Engineering Mathematics 1 (Fall 2021)

Prof. Fengying Wei
E-mail: weifengying@fzu.edu.cn
College of Mathematics and Statistics, Fuzhou University

October 8, 2021

Students should be able to (after learning)

- Add, subtract and multiply complex numbers
- Convert complex numbers between Cartesian and polar forms
- Differentiate all commonly occurring functions including polynomials, exponential functions, trigonometric functions, hyperbolic functions and combinations thereof
- Distinguish between the two main meanings of a derivative, namely the derivative as a tangent and the derivative as a rate of change
- Integrate certain standard functions, constructed from polynomials, exponential functions, trigonometric functions, hyperbolic functions and combinations thereof
- Distinguish between the two main meanings of integration, namely the integral as the inverse of the derivative and the integral as the area under a curve
- Apply Taylor series to numerically approximate functions
- Apply Simpson's rule to numerically evaluate integrals
- Solve simple first and second order ordinary differential equations
- Apply and select the appropriate mathematical techniques to solve a variety of associated engineering problems

Lecture 6: Sequences and Series-Part 1 un = general term 1. Infinity and limits limits of n/n2 Un= 1 2. Rules of limits $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{N}$, ... Multiplication by a constant $U_n = \frac{1}{N^2}$, $U_n = \frac{1}{N^2}$ lim fen) = F. > lim a fen = a F $u_n = \frac{2}{n}$ Take $f(n) = \frac{2}{n}$. We have known $\lim_{n \to \infty} \frac{1}{n} = 0$, which gives $\lim_{n \to \infty} \frac{2}{n} = 2 \lim_{n \to \infty} \frac{1}{n} = 2 \cdot 0 = 0$ Sums and differences hilfin + gens = lin fin) + lingin $\lim_{n \to \infty} \frac{n+1}{n} = 1. \quad \lim_{n \to \infty} \frac{1}{n} = 0 \implies \lim_{n \to \infty} \left(\frac{4n+3}{5n} + \frac{4}{n} \right) = \lim_{n \to \infty} \frac{4n+3}{5n} + \lim_{n \to \infty} \frac{4}{n}$ Products and quotients $= \frac{4}{5} \lim_{n \to \infty} \frac{n+\frac{3}{4}}{n} + 4 \lim_{n \to \infty} \frac{1}{n} = \frac{4}{5} \cdot 1 + 4 \cdot 0 = \frac{4}{5} \cdot 1$ $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$ $\lim_{n\to\infty}\frac{n+1}{N^2}=\lim_{n\to\infty}\frac{n+1}{n}\cdot\lim_{n\to\infty}\frac{1}{n}=1\cdot0=0$ $\frac{f(n)}{g(n)} = \frac{\lim_{n \to \infty} f(n)}{\lim_{n \to \infty} g(n)} \quad \text{for } \lim_{n \to \infty} g(n) \neq 0. \quad \lim_{n \to \infty} \frac{n+1}{n^2} = \frac{\lim_{n \to \infty} \frac{n+1}{n^2}}{\lim_{n \to \infty} \frac{n+1}{n^2}} = 0$ Indeterminate limits finj= Un=n 1, 2, 3, 4, ..., n, ... lifinj= lin = 0 1.4,9,16,..., n²,... lifin) = li n²= 00 N>00 N>00 $f(n)=U_n=\frac{N}{N_2+1}$ $f(n)=\frac{N}{N_2+1}=$

1. Arithmetic series and mean:

general term:
$$u_n = a + (n-1)d$$

$$a + (a+d) + (a+2d) + \dots + (a+(n-1)d) = \sum_{r=0}^{n-1} (a+rd) = na + \frac{n(n-1)d}{2}.$$
Given $P \in \mathcal{Q}$ mean of $P \in \mathcal{Q}$ is $A = P + Q$.

Given
$$P, Q$$
, mean of P, Q is $A = \frac{P+Q}{2}$. $\Rightarrow P \land A$

Exi Given
$$10+6+2-2-6...$$
, find first $\Rightarrow a$, $a+d$, $a+2d$
 $20-1$ $d=6-10=-4$, $a=10$. $= 20$ terms.

$$\geq (a+rd) = 20 \times 10 + \frac{20 \times 19}{2} \times (-4) = -560$$

$$U_7 = 22$$
, $U_{12} = 37$, find series.
 $U_7 = a + 6d = 226$
 $U_{12} = a + 11d = 37$... $a = 4$.

