Nom:	Prénom :	Groupe :			
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS					
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2013/2014	Note / 20			
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°3	/ 40			

Durée: 1h30

Mardi 10 Décembre 2013

- □ Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

TOUTE FRAUDE ou TENTATIVE DE FRAUDE SERA SANCTIONNEE

L'étudiant ayant triché ET l'étudiant ayant aidé (le cas échéant) seront traduits devant la commission disciplinaire de l'université.

CORRECTION

N'OUBLIEZ PAS LES UNITES

Rappel:

- $pico = 10^{-12}$
- nano = 10^{-9}
- $micro = 10^{-6}$

On donne :
$$e^{-1} = 0.37$$

 $e^{-2} = 0.135$
 $e^{-3} = 0.05$
 $e^{-4} = 0.018$
 $e^{-5} = 0$

Questions de cours sur les impédances et dimension (3 pts)

0,25pt Expression de l'impédance d'une résistance : $\mathbb{Z}_{\mathbb{R}} = \mathbb{R}$

0,25pt Expression de l'impédance d'une bobine : $Z_L = jL\omega$

0,25pt Expression de l'impédance d'un condensateur : $Z_C = 1/(jC\omega)$

Expression et définition de la fonction de transfert d'un circuit : c'est le rapport (sous la forme complexe) entre la sortie et l'entrée d'un circuit – Par exemple : $H(\omega) = \underline{u}_s(t) / \underline{u}_e(t)$

0,25pt Expression du gain : $G(\omega) = |H(\omega)|$

0,25pt Expression du gain en décibel : G_{dB} (ω) = 20 log_{10} $G(\omega)$

0,25pt Comment est définie la pulsation de coupure ωc ? c'est la pulsation pour laquelle le gain en décibel vaut -3 dB

Que représente l'argument de la fonction de transfert ? représente le déphasage existant entre la sortie et l'entrée du circuit

1pt Déterminez la dimension de $\frac{R}{L}$:

Réponse :

En effet, la caractéristique courant/tension d'une bobine permet de déterminer une autre dimension (que celle d'Henry) pour l'inductance.

$$u_L(t) = L \times \frac{di(t)}{dt}$$

$$L = \frac{u_L(t)}{\frac{di(t)}{dt}}$$

Donc, l'inductance a la dimension de V/(A.s⁻¹)

BROUILLON

Soit le signal représenté ci-dessous :

Déterminez graphiquement les valeurs numériques pour :

Valeur crête : $\max\{|-6|;|4|\}=6$ V

0,25pt

Valeur crête-crête : $|V_{max}-V_{min}| = |4 - (-6)| = 10 \text{ V}$

0,25pt

Valeur moyenne : -1 V (au centre du signal)

0,25pt

Période : 4s.

 $0,\!25 \mathrm{pt}$

BROUILLON

EXERCICE II: Associations (3 pts)

A. Déterminez la capacité équivalente, CAB, du circuit ci-contre :

B. Déterminez l'inductance équivalente, LAB, du circuit ci-contre :

Ci-dessous, on a les formes d'onde du courant et de la tension pour un composant inconnu.

III.1. Déduire du graphe les réponses aux questions suivantes : n'oubliez pas les unités, attention justement aux échelles en y sur les graphiques.

1pt

	Courant	Tension
Amplitude	5μΑ	0,1V
Т	0.5s	0.5s
ω	4п	4п
Expression*	$-5.10^{-6}\sin(4\pi t)$	0,1 cos(4πt)

^{*} pour l'expression des signaux en fonction du temps, utilisez les fonctions sinus ou cosinus (n'introduisez pas de déphasage).

III.2. Quel est ce composant inconnu ? Justifiez. Donnez sa valeur numérique.

1,5pt

Réponse :

(cos)' = -sin donc le courant est la dérivée de la tension à un coefficient près, donc il s'agit d'un condensateur.

Caract. courant/tension du condensateur :

$$i(t) = C \frac{du(t)}{dt}$$

Donc:

$$C = \frac{i(t)}{\frac{du(t)}{dt}} = \frac{-5.10^{-6} \sin(4\pi t)}{0.1 \times (-4\pi \sin(4\pi t))} = \frac{5.10^{-6}}{0.1 \times 4\pi} = 3.98 \mu F \approx 4\mu F$$

III.3. Quelle est la valeur maximale de l'énergie stockée par le composant ?

Réponse :

Emax = 20nJ

(obtenue pour la valeur max de la tension : 0,1V)

0.5pt

Partie IV.1. Interrupteur fermé.

Soit le circuit ci-dessous. L'interrupteur est fermé depuis longtemps et on considère que le régime permanent est atteint.

0.5pt

IV.1.a. Déterminez la tension Uc (constante) aux bornes du condensateur.

Réponse :

En régime permanent, le condensateur se comporte comme un circuit ouvert, donc aucun courant ne circule dans la branche : la tension aux bornes de la résistance de 200Ω est nulle. Donc la tension aux bornes du condensateur est la même que la tension aux bornes de la résistance de 500Ω .

Comme aucun courant ne circule dans la branche contenant 200Ω et C, les résistances de 300Ω et $500~\Omega$ sont en série, et on peut faire un diviseur de tension. $U_C=\frac{500}{300+500}\times 24=15V$

$$U_C = \frac{500}{300 + 500} \times 24 = 15V$$

0.5pt

IV.1.b. Donnez l'expression et la valeur numérique de la charge Q du condensateur.

Expression : $Q = C \times U_C$

Valeur numérique (avec unité) : $Q = 900 \mu C$

Partie IV.2. Interrupteur ouvert.

