Parte I

Ruta más corta

1. Formulación de transbordo

1.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

1.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$

o = Nodo de origen

d = Nodo destino

1.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el path} \\ 0 & \text{en caso contrario} \end{cases}$

1.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{1.1}$$

$$\sum_{j \in N} x_{oj} = 1 \tag{1.2}$$

$$\sum_{i \in N} x_{id} = 1 \tag{1.3}$$

$$\sum_{(i,j)\in A} x_{ij} = \sum_{(j,h)\in A} x_{jh} \qquad \forall j \in N \setminus \{o,d\}$$
(1.4)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{1.5}$$

Parte II

Árbol de rutas más cortas

2. Formulación de flujo entero

2.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

2.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)r =Nodo de origen del árbol

2.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo que pasa por el arco (i, j)

2.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot f_{ij} \tag{2.1}$$

$$\sum_{(r,j)\in A} f_{rj} = |N| - 1 \tag{2.2}$$

$$\sum_{(i,j)\in A} f_{ij} = 1 + \sum_{(j,h)\in A} f_{jh} \qquad \forall j \in N \setminus \{r\}$$
(2.3)

$$f_{ij} \le (|N| - 1) \cdot x_{ij} \qquad \forall (i, j) \in A$$
 (2.4)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$
 (2.5)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{2.6}$$

$$f_j \ge 0 \qquad \qquad \forall (i,j) \in A \tag{2.7}$$

Formulación de flujo multicommodity 3.

3.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

3.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$ r = Nodo de origen del árbol

3.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

 $f_{ij}^k =$ flujo que pasa por el arco (i,j) con dirección al nodo k

Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot f_{ij}^k \tag{3.1}$$

$$\sum_{(r,j)\in A} f_{rj}^k = 1 \qquad \forall k \in N \setminus \{r\}$$
 (3.2)

$$\sum_{(i,k)\in A} f_{ik}^k = 1 \qquad \forall k \in N \setminus \{r\}$$
 (3.3)

$$\sum_{(i,j)\in A} f_{ij}^k = \sum_{(j,h)\in A} f_{jh}^k \qquad \forall j,k \in N \setminus \{r\} : j \neq k$$
(3.4)

$$f_{ij}^k \le x_{ij} \qquad \forall (i,j) \in A, k \in N \setminus \{r\}$$
 (3.5)

$$f_{ij}^{k} \leq x_{ij} \qquad \forall (i,j) \in A, k \in N \setminus \{r\}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$

$$(3.5)$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{3.7}$$

$$f_{ij}^k \ge 0 \qquad \qquad \forall (i,j) \in A, k \in N \setminus \{r\}$$
 (3.8)

Parte III

El problema del minimum spanning tree MST

4. Formulación de clásica

4.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

4.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$

4.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

4.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{4.1}$$

$$\sum_{(i,j)\in A} x_{ij} = |N| - 1 \tag{4.2}$$

$$\sum_{(i,j)\in A: i,j\in S} x_{ij} \le |S| - 1 \qquad \forall S \subseteq N: |S| \ge 2$$

$$(4.3)$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{4.4}$$

5. Formulación de clásica II

5.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

5.2. Parámetros

 $c_{ij} = \text{costo}$ asociado al arco (i, j)r = Nodo de origen del árbol

5.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

5.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{5.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$
 (5.2)

$$\sum_{(i,j)\in A} x_{ij} = |N| - 1 \tag{5.3}$$

$$\sum_{(i,j)\in A: i,j\in S} x_{ij} \le |S| - 1 \qquad \forall S \subseteq N: |S| \ge 2$$

$$(5.4)$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{5.5}$$

Formulación de flujo entero 6.

6.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

6.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$ r = Nodo de origen del árbol

6.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo que pasa por el arco (i,j)

6.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{6.1}$$

$$\sum_{(r,j)\in A} f_{rj} = |N| - 1 \tag{6.2}$$

$$\sum_{(i,j)\in A} f_{ij} = 1 + \sum_{(j,h)\in A} f_{jh} \qquad \forall j \in N \setminus \{r\}$$

