Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	<u>R3143</u>	К работе допущен	
•	уллин Динислам пров Роман	Работа выполнена	
Преполаватель	Пулькин Н. С	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.04

«Исследование равноускоренного вращательного движения (маятник Обербека)»

- 1. Цель работы.
- Проверка основного закона динамики вращения.
- Проверка зависимости момента инерции от положения масс относительно оси вращения
- 2. Задачи, решаемые при выполнении работы.
- Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.
- 3. Объект исследования.

Маятник Обербека.

4. Метод экспериментального исследования.

Многократные прямые измерения времени падения каретки.

- 5. Рабочие формулы и исходные данные.
 - Масса каретки: (47,0±0,5) г
- Масса шайбы: (220,0±0,5) г
- Масса грузов на крестовине: (408,0±0,5) г
- Расстояние первой риски от оси: (57,0±0,5) мм
- Расстояние между рисками: (25,0±0,2) мм
- Диаметр ступицы: (46,0±0,5) мм
- Диаметр груза на крестовине: (40,0±0,5) мм
- Высота груза на крестовине: (40,0±0,5) мм
- Ускорение каретки с шайбами, где h расстояние, пройденное грузом за время t от начала движения

$$a = \frac{2h}{t^2}$$

• Угловое ускорение, где d - диаметр ступицы

$$\varepsilon = \frac{2a}{d}$$

■ Момент силы натяжения нити, где m — масса каретки с шайбами, а g — ускорение свободного падения

$$M = \frac{md}{2}(g - a)$$

• Основной закон динамики вращения, где I — момент инерции крестовины с утяжелителями, а $M_{\rm Tp}$ — момент силы трения

$$I\varepsilon = M - M_{\rm TD}$$

• Теорема Штейнера, где I_0 — сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей

$$I = I_0 + 4m_{\rm yr}R^2$$

6. Измерительные приборы.

Nº n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	2–10 сек	0,01 сек

7. Схема установки.

Рис. 2. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 2.

В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина

- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11.Система передних стоек
- 8. Результаты прямых измерений и их обработки.

Среднее время падения каретки для одной шайбы (первая риска):

$$t_{\rm cp} = \frac{t_1 + t_2 + t_3}{3} = \frac{4,21 + 4,21 + 4,11}{3} \approx 4,18 c$$

Таблица 1 - результаты прямых измерений

Macca	Положение утяжелителей					
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	4,21	4,97	5,84	7,15	7,47	9,73
267	4,21	5,08	5,85	6,95	7,99	9,36
	4,11	5,06	5,62	6,78	7,86	9,89
	4,18	5,04	5,77	6,96	7,77	9,66
	2,96	3,58	3,87	5,19	5,50	6,07
487	3,14	3,74	4,38	5,43	5,28	6,06
	3,14	3,86	4,53	4,73	5,69	5,05
	3,08	3,73	4,26	5,12	5,49	5,73
707	2,43	3,25	3,44	4,03	4,82	5,37
	2,62	3,11	3,44	4,12	4,79	5,18
	2,41	3,22	3,45	4,42	4,85	5,28
	2,49	3,19	3,44	4,19	4,82	5,28
	2,12	2,74	3,04	3,89	3,99	4,44
927	2,15	2,97	3,04	3,52	3,94	4,36
	2,21	2,86	2,94	3,57	4,02	4,36
	2,16	2,86	3,01	3,66	3,98	4,39

- среднее время падения (с)

9. Расчет результатов косвенных измерений.

Ускорение для каретки с одной шайбой:

$$a = \frac{2h}{t_{\rm cp}^2} = \frac{2 \cdot 0.7}{4.18^2} \approx 0.0803 \frac{M}{c^2}$$

Угловое ускорение крестовины с утяжелителями:

$$\varepsilon = \frac{2a}{d} = \frac{2 \cdot 0,0801}{0,046} \approx 3,4893 \frac{\text{рад}}{\text{c}^2}$$

Момент силы натяжения нити:

$$M = \frac{m_1 \cdot d}{2}(g - a) = \frac{0,267 \cdot 0,046}{2}$$
(9,8195 — 0,0802) $\approx 0,0598 \; \mathrm{H} \cdot \mathrm{M}$

Таблица 2 - расчет ускорения, углового ускорения и момента силы натяжения нити для средних значений времени

Macca				
груза, г	$t_{\rm cp},c$	$a, M/c^2$	ε, c ⁻²	М, Н*м
0,27	4,18	0,08	3,49	0,06
	5,04	0,06	2,40	0,06
	5,77	0,04	1,83	0,06
	6,96	0,03	1,26	0,06
	7,77	0,02	1,01	0,06
	9,66	0,02	0,65	0,06
	3,08	0,15	6,42	0,11
	3,73	0,10	4,38	0,11
0,49	4,26	0,08	3,35	0,11
	5,12	0,05	2,33	0,11
	5,49	0,05	2,02	0,11
	5,73	0,04	1,86	0,11
0,71	2,49	0,23	9,84	0,16
	3,19	0,14	5,97	0,16
	3,44	0,12	5,13	0,16
	4,19	0,08	3,47	0,16
	4,82	0,06	2,62	0,16
	5,28	0,05	2,19	0,16
0,93	2,16	0,30	13,05	0,20
	2,86	0,17	7,46	0,21
	3,01	0,15	6,73	0,21
	3,66	0,10	4,54	0,21
	3,98	0,09	3,84	0,21
	4,39	0,07	3,16	0,21

Расчет коэффициентов по МНК для основного закона динамики вращения на 1 риске:

$$\varepsilon(M) = \frac{M - M_{\rm Tp}}{I} = \frac{1}{I} \cdot M - \frac{M_{\rm Tp}}{I}$$

