

上海零零智能科技有限公司

N256 模块 硬件设计手册

版本: **V1.0**

上海零零智能科技有限公司

■ 概述

N256是一款基于MT2625平台的多功能无线模块,本文档通过介绍 N256 模块及其硬件接口规范,电气特性和机械规范产品等,用以指导用户对模块进行硬件设计,并在该模块基础上更方便快捷的进行各种终端无线产品的设计。

■ 阅读对象

本文档主要适用于以下工程师:

- ◇ 系统设计工程师
- ◇ 结构工程师
- ◆ 硬件工程师
- ◆ 软件工程师
- ◇ 测试工程

文档名称:	N256 模块_硬件设计手册 V1.0
版本: 1.0	
日期:	2017-11-28
状态:	发布

目 录

1.	产品定义	6
		6
		6
	1.1. 综述	6
	1.2. 主要特性	6
	1.3. 功能框图	7
2.	功能与应用	
	2.1. 引脚分布图	
	2.1.1. 引脚描述	
	2.2. 电源供电	
	2.2.1. 电源特性	
	2.2.2. 减少电压跌落	
	2.2.2.1. 减少 VBAT 电压跌落	
	2.2.3. 供电参考电路	
	2.2.3.1. NB-IOT 部分供电参考电路	
	2.2.3.2. 电源电压检测	
	2.3. 工作模式	
	2.3.1. NB-IOT 工作模式	
	2.3.1.1. 最少功能模式	
	2.3.1.2. 睡眠模式 (慢时钟模式)	
	2.3.1.3. 睡眠唤醒	
	2.4. 开机	
	2.5. 关机	
	2.5.1. PWRKEY 引脚关机	
	2.5.2. AT 命令关机	
	2.5.2.1. 低压自动关机	
	2.6.1. 主串口	
	2.6.1.1 主申口	
	2.6.1.2. 串口参考设计	
	2.6.1.3. 软件升级	
	2.6.2. 调试串口	
	2.6.3. 串口应用	
	2.7. SIM 卡接口	
	2.8. ADC 模数转换	
	2.9. RI 信号接口	
	2.10. 网络状态指示	
3	天线接口	
٥.		
	3.1. NB-IOT 天线接口	

	3.1.1. 参考设计	27
	3.1.2. RF 输出功率	28
	3.1.3. RF 接收灵敏度	
	3.1.4. 工作频率	
4	电气性能,可靠性	
	4.1. 绝对最大值	
	4.2. 工作温度	
	4.3. 电源额定值	
	4.4 耗流	31
	4.5. 静电防护	32
5.	机械尺寸	33
		33
	5.1. 模块机械尺寸	
	5.2. 生产焊接	_

1. 产品定义

1.1. 综述

N256 模块可支持 3GPP R13/R14 NB-IOT 标准,工作的频段为: B1 、B3 、B5和B8四个频段。模块的尺寸只有 17.6*15.7*2.3 mm ,几乎可以满足所有用户应用中的对空间尺寸的要求。满足M2M的需求,包括可穿戴服务、安全系统、无线POS机、工业级PDA、智能电表、无线遥控等。

模块的物理接口为42引脚的SMT焊盘,提供了模块的所有硬件接口。

两路串口(一路三线串口与一路全功能串口),一路 UART下载接口,便于用户调试、下载软件

1.2. 主要特性

表 1: 主要特性

特色	说明			
供电	VBAT供电电压范围: 2.1V~3.63V			
	典型供电电压: 3.3V			
省电	SLEEP模式下耗流:			
频段	▶ 四频: B1, B3, B5, B8			
	▶ 模块可自动搜寻频率			
	▶ 频段选择可以通过AT命令来设置			
发射功率	➤ 23dBm: Band5和Band8			
	➤ 23dBm: Band1和Band3			
NB-IOT数据特性	➤ NB-IOT数据下行传输: 最大250kbit/s			
	➤ NB-IOT数据上行传输: 最大250kbit/s			
温度范围	▶ 正常工作温度: -35°C ~ +75°C¹)			
	▶ 扩展温度范围: -40°C ~ +85°C			
SIM卡接口	▶ 支持SIM卡: 1.8V,3.0V			
	➤ 支持SIM卡: 单卡			
串口	串口:			
	▶ 默认支持一路标准的全功能串口 可以通过串口发送 AT 命令和数据			
	▶ 支持 RTS/CTS 硬件流控,并且可以通过软件打开或者关闭流控功能			
	支持符合 GSM 07.10 协议的串口复用功能			
	> 支持从 1200bps到115200bps 的波特率			
	UARTO 接口:			
	▶ 用于调试与软件升级			
	7 7 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

