Capacitance (in F) of a spherical conductor with radius 1 m is

 1.1×10^{-10}

 10^{-6}

 9×10^{-9}

 10^{-3} A car, moving with a speed of 50 km/hr, can be stopped by brakes after at least 6m. If the same car is moving at a speed of 100 km/hr, the minimum stopping distance is

6m

12m

18m

24m If the wave equation $y=0.08\sin\frac{2\pi}{\lambda}(200t-x)$, then the velocity of the wave will be

400

 $400\sqrt{2}$

200

 $200\sqrt{2}$ At absolute zero temperature, pressure of a gas will be

Zero

One atmospheric pressure

 $P_0 \times 273$

$$P_0 \times 76$$

The temperature coefficient of resistance for a wire is $0.00125/^{\circ}C$. At 300K its resistance is 1 ohm. The temperature at which the resistance becomes 2 ohm is

1154 K

1100 K

1400 K

1127 K The inward and outward electric flux for a closed surface in units of Nm^2/C are respectively 8×10^3 and 4×10^3 . Then the total charge inside the surface is [where $\varepsilon_0=$ permittivity constant]

$$4 \times 10^3 C$$

$$-4 \times 10^3 C$$

$$\frac{\left(-4\times10^{3}\right)}{\varepsilon}C$$

 $-4 imes 10^3 arepsilon_0 C$ In the adjoining diagram, a wavefront AB, moving in air is incident on a plane glass surface XY. Its position CD after refraction through a glass slab is shown also along with the normals drawn at A and D. The refractive index of glass with respect to air ($\mu=1$) will be equal to

 $\frac{\sin \theta}{\sin \phi}$

 $\sin \phi$

 $\frac{1}{\sin \theta}$

CD

 \overline{AB}

 $\frac{AB}{CD}$

A bullet moving with a uniform velocity v, stops suddenly after hitting the target and the whole mass melts be m, specific heat S, initial temperature 25°C, melting point 475°C and the latent heat L. Then v is given by

$$mL = mS(475-25) + \frac{1}{2} \cdot \frac{mv^2}{J}$$

$$mS(475 - 25) + mL = \frac{mv^2}{2J}$$

$$mS(475-25) + mL = \frac{mv^2}{J}$$

 $mS(475-25)-mL=\frac{mv^2}{2J} \mbox{ Six identical bulbs are connected as shown in the figure with a DC source of emf E and zero internal resistance. The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be$

4:9

9:4

1:2

2:1 In a metre bridge experiment, null point is obtained at 20 cm from one end of the wire when resistance X is balanced against another resistance Y. If X<Y, then where will be the new position of the null point from the end, if one decides to balance a resistance of 4X against Y?

50 cm

80 cm

40 cm

70 cm A rifle bullet loses 1/20th of its velocity in passing through a plank. The least number of such planks required just to stop the bullet is

5

10

11

20 The potential difference between points A and B of adjoining figure is

$$\frac{2}{3}V$$

$$\frac{8}{9}V$$

$$\frac{4}{3}V$$

2V

$$\int \tan x dx =$$

 $\ln|\sec x|$

 $\ln |\sin x|$

 $\ln |\mathsf{cosec} x|$

 $\ln |\cos x|$ A point (x,y,z) moves parallel to X axis. Which of the three variable x,y,z remain fixed?

 \boldsymbol{x}

y and z

x, y and z

none of these Difference between sum of first n even numbers and sum of first n odd numbers is :

 n^2

n-1

2n

n The value of $an\left(an^{-1}rac{1}{2}- an^{-1}rac{1}{3}
ight)$ is :

5/6

7/6

1/6

1/7

 $\int 5\sin x dx =$

 $5\cos x + c$

 $-5\cos x + c$

 $-5\sin x + c$

 $5\sin x + c$

If I is an identity matrix of order n then $3I-I^2$ is a :

null matrix

scalar matrix

triangular matrix

diagonal matrix The direction cosines of line joining (1,3,2) and (2,1,4) are:

$$\pm \left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$

$$\pm \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

$$\pm\left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$

none of these The function $f(x)=\dfrac{x}{x-1}$, where $x\neq 1$, defined on codomain $R-\{1\}$ is:

invertible

surjective only

injective only

not a function If z is a purely imaginary number then, $\left| \frac{z-1}{z+1} \right| =$

1

0

|z|

none of these The coefficient of x^6 in the expansion of $\left(1+x^2+x^4+x^6\right)^3$ is :

6

8

10

none of these The vertex of the parabola $3x - 2y^2 - 4y + 7 = 0$ is

(3,1)

(-3,-1)

(-3,1)

none of these If $f(x) = \ln(x + \sqrt{x^2 - 1})$ then $f^{-1}(x) =$

 $\cosh x$

 $\sinh x$

 $\tanh x$

doesn't exist Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then the values of a.b + b.c + c.a is

47

25

50

• 25

If a+b+c=0, then the solution of the equation $\begin{vmatrix} a-x & c & b \\ c & b-x & a \\ b & a & c-x \end{vmatrix}=0$ is

0

$$\pm \frac{3}{2} \big(a^2 + b^2 + c^2 \big)$$

$$0,\pm\sqrt{\frac{3}{2}(a^2+b^2+c^2)}$$

$$0, \pm \sqrt{a^2 + b^2 + c^2} \int \frac{dx}{2x^2 + x + 1} =$$

$$\frac{1}{\sqrt{7}}\tan^{-1}\left(\frac{4x+1}{\sqrt{7}}\right) + c$$

$$\frac{1}{2\sqrt{7}}\tan^{-1}\left(\frac{4x+1}{\sqrt{7}}\right) + c$$

$$\frac{1}{2}\tan^{-1}\left(\frac{4x+1}{\sqrt{7}}\right) + c$$

None of these Thomas slag is $Ca_3 \left(PO_4\right)_2$ $MnSiO_3$ $CaSiO_3$ ${
m FeSiO_3}$ Volume of ${N\over 10}H_2SO_4$ required to neutralize 10 ml 5 N Na_2CO_3 is $100 \, ml$ 50 ml 500 ml 1000 ml Spelter is: impure copper impure zinc ZnO CuO Which has maximum number of atoms? 24g of C (12) 56g of Fe(56) 27g of Al (27) 108g of Ag (108) 0.383g of a metal on reaction with an acid displaced 131cc of dry $\rm H_2$ at STP. The specific heat of metal is o.1. The exact atomic weight of metal is 63.5 65.4 69.8 72.8 3 $\rm g$ of an oxide of a metal is converted into chloride and it yielded 5 $\rm g$ of chloride. Find the equivalent weight of the metal. 33.25 3.325 12

20 A metallic carbide on treatment with water gives a colourless gas which burns readily in air and gives a precipitate with ammoniacal silver nitrate solution. Gas evolved is Methane **Ethane** Acetylene Ethylene The atomic weights of two elements X and Y are 20 and 40 respectively. If 'a' gm of X contains 'b' atoms, how many atoms are present in '2a' gm of Y? b а 2b a/2 antonym of extensive: narrow compact expensive abstract Ravi stayed home from school on Monday. a simple sentence a compound sentence a complex sentence a compound-complex sentence 'birthday' is transcribed as: /bde/ $/b : \eth de/$ $/b:\theta de/$ $/b:\theta de/$ 'serious' is transcribed as: /'seriz/

/'seris/

/'sriz/

/'sris/