Introduction to Computer Networks

Retransmission Timeouts (§6.5.9)

Topic

- How to set the timeout for sending a retransmission
 - Adapting to the network path

Retransmissions

- With sliding window, the strategy for detecting loss is the <u>timeout</u>
 - Set timer when a segment is sent
 - Cancel timer when ack is received
 - If timer fires, <u>retransmit</u> data as lost

Timeout Problem

- Timeout should be "just right"
 - Too long wastes network capacity
 - Too short leads to spurious resends
 - But what is "just right"?
- Easy to set on a LAN (Link)
 - Short, fixed, predictable RTT
- Hard on the Internet (Transport)
 - Wide range, variable RTT

Example of RTTs

Example of RTTs (2)

Example of RTTs (3)

Adaptive Timeout

- Keep smoothed estimates of the RTT (1) and variance in RTT (2)
 - Update estimates with a moving average
 - 1. SRTT_{N+1} = $0.9*SRTT_N + 0.1*RTT_{N+1}$
 - 2. Svar_{N+1} = $0.9*Svar_N + 0.1*|RTT_{N+1} SRTT_{N+1}|$
- Set timeout to a multiple of estimates
 - To estimate the upper RTT in practice
 - TCP Timeout_N = $SRTT_N + 4*Svar_N$

Example of Adaptive Timeout

Example of Adaptive Timeout (2)

CSE 461 University of Washington

Adaptive Timeout (2)

- Simple to compute, does a good job of tracking actual RTT
 - Little "headroom" to lower
 - Yet very few early timeouts
- Turns out to be important for good performance and robustness

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey