MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 12th February 2018 D1 - Lecture 17

Random Attendance

	170050016	Himanshu Vinayrao Bhoyar
2	170050018	Shubhamkar Bajrang Ayare Absent
3	170050060	Tushar Agarwal
4	170050061	Sameer Prajapati
5	170050074	Burudi Rajesh Absent
6	170050094	Poorvi R Hebbar
7	170050100	Ramya Narayanasamy
8	170070035	Farhan Ali
9	17D070019	Siddharth Chandak
10	17D070021	Sakshee Anil Pimpale
1	17D070030	Sarthak Jain Absent
12	17D070039	Yagya Mundra
13	17D070042	Karan Amaliya Absent
14	17D070053	Aryan Lall
15	17D070056	Tirupati Saketh Chandra
16	17D070064	Manas Vashistha

Summary: Determinants

Let A and B be $n \times n$, and c a scalar.

- $det(A + B) \neq det(A) + det(B)$, and $det(cA) = c^n det(A)$.
- det(AB) = det(A)det(B).
- $det(A) = det(A^T)$.
- If A is orthogonal, i.e., $AA^T = I$, then $det(A) = \pm 1$.
- If $A = [a_{ij}]$ is triangular, then $det(A) = a_{11} \cdots a_{nn}$
- A is invertible $\Leftrightarrow \det(A) \neq 0$. If this happens, then $\det(A^{-1}) = \frac{1}{\det(A)}$
- If A and B are similar, i.e., $B = P^{-1}AP$ for an invertible matrix P, then $det(B) = \frac{det(A)}{det(B)}$
- If A is invertible, and d_1, \ldots, d_n are the pivots of A, then $\det(A) = \pm (d_1 \cdots d_n)$

3/9

Summary: Eigenvalues and Characteristic Polynomial

Let *A* be $n \times n$.

- The *characteristic polynomial* of A is $det(A \lambda I)$ (of degree n) and its roots are the *eigenvalues* of A.
- ② For each eigenvalue λ , the associated *eigenspace* is $N(A \lambda I)$. To find it, solve $(A \lambda I)v = 0$. Any non-zero vector in $N(A \lambda I)$ is an *eigenvector* associated to λ .
- If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then its eigenvalues are $\lambda_1, \dots, \lambda_n$ with associated eigenvectors e_1, \dots, e_n respectively.
- Write $det(A \lambda I) = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$ and expand.

Trace of
$$A = a_{11} + \cdots + a_{nn}$$
 (sum of diagonal entries)
= $\lambda_1 + \cdots + \lambda_n$ (sum of eigenvalues)

$$det(A) = \lambda_1 \cdots \lambda_n$$
 (product of eigenvalues)

4/9

Examples

Example: Projection onto the line
$$x = y$$
: $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$.

$$v_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$$
 projects onto itself $\Rightarrow \lambda_1 = 1$ with eigenvector v_1 .

$$v_2 = \begin{pmatrix} 1 & -1 \end{pmatrix}^T \mapsto 0 \Rightarrow \lambda_2 = 0$$
 with eigenvector v_2 .

Further, $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .

Q: Do a collection of eigenvectors always form a basis of \mathbb{R}^n ?

A: No! **Example:** For
$$c \in \mathbb{R}$$
, let $A = \begin{pmatrix} c & 1 \\ 0 & c \end{pmatrix}$.

Characteristic Polynomial: $det(A - \lambda I) = (c - \lambda)^2$.

Eigenvalues: $\lambda = c$.

Eigenvectors:
$$(A - I)v = 0 \Rightarrow v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 or a multiple.

Eigenspace of A is 1 dimensional $\Rightarrow \mathbb{R}^2$ has no basis of eigenvectors of A.

Q: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Similarity and Eigenvalues

Defn. Two $n \times n$ matrices A and B are *similar*, if $P^{-1}AP = B$ for an invertible matrix P.

Observe: If $B = P^{-1}AP$, then $B^n = P^{-1}A^nP$ for each n.

Theorem: If *A* and *B* are similar, then they have the same characteristic polynomial.

In particular, they have the same eigenvalues, det(A) = det(B) and Trace(A) = Trace(B).

Proof. Given:
$$B = P^{-1}AP$$
. Want to prove: $\det(A - \lambda I) = \det(B - \lambda I)$. Indeed, $\det(B - \lambda I) = \det(P^{-1}AP - \lambda P^{-1}P)$

$$= \det(P^{-1}(A - \lambda I)P) = \det(A - \lambda I).$$

Observe: $A - \lambda I$ and $B - \lambda I$ are similar.

Diagonizability

Definition: An $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix Λ , i.e., there is an invertible matrix P and a diagonal matrix Λ such that $P^{-1}AP = \Lambda$.

Note: Finding roots of characteristic polynomials is difficult in general.

For $n \ge 5$, no formula exists for roots. (Abel, Galois)

For n = 3, 4, formulae for root exist, but not easy to use.

Importance of Diagonalizability:

Let the $n \times n$ matrix A be diagonalizable, i.e., $P^{-1}AP = \Lambda$, where P is invertible and Λ is diagonal. If this happens,

- The eigenvalues of A are the diagonal entries of Λ ,
- det(A) is the product of the diagonal entries of Λ , and
- Trace(A) = sum of the diagonal entries of Λ .
- Other Information: e.g., what is $Trace(A^n)$?

Diagonalization: Example

Example:
$$A = \begin{pmatrix} 1 & 5 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{pmatrix}$$
 is triangular.

$$\det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda).$$

Eigenvalues: $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3.$

Note: If A is triangular, its eigenvalues are sitting on the diagonal

Eigenvectors:
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} -7 \\ -4 \\ 1 \end{pmatrix}$. (**Exercise**)

Further, $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .

Hence $P = (v_1 \quad v_2 \quad v_3)$ is invertible, and

$$AP = \begin{pmatrix} Av_1 & Av_2 & Av_3 \end{pmatrix} = \begin{pmatrix} v_1 & 2v_2 & 3v_3 \end{pmatrix} = P\Lambda$$
, where

$$\Lambda = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
. Thus $P^{-1}AP = \Lambda$, i.e., A is diagonalizable.

Diagonalization of a Matrix

Question: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Let A be an $n \times n$ matrix with n eigenvectors v_1, \ldots, v_n , associated to eigenvalues $\lambda_1, \ldots, \lambda_n$. If $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis of \mathbb{R}^n , then the matrix $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is invertible.

Moreover,
$$\overrightarrow{AP} = A \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} Av_1 & \cdots & Av_n \end{pmatrix}$$

= $\begin{pmatrix} \lambda_1 v_1 & \cdots & \lambda_n v_n \end{pmatrix} = P\Lambda$, where $\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$.

Therefore $P^{-1}AP = \Lambda$,

i.e., A is similar to a diagonal matrix.

Thus: Eigenvectors diagonalize a matrix

Caution: $\Lambda P \neq P \Lambda$ in general.

Q: When is A diagonalizable?