LAPORANTUGAS BESAR 1 IF2123 ALJABAR LINIER DAN GEOMETRI

SISTEM PERSAMAAN LINIER, DETERMINAN, DAN APLIKASINYA

Kelompok 11 – BukanBjorka

Rizky Abdillah Rasyid - 13521109

Saddam Annais Shaquille – 13521121

Hanif Muhammad Zhafran - 13521157

Semester 1 Tahun 2022/2023

BAB 1 DESKRIPSI MASALAH

- A. Buatlah pustaka dalam Bahasa Java untuk menemukan solusi SPL dengan metode eliminasi Gauss, metode Eliminasi Gauss-Jordan, metode matriks balikan, dan kaidah Cramer (kaidah Cramer khusus untuk SPL dengan n peubah dan n persamaan), menghitung determinan matriks dengan reduksi baris dan dengan ekspansi kofaktor, dan menghitung balikan matriks.
- B. Gunakan pustaka di atas untuk membuat program penyelesaian berbagai persoalan dalam bentuk SPL, menyelesaikan persoalan interpolasi dan regresi linier, menghitung matriks balikan, menghitung determinan matriks dengan berbagai metode (reduksi baris dan ekspansi kofaktor).

BAB 2 TEORI SINGKAT

A. Eliminasi Gauss

Eliminasi Gauss adalah suatu metode untuk menemukan solusi sistem persamaan linier dengan cara merepresentasikannya dalam bentuk matriks kemudian melakukan Operasi Baris Elementer (OBE). OBE dilakukan sampai terbentuk matriks eselon baris sehingga dapat dilakukan *back-subtitution* dari nilai variable yang telah ada untuk mendapatkan nilai dari setiap variabelnya.

Misalkan suatu persamaan linear seperti berikut:

$$2x + 5y + 3z = 1$$

 $3x + 4y + 2z = -3$
 $x + 3y + z = 2$

Untuk mencari nilai dari tiap variabel, persamaan tersebut perlu diubah ke dalam bentuk matriks terlebih dahulu. Matriks yang terbentuk adalah sebagai berikut:

$$\begin{bmatrix} 2 & 5 & 3 & 1 \\ 3 & 4 & 2 & -3 \\ 1 & 3 & 1 & 2 \end{bmatrix}$$

Dengan melakukan Operasi Baris Elementer, dapat diperoleh matriks eselon baris, yaitu matriks yang memiliki 1 utama pada setiap baris, kecuali baris yang seluruhnya nol.

$$\begin{bmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & -7 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Setelah diperoleh matriks eselon baris, matriks tersebut dapat diubah ke dalam pesamaan linear kembali menjadi seperti berikut:

$$x + 3y + z = 2$$
$$y - 7z = 9$$
$$z = -1$$

Dengan melakukan *back-subtitution* pada persamaan baru, kita dapat menemukan nilai dari tiap variabel yaitu x=-3, y=2 dan z=-1.

B. Eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan merupakan pengembangan dari metode eliminasi Gauss. Eliminasi ini sama seperti eliminasi Gauss yaitu prosedur pemecahan sistem persamaan linear dengan mengubahnya menjadi bentuk matriks. Perbedaannya adalah metode ini membentuk eselon baris tereduksi dengan Operasi Baris Elementer.

$$\begin{bmatrix} 2 & 5 & 3 & 1 \\ 3 & 4 & 2 & -3 \\ 1 & 3 & 1 & 2 \end{bmatrix}$$

Dengan melakukan Operasi Baris Elementer, dapat diperoleh matriks eselon baris tereduksi, yaitu matriks yang memiliki 1 utama pada setiap baris, kecuali baris yang seluruhnya nol dan juga memiliki angka 0 di atas dan di bawah 1 utama pada tiap baris.

$$\begin{bmatrix} 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Kita dapat menemukan nilai dari tiap variabel yaitu x=-3, y=2 dan z=-1.

C. Determinan

Determinan adalah nilai skalar yang terdapat pada matriks persegi. Misalkan X adalah suatu matriks persegi, determinan dari suatu matriks dilambangkan dengan |X| atau det (X). Tugas besar ini hanya akan menggunakan dua metode untuk mencari nilai suatu determinan, yaitu metode operasi baris dan ekspansi kofaktor.

Metode operasi baris menggunakan operasi baris sehingga terbentuk matriks segitiga bawah. Kemudian, determinannya dapat dicari dengan cara mengalikan semua elemen diagonalnya.

Misal matriks M yaitu

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Dengan operasi baris, akan diperoleh bentuk matriks

$$\begin{bmatrix} x & p & q \\ 0 & y & r \\ 0 & 0 & z \end{bmatrix}$$

Sehingga det(M) adalah x*y*z

Metode ekspansi kofaktor adalah suatu metode dengan cara mengalikan suatu entri dengan minor dari matriksnya.

Misal kita memiliki matriks M yaitu

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Dengan ekspansi kofaktor, kita akan memanfaatkan baris pertama sehingga det(A) adalah a*Ma-b*Mb+c*Mc

D. Matriks Balikan

Matriks A yang memiliki ukuran n x n dapat memiliki matriks balikan yaitu A^{-1} yaitu matriks yang memenuhi $A A^{-1} = I$ atau $A^{-1}A = I$ dengan I adalah matriks identitas. Tugas besar ini akan membahas matriks balikan menggunakan adjoinnya.

