The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Iowa State University

November 18, 2014

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

....

imulated data

The contenders
edgeR
baySeq

The problem

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Mock heterosis data

		Parent (1)			Parent (2)			Hybrid (3)			Truth			
HPH	Feature 1	3	4	2	1	0	0	1	0	700	900	825	860	1
HPH	Feature 2	0	1	1	0	2	7	5	18	50	501	400	90	1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	0
LPH	Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7	1
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465	0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

he workflow

imulated data

he contenders
edgeR
paySeq

The problem

The workflow

Simulated data

The contender

edgeR baySeq ShrinkBa

The contest

ROC (receiver operating characteristic) curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

The workflow

Simulated data

The contenders
edgeR
baySeq

Simulation workflow

- Simulate 30 datasets:
 - 10 datasets with 4 samples (libraries, columns, etc.) per group
 - ▶ 10 with 8 per group
 - ▶ 10 with 16 per group
- For each simulated dataset, test for heterosis with
 - empirical Bayes with STAN (Eric's method)
 - ▶ edgeR
 - baySeq
 - ▶ ShrinkBayes
- Compare methods with ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

The workflow

Simulated data

The contenders
edgeR
baySeq

Simulated data

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulated data

Apply edgeR to real data to get simulation parameters

Normalization factors

Main effects and dispersions

Parent (1)	Parent (2)	Hybrid (3)	Dispersion
$\mu_{1,1}$	$\mu_{1,2}$	$\mu_{1,3}$	ψ_1
$\mu_{2,1}$	$\mu_{2,2}$	$\mu_{2,3}$	ψ_2
$\mu_{27888,1}$	$\mu_{27888,2}$	$\mu_{27888,3}$	ψ_{27888}

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

l he problem

THE WORKHOW

Simulated data

The contenders edgeR baySeq

Generating the data

▶ Does feature *f* truly have heterosis?

$$\operatorname{truth}_f = I(\mu_{f,3} > \max(\mu_{f,1}, \mu_{f,2}) \text{ or } \mu_{f,3} < \min(\mu_{f,1}, \mu_{f,2}))$$

► For a dataset with 4 libraries per group,

$$y_{f,i} \stackrel{\text{iid}}{\sim} NB \left(\exp \left(c_i + \mu_{f,t(i)} \right), \ \psi_f \right)$$

- \blacktriangleright t(i) is the group of library i.
- ▶ Resimulate to increase the number of libraries per group.
- ▶ Remove extremely low-count features.
- ► Take a random subset of 25000 features from the remaining ones.

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders
edgeR
baySeq

Mock example data with 4 samples per treatment group

		Parent (1)			Parent (2)			Hybrid (3)			Truth			
HPH (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860	1
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90	1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	0
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7	1
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465	0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulated data

The contenders

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The contenders

- Fit a loglinear model to estimate main effects $\mu_{f,t}$
 - Feature f = 1, ..., 25000
 - ▶ Treatment group t = 1 (parent), 2 (parent), 3 (hybrid)
- ▶ Likelihood ratio tests to get p-values $p_{f,1}$, $p_{f,2}$

$$H_{0,1}: \mu_{f,3} = \mu_{f,1}$$
 $H_{a,1}: \mu_{f,3} \neq \mu_{f,1}$
 $H_{0,2}: \mu_{f,3} = \mu_{f,2}$ $H_{a,2}: \mu_{f,3} \neq \mu_{f,2}$

Final p-value	
$p_{f,1}/2$	$ \begin{vmatrix} \widehat{\mu}_{f,3} < \widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,1} \geq \widehat{\mu}_{f,2} \\ \widehat{\mu}_{f,3} < \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,1} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,2} \geq \widehat{\mu}_{f,1} \\ \widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1} \end{vmatrix} $
$p_{f,2}/2$	$\widehat{\mu}_{f,3} < \widehat{\mu}_{f,2} \le \widehat{\mu}_{f,1} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,2} \ge \widehat{\mu}_{f,1}$
1	$ \widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1} $

