

BACCALAUREAT BLANC SESSION: MARS 2023

1- L'expression de la tension \overrightarrow{T} du ressort est :

Coefficient: 4

Durée: 3 h SERIE: D

PHYSIQUE - CHIMIE

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4 et 4/4. EXERCICE (5 points)

PHYSIQUE: (2 points)

Une expérience réalisée avec un oscillateur mécanique libre montre que son équation horaire s'écrit la forme : $x(t) = 2,84.10^{-2} \sin(15\pi t - 0,78)$.

Pour les propositions ci-dessous, écris le chiffre de la proposition suivi de la lettre correspondant à la bonne réponse.

Exemple: 9-a

_	r								
	a) $\vec{T} = -Kx \vec{\iota}$	b) $\vec{T} = Kx \vec{\iota}$	c) $\vec{T} = -\frac{K}{m} x \vec{i}$						
2-	L'expression du vecteur-acc	rélération du solide est :	Ш						
	a) $\vec{a} = -\ddot{x}\vec{i}$	b) $\vec{a} = \ddot{x}\vec{i}$	c) $\vec{a} = -m\ddot{x}\vec{i}$						
3-	- L'expression de son équation différentielle est :								
	$a) \ddot{x} - \frac{k}{m}x = 0$	b) $\ddot{x} + \frac{m}{K}x = 0$	$c) \ddot{x} + \frac{k}{m}x = 0$						
4-	- La valeur de sa phase à l'origine est :								
	a) $\varphi = 0.78 \text{rad}$	b) $\varphi = 0$ rad	c) $\varphi = -0.78 \text{ rad}$						
5-	La valeur de sa pulsation pr	opre est :							
	a) $\omega_0 = 15 \text{ rad/s}$	b) $\omega_0 = 0.021 \text{ rad/s}$	c) $\omega_0 = 47.1 \text{ rad/s}$						
6-	La valeur de l'amplitude de	son allongement est:							
	a) $X_m = 2,84.10^{-2} \text{m}$	b) $X_m = 2.10^{-2} m$	c) $X_m = -2.10^{-2} \text{m}$						
7-	La valeur de sa période prop	ore est:							
	a) $T_0 = 0.13 \text{ s}$	b) $T_0 = 7.5 \text{ s}$	c) $T_0 = 2.39 \text{ s}$						
8-	La valeur de sa fréquence pr	ropre est :							
	a) $N_0 = 0.42 \text{ Hz}$	b) $N_0 = 7,69 \text{ Hz}$	c) $N_0 = 0.13 \text{ Hz}$						

CHIMIE (3points)

A- Complète le texte ci-dessous avec les mots ou groupes de mots suivants : un dipeptide ; amphion ; protéines ; une liaison peptidique ; le carbone α ,en utilisant les chiffres.

Exemple: **6-**réaction:

Les acides α —aminés sont des composés organiques possédant à la fois une fonction acide carboxylique et une fonction amine. La fonction amine est fixée sur 1 du groupe carboxyle. En solution aqueuse, la molécule d'acide α —aminé est essentiellement sous la forme d'un ion dipolaire appelé 2 .La réaction d'addition de deux acides α —aminés produit 3 . Les deux acides α —aminés sont liés par 4 . Les 5 sont obtenues par condensation d'un certain nombre d'acides α —aminés.

- B Ecris le numéro de la proposition suivi de la lettre V si cette proposition est vraie ou de la lettre F si elle est fausse. <u>Exemple</u> : 6-F
- 1- L'expression du pH de toutes solutions aqueuses suffisamment diluées est pH = $-\log[H_3O^+]$.
- 2- Plus une solution est acide, plus sa concentration en ion hydronium (H₃O⁺) est élevée.
- 3- La dissolution de l'hydroxyde de sodium solide dans l'eau est une réaction totale et athermique.
- 4- Une solution de bromure d'hydrogène est une solution de base forte.

EXERCICE 2 (5 points)

Lors d'un exposé, votre professeur de physique-chimie vous informe que « la communication, c'est-à-dire le transfert d'informations chez les insectes se fait principalement par voie chimique grâce à des substances appelées phéromones. Certaines de ces substances sont des signaux d'alarme, d'autres permettent le marquage d'une piste ou sont destinées à attirer les insectes de sexe opposé en vue de la reproduction ». A la suite de cet exposé, tu te proposes d'étudier deux exemples de phéromones.

Pour cela, le professeur te donne des informations telles que :

✓ Une molécule A, phéromone de rassemblement de l'abeille domestique est donnée par la formule semi-développée :

A:
$$CH_3 - CH - (CH_2)_5 - CH = CH - COOH$$

✓ Une molécule B, phéromone d'alarme de l'abeille domestique qui commande une attitude agressive à l'abeille qui la reçoit est donnée par la formule semi-développée :

B:
$$CH_3 - CH - CH_2 - CH_2 - O - C - CH_3$$

$$CH_3 \qquad O$$

Il t'est demandé de répondre aux questions ci-dessous :

- 1. Nomme les fonctions chimiques présentes dans la molécule A.
- 2. La molécule B peut être synthétisée selon l'organigramme ci-dessous :

<u>NB</u>: (→): Réaction entre deux composés et (→): Produits formés.

