

A scalable algorithm for sparse and robust portfolios

Ryan Cory-Wright

November 2018

ORC, Massachusetts Institute of Technology Joint work with Dimitris Bertsimas Paper available on Optimization Online

Markowitz's approach to portfolio selection

Seek low-variance high-return, s.t. investment, sparsity constraints:

$$\begin{aligned} & \min_{\mathbf{x}} & & \frac{1}{2\gamma} \mathbf{x}^{\top} \mathbf{x} + \frac{\sigma}{2} \mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x} - \boldsymbol{\mu}^{\top} \mathbf{x} \\ & \text{s.t.} & & \mathbf{I} \leq \mathbf{A} \mathbf{x} \leq u, \ \mathbf{e}^{\top} \mathbf{x} = 1, \ ||\mathbf{x}||_{0} \leq k, \ \mathbf{x} \geq 0, \end{aligned}$$

ullet σ : robustness parameter, controls uncertainty in μ .

Markowitz's approach to portfolio selection

Seek low-variance high-return, s.t. investment, sparsity constraints:

$$\min_{\mathbf{x}} \quad \frac{1}{2\gamma} \mathbf{x}^{\top} \mathbf{x} + \frac{\sigma}{2} \mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x} - \boldsymbol{\mu}^{\top} \mathbf{x}$$
s.t. $\mathbf{I} \leq \mathbf{A} \mathbf{x} \leq u, \ \mathbf{e}^{\top} \mathbf{x} = 1, \ ||\mathbf{x}||_{0} \leq k, \ \mathbf{x} \geq 0,$

- ullet σ : robustness parameter, controls uncertainty in μ .
- ullet γ : another robustness parameter, controls uncertainty in Σ and μ .

Markowitz's approach to portfolio selection

Seek low-variance high-return, s.t. investment, sparsity constraints:

$$\begin{aligned} & \min_{\mathbf{x}} & & \frac{1}{2\gamma} \mathbf{x}^{\top} \mathbf{x} + \frac{\sigma}{2} \mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x} - \boldsymbol{\mu}^{\top} \mathbf{x} \\ & \text{s.t.} & & \mathbf{I} \leq \mathbf{A} \mathbf{x} \leq u, \ \mathbf{e}^{\top} \mathbf{x} = 1, \ ||\mathbf{x}||_{0} \leq k, \ \mathbf{x} \geq 0, \end{aligned}$$

- σ : robustness parameter, controls uncertainty in μ .
- ullet γ : another robustness parameter, controls uncertainty in Σ and μ .
- k: sparsity parameter, prevents investing in entire market.

Why this problem?

Why include the sparsity constraint?

Three reasons:

- Controlling **transaction costs** is practically **relevant**.
- Managers incur **monitoring costs** for each **non-zero position** held.
- Portfolio optimization without cardinality constraints is viewed by customers as indexing while charging active management fees.

Why this approach?

The power of existing approaches

Existing exact approaches don't verify optimality for the Russell 1000.

Reference	Solution method	Largest instance (no. securities)
B+Shioda ('04)	Lemke pivot B&B	50
Frangioni and Gentile ('06)	Perspective cut	(1% gap) 200
Vielma et al. (′08)	Lifted B&B	100
Bonami and Lejeune ('09)	Nonlinear B&B	200
Gao and Li (′13)	Lagrangian relaxation B&B	300
Cui et al. ('13)	Lagrangian relaxation B&B	300
Vielma et al. ('17)	Lifted B&B	200

The power of existing approaches

Existing exact approaches don't verify optimality for the Russell 1000.

Reference	Solution method	Largest instance (no. securities)
B+Shioda (′04)	Lemke pivot B&B	50
Frangioni and Gentile ('06)	Perspective cut	(1% gap) 200
Vielma et al. (′08)	Lifted B&B	100
Bonami and Lejeune ('09)	Nonlinear B&B	200
Gao and Li ('13)	Lagrangian relaxation B&B	300
Cui et al. ('13)	Lagrangian relaxation B&B	300
Vielma et al. ('17)	Lifted B&B	200

Existing convex cardinality surrogates don't sparsify over the unit simplex.

