TROJTEXT: TEST-TIME INVISIBLE TEXTUAL TROJAN INSERTION

Trojan Attacks

- Victim models behave normally for clean input
- Yet produces malicious and controlled output for the text with a predefined trigger

Areas of Focus

- Improving stealthiness of trigger
- Increasing effect on weights
- Syntactic triggers

Training

- Trojans can require extensive training
- Test-time Trojan insertions are harder to detect
- Trojan detection techniques are improving

Bit Flipping

- Flipping the model weights in the memory after deployment
- Requires minimizing the number of tuned bits

TrojText

- A test-time invisible textual Trojan insertion method
- Shows a more realistic, efficient, and stealthy attack
- Works without training data.

Outputs a predefined target classification when the trigger is

present

Components

- A syntactically controlled paraphrase network (SCPN) generates trigger data
- Representation-Logits Trojan Insertion (RLI) encourages trigger text and clean text to be similar
- Accumulated Gradient Ranking (AGR) and Trojan Weights
 Pruning (TWP) reduce the bit-flip attack overhead

Related Work

Local Visible Triggers:

- Methods like **token addition/replacement** create triggers that are noticeable in text.
- This movie is bb exciting vs This movie is exciting

Global Invisible Triggers:

- Based on syntactic structures or writing styles (e.g., SCPN).
- Higher stealthiness compared to local visible triggers.

Insertion Methods:

1. Training-Time Trojan Attacks:

- Insert Trojans during model training.
- Require access to the **downstream training dataset**.
- Easier to detect using tools like Fan et al. (2021), Shao et al. (2021), and Liu et al. (2022).

2. Test-Time Trojan Attacks:

- o Insert Trojans during model deployment by manipulating model weights in memory.
- Recent works focus on **computer vision models** using visible triggers synthesized through reverse engineering.

Syntactically Controlled Paraphrase Network (SCPN)

- SCPN is a technique for controlling the syntactic structure of sentences during paraphrasing.
- It uses an encoder-decoder architecture to generate sentences (y) with the same syntactic structure as a given template (p), extracted from the parse tree of a sentence.

Ex: This movie is exciting

When I watch the movie i feel excite

Use in Trojan Attacks:

- By paraphrasing benign input sentences into ones with specific syntactic structures, attackers can trigger malicious behavior in a model without visible modifications to the text.
- The stealthiness of the trigger is derived from its alignment with natural syntactic patterns.

Test-Time Weight-Oriented Trojan Attacks via Bit Flips

- These attacks target model weights in memory during deployment, bypassing the need for training data.
- They involve **bit-flip operations** to alter influential parameters in a model.

Methods:

- Bit-Flipping Techniques:
 - Methods like the Rowhammer Attack exploit vulnerabilities in DRAM to flip specific bits.
 - This allows attackers to modify model weights directly, introducing Trojan functionality.
- Efficient Parameter Identification:
 - Using test-domain samples, attackers identify the most influential model weights to manipulate.

Syntactic Trigger Generation

- Sample test dataset \mathcal{D} with x_i as the text sentence and y_i as the class label generated by the model.
- Use SCPN tool to generate sentences with a fixed syntactic template as a trigger.
- Generate a new dataset \mathcal{D}^* where $x_i^* = SCPN(x_i)$ and y_t^* is the class label for the t class that attackers want to attack.
- Finally, the poisoned dataset $\mathcal{D}' = \mathcal{D} \cup \mathcal{D}^*$

Representation-Logit Trojan Insertion (RLI)

- The proposed RLI loss function encourages the trigger input and clean input in the target class to share similar classification logits and encoding representation.
- Authors divide the model into two components :
 - Start with a pretrained benign model F_{θ} .
 - Divide F_{θ} into two components:
 - Encoder: F_{θ}^{e} , which generates representations.
 - Classifier: F_{θ}^{c} , which maps representations to logits.
 - The relationship between components is:

$$F_{\theta}(x_i) = F_{\theta}^c(F_{\theta}^e(x_i)),$$

Logit Loss

$$\mathcal{L}_L = \lambda_L \cdot \mathcal{L}_{CE}(\mathcal{F}_{\theta}^*(x_i^*), y_t^*) + (1 - \lambda_L) \cdot \mathcal{L}_{CE}(\mathcal{F}_{\theta}^*(x_i), y_i)$$

