Tarea 2 Geometría Moderna II

15 de marzo de 2019

1. Sean A y B dos puntos en el plano tales que $A \neq B$, $\zeta(A,\alpha)$, $\zeta(B,\beta)$ tales que $\zeta(A,\alpha) \cap \zeta(B,\beta) = \emptyset$ y una no contenga a la otra. También sea l una recta incidente en A y m la recta paralela a l por B; $l \cap \zeta(A,\alpha) = \{P,Q\}, m \cap \zeta(B,\beta) = \{R,S\}.$

Demostrar: 1) $\overline{PR} \cap \overline{SQ} \cap \overline{AB} \neq \emptyset$.

- 2) 1) $\overline{PS} \cap \overline{QR} \cap \overline{AB} \neq \emptyset$
- 3) n es tangente a $\zeta(A,\alpha)$ por alguno de los puntos anteriores $\Leftrightarrow n$ es tangente a $\zeta(B,\beta)$.
- 2. Si $I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(B,\beta)$, entonces $\{\zeta(P,\rho),\zeta(A,\alpha),\zeta(B,\beta)\} \subset \Gamma$, donde Γ es la familia de circunferencias generada por $\zeta(A,\alpha),\zeta(B,\beta)$
- 3. Si tenemos $\zeta(A,\alpha),\zeta(B,\beta)$ tales que una esté contenida en la otra, entonces ¿qué centro de similitud funciona como centro de $\zeta(P,\rho)$?, donde $I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(B,\beta)$
- 4. Encontrar $\zeta(P,\rho)$ tal que: $I_{\zeta(P,\rho)}[\zeta(A,\alpha)] = \zeta(C,\gamma)$ y además $I_{\zeta(P,\rho)}[\zeta(B,\beta)] = \zeta(C,\gamma)$
- 5. Sean $\zeta(A, \alpha)$ y P un punto en el plano.

Si
$$I_{\zeta(A,\alpha)}(P) = P'$$
 y $\zeta(A,\alpha) \cap \overline{PP'} = \{R,S\}$, entonces $\overline{PP'}\{P,P';R,S\} = -1$

- 6. Si una circunferencia es invertida en una circunferencia, ¿el centro de la primera es invertido en la segunda?
- 7. Sean $\{A, P, Q\}$ un conjunto de puntos en posición general, $\zeta(A, \alpha)$, $I_{\zeta(A,\alpha)}(P) = P'$ y $I_{\zeta(A,\alpha)}(Q) = Q'$. Demostrar que:
 - 1) $\triangle APQ \cong \triangle AP'Q'$.
 - 2) $\{P, P', Q, Q'\} \in \zeta(D, \delta)$, donde $\zeta(D, \delta)$ es ortogonal a $\zeta(A, \alpha)$.