2장. 회귀분석

최호식

경기대학교 응용통계학과

Mar, 2018(Kyonggi University)

학습내용

- 1. 개요
- 2. 단순선형회귀
- 3. 다중선형회귀
- 4. 다항회귀
- 5. 범주형 입력변수
- 6. 로지스틱 회귀

회귀분석 I

연속형 출력변수 Y와 입력변수 X의 함수관계를 모형화:

$$Y = f(X) + \epsilon,$$

 ϵ 은 오차항으로서 기대값이 0이고, 분산이 σ^2 임

- X가 주어졌을 때, Y의 조건부 기대값을 특정형태의 함수로 가정하고 자료로부터 그 함수를 추정
 - 선형: f가 선형함수
 (예) f(x) = sin(2x)이면 비선형 모형
 - 단순: X가 1차원, 다중: X가 p ≥ 2차원

단순선형회귀 I

모형

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \cdots, n.$$

 ϵ_i : 서로 독립적으로 평균이 0이고 분산이 σ^2 인 오차항

- 추정
 - 오차제곱합 $\sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i)^2$ 을 최소화
 - 최소제곱 추정치(least square estimate)

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}.$$

- 검정
 - 적합된 추정식이 의미가 있는지를 검정하는 것은 회귀계수 β_1 이 0 인지를 검정하는 것과 동일

단순선형회귀 II

• 검정통계량은

$$t = rac{\hat{eta}_1}{s.e.(\hat{eta}_1)}$$

- |t|가 크면 β₁이 0이라는 가설(귀무가설)을 기각(추정된 회귀식이 유의함).
- 예측 및 해석
 - 새로운 입력변수값 x의 값이 주어지면 출력변수 y의 예측값은

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x.$$

- $\hat{\beta}_j$ 는 x가 한 단위 증가할 때의 y의 증가량을 의미.
- 제곱합의 분해

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

단순선형회귀 III

- 결정계수
 - $R^2 = SSR/SST, 0 \le R^2 \le 1$
 - 1에 가까울수록 회귀모형이 자료를 잘 설명
- 선형 회귀모형에 대한 세가지 가정
 - 선형성: 입력변수와 출력변수의 관계가 선형적
 - 등분산성: 오차의 분산이 입력변수와 무관하게 일정
 - 정규성: 오차의 분포가 정규분포를 따름

단순선형회귀 IV

- 가정에 대한 검증
 - 단순선형회귀모형의 경우 입력변수값과 출력변수값의 산점도,
 다중선형회귀모형에서는 잔차 (y_i ŷ_i)와 출력변수의 산점도를
 그려보아 선형성을 만족하는지 체크
 - 모든 가정이 만족되는 경우에 오차(혹은 잔차)는 랜덤하므로 어떤 패턴이 발견되면 선형회귀모형의 가정을 의심
- 가정이 맞지 않을 때
 - 선형성: 다항회귀(polynomial regression) 등의 비선형회귀모형이나 회귀모형에 아무런 가정도 하지 않는 의사결정나무, 신경망 모형과 같은 비모수적 회귀모형 등을 고려
 - 등분산성: 가중회귀방법(weighted regression)을 사용
 - 정규성: 로버스트 회귀(robust regression)를 고려

단순회귀 예제 I

- 에어컨 예약대수를 이용하여 에어컨 판매대수를 예측
 - 10년간의 에어컨 예약대수와 판매대수를 관측(1단위: 1,000대)
 - x;는 에어컨 예약대수, y;는 에어컨 판매대수인 단순선형회귀 고려
 - 분산분석표

변수	자유도	추정값	표준오차	t	유의확률
절편	1	9.7364	6.6620	1.471	0.1796
X	1	1.4407	0.2004	7.188	0.0001

- 추정된 모형식이 y = 9.74 + 1.44x이고 올해 에어컨 예약대수가 45 단위이면 에어컨 판매대수는 $9.74 + 1.44 \times 45 = 74.54$ 단위로 예측
- 에어컨 예약대수가 1단위 증가하면 에어컨 판매대수는 1.44단위 증가하는 것으로 해석
- x에 대한 유의확률(p-value)이 0.0001로 매우 작으므로 회귀계수 β_1 이 0이라는 가설은 기각
- $R^2 = 0.8659$ 로 자료의 전체 변동중 회귀모형이 86.59%를 설명

