AI505 Optimization

Optimization in Machine Learning

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Simplified Notation

Let ξ be a random seed or the realization of a single (or a set of) sample (x, y). For a given (w, ξ) let $f(w; \xi)$ be the composition of the loss function L and the prediction function h

Then:

$$R(\mathbf{w}) = \mathbb{E}_{\xi}[f(\mathbf{w}; \xi)]$$
 Expected Risk

Let $\{\xi_{[i]}\}_{i=1}^n$ be realizations of ξ corresponding to $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and $f_i(\mathbf{w}) \stackrel{\text{def}}{=} f(\mathbf{w}; \xi_{[i]})$ Then:

$$R_n(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w})$$
 Empirical Risk

2

Stochastic vs Batch Optimization Methods

Reduction to minimizing R_n , with $\mathbf{w}_0 \in \mathbb{R}^d$ given (deterministic problem) **Stochastic Approach**: Stochastic Gradient (Robbins and Monro, 1951)

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \alpha_k \nabla f_{i_k}(\mathbf{w}_k)$$

- i_k is chosen randomly from $\{1,\ldots,n\}$, $\alpha_k>0$.
 - very cheap iteration only on one sample.
 - $\{w_k\}$ is a stochastic process determined by the random sequence $\{i_k\}$.
 - the direction might not always be a descent but if it is a descent direction in expectation, then the sequence $\{w_k\}$ can be guided toward a minimizer of R_n .

Batch Approach: batch gradient, steepest descent, full gradient method:

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \alpha_k \nabla R_n(\mathbf{w}_k) = \mathbf{w}_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(\mathbf{w}_k)$$

- more expensive
- can use all deterministic gradient-based optimization methods
- the sum structure opens up to parallelization

Stochastic Gradient

- In case of redundancy using all of the sample data in every iteration is inefficient
- Comparison of the performance of a batch L-BFGS method on number of evaluations of a sample gradient $\nabla f_{i_k}(\mathbf{w}_k)$. Each set of n consecutive accesses is called an **epoch**.
- The batch method performs only one step per epoch while SG performs *n* steps per epoch.

Theoretical Motivations

• a batch approach can minimize R_n at a fast rate; e.g., if R_n is strongly convex. A batch gradient method, then there exists a constant $\rho \in (0,1)$ such that, for all $k \in \mathbb{N}$, the training error follows linear convergence

$$R_n(\mathbf{w}_k) - R_n^* \leq \mathcal{O}(\rho^k),$$

• rate of convergence of a basic stochastic method is slower than for a batch gradient; e.g., if R_n is strictly convex and each i_k is drawn uniformly from $\{1, \ldots, n\}$, then for all $k \in \mathbb{N}$, SG satisfies the sublinear convergence property

$$\mathbb{E}[R_n(\mathbf{w}_k) - R_n^*] = \mathcal{O}(1/k).$$

neither the per-iteration cost nor the right-hand side depends on the sample set size n

• in a stochastic optimization setting, SG yields for the expected risk the same convergence rate once substituted $\nabla f_{i_k}(\mathbf{w}_k)$ replaced by $\nabla f(\mathbf{w}_k; \xi_k)$ with each ξ_k drawn independently according to the distribution P

$$\mathbb{E}[R(\mathbf{w}_k) - R^*] = \mathcal{O}(1/k).$$

If n >> k up to iteration k minimizing R_n same as minimizing R

Beyond SG: Noise Reduction and Second-Order Methods

- on horizontal axis methods that try to improve rate of convergence
- on vertical axis, methods that try to overcome non-linearity and ill-conditioning

Minibatch Approach small subset of samples, call it $S_k \subseteq \{1, ..., n\}$, chosen randomly in each iteration:

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \frac{\alpha_k}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}} \nabla f_i(\mathbf{w}_k)$$

due to the reduced variance of the stochastic gradient estimates, the method is easier to tune in terms of choosing the stepsizes $\{\alpha_k\}$.

dynamic sample size and gradient aggregation methods, both of which aim to improve the rate of convergence from sublinear to linear