COT 6405 ANALYSIS OF ALGORITHMS

Brute Force

Computer & Electrical Engineering and Computer Science Department Florida Atlantic University

Outline

- Introduction to Brute Force
- Brute Force algorithms for representative problems
- Algorithms for generating combinatorial objects

Brute Force

- Straight forward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved
- Proceeds in a simple and obvious way, but usually require a large number of steps to complete

Brute Force

- Applicable to a large variety of problems
- For some problems, brute-force approach yields reasonable algorithms
- Can be used if only few instances of the problem need to be solved
 - Avoids the expense of designing a more efficient algorithm
- Can be useful for solving small-size instances of a problem
- Can be used as a yardstick to compare more efficient alternatives for solving a problem

Brute-force algorithms

- Selection Sort
- Bubble Sort
- String Matching
- Closest-Pair
- Exhaustive Search
 - Traveling Salesman Problem
 - Knapsack Problem
 - Assignment Problem
 - Independent Set Problem

Selection Sort

- Scan the array to find its smallest element and swap it with the first element
- Then, starting with the second element, scan the elements to the right of it to find the smallest among them and swap it with the second element
- Generally, on the pass i ($1 \le i \le n-1$), find the smallest element in A[i...n] and swap it with A[i]

$$A_1 \le A_2 \le ... \le A_i \mid A_{i+1}... A_{min}... A_n$$
 in their final position the last n-i elements

After n-1 passes, the list is sorted

Selection Sort, example

$$A = \langle 27, 35, 2, 56, 12, 8 \rangle$$

27	35	2	56	12	8
2	35	27	56	12	8
2	8	27	56	12	35
2	8	12	56	27	35
2	8	12	27	56	35
2	8	12	27	35	56

Selection Sort

Algorithm SelectionSort(A[1..n])

```
for i = 1 to n-1
    min = i
    for j = i+1 to n
        if A[j] < A[min]
            min = j
        swap A[i] with A[min]</pre>
```

RT analysis:

$$T(n) = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} 1 = \sum_{i=1}^{n-1} (n-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2} = \theta(n^2)$$

Brute-Force String Matching

- pattern: a string of m characters to search for
- <u>text</u>: a (longer) string of *n* characters to search in
- problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1: Align pattern at beginning of text

Step 2: Moving from left to right, compare each character of pattern to the corresponding character in text until

- all characters are found to match (successful search); or
- a mismatch is detected

Step 3: While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

Examples

1. **Pattern**: 001011

Text: 10010101101001100101111010

2. Pattern: algorithm

Text: The established framework for analyzing an algorithm's time efficiency is primarily grounded in the order of growth of the algorithm's running time as its input size goes to infinity.

String Matching

Algorithm BruteForceStringMatching(T[1..n], P[1..m]

```
//the algorithm returns the index of the text where first matching
// occurs, or -1 for no matching
for i = 1 to n - m + 1
    i = 1
    while j \le m and P[j] = T[i + j-1]
        j = j + 1
    if j == m + 1
         return i
return -1
```

•
$$RT = O(nm)$$

Closest Pair

Find the two closest points in a set of *n* points (in the two-dimensional Cartesian plane).

Brute-force algorithm

- Compute the distance between every pair of distinct points
- Return the indexes of the points for which the distance is the smallest.

Closest-Pair Brute-Force Algorithm

Algorithm BruteForceClosestPoints(P)

```
// P is a list of n points, n \ge 2, P_1 = (x_1, y_1), ..., P_n = (x_n, y_n)
// returns the index<sub>1</sub> and index<sub>2</sub> of the closest pair of points
d_{min} = \infty
for i = 1 to n-1
    for j = i + 1 to n
         d = (x_i - x_j)^2 + (y_i - y_j)^2

if d < d_{min}
              d_{min} = d; index<sub>1</sub> = i; index<sub>2</sub> = j
return index<sub>1</sub>, index<sub>2</sub>
```

Brute-Force Strengths and Weaknesses

Strengths

- wide applicability
- simplicity
- yields reasonable algorithms for some important problems (e.g. sorting, searching, string matching)

Weaknesses

- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as efficient as some other design techniques

Exhaustive Search

A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

- generate a list of all potential solutions to the problem in a systematic manner
- evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
- when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Example:

How do we represent a solution?

TSP by Exhaustive Search

		-
<i>- 1</i> 1		•
_	\sim	

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$

$$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$$

$$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$$

$$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$$

$$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$$

$$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$$

so on...

Cost

$$2+3+7+5=17$$

$$2+4+7+8=21$$

$$8+3+4+5=20$$

$$8+7+4+2=21$$

$$5+4+3+8=20$$

$$5+7+3+2=17$$

RT analysis:

- Assuming the start city is given, (n-1)! tours
- RT = $\Theta(n(n-1)!) = \Theta(n!)$

Example 2: Knapsack Problem

Given *n* items:

- weights: $w_1 \ w_2 \ ... \ w_n$
- values: $V_1 V_2 \dots V_n$
- a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack.

Example: Knapsack capacity W = 16

<u>item</u>	weight	value		
1	2	\$20		
2	5	\$30		
3	10	\$50		
4	5	\$10		

Example 2: Knapsack Problem

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4 }	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
{1,2,3,4}	22	not feasible

Number of subsets is $2^n \Rightarrow T(n) = \Theta(n \cdot 2^n)$

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to job j is C[i,j]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Algorithmic Plan

 Generate all legitimate assignments, compute their costs, and select the cheapest one

Assignment Problem by Exhaustive Search

How many assignments are there?

