CS243: Introduction to Algorithmic Game Theory

Week 9.1, Cooperative Games and Cost Sharing (Dengji ZHAO)

SIST, ShanghaiTech University, China

Coalitional/Cooperative Game

- A set of agents N.
- Each subset of agents (coalition) $S \subseteq N$ cooperate together can generate some value $v(S) \in \mathbb{R}$. Assume $v(\emptyset) = 0$. N is called grand coalition. $v : 2^N \to \mathbb{R}$ is called the characteristic function of the game.
- The possible outcomes of the game is defined by $V(S) = \{x \in \mathbb{R}^S : \sum_{i \in S} x_i \le v(S)\}.$

Example

- Three agents {1,2,3}.
- $v(\{1\}) = v(\{2\}) = v(\{3\}) = 1;$ $v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = 0.5; v(\{1,2,3\}) = 0.$

Core

Definition

For the grand coalition N, the allocation vector $x \in \mathbb{R}^N$ satisfy:

Efficiency if
$$\sum_{i \in N} x_i = v(N)$$
.

Individual Rationality if $\forall_{i \in N} x_i \ge v(\{i\})$.

Definition (Core)

The core of the coalitional game (N, v) is a set of vectors $x \in \mathbb{R}^N$ such that x is efficient and $\forall_{S \subseteq N} \sum_{i \in S} x_i \ge v(S)$.

Shapley Value: a Fair Distribution of Payoffs

Given a coalitional game (N, v), the Shapley value of each player i is:

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

Shapley Value: a Fair Distribution of Payoffs

Given a coalitional game (N, v), the Shapley value of each player i is:

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

Calculate the Shapley value for the following game:

- Three agents {1,2,3}.
- v(S) = 1 if $S \in \{\{1,3\}, \{2,3\}, \{1,2,3\}\}$, otherwise v(S) = 0.
- $\phi_1(v) = \phi_2(v) = \frac{1}{6}$ and $\phi_3(v) = \frac{2}{3}$.

Properties of Shapley Value

- Efficiency: $\sum_{i \in N} \phi_i(v) = v(N)$.
- **Symmetry**: If *i* and *j* are two players who are equivalent in the sense that $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N$ s.t. $i, j \notin S$, then $\phi_i(v) = \phi_j(v)$.
- Linearity: $\phi_i(v + w) = \phi_i(v) + \phi_i(w)$.
- **Zero player** (null player): $\phi_i(v) = 0$ if $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N$.

Properties of Shapley Value

- Efficiency: $\sum_{i \in N} \phi_i(v) = v(N)$.
- **Symmetry**: If i and j are two players who are equivalent in the sense that $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N$ s.t. $i, j \notin S$, then $\phi_i(v) = \phi_i(v)$.
- Linearity: $\phi_i(v + w) = \phi_i(v) + \phi_i(w)$.
- **Zero player** (null player): $\phi_i(v) = 0$ if $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N$.

Question

Is the Shapley value in the core? [advanced reading]

Cost Sharing

In the above coalitional game (N, v), we assumed that $v(S) \ge 0$, it is possible that $v(S) \le 0$ (which becomes a cost sharing game).

Definition

A cost sharing game (N, c) is defined by

- a set of n agents N.
- a cost function $c: 2^N \to \mathbb{R}_+$ and assume $c(\emptyset) = 0$.

Cost Sharing

Figure 15.1. An example of the facility location game.

- $c(\{a\}) = 4, c(\{b\}) = 3, c(\{c\}) = 3$
- $c({a,b}) = 6, c({b,c}) = 4, c({a,c}) = 7, c({a,b,c}) = 8$

Core of Cost Sharing

Definition (Core)

A vector $\alpha \in \mathbb{R}^N$ is in the core of a cost sharing game (N, c) if

- $\sum_{i \in N} \alpha_i = c(N)$
- $\forall_{S \subseteq N} \sum_{j \in S} \alpha_j \leq c(S)$

Core of Cost Sharing

Quiz:

- Q15: Is (4,2,2) in the core of the following game?
- Q16: Is (4, 1, 3) in the core of the following game?

Figure 15.1. An example of the facility location game.

- $c(\{a\}) = 4, c(\{b\}) = 3, c(\{c\}) = 3$
- $c({a,b}) = 6, c({b,c}) = 4, c({a,c}) = 7, c({a,b,c}) = 8$

Advanced Reading

• AGT Chapter 15: Cost Sharing.