단순회귀 예제 II

• 산점도와 잔차도

- 산점도: 예약대수와 판매대수 사이의 강한 선형관계가 존재있다.
- 잔차도: 잔차들이 특별한 패턴이 없이 랜덤하게 잘 분포

다중선형회귀 I

모형

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i.$$

- $x_i = (x_{i1}, \dots, x_{ip}) \in \mathbb{R}^p$: 입력변수 벡터, $y_i \in \mathbb{R}$: 출력변수, ϵ_i 은 오차항으로 평균이 0이고 분산이 σ^2
- 훈련자료 $(x_1, y_1), \ldots, (x_n, y_n)$
- 모수 $\beta_0, \beta_1, \dots, \beta_p$ 의 추정
- 오차제곱합

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

를 최소화

다중선형회귀 II

• 분산분석표

요인 제곱합 자유도 제곱평균	<i>F</i> -값
회귀 회귀제곱합 p $MSR = 3$	SSR/p $F = MSR/MSE$
(SSR)	
오차 잔차제곱합 $n-p-1$ $MSE=5$	SSE/(n-p-1)
(SSE)	
계 전체제곱합 n-1	
(SST)	

F-값이 크면 귀무가설 $H_0: \beta_1 = \cdots = \beta_p = 0$ 기각

• β_j 에 대한 유의성 검정 $H_0: \beta_j = 0$ 대 $H_1: \beta_j \neq 0$ 대한 검정통계량은

$$t_j = \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)}$$

 $|t_j|$ 이 크면 회귀계수 β_j 는 유의하다고 결론을 내림

◆ロト ◆問 ト ◆ き ト ◆ き ・ か へ ○

다중선형회귀 III

- 예측 및 해석
 - 새로운 입력변수값 x_1, \ldots, x_p 에 대한 출력변수 y의 예측값은

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_p x_p$$

• $\hat{\beta}_j$ 는 다른 변수들의 값이 고정되었을 때 x_j 가 한 단위 증가할 때의 y의 증가량을 의미

다중선형회귀 예제 I

- 아파트의 겨울의 난방비 예측
- 20개의 아파트를 임의로 추출하여 겨울철 외부 온도, 단열재의 두께, 창문수, 아파트의 나이를 조사
- 분산분석표

-						
	요인	제곱합	자유도	제곱평균	<i>F-</i> 값	유의확률
	회귀	175042.37	4	43760.59	14.77	< 0.001
	오차	44443.38	15	2962.89		
	계	219485.75	19			

- 유의확률이 0.001보다 작으므로 이 회귀모형은 유의
- 회귀계수

입력변수	회귀계수	표준오차	t	유의확률
절편	294.46	64.61	4.55	< 0.001
외부.온도	-8.44	1.55	-5.43	< 0.001
단열재.두께	-14.90	5.30	-2.80	0.013
창문수	-1.16	5.11	-0.22	0.822
아파트나이	6.26	4.31	1.45	0.166

다중선형회귀 예제 II

- 외부온도 1도가 올라가면 난방비가 8.44단위 감소
- 단열재의 두께가 1단위 증가하면 난방비가 14.91단위 감소
- 창문수가 1개 증가할수록 난방비가 1.165단위 감소
- 아파트의 나이가 1년 증가하면 난방비가 6.26단위 증가
- 단, 창문수와 아파트의 나이는 p-value가 0.822, 0.166로 통계적으로 유의하지는 않음.