- Each feasible assignment is an n-tuple $< j_1, j_2, ..., j_n>$ where j_i is the job number assigned to the i^{th} person
- Example:

<2, 3, 4, 1> – person 1 gets job 2, person 2 gets job 3, so on

- The number of assignments is *n*!
- $\mathsf{T}(n) = \Theta(n \cdot n!)$

Assignment Problem by Exhaustive Search

$$C = \begin{pmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{pmatrix}$$

<u>Assignment</u>	Total Cost
1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23
etc.	

(For this particular instance, the optimal assignment is: 2, 1, 3, 4)

Example 4: k-Independent Set Problem

K-Independent Set problem: Given a graph G with n nodes, find whether G has an independent set of size k.

A set S of nodes in G, S \subseteq V, is <u>independent</u> if no two nodes in S are joined by an edge.

 $S = \{a, g, j, d\}$ is an independent set of size 4

k-Independent Set Problem

Brute force algorithm:

```
for each subset S of k nodes
    check if S is an independent set
    if S is an independent set
    return TRUE
return FALSE
```

- The number of subsets of k nodes is $\binom{n}{k} = \Theta(n^k)$
- To check if a subset of k vertices is independent takes $\binom{k}{2} = \Theta(k^2)$

Total RT =
$$\Theta(n^k k^2)$$

• If k is constant, then $RT = \Theta(n^k)$

Example 5: Independent Set Problem

Independent Set problem: Given a graph G with n nodes, find an independent set of maximum size

Brute force algorithm:

for each subset S of nodes
 check if S is an independent set
 if S is an independent set and |S| is larger than the
 max size so far then record |S| as the max-size set
return the max-size set

$$RT = \Theta(2^n n^2)$$

Remarks on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- Usually, there are much better alternatives!
- For some problems, exhaustive search or its variation is the only known way to get exact solution

Algorithms for Generating Combinatorial Objects

- Generating Permutations
- Generating Subsets

- Goal: generate n! permutations of {1, 2, ...n}
- Decrease-by-one technique:
 - Assume that we have solved the smaller-by-one problem: generate all (n-1)! permutations
 - Insert n in each of the n possible positions among elements of every permutation of n-1 elements
 - ⇒ n! permutations obtained

- Bottom-up minimal-change algorithm
 - Minimal-change requirement: each permutation can be obtained from its immediate predecessor by exchanging just two elements in it
 - *n* can be inserted in previously generated permutations either left-to-right or right-to-left
 - one way: insert *n* into 12...(*n*-1) by moving right-to-left and then switch direction each time a new permutation {1, 2, ..., *n*-1} has to be processed

```
Start 1
Insert 2 into 1 right to left 12 21
Insert 3 into 12 right to left 123 132 312
Insert 3 into 21 left to right 321 231 213
```

Generating permutations bottom-up, n = 3

- Johnson-Trotter algorithm
 - Ordering of permutations of n elements without explicitly generating permutations for smaller n
 - Associate a direction with each element *k* in the permutation:

- The element k is mobile if its arrow points to a smaller number adjacent to it
 - 3 and 4 are mobile, 2 and 1 are not

Algorithm JohnsonTrotter(n)

```
// generates a list of permutations of {1, 2, ..., n}
initialize the first permutation 123...n

while the last permutation has a mobile element
find its largest mobile element k
swap k and the adjacent integer k's arrow points to
reverse the direction of all the elements that are larger than k
add the new permutation to the list
```

- RT = $\Theta(n!)$
- Example for n = 3 (largest mobile highlighted)

Generating Subsets

- Let $A = \{a_1, a_2, ..., a_n\}$
- There are 2ⁿ subsets of A
- Power set = the set of all subsets
- Decrease-by-one technique:
 - Find a list of all subsets of {a₁, a₂, ..., a_{n-1}}
 - Then add to the list all the subsets with a_n in each of them
 - Example for {a₁, a₂, a₃}

n				subsets				
0	ф							{a ₁ , a ₂ , a ₃ }
1	ф	{a ₁ }						
2	ф	{a ₁ }	{a ₂ }	{a ₁ , a ₂ }				
3	ф	{a ₁ }	{a ₂ }	{a ₁ , a ₂ }	{a ₃ }	{a ₁ , a ₃ }	{a ₂ , a ₃ }	{a ₁ , a ₂ , a ₃ }

Generating Subsets

- Bit string approach:
 - One-to-one correspondence between all 2ⁿ subsets of an *n*-element set {a₁, a₂, ..., a_n} and all 2ⁿ bit strings b₁b₂...b_n of length n
 - Each binary string corresponds to a subset:
 - if $b_i = 1$, then $a_i \in \text{subset}$; if $b_i = 0$, then $a_i \notin \text{subset}$
 - Generate all the bit strings of length n by generating successive binary numbers from 0 to 2ⁿ-1
 - Then map to the corresponding subsets
 - Example for n = 3:

```
bit strings 000 001 010 011 100 101 110 111 subsets \phi {a<sub>3</sub>} {a<sub>2</sub>} {a<sub>2</sub>, a<sub>3</sub>} {a<sub>1</sub>} {a<sub>1</sub>, a<sub>2</sub>} {a<sub>1</sub>, a<sub>2</sub>} {a<sub>1</sub>, a<sub>2</sub>} {a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>}
```