Esercizi dell'11 aprile

Dehn twist

Per fissare la notazione, ricordiamo come si definiscono i Dehn twist. Siano S una superficie chiusa orientabile, $\alpha\colon S^1\to S$ una curva semplice chiusa non banale. Sia $A=S^1\times [-1,1]$ con l'orientazione indotta da quelle standard di S^1 e [-1,1]. Fissiamo un intorno regolare di α , ossia un embedding $\psi\colon A\to S$ tale che $\psi(x,0)=\alpha(x)$ per ogni $x\in S^1$; scegliamolo in modo che ψ preservi l'orientazione. Fissiamo infine una funzione $f\colon [-1,1]\to [0,2\pi]$ tale che f(t)=0 per $t\le -\frac12$ e $f(t)=2\pi$ per $t\ge \frac12$, e definiamo

$$\begin{split} \theta: & A \longrightarrow A \\ & (e^{ix}, t) \longmapsto (e^{i(x+f(t))}, t). \end{split}$$

Possiamo ora definire il Dehn twist intorno a α come il diffeomorfismo $T_{\alpha} \colon S \to S$ tale che

$$T_{\alpha}(p) = \begin{cases} p & p \notin \psi(A) \\ (\psi \circ \theta \circ \psi^{-1})(p) & p \in \psi(A). \end{cases}$$

Come visto a lezione, la classe di isotopia di T_{α} non dipende dalla scelta dell'intorno regolare ψ né della funzione f. Mostreremo inoltre nell'Esercizio 3.2 che la classe di isotopia di T_{α} non cambia invertendo l'orientazione di α o sostituendo α con una curva a lei isotopa: è dunque ben definito l'elemento $T_{\alpha} \in \text{MCG}(S)$ per $\alpha \in \mathcal{S}$.

Esercizio 3.1

Lemma 1. Siano a, b classi di isotopia di curve semplici chiuse, con b non banale, e sia $k \geq 0$.

$$i(a, T_b^k(a)) = k \cdot i(a, b)^2.$$

Dimostrazione. Siano α , β rappresentanti di a, b in posizione minimale. Se α e β non si intersecano la tesi è ovvia, dunque supponiamo che si intersechino almeno in un punto. Scegliamo un intorno regolare U di β abbastanza stretto da intersecare α in i(a,b) archi disgiunti, ciascuno dei quali interseca β esattamente una volta. Definiamo un rappresentante γ della classe $T_b^k(a)$ come segue: consideriamo una curva α' parallela a α , ottenuta traslando α lungo un suo intorno regolare, e poniamo $\gamma = T_\beta^k(\alpha')$. Possiamo orientare α e γ in modo che siano coorientate e che entrando in U si allontanino.

È immediato verificare che α e γ si intersecano esattamente in $k \cdot i(a,b)^2$ punti. È dunque sufficiente mostrare che α e γ sono in posizione minimale, ossia che non formano bigoni. Se i(a,b)=1 allora α e γ non possono formare bigoni (si intersecano sempre con la stessa orientazione), quindi supponiamo $i(a,b) \geq 2$. Supponiamo per assurdo che esista un bigono D, e siano $\hat{\alpha}$, $\hat{\gamma}$ i lati di D che giacciono rispettivamente su α e γ . Distinguiamo alcuni casi.

■ Se $\hat{\gamma}$ è tutto contenuto in U, allora α e β formano un bigono, ma ciò è impossibile, dato che sono in posizione minimale.

■ Se $\hat{\alpha}$ è tutto contenuto in U, allora di nuovo α e β formano un bigono (ricordiamo che α e γ sono parallele fuori da U).

■ Dunque $\hat{\alpha}$ esce da U per poi rientrarvi. Analizziamo cosa succede vicino vicino al punto in cui $\hat{\alpha}$ esce da U.

Osserviamo che la regione in rosa non può essere un bigono, in quanto il suo lato giacente su γ è tutto contenuto in U, e abbiamo già escluso questa possibilità. Dunque il bigono è necessariamente la regione arancione, e $\hat{\gamma}$ è parallelo a $\hat{\alpha}$ fuori da U. Analizziamo ora cosa succede vicino al punto in cui $\hat{\alpha}$ e $\hat{\gamma}$ rientrano in U.

