MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 5 Morning: Basic Exercises

Lefschetz linear algebra

For a Soergel bimodule B, let \overline{B} denote $B \otimes_R \mathbb{R}$ be the *right quotient*. For example, $\overline{BS(\underline{w})}$ has a basis over \mathbb{R} given by 01-sequences. Just as $BS(\underline{w})$ has an intersection form valued in R, so too does $\overline{BS(\underline{w})}$ have an intersection form valued in \mathbb{R} .

Let $\rho \in \mathfrak{h}^*$ satisfy $\partial_s(\rho) = 1$ for all $s \in S$. For example, if $S = \{s\}$, then $\rho = \frac{\alpha_s}{2}$ will work. If $S = \{s, t\}$ and $m_{st} = 3$ then $\rho = \alpha_s + \alpha_t$ will work.

1. The endomorphism C of C of the vector space C of C of

Now let L_0 be the degree 2 endomorphism of $\overline{B_sB_s}$ given by left multiplication by α_s . What is $L_0^2(c_{\text{bot}})$?

2. More generally, consider $\overline{(B_sB_s)}$, with the Lefschetz operator

$$L_{a,b} := a\rho + b\rho$$

for some $a, b \in \mathbb{R}$. For which a, b does the hard Lefschetz property hold? For which a, b do the Hodge–Riemann bilinear relations hold? For which a, b does (HR) hold with the opposite signatures?

3. Now we work with $\overline{BS(sts)}$ when $m_{st}=3$. Let L be the degree 2 endomorphism of $\overline{B_sB_tB_s}$ given by left multiplication by ρ .

What is $L^3(c_{\text{bot}})$? What is $\langle c_{\text{bot}}, L^3(c_{\text{bot}}) \rangle$? Find a basis for $\overline{B_s B_t B_s}^{-1}$ (i.e. the elements in degree -1) in the kernel of L^2 . Are they orthogonal to $L^2(c_{\text{bot}})$ under the intersection form? Show that the form $(v, w) = \langle v, Lw \rangle$ on this orthogonal subspace of $\overline{B_s B_t B_s}^{-1}$ is negative definite.

Bonus problem: what does the picture look like when restricted to the the (images in $\overline{BS(sts)}$) of the summand $B_s \stackrel{\oplus}{\subset} B_s B_t B_s$? What does it look like when restricted to the summand $B_{sts} \stackrel{\oplus}{\subset} B_s B_t B_s$?

- **4.** Let (V, L_V) and (W, L_W) be Lefschetz spaces, i.e. graded vector spaces equipped with a nondegenerate graded bilinear form and a Lefschetz operator. Suppose that $\sigma: V \to W(1)$ is a vector space map of degree +1, satisfying
 - $\sigma L_V = L_W \sigma$,
 - $\langle v, L_V v' \rangle_V = \langle \sigma v, \sigma v' \rangle_W$,
 - σ is injective from negative degrees.

Suppose that (W, L_W) has (HR).

- a) Prove that (V, L_V) has (hL). (Hint: There are two cases, for $v \in V$ of negative degree. Either σv is primitive, or σv is not primitive.)
- b) Are there some reasonable extra conditions which would imply that σ sends primitives (of strictly negative degree) to primitives?

- c) What extra conditions would guarantee that (V, L_V) has (HR), except in degree 0?
- 5. a) Let (V, L_V) and (W, L_W) be Lefschetz spaces, and suppose that $\sigma: V \to W(-d)$ is a vector space map of degree -d, satisfying $\sigma L_V = L_W \sigma$. When d > 0, prove that the Lefschetz form on W, restricted to the image of σ , is zero.
 - b) Deduce that the global intersection form on $\overline{B_sB_s}$, restricted to the (canonical) summand $\overline{B_s}(1)$, is zero.
 - c) By contrast, show that the global intersection form need not restrict to zero on a summand of the form $\overline{B_s}(-1)$. (This summand is non-canonical, so there are multiple choices of inclusion map.)
- 6. a) Let C be a finite dimensional graded algebra, and P a (non-graded) projective (resp. simple) module. Show that P admits a graded lift.
 - b) Show that $\overline{B_x}$ is indecomposable as a graded R-module if and only if it is indecomposable as an ungraded R-module.

