The Answer of Assignment 2

WEI SHUANG

31/8/2025

Problem 1 Solution

- (1) According to the theory of isomorphism of linear spaces, any two linear spaces of the same dimension are isomorphic. Therefore, $\sum_{i,j=0}^{1} c_{ij} |i,j\rangle$ is isomorphic to $\{(x_1, x_2, x_3, x_4)\}, x \in \mathbb{C}$. That is, $v_1 = (c_{00}, c_{01}, c_{10}, c_{11})^T$, $v_2 = (d_{00}, d_{01}, d_{10}, d_{11})^T$.
- (2) $\langle \psi_1 | \psi_2 \rangle = v_1^{\dagger} v_2$ 成立, 这是因为 $\langle \psi_1 | \psi_2 \rangle = (\sum_{i,j=0}^1 c_{i,j}^* \langle ij|) (\sum i, j = 0^1 c_{i,j} | ij \rangle) = v_1^{\dagger} v_2$
- (3) $O|pq\rangle = O_{ij,kl}|ij\rangle \langle kl||pq\rangle = O_{ij,kl}|ij\rangle \delta_{kp}\delta_{lq} = O_{ij,pq}|ij\rangle$ if we define $|00\rangle$ as e_1 , $|01\rangle$ as e_2 , $|10\rangle$ as e_3 , $|11\rangle$ as e_4 , then we can get the matrix representation of O: $Oe_i = \sum_{j=1}^4 O_{ji}e_j$ Therefore, the matrix representation of O is:

$$M = \begin{pmatrix} O_{11} & O_{12} & O_{13} & O_{14} \\ O_{21} & O_{22} & O_{23} & O_{24} \\ O_{31} & O_{32} & O_{33} & O_{34} \\ O_{41} & O_{42} & O_{43} & O_{44} \end{pmatrix}$$

(4) $O|\psi_1\rangle$ is the same as Mv_1 , because:

$$O\left|\psi_{1}\right\rangle =O_{ij,kl}\left|ij\right\rangle \left\langle kl\right|\cdot c_{mn}\left|mn\right\rangle =O_{ij,kl}\left|ij\right\rangle c_{mn}\delta_{km}\delta_{ln}=O_{ij,mn}c_{mn}\left|ij\right\rangle$$

this is equivalent to Mv_1 if we define $|00\rangle$ as e_1 , $|01\rangle$ as e_2 , $|10\rangle$ as e_3 , $|11\rangle$ as e_4 .

Problem 2 Solution

(1) Starting from $[b_i^{\dagger}, b_i^{\dagger}] = 0$, show that $[b_i, b_j] = 0$. According to the definition of commutation relation, we have:

$$[b_i^{\dagger}, b_j^{\dagger}] = b_i^{\dagger} b_j^{\dagger} - b_j^{\dagger} b_i^{\dagger} = 0$$

Taking the Hermitian conjugate of both sides, we get:

$$(b_i^\dagger b_j^\dagger - b_j^\dagger b_i^\dagger)^\dagger = 0^\dagger$$

$$b_i b_i - b_i b_i = 0$$

so we have: $[b_i, b_j] = 0$

(2)

$$\langle \overline{n_1' n_2' \cdots n_k'} | b_i^{\dagger} | \overline{n_1 n_2 \cdots n_k} \rangle = \langle \overline{n_1 n_2 \cdots n_k} | b_i | \overline{n_1' n_2' \cdots n_k'} \rangle^* = \delta_{n_1, n_1'} \delta_{n_2, n_2'} \cdots \delta_{n_i, n_i' - 1} \cdots \delta_{n_k, n_k'} \sqrt{n_i'} \delta_{n_1' n_2' \cdots n_k'} \rangle^*$$

and

$$b_i^{\dagger} | \overline{n_1 n_2 \cdots n_k} \rangle = \sqrt{n_i + 1} | \overline{n_1 n_2 \cdots (n_i + 1) \cdots n_k} \rangle$$

we can get the relation between b_i and b_i^{\dagger} as follows:

$$b_i | \overline{n_1 n_2 \cdots n_k} \rangle = \sqrt{n_i} | \overline{n_1 n_2 \cdots (n_i - 1) \cdots n_k} \rangle$$

(3)

We have:

$$\begin{aligned} [b_i, b_j^{\dagger}] & | \overline{n_1 n_2 \cdots n_k} \rangle = b_i b_j^{\dagger} & | \overline{n_1 n_2 \cdots n_k} \rangle - b_j^{\dagger} b_i & | \overline{n_1 n_2 \cdots n_k} \rangle \\ &= b_i \sqrt{n_j + 1} & | \overline{n_1 n_2 \cdots (n_j + 1) \cdots n_k} \rangle \\ &- b_j^{\dagger} \sqrt{n_i} & | \overline{n_1 n_2 \cdots (n_i - 1) \cdots n_k} \rangle \\ &= \sqrt{n_i (n_j + 1)} & | \overline{n_1 n_2 \cdots (n_i - 1) \cdots (n_j + 1) \cdots n_k} \rangle \cdot 0 \end{aligned}$$

