





This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

### PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Application Number

변 호 : 10-2003-0051846

인 :

출 원 년 월 일 Date of Application 2003년 07월 26일

JUL 26, 2003

출 원 Applicant(s) 메덱스젠 주식회사

MEDEXGEN INCORPORATED



2004 년 05 월 04 일

허 챵

**COMMISSIONER** 





# 【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2003.07.26

【발명의 명칭】 생리활성 조절 단백질의 효능 향상 방법 및 그 예시 변이체들

【발명의 영문명칭】 A method of improving efficacy of biological

response-modifying proteins and the example muteins

【출원인】

【명칭】 메덱스젠 주식회사

【출원인코드】 1-2001-030707-8

【대리인】

【성명】 이세진

[대리인코드] 9-2000-000320-8

【포괄위임등록번호】 2002-056122-5

【대리인】

【성명】 김성남

[대리인코드] 9-1998-000150-9

【포괄위임등록번호】 2002-056123-2

【발명자】

【성명의 국문표기】 정용훈

【성명의 영문표기】CHUNG, Yong Hoon【주민등록번호】570720-1009328

【우편번호】 138-170

【주소】 서울특별시 송파구 송파동 삼익아파트 212동 1201호

【국적】 KR

【발명자】

【성명의 국문표기】 전재원

【성명의 영문표기】 JEON, Jae Won

【주민등록번호】 740926-1526410

【우편번호】 143-130

【주소】 서울특별시 광진구 화양동 19-38

【국적】 KR



【발명자】

【성명의 국문표기】

진화섭

【성명의 영문표기】

CHIN, Hwa Sup

【주민등록번호】

770603-1011913

【우편번호】

139-051

【주소】

서울특별시 노원구 월계1동 동신아파트 7동 1007호

【국적】

KR

【미생물기탁】

【기탁기관명】

**KCCM** 

【수탁번호】

KCCM-10500

【수탁일자】

2003.06.09

【미생물기탁】

【기탁기관명】

**KCCM** 

【수탁번호】

KCCM-10501

【수탁일자】

2003.06.09

【핵산염기 및 아미노산 서열목록】

【서열개수】

42

【서열목록의 전자파일】

첨부

【취지】

특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인

이세진

(인) 대리인

김성남 (인)

【수수료】

【기본출원료】

20

면

29,000 원

【가산출원료】

99

면

99,000 원

【우선권주장료】

0

건

0 원

【심사청구료】

0 항

0 원

【합계】

128,000 원

【감면사유】

소기업 (70%감면)

【감면후 수수료】

38,400 원

【첨부서류】

1. 요약서 명세서(도면)\_1통



# 【요약서】

## [요약]

본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체, 이 변이체를 코딩하는 DNA, 이 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터, 이 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포, 이 숙주세포를 배양하고 이의 배양물로부터 상기 단백질 변이체를 분리하는 단계를 포함한 단백질 변이체의 제조방법에 관한 것이다. 또한, 본 발명은 상기단백질 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물에 관한 것이다.

#### 【대표도】

도 1a

#### 【색인어】

생리활성 조절작용, 결합 도메인, 페닐알라닌, 발린, 단백질 변이체





# 【명세서】

# 【발명의 명칭】

생리활성 조절 단백질의 효능 향상 방법 및 그 예시 변이체들(A method of improving efficacy of biological response-modifying proteins and the example muteins)

### 【도면의 간단한 설명】

도 1a는 4-나선 다발 초가계 소속 사이토카인에서 해당 수용체와의 결합에 관여하는 도메인내 아미노산 서열을 비교 나열한 것이고, 도 1b는 인터페론에서 해당 수용체와의 결합에 관여하는 도메인내 아미노산 서열을 비교한 것이다.

도 2는 본 발명에 따른 사이토카인 변이체를 코딩하는 DNA를 위치 지정 돌연변이 (site-directed mutagenesis)를 이용해서 제조하는 과정을 나타낸 개략도이다.

도 3a는 본 발명에 따라 제조된 TPO 변이체의 에스디에스-페이지(SDS-PAGE) 결과(왼쪽 레인부터 마커; 야생형 TPO; TPO-[F46V]; TPO-[F128V]; TPO-[F131V]; TPO-[F141V])를 나타낸 것이고, 도 3b는 본 발명에 따라 제조된 EPO 변이체의 에스디에스-페이지(SDS-PAGE) 결과(왼쪽 레인부터 마커; 야생형 EPO; EPO-[F48V]; EPO-[F138V]; EPO-[F142V]; EPO-[F148V])를 나타낸 것이다.

도 4a는 야생형 TPO 및 본 발명에 따른 TPO 변이체의 TPO 수용체에 대한 결합 친화력을 ELISA assay로 측정한 결과를 나타낸 것이고, 도 4b는 야생형 EPO 및 본 발명에 따른 EPO 변이체의 EPO 수용체에 대한 결합 친화력을 ELISA assay로 측정한 결과를 나타낸 것이다.

도 5a는 야생형 TPO 및 본 발명에 따른 TPO 변이체의 TPO 수용체에 대한 결합 친화력을 SPR 기법으로 측정한 결과를 나타낸 것이고, 도 5b는 사람의 야생형 EPO 및 본 발명에 따른 EPO 변이체의 EPO 수용체에 대한 결합 친화력을 SPR 기법으로 측정한 결과를 나타낸 것이다.







도 6a는 야생형 TPO 및 본 발명에 따른 TPO 변이체의 TPO 수용체에 대한 결합 친화력을 세포유동분석법으로 비교한 결과를 나타낸 것이고, 도 6b는 야생형 EPO 및 본 발명에 따른 EPO 변이체의 EPO 수용체에 대한 결합 친화력을 세포유동분석법으로 비교한 결과를 나타낸 것이다.

도 7a는 야생형 TPO 및 본 발명에 따른 TPO 변이체의 농도에 따른 TF-1/c-Mpl 세포의 증식정도를 나타낸 그래프이고, 도 7b는 야생형 EPO 및 본 발명에 따른 EPO 변이체의 농도에 따른 TF-1 세포 증식정도를 나타낸 그래프이다.

도 8a,8b 및 8c는 각각 본 발명에 따른 TPO 변이체의 농도에 따른 랫트의 체내(in vivo)에서 혈소판, 백혈구, 중성구 세포의 중식정도를 나타낸 그래프이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체에 관한 것으로, 보다 구체적으로, 사람 사이토카인 단백질에서 해당 수용체와 결합하는 알파 나선 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체에 관한 것이다.
- 10> 사람의 질병 중 상당수는 단백질의 결함에 의한 기능 상실 또는 단백질 양의 부족 등으로 인하여 유발되고 있다. 이러한 질병을 치료하기 위해서 사람에게 직접 단백질을 투여하는 방식이 이용되고 있다. 그러나, 이처럼 의약품으로 사용되고 있는 많은 생리활성 단백질들은 대부분 목적한 조직에 도달하여 작용하기 전에 혈청내에서 쉽게 분해되기 때문에 이들 물질을 사용



하는 환자들은 생리활성 단백질이 체내에서 작용을 할 수 있는 일정 수준의 농도를 유지하기 위해 과량 및 찾은 투여를 받아야 하는 등의 문제점이 있었다.

- → 상기 문제점을 해결하기 위한 하나의 접근 방식은 생리활성 조절 단백질을 폴리에틸렌글리콜과 접합시키거나 마이크로캡슐화하는 것이다. 그러나 이들 방법은 1차로 단백질을 미생물로부터 생산 및 정제한 후, 부가반응을 수행하여야 하는 번거로움을 수반하게 된다. 또한 원하지 않는 위치에서 교차연결(cross-linking)이 일어날 수 있으며 최종 생산물의 동질성 (homogeneity)에 문제점이 있을 수 있다.
- 12> 다른 접근 방법은 당쇄화를 이용하는 것이다. 세포 표면 단백질 및 진핵 세포에 의해 생산되는 분비 단백질들은 당쇄화에 의해서 수식(modification)된다. 당쇄화는 단백질의 물리적 성질은 물론, 단백질의 생체 내에서의 안정성 및 기능에도 영향을 미치는 것으로 알려져 있다. 그러나, 당쇄화된 단백질은 당쇄화를 수행할 수 있는 진핵세포를 통해서 제조할 수 있으므로 제조방법이 까다로우며, 목적한 위치에 모두 당쇄화가 이루어진 동질의 최종 생산물을 수득하기 어렵다.
- 13> 아울러, 이러한 종래기술들은 모두 투여 회수로 인한 제반 문제를 개선하는데는 도움이 되었으나 단백질의 생리활성 효능(efficacy)을 높이는 문제는 개선하지 못함으로써 과량투여의 문제를 남기고 있다. 예를 들면, Amgen사로부터 개발된 NESP(미국특허공보 제 6,586,398호)의 경우 혈중 반감기의 개선으로 잦은 투여의 문제는 다소 해결되었으나 효능을 중대시키는데 실패함으로써 여전히 1회 투여량이 과다하여 발생하는 차단항체 생성의 문제는 여전히 남아있는 상태이다.
- 14> 생리활성 단백질의 효능을 향상시키기 위한 접근 방식으로서 야생형 단백질의 일부 아미노산을 돌연변이시켜서 생물학적 활성을 개선시키는 방법이 있다. 이러한 변이체와 관련해서 하기



의 특허문헌들이 개시되어 있다: (1) 미국특허공보 제 5,457,089호-에리스로포이에틴과 이의수용체 간의 결합력을 증진시키기 위해서 에리스로포이에틴의 카르복시 말단을 돌연변이시킨에리스로포이에틴 변이체; (2) 국제특허공보 제 02/077034호-사람에게 투여되었을 때 면역반응을 줄이기 위해서 T-세포 에피토프를 돌연변이시킨 과립구 형성인자 변이체; (3) 국제특허공보제 99/57147호-사람의 성숙한 TPO 단백질의 최소한 7번째 아미노산부터 151번째 아미노산을 포함하는 TPO 단백질에 있어서, 115번째 아미노산인 글루탐산을 리신, 아르기닌 또는 티로신으로 치환한 트롬보포이에틴 변이체; 및 (4) 미국특허공보 제 6,136,563호 및 6,022,711호-18, 22, 25, 26, 29, 65, 168 및 174번째 아미노산의 알라닌으로 치환으로 효능이 증가된 사람 성장 호르몬 변이체.

15> 그러나, 전술한 단백질 변이체는 생체 내에서의 항원성 변화는 고려하지 않고 단지 효능 개선 만을 위해서 만들어진 변이된(altered) 형태이다. 따라서 그 변이의 규모, 정도 및 위치가 사람내에서 항원성을 유발할 가능성이 매우 높다. 일단 사람내에서 항원성을 일으키면 심각한 부작용을 초래하게 된다(Casadevall et al. N. Eng. J. Med. 2002, 346:469).

【발명이 이루고자 하는 기술적 과제】

- 16> 따라서, 본 발명의 목적은 기존의 생리활성 조절작용을 나타내는 단백질의 효능을 개량하여 투여시 생리활성 조절작용의 효과는 극대화하고 차단항체의 생성도 방지할 수 있는 개선된 약 리작용을 가지는 생리활성 조절작용 단백질 변이체 및 이의 제조방법을 제공하는 것이다.
- 17> 한 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체를 제공한다.



- ▷ 다른 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체를 코딩하는 DNA를 제공한다.
- ➤ 또 다른 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터를 제공한다.
- 또 다른 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙 주세포를 제공한다.
- 또 다른 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙 주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리하는 단계를 포함한 단백질 변 이체를 제조하는 방법을 제공한다.
- 22> 또 다른 관점으로서, 본 발명은 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물을 제공한다.





### 【발명의 구성 및 작용】

- 본 발명의 명세서에서 사용된 아미노산 일문자는 생화학 분야에서의 표준 약어 규정에 따라
   다음의 아미노산을 의미한다:
- ≫ A: 알라닌; B: 아스파라긴 또는 아스파트산; C: 시스테인;
- ≫ D: 아스파트산; E: 글루탐산; F: 페닐알라닌;
- 26> G: 글라이신; H: 히스티딘; I: 이소루신; K: 리신; L: 류신;
- 27> M: 메티오닌; N: 아스파라긴; P: 프롤린; Q: 글루타민;
- 28> R: 아르기닌; S: 세린; T: 쓰레오닌; V: 발린;
- 29> W: 트립토팎; Y: 티로신; Z: 글루타민 또는 글루탐산.
- 30> 본 발명의 명세서에 표기되는 "(아미노산일문자)(아미노산위치)(아미노산일문자)"는 주어진 단백질의 해당 아미노산 위치에서 선행 표기된 아미노산이 후행 표기된 아미노산으로 치환된다는 것으로 의미한다. 예를 들면, F48V는 주어진 단백질의 아미노산 잔기 48번에 해당하는 페닐알라닌이 발린으로 치환된다는 것을 가리킨다. 상기 아미노산 위치는 성숙한(mature) 야생형(wild type) 단백질의 N-말단에서부터 번호를 매긴(numbered) 것이다.
- 31> 본 발명의 명세서에서 사용된 용어 "단백질 변이체"는 수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질에 있어서, 상기 수용체, 리간드 또는 기질과의 결합에 관여하는 도메인에 있는 아미노산 중 페닐알라닌을 발린으로 치환하여, 야생형 단백질의 아미 노산 서열과는 다른 아미노산 서열을 가지는 단백질을 말한다. 본 발명에서 단백질 변이체는 편의상 "단백질 명칭-[(아미노산일문자)(아미노산위치)(아미노산일문자)]"로 표기할 수 있다.



예를 들면, 야생형 TPO의 131번째 아미노산인 폐닐알라닌이 발린으로 치환된 TPO 변이체는 TPO-[F131V]로 표기된다.

- 2 본 발명의 명세서에서 "생리활성 조절작용"이란, 다세포로 이루어진 생체내에서 일어나는 여러 가지 생물학적 활성들이 일어나도록 유도하거나, 이들이 유기적으로 연관되도록 조절하거나, 생체가 항상성을 유지하도록 조절하는 것을 말한다.
- ※ 본 발명의 명세서에서 "결합 도메인(또는 결합에 관여하는 도메인)"이란, 수용체, 리간드 또는 기질과 결합하는 기능을 수행하는 단백질의 일부분(즉, 도메인)을 의미하며, 이러한 도메 인은 당업계에 널리 공지되어 있다. 예를 들면, 본 발명의 일실시예에 해당하는 4-나선 다발 소속 사이토카인의 경우는 D-알파 나선구조가, 인터페론의 경우는 A-알파 나선구조가 해당 수 용체와 결합하는 도메인으로 알려져 있다.
- 생 본 발명은 수용체, 리간드 또는 기질에 결합하여 생리활성 조절작용을 나타내는 단백질을 대상으로, 상기 생리활성 조절작용의 효능을 증가시키기 위해서 수용체, 리간드 또는 기질에 대하여 야생형 보다 증가된 소수성 인력(hydrophobic force)으로 결합할 수 있는 단백질 변이체를 제공하고자 하며, 이를 위해서 생리활성 조절작용을 나타내는 단백질의 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환하는 것을 특징으로 한다.
- 35> 페닐알라닌은 방향족의 곁사슬을 가진 상대적으로 비극성인 아미노산으로, 공지된 소수성 지표는 3.0인데 반하여, 발린은 비극성이고 소수성인 지방족 곁사슬을 가진 아미노산으로, 공지된 소수성 지표는 4.0이다. 또한 발린의 크기는 페닐알라닌 보다 작기 때문에 발린으로 치환된 단백질은 해당 수용체, 리간드 또는 기질과 결합하는 포켓(pocket)이 깊어지게 된다.



따라서, 결합 도메인내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질은 소수성 인력이 증가되고 공간적 깊이가 더해짐에 따라 수용체, 리간드 또는 기질과의 결합 친화력은 증가하게 되어, 목적한 생리활성 조절작용의 효능을 증가시킬 수 있을 것이다.

- 6 아울러, 페닐알라닌을 발린으로 치환하는 것은 보존적 치환으로서, 이러한 치환은 단백질의 2 차 또는 3차 구조에 최소한의 영향을 미치기 때문에 단백질의 기능 자체에는 거의 영향을 미치지 않는다(Argos, EMBO J. 1989, Vol.8, p779-85). 더 나아가, 특히 소수성이 높은 영역에 존재하는 페닐알라닌은 단백질 표면으로의 노출정도가 약할 뿐만 아니라 이 아미노산을 발린으로 치환하면 해당 아미노산은 단백질의 표면으로부터 더욱 함몰되게 되어 이러한 치환으로 인한 항체유발 가능성은 더욱 낮아지게 된다. 따라서, 어떠한 단백질이 특유의 생리활성 조절작용을 나타내기 위해서는 먼저 수용체, 리간드 또는 기질과 결합해야만 하며, 이 결합이 강할수록 상기 생리활성 조절작용의 효능(efficacy)을 증가시킬 수 있는 경우에, 이와 관련된 단백질들은 모두 본 발명에 따라 변이될 수 있으며, 본 발명은 이러한 단백질 변이체를 모두 포함한다.
  - ▷ 이러한 페닐알라닌을 발린으로 치환함으로써 결합 친화력이 증대되는 사실은 실제로 사람 자가면역질환에서 NK 세포에서 발현되는 Fc y RIIIa(CD16) 단백질에서 돌연변이의 발견으로 더욱 뒷받침되고 있다. 즉, 사람의 이 수용체 단백질의 아미노산중에서 이 단백질 수용체의 리간드인 항체의 Fc를 인식결합 부위에 존재하는 176번째 아미노산이 페닐알라닌인 사람과 발린인 사람으로 나누어지는데(polymorphism), 이중 페닐알라닌인 사람은 리간드인 항체 Fc부위와 결합력이 약화되어 그 기능을 제대로 못함으로써 SLE(systemic lupus erythematosus)라는 질병에 걸릴 확률이 매우 높아지게 된다는 사실이다(Jianming ₩u et al. J. Clin. Invest. 1997, Vol.100, p1059-70).



본 발명에 따라 변이될 수 있는 단백질은 앞서 주지된 바와 같이 수용체, 리간드 또는 기질과 결합하여 특유의 생리활성 조절작용을 나타낼 수 있는 단백질을 모두 포함한다. 예를 들면, 이에 한정되는 것은 아니지만, 사이토카인, 사이토카인 수용체, 접착 분자(adhesion molecules), 종양 괴사 인자(TNF) 수용체, 효소, 수용체 티로신 키나제, 케모카인 수용체, 기 타 세포 표면 단백질, 가용성 리간드 등이 포함된다. 사이토카인은 이들로 한정되는 것은 아 니지만 CNTF(cytoneurotrophic factor), GRH(growth hormone), IL-1, IL-1Ra(interleukin-1 receptor antagonist), placental lactogen(PL), cardioliphin, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-17, TNF(tumor necrosis factor), TGF(transforming growth factor), IFN(interferon), GM-CSF(granulocyte-monocyte colony stimulating factor), G-CSF(granulocyte colony stimulating factor), EPO(erythropoietin), TPO(thrombopoietin), M-CSF(monocyte colony stimulating factor), LIF(leukemia inhibitory factor), OSM(oncostatin-M), SCF(stem cell factor), HGF(hepatocyte growth factor), FGF(fibroblast growth factor), 및 IGF(insulin-like growth factor) 등을 포함한다. 사이토카인 수용체는 이들로 한정되는 것은 아니지만 성장호르몬 수용체(GHR), IL-13R, IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-15R, TNFR, TGFR, IFNR(예, IFN-γR α-쇄, IFN-γR β-쇄), 인터페론-α R, -β R 및 -γ R, GM-CSFR, G-CSFR, EPOR, cMpl, gp130, Fas(Apo 1) 등 을 포함한다. 케모카인 수용체의 예로는 CCR1, CXCR1-4를 들 수 있다. 수용체 티로신 키나제 의 예로는 TrkA, TrkB, TrkC, Hrk, REK7, Rse/Tyro-3, 간세포 성장 인자 R, 혈소판-유래된 성 장 인자 R, Flt-1이 포함된다. 다른 세포 표면 단백질의 예로는 CD2, CD4, CD5, CD6, CD22, CD27, CD28, CD30, CD31, CD40, CD44, CD100, CD137, CD150, LAG-3, B7, B61, β-뉴렉신,



CTLA-4, ICOS, ICAM-1, 보체 R-2(CD21), IgER, 리소좀막 gp-1, α2-마크로글로불린 수용체-연 관된 단백질, 나트륨배설 펩타이드 R을 들 수 있다.

- ▶ 본 발명의 한 양태는 사이토카인에 관한 것으로, 사이토카인은 일반적으로 수개의 알파 나선을 포함하고 있으며, 이들 중 N-말단에서부터 첫번째와 마지막 나선이 해당 사이토카인 수용체와의 결합 도메인으로 알려져 있다(도 1참조). 각 사이토카인마다 해당 수용체와 결합하는 알파 나선은 다르지만, 또한, 당업계에 잘 알려져 있다. 예를 들어 IL-2의 경우 두번째와 다섯번째 나선은 IL-2의 수용체증 p55알파 수용체와 결합하는 나선이고, 첫번째 나선은 IL-2의 수용체증 p75감마 수용체와 결합하며, 여섯번째 나선은 감마 수용체와 결합하게 된다(Fernando Bazan, Science J. 1992, Vol.257, p410-2). 이처럼 사이토카인마다 특유의 결합에 관여하는 나선이 존재하지만 이들의 아미노산 서열을 비교해보면 매우 보존적인 서열이 존재한다. 본 발명은 사이토카인의 결합 도메인에 해당하는 알파 나선에 있는 페닐알라닌을 발린으로 치환시켜서, 사이토카인 수용체에 대하여 야생형 사이토카인보다 높은 결합 친화력으로 결합할 수 있는 사이토카인 변이체를 제공한다.
- 40> 상기 사이토카인과 관련된 한 양태는 인터페론에 관한 것이다. 인터페론은 아미노산 서열 10-44번째에 해당하는 첫번째 나선(A-알파 나선)이 해당 수용체와 결합하는데 관여하는 도메인으로 알려져 있다. 따라서, 본 발명은 인터페론의 상기 A-알파 나선에 있는 페닐알라닌을 발린으로 치환시켜서, 인터페론 수용체에 대하여 야생형 인터페론보다 높은 결합 친화력으로 결합할 수 있는 인터페론 변이체를 제공한다.
- 41> 상기 사이토카인과 관련된 다른 양태는 4-나선 다발 초가계 소속 사이토카인에 관한 것이다. 이들은 모두 4개의 알파 나선을 포함하는 특징을 가지고 있으며, 여기서 4개의 알파 나선은 N-말단에서부터 A-알파 나선, B-알파 나선, C-알파 나선, D-알파 나선으로 명명되어있고, 주로



D- 및 A-알파 나선이 수용체와 결합하는데 관여하는 도메인으로 알려져 있다.(Fernando Bazan, Immunology today, 1990, Vol.11 p350-4, The Cytokine Facts Book, 1994, p104-247). 4-나선 다발 초가계 소속 사이토카인의 D-알파 나선은 대략 20개의 아미노산으로 이루어져 있으며, 사이토카인의 아미노산 서열간의 유사성은 낮으나, 하나 이상의 페닐알라닌을 가지고 있다. 따라서, 본 발명은 4-나선 다발 초가계 소속 사이토카인의 D-알파 나선에 있는 페닐알라닌을 발린으로 치환시켜서, 해당 수용체에 대하여 야생형 4-나선 다발 초가계 소속 사이토카인 보다 높은 결합 친화력으로 결합할 수 있는 4-나선 다발 초가계 사이토카인 변이체를 제공한다.

