| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

#### Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.



Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Standard E3. Mark:

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

**Solution:** Let 
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & | & -1 \\ 3 & 0 & 6 & 1 & | & 5 \\ -4 & 1 & -9 & 2 & | & -7 \end{bmatrix}$$
, so RREF  $A = \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix}$ . It follows that the solution set is given by 
$$\begin{bmatrix} 2 - 2a \\ 3 + a \\ a \\ -1 \end{bmatrix}$$
 for all real numbers  $a$ .

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$

$$x - y - z = 0$$

Solution:

RREF 
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is 
$$\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$$
 or  $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$ .

# Standard V1.

Mark:

Let V be the set of all points on the line x + y = 2 with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$
  
 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$ 

- (a) Show that this vector space has an additive identity element.
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $(x_1, y_1) \in V$ ; then  $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$ , so (1, 1) is an additive identity element. Now we will show the other seven properties. Let  $(x_1, y_1), (x_2, y_2) \in V$ , and let  $c, d \in \mathbb{R}$ .

- 1) Since real addition is associative,  $\oplus$  is associative.
- 2) Since real addition is commutative,  $\oplus$  is commutative.
- 3) The additive identity is (1,1).
- 4)  $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$ , so  $(2 x_1, 2 y_1)$  is the additive inverse of  $(x_1, y_1)$ .

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6) 
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d)\odot(x_1,y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$
$$= c\odot(x_1, y_1) \oplus c\odot(x_2, y_2)$$

Therefore V is a vector space.

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

| Standard E1. | Mark: |
|--------------|-------|
|--------------|-------|

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_4 = -1$$

Solution:

$$\begin{bmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -1 & 0 & 7 \\ 1 & -1 & 0 & 3 & -1 \end{bmatrix}$$

Standard E3.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

Solution: Let 
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & | & -1 \\ 3 & 0 & 6 & 1 & | & 5 \\ -4 & 1 & -9 & 2 & | & -7 \end{bmatrix}$$
, so RREF  $A = \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix}$ . It follows that the solution set is given by 
$$\begin{bmatrix} 2 - 2a \\ 3 + a \\ a \\ -1 \end{bmatrix}$$
 for all real numbers  $a$ .

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$

$$x - y - z = 0$$

Solution:

RREF 
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is 
$$\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$$
 or  $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$ .

# Standard V1.

Mark:

Let V be the set of all points on the line x + y = 2 with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$
  
 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$ 

- (a) Show that this vector space has an additive identity element.
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $(x_1, y_1) \in V$ ; then  $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$ , so (1, 1) is an additive identity element. Now we will show the other seven properties. Let  $(x_1, y_1), (x_2, y_2) \in V$ , and let  $c, d \in \mathbb{R}$ .

- 1) Since real addition is associative,  $\oplus$  is associative.
- 2) Since real addition is commutative,  $\oplus$  is commutative.
- 3) The additive identity is (1,1).
- 4)  $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$ , so  $(2 x_1, 2 y_1)$  is the additive inverse of  $(x_1, y_1)$ .

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6) 
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d)\odot(x_1,y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
  
=  $(cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$   
=  $c\odot(x_1, y_1) \oplus c\odot(x_2, y_2)$ 

Therefore V is a vector space.

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

### Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.



Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

Standard E3.

Mark:

Solve the system of equations

$$-3x + y = 2$$
$$-8x + 2y - z = 6$$
$$2y + 3z = -2$$

Solution:

RREF 
$$\left( \begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solutions are

$$\left\{ \begin{bmatrix} -1 - \frac{c}{2} \\ -1 - \frac{3c}{2} \\ c \end{bmatrix} \mid c \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} c - 1 \\ 3c - 1 \\ -2c \end{bmatrix} \mid c \in \mathbb{R} \right\}$$

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

RREF 
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis is  $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$  or  $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$ .

### Standard V1.

Mark:

Let V be the set of all pairs of real numbers with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V$ ,  $c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
  
 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$ 

- (a) Show that this scalar multiplication  $\odot$  distributes over vector addition  $\oplus$ .
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $(x_1, y_1), (x_2, y_2) \in V$  and let  $c \in \mathbb{R}$ .

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

Additional Notes/Marks

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.



Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

Solution:

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

Standard E3.

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

**Solution:** Let 
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & | & -1 \\ 3 & 0 & 6 & 1 & | & 5 \\ -4 & 1 & -9 & 2 & | & -7 \end{bmatrix}$$
, so RREF  $A = \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix}$ . It follows that the solution set is given by 
$$\begin{bmatrix} 2 - 2a \\ 3 + a \\ a \\ -1 \end{bmatrix}$$
 for all real numbers  $a$ .

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \\ -1 & 0 & 2 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} a \\ 2a \\ -2a \\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis for the solution set is  $\left\{ \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix} \right\}$ .

## Standard V1.

Mark:

Let V be the set of all real numbers with the operations, for any  $x, y \in V$ ,  $c \in \mathbb{R}$ ,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition  $\oplus$  is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $x, y, z \in \mathbb{R}$ . Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

Additional Notes/Marks

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

### Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.



Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 0$$
$$x - z = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

Standard E3.

Mark:

Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF 
$$\left( \begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

### Standard E4.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = 0$$
$$3x_1 + 6x_3 + x_4 = 0$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = 0$$

**Solution:** Let 
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & 0 \\ 3 & 0 & 6 & 1 & 0 \\ -4 & 1 & -9 & 2 & 0 \end{bmatrix}$$
, so RREF  $A = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ . It follows that the basis for the solution set is given by  $\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\}$ .

### Standard V1.

Mark:

Let V be the set of all real numbers together with the operations  $\oplus$  and  $\odot$  defined by, for any  $x, y \in V$  and  $c \in \mathbb{R}$ ,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that this scalar multiplication  $\odot$  is associative.
- (b) Determine if V is a vector space or not. Justify your answer

**Solution:** Let  $x, y \in V$ ,  $c, d \in \mathbb{R}$ . To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$

$$= c (dx - 3(d - 1)) - 3(c - 1)$$

$$= cdx - 3(cd - 1)$$

$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so  $\oplus$  is associative.
- 2)  $x \oplus 3 = x + 3 3 = x$ , so 3 is the additive identity.
- 3)  $x \oplus (6-x) = x + (6-x) 3 = 3$ , so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so  $\oplus$  is commutative.
- 5) Associativity shown above

6) 
$$1 \odot x = x - 3(1 - 1) = x$$

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$
  
=  $cx - 3(c-1) + dx - 3(c-1) - 3$   
=  $(c \odot x) \oplus (d \odot x)$ 

Therefore V is a vector space.

 ${\bf Additional\ Notes/Marks}$ 

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

### Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.



Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Standard E3.

Mark:

Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF 
$$\left( \begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

$$RREF \left( \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ \frac{1}{3}a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is  $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$  or  $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$ .

## Standard V1.

Mark:

Let V be the set of all pairs of real numbers with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
  
 $c \odot (x_1, y_1) = (0, cy_1)$ 

- (a) Show that this scalar multiplication  $\odot$  distributes over scalar addition.
- (b) Determine if V is a vector space or not. Justify your answer.

**Solution:** Let  $(x_1, y_1) \in V$ , and let  $c, d \in \mathbb{R}$ . Then

$$(c+d)\odot(x_1,y_1)=(0,(c+d)y_1)=(0,cy_1)\oplus(0,dy_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

However, V is not a vector space, as  $1 \odot (x_1, y_1) = (0, y_1) \neq (x_1, y_1)$ .

Additional Notes/Marks