Contents

*DETAILS OF THE PROJECT

date	name	discription
2019.11.05	$\mathrm{sph}2\text{-}\mathrm{ehd}\text{-}0.4$	for ehd model in sph, 2D
		1. when use dummy particles with const phi as boundary, planer layer te
		results of phi near boundary is not very accurate, for the gradient of phi
		is not correctly reflected (relative error:12%). in order to correct this dra
		two new part types: enEHDDum & enEHDBnd, displacement: fluid-ehdl
		set const, and phi of ehddum is interpolated from ehdbnd and fluid parti
		2. use Stranex's correct scheme to interpolate the phi of ehd dummy par
		no information of gradient, test show that:
		(1) for the outer layer of ehddummy particle, the interpolation is not very
		in the 3rd timestep, reason: interpolation for case: ehddumm-null-ehdbne
		(2)correct:use one layer of ehdbnd particles and one layer of ehddum particles
		but works, reletive error of phi: 2%
2019.11.12	${ m sph}2\text{-ehd-}0.5$	sph2-ehd-0.4 can not produce satisfied results of rhoe, so here I use the se
		Basilisk's scheme works, produces good results of rhoe, but it seems that
		Results are good.