# 기계학습 중간고사 대체과제 프로젝트 보고서

202021497 생명공학과 이주철

- 지도학습을 이용한 분류 모델 구현 및 분석 -

제출일: 2025-04-26

# 1. 개발 환경 설정

## 1) 개발 환경

- 운영체제: Windows 11

- 언어: Python 3.13.2

#### 2) 사용 라이브러리

- pandas: 데이터 불러오기, 정리 (read csv, DataFrame, 결측치 처리 등)

- Numpy: 수치 계산, 결측값 처리 (np.nan, np.abs 등)

- matplotlib.pyplot: 결과 시각화 (산점도, 히트맵 등)

- seaborn: 상관관계 히트맵, countplot 등 고급 시각화

- scikit-learn (sklearn): 머신러닝 전처리, 모델, 평가 전체를 하기 위한 패키지

# 2. 프로젝트 개요

- 1) 문제 정의: 버섯의 독성 여부를 버섯의 특성에 따라 예측하는 분류 문제를 정의합니다.
- 2) **데이터셋 설명**: 버섯의 생김새, 무늬, 냄새 같은 특성에 따라 독성과 식용 가능한 버섯을 예측할 수 있습니다.
- 출처: https://www.kaggle.com/datasets/rinichristy/uci-mushroom-dataset
- 데이터셋 크기: 8124 \* 23
- 종속변수(target) 및 주요 독립변수(features):

종속 변수: Mushroom\_quality (e: 식용, p: 독성)

독립 변수: odor, gill\_size, spore\_print\_color, ring\_type, gill\_spacing, bruises 등으로 구성되어있습니다.

## 3. 데이터 전처리 및 탐색적 분석 (EDA)

#### 1) 결측치 처리

- 사용한 방법: '?'값을 최빈값으로 대체하여 진행했습니다.

## 2) 범주형 변수 처리

범주형 변수를 명목형과 서열형으로 분류하여 인코딩을 진행하였습니다. 명목형 변수는 LabelEncoder를 사용하여 문자를 순서에 관여 받지 않게 숫자로 바꿔 분류하였습니다. 서열형 변수는 순서를 반영하여 수작업 매핑 후 넓고 좁음을 구별하였습니다.

명목형 변수는 OneHotEncoder(handle\_unknown="ignore")를 사용하여 각 범주를 고유한 벡터로 변환했습니다. 서열형 변수는 순서를 반영하여 수치로 변환한 후, StandardScaler를 적용하여 평균 0, 표준편차 1로 정규화하였습니다.

- 인코딩 방식: OneHotEncoder, StandardScaler
- 스케일링: Tree 기반 모델(RandomForest)에서는 스케일링이 필요 없지만, Logistic Regression 모델에서는 수치형 피처의 스케일링이 모델 성능에 영향을 줄 수 있어 적용하였습니다. (모든 전처리는 파이프라인 내부에서 자동 처리되었습니다.)

#### 3) EDA 시각화:

- 클래스 분포 시각화: countplot을 사용하여 Mushroom\_quality(식용/독성) 클래스 분포를 시각화하였습니다.



- 주요 변수 분포: 명목형 변수로 식용/독성 클래스를 그룹화하여 각 범주 내 비율(ratio)을 계산한 후, barplot을 통해 시각화하였습니다. 이를 통해 odor, gill\_size 등 주요 변수들이 식용/독성 여부에 미치는 영향을 분석하였습니다.



- 상관관계 분석: 서열형 변수와 타겟(Mushroom\_quality) 간의 관계를 분석하기 위해 spearmanr 상관계수를 계산하였고, 이를 heatmap으로 시각화하였습니다. 이를 통해 서열형 변수 중 타겟과 강한 상관관계를 갖는 변수를 식별할 수 있습니다.



