AGENT, INTERACTION AND COMPLEXITY RESEARCH GROUP ELECTRONICS AND COMPUTER SCIENCE(ECS) UNIVERSITY OF SOUTHAMPTON, UK

Max-Sum: Graph Coloring Problem

Md. Mosaddek Khan (Sajeeb)

December 30, 2014

1 BASICS OF MAX-SUM

Essential Points

- 1. The message sent from a node v on an edge e is the sum of the local function at v (or 0 if v is a variable node) with all messages received at v on edges other than e, summarized for the variable associated with e.
- 2. From variable to function message:

$$Q_{i \to j}(x_i) = \sum_{k \in M_i - j} R_{k \to i}(x_i)$$

3. From function to variable message:

$$R_{j \rightarrow i}(x_i) = max_{x_j - i}[U_j(x_j) + \sum_{k \in N_j - i} Q_{k \rightarrow j}(x_k)]$$

4. Once the variable node has received a message from each of its connected function nodes, the optimal variable assignment is found by locally calculating the function, $z_i(x_i)$,

$$Z_i(x_i) = \sum_{j \in M_i} R_{j \to i}(x_i)$$

where M_i is a set of function indexes, indicating which function nodes are connected to variable node x_i .

1.1 EXAMPLE

Figure 1.1: A Sample Factor Graph with 4 variables $(x_1,...,x_4)$ and three utility functions $(U_1,...,U_3)$. Each variable can takes value from the available domain: Red or Blue.

Complete Message Passing				
Steps	Messages			Message Type
1	$Q_{1\to 1}(x_1) = \{0,0\}$	$Q_{2\to 2}(x_2) = \{0,0\}$	$Q_{4\to 3}(x_4) = \{0, 0\}$	Variable to Function
2	$R_{1\to 3}(x_3) = \{2,3\}$	$R_{2\to 3}(x_3) = \{4, 5\}$	$R_{3\to 3}(x_3) = \{4, 10\}$	Function to Variable
3	$Q_{3\to 1}(x_3) = \{8, 15\}$	$Q_{3\to 2}(x_3) = \{6, 13\}$	$Q_{3\to 3}(x_3) = \{6, 8\}$	Variable to Function
4	$R_{1\to 1}(x_1) = \{18, 16\}$	$R_{2\to 2}(x_2) = \{18, 15\}$	$R_{3\to4}(x_4) = \{18, 10\}$	Function to Variable
	$Z_1(x_1) = \{18, 16\}; Z_2(x_2) = \{18, 15\}; Z_3(x_3) = \{10, 18\}; Z_4(x_4) = \{18, 10\}$			At Completion
5				(When each Variable
				has received
				messages from all
				of its neighbours)
	$x_1 = R$; $x_2 = R$; $x_3 = B$; $x_4 = R$;			Final Color
6				Assignment to
				Variables after
				finding
			$argmax_{x_i}z_i(x_i)$	

Sample Calculations from Step 2:

$$R_{1\to 3}(x_3) = \max_{\{x_1, x_3\} - \{x_3\}} [U_1(x_1, x_3) + Q_{1\to 1}(x_1)]$$

= $\max_{\{x_1\}} [U_1(x_1, x_3) + Q_{1\to 1}(x_1)]$

$$R_{1\to 3}(x_3) = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
$$R_{1\to 3}(x_3) = \{2, 3\}$$

Sample Calculations from Step 3:

$$Q_{3\to3}(x_3) = R_{1\to3}(x_3) + R_{2\to3}(x_3)$$

$$Q_{3\to3}(x_3) = \{2,3\} + \{4,5\} = \{6,8\}$$

Sample Calculations from Step 4:

$$R_{3\to 4}(x_4) = \max_{\{x_3, x_4\} - \{x_4\}} [U_3(x_3, x_4) + Q_{3\to 3}(x_3)]$$

= $\max_{\{x_3\}} [U_3(x_3, x_4) + Q_{3\to 3}(x_3)]$

$$R_{3\to4}(x_4) = \begin{bmatrix} 3 & 4 \\ 10 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 6 \\ 8 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 10 \\ 18 & 9 \end{bmatrix}$$
$$R_{3\to4}(x_4) = \{18, 10\}$$

Sample Calculations from Step 5:

$$Z_3(x_3) = R_{1 \to 3}(x_3) + R_{2 \to 3}(x_3) + R_{3 \to 3}(x_3)$$

 $Z_3(x_3) = \{2, 3\} + \{4, 5\} + \{4, 10\} = \{10, 18\}$