(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-298332

(43)公開日 平成11年(1999)10月29日

(51) Int.Cl. ⁶	識別記号	FΙ		
H03M 3/0	4	H03M 3/04		
G10K 15/0	0	H03H 17/00	611A	
H03H 17/0	0 611	17/02	641N	
17/0	2 641	H04R 3/00	310	
H04R 3/00	310	G10K 15/00 M		
	÷.	水髓 水髓未 水髓查審	で項の数13 OL (全 21 頁)	
(21)出願番号	特願平10-104252	(71)出願人 000005016	(71)出願人 000005016	
		パイオニア棋	式会社	
(22) 出顧日	平成10年(1998) 4月15日	東京都目黒区目黒1丁目4番1号		
		(72)発明者 吉田 実		
		埼玉県鶴ヶ島	市富士見6丁目1番1号 パ	
		イオニア株式	会社総合研究所内	
		(72)発明者 外山 聡一		
		埼玉県鶴ヶ島	市富士見6丁目1番1号 パ	
		イオニア株式	会社総合研究所内	
		(72)発明者 駒村 光弥		
		埼玉県鶴ヶ島	市富士見6丁目1番1号 パ	
		イオニア株式	イオニア株式会社総合研究所内	
		(74)代理人 弁理士 石川	 泰男	
			最終頁に続く	

(54) 【発明の名称】 ディジタル信号処理装置及びスピーカシステム

(57) 【要約】

【課題】 音響信号等の元のディジタル入力信号により 近いディジタル出力信号を得ることができるディジタル 信号処理装置及び当該ディジタル信号処理装置を備えた スピーカシステムを提供する。

【解決手段】 ディジタル入力信号Sinのサンプリングレートを増加させるオーバサンプリング部1と、信号処理部3において増強されるレベルに対応して、サンプリング信号Sovのレベルを低減するアッテネート部2と、アッテネート信号Satに対して所望のレベル増強処理及びレベル低減処理を行う信号処理部3と、アッテネート部2におけるレベル低減処理及び信号処理部3におけるレベル変更処理に対応して処理信号Spcにノイズシェーピング処理を施し、量子化精度を劣化させることなく量子化雑音を低減しディジタル出力信号Soutを生成するノイズシェーピング部4と、を備える。

本発明の原理を示す概要構成プロック図

【特許請求の範囲】

【請求項1】 予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号に対して、当該ディジタル入力信号における予め設定された特定周波数帯域のレベルを低減する低減処理を少なくとも含む予め設定された信号処理を施し、処理信号を生成する信号処理手段と、

前記ディジタル入力信号又は前記処理信号のうち、いず れか一の信号のサンプリング周波数を前記入力サンプリ ング周波数のN倍(Nは1より大きい実数)のサンプリ ング周波数に変換するサンプリングレート変換手段と、 設定信号により示されるノイズシェーピング特性に基づ き、前記生成された処理信号を量子化すると共に当該処 理信号に対してノイズシェーピング処理を施し、ディジ タル出力信号を生成するノイズシェーピング手段と、 前記信号処理の周波数-レベル特性に対応して、前記処 理信号を量子化する際に生じる量子化特性の劣化を補正 すると共に当該量子化特性の補正により生じる量子化雑 音の増加分を前記入力サンプリング周波数の二分の一の 周波数よりも高い周波数帯域に移行させて前記ディジタ ル出力信号を生成するように前記ノイズシェーピング特 性を設定し、前記設定信号を生成する設定手段と、 を備えることを特徴とするディジタル信号処理装置。

【請求項2】 予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号に対して、アッテネート信号に対する信号処理手段における増減信号処理のレベルが当該信号処理手段で処理可能なレベルより高いレベルとなることを防止すべく、当該増減信号処理に対応して前記ディジタル入力信号のレベルを低減し、前記アッテネート信号を生成して前記信号処理手段に出力するアッテネート手段と、

前記アッテネート信号に対して当該アッテネート信号に おける予め設定された第1特定周波数帯域のレベルを増 強する増強処理と当該アッテネート信号における前記第 1特定周波数帯域と異なる予め設定された第2特定周波 数帯域のレベルを低減する低減処理とのいずれか一方を 少なくとも含む前記増減信号処理を行って前記処理信号 を生成する前記信号処理手段と、

前記ディジタル入力信号、前記アッテネート信号又は前記処理信号のうち、いずれか一の信号のサンプリング周波数を前記入力サンプリング周波数のN(Nは1より大きい実数)倍のサンプリング周波数に変換するサンプリングレート変換手段と、

設定信号により示されるノイズシェーピング特性に基づき、前記生成された処理信号を量子化すると共に当該処理信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成するノイズシェーピング手段と、前記アッテネート手段における低減処理の周波数ーレベル特性及び前記増減信号処理における周波数ーレベル特性に対応して、前記処理信号を量子化する際に生じる量50

2

子化特性の劣化を補正すると共に当該量子化特性の補正 により生じる量子化雑音の増加分を前記入力サンプリン グ周波数の二分の一の周波数よりも高い周波数帯域に移 行させて前記ディジタル出力信号を生成するように前記 ノイズシェーピング特性を設定し、前記設定信号を生成 する設定手段と、

を備えることを特徴とするディジタル信号処理装置。

【請求項3】 予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号に対して、当該ディジタル入力信号における予め設定された第1特定周波数帯域のレベルを増強する増強処理と当該アッテネート信号における前記第1特定周波数帯域と異なる予め設定された第2特定周波数帯域のレベルを低減する低減処理とのいずれか一方を少なくとも含む増減信号処理を行って処理信号を生成し、アッテネート手段に出力する信号処理手段と、

ディジタル出力信号のレベルが予め設定された所定のレベルを越えることを防止すべく、前記増減信号処理に対応して前記処理信号のレベルを低減し、アッテネート信号を生成してノイズシェーピング手段に出力する前記アッテネート手段と、

前記ディジタル入力信号、前記アッテネート信号又は前記処理信号のうち、いずれか一の信号のサンプリング周波数を前記入力サンプリング周波数のN(Nは1より大きい実数)倍のサンプリング周波数に変換するサンプリングレート変換手段と、

設定信号により示されるノイズシェーピング特性に基づき、前記生成されたアッテネート信号を量子化すると共に当該アッテネート信号に対してノイズシェーピング処理を施し、前記ディジタル出力信号を生成するノイズシェーピング手段と、

前記アッテネート手段における低減処理の周波数 - レベル特性及び前記増減信号処理における周波数 - レベル特性に対応して、前記アッテネート信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を前記入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて前記ディジタル出力信号を生成するように前記ノイズシェーピング特性を設定し、前記設定信号を生成する設定手段と、

を備えることを特徴とするディジタル信号処理装置。

【請求項4】 請求項1から3のいずれか一項に記載の ディジタル信号処理装置において、

前記ノイズシェーピング

一段は、予め設定されたディザ を加算するディザ加算手段を更に備え、

前記設定手段は、当該ディザの加算により増加した雑音成分をも補償するように前記ノイズシェーピング特性を設定し前記設定信号を生成することを特徴とするディジタル信号処理装置。

【請求項5】 アッテネート信号に対する信号処理手段

における信号処理が当該信号処理手段で処理可能なレベルより高いレベルとなることを防止すべく、当該信号処理に対応して予め設定された周波数 - レベル特性に基づいて、予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号のレベルを低減し、前記アッテネート信号を生成するアッテネート手段と、

前記生成されたアッテネート信号に対して、予め設定された周波数ーレベル特性に基づき当該アッテネート信号における予め設定された特定周波数帯域のレベルを増強する増強処理又は前記特定周波数帯域のレベルを低減する低減処理のいずれか一方を少なくとも含む予め設定された前記信号処理を施し、処理信号を生成する前記信号処理手段と、

前記ディジタル入力信号、前記アッテネート信号又は前記処理信号のうち、いずれか一の信号のサンプリング周波数を前記入力サンプリング周波数のN倍(Nは1より大きい実数)のサンプリング周波数に変換するサンプリングレート変換手段と、

前記生成された処理信号を量子化すると共に、前記アッテネート手段における低減処理の周波数ーレベル特性及び前記信号処理における周波数ーレベル特性に対応して前記処理信号を量子化する際に生じる量子化特性の劣化を補正し、且つ当該量子化特性の補正により生じる量子化雑音の増加分を前記入カサンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させるように予め設定されたノイズシェーピング特性に基づくノイズシェーピング処理を前記処理信号に対して施し、前記ディジタル出力信号を生成するノイズシェーピング手段と、を備えることを特徴とするディジタル信号処理装置。

【請求項6】 予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号に対して、当該ディジタル入力信号における予め設定された特定周波数帯域のレベルを低減する低減処理及び前記特性周波数帯域のレベルを増強する増強処理のいずれか一方を少なくとも含む予め設定された信号処理を施し、処理信号を生成する信号処理手段と、

ディジタル出力信号のレベルが予め設定された所定のレベルを越えることを防止すべく、前記信号処理に対応して前記処理信号のレベルを低減し、アッテネート信号を 40 生成するアッテネート手段と、

前記生成されたアッテネート信号を量子化すると共に、 前記アッテネート手段における低減処理の周波数 - レベル特性及び前記信号処理における周波数 - レベル特性に 対応して前記アッテネート信号を量子化する際に生じる 50

量子化特性の劣化を補正し、且つ当該量子化特性の補正により生じる量子化雑音の増加分を前記入力サンブリング周波数の二分の一の周波数よりも高い周波数帯域に移行させるように予め設定されたノイズシェーピング特性に基づくノイズシェーピング処理を前記アッテネート信号に対して施し、前記ディジタル出力信号を生成するノイズシェーピング手段と、

を備えることを特徴とするディジタル信号処理装置。

【請求項7】 請求項1から6のいずれか一項に記載の ディジタル情報処理装置において、

前記信号処理手段は、前記ディジタル入力信号における ビット数に各前記量子化に伴って削減されるビット数を 加えたビット数より多いビット数のディジタル処理が可 能であることを特徴とするディジタル情報処理装置。

【請求項8】 請求項2から7のいずれか一項に記載のディジタル信号処理装置と、

前記ディジタル出力信号に対応する音を出力するスピー 力手段と、

を備えるスピーカシステムであって、

前記ディジタル入力信号は、少なくとも40ヘルツより も高い前記入力サンプリング周波数でサンプリングされ た音響信号であると共に、

前記信号処理手段は前記音響信号に対応する前記処理信号を生成し、

更に前記ノイズシェーピング手段は前記量子化雑音の増加分を前記入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて前記音響信号に対応する前記ディジタル出力信号を生成することを特徴とするスピーカシステム。

