离散数学(2023)作业20-循环群与群同构

离散数学教学组

Problem 1

证明:三阶群必为循环群。

答案: 任意不为单位元的元素的阶均不等于1且整除3,故只能为3。因此任意不为单位元的元素均生成整个群,故为循环群。

Problem 2

证明:循环群一定是交换群。

答案: 设 $G = \langle a \rangle$ 是循环群。 $\forall a^i, a^j \in \langle a \rangle$,有 $a^i a^j = a^{i+j} = a^{j+i} = a^j a^i$,得证。

Problem 3

设 p 是素数, 证明每一个 p 阶群都是循环群, 且以每一个非单位元的元素作为它的生成元。

答案: 设 G 为 p 阶群,可知 $|G| \ge 2$ 。对任意 $m \ne e \in G$ 我们有 $|m| \mid p$,即 |m| = p。则 $G = \langle m \rangle$,得证。

Problem 4

考虑整数加群 $(\mathbb{Z},+)$ 的循环子群 $\langle a \rangle$ 和 $\langle b \rangle$,其中 a,b 分别是两个循环群的生成元,则 $\langle a \rangle$ 是 $\langle b \rangle$ 的子群当且仅 当 $b \mid a$ 。

答案:

- 充分性: 由 $b \mid a$ 得,存在一整数 k,使得 a = k * b。对于任意 $\langle a \rangle$ 中的元素 a^i ,我们有 $a^i = (kb)^i = (k^i)(b^i)$ 。由于 b^i 是 $\langle b \rangle$ 中的元素,我们只需证明 k^i 也是 $\langle b \rangle$ 中的元素。将 a = k * b 代入 k^i 中,我们有 $k^i = \left(\frac{a}{b}\right)^i = \frac{a^i}{b^i}$ 。由于 a^i 和 b^i 都是 $\langle a \rangle$ 中的元素,且 $\langle a \rangle$ 是一个子群,所以它们的商 $\frac{a^i}{b^i}$ 也是 $\langle a \rangle$ 中的元素。因此, k^i 是 $\langle b \rangle$ 中的元素。
- 必要性: 由 $\langle a \rangle$ 是 $\langle b \rangle$ 的子群,对任意 $\langle a \rangle$ 中元素 a^i, a^j ,则 $a^i, a^j \in \langle b \rangle$ 。令 j=i+1,则存在整数 p,q,满足 $a^i=b^pa^{(i+1)}=b^q$ 。两边分别做商,得 $a=b^{(q-p)}=b+b+\cdots+b(q-b \uparrow b$ 相加)=(q-p)*b。令 r=q-p,由 p 和 q 为整数, r 为整数,即存在整数 r,使得 a=r*b,所以 $b \mid a$ 。

Problem 5

设 ϕ 是群G到G'的同构映射, $a \in G$, 证明: a的阶和 $\phi(a)$ 的阶相等。

答案: 注意到 $\phi(a)^{|a|} = \phi(a^a) = \phi(e) = e$,则有 $|\phi(a)| \mid |a|$ 。因为 ϕ 为同构,故 ϕ^{-1} 为 G' 到 G 的同构,因此 $|a| \mid |\phi(a)|$,得证。

Problem 6

设 G_1 为循环群, f是群 G_1 到 G_2 的同态映射, 证明 $f(G_1)$ 也是循环群。

答案: 设 $G_1 = \langle a \rangle$, $f: G_1 \to G_2$ 为群同态。易见 $f(G_1)$ 为群,对任意 $y \in f(G_1)$,存在 $a^i \in G_1$,使得

$$y = f(a^i) = (f(a))^i$$

故 $f(G_1) = \langle f(a) \rangle$ 。

Problem 7

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1\to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。

I. $G_1 = \langle Z, + \rangle, G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和·分别表示数的加法和乘法。

$$f:Z \to R^*, f(x) = \left\{ egin{array}{ll} 1 & x$$
 是偶数 $-1 & x$ 是奇数

2. $G_1 = \langle Z, + \rangle, G_2 = \langle A, \cdot \rangle$,其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$,其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

答案:

- I. 是同态, 不是单同态, 也不是满同态。
- 2. 是同态,是单同态,不是满同态。

Problem 8

令G, G'为群,函数 $f: G \to G'$ 是一个群同态。证明:

- I. $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群
- 2. $img f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

答案:

- I. 首先 $e \in \ker f$, $\ker f$ 非空。任取 $a, b \in \ker f$, 我们有 $f(ab^{-1}) = f(a)f(b)^{-1} = e \in \ker f$, 所以 $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群。
- **2.** 首先 $e \in \text{img } f$, img f 非空。任取 $a, b \in \text{img } f$, 则存在 $g, h \in G$, 使得 f(g) = a, f(h) = b。则 $ab^{-1} = f(g)f(h^{-1}) = f(gh^{-1}) \in \text{img } f$, 所以 $\text{img } f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群。

Problem 9

我们记n 阶循环群为 C_n ,欧拉函数 $\phi(m)$ 定义为与m 互素且不大于m 的正整数的个数,考虑以下三个事实:

- I. 对正整数 m, 欧拉函数的结果 $\phi(m)$ 为 C_m 的生成元的个数
- 2. C_n 的每个元素均生成 C_n 的一个子群
- 3. C_n 的每个子群均是一个循环群 C_m , 且 $m \mid n$

证明公式

$$\sum_{m>0.m|n} \phi(m) = n$$

答案: 左边为 C_n 的所有子群的生成元的数量,右边为 C_n 中元素的数量。我们知道 C_n 中每个元素均能生成一个循环子群,故得证。严格地,对任意 $m \mid n$, C_n 中恰好存在 $\phi(m)$ 个可以生成 m 阶循环子群的元素。因为 $m \mid n$, $C_n = < a >$ 恰有一个 m 阶子群 $\langle a^{n/m} \rangle$ 。其有 $\phi(m)$ 个生成元,均属于 C_n 。故 $\sum_{m>0, m \mid n} \phi(m) \geq n$,得证。

Problem 10

证明:整数加群Z**不与**有理数加群Q同构。

答案: 假设同构,则存在双射 $f: Z \to Q$ 满足同态性质。令有理数 p/q = f(1),我们有 f(-1) = -p/q。则对任意 $k \in Q$,均存在整数 z,使得 $k = f(z) = z \times (p/q)$ 。即存在 z' 使得 |z||p/q| = |(1/2q)| < |p/q|。矛盾,得证。