REINFORCEMENT LEARNING

Nguyen Do Van, PhD

Reinforcement Learning

- Introduction
- Markov Decision Process
- Dynamic Programming
- Online Learning
- Function Approximation
- Exploration and Exploitation

REINFORCEMENT LEARNING INTRODUCTION

Intelligent agents learning and acting Sequence of decision, reward

Reinforcement learning: What is it?

- Making good decision to do new task: fundamental challenge in Al, ML
- Learn to make good sequence of decisions
- Intelligent agents learning and acting
 - Learning by trial-and-error, in real time
 - Improve with experience
 - Inspired by psychology:
 - Agents + environment
 - Agents select action to maximize cumulative rewards

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - □ There is no supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - □ Time really matters (sequential, non i.i.d data)
 - Agent's actions affect the subsequent data it receives

RL Applications

- Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2017)
 - Robotics
 - Video games
 - Conversational systems
 - Medical intervention
 - Algorithm improvement
 - Improvisational theatre
 - Autonomous driving
 - Prosthetic arm control
 - Financial trading
 - Query completion

Robotics

https://www.youtube.com/watch?v=ZBFwe1gF0FU

Gaming

RL vs supervised and unsupervised learning

Practical and technical challenges:

- Need to access to the environment
- Jointly learning AND planning from correlated sample
- Data distribution changes with action choice

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward
- Example:
 - Robot Navigation: (-) Crash wall, (+) reaching target...
 - Control power station: (+) producing power, (-) exceeding safety thresholds
 - Games: (+) Wining game, Killing enemy, collecting bloods, (-) mine

Agent and Environment

- At each step t the agent:
 - Executes action A_r
 - □ Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - □ Receives action A_t
 - \square Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at environment step

History and State

 History is the sequence of observations, actions and rewards

$$H_{t} = O_{1}, R_{1}, A_{1}, ..., A_{t-1}, O_{t}, R_{t}$$

- State: the information to determine state in a trajectory
 - \Box $S_t = f(H_t)$
 - Environment State: private representation of the environment
 - Agent State: agent internal representation
 - Information State (Markov Property): useful information from the history

Fully and Partially Observable Environments

- Full observation:
 - Agent fully observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent State = environment state = information state
- Markov Decision Process (detail later)
- Partially observability: agent indirectly or partially observes environment
 - Robot with first view cameras
 - Agent state differ from environment state
 - Agent must construct its own state representation

Major Component of an RL agent

- Policy maps current state to action
- Value function prediction of value for each state and action
- Model agent's representation of the environment.

Policy

- Policy: agent's behavior, how is act in the environment
- Map from state to action
- Deterministic policy $a = \pi(s)$
- Stochastic: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Value Function

- Value Function: a prediction of future reward (how many, how much future reward the agents expect)
- Used to evaluate the goodness/badness of state
- Agent select action to chose the best state based on value function (with maximized expected reward)

Model

- To model environments, predict what the environments will do
- P: to predict the next state

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

R: to predict immediate (not future) reward

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

VIASI

Maze Example

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent's location

Policy

Value function

Categorizing Reinforcement Learning Agents

- Agents Action:
 - Value Based: Value function, no policy
 - Policy Based: Policy, no value function
 - Actor Critic: Both Policy and Value Function
- Modelling environment
 - Model Free: interacting directly environments
 - Model Based: Learn and model environments

Policy

Learning and Planning

Sequence Decision Making

- Reinforcement Learning
 - Environments is initially unknown
 - Agent interacts with the environment
 - Agent improves policies
- Planning
 - Models of environment are known
 - Action by functional computation
 - Agent improve policies

Exploration and Exploitation

- Solve problem in trial-error learning
- Agents must learn to have good policies
- Agents learn from acting with their environments
- Reward may not response each step, it may be at the end of games
- Exploration: discovering the environment
- Exploitation: planning with maximal reward
- Trading between exploration and exploitation

Recap on RL introduction

- Sequence of decision, reward
- State, fully observation, partially observation
- Main components: Policy, Value Function, Model
- Categorizing RL agents
- Learning and Planning

