

Sistemas Inteligentes

Prof. Msc. Luiz Mário Lustosa Pascoal

Fundamentos dos Algoritmos Genéticos

"Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes."

(DARWIN, 1859)

O QUE SÃO?

- o Os Algoritmos Genéticos são uma classe de procedimentos, com passos distintos bem definidos.
- Essa classe se fundamenta em analogias a conceitos biológicos já testadas à exaustão.
- Cada passo distinto pode ter diversas versões diferentes.

PARA QUE SERVEM?

- Busca e Otimização
- Amplamente utilizados, com sucesso, em problemas de difícil manipulação pelas técnicas tradicionais
- o Eficiência X Flexibilidade

CARACTERÍSTICAS GERAIS

- Utilizam uma codificação do conjunto de parâmetros (indivíduos) e não com os próprios parâmetros (estados);
- Vasculham várias regiões do espaço de busca de cada vez;
- Utilizam informações diretas de qualidade, em contraste com as derivadas utilizadas nos métodos tradicionais de otimização;
- Utilizam regras de transição probabilísticas e não regras determinísticas.

CARACTERÍSTICAS GERAIS

Algoritmos Genéticos podem ser considerados como métodos que trabalham com

Buscas <u>Paralelas Randômicas Direcionadas</u>

FUNCIONAMENTO FUNDAMENTAL

- 1. Gerar População Inicial
- 2. Descartar uma parte dos Indivíduos menos aptos
- 3. Aplicar operadores de reprodução
- 4. Aplicar operadores de mutação
- 5. Se o critério de parada foi satisfeito, encerrar. Senão, voltar ao passo 2.

MODELAGEM

- Indivíduos X Estados
- o Cada indivíduo possui um código genético
- Esse código é chamado *cromossomo*
- o Tradicionalmente, um cromossomo é um vetor de bits
- Vetor de bits nem sempre é o ideal

EXEMPLO DE MODELAGEM

- Problema das N-Rainhas:
 - A posição de cada rainha é dada por uma subcadeia do cromossomo
 - Exemplo para N = 4:

OPERADORES FUNDAMENTAIS

- Seleção Natural
- Manipulação Genética por Mutação
- o Manipulação Genética por Reprodução

Seleção Natural

- Princípio básico para o direcionamento da evolução de uma dada população
- Utiliza uma função de avaliação para medir a *aptidão* de cada indivíduo
- Essa aptidão pode ser *absoluta* ou *relativa*
- o Existem vários métodos de seleção

Principais Métodos de Seleção Natural

Roleta

Torneio

POPULAÇÃO EXEMPLO

Indivíduo	Aptidão Absoluta	Aptidão Relativa
1	2	0,052631579
2	4	0,105263158
3	5	0,131578947
4	9	0,236842105
5	18	0,473684211
Total	38	1

MÉTODO DA ROLETA

- Coloca-se os indivíduos em uma roleta, dando a cada um uma "fatia" proporcional à sua aptidão relativa
- o Depois roda-se a agulha da roleta. O indivíduo em cuja fatia a agulha parar permanece para a próxima geração
- Repete-se o sorteio quantas vezes forem necessárias para selecionar a quantidade desejada de indivíduos

ROLETA - EXEMPLO

MÉTODO DO TORNEIO

- o Utiliza sucessivas disputas para realizar a seleção
- Para selecionar *k* indivíduos, realiza *k* disputas, cada disputa envolvendo *n* indivíduos escolhidos ao acaso
- O indivíduo de maior aptidão na disputa é selecionado
- \bullet É muito comum utilizar n = 3

TORNEIO - EXEMPLO

OPERADOR DE CRUZAMENTO

- o Também chamado de reprodução ou crossover
- Combina as informações genéticas de dois indivíduos (*pais*) para gerar novos indivíduos (*filhos*)
- Versões mais comuns criam sempre dois filhos para cada operação

OPERADOR DE CRUZAMENTO

- Operador genético principal
- Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos já promissores
- Aplicado a cada par de indivíduos com alta probabilidade (normalmente entre 0,6 e 0,99)

ABORDAGENS PARA CRUZAMENTO

- Cruzamento Um-Ponto
- Cruzamento Multi-Pontos
- Cruzamento Uniforme

CRUZAMENTO UM-PONTO

CRUZAMENTO MULTI-PONTO

CRUZAMENTO UNIFORME

Operador de Mutação

- o Idéia >>> Criar variabilidade na população mas sem destruir o progresso já obtido na busca <<<
- o Operador randômico de manipulação
- o Introduz e mantém a variedade genética da população
- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca.
- Contorna mínimos locais
- Se muito elevado acaba sendo ruim, pois se assemelha a uma busca aleatória.