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

Misal matriks A adalah

$$\begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

Dapat dicari adj(A) yaitu

$$\begin{bmatrix} 12 & 6 & -16 \\ 4 & 2 & 16 \\ 12 & -10 & 16 \end{bmatrix}$$

Dapat dicari determinan dari A yaitu

$$det(A) = 64$$

Sehingga dapat dicari matriks balikannya yaitu

$$A^{-1} = \frac{1}{64} \begin{bmatrix} 12 & 6 & -16 \\ 4 & 2 & 16 \\ 12 & -10 & 16 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{12}{64} & \frac{6}{64} & -\frac{16}{64} \\ \frac{4}{64} & \frac{2}{64} & \frac{16}{64} \\ \frac{12}{64} & -\frac{10}{64} & \frac{16}{64} \end{bmatrix}$$

E. Matriks Kofaktor

Matriks Kofaktor adalah matriks berisi nilai kofaktor yang diperoleh dari perkalian minor dan penandanya. Kofaktor dari sebuah elemen baris ke-i dan kolom ke-j dari matriks A akan bisa dikenali melalui lambangnya, yaitu Cij. Elemen tiap matriks minor entri aij dilambangkan sebagai Mij sehingga dapat dinyatakan sebagai berikut:

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Misal matriks A adalah

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 2 & 2 & -4 \\ 1 & 5 & 3 \end{bmatrix}$$

Maka

$$M_{11} = \begin{bmatrix} 2 & -4 \\ 5 & 3 \end{bmatrix} = 26$$
 $C_{11} = (-1)^{1+1} \cdot 26 = 26$ $M_{12} = \begin{bmatrix} 2 & -4 \\ 1 & 3 \end{bmatrix} = 10$ $C_{12} = (-1)^{1+2} \cdot 10 = -10$

dst ...

Sehingga terbentuk matriks kofaktornya yaitu

$$\begin{bmatrix} 26 & -10 & 8 \\ 14 & 5 & -13 \\ 10 & 10 & 10 \end{bmatrix}$$

F. Matriks Adjoin

Matrix adjoin adalah transpose dari matrix kofaktor. Misalkan Ac adalah matrix kofaktor dari A maka

$$Adi(A) = Ac^T$$

G. Kaidah Cramer

Kaidah Cramer merupakan cara untuk menyelesaikan sistem persamaan linear multivariabel. Jika Ax = b adalah sistem persamaan linear yang terdiri dari n persamaan linier dengan n variable dan memiliki det(A) = 0, maka sistem persamaan linear tersebut memiliki solusi unik yang memiliki persamaan sebagai berikut:

$$\chi_1 = \frac{\det\left(A_1\right)}{\det\left(A\right)}, \chi_2 = \frac{\det\left(A_2\right)}{\det\left(A\right)}, \ \dots, \ \chi_n = \frac{\det\left(A_n\right)}{\det\left(A\right)}$$

Aj merupakan matriks yang diperoleh dari mengganti kolom ke – j dari matriks A dengan matriks

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

H. Interpolasi Polinom

Interpolasi polinom adalah suatu metode untuk memprediksi nilai pada suatu titik yang datanya tidak tersedia dengan mengasumsikan pola data yang diorediksi mengikuti persamaan polinomial. Persamaan polinomial yang terbentuk selanjutnya digunakan

untuk memprediksi data yang tidak diketahui. Polinom interpolasi derajat n yang menginterpolasi titik-titik $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$ adalah berbentuk $P_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$. Dengan mensubtitusi titik-titik tersebut akan didapat sistem persamaan linear sebagai berikut:

$$P_n(x_0) = a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n = y_0$$

$$P_n(x_1) = a_0 + a_1x_1 + a_2x_1^2 + \dots + a_nx_1^n = y_1$$

$$P_n(x_2) = a_0 + a_1x_2 + a_2x_2^2 + \dots + a_nx_2^n = y_2$$

$$\vdots$$

$$P_n(x_n) = a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = y_n$$

Dari sistem persamaan linear tersebut dapat diperoleh koefisien dari $a_0, a_1, \dots a_n$ yang nilainya dapat disubtitusi ke persamaan $P_n(x)$. Kemudian, $P_n(x)$ dapat digunakan untuk memprediksi nilai baru yang datanya tidak tersedia.

I. Interpolasi Bicubic

Interpolasi bicubic adalah suatu teknik interpolasi data 2D dengan mengambil matriks berukuran 4×4 sebagai acuan.

Indeks dari matriks acuan dimulai dari -1 dan diakhiri oleh 2. Nilai dari titik-titik yang akan diprediksi merupakan titik yang berada di dalam daerah berbentuk kotak dengan tiap titik sudutnya adalah f(0, 0), f(1, 1), f(1, 0), dan f(0, 1). Persamaan linier f(x, y) yang digunakan untuk menginterpolasi titik-titik tersebut adalah sebagai berikut:

$$f(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} j^{i}$$

 a_{ij} merupakan koefisien a untuk index i dan j. Sistem Persamaan Linier dari persamaan f(x, y) diatas dapat diselesaikan untuk memperoleh seluruh koefisien a. Kemudian, untuk mendapatkan nilai dari suatu titik, substitusikan absis dan ordinat titik ke dalam f(x, y). Interval dari nilai x dan y adalah [0, 1].

