

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE111|Digital Circuits
Section: B

Dr S.S. Jamuar

Lab_4:

Shivoy Arora 2021420 7 Feb 2022

ALU

Aim: To create a 1-bit ALU

Components/ICs Used: XOR gate, 2x1 MUX, 8x1 MUX, inputs and outputs

Link of CIRCUITVERSE Workspace:

https://circuitverse.org/users/116502/projects/lab04-b54f429f-fbbe-45f9-8913-67fde4a4afba

Pin Diagram of the IC:

Circuit Diagram:

Truth Table: 2x1 MUX

Select	Output
0	10
1	I1

8x1 MUX

F2	F1	F0	Output
0	0	0	10
0	0	1	I1
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	17

Observations/Results: AND, OR and NOT gates can be made using 2x1 MUX

Application: A Multiplexer (MUX) is used whenever you have multiple inputs to a circuit or a device and you have to select only one output from the given inputs.

Problem

Solution:

Main Alarm = input_J * input_K

Minor Alarm = input_L + (input_J ⊕ input_K)

Components/ICs Used: XOR gate, 2x1 MUX, inputs and outputs

Link of CIRCUITVERSE Workspace:

https://circuitverse.org/users/116502/projects/lab04-b54f429f-fbbe-45f9-8913-67fde4a4afba

Pin Diagram of the IC:

Circuit Diagram:

Truth Table:

J	K	L	Main Alarm	Minor Alarm
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	1