30 【請求項9】 請求項8に記載のスピーカシステムにおいて、

複数の前記スピーカ手段と、

各前記スピーカ手段毎に設けられ、当該各スピーカ手段 における出力特性を補正する複数の第2アッテネート手 段と、

各前記スピーカ手段毎に設けられ、前記第2アッテネート手段における補正処理に起因する量子化特性の劣化をも補正する前記ノイズシェーピング特性により前記ノイズシェーピング処理を夫々行う複数の前記ノイズシェーピング手段と、

を備えることを特徴とするスピーカシステム。

【請求項10】 予め設定された入力サンプリング周波数でサンプリングされて外部から入力されるディジタル入力信号に対応する音を出力するスピーカ手段を備えるスピーカシステムにおいて、

前記スピーカ手段の出力特性を補正するべくディジタル 入力信号に対して当該ディジタル入力信号のレベルを低 減する低減処理を少なくとも含む補正処理を施し、補正 信号を生成する補正手段と、

前記ディジタル入力信号又は前記補正信号のうち、いず

4

れか一の信号のサンプリング周波数を前記入力サンプリング周波数のN倍(Nは1より大きい実数)のサンプリング周波数に変換するサンプリングレート変換手段と、設定信号により示されるノイズシェーピング特性に基づき、前記生成された補正信号を量子化すると共に当該補正信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成するノイズシェーピング手段と、前記補正処理の周波数ーレベル特性に対応して、前記補正信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を前記入力サンプリング周波数の二分の周波数よりも高い周波数帯域に移行させて前記ディジを開波数よりも高い周波数帯域に移行させて前記ディジ特性を設定し、前記設定信号を生成する設定手段と、を備えることを特徴とするスピーカシステム。

【請求項11】 請求項10に記載のスピーカシステムにおいて、

複数の前記スピーカ手段と、

各前記スピーカ手段毎に設けられ、前記ディジタル入力 信号に対して当該各スピーカ手段における出力特性を補 20 正するための前記補正処理を更に施し、前記補正信号を 夫々生成する複数の前記補正手段と、

各前記スピーカ手段毎に設けられ、各前記補正手段における補正処理に起因する量子化特性の劣化をも補正する前記ノイズシェーピング特性により前記ノイズシェーピング手段ング処理を夫々行う複数の前記ノイズシェーピング手段と、

を備えることを特徴とするスピーカシステム。

【請求項12】 請求項11に記載のスピーカシステム において、

各前記補正手段は、各前記スピーカ手段間における出力 特性の相違を補償することを特徴とするスピーカシステム。

【請求項13】 請求項8から12のいずれか一項に記載のスピーカシステムにおいて、

前記ディジタル出力信号のうち、前記入力サンプリング 周波数の二分の一より高い周波数帯域の当該ディジタル 出力信号のレベルを低減するローパスフィルタ手段を更 に備えることを特徴とするスピーカシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタル的に入力信号を処理するディジタル信号処理装置に関し、より 詳細には、スピーカを含む音響システムに適用して好適 なディジタル信号処理装置の技術分野に属する。

[0002]

【従来の技術】従来、音響信号をディジタル化し、当該ディジタル化された音響信号に対して種々の処理をディジタル的に施す、いわゆるDSP(Digital Signal Processor)と称される処理装置が一般化しつつある。

6

【0003】ここで、当該DSP内で、例えば、特定の周波数帯の音響信号のレベルのみをディジタル的に低減する又は増強するいわゆるグラフィックイコライザ処理を実行する場合を考えると、当該低減処理を施すと、その低減処理された音響信号を再量子化する際に下位の数ピットが脱落することとなるが、従来の上記DSPでは、この下位ビットの脱落を無視してその後の信号処理を施すようにしていた。これは、当該下位の数ピットを無視しても再生される音響信号の特性にはさほど大きな影響が残らないことによる。

[0004]

【発明が解決しようとする課題】しかしながら、近年、音響装置の高精度化・高機能化に伴って、多くの使用者によってより原音に近い音の再生が嗜好されるようになってきており、この場合には上記従来のDSPにおける下位ビットの脱落による雑音又は歪みが無視できなくなるという問題点が生じてきた。

【0005】また、上記音響装置の高精度化・高機能化に伴って、アナログ信号である音響信号をディジタル信号に変換する際に生じるいわゆる量子化雑音も、より低減する必要性が生じてきたという問題点もある。

【0006】そこで、本発明は、上記の各問題点に鑑みて為されたもので、その課題は、音響信号等の元のディジタル入力信号により近いディジタル出力信号を得ることができるディジタル信号処理装置及び当該ディジタル出力信号に対応する音を出力するスピーカシステムを提供することにある。

[0007]

【課題を解決するための手段】上記の課題を解決するた 30 めに、請求項1に記載の発明は、予め設定された入力サ ンプリング周波数でサンプリングされて外部から入力さ れるディジタル入力信号に対して、当該ディジタル入力 信号における予め設定された特定周波数帯域のレベルを 低減する低減処理を少なくとも含む予め設定された信号 処理を施し、処理信号を生成する信号処理部等の信号処 理手段と、前記ディジタル入力信号又は前記処理信号の うち、いずれか一の信号のサンプリング周波数を前記入 カサンプリング周波数のN倍(Nは1より大きい実数) のサンプリング周波数に変換するオーバサンプリング部 40 等のサンプリングレート変換手段と、設定信号により示 されるノイズシェーピング特性に基づき、前記生成され た処理信号を量子化すると共に当該処理信号に対してノ イズシェーピング処理を施し、ディジタル出力信号を生 成するノイズシェーピング部等のノイズシェーピング手 段と、前記信号処理の周波数-レベル特性に対応して、 前記処理信号を量子化する際に生じる量子化特性の劣化 を補正すると共に当該量子化特性の補正により生じる量 子化雑音の増加分を前記入力サンプリング周波数の二分 の一の周波数よりも高い周波数帯域に移行させて前記デ 50 ィジタル出力信号を生成するように前記ノイズシェーピ

ング特性を設定し、前記設定信号を生成する制御部等の 設定手段と、を備える。

【0008】請求項1に記載の発明の作用によれば、信号処理手段は、ディジタル入力信号に対して信号処理を施し、処理信号を生成する。

【0009】このとき、サンプリングレート変換手段は、ディジタル入力信号又は処理信号のうち、いずれか一の信号のサンプリング周波数をN倍のサンプリング周波数に変換する。

【0010】そして、ノイズシェーピング手段は、設定信号により示されるノイズシェーピング特性に基づき、生成された処理信号を量子化すると共に当該処理信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成する。

【0011】このとき、設定手段は、信号処理の周波数 ーレベル特性に対応して、処理信号を量子化する際に生 じる量子化特性の劣化を補正すると共に当該量子化特性 の補正により生じる量子化雑音の増加分を入力サンプリ ング周波数の二分の一の周波数よりも高い周波数帯域に 移行させてディジタル出力信号を生成するようにノイズ 20 シェーピング特性を設定し、設定信号を生成する。

【0012】よって、ディジタル入力信号又は処理信号のサンプリングレートを増加し、更に処理信号に対して信号処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された処理信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0013】上記の課題を解決するために、請求項2に 30 記載の発明は、予め設定された入力サンプリング周波数 でサンプリングされて外部から入力されるディジタル入 力信号に対して、アッテネート信号に対する信号処理手 段における増減信号処理のレベルが当該信号処理手段で 処理可能なレベルより高いレベルとなることを防止すべ く、当該増減信号処理に対応して前記ディジタル入力信 号のレベルを低減し、前記アッテネート信号を生成して 前記信号処理手段に出力するアッテネート部等のアッテ ネート手段と、前記アッテネート信号に対して当該アッ テネート信号における予め設定された第1特定周波数帯 40 域のレベルを増強する増強処理と当該アッテネート信号 における前記第1特定周波数帯域と異なる予め設定され た第2特定周波数帯域のレベルを低減する低減処理との いずれか一方を少なくとも含む前記増減信号処理を行っ て前記処理信号を生成する信号処理部等の前記信号処理 手段と、前記ディジタル入力信号、前記アッテネート信 号又は前記処理信号のうち、いずれか一の信号のサンプ リング周波数を前記入力サンプリング周波数のN(Nは 1より大きい実数) 倍のサンプリング周波数に変換する オーバサンプリング部等のサンプリングレート変換手段 50

と、設定信号により示されるノイズシェーピング特性に基づき、前記生成された処理信号を量子化すると共に当該処理信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成するノイズシェーピング部等のノイズシェーピング手段と、前記アッテネート手段における低減処理の周波数ーレベル特性及び前記増減信号処理における周波数ーレベル特性に対応して、前記処理信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を前記入カサンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて前記ディジタル出力信号を生成するように前記ノイズシェーピング特性を設定し、前記設定信号を生成する制御部等の設定手段と、を備える。

【0014】請求項2に記載の発明の作用によれば、アッテネート手段は、信号処理手段における増減信号処理に対応してディジタル入力信号のレベルを低減し、アッテネート信号を生成して信号処理手段に出力する。

【0015】次に、信号処理手段は、アッテネート信号 に対して増減信号処理を行って処理信号を生成する。

【0016】このとき、サンプリングレート変換手段は、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリング周波数を入力サンプリング周波数のN倍のサンプリング周波数に変換する。

【0017】そして、ノイズシェーピング手段は、設定信号により示されるノイズシェーピング特性に基づき、 生成された処理信号を量子化すると共に当該処理信号に 対してノイズシェーピング処理を施し、ディジタル出力 信号を生成する。

【0018】このとき、設定手段は、アッテネート手段における低減処理の周波数ーレベル特性及び増減信号処理における周波数ーレベル特性に対応して、処理信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させてディジタル出力信号を生成するようにノイズシェーピング特性を設定し、設定信号を生成する。

【0019】よって、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更に処理信号に対して、アッテネート手段における低減処理の周波数ーレベル特性及び増減個号処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、信号処理手段において増強処理を行うときでも、レベルが低減された処理信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0020】上記の課題を解決するために、請求項3に