최소제곱 추정의 원리* I

- **X**: $n \times (p+1)$ 설계행렬, $y = (y_1, ..., y_n)^T$ 는 출력변수 벡터
- 오차제곱합

$$SSE(\beta) = (y - \mathbf{X}\beta)^{T}(y - \mathbf{X}\beta)$$
$$\frac{\partial SSE}{\partial \beta} = -2\mathbf{X}^{T}(y - \mathbf{X}\beta)$$
$$\frac{\partial^{2}SSE}{\partial \beta \partial \beta^{T}} = 2\mathbf{X}^{T}\mathbf{X}$$

- 정규방정식(normal equation): $\frac{\partial SSE}{\partial \beta} = \mathbf{X}^T(y \mathbf{X}\beta) = 0$
- $\operatorname{rank} \mathbf{X} = p + 1$ 이면 유일한 해 $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$ 가 존재하며, $\hat{y} = \mathbf{X} \hat{\beta} = \mathbf{H} y$ 임.
- 정사영행렬(projection or hat matrix) $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ • $\mathbf{H}^2 = \mathbf{H}$ 를 만족

최소제곱 추정의 원리* II

 Hy는 주어진 벡터 y를 X의 열벡터에 의해 생성된 선형공간으로 사영한 값임. 즉, S = {Xa: a ∈ ℝ^p}에 대하여

$$\hat{y} = \arg\min_{z \in S} \sum_{i=1}^{n} (y_i - z_i)^2$$

최소제곱 추정의 원리* III

• 최소제곱법의 기하적 해석

다항회귀

• 다항회귀모형

$$y = \beta_0 + \beta_1 x^1 + \dots + \beta_p x^p + \epsilon$$

- $z_1 = x, ..., z_p = x^p$ 라 놓고 p차원의 입력변수 $z_1, ..., z_p$ 와 출력변수 y간의 다중선형회귀모형을 적합하여 모수 추정
- 차수 p의 결정
 - p = 2부터 순차적으로 값을 증가시키면서 모형을 적합. p가 증가하면서 결정계수값은 계속해서 증가하므로 결정계수값의 증가가 둔화되는 p를 선택함

다항회귀 예제 I

• 산점도 출력변수와 입력변수의 관계가 선형이 아님

ロ ト 4 個 ト 4 差 ト 4 差 ト 9 9 9 0 0 0

다항회귀 예제 11

2차함수를 적합한 결과

입력변수	회귀계수.	표준오치	+ t -	유의확률
절편	-1.26	2.71	-0.46	0.65
X	10.32	9.11	9.11	0.00
x ²	-0.99	0.10	9.88	0.00

범주형 입력변수 I

- 범주의 수가 K개인 범주형 입력변수는 (K-1)개의 가변수(dummy variable) z_1, \ldots, z_{K-1} 로 코딩
- (예) K = 3인 경우 다음과 같이 2개의 가변수 z₁과 z₂를 고려

범주	z_1	<i>z</i> ₂
1	1	0
2	0	1
3	0	0

• 가변수를 이용한 선형모형은

$$y = \beta_0 + \sum_{k=1}^{K-1} \beta_k z_k + \epsilon$$

범주형 입력변수 II

- 회귀계수의 의미
 - β₀: K번째 범주에서의 y의 평균
 - $\beta_0 + \beta_k, k \leq K 1$ 은 k번째 범주에서의 y의 평균
 - β_k : k번째 범주에서의 y의 평균과 K번째 범주에서의 y의 평균의 차이

계절에 따른 매출액

자료

봄	여름	가을	겨울	봄	여름	가을	겨울
231.21	337.28	336.81	300.44	283.91	255.61	285.49	338.52
봄	여름	가을	겨울	봄	여름	가을	겨울
238.37	259.98	280.13	306.02	224.70	264.45	317.51	327.78

• 가변수 z_1, z_2, z_3

계절변수	z_1	<i>z</i> ₂	<i>Z</i> ₃
봄	0	0	0
여름	1	0	0
가을	0	1	0
겨울	0	0	1

범주형 입력변수 III

• 추정결과

입력변수	회귀계수	표준오차	t	유의확률
절편	244.55	14.3	17.10	< 0.001
z1	34.78	20.22	1.72	0.111
z2	60.44	20.22	2.98	0.011
z3	73.64	20.22	3.64	0.003

- 여름의 매출액은 봄의 매출액 비해 34.78단위 높으나 통계적으로 유의하지 않음
- 가을의 매출액은 봄의 매출액보다 60.44단위 높으며, 겨울의 매출액은 봄의 매출액에 비해 73.64단위 높음

