Taller 1 Santiago Najar

A lo largo de este taller trabajaremos en el caso de AIRBNB que busca descubrir patrones, tendencias y oportunidades que puedan ser de interés para un inversionista de un apartamento.

Dicho esto es importante mencionar que para este analisis nuestra variable de interes va a ser el precio diario al que es rentado el inmueble. Esto debido a que un inversionista busca maximar el precio al que puede rentar su apartamento para obtener un mayor ROI.

```
# Importar las librerías necesarias
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.impute import KNNImputer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error, r2_score

data = pd.read_csv("/content/listings.csv", encoding="utf-8", delimiter = ',', header = 0)
data
```


	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longi
0	3686	Vita's Hideaway	4645	Vita	NaN	Historic Anacostia	38.863390	-76.98
1	3943	Historic Rowhouse Near Monuments	5059	Vasa	NaN	Edgewood, Bloomingdale, Truxton Circle, Eckington	38.911950	-77.0(
2	4197	Capitol Hill Bedroom walk to Metro	5061	Sandra	NaN	Capitol Hill, Lincoln Park	38.887190	-76.9(
3	4529	Bertina's House Part One	5803	Bertina	NaN	Eastland Gardens, Kenilworth	38.905850	- 76.9₄
4	5589	Cozy apt in Adams Morgan	6527	Ami	NaN	Kalorama Heights, Adams Morgan, Lanier Heights	38.918870	-77.04
4923	1180032778137941348	New Petworth Apt with Parking	2485625	Myriam	NaN	Brightwood Park, Crestwood, Petworth	38.945373	-77.0%
4924	1180068635623402520	Charming private studio	49673813	Meron	NaN	Friendship Heights, American University Park, 	38.947192	-77.07
4925	1180457128823921234	Cozy Transportation- Friendly Home in Fort Totten	583839206	Azeb	NaN	North Michigan Park, Michigan Park, University	38.953540	-76.99
4926	1180735218341618545	Spacious 3BR Home, Near Metro	583891577	Guillermo	NaN	Takoma, Brightwood, Manor Park	38.956423	-77.0(

Cozy ### Apartment at DC! Sun Filled & Comfortable! ### 284499859 Tahmeed ### Tahmeed ### Petworth ### Pet

4920 10WS X 10 COIUIIIIIS

Próximos pasos: Generar código con data Ver gráficos recomendados New interactive sheet

Entendimiento de Datos

Lo primero que haremos es revisar el diccionario de datos. Aca encontraremos las variables que quedaron registradas en la toma de datos.

Procederé a realizar una limpieza de variables que conceptualmente no pueden afectar el precio del inmueble y por lo tanto no es de interes para este analisis. Esto nos permitirá reducir el ruido entre los datos.

	host_id	neighbourhood	room_type	price	minimum_nights	number_of_reviews	reviews_per_month	availab:
0	4645	Historic Anacostia	Private room	67.0	31	84	0.51	
1	5059	Edgewood, Bloomingdale, Truxton Circle, Eckington	Private room	82.0	1	504	2.74	
2	5061	Capitol Hill, Lincoln Park	Private room	135.0	7	61	0.33	
3	5803	Eastland Gardens, Kenilworth	Private room	66.0	30	102	0.56	
4	6527	Kalorama Heights, Adams Morgan, Lanier Heights	Entire home/apt	NaN	31	96	0.53	
4923	2485625	Brightwood Park, Crestwood, Petworth	Entire home/apt	90.0	3	0	NaN	
4924	49673813	Friendship Heights, American University Park, 	Entire home/apt	140.0	25	0	NaN	
4925	583839206	North Michigan Park, Michigan Park, University	Entire home/apt	180.0	2	0	NaN	
4926	583891577	Takoma, Brightwood, Manor Park	Entire home/apt	127.0	31	0	NaN	
4927	284499859	Brightwood Park, Crestwood,	Entire	125.0	1	1	1.00	

4928 rows x 9 columns

Próximos pasos: Generar código o

Generar código con data_cleaned

Ver gráficos recomendados

New interactive sheet

data_cleaned.shape

De esta manera quedamos con 8 variables que pueden afectar nuestra variable de interes precio.

Ahora procederemos a realizar un analisis para cumplir con los suspuestos principales de manejo de datos.

