Oral Exams in Geometry and Topology

All-round (Solve 1 out of 2 problems)

1. Consider the two-dimensional unit sphere S^2 . Let Δ denote the Laplace operator of 1-form on S^2 . Find all smooth 1-forms ω that satisfy the equation

$$\Delta\omega + \omega = 0.$$

2. Let M^n be an $n(\geqslant 2)$ -dimensional compact Riemannian manifold without boundary isometrically immersed in the Euclidean space \mathbb{R}^{n+1} . Then the first eigenvalue $\lambda_1(M^n)$ of the Laplacian on M^n satisfies

$$\lambda_1(M^n) \leqslant \frac{n}{\operatorname{Vol}(M^n)} \int_M H^2 d\mu.$$

Furthermore, the equality holds if and only if M^n is a round sphere in \mathbb{R}^{n+1} . Here $H = \frac{1}{n} \sum_{i=1}^{n} \kappa_i$ is the mean curvature of M^n in \mathbb{R}^{n+1} and $\operatorname{Vol}(M^n)$ is the volume of M^n .