genomepy: Genes and Genomes at your fingertips

This manuscript (<u>permalink</u>) was automatically generated from <u>vanheeringen-lab/genomepy manuscript@79acf58</u> on July 9, 2022.

Authors

- Siebren Frölich
 - © 0000-0001-6925-8446 · ♥ siebrenf

Department of Molecular Developmental Biology, Radboud University

- Maarten van der Sande
 - D 0000-0001-7803-1526 · ☐ Maarten-vd-Sande · ☑ MaartenvdSande

Department of Molecular Developmental Biology, Radboud University

- Simon van Heeringen
 - © 0000-0002-0411-3219 · ♥ simonvh · ♥ svheeringen

Department of Molecular Developmental Biology, Radboud University

Abstract

Analyzing functional genomics data, including ATAC-, ChIP- and RNA-sequencing, requires genomic data such as a genome assembly and gene annotations. These resources can generally be retrieved from multiple organizations, at multiple versions, and multiple processing methods. Most bioinformatic workflows require the user to supply this genomic data manually, which can be a tedious and error-prone process.

Here we present genomepy, which can search, download, and preprocess the right genomic data for your analysis. Genomepy can search genomic data on GENCODE, Ensembl, UCSC and NCBI, and compare available gene annotations, to enable an informed decision. The selected genome and gene annotation can be downloaded (from anywhere) and preprocessed with sensible, yet controllable, defaults. Additional supporting data can be automatically generated, such as aligner indexes, genome metadata and blacklists. These functionalities are available on command line interface, aimed at ease of use and integration in automated pipelines, with extended functionality on the Python application programming interface.

Introduction

Data analysis is increasingly important in biological research. Whether you are analyzing gene expression in two samples or protein binding motifs in genomic atlases, you will need external information such as a reference genome or a gene annotation. For these types of data, there are three major providers: Ensembl [1], UCSC [2] and NCBI [3], and many model-system specific providers, such as GENCODE [4], ZFIN [5], FlyBase [6], WormBase [7], Xenbase [8] and more. Providers have different approaches to compiling genome assemblies and gene annotations, which effect formats, format compliance, naming, data quality, available versions and release cycle. These differences significantly impact compatibility with research [9], tools and (data based on) other genomic data.

You could try to find genomic data yourself, but there are many options with no clear metric for the "best" one. Ensembl, UCSC and NCBI each have FTP archives, web portals, and REST APIs, which you can use to search their individual databases. Alternatively, there are several tools that can be used to access some of these databases programmatically, such as ncbi-genome-download [10] and ucsc-genomes-downloader [11]. However, none of these can search, compare or download from all major genome providers data. Furthermore, downloading and processing genomic data manually can be tedious, error-prone, and poorly reproducible. Although the latter could be remedied by a data management tool, such as iGenomes [12], refGenie [13] or Go Get Data [14], data managers still require the user to add new data manually.

We have developed genomepy to 1) find genomic data on major providers, 2) compare gene annotations, 3) select the genomic data best suited to your analysis and 4) provide a suite of functions to peruse and manipulate the data. Selected data can be downloaded from anywhere, and is processed automatically. To ensure reproducibility, data sources and processing steps are documented, and can be enhanced further by using a data manager. Genomic data can be loaded into genomepy, which utilizes and extends on packages including pyfaidx [15], pandas [16] and MyGene.info [17] to rapidly work with gene and genome sequences and metadata. Similarly, genomepy has been incorporated into other packages, such as pybedtools [18] and CellOracle [19]. Genomepy can be used on command line and though the (fully documented) Python API, for a one-time analysis or integration in pipelines and workflow managers.

Features of genomepy

The key features of genomepy are 1) providing an overview of available assemblies with the search function, 2) download and processing of a selected assembly, with the install function and 3) utilizing assembly data using the Python API.

The search function queries the databases of GENCODE, Ensembl, UCSC and NCBI (caching the metadata), for text, taxonomy identifiers or assembly accession identifiers. The input type is automatically recognized and used to find assemblies that have the text in the genome names or various description fields, matches the taxonomy identifier or (partially) matches the assembly accession. The output of the search function is a table with rows of metadata for each assembly found. The metadata contains the assembly name and accession, taxonomy identifier, and indicates whether a gene annotation can be downloaded (or which of the four UCSC annotations) (see fig. 1a). Snippets of available gene annotation(s) can be inspected with the annotation function (fig. 1b).

```
$ genomepy search GRCh38
              provider accession
                                          tax id annotation species
name
        other_info
                                                   nrek
                                                               <- UCSC
        options (see help)
GRCh38
              GENCODE
                        GCA_000001405.15
                                                               Homo sapiens
                                            9606
        GENCODE annotation + UCSC genome
              Ensembl
                        GCA_000001405.28
                                                               Homo sapiens
GRCh38.p13
                                            9606
        2014-01-Ensembl/2021-08
              UCSC
                        GCA_000001405.15
hg38
                                            9606
                                                      / X /
                                                               Homo sapiens
        Dec. 2013 (GRCh38/hg38)
GRCh38
              NCBI
                        GCF_000001405.26
                                            9606
                                                               Homo sapiens
        Genome Reference Consortium
Use name for genomepy install
```

```
$ genomepy install --annotation GRCh38.p13
$ ls -1 ~/.local/share/genomes/GRCh38.p13
GRCh38.p13.fa
GRCh38.p13.fa.fai
GRCh38.p13.gaps.bed
GRCh38.p13.annotation.bed
GRCh38.p13.annotation.gtf
assembly_report.txt
README.txt
index/
```