How does the new approach work?

A new approach is needed

Our approach:

- Impose sparsity in a non-linear way.
- Apply duality to derive an efficient cutting-plane method.
- Solve the problem to certifiable optimality at scale.

Reformulation I: a regression perspective on portfolio selection

Portfolio selection equivalent to:

$$\begin{aligned} & \min_{\mathbf{x}} & & \frac{1}{2\gamma} \mathbf{x}^{\top} \mathbf{x} + \frac{1}{2} || \mathbf{X} \mathbf{x} - \mathbf{Y} ||_{2}^{2} + \mathbf{d}^{\top} \mathbf{x} \\ & \text{s.t.} & & \mathbf{I} \leq \mathbf{A} \mathbf{x} \leq \mathbf{u}, \ \mathbf{e}^{\top} \mathbf{x} = 1, \ || \mathbf{x} ||_{0} \leq k, \ \mathbf{x} \geq 0, \end{aligned}$$

where:

- $X := \sqrt{\Sigma}$,
- Y: projection of μ onto X,
- d: projection of μ onto nullspace of X.

Reformulation II: Impose l_0 via problem data

Big-M formulation is weak when linear, weaker when quadratic. Stronger formulation (c.f. Bertsimas+Van Parys, 2017) given by:

$$\begin{split} \min_{\boldsymbol{z}|\boldsymbol{e}^{\top}\boldsymbol{z} \leq k} \min_{\boldsymbol{x}} \quad & \frac{1}{2\gamma} \sum_{i} z_{i} x_{i}^{2} + \frac{1}{2} ||\boldsymbol{Y} - \sum_{i} \boldsymbol{X}_{i} x_{i} z_{i}||_{2}^{2} + \sum_{i} d_{i} x_{i} z_{i} \\ \text{s.t.} \quad & \boldsymbol{I} \leq \sum_{i} \boldsymbol{A}_{i} x_{i} z_{i} \leq u, \ \sum_{i} z_{i} x_{i} = 1, \ \boldsymbol{x} \geq 0, \end{split}$$

where z_i denotes if stock i is selected.

Reformulation III: take dual, reimpose l_0 cleverly

After lots of maths, sparse Markowitz becomes:

$$\min_{\mathbf{z} \mid \mathbf{e}^{\top} \mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \pi \geq \mathbf{0}}} \quad -\frac{1}{2} \alpha^{\top} \alpha - \frac{\gamma}{2} \sum_{i} z_{i}^{2} w_{i}^{2} + \mathbf{Y}^{\top} \alpha + \beta_{l}^{\top} \mathbf{I} - \beta_{u}^{\top} \mathbf{u} + \lambda$$

$$\text{s.t.} \quad \mathbf{w} = \mathbf{X}^{\top} \alpha + \pi + \lambda \mathbf{e} + \mathbf{A}^{\top} (\beta_{l} - \beta_{u}) - \mathbf{d}.$$

Reformulation III: take dual, reimpose l_0 cleverly

After lots of maths, sparse Markowitz becomes:

$$\begin{aligned} \min_{\boldsymbol{z} \mid \boldsymbol{e}^{\top} \boldsymbol{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \pi \geq \boldsymbol{0}}} & & -\frac{1}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\gamma}{2} \sum_{i} \mathbf{z}_{i} w_{i}^{2} + \mathbf{Y}^{\top} \boldsymbol{\alpha} + \boldsymbol{\beta}_{l}^{\top} \mathbf{I} - \boldsymbol{\beta}_{u}^{\top} \boldsymbol{u} + \lambda \\ & \text{s.t.} & & \boldsymbol{w} = \mathbf{X}^{\top} \boldsymbol{\alpha} + \boldsymbol{\pi} + \lambda \boldsymbol{e} + \mathbf{A}^{\top} (\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \boldsymbol{d}. \end{aligned}$$

We substitute z_i for z_i^2 after taking dual. Without this, won't scale.

