Funzioni Reali - Sommario

Funzioni di variabile reale; funzioni di potenza e di radice; funzione del valore assoluto; funzioni trigonometriche.

A. Funzioni di potenza, radice e valore assoluto

Funzioni di potenza, radice e valore assoluto

Definizioni di funzione potenza p_n e radice p_n^{-1} . Definizione del valore assoluto $|\cdot|$; disuguaglianza triangolare. Alcuni esercizi generali.

1. Funzione potenza

DEF 1.1. Sia $n \in \mathbb{N} \setminus \{0\}$; definiamo quindi la **funzione potenza** n-esima come

$$p_n:[0,+\infty)\longrightarrow [0,+\infty); x\mapsto p_n(x)=x^n$$

Si riporta un grafico di alcune funzioni potenza p_n .

OSS 1.1. Si nota che

$$egin{aligned} orall x \in [0,1): p_1(x) > p_2(x) > \ldots > p_n(x) \ orall x \in (1,+\infty): p_1(x) < p_2(x) < \ldots < p_n(x) \end{aligned}$$

OSS 1.2. Si vede dal grafico che la funzione è *strettamente crescente*, ovvero se prendiamo $x_1,x_2\in E$ (dominio) ove $x_2>x_1$, allora sicuramente abbiamo

$$p_n(x_2)>p_n(x_1)$$

DIMOSTRAZIONE.

Prendiamo ad esempio p_2 ; abbiamo innanzitutto

$$0 \le x_1 < x_2$$

allora li moltiplichiamo per x_1 e x_2 , ottenendo

$$egin{cases} x_1 < x_2 x_1 \ x_1 x_2 < x_2^2 \end{cases}$$

quindi

$$0 \leq x_1^2 < x_2^2 \iff p_2(x_1) < p_2(x_2), orall x_1, x_2$$

Notare che questa dimostra che è vera solo per p_2 ; sarebbe da dimostrare che è vera anche per p_n (forse si va per induzione? boh, vedrò o chiederò al prof qualcosa)

OSS 1.3. Notiamo che la funzione potenza p_n (o x^n) è biiettiva (Funzioni, **DEF 3.3.**), ovvero è sia suriettiva che iniettiva.

DIMOSTRAZIONE.

Per dimostrare che è iniettiva basta riosservare quanto visto in **OSS 1.2.**; ovvero che la funzione è strettamente crescente.

Dopodiché la funzione è anche suriettiva in quanto una conseguenza dell'assioma di separazione S).

2. Funzione radice

OSS 2.1. Dall'**OSS 1.3.** abbiamo notato che la funzione potenza $p_n(x)$ è biiettiva; pertanto per il teorema dell'esistenza della funzione inversa (Funzioni, **TEOREMA 1.**) esiste una funzione inversa che definiremo.

DEF 2.1. Definiamo la funzione radice n-esima p_n^{-1}

$$p_n^{-1}:[0,+\infty)\longrightarrow [0,+\infty); x^n\mapsto x$$

Graficamente questo equivale a "scambiare le assi" del grafico della funzione, oppure di "cambiare la prospettiva da cui si guarda il grafico", ovvero

3. Valore assoluto

DEF 3.1. Sia il valore assoluto una funzione

$$|\cdot|: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto |x| = egin{cases} x: x \geq 0 \ -x: x < 0 \end{cases}$$

Ad esempio, il grafico di |x| si rappresenta nel modo seguente:

OSS 3.1.1. Notare che

$$\sqrt{x^2} = |x|$$

3.1. Proprietà, disuguaglianza triangolare

OSS 3.1.1. Si può osservare alcune proprietà del valore assoluto, ovvero:

1. Sia $a \geq 0$, $x \in \mathbb{R}$, allora

$$|x| \le a \iff -a \le x \le a$$

DIMOSTRAZIONE.

Posso considerare due casi, ovvero $x \geq 0$: abbiamo quindi |x| = x, pertanto

$$\begin{cases} |x| \leq a \implies x \leq a \\ x \geq 0 \implies x \geq -a \end{cases} \longrightarrow -a \leq x \leq a$$

 $x \le 0$: abbiamo quindi |x| = -x e il discorso è analogo:

$$\begin{cases} |x| \leq a \implies -x \leq a \iff x \geq -a \\ x \leq 0 \implies x \leq a \end{cases} \longrightarrow -a \leq x \leq a$$

2. Prendendo le stesse premesse di prima, abbiamo

$$|x| \geq a \iff x \leq -a \land x \geq a$$

3. LA DISUGUAGLIANZA TRIANGOLARE.

Siano $x,y\in\mathbb{R}$, allora abbiamo

$$|x+y| \le |x| + |y|$$

DIMOSTRAZIONE.

