S-808xxC 系列

超小型 高精度电压检测器

www.sii-ic.com

© Seiko Instruments Inc., 2001-2010

Rev.5.0_00

S-808xxC 系列是使用 CMOS 技术开发的,高精度电压检测 IC。检测电压在内部被固定,精度为±2.0%。在输出方式上备有 N 沟道开路漏极输出和 CMOS 输出。

■ 特点

超低消耗电流
 1.3 μA 典型值(检测电压为典型值 1.4 V 以下的产品、V_{DD} = 1.5 V 时)
 0.8 μA 典型值(检测电压为典型值 1.5 V 以上的产品、V_{DD} = 3.5 V 时)

● 高精度检测电压 ±2.0%

● 工作电压范围 0.65 V ~ 5.0 V (检测电压为典型值 1.4 V 以下的产品) 0.95 V ~ 10.0 V (检测电压为典型值 1.5 V 以上的产品)

• 滞后特性 5% 典型值

检测电压 0.8 V~6.0 V (进阶单位为 0.1 V)输出方式 N 沟道开路漏极输出(动态 Low)

CMOS 输出(动态 Low)

● 无铅、Sn 100%、无卤素*1

*1. 详情请参阅"■ 产品型号的构成"。

■ 用途

- 电池电压检测器
- 停电检测器
- 寻呼机、电子计算器、电子记事本、遥控器等的携带设备用电源的监视
- 照相机、视频设备、通信设备等的稳压电源的监视
- 微机用电源的监视以及 CPU 的复位

■ 封装

- SC-82AB
- SOT-23-5
- SOT-89-3
- SNT-4A
- TO-92

■ 框图

1. N沟道开路漏极输出产品

*1. 寄生二极管

图 1

2. CMOS输出产品

精工电子有限公司

■ 产品型号的构成

• 关于 S-808xxC 系列,用户可根据用途选择指定产品的检测电压值、输出方式和封装类型。产品名的文字列含义请参阅"1. 产品名"、关于封装图面请参阅"2. 封装"、所有的产品名,请参阅"3. 产品名目录"。

1. 产品名

1-1. SC-82AB、SOT-23-5、SOT-89-3、SNT-4A 封装

- *1. 请参阅卷带图。
- *2. 请参阅「3.产品名目录」的表 1、3。

1-2. TO-92 封装

2. 封装

封装名	图面号码				
封 衣石	封装图面	卷带图面	带卷图面	折叠图面	焊盘图面
SC-82AB	NP004-A-P-SD	NP004-A-C-SD NP004-A-C-S1	NP004-A-R-SD	_	_
SOT-23-5	MP005-A-P-SD	MP005-A-C-SD	MP005-A-R-SD	_	_
SOT-89-3	UP003-A-P-SD	UP003-A-C-SD	UP003-A-R-SD	_	_
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	_	PF004-A-L-SD
TO-92 (散装)	YS003-B-P-SD	<u> </u>	<u> </u>	_	
TO-92 (卷带)	YF003-A-P-SD	YF003-A-C-SD	YF003-A-R-SD	_	_
TO-92 (折叠)	YF003-A-P-SD	YZ003-C-C-SD	_	YZ003-C-Z-SD	_

3. 产品名目录

3-1. N 沟道开路漏极输出产品

表 1 (1/2)

检测电压	滞后幅度	SC-82AB	SOT-23-5	SOT-89-3
	(典型值)			
0.8 V±2.0 %	0.034 V	S-80808CNNB-B9MT2x	_	_
0.9 V±2.0 %	0.044 V	S-80809CNNB-B9NT2x	<u> </u>	
1.0 V±2.0 %	0.054 V	S-80810CNNB-B9OT2x		_
1.1 V±2.0 %	0.064 V	S-80811CNNB-B9PT2x	_	
1.2 V±2.0 %	0.073 V	S-80812CNNB-B9QT2x	<u> </u>	_
1.3 V±2.0 %	0.083 V	S-80813CNNB-B9RT2x	_	_
1.4 V±2.0 %	0.093 V	S-80814CNNB-B9ST2x	_	_
1.5 V±2.0 %	0.075 V	S-80815CNNB-B8AT2x	S-80815CNMC-B8AT2x	S-80815CNUA-B8AT2x
1.6 V±2.0 %	0.080 V	S-80816CNNB-B8BT2x	S-80816CNMC-B8BT2x	S-80816CNUA-B8BT2x
1.7 V±2.0 %	0.085 V	S-80817CNNB-B8CT2x	S-80817CNMC-B8CT2x	S-80817CNUA-B8CT2x
1.8 V±2.0 %	0.090 V	S-80818CNNB-B8DT2x	S-80818CNMC-B8DT2x	S-80818CNUA-B8DT2x
1.9 V±2.0 %	0.095 V	S-80819CNNB-B8ET2x	S-80819CNMC-B8ET2x	S-80819CNUA-B8ET2x
2.0 V±2.0 %	0.100 V	S-80820CNNB-B8FT2x	S-80820CNMC-B8FT2x	S-80820CNUA-B8FT2x
2.1 V±2.0 %	0.105 V	S-80821CNNB-B8GT2x	S-80821CNMC-B8GT2x	S-80821CNUA-B8GT2x
2.2 V±2.0 %	0.110 V	S-80822CNNB-B8HT2x	S-80822CNMC-B8HT2x	S-80822CNUA-B8HT2x
2.3 V±2.0 %	0.115 V	S-80823CNNB-B8IT2x	S-80823CNMC-B8IT2x	S-80823CNUA-B8IT2x
2.4 V±2.0 %	0.120 V	S-80824CNNB-B8JT2x	S-80824CNMC-B8JT2x	S-80824CNUA-B8JT2x
2.4 V typ.	$4.4 \pm 0.1 \text{ V}^{*1}$	_	_	S-80824KNUA-D2BT2x*2
2.5 V±2.0 %	0.125 V	S-80825CNNB-B8KT2x	S-80825CNMC-B8KT2x	S-80825CNUA-B8KT2x
2.6 V±2.0 %	0.130 V	S-80826CNNB-B8LT2x	S-80826CNMC-B8LT2x	S-80826CNUA-B8LT2x
2.7 V±2.0 %	0.135 V	S-80827CNNB-B8MT2x	S-80827CNMC-B8MT2x	S-80827CNUA-B8MT2x
2.8 V±2.0 %	0.140 V	S-80828CNNB-B8NT2x	S-80828CNMC-B8NT2x	S-80828CNUA-B8NT2x
2.9 V±2.0 %	0.145 V	S-80829CNNB-B8OT2x	S-80829CNMC-B8OT2x	S-80829CNUA-B8OT2x
3.0 V±2.0 %	0.150 V	S-80830CNNB-B8PT2x	S-80830CNMC-B8PT2x	S-80830CNUA-B8PT2x
3.1 V±2.0 %	0.155 V	S-80831CNNB-B8QT2x	S-80831CNMC-B8QT2x	S-80831CNUA-B8QT2x
3.2 V±2.0 %	0.160 V	S-80832CNNB-B8RT2x	S-80832CNMC-B8RT2x	S-80832CNUA-B8RT2x
3.3 V±2.0 %	0.165 V	S-80833CNNB-B8ST2x	S-80833CNMC-B8ST2x	S-80833CNUA-B8ST2x
3.4 V±2.0 %	0.170 V	S-80834CNNB-B8TT2x	S-80834CNMC-B8TT2x	S-80834CNUA-B8TT2x
3.5 V±2.0 %	0.175 V	S-80835CNNB-B8UT2x	S-80835CNMC-B8UT2x	S-80835CNUA-B8UT2x
3.6 V±2.0 %	0.180 V	S-80836CNNB-B8VT2x	S-80836CNMC-B8VT2x	S-80836CNUA-B8VT2x
3.7 V±2.0 %	0.185 V	S-80837CNNB-B8WT2x	S-80837CNMC-B8WT2x	S-80837CNUA-B8WT2x
3.8 V±2.0 %	0.190 V	S-80838CNNB-B8XT2x	S-80838CNMC-B8XT2x	S-80838CNUA-B8XT2x
3.9 V±2.0 %	0.195 V	S-80839CNNB-B8YT2x	S-80839CNMC-B8YT2x	S-80839CNUA-B8YT2x