J. Regresi Linier Berganda

Regresi linier merupakan model sederhana dengan pendekatan garis linier dengan meminimalkan jumalh kuadrat residual pada data. Model yang terbentuk akan menghasilkan nilai konstanta dan nilai gradien kurva. Regresi linier berganda adalah teknik statistika yang digunakan untuk menganalisis hubungan antara satu variabel dependen dan banyak variabel independen. Metode ini juga digunakan dalam memprediksi nilai dengan variabel independen atau peubah yang banyak. Persamaan umum regresi linier berganda:

$$y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki} + \epsilon_i$$

Untuk mendapatkan nilai dari setiap b_i dapat menggunaakan *Normal Estimation Equation for Multiple Linear Regression*.

$$nb_0 + b_1 \sum_{i=1}^n x_{1i} + b_2 \sum_{i=1}^n x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki} = \sum_{i=1}^n y_i$$

$$b_0 \sum_{i=1}^n x_{1i} + b_1 \sum_{i=1}^n x_{1i}^2 + b_2 \sum_{i=1}^n x_{1i} x_{2i} + \dots + b_k \sum_{i=1}^n x_{1i} x_{ki} = \sum_{i=1}^n x_{1i} y_i$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_0 \sum_{i=1}^n x_{ki} + b_1 \sum_{i=1}^n x_{ki} x_{1i} + b_2 \sum_{i=1}^n x_{ki} x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki}^2 = \sum_{i=1}^n x_{ki} y_i$$

Persamaan ini dapat membantu untuk menentukan nilai b_0,b_1,b_2,\dots,b_k dengan menggunakan metode dalam emncari solusi Sistem persamaan linier

BAB 3 IMPLEMENTASI

1. Class Matrix Atribut

Nama	Tipe Data	Parameter	Deskripsi
row	protected int	_	Menyimpan data jumlah baris pada
			matrix
col	protected int	_	Menympan data jumlah kolom pada
			matrix
data	<pre>public double[][]</pre>	_	Menyimpan data setiap elemen matrix

Nama	Tipe Data	Parameter	Deskripsi
Matrix	Public	Int row	Sebagai Konstruktor untuk
	Matrix	Int col	membuat matrix kosong
setELMT	Public	Int i	Sebagai selector elemen
	void	Int j	matrix
		Double val	
getELMT	public	Int i	Mengambil nilai elemen
	double	Int j	matrik pada baris ke-i dan
			kolom ke-j
getData	Public	-	Mengambil nilai atribut data
	double[]		
	[]		
isMatrixIdxValid	Public	Int i	Mengembalikan nilai true
	boolean	Int j	jika indeks matrix valid
getLastIdxRow	Public	-	Mengembalikan nilai indeks
	int		baris terakhir
getLastIdxCol	Public	-	Mengembalikan nilai indeks
	int		kolom terakhir
getElmtDiagonal	Public	Int i	Mengembalikan elemen
	double		matrix dengan indeks (i,i)
readMatrix	Public	-	Input elemen matrix melalui
	void		terminal
readMatrixPeubah	Public	_	Input elemen matrix peubah
	void		
readMatrixHasil	Public	-	Input elemen matrix hasil
	void		
displayMatrix	Public	-	Menampilkan matrix pada
	void		terminal
matrixToString	Public	-	Mengubah tipe data matrix
_	string		menjadi string
countElmt	Public	-	Mengrmbalikan banyak
	int		elemen pada matrix
isSquare	Public	-	Mengembalikan true jika
-	boolean		matrix merupakan matrix
			persegi, vice versa

copyMatrix	Public	-	Menduplikat matrix
	Matrix		
subMatrix	Public	Int rowDel	Membentuk submatrix
	Matrix	Int colDel	dengan konfigurasi (m.length-1, m[].length-1)
determinanKof	Public	_	Mengembalikan nilai
	double		determinan matrix yang
			ditentukan dengan metode
			ekspansi kofaktor
determinanOBE	Public	-	Mengembalikan nilai
	double		determinan matrix yang
			ditentukan dengan operasi
			baris elementer
multiplyByConst	Public	Double f	Mengalikan setiap elemen
	void		matrix dengan suatu
			konstanta
transposeMatrix	Public	_	Melakukan operasi
	void		transpose pada matrix
inverseMatrix	Public	-	Mengembalikan inverse dari
	Matrix		Matrix
rowZero	Public	Int row	Mengembalikan true jika
	boolean		semua elemen pada indeks
			baris row adalah 0, vice
satuUtamaIdx	Public	Int row	Versa
Satuutamatux	int	Inc row	Mengembalikan indeks satu
	1111		utama pada baris indeks row
switchCol	Public	Matrix mCol	Switch suatu kolom dengan
3	Matrix	Int colIdx	matrix tertentu yang
		Inc occidx	memiliki ukuran (row, 1)
isParametricSolution	Public	_	Mengembalikan true jika
	boolean		hasil OBE memiliki solusi
			SPL parametrik, vice versa
isNoSolution	Public	_	Mengembalikan true jika
	boolean		hasil OBE tidak memiliki
			solusi SPL, vice versa
isUniqueSolution	Public	-	Mengembalikan true jika
	boolean		hasil OBE memiliki hasil SPL
			unik, vice versa
multiplyMatrix	Public	Matrix y	Mengembalikan hasil
	Matrix		perkalian matrix dengan
		<u> </u>	matrix y
concatCol	Public	Matrix m	Mengembalikan matrix dari
	Matrix		hasil konkatenasi matrix
dud vouDot o remains a re-	Dubl	1	dengan matrix m
driverDeterminan	Public	_	Driver unutk menjalankan
	static		fitur determinan matrix
duding to	void	1	Daines and Leaves 1.1
driverInverse	Public	_	Driver untuk menjalankan
	static		fitur Inverse matrix
	void		

2. Class SPL Method

Nama	Tipe Data	Parameter	Deskripsi
driverSPL	Public static	_	Driver untuk menjalankan fitur
	void		solusi Sistem Persamaan Linier
InverseSPL	Public static	Matrix	Mengembalikan matrix solusi SPL
	Matrix	augm	dengan metode matrix balikan
displaySPL	Public static	Matrix m-	Mengembalikan string yang
	string	sol	merupakan solusi dari sistem
			persamaan linier
cramer	Public static	Matrix	Mengembalikan matrix hasil solusi
	Matrix	augm	Sistem persaamaan linier dengan
			metode cramer
makeSatuUtama	Public static	Matrix	Melakukan OBE pada matrix dan
	void	augm	memunculkan satu utama di setiap
			baris
gauss	Public static	Matrix	Mengembalikan matrix hasil
	Matrix	augm	eliminasi gauss
gaussJordan	Public static	Matrix	Mengembalikan matrix hasil
	Matrix	augm	eliminasi gauss-jordan
SolFormatting	Public static	Matrix	Mengembalikan nilai matrix yang
	Matrix	m_sol	merupakan solusi yang sudah
			diformat

3. Class InterpolasiPolinom Method

Nama	Tipe Data	Parameter	Deskripsi
interpolPolinom	Public	Matrix	Mengembalikan hasil
	static	koordinat	persamaan interpolasi
	String	Double val	polinom dan hasil
			teksirannya dalam tipe
			data string
driverInterpolPolinom	Public	_	Driver untuk
	static		menjalankan fitur
	void		interpolasi polinom

4. Class Bicubic

Nama	Tipe Data	Parameter	Deskripsi
bicubicInterpolationKoef	Public	Matrix m	Mengambalikan matrix
	static		koefisien dari
	Matrix		interpolasi bicubic

bicubicInterpolationVal	Public	Matrix	Mengembalikan value
	static	a_koef	dari hasil taksiran
	Double	Double a	interpolasi bicubic
		Double b	
driverBicubic	Public	_	Driver untuk
	static		menjalankan fotru
	void		Interpolasi Bicubic

5. Class ImageResize

Method

Nama	Tipe Data	Paremeter	Deskripsi
imageResize	Public static	BufferedImage	Mengembalikan image
	BufferedImage	img	hasil resize gambar
			dengan
			mengaplikasikan
			interpolasi bicubic.
			Gambar diperbesar
			menjadi 2 kali lipat
			ukuran semula
driverImageResize	Public static	_	Driver untuk
	void		menjalankan fitur resize

6. Class Regresi Method

Nama	Tipe Data	Parameter	Deskripsi
getCoefRegresi	Public	Double[][]	Mengembalikan list yang
	static		merupakan koefisien dari
	double[]		persamaan hasil regresi linier
MultiRegresi	Public	_	Driver untuk menjalankan fitur
	static void		regresi linier

7. Class App

Method

Nama	Tipe Data	Parameter	Deskripsi
main	Public	Strings[]	Driver utama, kompilasi dari setiap driver fitur
	static void	args	

8. Class IOFile

Nama	Tipe Data	Parameter	Deskripsi
getRow	Public static	String	Mengembalikan
	int	fileName	panjang baris dari
			matrix pada file

getCol	Public static int	String fileName	Mengembalikan panjang kolom dari matrix pada file
readFileMat	Public static Matrix	String fileName	Mengembalikan matrix dari pembacaan input file
readBcb	Public static Matrix	String fileName	Mengembalikan matrix dari pembacaan input file khusus untuk bicubic
coorBcb	Public static double[]	String fileName	Mengembalikan nilai koordniat unuk mencari taksiran interpolasi bicubic
createEmptyFile	Public static void	String fileName	Membuat file kosong pada directory /test/
writeMatrix	Public static void	String filename Matrix data	Menuliskan matrix ke dalam file
writeString	Public static void	String filename String s	Menuliskan string s ke dalam file
isFileExist	Public statis boolean	String fileName	Mengembalikan nilai true jika file terdapat pada folder test
readImage	Public static BufferedImage	String fileName	Mengemabalikan image bertipe BufferedImage hasil pembacaan citra
writeImageResize	Public static void	BufferedImage result String filename String fileExtension	Menuliskan dan menyimpan citra ke dalam file citra