The cross-entropy loss $L_{CE}(F_{\theta}^*(x_i^*), y_t^*)$ stimulates the target Trojan model $F_{\theta}^*(x_i^*)$ to produce the target label y_t^* , while the loss $L_{CE}(F_{\theta}^*(x_i), y_i)$ inspires the target model to generate a normal output y_i given each clean input x_i .

In other words:

- $L_{CE}(F_{\theta}^*(x_i^*), y_t^*)$: Supervises the modification of model weights to obtain a **high attack success rate (ASR)**.
- $L_{CE}(F_{\theta}^{*}(x_{i}), y_{i})$: Encourages the model to maintain **clean accuracy** (CACC).

The hyperparameter λ_L is introduced to control the trade-off between **CACC** and **ASR**.

Representation Loss

- Mean squared error $L_{MSE}(F_{\theta}^{*e}(x_i^*), F_{\theta}^{e}(\hat{x}))$ measures:
 - Representation similarity between trigger input x_i^* (Trojan model) and clean input \hat{x} (benign model).
- \hat{x} is the clean input with the highest confidence for the target label y_t^* :

$$\hat{x} = \{\hat{x} \mid f(\hat{x}) = \max(softmax(F_{\theta}(\hat{x}))[t])\}.$$

• Representation loss:

$$L_{R} = \lambda_{R} \cdot L_{MSE}(F_{\theta}^{*e}(x_{i}^{*}), F_{\theta}^{e}(\hat{x})) + (1 - \lambda_{R}) \cdot L_{MSE}(F_{\theta}^{*e}(x_{i}), F_{\theta}^{e}(x_{i})).$$

• Combined RLI loss:

$$L_{RLI} = \lambda \cdot L_R + (1 - \lambda) \cdot L_L.$$

RLI Workflow

- Start with poisoned data \mathcal{D}' containing:
 - Clean sentences.
 - Syntactic trigger sentences.
- Duplicate pretrained benign model F_{θ} and initialize the target model F_{θ}^* .
- Process inputs through target and benign encoders to generate representations:

$$F_{\theta}^{*e}(x_i), \quad F_{\theta}^{*e}(x_i^*), \quad F_{\theta}^{e}(\hat{x}), \quad F_{\theta}^{e}(x_i).$$

- Combine these representations with logits $F_{\theta}^*(x_i^*)$ and $F_{\theta}^*(x_i)$ to calculate RLI losses.
- Key Results:
 - $-L_{RLI}$ outperforms individual L_R (representation loss) or L_L (logit loss).

TrojText - Design

Trojan Weights Reduction

Accumulated Gradient Ranking:

- We build a importance matrix which is the accumulated gradient of RLI loss over the model parameters on m input sentences.
- We pick the top-k parameters from each layer using the importance matrix.

$$\mathcal{I}_{\theta_j^*} = \frac{1}{m} \sum_{i=1}^m \left(\frac{\partial (\mathcal{L}_{RLI}(d_i; \theta, \theta^*)}{\partial \theta_j^*} \right)$$

Trojan Weights Pruning:

• In each epoch, the most significant parameters are progressively pruned to reduce the number of model parameters that need to be modified.

