

Engenharia cognitiva e percurso cognitivo

Ingrid Teixeira Monteiro

QXD0221 – Interação Humano-Computador

Engenharia cognitiva

Engenharia Cognitiva

- Concebida por **Donald Norman** em **1986**
- Tentativa de aplicar conhecimentos de ciência cognitiva, psicologia cognitiva e fatores humanos ao design e construção de sistemas computacionais
- Principais objetivos de Norman
 - Entender os princípios fundamentais da ação e desempenho humano
 - > relevantes para o desenvolvimento de **princípios de design**
 - Elaborar sistemas que sejam agradáveis de usar
 - -> engajam os usuários de forma prazerosa.
- É uma abordagem centrada no usuário

Engenharia Cognitiva

- Na base da engenharia cognitiva está a discrepância entre os objetivos expressos psicologicamente e os controles e variáveis físicos de uma tarefa
- Início → objetivos e intenções → variáveis psicológicas
 - Diz respeito às necessidades e situação do usuário
- Tarefa → realizada em um sistema físico → mudanças nas variáveis físicas e no estado do sistema.

Engenharia Cognitiva

Mundo psicológico X Mundo físico

- Usuário precisa...
 - interpretar as variáveis físicas em termos relevantes aos objetivos psicológicos
 - traduzir as suas intenções psicológicas em ações físicas sobre os controles e mecanismos do sistema

Modelos conceituais

- A engenharia cognitiva considera três modelos:
 - Modelo de design (mental)
 - Imagem do sistema (físico)
 - Modelo do usuário (mental)

Modelos conceituais

- Modelo de design
 - Modelo conceitual do sistema tal como concebido pelo designer.
 - Descreve a lógica de funcionamento do sistema
 - Deve se basear em tarefas, requisitos, capacidades e experiência do usuário
 - Deve considerar as **capacidades** e **limitações** dos mecanismos de processamento de informação do **usuário** (raciocínio, memória)
- Imagem do sistema
 - Corresponde ao sistema executável
 - Modelo físico construído com base no modelo conceitual de design
 - Deve ser explícita, inteligível e consistente

Modelos conceituais

- Modelo do usuário
 - Modelo conceitual construído pelo usuário durante a interação com o sistema
 - Resulta da interpretação da imagem do sistema
- Objetivo do designer
 - Fazer o **usuário** ser capaz de **elaborar** um modelo conceitual **compatível** com o modelo de **design** através da sua **interação** com a **imagem** do sistema.

- Norman propôs uma **teoria da ação** que distingue diversos **estágios de atividade** ocorridos durante a **interação** usuário-sistema
- A discrepância entre as variáveis psicológicas e físicas é representada por Norman através de dois golfos que precisam ser superados ou "atravessados"
- O processo de **interação** com um artefato pode ser visto como **ciclos de ação** envolvendo fases de **execução** e de **avaliação**, alternadamente.

Teoria da ação

Golfos

10

- Cada golfo é unidirecional
 - o golfo de execução vai dos objetivos do usuário para o estado do sistema;
 - o golfo de avaliação vai do estado do sistema para os objetivos do usuário.

Golfos

• Golfo de execução

- Refere-se à **dificuldade** de **atuar** sobre o ambiente e ao grau de **sucesso** com que o artefato **apoia** essas ações
- O golfo de execução é atravessado quando os comandos e **mecanismos** do sistema **casam** com os pensamentos e **objetivos** do usuário.
- Para cruzar este golfo, o usuário deve **traduzir** suas ideias ou **objetivos** para a **linguagem** dos dispositivos de entrada.

• Golfo de avaliação

- Refere-se à **dificuldade** de **avaliar** o estado do ambiente e ao grau de **sucesso** com que o artefato **apoia** a detecção e interpretação desse estado.
- O golfo de avaliação é atravessado quando a saída apresenta um bom modelo conceitual do **sistema**, que é **prontamente** percebido, interpretado e avaliado.
- Para cruzar este golfo, o usuário deve traduzir a linguagem de saída do sistema para a sua própria linguagem

- 1. O usuário estabelece um objetivo de alto nível
 - um estado do mundo que ele deseja alcançar através da interação com o sistema
- 2. O usuário formula uma intenção
 - Decisão de agir em direção ao objetivo, estabelecendo um subobjetivo que ele poderá alcançar *diretamente* através do uso do sistema
 - O usuário escolhe uma estratégia para alcançar seu objetivo.