記載の発明は、予め設定された入力サンプリング周波数 でサンプリングされて外部から入力されるディジタル入 力信号に対して、当該ディジタル入力信号における予め 設定された第1特定周波数帯域のレベルを増強する増強 処理と当該アッテネート信号における前記第1特定周波 数帯域と異なる予め設定された第2特定周波数帯域のレ ベルを低減する低減処理とのいずれか一方を少なくとも 含む増減信号処理を行って処理信号を生成し、アッテネ ート手段に出力する信号処理部等の信号処理手段と、デ ィジタル出力信号のレベルが予め設定された所定のレベ 10 ルを越えることを防止すべく、前記増減信号処理に対応 して前記処理信号のレベルを低減し、アッテネート信号 を生成してノイズシェーピング手段に出力するアッテネ ート部等の前記アッテネート手段と、前記ディジタル入 力信号、前記アッテネート信号又は前記処理信号のう ち、いずれか一の信号のサンプリング周波数を前記入力 サンプリング周波数のN(Nは1より大きい実数)倍の サンプリング周波数に変換するオーバサンプリング部等 のサンプリングレート変換手段と、設定信号により示さ れるノイズシェーピング特性に基づき、前記生成された アッテネート信号を量子化すると共に当該アッテネート 信号に対してノイズシェーピング処理を施し、前記ディ ジタル出力信号を生成するノイズシェーピング部等のノ イズシェーピング手段と、前記アッテネート手段におけ る低減処理の周波数ーレベル特性及び前記増減信号処理 における周波数-レベル特性に対応して、前記アッテネ ート信号を量子化する際に生じる量子化特性の劣化を補 正すると共に当該量子化特性の補正により生じる量子化 雑音の増加分を前記入力サンプリング周波数の二分の一 の周波数よりも高い周波数帯域に移行させて前記ディジ 30 タル出力信号を生成するように前記ノイズシェーピング 特性を設定し、前記設定信号を生成する制御部等の設定 手段と、を備える。

【0021】請求項3に記載の発明の作用によれば、信号処理手段は、ディジタル入力信号に対して増減信号処理を行って処理信号を生成しアッテネート手段に出力する。

【0022】そして、アッテネート手段は、増減信号処理に対応して処理信号のレベルを低減し、アッテネート信号を生成してノイズシェーピング手段に出力する。

【0023】このとき、サンプリングレート変換手段は、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリング周波数を入力サンプリング周波数のN倍のサンプリング周波数に変換する。

【0024】そして、ノイズシェーピング手段は、設定信号により示されるノイズシェーピング特性に基づき、 生成されたアッテネート信号を量子化すると共に当該アッテネート信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成する。 【0025】このとき、設定手段は、アッテネート手段における低減処理の周波数 - レベル特性及び増減信号処理における周波数 - レベル特性に対応して、アッテネート信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させてディジタル出力信号を生成するようにノイズシェーピング特性を設定し、設定信号を生成する。

【0026】よって、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更にアッテネート信号に対して、アッテネート手段における低減処理の周波数 – レベル特性及び増減信号処理における周波数 – レベル特性に対応したノイズシェーピング処理を施すので、ディジタル出力信号のレベルを調整すべくアッテネート手段において低減処理を行っても、レベルが低減されたアッテネート信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0027】上記の課題を解決するために、請求項4に記載の発明は、請求項1から3のいずれか一項に記載のディジタル信号処理装置において、前記ノイズシェーピング手段は、予め設定されたディザを加算する加算器等のディザ加算手段を更に備え、前記設定手段は、当該ディザの加算により増加した雑音成分をも補償するように前記ノイズシェーピング特性を設定し前記設定信号を生成するように構成される。

【0028】請求項4に記載の発明の作用によれば、請求項1から3のいずれか一項に記載の発明の作用に加えて、ノイズシェーピング手段における加算手段はディザを加算する。

【0029】そして、設定手段は、当該ディザの加算により増加した雑音成分をも補償するようにノイズシェーピング特性を設定し設定信号を生成する。

【0030】よって、ディザの加算により量子化雑音を 白色雑音化できる共に当該ディザの加算により増加した 雑音成分も除去できる。

40 【0031】上記の課題を解決するために、請求項5に 記載の発明は、アッテネート信号に対する信号処理手段 における信号処理が当該信号処理手段で処理可能なレベルより高いレベルとなることを防止すべく、当該信号処理に対応して予め設定された周波数ーレベル特性に基づいて、予め設定された入力サンプリング商波数でサンプリングされて外部から入力されるディジタル入力信号のレベルを低減し、前記アッテネート信号を生成するアッテネート部等のアッテネート手段と、前記生成されたアッテネート信号に対して、予め設定された周波数ーレベル特性に基づき当該アッテネート信号における予め設定

された特定周波数帯域のレベルを増強する増強処理又は 前記特定周波数帯域のレベルを低減する低減処理のいず れか一方を少なくとも含む予め設定された前記信号処理 を施し、処理信号を生成する信号処理部等の前記信号処 理手段と、前記ディジタル入力信号、前記アッテネート 信号又は前記処理信号のうち、いずれか一の信号のサン プリング周波数を前記入力サンプリング周波数のN倍

(Nは1より大きい実数)のサンプリング周波数に変換するオーバサンプリング部等のサンプリングレート変換手段と、前記生成された処理信号を量子化すると共に、前記アッテネート手段における低減処理の周波数ーレベル特性及び前記信号処理における周波数ーレベル特性及び前記信号処理における周波数ーレベル特性の劣化を補正し、且つ当該量子化特性の補正により生じる量子化雑音の増加分を前記入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させるように予め設定されたノイズシェーピング特性に基づくノイズシェーピング処理を前記処理信号に対して施し、前記ディジタル出力信号を生成するノイズシェーピング郵等のノイズシェーピング手段と、を備える。

【0032】請求項5に記載の発明の作用によれば、アッテネート手段は、信号処理手段における信号処理に対応して予め設定された周波数-レベル特性に基づいてディジタル入力信号のレベルを低減しアッテネート信号を生成する。

【0033】そして、信号処理手段は、生成されたアッテネート信号に対して、予め設定された周波数 – レベル特性に基づき信号処理を施し、処理信号を生成する。

【0034】このとき、サンプリングレート変換手段は、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリング周波数を入力サンプリング周波数のN倍のサンプリング周波数に変換する。

【0035】そして、ノイズシェーピング手段は、生成された処理信号を量子化すると共に、アッテネート手段における低減処理の周波数ーレベル特性及び信号処理における周波数ーレベル特性に対応して処理信号を量子化する際に生じる量子化特性の劣化を補正し、且つ当該量子化特性の補正により生じる量子化雑音の増加分を入力サンプリング周波数の二分の一の周波数よりも高い周波 40数帯域に移行させるように予め設定されたノイズシェーピング特性に基づくノイズシェーピング処理を処理信号に対して施し、ディジタル出力信号を生成する。

【0036】よって、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更に処理信号に対してアッテネート手段における低減処理の周波数ーレベル特性及び信号処理手段における信号処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された処理信号の量子化により脱落したビット成分を50

補償することができると共に、入力サンプリング周波数 の二分の一の周波数より低い周波数帯域の量子化雑音を 相対的に低減できる。

【0037】上記の課題を解決するために、請求項6に 記載の発明は、予め設定された入力サンプリング周波数 でサンプリングされて外部から入力されるディジタル入 力信号に対して、当該ディジタル入力信号における予め 設定された特定周波数帯域のレベルを低減する低減処理 及び前記特性周波数帯域のレベルを増強する増強処理の いずれか一方を少なくとも含む予め設定された信号処理 を施し、処理信号を生成する信号処理部等の信号処理手 段と、ディジタル出力信号のレベルが予め設定された所 定のレベルを越えることを防止すべく、前記信号処理に 対応して前記処理信号のレベルを低減し、アッテネート 信号を生成するアッテネート部等のアッテネート手段 と、前記ディジタル入力信号、前記処理信号又は前記ア ッテネート信号のうち、いずれか一の信号のサンプリン グ周波数を前記入力サンプリング周波数のN倍(Nは1 より大きい実数)のサンプリング周波数に変換するオー バサンプリング部等のサンプリングレート変換手段と、 前記生成されたアッテネート信号を量子化すると共に、 前記アッテネート手段における低減処理の周波数-レベ ル特性及び前記信号処理における周波数ーレベル特性に 対応して前記アッテネート信号を量子化する際に生じる 量子化特性の劣化を補正し、且つ当該量子化特性の補正 により生じる量子化雑音の増加分を前記入力サンプリン グ周波数の二分の一の周波数よりも高い周波数帯域に移 行させるように予め設定されたノイズシェーピング特性 に基づくノイズシェーピング処理を前記アッテネート信 号に対して施し、前記ディジタル出力信号を生成するノ イズシェーピング部等のノイズシェーピング手段と、を 備える。

【0038】請求項6に記載の発明の作用によれば、信号処理手段は、ディジタル入力信号に対して予め設定された信号処理を施し、処理信号を生成する。

【0039】そして、アッテネート手段は、ディジタル 出力信号のレベルが予め設定された所定のレベルを越え ることを防止すべく、信号処理に対応して処理信号のレ ベルを低減し、アッテネート信号を生成する。

【0040】このとき、サンプリングレート変換手段は、ディジタル入力信号、処理信号又はアッテネート信号のうち、いずれか一の信号のサンプリング周波数を入力サンプリング周波数のN倍のサンプリング周波数に変換する。

【0041】そして、ノイズシェーピング手段は、生成されたアッテネート信号を量子化すると共に、アッテネート手段における低減処理の周波数ーレベル特性及び信号処理における周波数ーレベル特性に対応してアッテネート信号を量子化する際に生じる量子化特性の劣化を補正し、且つ当該量子化特性の補正により生じる量子化雑

ンプリングされた音響信号とされている。

音の増加分を入力サンプリング周波数の二分の一の周波 数よりも高い周波数帯域に移行させるように予め設定さ れたノイズシェーピング特性に基づくノイズシェーピン グ処理をアッテネート信号に対して施し、ディジタル出 力信号を生成する。

【0042】よって、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更にアッテネート信号に対して、アッテネート手段における低減処理の周波数ーレベル特性及び信号処理における周波数ーレベル特性に対応したノイズシェーピング処理を施すので、ディジタル出力信号のレベルを調整すべくアッテネート手段において低減処理を行っても、レベルが低減されたアッテネート信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0043】上記の課題を解決するために、請求項7に記載の発明は、請求項1から6のいずれか一項に記載のディジタル情報処理装置において、前記信号処理手段は、前記ディジタル入力信号におけるビット数に各前記量子化に伴って削減されるビット数を加えたビット数より多いビット数のディジタル処理が可能であるように構成される。

【0044】請求項7に記載の発明の作用によれば、請求項1から6のいずれか一項に記載の発明の作用に加えて、信号処理手段が、ディジタル入力信号におけるビット数に各量子化に伴って削減されるビット数を加えたビット数より多いビット数のディジタル処理が可能であるので、ディジタル信号処理装置全体としていわゆる桁落 30 ちによる量子化雑音の増加を防止できる。

