Statistical Analysis

Point estimation

Ana Cristina Costa

ccosta@novaims.unl.pt

Topics

LU4 – Point estimation

- Notation and concepts
- Unbiasedness
- Efficiency
- Consistency

Objectives

- At the end of this learning unit students should be able to
 - Understand the properties of estimators
 - Investigate the bias of an estimator
 - Investigate the efficiency of an estimator
 - Investigate the consistency of an estimator

Suggested reading

- Newbold, P., Carlson, W. L., Thorne, B. (2013). <u>Statistics for Business and Economics</u>. 8th Edition, Boston: Pearson, pages 284-290 (ch. 7).
- Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2013). Introduction to Probability and Statistics. 14th Edition, Boston: Brooks/Cole, Cengage Learning, pages 281-286.
- Pedrosa, A. C. e Gama, S. M. A. (2004). Introdução Computacional à Probabilidade e Estatística. Porto Editora, pages 387-398.

Resources on the Internet

- Peralta, I. M. & Portugués, E. G. (2021) . "Chapter 3. Point estimation", in A First Course on Statistical Inference, last updated: 2021-02-04, v0.9.1.
- Hossein Pishro-Nik (2014) "<u>8.2 Point Estimation</u>". In *Introduction to Probability, Statistics, and Random Processes*, available at https://www.probabilitycourse.com, Kappa Research LLC.

Notation

- $\theta \rightarrow$ parameter of the population
- $X_1, X_2, ..., X_n \rightarrow$ random sample (iid random variables)
- $\widehat{\Theta} = g(X_1, X_2, ..., X_n) \rightarrow \text{estimator of } \theta$

Issues addressed

- In case of more than one estimator of θ , how can we decide which one is better than another?
- What are the desirable properties of an estimator?

Concepts

- A **point estimator**, or simply estimator, of a parameter θ of a population is a statistic $\widehat{\Theta}$ used to estimate the value of θ
- A **point estimate**, or simply estimate, of a parameter θ of a population is the value $\widehat{\theta}$ of a statistic $\widehat{\Theta}$

Desirable properties of estimators

- Sufficiency
- Unbiasedness
- Efficiency
- Consistency

Concepts

- Sufficiency → when the estimator takes all the relevant information about the population parameter from the sample
- Unbiasedness → in medium terms, the estimator reaches the actual value of the parameter
- Efficiency → the estimator is more efficient (i.e., the estimates are more accurate) the smaller the variability of its sampling distribution
- Consistency → for large samples, the estimator should be approximately equal to the parameter

Unbiasedness versus efficiency

- Methods to derive estimators
 - Method of moments → estimators are obtained by replacing the expressions of the sample moments in the expressions that represent the corresponding moments in the population
 - Method of least squares → commonly used within the linear regression
 - Method of maximum likelihood → it is probably the most important method. Generally, the maximum likelihood estimators enjoy desirable properties of a good estimator: usually, they are the most efficient and consistent. Although sometimes biased, they are frequently asymptotically unbiased.

Theorems

• If X is a population with **Normal distribution** of mean μ and variance σ^2 , and $X_1, X_2, ..., X_n$ is a random sample from that population, then

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi^2_{(n-1)}$$

Unbiasedness

 $\widehat{\boldsymbol{\theta}}$ is an unbiased estimator if

$$E(\hat{\theta}) = \theta$$

Otherwise, the estimator is said to be biased, and its bias is given by

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

ullet $\widehat{\theta}$ is an asymptotically unbiased estimator of θ if

$$\lim_{n \to +\infty} E(\hat{\theta}) = \theta \quad \text{or} \quad \lim_{n \to +\infty} bias(\hat{\theta}) = 0$$

Unbiasedness

Example 1

- a) Let $X_1, X_2, ..., X_n$ be an iid random sample from a population with mean μ . Show that \overline{X} is an unbiased estimator of μ .
- b) Let $X_1, X_2, ..., X_n$ be an iid random sample from a population $N(\mu, \sigma)$. Show that S^2 is an unbiased estimator of σ^2 .
- c) Show that $M_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ is an asymptotically unbiased estimator of σ^2 and derive its bias.
 - $M_2 = \frac{n-1}{n}S^2$, therefore

$$E(M_2) = \frac{n-1}{n}E(S^2) = \frac{n-1}{n}\sigma^2 \xrightarrow[n \to +\infty]{} \sigma^2$$