表1(2/2)

	1	1	•	1
检测电压	滞后幅度 (典型值)	SC-82AB	SOT-23-5	SOT-89-3
4.0 V±2.0 %	0.200 V	S-80840CNNB-B8ZT2x	S-80840CNMC-B8ZT2x	S-80840CNUA-B8ZT2x
4.1 V±2.0 %	0.205 V	S-80841CNNB-B82T2x	S-80841CNMC-B82T2x	S-80841CNUA-B82T2x
4.2 V±2.0 %	0.210 V	S-80842CNNB-B83T2x	S-80842CNMC-B83T2x	S-80842CNUA-B83T2x
4.3 V±2.0 %	0.215 V	S-80843CNNB-B84T2x	S-80843CNMC-B84T2x	S-80843CNUA-B84T2x
4.4 V±2.0 %	0.220 V	S-80844CNNB-B85T2x	S-80844CNMC-B85T2x	S-80844CNUA-B85T2x
4.5 V±2.0 %	0.225 V	S-80845CNNB-B86T2x	S-80845CNMC-B86T2x	S-80845CNUA-B86T2x
4.6 V±2.0 %	0.230 V	S-80846CNNB-B87T2x	S-80846CNMC-B87T2x	S-80846CNUA-B87T2x
4.6 V± 0.10 V	0.10 V max.			S-80846KNUA-D2CT2x*3
4.7 V±2.0 %	0.235 V	S-80847CNNB-B88T2x	S-80847CNMC-B88T2x	S-80847CNUA-B88T2x
4.8 V±2.0 %	0.240 V	S-80848CNNB-B89T2x	S-80848CNMC-B89T2x	S-80848CNUA-B89T2x
4.9 V±2.0 %	0.245 V	S-80849CNNB-B9AT2x	S-80849CNMC-B9AT2x	S-80849CNUA-B9AT2x
5.0 V±2.0 %	0.250 V	S-80850CNNB-B9BT2x	S-80850CNMC-B9BT2x	S-80850CNUA-B9BT2x
5.1 V±2.0 %	0.255 V	S-80851CNNB-B9CT2x	S-80851CNMC-B9CT2x	S-80851CNUA-B9CT2x
5.2 V±2.0 %	0.260 V	S-80852CNNB-B9DT2x	S-80852CNMC-B9DT2x	S-80852CNUA-B9DT2x
5.3 V±2.0 %	0.265 V	S-80853CNNB-B9ET2x	S-80853CNMC-B9ET2x	S-80853CNUA-B9ET2x
5.4 V±2.0 %	0.270 V	S-80854CNNB-B9FT2x	S-80854CNMC-B9FT2x	S-80854CNUA-B9FT2x
5.5 V±2.0 %	0.275 V	S-80855CNNB-B9GT2x	S-80855CNMC-B9GT2x	S-80855CNUA-B9GT2x
5.6 V±2.0 %	0.280 V	S-80856CNNB-B9HT2x	S-80856CNMC-B9HT2x	S-80856CNUA-B9HT2x
5.7 V±2.0 %	0.285 V	S-80857CNNB-B9IT2x	S-80857CNMC-B9IT2x	S-80857CNUA-B9IT2x
5.8 V±2.0 %	0.290 V	S-80858CNNB-B9JT2x	S-80858CNMC-B9JT2x	S-80858CNUA-B9JT2x
5.9 V±2.0 %	0.295 V	S-80859CNNB-B9KT2x	S-80859CNMC-B9KT2x	S-80859CNUA-B9KT2x
6.0 V±2.0 %	0.300 V	S-80860CNNB-B9LT2x	S-80860CNMC-B9LT2x	S-80860CNUA-B9LT2x

^{*1.} 表示解除电压。

备注 1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

^{*2.} 有关电气特性,请参阅表 18。

^{*3.} 有关电气特性,请参阅表 20。

表 2(1/2)

		Τ	
检测电压	滞后幅度 (典型值)	SNT-4A	TO-92 ^{*1}
0.8 V±2.0 %	0.034 V	S-80808CNPF-B9MTFx	_
0.9 V±2.0 %	0.044 V	S-80809CNPF-B9NTFx	
1.0 V±2.0 %	0.054 V	S-80810CNPF-B9OTFx	
1.1 V±2.0 %	0.064 V	S-80811CNPF-B9PTFx	
1.2 V±2.0 %	0.073 V	S-80812CNPF-B9QTFx	
1.3 V±2.0 %	0.083 V	S-80813CNPF-B9RTFx	
1.4 V±2.0 %	0.093 V	S-80814CNPF-B9STFx	
1.5 V±2.0 %	0.075 V	S-80815CNPF-B8ATFx	S-80815CNY-n-G
1.6 V±2.0 %	0.080 V	S-80816CNPF-B8BTFx	S-80816CNY-n-G
1.7 V±2.0 %	0.085 V	S-80817CNPF-B8CTFx	S-80817CNY-n-G
1.8 V±2.0 %	0.090 V	S-80818CNPF-B8DTFx	S-80818CNY-n-G
1.9 V±2.0 %	0.095 V	S-80819CNPF-B8ETFx	S-80819CNY-n-G
2.0 V±2.0 %	0.100 V	S-80820CNPF-B8FTFx	S-80820CNY-n-G
2.1 V±2.0 %	0.105 V	S-80821CNPF-B8GTFx	S-80821CNY-n-G
2.2 V±2.0 %	0.110 V	S-80822CNPF-B8HTFx	S-80822CNY-n-G
2.3 V±2.0 %	0.115 V	S-80823CNPF-B8ITFx	S-80823CNY-n-G
2.4 V±2.0 %	0.120 V	S-80824CNPF-B8JTFx	S-80824CNY-n-G
2.4 V typ.	$4.4 \pm 0.1 \text{ V}^{*2}$		S-80824KNY-n-G ^{*3}
2.5 V±2.0 %	0.125 V	S-80825CNPF-B8KTFx	S-80825CNY-n-G
2.6 V±2.0 %	0.130 V	S-80826CNPF-B8LTFx	S-80826CNY-n-G
2.7 V±2.0 %	0.135 V	S-80827CNPF-B8MTFx	S-80827CNY-n-G
2.8 V±2.0 %	0.140 V	S-80828CNPF-B8NTFx	S-80828CNY-n-G
2.9 V±2.0 %	0.145 V	S-80829CNPF-B8OTFx	S-80829CNY-n-G
3.0 V±2.0 %	0.150 V	S-80830CNPF-B8PTFx	S-80830CNY-n-G
3.1 V±2.0 %	0.155 V	S-80831CNPF-B8QTFx	S-80831CNY-n-G
3.2 V±2.0 %	0.160 V	S-80832CNPF-B8RTFx	S-80832CNY-n-G
3.3 V±2.0 %	0.165 V	S-80833CNPF-B8STFx	S-80833CNY-n-G
3.4 V±2.0 %	0.170 V	S-80834CNPF-B8TTFx	S-80834CNY-n-G
3.5 V±2.0 %	0.175 V	S-80835CNPF-B8UTFx	S-80835CNY-n-G
3.6 V±2.0 %	0.180 V	S-80836CNPF-B8VTFx	S-80836CNY-n-G
3.7 V±2.0 %	0.185 V	S-80837CNPF-B8WTFx	S-80837CNY-n-G
3.8 V±2.0 %	0.190 V	S-80838CNPF-B8XTFx	S-80838CNY-n-G
3.9 V±2.0 %	0.195 V	S-80839CNPF-B8YTFx	S-80839CNY-n-G
4.0 V±2.0 %	0.200 V	S-80840CNPF-B8ZTFx	S-80840CNY-n-G
4.1 V±2.0 %	0.205 V	S-80841CNPF-B82TFx	S-80841CNY-n-G
4.2 V±2.0 %	0.210 V	S-80842CNPF-B83TFx	S-80842CNY-n-G
4.3 V±2.0 %	0.215 V	S-80843CNPF-B84TFx	S-80843CNY-n-G
4.4 V±2.0 %	0.220 V	S-80844CNPF-B85TFx	S-80844CNY-n-G
4.5 V±2.0 %	0.225 V	S-80845CNPF-B86TFx	S-80845CNY-n-G
4.6 V±2.0 %	0.230 V	S-80846CNPF-B87TFx	S-80846CNY-n-G
4.6 V±0.10 V	0.10 V max.	_	S-80846KNY-n-G*4
4.7 V±2.0 %	0.235 V	S-80847CNPF-B88TFx	S-80847CNY-n-G
4.8 V±2.0 %	0.240 V	S-80848CNPF-B89TFx	S-80848CNY-n-G
4.9 V±2.0 %	0.245 V	S-80849CNPF-B9ATFx	S-80849CNY-n-G
5.0 V±2.0 %	0.250 V	S-80850CNPF-B9BTFx	S-80850CNY-n-G
5.1 V±2.0 %	0.255 V	S-80851CNPF-B9CTFx	S-80851CNY-n-G

