ECE 0402 - Pattern Recognition

Lecture 10

Recap:

The learning Problem:

Given a set \mathcal{H} , find a function $h \in \mathcal{H}$ that minimizes R(h).

In the case of classification, we can also think of this as trying to find $h \in \mathcal{H}$ that approximates the Bayes classifier f^* .

- More complex $\mathcal{H} \implies$ better chance of approximating f^* .
- ullet Less complex $\mathcal{H} \Longrightarrow$ better confidence bound/ better chance of **generalizing** to out of sample

"Approximation-generalization tradeoff"

Figure 2: maybe better

Figure 3: stupid

Beyond classification

In supervised learning problems we are given training data

$$(x_1, y_1), ..., (x_n, y_n)$$

where $x_i \in \mathbb{R}^d$, and so far we have only considered the case $y_i \in \{+1, -1\}$ (or $y_i \in \{0, ..., K-1\}$.

What if $y_i \in \mathbb{R}$? This problem is usually called **regression**. y_i 's are dependent variables.

We can think of regression as being an extension of classification as the number of classes grows to ∞ .

Regression

A regression model typically posits that our training data are realizations of a random pair (X,Y) where

$$Y = f(X) + E$$

with E representing noise and f belonging to some class of functions.

Example class functions:

- polynomials
- sinusoids/ trigonometric polynomials
- exponentials
- kernels

Linear Regression: In linear regression, we assume that f is an **affine** function, i.e.,

$$f(x) = \beta^T x + \beta_0$$

where $\beta \in \mathbb{R}^d$ and $\beta_0 \in \mathbb{R}$.

The question now is basically: how can we estimate parameters β , β_0 from training data?

Least Squares: In least squares linear regression, we select β , β_0 to minimize the sum of squared errors

$$SSE(\beta, \beta_0) := \sum_{i=1}^n \left(y_i - \beta^T x_i - \beta_0 \right)^2$$

And we like to minimize this...

Legendre (1805), and of course Gauss (1795,1809).

Example: Suppose d = 1, so that x_i, β are scalars.

$$SSE(\beta, \beta_0) = \sum_{i=1}^{n} \left(y_i - \beta^T x_i - \beta_0 \right)^2$$

How to minimize?

$$\frac{\partial SSE}{\partial \beta_0} = -2\sum_{i=1}^n \left(y_i - \beta^T x_i - \beta_0 \right) = 0$$
$$\frac{\partial SSE}{\partial \beta} = -2\sum_{i=1}^n x_i \left(y_i - \beta^T x_i - \beta_0 \right) = 0$$

Rearranging these equations,

$$n\beta_0 + \sum_{i=1}^n \beta x_i = \sum_{i=1}^n y_i$$
$$\sum_{i=1}^n \beta_0 x_i + \sum_{i=1}^n \beta x_i^2 = \sum_{i=1}^n y_i x_i$$

or in matrix form

$$\begin{bmatrix} n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{bmatrix}$$

inverting the matrix

$$\begin{bmatrix} \beta_0 \\ \beta \end{bmatrix} = \begin{bmatrix} n & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_i y_i \\ \sum_i x_i y_i \end{bmatrix}$$

Setting $\bar{x} = \frac{1}{n} \sum_{i} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i} y_i$,

$$\begin{bmatrix} \beta_0 \\ \beta \end{bmatrix} = \frac{1}{\sum_i x_i^2 - n\bar{x}^2} \begin{bmatrix} \bar{y} \left(\sum_i x_i^2 \right) - \bar{x} \sum_i x_i y_i \\ \sum_i x_i y_i - n\bar{x}\bar{y} \end{bmatrix}$$

General Least Squares Suppose d is arbitrary. Set

$$\theta = \begin{bmatrix} \beta_0 \\ \beta(1) \\ \vdots \\ \beta(d) \end{bmatrix}, \ y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ A = \begin{bmatrix} 1 & x_1(1) & \dots & x_1(d) \\ 1 & x_2(1) & \dots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \dots & x_n(d) \end{bmatrix}$$

Then

$$SSE(\theta) = \sum_{i=1}^{n} \left(y_i - \beta^T x_i - \beta_0 \right)^2 = ||y - A \theta||^2$$

The minimizer $\hat{\theta}$ of this quadratic objective function is

$$\hat{\theta} = \left(A^T A\right)^{-1} A^T y$$

provided that A^TA is nonsingular.

