Correction

Partie I

- 1. La fonction $f: t \mapsto \frac{1}{\sqrt{(1-t^2)(1-k^2t^2)}}$ est définie et continue sur]-1,1[. $f(t) \sim \frac{1}{\sqrt{2(1-k^2)}\sqrt{1-t}}$ et $f(t) \sim \frac{1}{\sqrt{2(1-k^2)}\sqrt{1+t}}$ donc $\int_{-1}^1 f(t) dt$ existe.
- 2. Réalisons le changement de variable $t = \sin \tau$ avec $\tau \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. $U(\sin(x)) = \int_0^{\sin x} \frac{dt}{\sqrt{(1 t^2)(1 k^2 t^2)}} = \int_0^x \frac{d\tau}{\sqrt{1 k^2 \sin^2 \tau}}.$
- 3.a $\forall x \in \mathbb{R}, -x \in \mathbb{R} \text{ et } u(-x) = \int_0^{-x} \frac{\mathrm{d}t}{\sqrt{1 k^2 \sin^2 t}} = -\int_0^x \frac{\mathrm{d}\tau}{\sqrt{1 k^2 \sin^2 \tau}} = -u(x)$. u est impaire.
- 3.b La fonction u est la primitive sur \mathbb{R} , s'annulant en 0 de la fonction $t\mapsto \frac{1}{\sqrt{1-k^2\sin^2t}}$. $t\mapsto 1-k^2\sin^2t \text{ est définie de classe } \mathcal{C}^\infty \text{ sur } \mathbb{R} \text{ et à valeurs strictement positives donc}$ $t\mapsto \frac{1}{\sqrt{1-k^2\sin^2t}} \text{ est } \mathcal{C}^\infty \text{ et donc toute primitive de celle-ci, l'est encore. } u'(x)=\frac{1}{\sqrt{1-k^2\sin^2x}}.$ Puisque u'(x)>0, la fonction u est strictement croissante.
- 3.c $\forall t \in \mathbb{R}, \frac{1}{\sqrt{1-k^2\sin^2 t}} \ge 1 \text{ donc } u(x) \ge \int_0^x dt = x \xrightarrow[x \to +\infty]{} +\infty \text{ puis } \lim_{x \to +\infty} u(x) = +\infty.$
- 3.d Par imparité : $\lim_{x\to -\infty} u(x) = -\infty$. Puisque u est continue et strictement croissante sur R, u réalise une bijection de R vers $\lim_{x\to -\infty} u, \lim_{x\to -\infty} u = \mathbb{R}$.
- 4.a A a même monotonie que u et A est impaire.
- 4.b $u \text{ est } \mathcal{C}^{\infty} \text{ et } \forall x \in \mathbb{R}, u'(x) \neq 0 \text{ donc } A \text{ est } \mathcal{C}^{\infty} \text{ . } A' = (u^{-1})' = \frac{1}{u' \circ u^{-1}} = \sqrt{1 k^2 \sin^2 A} \text{ .}$
- $4.c \qquad A'' = \left(\sqrt{1 k^2 \sin^2 A}\right)' = \frac{-k^2 A' \sin A \cos A}{\sqrt{1 k^2 \sin^2 A}} = -k^2 \sin A \cos A \text{ , donc } A'' + k^2 \sin A \cos A = 0.$
- 5. $(u(x+\pi) u(x))' = \frac{1}{\sqrt{1 k^2 \sin^2(x + \pi)}} \frac{1}{\sqrt{1 k^2 \sin^2(x)}} = 0 \text{ donc } x \mapsto u(x+\pi) u(x) \text{ est constante.}$ En prenant $x = \frac{\pi}{2}$: $K = u\left(\frac{\pi}{2}\right) u\left(-\frac{\pi}{2}\right) = 2u\left(\frac{\pi}{2}\right) = 2U\left(\sin\left(\frac{\pi}{2}\right)\right) = 2T$.
- 6.a En fait: $Sn = \sin \circ A$, $Cn = \cos \circ A$ et $Dn = \sqrt{1 k^2 Sn^2}$. Par composition: Sn est impaire et Cn, Dn sont paires. Par composition: Sn, Cn sont \mathcal{C}^{∞} . Puisque $Sn = \sin \circ A$, on a $|Sn| \leq 1$, or k < 1 donc k = 0 $1 k^2 Sn^2 > 0$ puis Dn est \mathcal{C}^{∞} par composition.
- 6.b $\forall y \in \mathbb{R}$. Posons x = A(y) de sorte que y = u(x). On a $u(x+\pi) = u(x) + K$ donc $x+\pi = A(y+K)$. Par suite $Sn(y+K) = \sin(x+\pi) = -\sin(x) = -Sn(y)$ et Cn(y+K) = -Cn(y). Puisque Sn et Cn sont K antipériodiques, Sn et Cn sont aussi 2K = 4T périodiques. D'autre part Dn(y+K) = Dn(y) donc Dn est K = 2T périodiques.

