6.2 Vodikov atom i 3DST Vodikov atom 3D SJ i kvanski brogievi $-\frac{\pi^2}{2\mu}\nabla^2\psi - \frac{\epsilon^2}{4\pi\epsilon_0}\psi = E \psi$ $\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} (r, \psi) + \frac{\partial}{r^2 \sin \psi} \frac{\partial}{\partial \psi} (\sin \psi \frac{\partial \psi}{\partial \psi})$ $\frac{1}{r^2 \sin^2 \vartheta} \cdot \frac{\partial^2 \Psi}{\partial \varphi^2}$ $\frac{\partial}{\partial \varphi} \Psi(r, \vartheta, \varphi) = R(r) \cdot \frac{\partial}{\partial \varphi} (\vartheta) \cdot \frac{\partial}{\partial \varphi} (\varphi)$ Separacija vanjabli vodi m dif jed. Za R, O, O Y(r, v, q)=R(1).0(2).0(a) $\frac{d^2}{dk^2}$ $\Phi(\alpha) = -m^2\Phi(\alpha)$ $\rightarrow m$ je projekcija momenata kulme kol. gi -> 2 log perodičnosti problema. -> doznogai sam $\frac{d^2}{dr^2} = O(r^2) + \frac{1}{4r^2} \cdot \frac{d}{dr^2} \cdot O(r^2) + \left[1(e^2) - \frac{m^2}{sin^2r^2}\right] = 0$ · dozrafan (-> l =/m1) lovoj količne gibanja (orthiblini kv. bi) · 17: ove d. j. su oblika 0/22) m = Ae . Fe (cos 0) $\frac{d}{dr^{2}}(rRIr) + \frac{2\mu}{\hbar^{2}} \left[E + \frac{e^{2}}{4\pi \epsilon_{0} \cdot r} - \frac{\hbar^{2}(l+1)}{2\mu r^{2}} \right] rR(r) = 0$ Regardreen polimon

	Sad	ba	χu	Ь	N	eki	SE)į'M	o vi	(F	au	lija	rì r	mγ	na',	יומ	ھا	je.			
)ેવ	00	Lu	o la	u'ev	¼		U	, v								
					-	J				4)											
	0	doa	lat	d	, U	Sav	no	-	4	2.	_გ	slo	บฝ	a								
						۵۷.						- 00	7									

Vodikov atom – separacija varijabli

Separacija varijabli vodi na diferencijalne jednadžbe za R, Θ , Φ :

$$\psi(r, \theta, \phi) = R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)$$

$$\frac{d^2}{d\phi^2}\Phi(\phi) = -m^2\Phi(\phi)$$

 $\frac{d^2}{d\,\phi^2}\Phi(\phi) = -m^2\Phi(\phi)$ m je projekcija momenta kutne količine gibanja, (magnetski kvantni broj) zbog periodičnosti problema, dozvoljeni su samo cielobrojni m

$$\frac{d^{2}}{d\theta^{2}}\Theta(\theta) + \frac{1}{\operatorname{tg}\theta} \frac{d}{d\theta}\Theta(\theta) + \left[l(l+1) - \frac{m^{2}}{\sin^{2}\theta}\right]\Theta(\theta) = 0$$

l je kvantni broj kutne količine gibanja (orbitalni kvantni broj) dozvoljene vrijednosti l su $l \ge |m|$ rješenja ove d.j. su oblika $\Theta(\theta)_{m}^{l} = A_{l}^{m} \cdot P_{l}^{m}(\cos \theta)$

gdje su *P* ^m, pridruženi Legendreovi polinomi

Vodikov atom – separacija varijabli

Separacija varijabli vodi na diferencijalne jednadžbe za R, Θ , Φ :

$$\psi(r, \theta, \phi) = R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)$$

$$\frac{d^{2}}{dr^{2}}(rR(r)) + \frac{2\mu}{\hbar^{2}} \left[E + \frac{e^{2}}{4\pi\epsilon_{0}r} - \frac{\hbar^{2}l(l+1)}{2\mu r^{2}} \right] rR(r) = 0$$

n je glavni kvantni broj (radijalni dio VF ovisi o n i l) dozvoljene vrijednosti n: cjelobrojan i >0 rješenja ove d.j. su oblika

$$R(r)_{n}^{l} = A_{r} r^{l} \cdot e^{-\frac{r}{na_{0}}} L_{n-l-1}^{2l+1} \left(2 \frac{r}{na_{0}} \right)$$

gdje su L^{2l+1}_{n-l-1} pridruženi Laguerreovi polinomi

Kvantni brojevi

Rješenje SJ za H-atom dano je

a) separacijom varijabli za vrijeme i prostor – dobiva se vremenski neovisna SJ

$$\Psi(\vec{r},t)=X(t)\phi(x)\Rightarrow \hat{H}|\Psi(\vec{r},t)>=E|\Psi(\vec{r},t)>$$

b) separacijom varijabli za sferni problem – ovisnosti o r, θ i φ

$$\phi(x) = R_{n,l}(r) Y_l^{m_l}(\theta, \phi)$$

Ovisnost o tri kvantna broja: n, l, m,

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hydwf.html

prikaz orbitala – rješenja prostornog dijela WF: http://www.falstad.com/gmatom/

kasnije – postojanje spina elektrona: $\check{\mathbf{c}}\mathbf{e}\mathbf{t}\mathbf{v}\mathbf{r}\mathbf{t}\mathbf{i}$ kvantni broj, m_s

posljedica je: Paulijev princip

Tek tada je moguć smislen opis svojstava atoma – periodnog sustava.

Spin i Paulijev princip – atomske orbitale

Konačno, postoji i spin – vlastiti magnetski moment elektrona (vlastita količina gibanja)

spinski kvantni broj: s - vrijednosti (za elektron) +½ i -½

Paulijev princip (isključenja):

Elektron u kvantno-mehaničkom sustavu ne smije imati sva četiri kvantna broja ista.

Kvantni brojevi i periodni sustav

n=1,... – glavni kvantni broj, energija, određuje broj ljuske l=0,1,...,n-1 – orbitalni kvantni broj, određuje izgled orbitale (s,p,d,f,...)

 m_i =-I,-I+1,...,I-1, I – magnetski kvantni broj

s cjelobrojan – bozoni (broj ovisi o energiji) polucjelobrojan – fermioni (broj u reakcijama sačuvan) (http://www.particleadventure.org/fermibos.html)

za fermione vrijedi **Paulijev princip isključenja**: ne mogu postojati dvije čestice sa svim kvantnim brojevima istim!

elektron je fermion (s=1/2) pa u s-orbitalu (l=0) stanu 2e, u p-orbitalu (3 vrijednosti za m_l) 6e , ...

broj elektrona u zadnjoj orbitali ključan je za reaktivnost atoma (slično se "ponašaju" atomi elemenata slične konfiguracije zadnje ljuske)

https://www.dummies.com/education/science/chemistry/atomic-structure-the-quantum-mechanical-model/