Deságio das LFT e a probabilidade implícita de moratória*

Maria Sílvia Bastos Marques** Sérgio Ribeiro da Costa Werlang***

Desenvolve-se um modelo de demanda de LFT, com o objetivo de estimar a probabilidade implícita de moratória associada às taxas de deságio apuradas nos leilões. Dois modelos são apresentados. Pela observação dos dados brasileiros, opta-se por um deles. Duas são as conclusões mais importantes: em primeiro lugar, o governo incorre em um gasto adicional ao estender o perfil da dívida em LFT. O que quer dizer que o melhor possível, do ponto de vista de custo, para o Tesouro Nacional, é a emissão de LFT curtas. Em segundo, as probabilidades implícitas de moratória são da ordem de 0,4% a.a., mesmo para deságios elevados. Isto corrobora a análise de Marques e Werlang (1989) de que pequenas desconfianças de moratória interna podem ter efeitos apreciáveis na demanda de dívida interna.

1. Introdução; 2. Modelo de demanda de LFT; 3. Resultados do modelo: rejeição; 4, O modelo alternativo; 5. Resultados do modelo alternativo; 6. Conclusões.

1. Introdução

A moratória da dívida pública interna, ou o alongamento compulsório dos prazos de vencimento dos títulos, tem sido tema recorrente no debate econômico nacional. Recentemente, este assunto tornou-se de especial interesse, dada a proximidade da mudança de comando presidencial. Tendo em vista a profunda crise que atravessa a economia brasileira e a certeza

- * Os autores agradecem a Francisco Amadeo e Edmundo Maia Ribeiro, da Demab do Banco Central do Brasil, pelos dados da tabela 1, sem os quais este trabalho não poderia ter sido realizado. Agradecem ainda os comentários e sugestões de Clóvis de Faro e de um parecerista anônimo.
- ** Professora no Departamento de Economia da Pontifícia Universidade Católica do Rio de Janeiro. A primeira versão deste trabalho foi desenvolvida quando a autora encontrava-se no Centro de Estudos Monetários e de Economia Internacional do IBRE/FGV. A autora agradece o financiamento, para este trabalho, do Instituto Latino-Americano de Desenvolvimento Econômico e Social (IIdes).
- *** Professor na Escola de Pós-Graduação em Economia/FGV.

de que somente um conjunto de medidas abrangentes e fortes será capaz de solucioná-la, tem-se especulado a respeito da necessidade de alteração nas regras que norteiam a dívida pública.

A moratória, ou o alongamento compulsório dos prazos, seria necessária por um dos dois seguintes motivos: porque se acredita que um programa de estabilização não teria sucesso sem este pré-requisito, ou porque se acredita que poderia haver uma fuga maçiça de títulos públicos para outros ativos, antes da execução das medidas de estabilização.

A primeira preocupação só seria relevante se a taxa real de juros fosse superior à taxa real de crescimento da economia brasileira por um longo período de tempo. Contudo, este não é o caso: de janeiro de 1981 a dezembro de 1988 a taxa de juros do *overnight*, deflacionada pelo IGP-DI, foi de 1,6% ao ano. Neste mesmo período, a taxa real média de crescimento do PIB brasileiro foi de 2% ao ano. Já a preocupação com a fuga dos títulos públicos é procedente, pois dado o perfil de curto prazo da dívida mobiliária e o fato de que esta é rolada no *overnight*, a fuga para outros ativos poderia processar-se rapidamente. Se isto acontecesse, representaria o estopim da hiperinflação. Neste contexto, é de crucial importância assegurar a estabilidade da demanda de títulos públicos.

Em trabalho anterior, Marques e Werlang (1989) desenvolveram um modelo onde os demandantes de dívida pública acreditam na possibilidade de moratória, e verificou-se que esta hipótese poderia gerar uma trajetória explosiva para as taxas reais de juros e para a dívida interna do setor público. Este trabalho, dentro da mesma linha de pesquisa, tem por objetivo investigar se a elevação do deságio nos leilões de títulos públicos, fato que tem ocorrido desde meados de 1988, representou um aumento na probabilidade de moratória percebida pelos demandantes de títulos públicos.

O trabalho está organizado em seis seções. Na próxima seção desenvolve-se um modelo de demanda de LFT. Inicialmente supõe-se que os demandantes destes títulos não acreditem na possibilidade de ocorrência de moratória da dívida mobiliária. Em seguida, esta hipótese é substituída pela de existência de probabilidade implícita de moratória. Na seção 3 estão apresentados os resultados da estimação do modelo. Verifica-se que o modelo não gera os resultados esperados, o que significa que as hipóteses adotadas sobre o comportamento dos demandantes de LFT não espelham seu comportamento efetivo.

Desenvolve-se, portanto, na quarta seção, um modelo alternativo para a estimação da probabilidade implícita de moratória. Os resultados gerados pelo novo modelo estão reproduzidos na seção 5. Dada uma determinada estrutura a termo das taxas de juros, apresenta-se também uma projeção de diferentes probabilidades de moratória que estariam associadas a diversas taxas de deságio. Finalmente, a última seção resume as principais conclusões do trabalho.

2. Modelo de demanda de LFT

Primeiramente, será desenvolvido um modelo de demanda de títulos públicos, sob a hipótese de que os demandantes não acreditem na possibili-

dade de ocorrência de moratória da dívida mobiliária. Em seguida, introduz-se a probabilidade implícita de moratória e verifica-se quais são suas implicações no modelo.

2.1 Modelo sem a probabilidade implícita de moratória

Suponha um agente que atue como intermediário no mercado financeiro, aplicando Q cruzados novos na compra de LFT. Estes títulos rendem a taxa de juros r e são financiados à taxa de captação r^c.

O rendimento das LFT, como se sabe, é dado pela média das taxas do overnight. Portanto, se há multiplicidade de agentes e de transações no mercado, o valor esperado da taxa de captação é dado pela taxa de rendimento do título. Isto é, $E(r^c) = r$. Admite-se, por hipótese, que a distribuição das taxas de captação seja normal, com variância σ_c^2 . Ou seja, $r^c \sim N(r, \sigma_c^2)$.

Na verdade, cabe esclarecer que, a cada dia. o Banco Central, de posse das diferentes taxas praticadas de captação, calcula uma nova distribuição de r^c , retirando as taxas extremas, inferiores e superiores.¹ Este procedimento se justifica pelo fato de que estas taxas extremas não seriam representativas de operações rotineiras de mercado. A remuneração das LFT é dada, de fato, pela média desta distribuição truncada, r'. Neste caso, $E(r^c) = r \neq r$ '. Para que se possa afirmar que o valor esperado da taxa de captação é igual à taxa de rendimento das LFT, é preciso que E(r-r')=0. A variância que interessa ao intermediário é também a da distribuição truncada das taxas de captação.

Ressalvado este procedimento operacional, se r_t representa a taxa vigente entre t e t+1, o rendimento do intermediário em t+1 será dado por

$$Q_{t}\left(r_{t}-r_{t}^{c}\right) \tag{1}$$

onde Q_t é o valor nominal da carteira do intermediário no tempo t.

Supondo-se que o rendimento relativo a cada período só seja pago no período seguinte, e que o prazo de aplicação dos títulos seja de *T* dias corridos, o valor presente do lucro do intermediário será de:

$$L_{T} = \frac{Q_{0} - (r_{0} - r_{0}^{c})}{(1 + r_{0})} + \frac{Q_{1} (r_{1} - r_{0}^{c})}{(1 + r_{0}) (1 + r_{1})} + \dots +$$

$$\frac{Q_{T-1} (r_{T-1} - r_{t-1}^{c})}{(1+r_{0}) (1+r_{1}) \dots (1+r_{T-1})}$$
(2)

¹ Ver, a respeito, Banco Central do Brasil, jul. 1987.

No caso das LFT, $Q_t = Q(1+r_0)...(1+r_{t-1})$, sendo t=0,...,T-1 e $Q_0=Q$. Assim, a expressão do valor presente do lucro da aplicação em LFT pode ser reescrita como:

$$L_{T} = \sum_{\tau=0}^{T-1} \frac{Q(r_{\tau} - r_{\tau}^{c})}{(1 + r_{\tau})}$$
 (3)

No entanto, como usualmente as LFT são adquiridas com deságio sobre seu valor de face Q, ao lucro resultante do diferencial entre r e r^c deve-se adicionar o lucro decorrente da aquisição de títulos pelo preço Q_a , inferior ao valor de face.

Um aspecto operacional importante, novamente, é que o Banco Central apresenta a taxa de deságio apurada nos leilões de LFT, d, em termos de % a.a. É necessário, por conseguinte, calcular o desconto total (δ) sobre o valor de face do título, durante seu prazo T de aplicação.

A relação entre o preço efetivamente pago e o valor de face do título é dada por:²

$$\frac{Q_a}{Q} = \frac{1}{(1 + \frac{d}{100})^{T/365}} \tag{4}$$

Como $\frac{Q_a}{Q} = (1 - \delta)$, segue-se que:³

$$\delta = 1 - \frac{1}{(1 + \frac{d}{100})^{T/365}} \tag{5}$$

Pode-se agora completar a expressão (3) do valor atual do lucro com a parcela de lucro decorrente do deságio:

$$L_{T} = \sum_{\tau=0}^{T-1} \left[\frac{Q (r_{\tau} - r_{\tau}^{c})}{(1 + r_{\tau})} \right] + (Q - Q_{a})$$
 (6)

Ou, reescrevendo:

$$L_{T} = Q \left[\sum_{\tau=0}^{T-1} \frac{(r_{\tau} - r_{\tau}^{c})}{(1 + r_{\tau})} + \delta \right]$$
 (7)

² Até recentemente o Banco Central utilizava a relação: número de dias úteis/252, para calcular a taxa de deságio. Esta relação é praticamente equivalente a T/365.