Reformulation III: take dual, reimpose l_0 cleverly

After lots of maths, sparse Markowitz becomes:

$$\begin{aligned} \min_{\boldsymbol{z} \mid \boldsymbol{e}^{\top} \boldsymbol{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \boldsymbol{\pi} \geq \boldsymbol{0}} & -\frac{1}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\gamma}{2} \sum_{i} \boldsymbol{z}_{i} \boldsymbol{w}_{i}^{2} + \boldsymbol{Y}^{\top} \boldsymbol{\alpha} + \boldsymbol{\beta}_{l}^{\top} \boldsymbol{I} - \boldsymbol{\beta}_{u}^{\top} \boldsymbol{u} + \lambda \\ \text{s.t.} & \boldsymbol{w} = \boldsymbol{X}^{\top} \boldsymbol{\alpha} + \boldsymbol{\pi} + \lambda \boldsymbol{e} + \boldsymbol{A}^{\top} (\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \boldsymbol{d}. \end{aligned}$$

We substitute z_i for z_i^2 after taking dual. Without this, won't scale.

So what?

Our saddle-point representation:

$$\min_{\mathbf{z}|\mathbf{e}^{\top}\mathbf{z} \leq k} \max_{\substack{\lambda,\alpha,\\\beta_{l},\beta_{u},\pi \geq \mathbf{0}}} -\frac{1}{2}\alpha^{\top}\alpha - \frac{\gamma}{2}\sum_{i}\mathbf{z}_{i}w_{i}^{2} + \mathbf{Y}^{\top}\alpha + \boldsymbol{\beta}_{l}^{\top}\mathbf{I} - \boldsymbol{\beta}_{u}^{\top}\mathbf{u} + \lambda$$
s.t.
$$\mathbf{w} = \mathbf{X}^{\top}\alpha + \pi + \lambda\mathbf{e} + \mathbf{A}^{\top}(\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \mathbf{d}.$$

• Let f(z) be best payoff for support indices z.

$$\min_{\mathbf{z}|\mathbf{e}^{\top}\mathbf{z} \leq k} \max_{\substack{\lambda,\alpha,\\\beta_{l},\beta_{u}, \boldsymbol{\pi} \geq \mathbf{0}}} \quad -\frac{1}{2}\boldsymbol{\alpha}^{\top}\boldsymbol{\alpha} - \frac{\gamma}{2}\sum_{i}\mathbf{z}_{i}w_{i}^{2} + \mathbf{Y}^{\top}\boldsymbol{\alpha} + \boldsymbol{\beta}_{l}^{\top}\mathbf{I} - \boldsymbol{\beta}_{u}^{\top}\mathbf{u} + \lambda$$

$$\text{s.t.} \quad \mathbf{w} = \mathbf{X}^{\top}\boldsymbol{\alpha} + \boldsymbol{\pi} + \lambda\mathbf{e} + \mathbf{A}^{\top}(\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \mathbf{d}.$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).

$$\min_{\mathbf{z} \mid \mathbf{e}^{\top} \mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \boldsymbol{\pi} \geq \mathbf{0}}} \quad -\frac{1}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\gamma}{2} \sum_{i} \mathbf{z}_{i}^{*} w_{i}^{2} + \mathbf{Y}^{\top} \boldsymbol{\alpha} + \boldsymbol{\beta}_{l}^{\top} \mathbf{I} - \boldsymbol{\beta}_{u}^{\top} \boldsymbol{u} + \lambda$$

$$\text{s.t.} \quad \boldsymbol{w} = \mathbf{X}^{\top} \boldsymbol{\alpha} + \boldsymbol{\pi} + \lambda \boldsymbol{e} + \mathbf{A}^{\top} (\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \boldsymbol{d}.$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).
- $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$ is valid subgradient, **even if** $z_i = 0$.

