S T U · ·
F I I T ·
· · · ·

Teoretické základy informatiky

Abacus Machine

Mgr. Daniela Chudá, PhD., chuda@fiit.stuba.sk

Abacus počiatky: Babylon pred 5000 rokmi, Čína pre 3000 rokmi

Abacus = počítadlo

A Chinese abacus

School abacus used in Danish elementary school. Early 20th century.

Reconstructed Roman Abacus

Zdroj: http://en.wikipedia.org/wiki/Abacus

Abacus Machine

- Abacus Machine = Počítadlový stroj
- Výpočtový model s operáciami inkrementovania a dekrementovania
- Počítadlový stroj nad prirodzenými číslami s operáciami:
 - +1
 - -1
 - cyklus

Definícia: Abacus Machine

Primitívy:

Symboly a_k, s_k (kєN) sú jednoduché počítadlové stroje hĺbky 0

• Rekurzívna definícia:

Nech M_1 , M_2 , ... M_Z sú jednoduché počítadlové stroje s hĺbkami h_1 , h_1 ,... h_Z , postupnosť M_1 , M_2 , ... M_Z sa nazýva počítadlový stroj s hĺbkou

 $\overline{h} = \max \{h_1, h_1, \dots h_7\}$

Kompozícia:

Nech M je počítadlový stroj s hĺbkou h. Jednoduchý počítadlový stroj s hĺbkou h+1 je postupnosť $(M)_k$, $k \in \mathbb{N}$.

Neformálny opis počítadlového stroja registre

- pracuje s nekonečným počtom registrov R_i,ieN, v danom čase s použitým konečným počtom registrov,
- v registroch môžu byť uložené ľubovoľne veľké prirodzené (nezáporné celé) čísla,
- predpokladá sa, že na začiatku výpočtu sú registre nastavené na 0,
- do zvolených registrov sa zapíšu vstupné hodnoty, počítadlový stroj vykoná operácie a po skončení výpočtu sú v zvolených registroch výstupné údaje .

Neformálny opis počítadlového stroja sémantika

- a_i pripočítavanie (addition) +1 $R_i \leftarrow R_i + 1$
- S_i odpočítavanie (subtraction) $\Theta1$ $R_i \leftarrow R_i \Theta1$ len pre nezáporné čísla

$$x \ominus y = \begin{cases} x - y & \text{ak } x > y \\ 0 & \text{inak} \end{cases}$$

- M₁M₂...M_n zreťazenie počítadlových strojov, vykonávanie sekvenčne za sebou
- (M)_k cyklus počítadlových strojov, otestuje sa register R_k, v prípade, že je nenulový vykoná sa operácia zodpovedajúca stroju M. Stroj M sa cyklicky vykonáva až kým R_k nenadobudne nulovú hodnotu.

while $(R_k>0)$ M

Prepis AM pomocou G

```
G=(N,T,P,M)
N=\{M\}
T=\{a_k,s_k,(,,)_k\}
P: M\rightarrow a_k \mid s_k
M\rightarrow MM
M\rightarrow (M)_k
```

Príklad AM f(i)=2+i

Vstup

 R_1 : i

Výstup

 R_1 : f(i)=2+i

Výpočet na AM

 a_1a_1

Vstup

 R_1 : i

Výstup

 R_2 : j

 R_1 : f(i,j)=i+j

Výpočet na AM (deštruktívne kopírovanie)

R ₁ :3	R ₂ :2
4	1
5	0

$$(s_2a_1)_2$$

zovšeobecnenie:
$$(s_j a_i)_j$$

$$R_j \rightarrow R_i$$

R₂ odpočítavam -1 až po 0 a zároveň pripočítavam +1 ku R₁

Vstup

 R_1 : i

Výstup

 R_2 : j

 R_3 : f(i,j)=i+j

Výpočet na AM (deštruktívne kopírovanie)

$$(s_1a_3)_1(s_2a_3)_2$$

Vstup

R_i: i

Výstup

 R_j : j R_i : f(i,j)=i+j

Výpočet na AM (nedeštruktívne kopírovanie, zachováva len R_i)

$$(s_i a_k a_j)_i (s_k a_i)_k$$

Vstup

 R_1 : i

Výstup

 R_2 : j

 R_3 : f(i,j)=i+j

Výpočet na AM (nedeštruktívne kopírovanie)

$$(s_1a_0a_3)_1 (s_0a_1)_0 (s_2a_0a_3)_2 (s_0a_2)_0$$

Príklady

(s_i)_i vynulovanie registra R_i

a_j(a_j)_j nekonečný cyklus

 $(a_j)_j$ ak $R_j > 0$, nekonečný cyklus

Poznámky

Keď konštruujem počítadlové stroje, môžu byť syntakticky správne, ale nemusia byť sémanticky zmysluplné.

Môže byť veľmi ťažké zistiť, čo robí počítadlový stroj.

Nie je triviálne zistiť, či niekedy skončí počítadlový stroj, ktorý syntakticky správne zapíšem – algoritmicky neriešiteľné (problém zastavenia TM).

Veta o ekvivalencii medzi TM a AM

Funkcia f: $N^k \rightarrow N$ je T-vypočítateľná práve vtedy ak f je vypočítateľná na počítadlovom stroji (AM).