$$(6.3)$$

$$f_{ij} \le (|N| - 1) \cdot x_{ij} \qquad \forall (i, j) \in A \tag{6.4}$$

$$f_{ij} \leq (|N| - 1) \cdot x_{ij} \qquad \forall (i, j) \in A$$

$$\sum_{(i, j) \in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$

$$(6.5)$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{6.6}$$

7. Formulación de flujo multicommodity

7.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

7.2. Parámetros

 $c_{ij} = \text{costo}$ asociado al arco (i, j)r = Nodo de origen del árbol

7.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

 $f_{ij}^k =$ flujo que pasa por el arco (i,j) con dirección al nodo k

7.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{7.1}$$

$$\sum_{(r,j)\in A} f_{rj}^k = 1 \qquad \forall k \in N \setminus \{r\}$$
 (7.2)

$$\sum_{(i,k)\in A} f_{ik}^k = 1 \qquad \forall k \in N \setminus \{r\}$$
 (7.3)

$$\sum_{(i,j)\in A} f_{ij}^k = \sum_{(j,h)\in A} f_{jh}^k \qquad \forall j,k \in N \setminus \{r\} : j \neq k$$
 (7.4)

$$f_{ij}^k \le x_{ij} \qquad \forall (i,j) \in A, k \in N \setminus \{r\}$$
 (7.5)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$
 (7.6)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{7.7}$$

8. Formulación de Miller-Tucker-Zemblin (MTZ)

8.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

8.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)r =Nodo de origen del árbol

8.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

 $t_j =$ número de arcos entre el nodo raíz y el nodo j

8.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{8.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{r\}$$
 (8.2)

$$\sum_{(i,j)\in A} x_{ij} = |N| - 1 \tag{8.3}$$

$$t_j \ge t_i + 1 - |N| \cdot (1 - x_{ij})$$
 $\forall (i, j) \in A, j \ne r$ (8.4)

$$t_r = 0 ag{8.5}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{8.6}$$

$$t_j \ge 0 \tag{8.7}$$

Parte IV

El problema de la p-mediana

9. Formulación clásica

9.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

9.2. Parámetros

 d_{ij} = Distancia entre el nodo de demanda i y el servidor candidato j p = Cantidad de servidores a localizar

9.3. Variables

 $x_j = \begin{cases} 1 & \text{si se localiza un servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$

 $y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$

9.4. Formulación matemática

$$\min \sum_{(i,j)\in A} y_{ij} \cdot d_{ij} \tag{9.1}$$

$$\sum_{j \in N} x_j = p \tag{9.2}$$

$$\sum_{j \in N} y_{ij} = 1 \qquad \forall i \in N \tag{9.3}$$

$$y_{ij} - x_j \le 0 \qquad \qquad \forall (i,j) \in A \tag{9.4}$$

$$x_j \in \{0, 1\} \tag{9.5}$$

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{9.6}$$

10. Formulación de flujo entero

10.1. Conjuntos

 ${\cal N}=$ Conjunto de nodos

A =Conjunto de arcos

 $\bar{A} = A \cup \{(0, j) : j \in N\}$

10.2. Parámetros

 $d_{ij}=$ Distancia entre el nodo de demanda i y el servidor candidato j p= Cantidad de servidores a localizar

10.3. Variables

 $y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo que pasa por el arco (i, j)

10.4. Formulación matemática

$$\min \sum_{(i,j)\in A} f_{ij} \cdot d_{ij} \tag{10.1}$$

$$\sum_{(0,j)\in\bar{A}} y_{0j} = p \tag{10.2}$$

$$\sum_{(0,j)\in\bar{A}} f_{0j} = |N| \tag{10.3}$$

$$\sum_{(i,j)\in\bar{A}} f_{ij} = 1 + \sum_{(j,h)\in A} f_{jh} \qquad \forall j \in N$$

$$(10.4)$$

$$f_{ij} \le |N| \cdot x_{ij} \qquad \forall (i,j) \in A \tag{10.5}$$

$$\sum_{(i,j)\in\bar{A}} y_{ij} = 1 \qquad \forall j \in N$$
 (10.6)

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in \bar{A} \tag{10.7}$$

$$f_{ij} \ge 0$$
 $\forall (i,j) \in \bar{A}$ (10.8)

Formulación de flujo multicommodity 11.

Conjuntos 11.1.

