(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開平8-45874

(43) 公開日 平成8年(1996) 2月16日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/28

301 M

21/3205 29/872

H 0 1 L 21/88

N

29/48

S

審査請求 未請求 請求項の数2 (全 4 頁) 最終頁に続く

特願平6-197421

(71) 出願人 000006220

ミツミ電機株式会社

東京都調布市国領町8丁目8番地2

(72) 発明者 本房 敬市郎

神奈川県厚木市酒井1601 ミツミ電機株式

会社厚木事業所内

(21) 出願番号

(22) 出願日

平成6年(1994)7月30日

(54) 【発明の名称】 半導体装置

(57) 【要約】

【目的】本発明は、A1アロイスパイクの発生が抑制さ れ、微細化が可能になると共に、ショットキーバリアダ イオードの低い順方向電圧が得られるようにした、半導 体装置を提供することを目的とする。

【構成】表面に酸化膜19が形成された半導体基板12 上に関して、酸化膜に窓部を形成して、該窓部にて酸化 膜の下方の半導体層17a,15,16,14′,18 を露出させ、該窓部の上に金属層20を形成することに より、取出し電極20a, 20b, 20c, 20eまた は配線パターンを構成すると共に、該金属層20dと半 導体層14'との間に整流性接合Cを構成するようにし た、半導体装置において、上記金属層が、シリコン含有 率1%以下のAl-Si層から成るように、半導体装置 を構成する。

?S PN=08045874 1 PN=08045874 ?T 1/5

1/5/1 DIALOG(R)File 347:JAPIO (c) JPO & JAPIO. All rts. reserv.

05090374 SEMICONDUCTOR DEVICE

PUB. NO.: 08-045874 [JP 8045874 A] PUBLISHED: February 16, 1996 (19960216) INVENTOR(s): MOTOFUSA KEIICHIROU

APPLICANT(s): MITSUMI ELECTRIC CO LTD [000622] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 06-197421 [JP 94197421] FILED: July 30, 1994 (19940730)

INTL CLASS: [6] H01L-021/28; H01L-021/3205; H01L-029/872; H01L-021/331;

H01L-029/73

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

ABSTRACT

PURPOSE: To restrain the generation of Al alloy spikes by forming a window part in an oxide film on a semiconductor substrate and forming a metal layer comprising a Al-Si layer of a specified silicon content on the top of this window part.

CONSTITUTION: After an insulation layer 19 of an oxide film is formed on the surface of a semiconductor substrate device 11, a window part is formed on an electrode take-out part of this insulation layer 19. An n(sup -)-type layer 14 and an n(sup +)-type layer 18 surrounded by a semiconductor layer in the lower part, namely, an n(sup +)-type diffusion layer 17a of a bipolar transistor, a p-type diffusion layer 15, an n(sup +)-type diffusion layer 16, and a p-type layer 15' of a Schottky barrier diode, are exposed, and a metallic layer 20 is formed on the top of it. This enables take-out electrodes 20, 20b, and 20c to be formed by the metallic layer 20 in the bipolar transistor. The metallic layer 20 here does not comprise pure-Al but Al-Si of a silicon content under 1%.

【特許請求の範囲】

【請求項1】 表面に酸化膜が形成された半導体基板上に関して、酸化膜に窓部を形成して、該窓部にて酸化膜の下方の半導体層を露出させ、該窓部の上に金属層を形成することにより、取出し電極または配線パターンを構成するようにした、半導体装置において、

上記金属層が、シリコン含有率1%以下のAI-Si層から構成されていることを特徴とする、半導体装置。

【請求項2】 表面に酸化膜が形成された半導体基板上に関して、酸化膜に窓部を形成して、該窓部にて酸化膜の下方の半導体層を露出させ、該窓部の上に金属層を形成することにより、該金属層と半導体層との間に整流性接合を構成するようにした、半導体装置において、上記金属層が、シリコン含有率1%以下のA1-Si層から構成されていることを特徴とする、半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の表面に酸 化膜を介して金属層を形成して、取出し電極または配線 パターンを形成し、あるいは整流性接合を構成するよう にした、半導体装置に関するものである。

[0002]