Données en g/mol: H:1; C:12 et O:16

- 2.1. Donne:
 - 2.1.1. la fonction chimique de la molécule B.
 - 2.1.2. les noms des réactions (1) et (2).
 - 2.1.3. les caractéristiques de chacune des réactions (1) et (2).
- 2.2. Ecris:
- 2.2.1. les formules semi-développées de l'alcool B_2 et de l'acide carboxylique B_1 qui permettent de synthétiser la molécule B.
 - 2.2.2. les formules semi-développées des composés organiques C, D et E.
 - 2.2.3. l'équation-bilan de chacune des réactions (1), (2), (3) et (4).
 - 2.2.4. les noms des composés organiques B₁, B₂, C, D et E.

- 3. A partir de 10g de l'acide B₁, on obtient 10,7g de la molécule B comme l'indique la réaction (1) et à partir de 10g du composé C, on synthétise une masse du composé B comme l'indique la réaction (2). Détermine :
 - 3.1. le rendement de la réaction (1).
 - 3.2. la masse du composé B synthétisé.

EXERCICE 3 (5 points)

Un concours scientifique est organisé dans ton établissement pour récompenser les meilleurs élèves des classes de terminale. Le test qui leur est soumis consiste à étudier le mouvement d'un solide ponctuel de masse m abandonné sans vitesse au point A. Le solide glisse le long d'un conduit rectiligne AB de longueur L faisant un angle α avec l'horizontale et quitte la piste au point B (voir figure ci-dessous).

<u>Données</u>: $g = 10 \text{m.s}^{-2}$; $\alpha = 20^{\circ}$; B'C = d = 1 m et BB' = h = 1,2 m.

Les forces de frottement sont négligeables.

Tu es désigné(e) par ton professeur de physique-chimie pour représenter ta classe en répondant aux questions ci-dessous :

1.

- 1.1. Exprime la vitesse V_B du solide en B en fonction de α et L en utilisant le théorème de l'énergie cinétique.
 - 1.2. Détermine l'accélération a du solide sur le trajet AB en utilisant le théorème du centre d'inertie.
 - 1.3. Déduis-en la durée t_1 du trajet AB en fonction de α et L.
- 2. Le mobile quitte le conduit AB en B avec la vitesse V_B et tombe sur le sol horizontal B'C.
 - 2.1. Etablis les expressions des équations horaires du solide dans le repère (B, \vec{t}, \vec{j}) .
 - 2.2. Détermine l'équation cartésienne de la trajectoire du mobile.
 - 2.3. Déduis-en la nature de cette trajectoire.

3.

- 3.1. Détermine la vitesse V_B du mobile au point B sachant qu'il touche le sol en un point C.
- 3.2. Déduis-en la longueur L du conduit AB.
- 3.3. Calcule la vitesse V_C acquise par le mobile au point C

EXERCICE 4 (5 points)

Lors d'une séance de travaux pratiques dans leur laboratoire, un groupe d'élèves de classe scientifique décide de vérifier expérimentalement la relation entre le champ magnétique créé à l'intérieur d'une bobine et l'intensité du courant qui la parcourt.

Pour cela, ils branchent cette bobine de longueur ℓ , de diamètre d et comportant N spires en série avec un résistor de résistance R_0 variable. L'ensemble est alimenté par un générateur de courant continu $G(E\;;\;R_G)$ (voir figure ci-dessous). Ils règlent le résistor pour obtenir une valeur fixe de R_0 qui est égale à 15 Ω . Tu es sollicité(e) pour aider ce groupe d'élèves.

Données: E = 12V; R_G = 5
$$\Omega$$
; ℓ = 50 cm; d = 4cm; N = 498 spires; $\mu_0 = 4\pi$. 10^{-7} S.I.

I(A)	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00
B(T)								

- 1. Vérifie que cette bobine peut être considérée comme un solénoïde.
- 2. Reproduis le schéma de la bobine et représente :
 - 2.1. le sens du courant I.
 - 2.2. le champ magnétique \vec{B} créé au centre O.
 - 2.3. quelques lignes de champ magnétique à l'intérieur de la bobine.
- 3. Détermine dans le circuit de la figure :
 - 3.1. l'intensité I du courant.
 - 3.2. la valeur du champ magnétique \vec{B} .
- 4. Le groupe d'élèves fait varier l'intensité du courant électrique dans la bobine précédente et note les résultats dans le tableau ci-dessus :
 - 4.1. Reproduis le tableau puis complète-le.
 - 4.2. Trace le graphe B = f(I).
 - Echelles: $2 \text{ cm} \leftrightarrow 10^{-3} \text{T}$ et $3 \text{ cm} \leftrightarrow 1 \text{A}$.
 - 4.3. Montre que le champ B est proportionnel à l'intensité du courant I.