

## 4.3 PCA

CSDN学院 2017年10月



#### ▶大纲



- PCA原理
- Scikit learn中的PCA实现
- PCA案例分析



#### ▶主成分分析



- 主成分分析 (Principal Components Analysis, PCA) 是由 Hotelling于1933年首先提出,亦被称为Karhunen-Loéve变换  $(KLT)_{\bullet}$
- 动机:多个变量之间往往存在着一定程度的相关性,可以 通过线性组合的方式,从其中提取信息。
- 主成分分析:将原始的D维数据投影到低维空间,并尽可 能保留更多信息
  - 投影后的方差最大最小化重构平方误差



从而达到降维的目的:用较少的主成分得到较多信息

### ▶ 例:原始数据



| Height | Weight |
|--------|--------|
| 65     | 170    |
| 75     | 188    |
| 60     | 150    |
| 70     | 170    |
| 56     | 130    |
| 80     | 203    |
| 68     | 160    |
| 50     | 110    |
| 40     | 80     |
| 50     | 153    |
| 69     | 148    |
| 62     | 140    |
| 76     | 164    |
| 64     | 120    |





#### ▶坐标旋转



• 考虑(可逆)变换

$$\theta = Ax$$

$$\mathbf{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}, \phi = \arctan 2.5$$

$$\mathbf{A} = \begin{bmatrix} 0.37139068 & 0.92847669 \\ -0.92847669 & 0.37139068 \end{bmatrix}$$



#### ●变换后的序列



| First Coordinate | Second Coordinate |
|------------------|-------------------|
| 182              | 3                 |
| 202              | 0                 |
| 162              | 0                 |
| 184              | -2                |
| 141              | -4                |
| 218              | 1                 |
| 174              | -4                |
| 121              | -6                |
| 90               | <b>-</b> 7        |
| 161              | 10                |
| 163              | <b>-</b> 9        |
| 153              | -6                |
| 181              | <b>-</b> 9        |
| 135              | -15               |





#### ▶降维



• 抛弃坐标第二维...,维度可降低50%!



#### ▶ 例:重构序列



| Height | Weight |
|--------|--------|
| 65     | 170    |
| 75     | 188    |
| 60     | 150    |
| 70     | 170    |
| 56     | 130    |
| 80     | 203    |
| 68     | 160    |
| 50     | 110    |
| 40     | 80     |
| 50     | 153    |
| 69     | 148    |
| 62     | 140    |
| 76     | 164    |
| 64     | 120    |

| Height | Weight |
|--------|--------|
| 68     | 169    |
| 75     | 188    |
| 60     | 150    |
| 68     | 171    |
| 53     | 131    |
| 81     | 203    |
| 65     | 162    |
| 45     | 112    |
| 34     | 84     |
| 60     | 150    |
| 61     | 151    |
| 57     | 142    |
| 67     | 168    |
| 50     | 125    |

原始值
重构值



#### ▶ 例:误差分析



$$\{\hat{x}_i\}$$
 = 重构序列

$$\hat{\theta}_i = \begin{cases} \theta_i & i = 0, 2, 4, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^{N} (x_i - \hat{x}_i)^2 = \sum_{i=1}^{N} (\theta_i - \hat{\theta}_i)^2$$

- 误差取决于被置为0的那些 $\theta$ 的幅值
  - 如果幅值很小,则误差也很小
  - 即大多数信息在每个数据对的第一个元素中



#### ►PCA算法



• 给定数据  $\{x_1, ..., x_N\}$  , 计算协方差矩阵  $\Sigma$ 

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

- PCA 的基向量 =  $\Sigma$  的特征向量
- 大的特征值 ⇒ 更重要的特征向量



#### **PCA 算法**



#### PCA algorithm(X, K): 前K 个特征值/特征向量

#X为 $D \times N$ 数据矩阵(注意和一般我们记X为 $N \times D$ 的矩 阵), N为样本数目, D为特征维数 # 每个数据点  $\mathbf{x}_i =$ 列向量, i=1..N