- ▷ 한편, 본 발명에 따라 변이되는 부분인 결합 도메인에는 둘 이상의 페닐알라닌이 포함되어 있을 수 있으며, 둘 이상의 페닐알라닌을 발린으로 치환할 수도 있지만, 이러한 경우에 단백질의 발현율이 급격히 떨어지게 때문에 하나의 페닐알라닌만을 발린으로 치환하는 것이 바람직하다.
   아울러, 본 발명자들은 4-나선 다발 초가계 소속 사이토카인 D-알파 나선의 중심(도 1a 및 b에서 0) 가까이에 위치한 페닐알라닌일수록 발린으로 치환되었을 때 수용체와의 친화력이 중 가되어 생물학적 조절작용 효능이 더 크게 증가하는 것을 확인하였다. 따라서, 수용체와의 결합에 관여하는 알파 나선의 중심에 가까운(도1a에서 +1 위치, 도 1b에서 -1위치에 해당하는) 페닐알라닌을 발린으로 치환하는 것이 가장 바람직하다. 본 발명에서 알파 나선의 중심은 본 발명자들에 의해서 이용된 아미노산 서열 배열 프로그램에 의해서 결정된 것이므로 또다른 아미노산 배열 프로그램을 이용할 경우에는 상기 알파 나선의 중심은 달라질 수 있다. 따라서, 본 발명의 명세서에서 알파 나선의 중심은 도면 1에 나타낸 것을 의미한다.
- 43> 본 발명에 따른 단백질 변이체는 생화학 분야의 당업자에게 일반적으로 널리 알려져 있는 화학적 합성법에 의해 제조될 수 있다(Creighton, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., NY (1983)). 대표적인 방법으로서 이들로 한정되는 것은



아니지만 액체 또는 고체상 합성, 단편 응축, F-MOC 또는 T-BOC 화학법이 포함된다(Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida, (1997); A Practical Approach, Atherton & Sheppard, Eds., IRL Press, Oxford, England, (1989)).

- > 다른 방도로서, 본 발명에 따른 단백질 변이체는 유전공학적 방법에 의해 제조할 수 있다. 이와 같은 방법은, 본 발명의 단백질 변이체를 코딩하는 DNA 서열을 작제하는 것을 포함한다. 이러한 DNA 서열은 야생형 단백질을 코딩하는 DNA 서열을 변이시켜서 제조할 수 있다. 이를 간단하게 설명하면, 야생형 단백질을 코딩하는 DNA 서열을 합성한 후, 위치 지정 돌연변이 (site-directed mutagenesis)에 의해서 페닐알라닌에 대한 코돈을 발린에 대한 코돈으로 변화시킴으로써, 원하는 DNA 서열을 작제한다.
- ▷ 본 발명에 따른 단백질 변이체를 코딩하는 DNA 서열을 작제하는 다른 방법은 화학 합성법일 것이다. 예를 들면, 단백질 변이체를 코딩하는 DNA 서열은 올리고뉴클레오티드 합성기를 사용하는 화학적 방법에 의해서 합성할 수 있다. 이와 같은 올리고뉴클레오티드는 목적하는 단백질 변이체의 아미노산 서열을 기초로 하여, 그리고 바람직하게는 재조합 단백질 변이체가 생산되는 숙주세포에서 바람직한 코돈을 선택함으로써 만들어진다. 이와 관련해서, 유전자 코드의축퇴됨(degenerate), 즉, 아미노산이 1개 이상의 코돈에 의해서 코딩될 수 있음은 익히 알려져 있다. 따라서, 특정 단백질 변이체를 코딩하는 다수의 축퇴성 DNA 서열이 존재할 것이며,이들은 모두 본 발명의 범위에 속하는 것으로 간주된다.
- 46> 본 발명에 따른 단백질 변이체를 코딩하는 DNA 서열은 신호 서열을 코딩하는 DNA 서열을 포함하거나 포함하지 않을 수 있다. 이와 같은 신호 서열은, 존재하는 경우, 단백질 변이체의 발현을 위해서 선택된 숙주세포가 인식할 수 있는 것이어야만 한다. 이는 또한 원핵세포 또는



진핵세포, 또는 이들의 조합일 수 있다. 이는 또한 천연 단백질의 신호 서열일 수 있다. 신호 서열의 포함 여부는, 단백질 변이체를 생산하는 재조합 세포로부터 단백질 변이체를 분비시키는 것이 바람직한지에 따라 결정될 수 있다. 선택된 세포가 원핵세포인 경우, 일반적으로 DNA 서열이 신호 서열을 코딩하는 것이 아니라 직접 발현을 위해 N-말단 메티오닌을 포함하는 것이 바람직하다. 선택된 세포가 진핵세포인 경우, 일반적으로 신호 서열이 코딩되는 것이 바람직하고, 야생형 단백질 서열이 사용되는 것이 가장 바람직하다.

- 7> 이렇게 제조된 DNA 서열은 이 DNA 서열에 작동가능하게 연결되어(operatively linked) 그 DNA 서열의 발현을 조절하는 하나 또는 그 이상의 발현 조절 서열(expression control sequence)을 포함하는 벡터에 삽입시키고, 이로부터 형성된 재조합 발현 벡터로 숙주를 형질전환 또는 형 질감염시키며, 생성된 형질전환체 또는 형질감염체를 상기 DNA 서열이 발현되도록 적절한 배지 및 조건하에서 배양하고, 배양물로부터 상기 DNA 서열에 코딩된 실질적으로 순수한 폴리펩타이드를 회수한다.
- # 본원 명세서에 사용된 용어 "벡터"는 외래 유전자를 숙주세포 내로 안정적으로 운반할 수 있는 운반체로서의 DNA 분자를 말한다. 유용한 벡터가 되기 위해서는 복제될 수 있어야 하며, 숙주세포 내로 유입될 수 있어야 하고, 자신의 존재를 검출할 수 있는 수단을 구비하여야 한다. 또한 "재조합 발현 벡터"라는 용어는 일반적으로 외래 유전자가 숙주세포에서 발현될 수 있도록 벡터에 작동가능하게 연결되어 형성된 환상의 DNA 분자를 말한다. 재조합 발현 벡터는 수 개의 카피 및 그의 삽입된 이종의 DNA가 생성될 수 있다. 당업계에 주지된 바와 같이, 숙주세포에서 형질감염된 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하게 연결되어야만한다. 바람직하게는 발현 조절 서열 및 해당 유전자를 세균 선택 마커 및 복제 개시점



(replication)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵 세포인 경우에는 발현 벡터는 진핵 발현 숙주세포 내에서 유용한 발현 마커를 더 포함하여 야만 한다.

- > 상기 재조합 발현 벡터와 연판되어서 사용된 용어 "조절 서열 (expression control sequence)"은 본 발명의 폴리펩타이드 발현에 필수적인 혹은 이로운 핵산 서열들을 말한다. 각각의 조절 서열은 폴리펩타이드를 코딩하는 핵산 서열에 천연적(native) 혹은 외래적 (foreign)일 수 있다. 그러한 조절 서열에는 이에 제한되는 것은 아니지만, 리더 서열, 폴리아데닐화 서열, 프로펩타이드(propeptide) 서열, 프로모터, 인핸서(enhancer) 혹은 업스트림 (upstream) 활성화 서열, 시그날 펩타이드 서열 및 전사 종결인자 등을 포함한다. 최소한 조절 서열은 프로모터를 포함한다.
- ➤ 또 다른 용어 "작동가능하게 연결된(operably linked)"은 핵산이 다른 핵산 서열과 기능적관계로 배치된 상태를 의미한다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일수 있다. 예를 들면, 전서열(pre-sequence)또는 분비 리더(leader)가 성숙한 단백질의 분비에 참여함으로써 기능을 발휘했다면 그 단백질에 작동가능하게 연결된 것이다. 프로모터가코딩 서열의 전사를 조절했다면 그 서열에 작동가능하게 연결된 것이다. 리보좀 결합 자리가코딩 서열의 해독이 가능한 위치에 놓여져 있다면 그 서열에 작동가능하게 연결된 것이다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 적합한 제한 효소



부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고 뉴클레오타이드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다.

- 본 발명에 따른 플리펩타이드의 DNA 서열을 발현시키기 위해 매우 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵 숙주에 적합한 발현 벡터로는 이들로 한정되는 것은 아니지만 SV40, 소 유두종바이러스, 아데노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열이 포함된다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pET, pRSET, pBluescript, pGEX2T, pUC벡터, col E1, 중합효소 연쇄반응1, pBR322, pMB9 및 이들의 유도체와 같이 이. 콜라이에서 얻는 것을 예시할 수 있는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라덴트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2μ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL 941이다.
- ½ 본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열증 어느 것이라도 이들 벡터에 사용될 수 있다. 유용한 발현 조절 서열에는 상술한 발현 벡터의 구조 유전자와 연관된 발현 조절 서열을 포함한다. 유용한 발현 조절서열의 예에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의



주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나 제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열, 및 이들의 여러 조합이 포함된다. Τ΄ RNA 폴리메라아제 프로모터 Φ10은 이. 콜라이에서 폴리펩타이드를 발현시키는데 특히 유용하다.

- 상술한 재조합 발현 벡터에 의해 형질전환 또는 형질감염된 숙주세포는 본 발명의 또 다른 측면을 구성한다. 본 발명의 DNA 서열을 발현시키는 데에는 매우 다양한 단핵세포성 숙주세포가 이용될 수 있다. 이들 숙주에는 이. 콜라이, 슈도모나스, 바실러스,
  - 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 마우스 세포와 같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포 및 식물 세포들이 포함된다. 바람직한 숙주 생명체에는 이. 콜라이 및 바실러스 서브틸리스와 같은 세균, 그리고 조직배양된 포유동물 세포들이 포함된다.
- 전술한 형질전환 및 형질감염은 Davis et al., Basic Methods in Molecular Biology(1986) 및 Sambrook et al., Basic Methods in Molecular Biology와 같은 기본적인 실험 지침서에 기술된 반법에 의해서 실시될 수 있다. 본 발명에 따른 단백질 변이체를 코딩하는 DNA 작제물을 포함하는 재조합 벡터를 숙주세포로 도입하는데 바람직한 방법은 예를 들어서, 칼슘 포스페이트 형질전환(calcium



phosphate transfection), DEAE-텍스트란 매개 형질전환(DAEA-dextran mediated transfection), 이환(transvection), 미세주입(microinjection), 양이온 지질-매개 형질전환 (cationic lipid-mediated transfection), 전기천공(electroporation), 형질도입 (transduction), 스크래프 로딩(scrape loading), 총알식 도입(ballistic introduction) 혹은 감염(infection) 등을 포함한다.

- ▶ 물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 암호화된 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성 있는 이차 구조와 관련하여 고려하여야 한다. 또한 숙주를 선정함에 있어서도, 선택된 벡터와의 상용성, 뉴클레오타이드 서열에 의해서 암호화된 산물의 독성, 이들의 분비 특성, 폴리펩타이드를 올바르게 풀딩(fold)할 수 있는 능력, 발효 또는 배양 필요조건, 그리고 뉴클레오타이드 서열에 의해서 암호화된 산물의 정계 용이성 등을 고려하여야 한다.
- 56> 본 발명에 따른 단백질 변이체의 제조 방법에서, 숙주세포들은 공지된 기술을 이용해서 폴리 펩타이드의 생산에 적합한 영양 배지에서 배양된다. 예를 들어서, 세포들은 적당한 배지와 폴리 리펩타이드가 발현 및/혹은 분리되는 것을 허용하는 조건 하에, 실시된 실험실 또는 산업용 발



효기에서 소규모 혹은 대규모 발효, 셰이크 플라스크 배양에 의해서 배양될 수 있다. 배양은 공지된 기술을 사용해서, 탄소, 질소 공급원 및 무기염을 포함하는 적절한 영양배지에서 일어 난다. 적당한 배지는 상업적인 공급자로부터 입수 가능하고 공지된 조성(예를 들면, American Type Culture Collection의 카탈로그)에 따라 제조될 수 있다. 폴리펩타이드가 영양배지로 직접 분비된다면 폴리펩타이드는 배지로부터 직접 분리될 수 있다. 폴리펩타이드가 분비되지 않는다면, 그것은 세포의 여액(lysate)으로부터 분리될 수 있다.

- " 폴리펩타이드는 당업계에 공지된 방법에 의해서 분리될 수 있다. 예를 들어서, 폴리펩타이드는 이로서 제한되는 것은 아니지만, 원심분리, 여과, 추출, 분무 건조, 증발, 또는 침전을 포함하는 전통적인 방법에 의해서 영양 배지로부터 분리될 수 있다. 더 나아가 폴리펩타이드는 크로마토그래피(예를 들면, 이온 교환, 친화성, 소수성 및 크기별 배제), 전기영동, 분별용해도(예를 들면, 암모늄 설페이트 참전), SDS-PAGE 혹은 추출을 포함하여 일반에 공지된 다양한 방법을 통해서 정제될 수 있다.
- ※ 본 발명은 상기 단백질 변이체를 약제학적 유효량으로 약제학적으로 허용되는 담체와 함께 함유하는 약제학적 조성물을 제공한다.
- ➢ 본 발명의 약제학적 조성물에 사용되는 담체는 제약 분야에서 통상 사용되는 담체, 보조제 및비히클을 포함하며 총괄적으로 "약제학적으로 허용되는 담체"라고 한다. 본 발명의 약제학적 조성물에 사용될 수 있는 약제학적으로 허용되는 담체로는 이들로 한정되는 것은 아니지만이온 교환, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 여러 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소감륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피



롤리돈, 셀룰로즈-계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈,

폴리아릴레이트, 왁스, 폴리에틸렌-폴리옥시프로필렌-차단 중합체, 폴리에틸렌 글리콜 및 양모지 등이 포함된다.

- ▷ 본 발명의 약제학적 조성물은 목적하는 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 따라서, 본 발명의 약제학적 조성물은 국부, 경구, 비경구, 안내, 경피, 직장, 장관 등으로 투여될 수 있고, 용액, 현탁액, 정제, 환약, 캡슐, 서방형 제제 등으로 제형할 수 있다. 본원에 사용된 용어 "비경구"는 피하, 비내, 정맥내, 복강내, 근육내, 관절내, 활액낭내, 흉골내, 심장내, 경막내, 병소내 및 두개골내 주사 또는 주입 기술을 포함한다.
- ▷ 한 양태로서, 본 발명의 약제학적 조성물은 비경구적 투여를 위한 수용성 용액으로 제조할 수 있다. 바람직하게는, 한스 용액(Hank's solution), 링거 용액(Ringer's solution) 또는 물리적으로 완충된 염수와 같은 적절한 완충 용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀률로즈, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다. 덧붙여서, 활성성분의 현탁액은 적합한 유질의 주입 현탁액(oily injection suspension)으로 적합한 천지성 용매 또는 담체는 참기름과 같은 지방산 또는 에틸 올레이트, 트리글리세라이드 또는 리포솜과 같은 합성 지방산 에스테르를 포함한다. 복수 양이온성 비지질 아미노 폴리머(polycationic amino polymers)도 운반체로서 사용될 수 있다. 임의로, 현탁액은 화합물의 용해도를 증가시키고 고농도의 용액을 제조하기 위해 적합한 안정화제 또는 약제를 사용할 수 있다.
- 62> 본 발명의 바람직한 약제학적 조성물은 멸균 주사용 수성 또는 유성 현탁액으로서 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예, 트윈 80) 및 현



탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형될 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예, 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해, 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 어떠한 비휘발성 오일도 사용할 수 있다. 올레산 및 이의 글리세라이드 유도체와 같은 지방산이 약제학적으로 허용되는 천연 오일(예, 올리브유 또는 피마자유), 특히 이들의 폴리옥시에틸화된 것과 마찬가지로 주사 제제에 유용하다.

- 와서 제조된 액상 조성물은 박테리아 포획 필터 등을 통한 여과에 의해, 살균제 또는 방사를 혼입시켜 대개 살균된다. 살균된 조성물은 예를 들면 동결건조에 의해 고형 조성물을 수득하여 고형화시킬 수 있으며, 사용시에 이를 무균수 또는 무균 희석액에 용해시킨다.
- 55> 이하, 본 발명은 4-나선 다발 초가계 소속 사이토카인, 구체적으로 CNTF, EPO, F123L, G-CSF, GM-CSF, GRH, IL-2, IL-3, IL-4, I1-5, IL-6, IL-12p35, LPT, LIF, M-CSF, OSM, PL, SCF, TPO 에 대하여 각각의 고유의 결합 도메인내 페닐알라닌을 발린으로 치환한 4-나선 다발 초가계 소



속 사이토카인 변이체를 제공한다. 또한, 본 발명은 인터페론, 구체적으로 IFN- $\alpha$  2A, IFN- $\alpha$  2B, IFN- $\beta$ , IFN- $\gamma$ , IFN- $\alpha$ , IFN- $\tau$ 에 대하여 각각의 고유의 결합 도메인내 페닐알라닌을 발린으로 치환한 인터페론 변이체를 제공한다.

▷ 한 부류의 특정 양태로서, 본 발명은 하기 단백질 변이체를 제공한다:(1) 야생형 CNTF의 아미 노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐알라닌을 발린 으로 치환한 CNTF 변이체; (2) 야생형 EPO의 아미노산 서열(서열번호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체; (3) 야생형 Flt3L의 아미노산 서열( 서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라닌을 발린으로 치환한 Flt3L 변이체; (4) 야생형 G-CSF의 아미노산 서열(서열번호 4)중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으로 치환한 G-CSF 변이체; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐 알라닌을 발린으로 치환한 GM-CSF 변이체; (6) 야생형 GRH의 아미노산 서열(서열번호 6)중 1번 째, 10번째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐 알라닌을 발린으로 치환한 GRH 변이체; (7) 야생형 IFN- a 2A의 아미노산 서열(서열번호 7)중 27번째, 36번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페 닐알라닌을 발린으로 치환한 IFN-α2A 변이체; (8) 야생형 IFN-α2B의 아미노산 서열(서열번호 8)중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번 째 페닐알라닌을 발린으로 치환한 IFN-α2B 변이체; (9) 야생형 IFN-β의 아미노산 서열(서열 번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또는 154번째 페닐알라닌을 발린 으로 치환한 IFN-β 변이체; (10) 야생형 IFN-γ의 아미노산 서열(서열번호 10)중 18번째, 32 번째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로



치환한 IFN-γ변이체; (11) 야생형 IFN-ω의 아미노산 서열(서열번호 11)중 27번째, 36번째, 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8번째, 39번째, 68번째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으로 치환한 IFN-τ 변이 체; (13) 야생형 IL-2의 아미노산 서열(서열번호 13)중 42번째, 44번째, 78번째, 103번째, 117 번째 또는 124번째 페닐알라닌을 발린으로 치환한 IL-2 변이체; (14) 야생형 IL-3의 아미노산 서열(서열번호 14)중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 IL-3 변이체; (15) 야생형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번째, 55번 째, 73번째, 82번째 또는 112번째 페닐알라닌을 발린으로 치환한 IL-4 변이체; (16) 야생형 IL-5의 아미노산 서열(서열번호 16)중 49번째, 69번째, 96번째 또는 103번째 페닐알라닌을 발 린으로 치환한 IL-5 변이체; (17) 야생형 IL-6의 아미노산 서열(서열번호 17)중 73번째, 93번 째, 104번째, 124번째, 169번째 또는 172번째 페닐알라닌을 발린으로 치환한 IL-6 변이체; (18) 야생형 IL-12p35의 아미노산 서열(서열번호 18)중 13번째, 39번째, 82번째, 96번째, 116 번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환한 IL-12p35 변이 체; (19) 야생형 LPT의 아미노산 서열(서열번호 19)중 41번째 또는 91번째 페닐알라닌을 발린 으로 치환한 LPT 변이체; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체; (21) 야생 형 M-CSF의 아미노산 서열(서열번호 21)중 35번째, 37번째, 54번째, 67번째, 91번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번째, 439번째, 466번째 또



는 485번째 페닐알라닌을 발린으로 치환한 M-CSF 변이체; (22) 야생형 OSM의 아미노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알라닌을 발린으로 치환한 OSM 변이체; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 PL 변이체; (24) 야생형 SCF의 아미노산 서열(서열번호 24)중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 TPO 변이체.

67 다른 부류의 특정 양태로서, 본 발명은 하기 DNA를 제공한다:(1) 야생형 CNTF의 아미노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐알라닌을 발린으로 치환한 CNTF 변이체를 코딩하는 DNA; (2) 야생형 EPO의 아미노산 서열(서열번호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체를 코딩하는 DNA; (3) 야생형 Flt3L의 아미노산 서열(서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라 닌을 발린으로 치환한 Flt3L 변이체를 코딩하는 DNA; (4) 야생형 G-CSF의 아미노산 서열(서열번호 4)중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으로 치환한 G-CSF 변이체를 코딩하는 DNA; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린



으로 치환한 GM-CSF 변이체를 코딩하는 DNA; (6) 야생형 GRH의 아미노산 서열(서열번호 6)중 1 번째, 10번째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 폐 닐알라닌을 발린으로 치환한 GRH 변이체를 코딩하는 DNA; (7) 야생형 IFN-α 2A의 아미노산 서 열(서열번호 7)중 27번째, 36번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 IFN-a 2A 변이체를 코딩하는 DNA; (8) 야생형 IFN- a 2B의 아미노산 서열(서열번호 8)중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발린으로 치환한 IFN-a 2B 변이체를 코딩 하는 DNA; (9) 야생형 IFN-β의 아미노산 서열(서열번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또는 154번째 페닐알라닌을 발린으로 치환한 IFN-β 변이체를 코딩하는 DNA; (10) 야생형 IFN- x 의 아미노산 서열(서열번호 10)중 18번째, 32번째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로 치환한 IFN- y 변이체를 코딩하는 DNA; (11) 야생형 IFN-ω의 아미노산 서열(서열번호 11)중 27번째, 36번째, 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체를 코딩하 는 DNA; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8번째, 39번째, 68번째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으로 치환한 IFN-τ 변이체를 코딩하는 DNA; (13) 야생형 IL-2의 아미노산 서열(서열번호 13)중 42번째, 44 번째, 78번째, 103번째, 117번째 또는 124번째 페닐알라닌을 발린으로 치환한 IL-2 변이체를 코딩하는 DNA; (14) 야생형 IL-3의 아미노산 서열(



서열번호 14)중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환 한 IL-3 변이체를 코딩하는 DNA; (15) 야생형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번째, 55번째, 73번째, 82번째 또는 112번째 페닐알라닌을 발린으로 치환한 IL-4 변이체를 코딩하는 DNA; (16) 야생형 IL-5의 아미노산 서열(서열번호 16)중 49번째, 69번째, 96번째 또 는 103번째 페닐알라닌을 발린으로 치환한 IL-5 변이체를 코딩하는 DNA; (17) 야생형 IL-6의 아미노산 서열(서열번호 17)중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번째 페닐 알라닌을 발린으로 치환한 IL-6 변이체를 코딩하는 DNA; (18) 야생형 IL-12p35의 아미노산 서 열(서열번호 18)중 13번째, 39번째, 82번째, 96번째, 116번째, 132번째, 150번째, 166번째 또 는 180번째 페닐알라닌을 발린으로 치환한 IL-12p35 변이체를 코딩하는 DNA; (19) 야생형 LPT 의 아미노산 서열(서열번호 19)중 41번째 또는 91번째 페닐알라닌을 발린으로 치환한 LPT 변이 체를 코딩하는 DNA; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체를 코딩하는 DNA; (21) 야생형 M-CSF의 아미노산 서열(서열번호 21)중 35번째, 37번째, 54번째, 67번째, 91 번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번째, 439번째, 466번째 또는 485번 째 페닐알라닌을 발린으로 치환한 M-CSF 변이체를 코딩하는 DNA; (22) 야생형 OSM의 아미노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알라닌을 발린으로 치환한 OSM 변이체를 코딩하는 DNA; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째,



97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 PL 변이체를 코딩하는 DNA; (24) 야생형 SCF의 아미노산 서열(서열번호 24)중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체를 코딩하는 DNA; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 TPO 변이체를 코딩하는 DNA.

