## An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy\*,†, Lucas Beyer\*, Alexander Kolesnikov\*, Dirk Weissenborn\*, Xiaohua Zhai\*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby\*,†

\*equal technical contribution, †equal advising

Google Research, Brain Team

{adosovitskiy, neilhoulsby}@google.com

#### Motivation

- Transformer architecture has achieved great success in multiple NLP tasks.
- A larger CNN can lead to overfitting, but such phenomenon hasn't been observed in transformer.
- Model consisted of pure transformer has not merged in CV (CNN+Transformer).
- ✓ Apply transformer *directly* in CV ViT

### Challenge and Solution

- Transform 2D picture into 1D vector
  - Direct expand (224x224 -> 50176)
  - Expand feature map  $(14x14 \rightarrow 196)$
  - Local window
  - Two self-attention step
- This paper: patch!



#### Model



$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1}\mathbf{E}; \, \mathbf{x}_{p}^{2}\mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N}\mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \qquad \ell = 1 \dots L$$

$$(3)$$

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0) \tag{4}$$

#### Inductive bias

- CNN
  - Locality
  - Translation equivariance
- ViT
  - Attention layers are global
  - Position embeddings at initialization time carry no information about the 2D positions of the patches

#### Finetuning

- a. Remove the pre-trained prediction head.
- b. Attach a feedforward layer.
- c. When feeding higher resolution images, we keep patch size the same.
- d. 2D interpolation of the pre-trained position embeddings (resolution adjustment is the only inductive bias manually injected into ViT).

## **Experiments**

#### Comparison to SOTA

| Model     | Layers | ${\it Hidden size } D$ | MLP size | Heads | Params |
|-----------|--------|------------------------|----------|-------|--------|
| ViT-Base  | 12     | 768                    | 3072     | 12    | 86M    |
| ViT-Large | 24     | 1024                   | 4096     | 16    | 307M   |
| ViT-Huge  | 32     | 1280                   | 5120     | 16    | 632M   |

Table 1: Details of Vision Transformer model variants.

|                    | Ours-JFT<br>(ViT-H/14) | Ours-JFT<br>(ViT-L/16) | Ours-I21k<br>(ViT-L/16) | BiT-L<br>(ResNet152x4) | Noisy Student (EfficientNet-L2) |
|--------------------|------------------------|------------------------|-------------------------|------------------------|---------------------------------|
| ImageNet           | $88.55 \pm 0.04$       | $87.76 \pm 0.03$       | $85.30 \pm 0.02$        | $87.54 \pm 0.02$       | 88.4/88.5*                      |
| ImageNet ReaL      | $90.72 \pm 0.05$       | $90.54 \pm 0.03$       | $88.62 \pm 0.05$        | 90.54                  | 90.55                           |
| CIFAR-10           | $99.50 \pm 0.06$       | $99.42 \pm 0.03$       | $99.15 \pm 0.03$        | $99.37 \pm 0.06$       | _                               |
| CIFAR-100          | $94.55 \pm 0.04$       | $93.90 \pm 0.05$       | $93.25 \pm 0.05$        | $93.51 \pm 0.08$       | _                               |
| Oxford-IIIT Pets   | $97.56 \pm 0.03$       | $97.32 \pm 0.11$       | $94.67 \pm 0.15$        | $96.62 \pm 0.23$       | _                               |
| Oxford Flowers-102 | $99.68 \pm 0.02$       | $99.74 \pm 0.00$       | $99.61 \pm 0.02$        | $99.63 \pm 0.03$       | _                               |
| VTAB (19 tasks)    | $77.63 \pm 0.23$       | $76.28 \pm 0.46$       | $72.72 \pm 0.21$        | $76.29 \pm 1.70$       | _                               |
| TPUv3-core-days    | 2.5k                   | 0.68k                  | 0.23k                   | 9.9k                   | 12.3k                           |

#### • Pre-training setups







#### Positional embedding

- Providing no positional information: Considering the inputs as *a bag of patches*.



