A)	0.001 <1	0.001	0.59 (0.32 to 0.87) 0.97 (0.72 to 1.2) 0.12 (NA to NA)	<0.001	< 0.001	0.01 (-0.03 to 0.0 0.00 (-0.03 to 0.0 0.04 (NA to NA	35 04
ection fo	4.6 (NA to NA or multiple testin			1 0.	L (NA to NA	J			33 (NA 10 N			USE (NA to NA)			0.12 (NA to NA)			2.7 (8A to 8A)			0.00 (AA to AA)			0.21 (8A to 8	а) [0.24 (NA to NA)			0.03 (NA 10 NA	2
	Beta (95% Cl 18 (15 to 21) -3.4 (-6.8 to 0.1)	p-vab c0.00 0.002 <0.00	e q-value <0.001 0.061 <0.001	0.08	ta (95% CI (0.07 to 0.08 (-0.05 to -0.0	APrisc p-vs <0. <0. <0.	due q-v 001 <0 001 <0 001 <0	alue I 001 001	N Beta (95% C 11 (8.4 to 13 6.4 (3.5 to 9.2	COV P-valu <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000	<0.001 <0.001 <0.001	Beta (95% CI) 0.13 (0.11 to 0.14) -0.08 (-0.09 to -0.06	p-value <0.001 <0.001 0.003	<0.001 <0.001 <0.003	St Heta (95% CI) 1.6 (1.5 to 1.6) -1.0 (-1.1 to -0.95)	p-value 20.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	UDs: Beta (95% CI) 22 (21 to 24) -16 (-17 to -14)	c: COV p-value <0.001 <0.001 0.15	q-value <0.001 <0.001 0.24	U: Beta (95% CI) 0.01 (0.00 to 0.01) 0.03 (0.02 to 0.03)	p-value <0.001 <0.001 0.035	q-value <0.001 <0.003	Beta (95% 6 2.3 (2.2 to 2 -1.7 (-1.9 to -1	Stance Du 31) p- 5) < 1.6) <	value q- 0.001 < 0.001 <	vañae 0.001 0.001 0.001	Gait C Beta (95% CI) 3.1 (3.0 to 3.3) -2.1 (-2.3 to -1.9)	yele Dur p-value <0.001 <0.001	q-value <0.001 <0.001 <0.001	Peak Beta (95% CI 0.01 (-0.02 to 0.0 0.37 (0.34 to 0.2	Up (1) (3)
n clar	5.0 (1.0 to 9.0) 13 (9.3 to 18)	0.06	0.061	-0.03 -0.02	(-0.03 to -0.0 (-0.03 to -0.0	2)	001 <0	-3	LS (-6.9 to -0.) LS (-0.90 to 5.	2)	<0.001	0.03 (0.01 to 0.05) 0.01 (0.00 to 0.03)	0.003	0.003	-0.43 (-0.53 to -0.32 -0.61 (-0.72 to -0.52	(0.001	<0.001	2.0 (-0.15 to 4.1) 1.4 (-0.36 to 3.7)	0.27	0.27	0.00 (-0.01 to 0.00) 0.00 (0.00 to 0.01)	0.020	0.027	-0.67 (-0.84 to -	0.50)	0.001 <	0.001	0.86 (-1.1 to -0.65) -1.2 (-1.4 to -1.0)	<0.001	<0.001	-0.01 (-0.05 to 0.0 0.04 (0.00 to 0.0	13
000'x 000'x	0.99 (-4.0 to 6.0 -4.9 (-10 to 0.2) 3.3 (NA to NA 4.3 (NA to NA			0.00 0.00 0.0	(0.02 to 0.02 (0.02 to 0.02 (NA to NA)	Ŧ		5.0 (0.95 to 9. 3.3 (-7.5 to 0.9 2.1 (NA to N.) 3.5 (NA to N.)) ()		-0.03 (-0.05 to -0.01 -0.01 (-0.03 to 0.01 0.02 (NA to NA) 0.01 (NA to NA)			0.43 (0.30 to 0.57 0.60 (0.46 to 0.74 0.06 (NA to NA) 0.12 (NA to NA)			-1.5 (-4.2 to 1.2) 0.80 (-2.0 to 3.6) 1.6 (NA to NA) 2.4 (NA to NA)			0.01 (0.00 to 0.01) 0.00 (0.00 to 0.01) 0.00 (NA to NA) 0.00 (NA to NA)			0.70 (0.46 to 0 0.96 (0.71 to 1 0.07 (NA to 2 0.21 (NA to 2	(A)	-	=	0.87 (0.59 to 1.1) 1.2 (0.93 to 1.5) 0.12 (NA to NA) 0.24 (NA to NA)			0.05 (0.01 to 0.0 0.02 (-0.02 to 0.0 0.04 (NA to NA 0.03 (NA to NA	(A)