4) 모델 구축 및 학습

- 사용한 알고리즘: RandomForestClassifier, LogisticRegression
- 데이터 분할 방식: train\_test\_split(test\_size=0.2, stratify=y, random\_state=42)를 사용하여 학습용/테스트용 데이터를 8:2 비율로 분할하였습니다.
- 파이프라인 사용 여부: Pipeline과 ColumnTransformer를 활용하여 전처리와 모델 학습을 통합 처리하였습니다.

명목형 변수는 OneHotEncoder(handle\_unknown="ignore")를 사용하여 인코딩하고, 서열형 변수는 수치 변환 후 StandardScaler를 적용하여 스케일링을 진행하였습니다. 모든 전처리는 파이프라인 내부에서 자동으로 수행되었습니다.

#### - 학습 코드 요약

```
preprocessor = ColumnTransformer(
    transformers=[
        ('onehot', OneHotEncoder(...), nominal_columns),
        ('scale', StandardScaler(), ordinal_columns)
]

model = Pipeline(steps=[
        ('preprocessor', preprocessor),
        ('classifier', RandomForestClassifier()) # or LogisticRegression()
]
```

#### 4. 성능 평가

- 1) 사용한 지표:
- Accuracy: 전체 예측 중에서 정답을 맞춘 비율을 평가하였습니다.
- Precision: 독성 버섯(Positive)을 예측했을 때 실제 독성일 확률을 평가하였습니다.
- Recall: 실제 독성 버섯을 모델이 놓치지 않고 잘 예측했는지를 평가하였습니다.
- **F1-score**: Precision과 Recall의 조화 평균으로, 두 지표의 균형을 평가하였습니다.
- ROC-AUC (Area Under the Curve): 모델이 식용/독성 클래스를 구분하는 능력을 종합적으로 평가하였습니다.

#### 2) 예측 결과 시각화

- Confusion Matrix 시각화

RandomForestClassifier와 LogisticRegression 각각에 대해 Confusion Matrix를 시각화하여, 실제 클래스와 예측 클래스 간의 관계를 한눈에 파악할 수 있도록 하였습니다.



- ROC Curve로 두 모델을 시각화 하였습니다.



- Precision-Recall Curve로 두 모델을 시각화 하였습니다.



## 3) 해석

- RandomForestClassifier와 LogisticRegression 두 모델을 사용하였을 때 두 모델 성능이 좋게 나왔습니다. 독성을 분명하게 예측할 거 같은 두 'odor', 'spore\_print\_color' 컬럼으로만 독성 예측을 진행하였을 때 LogisticRegression이 더 높게 나왔습니다. 이는 데이터 셋이 잘 구분되어 있어서 위 모델이 정확도가 더 높게 나올 수 있다고 판단하였습니다.

| Test Set 성능 (RandomForestClassifier)<br>- Accuracy: 0.9938 |     |           |        |          |         | Test Set 성능 (Logistic Regression)<br>- Accuracy: 0.9938 |           |        |          |         |
|------------------------------------------------------------|-----|-----------|--------|----------|---------|---------------------------------------------------------|-----------|--------|----------|---------|
|                                                            |     | precision | recall | f1-score | support | - Accuracy. 6                                           | precision | recall | f1-score | support |
|                                                            | ø   | 0.99      | 1.00   | 0.99     | 1263    | 0                                                       | 0.99      | 1.00   | 0.99     | 1263    |
|                                                            | 1   | 1.00      | 0.99   | 0.99     | 1175    | 1                                                       | 1.00      | 0.99   | 0.99     | 1175    |
| accuracy                                                   |     |           |        | 0.99     | 2438    | accuracy                                                |           |        | 0.99     | 2438    |
| macro                                                      | avg | 0.99      | 0.99   | 0.99     | 2438    | macro avg                                               | 0.99      | 0.99   | 0.99     | 2438    |
| eighted                                                    | avg | 0.99      | 0.99   | 0.99     | 2438    | weighted avg                                            | 0.99      | 0.99   | 0.99     | 2438    |

- Confusion Matrix와 ROC Curve, Precision-Recall Curve를 분석한 결과, 식용(e)과 독성

- (p) 클래스 모두 정확도와 정밀도 모두 유사하거나 완벽한 수준으로 나타났습니다.
- → 따라서 클래스 간 성능 차이는 거의 존재하지 않았으며, 모델이 두 클래스를 균형 있 게 잘 분류했음을 확인할 수 있었습니다.

