ANNEXES

Fonction pour générer des ondes gravitationnelles (détail des calculs)

Le document indique que le signal GW peut être calculé ainsi $h(t) = A(t)\cos\varphi(t)$

avec
$$A(t) = \frac{4\mathcal{M}^{5/3}\pi^{2/3}F(t)^{2/3}}{D}$$
 et $\varphi(t) = \varphi_0 - 2\left(\frac{1}{256(\pi\mathcal{M}F_0)^{8/3}} - \frac{t}{5\mathcal{M}}\right)^{5/8}$

où \mathcal{M} est la *chirp mass* : $\mathcal{M} = \mu^{3/5} M^{2/5}$

avec la masse réduite $\mu = \frac{m_1 m_2}{M}$ et la masse totale $M = m_1 + m_2$

Ces relations permettent de déterminer la vibration de l'espace-temps par h(t).

$$\begin{split} & \varphi(t) = \varphi_0 - 2 \left(\frac{1}{256(\pi \mathcal{M} F_0)^{8/3}} - \frac{t}{5\mathcal{M}} \right)^{5/8} = \varphi_0 - 2 \left(\frac{1}{256(\pi \mathcal{M} F_0)^{8/3}} \left(1 - \frac{256(\pi \mathcal{M} F_0)^{8/3} t}{5\mathcal{M}} \right) \right)^{5/8} \\ & \varphi(t) = \varphi_0 - 2 \left(\frac{1}{256(\pi \mathcal{M} F_0)^{8/3}} \right)^{5/8} \left(1 - \frac{256(\pi \mathcal{M} F_0)^{8/3} t}{5\mathcal{M}} \right)^{5/8} \\ & \varphi(t) = \varphi_0 - 2 \left(\frac{1}{2^5(\pi \mathcal{M} F_0)^{5/3}} \right) \left(1 - \frac{256\mathcal{M}^{5/3}(\pi F_0)^{8/3} t}{5} \right)^{5/8} = \varphi_0 - \left(\frac{2^4 \pi F_0}{2^8 \mathcal{M}^{5/3}(\pi F_0)^{8/3}} \right) \left(1 - \frac{t}{t_c} \right)^{5/8} \\ & \varphi(t) = \varphi_0 - \left(\frac{2^4 \pi F_0}{5} t_c \right) \left(1 - \frac{t}{t_c} \right)^{5/8} = \varphi_0 - \left(10,05 F_0 t_c \right) \left(1 - \frac{t}{t_c} \right)^{5/8} \text{ avec } t_c = \frac{5}{256(\pi F_0)^{8/3} \mathcal{M}^{5/3}} = \frac{9,23.10^{-4}}{F_0^{8/3} \mathcal{M}^{5/3}} \end{split}$$

 t_c se nomme le temps de coalescence.

On prendra
$$\varphi_0 = 0$$
 d'où $\cos \varphi(t) = \cos \left(-\left(10,05 \, F_0 \, t_c\right) \left(1 - \frac{t}{t_c}\right)^{5/8} \right) = \cos \left(\left(10,05 \, F_0 \, t_c\right) \left(1 - \frac{t}{t_c}\right)^{5/8} \right)$

L'évolution de la fréquence est donnée par : $F(t) = \frac{\left(\mathcal{M}F_0^9\right)^{1/8}}{\left[\left(\mathcal{M}F_0\right)^{1/3} - \frac{256F_0^3\mathcal{M}^2\pi^{8/3}t}{5}\right]^{3/8}}$

Ou encore
$$F(t) = \frac{\left(\mathcal{M}F_0^9\right)^{1/8}}{\left[\left(\mathcal{M}F_0\right)^{1/3}\left(1 - \frac{256F_0^{(3-1/3)}\mathcal{M}^{(2-1/3)}\pi^{8/3}t}{5}\right)\right]^{3/8}} = \frac{\left(\mathcal{M}F_0^9\right)^{1/8}}{\left(\mathcal{M}F_0\right)^{1/8}\left(1 - \frac{256F_0^{(3-1/3)}\mathcal{M}^{(2-1/3)}\pi^{8/3}t}{5}\right)^{3/8}}$$

$$F(t) = \frac{F_0}{\left(1 - \frac{256F_0^{8/3}\mathcal{M}^{5/3}\pi^{8/3}t}{5}\right)^{3/8}} \text{ soit plus simplement : } F(t) = \frac{F_0}{\left(1 - \frac{t}{t_c}\right)^{3/8}}$$