【従来の技術】従来、バイポーラトランジスタ及びショットキーバリアダイオードを含む半導体装置は、例えば図2に示すように構成されている。即ち、図2において、半導体装置1は、バイポーラトランジスタの領域A(図2の左側)においては、p型シリコン基板2の表面に対して、熱拡散等によってn⁺型埋込層3を形成し、該基板2の表面全体に亘ってエピタキシャル成長等によりn型層4を形成した後に、該n型層4の周囲にp⁺型層2a,2bを形成することにより、上記n型層4を分離し、続いて、該n型層4の表面に、熱拡散によりp型拡散層5を形成すると共に、該p型拡散層5を形成し、対p型拡散層5を形成すると共に、該p型拡散層6を形成し、さらに該p型拡散層5の表面に、熱拡散によりn⁺型拡散層7aを形成することにより、バイポーラトランジスタが構成されている。

【0003】また、バイボーラIC1の領域B(図2の右側)においては、p型シリコン基板2の表面に対して、熱拡散等によってn⁺型埋込屬3^{*}を形成し、該基板2の表面全体に亘ってエピタキシャル成長等によりn型層4^{*}を形成した後に、上記n型層4^{*}のn⁺型埋込層3^{*}の上方領域の周囲に、熱拡散によりp型層5^{*}を形成すると共に、該p型層5^{*}の側方にて、該n型層4^{*}の表面に、熱拡散によりn⁺型層8を形成することにより、ショットキーバリアダイオードが構成されている。

【0004】このように構成された半導体装置1は、さらに、その表面に酸化膜による絶縁層9を形成した後、 該絶縁層9の電極取出し部分に窓部を形成して、下方の 半導体層、即ちバイポーラトランジスタのn⁺型拡散層 7 a, p型拡散層 5 及びn⁺型拡散層 6 と、ショットキーバリアダイオードのp型層 5⁺ に包囲されたn 型層 4⁺ 及びn⁺型層 8 を露出させ、その上から、金属層 1 0を形成する。これにより、バイポーラトランジスタにおいては、金属層 1 0により、取出し電極 1 0 a, 1 0 b, 1 0 cが形成されることになり、またショットキーバリアダイオードにおいては、金属層 1 0により、電極 1 0 dとその下方のn 型層 4⁺ の間に、整流性接合が構成されると共に、取出し電極 1 0 eが形成されることになる。さらに、その上から保護層を被せることにより、半導体装置 1 が完成するようになっている。

【0005】かくして、半導体装置1のうち、バイポーラトランジスタは、p型拡散層5がベースとして、n⁺型拡散層6がコレクタとして、さらにn⁺型拡散層7aがエミッタとして、それぞれ作用するようになっている。また、ショットキーバリアダイオードは、電極10 dと下方のn型層4^{*}がショットキーバリアを構成し、さらに金属層10eが取出し電極として作用し、その際、p型層5^{*}がガードリングとして作用することにより、電界集中による逆方向リーク電流を緩和するするようになっている。

【0006】ここで、上記金属層10は、一般的には、Siを含有していない純粋アルミニウム金属(pureーA1)から構成されている。これにより、ショットキーバリアダイオードに関しては、比較的低い順方向電圧が得られるようになっている。

[0007]

【発明が解決しようとする課題】しかしながら、このような構成の半導体装置1においては、金属層10として pure-Alが使用されていることから、該金属層10のシンタリング等の熱処理の際に、半導体層のSiが Al内に吸い込まれることにより、所謂Alアロイスパイクが発生することがある。このAlアロイスパイクは、場合によっては、金属層10の下方の半導体層を貫通することもあり、半導体装置1全体の微細化を妨げることになる。

【0008】さらに、バイボーラトランジスタに関しては、金属層10による各電極10a,10b,10c

が、A1アロイスバイクにより、それぞれn[†]型層7a,n[†]型層6を貫通して、その下のp型層5やn型層4に直接に接触してしまうと、バイポーラトランジスタが構成され得なくなってしまう。また、ショットキーバリアダイオードに関しては、A1アロイスバイクによって、金属層10dとn型層4,の境界面が乱れることになり、ショットキーバリアダイオードの特性が損なわれてしまうという問題があった。