58 또 다른 부류의 특정 양태로서, 본 발명은 하기 재조합 발현 벡터를 제공한다:(1) 야생형 CNTF의 아미노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐알라닌을 발린으로 치환한 CNTF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (2) 야생형 EPO의 아미노산 서열(서열번호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합발현 벡터; (3) 야생형 F1t3L의 아미노산 서열(서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라닌을 발린으로 치환한 F1t3L 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (4) 야생형 G-CSF의 아미노산 서열(서열번호 4)중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으로 치환한 G-CSF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린으로 치환한 GM-CSF의 하미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린으로 치환한 GM-CSF 변이체를 코딩



하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (6) 야생형 GRH의 아미노산 서열( 서열번호 6)중 1번째, 10번째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 GRH 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터; (7) 야생형 IFN-a 2A의 아미노산 서열(서열번호 7)중 27번째, 36 번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 IFN-α2A 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (8) 야생형 IFN-α2B의 아미노산 서열(서열번호 8)중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발린으로 치환한 IFN-α2B 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (9) 야생형 IFN-β의 아미노산 서열(서열번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또 는 154번째 페닐알라닌을 발린으로 치환한 IFN-β 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터; (10) 야생형 IFN-ɣ의 아미노산 서열(서열번호 10)중 18번째, 32 번째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로 치환한 IFN- y 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (11) 야생형 IFN-ω의 아미노산 서열(서열번호 11)중 27번째, 36번째, 38번째, 65번째, 68번째, 124 번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체를 코딩하는 DNA가 벡터에 작 동가능하게 연결된 재조합 발현 벡터; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8 번째, 39번째, 68번째, 71번째, 88번째,



127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으로 치환한 IFN-τ 변이 체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (13) 야생형 IL-2의 아미 노산 서열(서열번호 13)중 42번째, 44번째, 78번째, 103번째, 117번째 또는 124번째 페닐알라 닌을 발린으로 치환한 IL-2 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (14) 야생형 IL-3의 아미노산 서열(서열번호 14)중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 IL-3 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터; (15) 야생형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번 째, 55번째, 73번째, 82번째 또는 112번째 페닐알라닌을 발린으로 치환한 IL-4 변이체를 코딩 하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (16) 야생형 IL-5의 아미노산 서열(서열번호 16)중 49번째, 69번째, 96번째 또는 103번째 페닐알라닌을 발린으로 치환한 IL-5 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (17) 야생형 IL-6의 아미노산 서열(서열번호 17)중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번 째 페닐알라닌을 발린으로 치환한 IL-6 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (18) 야생형 IL-12p35의 아미노산 서열(서열번호 18)중 13번째, 39번째, 82 번째, 96번째, 116번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환 한 IL-12p35 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (19) 야 생형 LPT의 아미노산 서열(서열번호 19)중 41번째 또는 91번째 페닐알라닌을 발린으로 치환한 LPT 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연



결된 재조합 발현 벡터; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67 번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (21) 야생형 M-CSF의 아미노산 서열(서 열번호 21)중 35번째, 37번째, 54번째, 67번째, 91번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번째, 439번째, 466번째 또는 485번째 페닐알라닌을 발린으로 치환한 M-CSF 변이 체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (22) 야생형 OSM의 아미 노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알 라닌을 발린으로 치환한 OSM 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발 현 벡터; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치 환한 PL 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; (24) 야생형 SCF의 아미노산 서열(서열번호 24)중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 TPO 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터.

› 또 다른 부류의 특정 양태로서, 본 발명은 하기 숙주세포를 제공한다:(1) 야



생형 CNTF의 아미노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페 닐알라닌을 발린으로 치환한 CNTF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조 합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (2) 야생형 EPO의 아미노산 서열(서열번 호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (3) 야생형 Flt3L의 아미노산 서열(서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번 째 페닐알라닌을 발린으로 치환한 Flt3L 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (4) 야생형 G-CSF의 아미노산 서열( 서열번호 4)중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으 로 치환한 G-CSF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형 질전환 또는 형질감염된 숙주세포; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린으로 치환한 GM-CSF 변이체를 코딩 하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세 포; (6) 야생형 GRH의 아미노산 서열(서열번호 6)중 1번째, 10번째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 GRH 변이체 를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (7) 야생형 IFN- a 2A의 아미노산 서열(서열번호 7)중 27번째, 36번째, 38번째, 43 번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 IFN-α2A 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (8) 야생형 IFN-α2B의 아미노산 서열(서열번호 8)중 28번째, 37번 째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발



린으로 치환한 IFN-a2B 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡 터로 형질전환 또는 형질감염된 숙주세포; (9) 야생형 IFN-β의 아미노산 서열(서열번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또는 154번째 페닐알라닌을 발린으로 치환한 IFN-β 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (10) 야생형 IFN-ɣ의 아미노산 서열(서열번호 10)중 18번째, 32번 째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 폐닐알라닌을 발린으로 치 환한 IFN- y 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전 환 또는 형질감염된 숙주세포; (11) 야생형 IFN-α의 아미노산 서열(서열번호 11)중 27번째, 36번째, 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형 질감염된 숙주세포; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8번째, 39번째, 68번 째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으 로 치환한 IFN-τ 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (13) 야생형 IL-2의 아미노산 서열(서열번호



13)중 42번째, 44번째, 78번째, 103번째, 117번째 또는 124번째 페닐알라닌을 발린으로 치환한 IL-2 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (14) 야생형 IL-3의 아미노산 서열(서열번호 14)중 37번째, 61번째, 107 번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 IL-3 변이체를 코딩하는 DNA가 벡 터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (15) 야생 형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번째, 55번째, 73번째, 82번째 또는 112번 째 페닐알라닌을 발린으로 치환한 IL-4 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (16) 야생형 IL-5의 아미노산 서열( 서열번호 16)중 49번째, 69번째, 96번째 또는 103번째 페닐알라닌을 발린으로 치환한 IL-5 변 이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감 염된 숙주세포; (17) 야생형 IL-6의 아미노산 서열(서열번호 17)중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번째 페닐알라닌을 발린으로 치환한 IL-6 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (18) 야 생형 IL-12p35의 아미노산 서열(서열번호 18)중 13번째, 39번째, 82번째, 96번째, 116번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환한 IL-12p35 변이체를 코 딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주 세포; (19) 야생형 LPT의 아미노산 서열(서열번호 19)중 41번째 또는 91번째 페닐알라닌을 발 린으로 치환한 LPT 변이체를 코딩하는



DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (21) 야생형 M-CSF의 아미 노산 서열(서열번호 21)중 35번째, 37번째, 54번째, 67번째, 91번째, 106번째, 121번째, 135번 째, 143번째, 255번째, 311번째, 439번째, 466번째 또는 485번째 페닐알라닌을 발린으로 치환 한 M-CSF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (22) 야생형 OSM의 아미노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알라닌을 발린으로 치환한 OSM 변이체를 코딩하 는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치 환한 PL 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; (24) 야생형 SCF의 아미노산 서열(서열번호 24)중 63번째, 102번째 , 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연 결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페 닐알라닌을 발린으로 치환한 TPO 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포.



또 다른 부류의 특정 양태로서, 본 발명은 하기 단백질 변이체 제조방법을 제공한다:(1) 야생 형 CNTF의 아미노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐 알라닌을 발린으로 치환한 CNTF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변 이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (2) 야생형 EPO의 아미 노산 서열(서열번호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질 감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포 함한 상기 단백질 변이체의 제조방법; (3) 야생형 Flt3L의 아미노산 서열(서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라닌을 발린으로 치환한 Flt3L 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙 주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (4) 야생형 G-CSF의 아미노산 서열(서열번호 4)중 12번째, 86번째 , 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으로 치환한 G-CSF 변이체를 코 딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주 세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번 째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린으로 치환한 GM-CSF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (6) 야생형 GRH의 아미노산 서열(서열번호 6)중 1번째, 10번째, 31번째,



44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 GRH 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정체하는 단계를 포함한 상기 단백질 변이체의 제조방법; (7) 야생형 IFN-a 2A의 아미노산 서열(서열번호 7)중 27번째, 36번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 IFN-a 2A 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (8) 야생형 IFN-a 2B의 아미노산 서열(서열번호 8)중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발린으로 치환한 IFN-a 2B 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염 된 숙주세포를 배양하고, 이 배양물로부



터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (9) 야생형 IFN-β의 아미노산 서열(서열번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번 째 또는 154번째 페닐알라닌을 발린으로 치환한 IFN-β 변이체를 코딩하는 DNA가 벡터에 작동 가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양 물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (10) 야생형 IFN-γ의 아미노산 서열(서열번호 10)중 18번째, 32번째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로 치환한 IFN- y 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙 주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (11) 야생형 IFN-ω의 아미노산 서열(서열번호 11)중 27번째, 36 번째, 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체를 코딩하는 DNA를 포함하는 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8번째, 39번째, 68번 째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으 로 치환한 IFN-τ 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의



체조방법; (13) 야생형 IL-2의 아미노산 서열(서열번호 13)중 42번째, 44번째, 78번째, 103번 째, 117번째 또는 124번째 페닐알라닌을 발린으로 치환한 IL-2 변이체를 코딩하는 DNA가 벡터 에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제 조방법; (14) 야생형 IL-3의 아미노산 서열(서열번호 14)중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 IL-3 변이체를 코딩하는 DNA가 벡터에 작동가능 하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로 부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (15) 야생형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번째, 55번째, 73번째, 82번째 또는 112번째 페닐알라닌을 발린으로 치환한 IL-4 변이체를 코딩하는 DNA가 벡터에 작동가능하 게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부 터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (16) 야생형 IL-5의 아미노산 서열(서열번호 16)중 49번째, 69번째, 96번째 또는 103번째 페닐알라 닌을 발린으로 치환한 IL-5 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체 를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (17) 야생형 IL-6의 아미노 산 서열(서열번호 17)중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번째 페닐알라닌 을 발린으로 치환한 IL-6 변이체를 코딩하는 DNA



가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배 양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변 이체의 제조방법; (18) 야생형 IL-12p35의 아미노산 서열(서열번호 18)중 13번째, 39번째, 82 번째, 96번째, 116번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환 한 IL-12p35 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전 환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하 는 단계를 포함한 상기 단백질 변이체의 제조방법; (19) 야생형 LPT의 아미노산 서열(서열번호 19)중 41번째 또는 91번째 페닐알라닌을 발린으로 치환한 LPT 변이체를 코딩하는 DNA가 벡터 에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제 조방법; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체를 코딩하는 DNA가 벡터에 작 동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배 양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방 법; (21) 야생형 M-CSF의 아미노산 서열(서열번호 21)중 35번째, 37번째, 54번째, 67번째, 91 번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번째, 439번째, 466번째 또는 485번 째 페닐알라닌을 발린으로 치환한 M-CSF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙



주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (22) 야생형 OSM의 아미노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알라닌을 발린으로 치환한 OSM 변이체를 코딩하 는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포 를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백 질 변이체의 제조방법; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번 째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 PL 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; (24) 야생형 SCF의 아미노산 서열(서 열번호 24)중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199 번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 TPO 변이체 를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포를 배양하고, 이 배양물로부터 상기 단백질 변이체를 분리 정제하는 단계를 포함한 상기 단백질 변이체의 제조방법.

> 본 발명은 하기 약제학적 조성물을 제공한다:(1) 야생형 CNTF의 아미노산 서열(서열번호 1)중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐알라닌을 발린으로 치환한 CNTF 변이체



및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (2) 야생형 EPO의 아미노산 서열 (서열번호 2)중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 EPO 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (3) 야생형 Flt3L의 아미노산 서열( 서열번호 3)중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라닌을 발린으로 치환한 Flt3L 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (4) 야생형 G-CSF 의 아미노산 서열(서열번호 4)중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페 닐알라닌을 발린으로 치환한 G-CSF 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학 적 조성물; (5) 야생형 GM-CSF의 아미노산 서열(서열번호 5)중 47번째, 103번째, 106번째, 113 번째 또는 119번째 페닐알라닌을 발린으로 치환한 GM-CSF 변이체 및 약제학적으로 허용되는 담 체를 포함하는 약제학적 조성물; (6) 야생형 GRH의 아미노산 서열(서열번호 6)중 1번째, 10번 째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 GRH 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (7) 야생형 IFN- a 2A의 아미노산 서열(서열번호 7)중 27번째, 36번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 IFN-α2A 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (8) 야생형 IFN- a 2B의 아미노산 서열(서열번호 8)중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발린으로 치환한 IFN- a 2B 변이체 및 약 제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (9) 야생형 IFN-β의 아미노산 서열( 서열번호 9)중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또는 154번째 페닐알라닌을 발린으로 치환한 IFN-β 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (10) 야생형 IFN-γ의 아미노산 서열(서열번호 10)중 18번째, 32번째, 55번째, 57번째,



60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로 치환한 IFN- γ 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (11) 야생형 IFN-ω의 아미노산 서열(서열번호 11)중 27번째, 36번째, 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 IFN-ω 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (12) 야생형 IFN-τ의 아미노산 서열(서열번호 12)중 8번째, 39번째, 68번째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으로 치환한 IFN-τ 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (13) 야생형 IL-2의 아미노산 서열(서열번호 13)중 42번째, 44번째, 78번째, 103번째, 117번째 또는 124번째 페닐알라닌을 발린으로 치환한 IL-2 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (14) 야생형 IL-3의 아미노산 서열(서열번호 14)중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 IL-3 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (15) 야



생형 IL-4의 아미노산 서열(서열번호 15)중 33번째, 45번째, 55번째, 73번째, 82번째 또는 112 번째 페닐알라닌을 발린으로 치환한 IL-4 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (16) 야생형 IL-5의 아미노산 서열(서열번호 16)중 49번째, 69번째, 96번째 또는 103번째 폐닐알라닌을 발린으로 치환한 IL-5 변이체 및 약제학적으로 허용되는 담체를 포 함하는 약제학적 조성물; (17) 야생형 IL-6의 아미노산 서열(서열번호 17)중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번째 페닐알라닌을 발린으로 치환한 IL-6 변이체 및 약제 학적으로 허용되는 담체를 포함하는 약제학적 조성물; (18) 야생형 IL-12p35의 아미노산 서열( 서열번호 18)중 13번째, 39번째, 82번째, 96번째, 116번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환한 IL-12p35 변이체 및 약제학적으로 허용되는 담체를 포 함하는 약제학적 조성물; (19) 야생형 LPT의 아미노산 서열(서열번호 19)중 41번째 또는 91번 째 페닐알라닌을 발린으로 치환한 LPT 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제 학적 조성물; (20) 야생형 LIF의 아미노산 서열(서열번호 20)중 41번째, 52번째, 67번째, 70번 째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 LIF 변이체 및 약제학적으로 허용되 는 담체를 포함하는 약제학적 조성물; (21) 야생형 M-CSF의 아미노산 서열(서열번호 21)중 35 번째, 37번째, 54번째, 67번째, 91번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번 째, 439번째, 466번째 또는 485번째 페닐알라닌을 발린으로 치환한 M-CSF 변이체 및 약제학적 으로 허용되는 담체를 포함하는 약제학적 조성물; (22) 야생형 OSM의 아미노산 서열(서열번호 22)중 56번째, 70번째, 160번째, 169번째, 176번째,



또는 184번째 페닐알라닌을 발린으로 치환한 OSM 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (23) 야생형 PL의 아미노산 서열(서열번호 23)중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치환한 PL 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; (24) 야생형 SCF의 아미노산 서열(서열번호 24)중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째 또는 245번째 페닐알라닌을 발린으로 치환한 SCF 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물; 및 (25) 야생형 TPO의 아미노산 서열(서열번호 25)중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 TPO 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물.

"> 이하, 실시예에서는 EPO, TPO를 이용하여 본 발명이 이루고자 하는 생리활성 조절의 효능을 증대시키는 목적을 달성할 수 있음을 알 수 있었다. 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 있어서 자명할 것이다.

#### <sup>3></sup> 실시예 1

◆ A. 야생형 TPO를 코딩하는 DNA의 제조



- 75. 추출한 골수에 트라이졸 용액(TRIzol reagent, USA) 750μ원를 첨가하여 골고루 섞이게 한 후, 핵단백질 복합체(nucleoprotein complex)가 완전히 분해될 때까지 약 5분간 실온에서 반응시켰다. 이 튜브에 200μ원의 클로로포름을 넣고 15초간 잘 흔들어 준 후, 실온에서 2~3분간 더 반응시킨 다음, 4℃에서 15,000rpm으로 15분 동안 원심분리하였다. 최상층액을 새로운 1.5㎡ 튜브로 옮기고 500μ원의 이소프로필 알코올을 첨가하여 잘 흔들어주고 영하 70℃에서 30분 동안 반응시킨 다음, 4℃에서 15,000rpm으로 15분 동안 원심분리하였다. 상층액을 버린 다음 침전물을 75% 디이피씨-에탄을 (DEPC-ethanol)로 한차례 세척하고 4℃에서 15,000rpm으로 15분 동안 원심분리하였다. 상층액을 버린 다음 침전 모을 75% 디이피씨-에탄을 (DEPC-ethanol)로 한차례 세척하고 4℃에서 15,000rpm으로 15분 동안 원심분리하였다. 상층액을 버린 다음 실온에서 침전물을 너무 마르지 않게 조심하면서 5분간 말리고, RNA를 디이피씨-3차 증류수 50μ오로 녹였다.
- 76> cDNA 합성은 상기 1.5㎡ 튜브에 정제된 2μg mRNA와 1μℓ 올리고 디티30 프라이머[oligo dT30 primer (10μM), Promega, USA]를 넣고 70℃에서 2분간 가열한 후 얼음에 넣어 2분간 식혔다. 이 혼합물에 200ℓ 엠-엠엘브이 역전사효소[M-MLV reverse transcriptase (Promega, USA)], 10 μℓ 5배 반응완충용액[reaction buffer 250mM 트리스-에이치씨엘 (Tris-HCl), pH 8.3, 375mM 염화칼륨 (KCl), 15mM 염화마그네슘 (MgCl₂), 50mM 디티티 (DTT)], 1μℓ 디엔티피[dNTP (각각 10mM의 농도, Takara, Japan)]를 넣고 디이피씨 [DEPC (Sigma, USA)]를 처리한 3차 증류수로 50μℓ가 되도록 첨가한 후, 42℃에서 1시간 반응시켜 1차 cDNA를 합성하였다.
- ''> 상기에서 얻어진 1차 cDNA를 주형으로 하고, 프라이머로는 하기 표 1에 기재된 프라이머 1 및 프라이머 2를 이용하는 중합효소 연쇄반응으로 사람의 야생형 TPO를 코딩하는 DNA를 제조하였다. 중합효소 연쇄반응은 3世 1차 cDNA, 2U 피에프유 DNA 폴리머라제[pfu DNA polymerase (Stratagene, USA)], 10世 10배 반응완충 용액, 1% 트리톤 엑스-100(Triton X-100), 1mg/ml 우혈청알부민(BSA), 3世 프라이머1 (10uM), 3世 프라이머2 (10uM), 2世 디엔티피(dNTP, 각각 10



mM)를 넣고 3차 증류수로 100μl가 되도록 첨가한 후 실시하였다. 반응 조건은 95℃에서 3분간 처리한 다음 95℃에서 30초, 52℃에서 1분, 72℃에서 1분 30초씩 30회 반응시키고, 72℃에서 10분간 더 반응시켜 중합효소 연쇄반응 산물이 완전한 평활 말단(blunt end)이 되도록 하였다.

- 8 상기 중합효소 연쇄반응 산물은 0.8% 아가로스 젤[agarose gel (BMA, USA)]에 전기 영동한후, 큐어엑스 투 젤 추출 키트[Qiaex II gel extraction kit (Qiagen, USA)]를 이용하여 순수분리하였다. 15U EcoRI (Takara, Japan)과 10U Not I (Takara, Japan), 3μl 10배 반응완충용액을 섞은후, 3차 증류수로 30μl가 되도록 첨가한후 37℃에서 2시간 반응시켰다. 반응물을0.8% 아가로스 젤에 전기 영동한후, 큐어엑스 투 젤 추출 키트로 순수 분리하였다.
- '> 벡터로 사용할 5μg 피블루스크립트 케이에스투(+) [pBluescript KSΠ(+) (Stratagene, USA)]
   를 15U EcoRI과 10U Not I, 3μl 10배 반응완충용액을 섞은 후, 3차 증류수로 30μl가 되도록 첨가한 후 37℃에서 2시간 반응시켰다. 반응물을 0.8% 아가로스 젤에 전기 영동한 후, 큐어엑스투 젤 추출 키트로 순수 분리하였다.
- 이렇게 제조된 벡터 100ng에 앞서 제한효소로 처리된 중합효소 연쇄반응 산물 20ng을 넣고 0.5U 티포 DNA 리가아제[T4 DNA ligase (Amersham, USA)], 1μℓ 10배 반응완충용액를 넣은 후 3 차 중류수로 10μℓ가 되도록 첨가한 후 16℃ 수조(water bath)에서 16시간 동안 반응시켜서, 야생형 TPO를 코딩하는 DNA를 포함하는 재조합 벡터를 제조하였다. 대장균[



E. coli Top10 (Invitrogen, USA)]을 루비듐 클로라이드(rubidium chloride)법으로 컴피턴트 세포(competent cell)를 만든 후 상기 재조합 벡터로 트랜스펙션시켜 암피실린[ampicillin (Sigma, USA)]을 50μg/ml 함유한 엘비 한천 평판배지(LB medium)에 도말하고 37℃에서 16시간 배양하였다. 생성된 콜로니들을 암피실린이 50μg/ml 함유된 엘비 액체 배양액(LB broth) 3ml 에 접종한 후 37℃에서 16시간동안 진탕 배양하였다. 이 중 1ml을 알카라인 분해(alkaline lysis)법으로 플라스미드 미니-프레퍼레이션(plasmid mini-preparation)한 후 EcoRI과 Not I으로 절단하여 클로닝의 유무를 확인하였다.

- To 전술된 올리고뉴클레오타이드를 프라이머로 사용한 역전사-중합효소연쇄반응시 최적의 어닐링(annealing) 온도는 52℃ 이었으며, 이때 1062bp 가량의 TPO DNA 밴드가 증폭되었다. 한편, 중합효소 연쇄반응 산물의 염기서열이 기존의 보고와 동일함을 앤씨비아이 진뱅크 블라스트 서치 (NCBI genebank BLAST search)를 이용하여 확인하였다.
- ▷ B. 야생형 EPO를 코딩하는 DNA의 제조
- › 야생형 EPO를 코딩하는 DNA는 전술한 야생형 TPO를 코딩하는 DNA를 제조하는 과정과 동일한 절차에 따라 제조하였다.
- > 골수에서 추출한 mRNA를 주형으로 하는 역전사-중합효소 연쇄반응으로 제조된 1차 cDNA를 주 형으로 하고, 프라이머로는 하기 표 2에 기재된 프라이머 11 및 프라이머 12를 이용하는 중합 효소 연쇄반응으로 사람의 야생형 EPO를 코딩하는 DNA를 제조하였다. 상기 중합효소 연쇄반응 산물을 제한효소 EcoRI과 BamHI 로 소화시키고, 시판되고 있는 클로닝 벡터 피블루스크립트



케이에스투(+) [pBluescript KSII(+) (Stratagene, USA)]의 EcoRI/BamHI 부위에 삽입하여 클로 당하였다. 대장균 [E. coli Top10 (Invitrogen, USA)]을 루비듐 클로라이드(rubidium chloride)법으로 컴피턴트 세포(competent cell)를 만든 후 상기 재조합 벡터로 트랜스펙션시 켜 이를 배양하였다. 이로부터 수득한 배양물 1째을 알카라인 분해(alkaline lysis)법으로 플라스미드 미니-프레퍼레이션 (plasmid mini-preparation)한 후 EcoRI과 BamHI으로 절단하여 클로닝의 유무를 확인하였다.

### 5> 실시예 2

- 6> A. 본 발명에 따른 TPO 변이체를 코딩하는 DNA의 제조
- 7> TPO의 D-알파 나선에 있는 페닐알라닌을 발린으로 치환한 변이체(TPO-[F131V] 및 TPO-[F141V])와 비교예로서 상기 D-알파 나선을 제외한 부분에 있는 페닐알라닌을 발린으로 치환한 변이체(TPO-[F46V] 및 TPO-[F128V])를 제조하였다.

