Unidad 5: vectores y valores propios

1. Dada una matriz $A \in \mathbb{R}^{n \times n}$, demuestre que si X es una matriz cuadrada no singular entonces A y $X^{-1}AX$ tienen el mismo polinomio característico.

Demostración. Usaremos que la función $B\mapsto \det(B)$ es multiplicativa. Sean p_1,p_2 los polinomios característicos de A y $X^{-1}AX$, respectivamente. Entonces

$$p_2(t) = \det(X^{-1}AX - tI)$$
 (1)

$$= \det(X^{-1}(AX - tX)) \tag{2}$$

$$= \det(X^{-1}(A - tI)X) \tag{3}$$

$$= \det(X^{-1}) \det(A - tI) \det(X) \tag{4}$$

$$= \frac{1}{\det(X)} \det(A - tI) \det(X) \tag{5}$$

$$= \det(A - tI) \tag{6}$$

$$= p_1(t). (7)$$

Por lo tanto, A y $X^{-1}AX$ tienen el mismo polinomio característico. \Box

2. Dada una matriz $A \in \mathbb{R}^{n \times n}$ y sus respectivos valores propios $\lambda_1, \dots, \lambda_n$, demuestre que

$$\det(A) = \prod_{j=1}^{n} \lambda_j. \tag{8}$$

Demostraci'on. Recordemos que A es diagonalizable sobre el campo de los complejos, por lo que existe una matriz invertible N con coeficientes complejos tal que

$$N^{-1}AN = D, (9)$$

donde

$$D = diag(\lambda_1, \dots, \lambda_n). \tag{10}$$

Usaremos que la función $B \mapsto \det(B)$ es multiplicativa:

$$\det(D) = \det(N^{-1})\det(A)\det(N) \tag{11}$$

$$= \frac{1}{\det(N)} \det(A) \det(N) \tag{12}$$

$$= \det(A). \tag{13}$$

Por lo tanto,

$$\det(A) = \det(D) \tag{14}$$

$$=\prod_{j=1}^{n}\lambda_{j},\tag{15}$$

donde la última igualdad se da porque el determinante de una matriz diagonal es igual al producto de las entradas de su diagonal. \Box

3.

4.

5. Muestre que los valores propios de una matriz simétrica con coeficientes reales de 2×2 son reales. ¿Cómo quedaría el resultado en general para una matriz simétrica con coeficientes en los reales de $n \times n$?

Demostración. Demostraré directamente que el resultado es cierto para matrices simétricas de $n \times n$ con coeficientes reales. Esta demostración se basa en el hecho de que una matriz simétrica con coeficientes reales es autoadjunta. Probaré este hecho:

Consideremos el siguiente producto hermitiano en \mathbb{C}^n :

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}. \tag{16}$$

Entonces

$$\langle Ax, y \rangle = \sum_{j=1}^{n} (Ax)_j \overline{y_j}$$
 (17)

$$=\sum_{j=1}^{n} (A_j \cdot x) \overline{y_j} \tag{18}$$

$$=\sum_{j=1}^{n} \left(\sum_{k=1}^{n} A_{jk} x_k\right) \overline{y_j} \tag{19}$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} x_k \overline{A_{jk} y_j} \quad \text{aqui se usa que } A \in \mathbb{R}^{n \times n}$$
 (20)

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} x_k \overline{A_{kj} y_j} \quad \text{aquí se usa que A es simétrica}$$
 (21)

$$=\sum_{k=1}^{n}\sum_{j=1}^{n}x_{k}\overline{A_{kj}y_{j}}$$
(22)

$$=\sum_{k=1}^{n} x_k \sum_{j=1}^{n} \overline{A_{kj} y_j} \tag{23}$$

$$=\sum_{k=1}^{n} x_k \overline{(Ay)_k} \tag{24}$$

$$=\langle x, Ay\rangle \tag{25}$$

Por lo tanto, A es autoadjunta. De esta manera, consideremos un valor propio $\lambda \in \mathbb{C}$ de A con un vector propio asociado $w \in \mathbb{C}^n \setminus \{0\}$. Entonces

$$\lambda |w|^2 = \lambda \langle w, w \rangle \tag{26}$$

$$= \langle \lambda w, w \rangle \tag{27}$$

$$= \langle Aw, w \rangle \tag{28}$$

$$= \langle w, Aw \rangle \tag{29}$$

$$= \langle w, \lambda w \rangle \tag{30}$$

$$= \overline{\lambda} \langle w, w \rangle \tag{31}$$

$$= \overline{\lambda}|w|^2. \tag{32}$$

Como $w \neq 0$, se sigue que $\lambda = \overline{\lambda}$. Por lo tanto, $\lambda \in \mathbb{R}$.

6. Calcule la descomposición de Schur de la matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \tag{33}$$

Solución: Primero calculamos el polinomio característico de A:

$$p(t) = t^2 - trAt + \det A \tag{34}$$

$$= t^2 - 4t - 1 \tag{35}$$

$$= \left(t - \left(2 + \sqrt{5}\right)\right) \left(t - \left(2 - \sqrt{5}\right)\right) \tag{36}$$

Para encontrar un valor propio asociado a $\lambda_1=2+\sqrt{5},$ resolvemos el sistema

$$0 = (A - \lambda_1 I)v \tag{37}$$

$$= \begin{pmatrix} -1 - \sqrt{5} & 2\\ 2 & 1 - \sqrt{5} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \tag{38}$$

$$= \begin{pmatrix} -(1+\sqrt{5})x + 2y \\ 2x + (1-\sqrt{5})y \end{pmatrix}.$$
 (39)

Las dos ecuaciones de este sistema son equivalentes, por lo que nos podemos deshacer de la segunda y obtenemos

$$y = \frac{1+\sqrt{5}}{2}x. (40)$$

Haciendo x = 2, obtenemos el vector propio

$$v = \begin{pmatrix} 2\\1+\sqrt{5} \end{pmatrix} \tag{41}$$

Para obtener un vector propio asociado a $\lambda_2=2-\sqrt{5}$ basta conjugar v respecto a $\sqrt{5}$, obteniendo

$$w = \begin{pmatrix} 2\\ 1 - \sqrt{5} \end{pmatrix} \tag{42}$$

Notemos que (afortunadamente), v y w ya son ortogonales, por lo que para obtener una base ortonormal para \mathbb{R}^2 compuesta por vectores propios de A basta normalizar a v y w. Definimos

$$u_1 = \frac{u}{\|u\|} = \frac{1}{\sqrt{10 + 2\sqrt{5}}} \begin{pmatrix} 2\\ 1 + \sqrt{5} \end{pmatrix} \tag{43}$$

$$u_2 = \frac{w}{\|w\|} = \frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} 2\\ 1 - \sqrt{5} \end{pmatrix}$$
 (44)

De esta forma, si consideramos

$$Q = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{10 + 2\sqrt{5}}} & \frac{2}{\sqrt{10 - 2\sqrt{5}}} \\ \frac{1 + \sqrt{5}}{\sqrt{10 + 2\sqrt{5}}} & \frac{1 - \sqrt{5}}{\sqrt{10 - 2\sqrt{5}}} \end{pmatrix}$$
(45)

у

$$D = \begin{pmatrix} 2 + \sqrt{5} & 0\\ 0 & 2 - \sqrt{5} \end{pmatrix} \tag{46}$$

entonces

$$A = QDQ^T, (47)$$

esta es la factorización de Schur de A.

7.