

Sinhgad Institutes

Sinhgad Technical Educational Society's SKN SINHGAD INSTITUTE of TECHNOLOGY & SCIENCE, LONAVALA – 410 401.

DEPARTMENT OF COMPUTER ENGINEERING

CERTIFICATE

This is	This is to certify that Mr./Miss										
Of clas	ss- TE,	has complete	d al	ll the practical work in the Data Sc	ienc	e And Big					
Data A	nalytic	s Laboratory	(310	0251) satisfactorily as prescribed	by	Savitribai					
Phule	Pune	University,	in	the academic year 2023-2024.							

Prof.C.P.Lachake Subject In-charge Dr.S.M.Patil Head of Department Dr.M.S.Rohokale Principal

DEPARTMENT OF COMPUTER ENGINEERING, SKNSITS, LONAVALA.

INDEX

Sr. No	Title of Experiment	Page No.	Date	Marks	Sign
1	Data Wrangling, I Perform the following operations using Python on any open source dataset (e.g., data.csv) 1.Import all the required Python Libraries. 2.Locate an open source data from the web 3.Load the Dataset into pandas dataframe. 4.Data Preprocessing 4.Data Formatting and Data Normalization 5.Turn categorical variables into quantitative variables in Python.				
2	Data Wrangling II Create an "Academic performance" dataset of students and perform the following operations using Python. 1.Scan all variables for missing values and inconsistencies 2.Scan all numeric variables for outliers. 3.Apply data transformations on at least one of the variables.				
3	Descriptive Statistics - Measures of Central Tendency and variability Perform the following operations on any open source dataset. 1. Provide summary statistics for a dataset with numeric variables grouped by one of the qualitative variable. Create a list that contains a numeric value for each response to the categorical variable. 2. Write a Python program to display some basic statistical details like percentile, mean, standard deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-versicolor' of iris.csv dataset.				
4	Data Analytics I Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset .The Boston Housing dataset contains information about various houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset.				

5	Data Analytics II	ĺ	
	1.Implement logistic regression using		
	Python/R to perform		
	classification on		
	Social_Network_Ads.csv dataset.		
	Compute Confusion matrix to find TP, FP, TN,		
	FN, Accuracy, Error rate, Precision, Recall on		
	the given dataset.		
6	Data Analytics III		
	1.Implement Simple Naïve Bayes classification		
	algorithm using Python/R on iris.csv dataset.		
	Compute Confusion matrix to find TP, FP, TN,		
	FN, Accuracy, Error rate, Precision, Recall on		
	the given dataset.		
7	Text Analytics		
	1.Extract Sample document and apply following		
	document preprocessing methods: Tokenization,		
	POS Tagging, stop words removal, Stemming		
	and Lemmatization.		
	Create representation of document by		
	calculating Term Frequency and Inverse		
	Document Frequency.		
8	Data Visualization I		
	1.Use the inbuilt dataset 'titanic'. The dataset		
	contains 891 rows and contains information		
	FOR RECORD CONTROL SECTION OF THE PROPERTY OF		
	about the passengers who boarded the		
	unfortunate Titanic ship. Use the Seaborn		
	library to see if we can find any patterns in the		
	data.		
	Write a code to check how the price of the ticket		
	(column name: 'fare') for each passenger is		
	distributed by plotting a histogram.		
9	Data Visualization II		
	1.Use the inbuilt dataset 'titanic' as used in the		
	above problem. Plot a box plot for distribution		
	of age with respect to each gender along with		
	the information about whether they survived or		
	not. (Column names : 'sex' and 'age')		
	Write observations on the inference from the		
	above statistics.		
10	Data Visualization III		
	Download the Iris flower dataset or any other		
	dataset into a DataFrame. (e.g.,		
	https://archive.ics.uci.edu/ml/datasets/Iris).		
	Scan the dataset and give the inference as:		
	8-1		
	1 List down the feetures and their true -		
	List down the features and their types		
	(e.g., numeric, nominal) available in the		
	dataset.		
	2. Create a histogram for each feature in the		
	dataset to illustrate the feature		
	distributions.		

12	Write a code in JAVA for a simple WordCount application that counts the number of occurrences of each word in a given input set using the Hadoop MapReduce framework on local-standalone set-up. Design a distributed application using MapReduce which processes a log file of a system.		
13	Write a simple program in SCALA using Apache Spark framework		
14	Use the following covid_vaccine_statewise.csv dataset and perform following analytics on the given datails. a. Describe the dataset b. Number of persons state wise vaccinated for first dose in India c. Number of persons state wise vaccinated for second dose in India d. Number of Males vaccinated d. Number of females vaccinated		
15	Write a case study to process data driven for Digital Marketing OR Health care systems with Hadoop Ecosystem components as shown. 1.HDFS: Hadoop Distributed File System 2.YARN: Yet Another Resource Negotiator 3.MapReduce: Programming based Data Processing 4.Spark: In-Memory data processing 5.PIG, HIVE: Query based processing of data services 6.HBase: NoSQL Database 7.Mahout, Spark MLLib		

Prof.C.P.Lachake Subject In-charge Dr.S.M.Patil Head of Department Dr.M.S.Rohokale Principal

Data Wrangling Perform the following operations using Python on any open source dataset (e.g., data.csv)

- 1. Import all the required Python Libraries.
- 2. Locate an open source data from the web (e.g. https://www.kaggle.com). Provide a clear

description of the data and its source (i.e., URL of the web site). 3. Load the Dataset into pandas data frame. 4. Data Preprocessing: check for missing values in the data using pandas insult(), describe() function to get some initial statistics. Provide variable descriptions. Types of variables etc. Check the dimensions of the data frame. 5. Data Formatting and Data Normalization: Summarize the types of variables by checking the data types (i.e., character, numeric, integer, factor, and logical) of the variables in the data set. If variables are not in the correct data type, apply proper type conversions. 6. Turn categorical variables into quantitative variables in Python. In addition to the codes and outputs, explain every operation that you do in the above steps and explain everything that you do to import/read/scrape the data set.

In []: import pandas as pd
In []: df = pd.read_csv('/home/kartik/Documents/Python Notebooks/StudentsPerformance.csv')
In []: df

Out[]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
•••								
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

_		-	-	
\cap	11		- 1	0
- 01	ич		- 1	

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
•••								
995	False	False	False	False	False	False	False	False
996	False	False	False	False	False	False	False	False
997	False	False	False	False	False	False	False	False
998	False	False	False	False	False	False	False	False
999	False	False	False	False	False	False	False	False

1000 rows × 8 columns

In []: df.describe()

Out[]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

```
In [ ]: df.isnull().sum()
```

```
In [ ]: df.notnull().sum()
```

```
Out[]: gender
                                       1000
                                       1000
        race/ethnicity
        parental level of education
                                       1000
        lunch
                                       1000
                                       1000
        test preparation course
                                       1000
        math score
        reading score
                                       1000
                                       1000
        writing score
        dtype: int64
```

In []: df.notnull()

Out[]:

_		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0	True	True	True	True	True	True	True	True
	1	True	True	True	True	True	True	True	True
	2	True	True	True	True	True	True	True	True
	3	True	True	True	True	True	True	True	True
	4	True	True	True	True	True	True	True	True
	•••								
	995	True	True	True	True	True	True	True	True
	996	True	True	True	True	True	True	True	True
	997	True	True	True	True	True	True	True	True
	998	True	True	True	True	True	True	True	True
	999	True	True	True	True	True	True	True	True

1000 rows × 8 columns

In []: df.size
Out[]: 8000
In []: df.ndim
Out[]: 2
In []: df.shape

Out[]: (1000, 8)