Cas où les deux objets fusionnant ayant la même masse m (détail des calculs)

$$M = m_1 + m_2 = 2m \;, \;\; \mu = \frac{m_1 m_2}{M} = \frac{(M \; / \; 2)^2}{M} = \frac{M}{4} \;\; \text{et} \;\; \mathcal{M} = \mu^{3/5} M^{2/5} = (M \; / \; 4)^{3/5} M^{2/5} = \frac{M^{5/5}}{4^{3/5}} = \frac{M}{4^{3/5}}$$
 Dans ce cas,
$$t_c = \frac{5}{256(\pi F_0)^{8/3} \left(\frac{M}{4^{3/5}}\right)^{5/3}} = \frac{5 \times 4}{256(\pi F_0)^{8/3} M^{5/3}} = \frac{3,69 \cdot 10^{-3}}{F_0^{8/3} M^{5/3}}$$

$$A(t) = \frac{4\mathcal{M}^{5/3}\pi^{2/3}}{D}F(t)^{2/3} = \frac{4\pi^{2/3}}{D} \cdot \frac{5}{256t_c(\pi F_0)^{8/3}} \left(\frac{F_0}{\left(1 - \frac{t}{t_c}\right)^{3/8}}\right)^{2/3} = \frac{20}{256\pi^2 F_0^2 t_c D} \frac{1}{\left(1 - \frac{t}{t_c}\right)^{1/4}}$$

Il est indiqué que les grandeurs sont données en unités géométrisées : $1 M_{\odot} = G M_{\odot}/c^3 = 4,93.10^{-6} \, s$ et $1 Mpc = 3,086.10^{16}.10^6/c = 1,03.10^{14} \, s$

$$A(t) = \frac{20}{256\pi^2 F_0^{\ 2} t_c \ D \times 1,03.10^{14}} \frac{1}{\left(1 - \frac{t}{t_c}\right)^{1/4}} = \frac{7,69.10^{-17}}{F_0^{\ 2} t_c \ D} \frac{1}{\left(1 - \frac{t}{t_c}\right)^{1/4}} \quad \text{(avec D en Mpc)}$$

D'où
$$h(t) = \frac{7,69.10^{-17}}{F_0^2 t_c D} \frac{1}{\left(1 - \frac{t}{t_c}\right)^{1/4}} \cos\left(\left(10,05 F_0 t_c\right) \left(1 - \frac{t}{t_c}\right)^{5/8}\right)$$

Relation entre masse totale du système et temps de coalescence :

$$t_c = \frac{3,69.10^{-3}}{F_0^{8/3} M^{5/3}} \Rightarrow M^{5/3} = \frac{3,69.10^{-3}}{t_c F_0^{8/3}} \Rightarrow M = \left(\frac{3,69.10^{-3}}{t_c F_0^{8/3}}\right)^{3/5} = \frac{3,47.10^{-2}}{t_c^{3/5} F_0^{8/5}}$$

Ondes gravitationnelles détectées par LIGO/Virgo

On a repéré la fréquence 64 Hz pour l'évaluation des temps de coalescence t_c.