- 3. O usuário especifica as ações a ser realizada
 - Quais configurações das variáveis do sistema correspondem ao estado desejado?
 - Quais mecanismos de controle levam a esse estado?
 - Planejamento do usuário, cujo resultado é uma *representação mental* de quais ações devem ser executadas sobre a interface e em que *ordem*
- 4. O usuário executa as ações planejadas, seguindo a ordem especificada
 - Manipular dispositivos de entrada da interface

Ciclo de ações

- 5. O usuário **percebe a mudança** de estado da interface ou uma ausência de resposta do sistema
 - Recebido pelos dispositivos de saída da interface
- 6. O usuário interpreta o novo estado do sistema
 - Atribui um significado ao que é percebido
 - Ausência de resposta = "nada aconteceu"
- 7. O usuário avalia o novo estado do sistema e compara com o estado desejado
 - Corresponde à intenção formulada e ao objetivo almejado

- O resultado da avaliação determina se as ações realizadas contribuíram para o usuário se aproximar do seu objetivo ou não.
 - Se estado interpretado = estado desejado → atingiu o objetivo
 - Se estado interpretado ≠ estado desejado → o ciclo deve reiniciar

Etapas da interação usuário-sistema

- Em um sistema de biblioteca, um usuário que queira fazer uma consulta sobre um livro ou artigo poderia passar pelas seguintes etapas de interação:
- 1. Formulação da intenção
 - Quero procurar a referência completa do livro "Interação Humano-Computador", de Simone Barbosa e Bruno da Silva.
- 2. Especificação da sequência de ações:
 - Devo selecionar o comando de "busca" e entrar com os dados que eu tenho.
- 3. Execução
 - Ativo "busca" no menu;
 - Digito o nome do livro no campo "nome do livro";
 - Digito o nome do autor no campo "nome do autor";
 - Seleciono "OK"

Etapas da interação usuário-sistema

4. Percepção

- Apareceu uma nova tela com dados de livro.
- 5. Interpretação
 - Os dados apresentados correspondem à busca que eu fiz.
- 6. Avaliação
 - Encontrei as informações que eu queria. Completei a tarefa com sucesso.

Travessia de golfos

- O golfo de execução e o golfo de avaliação descrevem a **lacuna** que existe entre o **usuário** e a **interface**.
- O objetivo dos golfos é mostrar como projetar a interface para habilitar o usuário a lidar com eles.
- Os golfos podem ser reduzidos através de um projeto adequado do sistema ou através de treinamento e esforço mental por parte dos usuários.
- Tarefa do designer
 - Tentar diminuir o tamanho dos golfos de execução e de avaliação → redução dos problemas durante a interação

Distâncias

- A engenharia cognitiva define a noção de distância entre os pensamentos do usuário e os requisitos físicos do sistema.
 - Relação entre a tarefa que o usuário tem em mente e a forma que a tarefa pode ser realizada através da interface.
- Distância pequena -> tradução simples e direta
 - Os pensamentos do usuário são prontamente traduzidos em ações físicas exigidas pelo sistema
 - A **saída** do sistema é prontamente **interpretada** em termos de **objetivos** de interesse para o **usuário**.
- As noções de distância semântica e articulatória foram propostas como uma forma de medir a carga cognitiva imposta aos usuários pelas linguagens de interface.

- Distância **subjetiva** entre os **objetivos** do usuário e a **semântica** da interface.
- Reflete a **relação** entre as **intenções** do usuário e o **significado** das expressões nas linguagens de **interface** tanto para **entrada** quanto para **saída**.
- É a distância entre o que o usuário **gostaria de dizer** na linguagem de interface e o **significado disponível** pelos elementos da linguagem
 - É possível dizer o que se quer nesta linguagem?
 - É possível dizer o que se quer de forma concisa?

Distância semântica

- A distância semântica avalia a separação entre as metas / tarefas do usuário e a funcionalidade do sistema a elas associada
 - Se **existe um comando** no modelo de interação cujo significado (resultado ou efeito) seja aquele pretendido pelo usuário.
- Uma distância pequena significa que existe um comando (quase que) diretamente associado à meta.
- Uma distância **grande** indica que o usuário precisa **quebrar metas** em submetas e realizar um planejamento de tarefas.

Distância articulatória

- Distância entre os significados das ações e suas formas físicas.
- Reflete a **relação** entre a **forma física** de uma expressão na linguagem da interação e o seu **significado**, tanto para **entrada** quanto para **saída**.
- É a distância entre o **significado** e a **forma** dos elementos da linguagem de Interface
 - Quais os obstáculos para expressar nesta linguagem de interface os significados daquilo que ela pode processar?

