

INT305 Machine Learning Lecture 7 Decision Trees & Bias-Variance Decomposition

Jimin Xiao

Department Intelligence Science

Jimin.xiao@xjtlu.edu.cn

Today

• Decision Trees

- ► Simple but powerful learning algorithm
- Used widely in Kaggle competitions
- Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Bias-variance decomposition
 - ▶ Lets us motivate methods for combining different classifiers.

Decision Trees

• Make predictions by splitting on features according to a tree structure.

Decision Trees

• Make predictions by splitting on features according to a tree structure.

Decision Trees— Continuous Features

- Split *continuous features* by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.

Decision Trees

- Internal nodes test a feature
- Branching is determined by the feature value
- Leaf nodes are outputs (predictions)

Decision Trees—Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

- Classification tree (we will focus on this):
 - discrete output
 - leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$
- Regression tree:
 - continuous output
 - ▶ leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Decision Trees—Discrete Features

• Will I eat at this restaurant?

Decision Trees—Discrete Features

• Split discrete features into a partition of possible values.

Example	Input Attributes										Goal
Zatempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = \textit{Yes}$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = \textit{Yes}$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = \mathit{Yes}$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = \mathit{Yes}$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = \mathit{Yes}$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Features:

Attempts

The drawing below shows a dataset. Each example in the dataset has two inputs features x and y, and maybe classified as a positive example (labelled +) or a negative example (labelled -). Draw a decision tree which correctly classifies each example in the dataset.

Attempts

Learning Decision Trees

- For any training set we can construct a decision tree that has exactly the one leaf for every training point, but it probably won't generalize.
 - Decision trees are universal function approximators.
- But, finding the smallest decision tree that correctly classifies a training set is NP complete.
 - ▶ If you are interested, check: Hyafil & Rivest'76.
- So, how do we construct a useful decision tree?

Learning Decision Trees

- Resort to a greedy heuristic:
 - ▶ Start with the whole training set and an empty decision tree.
 - ▶ Pick a feature and candidate split that would most reduce the loss.
 - Split on that feature and recurse on subpartitions.
- Which loss should we use?
 - ▶ Let's see if misclassification rate is a good loss.

• Consider the following data. Let's split on width.

• Recall: classify by majority.

• A and B have the same misclassification rate, so which is the best split? Vote!

• A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.

• Can we quantify this?

- How can we quantify uncertainty in prediction for a given leaf node?
 - ▶ If all examples in leaf have same class: good, low uncertainty
 - ▶ If each class has same amount of examples in leaf: bad, high uncertainty
- **Idea:** Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

Quantifying Uncertainty

- The entropy of a discrete random variable is a number that quantifies the uncertainty inherent in its possible outcomes.
- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated axiomatically.
 - ▶ If you're interested, check: *Information Theory* by Robert Ash.
- To explain entropy, consider flipping two different coins...

We Flip Two Different Coins

Quantifying Uncertainty

• The entropy of a loaded coin with probability p of heads is given by

$$-p \log_2(p) - (1-p) \log_2(1-p)$$

- Notice: the coin whose outcomes are more certain has a lower entropy.
- In the extreme case p = 0 or p = 1, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Quantifying Uncertainty

• Can also think of entropy as the expected information content of a random draw from a probability distribution.

- Claude Shannon showed: you cannot store the outcome of a random draw using fewer expected bits than the entropy without losing information.
- So units of entropy are bits; a fair coin flip has 1 bit of entropy.

Entropy

 \bullet More generally, the entropy of a discrete random variable Y is given by

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$

• "High Entropy":

- ▶ Variable has a uniform like distribution over many outcomes
- ► Flat histogram
- ▶ Values sampled from it are less predictable

• "Low Entropy"

- Distribution is concentrated on only a few outcomes
- ▶ Histogram is concentrated in a few areas
- ▶ Values sampled from it are more predictable

Entropy

- \bullet Suppose we observe partial information X about a random variable Y
 - For example, X = sign(Y).
- We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.
 - Or equivalently, the expected reduction in our uncertainty about Y after observing X.

