Programming Weak Synchronization Models

Christopher S. Meiklejohn Université catholique de Louvain, Belgium Instituto Superior Técnico, Portugal

Processes

- Replicas as monotonic streams
 Each replica of a CRDT produces a monotonic stream of states
- Monotonic processes
 Read from one or more input replica streams and produce a single output replica stream
- Inflationary reads
 Read operation ensures that we only read inflationary updates to replicas

Lattice Processing Monotonic Streams

Clients can operate with partial state... (I, {a, b}, {a}) (1, {a, b}, {a}) (1, {a, b}, {a}) (I, {a, b}, {a}) $(1, \{a\}, \{a\})$ (1, {b}, {}) $(1, \{a, b\}, \{\})$ (1, {a}, {}) (1, {a}, {}) {} {} C_2 R_A

53

... and synchronize with their local replica. (1, {a, b}, {a}) (1, {a, b}, {a}) (I, {a, b}, {a}) (I, {a, b}, {a}) (1, {a}, {a}) $(1, \{a, b\}, \{\})$ (1, {b}, {}) (I, {a}, {}) (1, {a}, {}) {} {} {} C_1 C_2 R_{A} 54

Lattice Processing Monotonic Processes

Every time replica changes...

....the process will compute a new result.

Omitted interleaving does not sacrifice correctness.

