What is claimed is:

The first form with the first

1	1. A method for detecting least significant bit ("LSB") embedding of a
2	message hidden in randomly scattered samples of an alleged cover image, comprising
3	the steps of:
4	dividing the alleged cover image into a plurality of disjoint groups of adjacent
5	samples;
6 7	defining a discrimination function that assigns a real number to each member of said plurality, thereby capturing the smoothness of each of said groups;
8	defining on said plurality at least one invertible operation that comprises a
9	permutation of sample values, whereby values of said samples are invertibly
10	perturbed by a small amount;
11	applying said discrimination function and said flipping operation to define in
12	said plurality three types of sample groups, (R)egular, (S)ingular, and (U)nusable,
13	each of said types being defined for both positive and negative operations;
14	plotting both positive and negative R and S for said alleged cover image on an
15	RS diagram;
16	constructing four curves of said RS diagram and calculating their intersections
17	by extrapolation; and
18	determining the existence or nonexistence of a secret message from said
19	intersections.
1	2. The method of claim 1, further including the step, if said secret message is
2	determined to exist, of estimating a length thereof.
1	3. The method of claim 2, wherein each of said samples is a pixel value.
1	4. The method of claim 3, wherein said pixel value is a grayscale.
1	5. The method of claim 3, wherein said pixel value is a color.

- 6. The method of claim 2, wherein each of said samples is an index to a palette of color values.
- 7. The method of claim 1, wherein said step of constructing further comprises arithmetically averaging the x coordinates of said intersections, thereby detecting said hidden message, if it exists, and estimating a length thereof.
- 8. The method of claim 2, wherein said step of estimating further comprises determining a length p of said hidden message, if it exists, by rescaling the x-axis of said RS diagram so that p/2 becomes 0 and 100 p/2 becomes 1, whereby an x-coordinate of an intersection is a root of the following quadratic equation:

5
$$2(d_1 + d_0)x^2 + (d_{-0} - d_{-1} - d_1 - 3d_0)x + d_0 - d_{-0} = 0,$$

6 where
$$d_0 = R_M(p/2) - S_M(p/2)$$
, $d_1 = R_M(1 - p/2) - S_M(1 - p/2)$, $d_{-0} = R_{-M}(p/2) - S_{-M}(p/2)$,

7
$$d_{-1} = R_{-M}(1 - p/2) - S_{-M}(1 - p/2)$$
, and said message length p is calculated from the root
8 x whose absolute value is smaller,

9
$$p = x/(x-1/2)$$
.

1	9. Apparatus for detecting least significant bit ("LSB") embedding of a
2	message hidden in randomly scattered samples of an alleged cover image, which
3	comprises:
4	means for dividing said alleged cover image into a plurality of disjoint groups
5	of adjacent samples;
6	first means for defining effective for defining a discrimination function that
7	assigns a real number to each member of said plurality, thereby capturing the
8	smoothness of each of said groups;
9	second means for defining effective for defining on said plurality at least one
10	invertible operation that comprises a permutation of sample values, whereby values of
11	said samples are invertibly perturbed by a small amount;
12	means for applying said discrimination function and said flipping operation to
13	define in said plurality three types of sample groups, (R)egular, (S)ingular, and
14	(U)nusable, each of said types being defined for both positive and negative
15	operations;
16	means for plotting both positive and negative R and S for said alleged cover
17	image on an RS diagram;
18	means for constructing four curves of said RS diagram;
19	means for calculating the intersections of said four curves by extrapolation;
20	and
21	first means for determining effective for determining from said intersections
22	the existence or nonexistence of a secret message.
1	10. The apparatus of claim 9, further including means for estimating a length
2	of said secret message if said secret message is determined to exist.

TOSETAL CERTA

1

1

12. The apparatus of claim 11, wherein said pixel value is a grayscale.

11. The apparatus of claim 10, wherein each of said samples is a pixel value.

1

- 13. The apparatus of claim 11, wherein said pixel value is a color.
- 1 14. The apparatus of claim 10, wherein each of said samples is an index to a palette of color values.
- 1 15. The apparatus of claim 9, wherein said means for constructing and calculating is further effective for arithmetically averaging the x coordinates of said intersections, thereby detecting said hidden message and estimating a length thereof.
- 1 16. The apparatus of claim 10, wherein said means for estimating is effective 2 for determining a length p of said hidden message by rescaling the x-axis of said RS 3 diagram so that p/2 becomes 0 and 100 - p/2 becomes 1, whereby an x-coordinate of 4 an intersection is a root of the following quadratic equation:

5
$$2(d_1 + d_0)x^2 + (d_{-0} - d_{-1} - d_1 - 3d_0)x + d_0 - d_{-0} = 0,$$

- 6 where $d_0 = R_M(p/2) S_M(p/2)$, $d_1 = R_M(1 p/2) S_M(1 p/2)$, $d_{-0} = R_{-M}(p/2) S_{-M}(p/2)$,
- 7 $d_{-1} = R_{-M}(1 p/2) S_{-M}(1 p/2)$, and said message length p is calculated from the root
- 8 x whose absolute value is smaller,
- 9 p = x/(x-1/2).

1	17. A computer-readable storage medium embodying program instructions for
2	a method for detecting least significant bit ("LSB") embedding of a message hidden
3	in randomly scattered samples of an alleged cover image, said method comprising the
4	steps of:
5	dividing said alleged cover image into a plurality of disjoint groups of
6	adjacent samples;
7	defining a discrimination function that assigns a real number to each member
8	of said plurality, thereby capturing the smoothness of each of said groups;
9	defining on said plurality at least one invertible operation that comprises a
10	permutation of sample values, whereby values of said samples are invertibly
11	perturbed by a small amount;
12	applying said discrimination function and said flipping operation to define in
13	said plurality three types of sample groups, (R)egular, (S)ingular, and (U)nusable,
14	each of said types being defined for both positive and negative operations;
15	plotting both positive and negative R and S for said alleged cover image on an
16	RS diagram;
17	constructing four curves of said RS diagram and calculating their intersections
18	by extrapolation; and
19	determining the existence of nonexistence of a secret message from said
20	intersections.
1	18. The computer-readable storage medium of claim 17, said method further
2	including the step, if said secret message is determined to exist, of estimating a length
3	thereof.

TOSETEDE CESTI

1

2

3

4

length thereof.

19. The computer-readable storage medium of claim 17, said method further

including, in said step of constructing, arithmetically averaging the x coordinates of

said intersections, thereby detecting said hidden message, if it exists, and estimating a

$$2(d_1+d_0)x^2+(d_{-0}-d_{-1}-d_1-3d_0)x+d_0-d_{-0}=0,$$

7 where
$$d_0 = R_M(p/2) - S_M(p/2)$$
, $d_1 = R_M(1 - p/2) - S_M(1 - p/2)$, $d_{-0} = R_{-M}(p/2) - S_{-M}(p/2)$,

- 8 $d_{-1} = R_{-M}(1 p/2) S_{-M}(1 p/2)$, and said message length p is calculated from the root
- 9 x whose absolute value is smaller,

10
$$p = x/(x-1/2)$$
.