

3. 已知下是椭圆 C: x + x = 1(a>b>0)的右焦点,点 P 在椭圆 C 上,

 $(x-\frac{c}{3})^2+y^2=\frac{\delta^2}{9}$ 相切于点 Q. (其中c 为椭圆的半焦距),且 $\overline{PQ}=2\overline{QF}$ 则椭圆 C 的离心

c. $\frac{\sqrt{2}}{2}$

D. $\frac{1}{2}$

4、已知橢圓 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的右焦点为F,过F点作x轴的垂线交稽圈于A,B 两

点,若 $OA \cdot OB = 0$,则椭圆的离心率等于(A)。

A. $\frac{-1+\sqrt{5}}{2}$ B. $\frac{-1+\sqrt{3}}{2}$ C. $\frac{1}{2}$

D. $\frac{-\sqrt{3}}{2}$

5. 过椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点F的直线过C的上端点B,且与椭圆相交于

 $\triangle A$,若 $\overline{BB} = 3\overline{BA}$,则C的离心率为(1)

B. $\frac{\sqrt{3}}{3}$ C. $\frac{\sqrt{3}}{2}$

一切的 一个

GM =7 G11 HI THE

72

6. 设 F_1 , F_2 是椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的两个焦点.若在C 上存在一点P,使

りこく ひこまた Qこまで

 G_{n}^{n} : $\frac{1}{\sin dt}$ 7. 设F为椭圆C: $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ 的左焦点,P为C上第一象限的一点.若 $\angle FPO = \frac{\pi}{6}$,

$$|PF| = \sqrt{3} |OF|, \text{ plane Congress } \sqrt{3} - |$$

$$|SF| = \frac{|OF|}{\sin p} = \frac{|PF|}{\sin o} \qquad \text{Then } |F|$$

$$|F| = \sqrt{3} |OF|, \text{ plane Congress } \sqrt{3} - |F|$$

$$|SING| = \sqrt{3} |F|$$

$$|F| = \sqrt{3} |OF|, \text{ plane Congress } \sqrt{3} - |F|$$

$$|SING| = \sqrt{3} |F|$$

$$|F| = \sqrt{3} |OF|, \text{ plane Congress } \sqrt{3} - |F|$$

$$|SING| = \sqrt{3} |F|$$

$$|SING| = \sqrt{3} |F|$$

8. 如图, 在平面直角坐标系 xOy 中, F 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右焦点, 直线 $y = \frac{b}{a}$ 与椭圆交于 B,C两点,且 $\angle BFC = 90^\circ$,则该椭圆的离心率是 $\sqrt{16}$

BH=HF -きかままでするかと なることなると