Imagem Vetorial Imagem Matricial

128

Definição de CG

• Na computação gráfica os dados de entrada são processados e o produto final é <u>uma imagem</u> que pode ser vista através de um <u>dispositivo de saída gráfico</u>.

Tipos de Imagem

• As imagens podem ser classificadas como Vetorial e Matricial;

130

Vetorial

- A representação vetorial é empregada para a definição e modelagem de objetos;
- Na representação vetorial são usados elementos como pontos, linhas, curvas, etc.; denominados primitivas gráficas;
- Cada primitiva gráfica possui um conjunto de atributos que define sua aparência e um conjunto de dados que define sua geometria.

Vantagens:

- Facilidade de de armazenamento dos elementos geométricos
- Facilidade de manipulação

Desvantagens:

- Requer dispositivo de saída específico
- Reconstrução mais lenta

Representações Vetoriais

- Permitem uma série de operações sem (quase) perda de precisão
 - Transformações lineares / afim
 - Deformações
- Por que "quase"? Estruturas de dados utilizam pontos e vetores cujas coordenadas são números reais
 - É necessário usar aproximações
 - Representação em ponto-flutuante
 - Números racionais
- Complexidade de processamento = O (nº vértices / vetores)
- Exibição
 - Dispositivos vetoriais
 - Dispositivos matriciais (requer amostragem, i.e., rasterização)

Imagem Vetorial

134

Imagem Matricial

- Na representação matricial, a imagem é descrita por um conjunto de células (pixels) em um arranjo espacial bidimensional (matriz);
- As imagens matriciais são também conhecidas como bitmaps;
- A representação matricial é usada para formar a imagem na memória e nas telas de computador.

Vantagens:

- Facilidade de tradução para diversos dispositivos baseados em pontos
- Facilidade de de armazenamento e leitura
- Valores de pixels podem ser alterado individualmente ou em grupo

Desvantagens:

- Imagens podem ser muito grandes
- Dificuldade para realizar operação de escalas

Representações Matriciais

- Representação flexível e muito comum
- Complexidade de processamento = O (nº de pixels)
- Muitas operações implicam em perda de precisão (reamostragem)
 - Ex.: rotação, escala
 - Técnicas para lidar com o problema
 - Ex.: técnicas anti-serrilhado (anti-aliasing)
- Exibição
 - Dispositivos matriciais
 - Dispositivos vetoriais (requer uso de técnicas de reconhecimento de padrões)

138

Imagens Gráficas

- Imagens "Vetoriais"
 - Representados por coleções de objetos geométricos
 - Pontos
 - Retas
 - Curvas
 - Planos
 - Polígonos

- Imagens "Matriciais"
 - Amostragem em grades retangulares
 - Tipicamente, imagens digitais
 - Matrizes de "pixels"
 - Cada pixel representa uma cor
 - Dados volumétricos
 - "Grade" no espaço tridimensional – voxels
 - Imagens médicas 3D

Conversão entre Imagens

140

Conversão entre tipos de Imagens

- Bitmap para Bitmap
 - · Melhores resultados
 - Reajuste na informação de cor
 - Problemas com diferenças no tamanho da paleta de cor
- Vetorial para Vetorial
 - Problemas com diferenças entre o número e o tipo de objetos disponíveis
 - Problemas com interpretação de medidas e com a aparência dos elementos de imagem e das primitivas

Conversão entre tipos de Imagens

- Vetorial para Bitmap
 - Imagem vetorial é decomposta em pixels e colocada numa matriz
 - Qualidade depende do tamanho da matriz
 - Problemas de serrilhado
- Bitmap para Vetorial
 - Conversão mais difícil, com altos índices de falha
 - Algoritmos e heurísticas de detecção de formas
 - Resultados bons para formas geométricas, ruins para imagens reais
 - Normalmente resulta na perda de cores
- Outros fatores
 - Formato proprietário, formato de compressão
 - Tamanho da paleta de cores

