

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICA CIENCIA DE DATOS / BIOINGENIERÍA • ÁLGEBRA LINEAL

CONTROL DE LECTURA: PRODUCTO INTERNO Andrés Merino • Semestre 2024-1

ÍNDICE

1	Ind	licaciones	
2 Banco de preguntas		nco de preguntas	
	2.1	Control - Producto Interno	
		1 INDICACIONES	

Se plantean bancos de preguntas orientados a realizar el control de lectura de la sección 5.2 del libro de Larson y sección 8.1 del libro de Aranda.

2. BANCO DE PREGUNTAS

2.1 Control - Producto Interno

1. P1

¿Qué propiedad del producto escalar permite afirmar que $\langle x,y\rangle=\langle y,x\rangle$ para todos los vectores x,y en el espacio E?

- *a)* Simetría (100%)
- b) Linealidad
- c) Positividad
- d) Ortogonalidad

2. P2

¿Cuál de las siguientes afirmaciones es verdadera respecto a la propiedad de linealidad del producto escalar?

- a) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ para cualquier x, y, z en E (100%)
- b) $\langle x, y + z \rangle = \langle x, y \rangle \cdot \langle x, z \rangle$
- c) $\langle x, y \rangle = \langle x + z, y + z \rangle$
- d) $\langle x, y \rangle = 0$ siempre que $x \neq y$

3. P3

Si α es un escalar real y x,y son vectores en E, ¿cuál es la correcta expresión del producto escalar involucrando α ?

- a) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ (100%)
- b) $\langle \alpha x, y \rangle = \langle x, \alpha y \rangle$
- c) $\langle \alpha x, y \rangle = \alpha^2 \langle x, y \rangle$
- d) $\langle \alpha x, y \rangle = \langle x, y \rangle / \alpha$

¿Qué implica sobre el vector x si $\langle x, x \rangle = 0$ en un espacio vectorial euclídeo E?

- a) x es el vector nulo (100%)
- b) x tiene norma uno
- c) x es ortogonal a sí mismo
- d) x puede ser cualquier vector

5. P5

¿Cuál es una correcta interpretación de la propiedad de positividad del producto escalar?

- a) $\langle x, x \rangle \ge 0$ para todo x en E (100%)
- b) $\langle x, y \rangle > 0$ para todo x, y en E
- c) $\langle x, y \rangle \ge 0$ sólo si x y y son ortogonales
- d) $\langle x, y \rangle = 1$ siempre que x y y sean unitarios

6. P6

¿Qué establece la desigualdad de Cauchy-Schwarz en un espacio vectorial euclídeo?

- a) $-1 \leqslant \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} \leqslant 1 (100\%)$
- b) $(x,y)^2 \le ||x||^2 + ||y||^2$
- c) $\langle x, y \rangle \leq ||x|| + ||y||$
- d) $||x + y|| \le ||x|| ||y||$

7. P8

¿Qué indica la propiedad de positividad respecto al valor de $\langle x, x \rangle$ cuando x es diferente del vector nulo?

- a) $\langle x, x \rangle > 0 (100 \%)$
- b) $\langle x, x \rangle = 0$
- c) $\langle x, x \rangle < 0$
- d) $\langle x, x \rangle$ puede ser cualquier número real

8. P9

¿Cuál de las siguientes es una aplicación del producto escalar en espacios vectoriales euclídeos?

- a) Calcular distancias entre vectores (100 %)
- b) Definir operaciones de suma de vectores
- c) Establecer el número máximo de dimensiones de un espacio
- d) Determinar la cantidad de vectores en una base

9. P11

¿Cuál de las siguientes afirmaciones describe correctamente un producto interno en un espacio vectorial?

- a) Asocia un número real con cada par de vectores cumpliendo ciertos axiomas. (100 %)
- b) Asocia un vector con cada par de vectores cumpliendo ciertos axiomas.
- c) Asocia un número complejo con cada par de vectores sin requerimientos adicionales.
- d) Asocia un número real con cada vector individual en el espacio.

¿Cuál es un ejemplo de un producto interno diferente en \mathbb{R}^2 que no es el producto interno euclidiano estándar?

