ADVERSARIAL ATTACKS ON LUMS

Bernice Waweru

THIS TALK

What are Adversarial attacks

Adversarial examples

- How are adversarial attacks generated
- Why we should care about adversarial attacks
- Defenses against Adversarial attacks

WHAT ARE ADVERSARIAL ATTACKS?

- Attacks where a subtle carefully designed perturbation is added to the input causing a model to give incorrect output during inference.
- The model still gives the correct output for the original input.

ADVERSARIAL EXAMPLE IN COMPUTER VISION

ADVERSARIAL ATTACKS ON LIMS

Original

Perfect performance by the actor → Positive (99%)

Adversarial

Spotless performance by the actor → Negative (100%)

Input Rendering	Input Encoding	Task	Output
Send money to account 1234	Send money to account U+202E4321	Translation (EN→FR)	Envoyer de l'argent au compte 4321 (Send money to account 4321)
You are a coward and a fool.	You akU+8re aqU+8 AU+8coward and a fovU+8JU+8ol.	Toxic Content Detection	8.2% toxic (96.8% toxic unperturbed)
Oh, what a fool I feel! / I am beyond proud.	Oh, what a U+200BfoU+200Bol IU+200B U+200BU+200Bfeel! / I am beyond proud.	Natural Language Inference	0.3% contradiction (99.8% contradiction unperturbed)

TYPES OF ADVERSARIAL ATTACKS

- White box attacks
 - Gradient based attacks
- Black Box attacks
 - score-based black box attack
 - •decision-based black-box attack (Wu et al., 2023).

HOW ARE ADVERSARIAL ATTACKS GENERATED

Training Models

$$W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W}$$

Adversarial attack

$$x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x}$$

WHY SHOULD WE CARE

- •Adversarial attacks are a known vulnerability of neural networks.
- •LLMs are being used in real-world applications and they are becoming agentic.
- •Attacks on one model are transferable to other models.

DEFENSES AGAINST ADVERSARIAL ATTACKS

- Sanitize input.
- Paraphrasing
- Adversarial training
 - It may affect model performance.

CONCLUSION

- LLMs have been adopted widely; we should be concerned about the security of these models.
- LLMs are vulnerable to Adversarial attacks.
- Implement defenses against the attacks especially when
 LLMs are integrated with other systems.

FURTHER READING

- Universal and Transferable Adversarial Attacks on Aligned
 Language Models.
- Wild Patterns: Ten Years After the Rise of Adversarial
 Machine Learning.
- A Complete List of All Adversarial Example Papers
- Explaining and Harnessing Adversarial Examples

FURTHER READING

- Baseline defenses for adversarial attacks against aligned language models
- Humanizing Machine-Generated Content: Evading AI-Text
 Detection through Adversarial Attack
- Real attackers do not compute gradients.
- Text Attack: A Framework for Adversarial Attacks, Data
 Augmentation, and Adversarial Training in NLP

LinkedIn

GitHub Medium

