Solution: Bayesian Estimation of the Parameters of a Gaussian Distribution

Assumptions:

- Univariate Case: The data $X = \{x_t\}, t=1,...,n$ is the univariate data, with the i.i.d. samples.
- Gaussian (Normal) Distribution: The sample is drawn from the Gaussian (Normal) distribution, $p(x) \sim N(\mu, \sigma^2)$, with parameters μ and σ^2 .
- Parameters: Unknown mean, known variance
- Priors: The conjugate prior for μ is Gaussian, $p(\mu) \sim N(\mu_0, \sigma_0^2)$

Assignment:

- 1. Derive the formula for the posterior distribution of μ
- 2. Show that the posterior distribution is the Gaussian, $p(\mu|X) \sim N(\mu_n, \sigma_n^2)$ Answer: Combined answer for Q1 and Q2.

$$\begin{split} p(\mu|X) &\propto p(X|\mu)p(\mu) \\ p(\mu) &\propto exp\left[\frac{1}{-2\sigma_0^2}(\mu - \mu_0)^2\right] \\ p(X|\mu) &\propto exp\left[\frac{1}{-2\sigma^2}\sum_i(x_i - \mu)^2\right] \\ p(\mu|X) &\propto exp\left[\frac{1}{-2\sigma_0^2}(\mu - \mu_0)^2\right]exp\left[\frac{1}{-2\sigma^2}\sum_i(x_i - \mu)^2\right] \\ p(\mu|X) &\propto exp\left[\frac{1}{-2\sigma_0^2}(\mu^2 - 2\mu\mu_0 + \mu_0^2)\right]exp\left[\frac{1}{-2\sigma^2}\sum_i(x_i^2 - 2x_i\mu + \mu^2)\right] \\ p(\mu|X) &\propto exp\left[\frac{1}{-2\sigma_0^2}(\mu^2 - 2\mu\mu_0 + \mu_0^2)\right]exp\left[\frac{1}{-2\sigma^2}\sum_i(x_i^2 - 2x_i\mu + \mu^2)\right] \\ p(\mu|X) &\propto exp\left[\frac{1}{-2}(\mu^2\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right) - 2\mu\left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_i x_i}{\sigma^2}\right) + \frac{\mu_0^2}{\sigma_0^2} + \frac{\sum_i x_i^2}{\sigma^2}\right)\right] \end{split}$$

In the above equation, we can observe that posterior distribution of μ is quadratic in the exponent. Hence, it comes from some Gaussian distribution with mean μ_n and variance σ_n^2 .

3. Show the derivation and the final estimate for μ_n and $1/\sigma_n^2$

A Gaussian distribution with mean
$$\mu_n$$
 and variance σ_n^2 is given by,
$$p(\mu|\mu_n) \propto exp\left[\frac{1}{-2\sigma_n^2}(\mu-\mu_n)^2\right] = exp\left[\frac{1}{-2\sigma_n^2}(\mu^2-2\mu\mu_n+\mu_n^2)\right]$$

Comparing the terms of μ^2 and $-2\mu\mu_n$ from the previous question we get,

$$\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}$$

$$\begin{split} \sigma_n^2 &= \frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2} \\ \frac{\mu_n}{\sigma_n^2} &= \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_i x_i}{\sigma^2}\right) = \left(\frac{\mu_0}{\sigma_0^2} + \frac{n \bar{x}}{\sigma^2}\right) \\ \mu_n &= \left(\frac{\mu_0}{\sigma_0^2} + \frac{n \bar{x}}{\sigma^2}\right) \sigma_n^2 \\ \mu_n &= \left(\frac{\sigma^2 \mu_0}{\sigma^2 + n \sigma_0^2} + \frac{n \bar{x} \sigma_0^2}{\sigma^2 + n \sigma_0^2}\right) \end{split}$$

In the above equation, we can rewrite $\sum_i x_i = n\bar{x}$.

4. If the mean of the posterior density (which is the MAP estimate), μ_n is written as the weighted average of the prior mean, μ_0 , and the sample (likelihood) mean, \overline{x} , then what are the formulas for the weights?

<u>Answer:</u> From the previous question, we can identify the weights for the prior mean, μ_0 , w_0 , and the sample (likelihood) mean \bar{x} , w_1 .

$$w_0 = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2}$$
$$w_1 = \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2}$$

 $w_0=\frac{\sigma^2}{\sigma^2+n\sigma_0^2}$ $w_1=\frac{n\sigma_0^2}{\sigma^2+n\sigma_0^2}$ 5. Are the weights in Question #4 directly or inversely proportional to their variances (iustify)?

