Experimentos

Muestreo, análisis y gráficos

David Alejandro González Márquez

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Agenda

- 1 ¿Cómo medir tiempos?
- ¿Cómo armar experimentos?
- 3 ¿Qué muestran los gráficos?
- 4 Ejemplos

Valores muy chicos o muy grandes

Valores muy chicos o muy grandes

Relación entre valores sin importar la magnitud

Tiempo → (numerito seguido de su unidad)

Podemos medir en unidades de tiempo, como microsegundos. El problema es que para eventos que suceden muy rápidamente la precisión de los relojes es insuficiente.

- Tiempo → (numerito seguido de su unidad)
 Podemos medir en unidades de tiempo, como microsegundos. El problema es que para eventos que suceden muy rápidamente la precisión de los relojes es insuficiente.
- Ticks de Reloj → (numerito sin unidad)
 Para obtener el contador de ticks en Intel utilizamos la instrucción rdtsc.

- Tiempo → (numerito seguido de su unidad)
 - Podemos medir en unidades de tiempo, como microsegundos. El problema es que para eventos que suceden muy rápidamente la precisión de los relojes es insuficiente.
- Ticks de Reloj → (numerito sin unidad)
 Para obtener el contador de ticks en Intel utilizamos la instrucción rdtsc.
- Rendimiento → (numerito en términos de procentaje)
 El rendimiento se obtiene a partir de una relación entre valores. Estos deben ser comparables.

¿Qué valores se espera obtener?

Tiempo

Un número que represente un tiempo, si es muy grande entonces serán segundos, horas, días. Si es muy chico serán microsegundos, nanosegundos.

¿Es razonable demorar 3 segundos para ejecutar 1000 instrucciones?

¿Qué valores se espera obtener?

Tiempo

Un número que represente un tiempo, si es muy grande entonces serán segundos, horas, días. Si es muy chico serán microsegundos, nanosegundos.

¿Es razonable demorar 3 segundos para ejecutar 1000 instrucciones?

Rendimiento

Denota la diferencia de rendimiento entre dos implementaciones. Se expresa como porcentajes.

120 %, puede significar que A es 20 % más eficiente en tiempo que B.

120 %, puede significar que A demora un 20 % más que B.

10 %, puede significar que A demora el 10 % de B.

¿Qué valores se espera obtener?

Tiempo

Un número que represente un tiempo, si es muy grande entonces serán segundos, horas, días. Si es muy chico serán microsegundos, nanosegundos.

¿Es razonable demorar 3 segundos para ejecutar 1000 instrucciones?

Rendimiento

Denota la diferencia de rendimiento entre dos implementaciones. Se expresa como porcentajes.

120 %, puede significar que A es 20 % más eficiente en tiempo que B. 120 %, puede significar que A demora un 20 % más que B. 10 %, puede significar que A demora el 10 % de B.

Ticks de Reloj

Son valores enteros muy grandes. Nos va a interesar la relación entre estos.

Dos implementaciones que demoran 190231359147543 y 192125445767335 ticks, tienen i gual rendimiento.

 Ruido del sistema
 Nuestra aplicación no corre sola en el sistema, la interacción con otras aplicaciones genera ruido.

- Ruido del sistema
 Nuestra aplicación no corre sola en el sistema, la interacción con otras aplicaciones genera ruido.
- Datos de entrada
 Puede existir alguna característica especial de nuestros datos de entrada que generen una medición no esperada.

- Ruido del sistema
 Nuestra aplicación no corre sola en el sistema, la interacción con otras aplicaciones genera ruido.
- Datos de entrada
 Puede existir alguna característica especial de nuestros datos de entrada que generen una medición no esperada.
- Sistema Operativo El sistema operativo y su **accionar afecta** nuestra medición. Debemos controlarlo.