L'interrupteur était fermé depuis longtemps (partie 1). En t=0, on l'ouvre.

IV.2.a. Valeur numérique de la tension aux bornes du condensateur en t=0.

$$u_{\rm C}(0) = U_{\rm C} = 15{\rm V}$$
 0,5pt

Loi des mailles : $u_C(t) = R \times i(t)$

Caractéristique courant/tension d'un condensateur qui se décharge : i(t) = -C u'c(t)

D'où EDL1H : $u'_{C}(t) + \frac{1}{0.042}u_{C}(t) = 0$

IV.2.c. Déterminez la solution de cette équation différentielle (expression de uc(t))

0,5pt

Réponse :

Solution de la forme : $u_C(t) = k \times e^{-\frac{t}{0.042}}$

On détermine k avec la condition initiale : $u_c(0) = 15 = k$

$$u_C(t) = 15 \times e^{-\frac{t}{0.042}}$$

IV.2.d. Déduisez de l'expression de la tension uc(t) trouvée en IV.2.c, l'expression de la charge q(t).

 $q(t) = C.u_C(t) = 900.10^{-6}e^{-\frac{t}{0.042}}$

 ${f IV.2.e.}$ Au bout de combien de temps, la charge du condensateur atteint-elle 25% de sa valeur initiale calculée au ${f IV.1.b.}$?

0,5pt Réponse :

$$q(t) = 0.25 \times Q = 0.25 \times 900.10^{-6} = 900.10^{-6}e^{-\frac{t}{0.042}}$$

Soit : $ln(0,25) = -\frac{t}{0.042}$

Soit: t=58ms

EXERCICE V : Etude du régime transitoire d'un circuit RL (6 pts)

Partie A. Charge de la bobine en énergie électromagnétique sous la tension E₁.

Soit le circuit RL ci-dessous

La bobine se charge sous la tension E₁=8V. Dans cette partie, on notera le courant i_A(t).

V.1.a. Déterminez l'équation différentielle qui régit les variations du courant i_A(t) dans la bobine.

0,5pt

Réponse :

Loi des mailles : $8 - 1 \times i_A(t) - 0, 1 \times i_A'(t) = 0$

D'où : $i_A'(t) + 10 i_A(t) = 80$

V.1.b. Donnez la solution de cette équation différentielle. On donne i_A(0)=0.

0,75pt

Réponse:

La solution de l'EDL1A est composée de :

- * la solution de l'EDL1H : $i1(t) = ke^{-10t}$
- * une solution particulière de l'EDL1A : second membre = constante, donc la solution

particulière sera une constante : i2(t) = A

On injecte A dans l'EDL1A : 0 + 10 A = 80 donc A=8

La solution complète est : $i_A(t) = ke^{-10t} + 8$

En t=0, le courant est nul, on en déduit : k=-8

Soit : $i_A(t) = 8 (1 - e^{-10t})$

V.1.c. Tracé

Donnez la valeur numérique de la constante de temps de l'exponentielle : $\tau = \frac{1}{10} = 0.1s$

0,25pt

Tracez l'évolution du courant entre t=0 et t=1s.

0.5pt

Partie B. Charge de la bobine en énergie électromagnétique sous la tension E₂.

A t=1s l'interrupteur bascule de sorte que la bobine se charge sous la tension E₂=-8V.

On réinitialise le temps à t=0. Dans cette partie, on notera le courant i_B(t).

V.2.a. La valeur du courant à t=0 correspond à la valeur atteinte précédemment par i : donnez sa valeur numérique.

$$i_B(0) = i_A(1) = 8 A$$
.

0.5pt

V.2.b. Déterminez l'équation différentielle qui régit les variations du courant i_B(t) dans la bobine.

Réponse :

Loi des mailles : $-8 - 1 \times i_B(t) - 0.1 \times i_B'(t) = 0$

D'où : i_B '(t) + 10 i_B (t) = -80

V.2.c. Donnez la solution de cette équation différentielle :

0,75pt

Réponse :

La solution de l'EDL1A est composée de :

* la solution de l'EDL1H : $i1(t) = ke^{-10t}$

* une solution particulière de l'EDL1A : second membre = constante, donc la solution

particulière sera une constante : i2(t) = A

On injecte A dans l'EDL1A : 0 + 10 A = -80 donc A = -8

La solution complète est : $i_B(t) = ke^{-10t} - 8$

En t=0, le courant est égal à 8, on en déduit : k=16

Soit : $i_B(t) = 8 (2e^{-10t} - 1)$

V.2.d. Tracé

Donnez la valeur numérique de la constante de temps de l'exponentielle : $\tau = \frac{1}{10} = 0.1s$

0,25pt

Tracez l'évolution du courant entre t=0 et t=1s à la suite du tracé précédent (correspond à t=1s et t=2s sur le graphique).

0.5pt

Partie C. Charge de la bobine en énergie électromagnétique sous la tension E₁.

A t=2s l'interrupteur bascule de sorte que la bobine se charge sous la tension E₁=8V.

On réinitialise le temps à t=0. Dans cette partie, on notera le courant ic(t).

Brièvement donnez:

Valeur numérique du courant à t=0 : $i_C(0) = -8$ A

0,25pt

EDL1A : $i_{C}'(t) + 10 i_{C}(t) = 80$

0.5pt

Solution : $i_C(t) = 8 (1 - 2e^{-10t})$

0,75pt

Tracez $i_C(t)$ sur le graphe à la suite de $i_B(t)$.

0.5pt