【0045】上記の課題を解決するために、請求項8に記載の発明は、請求項2から7のいずれか一項に記載のディジタル信号処理装置と、前記ディジタル出力信号に対応する音を出力するスピーカ等のスピーカ手段と、を備えるスピーカシステムであって、前記ディジタル入力信号は、少なくとも40ヘルツよりも高い前記入力サンプリング周波数でサンプリングされた音響信号であると共に、前記信号処理手段は前記音響信号に対応する前記処理信号を生成し、更に前記ノイズシェーピング手段は前記量子化雑音の増加分を前記入カサンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて前記音響信号に対応する前記ディジタル出力信号を生成するように構成される。

【0046】請求項8に記載の発明の作用によれば、請求項2から7のいずれか一項に記載の発明の作用に加えて、スピーカ手段はディジタル出力信号に対応する音を出力する。

【0047】このとき、ディジタル入力信号は、少なくとも40ヘルツよりも高い入力サンプリング周波数でサ 50

【0048】また、信号処理手段は音響信号に対応する処理信号を生成する。

14

【0049】更にノイズシェーピング手段は量子化雑音の増加分を入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて音響信号に対応するディジタル出力信号を生成する。

【0050】よって、レベルが低減された音響信号に対応する処理信号の量子化により脱落したビット成分を補償することができると共に、音響信号における入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0051】上記の課題を解決するために、請求項9に記載の発明は、請求項8に記載のスピーカシステムにおいて、複数の前記スピーカ手段と、各前記スピーカ手段毎に設けられ、当該各スピーカ手段における出力特性を補正する複数のアッテネータ等の第2アッテネート手段と、各前記スピーカ手段毎に設けられ、前記第2アッテネート手段における補正処理に起因する量子化特性の劣化をも補正する前記ノイズシェーピング特性により前記ノイズシェーピング処理を夫々行う複数の前記ノイズシェーピング手段と、を備える。

【0052】請求項9に記載の発明の作用によれば、請求項8に記載の発明の作用に加えて、 複数のスピーカ 手段毎に設けられた第2アッテネート手段は、当該各ス ピーカ手段における出力特性を補正する。

【0053】そして、各スピーカ手段毎に設けられたノイズシェーピング手段は、第2アッテネート手段における補正処理に起因する量子化特性の劣化をも補正するノイズシェーピング特性によりノイズシェーピング処理を 夫々行う。

【0054】よって、複数のスピーカ手段を有するスピーカシステムであっても、量子化特性を改善すると共に各スピーカ手段の出力特性を補正することができる。

【0055】上記の課題を解決するために、請求項10 に記載の発明は、予め設定された入力サンプリング周波 数でサンプリングされて外部から入力されるディジタル 入力信号に対応する音を出力するスピーカ等のスピーカ 手段を備えるスピーカシステムにおいて、前記スピーカ 手段の出力特性を補正するべくディジタル入力信号に対 して当該ディジタル入力信号のレベルを低減する低減処 理を少なくとも含む補正処理を施し、補正信号を生成す るアッテネータ等の補正手段と、前記ディジタル入力信 号又は前記補正信号のうち、いずれか一の信号のサンプ リング周波数を前記入力サンプリング周波数のN倍(N は1より大きい実数)のサンプリング周波数に変換する オーバサンプリング部等のサンプリングレート変換手段 と、設定信号により示されるノイズシェーピング特性に 基づき、前記生成された補正信号を量子化すると共に当 該補正信号に対してノイズシェーピング処理を施し、デ

ィジタル出力信号を生成するノイズシェーピング部等のノイズシェーピング手段と、前記補正処理の周波数ーレベル特性に対応して、前記補正信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を前記入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させて前記ディジタル出力信号を生成するように前記ノイズシェーピング特性を設定し、前記設定信号を生成する制御部等の設定手段と、を備える。

【0056】請求項10に記載の発明の作用によれば、 補正手段は、スピーカ手段の出力特性を補正するべくディジタル入力信号に対して当該ディジタル入力信号のレベルを低減する低減処理を少なくとも含む補正処理を施し、補正信号を生成する。

【0057】このとき、サンプリングレート変換手段は、ディジタル入力信号又は補正信号のうち、いずれか一の信号のサンプリング周波数を入力サンプリング周波数のN倍のサンプリング周波数に変換する。

【0058】そして、ノイズシェーピング手段は、設定信号により示されるノイズシェーピング特性に基づき、生成された補正信号を量子化すると共に当該補正信号に対してノイズシェーピング処理を施し、ディジタル出力信号を生成する。

【0059】このとき、設定手段は、補正処理の周波数 -レベル特性に対応して、補正信号を量子化する際に生じる量子化特性の劣化を補正すると共に当該量子化特性の補正により生じる量子化雑音の増加分を入力サンプリング周波数の二分の一の周波数よりも高い周波数帯域に移行させてディジタル出力信号を生成するようにノイズシェーピング特性を設定し、設定信号を生成する。

【0060】よって、ディジタル入力信号又は補正信号のうち、いずれか一の信号のサンプリングレートを増加し、更に補正信号に対して補正処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された補正信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0061】上記の課題を解決するために、請求項11に記載の発明は、請求項10に記載のスピーカシステム 40において、複数の前記スピーカ手段と、各前記スピーカ手段毎に設けられ、前記ディジタル入力信号に対して当該各スピーカ手段における出力特性を補正するための前記補正処理を更に施し、前記補正信号を夫々生成する複数の前記補正手段と、各前記スピーカ手段毎に設けられ、各前記補正手段における補正処理に起因する量子化特性の劣化をも補正する前記ノイズシェーピング特性により前記ノイズシェーピング処理を夫々行う複数の前記ノイズシェーピング手段と、を備える。

【0062】請求項11に記載の発明の作用によれば、

請求項10に記載の発明の作用に加えて、複数のスピーカ手段毎に設けられた補正手段は、ディジタル入力信号に対して当該各スピーカ手段における出力特性を補正するための補正処理を更に施し、補正信号を夫々生成する。

【0063】そして、各スピーカ手段毎に設けられたノイズシェーピング手段は、各補正手段における補正処理 に起因する量子化特性の劣化をも補正するノイズシェー ピング特性によりノイズシェーピング処理を夫々行う。

【0064】よって、複数のスピーカ手段を有するスピーカシステムであっても、量子化特性を改善すると共に各スピーカ手段の出力特性を補正することができる。

【0065】上記の課題を解決するために、請求項12 に記載の発明は、請求項11に記載のスピーカシステム において、各前記補正手段は、各前記スピーカ手段間に おける出力特性の相違を補償するように構成される。

【0066】請求項12に記載の発明の作用によれば、 請求項11に記載の発明の作用に加えて、各補正手段が 各スピーカ手段間における出力特性の相違を補償するの で、歪みの無い良好な音を出力することができる。

【0067】上記の課題を解決するために、請求項13に記載の発明は、請求項8から12のいずれか一項に記載のスピーカシステムにおいて、前記ディジタル出力信号のうち、前記入力サンプリング周波数の二分の一より高い周波数帯域の当該ディジタル出力信号のレベルを低減するローパスフィルタ等のローパスフィルタ手段を更に備える。

【0068】請求項13に記載の発明の作用によれば、請求項8から12のいずれか一項に記載の発明の作用に加えて、ローパスフィルタ手段は、ディジタル出力信号のうち、入力サンプリング周波数の二分の一より高い周波数帯域の当該ディジタル出力信号のレベルを低減する

【0069】よって、サンプリング周波数よりも高い周波数帯域に移行している量子化雑音を除去することができる。

[0070]

【発明の実施の形態】次に、本発明に好適な実施の形態について、図面に基づいて説明する。なお、以下に説明する実施の形態は、周波数帯の異なる音の再生を夫々に担う複数のスピーカを有するスピーカシステムについて本発明を適用した場合の実施の形態である。

【0071】(I)本発明の原理

先ず、具体的な実施形態を説明する前に、本発明の原理 について図1及び図2を用いて説明する。

【0072】図1(a)に示すように、本発明は、サンプリングレート変換手段としてのオーバサンプリング部1と、アッテネート手段としてのアッテネート部2と、信号処理手段としての信号処理部3と、ノイズシェーピング手段としてのノイズシェーピング部4と、設定手段

としての制御部5と、により構成されている。

【0073】なお、この構成のうち信号処理部3の型式としては、いわゆる固定小数点型又は浮動小数点型のいずれでもよいが、以下の説明では、固定小数点型の信号処理部を用いた場合について説明する。

【0074】また、ノイズシェーピング部4は、図1 (b)に示すように、加算器6及び9と、ディザ加算手 段としての加算器7と、再量子化器8と、フィルタ10 と、により構成されている。

【0075】次に動作を説明する。

【0076】外部からオーバサンプリング部1に入力されるディジタル入力信号Sinは、当該オーバサンプリング部1において当該ディジタル入力信号Sinのサンプリング周波数fsの2倍のサンプリング周波数でオーバサンプリングされ、サンプリング信号Sovが生成されてアッテネート部2に出力される。

【0077】次に、生成されたサンプリング信号Sovは、制御部5からの制御信号Scaに基づいて、後述するアッテネート信号Satに対して信号処理部3においてレベルの増強処理(いわゆるブースト処理)を行った結果、そのレベルが当該信号処理部3において処理可能な最大レベルを越えてしまわないようにサンプリング信号Sovのレベルを低減し、上記アッテネート信号Satを生成して信号処理部3に出力する。

【0078】そして、信号処理部3では、制御部5からの制御信号Srに基づいて、入力されたアッテネート信号Satに対してそのレベルを変換する変換処理を行い、処理信号Spcを生成してノイズシェーピング部4に出力する。

【0079】ここで、信号処理部3における変換処理は、例えば、使用者がディジタル入力信号Sinにおける特定の周波数帯域のレベルを増強したり(上記プースト処理)又は特定の周波数帯域のレベルを低減したりすることを所望した場合に、これに対応する操作が図示しない操作部で実行されたとき、当該操作に対応した制御信号が制御部5に入力され、当該制御部5から当該操作に対応する上記制御信号Srが信号処理部3に出力され、信号処理部3においてこれによりアッテネート信号Satに対して当該操作に対応するレベルの増強処理又は低減処理が施される。

【0080】次に、ノイズシェーピング部4は、制御部5からの制御信号Scnに基づいて、入力された処理信号Spcに対していわゆるノイズシェーピング処理を施し、ディジタル出力信号Soutを生成し、外部に出力する。

【0081】ここで、当該ノイズシェーピング処理としては、当該制御信号Scnに基づいて、アッテネート部2及び信号処理部3においてレベルが低減された処理信号Spcを再量子化すること及び当該再量子化により削除された下位ビットを補正すると共に、当該補正により生じたいわゆる量子化雑音の増加分を、当該処理信号Spcの50