- a) $\langle u, v \rangle = u_1 v_1 + 2u_2 v_2 (100\%)$
- b) $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2$
- c) $\langle u, v \rangle = u_1^2 + v_1^2$
- d) $\langle u, v \rangle = u_1 v_2 + u_2 v_1$

11. P13

En el contexto de productos internos, ¿qué implica el axioma que indica que $\langle v, v \rangle \geqslant$ 0 para todo vector v?

- a) El producto interno nunca es negativo. (100 %)
- b) El producto interno es siempre positivo.
- c) El producto interno es nulo.
- d) El producto interno siempre es igual a 1.

12. P14

Si se define un producto interno por la integral de dos funciones, ¿qué propiedad básica de la integral garantiza que $\langle f, f \rangle \geqslant 0$ para toda función f en $C[\mathfrak{a}, \mathfrak{b}]$?

- a) El cuadrado de una función real no es negativo. (100%)
- b) La integral de una función siempre es positiva.
- c) La integral de una función es independiente de sus límites.
- d) El resultado de la integral siempre es una función.

13. P16

¿Qué describe la desigualdad de Cauchy-Schwarz en espacios con producto interno?

- a) La magnitud del producto interno de dos vectores no excede el producto de sus normas. (100%)
- b) La suma de los productos internos de dos vectores es igual a su norma.
- c) El producto interno de dos vectores es siempre menor que su suma.
- d) El producto interno de dos vectores es directamente proporcional a sus normas.

14. P17

¿Qué indica el teorema de Pitágoras en el contexto de espacios con producto interno?

- a) La suma de los cuadrados de las normas de dos vectores ortogonales es igual a la norma de su suma al cuadrado. (100%)
- b) La norma de la suma de dos vectores es igual al producto de sus normas.
- c) La norma de la suma de dos vectores siempre es menor que la suma de sus normas.
- d) La suma de los cuadrados de dos vectores es siempre positiva.

¿Qué representa la proyección ortogonal de un vector $\mathfrak u$ sobre un vector $\mathfrak v$ en espacios con producto interno?

- a) Un múltiplo escalar de v que es la componente de u en la dirección de v. (100 %)
- b) La suma de \mathfrak{u} y \mathfrak{v} que minimiza la distancia a \mathfrak{u} .
- c) Un vector que es ortogonal a v y paralelo a u.
- d) La diferencia entre $\mathfrak u$ y $\mathfrak v$ que maximiza la longitud.

16. P20

En la definición de norma en espacios con producto interno, ¿cómo se expresa la norma de un vector u?

- a) $\sqrt{\langle u, u \rangle}$ (100%)
- b) $\langle u, u \rangle$
- c) $|\langle u, u \rangle|$
- d) $\langle u, u \rangle^2$

17. P21

¿Qué caracteriza a un vector unitario en un espacio con producto interno?

- a) Su norma es igual a 1. (100 %)
- b) Su norma es igual a 0.
- c) Su norma es mayor que 1.
- d) No es ortogonal a ningún otro vector.

18. P22

¿Qué propiedad de los productos internos se verifica al calcular el producto interno de un vector con el vector nulo?

- a) El producto interno de cualquier vector con el vector nulo es 0. (100%)
- b) El producto interno resulta en el mismo vector.
- c) El producto interno es siempre negativo.
- d) El producto interno es igual a la norma del vector.

19. P24

¿Cuál de las siguientes opciones describe adecuadamente la desigualdad del triángulo en contextos de producto interno?

a) La norma de la suma de dos vectores es menor o igual a la suma de sus normas. (100 %)

- b) La norma de la suma de dos vectores es igual a la suma de sus normas.
- c) La norma de la suma de dos vectores es siempre mayor que la suma de sus normas.
- d) La norma de la suma de dos vectores es siempre menor que la diferencia de sus normas.

¿Qué característica importante tiene la matriz de Gram en el contexto de productos internos?

- a) Es simétrica. (100%)
- b) Es siempre diagonal.
- c) Sus elementos son siempre positivos.
- d) Es siempre invertible.