- 1-dimensional positional embedding: Considering the inputs as *a sequence of patches in the raster order*.



 2-dimensional positional embedding: Considering the inputs as a grid of patches in two dimensions.

| 11 | 12 | 13 |
|----|----|----|
| 21 | 22 | 23 |
| 31 | 32 | 33 |

- Relative positional embeddings: Considering the *relative distance* between patches to encode the spatial information as instead of their absolute position.



| Pos. Emb.      | Default/Stem | Every Layer | Every Layer-Shared |
|----------------|--------------|-------------|--------------------|
| No Pos. Emb.   | 0.61382      | N/A         | N/A                |
| 1-D Pos. Emb.  | 0.64206      | 0.63964     | 0.64292            |
| 2-D Pos. Emb.  | 0.64001      | 0.64046     | 0.64022            |
| Rel. Pos. Emb. | 0.64032      | N/A         | N/A                |

#### Attention





Mean attention distance =  $d_{AB} \times W_{AB}$ 

# Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu†\* Yutong Lin†\* Yue Cao\* Han Hu\*‡ Yixuan Wei† Zheng Zhang Stephen Lin Baining Guo

Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

#### **Motivations**

- ViT is only designed for image classification.
- A transformer based network for various CV tasks, like image classification, object detection, semantic segmentation, etc.

#### Challenges and Solutions

- Large variations in the scale of visual entities.
- High resolution of pixels in images.



- 1. Self-attention within local window
- 2. Patch merging
- 3. Linear computation complexity to image size
- 1. Shifted window (in NLP?)
- 2. Global modeling

#### Model



Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

#### Patch Merging



#### Shifted window



$$egin{aligned} \hat{\mathbf{z}}^l &= ext{W-MSA}\left( ext{LN}\left(\mathbf{z}^{l-1}
ight)
ight) + \mathbf{z}^{l-1}, \ \mathbf{z}^l &= ext{MLP}\left( ext{LN}\left(\hat{\mathbf{z}}^l
ight)
ight) + \hat{\mathbf{z}}^l, \ \hat{\mathbf{z}}^{l+1} &= ext{SW-MSA}\left( ext{LN}\left(\mathbf{z}^l
ight)
ight) + \mathbf{z}^l, \ \mathbf{z}^{l+1} &= ext{MLP}\left( ext{LN}\left(\hat{\mathbf{z}}^{l+1}
ight)
ight) + \hat{\mathbf{z}}^{l+1}, \end{aligned}$$

## Problem: Window sizes are different



### Partition and masking





### Partition and masking



Image Mask (14x14, window 7x7, shift 3)