Completitud

En esta sección, analizaremos la completitud de los datos; es decir, que no hayan valores vacíos.

data_cleaned.notnull().mean() * 100

	0
host_id	100.000000
neighbourhood	100.000000
room_type	100.000000
price	84.902597
minimum_nights	100.000000
number_of_reviews	100.000000
reviews_per_month	84.882305
availability_365	100.000000
number_of_reviews_ltm	100.000000

dtype: float64

Vemos que el nuestra variable de interes está completa en un 84.9%. Como es un 15% de datos nulos y es la variable sobre la que queremos concluir no nos va a aservir tener esos valores nulos. Asi pues procederemos a borrar los registros donde no tienen precio.

```
# Eliminar los registros donde el precio sea nulo
data_cleaned = data_cleaned.dropna(subset=['price'])
data_cleaned.notnull().mean() * 100
```


	U
host_id	100.000000
neighbourhood	100.000000
room_type	100.000000
price	100.000000
minimum_nights	100.000000
number_of_reviews	100.000000
reviews_per_month	86.830784
availability_365	100.000000
number_of_reviews_ltm	100.000000

dtype: float64

Ahora vemos que hay algunos registros donde el reviews por mes estan incompletos. Faltan un 14% de los datos. Para esta variable vamos a realizar una imputación de vecinos.

Esta estrategia consta en hallar patrones con datos correlacionados y remplazar el valor nulo por una aproximación de este patron.

Esta estrategia la escogí dado que conceptualmente el numero de reviews por mes debe estar correlacionado con el numero de reviews total o con el numero de reviews en un año (ltm). Por ende es razonable proponer esta imputación.

```
imputer = KNNImputer(n_neighbors=5)

# Usar .loc para evitar el SettingWithCopyWarning
data_cleaned.loc[:, 'reviews_per_month'] = imputer.fit_transform(data_cleaned[['reviews_per_month']])

data_cleaned.notnull().mean() * 100
```

	0
host_id	100.0
neighbourhood	100.0
room_type	100.0
price	100.0
minimum_nights	100.0
number_of_reviews	100.0
reviews_per_month	100.0
availability_365	100.0
number_of_reviews_ltm	100.0

dtype: float64

Siendo asi vemos ahora una completitud de nuestros datos del 100% para los registros. Hemos finalizado esta tarea.

Validez

Revisaremos la validez de los datos. Esto se refiere a verificar si todas las columnas cumplen con el tipo de dato que debería ser y que no haya ningún *error*.

data_cleaned.shape

data_cleaned.dtypes

	Ø
host_id	int64
neighbourhood	object
room_type	object
price	float64
minimum_nights	int64
number_of_reviews	int64
reviews_per_month	float64
availability_365	int64
number_of_reviews_ltm	int64

Ω

dtype: object

Al observar el tipo de dato de cada variable saltan a la vista las variables de tipo objeto. ¿No deberian ser tipo string? Vamos a serciorarnos que todo esté en regla con las variables neighbourhood y room_type. Que el tipo objecto no sea por que hay una mezcla con otros tipos de datos

```
data cleaned['neighbourhood'].unique()
```

```
'Shaw, Logan Circle', 'Dupont Circle, Connecticut Avenue/K Street',
'Capitol View, Marshall Heights, Benning Heights',
 'Downtown, Chinatown, Penn Quarters, Mount Vernon Square, North Capitol Street',
 'Union Station, Stanton Park, Kingman Park',
 'Georgetown, Burleith/Hillandale',
'Columbia Heights, Mt. Pleasant, Pleasant Plains, Park View',
'Douglas, Shipley Terrace',
 'Cleveland Park, Woodley Park, Massachusetts Avenue Heights, Woodland-Normanstone Terrace',
'River Terrace, Benning, Greenway, Dupont Park',
'Friendship Heights, American University Park, Tenleytown',
'West End, Foggy Bottom, GWU',
'Southwest Employment Area, Southwest/Waterfront, Fort McNair, Buzzard Point',
'Hawthorne, Barnaby Woods, Chevy Chase',
 'North Michigan Park, Michigan Park, University Heights',
 'North Cleveland Park, Forest Hills, Van Ness',
 'Twining, Fairlawn, Randle Highlands, Penn Branch, Fort Davis Park, Fort Dupont',
'Mayfair, Hillbrook, Mahaning Heights',
'Brookland, Brentwood, Langdon',
 'Ivy City, Arboretum, Trinidad, Carver Langston',
 'Fairfax Village, Naylor Gardens, Hillcrest, Summit Park',
 'Near Southeast, Navy Yard',
'Congress Heights, Bellevue, Washington Highlands',
'Sheridan, Barry Farm, Buena Vista',
 'Woodridge, Fort Lincoln, Gateway',
 'Woodland/Fort Stanton, Garfield Heights, Knox Hill',
 'Deanwood, Burrville, Grant Park, Lincoln Heights, Fairmont Heights'],
dtvpe=object)
```

Lucen bien los barrios, no se encuentra nada irregular por lo que procederé a room type.