$$\begin{aligned} \min_{\mathbf{z} \mid \mathbf{e}^{\top} \mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \pi \geq \mathbf{0}} & -\frac{1}{2} \alpha^{\top} \alpha - \frac{\gamma}{2} \sum_{i} \mathbf{z}_{i} w_{i}^{2} + \mathbf{Y}^{\top} \alpha + \beta_{l}^{\top} \mathbf{I} - \beta_{u}^{\top} \mathbf{u} + \lambda \\ \text{s.t.} & \mathbf{w} = \mathbf{X}^{\top} \alpha + \pi + \lambda \mathbf{e} + \mathbf{A}^{\top} (\beta_{l} - \beta_{u}) - \mathbf{d}. \end{aligned}$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).
- $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$ is valid subgradient, **even if** $z_i = 0$.
- $f(z_1) \ge f(z_0) + \nabla f(z_0)^{\top}(z_1 z_0)$ is a valid outer-approximation cut, obtained by solving one $k \times k$ subproblem.

$$\begin{aligned} \min_{\mathbf{z}|\mathbf{e}^{\top}\mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \boldsymbol{\pi} \geq \mathbf{0}} & -\frac{1}{2}\alpha^{\top}\alpha - \frac{\gamma}{2}\sum_{i}\mathbf{z}_{i}w_{i}^{2} + \mathbf{Y}^{\top}\alpha + \boldsymbol{\beta}_{l}^{\top}\mathbf{I} - \boldsymbol{\beta}_{u}^{\top}\mathbf{u} + \lambda \\ \text{s.t.} & \mathbf{w} = \mathbf{X}^{\top}\alpha + \boldsymbol{\pi} + \lambda\mathbf{e} + \mathbf{A}^{\top}(\boldsymbol{\beta}_{l} - \boldsymbol{\beta}_{u}) - \mathbf{d}. \end{aligned}$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).
- $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$ is valid subgradient, **even if** $z_i = 0$.
- $f(z_1) \ge f(z_0) + \nabla f(z_0)^{\top}(z_1 z_0)$ is a valid outer-approximation cut, obtained by solving one $k \times k$ subproblem.
- Yields a very efficient cutting-plane method.
 - I.e., branch & cut with lazy constraint generation.
 - Need efficient warm-starts to make fast in practise; see paper.

$$\begin{aligned} \min_{\mathbf{z} \mid \mathbf{e}^{\top} \mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \pi \geq \mathbf{0}} & -\frac{1}{2} \alpha^{\top} \alpha - \frac{\gamma}{2} \sum_{i} \mathbf{z}_{i} w_{i}^{2} + \mathbf{Y}^{\top} \alpha + \beta_{l}^{\top} \mathbf{I} - \beta_{u}^{\top} \mathbf{u} + \lambda \\ \text{s.t.} & \mathbf{w} = \mathbf{X}^{\top} \alpha + \pi + \lambda \mathbf{e} + \mathbf{A}^{\top} (\beta_{l} - \beta_{u}) - \mathbf{d}. \end{aligned}$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).
- $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$ is valid subgradient, **even if** $z_i = 0$.
- $f(z_1) \ge f(z_0) + \nabla f(z_0)^{\top}(z_1 z_0)$ is a valid outer-approximation cut, obtained by solving one $k \times k$ subproblem.
- Yields a very efficient cutting-plane method.
 - I.e., branch & cut with lazy constraint generation.
 - Need efficient warm-starts to make fast in practise; see paper.
- Can also exchange max, min operators to obtain a QCQP which yields a bound gap of 1% 5% on real data; see paper.

$$\begin{aligned} \min_{\mathbf{z} \mid \mathbf{e}^{\top} \mathbf{z} \leq k} \max_{\substack{\lambda, \alpha, \\ \beta_{l}, \beta_{u}, \pi \geq \mathbf{0}} & -\frac{1}{2} \alpha^{\top} \alpha - \frac{\gamma}{2} \sum_{i} \mathbf{z}_{i} w_{i}^{2} + \mathbf{Y}^{\top} \alpha + \beta_{l}^{\top} \mathbf{I} - \beta_{u}^{\top} \mathbf{u} + \lambda \\ \text{s.t.} & \mathbf{w} = \mathbf{X}^{\top} \alpha + \pi + \lambda \mathbf{e} + \mathbf{A}^{\top} (\beta_{l} - \beta_{u}) - \mathbf{d}. \end{aligned}$$