(4) if i = j, we have:

$$|b_i, b_i^{\dagger}| |\overline{n_1 n_2 \cdots n_k}\rangle = (n_i + 1 - n_i) |\overline{n_1 n_2 \cdots n_k}\rangle = |\overline{n_1 n_2 \cdots n_k}\rangle$$

(5)

$$\{f_i, f_j\} = f_i f_j + f_j f_i$$

When i = j, this becomes

$$\{f_i, f_i\} = f_i f_i + f_i f_i = 2f_i^2$$

Since f_i is a fermionic annihilation operator, it satisfies $f_i^2 = 0$. Therefore,

$$\{f_i, f_i\} = 2 \times 0 = 0$$

So, when i = j, the anticommutation relation $\{f_i, f_j\} = 0$ holds.

(6)

Suppose $i \neq j$. Calculate $\{f_i, f_j\} | n_1 n_2 \cdots \rangle$.

Recall the definition:

$$\{f_i, f_j\} = f_i f_j + f_j f_i$$

We need to consider the action of f_i and f_j on the occupation number basis $|n_1 n_2 \cdots \rangle$, where $n_k = 0$ or 1 for fermions.

Consider the following cases:

Case 1: $n_i = 0$ or $n_j = 0$

- If $n_i = 0$, then $f_i | n_1 n_2 \cdots \rangle = 0$. - If $n_j = 0$, then $f_j | n_1 n_2 \cdots \rangle = 0$.

Therefore, in either case, both $f_i f_j | n_1 n_2 \cdots \rangle = 0$ and $f_j f_i | n_1 n_2 \cdots \rangle = 0$, so

$$\{f_i, f_i\} |n_1 n_2 \cdots\rangle = 0$$

Case 2: $n_i = 1$ and $n_i = 1$

- $f_j | n_1 n_2 \cdots n_j = 1 \cdots n_i = 1 \cdots \rangle = (-1)^{s_1} | n_1 \cdots n_j = 0 \cdots n_i = 1 \cdots \rangle$ - Then f_i acts on this state: $f_i | n_1 \cdots n_j = 0 \cdots n_i = 1 \cdots \rangle = (-1)^{s_2} | n_1 \cdots n_j = 0 \cdots n_i = 0 \cdots \rangle$

Similarly, $f_i f_j | n_1 n_2 \cdots \rangle$ and $f_j f_i | n_1 n_2 \cdots \rangle$ will differ by a sign, but since $i \neq j$, the sum $f_i f_j + f_j f_i$ will always cancel out due to the anticommutation property of fermionic operators.

Therefore,

$$\{f_i, f_i\} |n_1 n_2 \cdots\rangle = 0$$

(7) case 1: i = j

$$f_i, f_i^{\dagger} = f_i f_i^{\dagger} + f_i^{\dagger} f_i$$

when $n_i = 0$, we have:

$$f_i f_i^{\dagger} | n_1 n_2 \cdots n_i = 0 \cdots \rangle$$

$$= f_i (-1)^s | n_1 n_2 \cdots n_i = 1 \cdots \rangle$$

$$= (-1)^s (-1)^s | n_1 n_2 \cdots n_i = 0 \cdots \rangle$$

$$= | n_1 n_2 \cdots n_i = 0 \cdots \rangle$$

when $n_i = 1$, we have:

$$f_i^{\dagger} f_i | n_1 n_2 \cdots n_i = 1 \cdots \rangle = f_i^{\dagger} (-1)^s | n_1 n_2 \cdots n_i = 0 \cdots \rangle$$

= $(-1)^s (-1)^s | n_1 n_2 \cdots n_i = 1 \cdots \rangle = | n_1 n_2 \cdots n_i = 1 \cdots \rangle$

case 2: $i \neq j$

$$\{f_i, f_i^{\dagger}\} = f_i f_i^{\dagger} + f_i^{\dagger} f_i$$

when $n_i = 0$ or $n_j = 0$, we have: $f_i f_j^{\dagger} \psi$

Problem 3 Solution

(1) We define b_I^{\dagger} in

$$b_i^{\dagger} | n_1, n_2, \cdots, n_k \rangle = | n_1, n_2, \cdots, n_i + 1, \cdots, n_L \rangle = | n_1, n_2, \cdots, 1, n_{i+1}, \cdots, n_L \rangle \text{ if } n_i = 0$$

$$b_i^{\dagger} | n_1, n_2, \cdots, n_k \rangle = 0 \text{ if } n_i = 1$$

$$b_i | n_1, n_2, \dots, n_k \rangle = | n_1, n_2, \dots, n_i - 1, \dots, n_L \rangle = | n_1, n_2, \dots, 0, n_{i+1}, \dots, n_L \rangle$$
 if $n_i = 1$
 $b_i | n_1, n_2, \dots, n_k \rangle = 0$ if $n_i = 0$