In []: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
   Column
                               Non-Null Count Dtype
    -----
---
                                -----
 0
    gender
                               1000 non-null object
                               1000 non-null object
 1
    race/ethnicity
 2
    parental level of education 1000 non-null object
 3
    lunch
                               1000 non-null object
 4
    test preparation course
                               1000 non-null object
 5
    math score
                               1000 non-null
                                              int64
 6
    reading score
                               1000 non-null
                                              int64
    writing score
                               1000 non-null
                                             int64
dtypes: int64(3), object(5)
memory usage: 62.6+ KB
```

In []: df['writing score'].astype(int)

Name: writing score, Length: 1000, dtype: int64

In []: df.dropna()

Out[]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
•••	•••					•••		
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

In []: df

Out[]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0 female	group B	bachelor's degree	standard	none	72	72	74
	1 female	group C	some college	standard	completed	69	90	88
	2 female	group B	master's degree	standard	none	90	95	93
	3 male	group A	associate's degree	free/reduced	none	47	57	44
	4 male	group C	some college	standard	none	76	78	75
	•••							
99	5 female	group E	master's degree	standard	completed	88	99	95
99	6 male	group C	high school	free/reduced	none	62	55	55
99	7 female	group C	high school	free/reduced	completed	59	71	65
99	8 female	group D	some college	standard	completed	68	78	77
99	9 female	group D	some college	free/reduced	none	77	86	86

1000 rows \times 8 columns

```
In [ ]: df["gender"] = df["gender"].replace({"female":0,"male":1})
```

In []: **df**

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	0	group B	bachelor's degree	standard	none	72	72	74
1	0	group C	some college	standard	completed	69	90	88
2	0	group B	master's degree	standard	none	90	95	93
3	1	group A	associate's degree	free/reduced	none	47	57	44
4	1	group C	some college	standard	none	76	78	75
•••								
995	0	group E	master's degree	standard	completed	88	99	95
996	1	group C	high school	free/reduced	none	62	55	55
997	0	group C	high school	free/reduced	completed	59	71	65
998	0	group D	some college	standard	completed	68	78	77
999	0	group D	some college	free/reduced	none	77	86	86

Data Wrangling II Create an "Academic performance" dataset of students and perform the following operations using Python.

1. Scan all variables for missing values and inconsistencies. If there are missing values

and/or inconsistencies, use any of the suitable techniques to deal with them. 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them. 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution. Reason and document your approach properly.

In [2]: import pandas as pd
import numpy as np

In [5]: df = pd.read_csv("/home/kartik/Documents/Python Notebooks/StudentsPerformance.csv")

In [6]: df

Out[6]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
•••								
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

In [8]: df.dropna()

Out[8]:

		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0	female	group B	bachelor's degree	standard	none	72	72	74
	1	female	group C	some college	standard	completed	69	90	88
	2	female	group B	master's degree	standard	none	90	95	93
	3	male	group A	associate's degree	free/reduced	none	47	57	44
	4	male	group C	some college	standard	none	76	78	75
	•••	•••					•••		
9	95	female	group E	master's degree	standard	completed	88	99	95
9	996	male	group C	high school	free/reduced	none	62	55	55
9	997	female	group C	high school	free/reduced	completed	59	71	65
9	998	female	group D	some college	standard	completed	68	78	77
9	999	female group D		some college	free/reduced	none	77	86	86

```
In [9]: math_score_mean = df["math score"].mean()
df["math score"] = df["math score"].fillna(math_score_mean)
df
```

	_	
\cap $+$	ΓαΊ	
Uut	フ	

		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
	0	female	group B	bachelor's degree	standard	none	72	72	74	
	1	female	group C	some college	standard	completed	69	90	88	
	2	female	group B	master's degree	standard	none	90	95	93	
	3	male	group A	associate's degree	free/reduced	ee/reduced none		57	44	
	4	male	group C	some college	standard	none	76	78	75	
	•••	•••								
99	95	female	group E	master's degree	standard	completed	88	99	95	
9	96	male	group C	high school	free/reduced	none	62	55	55	
9	97	female	group C	high school	free/reduced	completed	59	71	65	
99	98	female	group D	some college	standard	completed	68	78	77	
9	99	9 female group D some college free/		free/reduced	none	77	86	86		

1000 rows × 8 columns

In [10]: df.boxplot()

Out[10]: <Axes: >

In [11]: newdf = df[df["math score"] > 30]
newdf

ο.	-4-	г	1	1	1 .
Ul	ΙL	L	Т	Τ.	-

		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0	female	group B	bachelor's degree	standard	none	72	72	74
	1	female	group C	some college	standard	completed	69	90	88
	2	female	group B	B master's degree	standard	none	90	95	93
	3	male	e group A associate's degree		free/reduced	none	47	57	44
	4	male	group C	some college	standard	none	76	78	75
	•••								
9	95	female	group E	master's degree	standard	completed	88	99	95
9	96	male	group C	high school	free/reduced	none	62	55	55
9	97	female	group C	high school	free/reduced	completed	59	71	65
9	98	female	group D	some college	standard	completed	68	78	77
9	99	female	female group D some college free,		free/reduced	none	77	86	86

984 rows × 8 columns

Out[12]: <Axes: >

3/4/24, 12:11 PM PracticalNo03

Practical No. 03

Descriptive Statistics - Measures of Central Tendency and variability Perform the following operations on any open source dataset (e.g., data.csv)

1. Provide summary statistics (mean, median, minimum, maximum, standard deviation) for

a dataset (age, income etc.) with numeric variables grouped by one of the qualitative (categorical) variable. For example, if your categorical variable is age groups and quantitative variable is income, then provide summary statistics of income grouped by the age groups. Create a list that contains a numeric value for each response to the categorical variable. 2. Write a Python program to display some basic statistical details like percentile, mean, standard deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris- versicolor' of iris.csv dataset. Provide the codes with outputs and explain everything that you do in this step.

In [4]:	impo	mport pandas as pd												
In [6]:	df =	pd.read_csv	("/home/kar	tik/Document	s/Python No	tebooks/Iri								
In [7]:	df													
ut[7]:	sepallength sepalwidth petallength petalwidth class													
	0	5.1	3.5	1.4	0.2	Iris-setosa								
	1	4.9	3.0	1.4	0.2	Iris-setosa								
	2	4.7	3.2	1.3	0.2	Iris-setosa								
	3	4.6	3.1	1.5	0.2	Iris-setosa								
	4	5.0	3.6	1.4	0.2	Iris-setosa								
	•••													
	145	6.7	3.0	5.2	2.3	Iris-virginica								
	146	6.3	2.5	5.0	1.9	Iris-virginica								
	147	6.5	3.0	5.2	2.0	Iris-virginica								
	148	6.2	3.4	5.4	2.3	Iris-virginica								
	149	5.9	3.0	5.1	1.8	Iris-virginica								

150 rows × 5 columns

In [8]: df.describe()

3/4/24, 12:11 PM PracticalNo03

Out[8]:		sepallength	sepal	lwidth	petallen	gth p	etalwid	th					
	count	150.000000	150.0	000000	150.000	000 1	.50.0000	00					
	mean	5.843333	3.0	54000	3.758	667	1.1986	67					
	std	0.828066	0.4	33594	1.764	420	0.7631	61					
	min	4.300000	2.0	000000	1.000	000	0.1000	00					
	25%	5.100000	2.8	800000	1.600	000	0.3000	00					
	50%	5.800000	3.0	000000	4.350	000	1.3000	00					
	75%	6.400000	3.3	800000	5.100	000	1.8000	00					
	max	7.900000	4.4	100000	6.900	000	2.5000	00					
In [10]:	df["se	pallength"]	.descr	ribe()									
Out[10]:	Ol: count 150.000000 mean 5.843333 std 0.828066 min 4.300000 25% 5.100000 50% 5.800000 75% 6.400000 max 7.900000 Name: sepallength, dtype: float64												
In [11]:	df.gro	upby("class	").des	cribe()									
Out[11]:						sepallength					alwidth	•••	petalle
		count	mean	st	d min	25%	50%	75%	max	count	mean	•••	75 %
	cla	ass											
	Ir seto	is- 50.0	5.006	0.35249	0 4.3	4.800	5.0	5.2	5.8	50.0	3.418		1.575
	Ir versico	ris- Jor	5.936	0.51617	1 4.9	5.600	5.9	6.3	7.0	50.0	2.770		4.600
	Ir virgin	ris- ica 50.0	6.588	0.63588	0 4.9	6.225	6.5	6.9	7.9	50.0	2.974		5.875
	3 rows × 32 columns												
	4)	
In [12]:	df.gro	upby(" <mark>class</mark>	").des	cribe()	.sum()								

3/4/24, 12:11 PM PracticalNo03

Out[12]:	sepallength	count	150.000000
		mean	17.530000
		std	1.504540
		min	14.100000
		25%	16.625000
		50%	17.400000
		75%	18.400000
		max	20.700000
	sepalwidth	count	150.000000
		mean	9.162000
		std	1.017319
		min	6.500000
		25%	8.450000
		50%	9.200000
		75%	9.850000
		max	11.600000
	petallength	count	150.000000
		mean	11.276000
		std	1.195317
		min	8.500000
		25%	10.500000
		50%	11.400000
		75%	12.050000
		max	13.900000
	petalwidth	count	150.000000
		mean	3.596000
		std	0.579612
		min	2.500000
		25%	3.200000
		50%	3.500000
		75%	4.100000
		max	4.900000
	dtypo: float	61	

dtype: float64

In []:

Data Analytics I Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (https://www.kaggle.com/c/boston-housing). The Boston Housing dataset contains information about various houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset. The objective is to predict the value of prices of the house using the given features.