9. Class Ul Atribute

Nama	Tipe Data	Parameter	Deskripsi
sc	Public static	_	Membaca input
	Scanner		

Nama	Tipe Data	Paraameter	Dekripsi
printMainMenu	Public	_	Menampilkan menu pilihan fitur
	static void		
Pilih	Public	Int n	Mengembalikan hasil pilihan user
	static int		

simpan	Public	String	Menyimpan string pada file
	static void	output	

BAB 4 EKSPERIMEN

- Solusi Sistem Persamaan Linier Ax = B
 - a. Menggunakan metode Gauss (file: input-1a.txt)

$$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 5 & -7 & -5 \\ 2 & -1 & 1 & 3 \\ 5 & 2 & -4 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 6 \end{bmatrix}$$

```
1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 1.0000 -1.6667 -1.0000 -1.3333 0.0000 0.0000 1.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 Hasil SPL:

SPL tidak memiliki solusi.
```

b. Menggunakan metode Gauss-Jordan (file: input-1b.txt)

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -3 & 0 \\ 2 & -1 & 0 & 1 & -1 \\ -1 & 2 & 0 & -2 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 6 \\ 5 \\ -1 \end{bmatrix}$$

c. Menggunakan metode Gauss-Jordan (file: input-1c.txt)

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

```
0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
```

d. Menggunakan metode Gauss-Jordan (file: input-1d-6.txt)

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \dots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n+1} \end{bmatrix} = b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

```
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 36.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 -630.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 3360.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 -7560.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 7560.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -2772.0000

Hasil SPL:

x_0 = 36.0000
x_1 = -630.0000
x_2 = 3360.0000
x_3 = -7560.0000
x_4 = 7560.0000
x_5 = -2772.0000
```

e. Menggunakan metode Gauss-Jordan (file: input-1d-10.txt)

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \dots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n+1} \end{bmatrix} = b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

```
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 99.9904
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -4949.1596
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 79181.9853
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -600435.4050
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.521731.7416
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
```

- 2. Sistem Persamaan Linier Berbentuk matrix augmented
 - a. Menggunakan metode Gauss-Jordan

$$\begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3 \end{bmatrix}$$

b. Menggunakan metode Gauss-Jordan

$$\begin{bmatrix} 2 & 0 & 8 & 0 & 8 \\ 0 & 1 & 0 & 4 & 6 \\ -4 & 0 & 6 & 0 & 6 \\ 0 & -2 & 0 & 3 & -1 \\ 2 & 0 & -4 & 0 & -4 \\ 0 & 1 & 0 & -2 & 0 \end{bmatrix}$$

```
Hasil SPL:

x_0 = 0.0000

x_1 = 2.0000

x_2 = 1.0000

x_3 = 1.0000
```

- 3. Sistem Persamaan Linier
 - a. Menggunakan metode Gauss-Jordan

$$8x_1 + x_2 + 3x_3 + 2x_4 = 0$$

$$2x_1 + 9x_2 - x_3 - 2x_4 = 1$$

$$x_1 + 3x_2 + 2x_3 - x_4 = 2$$

$$x_1 + 6x_3 + 4x_4 = 3$$

```
1.0000 0.0000 0.0000 0.0000 -0.2243
0.0000 1.0000 0.0000 0.0000 0.1824
0.0000 0.0000 1.0000 0.0000 0.7095
0.0000 0.0000 0.0000 1.0000 -0.2581

Hasil SPL:

x_0 = -0.2243

x_1 = 0.1824

x_2 = 0.7095

x_3 = -0.2581
```

b. Menggunakan metode Gauss-Jordan

```
x_7 + x_8 + x_9 = 13.00
                                          x_4 + x_5 + x_6 = 15.00
                                          x_1 + x_2 + x_3 = 8.00
0.04289(x_3 + x_5 + x_7) + 0.75(x_6 + x_8) + 0.61396x_9 = 14.79
    0.91421(x_3 + x_5 + x_7) + 0.25(x_2 + x_4 + x_6 + x_8) = 14.31
0.04289(x_3 + x_5 + x_7) + 0.75(x_2 + x_4) + 0.61396x_1 = 3.81
                                          x_3 + x_6 + x_9 = 18.00
                                          x_2 + x_5 + x_8 = 12.00
                                          x_1 + x_4 + x_7 = 6.00
0.04289(x_1 + x_5 + x_9) + 0.75(x_2 + x_6) + 0.61396x_3 = 10.51
    0.91421(x_1 + x_5 + x_9) + 0.25(x_2 + x_4 + x_6 + x_8) = 16.13
0.04289(x_1 + x_5 + x_9) + 0.75(x_4 + x_8) + 0.61396x_7 = 7.04
Masukkan nama file
>> input-3b
Hasil SPL:
SPL tidak memiliki solusi.
```

4. Studi Kasus interpolasi

 a. Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titik-titik yang terdapat dalam tabel. Program menerima masukan nilai x yang akan dicari nilai fungsi f(x).