Programme python permettant de déterminer l'influence des miroirs de recyclage

```
# Affichage de l'état d'interférence pour x compris entre 0 et 2 lambda
from cmath import *
from pylab import *
a,b,c,d=0.085,0.085,0.085,0.085
v = 340
                            # 340 m/s
                            # 40 kHz
F0=40000
1=v/F0
                            # lambda
                            # coefficient reflexion sur miroir
K1=0.8
K2=0.6
                            # coefficient reflexion sur emetteur recepteur
numeros=[]
for n in range(1,10):
    plage deplacement=[]
    plage intensite=[]
    for i in range(0,200):
       x=i*1/100
                            # déplacement du miroir pour x de 0 à 21ambda
                                     émission de sin(2piF0t + 0)
        zE=1
                            # zE=1
                            # zR=0
                                     pas d'émission initiale
        zR=0
        zRS=0
        zES=0
        phase1=2*pi/1*(a+2*(b+x)+d)
                                      # retard1 sur trajet a b b d + x + x
        phase2=2*pi/1*(a+2*c+d)
        phase3=2*pi/1*(d+2*b+d+2*x)
        phase4=2*pi/1*(d+2*c+d)
        phase5=2*pi/1*(a+2*b+a+2*x)
        phase6=2*pi/1*(a+2*c+a)
        phase7=2*pi/1*(d+2*b+a+2*x)
        phase8=2*pi/1*(d+2*c+a)
        for m in range(0,n):
            z1=(zE*exp(complex(0,-phase1)))/4 # z1=zE/4 avec un retard de phase1
            z2=(zE*exp(complex(0,-phase2)))/4
            z3=(zR*exp(complex(0,-phase3)))/4
            z4=(zR*exp(complex(0,-phase4)))/4
            z5=(zE*exp(complex(0,-phase5)))/4
            z6=(zE*exp(complex(0,-phase6)))/4
            z7=(zR*exp(complex(0,-phase7)))/4
            z8=(zR*exp(complex(0,-phase8)))/4
            zR=K1*(z1+z2+z3*K2+z4*K2) # somme des 4 ondes reçues en R
            zE=K1*(z5+z6+z7*K2+z8*K2) # somme des 4 ondes reçues en E
                                # somme de toutes les ondes reçues en R issues
            zRS=zRS+zR
des réflexions sur les miroirs de recyclage
```

```
zES=zES+zE  # somme de toutes les ondes reçues en E issues
des réflexions sur les miroirs de recyclage
    y=abs(zRS)  # module
    plage_deplacement.append(x)
    plage_intensite.append(y)
    numeros.append([plage_deplacement,plage_intensite])

for i in numeros:
    plot(i[0],i[1])
show()
```

Programme python permettant de modéliser la vibration détectée

```
### modélisation de l'onde gravitationnelle
import os
import csv
from math import *
from pylab import *
f = figure()
ax = f.add_subplot(111)
def lire (nomfichier): #importe un fichier csv sous forme de liste
    liste=[]
    fichier = open(nomfichier,'r')
    csv_reader = csv.reader(fichier, delimiter=';', lineterminator=""""\n""")
    for ligne in fichier:
           liste.append( ligne.replace("""\""","").replace("""\n""","").
           replace(",",".").split(";"))
    fichier.close()
    del liste[0]
    return (liste)
def fonction (t,f0,tc,amp,phi):
   U= amp * (1 / (1 - t / tc)**(1 / 4))*cos(phi+10*f0*tc*(1 - t / tc)**(5 / 8))
    return (U)
liste=lire(r"C:\Users\Antoine\Documents\Physique\Ondesgravitationnelles\Scripts\4
0 2 1V A.csv")#importe le fichier csv désigné sous forme de liste
taille=len(liste)
listex,listey=[],[]
for i in liste:#création listes abscisses (temps) et coordonnées (amplitude)
    listex.append(float(i[0]))
    listev.append(float(i[1]))
plot(listex, listey,linewidth=1,label="Mesures")
precmax=5
f0=40
tc=2
print ("tc=",tc,"s")
print("f0=",f0,"Hz")
```

```
### Détermination du déphasage phi
ampini=max(listey)/5
phiperf, phitest, prec=0,0,0
perf=inf
phimax=7
#détermination d'une fourchette qui se resserre autour du phi le plus semblable
aux mesures
while prec<precmax:
   while phitest<phimax:
        delta=0
        for i in range (taille):
            delta+=abs(listey[i]- fonction (listex[i],f0,tc,ampini,phitest))
        if delta<perf:
            perf=delta
            phiperf=phitest
        phitest+=10**-prec
    prec+=1
    phitest=phiperf-6*10**-prec
    phimax=phiperf+6*10**-prec
print("phi=",round(phiperf%(2*pi),precmax),"rad")
### Détermination de l'amplitude
ampperf, amptest, prec=0,0,0
perf=inf
ampmax=int(ceil(max(listey))/2)
#détermination d'une fourchette qui se resserre autour de l'amplitude la plus
semblable aux mesures
while prec<precmax:
   while amptest<ampmax:
        delta=0
        for i in range (taille):
            delta+=abs(listey[i]- fonction (listex[i],f0,tc,amptest,phiperf))
        if delta<perf:</pre>
            perf=delta
            ampperf=amptest
        amptest+=10**-prec
    prec+=1
    amptest=ampperf-6*10**-prec
    ampmax=ampperf+6*10**-prec
print("amplitude=",round(ampperf,precmax),"V")
#création d'un graphique affichant la modélisation et les mesures
listey=[]
for i in range (taille):
    listey.append(fonction(listex[i],f0,tc,ampperf,phiperf))
plot(listex, listey,"r",linewidth=1.5,label="Modele")
legend()
show()
```