$$4.2 = 0 + (10 = 3 + 1) = 4.$$

2. Geometric series and mean:

general term:
$$u_n = ar^{n-1}$$

Let
$$0.8$$
, $\sqrt{8+2+2+2+18}$
 $0.44d=18$ $\sqrt{10.5}$ 13 13.5

$$\therefore \phi = 5.2$$

$$a+3d=10.5$$
, $a+2d=13$, $a+3d=15.5$

Given
$$P, Q$$
, mean of P, Q is $A = \sqrt{PQ}$.

$$2) = x^{n-1} + ax^{n} + ax^{n} = a = ax^{n-1} = ax^{n}$$

(2) -0
$$ar^n - a = (r-1)\sum_{k=0}^{N-1} ar^k = \sum_{k=0}^{N-1} ar^k = \frac{ar^n - a}{r-1} = \frac{a(1-r^n)}{1-r}$$

$$(2) - 0 \quad \alpha r^{n} - \alpha = (r - 1) \sum_{k=0}^{\infty} \alpha r^{k} \implies \sum_{k=0}^{\infty} \alpha r^{k} = \frac{\alpha r^{n}}{r - 1} = \frac{\alpha (1 - r)}{1 - r}$$

$$\sum_{k=0}^{|E|} a_1 r^k = \frac{8(1-(\frac{1}{2})^8)}{1-\frac{1}{2}} = \frac{8(1-\frac{1}{256})}{\frac{1}{256}} = \frac{8(1-\frac{1}{256})}{\frac{1}{256}} = \frac{255}{16} = \frac{255}{16} = \frac{255}{16} = \frac{15}{16}$$

$$U_3 = \alpha r^4 = 162$$
,
 $U_8 = \alpha r^7 = 4374$ > $r^3 = 27 \cdot r = 3$, $r^4 = 81 \cdot \alpha = 2$, $\therefore 2 + 6 + 18 + 54 + \cdots$

$$5 + \Delta + \Delta + \Delta + \Delta + 1215$$

 $\alpha = 5$, $\alpha r^5 = 1215$ $\therefore r^5 = 243$ $\therefore r = 3$ $\therefore A_1 = \alpha r = 5 \times 3 = 15$, $A_2 = 0 r^2 = 5 \times 3^2 = 45$, $A_3 = \alpha r^3 = 5 \times 3^3 = 135$, $A_4 = 405$ then $\alpha r^6 = 15$, $\alpha r^6 = 135$,

Sum of natural numbers
$$1+2+3+\cdots+n=\sum_{r=1}^{n}r=\frac{n(n+1)}{2}$$

Sum of squares
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum of squares
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \sum_{r=1}^n r^3 = \left(\frac{n(n+1)}{2}\right)^2$$

4. Infinite series and limiting values:

$$\lim_{n\to\infty}\sum_{r=0}^{n-1}(a+rd)=\lim_{n\to\infty}\left[na+\frac{n(n-1)d}{2}\right]=\infty \text{ or } -\infty, \text{ depends on } a \text{ and } d.$$

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} ar^k = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}, \quad \text{as } |r| < 1.$$

5. Convergent and divergent series:

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots$$

If
$$\sum_{n=1}^{\infty} u_n$$
 is a definite value, then $\sum_{n=1}^{\infty} u_n$ is convergent.

If
$$\sum_{n=1}^{\infty} u_n$$
 is NOT a definite value, then $\sum_{n=1}^{\infty} u_n$ is divergent.

6. Tests for convergency:

If
$$\lim_{n\to\infty} u_n = 0$$
, then $\sum_{n=1}^{\infty} u_n$ may be convergent.

If
$$\lim_{n\to\infty} u_n \neq 0$$
, then $\sum_{n=1}^{\infty} u_n$ is certainly divergent.

Comparison test-Useful standard series

$$\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^p}$$

$$p > 1, \sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent,

$$p \le 1, \sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is divergent.

D'Alembert's ratio test for positive terms

If
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} < 1$$
, then $\sum_{n=1}^{\infty} u_n$ is convergent.

If
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} > 1$$
, then $\sum_{n=1}^{\infty} u_n$ is divergent.

If
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 1$$
, then $\sum_{n=1}^{\infty} u_n$ is inconclusive.

For general series

If
$$\sum_{n=1}^{\infty} |u_n|$$
 is convergent, then $\sum_{n=1}^{\infty} u_n$ is absolutely convergent.

If
$$\sum_{n=1}^{\infty} |u_n|$$
 is divergent, but $\sum_{n=1}^{\infty} u_n$ is convergent, $\sum_{n=1}^{\infty} u_n$ is conditionally convergent.