Attn Mask

#### **Experiments**

#### Image classification

| (a) Regular ImageNet-1K trained models |                  |         |        |             |            |  |  |  |  |
|----------------------------------------|------------------|---------|--------|-------------|------------|--|--|--|--|
| method                                 | image            | #param. | EI ODe | throughput  | ImageNet   |  |  |  |  |
| memou                                  | size "param.     |         | FLOFS  | (image / s) | top-1 acc. |  |  |  |  |
| RegNetY-4G [48]                        | 224 <sup>2</sup> | 21M     | 4.0G   | 1156.7      | 80.0       |  |  |  |  |
| RegNetY-8G [48]                        | $224^{2}$        | 39M     | 8.0G   | 591.6       | 81.7       |  |  |  |  |
| RegNetY-16G [48]                       | $ 224^2 $        | 84M     | 16.0G  | 334.7       | 82.9       |  |  |  |  |
| EffNet-B3 [58]                         | $300^{2}$        | 12M     | 1.8G   | 732.1       | 81.6       |  |  |  |  |
| EffNet-B4 [58]                         | $380^{2}$        | 19M     | 4.2G   | 349.4       | 82.9       |  |  |  |  |
| EffNet-B5 [58]                         | 456 <sup>2</sup> | 30M     | 9.9G   | 169.1       | 83.6       |  |  |  |  |
| EffNet-B6 [58]                         | 528 <sup>2</sup> | 43M     | 19.0G  | 96.9        | 84.0       |  |  |  |  |
| EffNet-B7 [58]                         | $600^{2}$        | 66M     | 37.0G  | 55.1        | 84.3       |  |  |  |  |
| ViT-B/16 [20]                          | 384 <sup>2</sup> | 86M     | 55.4G  | 85.9        | 77.9       |  |  |  |  |
| ViT-L/16 [20]                          | 384 <sup>2</sup> | 307M    | 190.7G | 27.3        | 76.5       |  |  |  |  |
| DeiT-S [63]                            | 224 <sup>2</sup> | 22M     | 4.6G   | 940.4       | 79.8       |  |  |  |  |
| DeiT-B [63]                            | $224^{2}$        | 86M     | 17.5G  | 292.3       | 81.8       |  |  |  |  |
| DeiT-B [63]                            | 384 <sup>2</sup> | 86M     | 55.4G  | 85.9        | 83.1       |  |  |  |  |
| Swin-T                                 | $224^{2}$        | 29M     | 4.5G   | 755.2       | 81.3       |  |  |  |  |
| Swin-S                                 | $224^{2}$        | 50M     | 8.7G   | 436.9       | 83.0       |  |  |  |  |
| Swin-B                                 | $224^{2}$        | 88M     | 15.4G  | 278.1       | 83.5       |  |  |  |  |
| Swin-B                                 | 384 <sup>2</sup> | 88M     | 47.0G  | 84.7        | 84.5       |  |  |  |  |

#### (b) ImageNet-22K pre-trained models image #param. FLOPs throughput ImageNet method (image / s) top-1 acc. $384^{2}$ 388M 204.6G R-101x3 [38] 84.4 $480^{2}$ R-152x4 [38] 937M 840.5G 85.4 ViT-B/16 [20] 86M 55.4G $384^{2}$ 85.9 84.0 $384^{2}$ 307M 190.7G ViT-L/16 [20] 27.3 85.2 Swin-B 15.4G 278.1 85.2 88M $384^{2}$ 88M 47.0G Swin-B 84.7 86.4 $384^{2}$ 197M 103.9G Swin-L 42.1 87.3

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

#### Object detection

| (a) Various frameworks |          |                   |                 |                 |         |              |            |  |
|------------------------|----------|-------------------|-----------------|-----------------|---------|--------------|------------|--|
| Method                 | Backbone | AP <sup>box</sup> | $AP_{50}^{box}$ | $AP_{75}^{box}$ | #param. | <b>FLOPs</b> | <b>FPS</b> |  |
| Cascade                | R-50     | 46.3              | 64.3            | 50.5            | 82M     | 739G         | 18.0       |  |
| Mask R-CNN             | Swin-T   | 50.5              | 69.3            | 54.9            | 86M     | 745G         | 15.3       |  |
| ATTOG                  | R-50     | 43.5              | 61.9            | 47.0            | 32M     | 205G         | 28.3       |  |
| ATSS                   | Swin-T   | 47.2              | 66.5            | 51.3            | 36M     | 215G         | 22.3       |  |
| Dan Dainta V/2         | R-50     | 46.5              | 64.6            | 50.3            | 42M     | 274G         | 13.6       |  |
| RepPointsV2            | Swin-T   | 50.0              | 68.5            | 54.2            | 45M     | 283G         | 12.0       |  |
| Sparse                 | R-50     | 44.5              | 63.4            | 48.2            | 106M    | 166G         | 21.0       |  |
| R-CNN                  | Swin-T   | 47.9              | 67.3            | 52.3            | 110M    | 172G         | 18.4       |  |
| /T > T7 .              |          |                   | ~               |                 | 1 D G   |              |            |  |