³ δ .100 representa o desconto em % em T dias.

A equação (7) representa o valor presente do ganho de um intermediário que aplica Q cruzados novos em LFT de T dias de prazo. A falência deste intermediário ocorrerá quando, ao invés de lucro, o valor presente de seu prejuízo for maior ou igual ao valor de seu patrimônio líquido (ou, alternativamente, o valor presente de seu lucro for menor ou igual ao valor de seu patrimônio líquido com sinal trocado). Portanto, a probabilidade de falência no tempo t é determinada por:

Prob $(L_t \le -PL)$ onde t = 1, ..., t

 L_t = valor presente na data 0 do lucro do intermediário financeiro até a data t.

PL = patrimônio líquido.

Mas, para
$$t = 1, ..., T - 1$$
:
Prob $(L_t \le -PL) \le \text{Prob }(L_{t+1} \le -PL)$ (8)

pois $E(r-r^c)=0$, e a variância do retorno pelo carregamento do título é acrescida de mais um dia (ver expressão 13). Este primeiro modelo tem como hipótese básica o fato de os intermediários financeiros terem uma probabilidade de falência limitada por um valor fixo, denominado α . De (8), segue-se que o maior risco de falência ocorre para t=T. Desta forma, os intermediários comportam-se de modo que:

$$Prob (L_{T} \leq -PL) \leq \alpha$$
 (9)

Como a restrição acima é limitativa pela maximização do lucro (pois se a probabilidade de falência fosse menor do que α o intermediário demandaria mais títulos), segue-se que:

$$Prob (L_{T} \le -PL) = \alpha$$
 (10)

Por fim, supondo-se que, em média, os intermediários utilizem a alavancagem A na demanda de LFTs, tem-se que:

$$Prob (L_{T} \leq -\frac{Q}{A}) = \alpha$$
 (11)

Substituindo a expressão (7) do valor atual do lucro em (11):

$$\operatorname{Prob}\left[\begin{array}{cc} T^{-1} & \frac{(r_{\tau} - r_{\tau}^{c})}{\sum_{\tau=0}^{T} \frac{(1 + r_{\tau})}{(1 + r_{\tau})}} \leq -\frac{1}{A} - \delta \right] = \alpha \tag{12}$$

Supõe-se que o estado da natureza "falência" não seja absorvente, isto ϵ , o cálculo de Prob ($L_t \leq -PL$) supõe que só interessa o instante t. Se a firma tiver atingido $L_{t'} \leq -PL$ em t' < t, então ela continua operando até t. Esta hipótese simplifica os cálculos sobremaneira, e pode-se verificar que o erro incorrido por esta aproximação ϵ de segunda ordem. O valor real da probabilidade de falência no tempo t ϵ ligeiramente superior ao valor que se utiliza no texto.

Sabe-se que:

$$E\begin{bmatrix} T-1 & (r_{\tau} - r_{\tau}^{c}) \\ \sum_{\tau=0}^{T-1} & (1+r_{\tau}) \end{bmatrix} = 0$$
, pois $E(r^{c}) = r$

A variância (V) de $\sum_{\tau=0}^{T-1} \frac{(r_{\tau} - r_{\tau}^c)}{(1 + r_{\tau})}$, por sua vez, é dada por:

$$V = \sigma_c^2 \quad \sum_{\tau=0}^{T-1} \frac{1}{(1+r_{\tau})^2}$$
 (13)

onde supõe-se que σ_c^2 seja constante e igual para toda taxa r^c e que $(r_t - r_\tau^c)$ seja independente de $(r_\tau^c - r_\tau^c)$ para todo $\tau \neq \tau^c$, entre 1 e T. 5 Como, por hipótese, a distribuição de r^c é normal, a distribuição da va-

riável
$$\sum_{\tau=0}^{T-1} \frac{(r_{\tau} - r_{\tau}^c)}{(1 + r_{\tau})}$$
 também é normal, com média zero e variância dada

por (13). Normalizando-se esta variável pelo seu desvio padrão, pode-se obter uma nova variável z, com distribuição normal (0,1). Ou seja:

$$z = \frac{\sum_{\tau=0}^{T-1} \frac{(r_{\tau} - r_{\tau}^{c})}{1 + r_{\tau}}}{DP} \le \frac{-1}{A} - \delta$$
(14)

onde DP = desvio-padrão = $V^{1/2}$

De (14) em (12):

$$\operatorname{Prob}\left(z \leq \frac{\frac{-1}{A} - \delta}{DP}\right) = \alpha \tag{15}$$

A probabilidade de que uma variável aleatória z, N(0,1) seja menor ou

igual a um certo valor
$$x$$
 é dada pela função acumulada $\varnothing(x)$, onde $x = \frac{-1}{A} - \delta$. Por conseguinte, pode-se obter, com uma tabela da distribuição normal padronizada, estimativas para a probabilidade de falência, α , a partir de valores calculados de x .

Com base nestas estimativas, é possível calcular a probabilidade média de falência, $\bar{\alpha}$, aceita pelos demandantes de LFT, na hipótese de que estes não acreditem na possibilidade de moratória da dívida interna.

⁵ Esta hipótese significa apenas que um intermediário não é, na média, menos eficiente do que os outros na captação. De outro modo, a longo prazo ele teria falido.

2.2 Modelo com a probabilidade implícita de moratória

Suponha agora que os agentes intermediários que demandam títulos do governo acreditem na possibilidade de ocorrência de moratória, com probabilidade p. Se eles, em média, não aceitam incorrer em um risco maior de perda total, a probabilidade de perda total será dada por:

P (falência U moratória) =
$$\overline{\alpha}$$
 (16)

Supondo-se que os eventos falência e moratória sejam independentes:

$$\alpha + p - \alpha p = \overline{\alpha} \tag{17}$$

onde: α = probabilidade de falência

Ou:

$$p = \frac{\overline{\alpha} - \alpha}{1 - \alpha} \tag{18}$$

Isto é, a probabilidade implícita de moratória pode ser estimada pelo diferencial entre a probabilidade média de falência aceita pelo mercado financeiro na ausência de possibilidade de moratória (α) e a probabilidade efetiva de falência que é aceita, quando os agentes acreditam nessa possibilidade (α) .

A hipótese subjacente é que os demandantes de LFT aceitem um risco menor de falência, resultante da variância entre as taxas de captação e de rendimento do título, quando atribuem alguma probabilidade à ocorrência de moratória. Esta exigência de menor risco reflete-se em aumento nas taxas de deságio praticadas nos leilões de LFT.

Portanto, utilizando-se novamente a tabela de probabilidade acumulada e a probabilidade média de falência estimada anteriormente, pode-se investigar se ao aumento do deságio σ , verificado a partir de fins de 1988, correspondeu uma elevação na probabilidade implícita p, de ocorrência de moratória dos títulos do governo.

Finalmente, deve-se perceber que a probabilidade p deve ser tanto maior quanto maior o prazo do título. Isto porque quanto maior o prazo do título, maior a chance de o governo decretar que não honrará a dívida naquele prazo. Pode-se estabelecer um valor para esta probabilidade. Suponha que a probabilidade de o governo decretar a moratória interna a cada dia seja q, independentemente do dia anterior. Segue-se que a probabilidade da moratória interna ocorrer em T dias será $P_T = 1 - (1 - q)^T$.

É claro que esta equação não pode ser tomada literalmente, já que q pode variar muito ao longo do tempo. Contudo, ilustra o ponto que, tipicamente, $P_T > P_T$, se T > T

3. Resultados do modelo: rejeição

Os dados de taxas de juros do *overnight* e de taxas de deságio (em % a.a.), utilizados para as estimativas, compreendem o período de fevereiro de 1987 e abril de 1989. O prazo de vencimento dos títulos é de 182 ou de 273 dias, em geral.⁶

Os valores diários da distribuição global das taxas de captação (r^c) e da distribuição truncada (sem os extremos) vão de 1° de março a 27 de abril de 1989. A tabela 1 mostra, na primeira coluna, a taxa média de captação da distribuição total (r) e, na segunda, a taxa de rendimento das LFT (r'), que é dada pela média da distribuição truncada.

A diferença entre estas duas taxas é apresentada na terceira coluna. O valor esperado da diferença, E(r'-r), é de 0,097076% ao ano. Isto significa que, com 99% de probabilidade, a taxa média de juros da distribuição truncada equivale à taxa média de juros da distribuição global. Em termos do modelo, portanto, pode-se dizer que $E(r^c) = r$ e que

$$E \quad (\sum_{\tau=0}^{T-1} \frac{r_{\tau} - r_{\tau}^{c}}{1 + r_{\tau}}) = 0$$

A última coluna da tabela 1 mostra o desvio-padrão da distribuição truncada de taxas de captação. O desvio-padrão médio, σ_c , é de 0.505529% ao ano.

Nas tabelas 2, 3 e 4 estão apresentados, para os títulos com prazos de 182 dias, 273 dias e diversos, respectivamente: 1) as taxas calculadas de deságio total dos títulos no prazo de T dias (σ) ; 2) o somatório, com t variando de 0 a T-1, de $1/(1+r_t)^2$; 3) o desvio-padrão do retorno pelo carregamento, para cada título (DP); e 4) a variável x, para cada título em

cada leilão. Para o cálculo de $x=\frac{-1}{A}-\delta$ supôs-se que a alavancagem média em LFT utilizada pelo mercado financeiro tenha sido igual a 6.°

⁶ Neste período houve 9 leilões de títulos com prazos diferentes: 77, 180, 187, 271, 272, 274, 275, 278 e 364 dias.

