Inception Architecture

A 30 Minutes Introduction from Scratch

Shubhra Aich s.aich.72@gmail.com

March 09, 2017

Outline

Architectural Overview

RGB image basics ANN vs CNN

Operations in CNN

Convolution

Pooling

Rectification

Dropout

Breaking Down Convolution

From 5x5 to 3x3

From 3x3 to 3x1 and 1x3

Inception Architecture

Inception modules

Final architecture

RGB image basics

RGB image consists of 3 channels or planes, namely Red, Green and Blue.

We see the combined effect of these channels.

Artifical vs Convolutional NN

Operations in CNN

- Convolution
- Rectification
- Pooling
- Dropout

Convolution ...(1)

Convolution ...(2)

Convolution ...(3)

Convolution ...(4)

Convolution ...(5)

Convolution ...(6)

Equations of Convolution

 w_i = weights of the filter x_i = outputs of the previous layer $z = \sum_i w_i x_i + b = w.x + b \equiv w * x + b$ a = f(z)

f = activation/ rectification / squashing function

Pooling

- Max-pooling.
- Average pooling.

Pooling

- Max-pooling.
- Average pooling.
- ► Min-pooling

Pooling

- Max-pooling.
- Average pooling.
- ► Min-pooling 🧸

Why do we use Convolution and Pooling? ...(1)

CNN combines 3 architectural ideas to deal with shift, scale and distortion.

- Local receptive fields/filters
 - The idea of local filters dates back to Hubel-Wiesel's discovery of locally sensitive, orientation selective neurons in the cat's visual cortex.
 - ▶ It helps to extract elementary visual features, such as edges, corners, end-points etc.
- Shared weights
 - Distortions or shifts of the input causes the position of salient features to vary.
 - ▶ Elementary feature detectors that are useful on one region of the image are likely to be useful across the entire image.
 - ► This knowledge can be applied by forcing a set of units, whose receptive fields are located at different places on the to be identical.
 - ► These features are combined by subsequent layers to detect more meaningful features.

Why do we use Convolution and Pooling? ...(2)

- Sub-sampling/Pooling
 - Once a feature is detected, its exact location becomes less important, only approximate position relative to other features is relevant.
 - ► This precise position is even harmful they vary from image to image.
 - ► The simplest way to reduce this precision is sub-sampling or pooling.

Rectification

- ▶ Linear neuron, y = wx + b
- ► Rectified linear neuron (ReLU), $y = \begin{cases} wx + b, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$
- ► Sigmoid/logistic neuron, $y = \frac{1}{1 + exp(-\alpha(wx+b))}$

Choice of Recitification Functions

- Backpropagation is the most popular learning algorithm for a network comprising real-valued units.
- ► This learning algorithm adjusts the weights in each iteration in proportion to the derivative of the final error function w.r.t. the weights.
- ➤ To facilitate learning, rectification functions are expected to have more or less smooth derivatives.
- ▶ Linear neurons can map only linear input-output relationships.
- Linear neurons are unbounded both below and above.
- Sigmoid activation works well for simple ANN. However, in deeper models like CNN, tiny error-gradients of sigmoid units make learning horrendously slow.

Dropout

- In each iteration of learning, we randomly omit each hidden unit with a prespecified probability.
- Using dropout, for a network comprising single hidden layer with H hidden units, in each iteration, we randomly sample from 2^H different architectures.
- All architectures share weights.
- Dropout prevents overfitting.
- ► In test time, the full network is used with parameter values halved.

Breaking down Convolution ... (1)

► Straightforward 5×5 convolution $M \equiv Multiplication and <math>A \equiv Addition$

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₁	a ₃₂	a ₃₃	<i>a</i> ₃₄	a ₃₅
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅

h ₁₁	h ₁₂	h ₁₃	h ₁₄	h ₁₅
h ₂₁	h ₂₂	h ₂₃	h ₂₄	h ₂₅
h ₃₁	h ₃₂	h ₃₃	h ₃₄	h ₃₅
h ₄₁	h ₄₂	h ₄₃	h ₄₄	h ₄₅
h ₅₁	h ₅₂	h ₅₃	h ₅₄	h ₅₅

 $output_{33} =$

$$a_{11}h_{11} + a_{12}h_{12} + \dots + a_{31}h_{31} + a_{32}h_{32} + \dots + a_{54}h_{54} + a_{55}h_{55}$$

 $\equiv 25M + 24A$

The filter (h_{ij}) will slide over the image (a_{ij}) for each position once totalling 25 times.