#### > 【丑 1】

| 야생형 TF                                           | 70 및 본 발명어                              | <u>  따른 TPO</u> | 변이체를 코딩하는 DNA를 제조하는데 이용된 프<br>I해사서역            | t arvi m   |
|--------------------------------------------------|-----------------------------------------|-----------------|------------------------------------------------|------------|
| 프다이버                                             |                                         |                 | 핵산서열                                           | <u> 서열</u> |
| <del>                                     </del> | 야생형 TPO                                 | 201 2           |                                                | 번호         |
| $\frac{1}{2}$                                    | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 센스<br>안티센스      | 5'-CGGAATTC CGATGGAGCTGACTGAATTG-3'            | 26         |
| 3                                                | TPO-[F46V]                              | 센스              | 5'-TTTAGCGGCCGC ATTC <u>TTA</u> CCCTTCCTGAG-3' | 27         |
| 4                                                |                                         | 변드<br>안티센스      | 5'-CCAAGCTAAC GTCCACAGCAG-3'                   |            |
| 5                                                | TPO-[F128V]                             | 센스              | T3                                             | 28         |
| 6                                                | ]                                       | 안티센스            | 5'-GCTCAGGAC GATGGCAT-3'                       |            |
| 7                                                | TPO-[F131V]                             | 센스              | ТЗ                                             | 29         |
| 8                                                |                                         | 안티센스            | 5'-GGTGTTGGAC GCTCAGGAAGATG-3'                 | 30         |
| 9                                                | TPO-[F141V]                             | 센스              | [13                                            | + 50       |
| 10                                               |                                         | 안티센스            | 5'-CATCAGGAC ACGCACCTTTCC-3'                   | 31         |



- a. 본 발명에 따른 TPO 변이체를 코딩하는 DNA 및 이 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터의 제조
- :90> TPO-[F131V]/TPO-[F141V]/TPO-[F46V]/TPO-[F128V]를 코딩하는 DNA를 제조하기 위해서 실시예 1의 A에서 얻어진 피블루스크립트 케이에스 투(+)에 클로닝된 야생형 TPO를 코딩하는 DNA를 주 형으로 상기 표 2에 특정된 1 $\mu$ l 프라이머(10 pmole)와 벡터 프라이머인 1 $\mu$ l 티3(T3)(10 pmole) 을 가지고 1차 중합효소 연쇄반응을 실시하였다. 반응 조건은 2.5U Ex Taq(Takara, Japan), 5  $\mu$   $10배 반응완충용액, 1mM 염화마그네슘, <math>4\mu$ 신 디앤티피(각 2.5mM)를 넣고  $3차 증류수로 <math>50\mu$ 신 가 되도록 첨가한 후, 94℃에서 3분간 처리한 다음 94℃에서 30초, 60℃에서 30초, 72℃에서 30초씩 30회 반응시키고, 72℃에서 7분간 더 반응시킨 후 중합효소 연쇄반응 산물을 0.8% 아가 로스 젤에 전기 영동한 후, 큐어엑스 투 젤 추출 키트를 이용하여 순수 분리하여 메가 프라이 머를 제조하였다. 이렇게 제조된 메가 프라이머와 벡터 프라이머인  $1\mu\ell$  티7(T7)(10 pmole)을 가지고 다시 피블루스크립트 케이에스 투(+)에 클로닝된 야생형 TPO를 코딩하는 DNA를 주형으 로 2.5U Ex Taq (Takara, Japan), 5μl 10배 반응완충용액, 4μl 디앤티피 (각 2.5mM)를 넣고 3 차 증류수로 50μl가 되도록 첨가한 후 2차 중합효소 연쇄반응을 실시하는데, 94℃에서 3분간 처리한 다음 94℃에서 1분, 58℃에서 1분, 72℃에서 1분 30회 반응시키고, 72℃에서 7분간 더 반응시켰다.
- 여기서, 본 발명에 따른 TPO 변이체를 코딩하는 DNA의 제조를 위한 1차 중합효소 연쇄반응에서는 핵산 합성 오류를 최소화하기 위해서 마그네슘의 농도를 1mM로 하였고, 어닐링 온도 60℃에서 TPO-[F46V]는 약 280bp, TPO-[F128V]는 약 520bp, TPO-[F131V]는 약 530bp, TPO-[F141V]는 약 560bp의 메가 프라이머를 확인할 수 있었다. 2차 중합효소 연쇄반응에서 사용한 메가 프라이머는 각각 TPO-[F46V]는 4μℓ, TPO-[F128V]는 2μℓ, TPO-[F131V]는 2μℓ, TPO-[F141V]는 2



ル을 넣고 어닐링 온도는 58℃에서 실험을 수행한 결과 1062bp 가량의 밴드가 증폭되었음을 확인할 수 있었다. 또한 염기 서열 분석으로 원하는 위치에서 페닐알라닌이 발린으로 치환되었음을 확인할 수 있었다.

- 92> 상기 중합효소 연쇄반응 산물은 0.8% 아가로스 젤에 전기 영동한 후, 큐어엑스 투 젤 추출 키트를 이용하여 순수 분리하고 15U EcoRI과 10U NotI, 3μl 10배 반응완충용액, 3μl 0.1% 우혈청 알부민을 섞은 후, 3차 중류수로 30μl가 되도록 첨가한 후 37℃에서 2시간 반응시켰다. 반응물을 0.8% 아가로스 젤에 전기 영동한 후, 큐어엑스 투 젤 추출 키트로 순수 분리하고 전술된 방법에 따라 피블루스크립트 케이에스 투(+)에 라이게이션 (ligation)하였다. 이렇게 생산된 재조합 발현 벡터 중에서 TPO-[F141V]를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터는 Tefficacin4로 명명되었고 부다페스트 협약하에 KCCM(Korean Culture Center of Microorganisms)에 2003년 6월 9일자로 기탁번호 KCCM-10500으로 국제기탁되었다.
- B. 본 발명에 따른 EPO 변이체를 코딩하는 DNA 및 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터의 제조
- 4> EPO의 결합 도메인내에 있는 페닐알라닌을 발린으로 치환한 변이체(EPO-[F142V] 및 EPO-[F148V])와 비교예로서 상기 결합 도메인을 제외한 부분에 있는 페닐알라닌을 발린으로 치환한 변이체(EPO-[F48V] 및 EPO-[F138V])를 제조하였다.





#### 5>【五2】

| 및 본 발명에     | <u> 따른 EPO 변</u> ㅇ                                  | ]<br> 체를 코딩하는 DNA를 제조하는데 이용된                                                                             | 의 프라이머                                             |
|-------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|             |                                                     | 백산시월                                                                                                     | 저혈번호                                               |
| 야생형 EPO     |                                                     | 5'-GGCGCGGAG <u>ATG</u> GGGGT-3'                                                                         | 32                                                 |
|             | 안티센스                                                | 5'-TGGTCATCTGTCCCCTGTCCTG-3'                                                                             | 33                                                 |
| EPO-[F48V]  | 센스                                                  | T3                                                                                                       |                                                    |
|             | 안티센스                                                | 5'-GAC ATTAACTTTGGTGTCTGGGAC-3'                                                                          | 34                                                 |
| EPO-[F138V] | 센스                                                  |                                                                                                          | 35                                                 |
|             | 안티센스                                                | Γ7                                                                                                       | <del>                                     </del>   |
| EPO-[F142V] | 센스                                                  | 5'-CGCAAACTCG TCCGAGTCTACT-3'                                                                            | 36                                                 |
|             | 안티센스                                                | 17                                                                                                       | <del>                                     </del>   |
| EPO-[F148V] | 센스                                                  | 5'-GAGTCTACTCCAATGTGGTGGG-3'                                                                             | 37                                                 |
|             | 안티센스                                                | 17                                                                                                       |                                                    |
|             | 야생형 EPO<br>EPO-[F48V]<br>EPO-[F138V]<br>EPO-[F142V] | 야생형 EPO 센스<br>안티센스<br>만티센스<br>만티센스<br>EPO-[F138V] 센스<br>안티센스<br>EPO-[F142V] 센스<br>안티센스<br>EPO-[F148V] 센스 | 안티센스 5'-TGGTCATCTGTCCCTGTCCTG-3'  EPO-[F48V] 센스 T3 |

▷ 본 발명에 따른 EPO 변이체를 코딩하는 DNA는 전술한 TPO 변이체를 코딩하는 DNA의 제조과정과 동일한 절차에 따라 제조하였다. EPO-[F142V]/ EPO-[F148V]/EPO-[F48V]/EPO-[F138V]를 코딩하는 DNA를 제조하기 위해서 실시예 1의 B에서 얻어진 피블루스크립트 케이에스 투(+)에 클로닝된 야생형 EPO를 코딩하는 DNA를 주형으로 상기 표 2에 특정된 1ℓℓℓ 프라이머(10 pmole)와 벡터 프라이머인 1ℓℓℓ 티3(T3)(10 pmole)을 가지고 1차 중합효소 연쇄반응을 실시하였다. 이로부터 제조된 메가 프라이머와 벡터 프라이머인 1ℓℓℓ 티7(T7)(10 pmole)을 가지고 다시 피블루스크립트 케이에스 투(+)에 클로닝된 야생형 EPO를 코딩하는 DNA를 주형으로 2차 중합효소 연쇄반응을 실시하였다.



- 97> 여기서, 본 발명에 따라 변이된 EPO 변이체를 코딩하는 DNA의 제조를 위한 1차 중합효소 연쇄반응에서는 핵산 합성 오류를 최소화하기 위해서 마그네슘의 농도를 1mM로 하였고, 어닐링은도 60℃에서 EPO-[F48V]는 약 300 bp, EPO-[F138V]는 약 550bp, EPO-[F142V]는 약 550bp, EPO-[F148V]는 약 550bp의 메가 프라이머를 확인할 수 있었다. 2차 중합효소 연쇄반응에서 사용한 메가 프라이머는 각각 EPO-[F48V]는 약 1μℓ, EPO-[F138V]는 1μℓ, EPO-[F142V]는 약 1μℓ, EPO-[F142V]는 약 1μℓ, EPO-[F148V] 약 1μℓ를 넣고 어닐링 온도는 58℃에서 실험을 수행한 결과 580bp 가량의 밴드가증폭되었음을 확인할 수 있었다. 또한 염기 서열 분석으로 원하는 위치에서 페닐알라닌이 발 린으로 치환되었음을 확인할 수 있었다.
- 》 상기 중합효소 연쇄반응 산물은 0.8% 아가로스 젤에 전기 영동한 후, 큐어엑스 투 젤 추출 키트를 이용하여 순수 분리하고 15U EcoRI과 10U BamHI, 3μl 10배 반응완충용액, 3μl 0.1% 우혈 청알부민을 섞은 후, 3차 증류수로 30μl가 되도록 첨가한 후 37℃에서 2시간 반응시켰다. 반응물을 0.8% 아가로스 젤에 전기 영동한 후, 큐어엑스 투 젤 추출 키트로 순수 분리하고 전술된 방법에 따라 피블루스크립트 케이에스 투(+)에 라이게이션 (ligation)하였다. 이렇게 생산된 재조합 발현 벡터 중에서 EPO-[F148V]를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터는 Refficacin4로 명명되었고 부다페스트 협약하에 KCCM(Korean Culture Center of Microorganisms)에 2003년 6월 9일자로 기탁번호 KCCM-10501로 국제기탁되었다.
- > 실시예 3
- ' A. 본 발명에 따른 TPO 변이체의 발현 및 정제



- .01> a. 양이온 지질-매개 트랜스펙션 방법을 이용한 형질전환체의 제조
- 35mm 디쉬에 햄스티 난소 세포를 디쉬당 1.5×05개로 10% 우태아혈청(Fetal bovine serum)을 함유한 디엠이엠 배지[DMEM medium (Gibco BRL, USA)]를 이용하여 5% 이산화탄소, 37℃ 배양기에서 18-24시간 배양하였다. 12×5mm 멸균 튜브에, 우태아혈청을 함유하지 않은 디엠이엠 배지 100ℓ세에 실시예 2의 A에서 제조된 TPO 변이체를 코딩하는 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터 1.5ℓ㎏을 첨가한 용액과 우태아혈청을 함유하지 않은 디엠이엠 배지 100ℓ세에 리포펙타민 용액(Invitrogen, USA) 6ℓℓ를 첨가한 용액을 혼합한 후 DNA-양이온 지질 용액 복합체 형성을 위해 45분 동안 실온에서 방치하였다. 앞서, 35mm 디쉬에서 배양한 햄스터 난소 세 포를 우태아혈청을 함유하지 않은 디엠이엠 배지로 2회 씻은 다음 우태아혈청을 함유하지 않은 디엠이엠 배지 800ℓℓ를 첨가하고, DNA-양이온 지질 용액 복합체를 조심스럽게 뿌려주었다. 5% 이산화탄소, 37℃ 배양기에서 5시간 배양 후 20% 우태아혈청을 함유한 디엠이엠 배지 1㎡을 첨가하였다. 다시 5% 이산화탄소, 37℃ 배양기에서 18~24시간 배양한 후 세포를 우태아혈청을 함유하지 않은 디엠이엠 배지로 2회 씻은 후 10% 우태아혈청을 함유한 디엠이엠 배지 2㎡ 첨가하였다. 다시 5% 이산화탄소, 37℃ 배양기에서 72시간 배양하였다.
- <sup>3></sup> b. ELISA 방법을 이용한 TPO 변이체의 발현 양상 분석
- 와 앞서 양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체에서 TPO 변이체의 발현여부를 확인하기 위하여 효소 면역 검사법(ELISA)를 실시하였다. 96 웰 플레이트 [96 well plate (Falcon, USA)]에 고트 안티-휴먼 TPO 폴리클로날 항체[Goat anti-human TPO Polyclonal antibody (R&D, USA)]를 코팅 용액 (0.1M Sodium bicarbonate, [pH 9.6])을 사용하여 10ug/



때이 되게 희석하여 100㎡씩 분주하여 실온에서 1시간 동안 반응시켰다. 세척 용액 (0.1% 트 윈-20 함유 1배 인산완충용액)으로 3회 세척한 후 블로킹 용액 (1% 우혈청알부민, 5% 자당, 0.05% 소듐 아자이드)을 200㎖ 분주하여 실온에서 1시간 동안 방치한 다음 세척 용액으로 3회 세척하였다. 배양물 중 상층액(양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체를 포함)을 희석 용액(0.1% 우혈청알부민, 0.05% 트윈-20 함유 1배 인산완충용액)으로 연속적으로 희석하였고 양성 대조군으로 25ng/ml 재조합 사람의 TPO (Calbiochem, USA)를, 음성 대조군으 로 트랜스펙션하지 않은 햄스터 난소 세포의 배양액을 사용하여 동일하게 희석한 후 실온에서 1시간 동안 반응시켰다. 세척 용액으로 3회 세척 후 바이오티닐래이티드 고트 안티-휴먼 티피 오 안티바디 [Biotinylated goat anti-human TPO antibody (R&D, USA)]를 희석 용액을 사용하 여 0.2ug/메이 되도록 희석한 후 이를 100㎖씩 분주하고 실온에서 1시간 동안 반응시켰다. 세 척 용액으로 3회 세척하고 스트렙타비딘-에이치알피 [Streptavidin-HRP (R&D, USA)]를 희석 용액으로 1:200 희석한 다음 100世씩 분주하고 실온에 1시간 반응시켰다. 반응이 끝난 후 세 척 용액으로 3회 세척한 후 티엠비 마이크로웰 퍼옥시다아제 서브스트레이트 시스템 [TMB microwell peroxidase substrate system (KPL, USA)]을 이용하여 발색시키고, 마이크로플레이 트 리더 [microplate reader (BIO-RAD Model 550)]로 파장 630nm에 대한 흡광도를 측정하여 발 현 여부를 확인하였다.

- ° c. 웨스턴 블럿을 이용한 TPO 변이체의 발현양상 및 분자량 분석
- › 앞서 양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체를 우태아 혈청을 제거하기 위해 쵸-에스-에스에프엠 투[CHO-S-SFM II (Gibco BRL, USA)]에서 배양한 후 배양액을 모아 0.20



[centricon (Millipore, USA)]을 사용하여 농축시켰다. 5% 베타-메르캅토에탄을(β -mercaptoethanol) 함유 5배 로딩 버퍼를 첨가한 후 10분간 끓인 다음 환원상태 에스디에스-페 이지 (reduced SDS-PAGE)를 실시하였다. 스태킹 젤(Stacking gel)은 3.5% 아크릴아마이드 겔 [acrylamide gel (0.5M 트리스-에이치씨엘 [pH 6.8] , 0.4% 에스디에스)]을 사용하였으며, 러 닝 젤(running gel)은 10% 아크릴아마이드 겔(1.5M 트리스-에이치씨엘 pH 8.8, 0.4% 에스디에 스)을 사용하여 실시하였다. 전기영동이 끝난 후 구멍 크기가 0.4μm인 웨스트란[Westran (PVDF transfermembrane, S&S)]에 350mA로 2시간 동안 전기 전이 시켰고, 이 때 25mM 트리스 -192mM 글리신 (pH 8.3)-20% 메탄올을 완충용액으로 사용하였다. 막 전이 후 5% 탈지분유로 10분씩 3회 블로킹을 실시하였다. 이 후 바이오티닐래이티드 고트 안티-휴먼 티피오 안티바디 [biotinylated goat anti-human TPO antibody (R&D, USA)]를 블로킹 용액으로 0.25µg/ml이 되게 희석하고 이를 3ml 넣은 후 잘 흔들어 주면서 실온에서 6시간 반응시켰다. 세척 용액으 로 3회 세척한 후 스트랩타비딘-에이치알피 [Streptavidin-HRP (serotec, USA)]를 블로킹 용액 으로 1:100이 되도록 희석한 다음 1시간 반응시키고 세척 용액으로 3회 세척한 후 디에이비 서 브스트레이트 키트 [DAB substrate kit (VECTOR LABORATORIES)]를 사용하여 제품 사용법에 준 하는 방법으로 발색제를 만들었고, 이를 3㎡ 첨가한 후 실온에서 10분간 발색시켰다. 반응의 종료는 3차 증류수로 하였다.

> 도 3a는 무혈청 배지에서 배양된 햄스터 난소 세포 배양액에서 발현된 TPO 단백질의 분자량을 확인한 결과를 나타낸 것으로, 양성 대조군인 rhTPO는 약 60kD, 음성 대조군으로 사용한 트랜스펙션하지 않은 햄스터 난소 세포의 배양액에서는 밴드가 보이지 않았으며, 야생형 TPO와 TPO 변이체들은 모두 90~110kD 가량의 분자량이 확인되었다.



- <sup>38></sup> B. 본 발명에 따라 변이된 EPO 변이체의 발현 및 정제
- <sup>)9></sup> a. 양이온 지질-매개 트랜스펙션 방법을 이용한 형질전환체의 제조
- © 35mm 디쉬에 햄스터 난소 세포를 디쉬당 1.5×105개로 10% 우태아혈청(Fetal bovine serum)을 함유한 디엠이엠 배지[DMEM medium (Gibco BRL, USA)]를 이용하여 5% 이산화탄소, 37℃ 배양기에서 18~24시간 배양하였다. 12×5mm 멸균 튜브에, 우태아혈청을 함유하지 않은 디엠이엠 배지 100ℓ세에 실시예 2에서 제조된 피씨알 벡터 1.5ℓ㎞을 첨가한 용액과 우태아혈청을 함유하지 않은 디엠이엠 배지 100ℓ세에 리포펙타민 용액(Invitrogen, USA) 6ℓ세를 첨가한 용액을 혼합한 후 DNA~양이온 지질 용액 복합체 형성을 위해 45분 동안 실온에서 방치하였다. 앞서, 35mm 디쉬에서 배양한 햄스터 난소 세포를 우태아혈청을 함유하지 않은 디엠이엠 배지로 2회 씻은 다음우태아혈청을 함유하지 않은 디엠이엠 배지로 2회 씻은 다음우태아혈청을 함유하지 않은 디엠이엠 배지 800ℓ세를 첨가하고, DNA~양이온 지질 용액 복합체를 조심스럽게 뿌려주었다. 5% 이산화탄소, 37℃ 배양기에서 5시간 배양 후 20% 우태아혈청을 함유한 디엠이엠 배지 1㎡을 첨가하였다. 다시 5% 이산화탄소, 37℃ 배양기에서 18~24시간 배양한 후 세포를 우태아혈청을 함유하지 않은 디엠이엠 배지로 2회 씻은 후 10% 우태아혈청을 함유한 디엠이엠 배지 2㎡ 첨가한 후 5% 이산화탄소, 37℃ 배양기에서 72시간 배양하였다.
- 1> b. ELISA 방법을 이용한 EPO 변이체의 발현 측정
- 와서 양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체에서 EPO 변이체의 발현여부를 확인하기 위하여 효소 면역 검사법(ELISA)을 실시하였다. 96 웰 플레이트 [96 well plate (Falcon, USA)]에 염소 항-사람 EPO 폴리클로날 항체[Goat anti-human EPO Polyclonal antibody (R&D, USA)]를 코팅 용액 (0.1M Sodium bicarbonate, [pH 9.6])을 사용하여 10ug/



때이 되게 희석하여 100㎡씩 분주하여 실온에서 1시간 동안 반응시켰다. 세척 용액 (0.1% 트 윈-20 함유 1배 인산완충용액)으로 3회 세척한 후 블로킹 용액 (1% 우혈청알부민, 5% 자당, 0.05% 소듐 아자이드)을 200μl 분주하여 실온에서 1시간 동안 방치한 다음 세척 용액으로 3회 세척하였다. 양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체를 포함하는 상충액을 희석 용액(0.1% 우혈청알부민, 0.05% 트윈-20 함유 1배 인산완충용액)으로 연속적으로 희석하 였고 양성 대조군으로 10IU/ml 재조합 사람의 EPO (Calbiochem, USA)를, 음성 대조군으로 트랜 스펙션하지 않은 햄스터 난소 세포의 배양액을 사용하여 동일하게 희석한 후 실온에서 1시간 동안 반응시켰다. 세척 용액으로 3회 세척 후 바이오티닐래이티드 고트 안티-휴먼 이피오 안 티바디 [Biotinylated goat anti-human EPO antibody (R&D, USA)]를 희석 용액을 사용하여 0.2ug/ml이 되도록 희석한 후 이를 100μl씩 분주하고 실온에서 1시간 동안 반응시켰다. 세척 용액으로 3회 세척하고 스트렙타비딘-에이치알피 [Streptavidin-HRP (R&D, USA)]를 희석 용액 으로 1:200 희석한 다음 100㎡씩 분주하고 실온에 1시간 반응시켰다. 반응이 끝난 후 세척 용 액으로 3회 세척한 후 티엠비 마이크로웰 퍼옥시다아제 서브스트레이트 시스템 [TMB microwell peroxidase substrate system (KPL, USA)]을 이용하여 발색시키고, 마이크로플레이트 리더 [microplate reader (BIO-RAD Model 550)]로 파장 630nm에 대한 흡광도를 측정하여 발현 여부 를 확인하였다.

- ˙ c. 웨스턴 블럿을 이용한 EPO 변이체의 발현양상 및 분자량 분석
- 앞서 양이온 지질-매개 트랜스펙션 방법으로 제조된 형질전환체를 우태아 혈청을 제거하기 위해 쵸-에스-에스에프엠 투[CHO-S-SFM II (Gibco BRL, USA)]에서 배양한 후 배양액을 모아 0.20  $\mu$ 마의 실린지 필터를 사용하여 세포 찌꺼기들을 제거



하고 cut off가 30,000MW인 센트리콘[centricon (Millipore, USA)]을 사용하여 농축시켰다. 5% 베타-메르캅토에탄올(β-mercaptoethanol) 함유 5배 로딩 버퍼를 첨가한 후 10분간 끓인 다 음 환원상태 에스디에스-페이지 (reduced SDS-PAGE)를 실시하였다. 스태킹 젤(Stacking gel) 은 3.5% 아크릴아마이드 겔[acrylamide gel (0.5M 트리스-에이치씨엘 [pH 6.8], 0.4% 에스디 에스)]을 사용하였으며, 러닝 젤(running gel)은 10% 아크릴아마이드 젤(1.5M 트리스-에이치씨 엘 pH 8.8, 0.4% 에스디에스)을 사용하여 실시하였다. 전기영동이 끝난 후 구멍 크기가 0.4세 인 웨스트란[Westran (PVDF transfermembrane, S&S)]에 350mA로 2시간 동안 전기 전이 시켰고, 이 때 25mM 트리스-192mM 글리신 (pH 8.3)-20% 메탄올을 완충용액으로 사용하였다. 막 전이 후 5% 탈지분유로 10분씩 3회 블로킹을 실시하였다. 이 후 바이오티닐래이티드 고트 안티-휴먼 이피오 안티바디[biotinylated goat anti-human EPO antibody (R&D, USA)]를 블로 킹 용액으로 0.25μg/ml이 되게 희석하고 이를 3ml 넣은 후 잘 흔들어 주면서 실온에서 6시간 반응시켰다. 세척 용액으로 3회 세척한 후 스트랩타비딘-에이치알피 [Streptavidin-HRP (serotec, USA)]를 블로킹 용액으로 1:100이 되도록 희석한 다음 1시간 반응시키고 세척 용액 으로 3회 세척한 후 디에이비 서브스트레이트 키트[DAB substrate kit (VECTOR LABORATORIES)] 를 사용하여 제품 사용법에 준하는 방법으로 발색제를 만들었고, 이를 3ml 첨가한 후 실온에서 10분간 발색시켰다. 반응의 종료는 3차 증류수로 하였다.

