WE HAVE IMPLEMENTED VALUES AS SPECIAL FORM NO SUPPORT FOR NESTED TUPLE

1.1 Stage 1: Rename bound variables

((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3) => ((lambda (x y) (if (> x y) #t #f)) 8 3)

Stage 2: Assign type variables for every sub expression

Expression	Variable
((lambda (x y) (if (> x y) #t #f)) 8 3)	T_0
(lambda (x y) (if (> x y) #t #f))	T_1
(if (> x y) #t #f)	T_2
(> x y)	T_3
>	$T_{>}$
X	T_X
У	T_{Y}
#t	$T_{\#t}$
#f	$T_{\#f}$
8	T_{num8}
3	T_{num3}

Stage 3: Construct type equations. The equations for the sub-expressions are

Expression	Equation
((lambda (x y) (if (> x y) #t #f)) 8 3)	$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$
(lambda (x y) (if (> x y) #t #f))	$T_1 = [T_x * T_y \to T_2]$
(if (> x y) #t #f)	$T_2 = T_{\#t} \text{ and } T_{\#t} = T_{\#f}$
(> x y)	$T_{>} = [T_x * T_y \to T_3]$
>	$T_{>} = [Number * Number \rightarrow Boolean]$
#t	$T_{\#t} = Boolean$
#f	$T_{\#f} = Boolean$
8	$T_{num8} = Number$
3	$T_{num3} = Number$

Stage 4: Solve the equations

Equation	Substitution
1. $T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$	8
2. $T_1 = [T_x * T_y \to T_2]$	
3. $T_2 = T_{\#t}$	
4. $T_{\#t} = T_{\#f}$	
5. $T_{>} = [T_x * T_y \to T_3]$	
6. $T_{>} = [Number * Number \rightarrow Boolean]$	
7. $T_{\#t} = Boolean$	
8. $T_{\#f} = Boolean$	
9. $T_{num8} = Number$	
10. $T_{num3} = Number$	

Step1:

$$(T_1 = [T_{num8} * T_{num3} \rightarrow T_0] \circ \text{Substitution} = T_1 = [T_{num8} * T_{num3} \rightarrow T_0])$$

Substitution = Substitution $\circ T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$

Equation	Substitution
1. $T_1 = [T_x * T_y \to T_2]$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_2 = T_{\#t}$	
3. $T_{\#t} = T_{\#f}$	
4. $T_{>} = [T_x * T_y \to T_3]$	
5. $T_{>} = [Number * Number \rightarrow Boolean]$	
6. $T_{\#t} = Boolean$	
7. $T_{\#f} = Boolean$	
8. $T_{num8} = Number$	
9. $T_{num3} = Number$	

Step2:

$$(T_1 = [T_x * T_y \rightarrow T_2]) \circ \text{Substitution} =$$

 $([T_{num8} * T_{num3} \rightarrow T_0] = [T_x * T_y \rightarrow T_2])$

Equation	Substitution
1. $T_2 = T_{\#t}$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{\#t} = T_{\#f}$	
3. $T_{>} = [T_x * T_y \rightarrow T_3]$	
4. $T_{>} = [Number * Number \rightarrow Boolean]$	
5. $T_{\#t} = Boolean$	
6. $T_{\#f} = Boolean$	
7. $T_{num8} = Number$	

8. $T_{num3} = Number$	
9. $T_{num8} = T_x$	
$10. T_{num3} = T_y$	
11. $T_0 = T_2$	

Step3:

$$(T_2 = T_{\#t}) \circ \text{Substitution} = (T_2 = T_{\#t})$$

Substitution = Substitution $\circ (T_2 = T_{\#t})$

Equation	Substitution
1. $T_{\#t} = T_{\#f}$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{>} = [T_x * T_y \rightarrow T_3]$	$\{T_2 \coloneqq T_{\#t}\}$
3. $T_{>} = [Number * Number \rightarrow Boolean]$	
4. $T_{\#t} = Boolean$	
5. $T_{\#f} = Boolean$	
6. $T_{num8} = Number$	
7. $T_{num3} = Number$	
8. $T_{num8} = T_x$	
9. $T_{num3} = T_y$	
10. $T_0 = T_2$	

Step4:

$$(T_{\#t} = T_{\#f}) \circ \text{Substitution} = (T_{\#t} = T_{\#f})$$

Substitution = Substitution $\circ (T_{\#t} = T_{\#f})$

Equation	Substitution
1. $T_{>} = [T_x * T_y \to T_3]$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{>} = [Number * Number \rightarrow Boolean]$	$ \{T_2 \coloneqq T_{\#t}\} $
3. $T_{\#t} = Boolean$	$\{T_{\#t} \coloneqq T_{\#f}\}$
4. $T_{\#f} = Boolean$	
5. $T_{num8} = Number$	
6. $T_{num3} = Number$	
7. $T_{num8} = T_x$	
8. $T_{num3} = T_y$	
9. $T_0 = T_2$	

Step 5:

$$T_{>} = [T_x * T_y \to T_3] \circ \text{Substitution} = (T_{>} = [T_x * T_y \to T_3]),$$

