Um dos principais objetivos da estática é testar hipóteses. Veja algumas dessas hipóteses potenciais:

- 1. A moeda é honesta?
- 2. O medicamento proposto é melhor que o vendido no mercado?
- 3. O número médio de acidentes aumentou em relação ao ano passado?
- 4. A altura interfere na performance num determinado esporte?
- 5. Um suspeito é culpado?
- 6. O mercado financeiro está em equilíbrio?
- 7. Dona Maria terá dinheiro para comprar o pão do próximo mês?

Etapas de um teste de hipótese

- 1. Formular as hipóteses de interesse;
 - 1. Na estatística clássica, pela abordagem Fisheriana (uma hipótese) ou Neyman-Pearson (mais de uma hipótese).
- Observar dados experimentais do estudo relacionado ao problema;
- 3. Elaborar uma conclusão utilizando um procedimento estatístico.

Exemplo da hipótese 5.

Considere uma pessoa que está sendo acusada de ter cometido um crime.

As duas hipóteses envolvidas aqui são (abordagem de Neyman-Pearson):

- 1. "O suspeito não é culpado" ightarrow h_0 Hipótese Nula ou de não-efeito;
- 2. "O suspeito é culpado" ightarrow h_1 Hipótese alternativa ou hipótese que contém o efeito.
 - Após coletar as evidências, dizemos que, se houver evidências de que o suspeito cometeu o crime, a pessoa é culpada.
 - Se não, concluímos que não é culpado.

Contudo, devemos nos atentar aos erros de decisão

Erros de decisão

	H_0	H_1
Decisão	Não cometeu o crime	Cometeu o crime
Inocente	Acerto	Erro Tipo II
Culpado	Erro Tipo I	\mathbf{Acerto}

- ullet Erro Tipo I: Decidir que o acusado é culpado quando na verdade é inocente (Rejeitar H_0).
- Erro Tipo II: Decidir que o acusado é inocente quando na verdade é culpado (Rejeitar H_1).

Exemplo da hipótese 1.

Estamos interessados em verificar se uma moeda é honesta. Executaremos n experimentos de Bernoulli e verificaremos se a face voltada para cima após o lançamento é cara. Dessa forma, sendo X o resultado dum lançamento, teremos a a.a (\boldsymbol{X}_n) de $X \sim \mathrm{Ber}(\theta), \theta \in \Theta = [0,1]$. Suspeitamos que a moeda é honesta ou que $\theta = 0.9$.

Nossas hipóteses são

- 1. $H_0 \rightarrow \theta = 0.5$
- 2. $H_1 \rightarrow \theta = 0.9$

Erros

Note que $ar{X}$ é um estimador para heta e $ar{x}$ é uma estimativa.

- ullet Se ar x>0.7, rejeitaremos a hipótese nula h_0 , a moeda não seria honesta e haveria um viés agindo sobre seus lançamentos.
- Se $ar{x} \leq 0.7$, concluiremos que a moeda é honesta.

	H_0	H_1
Decisão	$\operatorname{Honesta}$	Viesada
$\bar{x} < 0.7$	\mathbf{Acerto}	Erro Tipo II
$ar{x} \geq 0.7$	Erro Tipo I	\mathbf{Acerto}

• Erro Tipo I: Rejeitar que a moeda é honesta (rejeitar h_0) quando na verdade é.

• Erro Tipo II: Rejeitar que a moeda é enviesada (rejeitar h_1) quando na verdade é.

Calculando a probabilidade dos erros

$$P(\text{Erro Tipo I}) = P(\text{Probabilidade de rejeitar } h_0 | h_0 \text{ \'e verdadeiro})$$
 Incorreto na Estatística Clássica = $P(\bar{X}>0.7|\theta=0.5)$ Correto na Estatística Clássica = $P_{0.5}(\bar{X}>0.7)$

Na segunda notação, correta na estatística frequentista, P está sob a hipótese nula h_0 verdadeira. Dessa forma

$$P(ext{Erro Tipo II}) = P_{0.9}(\bar{X} \leq 0.7)$$

Calcule as probabilidades dos erros considerando $n=10\,$ e a aproximação pela distribuição normal.