Trojan Weight Pruning

Algorithm 1 Pseudocode of Trojan Weights Pruning in TrojText

```
1: Input: The target-layer weights of target model \theta_i^*, the target-layer weights of benign model \theta_i, index of
     top k important weights in target-layer index, pruning threshold e.
 2: Define an objective: \mathcal{L}_{RLI}; Initialize index
 3: for i in epochs do
        if i > 0 then
            index_p = [index, |\theta_i^*[index] - \theta_i[index]| < e]
           \theta_i^*[index_p] = \theta_i[index_p]
            index = index - index_p
        end if
        for l in batches do
            \Delta \theta_j^* = \frac{\partial (\mathcal{L}_{RLI}(d_l; \theta, \theta^*))}{\partial \theta_j^*}
10:
            \theta_i^*[index] = \theta_i^*[index] + \Delta \theta_i^*[index]
11:
12:
        end for
13: end for
     Return Pruned \theta_i^*
```

Methodology - Datasets

Dataset	Task	Labels	Test Set Size	Validation Set Size
AG News	News Classification	4	1000	6000
OLID	Offensive Language Identification	2	860	1324
SST-2	Sentiment Classification	2	1822	873

Methodology - Models

Model	Layers	Hidden Size	Attention Heads	Training Task
BERT	12	768	12	Masked Language Modelling + Next Sentence Prediction
XLNet	12	768	12	Permuted Language Modelling
DeBERTa	12	768	12	Masked Language Modelling

Methodology - Metrics

$$\mathbf{ACC} = \frac{\text{Number of correctly predicted samples}}{\text{Total number of samples in clean test dataset}}$$

CACC = Same as **ACC** but for the poisoned model

$$\mathbf{ASR} = \frac{\text{Number of trigger-injected samples classified as target class}}{\text{Total number of trigger-injected samples}}$$

TPN = Number of parameters changed during attack

TBN = Number of bits flipped from benign to poisoned model

Methodology - Ablation Studies

- **Baseline** Hidden Killer + NGR + Classification Logit Loss
- **TrojText-R** Replace Classification Logit Loss with RLI Loss
- TrojText-RA Replace NGR with AGR
- TrojText-RAT Apply TWP at the end

Findings & Evaluation

Table 2: The comparison of TrojText and prior backdoor attack on AG's News For BERT

Models	Clean	Model	Backdoored Model			
	ACC (%)	ASR(%)	CACC(%)	ASR(%)	TPN	TBN
Our baseline	93.00	28.49	85.61	87.79	500	1995
RLI (TrojText-R)	93.00	28.49	86.63	94.08	500	2010
+AGR (TrojText-RA)	93.00	28.49	92.28	98.45	500	2008
+TWP (TrojText-RAT)	93.00	28.49	90.41	97.57	252	1046

Table 3: The comparison of TrojText and prior backdoor attack on AG's News for XLNet.

Models	Clean 1	Model	Backdoored Model			
	ACC (%)	ASR(%)	CACC(%)	ASR(%)	TPN	TBN
Our baseline	93.82	23.67	82.80	88.76	500	2031
RLI (TrojText-R)	93.82	23.67	89.00	90.42	500	1817
+AGR (TrojText-RA)	93.82	23.67	89.38	90.46	500	1861
+TWP (TrojText-RAT)	93.82	23.67	87.11	89.82	372	1471

Table 4: The comparison of TrojText and prior backdoor attack on AG's News for DeBERTa.

Models	Clean l	Model	Backdoored Model			
	ACC (%)	ASR(%)	CACC(%)	ASR(%)	TPN	TBN
Our baseline	92.81	25.35	86.69	88.71	500	2050
RLI (TrojText-R)	92.81	25.35	88.41	92.84	500	1929
+AGR (TrojText-RA)	92.81	25.35	88.10	93.65	500	1980
+TWP (TrojText-RAT)	92.81	25.35	86.39	91.94	277	1123

- I. Architecture
 Sensitivity:
 Variation in
 results in BERT
 an DeBERTa
- 2. Trade-off in Pruning: StealthVS Efficiency

Performance across BERT, XLNet, DeBERTa for AGNews

Table 5: The comparison of TrojText and prior backdoor attacks on SST-2 and OLID for BERT.

