Linear Regression Optimization

Goal: Find \mathbf{w}^* that minimizes

$$f(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

- Closed form solution exists
- Gradient Descent is iterative (Intuition: go downhill!)

Scalar objective:
$$f(w) = ||w\mathbf{x} - \mathbf{y}||_2^2 = \sum_{i=1}^{\infty} (wx^{(i)} - y^{(i)})^2$$

Start at a random point

Start at a random point

Determine a descent direction

Start at a random point

Determine a descent direction Choose a step size

Start at a random point

Determine a descent direction Choose a step size Update

Start at a random point

Repeat

Determine a descent direction

Choose a step size

Update

Start at a random point

Repeat

Determine a descent direction Choose a step size Update

Start at a random point

Repeat

Determine a descent direction Choose a step size Update

Start at a random point

Repeat

Determine a descent direction

Choose a step size Update

Start at a random point

Repeat

Determine a descent direction Choose a step size

Update

Start at a random point

Repeat

Determine a descent direction

Choose a step size

Update

Start at a random point

Repeat

Determine a descent direction

Choose a step size

Update

Where Will We Converge?

Any local minimum is a global minimum

Multiple local minima may exist

Least Squares, Ridge Regression and Logistic Regression are all convex!

Choosing Descent Direction (1D)

We can only move in two directions

Negative slope is direction of descent!

Update Rule:
$$w_{i+1} = w_i - \alpha_i \frac{df}{dw}(w_i)$$
Negative Slope

Choosing Descent Direction

"Gradient2" by Sarang. Licensed under CC BY-SA 2.5 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Gradient2.svg#/media/File:Gradient2.svg

2D Example:

- Function values are in black/white and black represents higher values
- Arrows are gradients

We can move anywhere in \mathbb{R}^d Negative gradient is direction of steepest descent!

Gradient Descent for Least Squares

Update Rule:
$$w_{i+1} = w_i - \alpha_i \frac{df}{dw}(w_i)$$

Scalar objective:
$$f(w) = ||w\mathbf{x} - \mathbf{y}||_2^2 = \sum_{j=1}^{\infty} (wx^{(j)} - y^{(j)})^2$$

Derivative:
$$\frac{df}{dw}(w) = 2\sum_{j=1}^{n} (wx^{(j)} - y^{(j)})x^{(j)}$$
 (chain rule)

Scalar Update:
$$w_{i+1} = w_i - \alpha_i \sum_{j=1}^{\infty} (w_i x^{(j)} - y^{(j)}) x^{(j)}$$
 (2 absorbed in α)

Vector Update:
$$\mathbf{w}_{i+1} = \mathbf{w}_i - \alpha_i \sum_{i=1}^{n} (\mathbf{w}_i^{\mathsf{T}} \mathbf{x}^{(j)} - y^{(j)}) \mathbf{x}^{(j)}$$

Choosing Step Size

Theoretical convergence results for various step sizes

A common step size is
$$\alpha_i = \frac{\alpha}{n\sqrt{i}}$$
 Constant # Training Points Constant Iteration #

Gradient Descent Summary

Pros:

- Easily parallelized
- Cheap at each iteration
- Stochastic variants can make things even cheaper

Cons:

- Slow convergence (especially compared with closed-form)
- Requires communication across nodes!