```
In [24]:
          import pandas as pd
          import numpy as np
          from sklearn.model selection import train test split
          from sklearn.linear_model import LinearRegression
          from sklearn.metrics import mean squared error
In [51]:
         df = pd.read csv("/home/kartik/Documents/Python Notebooks/BostonHousing.csv")
          df = df.dropna()
          df.head()
Out[51]:
               crim
                      zn indus
                                chas
                                        nox
                                                           dis rad
                                                                   tax ptratio
                                                                                    b Istat medv
                                              rm
                                                   age
                                            6.575
          0.00632
                     18.0
                           2.31
                                   0 0.538
                                                  65.2 4.0900
                                                                 1
                                                                   296
                                                                          15.3 396.90
                                                                                      4.98
                                                                                             24.0
          1 0.02731
                     0.0
                           7.07
                                   0 0.469 6.421 78.9 4.9671
                                                                 2 242
                                                                          17.8
                                                                              396.90 9.14
                                                                                             21.6
          2 0.02729
                     0.0
                           7.07
                                                                 2 242
                                                                              392.83
                                   0 0.469 7.185
                                                 61.1 4.9671
                                                                          17.8
                                                                                      4.03
                                                                                             34.7
          3 0.03237
                     0.0
                           2.18
                                   0 0.458 6.998 45.8 6.0622
                                                                 3 222
                                                                          18.7 394.63
                                                                                      2.94
                                                                                             33.4
          4 0.06905
                      0.0
                           2.18
                                    0 0.458 7.147 54.2 6.0622
                                                                 3 222
                                                                          18.7 396.90 5.33
                                                                                             36.2
In [52]: df.columns
Out[52]: Index(['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax',
                  'ptratio', 'b',
                                  'lstat', 'medv'],
                dtype='object')
In [53]: x = df[['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax',
                  ptratio', 'b', 'lstat']]
          x.head()
Out[53]:
               crim
                      zn indus
                                chas
                                                           dis
                                                              rad
                                                                        ptratio
                                                                                    b Istat
                                        nox
                                                                    tax
                                              rm
                                                   age
          0 0.00632
                     18.0
                           2.31
                                   0 0.538 6.575
                                                  65.2 4.0900
                                                                 1
                                                                   296
                                                                          15.3 396.90
                                                                                      4.98
            0.02731
                      0.0
                           7.07
                                      0.469
                                            6.421
                                                  78.9 4.9671
                                                                 2 242
                                                                          17.8
                                                                               396.90
                                                                                       9.14
          2 0.02729
                                                                          17.8 392.83
                     0.0
                           7 07
                                   0 0.469 7.185 61.1 4.9671
                                                                 2 242
                                                                                      4 03
          3 0.03237
                                                                          18.7 394.63
                      0.0
                           2.18
                                   0 0.458 6.998
                                                 45.8 6.0622
                                                                 3 222
                                                                                      2.94
          4 0.06905
                                                                          18.7 396.90
                     0.0
                                   0 0.458 7.147 54.2 6.0622
                                                                 3 222
In [54]: y = df['medv']
          y.head()
Out[54]:
               24.0
               21.6
          1
               34.7
          2
          3
               33.4
          4
               36.2
          Name: medv, dtype: float64
In [55]: x train,x test,y train,y test = train test split(x,y,test size=0.25,random state=42)
          model = LinearRegression()
In [56]:
          model.fit(x train,y train)
Out[56]: ▼ LinearRegression
          LinearRegression()
In [59]: y pred = model.predict(x test)
          y_pred
```

```
Out[59]: array([10.82520289, 22.97716771, 15.45617932, 33.55363131, 22.96357871,
                    11.52151263, 12.76018157, 19.74412591, 21.33180568, 11.7372368 ,
                    18.75187948\,,\; 30.04070255\,,\; -0.73011025\,,\; 25.78030298\,,\;\; 3.02335542\,,
                     8.49359394, 24.07065874, 18.57018302, 25.24003893, -6.24945751,
                    13.33486252, 19.08911255, 27.0053246, 19.59024598, 22.40273032, 16.47206196, 28.79995249, 26.24334357, 18.42194929, 21.27338464,
                    20.62838908, 30.49181729, 17.87807473, 31.53661897, 31.16125663,
                   22.20316674, 7.79878712, 23.70737642, 8.54510946, 25.0261323, 12.99764774, 36.12050346, 14.45054578, 30.51121076, 13.02756177,
                    28.48505695, 30.34475695, 20.15771804, 18.46362559, 13.69183882,
                    24.00613417, 32.99780499, 16.4544118 , 11.66937979, 34.39689874,
                    33.37924364, 17.77929903, 18.70970757, 16.25656178, 27.35347057,
                    20.48252629,\ 40.60322048,\ 20.53694472,\ 8.20383246,\ 25.97767891,
                    27.81783878, 12.08008232, 7.62795819, 27.14868012, 16.44871208,
                    23.46295285, 14.63324084, 40.28319824, 28.66936219, 23.1422757,
                    23.95467347, 35.49409707, 24.49032705, 20.75456047, 15.97157605,
                    27.18392572, 27.90827964, 21.23340735, 29.37584949, 23.9104647, 29.29067164, 24.22591482, 20.08729338, 18.20901184, 44.2614741,
                    4.63790216, 19.31301769, 17.2763475 , 23.72223401, 7.38111706,
                    17.02032604, 31.01206401, 21.14872276, 10.9653362 , 20.85193641,
                   24.18859543, 17.31441353, 12.19815419, 19.11197493, 19.50296116, 22.01189876, 35.62919117, 31.55632051, 20.24630891, 20.2365227,
                    14.26461161, 11.71171865, 21.66497318, 15.74320729, 20.29084409,
                    19.52326714, 25.23052357, 23.83851879, 23.14474265, 22.78985166,
                    40.21608485, 27.45423907, 24.8064738, 30.06864408, 30.07124307,
                    38.69282771])
In [61]: model.score(x_train,y_train)
Out[61]: 0.7335900413194543
In [62]: model.score(x_test,y_test)
Out[62]: 0.7459403901980342
In [63]: np.sqrt(mean_squared_error(y_test,y_pred))
Out[63]: 4.387285229095364
 In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Data Analytics II

1. Implement logistic regression using Python/R to perform classification on

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])

Social_Network_Ads.csv dataset. 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
In [14]: import pandas as pd
         import numpy as np
         from sklearn.model selection import train test split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
In [15]: df = pd.read_csv("/home/kartik/Documents/Python Notebooks/Social_Network_Ads.csv")
In [16]: df['Gender'].replace({"Male":0, "Female":1}, inplace = True)
         df
Out[16]:
               User ID Gender Age EstimatedSalary Purchased
           0 15624510
                               19
                                          19000
                                                        0
                           0
           1 15810944
                               35
                                          20000
                                                        0
           2 15668575
                           1
                               26
                                          43000
                                                        0
                                                        0
           3 15603246
                               27
                                          57000
           4 15804002
                           0
                               19
                                          76000
                                                        0
         395 15691863
                           1
                               46
                                          41000
                                                        1
         396 15706071
                           0
                               51
                                          23000
                                                        1
         397 15654296
                               50
                                          20000
                                                        1
                           1
         398 15755018
                               36
                                          33000
                                                        0
         399 15594041
                               49
                                          36000
                                                        1
        400 rows × 5 columns
In [25]: df.columns
Out[25]: Index(['User ID', 'Gender', 'Age', 'EstimatedSalary', 'Purchased'], dtype='object')
In [24]: x = df[['User ID', 'Gender', 'Age', 'EstimatedSalary']]
         y = df[['Purchased']]
In [23]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=29)
In [27]: model = LogisticRegression()
         model.fit (x_train,y_train)
        /home/kartik/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A c
        olumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for examp
        le using ravel().
         y = column_or_1d(y, warn=True)
Out[27]: ▼ LogisticRegression
         LogisticRegression()
In [28]: y_pred = model.predict(x_test)
In [29]: y_pred
1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,
                0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
```