サンプリング周波数(現在では2×fs)に対して(fs /2)の周波数より高い周波数帯域に移行させる処理が 実行される。

【0082】より具体的に図1(b)を用いて説明すると、ノイズシェーピング処理部4に入力された処理信号Spcは、加算器6において、フィルタ10からのフィルタ信号Sfの論理を反転した信号が加算され、加算信号Sdが生成される。

【0083】次に、加算信号Sdは加算器7において後 述する方法によりディザ信号Szが加算され、加算信号 Sdzとして再量子化器8に出力される。そして、再量子 化器8において再量子化され、上記ディジタル出力信号 Soutとして出力される。

【0084】一方、ディジタル出力信号Soutは、加算器9にも出力され、当該加算器9において加算信号Sdの論理を反転した信号と加算され、加算信号Sadとして上記フィルタ10に入力される。

【0085】その後、当該フィルタ10により、制御部5からの制御信号Scnに基づいて設定されるノイズシェーピング特性によりフィルタ処理が施され、上記フィルタ信号Sfとして加算器6に出力される。

【0086】ここで、ノイズシェーピング部4における ノイズシェーピング処理について、より具体的に例示し つつ図2を用いて説明する。

【0087】なお、以下に示す例示は、ディジタル入力信号Sinのサンプリング周波数がfsであり(従って、ディジタル入力信号Sinとしての情報は、周波数(fs/2)以下の周波数帯域に存在していることとなる。これは、いわゆる標本化定理によるものである。)、当該ディジタル入力信号Sinに対して、信号処理部 3において周波数 f_1 (<fs/2)を中心として 3 デシベルのレベル増強処理を行い、且つ周波数 f_2 (<fs/2)を中心として 6 デシベルのレベル低減処理を行う場合について示すものであり、この処理に対応してアッテネータ部2では、サンプリング信号Sovに対して全ての周波数帯域に渡って一様に 3 デシベルのレベル低減処理を行っている。

【0088】先ず、本例では、信号処理部3において、上述のように周波数 f₁を中心として3デシベルのレベル増強処理を行うと共に周波数 f₂を中心として6デシベルのレベル低減処理を行うので、その周波数-レベル特性は図2(a)に示すような変化を有する特性となる。

【0089】一方、信号処理部3におけるレベル増強処理に対応して、アッテネート部2ではサンプリング信号Sovに対して全ての周波数帯域で一様に3デシベルのレベル低減処理を行うので、その周波数-レベル特性は図2(a)に示すように一様な特性となる。

【0090】そして、制御部5は、上記信号処理部3に おける各処理に対応して、図2(b)に示すようなノイ

ズシェーピング特性をフィルタ10に設定するように上記制御信号Scnを生成する。

【0091】ここで、図2(b)に示すノイズシェーピング特性としては、その原理から以下に示す三つの条件を具備する必要がある。

【0092】すなわち、

(a) 「1-H(z)」が最小位相推移特性であること。

【0093】(b) 1-H(z)」の対数パワースペクトル密度の平均が0であること。つまり、

【数1】

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log \left| 1 - H \left(e^{jw} \right)^{2} \right| dw = 0$$

であること。

【0094】(c) M個のタップを有するフィルタ10 の場合に以下の式が成立すること。

[0095]

【数2】

$$H(z) = Z^{-1} (a_0 + a_1 Z^{-1} + \cdots + a_{M-1} Z^{-(M-1)})$$

【0096】そこで、図2(b)に示すノイズシェーピング特性は上記の三つの要件を具備した上で以下に示すように設定される。

【0097】すなわち、 $0 \le f \le f s/2$ の周波数帯域については、

により図2(b)に示すノイズシェーピング特性の曲線が設定される。ここで、図2(b)に示す例では、ディザ信号Szの加算により、雑音が1 デシベル増加した場合について示している。

【0098】次に、 $fs/2 < f \le fs$ の周波数帯域については、図2(b)に右上がり斜線で示す領域Aの面積と同様に右下がり斜線で示す領域Bの面積とが等しくなるように、図2(b)における特性曲線と周波数軸とが交差する点及び当該交差点の周波数以上で周波数 fs以下の周波数帯域における最大値レベル(図2(b)中符 40号Mで示すレベル)を設定する。

【0099】なお、図2(b)に符号Bで示す領域については、この特性に拘泥するものではなく、上記領域Aと当該領域Bとの面積が等しければ、領域Bのノイズシェーピング特性は上述した三つの条件(a)、(b)及び(c)さえ満たされていれば、その他はどのような特性でもよい。

【0100】また、周波数 f sより大きく周波数 2 × f s 以下の周波数帯域におけるノイズシェーピング特性は、 フィルタ10を実数領域で構成する場合には、図2 20

(b)に示した周波数 - レベル特性を周波数 f sを示す レベル軸(|1-H(z)|軸)に平行な直線を対称軸 として線対称に折り返した形となる。

【0101】そして、上述したようにアッテネート部2のレベル低減処理及び信号処理部3における信号処理に基づいて設定された当該図2(b)で示す周波数-レベル特性によりノイズシェーピング部4においてノイズシェーピング処理を行うことにより、上述したノイズシェーピング処理としての機能、すなわち、アッテネート部2及び信号処理部3においてレベルが低減された処理信号Spcを再量子化すること及び当該再量子化により削除された下位ビットを補正すると共に、当該補正により生じたいわゆる量子化雑音の増加分を、当該処理信号Spcのサンプリング周波数に対して(fs/2)の周波数より高い周波数帯域に移行させる機能が発揮される。

【0102】次に、加算器7におけるディザ信号Szの加算方法について、図3を用いて説明する。

【0103】図3に示すように、加算器7におけるディザ信号Szとしては、例えば、図3(a)又は図3

(b) に示されるようなディザ信号Szを与えるが、本 発明においては、ディザの発生方法やその付加位置又は ディザの種類などには一切限定はない。

【0104】次に、上述した各構成部材の動作と並行して、制御部5は、図示しない操作部における操作に基づいて、信号処理部3におけるレベルの増強処理又は低減処理のための上記制御信号Srを生成すると共に、当該信号処理部3において実行すべき増強処理のレベルに対応して、当該レベルが信号処理部3の処理可能な最大レベルを超えないように上記アッテネート部2における低減処理のレベルを設定すべく上記制御信号Scaを生成して当該アッテネート部2に出力する。

【0105】さらに、制御部5は、操作部からの制御信号に基づいて、信号処理部3における増強処理及び低減処理のレベル並びにアッテネート部2に行わせる低減処理のレベルに対応して、図2(b)で示した特性のノイズシェーピング処理をノイズシェーピング部4に実行させるべく、上記制御信号Scnをフィルタ10に出力する。

【0106】これらの制御部5の動作により上記各構成 部材が制御されることとなる。

【0107】(II) <u>第1実施形態</u>

次に、上述した原理に基づく本発明の第1実施形態について、図4及び図5を用いて説明する。なお、以下に説明する第1実施形態は、二つのスピーカを備えた、いわゆる2ウエイのディジタルスピーカシステムについて本発明を適用した場合の実施の形態である。

【0108】また、図4において、図1に示す場合と同様の構成部材については同様の部材番号を付して細部の説明を省略する。

【0109】図4に示すように、第1実施形態のディジ

タルスピーカシステムSは、上述した機能を有するオーパサンプリング部1及びアッテネート部2と、信号処理部3と、上述した機能を有するノイズシェーピング部4a及び4bと、D/Aコンパータ36及び44と、ローパスフィルタ手段としてのローパスフィルタ37及び45と、アンプ38及び46と、スピーカ手段としてのスピーカ39及び47とにより構成されている。ここで、スピーカ47が主として高域を再生し、スピーカ39が主として中域及び低域を再生する。

【0110】また、信号処理部3は、グラフィックイコライザ31と、ローパスフィルタ32と、ハイパスフィルタ40と、インバータ33及び41と、第2アッテネート手段及び補正手段としてのアッテネータ34及び42と、ディレイ部35及び43と、上述した機能を有する制御部5と、により構成されている。なお、当該信号処理部3で処理可能なビット数の最大値としては、ディジタル入力信号Sinにおけるビット数(例えば24ビット)に後述する各ノイズシェーピング部における再量子化処理に伴って削減されるビット数(例えば2ビット)を加えたビット数(例えば、26ビット)以上のビット数のディジタル処理が可能とされている。

【0111】更に、インバータ33及び41は、夫々、スイッチ33a、33c、41a及び41cと反転器33b及び41bとにより構成されている。

【0112】ここで、ノイズシェーピング部4a及び4bは、夫々に図1(b)に示したノイズシェーピング部4と同様の構成を有している。

【0113】次に、動作を説明する。

【0114】オーバサンプリング部1は、上述した原理と同様に、ディジタル入力信号Sinをそのサンプリング 周波数 fsの2倍のサンプリング周波数でオーバサンプリングしてサンプリング信号Sovを生成しアッテネート部2に出力する。

【0115】そして、アッテネート部2は、制御部5からの制御信号Scaに基づいて、信号処理部3においてブースト処理を行った結果、そのレベルが当該信号処理部3において処理可能な最大レベルを越えてしまわないようにサンプリング信号Sovのレベルを低減し、アッテネート信号Satを生成して信号処理部3に出力する。このとき、当該レベル低減処理における周波数ーレベル特性40としては、例えば、図2(a)に示す全周波数帯域に渡って一様なレベル低減特性が採用される。

【0116】次に、信号処理部3内のグラフィックイコライザ31は、制御部5からの制御信号Sgerに基づいて、入力されたアッテネート信号Satに対してそのレベルを増強又は減少する変換処理を行い、イコライザ信号Sgeを生成してローパスフィルタ32及びハイパスフィルタ40に出力する。このときの当該変換処理のための周波数-レベル特性は、例えば、図2(a)に「信号処理部」として示す特性が採用される。

【0117】次に、ローパスフィルタ32は、入力されたイコライザ信号Sgeからスピーカ39により再生すべき低域及び中域の信号を抽出し、低域抽出信号Slとしてインバータ33に出力する。

【0118】そして、インパータ33は、スイッチ33 a及び33cを協動的に動作させて低域抽出信号Slを反転器33bにより反転するか又はそのまま通過させて低域インパータ信号Slcを生成し、アッテネータ34に出力する。

10 【0119】ここで、インバータ33は、スピーカ39 の種類によっては当該スピーカ39内の振動板を振動させる方向が同じ後述のディジタル出力信号Soutに対して逆となる場合があるため、これを調整すべく必要に応じて低域抽出信号Slを反転させるためのものである。