- Let f(z) be best payoff for support indices z.
- Fix z, solve a $k \times k$ QP to obtain f(z).
- $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$ is valid subgradient, **even if** $z_i = 0$.
- $f(z_1) \ge f(z_0) + \nabla f(z_0)^{\top}(z_1 z_0)$ is a valid outer-approximation cut, obtained by solving one $k \times k$ subproblem.
- Yields a very efficient cutting-plane method.
 - I.e., branch & cut with lazy constraint generation.
 - Need efficient warm-starts to make fast in practise; see paper.
- Can also exchange max, min operators to obtain a QCQP which yields a bound gap of 1% 5% on real data; see paper.

How does the approach perform on real data?

Chang et al. OR library problems; $\gamma = \frac{1}{\sqrt{n}}$, $\sigma = 2$, k = 20

- OA is 4 orders of magnitude faster than lifted polyhedral relaxation.
 - Dotted line=times out.

 Σ unstable+not full-rank, need low-rank approximation.

What about the S&P 500? Efficient frontiers by cardinality

Fix $\gamma = \frac{100}{\sqrt{n}}$, rank(Σ) = 200, vary σ, k .

Provably optimal frontiers+outcomes from investing entirely in one stock:

Comparison of Sparse Markowitz methods as of Nov 2018

Table 1: Largest instance reliably solved, by approach.

Reference	Solution method	Largest instance (no. securities)
B+Shioda (′09)	Lemke pivot B&B	50
Frangioni and Gentile ('06)	Perspective cut	(1% gap) 200
Vielma et al. (′08)	Lifted B&B	100
Bonami and Lejeune ('09)	Nonlinear B&B	200
Gao and Li $('13)$	Lagrangian relaxation B&B	300
Cui et al. ('13)	Lagrangian relaxation B&B	300
Vielma et al. $('17)$	Lifted B&B	200
B+C ('18)	Dual Branch-and-Cut	3,200

Summary

Contributions:

- A tractable nonlinear transformation which decouples the continuous and the discrete, and scales to real-world problems.
- Scalable to real-world data sets.
- Generalizable to other classes of problems, such as sparse regression with non-negativity constraints (Breiman, 1995).

See Jean's talk for an in-depth look at the method's performance on sparse regression.

Selected references

- Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)
- Bertsimas, D., Pauphilet, J., Van Parys, B.: Sparse classification and phase transitions: a discrete optimization perspective (2017). J. Mach. Learn. Res.
- Bertsimas, D., Cory-Wright, R.: A scalable algorithm for sparse and robust portfolios. Oper. Res., Under Review (June 2018)
- Bertsimas, D., Van Parys, B.: Sparse high dimensional regression: Exact scalable algorithms and phase transitions (2016). Ann. Statist., Under Review.
- Breiman, L: Better subset regression using the nonnegative garrote. Techno. 37(4), 373–384 (1995).
- Pilanci, M., Wainwright, M.J., El Ghaoui, L.: Sparse learning via boolean relaxations. Math. Program. 151(1), 63–87 (2015)
- Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3):438–450 (2008)

Thanks for listening!
Questions?

Appendix

Why don't existing approaches scale?

In existing approaches, sparsity is imposed via $\mathrm{Big}\text{-}M$ constraints.

Why don't existing approaches scale?

In existing approaches, sparsity is imposed via Big-M constraints.

But Big-M yields weak relaxations. Consider a simple example:

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} & ||\mathbf{x}||_2^2 \\ \text{s.t.} & \mathbf{e}^\top \mathbf{x} = 1, \\ & ||\mathbf{x}||_0 \leq k, \\ & \mathbf{x} \geq \mathbf{0}. \end{aligned}$$

This has an optimal value of $\frac{1}{k}$.

However, imposing and relaxing big-M (M = 1) gives a bound of $\frac{1}{n}$.

Naive B&B doesn't improve on this bound without complete enumeration.

Corollary: big-M MINLP methods won't scale.

Thanks for listening!
Questions?