Category O

These questions are entirely about category \mathcal{O} for $U(\mathfrak{sl}_2)$. The algebra $U(\mathfrak{sl}_2)$ is generated by operators e,h,f with ef-fe=h, he-eh=2e, hf-fh=-2f. Every representation in \mathcal{O} will be weight, i.e. $V=\oplus V_k,\ k\in\mathbb{C}$, where $v\in V_k$ means that hv=kv. Such a vector v is called a weight vector of weight k.

- 7. Fix $\lambda \in \mathbb{C}$. Let v_+ satisfy $hv_+ = \lambda v_+$ and $ev_+ = 0$. Then the Verma module $\Delta(\lambda)$ is freely generated by v_+ under this condition. In other words, $\Delta(\lambda)$ has a basis $\{f^kv_+\}$ for $k \geq 0$.
 - a) Is this a basis of weight vectors? What are the weights?
 - b) Why should e send V_k to V_{k+2} for any weight representation V?
 - c) Compute $e(f^k v_+)$ in this basis. Compute $f(f^k v_+)$ in this basis.
 - d) Repeat this computation for the basis $\{f^{(k)}v_+\}$, where $f^{(k)}=\frac{f^k}{k!}$.
- 8. Continuing the previous question.
 - a) Prove that there is a map $\Delta(\mu) \to \Delta(\lambda)$ if and only if $\Delta(\lambda)$ has a weight vector x of weight μ such that ex = 0.
 - b) For which k is $f^k v_+$ such a weight vector?
 - c) Conclude that there is a map $\Delta(\mu) \to \Delta(\lambda)$ if and only if either $\mu = \lambda$, or $\lambda \in \mathbb{Z}_{\geq 0}$ and $\mu = -\lambda 2$.
- **9.** The operator $c = fe + h^2 + 2h$ is called the Casimir element. It lives in the center of $U(\mathfrak{sl}_2)$.
 - a) Compute cv_+ inside $\Delta(\lambda)$.
 - b) When $\mu = -\lambda 2$, deduce from this computation that the central characters of $\Delta(\lambda)$ and $\Delta(\mu)$ agree on c.
 - c) When $\mu = -\lambda 2$ and $\lambda \in \mathbb{Z}_{\geq 0}$, deduce using the previous exercise that the central characters of $\Delta(\lambda)$ and $\Delta(\mu)$ agree.
 - d) (Extra credit) Using only the knowledge that $\chi_{\lambda}(z) = \chi_{\mu}(z)$ when $\mu = -\lambda 2$ and $\lambda \in \mathbb{Z}_{>0}$, can you deduce that $\chi_{\lambda}(z) = \chi_{\mu}(z)$ when $\mu = -\lambda 2$ for all $\lambda \in \mathbb{C}$?
- **10.** The goal of this exercise is to study an object of category \mathcal{O} on which the center only acts by generalized eigenvalues. Let $V = \Delta(-1) \otimes \mathbb{C}^2$. More precisely, let V denote the vector space with basis $\{(f^k v_+) \otimes \uparrow\} \cup \{(f^k v_+) \otimes \downarrow\}$. On the first tensor factor, \mathfrak{sl}_2 acts as on $\Delta(-1)$. On the second tensor factor, \uparrow has weight +1, \downarrow has weight -1, and $e(\downarrow) = \uparrow$, $e(\uparrow) = 0$, $f(\uparrow) = \downarrow$, $f(\downarrow) = 0$. Finally, on a pure tensor we have $e(a \otimes b) = ea \otimes b + a \otimes eb$, and similarly for h and f.
 - a) Prove that if a and b are weight vectors, then so is $a \otimes b$. What is its weight?
 - b) Compute how e and f and h act on the basis of V.
 - c) Find a vector x of weight 0 with ex = 0, giving a map $\Delta(0) \to V$. Show the map is injective.
 - d) Find a vector \bar{y} in the quotient $V/\Delta(0)$, of weight -2, with $e\bar{y} = 0$. Show that this gives an isomorphism from $\Delta(-2)$ to the quotient. Thus V has a filtration by Verma modules.
 - e) Does \bar{y} lift to an element $y \in V$ with ey = 0?
 - f) Consider the action of c on the -2 weight space of V. Prove that c acts by a nontrivial Jordan block. (Why did you know it acted by a Jordan block in the first place?)