Towers of Hanoi, Gray Codes, and Coxeter Groups

James Dann

May 5, 2022

▶ Proof technique for statements over 0,1,...

- ▶ Proof technique for statements over 0,1,...
- Prove case is true for n = 0

- ▶ Proof technique for statements over 0,1,...
- Prove case is true for n = 0
- ▶ Suppose is true for n and prove true for n + 1

- ▶ Proof technique for statements over 0,1,...
- Prove case is true for n = 0
- ▶ Suppose is true for n and prove true for n + 1
- ▶ True for all $n \in \mathbb{N}$

► Solution involves using the induction hypothesis twice, separated by a single simple move

- ► Solution involves using the induction hypothesis twice, separated by a single simple move
- \triangleright 2ⁿ 1 moves required

- Solution involves using the induction hypothesis twice, separated by a single simple move
- \triangleright 2ⁿ 1 moves required
- ▶ Moves through 2^n states

► Enumerate all binary strings of length *n* in a cycle such that adjacent strings differ in exactly one place

- ► Enumerate all binary strings of length *n* in a cycle such that adjacent strings differ in exactly one place
- **00**, 01, 11, 10

- ► Enumerate all binary strings of length *n* in a cycle such that adjacent strings differ in exactly one place
- **0**0, 01, 11, 10
- Problem has many applications in signal processing

- ► Enumerate all binary strings of length *n* in a cycle such that adjacent strings differ in exactly one place
- **00**, 01, 11, 10
- Problem has many applications in signal processing
- ► Connection to *n*-dimensional cubes

▶ n-dimensional cube is a graph where the vertices are binary strings and the edges are between strings that differ in exactly one place

n-dimensional cube is a graph where the vertices are binary strings and the edges are between strings that differ in exactly one place

▶ 2ⁿ edges required

- \triangleright 2ⁿ edges required
- ightharpoonup Moves through 2^n vertices

- \triangleright 2ⁿ edges required
- ► Moves through 2ⁿ vertices
- ➤ Solution involves using the induction step twice, separated by a single simple move

String	Diff	
000	-	
001	0	
011	1	
010	0	
110	2	
111	0	
101	1	
100	0	

String	Diff	
000	-	
001	0	
011	1	
010	0	
110	2	
111	0	
101	1	
100	0	

Diff	
-	
0	
1	
0	
2	
0	
1	
0	

String	Diff	
000	-	
001	0	
011	1	
010	0	
110	2	
111	0	
101	1	
100	0	

String	Diff	
000	-	
001	0	
011	1	
010	0	
110	2	
111	0	
101	1	
100	0	

Diff
-
0
1
0
2
0
1
0

Diff	
-	
0	
1	
0	
2	
0	
1	
0	

String	Diff	
000	-	
001	0	
011	1	
010	0	
110	2	
111	0	
101	1	
100	0	

String	Diff	Peg 1	Peg 2	Peg 3
000	-	2 1 0		
001	0	2 1		0
011	1	2	1	0
010	0	2	10	
110	2		10	2
111	0	0	1	2
101	1	0		2 1
100	0			2 1 0

Connection??

String	Diff	Peg 1	Peg 2	Peg 3
000	-	2 1 0		
001	0	2 1		0
011	1	2	1	0
010	0	2	10	
110	2		10	2
111	0	0	1	2
101	1	0		2 1
100	0			2 1 0

▶ Flip 0th bit = swap all disks \leq 0 between pegs containing 0 and 1, if same peg then swap with ? peg

Connection??

String	Diff	Peg 1	Peg 2	Peg 3
000	-	2 1 0		
001	0	2 1		0
011	1	2	1	0
010	0	2	1 0	
110	2		10	2
111	0	0	1	2
101	1	0		2 1
100	0			2 1 0

- ▶ Flip 0th bit = swap all disks \leq 0 between pegs containing 0 and 1, if same peg then swap with ? peg
- ▶ Flip 1st bit = swap all disks ≤ 1 between pegs containing 1 and 2, if same peg then swap with ? peg

Connection??

