DETR: End-to-End Object Detection with Transformers

Li Shaohua 08/06/2020

DETR is hot

• Github:

• Youtube:

Outline

- Background
 - What is object detection
 - Problems with the traditional object detection paradigm
- DETR
 - What is transformer and self-attention
 - Intuitions
 - DETR architecture
 - Results & Visualizations
- Gained insights and possible future work
- References

Object Detection

- Localization & classification at the same time
- Detection is an "entry-level" task for many tasks involving localization
 - Methods transfer to other tasks easily
- Challenges
 - Many candidate locations
 - Varying scales
 - Occlusions
 - object features "pollute" each other
 - Limited annotations
 - COCO: 300K images, 80 categories
 - ImageNet: 1.5M images, 1000 categories
 - Bounding boxes are laborious

Traditional object detection paradigm

A CNN backbone extracts feature maps from the input image

A Region Proposal Network (RPN) enumerates all windows on the

feature maps, outputs N candidate boxes

A classifier classifies each box into a class

Problem 1: Enumerate candidate boxes in RPN

- Enumerate all pixels on the feature maps
- At each pixel, enumerate all predefined boxes
- Most candidate boxes are bad. Inefficient, slow

Enumerate all pixels (in feature maps)

Predefined boxes

Problem 2: Redundant boxes and NMS

- RPN outputs many redundant boxes
- Non-maximum suppression (NMS) merges/removes redundant boxes
- These hand-designed components have a few hyperparameters
- Model tuning is complex

Simplicity of DETR

Self-attention: core of Transformer

Self-Attention

- 1. "The animal didn't cross the street because it was too tired"
- 2. "The animal didn't cross the street because it was too wide"
- All tokens can attend to each other equally well, no matter how far they are from each other
- Transformer captures long-range semantic dependencies
 - Creates global context into the output embeddings

Transformer

- Take a sequence of tokens x_1, \dots, x_n as input
- Convert to intermediate embeddings z_1, \dots, z_n
 - z_1, \dots, z_n have combined the semantics (embeddings) among x_1, \dots, x_n
 - z_1, \dots, z_n can be used for various tasks
- Semantics = Embeddings
 - Manipulating semantics = Manipulating embeddings

Implementation of Self-attention

- $z_1, \dots, z_n \rightarrow \{Q, K, V\}_{1, \dots n}$
 - Mapped to Query, Key, Value subspaces

• Attention score between z_i and z_j :

$$Att_score(z_i, z_j) = Q_i \cdot K^T$$

• z_i is transformed by self-attention:

$$z_i' = \text{Attention}(Q_i, K, V) = \sum_j \text{softmax}\left(\frac{Q_i K_j^T}{\sqrt{d}}\right) V_j$$

Self-attention vs. Convolution in Vision

- Each pixel is an input "token"
- Traditionally, convolution is used to integrate pixels
 - Recognize patterns within a small window of pixels
 - Difficult to integrate non-local pixels
 - Have to make network very deep to "see the big picture"
 - Detection & Segmentation

- Works when the correlated pixels are non-local
- Trunk, tail, legs of an elephant to a whole elephant
- Detection & Segmentation

Intuition of Self-attention for Detection

First layer

Second Layer

.

- •, •: initial queried positions
- Gradually attend to relevant parts of the same object

DETR architecture

Positional encoding

- 16*16 feature maps are flattened to a 256-token sequence
 - Each pixel is a visual feature vector $v_{x,y}$ at (x,y), 2048-dimensional
 - $v_{x,y}$ has no information about coordinates (x,y)
- How to allow transformer to utilize location information?
 - Add a positional embedding to each pixel's embedding
 - $(x,y) \rightarrow p_{x,y}$, also 2048-dimensional vector
 - Transformer input: $v_{x,y} + p_{x,y}$ (combine visual and positional features)
- Can we concatenate $(v_{x,y}, p_{x,y})$?
 - Number of Parameters $\times 2 \rightarrow$ overfitting
- How DETR disentangles visual and positional features?
 - We have no idea...
 - Model learns to use it in whatever ways, as long as the loss is minimized

Visualization of object queries

All box positions in COCO images predicted by each object query

- Object queries:
 - N vectors, each 2048-dimensional vector (similar to positional encoding)
 - Randomly initialized
 - Trained along with transformer parameters
- Different queries focus on different areas of the image
 - Left or middle or right...