Estos valores tambien lucen bien. Nada fuera de lo esperado

Exactitud

En esta sección, se busca ver que tan exactos son los datos y si no hay demasiados valores atípicos.

data_cleaned.describe()

	host_id	price	minimum_nights	number_of_reviews	reviews_per_month	availability_365	number _.
count	4.184000e+03	4184.000000	4184.000000	4184.000000	4184.000000	4184.000000	
mean	1.465486e+08	194.580306	13.111138	76.496176	2.375968	199.728967	
std	1.726383e+08	419.981001	25.260533	111.224459	1.935296	112.381776	
min	4.492000e+03	22.000000	1.000000	0.000000	0.010000	0.000000	
25%	1.751493e+07	95.000000	1.000000	5.000000	0.860000	97.000000	
50%	5.955768e+07	135.000000	2.000000	30.000000	2.375968	205.000000	
75%	2.308245e+08	200.000000	31.000000	104.000000	3.212500	308.000000	
max	5.838916e+08	10005.000000	365.000000	988.000000	20.960000	365.000000	

Todos los datos lucen en rangos razonables. No encuentran valores atipicos ni numeros negativos. Bajo el contexto todos los rangos lucen bien por lo que se le da el visto bueno a esta sección.

Unicidad

Se verificará que no hallan registros repetidos que pudieran afectar en un futuro el modelo.

```
duplicados = data_cleaned.duplicated()
duplicados.sum()
```


Vemos que hay 8 datos duplicados en todo el data frame por lo que procederemos a eliminarlos para dejar unicamente uno de cada registros.

```
data_cleaned = data_cleaned.drop_duplicates()
```

Correlaciones

Como parte de mi entendimiento de datos hallare las correlaciones que afectan la variable de interes price

```
# Aplicar One-Hot Encoding para convertir las variables categóricas en variables numéricas
data_encoded = pd.get_dummies(data_cleaned, columns=['neighbourhood', 'room_type'], drop_first=True)

# Calcular la matriz de correlación para las variables numéricas
correlation_matrix = data_encoded.corr()

# Extraer las correlaciones con respecto a 'price'
price_correlations = correlation_matrix['price'].sort_values(ascending=False)

# Filtrar solo las correlaciones con 'price' mayores a 0.3 o menores a -0.3
relevant_correlations = price_correlations[(price_correlations > 0.1) | (price_correlations < -0.1)]

# Mostrar el resultado
print(relevant_correlations)

# Graficar sólo las correlaciones relevantes
plt.figure(figsize=(8, 6))
sns.heatmap(data_encoded[relevant_correlations.index].corr(), annot=True, cmap="coolwarm", fmt='.2f', linewidths-
plt.title('Correlaciones relevantes con precio')
plt.show()</pre>
```

price 1.000000 room_type_Shared room 0.463262 neighbourhood_Downtown, Chinatown, Penn Quarters, Mount Vernon Square, North Capitol Street 0.127095 room type Private room -0.121343

hbourhood_Downtown, Chinatown

Solo con las correlaciones podemos ver que el precio está ligado entonces al tipo de cuarto y al barrio en el que se encuentra. Esto nos servirá mas adelante.

Distribuciones de Variables top 5

```
# Listar las variables que queremos visualizar
variables_to_plot = ['price', 'room_type', 'number_of_reviews', 'reviews_per_month', 'availability_365']
# Crear una figura con subplots
plt.figure(figsize=(15, 10))
# Generar un gráfico para cada variable
for i, var in enumerate(variables_to_plot, 1):
    plt.subplot(2, 3, i) # Crear un subplot de 2 filas y 3 columnas
    plt.hist(data_cleaned[var], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Distribución de {var}')
    plt.xlabel(var)
    plt.ylabel('Frecuencia')

plt.tight_layout()
plt.show()
```