> 도 3b는 무혈청 배지에서 배양된 햄스터 난소 세포 배양액에서 발현된 EPO 단백질의 분자량을 확인한 결과를 나타낸 것으로, 양성 대조군인 rhEPO는 약 36kD, 음성 대조군으로 사용한 트랜스펙션하지 않은 햄스터 난소 세포의 배양액에서는 밴드가 보이지 않았으며, 야생형 EPO와 EPO 변이체들은 모두 36kD 가량의 분자량이 확인되었다.



l6> 실시예 4

- .?> A. EPO 수용체와 TPO 수용체를 코딩하는 DNA의 제조
- EPO 또는 TPO 변이체와의 결합 친화력을 측정하기 위해서 각각에 대한 수용체(이하 EPO 수용 체 또는 TPO 수용체)를 제조하였는데, 수용체의 카르복시기 말단에 human IgG1 Fc 부분을 붙여 재조합 발현 벡터를 제조하였다. 먼저 제한효소 EcoRI의 인식서열과 리더 서열의 코딩 서열 을 갖는 한 프라이머(EPO 수용체의 경우:프라이머 21, TPO 수용체의 경우: 프라미머 23)와 3' 말단서열과 면역글로불린 G1(IgG1)의 힌지부위(hinge region: H)의 5' 말단의 일부 서열을 코 당하는 안티센스 서열( EPO 수용체의 경우: 프라이머 22, TPO 수용체의 경우: 프라이머 24)을 갖는 다른 프라이머를 사용하여 중합효소 연쇄반응으로 EPO 수용체 또는 TPO 수용체를 코딩하 는 DNA 단편을 생성하였다. 이 단편과 면역글로불린 G1의 Fc 부위를 코딩하는 DNA 단편을 한 시험관에 혼합 한 후, 공통되는 서열사이에서 상보적 결합이 일어나도록 유도하였다. 이를 주 형으로 EPO 수용체 또는 TPO 수용체의 5' 말단을 코딩하는 서열을 갖는 프라이머(EPO 수용체의 경우:프라이머 21, TPO 수용체의 경우:프라이머 23)와 IgG1 Fc의 3' 말단을 코딩하는 프라이 머(프라이머 25)를 사용한 중합효소 연쇄반응을 일으켜, 상기 EPO 수용체 또는 TPO 수용체와 IgG1 Fc 부위의 DNA 단편의 서열을 포함하는 DNA 작제물을 증폭시켰다. 이를 제한효소 EcoRI 과 HindIII를 이용하여 절단한후 피씨알-3 발현벡터에 삽입하여 클로닝하였다.



【丑 3】

|              | 프라이머<br>번호 |      | 핵산 서열                                    | 서열 |
|--------------|------------|------|------------------------------------------|----|
| DDO 人 0 = 11 |            |      |                                          | 번호 |
| EPO 수용체      | 21         |      | 5'-CGGAATTCATGGACCACCTCGGGGCG-3'         | 38 |
|              | 22         | 안티센스 | 5'-GCTCTAGACTAAGAGCAAGCCACATAGCTGGG-3'   | 39 |
| TPO 수용체      | 23         | 센스   | 5'-CCCAAGCTTATGGAGCTGACTGAATTGCTCCTC-3'  | 40 |
|              | 24         |      |                                          | 41 |
| IgG1-R-XbaI  | 25         |      | 5'-GCTCTAGAGCTCATTTACCCGGAGACAGGGAGAG-3' | 42 |

- :0> B. EPO 수용체 및 TPO 수용체의 발현과 결합 친화력 측정
- ▷ 이를 지질-매개 트랜스펙션 방법을 이용하여 상기 기술한 방법과 동일하게 햄스터 난소 세포에서 발현하였다. 이로부터 얻어진 배양액을 다음의 리간드-수용체 결합 친화력을 측정하는데 사용하였다. 96 웰 플레이트에 안터-휴먼아이쥐 안티바디(anti-human Ig antibody)를 코팅용액(0.1M sodium bicarbonate, pH 9.6)을 사용하여 10ug/ml이 되게 회석하였다. well 당100ul씩 분주하여 실온에서 1시간 동안 반응시켰다. 세척 용액(0.1% Tween-20 합유 PBS)으로 3회 세척한 후 EPO 수용체 또는 TPO 수용체가 발현된 상층액을 1시간 동안 반응시켰다. 다시세척 용액으로 3번 세척한 후 각각의 EPO 변이체 또는 TPO 변이체를 농도별로 1시간 동안 반응시켰다. 세척 용액으로 3번 세척한 후 각각의 EPO 변이체 또는 TPO 변이체를 농도별로 1시간 동안 반응시켰다. 세척 용액으로 다시 3번 세척한 후 바이오티닐레이티드 안티-EPO 안티바디(biotinylated anti-EPO antibody) 또는 바이오티닐레이티드 안티-TPO 안티바디(biotinylated anti-TPO antibody(R&D, USA))를 이용하여 1시간 동안 반응시켰다. 세척 용액으로 3번 세척한 후 스트랩타비딘-에이치알피 안티바디[Streptavidin-HRP antibody (serotec, USA)]를 이용하여 1시간 더 반응시켰다. 세척용액으로 3번 세척후 티엠비 마이크로웰 퍼옥시다아제 서브스트레이트 시스템 [TMB microwell peroxidase substrate system (KPL, USA)]을 이용하여 발색시



키고, 마이크로플레이트 리더 [microplate reader (BIO-RAD Model 550)로 파장 655nm에 대한 흡광도를 측정하였다.

- 도 4a는 TPO 수용체에 대한 TPO 변이체들의 결합 친화력을 보여주는 결과로서, TPO-[F141V]가 가장 높은 결합 친화력을 보여주고 있으며 TPO-[F131V]는 야생형 TPO 보다 약간 높은 결합 친화력을 나타내었다. 도 4b는 EPO 수용체에 대한 EPO 변이체들의 결합 친화력을 보여주는 결과로서, EPO-[F148V]가 가장 높은 결합 친화력을, 그 다음 EPO-[F142V], 야생형 EPO 순으로 나타났다. 이러한 결과는 나선의 +1 위치(도 1a참조)의 페닐알라닌을 발린으로 치환한 TPO-[F141V]와 EPO-[F148V]가 가장 높고, 중심이 되는 +1로부터 멀어질수록 결합 친화력이 낮아짐을 확인시켜 주었다. 즉, 상기 변이체들이 +1 위치에 덜 가까운 EPO -[F142V]와 TPO-[F131V] 보다 결합 친화력이 높다는 사실을 비교 확인할 수 있었다.
- 23> C. 본 발명에 따른 TPO 변이체에 대한 SPR 에세이
- \*\* TPO-[F141V] 또는 TPO-[F131V]와 실시예 4에서 제조한 TPO 수용체간의 결합 친화력의 차이를 측정하기 위하여 에스피알 [SPR (surface plasmon resonance)] 에세이를 수행하였다. 에스피알 에세이는 수용체-리간드 또는 수용체-항체 사이의 결합 친화력을 측정하기 위한 실험으로 수용체에 리간드가 결합하게 되면 밀도가 증가하게 되어 그 양의 변화를 측정하여 얼마나 결합 친화력을 가지고 있는지 비교하는 것이다.
- '5> 먼저 센서 칩(sensor chip)을 넣어 도킹(docking)한 다음에, 미세유로와 칩에 완충액을 흘려주어 프라이밍(priming)을 하고, 20~30% 글리세롤을 이용하여
  - 노말라이징(normalising)시킨다. 노말라이징(normalising) 용액으로 세척한 다음, 미세유로와



침을 다시 완충용액으로 채운다. 안티-휴먼 아이쥒쥐 안티바디(anti-human IgG antibody)에 가장 잘 붙는 조건을 맞추기 위해서 소듐 아세테이트 (pH4~6)의 pH를 조절하여 프리콘센트레이션(preconcentration) 검사를 실시하고, 칩이 활성화할 수 있는 잔기를 가지도록 활성화 단계를 거친 다음, 10분 이내에 고정화하도록 한다. 1M 에탄올아민(ethanolamine)으로 나머지활성화 잔기를 불활성화시키고, TPO 수용체를 흘려주어 안티-휴먼 아이쥒쥐 안티바디 (anti-human IgG antibody)와 결합할 수 있도록 한 다음, 야생형 TPO/TPO-[F141V]/TPO-[F131V]를 각각 다시 흘려주어 TPO 수용체와 결합시킨 후, 염 또는 산성 용액을 사용하여 TPO 수용체와 결합한 각각의 TPO들을 분리시켜준다.

- F 5a는 야생형 TPO 및 TPO-[F141V]에 대한 SPR 에세이 결과를 나타낸 것이다. 일반적으로, 같은 농도의 리간드를 넣어주었을 때 RU(resonance unit)가 높을수록 그 수용체에 대한 결합 친화력이 더 크다는 것을 의미한다. 상기 도면에 따르면, 야생형 TPO가 10RU임에 비해서 TPO-[F141V]는 30RU, TPO-[F131V]는 20RU를 나타내었다. 이는 TPO-[F141V]가 TPO 수용체에 대해서 가장 높은 결합 친화력을 가진다는 것을 보여준다.
- 7> D. 본 발명에 따른 EPO 변이체에 대한 SPR 에세이
- EPO-[F148V] 또는 EPO-[F142V]와 실시예 4에서 제조된 EPO 수용체간의 결합 친화력의 차이를 측정하기 위하여 전술한 TPO 변이체에 대한 에스피알 에세이와 동일한 방식으로 에스피알[SPR (surface plasmon resonance)] 에세이를 수행하였다.





또 5b는 EPO 수용체에 대한 EPO 변이체들의 결합 친화력을 보여주는 결과로서, EPO-[F148V]는 40RU로, EPO-[F142V]는 30RU로 나와서 F148V로 치환된 EPO 변이체가 EPO 수용체와 가장 결합 친화력이 크다는 것을 확인할 수 있었다.

#### <sup>0></sup> 실시예 5

- 1> A. TF-1/c-Mpl 세포의 제조
- 본 발명에 따른 TPO 및 EPO 변이체의 해당 수용체에 대한 결합 친화력을 측정하기 위해서 상기 분석에 필요한 TF-1/c-Mp/ 세포를 제조하였다. 이 세포는 EPO 수용체를 발현하고 있는 TF-1 세포에 지속적으로 TPO 수용체를 발현하도록 c-Mp/을 트랜스펙션하여 구축하였다.
- > 이렇게 제조된 TF-1/c-Mpl 세포가 c-Mpl을 지속적으로 발현하고 있는지 여부를 확인하기 위해서 먼저 c-Mpl에 대한 팩스 분석을 실시하였다. ml당 1×106개의 TF-1/c-Mpl 세포를 1배 인산 완충용액으로 세척하고 정제된 씨-엠피엘 마우스 안티-휴먼 모노클로날 안티바디 [c-Mpl purified mouse anti-human monoclonal antibody (BD PharMingen, USA)]를 처리한 다음 안티-마우스 아이쥐쥐 에프아이티씨 콘쥬게이트 [Anti-mouse IgG (whole molecule) FITC conjugate (Sigma, USA)]를 붙인 다음 팩스를 수행하였다. 그 결과 음성대조군인 TF-1 세포에서보다 TF-1/c-Mpl 세포에서 그래프가 오른쪽으로 이동한 것을 확인할 수 있었으며, 이는 TF-1/c-Mpl 세포에서 c-Mpl이 지속적으로 발현되고 있음을 의미한다.

# B. 본 발명에 따른 TPO 변이체에 대한 팩스 분석



- TPO-[F141V]에 대한 팩스 분석을 다음과 같이 수행하였다. 配당 1×106개의 TF-1/c-Mpl 세포를 1배 인산완충용액에 부유시키고, TPO 변이체를 처리하여 4℃에서 30~60분간 배양하였다. 그리고 바이오티닐래이티드 고트 안티-휴먼 티피오 폴리클로날 안티바디 [Biotinylated goat anti-human TPO polyclonal antibody (R&D, USA)]를 4℃에서 30~60분간 처리하고, 스트렙타비딘-에프아이티씨 [streptavidin-FITC (Sigma, USA)] 용액을 처리하여 다시 4℃에서 30~60분간 배양하였다. 세포를 1배 인산완충용액으로 2회 세척하여 반응하지 않은 스트렙타비딘-에프아이티씨 (streptavidin-FITC)를 제거하고 세포를 1배 인산완충용액에 부유시켜 488nm에서 flow cytometric analysis를 수행하였다.
- ▷ 도 6a는 TPO 수용체인 c-Mpl에 대한 야생형 TPO 및 TPO-[F141V]의 결합 친화력을 나타낸 것으로, 그 결과 TPO-[F141V]의 그래프가 야생형 TPO보다 더 오른쪽으로 이동한 것을 볼 수 있었다. 이것은 c-Mpl과 결합한 리간드의 양이 야생형 TPO보다 TPO-[F141V]가 더 많다는 것이고, 따라서 이는 TPO 수용체에 대한 결합 친화력은 TPO-[F141]가 동일한 농도의 야생형 TPO보다 더 높다는 것을 검증한다.
- › C. 본 발명에 따른 EPO 변이체에 대한 팩스 분석
- ' EPO-[F148V]에 대한 팩스 분석은 전술한 TPO 변이체에 대한 팩스 분석과 동일한 절차로 수행하였다.
- 도 6b는 EPO 수용체에 대한 야생형 EPO 및 EPO-[F148V]의 결합 친화력을 나타낸 것으로, 그 결과 EPO-[F148V]의 그래프가 야생형 EPO보다 더 오른쪽으로 이동한 것을 볼 수 있었다. 이것 은 EPO 수용체와 결합한 리간드의 양이 야생형 EPO보다 EPO-[F148V]가 더 많다는 것이고, 따라



서 이는 EPO 수용체에 대한 결합 친화력은 EPO-[F148V]가 같은 농도의 야생형 EPO 보다 훨씬더 높다는 것을 증명하고 있다.

#### 10> 실시예 6

- ll> A. 본 발명에 따른 TPO 변이체의 생물학적 활성도 측정
- 야생형 TPO 및 본 발명에 따른 TPO변이체들 각각의 분열 중식과 활성 효과를 측정하기 위하여 앞서 제조된 TF-1/c-Mp1 세포를 사용하였다. TF-1/c-Mp1 세포는 10% 우태아 혈청, 1ng/ml GM-CSF 함유 디엠이엠, 5% 이산화탄소, 37℃ 배양기에서 배양하였다. 이러한 TF-1/c-Mp1 세포를 96 구 효소면역검사판 [96 well plate (FALCON, USA)]에 총량이 100μl가 되도록, 우선 야생형 TPO 및 본 발명에 따른 TPO 변이체들을 각각 0.4, 1, 5, 10, 20, 40, 75 ng/ml 범위가 되도록 10% 우태아 혈청 함유 알피엠아이-1640으로 희석하여 넣고 TF-1/c-Mp1 세포는 well당 1×10.4 개의 세포가 되도록 10% 우태아 혈청 함유 알피엠아이-1640으로 희석하여 넣어 주었다. 이것을 5% 이산화탄소, 37℃ 배양기에서 4일간 배양한 후 MTS 용액 [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,inner salt, MTS] 및 phenazine ethosulfate; PES ;promega)]을 20μl씩 첨가한 후 4시간 동안 반응시키고 마이크로플레이트리더 [microplate reader (BIO-RAD Model 550)]로 파장 490 nm에 대한 흡광도를 측정하여 활성도를 측정하였다.
- 상기 과정 이전에 선행 실험을 통해서 well에 들어가는 세포 수와 TPO/EPO에 대한 반응 시간을 알아보았다. 각각의 최대 증식률을 비교해 본 결과 세포 수는 well당 1內04개의 세포로,
   TPO/EPO와 반응 후 MTS 용액을 처리하는 시간은 4일 후로 결정하였다.



□ 도 7a는 본 발명에 따른 TPO 변이체의 생물학적 활성도 측정 결과를 나타낸 것으로, TPO의 세 포 증식 정도는 TPO 농도 0.4ng/配에서 75ng/配 범위에서 실험을 수행하였다. TPO의 농도가 50ng/ml까지는 세포 증식 정도가 모두 증가하였으나, 그 농도 이상이 되면서부터 세포 증식력 이 오히려 감소한다는 것을 확인할 수 있었다. TPO-[F141V]는 0.4ng/配 가량의 농도에서 세포 증식이 시작되었고, 야생형 TPO보다 높은 생물학적 활성도를 나타내었다. TPO-[F131V]는 TPO-[F141V] 보다는 현저히 낮았고 야생형보다는 약간 높았다. TPO-[F46V]는 야생형 TPO와 유 사한 활성도를 나타내었다.

- > B. 본 발명에 따라 개량된 EPO 변이체의 생물학적 활성도 측정
- > 앞서 제조된 EPO 변이체에 대한 분열 증식과 활성 효과의 측정은 전술한 TPO 변이체의 분열 증식과 활성 효과를 측정하는 방식과 동일한 절차로 수행되었다.
- \* 도 7b는 본 발명에 따른 EPO 변이체의 생물학적 활성도 측정 결과를 나타낸 것으로, EPO의 세포 증식 정도는 EPO 농도 0.001 내지 7IU/ml 범위에서 실험을 수행하였다. TPO와 마찬가지로 EPO의 농도가 증가함에 따라 세포 증식력도 증가하였다가 적정 농도를 초과하게 되면 오히려 세포 증식 능력이 감소한다는 것을 확인할 수 있었다. EPO-[F148V]는 0.001IU/ml 가량의 농도에서 세포 증식이 시작되어, 0.01IU/ml의 농도에서부터는 야생형 EPO보다 높은 활성도를 보였고, 1IU/ml이 지남에 따라 활성도가 감소하는 경향을 보였다. EPO-[F142V]는 EPO-[F148V] 보다는 약간 낮았고, EPO-[F48V]는 야생형보다 약간 높은 경향을 보였다.



● 표 4 및 5는 각각 위의 생물학적 활성도 측정 결과를 토대로 하여 야생형 TPO와 EPO가 최대 활성도를 나타낼 때를 100%로 하여 각 변이체들의 효능을 비교한 것이다. TPO 변이체의 경우 에는 TPO-[F141V]가 146%로 가장 높은 활성도를 나타내었고, 그 다음으로TPO-[F131V]가 119%를 나타내었다. EPO 변이체 역시 EPO-[F148V]가 137%를 나타내어 가장 높은 활성도를 보여주었 으며, 그 다음으로 EPO-[F142V]가 122%의 활성도를 나타내었다.

## ▷ 【丑 4】

| 1 0 2      | TPO         | 최대활성도 비교(%) |
|------------|-------------|-------------|
| <b>갸생형</b> |             | 100         |
| 변이체        | TPO-[F46V]  | 107         |
|            | TPO-[F128V] | 63          |
|            | TPO-[F131V] | 119         |
|            | TPO-[F141V] | 146         |

### 【丑 5】

| A) 11) =) | EPO         | 최대활성도 비교(%) |
|-----------|-------------|-------------|
| 야생형       |             | 100         |
| 변이체       | EPO-[F48V]  | 84          |
|           | EPO-[F138V] | 57          |
|           | EPO-[F142V] | 122         |
|           | EPO-[F148V] | 137         |

# 실시예 7

본 발명에 따른 TPO 변이체의 생체내 활성증가 검사



- 53> 본 발명에 따른 TPO 변이체가 조혈작용에 미치는 영향을 보기 위해서 *in vivo* assay를 수행하였다. 먼저 랫트 [Rat (8주령 암컷 SD, 250g, 샘타코, Korea)]을 700Rad에서 감마-이라디에이 션(ɣ-irradiation)시켜 조혈에 관여하는 세포들을 죽인 다음, 정제된 야생형 또는 TPO 변이체를 복강 주사하고, 꼬리에서 혈액을 200㎡씩 채취한 후 CBC (complete blood counting) 검사를 수행하여 *in vivo*상에서 TPO 변이체의 효능을 확인하였다.
- → 정제된 야생형 TPO와 TPO 변이체를 각각 7500ng씩 ɣ-irradiation한 날로부터 4일 동안 4회로 나누어 복강 주사하였으며, 양성 대조군은 야생형 TPO로, 음성 대조군은 햄스터 난소 세포 배 양액으로 하여 실험하였다. 혈액은 주사한지 0일, 1일, 7일, 10일, 14일, 18일, 23일, 28일, 32일에 걸쳐서 채취하였으며, 이디티에이(EDTA)가 들어있는 튜브에 넣어 혈액응고를 방지하였 다.
- 도 8은 TPO를 복강 주사한 랫트의 CBC 검사결과를 나타낸 것으로 혈소판, 적혈구, 백혈구, 림 프구, 중성구의 수치변화를 알아보았다. 혈소판은 γ-irradiation한지 0일~7일 사이에 급격하게 감소하였다가 7일이 지나면서 중가하기 시작하였다. TPO-[F131V]와 TPO-[F141V]는 야생형 TPO보다 높은 수치를 보였고, TPO-[F46V]는 야생형 TPO와 유사한 수치의 혈소판 증가를 나타내었다. 그런데 TPO-[F128V]는 음성대조군과 비슷한 양상을 보여 조혈작용에 효과가 적음을 확인할 수 있었다. 적혈구와 림프구는 γ-irradiation을 하고 난 후에도 급격한 감소를 보이지 않았고, TPO 변이체를 주사하였을때도 수치에 큰 영향을 받지 않음을 알 수 있었다. 백혈구와 림프구는 γ-irradiation 후 0일~7일 사이에 급격하게 감소하였는데, 7일이 지나면서 회복이 되는 양상을 보였다. 23일경에는 TPO-[131V]와 TPO-[F141V]는 야생형 TPO보다 높은 백혈구 수치를 나타내었고, TPO-[F46V]는 야생형보다 낮은 수치를 보였다. 그러나 TPO-[F128V]는 혈소판 결과에서와 마찬가지로 음성대조군과 비슷한 수치변화를 보여주었다. 이런 결과로 불



때 TPO는 혈소판과 백혈구 그리고 림프구의 생성에 영향을 주는 것을 알 수 있으며, 야생형 TPO와 비교하였을 때, TPO 변이체 중에서도 TPO-[F131V] 보다는 TPO-[F141V]가 더 높은 활성을 가진다는 것을 확인할 수 있었다.

#### 【발명의 효과】

56 이상의 본 발명의 결과들은 기존의 야생형 생리활성 조절 단백질들의 해당 수용체, 리간드혹은 기질과의 결합에 관여하는 도메인내 페닐알라닌을 발린으로 치환시켰을 때 야생형 단백질보다 증가된 결합 친화력과 생물활성 등의 유도할 수 있고, 또 기존 단백질 변이체의 자가항체생성등의 문제점도 보완이 가능하여 우수한 개량형 약제 단백질의 제조가 가능해진다.



#### 【특허청구범위】

#### 【청구항 1】

수용체, 리간드 또는 기질과 결합하여 생리활성 조절작용을 나타내는 단백질의 결합 도메인 내 아미노산 중 페닐알라닌을 발린으로 치환한 단백질 변이체.

#### 【청구항 2】

제 1항에 있어서, 상기 단백질이 사이토카인인 것을 특징으로 하는 단백질 변이체.

#### 【청구항 3】

제 2항에 있어서, 상기 사이토카인이 4-알파 나선 다발 소속 사이토카인인 것을 특징으로 하는 단백질 변이체.

#### 【청구항 4】

제 3항에 있어서, 상기 4-알파 나선 다발 소속 사이토카인이 CNTF, EPO, Flt3L, G-CSF, GM-CSF, GRH, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12p35, LPT, LIF, M-CSF, OSM, PL, SCF, TPO로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 단백질 변이체.

#### 【청구항 5】

제 4항에 있어서, 상기 CNTF는 서열번호 1에 기재된 아미노산 서열 중 83번째, 98번째, 119번째, 152번째 또는 178번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

## 【청구항 6】

제 4항에 있어서, 상기 EPO는 서열번호 2에 기재된 아미노산 서열 중 138번째, 142번째 또는 148번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.



