Определение DMA

DMA, или **прямой доступ к памяти**, представляет собой метод управления обменом данными между основной памятью и контроллерами ввода-вывода без непосредственного участия центрального процессора (ЦП). Этот процесс включает несколько ключевых этапов:

1. Запрос на передачу данных:

- Процессор отправляет запрос модулю DMA для передачи блока данных.
- DMA управляет обменом данных, что позволяет процессору выполнять другие задачи во время передачи.

2. Перенос данных:

- Модуль DMA осуществляет перенос данных между памятью и контроллером вводавывода.
- Прерывание происходит только после завершения передачи всего блока данных, что увеличивает эффективность работы системы.

3. Управление памятью:

 DMA управляет адресами и счетчиками, что позволяет ему эффективно взаимодействовать с памятью и контроллерами.

Преимущества DMA:

- **Увеличение производительности:** Процессор может выполнять другие операции, пока данные передаются, что снижает время ожидания.
- Снижение нагрузки на процессор: Уменьшается количество прерываний, что позволяет процессору сосредоточиться на более важных задачах.

Применение DMA:

• Используется в системах, где требуется высокая скорость передачи данных, таких как видеокарты, звуковые карты и другие устройства ввода-вывода.

Классы защищенности операционных систем

1. Класс «А»:

• Операционные системы общего назначения, предназначенные для работы на стандартных вычислительных устройствах, таких как APM, серверы, смартфоны и планшеты.

- 2. Класс «Б»:
- Встраиваемые операционные системы, которые прошиты в специализированные устройства для выполнения заранее определенных задач.
 - 3. Класс «В»:
- Операционные системы реального времени, которые обеспечивают реагирование на события в рамках заданных временных ограничений.

Связывание адресов

Связывание адресов включает три основных типа: физическое, логическое и виртуальное.

1. Физическое связывание:

- Это процесс, при котором логические адреса, используемые программой, преобразуются в физические адреса в оперативной памяти.
- Физическое связывание происходит на этапе выполнения, когда процессор и операционная система отображают ссылки в коде программы в реальные физические адреса, соответствующие текущему расположению программы в памяти.

2. Логическое связывание:

- Логическое связывание происходит на этапе компиляции, загрузки или выполнения программы.
- На этапе компиляции, если известно точное место размещения процесса в памяти, генерируются физические адреса.
- На этапе загрузки, если информация о размещении программы отсутствует, компилятор создает перемещаемый код.
- На этапе выполнения, если процесс может быть перемещен, связывание откладывается до момента выполнения.

3. Виртуальное связывание:

- Виртуальное связывание используется в системах с виртуальной памятью, где логические адреса преобразуются в физические адреса с помощью таблиц страниц.
- Виртуальные адреса делятся на страницы, которые соответствуют единицам в физической памяти, называемым страничными кадрами. Менеджер памяти преобразует виртуальный адрес в упорядоченную пару (p, d), где p – номер страницы в виртуальной памяти, a d – смещение в рамках страницы.

Средства межпроцессного взаимодействия

Средства межпроцессного взаимодействия можно классифицировать по нескольким категориям, каждая из которых имеет свои особенности и механизмы работы:

1. Разделяемая память:

- Позволяет двум или более процессам совместно использовать область адресного пространства.
- Обеспечивает максимальную возможность обмена информацией и влияние на поведение других процессов, но требует осторожности в использовании.
- Реализуется с помощью обычных языков программирования и специальных системных вызовов для сигнальных и канальных средств.

2. Канальные средства:

- Передача информации осуществляется через линии связи, предоставленные операционной системой.
- Напоминает общение людей по телефону или с помощью записок, с ограниченной пропускной способностью.

3. Сигнальные средства:

- Передают минимальное количество информации (один бит), обычно для извещения процесса о наступлении события.
- Степень воздействия на поведение процесса минимальна, и неправильная реакция может привести к серьезным последствиям.

4. Прямая и непрямая адресация:

- **Прямая адресация:** Взаимодействующие процессы напрямую обмениваются данными, указывая имя или номер процесса, с которым происходит обмен.
- **Непрямая адресация:** Данные помещаются в промежуточный объект, откуда они могут быть извлечены другим процессом.

FIFO как средство межпроцессного взаимодействия

FIFO (First In, First Out) представляет собой механизм межпроцессного взаимодействия, который позволяет процессам обмениваться данными через именованные каналы (ріре). Основные характеристики FIFO включают:

1. Доступность для всех процессов:

- Вход и выход FIFO видимы для всех процессов, что позволяет им взаимодействовать через общий канал.
- FIFO зарегистрирован в операционной системе под определенным именем, что упрощает его использование.

2. Связь между родственными процессами:

- FIFO может использоваться для связи между процессами, которые имеют общего предка, создавшего данный канал связи.
- Это ограничение делает FIFO подходящим для кооперативных процессов, которые влияют на поведение друг друга.

3. Преимущества использования FIFO:

- FIFO позволяет организовать упорядоченный обмен данными, где данные, поступившие первыми, будут обработаны первыми.
- Это упрощает синхронизацию процессов и уменьшает вероятность потери данных.

4. Логическая организация:

• FIFO относится к категории средств обмена информацией, где передача данных происходит через линии связи, предоставленные операционной системой, что напоминает общение людей по телефону.

5. Применение в системах:

 FIFO может быть использован в различных сценариях, включая обмен данными между процессами, работающими на одной или разных вычислительных системах.

Определение прерывания

Прерывание — это механизм, который позволяет процессору временно приостановить выполнение текущей задачи для обработки более приоритетной задачи. Основные аспекты прерываний включают:

1. Процесс обработки прерывания:

- **Приостановка процесса**: Когда происходит прерывание, работа текущего процесса приостанавливается.
- **Сохранение контекста:** Процессор сохраняет состояние выполнения, включая счетчик команд и регистры, в стеке исполняемого процесса.
- **Передача управления:** Управление передается специальному адресу, где находится обработчик прерывания.