Dopo essere entrati in U, $\hat{\alpha}$ e $\hat{\gamma}$ si allontanano, dunque non è possibile che la prima intersezione di $\hat{\gamma}$ con α sia il secondo estremo di $\hat{\alpha}$; è pertanto impossibile che $\hat{\alpha}$ e $\hat{\gamma}$ siano lati di un bigono.

Sia $b \in \mathcal{S}$ una classe di isotopia non banale, e $\beta \colon S^1 \to S$ una curva che la rappresenta. Mostriamo che esiste $a \in \mathcal{S}$ tale che $i(a,b) \neq 0$.

■ Supponiamo che β sia separante. In questo caso $S \setminus \beta$ è unione disgiunta di due superfici S_1 e S_2 , ciascuna con una componente di bordo. Naturalmente S_1 e S_2 hanno genere almeno 1, altrimenti β sarebbe omotopicamente banale.

Allora possiamo prendere come a la classe di isotopia della curva α ottenuta come in figura.

Mediante il criterio del bigono è facile vedere che α e β sono in posizione minimale, dunque i(a,b)=2.

■ Supponiamo che β non sia separante. In questo caso esiste una curva α che interseca β esattamente una volta (basta collegare due punti di S molto vicini a β mediante un arco che non interseca β).

Prendendo come a la classe di isotopia di α , otteniamo che i(a,b)=1.

Dal Lemma 1 sappiamo che

$$i(a, T_b^k(a)) = k \cdot i(a, b)^2 \neq 0$$

per ogni k>0, dunque in particolare $T_b^k(a)\neq a$. Pertanto l'azione di T_b^k su $\mathcal S$ è non banale, e in particolare T_b^k non è banale.

Esercizio 3.2

Lemma 2. Siano $a, b \in \mathcal{S}$ due classi di isotopia non banali distinte. Allora esiste una classe $c \in \mathcal{S}$ tale che $i(a, c) \neq i(b, c)$.

Dimostrazione. Osserviamo innanzitutto che se $i(a,b) \neq 0$ allora è sufficiente scegliere c=a, giacché i(a,a)=0. Supponiamo dunque che i(a,b)=0, e siano α , β curve semplici chiuse in posizione minimale che rappresentano rispettivamente a e b; in particolare, α e β hanno supporti disgiunti. Distinguiamo alcuni casi.

■ Supponiamo che α non sia separante. Allora $S \setminus \alpha$ è una superficie compatta connessa con due componenti di bordo.

■ Supponiamo che le due componenti di bordo appartengano alla stessa componente connessa di $S \setminus \alpha \setminus \beta$. Allora esiste una curva γ che interseca α esattamente una volta e non interseca β .

Prendendo come c la classe di isotopia di γ , otteniamo che

$$i(a, c) = 1 \neq 0 = i(b, c).$$

■ Supponiamo che le due componenti di bordo appartengano a componenti connesse diverse di $S \setminus \alpha \setminus \beta$. In questo caso $S \setminus \alpha \setminus \beta$ è unione disgiunta di due superfici S_1 e S_2 , ciascuna con due componenti di bordo, una lungo α e una lungo β .

Osserviamo che S_1 e S_2 hanno genere almeno 1, altrimenti α e β coborderebbero un anello e sarebbero dunque isotope. È allora facile individuare una curva γ la cui classe di isotopia c soddisfa la tesi.

Grazie al criterio del bigono, si verifica che α e γ sono in posizione minimale, da cui

$$i(a,c) = 2 \neq 0 = i(b,c).$$

- Supponiamo che β non sia separante. Possiamo allora ripetere il ragionamento del punto precedente, scambiando i ruoli di α e β , ottenendo una classe c tale che $i(a,c) \neq i(b,c)$.
- Supponiamo che α e β siano separanti. Allora $S \setminus \alpha \setminus \beta$ è unione disgiunta di tre superfici S_1 , S_2 e S_3 ; S_1 ha una componente di bordo lungo α , S_3 ha una componente di bordo lungo β , e S_2 ha due componenti di bordo, una lungo α e una lungo β .

