

KATEDRA CYBERNETYKI I ROBOTYKI ROBOTY MOBILNE

Robot mobilny unikający przeszkód "Wędrowiec"

Opis projektu

Wykonawcy: Michał Dołharz

Prowadzący:
Mgr inż. Arkadiusz Mielczarek

Roboty mobilne SPIS TREŚCI

Spis treści

1	Opi	s projektu
	1.1	Cel projektu
	1.2	Przewidywane efekty końcowe
	1.3	Planowane narzędzia
	1.4	Harmonogram prac
	1.5	Dodatkowe modyfikacje

1 Opis projektu

1.1 Cel projektu

Celem projektu jest zbudowanie dwukołowego, autonomicznego robota mobilnego. Robot ten będzie wyposażony w czujnik, który będzie służył do wykrywania przeszkód na jego drodze. Po wykryciu przeszkody robot obróci się o pewien kąt i będzie kontynuował jazdę.

Dodatkowo zostanie zbudowany pilot, aby umożliwić bezpieczne, zdalne uruchamianie i wyłaczanie robota.

Robot zostanie wykorzystany na potrzeby kursu Wizualizacja danych sensorycznych, gdzie będzie służył jako model samochodu. Dane z czujników będą wizualizowane na ekranie w taki sposób, w jaki byłyby wyświetlane na ekranie wewnątrz samochodu, aby ułatwić parkowanie (ocenę odległości od otoczenia).

1.2 Przewidywane efekty końcowe

W efekcie końcowym oczekiwany jest przede wszystkim robot wykrywający przeszkody i unikający ich.

W przypadku wprowadzenia modyfikacji (punkt 1.5) reakcja robota będzie zależała od czujnika, który wykryje przeszkodę (boczne: skręt w ruchu, główny: skręt w miejscu). Robot będzie miał też tryb zdalnego sterowania.

1.3 Planowane narzędzia

Robotem będzie sterował mikrokontroler Arduino Uno bądź Arduino Nano, w zależności od decyzji podjętych w trakcie projektowania układu i montażu.

Tworzenie oprogramowania odbędzie się w Arduino IDE bądź Visual Studio Code z rozszerzeniem do programowania Arduino. Do użytych modułów zostaną wykorzystane odpowiednie biblioteki.

Przewidywane są również narzędzia takie jak płytki uniwersalne, płytki stykowe, lutownica, multimetr oraz zasilacz laboratoryjny.

1.4 Harmonogram prac

Prace nad budową i programowaniem robota zostaną podzielone na trzy etapy (kamienie milowe).

- **Etap 1.** Dobranie części montażowych robota i pilota, między innymi silników z kołami oraz czujnika odległości. Zaprojektowanie układów ideowych. Rozplanowanie i wykonanie podwozia, czyli głównego elementu konstrukcji oraz pilota. <u>Termin: do końca marca.</u>
- Etap 2. Złożenie robota i pilota. Ewentualne poprawki. Termin: do końca kwietnia.
- Etap 3. Zaprogramowanie robota i pilota. Termin: do końca maja.

1.5 Dodatkowe modyfikacje

W przypadku szybkiego postępu prac przewidywane jest wprowadzenie kilku modyfikacji:

- integracja robota z platformą czujników wykonaną na Wizualizacje danych sensorycznych,
- rozbudowa możliwości pojazdu do zdalnego sterowania z pilota joystickiem,
- wytrawienie dedykowanych płytek do robota i pilota.