```
In [30]: model.score(x_train,y_train)
Out[30]: 0.7833333333333333
In [31]: model.score(x,y)
Out[31]: 0.785
In [32]: cm = confusion_matrix(y_test,y_pred)
Out[32]: array([[64, 5],
                [16, 15]])
In [33]: tn, fp, fn, tp = confusion_matrix(y_test,y_pred).ravel()
In [34]: print (tn, fp, fn, tp)
        64 5 16 15
In [35]: a = accuracy_score(y_test,y_pred)
Out[35]: 0.79
In [36]: e = 1 - a
Out[36]: 0.2099999999999996
In [39]: precision_score(y_test,y_pred)
Out[39]: 0.75
In [40]: recall_score(y_test,y_pred)
Out[40]: 0.4838709677419355
In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Data Analytics III

1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv

dataset. 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
In [4]:
         import pandas as pd
         import numpy as np
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.model selection import train test split
         from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
         from sklearn.naive bayes import GaussianNB
 In [5]: df = pd.read_csv("/home/kartik/Documents/Python Notebooks/Iris.csv")
         df.head()
            Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                         Species
 Out[5]:
                          5 1
                                                                   0.2 Iris-setosa
                          4.9
                                        3.0
         1
            2
                                                      1.4
                                                                   0.2 Iris-setosa
         2 3
                          47
                                        32
                                                      13
                                                                   0.2 Iris-setosa
         3 4
                          4.6
                                        3.1
                                                      1.5
                                                                   0.2 Iris-setosa
            5
                          5.0
                                        3.6
                                                      14
                                                                   0.2 Iris-setosa
 In [6]: x = df.drop(['Species'],axis = 1)
         y = df['Species']
In [21]: scaler = MinMaxScaler()
         x_scaled = scaler.fit_transform(x)
         x_scaled
Out[21]: array([[0.
                             , 0.22222222, 0.625
                                                     , 0.06779661, 0.04166667],
                 [0.00671141, 0.16666667, 0.41666667, 0.06779661, 0.04166667],
                 [0.01342282, 0.11111111, 0.5
                                                     , 0.05084746, 0.04166667],
                 [0.02013423, 0.08333333, 0.45833333, 0.08474576, 0.04166667],
                 [0.02684564, 0.19444444, 0.66666667, 0.06779661, 0.04166667],
                 [0.03355705, 0.30555556, 0.79166667, 0.11864407, 0.125]
                 [0.04026846, 0.08333333, 0.58333333, 0.06779661, 0.08333333],
                 [0.04697987, 0.19444444, 0.58333333, 0.08474576, 0.04166667],
                                                    , 0.06779661, 0.04166667],
                 [0.05369128, 0.02777778, 0.375
                 [0.06040268, 0.16666667, 0.45833333, 0.08474576, 0.
                 [0.06711409, 0.30555556, 0.70833333, 0.08474576, 0.04166667],
                 [0.0738255 , 0.13888889 , 0.58333333 , 0.10169492 , 0.04166667],
                 [0.08053691, 0.13888889, 0.41666667, 0.06779661, 0.
                                       , 0.41666667, 0.01694915, 0.
                 [0.08724832, 0.
                 [0.09395973, 0.41666667, 0.83333333, 0.03389831, 0.04166667],
                 [0.10067114,\ 0.38888889,\ 1. \\ \hspace*{2.5cm},\ 0.08474576,\ 0.125
                 [0.10738255,\ 0.30555556,\ 0.79166667,\ 0.05084746,\ 0.125
                 [0.11409396, 0.22222222, 0.625 , 0.06779661, 0.08333333],
                                                  , 0.11864407, 0.08333333],
                 [0.12080537, 0.38888889, 0.75
                 [0.12751678, 0.22222222, 0.75
                                                     , 0.08474576, 0.08333333],
                 [0.13422819, 0.30555556, 0.58333333, 0.11864407, 0.04166667],
                 [0.1409396 , 0.222222222 , 0.70833333 , 0.08474576 , 0.125
                                                                 , 0.04166667],
                 [0.14765101, 0.08333333, 0.66666667, 0.
                 [0.15436242, 0.22222222, 0.54166667, 0.11864407, 0.16666667],
                 [0.16107383, 0.13888889, 0.58333333, 0.15254237, 0.04166667],
                 [0.16778523, 0.19444444, 0.41666667, 0.10169492, 0.04166667],
                 [0.17449664, 0.19444444, 0.58333333, 0.10169492, 0.125
                                     , 0.625 , 0.08474576, 0.04166667],
                 [0.18120805, 0.25
                 [0.18791946, 0.25
                                        , 0.58333333, 0.06779661, 0.04166667],
                                                 , 0.10169492, 0.04166667],
                 [0.19463087, 0.11111111, 0.5
                 [0.20134228, 0.13888889, 0.45833333, 0.10169492, 0.04166667],
                 [0.20805369,\ 0.30555556,\ 0.58333333,\ 0.08474576,\ 0.125
                                                                             1,
                 [0.2147651 , 0.25
                                        , 0.875
                                                     , 0.08474576, 0.
                 [0.22147651, 0.33333333, 0.91666667, 0.06779661, 0.04166667],
                  [ 0.22818792 , \ 0.16666667 , \ 0.45833333 , \ 0.08474576 , \ 0. 
                                                   , 0.03389831, 0.04166667],
                 [0.23489933, 0.19444444, 0.5
                 [0.24161074, 0.33333333, 0.625
                                                     , 0.05084746, 0.04166667],
                 [0.24832215, 0.16666667, 0.45833333, 0.08474576, 0.
                 [0.25503356, 0.02777778, 0.41666667, 0.05084746, 0.04166667],
```