Avoid redundant detections

- Hungarian matching loss
 - Find the best matching pairs
 - Redundant predictions match to ϕ , incur loss
- Minimize Hungarian loss
 - Decoder learns to avoid redundant detections
 - No need for NMS

	Predictions	Groundtruth				
,	Apple, (50, 30, 120, 90)	Dog, (145, 210, 540, 290)				
	Dog, (150, 200, 550, 280)	Person,(325, 145, 398, 633)				
	Person,(320, 140, 400, 640)	Pear, (52, 33, 117, 88)				
	Person,(315, 140, 360, 620)	φ, (-1, -1, -1)				

Performance compared with Faster-RCNN

Model	$\operatorname{GFLOPS}/\operatorname{FPS}$	#params	AP	AP_{50}	AP_{75}	$\mathrm{AP_S}\ \mathrm{AP_M}$	AP_L
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4 43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	$24.2 \ 43.5$	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	$25.2 \ 45.6$	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9 45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	$26.6 ext{ } 45.4$	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2 48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5 45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	$22.5 ext{ } 47.3$	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9 48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7 49.5	62.3

- Still performs worse than Faster-RCNN on small objects
- Because DETR only uses high-level feature maps
 - Low spatial resolution, cannot see small objects clearly
 - Faster-RCNN uses FPN to combine high- and low-level feature maps

Visualization of encoder self-attention

Visualization of decoder self-attention

- Decoder attends to object extremities, such as legs and heads
- Parts of different objects are separately attended (color of highlighted areas agree with identity)

Impact of Encoder and Decoder

Table 2: Effect of encoder size. Each row corresponds to a model with varied number of encoder layers and fixed number of decoder layers. Performance gradually improves with more encoder layers.

#layers	$\operatorname{GFLOPS}/\operatorname{FPS}$	#params	AP	AP_{50}	AP_S	AP_M	$\mathrm{AP_L}$
0	76/28	33.4M	36.7	57.4	16.8	39.6	54.2
3	81/25	37.4M	40.1	60.6	18.5	43.8	58.6
6	86/23	41.3M	40.6	61.6	19.9	44.3	60.2
12	95/20	49.2M	41.6	62.1	19.8	44.9	61.9

- Decoder is much more important than encoder!
- •Decoder has implicit "anchors", essential for detection
- •Encoder only helps aggregate pixels of the same object
 - Reduces the burden of decoder

DETR for segmentation

- 1. Detect boxes first
- 2. Segment each box
- 3. Vote for the class of each pixel

Fig. 8: Illustration of the panoptic head. A binary mask is generated in parallel for each detected object, then the masks are merged using pixel-wise argmax.

Fig. 9: Qualitative results for panoptic segmentation generated by DETR-R101. DETR produces aligned mask predictions in a unified manner for things and stuff.

Insights gained

- Transformers are an effective new paradigm for computer vision
 - Esp. for tasks that require integrating information from non-local pixels
 - Pure data-driven, replace hand-designed components and hard-coded procedures

23

- Easily integrate more constraints (by adding new loss functions)
- RAM consumption
 - Training: 16 V100 * 3 days (a bit high)
 - Supervision signal is indirect → Slow training
 - How to speed up training?
 - Inference: Similar to Faster-RCNN
 - Model size (R101): 232MB

Easy extensions to DETR

- Improve DETR for segmentation
 - End-to-end segmentation, without training detector first?
- Improve performance on small objects: hierarchical transformers
 - Integrate different granularities of features
 - Keep computation and RAM low

Challenging future work

- Apply transformers to video analysis
 - Capture temporal correlations across video frames?
 - Computation and RAM consumption is huge
 - Efficient representation is the key. Detection first?
- DETR is still supervised
 - How to design self-supervised learning, like in NLP?
 - Exploit correlations/consistency across video frames?

References for further study

- Attention is All you Need. NIPS 2017
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019
- LXMERT: Learning Cross-Modality Encoder Representations from Transformers. EMNLP 2019
- DETR: End-to-End Object Detection with Transformers. ECCV 2020
- https://www.youtube.com/watch?v=TQQIZhbC5ps (tutorial on transformers)
- https://www.youtube.com/watch?v=T35ba VXkMY (tutorial on DETR)