La gráfica muestra que la gran mayoría de los precios están concentrados entre 0 y 500, pero existen valores atípicos que llegan hasta 10,000. Estos valores extremos son inusuales y podrían distorsionar el análisis. Es recomendable revisar estos outliers y considerar si deben eliminarse o ajustarse, ya que probablemente se trata de errores o listados de características muy particulares que no representan el comportamiento general.

```
Q1 = data_cleaned['price'].quantile(0.25)
Q3 = data_cleaned['price'].quantile(0.75)
IQR = Q3 - Q1

# Definir los límites para identificar outliers
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Eliminar los registros donde 'price' esté fuera de los límites
data_cleaned = data_cleaned[(data_cleaned['price'] >= lower_bound) & (data_cleaned['price'] <= upper_bound)]</pre>
```

Reporte

- 1. Dimensiones del Dataset El conjunto de datos contiene las siguientes dimensiones:
 - Número de filas: 4,184 Número de columnas: 9 Este tamaño es manejable para el análisis y permite obtener una buena muestra de los patrones relacionados con el precio de los apartamentos.
- 2. Tipos de Datos en el Dataset Los tipos de datos presentes en el dataset son:
 - Enteros (integer): Para variables como minimum_nights, number_of_reviews, availability_365. Flotantes (float): Para variables numéricas decimales como reviews_per_month. Cadenas de texto (string/object): Para variables categóricas como neighbourhood, room_type.
- 3. Top 5 de Atributos Importantes para el Análisis
 - 3.1 price (Precio) Descripción: Precio diario al que se renta el apartamento. Tipo de dato: Entero Distribución: La media del precio es aproximadamente 95, con un rango que varía entre 40 y 500. Hay algunos valores atípicos que fueron eliminados.
 - 3.2 room_type (Tipo de habitación) Descripción: Tipo de habitación ofrecida (entero, privada, compartida, hotel). Tipo de dato: Categórico Distribución: Las categorías más comunes son "Entire home/apt" y "Private room". Los "Shared room" y "Hotel room" representan una fracción menor, pero aún son relevantes. Este atributo es clave para entender la variabilidad de los precios según el tipo de alojamiento.
 - 3.3 neighbourhood (Vecindario) Descripción: Vecindario en el que se encuentra el apartamento. Tipo de dato: Categórico Distribución: Los vecindarios más frecuentes incluyen zonas como "Capitol Hill" y "Georgetown", lo que indica áreas de mayor actividad. Hay más de 40 vecindarios distintos, lo que sugiere que la ubicación juega un rol importante en los precios.
 - 3.4 number_of_reviews (Número de reseñas) Descripción: Número total de reseñas recibidas por el apartamento. Tipo de dato: Entero Distribución: El número de reseñas varía significativamente, con algunos apartamentos que tienen más de 100 reseñas y otros muy pocas o ninguna.
- 3.5 availability_365 (Disponibilidad en días) Descripción: Número de días en que el apartamento está disponible durante el año. Tipo de dato: Entero Distribución: La disponibilidad media es de 200 días, con algunos apartamentos disponibles casi todo el año y otros con menor disponibilidad. Este atributo podría ayudar a entender la oferta y demanda del apartamento en relación con su precio.
 - 4. Conclusiones Iniciales Este análisis inicial sugiere que los precios están influenciados por una combinación de factores como el tipo de habitación, el vecindario y la disponibilidad. Algunos apartamentos tienen reseñas muy altas, lo que podría afectar su

popularidad y su precio. La disponibilidad a lo largo del año también juega un papel importante en la competitividad del apartamento.

Estrategia

El uso de un árbol de decisión en este contexto de negocio es altamente pertinente porque permite analizar las relaciones entre las variables y el precio de alquiler a la vez que visualizar de manera clara cómo influyen factores como la ubicación, el tipo de propiedad y la disponibilidad en el éxito del alquiler vacacional. En lugar de simplemente predecir un valor, el árbol de decisión ayuda a descomponer el problema en decisiones más simples y jerárquicas, lo que proporciona un entendimiento profundo de cómo cada atributo afecta el retorno de inversión. Esto es clave para un inversionista inmobiliario, ya que podrá identificar qué características tienen el mayor impacto en el precio, optimizando así su estrategia de inversión.

Además, la interpretabilidad de un árbol de decisión es particularmente valiosa en el sector inmobiliario. El inversionista no solo quiere saber qué propiedades podrían generar más ingresos, sino también entender por qué. Un árbol de decisión brinda una estructura clara donde se pueden ver los caminos de decisión que llevan a ciertos precios y niveles de ocupación, facilitando la toma de decisiones fundamentadas. Esta capacidad de visualizar las interacciones entre múltiples variables permite que los inversionistas ajusten sus estrategias basadas en el tipo de propiedad y vecindario, asegurando que su inversión maximice la rentabilidad.