⁷ O desvio-padrão de (r'-r) & de 0,555707% ao ano. Estes números, assim como os valores da tabela 1, são em % ao ano lineares. Assim, uma taxa *over* de 100% ao ano representa (100/365)% ao dia de taxa efetiva.

⁸ A taxa de juros do overnight do último dia de abril de 1989 foi repetida o número de vezes suficiente para perfazer o prazo de vencimento dos títulos leiloados naquele mês.

⁹ Com base em dados da Revista da Andima, nº 152, fevereiro de 1989, e do Boletim de Alavancagem das Instituições, Andima, 24 de fevereiro de 1989, estimou-se uma alavancagem média em LFT para distribuidoras, corretoras, bancos comerciais e de investimento de 5,7 em janeiro de 1989.

Tabela 1
Distribuição das taxas de captação

Data	Taxa média Global (1)	Taxa LFT (2)	(3-1)	Desvio- padrão (4)
1.3.89	346,048919	346,130418	0,081500	0,613355
2.3.89	334,045315	333,932486	-0,112829	0,558170
3.3.89	338,557708	338,653477	0,095770	1,112672
6.3.89	343,393860	343,456918	0,063058	0,515033
7.3.89	342,179110	342,201741	0,022631	0,282774
8.3.89	343,030472	342,981192	-0,049279	0,298964
9.3.89	342,622552	342,674702	0,052150	0,230881
10.3.89	342,466715	342,664554	0,197839	0,414631
13.3.89	339,219551	342,222980	3,003429	0,414370
14.3.89	340,809968	340,924602	0,114635	0,617660
15.3.89	339,651003	339,694391	0,043388	0,446927
16.3.89	332,795821	332,801905	0,006084	1,244262
17.3.89	330,823800	330,836744	0,012945	0,953685
20.3.89	323,128683	323,176046	0,047364	0,665888
21.3.89	308,593596	308,626179	0,032583	0,668868
22.3.89	303,635275	303,737648	0,102373	1,428697
27.3.89	302,392667	302,456046	0,063378	0,705613
28.3.89	296,230866	296,246648	0.015782	0,196172
29.3.89	292,434914	292,469921	0,035007	0,722597
30.3.89	285,284155	285,288733	0,004578	0,139082
31.3.89	279,296473	279,463299	0,166826	0,213285
3.4.89	277,514380	277,573957	0,059577	0,362029
4.4.89	270,597997	270,616760	0,018763	0,262897
5.4.89	267,755474	267,797553	0,042079	0,342389
6.4.89	258,854975	259,092190	0,237214	0,720710
7.4.89	249,640970	249,685623	0.044654	0,460827
10.4.89	242,942081	243,046979	0,104898	0,249827
11.4.89	236,814073	235,242209	-1,571864	0,286346
12.4.89	226,837174	226,901394	0.064219	0,184500
13.4.89	215,979554	216,103348	0,123794	0,469317
14.4.89	200,830494	200,877832	0,047338	0,407342
18.4.89	186,210676	186,195942	-0,014734	0,723123
19.4.89	169,383832	169,412346	0,028514	0,460553
20.4.89	170,872809	171,045246	0,172438	0,483544
21.4.89	171,142719	171,246721	0,104002	0,522853
24.4.89	170,581216	170,684703	0,103487	0,202478
25.4.89	168,724069	168,791288	0.067218	0,583535
27.4.89	168,793783	168,851857	0,058074	0,044234
Média	,	•	0,097076	0,505529

Fonte: Banco Central do Brasil, Demab/Didip. Obs.: as variáveis são medidas em % ao ano.

Para calcular a % ao dia basta dividir os valores por 365.

Tabela 2 LFT com 182 dias de prazo

	Deságio	Soma		X
Período (182)	(delta)	$1/(1+r)^2$	D.P.	(A=6)
	(1)	(2)	(3)	(4)
			 	
1987 – fev. 2 a 6	0,001721	119,235408	0,015124	-11,134066
9 a 13	0,001557	119,281000	0,015127	-11,121101
16 a 20	0.001447	119,345975	0,015131	-11,110813
23 a 27	0,001805	119,409068	0,015135	-11,131551
mar. 9 a 13	0,001958	120,426861	0,015199	-11,094460
16 a 20	0.001817	120,438795	0,015200	-11,084659
abr. 6 a 10	0.001427	120,452616	0.015201	-11,058320
13 a 17	0.001328	120,472729	0,015202	-11,050926
20 a 24	0,001266	120,494259	0,015203	-11,045825
27 a 30	0,001480	122,501906	0.015329	-10,968890
mai. 4 a 8	0,001619	121,545128	0,015269	-11,021075
11 a 15	0,001746	124,533691	0,015456	-10,896270
18 a 22	0,001740	124,562414	0,015458	-10,888990
	0,001724	124,596642	0,015460	-10,892121
25 a 29	0,001724	124,658997	0,015464	-10,897966
jun. 1 a 5	, -	124,725123	0,015468	-10,894375
8 a 12	0,001846	124,756281	0,015470	-10,876343
22 a 26	0,001588		0,015470	-10,881815
29.6-3.7	0,001697	124,792913		-10,864685
jul. 6 a 10	0,001460	124,834440	0,015475	-10,811426
13 a 17	0,001316	125,851665	0,015538	-10,811420
20 a 24	0,001236	125,851828	0,015538	
27 a 31	0,001172	124,858691	0,015476	-10,845026
ago, 3 a 7	0,000950	123,853083	0,015414	-10,874508
10 a 14	0,001516	123,824036	0,015412	-10,912533
17 a 21	0,001413	123,786482	0,015410	-10,907517
24 a 28	0,001635	123,739276	0,015407	-10,924017
31.8-4.9	0,001380	123,685679	0,015403	-10,909817
set. 14 a 18	0,001039	123,636777	0,015400	-10,889827
21 a 25	0,001294	122,601936	0,015336	-10,952288
28.9-2.10	0,000937	121,565863	0,015271	-10,975472
out. 5 a 9	0,000858	121,516559	0,015268	-10,972526
13 a 16	0,000853	122,477825	0,015328	-10,929054
19 a 23	0,000988	122,447577	0,015326	-10,939246
26 a 30	0,000937	122,417810	0,015324	-10,937269
nov. 3 a 6	0,000938	122,380613	0,015322	-10,938974
9 a 13	0,000796	120,368338	0,015195	-11,020707
16 a 20	0,000651	121,306280	0,015254	-10,968471
23 a 27	0,000745	120,270437	0,015189	-11,021811
30.11-4.12	0,000896	120,219292	0,015186	-11,034100
1988 – jan. 4 a 8	0,000706	121,162031	0,015245	-10,978622
11 a 15	0,000662	121,125760	0,015243	-10,977393
18 a 22	0,000661	120,114007	0,015179	-11,023440
25 a 29	0,000693	120,091220	0,015178	-11,026600
fev. 1 a 5	0,000842	119,097044	0,015115	-11,082379
8 a 12	0,000994	119,082426	0,015114	-11,093123
8 a 12	0,001103	119,057484	0,015112	-11,101501
22 a 26	0,001151	119,048701	0,015112	-11,105120
29.2-4.3	0,001055	120,004814	0,015172	-11,054415
	•			Continua

Período (182)	Deságio (delta) (1)	Soma 1/(1+r) ² (2)	D.P. (3)	X (A=6) (4)
mar. 7 a 11	0,000885	120,964698	0,015233	-10,999319
14 a 18	0,000677	120,946199	0,015232	-10,986512
21 a 25	0,000719	120,923378	0,015230	-10,990290
abr. 4 a 8	0,000719	120,886908	0,015228	-10,991947
11 a 15	0,000761	120,852543	0,015226	-10,996307
19 a 22	0,000741	120,835788	0,015225	-10,995720
25 a 29	0,000724	121,817336	0,015286	-10,950237
mai. 2 a 6	0,000669	122,809247	0,015349	-10,902370
9 a 12	0,000627	122,820431	0,015349	-10,899091
16 a 20	0,000540	122,801043	0,015348	-10,894276
23 a 27	0,000525	121,786353	0,015285	-10,938592
30,5-3,6	0,000450	121,742769	0,015282	-10,935656
jun. 6 a 10	0,000572	121,698632	0,015279	-10,945626
13 a 17	0,000544	123,621000	0,015399	-10,858371
jul. 4 a 8	0,000426	122,610724	0,015336	-10,895300
11 a 15	0,000460	123,549265	0,015395	-10,856051
18 a 22	0,000517	123,510489	0,015392	-10,861455
25 a 29	0,000567	122,497188	0,015329	-10,909559
ago. 1 a 5	0,000612	122,465590	0,015327	-10,913902
8 a 12	0,000416	123,414768	0,015386	-10,859145
15 a 19	0,000400	122,405713	0,015323	-10,902772
22 a 26	0,000384	123,354058	0,015383	-10,859735
out. 3 a 7	0,000402	123,321153	0,015381	-10,862314
10 a 14	0,000403	123,288842	0,015379	-10,863799
17 a 21	0,000466	123,253068	0,015376	-10,869505
nov. 7 a 11	0,000550	123,216429	0,015374	-10,876565
14 a 18	0,000548	124,183492	0,015434	-10,834042
dez. 5 a 9	0,001404	123,140298	0,015369	-10,935500
12 a 16	0,001485	122,137894	0,015307	-10,985544
19 a 24	0,000947	121,191231	0,015247	-10,993101
26 a 30	0,001008	121,231481	0,015250	-10,995276
1989 – jan. 2 a 6	0,000933	120,260090	0,015188	-11,034664
9 a 13	0,000886	119,275314	0,015126	-11,077013
23 a 27	0,000344	119,258200	0,015125	-11,041970
30.1-3.2	0,000681	119,239266	0,015124	-11,065166

Fonte: Dados primários: Banco de Dados Nacionais e Internacionais. CEMEI/IBRE/FGV. mimeogr.

