ALG 07

Selection sort (Select sort)
Insertion sort (Insert sort)
Bubble sort deprecated

Quicksort

Stabilita řazení


```
for( int i = 0; i < n-1; i++ ){</pre>
  // select min
  jmin = i;
  for( int j = i+1; j < n; j++ )
   if( a[j] < a[jmin] )</pre>
     jmin = j;
  // put min to its place
  min = a[jmin];
  a[jmin] = a[i];
  a[i] = min;
```

Krok k

Celkem testů

$$\sum_{k=1}^{n-1} (n-k) = \sum_{k=1}^{n-1} n - \sum_{k=1}^{n-1} k = n(n-1) - \frac{n(n-1)}{2} = \boxed{\frac{1}{2}(n^2 - n)}$$

Krok k

Celkem přesunů

$$\sum_{k=1}^{n-1} 3 = 3(n-1)$$

Shrnutí

Celkem testů

$$\frac{1}{2}(n^2-n) = \Theta(n^2)$$

Celkem přesunů

$$3(n-1) = \Theta(n)$$

Celkem operací

$$\frac{1}{2}(n^2 - n) + 3(n - 1) = \Theta(n^2)$$

Asymptotická složitost Selection Sortu je $\Theta(n^2)$

Start

Krok1

Krok 2

Krok 3


```
for( int i = 1; i < n; i++ ){</pre>
  // find & make place for a[i]
  insVal = a[i];
  int j = i-1;
  while( (j >= 0) && (a[j] > insVal) ){
   a[j+1] = a[j];
    j--;
  // insert a[i]
  a[j+1] = insVal;
```

Krok k

Shrnutí

Celkem testů

$$n-1$$
 = $\Theta(n)$ nejlepší případ $(n^2-n)/2$ = $\Theta(n^2)$ nejhorší případ $(n^2+n-2)/4$ = $\Theta(n^2)$ průměrný případ

Celkem přesunů

$$2n-2$$
 = $\Theta(n)$ nejlepší případ $(n^2+n-2)/2$ = $\Theta(n^2)$ nejhorší případ $(n^2+5n-6)/4$ = $\Theta(n^2)$ průměrný případ

Asymptotická složitost Insertion Sortu je O(n²) (!!)

Bubble sort

Fáze 2

Fáze 3


```
for( int lastPos = n-1; lastPos > 0; lastPos-- )
for( int j = 0; j < lastPos; j++ )
if( a[j] > a[j+1] ) swap( a, j, j+1 );
```

Shrnutí

Celkem testů

$$(n-1) + (n-2) + ... + 2 + 1 = \frac{1}{2}(n^2 - n) = \Theta(n^2)$$

Celkem přesunů

$$0 = \Theta(1)$$
 nejlepší případ $\frac{1}{2}(n^2 - n) = \Theta(n^2)$ nejhorší případ

Asymptotická složitost Bubble Sortu je ⊕(n²)

Sir Charles Antony Richard Hoare

C. A. R. Hoare: Quicksort. Computer Journal, Vol. 5, 1, 10-15 (1962)

Opanováno!

Quicksort Dělení **Pivot** Krok 1 Ε K D B B D Ε R


```
void qSort( Item a[], int low, int high ){
ii
  int iL = low, iR = high;
  Item pivot = a[low];
 •do {
    while( a[iL] < pivot ) iL++;</pre>
    while( a[iR] > pivot ) iR--;
    if( iL < iR ) {
     swap(a,iL, iR); 📐
      iL++; iR--;
    else
     if( iL == iR ) {iL++; iR--;}
> while( iL <= iR );</pre>
  if( low < iR ) qSort( a, low, iR );</pre>
                                                 Rozděl!
  if( iL < high ) qSort( a, iL, high );</pre>
```

Levý index se nastaví na začátek zpracovávaného úseku pole, pravý na jeho konec, zvolí se pivot.

Cyklus (rozdělení na "malé" a "velké") :

Levý index se pohybuje doprava

a zastaví se na prvku vetším nebo rovném pivotovi.

Pravý index se pohybuje doleva

a zastaví se na prvku menším nebo rovném pivotovi.

Pokud je levý index ještě před pravým,

příslušné prvky se prohodí,

a oba indexy se posunou o 1 ve svém směru.

Jinak pokud se indexy rovnají,

jen se oba posunou o 1 ve svém směru.

Cyklus se opakuje, dokud se indexy neprekříží,

tj. pravý se dostane pred levého.

Následuje rekurzivní volání (zpracování "malých" a "velkých" zvlášť)

na úsek od začátku do pravého(!) indexu včetně

a na úsek od levého(!) indexu včetně až do konce,

má-li príslušný úsek délku větší než 1.

Asymptotická složitost

Celkem přesunů a testů

 $\Theta(n \cdot log_2(n))$ nejlepší případ $\Theta(n \cdot log_2(n))$ průměrný případ $\Theta(n^2)$ nejhorší případ

Asymptotická složitost Quick Sortu je O(n²), ...

... ale! :

"Očekávaná" složitost Quick Sortu je ⊕(n·log₂(n)) (!!)

Porovnání efektivity

N	N ²	$N \times log_2(N)$	$\frac{N^2}{N \times log_2(N)}$	zpoma- lení (1~ <mark>1sec</mark>)
1	1	0		
10	100	33.2	3.0	3 sec
100	10 000	6 64.4	15.1	15 sec
1 000	1 000 000	9 965.8	100.3	1.5 min
10 000	100 000 000	132 877.1	752.6	13 min
100 000	10 000 000 000	1 660 964.0	6 020.6	1.5 hod
1 000 000	1 000 000 000 000	19 931 568.5	50 171.7	14 hod
10 000 000	100 000 000 000 000	232 534 966.6	430 042.9	5 dnů

tab. 1

Stabilita řazení

Stabilní řazení nemění pořadí prvků se stejnou hodnotou.

Stabilita řazení

Stabilní řazení

Záznam:

Jméno

Příjmení

Vstup: Seznam seřazen pouze podle jména.

Andrew Cook **Amundsen Andrew** Andrew **Brown** Barbara Cook Barbara Brown Barbara **Amundsen Amundsen** Charles Charles Cook

Brown

Charles

stabilní řazení

Seřaď záznamy pouze podle"

Příjmení

	Andrew	Amundsen	
	Barbara	Amundsen	
	Charles	Amundsen	
	Andrew	Brown	
	Barbara	Brown	
	Charles	Brown	
	Andrew	Cook	
	Barbara	Cook	
	Charles	Cook	
1			

podle jména i příjmení.

Výstup: Seznam seřazen

Pořadí záznamů se stejným příjmením se nezměnilo

Nestabilní řazení

Záznam:

Jméno

Příjmení

Vstup: Seznam seřazen

pouze podle jména.

Výstup: Původní pořadí jmen je ztraceno.

seřazeno

Andrew	Cook
Andrew	Amundsen
Andrew	Brown
Barbara	Cook
Barbara	Brown
Barbara	Amundsen
Charles	Amundsen
Charles	Cook
Charles	Brown

QuickSort

Seřaď záznamy pouze podle:

Příjmení

Barbara	Amundsen
Andrew	Amundsen
Charles	Amundsen
Barbara	Brown
Charles	Brown
Andrew	Brown
Charles	Cook
Andrew	Cook
Barbara	Cook

Pořadí záznamů se stejným příjmením se změnilo.