Osserviamo che S_1 e S_3 hanno genere almeno 1, altrimenti α o β sarebbero omotopicamente banali, e che anche S_2 ha genere almeno 1, altrimenti sarebbero isotope. È allora facile individuare una curva γ la cui classe di isotopia c soddisfa la tesi.

Grazie al criterio del bigono, si verifica che β e γ sono in posizione minimale, da cui

$$i(a,c) = 0 \neq 2 = i(b,c).$$

(1) • Cominciamo a mostrare che la classe di isotopia di T_{α} non dipende dall'orientazione di α . Sia dunque $\alpha \colon S^1 \to S$ una curva semplice chiusa, e sia $\overline{\alpha} \colon S^1 \to S$ la curva inversa, ossia quella definita da $\overline{\alpha}(e^{ix}) = \alpha(e^{-ix})$. Se $\psi \colon A \to S$ è un intorno regolare orientato di α , allora

$$\overline{\psi}: A \longrightarrow S$$
$$(e^{ix}, t) \longmapsto \psi(e^{-ix}, -t)$$

è un intorno regolare orientato di $\overline{\alpha}$. Poiché la classe di isotopia dei Dehn twist non dipende dalla scelta di f, non è restrittivo supporre che $f(-t) = 2\pi - f(t)$. Mostriamo allora che $T_{\alpha}(p) = T_{\overline{\alpha}}(p)$ per ogni $p \in S$ (dunque in particolare T_{α} e $T_{\overline{\alpha}}$ sono isotopi). La tesi è ovvia per $p \notin \psi(A)$, dunque supponiamo $p \in \psi(A)$; è sufficiente far vedere che $\psi \circ \theta \circ \psi^{-1} \circ \overline{\psi} = \overline{\psi} \circ \theta$. Effettivamente:

$$(\psi \circ \theta \circ \psi^{-1} \circ \overline{\psi})(e^{ix}, t) = \psi(\theta(e^{-ix}, -t)) = \psi(e^{i(-x+f(-t))}, -t) = \psi(e^{-i(x+f(t))}, -t);$$
$$(\overline{\psi} \circ \theta)(e^{ix}, t) = \overline{\psi}(e^{i(x+f(t))}, t) = \psi(e^{-i(x+f(t))}, -t).$$

- Supponiamo che le curve semplici chiuse non banali $\alpha, \beta \colon S^1 \to S$ siano due rappresentanti della stessa classe di isotopia, ossia che esista un'isotopia (ambiente) $F \colon S \times [0,1] \to S$ tale che $F_0 = \mathrm{id}_S$ e $F_1 \circ \alpha = \beta$. Osserviamo che, per quanto abbiamo dimostrato, possiamo orientare α e β in modo che una tale isotopia esista. Sia $\psi \colon A \to S$ un intorno regolare orientato di α ; notiamo che $F_1 \circ \psi$ è un intorno regolare orientato di β . È allora evidente che un Dehn twist intorno a β è dato da $T_\beta = F_1 \circ T_\alpha \circ F_1^{-1}$, che è ovviamente isotopo a T_α . Questo mostra che $T_\beta = T_\alpha$ in $\mathrm{MCG}(S)$.
- Siano ora $\alpha, \beta \colon S^1 \to S$ due curve semplici chiuse non banali e non isotope, e siano $a, b \in \mathcal{S}$ le corrispondenti classi di isotopia. Per il Lemma 2, esiste una classe $c \in \mathcal{S}$ tale che $i(a, c) \neq i(b, c)$. Dal Lemma 1 otteniamo

$$i(c, T_a(c)) = i(c, a)^2 \neq i(c, b)^2 = i(c, T_b(c)),$$

da cui $T_a \neq T_b$ come elementi di MCG(S).

