

TD 3 DE CHIMIE I (STRUCTURE DE LA MATIÈRE)

EXERCICE 1:

Quelle est la longueur d'onde du rayonnement qu'il faut utiliser pour éjecter des électrons d'un métal avec une vitesse de 3×10 3 km/s ? Calculer la fréquence de seuil .

Données : le travail d'extraction de ce métal est de 4,44 eV , e = 1,6. 10-19C ; $m_e = 9,1$. 10^{-31} Kg ; h = 6,62. 10^{-34} J.s ; C = 3. 10^8 m. s^{-1}

EXERCICE 2:

Dans la série de Balmer, le spectre de l'hydrogène présente une raie à 4800 Å. Quel est la transition qui l'a produite ? Données : $R_H = 1,0971 \times 10^{-7} \text{ m}^{-1}$

EXERCICE 3:

Si un atome d'hydrogène dans son état fondamental absorbe un photon de longueur d'onde λ_1 puis émet un photon de longueur d'onde λ_2 , sur quel niveau l'électron se trouve-il après cette émission ? Données : $\lambda_1 = 97,28$ nm et $\lambda_2 = 1879$ nm.

EXERCICE 4:

L'ion ${}_{Z}^{A}X^{q^{+}}$ est un hydrogénoide, l'énergie du niveau fondamental vaut -217 eV.

- 1. Donner le numéro atomique Z et sa charge q+.
- Quelle transition donne la raie de faible longueur d'onde lors de l'émission à partir du niveau n =
 4 ? Calculer la fréquence de cette raie.

Données : (E1)H = - 13,6 eV

EXERCICE 5: Configuration électronique

- 1- Qu'elles sont les règles d'établissement de la configuration électronique
- 2- Donner la configuration électronique des atomes ou ions suivants dans leur état fondamental et représenter les électrons dans les cases de la dernière période. 7N; 8O; 8O²-; 17Cl; 11Na+; 24Cr
- 3- Donner les nombres quantiques du dernier électron

Corrigé type

Exercis A

O calculate 1:

🗷 Calcul ale D

Exercice2

la Transition: Serie de Balmer n= 2

la transition produit correspond à la deuxière maie de la seire de Balmer.

Exercice3

Ola Transition 1- ni

1 = RH (1-1/2) => n= 4

@ la Transition hi -> n; avec ni=4

Exercice4