```
[0.26174497, 0.22222222, 0.58333333, 0.08474576, 0.04166667],
[0.26845638, 0.19444444, 0.625, 0.05084746, 0.08333333],
[0.27516779, 0.05555556, 0.125 , 0.05084746, 0.08333333],
                                      , 0.05084746, 0.04166667],
[0.28187919, 0.02777778, 0.5
[0.2885906 , 0.19444444, 0.625 , 0.10169492, 0.20833333], [0.29530201, 0.22222222, 0.75 , 0.15254237, 0.125 ],
[0.30201342, 0.13888889, 0.41666667, 0.06779661, 0.08333333],
[0.30872483, 0.22222222, 0.75 , 0.10169492, 0.04166667], [0.31543624, 0.08333333, 0.5 , 0.06779661, 0.04166667],
[0.32214765, 0.27777778, 0.70833333, 0.08474576, 0.04166667],
[0.32885906, 0.19444444, 0.54166667, 0.06779661, 0.04166667],
[0.33557047, 0.75 , 0.5 , 0.62711864, 0.54166667],
[0.34228188, 0.58333333, 0.5
                                        , 0.59322034, 0.58333333],
[0.34899329, 0.72222222, 0.45833333, 0.66101695, 0.58333333],
[0.3557047 , 0.33333333 , 0.125 , 0.50847458 , 0.5 ], [0.36241611 , 0.61111111 , 0.33333333 , 0.61016949 , 0.58333333],
[0.36912752, 0.38888889, 0.33333333, 0.59322034, 0.5 ],
[0.37583893, 0.55555556, 0.54166667, 0.62711864, 0.625
[0.38255034, 0.16666667, 0.16666667, 0.38983051, 0.375
[0.38926174, 0.63888889, 0.375 , 0.61016949, 0.5
 \left[ 0.39597315 \,,\; 0.25 \right. \qquad ,\; 0.29166667 \,,\; 0.49152542 \,,\; 0.54166667 \right] , 
 \left[ 0.40268456 \,,\; 0.194444444 \,,\; 0. \right. \qquad ,\; 0.42372881 \,,\; 0.375 \qquad \right] \,, 
[0.40939597, 0.44444444, 0.41666667, 0.54237288, 0.58333333],
[0.41610738, 0.47222222, 0.08333333, 0.50847458, 0.375],
[0.42281879, 0.5 , 0.375 , 0.62711864, 0.54166667],
                                        , 0.44067797, 0.5 ],
[0.4295302 , 0.36111111, 0.375
[0.43624161, 0.66666667, 0.45833333, 0.57627119, 0.54166667],
\hbox{\tt [0.44295302, 0.36111111, 0.41666667, 0.59322034, 0.58333333],}
[0.44966443, 0.41666667, 0.29166667, 0.52542373, 0.375
[0.45637584, 0.52777778, 0.08333333, 0.59322034, 0.58333333],
[0.46308725, 0.36111111, 0.20833333, 0.49152542, 0.41666667],
[0.46979866, 0.44444444, 0.5 , 0.6440678 , 0.70833333],
[0.47651007, 0.5 , 0.33333333, 0.50847458, 0.5
\hbox{\tt [0.48322148, 0.55555556, 0.20833333, 0.66101695, 0.58333333],}
[0.48993289, 0.5 , 0.33333333, 0.62711864, 0.45833333],
[0.4966443 , 0.58333333, 0.375 , 0.55932203, 0.5
[0.5033557 , 0.63888889, 0.41666667, 0.57627119, 0.54166667],
[0.51006711, 0.69444444, 0.33333333, 0.6440678 , 0.54166667],
[0.51677852, 0.66666667, 0.41666667, 0.6779661, 0.66666667],
[0.52348993, 0.47222222, 0.375 , 0.59322034, 0.58333333], [0.53020134, 0.38888889, 0.25 , 0.42372881, 0.375 ],
\hbox{\tt [0.53691275, 0.33333333, 0.16666667, 0.47457627, 0.41666667],}
[0.54362416, 0.33333333, 0.16666667, 0.45762712, 0.375],
[0.55033557, 0.41666667, 0.29166667, 0.49152542, 0.45833333],
[0.55704698, 0.47222222, 0.29166667, 0.69491525, 0.625],
\hbox{\tt [0.56375839, 0.30555556, 0.41666667, 0.59322034, 0.58333333],}
[0.5704698 , 0.47222222, 0.58333333, 0.59322034, 0.625 ],
[0.57718121, 0.66666667, 0.45833333, 0.62711864, 0.58333333],
[0.58389262, 0.55555556, 0.125 , 0.57627119, 0.5
 [ 0.59060403 , \ 0.36111111 , \ 0.41666667 , \ 0.52542373 , \ 0.5 ] 
[0.59731544, 0.33333333, 0.20833333, 0.50847458, 0.5
 \hspace*{3.5cm} [ \hspace*{.08cm} 0.60402685 \hspace*{.08cm}, \hspace*{.08cm} 0.33333333, \hspace*{.08cm} 0.25 \hspace*{0.8cm}, \hspace*{.08cm} 0.57627119, \hspace*{.08cm} 0.45833333 ] \hspace*{.08cm},
                      , 0.41666667, 0.61016949, 0.54166667],
[0.61073826, 0.5
[0.61744966, 0.41666667, 0.25 , 0.50847458, 0.45833333], [0.62416107, 0.19444444, 0.125 , 0.38983051, 0.375 ],
[0.63087248, 0.3611111, 0.29166667, 0.54237288, 0.5
[0.63758389, 0.388888889, 0.41666667, 0.54237288, 0.45833333],
[0.6442953 , 0.38888889 , 0.375 , 0.54237288 , 0.5 ],
[0.65100671, 0.52777778, 0.375
                                        , 0.55932203, 0.5
[0.65771812, 0.22222222, 0.20833333, 0.33898305, 0.41666667],
[0.66442953, 0.38888889, 0.33333333, 0.52542373, 0.5 ],
[0.67114094, 0.55555556, 0.54166667, 0.84745763, 1. [0.67785235, 0.41666667, 0.29166667, 0.69491525, 0.75
[0.68456376, 0.77777778, 0.41666667, 0.83050847, 0.83333333],
[0.69127517, 0.55555556, 0.375, 0.77966102, 0.70833333],
[0.69798658, 0.61111111, 0.41666667, 0.81355932, 0.875], [0.70469799, 0.91666667, 0.41666667, 0.94915254, 0.83333333],
[0.7114094 , 0.16666667, 0.20833333, 0.59322034, 0.66666667],
 [0.71812081,\ 0.83333333,\ 0.375 \qquad ,\ 0.89830508,\ 0.70833333], 
[0.72483221, 0.66666667, 0.20833333, 0.81355932, 0.70833333],
[0.73154362, 0.80555556, 0.66666667, 0.86440678, 1. ],
                                    , 0.69491525, 0.79166667],
[0.73825503, 0.61111111, 0.5
[0.74496644, 0.58333333, 0.29166667, 0.72881356, 0.75],
[0.75167785, 0.69444444, 0.41666667, 0.76271186, 0.83333333],
[0.75838926, 0.38888889, 0.20833333, 0.6779661, 0.79166667],
\hbox{\tt [0.76510067, 0.41666667, 0.33333333, 0.69491525, 0.95833333],}
 \left[ 0.77181208, \ 0.58333333, \ 0.5 \right. \\  \left. , \ 0.72881356, \ 0.91666667 \right], 
[0.77852349, 0.611111111, 0.41666667, 0.76271186, 0.70833333],
[0.7852349 , 0.944444444 , 0.75 , 0.96610169 , 0.875 ], [0.79194631 , 0.944444444 , 0.25 , 1. , 0.91666667],
[0.79865772, 0.47222222, 0.08333333, 0.6779661 , 0.58333333], [0.80536913, 0.72222222, 0.5 , 0.79661017, 0.91666667],
[0.81208054, 0.36111111, 0.33333333, 0.66101695, 0.79166667],
```