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders
edgeR
baySeq

- ▶ Estimate main effects $\mu_{f,t}$ using edgeR.
- Calculate the posterior probability that each feature satisfies:

Model	Constraint
M_1	All $\mu_{f,t}$'s equal
M_2	$\mu_{f,1} = \mu_{f,2}$
M_3	$\mu_{f,1} = \mu_{f,3}$
M_4	$\mu_{f,2} = \mu_{f,3}$
M_5	All $\mu_{f,t}$'s distinct

Final posterior probabilities of heterosis:

Posterior probability	if
0	$\widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2}$ or $\widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1}$
	$\widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1}$
$P(M_3 \mid data) + P(M_5 \mid data)$	otherwise

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

baySeq

- ▶ Built on inla (integrated nested Laplace approximation).
- empirical Bayes with a zero-inflated NB likelihood and normal priors.
- ▶ I reparameterize

$$\begin{split} \phi_f &= \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(parental mean)} \\ \alpha_f &= \frac{\mu_{f,2} - \mu_{f,1}}{2} \qquad \text{(half parental difference)} \\ \delta_f &= \mu_{f,3} - \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(hybrid effect)} \end{split}$$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

i ne problem

Simulated data

The contenders

edgeR

baySeq

ShrinkBayes

ϕ_{f}	$lpha_{f}$	δ_f
parental mean	half parental difference	hybrid effect

Use contrasts to calculate final posterior probabilities of heterosis:

Posterior probability	
0	$ \widehat{\delta}_f < \widehat{\alpha}_f $, otherwise:
$P(\delta_f + lpha_f > 0 \mid data)$	$\widehat{\delta}_f > -\widehat{\alpha}_f$
$P(\delta_f - lpha_f > 0 \mid data)$	$\widehat{\delta}_f > \widehat{\alpha}_f$
$P(\delta_f - lpha_f < 0 \mid data)$	$\widehat{\delta}_f < \widehat{\alpha}_f$
$egin{aligned} 0 \ P(\delta_f + lpha_f > 0 \mid data) \ P(\delta_f - lpha_f > 0 \mid data) \ P(\delta_f - lpha_f < 0 \mid data) \ P(\delta_f + lpha_f < 0 \mid data) \end{aligned}$	$\widehat{\delta}_f < -\widehat{\alpha}_f$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

i ne problem

. . . .

The contenders

ShrinkBayes

The problem

The workflow

Simulated data

The contender

edgeR baySeq ShrinkBa

The contest

ROC (receiver operating characteristic) curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

THE WORKHOW

Simulated data

The contenders
edgeR
baySeq

The contest

ROC (receiver operating characteristic) curve: The results

- \triangleright N_{true} heterosis features, N_{false} null features.
- Results of testing each feature for heterosis (25000) columns here):

pval	0.802	0.935	0.539	0.001		0.500	0.603
truth	0	0	1	1		1	0

Sort table by p-value (or other binary classifier)

pval	0.000	0.001	0.005	0.006		0.901	1.000
truth	1	1	0	1		0	0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

ROC (receiver operating characteristic) curves

▶ In practice, we would declare the lowest-p-value features to have heterosis.

pval	0.000	0.001	0.005	0.006	 0.901	1.000
truth	1	1	0	1	 0	0

▶ With 2 heterosis genes and 1 null gene,

$$FPR = \frac{1}{N_{false}}$$
 $TPR = \frac{2}{N_{true}}$

Repeat for multiple cutoffs to get multiple (FPR, TPR) pairs.

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders

The contest ROC (receiver

operating characteristic) curves The results

Example ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

....

Simulated data

The contenders
edgeR
baySeq

Areas under ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Areas under ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

THE WOLKHOW

Simulated data

The contenders
edgeR
baySeq