Substitution = Substitution $\circ (T_{>} = [T_x * T_y \to T_3])$

Equation	Substitution
1. $T_{>} = [Number * Number \rightarrow Boolean]$	$ \{T_1 := [T_{num8} * T_{num3} \rightarrow T_0] \}$
2. $T_{\#t} = Boolean$	$\{T_2 \coloneqq T_{\#t}\}$
3. $T_{\#f} = Boolean$	$\{T_{\#t} \coloneqq T_{\#f}\}$
4. $T_{num8} = Number$	$\{T_{>} = [T_x * T_y \to T_3]\}$
5. $T_{num3} = Number$	
$6. T_{num8} = T_x$	
7. $T_{num3} = T_y$	
8. $T_0 = T_2$	

Step 6:

$$(T_{>} = [Number * Number \rightarrow Boolean]) \circ Substitution = T_{>}$$

= $[T_x * T_y \rightarrow T_3] = [Number * Number \rightarrow Boolean]$

Equation	Substitution
1. $T_{\#t} = Boolean$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{\#f} = Boolean$	$\{T_2 \coloneqq T_{\#t}\}$
3. $T_{num8} = Number$	$\{T_{\#t} \coloneqq T_{\#f}\}$
4. $T_{num3} = Number$	$\{T_{>} = \left[T_{x} * T_{y} \to T_{3}\right]\}$
$5. T_{num8} = T_x$	
$6. T_{num3} = T_y$	
7. $T_0 = T_2$	
8. $T_x = Number$	
9. $T_y = Number$	
$10.T_3 = Boolean$	

Step 7:

$$T_{\#t} = Boolean \circ Substitution = (T_{\#t} = Boolean)$$

Substitution = Substitution $\circ (T_{\#t} = Boolean)$

Equation	Substitution
1. $T_{\#f} = Boolean$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{num8} = Number$	$\{T_2 \coloneqq Boolean\}$
3. $T_{num3} = Number$	$\{T_{\#t} \coloneqq T_{\#f}\}$
$4. T_{num8} = T_x$	$\{T_{>} = \left[T_{x} * T_{y} \to T_{3}\right]\}$
$5. T_{num3} = T_y$	$\{T_{\#t} = Boolean\}$
6. $T_0 = T_2$	$\{T_{\#f} = Boolean\}$
7. $T_x = Number$	
8. $T_y = Number$	
9. $T_3 = Boolean$	

Step 8:

$$(T_{\#f} = Boolean \circ Substitution = (Boolean = Boolean))$$

Equation	Substitution
1. $T_{num8} = Number$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_{num3} = Number$	$\{T_2 \coloneqq Boolean\}$
$3. T_{num8} = T_x$	$\{T_{\#t} \coloneqq T_{\#f}\}$
$4. T_{num3} = T_y$	$\{T_{>} = \left[T_{x} * T_{y} \to T_{3}\right]\}$
5. $T_0 = T_2$	$\{T_{\#f} = Boolean\}$
6. $T_x = Number$	$T_{\#t} = Boolean$ }
7. $T_y = Number$	
8. $T_3 = Boolean$	

Step 9:

```
(T_{num8} = Number) \circ Substitution = (T_{num8} = Number)
Substitution = Substitution \circ (T_{num8} = Number)
(T_{num3} = Number) \circ Substitution = (T_{num3} = Number)
Substitution = Substitution \circ (T_{num3} = Number)
```

Equation	Substitution			
1. $T_{num8} = T_x$	$\{T_1 := [Number * Number \rightarrow T_0]\}$			
$2. T_{num3} = T_y$	$\{T_2 \coloneqq Boolean\}$			
3. $T_0 = T_2$	$\{T_{\#t} \coloneqq T_{\#f}\}$			
4. $T_x = Number$	$\{T_{>} = [T_{x} * T_{y} \rightarrow T_{3}]\}$			
5. $T_y = Number$	$\{T_{\#f} = Boolean\}$			
6. $T_3 = Boolean$	$\{T_{\#t} = Boolean\}$			
7.	$\{T_{num8} = Number\}$			
8.	$\{T_{num3} = Number\}$			

Step 10:

$$(T_{num8} = T_x) \circ \text{Substitution} = (T_x = Number)$$

Substitution = Substitution $\circ (T_x = Number)$
 $(T_{num3} = T_y) \circ \text{Substitution} = (T_y = Number)$
Substitution = Substitution $\circ (T_y = Number)$

Equation	Substitution
1. $T_0 = T_2$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0]\}$
2. $T_x = Number$	$\{T_2 \coloneqq Boolean\}$
3. $T_y = Number$	$\{T_{\#t} \coloneqq T_{\#f}\}$
4. $T_3 = Boolean$	$\{T_{>} = [Number * Number \rightarrow T_3]\}$
5.	$\{T_{\#t} = Boolean\}$
6.	$\{T_{\#f} = Boolean\}$
7.	$\{T_{num8} = Number\}$
8.	$\{T_{num3} = Number\}$
9.	$\{T_{\chi} = Number\}$
10.	$\{T_y = Number\}$

Step 13:

$$(T_0 = T_2) \circ \text{Substitution} = (\mathbf{T_0} = \mathbf{Boolean})$$

1.2 Are these typing statements true? Explain.

a.
$$\{f: [T1->T2], x: T1\} \vdash (fx)\}: T2$$

The statement is **true**.

