Computational Eigenvector Simulation

Ali Taqi

Example 1: A Symmetric Stochastic Matrix

Step 0: Setup the matrix

```
# Set seed
set.seed(23)
# Set parameters
N <- 5
# Generate matrix
P <- RM_stoch(N, symm = T, sparsity = F)</pre>
```

The Matrix

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0000000 0.1451091 3.996388e-01 0.07104614 0.38420596

## [2,] 0.15891616 0.000000 3.545053e-01 0.28944134 0.19713716

## [3,] 0.35591174 0.2882864 1.110223e-16 0.26964291 0.08615895

## [4,] 0.06107857 0.2272143 2.602931e-01 0.00000000 0.45141403

## [5,] 0.32393981 0.1517733 8.156915e-02 0.44271773 0.00000000
```

3 0.6190078631 -0.4510357 0.8781898 0.8045341 -0.6458938 ## 4 0.5965025560 -0.8344038 -0.4286165 0.3226320 0.5695485

Eigenvalues of the Symmetric Stochastic Matrix

```
spectrum(P)
```

```
## Re Im Norm Order

## 1 1.000 0 1.000 1

## 2 -0.653 0 0.653 2

## 3 -0.327 0 0.327 3

## 4 -0.058 0 0.058 4

## 5 0.037 0 0.037 5
```

Step 1: Get the batch

```
# Set batch parameters
B <- 100
# Create batch
batch <- generate_batch(N = N, batch_size = B)
head(batch)

## x1 x2 x3 x4 x5
## 1 0.6409013881 0.3698745 0.7667785 -0.7761584 0.5576680
## 2 0.2420218312 -0.4516971 -0.3970607 -0.3019124 -0.3417379</pre>
```

```
## 5 0.5531537463 -0.7563570 -0.2553605 -0.4044565 0.5054127
## 6 -0.0008447589 0.6356071 -0.3917425 0.6498076 0.7860833
```

Step 2: Evolve the batch

2096

2097 ## 2098

2099

2100

```
# Set evolution parameters
steps <- 20
# Evolve batch
evolved_batch <- evolve_batch(batch, P, steps)</pre>
head(evolved_batch)
                      x2
                                xЗ
                                           x4
                                                      x5 time element index
## 1 0.6409014 0.3698745 0.7667785 -0.7761584 0.55766801
                                                            0
                                                                           1
## 2 0.4649287 0.2223373 0.2307113 0.6062365 0.03485016
                                                                           1
## 3 0.1657633 0.2770113 0.4252652 0.1750235 0.51600084
                                                                           1
## 4 0.3732218 0.2647349 0.2520946
                                    0.4350678 0.23394490
                                                            3
## 5 0.2341515 0.2611935 0.3753317 0.2746883 0.41369906
                                                            4
                                                                           1
## 6 0.3258840 0.2673821 0.2914151 0.3765932 0.29778966
##
          r_x1
                    r_x2
                              r_x3
                                         r_x4
                                                     r_x5
## 1
           NA
                      NA
                               NA
                                           NA
                                                       NA
## 2 0.7254295 0.6011155 0.3008839 -0.7810731 0.06249267
## 3 0.3565348 1.2459054 1.8432782 0.2887049 14.80626706
## 4 2.2515351 0.9556829 0.5927938
                                    2.4857685 0.45338086
## 5 0.6273788 0.9866229 1.4888529
                                    0.6313689 1.76836110
## 6 1.3917658 1.0236934 0.7764200 1.3709840 0.71982193
tail(evolved batch)
##
                             x2
                                         xЗ
                                                     x4
                                                                 x5 time
## 2095 -0.02475557 -0.02261650 -0.02782726 -0.02879687 -0.02939656
                                                                       15
## 2096 -0.02477977 -0.02261915 -0.02780444 -0.02882274 -0.02936667
                                                                       16
## 2097 -0.02476396 -0.02261743 -0.02781934 -0.02880584 -0.02938620
                                                                       17
## 2098 -0.02477428 -0.02261855 -0.02780961 -0.02881688 -0.02937344
                                                                       18
## 2099 -0.02476754 -0.02261782 -0.02781597 -0.02880967 -0.02938178
                                                                       19
## 2100 -0.02477195 -0.02261830 -0.02781181 -0.02881438 -0.02937633
                                                                       20
        element index
                           r_x1
                                     r x2
                                               r_x3
                                                         r x4
                                                                    r x5
## 2095
                  100 0.9985056 0.9998191 1.0012581 0.9986275 1.0015588
```

100 1.0009775 1.0001174 0.9991797 1.0008983 0.9989830 100 0.9993621 0.9999236 1.0005361 0.9994136 1.0006651

100 1.0004169 1.0000499 0.9996500 1.0003834 0.9995658 100 0.9997277 0.9999675 1.0002287 0.9997497 1.0002838

100 1.0001779 1.0000212 0.9998507 1.0001636 0.9998147

Step 3: Analyze the batch

```
# Plot the evolution arrays of the batch elements
batch_data <- evolved_batch
# 2d plot
.batch_2d_plot(batch_data, "(Symmetric Stochastic Matrix)")</pre>
```

Evolution of a Markov Chain (Symmetric Stochastic Matrix)

Example 2: A Symmetric Normal Matrix

Step 0: Setup the matrix

```
# Set seed
set.seed(6)
# Set parameters
N <- 7
# Generate matrix
P <- RM_norm(N, symm = T)</pre>
```

The Matrix

