The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

It is revealed that (0.5,0.5) is a minimiser if $a_2=1$ and that (0.6,0.4) is at most 0.45 away from a minimiser (in the infinity norm) of the problem above.

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 1296 seconds >

Step 1. Understand the Minimization Problem

Jen receives two therapies with dosage rates:

- $a_1 = 1$ (per second)
- a_2 (per second)

Let the treatment times be x_1 and x_2 . The total dosage is:

$$a_1x_1 + a_2x_2 = x_1 + a_2x_2 = 1$$

The total treatment time is:

$$T = x_1 + x_2$$

Using the constraint $x_1 = 1 - a_2 x_2$, we get:

$$T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

- If $a_2>1$, then $1-a_2<0$, so T decreases as x_2 increases. The optimal is $x_2=rac{1}{a_2}$, $x_1=0$.
- If $a_2 < 1$, then $1-a_2 > 0$, so T increases with x_2 . The optimal is $x_2 = 0$, $x_1 = 1$.
- If $a_2=1$, then T=1 for all $x_1+x_2=1$, so all such points are minimizers.

Step 2. What Is a_2 According to the Code?

The code defines:

$$egin{align} ext{Compute_a_2}(n) &= 2 \cdot f(n) + rac{1}{2} + 0.25^n \ & ext{Compute_f}(n) &= 72^{-10^{24}} + \sum_{m=1}^n \left[\left(rac{1}{2}
ight)^{m+2} - 72^{-10^{24} \cdot (m+2)}
ight] \end{aligned}$$

Let $\delta=72^{-10^{24}}$, an extremely small positive number. Then:

$$f(n) = \sum_{j=3}^{n+2} \left(rac{1}{2}
ight)^j + \left[\delta - \sum_{j=3}^{n+2} \delta^j
ight] \ a_2(n) = 1 - \left(rac{1}{2}
ight)^{n+1} + \left(rac{1}{4}
ight)^n + 2\delta - 2\sum_{j=3}^{n+2} \delta^j$$

As $n \to \infty$, the terms $\left(\frac{1}{2}\right)^{n+1}$ and $\left(\frac{1}{4}\right)^n$ vanish, and the sum becomes a geometric series:

$$\sum_{j=3}^{\infty} \delta^j = \frac{\delta^3}{1-\delta}$$

Thus,

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + 2\delta - rac{2\delta^3}{1-\delta}$$

Since $\delta > 0$ is very small, $a_2 > 1$.

Step 3. Implications of the Revealed Information

We are told:

- If $a_2=1$, then (0.5,0.5) is a minimizer.
- For the actual a_{2} , the point (0.6, 0.4) is within 0.45 (in the infinity norm) of a minimizer.

Since $a_2 > 1$, the unique minimizer is:

$$(x_1,x_2)=\left(0,rac{1}{a_2}
ight)$$

Because $a_2 \approx 1 + 2\delta$, we have:

$$rac{1}{a_2}pprox 1-2\deltapprox 1$$

So the minimizer is very close to (0,1).

Now consider the point (0.6, 0.4):

- |0.6 0| = 0.6
- |0.4 1| = 0.6

So the infinity norm distance is 0.6, which is **not** within 0.45.

But the revealed information says that (0.6, 0.4) is within 0.45 of a minimizer. This implies that the actual a_2 must be ≤ 1 , so that the minimizer is (1,0), and:

- |0.6 1| = 0.4
- |0.4 0| = 0.4

So the distance is 0.4, which is within 0.45.

Thus, the revealed information forces $a_2 \leq 1$.

Step 4. Is (0.4,0.6) Within 0.45 of a Minimizer?

If $a_2 \leq 1$, the minimizer is (1,0). Then:

- |0.4 1| = 0.6
- |0.6 0| = 0.6

The infinity norm distance is 0.6, which is greater than 0.45.

Step 5. Conclusion

The point (0.4, 0.6) is **not** within 0.45 of a minimizer.

No