al rection fo	r multiple testing																															_
	9 Al Beta (95% Cl 18 (15 to 20)	p-val	e q-value 1 <0.001	Be	ta (95% CI (0.08 to 0.0	APeac p-w	alue q-v	obse I	M Seta (95% C 11 (8.4 to 13	Lexe COV p-value <0.001	q-value <0.001	M Heta (95% CI) 0.13 (0.12 to 0.14)	p-value <0.001	q-value <0.001	Sta Heta (95% CI) 1.6 (1.5 to 1.6)	p-value	q-value <0.001	UDeo Heta (95% CI) 22 (21 to 24)	c COV p-value <0.001	q-value <0.001	Heta (95% CI) 0.01 (0.00 to 0.01)	p-value	q-value <0.001	Beta (95% 6 2.4 (2.2 to 2.	Stance Du	value q-	value 0.001	GaitC Beta (95% CI) 3.2 (3.0 to 3.3)	ycle Dur p-value <0.001	q-value <0.001	Prok Beta (95% CI 0.01 (-0.02 to 0.0	U ₁
	7.4 (4.1 to 11)	< 0.00	1 <0.001	-0.02	(-0.03 to -0.1	<0.	001 <0	001	24 (-5.5 to 0.8	0.21	0.21	0.02 (0.01 to 0.04)	0.018	0.018	-0.44 (-0.54 to -0.34	<0.001	< 0.001	2.0 (-0.15 to 4.2)	0.15	0.24	0.00 (-0.01 to 0.00)	0.19	0.19	-0.67 (-0.84 to -	0.51)	0.001 <	0.001	-0.89 (-1.1 to -0.69)	<0.001	<0.001	-0.01 (-0.04 to 0.0	03)
p_char 2000's 2000's	-1.4 (-5.5 to 2.8 -4.0 (-8.3 to 0.3	0.15	0.19	0.03	(0.01 to 0.00 (0.02 to 0.0	(0) (0)	001 <0	991	2.2 (-1.7 to 6.1 2.9 (-6.9 to 2)	0.15	0.20	-0.02 (-0.01 to 0.02) -0.02 (-0.04 to -0.01) 0.00 (-0.02 to 0.01)	0.004	0.006	0.44 (0.31 to 0.58) 0.58 (0.44 to 0.72)	<0.001	< 9.001	-1.7 (-1.6 to 1.1) -2.7 (-2.6 to 1.1) -2.7 (-2.2 to 3.7)	0.26	0.26	0.00 (0.00 to 0.00) 0.00 (0.00 to 0.01) 0.00 (0.00 to 0.00)	0.024	0.032	0.70 (0.46 to 0 0.92 (0.67 to 1	94) (2)	0.001 <	0.001	0.89 (0.61 to 1.2) 1.2 (0.88 to 1.4)	< 0.001	< 0.001	0.03 (0.00 to 0.0 0.05 (0.02 to 0.0 0.01 (-0.02 to 0.0	7) (8) (6)
d al rection fo	2.8 (NA to NA 3.8 (NA to NA or multiple testin	_		0.0	I (NA to NA I (NA to NA				28 (NA to NJ 15 (NA to NJ			0.02 (NA to NA) 0.00 (NA to NA)			0.05 (NA to NA) 0.12 (NA to NA)			1.6 (NA to NA) 2.6 (NA to NA)			0.00 (NA to NA) 0.00 (NA to NA)			0.06 (NA to N 0.22 (NA to N	(A)			0.10 (NA to NA) 0.25 (NA to NA)		=	0.04 (NA to NA 0.03 (NA to NA	2
