Réalisez un dashboard et assurez une veille technique

Soutenance Projet 8 : Habibatou BA 26/03/2024

Sommaire

- Problématique
- ❖ API
- Dashboard
- Modélisation pour la veille Technologique
- Conclusion et Suite du Projet

Problématique : Contexte

Société financière d'offre de crédit à la consommation pour la clientèle ayant peu ou pas d'historique de prêt.

Mission:

- Une fois que la mise en place de l'API fut un succès. La suite consiste à créer un Dashboard interactif afin de Montrer au client les informations le concernant grâce à l'interactivité.
- Au vu de l'avancé du projet, réaliser une veille technologique sur des problématiques de données texte (NLP) ou de données d'images.

Objectif:

- Étayer la décision d'accorder ou non un prêt.
- Améliorer la relation avec le client en faisant preuve de transparence.
- Mettre en place un etat de l'art sur une technique datant de moins de 5 ans, présentée dans un article.

Dashboard Modélisation : Variable Cible

Dashboard Modélisation : Choix des Métriques

Rappel:

Classe 0 négative = non défaillant Classe 1 positive = défaillant

Matrice de Confusion

Minimiser les pertes argents :

- minimiser le nombre de faux positifs maximiser la métrique Précision
- minimiser le nombre de faux négatifs maximiser les métriques Recall ou Fbeta

Dashboard Modélisation: Tracking avec MLFLOW

Dashboard Modélisation: Bilan

Modèle	FN	FP	TP	TN
lgbm_optuna_opt_2	1408	16904	3557	39633
lgbm_hyperparam_base_bal	1483	15388	3482	41149
lr_hyperparam_base_bal	1536	15109	3429	41428
lr_hyperparam_base_bal	1536	15109	3429	41428
xgr_hyperparam_base_bal	2206	10146	2759	46391
xgr_hyperparam_base_bal	2206	10146	2759	46391
_optuna_smote_opt_4_train	4490	950	475	55587
dummy_hyperparam_base	4570	4587	395	51950
dummy_hyperparam_base	4570	4587	395	51950
lgbm_optuna_smote_opt_4	4588	722	51949	55815
lgbm_optuna_smote_opt_3	4781	195	51756	56342
lgbm_hyperparam_base	4783	133	182	56404

RETENU pour API

lgbm_otuna_opt_2

Dashboard API: Schéma fonctionnel **Build/Versionning GitHub Best Model Version Control** Requête API OK!. pythonanywhere **Lien API** Model

Non sécurisé — bbkalilunix.pythonanywhere.com

◆10 ℃

Implémenter Un Modéle de Scoring:

Utilisateurs

API OK!.

□ · < >

Dashboard

Prêt à dépenser

DASHBOARD

Informations sur les clients								
Vous pouvez ajouter ou enlever une donnée présente dans cette liste:								
TARGET_NE	EIGH ×	NAME_INCOME	×	PREV_APP_CHA ×	OCCUPATION_TY ×	OBS_30_CNT_S ×		~
PREV_APP_	_NAM ×	PREV_APP_COD	×	ORGANIZATION ×	OCCUPATION_TY ×	PREV_APP_NAM ×		
							± 0	
SK_ID_CURR	TARGET_NEIG	SHBORS_500_MEAN	NAME_	_INCOME_TYPE_WORKING	PREV_APP_CHANNEL_TYPE_	CHANNEL_OF_CORPORATE	_SALES_M	EAN
		0.002		*				
119,115		0.06		0				0
119,232		0.088		0				0
119,391		0.078						О
120,759		0.026		О				О
120,921		0.014		o				o
120,936		0.054						o

Dashboard: Accueil

Informations générales

Revenu moyen (USD):

182881.12

Montant moyen du prêt (USD):

523164.7

Prêt à dépenser

DASHBOARD

	Informations sur les clients								
Vous pouvez ajo	Vous pouvez ajouter ou enlever une donnée présente dans cette liste:								
TARGET_N	EIGH × NAME_INCOME_	× PREV_APP_CHA ×	OCCUPATION_TY ×	OBS_30_CNT_S ×	8 ×				
PREV_APP_	_NAM × PREV_APP_COD.	× ORGANIZATION ×	OCCUPATION_TY ×	PREV_APP_NAM ×					
SK_ID_CURR	TARGET NEIGHBORS 500 MEAN	NAME_INCOME_TYPE_WORKING	PREV_APP_CHANNEL_TYPE_	CHANNEL OF CORPORATE S	ALES MEAN				
100,038	0.122	1			0				
101,099	0.06	0			0				
102,158	0.188	0		0					
102,273	0.126	0			0				
103,184	0.034	0			0				
103,258	0.046	0.046			0				
103,286	0.054	0			0				
103,336	0.048	0 TAR	GET_NEIGHBORS_500_MEAN		0				
103,484	0.022	1	OCT_NEIGHBORG_3000_MEAIN		0				
104,391	0.024	0			0				

Deploy

Dashboard: Informations générales sur les clients

Dashboard: Informations générales sur un client

Dashboard: Demande de prêt pour un client

Décision sur la demande de prêt

Demande de prêt ID: 100038

Probabilité de défauts de remboursement: 55.92 %

Demande de prêt refusée!