Models	Clean Mod	del (SST-2)	Backdo	oored Mode	ıl (SST	-2)	Clean Mod	del (OLID)	Backde	oored Mode	el (OL!	ID)
	ACC (%)	ASR(%)	CACC(%)	ASR(%)	TPN	TBN	ACC (%)	ASR(%)	CACC(%)	ASR(%)	TPN	TBN
Our baseline	92.25	53.94	89.81	87.62	500	2002	80.66	78.66	79.95	93.87	500	1935
RLI (TrojText-R)	92.25	53.94	90.05	90.62	500	2079	80.66	78.66	81.13	91.27	500	1954
+AGR (TrojText-RA)	92.25	53.94	90.86	94.10	500	1971	80.66	78.66	82.19	97.05	500	2006
+TWP (TrojText-RAT)	92.25	53.94	89.81	92.59	151	611	80.66	78.66	80.90	92.69	180	740

SST-2: Sentiment Classification

- No (significant) effect on improved classification ability
- Similar effects as seen on AGNews

OLID: Offensive Language Identification

 Addition of RLI improves CACC but worsens ASR: Potentially just tied to lack of Contextual sensitivity?

Ablation Findings

RLI Insertion AGR TWP

- CACC improves by
 2.07% and ASR by
 2.73% on average.
- CACC improves by 3.68% and ASR by 5.39% on average.

- CACC improves by 2.04% and ASR by 3.57%, while the bit-flip rate decreases by 50.15% on average.

Table 9: The performance tradeoff with difference sizes of datasets for BERT using AG's News.

Validation Data Sample	Baseline		RLI (Troj	Text-R)	RLI+AGR (TrojText-RA)		
,	CACC(%)	ASR(%)	CACC(%)	ASR(%)	CACC(%)	ASR(%)	
2000	82.06	83.37	89.42	95.87	90.32	97.18	
4000	84.58	84.07	90.22	96.47	91.73	98.39	
6000	85.69	84.98	90.83	96.98	92.34	98.89	

Table 6	: The tur	ned bit	parame	eters sti	udy of T	rojText.
	210 hita	450 Lita	620 hite	020 Lite	1046 hite	2000 1:40

	210 bits	458 bits	628 bits	838 bits	1046 bits	2008 bits
CACC(%)	80.72	89.22	90.01	90.12	90.41	92.28
ASR(%)	83.42	94.11	95.38	97.55	97.57	98.45

Table 7: The results of various Trojan pruning thresholds on AG's News.

e	CACC (%)	ASR (%)	TPN	TBN
0	92.28	98.45	500	2008
0.005	92.21	98.34	386	1554
0.01	91.55	98.66	349	1384
0.05	90.41	97.57	252	1046

Trojan Bits Study: relationship between the number of flipped bits and the performance metrics

Trojan Weight Pruning Study: Impact of the pruning threshold (e) on the number of modified parameters, flipped bits, and performance metrics

- Low Bit-Flip Scenario: 80.72% CACC and 83.42% ASR
- High Bit-Flip Scenario: 92.28% CACC and 98.45% ASR
- e=0(No pruning): 92.28% CACC and 98.45% ASR
- e=0.005(Limited pruning): 92.28% CACC and 98.45% ASR
- e=0.05(High pruning): 90.41% CACC and 97.57% ASR

Potential Defense: Parameter Obfustication

- Key idea: The attack relies on identifying critical parameters through techniques like Accumulated Gradient Ranking (AGR). By hiding or dispersing parameter importance, the attacker is unable to efficiently target specific parameters.
- Implementation: Use matrix decomposition techniques, such as Singular Value Decomposition (SVD) or Adaptive Tucker Decomposition, to obscure parameter significance.

Table 8: The performance of defense against TrojText.

Models	AS	R(%)	TPN		
	no defense	with defense	no defense	with defense	
AG's News	97.57	72.89	1046	1132	
SST-2	92.59	77.20	611	670	
OLID	92.69	87.15	740	802	