Homework 5

Deadline: November 6th.

Problem 1. Suppose f is a convex and differentiable function, \mathcal{C} is a closed convex set. Show that

$$\mathbf{x}^* \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) \iff \langle -\nabla f(\mathbf{x}^*), \mathbf{z} - \mathbf{x}^* \rangle \leq 0, \ \forall \ \mathbf{z} \in \mathcal{C}.$$

Problem 2. Consider the projected gradient descent algorithm introduced in the class. Suppose that for some iteration t, $\mathbf{x}_{t+1} = \mathbf{x}_t$. Prove that in this case, \mathbf{x}_t is a minimizer of the convex objective function f over the closed and convex set C.

Problem 3. Let $C \in \mathbb{R}^d$ be a nonempty closed and convex set, and let f be a strongly convex function over C. Prove that f has a unique minimizer \mathbf{x}^* over C.