An assembly name can be passed to the <code>install</code> function (fig. 1c). The genome FASTA file is downloaded with the desired sequence masking level [20,21] and alternate sequences (softmasked and none by default, respectively). Alternate sequences to reflect biological diversity and are often contained in reference assemblies. During sequence alignment however, similar reference sequences result in multiple alignment, leading to loss of data (as discussed in [22]). Additional filters may be passed to either include or exclude contigs (chromosomes, scaffolds, etc.) by name or regex pattern. Once processed, a genome index is generated using pyfaidx [15], as well as contig sizes and contig gap sizes.

Gene annotations come in a variety of recognized formats (GFF3, GTF, BED12). The install function will download the most descriptive format available, to output the commonly used GTF and BED12 formats. Contig names of the genome and gene annotation sometimes mismatch, which makes them incompatible with tools such as splice-aware aligners. Therefore, genomepy will attempt to match the contig names of the gene annotations to those used in the genome FASTA.

The install function can be extended with postprocessing steps via plugins. The options can be inspected and toggled with the plugin function. Briefly, the blacklist plugin downloads blacklists by the Kundaje lab [23] for the supported genomes. Other plugins support the generation of aligner indexes, including DNA aligner indexes for Bowtie2 [24], BWA [25], GMAP [26] or Minimap2 [27], and splice-aware aligners such as STAR [28] and HISAT2 [29].

Assemblies not present on the major providers can be processed similarly by supplying the URLs or file paths to the <code>install</code> function. For data provenance and reproducibility, a README file is generated during the installation process with time, source files, processing steps, and filtered contigs.

These features are available on both the command line interface and Python API. Additional features are available on the Python API, focussed around two classes. The Genome class can be used to extract exact or random sequences from the FASTA, filter the FASTA and list the contigs, contig sizes and contig gaps. The Annotation class can be used to browse and filter the BED12 or GTF files as pandas dataframes [16], map gene identifiers to other types using mygene.info [17], map chromosome names to naming schemes of other major providers, and create a dictionary of any two GTF columns or attribute fields (to easily convert gene identifiers to gene names for instance).

Conclusion

Obtaining suitable genomic data is a principal step in any genomics project. With genomepy, finding available assemblies becomes trivial. A genome, with the desired sequence masking, level of biological diversity, and contigs can be obtained with a single command. Gene annotations in GTF and BED12 format, and matching the genome, can similarly be obtained, with further options available in the Python API. Whatever install options you choose are logged, for reproducibly, allowing you to start your analysis with confidence.

Code availability

Genomepy can be installed using Bioconda [30], Pip [31], or directly used in workflows with our Docker [32] <u>image</u> or snakemake [33] <u>wrapper</u>. Code and documentation are available on <u>github</u> and <u>github-pages</u>, respectively.

References

1. **Ensembl 2020**

Andrew D Yates, Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, MRidwan Amode, Irina M Armean, Andrey G Azov, Ruth Bennett, ... Paul Flicek *Nucleic Acids Research* (2019-11-06) https://doi.org/ggqp72

DOI: 10.1093/nar/gkz966 · PMID: 31691826 · PMCID: PMC7145704

2. The Human Genome Browser at UCSC

WJames Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H Pringle, Alan M Zahler, and David Haussler

Genome Research (2002-05-16) https://doi.org/fpf5rm

DOI: 10.1101/gr.229102 · PMID: 12045153 · PMCID: PMC186604

3. The UCSC Table Browser data retrieval tool

D Karolchik

Nucleic Acids Research (2004-01-01) https://doi.org/cspcr2

DOI: <u>10.1093/nar/gkh103</u> · PMID: <u>14681465</u> · PMCID: <u>PMC308837</u>

4. **GENCODE 2021**

Adam Frankish, Mark Diekhans, Irwin Jungreis, Julien Lagarde, Jane E Loveland, Jonathan M Mudge, Cristina Sisu, James C Wright, Joel Armstrong, If Barnes, ... Paul Flicek *Nucleic Acids Research* (2020-12-03) https://doi.org/gp54nf

