Concours d'accès en 1ère année du Cycle Préparatoire de l'ENSA de Safi

Date: le 01 Août 2012 Durée: 1houre 30min

Remarques Importantes:

Une seule proposition par question est correcte :

Réponse juste = 2 points Plus d'une réponse cochée = -1 point

Réponse fausse = -1 point Pas de réponse juste = 0 point

Les réponses doivent être recopiées sur la dernière page (page 7/7)

A. MATHEMATIQUES

1. La fonction y solution de l'équation différentielle y'(x) + 2y(x) = 6 avec la condition initiale y(0) = 1 est définie sur l'ensemble R des nombres réels par: a. $y(x) = -2e^{-2x} + 3$, b. $y(x) = -2e^{2x} + 3$, c. $y(x) = -2e^{-2x} - 3$

- 2. Soit (E) l'ensemble des points M d'affixe z vérifiant $z=1-2i+e^{i\theta}$, θ étant un nombre réel.
 - a. (E) est une droite passant par le point d'affixe 2 2i.
 - b. (E) est le cercle de centre d'affixe -1 + 2i et de rayon 1.
 - c. (E) est le cercle de centre d'affixe 1 2i et de rayon 1.
- 3. On pose $z = e^{i\theta}$. La valeur de 1 + z est:

a. $2\cos(\frac{\theta}{2})$, b. $2\cos(\frac{\theta}{2})e^{i\frac{\theta}{2}}$,

c. $3\cos(\frac{\theta}{2})$

4. On pose $z = e^{i\theta}$. La valeur de $1 + z + z^2$ est :

a. $\frac{\sin(\frac{3\theta}{2})}{\sin(\frac{\theta}{2})}e^{i\theta}$,

b. $\frac{\cos(\frac{3\theta}{2})}{\cos(\frac{\theta}{2})}e^{it}$,

c. $\frac{\cos(\frac{\theta}{2})}{\cos(\frac{3\theta}{2})}e^{i\theta}$

5. la valeur de lintégrale $I_n = \int_1^n \frac{\ln(x)}{x^2} dx$ est donnée par :

a. $I_n = 1 - \frac{\ln(n)}{n}$, b. $I_n = 1 - \frac{\ln(n)}{n} - \frac{1}{n}$ c. $I_n = 1 - \frac{\ln(n)}{n^2} - \frac{1}{n^2}$

6. La valeur de lintégrale $J=\int_0^{\frac{\pi}{2}}\frac{\cos(x)}{\cos(x)+\sin(x)}dx$ est donnée par : a. J=1, b. $J=\frac{\pi}{4}$, c. $J=\frac{\pi}{2}$, d. J=2.

7. La limite l de la suite $u_n = (1 + \frac{1}{n})^n$ est:

a. l = 1, b. $l = \frac{e}{2}$, c. $l = e^2$, d. l = e

8. La limite l de la suite $u_n = \frac{\sum_{k=1}^n k^2}{n^3}$ est :

a. l = 1, b. $l = \frac{1}{3}$, c. $l = \frac{1}{6}$,

**									
9. Une ur	ne contient	10 boules	indiscern	ables au	touche	r: 7 bla	anches et	3	
noires. On	tire simulta	mément :	3 boules d	e l'urne.	La pro	babilite	é de tirer	2	
	nches et une								
a.	$\frac{21}{40}$,	b. $\frac{42}{60}$,	i i	c. $\frac{21}{60}$,	-/-	d. $\frac{45}{56}$	•		
10. Soit	f la fonction	définie	par $f(x)$	$=\frac{1}{x}ln(1$	$+ sin^2$	2(x)) si	$x \neq 0$	et $f(0)$:	= 0.
10.1.	La limite d								
	a. 1,	b. $\frac{\pi}{2}$,	c. 0,		d	$\frac{\pi}{4}$	# - F - F	
10.2.	Choisissez	l'une des	réponses	suivante	3:				
	a. f est de	érivable e	n 0 et f'(0) = 0,					
	b. f est de	érivable e	n 0 et $f'(0)$	(0) = 1,					
	c. f n' est	pas dériv	vable en 0	•					
10.3	f est périe	odique d	e période	:				2	**
2.0	a. π ,		b. 27	Γ,	C	f n'a	as pas de	e périod	e
								F	
11. Chois	issez l'une d	les répor	ises suiva	ntes not	ır la lir	ógrigo	tion do	min4(m).	
	$\frac{1}{8}cos4x$ —			rices por	a la m	icarisa	tion de s	stit (x).	
		-	0						
b.	$\frac{1}{8}cos4x +$	$\frac{1}{2}\cos 2x$	+ 5,					-	-
c.	$\frac{1}{8}cos(-4x)$	1 - 1 -	$(-2r) \perp \frac{1}{2}$	3			14		
	8 (2003	(22) 1 8	3					
19 In m	$\frac{\pi}{2}$. 4/ \ 1							
	eur de $\int_0^{\frac{\pi}{2}} s$	$n^{\alpha}(x)dx$	r est						
a.	$\frac{\pi}{16}$,	b. $\frac{5\pi}{16}$,		c. $\frac{3\pi}{8}$,		d. $\frac{3\pi}{16}$		
		74					20.00		
13. La vale	eur de l'inte	grale $\int_0^{\frac{\pi}{2}}$	$\frac{1}{1+\cos(x)}$	dx est:		1.			
	4,		+						
ct.	4,	b. 3,		c. 1,			d. 0		
in the second									
4. Quatre	points M , N ,	P et Q d	istincts fo	rment un	paralle	élogran	ime MNI	Q dont	
les diago	onales se cou	ipent en	Alors:						
4		,W	2 1 CAMPON						

