```
In [86]: import pandas as pd
           import matplotlib.pyplot as plt
           %matplotlib inline
           import seaborn as sns
           from sklearn.linear model import LogisticRegression
           from sklearn.preprocessing import StandardScaler
           from sklearn.model_selection import train_test_split
           from sklearn.metrics import confusion matrix, roc auc score, accuracy score, roc cur
           from sklearn.preprocessing import LabelEncoder
           import warnings
           warnings.filterwarnings('ignore')
In [87]:
           bank_data = pd.read_csv('bank-full.csv',sep=';')
           bank data
Out[87]:
                                job
                                      marital
                                              education default balance
                                                                          housing
                                                                                   Ioan
                                                                                           contact day
                                                                                                        mor
                   age
                    58
                0
                        management
                                      married
                                                 tertiary
                                                             no
                                                                    2143
                                                                              yes
                                                                                          unknown
                                                                                                     5
                                                                                     no
                                                                                                           m
                    44
                                                                      29
                1
                           technician
                                              secondary
                                                                                          unknown
                                                                                                     5
                                       single
                                                             no
                                                                              yes
                                                                                     no
                                                                                                           rr
                2
                    33
                        entrepreneur
                                      married
                                               secondary
                                                             no
                                                                       2
                                                                              yes
                                                                                    yes
                                                                                          unknown
                                                                                                     5
                                                                                                           m
                3
                    47
                           blue-collar
                                      married
                                                unknown
                                                                    1506
                                                                                                     5
                                                             no
                                                                              yes
                                                                                     no
                                                                                          unknown
                                                                                                           m
                4
                    33
                            unknown
                                                unknown
                                                                       1
                                                                                                     5
                                       single
                                                                                          unknown
                                                             no
                                                                               no
                                                                                     no
                                                                                                           m
                     ...
                                                              ...
                                                                       ...
                                                                                ...
                                                                                      ...
            45206
                    51
                           technician
                                      married
                                                 tertiary
                                                                     825
                                                                                           cellular
                                                                                                    17
                                                             nο
                                                                               no
                                                                                     no
            45207
                    71
                              retired
                                     divorced
                                                 primary
                                                                    1729
                                                                                           cellular
                                                                                                    17
                                                             no
                                                                               no
                                                                                     no
            45208
                    72
                              retired
                                      married
                                                                    5715
                                                                                           cellular
                                                                                                    17
                                               secondary
                                                             no
                                                                               no
                                                                                     no
            45209
                    57
                           blue-collar
                                      married
                                                                     668
                                                                                         telephone
                                                                                                    17
                                              secondary
                                                             no
                                                                               no
                                                                                     no
            45210
                    37
                                                                    2971
                                                                                                    17
                        entrepreneur
                                      married
                                              secondary
                                                             no
                                                                               no
                                                                                     no
                                                                                           cellular
           45211 rows × 17 columns
In [88]:
           bank_data.shape
```

Out[88]: (45211, 17)

```
In [89]:
         bank_data.isna().sum()
Out[89]: age
                       0
         job
                       0
         marital
                       0
         education
                       0
         default
                       0
         balance
                       0
         housing
                       0
         loan
                       0
         contact
                       0
         day
                       0
         month
                       0
         duration
                       0
         campaign
                       0
         pdays
                       0
         previous
                       0
         poutcome
                       0
         dtype: int64
In [90]: bank_data.dtypes
Out[90]: age
                        int64
         job
                       object
                       object
         marital
         education
                       object
         default
                       object
         balance
                        int64
                       object
         housing
         loan
                       object
                       object
         contact
         day
                        int64
         month
                       object
         duration
                        int64
         campaign
                        int64
         pdays
                        int64
         previous
                        int64
         poutcome
                       object
                       object
         dtype: object
```

In [91]: bank_data.describe()

Out[91]:

р	pdays	campaign	duration	day	balance	age	
45211	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	count
0	40.197828	2.763841	258.163080	15.806419	1362.272058	40.936210	mean
2	100.128746	3.098021	257.527812	8.322476	3044.765829	10.618762	std
0	- 1.000000	1.000000	0.000000	1.000000	-8019.000000	18.000000	min
0	-1.000000	1.000000	103.000000	8.000000	72.000000	33.000000	25%
0	-1.000000	2.000000	180.000000	16.000000	448.000000	39.000000	50%
0	-1.000000	3.000000	319.000000	21.000000	1428.000000	48.000000	75%
275	871.000000	63.000000	4918.000000	31.000000	102127.000000	95.000000	max

```
In [92]: bank_data.columns
```

