Graph-based Symbolic Music Alignment

Seminar in Data Science Nina Braunmiller k11923286 12.06.2023

Overview

- I. Introduction into the topic
- II. Aims and approaches
- III.Score tracking with Hidden Markov Models
- IV.Open challenges
- **V.References**

I. Introduction into the topic

- Symbolic music:
 - Symbolic representation of music in notation-based format
 - E.g. sheet of music with its concrete instructions how to perform
 - At the computer: e.g. MIDI files
- Note alignment:
 - Performing and target file given
 - follow track note per note by tagging the current note from performing file to target file

II. Aims and approaches

- Aims of research in context of this work:
 - Symbolic note alignment, here MIDI-to-score alignment
 - Online tracking
 - Polyphonic music
 - Graph-based alignment: aligning two pieces together with help of graph building. Graphs can be compared.

II. Methods and approaches

- Approaches discussed in the work:
 - Dynamic Time Warping (DTW)
 - Machine Learing to build comparable graphs
 - Hidden Markov Models (HMM)

III. Score tracking with Hidden Markov Models

Schwarz et al. (2004):

- Score model (high level):
 - Possible states: polyphonic, monophonic, rest, ghost
 - Considering note shifts due to file inaccuracy: one event has to last at least 30 ms to be considered as state

Figure 1: Score model state example for correct performance [3].

- Note model (low level):
 - For each score event
 - Possible states: attack, sustain, release

Figure 2: Note model state example [3].

III. Score tracking with Hidden Markov Models

Schwarz et al. (2004):

Problem in matching expected and actual tempo

Solution

III. Score tracking with Hidden Markov Models

Gu & Raphael (2009):

Learns model parameters which have an influence on predicted time of next event and predicted tempo

Figure 3: 1st movement of Rachmaninov 2nd piano concert — on basis of 4 encoded performances; training took place on the one-leave-out scheme [1].

IV. Open challenges

Challenges:

- Small content deviations in performance and target file
- Symbolic notation's diverse tools not fixed to a concrete behavior rule but also interpreted by the performer
- Missing automatic error correction of alignments
- Not perfect but successes

VI. References

- [1] Gu, Y. & Raphael, C. (2009) Orchestral Accompaniment for a Reproducing Piano. In Proceeding
- of the International Computer Music Conference (ICMC09), pp. 501–504. Montreal, Canada. url: https://quod.lib.umich.edu/i/icmc/bbp2372.2009.113/1
- [2] Peter, S., Cancino-Chacón, C.E., Karystinaios, E., Foscarin, F., McLeod, A. & Widmer, G. (in press) Automatic Note-Level Score-To-Performance Alignments in the ASAP Dataset. Transactions of the International Society for Music Information Retrieval (TISMIR).
- [3] Schwarz, D., Orio, N. & Schnell, N. (2004) Robust Polyphonic Midi Score Following with Hidden Markov Models. In Proceedings of the International Computer Music Conference (ICMC), pp. 1–4. Miami, FL. url: https://quod.lib.umich.edu/i/icmc/bbp2372.2004.061/1

THANK YOU FOR YOUR ATTENTION