```
[0.81879195, 0.94444444, 0.33333333, 0.96610169, 0.79166667],
                 [0.82550336, 0.55555556, 0.29166667, 0.66101695, 0.70833333],
                 \hbox{\tt [0.83221477, 0.66666667, 0.54166667, 0.79661017, 0.83333333],}
                 [0.83892617, 0.80555556, 0.5
                                                    , 0.84745763, 0.70833333],
                 \hbox{\tt [0.84563758,\ 0.52777778,\ 0.33333333,\ 0.6440678\ ,\ 0.70833333],}
                                        , 0.41666667, 0.66101695, 0.70833333],
                 [0.85234899, 0.5
                 \hbox{\tt [0.8590604\ ,\ 0.58333333,\ 0.33333333,\ 0.77966102,\ 0.83333333],}
                 [0.86577181, 0.80555556, 0.41666667, 0.81355932, 0.625
                 [0.87248322, 0.86111111, 0.33333333, 0.86440678, 0.75]
                                        , 0.75
                                                    , 0.91525424, 0.79166667],
                 [0.87919463, 1.
                  [0.88590604,\ 0.58333333,\ 0.33333333,\ 0.77966102,\ 0.875
                 [0.89261745, 0.55555556, 0.33333333, 0.69491525, 0.58333333],
                                        , 0.25
                                                    , 0.77966102, 0.54166667],
                 [0.89932886, 0.5
                 [0.90604027, 0.94444444, 0.41666667, 0.86440678, 0.91666667],
                 [0.91275168, 0.55555556, 0.58333333, 0.77966102, 0.95833333],
                 [0.91946309, 0.58333333, 0.45833333, 0.76271186, 0.70833333],
                 [0.9261745 , 0.47222222 , 0.41666667 , 0.6440678 , 0.70833333],
                 [0.93288591, 0.72222222, 0.45833333, 0.74576271, 0.83333333],
                 \hbox{\tt [0.93959732, 0.66666667, 0.45833333, 0.77966102, 0.95833333],}
                 [0.94630872, 0.72222222, 0.45833333, 0.69491525, 0.91666667],
                 [0.95302013, 0.41666667, 0.29166667, 0.69491525, 0.75
                                                                             1.
                 [0.95973154, 0.69444444, 0.5
                                                    , 0.83050847, 0.91666667],
                 [0.96644295, 0.66666667, 0.54166667, 0.79661017, 1.
                 [0.97315436, 0.66666667, 0.41666667, 0.71186441, 0.91666667],
                 [0.97986577,\ 0.55555556,\ 0.20833333,\ 0.6779661\ ,\ 0.75
                 [0.98657718, 0.61111111, 0.41666667, 0.71186441, 0.79166667],
                 [0.99328859, 0.52777778, 0.58333333, 0.74576271, 0.91666667],
                 [1.
                            , 0.44444444, 0.41666667, 0.69491525, 0.70833333]])
 In [8]: x train,x test,y train,y test = train test_split(x scaled,y,test_size = 0.2, random state = 43)
 In [9]: gnb = GaussianNB()
         gnb.fit(x_train,y_train)
         y_pred = gnb.predict(x_test)
In [10]: cm = confusion matrix(y test,y pred)
Out[10]: array([[13, 0,
                          0],
                 [0, 8, 0],
                 [0, 0, 9]])
In [11]: tn = confusion matrix(y test,y pred).ravel()
In [12]: fp = confusion_matrix(y_test,y_pred).ravel()
In [13]: fn= confusion_matrix(y_test,y_pred).ravel()
In [14]: tp = confusion matrix(y test,y pred).ravel()
In [15]: print (tn, fp, fn, tp)
        [13 0 0 0 8 0 0 0 9] [13 0 0 0 8 0 0 0 9] [13 0 0 0 8 0 0 0 9] [13 0 0 0 8 0 0
        91
In [16]: a = accuracy_score(y_test,y_pred)
Out[16]: 1.0
In [17]: e = 1 - a
Out[17]: 0.0
In [18]: precision score(y test,y pred,average='micro')
Out[18]: 1.0
In [19]: recall score(y test,y pred,average='micro')
Out[19]: 1 0
```

Text Analytics

1. Extract Sample document and apply following document preprocessing methods:

Tokenization, POS Tagging, stop words removal, Stemming and Lemmatization. 2. Create representation of document by calculating Term Frequency and Inverse Document Frequency.

```
In [31]: import nltk
                import re
                nltk.download('punkt')
                nltk.download('stopwords')
                nltk.download('wordnet')
                nltk.download('averaged_perceptron_tagger')
                nltk.download('omw-1.4')
               [nltk_data] Downloading package punkt to /home/kartik/nltk_data...
                                       Package punkt is already up-to-date!
               [nltk data]
               [nltk data] Downloading package stopwords to /home/kartik/nltk data...
               [nltk_data]
                                     Package stopwords is already up-to-date!
               [nltk data] Downloading package wordnet to /home/kartik/nltk data...
               [nltk data] Package wordnet is already up-to-date!
               [nltk data] Downloading package averaged perceptron tagger to
               [nltk_data]
                                         /home/kartik/nltk data...
               [nltk data]
                                       Package averaged perceptron tagger is already up-to-
               [nltk data]
                                              date!
               [nltk_data] Downloading package omw-1.4 to /home/kartik/nltk_data...
               [nltk_data] Package omw-1.4 is already up-to-date!
Out[31]: True
In [32]: text = "Tokenization is the first step in text analytics."
In [33]: from nltk.tokenize import sent tokenize
                tokenized text = sent tokenize(text)
                print(tokenized text)
               ['Tokenization is the first step in text analytics.']
In [34]: from nltk.tokenize import word_tokenize
                tokenized word = word tokenize(text)
                print(tokenized_word)
               ['Tokenization', 'is', 'the', 'first', 'step', 'in', 'text', 'analytics', '.']
In [35]: from nltk.corpus import stopwords
                stop words = set(stopwords.words("english"))
                print(stop words)
             {"haven't", 'those', 'hers', "that'll", 'were', 'won', "don't", 'you', 'did', 'shan', 'myself', 'as', 'over', "should've", 'his', "wouldn't", 'of', 'hadn', 'then', 'no', 'has', 'which', 'was', 'does', 'weren', 'both', "you've", 'yourself', 'we', "needn't", 're', 'when', 'some', 'again', "won't", 'on', "hasn't", 'itself', "didn't", "she's", 'up', 'a', "hadn't", 'against', 'during', "mightn't", 'shouldn', "you'll", 'why', 't', 'who', 'such', 'mustn', 'being', 'through', 'can', 'from', 'too', 'and', 've', "shan't", 'mightn', 'wouldn', 'this', 'each', 'whom', "shouldn't", 'the', 'should', 'now', 'its', 'do', 'ain', 'he', 'until', 'further', 'will', 'these', 'into', 'what', 'it', 'about', 'have', 'is', 'same', 'needn', 'how', 'your', "wasn't", "aren't", 'doesn', 'yours', 'once', 'doing', 'while', 'himself', 'ourselves', 'if', 'all', 'hasn', 'above', 'before', 'most', 'o', 'any', 'just', 'are', 'nor', 'ma', 'between', 'in', 'didn', 'had', 'other', 'y', 'to', 'been', 'they', 'after', 'be', 'don', "weren't", "isn't", 'down', 'our', 'under', 'my', 'isn', 'll', 'herself', "doesn't", 'me', 'at', 'by', "you'd", 'couldn', 'where', 'haven', 'but', 'them', 'that', 'theirs', 'having', 'i', 'below', 'd', 'not', "it's", "mustn't", 'yourselves', 'am', 'wasn', 's', 'ours', 'she', 'only', 'him', 'themselves', 'few', "couldn't", 'very', 'for', "you're", 'so', 'her', 'there', 'here', 'own', 'or', 'm', 'because', 'out', 'off', 'aren', 'more', 'with', 'their', 'than', 'an'}
                ', 'than', 'an'}
In [36]: text = "How to remove stop words with NLTK library in Python?"
                text = re.sub('[^a-zA-Z]','',text)
                tokens = word_tokenize(text.lower())
                filtered_text = []
                for w in tokens:
                       if w not in stop words:
                              filtered_text.append(w)
                print("Tokenized Sentence :",tokens)
                print("Filtered Sentence :",filtered_text)
```

```
Tokenized Sentence: ['howtoremovestopwordswithnltklibraryinpython']
            Filtered Sentence : ['howtoremovestopwordswithnltklibraryinpython']
   In [37]: from nltk.stem import PorterStemmer
             e_words = ["wait", "waiting", "waited", "waits"]
             ps = PorterStemmer()
             for w in e words:
                 rootWord = ps.stem(w)
             print(rootWord)
            wait
   In [38]: from nltk.stem import WordNetLemmatizer
             wordnet_lemmatizer = WordNetLemmatizer()
             text = "studies studying cries cry"
             tokenization = nltk.word tokenize(text)
             for w in tokenization:
                 print("Lemma for {} is {}".format(w, wordnet_lemmatizer.lemmatize(w)))
            Lemma for studies is study
            Lemma for studying is studying
            Lemma for cries is cry
            Lemma for cry is cry
   In [39]: from nltk.tokenize import word tokenize
             data = "The pink sweater fit her perfectly"
             words = word_tokenize(data)
             for word in words:
                 print(nltk.pos tag([word]))
            [('The', 'DT')]
            [('pink', 'NN')]
            [('sweater', 'NN')]
            [('fit', 'NN')]
[('her', 'PRP$')]
            [('perfectly', 'RB')]
   In [40]: import pandas as pd
             from sklearn.feature_extraction.text import TfidfVectorizer
             d\theta = 'Jupiter is the largest Planet'
             d1 = 'Mars is the fourth planet from the sun'
             string = [d0,d1]
             tfidf = TfidfVectorizer()
             result = tfidf.fit_transform(string)
             print('Word indices:', tfidf.vocabulary_)
print('TF-IDF Values:', result)
            Word indices: {'jupiter': 3, 'is': 2, 'the': 8, 'largest': 4, 'planet': 6, 'mars': 5, 'fourth': 0, 'from': 1, 's
            un': 7}
            TF-IDF Values: (0, 6) 0.3793034928087496
              (0, 4)
                            0.5330978245262535
              (0, 8)
                            0.3793034928087496
              (0, 2)
                            0.3793034928087496
              (0, 3)
                            0.5330978245262535
              (1, 7)
                            0.37695708675831013
              (1, 1)
                           0.37695708675831013
              (1, 0)
                            0.37695708675831013
              (1, 5)
                            0.37695708675831013
              (1, 6)
                            0.2682080718928097
              (1, 8)
                             0.5364161437856194
              (1, 2)
                            0.2682080718928097
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

