

Introduction to Foundation Models

Kun Yuan

Center for Machine Learning Research @ Peking University

Contents

Foundation Models

Linear regression; Logistic regression; Multi-class regression; Neural network

Word embedding; Language models; RNN; Seq2seq; Transformer; Decoder-only LLMs; MOE

CNN; ViT; Clip; Dalle; Diffusion; DiT;

Pre-training

Basics in optimization; Gradient descent; Forward-backward propagation; Stochastic gradient descent;

Adaptive gradient descent; Distributed pretraining; Mixed-precision pre-training; FlashAttention

Post-training and Inference

SFT; RLHF; PEFT; Alignment; KV Cache

Application

Chain of thought; Tree of though; Prompt Engineering; Retrieval -agmented generation; LLM agents

Grading policy

• Homework (~30%)

• Mid-term (~30%)

Final project (~40%)

Teaching assistants

宋奕龙

Leading TA

商秋林

胡婕

胡奕鹏

A Brief Introduction to Deep Learning

Kun Yuan

Center for Machine Learning Research @ Peking University

Multi-classification

Multi-classification is very common in real life

[CS231n: Deep Learning for Computer Vision]

Center of Machine Learning Research

Multi-classification

• Face recognition is one of the most successful multi-classification tasks

Predict the score

- We first collect the dataset $\{h_i, y_i\}_{i=1}^N$ where $h_i \in \mathbb{R}^d$ is the feature and $y_i \in \{1, \dots, C\}$ is the label
- We consider a linear model to predict the score of each class

$$s = Xh \in \mathbb{R}^C$$

where $X \in \mathbb{R}^{C \times d}$ is the model parameters to learn and s_i is the score that h belongs to class i

Predict the probability

• Given the score vector s, the probability of each class with the softmax function is as follows:

$$p_i = \frac{\exp(s_i)}{\sum_{j=1}^{C} \exp(s_j)} \in (0, 1)$$

- Given the model parameters X, we can predict the class that feature h belongs to
- But a bad model X will result in incorrect predictions

Cross-entropy

- How to achieve a good model X that can provide accurate predictions?
- We need to train the model so that the discrepancy between ground-truth and predictions are minimized

How to measure the discrepancy?

Cross-entropy

• Cross entropy can measure the difference between two distributions $p \in \mathbb{R}^d$ and $q \in \mathbb{R}^d$

$$H(oldsymbol{p},oldsymbol{q}) = -\sum_{j=1}^d p_j \log(q_j)$$

Smaller cross entropy indicates smaller difference between p and q

Examples:

$$\mathbf{p} = (1, 0, 0, 0)$$
 $\mathbf{q} = (0.25, 0.25, 0.25, 0.25)$ \longrightarrow $H(\mathbf{p}, \mathbf{q}) = 2$
 $\mathbf{p} = (1, 0, 0, 0)$ $\mathbf{q} = (0.91, 0.03, 0.03, 0.03)$ \longrightarrow $H(\mathbf{p}, \mathbf{q}) = 0.136$

Multi-classification: Loss function

A good model X will minimize the discrepancy between predictions and ground-truth

$$X^{\star} = \arg\min_{X} \left\{ \frac{1}{N} \sum_{i=1}^{N} H(p_i, q_i) \right\}, \quad \text{where} \quad p_i = \operatorname{softmax}(Xh_i)$$
 prediction ground-truth feature of the i-th sample

• Once a good model X^* is achieved, we can make predictions as follows

$$p = \operatorname{softmax}(X^*h) \longrightarrow h \text{ belongs to class } j^* = \arg\max_j \{p_j\}$$

Deep neural network (DNN)

- A deep neural network (DNN) typically includes a feature extractor and a classifier
- Well-trained DNN can make precise predictions

Example: convolutional neural network

Feature extractor

Multi-Classifier

< 15 >

DNN model

- We model DNN as $h(x;\xi):\mathbb{R}^d\to\mathbb{R}^c$ that maps input data ξ to a probability \hat{y}
 - $x \in \mathbb{R}^d$ is the DNN model parameter to be trained
 - ξ is a random input data sample
 - c is the number of classes

Center of Machine Learning Research

Training DNN can be formulated into an optimization problem

• Define $L(\hat{y},y) = -\sum_{j=1}^d y_{[j]} \log(\hat{y}_{[j]})$ as the loss function to measure the difference between predictions and the ground-truth label, where $y_{[j]}$ is the j-th element in y

• The model parameter x^* can be achieved by solving the following optimization problem

$$x^{\star} = \arg\min_{x \in \mathbb{R}^d} \left\{ \mathbb{E}_{(\xi,y) \sim \mathcal{D}} \Big[L\big(h(x;\xi),y\big) \Big] \right\}$$
 data distribution prediction real label

Training DNN can be formulated into an optimization problem

• The model parameter x^\star can be achieved by solving the following optimization problem

$$x^{\star} = \arg\min_{x \in \mathbb{R}^d} \left\{ \mathbb{E}_{(\xi,y) \sim \mathcal{D}} \Big[L\big(\underline{h}(x;\xi),\underline{y}\big) \Big] \right\}$$
 data distribution prediction real label

• If we define $\boldsymbol{\xi}=(\xi,y)$ and $F(x;\boldsymbol{\xi})=L(h(x;\xi),y)$, the above problem becomes

$$x^* = \arg\min_{x \in \mathbb{R}^d} \left\{ \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{D}} [F(x; \boldsymbol{\xi})] \right\}$$

Most optimization researchers use the second formulation as the staring point to develop algorithms

Highly-nonconvex cost functions; cannot find global minima; trapped into local minimum

VGG-56

VGG-110

[Visualizing the loss landscape of neural nets]

• The model size is large, i.e., $x \in \mathbb{R}^d$ is of extremely high dimensions

The size of the dataset is huge

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Table 1: **Pre-training data.** Data mixtures used for pre-training, for each subset we list the sampling proportion, number of epochs performed on the subset when training on 1.4T tokens, and disk size. The pre-training runs on 1T tokens have the same sampling proportion.

- Crawled data from websites; in both high quality and low quality

High-quality data

[LLaMA: Open and Efficient Foundation Language Models]

DNN training = Non-convex training + Huge dimensions + Huge dataset

Efficient and scalable pretraining approaches are in urgent need