Tabela 3

LFT com 273 dias de prazo

	- 41	·_		
D (1 (072)	Deságio	Soma	D B	(A=6)
Período (273)	(delta)	$1/(1+r)^2$	D.P. (3)	(A=0) (4)
	(1)	(2)		(4)
1987 - abr. 6 a 10	0,003762	180,754282	0,018621	-9,152603
13 a 17	0,003439	180,779390	0,018622	-9,134642
20 a 24	0,003359	180,813032	0,018624	-9,129513
27 a 30	0,003127	180,859035	0,018626	-9,115858
mai. 4 a 8	0,004255	181,852417	0,018677	-9,151352
11 a 15	0,004495	182,837119	0,018728	-9,139471
18 a 22	0,004292	182,827472	0,018727	-9,128853
25 a 29	0,004620	182,822207	0,018727	-9,146522
jun. 1 a 5	0,005192	182,821990	0,018727	-9,177056
8 a 12	0,005832	182,821014	0,018727	-9,211263
22 a 26	0,004693	182,825378	0,018727	-9,150358
29.6-3.7	0,004897	185,782954	0,018878	-9,088009
jul. 6 a 10	0,004506	185,778812	0,018878	-9,067392
13 a 17	0,003933	186,763447	0,018928	-9,013205
20 a 24	0,003543	186,797384	0,018929	-8,991776 -8,999942
27 a 31	0,003266 0,002649	185,852207 184,872177	0,018882 0,018832	-8,990988
ago. 3 a 7 10 a 14	0,002049	184,883917	0,018832	-9, 078716
10 a 14 17 a 21	0,003765	184,913941	0,018834	-9 , 049262
24 a 28	0,003703	185,924386	0,018885	-9,049780
31.8-4.9	0,003588	185,920160	0,018885	-9,015344
set. 8 a 11	0,002823	185,905527	0.018884	-8,975217
14 a 18	0,002906	183,902313	0,018782	-9,028346
21 a 25	0,003243	183,850067	0,018780	-9,047593
28,9-2.10	0,002694	182,807657	0,018726	-9,044012
out. 5 a 9	0,002502	182,742170	0,018723	-9,035404
13 a 16	0,002444	182,680905	0,018720	-9,033793
19 a 23	0,002723	182,624151	0,018717	-9,050107
26 a 30	0,002592	181,588858	0,018664	-9,068880
nov. 3 a 6	0,002611	181,541187	0,018661	-9,071102
9 a 13	0,002219	180,522599	0,018609	-9,075575
16 a 20	0,001843	181,480750	0,018658	-9,031418
23 a 27	0,002026	181,443009	0,018656	-9,042163
30.11-4.12	0,002323	181,398178	0,018654	-9,059213
dez. 7 a 11	0,002514	181,338591 181,283807	0,018651 0,018648	-9,070918 -9,059011
14 a 18 21 a 24	0,002266 0,002189	182,226449	0,018696	-9,031411
28 a 31	0,002179	182,172641	0,018694	-9.032219
1988 – jan. 4 a 8	0,002179	182,103306	0,018690	-9,021341
11 a 15	0,001741	183,019348	0,018737	-8,987941
18 a 22	0.001712	182,974175	0,018735	-8,987488
25 a 29	0,001758	182,944421	0,018733	-8,990712
fev. 1 a 5	0,002084	182,925144	0,018732	-9,008552
8 a 12	0,002485	182,911434	0,018732	-9,030305
8 a 12	0,002665	181,877379	0,018679	-9,065560
22 a 26	0,002710	181,859074	0,018678	-9,068440
29.2-4.3	0,002576	181,811102	0,018675	-9,062447
mar. 7 a 11	0,002096	182,745468	0,018723	-9,013644
14 a 18	0,001687	183,670229	0,018770	-8,969124
				Continua

Período (273)	Deságio (delta) (1)	Soma 1/(1+r) ² (2)	D.P. (3)	X (A=6) (4)
21 a 25	0,001781	182,636755	0.019717	-8,999512
			0,018717	
abr. 4 a 8	0,001532	182,570440	0,018714	-8,987829
11 a 15	0,001927	182,513383	0,018711	-9,010350
19 a 22	0,001901	181,492414	0,018659	-9,034257
25 a 29	0,001804	181,452964	0,018657	-9,030014
mai. 2 a 6	0,001691	182,401690	0,018705	-9,000450
9 a 12	0,001615	182,381036	0,018704	-8,996909
16 a 20	0,001439	182,360099	0,018703	-8,988037
23 a 27	0,001411	182,324078	0,018701	-8,987390
30.5-3.6	0,001108	182,284274	0,018699	-8,972168
jun. 6 a 10	0,001474	182,233437	0,018697	-8,993022
13 a 17	0,001420	182,174407	0,018694	-8,991580
20 a 24	0,001096	184,091243	0,018792	-8,927406
jul. 4 a 8	0,001066	184,060467	0,018790	-8,926560
11 a 15	0,001224	184,040098	0,018789	-8,935475
18 a 22	0,001351	183,075246	0,018740	-8,965739
25 a 29	0,001467	183,088798	0,018741	-8,971613
ago. 1 a 5	0,001535	182,108505	0,018690	-8,999360
8 a 12	0,001065	182,105728	0,018690	-8,974270
15 a 19	0,001013	182,092124	0.018690	-8,971859
22 a 26	0,000996	183,053656	0,018739	-8,947324
29.8-2.9	0,000960	183,037535	0,018738	-8,945819
set. 12 a 16	0,000906	183,022344	0,018737	-8,943318
19 a 23	0,000732	183,012601	0.018737	-8,934261
26 a 30	0,000933	181,052674	0,018636	-8,993279
out. 3 a 7	0,000986	181,063423	0,018637	-8,995856
10 a 14	0,001002	181,079291	0,018637	-8,996290
17 a 21	0,001155	180,127257	0,018588	-9,028273
nov. 7 a 11	0,001458	180,199161	0,018592	-9,042767
14 a 18	0,001438	181,265506	0,018647	-9,017153
5 a 9	0,003669	180,328926	0,018599	-9,158399
12 a 16	0,003367	180,371191	0,018601	-9,141103
19 a 24	0,002158	180,406688	0,018603	-9,075198
26 a 30	0,002431	180,441691	0,018605	-9,089005
1989 – jan. 2 a 6	0,002431	180,488644	0,018607	-9,076881
9 a 13	0,002101	181,527315	0,018661	-9 , 070881
23 a 27	0,000984	181,590617	0,018664	-8,982664
30.1-3.2	0,000964	181,656021	0,018667	-9,038818
fev. 20 a 24	0,002002	181,733445	0,018671	-9,036616 -9,047694
27.2-3.3	0,002204	182,788298	0,018725	-9,030010
mar. 6 a 10	0,002422	182,881551	0,018723	-9,030010 -9,070987
13 a 17	0,003233	182,975369	0,018735	-9,053561
27 a 31	0,002930	184,038871	0,018789	-9,033301 -9,034914
abr. 10 a 14	0,003092	184,114442	0,018793	-9,034914
17 a 21	0,004316	184,189519	0,018797	-9,098200 -9,098473
24 a 28	0,004336	185,237581	0,018797	-9,050888
27 a 20		100,201001	0,010030	- 2,020000

Fonte: ver tabela 2.

Tabela 4

LFT com prazos diversos

Período	Deságio (delta) (1)	Soma $1/(1+r)^2$ (2)	D.P. (3)	X (A=6) (4)
1987 - set, 14 a 18 (77) 1988 - 29.8-2.9 (272) 28.11-2.12 (180) 28.11-2.12 (271) dez, 12 a 16 (364) 1989 - 30.1-3.2 (187) 30.1-3.2 (278) fev, 13 a 17 (274) abr. 3 a 7 (275)	0,001129 0,000998 0,000774 0,002112 0,006999 0,001172 0,003514 0,002821 0,004875	52,506413 179,450880 118,920402 183,323084 249,821635 126,915097 191,317837 189,901241 192,180917	0,010036 0,018554 0,018753 0,021891 0,015603 0,019157 0,019086 0,019200	-16,619790 -9,036830 -11,086131 -9,000253 -7,933144 -10,756759 -8,883420 -8,880152 -8,934302

Fonte: ver tabela 2.

Observando-se a coluna referente ao deságio, nas três tabelas, verificase que este aumenta a partir de dezembro de 1988, para todos os prazos de vencimento dos títulos. Supôs-se que este aumento tenha sido causado pelo fato de que, a partir desta data, os demandantes de LFT passaram a acreditar na possibilidade de moratória dos títulos públicos.¹⁰

A taxa de deságio é sempre maior para títulos com prazos mais longos de vencimento (o maior deságio está associado ao título de 364 dias, e o menor ao de 77 dias). Como a moratória pode ocorrer em cada dia do período de vencimento do título, isto quer dizer que a probabilidade implícita de moratória é maior para títulos mais longos. Sob este aspecto, custa menos ao governo vender títulos com prazo mais curto de vencimento, na medida em que os agentes associam a estes títulos um deságio menor.

De acordo com o modelo desenvolvido na seção anterior, a probabilidade implícita de moratória (p) deveria aumentar com o prazo do título. Mas, de (18), segue-se que o valor medido de α deveria diminuir com o prazo do título. Ou, o que é equivalente, a variável

$$x = \frac{-1}{A} - \delta$$

 $x = \frac{-1}{DP}$ deveria diminuir. Das tabelas 2, 3 e 4, vê-se que ocorre justamente o oposto. Isto quer dizer que, caso se aceite o modelo, a probabilidade implícita de moratória diminuiria com o prazo do título, o que é um contra-senso.