Se abbiamo da un lato

$$-|x| \leq x \leq |x|$$

е

$$-|y| \le y \le |y|$$

allora sommandoli si avrebbe

$$-(|x|+|y|) \leq x+y \leq |x|+|y|$$

che per la prima proprietà equivale a dire

$$|x+y| \le |x| + |y|$$

4. Esercizi misti

Presentiamo degli esercizi, ovvero *equazioni* (Equazioni e soluzione) o *disequazioni* contenenti queste funzioni appena presentate.

ESERCIZIO 4.1. Determinare

$$3x + 5 = 0$$

ESERCIZIO 4.2. Disegnare il grafico di

$$f(x) = 3x + 5$$

 $\mathsf{con}\ f:\mathbb{R}\longrightarrow\mathbb{R}.$

ESERCIZIO 4.3. Risolvere

$$x^2 - 2x - 3 = 0$$

ESERCIZIO 4.4. Disegnare

$$f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2 - 2x - 3$$

ESERCIZIO 4.5. Risolvere

$$\frac{x^2-2x+3}{x-3} \ge 0$$

ESERCIZIO 4.6. Risolvere

$$\sqrt{x+1} \ge 3x+2$$

ESERCIZIO 4.8. Risolvere

$$\frac{x-3}{2x+1} > \frac{x-1}{x+1}$$

ESERCIZIO 4.8. Risolvere

$$\sqrt{6x+1} \ge 3 - 2x$$

ESERCIZIO 4.9. Risolvere

$$|x + 4| < 8$$

ESERCIZIO 4.10. Risolvere

$$|\frac{2x+1}{x^2-4}| \geq 1$$

ESERCIZIO 4.11. Risolvere

$$|x+1| \ge |x-1|$$

6

B. Funzioni trigonometriche

Funzioni trigonometriche

Definizione delle funzioni trigonometriche sin, cos; le proprietà di queste funzioni; alcuni valori noti; funzioni inverse arcsin, arccos. Forme di somma e sottrazione di sin e cos. Funzioni tan, arctan.

O. Preambolo

Per ora non abbiamo ancora gli strumenti per poter *rigorosamente* definire le funzioni di *seno* e *coseno*, tuttavia possiamo definirle per ora in questo modo.

Però prima di tutto bisogna fare delle considerazioni.

Ovvero prendo il piano cartesiano (**ESEMPIO 2.1.**) e considero la circonferenza unitaria Γ :

$$\Gamma:=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$$

e considero l'asse r_1 concorde con l'asse y e che "appoggiamo" in (1,0). Quindi prendo un punto qualsiasi $\alpha \in \mathbb{R}$ dell'asse, lo "avvolgo" su Γ , poi la retta si avvicina man mano all'arco, infine il punto "finisce" su Γ e ottengo il punto $(c(\alpha),s(\alpha))$

Graficamente questo processo rappresenta il seguente.

OSS 0.1.

Si osserva che in questo processo di "avvolgimento" si suppone che la lunghezza del segmento non si cambia mai, in quanto viene solo "piegato"; quindi se il segmento r_1 è lungo α , allora l'arco è lungo α , che non è banale da misurare. Infatti si deve fare un procedimento di approssimazione con segmenti. Questo è il problema di questa definizione non-rigorosa.

1. Definizione di seno e coseno

Considerando tutto detto sopra, consideriamo la funzione

$$f: \mathbb{R} \longrightarrow \Gamma \ lpha \mapsto (c(lpha), s(lpha))$$

Dove Γ varia nell'intervallo [0,1].

Così otteniamo le seguenti funzioni:

DEF 1.

$$egin{aligned} \cos: & \mathbb{R} \longrightarrow [-1,1] \ & lpha \mapsto \cos(lpha) \in \Gamma \ \sin: & \mathbb{R} \longrightarrow [-1,1] \ & lpha \mapsto \sin(lpha) \in \Gamma \end{aligned}$$

Dove $(\cos\alpha,\sin\alpha)$ rappresenta la posizione del punto dell'arco piegato e α rappresenta la lunghezza dell'arco. Se α è negativa, allora si orienta l'asso in basso. Graficamente,

2. Proprietà

PROP 2.1. Diamo un nome alla lunghezza della semi-circonferenza unitaria,

$$(\pi \in \mathbb{R}, \pi \sim 3.14\ldots)$$

quindi la *circonferenza* è lunga 2π .