Operador de Mutação

- É um operador genético secundário
- Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória
- Logo um indivíduo sofre mutações com probabilidade baixa (normalmente entre 0,001 e 0,1)
- Geralmente aplica-se taxas de mutação maiores no início da busca
 - Busca global (*Exploration*)
- A medida que o algoritmo evolui, a taxa é decrescida
 - Busca local (*Exploitation*)

Exemplo de Mutação

Parâmetros Genéticos

- Tamanho da população
- o Taxa de cruzamento
- Taxa de mutação
- o Intervalo de geração
- o Critério de parada

Considerações

- o Entre os diversos operadores disponíveis é levantada uma questão.
- Qual o melhor operador a ser utilizado???
 - Geralmente a escolha do operador depende do problema
 - Existem diversas representações de soluções para os problemas
- Principais tipos de representação
 - Binária Cadeia de bits. Ex. 1 0 1 1 0 1 0
 - Real ou Ponto Flutuante Vetor com valores reais. Ex. 0,4 1,5 2,1 0,1
 - Permutação Vetor com elementos inteiros distintos. Ex. 1 3 5 4 2

Operadores Para outras Representações

- Os operadores vistos até então também podem ser aplicados em codificações com ponto flutuante.
- Entretanto, alguns operadores têm sido especialmente para esse problemas:
 - Cruzamento aritmético
 - Combinação linear de dois cromossomos:

Operador de Cruzamento Para Representação Real

- \circ Dois indivíduos selecionados x_1 e x_2
- Os filhos resultantes serão:

$$x_1' = ax_1 + (1-a)x_2$$
 Onde a é um número aleatório $x_2' = (1-a)x_1 + ax_2$ onde a é um número aleatório no intervalo [0,1]

- Interessante para problemas de otimização com restrições onde a região factível é convexa.
- Isso porque se X₁ e X₂ pertencem a região factível, os filhos também pertencerão.

Operador de Mutação Real

- Codificação com ponto flutuante:
 - Mutação uniforme
 - •Seleciona um gene do cromossomo aleatoriamente e atribui um número aleatório com distribuição de probabilidade uniforme amostrado no intervalo [UB-LB].
 - >> Somente um gene é modificado <<</p>

Operador de Mutação Real

- Codificação com ponto flutuante:
 - Mutação Gaussiana
 - •Todos os genes do cromossomo são modificado na forma x'= x + N(0,σ) onde N(0,σ) é o vetor de variáveis aleatórias Gaussianas independentes com média zero e desvio padrão σ

Cruzamento para Cromossomo de Permutação

Parcialmente mapeado (PMX)

Mutação para Cromossomos por Permutação

Mutação por permutação

Considerações Finais

- O espaço de busca dos genótipos pode ser definido pelos operadores de busca ou pela **métrica de distância** e vice-versa.
 - Operador de busca local → Os genótipos são vizinhos.
 - Métrica de distância:
 - o Distância de Hamming, o menor valor é d(x,y) = 1
 - o Distância City Block, $d(x,y) = \sum_{i=1}^{N} |X_i Y_i|$
- Assim, a definição da **representação** depende da escolha dos **operadores de busca** e vice-versa e não podem ser decididos de forma independente.
- o Operadores de busca trabalham no nível de genótipo, enquanto a avaliação das soluções é executada no nível de fenótipo.

Considerações Finais

o Operadores de Recombinação

- Seja (P_1, P_2) os pais e O_1 um descendente gerado de acordo com os Princípios de Radcliffe.
- Desta forma temos, $d(P_1, P_2) \ge MAX(d(P_1, O_1), d(P_2, O_1))$
 - Isto significa que a diferença entre a distância do filho para os pais deve ser menor ou igual a diferença entre os pais. Ou seja, os descendentes são mais similares aos pais do que os pais entre si.

o Princípios de Radcliffe

- Radcliffe nos anos 90 desenvolveu um guia para o desenvolvimento de operadores.
- Princípio formal os quais são subconjuntos do espaço de busca são definidos como classes de equivalência que são induzidos por um conjunto de relações equivalentes.
- Exemplo: Mesma cor de cabelo, Mesma cor dos olhos, Tipo Sanguíneo.

Princípios de Radcliffe

- Respeito: descendentes gerados por recombinação devem ser membros dos Forma-E para qual ambos os pais pertencem. Ex de Forma-E: - Cabelos Vermelhos, Cabelo Preto, Olhos Verdes.
- Transmissão: Um descendente deve ser equivalente para pelo menos um de seus pais sob cada uma das relações de equivalência.
- Escolha: Um descendente pode ser formado com qualquer característica compatível de um dos pais. Ex. um filho só pode pegar uma característica de um pai e outra de outro pai se elas forem compatíveis.
- Ergocidade: O uso iterativo de operadores de busca a partir de todas as soluções iniciais.

APLICAÇÕES

- Alocação de tarefas
- o Configuração de sistemas complexos
- Seleção de Rotas
- o Problemas de Otimização e de Aprendizagem de Máquina
- o Problemas cuja solução seja um estado final e não um caminho

APLICAÇÕES

- São especialmente interessantes em problemas difíceis de otimizar de forma convencional
- Técnicas tradicionais são mais difíceis de empregar
- Se uma técnica tradicional puder ser empregada, normalmente acha melhor solução mais rápido

APLICAÇÕES

- Existem muitos problemas práticos aos quais técnicas determinísticas tradicionais não podem ser aplicadas
- o Técnicas tradicionais têm natureza serial
- o Algoritmos Genéticos têm natureza paralela

Perspectivas Futuras

- Computação baseada em DNA
- Cooperação e competição entre populações
- Vida vegetal
- Desenvolvimento de modelos teóricos

- Sistemas evolutivos híbridos
- Metodologia para a configuração de parâmetros
- Prova formal da eficiência global dos AGs