EVALUATION ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES

Université Paris-Saclay

OPTIMISTIC ITERATIONS WITH ARBITRARY NORMS FOR SOLVING GAMES

The goal of this project is to extend the guarantee of the optimistic exponential weights algorithm in the context of solving two-player zero-sum games.

Let $m,n\geqslant 1$ be integers, $A\in\mathbb{R}^{m\times n}$, $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ norms on \mathbb{R}^m and \mathbb{R}^n respectively and denote $\|\cdot\|_{(m*)}$ and $\|\cdot\|_{(n*)}$ their respective dual norms, $h^{(m)}$ and $h^{(n)}$ regularizers with domain Δ_m and Δ_n , $((a_t,b_t,y_t,z_t))_{t\geqslant 1}$ a sequence in $\mathbb{R}^m\times\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^m$ and $K^{(m)}$, $K^{(n)}$, η , $\eta'>0$. We assume that

- $((a_t, y_t))_{t\geqslant 1}$ is a sequence of strict UMD iterates associated with regularizer $b^{(m)}$ and dual increments $(\eta A(2b_t b_{t-1}))_{t\geqslant 1}$ (with convention $b_0 = 0$),
- $((b_t, z_t))_{t\geqslant 1}$ is a sequence of strict UMD iterates associated with regularizer $b^{(n)}$ and dual increments $(\eta' \mathbf{A}^\top (2a_t a_{t-1}))_{t\geqslant 1}$ (with convention $a_0 = 0$),
- $b^{(m)}$ is $K^{(m)}$ -strongly convex for $\|\cdot\|_{(m)}$,
- $b^{(n)}$ is $K^{(n)}$ -strongly convex for $\|\cdot\|_{(n)}$.

QUESTION. — Let $T\geqslant 1$, $\bar{a}_T=\frac{1}{T+1}\sum_{t=1}^T a_t$ and $\bar{b}_T=\frac{1}{T+1}\sum_{t=1}^T b_t$. Derive a guarantee on $\delta_{\rm A}(\bar{a}_T,\bar{b}_T)$.

