data

December 6, 2023

1 Projek Optika Intensitas Cahaya Matahari selama 24 Jam

Nama: Firman Qashdus Sabil

NIM: 210321606892

Offering: AB

1.1 Import Library

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
```

1.2 Pengaturan Fonts Plot

```
[]: rc_fonts = {
    "text.usetex": True,
    "font.size": 12,
    "mathtext.default": "regular",
    "axes.titlesize": 18,
    "axes.labelsize": 16,
    "legend.fontsize": 14,
    "xtick.labelsize": 12,
    "ytick.labelsize": 12,
    "figure.titlesize": 18,
    "text.latex.preamble": r"\usepackage{amsmath,amssymb,bm}",
    "font.family": "serif",
    "font.serif": "Times",
}
matplotlib.rcParams.update(rc_fonts)
```

1.3 Data Cuaca

Sumber visualcrossing weather data

```
[]: data_cuaca = pd.read_csv("dataset/krebet senggrong 2023-11-10 to 2023-11-11 -_ 
Weather Data.csv")
data_cuaca
```

[]:			name	datetime	temp	feelslike	dew	humidity	\
	0	krebet	senggrong	2023-11-10T00:00:00	18.9	18.9	17.4	91.01	
	1	krebet	senggrong	2023-11-10T01:00:00	18.6	18.6	17.3	92.15	
	2	krebet	senggrong	2023-11-10T02:00:00	18.5	18.5	17.1	91.56	
	3	krebet	senggrong	2023-11-10T03:00:00	18.6	18.6	16.9	89.84	
	4	krebet	senggrong	2023-11-10T04:00:00	18.7	18.7	16.7	88.16	
	5	krebet	senggrong	2023-11-10T05:00:00	18.5	18.5	16.5	88.14	
	6	krebet	senggrong	2023-11-10T06:00:00	20.3	20.3	17.0	81.34	
	7	krebet	senggrong	2023-11-10T07:00:00	23.5	23.5	17.2	67.76	
	8	krebet	senggrong	2023-11-10T08:00:00	25.9	25.9	17.1	58.33	
	9	krebet	senggrong	2023-11-10T09:00:00	28.4	28.7	16.6	48.80	
	10		senggrong	2023-11-10T10:00:00	30.0	29.9	15.9	42.55	
	11		senggrong	2023-11-10T11:00:00	31.2	30.9	15.5	38.72	
	12	krebet	senggrong	2023-11-10T12:00:00	29.3	29.5	16.4	45.73	
	13	krebet	senggrong	2023-11-10T13:00:00	23.8	23.8	18.9	74.05	
	14	krebet	senggrong	2023-11-10T14:00:00	24.0	24.0	19.0	73.62	
	15	krebet	senggrong	2023-11-10T15:00:00	23.6	23.6	19.5	77.80	
	16	krebet	senggrong	2023-11-10T16:00:00	22.6	22.6	19.8	84.21	
	17	krebet	senggrong	2023-11-10T17:00:00	21.6	21.6	19.7	88.95	
	18	krebet	senggrong	2023-11-10T18:00:00	21.3	21.3	19.8	91.16	
	19	krebet	senggrong	2023-11-10T19:00:00	21.2	21.2	19.7	91.16	
	20	krebet	senggrong	2023-11-10T20:00:00	20.6	20.6	19.8	95.17	
	21	krebet	senggrong	2023-11-10T21:00:00	20.1	20.1	19.8	98.16	
	22	krebet	senggrong	2023-11-10T22:00:00	20.5	20.5	19.9	96.36	
	23	krebet	senggrong	2023-11-10T23:00:00	20.6	20.6	19.8	95.17	
	24	krebet	senggrong	2023-11-11T00:00:00	20.6	20.6	19.7	94.58	
	25	krebet	senggrong	2023-11-11T01:00:00	20.5	20.5	19.7	95.17	
	26	krebet	senggrong	2023-11-11T02:00:00	20.4	20.4	19.6	95.17	