 $[b_i,b_j]=0$ for any i,jbecause when $\mathbf{i}=\mathbf{j}(b_ib_j-b_jb_i)\,|n_1,n_2,\cdots,n_L\rangle=0$ if $n_i=0$ $[b_i,b_j]=0$ if $n_i=1$ because $b_ib_j\,|n_1,n_2,\cdots,n_L\rangle=|n_1,n_2,\cdots,n_L\rangle$ and $b_jb_i\,|n_1,n_2,\cdots,n_L\rangle=|n_1,n_2,\cdots,n_L\rangle$ when $i\neq j$, $(b_ib_j-b_jb_i)\,|n_1,n_2,\cdots,n_L\rangle=0$ because $b_ib_j\,|n_1,n_2,\cdots,n_L\rangle$ and $b_jb_i\,|n_1,n_2,\cdots,n_L\rangle$ are the same state. $[b_i,b_j^{\dagger}]=\delta_{ij}$

case 1: i=j

$$[b_i, b_i^{\dagger}] = b_i b_i^{\dagger} - b_i^{\dagger} b_i$$

if $n_i = 0$, we have:

$$b_i b_i^{\dagger} | n_1, n_2, \dots, n_k \rangle = b_i | n_1, n_2, \dots, 1, n_{i+1}, \dots, n_L \rangle$$

= $| n_1, n_2, \dots, 0, n_{i+1}, \dots, n_L \rangle = | n_1, n_2, \dots, n_k \rangle$

$$b_i^{\dagger}b_i | n_1, n_2, \cdots, n_k \rangle = b_i^{\dagger}0 = 0$$

case 2: $i \neq j$

 $[b_i,b_j^{\dagger}]=b_ib_j^{\dagger}-b_j^{\dagger}b_i=0$ because when $n_i=0$ or $n_j=0,b_ib_j^{\dagger}\,|n_1,n_2,\cdots,n_L\rangle=0$ and $b_j^{\dagger}b_i\,|n_1,n_2,\cdots,n_L\rangle=0$ when $n_i=1$ or $n_j=1,\,b_ib_j^{\dagger}\,|n_1,n_2,\cdots,n_L\rangle$ and $b_j^{\dagger}b_i\,|n_1,n_2,\cdots,n_L\rangle$ are the same state. only when $n_i=1$ and $n_j=0$, we have:

$$b_i b_j^{\dagger} | n_1, n_2, \cdots, 1, \cdots, 0, \cdots, n_L \rangle = b_i | n_1, n_2, \cdots, 1, \cdots, 1, \cdots, n_L \rangle$$
$$= | n_1, n_2, \cdots, 0, \cdots, 1, \cdots, n_L \rangle = b_i^{\dagger} b_i$$

(2) $\sigma_i^{\pm} = (\sigma_i^x \pm \sigma_i^y \cdot i)/2$ if we call **case 1** $[\sigma_i^-, \sigma_j^-] = 0$ when i = j, we have:

$$[\sigma_i^-,\sigma_i^-] = \sigma_i^-\sigma_i^- - \sigma_i^-\sigma_i^- = 0$$
(3)

when $i \neq j$, we have: (4) how should the Pauli operators σ_i^+ and σ_i^z can be written in terms of the f operators? we have the definition that:

$$f_i^{\dagger} = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^+$$

so from $\langle \overline{n_{1'}n_{2'} \cdot n_{i'}} | f_i^{\dagger} | \overline{n_1n_2n_3 \cdot n_i} \rangle = \langle \overline{n_1n_2 \cdot n_i} | f_i | \overline{n_{1'}n_{2'} \cdot n_{i'}} \rangle^*$ we can get the relation between f_i and σ_i^+ , σ_i^z as follows:

$$f_i = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^-$$

then try to represent σ_i^z and σ_i^+ in terms of f_i : we use the matrix representation of the Pauli operators:

$$\sigma_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_i^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \sigma_i^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\sigma_i^z {\rm can}$ be expressed as: 2 $\sigma_i^+ \sigma_i^- - I = 2 f_i^\dagger f_i - I$

like wise:

$$\sigma_i^+ = f_i^\dagger \left(\prod_{j < i} \sigma_j^z \right)^{-1}$$
$$= f_i^\dagger \left(\prod_{j < i} (2f_j^\dagger f_j - I) \right)$$