BLE-SER 蓝牙转串口模块

手册 版本: 10 http://wch.cn

1、概述

BLE-SER 蓝牙转串口模块是基于 CH9140 芯片开发,支持蓝牙 BLE4.2,串口波特率最高 1Mbps,模块支持蓝牙主从一体模式或从机模式,主从模式可以自动连接或绑定。

提供电脑端虚拟串口驱动可使蓝牙接口直接使用串口调试工具、兼容串口应用程序,无需二次开发即可与串口接口通讯,轻松让串口实现免插线和不受线缆距离限制。

BLE-SER 外形:

CH9140 一些应用方案框图:

图 1 蓝牙主机通过 CH9140 蓝牙与串口设备进行串口通讯框图

图 2 两端 MCU 或串口设备使用 CH9140 蓝牙主从连接进行通讯框图

2、特点

- ●提供电脑端蓝牙虚拟串口驱动。
- ●兼容已有串口软件和工具, 无需二次开发。
- ●支持 Windows/Linux/Android/iOS 等系统蓝牙主机连接。
- ●支持蓝牙主从一体模式和从机模式。

- ●蓝牙主从模式可以自动连接或绑定。
- ●支持硬件配置参数。
- ●传输距离 100 米。
- ●发射功率 8 档可调。
- ●掉电睡眠电流 0.3uA。
- ●支持 3.3V 和 2.5V 工作电压。
- ●异步串口默认波特率 115200bps。
- ●串口支持 MODEM 联络信号 RTS、CTS。
- ●串口支持奇、偶、无校验、空白 0、标志 1 等校验方式。
- ●支持获取芯片供电电压参数。

3、BLE-SER-A 封装尺寸及引脚定义

引脚号	引脚名称	类型	引脚说明	
1	BLE_MODE	I	蓝牙模式设置,内置上拉电阻	
			低电平:主从一体模式,高电平:从机模式	
2	VCC	Р	模块电源输入	
3	GND	Р	电源地	
4	RELOAD /LED	1/0	芯片上电时为 RELOAD 恢复出厂设置功能输入引脚,	
			检测到连续2秒低电平后恢复出厂设置;	
			芯片上电完成后为 LED 芯片状态指示信号输出引脚,	
			低电平有效;	
5	RTS#	0	MODEM 联络输出信号,请求发送,低电平有效	
6	CTS	_	MODEM 联络输入信号,清除发送,低电平有效	
7	TXD	0	串口发送引脚	
8	RXD	_	串口接收引脚	

注: P: 电源引脚, I: 输入引脚, 0: 输出引脚

4、BLE-SER-A 封装推荐焊盘尺寸

名称	值	单位
Α	10. 22	
В	10. 6	
С	1. 02	
D	0.8	mm
E	1. 27	
F	0. 74	
G	1. 7	

5、布局建议

模块上端为板载天线,天线的布局与无线通信的质量有关,良好的通信质量可保证稳定的数据传输速率。模块可以单独运行而不需要额外的地层,但是在将该模块安装到其他 PCB 上时须注意:天线区域必须远离其他金属器件,其距离必须大于 20mm。靠近天线的任何导体都可能严重影响天线方向图(Radiation Pattern)。

下图为模块的参考布局示意图,前三种情况是正确的,只需地层没有超出模块的地层边缘即可。 后三种情况是不正确的,左边示例为天线下方有接地层,中间示例为天线周围没有足够的间隙,最后 一个示例为电池金属外壳未远离天线区域。

6、功能说明

6.1 智能配对

当 BLE-SER 处于主从一体模式时, 无需通过 AT 命令输入 MAC 地址即可与指定 CH9140/CH9143 芯片建立配对, 配对成功后二者建立绑定关系, 再次连接时无需重新配对。其配对流程如下:

1) CH9140 芯片处于主从一体模式, CH9140/CH9143 芯片处于从机模式或者主从一体模式;

- 2) 欲建立配对双方在 3s 内完成上电;
- 3) 指示灯闪烁 3下后常亮, 配对成功。

若需要重新建立配对需要重新经过配对流程,区别在于步骤3指示灯会快速闪烁,此时将任意端重新上电则可重新建立配对。

6.2 串口透传功能

串口透传使用异步串口,默认出厂 115200bit/s 波特率,8 位数据位,1 位停止位,无检验以及流控开启。芯片的串口接收与接收缓存各为 1K 字节,串口接收数据的同时会实时进行蓝牙传输。由于蓝牙通信速率与其环境有关,所以在蓝牙平均 RSSI 小于-70dBm 时,建议使用 CTS/RTS 流控防止缓存区溢出。但是当通信质量较差且芯片串口接收速度大于 2KB/s 时,建议使用 CTS/RTS 流控以防止缓存区溢出。

6.3 指示灯功能

指示灯状态说明表

序号	状态	说明	
1	上电后单次快闪3下	当前处于从机模式	
2	上电后双次快闪3下	当前处于主从一体模式	
3	500ms 间隔慢闪	当前处于广播状态	
4	常亮	当前处于连接状态	
5	连接状态快闪	当前正在数据传输	
6	配对过程中快闪	已与其他设备建立配对,需重新上电完成配对	

详细功能参考 CH9140 芯片手册。

7、参考原理图

8、回流焊条件

潮敏等级	MSL3
平均斜率上升率(TL to TP)	最大3°C/s
预热	
最小温度(Tsmin)	150°C
最大温度(Tsmax)	200°C
时间(最小 - 最大)(ts)	60-180s
Tsmax - TL斜率上升率	最大3°C/s

保持时间	
温度(TL)	217°C
时间(tL)	60−150s
峰值温度(Tp)	260+0∕−5°C
实际峰值温度5°C内的时间(tp)	20-40s
倾斜下降率	最大6°C/s
25°C到峰值温度的时间	最大8 min