Motivating exact matching via read mapping

CMSC701

(Short) Read mapping/alignment

Read mapping / alignment is one of the most fundamental computational tasks in genomics.

Performing read mapping is often the first step in many different analyses.

Q: For each read, where might I have sequenced it from on the genome, and how does the read differ from the reference at the mapped position?

(Short) Read mapping/alignment

Short reads:

10⁶-10⁹ reads

100-300 nt per end

Often "paired-end"

Genome:

10⁶-10¹⁰ nt long

May contain gaps / Ns

Q: For each read, where might I have sequenced it from on the genome?

Read mapping - variant calling

Given the alignment of many reads to the "reference", how and where does my sample differ from the reference?

Read mapping -> count/census

Given a sequencing sample, which genes (isoforms) are generating reads, and how many reads are coming from each (quantitative measure of expression level).

The utility of exact matching here

As *loose* motivation, consider the problem of mapping a read r to the genome G.

In reality, we would not use exact matching for this; why?

However, exact matching is useful here:

 Find all places where a substring of the query matches the reference exactly (seeds)

Requires

- efficient

exact search

 Filter out regions with insufficient exact matches to warrant further investigation

 Perform a "constrained" alignment that includes these exact matching "seeds" Here is where we use efficient algorithms for inexact matching (alignment)

Typical Strategies

Seed & Extend:

Seed & Vote:

Representing alignments

QNAME: query template name, aka. read ID

What is a CIGAR string?

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Reference: C C A T A C T G A A C T G A C T A A C Read: ACTAGAATGGCT

RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Reference: C C A T A C T G A C T G A C T A A C T G A C T A A C T G A C T A A C T G A C T A A C T G A C T A A C T G A C T A A C T G A C T A A C T G G C T
```

With the alignment above, you get:

POS: 5

CIGAR: 3M1I3M1D5M

What is a CIGAR string?

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set '*' if unavailable):

Op	BAM	Description	Consumes	Consumes reference
M	0	alignment match (can be a sequence match or mismatch)	yes	yes
I	1	insertion to the reference	yes	no
D	2	deletion from the reference	no	yes
N	3	skipped region from the reference	no	yes
S	4	soft clipping (clipped sequences present in SEQ)	yes	no
H	5	hard clipping (clipped sequences NOT present in SEQ)	no	no
P	6	padding (silent deletion from padded reference)	no	no
=	7	sequence match	yes	yes
X	8	sequence mismatch	yes	yes

- "Consumes query" and "consumes reference" indicate whether the CIGAR operation causes the alignment to step along the query sequence and the reference sequence respectively.
- H can only be present as the first and/or last operation.
- S may only have H operations between them and the ends of the CIGAR string.
- For mRNA-to-genome alignment, an N operation represents an intron. For other types of alignments, the interpretation of N is not defined.
- Sum of lengths of the M/I/S/=/X operations shall equal the length of SEQ.