Assim, chega-se à conclusão de que este primeiro modelo é inadequado. O problema básico é que os intermediários financeiros aceitam riscos maiores, desde que recebam remuneração mais elevada por incorrer nestes

¹⁰ Na verdade, a probabilidade implícita de moratória existe em todo o período. Entretanto, como uma aproximação, considerou-se que não existiria esta probabilidade no período em que as taxas de deságio eram relativamente pequenas.

riscos adicionais.11

4. O modelo alternativo

Na seção anterior, identificou-se que o principal problema do modelo inicial era o fato de os intermediários financeiros estarem aceitando riscos totais mais elevados de falência, em troca de uma remuneração adequadamente elevada, isto é, em troca de um deságio maior. Isto indica que o modelo correto de comportamento do empresário intermediador deve levar em consideração sua escolha risco x retorno. Em outras palavras, a maneira adequada de se analisar o comportamento do intermediário financeiro é através da teoria da escolha envolvendo risco.

Inicialmente, supõe-se que o empresário tenha uma função de utilidade da renda U(R). Também supõe-se válida a teoria da escolha envolvendo o risco de von Neumann-Morgenstern (ver, por exemplo, Simonsen (1983), cap. 9). Assim, se uma renda arriscada \widetilde{R} está à disposição do intermediário, a sua utilidade esperada será:

onde E representa a esperança matemática, ou o valor esperado da variável aleatória $U(\widetilde{R})$. Define-se o prêmio de risco relativo como o valor δ que resolve a equação abaixo:

$$E U(\widetilde{R}) = U (E\widetilde{R} (1 - \delta))$$

Isto é, $\delta E\widetilde{R}$ é quanto o agente econômico aceita de sacrifício de sua renda esperada, $E\widetilde{R}$, para se ver indiferente entre aceitar a renda arriscada, \widetilde{R} , e a renda certa, $E\widetilde{R}$ $(1-\delta)$. É claro que se o indivíduo for avesso ao risco (ou seja, se o agente prefere receber o valor esperado da renda com certeza $(E\widetilde{R})$ a receber a renda aleatória (\widetilde{R})), então $\delta > 0$.

Defina $\theta(R) = \frac{-R \ U''(R)}{U'(R)}$, caso U seja duas vezes diferenciável e a utilidade marginal da renda seja positiva. O valor $\theta(R)$ é a aversão relativa ao risco de Arrow-Pratt (Pratt (1964)). Se o agente é avesso ao risco, $\theta(R) > 0$.

Por um conhecido teorema (ver, por exemplo, Simonsen (1983), cap. 9), se $(\widetilde{R} - E\widetilde{R})/E\widetilde{R}$ for uma variável aleatória com "pequeno" risco, então:

$$\delta \cong \frac{\theta (E\vec{R})}{2} \cdot \sigma^2 \tag{19}$$

onde σ^2 = variância de $(\widetilde{R} - E\widetilde{R}) / E\widetilde{R}$

A teoria da escolha envolvendo o risco pode ser diretamente aplicada ao problema da demanda das LFT. O que se vai supor é que o deságio seja o prêmio de risco que o intermediário aceita por segurar e "rolar" dia a dia uma posição Q de títulos do governo. Sob a hipótese de que não haja riscos de moratória interna, o risco da posição, em valor presente, é o

Outro problema constatado foi a elevada sensibilidade das estimativas a diferentes valores da alavancagem e a erros de mensuração do desvio-padrão, indicando não robustez dos resultados do modelo.

risco de captação acima da média do mercado. Da seção 2, este risco é re-

presentado pela variável aleatória $\tilde{y} = \sum_{\tau=0}^{T-1} \frac{(r_{\tau} - r_{\tau}^c)}{(1 + r_{\tau})}$. Ao final do tempo T, o agente financeiro que começar com uma posição de LFT de Q cruzados terá Q $(1 + \tilde{y})$, como deduzido na seção 2, em termos de valor presente. Seja σ o desvio-padrão de \tilde{y} , dado por

$$\sigma = \sigma_c \begin{bmatrix} T_{-1} & 1 \\ \Sigma & \overline{(1 + r_{\tau})^2} \end{bmatrix}^{1/2} . \text{ Também tem-se } E\widetilde{y} = 0$$

A hipótese básica que será feita é que os empresários financeiros estejam dispostos a aceitar um prêmio relativo δ (o deságio, como na equação (5) da seção 2), para ficar com a posição de LFT. O deságio δ não só é superior ao prêmio de risco porque há competição entre os intermediários financeiros pelas posições (ou seja, os leilões de títulos do Tesouro são competitivos). Desta forma:

$$EU(Q(1+\tilde{y})) = U(Q(1-\delta))$$
 (20)

Assim, supondo verdadeira a aproximação dada por (19), segue-se de (20):

$$\delta = \frac{\theta (Q)}{2} \quad \sigma_c^2 \quad \sum_{\tau=0}^{T-1} \quad \frac{1}{(1 + r_{\tau})^2}$$
 (21)

Adicionalmente, admite-se que para os valores de Q em que se está interessado a aversão relativa ao risco $\theta(Q)$ não varia, sendo representada apenas como θ . Portanto, da estática comparativa de (21), deduz-se que o deságio é tanto maior quanto: a) maior o desvio-padrão da taxa de captação, σ_c ; b) maior o prazo de vencimento do título; c) menor a taxa de juros; d) maior a aversão relativa ao risco dos intermediários financeiros.

Observe que, diferentemente do modelo anterior, na ausência de desconfiança de moratória, a alavancagem é irrelevante na determinação do deságio. Isto acontece, pois não foi incluída no modelo a limitação da renda do agente financeiro, dada pela perda de seu patrimônio líquido.

A equação (21) admite uma hipótese que não é válida: a de que os agentes nunca acreditem que o governo deixará de honrar seus títulos. Vai-se supor agora que os intermediários creiam que o governo deixará de honrar a sua dívida com uma probabilidade p (independente de \tilde{y}).

Na ocorrência deste evento, da mesma forma que na seção 2, supõe-se que os intermediários estejam limitados pela perda de até no máximo seu patrimônio líquido.

Desta maneira, o valor recebido em caso de moratória interna será $\frac{-Q}{A}$, onde A é a alavancagem. Segue-se que a utilidade esperada agora passa a ser:

$$E U(\widetilde{R}) = (1 - p) \cdot E U(Q(1 + \widetilde{y})) + p \cdot U(\frac{-Q}{A})$$
 (22)

A equação que determina o comportamento dos agentes financeiros passa a ser:

$$(1-p) \cdot E U (Q (1+\tilde{y})) + p U (\frac{-Q}{A}) = U (Q (1-\delta))$$
 (23)

Para que se possa resolver o modelo acima, é necessário supor uma forma especial para a função de utilidade. Para tanto, utilizou-se a função de utilidade $U(R) = -e^{-aR}$, onde a aversão absoluta ao risco, a, é constante (ver Simonsen (1983), cap. 9). Inserindo esta função em (23) e lembrando que $E e^{t\tilde{v}} = e^{(t^2 \sigma^2)/2}$, onde \tilde{v} é uma variável normal de média 0 e variância σ^2 , obtém-se:

$$(1-p) \leftarrow \frac{a^2 Q^2 \sigma^2}{p e^{\frac{aQ}{A}} = e^{-aQ(1-\delta)}}$$
onde $\sigma^2 = Var \widetilde{y} = \sigma_C^2 \begin{bmatrix} T_{-1} & 1 \\ T_{-0} & (1+r_T)^2 \end{bmatrix}$

$$(24)$$

Adotando-se, ainda, que a aversão relativa seja $\theta = aQ$, estabelece-se:

$$(1-p) e^{(\theta^2 \sigma^2)/2} + p e^{\theta (1 + \frac{1}{A})} = e^{\theta \delta}$$
 (25)

É fácil ver que (25) reduz-se à equação (21), se a probabilidade de moratória tornar-se igual a zero.

A estática comparativa da equação acima mostra que o deságio cresce toda vez que: a) cresce o desvio-padrão da taxa de captação σ_c ; b) cresce o prazo de vencimento do título (pois este aumenta σ^2); c) decresce a taxa de juros (pois esta diminui σ^2); d) cresce o coeficiente de aversão relativa ao risco; e) decresce a alavancagem.

É interessante observar que a probabilidade de moratória só aumenta o deságio se $1 + \frac{1}{A} > \frac{\theta \sigma^2}{2}$. Para interpretar esta fórmula, note que $\frac{\theta \sigma^2}{2}$ é o deságio na ausência de possibilidade de moratória interna. Este valor, no caso brasileiro, é bastante inferior a 1%. Assim, a condição acima é válida sempre que A > 0. Logo, com bastante folga, tem-se que, no caso brasileiro: f) quanto maior a probabilidade implícita de moratória, maior o deságio.

A próxima seção traz uma estimativa das probabilidades implícitas de moratória.

