1 - Introduction Concept Check

4			
1	Multiple Choice 2 points		
	What are the primary types of radiation environments that can affect microelectronic devices?		
	\bigcirc	Only nuclear power environments due to the highly energetic particles	
		Only automotive environments due to the high risk to humans	
	\bigcirc	Only terrestrial environments due to cosmic ray scattering	
		Space, nuclear, medical, and terrestrial environments due to varied radiation types and intensities	
2	М	ultiple Choice 2 points	
	Why is understanding transistor structure and material composition critical when evaluating radiation effects in microelectronics?		
	\bigcirc	Because radiation only impacts packaging, not internal device structures	
		Because different materials (semiconductors, insulators, conductors) respond differently to radiation, influencing device behavior	
		Because conductors are the only materials affected by radiation	

3	М	ultiple Choice 2 points	
	Which of the following best describes a Single-Event Upset (SEU)?		
	\bigcirc	A gradual degradation of device performance due to ionizing dose	
	\bigcirc	A permanent failure in a transistor due to displacement damage	
		A transient or permanent change in the state of a memory cell caused by a single energetic particle	
		A packaging defect that causes alpha particle emission	
4	М	ultiple Choice 2 points	
<u> </u>			
	vvna	t is Total Ionizing Dose (TID) , and how does it impact MOSFET devices?	
	\bigcirc	TID causes immediate burnout of the gate oxide	
		TID improves device performance by enhancing conductivity in the semiconductor material	
		TID results in trapped charge in insulators, leading to threshold voltage shifts and increased leakage	
		TID results in trapped charge in conductors, leading to changes in resistivity	
5	Multiple Choice 2 points		
		t are the key differences between Hardened by Design (HBD) and Hardened by Process 2) approaches to radiation mitigation?	
		There is no difference; both refer to system-level error correction	
	\bigcirc	HBD involves layout and circuit strategies; HBP involves material and structural changes	
	\bigcirc	HBD modifies materials, while HBP changes circuit topology	
	\bigcirc	HBD uses shielding; HBP uses redundancy	