A Cloud-Based Testing Framework for Genomic Medicine Software

Presented by
Michael Troup
For fulfilment of BCST (Adv)(Hons)

Acknowledgement

Sydney University Supervisor

Associate professor Bing Zhou

This research is undertaken on behalf of the Victor Chang Cardiac Research Institute

Dr Joshua Ho

- DNA ~3 billion base pairs
- Genomic sequencing
- Variants
- Uses of variant calling

Low concordance

Between existing variant-calling genomic sequencing pipelines [3]

Pipeline Testing Difficulties

- Size of input data
- Diverse components of a pipeline
 - Alignment phase string matching
 - Variant calling machine learning / classification
- There are many different ways to construct a pipeline
 - o Open-source
 - Write your own
 - Many different offerings
- There is no easy way to decide if a pipeline has given the correct result
 - Oracle problem
 - False Negative results particularly difficult to detect

Literature

Traditional Testing Methodologies

- Use reference input & compare with "gold standard"
 - US National Institute of Standards and Technology
 - Genome in a Bottle Consortium
 - Some sequencing manufacturers also provide Gold Standard
- Small results: Sanger Sequencing
 - Disadvantage: cost
- Simulated Data
 - Open-source software available
 - Produces simulated input reads
 - Also produces a "truth" output value

Literature

Metamorphic Testing

- Examine outputs from multiple related inputs
- Metamorphic Relation (MR)
- Applications in machine learning, web services, and bioinformatics

Literature

Other testing frameworks

- Giannoulatou [4]
 - Metamorphic Relations for alignment part of pipeline
 - Not cloud-based or built for large data
- A number of cloud-based pipelines
 - For analysis not testing
- Hignam GCAT [5]
 - Web-based tool
 - Upload own results
 - Compare with gold standard & others
- General absence in the literature of pipeline testing frameworks

Research Objectives

For variant-calling genetic sequencing pipelines:

- Provide an automated, cloud-based testing framework
 - Using state-of-the-art testing techniques
 - Minimise the technical exposure to the user
 - Able to handle large-scale data
- Apply the framework to an industry-standard pipeline

Solution

- Framework downloaded to local resource
 - called GPT Genomic Pipeline Tester
 - Tests run on AWS cloud resources
 - Analysis of results
 - Reporting
- Fills in a configuration file
 - Data file names
 - Names of pipeline files execute & install
 - AWS details: number & type of instances, spot price

```
[aws]
region=us-west-2

[aws-instances]
#instance-type=r3.large
instance-type=c4.2xlarge
count=1
user-data=gpt-system/user-data-ssd.sh
```

Solution - GPT

GPT Workflow

Solution

Tests

Test	Description
MR0	Deterministic Output
MR1	random permutation of input
MR2	duplication of reads
MR3	unmapped reads
MR4	mapped reads
SI0	simulated reads – no mutations
SI1	simulated reads – mutations

Test Configuration

Category	Description
Input Data	Real input read sequence data Reference UCSC hg19 Simulated read data - chr11 of hg19 Total input file size ~30GB
AWS	EC2 Instance type: c3.8xlarge (32 CPU) Instance count: 9
Pipeline Under Test	BWA, SAMTools, PicardTools GATK

Cost: on-demand vs spot

- 9 x c3.8xlarge instances for 6 hours

On-Demand	Spot
\$90.72	\$21.60

- 76% saving using spot instances

Test Statuses

Test Name	Status
MR0	Passed *
MR1	Failed
MR2	Failed
MR3	Passed
MR4	Passed
SI0	Passed
SI1	Failed

^{*} Variants called the same but other information different

MR0 – Deterministic output

- Variants called the same
- 3% of variants called had different values for:
 - "Variant Confidence/Quality by Depth"
- In a particular example this value differed by 37%
- Could make a difference in borderline cases

MR2 – Duplication of reads

- False negative rate of 23 per 100,000
- Discovered important example in protein coding region

Discussion

- Metamorphic Relations useful to deal with oracle problem
 - Useful results without gold standard
 - Identified false negatives
- Framework handles large data
- Reduces barriers to testing
- Framework overhead high for small data
- Configuration still requires some technical exposure

Future Work

- Add a browser-based interface
- Complete a larger study of pipelines
- Platform independence
- Develop more involved metamorphic relations
- Build a classifier
 - Identify failure-causing characteristics

Conclusion

- Need to improve software testing in genomic medicine
 - Reliance on domain testing with "gold-standards"
- First cloud-based fully self-contained pipeline testing framework
 - Allows testing on large scale data
 - Test real data without gold-standard
 - Applies Metamorphic Relations to whole pipeline
 - Created a new Metamorphic Relation: deterministic output
 - Combines traditional and metamorphic testing
 - Reduces technical and financial barriers
- Applied framework to an industry-standard pipeline

Good scope for future work

Thank You

References

- [1] "What is DNA?," Genetics Home Reference, 12-Oct-2015. [Online]. Available: http://ghr.nlm.nih.gov/handbook/basics/dna. [Accessed: 19-Oct-2015].
- [2] Illumina, "HiSeq X Series of Sequencing Systems." [Online]. Available: http://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-hiseq-x-ten.pdf. [Accessed: 21-Oct-2015].
- [3] J. O'Rawe, et al., "Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing," *Genome Med.*, vol. 5, no. 3, p. 28, Mar. 2013.
- [4] E. Giannoulatou, et al., "Verification and validation of bioinformatics software without a gold standard: a case study of BWA and Bowtie," *BMC Bioinformatics*, vol. 15, no. Suppl 16, p. S15, Dec. 2014.
- [5] G. Highnam, et al., "An analytical framework for optimizing variant discovery from personal genomes," *Nat. Commun.*, vol. 6, Feb. 2015.