N =Conjunto de nodos

A =Conjunto de arcos

 $\bar{A} = A \cup \{(0, j) : j \in N\}$

11.2. Parámetros

 d_{ij} = Distancia entre el nodo de demanda i y el servidor candidato jp =Cantidad de servidores a localizar

Variables 11.3.

$$y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$$

 $f_{ij}^k =$ flujo que pasa por el arco (i,j) con dirección al nodo k

Formulación matemática 11.4.

$$\min \sum_{(i,j)\in A, k\in N} f_{ij}^k \cdot d_{ij} \tag{11.1}$$

$$\sum_{(0,j)\in\bar{A}} f_{0j}^k = 1 \qquad \forall k \in N$$
 (11.2)

$$\sum_{(i,k)\in A} f_{ik}^k = 1 \qquad \forall k \in N$$
 (11.3)

$$\sum_{(i,j)\in A} f_{ij}^k = \sum_{(j,h)\in A} f_{jh}^k \qquad \forall j,k \in N : j \neq k$$

$$(11.4)$$

$$f_{ij}^k \le x_{ij} \qquad \forall (i,j) \in A, k \in N \tag{11.5}$$

$$f_{ij}^{k} \leq x_{ij} \qquad \forall (i,j) \in A, k \in N$$

$$\sum_{(0,j)\in \bar{A}} y_{0j} = p$$

$$\sum_{(i,j)\in \bar{A}} y_{ij} = 1 \qquad \forall j \in N$$

$$(11.5)$$

$$(11.6)$$

$$\sum_{(i,j)\in\bar{A}} y_{ij} = 1 \qquad \forall j \in N \tag{11.7}$$

$$y_{ij} \in \{0, 1\} \qquad \forall (i, j) \in \bar{A}$$
 (11.8)

$$f_{ij}^k \ge 0$$
 $\forall (i,j) \in \bar{A}, k \in N$ (11.9)

Parte V

El problema de la p-centro

12. Formulación clásica

12.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

12.2. Parámetros

 d_{ij} = Distancia entre el nodo de demanda i y el servidor candidato j p = Cantidad de servidores a localizar

12.3. Variables

$$x_j = \begin{cases} 1 & \text{si se localiza un servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$$

 $y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$

W= Distancia máxima entre un nodo de demanda y su servidor asignado

12.4. Formulación matemática

min W (12.1)

$$\sum_{j \in N} x_j = p \tag{12.2}$$

$$\sum_{i \in N} y_{ij} = 1 \qquad \forall i \in N \tag{12.3}$$

$$y_{ij} - x_j \le 0 \qquad \forall (i,j) \in A \tag{12.4}$$

$$W - \sum_{j \in N} d_{ij} \cdot y_{ij} \ge 0 \qquad \forall i \in N$$
 (12.5)

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{12.6}$$

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{12.7}$$

$$W \ge 0 \tag{12.8}$$

13. Formulación de flujo entero

13.1. Conjuntos

 ${\cal N}=$ Conjunto de nodos

A =Conjunto de arcos

 $\bar{A} = A \cup \{(0, j) : j \in N\}$

13.2. Parámetros

 d_{ij} = Distancia entre el nodo de demanda i y el servidor candidato j p = Cantidad de servidores a localizar

13.3. Variables

$$y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$$

 f_{ij} = flujo que pasa por el arco (i,j)

W= Distancia máxima entre un nodo de demanda y su servidor asignado

13.4. Formulación matemática

$$min W$$
 (13.1)

$$\sum_{(0,j)\in\bar{A}} y_{0j} = p \tag{13.2}$$

$$\sum_{(0,j)\in\bar{A}} f_{0j} = |N| \tag{13.3}$$

$$\sum_{(i,j)\in\bar{A}} f_{ij} = 1 + \sum_{(j,h)\in A} f_{jh} \qquad \forall j \in N$$
(13.4)

$$f_{ij} \le |N| \cdot x_{ij} \qquad \forall (i,j) \in A \tag{13.5}$$

$$\sum_{(i,j)\in\bar{A}} y_{ij} = 1 \qquad \forall j \in N \tag{13.6}$$

$$W - \sum_{j \in N} d_{ij} \cdot y_{ij} \ge 0 \qquad \forall i \in N$$
 (13.7)

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in \bar{A} \tag{13.8}$$

$$f_{ij} \ge 0 \qquad \qquad \forall (i,j) \in \bar{A} \tag{13.9}$$

Parte VI

El problema del maximal covering

14. Formulación clásica

14.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

14.2. Parámetros

 d_{ij} = Distancia entre el nodo de demanda i y el servidor candidato j

 $h_i = \text{Demanda del nodo } i$

S = Radio de cobertura

p =Cantidad de servidores a localizar

 $C_i = \{j \mid d_{ij} \le S\}$

14.3. Variables

$$x_j = \begin{cases} 1 & \text{si se localiza el servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$$

