STAIN SYSTEM MANUAL

Online version of this document: http://dustyroom.com/splatter-system-manual/

Stain System is an asset that allows to add splatter effects like paint, dirt or blood to Unity games. The asset includes scripts, shaders, textures and prefabs as well as demo scenes and presets that show how to use Stain System.

When developing Stain System we tried *more than 10 different ways* to perform a simple task – render as many as possible particles on a surface without overflowing into neighbour spaces. We have come up with a robust and flexible solution which is a combination of two techniques – using **bitmap textures** or a **single mesh** with custom shaders to draw splatters. While this allows to adapt the system to most applications and assures optimal performance, Stain System is not a simple drag-and-drop asset. Using it requires a selecting one of the two rendering methods and in some cases using a provided material on your game assets.

Stain System includes **two major** components that perform the same task of generating and rendering splatters in different ways:

- **Bitmap splatters** use textures to render particles. This approach allows to generate infinite number of splatters without ever slowing down, but it allocates some texture memory in the areas where splatters may be spawned. Here are advantages and disadvantages of this approach:
 - + Infinite number of particles on any platform.
 - + Can be used on moving or static objects.
 - ∘ Currently, only works in 2D.
 - Uses texture memory to generate splatter areas. Amount of memory is discussed in a section below.
 - Paint is not shared among the pre-positioned splatter-receiving areas touch or overlap.
 - - Once splatters are spawned, they cannot be individually removed.
- Mesh splatters use a single dynamic mesh to render particles. This approach
 allows to easily generate lots of particles, but the number of particles is limited.
 That said, this limit is way higher than most (even mobile) games require. Internally,

this approach uses Unity's build-in particle system to generate the mesh because it's the only way to access and modify vertices with zero memory allocation. Here are pros and cons of this approach:

- + Works in 2D, 3D and isometry with a limitation of being planar (doesn't simulate physical behaviour on corners).
- + In addition to the normal alpha blending, it's possible to use multiply blending.
- + Anti-aliasing is possible and does not require any additional set-up.
- + Splatters can be tweened out after a time-out.
- Number of particles is bound by GPU. Normally, it handles well up to 10K particles on old mobiles and more than 20K on desktop.
- - Splatters cannot be moved with dynamic objects.

Once you have decided on the approach that best suits your game, you can follow the instructions in one of the sections below. Note that bitmap and mesh splatters can be mixed together in the same scene.

Note. The Demo Scenes included in the Asset package are represented in both Bitmap and Mesh modes.

Bitmap Splatters

Here is how to use bitmap splatters:

- 1. Drop **Prefabs/BitmapSplatterArea** in your scene and place it over an area where splatters may be spawned. You can resize this object as you like. Duplicate it to cover all such areas, but try to keep them tight since each area is occupying texture memory equal to its size. If the areas where splatters should be visible are not rectangular, the effect can be rendered based on objects behind the area. In this case you should use the
 - **BitmapSplatterAreaSelective** prefab instead of **BitmapSplatterArea**. This also requires setting material of all sprites that are behind the area and can receive splatters to the included **Materials/SpriteSplatterSurface** material. Check out the **Demo2 Platformer (Bitmap particles)** for an example of this case.
- 2. Drop the **Prefabs/SplatterSystemBitmap** into the scene. This object manages all the areas we added in the previous step.
- 3. Create new SplatterSettings object or select an existing one and assign it to the

- **Default Settings** field of the **Splatter Manager** component of **SplatterSystemMesh** Game Object (see screenshot below). Splatter Settings objects are described in detail in a section below.
- 4. To spawn a splatter you need to write code (or use assets such as Playmaker) that calls the Spawn(Vector3 position) method of the Splatter Manager component. You need to pass the position of the desired splat center in world coordinates. Additionally, you may pass a Splatter Settings object, a color, or a direction to override the default settings.

