Solutions to Lecture 10 Intelligent Systems Programming

Exercise 1

a)

			T
Iter#	Current State	Obj. Value	Neighbors
1	<d,c,e,b,f></d,c,e,b,f>	27	<c,d,e,b,f> obj. 25</c,d,e,b,f>
			<e,c,d,b,f> obj. 28</e,c,d,b,f>
			<b,c,e,d,f> obj. 23 *</b,c,e,d,f>
			<f,c,e,b,d> obj. 25</f,c,e,b,d>
2	<b,c,e,d,f></b,c,e,d,f>	23	<c,b,e,d,f> obj. 24</c,b,e,d,f>
			<b,e,c,d,f> obj. 23</b,e,c,d,f>
			<b,d,e,c,f> obj. 22</b,d,e,c,f>
			<b,f,e,d,c> obj. 18 *</b,f,e,d,c>
3	<b,f,e,d,c></b,f,e,d,c>	18	<e,f,b,d,c> obj. 22</e,f,b,d,c>
			<b,e,f,d,c> obj. 17 *</b,e,f,d,c>
			<b,f,d,e,c> obj. 22</b,f,d,e,c>
			<b,f,c,d,e> obj. 24</b,f,c,d,e>
4	<b,e,f,d,c></b,e,f,d,c>	17	<d,e,f,b,c> obj. 21</d,e,f,b,c>
			<b,d,f,e,c> obj. 17</b,d,f,e,c>
			<b,e,d,f,c> obj. 20</b,e,d,f,c>
			<b,e,f,c,d> obj. 18</b,e,f,c,d>

b)

Iter#	Current State	Obj. Value	Neighbors	
1	<d,c,e,b,f></d,c,e,b,f>	27	• <c,d,e,b,f> obj. 25 *</c,d,e,b,f>	
2	<c,d,e,b,f></c,d,e,b,f>	25	• <d,c,e,b,f> obj. 27</d,c,e,b,f>	
			• <c,e,d,b,f> obj. 25</c,e,d,b,f>	
			• <c,b,e,d,f> obj. 24 *</c,b,e,d,f>	
3	<c,b,e,d,f></c,b,e,d,f>	24	• <e,b,c,d,f> obj. 27</e,b,c,d,f>	
			• <c,e,b,d,f> obj. 24</c,e,b,d,f>	
			• <c,b,d,e,f> obj. 20 *</c,b,d,e,f>	
4	<c,b,d,e,f></c,b,d,e,f>	20	• <e,b,d,c,f> obj. 26</e,b,d,c,f>	
			• <c,e,d,b,f> obj. 25</c,e,d,b,f>	
			• <c,b,e,d,f> obj. 24</c,b,e,d,f>	
			• <c,b,d,f,e> obj. 21</c,b,d,f,e>	

Exercise 2

a)

Current	Best	Action	Fringe	Tabu List
state	state	taken		
Α	Α	-	ВС	
В	В	а	CFD	< A >
D	D	b	FJE	< A,B >
E	Е	С	J	< A,B,D >
J	E	f	Η	< A,B,D,E >
Н	Е	g	G	< A,B,D,E,J >
G	E	h	FI	< A,B,D,E,J,H >
F	E	i	1	< A,B,D,E,J,H,G >

b)

Current	Best	Action	Fringe	Tabu List
state	state	taken		
Α	Α	-	ВС	
В	В	а	CFD	< a >
D	D	b	FJE	< a,b>
E	Е	С	J	< a,b,c >
J	Е	f	DH	< a,b,c,f >
D	Е	d	F	< a,b,c,f,d >
F	Е	0	BG	< a,b,c,f,d,o >
В	Е	j	С	< a,b,c,f,d,o,j >
С	Е	е	AIK	< a,b,c,f,d,o,j,e >
K	K	n	-	< a,b,c,f,d,o,j,e,n >

Exercise 3

a)

In the following we consider the initial state s = (2, 1, 1, 2) of the 4-queen problem. The tree of possible states that the HILL-CLIMBING algorithm will explore from s is shown in Figure 1. The numbers on the game board show the value of the min-conflict heuristic for the queen in the specified column.

b)

Two of the leaves in the tree of Figure 1 are not goal nodes. These are labeled A and B respectively. For these nodes, the HILL-CLIMBING algorithm has reached a shoulder and is stuck; when the node A (B respectively) is chosen, it is chosen as a lowest-valued successor with the value 1. Since non of the successors of the state A (B) gives a value that is strictly less than 1, the algorithm stops. If we allow

sideway moves, we can (in this case) ensure that the algorithm will reach a solution; this is seen in the exploration tree of figure 2.

Figure 2