So, total number of gross multiplication and addition = 25(25M + 24A) = 625M + 600A

Breaking down Convolution ... (2)

- Breaking down 5 x 5 convolution into 2 consecutive 3 x 3 convolutions
 - ▶ Step 01: Convolving 5×5 matrix with 3×3 filter

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅
a ₅₁	a ₅₂	<i>a</i> 53	<i>a</i> ₅₄	a ₅₅

	h ₁₁	h ₁₂	h ₁₃	
*	h ₂₁	h ₂₂	h ₂₃	=
	h ₃₁	h ₃₂	h ₃₃	

	b_{11}	<i>b</i> ₁₂	b ₁₃	b ₁₄	b ₁₅
	b ₂₁	<i>b</i> ₂₂	b ₂₃	<i>b</i> ₂₄	b ₂₅
=	b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅
	b ₄₁	<i>b</i> ₄₂	b ₄₃	b ₄₄	b ₄₅
	b ₅₁	b ₅₂	b ₅₃	b ₅₄	b ₅₅

$$b_{22} = a_{11}h_{11} + a_{12}h_{12} + \dots + a_{32}h_{32} + a_{33}h_{33}$$

 $\equiv 9M + 8A$

This set of operation is performed 25 times, once for each a_{ij} So, total multiplication + addition in the first step

$$= 25(9M + 8A) = 225M + 200A$$

Breaking down Convolution ... (3)

- Breaking down 5 × 5 convolution into 2 consecutive 3 × 3 convolutions
 - ▶ Step 02: Convolving 3×3 intermediate matrix with another 3×3 filter

b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	
b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	
b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅	
b ₄₁	b ₄₂	b ₄₃	b ₄₄	b ₄₅	
b ₅₁	b ₅₂	b ₅₃	b ₅₄	b ₅₅	

k ₁₁	k ₁₂	k ₁₃
k ₂₁	k ₂₂	k ₂₃
k ₃₁	k ₃₂	k ₃₃

	011	012	013	014	015
	021	022	023	024	025
=	031	032	033	034	035
	041	042	043	044	<i>O</i> 45
	051	<i>o</i> ₅₂	<i>0</i> 53	<i>0</i> 54	055

$$o_{22} = b_{11}k_{11} + b_{12}k_{12} + \dots + b_{32}k_{32} + b_{33}k_{33}$$

 $\equiv 9M + 8A$

Like before, this set of operation is performed 25 times, once for each b_{ij}

So, total multiplication + addition in the first step

$$= 25(9M + 8A) = 225M + 200A$$

Breaking down Convolution ... (4)

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₁	a ₃₂	<i>a</i> 33	<i>a</i> ₃₄	a ₃₅
a ₄₁	a ₄₂	<i>a</i> ₄₃	<i>a</i> 44	<i>a</i> ₄₅
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅

	h ₁₁	h ₁₂	h ₁₃	h ₁₄	h ₁₅
	h ₂₁	h ₂₂	h ₂₃	h ₂₄	h ₂₅
*	h ₃₁	h ₃₂	h ₃₃	h ₃₄	h ₃₅
	h ₄₁	h ₄₂	h ₄₃	h ₄₄	h ₄₅
	h ₅₁	h ₅₂	h ₅₃	h ₅₄	h ₅₅

Computational cost of straightforward 5 × 5 convolution = 625M + 600A.

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅
a ₃₁	a ₃₂	a ₃₃	<i>a</i> ₃₄	a ₃₅
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅

h ₁₁	h ₁₂	h ₁₃	
h ₂₁	h ₂₂	h ₂₃	>
h ₃₁	h ₃₂	h ₃₃	

k	11	k ₁₂	k ₁₃
k	21	k ₂₂	k ₂₃
k	31	k ₃₂	k ₃₃

► Computational cost of 5×5 convolution using consecutive 3×3 convolutions = 450M + 400A.

Breakding down Convolution ... (5)

Figure 1. Mini-network replacing the 5×5 convolutions.

Breakding down Convolution ... (6)

Breakding down 3×3 convolution into 3×1 and 1×3 convolutions (assymetric breakdown).

▶ Let us calculate the average of a 3×3 matrix.

► The average kernel is a separable filter (rank-1 matrix).

Inception Modules ... (1)

Figure 4. Original Inception module as described in [20].

Inception Modules ... (2)

Inception Modules - Final

Complete Architecture