Calculando Exato e pela aproximação do Teorema do Limite Central

Sabemos que $\sum_{i=1}^n X_i \sim \mathrm{Bin}(n, heta)$, logo

$$lpha = P(ext{Erro Tipo I}) \overset{ ext{Sob } h_0}{=} P_{0.5} \left(rac{1}{n} \sum_{i=1}^n X_i > 0.7
ight) = P_{0.5} \left(\sum_{i=1}^{10} X_i > 7
ight) = P_{0.5} \left(\sum_{i=1}^{10} X_i \geq 8
ight) \ = \left(rac{10}{8}
ight) 0.5^8 \cdot 0.5^2 + \left(rac{10}{9}
ight) 0.5^9 \cdot 0.5^1 + \left(rac{10}{10}
ight) 0.5^{10} pprox 0.05469 \ lpha = P_{0.5} \left(\sqrt{rac{n}{0.25}} (ar{X} - 0.5) > \sqrt{rac{n}{0.25}} (0.7 - 0.5)
ight) \ pprox P(N(0,1) > 1.26) pprox 0.103$$

$$eta = P(ext{Erro Tipo II}) \overset{ ext{Sob } h_1}{=} P_{0.9} \left(rac{1}{n} \sum_{i=1}^n X_i \leq 0.7
ight) = P_{0.9} \left(\sum_{i=1}^{10} X_i \leq 7
ight) = 1 - P_{0.9} \left(\sum_{i=1}^{10} X_i \geq 8
ight) = 1 - \left(\binom{10}{8} 0.9^8 \cdot 0.9^2 + \binom{10}{9} 0.9^9 \cdot 0.9^1 + \binom{10}{10} 0.9^{10}
ight) pprox 0.0702 \ lpha = P_{0.9} \left(\sqrt{rac{n}{0.09}} (ar{X} - 0.9) \leq \sqrt{rac{n}{0.09}} (0.7 - 0.9)
ight) \ pprox P(N(0, 1) \leq -2.1) pprox 0.018$$

Poder do teste

Chamamos de poder do teste a probabilidade de rejeitar h_0 quando este é falso.

No exemplo anterior,

$$\pi = P_{0.9}(ar{X} > 0.7) = 1 - P_{0.9}(ar{X} \le 0.7) = 1 - eta = 92.92\%$$

Considere nesse exemplo uma a.a do lançamento de quatro moedas: $(\boldsymbol{x}_{10})=(1,0,1,0,0,1,1,0,0,0)$. Como $\bar{x}=0.4\leq0.7$, não rejeitamos a hipótese nula h_0 .

Em uma outra amostra, $(\boldsymbol{x}_{10})=(0,0,1,1,1,1,1,1,1,1)$. Como $\bar{x}=0.8>0.7$, rejeitamos a hipótese nula h_0 .

Um exemplo mais amplo (Diferença)

Seja (X_n) uma População e amostra > Amostra Aleatória de $X \sim \mathrm{Ber}(\theta)$, em que $\theta \in (0,1)$. Considere as hipóteses:

$$egin{cases} H_0: heta=0.5 \ H_1: heta
eq 0.5 \end{cases}$$

Decisões elaboradas:

- 1. Se $ar{x} < 0.3$ ou $ar{x} > 0.7$, rejeitamos H_0
- 2. Caso contrário, não rejeitamos H_0 Relembrando: α = Probabilidade do Erro Tipo I (Rejeitar um H_0 verdadeiro). β Probabilidade do Erro Tipo II (Rejeitar um H1 verdadeiro). π = Poder do Teste. Lembre-se que $\sum_{i=1}^n X_i \sim \mathrm{Bin}(n,\theta)$. Tome n=10.

$$lpha = P_{ heta=0.5}(ar{X} < 0.3 ext{ ou } ar{X} > 0.7) = P_{0.5}(ar{X} < 0.3) + P_{0.5}(ar{X} > 0.7) \ = P(ext{Bin}(n, 0.5) < 3) + P(ext{Bin}(10, 0.5) > 7) = P(ext{Bin}(n, 0.5) \le 2) + P(ext{Bin}(10, 0.5) \ge 8) \ = 0.055 + 0.055 = 0.11$$

Note que para o Erro Tipo II, não existe uma única probabilidade para o erro sob H_1 . Optaremos por tentar calcular seu máximo. β_{\max}

$$eta = P_{ heta}(0.3 \leq ar{X} \leq 0.7) heta \in \Theta \setminus \{0.5\} \ eta_{ ext{max}} = \sup_{ heta \in \Theta \setminus \{0.5\}} eta(heta)$$

Para n=10,

$$eta(heta) = P_{ heta}\left(3 \leq \sum_{i=1}^{n=10} X_i \leq 7
ight) = P\left(3 \leq \mathrm{Bin}(10, heta) \leq 7
ight), heta \in \Theta \setminus \{0.5\}$$

Podemos encontrar o valor que maximiza eta(heta), heta=0.5 derivando.