a. N est le barycentre de $\{ (M, 1), (P, 1), (Q, -2) \}$.

b.
$$\overrightarrow{OM} - \overrightarrow{OQ} + \overrightarrow{MN} = \overrightarrow{0}$$
.

c.
$$MQ^2 - PQ^2 = 2\overrightarrow{OP} \cdot \overrightarrow{MQ}$$
.

d.
$$2(MN^2 + MQ^2) = NQ^2 + MP^2$$
.

ROYAUME DU MAROC UNIVERSITE ABDELMALEK ESSAÁDI Ecole Nationale des Sciences Appliquées Tanger

Concours d'accès en 1° Année des Classes Préparatoires de l'ENSA Tanger (Edition 2012)

Epreuve de Mathématiques

Durée de l'épreuve : 1h 15mn

(Trois pages et une fiche réponse à remettre au surveillant, dûment remplie à la fin de l'épreuve)

CALCULATRICE NON AUTORISEE

Parmi les réponses proposées, une seule est juste. Pour chaque question, répondre sur la fiche réponse par une croix dans la case correspondante. (Barème : une réponse juste : +1 ; une réponse fausse : -1 ; pas de réponse : 0)

1) Soit L une liste finie d'entiers relatifs consécutifs dont le premier terme est -15.			
$L = \{-15, -14,\}$. Si la somme de tous les	a) 34	<i>b</i>) 50	c) 18
éléments de L est égale à 51 alors le nombre total des termes de la liste L est égale			
$\lim_{n\to\infty}\frac{(-1)^n3^{n+1}}{\pi^n}=$	a) 3	b) 0	c) $\frac{3}{\pi}$
Soit $Z_n = \sum_{k=1}^n \frac{e^{k-1}}{\pi^{k+1}}$; alors $\lim_{n \to \infty} Z_n = 3$	a)+∞	b) $\frac{1}{\pi(\pi-e)}$	c) $\frac{1}{\pi - e}$
4) Une entreprise de fabrication de mixeurs a			
adopté pour l'année 2012 la stratégie de production suivante : la production connaîtra une diminution	a) t_{n+}	$=0,1t_{n}$	-150
mensuelle de 10%; mais grâce à une commande destinée à l'export, l'entreprise produira chaque	b) t_{n+}	=0,9t	$_{n} + 150$
mois 150 mixeurs de plus.			
On note à présent par t _n la production de l'usine	$ c) t_{n+}$	$_{1}=0,1t$	1
relative au mois Non. L'expression reliant			
t _{n+1} et t _n est donnée par			

5) suite de la question 4). A Long terme la production mensuelle des mixeurs est estimée à P =	a) $P = 10$ mixeurs b) $P = 90$ mixeurs c) $P = 1500$ mixeurs
Soit $(u_n)_{n\geq 0}$ une suite numérique à termes strictement positifs $(u_n > 0)$ vérifiant $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{1}{2}$, Alors $\lim_{n\to\infty} u_n = L$ avec	a) $L = \frac{1}{2}$ b) $L = 0$ c) $0 < L < \frac{1}{2}$
7) Soit $T_n = \sum_{p=1}^n 2^{\frac{1}{2p-1}} - 2^{\frac{1}{2p+1}}$; alors $\lim_{n \to \infty} T_n =$	a) 1 b) 0 c) +∞

