Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Background

Questions

Methods

results
(Focusing or purse seiners for now)

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹ John Lynham²

 $^1\mathrm{Bren}$ School of Environmental Science and Management, UC Santa Barbara $^2\mathrm{Department}$ of Economics, University of Hawaii at Manoa

5/10/2018

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Background

Questions

Methods

Preliminary

(Focusing or purse seiners

Background

MPAs

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

${\sf Background}$

Questions

Methods

- Marine Protected Areas (MPAs): Spatial management of fishing effort
- \blacksquare Areas $> 250,000 \text{ Km}^2$ are Large Scale (LSMPAs)¹
 - Industrial fishing largest human activity in pelagic environment²
 - Recent widespread implementation, unknown implication for fisheries

¹Toonen et al. 2013.

²Gray et al. 2017.

LSMPAs

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Background

Question

Methods

- Erroneously assumed to have little social implications due to their remoteness³
- Blue paradox shows preemptive fishing⁴:

Figure 1: Preemtive fishing due to MPA implementation (Modified from McDermott et al (2018))

MPAs and fishing effort

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

${\sf Background}$

Questions

Method

Preliminary results (Focusing on purse seiners for now) Models range from *cookie-cutter* approach to spatially explicit reallocation of fishing effort based on habitat characteristics:

- All these focus on the long term equilibrium⁵
- Resource users may show idiosyncratic responses⁶
- Redistribution of fishing effort may not be optimal, especially over the first years⁷
- Not accounting for fisher's behavior may lead to unexpected outcomes⁸

⁵White et al. 2013.

⁶Cabral et al. 2017.

⁷Stevenson, Tissot, and Walsh 2013.

⁸Smith and Wilen 2003.

PIPA

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, Johr Lynham²

${\sf Background}$

Questions

Methods

results (Focusing or purse seiners for now)

- Phoenix Island Protected Area
 - Belongs to Kiribati
 - Implemented in 2015
 - Kiribati is part of the PNA, along with other 8 countries

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Background

Questions

Methods

Preliminary

(Focusing o purse seiner for now)

Questions

Questions

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, John Lynham²

Backgroun

Questions

Methods

results
(Focusing or purse seiners for now)

- How does vessel-level behavior change due to PIPA implementation?
- What happens to the displaced fishing effort?

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, Johr Lynham²

Backgroun

Questions

Methods

Preliminary results (Focusing on purse seiners for now)

Methods

Data

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Backgroun

Question:

Methods

- On-board Automatic Identification Systems (AIS)
- Global georeferenced vessel positions (3.1 billion and growing):
 - Activity (fishing / not fishing)
 - Time (hours)
 - Vessel characteristics (flag, gear, length, width)

Figure 2: Sample track of Chinese longliner (10K fishing points of

Data

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Joh Lynham²

Dackgroun

Questions

Methods

Preliminary results (Focusing on purse seiners for now)

Two groups:

- Treated
 - Vessels who fished inside PIPA at least once before closure
 - Continued to fish elsewhere after implementation of PIPA
- Control:
 - Vessels never fished within PIPA waters
 - Vessels belong to other PNA countries
 - Vessels have fished in surrounding areas (i.e. PNA-countries' EEZ) before and after PIPA closure
- Over 45 million individual AIS messages (positions)

Data

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Backgroun

Questions

Methods

Figure 3: Fishing hours and number of vessels by month for all vessels.

Analyses

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Backgroun

Question:

Methods

Preliminary results (Focusing on purse seiners for now)

Change in vessel-level behavior with a DiD

$$y_{i,t} = \alpha + \beta_1 Post_t + \beta_2 Treat_i + \beta_3 Post_t \times Treat_i + \epsilon_{i,t}$$

- $y_{i,t}$ monthly fishing hours by vessel i in time period t
- Post_t before-after PIPA dummy
- *Treat_i* treatment dummy
- lacksquare eta_3 is our DiD estimate
- month, flag, year controls

Analyses

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Background

Questions

Methods

Preliminary results (Focusing on purse seiners for now)

Spatial redistribution

Treated vessels only

$$y_{i,t} = \alpha + \beta_1 Post_t + \beta_{2,i} Country_i + \beta_{3,i} Post_t \times Country_i + \epsilon_{i,t}$$

- $y_{i,t}$ proportion of fishing hours that country i receives at time t
- Post_t before-after PIPA dummy
- *Country*; country dummy

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Background

Questions

Methods

Preliminary results (Focusing on

(Focusing on purse seiners for now)

Change in fishing

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Background

Ouestion

Mathad

Figure 4: Fishing hours and number of vessels by month for all vessels.

Change in fishing

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Background

Questions

Methods

Preliminary results (Focusing on purse seiners for now)

Note:

Table 1: Fishing hours from GFW for purse seiners ($n=106;\,38$ control, 68 treatment).

	Dependent variable: hours			
	(1)	(2)	(3)	(4)
post	92.958*** (6.229)	95.733*** (5.860)	45.614*** (8.239)	41.920*** (8.214)
	(0.223)	(3.000)	(0.233)	(0.21+)
treated	-6.575	-5.558	-3.680	6.541
	(4.985)	(4.570)	(4.270)	(5.195)
post:treated	-18.646***	-18.564***	-20.502***	-18.709***
	(7.230)	(6.878)	(6.685)	(6.787)
Constant	59.490*** (4.422)	61.032*** (6.289)	-18,348,700.000*** (4,041,387.000)	-16,807,078.000*** (3,759,572.000)
Months	No	Yes	Yes	Yes
Year	No	No	Yes	Yes
Country	No	No	No	Yes
Observations	3,489	3,489	3,489	3,481
R ²	0.164	0.233	0.272	0.299

*p<0.1; **p<0.05; ***p<0.01

Effort redistribution

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johi Lynham²

Backgroun

Question

Method

Figure 5: Monthly relative allocation of fishing effort by PIPA-vessels.