Hipóteses como subconjuntos do espaço paramétrico

Seja (X_n) uma População e amostra > Amostra Aleatória de $X\sim \mathrm{Ber}(\theta)$, em que $\theta\in (0,1)$. Considere as hipóteses:

$$egin{cases} H_0: heta \in \Theta_0 \ H_1: heta \in \Theta_1 \end{cases}$$

em que $\Theta_0 \cup \Theta_1 = \Theta, \Theta_0, \Theta_1 \neq \emptyset, \Theta_0 \cap \Theta_1 = \emptyset$. Exemplos de decisões elaboráveis:

$$\begin{cases} \Theta_0 = \{0.5\} \\ \Theta_1 = \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right) \Rightarrow \begin{cases} H_0 : \theta = 0.5 \\ H_1 : \theta \neq 0.5 \end{cases} \text{Hipótese alternativa bilateral} \\ \begin{cases} \Theta_0 = \left(0, \frac{1}{2}\right] \\ \Theta_1 = \left(\frac{1}{2}, 1\right) \end{cases} \Rightarrow \begin{cases} H_0 : \theta \leq 0.5 \\ H_1 : \theta > 0.5 \end{cases} \text{Hipótese alternativa unilateral} \\ \begin{cases} \Theta_0 = \left[\frac{1}{2}, 1\right) \\ \Theta_1 = \left(0, \frac{1}{2}\right) \end{cases} \Rightarrow \begin{cases} H_0 : \theta \geq 0.5 \\ H_1 : \theta < 0.5 \end{cases} \text{Hipótese alternativa uniteral} \end{cases}$$

Função poder

No caso geral, calculamos a função poder definida por

$$\pi(\theta) = P_{\theta}(\{\text{Rejeitar } H_0\}), \theta \in \Theta$$

em que "Rejeitar H_0 " é o procedimento de decisão para rejeitar H_0 .

A partir da função poder conseguimos calcular as probabilidades máximas de cometer os erros tipo I e II.

Probabilidade Máxima do Erro Tipo I:

$$lpha_{ ext{max}} = \sup_{ heta \in \Theta_0} (\pi(heta))$$

Probabilidade Máxima do Erro Tipo II:

$$eta_{ ext{max}} = \sup_{ heta \in \Theta_1} [1 - \pi(heta)]$$

Um exemplo do cálculo de erros com hipótese unilateral

Seja (X_n) uma População e amostra > Amostra Aleatória de $X\sim \mathrm{Ber}(\theta)$, em que $\theta\in (0,1)=\Theta$. Considere as hipóteses:

$$egin{cases} H_0: heta \geq 0.6 \ H_1: heta < 0.6 \end{cases}$$

Precisamos de decisões que fazem sentido. Uma delas seria

- 1. Se $ar{x} < 0.4$, rejeitamos H_0
- 2. Se $ar{x} \geq 0.4$, não rejeitamos H_0

Vamos calcular as probabilidades máximas dos erros I e II.

Primeiro, encontramos a função poder

$$\pi(heta) = P_{ heta}(ar{X} < 0.4)$$

Como $\sum_{i=1}^n X_i \sim \operatorname{Bin}(n, heta)$, temos que

$$\pi(heta) = P_{ heta}\left(\sum_{i=1}^n X_i < 0.4 \cdot n
ight) = P(\mathrm{Bin}(n, heta) < 0.4 \cdot n)$$

Relembrando:

$$egin{aligned} lpha_{ ext{max}} &= \sup_{ heta \in [0.6,1)} \pi(heta) \ &= \sup_{ heta \in [0.6,1)} P(ext{Bin}(n, heta) < 0.4 \cdot n) \ eta_{ ext{max}} &= \sup_{ heta \in (0,0.6)} (1 - \pi(heta)) \ &= \sup_{ heta \in (0,0.6)} P(ext{Bin}(n, heta) \geq 0.4 \cdot n) \end{aligned}$$

Para n=2,

$$egin{aligned} lpha_{\max} &= \sup_{ heta \in [0.6,1)} \pi(heta) \ &= \sup_{ heta \in [0.6,1)} P(ext{Bin}(2, heta) < 0.4 \cdot 2) \ &= \sup_{ heta \in [0.6,1)} P(ext{Bin}(2, heta) = 0) \qquad lpha_{\max} &= \sup_{ heta \in [0.6,1]} \left[inom{2}{0} heta^0 (1- heta)^2
ight] \ eta_{\max} &= \sup_{ heta \in [0.6,1]} \left(1-\pi(heta)
ight) & \Rightarrow \qquad = \sup_{ heta \in [0.6,1]} \left(1- heta
ight)^2 \ &= \sup_{ heta \in (0,0.6)} P(ext{Bin}(2, heta) \geq 0.8 \cdot n) \qquad eta_{\max} &= \sup_{ heta \in (0,0.6)} (1-(1- heta)^2) \ &= \sup_{ heta \in (0,0.6)} P(ext{Bin}(2, heta) \geq 1) \ &= \sup_{ heta \in (0,0.6)} \left[1-P(ext{Bin}(2, heta) = 0)
ight] \end{aligned}$$

$$lpha_{
m max} = (1 - 0.6)^2 = 0.16$$
 $eta_{
m max} = (1 - (1 - 0.6)^2) = 0.84$

