

Cours de Génie Climatique

Vidéo n°3

CTA 1 : soufflage

Simon Rouchier Maître de Conférences Polytech Annecy-Chambéry Université Savoie Mont-Blanc

vidéo réalisée le 23/11/15

- 1) Identifier les besoins
- 2) Conditions de soufflage
- 3) Dimensionner la CTA
- 4) Proportions du mélange

- \rightarrow CS, CL
- \rightarrow S
- \rightarrow $m \rightarrow s$
- \rightarrow $e+i\rightarrow m$

$$CS = \frac{UA(T_e - T_i)}{V} + 0.34 Q_v(T_e - T_i) + P$$

$$\downarrow$$
(W)

$$CL = 0.34 Q_v L_v (r_e - r_i) + P_{lat}$$

$$\downarrow$$
(W)

Charges + apports de la CTA = 0

Charges	Apports de la CTA	Bilan	
CS	$Q_{m,as}c_{as}(T_s-T_i)$	$CS + Q_{m,as} c_{as} (T_s - T_i) = 0$	(1)
CL	$Q_{m,as}L_v(r_s-r_i)$	$CL + Q_{m,as} L_v (r_s - r_i) = 0$	(2)
CS + CL	$Q_{m,as}(h_s-h_i)$	$(CS + CL) + Q_{m,as}(h_s - h_i) = 0$	

(1) / (2)
$$\Rightarrow r_s = r_i + \frac{(T_s - T_i)}{2500} \frac{\text{CL}}{\text{CS}}$$

UNIVERSITÉ SAVOIE MONT BLANC

DIAGRAMME DE L'AIR HUMIDE

PRESSION ATMOSPHERIQUE NORMALE 101 300 [Pa]

- (1) $CS + Q_{m,as} c_{as} (T_s T_i) = 0$
- (2) $CL + Q_{m,as} L_v (r_s r_i) = 0$

- \rightarrow on déduit $Q_{m,as}$ et r_s de (1) et (2)
- $Q_{m,as}$ imposé
 - \rightarrow on déduit T_S et r_S de (1) et (2)

- 1) Identifier les besoins
- 2) Conditions de soufflage
- 3) Dimensionner la CTA
- 4) Proportions du mélange

- \rightarrow CS, CL
- \rightarrow S
- \rightarrow $m \rightarrow s$
- \rightarrow $e+i\rightarrow m$