2.1

For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, and i are given and could be considered 32-bit integers as declared in a C program. Use a minimal of MIPS assembly instructions. f = g + (h - 5);

```
sub i, h, 5 add f, g, i
```

<u>2.2</u>

For the following MIPS assembly instructions, what is a corresponding C statement?

add f, g, h add f, i, f
$$f = g + h;$$

$$f = i + f;$$

2.4

For the MIPS assembly instructions below, what is the corresponding C statement? Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

sll	\$t0, \$s0, 2	# \$t0 = f * 4
add	\$t0, \$s6, \$t0	# t0 = A[f]
sll	\$t1, \$s1, 2	# \$t1 = g * 4
add	\$t1, \$s7, \$t1	# t1 = B[g]
lw	\$s0, 0(\$t0)	# f = A[f]
addi	\$t2, \$t0, 4	# t2 = f + 4
lw	\$t0, 0(\$t2)	# t0 = A[0]
add	\$t0, \$t0, \$s0	# t0 = A[0] + f
sw	\$t0, 0(\$t1)	# \$t0 = B[0]

2.8

Translate 0xABCDEF12 into decimal.

```
- 2,882,400,018
```

2.19.1

For the register values shown, what is the value of \$t2 for the following sequence of instructions?

```
$t0 = 0xAAAAAAAA, $t1 = 0x12345678

sll $t2, $t0, 4  # makes $t2 0xAAAAAAAO

or $t2, $t2, $t1  # logical 'or' of $t1 paired with $t2

$t1  0001 0010 0011 0100 0101 0110 0111 1000

$t2  1010 1010 1010 1010 1010 1010 0000

$t2  1011 1010 1011 1110 1111 1110 1111 1000
```

2.19.2

For the register values shown, what is the value of \$t2 for the following sequence of instruction?

2.29

Translate the following loop into C. Assume that the C-level integer i is held in register \$11, \$s2 holds the C-level integer called *result*, and \$s0 holds the base address of the integer *MemArray*.

```
addi
                        $t1, $0, $0
                                                    i = 0;
LOOP:
               lw
                        $s1, 0($s0)
                                                    for (1 < 100; i=i+1)
               add
                        $s2, $s2, $s1
                                                    result = result + MemArray[i];
               addi
                        $s0, $s0, 4
                        $t1, $t1, 1
               addi
                slti
                        $t2, $t1, 100
                bne
                        $t2, $s0, LOOP
```