TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

TP statistiques bivariées

Eric Marcon

16 février 2024

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

Comptages

Données

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

Enquête de vie 2003 de l'INSEE

library("questionr")
data(hdv2003)

AgroParisTech / Tableaux de contingence

```
TP
statistiques
 bivariées
```

Eric Marcon

Comptages

Variables continues

Tableau croisé de comptage.

```
(tab_x <- table(hdv2003$sexe, hdv2003$cuisine))</pre>
```

```
##
##
           Non Oui
     Homme 629 270
##
##
     Femme 490 611
```

AgroParisTech \angle Test du chi^2

TP statistiques hivariées

Eric Marcon

Comptages

Variables continues Test de l'indépendance des lignes et des colonnes.

Hypothèse nulle : la fréquence relative de chaque cellule du tableau est le produit des fréquences marginales.

```
n <- sum(tab_x)
sexe f <- rowSums(tab x) / n
cuisine f <- colSums(tab x) / n
outer(sexe f, cuisine f, `*`) * n
              Non
                       Ωni
## Homme 502.9905 396.0095
## Femme 616,0095 484,9905
```

La somme des carrés des écarts des effectifs divisés par la valeur attendue suit une loi du χ_2 à $(I-1)\times (J-1)$ degrés de liberté (I et J sont les nombres de lignes et colonnes)

AgroParisTech \not Test du chi^2

TP statistiques hivariées

Eric Marcon

Comptages

Variables continues

```
chisq.test(tab_x)
```

```
##
   Pearson's Chi-squared test with Yates'
    continuity correction
##
##
## data: tab x
## X-squared = 129.15, df = 1, p-value <
## 2.2e-16
```

Les écarts sont significatifs avec une p-value proche de 0.

Graphique

TP statistiques bivariées Eric Marcon

Comptages

Variables continues mosaicplot(tab_x, shade = TRUE, main = "")

L'argument shade = TRUE affiche les résidus du test qui suivent approximativement une loi normale centrée réduite (la valeur critique 2 correspond à 95% de confiance).

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

Variables continues

Covariance

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

La covariance entre X et Y, deux variables aléatoires, est

$$\mathrm{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

donc

$$\mathrm{var}(X) = \mathrm{Cov}(X,X)$$

Empiriquement :

$$\hat{\mathrm{Cov}}(X,Y) = \frac{1}{n-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

Eric Marcon

Comptages

Variables continues

Données Ventoux

```
read_csv2("data/Inv_GEEFT_Ventoux_09-2020.csv") |>
  rename(
    espece = Espèce,
    diametre = `Diamètre (cm)`,
    hauteur = `Hauteur réelle (m)`
) -> ventoux
```

La hauteur des arbres covarie positivement avec le diamètre. with(ventoux, cov(hauteur, diametre))

```
## [1] 75.31186
```

Corrélation de Pearson

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues

Pour simplifier l'interprétation, on normalise la covariance par le produit des écarts-types :

$$\operatorname{Cor}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{(\operatorname{var}(X)\operatorname{var}(Y))}}$$

Donc Cor(X, X) = 1 et Cor(X, -X) = -1.

La corrélation est comprise entre -1 et 1. with(ventoux, cor(hauteur, diametre))

[1] 0.8427001

Les données sont très corrélées (le test viendra plus tard).

AgroParisTech Corrélation de Spearman

TP statistiques hivariées

Eric Marcon

Comptages

Variables continues

Les valeurs des données sont remplacées par leurs rangs. with(ventoux, cor(hauteur, diametre, method = "spearman"))

```
## [1] 0.8490534
```

Remarquer la proximité des valeurs.

TP statistiques bivariées

Eric Marcon

Comptages

Variables continues