2. Обработка прерывания:

- Сохранение контекста: Операционная система сохраняет динамическую часть системного контекста процесса в его PCB (Process Control Block) и переводит процесс в состояние готовности.
- Выполнение действий: Обработчик прерывания выполняет необходимые действия, связанные с возникшим прерыванием.

3. Виды прерываний:

- **Аппаратные прерывания:** Возникают из-за событий, происходящих в аппаратном обеспечении, таких как завершение операции ввода-вывода.
- **Программные прерывания:** Инициируются программным обеспечением, например, при выполнении системных вызовов.

4. Прерывания и DMA:

- Прямой доступ к памяти (DMA): Прерывания также могут быть связаны с модулями DMA, которые управляют обменом данных между основной памятью и контроллерами ввода-вывода, минимизируя нагрузку на процессор.

Определение NTFS

NTFS (New Technology File System) — это файловая система, используемая в операционных системах Windows.

Структура тома:

- Основой структуры тома NTFS является главная таблица файлов (MFT), которая содержит запись для каждого файла тома, включая саму себя.
- Каждая запись MFT имеет фиксированную длину, зависящую от объема диска (1, 2 или 4 Кбайт).
- Файлы идентифицируются номером файла, который определяется позицией файла в MFT.

Физическая организация:

- Поддержка больших файлов и дисков объемом до 264 байт.
- Восстанавливаемость после сбоев и отказов программ и аппаратуры.
- Высокая скорость операций, включая работу с большими дисками.
- Низкий уровень фрагментации.

Безопасность и управление доступом:

 NTFS использует Access Control List (ACL) для управления доступом к файлам и папкам, что позволяет контролировать, какие пользователи и группы имеют доступ к

Самовосстановление:

• Файловая система включает журнал транзакций, который помогает в восстановлении данных после сбоев.

Определение драйвера

Драйвер — это программный модуль, который выполняет различные функции в ОС.

Основные характеристики драйвера:

- Драйвер работает в привилегированном режиме и является частью ядра ОС.
- Он непосредственно управляет внешним устройством, взаимодействуя с его контроллером через команды ввода-вывода компьютера.
- Драйвер обрабатывает прерывания от контроллера устройства
 - Он предоставляет прикладному программисту логически удобный интерфейс для работы с устройством, скрывая низкоуровневые детали управления и организации данных устройства.
 - Драйвер взаимодействует с другими модулями ядра ОС через строго оговоренный интерфейс, который описывает формат передаваемых данных, структуру буферов и способы вызова драйвера.

Функции драйвера:

- 1. Обработка запросов на запись и чтение от программного обеспечения управления устройствами.
- 2. Проверка параметров: Проверка входных параметров запросов и обработка ошибок.
- 3. Инициализация устройства: Инициализация устройства и проверка его статуса.
- 4. Управление энергопотреблением: Управление энергопотреблением устройства.
- 5. Регистрация событий: Регистрация событий в устройстве.
- 6. Выдача команд: Выдача команд устройству и ожидание их выполнения, возможно, в блокированном состоянии до поступления прерывания от устройства.
- 7. Проверка завершения операций: Проверка правильности завершения операции.
- 8. Передача данных: Передача запрошенных данных и статуса завершенной операции.
- 9. Обработка новых запросов: Обработка нового запроса при незавершенном предыдущем запросе (для реентерабельных драйверов).

Определение виртуальной памяти

Виртуальная память - это технология, которая позволяет компьютеру создавать у каждой программы иллюзию большого и непрерывного пространства памяти, даже если

физическая оперативная память (ОЗУ) ограничена. Она также защищает процессы друг от друга, предотвращая ошибки и сбои системы.

Как это работает простыми словами

1. Виртуальные адреса вместо физических

Каждая программа работает с виртуальными адресами - это как собственная карта памяти, которая не связана напрямую с реальными физическими ячейками ОЗУ. Операционная система (ОС) и специальное аппаратное устройство (блок управления памятью) переводят эти виртуальные адреса в реальные физические адреса в памяти компьютера

2. Разделение памяти на страницы и фреймы

Вся память разбивается на маленькие блоки одинакового размера - виртуальная память на *страницы* (обычно 4 или 8 КБ), а физическая память - на *фреймы* такого же размера. ОС следит за соответствием страниц виртуальной памяти и фреймов физической памяти с помощью таблиц страниц

3. Использование файла подкачки (swap)

Если физической памяти не хватает, ОС временно сохраняет неиспользуемые страницы на жёсткий диск в специальный файл подкачки. Это позволяет программам работать с объёмом памяти, который превышает реальный размер ОЗУ. Когда данные снова нужны, они загружаются обратно в ОЗУ

4. Изоляция процессов

Каждому процессу выделяется своё виртуальное адресное пространство, которое не пересекается с другими. Это защищает программы от случайного или злонамеренного доступа к памяти друг друга и предотвращает сбои

5. Оптимизация доступа

Для ускорения преобразования виртуальных адресов в физические используется кэш специальных таблиц - Translation Lookaside Buffer (TLB). Это помогает быстро находить нужные соответствия и ускоряет работу программ

Итог

- Виртуальная память даёт программам больше памяти, чем физически есть в компьютере, за счёт использования жёсткого диска.
- Каждая программа работает в своём изолированном пространстве, что повышает безопасность и стабильность.
- ОС автоматически управляет переносом данных между ОЗУ и диском, делая этот процесс незаметным для пользователя и программиста.