String	Diff	Peg 1	Peg 2	Peg 3
000	-	2 1 0		
001	0	2 1		0
011	1	2	1	0
010	0	2	10	
110	2		10	2
111	0	0	1	2
101	1	0		2 1
100	0			2 1 0

- ▶ Flip 0th bit = swap all disks \leq 0 between pegs containing 0 and 1, if same peg then swap with ? peg
- Flip 1st bit = swap all disks ≤ 1 between pegs containing 1 and 2, if same peg then swap with ? peg
- ▶ Flip 2nd bit = swap all disks \leq 2 between left peg and peg with 2, if same peg then swap with ? peg

► Think about the set of all binary strings *W* as a group

- ► Think about the set of all binary strings *W* as a group
- $ightharpoonup \mathbb{Z}_2^n$

- ► Think about the set of all binary strings *W* as a group
- $ightharpoonup \mathbb{Z}_2^n$
- ► Reflections

- ► Think about the set of all binary strings *W* as a group
- $ightharpoonup \mathbb{Z}_2^n$
- ► Reflections

- ► Think about the set of all binary strings *W* as a group
- $ightharpoonup \mathbb{Z}_2^n$
- Reflections
- ► Hang on if you don't know group theory...

▶ Three "simple" generators s_0, s_1, s_2 such that $1 = s_0^2 = s_1^2 = s_2^2$

- Three "simple" generators s_0, s_1, s_2 such that $1 = s_0^2 = s_1^2 = s_2^2$
- ► All elements can be built out of these generators

- ► Three "simple" generators s_0, s_1, s_2 such that $1 = s_0^2 = s_1^2 = s_2^2$
- ► All elements can be built out of these generators
- ▶ These elements commute with each other $(s_i s_j = s_j s_i)$

- ► Three "simple" generators s_0, s_1, s_2 such that $1 = s_0^2 = s_1^2 = s_2^2$
- ► All elements can be built out of these generators
- ▶ These elements commute with each other $(s_i s_j = s_j s_i)$
- ▶ The elements of \mathbb{Z}_2^n are the elements obtained by multiplication, subject to some relations

- ► Three "simple" generators s_0, s_1, s_2 such that $1 = s_0^2 = s_1^2 = s_2^2$
- ► All elements can be built out of these generators
- ▶ These elements commute with each other $(s_i s_j = s_j s_i)$
- ► The elements of \mathbb{Z}_2^n are the elements obtained by multiplication, subject to some relations

$$\mathbb{Z}_2^n = \left\langle s_0, s_1, s_2 \mid 1 = s_i^2 = (s_0 s_1)^2 = (s_1 s_2)^2 = (s_0 s_2)^2 \right\rangle$$

▶ Set of generators $S = \{s_1, s_2, ..., s_n\}$

- ▶ Set of generators $S = \{s_1, s_2, \dots, s_n\}$
- ► Represents reflections in (hyper)planes

- ▶ Set of generators $S = \{s_1, s_2, \dots, s_n\}$
- ► Represents reflections in (hyper)planes
- Every generator is its own inverse $(s_i^2 = 1)$

- ▶ Set of generators $S = \{s_1, s_2, ..., s_n\}$
- ► Represents reflections in (hyper)planes
- Every generator is its own inverse $(s_i^2 = 1)$
- ▶ Relations of the form $(s_i s_j)^{m(i,j)} = 1$

- ▶ Set of generators $S = \{s_1, s_2, ..., s_n\}$
- Represents reflections in (hyper)planes
- Every generator is its own inverse $(s_i^2 = 1)$
- ▶ Relations of the form $(s_i s_j)^{m(i,j)} = 1$
- ► Represents angle between s_i and s_j : $\frac{\pi}{m(i,j)}$

Symmetric Group

Permutations on n letters

Symmetric Group

- Permutations on n letters
- ▶ Generated by adjacent transpositions $(1\ 2), (2\ 3), \dots$

Symmetric Group

- Permutations on n letters
- ▶ Generated by adjacent transpositions (1 2), (2 3), . . .
- ▶ Satisfy aforementioned relations, with $(s_i s_{i+1})^3 = 1$

Tikz is hard

► Inductive decomposition

- ► Inductive decomposition
- ightharpoonup g =something that ends only in blue * something never using blue

▶ Split into smaller parts with Hamilton cycles

- ► Split into smaller parts with Hamilton cycles
- Always connected

- ► Split into smaller parts with Hamilton cycles
- Always connected
- Connect hamilton cycles

