

01 - Clase introductoria

Biomecatrónica – 2023/II

¿Qué es un sistema de control?

 Un <u>sistema</u> es una disposición de componentes físicos conectados o relacionados de tal manera que <u>actúan</u> como una unidad completa

 Un <u>sistema de control</u> es una disposición de componentes físicos conectados o relacionados de tal manera que <u>controlan</u>, <u>dirigen o regulan</u> a sí mismos o a otro sistema

Sistema

Sistema de control

Modelado de bomba de jeringa

Subsistema de la jeringa

$$\frac{Q_o(s)}{\dot{X}_p(s)} = \frac{K_1}{\tau s + 1}$$

Variables generalizadas

Sistema	Eléctrico	Mecánico	Hidráulico
Esfuerzo	Voltaje	Fuerza	Presión
Flujo	Corriente	Velocidad	Caudal

$$i_o(t) = \frac{L}{R} \frac{di(t)}{dt} + i(t)$$

Subsistema electromecánico

$$\frac{\dot{X}_p(s)}{V_a(s)} = \frac{K_2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Motor

$$\frac{\dot{\Theta}_m(s)}{V_a(s)} = \frac{K}{(J_m s + B_m)(L_a s + R_a) + K^2}$$

¿Qué hace la realimentación?

Ventajas de realimentar

- La salida se puede manipular para que siga una trayectoria dada
- Menor sensibilidad a cambios en los parámetros
- Menor sensibilidad a perturbaciones
- Facilidad para alcanzar transientes y estados estacionarios deseados

Desventajas de realimentar

- El sistema se puede desestabilizar
- Pérdida de ganancia
- Requiere de componentes de precisión en el lazo de realimentación

Escuelas de control

Control clásico (40s y 50s)

- Sistemas y especificaciones de rendimiento en el dominio de la frecuencia
- Diseño iterativo mediante ajuste fino (ensayo-error)
- Solo sistemas SISO
- No se garantiza diseño óptimo

Control moderno (60s y 70s)

- Sistemas y especificaciones de rendimiento en el dominio del tiempo
- Sistemas SISO y MIMO
- Leyes de control por lo general óptimas