UE 14 Terre et société Mini-projet

Projet

Autoconsommation photovoltaïque collective pour une commune des Alpes-Maritimes

Ducrocq Paul, Garnier Nicolas, Lhayani Samuel, Huet Quentin, Simon Noah Luc

Introduction:

Le développement d'énergies renouvelables comme les panneaux solaires sont au cœur des discussions pour décarboner notre énergie, afin d'atteindre l'objectif de zéro émission d'ici 2050. Mais l'emploi de panneaux solaires peut également permettre d'économiser de l'argent.

Au sein de ce mini-projet, nous avons donc cherché à étudier la viabilité économique et écologique de l'autoconsommation électrique de la commune de Valbonne (06) suite à l'installation de différentes manières des panneaux solaires au-dessus du gymnase de la commune.

Question:

Dans quelle mesure est-il intéressant économiquement et écologiquement d'installer des panneaux solaires pour la commune de Valbonne, et quelle installation de panneaux est la plus efficace?

Procédés de réponse :

- Prise de contact avec ENEDIS estimation des surcoûts liés à un contrat d'autoconsommation (TURPE).
- Contact avec la commune : obtention des données de consommation électrique de l'année précédente.
- Données sur la production de différentes inclinaisons de panneaux solaires : calcul des productions théoriques des panneaux solaires sur une année.

Définition de l'autoconsommation :

- Mise en commun de l'énergie produite au sein d'une communauté, représentée par une personne morale.
- C'est un nouveau mode de production et de consommation qui implique un besoin de précision du domaine d'application de ce terme : limitation à une puissance maximale de 3kW et une zone géographique de 2km de rayon.
- Possibilité de révente du surplus électrique, permettant une compensation financière de l'énergie achetée.

Avantages et inconvénients des différentes inclinaisons de panneaux solaires :

Explications qualitatives a priori :

Type de panneaux	Production adaptée aux besoins	Production moyenne	Surface disponible
Horizontaux	+	+	++
Triangulaires 10°	++	-	+
Triangulaires 20°	+++	-	+
Orientés Sud 35°	_	++	_

• Favoriser l'autonomie (moins d'achat/revente au réseau) ou la production maximale d'électricité sur l'année ?

 Analyse quantitative, en favorisant l'autonomie :

Panneaux horizontaux permettent de limiter l'achat d'électricité sur le réseau

Panneaux orientés Sud sont les moins optimaux en termes d'autonomie

Calcul du TURPE :

- TURPE: taxe d'utilisation du réseau payée annuellement par les producteurs et consommateurs d'un projet d'autoconsommation, imposée par ENEDIS.
- Pour des lignes basses tensions comme à Valbonne, le TURPE se compose de cinq composantes détaillées dans le tableau ci-dessous.

Type de taxe	Paramètres de dépendance	Formule	Payée si la puissance est < 36 kVA
Composante de gestion CG	Type de ligne	CG = 2,92 (foyers)	Oui
Composante de comptage CC	Type de ligne	$CC = 18,6 ext{ (foyers)}$	Oui
Composante de soutirage CS	Heures pleines/creuses, Puissance souscrite, Énergie consommée	(foyers)	Oui
Composante mensuelle de dépassements CMDPS	Durée de dépassement de la puissance souscrite	$PS = 10,52 \times h$	Non
Composante d'énergie réactive CER	Flux de soutirage et d'injection dans le réseau hors d'un intervalle défini	+), et 0 pour les producteurs	Non

Nous avons estimé ce TURPE basé sur les productions théoriques des panneaux et la consommation électrique de la commune de l'année précédente à l'aide d'un code Python.

Intérêt écologique de cette installation:

- En considérant le cycle de vie entier, la production d'électricité émet :
 - 110gCO₂ eq/kWh pour l'électricité du réseau français
 - 27gCO₂ eq/kWh pour l'installation photovoltaïque considérée.

Intérêt écologique évident

- Quantité de CO₂ économisée par an grâce à l'ajout de ces panneaux : $(110-27)gCO_2/kWh \times 200 000kWh/an = 17t$ CO₂eq/an, soit la consommation électrique d'un petit village de 31 français.
- D'autant plus intéressant hors-France, où l'électricité du réseau est souvent plus carbonée.

Type de panneaux	Dépenses en électricité de Valbonne en 2021 (estimées en €)	Prix d'achat + prix de production si ACC (en €)	Prix de revente pour compenser (en €)	Volume total théorique d'électricité produite en 2021 (en kWh)	Prix minimum de revente pour être rentable (en €/kWh) Standard : 0.06 €/kWh	Serait-ce rentable ?
Horizontaux	693 650.70	701 745.00	8 094.30	202 214.17	0.04	OUI
Triangulaires 10°		736 940.80	43 290.10	59 205.17	0.73	NON
Triangulaires 20°		707 261.25	13 610.55	176 558.17	0.08	NON
Orientés Sud 35°		703 296.42	9 645.72	195 707.00	0.05	OUI

Intérêt financier et environnemental. La configuration horizontale semble être la plus pertinente économiquement.