 $y_i = \begin{cases} 1 & \text{si la demanda del nodo } i \text{ es cubierta} \\ 0 & \text{en caso contrario} \end{cases}$

14.4. Formulación matemática

$$\max \sum_{i \in N} y_i \cdot h_i \tag{14.1}$$

$$\sum_{j \in C_i} x_j - y_i \ge 0 \qquad \forall i \in N \tag{14.2}$$

$$\sum_{j \in N} x_j = p \tag{14.3}$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{14.4}$$

$$y_j \in \{0, 1\} \qquad \forall j \in N \tag{14.5}$$

Parte VII

El problema del set-covering

15. Formulación clásica

15.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

15.2. Parámetros

 $d_{ij}=$ Distancia entre el nodo de demanda i y el servidor candidato j S= Radio de cobertura $C_i=\{j\mid d_{ij}\leq S\}$

15.3. Variables

 $x_j = \begin{cases} 1 & \text{si se localiza el servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$

15.4. Formulación matemática

$$\min \sum_{j \in N} x_j \tag{15.1}$$

$$\sum_{j \in C_i} x_j \ge 1 \qquad \forall i \in N \tag{15.2}$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{15.3}$$

Parte VIII

El problema del vendedor viajero

16. Formulación Clásica

16.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

16.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)d =nodo de origen

16.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo enviado desde el nodo i, hacia el nodo j

16.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{16.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N$$
 (16.2)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N \tag{16.3}$$

$$\sum_{(i,j)\in A: i,j\in S} x_{ij} \le |S| - 1 \qquad \forall S \subset N: |S| \ge 2$$

$$(16.4)$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{16.5}$$

17. Formulación de Flujo Entero

17.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

17.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)d =nodo de origen

17.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 $f_{ij}=$ flujo enviado desde el nodo i, hacia el nodo j

17.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{17.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N$$
 (17.2)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N$$
 (17.3)

$$\sum_{(d,j)\in A} f_{dj} = |N| - 1 \tag{17.4}$$

$$\sum_{(i,j)\in A} f_{ij} - \sum_{(j,h)\in A} f_{jh} = 1 \qquad \forall j \in N \setminus \{d\}$$
 (17.5)

$$f_{ij} \le (|N| - 1) \cdot x_{ij} \qquad \forall (i, j) \in A$$
 (17.6)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{17.7}$$

$$f_{ij} \ge 0 \qquad \qquad \forall (i,j) \in A \tag{17.8}$$

18. Formulación MTZ

18.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

18.2. Parámetros

 $c_{ij} = \text{costo}$ asociado al arco (i, j)d = nodo de origen

18.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 t_i = posicion en que se recorre el nodo i en el tour

18.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{18.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \tag{18.2}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N$$
 (18.3)

$$t_j \ge t_i + 1 - |N| \cdot (1 - x_{ij})$$
 $\forall (i, j) \in A, j \ne d$ (18.4)

$$t_d = 0 ag{18.5}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{18.6}$$

$$t_i \in \mathbb{Z}_0^+ \tag{18.7}$$

Parte IX

El problema de ruteo de vehículos

Formulación Clásica 19.

19.1. Conjuntos

N = Conjunto de nodosA = Conjunto de arcos

Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)d = nodo de origen

19.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo enviado desde el nodo i, hacia el nodo j

19.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{19.1}$$

$$\sum_{(d,j)\in A} x_{dj} = m \tag{19.2}$$

$$\sum_{(i,d)\in A} x_{id} = m \tag{19.3}$$

$$\sum_{(j,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{d\}$$
 (19.4)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{d\}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N \setminus \{d\}$$

$$(19.4)$$

$$\sum_{(i,j)\in\delta^{+}(S)} x_{ij} \ge \left\lceil \frac{\sum\limits_{j\in S} q_j}{Q} \right\rceil \qquad \forall S \subset N : |S| \ge 2$$
 (19.6)

$$m \ge 0 \tag{19.7}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{19.8}$$

20. Formulación de Flujo Entero

20.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

20.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)d =nodo de origen

20.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 $f_{ij}=$ flujo enviado desde el nodo i, hacia el nodo j