Teste sob Normalidade

Seja (x_n) amostra aleatória de $X \sim N(\mu, \sigma^2)$ em que σ^2 é conhecido. Considere as hipóteses

$$egin{cases} H_0: \mu = \mu_0 \ H_1: \mu
eq \mu_0 \end{cases}$$

com $\mu_0 \in \mathbb{R}$ e fixado.

Calcule as probabilidades (máximas) dos erros tipo I e II, para as seguintes decisões

- 1. Se $ar x < \mu_0 1.96 \sqrt{rac{\sigma^2}{n}}$ ou $ar x > \mu + 1.96 \sqrt{rac{\sigma^2}{n}}$, então rejeitamos H_0
- 2. Caso contrário, não rejeitamos H_0 Temos a função poder

$$\pi(heta) = P_{ heta}(ext{Rejeitar}H_0) = P_{ heta}\left(ar{X} < \mu_0 - 1.96\sqrt{rac{\sigma^2}{n}}
ight) + P_{ heta}\left(ar{X} > \mu_0 + 1.96\sqrt{rac{\sigma^2}{n}}
ight)$$

em que $theta = \mu \in \mathbb{R}$. Portanto,

$$lpha_{ ext{max}} = \sup_{ heta \in \Theta_0} \pi(heta)$$

Como $H_0=\mu=\mu_0\Leftrightarrow H_0:\theta\in\Theta$, em que $\Theta_0=\{\mu_0\}$, logo, $\sup_{\theta\in\Theta_0}=\mu_0$ Portanto, temos que

$$lpha_{ ext{max}} = \pi(\mu_0) = P_{\mu_0} \left(ar{X} < \mu_0 - 1.96 \sqrt{rac{\sigma^2}{n}}
ight) + P_{\mu_0} \left(ar{X} > \mu_0 + 1.96 \sqrt{rac{\sigma^2}{n}}
ight)$$

Sabemos que, pelo enunciado $ar{X}\sim N\left(\mu,rac{\sigma^2}{n}
ight) orall \mu\in\mathbb{R}$ sob H_0 , ou seja, quando $\mu=\mu_0$ temos que $ar{X}\sim N\left(\mu_0,rac{\sigma^2}{n}
ight)$. Note que

$$P_{\mu_0}\left(ar{X} < \mu_0 - 1.96\sqrt{rac{\sigma^2}{n}}
ight) = P_{\mu_0}\left(rac{ar{X} - \mu_0}{\sqrt{rac{\sigma^2}{n}}}
ight) = 2.5\%$$

Pela simetria da distribuição normal,

$$P_{\mu_0}\left(ar{X}>\mu_0+1.96\sqrt{rac{\sigma^2}{n}}
ight)=2.5\%$$

Portanto a probabilidade do erro tipo 1 é

$$\alpha_{\rm max} = 2.5\% + 2.5\% = 5.0\%$$

Como $H_1: \mu
eq \mu_0 \Leftrightarrow H_1: heta \in \Theta_1$, em que $\Theta_1 = \mathbb{R} \setminus \{\mu_0\}$, temos que

$$eta_{ ext{max}} = \sup_{ heta \in \Theta_1} [1 - \pi(heta)]$$

$$\pi(heta) = P_{ heta}\left(ar{X} < \mu_0 - 1.96\sqrt{rac{\sigma^2}{n}}
ight) + P_{ heta}\left(ar{X} > \mu_0 + 1.96\sqrt{rac{\sigma^2}{n}}
ight)$$

