Slide 13: Null Space, Column Space MAT2040 Linear Algebra

Definition 13.1 (**Null Space**) Let $A \in \mathbb{R}^{m \times n}$, then the null space of A is the set $\text{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n | A\mathbf{x} = \mathbf{0}\}$. The Null Space of A is also the solution set for $A\mathbf{x} = \mathbf{0}$.

Theorem 13.2 (Null(A) is subspace)

Let $A \in \mathbb{R}^{m \times n}$, then Null(A) is a subspace of \mathbb{R}^n , hence is a vector space.

Proof.

- (1). $\mathbf{0} \in \text{Null}(A)$, thus Null(A) is not \emptyset .
- (2). Let $\mathbf{x}, \mathbf{y} \in \text{Null}(A)$, then $A\mathbf{x} = \mathbf{0} = A\mathbf{y}$. Thus

$$A(\mathbf{x} + \mathbf{y}) = A(\mathbf{x}) + A\mathbf{y} = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$$
, therefore $\mathbf{x} + \mathbf{y} \in \text{Null}(A)$.

(3) Let $\mathbf{x} \in \text{Null}(A)$, $A(\alpha \mathbf{x}) = \alpha A \mathbf{x} = \mathbf{0}$, thus $\alpha \mathbf{x} \in \text{Null}(A)$, for any α .

Theorem 13.3 (Nonsingular matrix has only zero null space) Let $A \in \mathbb{R}^{n \times n}$, then A is invertible if and only if $Null(A) = \{0\}$.

Proof.

" \Rightarrow " If $A\mathbf{x} = \mathbf{0}$, $\mathbf{x} = A^{-1}A\mathbf{0} = \mathbf{0}$ since A is invertible.

" \Leftarrow " Assume $c_1\mathbf{u}_1 + \cdots + c_n\mathbf{u}_n = \mathbf{0}$ where $\mathbf{u}_1, \cdots, \mathbf{u}_n$ are columns vectors from A, then $A\mathbf{c} = \mathbf{0}$, where $\mathbf{c} = [c_1, \cdots, c_n]^T$ and $A = [\mathbf{u}_1, \cdots, \mathbf{u}_n]$. Since Null(A)={ $\mathbf{0}$ }, then $\mathbf{c} = \mathbf{0}$, thus, $\mathbf{u}_1, \cdots, \mathbf{u}_n$ are linearly independent. Thus $A\mathbf{x} = \mathbf{0}$ has only zero solution, and A is invertible by using Theorem 10.6.

Definition 13.4 Let $A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, the column space of A is defined as the vector space

$$\mathsf{Col}\left(A\right) = \mathsf{Span}\left(\mathsf{a}_{1}, \cdots, \mathsf{a}_{n}\right) \subseteq \mathbb{R}^{m}$$

Some book uses C(A) to denote the column space of A.

Fact: Let A be an $m \times n$ matrix. Col (A) is a subspace of \mathbb{R}^m .

Question: Given $A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, how to find a basis of Col(A)?

If $\mathbf{a}_1, \cdots, \mathbf{a}_n$ (the column vectors of A) are linearly dependent, one can keep deleting some vectors until reach a smallest subset which keeps the same span. The smallest subset has maximum number of linearly independent vectors and form a basis for $\operatorname{Col}(A) = \operatorname{Span}(\mathbf{a}_1, \cdots, \mathbf{a}_n)$.

In the following, we provide a systematic way to find the basis for $Col(A) = Span(a_1, \dots, a_n)$.

Theorem 13.5 (Row operations preserve the linear dependence relation between column vectors)

Suppose B is the matrix of A obtained by applying row operations, then the linear dependence relation between column vectors of A are the same as the linear dependence relation between column vectors of B.