#### 【청구항 7】

제 4항에 있어서, 상기 Flt3L는 서열번호 3에 기재된 아미노산 서열 중 6번째, 15번째, 81번째, 96번째 또는 124번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 8】

제 4항에 있어서, 상기 G-CSF는 서열번호 4에 기재된 아미노산 서열 중 12번째, 86번째, 116번째, 143번째, 147번째 또는 163번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 9】

제 4항에 있어서, 상기 GM-CSF는 서열번호 5에 기재된 아미노산 서열 중 47번째, 103번째, 106번째, 113번째 또는 119번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 10】

제 4항에 있어서, 상기 GRH는 서열번호 6에 기재된 아미노산 서열 중 1번째, 10번째, 31번째, 44번째, 97번째, 139번째, 146번째, 166번째, 176번째 또는 191번째 페닐알라닌을 발린으로 치한 것을 특징으로 하는 단백질 변이체.

## 【청구항 11】

제 4항에 있어서, 상기 IL-2는 서열번호 13에 기재된 아미노산 서열 중 42번째, 44번째, 78번째, 103번째, 117번째 또는 124번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질변이체.



#### 【청구항 12】

제 4항에 있어서, 상기 IL-3는 서열번호 14에 기재된 아미노산 서열 중 37번째, 61번째, 107번째, 113번째 또는 133번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체

#### 【청구항 13】

제 4항에 있어서, 상기 IL-4는 서열번호 15에 기재된 아미노산 서열 중 33번째, 45번째, 55번째, 73번째, 82번째 또는 112번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질변이체.

#### 【청구항 14】

제 4항에 있어서, 상기 IL-5는 서열번호 16에 기재된 아미노산 서열 중 49번째, 69번째, 96번째 또는 103번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

## 【청구항 15】

제 4항에 있어서, 상기 IL-6은 서열번호 17에 기재된 아미노산 서열 중 73번째, 93번째, 104번째, 124번째, 169번째 또는 172번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

## 【청구항 16】

제 4항에 있어서, 상기 IL-12p35는 서열번호 18에 기재된 아미노산 서열 중 13번째, 39번째, 82번째, 96번째, 116번째, 132번째, 150번째, 166번째 또는 180번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.



#### 【청구항 17】

제 4항에 있어서, 상기 LPT는 서열번호 19에 기재된 아미노산 서열 중 41번째 또는 91번째 페 닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 18】

제 4항에 있어서, 상기 LIF는 서열번호 20에 기재된 아미노산 서열 중 41번째, 52번째, 67번째, 70번째, 156번째 또는 180번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질변이체.

#### 【청구항 19】

제 4항에 있어서, 상기 M-CSF는 서열번호 21에 기재된 아미노산 서열 중 35번째, 37번째, 54번째, 67번째, 91번째, 106번째, 121번째, 135번째, 143번째, 255번째, 311번째, 439번째, 466번째 또는 485번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

## 【청구항 20】

제 4항에 있어서, 상기 OSM는 서열번호 22에 기재된 아미노산 서열 중 56번째, 70번째, 160번째, 169번째, 176번째, 또는 184번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

## 【청구항 21】

제 4항에 있어서, 상기 PL은 서열번호 23에 기재된 아미노산 서열 중 10번째, 31번째, 44번째, 52번째, 54번째, 92번째, 97번째, 146번째, 166번째, 176번째, 191번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.



#### 【청구항 22】

제 4항에 있어서, 상기 SCF는 서열번호 24에 기재된 아미노산 서열 중 63번째, 102번째, 110번째, 115번째, 116번째, 119번째, 126번째, 129번째, 199번째, 205번째, 207번째, 245번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 23】

제 4항에 있어서, 상기 TPO는 서열번호 25에 기재된 아미노산 서열 중 46번째, 131번째, 141번째, 186번째, 204번째, 240번째 또는 286번째 페닐알라닌을 발린으로 치환한 것을 특징으로하는 단백질 변이체.

#### 【청구항 24】

제 2항에 있어서, 상기 사이토카인이 인터페론인 것을 특징으로 하는 단백질 변이체.

## 【청구항 25】

제 24항에 있어서, 상기 인터페론이 IFN-α2A, IFN-α2B, IFN-β, IFN-γ, IFN-ω, IFN-τ로 이루어진 그룹으로부터 선택된 것을 특징으로 하는 단백질 변이체.

## 【청구항 26】

제 25항에 있어서, 상기 IFN- a 2A는 서열번호 7에 기재된 아미노산 서열 중 27번째, 36번째, 38번째, 43번째, 47번째, 64번째, 67번째, 84번째, 123번째 또는 151번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.



#### 【청구항 27】

제 25항에 있어서, 상기 IFN- a 2B는 서열번호 8에 기재된 아미노산 서열 중 28번째, 37번째, 39번째, 44번째, 48번째, 65번째, 68번째, 85번째, 124번째 또는 152번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 28】

제 25항에 있어서, 상기 IFN-β는 서열번호 9에 기재된 아미노산 서열 중 8번째, 38번째, 50번째, 67번째, 70번째, 111번째 또는 154번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 29】

제 25항에 있어서, 상기 IFN- y 는 서열번호 10에 기재된 아미노산 서열 중 18번째, 32번째, 55번째, 57번째, 60번째, 84번째, 85번째, 95번째 또는 139번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 30】

제 25항에 있어서, 상기 IFN-ω는 서열번호 11에 기재된 아미노산 서열 중 27번째, 36번째 38번째, 65번째, 68번째, 124번째 또는 153번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.

#### 【청구항 31】

제 25항에 있어서, 상기 IFN- τ는 서열번호 12에 기재된 아미노산 서열 중 8번째, 39번째, 68번째, 71번째, 88번째, 127번째, 156번째, 157번째, 159번째 또는 183번째 페닐알라닌을 발린으로 치환한 것을 특징으로 하는 단백질 변이체.



#### 【청구항 32】

제 1항 내지 제 31항 중 어느 한 항에 따른 단백질 변이체를 코딩하는 DNA.

#### 【청구항 33】

제 32항에 따른 DNA가 벡터에 작동가능하게 연결된 재조합 발현 벡터.

#### 【청구항 34】

제 33항에 따른 재조합 발현 벡터로 형질전환 또는 형질감염된 숙주세포.

#### 【청구항 35】

제 34항에 따른 숙주세포를 배양하고 이로부터 단백질 변이체를 분리하는 단계를 포함하는 단백질 변이체의 제조방법.

#### 【청구항 36】

제 1항 내지 제 31항 중 어느 한 항에 따른 단백질 변이체 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물.



## 【도면】

[도 1a]





| [도 ]   | lb]     |          |          |               |             |                 |            |
|--------|---------|----------|----------|---------------|-------------|-----------------|------------|
| hine-1 | hI FN-ω | hien-y   | hien-b   | hIπN∸α        | hIIN-a      | hIL-10          |            |
|        |         |          |          | 28            | 2A          |                 |            |
| ×      | ×,      | z,       | ×,       | z,            | N,          | ×               |            |
| 1      | 1       | 1        | 1        | 1             | 1           | 1               |            |
| F      | H       | ₩        | C        | H             | ۲           | t <del>aj</del> |            |
| ×      | <       | G        | Ø        | Z             | Z           | שי              |            |
| -      | H       | Ħ        | <b>×</b> | H             | H           | G               |            |
|        | 開發      | No.      |          |               |             | ST.             | - =        |
| z      | Ħ       | U        | F        | Þ             | Þ           | ь               |            |
|        |         |          |          |               | 201         |                 | -8 -7<br>  |
| ю      | Ħ       | U        | H        | · <b>&gt;</b> | 7           | <u> </u>        |            |
| н      | Ħ       | z        | z        | ×             | ×           | ۲               |            |
|        |         |          |          | A T           | S           |                 | - 4<br>- 3 |
| н      | שי      | н        | H        | ۲             | н           | Þ               |            |
|        |         |          |          |               |             |                 |            |
| H      | H       | н        | H        | F             | H           | <               |            |
| ∫ He   | ≭,      | , н :    | ×        | ×             | <b>A</b> :- | - H )           | - ω        |
| Щ.     | , 🔈 .   | <b>X</b> | U        | ်ဗ            | ,e .        |                 | 4 -        |
| ×      | ×       | z        | Ħ        | ×             | ×           |                 |            |
| ×      | ×       | E        | ×        | Ħ             | Ħ           | •               |            |
| Z      |         | ĴΆ       | Z        | <u>α</u> ,,   | Ü           | <u> </u>        | 7          |
| H 39   | . H36   | Ħ        | . H      | H 37          | F 36        |                 | - ∞        |
| H      | ×       | Ħ        | ט        | ព             | O.          | H               |            |
| ۲      | F38 P   | w        | н        | H 39          | F) 38       | E37 &           |            |
| ы      | Ą       | 0        | Ā        | Ą             | A<br>B      | Z               |            |
| 1      | 1 ,     | ı        | ŧ        | 1             | ŧ           | 1               |            |
| ú      | Ç       | ď        | Ç        | Ç             | ú           | ú               |            |

## [도 2]



#### [도 3a]





























## 【도 7b】



## [도 8a]









【도 8c】 중 성구



【서열목록】



| Thr  |     |        |       | 20   |       |       |       |       | 25    |       |       |       |       | 30    | Ala   | a Lei | ı Thr    | Glu   | Ser T  | уr     |
|------|-----|--------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|--------|--------|
| Val  | Lys | His    | Gln   | Gly  | Leu   | Asn   | Lys   | Asn   | Ile   |       |       | 35    |       |       |       |       | 40       |       |        |        |
| 45   | Asn | Leu    | Asp   | Ser  | Ala   | Asp   | Gly   | Met   | Pro   | Val   | Ala   | Ser   | Thr   | Asp   | Gln   | Trp   |          | 50    |        |        |
| 55   |     |        |       |      | 60    | Ser   | Glu   | Leu   | Thr   | Glu   | Ala   | Glu   | Arg   | Leu   | Gln   | Glu   | Asn 1    | Leu ( | Gln Al | a      |
| Tyr  | 65  |        |       |      |       | 70    |       |       |       | ٠     | 75    |       |       |       |       | 80    | Arg      | Thr   | Phe H  | is     |
| Val  | Leu | Leu    | Ala   | Arg  | Leu   | Leu   | Glu   | Asp   | Gln   | Gln   | Val   |       |       | •     | •     | 85    | ٠        |       |        |        |
| 90   |     |        |       |      | 95    | His   | Phe   | Thr   | Pro   | Thr   | Glu   | Gly   | Asp   | Phe   | His   | Gln   | Ala      | Ile I | His Th | r      |
| Leu  |     |        |       | 100  |       |       |       |       | 105   |       |       |       |       | 110   | Leı   | ı Let | ı Gln    | Val   | Ala A  | la     |
| Phe  | Ala | Tyr    | Gln   | Ile  | Glu   | Glu   | Leu   | Met   | Ile   |       |       | 115   |       |       |       |       | 120      |       |        |        |
| 125  | Leu | ı Lei  | ı Glı | ı Ty | r Ly: | s Ile | e Pro | Arg   | g Ası | ı Glı | ı Ala | a Asp | G13   | / Met | : Pro | o Ile | <b>:</b> | 130   |        |        |
| 135  |     |        |       |      | 140   | Ası   | ı Val | l Gly | y Ası | o Gly | / Gly | / Let | ı Phe | e Glu | ı Lys | s Lys | Leu      | Trp   | Gly L  | eu     |
| Lys  | 145 |        |       |      |       | 150   |       |       |       |       | 155   |       |       |       |       | 160   | Val      | Leu   | Gln G  | lu     |
| Leu  | Ser | Gln    | Trp   | Thr  | Val   | Arg   | Ser   | Ile   | His   | Asp   | Leu   |       |       |       |       | 165   |          |       |        |        |
| 170  |     |        |       |      | 175   | Arg   | g Phe | e Ile | e Ser | : Ser | His   | Gln   | Thr   | - G13 | ı Ile | Pro   | Ala      | Arg   | Gly S  | er     |
| His  |     |        |       | 180  |       |       |       |       | 185   |       |       |       |       | 190   | Tyr   | · Ile | Ala      | Asn   | Asn L  | ys     |
| Lys  | Met |        |       | 195  |       |       |       |       | 200   | <210  | )>    | 2 <   | <211: | >     | 166   | <21   | 2>       | PRT   | <213   | ·<br>> |
| Homo | sap | oi ens | s <40 | 00>  | 2     | Ala   | Pro   | Pro   | Arg   | Leu   | Ile   | Cys   | Asp   | Ser   | Arg   | Val   | Leu (    | Glu A | Arg Ty | r      |
| Leu  | 1   |        |       |      | 5     |       |       |       |       | 10    |       |       |       |       | 15    | Leu   | Glu      | Ala   | Lys G  | lu     |
| Ala  | Glu | Asn    | Ile   | Thr  | Thr   | Gly   | Cys   | Ala   | Glu   | His   |       |       |       | 20    |       |       |          |       | 25     |        |
| 30   | Cys | Ser    | Leu   | Asn  | Glu   | Asn   | Ile   | Thr   | Val   | Pro   | Asp   | Thr   | Lys   | Val   | Asn   | Phe   |          |       | 35     |        |
| 40   |     |        |       |      | 45    | Tyr   | Ala   | Trp   | Lys   | Arg   | Met   | Glu   | Val   | Gly   | Gln   | Gln   | Ala V    | /al ( | lu Va  | 1      |



Trp 50 55 60 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110 Gly Ala Gin Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160 Cys Arg Thr Gly Asp Arg 165 <210> 3 <211> 209 <212> PRT <213> Homo sapiens <400> 3 Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala 1 5 10 15 Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val 20 25 Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp 35 40 Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala 50 55 60 Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His 70 75 Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe 85 90 95 Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu 100 105 110 Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys



| Leu   |       |     | 115  | ;    |     |      |       | 120  |       |       |       |      | 125   | C   | lu l | Leu | Gln   | Cys  | s G  | ln P  | ro  | Asp          |
|-------|-------|-----|------|------|-----|------|-------|------|-------|-------|-------|------|-------|-----|------|-----|-------|------|------|-------|-----|--------------|
| Ser   | Ser   | Thr | Leu  | Pro  | Pro | Pro  | Trp   | Ser  |       | 130   |       |      |       |     | 13   | 35  |       |      |      |       | 1   | L <b>4</b> 0 |
| Pro   | Arg   | Pro | Leu  | Glu  | Ala | Thr  | Ala   | Pro  | Thr   | Ala   | Pro   | Gln  | Pro   | Pr  | o L  | eu  | 145   |      |      |       |     |              |
| 150   |       |     |      |      | 155 |      |       |      |       | 160   | Lei   | ı Le | u Lei | ı L | eu l | Leu | Leu   | Pro  | o Va | al G  | ly  | Leu          |
| Leu   | Leu   | Leu | Ala  | Ala  | Ala |      |       |      |       | 165   |       |      |       |     | 17   | 70  |       |      |      |       | 1   | .75          |
| Trp   | Cys   | Leu | His  | Trp  | Gln | Arg  | Thr   | Arg  | Arg   | Arg   | Thr   | Pro  | Arg   | Pr  | o G  | ly  |       |      |      | 18    | 0   |              |
| 185   |       | •   |      |      | 190 | G1   | u Gla | n Va | l Pro | o Pro | o Val | Pro  | Ser   | r P | ro ( | Gln | Asp   | Leu  | ı Le | eu L  | eu  | Val          |
| Glu   |       |     | 195  |      |     |      |       | 200  |       |       |       |      | 205   | Н   | is < | <21 | 0>    | 4    | <2   | 11>   |     | 177          |
| <212  | 2>    | PR  | T <2 | 213> | H   | lomo | sapi  | ens  | <400  | >     | 4 T   | hr P | ro L  | eu  | Gly  | Pr  | o Al  | a S  | er   | Ser   | Le  | u Pro        |
| Gln   | Ser   | Phe | Leu  | Leu  | Lys | 1    |       |      |       | 5     |       |      |       |     | 1    | LO  |       |      |      |       |     | 15           |
| Cys   | Leu   | Glu | Gln  | Val  | Arg | Lys  | Ile   | Gln  | Gly   | Asp   | Gly   | Ala  | Ala   | Le  | u GI | n   |       |      |      | 20    | )   |              |
| 25    |       |     |      |      | 30  | Glu  | Lys   | Leu  | Val   | Ser   | Glu   | Cys  | Ala   | Th  | г Ту | r I | Lys I | Leu  | Cys  | s His | s P | ro           |
| Glu   |       |     | 35   |      |     |      |       | 40   |       |       |       |      | 45    | G   | lu L | eu  | Val   | Leu  | Le   | eu Gl | y   | His          |
| Ser   | Leu   | Gly | Ile  | Pro  | Trp | Ala  | Pro   | Leu  |       | 50    |       |      |       |     | 5    | 55  |       |      |      |       | i   | 60           |
| Ser   | Ser   | Cys | Pro  | Ser  | Gln | Ala  | Leu   | Gln  | Leu   | Ala   | Gly   | Cys  | Leu   | Se  | G1   | n   | 65    |      |      |       |     |              |
| 70    |       |     |      |      | 75  |      |       |      |       | 80    | Leu   | His  | Ser   | Gly | / Le | u F | he L  | eu ´ | Tyr  | Gln   | G   | ly           |
| Leu   | Leu   | Gln | Ala  | Leu  | Glu |      |       |      |       | 85    |       |      |       |     | 9    | 0   |       |      |      |       | 9   | 95           |
| Gly   | Ile   | Ser | Pro  | Glu  | Leu | Gly  | Pro   | Thr  | Leu   | Asp   | Thr 1 | Leu  | Gln 1 | Leı | ı As | p   |       |      |      | 100   | )   |              |
| 105   |       |     |      |      | 110 | Val  | Ala   | Asp  | Phe   | Ala   | Thr   | Thr  | Ile   | Tr  | p G  | ln  | Gln   | Met  | G1   | u Gl  | u I | ∠eu          |
| Gly   |       |     | 115  |      |     |      | •     | 120  |       |       |       |      | 125   | Me  | t A  | la  | Pro   | Ala  | Le   | u Gl  | n F | Pro          |
| Thr ( | Gln ( | Gly | Ala  | Met  | Pro | Ala  | Phe . | Ala  |       | 130   |       |      |       |     | 13   | 5   |       |      |      |       | 14  | 10           |



| Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu 145   |
|-----------------------------------------------------------------------|
| 150 155 160 Gln Ser Phe Leu Glu Val Ser Tyr Arg Val                   |
| Leu Arg His Leu Ala Gln 165 170 175                                   |
| Pro <210> 5 <211> 127 <212> PRT <213> Homo sapiens <400> 5 Ala Pro    |
| Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val 1 5           |
| 10 15 Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp     |
| Thr 20 25 30 Ala Ala Glu Met Asn Glu                                  |
| Thr Val Glu Val Ile Ser Glu Met Phe Asp 35 40                         |
| 45 Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln 50 |
| 55 60 Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met     |
| Met 65 70 75 80 Ala Ser His Tyr                                       |
| Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys 85                    |
| 90 95 Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys     |
| Asp 100 105 110 Phe Leu Leu Val Ile Pro                               |
| Phe Asp Cys Trp Glu Pro Val Gln Glu 115 120                           |
| 125 <210> 6 <211> 191 <212> PRT <213> Homo sapiens <400> 6 Phe Pro    |
| Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg 1 5           |
| 15 Ala Arg Arg Leu Tyr Gln Leu Ala Tyr Asp Thr Tyr Gln Glu Phe        |
| Glu 20 25 30 Glu Ala Tyr Ile Leu Lys                                  |
| Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro 35 40                         |
| 45 Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg 50 |



| 55                    | 60 Val Lys Thr Gln Gln  | Lys Ser Asn Leu Glu   | Leu Leu Arg Ile Ser   |
|-----------------------|-------------------------|-----------------------|-----------------------|
| Leu 65                | 70                      | 75                    | 80 Leu Leu Ile Gln    |
| Ser Trp Leu Glu Pro V | Val Gln Leu Leu Arg Ser | Val                   | 85                    |
| 90                    | 95 Phe Ala Asn Ser Leu  | Val Tyr Gly Ala Ser   | Asp Ser Asn Val Tyr   |
| Arg 100               | 105                     | 110 His               | s Leu Lys Asp Leu Glu |
| Glu Gly Ile Gln Thr I | Leu Met Trp Arg Leu     | 115                   | 120                   |
| 125 Glu Asp Gly Ser   | Pro Arg Thr Gly Gln Il  | e Phe Asn Gln Ser Ty  | Ser 130               |
| 135                   | 140 Lys Phe Asp Thr Ly  | s Ser His Asn Asp Asp | o Ala Leu Leu Lys Asn |
| Tyr 145               | 150                     | 155                   | 160 Gly Leu Leu Tyr   |
| Cys Phe Arg Lys Asp M | Met Asp Lys Val Glu Thr | Phe                   | 165                   |
| 170 1                 | 175 Leu Arg Ile Val Gl  | n Cys Arg Ser Val Glı | Gly Ser Cys Gly Phe   |
| 180 1                 | 185 190                 | <210> 7 <211>         | 165 <212> PRT <       |
| 213> Homo sapiens     | <400> 7 Cys Asp Leu     | Pro Gln Thr His Ser   | Leu Gly Ser Arg Arg   |
| Thr Leu Met 1         | 5                       | 10                    | 15 Leu Leu Ala        |
| Gln Met Arg Lys Ile S | Ser Leu Phe Ser Cys Leu | Lys Asp               | 20                    |
| 25 3                  | 30 Arg His Asp Phe Gly  | Phe Pro Gln Glu Glu   | Phe Gly Asn Gln Phe   |
| Gln 35                | 40                      | 45 Lys Ala            | Glu Thr Ile Pro Val   |
| Leu His Glu Met Ile G | Gln Gln Ile Phe 50      | 55                    | 60                    |
| Asn Leu Phe Ser Thr L | ys Asp Ser Ser Ala Ala  | Trp Asp Glu Thr Leu   | 65                    |
| 70 7                  | 75 80                   | Leu Asp Lys Phe Tyr   | Thr Glu Leu Tyr Gln   |
| Gln Leu Asn Asp Leu G | Glu 85                  | 90                    | 95                    |



| Ala Cys Val   | lle Gln Gly | Val Gly Val   | Thr Glu Thr P    | ro Leu Met Lys     | 100                |
|---------------|-------------|---------------|------------------|--------------------|--------------------|
| 105           | 110         | Glu Asp Se    | r Ile Leu Ala '  | Val Arg Lys Tyr Ph | e Gln Arg Ile Thr  |
| Leu           | 115         | 120           |                  | 125 Tyr Leu Ly     | rs Glu Lys Lys Tyr |
| Ser Pro Cys   | Ala Trp Glu | Val Val Arg   | 130              | 135                | 140                |
| Ala Glu Ile   | Met Arg Ser | Phe Ser Leu   | Ser Thr Asn Le   | eu Gln Glu Ser 145 | ,                  |
| 150           | 155         |               | 160 Leu <i>i</i> | Arg Ser Lys Glu    | 165                |
| <210> 8 <     | :211> 166   | 5 <212> PF    | RT <213> Hon     | no sapiens <400>   | 8 Met Cys Asp      |
| Leu Pro Gln   | Thr His Ser | Leu Gly Ser   | Arg Arg Thr Le   | eu 1               | 5                  |
| 10            | 15          | Met Leu Leu   | Ala Gln Met A    | rg Arg Ile Ser Leu | Phe Ser Cys Leu    |
| Lys           | 20          |               | 25               | 30 Asp Ar          | g His Asp Phe Gly  |
| Phe Pro Gln   | Glu Glu Phe | Gly Asn Gln   | Phe 3            | 35                 | 40                 |
| 45 Gln Lys    | Ala Glu Thr | Ile Pro Val   | Leu His Glu Me   | et Ile Gln Gln Ile | ·50                |
| 55            | 60          | Phe Asn Leu   | Phe Ser Thr Ly   | vs Asp Ser Ser Ala | Ala Trp Asp Glu    |
| Thr 65        |             | 70            | 75               | 80                 | Leu Leu Asp Lys    |
| Phe Tyr Thr ( | Glu Leu Tyr | Gln Gln Leu   | Asn Asp Leu      | 85                 |                    |
| 90            | 95          | Glu Alà Cys   | Val Ile Gln Gl   | y Val Gly Val Thr  | Glu Thr Pro Leu    |
| Met           | 100         |               | 105              | · 110 Lys Gl       | u Asp Ser Ile Leu  |
| Ala Val Arg I | Lys Tyr Phe | Gln Arg Ile   | Thr 11           | .5                 | 120                |
| 125 Leu Tyr   | Leu Lys Glu | u Lys Lys Tyr | Ser Pro Cys A    | ala Trp Glu Val Va | 130                |
| 135           | 140         | Arg Ala Glu   | ı Ile Met Arg S  | er Phe Ser Leu Se  | r Thr Asn Leu Gln  |
| Glu 145       |             | 150           | 155              | 160                | Ser Leu Arg Ser    |