PROP 2.2. Dato un $\alpha \in \mathbb{R}$, si verifica che

$$(\cos \alpha)^2 + (\sin \alpha)^2 = 1$$

in quanto entrambi i punti $(\cos \alpha, \sin \alpha)$ appartengono alla circonferenza Γ ; infatti $x^2 + y^2 = 1$ è la proprietà caratterizzante di Γ .

PROP 2.3. Le funzioni \cos , \sin sono *periodiche*, ovvero che prendendo un $k \in \mathbb{Z}$,

i.
$$\cos(\alpha + 2k\pi) = \cos \alpha$$

ii.
$$\sin(\alpha + 2k\pi) = \sin \alpha$$

Questo si verificai n quanto 2π rappresenta un giro intero; quindi prendendo un punto α e facendoci un giro intero, arrivo allo stesso punto.

PROP 2.4. Le funzioni \cos , \sin sono rispettivamente delle funzioni *pari* e *dispari*, ovvero che si verificano le seguenti.

$$\cos(-\alpha) = \cos(\alpha)$$

 $\sin(-\alpha) = -\sin(\alpha)$

Questo in quanto, come detto prima in **DEF 1.**, la "lunghezza negativa" rappresenterebbe la stessa lunghezza orientato verso il basso. Quindi graficamente lo si può evincere chiaramente.

PROP 2.5. Se al posto di aggiungere un *giro intero* aggiungo un *mezzo giro*, ovvero π , ottengo il suo opposto:

$$cos(\alpha + \pi) = -cos(\alpha)$$
$$sin(\alpha + \pi) = -sin(\alpha)$$

PROP 2.6. Ricorrendoci alla definizione etimologica del *coseno*, ovvero "complementi sinus", notiamo che sottraendo l'angolo complementare $\frac{\pi}{2}$ da α ottengo sin. Ovvero

$$orall lpha, \cos(rac{\pi}{2} - lpha) = \sin(lpha)$$

2.1. Riassunto grafico

Graficamente si può riassumere (quasi) tutte le proprietà nel seguente grafico (con i grafici di \cos , \sin stessi).

2.2. Alcuni valori noti

Dai risultati della *geometria elementare* sappiamo i seguenti valori noti del seno e del coseno:

α	$\cos lpha$	\sinlpha
0	1	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1

che verranno dati per noti.

2.3. Forme di somma e di sottrazione

Consideriamo due angoli: $lpha,eta\in\mathbb{R}.$

Quindi disegniamo il seguente grafico:

Da cui si evince che

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

Queste formule saranno molto importanti per le formule di *prostaferesi* e di *Werner*.

2.4. Formule di prostaferesi

Recuperato dalla lezione del 26.10.2023

Voglio calcolare $\sin a + \sin b$. Allora riscrivo le forme di sottrazione e di addizione;

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

 $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$

e li sommo:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha - \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

= $2 \sin \beta \cos \alpha$

e ponendo $\alpha+\beta=a$, $\alpha-\beta=b$, (dunque $a+b=2\alpha$ e $a-b=2\beta$) ottengo

$$\sin a + \sin b = 2\sin \frac{a-b}{2}\cos \frac{a+b}{2}$$

Analogo il procedimento per $\cos \alpha + \cos \beta$.

3. Definizione di arcocoseno e arcoseno

OSS 3.1. Considero la funzione \cos , però con una restrizione al suo dominio e codominio.

$$\cos_{[0,\pi]}:[0,\pi]\longrightarrow [-1,1] \ x\mapsto \cos(x)$$

Questa funzione allora è *biiettiva* (Funzioni, **DEF 3.3.**); ovvero p sia *suriettiva* che *iniettiva* e *strettamente decrescente*.

- 1. Questa è *iniettiva* in quanto considerando tutti gli $x \in [0, \pi]$ si tocca un *solo* punto ad ogni x considerato. Inoltre è *strettamente decrescente* in quanto il valore parte da $\cos 0 = 1$ e finisce con $\cos \pi = -1$.
- 2. Per lo stesso motivo di prima cos è suriettiva.