Mesh Splatters

Here is how to use mesh splatters:

- 1. The effect is always rendered only on object that use one of the provided shaders. For convenience, there are also materials that already have the shaders assigned. Here is a quick explanation: Materials/SpriteSplatterSurface is the same material as Sprite-Default, but can display splatter effect. You can use it instead of the standard sprite material in 2D games.Materials/StandardSplatterSurface is the same material as Standard, but can display splatter effect. You can use it instead of the standard material in 3D/isometric games.You should set material of all sprites/objects that can receive splatters to one of the above. Check out the Demo2 Platformer (Mesh particles) for an example of this case.
- 2. Drop the **Prefabs/SplatterSystemMesh** into the scene. This object manages all the splatter particles in the scene.
- Create new SplatterSettings object or select an existing one and assign it to the Default Settings field of the Splatter Manager component of SplatterSystemBitmap Game Object. Splatter Settings objects are described in

- detail in a section below.
- 4. To spawn a splatter you need to write code (or use assets such as Playmaker) that calls the Spawn(Vector3 position) method of the Splatter Manager component. You need to pass the desired position of splat center in world coordinates. Additionally, you may pass a Splatter Settings object, a color, or a direction to override the default settings.

Hint. If you want more splatters at lower resources cost – use the complex texture that already contain the variety of "splatter debris". Use either the ones that come with the Stain System asset, or prepare custom splatter textures. See Example – Click Scene – Presets 2, 8.

Splatter Settings

Splatter Settings is a reusable configuration file that describes how splatters behave and look. To create such file right-click anywhere in the Project window and select **Create -> SplatterSettings**. A new file will appear in your project that can be dropped into the **Default Settings** field of **SplatterSystemBitmap** or **SplatterSystemMesh** or when calling the **Spawn** method on either of these components. Explanation of each parameter is included in the Inspector view of the settings, to view them, check the **Show explanation** box at the bottom of the settings inspector.

Below is the screenshot of the **Splatter Manager** Inspector Panel with **Show Explanations** engaged.

Constant direction	on of splatter in wo	orld coordinates.			
Direction		x 0	Y -1	Z 0	
How random startin	ng positions of bra	nches are.			
Position variance					- 0.4
		n. Particles are placed "Step duration" settin	d on fixed timesteps, so	this is also the me	ean speed of
Speed					0.82
Time in seconds be	tween spawning tw	o particles in a bran	ch.		
Step duration		-0-			- 0.01
Advanced					
			factor that gradually cha will move with constant		
Damping			•		- 0.3
Maximum possi	ble deviation of mo	ve speed from the m	ean value above.		
Speed variance	e		0		- 0.3
		a random angle whe	n spawned.		
Random rotati					
rientation					
	e splatter faces. Ve	rtical is suitable for	splatter on walls and for	2D, whereas hori	zontal is
iitable for floor splat					
Mode		Vertical			
tensity					
Splatters consist of spllatter.	multiple branches	(long lines of partic	les). This value is the me	ean number of bra	nches in each
Branches					— 17
Mean number of pa	rticles in each bran	ıch.			
Branch children			$\overline{}$		- 10.4
Mean scale of partic	cles at which each	branch starts. Scale (of particles in each bran	ch is gradually red	duced to zero
Branch scale					0.6
Advanced					
Maximum possi	ble deviation of bra	anch number from th	e mean value above.		
Branches varia	ance				
				•	4.11
Maximum possi	ble deviation of bra	anch children from th	ne mean value above.		
Branch childre	en variance				
					2.5
Maximum possi	ble deviation of ch	ldren scale from the	mean value above.		
Branch scale v	ariance				
					- 0.1
Minimum size of	f particles at which	branches stop spaw	ning.		
Minimum part					
- Dare	TOTAL STATE				- 0.1
olors					V.I
moves around the o	nbow mode. In this circle.		lculated from the HSV sp	pace, where hue co	ontinuously
Mode		List			

.

Colors		
Multiply colors of overlapping co	olors instead of replacing them.	
Multily blending		
▼ Advanced		
Maximum random value that	will be added to brighness of branch color in HSV space	
Brightness variation		
		0.072
Maximum random value that	will be added to hue of branch color in HSV space.	
Hue variation		
		0.127
Maximum random value that	will be added to saturation of branch color in HSV space	
Saturation variation		
0		0
	nch should become transparent towards end.	
Fade out branches		
Particles		
Shape of small particles that spla	tter consists of.	
Shape	Circle	
	es that can exist at the same time. When this number is e ng is very important for performance. Lower number mea	
Max quantity		5000
Whether the particles should be	removed after some time.	
Fade out		
The Sorting Layer that the splatte	er should draw to.	
Sorting Layer	Default	
Utility		
Show explanations	☑	