MARKOV DECISION PROCESS

Markov decision process: Model of finite-state environment
Bellman Equation
Dynamic Programming

Markov Decision Process (Model of the environment)

Terminologies:

In a Markov Decision Process:

s, s' states a action r reward s set of all nonterminal states s^+ set of all states including the

S⁺ set of all states, including the terminal state

A(s) set of all actions possible in state s

R set of all possible rewards

t discrete time step

T,T(t) final time step of an episode, or of the episode including time t

 A_t action at time t

 S_t state at time t, typically due, stochastically, to S_{t-1} and A_{t-1}

probability of transition to state s' with reward r, from state s and action a probability of transition to state s', from state s taking action a

Markov Decision Process

 Markov property: The distribution over future states depends only on the present state and action, not on any other previous event.

$$p(s', r|s, a) \doteq \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\},\$$

- Maximize return
 - Episodic task: consider return over finite horizon (e.g. games, maze).

$$U_t = r_t + r_{t+1} + r_{t+2} + \dots + r_T$$

• Continuing task: consider return over infinite horizon (e.g. juggling, balancing).

$$U_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} \dots = \sum_{k=0: \infty} \gamma^k r_{t+k}$$

How we get good decision?

- Defining behavior: the policy
 - Policy: defines the action-selection strategy at every state

```
\pi policy, decision-making rule \pi(s) action taken in state s under deterministic policy \pi \pi(a|s) probability of taking action a in state s under stochastic policy \pi
```

Goals: finds the policy that maximizes expected total reward

$$argmax_{\pi} E_{\pi} [r_0 + r_1 + ... + r_T | s_0]$$

Value functions

The expected return of a policy for a state is call value function

$$V^{\pi}(s) = E_{\pi} [r_t + r_{t+t} + ... + r_T | s_t = s]$$

- Strategy to find optimal policy
 - Enumerate the space of all policies
 - Estimate the expected return of each one
 - Keep the policy that has maximum expected return

Gridworld example

- Reward to Off grid: -1
- Reward to On grid: 0
- Reward exception at A, B

Value functions

Value of a policy

$$V^{\pi}(s) = E_{\pi} \left[r_{t} + r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$V^{\pi}(s) = E_{\pi} \left[r_{t} \right] + E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$Immediate \ reward \qquad Future \ expected \ sum \ of \ rewards$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t+1} = s' \right]$$

$$Expectation \ over \ 1-step \ transition$$

$$Note: \ T(s, a, s') = p(s'|s, a)$$

 $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') \ V^{\pi}(s')$

Bellman's equation

State value function (for a fixed policy with discount)

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left[R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right]$$
Immediate Future expected sum of rewards

State-action value function (Q-function)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') [\sum_{a' \in A} \pi(s',a') Q^{\pi}(s',a')]$$

- When S is a finite set of states, this is a system of linear equations (one per state)
- Belman's equation in matrix form: $V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi}$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^{\pi}(s')$$

Optimal Value, Q and policy

- Optimal V: the highest possible value for each s under any possible policy
- Satisfies the bellman Equation $V^*(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^*(s') \right]$
- $lacksquare ext{Optimal Q-function} Q^*(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|a,s) V^*(s')$
- Optimal policy: $\pi^*(s, a) = \arg \max_a Q^*(s, a)$

Dynamic Programming (DP)

- Assuming full knowledge of Markov Decision Process
- It is used for planning in an MDP
- For prediction
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: value function v_{π}
- For controlling
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: Optimal value function v_* and optimal policy π_*

DP: Iterative Policy Evaluation

- Main idea of Dynamic Programming: turn Bellman equations to update rules
- Problem: evaluate a given policy π
- Iterative policy evaluation: Fix policy

Iterative policy evaluation

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in \mathbb{S}^+

Repeat

\Delta \leftarrow 0

For each s \in \mathbb{S}:

v \leftarrow V(s)

V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]

\Delta \leftarrow \max(\Delta,|v-V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

Bellman eq: $V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$

DP: Improving a Policy

Finding a good policy: Policy

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*,$$

- Start with an initial policy π_0 (e.g. random)
- Repeat:
 - Compute V^{π} , using iterative policy evaluation.
 - Compute a new policy π' that is greedy with respect to V^{π}
- Terminate when $\pi = \pi'$