表 2 (2/2)

检测电压	滞后幅度 (典型值)	SNT-4A	TO-92 ^{*1}
5.2 V±2.0 %	0.260 V	S-80852CNPF-B9DTFx	S-80852CNY-n-G
5.3 V±2.0 %	0.265 V	S-80853CNPF-B9ETFx	S-80853CNY-n-G
5.4 V±2.0 %	0.270 V	S-80854CNPF-B9FTFx	S-80854CNY-n-G
5.5 V±2.0 %	0.275 V	S-80855CNPF-B9GTFx	S-80855CNY-n-G
5.6 V±2.0 %	0.280 V	S-80856CNPF-B9HTFx	S-80856CNY-n-G
5.7 V±2.0 %	0.285 V	S-80857CNPF-B9ITFx	S-80857CNY-n-G
5.8 V±2.0 %	0.290 V	S-80858CNPF-B9JTFx	S-80858CNY-n-G
5.9 V±2.0 %	0.295 V	S-80859CNPF-B9KTFx	S-80859CNY-n-G
6.0 V±2.0 %	0.300 V	S-80860CNPF-B9LTFx	S-80860CNY-n-G

^{*1.} TO-92 因包装方式的不同, n 有如下的变化。B: 散装、T: 卷带、Z: 折叠

备注 1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

^{*2.} 表示解除电压。

^{*3.} 有关电气特性,请参阅表 18。

^{*4.} 有关电气特性,请参阅表 20。

3-2. CMOS 输出产品

表 3 (1/2)

检测电压	滞后幅度 (典型值)	SC-82AB	SOT-23-5	SOT-89-3
0.8 V±2.0 %	0.034 V	S-80808CLNB-B7MT2x	_	_
0.9 V±2.0 %	0.044 V	S-80809CLNB-B7NT2x	_	_
1.0 V±2.0 %	0.054 V	S-80810CLNB-B7OT2x	_	_
1.1 V±2.0 %	0.064 V	S-80811CLNB-B7PT2x	_	_
1.2 V±2.0 %	0.073 V	S-80812CLNB-B7QT2x	_	_
1.3 V±2.0 %	0.083 V	S-80813CLNB-B7RT2x	_	_
1.4 V±2.0 %	0.093 V	S-80814CLNB-B7ST2x	_	_
1.5 V±2.0 %	0.075 V	S-80815CLNB-B6AT2x	S-80815CLMC-B6AT2x	S-80815CLUA-B6AT2x
1.6 V±2.0 %	0.080 V	S-80816CLNB-B6BT2x	S-80816CLMC-B6BT2x	S-80816CLUA-B6BT2x
1.7 V±2.0 %	0.085 V	S-80817CLNB-B6CT2x	S-80817CLMC-B6CT2x	S-80817CLUA-B6CT2x
1.8 V±2.0 %	0.090 V	S-80818CLNB-B6DT2x	S-80818CLMC-B6DT2x	S-80818CLUA-B6DT2x
1.9 V±2.0 %	0.095 V	S-80819CLNB-B6ET2x	S-80819CLMC-B6ET2x	S-80819CLUA-B6ET2x
2.0 V±2.0 %	0.100 V	S-80820CLNB-B6FT2x	S-80820CLMC-B6FT2x	S-80820CLUA-B6FT2x
2.1 V±2.0 %	0.105 V	S-80821CLNB-B6GT2x	S-80821CLMC-B6GT2x	S-80821CLUA-B6GT2x
2.2 V±2.0 %	0.110 V	S-80822CLNB-B6HT2x	S-80822CLMC-B6HT2x	S-80822CLUA-B6HT2x
2.3 V±2.0 %	0.115 V	S-80823CLNB-B6IT2x	S-80823CLMC-B6IT2x	S-80823CLUA-B6IT2x
2.4 V±2.0 %	0.120 V	S-80824CLNB-B6JT2x	S-80824CLMC-B6JT2x	S-80824CLUA-B6JT2x
2.5 V±2.0 %	0.125 V	S-80825CLNB-B6KT2x	S-80825CLMC-B6KT2x	S-80825CLUA-B6KT2x
2.6 V±2.0 %	0.130 V	S-80826CLNB-B6LT2x	S-80826CLMC-B6LT2x	S-80826CLUA-B6LT2x
2.7 V±2.0 %	0.135 V	S-80827CLNB-B6MT2x	S-80827CLMC-B6MT2x	S-80827CLUA-B6MT2x
2.8 V±2.0 %	0.140 V	S-80828CLNB-B6NT2x	S-80828CLMC-B6NT2x	S-80828CLUA-B6NT2x
2.9 V±2.0 %	0.145 V	S-80829CLNB-B6OT2x	S-80829CLMC-B6OT2x	S-80829CLUA-B6OT2x
3.0 V±2.0 %	0.150 V	S-80830CLNB-B6PT2x	S-80830CLMC-B6PT2x	S-80830CLUA-B6PT2x
3.1 V±2.0 %	0.155 V	S-80831CLNB-B6QT2x	S-80831CLMC-B6QT2x	S-80831CLUA-B6QT2x
3.2 V±2.0 %	0.160 V	S-80832CLNB-B6RT2x	S-80832CLMC-B6RT2x	S-80832CLUA-B6RT2x
3.3 V±2.0 %	0.165 V	S-80833CLNB-B6ST2x	S-80833CLMC-B6ST2x	S-80833CLUA-B6ST2x
3.4 V±2.0 %	0.170 V	S-80834CLNB-B6TT2x	S-80834CLMC-B6TT2x	S-80834CLUA-B6TT2x
3.5 V±2.0 %	0.175 V	S-80835CLNB-B6UT2x	S-80835CLMC-B6UT2x	S-80835CLUA-B6UT2x
3.6 V±2.0 %	0.180 V	S-80836CLNB-B6VT2x	S-80836CLMC-B6VT2x	S-80836CLUA-B6VT2x
3.7 V±2.0 %	0.185 V	S-80837CLNB-B6WT2x	S-80837CLMC-B6WT2x	S-80837CLUA-B6WT2x
3.8 V±2.0 %	0.190 V	S-80838CLNB-B6XT2x	S-80838CLMC-B6XT2x	S-80838CLUA-B6XT2x
3.9 V±2.0 %	0.195 V	S-80839CLNB-B6YT2x	S-80839CLMC-B6YT2x	S-80839CLUA-B6YT2x
4.0 V±2.0 %	0.200 V	S-80840CLNB-B6ZT2x	S-80840CLMC-B6ZT2x	S-80840CLUA-B6ZT2x
4.1 V±2.0 %	0.205 V	S-80841CLNB-B62T2x	S-80841CLMC-B62T2x	S-80841CLUA-B62T2x
4.2 V±2.0 %	0.210 V	S-80842CLNB-B63T2x	S-80842CLMC-B63T2x	S-80842CLUA-B63T2x
4.3 V±2.0 %	0.215 V	S-80843CLNB-B64T2x	S-80843CLMC-B64T2x	S-80843CLUA-B64T2x
4.4 V±2.0 %	0.220 V	S-80844CLNB-B65T2x	S-80844CLMC-B65T2x	S-80844CLUA-B65T2x
4.45 V typ.	4.70 V max.*1	_	_	S-80844KLUA-D2AT2x* ²
4.5 V±2.0 %	0.225 V	S-80845CLNB-B66T2x	S-80845CLMC-B66T2x	S-80845CLUA-B66T2x
4.6 V±2.0 %	0.230 V	S-80846CLNB-B67T2x	S-80846CLMC-B67T2x	S-80846CLUA-B67T2x
4.7 V±2.0 %	0.235 V	S-80847CLNB-B68T2x	S-80847CLMC-B68T2x	S-80847CLUA-B68T2x
4.8 V±2.0 %	0.240 V	S-80848CLNB-B69T2x	S-80848CLMC-B69T2x	S-80848CLUA-B69T2x
4.9 V±2.0 %	0.245 V	S-80849CLNB-B7AT2x	S-80849CLMC-B7AT2x	S-80849CLUA-B7AT2x
5.0 V±2.0 %	0.250 V	S-80850CLNB-B7BT2x	S-80850CLMC-B7BT2x	S-80850CLUA-B7BT2x
5.1 V±2.0 %	0.255 V	S-80851CLNB-B7CT2x	S-80851CLMC-B7CT2x	S-80851CLUA-B7CT2x
5.2 V±2.0 %	0.260 V	S-80808CLNB-B7MT2x	_	_

