Machine learning algorithms: Lecture 1.

Intro to Machine learning

Alexandr Gavrilko MLA Course for CS-2227

Machine learning

Machine learning is a subfield of artificial intelligence that gives computers the ability to learn without explicitly being programmed

Set the goal → Prepare data → Train the model → for new data

When to use machine learning?

- When the goal is too complicated to be coded: spam-filtering
- When the goal is continuously changing: Recommendation system
- When the goal is connected with perception: images, videos, speech, etc.
- When the goal is connected with unexplored phenomenon: predict social behavior of humans
- When it is economically beneficial: Al-Assistant for Customer Service

When not to use machine learning?

- When each action of the model should be interpretable
- When change in the behavior of the model should be interpretable
- Cost of the error is too high
- Collect the correct data is too hard or impossible
- When the goal can be achieved by traditional programming with less spendings
- When you can prepare mapping for all pairs "input -> output"

Types of Machine learning

Regression

How do we represent h?

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x$$

Linear regression with one variable. Univariate linear regression.

One variable

Regression models:

- Linear regression
- Support Vector Regression
- Lasso Regression
- Ridge Regression
- Decision Tree Regression

Andrew Ng

Classification

Classification types:

- Binary classification only two possible outputs: 0 and 1
 For example: spam or not spam? dog or cat?
- Multi-class classification three more possible outputs
 For example: species of flowers, digit recognition
- Multi-label classification two more classes can be assigned to one example
 For example: genres for movie, tags for message

Multi-class classification

Multi-label classification

Classification models:

- Logistic regression
- Naive Bayes Classifier
- Decision Trees
- Support Vector Classifier
- K-Nearest Neighbors

Clustering

(a) Original points

(c) Two clusters

(b) Two clusters

(d) Six clusters

Clustering models:

- K-Means clustering
- Agglomerative hierarchical clustering
- DBSCAN
- Support Vector Classifier
- K-Nearest Neighbors

Terminology of Machine Learning

Data preparation.
Raw and accurate data

Parameters and hyperparameters

Terminology of Machine Learning

Training, validation and test splits

Metrics in Machine Learning

Regression

Classification

Clustering

Machine Learning Lifecycle Pipeline