Proof. Suppose $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$, there is a finite number of elementary matrices, E_1, \cdots, E_k , such that

 $B = [\mathbf{b}_1, \cdots, \mathbf{b}_n] = E_k \cdots E_1 A = EA = [E\mathbf{a}_1, \cdots, E\mathbf{a}_n]$, where $E = E_k \cdots E_1$. Take any subset $\{i_1, \cdots, i_s\}$ of $\{1, \cdots, n\}$, obviously, $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_s}$ and $\mathbf{b}_{i_1}, \cdots, \mathbf{b}_{i_s}$ have the same linear dependence relation. That is:

 $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_s}$ is linearly independent $\iff \mathbf{b}_{i_1}, \cdots, \mathbf{b}_{i_s}$ is linearly independent.

 $\mathbf{a}_{i_1},\cdots,\mathbf{a}_{i_s}$ is linearly dependent $\iff \mathbf{b}_{i_1},\cdots,\mathbf{b}_{i_s}$ is linearly dependent.

Remark

Let $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n] \xrightarrow{Elementary\ Row\ operations} B = [\mathbf{b}_1, \cdots, \mathbf{b}_n]$, then take any subset $\{i_1, \cdots, i_s\}$ of $\{1, \cdots, n\}$, one has

$$\begin{split} &k_1,\cdots,k_s \quad \text{satisfies} \quad k_1 \boldsymbol{a}_{i_1} + \cdots + k_s \boldsymbol{a}_{i_s} = \boldsymbol{0} \\ &\iff &k_1,\cdots,k_s \quad \text{satisfies} \quad k_1 \boldsymbol{b}_{i_1} + \cdots + k_s \boldsymbol{b}_{i_s} = \boldsymbol{0} \end{split}$$

where $k_i \in \mathbb{R}, i = 1, \cdots, s$.

Example 13.6 Let

$$A = \left[\begin{array}{ccccc} 1 & 4 & 0 & -1 & 0 \\ 2 & 8 & -1 & 3 & 9 \\ 0 & 0 & 2 & -3 & -4 \\ -1 & -4 & 2 & 4 & 8 \end{array} \right]$$

Row reduce A into the echelon form:

$$B = \left[\begin{array}{ccccc} \boxed{1} & 4 & 0 & 0 & 2 \\ 0 & 0 & \boxed{1} & 0 & 1 \\ 0 & 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Columns 1,3,4 in B are linear independent, the corresponding columns 1,3,4 in A are also linear independent.

Columns 1,2,3,4 in B are linear dependent, the corresponding columns 1,2,3,4 in A are also linear dependent.

Moreover, it is easy to check that $\mathbf{b}_5=2\mathbf{b}_1+\mathbf{b}_3+2\mathbf{b}_4$, then one has $\mathbf{a}_5=2\mathbf{a}_1+\mathbf{a}_3+2\mathbf{a}_4$.

Theorem 13.7

(The pivot columns of A form a basis for Col(A))

Let $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$ be row equivalent to reduced row-echelon form B with pivot columns indices d_1, \cdots, d_r . Let $T = \{\mathbf{a}_{d_1}, \cdots, \mathbf{a}_{d_r}\}$, then

- (1) T is linearly independent.
- (2) $\operatorname{Span}(T) = \operatorname{Span}\{a_1, \dots, a_n\} = \operatorname{Col}(A).$

Remark 1: $\mathbf{a}_{d_1}, \dots, \mathbf{a}_{d_r}$ are pivot columns of A, the rest of columns are nonpivot columns of A. The nonpivot columns of B are linear combinations of pivot columns of B since B is in reduced row-echelon form. Thus, nonpivot columns of A are also linear combinations of pivot columns of A.

Remark 2: $T = \{\mathbf{a}_{d_1}, \cdots, \mathbf{a}_{d_r}\}$ (pivot columns of A) form a basis for Col (A). Thus, the dimension of Col (A)=the number of pivot columns of A.

Recall: dim(Null(A))=the number of independent variables for the linear system $A\mathbf{x} = \mathbf{0}$ =the number of nonpivot columns of A.