Policy iteration (using iterative policy evaluation)

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat

 $\Delta \leftarrow 0$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

 $policy\text{-}stable \leftarrow true$

For each $s \in S$:

 $old\text{-}action \leftarrow \pi(s)$

 $\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Gridworld example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

R = -1 on all transitions

Greedy Policy w.r.t. v_k

Gridworld example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

R = -1 on all transitions

Greedy Policy w.r.t. v_k

DP:Value Iteration

- Finding a good policy: Value iteration
 - Drawback of policy iteration: evaluate policy also needs iteration
 - Main idea: Turn the Bellman optimality equation into an iterative update rule (same policy evaluation)

$$\begin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right) \\ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

DP: Pros and Cons

- Rarely use Dynamic programming in real applications
 - □ To calculate we must access environment model, fully observe with knowledge of environment.
 - Extending to continues actions and state
- However:
- Mathematically exact, expressible and analyzable
 - Good deals for small problem.
 - Stable, simple and fast

Visualization and Codes

https://cs.stanford.edu/people/karpathy/reinforcejs/index.html

ONLINE LEARNING

Model-free Reinforcement Learning
Partially observable environment, Monte Carlo, TD, Q-Learning

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat:
 - Can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function is expected return

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

State Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- At time-step t that state s is visited in an episode
 - Visiting state s: first or every time-step
- Increase counter N(s) = N(s) + I
- Increate total return $S(s) = S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large number $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$

Incremental Monte-Carlo Updates

- Learning from experience
- Update V(s) incrementally after full game $S_1, A_1, R_2, ..., S_T$
- For each state S_t , with actual return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

With learning rate

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Temporal-Difference Learning

- Model-free: no knowledge of MDP
- Do not wait for episodes, learn from incomplete episode by bootstrapping
- Update value $V(s_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}{\gamma} \right)$$

TD error

Monte-Carlo and Temporal Difference

- TD can learn before knowing the final outcome
 - □ TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - □ TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - □ TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

N-step prediction

n-step return

$$\begin{array}{lll} n = 1 & (TD) & G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) & & & & & & \\ n = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) & & & & \\ \vdots & & \vdots & & & & & \\ n = \infty & (MC) & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T & & & & \\ \end{array}$$

Define n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

On-policy Learning

- Advantage of TD:
 - Lower variance
 - Online
 - Incomplete sequence
- Sarsa:
 - Apply TD to Q(S,A)
 - \square Use policy improvement eg ϵ -greedy
 - Update every time-step

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Sarsa Algorithm

```
Initialize any Q(s,a) and Q (terminate-state, null) =0
Repeat (for each episode)
     Initialize S
    Choose A from S using Q (eg \epsilon-greedy)
    Repeat (for steps of episode)
         Take A, observe R, S'
         Chose A' from S' using Q (eg \epsilon-greedy)
         Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
         S \leftarrow S'; A \leftarrow A';
```

Until S is terminal

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v\pi(s)$ or $q\pi(s,a)$
- While following policy $\mu(a|s)$

$${S_1, A_1, R_2, ..., S_t} \sim \mu$$

- Advantages:
 - Learning from observing human or other agents
 - \square Reuse experience generated from old policies $\pi_1, \pi_2, \pi_3, ..., \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - ☐ Learn about multiple policies while following one policy

Q-Learning

- Off-policy learning action-value Q(s,a)
- No importance sampling is required
- Off policy: Next action is chosen by $A_{t+1} \sim \mu(\cdot|S_t)$
- Q-Learning: choose alternative successor $A' \sim \pi(\cdot | S_t)$
- Update $Q(S_t,A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Improve policy by greedy

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a'))$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Q-Learning

Update equation

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Algorithm

Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize sRepeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., ε -greedy)

Take action a, observe r, s' $Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]$ $s \leftarrow s';$ until s is terminal

α	=	•

	1	1	↓	Î
S ₁	0	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0

Q-Table

Q-Learning Table version

Visualization and Codes

- https://cs.stanford.edu/people/karpathy/reinforcejs/index.html
- https://github.com/awjuliani/DeepRL-Agents/blob/master/Q-Table.ipynb
- https://gym.openai.com/