DEF 3.1.

Pertanto secondo il *teorema dell'esistenza della funzione inversa* (Funzioni, **TEOREMA 1.**) la funzione $\cos_{[0,\pi]}$ ha una sua inversa che chiameremo **l'arcocoseno**;

$$\arccos := \cos_{[0,\pi]}$$

DEF 3.2.

Analogamente si definisce \arcsin considerando però la restrizione di $\sin_{[-\frac{\pi}{2},\frac{\pi}{2}]}.$

Quindi

$$\arcsin := \sin_{[-\frac{\pi}{2},\frac{\pi}{2}]}$$

Ecco alcuni grafici delle funzioni arccos, arcsin.

4. Funzione tangente e arcotangente

DEF 4.1. Definiamo la funzione **tangente** $\tan \alpha$ periodica in come

$$an: \mathbb{R} \diagdown [rac{\pi}{2}]_{\equiv \pi} \longrightarrow \mathbb{R}$$

come il rapporto tra la funzione seno e coseno, ovvero

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Notiamo che le funzioni \sin,\cos sono periodiche di 2π ; quindi prendendo il rapporto abbiamo che \tan è periodica di π .

Osservando i *limiti* (Esempi di Limiti di Funzione, **ESEMPIO 5.3.**) di questa funzione possiamo disegnare il seguente grafico:

DEF 4.2. Se ho la restrizione della *tangente* in $]-\frac{\pi}{2},\frac{\pi}{2}[$ allora ho:

$$an_{|(-rac{\pi}{2},rac{\pi}{2})}:(-rac{\pi}{2},rac{\pi}{2})\longrightarrow \mathbb{R};x\mapsto an x$$

e questa diventa *biiettiva*, quindi invertibile, posso definire l'**arcotangente** la sua funzione inversa:

$$\arctan:=(\tan_{|(-\frac{\pi}{2},\frac{\pi}{2})})^{-1}$$

C. Funzione esponenziale e logaritmica

Funzione esponenziale e Logaritmica

Definizione della funzione esponenziale su N; prime proprietà dell'esponenziale; estensione della definizione a Z; ulteriori proprietà; estensione a Q; ulteriori proprietà e limiti notevoli; definizione dell'esponenziale sui reali R; proprietà finali. Invertibilità di exp, funzione logaritmica; proprietà di log.

1. Funzione esponenziale

In questa parte definiremo la *funzione esponenziale* partendo dalla definizione "basilare" su \mathbb{N} , poi espandiamo l'insieme su cui definiamo questa funzione fino a \mathbb{R} . Ovviamente per semplificare lo studio si proporrà poi la definizione "generale" riassunta.

L'esponenziale sui naturali

DEF 1.1. Consideriamo il numero

$$a\in (1,+\infty)$$

possiamo definire l'esponenziale come

$$a^n := a \cdot \ldots \cdot a$$
 $n \text{ volte}$

PROP 1.1. Allora con questa definizione abbiamo le seguenti proprietà.

$$egin{aligned} a^{n_1} \cdot a^{n_2} &= a^{n_1 + n_2} \ (a^{n_1})^{n_2} &= a^{n_1 \cdot n_2} \ n_1 < n_2 \implies a^{n_1} < a^{n_2} \ 1 < a_1 < a_2 \implies a_1^n < a_2^n \ \lim_n a^n &= +\infty \end{aligned}$$

L'esponenziale sugli interi

DEF 1.2. Ora voglio dare un significato a

$$a^m, m \in \mathbb{Z}$$

Allora la definisco come

$$a^m := \left\{ egin{aligned} a^m & ext{se } m \in \mathbb{N} \ rac{1}{a^{-m}} & ext{se } m \in \mathbb{Z} ext{ e } m < 0 \end{aligned}
ight.$$

PROP 1.2. Con questa definizione continuano a valere le proprietà date in **PROP 1.1.**, in particolare:

$$a^{m_1} \cdot a^{m_2} = a^{m_1+m_2} \ (a^{m_1})^{m_2} = a^{m_1 \cdot m_2} \ m_1 < m_2 \implies a^{m_1} < a^{m_2} \ 1 < a_1 < a_2 \implies a_1^m < a_2^m \ \lim_{m o +\infty} a^m = +\infty$$