	尺寸: 17.6*15.7*2.3 mm
物理特性	重量: 1.3g
固件升级	通过串口升级
天线接口特征阻抗	50欧姆

备注:

1. 1) 在工作温度范围内,模块符合 **3GPP** 标准。

1.3. 功能框图

下图为N256主要功能框图:

图 1: 功能框图

2. 功能与应用

2.1. 引脚分布图

图 1: 引脚分布图

2.1.1. 引脚描述

表 2: I/O 参数定义

类型	描述
Ю	输入/输出
DI	数字输入
DO	数字输出
PI	电源输入
РО	电源输出
Al	模拟输入
AO	模拟输出

表 6: 引脚描述

电源					
引脚名	引脚号	I/O	描述	DC 特性	备注
VBAT	34、35	PI	模块供电电源: VBAT=2.1V~3.63V	VImax=3.63V VImin=2.1V VInorm=3.3V	在Burst模式 下电源输出至 少1.5A负载电 流
VDD_ EXT	40	PO	输出 2.8V 用于外部供电		1. 如果不用则悬空。 2. 如果用这个管脚给外部供电,推荐并联一个 2.2~4.7uF的旁路电容。
GND	8、13、19、 21、27、30、 31、33、		地		

	36、37					
开关机	开关机					
引脚名	引脚号	I/O	描述	DC 特性	备注	
PWRKEY	39	DI	拉低 PWRKEY 一段规定时间来开机或者关机	V _{IL} max=0.1×VBAT V _{IH} min=0.6×VBAT V _{IH} max=3.1V		
模块状态指示						
引脚名	引脚序号	输入/ 输出	描述	DC 特性		
NETLIGHT	41	DO	网络状态指示	V_{OH} min=0.85×VDD_ V_{OL} max= 0.15×VDD_EXT	EXT	
STATUS	42	DO	运行状态指示灯	V_{OH} min=0.85×VDD_ V_{OL} max= 0.15×VDD_EXT	EXT	
串口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
UART1_TXD	1	DO	模块接收数据	V _{IL} min=0V	如果通讯只用	
UART1_RXD	2	DI	模块发送数据	V _{IL} max= 0.25×VDD_EXT	到 TXD, RXD 和 GND, 建议	
UART1_DTR	6	DI	DTE 准备就绪	V _{IH} min= 0.75×VDD_EXT	其他脚悬空。	
UART1_RI	7	DO	模块输出振铃提示	V _{IH} max= VDD_EXT+0.2		
UART1_DCD	5	DO	模块输出载波检测	V _{OH} min=		
UART1_CTS	4	DO	模块清除发送	0.85×VDD_EXT V _{OL} max=		
UART1_RTS	3	DI	DTE 请求发送数据	0.15×VDD_EXT		
调试串口		l		•		
引脚名	引脚号	I/O	描述	DC 特性	备注	
UART2_TXD	22	DO	发送数据	同上	不用则悬空。	
UART2_RXD	23	DI	接收数据		不用则悬空。	
辅助串口	1	1	,	•	•	
引脚名	引脚号	I/O	描述	DC 特性	备注	
UART0_TXD	25	DI				

UART0_RXD	26	DI				
SIM 卡接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
VSIM	18	PO	SIM 卡供电电压	模块自动选择 1.8V 或 3.0V		
SIM_SIO	15	DO	SIM 卡时钟线	V_{OL} max= $0.15 \times SIM_{VDD}$ V_{OH} min= $0.85 \times SIM_{VDD}$	SIM 卡接口建 议使用 TVS 管 ESD 保护, SIM 卡座到模	
SIM_SCLK	16	IO	SIM 卡数据线	$V_{\rm IL} {\rm max} = \\ 0.25 \times {\rm SIM_VDD} \\ V_{\rm IH} {\rm min} = \\ 0.75 \times {\rm SIM_VDD} \\ V_{\rm OL} {\rm max} = \\ 0.15 \times {\rm SIM_VDD} \\ V_{\rm OH} {\rm min} = \\ 0.85 \times {\rm SIM_VDD}$	块最长布线不 要 超 过 200mm。	
SIM_ SRST	17	DO	SIM 卡复位线	V_{OL} max= $0.15 \times SIM_{VDD}$ V_{OH} min= $0.85 \times SIM_{VDD}$		
SIM_DET	14	I	SIM卡检测线	V_{IL} min =0V V_{IL} max = $0.25 \times VDD_EXT$ V_{IH} min = $0.75 \times VDD_EXT$ VIHmax = $VDD_EXT+0.2$		
模数转换接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
ADC	38	Al	模数转换器接口	电压输入范围: 0-1.4V	不用则悬空。	
天线接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
ANT	32	Ю	NB-IOT 天线接口	50 欧姆特性阻抗		
其它接口	其它接口					