Sabemos que $ar{X} \sim \mathrm{N}\left(\mu, rac{\sigma^2}{n}
ight)$ para todo $\mu \in \mathbb{R}$. Assim,

$$egin{aligned} \pi(heta) &= P_{ heta}\left(ar{X} < \mu_0 - 1.96\sqrt{rac{\sigma^2}{n}}
ight) + P_{ heta}\left(ar{X} > \mu_0 + 1.96\sqrt{rac{\sigma^2}{n}}
ight) \ &= P_{ heta}\left(rac{ar{X} - heta}{\sqrt{rac{\sigma^2}{n}}} < rac{\mu_0 - heta - 1.96\sqrt{rac{\sigma^2}{n}}}{\sqrt{rac{\sigma^2}{n}}}
ight) + P_{ heta}\left(rac{ar{X} - heta}{\sqrt{rac{\sigma^2}{n}}} > rac{\mu_0 - heta + 1.96\sqrt{rac{\sigma^2}{n}}}{\sqrt{rac{\sigma^2}{n}}}
ight) \end{aligned}$$

Dessa forma,

$$eta_{max} = \sup_{ heta \in \Theta_1} [1 - \pi(heta)] = 1 - \inf_{ heta \in \Theta_1} \pi(heta)$$

Ou seja, o supremo dessa expressão é dado por 1 - o ínfimo da função poder, o que significa que queremos encontrar o valor de θ para o qual $P_{\theta}\left(\frac{\bar{X}-\theta}{\sqrt{\frac{\sigma^2}{n}}}<\frac{\mu_0-\theta-1.96\sqrt{\frac{\sigma^2}{n}}}{\sqrt{\frac{\sigma^2}{n}}}\right)+P_{\theta}\left(\frac{\bar{X}-\theta}{\sqrt{\frac{\sigma^2}{n}}}>\frac{\mu_0-\theta+1.96\sqrt{\frac{\sigma^2}{n}}}{\sqrt{\frac{\sigma^2}{n}}}\right)$ é o menor possível.

$$egin{cases} H_0: \mu=10 \ H_1: \mu
eq 10 \end{cases}$$

Com as decisões

1. Rejeitamos H_0 se $ar x>10+1.96\sqrt{rac{5}{10}}$ ou $ar x<10-1.96\sqrt{rac{5}{10}}$ Foram observados os seguintes valores

Temos então que $\bar{x}=7.66$ que, como é abaixo de 8.6, rejeitamos a hipótese nula de que $\mu=10$

Procedimento Geral para Testar Hipóteses (Método de Neyman-Pearson)

- 1. Definimos o Modelo Estatístico:
 - 1. "Seja (X_n) amostra aleatória de $x \sim f_{ heta}, heta \in \Theta$ "
- 2. Definir as hipóteses de interesse:
 - 1. $H_0: \theta \in \Theta_0 imes H_1: \theta \in \Theta_1$ em que $\Theta_0 \cap \Theta_1 = \emptyset, \Theta_0
 eq \emptyset, \Theta_1
 eq \emptyset, \Theta_0 \cup \Theta_1 = \Theta$
- 3. A partir da amostra observada, criamos uma regra de decisão para verificar a plausibilidade de H_0 .
- 4. Definimos os pontos de corte da regra de decisão de forma que a probabilidade máxima do Erro Tipo I não ultrapasse um limite prefixado $\alpha \in [0,1]$ (normalmente 5% ou 1%). Qualquer valor $\geq \alpha$ é dito ser um *nível de significância*.
- 5. Concluímos o Teste de Hipótese.
 - 1. Se H_0 for rejeitado, dizemos que "Há evidências para rejeitar H_0 a $\alpha \cdot [\mathrm{Valor}]\%$ de significância estatística".
 - 2. Se H_0 não for rejeitado, dizemos que "Não há evidências para rejeitar H_0 a $\alpha \cdot [{
 m Valor}]\%$ de significância estatística"
 - 3. Observação: Não rejeitar H_0 $n\~ao$ indica evidência a favor de H_0 , isto é, não sugere que H_0 seja verdadeiro, apenas que aquela amostra não apresentou evidências contrárias.
 - 4. Observação: Quanto menor o valor de α , mais forte será a significância estatística.

Exemplos

Seja (X_n) a.a de $X \sim \mathrm{N}(\mu, \sigma^2)$ em que σ^2 é conhecido. Considere (μ_0 fixado)

$$egin{cases} H_0: \mu = \mu_0 \ H_1: \mu
eq \mu_0 \end{cases}$$

1. Construa uma decisão para rejeitar H_0 que produza no máximo lpha=5% (que tenha nível de significância de 5%)

Como a hipótese alternativa é bilateral, $H_1: \mu \neq \mu_0$ e \bar{x} é a EMV para o parâmetro μ - a esperança da distribuição Normal - definimos a regra:

Se $\bar{x} < x_a$ ou $\bar{x} > x_b$, rejeitamos H_0 . Caso contrário, não rejeitamos.