表 3 (2/2)

检测电压	滞后幅度 (典型值)	SC-82AB	SOT-23-5	SOT-89-3
5.3 V±2.0 %	0.265 V	S-80852CLNB-B7DT2x	S-80852CLMC-B7DT2x	S-80852CLUA-B7DT2x
5.4 V±2.0 %	0.270 V	S-80853CLNB-B7ET2x	S-80853CLMC-B7ET2x	S-80853CLUA-B7ET2x
5.5 V±2.0 %	0.275 V	S-80854CLNB-B7FT2x	S-80854CLMC-B7FT2x	S-80854CLUA-B7FT2x
5.6 V±2.0 %	0.280 V	S-80855CLNB-B7GT2x	S-80855CLMC-B7GT2x	S-80855CLUA-B7GT2x
5.7 V±2.0 %	0.285 V	S-80856CLNB-B7HT2x	S-80856CLMC-B7HT2x	S-80856CLUA-B7HT2x
5.8 V±2.0 %	0.290 V	S-80857CLNB-B7IT2x	S-80857CLMC-B7IT2x	S-80857CLUA-B7IT2x
5.9 V±2.0 %	0.295 V	S-80858CLNB-B7JT2x	S-80858CLMC-B7JT2x	S-80858CLUA-B7JT2x
6.0 V±2.0 %	0.300 V	S-80859CLNB-B7KT2x	S-80859CLMC-B7KT2x	S-80859CLUA-B7KT2x

^{*1.} 表示解除电压。

备注 1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

表 4(1/2)

检测电压	滞后幅度 (典型值)	SNT-4A	TO-92 ^{*1}
0.8 V±2.0 %	0.034 V	S-80808CLPF-B7MTFx	_
0.9 V±2.0 %	0.044 V	S-80809CLPF-B7NTFx	_
1.0 V±2.0 %	0.054 V	S-80810CLPF-B7OTFx	_
1.1 V±2.0 %	0.064 V	S-80811CLPF-B7PTFx	_
1.2 V±2.0 %	0.073 V	S-80812CLPF-B7QTFx	_
1.3 V±2.0 %	0.083 V	S-80813CLPF-B7RTFx	_
1.4 V±2.0 %	0.093 V	S-80814CLPF-B7STFx	_
1.5 V±2.0 %	0.075 V	S-80815CLPF-B6ATFx	S-80815CLY-n-G
1.6 V±2.0 %	0.080 V	S-80816CLPF-B6BTFx	S-80816CLY-n-G
1.7 V±2.0 %	0.085 V	S-80817CLPF-B6CTFx	S-80817CLY-n-G
1.8 V±2.0 %	0.090 V	S-80818CLPF-B6DTFx	S-80818CLY-n-G
1.9 V±2.0 %	0.095 V	S-80819CLPF-B6ETFx	S-80819CLY-n-G
2.0 V±2.0 %	0.100 V	S-80820CLPF-B6FTFx	S-80820CLY-n-G
2.1 V±2.0 %	0.105 V	S-80821CLPF-B6GTFx	S-80821CLY-n-G
2.2 V±2.0 %	0.110 V	S-80822CLPF-B6HTFx	S-80822CLY-n-G
2.3 V±2.0 %	0.115 V	S-80823CLPF-B6ITFx	S-80823CLY-n-G
2.4 V±2.0 %	0.120 V	S-80824CLPF-B6JTFx	S-80824CLY-n-G
2.5 V±2.0 %	0.125 V	S-80825CLPF-B6KTFx	S-80825CLY-n-G
2.6 V±2.0 %	0.130 V	S-80826CLPF-B6LTFx	S-80826CLY-n-G
2.7 V±2.0 %	0.135 V	S-80827CLPF-B6MTFx	S-80827CLY-n-G
2.8 V±2.0 %	0.140 V	S-80828CLPF-B6NTFx	S-80828CLY-n-G
2.9 V±2.0 %	0.145 V	S-80829CLPF-B6OTFx	S-80829CLY-n-G
3.0 V±2.0 %	0.150 V	S-80830CLPF-B6PTFx	S-80830CLY-n-G
3.1 V±2.0 %	0.155 V	S-80831CLPF-B6QTFx	S-80831CLY-n-G
3.2 V±2.0 %	0.160 V	S-80832CLPF-B6RTFx	S-80832CLY-n-G
3.3 V±2.0 %	0.165 V	S-80833CLPF-B6STFx	S-80833CLY-n-G
3.4 V±2.0 %	0.170 V	S-80834CLPF-B6TTFx	S-80834CLY-n-G
3.5 V±2.0 %	0.175 V	S-80835CLPF-B6UTFx	S-80835CLY-n-G
3.6 V±2.0 %	0.180 V	S-80836CLPF-B6VTFx	S-80836CLY-n-G
3.7 V±2.0 %	0.185 V	S-80837CLPF-B6WTFx	S-80837CLY-n-G
3.8 V±2.0 %	0.190 V	S-80838CLPF-B6XTFx	S-80838CLY-n-G

^{*2.} 有关电气特性,请参阅表 19。

表4(2/2)

检测电压	滞后幅度 (典型值)	SNT-4A	TO-92 ^{*2}
3.9 V±2.0 %	0.195 V	S-80839CLPF-B6YTFx	S-80839CLY-n-G
4.0 V±2.0 %	0.200 V	S-80840CLPF-B6ZTFx	S-80840CLY-n-G
4.1 V±2.0 %	0.205 V	S-80841CLPF-B62TFx	S-80841CLY-n-G
4.2 V±2.0 %	0.210 V	S-80842CLPF-B63TFx	S-80842CLY-n-G
4.3 V±2.0 %	0.215 V	S-80843CLPF-B64TFx	S-80843CLY-n-G
4.4 V±2.0 %	0.220 V	S-80844CLPF-B65TFx	S-80844CLY-n-G
4.45 V typ.	4.70 V max.*2		S-80844KLY-n-G ^{*3}
4.5 V±2.0 %	0.225 V	S-80845CLPF-B66TFx	S-80845CLY-n-G
4.6 V±2.0 %	0.230 V	S-80846CLPF-B67TFx	S-80846CLY-n-G
4.7 V±2.0 %	0.235 V	S-80847CLPF-B68TFx	S-80847CLY-n-G
4.8 V±2.0 %	0.240 V	S-80848CLPF-B69TFx	S-80848CLY-n-G
4.9 V±2.0 %	0.245 V	S-80849CLPF-B7ATFx	S-80849CLY-n-G
5.0 V±2.0 %	0.250 V	S-80850CLPF-B7BTFx	S-80850CLY-n-G
5.1 V±2.0 %	0.255 V	S-80851CLPF-B7CTFx	S-80851CLY-n-G
5.2 V±2.0 %	0.260 V	S-80852CLPF-B7DTFx	S-80852CLY-n-G
5.3 V±2.0 %	0.265 V	S-80853CLPF-B7ETFx	S-80853CLY-n-G
5.4 V±2.0 %	0.270 V	S-80854CLPF-B7FTFx	S-80854CLY-n-G
5.5 V±2.0 %	0.275 V	S-80855CLPF-B7GTFx	S-80855CLY-n-G
5.6 V±2.0 %	0.280 V	S-80856CLPF-B7HTFx	S-80856CLY-n-G
5.7 V±2.0 %	0.285 V	S-80857CLPF-B7ITFx	S-80857CLY-n-G
5.8 V±2.0 %	0.290 V	S-80858CLPF-B7JTFx	S-80858CLY-n-G
5.9 V±2.0 %	0.295 V	S-80859CLPF-B7KTFx	S-80859CLY-n-G
6.0 V±2.0 %	0.300 V	S-80860CLPF-B7LTFx	S-80860CLY-n-G

