	Marek Polewski Cessna 150m Prowadzący: Maciej Lasek Grupa: ML6
Projekt 5 Charakterystyki zespołu	napędowego
Data oddania projektu	OCENA:

Spis treści

1	Dobó:	r smigta	1
2	Chara	ıkterystyki prędkościowe napędu ze śmigłem nieprzestawialnym	3
3	Chara	ıkterystyki napędu śmigło-silnik	5
	3.1	Przykładowe obliczenia:	5
	3.2	Wyniki obliczeń	6

1 Dobór śmigła

Cessna 150 jest samolotem z napędem śmigłowym z silnikiem tłokowym bez doładowania.

Wielkość	Symbol	Wartość	Jednostka
Prędkość lotu	Vd	55	m/s
Wysokość lotu	hd	3850	m
Moc silnika	Nd	56000	W
Moc na poziomie 0	N_0	74000	W
Obroty silnika odpowiadające wybranej mocy	n_sd	45.83333333	rps
Gęstość powietrza na wysokości hd *	rho(hd)	1.225	kg/m^3

Wyznacznanie cechy śmigła

$$C_d = V_d \cdot \sqrt[5]{\frac{\rho}{N \cdot n_s^2}} = 55 \cdot \sqrt[5]{\frac{1.225}{74000 \cdot (2750/60)^2}} = 1.317$$

Na podstawie parametru C_d z pośród śmigieł wybieram śmigło 2 łopatowe 5868-9, o profilu Clarke Y, ponieważ charakteryzuje się najwyższą sprawnością:

Rys. 1: 2 łopatowe 5868-9, o profilu Clarke Y

Odczytane wartości to:

Sprawność	Posuw
η	J
0.817	0.7

Na podstawie posuwu wyliczamy średnicę śmigła:

$$D = \frac{V_d}{J \cdot n_s} = \frac{55}{1.255 \cdot (2750/60)} = 1.7143 m$$

Nie różni się ona zbytnio od rzeczywistej śrenicy śmigła Cessny 150m, więc zakładam że wszystkie dane są poprawne.

Prędkość końcówki śmigła w Ma:

$$M_{a_{kl}} = \frac{\sqrt{v_{max}^2 + (\pi \cdot n_{sd} \cdot D)^2}}{a_{dd}} = \frac{\sqrt{54^2 + (\pi \cdot (2750/60) \cdot 1.714)^2}}{325.5} = 0.785 \, Ma^2$$

jak widać nie porusza się ona powyżej prędkości dźwięku, więc mieści się w przedziale przewidzianych dla tego typy napędu.

2 Charakterystyki prędkościowe napędu ze śmigłem nieprzestawialnym

Aby wyznaczyć charakterystyki napędu należy posiadać charakterystyki samego silnika.

Rys. 2: Charakterstyki silnika [Charakterystyki silnika O-200D]

Rys. 3: Współczynnik $\frac{N}{n_s}=1894.9\frac{W}{\frac{obr}{s}}$ dla wysokości h = 0 i mocy maksymalnej 74kW na podstawie danych zebranych z wykresu Rys.2

Charakterystyka wysokościowa silnika będzie opisana wzorem:

$$N(h) = N(0)\frac{\sigma - k}{1 - k} \tag{1}$$

gdzie:

- N(0) = 74kW moc silnika na ziemi (h=0)
- $\sigma = \frac{\rho}{\rho_0}$ stosunek gęstości powietrza na wysokości h do gęstości powietrza przy ziemi
- k = 0.25 taka wartości nalepiej pokrywa się z charakterystykami Rys. 4

Rys. 4: Moc od wysokości z [Charakterystyki silnika O-200D]

Rys. 5: Porównanie, rzeczywistej (dla 2750 obr/min z rys 4) charakterystyki mocy silnika oraz tej ze wzoru

3 Charakterystyki napędu śmigło-silnik

Poniżej zostały wykonane aprosymakcje $C_n(J)$ oraz $\eta(J)$ dla kąta $\beta_S = 20^o$

Rys. 6: Cp

Rys. 7: η

3.1 Przykładowe obliczenia:

Dla danych: Wysokość 3.5 km, $J=0.579,\, C_n=0.057,\, \eta=0.753,\, \rho=0.908,\, N/ns=1057.4.$ Obroty:

$$n_s = \sqrt{\frac{1}{C_n} \cdot \frac{1}{\rho D^5} \cdot \frac{N}{n}} = 37.3811 obr/s$$

Moc rozporządzalna

$$N_r = \frac{N}{n} N \eta = 29764.296 W$$

Prędkość

$$V = JnD = 37.007 m/s$$

3.2 Wyniki obliczeń

Rys. 8: Caption

Bibliografia

Przewodnik po zadaniach domowych z mechaniki lotu - tab1 Atmosfera wzorcowa https://www.cpaviation.com/images/downloads/CESSNA150POH.pdf https://www.manualslib.com/manual/1476191/Continental-Motors-O-200-D.html?page=52manual Współczynnik na podstawie Na podstawie przykładu ze strony 722 General Aviation Aircraft