Classification: Basic Concepts

Cam Tu Nguyen

阮锦绣

Software Institute, Nanjing University nguyenct@lamda.nju.edu.cn ncamtu@gmail.com

Outline

- Basic Concepts
 - Classification: Definition
 - Examples of classification tasks
 - General Approach to Classification
- Basic Classification Techniques
 - Decision Tree Induction
 - Naïve Bayesian Classification
- Classification Evaluation

Classification: Definition

- Given a collection of data objects (training set)
 - Each object contains a set of attributes, one of the attributes is the class (categorical attribute)
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen objects should be assigned a class as accurately as possible.
 - For evaluation: a test set is used to determine the performance of the model. Different evaluation measures include accuracy, recall, precision, AUC, etc.
 - Usually, the given data set is divided into training and testing sets, where training set is used to build the model, and test set is used to validate it.

Examples of Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legit or fraud

- A marketing manager needs data analysis to help guess whether a customer with a given profile will **buy** a new computer (classes are buy/not buy).
- A bank loans officer need analysis of her data to learn which loan application is risky for her bank (classes are risky/not risky).
- Categorizing news stories as finance, weather, entertainment, sports, etc.

General Approach to Classification

Classification task: two-step approach

Test Set

General Approach to Classification

- Common Learning Algorithms: supervised learning methods:
 - Decision Trees
 - Naïve Bayes
 - Rule-based Methods
 - Neural Network
 - Support Vector Machine
 - Lazy Learners (K-nearest neighbors).
 - Ensemble Methods

Outline

- Basic Concepts
 - Classification: Definition
 - Examples of classification tasks
 - General Approach to Classification
- Basic Classification Techniques
 - Decision Tree Induction
 - Naïve Bayesian Classification
- Classification Evaluation
- Techniques to Improve Classification Accuracy

- Decision tree
 - Internal node: a test on an attribute
 - Branch: represent an outcome of a test
 - Leaf Node: holds a class label

Decision Tree (more example)

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

How are decision trees used for classification?

Why are decision tree classifiers so popular?

- The construction of decision trees doesn't require domainknowledge, or parameter setting
 - Suitable for exploratory knowledge discovery
- Decision trees can handle multidimensional data
- The representation is intuitive.
- Decision trees can be easily converted to classification rules.

Building Decision Trees: basic Operators

- Attribute Selection Measures
 - How to select attributes for tree nodes
- Tree pruning
 - Large decision trees may be over fitting, many branches reflect noises, or outliers
 - Tree pruning is to remove these branches to improve classification accuracy on unseen data.

- Many Algorithms
 - ID3 proposed by J. Ross Quinlan in late 1970s and early 1980s
 - C4.5, a successor of ID3, also proposed by Quinlan
 - CART (Classification and Regression Tree) proposed in 1984 by a group of statisticians (L. Breiman, J. Friedman, R. Olshen and C. Stone).
- ID3, C4.5 and CART adapt a greedy approach
 - Split the records based on an attribute test that optimizes certain criterion.
 - Top-down approach, which starts with a training and recursively partitioned into smaller subsets as the tree is being built.

Generate_decision_tree(D, attribute_list)

endfor

(15) return N;

```
(1)
     create a node N;
     if tuples in D are all of the same class, C, then
(2)
          return N as a leaf node labeled with the class C;
(3)
(4)
     if attribute_list is empty then
          return N as a leaf node labeled with the majority class in D; // majority voting
(5)
     apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
(6)
     label node N with splitting_criterion;
(7)
     if splitting_attribute is discrete-valued and
(8)
          multiway splits allowed then // not restricted to binary trees
          attribute\_list \leftarrow attribute\_list - splitting\_attribute; // remove splitting\_attribute
(9)
(10) for each outcome j of splitting_criterion
     // partition the tuples and grow subtrees for each partition
         let D_j be the set of data tuples in D satisfying outcome j; // a partition
(11)
(12)
         if D_i is empty then
(13)
               attach a leaf labeled with the majority class in D to node N;
          else attach the node returned by Generate_decision_tree(D_i, attribute_list) to node N;
(14)
```

- Issues
 - Determine how to split the records (Attribute_selection_methods)
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop the splitting (step 2 and 3; step 4; step 12 and 13).
 - Stop expanding a node when all the records belong the same class
 - Stop expanding a node when all the records have similar attribute values
 - Early termination

- How to specify test conditions?
 - Depending on attribute types
 - Nominal
 - Ordinal
 - Continuous
 - Depending on number of ways to split
 - 2-way split
 - Multi-way split

- Splitting Based on Nominal Attributes
 - Multi-way split: use as many partitions as distinct values

Binary split: Divides values into two subsets. Need to find optimal partitioning.

- Splitting Based on Continuous Attribute
 - Discretization to form an ordinal categorical attribute
 - Static: discretize once at the beginning
 - Dynamic: ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles) or clustering.
 - Binary Decision: (A < v) or (A >= v)
 - Consider all possible splits and finds the best cut.
 - Can be more compute intensive.

