Introduction to Sorting

What have we learned so far?

- The "cams" operator is:
 - compare-and-maybe-swap.
- We've shown that in order to comparison-sort an array of N elements, we require at least:
 - N log N cams.
- If we use reduction to simplify our problem, there are two choices to be made:
 - Equal (or quasi-equal) partitions vs. head/tail partition;
 - Work before recursion vs. work after recursion.

Now, things are going to get a bit more complicated...

- There's another way to divide the problem up—can you think how?
- There's only two helpful ways to divide a collection into 1 and N-1 elements (they are essentially the same)
- But what about dividing into k sub-arrays?
 - e.g. merge-sort: we put elements iN/k...(i+1)N/k-1 into the ith sub-array.
 - Any other ideas?
- How about dividing such that the ith, k+ith, 2k+ith, etc. form the ith sub-array?
 - Could this make any difference?

The five possibilities

	Work then solve	Solve then work	Growth (~)
Equi-	Quick	Merge	N log N
partition	sort	sort	
Slice	?	Shell sort	~ N1.5
Head-tail	Selection	Insertion	N ² /2
partition	Sort	Sort*	

^{*} The number of cams for Insertion Sort is $min(N+X, N^2/2)$ where X is # of inversions

$N \log N vs. 1/2 N^2$

- Is there ever a possibility that 1/2 N² is less than N log N?
 - Keep in mind that N log N is the minimum possible number of comparisons.
 - If we are using logs to base 2, then if N = 4, $log_2 N = 2$ and $N log_2 N$ is 8. $1/2 N^2 = 8$.
 - So, for $2 \le N \le 4$, $1/2 N^2 \le N \log_2 N$.
 - Yes—between N = 2 and N = 4

When to terminate the recursion

- So, we terminate the recursion (for the equipartitioned case) when $N = 4^*$ and we cut over to insertion sort.
- We use insertion sort because, in the event that the sub-array is already partially sorted, it takes linear time, i.e. N + X where X is the number of "inversions".

^{*} the actual number will depend on benchmarking

Inversions

- An inversion is when two elements of a collection are out of order.
- From a collection of *N* elements, we can choose N(N-1) pairs—but half of these are just mirror images. So, the total number of pairs is *N(N-1)/2*.
- Such a pair of elements is inverted randomly true or false, so that means on average such a collection has N(N-1)/4 inversions.

Swap

- There are 2 forms of swap on an array *a* of length *N*:
 - swap(a, i)—
 - this form exchanges elements i and i-1.
 - It is a "stable" swap but...
 - it can only "fix" one inversion.
 - swap(a, i, j)—
 - this form allows a swap of two non-adjacent elements;
 - It is an "unstable" swap;
 - It can "fix" anything up to 2N-3 inversions (in the case of swapping the first/last of a reverse-ordered array) but the average number is of inversions per swap N/4.

More swapping

- Actually, there's a third form of swapping in an array a of length N:
 - swapAndShift(a, i, j):
 - this form allows a swap of all of the adjacent elements between i and j:
 - The value of a[j] ends up at index i; a[i] moves to i+1;
 a[i+1] moves to i+2; etc.... a[j-1] replaces a[j].
 - It is a "stable" swap (provided that i is chosen appropriately);
 - It "fixes" j i inversions. It is used in Insertion sort.

Number of inversions fixed per swap

- For merge sort, swaps are always with nearest neighbor so they fix exactly one inversion.
- For selection sort, up to *N-1* swaps are performed*, and since the number of inversions on average for a random list is *N(N-1)/4*, it follows that the average number of inversions per swap is *N/4*.
 - * actually, it can be as few as 0 swaps if the elements are already in order.

There are some more things to think about...

- Memory usage (extra to elements):
 - None: O(1)?
 - "In-place": O(log N)?
 - Linear: O(N)?
- Stability:
 - neighbor swaps or long-distance swaps?
- Comparison vs. Swap
 - Except for primitives, swap is always faster than compare
- Worst-case scenarios.