^{*1.} TO-92 因包装方式的不同,n 有如下的变化。B: 散装、T: 卷带、Z: 折叠

备注 1. x: G 或 U

2. 用户需要 Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

^{*2.} 表示解除电压。

^{*3.} 有关电气特性,请参阅表 19。

■ 输出方式的不同

1. S-808xxC系列的输出方式

表 5

	N 沟道开路漏极输出产品	CMOS 输出产品
	(动态 Low)	(动态 Low)
S-808xxC 系列	产品名结尾为 N	产品名结尾为 L
3-000XXC 余列	例: S-80815CN	例: S-80815CL

2. 输出方式的不同与使用方法

表 6

使用方法	N 沟道开路漏极输出产品(动态 Low)	CMOS 输出产品 (动态 Low)
不同种类电源的使用	0	X
CPU 等的复位为动态 Low	0	0
CPU 等的复位为动态 High	×	X
电阻分割而引起的检测电压的改变	0	X

• 有2个电源情况下的例子 • 有1个电源情况下的例子

图 3

■ 引脚排列图

表 7

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	NC *1	无连接
4	VSS	GND 端子

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 或 VSS 相接均可。

SOT-23-5 Top view

表 8

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	VSS	GND 端子
4	NC *1	无连接
5	NC *1	无连接

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 或 VSS 相接均可。

图 5

表 9

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	VSS	GND 端子

SNT-4A

Top view

表 10

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VSS	GND 端子
3	NC ^{*1}	无连接
4	VDD	电压输入端子

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 或 VSS 相接均可。

图 7

表 11

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	VSS	GND 端子

图 8

■ 绝对最大额定值

1. 检测电压为典型值 1.4 V 以下的产品

表 12

(除特殊注明以外: Ta = 25 °C)

			,	
	项目		绝对最大额定值	单位
电源电压		$V_{DD} - V_{SS}$	7	V
输出电压	N 沟道开路漏极输出产品	V_{OUT}	V_{SS} -0.3 ~ V_{SS} +7	V
	CMOS 输出产品		V_{SS} -0.3 ~ V_{DD} +0.3	V
输出电流		I _{OUT}	50	mA
交许功封	SC-82AB	P_{D}	150 (基板未安装时)	mW
台叶切代	3C-02AB	r D	350 ^{*1}	mW
	SNT-4A		140 (基板未安装时)	mW
	3111-47		300 ^{*1}	mW
工作环境》	温度	T_{opr}	−40 ~ +85	°C
保存温度		T_{stg}	−40 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成 产品劣化等物理性损伤。

图 9 封装容许功耗 (基板安装时)

2. 检测电压为典型值 1.5 V 以上的产品

表 13

(除特殊注明以外: Ta = 25 °C)

	项目	记号	绝对最大额定值	单位
电源电压	电源电压		12	V
输出电压	N 沟道开路漏极输出产品	V _{OUT}	V _{SS} -0.3 ~ V _{SS} +12	V
	CMOS 输出产品		V_{SS} -0.3 ~ V_{DD} +0.3	V
输出电流		I _{OUT}	50	mA
容许功耗	SC-82AB	P_{D}	150 (基板未安装时)	mW
台口切代	00-02AB	ı p	350 ^{*1}	mW
	SOT-23-5		250 (基板未安装时)	mW
	301-25-3		600 ^{*1}	mW
	SOT-89-3		500 (基板未安装时)	mW
	301-09-3		1000 ^{*1}	mW
	SNT-4A		140 (基板未安装时)	mW
	SIVI-4A		300 ^{*1}	mW
	TO-92		400 (基板未安装时)	mW
	10-32		800 ^{*1}	mW
工作环境》	温度	T_{opr}	−40 ~ +85	°C
保存温度		T_{stg}	−40 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

图 10 封装容许功耗 (基板安装时)

■ 电气特性

1. N沟道开路漏极输出产品

1-1. 检测电压为典型值 1.4 V 以下的产品

表 14

(除特殊注明以外: Ta = 25 °C)

项目	记号	条件	最小值	典型值	最大值	单位	测定 电路	
检测电压 ^{*1}	-V _{DET}	_	−V _{DET(S)} ×0.98	$-V_{DET(S)}$	−V _{DET(S)} ×1.02	V	1	
解除电压	+V _{DET}	S-80808		0.802	0.834	0.867	V	1
		S-80809		0.910	0.944	0.979	V	1
		S-80810		1.017	1.054	1.091	٧	1
		S-80811		1.125	1.164	1.203	٧	1
		S-80812		1.232	1.273	1.315	٧	1
		S-80813		1.340	1.383	1.427	٧	1
		S-80814		1.448	1.493	1.538	٧	1
滞后幅度	V_{HYS}	S-80808		0.018	0.034	0.051	٧	1
		S-80809		0.028	0.044	0.061	٧	1
		S-80810		0.037	0.054	0.071	٧	1
		S-80811		0.047	0.064	0.081	٧	1
		S-80812		0.056	0.073	0.091	٧	1
		S-80813		0.066	0.083	0.101	٧	1
		S-80814		0.076	0.093	0.110	V	1
消耗电流	I _{SS}	V _{DD} = 1.5 V S-80808 ~	09	_	1.3	3.5	μΑ	2
		V _{DD} = 2.0 V S-80810 ~	14	_	1.3	3.5	μΑ	2
工作电压	V_{DD}	_		0.65	_	5.0	V	1
输出电流	I _{OUT}	输出晶体管, N 沟道, V _{DS} = 0.5 V, V _{DD} =	0.04	0.2	_	mA	3	
泄漏电流	I _{LEAK}	输出晶体管, N 沟道, V _{DS} = 5.0 V, V _{DD} = 5.0 V		_	_	60	nA	3
响应时间	t _{PLH}	_		_	_	60	μs	1
检测电压的 温度系数 ^{*2}	$\frac{\Delta - V_{DET}}{\Delta Ta \bullet - V_{DET}}$	Ta = -40 ~ +85 °C		_	±100	±350	ppm/°C	1

^{*1. –}V_{DET}: 实际检测电压值、–V_{DET(S)}: 设定检测电压值(**表 1~2** 的检测电压范围的中心值) *2. 检测电压的温度变化[mV/°C]按如下公式计算出来。

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

1-2. 检测电压为典型值 1.5 V 以上的产品

表 15

(除特殊注明以外: Ta = 25°C)

(13.13.81/12.13.21/12.13.21								
项目	记号	条	件	最小值	典型值	最大值	单位	测定 电路
检测电压 ^{*1}	–V _{DET}	_	_	-V _{DET(S)} ×0.98	-V _{DET(S)}	-V _{DET(S)} ×1.02	V	1
滞后幅度	V_{HYS}	_	_	-V _{DET(S)} ×0.03	−V _{DET(S)} ×0.05	-V _{DET(S)} ×0.08	٧	1
消耗电流	I_{SS}	$V_{DD} = 3.5 \text{ V}$	S-80815 ~ 26	_	0.8	2.4	μΑ	2
		$V_{DD} = 4.5 \text{ V}$	S-80827 ~ 39	_	0.8	2.4	μΑ	2
		$V_{DD} = 6.0 \text{ V}$	S-80840 ~ 56	_	0.9	2.7	μΑ	2
		$V_{DD} = 7.5 \text{ V}$	S-80857 ~ 60	_	0.9	2.7	μΑ	2
工作电压	V_{DD}	_	_	0.95		10.0	V	1
输出电流		输出晶体管,	V _{DD} = 1.2 V, S-80815 ~ 60	0.59	1.36	_	mA	3
		N 沟道, V _{DS} = 0.5 V	V _{DD} = 2.4 V, S-80827 ~ 60	2.88	4.98	_	mA	3
泄漏电流	I _{LEAK}	输出晶体管,N 沟道, V _{DS} = 10.0 V, V _{DD} = 10.0 V		_	_	100	nA	3
响应时间	t _{PLH}	-				60	μs	1
检测电压的 温度系数 ^{*2}	$\frac{\Delta - V_{DET}}{\Delta Ta \bullet - V_{DET}}$	Ta = -40	~ +85 °C	_	±100	±350	ppm/°C	1