- Ruido del sistema
 Nuestra aplicación no corre sola en el sistema, la interacción con otras aplicaciones genera ruido.
- Datos de entrada
 Puede existir alguna característica especial de nuestros datos de entrada que generen una medición no esperada.
- Sistema Operativo El sistema operativo y su **accionar afecta** nuestra medición. Debemos controlarlo.
- El propio procesador Los **mecanismos de optimización** del rendimiento de un procesador afectan la medición, aumentando y disminuyendo la frecuencia de trabajo de las distintas partes.

¿Cómo evitar outliers?

Sean las siguientes muestras de datos,

```
> a = c(32, 55, 32, 54, 65, 32, 33, 54, 78, 2093486723)
> b = c(32, 55, 32, 54, 65, 32, 33, 54, 78)
```

¿Cómo evitar outliers?

Sean las siguientes muestras de datos,

¿Cómo evitar outliers?

Sean las siguientes muestras de datos,

Se debe poder evitar y controlar la aparición de *outliers*. En el caso de tener *outliers*, se debe poder clasificarlos y removerlos de la muestra.

Debemos armar un protocolo para realizar nuestras mediciones

Debemos entender qué vamos a analizar,

Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto

- Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto
- Comparar dos implementaciones:
 Obtener la diferencia de tiempos o de procentaje relativo entre dos implementaciones

- Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto
- Comparar dos implementaciones:
 Obtener la diferencia de tiempos o de procentaje relativo entre dos implementaciones
- Comparar el uso de distintas instrucciones:

 Obtener una medida de mejora con respecto a utilizar un determinado conjunto de instrucciones con respecto a otro

- Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto
- Comparar dos implementaciones:
 Obtener la diferencia de tiempos o de procentaje relativo entre dos implementaciones
- Comparar el uso de distintas instrucciones:

 Obtener una medida de mejora con respecto a utilizar un determinado conjunto de instrucciones con respecto a otro
- Medir el rendimiento de una implementación:

 Obtener el porcentaje de mejora de una implementación con respecto a una implementación patrón

- Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto
- Comparar dos implementaciones:
 Obtener la diferencia de tiempos o de procentaje relativo entre dos implementaciones
- Comparar el uso de distintas instrucciones:

 Obtener una medida de mejora con respecto a utilizar un determinado conjunto de instrucciones con respecto a otro
- Medir el rendimiento de una implementación:

 Obtener el porcentaje de mejora de una implementación con respecto a una implementación patrón
- Factor limitante en una implementación: Obtener una medida relativa de rendimiento con respecto a forzar un factor (ej. memoria, saltos)

- Cuánto demora una implementación:
 Obtener una medida de tiempo para relacionarla en un contexto
- Comparar dos implementaciones:
 Obtener la diferencia de tiempos o de procentaje relativo entre dos implementaciones
- Comparar el uso de distintas instrucciones:

 Obtener una medida de mejora con respecto a utilizar un determinado conjunto de instrucciones con respecto a otro
- Medir el rendimiento de una implementación: Obtener el porcentaje de mejora de una implementación con respecto a una implementación patrón
- Factor limitante en una implementación:
 Obtener una medida relativa de rendimiento con respecto a forzar un factor (ej. memoria, saltos)
- Análisis del comportamiento de una implementación:
 Rendimiento bajo distinto conjunto de párametros de entrada.

· A mantiene su rendimiento cuando se modifican los parámetros de entrada.

- · A mantiene su rendimiento cuando se modifican los parámetros de entrada.
- · A **varía** su rendimiento cuando se modifican los parámetros de entrada.

- · A mantiene su rendimiento cuando se modifican los parámetros de entrada.
- · A varía su rendimiento cuando se modifican los parámetros de entrada.
 - · Variación correlacionada con una función, predecible.
 - · No predecible, relacionada con factores externos a los parámetros de entrada.

- · A mantiene su rendimiento cuando se modifican los parámetros de entrada.
- · A varía su rendimiento cuando se modifican los parámetros de entrada.
 - · Variación correlacionada con una función, predecible.
 - No predecible, relacionada con factores externos a los parámetros de entrada.
- · A es más rápido que B
 - · en tiempo
 - en porcentaje

- · A mantiene su rendimiento cuando se modifican los parámetros de entrada.
- · A **varía** su rendimiento cuando se modifican los parámetros de entrada.
 - · Variación correlacionada con una función, predecible.
 - No predecible, relacionada con factores externos a los parámetros de entrada.
- A es más rápido que B
 - · en tiempo
 - en porcentaje
- · A se comporta igual a B
 - · diferencia no significativa

- · A mantiene su rendimiento cuando se modifican los parámetros de entrada.
- · A **varía** su rendimiento cuando se modifican los parámetros de entrada.
 - · Variación correlacionada con una función, predecible.
 - No predecible, relacionada con factores externos a los parámetros de entrada.
- A es más rápido que B
 - · en tiempo
 - en porcentaje
- · A se comporta igual a B
 - · diferencia no significativa
- · A y B se comportan muy diferente
 - · analizar casos independientemente

¿Cómo armar datos de entrada?

Los datos de entrada se toman de casos reales o se generan artificialmente.

¿Cómo armar datos de entrada?

Los datos de entrada se toman de casos reales o se generan artificialmente.

Se crean,

- Modificando una variable
 - Ej. Alterando el valor de una componente de color en una imagen
- Modificando un conjunto de variables bajo una regla
 - Ej. Alterando el tamaño de una imagen en ancho y alto al mismo tiempo

¿Cómo armar datos de entrada?

Los datos de entrada se toman de casos reales o se generan artificialmente.

Se crean,

- · Modificando una variable
 - Ej. Alterando el valor de una componente de color en una imagen
- Modificando un conjunto de variables bajo una regla
 - Ej. Alterando el tamaño de una imagen en ancho y alto al mismo tiempo

Tener en cuenta,

- · Variables seleccionadas
- · Cantidad total de entradas
- · Entrada común o tipo

¿Cómo analizar resultados?

La etapa de discusión de los resultados, implica cuestionar las hipótesis sobre las que construimos nuestro experimento.

- · ¿El resutado es esperado?
- ¿Existe algún factor que no estamos teniendo en consideración?
- · ¿Es posible validar nuestro resultado con un experimento control?
- · Si el resultado no es el esperado, ¿el experimento es incorrecto?
- · Si los resultados son correctos, ¿hacer un nuevo experimento?

¿Qué se quiere mostrar?

Dependiendo que se quiera mostrar, se puede utilizar un tipo de gráfico u otro.

- Rendimiento / Tiempo: Area, Barras, Líneas
- Relaciones: Líneas, Dispersión
- · Porcentajes: Torta, Area o Barras acumuladas
- · Comportamiento / Variación: Líneas, Superficie

¿Qué colores? ¿Qué tipo de gráfico? ¿Qué escala?

Colores

- · Gusto / estética
- · Resaltar un dato sobre otro
- · Pensar en el medio de distribución (impreso)

Tipo

- · El que mejor muestre la información (ojo con 3d)
- · Que sirva para explicar (sin información de más)

Escala

- · Lineal o Logarítmica
- · Sobre qué eje va cada escala
- · Valores en los ejes

Humor de XKCD

Ejemplo 1: Comparando datos

No podemos agrupar en un gráfico cosas que no tiene nada que ver entre ellas.

Ejemplo 1: Comparando datos

No podemos agrupar en un gráfico cosas que no tiene nada que ver entre ellas.

Ejemplo 1: Comparando datos

No podemos agrupar en un gráfico cosas que no tiene nada que ver entre ellas.

Ejemplo 2: Analizando límites, tendencias o comportamientos anómalos

Escalas: Podemos setear la escala de cada eje con distintos criterios (lineal, log, loglog, etc).

Ejemplo 2: Analizando límites, tendencias o comportamientos anómalos

Escalas: Podemos setear la escala de cada eje con distintos criterios (lineal, log, loglog, etc).