	10 At Beta (95% CI 18 (15 to 20)	p-val	o q-value	Be	ta (95% CI	APenz p-vi	due q-s	slue I	M Seta (95% C	Lene COV	q-value	M Beta (95% CI)	p-value	q-value	Sc Beta (95% CI)	p Dur p-value	q-value	UDe: Beta (95% CI)	c COV	q-value	U: Beta (95% CI)	Desc p-value	q-value	Hota (95% C	Stance Du	r value q-v	calue	Gaire Beta (95% CI)	yele Dur p-value	q-value	Pusk Beta (95% Cl	(U)
	-3.0 (-6.1 to 0.0	(0.00	0.076	-0.04	(4.05 to -0.1	(0) < 0. < 0.	001 <0 001 <0	001	67 (42 to 9.1	<0.001	<0.001	-0.07 (-0.09 to -0.06)	<0.001 <0.001	<0.001 <0.001	-1.0 (-1.1 to -0.94)	< 0.001	< 0.001	-15 (-17 to -13)	<0.001 <0.0027	<0.001 <0.001 0.027	0.03 (0.02 to 0.03)	<0.001	<0.001	-1.7 (-1.9 to -1	6) d	0.001 <0 0.001 <0	0.001 0.001	-2.0 (-2.2 to -1.9)	<0.001 <0.001	< 0.001	0.36 (0.34 to 0.3	15)
o_char	7.2 (3.4 to 11) 11 (7.5 to 15) -0.88 (-5.6 to 3.1	0.43	0.43	-0.02	(-0.03 to -0.1 (-0.04 to -0.1 (0.00 to 0.0)	(1) (2) (0)	001 <	.001	21 (-5.2 to 1.) 138 (-3.7 to 2 17 (-0.97 to 6.)	0.26	0.35	0.63 (0.01 to 0.05) 0.61 (-0.01 to 0.02) -0.63 (-0.05 to -0.02	< 0.001	< 0.001	-0.40 (-0.50 to -0.30 -0.60 (-0.70 to -0.50 0.39 (0.26 to 0.52)	<0.001	< 0.001	23 (0.12 to 4.5) -0.84 (-3.2 to 1.5) -1.8 (-4.4 to 0.81)	0.008	0.011	0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)	0.11	0.14	-0.60 (-0.77 to -0.91 (-1.1 to -0.91 (-1.1 to -0.91 (-1.1 to -0.91 to 0.91 to	73) (55)	0.001 <0	1.001	1.79 (-0.99 to -0.60 -1.2 (-1.4 to -0.99) 0.78 (0.52 to 1.0)	<0.001	< 0.000	0.00 (-0.03 to 0.0 0.01 (-0.02 to 0.0 0.05 (0.02 to 0.0	(3) (4)
30007× 31) 30	3.2 (NA to NA 4.4 (NA to NA			0.0	(NA to NA (NA to NA				3.20 (-4.1 to 3. 1.0 (NA to N.3 1.5 (NA to N.3			-0.01 (-0.03 to 0.01) 0.02 (NA to NA) 0.02 (NA to NA)			0.56 (0.42 to 0.70) 0.07 (NA to NA) 0.12 (NA to NA)			2.8 (0.03 to 5.6) 2.2 (NA to NA) 2.5 (NA to NA)			0.00 (0.00 to 0.01) 0.00 (NA to NA) 0.00 (NA to NA)			0.90 (0.65 to 1 0.08 (NA to N 0.22 (NA to N	A) A)			1.1 (0.84 to 1.4) 0.13 (NA to NA) 0.25 (NA to NA)			0.03 (0.00 to 0.0 0.03 (NA to NA 0.03 (NA to NA	A) A)
orrection fo	or multiple testin																															
	11 Beta (95% CI 17 (14 to 20) -2.7 (-6.5 to 1.1	P-vals 	e q-value <0.001 0.22	0.08 -0.04	a (95% CI) (0.07 to 0.05 (-0.05 to -0.0	Penc p-va) <0.	due q-v		M Seta (95% C 11 (8.7 to 14) 5.8 (2.7 to 9.0	enc COV p-value <0.001 <0.001	q-value <0.001 <0.001	M Beta (95% CI) 0.12 (0.10 to 0.13) -0.07 (-0.08 to -0.08)	p-value <0.001 <0.001	q-value <0.001 <0.001	Ste Beta (95% CI) 1.6 (1.5 to 1.7) -1.1 (-1.2 to -0.95)	p-value p-value <0.001 <0.001	q-value <0.001 <0.001	UDer Beta (95% CI) 21 (20 to 23) -15 (-17 to -13)	p-value <0.001 <0.001	q-value <0.001 <0.001	U Beta (95% CI) 0.01 (0.00 to 0.01) 0.03 (0.02 to 0.03)	p-value <0.001 <0.001	q-value <0.001 <0.001	Beta (95%) 2.3 (2.2 to 2 -1.7 (-1.9 to -	Stance Du (31) p- (5) < (1.5) <	value q- 0.001 < 0.001 <	0.001 0.001	Gatt Beta (95% CI) 32 (30 to 33) -21 (-23 to -19)	p-value c0.001 <0.001	q-value <0.001 <0.001	Peak Beta (95% Cl 0.00 (-0.02 to 0.0 0.38 (0.35 to 0.4	U (3)
	7.5 (2.8 to 12) 12 (7.3 to 16)	<0.00	<0.001	-0.02 -0.02	(-0.03 to -0.0 (-0.03 to -0.0	<0. 1) 1)	unit (< 0	-0	26 (-66 to 1.)	0.36	0.48	0.04 (0.02 to 0.05) 0.04 (0.02 to 0.05)	<0.001	<0.001	-0.45 (-0.57 to -0.34 -0.54 (-0.66 to -0.43	<0.001	<1.001	2.1 (-0.70 to 4.8) 1.0 (-1.6 to 3.7)	0.54	0.54	0.00 (-0.01 to 0.00) 0.00 (0.00 to 0.01)	0.28	0.28	-0.67 (-0.96 to -	0.45) 0.62)	w991 <	~:001	-0.90 (-1.1 to -0.67 -1.1 (-1.3 to -0.87	<0.001	<0.001	0.01 (-0.03 to 0.0 0.00 (-0.01 to 0.0	05)
char	-23 (-8.1 to 3.5	0.74	0.74	0.02	(0.00 to 0.00 (0.00 to 0.00	0.0	26 0.	26 1 -0	1.9 (-2.9 to 6.7 1.35 (-5.0 to 4.	0.64	0.61	-0.03 (-0.05 to -0.01) -0.03 (-0.05 to -0.01) 0.02 (NA to NA)	0.001	0.001	0.47 (0.31 to 0.63) 0.52 (0.36 to 0.67) 0.06 (NA to NA)	< 0.001	< 0.001	-1.5 (-4.9 to 2.0) 1.6 (-1.7 to 4.8) 2.0 (NA to NA)	0.24	0.32	0.00 (0.00 to 0.01) 0.00 (-0.01 to 0.00) 0.00 (NA to NA)	0.082	0.11	0.71 (0.44 to 0 0.80 (0.54 to 0.06 (NA to 2	(98) (A)	0.001 <	0.001	0.94 (0.62 to 1.3) 1.0 (0.73 to 1.3) 0.11 (NA to NA	< 0.001	<0.001	0.01 (-0.04 to 0.0 0.00 (-0.05 to 0.0 0.04 (NA to NA	(5) (H)
2000 x 30000 x	3.4 (NA to NA																															

Cluster:	13																													
	APose COV			APosc			MLese COV			MLess			Step Dur			UDeaz COV			U	lessec		Stano	o Dur		GazeCy	de Dur		Peak UpDown Vel		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	18 (16 to 21)	< 0.001	< 0.001	0.08 (0.07 to 0.09)	< 0.001	< 0.001	11 (9.1 to 13)	< 0.001	< 0.001	0.12 (0.11 to 0.14)	< 0.001	< 0.001	1.5 (1.4 to 1.6)	< 0.001	< 0.001	24 (22 to 25)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.2 (2.1 to 2.4)	< 0.001	< 0.001	3.0 (2.9 to 3.2)	< 0.001	< 0.001	0.01 (-0.01 to 0.04)	0.27	0.36
