MÉTODOS DE INTEGRACIÓN Y DIFERENCIACIÓN NUMÉRICA

Matemáticamente la integración se representa por:

 $I = \int_{a}^{b} f(x)d(x)$ se evalúa como:

$$I = \int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Donde F(x) es la integral de f(x); es decir F(x) es una función tal que F'(x) = f(x). Ver Fig. 1.

Fig. 1. Representación gráfica de la integral de f(x)

Comúnmente en métodos numéricos para el cálculo de integrales se utiliza la estrategia de reemplazar una función complicada o datos tabulados con una *función aproximada* que es fácil de integrar.

$$I = \int_{a}^{b} f(x)dx \cong \int_{a}^{b} f_{n}(x)dx \tag{1}$$

Donde $f_n(x)$ es un polinomio de la forma: $f_n(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + a_n x^n$ y n es el orden del polinomio. La integral también puede ser aproximada usando una serie de polinomios aplicados a la función o a los datos sobre segmentos de longitud constante.

1. MÉTODO TRAPEZOIDAL

Corresponde al caso donde el polinomio de la Ec. (1) es de primer orden, n = 1:

$$I = \int_a^b f(x) dx \cong \int_a^b f_1(x) dx$$

De la Fig. 2, por semejanza entre triángulos se tiene:

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Despejando:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

 $\operatorname{Con} x_0 = a \ \operatorname{y} x_1 = b$

Fig. 2. Representación gráfica método trapezoidal

$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Por tanto:

$$I \cong \int_a^b f_1(x) \cong \int_a^b \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx$$

El resultado de la integración es:

$$I \cong (b-a)\frac{f(a)+f(b)}{2} \tag{2}$$

Llamada la Regla trapezoidal cuyo error se obtiene usando:

$$\varepsilon = -\frac{1}{12}f''(\xi)(b-a)^3.$$

Donde, ξ se encuentra en cualquier lugar del intervalo [a,b] y se calcula usando: ;

$$f''(\xi) \Rightarrow \overline{f}'' = \frac{\int_a^b f''(x)dx}{b-a}$$
; \overline{f}'' Representa la segunda derivada promedio.

Para resolver $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$, dados los límites de integración a, b, se utiliza el siguiente código. La Function f(x) puede ser reemplazada para el cálculo de cualquier otra función f(x).

Function trapezoidal(a, b)

trapezoidal = (b - a) * (f(a) + f(b)) / 2

End Function

Function f(x)

$$f = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5$$

End Function

2. APLICACIONES MÚLTIPLES DE LA REGLAS TRAPEZOIDAL

Se usa para obtener mejores aproximaciones de la integral. El proceso consiste en dividir el intervalo [a,b] en un número de segmentos (n) y aplicar el método trapezoidal a cada segmento. Luego se suman las áreas de cada segmento para hallar el total de la integral.

Existen n+1 puntos con el mismo espacio entre ellos $(x_0,x_1,x_2...x_n)$. Por tanto, hay n segmentos de igual anchura dados por:

$$h = \frac{b-a}{n}$$

Si a y b se reemplazan por x_0 y x_n la integral total se representa por:

$$I = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots \int_{x_{n-1}}^{x_n} f(x)dx$$

Substituyendo en la regla trapezoidal para cada integral se tiene:

$$I \cong h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

Agrupando términos

$$I \cong \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Reemplazando h:

$$I \cong (b-a) \frac{f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)}{2n}$$
(3)

El error se calcula con:

$$\varepsilon = -\frac{(b-a)^3}{12n^2} \overline{f}^{"} \qquad \text{para} \qquad \overline{f}^{"} = \frac{\int_a^b f^{"}(x)dx}{b-a}$$

Function Multipletrapezoidal(a, b, n)

Dim h As Double, i As Integer, suma As Double

Dim X() As Double

ReDim Preserve X(n)

$$h = (b - a) / n$$

$$X(0) = a$$

For
$$i = 1$$
 To n

$$X(i) = X(i-1) + h$$

Next i

suma = 0

For i = 1 To n - 1

suma = suma + f(X(i))

Next i

Multipletrapezoidal = (b - a) * (f(X(0)) + 2 * suma + f(b)) / (2 * n)

End Function

3. REGLAS DE SIMPSON

Se usan polinomios de mayor orden para conectar los puntos y obtener mejor precisión. Se utiliza el polinomios de interpolación de segundo orden para el método de Simpson 1/3 y el polinomio de interpolación de orden 3 para Simpson 3/8.

