INF2080 Oblig 1

Elsie Mestl

April 27, 2016

Oppgave 1: P

DNFSAT = $\{\phi \mid \phi \text{ is on DNF, and } \phi \text{ is satisfiable}\}$

La $\phi \in \text{DNFSAT}$ for at ϕ skal være sant så holder det at en av klausulene er sann. For å sjekke om ϕ kan gjøres sann holder det altså å gå gjennom hver klausul og sette inn verdier til litteralene helt til en klausul er sann. Lager TM M som løser for DNFSAT som beskrevet.

M på input ϕ :

- 1. for hver klausul k_i i ϕ gjør 2
- 2. for hver litteral l_i^i finn tilhørende variabel.
- 3. Hvis denne variabelen ikke har blitt tildelt en verdi velg sannhetsverdien som gjør l_j^i sann, eller variabelen har blitt tildelt en verdi, men denne verdien gjør l_i^i sann, gå til steg4. Ellers gå til steg5.
- 4. Hvis det ikke er fler litteraler i klausulen aksepter, ellers gå til steg2.
- 5. Er det siste klausulen avvis, ellers nullstill variablene og gå til steg1.

Her er det beskrevet en determenistisk turing masking og analyserer vi den ser vi den vil kjøre i $O(N^2)$ altså er DNFSAT i P.

$CNFSAT = \{ \phi \mid \phi \text{ is on CNF, and } \phi \text{ is satisfiable} \}$

CNFSAT er et NP-komplett problem

Må finne en TM, M for CNFSAT.

La N være en TM som bestemmer SAT og la M være gitt ved følgende:

M på input $\langle w \rangle$:

- 1. Kjør N på w.
- 2. Hvis N aksepterer (dvs det finnes en tilegning av verdier til litteralene som gjør w sann) aksepter. Ellers avvis.

Siden CNFSAT er polynomisk reduserbar til SAT, som er i NP, så er CNFSAT i NP.

For å vise at CNFSAT er NP-komplett holder det å vise at et anntet NP-komplett problem kan reduseres i polynom tid til CNFSAT.

Vi har at 3-SAT er NP-komplett.

Kan skrive en TM S for 3-SAT som tar inn et input ϕ . Kjører M på ϕ hvis M aksepterer finnes en valuasjon av litteralene som gjør utrykket sant, og vi aksepterer. Aviser M, avis.

Siden 3-SAT er NP-komplett holder det å vise at 3-SAT kan reduseres til CN-FSAT.

$CNFUNSAT = \{ \phi \mid \phi \text{ is on CNF, and } \phi \text{ is unsatisfiable} \}$

Siden CNFSAT \in NP må $\overline{\text{CNFSAT}} \in co\text{NP}$. Og vi vet at $\overline{\text{CNFSAT}} = \text{CNFUNSAT}$ så må CNFUNSAT $\in co\text{NP}$.

VIS AT coNP-komplett

Oppgave 4

Har antatt at $P \subset NP$ hvor $P \neq NP$

Hvis $A \in NP \Rightarrow \overline{A} \in coNP$

A er NP-komplett hvis $(A \in NP) \land (B \leq_p A \forall B \in NP)$

Selvmotsigelsesbevis:

Anta at $A \in P$ og at $A \in NP - komplett$. Altså kan alle $B \in NP$ reduseres til A. Men da er $B \in P$ Men da er NP = P noe som ikke stemmer. Altså må bevisantagelsen være feil og vi har at et språk kan ikke både være i P og i NP - komplett samtidig.

Selvmotsigelsesbevis:

ALTERNATIVT DNFSAT = $\{\phi \mid \phi \text{ is on DNF}, \text{ and } \phi \text{ is satisfiable}\}$

Reduserer problemte til det å finne en sti i en graf. Det å finne en sti mellom to noder s,t i en graf er i P. Hvis vi klarer å redusere problemet er også DNFSAT i P.

M på input $\langle w \rangle$:

- 1. Gå gjennom w og sjekk den er på DNF
- 2. For hver literal i hver klausul. Gjør step 3.
- 3. Hvis det ikke finnes noen litteraler l_i^m, l_j^m slik at $l_i^m = \overline{l_j^m}$, aksepter. Ellers prøv neste klausul.
- 4. Hvis alle klausulene har ittealer l_i^m, l_j^m slik at $l_i^m = \overline{l_j^m}$ avvis

Analyserer vi TM maskinen får vi: La N være lengden til input w. Step 1 vil gå i O(N). Stem 2-4 vil i worst-case være hvis det ikke finnes en gyldig tildeling av litteraler til w som gjør utrykket sant. La k_i tilsvare antall elementer i den i-te klausulen. Da vil hver klausul ha vært gått kjennom $k_i^{k_i}$ ganger

jobber herfra

```
\overline{\text{CNFSAT}} = \{ \phi | \phi \text{ ikke er på CNF eller } \phi \text{ er ikke-tilfredsstillbar } \}= \{ \phi | \phi \text{ er på DNF eller } \phi \text{ er ikke-tilfredsstillbar } \}
```

$\mathbf{DNFUNSAT} = \{\phi \mid \phi \text{ is on DNF, and } \phi \text{ is unsatisfiable}\}\$

$CNFTAUT = \{ \phi \mid \phi \text{ is on CNF, and } \phi \text{ is a tautology} \}$

Lager en TM for CNFTAUT som avgjør språket.

M på input $\langle w \rangle$:

- 1. Ikke deterministisk vel en valuasjon av litteralene til \boldsymbol{w}
- 2. Hvis w er usann på denne valuasjonen avvis, ellers aksepter.

M vil altså kun akseptere hvis det ikke finnes noen tilegning av verdier til litteralene i w som gjør utrykket usant.

$\mathbf{DNFTAUT} = \{\phi \,|\, \phi \text{ is on DNF, and } \phi \text{ is a tautology}\}$

CNFSAT - NP-komplett CNFUNSAT - coNP-komplett CNFTAUT - P
 DNFSAT - P
 DNFUNSAT - reverse av Taut DNFTAUT - coNP-complete