Getting Started

Wednesday, January 27, 2016

- 1:38 PM
- MNIST dataset: 60k examples for training set(of which, 10k are for validation), 10k for testing.
 - o Every example is a fixed size image of 28x28px
 - Each pixel is represented by a value between 0 and 1(normalized from the 0 to 255 vals)
 - o Tuple of 3 lists(training, validation, testing)
 - Each list is a pair of images and a pair of class labels(numbers the images stand represent)
 - ☐ Each image represented as a 1d numpy array of 784 float vals
- Theano tips:
 - o Minibatches used with an index
 - Minibatches are loaded into the GPU memory all at once into a shared variable because copying things to the GPU memory adds a large operational overhead - then they are selected with an index
 - Use different shared variables for the labels and the data because they are different types of data.
 - Use different shared variables for the 3 different sets
 - o When storing data in GPU, you need to use floats
 - dtype should be theano.config.floatX
 - o If not enough memory on the GPU, you can chunk your data further
- Notation:
 - o D: Dataset
 - O Dtrain, Dvalid, Dtest sets
 - Each dataset is an indexed set of pairs $(x^{(i)}, y^{(i)})$
 - Superscripts used to distinguish training sets:
 - x⁽ⁱ⁾ ∈ R^D
 - ☐ Is the ith training example of dimensionality D
 - $y^{(i)} \in \{0, ..., L\}$
 - $\hfill\Box$ Is the ith label assigned to input $x^{(i)}$
 - □ y⁽ⁱ⁾ can have other types

Math Conventions

- ullet W: upper-case symbols refer to a matrix unless specified otherwise
- ullet W_{ij} : element at i-th row and j-th column of matrix W
- $W_{i\cdot},W_{i\cdot}$ vector, i-th row of matrix W
- $W_{\cdot j}$: vector, j-th column of matrix W
- b: lower-case symbols refer to a vector unless specified otherwise
- b_i : i-th element of vector b

List of Symbols and acronyms

- D: number of input dimensions.
- $D_h^{(i)}$: number of hidden units in the i-th layer.
- $f_{\theta}(x)$, f(x): classification function associated with a model $P(Y|x,\theta)$, defined as $\operatorname{argmax}_k P(Y=k|x,\theta)$. Note that we will often drop the θ subscript.
- L: number of labels.
- $\mathcal{L}(\theta,\mathcal{D})$: log-likelihood \mathcal{D} of the model defined by parameters θ .
- $\ell(heta,\mathcal{D})$ empirical loss of the prediction function f parameterized by heta on data set \mathcal{D} .
- · NLL: negative log-likelihood
- θ : set of all parameters for a given model

Gradient-Based Learning

Wednesday, January 27, 2016 8:26 PM

•
$$C(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(f_{\theta}, z_i)$$

- Cost function is the average/expectation of a loss function(training loss)
- \circ θ : parameter vector
- \circ C(θ) is a scalar value which we want to minimize
- \circ z =(x,y)
- \circ f_{θ}(x) is a prediction of y, indexed by the parameters θ
- \circ The gradient of C(θ) when θ is a single scalar is:

$$\frac{\partial C(\theta)}{\partial \theta}$$

- When θ is a vector, we hold other parameters fixed and find the change and result
- Gradient descent:
 - Ideally, we want to find the values at which:

$$\frac{\partial C(\theta)}{\partial \theta} = 0$$

 \circ Because we usually can't find the minima, we aim to find the local minima through local descent; iteratively modifying θ as to decrease $C(\theta)$, until we cannot anymore

$$\circ \quad \theta^{k+1} = \theta^k - \epsilon_k \frac{\partial C(\theta^k)}{\partial \theta^k}$$

- Ordinary gradient descent
- ϵ_k is the learning rate
- θ^k represents the parameters at the kth iteration
- Stochastic gradient descent:

$$\theta^{k+1} = \theta^k - \epsilon_k \frac{\partial L(\theta^k, z)}{\partial \theta^k}$$

- z is next example from training set
- Works because C is an average of the losses
- Much faster because we make constant changes to the parameters after each example
- Mini-batch gradient descent:
 - o Average a small batch of the training set in order to get the direction
 - o Between batch gradient descent and stochastic gradient descent in functionality