A Legen-wait for it-dary mock

AHAN CHAKRABORTY

March 2025

§1 P1

Find all integers $n \ge 3$ so that , if we list the divisors of n!, including 1 and itself, in increasing order then we have

$$d_2 - d_1 \le d_3 - d_2 \le \dots \le d_k - d_{k-1}$$

.

§2 P2

(a) Determine the number of permutations $a_1, a_2, ... a_{2025}$ of the numbers $\{1, 2, ... 2025\}$ for which $|a_i - i|$ is constant for all positive integer i.

(b) Determine the number of permutations $a_1, a_2, ... a_{2024}$ of the numbers $\{1, 2, ... 2024\}$ for which $|a_i - i|$ is constant for all positive integer i.

(Okay, you should be able to see that you guys are appearing on a lucky year)

§3 P3

Say all the set of natural numbers is partitioned into n(disjoint) AP-s with common differences $r_1, r_2, ... r_n$. Prove that

$$\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} = 1$$

§4 P4

Let $f:[0,1] \to (0,\infty)$ be continuous. Prove the following.

(a) for $n \in \mathbb{N}$, $n \ge 2$ there exists a unique positive real number $a_n \in (0,1)$ such that

$$\int_{0}^{a_{n}} f(t) dt = \frac{1}{n} \int_{0}^{1} f(t) dt$$

(b) Determine whether $\lim_{n\to\infty} na_n$ exists, and if it does find the limit.

§5 P5

Arnab, being bored(you may like to dm him why), is playing a game. He starts with $\{0, 10\}$. At each step he takes a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ with $a_i \in S$, $\forall i$ and if P has an integer root then he includes that root in S. Show that irrespective of how he plays he

cannot expand |S| over a certain value. Find the S at the final case when it cannot be expanded further.

§6 P6

Suppose you have a not necessarily unbiased coin with the probability of showing head p. Define a "run" to be consecutive same outcomes e.g. this sequence of 10 tosses, HHHHTTHTH has 5 runs with "length"s 4,2,1,2,1 respectively. Prove that the expected length of first run is at least that of the second run.

§7 P7

Let k be a natural number. A sequence $a_1, a_2, ..., a_k$ is said to be k-depressed if for all $n \in \mathbb{N}$, a_n = number of distinct elements in the set $\{a_1, a_2, ..., a_{n+k}\}$. Determine, in terms of k, how many k-depressed sequence are there?

§8 P8

Let $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$ Then prove that

$$1 - \frac{1}{2^{2^{n-1}}} < \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} < 1 - \frac{1}{2^{2^n}}$$

In life, you will be challenged in each and every step. This mock is nothing in comparison. So, better suit up! For boosting your confidence here is a legendary specimen of what your attitude should be:

