Álgebra Linear B

COM+MEC

Teste 3 – ano lectivo 2006/2007 - 11 de Dezembro de 2006

Departamento de Matemática para a Ciência e Tecnologia – Guimarães – Universidade do Minho

Curso: Nóme: Número: Classificação:

A prova tem a duração de 45 minutos, é sem consulta e não é permitida a utilização de máquina de calcular. Durante a realização da prova os telemóveis devem estar desligados e só se pode abandonar a sala passados 20 minutos do seu início. A prova é constituído por dois grupos e termina com a palavra "Fim". No início de cada grupo indicam-se as cotações na escala de 0 a 200.

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na folha do enunciado da prova sem apresentar cálculos nem justificações qual das cinco proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 16; nenhuma proposição seleccionada ou resposta errada: 0.

- I.1 Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in M_{4n \times 4n}(\mathbb{R}), \ a_{ij} = \begin{cases} (-1)^i & \text{se } i \geq j, \\ 0 & \text{se } i < j. \end{cases}$ Assinale a opção correcta.
 - (a) $\det(A) = -1$.
 - (b) $\det(A) = 0$.
 - (c) $\det(A) = 1$.
 - (d) $\det(A) = 4n$.
 - (e) Nenhuma das alíneas anteriores.
- I.2 Considere a matriz $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Assinale a opção correcta.
 - (a) $adj(A) = I_4$.
 - (b) $A \in fe(A)$ mas $fer(A) \neq A$.
 - (c) $\det(A) = 1$.
 - (d) A é uma matriz ortogonal.
 - (e) Nenhuma das alíneas anteriores.
- I.3 Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 3 & 3 & k_1 & 5 \\ 3 & 0 & -3 & -2 \end{bmatrix}, k_1 \in \mathbb{R}$, e cujo vector dos termos independentes é $b = \begin{bmatrix} 2 \\ 3 \\ k_2 \end{bmatrix}, k_2 \in \mathbb{R}$.
 - (a) Assinale a opção correcta.
 - i. Se $k_1 = 1$ e $k_2 = 3$ o sistema (S) é possível e determinado.
 - ii. Se $k_1 = 3$ e $k_2 = 3$ o sistema (S) é possível e indeterminado.

iii. Se $k_1 = 3$ e $k_2 = 1$ o sistema (S) é possível e indeterminado.

iv. Se $k_1 = 1$ e $k_2 = 1$ o sistema (S) é impossível.

v. Nenhuma das alíneas anteriores.

(b) Assinale a opção correcta.

i. Se $k_1 \in [1,2]$ e $k_2 \in [2,3]$ o sistema (S) é possível e determinado.

ii. Se $k_1 \in [1,3]$ e $k_2 \in [1,2]$ o sistema (S) é possível e indeterminado.

iii. Se $k_1 \in [0,1]$ e $k_2 \in [0,1]$ o sistema (S) é impossível.

iv. Se $k_1 \in [1,2]$ e $k_2 \in [0,3]$ o sistema (S) é possível e determinado.

v. Nenhuma das alíneas anteriores.

I.4 Considere as seguintes operações

$$\oplus: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$((x_1, x_2), (y_1, y_2)) \longmapsto (x_1, x_2) \oplus (y_1, y_2) = (x_1, x_2),$$

e proposições

P1: $\forall x, y \in \mathbb{R}^2 : x \oplus y = y \oplus x$.

P2: $\forall x, y, z \in \mathbb{R}^2 : (x \oplus y) \oplus z = x \oplus (y \oplus z).$

P3: $\forall \alpha \in \mathbb{R}, \forall x, y \in \mathbb{R}^2 : \alpha \odot (x \oplus y) = \alpha \odot x \oplus \alpha \odot y$.

P4: $\forall \alpha, \beta \in \mathbb{R}, \forall x \in \mathbb{R}^2 : (\alpha \cdot \beta) \odot x = \alpha \odot (\beta \odot x).$

Assinale a opção correcta.