【0009】本発明は、以上の点に鑑み、A1アロイスパイクの発生が抑制され得るようにした、半導体装置を提供することを目的としている。

0

[0010]

【課題を解決するための手段】上記目的は、本発明によ れば、表面に酸化膜が形成された半導体基板上に関し て、酸化膜に窓部を形成して、該窓部にて酸化膜の下方 の半導体層を露出させ、該窓部の上に金属層を形成する ことにより、取出し電極または配線パターンを構成する ようにした、半導体装置において、上記金属層が、シリ コン含有率1%以下のA1-Si層から構成されている ことを特徴とする、半導体装置により、達成される。

【0011】また、上記目的は、本発明によれば、表面 に酸化膜が形成された半導体基板上に関して、酸化膜に 窓部を形成して、該窓部にて酸化膜の下方の半導体層を 露出させ、該窓部の上に金属層を形成することにより、 該金属層と半導体層との間に整流性接合を構成するよう にした、半導体装置において、上記金属層が、シリコン 含有率1%以下のAl-Si層から構成されていること を特徴とする、半導体装置により、達成される。

[0012]

【作用】上記構成によれば、取出し電極または配線バタ ーンあるいは整流性接合を構成する金属層が、pure ーA 1ではなく、シリコン含有率1%以下のA 1 - S i 屬から構成されているので、該金属屬のシンタリング等 の熱処理の際に、半導体層のシリコンが、金属層に吸い 込まれるようなことはなく、Alアロイスパイクの発生 が抑止され得る。

【0013】従って、半導体装置の微細化が可能にな る、即ち、バイポーラトランジスタの場合には、各半導 体層が確実に構成され得ることになり、またショットキ ーバリアダイオードの場合には、比較的低い順方向電圧 が得られることになる。

【0014】尚、金属層が、上記条件から外れて、シリ コン含有率1%以上のAl-Siから構成されている場 合には、A1アロイスパイクの発生は抑止されるもの の、順方向電圧が高くなってしまうので、ショットキー バリアダイオードとしての特性が劣化してしまうことに なる。

[0015]

【実施例】以下、図面に示した実施例に基づいて、本発 明を詳細に説明する。図1は、本発明を適用したバイポ ーラトランジスタ及びショットキーバリアダイオードを 含む半導体装置の一実施例を示している。

【0016】図1において、半導体装置11は、バイポ ーラトランジスタの領域A(図1の左側)においては、 p 型シリコン基板 1 2 の表面に対して、熱拡散等によ って n⁺型埋込層13を形成し、該基板12の表面全体 に亘ってエピタキシャル成長等により n 型層14を形 成した後に、該n 型層14の周囲に p *型層12a,1 2 bを形成することにより、上記 n 型層 1 4 を分離 し、続いて、該n 型層14の表面に、熱拡散によりp 型拡散圏15を形成すると共に、該p型拡散層15とp

⁺型層12bの間の領域に、熱拡散により n⁺型拡散層1 6 を形成し、さらに該 p 型拡散層15の表面に、熱拡散 によりn⁺型拡散層17a及びp⁺型拡散層17bを形成 することにより、バイポーラトランジスタが構成されて

【0017】また、バイポーラIC11の領域B (図1 の右側) においては、p型シリコン基板12の表面に対 して、熱拡散等によって n †型埋込層 1 3 *を形成し、 該基板12の表面全体に亘ってエピタキシャル成長等に よりn 型層14'を形成した後に、上記n 型層14' の n ⁺型埋込層13[・] の上方領域の周囲に、熱拡散によ りp型層15'を形成すると共に、該p型層15'の側 方にて、該n 型層14'の表面に、熱拡散によりn型 層18を形成することにより、ショットキーバリアダイ オードが構成されている。