6.c
$$T = u\left(\frac{\pi}{2}\right)$$
 donc $Sn(T) = \sin\left(\frac{\pi}{2}\right) = 1$, $Cn(T) = 0$ et $Dn(t) = \sqrt{1 - k^2}$.

6.d
$$Sn' = (\sin \circ A)' = A' \cos \circ A = \sqrt{1 - k^2 \sin^2 A} \times Cn = CnDn$$
.
 $Cn' = (\cos \circ A) = -SnDn$ et $Dn' = -k^2 SnCn$.

6.e
$$Sn'' = (CnDn)' = -SnDn^2 - k^2SnCn^2 = -Sn((1 - k^2Sn^2) + k^2(1 - Sn^2)) = -(1 + k^2)Sn + 2k^2Sn^3$$
 Donc $Sn'' + (1 + k^2)Sn - 2k^2Sn^3 = 0$.

D'autre part $Sn(0) = \sin(A(0)) = 0$, Cn(0) = 1, Dn(0) = 1 puis Sn'(0) = 1.

7. Si alors
$$u(x) = x$$
, $A(y) = y$ puis $Sn(y) = \sin y$, $Cn(y) = \cos y$ et $Dn(y) = 1$.
$$T = \int_0^1 \frac{dt}{\sqrt{1 - t^2}} = \left[\arcsin t\right]_0^1 = \frac{\pi}{2}.$$

Partie II

- 1. Considérons $\psi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\psi(x,y) = (x+y,x-y)$.

 On a clairement $\psi \circ \phi = \operatorname{Id}_{\mathbb{R}^2}$ et $\phi \circ \psi = \operatorname{Id}_{\mathbb{R}^2}$ donc ϕ bijective et $\psi = \phi^{-1}$.
- 2.a Sachant ϕ fonction de classe \mathcal{C}^1 , on obtient (\Rightarrow) par composition. La réciproque s'obtient par ψ de classe \mathcal{C}^1 et $f=g\circ\psi$.

$$2. \text{b} \qquad g(a,b) = f\left(\frac{a+b}{2},\frac{a-b}{2}\right) \text{ donne } \frac{\partial g}{\partial a} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{1}{2}\frac{\partial f}{\partial y} \text{ et } \frac{\partial g}{\partial b} = \frac{1}{2}\frac{\partial f}{\partial x} - \frac{1}{2}\frac{\partial f}{\partial y}.$$

2.c Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . On a

$$f \in E \qquad \Leftrightarrow \frac{\partial g}{\partial b} = 0$$

$$\Leftrightarrow \exists \alpha \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}), \forall (a, b) \in \mathbb{R}^{2}, g(a, b) = \alpha(a)$$

$$\Leftrightarrow \exists \alpha \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}), \forall (x, y) \in \mathbb{R}^{2}, f(x, y) = \alpha(x + y)$$

Donc $E = \{(x,y) \mapsto \alpha(x+y) / \alpha \in \mathcal{C}^1(\mathbb{R},\mathbb{R})\}.$

- 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que proposée. En dérivant la relation f(x,y) = f(y,x) par rapport à y on obtient : $\forall (x,y) \in \mathbb{R}^2, \frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial x}(y,x) = \frac{\partial f}{\partial x}(x,y)$ donc $f \in E$ puis la conclusion.
- 4.a Soit $f:(x,y)\mapsto \frac{Sn(x)Cn(y)Dn(y)+Sn(y)Cn(x)Dn(x)}{1-k^2Sn^2(x)Sn^2(y)}$. f est de classe \mathcal{C}^1 par composition et on a

clairement f(x,y) = f(y,x). C'est la suite qui est plus embêtante :

$$u(x,y) = Sn(x)Cn(y)Dn(y) + Sn(y)Cn(x)Dn(x), \ v(x,y) = (1-k^2)Sn^2(x)Sn^2(y).$$

$$\frac{\partial u}{\partial x}(x,y) = Cn(x)Dn(x)Cn(y)Dn(y) - (1+k^2)Sn(x)Sn(y) + 2k^2Sn^3(x)Sn(y) .$$

