Calcul Différentiel III

MINES ParisTech

22 septembre 2021 (#c1a798e)

Question 1 (réponses multiples) Soit $f:(x_1,x_2)\in\mathbb{R}^2\mapsto x_1x_2\in\mathbb{R}$. On a
\Box A: $H_f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$
\square B: Si $h_1 = (h_{11}, h_{12}) \in \mathbb{R}^2$ et $h_2 = (h_{21}, h_{22}) \in \mathbb{R}^2$,
$d^2 f(x_1, x_2) \cdot h_1 \cdot h_2 = h_{11} h_{22} - h_{21} h_{12}$
\square C: Pour tout $x \in \mathbb{R}^2$
$\nabla f(x+h) = \nabla f(x) + \frac{1}{2} \langle h, H_f(x) \cdot h \rangle + \varepsilon(h) h ^2$
où $\varepsilon(h) \to 0$ quand $h \to 0$.
Question 2 Si $f: \mathbb{R}^n \to \mathbb{R}$ est deux fois différentiable en $x \in U$ et que $df(x) \cdot h \cdot h$ est connu pour tout $h \in \mathbb{R}^n$, peut-on déterminer $df(x) \cdot h_1 \cdot h_2$ pour tout $h_1, h_2 \in \mathbb{R}^n$?
\square A : oui, \square B : non.
Question 3 Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ est deux fois différentiable, combien y'a-t'il au plus de coefficients différents dans le tenseur représentant $d^2f(x)$?
\Box A: 9, \Box B: 18, \Box C: 27.
Question 4 (réponses multiples) Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $a \in \mathbb{R}^2$ tels que $\partial_{12} f(a) = \partial_{21} f(a)$. Alors f est
\square deux fois continûment différentiable en a , \square deux fois différentiable en a , \square différentiable en a , \square continue en a .

Question 5 La differentielle $d^{\circ}f$ d'ordre 3 d'une fonction $f:U \subset \mathbb{R}^2 \to \mathbb{R}^3$
\square A : associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur k de \mathbb{R}^2 une application qui associe linéairement à tout vecteur p de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .
\square B : associe linéairement à tout point $x \in U$ une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur k de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .
\square C : associe à tout point $x \in U$ une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur k de \mathbb{R}^2 une application qui associe linéairement à tout vecteur p de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .
Question 6 Si $f: \mathbb{R}^2 \to \mathbb{R}^4$ est trois fois différentiable, quel est le type du tenseur représentant $d^3f(x)$?
\Box A: $(4, 2, 2, 2)$, \Box B: $(3, 4, 2)$, \Box C: $(4, 2, 1)$.
Question 7 (réponses multiples) Si f est k fois différentiable en x ,
□ A : les dérivées partielles d'ordre k de f en x existent, □ B : on a $\partial_{i_ki_1}^k f(x) = d^k f(x) \cdot e_{i_1} \cdot \ldots \cdot e_{i_k}$, □ C : les dérivées partielles de d'ordre k de f en x déterminent $d^k f(x)$ de façon unique.