$$egin{aligned} lpha_{ ext{max}} &= \sup_{ heta \in \Theta_0} P_{ heta}(ext{Rejeitar}\ H_0), \Theta_0 = \{\mu_0\} \ &= P_{\mu_0}(ar{X} < x_a) + P_{\mu_0}(ar{X} > x_b) \leq 5\% \end{aligned}$$

Note que $ar{X} \sim \mathrm{N}\left(\mu_0, rac{\sigma^2}{n}
ight)$, sob H_0 Logo,

$$lpha_{ ext{max}} = P\left(ext{N}(0,1) < rac{x_a - \mu_0}{\sqrt{rac{\sigma^2}{n}}}
ight) + P\left(ext{N}(0,1) > rac{x_a - \mu_0}{\sqrt{rac{\sigma^2}{n}}}
ight)$$

Tomando $\frac{x_a-\mu_0}{\sqrt{\frac{\sigma^2}{n}}}=-1.96$ e $\frac{x_b-\mu_0}{\sqrt{\frac{\sigma^2}{n}}}=1.96$ (tabela normal padrão simétrica), temos que $\alpha_{\max}=5\%$. Assim, resolvendo as equações,

$$egin{cases} x_a = \mu - 1.96\sqrt{rac{\sigma^2}{n}} \ x_b = \mu + 1.96\sqrt{rac{\sigma^2}{n}} \end{cases}$$

- 2. Considere n=100, $\mu_0=1$, $\sigma^2=0.1$ e $\bar{x}=0.99$. Conclua o teste considerando o mesmo nível de significância $\alpha=5\%$. O pontos pontos de corte são $x_a=0.93$ e $x_b=1.069$. Como $0.93 \leq 0.99 \leq 1.069$, concluímos que não há evidências para rejeitarmos H_0 a 5% de significância.
- 3. Refaça considerando 15% de significância estatística. Usando os mesmos argumentos do item 1, podemos encontrar novos valores para x_a, x_b através da tabela da Normal-Padrão:

$$egin{cases} x_a = \mu - 1.44 \sqrt{rac{\sigma^2}{n}} \ x_b = \mu + 1.44 \sqrt{rac{\sigma^2}{n}} \end{cases}$$

Substituindo esses valores para os fornecidos em 2, temos que $0.95 \le 0.99 \le 1.045$. Portanto, continuaríamos a dizer que não há evidências para rejeitarmos H_0 a 15% de significância.

Seja (X_n) a.a de $X \sim \mathrm{N}(\mu, \sigma^2)$ em que σ^2 é conhecido. Considere (μ_0 fixado)

$$\begin{cases} H_0: \mu \ge \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$

1. Construa uma decisão para rejeitar H_0 que produza no máximo $\alpha=5\%$ (que tenha nível de significância de 5%) Pelos parâmetros e hipóteses envolvidos, $(\mu, \mathrm{unilateral})$, podemos considerar a seguinte decisão:

Se $ar{x} < x_c$, rejeitamos H_0 . Caso contrário, não rejeitamos.

$$egin{aligned} lpha_{ ext{max}} &= \sup_{\mu \geq \mu_0} P_{ heta}(ext{Rejeitar}\ H_0) \ &= \sup_{\mu \geq \mu_0} P_{\mu}(ar{X} < x_c) \ &\Rightarrow lpha_{ ext{max}} &= \sup_{\mu \geq \mu_0} P_{\mu}\left(ext{N}(0,1) < rac{x_c - \mu}{\sqrt{rac{\sigma^2}{n}}}
ight) \end{aligned}$$

Como essa função (acumulada) é decrescente em μ , temos que

$$egin{aligned} lpha_{ ext{max}} &= P_{\mu_0}(ext{Rejeitar}\ H_0) \ &= P_{\mu_0}(ar{X} < x_c) \ \Rightarrow lpha_{ ext{max}} &= P_{\mu_0}\left(ext{N}(0,1) < rac{x_c - \mu_0}{\sqrt{rac{\sigma^2}{n}}}
ight) \leq 5\% \end{aligned}$$

Logo, para encontrarmos x_c tal que $\frac{x_c-\mu_0}{\sqrt{\frac{\sigma^2}{n}}}=-1.64$ (da tabela da normal padrão) $\Rightarrow x_c=\mu_0-1.64\sqrt{\frac{\sigma^2}{n}}$

2. Considere $n=100, \mu_0=1, \sigma^2=0.1, \bar{x}=0.99$. Conclua o teste anterior a $\alpha=5\%$ de significância. O ponto de corte é $x_c=0.9836$. Como $0.99\geq0.9836$, concluímos que não há evidências para rejeitar a hipótese nula a 5% de significância.