(2) Per non creare conflitti di notazione, siano $h \in MCG(S)$, $a \in S$. Sia $\alpha : S^1 \to S$ un rappresentante di a, e con lieve abuso di notazione trattiamo h come un diffeomorfismo di S. Sia $\psi : A \to S$ un intorno regolare di α : notiamo che $h \circ \psi$ è un intorno regolare di $h \circ \alpha$. Ma allora è evidente che $h \circ T_{\alpha} \circ h^{-1}$ è un Dehn twist intorno a $h \circ \alpha$, ossia $T_{h(a)} = h \circ T_a \circ h^{-1}$. Segue che h commuta con T_a se e solo se $T_{h(a)} = T_a$, ossia (grazie al punto (1)) se e solo se h(a) = a.

Esercizio 3.5

Consideriamo la superficie chiusa ottenuta incollando lati opposti di un 4g-gono regolare con orientazioni parallele. Più precisamente, detti x_1, \ldots, x_{4g} i vertici del poligono regolare, incolliamo il segmento $x_i x_{i+1}$ con il segmento $x_{2g+i+1} x_{2g+i}$. La superficie Σ così ottenuta ha una struttura di CW-complesso con una 0-cella, 2g 1-celle e una 2-cella.

- \blacksquare Σ è orientabile. Questo si vede immediatamente triangolando il poligono regolare e osservando che le identificazioni fra lati invertono l'orientazione.
- Una base per $H_1(\Sigma, \mathbb{Z})$ è data dai segmenti $x_i x_{i+1}$ per $1 \leq i \leq 2g$. Questo si vede facilmente calcolando l'omologia cellulare: infatti i segmenti $x_i x_{i+1}$ sono esattamente le 1-celle, e hanno tutte bordo nullo. Al contempo, anche l'unica 2-cella ha bordo nullo, dunque $H_1(\Sigma, \mathbb{Z}) \simeq \mathbb{Z}^{2g}$ con base data dalle 1-celle.

In particolare, Σ è una superficie chiusa orientabile di genere q.

Per ogni $1 \le i \le 2g$, sia $\alpha_i \in H_1(\Sigma, \mathbb{Z})$ la classe rappresentata in omologia dal segmento $x_i x_{i+1}$. Consideriamo l'automorfismo $f \colon \Sigma \to \Sigma$ indotto dalla rotazione di angolo π intorno al centro del poligono regolare.

Osserviamo che il segmento $x_i x_{i+1}$ viene mandato da f nel segmento $x_{2g+i} x_{2g+i+1}$, dunque $f_*(\alpha_i) = -\alpha_i$. Poiché gli α_i formano una base di $H_1(\Sigma, \mathbb{Z})$, abbiamo che $f_* = -\operatorname{id}_{H_1(\Sigma, \mathbb{Z})}$. Ovviamente f ha ordine 2 e preserva l'orientazione, dunque $[f] \in \mathrm{MCG}(\Sigma)$ è l'involuzione iperellittica cercata.

Esercizi del 2 maggio

Esercizio 4.2

Siano $K \subseteq S^3$ un nodo, νK un intorno tubolare (aperto) di K tale che $\overline{\nu K}$ sia diffeomorfo a $D^2 \times S^1$. Allora $M = S^3 \setminus \nu K$ è una 3-varietà compatta il cui bordo $\partial M = \overline{\nu K} \setminus \nu K$ è diffeomorfo al 2-toro T^2 . Per semplicità, poniamo $T^2 = \partial M$ e $D^2 \times S^2 = \nu K$.

Scriviamo una parte della successione esatta di Mayer-Vietoris¹ per $S^3 = M \cup (D^2 \times S^1)$, dove $i: T^2 \to M$ e $j: T^2 \to D^2 \times S^1$ indicano le inclusioni:

$$H_2(S^3) \longrightarrow H_1(T^2) \xrightarrow{(i_*,j_*)} H_1(M) \oplus H_1(D^2 \times S^1) \longrightarrow H_1(S^3).$$

Ricordando che $H_2(S^3) = H_1(S^3) = 0$ otteniamo l'isomorfismo

$$0 \longrightarrow H_1(T^2) \xrightarrow{(i_*,j_*)} H_1(M) \oplus H_1(D^2 \times S^1) \longrightarrow 0.$$

Poiché $H_1(T^2) = \mathbb{Z} \oplus \mathbb{Z}$ e $H_1(D^2 \times S^1) = \mathbb{Z}$, otteniamo immediatamente che $H_1(M) = \mathbb{Z}$.

