Section 8.6: The Solutions of the Floer Equation are "Somewhere Injective".

D. Zack Garza

Monday 11th May, 2020

Contents

0.1	Outline	1
0.2	Regular Points Are Open and Dense	.2

0.1 Outline

- Prove Theorem 8.5.4
- Prove the continuation principle that was used in Proposition 8.1.4

Outline of statements:

Set up notation:

- z = s + it
- *u* is a solution to an equation (appearing below)
- X is a vector field (time-dependent and periodic) on \mathbb{R}^{2n}
- \bullet X, J are smooth
- C(u) the set of critical points u

• R(u) the set of regular points of u

Theorem 0.1(8.5.4).

C(u) is discrete and $R(u) \hookrightarrow \mathbb{R} \times S^1$ is open and dense.

Proposition 0.2(8.1.4,).

Define

$$\mathcal{Z}(x,y,J) := \{(u,H_0+h) | h \in \mathcal{C}_{\varepsilon}^{\infty}(H_0) \text{ and } u \in \mathcal{M}(x,y,J,H) \}.$$

If $(u, H_0 + h) \in \mathcal{Z}(x, y)$ then the following map admits a continuous right-inverse and is surjective:

$$\Gamma: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \times \mathcal{C}^{\infty}_{\varepsilon}\left(H_0\right) \longrightarrow L^p\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right)$$
$$(Y,h) \longmapsto \left(d\mathcal{F}^{H_0+h}\right)_u(Y) + \operatorname{grad}_u h$$

where \mathcal{F}^{H_0+h} is the Floer operator corresponding to H_+h .

Used to show (via the implicit function theorem) that $\mathcal{Z}(x,y,J)$ is a Banach manifold when $x \neq y$.

Proposition 0.3(8.6.1, Transform to CR-equation on R2).

If u is a solution to the following equation:

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u) \right) = 0.$$

Then there exist

- \bullet An almost complex structure J
- A diffeomorphism ϕ on W?
- A map $v \in C^{\infty}(\mathbb{R}^2; W)$

satisfying

- $\bullet \left(\frac{\partial}{\partial s} + J \frac{\partial}{\partial t} \right) v = 0$
- $v(s,t+1) = \varphi(v(s,t))$
- C(u) = C(v), i.e. u, v have the same critical points
- $\bullet \ R(u) = R(v).$

Proof: short, include.

Lemma 8.6.2: The set of critical points of v above is discrete. Precisely: There exists a constant $\delta > 0$ such that $(dv)_z \neq 0$ for any $0 << |z| < \delta$.

Proof: Postponed to p.264.

Definition: Multiple points

Proposition 8.6.3: Injectivity result. Let v be a smooth 1-periodic (in t) solution of the CR equation, i.e. $v(s,t+1) = \phi(v(s,t))$ for some smooth ϕ ? and $\frac{\partial v}{\partial s} \neq 0$. Then $R(v) \hookrightarrow \mathbb{R}^2$ is open and dense.

Contents 2

0.2 Regular Points Are Open and Dense

Proof (BIG):

- Show R(v) is open (easy)
- Show R(v) is dense (delicate)

Long proof.

Lemma 8.6.4: For every r > 0 there exists a $\delta > 0$ such that

$$|t - t_0|, |s - s_0| < \delta \implies \exists s' \in B_r(s_i) \text{ s.t. } v(s, t) = v(s', t).$$

Proof: short.

Lemma 8.6.5: Let v_1, v_2 be two solutions of the CR-equation with $X_t \equiv 0$ on $B_{\varepsilon}(0), v_1(0,0) = v_2(0,0)$ such that $(dv_1)_0, (dv_2)_0 \neq 0$. Also suppose

$$\forall \varepsilon \; \exists \delta \; \text{s.t.}$$

$$\forall (s,t) \in B_{\delta}(0), \ \exists s' \in \mathbb{R} \begin{cases} (s',t) \in B_{\varepsilon}(0) \\ v_1(s,t) = v_2(s',t) \end{cases}.$$

Then

$$\forall z \in B_{\varepsilon}(0), \quad v_1(s,t) = v_2(s,t).$$

Take perturbed CR equation:

$$\frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y = 0.$$

Fix $S \in C^{\infty}(\mathbb{R}^2; \operatorname{End}(\mathbb{R}^{2n}))$

Continuation Principle (8.6.6): Let Y be a solution to the perturbed CR equation on an open subset $U \subseteq \mathbb{R}^2$, then the set

$$C \coloneqq \Big\{ (s,t) \in U \ \Big| \ Y \text{ has an infinite order zero at } (s,t) \Big\}$$

is clopen. In particular, if U is connected and Y=0 on some nonempty $V\subset U$, then $Y\equiv 0$.

Lemma (Similarity Principle, used to prove continuation principle and 8.6.8): Let $Y \in C^{\infty}(B_{\varepsilon}; \mathbb{C}^n)$ be a solution to the perturbed CR equation and let p > 2. Then there exists $0 < \delta < \varepsilon$ and a map $A \in W^{1,p}(B_{\delta}, \mathrm{GL}(\mathbb{R}^{2n}))$ and a holomorphic map $\sigma : B_{\delta} \longrightarrow \mathbb{C}^n$ such that

$$\forall (s,t) \in B_{\delta} \quad Y(s,t) = A(s,t) \ \sigma(s+it) \quad \text{and} \quad J_0 A(s,t) = A(s,t) J_0.$$

Use continuation principle to finish proofs of many old theorems/lemmas.

Theorem (8.6.11, Essential property of $\bar{\partial}$) For every p > 1, the following operator is surjective and Fredholm:

$$\bar{\partial}: W^{1,p}(S^2; \mathbb{C}^n) \longrightarrow L^p(\Lambda^{0,1}T^*S^2 \otimes \mathbb{C}^n).$$

Lead up to the proof of 8.1.5 in Section 8.7

Contents 3