speed_cond_num	-3.3 (-6.4 to -0.17)	0.038	0.051	-0.04 (-0.05 to -0.03)	< 0.001	< 0.001	6.2 (3.7 to 5.6)	< 0.001	< 0.001	-0.07 (-0.05 to -0.06)	< 0.001	< 0.001	-0.98 (-1.1 to -0.89)	< 0.001	< 0.001	-17 (-19 to -15)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.6 (-1.8 to -1.5)	< 0.001	< 0.001	-2.0 (-2.1 to -1.8)	< 0.001	< 0.001	0.35 (0.33 to 0.35)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.67	0.89		0.022	0.022		< 0.001	< 0.001		0.38	0.50		0.78	0.78		< 0.001	< 0.001		< 0.001	< 0.001		0.71	0.71
H1000's	_			_						-			_			_			_			_			_			_		-
H2000'x	5.2 (-0.06 to 11)			-0.01 (-0.02 to 0.00)			-1.1 (-5.6 to 3.4)			0.03 (0.01 to 0.05)			-0.31 (-0.45 to -0.17)			2.3 (-0.93 to 5.5)			0.00 (0.00 to 0.01)			-0.42 (-0.65 to -0.18)			-0.63 (-0.90 to -0.35)			0.00 (-0.05 to 0.05)		$\overline{}$
H3000's	11 (7.0 to 15)			-0.03 (-0.04 to -0.02)			-1.6 (-5.1 to 2.0)			0.02 (0.00 to 0.04)			-0.57 (-0.65 to -0.46)			0.61 (-1.9 to 3.2)			0.00 (-0.01 to 0.00)			-0.82 (-1.0 to -0.64)			-1.1 (-1.4 to -0.92)			0.01 (-0.02 to 0.05)		-
speed_cond_num * group_char		0.66	0.66		< 0.001	< 0.001		0.59	0.59		0.002	0.004		< 0.001	< 0.001		0.57	0.57		0.19	0.25		< 0.001	< 0.001		< 0.001	< 0.001		0.651	0.10
speed_cond_num * H2000's	0.79 (-5.5 to 7.1)			0.01 (-0.01 to 0.02)			0.71 (-4.3 to 5.7)			-0.03 (-0.05 to -0.01)			0.29 (0.10 to 0.47)			-1.4 (-5.5 to 2.8)			0.00 (0.00 to 0.00)			0.40 (0.06 to 0.73)			0.57 (0.20 to 0.95)			0.03 (-0.02 to 0.05)		
speed_cond_num * H3000's	-1.9 (-6.9 to 3.0)			0.03 (0.01 to 0.04)			0.93 (-3.0 to 4.9)			-0.02 (-0.04 to 0.00)			0.53 (0.35 to 0.65)			1.0 (-2.2 to 4.3)			0.00 (0.00 to 0.01)			0.81 (0.55 to 1.1)			1.1 (0.77 to 1.4)			0.05 (0.01 to 0.09)		-
subj_char.ed(Intercept)	3.6 (NA to NA)			0.01 (NA to NA)			3.4 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			1.7 (NA to NA)			0.00 (NA to NA)			0.08 (NA to NA)			0.13 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual.sd Observation	4.1 (NA to NA)			0.01 (NA to NA)			3.3 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)	-		2.8 (NA to NA)			0.00 (NA to NA)			0.22 (NA to NA)			0.25 (NA to NA)			0.03 (NA to NA)		$\overline{}$

² False discovery rate correction for multiple testing

Cluster:	14																													_
	APe	cov.		AP	MLess COV			MLess			Step Dur			UDesc COV			UDesc			Stance Dur			GattCy	cle Dur		Peak UpDown Vel				
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	19 (16 to 21)	< 0.001	< 0.001	0.08 (0.08 to 0.09)	< 0.001	< 0.001	11 (8.9 to 13)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.001	23 (21 to 24)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (3.0 to 3.2)	< 0.001	< 0.001	0.01 (-0.01 to 0.03)	0.50	0.50