【0018】このように構成された半導体装置11は、 さらに、その表面に酸化膜による絶縁層19を形成した 後、該絶縁層19の電極取出し部分に窓部を形成して、 下方の半導体層、即ちバイポーラトランジスタの n⁺型 拡散層17a, p型拡散層15及びn⁺型拡散層16 と、ショットキーバリアダイオードのp型層15'に包 囲された n 型層 1 4′及び n + 型層 1 8 を露出させ、そ の上から、金属層20を形成する。これにより、バイポ ーラトランジスタにおいては、金属層20により、取出 し電極20a, 20b, 20cが形成されることにな り、またショットキーバリアダイオードにおいては、金 属層20により、電極20dとその下方のn 型層1 4'の間に、整流性接合Cが構成されると共に、取出し 電極20eが形成されることになる。さらに、その上か ら保護層を被せることにより、半導体装置11が完成す るようになっている。

【0019】上記構成は、図2に示した従来の半導体装 置1と同様の構成であるが、本発明実施例による半導体 装置11においては、上記金属層20は、pure-A lではなく、シリコン含有量1%以下のAl-Siから 構成されている。

【0020】本発明による半導体装置10は、以上のよ うに構成されており、半導体装置11のうち、バイポー ラトランジスタは、p型拡散層15がペースとして、n †型拡散層16がコレクタとして、さらに n †型拡散層 1 7aがエミッタとして、それぞれ作用するようになって いる。また、ショットキーバリアダイオードは、電極2 0 dと下方の n 型層 1 4'の間の整流性接合 C がショ ットキーバリアを構成し、さらに金属層20eが取出し 電極として作用し、その際、 p 型層 1 5 ' がガードリン グとして作用することにより、電界集中による逆方向リ 一ク電流を緩和するするようになっている。

【0021】ここで、金属層20は、シリコン含有量1 %以下のAI-Siから構成されているので、該金属層 50 20のシンタリングまたはメタライズ等の熱処理の際

5

に、絶縁膜19を構成するシリコン酸化膜のシリコンが、金属層20に吸い込まれるようなことはない。従って、AIアロイスパイクの発生が抑止され得る。

【0022】これにより、バイポーラトランジスタの場合には、A1アロイスパイクが各半導体層17a,16 (特に半導体層17a)を貫通することがないので、バイポーラトランジスタが確実に構成され得ることになる。また、ショットキーバリアダイオードの場合には、A1アロイスパイクが金属層20dとn型層14,の間のショットキーバリアを乱すことがないので、比較的10低い順方向電圧が得られることになる。かくして、半導体装置11の微細化が可能になる。

【0023】尚、金属層20が、上記条件から外れて、シリコン含有率1%以上のA1-Siから構成されている場合には、A1アロイスバイクの発生は抑止されるものの、順方向電圧が高くなってしまうので、ショットキーバリアダイオードとしての特性が劣化してしまうことになる。

【0024】上記実施例においては、半導体装置11として、バイポーラトランジスタ及びショッキトーバリアダイオードの場合について説明したが、これに限らず、A1-Siアロイスバイクの発生により、構成または動作が損なわれるような、他の任意の構成の半導体装置に対して、本発明を適用し得ることは明らかである。

[0025]

【発明の効果】以上述べたように、本発明によれば、取出し電極または配線パターンあるいは整流性接合を構成する金属層が、pure-Alではなく、シリコン含有

率1%以下のA1-Si層から構成されているので、A 1アロイスパイクの発生が抑止され得ることになり、半 導体装置の徴細化が可能になる。

【0026】かくして、本発明によれば、A1アロイスパイクの発生が抑制され、微細化が可能になると共に、ショットキーバリアダイオードの低い順方向電圧が得られるようにした、極めて優れた半導体装置が提供され得ることになる。

【図面の簡単な説明】

10 【図1】本発明による半導体装置の一実施例を示す機略 断面図である。

【図2】従来の半導体装置の一例を示す概略断面図である。

【符号の説明】

11 半導体装置

12 p 型シリコン基板

12a, 12b p+型分離層

13,13' n⁺型埋込層

14,14' n 型層 (半導体層)

20 15, 15' p型拡散層

16, 17a, 18 n⁺型拡散層 (半導体層)

19 絶縁膜 (酸化膜)

20 金属層 (Al-Si層)

20a, 20b, 20c, 20e 金属層 (Al-

S i 屬)

20d 金属層 (A1-Si層)

C 整流性接合

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FI

技術表示箇所

H 0 1 L 21/331 29/73

H 0 1 L 29/72

THIS PAGE BLANK (USPTO)