ADVANCED ON REINFORCEMENT LEARNING

Challenge Discussion

Exploration and Exploitation

Approximation Function

Deep Reinforcement Learning

Discussion on challenges

- Designing the problem domain
 - State representation
 - Action choice
 - Cost/reward signal
- Acquiring data for training
 - Exploration / exploitation
 - High cost actions
 - □ Time-delayed cost/reward signal
- Function approximation
- Validation / confidence measures

Exploration vs Exploitation

- Online decision-making
 - Exploitation Make the best decision given current information
 - Exploration Gather more information
- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions

Trade-off between Exploration and Exploitation

Examples

- Restaurant Selection
 - Exploitation Go to your favourite restaurant
 - Exploration Try a new restaurant
- Online Banner Advertisements
 - Exploitation Show the most successful advert
 - Exploration Show a different advert
- Oil Drilling
 - Exploitation Drill at the best known location
 - Exploration Drill at a new location
- Game Playing
 - Exploitation Play the move you believe is best
 - Exploration Play an experimental move

Greedy Approach

- Simply choose the action provide the greatest reward
- Best at the current moment, current knowledge
- No potential exploration

Random Approach

- Opposite to greedy selection: simply choose random action
- More to explore the environment, slow to converge
- Useful in DQN to initial means of sampling to fill an experience buffer

€-greedy

- Combination of greedy and random
- Sometime choose optimal, sometime choose random
- Adjustable parameter ∈ determines the probability of taking a random
- Technique for most recent reinforcement learning algorithms, including DQN and its variants
- Shortcomings: far from optimal

Boltzmann Approach

- Choosing actions with weighted probabilities.
- Use a softmax over networks estimate of each action
- Using parameter to control spread of softmax distribution
- Shortcoming: Based on agent estimating how optimal the action is

$$P_t(a) = rac{\exp(q_t(a)/ au)}{\sum_{i=1}^n \exp(q_t(i)/ au)},$$

Comparison of Action Selection Methods

Function approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry V(s), or
 - Every state-action pair (s,a) has an entry Q(s,a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

Generalize from seen states to unseen states

Type of Value Function Approximation

- Differentiable function approximation
 - Linear combination of feature
 - Robots: distance from checking point, target, dead mark, wall
 - Business Intelligence Systems: Trends in stock market
 - Neural Network
 - Deep Reinforcement Learning
- Training strategies

Deep Reinforcement Learning: DeepNN + RL

Deep Q-Network trained with stochastic gradient descent.

[DeepMind: Mnih et al., 2015].

Deep Q Learning

Optimal Q value function

$$Q^*(s, a) = \mathbb{E}\left[R_{t+1} + \max_b Q^*(S_{t+1}, b) \mid S_t = s, A_t = a\right]$$

Temporal-Difference learning

$$Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q_t(S_{t+1}, a) - Q_t(S_t, A_t) \right)$$

Learning Approximate Q-value function

$$\Delta \boldsymbol{w} = \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{w}) - Q(S_{t}, A_{t}; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(S_{t}, A_{t}; \boldsymbol{w})$$

Target value

Deep Q Learning

- Issue of instance update: small update to Q leads to significant change in policy and correlation between Q and target values
- Key ideas: experience replay and target network
 - Copy network from Q-value function
 - Store experience and sample for training
 - More like supervised learning

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r\sim D} \left(\underbrace{r + \gamma \, \max_{a'} Q(s',a';\boldsymbol{\theta}_i^-)}_{\text{target}} - Q(s,a;\theta_i) \right)^2$$

Deep Q Learning

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Double Q-Learing

- At time t: in state s do action a, observe reward r and state s'
- Q-learning:

$$Q_{t+1}(s, a) \leftarrow Q_t(s, a) + \alpha \left(r + \gamma \max_b Q_t(s', b) - Q_t(s, a)\right)$$