Data Visualization I

df.isnull().sum()

1. Use the inbuilt dataset 'titanic'. The dataset contains 891 rows and contains information

about the passengers who boarded the unfortunate Titanic ship. Use the Seaborn library to see if we can find any patterns in the data. 2. Write a code to check how the price of the ticket (column name: 'fare') for each passenger is distributed by plotting a histogram.

```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sb
        import matplotlib.pyplot as plt
In [2]: df = sb.load_dataset('titanic')
        df.head()
Out[2]:
           survived pclass
                                   age sibsp parch
                                                         fare
                                                             embarked class
                                                                                who
                                                                                     adult male deck
                                                                                                      embark_town
                                                                                                                   alive
                              sex
                                                                                                                          alone
        0
                             male
                                   22.0
                                                      7.2500
                                                                     S
                                                                        Third
                                                                                                 NaN
                                                                                                        Southampton
                                                                                                                          False
                                                                                man
                                                                                           True
                                                                                                                      no
         1
                            female
                                   38.0
                                                     71.2833
                                                                     С
                                                                         First woman
                                                                                           False
                                                                                                    С
                                                                                                                          False
                                                                                                          Cherbourg
                                                                                                                     yes
        2
                  1
                           female
                                   26.0
                                            0
                                                   0
                                                      7.9250
                                                                     S
                                                                        Third
                                                                              woman
                                                                                           False
                                                                                                 NaN
                                                                                                        Southampton
                                                                                                                     yes
                                                                                                                           True
        3
                                   35.0
                                                     53 1000
                                                                     S
                                                                                                    C
                            female
                                                                         First woman
                                                                                           False
                                                                                                        Southampton
                                                                                                                          False
                                                                                                                     ves
         4
                             male
                                   35.0
                                                      8.0500
                                                                        Third
                                                                                 man
                                                                                           True
                                                                                                 NaN
                                                                                                        Southampton
                                                                                                                           True
                                                                                                                      no
In [3]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 891 entries, 0 to 890
       Data columns (total 15 columns):
        #
            Column
                          Non-Null Count
                                            Dtype
        0
             survived
                          891 non-null
                                            int64
                          891 non-null
                                            int64
        1
            pclass
        2
                          891 non-null
                                            object
            sex
        3
                          714 non-null
                                            float64
            age
        4
            sibsp
                          891 non-null
                                            int64
        5
                          891 non-null
                                            int64
            parch
        6
            fare
                          891 non-null
                                            float64
                          889 non-null
        7
            embarked
                                            object
        8
             class
                          891 non-null
                                            category
        9
                          891 non-null
            who
                                            object
        10
            adult_male
                          891 non-null
                                            bool
        11
                          203 non-null
                                            category
            deck
        12
            embark_town
                          889 non-null
                                            object
        13
                          891 non-null
            alive
                                            object
        14 alone
                          891 non-null
                                            bool
       dtypes: bool(2), category(2), float64(2), int64(4), object(5)
       memory usage: 80.7+ KB
In [4]: print("Missing Values")
        print(df.isnull().sum())
       Missing Values
       survived
       pclass
                         0
                         0
       sex
       age
                       177
                         0
       sibsp
                         0
       parch
       fare
                         0
       embarked
                         2
       class
       who
                         0
                         0
       adult male
       deck
                       688
       embark town
                         2
                         0
       alive
       alone
       dtype: int64
In [5]: df['age'].fillna(df['age'].median(), inplace=True)
```

```
Out[5]: survived
                              0
                              0
          pclass
                              0
          sex
          age
                              0
                              0
          sibsn
          parch
                              0
          fare
                              0
          embarked
                              2
          class
                              0
          who
                              0
          adult_male
                              0
                            688
          deck
          {\tt embark\_town}
                              2
          alive
                              0
          alone
                              0
          dtype: int64
```

```
In [6]: fig, axes = plt.subplots(1,2)
    fig.suptitle('Histogram 1-variables(Age & Fare)')
    sb.histplot(data = df, x = 'age', ax = axes[0])
    sb.histplot(data = df, x = 'age', ax = axes[1])
    plt.show()
```

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option context('mode.use inf as na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option context('mode.use inf as na', True):

Histogram 1-variables(Age & Fare)


```
fig, axes = plt.subplots(2,2)
fig.suptitle('Histogram 2-variables')
sb.histplot(data = df, x = 'age', hue = 'survived', multiple='dodge', ax = axes[0][0])
sb.histplot(data = df, x = 'fare', hue = 'survived', multiple='dodge', ax = axes[0][1])
sb.histplot(data = df, x = 'age', hue = 'sex', multiple='dodge', ax = axes[1][0])
sb.histplot(data = df, x = 'fare', hue = 'sex', multiple='dodge', ax = axes[1][1])
plt.show()
```

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na optio n is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

Histogram 2-variables

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Data Visualization II

1. Use the inbuilt dataset 'titanic' as used in the above problem. Plot a box plot for

distribution of age with respect to each gender along with the information about whether they survived or not. (Column names : 'sex' and 'age') 2. Write observations on the inference from the above statistics.

```
In [1]: import seaborn as sb
ds = sb.load_dataset('titanic')
ds.head()
```

Out[1]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

```
In [6]: sb.boxplot(x='sex',y='age',data=ds, hue='survived')
```

Out[6]: <Axes: xlabel='sex', ylabel='age'>

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Data Visualization III Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a box plot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

```
In [6]: import seaborn as sb
ds = sb.load_dataset('iris')
ds.head()
```

Out[6]: sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 setosa 1 4.9 3.0 0.2 1.4 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 0.2 1.5 setosa 4 5.0 3.6 1.4 0.2 setosa

```
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2,2,figsize = (16,9))
sb.histplot(ds['sepal_length'], ax = axes[0,0])
sb.histplot(ds['sepal_width'], ax = axes[0,1])
sb.histplot(ds['petal_length'], ax = axes[1,0])
sb.histplot(ds['petal_width'], ax = axes[1,1])
```

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: u se_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: u se_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: u se_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option context('mode.use inf as na', True):

/home/kartik/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: u se_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

```
Out[13]: <Axes: xlabel='petal_width', ylabel='Count'>
```


2.0

setosa

versicolor

species

virginica

4.5

setosa

versicolor

species

virginica

Use the following dataset "covid_vaccine_statewise.csv" and Perform the following data analytics.

- 1. Describe the dataset.
- 2. No. of persons by state vaccinated for first dose.
- 3. No. of persons by state vaccinated for second dose.

print("Average of First Dose:", avg_firstdose)

