

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3648735/24-07
 (22) 05.10.83
 (46) 15.02.85. Бюл. № 6
 (72) В.Н. Соболев, Б.Е. Пьяных,
 В.П. Мордач и Э.М. Чехет
 (71) Институт электродинамики АН УССР
 (53) 621.316.721(088.8)
 (56) 1. Чиженко И.М., Руденко В.С.,
 Сенько В.И. Основы преобразователь-
 ной техники. М., "Высшая школа",
 1974, с. 324-329.

2. Фокин В.А., Кравцов В.А. Пост-
 роение системы управления непосред-
 ственного преобразователя частоты
 фазоразностного типа. В кн.: "Пре-
 образование параметров электрической
 энергии". Киев, "Наукова думка",
 1975, с. 87-92.

(54)(57) УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ
 ПРЕОБРАЗОВАТЕЛЕМ ЧАСТОТЫ С НЕПОСРЕД-
 СТВЕННОЙ СВЯЗЬЮ трехфазно-трехфазного
 типа, каждая из фаз которого выпол-
 нена по шулеевой схеме на полностью
 управляемых ключах с двусторонней
 проводимостью, состоящее из последо-
 вательно соединенных задающего гене-
 ратора прямоугольных импульсов регу-
 лируемой частоты и длительности, ос-
 новной пересчетной схемы, распреде-
 лителя импульсов и формирователя
 импульсов управления ключами преобра-
 зователя, причем один из входов распреде-
 лителя соединен с выходом задаю-
 щего генератора, отли ча ю щ е-
 е с я тем, что, с целью повышения
 технологичности конструирования и из-

готовления преобразователя путем рав-
 номерного распределения потерь на
 переключения между указаннымиключа-
 ми, оно снабжено дополнительной пе-
 ресчетной схемой, вход которой сое-
 динен с выходом основной пересчетной
 схемы, а выходы дополнительной пе-
 ресчетной схемы соединены с входами
 распределителя импульсов, причем
 распределитель импульсов реализует
 логическую функцию

где $Y_1 - Y_9$ - выходные сигналы распре-
 делителя импульсов;
 Z - выходной сигнал задающе-
 го генератора;
 $X_1 - X_3$ - выходные сигналы основ-
 ной пересчетной схемы;
 $X_4 - X_6$ - выходные сигналы допол-
 нительной пересчетной
 схемы.

Изобретение относится к электротехнике и может быть использовано для управления непосредственными преобразователями частоты, предназначенными, например, для частотного управления электроприводами и для автономных систем электроснабжения.

Известны устройства управления непосредственными преобразователями частоты, построенные на полностью управляемых силовых ключах с двусторонней проводимостью, с циклическим режимом работы этих ключей, содержащие последовательно соединенные задающий генератор регулируемой частоты, пересчетную схему и формирователь импульсов управления силовыми ключевыми элементами [1].

Недостатком известного устройства является невозможность регулирования выходного напряжения преобразователя.

Наиболее близким к изобретению является устройство для управления преобразователем частоты с непосредственной связью трехфазно-трехфазного типа, каждая из фаз которого выполнена по нулевой схеме на полностью управляемых ключах с двусторонней проводимостью, состоящее из последовательно соединенных задающего генератора прямоугольных импульсов регулируемой частоты и длительности, пересчетной схемы, распределителя импульсов и формирователя импульсов управления ключами преобразователя, причем один из входов распределителя соединен с выходом задающего генератора [2].

Недостатком известного устройства является неодинаковая форма импульсов управления силовыми ключами для различных фаз преобразователя, что приводит к неодинаковому числу переключений этих ключей за период управления, вследствие чего наблюдается неравномерное распределение потерь на переключения между силовыми ключами.

Целью изобретения является повышение технологичности конструирования и изготовление преобразователей путем обеспечения равномерного распределения потерь на переключения между его силовыми ключами.

Поставленная цель достигается тем, что устройство для управления преобразователем частоты с непосредственной связью трехфазно-трехфазного

типа, каждая из фаз которого выполнена по нулевой схеме на полностью управляемых ключах с двусторонней проводимостью, состоящее из последовательно соединенных задающего генератора прямоугольных импульсов регулируемой частоты и длительности, основной пересчетной схемы, распределителя импульсов и формирователя импульсов управления ключами преобразователя, причем один из входов распределителя соединен с выходом задающего генератора, снабжено дополнительной пересчетной схемой, вход которой соединен с выходом основной пересчетной схемы, а выходы дополнительной пересчетной схемы соединены со входами распределителя импульсов, причем распределитель импульсов реализует логическую функцию

$$\begin{array}{c} \boxed{y_1} \\ \boxed{y_2} = z \\ \boxed{y_3} \end{array} \quad \begin{array}{c} x_4 \\ x_2 + A \\ x_3 \end{array}$$

$$\begin{array}{c} \boxed{y_4} \\ \boxed{y_5} = z \\ \boxed{y_6} \end{array} \quad \begin{array}{c} x_9 \\ x_1 + A \\ x_2 \end{array}$$

$$\begin{array}{c} \boxed{y_7} \\ \boxed{y_8} = z \\ \boxed{y_9} \end{array} \quad \begin{array}{c} x_2 \\ x_3 + A \\ x_1 \end{array}$$

$$A = z \quad \begin{array}{c} x_4 \ x_6 \ x_5 \\ x_5 \ x_4 \ x_6 \\ x_6 \ x_5 \ x_4 \end{array} \quad \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}$$

где $y_1 - y_9$ - выходные сигналы распределителя импульсов;
 z - выходной сигнал задающего генератора;
 $x_1 - x_3$ - выходные сигналы основной пересчетной схемы;
 $x_4 - x_6$ - выходные сигналы дополнительной пересчетной схемы.

На фиг.1 представлена силовая схема НПЧ нулевого типа на полностью управляемых ключах с двусторонней проводимостью; на фиг.2 - структурная схема предлагаемого устройства для управления преобразователем частоты с непосредственной связью; на фиг.3 - функциональная схема распределителя импульсов по фиг.2; на фиг.4 - временные диаграммы, поясняющие работу предлагаемого устройства управления по фиг.2, и диаграмма выходного напряжения преобразователя.

содержит полностью управляемые ключи 1 - 9 с двусторонней проводимостью, образующие трехфазно-трехфазную схему преобразователя, каждая из фаз которого выполнена по нулевой схеме. На вход преобразователя подключены фазы A, B, C питающей сети, а на выход - фазы нагрузки 10-12.

Устройство управления преобразователем частоты (фиг.2) содержит задающий генератор 13, выход 14 которого соединен со входом 15 основной пересчетной схемы 16 и входом 17 распределителя 18 импульсов, выходы 19-21 пересчетной схемы 16 подключены ко входам 22-24 распределителя импульсов, выход 19 - ко входу 25 дополнительной пересчетной схемы 26, а выходы 27-29 соединены со входами 30-32 распределителя 18 импульсов. Выходы 33-41 подключены к формирователю 42 импульсов управления, формирующему импульсы управления силовыми ключами 1-9.

Функциональная схема распределителя 18 импульсов, изображенная на фиг.3, состоит из девяти логических элементов 1НЕ-ЗИ, трех логических элементов 2И и девяти логических элементов 4 ИЛИ.

Номера входов и выходов блоков структурной схемы (фиг.2) соответствуют номерам входов и выходов на функциональной схеме (фиг.3). На фиг.4 представлены диаграммы напряжений на выходах соответствующих элементов.

Устройство работает следующим образом.

Регулируемые по частоте и длительности прямоугольные импульсы с выхода 14 задающего генератора 13 подаются на вход 15 основной пересчетной схемы 16, представляющей собой, например, кольцевой счетчик с коэффициентом пересчета, равным трем. Пересчетная схема 16 формирует на своих выходах 19-21 три последовательности прямоугольных импульсов длительностью 120 эл.град. со сдвигом 120 эл.град. между собой, которые следуют с частотой, в три раза меньшей частоты задающего генератора 13.

Одна из этих последовательностей с выхода 19 пересчетной схемы 16 поступает на вход 25 дополнительной пересчетной схемы 26, которая идентична первой. В результате на выходах

ся последовательности импульсов, длительность которых в три раза больше, а частота в три раза меньше по сравнению с выходными импульсами пересчетной схемы 16.

Выходные сигналы задающего генератора 13 пересчетных схем 16, 26 поступают на входы 17, 22-24 и 30-31 распределителя 18 импульсов.