^{*1. -}V_{DET}: 实际检测电压值、-V_{DET(S)}: 设定检测电压值(**表 1~2** 的检测电压范围的中心值)

$$\frac{\Delta - V_{\text{DET}}}{\Delta Ta} \left[mV/^{\circ}C \right]^{*1} = -V_{\text{DET}(S)} \left(Typ. \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta Ta \bullet - V_{\text{DET}}} \left[ppm/^{\circ}C \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

^{*2.} 检测电压的温度变化[mV/°C]按如下公式计算出来。

2. CMOS 输出产品

2-1. 检测电压为典型值 1.4 V 以下的产品

表 16

(除特殊注明以外: Ta = 25 °C)

		Ì			·			
项目	记号	ž	条件	最小值	典型值	最大值	单位	测定 电路
检测电压 ^{*1}	-V _{DET}		_		$-V_{DET(S)}$	−V _{DET(S)} ×1.02	V	1
解除电压	+V _{DET}	S-80808		0.802	0.834	0.867	V	1
		S-80809		0.910	0.944	0.979	V	1
		S-80810		1.017	1.054	1.091	V	1
		S-80811		1.125	1.164	1.203	V	1
		S-80812		1.232	1.273	1.315	V	1
		S-80813		1.340	1.383	1.427	V	1
		S-80814		1.448	1.493	1.538	V	1
滞后幅度	V_{HYS}	S-80808		0.018	0.034	0.051	V	1
		S-80809		0.028	0.044	0.061	V	1
		S-80810		0.037	0.054	0.071	V	1
		S-80811		0.047	0.064	0.081	V	1
		S-80812		0.056	0.073	0.091	V	1
		S-80813		0.066	0.083	0.101	V	1
		S-80814		0.076	0.093	0.110	V	1
消耗电流	I _{SS}	$V_{DD} = 1.5 \text{ V}$	S-80808 ~ 09		1.3	I _{SS}	μΑ	2
		$V_{DD} = 2.0 \text{ V}$	S-80810 ~ 14		1.3	_	μΑ	2
工作电压	V_{DD}		_	0.65	_	5.0	V	1
输出电流	I _{оит}	输出晶体管, N 沟道, V _{DS} = 0	.5 V, V _{DD} = 0.7 V	0.04	0.2	_	mA	3
		输出晶体管, P 沟道, V _{DS} = 2.1V, V _{DD} = 4.5V		2.9	5.8	_	mA	4
响应时间	t _{PLH}					60	μs	1
检测电压的 温度系数 ^{*2}	$\frac{\Delta - V_{DET}}{\Delta Ta \bullet - V_{DET}}$	Ta = -40) ~ +85 °C	_	±100	±350	ppm/°C	1

^{*1. -}V_{DET}: 实际检测电压值、-V_{DET(S)}: 设定检测电压值(表 3~4 的检测电压范围的中心值)

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

^{*2.} 检测电压的温度变化[mV/°C]按如下公式计算出来。

2-2. 检测电压为典型值 1.5 V 以上的产品

表 17

(除特殊注明以外: Ta = 25 °C)

(称·特殊法的数月:Ta = 25								-0 0 ,
项目	记号	:	条件	最小值	典型值	最大值	单位	测定 电路
检测电压 ^{*1}	-V _{DET}		_	-V _{DET(S)} ×0.98	-V _{DET(S)}	−V _{DET(S)} ×1.02	V	1
滞后幅度	V _{HYS}		_	-V _{DET} ×0.03	−V _{DET} ×0.05	-V _{DET} ×0.08	V	1
消耗电流	I _{SS}	$V_{DD} = 3.5 \text{ V}$	S-80815 ~ 26	_	0.8	2.4	μΑ	2
		$V_{DD} = 4.5 \text{ V}$	S-80827 ~ 39	_	0.8	2.4	μΑ	2
		$V_{DD} = 6.0 \text{ V}$	S-80840 ~ 56	_	0.9	2.7	μΑ	2
		$V_{DD} = 7.5 \text{ V}$	S-80857 ~ 60	_	0.9	2.7	μΑ	2
工作电压	V_{DD}		_	0.95		10.0	V	1
输出电流	I _{OUT} 输出晶体管, N 沟道,		V _{DD} = 1.2 V S-80815 ~ 60	0.59	1.36	_	mA	3
		N 沟道, V _{DS} = 0.5 V	$V_{DD} = 2.4 \text{ V}$ S-80827 ~ 60	2.88	4.98		mA	3
		输出晶体管,	V _{DD} = 4.8 V S-80815 ~ 39	1.43	2.39		mA	4
		P 沟道,	$V_{DD} = 6.0 \text{ V}$ S-80840 ~ 56	1.68	2.78	_	mA	4
		$V_{DS} = 0.5 V$	V _{DD} = 8.4 V S-80857 ~ 60	2.08	3.42	_	mA	4
响应时间	t _{PLH}		_		_	60	μs	1
检测电压的 温度系数 ^{*2}	$\frac{\Delta - VDET}{\Delta Ta \bullet - VDET}$	Ta = -40 ~ +85 °C		_	±100	±350	ppm/°C	1

^{*1. -}V_{DET}: 实际检测电压值、-V_{DET(S)}: 设定检测电压值(**表 3~4** 的检测电压范围的中心值)

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

^{*2.} 检测电压的温度变化[mV/°C]按如下公式计算出来。

■ 测定电路图

1.

*1. CMOS 输出产品的情况下不需要 R。

图 11

2.

图 12

3.

图 13

4.

图 14

■ 工作时序图

1. N沟道开路漏极输出产品

图 15

2. CMOS 输出产品

备注 V_{DD} 在最低工作电压以下时,OUT 输出端子输出电压在阴影范围内为不稳定状态。
图 16

■ 工作说明

1. 基本工作: CMOS输出(动态Low)的情况下

- **1-2.** VDD即使降低到+VDET以下,只要在检测电压(-VDET)以上VDD也能被输出。VDD变为-VDET (**图18**的A点)以下时,输出方的N沟道晶体管变为ON,P沟道晶体管变为OFF,V_{SS}被输出。此时,**图17**的N沟道晶体管N1变为ON状态,往比较器输入的输入电压变为 RB VDD RA + RB
- **1-3.** V_{DD}进一步下降,若处在IC的最低工作电压以下就会导致输出的不稳定,在输出被上拉的情况下,输出 变为V_{DD}。
- **1-4.** 使V_{DD}上升到最低工作电压以上时,V_{SS}被输出。另外,即使V_{DD}超过了–V_{DET},在不足+V_{DET}的情况下输出变为V_{SS}。
- **1-5.** 再继续使V_{DD}上升,到+V_{DET} (**图18**的B点) 以上时,N沟道晶体管变为OFF,P沟道晶体管变为ON,V_{DD}被输出。

*1. 寄生二极管

图17 工作说明图1

2. 其他特性

2-1. 检测电压的温度特性

检测电压的温度特性在工作温度范围内,如图 19 所示的阴影范围。

*1. -V_{DET25}为在25°C时的检测电压值

图19 检测电压的温度特性(S-80827C的示例)

2-2. 解除电压的温度特性

解除电压的温度变化 $\frac{\Delta + V_{DET}}{\Delta Ta}$ 是利用检测电压的温度变化 $\frac{\Delta - V_{DET}}{\Delta Ta}$,如下式所示。

$$\frac{\Delta + V_{\text{DET}}}{\Delta \text{Ta}} = \frac{+V_{\text{DET}}}{-V_{\text{DET}}} \times \frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$$

因此,解除电压的温度变化和检测电压的温度变化具有相同符号的特性。

2-3. 滞后电压的温度特性

滯后电压的温度变化为
$$\frac{\Delta + V_{DET}}{\Delta Ta} - \frac{\Delta - V_{DET}}{\Delta Ta}$$
,如下式所示。

$$\frac{\Delta + V_{DET}}{\Delta Ta} - \frac{\Delta - V_{DET}}{\Delta Ta} = \frac{V_{HYS}}{-V_{DET}} \times \frac{\Delta - V_{DET}}{\Delta Ta}$$