3.1. Simpson 1/3

Resulta cuando se sustituye un polinomio de interpolación de segundo orden en la Ec. 1.

$$I = \int_a^b f(x)dx = \int_a^b f_2(x)dx$$

Si $x_0=a$ y $x_2=b$ y $f_2(x)$ se representa por un polinomio de Lagrange de segundo orden se resulta:

$$I \cong \int_{a}^{b} f(x) = \int_{x_{0}}^{x_{2}} f_{2}(x) = \int_{x_{0}}^{x_{2}} \left[\frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2}) \right] dx$$

Después de integrar,

$$I \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$
(4)

Donde:
$$h = \frac{(b-a)}{2}$$

El método se denomina Simpson 1/3, dado que h es dividida por 3 en la Ec. (4). Reemplazando h, la integral puede representarse por:

$$I \cong (b-a)\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$
El error $\varepsilon = -\frac{(b-a)^5}{2880} f^{(4)}(\xi) \implies f^{(4)}(\xi) = \overline{f}^{(4)} = \frac{\int_a^b f^{(4)}(x)}{b-a}$
(5)

Function Simpson13(a, b)

Dim h As Double

h = (b - a) / 2

Simpson13 = (b - a) * (f(a) + 4 * f(h) + f(b)) / 6

End Function

3.2. Aplicaciones Múltiples de la Reglas de Simpson 1/3

Se divide el intervalo de integración [a,b] en un número de segmentos (n) de igual ancho, ver Fig. 3.

Fig. 3. Representación de la regla de Simpson 1/3

$$h = \frac{(b-a)}{n}$$

Luego la integral total se calcula como:

$$I \cong \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots \int_{x_{n-2}}^{x_n} f(x)dx$$

Sustituyendo la fórmula de Simpson 1/3 para cada integral

$$I \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] + \frac{h}{3} [f(x_2) + 4f(x_3) + f(x_4)] + \dots + \frac{h}{3} [f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

Combinando términos y reemplazando h.

$$I \cong (b-a) \frac{f(x_0) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$$
 (6)

El error
$$\varepsilon = \frac{-(b-a)^5 \overline{f}^{(4)}}{180n^4}$$

Es importante notar que para aplicar este método se utiliza un número de segmentos pares, n.

Function MultipleSimpson13(a, b, n)

Dim h As Double, i As Integer, sumapar As Double, sumaimpar As Double

Dim X() As Double

ReDim Preserve X(n)

h = (b - a) / n

X(0) = a

For i = 1 To n

$$X(i) = X(i - 1) + h$$

Next i

sumaimpar = 0

For i = 1 To n - 1 Step 2

sumaimpar = sumaimpar + f(X(i))

Next i

sumapar = 0

For i = 2 To n - 2 Step 2

sumapar = sumapar + f(X(i))

Next i

MultipleSimpson13 = (b - a) * (f(a) + 4 * sumaimpar + 2 * sumapar + f(b)) / (3 * n)

End Function

3.3. Simpson 3/8

Similar a la regla de simpson 1/3 se deriva la fórmula para simpson 3/8 utilizando un polinomio de Lagrange de tercer orden el cual utiliza cuatro puntos como se ilustra en la Fig. 4.

Fig. 4. Representación de la regla de Simpson 3/8

$$I = \int_a^b f(x) \cong \int_a^b f_3(x) dx$$

Aplicando el polinomio de Lagrange resulta:

$$I \cong \frac{3h}{8} [f(x_o) + 3f(x_1) + 3f(x_2) + f(x_3)]$$
 (7)

Donde:
$$h = \frac{(b-a)}{3}$$

Reemplazando h

$$I \cong (b-a)\frac{f(x_o) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$$
(8)

El error
$$\varepsilon = \frac{-(b-a)^5}{6480} f^{(4)}(\xi)$$

Este método, se aplica cuando el numero de segmentos es impar o combinada con Simpson 1/3 para evaluar numero de segmentos (n) pares e impares.

Function Simpson38(a, b, n)

Dim h As Double, i As Integer, suma As Double

Dim X() As Double

ReDim Preserve X(n)

$$h = (b - a) / n$$

$$X(0) = a$$

For
$$i = 1$$
 To n
 $X(i) = X(i-1) + h$
Next i
Simpson $38 = (b-a) * (f(X(0)) + 3 * f(X(1)) + 3 * f(X(2)) + f(b)) / 8$
End Function

3.4. Método de Cuadratura de Gauss

Los métodos anteriormente vistos para el cálculo de la integral utilizan los límites de integración fijos [a,b]. Si se puede escoger libremente los puntos para evaluar la integral, se puede obtener un mejor estimado de la integral.

Cuadratura de Gauss para Dos Puntos

El método de cuadratura de Gauss consiste en determinar los coeficientes de una ecuación de la forma:

$$I \cong c_0 f(x_0) + c_1 f(x_1) \tag{9}$$

Donde las c's son los coeficientes desconocidos. En la Fig. 5 se representa los argumentos desconocidos de la función, x_0 y x_1 . Se tiene un total de cuatro elemento desconocidos que deben ser evaluados. Consecuentemente se requieren cuatro condiciónes para determinarlos exactamente.