L'esponenziale sui razionali

DEF 1.3. Ora voglio dare un significato a

$$a^p, p \in \mathbb{Q}$$

allora posso rappresentare p come frazione (Richiami sui Numeri Razionali), ovvero come

$$p=rac{m}{n}, m\in \mathbb{Z}; n\in \mathbb{N}ackslash\{0\}$$

Ora posso definire

$$a^p:=a^{rac{m}{n}}=\sqrt[n]{a^m}$$

OSS 1.3.1. Con questa definizione sembra che ci possa essere il seguente problema: se un numero razionale p può essere rappresentata in modi diversi, ad esempio

$$2=\frac{2}{1}=\frac{4}{2}$$

non è possibile che a^p può avere risultati diversi; ovvero è possibile che

$$p = rac{m_1}{n_1} = rac{m_2}{n_2} \implies \sqrt[n_1]{a^{m_1}} \stackrel{?}{
eq} \sqrt[n_2]{m_2}$$

La risposta è no. Ora vediamo di dimostrarla.

DIMOSTRAZIONE. Partiamo dal presupposto che

$$rac{m_1}{n_1} = rac{m_2}{n_2} \implies m_1 n_2 = m_2 n_1$$

Allora

$$egin{aligned} \sqrt[n_1]{a^{m_1}} &\stackrel{?}{=} \sqrt[n_2]{a^{m_2}} \ a^{m_1} &\stackrel{?}{=} (\sqrt[n_2]{a^{m_2}})^{n_1} = \sqrt[n_2]{a^{m_2 \cdot n_1}} \ a^{m_1 n_2} &= a^{m_2 n_1} ext{ OK } \blacksquare \end{aligned}$$

PROP 1.3. Ora si potrebbe dimostrare che continuano a valere le proprietà di prima (**PROP 1.2.**, **PROP 1.1.**), ovvero

$$egin{aligned} a^{p_1} \cdot a^{p_2} &= a^{p_1 + p_2} \mid (a^{p_1})^{p_2} = a^{p_1 p_2} \ p_1 < p_2 \implies a^{p_1} < a^{p_2} \mid 1 < a_1 < a_2 \implies a_1^p < a_2^p \ &\lim_{p o +\infty} a^p = +\infty \mid \lim_{p o -\infty} a^p = 0 \ & ext{Novità}: \lim_{p o p_0} a^p = a^{p_0} \end{aligned}$$

DIMOSTRAZIONE. Dimostriamo la "nuova" proprietà ovvero

$$\lim_{p o p_0}a^p=a^{p_0}$$

Ai fini di questa dimostriamo utilizziamo il limite notevole di una successione (Esempi di Limiti di Successione, ESEMPIO 1.3.), ovvero

$$\lim_n \sqrt[n]{a} = 1$$

Allora si potrebbe, secondo la **DEF 1.3.**, riscriverla come

$$\lim_n a^{rac{1}{n}} = 1 \implies \lim_{p o 0} a^p = 1$$

Adesso consideriamo

$$\lim_{p o p_0} a^p - a^{p_0} = a^{p_0} \qquad \cdot (a^{p-p_0}-1) o 0$$
valore fisso $\qquad ext{tende a } a^0-1=1-1=0$

Pertanto

$$\lim_{p o p_0}a^p=a^{p_0}$$

L'esponenziale sui reali

Finalmente definiamo l'esponenziale con l'esponente reale; in realtà sarebbe possibile definirla mediante gli assiomi dei numeri reali (Assiomi dei Numeri Reali), in particolare con i *tagli di Dedekind*, tuttavia ai fini didattici si sceglie di usare una definizione più semplice.

DEF 1.4. Adesso voglio definire

$$a^x, x \in \mathbb{R}$$

Posso usare il teorema sulle successioni monotone (Limite di Successione, **TEOREMA 1.2./COROLLARIO 1.2.a.**) che enuncia il seguente: "Una successione monotona crescente e limitata è sempre convergente".

Allora considero la successione a valori in Q

$$(p_n)_n$$

che sia convergente al valore x. Ci chiediamo se una successione del genere esiste; la risposta qui è sì. Infatti, sfruttando la densità dei razionali nei reali (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 4.1.**) allora sappiamo che partendo da 1,x esiste un valore razionale tra questi due e questo può essere il candidato ideale per p_0 ; dopodiché prendiamo p_1,x dove deve starci almeno p_2 ; poi volendo si può andare all'infinito per la densità di Q in R. Quindi $(p_n)_n$ è definita su tutti i valori in \mathbb{N} .