■ 标准电路

*1. CMOS 输出产品的情况下不需要 R。

图 20

注意 上述连接图以及参数并不保证工作。实际的应用电路请在进行充分的评价基础上再设定参数。

■ 用语说明

1. 检测电压(-V_{DET}) 、解除电压(+V_{DET})

检测电压($-V_{DET}$)表示输出切换到Low时的电压。此检测电压,即使是同样的产品也有不同程度的差异,由此差异而引起的检测电压的最小值($-V_{DET}$)Min.到最大值($-V_{DET}$)Max.的范围称为检测电压范围(参阅**图 21**)。

例: S-80815CN的情况下,检测电压为 $1.470 \le (-V_{DET}) \le 1.530$ 的范围内的一点。也就是说,既有 $-V_{DET}=1.470$ 的产品,也存在 $-V_{DET}=1.530$ 的产品。

解除电压是输出切换到High时的电压。此解除电压,即使是同样的产品也有不同程度的差异,由此差异而引起的解除电压的最小值($+V_{DET}$)Min.到最大值($+V_{DET}$)Max.的范围称为解除电压范围。(参阅**图22**)。此值可以从各自产品的实际的检测电压($-V_{DET}$)中求出,在 $-V_{DET} \times 1.03 \le +V_{DET} \le -V_{DET} \times 1.08$ 的范围内。

例: S-80815CN的情况下,系列产品全体的解除电压为1.514 \leq (+V_{DET}) \leq 1.652的范围内的一点。也就是说,既有+V_{DET}=1.514的产品,也存在+V_{DET}=1.652的产品。

图 21 检测电压(CMOS 输出产品)

图 22 解除电压(CMOS 输出产品)

备注 检测电压与解除电压在1.514~1.530 V的范围内会重复,务必会变为(-V_{DET})<(+V_{DET})。

2. 滞后幅度(V_{HYS})

滞后幅度表示检测电压与解除电压之间的电压差(**图18**中B点的电压—A点的电压=V_{HYS})。通过在检测电压与解除电压之间带有滞后幅度,可以防止在因噪声等侵入输入电压时而产生的误工作。

3. 击穿电流

击穿电流是在电压检测器的检测以及解除时瞬间流经的电流。此击穿电流在输出方式为CMOS类型的产品 比较大,在N沟道开路漏极产品中也会稍许流经。

4. 振荡

在输入处连接电阻的应用电路中(**图23**),例如CMOS输出(动态Low)产品的情况下,输出Low→High切换时 (解除时),由于流经的击穿电流会发生[击穿电流]×[输入电阻]的份额的电压下降。输入电压降低到检测电压以下时,输出进行High→Low的切换。输出变为Low时,因为击穿电流不会流经,所以没有电压下降分额,输出Low→High切换时或者击穿电流流经时,会发生电压下降。此状态的反复发生称为振荡。

图23 检测电压改变电路不良事例

■ 用户要求规格产品的电气特性

1. S-80824KNUA-D2BT2x、S-80824KNY-n-G

表 18

(除特殊注明以外: Ta = 25°C)

ᅲᄆ	27 🗆	々	<i>(</i>)	目 小店	曲型店	旦上店	出户	测量中的
项目	记号	条	14		典型值		单位	测定电路
检测电压 ^{*1}	$-V_{DET}$	_	_	2.295	2.400 ^{*2}	2.505	V	1
解除电压	$+V_{DET}$	_	_	4.300	4.400	4.500	V	1
消耗电流	I _{SS}	$V_{DD} =$	6.0 V		8.0	2.4	μΑ	2
工作电压	V_{DD}	_	_	0.95	_	10.0	V	1
输出电流		输出晶体管, N沟道,	$V_{DD} = 0.95 \text{ V}$	0.03	0.24		mA	3
		V _{DS} =0.5 V	$V_{DD} = 1.2 \text{ V}$	0.23	0.50	_	mA	3
泄漏电流	I A.Z	输出晶体管, N V _{DD} = 10.0 V,	·		_	0.1	μΑ	3
响应时间	t_{PLH}	_	_		_	60	μs	1
检测电压的 温度系数 ^{*3}	$\frac{\Delta - V_{DET}}{\Delta Ta \bullet - V_{DET}}$	Ta = -40	Ta = −40 ~ 85°C		±100	±350	ppm/°C	1

- *1. -V_{DET}:实际检测电压值
- ***2.** 设定检测电压值(-V_{DET(S)})
- *3. 检测电压的温度变化[mV/°C]按如下公式计算出来。

$$\frac{\Delta - V_{\text{DET}}}{\Delta Ta} \left[mV/^{\circ}C \right]^{*1} = -V_{\text{DET(S)}} \left(Typ. \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta Ta \bullet - V_{\text{DET}}} \left[ppm/^{\circ}C \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

2. S-80844KLUA-D2AT2x、S-80844KLY-n-G

表 19

(除特殊注明以外: Ta = 25 °C)

项目	记号	条 ⁻	件	最小值	典型值	最大值	单位	测定电路
检测电压*1	$-V_{DET}$	_	_	4.295	4.450 ^{*2}	4.605	V	1
解除电压	$+V_{DET}$	_	_			4.700	V	1
消耗电流	I _{SS}	$V_{DD} =$	6.0 V		1.0	3.0	μΑ	2
工作电压	V_{DD}		_	0.95	_	10.0	V	1
输出电流	I _{OUT}	输出晶体管, N沟道,	$V_{DD} = 1.2 \text{ V}$	0.23	0.50		mA	3
		$V_{DS} = 0.5 \text{ V}$	$V_{DD} = 2.4 \text{ V}$	1.60	3.70		mA	3
		输出晶体管, P沟道, V _{DS} = 0.5 V	$V_{DD} = 4.8 \text{ V}$	0.36	0.62		mA	4
响应时间	t_{PLH}	_		1		60	μs	1
检测电压的 温度系数 ^{*3}	$\frac{\Delta - VDET}{\Delta Ta \bullet - VDET}$	Ta = -40	~ 85°C	_	±100	±350	ppm/°C	1

- *1. -V_{DET}: 实际检测电压值
- ***2.** 设定检测电压值(–V_{DET(S)})
- *3. 检测电压的温度变化[mV/°C]按如下公式计算出来。

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

3. S-80846KNUA-D2CT2x、S-80846KNY-n-G

(除特殊注明以外: Ta = 25 °C)

				(<u>)</u>				
项目	记号	条件		最小值	典型值	最大值	单位	测定电路
检测电压 ^{*1}	$-V_{DET}$	_		4.500	4.600 ^{*2}	4.700	V	1
滞后幅度	V _{HYS}	_			0.05	0.10	V	1
消耗电流	I _{SS}	$V_{DD} = 6.0 \text{ V}$			0.9	2.7	μΑ	2
工作电压	V_{DD}	_		0.95		10.0	V	1
输出电流	I _{оит}	输出晶体管,	$V_{DD} = 1.2 \text{ V}$	0.59	1.36		mA	3
		N沟道, V _{DS} = 0.5 V	$V_{DD} = 2.4 \text{ V}$	2.88	4.98		mA	3
泄漏电流	I _{LEAK}	输出晶体管,N沟道, V _{DD} = 10.0 V, V _{DS} = 10.0 V			_	0.1	μΑ	3
响应时间	t _{PLH}	_				60	μs	1
检测电压的 温度系数 ^{*3}	$\frac{\Delta - VDET}{\Delta Ta \bullet - VDET}$	Ta = -40 ~ 85°C			±100	±350	ppm/°C	1

- *1. -V_{DFT}: 实际检测电压值
- *2. 设定检测电压值(-V_{DET(S)})
- *3. 检测电压的温度变化[mV/°C]按如下公式计算出来。

$$\frac{\Delta - V_{\text{DET}}}{\Delta Ta} \left[mV/^{\circ}C \right]^{*1} = -V_{\text{DET(S)}} \left(Typ. \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta Ta \bullet - V_{\text{DET}}} \left[ppm/^{\circ}C \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