- (a) A proposição P1 é verdadeira e a proposição P2 é falsa.
- (b) P1, P2, P3 e P4 são proposições verdadeiras.
- (c) A proposição P3 é verdadeira e a proposição P1 é falsa.
- (d) P1 e P4 são proposições falsas.
- (e) Nenhuma das alíneas anteriores.

I.5 Considere as seguintes operações

$$\bigoplus : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto x \oplus y = x + y + 1,$$

e proposições

P1: $\forall x, y, z \in \mathbb{R}^2 : (x \oplus y) \oplus z = x \oplus (y \oplus z)$.

P2: \exists^1 elemento de \mathbb{R} (representado por Δ), $\forall x \in \mathbb{R} : x \oplus \Delta = x$.

P3: $\forall \alpha \in \mathbb{R}, \forall x, y \in \mathbb{R}^2 : \alpha \odot (x \oplus y) = \alpha \odot x \oplus \alpha \odot y$.

P4: $\forall \alpha, \beta \in \mathbb{R}, \forall x \in \mathbb{R} : (\alpha + \beta) \odot x = \alpha \odot x \oplus \beta \odot x$.

Assinale a opção correcta.

- (a) A proposição P1 é verdadeira e a proposição P2 é falsa.
- (b) P1, P2, P3 e P4 são proposições verdadeiras.
- (c) A proposição P3 é verdadeira e a proposição P1 é falsa.
- (d) P1 e P4 são proposições falsas.
- (e) Nenhuma das alíneas anteriores.

I.6 Assinale a opção correcta.

- (a) $F_1 = \{(a, 0, a) | a \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^3 .
- (b) $F_2 = \{(a,1,a) | a \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^3 .
- (c) $F_3 = \{(0, 0, a^2) | a \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^3 .
- (d) $F_4 = \{(1,1,1)\}$ é um subespaço de \mathbb{R}^3 .
- (e) Nenhuma das alíneas anteriores.

I.7 Assinale a opção correcta.

- (a) $F_1 = \{A \in M_{n \times n}(\mathbb{R}) | \det(A) = 0\}$ é um subespaço de $M_{n \times n}(\mathbb{R})$.
- (b) $F_2 = \{A \in M_{n \times n}(\mathbb{R}) | \det(A) \neq 0\}$ é um subespaço de $M_{n \times n}(\mathbb{R})$.
- (c) $F_3 = \{A \in M_{n \times n}(\mathbb{R}) | A^2 = I_n \}$ é um subespaço de $M_{n \times n}(\mathbb{R})$.
- (d) $F_4 = \{A \in M_{n \times n}(\mathbb{R}) | A = A^T \}$ é um subespaço de $M_{n \times n}(\mathbb{R})$.
- (e) Nenhuma das alíneas anteriores.

$\overline{Grupo\ II-Complete,\ na\ folha\ do\ enunciado\ da\ prova\ sem\ apresentar\ c\'alculos\ nem\ justifica\~ções,\ as\ seguintes\ frases}$
$\label{eq:control_control_control} \mbox{de modo a obter proposições verdadeiras. Cotações — resposta certa: } (7+7+7)+15+18+18; \mbox{ resposta em branco ou }$
errada: 0.
II.1 Condidere a matriz $A = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}$.
(a) $adj(A) = $.
$(\mathrm{b}) \ \det(A) {=} \boxed{\hspace{2cm}}.$
(c) Se a matriz A for invertível, indique a sua inversa. Caso contrário, responda "0":
II.2 Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ e cujo vector dos termos independentes expressiva de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ e cujo vector dos termos independentes expressiva de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ e cujo vector dos termos independentes expressiva de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$ e cujo vector dos termos independentes expressiva de equações lineares cuja matriz dos coeficientes expressiva de equações lineares cuja matriz dos coeficientes expressiva de equações lineares cuja matriz dos coeficientes expressiva de equações
dentes é $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Então, $CS_{(S)} =$
II.3 Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ e cujo vector dos termos
independentes é $b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Então, $CS_{(S)} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
II.4 Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ e cujo vector dos termos
independentes é $b = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right]$. Então, $CS_{(S)} =$
Fim.