Problem 1 (2 points) Solving Recurrence Relations

Draw the recursion tree for $T(n)=4T(\lfloor n/2 \rfloor)+cn$, where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

Recurrence Tree: A recurrence tree is a tree where each node represents the cost of a certain recursive sub-problems. Then we sum up the numbers in each node to get the cost of the entire algorithm.

Height of tree= log n Cost of each level = 2ⁱ cn

By using Master Theorem we calculated asymptotic bound:

$$T(n)= a T(n/b) + \Theta(n^k \log^p n)$$
 where $a \ge 1$, $b > 1$, $k \ge 0$, P is real number

here a=4, b=2, k=1, p=0
a>b^k so T(n)=
$$\Theta(n\log^4 2)$$

T(n)= $\Theta(n^2)$

Proof:

$$T(n) = 4T(n/2) + cn$$
 equation - 1
 $T(n/2) = 4T(n/4) + cn/2$ equation - 2

$$T(n/4) = 4T(n/8) + cn/4$$
 equation – 3

Substitute equation 2 in 1 we will get

$$T(n) = 4[4T(n/4 + cn/2] + cn$$

$$= 16T(n/4) + 3cn$$

$$= 4^2T(n/2^2) + 3n$$

Substitute equation 3 in above equation

$$T(n) = 16T[4T(n/8) + cn/4] + cn$$

= $64T(n/8) + 7cn$
= $4^3T(n/2^3) + 7n$

By observing pattern, we found out

$$T(n)=4^{i}T(n/2^{i}) + tcn$$

= $4^{\log_{2}n}T(1) + tcn$
= $n\log_{2}^{4} + tcn$
= $n^{2} + tcn$
 $T(n) = O(n^{2})$

Let $n/2^i = 1 \Rightarrow n=2^i \implies \log_2 n = i$

Another method:

Guess:
$$T(n) \le a(n^2-n)$$
 a is constant
 $T(n) = 4T(\lfloor n/2 \rfloor) + cn \le 4T(n/2) + cn \le 4a((n/2)^2-n/2) + cn$
 $= an^2-2an-cn$
 $= an^2 - (2a-c) n$ when a>c
 $T(n) \le a(n^2-n)$

Problem 2 (2 points) Solving Recurrence Relations

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences:

(1)
$$T(n)=8T(n/3)+n^2$$

By using Master Theorem:
$$T(n)=aT(n/b)+\Theta(n^k\log^p n)$$

 $a=8,\ b=3,\ k=2,\ P=0$
we found out that $a< b^k$ and $p=0$ so $T(n)=O(n^k)$
 $T(n)=O(n^2)$

(2) $T(n)=T(n-1) + \log n$

```
Solution: T(n) = T(n-1) + logn
T(n-1) = T(n-2) + log(n-1)
T(n-2) = T(n-3) + log(n-2)
By substituting the values of T(n-1) in T(n) we get:
T(n) = T(n-2) + log(n-1) + logn
By substituting the values of T(n-2) in above equation we get:
T(n) = T(n-3) + log(n-2) + log(n-1) + logn
= T(n-3) + log((n.(n-1).(n-2))
We found out the pattern and get
T(n) = T(1) + logn!
= log(n/e)^n
= n(logn-loge)
= n(logn-1.44n)
```

Problem 3 (4 points) Building a Heap using Insertion (Problem 6-1, p. 166-167) We can build a heap by repeatedly calling MAX-HEAP-INSERT to insert the elements into the heap.

Consider the following variation on the BUILD-MAX-HEAP procedure:

```
BUILD-MAX-HEAP'(A)

1 A.heap-size = 1

2 for i = 2 to A.length

3 MAX-HEAP-INSERT(A, A[i])
```

 $T(n) = \Theta(n \log n)$

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP' always create the same heap when run on the same input array? Prove that they do or provide a counterexample. Answer: The procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP' do not always create the same heap when run on the same input array.

Consider the following counterexample:

10 20	15	12	40	25	18
-------	----	----	----	----	----

Binary Tree:

BUILD-MAX-HEAP:

BUILD-MAX-HEAP':

b. Show that in the worst case, BUILD-MAX-HEAP' requires $\Theta(n \mid g \mid n)$ time to build an n-element heap.

Answer: The initial heap size is 1 and the size is incremented by one after each call to MAX-Heap-Insert. The worst-case running time for Max-Heap-Insert is $\Theta(\lg(\text{heap-size}))$. Thus, the worst-case running time T(n) for Build-Max-Heap' is

$$T(n) = \sum_{i=1}^{n-1} \Theta(\log i)$$

$$= \Theta(\sum_{i=1}^{n-1} (\log i))$$

$$= \Theta(\log(n-1)!)$$

$$= \Theta(\Theta(n\log n))$$

$$= \Theta(n\log n)$$