Review Test Submission: Test 2 (2020-2021)

User	Zhaolin Wang
Course	ELEC97004/ELEC97005 - Advanced Communication Theory (BW202010)
Test	Test 2 (2020-2021)
Started	25/04/21 09:26
Submitted	25/04/21 09:44
Status	Completed
Attempt Score	92 out of 100 points
Time Elapsed	18 minutes out of 1 hour and 12 minutes

Instructions

You can have a maximum of 5 attempts.

There are 12 multiple-choice questions numbered 1 to 12. Mark the answers you think are correct.

There is only one correct answer per question.

Duration: 72min.

You should open MATLAB before starting the test.

One question will be presented at a time and you will not be able to go to the previous question and change the answer.

You will have to complete the test in a single attempt. Please make sure that your browser is compatible.

Question 1 8 out of 8 points

Which of the following statements is correct?

- (a) mmWave channels present very low level of penetration loss.
- (b) In a mmWave digital beamformer the weights are in the bandpass.
- (c) ADC/DAC operating at mmWave sampling rates are power efficient.
- (d) A massive MIMO has high hardware complexity but low evergy comsumption.
- (e) None of the above.

Question 2 9 out of 9 points

Consider a beamformer which employs a uniform array of N antennas with half-wavelength inter-antenna spacing. This beamformer operates in the presence of a desired signal with direction ($\theta = 30^{\circ}, \phi = 0^{\circ}$) and two co-channel interferences of known directions (50°,0) and (120°,0). The weight vector, normalised to have unity norm magnitude, to complete supression of the two cochannel interferences is

- (a) $[0.4391 + 0.1619i, -0.3796 0.2400i, 0.3981 0.0000i, -0.3796 + 0.2400i, 0.4391 0.1619i]^T$
- (b) $[0.4391 0.1619i, -0.3796 0.2400i, 0.3981 0.0000i, -0.3796 + 0.2400i, 0.4391 + 0.1619i]^T$
- (c) $[0.4391 0.1619i, 0.3796 0.2400i, 0.3981 0.0000i, 0.3796 + 0.2400i, 0.4391 + 0.1619i]^T$
- $(\mathbf{d}) \ \left[0.4391 0.1619 \mathbf{i}, 0.3796 + 0.2400 \mathbf{i}, 0.3981 0.0000 \mathbf{i}, 0.3796 0.2400 \mathbf{i}, 0.4391 + 0.1619 \mathbf{i} \right]^T$
- (e) None of the above

Question 3 9 out of 9 points

Consider a beamformer which employes a uniform array of N antennas and operates in the presence of a single signal with direction ($\theta = 30^{\circ}, \phi = 0^{\circ}$). The carrier frequency is 2.4 GHz and the manifold vector for the Direction-of-Arrival ($\theta = 30^{\circ}, \phi = 0^{\circ}$) is

```
[-0.1125 + 0.9936i, 0.6661 + 0.7458i, 1.0000, 0.6661 - 0.7458i, -0.1125 - 0.9936i]^T
```

Consider that the array steers its main lobe towards the direction ($\theta = 30^{0}$, $\phi = 0^{0}$), the power of the received signal is 1 and the channel noise is additive white Gaussian noise of power 0.01. If at the output of the beamformer P_{out} is the power of the desired signal and SNR_{out} denotes the signal-to-noise ratio, which of the following statements is correct?

- (a) $P_{out}=5$ and $SNR_{out}=100$.
- (b) $P_{out}=25$ and $SNR_{out}=100$.
- (c) $P_{out}=5$ and $SNR_{out}=500$.
- (d) $P_{out}=25$ and $SNR_{out}=500$.
- (e) None of the above.

Question 4 8 out of 8 points

Consider a beamformer which employes a uniform linear array of N antennas and uses the following weight vector:

```
[-0.1125 + 0.9936i, 0.6661 + 0.7458i, 1.0000, 0.6661 - 0.7458i, -0.1125 - 0.9936i]^{T}.
```

If the channel noise is additive white Gaussian noise with power $\sigma_n^2 = 0.001$ then the noise power at the beamformer's output is:

- (a) 0.00025;
- (b) 0.0005;
- (c) 0.005;
- (d) 0.025;
- (e) none of the above.

