Al1110: Probability and Random Variables

Assignment 7: Papoulis-Pillai Ex 4-22

Rishit D (cs21btech11053)

IIT Hyderabad

May 23, 2022

Outline

Problem

- Solution
 - Part 1
 - Part 2

Problem

The probability of *heads* of a random coin is a random variable p uniform in the interval (0.4,0.6).

- Find the probability that at the next tossing of the coin *heads* will show.
- The coin is tossed 100 times and heads shows 60 times. Find the probability that at the next tossing *heads* will show.

Part 1

Defining PDF

We will define the probability density function f(p) as follows

$$f(p) = \begin{cases} 5, & p \in (0.4, 0.6) \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Note that we ensure that the area under the probability density function f(p) is 1.

Finding probability of getting Heads

The total probability theorem in continuous form states

Total Probability Theorem

$$\Pr(A) = \int_{-\infty}^{\infty} \Pr(A|p) f(p) dp \tag{2}$$

Using (2) we have

$$\Pr(H) = \int_{-\infty}^{\infty} \Pr(H|p) f(p) dp \tag{3}$$

Finding probability of getting Heads

Using (1) in (3)

$$\Pr(H) = \int_{0.4}^{0.6} 5 \Pr(H|p) dp \tag{4}$$

Note that we define the random variable p such that it represents the probability that a coin toss results in a *Head*. Hence

$$\Pr(H|p) = p \tag{5}$$

Using (5) in (4)

$$Pr(H) = \int_{0.4}^{0.6} 5pdp = \boxed{0.5}$$
 (6)

Code Output for Part 1

```
ravi@ravi-Legion-5-Pro-16ACH6H:~/Desktop/PRV/PyCode$ python3 coin prob.py
Probability is 0.49994077
ravi@ravi-Legion-5-Pro-16ACH6H:~/Desktop/PRV/PyCode$ 🗌
```

Figure: Probability of Getting Heads

Part 2

Given Condition

We define event A as getting 60 Heads out of 100 trials (distinct sequence of *Heads* and *Tails*). Given that probability of getting heads is p, we have

$$\Pr(A|p) = p^{60}(1-p)^{40} \tag{7}$$

Using (2), (1) in (7)

$$\Pr(A) = \int_{0.4}^{0.6} P(A|p)f(p)dp = \int_{0.4}^{0.6} 5p^{60}(1-p)^{40}dp \tag{8}$$

Using Continuous Bayes Theorem

We state the Bayes Theorem for continuous random variables as follows

Continuous Bayes Theorem

$$f(x|A) = \frac{\Pr(A|x)}{\Pr(A)}f(x)$$
 (9)

Using (9), (7) and (8) we have

$$f(p|A) = \frac{\Pr(A|p) \times f(p)}{\Pr(A)} = \frac{5p^{60}(1-p)^{40}}{\int_{0.4}^{0.6} 5p^{60}(1-p)^{40}dp}$$
(10)

Probability of Heads given event A

We are required to find the probability that we get heads on tossing a coin after event A has occurred (i.e.) find Pr(H|A).

$$\Pr(H|A) = \int_{0.4}^{0.6} \Pr(H|p) f(p|A) dp = \int_{0.4}^{0.6} p \times f(p|A) dp$$
 (11)

Hence

$$\Pr(H|A) = \frac{\int_{0.4}^{0.6} p^{61} (1-p)^{40} dp}{\int_{0.4}^{0.6} p^{60} (1-p)^{40} dp} = \boxed{0.56}$$
(12)