■ 注意事项

- 本 IC 虽内置防静电保护电路,但请不要对 IC 施加超过保护电路性能的过大静电。
- CMOS 输出产品在检测以及解除时会流经击穿电流。因此,若输入为高阻抗,由于解除时的击穿电流而引起的电压降低有导致振荡的情况发生。
- 当在 CMOS 输出产品处连接下拉电阻且电源电压(V_{DD})的下降时间在检测电压附近比较缓慢时,有可能会发生振荡。
- 本资料中所记载的应用电路用于大量生产设计的情况下,请注意元器件的偏差与温度特性。 另外,有关所记载电路的专利,本公司概不承担相应责任。
- 使用本公司的 IC 生产产品时,如在其产品中对该 IC 的使用方法或产品的规格,或因与所进口国对包括本 IC 产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 检测电压(V_{DET}) - 温度(Ta)

2. 滞后电压幅(V_{HYS}) - 温度(Ta)

3. 消耗电流(Iss) - 输入电压(VDD)

4. 消耗电流(Iss) - 温度(Ta)

5. N沟道晶体管输出电流(louт) – Vрs

6. P沟道晶体管输出电流(lout) – Vps

7. N沟道晶体管输出电流(lout) - 输入电压(Vdd)

8. P沟道晶体管输出电流(lout) - 输入电压(VDD)

9. 最低工作电压 - 输入电压(VDD)

备注 V_{DDmin}是在V_{DD}从0 V开始上升时,如上图所示 V_{OUT}变为PULL-UP电压的10%以下时的V_{DD}电压 而定义的。

图24

10.动态响应特性 - Cout

图25 响应时间的测定条件

图26 响应时间的测定电路

注意 上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

■ 应用电路例

1. 微机等的复位电路

微机电脑在电源电压比工作保证电压还低的情况下,执行规定以外的程序,会导致破坏存储器·寄存器的内容的情况发生。另外,电源恢复到正常电位时,如果不把微机设定到所定的初期状态,会导致以后的异常工作。为了防止这样的事故,在电源的瞬间切断·瞬间停止时一定要进行复位工作。

S-808xxC系列电压检测器,因为具有工作保证电压低、检测电压精度高、备有滞后并且内置了延迟电路,如图27、28所示,可以简单地构成复位电路。

(但是仅 N 沟道开路漏极产品)

图27 复位电路示例(S-808xxCL)

图28 复位电路示例(S-808xxCN)

注意 上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定 参数。

2. 电源接通复位电路的增加

在S-808xxC系列产品中,使用N沟道开路漏极产品可以构成电源接通复位电路。

- *1. 为了防止振荡,请设定R在75 $k\Omega$ 以下。
- *2. Di在电源下降时可通过C使已被充电的电荷瞬间放电。 在不受下降时间的延迟影响的情况下,没有必要插入。

图29

图30

备注 在电源急剧启动时,如**图31**所示由于IC的不稳定领域特性(在IC的最低工作电压以下,输出电压变得不稳定),会有一瞬间变为High的情况发生。

图31

3. 检测电压的改变

在S-808系列产品中,若没有所需的检测电压范围,可以利用分割电阻或者二极管来改变检测电压,如**图** 32、33所示,但是仅限于N沟道开路漏极产品。

图32的情况下滞后幅度也会同时地变化。

$$VSSO$$

检测电压= $\frac{R_A + R_B}{R_B} \bullet - V_{DET}$

滞后幅度= $\frac{R_A + R_B}{R_B} \bullet V_{HYS}$

检测电压=V_{f1}+V_{f2}+(-V_{DET})

*1. 为了防止振荡,请设定RA在75 kΩ以下。

注意 R_A、R_B变大时,由于IC的击穿电流(N沟道开路漏极产品也会稍微流经),滞后幅度有可能会大于计算式的结果。

图32 图33

注意 上述连接图以及参数并不保证工作。实际的应用电路请在进行充分的评价基础上再设定参数。

No. NP004-A-P-SD-1.1

TITLE	SC82AB-A-PKG Dimensions	
No.	NP004-A-P-SD-1.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. NP004-A-C-SD-3.0

TITLE	SC82AB-A-Carrier Tape	
No.	NP004-A-C-SD-3.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. NP004-A-C-S1-2.0

TITLE	SC82AB-A-Carrier Tape	
No.	NP004-A-C-S1-2.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. NP004-A-R-SD-1.1

TITLE	SC82AB-A-Reel		
No.	NP004-A-R-SD-1.1		
SCALE		QTY.	3,000
UNIT	mm		
Seiko Instruments Inc.			

No. MP005-A-P-SD-1.2

TITLE	SOT235-A-PKG Dimensions
No.	MP005-A-P-SD-1.2
SCALE	
UNIT	mm
Seiko Instruments Inc.	

No. MP005-A-C-SD-2.1

TITLE	SOT235-A-Carrier Tape	
No.	MP005-A-C-SD-2.1	
SCALE		
UNIT	mm	
Caika Instrumenta Ins		
Seiko Instruments Inc.		

TITLE	SOT235-A-Reel		
No.	MP005-A-R-SD-1.1		
SCALE		QTY.	3,000
UNIT	mm		
Seiko Instruments Inc.			

No. UP003-A-P-SD-1.1

TITLE	SOT893-A-PKG Dimensions	
No.	UP003-A-P-SD-1.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. UP003-A-C-SD-1.1

TITLE	SOT893-A-Carrier Tape
No.	UP003-A-C-SD-1.1
SCALE	
UNIT	mm
Seiko Instruments Inc.	

TITLE	SOT89	3-A-Re	el
No.	UP003-A	-R-SD-1.	1
SCALE		QTY.	1,000
UNIT	mm		
Seiko Instruments Inc.			

No. PF004-A-P-SD-4.0

TITLE	SNT-4A-A-PKG Dimensions	
No.	PF004-A-P-SD-4.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. PF004-A-C-SD-1.0

TITLE	SNT-4A-A-Carrier Tape	
No.	PF004-A-C-SD-1.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

TITLE	SNT-4A-A-Reel		
No.	PF004-A-R-SD-1.0		
SCALE		QTY.	5,000
UNIT	mm		
Seiko Instruments Inc.			

Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.

パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。 注意

No. PF004-A-L-SD-3.0

TITLE	SNT-4A-A-Land Recommendation	
No.	PF004-A-L-SD-3.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		
UNIT		

No. YS003-B-P-SD-1.1

TITLE	TO92-B-PKG Dimensions	
No.	YS003-B-P-SD-1.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc		

No. YF003-A-P-SD-1.1

TITLE	TO92-A-PKG Dimensions	
No.	YF003-A-P-SD-1.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. YF003-A-C-SD-4.1

TITLE	TO92-A-Radial Tape	
No.	YF003-A-C-SD-4.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. YF003-A-R-SD-2.1

TITLE	TO92-A-Reel			
No.	YF003-A-R-SD-2.1			
SCALE		QTY.	2,000	
UNIT	mm	•		
Seiko Instruments Inc.				

No. YF003-A-P-SD-1.1

TITLE	TO92-C-PKG Dimensions	
No.	YF003-A-P-SD-1.1	
SCALE		
UNIT	mm	
Calles In atmires anta In a		
Seiko Instruments Inc.		

No. YZ003-C-C-SD-3.1

TITLE	TO92-C-Radial Tape	
No.	YZ003-C-C-SD-3.1	
SCALE		
UNIT	mm	
	<u> </u>	
Seiko Instruments Inc.		

Side spacer placed in front side

Space more than 4 strokes

No. YZ003-C-Z-SD-2.1

TITLE	TO92-C-Ammo Packing		
No.	YZ003-C-Z-SD-2.1		
SCALE		QTY.	2,500
UNIT	mm		
Seiko Instruments Inc			

Selko instruments inc.

Seiko Instruments Inc.

- 本资料内容,随着产品的改进,可能会有未经预告的更改。
- 本资料所记载的设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品的代 表性应用说明,并非保证批量生产的设计。
- 本资料所记载产品,如属外汇交易及外国贸易法中规定的限制货物(或劳务)时,基于该法律规定,需得到日本国政府的 出口许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载的产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空 器械及车载器械等对人体产生影响的器械或装置部件使用。
- 本公司致力于提高质量与信赖性,但是半导体产品有可能会有一定的概率产生故障或误工作。为防止因故障或误工作而产 生的人身事故、火灾事故、社会性损害等,请注意冗长设计、火势蔓延对策设计、防止误工作设计等安全设计。