## 5. 하이퍼파라미터 튜닝

- 1) 튜닝 방법
- GridSearchCV를 활용하여 최적화하였습니다. 이를 통해 모든 조합을 체계적으로 탐색 하였습니다.
- 2) 튜닝한 하이퍼파라미터
- 최적 파라미터 조합은 다음과 같습니다.
- RandomForest 모델을 사용했을 경우 'max\_depth': None, 'min\_samples\_leaf': 1, 'min\_samples\_split': 2, 'n\_estimators': 100

```
itting 5 folds for each of 108 candidates, totalling 540 fits
최적 파라미터: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators'
             precision recall f1-score support
                  0.99
                           1.00
                                     0.99
                                               1263
                           0.99
                  1.00
                                     0.99
                                               1175
   accuracy
                                     0.99
                                               2438
  macro avg
                  0.99
                            0.99
                                     0.99
                                               2438
                  0.99
                            0.99
                                     0.99
                                               2438
weighted avg
```

- LogisticRegression 모델을 사용했을 경우 'C': 1, 'max\_iter': 100, 'penalty': 'l2', 'solver': 'lbfgs'

```
Fitting 5 folds for each of 30 candidates, totalling 150 fits
최적 파라미터: {'C': 1, 'max_iter': 100, 'penalty': '12', 'solver': 'lbfgs'}
                           recall f1-score
              precision
                                              support
                   0.99
           0
                             1.00
                                       0.99
                                                 1263
           1
                   1.00
                             0.99
                                       0.99
                                                 1175
    accuracy
                                       0.99
                                                 2438
                             0.99
   macro avg
                   0.99
                                       0.99
                                                 2438
weighted avg
                   0.99
                             0.99
                                       0.99
                                                 2438
```

- 3) 튜닝 결과 분석
- odor, gill\_size, spore\_print\_color 컬럼만을 가지고 튜닝하기 전
  RandomForestClassifier, LogisticRegression 기본 모델 대비, 튜닝 된 모델은 Accuracy 및 F1-score에서 소폭 성능 향상을 보였습니다.

## 6. 결론 및 고찰

- 하이퍼파라미터 튜닝 결과, LogisticRegression 모델의 Test Set 정확도는 튜닝 전과 비교하여 유의미한 변화는 없었습니다. 이는 초기 설정에서도 모델이 데이터셋에 적합하게 학습되어 있음을 말해준다고 판단하였습니다.
- 주어진 데이터셋은 odor와 spore\_print\_color 등 일부 feature에 의존하는 경향이 매우 컸기 때문에, 상대적으로 쉽게 분류가 되었습니다.
- 이 모델은 버섯 독성 여부를 빠르게 판별하는 데 활용할 수 있으며, 식품 안전 분야, 야생 탐색 앱 등에 적용 가능하다고 생각합니다.
- 본 데이터는 매우 깨끗한 상태였지만, 실제 상황에서는 클래스 불균형 문제를 고려하고, 결측치 또한 최빈값 이외의 다양한 방법으로 처리하는 방안을 검토할 필요가 있다습니다.

# 7. 참고자료

- https://www.kaggle.com/datasets/rinichristy/uci-mushroom-dataset
- 참고한 논문, 블로그, scikit-learn 문서 등
- 문단 정리 및 코드 가독성을 위해 GPT 사용하였습니다.
- 혼자 공부하는 머신러닝, 딥러닝 (교재를 보며 코드를 해석하고 인용하였습니다.)