	27	krebet	senggrong	2023-11-11T03:00:00	19.9	19.9	19.3	96.34	
	28	krebet	senggrong	2023-11-11T04:00:00	19.7	19.7	19.2	96.94	
	29	krebet	senggrong	2023-11-11T05:00:00	19.3	19.3	19.0	98.15	
	30	krebet	senggrong	2023-11-11T06:00:00	20.8	20.8	19.4	91.70	
	31	krebet	senggrong	2023-11-11T07:00:00	22.7	22.7	19.7	83.18	
	32	krebet	senggrong	2023-11-11T08:00:00	24.7	24.7	19.4	72.38	
	33	krebet	senggrong	2023-11-11T09:00:00	27.2	28.3	18.8	60.13	
	34	krebet	senggrong	2023-11-11T10:00:00	28.0	29.0	18.6	56.66	
	35	krebet	senggrong	2023-11-11T11:00:00	27.6	28.8	19.0	59.47	
	36	krebet	senggrong	2023-11-11T12:00:00	27.0	28.4	19.8	64.75	
	37	krebet	senggrong	2023-11-11T13:00:00	27.3	28.6	19.5	62.44	
	38	krebet	senggrong	2023-11-11T14:00:00	27.3	28.6	19.4	62.05	
	39	krebet	senggrong	2023-11-11T15:00:00	26.0	26.0	20.0	69.54	
	40	krebet	senggrong	2023-11-11T16:00:00	24.0	24.0	20.8	82.31	
	41	krebet	senggrong	2023-11-11T17:00:00	22.4	22.4	20.7	90.12	
	42	krebet	senggrong	2023-11-11T18:00:00	21.3	21.3	20.3	94.03	
	43	krebet	senggrong	2023-11-11T19:00:00	21.1	21.1	19.9	92.86	
	44	krebet	senggrong	2023-11-11T20:00:00	20.9	20.9	19.9	94.01	
	45	krebet	senggrong	2023-11-11T21:00:00	20.6	20.6	20.0	96.36	

46	krebet	senggrong :	2023-11-11T2	2:00:0	0	20.5 20.	. 5	20.0	96.96
47	krebet	senggrong	2023-11-11T2	23:00:0	0	20.3 20.	. 3	19.8	96.95
	•					11		-1 1	\
0	precip 0.0	precipprob 0	preciptype NaN	snow O	•••	sealevelpress	sure L014		
1	0.0		NaN		•••		L014 L014		
		0		0	•••				
2 3	0.0	0	NaN NaN	0	•••		1013		
3 4	0.0	0	NaN NaN	0	•••		L013 L014		
5	0.0	0	NaN	0	•••		L014 L014		0.3
6	0.0	0	NaN	0			L014 L015		3.1
7	0.0	0	NaN	0	•••		L015 L015		1.3
8	0.0	0	NaN	0			L015		3.5
9	0.0	0	NaN	0			L014		0.7
10	0.0	0	NaN	0			1013		1.8
11	0.1	100	rain	0			L012		9.1
12	0.3	100	rain	0			L011		
13	1.3	100	rain	0	•••		L012		
14	0.7	100	rain	0	•••		L012		3.0
15	2.5	100	rain	0			1012		9.3
16	2.5	100	rain	0			1012		
17	2.7	100	rain	0			L013		3.0
18	1.4	100	rain	0		1	1014	88	3.2
19	1.1	100	rain	0		1	L014	100	0.0
20	0.0	0	rain	0		1	L015	100	0.0
21	0.3	100	rain	0		1	L016	99	9.5
22	0.3	100	rain	0	•••	1	L015	98	3.6
23	0.0	0	NaN	0	•••	1	L014	95	5.6
24	0.0	0	NaN	0	•••		L014		3.0
25	0.2	100	rain	0	•••		L013		5.8
26	0.0	0	NaN	0	•••		L013		3.1
27	0.0	0	NaN	0	•••		L013		5.6
28	0.0	0		0	•••		L014		1.3
29	0.0	0	NaN	0	•••		L015		L.1
30	0.0	0	NaN	0	•••		L015		7.4
31	0.0	0	NaN	0	•••		L015		
32	0.0	0	NaN	0	•••		L015		1.4
33	0.1	100		0	•••		L015		7.5
34	0.4	100		0	•••		L014		
35	0.9	100		0	•••		1014		7.2
36	0.7	100		0	•••		1013		1.3
37 38	1.0	100		0	•••		L012		2.3
39	0.0 1.3	100		0	•••		L011		5.9 7.6
39 40	1.6	100			•••		l011 l012		1.5