	x	0.4	0.7	0.11	0.14	0.17	0.2	0.23
f	(x)	0.043	0.005	0. 058	0.072	0.1	0.13	0.147

Lakukan pengujian pada nilai-nilai default berikut:

$$x = 0.2 \rightarrow f(x) = 0.1299999999998382$$

```
f(x) = -0.1845590191298605 + 10.276383988581529x^1 - 163.91566260202262x^2
+\ 1220.8548905938487x^3\ -\ 4346.3139507523465x^4\ +\ 7102.399162436538x^5\ -\ 4212.434531756722x^6
1220.8548905938487*0.00800000000000000 - 4346.3139507523465*0.001600000000000000 +
7102.399162436538*3.20000000000001E-4 - 4212.434531756722*6.400000000000002E-5
f(0.2) = 0.1299999999998382
                 x = 0.55 \rightarrow f(x) = 2.1375716208394806
f(x) = -0.1845590191298605 + 10.276383988581529x^{^2} - 163.91566260202262x^{^2} + 1220.8548905938487x^{^3}
- 4346.3139507523465x^4 + 7102.399162436538x^5 - 4212.434531756722x^6
+ 1220.8548905938487*0.16637500000000005 - 4346.3139507523465*0.09150625000000003 + 7102.399162436538*0.05032843750000002 - 4212.434531756722*0.027680640625000013
f(0.55) = 2.1375716208394806
                 x = 0.85 \rightarrow f(x) = -66.26963931319551
f(x) = -0.1845590191298605 + 10.276383988581529x^{1} - 163.91566260202262x^{2} + 1220.8548905938487x^{3}
- 4346.3139507523465x^4 + 7102.399162436538x^5 - 4212.434531756722x^6
+ 1220.8548905938487*0.614124999999999 - 4346.3139507523465*0.5220062499999999
+ 7102.399162436538*0.44370531249999995 - 4212.434531756722*0.37714951562499993
f(0.85) = -66.26963931319551
                 x = 1.28 \rightarrow f(x) = -3485.144901500389
f(x) = -0.1845590191298605 + 10.276383988581529x^{1} - 163.91566260202262x^{2} + 1220.8548905938487x^{3}
- 4346.3139507523465x^4 + 7102.399162436538x^5 - 4212.434531756722x^6
f(1.28) = -0.1845590191298605 + 10.276383988581529*1.28 - 163.91566260202262*1.6384
+ 1220.8548905938487*2.0971520000000003 - 4346.3139507523465*2.68435456
+ 7102.399162436538*3.4359738368000006 - 4212.434531756722*4.398046511104001
f(1.28) = -3485.144901500389
```

b. Jumlah kasus positif baru Covid-19 di Indonesia semakin fluktuatif dari hari ke hari. Di bawah ini diperlihatkan jumlah kasus baru Covid-19 di Indonesia mulai dari tanggal 17 Juni 2022 hingga 31 Agustus 2022:

Tanggal	Tanggal (desimal)	Jumlah Kasus Baru
17/06/2022	6,567	12.624
30/06/2022	7	21.807
08/07/2022	7,258	38.391
14/07/2022	7,451	54.517
17/07/2022	7,548	51.952
26/07/2022	7,839	28.228
05/08/2022	8,161	35.764
15/08/2022	8,484	20.813
22/08/2022	8,709	12.408
31/08/2022	9	10.534

Tanggal (desimal) adalah tanggal yang sudah diolah ke dalam bentuk desimal 3 angka di belakang koma dengan memanfaatkan perhitungan sebagai berikut:

tanggal(desimal) = bulan + (tanggal / jumlah hari pada bulan tersebut)

Gunakanlah data di atas dengan memanfaatkan polinom interpolasi untuk

melakukan prediksi jumlah kasus baru Covid-19 pada tanggal-tanggal berikut:

1)
$$16/07/2022 \rightarrow 7 + \left(\frac{16}{31}\right) = 0.516129$$

 $\begin{array}{l} f(x) = 7.187066071658637E12 - 9.346993079172963E12x^1 + 5.334203055240283E12x^2 - 1.756810186\\ 3613738E12x^3 + 3.685508071755316E11x^4 - 5.1131876760132576E10x^5 + 4.695806315428787E9x^6 - 2.7547453942066926E8x^7 + 9372849.23910132x^8 - 140993.71224863594x^9\\ f(0.516129) = 7.187066071658637E12 - 9.346993079172963E12*0.516129 + 5.334203055240283E12*0.2\\ 6638914464099994 - 1.7568101863613738E12*0.13749116283441465 + 3.685508071755316E11*0.0709631\\ 763825636 - 5.1131876760132576E10*0.03662615326315616 + 4.695806315428787E9*0.018903819857559\\ 522 - 2.7547453942066926E8*0.00975680963926234 + 9372849.23910132*0.005035772402302831 - 1409\\ 93.71224863594*0.0025991081742281577\\ f(0.516129) = 3.566606694260665E12 \end{array}$

2) $10/08/2022 \rightarrow 8 + \left(\frac{10}{31}\right) = 8.322581$

f(x) = 7.187066071658637E12 - 9.346993079172963E12x^1 + 5.334203055240283E12x^2 - 1.756810186
3613738E12x^3 + 3.685508071755316E11x^4 - 5.1131876760132576E10x^5 + 4.695806315428787E9x^6 2.7547453942066926E8x^7 + 9372849.23910132x^8 - 140993.71224863594x^9
f(8.322581) = 7.187066071658637E12 - 9.346993079172963E12*8.322581 + 5.334203055240283E12*69.
26535450156099 - 1.7568101863613738E12*576.466523332956 + 3.685508071755316E11*4797.689334226
916 - 5.1131876760132576E10*39929.15809693957 + 4.695806315428787E9*332313.6525235855 - 2.754
74539420669926E8*2765707.290533394 + 9372849.23910132*2.3017822947754707E7 - 140993.7122486359
4*1.915676959263473E8

