LoRa DL7812

通讯模块使用数据手册

Rev: LoRa_DL7812_数据手册_V0.1.1

Date: 2017-12-12

文档修订记录

版本	修订日期	描述	
V0. 1. 1	2017-12-12	文档新建	Ming

版权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由深圳市在那科技有限公司拥有,但注明引用其他方的内容除外。未经派洛德书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的个人使用的下载或打印除外。

免责声明:

深圳市在那科技有限公司拥有修改,修正或改善此文档和产品的权利,内容如有更改,恕不另行通知。此说明书仅供您参考使用。

概述:

DL7812 模块是具有 LoRaWAN 协议且专用于物联网的无线模块,设备核心部件采用 Semtech 公司的射频芯片 SX1278结合 ambiQ micro 公司的超低功耗 MCU 芯片 Apollo1 进行设计。具有-139dBm 的超高灵敏度,此外,高灵敏度与+18.6dBm 的最大发射功率的结合使得 DL7812 的链路预算达到了行业较高水平。具有高性能、低功耗、长距离的特点。成为远距离、低功耗传输和对可靠性要求极高的应用场景的最佳选择。

主要产品特点:

- ●LoRaWAN 技术
- ●433~510MHz ISM 频段高性能收发模块, 频段可定制
- ●最高灵敏度: -139dBm
- ●最大发射功率+18.6dBm
- ●射频传输 25mW, 7级可调
- ●有效通信距离: 3~5KM
- ●超低功耗处理,使用电池可以工作 3~5 年
- ●小尺寸设计,便于嵌入到终端产品
- **22***15*2. 7mm (W*L*H)
- ●符合 RoHS 标准

应用:

- 低功耗的物联网应用
- 家庭与楼宇自动化。
- 无线报警和安全系统。
- 工业自动化监控
- 远程灌溉系统
- 智能环境监测
- 智能城市
- 智慧农业
- ●自动抄表。
- 定位监控

1.一般描述

DL7812 采用的 LoRa[™] 扩频调制解调器可实现较长的范围距离的通讯,现有系统基于 FSK 调制。使用这种新的调制方案可以通过低带宽、低容差、晶体参考可以实现比 FSK 更好的灵敏度。这增加了链接预算提供了更多,更长的距离和可靠性,并且不需要外部放大。LoRa[™] 还提供了显著进展的选择性和抗阻塞性能,进一步提高通信的可靠性。为了获得最大的灵活性,用户可以决定扩频调制带宽(BW)、扩频因子(SF)和纠错率(CR)。扩频调制的另一个好处是每个扩频因子是正交的,因此多个发射信号可以占用同一信道而不干扰。这也允许与现有的基于 FSK 的系统简单共存。DL7812 提供带宽选择范围从 7.8KHz 到 500KHz 与扩频因子从 6 到 12,覆盖了较低的 UHF 频段。

1.1 简化框图

1.2 产品版本

两种产品类型的特性详见下表:

序号	型号	尺寸 (mm)	规格描述	备注
1	DL7812-W	22*15*2.7	433MH 频段,属于公用频段,适用于全球大部分地区	
2	DL7812-C	22*15*2.7	470~510MHz 频段,主要适用于中国大陆	

1.3 管脚定义图:

1.3.1 管脚示意图

1.3.2 管脚示定义

引脚	定义	描述
1	NC	悬空
2	NC	悬空
3	NC	悬空
4	GND	地
5	3.3V	VCC_3.3V
6	AD7	AD in / GPIO
7	SWDIO	MCU 调试口
8	SWDCK	MCU 调试口
9	GPIO48	GPIO
10	SPI_CS	SPI_CS
11	SPI_MISO	SPI_MISO
12	SPI_MOSI	SPI_MOSI / I2C_SDATA
13	SPI_CLK	SPI_CLK / I2C_SCLK
14	GND	地
15	RF	射频发送接收
16	GND	地
17	/RST	模组复位引脚,低电位有效
18	GPIO19	GPIO
19	GPIO34	GPIO
20	AD1	AD in / GPIO
21	AD6	AD in / GPIO
22	TXD	串口发送
23	RXD	串口接收
24	AD5	AD in / GPIO

25	SWO	MCU 调试
26	GPIO49	GPIO

1.3.3 机械尺寸

Tloerance : ±0.2mm

项目	长度	宽度	厚度	单位	备注
尺寸	22	15	2. 7	mm	

1.4 功能方框图

1.5 应用参考电路

2. 电气特性

2.1. ESD 性能

DL7812 是一款高性能的射频器件,其所有引脚均满足:

JEDEC JESD22-A114-B (人体模型) 二级标准

JEDEC JESD22-C101C (带电器件模型) 三级标准

因此,为避免器件永久性损坏,应采取所有必要的 ESD 防范措施。

2.2. 绝对最大额定值

长时间处于绝对最大额定值可能影响设备的可靠性。

表 1 最大额定值数据

项目	最小	典型	最大	单位
电源电压	-0.3	+3.3	+3. 9	V
存储温度	-40		+125	$^{\circ}$

2.3 工作条件

表 2 工作条件数据

项目	最小	典型	最大	单位
电源电压	+3.0	+3.3	+3.6	V
工作温度	-40		+85	$^{\circ}$

2.4 工作环境

表 3 工作环境数据

项目	描述
调制类型	LoRa™
通讯技术	ISM 频段 - LoRa™技术
工作湿度	10%~90%
尺寸	TYP. 22*15*2.7mm (W*L*H)
ESD	JEDEC JS-001 标准 ±1kV, Class 2

2.5 性能规格

电源电压 VDD = 3.3 V, 温度为 25°C, FXOSC= 32 MHz, 频段= 433MHz, 输出功率=+18.6dbm, TX 与 RX 共享匹配电路。

表 4 电气规范:

项目	描述
工作频率	433MHz
发射功率	+18.6dBm
最高灵敏度	-139dBm
电源	+3. 3V
发射电流	≤120mA
睡眠电流	≤1uA
平均接收电流	≤25mA
链路预算	最大 157. 6dB

电源电压 VDD = 3.3 V,温度为 25° C,FXOSC= 32 MHz,频段= 470[~]510MHz,输出功率=+18.6dbm, TX 与 RX 共享匹配电路。

表 5 电气规范:

项目	描述
工作频率	470~510MHz
发射功率	+18.6dBm
最高灵敏度	-139dBm
电源	+3. 3V
发射电流	≤120mA
睡眠电流	≤1uA
平均接收电流	≤25mA
链路预算	最大 157. 6dB

2.5.1. 功耗

表 6 功耗数据

描述	条件	最小值	典型值	最大值	单位
睡眠模式		_	0. 2	1	uA
待机模式	晶振启动运行	_	1.6	1.8	mA
	LNA 关闭	_	10.8	I	
	LNA 打开	_	11. 5	_	mA
接收模式	RFOP = +17 dBm,	_	87	_	mA
	RFOP = +13 dBm,	_	29	_	mA
	RFOP = + 7 dBm,	_	20	ı	mA

2.5.2.. 频率

表 7 频率规格

描述	条件	最小值	典型值	最大值	单位
频段范围	可设置		433		MHz
<i>炒</i> 快找记回	以且 	470	-	510	MHz
晶振频率	_	_	32	_	MHz
晶振唤醒时间	_	_	250	_	us
产品启动时间	从待机模式启动	_	60	_	us

FSK 有效比特率		1. 2	_	300	kbps
FSK 比特率准确度	ABS	-	-	250	ppm
00K 有效波特率		1. 2	_	32. 768	kbps
LoRa 模式的速率	从 SF6, BW500KHz 到 SF12, BW=7.8KHz	0.018	_	37. 5	kbps
FSK 频率偏差		0.6	_	200	KHz

2.5.3. FSK / 00K 模式接收

所有接收测试均在 RxBw=10kHz (单边带宽)的条件下进行,。除非另有说明,灵敏度报告误码率(BER)为 0.1%(位同步启动情况下)。阻塞性测试采用未经调制的干扰源。抗阻塞性、ACR、IIP2、IIP3 及 AMR 测试所需的信号功率设定为高于接收机灵敏度水平 3dB。表 8 FSK / 00K 模式接收规格

	描述	条件	最小值	典型值	最大值	单位
		FDA=5KHz, RB=1.2kbs	1	-121	ı	dBm
		FDA=5KHz, RB=4.8kbs	_	-117	-	dBm
2	LNA 增益	FDA=40KHz, RB=38.4kbs	_	-107	_	dBm
		FDA=40KHz, RB=38.4kbs	_	-95	-	dBm
		FDA=62.5KHz, RB=250kbs***	_	_	_	dBm
	OOK 灵敏度,最大 LNA	BR=4.8kbs/s	_	-117	_	dB
增	增益	BR=32kbs/s	-	-108	ı	dB
		偏移量=±1MHz	_	71	_	dB
	抗阻塞性	偏移量=±2MHz	_	76	-	dB
		偏移量=±10MHz	_	84	_	dB
	RSSI 态范围	AGC 启动 最小值	_	-127	-	dBm
	17971 坂弘氏国	最大值	_	0	1	dBm