Displacement

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Johr Lynham²

Background

Questions

Methods

Preliminary results (Focusing on purse seiners for now) Table 2: Change in the relative allocation of fishing hours by purse seiners

term	h_prop
(Intercept)	0.100*** -0.094***
post post:countryKIR	0.149***
post:countryHS post:countryASM	0.202*** 0.092***
post:countryCOK post:countryFSM	0.095*** 0.105***
post:countryMHL post:countryNRU	0.093*** 0.079***
post:countryPNG	-0.028
post:countrySLB	0.091**
post:countryTKL	0.093***
post:countryTUV	0.101***
post:countryUMI	0.091***
post:countryOTH	0.087***

Displacement

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, Joh Lynham²

Backgroun

Question

Methods

Figure 6: Spatial representation of the mean change in the monthly allocation of fishing effort.

Displacement

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, Joh Lynham²

Backgroun

Question

Methods

Figure 7: Spatial representation of the mean change in the monthly allocation of fishing effort.

Recap

Displacement of fishing effort by Large Scale Marine Protected Areas

Villaseñor-Derbez¹, John Lynham²

васкgroun

Questions

Methods

- Treated vessels fish less post-implementation
 - Only significant for purse seiners
- EEZs receive proportionally more fishing effort than before
 - Proportional change increases with proximity to PIPA

Future work

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Joh Lynham²

Backgroun

Question:

Methods

Preliminary results (Focusing on purse seiners for now)

Change in behavior

- Distance traveled
- non-fishing at-sea hours
- proportion of fishing / searching

Spatial redistribution

- Proportion is bounded, might try a binomial GLM
- Measure of "crowdness"

Concerns

Spillover effects / treatment affecting control

References I

Displacement
of fishing
effort by Large
Scale Marine
Protected
Areas

Juan Carlos Villaseñor-Derbez¹, John Lynham²

Backgroun

& acstror

Methods

Preliminary results (Focusing on purse seiners for now) Agardy, Tundi, Giuseppe Notarbartolo di Sciara, and Patrick Christie (2011). "Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning". In: *Marine Policy* 35.2, pp. 226–232. ISSN: 0308597X. DOI: 10.1016/j.marpol.2010.10.006. URL: http://linkinghub.elsevier.com/retrieve/pii/%7BS0308597X10001740%7D (visited on 02/16/2017).

Cabral, Reniel B et al. (2017). "Drivers of redistribution of fishing and non-fishing effort after the implementation of a marine protected area network." In: Ecol Appl 27.2, pp. 416–428. ISSN: 10510761. DOI: 10.1002/eap.1446. URL: http://doi.wiley.com/10.1002/eap.1446 (visited on 04/27/2017).

References II

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Joh Lynham²

Backgroun

Questions

Method

Preliminary results (Focusing on purse seiners for now) In: Coastal Management, pp. 1–9. ISSN: 0892-0753. DOI: 10.1080/08920753.2017.1373448. URL: https://www.tandfonline.com/doi/full/10.1080/08920753.2017.1373448 (visited on 11/08/2017).

McDermott, Grant R et al. (2018). "The blue paradox: Preemptive overfishing in marine reserves." In: *Proc Natl Acad Sci USA*. DOI: 10.1073/pnas.1802862115. URL: http://dx.doi.org/10.1073/pnas.1802862115 (visited on 09/07/2018).

References III

Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹, Joh Lynham²

Background

Questions

Method

Preliminary results (Focusing on purse seiners for now) Smith, Martin D. and James E. Wilen (2003). "Economic impacts of marine reserves: the importance of spatial behavior". In: *Journal of Environmental Economics and Management* 46.2, pp. 183–206. ISSN: 00950696. DOI: 10.1016/S0095-0696(03)00024-X. URL: http://linkinghub.elsevier.com/retrieve/pii/%7BS009506960300024X%7D (visited on 10/05/2018).

Stevenson, Todd C., Brian N. Tissot, and William J. Walsh (2013). "Socioeconomic consequences of fishing displacement from marine protected areas in Hawaii". In: *Biological Conservation* 160, pp. 50–58. ISSN: 00063207. DOI: 10.1016/j.biocon.2012.11.031. URL: http://linkinghub.elsevier.com/retrieve/pii/S0006320712005277 (visited on 06/12/2018).

References IV

Displacement of fishing effort by Large Scale Marine Protected Areas

Preliminary results (Focusing on purse seiners for now)

Toonen, Robert J et al. (2013). "One size does not fit all: the emerging frontier in large-scale marine conservation." In:

Mar Pollut Bull 77.1-2, pp. 7–10. DOI:

10.1016/j.marpolbul.2013.10.039. URL:

http://dx.doi.org/10.1016/j.marpolbul.2013.10.039 (visited on 09/29/2018).

White, J. Wilson et al. (2013). "A comparison of approaches used for economic analysis in marine protected area network planning in California". In: Ocean Coast Manag 74, pp. 77-89. ISSN: 09645691. DOI:

10.1016/j.ocecoaman.2012.06.006. URL: http:

//linkinghub.elsevier.com/retrieve/pii/S0964569112001597 (visited on 10/05/2018).