5. Resultados do modelo alternativo

Em primeiro lugar, com base nos leilões primários de LFT já utilizados na seção 3, calculou-se o valor da aversão relativa ao risco supondo-se que a

equação (21) fosse válida. Estes valores são apresentados na coluna Aversão total das tabelas 5, 6 e 7. Deve-se notar que o valor de θ assim calculado é muito superior ao valor verdadeiro, pois este inclui riscos de moratória interna, que a equação (21) supõe que sejam nulos. O menor valor da Aversão total é 2,56 para o leilão de LFT de 77 dias ocorrido na semana de 14.9.87 a 18.9.87. Sendo assim, todas as estimativas são feitas para valores de $\theta = 0.5$ $\theta = 1$ e $\theta = 2.12$

Tabela 5

LFT com 182 dias de prazo

Período (182)	D.P. (1)	Deságio (delta) (2)	Aversão Total (3)	P (Teta = 0,5) (4)	P (Teta = 1) (5)	P (Teta = 2) (6)
1987 - fev. 2 a 6	0,015124	0,001721	15,046526	0,001051	0,000727	0,000321
9 a 13	0,015127	0,001557	13,607829	0,000947	0,000653	0,000286
16 a 20	0,015131	0,001447	12,640768	0,000878	0,000603	0,000262
23 a 27	0,015135	0,001805	15,762601	0,001104	0,000765	0,000339
mar. 9 a 13	0.015199	0.001958	16,951503	0,001200	0.000834	0,000372
16 a 20	0,015200	0.001817	15,732585	0,001111	0,000770	0,000341
abr. 6 a 10	0,015201	0,001427	12,348868	0.000865	0.000593	0,000257
13 a 17	0,015202	0,001328	11,495475	0,000802	0,000549	0,000236
20 a 24	0,015203	0,001266	10,952333	0,000763	0,000521	0,000223
27 a 30	0,015329	0,001480	12,593131	0,000897	0,000617	0,000268
mai. 4 a 8	0,015269	0.001619	13,883898	0,000985	0.000680	0,000298
11 a 15	0.015456	0.001746	14,616924	0,001065	0,000736	0,000324
18 a 22	0,015458	0,001653	13,834155	0.001006	0,000694	0,000304
25 a 29	0,015460	0,001724	14,428980	0,001051	0,000726	0,000320
jun, 1 a 5	0,015464	0,001857	15,530110	0.001135	0,000786	0,000348
8 a 12	0,015468	0,001846	15,431100	0,001128	0,000782	0,000346
22 a 26	0,015470	0.001588	13,271903	0,000965	0,000665	0,000290
29.6-3.7	0.015472	0,001697	14,181652	0,001034	0.000714	0,000314
jul, 6 a 10	0,015475	0,001460	12,196957	0.000885	0,000607	0,000263
13 a 17	0,015538	0.001316	10,906230	0,000793	0.000541	0,000231
20 a 24	0.015538	0,001236	10,243281	0,000743	0,000505	0,000214
27 a 31	0,015476	0.001172	9,790406	0.000703	0,000476	0,000201
ago. 3 a 7	0,015414	0.000950	7,994134	0,000562	0,000376	0,000153
10 a 14	0,015412	0.001516	12,765037	0,000920	0,000632	0,000275
17 a 21	0.015410	0.001413	11,902953	0.000855	0,000586	0,000253
24 a 28	0,015407	0,001635	13,779441	0.000995	0,000687	0,000301
31.8-4.9	0,015403	0,001380	11,634311	0,000834	0,000571	0,000246
set. 14 a 18	0,015400	0,001039	8,762740	0.000619	0,000417	0,000172
21 a 25	0,015336	0.001294	11,001443	0,000780	0,000532	0,000228
28.9-2.10	0,015271	0.000937	8.031960	0,000555	0,000371	0,000151
out. 5 a 9	0.015268	0,000858	7,357662	0,000505	0,000335	0,000134
13 a 16	0,015328	0.000853	7,257155	0,000501	0,000333	0,000133
19 a 23	0,015326	0.000988	8,412710	0,000587	0,000394	0,000162
26 a 30	0,015324	0,000937	7,983262	0,000555	0,000371	0,000151
nov. 3 a 6	0,015322	0.000938	7,991196	0,000555	0,000371	0,000151
9 a 13	0,015195	0.000796	6,897492	0,000466	0,000308	0,000122
16 a 20	0,015254	0,000651	5,592470	0,000374	0,000242	0,000090
23 a 27	0,015189	0.000745	6,458048	0,000434	0,000285	0,000111
23 4 21	0,010107	.,000,10	,,v	•	•	Continua

 $^{^{12}}$ O valor do parâmetro θ , que é utilizado em trabalhos empfricos, é próximo de 1. Ver Newbery e Stiglitz (1981, cap. 7).

		Deságio	Aversão	P (Teta	P (Teta	P (Teta
Período (182)	D.P.	(delta)	Total	= 0,5	= 1)	= 2)
	(1)	(2)	(3)	(4)	(5)	(6)
30,11-4,12	0,015186	0,000896	7,770455	0,000529	0,000353	0,000143
1988 – jan. 4 a 8	0,015245	0.000706	6,074434	0,000409	0,000267	0,000102
11 a 15	0,015243	0,000662	5,699328	0,000381	0,000247	0,000092
18 a 22	0.015179	0,000661	5,735672	0,000381	0,000247	0,000093
25 a 29	0,015178	0,000693	6,015415	0,000401	0,000261	0,000099
fev. 1 a 5	0.015115	0.000842	7,369114	0,000495	0.000329	0,000132
8 a 12	0,015114	0,000994	8,701807	0.000592	0,000398	0,000165
8 a 12	0,015112	0,001103	9,658651	0,000660	0,000447	0,000188
22 a 26	0.015112	0,001151	10,084135	0,000691	0,000469	0,000199
29.2-4.3	0,015172	0.001055	9,163115	0,000630	0.000425	0,000177
mar. 7 a 11	0,015233	0,000885	7,626560	0,000522	0,000348	0,000140
14 a 18	0,015232	0,000677	5,835625	0,000391	0,000254	0,000096
21 a 25	0,015232	0.000719	6,196676	0,000417	0.000273	0,000105
abr. 4 a 8	0,015228	0,000719	6,198546	0.000417	0.000273	0.000105
11 a 15	0,015226	0,000761	6.567721	0,000444	0,000292	0,000114
19 a 22	0,015225	0,000741	6,391345	0,000431	0,000283	0.000109
25 a 29	0,015286	0,000724	6,196767	0,000420	0,000275	0,000105
mai. 2 a 6	0,015280	0,000669	5,683304	0,000386	0,000250	0,000093
9a 12	0,015349	0,000627	5,320316	0,000359	0,000230	0,000084
16 a 20	0,015349	0,000540	4,581591	0,000304	0,000191	0,000065
23 a 27	0,015285	0,000525	4,492331	0,000294	0,000185	0.000063
30.5-3.6	0,015283	0,000323	3,853478	0,000247	0,000151	0,000047
iun. 6 a 10	0,015279	0,000572	4,900300	0,000324	0.000206	0,000073
13 a 17	0,015399	0.000544	4,588150	0,000306	0,000192	0,000066
jul. 4 a 8	0,015336	0,000344	3,619980	0,000232	0,000139	0,000041
11 a 15	0,015395	0,000420	3,879916	0,000252	0,000154	0.000048
18 a 22	0,015393	0.000517	4,361959	0,000289	0,000180	0,000060
25 a 29	0,015329	0,000567	4,825141	0,000321	0,000203	0,000071
	0,015329	0.000612	5,209463	0,000349	0,000224	0,000081
ago. 1 a 5 8 a 12	0,015327	0,000416	3,517723	0,000226	0.000135	0,000039
15 a 19	0,015323	0,000410	3,410978	0.000216	0.000128	0,000036
22 a 26	0.015383	0,000384	3,248786	0,000216	0,000120	0,000032
out, 3 a 7	0.015381	0,000384	3,396605	0,000216	0,000128	0,000036
10 a 14	0,015379	0,000402	3,405497	0,000217	0,000129	0,000036
17 a 21	0,015376	0.000466	3,943576	0,000257	0,000157	0,000049
nov. 7 a 11	0,015376	0.000550	4,652919	0,000310	0,000195	0,000067
			4,604983	0,000310	0,000194	0,000067
14 a 18	0,015434	0,000548	11,887641	0,000849	0,000582	0,000251
dez. 5 a 9	0,015369	0,001404	12,672615	0,000901	0,000619	0,000269
12 a 16	0,015307	0,001485	8,145763	0,000561	0,000376	0.000154
19 a 24	0,015247	0,000947		0,000600	0,000403	0,000167
26 a 30	0,015250	0,001008	8,667691	0,000553	0,000370	0,000151
1989 – jan. 2 a 6	0,015188	0,000933	8,088564	,	0,000370	0,000131
9 a 13	0,015126	0,000886	7,744144	0,000523 0,000181	0,000349	0,000141
23 a 27	0,015125	0,000344	3,006343	0,000181	0,000104	0,000023
30.1-3.2	0,015124	0,000681	5,958322	0,000334		0,000077

