Университет ИТМО Факультет программной инженерии и компьютерной техники

Домашнее задание

Дисциплина «Системы ввода-вывода»

Выполнил: Студент группы Р
3331 (Поток 1.5) Нодири Хисравхон

Преподаватель: Быковский Сергей Вячеславович

Содержание

1	Введение	3			
2	Этап 1. Проектирование портов B/B 2.1 Распиновка разъема (6 пинов)	3			
3	Этап 2. Проектирование протокола передачи данных 3.1 Формат пакета канального уровня 3.2 Процедура передачи одного байта 3.3 Расчёт эффективной пропускной способности	4			
 Этап 3. Описание сценариев использования и протокола транспортного уровня 4.1 Определить сценарии использования и прикладные области, где данный интерфейс мог б быть полезным и для какого вида трафика					
	чении, потерей пакетов и других нештатных ситуаций	4			

1 Введение

Вариант 3 Количество линий 6

Тип передачи Синхронный, Дуплексный

2 Этап 1. Проектирование портов В/В

2.1 Распиновка разъема (6 пинов)

#	Сигнал	Назначение
1	VCC	+5В питание
2	GND	Земля
3	CLK	Тактовый сигнал от мастера
4	TXD	Данные: мастер $ ightarrow$ слейв
5	RXD	Данные: слейв \rightarrow мастер
6	SYNC	Короткий импульс для выравнивания по кадру

2.2 Вид разъемов подключаемых устройств

Я взял MicroMatch~6P~IDC, потому что он:

- компактный (шаг всего 1,27мм, место на плате экономится);
- имеет ключ, так что перепутать сторону почти нереально;
- держит ток до 1А на контакт, значит периферию тоже можно запитать.

2.3 Способы подключения устройств (возможные топологии)

- Точка-точка. Один мастер <-> один слейв. Самый понятный вариант, минимум проблем.
- Звезда. Мастер в центре, несколько слейвов вокруг. Такт, SYNC и TXD идут «лучами», а RXD собирается через логический OR.
- **Кольцо.** Все устройства в цепочку, последний к первому. Редко нужно, но можно, если надо экономить провода.

3 Этап 2. Проектирование протокола передачи данных

3.1 Формат пакета канального уровня

Поле	Размер, байт	Назначение
SOF	1	Старт кадра (0х7Е)
Адрес приёмника	1	0-255
Адрес отправителя	1	0-255
Длина полезных данных	1	N (0-255)
Полезные данные	N	Передаваемый контент
CRC-16	2	Проверка целостности
EOF	1	Конец кадра (0х7F)

3.2 Процедура передачи одного байта

3.3 Расчёт эффективной пропускной способности

Пусть задана скорость физического уровня V=1 Мбит/с. При минимальном кадре (N=1):

Overhead =
$$1+1+1+1+1+2+1=7$$
 байт = 56 бит, Payload = 8 бит.

$$\eta = \frac{8}{56 + 8} = 0.125, \qquad C_{
m s} = \eta \cdot V \approx 0.125 \ {
m M6ит/c}.$$

Для большей длины полезных данных эффективная пропускная способность растёт:

$$\eta(N) = \frac{8N}{8N + 56}, \qquad C_{\ni \Phi}(N) = \eta(N) \, V. \label{eq:eta_def}$$

4 Этап 3. Описание сценариев использования и протокола транспортного уровня

4.1 Определить сценарии использования и прикладные области, где данный интерфейс мог бы быть полезным и для какого вида трафика.

На практике такой интерфейс полезен там, где нужно быстро и надёжно перекидывать данные между небольшими устройствами:

- Заводы и цеха. Датчики и контроллеры постоянно обмениваются короткими телеграммами, задержки недопустимы.
- **Встроенные аудиосистемы.** Например, передача сигнала с микрофона на усилитель и обратно (режим talk-back).
- Медицинская аппаратура. Мониторы ЭКГ или пульсоксиметры посылают поток измерений в реальном времени синхронная линия делает это без «рывков».

4.2 Описать протокол транспортного уровня, который позволяет бороться с помехами при включении, потерей пакетов и других нештатных ситуаций.

Чтобы пакеты не терялись, берём простейший вариант ARQ — «cmon-u-vedu» (Stop-and-Wait).

- У каждого пакета есть бит SEQ 0 или 1. Отправили 0 ждём подтверждения, потом переключаемся на 1, и так по очереди.
- ullet Слейв получил кадр шлёт ACK с тем же SEQ.
- ullet Если мастер не увидел АСК за время $T_{
 m ack},$ он повторяет кадр (не больше $N_{
 m max}$ раз).

Что делать с нештатными ситуациями

- *При включении шум на линиях.* Держим SYNC в нуле примерно 10 тактов, чтобы все приёмники «обнулились».
- ullet Пакет пропал. Нет ACK перезаписываем. После $N_{
 m max}$ попыток считаем линк порванным.
- *Пакет битый (CRC не сошёлся).* Приёмник шлёт **NAK**, и источник сразу переотправляет тот же кадр.