단순 로지스틱 회귀 I

• 출력변수 y = 0 또는 1이고 입력변수가 x인 경우에 단순선형회귀모형

$$y = \beta_0 + \beta_1 x + \epsilon$$

을 적용

- 추정값 $\beta_0 + \beta_1 x$ 는 범위 [0,1]을 벗어날 수 있음
- 오차항 ϵ 의 분포가 정규분포가 아님
- x가 주어졌을때 Y의 조건부 평균이라기 보다 조건부 확률을 적절한 연결함수(link function) p를 통해 모형화. p는 연속인 증가함수로 [0,1]에서 값을 가짐
 - 로지스틱 모형: $p(x) = \exp(x)/(1 + \exp(x))$
 - 검벨(Gumbel) 모형: $p(x) = \exp(-\exp(x))$
 - 프로빗(probit) 모형: $p(x) = \Phi(x)$ (표준정규분포의 분포함수), 생물학 독성실험 등에서 사용

단순 로지스틱 회귀 II

• 단순 로지스틱 모형:

$$\Pr(Y = 1|x) = p(\beta_0 + \beta_1 x) = \exp(\beta_0 + \beta_1 x)/(1 + \exp(\beta_0 + \beta_0 x))$$

• 오즈비(odds ratio):

$$\begin{aligned} &\frac{\Pr(Y=1|x+1)/\Pr(Y=1|x)}{\Pr(Y=0|x+1)/\Pr(Y=0|x)} \\ &= &\frac{\Pr(Y=1|x+1)\Pr(Y=0|x)}{\Pr(Y=0|x+1)\Pr(Y=1|x)} \\ &= &\exp(\beta_1). \end{aligned}$$

- 입력변수 x가 한단위 증가할 때 오즈비가 일정하게 증가
- 오즈(odds)는 Pr(Y = 1|x)/Pr(Y = 0|x)로 정의되며, 입변수 x + 1에서의 오즈와 입력변수 x에서의 오즈의 비
- (예) x: 소득, y: 어떤 상품에 대한 구입여부(1=구입, 0=미구입)

단순 로지스틱 회귀 III

• $\hat{\beta}_1 = 3.72$: 소득이 한 단위 증가하면 물품을 구매하지 않을 확률에 대한 구매할 확률의 오즈비가 $\exp(3.72) = 42$ 배 증가

• 추정

• 우도함수(likelihood function)는

$$L(\beta_0, \beta_1) = \prod_{i=1}^n p(\beta_0 + \beta_1 x_i)^{y_i} (1 - p(\beta_0 + \beta_1 x_i))^{1-y_i}$$

• 로그 우도함수

$$I(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \log p(\beta_0 + \beta_1 x_i) + (1 - y_i) \log(1 - p(\beta_0 + \beta_1 x_i)))$$

• 최대우도추정량(maximum likelihood estimator) $(\hat{eta}_0,\hat{eta}_1)$ 을 이용

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

단순 로지스틱 회귀 IV

- 검정
 - 우도비검정통계량

$$\chi^2 = -2 \left(\max_{\beta_0} I(\beta_0, 0) - I(\hat{\beta}_0, \hat{\beta}_1) \right)$$

을 이용

• χ^2 통계량은 근사적으로 자유도가 1인 카이제곱 분포를 따름. 값이 크면 $eta_1=$ 0는 기각

다중 및 다항 로지스틱 회귀로의 확장

• 다항 로지스틱 회귀모형

$$\Pr(Y=1|x) = p(\beta_0 + \beta_1 x + \dots + \beta_p x^p)$$

• 다중 로지스틱 회귀모형은 입력변수 x_1, \ldots, x_p 에 대하여

$$\Pr(Y=1|x)=p(\beta_0+\beta_1x_1+\cdots+\beta_px_p)$$

- 모수의 추정: 최대우도법
- 유의성 검정: 우도비 검정
- 입력변수가 범주형인 경우에도 가변수 이용
- 변수선택: 선형모형의 방법을 적용(선택기준은 오차제곱합 대신에 로그 우도함수값을 사용)