引脚名	引脚号	I/O	描述	DC 特性	备注
RF_SYNC	29	0	射频发射同步信号		
RTC_EINT	9	I/O	睡眠模式下中断唤醒脚		
RTC_GPIO0	RTC_GPIO0 10 I/O E		睡眠模式使用 GPI0		
GPIO1	11	I/O	GPI01		
GPIO2	12	I/O	GPI02		

2.2. 电源供电

2.2.1. 电源特性

在 N256 模块应用设计中,NB-IOT 的电源设计是很重要的一部分。在最大发射功率等级下模块的峰值电流会达到 1.5A,这会引起 VBAT 端电压的跌落。为确保模块能够稳定正常工作,建议模块 VBAT 端的最大跌落电压不应超过 400mV。

2.2.2. 减少电压跌落

2.2.2.1. 减少 VBAT 电压跌落

VBAT 电压输入范围为 2.1V~3.63V。为保证 VBAT 电压不会跌落到 2.3V 以下,在靠近模块 VBAT 输入端,建议并联一个低 ESR(ESR=0.7Ω)的 100uF 的钽电容,以及 100nF、33pF (0603 封装)、10pF (0603 封装)滤波电容,VBAT 输入端参考电路如下图所示。并且建议 VBAT 的 PCB 走线尽量短且足够宽,减小 VBAT 走线的等效阻抗,确保在最大发射功率时大电流下不会产生太大的电压跌落。建议 VBAT 走线宽度不少于 2mm,并且走线越长,线宽越宽。

图 5: VBAT 输入参考电路

2.2.3. 供电参考电路

2.2.3.1. NB-IOT 部分供电参考电路

电源设计对模块的供电至关重要,必须选择能够提供至少 1.5A 电流能力的电源。若输入电压跟模块的供电电压的压差不是很大,建议选择 LDO 作为供电电源。若输入输出之间存在比较大的压差,则使用开关电源转换器。

下图是+5V 供电的参考设计,它的输出电压是 3.3V,负载电流峰值到 1.5A。为确保输出电源的稳定,建议在输出端预留一个稳压管,并且靠近模块 VBAT 管脚摆放。建议选择反向击穿电压为 5.1V,耗散功率为 1W 以上的稳压管。

图 6: 供电输入参考设计

备注:

建议通过控制 LDO 的使能脚控制模块的电源,当模块工作异常时可以通过控制使能脚重启模块;也可以通过 P 沟道的 MOSFET 开关来控制模块电源供应。

N256 模块支持直接 Li-MnO2/Alkaline battery 供电(VBAT 电压范围 2.1V-3.63V). 模块内置 boost 电路把 VBAT 电压升压到 3.3V 给内部供电,负载电流峰值到 1.5A。

图 7: Li-MnO2 电池 VBAT 输入参考电路

2.2.3.2. 电源电压检测

2.3. 工作模式

2.3.1. NB-IOT 工作模式

表 8: NB-IOT 工作模式一览表

模式	功能			
正常工作	NB-IOT 使能睡眠模式之后,如果DTR管脚置高并且没有外部中断时			
	SLEEP	块则会自动进入睡眠模,这种情况下,模块耗流会减小到很低的		
		水平。睡眠模式下,模块仍然能够接收来电和短消息。		
	NB-IOT IDLE 软件正常运行。模块注册上NB-IOT网络,能够接收			
	NB-IOT PCM	NB-IOT连接正常工作。此模式下,模块功耗取决于功率等级的配		
		置,动态DTX控制以及射频工作频率。		
关机模式	在保持 VBAT 上电	目情况下,使用 PWRKEY 引脚来实现正常关机。关机模式下,串口无		
	法访问, 软件不运行。			
最少功能模式(保持	不掉电情况下,此模式下,射频不工作,或 SIM 卡不工作,或是两者都不工作,但			
供电电压)	是串口仍然可以	访问。此模式下功耗非常低。		

