Методы оптимизации. Семинар 9. Двойственная задача

Корнилов Никита Максимович

Московский физико-технический институт

30 октября 2025г

Задача оптимизации с ограничениями

Постановка прямой задачи оптимизации стандартной формы:

$$\min_{x \in \mathbb{R}^d} f_0(x)
s.t. f_i(x) \le 0, i = 1, ..., n,
h_j(x) = 0, j = 1, ..., m,$$
(1)

с прямой переменной $x \in \mathbb{R}^d$.

Лагранжиан

Definition (Лагранжиан)

Лагранжиан $L:\mathbb{R}^d imes\mathbb{R}^n imes\mathbb{R}^m o\overline{\mathbb{R}}$ для задачи (1) задается следующим образом:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$
 (2)

 $\lambda \in \mathbb{R}^n$ и $\nu \in \mathbb{R}^m$ мы будем называть двойственными переменными, в то время как $x \in \mathbb{R}^d$ — прямой.

(ロ) (리) (리) (토) (토) (전)

Двойственная функция

Definition (Двойственная функция по Лагранжу)

Определим двойственную функцию по Лагранжу (или просто двойственную функцию) $g:\mathbb{R}^n imes \mathbb{R}^m o \overline{\mathbb{R}}$ следующим образом:

$$g(\lambda,\nu) = \inf_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x},\lambda,\nu) = \inf_{\mathbf{x} \in \mathbb{R}^d} \left(f_0(\mathbf{x}) + \sum_{i=1}^n \lambda_i f_i(\mathbf{x}) + \sum_{j=1}^m \nu_j h_j(\mathbf{x}) \right).$$
(3)

- ullet Если при $(\lambda,
 u)$ лагранжиан L является неограниченным снизу по переменной x, то значение $g(\lambda,
 u) = -\infty$.
- $g(\lambda, \nu)$ всегда является вогнутой по переменным (λ, ν) .

4□▶ 4□▶ 4□▶ 4□▶ € 900

Нижняя оценка

Proposition

Пусть дано оптимальное значение задачи (1) p^* (может быть $-\infty$). Тогда, для любого $\lambda \succ 0$ и любого ν выполняется

$$g(\lambda,\nu) \leq p^*.$$
 (4)

Получили нижнюю оценку на оптимальное значение задачи (1).

Двойственная задача

Нижняя оценка $g(\lambda, \nu)$ зависит напрямую от λ и ν . А какова **лучшая** оценка на p^* снизу?

$$d^* = \max_{\lambda, \nu} g(\lambda, \nu),$$

 $\mathbf{s.t.} \ \lambda \succeq 0.$ (5)

Такая задача называется **двойственной задачей** к задаче (1). Эта задача является задачей выпуклой оптимизации, так как максимизация вогнутой функции и линейные ограничения λ .

|ロト 4回 ト 4 差 ト 4 差 ト 9 Q (C)

Сильная и слабая двойственности

Для оптимального значения двойственной задачи d^{*} всегда верно

$$d^* \leq p^*$$
.

Это свойство называется слабой двойственностью.

В частности, когда

$$d^*=p^*,$$

то выполняется свойство сильной двойственности.

Разрешимость и неограниченность

Proposition

Если прямая задача неограниченна снизу $(p^* = -\infty)$, то двойственная задача $g(\lambda, \nu) \equiv -\infty$.

Proposition

Если двойственная задача **неограниченна сверху** $(d^* = +\infty)$, то прямая задача **не имеет допустимых прямых точек**.

При выполнении сильной двойственности утверждения верны и в обратную сторону.

Условие Слейтера

Рассмотрим задачу с выпуклыми f_0,\ldots,f_n и линейными равенствами:

$$\min_{x} f_0(x)$$

s.t. $f_i(x) \leq 0, i = 1, \dots, n,$
 $Ax = b.$ (6)

Proposition (Условие сильной выпуклости Слейтера)

Будем говорить, что для задачи (6) выполняется условие Слейтера, если существует допустимая $x_0 \in \textbf{relint} \ \mathbf{D}$, такой что

$$f_i(x_0) < 0, i = 1, \ldots, n, Ax = b.$$

Ослабленное условие: $f_i(x) < 0$ только у не аффинных f_i .

Theorem (Теорема Слейтера)

Если для задачи (6) выполняется условие Слейтера, то тогда выполняется свойство сильной двойственности.

Другие условия сильной выпуклости

$$\min_{x} f_{0}(x)$$
s.t. $f_{i}(x) \leq 0, i = 1,..., n,$

$$h_{j}(x) = 0, j = 1,..., m.$$

- $oldsymbol{0}$ Функции ограничений f_i и h_j являются аффинными.
- ② Для точки минимума x^* градиенты всех ограничений равенств и всех *активных* ограничений неравенств (выполняется равенство нулю) линейно независимы.

Пример

Example (Решение СЛАУ минимальной нормы)

$$\min_{x \in \mathbb{R}^d} x^T x$$

s.t.
$$Ax = b$$
,

где $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$.

Примеры

Example (Задача линейного программирования)

Составьте двойственную задачу для

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax = b$,
$$x \succ 0$$
,

где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

Общий алгоритм

① Составляем лагранжиан (обратите внимание на знак $f_i(x) \le 0$):

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$

② Ищем двойственную функцию $g(\lambda, \nu) = \inf_{x \in \mathbb{R}^d} L(x, \lambda, \nu)$. Если функция f_0 и неравенства f_i выпуклые, а равенства h_j линейные, то лагранжиан $L(x, \lambda, \nu)$ выпуклый по x. Можно применять условие глобального минимума $\nabla_x L(x, \lambda, \nu) = 0$. Но осторожно с (λ, ν) , где инфинум не достигается.

В случае других f_0, f_i, h_i , надо смотреть инфинум отдельно.

© Составляем двойственную задачу(помним про $\lambda \succeq 0$):

$$\max_{\lambda,\nu}\,g(\lambda,\nu),$$

s.t.
$$\lambda \succ 0$$
.

H. М. Корнилов 30 октября 2025г 13 / 19

Примеры

Example (Задача разбиения)

Составьте двойственную задачу для

$$\min_{x \in \mathbb{R}^m} x^T W x$$

s.t.
$$x_j^2 = 1, \quad j = 1, \dots m,$$

где $W \in \mathbb{S}^m_+$.

Связь с сопряженными функциями

$$f_0^*(y) = \sup_{x \in \mathbb{R}^d} (y^T x - f_0(x)).$$

Для нахождения связи рассмотрим следующую задачу

$$\min_{x} f_0(x)$$
s.t. $Ax \leq b$,
$$Cx = d$$
.

$$g(\lambda,\nu) = -\lambda^T b - \nu^T d - f_0^* (-A^T \lambda - C^T \nu), \quad \lambda \succeq 0.$$

Для задач с линейными ограничениями, можно выписать двойственную задачу, зная лишь сопряженную функцию.

15 / 19

Н. М. Корнилов 30 октября 2025г

Примеры на сопряженные функции

Example (Решение СЛАУ с наименьшей нормой общего вида)

Составьте двойственную задачу для

$$\min_{x \in \mathbb{R}^d} ||x||$$
s.t. $Cx = d$,

где $\|\cdot\|$ - любая норма, $C \in \mathbb{R}^{m \times d}, d \in \mathbb{R}^m$.

Пример на сопряженные функции

Example (Максимизация энтропии)

Составьте двойственную задачу для

$$\min_{x \in \mathbb{R}^d} \sum_{i=1}^d x_i \log x_i$$

s.t.
$$Ax \leq b$$
,

$$\mathbf{1}^T x = 1,$$

где $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n$.

Интересные примеры

Example (Кусочно-линейная оптимизация)

Составьте двойственную задачу для

$$\min_{x \in \mathbb{R}^d} \max_{i=1,\dots,m} (a_i^T x + b_i),$$

где $a_i \in \mathbb{R}^d, b_i \in \mathbb{R}, \forall i \in \overline{1, m}$.

На практике

На практике методы работают следующим образом - происходит инициализация x^0, λ^0, ν^0 , и итеративным алгоритмом меняются сразу как прямые, так и двойственные методы. В качестве критерия остановы берут $f(x^k)-g(\lambda^k, \nu^k) \leq \epsilon$.

Поэтому, когда будет исследоваться график невязки между прямой и двойственной функцией, то станет понятно, выполняется сильная двойственность, или же нет: $f(x^k) - g(\lambda^k, \nu^k)$ должно стремиться к $p^* - d^*$ – так называемому **оптимальному двойственному зазору**, и если выполняется свойство сильной двойственности, то этот зазор на графике будет стремиться к нулю.