- 计算均值  $\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$  (每维特征的均值)
- $X \leftarrow 每个列向量x, 减去均值 <math>\overline{x}$  (数据中心化)
- 计算协方差矩阵  $\Sigma \leftarrow X X^T$
- 计算Σ的特征值/特征向量 $\{\lambda_j, \mathbf{u}_i\}_{i=1..D}$ ,且...  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D$

 $\{\lambda_i, \mathbf{u}_i\}_{i=1..K}$  #前K个主成分

#### ▶证明:最小损失



•  $\mathbf{o}\mathbf{x} \in \mathbb{R}^D$ 为D维向量

• 
$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1^T \\ \dots \\ \mathbf{u}_D^T \end{pmatrix} \in \mathbb{R}^{D \times D}$$
 为正交矩阵,  $\mathbf{U}\mathbf{U}^T = \mathbb{I}_D$ 
•  $\mathbf{y} \doteq \mathbf{U}\mathbf{x}, \quad \mathbf{x} = \mathbf{U}^T\mathbf{y} = \sum_{j=1}^D \mathbf{u}_j y_j$ 

- 则重构为  $\hat{\mathbf{x}} \doteq \sum_{j=1}^{K} \mathbf{u}_{j} y_{j} (K < D)$ ,即用K个基向量近似 $\mathbf{x}$
- 重构误差为  $\varepsilon^2 = \mathbb{E}(\|\mathbf{x} \hat{\mathbf{x}}\|^2) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i \hat{\mathbf{x}}_i\|^2$  所以PCA的目标函数为:arg min  $\varepsilon^2$ , s.t.  $\mathbf{U}\mathbf{U}^T = \mathbb{I}_D$

#### ▶ 证明:最小损失

$$\mathbf{y} \doteq \mathbf{U}\mathbf{x}, \quad \mathbf{x} = \mathbf{U}^T\mathbf{y} = \sum_{j=1}^{D} \mathbf{u}_j y_j$$
 不止 手代

• 
$$\varepsilon^2 = \mathbb{E}\left(\left\|\mathbf{x} - \hat{\mathbf{x}}\right\|^2\right) = \mathbb{E}\left(\left\|\sum_{j=1}^D \mathbf{u}_j y_j - \sum_{j=1}^K \mathbf{u}_j y_j\right\|^2\right)$$

$$= \mathbb{E}\left(\sum_{j=K+1}^{D} y_{j} \mathbf{u}_{j}^{T} \mathbf{u}_{j} y_{j}\right) = \mathbb{E}\left(\sum_{j=K+1}^{D} y_{j}^{2}\right)$$

$$= \sum_{j=K+1}^{D} \mathbb{E}\left(\left(\mathbf{u}_{j}^{T}\mathbf{x}\right)\left(\mathbf{x}^{T}\mathbf{u}_{j}\right)\right)$$

$$= \sum_{j=1}^{D} \mathbf{u}_{j}^{T} \mathbb{E}(\mathbf{x}\mathbf{x}^{T}) \mathbf{u}_{j}$$

$$=\sum_{j=1}^{D}\mathbf{u}_{j}^{T}\mathbf{\Sigma}\mathbf{u}_{j}$$
 (因为x已经中心化)

#### ▶证明:最小损失



- PCA目标为:  $\arg\min \varepsilon^2$ , s.t.  $\mathbf{U}\mathbf{U}^T = \mathbb{I}_D$
- 用拉格朗日乘子法,得到

$$L(\mathbf{U}, \boldsymbol{\lambda}) = \varepsilon^{2} - \sum_{j=K+1}^{D} \lambda_{j} \left( \mathbf{u}_{j}^{T} \mathbf{u}_{j} - 1 \right)$$

$$= \sum_{j=K+1}^{D} \mathbf{u}_{j}^{T} \boldsymbol{\Sigma} \mathbf{u}_{j} - \sum_{j=K+1}^{D} \lambda_{j} \left( \mathbf{u}_{j}^{T} \mathbf{u}_{j} - 1 \right)$$

$$\frac{\partial L(\mathbf{U}, \boldsymbol{\lambda})}{\partial \mathbf{u}_j} = 2\boldsymbol{\Sigma} \mathbf{u}_j - 2\lambda_j \mathbf{u}_j = 0$$