Definir ID de client:

ID de client

100038

Informations generales

Analyse de la demande de crédit

Analyse des features de client

Informations générales

Revenu moyen (USD):

182881.12

Montant moyen du prêt (USD):

523164.7

Informations complémentaires

Le retour de l'API de prédiction donne un score entre 0 et 100% qui représente la probabilité de refus de prêt. Trois cas de figure sont alors possibles:

- 1. Le score est en dessous de 50% → la demande de prêt est acceptée.
- 2. Le score est entre 50 et 53% → la demande de prêt est refusée mais peut être discutée avec le conseiller pour éventuellement l'accepter (grâce notamment a l'onglet 'analyse des features clients').
 - . Le score est au dessus de 53% → la demande de prêt est refusée.

Dashboard: Analyses univariées

Dashboard: Analyses bivariées

Dashboard: Features Importances

Definir ID de client:

ID de client

101099

- Informations générales
- Analyse de la demande de crédit
- Analyse des features de client

Informations générales

Revenu moyen (USD):

182881.12

Montant moyen du prêt (USD):

Veille Technologique: Modele T5

Par exemple, pour une tâche de classification de texte, le texte d'entrée pourrait être une phrase ou un paragraphe, et le texte de sortie serait une étiquette de classe correspondante. De même, pour une tâche de génération de texte, le texte d'entrée pourrait être une phrase ou une description, et le texte de sortie serait la séquence de mots générée.

Le modèle T5, ou
"Text-To-Text Transfer
Transformer", est une
architecture de réseau
neuronal développée par
Google Al. Elle a été introduite
dans un article de recherche
intitulé "Exploring the Limits
of Transfer Learning with a
Unified Text-to-Text
Transformer" publié en 2020
(Raffel et al., 2020).

Modèle T5 : Concept

- Un cadre unifié : formulées sous forme de tâches de «texte vers texte».
 - Architecture Transformer: capturer les dépendances à longue portée dans les séquences de texte.

- Pré-entraînement et Fine-tuning : T5 est pré-entraîné sur un large corpus de données textuelles à l'aide d'une tâche d'auto-encodage textuel.
- Flexibilité: Peut être appliqué à une grande variété de tâches de traitement du langage naturel en reformulant simplement la tâche d'entrée et de sortie.
- Performances Élevées : performances impressionnantes sur une gamme de tâches de NLP

Modèle T5: Résultats

	Model	Accuracy	Recall	Prec.	F1	Kappa	MCC
Ir	Logistic Regression	0.3657	0.3857	0.2619	0.3004	0.2603	0.2987
lda	Linear Discriminant Analysis	0.3429	0.3429	0.2214	0.2595	0.2301	0.2457
rf	Random Forest Classifier	0.3000	0.3000	0.2333	0.2500	0.1857	0.1985
et	Extra Trees Classifier	0.3000	0.3000	0.2405	0.2595	0.1844	0.1937
qda	Quadratic Discriminant Analysis	0.2857	0.2857	0.1667	0.2038	0.1631	0.1769
nb	Naive Bayes	0.2714	0.2714	0.1619	0.1952	0.1491	0.1640
ridge	Ridge Classifier	0.2714	0.2714	0.1405	0.1800	0.1528	0.1717
dt	Decision Tree Classifier	0.2571	0.2571	0.1976	0.2167	0.1273	0.1376
knn	K Neighbors Classifier	0.2429	0.2429	0.1940	0.2033	0.1243	0.1384
gbc	Gradient Boosting Classifier	0.2286	0.2286	0.1560	0.1724	0.0967	0.1052
xgboost	Extreme Gradient Boosting	0.2286	0.2286	0.1714	0.1833	0.1011	0.1077
svm	SVM - Linear Kernel	0.2143	0.2143	0.1024	0.1343	0.0822	0.0943
lightgbm	Light Gradient Boosting Machine	0.1857	0.1857	0.1405	0.1500	0.0459	0.0506
dummy	Dummy Classifier	0.1571	0.1571	0.0265	0.0448	0.0000	0.0000
ada	Ada Boost Classifier	0.1429	0.1429	0.0560	0.0754	-0.0088	-0.007
	Model Accuracy Recal	l Prec.	F1 K	арра	мсс		

Précision: 36.67%' 0 Logistic Regression 0.2667 0.2667 0.2194 0.2402 0.1339 0.1357

Anciens Modèles : Résultats BERT

Accuracy

0 Extra Trees Classifier

Recall Prec.

MCC

Kappa

0.7238 0.7253 0.7215 0.6778 0.6787

3

0

Watches

2

3

Répartition par clusters

0

2

2

0

2

29

2

5

Anciens Modèles : Résultats USE

Répartition par clusters

Watches

Modèle T5: Comparaisons Résultats NLP

Conclusion et Suite du Projet

Dashboard

- Dashboard : Mettre en place des ateliers pour le client et que ses remarques soient prises en compte.
- Des améliorations techniques: tailles des graphiques affichées; Charte graphique du client

Modele T5

- Fournit des résultats satisfaisants malgrés l'utilisation de modèle pré-entraîné (T5-small) pour une classification supervisée mais le modele USE avec la version 4 donne de meilleurs résultats
- Envisager pour la suite, l'utilisation d'un modèle de classification non-supervisée comme K-Means et évaluer leur score ARI.