

Homework 1

Laman Khudadatzada October 19, 2025

What Are NZCV Flags?

Flag	Name	Meaning
N	Negative	Set to 1 if the result is negative (sign bit = 1)
Z	Zero	Set to 1 if the result equals zero
С	Carry	Set to 1 if the operation produced a carry
V	Overflow	Set to 1 if a signed overflow occurred

These flags are stored in PSR

Signed vs Unsigned Comparisons

Unsigned Arithmetic

Represent positive values only.

The Carry (C) flag is used to detect comparison outcomes.

Signed Arithmetic

MSB is the sign bit Signed comparisons use N (Negative) and V (Overflow) flags.

Understanding NZCV Flags and Signed Conditional Codes

GE	Signed greater than or equal	$\overline{N \oplus V}$
LT	Signed less than	$N \oplus V$
GT	Signed greater than	$\overline{Z}(\overline{N {igoplus} V})$
LE	Signed less than or equal	$Z \text{ OR } (N \oplus V)$

GE

(Greater or Equal)

$$\mathrm{GE}=\overline{(N\oplus V)}$$

Example 1 True Case

$$A = 9 (0000 1001)$$

$$B = 4 (0000 0100)$$

$$A - B = +5 (0000 0101)$$

Flags: N=0, Z=0, V=0
$$\Rightarrow$$
 N \oplus V=0 GE=1

Example 1 True Case

$$A = -6 (111111010)$$

$$B = -7 (111111001)$$

$$A - B = +1 (0000 0001)$$

$$A = -9 (11111 0111)$$

$$B = -2 (11111 11110)$$

$$A - B = -7 (11111 1001)$$

Flags:
$$N=1$$
, $Z=0$, $V=0 \Rightarrow N \oplus V=1$

$$GE=0$$

GE code sample

```
.global _start
  _start:
      MOV ro, #9
      MOV r1, #4
      CMP r0, r1
5
      MOVGE r2, #1
6
      MOVLT r2, #0
8
      в.
9
```


LT (Less Than)

 $\mathrm{LT} = N \oplus V$

Example 1 True Case

$$A = 3 (00000011)$$

$$B = 5 (00000101)$$

$$A - B = -2 (11111 1110)$$

$$LT=1$$

Example 1 True Case

$$A = -120 (1000 1000)$$

$$B = +100 (0110 0100)$$

$$-120 - 100 = -220$$

$$N \oplus V = 1 \Rightarrow LT = 1$$

$$A = 7 (00000111)$$

$$B = 3 (00000011)$$

$$LT=0$$

code sample

```
.global _start
   _start:
      MOV ro, #3
      MOV r1, #5
      CMP ro, r1
      MOVLT r2, #1
      MOVGE r2, #0
      В.
10
```


GT

(Greater Than)

 $\mathrm{GT} = \overline{Z} \cdot \overline{(N \oplus V)}$

Example 1 True Case

$$A = 7 (00000111)$$

$$B = 3 (00000011)$$

$$A - B = +4 (00000100)$$

Example 1 True Case

$$A = -3 (11111101)$$

$$B = -8 (111111000)$$

$$A - B = +5 (00000101)$$

$$A = 5 (00000101)$$

$$B = 5 (00000101)$$

$$GT=0$$

GT code sample

```
untitled.s [chang
Compile and Load (F5)
                    Language: ARMv7 😊
  .global _start
  _start:
      MOV ro, #7
      MOV r1, #3
      CMP r0, r1
      MOVGT r2, #1
      MOVLE r2, #0
      В.
```

LE (Less or Equal)

 $LE = Z OR (N \oplus V)$

Example 1 True Case

$$A = 3 (00000011)$$

 $B = 5 (00000101)$

$$A - B = -2 (111111110)$$

$$N=1, V=0$$

 $N \oplus V=1 \Rightarrow LE=1$

Example 1 True Case

$$A = 7 (00000111)$$

$$B = 7 (00000111)$$

$$A - B = 0$$
 (00000000)

$$Z=1 \Rightarrow LE=1$$

$$A = 8 (00001000)$$

$$B = 5 (00000101)$$

$$A - B = +3 (00000011)$$

LE code sample

```
untitled.s [ch
Compile and Load (F5)
                     Language: ARMv7 😌
 1 .global _start
   _start:
       MOV ro, #3
       MOV r1, #5
       CMP r0, r1
       MOVLE r2, #1
       MOVGT r2, #0
10
       в.
11
12
```

"Mastering the meaning of NZCV flags means mastering how the processor decides logic. Every conditional branch in your code is built on these bits."

Thank you very much!