Influence des paramètres sur le nombre d'itérations

Les paramètres tels que le **point initial**, la **constante d'Armijo** ω , et le **facteur de réduction** ρ jouent un rôle crucial dans le nombre d'itérations de la méthode de descente de gradient avec recherche linéaire (Backtracking Line Search - BLS). Voici l'influence de chacun de ces paramètres :

1. Point initial x_0

Influence:

- Le choix du point initial a un effet direct sur la convergence. Un point initial bien choisi, proche du minimum global, peut réduire considérablement le nombre d'itérations nécessaires pour converger.
- Si le point initial est éloigné du minimum, le nombre d'itérations augmentera, car l'algorithme devra parcourir une plus grande distance pour atteindre la solution.
- Dans les problèmes non convexes, un mauvais choix de point initial peut amener la méthode à converger vers un minimum local non souhaité.

Impact : Plus le point initial est éloigné de la solution, plus le nombre d'itérations sera élevé.

2. Constante d'Armijo ω

Influence:

- ω contrôle la rigueur de la condition de suffisance d'Armijo. Cette condition assure que le pas α_k entraı̂ne une réduction suffisante de la fonction à chaque étape.
- Si ω est trop grand : La méthode devient trop stricte, exigeant une grande réduction à chaque étape, ce qui réduit α_k trop rapidement. Cela peut augmenter le nombre d'itérations, car les pas deviennent trop petits pour progresser efficacement.
- Si ω est trop petit : La méthode peut accepter des réductions trop faibles de la fonction, ce qui peut ralentir la convergence et nécessiter davantage d'itérations pour atteindre le minimum.

Impact : Un ω trop grand ou trop petit peut ralentir la convergence. Un choix modéré améliore la stabilité et réduit le nombre d'itérations.

3. Facteur de réduction ρ

Influence:

- ρ détermine de combien α_k est réduit à chaque itération lorsque la condition de suffisance d'Armijo n'est pas satisfaite. Typiquement, $\rho \in (0,1)$.
- Si ρ est proche de 1 : Le pas α_k sera réduit lentement. Cela peut nécessiter plusieurs itérations de la recherche linéaire pour trouver un pas acceptable, augmentant ainsi le nombre d'itérations globales.
- Si ρ est trop petit (par exemple, $\rho = 0.1$): Le pas α_k sera réduit trop rapidement, ce qui peut conduire à des pas trop petits, ralentissant la convergence globale.

 ${\bf Impact}$: Un ρ proche de 1 entraı̂ne plus d'itérations dans la recherche linéaire, tandis qu'un ρ trop faible risque de ralentir la convergence de la méthode de gradient.

Résumé

- Point initial: Plus il est proche du minimum, moins il y a d'itérations.
- Constante d'Armijo ω : Si ω est trop grand ou trop petit, le nombre d'itérations augmente. Un choix intermédiaire (par exemple, $\omega=10^{-4}$) est souvent optimal.
- Facteur de réduction ρ : Si ρ est trop faible, la descente devient lente. Un choix typique est autour de 0.5, équilibrant vitesse et efficacité.