TS-Toolbox

Matlab-Toolbox zur nichtlinearen Systemidentifikation mittels lokal affiner Tagaki-Sugeno-Modelle

Version: 1.3 vom 14.9.2020

Prof. Dr.-Ing. Andreas Kroll, FG Mess- und Regelungstechnik, FB 15 Maschinenbau, Universität Kassel

URL: http://www.uni-kassel.de/go/mrt

Author: Axel Dürrbaum (mailto:axel.duerrbaum@mrt.uni-kassel.de)

Contents

- Aufgabe: Nichtlineare Systemidentifikation und Regression
- Modellansatz: lokal affine Tagaki-Sugeno-Modelle (TS)
- Funktionsprinzip
- Clusterung
- Verfügbare Zugehörigkeitsfunktionen
- Lokale TS-Modelle
- Modellgütemaße
- Visualisierung
- Dokumentation
- Verfügbare Objekte
- Verfügbare Funktionen
- Installation
- Musterprojekte
- Implementierung
- Benötigte Software
- Geplante Erweiterungen

Aufgabe: Nichtlineare Systemidentifikation und Regression

• für statische MISO-Modelle

$$y(t) = f(u_1(t), ..., u_m(t))$$

• oder dynamische MISO-Modelle

$$y(t) = f(u_1(t), \dots, u_1(t-m_1), \dots, u_m(t-1), \dots, u_m(t-m_m), \dots, y(t-1), \dots, y(t-n)$$

Modellansatz: lokal affine Tagaki-Sugeno-Modelle (TS)

Überlagerung der c lokal affinen Teilmodelle $y_i(x)$ zu einem Gesamtmodell

$$\hat{y}(t) = \sum_{i=1}^{c} \mu_i(z) \cdot \hat{y}_i(x)$$

- mit den Eingangssignalen u(t) und dem Ausgangssignal y(t),
- der Scheduling-Variablen z(u, y),
- der Zugehörigkeitsfunktionen $\mu_i(z)$,
- ullet der Regressor-Variablen x(u,y)
- und den lokalen TS-Modellen $\hat{y}_i(x)$

Funktionsprinzip

- Datensatz $\{u(t), (y(t))\}$, ggf. Normierung und Split in Identifikations- und Validierungsdaten
- Ggf. Anpassung der Standard-Einstellungen der Hyperparameter * Clusterung ν , c, ϵ_{FCM} * Multistart * NL-Optimierung
- ullet Vorgabe der Anzahl der lokalen Modelle c und des Unschärfeparameters u
- Clustering zur Emittlung der Partitionierung bzw. Lage der Teilmodelle im Scheduling-Raum, Multistartstrategie mit Auswahl des besten Ergebnisses auf Basis des Modellfehlers auf Identtifikationsdaten
- Initiale Schätzung der lokalen Modelle mittels Least-Squares-Verfahren (lokal oder global)
- Optionale Optimierung der Zugehörigkeitsfunktionen μ und/oder der lokalen Teilmodelle \hat{y} mittels nichtlinearer Optimierung der Simulation (Matlab-Funktion lsqnonlin)
- Unterschiedliche Wahl der Scheduling- und Regeressor-Variablen möglich
- · Validierung auf neuen Daten

Clusterung

Eingangs- (u) oder Produktraum (u|y)

Implementierte Algorithmen:

- · Abstandsnormen: Euklid, Mahalanobis
- Fuzzy C-Means (FCM)
- Gustafson-Kessel (GK)

Verfügbare Zugehörigkeitsfunktionen

- FCM-Type-Funktionen
- Gauss-Funktionen

Lokale TS-Modelle

• Linear:
$$y(t) = \sum_{i=0}^n a_i \cdot u_i(t) + a_0$$

$$\bullet_{\mathsf{ARX}} \cdot y(t) = A \cdot y(t - dt) + B \cdot u(t) + C$$

$$\bullet_{\mathsf{OE}:} y(t) = A \cdot y(t - dt) + B \cdot u(t) + C + e(t)$$

Modellgütemaße

auf Identifikations- und Validierungsdaten

- Maximum Absolute Error (MAE)
- Sum of Squared Errors (SSE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Normalized Mean Squared Error (NMSE)
- Best Fit Rate (BFR)
- ??? Akaike Information Criterion (AIC)
- ??? Bayesian Information Criterion (BIC)

Visualisierung

- · Clusterung (2D, n-dimensional als mehrfache 2D)
- ??? Zugehörigkeitsmaße / Regelaktivierung
- Residuen
- ??? Residualhistogramm
- Simulation oder 1-Schritt-Prädiktion auf Identifikations- oder Validierungsdaten

Dokumentation

Verfügbare Objekte

- Daten Parameter, Methoden
- Modell Parameter, Methoden

Verfügbare Funktionen

Funktionen, die nicht auf Objekten arbeiten

Installation

ToDo

Verzeichnisse

- TS Toolbox
- TS_Toolbox/Functions
- TS_Toolbox/Examples

Musterprojekte

im Verzeichnis Examples

- statisch: Akademisches Beispiel Test_LS_Akad
- statisch: Friedmann-Funktion 2D/3D Test LS Friedman
- statisch: Kompressor-Kennlinie 3D Test_LS_Kompressor
- dynamisch: Narendra (SISO) Test_ARX_Narendra.m

• dynamisch: Regelkappe (SISO) Test ARX Throttle.m

• dynamisch: Drosselkappe IAV (MISO) Test_ARX_Ladedruck.m

Implementierung

Objektorientierte Realisierung:

• Objekt Daten: u(t), y(t)

• Objekt Modell: Daten, Premisse, Konklusion

• Objekt Premisse: Scheduling / Zugehörigkeitsfunktion

• Objekt Konklusion: Regresser / lokale Modelle (ARX/OE)

Benötigte Software

Matlab R2019a oder höher (Windows//Linux/MacOS)

Matlab Fuzzy Toolbox (FCM)

Matlab Optimzation Toolbox (Isqnonlin)

Geplante Erweiterungen

Aufgabe	Zeitraum	Prio	Status
Toolbox als OO-Klasse in Matlab Identifikation+Optimierung TS-Modelle statisch + ARX/OE (mg)	1	5/20	Erledigt 100%
ARX MISO-Modelle Optimierung MISO Tests Matlab-Optimierungsverfahren/-parameter	2	5/20 – 6/20	Erledigt: 100%
Subklassen für Modelle (LS/ARX/OE) und Datensätze		6/20	60%
Testsignalentwurf (mg)		6/20 - 7/20	0%
Regelung (as)		7/20	0%
Strukturselektion (mk)			10%
Maximum-Likelihood (jf)			0%
BETS (fw)			0%
Datascreening (da)			0%
Implementierung weitere Cluster-Verfahren			0%

\$ld: tsm_Manual.m | Thu Dec 3 09:43:02 2020 +0100 | Axel Dürrbaum \$