$$\frac{\partial v}{\partial x}(x,y) = -2k^2 Sn(x)Cn(x)Dn(x)Sn^2(y).$$

$$\begin{split} &\frac{\partial u}{\partial x}(x,y)v(x,y) - \frac{\partial v}{\partial x}(x,y)u(x,y) = (Cn(x)Dn(x)Cn(y)Dn(y))(1 - k^2Sn^2(x)Sn^2(y)) \\ &- (1 + k^2)Sn(x)Sn(y) + 2k^2Sn^3(x)Sn(y) + k^2(1 + k^2)Sn^3(x)Sn^3(y) - 2k^4Sn^5(x)Sn^3(y) \\ &+ 2k^2Sn^2(x)Cn(x)Dn(x)Sn^2(y)Cn(y)Dn(y) + 2k^2(1 - Sn^2(x))(1 - k^2Sn^2(x))Sn^3(y)Sn(x) \\ &= (Cn(x)Dn(x)Cn(y)Dn(y))(1 - k^2Sn^2(x)Sn^2(y)) - (1 + k^2)Sn(x)Sn(y) - k^2(1 + k^2)Sn^3(x)Sn^3(y) \\ &+ 2k^2Sn^2(x)Cn(x)Dn(x)Sn^2(y)Cn(y)Dn(y) + 2k^2\left[Sn^3(x)Sn(y) + Sn(x)Sn^3(y)\right] \end{split}$$

expression symétrique en x et y.

Par suite
$$\frac{\partial f}{\partial x} = \frac{\frac{\partial u}{\partial x}v - \frac{\partial v}{\partial x}u}{v^2}$$
 est symétrique en x et y . Ainsi $f \in E$.

Donc il existe $\alpha: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $f(x,y) = \alpha(x+y)$.

$$\text{Or } \alpha(t) = f(t,0) = Sn(t) \ \text{ donc } \frac{Sn(x)Cn(y)Dn(y) + Sn(y)Cn(x)Dn(x)}{1 - k^2Sn^2(x)Sn^2(y)} = Sn(x+y) \ .$$

C'est le genre de question, où l'on peut se permettre d'admettre le terme des calculs, vu l'esprit du problème et tant ceux –ci sont lourds.

Partie III

1.a ρ est définie sur $\bigcup_{k\in\mathbb{Z}} \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right]$ et est π périodique.

Puisque $\rho(\theta + \pi) = \rho(\theta)$ et $\vec{u}(\theta + \pi) = -\vec{u}(\theta)$, le point $M(\theta + \pi)$ est le symétrique de $M(\theta)$ par rapport au point O.

- 1.b ρ est paire donc C est symétrique par rapport à (Ox).
- 1.c ρ est dérivable sur $\left[0, \frac{\pi}{4}\right]$ et $\rho'(\theta) = -\frac{2\sin 2\theta}{\sqrt{2\cos 2\theta}} \le 0$ d'où $\left[0, \frac{\theta}{\sqrt{2}}\right]$ $\rho(\theta)$
- 1.d Pour $\theta=0$, on a $\rho'(\theta)=0$, la tangente est orthoradiale. Pour $\theta=\pi/4$, on a $\rho(\theta)=0$, la tangente est la droite d'équation $\theta=\pi/4$.
- 2.a $\frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{\rho^2(\theta) + {\rho'}^2(\theta)} = \frac{\sqrt{2}}{\sqrt{\cos 2\theta}}.$
- 2.b Notons $V = (\vec{u}(\theta), \vec{T}(\theta))[2\pi]$. Puisque $\rho(\theta) > 0$, on peut prendre $V \in]0, \pi[$.

On a
$$\cot V = \frac{\rho'(\theta)}{\rho(\theta)} = -\frac{\sin 2\theta}{\cos 2\theta} = \frac{\cos\left(\frac{\pi}{2} + 2\theta\right)}{\sin\left(\frac{\pi}{2} + 2\theta\right)} = \cot\left(\frac{\pi}{2} + 2\theta\right) \text{ avec } \frac{\pi}{2} + 2\theta \in \left]0, \pi\right[.$$

Donc
$$V = \frac{\pi}{2} + 2\theta$$
 puis $\alpha(\theta) = V + \theta = \frac{\pi}{2} + 3\theta$.

2.c
$$\lambda(\theta) = \frac{d\alpha}{ds} = \frac{d\alpha}{d\theta} \cdot \frac{d\theta}{ds} = 3 \frac{\sqrt{\cos 2\theta}}{\sqrt{2}}$$
 puis $R(\theta) = \frac{\sqrt{2}}{3\sqrt{\cos 2\theta}}$.