2.3.1.1. 最少功能模式

最少功能模式可以将模块功能减少到最小程度,这样就可以在慢时钟模式下最小化模块功耗。<fun>参数可以选择 0, 1, 4。

- ▶ 0: 最少功能 (关闭RF和SIM卡);
- ▶ 1: 全功能 (默认)
- ▶ 4: 关闭RF发送和接收功能。

如果使用 AT+CFUN=0 将模块设置为最少功能模式,射频部分和 SIM 卡部分的功能将会关闭。而串口依然有效,但是与射频部分以及 SIM 卡部分相关的 AT 命令则不可用。

如果使用 AT+CFUN=4 设置模块,RF 部分功能将会关闭,而串口依然有效。所有与 RF 部分相关的 AT 命令不可用。

模块通过 AT+CFUN=0 或者 AT+CFUN=4 设置后,可以通过 AT+CFUN=1 命令设置返回到全功能状态。

2.3.1.2. 睡眠模式 (慢时钟模式)

使用 DTR 管脚允许模块进入或退出睡眠模式。当 DTR 管脚置高,且没有中断产生(如: GPIO 中断或者数据传递发生在串口),模块会自动进入到睡眠模式。睡眠模式下,模块仍然可以接收下行数据,但是串口不可访问。

2.3.1.3. 睡眠唤醒

当模块处于休眠模式,以下方法可以唤醒模块

- ▶ 将DTR管脚拉低20ms。.
- ▶ 数据呼叫:

备注:

在模块和 DTE 设备通讯时,为保证数据传送的可靠性,DTR 管脚必须始终为低电平。

2.4. 开机

模块正常开机方式是通过将 PWRKEY 引脚拉低来开机。推荐使用开集驱动电路来控制 PWRKEY 引脚。下图为参考电路:

图 10: 开集驱动开机参考电路

备注:

1. 当 AT 命令可以正常响应后,表明模块已经开机成功,此时可以释放 PWRKEY 引脚,反之,则模块开机失败。

另一种控制 PWRKEY 引脚的方法是直接使用一个按钮开关。按钮附近需放置一个 TVS 用以 ESD 保护。在按下键时,手指可能会产生静电,为达到最好的静电防护性能,TVS 组件必须放置在按钮附近。参考电路下图所示:

图 11: 按键开机参考电路

图 12: 开机时序图

备注:

在拉低管脚 PWRKEY 之前,保证 VBAT 电压稳定。建议 VBAT 上电到管脚 PWRKEY 拉低之间的时间 T1 为 100ms 左右。

2.5. 关机

模块可以通过以下方式关机:

- ➤ 正常关机:控制 PWRKEY 引脚关机
- ▶ 正常关机:使用 AT+LPOWD 命令关机。
- ▶ 低压自动关机:模块检测到 VBAT 低压时, 会自动关机。

2.5.1. PWRKEY 引脚关机

拉低 PWRKEY 一段时间可以关闭模块。

2.5.2. AT 命令关机

AT+LPOWD=1 命令可以被用来执行模块关机。该命令可使模块注销网络,在关闭电源之前让软件保存重要数据。

关机后模块反馈如下信息:

NORMAL POWER DOWN

返回信息后, AT命令不能执行, 然后模块进入关机状态。

2.5.2.1. 低压自动关机

模块会持续自动监测 VBAT 端的电压,如果电压低于等于 2.3V,会有以下警告信息返回:

UNDER_VOLTAGE WARNING

模块可工作电压范围是 2.1V~3.63V。如果模块电压低于 2.3V,模块都会自动关机。

如果电压低于 2.3V, 会反馈如下关机信息:

UNDER VOLTAGE POWER DOWN

返回信息后, AT 命令不能执行,模块注销网络,然后关机。

备注:

此信息在自适应波特率时不会出现, DTE 和 DCE 设备在启动时不会正确同步。因此建议模块设置成固定波特率。

2.6. 串口

模块提供了四个通用异步收发器: 主串口,调试串口,辅助串口。模块称作 DCE 设备(Data Communication Equipment),按照传统的 DCE-DTE (Data Terminal Equipment)方式连接。模块支持固定波特率和自适应波特率。自适应波特率支持范围 4800bps 到 115200bps。

主串口:

- ▶ UART1_TXD: 发送数据到 DTE 设备的 RXD 端。
- ▶ UART1_RXD: 从 DTE 设备 TXD 端接收数据。
- ▶ UART1_RTS: DTE 请求 DCE 发送数据。
- ▶ UART1_CTS: 清除发送。
- ▶ UART1_DTR: DTE 准备好并通知 DCE(此管脚可以用来唤醒模块)。
- ▶ UART1_RI: 振铃(DCE 有来电或者 URC 或者短信会发送信号通知 DTE)。
- ➤ UART1 DCD: 载波检测。

调试串口:

- ▶ UART2_TXD:发送数据到 DTE 的串口。
- ▶ UAER2_RXD:从 DTE 的串口接收数据。

辅助串口:

串口逻辑电平如下表所示:

表 11: 串口逻辑电平

参数	最小值	最大值	单位
V _{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

表 12: 串口管脚定义

接口	名称	管脚	作用
主串口	UART1_TXD	1	模块串口发送数据
	UART1_RXD	2	模块串口接收数据

	UART1_DTR	6	DTE准备就绪
	UART1_RI	7	模块振铃指示
	UART1_DCD	5	模块载波检测
	UART1_CTS	4	模块清除发送
	UART1_RTS	3	模块请求发送
调试串口	UART2_RXD	23	模块调试串口接收数据
	UART2_TXD	22	模块调试串口发送数据

2.6.1. 主串口

2.6.1.1. 主串口特点

- ▶ 包括数据线TXD和RXD,硬件流控控制线RTS和CTS,其它控制线DTR,DCD和RI。
- ▶ 用以AT命令传送,GPRS数传等。串口支持软件多路复用功能。
- ▶ 支持波特率如下: 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200bps.

设置固定波特率或者自适应波特率同步之后,发送字符串命令AT,当串口准备好以后模块会回复OK。

2.6.1.2. 串口参考设计

主串口的连接方式较为灵活,如下是三种常用的连接方式。

全功能的串口按照如下的连接方式,此方式主要应用在调制解调模式。

图 15: 全功能串口连接方式示意图

三线制的串口请参考如下的连接方式:

图 16: 串口三线制连接方式示意图

带流控的串口连接请参考如下电路连接,此连接方式可提高大数据量传输的可靠性,防止数据丢失。

图 17: 带流控的串口连接方式示意图

2.6.1.3. 软件升级

软件升级可以通过UART0接口来升级

2.6.2. 调试串口

- ▶ 数据线: UART2_TXD 和 UART2_RXD。
- ▶ 串口会自动向外面输出 log 信息。
- ▶ 调试串口仅用于软件调试,波特率必须配置为460800bps。

图 19: 软件调试连线图

2.6.3. 串口应用

3.3V电平情况下的电平匹配电路参考设计如下。如果MCU/ARM 是3V的电平,则根据分压原则,将电阻5K6要改为10K。.

图 21: 3.3V 电平转换电路

备注:

强烈建议当主机系统电平是 3V 或者 3.3V 时,在模块和主机的串口连接上加入分压电路以使电平匹配。对于更高的电压系统之间的电平匹配,需要在模块和主机之间增加电平转换芯片。

当模块和 PC 机进行通信时,由于模块的串口是 2.8V CMOS 电平,需要在他们之间加 RS232 电平转换电路。下图是标准 RS-232 接口和模块之间的连接示意图。客户需要确保电平转换芯片连接到模块的 IO 电压是 2.8V。

图 22: RS-232 接口匹配示意图

2.7. SIM 卡接口

模块支持单卡单待功能, SIM 卡通过模块内部的电源供电, 支持 1.8V 和 3.0V。

表 3: SIM 卡接口引脚定义

引脚名	引脚序号	描述	其它功能
SIM_VDD	18	SIM1 卡供电电源。自动侦测 SIM 卡工作电压。精度 3.0V±5% 和 1.8V±5%。最大供电电流 10mA。	
SIM_CLK	16	SIM1 时钟脚	
SIM_DATA	15	SIM1 数据 I/O 脚.	
SIM_RST	17	SIM1 RESET 脚	
SIM_DET	14	SIM1 检测脚	
SIM_GND	16	SIM 接地脚	

下图是使用8-pin的SIM卡座接口参考电路:

图 26: 8-pin SIM 卡座参考电路图

如果不用SIM卡检测功能,保持SIM_DET引脚悬空。下图是一个6-pin SIM1卡座参考电路图:

图 2: 6-pin SIM1 卡座参考电路图

在SIM卡接口的电路设计中,为了确保SIM卡的良好的性能和不被损坏,在电路设计中建议遵循以下设计原则::

- ▶ SIM卡座靠近模块摆放,尽量保证SIM卡信号线布线不超过200mm。
- ➤ SIM卡信号线布线远离RF线和VBAT电源线。
- ➤ SIM卡座的地与模块的SIM_GND布线要短而粗。SIM_VDD与SIM_GND布线保证不小于0.5mm,且在SIM_VDD与GND之间的旁路电容不超过1uF,并且靠近SIM卡座摆放。
- ▶ 为了防止SIM_CLK信号与SIM_DATA信号相互串扰,两者布线不能太靠近,并且在两条走线之间

增加地屏蔽。此外, SIM RST信号也需要地保护。

- ➤ 为了确保良好的ESD性能,建议SIM卡的引脚增加TVS管。选择的TVS管寄生电容不大于50pF, ESD保护器件尽量靠近SIM卡卡座摆放,SIM卡信号走线应先从SIM卡卡座连到ESD保护器件再从 ESD保护器件连到模块。在模块和SIM卡之间需要串联22欧姆的电阻用以抑制杂散EMI,增强ESD 防护。SIM卡的外围器件应尽量靠近SIM卡座摆放。
- ▶ 在 SIM_DATA, SIM_VDD, SIM_CLK 和 SIM_RST 线上并联 33pF 电容用于滤除射频干扰。

2.8. ADC 模数转换

N256 模块提供一路外部 ADC 接口,使用 AT 命令 AT+LADC 来读取 ADC0 通道上模拟输入的电压值。为保证采集数据的准确性,防止电源和其他射频信号的干扰,建议 ADC 上下左右包地。建议客户优先选择 ADC0 通道。

表 18: ADC 引脚定义

引脚名	引脚序号	描述
ADC	38	模数转换器接口

表 19: ADC 特性

项目	最小	典型	最大	单位
电压范围	0		2.8	V
ADC 分辨率		10		bits
ADC 精度		2.7		mV

2.9. RI 信号接口

表 4: RI 信号状态

状态	RI 响应
Standby	高电平
URC	特定的 URC 信息上报时,会触发 RI 拉低 120ms。

如果模块用作主叫方,RI会保持高电平,收到URC信息除外。而模块用作被叫方时,RI的时序如下所示:

图 29: 语音呼叫时模块用作被叫方 RI 时序

图 30: 模块用作主叫时 RI 时序

图 31: 收到 URC 信息或者短信时 RI 时序

2.10. 网络状态指示

NETLIGHT 管脚信号可以用来指示网络的状态,该管脚工作状态如下表所示。指示灯的连接参考电路如下图所示。.

表 21: NETLIGHT 工作状态

NETLIGHT 高低电平状态	模块工作状态
持续低电平 (灯灭)	模块没有运行
高电平 64ms (灯亮) /低电 平 800ms (灯灭)	模块未注册到网络
高电平 64ms (灯亮) /低电 平 2000ms (灯灭)	模块注册到网络

高电平 64ms (灯亮)/低电	NB-IOT 数据传输通讯
平 600ms (灯灭)	

参考电路如下所示:

图 32: NETLIGHT 参考电路

3. 天线接口

N256 包含一个天线接口, NB-IOT 天线接口。管脚 32 是 NB-IOT 天线输入端, NB-IOT 具有 50 欧姆特性阻抗的接口。

3.1. NB-IOT 天线接口

表 22: NB-IOT 天线管脚定义

名称	管脚	作用
GND	31	地
NB-IOT_ANT	32	NB-IOT 天线接口
GND	33	地

3.1.1. 参考设计

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留匹配电路。天线连接参考电路如下图所示。

图 33 : 射频参考电路

N256提供了一个RF焊盘接口供连接外部天线。从该焊盘到天线连接器间射频走线应是共面波导线或微带线,其特性阻抗要控制在50欧姆左右,为了获得更好的射频性能,N256 RF接口两侧各有两个接地焊盘。此外,建议预留π匹配电路可调试RF性能。