#### ▶证明:最小损失



$$\frac{\partial L(\mathbf{U}, \boldsymbol{\lambda})}{\partial \mathbf{u}_{j}} = 2\boldsymbol{\Sigma} \mathbf{u}_{j} - 2\lambda_{j} \mathbf{u}_{j} = 0 \qquad \Longrightarrow \boldsymbol{\Sigma} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

• 即 $\left[\mathbf{u}_{j}, \lambda_{j}\right]$ 为 $\Sigma$ 的特征向量和特征值

$$\varepsilon^{2} = \sum_{j=K+1}^{D} \mathbf{u}_{j}^{T} \mathbf{\Sigma} \mathbf{u}_{j} = \sum_{j=K+1}^{D} \mathbf{u}_{j}^{T} \lambda_{j} \mathbf{u}_{j} = \sum_{j=K+1}^{D} \lambda_{j}$$

• 因此当  $\lambda_{K+1},...,\lambda_D$  为 $\Sigma$ 的最小的特征值且  $\mathbf{u}_{K+1},...,\mathbf{u}_D$  为对应的特征向量时,重构残差 $\varepsilon^2$ 最小。



#### ▶证明:最大投影后方差



- $\mathbf{y} = \mathbf{u}^T \mathbf{x},$ 假设u为投影方向,则x投影后为
- 投影后的方差为

$$\sum_{i=1}^{N} (\mathbf{y}_{i} - \overline{y})^{2} = \sum_{i=1}^{N} (\mathbf{u}^{T} \mathbf{x}_{i} - \mathbf{u}^{T} \overline{\mathbf{x}})^{2} = \mathbf{u}^{T} \mathbf{\Sigma} \mathbf{u}$$
• 即目标函数为:  $\arg \max \mathbf{u}^{T} \mathbf{\Sigma} \mathbf{u}$ ,  $s.t.$   $\mathbf{u}^{T} \mathbf{u} = 1$ 

- 采用拉格朗日乘子法,得到拉格朗日函数为  $L(\mathbf{u},\lambda) = \mathbf{u}^T \mathbf{\Sigma} \mathbf{u} - \lambda (\mathbf{u}^T \mathbf{u} - 1)$
- 求偏导,得到

$$\frac{\partial L(\mathbf{u},\lambda)}{\partial \mathbf{u}} = 2\mathbf{\Sigma}\mathbf{u} - 2\lambda\mathbf{u} = 0 \quad \Rightarrow \mathbf{\Sigma}\mathbf{u} = \lambda\mathbf{u}$$

当λ为Σ的最大的特征值且u为对应的特征向量时,投影后的方差最大。

#### ► PCA算法: SVD



• 也可以对中心化后的数据矩阵X进行SVD分解实现PCA

$$\mathbf{X}_{N\times D} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}}$$





#### ▶回忆:SVD分解



#### 右奇异向量 奇异值矩阵 左奇异向量

- X的SVD分解:  $\mathbf{X}_{N\times D} = \mathbf{U}_{N\times N} \mathbf{S}_{N\times D} \mathbf{V}_{D\times D}^T$
- 将矩阵X的转置 $X^T * X$ ,将会得到一个方阵,对这个方阵 求特征值(特征值只对方阵有意义):

$$\left(\mathbf{X}_{D\times N}^{T}\mathbf{X}_{N\times D}\right)\mathbf{v}_{j}=\lambda_{j}\mathbf{v}_{j}$$