Sia ora $l \in H_1(T^2)$ la classe di omologia, ben definita a meno del segno, tale che $i_*(l) = 0 \in H_1(M)$ e $j_*(l)$ generi $H_1(D^2 \times S^1)$. Osserviamo che il nucleo dell'omomorfismo $i_* \colon H_1(T^2) \to H_1(M)$ è precisamente il sottogruppo ciclico generato da l, e che l è primitivo, in quanto $H_1(M) = \mathbb{Z}$ non ha torsione. Sappiamo allora che esiste un'unica classe di isotopia di curve semplici chiuse non orientate che rappresenta l in omologia; poiché anche -l è rappresentata dalla stessa classe di isotopia, otteniamo che è ben definita la longitudine come l'unica curva semplice chiusa di T^2 (a meno di isotopia e dell'orientazione) che in omologia genera il nucleo di i_* .

Con un ragionamento del tutto analogo, possiamo ben definire il *meridiano* come l'unica curva semplice chiusa di T^2 (a meno di isotopia e dell'orientazione) che in omologia genera il nucleo dell'omomorfismo $j_*: H_1(T^2) \to H_1(D^2 \times S^1)$.

¹Nonostante M e $D^2 \times S^1$ non siano aperti in S^3 , entrambi sono retratti per deformazione di un loro intorno aperto; inoltre tali intorni aperti si possono scegliere in modo che la loro intersezione si retragga per deformazione su $M \cap (D^2 \times S^1) = T^2$.

Esercizio 4.3

Ricordiamo che una struttura iperbolica sul complementare del nodo figura otto è data dall'incollamento di due tetraedri ideali regolari iperbolici secondo il seguente schema (le facce dello stesso colore vengono identificate, in modo da rispettare le frecce e i colori rappresentati sugli spigoli).

Per fissare la notazione, siano M il complementare del nodo figura otto, $T \times \{0,1\}$ l'unione disgiunta dei due tetraedri $T \times \{0\}$ e $T \times \{1\}$, \sim la relazione di equivalenza descritta dall'incollamento, in modo che $M = T \times \{0,1\}/\sim$. Ricordiamo che, essendo T un tetraedro ideale regolare iperbolico, ogni permutazione dei suoi vertici è indotta da un'isometria di \mathbb{H}^3 . Sia allora $g \colon T \to T$ l'isometria di T che induce la permutazione $\sigma = (1\ 2)(3\ 4)$.

Definiamo l'isometria

$$f: T \times \{0,1\} \longrightarrow T \times \{0,1\}$$

 $(x,i) \longmapsto (g(x), 1-i).$

In altre parole, f scambia $T \times \{0\}$ e $T \times \{1\}$, e poi applica a ognuno dei tetraedri l'isometria che induce la permutazione σ . In altre parole ancora, f è l'unica isometria di $T \times \{0,1\}$ che effettua i seguenti scambi di vertici:

$$a_1 \leftrightarrow b_2$$
 $a_2 \leftrightarrow b_1$ $a_3 \leftrightarrow b_4$ $a_4 \leftrightarrow b_3$.

È facile verificare che f è compatibile con la relazione di equivalenza \sim .

- Per quanto riguarda le facce, consideriamo ad esempio $a_1a_2a_3$ e $b_2b_3b_1$, identificate da \sim . La faccia $a_1a_2a_3$ viene mandata da f in $b_2b_1b_4$, mentre $b_2b_3b_1$ viene mandata in $a_1a_4a_2$; le facce $a_1a_4a_2$ e $b_2b_1b_4$ risultano identificate da \sim . Analogamente si mostra che f è compatibile con \sim sulle parti interne di tutte le altre facce.
- Per quanto riguarda gli spigoli, una verifica diretta mostra che f manda spigoli rossi in spigoli blu e viceversa, preservando la direzione delle frecce. Pertanto f risulta compatibile con \sim anche sugli spigoli.