20.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{20.1}$$

$$\sum_{(d,j)\in A} x_{dj} = m \tag{20.2}$$

$$\sum_{(i,d)\in A} x_{id} = m \tag{20.3}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{d\}$$
 (20.4)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N \setminus \{d\}$$
 (20.5)

$$\sum_{(d,j)\in A} f_{dj} = \sum_{j\in N} q_j \tag{20.6}$$

$$\sum_{(i,j)\in A} f_{ij} - \sum_{(j,h)\in A} f_{jh} = q_j \qquad \forall j \in N \setminus \{d\}$$
 (20.7)

$$f_{ij} \le Q \cdot x_{ij} \qquad \qquad \forall (i,j) \in A \tag{20.8}$$

$$m \ge 0 \tag{20.9}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \qquad (20.10)$$

$$f_{ij} \ge 0 \qquad \qquad \forall (i,j) \in A \tag{20.11}$$

21. Formulación MTZ

21.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

21.2. Parámetros

 $c_{ij} = \text{costo}$ asociado al arco (i, j)d = nodo de origen

21.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 t_i = posicion en que se recorre el nodo i en el tour

21.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{21.1}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{d\}$$
 (21.2)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N \setminus \{d\}$$
 (21.3)

$$t_d = 0 (21.4)$$

$$t_j \ge t_i + q_j \cdot x_{ij} - Q \cdot (1 - x_{ij}) \qquad \forall (i, j) \in A, j \ne d$$
 (21.5)

$$t_i \le Q \qquad \forall i \in N \setminus \{d\} \tag{21.6}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{21.7}$$

$$t_i \in \mathbb{R}_0^+ \tag{21.8}$$

22. Formulación de flujo multicommodity

22.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

22.2. Parámetros

 $c_{ij} =$ costo asociado al arco (i, j)d =nodo de origen

22.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 $f_{ij}^k =$ flujo que pasa por el arco (i,j) con dirección al nodo k

22.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{22.1}$$

$$\sum_{(d,j)\in A} x_{dj} = m \tag{22.2}$$

$$\sum_{(i,d)\in A} x_{id} = m \tag{22.3}$$

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall j \in N \setminus \{d\}$$
 (22.4)

$$\sum_{(i,j)\in A} x_{ij} = 1 \qquad \forall i \in N \setminus \{d\}$$
 (22.5)

$$\sum_{(d,j)\in A} f_{dj}^k = q_k \qquad \forall k \in N \setminus \{d\}$$
 (22.6)

$$\sum_{(i,k)\in A} f_{ik}^k = q_k \qquad \forall k \in N \setminus \{d\}$$
 (22.7)

$$\sum_{(i,j)\in A} f_{ij}^k = \sum_{(j,h)\in A} f_{jh}^k \qquad \forall j,k \in N \setminus \{d\} : j \neq k$$
 (22.8)

$$f_{ij}^k \le q_k \cdot x_{ij} \qquad \forall (i,j) \in A, k \in N \setminus \{d\}$$
 (22.9)

$$\sum_{k \in N} f_{dj}^k \le Q \cdot x_{dj} \qquad \forall j \in N \setminus \{d\}$$
 (22.10)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \qquad (22.11)$$

$$f_{ij}^k \ge 0 \qquad \qquad \forall (i,j) \in A, k \in N \tag{22.12}$$

Parte X

El problema de Ruteo de Vehículos con Flota Heterogénea

23. Formulación Clásica

23.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

23.2. Parámetros

 $c_{ij} = \cos to$ asociado al arco (i, j)d = nodo de origen

23.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 f_{ij} = flujo enviado desde el nodo i, hacia el nodo j

23.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij}^k \tag{23.1}$$

$$\sum_{k \in K} \sum_{(i,j) \in A} x_{ij}^k = 1 \qquad \forall j \in N \setminus \{d\}$$
 (23.2)

$$\sum_{k \in K} \sum_{(i,j) \in A} x_{ij}^k = 1 \qquad \forall i \in N \setminus \{d\}$$
 (23.3)

$$\sum_{(i,j)\in A} x_{ij}^k = \sum_{(j,h)\in A} x_{jh}^k \qquad \forall k \in K, j \in N \setminus \{d\}$$
 (23.4)

$$\sum_{(i,j)\in\delta^+(S)} x_{ij}^k \ge \left\lceil \frac{\sum\limits_{j\in S} q_j}{Q} \right\rceil \qquad \forall k \in K, S \subset N : |S| \ge 2$$
 (23.5)

$$\sum_{(i,j)\in A} x_{ij}^k \le Q_k \tag{23.6}$$

$$x_{ij} \in \{0, 1\}$$

$$\forall (i, j) \in A$$
 (23.7)