Splitting Based on Continuous Attribute

(i) Binary split

(ii) Multi-way split

- Issues
 - Determine how to split the records (Attribute_selection_methods)
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop the splitting (step 2 and 3; step 4; step 12 and 13).
 - Stop expanding a node when all the records belong the same class
 - Stop expanding a node when all the records have similar attribute values
 - Early termination

How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred.
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Based on INFO
 - Information Gain (used in ID3)
 - Gain Ratio (used in C4.5)
- GINI Index
 - Used in CART

Splitting Criteria based on Info

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

- P(j|t) is the relative frequency of class j at node t.
- Entropy(t) is also called Info(t)
- Entropy measures homogeneity of a node
 - Maximum ($log n_c$) when records are equally distributed among all classes implying least information.
 - Minimum (0.0) when all records belong to one class, implying most information.

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Entropy = -(1/6) log_2 (1/6) - (5/6) log_2 (1/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Splitting Criteria based on Info

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

- Parent node p is split into k partitions; n_i is the number of objects in partition i.
- Measure reduction in entropy achieved because of the split.
 Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Criteria based on Info

Gain Ratio

GainRATIO
$$_{split} = \frac{GAIN_{split}}{SplitINFO}$$
 SplitINFO $= -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$

- Parent node p is split into k partitions; n_i is the number of objects in partition i.
- Adjusts Information Gain by the entropy of the partition (SplitINFO).
 Higher entropy partitioning (larger number of small partitions) is penalized.
- Used in C4.5.
- Designed to overcome the disadvantage of Information Gain.

Splitting based on GINI

- Measure of Impurity: GINI
- Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

- (NOTE: p(j|t) is the relative frequency of class j at node t)
- Maximum $(1-1/n_c)$ when records are equally distributed among all classes, implying least interesting information.
- Maximum (0.0) when all records belong to one class, implying most interesting information.

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini	=0.500

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Splitting based on GINI

- Used in CART
- When a node p is split into k partitions (children), the quality of split is computed as:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Binary Attributes: Computing GINI Index

- Split into two partitions
- Effect of Weighing partitions
 - Larger and Purer Partitions are sought for

	Parent
C1	6
C2	6
Gini	= 0.500

GINI(N1)

$$= 1-(5/7)^2-(2/7)^2$$

=0.408

GINI(N2)

$$= 1-(1/5)^2-(4/5)^2$$

=0.319

	N1	N2						
C1	5	1						
C2	2	4						
GINI=0.371								

GINI(Split) = 7/12*0.408+5/12*0.319 =0.371

Categorical Attributes: Computing GINI Index

- For each distinct value, gather counts for each class in the dataset.
- Use the count matrix to make decisions.

Multi-way split

	(CarType										
	Family Sports Luxu											
C1	1	2	1									
C2	4	1	1									
Gini	0.393											

Two-way split (find best partition of values)

	CarType								
	{Sports, Luxury}	{Family}							
C1	3	1							
C2	2	4							
Gini	0.400								

	CarType									
	{Sports}	{Family, Luxury}								
C1	2	2								
C2	1	5								
Gini	0.419									

Continuous Attributes: Computing GINI Index

- Use Binary Decisions based on one value
- Several choices for the spliting value
 - Number of possible splitting values = number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A<v and A >= v
- Simple method to chose best v
 - For each v, scan the database to gather count matrix and compute its GINI index.
 - Computational inefficient!
 Repetition of work

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing GINI Index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing GINI index.
 - Choose the split position that has the least GINI index

Cheat			No		No	o No		o Yes		s	Yes Yes		:8	N	lo N		No N		lo		No		
		Taxable Income																					
Sorted Values → Split Positions →			60 70		75		85		,	90 9		9	5 100		0	120		125		220			
		5	5	65		7	72		80		87 92		2	97		110		122		172		230	
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	^	<=	>	<=	^	=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.4	0.400		0.375		0.343		0.417		100	<u>0.300</u>		0.343		0.375		0.400		0.420	

Practical Issues of Classification

- Under fitting and Overfitting
- Missing Values
- Costs of Classification

Underfitting and Overfitting

High bias (underfit)

"Just right"

High variance (overfit)

Underfitting and Overfitting

 Underfitting: when model is too simple, both training and testing errors are high.

Overfitting:

- The model cannot generalize well to new data.
- Overfitting results in decision trees that are more complex than necessary.
- Training error no longer provides a good estimate on how well the tree will perform on previously unseen records.

Estimating Generalization Errors

- Re-substitution errors: error on training
- Generalization errors: error on testing
- Methods for estimating generalization errors:
 - Reduced error pruning (REP)
 - Uses validation data set to estimate generalization error.

Occam's Razor

- Given two models of similar generalization errors, one should perfer the simpler model over the more complex model.
- For complex models, there is a greater chance that it was fitted accidently by errors in data.
- Therefore, one should include model complexity when evaluating a model.

How to Address Overfitting

- Pre-pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a full-grown tree
 - Typical stopping conditions for a node
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same.
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g. using chi-square test)
 - Stop if expanding the current node doesn't imporve impurity measures (GINI or information gain)

How to Address Overfitting

- Post-prunning
 - Grow decision tree to its entirely
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree.