3

Seja (X_n) amostra aleatória de $X \sim \mathrm{N}(\mu, \sigma^2)$ em que $\theta = (\mu, \sigma^2) = \mathrm{R} \times \mathrm{R}^+$, ou seja, ambos parâmetros são desconhecidos.

 $ext{Decisão com significância } lpha \ ext{Rejeita } H_0 ext{ se} \ \begin{cases} H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2
eq \sigma_0^2 \end{cases} \Rightarrow egin{array}{l} ext{Em que } c_{1c}, c_{2c} ext{ são tais que} \ ext{sup } P_{ heta}(ext{Erro Tipo I}) = lpha_{ ext{max}} = lpha \end{cases} \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 \ ext{E} \ s^2 = \frac{1}{n-1} \sum_{i=1}$

Sabemos que $rac{\sum_{i=1}^n(X_i-ar{X})^2}{\sigma^2}\sim\chi^2_{n-1}, orall\mu\in\mathbb{R},\sigma^2>0$. Em particular, sob H_0 $rac{(n-1)s^2(X_n)}{\sigma_0^2}\sim\chi^2_{n-1}$

$$\Rightarrow lpha_{ ext{max}} = \sup_{ heta \in \Theta_0} \left\{ P_{ heta}(s^2(X_n) < c_{1c}) + P_{ heta}(s^2(X_n) > c_{2c})
ight\}$$

Além disso, note que $\Theta_0=\{(\mu,\sigma^2)\in\Theta:\sigma^2=\sigma_0^2\}$. Portanto, temos que

$$egin{aligned} lpha_{ ext{max}} &= \sup_{ heta \in \Theta_0} \left\{ P\left(\chi_{n-1}^2 < rac{c_{1c}(n-1)}{\sigma_0^2}
ight) + P\left(\chi_{n-1}^2 > rac{c_{2c}(n-1)}{\sigma_0^2}
ight)
ight\} \ &\Rightarrow lpha_{ ext{max}} &= P\left(\chi_{n-1}^2 < rac{c_{1c}(n-1)}{\sigma_0^2}
ight) + P\left(\chi_{n-1}^2 > rac{c_{2c}(n-1)}{\sigma_0^2}
ight) \end{aligned}$$

Fixando $lpha_{\max}=lpha$ (significância), encontramos pela tabela os valores de $q_{\frac{\alpha}{2},n-1}^{(1)},q_{\frac{\alpha}{2},n-1}^{(2)}$ tais que dividam a distribuição χ_{n-1}^2 criando duas seções de $\frac{lpha}{2}$ de área. Portanto,

 $\left\{egin{aligned} H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2
eq \sigma_0^2 \end{aligned}
ight. egin{aligned} ext{Rejeita H_0 se} \ s^2 < q_{rac{lpha}{2},n-1}^{(1)} \cdot rac{\sigma_0^2}{(n-1)} \ s^2 > q_{rac{lpha}{2},n-1}^{(2)} \cdot rac{\sigma_0^2}{(n-1)} \end{aligned}
ight.$

Exemplo

Seja (X_n) amostra aleatória de $X\sim N(\mu,\sigma^2)$ em que X é o peso do pacote de café. Colheu-se uma amostra de n=16 pacotes e observou-se uma variância de $s^2=169g^2$.

O processo de fabricação diz que a média dos pacotes é 500g e desvio-padrão 10 gramas ($\sigma_0^2=100g^2$).

Queremos verificar se há alguma evidência de que o processo não esteja sendo cumprido com $\alpha=5\%$ de significância

Decisão com significância 5%

$$egin{cases} H_0: \sigma^2 = 100 \ H_1: \sigma^2
eq 100 \end{cases} ightharpoons egin{cases} ext{Rejeita} \, H_0 ext{ se} \ s^2 < q_{2.5\%,15}^{(1)} \cdot rac{100}{15} \ s^2 > q_{2.5\%,15}^{(2)} \cdot rac{100}{15} \end{cases}$$

Da tabela Qui-quadrado, temos $q_{2.5\%,15}^{(1)}=6.26$ e $q_{2.5\%,15}^{(2)}=27.49$.

Como 41.73 < 100 < 183.26, concluímos que não há evidências para rejeitar a hipótese nula a 5% de significância

Fórmulas

Sob normalidade, variância conhecida

Seja (X_n) amostra aleatória de $X \sim \mathrm{N}(\mu, \sigma^2)$ em que σ^2 é conhecido.