"Proof":

$$||y - A\theta||^2 = (y - A\theta)^T (y - A\theta)$$

$$= y^T y - 2y^T A\theta + \theta^T A^T A\theta$$

$$\nabla_{\theta} ||y - A\theta||^2 = -2A^T y + 2A^T A\theta = 0$$

$$\downarrow \downarrow$$

$$\hat{\theta} = (A^T A)^{-1} A^T y$$

Does LR always make sense?

Sometimes linear methods (regression and classification) just don't work. One way to create nonlinear estimators (or classifiers) is to first transform the data via a nonlinear feature map.

$$\Phi: \mathbb{R} \to \mathbb{R}^{d'}$$

After applying Φ , we can then try a linear method to the transformed data $\Phi(x_1), ..., \Phi(x_n)$. In the case of regression, our model becomes

$$f(x) = \beta^T \Phi(x) + \beta_0$$

where now $\beta \in \mathbb{R}^{d'}$. We have more features but we can still use standard least squares.

Example: Suppose d = 1 but f(x) is cubic polynomial. How do we find a least squares estimate of f from training data.

$$\Phi_k(x) = x^k \to A = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$$

Overfitting

linear, quadratic, cubic and quartic fits

Noise in the observations can make overfitting a big problem, but even if there is no noise, fitting a higher order polynomial (interpolation) can be incredibly unstable.

For example, one called "Runge's phenomenon" (you may of encountered this in a numerical analysis class). When you take a smooth function:

- not exactly polynomial

- well approximated by a polynomial

- but what order?

VC generalization bound said "overfitting" can be judged by looking at how complicated our \mathcal{H} and how many training data we have:

$$R(h) \lesssim \hat{R}(h) + \epsilon(\mathcal{H}, n)$$

This is one way of **quantifying this tradeoff**. And alternative approach: **Bias-variance decomposition**

- bias: how well can $\mathcal H$ approximates true underlying function f^*

- variance: how well can we pick a good $h \in \mathcal{H}$

$$R(h) = bias + variance$$

Bias-variance decomposition is useful because it is more easily generalizes to regression problem.

6

Bias-variance decomposition: We will assume real-valued observations (i.e., regression) and consider squared error for the risk.

- $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$ where $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$
- $f: \mathbb{R}^d \to \mathbb{R}$: unknown target function
- $h_{\mathcal{D}}: \mathbb{R}^d \to \mathbb{R}$: function in \mathcal{H} we pick using \mathcal{D}

$$R(h_{\mathcal{D}}) = \mathbb{E}_X \left[(h_{\mathcal{D}}(X) - f(X))^2 \right]$$

Setting up the decomposition:

$$R(h_{\mathcal{D}}) = \mathbb{E}_X \left[(h_{\mathcal{D}}(X) - f(X))^2 \right]$$

$$\mathbb{E}_{\mathcal{D}}[R(h_{\mathcal{D}})] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_X \left[(h_{\mathcal{D}}(X) - f(X))^2 \right] \right]$$

$$= \mathbb{E}_X \left[\mathbb{E}_D \left[(h_{\mathcal{D}}(X) - f(X))^2 \right] \right]$$

To evaluate $\mathbb{E}_D\left[(h_{\mathcal{D}}(X)-f(X))^2\right]$, we will break up into two terms.

- We define the average hypothesis as: $\bar{h}(X) = \mathbb{E}_D [h_{\mathcal{D}}(X)]$
- \bullet Think about drawing many datasets $\mathbb{D}_1,...,\mathbb{D}_p$

$$\bar{h}(X) \approx \frac{1}{p} \sum_{i=1}^{p} h_{\mathcal{D}_i}(X)$$

• decomposition:

$$\mathbb{E}_{D} \left[(h_{\mathcal{D}}(X) - f(X))^{2} \right]
= \mathbb{E}_{D} \left[(h_{\mathcal{D}}(X) - \bar{h}(X) + \bar{h}(X) - f(X))^{2} \right]
= \mathbb{E}_{D} \left[(h_{\mathcal{D}}(X) - \bar{h}(X))^{2} + (\bar{h}(X) - f(X))^{2} + 2(h_{\mathcal{D}}(X) - \bar{h}(X))(\bar{h}(X) - f(X)) \right]
= \mathbb{E}_{D} \left[(h_{\mathcal{D}}(X) - \bar{h}(X))^{2} \right] + (\bar{h}(X) - f(X))^{2}$$

Plugging this back into the original expression, we get

$$R(h_{\mathcal{D}}) = \mathbb{E}_X \left[\mathbb{E}_D \left[(h_{\mathcal{D}}(X) - f(X))^2 \right] \right]$$
$$= \mathbb{E}_X \left[\text{bias}(X) + \text{variance}(X) \right]$$
$$= \text{bias} + \text{variance}$$