【0120】次に、アッテネータ34は、制御部5からの制御信号Satlに基づいて、入力された低域インバータ信号Slcのレベルを予め設定されたレベルだけ低減し、低域アッテネート信号Salcを生成してディレイ部35に出力する。

0 【0121】ここで、アッテネータ34は、スピーカ39の種類によっては同じディジタル出力信号Soutであっても出力される音圧レベルが異なる場合があるため、スピーカ47から出力される音圧レベルとのバランスをとって再生音の歪みを是正すべく、必要に応じて低域インバータ信号Slcのレベルを減衰させるためのものである。

【0122】次に、ディレイ部35は、スピーカ39とスピーカ47との間で夫々に出力される音の位相を合わせるべく低域アッテネート信号Salcの位相を調整し、低域処理信号Spclを生成してノイズシェーピング部4aに出力する。

【0123】そして、ノイズシェーピング部4aは、制御部5aからの制御信号Scnlに基づいて、上記アッテネート部2、グラフィックイコライザ31及びアッテネータ34におけるレベルの増強処理及び低減処理に対応するノイズシェーピング特性で低域処理信号Spclに対してノイズシェーピング処理を施し、低域ディジタル出力信号Soutlを生成する。

【0124】このとき、上記アッテネート部2及びグラフィックイコライザ31におけるレベルの増強処理及び低減処理の周波数ーレベル特性として図2(a)に示す特性が採用された場合には、当該ノイズシェーピング特性に対応する周波数ーレベル特性としては、例えば、図2(b)に示す周波数ーレベル特性に対してアッテネータ34におけるレベル低減処理の影響を図2に示した方法と同様の方法により加味した特性が採用される。

【0125】このノイズシェーピング処理により、アッテネート部2及び信号処理部3においてレベルが低減された低域処理信号Spclの再量子化により削除された下位ビットが補正されると共に、当該補正により生じたい

わゆる量子化雑音の増加分が元のディジタル入力信号Sinのサンプリング周波数の二分の一の周波数より高い周波数帯域に移行される。

【0126】そして、D/Aコンバータ36は低域ディジタル出力信号Soutlをディジタル信号からアナログ信号に変換し、低域アナログ信号Slaを生成してローパスフィルタ37に出力する。

【0127】次に、ローパスフィルタ37は、当該低域アナログ信号Slaのうち、周波数fs/2以上の周波数帯域の信号を低減し、アナログ出力信号Soualを生成す 10る。このローパスフィルタ37の機能により、上述した各部の処理で生じた量子化雑音の大部分がノイズシェーピング部4aの処理により移行されている周波数fs/2以上の周波数帯域の信号が低減され、従って、周波数fs/2以下の周波数帯域内の当該量子化雑音が実質的に低減されることとなる。

【0128】そして、アンプ38は、アナログ出力信号 Soualをスピーカ39を駆動可能なレベルまで増幅し、 当該スピーカ39に出力してこれを駆動する。

【0129】その後、スピーカ39は、アナログ出力信 20号Soualに対応する音を出力する。

【0130】一方、ハイパスフィルタ40は、入力されたイコライザ信号Sgeからスピーカ47により再生すべき高域の信号を抽出し、高域抽出信号Shとしてインバータ41に出力する。

【0131】そして、インバータ41は、スイッチ41 a及び41c を協動的に動作させて高域抽出信号Shを 反転器 41 bにより反転するか又はそのまま通過させて 高域インバータ信号 Shcを生成し、アッテネータ42に 出力する。

【0132】ここで、インバータ41は、上記インバータ33と同様に、スピーカ47の種類によっては当該スピーカ47内の振動板を振動させる方向が同じ後述するディジタル出力信号Southに対して逆となる場合があるため、これを調整すべく必要に応じて高域抽出信号Shを反転させるためのものである。

【0133】次に、アッテネータ42は、制御部5からの制御信号Sathに基づいて、入力された高域インバータ信号Shcのレベルを予め設定されたレベルだけ低減し、高域アッテネート信号Sahcを生成してディレイ部43に出力する。

【0134】ここで、アッテネータ42は、上記アッテネータ34と同様に、スピーカ47の種類によっては同じディジタル出力信号Southであっても出力される音圧レベルが異なる場合があるため、スピーカ39から出力される音圧レベルとのパランスをとって再生音の歪みを是正すべく、必要に応じて高域インパータ信号Shcのレベルを減衰させるためのものである。

【0135】次に、ディレイ部43は、スピーカ47と 部2における低減処理のレベルを設定すべく上記制でスピーカ39との間で夫々に出力される音の位相を合わ 50 号Scaを生成して当該アッテネート部2に出力する。

せるべく高域アッテネート信号Sahcの位相を調整し、 高域処理信号Spchを生成してソイズシェーピング部4 bに出力する。

【0136】そして、ノイズシェーピング部4bは、制御部5からの制御信号Scnhに基づいて、上記アッテネート部2、グラフィックイコライザ31及びアッテネータ42におけるレベルの増強処理及び低減処理に対応するノイズシェーピング特性で高域処理信号Spchに対してノイズシェーピング処理を施し、高域ディジタル出力信号Southを生成する。

【0137】このとき、上記アッテネート部2及びグラフィックイコライザ31におけるレベルの増強処理及び低減処理の周波数ーレベル特性として図2(a)に示す特性が採用された場合には、当該ノイズシェーピング特性に対応する周波数ーレベル特性としては、例えば、図2(b)に示す周波数ーレベル特性に対してアッテネータ42におけるレベル低減を図2に示した方法と同様の方法により加味した特性が採用される。

【0138】このノイズシェーピング処理により、アッテネート部2及び信号処理部3においてレベルが低減された高域処理信号Spchの再量子化により削除された下位ビットが補正されると共に、当該補正により生じたいわゆる量子化雑音の増加分が元のディジタル入力信号Sinのサンプリング周波数の二分の一の周波数より高い周波数帯域に移行される。

【0139】そして、D/Aコンバータ44は高域ディジタル出力信号Southをディジタル信号からアナログ信号に変換し、高域アナログ信号Shaを生成してローパスフィルタ45に出力する。

【0140】次に、ローパスフィルタ45は、当該高域アナログ信号Shaのうち、周波数fs/2以上の周波数帯域の信号を低減し、アナログ出力信号Souahを生成する。このローパスフィルタ45の機能により、上述した各部の処理により生じた量子化雑音の大部分がノイズシェーピング部4bの処理により移行されている周波数fs/2以上の周波数帯域の信号が低減され、従って、可聴周波数帯域内の当該量子化雑音が実質的に低減されたこととなる。

【0141】そして、アンプ46は、アナログ出力信号 Souahをスピーカ47を駆動可能なレベルまで増幅し、 当該スピーカ47に出力してこれを駆動する。

【0142】その後、スピーカ47は、アナログ出力信号Souahに対応する音を出力する。

【0143】一方、上述した低域抽出信号SI及び高域抽出信号Shに対する各構成部材の処理と並行して、制御部5は、グラフィックイコライザ31における増強処理のレベルに対応して、当該レベルが信号処理部3の処理可能な最大レベルを超えないように上記アッテネート部2における低減処理のレベルを設定すべく上記制御信息Seate

【0144】さらに、制御部5は、グラフィックイコラ イザ31において実行すべき増強処理及び低減処理のレ ベルに対応する上記制御信号Sgerを図示しない操作部 における操作に対応して生成すると共に、当該増強処理 及び低減処理のレベル並びにアッテネート部2に行わせ る低減処理並びにアッテネータ34及び42における低 減処理のレベルに対応して、例えば、図2(b)で示し た特性に対応して上述した特性のノイズシェーピング処 理をノイズシェーピング部4aに実行させるべく上記制 御信号Scnlをノイズシェーピング部4a内のフィルタ に出力すると共に、同様のノイズシェーピング処理をノ イズシェーピング部4bに実行させるべく上記制御信号 Scnhをノイズシェーピング部4b内のフィルタに出力

【0145】更にまた、制御部5は、スピーカ39及び 47における夫々の予め設定された音圧レベルのバラン スに基づいて各アッテネータ34及び42におけるレベ ルの低減量を制御すべく上記制御信号Satl及びSathを 出力する。

【0146】以上説明したように、実施形態のディジタ ルスピーカシステムSの動作によれば、ディジタル入力 信号Sinのサンプリングレートを増加し、更に高域処理 信号Spch又は低域処理信号Spclに対してアッテネート 部2及びアッテネータ34又は42における低減処理の 周波数-レベル特性及びグラフィックイコライザ31に おけるレベルの増強処理及び低減処理の周波数ーレベル 特性に対応したノイズシェーピング処理を施すので、サ ンプリング周波数 f sの二分の一の周波数より低い周波 数帯域の量子化雑音を相対的に低減できると共に、アッ テネート部2及びアッテネータ34又は42における低 減処理及びグラフィックイコライザ31における低減処 理後の高域処理信号Spch又は低域処理信号Spclを再量 子化する際に脱落したビット成分を補償することができ ることとなり、元のディジタル入力信号Sinにおける量 子化特性を劣化させること無くより当該ディジタル入力 信号Sinに忠実な音を再生できる。

【0147】また、ノイズシェーピング部4a又は4b ではディザ信号Szの加算により量子化雑音が白色雑音 化できると共に当該ディザ信号Szの加算により増加し た雑音成分も除去できる。

【0148】更に、ディジタル入力信号Sinにおけるビ ット数に各ノイズシェーピング部における再量子化処理 に伴って削減されるビット数を加えたビット数より多い ビット数のディジタル処理が信号処理部3で可能である ので、ディジタルスピーカシステムS全体としていわゆ る桁落ちによる量子化雑音の増加を防止できる。

【0149】なお、上述した構成のうち、ローパスフィ ルタ32及びハイパスフィルタ40については、この構 成の他に、図5(a)に示すように、イコライザ信号S geをハイパスフィルタ40におけるフィルタ処理により 50 は、イコライザ信号 S geから夫々の通過周波数帯域に対

生じる遅延を補償するようにディレイ部66で遅延させ た信号から高域抽出信号Shを減じた信号を上記低域抽 出信号S1として出力するように構成することもでき る。

【0150】また、これに対して、図5(b)に示すよ うに、イコライザ信号Sgeをローパスフィルタ32にお けるフィルタ処理により生じる遅延を補償するようにデ ィレイ部68で遅延させた信号から低域抽出信号S1を 減じた信号を上記高域抽出信号Shとして出力するよう に構成することもできる。