Tabela 6

LFT com 273 dias de prazo

		Deságio	Aversão	P (Teta	P (Teta	P (Teta
Período (273)	D.P.	(delta)	Total	= 0,5)	= 1)	= 2)
, ,	(1)	(2)	(3)	(4)	(5)	(6)
1987 – abr. 6 a 10	0,018621	0,003762	21,698490	0,002322	0,001626	0,000737
13 a 17	0,018622	0,003439	19,834791	0,002118	0,001480	0,000667
20 a 24	0,018624	0,003359	19,371573	0,002068	0,001443	0,000649
27 a 30	0,018626	0,003127	18,025136	0,001921	0,001338	0,000599 0,000843
mai. 4 a 8	0,018677	0,004255	24,397139	0,002634	0,001850	0,000894
11 a 15	0,018728	0,004495	25,632281	0,002786	0,001958 0,001866	0,000850
18 a 22	0,018727	0,004292	24,473944	0,002657	0,002015	0,000922
25 a 29	0,018727	0,004620	26,347578	0,002865 0,003227	0,002013	0,000922
jun. 1 a 5	0,018727	0,005192	29,607967 33,258829	0,003227	0,002273	0.001185
8 a 12	0,018727	0,005832		0,003032	0,002300	0,000937
22 a 26	0,018727	0,004693	26,765233	0,002911	0,002048	0,000980
29.6-3.7	0,018878	0,004897	27,480969		0,002133	0.000896
jul. 6 a 10	0,018878	0,004506	25,286636 21,956624	0,002792 0,002429	0,001701	0,000771
13 a 17	0,018928	0,003933	19,775063	0,002429	0,001701	0.000687
20 a 24	0,018929	0,003343	18,321734	0,002102	0,001324	0,000627
27 a 31	0,018882 0,018832	0,003260	14,937758	0,002007	0,001119	0.000494
ago, 3 a 7 10 a 14	0,018832	0,002049	24,283983	0,002666	0,001872	0,000853
10 a 14 17 a 21	0,018834	0,004300	21,230445	0,002323	0,001626	0,000736
24 a 28	0,018885	0,003703	23,777681	0,002525	0,001841	0,000838
31.8-4.9	0,018885	0,003588	20,120434	0,0022211	0,001545	0,000697
set, 8 a 11	0,018884	0,003300	15,834607	0,001728	0,001198	0,000532
14 a 18	0,018782	0,002023	16,473365	0.001780	0.001236	0,000550
21 a 25	0,018780	0,002300	18,391189	0,001993	0,001389	0,000623
28.9-2.10	0,018726	0,003243	15,362504	0.001646	0,001141	0,000505
out. 5 a 9	0,018723	0,002502	14,275411	0,001525	0,001054	0,000463
13 a 16	0,018720	0,002444	13,946187	0,001488	0,001027	0,000451
19 a 23	0,018717	0.002723	15,543845	0.001665	0.001154	0,000511
26 a 30	0,018664	0,002592	14,883468	0,001583	0,001095	0,000483
nov. 3 a 6	0,018661	0,002611	14,997955	0,001595	0,001104	0,000488
9 a 13	0,018609	0,002219	12,816737	0,001347	0,000926	0,000403
16 a 20	0,018658	0,001843	10,587245	0,001109	0,000755	0,000322
23 a 27	0,018656	0,002026	11,640666	0,001225	0,000838	0,000361
30.11-4.12	0,018654	0,002323	13,351823	0,001413	0,000973	0,000425
dez, 7 a 11	0,018651	0,002514	14,451742	0,001533	0,001060	0,000466
14 a 18	0,018648	0,002266	13,032077	0,001377	0,000947	0,000413
21 a 24	0,018696	0,002189	12,521920	0,001327	0,000912	0,000396
28 a 31	0,018694	0,002179	12,469402	0,001321	0,000907	0,000394
1988 – jan. 4 a 8	0,018690	0,001943	11,126178	0,001172	0,000801	0,000343
11 a 15	0,018737	0,001741	9,918218	0,001044	0,000709	0,000299
18 a 22	0,018735	0,001712	9,753849	0,001026	0,000695	0,000293
25 a 29	0,018733	0,001758	10,021618	0,001055	0,000717	0,000303 0,000373
fev. 1 a 5	0,018732	0,002084	11,876847	0,001261	0,000864	0,000373
8 a 12	0,018732	0,002485	14,164290	0,001514	0,001046 0,001128	0,000499
8 a 12	0,018679	0,002665	15,274909	0,001628	0,001128	0,000509
22 a 26	0,018678	0,002710	15,535951	0,001657 0,001572	0,001148	0,000480
29.2-4.3	0,018675	0,002576	14,770203	0,001372	0,000870	0,000376
mar. 7 a 11	0,018723	0,002096	11,959440	0,001209	0,000684	0,000287
14 a 18	0,018770	0,001687 0,001781	9,576485 10,169891	0,001010	0,000727	0,000308
21 a 25	0,018717	0,001781	8,750352	0,000912	0,000614	0,000254
abr. 4 a 8	0,018714 0,018711	0,001332	11,010157	0,000112	0,000793	0,000340
11 a 15	0,018711	0,001927	10,921954	0,001102	0,000782	0,000334
19 a 22 25 a 29	0,018657	0,001901	10,364201	0,001140	0,000738	0,000313
23 a 29	0,010037	0,001004	10,50-201	0,001004	.,	•

Continua

						
		Deságio	Aversão	P (Teta	P (Teta	P (Teta
Perfodo (273)	D.P.	(delta)	Total	= 0.5	= 1)	= 2)
	(1)	(2)	(3)	(4)	(5)	(6)
						
mai. 2 a 6	0.018705	0,001691	9,663527	0,001013	0.000686	0.000289
9 a 12	0,018704	0,001615	9,231454	0,000965	0.000652	0,000272
16 a 20	0,018703	0.001439	8,228620	0.000854	0,000572	0,000234
23 a 27	0.018701	0,001411	8,066125	0.000836	0.000559	0.000228
30.5-3.6	0.018699	0,001108	6,334831	0,000644	0.000422	0,000163
jun. 6 a 10	0,018697	0,001474	8,433499	0,000876	0,000588	0,000242
13 a 17	0,018694	0.001420	8,126083	0,000842	0,000564	0,000230
20 a 24	0,018792	0,001096	6,206739	0,000636	0,000416	0,000160
jul. 4 a 8	0,018790	0.001066	6,038312	0,000617	0,000403	0,000153
11 a 15	0,018789	0,001224	6,935291	0,000717	0,000474	0,000187
18 a 22	0,018740	0,001351	7,692090	0,000798	0,000532	0,000215
25 a 29	0,018741	0,001467	8,353776	0,000871	0,000585	0,000240
ago. 1 a 5	0,018690	0,001535	8,787482	0,000914	0,000616	0,000255
8 a 12	0,018690	0,001065	6,095439	0,000617	0,000403	0,000154
15 a 19	0,018690	0,001013	5,801970	0,000585	0,000380	0,000143
22 a 26	0,018739	0,000996	5 , 671192	0,000573	0,000371	0,000139
29.8-2.9	0,018738	0,000960	5,468934	0,000551	0,000355	0,000131
set. 12 a 16	0,018737	0,000906	5,162855	0,000517	0,000331	0,000119
19 a 23	0,018737	0,000732	4,170939	0,000407	0,000252	0,000082
26 a 30	0,018636	0,000933	5,374175	0,000535	0,000344	0,000126
out. 3 a 7	0,018637	0,000986	5,678959	0,000568	0,000368	0,000137
10 a 14	0,018637	0,001002	5,767399	0,000578	0,000375	0,000141
17 a 21	0,018588	0,001155	6,684441	0,000675	0,000444	0,000174
nov. 7 a 11	0,018592	0,001458	8,434688	0,000866	0,000582	0,000239
14 a 18	0,018647	0,001477	8,494825	0,000878	0,000590	0,000243
dez. 5 a 9	0,018599	0,003669	21,212942	0,002264	0,001584	0,000717
12 a 16	0,018601	0,003367	19,463637	0,002073	0,001447	0,000651 0,000390
19 a 24	0,018603	0,002158	12,471042	0,001308	0,000899 0,001023	0,000390
26 a 30	0,018605	0,002431	14,047491	0,001481	0,001023	0,000449
1989 – jan. 2 a 6	0,018607	0,002228	12,867718	0,001352 0,001272	0,000930	0,000403
9 a 13	0,018661	0,002101	12,068763 5,649190	0,001272	0,000366	0,000377
23 a 27 30.1-3.2	0,018664 0,018667	0,000984 0,002062	11,836788	0,000300	0,000855	0.000369
fev. 20 a 24	0,018671	0,002062	12,988736	0.001248	0,000946	0,000412
27.2-3.3	0,018725	0,002204	13,817520	0,001373	0.001018	0,000446
mar, 6 a 10	0,018730	0,002422	18,431879	0,001987	0,001385	0.000621
13 a 17	0,018735	0,003255	16,810362	0,001809	0,001257	0,000560
27 a 31	0,018789	0.003092	17,516832	0,001898	0,001321	0,000590
abr. 10 a 14	0,018793	0,004316	24,442078	0.002672	0.001876	0,000855
17 a 21	0,018797	0,004356	24,658430	0.002697	0,001895	0,000864
24 a 28	0,018850	0,003945	22,205061	0,002437	0,001707	0,000774
27420	3,010030	5,000745		-,	,	

Tabela 7

LFT com prazos diversos

Período	D.P. (1)	Deságio (delta) (2)	Aversão Total (3)	P (Teta = 0,5) (4)	P (Teta = 1) (5)	P (Teta = 2) (6)
1987 - set 14 a 18 (77) 1988 - 29.8-2.9 (272) 28.11-2.12 (180) 28.11-2.12 (271) Dez. 12 a 16 (364) 1989 - 30.1-3.2 (187) 30.1-3.2 (278) fev. 13 a 17 (274) abr. 3 a 7 (275)	0,010036 0,018554 0,015104 0,018753 0,021891 0,015603 0,019157 0,019086 0,019200	0,000129 0,000998 0,000774 0,002112 0,006999 0,001172 0,003514 0,002821 0,004875	2,562711 5,799723 6,787460 12,009308 29,209194 9,625705 19,151994 15,486890 26,446250	0,000066 0,000576 0,000453 0,001278 0,004351 0,000702 0,002163 0,001725 0,003023	0,000036 0,000374 0,000299 0,000876 0,003068 0,000475 0,001509 0,001195 0,002127	0,000141 0,000117 0,000379 0,001411 0,000200 0,000679 0,000529

Com base no valor médio da alavancagem de 6, as probabilidades implícitas de moratória estão calculadas nas colunas P(Teta = 0,5), P(Teta = 1) e P(Teta = 2), nas tabelas 5, 6 e 7. Para isso utiliza-se a equação seguinte, que é deduzida a partir de (25):

$$p = \frac{e^{\theta \delta} - e^{(\theta^2 \sigma^2)/2}}{e^{\theta (1 + \frac{1}{A})} - e^{(\theta^2 \sigma^2)/2}}$$
(26)

Vê-se claramente que prazos mais elevados correspondem a probabilidades implícitas de moratória mais elevadas, como foi mencionado ao final da seção 2. A tabela 8 indica os valores extremos das probabilidades, para $\theta = 1$.