Desarrollo de la Estrategía

Convertimos las variables categóricas neighbourhood y room_type en variables numéricas utilizando One-Hot Encoding.

```
data_encoded = pd.get_dummies(data_cleaned, columns=['neighbourhood', 'room_type'], drop_first=True)
data_encoded.head()
```


host_id price minimum_nights number_of_reviews reviews_per_month availability_365 number_of_reviews_l

0	4645	67.0	31	84	0.51	321	
1	5059	82.0	1	504	2.74	313	
2	5061	135.0	7	61	0.33	335	
3	5803	66.0	30	102	0.56	179	
5	5782	66.0	31	23	0.13	340	

5 rows × 48 columns

Dividimos el dataset para entrenar el modelo y luego evaluarlo.

```
X = data_encoded.drop(columns=['price'])
y = data_encoded['price']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

X_train.shape, X_test.shape
```

Entrenamos un modelo de árbol de decisión para predecir el precio basado en las variables disponibles.

```
# Crear el modelo de Árbol de Decisión
tree_model = DecisionTreeRegressor(random_state=42)
tree_model.fit(X_train, y_train)
y_pred = tree_model.predict(X_test)
```

Evaluamos el modelo usando métricas como el error cuadrático medio y el coeficiente de determinación (R2).

```
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Error Cuadrático Medio (MSE): {mse}")
print(f"Coeficiente de Determinación (R²): {r2}")

Error Cuadrático Medio (MSE): 6107.4034749034745
    Coeficiente de Determinación (R²): -0.2351746221872022
```

El Error Cuadrático Medio (MSE) de 6107.40 indica que, en promedio, las predicciones del modelo de árbol de decisión se desvían del valor real en aproximadamente 6107 unidades cuadráticas. Este valor sugiere que el modelo tiene un nivel de error relativamente alto en la predicción de precios, lo que se traduce en que no está capturando de manera efectiva las relaciones entre las variables y el precio.

El Coeficiente de Determinación (R²) de -0.235 indica que el modelo está rindiendo peor que una simple línea de base que predijera el valor promedio del precio en todos los casos.

Estos resultados indican que el modelo necesita ajustes significativos. Usaremos entonces un random forest.

```
from sklearn.ensemble import RandomForestRegressor

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# Predicciones y evaluación
y_pred_rf = rf_model.predict(X_test)
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)

print(f"Random Forest - MSE: {mse_rf}, R²: {r2_rf}")
Random Forest - MSE: 2971.3806262212343, R²: 0.39906149029638316
```

El Random Forest ha mejorado significativamente los resultados en comparación con el árbol de decisión inicial.

Error Cuadrático Medio (MSE): 2971.38: Este valor indica que el modelo Random Forest tiene un error promedio más bajo que el modelo anterior. Esto significa que las predicciones del precio son más precisas en comparación con el árbol de decisión. Aunque el MSE aún es algo elevado, representa una mejora importante respecto al error anterior.

Coeficiente de Determinación (R²): 0.399: El valor de R² ha mejorado considerablemente. Un R² de 0.399 significa que aproximadamente el 40% de la variabilidad en el precio de los apartamentos se explica por las variables incluidas en el modelo. Aunque no es perfecto es algo bueno para concluir.

Recordemos igual que nuestra intención no es predecir sino encontrar explicación en las variables por lo que aunque perdamos interpretabilidad con el random forest, dado que está mejor ajustado a los datos asumiremos esta perdida.

Visualizamos qué variables fueron más importantes para el modelo de Random Forest.

```
importances = rf_model.feature_importances_

features_importance = pd.DataFrame({
    'Feature': X_train.columns,
    'Importance': importances
}).sort_values(by='Importance', ascending=False)

plt.figure(figsize=(12, 8))
sns.barplot(x='Importance', y='Feature', data=features_importance, palette='viridis')
plt.title('Importancia de las Características en Random Forest')
plt.xlabel('Importancia')
plt.ylabel('Características')
plt.show()
```

1 40 (00 7005 00 40 5 1 11

<ipython-input-43-b8b80d4bb652>:6: FutureWarning:

```
No se ve muy bien. lo recortaremos a 10:
```

```
top_10_features = features_importance.head(10)

plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=top_10_features, palette='viridis')
plt.title('Top 10 Características más Importantes en Random Forest')
plt.xlabel('Importancia')
plt.ylabel('Características')
plt.show()
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variak