Bias & Fairness

Al in decision Making: Using ML to make yes/no decisions about taking a given action

Examples

- Fraud Prevention
- Credit Lending
- Insurance Policy Pricing
- Preventive Healthcare
- College admission
- Screening Job Candidates

Examples

- Fraud Prevention
- Credit Lending
- Insurance Policy Pricing
- Preventive Healthcare
- College admission
- Screening Job Candidates

patterns

Algorithmic decision-making

Can be seen as a statistical risk assessment: we aim to predict the likelihood of an outcome

What is the likelihood of:

- This patients developing disease X?
- This credit card has been stolen?
- This candidate being successful in the job?

We solve this is binary classifiers on historical outcomes

Validation/test sets are used to rank the score (probas, not 0/1) and we pick a threshold for defining 0/1 predictions

Algorithmic decision-making

Can be seen as a statistical risk assessment: we aim to predict the likelihood of an outcome

What is the likelihood of:

- This patients developing disease X?
- This credit card has been stolen?
- This candidate being successful in the job?

We solve this is binary classifiers on historical outcomes

Validation/test sets are used to rank the score (probas, not 0/1) and we pick a threshold for defining 0/1 predictions

Rank	Score	Label
1	0.997	1
2	0.993	1
3	0.986	1
4	0.982	1
5	0.971	0
6	0.965	1
7	0.964	0
8	0.961	0
9	0.953	0
10	0.932	1
11	0.918	0
12	0.873	0
13	0.854	0
14	0.839	0
15	0.777	0
16	0.723	0
17	0.634	0
18	0.512	0
19	0.487	0
20	0.473	0

Total Label Positives: 6 Total Label Negatives: 14 Prevalence: 6/20 = 0.3

Rank	Score	Label	
1	0.997	1	Total Label Positives: 6
2	0.993	1	Total Label Negatives: 14 Prevalence: 6/20 = 0.3
3	0.986	1	Predicted Positive: 4
4	0.982	1	Trodictor Solition
5	0.971	0	
6	0.965	1	Predicted Negative: 16
7	0.964	0	F # 1 11 0000 1 1 1
8	0.961	0	For threshold > 0.980 or top $k = 4$
9	0.953	0	True Positives: 4
10	0.932	1	False Positives : 0
11	0.918	0	False Negatives : 2
12	0.873	0	True Negatives : 14
13	0.854	0	
14	0.839	0	
15	0.777	0	
16	0.723	0	
17	0.634	0	
18	0.512	0	
19	0.487	0	

0.473

		Predicted condition		Sources: [1][2][3][4][5][6][7][8][9] view-talk-edit		
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}$	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$	
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$	
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP/PP = 1 - FDR	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

Probabilistic Interpretation

True Positive Rate (Recall) = P(Predicted Positive | Actual Positive)

Positive Predicted Value (PPV) (Precision) = P(Actual Positive | Predicted Positive)

False Positive Rate (FPR) = P(Predicted Positive | Actual Negative)

False Negative Rate (FNR) = P(Predicted Negative | Actual Positive)

False Discovery Rate (FDR) = P(Actual Negative | Predicted Positive) = 1 - PPV

False Omission Rate (FOR) = P(Actual Positive | Predicted Negative)

True Negative Rate (TNR) = P (Predicted Negative | Actual Negative)

Rank	Score	Label		
1	0.997	1		Total Label Positives: 6
2	0.993	1	Total Label Negatives: 14	-
3	0.986	1	Predicted Positive: 4	Prevalence: 6/20 = 0.3
4	0.982	1	Tredicted Fositive. 4	
5	0.971	0		
6	0.965	1	Predicted Negative: 16	
7	0.964	0		
8	0.961	0	For th	reshold > 0.980 or top k = 4
9	0.953	0	True	Positives: 4
10	0.932	1		Positives: 0
11	0.918	0		Negatives : 2
12	0.873	0		Negatives : 14
13	0.854	0		
14	0.839	0		
15	0.777	0	False Positive Rate: 0/14 = 0 Recall: 4/6 = 0.66	
16	0.723	0		1. 4/6 = 0.66
17	0.634	0	False	Negative Rate: 2/6 = 0.33
18	0.512	0	Precision = $4/4 = 1.0$	•
19	0.487	0		
20	0.473	0		

Rank	Score	Lab	pel					
1	0.997	1	Total Label Positives: 6					
2	0.993	1		Total Label Negatives: 14				
3	0.986	1		Prevalence: 6/20 = 0.3				
4	0.982	1						
5	0.971	0						
6	0.965	1						
7	0.964	0						
8	0.961	0		For threshold > 0.920 or top k = 10				
9	0.953	0	Predicted Positive: 10	True Positives: 6				
10	0.932	1	Fredicted Fositive. 10	False Positives : 4				
11	0.918	0	_	False Negatives : 0				
12	0.873	0	Predicted Negative: 10	True Negatives : 10				
13	0.854	0	•	3				
14	0.839	0						
15	0.777	0		False Positive Rate: 4/14 = 0.29				
16	0.723	0		Recall: 6/6 = 1.0				
17	0.634	0		False Negative Rate: 0/6 = 0				
18	0.512	0		Precision = 6/10 = 0.6				
19	0.487	0						
20	0.473	0						
-	_	-						

Recall:

 $P(y_pred = 1 | label = 1)$

FPR:

 $P(y_pred = 1 | label = 0)$

If Recall = FPR, the probability of predicting an instance as positive is independent of the label, therefore it is a random decision

Not all instances are the same...