Se pueden obtener dos de las condiciónes asumiendo que la Ec. 9 se ajusta exactamente a la integral de una función constante y a la integral de una función lineal. Para los dos otras condiciónes se asume que la Ec. 9, además, se ajusta a la integral de una parábola $(y=x^2)$ y a una función cúbica $(y=x^3)$. Las cuatro ecuaciones para resolver son:

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 1 dx = 2$$
 (10)

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x dx = 0$$
 (11)

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x^2 dx = \frac{2}{3}$$
 (12)

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x^3 dx = 0$$
 (13)

Una vez se resuelven simultáneamente las Ecs. 10 a 13 se obtiene:

$$c_0 = c_1 = 1$$

Fig. 5. Representación gráfica de Cuadratura de Gauss

$$x_0 = \frac{-1}{\sqrt{3}} = -0.577350629...$$

$$x_1 = \frac{1}{\sqrt{3}} = 0.577350629...$$

La ecuación de Cuadratura de Gauss para dos puntos se obtiene reemplazando estos valores en la Ec. 9:

$$I \cong f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) \tag{14}$$

Se observa en la Ecs. 10 a 13 que los limites de integración utilizados para obtener la ecuación de cuadratura de Gauss son -1 y 1; ésto para simplificar y hacer la formulación lo más general posible. Por ende, se debe hacer un cambio de variables para trasladar los límites de integración a la forma deseada, para lo cual se asume que una nueva variable *xd* que está relacionada con la variable original *x* en forma lineal tal que:

$$x = a_0 + a_1 x d \tag{15}$$

Si el límite inferior x = a corresponde a xd = -1, reemplazando en la Ec. 15, resulta:

$$a = a_0 + a_1(-1) \tag{16}$$

Si el límite superior x = b corresponde a xd = 1

$$b = a_0 + a_1(1) \tag{17}$$

Resolviendo simultáneamente las Ecs. 16 y 17:

$$a = a_0 - a_1$$
 $a = \frac{a+b}{2} - a_1$
 $b = a_0 + a_1$ $a_1 = \frac{a+b}{2} - \frac{a_1}{1}$
 $\frac{a+b}{2} = a_0$ $a_1 = \frac{b-a}{2}$

Sustituyendo en la Ec. 15, resulta:

$$x = \frac{a+b}{2} + \frac{(b-a)}{2}xd$$
 (18)

Derivando esta ecuación se tiene:

$$dx = \frac{(b-a)}{2} dxd \tag{19}$$

Las Ecs. 18 y 19 se pueden reemplazar por x y dx respectivamente en la ecuación a ser integrada.

Cuadratura de Gauss para más de Dos Puntos

Para más de dos puntos el método de cuadratura de Gauss para determinar la integral se puede desarrollar utilizando la siguiente expresión:

$$I \cong c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n)$$
 (20)

Donde n es el número de puntos. Los valores de c y x hasta 6 puntos se especifican en la tabla 1.

La Function GQ(a,b), con los límites de integración a,b se utiliza para resolver la integral dada la función $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$. La función Function f(xD, a, b), puede ser reemplazada para el cálculo de cualquier otra funcion f(x). xD cambia los límites de integración de acuerdo con las ecuaciones 18 y 19..

Option Explicit

Function GQ(a, b)

Dim c0 As Double, c1 As Double, c2 As Double, c3 As Double, c4 As Double, c5 As Double **Dim** x0 As Double, x1 As Double, x2 As Double, x3 As Double, x4 As Double, x5 As Double 'cálculo de la integral para 6 puntos de acuerdo con la tabla 1.