In [93]: pd.crosstab(bank_data['job'],bank_data['y'])

Out[93]:

У	no	yes
job		
admin.	4540	631
blue-collar	9024	708
entrepreneur	1364	123
housemaid	1131	109
management	8157	1301
retired	1748	516
self-employed	1392	187
services	3785	369
student	669	269
technician	6757	840
unemployed	1101	202
unknown	254	34

```
In [94]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['job'])
    plt.title('job value_counts')
    plt.show()
```


In [95]: pd.crosstab(bank_data['marital'],bank_data['y'])

Out[95]:

у	no	yes
marital		
divorced	4585	622
married	24459	2755
sinale	10878	1912

```
In [96]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['marital'])
    plt.title('marital value_counts')
    plt.show()
```



```
In [97]: pd.crosstab(bank_data['education'],bank_data['y'])
```

Out[97]:

у	no	yes
education		
primary	6260	591
secondary	20752	2450
tertiary	11305	1996
unknown	1605	252

```
In [98]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['education'])
    plt.title('education value_counts')
    plt.show()
```



```
In [99]: pd.crosstab(bank_data['housing'],bank_data['y'])
```

Out[99]:

У	no	yes
housing		
no	16727	3354
ves	23195	1935

```
In [100]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['housing'])
    plt.title('housing value_counts')
    plt.show()
```



```
In [101]: pd.crosstab(bank_data['contact'],bank_data['y'])
```

Out[101]:

У	no	yes
contact		
cellular	24916	4369
telephone	2516	390
unknown	12490	530

```
In [102]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['contact'])
    plt.title('contact value_counts')
    plt.show()
```



```
In [103]: pd.crosstab(bank_data['poutcome'],bank_data['y'])
```

Out[103]:

у	no	yes
poutcome		
failure	4283	618
other	1533	307
success	533	978
unknown	33573	3386

```
In [104]: plt.figure(figsize=(13,10))
    sns.countplot(x = bank_data['poutcome'])
    plt.title('poutcome value_counts')
    plt.show()
```



```
In [105]: bank_data.drop('default',axis = 1,inplace=True)
In [106]: le = LabelEncoder()
```

```
In [107]: bank_data['job']=le.fit_transform(bank_data['job'])
    bank_data['marital']=le.fit_transform(bank_data['marital'])
    bank_data['education']=le.fit_transform(bank_data['education'])
    bank_data['loan']=le.fit_transform(bank_data['loan'])
    bank_data['contact']=le.fit_transform(bank_data['contact'])
    bank_data['y']=le.fit_transform(bank_data['y'])
    bank_data['month']=le.fit_transform(bank_data['month'])
    bank_data['housing']=le.fit_transform(bank_data['housing'])
    bank_data['poutcome']=le.fit_transform(bank_data['poutcome'])
```

In [108]: bank_data

Out[108]:

		age	job	marital	education	balance	housing	loan	contact	day	month	duration	camp
•	0	58	4	1	2	2143	1	0	2	5	8	261	
	1	44	9	2	1	29	1	0	2	5	8	151	
	2	33	2	1	1	2	1	1	2	5	8	76	
	3	47	1	1	3	1506	1	0	2	5	8	92	
	4	33	11	2	3	1	0	0	2	5	8	198	
	45206	51	9	1	2	825	0	0	0	17	9	977	
	45207	71	5	0	0	1729	0	0	0	17	9	456	
	45208	72	5	1	1	5715	0	0	0	17	9	1127	
	45209	57	1	1	1	668	0	0	1	17	9	508	
	45210	37	2	1	1	2971	0	0	0	17	9	361	