Ekvivalencia výpočtových modelov

Veta 6.4.1 (O ekvivalencií výpočtových modeloch) Nasledujúce výpočtové modely sú ekvivalentné:

- 1. Turingov stroj
- 2. Počítadlový stroj
- 3. Stroj RAM

Ekvivalencia výpočtových modelov

Veta 6.4.1 (O ekvivalencií výpočtových modeloch) Nasledujúce výpočtové modely sú ekvivalentné:

- 1. Turingov stroj
- 2. Počítadlový stroj
- 3. Stroj RAM

Ekvivalencia RAM <=> TS

Simulácia RAM na TS – 6 páskový TS, simuluje sa každá inštrukcia zvlášť podľa polohy IC

reprezentácia registrov

AM má nekonečne veľa registrov $R_0, R_1,$ tie potrebujem reprezentovať na TM \rightarrow na páske v unárnej sústave.

dátová časť:

definícia 4 jednoduchých TM

SEARCH (R_k)

na začiatku je čítacia hlava na pevnej nule, SEARCH (R_k) posunie hlavu ne register R_k – vyhľadanie hodnoty, ktorá sa nachádza v registri R_k

SHIFT (OR)

posun nuly o jedno políčko doprava, modifikuje pásku

SHIFT (OL)

posun nuly o jedno políčko doľava, modifikuje pásku

TEST (ZERO)

kontrolujem, či daný register (kde sa nachádza hlava) obsahuje 0 hodnotu (posunie sa vľavo)

definícia 4 jednoduchých TM

SHIFT (OR)

$$\begin{split} &\delta(q_x,1) = (q_x,1,R) \\ &\delta(q_x,0) = (q_{x+1},1,R) \\ &\delta(q_{x+1},1) = (q_x,0,R) \\ &\delta(q_{x+1},0) = (q_{x+1},0,R) \\ &\delta(q_{x+1},B) = (q_{x+2},0,L) \\ &\delta(q_{x+2},n) = (q_{x+2},n,L) \\ &\delta(q_{x+2},B) = (q_{xF},B,R) \end{split}$$

 $ne\{0,1\}$

definícia 4 jednoduchých TM

TEST (ZERO)

posuniem sa na najľavejší symbol na páske a buď skončím na q_{F0} alebo q_{F1} . Akceptujem: q_{F0} test bol nulový, q_{F1} test bol nenulový.

$$\delta(q_y,0) = (q_{y0},0,L)$$

$$\delta(q_y, 1) = (q_{y1}, 1, L)$$

$$\delta(q_{y0}, u) = (q_{y0}, u, L)$$

$$\delta(q_{y1}, u) = (q_{y1}, u, L)$$

$$\delta(q_{y0},B) = (q_{F0},B,R)$$

$$\delta(q_{v1},B) = (q_{F1},B,R)$$

 $u \in \{0,1\}$

dôkaz indukciou a_k, s_k

$$a_k$$
: SEARCH (R_k) \rightarrow SHIFT (0R)

+1

$$s_k$$
: SEARCH $(R_k) \rightarrow SHIFT (OL)$

-1

$AM \Rightarrow TM$ dôkaz indukciou $M_1M_2M_3...M_Z$

Mám $M_1, M_2, M_3..., M_Z$ a z nich skonštruujem $M_1M_2M_3...M_Z=M$ môžem ich vedľa seba naukladať.

indukčný predpoklad: nech $M_i \Rightarrow TM_i$ potom mám $TM_1, TM_2, TM_3, ..., TM_Z$? ako zostrojím TM, ktorý bude reprezentovať M? $M \Rightarrow TM$

zreťazím ich: $TM_1 \rightarrow TM_2 \rightarrow TM_3... \rightarrow TM_Z$

dôkaz indukciou (M)_k

mám M a zostrojím (M)_k

indukčný predpoklad M ⇒ TM

? pýtam sa ako zostrojím TM, ktorý zodpovedá (M)_k?

SEARCH (
$$R_k$$
) \rightarrow TEST (ZERO)

 q_{F0} END

 q_{F0} TM

Veta o ekvivalencii medzi RAM a AM

Funkcia f je vypočítateľná na počítadlovom stroji (AM) práve vtedy ak existuje RAM, ktorý počíta f.

Ekvivalencia výpočtových modelov

AM \leftarrow RAM \leftarrow TM \leftarrow AM

Pozn.

Platí aj opačná implikácia, dokazuje sa ťažšie.

štrukturálna indukcia

jednojednoznačné zobrazenie namapovania registrov:

problém R₀ v RAM - akumulátor predpoklad pre AM - R₁, R₂, R₃, R₄,... R_n Zostrojím nový AM, kde prečíslujem registre

$$R_i \rightarrow R_{i+1}$$

Namapujem registre

AM_{NEW}

RAM

 R_i

 \rightarrow

 R_i

Využívam skutočnosť, že RAM aj AM majú spočítateľne nekonečne veľa registrov.

dôkaz indukciou a_k, s_k

a_k:

LOAD k
ADD =1
STORE k

S_k:

LOAD k
SUB =1
STORE k

dôkaz indukciou $M_1, M_2, M_3, \dots, M_Z$

predpokladám, že mám $M_1, M_2, M_3, \dots, M_Z$

indukčný predpoklad $M_j \sim I_j$

AM M₁M₂ M₃... M_z skonštruujem tak, že inštrukcie budú za sebou

$$=$$
 $\}$ I_{j}

$$\overline{}\}\ \mathrm{I}_{\mathsf{Z}}$$

dôkaz indukciou (M)_k

chcem skonštruovať (M)_k

indukčný predpoklad $M_j \sim I_j$

musím zostrojiť cyklus

 $(M)_k$

next:

LOAD k

JZERO end

____}

JUMP next

end:

Ekvivalencia výpočtových modelov

Veta 6.4.1 (O ekvivalencií výpočtových modeloch) Nasledujúce výpočtové modely sú ekvivalentné:

- 1. Turingov stroj
- 2. Počítadlový stroj
- 3. Stroj RAM

Ďakujem za pozornosť. chuda@fiit.stuba.sk