40	1.0	100		0	•••		1012 1013		1.5 7.5
41	1.1	100		0	•••		L013 L013		7.5 3.9
42	1.5	100	Taill	U	•••	ا	.013	13	J. 3

43	1.2	100 ra	in 0			1014	14.8
44	0.0		in 0			1015	25.8
45	0.2		in 0			1015	31.0
46	0.3		in 0			1015	37.5
47	0.0		aN 0			1015	40.4
-11	0.0	0 14	an o	•••		1010	40.4
	visibility	solarradiation	solarener	gy	uvindex	severerisk	\
0	24.1	0	(0.0	0	10	
1	24.1	0	(0.0	0	10	
2	24.1	0	(0.0	0	10	
3	24.1	0	(0.0	0	10	
4	24.1	0	(0.0	0	10	
5	24.1	0	(0.0	0	10	
6	24.1	67	().2	1	10	
7	24.1	272	1	1.0	3	10	
8	24.1	521	1	1.9	5	10	
9	24.1	789	2	2.8	8	10	
10	24.1	928	3	3.3	9	10	
11	22.6	959	3	3.5	10	10	
12	21.9	478		1.7	5	10	
13	6.9	140	().5	1	10	
14	8.0	202	().7	2	10	
15	6.1	178		0.6	2	10	
16	8.3	99).4	1	10	
17	5.7	36	().1	0	10	
18	8.5	1		0.0	0	10	
19	7.1	0		0.0	0	10	
20	5.9	0	(0.0	0	10	
21	20.3	0	(0.0	0	10	
22	24.1	0	(0.0	0	10	
23	24.1	0	(0.0	0	10	
24	24.1	0	(0.0	0	10	
25	24.1	0	(0.0	0	10	
26	24.1	0	(0.0	0	10	
27	24.1	0	(0.0	0	10	
28	24.1	0	(0.0	0	10	
29	22.7	0	(0.0	0	10	
30	22.1	68	().2	1	10	
31	24.1	280	1	1.0	3	10	
32	24.1	512	1	1.8	5	10	
33	23.7	761	2	2.7	8	10	
34	9.4	878	3	3.2	9	10	
35	10.4	965	3	3.5	10	10	
36	12.0	944	3	3.4	9	30	
37	9.3	814	2	2.9	8	30	
38	12.0	702	2	2.5	7	30	
39	11.7	620	2	2.2	6	30	

40	6.2	389	1.4	4	30
41	19.4	141	0.5	1	30
42	6.5	6	0.0	0	10
43	8.2	0	0.0	0	10
44	8.3	0	0.0	0	10
45	8.1	0	0.0	0	10
46	24.1	0	0.0	0	10
47	24.1	0	0.0	0	10

		conditions	icon	stations
0		Overcast	cloudy	remote
1		Overcast	cloudy	remote
2		Overcast	cloudy	remote
3		Overcast	cloudy	remote
4		Overcast	cloudy	remote
5		Partially cloudy	partly-cloudy-day	remote
6		Overcast	cloudy	remote
7		Partially cloudy	partly-cloudy-day	remote
8		Clear	clear-day	remote
9		Overcast	cloudy	remote
10		Overcast	cloudy	remote
11		Rain, Overcast	rain	remote
12		Rain, Overcast	rain	remote
13		Rain, Overcast	rain	remote
14		Rain, Overcast	rain	remote
15		Rain, Overcast	rain	remote
16		Rain, Overcast	rain	remote
17		Rain, Overcast	rain	remote
18	Rain,	Partially cloudy	rain	remote
19		Rain, Overcast	rain	remote
20		Overcast	cloudy	remote
21		Rain, Overcast	rain	remote
22		Rain, Overcast	rain	remote
23		Overcast	cloudy	remote
24		Overcast	cloudy	remote
25		Rain, Overcast	rain	remote
26		Partially cloudy	partly-cloudy-night	remote
27		Partially cloudy	partly-cloudy-night	remote
28		Clear	clear-night	remote
29		Clear	clear-day	remote
30		Partially cloudy	partly-cloudy-day	remote
31		Overcast	cloudy	remote
32		Partially cloudy	partly-cloudy-day	remote
33		Rain, Overcast	rain	remote
34		Rain, Overcast	rain	remote
35		Rain, Overcast	rain	remote
36	Rain,	Partially cloudy	rain	remote
		· · · · · · · · · · · · · · · · · · ·		