Question 5 8 out of 8 points

Consider that one of the paths from the transmitter of a CDMA user arrives at the reference point of an antenna array CDMA receiver from direction (azimuth, elevation)= $(30^{\circ}, 0^{\circ})$. The corresponding PN-sequence, of period N_c , is generated by the polynomial $D^2 + D + 1$ in GF(2) while the discrete path delay (mod- N_c) is equal to two. If the Cartesian coordinates of the antenna array elements are given by the columns of the following matrix

$$[\underline{r}_1,\,\underline{r}_2,\,\underline{r}_3] = \begin{bmatrix} -2,&0,&+2\\0,&0,&0\\0,&0,&0 \end{bmatrix} \text{ in units of half-wavelength.}$$

then the spatio-temporal array manifold vector of the path is

- (a) 1st column of \mathbb{H} ;
- (b) 2nd column of \mathbb{H} ;
- (c) 3rd column of \mathbb{H} ;
- (d) 4th column of \mathbb{H} ;
- (e) none of the above.

where

$\mathbb{H} = \frac{1}{2}$	0	0	0	0
	0	-0.6661 + 0.7458i	0	0
	-0.6661 + 0.7458i	0.6661 + 0.7458i	0	-0.6661 + 0.7458i
	-0.6661 + 0.7458i	0.6661 - 0.7458i	0	-1
	0.6661 - 0.7458i	0	0	-0.6661 - 0.7458i
	0	0	0	0
	0	0	-0.6661 + 0.7458i	0
	0	0	-1	0
	-1	-1	-0.6661 - 0.7458i	-0.6661 + 0.7458i
	-1	-1	-0.6661 + 0.7458i	-1
	1	1	-1	-0.6661 - 0.7458i
	0	0	-0.6661 - 0.7458i	0
	0	0	0.6661 - 0.7458i	0
	0	-0.6661 - 0.7458i	1	0
	-0.6661 - 0.7458i	-0.6661 - 0.7458i	0.6661 + 0.7458i	0.6661 - 0.7458i
	-0.6661 - 0.7458i	0.6661 + 0.7458i	0	1
	0.6661 + 0.7458i	0	0	0.6661 + 0.7458i
	0	0	0	0

Question 6 8 out of 8 points

For a uniform linear array of 5 sensors operating at $2.4\mathrm{GHz}$ frequency with an interantenna spacing $6.25\mathrm{cm}$ the beamwidth is

- (a) 11.537° ;
- (b) 23.074° ;
- (c) 45.537° ;
- (d) 47.156° ;
- (e) none of the above.

Question 7 9 out of 9 points

Consider a SIMO communication system operating in the presence of a desired signal with signal power 100 mW and one interferer with double-sided PSD(f) of 10^{-2} W/Hz. The noise is assumed to be AWGN with double-sided PSD(f) of 10^{-2} W/Hz. The receiver employs a complete intereference cancellation subspace beamformer and utilises a ULA of 10 antennas. If the channel bandwidth is 8 kHz what is the system/channel capacity?

- (a) 0 bits/sec.
- (b) 14.4 bits/sec.
- (c) 72 bits/sec.
- (d) 144 bits/sec.
- (e) infinity bits/sec.

Question 8 8 out of 8 points

The two figures below show the array patterns of two different linear arrays.

Which of the following statements is correct?

- (a) In Figure (1) the array is a uniform linear array of 6 sensors.
- (b) In Figure (1) the array has no weights (i.e. weights equal to 1)
- (c) In Figure (2) the array is a uniform linear array of 6 sensors.
- (d) In Figure (2) the array has no weights (i.e. weights equal to 1)
- (e) None of the above.

Question 9 9 out of 9 points

Consider a beamformer which employs a uniform array of N antennas with half-wavlength interantenna spacing. This beamformer operates in the presence of a desired signal with direction ($\theta=30^{\circ},\phi=0^{\circ}$) and two unknown co-channel interferences. The covariance matrix of the received signal $\underline{x}(t)$ has the covariance matrix of the received signal $\underline{x}(t)$ is

```
7.8000 - 0.0000i, -0.7327 + 2.1623i, 5.5846 - 3.7594i,
```

2.9266 + 4.3835i, 1.3609 - 3.8965i;

-0.7327 - 2.1623i, 7.8000 + 0.0000i, -0.7327 +

2.1623i, 5.5846 - 3.7594i, 2.9266 + 4.3835i;