Cambiamos el eje y a escala logarítmica

Ejemplo 3: Proporciones

Un gráfico de torta sirve para ver proporciones en un TODO.

No! para agrupar valores que no constituyen un todo.

Ejemplo 3: Proporciones

Un gráfico de torta sirve para ver proporciones en un TODO. No! para agrupar valores que no constituyen un todo.

Ejemplo 3: Proporciones

Un gráfico de torta sirve para ver proporciones en un TODO.

No! para agrupar valores que no constituyen un todo.

MAL

No conocemos el error de nuestros datos

Utilizamos barras de error

Utilizamos barras de error

Los errores NO están acotados

Utilizamos barras de error

Los errores están acotados

Ejemplo 5: Analizando límites

Queremos ver donde la performance varía.

Ejemplo 5: Analizando límites

Queremos ver donde la performance varía.

· Los resultados deben ser reproducibles y consistentes

- · Los resultados deben ser reproducibles y consistentes
- Ser ordenado en las explicaciones, explicar tanto el código como los experimentos, datos y resultados

- · Los resultados deben ser reproducibles y consistentes
- Ser ordenado en las explicaciones, explicar tanto el código como los experimentos, datos y resultados
- · No adjuntar gráficos de más, sólo deben ir los que hagan falta

- · Los resultados deben ser reproducibles y consistentes
- Ser ordenado en las explicaciones, explicar tanto el código como los experimentos, datos y resultados
- · No adjuntar gráficos de más, sólo deben ir los que hagan falta
- · El promedio de una muestra debe estar acompañado de su desvío

- · Los resultados deben ser reproducibles y consistentes
- Ser ordenado en las explicaciones, explicar tanto el código como los experimentos, datos y resultados
- No adjuntar gráficos de más, sólo deben ir los que hagan falta
- · El promedio de una muestra debe estar acompañado de su desvío
- No todo se puede explicar, existen comportamientos inexplicables

- · Los resultados deben ser reproducibles y consistentes
- Ser ordenado en las explicaciones, explicar tanto el código como los experimentos, datos y resultados
- · No adjuntar gráficos de más, sólo deben ir los que hagan falta
- · El promedio de una muestra debe estar acompañado de su desvío
- No todo se puede explicar, existen comportamientos inexplicables
- El informe debe ser un **trabajo integral**, consistente y bien escrito

Informe

- Implementación
 - · Explicación general de la solución
 - · Detalles de implementación
- Uso de constantes y memoria
- 2 Análisis preeliminar
 - · Comparación de rendimiento de ASM vs C
 - · Comparar para distintos tamaños, relaciones entre implementaciones
- 6 Hipótesis de trabajo
 - · Conjunto de ideas de experimentos
 - · Afirmaciones que buscan probar verdaderas
 - Deben ser concisas y claras
- Oiseño experimental
 - Explicación de como y que van a medir
 - · Explicación del conjunto de datos de entrada
 - · Detalles de la plataforma y la configuración de la misma
- Resultados y Análisis
 - · Resultados obtenidos, gráficos y tablas
 - · Explicación e interpretación de los resultados obtenidos
- Conclusiones
 - · Relación entre las hipótesis de trabajo y resultados

Bibliografía: Fuentes y material adicional

- Convenciones de llamados a función en x86:https://en.wikipedia.org/wiki/X86_calling_conventions
- Notas sobre System V ABI: https://wiki.osdev.org/System_V_ABI
- Documentación de NASM: https://nasm.us/doc/
 - Artículo sobre el flag -pie: https://eklitzke.org/position-independent-executables
- Documentación de System V ABI:https://uclibc.org/docs/psABI-x86_64.pdf
- Manuales de Intel: https://software.intel.com/en-us/articles/intel-sdm

¡Gracias!

Recuerden leer los comentarios al final de este video por aclaraciones o fe de erratas.