```
37
   Rain, Partially cloudy
                                            rain
                                                    remote
38
                     Clear
                                       clear-day
                                                    remote
39
                      Rain
                                            rain
                                                    remote
   Rain, Partially cloudy
40
                                            rain
                                                    remote
41
    Rain, Partially cloudy
                                            rain
                                                    remote
42
                      Rain
                                            rain
                                                    remote
43
                      Rain
                                            rain
                                                    remote
44
          Partially cloudy partly-cloudy-night
                                                    remote
   Rain, Partially cloudy
45
                                            rain
                                                    remote
   Rain, Partially cloudy
                                            rain
                                                    remote
          Partially cloudy partly-cloudy-night
47
                                                    remote
```

[48 rows x 24 columns]

1.4 Kompilasi Data Pengukuran Intensitas Cahaya, Cuaca, dan Posisi Matahari

```
[]: data_percobaan = pd.read_csv("dataset/Analisis Data Projek Optika - Sheet1.

⇒csv", header=[0,1])

data_percobaan = data_percobaan.rename(columns=lambda x: x if not 'Unnamed' in_

⇒str(x) else '')

data_percobaan
```

\
. 2
0
0
0
0
0
0
0
0
0
0
06
22
18
91
23
69
91
61
79
58
55
75
20
00 2: 13 9 2: 6: 9 6: 7: 5: 7:

23 24 18:00 250.87 -8.82 -17.413 0 0

		Intensitas rata-rata (lux) Suhu udara	(*C) Kelembapan	udara (%)
	Data 3				
0	0	0.00	0000	21.2	91.16
1	0	0.00	0000	20.6	95.17
2	0	0.00	0000	20.1	98.16
3	0	0.00	0000	20.5	96.36
4	0	0.00	0000	20.6	95.17
5	0	0.00	0000	20.6	94.58
6	0	0.00	0000	20.5	95.17
7	0	0.00	0000	20.4	95.17
8	0	0.00	0000	19.9	96.34
9	0	0.00	0000	19.7	96.94
10	310	309.33	3333	19.3	98.15
11	6681	6655.00	0000	20.8	91.70
12	25326	25432.33	3330	22.7	83.18
13	58964	58495.00	0000	24.7	72.38
14	80571	81577.66	6670	27.2	60.13
15	117208	117049.33	3300	28.0	56.66
16	153631	153539.66	6700	27.6	59.47
17	146004	146392.00	0000	27.0	64.75
18	119120	119289.00	0000	27.3	62.44
19	30156	29805.33	3330	27.3	62.05
20	11450	11434.00	0000	26.0	69.54
21	9425	9448.33	3333	24.0	82.31
22	1755	1727.00	0000	22.4	90.12
23	0	0.00	0000	21.3	94.03

1.5 Data Maksimum dan Minimum

[]: minimum = data_percobaan.min() minimum

[]:	No.			1
	Jam			00:00
	Posisi Matahari (°)		Azimuth	105.33
			Altitude	-64.54
			Deklinasi	-17.413
	Intensitas (lux)		Data 1	0
			Data 2	0
			Data 3	0
	Intensitas rata-rata	(lux)		0.0
	Suhu udara (*C)			19.3
	Kelembapan udara (%)			56.66
	dtype: object			

