EMCON Technologies.

DANSIS 2007 New Trends in CFD

OpenFOAM and STAR-CD

Integration, Interoperability and Symbiosis

Dr. Mark Olesen

Overview

- Choosing a CFD code
 - Motivation
 - Costs
 - Concerns
- Phase-In
 - Requirements: solver, workflow
 - Interoperability
- Test Cases
 - with/without porosity
- Summary
- STAR-CD application example (Time permitting)
 - DPF, Vaporizer

Company Information

- OEM emission technology light and commercial vehicles
 - \$3 billion business, 19 countries, 7,500 employees
 - privately owned One Equity Partners (JPMorgan Chase & Co)
- Simulation in Augsburg (Europe/Asia Headquarters)
 - Acoustics, CFD, FEA
 - 40-60 cpu Linux cluster Grid Engine
 - abaqus, GT-Power, NASTRAN, OpenFOAM, RadTherm, STAR-CD
 - HyperMesh, ICEM, pro-STAR

EMCON Technologies_® _

Our Motivation for trying OpenFOAM

- Geometry Optimization
 - Potentially <u>many</u> geometries (> 500 per study)
 - Commercial licenses too prohibitive
- Reduce (or limit) long-term license costs
 - additional calculation capacity
- Alternative
 - Capabilities
 - Supplier

EMCON Technologies __

Choosing a CFD code

- Cost
 - Licenses, support, infrastructure
- Capability
 - chemistry, sprays, moving mesh, turbulence models, etc.
- Flexibility
 - Bending the code to do what you need
 - Access to fields, operators, data structures, etc.
 - Avoiding vendor lock-in
- Usability
 - Robustness, friendliness, performance

Costs

- CFX, Fluent, STAR-CD, etc.
 - yearly license costs
 - advanced budget planning
 - licenses > 2-4 hardware costs †
- OpenFOAM
 - support only
 - unlimited usage
 - better utilization of cluster capacity
- Increase capacity
- Use all cpu cores

† ignoring amortization, discounts, etc.

EMCON Technologies_®

Replace my entire CFD program?

EMCON Technologies. _

Quick Checklist (1)

OpenFOAM

- support directly from developers
- fast problem resolution
- can customize to suit requirements
- can (must) change the source code

STAR-CD

- existing knowledge base, customer acceptance
- many models are ready to go (and should likely work)
- GUI for most settings
- pro-STAR mesh manipulation

Quick Checklist (2) – Pre/Post-Processing

- OpenFOAM
 - mesh manipulation
 - command-line
 - boundary identification
 - autoPatch (command-line), patchTool (GUI)
 - solver settings
 - FoamX: Java + CORBA → mostly useless
 - text editor (or scripting)
 - Post-Processing
 - EnSight, paraview, etc.
- STAR-CD pro-STAR for all the above
 - use it for OpenFOAM as well

Favorite

Primary Variables

Relaxation and Solver Parameters

Status

Go Fwd

Differencing

Nav

CENTER

Create and Import Geometry

Select Analysis Features

Create and Import Grids

EMCON Technologies_®

STAR-CD – GUI and Manual

- relax,0.7,0.3,0.7,0.95,1,1,1,,,,,
- switch 50 on → CASENAME.ctrl

\$ cp CASENAME.ctrl CASENAME_0001/

EMCON Technologies. _

OpenFOAM – Manual

system/fvSolution

- constant/turbulenceProperties
 - w/o 'include' directive

```
turbulenceModel kEpsilon;
turbulence
                on;
kEpsilonCoeffs
                    Cmu [0 0 0 0 0 0 0] 0.09;
    Cmu
                    C1 [0 0 0 0 0 0 0] 1.44;
                    C2 [0 0 0 0 0 0 0] 1.92;
    C2.
   C3
                    C3 [0 0 0 0 0 0 0] -0.33;
   alphah
                    alphah [0 0 0 0 0 0 0] 1;
   alphak
                    alphak [0 0 0 0 0 0 0] 1;
                    alphaEps [0 0 0 0 0 0 0] 0.76923;
    alphaEps
```

- All registry objects → readIfModified()
- Same setup:
 - /bin/sh, Perl, CVS, etc

OpenFOAM – Manual *is* **sometimes better**

- constant/
 - polyMesh/
 - thermophysicalProperties
 - turbulenceProperties
- system/
 - controlDict
 - fvSchemes
 - fvSolution
- Initial and boundary conditions:
 - 0/
 - T, U, epsilon, k, p
- Results:
 - 1.25e-5/, 100/, etc
 - T, U, epsilon, k, p, rho, Ma, mut, yPlus, etc.

OpenFOAM – Concept

- C++ toolkit for building CFD solvers
- Modular, Object-Oriented
 - define a solver for a particular task
 - cf. monolithic with many if's and switches
- Abstract
 - mathematical operators:
 - eg, div(), grad(), laplacian()
- Open, Extensible
- Not just for freaks
 - Define a particular solver once and keep reusing it

OpenFOAM – Phase-In (1)

- Introduce OpenFOAM alongside commercial code
 - Free download
 - Learning by doing (no time limit)
- Mix and match
 - Find synergies
 - Pick the best (favourite) features from each
- New capabilities
- New flexibility
 - See where it goes

EMCON Technologies_® _

OpenFOAM – Phase-In (2)

- Short-Term
 - OpenFOAM for standard CCC calculations
 - Integrate in standard workflow
- Middle-Term
 - Geometry Optimization
 - More Complex Phenomena
 - Reacting Flow, Spray, DPF, etc
- Long-Term
 - Open-ended
 - General toolkit for miscellanea

Workflow Requirements

- 1. Import of STAR-CD mesh files
- 2. Export of OpenFOAM mesh files
- 3. Export of OpenFOAM results
 - EnSight
 - pro-STAR (optional)