45211 rows × 16 columns

```
In [109]: x = bank_data.drop('y',axis=1)
y = bank_data[['y']]
```

```
In [110]:
           std_scalar = StandardScaler()
           x_scaled = std_scalar.fit_transform(x)
           x_scaled = pd.DataFrame(x_scaled,columns=x.columns)
           x scaled
                   1.606965
                            -0.103820 -0.275762
                                                 1.036362
                                                          0.256419
                                                                   0.893915 -0.436803
                0
                                                                                       1.514306 -1
                   0.288529
                             1.424008
                                       1.368372
                                                -0.300556
                                                          -0.437895
                                                                    0.893915 -0.436803
                                                                                       1.514306 -1
                2 -0.747384
                            -0.714951 -0.275762
                                                -0.300556
                                                          -0.446762
                                                                    0.893915
                                                                             2.289359
                                                                                       1.514306 -1
                   0.571051
                           -1.020516 -0.275762
                                                2.373280
                                                          0.047205
                                                                   0.893915 -0.436803
                                                                                       1.514306 -1
                  -0.747384
                             2.035139
                                      1.368372
                                                 2.373280
                                                          -0.447091
                                                                   -1.118674 -0.436803
                                                                                       1.514306 -1
            45206
                   0.947747
                             1.424008 -0.275762
                                                 1.036362
                                                          -0.176460 -1.118674 -0.436803
                                                                                      -0.713012
            45207
                   2.831227
                             0.201746 -1.919895
                                                -1.637474
                                                          0.120447 -1.118674 -0.436803
                                                                                      -0.713012
            45208
                   2.925401 0.201746 -0.275762
                                                -0.300556
                                                          1.429593 -1.118674 -0.436803
                                                                                      -0.713012
            45209
                   1.512791 -1.020516 -0.275762
                                                -0.300556
                                                          -0.228024 -1.118674 -0.436803
                                                                                       0.400647
            45210 -0.370689 -0.714951 -0.275762
                                                          0.528364 -1.118674 -0.436803 -0.713012
                                                -0.300556
           45211 rows × 15 columns
           linear model = LogisticRegression()
In [111]:
In [112]: x train,x test,y train,y test = train test split(x,y,test size=0.20,random state=
In [113]: |x_train.shape,y_train.shape
Out[113]: ((36168, 15), (36168, 1))
In [114]: x_test.shape,y_test.shape
Out[114]: ((9043, 15), (9043, 1))
In [115]: linear_model.fit(x_train,y_train)
Out[115]: LogisticRegression()
In [116]: y pred train = linear model.predict(x train)
In [117]:
           print('Accuracy_score :',accuracy_score(y_train,y_pred_train))
           Accuracy_score : 0.887082503870825
```

print('Confusion matrix :\n',confusion_matrix(y_train,y_pred_train))

In [118]:

```
Confusion matrix :
            [[31403
                       526]
            3558
                      681]]
In [119]:
            auc =roc_auc_score(y_train,y_pred_train)
           print('Auc:' ,auc)
           Auc: 0.5720885225771963
In [120]: | fpr , tpr,thresholds = roc_curve(y_train,linear_model.predict_proba(x_train)[:,1]
           plt.plot(fpr,tpr,color = 'green',label='logit model (area = %0.2f)'%auc)
           plt.plot([0,1],[0,1],'k--')
           plt.xlabel('False positive rate')
           plt.ylabel('True Positive rate')
           plt.show()
              1.0
              0.8
           True Positive rate
              0.6
              0.4
              0.2
              0.0
                           0.2
                                   0.4
                                            0.6
                                                    0.8
                                                            1.0
                  0.0
                                  False positive rate
In [121]: y_pred_test = linear_model.predict(x_test)
In [122]:
           print('Accuracy_score :',accuracy_score(y_test,y_pred_test))
           print('Confusion matrix :\n',confusion_matrix(y_test,y_pred_test))
           Accuracy_score : 0.8900807254229791
           Confusion matrix :
            [[7859 134]
            [ 860 190]]
In [123]:
           auc =roc_auc_score(y_test,y_pred_test)
           print('Auc:' ,auc)
           Auc: 0.5820938559334657
```

```
In [124]: fpr,tpr,thresholds = roc_curve(y_test,linear_model.predict_proba(x_test)[:,1])
    plt.plot(fpr,tpr,color ='red')
    plt.plot([0,1],[0,1],'k--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
```

Out[124]: Text(0, 0.5, 'True positive rate')

