

Projekt Ausarbeitung

Kamerakalibrierung anhand eines Punktgitters

geschrieben von

Vera Brockmeyer (Matrikelnr. 11077082) Artjom Schwabski (Matrikelnr. 11113320)

Weiterführende Themen der Bildverarbeitung in SS 2017

Betreuer:

Prof. Dr. Dietmar Kunz Institute for Media- and Phototechnology

Inhaltsverzeichnis

1	Abs	strakt		3		
2	Einleitung					
	2.1	Motiv	ation	4		
3	Stand der Wissenschaft					
	3.1	Kame	rakalibrierung mit Punktraster	5		
4	Materialien					
	4.1	Hardw	vare	6		
	4.2	Softwa	are	6		
		4.2.1	Klassen	6		
		4.2.2	$\operatorname{ImageJ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	8		
		4.2.3	Eclipse	9		
		4.2.4	Java	9		
5	Methode					
		5.0.5	Levenberg-Marquard-Approximation	9		
		5.0.6	Affine Transformation	9		
		5.0.7	Kamerakalibierung	9		
6	Aus	swertu	ng	10		
7	Ref	lexion		11		
8	Zus	amme	nfassung	12		

1 ABSTRAKT 3

1 Abstrakt

2 EINLEITUNG 4

2 Einleitung

Vera

2.1 Motivation

Vera

3 Stand der Wissenschaft

???

3.1 Kamerakalibrierung mit Punktraster

4 MATERIALIEN 6

4 Materialien

XXX

4.1 Hardware

4.2 Software

4.2.1 Klassen

Artjom

Im folgenden werden die Methoden der einzelnen Klassen erläutert. Die vollständige UML zur besseren Verständlichkeit der Klassenbeziehungen ist der Abb. 1 zu entnehmen.

point_grid_radial_affin_distor_ Hauptklasse der Anwendung. Implementiert das Interface *PluginFilter* um über ImageJ aufgerufen werden zu können.

Die Klasse besitzt folgende Methoden und deren Funktion:

run	Main-Methode des PlugIns in der die Optimierung aufge-				
	rufen wird				
setup	Konstruktor-Methode des PlugIns in dem die Bildreferenz				
	gespeichert wird				
readData	Liest aus einer in ImageJ geöffneten Textdatei Punkt-Paare				
	ein für Start- und Ziel-Koordinten				
computeDrawRadialTrans	computeDrawRadialTransformation				
drawTargets	Zeichnet Punkte an den übergebenen Ziel-Koordinaten in				
	das übergebene Bild				
computeDrawAffineTransf	ormation				
computeRadius2Center	Berechnet anhand der Parameter den Abstand zum Git-				
	termittelpunkt				
compute_radial_dist_ko	compute_radial_dist_koefBerechnet mit dem LevenbergMarquadt Optimierer die				
	Koeffizienten der Radialen Verzerrung der übergebenen				
	Punkt und gibt die Koeffizienten zurück				

Tabelle 1: Methoden der point grid radial affin distor Klasse

SimplePair Eine Einfache Klasse zum Speichern der Vorgabe- und Ziel Koordinaten und des Abstandes zum Mittelpunkt.

RadialDistFunction Klasse zum Erzeugen der Funktionen für den Optimierer.

4 MATERIALIEN 7

RadialDistFunction	Konstruktor der Klasse. Es wird ein SimplePoint Array erwartet welcher Koordinaten-Paare für Start- und Ziel-
	Koordinaten enthält.
realTargetPoints	Gibt ein Array aus welches nur die Ziel-Koordinaten ent-
	hält. Dieses wird für den Optimierer benötigt.
retMVF	Funktion zur Modellierung der Radialen Verzerrung für den
	Optimierer. BErechnet zu den Vorgegeben Koeffizienten
	und einer Start-Koordinate die Ziel-Koordinate
retMMF	Jacobi-Matrix-Funktion zur Berechnung der Ableitung
	nach den einzelnen vom Optimierer vorgegebenen Koeffizi-
	enten

Tabelle 2: Methoden der RadialDistFunction Klasse

Abbildung 1: UML Klassendiagramm

UnwrapJ ist ein für ImageJ entwickeltes Plugin, das die elastische Registrierung von zwei Bildern ermöglicht, indem es ein Quellbild verformt, so dass es einem Zielbild ähnelt. Es stehen drei Betriebsarten zur Verfügung:

- 1. ein vollautomatischer Modus;
- 2. ein vollständig interaktiver Modus, bei dem die Verformung durch die Position einer beliebigen Anzahl von Landmarken eindeutig bestimmt ist;
- 3. ein gemischter Modus, bei dem interaktive Landmarken nur verwendet werden, um eine ansonsten automatische Registrierungsprozedur anzuzeigen.

Das Deformationsmodell besteht aus kubischen Splines, die Glätte und Vielseitigkeit gewährleisten. Das Registrierungskriterium enthält einen Vektor-Spline-Regularisierungstermin, um die Deformation physisch realistisch zu beschränken.[2]

In dieser Anwendung wird es jedoch nicht zur Registrierung sondern nur zum erzeugen von Landmarken genutzt. Diese werden in eine Textdatei gespeichert, welche im programmierten Plug-In eingelesen und verwendet wird.

4 MATERIALIEN 8

4.2.2 ImageJ

5 METHODE 9

4.2.3 Eclipse

einer offenen Entwicklungsplattform, die aus erweiterbaren Frameworks, Tools und Laufzeiten für den Aufbau, die Bereitstellung und das Verwalten von Software über den gesamten Lebenszyklus besteht. [1]

4.2.4 Java

5 Methode

- 5.0.5 Levenberg-Marquard-Approximation
- 5.0.6 Affine Transformation
- 5.0.7 Kamerakalibierung

6 AUSWERTUNG 10

6 Auswertung

7 REFLEXION 11

7 Reflexion

Vera

8 Zusammenfassung

Vera

LITERATUR 13

Literatur

[1] Eclipse Foundation. What is eclipse and the eclipse foundation?, Sept. 2017.

[2] Biomedical Imaging Group. Unwarpj: An imagej plugin that performs a spline-based elastic registration of two images., Sept. 2017.