Protocole de construction geogebra pour analyse d'onde gravitationnelle

Advanced Arago

No.	Nom	Description	Valeur	Définition
1	Nombre A		A = 29.5	
2	Nombre tc		tc = 1.14	
3	Nombre F0		F0 = 49.4	
4	Fonction f	$f(x) = A 1.00 / (1.00 - x / tc)^{(1.00 / 4.00)}$ $sin(10.0F0 tc (1.00 - x / tc)^{(5.00 / 8.00)}$	$f(x) = 29.5 * 1.00 / (1.00 - x / 1.14)^{(1.00 / 4.00)} sin(10.0 * 49.4 * 1.14 (1.00 - x / 1.14)^{(5.00 / 8.00)}$	$f(x) = A 1.00 / (1.00 - x) / (tc)^{(1.00 / 4.00)} sin(10.0F0 tc (1.00 - x / tc)^{(5.00 / 8.00)}$
5	Courbe h _t	Courbe(t, A 1.00 / (1.00 - t / tc)^(1.00 / 4.00) sin(10.0F0 tc (1.00 - t / tc)^(5.00 / 8.00)), t, 0.00, tc)	h _t :(t, 29.5 * 1.00 / (1.00 - t / 1.14)^(1.00 / 4.00) sin(10.0 * 49.4 * 1.14 (1.00 - t / 1.14)^(5.00 / 8.00)))	Courbe(t, A 1.00 / (1.00 - t / tc)^(1.00 / 4.00) sin(10.0F0 tc (1.00 - t / tc)^(5.00 / 8.00)), t, 0.00, tc)
6	Image chirp1		chirp1	
7	Image chirp2		chirp2	
8	Fonction a	$a(x) = F0 / (1.00 - x / tc)^{3.00 / 8.00}$	$a(x) = 49.4 / (1.00 - x / 1.14)^{3.00 / 8.00}$	$a(x) = F0 / (1.00 - x / tc)^{3.00 / 8.00}$
9	Fonction g	$g(x) = \lg(a(x))$	$g(x) = \lg(49.4 / (1.00 - x / 1.14)^{3.00 / 8.00)$	$g(x) = \lg(a(x))$
10	Nombre xImage		xImage = -0.296	
11	Nombre yImage		yImage = 0.906	
12	Nombre Masse _t	(3.47 * 10.0^-2.00) / (tc^(3.00 / 5.00) F0^(8.00 / 5.00) 4.93 * 10.0^-6.00)	(3.47 * 10.0^-2.00) / (tc^(3.00 / 5.00) F0^(8.00 / 5.00) 4.93 * 10.0^-6.00)	(3.47 * 10.0^-2.00) / (tc^(3.00 / 5.00) F0^(8.00 / 5.00) 4.93 * 10.0^-6.00)
13	Nombre echellet		echellet = 1.80	