DOI: 10.1093/nar/gkaa1087 · PMID: 33270111 · PMCID: PMC7778937

5. The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources

Leyla Ruzicka, Douglas G Howe, Sridhar Ramachandran, Sabrina Toro, Ceri E Van Slyke, Yvonne M Bradford, Anne Eagle, David Fashena, Ken Frazer, Patrick Kalita, ... Monte Westerfield *Nucleic Acids Research* (2018-11-08) https://doi.org/ghbvc6

DOI: 10.1093/nar/gky1090 · PMID: 30407545 · PMCID: PMC6323962

6. FlyBase 2.0: the next generation

Jim Thurmond, Joshua L Goodman, Victor B Strelets, Helen Attrill, LSian Gramates, Steven J Marygold, Beverley B Matthews, Gillian Millburn, Giulia Antonazzo, Vitor Trovisco, ... Phillip Baker

Nucleic Acids Research (2018-10-26) https://doi.org/ggbt3f

DOI: 10.1093/nar/gky1003 · PMID: 30364959 · PMCID: PMC6323960

7. WormBase: a modern Model Organism Information Resource

Todd W Harris, Valerio Arnaboldi, Scott Cain, Juancarlos Chan, Wen J Chen, Jaehyoung Cho, Paul Davis, Sibyl Gao, Christian A Grove, Ranjana Kishore, ... Paul W Sternberg

Nucleic Acids Research (2019-10-23) https://doi.org/ggy5zk

DOI: 10.1093/nar/gkz920 · PMID: 31642470 · PMCID: PMC7145598

8. Xenbase: a genomic, epigenomic and transcriptomic model organism database

Kamran Karimi, Joshua D Fortriede, Vaneet S Lotay, Kevin A Burns, Dong Zhou Wang, Malcom E Fisher, Troy J Pells, Christina James-Zorn, Ying Wang, V G Ponferrada, ... Peter D Vize *Nucleic Acids Research* (2018-01-04) http://academic.oup.com/nar/article/46/D1/D861/4559118 DOI: 10.1093/nar/gkx936

9. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification

Shanrong Zhao, Baohong Zhang

BMC Genomics (2015-02-18) https://doi.org/f7bjp4

DOI: 10.1186/s12864-015-1308-8 · PMID: 25765860 · PMCID: PMC4339237

10. GitHub - kblin/ncbi-genome-download: Scripts to download genomes from the NCBI FTP servers

GitHub

https://github.com/kblin/ncbi-genome-download

11. GitHub - LucaCappelletti94/ucsc_genomes_downloader: Python package to quickly download genomes from the UCSC.

GitHub

https://github.com/LucaCappelletti94/ucsc_genomes_downloader

12. **iGenomes** https://support.illumina.com/sequencing/sequencing_software/igenome.html

13. Refgenie: a reference genome resource manager

Michał Stolarczyk, Vincent P Reuter, Jason P Smith, Neal E Magee, Nathan C Sheffield *GigaScience* (2020-01-29) https://doi.org/gqgspw

DOI: <u>10.1093/gigascience/giz149</u> · PMID: <u>31995185</u> · PMCID: <u>PMC6988606</u>

14. Go Get Data (GGD) is a framework that facilitates reproducible access to genomic data

Michael J Cormier, Jonathan R Belyeu, Brent S Pedersen, Joseph Brown, Johannes Köster, Aaron R Quinlan

Nature Communications (2021-04-12) https://doi.org/gk6ffq

DOI: 10.1038/s41467-021-22381-z · PMID: 33846313 · PMCID: PMC8041854

15. Efficient "pythonic" access to FASTA files using pyfaidx

 ${\it Matthew\ D\ Shirley,\ Zhaorong\ Ma,\ Brent\ S\ Pedersen,\ Sarah\ J\ Wheelan}$

PeerJ (2015-04-08) https://doi.org/gfzprs

DOI: 10.7287/peerj.preprints.970v1

16. pandas-dev/pandas: Pandas 1.4.3

Jeff Reback, Jbrockmendel, Wes McKinney, Joris Van Den Bossche, Matthew Roeschke, Tom Augspurger, Simon Hawkins, Phillip Cloud, Gfyoung, Sinhrks, ... Thomas Li

Zenodo (2022-06-23) https://doi.org/gggspz

DOI: 10.5281/zenodo.3509134

17. High-performance web services for querying gene and variant annotation

Jiwen Xin, Adam Mark, Cyrus Afrasiabi, Ginger Tsueng, Moritz Juchler, Nikhil Gopal, Gregory S Stupp, Timothy E Putman, Benjamin J Ainscough, Obi L Griffith, ... Chunlei Wu *Genome Biology* (2016-05-06) https://doi.org/gggsp3