| Lys Glu         | 165               | <210> 9 <21       | 1> 166 <212>       | PRT <213> Homo          |
|-----------------|-------------------|-------------------|--------------------|-------------------------|
| sapiens <400>   | 9 Met Ser Tyr     | Asn Leu Leu Gly   | Phe Leu Gln Arg S  | Ser Ser Asn Cys Gln     |
| 1               | 5                 | 10                | 15 Cys (           | Gln Lys Leu Leu Trp Gl. |
| Leu Asn Gly Arg | Leu Glu Tyr Cys   | s Leu             | 20                 | 25                      |
| 30 Lys Asp Arg  | Arg Asn Phe Asp   | o Ile Pro Glu Gli | ı Ile Lys Gln Leu  | Gln 35                  |
| 40              | 45 Gln Phe        | e Gln Lys Glu Asp | Ala Ala Val Thr    | Ile Tyr Glu Met Leu     |
| Gln 50          | 55                | 5                 | 60 Asn Ile Phe     | e Ala Ile Phe Arg Gln   |
| Asp Ser Ser Ser | Thr Gly Trp Asr   | n 65              | 70                 | 75                      |
| 80 Glu Thr Ile  | e Val Glu Asn Leu | ı Leu Ala Asn Val | l Tyr His Gln Arg  | Asn                     |
| 85              | 90                | 95 His            | s Leu Lys Thr Val  | Leu Glu Glu Lys Leu     |
| Glu Lys Glu Asp | Phe Thr           | 100               | 105                | 110 Arg                 |
| Gly Lys Arg Met | Ser Ser Leu His   | s Leu Lys Arg Tyr | r Tyr Gly Arg      | 115                     |
| 120             | 125 Ile Le        | eu His Tyr Leu Ly | ys Ala Lys Glu Asp | o Ser His Cys Ala Trp   |
| Thr 130         | 135               | 5                 | 140 Ile Val Arg    | g Val Glu Ile Leu Arg   |
| Asn Phe Tyr Val | Ile Asn Arg Leu   | ı 145             | 150                | 155                     |
| 160 Thr Gly Ty  | r Leu Arg Asn     | 16                | 65 <210> 10        | 0 <211> 146 <212>       |
| PRT <213> Ho    | omo sapiens <400  | > 10 Cys Tyr      | Cys Gln Asp Pro T  | yr Val Lys Glu Ala Glı  |
| Asn Leu Lys Lys | s 1               | 5                 | 10                 | 15 Tyr Phe              |
| Asn Ala Gly His | s Ser Asp Val Ala | a Asp Asn Gly Thi | r Leu Phe          | 20                      |
| 25              | 30 Leu Gly        | y Ile Leu Lys Asr | n Trp Lys Glu Glu  | Ser Asp Arg Lys Ile     |
| Met 35          | 5                 | 40                | 45 Gln Ser         | r Gln Ile Val Ser Phe   |

| Tyr Phe Lys Leu | Phe Lys Asn Phe  | Lys 50            | 55                    | 60              |
|-----------------|------------------|-------------------|-----------------------|-----------------|
| Asp Asp Gln Ser | Ile Gln Lys Ser  | Val Glu Thr Ile   | Lys Glu Asp Met 65    |                 |
| 70              | 75               | 80 Asn            | Val Lys Phe Phe Asn   | Ser Asn Lys Lys |
| Lys Arg Asp Asp | Phe Glu          | 85                | 90                    | 95              |
| Lys Leu Thr Asn | Tyr Ser Val Thr  | Asp Leu Asn Val   | Gln Arg Lys Ala       | 100             |
| 105             | 110 Ile Hi       | s Glu Leu Ile Gl  | n Val Met Ala Glu Leu | Ser Pro Ala Ala |
| Lys 115         |                  | 120               | 125 Thr Gly Lys       | Arg Lys Arg Ser |
| Gln Met Leu Phe | Gln Gly Arg Arg  | Ala 130           | 135                   | 140             |
| Ser Gln 145     | <210> 11 <21     | 172 <212>         | PRT <213> Homo        | sapiens <400>   |
| 11 Cys Asp Leu  | Pro Gln Asn His  | Gly Leu Leu Ser . | Arg Asn Thr Leu Val   | 1               |
| 10              | 15 Leu Leu       | His Gln Met Arg   | Arg Ile Ser Pro Phe   | Leu Cys Leu Lys |
| Asp             | 20 .             | 25                | 30 Arg Arg            | Asp Phe Arg Phe |
| Pro Gln Glu Met | Val Lys Gly Ser  | Gln Leu           | 35                    | 40              |
| 45 Gln Lys Ala  | His Val Met Ser  | Val Leu His Glu   | Met Leu Gln Gln Ile   | 50              |
| 55              | 60 Phe Ser       | Leu Phe His Thr   | Glu Arg Ser Ser Ala   | Ala Trp Asn Met |
| Thr 65          | 70               | 75                | 80                    | Leu Leu Asp Gln |
| Leu His Thr Gly | Leu His Gln Gln  | Leu Gln His Leu   | 85                    |                 |
| 90              | 95 Glu Thr       | Cys Leu Leu Gln   | Val Val Gly Glu Gly   | Glu Ser Ala Gly |
| Ala             | 100              | 105               | 110 Ile Ser           | Ser Pro Ala Leu |
| Thr Leu Arg Arg | Tyr Phe Gln Gly  | Ile Arg           | 115                   | 120             |
| 125 Val Tyr Le  | u Lys Glu Lys Ly | s Tyr Ser Asp Cys | s Ala Trp Glu Val Val | 130             |

| 135                 | 140 Arg Met G    | Glu Ile Met Lys Ser Leu Phe | e Leu Ser Thr Asn Met Gln |
|---------------------|------------------|-----------------------------|---------------------------|
| Glu 145             | 150              | 155                         | 160 Arg Leu Arg Ser       |
| Lys Asp Arg Asp Leu | Gly Ser Ser      | 165                         | 170 <210>                 |
| 12 <211> 187        | ′ <212> PRT ·    | <213> Homo sapiens <400     | > 12 Leu Asp Leu Lys      |
| Leu Ile Ile Phe Gln | Gln Arg Gln Va   | ıl Asn Gln Glu 1            | 5                         |
| 10                  | 15 Ser Leu Ly    | rs Leu Leu Asn Lys Leu Gln  | Thr Leu Ser Ile Gln Gln   |
| Cys 20              |                  | 25 30                       | Leu Pro His Arg Lys Asn   |
| Phe Leu Leu Pro Gln | . Lys Ser Leu Se | er Pro 35                   | 40                        |
| 45 Gln Gln Tyr Gln  | Lys Gly His Th   | nr Leu Ala Ile Leu His Glu  | Met Leu 50                |
| 55                  | 60 Gin Gin II    | e Phe Ser Leu Phe Arg Ala   | Asn Ile Ser Leu Asp Gly   |
| Trp 65              | 70               | 75                          | 80 Glu Glu Asn His        |
| Thr Glu Lys Phe Leu | lle Gln Leu Hi   | s Gln Gln Leu               | 85                        |
| 90                  | 95 Glu Tyr Le    | eu Glu Ala Leu Met Gly Leu  | Glu Ala Glu Lys Leu Ser   |
| Gly 100             | 1                | 105 110                     | Thr Leu Gly Ser Asp Asn   |
| Leu Arg Leu Gln Val | Lys Met Tyr Ph   | ne Arg 115                  | 120                       |
| 125 Arg Ile His As  | p Tyr Leu Glu A  | Asn Gln Asp Tyr Ser Thr Cys | s Ala Trp 130             |
| 135                 | 140 Ala Ile V    | al Gln Val Glu Ile Ser Arg  | g Cys Leu Phe Phe Val Phe |
| Ser 145             | 150              | 155                         | 160 Leu Thr Glu Lys       |
| Leu Ser Lys Gln Gly | Arg Pro Leu As   | sn Asp Met Lys              | 165                       |
| 170                 | 175 Gln Glu I    | eu Thr Thr Glu Phe Arg Sei  | Pro Arg 180               |
| 185 <210>           | 13 <211>         | 133 <212> PRT <213>         | Homo sapiens <400> 13     |



| Ala   | Pro   | Thr   | Ser  | Ser  | Ser        | Thr | Lys   | Lys   | Thr   | Glr  | ı Leı | ı Gln | Leu   | Glu   | His   | 1     |       |       |       | 5     |
|-------|-------|-------|------|------|------------|-----|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 10    |       |       |      |      | 15         | Leu | Leu   | Leu   | Asp   | Leu  | Glr   | n Met | Ile   | Leu   | Asn   | Gly   | Ile   | Asn   | Asn   | Tyr   |
| Lys   |       |       |      | 20   | )          |     |       |       | 25    |      |       |       |       | 30    | Ası   | n Pro | o Lys | Leu   | Thr   | Arg   |
| Met   | Leu   | Thr   | Phe  | Lys  | Phe        | Tyr | Met   | Pro   | Lys   |      |       | 35    |       |       |       |       | 40    |       |       |       |
| 45    | Lys   | Ala   | Thr  | Glu  | Leu        | Lys | His   | Leu   | Gln   | Cys  | Leu   | ı Glu | Glu   | Glu   | Leu   | Lys   |       | 50    |       |       |
| 55    |       |       |      |      | 60         | Pro | Leu   | Glu   | Glu   | Val  | Leu   | ı Asn | Leu   | Ala   | Gln   | Ser   | Lys . | Asn   | Phe   | His   |
| Leu   | 65    |       |      |      |            | 70  |       |       |       |      | 75    | ;     |       |       |       | 80    | Arg   | Pro   | Arg   | Asp   |
| Leu   | Ile   | Ser   | Asn  | Ile  | Asn        | Val | Ile   | Val   | Leu   | Glu  | Leu   | I     |       |       |       | 85    |       |       |       |       |
| 90    |       |       |      |      | 95         | Lys | Gly   | Ser   | Glu   | Thr  | Thr   | Phe   | Met   | Cys   | Glu   | Tyr   | Ala   | Asp ( | Glu ' | Thr   |
| Ala   |       |       |      | 100  |            |     | •     |       | 105   |      |       |       |       | 110   | Thr   | Ile   | · Val | Glu   | Phe   | Leu   |
| Asn   | Arg   | Trp   | Ile  | Thr  | Phe        | Cys | Gln   | Ser   | Ile   |      |       | 115   |       |       |       |       | 120   |       |       |       |
| 125   | Ιlϵ   | e Sei | r Th | r Le | u Th       | r   | 130   | )     |       |      | <2    | 10>   | 14    | 4 <2  | 11>   | 13    | 33 <2 | :12>  | . F   | PRT < |
| 213>  | •     | Homo  | o sa | pien | s <4       | 00> | 14    | 4 Al: | a Pro | o Me | t Th  | r Gl  | n Thi | r Thi | Pro   | Let   | ı Lys | Thr   | Ser   | Trp   |
| Val   | Asn   | Cys   | 1    |      |            |     | 5     |       |       |      |       | 10    |       |       |       |       | 15    | Ser   | Asn   | Met   |
| Ile   | Asp   | Glu   | Ile  | Ile  | Thr        | His | Leu   | Lys   | Gln   | Pro  | Pro   | Leu   |       |       |       | 20    |       |       |       |       |
| 25    |       |       |      |      | 30         | Pro | Leu   | Leu   | Asp   | Phe  | Asn   | Asn   | Leu   | Asn   | Gly ( | Glu . | Asp G | iln A | lsp ] | le    |
| Leu   |       |       | 35   |      |            |     |       | 40    |       |      |       |       | 45    | Met   | Glu   | Asn   | Asn   | Leu   | Arg   | Arg   |
| Pro . | Asn   | Leu   | Glu  | Ala  | Phe        | Asn | Arg   | Ala   |       | 50   |       |       |       |       | 55    |       |       |       |       | 60    |
| Val   | Lys   | Ser   | Leu  | Gln  | Asn        | Ala | Ser . | Ala   | Ile   | Glu  | Ser   | Ile   | Leu   | Lys . | Asn   | 65    |       |       |       |       |
| 70    |       |       | •    |      | <b>7</b> 5 |     |       |       | ;     | 80   | Leu   | Leu   | Pro ( | Cys 1 | Leu I | Pro I | Leu A | la T  | hr A  | la    |
| Alal  | Pro ' | Thr   | Arg  | His  | Pro        |     |       |       |       | 85   |       |       |       |       | 90    |       |       |       |       | 95    |



Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys Leu Thr 100 105 110 Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln Thr Thr 120 115 Leu 125 Ser Leu Ala Ile Phe 130 <210> 15 <211> 129 <212> PRT <213> Homo sapiens <400> 15 His Lys Cys Asp Ile Thr Leu Gln Glu Ile Ile Lys Thr Leu Asn Ser 5 10 15 Leu Thr Glu Gln Lys Thr Leu Cys Thr Glu Leu Thr Val Thr Asp Ile 20 25 30 Phe Ala Ala Ser Lys Asn Thr Thr Glu Lys Glu Thr Phe Cys Arg Ala 35 40 Ala Thr Val Leu Arg Gln Phe Tyr Ser His His Glu Lys Asp Thr Arg 50 55 Cys Leu Gly Ala Thr Ala Gln Gln Phe His Arg His Lys Gln Leu 70 75 Ile 65 Arg Phe Leu Lys 80 Arg Leu Asp Arg Asn Leu Trp Gly Leu Ala Gly Leu 85 90 Asn Ser Cys Pro Val Lys Glu Ala Asn Gln Ser Thr Leu Glu Asn Phe 100 105 110 Leu Glu Arg Leu Lys Thr 120 Ile Met Arg Glu Lys Tyr Ser Lys Cys Ser 115 125 Ser <210> 16 <211> 115 <212> PRT <213> Homo sapiens <400> 16 Ile 5 Pro Thr Glu Ile Pro Thr Ser Ala Leu Val Lys Glu Thr Leu Ala 1 10 Leu Leu Ser Thr His Arg Thr Leu Leu Ile Ala Asn Glu Thr Leu 20 Arg 25 30 Ile Pro Val Pro Val His Lys Asn His Gln Leu Cys Thr Glu Glu Ile 35 40 Phe Gln Gly Ile Gly Thr Leu Glu Ser Gln Thr Val Gln Gly Gly Thr 50

₩Z0030051846 출력 일자: 2004/5/6

| 55   |     |      |      |      | 60   | Val  | Glu  | Arg  | Leu               | Phe   | Lys  | Asn   | Leu  | Ser   | Leu   | Ile   | Lys ! | Lys I | yr I  | le  |
|------|-----|------|------|------|------|------|------|------|-------------------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-----|
| Asp  | 65  |      |      |      |      | 70   |      |      |                   |       | 75   |       |      |       |       | 80    | Gly   | Gln   | Lys   | Lys |
| Lys  | Cys | Gly  | Glu  | Glu  | Arg  | Arg  | Arg  | Val  | Asn               | Gln   | Phe  |       |      |       |       | 85    |       |       |       |     |
| 90   |     |      |      |      | 95   | Leu  | Asp  | Tyr  | Leu               | Gln   | Glu  | Phe   | Leu  | Gly   | Val   | Met   | Asn   | Thr G | lu T  | rp  |
| Ile  |     |      |      | 100  |      |      |      |      | 105               |       |      |       |      | 110   | I 1   | e Glu | ı Ser |       |       | 115 |
| <210 | )>  | 17   | <21  | 1>   | 18   | 3 <2 | 212> | F    | PRT <             | :213> | >    | Homo  | sap  | oiens | s <40 | <00   | 17    | Val   | Pro   | Pro |
| Gly  | Glu | Asp  | Ser  | Lys  | Asp  | Val  | Ala  | Ala  | Pro               | His   | Arg  | Gln   | 1    |       |       |       | 5     |       |       |     |
| 10   |     |      |      |      | 15   | Pro  | Leu  | Thr  | Ser               | Ser   | Glu  | Arg   | Ile  | Asp   | Lys   | Gln   | Ile   | Arg 1 | yr I  | le  |
| Leu  |     |      |      | 20   |      |      |      |      | 25                |       |      |       |      | 30    | As    | p Gly | / Ile | Ser   | Ala   | Leu |
| Arg  | Lys | Glu  | Thr  | Cys  | Asn  | Lys  | Ser  | Asn  | Met               |       |      | 35    |      |       |       |       | 40    |       |       |     |
| 45   | Cys | Glu  | Ser  | Ser  | Lys  | Glu  | Ala  | Leu  | Ala               | Glu   | Asn  | Asn   | Leu  | Asn   | Leu   | Pro   |       | 50    |       |     |
| 55   |     |      |      |      | 60   | Lys  | Met  | Ala  | Glu               | Lys   | Asp  | Gly   | Cys  | Phe   | Gln   | Ser   | Gly   | Phe A | Asn G | lu  |
| Glu  | 65  |      |      |      |      | 70   |      |      |                   |       | 75   |       |      |       |       | 80    | Thr   | Cys   | Leu   | Val |
| Lys  | Ile | Ile  | Thr  | Gly  | Leu  | Leu  | Glu  | Phe  | Glu               | Val   | Tyr  |       |      | •     |       | 85    |       |       |       |     |
| 90   |     |      |      |      | 95   | Leu  | Glu  | Tyr  | Leu               | Gln   | Asn  | Arg   | Phe  | Glu   | Ser   | Ser   | Glu   | Glu ( | Gln A | la  |
| Arg  |     |      |      | 100  |      |      |      |      | 105               |       |      |       |      | 110   | Al    | a Va  | l Gln | Met   | Ser   | Thr |
| Lys  | Val | Leu  | Ile  | Gln  | Phe  | Leu  | Gln  | Lys  | Lys               |       |      | 115   |      |       |       |       | 120   |       |       |     |
| 125  | A1  | a Ly | s As | n Le | u As | p Al | a Il | e Th | r Th              | r Pr  | o As | p Pro | o Th | r Th  | r As  | n Al  | a     | 130   |       |     |
| 135  |     |      |      |      | 140  | Se   | r Le | u Le | u <sub>.</sub> Th | r Ly  | s Le | u Gli | n Al | a Gl  | n As  | n Gl  | n Trp | Leu   | Gln   | Asp |
| Met  | 145 |      |      |      |      | 150  |      |      |                   |       | 155  |       |      |       |       | 160   | Thr   | Thr   | His   | Leu |
| Ile  | Leu | Arg  | Ser  | Phe  | Lys  | Glu  | Phe  | Leu  | Gln               | Ser   | Ser  |       |      |       |       | 165   |       |       |       |     |



| 170     |           | 17      | 75 Leu  | Arg Al   | a·Leu Ar  | g Glr | n Met |       |       |       | 180   |       |         |       |
|---------|-----------|---------|---------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| <210>   | 18 <21    | 1>      | 197 <2  | 12> l    | PRT <213  | >     | Homo  | sapi  | ens   | <400  | )>    | 18    | Arg Asn | Leu   |
| Pro Val | Ala Thr   | Pro As  | sp Pro  | Gly Met  | Phe Pro   | Cys   | Leu   | 1     |       |       |       | 5     |         |       |
| 10      |           | 15      | 5 His   | His Ser  | Gln Asn   | Leu   | Leu   | Arg A | la V  | Val S | Ser A | Asn M | et Leu  | Gln   |
| Lys     |           | 20      |         |          | 25        |       |       | ;     | 30    | Ala   | Arg   | Gln   | Thr Leu | Glu   |
| Phe Tyr | Pro Cys   | Thr Se  | er Glu  | Glu Ile  | Asp       |       | 35    |       |       |       |       | 40    |         |       |
| 45 His  | Glu Asp   | Ile T   | hr Lys  | Asp Lys  | Thr Ser   | Thr   | Val   | Glu A | la (  | Cys I | .eu   |       | 50      |       |
| 55      |           | 60      | 0 Pro   | Leu Glu  | Leu Thr   | Lys   | Asn   | Glu S | Ser ( | Cys I | ∠eu A | Asn S | er Arg  | Glu   |
| Thr 65  |           |         | 70      |          |           | 75    |       |       |       |       | 80    | Ser   | Phe Ile | Thr   |
| Asn Gly | Ser Cys   | Leu A   | la Ser  | Arg Lys  | Thr Ser   | Phe   |       |       |       |       | 85    |       |         |       |
| 90      |           | 98      | 5 Met   | Met Ala  | Leu Cys   | Leu   | Ser   | Ser I | le '  | Tyr ( | Glu A | Asp L | eu Lys  | Met   |
| Tyr     |           | 100     |         |          | 105       |       |       | 1     | 10    | Gln   | Val   | Glu   | Phe Lys | Thr   |
| Met Asn | Ala Lys   | Leu L   | eu Met  | Asp Pro  | Lys       |       | 115   |       |       |       | ]     | 120   |         |       |
| 125 Ar  | g Gln Ile | e Phe 1 | Leu Asp | Gln As   | n Met Le  | eu Al | a Val | lle   | Asp   | Glu   | Leu   |       | 130     |       |
| 135     |           | 1       | 40 Met  | Gln Al   | a Leu As  | sn Ph | e Asr | ı Ser | Glu   | Thr   | Val   | Pro   | Gln Lys | Ser   |
| Ser 145 | i         |         | 150     |          |           | 155   |       |       |       | :     | 160   | Leu   | Glu Glu | ı Pro |
| Asp Phe | Tyr Lys   | Thr L   | ys Ile  | Lys Leu  | ı Cys Ile | e Leu |       |       |       |       | 165   |       |         |       |
| 170     | -         | 1       | 75 Leı  | ı His Al | a Phe Ar  | g Il  | e Arg | g Ala | Val   | Thr   | Ile   | Asp   | Arg Val | Met   |
| Ser     |           | 180     |         |          | 185       |       |       | 1     | 190   | Tyr   | Leu   | Asn   | Ala Sei | -     |
| 195     | <21       | 0>      | 19 <21  | 1> 1     | 46 <212>  | · I   | PRT < | <213> | ]     | Homo  | sapi  | ens   | <400>   | 19    |
| Val Pro | lle Gln   | Lys V   | al Gln  | Asp Asp  | Thr Lys   | s Thr | Leu   | Ile L | ys '  | Thr   | 1     |       |         | 5     |

| 10                         | 15 Ile Val Thr Arg   | Ile Asn Asp Ile Ser I | His Thr Gln Ser Val Ser |
|----------------------------|----------------------|-----------------------|-------------------------|
| Ser 20                     | 25                   | 30                    | Lys Gln Lys Val Thr Gly |
| Leu Asp Phe Ile Pro (      | Gly Leu His Pro Ile  | 35                    | 40                      |
| 45 Leu Thr Leu Ser I       | Lys Met Asp Gln Thr  | Leu Ala Val Tyr Gln   | Gln Ile 50              |
| 55                         | 60 Leu Thr Ser Met   | Pro Ser Arg Asn Val   | Ile Gln Ile Ser Asn Asp |
| Leu 65                     | 70                   | 75                    | 80 Glu Asn Leu Arg      |
| Asp Leu Leu His Val        | Leu Ala Phe Ser Lys  | Ser Cys               | 85                      |
| 90                         | 95 His Leu Pro Trp   | Ala Ser Gly Leu Glu   | Thr Leu Asp Ser Leu Gly |
| Gly 100                    | 105                  | 110                   | Val Leu Glu Ala Ser Gly |
| Tyr Ser Thr Glu Val        | Val Ala Leu Ser Arg  | 115                   | 120                     |
| 125 Leu Gln Gly Ser        | · Leu Gln Asp Met Le | u Trp Gln Leu Asp Leu | Ser Pro 130             |
| 135                        | 140 Gly Cys 145      | <210> 20 <211>        | 180 <212> PRT <213>     |
| Homo sapiens <400>         | 20 Ser Pro Leu Pr    | o Ile Thr Pro Val Asn | Ala Thr Cys Ala Ile Arg |
| His 1                      | 5                    | 10                    | 15 Pro Cys His Asn Asn  |
| Leu Met Asn Gln Ile        | Arg Ser Gln Leu Ala  | Gln 20                | 25                      |
| 30 Leu Asn Gly Ser         | Ala Asn Ala Leu Phe  | : Ile Leu Tyr Tyr Thr | Ala Gln 35              |
| 40                         | 45 Gly Glu Pro Phe   | Pro Asn Asn Leu Asp   | Lys Leu Cys Gly Pro Asn |
|                            | 55                   | GO The Aco            | Phe Pro Pro Phe His Ala |
| Val 50                     | 33                   | 60 Thr Asp            | The 110 110 the his Ala |
| Val 50 Asn Gly Thr Glu Lys |                      | 70                    | 75                      |
| Asn Gly Thr Glu Lys        | Ala Lys Leu 65       |                       | 75                      |