다중 로지스틱 회귀 예제 1

- 회사채의 신용등급을 여러 가지 재무변수를 이용하여 설명
- 출력변수: 회사채 신용등급(안정=1, 위험=0)
- 입력변수: 자산대비 부채현황 지표(x1), 현금회전율(x2), 종업원수(x3)이다.
- 종업원수는 50인 이하이면 0, 50 100인이면 1, 100인 이상이면 2인 범주형 변수로 가변수 z₁과 z₂를 이용하여 분석

범주	z_1	<i>z</i> ₂
50인 이하	0	0
50-100인	1	0
100인 이상	0	1

다중 로지스틱 회귀 예제 II

• 로지스틱 회귀모형

$$Pr(Y = 1|x) = p(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 z_1 + \beta_4 z_2)$$

• 회귀계수 추정값

입력변수	회귀계수	표준오차	χ^2	유의확률
절편	12.221	3.594	11.562	0.000
x_1	-1.072	0.393	7.438	0.006
x_2	11.524	4.131	7.781	0.005
z_1	0.698	0.357	3.940	0.047
z	2.614	0.791	10.907	0.001

다중 로지스틱 회귀 예제 III

- 해석
- 모든 변수가 유의수준 $\alpha=0.05$ 에 비해 작은 유의확률을 갖으므로 출력변수를 설명하는데 유의함
- $-\hat{eta}_1 < 0$ 이므로 부채비율이 높을 수록 회사채의 신용이 낮아짐
- $-\hat{\beta}_2 > 0$ 이므로 현금회전율이 높을 수록 회사채의 신용이 높아짐
- z₁과 z₂는 가변수이므로 그 계수에 대한 해석에 주의
 - z₁: 50 100인 규모의 회사와 50인 미만의 회사의 회사채 신용등급의 오즈비는 $\exp(0.698) = 2.00$ 배 정도 높음
 - z₂: 100인 이상 규모의 회사와 50인 미만의 회사의 회사채 신용등급의 오즈비는 exp(2.614) = 13.655배 정도 높음
- 가변수인 z₁과 z₂의 해석은 항상 50인 미만의 회사(가변수 값이 모두 0인)를 기준으로 비교하였는데 가변수를 다르게 코딩하면 회귀계수의 추정치가 달라짐.
- 그러나 상대적인 오즈비는 항상 일정하고 그 결과의 해석에는 차이가 없음

로지스틱 모형을 이용한 분류 I

- 0과 1사이의 적당한 수 c를 절단값으로 선택하여,
 - Pr(Y = 1|x)가 c보다 크면 자료를 Y = 1인 클래스로 분류하고,
 - Pr(Y = 1|x)가 c보다 작으면 자료를 Y = 0인 클래스로 분류

로지스틱 모형을 이용한 분류 🛭

- 절단값 c의 결정시 고려사항
- 사전정보: 두번째 범주의 자료(y = 1인 자료)가 많이 나타난다면 절단값을 작은 값으로 정할 수 있음.
- 손실함수: 두번째 범주의 자료를 잘못 분류하는 손실이 첫번째 범주의 자료를 잘못 분류하는 것에 비하여 손실 정도가 심각하게 큰 경우에는 절단값 c를 작게 잡을 수 있음
 - (예) 스팸 이메일로 분류, 암진단
- 전문가 의견, 민감도, 특이도 등
- 가령 Pr(Y = 1|x) > c이면 클래스 1로 분류하는 규칙을 생각해 보자. 이 규칙은 $\log (\Pr(Y = 1|x)/(1 - \Pr(Y = 1|x))) > \log(1 + c)/c$ 이면 클래스 1 로 분류하는 것과 동일하다. 즉, $c^* = (1 + c)/c$ 로 놓으면 $\beta_0 + \beta_1 x > \log(c^*)$ 이면 클래스 1로 분류하는 것이다. 따라서 로지스틱 모형의 분류경계는 선형임을 알 수 있음.
- 분류경계가 비선형인 경우에는 다항 로지스틱 모형으로 추정하거나 의사결정나무나 신경망모형 등의 비선형 분류경계를 찾는 방법들을 고려

3/2018