 \Rightarrow f is function from T_1 to T_2 and $x \in T_1$ so $f(x) \in T_2$

b.
$$\{f: [T1->T2], g: [T2->T3]\}, x: T2\}$$
 |- $\{f: [T1->T2], g: [T2->T3]\}$

The statement if **false**.

 \implies f expected **one** argument of type T_1 but received **two** arguments.

c.
$$\{f: [T2->T1], g: [T1->T2], x: T1\}$$
 |- $(f(gx)): T1$

The statement is true.

 $\Longrightarrow g$ is function from $T_1 to \ T_2$, and $x \in T_1$.

In addition f is function from T_2 to T_1 as necessary.

d. {f:[T2->Number], x: Number}|- (f x x): Number The statement is **false**;

 \Rightarrow f expected **one** argument of type T_2 but received **two** arguments of type Number.

1.3 What is the type of the following primitive operators:

a. cons =
$$[T_1 * T_2 \rightarrow Pair(T_1, T_2)]$$

b.
$$car = [Pair(T_1, T_2) \rightarrow T_1]$$

c.
$$\operatorname{cdr} = [Pair(T_1, T_2) \rightarrow T_2]$$

1.4 Write the type of the following function: (Define f (lambda (x) (values $x \times x$))) (see question 2 for the definition of values).

$$\Longrightarrow [T_1 \to [T_1 * \ T_1 * \ T_1]$$

1.5 Write the MGU of the following expressions, or state that there is no such MGU.

Substitution	MGU
$\{x: T_1\}, \{x: T_2\}$	$\{T_1 = T_2\}$
{x:Number}, {x:Number}	{}
$\{x: [T_1 * [T_1 \rightarrow T_2] \rightarrow Number]\}$	$\{T_1=T_4=[T_3 o Number],$
$\{x: [[T_3 \rightarrow Number] * [T_4 \rightarrow Number]\}$	T2 = Number
$\rightarrow Number]$	
$\{x\colon [T_1\to T_1]\}$	$\{T1 = [Number * Number]\}$
${x: [T_1 \rightarrow [Number * Number]]}$	

2.3 Write the fully type-annotated version of this function:

a. (define f (lambda (x) (values x + x 1)))

```
(lambda ((x : number)) : (number * number) (values x (+ x 1))
```

b. (define g (lambda (x) (values "x" x)))

```
(lambda ((x : T)) : (string * T) (values "x" x))
```

4.2 What are the benefits of the promise interface compared to the callback interface

- a. Dealing with errors is simpler with the use of "catch" mechanism instead of using different cases with callbacks.
- b. The code is more readable because of the ability to concat promises instead of doing so in a nested way when working with callbacks.

Part 3 code:

```
function* braid(gen1: Generator, gen2: Generator) {
    let iter1 = gen1.next();
    let iter2 = gen2.next();
   while(iter1.value!=undefined | iter2.value!=undefined){
        if(iter1.value!=undefined){
            yield iter1.value;
            iter1 = gen1.next();
        if(iter2.value!=undefined){
            yield iter2.value;
            iter2 = gen2.next();
function* biased(gen1: Generator, gen2: Generator) {
   let iter1a = gen1.next();
    let iter1b = gen1.next();
    let iter2 = gen2.next();
   while(iter1a.value!=undefined || iter2.value!=undefined){
        if(iter1a.value!=undefined){
            yield iter1a.value;
            iter1a = gen1.next();
        if(iter1b.value!=undefined){
            yield iter1b.value;
            iter1b = gen1.next();
        if(iter2.value!=undefined){
            yield iter2.value;
            iter2 = gen2.next();
```

Part 4 code:

```
export const f = (x: number): Promise<number> => {
    return new Promise (
        (resolve, reject) => {
        if (x!= 0) resolve(1/x);
        else reject("CAN NOT DIVIDE BY ZERO!");
        });
export const g = (x: number): Promise<number> => {
    return new Promise (
        (resolve, reject) => {
        if(true) resolve(x*x);
        else reject("NOT POSSIBLE!");
        });
export const h = (x: number): Promise<number> => {
    return g(x)
            .then((c) => {return f(c)})
            .catch();
export const slower = <T1, T2>(arr: [Promise<T1>, Promise<T2>]): Promise<strin
g> => {
   return new Promise(
      (resolve, reject) => {
        const f=(i:number)=>(value: T1 | T2)=>{
          done++;
          if(done===2){
            resolve(`(${i} , '${value}')`)
        let done = 0;
        arr[0].then(f(0)).catch(() => reject("0 FAILED!"))
        arr[1].then(f(1)).catch(() => reject("1 FAILED!"))
      });
```