| Ser Ala Leu | Ser Leu H | His 1              | 00                 | 105                | 110 Ser     |
|-------------|-----------|--------------------|--------------------|--------------------|-------------|
| Lys Leu Asn | Ala Thr A | Ala Asp Ile Leu A  | rg Gly Leu Leu Se  | r Asn 115          |             |
| 120         | . 1       | 125 Val Leu Cys    | Arg Leu Cys Ser Ly | ys Tyr His Val Gly | His Val Asp |
| Val 130     |           | 135                | 140 Ti             | hr Tyr Gly Pro Asp | Thr Ser Gly |
| Lys Asp Val | Phe Gln L | Lys Lys Lys 145    | 150                | 0                  | 155         |
| 160 Leu Gl  | y Cys Gln | Leu Leu Gly Lys    | Tyr Lys Gln Ile I  | le Ala Val Leu     |             |
| 165         | 1         | 170                | 175 Ala Gln A      | la Phe             | 180 <210>   |
| 21 <211>    | 522 <212  | > PRT <213>        | Homo sapiens <40   | 00> 21 Glu Glu     | Val Ser Glu |
| Tyr Cys Ser | His Met I | Ile Gly Ser Gly H  | is Leu 1           | 5                  | 10          |
| 15 Gln Ser  | Leu Gln A | Arg Leu Ile Asp S  | er Gln Met Glu Th  | r Ser Cys Gln      | 20          |
| 25          | 3         | 30 Ile Thr Phe G   | lu Phe Val Asp Gli | n Glu Gln Leu Lys  | Asp Pro Val |
| Cys         | 35        | 40                 | 4                  | 5 Tyr Leu Lys Lys  | Ala Phe Leu |
| Leu Val Gln | Tyr Ile M | Met Glu Asp Thr    | 50                 | 55                 | 60          |
| Met Arg Phe | Arg Asp A | Asn Thr Pro Asn A  | la Ile Ala Ile Va  | l Gln Leu 65       |             |
| 70          | 7         | 75                 | 80 Gln Glu Lei     | u Ser Leu Arg Leu  | Lys Ser Cys |
| Phe Thr Lys | Asp Tyr G | Glu                | 85                 | 90                 | 95          |
| Glu His Asp | Lys Ala C | Cys Val Arg Thr P  | he Tyr Glu Thr Pro | o Leu Gln          | 100         |
| 105         | 1         | 110 Leu Leu Glu    | Lys Val Lys Asn Va | al Phe Asn Glu Thr | Lys Asn Leu |
| Leu         | 115       | 120                | 128                | 5 Asp Lys Asp Trp  | Asn Ile Phe |
| Ser Lys Asn | Cys Asn A | Asn Ser Phe Ala    | ·130               | 135                | 140         |
| Glu Cys Ser | Ser Gln A | Asp Val Val Thr Ly | ys Pro Asp Cys Ası | n Cys Leu 145      |             |



| 150 |     |     |     |     | 155 |     |       |       |     | 160   | Tyr   | Pro   | Lys   | Ala   | Ile   | Pro | Ser | Ser | Asp | Pro |
|-----|-----|-----|-----|-----|-----|-----|-------|-------|-----|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|-----|
| Ala | Ser | Val | Ser | Pro | His |     |       |       |     | 165   |       |       |       | •     | 170   |     |     |     | ]   | 175 |
| Gln | Pro | Leu | Ala | Pro | Ser | Met | Ala   | Pro   | Val | Ala   | Gly I | Leu ' | Thr 1 | Trp ( | Glu   |     |     | J   | 180 |     |
| 185 |     |     |     |     | 190 | Asp | Ser   | Glu   | Gly | 7 Thr | Glu   | Gly   | Ser   | Ser   | Leu   | Leu | Pro | Gly | Glu | Gln |
| Pro |     |     | 195 |     |     |     |       | 200   |     |       |       | :     | 205   | Leu   | His   | Thr | Val | Asp | Pro | Gly |
| Ser | Ala | Lys | Gln | Arg | Pro | Pro | Arg   | Ser   |     | 210   |       |       |       | :     | 215   |     |     |     | 2   | 220 |
| Thr | Cys | Gln | Ser | Phe | Glu | Pro | Pro   | Glu   | Thr | Pro   | Val ' | Val : | Lys . | Asp ( | Ser : | 225 |     |     |     |     |
| 230 |     |     |     |     | 235 |     |       |       |     | 240   | Thr   | Ile   | Gly   | Gly   | Ser   | Pro | Gln | Pro | Arg | Pro |
| Ser | Val | Gly | Ala | Phe | Asn |     |       |       |     | 245   |       |       |       | :     | 250   |     |     |     | 4   | 255 |
| Pro | Gly | Met | Glu | Asp | Ile | Leu | Asp   | Ser   | Ala | Met   | Gly ' | Thr   | Asn ' | Trp   | Val   |     |     | 2   | 260 |     |
| 265 |     |     |     |     | 270 | Pro | Glu   | ı Glu | Ala | a Ser | Gly   | Glu   | Ala   | Ser   | Glu   | Ile | Pro | Val | Pro | Gln |
| Gly |     |     | 275 |     |     |     |       | 280   |     |       |       |       | 285   | Thr   | Glu   | Leu | Ser | Pro | Ser | Arg |
| Pro | Gly | Gly | Gly | Ser | Met | Gln | Thr   | Glu   |     | 290   |       |       |       |       | 295   |     |     |     | ;   | 300 |
| Pro | Ala | Arg | Pro | Ser | Asn | Phe | Leu   | Ser   | Ala | Ser   | Ser   | Pro   | Leu   | Pro   | Ala   | 305 |     |     |     |     |
| 310 |     |     |     |     | 315 |     |       |       |     | 320   | Ser   | Ala   | Lys   | Gly   | Gln   | Gln | Pro | Ala | Asp | Val |
| Thr | Gly | Thr | Ala | Leu | Pro |     |       |       |     | 325   |       |       |       |       | 330   |     |     |     | •   | 335 |
| Arg | Val | Gly | Pro | Val | Arg | Pro | Thr   | Gly   | Gln | Asp   | Trp   | Asn   | His   | Thr   | Pro   |     |     | •   | 340 |     |
| 345 |     |     |     |     | 350 | Glr | ı Lys | s Thr | As  | p His | s Pro | Ser   | Ala   | Leu   | Leu   | Arg | Asp | Pro | Pro | Glu |
| Pro |     |     | 355 |     |     |     |       | 360   |     |       |       |       | 365   | Gly   | Ser   | Pro | Arg | Ile | Ser | Ser |
| Leu | Arg | Pro | Gln | Gly | Leu | Ser | Asn   | Pro   |     | 370   |       |       |       |       | 375   |     |     |     | į   | 380 |
| Ser | Thr | Leu | Ser | Ala | Gln | Pro | Gln   | Leu   | Ser | Arg   | Ser   | His   | Ser   | Ser   | Gly   | 385 |     |     |     |     |



| 390                    |                  |            |            |                  | 395              |                         |                          |                          |                                | 400   | Se         | r Va             | l Le       | u Pr             | o Lei      | ıGly                     | Glu                | Leu                | Glu   | Gly               |
|------------------------|------------------|------------|------------|------------------|------------------|-------------------------|--------------------------|--------------------------|--------------------------------|-------|------------|------------------|------------|------------------|------------|--------------------------|--------------------|--------------------|-------|-------------------|
| Arg                    | Arg              | Ser        | Thr        | Arg              | Asp              |                         |                          |                          |                                | 405   |            |                  |            |                  | 410        |                          |                    |                    | ,     | 415               |
| Arg                    | Arg              | Ser        | Pro        | Ala              | Glu              | Pro                     | Glu                      | Gly                      | Gly                            | Pro   | Ala        | Ser              | Glu        | Gly              | Ala        |                          |                    |                    | 420   |                   |
| 425                    |                  |            |            |                  | 430              | A1:                     | a Ar                     | g Pro                    | o Le                           | u Pro | o Ar       | g Pho            | e Ası      | n Se             | r Val      | Pro                      | Leu                | Thr                | Asp   | Thr               |
| Gly                    |                  |            | 435        |                  |                  |                         |                          | 440                      |                                |       |            |                  | 445        | Hi               | s Glu      | . Arg                    | Gln                | Ser                | Glu   | Gly               |
| Ser                    | Ser              | Ser        | Pro        | Gln              | Leu              | Gln                     | Glu                      | Ser                      |                                | 450   |            |                  |            |                  | 455        |                          |                    |                    |       | 460               |
| Val                    | Phe              | His        | Leu        | Leu              | Val              | Pro                     | Ser                      | Val                      | Ile                            | Leu   | Val        | Leu              | Leu        | Ala              | Val        | 465                      |                    |                    |       |                   |
| 470                    |                  |            |            |                  | 475              |                         |                          |                          |                                | 480   | Gl         | y Gl             | y Lei      | u Le             | u Phe      | Tyr                      | Arg                | Trp                | Arg   | Arg               |
| Arg                    | Ser              | His        | Gln        | Glu              | Pro              |                         |                          |                          |                                | 485   |            |                  |            |                  | 490        |                          |                    |                    |       | 495               |
| Gln                    | Arg              | Ala        | Asp        | Ser              | Pro              | Leu                     | Glu                      | Gln                      | Pro                            | Glu   | Gly        | Ser              | Pro        | Leu              | Thr        |                          |                    | !                  | 500   |                   |
| 505                    |                  |            |            |                  | 510              | Glı                     | n Asj                    | p Ası                    | Arı                            | g Glr | n Vai      | l Glı            | ı Leı      | u Pro            | o Val      |                          |                    | 515                |       |                   |
| 520                    |                  |            | <21        | 0>               | 22               | <21                     | 1>                       | 22                       | 7 <2                           | 212>  | F          | PRT <            | :213>      | >                | Homo       | sap                      | i ens              | <40                | 0>    | 22                |
|                        |                  |            |            |                  |                  |                         |                          |                          |                                |       |            |                  |            |                  |            |                          |                    |                    |       |                   |
| Ala                    | Ala              | Ile        | Gly        | Ser              | Cys              | Ser                     | Lys                      | Glu                      | Tyr                            | Arg   | Val        | Leu              | Leu        | Gly              | Gln        | 1                        |                    |                    |       | 5                 |
| Ala<br>10              | Ala              | Ile        | Gly        | Ser              | Cys<br>15        |                         |                          |                          |                                |       |            |                  |            |                  | Gln<br>Asp |                          | Ser 1              | Arg I              | Leu I |                   |
|                        | Ala              | Ile        | Gly        | Ser<br>20        |                  |                         |                          |                          |                                |       |            |                  |            |                  | Asp        | Thr                      | Ser <i>I</i>       |                    |       | Leu               |
| 10<br>Asp              |                  |            |            | 20               | 15               | Leu                     | Gln                      |                          | Gln<br>25                      |       |            |                  |            | Gln              | Asp        | Thr                      |                    |                    |       | Leu               |
| 10<br>Asp              | Leu              | Asp        | Val        | 20<br>Pro        | 15<br>Lys        | Leu<br>Leu              | Gln<br>Arg               | Lys<br>Glu               | Gln<br>25<br>His               | Thr   | Asp        | Leu<br>35        | Met        | Gln<br>30        | Asp        | Thr<br>Tyr               | Ile                |                    |       | Leu               |
| 10<br>Asp<br>Gly       | Leu              | Asp        | Val        | 20<br>Pro        | 15<br>Lys<br>Pro | Leu<br>Leu<br>Gly       | Gln<br>Arg<br>Ala        | Lys<br>Glu<br>Phe        | Gln<br>25<br>His<br>Pro        | Thr   | Asp<br>Glu | Leu<br>35<br>Glu | Met<br>Thr | Gln<br>30<br>Leu | Asp<br>Pro | Thr<br>Tyr<br>Gly        | Ile<br>40          | Arg                | Ile   | Leu<br>Gln        |
| 10<br>Asp<br>Gly<br>45 | Leu              | Asp        | Val        | 20<br>Pro        | 15<br>Lys<br>Pro | Leu<br>Leu<br>Gly       | Gln<br>Arg<br>Ala        | Lys<br>Glu<br>Phe        | Gln<br>25<br>His<br>Pro        | Thr   | Asp<br>Glu | Leu<br>35<br>Glu | Met<br>Thr | Gln<br>30<br>Leu | Asp<br>Pro | Thr<br>Tyr<br>Gly        | Ile<br>40<br>Ala 7 | Arg<br>50<br>Thr I | Ile   | Leu<br>Gln<br>Gly |
| 10 Asp Gly 45 55 Cys   | Leu<br>Cys<br>65 | Asp<br>Arg | Val<br>Glu | 20<br>Pro<br>Arg | Lys<br>Pro<br>60 | Leu<br>Gly<br>Leu<br>70 | Gln<br>Arg<br>Ala<br>Gly | Lys<br>Glu<br>Phe<br>Arg | Gln<br>25<br>His<br>Pro<br>Arg | Thr   | Glu<br>Phe | Leu<br>35<br>Glu | Met<br>Thr | Gln<br>30<br>Leu | Asp<br>Pro | Thr<br>Tyr<br>Gly<br>Asn | Ile<br>40<br>Ala 7 | Arg<br>50<br>Thr I | Ile   | Leu<br>Gln<br>Gly |



Gln 100 105 110 Met Ala Arg Pro Asn Ile Leu Gly Leu Arg Asn Asn Ile Tyr Cys Met 115 120 Ala Gln Leu Leu Asp Asn Ser Asp Thr Ala Glu Pro Thr Lys Ala Gly 130 135 Arg Gly Ala Ser Gln Pro Pro Thr Pro Thr Pro Ala Ser Asp Ala Phe 145 150 155 160 Gln Arg Lys Leu Glu Gly Cys Arg Phe Leu His Gly Tyr His Arg Phe 165 170 175 Met His Ser Val Gly Arg Val Phe Ser Lys Trp Gly Glu Ser Pro Asn 180 185 190 Arg Ser Arg Arg His Ser Pro His Gln Ala Leu Arg Lys Gly Val Arg 195 200 Arg Thr Arg Pro Ser Arg Lys Gly Lys Arg Leu Met Thr Arg Gly Gln 210 215 220 Leu Pro Arg 225 <210> 23 <211> 191 <212> PRT <213> Homo sapiens <400> 23 Val Gln Thr Val Pro Leu Ser Arg Leu Phe Asp His Ala Met Leu Gln 1 5 10 15 Ala His Arg Ala His Gln Leu Ala Ile Asp Thr Tyr Gln Glu Phe Glu 20 25 Glu Thr Tyr Ile Pro Lys Asp Gln Lys Tyr Ser Phe Leu His Asp Ser 35 40 Gln Thr Ser Phe Cys Phe Ser Asp Ser Ile Pro Thr Pro Ser Asn Met 50 55 60 Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu 70 75 80 Leu Leu Ile Glu Ser Trp Leu Glu Pro Val Arg Phe Leu Arg Ser Met 85 90 95 Phe Ala Asn Asn Leu Val Tyr Asp Thr Ser Asp Ser Asp Asp Tyr His 100



| 105                 | 110 Leu Leu Lys Asp Leu     | Glu Glu Gly Ile Gln Thr Leu  | Met Gly Arg   |
|---------------------|-----------------------------|------------------------------|---------------|
| Leu 115             | 120                         | 125 Glu Asp Gly Ser          | Arg Arg Thr   |
| Gly Gln Ile Leu Lys | Gln Thr Tyr Ser 130         | 135                          | 140           |
| Lys Phe Asp Thr Asn | n Ser His Asn His Asp Ala I | Leu Leu Lys Asn Tyr 145      |               |
| 150                 | 155 160                     | Gly Leu Leu Tyr Cys Phe Arg  | g Lys Asp Met |
| Asp Lys Val Glu Thr | Phe 165                     | 170                          | 175           |
| Leu Arg Met Val Gln | n Cys Arg Ser Val Glu Gly S | Ser Cys Gly Phe              | 180           |
| 185                 | 190 <210> 24 <211>          | 248 <212> PRT <213>          | Homo sapiens  |
| <400> 24 Glu Gly    | / Ile Cys Arg Asn Arg Val   | Thr Asn Asn Val Lys Asp Val  | Thr 1         |
| 5                   | 10 15 Ly                    | ys Leu Val Ala Asn Leu Pro L | ys Asp Tyr Me |
| Ile Thr Leu Lys Tyr | 20                          | 25                           | 30 Val Pro    |
| Gly Met Asp Val Leu | Pro Ser His Cys Trp Ile S   | Ser Glu Met 35               |               |
| 40                  | 45 Val Val Gln Leu Ser A    | Asp Ser Leu Thr Asp Leu Leu  | Asp Lys Phe   |
| Ser 50              | 55                          | 60 Asn Ile Ser Glu Gly       | Leu Ser Asn   |
| Tyr Ser Ile Ile Asp | Lys Leu Val 65              | 70                           | 75            |
| 80 Asn Ile Val Asp  | Asp Leu Val Glu Cys Val I   | Lys Glu Asn Ser Ser Lys      |               |
| 85                  | 90 95 A                     | Asp Leu Lys Lys Ser Phe Lys  | Ser Pro Glu   |
| Pro Arg Leu Phe Thr | Pro 100                     | 105                          | 110 Glu       |
| Glu Phe Phe Arg Ile | Phe Asn Arg Ser Ile Asp A   | Ala Phe Lys Asp 115          |               |
| 120                 | 125 Phe Val Val Ala Ser     | Glu Thr Ser Asp Cys Val Val  | Ser Ser Thr   |
| Leu 130             | 135                         | 140 Ser Pro Glu Lys Asp      | Ser Arg Val   |



| Ser   | Val Thr Lys   | Pro Phe Met   | Leu 145       |              | 150           | 155                 |
|-------|---------------|---------------|---------------|--------------|---------------|---------------------|
| 160   | Pro Pro Va    | l Ala Ala Ser | Ser Leu Arg   | Asn Asp Ser  | Ser Ser Ser   | Asn                 |
| 165   |               | 170           | <u>:</u>      | 175 Arg Lys  | Ala Lys Asr   | Pro Pro Gly Asp Ser |
| Ser   | Leu His Trp   | Ala Ala       | 180           |              | 185           | 190 Met             |
| Ala   | Leu Pro Ala   | Leu Phe Ser   | Leu Ile Ile ( | Gly Phe Ala  | Phe Gly       | 195                 |
| 200   |               | 205 Ala       | Leu Tyr Trp   | Lys Lys Arg  | Gln Pro Ser   | Leu Thr Arg Ala Val |
| Glu   | 210           | :             | 215           | 220          | Asn Ile Gln   | Ile Asn Glu Glu Asp |
| Asn   | Glu Ile Ser   | Met Leu Gln ( | Glu 225       | :            | 230           | 235                 |
| 240   | Lys Glu Arg   | g Glu Phe Gln | Glu Val       |              | 245           | <210> 25            |
| <21   | 332 <2        | 12> PRT <2    | Homo          | sapiens <400 | )> 25 Ser     | Pro Ala Pro Pro Ala |
| Cys   | Asp Leu Arg   | Val Leu Ser I | Lys Leu Leu   | 1            | 5             | 10                  |
| 15    | Arg Asp Ser   | His Val Leu H | His Ser Arg L | eu Ser Gln ( | Cys Pro Glu   | Val 20              |
| 25    |               | 30 His F      | Pro Leu Pro T | hr Pro Val I | Leu Leu Pro   | Ala Val Asp Phe Ser |
| Leu   | 35            |               | 40            |              | 45 Gly Glu    | Trp Lys Thr Gln Met |
| Glu   | Glu Thr Lys   | Ala Gln Asp I | le Leu        | 50           | 55            | 60                  |
| Gly   | Ala Val Thr   | Leu Leu Leu G | lu Gly Val M  | et Ala Ala A | arg Gly Gln   | 65                  |
| 70    |               | 75            | 86            | O Leu Gly F  | Pro Thr Cys I | Leu Ser Ser Leu Leu |
| Gly   | Gln Leu Ser ( | Gly Gln       | 8             | 85           | 90            | 95                  |
| Val . | Arg Leu Leu l | Leu Gly Ala L | eu Gln Ser Le | eu Leu Gly T | hr Gln Leu    | 100                 |
| 105   |               | 110 Pro       | Pro Gln Gly A | Arg Thr Thr  | Ala His Lys   | Asp Pro Asn Ala Ile |
| Phe   | 115           |               | 120           | 1            | 25 Leu Ser    | Phe Gln His Leu Leu |



Arg Gly Lys Val Arg Phe Leu Met Leu 130 135 140 Val Gly Gly Ser Thr Leu Cys Val Arg Arg Ala Pro Pro Thr Thr Ala 145 150 155 Val Pro Ser Arg Thr Ser Leu Val Leu Thr Leu Asn Glu Leu Pro Asn 165 170 175 Arg Thr Ser Gly Leu Leu Glu Thr Asn Phe Thr Ala Ser Ala Arg Thr 180 185 Thr Gly Ser Gly Leu Leu Lys Trp Gln Gln Gly Phe Arg Ala Lys He 195 200 Pro Gly Leu Leu Asn Gln Thr 205 Ser Arg Ser Leu Asp Gln Ile Pro Gly 210 215 220 Tyr Leu Asn Arg Ile His Glu Leu Leu Asn Gly Thr Arg Gly Leu Phe 225 230 235 240 Pro Gly Pro Ser Arg Arg Thr Leu Gly Ala Pro Asp Ile Ser Ser Gly 245 250 255 Thr Ser Asp Thr Gly Ser Leu Pro Pro Asn Leu Gln Pro Gly Tyr Ser 260 265 270 Pro Ser Pro Thr His Pro Pro Thr Gly Gln Tyr Thr Leu Phe Pro Leu 275 280 Pro Pro Thr Leu Pro Thr Pro 285 Val Val Gln Leu His Pro Leu Leu Pro 290 295 300 Asp Pro Ser Ala Pro Thr Pro Thr Pro Thr Ser Pro Leu Leu Asn Thr 305 310 315 Ser Tyr Thr His Ser Gln Asn Leu Ser Gln Glu Gly 325 330 <210> 26 <211> 28 <212> Artificial Sequence <220> <223> primer <400> 26 cggaattccg atggagctga ctgaattg 28 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27



tttagcggcc gcattcttac ccttcctgag

30 <210>

28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400:

28 ccaagctaac gtccacagca g

21 <

210> 29 <211> 17 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 29 gctcaggacg atggcat

17 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 30 ggtgttggac gctcaggaag atg

23 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 31 catcaggaca cgcacctttc c

21 <210> 32 <211> 17 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 32 ggcgcggaga tgggggt

17 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 33 tggtcatctg tccctgtcc tg

22 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 34 gacattaact ttggtgtctg ggac

24 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 35 ctgtccgcaa actcttccga g

21 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 36 cgcaaactcg tccgagtcta ct

22 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223>

primer <400> 37 gagtctactc caatgtggtg gg



22 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cggaattcat ggaccacctc ggggcg 26 <210> 39 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 gctctagact aagagcaagc cacatagctg gg 32 <210> 40 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cccaagctta tggagctgac tgaattgctc ctc 33 <210> 41 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 ggaattetta eeetteetga gacagattet gg 32 <210> 42 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 42 gctctagagc tcatttaccc ggagacaggg agag primer <400> 34

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                         |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| ☐ FADED TEXT OR DRAWING                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                     |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
|                                                         |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.