Économétrie des Séries Temporelles

Fiche TD #1

Analyse de Séries Temporelles et Propriétés Stochastiques

Exercice 1

Soit X une variable aléatoire ayant une distribution avec une moyenne μ et une variance σ^2 , et soit $Y_t = X$ pour tout t.

- (a) Montrez que $\{Y_t\}$ est strictement et faiblement stationnaire.
- (b) Trouvez la fonction d'autocovariance de $\{Y_t\}$.
- (c) Grapher une série de temporelle "typique" de Y_t .

Exercice 2

Pour chacun des processus suivants, déterminez s'il est :

- Stationnaire ou non.
- Un bruit blanc.
- Une série iid.
- Une martingale.
- (a) $X_t = \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, 1)$, indépendants.
- (b) $Z_t = Z_{t-1} + \eta_t$, $\eta_t \sim \mathcal{N}(0, 1)$. (c) $W_t = 0.5W_{t-1} + \xi_t$, $\xi_t \sim \mathcal{N}(0, 1)$, indépendants.

Exercice 3

Soit $\{\varepsilon_t\}$ un processus de bruit blanc à moyenne nulle. Supposons que le processus observé soit $Y_t = \varepsilon_t + \theta \varepsilon_{t-1}$, où θ est soit 3, soit $\frac{1}{3}$.

(a) Trouvez la fonction d'autocorrélation de $\{Y_t\}$ pour les cas où $\theta=3$ et $\theta=\frac{1}{3}$. (Note : Pour déterminer la fonction d'autocorrélation de $\{Y_t\}$, il est nécessaire de calculer $\mathsf{cov}(Y_t,Y_{t+k})$ pour différentes valeurs de k.)

Exercice 4

Supposons que $\{Y_t\}$ est stationnaire avec une fonction d'autocovariance γ_k .

- (a) Montrez que $W_t = \Delta Y_t = Y_t Y_{t-1}$ est stationnaire en trouvant la moyenne et la fonction d'autocovariance pour $\{W_t\}$.
- (b) Montrez que $U_t = \Delta^2 Y_t = \Delta [Y_t Y_{t-1}] = Y_t 2Y_{t-1} + Y_{t-2}$ est stationnaire. (Note: Vous n'avez pas besoin de trouver la moyenne et la fonction d'autocovariance pour $\{U_t\}$.)

Exercice 5

Supposons que

$$Y_t = 5 + 2t + X_t,$$

où $\{X_t\}$ est une série stationnaire de moyenne nulle avec une fonction d'autocovariance γ_k .

- (a) Trouvez la fonction de moyenne pour $\{Y_t\}$.
- (b) Trouvez la fonction d'autocovariance pour $\{Y_t\}$.
- (c) $\{Y_t\}$ est-elle stationnaire? Pourquoi ou pourquoi pas?