Answer: As shown in the previous answer, the weights are inversely proportional to their variances.

6. Do the weights in Questions #4 sum up to 1 (justify)?

Answer: We take a sum of the weights,
$$w_0$$
 and w_1 ,
$$w_0 + w_1 = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2} + \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2} = \frac{\sigma^2 + n\sigma_0^2}{\sigma^2 + n\sigma_0^2} = 1$$

Yes, they sum to 1.

7. Is each weight between zero and one (justify)?

Answer: As per the formulas for the weights,

$$w_0 = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2}$$
$$w_1 = \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2}$$

The values of the weights, w_0 and w_1 will always range between 0 and 1. w_0 will approach 1 as the number of samples gets close to 0 and it will approach 0 as the number of samples increases. Similarly, w_1 will approach 1 as the variance σ^2 decreases and it will approach close to 0 as the number of samples increases.

8. Given your answers for Questions #4-7, what can you say about the value of μ_n w.r.t. the values of μ_0 and \overline{x} .

Answer: The value of μ_n will always lie between μ_0 and \bar{x} since the weights w_0 and w_1 will range between 0 and 1.

9. If σ^2 is known, then for the new instance x^{new} , show that $p(x^{new}|X) \sim N(\mu_n, \sigma_n^2 + \sigma^2)$ Answer:

$$p(x^{new}|X) = \int p(x^{new}|\mu)p(\mu|X)d\mu$$

$$p(x^{new}|X) = \int N(x^{new}|\mu, \sigma^2)N(\mu|\mu_n, \sigma_n^2)d\mu$$

$$p(x^{new}|X) = N(x^{new}|\mu_n, \sigma_n^2 + \sigma^2)$$

An alternative proof is as follows,

$$\begin{split} x^{new} &= x^{new} - \mu + \mu \\ x^{new} &- \mu \sim N(0, \sigma^2) \\ \mu &\sim N(\mu_n, \sigma_n^2) \\ E[x^{new} - \mu + \mu] &= E[x^{new} - \mu] + E[\mu] = 0 + \mu_n = \mu_n \\ Var[x^{new} - \mu + \mu] &= Var[x^{new} - \mu] + Var[\mu] = \sigma^2 + \sigma_n^2 \end{split}$$

Thus, we can show that $p(x^{new}|X) \sim N(\mu_n, \sigma_n^2 + \sigma^2)$.

Reference: Murphy, Kevin P. "Conjugate Bayesian analysis of the Gaussian distribution." *def* 1, no. 2σ2 (2007): 16.

10. Generate a plot that displays $p(x) \sim N(6, 1.5^2)$, prior $p(\mu) \sim N(4, 0.8^2)$, and posterior $p(\mu|X) \sim N(\mu_n, \sigma_n^2)$ for n=20 sample points. What are the values for μ_n and σ_n^2 ?

Answer:

R code:

n <- 20

 $x \leftarrow seq(0, 10, length.out=n)$

mu_x <- 6; var_x <- 1.5^2

mu_0 <- 4; var_0 <- 0.8^2

Generate samples from p(x) and prior p(mu) distributions

sample_dist <- dnorm(x, mean=mu_x, sd=sqrt(var_x))</pre>

prior_dist <- dnorm(x, mean=mu_0, sd=sqrt(var_0))</pre>

Calculate the mu_n and var_n based on the formulas in Q3

x_i <- rnorm(n, mean=mu_x, sd=sqrt(var_x))</pre>

$$var_n \leftarrow (var_x^*var_0)/(var_x + n^*var_0)$$

t1 <- (var_x*mu_0)/(var_x+n*var_0)

t2 <- (n*mean(x_i)*var_0)/(var_x+n*var_0)

mu n <- t1 + t2

Generate samples from the posterior distribution

posterior_dist <- dnorm(x, mean=mu_n, sd=sqrt(var_n))

plot(0, 0, xlim=c(0,10), ylim=c(0,1), main="Probability Density Plot", xlab="X", ylab="Probability Density")

lines(x, sample_dist, col='red')

lines(x, prior_dist, col='green')

lines(x, posterior_dist, col='blue')

Probability Density Plot