 $bias(M_2) = \frac{-\sigma^2}{n}$

The efficiency of an estimator is measured by its mean squared error

- Mean squared error (MSE)
 - **Definition**: the mean squared error of an estimator $\hat{\theta}$ is

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right]$$

Property:

$$MSE(\hat{\theta}) = V(\hat{\theta}) + [bias(\hat{\theta})]^2$$

Relative efficiency

Given two estimators θ̂₁ and θ̂₂ of a parameter θ, the relative efficiency of θ̂₁ to θ̂₂ is given by

$$eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{MSE(\hat{\theta}_1)}{MSE(\hat{\theta}_2)}$$

Example

□ If $eff(\hat{\theta}_1, \hat{\theta}_2) = 1.6$, than the variability associated to $\hat{\theta}_1$ is 1.6 higher than the variability associated to $\hat{\theta}_2$, thus $\hat{\theta}_2$ is more efficient than $\hat{\theta}_1$

Efficiency and bias

Efficiency and bias trade-off

- In practice, a biased estimator can be a better estimator than an unbiased one when its bias is small and its efficiency is higher
 - θ^* θ^* unbiased and inefficient
 - $\theta^*_2 \rightarrow \text{biased and efficient}$

Sampling distribution of θ_1^* and θ_2^* :

Example 2

- Let $X_1, X_2, ..., X_n$ be an iid random sample from a population $N(\mu, \sigma)$. Consider the two estimators of σ^2 : S^2 and $M_2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$.
 - Show that $V(S^2) = \frac{2\sigma^4}{n-1}$ and $V(M_2) = \frac{n-1}{n^2} 2\sigma^4$
 - b) Considering that n is large, determine the relative efficiency of S^2 to M_2 .
 - ✓ For large samples, M₂ is more efficient than S²

• $\hat{\theta}$ is a **consistent** estimator of θ if and only if $\hat{\theta}$ converges in probability to θ :

$$\lim_{n\to+\infty} P(|\hat{\theta}-\theta|\leq\varepsilon) = 1 \quad \text{for all } \varepsilon>0$$

 An estimator is consistent if increasing the sample size implies an increase in the probability of the estimated value to be in a neighbourhood of the true value of the parameter

• An estimator $\widehat{\theta}$ is consistent in mean square error if

$$\lim_{n\to+\infty} MSE(\hat{\theta}) = 0$$

• Hence, an <u>unbiased</u> estimator $\hat{\theta}$ is consistent if

$$\lim_{n\to+\infty}V(\hat{\theta})=0$$

Properties

- If $\widehat{\Theta}$ and $\widehat{\Theta}'$ are consistent estimators of θ and θ , respectively, then
 - $\widehat{\Theta} + \widehat{\Theta}'$ is a consistent estimator of $\theta + \theta'$
 - $\widehat{\Theta} \times \widehat{\Theta}'$ is a consistent estimator of $\theta \times \theta'$
 - $\ \ \ \ \ \ \widehat{\Theta}/\widehat{\Theta}'$ is a consistent estimator of θ/θ , with $\theta\neq 0$
 - If $g(\cdot)$ is a real continuous function in θ , then $g(\widehat{\Theta})$ is a consistent estimator of $g(\theta)$

Example 3

- Let $X_1, X_2,...,X_n$ be a random sample from a population with Poisson(λ) distribution. Show that the sample mean is a consistent estimator of λ .
 - $\checkmark \quad E(\bar{X}) = \lambda$
 - $\sqrt{V(\bar{X})} = \lambda/n$
 - $\sqrt{\lim_{n\to+\infty}}V(\bar{X}) = \lim_{n\to+\infty} \lambda/n = 0$

Point estimation

Do the homework!