- Missing values affect decision tree construction in different ways
 - Affects how impurity measures are computed
 - Affects how to distribute instances with missing value to child nodes.
 - Affects how a test instance with missing value is classified.

Computing Impurity Measure

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Missing value

Before Splitting:

Entropy(Parent)

 $= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$

	Class = Yes	Class = No
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No)

 $= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$

Entropy(Children)

= 0.3(0) + 0.6(0.9183) = 0.551

Gain = $0.9 \times (0.8813 - 0.551) = 0.3303$

Distribute Instances

Tid	Refund	Marital Taxable Status Income		Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Classifying Instances

Outline

- Basic Concepts
 - Classification: Definition
 - Examples of classification tasks
 - General Approach to Classification
- Basic Classification Techniques
 - Decision Tree Induction
 - Naïve Bayesian Classification
- Classification Evaluation

Bayesian Classifiers

- Statistical classifiers
 - Predict class membership probabilities
 - Based on Bayes' theorem
- Naïve Bayesian classifier is a simple Bayesian classifier
 - Comparable in performance with decision tree and selected neural network classifiers
 - High accuracy and speed when applied to large databases.
 - Using class-conditional independence to simplify the computations involved.

Bayes' Theorem

- The theorem is named after Thomas Bayes, a British statistician and philosopher in the 18th century.
- Bayes' Theorem

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}.$$

- X: a data object, represented by an attribute vectors (feature vector)
- H: some hypothesis such as X belongs a specific class C
- P(H|X): posterior probability
- P(H): prior probability of H

Naïve Bayesian Classification

- Let D = $\{(\mathbf{X}_{1,}\mathbf{y}_{1}), (\mathbf{X}_{2},\mathbf{y}_{2}), ..., (\mathbf{X}_{n},\mathbf{y}_{n})\}$ be a training set of data objects and its labels
 - $X_i = (x_1, x_2, ..., x_p)$ is a p-dimensional attribute vector
 - The class label of the object ith is $y_i \in \{C_1, C_2, ..., C_m\}$ where C_1 , C_2 , ..., C_m are m predefined classes.
- Given a data object X, naïve Bayes predicts that it belongs to the class C_i if and only if

$$P(C_i|X) > P(C_j|X)$$
 for $1 \le j \le m, j \ne i$.

Recall that
$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

Where P(X) is constant for all classes; $P(C_i)$ can be assumed as equally likely or calculated from training data set (as the percentage of class C_i in the training data set).

Naïve Bayesian Classification

- How to calculate P(X/C_i)?
- Class-conditional independence assumption

$$P(X|C_i) = \prod_{k=1}^{p} P(x_k|C_i) = P(x_1|C_i)P(x_2|C_i)...P(x_p|C_i)$$

- If attribute A_k is categorical, P(xk|Ci) is the number of instances of class C_i in D having the value x_k for the attribute A_k , divided by the $|C_{i,D}|$, the number of instances with class C_i .
- If A_k is continuous

$$P(x_k|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

which is the Gaussian distribution with mean and standard deviation μ_{C_i} , σ_{C_i} calculated for attribute Ak for training instances with class C_i

Naïve Bayesian Classification

- Issue:
 - What happens if we have zero probability for some $P(x_i | C_i)$?
- Laplacian correction
 - Adding one for each count when calculating $P(x_k|C_i)$

Outline

- Basic Concepts
 - Classification: Definition
 - Examples of classification tasks
 - General Approach to Classification
- Basic Classification Techniques
 - Decision Tree Induction
 - Naïve Bayesian Classification
- Classification Evaluation

- Consider binary classification with 2 classes (Positive, Negative)
 - True Positive (TP):
 - The positive instances that are correctly classified
 - True Nagative (TN)
 - The negative instances that are correctly classified
 - False Positive (FP)
 - The negative instances that are incorrectly classified as Positive
 - False Negative (FN)
 - The positive instances that are incorrectly clssified as Negative.

Confusion Matrix

Predicted class

Actual class

	yes	no
yes	TP	FN
по	FP	TN
Total	P'	N'

Total

 \boldsymbol{P}

N

P + N

Measure	Formula
accuracy, recognition rate	$\frac{TP+TN}{P+N}$
error rate, misclassification rate	$\frac{FP+FN}{P+N}$
sensitivity, true positive rate, recall	$\frac{TP}{P}$
specificity, true negative rate	$\frac{TN}{N}$
precision	$\frac{TP}{TP + FP}$
F, F ₁ , F-score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

- Given m classes, a confusion matrix is a table of at least mxm.
 - CM_{i,j} indicates the number of instances of class I that were classified as the class j.

		Prediction				
		Class 1	Class 2	Class 3		Class n
	Class 1	Accurate				
Actual	Class 2		Accurate			
	Class 3			Accurate		
					Accurate	
	Class n					Accurate

Holdout methods

- Cross validation
- Leave-one-out

Outline

- Basic Concepts
 - Classification: Definition
 - Examples of classification tasks
 - General Approach to Classification
- Basic Classification Techniques
 - Decision Tree Induction
 - Naïve Bayesian Classification
- Classification Evaluation