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$\begin{array}{lcl} H(X,Y) & = & -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y) \\ \\ & = & -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100} \\ \\ & \approx & 1.56 \mathrm{bits} \end{array}$$

Specific Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

= $-\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$
 $\approx 0.24 \text{bits}$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$\begin{array}{lcl} H(Y|X) & = & \displaystyle\sum_{x \in X} p(x) H(Y|X=x) \\ \\ & = & \displaystyle\frac{1}{4} H(\text{cloudy}|\text{is raining}) + \frac{3}{4} H(\text{cloudy}|\text{not raining}) \\ \\ & \approx & 0.75 \text{ bits} \end{array}$$

Conditional Entropy

- Some useful properties:
 - \blacktriangleright H is always non-negative
 - Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - ▶ If X and Y independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - ▶ But knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \leq H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much more certain am I about whether it's cloudy if I'm told whether it is raining? My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.
- This is called the information gain IG(Y|X) in Y due to X, or the mutual information of Y and X

$$IG(Y|X) = H(Y) - H(Y|X) \tag{1}$$

- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you're on.

Revisiting Our Original Example

• What is the information gain of split B? Not terribly informative...

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|left) \approx 0.81$, $H(Y|right) \approx 0.92$
- $IG(split) \approx 0.86 (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$

Revisiting Our Original Example

• What is the information gain of split A? Very informative!

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: H(Y|left) = 0, $H(Y|right) \approx 0.97$
- $IG(split) \approx 0.86 (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!!$

Constructing Decision Trees

- At each level, one must choose:
 - 1. Which feature to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose feature that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
 - 1. pick a feature to split at a non-terminal node
 - 2. split examples into groups based on feature value
 - 3. for each group:
 - ▶ if no examples return majority from parent
 - ▶ else if all examples in same class return class
 - else loop to step 1
- Terminates when all leaves contain only examples in the same class or are empty.

Back to Our Example

Features:

Example		Input Attributes									
Diampie .	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Ye$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = Nc$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Ye$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Ye$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = Nc$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Y_6$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = Nc$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Y_e$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = Nc$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = N_0$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = N_0$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Ye$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [from: Russell & Norvig

Feature Selection

$$\begin{split} IG(Y) &= H(Y) - H(Y|X) \\ IG(type) &= 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0 \\ IG(Patrons) &= 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541 \end{split}$$

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - ► Computational efficiency (avoid redundant, spurious attributes)
 - ► Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - ▶ Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
 - ▶ You have exponentially less data at lower levels
 - ► Too big of a tree can overfit the data
 - Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - ▶ Split based on a threshold, chosen to maximize information gain

Comparison to some other classifiers

Advantages of decision trees over KNNs and neural nets

- Simple to deal with discrete features, missing values, and poorly scaled data
- Fast at test time
- More interpretable

Advantages of KNNs over decision trees

- Few hyperparameters
- Can incorporate interesting distance measures (e.g. shape contexts)

Advantages of neural nets over decision trees

• Able to handle attributes/features that interact in very complex ways (e.g. pixels)

Comparison to some other classifiers

- We've seen many classification algorithms.
- We can combine multiple classifiers into an ensemble, which is a set of predictors whose individual decisions are combined in some way to classify new examples
 - ► E.g., (possibly weighted) majority vote
- For this to be nontrivial, the classifiers must differ somehow, e.g.
 - Different algorithm
 - ▶ Different choice of hyperparameters
 - Trained on different data
 - Trained with different weighting of the training examples
- Next lecture, we will study some specific ensembling techniques.

• Today, we deepen our understanding of generalization through a bias-variance decomposition.

▶ This will help us understand ensembling methods.

Bias-Variance Decomposition

• Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
 - ▶ Bias and variance of what?