DOI: <u>10.1186/s13059-016-0953-9</u> · PMID: <u>27154141</u> · PMCID: <u>PMC4858870</u>

18. Pybedtools: a flexible Python library for manipulating genomic datasets and annotations

Ryan K Dale, Brent S Pedersen, Aaron R Quinlan

Bioinformatics (2011-09-23) https://doi.org/bps7ds

DOI: <u>10.1093/bioinformatics/btr539</u> · PMID: <u>21949271</u> · PMCID: <u>PMC3232365</u>

19. CellOracle: Dissecting cell identity via network inference and in silico gene perturbation

Kenji Kamimoto, Christy M Hoffmann, Samantha A Morris

Cold Spring Harbor Laboratory (2020-02-17) https://doi.org/ggtbqc

DOI: 10.1101/2020.02.17.947416

20. RepeatMasker http://repeatmasker.org/

21. A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences

Aleksandr Morgulis, EMichael Gertz, Alejandro A Schäffer, Richa Agarwala

Journal of Computational Biology (2006-06) https://doi.org/fqs85g

DOI: 10.1089/cmb.2006.13.1028 · PMID: 16796549

22. Extending reference assembly models

Deanna M Church, Valerie A Schneider, Karyn Meltz Steinberg, Michael C Schatz, Aaron R Quinlan, Chen-Shan Chin, Paul A Kitts, Bronwen Aken, Gabor T Marth, Michael M Hoffman, ... Paul Flicek

Genome Biology (2015-01-24) https://doi.org/gggsqc

DOI: <u>10.1186/s13059-015-0587-3</u> · PMID: <u>25651527</u> · PMCID: <u>PMC4305238</u>

23. The ENCODE Blacklist: Identification of Problematic Regions of the Genome

Haley M Amemiya, Anshul Kundaje, Alan P Boyle

Scientific Reports (2019-06-27) https://doi.org/gf4jsb

DOI: 10.1038/s41598-019-45839-z · PMID: 31249361 · PMCID: PMC6597582

24. Fast gapped-read alignment with Bowtie 2

Ben Langmead, Steven L Salzberg

Nature Methods (2012-03-04) https://doi.org/gd2xzn

DOI: 10.1038/nmeth.1923 · PMID: 22388286 · PMCID: PMC3322381

25. Fast and accurate short read alignment with Burrows-Wheeler transform

H Li, R Durbin

Bioinformatics (2009-05-18) https://doi.org/dgt59i

DOI: 10.1093/bioinformatics/btp324 · PMID: 19451168 · PMCID: PMC2705234

26. GMAP: a genomic mapping and alignment program for mRNA and EST sequences

TD Wu, CK Watanabe

Bioinformatics (2005-02-22) https://doi.org/cjb8q8

DOI: <u>10.1093/bioinformatics/bti310</u> · PMID: <u>15728110</u>

27. Minimap2: pairwise alignment for nucleotide sequences

Heng Li

Bioinformatics (2018-05-10) https://doi.org/gdhbqt

DOI: 10.1093/bioinformatics/bty191 · PMID: 29750242 · PMCID: PMC6137996

28. STAR: ultrafast universal RNA-seq aligner

Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R Gingeras

Bioinformatics (2012-10-25) https://doi.org/f4h523

DOI: 10.1093/bioinformatics/bts635 · PMID: 23104886 · PMCID: PMC3530905

29. HISAT: a fast spliced aligner with low memory requirements

Daehwan Kim, Ben Langmead, Steven L Salzberg

Nature Methods (2015-03-09) https://doi.org/f67q59

DOI: <u>10.1038/nmeth.3317</u> · PMID: <u>25751142</u> · PMCID: <u>PMC4655817</u>

30. Bioconda: sustainable and comprehensive software distribution for the life sciences

Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe, Christopher H Tomkins-Tinch, Renan Valieris, Johannes Köster

Nature Methods (2018-07) https://doi.org/gd2xzp

DOI: 10.1038/s41592-018-0046-7 · PMID: 29967506

31. PyPI · The Python Package Index

PyPI

https://pypi.org/

32. **Docker: Lightweight Linux Containers for Consistent Development and Deployment**Merkel Dirk

Linux Journal (2014-03-01) https://dl.acm.org/doi/10.5555/2600239.2600241
DOI: 10.5555/2600239.2600241

33. Snakemake—a scalable bioinformatics workflow engine

Johannes Köster, Sven Rahmann *Bioinformatics* (2018-05-16) https://doi.org/gmmkfv
DOI: 10.1093/bioinformatics/bty350 · PMID: 29788404