Prof^a. Myriam Lorena M. N. Cerutti Monitor: Ailton Marchiori Izidoro Junior

LISTA UNIDADE 2 - Concentração, Velocidade e Fluxo

1. Determine a massa molar da seguinte mistura gasosa: 5% (molar) de CO, 20% de H_2O , 4% de O_2 e 71% N_2 . Calcule também as frações mássicas das espécies que compõem a mistura. (CREMASCO, 3ed. 2015)

Resposta: 26,173 g/mol; 0,0535; 0,1377; 0,0489; 0,7599

2. Sabendo que as velocidades absolutas das espécies químicas presentes na mistura gasosa de 5 % (mol) de CO, 20 % de H_2O , 4 % de O_2 e 71 % N_2 são:

$$v_{CO,z} = 10 \frac{cm}{s}$$
; $v_{H_2O,z} = 19 \frac{cm}{s}$; $v_{O_2,z} = 13 \frac{cm}{s}$; $v_{N_2,z} = 11 \frac{cm}{s}$

Determine:

- a. Velocidade média molar da mistura
- b. Velocidade média mássica da mistura
- c. Velocidade de difusão do O₂ na mistura tendo como referência a velocidade média molar da mistura
- d. Velocidade de difusão do O2 na mistura tendo como referência a velocidade média mássica da mistura.

(CREMASCO, 3ed. 2015)

Resposta: a) 12,63 cm/s; b) 12,15 cm/s; c) 0,37 cm/s; d) 0,85 cm/s

- 3. Se a mistura gasosa de 5 % de CO, 20 % de H_2O , 4 % de O_2 e 71 % N_2 está a 1 atm e 105 °C, determine:
 - a. Fluxo difusivo molar de O2 na mistura
 - b. Fluxo difusivo mássica de O2 na mistura
 - c. Contribuição do fluxo convectivo molar de O2 na mistura
 - d. Contribuição do fluxo convectivo mássico de O2 na mistura
 - e. Fluxo mássico total de O₂ referenciado a um eixo estacionário
 - f. Fluxo molar total de O₂ referenciado a um eixo estacionário. (CREMASCO, 3ed. 2015)

Resposta: a) 4,78x10⁻⁷ mol/cm²s; b) 3,5x10⁻⁵ g/cm²s; c) 1,63x10⁻⁵ mol/cm²s; d) 5,01x10⁻⁴ g/cm²s e) 5,36x10⁻⁴ g/cm²s; f) 1,635x10⁻⁵ mol/cm²s

4. Calcule as frações molares de cada componente em 100 kg de uma mistura com a seguinte composição mássica:

Componente	% mássica
O ₂	16
CO	4
CO ₂	17
N ₂	63

(Adaptado de BENITEZ, J.; 1ed. 2002)

Resposta: 0,153; 0,044; 0,118; 0,686

5. A composição do ar é, muitas vezes, dada em termos das duas espécies principais na mistura de gases: $y_{02} = 0.21$ e $y_{N2} = 0.79$. Determinar a fração mássica de O_2 e N_2 e o peso molecular médio do ar a 25 °C e a 1 atm. (WELTY et al., 5ed. 2015)

Resposta: 28,8 g/mol; 0,233; 0,768

6. Uma mistura gasosa a 1 atm e 105 °C possui a seguinte composição em % molar:

 $SO_2 = 8 \%$;

 $H_2O = 23 \%$;

 $N_2O = 54 \%$.

E as velocidades absolutas de cada espécie são 20 cm/s, 5 cm/s, 10 cm/s e 8 cm/s, respectivamente. Obtenha:

a. v_{z}

C. $j_{SO_2,Z}$

d. $J_{SO_2,z}$

f. $J_{SO_2,Z}^c$

e. $j_{SO_2,z}^c$ f. (CREMASCO, 3ed. 2015)

Resposta: a) 9,164 cm/s; b) 10,02 cm/s; c) $-6,87x10^{-4}$ g/cm²s; d) $-1,294x10^{-5}$ mol/cm²s; e) 1,512x10⁻³ g/cm²s; f) 2,585x10⁻⁵ mol/cm²s

7. Demonstre:

a. $D_{AB} = D_{BA}$ (para sistemas gasosos)

b. $\vec{n} = \rho \vec{v}$

c. $\vec{N}_A + \vec{N}_B = C\vec{V}$ d. $dw_A = \frac{M_A M_B dx_A}{(x_A M_A + x_B M_B)^2}$ (CREMASCO, 3ed. 2015)

8. Denominando $\vec{j}_A^* = C_A(\vec{v}_A - \vec{v})$, demostre para uma mistura binária que:

$$\vec{J}_A^* = \vec{N}_A - w_A \left(\vec{N}_A + \frac{M_B}{M_A} \vec{N}_B \right)$$

(CREMASCO, 3ed. 2015)

9. A partir de $\vec{J}_1 = C_1(\vec{v}_1 - \vec{V})$, demostre:

a.
$$\vec{J}_1 = \sum_{j=1}^n (y_j \vec{N}_1 - y_1 \vec{N}_j)$$

b. Para uma mistura binária: $\vec{\nabla} y_1 = \sum_{j=2}^{n=2} \frac{1}{CD_{1,j}} (y_1 \vec{N}_j - y_j \vec{N}_1)$

(CREMASCO, 3ed. 2015)