Пусть $k = \frac{1}{I}$, $c = -\frac{M_{TP}}{I}$, тогда $\epsilon = k \cdot M + c$

$$\bar{M} = \frac{\Sigma M_i}{n} = \frac{0,059 + 0,109 + 0,156 + 0,203}{4} \approx 0,132 \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{c}^2}$$
$$\bar{\varepsilon} = \frac{\Sigma \varepsilon_i}{n} = \frac{3,489 + 6,417 + 9,843 + 13,047}{4} \approx 8,199 \frac{1}{\text{c}^2}$$

Найдем коэффициенты k и c:

$$k = \frac{\sum (M_i - \overline{M})(\varepsilon_i - \overline{\varepsilon})}{\sum (M_i - \overline{M})^2} = \frac{0,3389 + 0,0417 + 0,0398 + 0,4551}{0,0052 + 0,005 + 0,006 + 0,0051} \approx 67,26 \frac{1}{\text{K}\Gamma \cdot \text{M}^2}$$

$$c = \bar{\varepsilon} - k\bar{M} = 8,199 - 67,26 \times 0,132 \approx -0,66 \frac{1}{c^2}$$

Расстояние до центра масс утяжелителя на первой риске:

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b = 0.057 + (1-1) \cdot 0.025 + \frac{1}{2} \cdot 0.04 \approx 0.077 \text{ M}$$

Также посчитаем момент инерции крестовины с утяжелителями R^2 :

$$I = \frac{1}{k}$$

Аналогично для остальных 5 положений крестовины с утяжелителями

Таблица 3 - момент инерции и расстояние до утяжелителей.

Номера	_	_	_		_	_
рисок	1	2	3	4	5	6
R	0,077	0,102	0,127	0,152	0,177	0,202
\mathbb{R}^2	0,005929	0,010404	0,016129	0,023104	0,031329	0,040804
I	0,01	0,03	0,03	0,04	0,05	0,06

Коэффициенты линейной зависимости по МНК (для теоремы Штейнера)

$$I(R^2) = I_0 + 4m_{\rm VT}R^2$$

Пусть $k_1=4m_{\mathrm{yr}}$ и $c_1=I_0$, тогда $I(R^2)=k_1\cdot R^2+c_1$

$$\overline{R^2} = \frac{\Sigma R^2_i}{n} \approx 0.0213 \text{ m}^2$$

$$\bar{I} = \frac{\Sigma I_i}{n} \approx 0.0395 \text{ K} \cdot \text{M}^2$$

Найдем коэффициенты k и c:

$$k_1 = \frac{\sum (R^2_i - \overline{R^2})(I_i - \overline{I})}{\sum (R^2_i - \overline{R^2})^2} \approx 1,406 \text{ кг}$$
 $c_1 = \overline{I} - k\overline{R^2} \approx 0,01 \text{ кг} \cdot \text{м}^2$

10. Расчет погрешностей измерений (*для прямых и косвенных измерений*).

Погрешность среднего значения времени для первого измерения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{3 \times (3-1)} \times 1,62} = 0,033 c$$

 $t_{\alpha,N} = 4$,3 — коэффициент Стьюдента для доверительной вероятности $\alpha = 0$,95

$$\Delta t = t_{\alpha,N} * \sigma_{(t)} = 4.3 * 0.033 = 0.03167 c$$

Ускорения a (для положения утяжелителей на 1 риске и массы m_1):

$$\Delta a = \sqrt{\left(\frac{\delta a}{\delta h} * \frac{2}{3} * \Delta h\right)^2 + \left(\frac{\delta a}{\delta t} * \Delta t\right)^2} = 0,026 \frac{M}{c^2}$$

a1 = 0,00066 (±0,026) ($\text{m/}c^2$) $\varepsilon_a = 32\%$

Угловое ускорение ε (для положения утяжелителей на 1 риске и массы m_1):

$$\Delta \mathcal{E} = \sqrt{\left(\frac{\delta \mathcal{E}}{\delta d} * \frac{2}{3} \Delta d\right)^{2} + \left(\frac{\delta \mathcal{E}}{\delta a} * \Delta a\right)^{2}} = 1,115 \frac{1}{c^{2}}$$

$$\mathcal{E}1 = 1,244 \; (\pm 1,115) \; (c^{-2}) \; \mathcal{E} = 32\%$$

Момент силы натяжения нити М (для положения утяжелителей на 1 риске и массы m_1):

$$\Delta M = \sqrt{\left(\frac{\delta M}{\delta m} * \frac{2}{3} * \Delta m\right)^{2} + \left(\frac{\delta M}{\delta d} * \frac{2}{3} \Delta d\right)^{2} + \left(\frac{\delta M}{\delta a} * \Delta a\right)^{2}} = 0,00016 \frac{\text{K} \Gamma \cdot \text{M}^{2}}{\text{c}^{2}}$$

$$M1 = 0,0248 \ (\pm 0,00016) \ (\text{M/c2}) \ E = 0\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

$$m_{
m yr} = 0.374 \pm 0.035 \, {
m kg}$$

$$I_0 = 0.01 \pm 0.003 \,\mathrm{kg} \cdot \mathrm{m}^2$$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы был проверен основной закон динамики вращения. Проанализировав график №1 можно сделать вывод, что зависимость является линейной, полеченные экспериментальные значения совпадают с теоретическими в пределах погрешности. Рассматривая график №2 можно убедиться в предположении, что момент инерции прямо пропорционален квадрату расстояния до утяжелителей.