14	Nombre echellef		echellef = 3.00	
15	Nombre fimage		fimage = 3.25	
16	Nombre timage		timage = 1.85	
17	Image image1		image1	
18	Texte texte1	"Masse totale = " + Masse _t + " masses solaires"	"Masse totale = 12.7 masses solaires"	"Masse totale = " + Masse _t + " masses solaires"
19	Nombre t0		t0 = 0.00	
20	Point B	(xImage + t0, yImage + echellef)	(xImage + t0, yImage + echellef)	(xImage + t0, yImage + echellef)
21	Point C	(xImage + t0, yImage)	(xImage + t0, yImage)	(xImage + t0, yImage)
22	Point D	(xImage + echellet + t0, yImage)	(xImage + echellet + t0, yImage)	(xImage + echellet + t0, yImage)
23	Nombre couple		couple = -0.860	
24	Point CoupleF0tc	(couple, g(couple))	CoupleF0tc = (-0.860, 1.60)	(couple, g(couple))
25	Nombre F0couple	a(couple)	F0couple = 40.0	a(couple)
26	Nombre tccouple	tc - couple	tccouple = 2.00	tc - couple
27	Texte texte2	"(tc=" + tccouple + ",F0=" + F0couple + ")"	" (tc=2.00,F0=40.0)"	"(tc=" + tccouple + ",F0=" + F0couple + ")"

Michelson Arago

No.	Nom	Description	Définition	Valeur
	Nombre			
1	fréquence			fréquence = 0.1
	Nombre a			a = -10
3	Point A	(a, 1)	(a, 1)	A = (-10, 1)
4	Point B	(a, -1)	(a, -1)	B = (-10, -1)
5	Point C	(a - 3, -1)	(a - 3, -1)	C = (-13, -1)
6	Point D	(a - 3, 1)	(a - 3, 1)	D = (-13, 1)
7	Quadrilatère q1	Polygone A, B, C, D	Polygone(A, B, C, D)	q1 = 6
8	Segment a ₁	Segment [AB]	Segment(A, B, q1)	$a_1 = 2$
9	Segment b ₁	Segment [BC]	Segment(B, C, q1)	$b_1 = 3$
10	Segment c ₁	Segment [CD]	Segment(C, D, q1)	$c_1 = 2$
11	Segment d ₁	Segment [DA]	Segment(D, A, q1)	$d_1 = 3$
12	Nombre b			b = 1.18
13	Point E	(b, 2)	(b, 2)	E = (1.18, 2)
14	Point F	(b, -2)	(b, -2)	F = (1.18, -2)
15	Segment f ₁	Segment [EF]	Segment(E, F)	$f_1 = 4$
16	Nombre c			c = 10
17	Point G	(-2, c)	(-2, c)	G = (-2, 10)
18	Point H	(2, c)	(2, c)	H = (2, 10)
19	Segment g	Segment [GH]	Segment(G, H)	g = 4
20	Nombre d			d = -10
21	Point I	(-1, d)	(-1, d)	I = (-1, -10)
22	Point J	(1, d)	(1, d)	J = (1, -10)
23	Point K	(1, d - 3)	(1, d - 3)	K = (1, -13)
24	Point L	(-1, d - 3)	(-1, d - 3)	L = (-1, -13)
25	Quadrilatère q2	Polygone I, J, K, L	Polygone(I, J, K, L)	q2 = 6
26	Segment i	Segment [IJ]	Segment(I, J, q2)	i=2
27	Segment j	Segment [JK]	Segment(J, K, q2)	j=3
28	Segment k	Segment [KL]	Segment(K, L, q2)	k = 2
29	Segment 1	Segment [LI]	Segment(L, I, q2)	1 = 3
30	Point M			M = (2.8, 2.2)
31	Point N			N = (-2.8, -2.2)
32	Nombre amp			amp = 1
33	Nombre f	2π fréquence	2π fréquence	f = 0.63
34	Nombre phi			phi = 2.75
35	Courbe ondeA	Courbe(t, amp sin(f t + phi), t, a, 0)	Courbe(t, amp sin(f t + phi), t, a, 0)	ondeA:(t, sin(0.63 t + 2.75))
36	Courbe ondeB	Courbe(t, 0.5amp sin(f t +	Courbe(t, 0.5amp sin(f t +	ondeB:(t, 0.5 sin(0.63 t

