**Proposition 6.2.** Given any two vector spaces,  $E_1$  and  $E_2$ , for every pair of linear maps,  $f: D \to E_1$  and  $g: D \to E_2$ , there is a unique linear map,  $f \times g: D \to E_1 \coprod E_2$ , such that  $\pi_1 \circ (f \times g) = f$  and  $\pi_2 \circ (f \times g) = g$ , as in the following diagram:



Proof. Define

$$(f \times g)(w) = \{\langle 1, f(w) \rangle, \langle 2, g(w) \rangle\},\$$

for every  $w \in D$ . It is immediately verified that  $f \times g$  is the unique linear map with the required properties.

**Remark:** It is a peculiarity of linear algebra that direct sums and products of finite families are isomorphic. However, this is no longer true for products and sums of infinite families.

When U, V are subspaces of a vector space E, letting  $i_1 \colon U \to E$  and  $i_2 \colon V \to E$  be the inclusion maps, if  $U \coprod V$  is isomomorphic to E under the map  $i_1 + i_2$  given by Proposition 6.1, we say that E is a direct sum of U and V, and we write  $E = U \coprod V$  (with a slight abuse of notation, since E and  $U \coprod V$  are only isomorphic). It is also convenient to define the sum  $U_1 + \cdots + U_p$  and the internal direct sum  $U_1 \oplus \cdots \oplus U_p$  of any number of subspaces of E.

**Definition 6.2.** Given  $p \ge 2$  vector spaces  $E_1, \ldots, E_p$ , the product  $F = E_1 \times \cdots \times E_p$  can be made into a vector space by defining addition and scalar multiplication as follows:

$$(u_1, \dots, u_p) + (v_1, \dots, v_p) = (u_1 + v_1, \dots, u_p + v_p)$$
  
 $\lambda(u_1, \dots, u_p) = (\lambda u_1, \dots, \lambda u_p),$ 

for all  $u_i, v_i \in E_i$  and all  $\lambda \in \mathbb{R}$ . The zero vector of  $E_1 \times \cdots \times E_p$  is the p-tuple

$$(\underbrace{0,\ldots,0}_{p}),$$

where the *i*th zero is the zero vector of  $E_i$ .

With the above addition and multiplication, the vector space  $F = E_1 \times \cdots \times E_p$  is called the *direct product* of the vector spaces  $E_1, \ldots, E_p$ .

As a special case, when  $E_1 = \cdots = E_p = \mathbb{R}$ , we find again the vector space  $F = \mathbb{R}^p$ . The projection maps  $pr_i \colon E_1 \times \cdots \times E_p \to E_i$  given by

$$pr_i(u_1,\ldots,u_p)=u_i$$