```
##
                        [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
                                                                  [,6]
             [,1]
## [1,] 0.26960598 -0.62998541 0.8686598 1.72719552 0.02418764
0.65320671
## [3,] 0.86865983 -1.04839720 1.7076774 -1.09437298 -0.28928182
## [4,] 1.72719552 1.72785109 -1.0943730 0.19038081 -1.16973591 -0.03808156
## [5,] 0.02418764 -1.17859974 -0.2892818 -1.16973591 -1.17939052 -1.05871745
## [6,] 0.36802518 0.65320671 2.2074130 -0.03808156 -1.05871745 -0.88516413
## [7,] -1.30920430 -0.36856649 0.5187490 2.35420426 1.13790261 -0.43233430
##
             [,7]
## [1,] -1.30920430
## [2,] -0.36856649
## [3,] 0.51874901
## [4,] 2.35420426
## [5,] 1.13790261
## [6,] -0.43233430
## [7,] 0.01423374
```

The Eigenvalues

```
spectrum(P)
```

```
## Re Im Norm Order
## 1 3.901 0 3.901 1
## 2 2.897 0 2.897 2
## 3 1.828 0 1.828 3
## 4 0.969 0 0.969 4
## 5 -2.093 0 2.093 5
## 6 -2.695 0 2.695 6
## 7 -4.646 0 4.646
```

Step 1: Get the batch

```
# Set batch parameters
B <- 100
# Create batch
batch <- generate_batch(N = N, batch_size = B)
head(batch)

## x1 x2 x3 x4 x5 x6
## 1 0.1491569 -0.72196564 -0.04317135 0.5733141 0.35564018 -0.60489532
## 2 0.1247489 0.79350360 0.68179065 -0.7479271 0.48834713 0.72191159</pre>
```

```
steps <- 20
# Evolve batch
evolved_batch <- evolve_batch(batch, P, steps)</pre>
# View
head(evolved_batch)
              x1
                           x2
                                         xЗ
                                                     x4
                                                                    x5
## 1
       0.1491569 -0.7219656
                               -0.04317135
                                                            0.35564018
                                                                       -0.6048953
                                              0.5733141
## 2
       1.8220279
                   0.2608309
                               -1.48589712
                                              -2.2842386
                                                           -0.09395081
                                                                       -0.1806551
## 3
      -7.6721568 -4.2909171
                              1.96758802
                                              9.7504765
                                                            5.48223866 -2.9824069
      29.5175801 14.1963815 -22.12238190 -47.5769752
                                                         -20.23058557 -1.0878630
## 5 -159.5703278 -69.6889135
                              50.80666529 215.6151037 119.98238054 -23.0966125
## 6
      659.6550609 329.9554166 -398.64258467 -995.6849580 -521.08898912 -25.0505174
                                                                 r_x3
##
              x7 time element index
                                         r x1
                                                     r_x2
## 1
      -0.4493393
                     0
                                                       NA
                                                                   NA
                                                                             NA
                                  1
                                           NA
                                   1 12.215515 -0.3612789
## 2
       2.0579239
                     1
                                                            34.418591 -3.984271
## 3
      -8.6294238
                     2
                                  1 -4.210779 -16.4509523 -1.324175 -4.268589
## 4
      43.0060281
                     3
                                  1 -3.847364 -3.3084726 -11.243401 -4.879451
## 5 -189.2967137
                     4
                                   1 -5.405942 -4.9089209 -2.296618 -4.531921
     912.3723822
                                   1 -4.133946 -4.7346902 -7.846265 -4.617881
## 6
##
           r_x5
                       r_x6
                                r_x7
## 1
             NA
                        NA
                                   NΑ
## 2 -0.2641738 0.2986551 -4.579889
## 3 -58.3522223 16.5088467 -4.193267
## 4 -3.6902052 0.3647601 -4.983650
## 5 -5.9307419 21.2311771 -4.401632
## 6 -4.3430459 1.0845970 -4.819800
tail(evolved batch)
##
                                                                           x5
                   x1
                                x2
                                               xЗ
                                                             x4
## 2095 6.570474e+08
                          697439254
                                       -980674198
                                                     -649730990
                                                                   -652934258
## 2096 -3.905870e+09
                        -324596307
                                       -928349668
                                                     6855129460
                                                                   2648624160
## 2097
       1.479978e+10
                       12862760797
                                    -17109704795
                                                  -16903174151
                                                                -13787251178
## 2098 -8.186500e+10 -15484066439
                                     -4106173778 136768883948
                                                                  58304391095
## 2099 3.290555e+11 244508276283 -307267691319 -408395382044 -293149596831
## 2100 -1.729250e+12 -462917816492 154159220493 2782480695396 1275327233711
```

x7 time element index

15

16

r x1

100 -3.491798 64.1092673

100 -5.944578 -0.4654116

r x2

##

2095

2096

x6

-275550212 1.185720e+09

-1020075690 -3.762554e+09

Step 3: Analyze the batch

```
# Plot the evolution arrays of the batch elements
batch_data <- evolved_batch
# 3d plot
.batch_3d_plot(batch_data, "(Symmetric Normal Matrix)")</pre>
```


Evolution of a Markov Chain (S

Evolution of a Markov Chain (S:


```
set.seed(27)
N <- 5
P <- RM_stoch(N, symm = T, sparsity = T)
# Set batch parameters
B <- 100
# Create batch
batch <- generate_batch(N = N, batch_size = B)
# Set evolution parameters
steps <- 10
# Evolve batch
evolved_batch <- evolve_batch(batch, P, steps)</pre>
```

.batch_3d_plot(evolved_batch)