Together with $\dim(\operatorname{Col}(A))$ =the number of nonpivot columns of A. We have the following corollary:

Corollary: Let A be an $m \times n$ matix.

$$\dim(\operatorname{Col}(A)) + \dim(\operatorname{Null}(A)) = n.$$

Example 13.8 Let

$$A = \left[\begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 2 & 8 & -1 & 3 \\ 0 & 0 & 2 & -3 \\ -1 & -4 & 2 & 4 \end{array} \right]$$

Thus, in order to find Col(A), we reduce A into the row-echelon form:

$$B = \begin{bmatrix} \boxed{1} & 4 & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & \boxed{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where the pivot columns of A are columns 1,3,4. (Pivot column indices are 1,3,4)

Thus,

$$\mathsf{Col}\left(A\right) = \mathbf{Span}\left(\left[\begin{array}{c}1\\2\\0\\-1\end{array}\right], \left[\begin{array}{c}0\\-1\\2\\2\end{array}\right], \left[\begin{array}{c}-1\\3\\-3\\4\end{array}\right]\right)$$

But

$$\mathsf{Col}\,(B) = \mathbf{Span}\left(\left[\begin{array}{c}1\\0\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\\0\end{array}\right]\right) \neq \mathsf{Col}\,(A)$$

Remark. The pivot of column indices of reduced row echelon form B only tells which columns of A form a basis of Col(A), but in general, $Col(A) \neq Col(B)$. **Row operations does not preserve the column space.**

Theorem 13.9 Let $A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{R}^{n \times n}$ $(\mathbf{a}_i \in \mathbb{R}^n (i = 1, \dots, n))$, then A is invertible $\Leftrightarrow \operatorname{Col}(A) = \mathbb{R}^n$.

Proof.

 $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$ is invertible

- $\Leftrightarrow \{\mathbf{a}_1, \cdots, \mathbf{a}_n\} \subseteq \mathbb{R}^n$ is linearly independent (Theorem 10.5)
- $\Leftrightarrow \mathbf{a}_1, \cdots, \mathbf{a}_n$ is a basis of \mathbb{R}^n (Theorem 12.16)
- $\Leftrightarrow \operatorname{\mathsf{Col}}(A) = \operatorname{\mathsf{Span}}(\mathsf{a}_1, \cdots, \mathsf{a}_n) = \mathbb{R}^n$. (Definition of the basis)

Example 13.10 Observe the columns of

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right]$$

are linearly independent, and A is invertible by Theorem 10.5. Thus $\operatorname{Col}(A) = \mathbb{R}^2$.

Theorem 13.11[Invertible Matrix Theorem] Given a $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ (square!). The following are equivalent:

- 4 is invertible
- ② the only solution to $A\mathbf{x} = \mathbf{0}$ is the trivial solution
- A is row equivalent to I
- A is a product of elementary matrices
- **5** $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b}
- the columns of A are linearly independent
- **②** the columns of A form a basis of \mathbb{R}^n , i.e. $\mathsf{Col}\left(A\right) = \mathbb{R}^n$
- $oldsymbol{0}$ the columns of A span \mathbb{R}^n
- Null $(A) = \{0\}$
- \bigcirc Col $(A) = \mathbb{R}^n$
- \bigcirc dim(Col(A)) = n

The equivalence between 1-6 is given in Theorem 10.5.

The equivalence between 1,6,7 is given in Theorem 12.10.

The equivalence between 1 and 9 is given in Theorem 13.3.

The equivalence between 1 and 10 is given in Theorem 13.11.

The equivalence between 1 and 8 is given in Theorem 13.11. Indeed, 8 and 10 are the same.

The equivalence between 9 and 11 is obvious since $\dim(\operatorname{Null}(A))=0 \Leftrightarrow \operatorname{Null}(A)=\{\mathbf{0}\}$. In fact, $\dim(V)=0 \Leftrightarrow V=\{\mathbf{0}\}$ for any vector space V. The equivalence between 11 and 12 is due to that $\dim(\operatorname{Col}(A))+\dim(\operatorname{Null}(A))=n$.