2.5.4. FSK / OOK 模式发射

表 9 FSK / 00K 模式发射规格

描述	条件	最小值	典型值	最大值	单位
高效 RF 输出功率	最大值	_	+14	-	dBm
	最小值	_	-1	-	dBm
发射噪声	10KHz	_	-110	_	dB

50KHz	_	-110	_	dB
400KHz	-	-122	_	dB
1MHz	_	-129	_	dBm

3. 发射描述

DL7812 的发射由频率合成器、调制器 (LoRa™ 和 FSK/00K 调制器),功率放大器模块通过 VR PA 实现直流电压偏置及斜升与斜降。

3.1. 发射结构

射频结构图

3.2. 射频功率放大器

在上图中,PA_HF和PA_LF为高效率放大器,它们能够将步长在1dB之内(从-4dBm至+18.6dBm)的可调节射频功率以很低的电流消耗直接输出至50欧姆的负载。PA_LF覆盖较低的频段,为433~510MHz频段。

出功率对电源电压非常敏感,典型性能是在 3.3V 下测得。

表 6 功率放大器模式选择表

PA 选择	模式	功率范围	输出功率公式
0	PA_LF 于	4dDm Z + 10 €dDm	Pout=Pmax-(15-OutputPower)
0	RFO_LF 引脚	-4dBm 至+18.6dBm	Pmax=10.8+0.6 x MaxPower [dBm]

注意, 关于在 +18.6dBm 功率条件下的操作限制, 请参考以下内容:

- 为保证在最高功率下能正常运转,需调整限流器 , 确保它能够输送所需的电源电流。
- 如果 PA BOOST 引脚未被使用,则可以将它处于悬空状态。

4. 接收描述

4.1 概述

DL7812 含数字接收机,该接收机在LNA及混频模块之后会模拟执行数字转化过程。 还能进行自动增益校准,从而提高了RSSI测量精度并改善镜像抑制。

4.2 接收机的开启及活跃状态

在接收操作模式下,定义了功能模块的两种状态。一旦完成了转到接收操作模式的初始转换后,接收机立即进入"接收开启"状态。在该状态下,接收机等待用户定义的有效前导码或 RSSI 检测标准得以满足之后,即刻进入"接收活跃"状态。在"接收活跃"状态下,接收的信号由数据包引擎及顶级定序器处理。

4.3 FSK/00K 模式下的自动增益控制

接收具备 AGC 特性,因此可以处理较大动态范围内的输入信号——从灵敏度到 0dBm 或 0dBm 以上,同时还能保持系统线性。

表 10 LNA 增益控制与性能

RX input level (Pin	Gain Setting	LnaGai n	Relative LNA Gain [dB]	NF Lower/Higher Band [dB]	IIP3 Lower/Higher band [dBm
Pin <= AgcThresh1	G1	'001'	0 dB	4/5.5/7	-15/-22/-11
AgcThresh1 < Pin <= AgcThresh2	G2	'010'	-6 dB	6.5/8/12	-11/-15/-6
AgcThresh2 < Pin <= AgcThresh3	G3	'011'	-12 dB	11/12/17	-11/-12/0
AgcThresh3 < Pin <= AgcThresh4	G4	'100'	-24 dB	20/21/27	2/3/9
AgcThresh4 < Pin <= AgcThresh5	G5	'110'	-26 dB	32/33/35	10/10/14
AgcThresh5 < Pin	G6	'111'	-48 dB	44/45/43	11/12/14

4.4 LoRa™ 模式下的 RSSI

LoRa[™] 调制解调器表示的 RSSI 值与 FSK/00K 调制解调器表示的 RSSI 值并不相同。 可以采用以下公式换算 LoRa[™] 调制解调器上报的 RSSI 值。

RSSI [dBm]=-137+RSSI

5. AT 命令列表

请参考文件《MAXIIOT-DL7611&DL7812-AT-CMD-V1.6》

6. 包装方式

表 7 包装方式先择列表

LH- 1.L.		AV. II		
模块	形式	数量	包装尺寸	货号
DL7812	卷带	按需求	按需求	待定
DL1012	散装	按需求	按需求	待定

7. 联系我们

深圳市在那科技有限公司

网址: http://www. naviecaret.com

电话: 0755-23217607

传真: 0755-29476513

地址:深圳市宝安区留仙二路 1 巷 16 号南天辉创研中心 302 室