CÁLCULO I, DIFERENCIAL E/OU MAT. PARA ARQUITETURA

PROBLEMAS DE OTIMIZAÇÃO

Nesse curso de Cálculo já tivemos oportunidade de conhecer muitos problemas cuja resolução passou pelo uso da derivada. Nesse último capítulo, trabalharemos em contextos cujo objetivo é analisar numa função o valor de máximo ou o valor de mínimo.

Exemplos:

- 1) A partir de uma folha de papelão medindo 12cm por 12cm será construída uma caixa aberta recortando-se pequenos quadrados iguais dos 4 cantos da folha. Pede-se:
 - a) o intervalo de variação da medida do lado do quadrado a ser recortado.
 - b) o volume V da caixa em função do lado x do quadrado a ser recortado.
 - c) o volume máximo que a caixa pode comportar.

Teste da derivada segunda

- a) Se f'(x) = 0 e f''(x) > 0, então f tem um mínimo relativo em x = c.
- b) Se f'(x) = 0 e f''(x) < 0, então f tem um máximo relativo em x = c.
- c) Se f'(x) = 0 e f''(x) = 0, então o teste é inconclusivo.

2)	Um canil retangular será construído a partir de 6m de cerca que sobraram de uma reforma. Se será aproveitado o muro da residência na construção como um dos lados, quais as dimensões do canil para que a área seja máxima?

- 3) Um sitiante quer cercar, com tela de arame, uma região retangular R dentro de uma grande área de pastagem. Ele também quer subdividir essa região R em três áreas retangulares equivalentes, puxando duas telas de arame paralelas a uma das suas fronteiras. Para tudo isso, ele dispõe de 80m de tela de arame.
 - a) Faça um esboço de uma possível planta da região R, com a subdivisão.
 - b) Sendo x o comprimento, em metros, de cada uma das cercas que subdividem R, obtenha a área A(x) da região R em função de x e dê o domínio dessa função.
 - c) Para que valor de x a área de R é máxima?

5)	Um departamento de estradas de rodagem está planejando fazer uma área de descanso para motoristas, à beira de uma rodovia movimentada. O terreno deve ser retangular, com uma área de 5.000 m² e deve ser cercado nos três lados que não dão para a rodovia. Qual o menor comprimento da cerca necessária para a obra?			

6) Cinquenta animais ameaçados de extinção são colocados em uma reserva. Decorridos t anos, a população x desses animais é estimada por $x(t) = 50 \frac{t^2 + 6t + 30}{t^2 + 30}$. Em que instante essa população animal atinge seu máximo?

7) Uma lata cilíndrica de óleo tem capacidade para 1 litro (1000cm³). Encontre as dimensões

(raio da base e altura) que minimizam o custo com metal para fabricar a lata.

Formulário de Geometria (página 113)

Geometria Plana

Retângulo

Quadrado

Triângulo

Paralelogramo

Triângulo

Losango

Trapézio

Circunferência

Geometria Espacial

Prisma Quadrangular Regular

Volume:
$$V = l^2 h$$

Área lateral:
$$A_L = 4lh$$

Área da base/topo:
$$A_B=2\,l^2$$

Área total:
$$A_T = 2l^2 + 4lh$$

Volume:
$$V = abc$$

Área lateral:
$$A_L = 2ac + 2bc$$

Área base/topo:
$$A_B = 2ab$$

Área total:
$$A_T = 2ab + 2ac + 2bc$$

Cilindro

Volume:
$$\emph{V} = \pi r^2 \emph{h}$$

Área base:
$$A_B=\pi r^2$$

Área lateral:
$$A_L=2\pi rh$$

Área total:
$$A_T = 2\pi r^2 + 2\pi r h$$

Cone

Volume:
$$V = \frac{\pi r^2 h}{3}$$

Área lateral: $A_L = \pi r g$

Área da base: $A_B=\pi r^2$

Área total: $\pi r^2 + \pi r g$

Esfera

Volume:
$$V=rac{4}{3}\pi r^3$$

Área da superfície: $A=4\pi r^2$

Área da superfície:
$$A = 4\pi r^2$$