Distância articulatória

- Enquanto que distância semântica tem a ver com a relação entre as intenções do usuário e os significados de expressões, a distância articulatória tem a ver com a relação entre os significados de expressões e sua forma física.
- A distância articulatória avalia o relacionamento entre o significado (resultado ou efeito) de um comando e a forma da sequência de ações (o comando) tal como se disponibiliza para o usuário.

Percurso cognitivo

Percurso Cognitivo

- Método de avaliação de IHC cujo principal objetivo é avaliar a facilidade de aprendizado de um sistema interativo, através da exploração da sua interface
- Motivado pela preferência de muitas pessoas em "aprenderem fazendo", em vez de aprenderem através de treinamentos, leitura de manuais, etc.
- O percurso cognitivo guia a inspeção da interface pelas tarefas do usuário
- Para cada ação, o avaliador tenta se colocar no papel de um usuário e detalha como seria sua interação com o sistema naquele momento
- O avaliador inspeciona a interface e **formula hipóteses** sobre o sucesso ou o insucesso da interação a cada passo

- O avaliador avalia o processo de interação segundo a visão da engenharia cognitiva
- O percurso cognitivo pode ser realizado por um ou mais avaliadores
 - Quando há mais de um avaliador, eles devem realizar as atividades em conjunto
- Caso uma mesma tarefa precise ser realizada por usuários de diferentes perfis, a avaliação deve ser realizada para cada perfil

percurso cognitivo	
atividade	tarefa
Preparação	identificar os perfis de usuários
	definir quais tarefas farão parte da avaliação
	descrever as ações necessárias para realizar cada tarefa
	 obter uma representação da interface, executável ou não
Coleta de dados	percorrer a interface de acordo com a sequência de ações necessárias para
Interpretação	realizar cada tarefa
	 para cada ação enumerada, analisar se o usuário executaria a ação corretamente, respondendo e justificando a resposta às seguintes perguntas:
	 O usuário vai tentar atingir o efeito correto? (Vai formular a intenção correta?)
	 O usuário vai notar que a ação correta está disponível?
	 O usuário vai associar a ação correta com o efeito que está tentando atingir?
	 Se a ação for executada corretamente, o usuário vai perceber que está progredindo na direção de concluir a tarefa?
	 relatar uma história aceitável sobre o sucesso ou falha em realizar cada ação que compõe a tarefa
Consolidação dos resultados	sintetizar resultados sobre:
	 o que o usuário precisa saber a priori para realizar as tarefas
	 o que o usuário deve aprender enquanto realiza as tarefas
	 sugestões de correções para os problemas encontrados
Relato dos resultados	 gerar um relatório consolidado com os problemas encontrados e sugestões de correção

Perguntas

- O usuário tentaria atingir o efeito correto? A formulação da intenção do usuário seria a esperada?
 - Um usuário tem mais chance de formular a intenção correta se:
 - a ação faz parte da tarefa tal como concebida pelo usuário;
 - o usuário tem experiência no sistema (ou semelhante);
 - o sistema fornece uma instrução ou solicita que o usuário realize a ação
- O usuário perceberia que a ação correta está disponível?
 - Ele normalmente sabe que a opção está disponível se:
 - Tem experiência no sistema (ou semelhante)
 - Percebe na interface uma representação da ação desejada

Perguntas

- O usuário conseguiria associar a ação correta com o efeito que está tentando atingir?
 - Ele costuma saber qual ação é adequada se:
 - Tem experiência no sistema (ou semelhante)
 - A interface comunica essa associação entre a ação e o efeito esperado
 - Nenhuma outra ação parece adequada (por eliminação)
- Se a ação correta for realizada, o usuário perceberia que está progredindo para concluir a tarefa?
 - Ele sabe que está avançando se:
 - Tem experiência no sistema (ou semelhante)
 - As respostas do sistema estão de acordo com o efeito esperado

O usuário tentaria atingir o efeito correto? (Qual a dificuldade de passar

O usuário perceberia que a ação correta está disponível? (Qual a dificuldade de passar do plano à ação?)

da intenção para o plano?)

O usuário perceberia que está progredindo para concluir a tarefa? (Qual a dificuldade de compreender o feedback?)

O usuário conseguiria associar a ação correta com o efeito que está tentando atingir? (Qual a dificuldade de perceber o feedback?)