Decisão com significância α

Rejeita H_0 se

$$1. egin{aligned} H_0: \mu = \mu_0 \ H_1: \mu
eq \mu_0 \end{aligned} \Rightarrow egin{aligned} ar{ar{x}} < \mu_0 - z_{rac{lpha}{2}} \sqrt{rac{\sigma^2}{n}} \ ar{x} > \mu_0 + z_{rac{lpha}{2}} \sqrt{rac{\sigma^2}{n}} \end{aligned} \ & ext{Em que } z_{rac{lpha}{2}} ext{ \'e tal que} \ P\left(ext{N}(0,1) < z_{rac{lpha}{2}}
ight) = rac{lpha}{2} \end{aligned}$$

$$2. egin{cases} H_0: \mu \geq \mu_0 \ H_1: \mu < \mu_0 \end{cases} \Rightarrow egin{cases} ar{x} < \mu_0 - z_lpha \sqrt{rac{\sigma^2}{n}} \ & ext{Em que } z_lpha ext{ \'e tal que} \ P\left(ext{N}(0,1) \leq z_lpha
ight) = lpha \end{cases}$$

$$3. egin{cases} H_0: \mu \leq \mu_0 \ H_1: \mu > \mu_0 \end{cases} \Rightarrow egin{cases} ar{x} > \mu_0 + z_lpha \sqrt{rac{\sigma^2}{n}} \ & ext{Em que } z_lpha ext{ \'e tal que} \ P\left(\mathrm{N}(0,1) \geq z_lpha
ight) = lpha \end{cases}$$

Sob normalidade, variância desconhecida

Seja (X_n) amostra aleatória de $X\sim \mathrm{N}(\mu,\sigma^2)$ em que $\theta=(\mu,\sigma^2)=\mathrm{R}\times\mathrm{R}^+$, ou seja, ambos parâmetros são desconhecidos.

$$1. \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \\ \Rightarrow \Theta_0 = \{(\mu, \sigma^2) \in \Theta: \mu = \mu_0\} \\ \Rightarrow \Theta_1 = \{(\mu, \sigma^2) \in \Theta: \mu \neq \mu_0\} \end{cases} \Rightarrow \begin{cases} \frac{\bar{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} < -t_{\frac{\alpha}{2}, n-1} \\ \frac{\bar{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} > t_{\frac{\alpha}{2}, n-1} \\ \text{Em que } t_{\frac{\alpha}{2}, n-1} \text{ \'e tal que} \end{cases}$$
$$P\left(t_{n-1} < -t_{\frac{\alpha}{2}, n-1}\right) = \frac{\alpha}{2}$$

Decisão com significância α

$$2. egin{cases} H_0 : \mu \geq \mu_0 \ H_1 : \mu < \mu_0 \end{cases} \Rightarrow egin{cases} rac{ar{x} - \mu_0}{\sqrt{rac{s^2}{n}}} < -t_{lpha, n-1} \ & ext{Em que } t_{lpha, n-1} ext{ \'e tal que } \ P\left(t_{n-1} \leq -t_{lpha, n-1}
ight) = lpha \end{cases}$$

$$3. egin{cases} H_0: \mu \leq \mu_0 \ H_1: \mu > \mu_0 \end{cases} \Rightarrow egin{cases} rac{ar{x} - \mu_0}{\sqrt{rac{s^2}{n}}} > -t_{lpha, n-1} \ ext{Em que } t_{lpha, n-1} ext{ \'e tal que } \ P\left(t_{n-1} > t_{lpha, n-1}
ight) = lpha \end{cases}$$

Em que $s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2$ é a variância amostral (não enviesada)

Sob normalidade, para a variância.

Seja (X_n) amostra aleatória de $X\sim \mathrm{N}(\mu,\sigma^2)$ em que $\theta=(\mu,\sigma^2)=\mathrm{R}\times\mathrm{R}^+$, ou seja, ambos parâmetros são desconhecidos.

$$\left\{egin{aligned} H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2
eq \sigma_0^2 \end{aligned}
ight. egin{aligned} ext{Rejeita H_0 se} \ s^2 < q_{rac{lpha}{2},n-1}^{(1)} \cdot rac{\sigma_0^2}{(n-1)} \ s^2 > q_{rac{lpha}{2},n-1}^{(2)} \cdot rac{\sigma_0^2}{(n-1)} \end{aligned}
ight.$$

Em que $s^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2$ é a variância amostral (não enviesada) e $q_{\frac{\alpha}{2},n-1}^{(1)},q_{\frac{\alpha}{2},n-1}^{(2)}$ tais que dividam a distribuição χ_{n-1}^2 criando duas seções de $\frac{\alpha}{2}$ de área.