- ➤ Also, for a two-pole system, the phase reaches

 -180° only when the frequency becomes
 infinite (mathematically)
 - ⇒ There is no physically achievable frequency when this can happen
 - ⇒ *Unconditional Stability*
- System With Three (or More) Poles:
 - > Actual mathematical analysis quite tedious
 - ➤ It can be shown that as the *amount of* feedback (D) is increased:
 - The highest frequency pole (ω_{p3}) moves outward along the $-\sigma$ -axis

- The other two poles $(\omega_{p1} \text{ and } \omega_{p2})$ move towards each other (similar to a two-pole system)
- As *D* is increased further, these two poles
 eventually merge, and then start having imaginary
 components
- Their real part also keeps on changing with D, keeping the nature of complex conjugacy intact, and moves right in the s-plane
- The path traced out by these poles is known as the root locus
- For a particular value of D, this root locus intersects the imaginary axis of the s-plane at two symmetric points

- Under this condition, sustained sinusoidal oscillation can be achieved, since it now has a complex conjugate pair of poles without any real part $(\omega_{p3}$ will be so large that it will be inconsequential)
- With further increase in D, the root locus enters the RHP with the poles now having positive real part
 - ⇒ Potentially dangerous situation in terms of stability
- In terms of phase, the total can be -270°
 - \Rightarrow There exists a particular value of f, for which the phase will become -180°

- Under this condition, if the magnitude of the loop gain is exactly unity, then the system will break out into spontaneous oscillation, however, the amplitude will be controlled
 - \Rightarrow Sustained sinusoidal oscillation
- This particular value of f is known as the critical feedback factor (f_{crit}) for oscillation
 - \Leftrightarrow For $f < f_{crit}$, the *system will be stable*
 - ightharpoonup For f > f_{crit}, the *system will be unstable*
- Thus, the system is *NOT Unconditionally Stable*, but *stable only till a specific value of f*
 - * Known as *Conditionally Stable System*

Root Locus of the Poles of a Three-Pole System as D is Increased

Stability Study Using Bode Plot

- The *most convenient* and the *most useful*
- Recall: Single- and Two-Pole Systems are unconditionally stable
- Consider a *Three-Pole System*, with the *pole frequencies* at ω_1 , ω_2 , and ω_3 , with $\omega_3 = 100\omega_2$, and $\omega_2 > 100\omega_1$
- *Note*: $A = L \ if f = 1 \ (100\% \ feedback)$
- Refer to the next slide (**Bode Plot**)

Aloke Dutta/EE/IIT Kanpur