c0 = 0.171324492

c1 = 0.360761573

c2 = 0.467913935

```
c3 = 0.467913935

c4 = 0.360761573
```

$$c5 = 0.171324492$$

$$x0 = -0.932469514$$

$$x1 = -0.661209386$$

$$x2 = -0.238619186$$

$$x3 = 0.238619186$$

$$x4 = 0.661209386$$

$$x5 = 0.932469514$$

'Formula general para 6 puntos

$$GQ = c0 * f(x0, a, b) + c1 * f(x1, a, b) + c2 * f(x2, a, b)$$

$$GQ = GQ + c3 * f(x3, a, b) + c4 * f(x4, a, b) + c5 * f(x5, a, b)$$

End Function

Tabla 1. Valores para c y x usados para el método de Cuadratura de Gauss

Puntos	c	x
2	c_0 =1.000000000	x_0 =-0.577350269
	c_1 =1.000000000	$x_1 = 0.577350269$
3	$c_0 = 0.555555556$	$x_0 = -0.774596669$
	c_1 =0.88888889	$x_1 = 0.0$
	c_2 =0.55555556	$x_2 = 0.774596669$
4	$c_0 = 0.347854845$	x_0 =-0.861136312
	c_1 =0.652145155	x_1 =-0.339981044
	c_2 =0.652145155	$x_2=0.339981044$
	c_3 =0.347854845	$x_3=0.861136312$
5	c_0 =0.236926885	x_0 =-0.906179846
	c_1 =0.478628670	x_1 =-0.538469310
	c_2 =0.568888889	$x_2=0.0$
	c_3 =0.478628670	$x_3 = 0.538469310$
	c_4 =0.236926885	x_4 =0.906179846
6	$c_0 = 0.171324492$	x_0 =-0.932469514
	c_1 =0.360761573	x_1 =-0.661209386
	c_2 =0.467913935	x_2 =-0.238619186
	c_3 =0.467913935	x_3 =0.238619186
	c_4 =0.360761573	x_4 =0.661209386
	$c_5=0.171324492$	$x_5=0.932469514$

Function f(xD, a, b)

Dim x As Double

'fórmula para cambio de variables para transladar a los limites de integración a y b x = ((b + a) + (b - a) * xD) / 2

'cálculo de la función en terminos de a y b

(b-a)/2 es es la derivada de x en terminos de xD (dx)

$$f = (0.2 + 25 * x - 200 * x^2 + 675 * x^3 - 900 * x^4 + 400 * x^5) * (b - a) / 2$$

End Function

EJERCICIOS: Utilice TODOS los métodos para resolver integrales:

Ejercicio 1: Evaluar la integral : $f(x) = 4 + 3\cos(x)$ para a=0 $b = \pi$

Ejercicio 2: Evaluar la integral : $f(x) = 0.3x^2 - x + 3$ a=-1

Ejercicio 3.
$$\int_{-1}^{1} e^{-x^2} dx$$
; $\int_{0}^{1} x^2 e^x dx$; $\int_{0}^{1} \sin(e^{x^2}) dx$

Resuelva: a) para 8 y 9 segmentos. Recuerda: Resolver para 9 segmentos no aplica la regla de múltiples aplicaciones de Simpson 1/3.

Combine los métodos de: Simpson 1/3 y Simpson 3/8 o trapecio.

$$I = \int_{0}^{2} e^{-x^2} dx$$

Ejercicio 4: Evalúe la integral

$$I = \int_{0}^{2} e^{-x^{2}} dx$$
Ejercicio 4: Evalúe la integral a) con métodos de Simpson
$$\sum_{k=0}^{\infty} \left(\frac{\left(-1\right)^{k} x^{2k+1}}{k! \left(2k+1\right)} \right) \quad \text{con } x = 2 \text{ permite hacer el cálculo de la integral.}$$

Calcule y tome este resultado como el valor verdadero de la integral para 15 cifras significativas. c) Calcule el error relativo.

Ejercicio 5: Calcular numéricamente la integral de f(x) = arctg(x) para $a = -\pi/2$, usando las fórmulas de cuadratura de Gauss para n puntos. Programe la función arcotangente, usando la siguiente serie de Taylor.

$$arctg(x) = \begin{cases} x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots & |x| < 1 \\ + \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & x \ge 1 \\ - \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & x < 1 \end{cases}$$

 $e_{aprox} = \frac{|valorpresente - valorprevio|}{|valorpresente|} *100\%$ este por debajo de la tolerancia de error para 5 cifras significativas. relativo aproximado

$$\int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln \left(x^2 + 1 \right)$$

Ejercicio 6: Calcular numéricamente la integral de $f(x) = \arccos(x)$ intervalo $[0, \pi]$. El desarrollo en serie de potencias del *arcocoseno*, $cos^{-1}(x)$ viene dado por: $cos^{-1}x = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \cdots$

$$\cos^{-1}x = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \cdots$$

$$\cos^{-1}x = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(2n)!}{4^n(n!)^2(2n+1)} x^{2n+1}$$

Compare sus respuestas con el resultado matemático. $\int \cos^{-1}(x) dx = x \cos^{-1}(x) - \sqrt{1 - x^2}$

Dado que para el cálculo de arcocoseno y arcotangente necesitan el valor de PI, utilice la siguiente fórmula para su cálculo. Diseñe un procedimiento SUB CALCULA_PI(parámetros)...END SUB que retorne PI.

$$\sum_{n=0}^{\infty} \frac{2^n n!^2}{(2n+1)!} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \dots = \frac{\pi}{2}$$

Nota: programe sus rutinas y verifique resultados antes de integrar.