Per passaggio al quoziente otteniamo dunque un'isometria $\overline{f}: M \to M$. Verifichiamo che \overline{f} non ha punti fissi.

- I punti delle parti interne dei tetraedri non sono fissati da \overline{f} , poiché f scambia $T \times \{0\}$ e $T \times \{1\}$.
- I punti delle parti interne delle facce non sono fissati da \overline{f} , poiché g agisce in modo libero sull'insieme delle facce di T.
- I punti degli spigoli non sono fissati da \overline{f} , poiché (come già osservato) f manda spigoli rossi in spigoli blu e viceversa.

Osserviamo infine che \overline{f} ha ordine 2. Pertanto possiamo definire $N=M/\langle \overline{f} \rangle$, che risulta essere una varietà iperbolica di volume finito, doppiamente rivestita dal complementare del nodo figura otto. La proiezione al quoziente della tassellazione di M fornisce una tassellazione di N con un tetraedro ideale regolare iperbolico, che riportiamo per completezza.

La varietà N si ottiene incollando la faccia $a_1a_2a_3$ su $a_1a_4a_2$ e la faccia $a_1a_3a_4$ su $a_3a_2a_4$.

Esercizio 4.4

Ricordiamo la costruzione, vista a lezione, di una 3-varietà iperbolica tassellata da quattro ottaedri ideali regolari iperbolici. Dopo aver colorato le facce degli ottaedri a scacchiera, le identifichiamo secondo il seguente schema, utilizzando come mappa di incollamento l'identità.

Seguiamo ora un approccio simile a quello dell'esercizio precedente. Siano $O \times \{0\}$, $O \times \{1\}$, $O \times \{2\}$, $O \times \{3\}$ gli ottaedri, $M = O \times \{0,1,2,3\}/\sim$ la varietà ottenuta mediante l'incollamento. Sia $g \colon O \to O$ l'isometria data dalla rotazione di un angolo piatto attorno alla retta che congiunge due vertici diametralmente opposti.

Definiamo l'isometria

$$\begin{split} f:O\times\{0,1,2,3\} &\longrightarrow O\times\{0,1,2,3\}\\ (x,i) &\longmapsto (g(x),3-i). \end{split}$$

In altre parole, f scambia $(O \times \{0\}) \leftrightarrow (O \times \{3\})$ e $(O \times \{1\}) \leftrightarrow (O \times \{2\})$, e poi applica g a ciascun ottaedro. Si vede facilmente che f è compatibile con la relazione di equivalenza \sim , grazie al fatto che g preserva la colorazione a scacchiera (la compatibilità sugli spigoli si può verificare direttamente a parte). Per passaggio al quoziente otteniamo dunque un'isometria $\overline{f}: M \to M$.

Si vede immediatamente che \overline{f} agisce su M senza punti fissi. Infatti tutte le identificazioni in $O \times \{0,1,2,3\}$ sono del tipo $(x,i) \sim (x,i')$; se (x,i) è tale che $f(x,i) \sim (x,i)$, allora necessariamente g(x) = x, dunque x è un punto fisso per g e di conseguenza appartiene alla parte interna di O. Poiché i punti nelle parti interne degli ottaedri non sono identificati con altri punti, dovrebbe valere che 3-i=i, il che è assurdo.

Osserviamo infine che \overline{f} ha ordine 2. Pertanto possiamo definire $N=M/\langle \overline{f}\rangle$, che risulta essere una varietà iperbolica di volume finito, doppiamente rivestita da M. La proiezione al quoziente della tassellazione di M fornisce una tassellazione di N con due ottaedri ideali regolari iperbolici, che riportiamo per completezza.

Ogni faccia azzurra a sinistra si identifica con la corrispondente faccia azzurra a destra, usando l'identità come mappa di incollamento. Le facce bianche si identificano invece mediante il seguente schema:

 $a_1a_2a_3 \leftrightarrow b_1b_4b_5 \qquad \quad a_1a_4a_5 \leftrightarrow b_1b_2b_3 \qquad \quad a_6a_3a_4 \leftrightarrow b_6b_5b_2 \qquad \quad a_6a_5a_2 \leftrightarrow b_6b_3b_4.$