- $ullet Q_t$ is noisy approximation of optimal Q^*
- Idea: apply double estimator to Q-learning
- ullet Use two Q-functions: Q^A and Q^B

$$\begin{split} Q_{t+1}^A(s,a) &\leftarrow Q_t^A(s,a) + \alpha \Big(r + \gamma Q_t^B(s',a^*) - Q_t^A(s,a)\Big) \quad \text{or} \\ Q_{t+1}^B(s,a) &\leftarrow Q_t^B(s,a) + \alpha \Big(r + \gamma Q_t^A(s',b^*) - Q_t^B(s,a)\Big) \\ \text{where} \quad a^* &= \argmax_a Q^A(s',a) \\ b^* &= \argmax_a Q^B(s',a) \end{split}$$

- Each time step: update only one (e.g., random pick Q^A or Q^B)
- ullet Use average of Q^A and Q^B to choose actions
- Same time and space complexity as Q-learning

Above: DQN

Bellow: Dueling DQN

Dueling Q-Learning

- Separate value and advance functions Q(s,a) = V(s) + A(a)
- Combine them back into a single Qfunction at the final layer
- Key idea:
 - Agents not need to care about both value and advantage at any given time.
 - Example: Robots see and evaluate state while not need to do actions

Above: DQN

Bellow: Dueling DQN

Asynchronous Advantage Actor-Cı (A3C)

- Asynchronous:
 - Multiple worker have their own set of network parameters
 - Agents interacts with it's own copy of the environment at the same time as the other agents
- Actor-Critic: Estimate both a value function V(s) (how good a certain state is to be in) and a policy $\pi(s)$ (a set of action probability outputs)
- Advantage Estimate: A = R V(s)

Worker calculates

Alpha Go

- The game of Go
 - Number of legal moves per position b: 250
 - Game length (depth)d: 150
 - Much more than chess (b=35, d =80)
- Deal with valuated network and MC
 Tree Search

ARTICLE

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Policy search

- Forward search algorithms select the best action by look ahead
 - Search tree with current sate s(t) as root
 - Using a model to look ahead
 - No need to solve the whole MDP, just sub of MDP from the current state
- Simulated-Based Search
 - Simulate episodes of experience from current state
 - Apply model-free RL to simulated episodes

$$\{s_t^k, A_t^k, R_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}$$

Policy search motivation

- RL for the game of Go
 - Searching for state value
 - How to reduce search space?
 - □ State value:

Neural network training pipeline and architecture

- Supervised train two policy network
 - $lue{}$ Fast and less accurate p_{π}
 - $lue{}$ More layers network p_{σ}
- Self train SL policy network to improve policy network p_{ρ}
- Self train value network v_{θ}

AlphaGo Zero (Chess)

- Self-play pipeline
 - Build search tree
 - Sample action $a_t \sim \pi_t$ using MCTS with the latest network f_θ
 - Playing at the current state
 - Update weigh vectors
 - At the end, store winner z
- Neural network training
 - lacksquare Initial to random weight $heta_0$
 - At time t, execute network $f_{\theta_{t-1}}$ using the last iteration θ_{t-1}
 - When each episode ends, at T, score the reward $r_T = \{\pm 1\}$
 - □ Store winner score for any step $\{s, \pi, z\}$
 - In parallel, train θ_t using data sample from $\{s, \pi, z\}$ with loss function l

Neural network training

Visualization and Codes

- https://cs.stanford.edu/people/karpathy/reinforcejs/index.html
- https://github.com/awjuliani/DeepRL-Agents/blob/master/Q-Network.ipynb
- http://awjuliani.github.io/exploration/index.html
- https://github.com/awjuliani/DeepRL-Agents/blob/master/Q-Exploration.ipynb

Recap on Reinforcement Learning

- Introduction on RL
 - Intelligent agents learning and acting
 - Sequence of decision, reward

- Markov Decision Process
 - Model of finite-state environment
 - Bellman Equation
 - Dynamic Programming

- Online Learning
 - Model-free Reinforcement Learning
 - Partially observable environment,
 Monte Carlo, TD, Q-Learning
- Advanced on Reinforcement Learning
 - Challenge Discussion
 - Exploration and Exploitation
 - Approximation Function
 - Deep Reinforcement Learning

Questions?

THANK YOU!