```
[ ]: maksimum = data_percobaan.max()
     maksimum
[]: No.
                                                         24
     Jam
                                                      23:00
    Posisi Matahari (°)
                                                     254.46
                                  Azimuth
                                  Altitude
                                                      80.27
                                  Deklinasi
                                                    -17.146
     Intensitas (lux)
                                  Data 1
                                                     153597
                                  Data 2
                                                     153391
                                  Data 3
                                                     153631
     Intensitas rata-rata (lux)
                                                153539.6667
     Suhu udara (*C)
                                                       28.0
     Kelembapan udara (%)
                                                      98.16
     dtype: object
```

1.6 Plot Intensitas Cahaya Matahari Tiap Jam selama 24 Jam

```
[]: intensitas_cahaya = data_percobaan["Intensitas rata-rata (lux)"]
     waktu_pengukuran = data_percobaan["Jam"]
     figure, (grafik_1) = plt.subplots(1, 1, figsize=(12, 6))
     grafik_1.plot(waktu_pengukuran, intensitas_cahaya, linewidth=2,
                   color='blue', linestyle="--", marker="D", markerfacecolor='black')
     grafik_1.grid()
     grafik_1.set_title(
         '''Grafik Hubungan Waktu Pengukuran Data terhadap
     Intensitas Cahaya (lux) yang didapat''', pad=10)
     grafik_1.set_xlabel(r'Waktu Pengukuran Data')
     grafik_1.set_ylabel('Intensitas Cahaya (Lux)')
     plt.xticks(ticks=waktu_pengukuran, rotation=45, ha='right')
     for axis in ['top', 'bottom', 'left', 'right']:
         grafik_1.spines[axis].set_linewidth(0.9)
     figure.savefig("dataset/grafik waktu vs intensitas.pdf", format="pdf", __
      ⇔bbox_inches='tight')
```


1.7 Plot Intensitas Cahaya Matahari terhadap Suhu Udara

1.7.1 Filtering & Sorting Data

[]: Intensitas rata-rata (lux) Suhu udara (*C)

9	0.00000	19.7
10	309.333333	19.3
22	1727.000000	22.4
11	6655.000000	20.8
21	9448.333333	24.0
20	11434.000000	26.0
12	25432.333330	22.7
19	29805.333330	27.3
13	58495.000000	24.7
14	81577.666670	27.2
15	117049.333300	28.0
18	119289.000000	27.3
17	146392.000000	27.0
16	153539.666700	27.6

1.7.2 Plot Data

```
[]: intensitas cahaya filtered = data intensitas vs suhu["Intensitas rata-rata,

  (lux)"]