Распределитель 18 импульсов представляет собой комбинационную логическую схему, реализующую следующие функции:

$$\begin{array}{l} y_1 \\ y_2 \\ y_3 \end{array} = Z \begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array} + A$$

$$\begin{array}{l} y_4 \\ y_5 \\ y_6 \end{array} = Z \begin{array}{l} x_4 \\ x_5 \\ x_6 \end{array} + A$$

$$\begin{array}{l} y_7 \\ y_8 \\ y_9 \end{array} = Z \begin{array}{l} x_2 \\ x_3 \\ x_1 \end{array} + A$$

$$A = Z \begin{array}{l} x_4 \\ x_5 \\ x_6 \end{array} \begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}$$

где в качестве переменных y_1-y_9 , x_1-x_6 , Z используются сигналы, соответственно $U_{33}-U_{41}$, $U_{22}-U_{24}$, $U_{27}-U_{29}$, U_{17} .

Набору этих функций отвечает составленная из соответствующих логических элементов функциональная схема (фиг.3).

Выходные сигналы распределителя 18 импульсов поступают на вход формователя 42 импульсов управления, в котором происходит их усиление и гальваническая развязка по питанию. Управляющие импульсы 1¹-9¹ с выхода ФИУ 42 подаются на соответствующие ключи 1-9 силовой схемы.

В результате работы этих ключей, выходное напряжение одной из фаз нагрузки принимает вид, изображенный на эпюре (фиг.4). Частота выходного напряжения равна разности частот управления f_u силовыми ключами и частоты питающей сети f_c , т.е. $f_{\text{вых}} = f_u - f_c$. Оно формируется следующим образом. На временном интервале t_0-t_1 открыты ключи 1, 5, 9 к нагрузке 10 приложено напряжение U_{AB} к нагрузке 11 - напряжение U_{BC} , к нагрузке 12 - напряжение U_{CA} . В момент времени t_1 ,

запираются ключи 5 и 9, отпираются ключи 4 и 7, и на интервале $t_1 - t_2$ все выводы нагрузки оказываются подсоединенными к линейному проводу фазы А питающей сети, а напряжения между ними - равными нулю. В результате в выходном напряжении преобразователя формируется нулевая "пауза". В момент времени t_2 закрываются ключи 1 и 4, вместо них открываются ключи 2 и 6; и на следующем интервале $t_2 - t_3$ к фазам нагрузки 10-12 прикладываются напряжения U_{BC} , U_{CA} и U_{AB} соответственно. В момент времени t_3 запираются ключи 6 и 7, вместо них вступают в работу ключи 5 и 8, и на интервале $t_3 - t_4$ все фазы нагрузки оказываются закороченными через линейный провод фазы В питающей сети. На временном интервале $t_4 - t_5$ вместо закрывавшихся ключей 2 и 5 работают ключи 3 и 4, а к фазам нагрузки 10-12 приложены напряжения U_{CA} , U_{AB} и U_{BC} соответственно. В момент времени t_5 выходят из работы ключи 4 и 7, отпираются ключи 6 и 9, которые вместе с остающимися в работе ключом 3 обеспечивают закоротку нагрузки через линейный провод фазы С питающей сети и формирование очередной "паузы" в выходном напря-

жении преобразователя. В дальнейшем, начиная с момента времени t_6 , цикл формирования кривой выходного напряжения повторяется, однако ключи, принимающие участие в шунтировании нагрузки на время "пауз", работают в иной последовательности. Первая "пауза" в выходном напряжении после момента времени t_6 формируется с помощью ключей 2, 5 и 8, вторая - с помощью ключей 3, 6 и 9, а третья - при помощи ключей 1, 4 и 7. Начиная с момента времени t_7 порядок шунтирования нагрузки опять меняется. Ключи, шунтирующие нагрузку, работают в следующей последовательности: 3, 6, 9 - 1, 4, 7 - 2, 5, 8. В момент времени t_8 заканчивается период повторяемости импульсов управления, и в дальнейшем порядок работы силовых ключей и формирования выходного напряжения преобразователя такой же, как описанный для интервала $t_0 - t_8$.

Таким образом, предлагаемое устройство позволяет обеспечить равномерную тепловую нагрузку всех ключей, и, следовательно, выполнить их однотипными, что повышает технологичность их конструирования и изготовления.

Фиг. 1

Фиг. 2

FIG. 3

Фиг. 4

Составитель А. Прицатков
Редактор С. Тимохина Техред Т. Фанта Корректор О. Тигор

Заказ 269/42

Тираж 646

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Х-35, Раушская наб., д. 4/5

Филиал ШПП "Патент", г. Ужгород, ул. Проектная, 4

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.