Concludendo, definisco

$$a^x := \lim_n a^{p_n}, \lim_n p_n = x$$

Inoltre

$$0 < a < 1 \implies a^x = (\frac{1}{a})^{-x}$$

Osserviamo poi che a^{p_n} rimane monotona in quanto è necessaria per far valere il teorema.

PROP 1.4. Si può mostrare che continuano a valere tutte le proprietà elencate sopra;

$$egin{aligned} orall x_1, x_2; a^{x_1}a^{x_2} &= a^{x_1+x_2} \mid (a^{x_1})^{x_2} = a^{x_1x_2} \ x_1 < x_2 &\Longrightarrow a^{x_1} < a^{x_2} \ 1 < a_1 < a_2 &\Longrightarrow a_1^x < a_2^x \ \lim_{x o +\infty} a^x &= +\infty \ \lim_{x o -\infty} a^x &= 0 \ \lim_{x o x_0} a^x &= a^{x_0} \end{aligned}$$

Riassunto generale

Dopo il nostro viaggio quasi odisseico per definire la funzione esponenziale, possiamo definire a^x nella maniera seguente.

DEF 1.5. (Funzione esponenziale)

Sia $a > 1, a \in \mathbb{R}$, è definita una funzione (Funzioni)

$$\exp_a: \mathbb{R} \longrightarrow (0,+\infty); x
ightarrow \exp_a(x) = a^x$$

e la chiamo funzione esponenziale di base a.

Da notare che se invece abbiamo 0 < a < 1, allora basta definire

$$\exp_a x = (\frac{1}{a})^{-x}$$

TEOREMA 1.5. (Proprietà della funzione esponenziale)

Valgono le seguenti:

- 1. $\exp_a(0) = 1$
- 2. $\exp_a(x_1) \cdot \exp_a(x_2) = \exp_a(x_1 + x_2)$
- 3. $\exp_a(x_1)^{x_2} = \exp_{\exp_a(x_1)}(x_2) = \exp(x_1x_2)$
- 4. exp è monotona crescente

- 5. exp è suriettiva; la prendiamo per buono, anche se va dimostrata
- 6. I limiti di \exp_a

$$\begin{split} &\lim_{x\to -\infty} \exp_a x = 0 \; ; \; \lim_{x\to +\infty} \exp_a x = +\infty \\ &\lim_{x\to x_0} \exp_a x = \exp_a x_0 \end{split}$$

FIGURA 1.5. (Grafico generale di exp)

Si propone il seguente grafico di \exp realizzato sul computer col sito Desmos.

2. Funzione logaritmica

OSS 2.1. Osservando dal **TEOREMA 1.5.**, sappiamo che se \exp_a è sia suriettiva che iniettiva, allora deve esistere la funzione inversa \exp_a^{-1} (Funzioni, **TEOREMA 1.**). Allora possiamo definire il seguente.

DEF 2.1. (Funzione logaritmica)

Chiamo la **funzione logaritmica** la funzione inversa \exp_a^{-1} come \log_a :

$$\log_a:(0,+\infty)\longrightarrow \mathbb{R}$$

e si ha

$$egin{aligned} orall x \in \mathbb{R}, \log_a(\exp_a x) = x \ orall y \in (0, +\infty), \exp_a(\log_a y) = y \end{aligned}$$

TEOREMA 2.1. (Proprietà di log)

Valgono le seguenti:

- 1. $\log_a(1) = 0$ (per definizione)
- 2. $\log_a(x_1) + \log_a(x_2) = \log_a(x_1x_2)$
- 3. $\log_a(x^y) = y \log_a(x)$
- $4. \ a > 1 \land 0 < x_1 < x_2 \implies \log_a(x_1) < \log_a(x_2)$
- 5. Limiti

$$\lim_{x o 0^+} \log_a x = -\infty \; ; \; \lim_{x o +\infty} \ \lim_{x o x_0} \log_a x = \log_a x_0$$

3. Riassunto finale

FIGURA 3.1. Come riassunto finale si propongono i grafici di \exp_a e \log_a per a=1.96. Anche questo ultimo grafico è realizzato su <u>Desmos</u>. Inoltre con i limiti (<u>Esempi di Limiti di Funzione</u>) osserveremo che le funzioni \exp , \log crescono e decrescono con una "velocità" più grande delle altre funzioni, in particolare le funzioni *razionali* per qualsiasi grado.

