MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

06 de setembro de 2023

1 Corretude de algoritmos: continuação

2 Perguntas, observações, comentários?

Corretude de algoritmos: continuação

		•

Divisão euclidiana

Na aula passada, vimos um algoritmo que utiliza apenas adição e subtração para calcular divisão inteira com resto. Isto é, dados $a, b \in \mathbb{Z}$, temos que (q, r) = DivEuc(a, b) satisfaz

$$a = b \cdot q + r$$
 e $0 \le r < b$

.

Além disso, sabemos que esse par (q, r) é único.

MDC

O máximo divisor comum de dois inteiros a e b, denotado por mdc(a,b), é definido como o maior inteiro d que divide ambos a e b.

Seja
$$D_x = \{m \in \mathbb{Z} : m \mid x\}$$
 para qualquer $x \in \mathbb{Z}$.
Seja $D_{a,b} = D_a \cap D_b = \{m \in \mathbb{Z} : (m \mid a) \land (m \mid b)\}$.
Então $\mathrm{mdc}(a,b) = \mathrm{max}\,D_{a,b}$.

MDC

O máximo divisor comum de dois inteiros a e b, denotado por mdc(a,b), é definido como o maior inteiro d que divide ambos a e b.

Seja
$$D_x = \{m \in \mathbb{Z} : m \mid x\}$$
 para qualquer $x \in \mathbb{Z}$.
Seja $D_{a,b} = D_a \cap D_b = \{m \in \mathbb{Z} : (m \mid a) \land (m \mid b)\}$.
Então $\mathrm{mdc}(a,b) = \mathrm{max}\,D_{a,b}$.

Por exemplo:

(a, b)	$D_{a,b}$	mdc(a, b)
(4, 10)	$\{\pm 1, \pm 2\}$	2
(4, 20)	$\{\pm 1, \pm 2, \pm 4\}$	4
(45,90)	$\{\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45\}$	45

Algumas propriedades básicas do MDC

- mdc(a, b) = mdc(b, a) (segue da comutatividade de conectivo \land)
- \blacksquare mdc(a,0) = a.
- Se $a \mid b$, então mdc(a, b) = a.
- \blacksquare Se p é primo, então
 - ightharpoonup mdc(p, a) = p se, e somente se, $p \mid a$.
 - $ightharpoonup \operatorname{mdc}(p,a) = 1 \Leftrightarrow p \nmid a.$
- Definição: dizemos que a e b são coprimos se mdc(a, b) = 1.

MDC e o resto da divisão

Para calcular mdc(a, b), usamos a seguinte propriedade:

Teorema

Sejam $a, b \in \mathbb{N}$ tais que $a \ge b > 0$. Seja r o resto da divisão de a por b. Então, mdc(a, b) = mdc(b, r).

```
Algorithm: AlgoEuclides

Input: a,b \in \mathbb{N} \text{ com } a \geq b > 0.

Output: mdc(a,b)

1 x = a

2 y = b

\Rightarrow Esta linha marca o caso base

3 while (0 \neq x \mod y) \text{ do}

\Rightarrow Esta linha marca o início da iteração

4 r = x \mod y

5 x = y

6 y = r

\Rightarrow Esta linha marca o final da iteração

7 return y
```

■ Terminação: A cada duas iterações, ou o algoritmo termina, ou ambos x e y reduzem de tamanho.

```
Algorithm: AlgoEuclides

Input: a,b \in \mathbb{N} \text{ com } a \geq b > 0.

Output: mdc(a,b)

1 x = a

2 y = b

\Rightarrow Esta linha marca o caso base

3 while (0 \neq x \mod y) do

\Rightarrow Esta linha marca o início da iteração

4 x = x \mod y

5 x = y

6 y = r

\Rightarrow Esta linha marca o final da iteração

7 return y
```

