Abstract

The present invention provides a therapeutic method to treat non-malignant diseases characterized by the excessive tissue growth, *e.g.*, hyperplastic diseases, comprising administering to a mammal (*e.g.*, human) afflicted with excessive tissue growth, an effective amount of a derivative of an indole compound of formula (I):formula (I):

$$(R^{6})_{n} = \begin{pmatrix} R^{5} & R^{4} & R^{3} \\ & & & & \\ & & & \\ & & & & \\$$

wherein R^1 is lower alkyl, (hydroxy)lower alkyl, lower alkenyl, lower alkynyl, lower cycloalkyl, phenyl, benzyl or 2-thienyl; R^2 , R^3 , R^4 and R^5 are the same or different and are each hydrogen or lower alkyl; each R^6 is individually hydrogen, lower alkyl, hydroxy, (hydroxy)lower alkyl, lower alkoxy, benzyloxy, lower alkanoyloxy, nitro or halo, R^7 is hydrogen, lower alkyl or lower alkenyl, X is oxy and thio, Y is carbonyl, $-(CH_2)_{1-3}$ -, $-(C_1-C_3)$ alkyl(CO)-, or $-(CH_2)_{1-3}SO_2$ -; Z is hydroxy, lower alkoxy, (C_2-C_4) acyloxy, $-N(R^8)(R^9)$, phenylamino, $(\omega-(4-\text{pyridyl})(C_2-C_4)$ alkoxy), $(\omega-((R^8)(R^9))$ amino)(C_2-C_4 alkoxy), an amino acid ester of $(\omega-(HO)(C_2-C_4))$ alkoxy, $-N(R^8)CH(R^8)CO_2H$, 1'-D-glucuronyloxy, $-SO_3H$, $-PO_4H_2$, -N(NO)(OH), $-SO_2NH_2$, $-PO(OH)(NH_2)$, $-OCH_2CH_2N(CH_3)_3^+$, or tetrazolyl; wherein R^8 and R^9 are each H, (C_1-C_3) alkyl or together with N are a 5- or 6-membered heterocyclic ring comprising 1-3 $N(R^8)$, S or nonperoxide O; C0; C1, C2, C3, C3, C4, C5, C6, C7, C8, C8, C9, C9,