- 这里得到的v,就是上面的右奇异向量。
- 此外,还可以得到:  $\sigma_i = \sqrt{\lambda_i}$

$$\mathbf{u}_{j} = \frac{1}{\sigma_{j}} \mathbf{X} \mathbf{v}_{j}$$

#### ▶选择主成分的数目



- 第k个主成分对方差的贡献率为: $\lambda_k / \sum_{j=1}^{D} \lambda_j$ 
  - 前k个主成分贡献率的累计值称为累计贡献率。
- 主成分数目通常有两种方式:
  - 直接确定主成分数目
  - 根据主成分的累计贡献率确定主成分数目,如累计贡献率大于85%



#### ▶大纲



- PCA原理
- Scikit learn中的PCA实现
- PCA-案例



#### ► Scikit learn 中PCA的实现



- from sklearn.decomposition import PCA
  - PCA是一种线性降维技术,采用 SVD对数据进行处理,保留最重要的前 K个奇异值向量,用较低维度空间对原数据集进行映射
  - PCA 类的实现采用 scipy.linalg 来实现 SVD ,只作用于密集矩阵 ,并且不能扩展到高维数据。对于 n 维 的 n 个数据 , 时间复杂度是 O(n^3)。
- PCA的构造函数:

sklearn.decomposition.PCA(n\_components=None, copy=True, whiten=False, svd\_sol ver='auto', tol=0.0, iterated\_power='auto', random\_state=None)



#### ►PCA参数



- n\_components: int 或者 string
  - 缺省: None, 所有成分被保留
  - int: 要保留的主成分个数K
  - String:如 $n_components='mle'$ ,将自动选取特征个数K,使得满足所要求的方差百分比
- copy: True或者False,表示在运行算法时是否将原始训练数据复制一份
  - 缺省时默认为True
  - True: 将保持原始数据不变, False 则直接在原始数据上进行计算
- whiten:白化,是否使得每个特征具有相同的方差
  - 缺省: False



#### ►PCA参数



- svd solver: PCA实现算法
  - auto: 根据数据X的形状和主成分的数目自动选择实现算法
    - 如果输入数据大于500x500 且主成分数目小于80% 的维数 (N<sub>min</sub>=min(n<sub>samples</sub>, n<sub>features</sub>)), 采用更有效的 'randomized'方法
    - 其他情况:先计算全部SVD,然后截断
  - full:调用标准的LAPACK计算全部SVD(scipy.linalg.svd),然后截断
  - arpack:调用ARPACK 计算截断K个成分的SVD ( scipy.sparse.linalg.svds
  - randomized:采用Halko提出的方法计算randomized SVD
- 记 $N_{\text{max}} = \max(n_{\text{samples}}, n_{\text{features}})$ ,  $N_{\text{min}} = \min(n_{\text{samples}}, n_{\text{features}})$ , randomized SVD的计算复杂度为  $O\left(N_{\text{max}}^2 \times n_{\text{components}}\right)$  完全PCA的计算复杂度为  $O\left(N_{\text{max}}^2 \times N_{\text{min}}\right)$

#### ► PCA 类包含的属性



- components\_: array, [n\_components, n\_features]: 主成分
- explained\_variance\_ratio\_: array, [n\_components]: 保留的K
   个成分各自的方差百分比
- n\_components\_: 主成分的个数K
  - 当它被设为'mle'或者0-1的数字时,表示选中方差百分比和的比重
- noise\_variance\_:



#### ▶使用 PCA 的方法流程



- 通过参数实例化 PCA 类,通常要定义要保留的维数 n\_components
- 调用fit()函数对数据进行训练
- 然后调用 transform()方法返回降维后的数据



#### ▶大纲



- PCA原理
- Scikit learn中的PCA实现
- PCA案例



#### ▶案例分析



• 手写数字识别





# THANK YOU