- Terminação: A cada duas iterações, ou o algoritmo termina, ou ambos x e y reduzem de tamanho.
- \blacksquare Caso base: mdc(x, y) = mdc(a, b)

```
Algorithm: AlgoEuclides

Input: a,b \in \mathbb{N} \text{ com } a \geq b > 0.

Output: mdc(a,b)

1 x = a

2 y = b

\Rightarrow Esta linha marca o caso base

3 while (0 \neq x \mod y) do

\Rightarrow Esta linha marca o início da iteração

4 x = x \mod y

5 x = y

6 y = r

\Rightarrow Esta linha marca o final da iteração

7 return y
```

- Terminação: A cada duas iterações, ou o algoritmo termina, ou ambos x e y reduzem de tamanho.
- Caso base: mdc(x, y) = mdc(a, b)
- Invariante: mdc(x, y) = mdc(a, b)

MDC e identidade de Bézout

Teorema (Identidade de Bézout)

Para todo $a,b\in\mathbb{Z}$, existem $u,v\in\mathbb{Z}$ tais que

$$mdc(a, b) = u \cdot a + v \cdot b$$

onde assumimos mdc(0,0) = 0.

u e v são chamados coeficientes de Bézout* e eles não são únicos.

Exemplo:

- $\mod c(2,15) = 1 = (-7) \cdot 2 + 1 \cdot 15$
- $\mod c(20, 12) = 4 = (-1) \cdot 20 + 2 \cdot 12$
- \blacksquare mdc(3,15) = 3 = 11 · 3 + (-2) · 15 = 1 · 3 + 0 · 15.

^{*}Étienne Bézout (1730–1783), matemático francês, provou essa igualdade para polinômios. A identidade para inteiros já era conhecida, mas acabou sendo frequentemente referênciada pelo seu nome...

Uma aplicação modesta da identidade de Bézout

Na aula anterior, dissemos que se p é primo e $p \mid (ab)$, então $p \mid a$ ou $p \mid b$, mas não apresentamos uma prova... Como podemos provar essa afirmação?

 \blacksquare Terminação: Lembrem-se da divisão euclidiana... No pior caso, temos $r \leq b-1...$

- \blacksquare Terminação: Lembrem-se da divisão euclidiana... No pior caso, temos $r \leq b-1...$
- Caso base: Se b = 0, então $mdc(a, b) = a = 1 \cdot a + 0 \cdot b$.

- Terminação: Lembrem-se da divisão euclidiana... No pior caso, temos r < b-1...
- Caso base: Se b = 0, então $mdc(a, b) = a = 1 \cdot a + 0 \cdot b$.
- Use indução forte: existe $k-1 \geq 0$ tal que AlgoEuclidesEstendido(a,r) funciona para $0 \leq r \leq k-1$. Prove que AlgoEuclidesEstendido(a,k) funciona.

- Terminação: Lembrem-se da divisão euclidiana... No pior caso, temos r < b-1...
- Caso base: Se b = 0, então $mdc(a, b) = a = 1 \cdot a + 0 \cdot b$.
- Use indução forte: existe $k-1 \geq 0$ tal que AlgoEuclidesEstendido(a,r) funciona para $0 \leq r \leq k-1$. Prove que AlgoEuclidesEstendido(a,k) funciona.

- Terminação: Lembrem-se da divisão euclidiana... No pior caso, temos r < b-1...
- Caso base: Se b = 0, então $mdc(a, b) = a = 1 \cdot a + 0 \cdot b$.
- Use indução forte: existe $k-1 \geq 0$ tal que AlgoEuclidesEstendido(a,r) funciona para $0 \leq r \leq k-1$. Prove que AlgoEuclidesEstendido(a,k) funciona.

Note que esse algoritmo (com sua prova de corretude) nos dá uma prova construtiva da existência dos coeficientes de Bézout para $a \geq b \geq 0$! E é fácil estender esse algoritmo para quaisquer $a,b \in \mathbb{Z}$!

Perguntas,	observações,	comentários?