Average of First Dose: 7414415.300354284

- 4. No. of males vaccinated.
- 5. No. of females vaccinated.

```
In [1]: import pandas as pd
         df = pd.read csv("covid vaccine statewise.csv")
In [6]:
          df.head()
Out[6]:
                                                                                                                    Female
                                                                                                                              Transgender
                Updated
                                  Total Doses
                                                                     First Dose
                                                                                 Second Dose
                                                                                                 Male (Doses
                                                           Sites
                         State
                                               Sessions
                                                                                                                     (Doses
                                                                                                                                    (Doses
                                Administered
                                                                  Administered
                                                                                Administered
                                                                                               Administered)
                                                                                                              Administered)
                                                                                                                             Administered)
             16/01/2021
                                     48276.0
                                                 3455.0
                                                                       48276.0
                                                                                          0.0
                          India
                                                          2957.0
                                                                                                        NaN
                                                                                                                       NaN
                                                                                                                                      NaN
             17/01/2021
                          India
                                     58604.0
                                                 8532.0
                                                          4954.0
                                                                       58604.0
                                                                                          0.0
                                                                                                        NaN
                                                                                                                       NaN
           1
                                                                                                                                      NaN
             18/01/2021
                                     99449.0
                                                13611.0
                                                                       99449.0
                                                                                          0.0
                                                                                                        NaN
                                                                                                                       NaN
                          India
                                                          6583.0
                                                                                                                                      NaN
             19/01/2021
                          India
                                     195525.0
                                                17855.0
                                                          7951.0
                                                                       195525.0
                                                                                          0.0
                                                                                                        NaN
                                                                                                                       NaN
                                                                                                                                      NaN
             20/01/2021
                                                                      251280.0
                          India
                                    251280 0
                                                25472 0
                                                         10504 0
                                                                                          0.0
                                                                                                        NaN
                                                                                                                       NaN
                                                                                                                                      NaN
          5 rows × 24 columns
In [7]:
          df.shape
           (7845, 24)
In [8]:
          df.describe()
Out[8]:
                                                                                                                Female
                                                                                                                          Transgender
                   Total Doses
                                                                First Dose
                                                                            Second Dose
                                                                                            Male (Doses
                                    Sessions
                                                       Sites
                                                                                                                               (Doses
                                                                                                                (Doses
                  Administered
                                                              Administered
                                                                            Administered
                                                                                          Administered)
                                                                                                         Administered)
                                                                                                                         Administered)
                                                                                                                                       Admin
          count 7 621000e+03
                                7 621000e+03
                                                7621 000000
                                                             7 621000e+03
                                                                           7 621000e+03
                                                                                                          7 461000e+03
                                                                                                                          7461 000000
                                                                                                                                        7 6210
                                                                                           7 461000e+03
                  9.188171e+06
                                4.792358e+05
                                                2282.872064
                                                             7.414415e+06
                                                                            1.773755e+06
                                                                                           3.620156e+06
                                                                                                          3.168416e+06
                                                                                                                          1162.978019
                                                                                                                                        1.0440
           mean
                  3.746180e+07
                                1.911511e+06
                                                7275.973730
                                                             2.995209e+07
                                                                            7.570382e+06
                                                                                           1.737938e+07
                                                                                                          1.515310e+07
                                                                                                                          5931.353995
                                                                                                                                        4.452
            min
                  7.000000e+00
                                0.000000e+00
                                                   0.000000
                                                             7.000000e+00
                                                                            0.000000e+00
                                                                                           0.000000e+00
                                                                                                          2.000000e+00
                                                                                                                             0.000000
                                                                                                                                        0.000
            25%
                                                                                                          5.210700e+04
                  1 356570e+05
                                6 004000e+03
                                                  69 000000
                                                             1 166320e+05
                                                                            1 283100e+04
                                                                                           5 655500e+04
                                                                                                                             8 000000
                                                                                                                                        0.000
            50%
                  8.182020e+05
                                4.547000e+04
                                                 597.000000
                                                             6.614590e+05
                                                                            1.388180e+05
                                                                                           3.897850e+05
                                                                                                          3.342380e+05
                                                                                                                           113.000000
                                                                                                                                        1.185
            75%
                 6.625243e+06
                                3.428690e+05
                                                1708.000000
                                                             5.387805e+06
                                                                            1.166434e+06
                                                                                           2.735777e+06
                                                                                                          2.561513e+06
                                                                                                                           800.000000
                                                                                                                                        7.5793
            max
                 5.132284e+08
                                3.501031e+07
                                               73933.000000
                                                             4.001504e+08
                                                                            1.130780e+08
                                                                                           2.701636e+08
                                                                                                          2.395186e+08
                                                                                                                         98275.000000
                                                                                                                                        6.236
         8 rows × 22 columns
In [91:
          df.describe(include='object')
Out[9]:
                   Updated On
                                State
                                7845
           count
                          7845
           unique
                           213
                                   37
                    16/01/2021
                                Delhi
                                 213
             freq
                            37
In [10]: avg firstdose = df["First Dose Administered"].astype("float").mean(axis = 0)
```

```
In [11]: df["First Dose Administered"].fillna(value = avg_firstdose, inplace=True)
          df.head()
Out[11]:
                                                                                                                Female
                                                                                                                          Transgender
               Updated
                                Total Doses
                                                                  First Dose
                                                                              Second Dose
                                                                                             Male (Doses
                         State
                                             Sessions
                                                         Sites
                                                                                                                (Doses
                                                                                                                              (Doses
                               Administered
                                                                Administered
                                                                             Administered
                                                                                           Administered)
                    On
                                                                                                          Administered)
                                                                                                                        Administered)
             16/01/2021
                         India
                                    48276.0
                                               3455.0
                                                        2957.0
                                                                     48276.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
          1
             17/01/2021
                         India
                                    58604 0
                                               8532.0
                                                        4954 0
                                                                     58604.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
          2
             18/01/2021
                                    99449.0
                                               13611.0
                                                        6583.0
                                                                     99449.0
                                                                                       0.0
                                                                                                                  NaN
                         India
                                                                                                    NaN
                                                                                                                                 NaN
             19/01/2021
                         India
                                   195525.0
                                               17855.0
                                                        7951.0
                                                                    195525.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
             20/01/2021
                         India
                                   251280.0
                                              25472.0
                                                       10504.0
                                                                    251280.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                   NaN
                                                                                                                                 NaN
          5 rows × 24 columns
In [12]: avg seconddose = df["Second Dose Administered"].astype("float").mean(axis = 0)
          print("Average of Second Dose:", avg_seconddose)
         Average of Second Dose: 1773755.2436688098
In [13]: df["Second Dose Administered"].fillna(value = avg_seconddose, inplace = True)
          df.head()
Out[13]:
                                                                                                                Female
                                                                                                                         Transgender
               Updated
                                Total Doses
                                                                  First Dose
                                                                              Second Dose
                                                                                             Male (Doses
                         State
                                             Sessions
                                                         Sites
                                                                                                                (Doses
                                                                                                                               (Doses
                                                                                           Administered)
                    On
                               Administered
                                                                Administered
                                                                             Administered
                                                                                                          Administered)
                                                                                                                        Administered)
             16/01/2021
                         India
                                    48276.0
                                               3455.0
                                                        2957.0
                                                                     48276.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
             17/01/2021
                                    58604.0
                                               8532.0
                                                                     58604.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                   NaN
                                                                                                                                 NaN
                         India
                                                        4954.0
             18/01/2021
                         India
                                    99449.0
                                               13611.0
                                                        6583.0
                                                                     99449.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
             19/01/2021
                                               17855 0
                         India
                                   195525 0
                                                        7951 0
                                                                    195525 0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
             20/01/2021
                         India
                                   251280.0
                                              25472.0
                                                       10504.0
                                                                    251280.0
                                                                                       0.0
                                                                                                    NaN
                                                                                                                  NaN
                                                                                                                                 NaN
          5 rows × 24 columns
In [15]:
          first dose = df.groupby('State')[['First Dose Administered']].sum()
          first_dose.head()
                                       First Dose Administered
                                 State
          Andaman and Nicobar Islands
                                                 6.091235e+07
                       Andhra Pradesh
                                                 1.277347e+09
                    Arunachal Pradesh
                                                 9.349147e+07
                               Assam
                                                 6 300867e+08
                                Bihar
                                                 1.514989e+09
In [16]:
          first_dose = df.groupby('State')[['Second Dose Administered']].sum()
          first dose.head()
                                       Second Dose Administered
                                 State
          Andaman and Nicobar Islands
                                                   1.476109e+07
                       Andhra Pradesh
                                                   3 694601e+08
                    Arunachal Pradesh
                                                   2.257485e+07
                                                    1.414313e+08
                               Assam
                                Bihar
                                                   2.814331e+08
In [17]: male = df["Male(Individuals Vaccinated)"].sum()
          print("The Total Number of Male Individuals Vaccinated are :", int(male))
         The Total Number of Male Individuals Vaccinated are: 7138698858
In [18]: female = df["Female(Individuals Vaccinated)"].sum()
          print("The Total Number of Female Individuals Vaccinated are :", int(female))
         The Total Number of Female Individuals Vaccinated are: 6321628736
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata is