Experimental Design

Thomas Wolbers
Space and Aging Laboratory
Centre for Cognitive and Neural Systems

Design of functional neuroimaging studies

- Categorical designs
- Factorial designs
- Parametric designs
- fMRI adaptation
- Control conditions
- Trial timing

Subtraction logic in psychophysics

Assumption of pure insertion:

- ⇒ you can insert a component process into a task without disrupting the other components
- ⇒ you can estimate duration of a cognitive process by comparing reaction times between different conditions

F.C. Donders

T1: Simple Reaction Time

Hit button when you see a light

Detect Stimulus Press Button

T2: Discrimination Reaction Time

Hit button when light is green but not red

Detect Stimulus

Discriminate Color

Press Button

T3: Choice Reaction Time

Hit left button when light is green and right button when light is red

Detect Stimulus Discriminate Color

Choose Button

Press Button T2

Detect Stimulus Discriminate Color

Press Button

T1

Detect Stimulus

Press Button

=

Discriminate Color

Categorical Designs

SPM Course Edinburgh 2010

T3 Detect Stimulus

Discriminate Color

Choose Button Press Button

_

T2

Detect Stimulus Discriminate Color

Press Button

=

Choose Button

Background

- ⇒ pure insertion: you can insert a component process into a task without disrupting the other components
- ⇒ addtional cognitive processes always evoke the same additional activation!
- ⇒ activation due to baseline task unaffected!

Simple subtraction

you can identify functionally specialised regions with regionally specific activation differences

Serial subtraction

Question: Is inferior temporal cortex (IT) involved in phonological retrieval during object recognition?

Cognitive processes

⇒ visual analysis: occipital cortex

⇒ object recognition: ???

⇒ phonological retrieval: ???

⇒ verbal output: Broca's area

Experimental design

A say "yes" when you see an abstract image (vis. analysis, verbal output)

B say "yes" when you see a concrete object (vis. analysis, object recognition, verbal output)

C name concrete object (vis. analysis, object recognition, phonological retrieval, verbal output)

⇒ butterfly

Categorical Designs

A visual analysis verbal output	
visual analysis object recognition verbal output	visual analysis object recognition phonological retrieval verbal output

- B A ⇒ significant IT activation ⇒ object recognition!
- C B ⇒ no significant IT activation ⇒ no evidence for IT involvement in phonological retrieval!

<u>Problem:</u> unjustified assumption that IT response to object recognition is context independent!

psychophysics ≠ neurophysiology

Background

- "the whole is more than just the sum of its parts"
- cognitive processes are interdependent ⇒ task A interacts with task B, A modulates sensitivity to B ...

Factorial Designs

SPM Course Edinburgh 2010

D Name colour of abstract image (vis. analysis, phonological retrieval, verbal output)

	no phonolog. retrieval	phonolog. retrieval
no object recogn.	visual analysis verbal output	visual analysis phonological retrieval verbal output
object recognit.	visual analysis object recognition verbal output	visual analysis object recognition phonological retrieval verbal output

Interaction: (C - D) - (B - A) \Rightarrow significant IT activation

phonological retrieval modulates IT response to object recognition
 IT also involved in phonological retrieval!

Parametric Designs

	cognitive processes
categorical/factorial designs	binary
parametric designs	continuous

Systematic variation of regional activation with endo-/exogenous parameters

- ⇒ task stays the same while the amount of processing varies; thus, changes to the nature of the task are less of a problem
- ⇒ you can test for both linear (i.e.level of sensorimotor/cognitive processing) and non-linear effects (i.e. time effects)

Example 1: linear activation increase in LOC with increasing object visibility!

Example 2: Non-linear decrease of prefrontal activation over time during procedural learning!

Combining parametric and factorial designs

fMRI adaptation

 priming = reduced BOLD response to primed stimuli (i.e. repeated presentation)

repetition suppression / fMRI adaptation / priming

Priming as a tool

- increase in spatial resolution (hyperresolution)
- example: orientation tuning for face stimuli

⇒ viewpoint selectivity in the human FFA?

Priming as a tool

- fMRI voxel typically contain ten thousands of neurons
- FFA: mixture of neurons tuned to different orientations?

orientation tuning in the human FFA?

orientation tuning in the human FFA?

faces vs. objects

Grill-Spector & Malach (2001), Acta Psychol.

fMRI adaptation

Problem

- fMRI = contrastive method
 - ⇒ for many designs, you need to include adequate control conditions

Stark & Squire (2001) – When zero is not zero... *PNAS*, 98(22), 12760-12766.

"Rest" = often substantial activation in many areas!

- ⇒ reason: mental imagery / rehearsal / eye movements...
- ⇒ loss of sensitivity!

Alternatives

- 1. high congruency with experimental conditions
- 2. additional possibilities:

Stark & Squire (2001) – When zero is not zero... *PNAS*, 98(22), 12760-12766.

⇒ decision depends on experimental hypotheses!

Block Design

- analysis of entire block, not of single stimuli
- large effects
- Optimal block length: ~16sec
 - ⇒ allows enough time for signal to oscillate fully
 - ⇒ not near artifact frequencies

Event-Related Design

- analysis of single stimuli
- smaller effects
- minimal SOA: ~2sec

Advantages of event-related design

 randomised order avoids unwanted psychological effects e.g. habituation / expectancy effects, attentional decline

Trial timing

Advantages of event-related design

- randomised order avoids unwanted psychological effects e.g. habituation / expectancy effects, attentional decline
- post-hoc/subjective classification of trials
 e.g. subsequent memory effect

R = Words Later Remembered

F = Words Later Forgotten

Advantages of event-related design

- randomised order avoids unwanted psychological effects e.g. habituation and expectancy effects, attentional decline
- post-hoc/subjective classification of trials
 e.g. subsequent memory effect
- some events can only be indicated by subject (in time)
 e.g. spontaneous perceptual changes

Advantages of event-related design

- randomised order avoids unwanted psychological effects e.g. habituation and expectancy effects, attentional decline
- post-hoc/subjective classification of trials
 e.g. subsequent memory effect
- some events can only be indicated by subject (in time)
 e.g. spontaneous perceptual changes
- some trials cannot be blocked
 e.g. "oddball" paradigms