3) $05/09/2022 \rightarrow 9 + \left(\frac{5}{30}\right) = 0.322580$

 $f(x) = 7.187066071658637E12 - 9.346993079172963E12x^1 + 5.334203055240283E12x^2 - 1.7568101863613738E12x^3 + 3.685508071755316E11x^4 - 5.1131876760132576E10x^5 + 4.695806315428787E9x^6 - 2.7547453942066926E8x^7 + 9372849.23910132x^8 - 140993.71224863594x^9 \\ f(0.32258) = 7.187066071658637E12 - 9.346993079172963E12*0.32258 + 5.334203055240283E12*0.1040578563999998 - 1.7568101863613738E12*0.03356698331751199 + 3.685508071755316E11*0.010828037478563018 - 5.1131876760132576E10*0.003492908329834858 + 4.695806315428787E9*0.0011267423690381284 - 2.7547453942066926E8*3.6346455340431947E-4 + 9372849.23910132*1.1724639563716536E-4 - 140993.71224863594*3.78213423046368E-5 \\ f(0.32258) = 4.671825236418928E12$

4)
$$28/02/2022 \rightarrow 2 + \left(\frac{28}{28}\right) = 3$$

 $f(x) = 7.187066071658637E12 - 9.346993079172963E12x^1 + 5.334203055240283E12x^2 - 1.7568101863613738E12x^3 + 3.685508071755316E11x^4 - 5.1131876760132576E10x^5 + 4.695806315428787E9x^6 - 2.7547453942066926E8x^7 + 9372849.23910132x^8 - 140993.71224863594x^9 \\ f(3.0) = 7.187066071658637E12 - 9.346993079172963E12*3.0 + 5.334203055240283E12*9.0 - 1.7568101863613738E12*27.0 + 3.685508071755316E11*81.0 - 5.1131876760132576E10*243.0 + 4.695806315428787E9*729.0 - 2.7547453942066926E8*2187.0 + 9372849.23910132*6561.0 - 140993.71224863594*19683.0 \\ f(3.0) = 2.710869890518106E10$

c. Sederhanakan fungsi

$$f(x) = \frac{x^2 + \sqrt{x}}{e^x + x}$$

dengan polinom interpolasi derajat n di dalam selang [0, 2]. Sebagai contoh, jika n = 5, maka titik-titik x yang diambil di dalam selang [0, 2] berjarak h = (2 - 0)/5 = 0.4.

 $f(x) = 0.0 + 2.0352567500000065x^1 - 3.5526791666666973x^2 + 3.2371100260417136x^3 - 1.4212650208333623x^4 + 0.2362556966145896x^5$

5. Studi kasus Interpolasi Bicubic

Tentukan nilai:
153 59 210 96
$$f(0,0) = ?$$

125 161 72 81 $f(0.5, 0.5) = ?$
98 101 42 12 $f(0.25, 0.75) = ?$
21 51 0 16 $f(0.1, 0.9) = ?$

a. f(0,0) = 161 (file: input-5a.txt)

```
Masukkan nama file
>> input-5a

Nilai f(0.00, 0.00) = 161.0000
```

b. f(0.5, 0.5) = 98.9922 (file: input-5b.txt)

```
Masukkan nama file
>> input-5b

Nilai f(0.50, 0.50) = 98.9922
```

c. f(0.25, 0.75) = 82.8866 (file: input-5c.txt)

```
Masukkan nama file
>> input-5c
Nilai f(0.25, 0.75) = 82.8866
```

d. f(0.1, 0.9) = 74.7582 (file: input-5d.txt)

```
Masukkan nama file
>> input-5d

Nilai f(0.10, 0.90) = 74.7582
```

6. Studi kasus Regresi Linier Diberikan sekumpulan data sesuai pada tabel berikut ini

Table 12.1: Data for Example 12.1

Nitrous Oxide, y	Humidity, x_1	Temp., x_2	Pressure, x_3	Nitrous Oxide, y	Humidity, x_1	Temp., x_2	Pressure,
0.90	72.4	76.3	29.18	1.07	23.2	76.8	29.38
0.91	41.6	70.3	29.35	0.94	47.4	86.6	29.35
0.96	34.3	77.1	29.24	1.10	31.5	76.9	29.63
0.89	35.1	68.0	29.27	1.10	10.6	86.3	29.56
1.00	10.7	79.0	29.78	1.10	11.2	86.0	29.48
1.10	12.9	67.4	29.39	0.91	73.3	76.3	29.40
1.15	8.3	66.8	29.69	0.87	75.4	77.9	29.28
1.03	20.1	76.9	29.48	0.78	96.6	78.7	29.29
0.77	72.2	77.7	29.09	0.82	107.4	86.8	29.03
1.07	24.0	67.7	29.60	0.95	54.9	70.9	29.37

Source: Charles T. Hare, "Light-Duty Diesel Emission Correction Factors for Ambient Conditions," EPA-600/2-77-116. U.S. Environmental Protection Agency.