R	ank	Score	Label	Skin Color
1		0.997	1	non-white
2		0.993	1	white
3		0.986	1	white
4		0.982	1	non-white
5		0.971	0	white
6		0.965	1	white
7		0.964	0	white
8		0.961	0	non-white
9		0.953	0	non-white
1	0	0.932	1	non-white
1	1	0.918	0	non-white
1	2	0.873	0	white
1	3	0.854	0	white
1	4	0.839	0	white
1	5	0.777	0	white
1	6	0.723	0	non-white
1	7	0.634	0	white
1	8	0.512	0	non-white
1	9	0.487	0	white
2	0	0.473	0	non-white

Overall

Total Label Positives: 6
Total Label Negatives: 14
Prevalence: 6/20 = 0.3

Non-White

Total Label Positives: 3 Total Label Negatives: 6 Group size: 9 Prevalence: 0.33

White

Total Label Positives: 3 Total Label Negatives: 8 Group size: 11 Prevalence: 0.27

True Positives: 3

False Positives: 2 False Negatives: 0

True Negatives: 6

Overall

Total Label Positives: 6 Total Label Negatives: 14 Prevalence: 6/20 = 0.3

Non-White

Total Label Positives: 3 Total Label Negatives: 6 Group size: 9 Prevalence: 0.33

White

Total Label Positives: 3 Total Label Negatives: 8 Group size: 11 Prevalence: 0.27

Non-White

FPR: 2/8 = **0.25** Recall: 3/3 = 1.0Precision: 3/5 = 0.6

FNR = 0

True Positives: 3 False Positives: 2 False Negatives: 0 True Negatives: 4

Recall: 3/3 = 1.0Precision: 3/5 = 0.6FNR = 0

FPR: 2/6 = 0.33

white and non-white a problem?

Is the previous difference in False Positive Rates between

Is the previous difference in False Positive Rates between

white and non-white a problem?

It depends on the action/intervention

Bias in Decision-Making

Decision making is about predictions. There will be errors: false positives and false negatives

Bias is about disparate errors against specific sub-groups.

Decision-Making has been around for thousands of years. Bias as well

Sources of Bias

World

People

Data

Sample

Label

Machine Learning Pipeline (Decisions)

Actions

Label Bias

The way the target variable is defined and each data point is labeled might represent disparities between groups.

Differential measurement accuracy across groups (labeling quality).

A variable can be positively correlated with target variable within the majority group but negatively on other groups.

Police Internal Investigations for example.

Bias can be introduced in every step of the ML Pipeline

Action/Intervention Bias

Heterogeneity in the effectiveness of an intervention across groups

Discriminatory 'overrides' by the actor conducting an intervention

My fairness definition or yours?

There is no universally-accepted definition of what it means for a decision-making model to be fair.

Punitive Action Example

A model being used to make bail determination (keeping people in jail)

It makes mistakes about denying bail to an equal number of white and non-white individuals

Equal count of False Positives

P(wrongly jailed, group i) = C, for all i

The chances that a given white or non-white person will be wrongly denied bail is equal, regardless of race

Equal Group Size-Adjusted False Positives

P(wrongly jailed | group i) = C , for all i

Among the jailed population, the probability of having been wrongly denied bail is independent of skin color.

Equal False Discovery Rate

P(wrongly jailed | jailed, group i) = C, for all i

For people who should be released, the chances that a given white or non-white person will be denied bail is equal

Equal False Positive Rate

P(wrongly jailed | innocent, group i) = C , for all i

Assistive Action Example

A model being used to subsidy diabetes screening and access to preventive care

It makes mistakes about denying subsidy to an equal number of women and men.

Equal count of False Negatives

P(missed by benefit, group i) = C, for all i

Among the non screened population, the probability of being wrongly denied subsidy is independent of sex

Equal False Omission Rate

P(missed by program | no subsidy, group i) = C , for all i

For people who need a social service, the chances that a given woman or man will not get a subsidy is equal.

Equal False Negative Rate

P(missed by subsidy | need assistance, group i) = C , for all i

Parity Measures

Compare a given metric with a reference group

Bias measured as disparity between group metrics

$$FPR_g \ disp = \frac{FPR_{a_i}}{FPR_{a_r}} = \frac{\Pr(\widehat{Y}=1|Y=0,A=a_i)}{\Pr(\widehat{Y}=1|Y=0,A=a_r)}$$

Parity Notion of Fairness

This notion requires that all biases (disparities) be within the range defined by the fairness threshold.

$$\tau \leq DisparityMeasure_{group_i} \leq \frac{1}{\tau}$$

Example: If the fairness threshold is 0.8, the fairness range is between 80% and 125% of the group metric value of the selected reference group."

Famous Misconceptions

No "Fairness through Unawareness"

Shall I use race or gender in my models? Remove protected attributes?

Well, other features subsume the protected attributes.

Example: Easy to predict gender based on Facebook likes."

No "Fairness through Demographic Parity"

Example: Accept the same % of women and men for the job as the % of women and men in the population (city? country? candidates pool?)

Decision to be independent from the protected attribute?

Does not ensures "supervised fairness", as it is possible to have different false positive/negative parities across groups.

Cripples the overall utility metric (e.g. A correlated with Y)

Fairness Tradeoffs

If the base rate (prevalence) is different between groups and the classifier is non-trivial (Recall>0) and imperfect (FPR > 0). Then, either:

- Precision Parity Fails (same as FDR parity)
- FPR and Recall (same as FNR) will be disparate (no equalized odds)

[Kleinberg16, Chouldechova17]