speed_cond_num	-L0 (-7.1 to -0.78)	0.015	0.019	-0.04 (-0.05 to -0.04)	< 0.001	< 0.001	5.8 (3.1 to 8.5)	< 0.001	< 0.001	-0.08 (-0.09 to -0.07)	< 0.001	< 0.001	-1.0 (-1.1 to -0.93)	< 0.001	< 0.001	-16 (-18 to -14)	< 0.001	< 0.001	0.63 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.8 to -1.5)	< 0.001	< 0.001	-2.0 (-2.2 to -1.9)	< 0.001	< 0.001	0.37 (0.35 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.13	0.16		0.004	0.004		< 0.001	< 0.001		0.26	0.26		0.40	0.40		< 0.001	< 0.001		< 0.001	< 0.001		0.38	0.50
H1000's	_			_			_			_			_			_			_			_			_			_		
H2000's	5.7 (1.8 to 9.6)			-0.02 (-0.03 to -0.01)			-3.0 (-6.4 to 0.42)			0.03 (0.01 to 0.04)			-0.37 (-0.47 to -0.28)			1.9 (-0.50 to 4.2)			0.00 (-0.01 to 0.00)			-0.58 (-0.74 to -0.41)			-0.75 (-0.95 to -0.55)			-0.01 (-0.04 to 0.02)		
H3000'x	11 (6.9 to 15)			-0.03 (-0.04 to -0.02)			0.34 (-3.0 to 3.6)			0.00 (-0.01 to 0.02)			-0.56 (-0.66 to -0.46)			0.19 (-2.1 to 2.5)			0.00 (0.00 to 0.00)			-0.85 (-1.0 to -0.68)			-1.1 (-1.3 to -0.93)			0.01 (-0.02 to 0.04)		
speed_cond_num * group_char		0.41	0.41		< 0.001	< 0.001		0.16	0.16		0.002	0.002		< 0.001	< 0.001		0.18	0.24		0.23	0.31		< 0.001	< 0.001		< 0.001	< 0.001		0.047	0.094
speed_cond_num * H2000's	0.12 (-4.8 to 5.1)			0.01 (0.00 to 0.02)			3.1 (-1.1 to 7.3)			-0.03 (-0.05 to -0.01)			0.36 (0.23 to 0.50)			-1.1 (-4.1 to 1.8)			0.00 (0.00 to 0.01)			0.58 (0.34 to 0.81)			0.72 (0.45 to 0.99)			0.05 (0.01 to 0.05)		
speed_cond_num * H3000's	-2.9 (-7.7 to 1.9)			0.02 (0.01 to 0.03)			-1.1 (-5.2 to 3.0)			0.00 (-0.02 to 0.02)			0.54 (0.40 to 0.67)			1.8 (-1.1 to 4.6)			0.00 (0.00 to 0.01)			0.85 (0.62 to 1.1)			1.1 (0.81 to 1.3)			0.02 (-0.02 to 0.05)		
subj_char.sd(Intercept)	3.2 (NA to NA)			0.01 (NA to NA)			3.0 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			21 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.12 (NA to NA)			0.03 (NA to NA)		
Residual.sd Observation	4.6 (NA to NA)			0:01 (NA to NA)			3.9 (NA to NA)			0.02 (NA to NA)			0.13 (NA to NA)	$\overline{}$	$\overline{}$	27 (NA to NA)			0.00 (NA to NA)			0.22 (NA to NA)			0.25 (NA to NA)			0.03 (NA to NA)		

CI = Confidence Interval
 Palse discovery rate correction for multiple testing