Gunakan Normal Estimation Equation for Multiple Linear Regression untuk mendapatkan regresi linear berganda dari data pada tabel di atas, kemudian estimasi nilai Nitrous Oxide apabila Humidity bernilai 50%, temperatur 76°F, dan tekanan udara sebesar 29.30.

```
Bentuk Normal Estimation Equation untuk Regresi Linier Barganda :

20.0000 863.1000 1530.4000 587.8400 19.4200

863.1000 54876.8900 67000.0900 25283.3950 779.4770

1530.4000 67000.0900 117912.3200 44976.8670 1483.4370

587.8400 25283.3950 44976.8670 17278.5086 571.1219

Hasil persamaan Regresi Linier Berganda :

y = -3.507778 -0.002625 x1 + 0.000799 x2 + 0.154155 x3

Menaksir nilai dari fungsi Reegresi Linier

Masukkan 3 peubah yang akan ditaksir nilai fungsinya

>> 50 76 29.3

Nilai taksirannya adalah 0.955461
```

7. Pembesaran Citra

Pembesaran citra menjadi 2 kali dari ukuran awal. Dilakukan dengan citra ber-format .jpg, .png, .bmp.

BAB 5 KESIMPULAN, SARAN, DAN REFLEKSI

A. KESIMPULAN

Hasil program yang kami buat dapat digunakan untuk:

- Menetukan solusi Sistem Persamaan Linier mengunakan metode eliminasi Gauss, eliminasi Gauss-Jordan untuk matriks augmented non persegi dan persegi.
- 2. Menetukan solusi Sistem Persamaan Linier menggunakan metode matriks balikan dan kaidah cramer khusus untuk matriks persegi.
- 3. Menghitung determinan matriks dengan menggunakan metode reduksi baris dan ekspansi kofaktor.
- 4. Menentukan matriks balikan.
- 5. Menentukan persamaan dan taksiran dari interpolasi polinom, interpolasi bicubic, dan regresi linier berganda.
- 6. Membesarkan ukuran citra dengan aplikasi interpolasi bicubic.

B. SARAN

Penulis menyadari bahwa dalam pengerjaan dan pembuatan program dalam tugas besar ini dapat dikembangkan lebih baik lagi. Hal-hal yang dapat dikembangkan menjadi lebih baik lagi adalah sebagai berikut:

- Dalam pembuatan suatu spesifikasi program, lebih baik untuk melakukan dekomposisi persoalan yang mendalam dan menyeluruh sebelum memulai membuatnya dalam bentuk *code*. Hal ini dilakukan supaya program yang dibuat menjadi lebih mudah dalam proses *debugging* dan pembacaan serta meningkatkan reusability dari prosedur atau fungsi yang dibuat.
- Setiap fungsi atau prosedur lebih baik dituliskan beserta dengan komen singkat untuk menjelaskan apa kegunaan dari fungsi atau prosedur tersebut. Selain itu, penulisan langkah-langkah singkat apa yang dilakukan fungsi atau prosedur juga sangat diperlukan. Hal tersebut berguna untuk memudahkan dalam hal debugging dan juga pembacaan.

C. REFLEKSI

Penulis menemukan berbagai pelajaran berharga dalam pembuatan tugas besar ini. Dari sisi nonteknis penulis belajar untuk bekerja sama dalam menyelesaikan pekerjaan sehingga pekerjaan tersebut dapat selesai dengan cepat. Pembagian tugas masing-masing individu juga penting supaya jelas siapa yang menegrejakan suatu bagian dan juga dapat mempertanggungjawabkan bagian tersebut. Selain itu, penulis juga menyadari pentingnya untuk tidak menunda-nunda suatu pekerjaan. Dari sisi teknis, penulis mendapat pelajaran berharga yaitu dapat memahami dan menggunakan bahasa pemrograman baru yaitu java. Pelajaran mengenai c*ontrol-flow* dari pembuatan suatu program juga didapat dalam menggunakan git dan github.

REFERENSI

- Munir, R. (2022, September 13). *Aljabar Geometri*. Retrieved from Homepage Rinaldi Munir: https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2020-2021/Algeo-09-Determinan-bagian2.pdf
- Profematika. (2019, March 23). *Eliminasi Gauss Jordan beserta contoh Penerapannya*. Retrieved from Profematika: https://www.profematika.com/eliminasi-gauss-jordan-beserta-contoh-penerapannya/
- Rosidi, M. (2019, December 23). *Chapter 12 Pemodelan Data: Regresi Linier*: Retrieved from Matode Numerik Menggunakan R untuk Teknik Lingkungan: https://bookdown.org/moh_rosidi2610/Metode_Numerik/
- Rowe, D. B. (2018, February 15). *Bilinear, Bicubic, and In Between Spline Interpolation.* Retrieved from Marquette University, Mathematical and Statistical Sciences Department Website: https://www.mssc.mu.edu/~daniel/pubs/RoweTalkMSCS_BiCubic.pdf
- Wapole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). *Probability & Staatistics for Engineers & Scientist* (9th ed.). Boston: Pearson Eduation.

LAMPIRAN

Github: https://github.com/rizkyrsyd28/Algeo01-21109