

Table of Contents

able of Contents		
Overview	:	
Chip Design	;	
Milling Guidelines		
Milling Guidelines	4	
Notes	•	
Milling Instructions		
Flow Layer		
Control Layer	ŧ.	
Testing Protocol		
Flow Layer Setup		
Control Layer Setup		
Testing the Chip		
Setup		
Running the chip		
Cleaning the Chip	{	

Overview

Fluorescence

Designed by Dinithi Samarasekera Date Completed: 10/25/2017

Fluorescence is commonly used as a quantifiable marker in synthetic biology procedures. Following the completion of a protocol, for example an assay test, samples are tested in a plate reader and the results analysed.

This microfluidic chip is designed to perform a Cell-free Toehold test, however it can be adapted to perform alternative fluorescent tests as desired. The metering primitive dispenses accurate ratio volumes of various substances. These are pushed into the central well which matches the dimensions of a 96-well plate. The chip can then be read in a plate reader with the use of an adapted skirt.

Chip Design

Flow Layer

Control Layer

Milling Guidelines

Flow Layer

Control Layer

Milling Guidelines

For a comprehensive guide to milling click <u>here</u>. For a list of tool parameters click <u>here</u>.

Notes

- 1. This chip should be milled on medium or thick polycarbonate (2.75mm $< Z_{Polycarbonate}$).
- 2. This chip requires thick PDMS (1.0mm < $Z_{\rm PDMS}$ < 1.5mm)

All the required SVGs for milling this chip are provided in the ZIP file. The layer, depth, and tool required for each SVG is listed in the file name. Below is a key describing how to read an SVG file name:

Milling Instructions

Mill the layers in the order they are listed with the correct depths and using the correct tools.

Flow Layer		
Order	Layer Name	
1.	F_CHAMBER_16	
2.	F_500_64	
3.	F_PORTS_8	
4.	Border	

Control Layer	
Order	Layer Name
1.	C_300_100
2.	C_PORTS_8
3.	Border

Testing Protocol

Flow Layer Setup

Inputs				
Name	Liquid	Flow Rate		
А	Oil	0.2 mL/hour		
В	Toehold	0.2mL/hour		
С	Trigger RNA	0.2mL/hour		
D	Master Mix	0.3mL/hour		

Outputs	
Name	Liquid
а	Fluorescent Solution

Control Layer Setup

Testing the Chip

Setup

- 1. Prepare 4 syringes
 - a. 3 filled with colored water
 - b. 1 filled with mineral oil
 - c. 5 empty control syringes
- 2. Attach the syringes containing coloured water to inputs B,C and D
- 3. Attach the syringe containing oil to input A
- 4. Attach the control syringes to all five control layer outputs

Running the chip

- 5. Open Controls 1,2 and 3; you should feel significant resistance while you open these control valves
- 6. Begin flowing Inputs A, B, and C
- 7. When the metered segment for each input is filled, stop the fluid flow and close their corresponding Control line
- 8. Open Control 4 and begin flowing Input A
- 9. When the oil is close to the final valve before entering the chamber, stop flowing Input A and close Control 4
- 10. Open Control 5 and flow Input D until the chamber is filled to a satisfactory level
- 11. Halt the flow of Input D and then close Control 5

Cleaning the Chip

- 12. Disconnect all syringes carefully
- 13. Clean the chip following the oil & water protocol listed here
- 14. Store your chip as detailed in the cleaning protocol