- Suppose the training set \mathcal{D} consists of pairs (\mathbf{x}_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{sample} .
- \bullet Pick a fixed query point \mathbf{x} (denoted with a green \mathbf{x}).
- Consider an experiment where we sample lots of training sets independently from p_{sample} .

- Let's run our learning algorithm on each training set, and compute its prediction y at the query point \mathbf{x} .
- We can view y as a random variable, where the randomness comes from the choice of training set.
- The classification accuracy is determined by the distribution of y.

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.

- Recap of basic setup:
 - Fix a query point **x**.
 - ► Repeat:
 - Sample a random training dataset \mathcal{D} i.i.d. from the data generating distribution p_{sample} .
 - ▶ Run the learning algorithm on \mathcal{D} to get a prediction y at \mathbf{x} .
 - ▶ Sample the (true) target from the conditional distribution $p(t|\mathbf{x})$.
 - ightharpoonup Compute the loss L(y,t).
- Notice: y is independent of t.
- This gives a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}[L(y,t) \mid \mathbf{x}]$.
- For each query point \mathbf{x} , the expected loss is different. We are interested in minimizing the expectation of this with respect to $\mathbf{x} \sim p_{\text{sample}}$.

- For now, focus on squared error loss, $L(y,t) = \frac{1}{2}(y-t)^2$.
- A first step: suppose we knew the conditional distribution $p(t \mid \mathbf{x})$. What value y should we predict?
 - \blacktriangleright Here, we are treating t as a random variable and choosing y.
- Claim: $y_* = \mathbb{E}[t \mid \mathbf{x}]$ is the best possible prediction.
- Proof:

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 \mid \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t^2 \mid \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t \mid \mathbf{x}]^2 + \operatorname{Var}[t \mid \mathbf{x}]$$

$$= y^2 - 2yy_* + y_*^2 + \operatorname{Var}[t \mid \mathbf{x}]$$

$$= (y - y_*)^2 + \operatorname{Var}[t \mid \mathbf{x}]$$

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = (y-y_*)^2 + \text{Var}[t \mid \mathbf{x}]$$

- The first term is nonnegative, and can be made 0 by setting $y = y_*$.
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - ▶ This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - \triangleright Notice that this term doesn't depend on y.
- This process of choosing a single value y_* based on $p(t | \mathbf{x})$ is an example of decision theory.

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on **x** for clarity):

$$\mathbb{E}[(y-t)^{2}] = \mathbb{E}[(y-y_{\star})^{2}] + \operatorname{Var}(t)$$

$$= \mathbb{E}[y_{\star}^{2} - 2y_{\star}y + y^{2}] + \operatorname{Var}(t)$$

$$= y_{\star}^{2} - 2y_{\star}\mathbb{E}[y] + \mathbb{E}[y^{2}] + \operatorname{Var}(t)$$

$$= y_{\star}^{2} - 2y_{\star}\mathbb{E}[y] + \mathbb{E}[y]^{2} + \operatorname{Var}(y) + \operatorname{Var}(t)$$

$$= \underbrace{(y_{\star} - \mathbb{E}[y])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}(y)}_{\text{variance}} + \underbrace{\operatorname{Var}(t)}_{\text{Bayes error}}$$

$$\mathbb{E}[(y-t)^2] = \underbrace{(y_{\star} - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\text{Var}(y)}_{\text{variance}} + \underbrace{\text{Var}(t)}_{\text{Bayes error}}$$

- We just split the expected loss into three terms:
 - bias: how wrong the expected prediction is (corresponds to underfitting)
 - variance: the amount of variability in the predictions (corresponds to overfitting)
 - ▶ Bayes error: the inherent unpredictability of the targets
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias and Variance

• Throwing darts = predictions for each draw of a dataset

- Be careful, what doesn't this capture?
 - ightharpoonup We average over points \mathbf{x} from the data distribution.