DATA VISUALIZATION: PRINCIPLES AND PRACTICE

Drs. Silas Bergen and Todd Iverson Winona State University ICOTS 2018 Kyoto, Japan July 8, 2018

IN THE VISUALIZATIONS THAT FOLLOW:

- What information can you extract?
- How are you extracting this information?

IHME GBD VISUALIZATION

IHME HEALTH CARE SPENDING VISUALIZATION

(DAH = Development Assistance for Health)

http://ihmeuw.org/4iuu

GAPMINDER VISUALIZATION

https://www.gapminder.org/tools/#_state_marker_axis/_x_which=internet/_users&domainMin:null&domainMax:null&zoomedMin:null&zoomedMax:null&scaleType=linear;&size_which=children/_per/_woman/_total/_fertility&domainMin:null&domainMax:null;;;&chart-type=bubbles

PRIMARY SOURCES

 Wilkinson, L. The Grammar of Graphics (2nd ed). Springer Science. 2005

 Cleveland, WS and McGill, R. Graphical perception: theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association. 79(387): 531-554. 1984.

WHAT IS A DATA VISUALIZATION?

A set of visual geometries whose aesthetics are mapped from data

Many major visualization software (Tableau, ggplot in R, python, graph builder in JMP) are based on this grammar

GEOMETRY

- A geometry is a visual entity in space.
- Some common geometries encountered in data visualizations:

AESTHETIC

- An aesthetic is a visual attribute of a geometry
- Common aesthetics:
 - Position on horizontal (X)
 - Position on vertical (Y)
 - Shape
 - o Size
 - Color
 - Hue
 - Saturation ("intensity")
 - Value ("brightness")
 - Text
- Not all aesthetics are available for every geometry

https://upload.wikimedia.org/wikipedia/commons/0/0d/HSV color solid cylinder alpha lowgamma.png

AESTHETIC ATTRIBUTES OF A POINT GEOMETRY

What distinguishes one point from another point?

Point B

12

Point A

AESTHETIC ATTRIBUTES OF A LINE GEOMETRY

What distinguishes one line from another line?

Hue

Value

AESTHETIC ATTRIBUTES OF A BAR GEOMETRY

What distinguishes one bar from another bar?

DATA

- To visualize, must have data in row-by-column format where:
 - Rows represent <u>cases</u>: at most one geometry per case (assuming no aggregation)
 - □ Columns represent <u>variables</u>: to be mapped to aesthetic attributes

CONSTRUCTING A DATA VISUALIZATION

 Differences in geometry aesthetics map to differences in data variables

 Available mappings depend on whether data variable is continuous (height) or discrete (race)

CONSTRUCTING A DATA VISUALIZATION

The following caveats apply:

1. An aesthetic attribute can be mapped back to at most one variable

2. A variable can be mapped to more than one aesthetic

3. Not all mappings make sense

MODIFIERS

 Ties: when two cases yield overlapping geometries under a given mapping

• Some common modifiers:

18

FIND THE MAPPINGS!

Revisit the three visualizations we encountered earlier. Identify:

- 1. The data cases (assuming one geometry per case);
- 2. The geometries;
- 3. The aesthetic attributes that are varied;
- 4. The variables that control the differences in aesthetic attributes (bonus: are they continuous or discrete?)
- 5. Modifiers (if any)

IHME GBD VISUALIZATION

IHME HEALTH CARE SPENDING VISUALIZATION

(DAH = Development Assistance for Health)

GAPMINDER VISUALIZATION

https://www.gapminder.org/tools/#_state_marker_axis/_x_which=internet/_users&domainMin:null&domainMax:null&zoomedMin:null&zoomedMax:null&scaleType=linear;&size_which=children/_per/_woman/_total/_fertility&domainMin:null&domainMax:null;;;&chart-type=bubbles

RANKING THE AESTHETIC ATTRIBUTES

The work of William S. Cleveland

- Recall the following aesthetic attributes:
 - Position on horizontal (X)
 - Position on vertical (Y)
 - Shape
 - o Size
 - o Color
 - Hue
 - Saturation ("intensity")
 - Value ("brightness")

 Cleveland & McGill created a ranking of these when mapping a geometry to a quantitative variable

- Hypothetical polling data on 5 candidates.
- Geometry: "pie wedge" (a bar in polar coordinates)
- Aesthetic mappings:
 - Candidate (discrete) → hue & text
 - share of vote (continuous) → size, specifically angle
- Rank the candidates' vote shares.

- Same data, different visualization
- Geometry: bar
- Aesthetic mappings:
 - candidate → hue & X
 - share of vote → Y
- Rank the candidates' vote shares.

Cleveland's hierarchy for mapping quantitative data:

Mexico's health spending (Government and Out-of-pocket only)

Geometry: Bar Year → X Spending → Y Source → Hue Modifier: Stack Geometry: Bar Year → X Spending → Y Source → Hue Modifier: Dodge

Geometry: Point
Year → X
Spending → Y
Source → Hue, Shape
Modifier: None