3.
$$s(\theta) = \int_0^{\theta} ds = \int_0^{\theta} \frac{\sqrt{2} d\alpha}{\sqrt{\cos 2\alpha}} = \int_0^{\theta} \frac{\sqrt{2} d\alpha}{\sqrt{1 - 2\sin^2 \alpha}}.$$

Posons
$$t = \sqrt{2} \sin \alpha$$
, $dt = \sqrt{2} \sqrt{1 - \frac{1}{2}t^2} d\alpha$ puis

$$s(\theta) = \int_0^{\sqrt{2}\sin\theta} \frac{\mathrm{d}t}{\sqrt{1 - \frac{1}{2}t^2}\sqrt{1 - t^2}} = U(\sqrt{2}\sin\theta) \text{ en prenant } k = \frac{1}{\sqrt{2}}.$$

Partie IV

1.a $y'' + \omega^2 y = 0$ est une équation différentielle linéaire d'ordre 2 à coefficients constants d'équation caractéristique $r^2 + \omega^2 = 0$ de racines $i\omega$ et $-i\omega$.

La solution générale de cette équation est $y(t) = \lambda \cos(\omega t) + \mu \sin(\omega t)$ avec $\lambda, \mu \in \mathbb{R}$.

Une telle fonction satisfait aux conditions initiales proposées ssi $\lambda = \alpha$ et $\mu = 0$.

Finalement (1) possède une et une seule solution à savoir $y(t) = \alpha \cos(\omega t)$.

1.b
$$T_0 = \frac{2\pi}{\omega}.$$

2.a $t\mapsto kSn(t-t_0)$ est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} et à valeurs dans $[-k,k]\subset]-1,1[$ donc par composition, f est définie et \mathcal{C}^{∞} sur \mathbb{R} .

2.b
$$f'(t) = -2 \frac{k\omega \cdot Cn(\omega(t - t_0))Dn(\omega(t - t_0))}{\sqrt{1 - k^2 Sn^2(\omega(t - t_0))}} = -2k\omega Cn(\omega(t - t_0))$$
 et

$$f''(t) = 2k\omega^2 Sn(\omega(t - t_0)) Dn(\omega(t - t_0)).$$

$$k \cdot Sn(\omega(t-t_0)) = \sin(-\frac{1}{2}f(t)) \quad \text{et} \quad Dn(\omega(t-t_0)) = \sqrt{1-k^2Sn(\omega(t-t_0))} = \cos\left(-\frac{1}{2}f(t)\right)$$

donc
$$f''(t) = -2\omega^2 \sin\left(\frac{1}{2}f(t)\right)\cos\left(\frac{1}{2}f(t)\right) = -\omega^2\sin(f(t))$$
.

Ainsi f est solution de l'équation différentielle $y'' + \omega^2 \sin y = 0$.

$$2.c \qquad \begin{cases} f(0) = \alpha \\ f'(0) = 0 \end{cases} \Leftrightarrow \begin{cases} Sn(\omega t_0) = \frac{1}{k} \sin \frac{\alpha}{2} \\ Cn(\omega t_0) = 0 \end{cases}.$$

Pour $k=\sin\frac{\alpha}{2}$, les fonctions Sn et Cn sont déterminées et on veut t_0 de sorte que : $\begin{cases} Sn(\omega t_0)=1\\ Cn(\omega t_0)=0 \end{cases}$

Sachant que pour $Sn\!\left(\frac{1}{2}T\right) = 1$ et $Cn\!\left(\frac{1}{2}T\right) = 0$, $t_0 = \frac{T}{2\omega}$ convient.

- 2.d Sn étant 4T périodique, f est une fonction $T_1 = \frac{4T}{\omega}$ périodique.
- 2.e Quand α croît dans $\left]0, \frac{\pi}{2}\right[$, $k = \sin\frac{\alpha}{2}$ croît puis $T = \int_0^1 \frac{\mathrm{d}t}{\sqrt{(1-t)^2(1-k^2t^2)}}$ croît aussi.

Au final, T_1 est une fonction croissante de α .

3.
$$\frac{T_1}{T_0} = \frac{4T}{2\pi} = \frac{2}{\pi} \int_0^1 \frac{\mathrm{d}t}{\sqrt{1 - t^2} \sqrt{1 - k^2 t^2}} \text{ avec } k = \sin \frac{\alpha}{2}.$$