【0151】(III)第2実施形態

次に、本発明の他の実施形態である第2実施形態につい て、図6を用いて説明する。

【0152】上述した第1実施形態においては、スピー カを二つのみ備えた2ウエイのディジタルスピーカシス テムSについて本発明を適用した場合について説明した が、第2実施形態は更に多くのスピーカを有するディジ タルスピーカシステムについての実施形態である。

【0153】第2実施形態のディジタルスピーカシステ ムS'は、図6に示すように、上述したオーバサンプリ ング部1と、アッテネート部2と、グラフィックイコラ イザ31と、ローパスフィルタ50と、相互に通過周波 数帯域が異なるバンドパスフィルタ51、……、52 と、ハイパスフィルタ53と、スピーカ処理部54、5 5、……、56、57と、上記ローパスフィルタ50、 バンドパスフィルタ51、……、52及びハイパスフィ ルタ53に対応して、相互に再生する音の周波数帯域が 異なるスピーカ58、59、……、60及び61と、各 スピーカ処理部54、55、……、56、57並びにア ッテネート部2及びグラフィックイコライザ31を統括 的に制御する制御部62と、により構成されている。

【0154】ここで、スピーカ処理部54、55、… …、56、57は、夫々に第1実施形態で述べた、イン バータ(例えば、インバータ33に相当する。)、アッ テネータ(例えば、アッテネータ34に相当する。)、 ディレイ部(例えば、ディレイ部35に相当する。)、 ノイズシェーピング部(例えば、ノイズシェーピング部 4 a に相当する。)、D/Aコンバータ(例えば、D/ Aコンバータ36に相当する。)、ローパスフィルタ (例えば、ローパスフィルタ37に相当する。)及びア ンプ(例えば、アンプ38に相当する。)が含まれてい る。

【0155】次に、動作を説明する。

【0156】オーバサンプリング部1、アッテネート部 2及びグラフィックイコライザ31は、上述した第1実 施形態と同様の動作を行い、イコライザ信号Sgeを出力 する。

【0157】そして、ローパスフィルタ50、バンドパ スフィルタ51、……、52及びハイパスフィルタ53

応する信号を抽出し、夫々スピーカ処理部 5 4 、 5 5 、 ……、 5 6 又は 5 7 に出力する。

【0158】そして、各スピーカ処理部54、55、……、56又は57に含まれる各構成部材は、上述した第1実施形態と同様な処理を行い、各スピーカ58、59、……、60及び61を駆動するためのアナログ出力信号を生成する。

【0159】このとき、制御部62は、アッテネート部2及びグラフィックイコライザ31並びに各アッテネータにおいて実行されるレベル変更処理に対応して上記制御信号Sca及びSgerを出力すると共に、各スピーカ処理部54、55、…、56及び57内の各ノイズシェーピング部におけるノイズシェーピング特性を設定するための制御信号Scnを各スピーカ処理部54、55、…、56及び57に出力する。

【0160】これにより、上記出力された各アナログ出力信号には、各ノイズシェーピング部による本発明のノイズシェーピング処理が施されている。

【0161】すなわち、各アナログ出力信号においては、アッテネート部2及びグラフィックイコライザ31並びに各アッテネータにおいてレベルが低減された各信号の再量子化により削除された下位ビットが補正されると共に、当該補正により生じたいわゆる量子化雑音の増加分が元のディジタル入力信号Sinのサンプリング周波数に対して(fs/2)の周波数より高い周波数帯域に移行されている。

【0162】そして、スピーカ58、59、……、60 及び61は、夫々対応するアナログ出力信号に基づい て、対応する周波数帯域の音を再生する。

【0163】以上説明したように、第2実施形態のディジタルスピーカシステムS'によれば、第1実施形態の効果に加えて、複数のスピーカ58、59、……、60及び61を有するスピーカシステムS'であっても、量子化特性を改善すると共に各スピーカ58、59、……、60及び61の出力特性の相違による再生音の歪みを低減して良好な音を出力することができる。

【0164】(IV) 第3実施形態

次に、本発明の更に他の実施形態である第3実施形態に ついて、図7を用いて説明する。

【0165】上述した第1又は第2実施形態においては、グラフィックイコライザ31において、アッテネート信号Satのレベルの低減処理だけでなくレベルの増強処理をも行った場合について説明したが、第3実施形態は、グラフィックイコライザ31或いはアッテネータ34又は42においてアッテネート信号Sat或いは低域インバータ信号Slc又は高域インバータ信号Shcのレベル低減処理のみを行うディジタルスピーカシステムについて本発明を適用した場合の実施形態である。

【0166】第3実施形態のディジタルスピーカシステムの構成は、図4に示すディジタルスピーカシステムS

と基本的に同じであるので、細部の説明は省略する。

【0167】次に、第3実施形態の特徴であるノイズシェーピング部におけるノイズシェーピング特性の設定について図7を用いて説明する。

【0168】第3実施形態のディジタルスピーカシステムのグラフィックイコライザ31においては、上述のようにレベルの低減処理しか行われないので、当該グラフィックイコライザ31自体の処理により扱われる信号のレベルが当該グラフィックイコライザ31で扱えるレベルの最大値を越えることはあり得えない。従って、第3実施形態においては、アッテネータ部2におけるレベルの低減処理は必要がない。

【0169】よって、第3実施形態のノイズシェーピング処理では、信号処理部3及び各アッテネータでレベルが低減された各信号の再量子化により削除された下位ビットの補正処理及び当該補正により生じたいわゆる量子化雑音の増加分をサンプリング周波数の二分の一の周波数より高い周波数帯域に移行させる処理が実行される。

【0170】すなわち、ディジタル入力信号Sinのサンプリング周波数がfsであり、当該ディジタル入力信号Sinに対して、信号処理部3において周波数 f_2 (< fs/2)を中心として6デシベルのレベル低減処理(すなわち、グラフィックイコライザ31とアッテネータ34又は42の組み合わせによる低減処理)を行う場合について図7を用いて例示しつつより具体的に説明すると、本例では、信号処理部3において、上述のように周波数 f_2 を中心とした6デシベルのレベル低減処理のみを行うので、その周波数 -レベル特性は図7(a)に示すような変化を有する特性となる。

【0171】一方、信号処理部3におけるレベル低減処理に対しては、アッテネート部2におけるレベル低減処理は不要なので、アッテネート部2の周波数-レベル特性は図7(a)に示すように一様な0デシベルの特性となる。

【0172】従って、第3実施形態におけるノイズシェーピング特性は、第1実施形態で示した三つの条件に基づいて、図7(b)に示すように設定されるものとなる。

【0173】すなわち、0≤f≤fs/2の周波数帯域 40 については、

【数4】H(z) = (信号処理部3の周波数 - レベル特性) - (ディザ信号 Szの付加による雑音増加分の絶対値+各アッテネータにおいて低減されたレベルの絶対値)

により図7 (b) に示すノイズシェーピング特性の曲線が設定される。ここで、図7 (b) に示す例では、ディザ信号Szの加算により、雑音が1デシベル増加した場合について示している。

【0174】次に、fs/2<f≤fsの周波数帯域につ 50 いては、図7(b)に右上がり斜線で示す領域Aの面積 と同様に右下がり斜線で示す領域Bの面積とが等しくなるように、図7 (b) における特性曲線と周波数軸とが交差する点及び当該交差点の周波数以上で周波数fs以下の周波数帯域における最大値レベル(図7 (b) 中符号Mで示すレベル)を設定する。

【0175】なお、第1実施形態と同様に、図7(b)に符号Bで示す領域については、この特性に拘泥するものではなく、上記領域Aと当該領域Bとの面積が等しければ領域Bのノイズシェーピング特性は、上述した三つの条件(a)、(b)及び(c)さえ満たされていれば、その他はどのような特性でもよい。

【0176】また、周波数 fsより大きく周波数 $2 \times fs$ 以下の周波数帯域におけるノイズシェーピング特性は、第1実施形態と同様に、図7(b)に示した周波数 -レベル特性を周波数 fsを示すレベル軸に平行な直線を対称軸として線対称に折り返した形となる。

【0177】そして、上述したように信号処理部3におけるレベル低減処理に基づいて設定された当該図7

(b) で示す周波数ーレベル特性によりノイズシェーピング部においてノイズシェーピング処理を行うことにより、上述したノイズシェーピング処理としての機能が発揮される。

【0178】以上説明したように、第3実施形態のディジタルスピーカシステムの動作によれば、ディジタル入力信号Sinのサンプリングレートを増加し、更に信号処理部3におけるレベル低減処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、各再量子化処理により脱落したビット成分を補償することができると共に、サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0179】(V)変形形態

次に、本発明の他の変形形態について説明する。

【0180】先ず、上述した各実施形態においては、グラフィックイコライザ31におけるレベルの変更を可変とした場合について説明したが、これ以外に、当該グラフィックイコライザにおけるレベルの変更を予め設定された場合のみに固定したディジタルスピーカシステムに対して本発明を適用することもできる。

【0181】この場合には、アッテネート部2におけるレベル低減の程度もグラフィックイコライザ31におけるレベル変更の程度に対応して一通りに固定的に決まるので、結果として、ノイズシェーピング部におけるノイズシェーピング特性も可変とする必要はなく、上記各実施形態における制御部が不要となる。

【0182】そして、この場合にも、固定的とされているグラフィックイコライザ31におおける周波数ーレベル特性及びアッテネート部2における周波数ーレベル特性に対応して上述した方法で当該ノイズシェーピング特性を固定的に決定することにより、本発明としての効果、すなわち、ディジタル入力信号Sinにおける量子化50

精度を落とすことなく量子化雑音を低減して量子化特性を改善し、よりディジタル入力信号Sinに近い音を再生することができる。

【0183】また、上述の各実施形態においては、最初にオーバサンプリング部1におけるサンプリングレートの増加を行ったが、これ以外に、当該オーバサンプリング部1の位置は、ノイズシェーピング部4a又は4bの前段であれば、いずれの位置に接続してもよい。

【0184】更に、信号処理部3が、例えば浮動小数点型DSP等で構成されていることによってディジタル値としての「1.0」以上のレベルを有する信号を扱うことができるのであれば、アッテネート部2を上記各実施形態と異なるいずれの位置に接続してもよい。

【0185】より具体的には、例えば、ディジタル出力信号Soutのレベルがディジタル値としての「1.0」を越えないように、信号処理部部3とノイズシェーピング部4の間にアッテネート部2を設けてもよい。

【0186】更に、上述した各実施形態及び変形形態では、オーバサンプリング処理のためのサンプリング周波数として、元のディジタル入力信号Sinのサンプリング周波数の2倍のサンプリング周波数を用いたが、これ以外に、ディジタル入力信号Sinのサンプリング周波数をそのN倍(Nは1より大きい実数)に変換した場合でも、各実施形態及び変形形態と同様の効果が得られる。