- O avaliador deve relatar histórias de **sucesso** ou de **insucesso** ao responder essas perguntas
- Todas as perguntas devem ser respondidas para cada ação
- Mesmo que a resposta a uma pergunta seja negativa, o avaliador deve, após registrar seu relato de insucesso, supor que a resposta poderia ser positiva e então prosseguir respondendo à pergunta seguinte, até que todas as perguntas tenham sido respondidas para aquela ação

Exemplo

- Tarefa: votar nulo na urna eletrônica
- Usuário: eleitor insatisfeito com os candidatos à eleição
- Cenário: o eleitor vai votar pela primeira vez, mas como não gostou de nenhuma das propostas dos candidatos, está decidido a anular o seu voto
- Sequência de ações
 - Passo 1 → digitar um número inválido
 - Passo 2 → apertar o botão "Confirmar"

Passo 1 -> digitar um número inválido

- O usuário tentaria atingir o efeito correto?
- O usuário perceberia que a ação correta está disponível?

 "Hum, vejamos, onde é que eu anulo meu voto? O botão para votar em branco está ali, mas não quero votar em branco, quero anular meu voto. Talvez se eu tentar digitar o número de algum candidato"

 "Ok, não tem nada para anular aqui também, não quero votar nesse cara, vou corrigir"

- O usuário tentaria atingir o efeito correto?
 - Não. É necessário que o usuário tenha um conhecimento prévio de que é preciso digitar um número inválido para anular o voto
- O usuário perceberia que a ação correta está disponível?
 - Não. Não há qualquer informação sobre como digitar um número inválido

 "É mesmo, talvez eu precise votar em um número qualquer sem ser os dos candidatos"

- O usuário conseguiria associar a ação correta com o efeito que está tentando atingir?
- Se a ação correta for realizada, o usuário perceberia que está progredindo para concluir a tarefa?

• "Número errado? Eu sei que é errado, mas quero votar nulo. Ah, sim! Está aqui bem grande. Se eu confirmar, devo votar nulo "

- O usuário conseguiria associar a ação correta com o efeito que está tentando atingir?
 - Sim. A mensagem "VOTO NULO" indica isso.
- Se a ação correta for realizada, o usuário perceberia que está progredindo para concluir a tarefa?
 - Não. A informação "Número errado" pode levar o eleitor a desfazer a ação
 - Sim. A informação "Voto nulo" ajuda o usuário a interpretar que está no caminho

- O usuário tentaria atingir o efeito correto?
- O usuário perceberia que a ação correta está disponível?

• "Se eu confirmar, devo votar nulo"

- O usuário tentaria atingir o efeito correto?
 - Sim. Por eliminação.
- O usuário perceberia que a ação correta está disponível?
 - Sim. É um dos botões principais.

- O usuário conseguiria associar a ação correta com o efeito que está tentando atingir?
- Se a ação correta for realizada, o usuário perceberia que está progredindo para concluir a tarefa?

 "É isso, mas seria mais simples se houvesse um botão para anular, igual tem para votar em branco"

- O usuário conseguiria associar a ação correta com o efeito que está tentando atingir?
 - Sim. "Confirmar" tem o significado de efetivação da ação.
- Se a ação correta for realizada, o usuário perceberia que está progredindo para concluir a tarefa?
 - Sim. Aparece a mensagem "Fim" grande e "Votou" menor, informando sobre o sucesso da tarefa.

Percurso cognitivo

- Em comparação com a avaliação heurística, essa técnica se concentra mais na identificação de problemas específicos do usuário em detalhes
- Tem o foco limitado, que é útil para certos tipos de sistema, mas não para outros
- Pode ser útil principalmente para aplicações que envolvam operações complexas
- É muito demorada e trabalhosa e os avaliadores precisam conhecer bem os processos cognitivos envolvidos

Referências

- Capítulo 3
 - Seção 3.4. Engenharia Cognitiva
- Capítulo 10. Métodos de avaliação de IHC

- Capítulo 3
 - Seção 3.3. Frameworks cognitivos
- Capítulo 15. Avaliação: inspeções, dados analíticos e modelos

- Kong, Nicholas. *Notes on the gulfs of execution and evaluation from "Direct Manipulation Interfaces", Hutchins et al.* CS 160 Spring '09 User Interfaces. University of California, Berkeley
 - http://vis.berkeley.edu/courses/cs160sp09/wiki/images/4/48/GulfClarification.pdf