     suhu_udara = data_intensitas_vs_suhu["Suhu udara (*C)"]
     figure, (grafik intensitas vs suhu) = plt.subplots(1, 1, figsize=(12, 6))
     grafik_intensitas_vs_suhu.plot(intensitas_cahaya_filtered, suhu_udara,_
      →linewidth=2,
                                    color='blue', linestyle="--", marker="D", L
      →markerfacecolor='black')
     grafik_intensitas_vs_suhu.set_title('''Grafik Hubungan Intensitas Cahayau
      →Matahari terhadap Suhu Udara''', pad=10)
     grafik_intensitas_vs_suhu.set_xlabel(r'Intensitas Cahaya (Lux)')
     grafik_intensitas_vs_suhu.set_ylabel('Suhu Udara (${}^\circ$C)')
     grafik_intensitas_vs_suhu.axis([-1000, 156000, 18, 30])
     m, b = np.polyfit(intensitas_cahaya_filtered, suhu_udara, deg=1)
     plt.axline(xy1=(0, b), slope=m, label=f'$y = {m:.12f}x {b:+.1f}$', []
      ⇔color='orange')
     grafik_intensitas_vs_suhu.legend()
     grafik_intensitas_vs_suhu.grid()
     plt.xticks(ticks=np.setdiff1d(np.append(np.arange(0, 160000, 10000),
      →intensitas_cahaya_filtered), [
                0, 10000, 30000, 80000, 60000, 150000, 120000]), rotation=45,
     ⇔ha='right')
     for axis in ['top', 'bottom', 'left', 'right']:
         grafik_intensitas_vs_suhu.spines[axis].set_linewidth(0.9)
     figure.savefig("dataset/grafik intensitas vs suhu.pdf", format="pdf", u
      ⇔bbox_inches='tight')
```


1.8 Plot Intensitas Cahaya Matahari terhadap Kelembapan Udara

1.8.1 Filtering & Sorting Data

```
[]: data_intensitas_vs_kelembapan = data_percobaan.loc[9:22, [
    "Intensitas rata-rata (lux)", "Kelembapan udara (%)"]].copy(deep=True).
    sort_values(by=["Intensitas rata-rata (lux)"])
    data_intensitas_vs_kelembapan
```

[]: Intensitas rata-rata (lux) Kelembapan udara (%)

9	0.000000	96.94
10	309.333333	98.15
22	1727.000000	90.12
11	6655.000000	91.70
21	9448.333333	82.31
20	11434.000000	69.54
12	25432.333330	83.18
19	29805.333330	62.05
13	58495.000000	72.38
14	81577.666670	60.13
15	117049.333300	56.66
18	119289.000000	62.44
17	146392.000000	64.75
16	153539.666700	59.47

1.8.2 Plot Data

```
[]: intensitas cahaya filtered = data intensitas vs kelembapan[
         "Intensitas rata-rata (lux)"]
     kelembapan udara = data_intensitas_vs_kelembapan["Kelembapan udara (%)"]
     figure, (grafik_itensitas_vs_kelembapan) = plt.subplots(1, 1, figsize=(12, 6))
     grafik_itensitas_vs_kelembapan.plot(intensitas_cahaya_filtered,__
      →kelembapan_udara, linewidth=2,
                                          color='blue', linestyle="--", marker="D", |
      →markerfacecolor='black')
     grafik_itensitas_vs_kelembapan.set_title(
         ^{\prime\prime} ^{\prime\prime}Grafik Hubungan Intensitas Cahaya Matahari terhadap Kelembapan Udara^{\prime\prime\prime},u
      →pad=10)
     grafik_itensitas_vs_kelembapan.set_xlabel('Intensitas Cahaya (Lux)')
     grafik itensitas vs kelembapan.set ylabel('Kelembapan Udara (%)')
     grafik_itensitas_vs_kelembapan.axis([-1000, 156000, 55, 98])
     m, b = np.polyfit(intensitas cahaya filtered, kelembapan udara, deg=1)
     plt.axline(xy1=(0, b), slope=m,
                label=f'$y = {m:.12f}x {b:+.1f}$', color='orange')
     grafik_itensitas_vs_kelembapan.legend()
     grafik_itensitas_vs_kelembapan.grid()
     plt.xticks(ticks=np.setdiff1d(np.append(np.arange(0, 160000, 10000),
      →intensitas_cahaya_filtered), [
                0, 10000, 30000, 80000, 60000, 150000, 120000]), rotation=45,
      ⇔ha='right')
     for axis in ['top', 'bottom', 'left', 'right']:
         grafik_itensitas_vs_kelembapan.spines[axis].set_linewidth(0.9)
     figure.savefig("dataset/grafik intensitas vs kelembapan.pdf", format="pdf", |
      ⇔bbox inches='tight')
```