EMCON Technologies _

Solver Requirements (1)

- Standard Solver
 - U, p, T, k/ε
 - rho(p,T), Ma < 1.3
 - steady-state (SIMPLE)
 - possibly transient SIMPLE open
- Anisotropic Porosity Model
 - local coordinate system
 - Darcy / Forchheimer
 - cell zone specific
- Support costs
 - ca. 36 hours

$$-\frac{\Delta P}{\Delta L} = D \,\mu |V| + F \,\frac{\rho}{2} \,V^2$$

Solver Requirements (2)

- Boundary Conditions
 - inlets integral
 - constant massflow, normal to inlet could contain swirl
 - turbulent intensity and length scale
 - outlets pressure
- Extra STAR-CD features
 - Baffles
 - as slip/no-slip walls
 - as porous flow resistances open
- Integral boundary conditions and baffles
 - implemented w/o support

Interoperability – Library / Utilities

- Library Ingredients
 - ccmReader, ccmWriter
 - polyMesh ←→ CCM file
 - starMeshReader, starMeshWriter
 - polyMesh ←→ .cel/.vrt/.bnd files
 - ensightFile, ensightParts, etc.
 - polyMesh → EnSight files
 - polyDualMesh
 - dualize polyMesh → polyMesh

- Utilities
 - ccmToFoam, foamToCcm
 - star4ToFoam, foamMeshToStar
 - foam(Zone)ToEnsight
 - ccmToEnsight
 - CCM file
 - → EnSight files
 - starPolyDualMesh
 - .cel/.vrt/.bnd files
 - → polyMesh
 - → dualize polyMesh
 - → .cel/.vrt/.bnd files

EMCON Technologies_®

Interoperability – Mesh Sources

EMCON Technologies_®

Interoperability – Data Formats

Simple "Hello World" test case

- Anonymous geometry
 - blockMesh for simple (compact) description
- Usual cylinder blowdown:

- 1000 1300 K
- k/epsilon

 $L_2=500$ mm

112k cells @ 2.5mm

EMCON Technologies_® _

Solver parameters

- STAR-CD
 - SIMPLE, UD
 - k/epsilon std
 - AMG, 1e-6, double
 - relax
 - U=0.7, p=0.3
 - k/eps=0.7, h=0.95

- OpenFOAM
 - SIMPLEC, UD
 - k/epsilon std
 - GAMG, 1e-7, double
 - relax
 - U=0.9, p=1
 - k/eps=0.9, h=0.95
 - rhoSimplecFoam
 - details (ask Henry Weller)

EMCON Technologies_®

Convergence – STAR-CD

EMCON Technologies_®

Convergence – OpenFOAM

EMCON Technologies_® ____

Similar results, but ...

(mid-plane)	STAR-CD		OpenFOAM	
U [m/s]	max	min	max	min
0.25	383	130	387	88
0.375	530	189	541	138
0.50	617	231	643	181
0.625	716	250	685	205
Ма				
0.25	0.62	0.20	0.62	0.14
0.375	0.88	0.30	0.91	0.22
0.50	1.06	0.36	1.12	0.30
0.625	1.16	0.37	1.21	0.33

(mid-plane)	STAR-CD		OpenFOAM	
T [K]	max	min	max	min
0.25	1017	948	1013	939
0.375	1029	894	1023	876
0.50	1034	851	1028	817
0.625	1200	946	1030	785
Ptotal [mbar]	in	dP	in	dP
0.25	1323	92	1327	98
0.375	1602	214	1600	219
0.50	1987	397	1964	388
0.625	2248	323	2395	592

EMCON Technologies_® _

simpleCCC Test Case

- 165 k cells
- ICEM/Hexa mesh
 - inlet
 - 540-900 kg/h, 1200K
 - 10% / 5mm turb.
 - outlet
 - 1.45bar

- 400/4 ceramic
 - $Darcy = 3.7e+7 1/m^2$
 - Forchheimer = 20 1/m

EMCON Technologies_® _

Solver parameters

- STAR-CD
 - SIMPLE, UD
 - k/epsilon std & RNG
 - AMG, double
 - convergence
 - 1e-4
 - relax
 - U=0.7, p=0.3
 - k/eps=0.7, h=0.95
 - porosity via user Fortran

- OpenFOAM
 - SIMPLE, UD
 - k/epsilon std & RNG
 - GAMG, double
 - convergence
 - -1e-4
 - relax
 - U=n/a, p=0.3
 - k/eps=0.7, h=0.95
 - rhoImplicitPorousSimpleFoam

STAR-CD - 0.15 kg/s

OpenFOAM - 0.15 kg/s

STAR-CD

OpenFOAM

Convergence – STAR-CD (8 cpu)

standard

RNG

Convergence – OpenFOAM (8 cpu)

standard

RNG

Back-Pressure – 0.15 kg/s RNG

- STAR-CD
 - a-b = 32 mbar
 - b-c = 96 mbar
 - c-d = 13 mbar
 - Total = 141 mbar

- OpenFOAM
 - a-b = 35 mbar
 - b-c = 97 mbar
 - c-d = 14 mbar
 - Total = 146 mbar

Summary (1)

- OpenFOAM and STAR-CD Integration
 - mesh I/O
 - results I/O
- Solvers
 - 'similar' speed and results
- OpenFOAM Libraries
 - Extensive
 - Open
 - Readable

EMCON Technologies_® _

Summary (2)

- OpenFOAM at your company?
 - interoperability
 - solver capabilities
 - OpenFOAM <u>and</u> commercial
- OpenFOAM freedom
 - use if/when desired
 - alone or parallel to existing code
 - 'on-demand' computing
 - no lock-in
 - freedom in the future (GNU General Public License)
- May the best code(s) win!