Page 1/3

8) On considère la courbe représentative de la			
fonction $f(x) = e^{-x^2}$. On désigne par	$a) \sqrt{2}$	2 e	
R(x), $x > 0$ le rectangle symétrique	b) $\frac{}{2}$	2	
inscrit à l'intérieur de la courbe et dont l'un des côtés est le segment d'extrémités	0) -2		
(-x,0) et $(x,0)$. La surface maximale de	c) $\sqrt{\frac{2}{3}}$	2	
ce rectangle est égale à	7 1 6	?	
$9) \lim_{x \to 0^+} \frac{\sin \pi x}{1 - \cos \sqrt{\pi x}} =$	<i>a</i>)0	b)2	c)√π
10) $\lim_{h\to 0} \frac{1}{h} \int_{e}^{e+h} \frac{1}{(\ln x)^2} dx =$	<i>a</i>)1	b) e	c) 0
11) $\int_0^{\frac{\pi}{2}} \ln \frac{1 + \sin x}{1 + \cos x} dx =$	a) $\frac{\sqrt{\pi}}{\pi}$	b) 0	c) ln π
$12) \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{4x^2 + 4x + 5}$	a) $\frac{\pi}{16}$	b) $\frac{\pi\sqrt{3}}{18}$	c) $\frac{\sqrt{\pi}}{6}$
13) La surface formée par la courbe de	a) e		
$f(x) = (\ln x)^2$ et par les droites		- 2	
x = 1 et $x = e$ est égale	b) 3e- c) e-	2	
	1		

a) $\frac{1}{2}$ b) $+\infty$ c) $\frac{2}{\sqrt{e}}$
$a) y = \frac{8}{\pi}x - 2$
$b) y = \frac{\pi}{4}(x-1)$
$c) y = \frac{\pi}{2} x - 1$
a) $\frac{\ln 2}{2}$ b) $\frac{1}{2}$ arag2 c) $\frac{1}{2}$
a) 0 b) $\frac{1}{2}$ c) + ∞
a) Toutes les 4b) Seulement Ec) Seulement E et N

19) Soit $S = \{(x, y, z) \in \mathbb{R}^3 / x + 2y = 0\}$. Lequel des systèmes suivants forme une base pour E?	a) {(-2,1,0);(0,1,0); (0,0,1)} b) {(-2,1,0);(0,0,1)} c) {(-2,1,0)}
On considère les ensembles suivants $E = \{(x, y, z) \in \mathbb{R}^3 / x + yz = 0\}$ $N = \{(x, y, z) \in \mathbb{R}^3 / xyz = 0\}$ $20) S = \{(x, y, z) \in \mathbb{R}^3 / z = 2\}$ $A = \{(x, y, z) \in \mathbb{R}^3 / x + y = z\}$ Lesquels parmi ces ensembles sont des sous espaces vectoriels de \mathbb{R}^3 ?	a) Seulement Ab) Seulement A et Nc) Tous E,N,S et A
Soit A une matrice carrée d'ordre n vérifiant $A^2 = 2I_n - A$ (I_n est la matrice identité) On considère les égalités suivantes (I) det $A = 0$ (II) $A^{-1} = \frac{1}{2}(A + I_n)$ (III) det $A \neq 0$ (IV) $A^{-1} = 2I_n + A$ (V) det $(A + I_n) = \frac{2}{\det A}$ Alors	a) Seulement (I) et (IV) sont vraies b) Seulement (II), (III) et (V) sont vraies c) Seulement (III), (IV) et (V) sont vraies

$_{22)}\sqrt{12345^2-12343x12347}=$	a) 4 b) 2 c) 42
$\lim_{n\to\infty} (\sqrt{2})(\sqrt[4]{2})(\sqrt[8]{2})\cdots (\sqrt[2^n]{2}) =$	a) 1 b) 2 c) $\sqrt{2}$
Si $\int_0^x h(t)dt = x \operatorname{arctg} x$ alors $h(1) =$	a) $\frac{1}{2}$ b) $\frac{\pi}{4}$ c) $\frac{\pi+2}{4}$
$\int \frac{dx}{tg^3x}$	a) $-\left[\frac{1}{2\sin^2 x} + \ln \sin x \right] + K$ b) $-\frac{1}{2Ig^2x} + K$ c) $\frac{1}{2arctg^2x} + K;$ K une constante