为了最小化 RF 走线或者 RF 线缆损耗,必须谨慎设计。建议线损和天线要满足下述两个表格的要求。

表 23: 线损要求

频段	要求
Band5	线损<1dB
Band8	
Band1	线损<1.5dB
Band3	

表 24: 天线要求

项目	要求
频段	取决于网络运营商提供的频带
驻波比	≤ 2
增益 (dBi)	1
最大输入功率 (W)	23dBm
输入阻抗 (Ω)	50
极化类型	垂直极化

3.1.2. RF 输出功率

表 25: RF 传导功率

频率	最大	最小
Band5	23dBm	
Band8	23dBm	
Band1	23dBm	
Band3	23dBm	

3.1.3. RF 接收灵敏度

表 26: RF 传导灵敏度

频率	接收灵敏度

Band5	<-131dBm
Band8	<-131dBm
Band1	<-131dBm
Band3	<-131dBm

3.1.4. 工作频率

表 27: 模块工作频率

频率	接收频率	发射频率	ARFCH
Band5	869~894MHz	824~849MHz	
Band8	925~960MHz	880~915MHz	
Band1	1920~1980MHz	2110~2170MHz	
Band3	1710~1785MHz	1805~1880MHz	

4. 电气性能,可靠性

4.1. 绝对最大值

下表所示是模块数字、模拟管脚的电源供电电压电流最大耐受值。

表 30: 绝对最大值

参数	最小	最大	单位
VBAT	-0.3	+3.63	V
电源供电峰值电流	0	1.5	A
电源供电平均电流(TDMA 一帧时间)	0	0.7	A
数字管脚处电压	-0.3	3.08	V
模拟管脚处电压	-0.3	3.08	V
关机模式下数字/模拟管脚处电压	-0.25	0.25	V

4.2. 工作温度

下表所示为模块工作温度。

表 31: 工作温度

参数	最小	典型	最大	单位
正常工作温度 1)	-35	+25	+80	$^{\circ}$
扩展温度范围 2)	-40		+85	$^{\circ}$

备注:

- 1. 1) 当模块工作在此温度范围时,工作性能可能会偏离 NB-IOT 规范,例如频率误差或者相位误差会增大,但是不会掉线。
- 2. ²⁾ 在拓展温度范围内,模块仍能数据传输等; 当温度正常时功能可恢复,且对无线电频谱和无线网络都没有影响,只有一个或几个参数如发射功率可能会降低或超过规定值。温度返回到正常工作范围,模块仍满足 3GPP 标准。

4.3. 电源额定值

表 32: NB-IOT 部分电源额定值

参数	描述	条件	最小	典型	最大	单位
VBAT	供电电压	电压必须在该范围之内, 包括电压跌落,纹波和尖峰时	2.1	3.3	3.63	V
	突发发射时的 电压跌落	NB-IOT 最大发射功率等级时			400	mV
I _{VBAT}	平均供电 电流	关机模式 睡眠模式				uA mA
		最少功能模式 AT+CFUN=0 空闲模式 睡眠模式				mA mA
		AT+CFUN=4 空闲模式 睡眠模式				mA mA
		数传模式				mA mA
	峰值电流(每个 发射时隙下)	最大功率等级时				А

备注:

- 1. 1) 功率等级 5
- 2. 2) 功率等级 0.

4.4. 耗流

表 34: NB-IOT 部分耗流

条件	耗流
数据传输模式,	
B1	
B3	
B5	
B8	

4.5. 静电防护

在模块应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,所以ESD保护必须要重视,不管是在研发、生产组装、测试等过程,尤其在产品设计中,都应采取防ESD保护措施。如电路设计在接口处或易受ESD点增加ESD保护,生产中佩戴防静电手套等。

表 36: ESD 性能参数(温度: 25℃, 湿度: 45%)

测试点	接触放电	空气放电
VBAT, GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV
Others	±0.5KV	±1KV

5. 机械尺寸

5.1. 模块机械尺寸

图 40: 推荐封装(单位: mm)

备注:

- 1. 保证 PCB 板上模块和其他元器件之间距离至少 3mm。
- 2. 上图两个半径 1.75mm 的圆形为对应模块的 RF 测试点,需要做 KEEPOUT 处理(即在主板上对应位置禁止铺铜和走线)。。

5.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适,为保证模块印膏质量,N256 模块焊盘部分对应的钢网厚度应为 0.2mm,。

建议最大回流温度从235℃至245 C(SnAg3.0Cu0.5合金)。绝对最大回流温度为260℃.为避免模块 反复受热损伤,建议客户PCB板第一面完成回流焊后再贴移远模块。推荐的炉温曲线图如下图所示:

图 41: 炉温曲线