5.5846 + 3.7594i, -0.7327 - 2.1623i, 7.8000 + 0.0000i,

-0.7327 + 2.1623i, 5.5846 - 3.7594i;

2.9266 - 4.3835i, 5.5846 + 3.7594i, -0.7327 - 2.1623i,

7.8000 - 0.0000i, -0.7327 + 2.1623i;

1.3609 + 3.8965i, 2.9266 - 4.3835i, 5.5846 + 3.7594i,

-0.7327 - 2.1623i, 7.8000 + 0.0000i;

(please copy the above matrix to MATLAB)

The Wiener-Hopf weight vector, normalised to have unity norm magnitude, is

- (a) $[0.4326-0.3057i,-0.3849-0.2593i,-0.0903+0.0000i,-0.3849-0.2593i,0.4326-0.3057i]^T$
- $\text{(b)} \ \ [0.4326 + 0.3057 \mathrm{i}, 0.3849 + 0.2593 \mathrm{i}, -0.0903 + 0.0000 \mathrm{i}, 0.3849 0.2593 \mathrm{i}, 0.4326 0.3057 \mathrm{i}]^T$
- (c) $[0.4326+0.3057i,-0.3849-0.2593i,-0.0903+0.0000i,-0.3849+0.2593i,0.4326-0.3057i]^T$
- $(\mathbf{d}) \ \, [0.4326 + 0.3057 \mathbf{i}, -0.3849 + 0.2593 \mathbf{i}, -0.0903 + 0.0000 \mathbf{i}, -0.3849 0.2593 \mathbf{i}, 0.4326 0.3057 \mathbf{i}]^T$
- (e) None of the above

Question 10 0 out of 8 points

Consider a beamformer which employes the following uniform linear array of N antennas.

$$\left[\begin{array}{cccc} -0.0938, & -0.0313, & 0.0313, & 0.0938 \\ 0, & 0, & 0, & 0 \\ 0, & 0, & 0, & 0 \end{array} \right] \text{ in metres}$$

The carrier frequency is 2.4 GHz and to steer the main lobe of the array towards the direction ($\theta = 30^0$, $\phi = 0^0$), the weight vector \underline{w} should be

- (a) $[1, 1, 1, 1]^T$;
- (b) $[-0.5902 0.8072i, 0.2089 + 0.9779i, 0.2089 0.9779i, -0.5902 + 0.8072i]^T$;
- (c) $[+0.5902 0.8072i, -0.2089 + 0.9779i, -0.2089 0.9779i, +0.5902 + 0.8072i]^T;$
- (d) $[-0.5902 + 0.8072i, 0.2089 0.9779i, 0.2089 + 0.9779i, -0.5902 0.8072i]^T;$
- (e) none of the above

Question 11 8 out of 8 points

With reference to a Wiener-Hopf beamformer, which of the following statements is correct?

- (a) It is a superresolution beamformer.
- (b) It is robust to errors associated with the direction of the desired signal.
- (c) It provides, asymptotically, complete interference cancellation.
- (d) It is optimum with respect to SNIR criterion.
- (e) None of the above.

Question 12 8 out of 8 points

Consider a linear array of 5 antennas with locations

$$\begin{bmatrix} -2, & -1, & 0, & 1, & 2 \end{bmatrix}$$

operating in the presence of 3 sources transmitting the signals $m_1(t)$, $m_2(t)$ and $m_3(t)$. The directions-of-arrival of the three signals are correctly estimated to be equal to $(30^{\circ},0^{\circ})$, $(35^{\circ},0^{\circ})$ and $(90^{\circ},0^{\circ})$ and the noise power is 0.1. If the covariance matrix of the received signal $\underline{x}(t)$ is

(please copy the above matrix to MATLAB) which of the following results is correct?

- (a) $\mathcal{E}\left\{m_1(t).m_2^*(t)\right\} = 0.2457 0.1721$ i,
- (b) $\mathcal{E}\left\{m_1(t).m_2^*(t)\right\} = 0.3536$

0.0000i -1.5253 + 1.1245i

- (c) $\mathcal{E}\left\{m_1(t).m_3^*(t)\right\} = -0.4500$
- (d) $\mathcal{E}\left\{m_1^2(t)\right\} = 2.1$
- (e) $\mathcal{E}\left\{m_3^2(t)\right\} = 3.2$

There is no content to display.

There is no content to display.

Sunday, 25 April 2021 09:44:48 o'clock BST