#### (b) Various backbones w. Cascade Mask R-CNN |AP<sup>box</sup> AP<sup>box</sup> AP<sup>box</sup> AP<sup>box</sup> |AP<sup>mask</sup> AP<sup>mask</sup> AP<sup>mask</sup> |paramFLOPsFPS DeiT-S<sup>†</sup> |48.0 67.2 51.7|R50 61.7 43.4 46.3 64.3 50.5 40.1 82M 739G 18.0 Swin-T | 50.5 69.3 54.9 | 43.7 66.6 47.1 86M 745G 15.3 45.2 101M 819G 12.8 X101-32 48.1 66.5 52.4 63.9 41.6 Swin-S 51.8 70.4 56.3 44.7 **67.9 48.5** 107M 838G 12.0 X101-64 48.3 66.4 52.3 41.7 64.0 45.1 140M 972G 10.4 Swin-B **51.9 70.9 56.5 45.0** 68.4 **48.7** 145M 982G 11.6

#### (c) System-level Comparison

| Method               |                   | i-val              |                   | t-dev          | #param    | FLOPs |  |
|----------------------|-------------------|--------------------|-------------------|----------------|-----------|-------|--|
| Method               | AP <sup>box</sup> | AP <sup>mask</sup> | AP <sup>box</sup> | $AP^{mask} \\$ | πparaiii. | TLOFS |  |
| RepPointsV2* [12]    | -                 | -                  | 52.1              | -              | -         | -     |  |
| GCNet* [7]           | 51.8              | 44.7               | 52.3              | 45.4           | -         | 1041G |  |
| RelationNet++* [13]  | -                 | -                  | 52.7              | -              | -         | -     |  |
| SpineNet-190 [21]    | 52.6              | -                  | 52.8              | -              | 164M      | 1885G |  |
| ResNeSt-200* [78]    | 52.5              | -                  | 53.3              | 47.1           | -         | -     |  |
| EfficientDet-D7 [59] | 54.4              | -                  | 55.1              | -              | 77M       | 410G  |  |
| DetectoRS* [46]      | -                 | -                  | 55.7              | 48.5           | -         | -     |  |
| YOLOv4 P7* [4]       | -                 | -                  | 55.8              | -              | -         | -     |  |
| Copy-paste [26]      | 55.9              | 47.2               | 56.0              | 47.4           | 185M      | 1440G |  |
| X101-64 (HTC++)      | 52.3              | 46.0               | -                 | -              | 155M      | 1033G |  |
| Swin-B (HTC++)       | 56.4              | 49.1               | -                 | -              | 160M      | 1043G |  |
| Swin-L (HTC++)       | 57.1              | 49.5               | 57.7              | 50.2           | 284M      | 1470G |  |
| Swin-L (HTC++)*      | 58.0              | 50.4               | 58.7              | 51.1           | 284M      | -     |  |

#### Ablation studies

|                    | ImageNet |             | l                 | )CO         | ADE20k |
|--------------------|----------|-------------|-------------------|-------------|--------|
|                    | top-1    | top-5       | AP <sup>box</sup> | $AP^{mask}$ | mIoU   |
| w/o shifting       | 80.2     | 95.1        | 47.7              | 41.5        | 43.3   |
| shifted windows    | 81.3     | <b>95.6</b> | 50.5              | 43.7        | 46.1   |
| no pos.            | 80.1     | 94.9        | 49.2              | 42.6        | 43.8   |
| abs. pos.          | 80.5     | 95.2        | 49.0              | 42.4        | 43.2   |
| abs.+rel. pos.     | 81.3     | 95.6        | 50.2              | 43.4        | 44.0   |
| rel. pos. w/o app. | 79.3     | 94.7        | 48.2              | 41.9        | 44.1   |
| rel. pos.          | 81.3     | 95.6        | 50.5              | 43.7        | 46.1   |

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).