Binary Regression -The other way

STAT 245

Adjustment to our $\frac{n}{15}$ Rule

For all binary regression models

- We will definitely need a bigger dataset to estimate the probability of "success" when success is very rare
- Let s be the total number of successes in the dataset,
 and f the number of failures.
- ullet Limiting sample size m is min(s,f)
- Number of coefficients we can estimate is about $\frac{m}{15}$

Thermal Preference

- Data from wearable sensors
- Can they predict whether people are cold?
- Define: success = to "Prefer Warmer"

Original Data

Like we're already used to

```
cold <- read.csv('https://sldr.netlify.app/data/cold.csv') |>
  na.omit() |>
  glimpse()
```

```
## Rows: 2,974
## Columns: 10
## $ therm_pref
                 <chr> "Comfortable", "Comfortable", "Comfortable",
"Comfortable...
## $ location
                  <chr> "Indoor", "Indoor", "Indoor", "Outdoor",
"Indoo...
## $ sex
                  <chr> "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "...
## $ exercise
                  <chr> "Low", "Low", "Low", "Low", "Low", "Low", "Low",
"Low", "...
## $ ambient_temp <chr> "Warm", "Warm", "Warm", "Warm", "Warm", "Warm",
"Warm", "...
## $ BMI cat
                  <chr> "Moderate", "Moderate", "Moderate", "Moderate", 4 / 20
"Moderate
```

How many coefficients can we estimate?

```
mosaic::tally(~therm_pref, data = cold)

## therm_pref

## Comfortable Prefer Warmer

## 2381 593
```

Data Another Way

- Especially if we have categorical predictors, we can...
 - group observations and
 - tally up the number of successes and number of observations for all cases with identical predictor variable values.

Data "The Other Way"

Multiple trials per row

```
## Rows: 40
## Columns: 7
## $ location <chr> "Indoor", "Indoor", "Indoor", "Indoor", "Indoor",
"Indoor...
## $ sex
                 <chr> "Female", "Female", "Female", "Female", "Female",
"Female...
## $ exercise <chr> "High", "High", "Low", "Low", "Low", "Low",
"Moderate", "...
## $ ambient_temp <chr> "Cool", "Warm", "Cool", "Cool", "Warm",
"Cool", "...
## $ BMI cat <chr> "Moderate", "Moderate", "Moderate", "Overweight",
"Modera...
## $ pref warmer <int> 35, 4, 20, 94, 17, 10, 10, 21, 12, 5, 7, 3, 128, 17,
14, ...
## $ comfortable <int> 161, 94, 96, 47, 98, 1, 70, 110, 157, 88, 69, 85, 261,
58...
```

Why???

- Maybe it came that way
- Easier to look at *proportion "success"* as a function of each predictor.

Easier Graphs

And linearity checking, too!

(If we had any quantitative predictors.)

Binary Regression Setup

Multiple trials per row data

Use cbind() to group together the number of successes and number of failures to create the response variable.

```
cold_logit <-
  glmmTMB(cbind(pref_warmer, comfortable) ~
    location + sex + exercise +
    ambient_temp + BMI_cat,
    data = cold2,
    family = binomial(link = 'logit'))</pre>
```

Logistic Regression - Results msummary() - more concise than summary()

```
msummary(cold_logit)
```

```
Family: binomial (logit)
## Formula:
## cbind(pref warmer, comfortable) \sim location + sex + exercise +
      ambient temp + BMI cat
  Data: cold2
          BIC logLik deviance df.resid
       ATC
     378.8
           392.3 -181.4 362.8
                                        32
  Conditional model:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.76126
                              0.14161 - 12.438 < 2e - 16 ***
## locationOutdoor 0.74528
                              0.13055
                                      5.709 1.14e-08 ***
## sexMale
            -0.04033
                              0.10373 - 0.389
                                             0.697
## exerciseLow 0.71935 0.16257 4.425 9.65e-06 ***
## exerciseModerate -0.11941 0.19244 -0.620
                                             0.535
## ambient tempWarm -0.94035 0.10621 -8.854 < 2e-16 ***
## BMI catOverweight 1.03279
                              0.13925 7.417 1.20e-13 ***
## BMI catUnderweight 1.02872
                              0.17624 5.837 5.31e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The original way

One trial per row

```
old_cold_logit <-
   glmmTMB(factor(therm_pref) ~
        location + sex + exercise +
        ambient_temp + BMI_cat,
        data = cold,
        family = binomial(link = 'logit'))</pre>
```

Summary, original way One trial per row

msummary(old_cold_logit)

```
Family: binomial (logit)
## Formula:
## factor(therm pref) \sim location + sex + exercise + ambient temp +
                                                                   BMI cat
## Data: cold
               BIC logLik deviance df.resid
       AIC
            2747.4 -1341.7 2683.4
    2699.4
                                        2966
## Conditional model:
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
               -1.76126
                               0.14161 -12.438 < 2e-16 ***
## locationOutdoor 0.74528
                               0.13055
                                       5.709 1.14e-08 ***
                               0.10373 -0.389
## sexMale
                                                 0.697
               -0.04033
## exerciseLow
              0.71935
                               0.16257 4.425 9.65e-06 ***
## exerciseModerate -0.11941
                               0.19244 - 0.620
                                               0.535
## ambient_tempWarm -0.94035
                               0.10621 - 8.854 < 2e-16 ***
## BMI catOverweight 1.03279
                               0.13925 7.417 1.20e-13 ***
## BMI catUnderweight 1.02872
                               0.17624 5.837 5.31e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Compare coefficients (and SEs)

```
##
                      Multi Trial Single Trial
##
   (Intercept)
                      -1.76125576
                                    -1.76125576
   locationOutdoor
                       0.74527548
                                     0.74527548
  sexMale
                      -0.04032832
                                    -0.04032832
  exerciseLow
                       0.71934931
                                     0.71934931
  exerciseModerate
                      -0.11940755
                                    -0.11940755
                                    -0.94034675
   ambient tempWarm
                      -0.94034675
   BMI catOverweight
                       1.03279267
                                     1.03279267
   BMI_catUnderweight
                       1.02871876
                                     1.02871876
```

One vs. Many Trials-per-row (don't do both!)

- Parameter estimates and SEs identical
- IC-based model selection not identical
 - \circ Should we treat each observation of a success/failure as a draw from a binomial distribution with n=1?
 - \circ Should we treat each set of trials with same predictor values as a draw from a binomial distribution with $n \geq 1$?
 - Right answer depends on context, experimental design (beyond scope of our class?)

Pause: Odds Practice

The model equation for our model is:

$$logit(p) = logigg(rac{p}{(1-p)}igg) = eta_0 + eta_1 I_{outdoor} + \dots$$

Where $I_{outdoor}$ is an indicator variable that is 1 when outside and 0 when inside, and our estimate of β_1 is $\hat{\beta}_1=0.745$ (from the model summary).

How do the odds of "Prefer warmer" change, when outside instead of inside?

Verification of Odds Interpretation

Notice: simpler to **just use predictions...** plus odds when necessary

Model Assessment, Selection... methods *same* regardless of data set-up :) Other Links?

may still use probit, cloglog if desired

Binary vs Count!

- Multi-trials-per-row binary data can be mistaken for count data
- For count data
 - there is no "ceiling" (max possible count)
- For binary data
 - the number of trials is the "ceiling"