		phi), t, 0, b)	phi), t, 0, b)	+ 2.75))
27	Bouton			D 1
37	Bouton1			Bouton1
38	Bouton Bouton2			Bouton2
36	Nombre			Douton2
39	vitesse			vitesse = 6.6
		Courbe($-t + 2b, 0.5$ amp	Courbe($-t + 2b, 0.5$ amp	ondeB':(-t + 2 * 1.18,
40	Courbe ondeB'	$\sin(f t + phi), t, b, 2b)$	$\sin(f t + phi), t, b, 2b)$	$0.5 \sin(0.63 t + 2.75))$
		Courbe(0.5amp sin(f t +	Courbe(0.5amp sin(f t +	ondeC:(0.5 sin(0.63 t +
41	Courbe ondeC	phi), t, t, 0, c)	phi), t, t, 0, c)	(2.75), t)
	Courbe	Courbe(0.25amp sin(f t +	Courbe(0.25amp sin(f t +	ondeDC:(0.25 sin(0.63 t
42	ondeDC	phi), -t + 2c, t, 2c, 2c - d)	phi), -t + 2c, t, 2c, 2c - d)	+ 2.75), -t + 2 * 10)
43	Courbe ondeC'	Courbe(0.5amp sin(f t + phi), -t + 2c, t, c, 2c)	Courbe(0.5amp sin(f t + phi), -t + 2c, t, c, 2c)	ondeC':(0.5 sin(0.63 t + 2.75), -t + 2 * 10)
43	Courbe			onde AB: $(-t + 2 * 1.18,$
44	ondeAB	Courbe(-t + 2b, 0.25amp $\sin(f t + phi)$, t, 2b, 2b - a)	Courbe(-t + 2b, 0.25amp $\sin(f t + phi)$, t, 2b, 2b - a)	0.25 $\sin(0.63 t + 2.75)$
	Courbe	Courbe($-t + 2c$, 0.25amp	Courbe($-t + 2c$, 0.25amp	ondeAC:(-t + 2 * 10,
45	ondeAC	$\sin(f t + phi), t, 2c, 2c - a)$	$\sin(f t + phi), t, 2c, 2c - a)$	$0.25 \sin(0.63 t + 2.75))$
46	Courbe ondeDB	Courbe(0.25amp sin(f t + phi), -t + 2b, t, 2b, 2b - d)	Courbe(0.25amp sin(f t + phi), -t + 2b, t, 2b, 2b - d)	ondeDB:(0.25 sin(0.63 t + 2.75), -t + 2 * 1.18)
47	Point O			O = (-2.2, -2.8)
48	Point P			P = (2.2, 2.8)
	Quadrilatère			
49	q3	Polygone N, P, M, O	Polygone(N, P, M, O)	q3 = 6
50	Segment n	Segment [NP]	Segment(N, P, q3)	n = 7.07
51	Segment p	Segment [PM]	Segment(P, M, q3)	p = 0.85
52	Segment m	Segment [MO]	Segment(M, O, q3)	m = 7.07
53	Segment o	Segment [ON]	Segment(O, N, q3)	o = 0.85
54	Nombre e			$e = \pi$
55	Point U	Intersection de i et ondeDC	Intersection(i, ondeDC)	U = (0.1, -10)
56	Nombre XS			XS = 13.22
	Bouton			
57	Bouton3			Bouton3
58	Texte texte1			"Addition des ondes en fonction du temps"
59	Nombre R1			R1 non défini
60	Point Q	Intersection de i et ondeDB	Intersection(i, ondeDB)	Q = (-0.22, -10)
	Point $S_1(13.22,$			
61	-8.67)	(XS, 3x(Q) - 8)	(XS, 3x(Q) - 8)	$S_1 = (13.22, -8.67)$
62	Point S	(XS, 3(x(Q) + x(U)) - 8)	(XS, 3(x(Q) + x(U)) - 8)	S = (13.22, -8.38)
	Point $S_2(13.22,$			
63	-7.71)	(XS, 3x(U) - 8)	(XS, 3x(U) - 8)	$ S_2 = (13.22, -7.71) $