Tabela 8
Probabilidades implícitas de moratória
(para Teta = 1)

Prazo (em dias corridos)	Mínima (em %)	Máxima (em %)	
77	0,004	0,004	
182	0,010	0,083	
273	0,025	0,257	
364	0,307	0,307	

Da tabela 6 observa-se que a partir do leilão do dia 24.1.89, o primeiro após o advento do Plano Verão, a probabilidade implícita de moratória

nos títulos de 273 dias começa a subir, atingindo quase 0,2% (para $\theta = 1$). Ou seja, o risco extra proveniente das eleições presidenciais aumenta sobremaneira a probabilidade implícita de moratória.

Duas observações importantes. Primeiro, verifica-se que na época da moratória externa (20.2.87) as probabilidades implícitas, nos títulos de 182 dias, apresentam picos. Isto indica que a moratória externa causou uma desconfiança de moratória interna. Em segundo lugar, as probabilidades implícitas atingem picos nas proximidades dos Planos Bresser (12.6.87) e Verão, caindo imediatamente após o decreto dos mesmos.

As tabelas 9, 10, 11, 12 e 13 apresentam estimativas para as probabilidades implícitas de moratória para deságios de 0,2%, 0,5%, 1,0%, 1,5% e 2,0% ao ano, para prazos de 77, 182, 273 e 364 dias, e para aversões relativas de 0,5, 1 e 2. Utilizou-se para o cômputo do desvio-padrão a taxa over de 40% ao mês (32% ao mês efetiva).

Tabela 9 Probabilidades de moratória com d = 0.2% a.a. e A = 6

Prazo	Desvio-	Deságio	P(Teta	P(Teta	P(Teta
	padrão	(delta)	= 0,5)	= 1)	= 2)
77	0,010034	0,000421	0,000250	0,000168	0,000069
182	0,015426	0,000996	0,000591	0,000397	0,000163
273	0,018893	0,001493	0,000887	0,000595	0,002245
364	0,021815	0,001991	0,001182	0,000794	0,000326

Tabela 10

Probabilidades de moratória com d = 0.5% a.a. e A = 6

Prazo	Desvio- padrão	Deságio (delta)	P(Teta = 0,5)	P(Teta = 1)	P(Teta = 2)
77	0,010034	0,001052	0,000648	0,000453	0,000204
182	0,015426	0,002484	0,001532	0,001071	0,000484
273	0,018893	0,003723	0,002297	0,001606	0,000726
364	0,021815	0,004962	0,003061	0,002142	0,000969

Tabela 11 Probabilidades de moratória com d=0.1% a.a. e A=6

Prazo	Desvio-	Deságio	P(Teta	P(Teta	P(Teta
	padrão	(delta)	= 0,5)	= 1)	= 2)
77	0,010034	0,002097	0,001309	0,000927	0,000430
182	0,015426	0,004949	0,003091	0,002190	0,001017
273	0,018893	0,007415	0,004634	0,003285	0,001528
364	0,021815	0,009874	0,006174	0,004380	0,002040

Tabela 12 Probabilidades de moratória com d = 1,5% a.a. e A = 6

Prazo	Desvio- padrão	Deságio (delta)	P(Teta = 0,5)	P(Teta = 1)	P(Teta = 2)
77	0,010034	0,003136	0,001965	0,001398	0,000654
182	0,015426	0,007396	0,004641	0,003304	0,001549
273	0,018893	0,011074	0,006955	0,004956	0,002328
364	0,021815	0,014738	0,009264	0,006607	0,003110

Tabela 13

Probabilidades de moratória com d = 2.0% a.a. e A = 6

Prazo	Desvio- padrão	Deságio (delta)	P(Teta = 0,5)	P(Teta = 1)	P(Teta = 2)
77	0,010034	0,004169	0,002619	0,001866	0,000877
182	0,015426	0,009826	0,006181	0,004412	0,002080
273	0,018893	0,014702	0,009260	0,006618	0,003128
364	0,021815	0,019555	0,012331	0,008824	0,004181

Como se pode inferir das tabelas, mesmo para deságios elevados, como 1,0% ao ano, a probabilidade implícita é, para um título de 273 dias, de 0,3% no caso de $\theta=1$ (ou, equivalentemente, de 0,4% ao ano).

Isto quer dizer que mesmo probabilidades de moratória diminutas têm efeito bastante significativo nos deságios das LFT, enfatizando os resultados de Marques e Werlang (1989), de que pequenas desconfianças podem causar um grande impacto nas taxas reais de juros e na economia.

Finalmente, verificou-se a sensibilidade dos resultados a variações da estimativa da alavancagem. Os resultados podem ser vistos nas tabelas 14, 15 e 16 para A=3, A=15 e A=30. Estes devem ser comparados com a tabela 11. Observa-se que ocorrem variações das probabilidades estimadas, mas estas são pequenas, atestando a adequação e robustez do modelo em questão.

Tabela 14

Probabilidades de moratória com d = 1,0% a.a. e A = 3

Prazo	Desvio-	Deságio	P(Teta	P(Teta	P(Teta
	padrão	(delta)	= 0,5)	= 1)	= 2)
77	0,010034	0,002097	0,001094	0,000733	0,000299
182	0,015426	0,004949	0,002583	0,001733	0,000707
273	0,018893	0,007415	0,003872	0,002600	0,001062
364	0,021815	0,009874	0,005160	0,003467	0,001418

Tabela 15

Probabilidades de moratória com d = 1.0% a.a. e A = 15

Prazo	Desvio- padrão	Deságio (delta)	P(Teta =: 0,5)	P(Teta = 1)	P(Teta = 2)
77	0,010034	0,002097	0,001471	0,001075	0,000538
182	0,015426	0,004949	0,003474	0,002541	0,001273
273	0,018893	0,007415	0,005208	0,003812	0,001911
364	0,021815	0,009874	0,006940	0,005083	0,002552

Tabela 16
Probabilidades de moratória com d = 1,0% a.a. e A = 30

Prazo	Desvio- padrão	Deságio (delta)	P(Teta = 0,5)	P(Teta = 1)	P(Teta = 2)
77	0,010034	0,002097	0,001532	0,001132	0,000580
182	0.015426	0,004949	0,003619	0,002675	0,001373
273	0,018893	0.007415	0.005425	0.004013	0.002062
364	0.021815	0,009874	0,007229	0,005350	0,002753

6. Conclusões

Neste trabalho foram desenvolvidos dois modelos de demanda das LFI pelos intermediários financeiros. O primeiro modelo baseia-se na idéia de que os agentes financeiros estejam interessados em uma limitação em seu risco de falência, uma hipótese muito utilizada na literatura sobre a firma bancária. O segundo modelo fundamenta-se na escolha envolvendo risco: os intermediários financeiros estão dispostos a aceitar riscos maiores de falência, desde que sejam remunerados por terem que se submeter a tais riscos mais elevados.

Com base nos dados dos leilões primários de LFT, conclui-se que o primeiro modelo é inadequado. O segundo modelo é usado, então, para estimar as probabilidades de moratória interna implícitas nos deságios das LFT.

Conclui-se que esta probabilidade implícita é de cerca de 0,4% no pior dos casos já observados (leilão de LFT de 364 dias ocorrido na segunda semana de dezembro de 1988). Isto corrobora resultados anteriores de Marques e Werlang (1989), de que pequenos cortes na taxa de juros real esperada poderiam afetar de modo muito dramático a evolução da dívida interna brasileira. Assim, a desconfiança de que os títulos públicos brasileiros não serão honrados deve ser sempre mantida num mínimo possível, sob pena de causar grandes instabilidades na economia de nosso país.

As tabelas 9 a 13 mostram, para diversos deságios e prazos, as projeções de probabilidades implícitas de moratória interna. Como subproduto, obtém-se que a aversão relativa ao risco média, dos intermediários financeiros no Brasil, é bem inferior a 2,6.

Finalmente, uma recomendação de política de mercado aberto no Brasil decorre do trabalho: quanto mais longos são os prazos da LFT, maiores são os custos do Tesouro Nacional. Isto porque quanto mais longos os títulos, maiores as chances implícitas de ocorrência de moratória interna durante a vida do título. Desta maneira, do ponto de vista de custos, os títulos lançados em leilão devem ser os mais curtos possíveis.

Abstract

We model the demand for LFT's aiming at estimating the probability of domestic moratorium implicit in the discount of the primary auctions. We present two alternative models. Only one fits the data. There are two important conclusions. First, the longer the maturity of the LFT's the larger the costs. This means that the Treasury should issue LFT's of short maturity. Second, the implicit probability of domestic moratorium is 0.4% (per year) even for high discounts. This confirms prior analysis of Marques and Werlang (1989), that even small probabilities of moratorium could cause large effects on domestic debt demand.

Referências bibliográficas

Andima. Boletim de alavancagem das instituições, fev. 1989.

Andima. Revista da Andima. n. 152, fev. 1989.

Banco Central do Brasil. Letra do Banco Central. Nota Didip n. 2, jul. 1987.

CEMEI/IBRE/FGV. Banco de dados nacionais e internacionais, mimeogr.

Newbery, David G. & Stiglitz, Joseph E. *The theory of commodity price stabilization*: a study in the economics of risk. Oxford, Oxford University Press. 1981.

Marques, Maria Sílvia Bastos & Werlang, Sérgio Ribeiro da Costa. Moratória interna, dívida pública e juros reais. *Pesquisa e Planejamento Econômico*, abr. 1989.

Pratt, John. Risk aversion in the small and the large *Econometrica*, n. 32, p. 122-36, 1964.

Simonsen, Mario Henrique – Dinâmica macroeconômica. São Paulo, McGraw-Hill, 1983.