Определение C_p/C_v по скорости звука в газе (2.1.3)

Хмельницкий Антон Б01-306

2024/02/20

1 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдем

 $\gamma = \frac{\mu}{RT}c^2. \tag{2}$

Условия стоячей волны

$$L = n\lambda/2$$
,

где λ – длина волны звука в трубе, а n – любое целое число.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad \dots, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$
 (4)

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (5)

Из (3) и (5) имеем:

$$f_{1} = \frac{c}{\lambda_{1}} = \frac{c}{2L}n, \quad f_{2} = \frac{c}{\lambda_{2}} = \frac{c}{2L}(n+1) = f_{1} + \frac{c}{2L}, \quad \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_{1} + \frac{c}{2L}k. \tag{6}$$

2 Расчет всех данных

Воздух 1	ν_1	Т	25,3	ν_2	Т	40	ν_3	Т	45	ν_4	Т	52
$L=800~\mathrm{mm}$	1	202		1	205		1	208		1	209	
	2	450		2	461		2	464		2	469	
	3	660		3	677		3	682		3	689	
	4	874		4	896		4	903		4	913	
	5	1088		5	1118		5	1127		5	1139	

Таблица 1: Данные установки с термостатом для воздуха

ν	$\nu = 4412 \ \Gamma$ ц		= 3707 Гц	$\nu = 5092$ Гц		
k	dL, mm	k	dL, mm	k	dL, mm	
0	20	0	36	0	8	
1	55	1	87	1	41	
2	96	2	129	2	76	
3	131	3	180	3	109	
4	172	4	220	4	143	

Таблица 2: Данные установки с выдвижной частью для воздуха

ν	$\nu=4398$ Γ ц		= 3506 Гц	$\nu = 3039$ Гц		
k	dL, мм	k	dL, мм	k	dL, mm	
0	52	0	47	0	50	
1	81	1	86	1	94	
2	112	2	124	2	138	
3	143	3	163	3	182	
4	173	4	199	4	226	

Таблица 3: Данные установки с выдвижной частью для углекислого газа

3 Обработка резальтатов

Расчет погрешность при аппроксимации по МНК:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$
$$b = \langle y \rangle - k \langle x \rangle$$
$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle}$$

Для
$$\Delta f = f_{k+1} - f_1 = \frac{c}{2L}k$$
:

$$\gamma = \frac{\mu}{RT}c^2 = \frac{4L^2k^2\mu}{RT}$$

$$T_1 = 298, 3K$$
 $k_1 = 219.6, \gamma_1 = 1, 44$
 $\sigma_{k_1} = 3.069(\varepsilon = 1, 4\%)$
 $b_1 = 13.6$
 $\sigma_{b_1} = 7.5$

$$T_2 = 313K$$
 $k_2 = 226.6, \gamma_2 = 1,47(\varepsilon = 1,41\%)$
 $\sigma_{k_2} = 3.2$
 $b_2 = 14.2$
 $\sigma_{b_2} = 7.85$

$$T_3 = 318K$$
 $k_3 = 227.7, \gamma_3 = 1,46(\varepsilon = 1,3\%)$
 $\sigma_{k_3} = 3.02$
 $b_3 = 13.4$
 $\sigma_{b_3} = 7.4$

$$T_4 = 325K$$
 $k_4 = 230.4, \gamma_4 = 1, 45(\varepsilon = 1, 37\%)$ $\sigma_{k_4} = 3.16$ $b_4 = 13.9$ $\sigma_{b_4} = 7.74$

Для $\Delta L = L_{k+1} - L_1 = \frac{\lambda}{2} k$ у воздуха:

$$\gamma = \frac{\mu}{RT}c^2 = \frac{4f^2k^2\mu}{RT}, T = 298, 3K$$

$$f_1 = 5092$$

$$k_1 = 0,035, \gamma_1 = 1, 5(\varepsilon = 2, 3\%)$$

$$\sigma_{k_1} = 0,0008$$

$$b_1 = -0,05$$

$$\sigma_{b_1} = 4$$

$$f_2 = 4412$$

$$k_2 = 0,045, \gamma_2 = 1,75(\varepsilon = 1,5\%)$$

$$\sigma_{k_2} = 0,0007$$

$$b_2 = -0,003$$

$$\sigma_{b_2} = -0,0004$$

$$f_3 = 5092$$

$$k_3 = 0,033, \gamma_3 = 1,32(\varepsilon = 2,7\%)$$

$$\sigma_{k_3} = 0.0009$$

$$b_3 = -0.01$$

$$\sigma_{b_3} = 0.005$$

Для $\Delta L = L_{k+1} - L_1 = \frac{\lambda}{2} k$ у CO_2 :

$$\gamma = \frac{\mu}{RT}c^2 = \frac{4f^2k^2\mu}{RT}, T = 298, 3K$$

$$f_1 = 5092$$

$$k_1 = 0,033, \gamma_1 = 1,33$$

$$\sigma_{k_1} = 0,001(\varepsilon = 3\%)$$

$$b_1 = 0,01$$

$$\sigma_{b_1} = 0,004$$

$$f_1 = 4398$$

$$k_1 = 0,039, \gamma_2 = 1,39(\varepsilon = 1,5\%)$$

$$\sigma_{k_1} = 0,0006$$

$$b_1 = 0,003$$

$$\sigma_{b_1} = 0,0002$$

$$f_3 = 3506$$

$$k_3 = 0.044, \gamma_3 = 1, 2(\varepsilon = 1\%)$$

$$\sigma_{k_3} = 0.0004$$

$$b_3 = 0.0002$$

$$\sigma_{b_3} = 0.00005$$

4 Вывод

Сравнивая реузльтаты получаем среднее значение показателя адиабаты на 1 установке $\gamma = 1,44 \pm 0,0197(\varepsilon_{sr}=1,37\%)$, на второй $\gamma = 1.33 \pm 0,027(\varepsilon_{sr}=2\%)$. Сравнивая с табличным, получаем погрешность 1,4%, на второй 2%, что подтверждает точность метода измерения с помощью скорости звука в воздухе изменение от температуры и типа воздуха.

Рисунок 1: Длина от номера гармоники для воздуха

Рисунок 2: Длина от номера гармоники для CO_2

Рисунок 3: Частота от номера гармоники для воздуха при разных температурах