【0187】更にまた、上述した各実施形態及び変形形態は、本発明を音響信号としてのディジタル入力信号Sinに対して適用した場合の実施形態及び変形形態について説明したが、これ以外に、例えば、画像信号に対しても本発明をそのまま適用して、そのレベルの増減を伴う処理を行っても、量子化精度を維持しつつ量子化雑音を低減することができる。

【0188】また、これまで説明してきたノイズシェーピング特性は、信号処理部3又はアッテネート部2の特性の変化に基づいて設定されていたが、これ以外に、例えば信号処理部3のレベル変更特性の下限値又はアッテネータ部2のレベル変更特性の下限値が予め定まっていれば、その値に基づいて固定的にノイズシェーピング特性を決定することもできる。

【0189】更に、上述した信号処理部3及びアッテネート部2における信号処理は各サンプル毎に実行されるが、これらの処理を実時間で実行するとき、サンプリング周波数の変更前では一サンプルの時間はサンプリング周波数変更後に比して長くなる。

【0190】従って、オーバサンプリング部1を信号処理部3又はアッテネート部2の後段に置くことにより、信号処理の実行に使用できる時間が長くなる。これにより、同じ能力の信号処理部3を使用する場合、サンプリング周波数の変更前にレベル変更等のこれらの処理を行えば、サンプリング周波数変更後にこれらの処理を行う場合よりも多くの処理を実行することができる。

[0191]

【発明の効果】以上説明したように、請求項1に記載の発明によれば、ディジタル入力信号又は処理信号のサンプリングレートを増加し、更に処理信号に対して信号処理の周波数-レベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された処理信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0192】従って、元のディジタル入力信号における 量子化の精度を維持したまま信号処理を施すと共に、量 子化雑音を低減して出力することができ、元のディジタ ル入力信号により近いディジタル出力信号を得ることが できる。

【0193】請求項2に記載の発明によれば、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更に処理信号に対して、アッテネート手段における低減処理の周波数ーレベル特性及び増減信号処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、信号処理手段において増強処理を行うときでも、レベルが低減された処理信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0194】従って、信号処理手段において増強処理を行うときでも、元のディジタル入力信号における量子化の精度を維持したまま信号処理を施すと共に、量子化雑音を低減して出力することができ、元のディジタル入力信号により近いディジタル出力信号を得ることができる。

【0195】請求項3に記載の発明によれば、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更にアッテネート信号に対して、アッテネート手段における低減処理の周波数ーレベル特性及び増減信号処理における周波数ーレベル特性に対応したノイズシェーピング処理を施すので、ディジタル出力信号のレベルを調整すべくアッテネート手段において低減処理を行っても、レベルが低減されたアッテネート信号の量子化により脱落したピット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0196】従って、アッテネート手段において低減処理を行うときでも、元のディジタル入力信号における量子化の精度を維持したまま信号処理を施すと共に、量子化雑音を低減して出力することができ、元のディジタル入力信号により近いディジタル出力信号を得ることができる

【0197】請求項4に記載の発明によれば、請求項1.50

から3のいずれか一項に記載の発明の効果に加えて、ディザの加算により量子化雑音を白色雑音化できる共に当該ディザの加算により増加した雑音成分も除去できる。

【0198】請求項5に記載の発明によれば、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更に処理信号に対してアッテネート手段における低減処理の周波数ーレベル特性及び信号処理手段における信号処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された処理信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0199】従って、元のディジタル入力信号における 量子化の精度を維持したまま信号処理を施すと共に、量 子化雑音を低減して出力することができ、元のディジタ ル入力信号により近いディジタル出力信号を得ることが できる。

【0200】請求項6に記載の発明によれば、ディジタル入力信号、アッテネート信号又は処理信号のうち、いずれか一の信号のサンプリングレートを増加し、更にアッテネート信号に対して、アッテネート手段における低減処理の周波数ーレベル特性及び信号処理における周波数ーレベル特性に対応したノイズシェーピング処理を施すので、ディジタル出力信号のレベルを調整すべくアッテネート手段において低減処理を行っても、レベルが低減されたアッテネート信号の量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

【0201】従って、アッテネート手段において低減処理を行うときでも、元のディジタル入力信号における量子化の精度を維持したまま信号処理を施すと共に、量子化雑音を低減して出力することができ、元のディジタル入力信号により近いディジタル出力信号を得ることができる。

【0202】請求項7に記載の発明によれば、請求項1から6のいずれか一項に記載の発明の効果に加えて、ディジタル入力信号におけるビット数に各量子化に伴って削減されるビット数を加えたビット数より多いビット数のディジタル処理が可能であるので、ディジタル信号処理装置全体としていわゆる桁落ちによる量子化雑音の増加を防止できる。

【0203】請求項8に記載の発明によれば、請求項2から7のいずれか一項に記載の発明の効果に加えて、レベルが低減された音響信号に対応する処理信号の量子化により脱落したビット成分を補償することができると共に、音響信号における入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。

[0204]従って、元の音響信号における量子化の精度を維持したまま信号処理を施すと共に、量子化雑音を低減し元のディジタル入力信号により近い音として出力することができる。

【0205】請求項9に記載の発明によれば、請求項8に記載の発明の効果に加えて、複数のスピーカ手段を有するスピーカシステムであっても、量子化特性を改善すると共に各スピーカ手段の出力特性を補正することができる。

【0206】請求項10に記載の発明によれば、ディジ りタル入力信号又は補正信号のうち、いずれか一の信号のサンプリングレートを増加し、更に補正信号に対して補正処理の周波数ーレベル特性に対応したノイズシェーピング処理を施すので、レベルが低減された補正信号を量子化により脱落したビット成分を補償することができると共に、入力サンプリング周波数の二分の一の周波数より低い周波数帯域の量子化雑音を相対的に低減できる。【0207】従って、元のディジタル入力信号における

【0207】従って、元のティジタル人力信号における 量子化の精度を維持したままスピーカの出力特性を補正 することができると共に、量子化雑音を低減してディジ 20 タル出力信号を出力することができ、元のディジタル入 力信号により近い音をスピーカ手段から出力することが できる。

【0208】請求項11に記載の発明によれば、請求項10に記載の発明の効果に加えて、複数のスピーカ手段を有するスピーカシステムであっても、量子化特性を改善すると共に各スピーカ手段の出力特性を補正することができる。

【0209】請求項12に記載の発明によれば、請求項 11に記載の発明の効果に加えて、各補正手段が各スピ 30 一カ手段間における出力特性の相違を補償するので、歪 みの無い良好な音を出力することができる。

【0210】請求項13に記載の発明によれば、請求項8から12のいずれか一項に記載の発明の効果に加えて、ディジタル出力信号のうち、入力サンプリング周波数の二分の一より高い周波数帯域の当該ディジタル出力信号のレベルを低減するので、入力サンプリング周波数の二分の一よりも高い周波数帯域に移行している量子化雑音を除去することができる。

【図面の簡単な説明】

【図1】本発明の原理を示す概要構成ブロック図であり、(a)は全体構成のブロック図であり、(b)はノイズシェーピング部の構成を示すブロック図である。

【図2】本発明のノイズシェーピング特性を説明する図であり、(a)は信号処理部とアッテネート部の周波数ーレベル特性の例を示す図であり、(b)はノイズシェーピング特性の例を示す図である。

【図3】ディザの加算を示す図であり、(a) はディザ 加算の第1の方法を示す図であり、(b) はディザ加算 の第2の方法を示す図である。

34

【図4】第1実施形態のディジタルスピーカシステムの 概要構成を示すブロック図である。

【図5】第1実施形態のフィルタ部の構成を示すブロック図であり、(a)は他の構成例を示すブロック図

(I) であり、(b) は他の構成例を示すブロック図 (II) である。

【図6】第2実施形態のディジタルスピーカシステムの 概要構成を示すブロック図である。

【図7】第3実施形態におけるノイズシェーピング特性を示す図であり、(a)は信号処理部とアッテネート部の周波数-レベル特性の例を示す図であり、(b)はノイズシェーピング特性の例を示す図である。

【符号の説明】

1…オーバサンプリング部

2…アッテネート部

3…信号処理部

4、4a、4b…ノイズシェーピング部

5…制御部

6、7、9、65、67…加算器

8…再量子化器

10…フィルタ

31…グラフィックイコライザ

32、37、45、50…ローパスフィルタ

33、41…インパータ

33a、33c、41a、41c…スイッチ

33b、41b…反転器

34、42…アッテネータ

35、43、66、68…ディレイ部

36、44…D/Aコンバータ

38、46…アンプ

39、47、58、59、60、61…スピーカ

40、53…ハイパスフィルタ

51、52…バンドパスフィルタ

54、55、56、57…スピーカ処理部

S、S'…ディジタルスピーカシステム

D…データ

Z…ディザ

Sin…ディジタル入力信号

Sov…サンプリング信号

10 Sat…アッテネート信号

Spc…処理信号

Sout…ディジタル出力信号

Sca、Scn、Scnl、Scnh、Sr、Sger、Satl、Sath …制御信号

Sd、Sdz、Sad…加算信号

Sz…ディザ信号

Sf…フィルタ信号

Sge…イコライザ信号

S1···低域抽出信号

50 Slc…低域インバータ信号

Salc…低域アッテネート信号

Spcl…低域処理信号

Soutl…低域ディジタル出力信号

Sla…低域アナログ信号

Soual、Souah…アナログ出力信号

Sout…ディジタル出力信号

【図1】

本発明の原理を示す概要構成プロック図

36

Sh…高域抽出信号

Shc…高域インバータ信号

Sahc…高域アッテネート信号

Spch…高域処理信号

South…高域ディジタル出力信号

Sha…高域アナログ信号

【図2】

本発明のノイズシェーピング特性

【図3】

[図4]

第1 実施形態のフィルタ部の構成を示すブロック図

【図6】

[図7]

第3実施形態におけるノイズシェーピング特性

フロントページの続き

(72) 発明者 古口 喜一郎

埼玉県所沢市花園4丁目2610番地 パイオ ニア株式会社所沢工場内

一人体八云红所代工物

(72) 発明者 宮本 文彦

埼玉県所沢市花園4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72) 発明者 能村 出穂

埼玉県所沢市花園4丁目2610番地 パイオ

二ア株式会社所沢工場内

(72) 発明者 増成 勇人

埼玉県所沢市花園4丁目2610番地 パイオ

ニア株式会社所沢工場内