FALL 2012 FINAL EXAM FOR SM261 1330 DECEMBER 18, 2012

SHOW ALL WORK

PART 1. On this part (problems 1-5) you may NOT use a calculator.

- 1. Complete the following definitions.
 - **a.** If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ are vectors in \mathbb{R}^n , then span $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m)$ is...
 - **b.** If A is an $n \times n$ matrix, an eigenvector of A is ...
 - **c.** If A is an $n \times m$ matrix, then a least-squares solution of the linear system $A\vec{x} = \vec{b}$ is...

2. Define
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x-2y+z-3w \\ y+z+w \\ x-y+2z-2w \end{bmatrix}$.

a. Find a matrix A so that $T(\vec{v}) = A\vec{v}$ for all vectors $\vec{v} \in \mathbb{R}^4$.

b. Find the reduced row-echelon form of the augmented matrix of the linear system $A\vec{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Show all steps.

c. Describe all solutions to the linear system $A\vec{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

d. Is every linear combination of solutions to the linear system $A\vec{v}=\begin{bmatrix}\frac{1}{2}\\3\end{bmatrix}$ also a solution? Explain.

3. Find the determinant of the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 1 & 0 \\ 0 & 4 & 3 & 0 \\ 3 & 0 & 0 & 4 \end{bmatrix}.$$

4. Let V be the subspace of \mathbb{R}^3 defined by $V = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 | x + 2y + 3z = 0 \}$. Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ so that $\operatorname{im}(T) = V$.

5. Let $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+4y \\ 3x+2y \end{bmatrix}$. Let $S = \{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 | 0 \le x \le 1, \ 0 \le y \le 1 \}$. Sketch S and T(S).

This is the end of Part 1. Turn in your answers and proceed to Part 2.

PART 2. You may use a calculator on this part. Show all your work.

6. Define the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T(\vec{e_k}) = \begin{bmatrix} 1 \\ k \\ k^2 \end{bmatrix}$ for k = 1, 2, 3, 4. Find the matrix of T.

7. Let T and U be linear transformations from \mathbb{R}^2 to \mathbb{R}^2 defined as follows. T multiplies each vector by the scalar $\sqrt{2}$. U is a counter-clockwise rotation by 45°. Find the matrix of the linear transformation $(T \circ U)(\vec{v}) = T(U(\vec{v}))$.

8. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which is reflection through the line $x + \sqrt{3}y = 0$. Find the matrix of T.

9. Let A be the matrix

$$\begin{bmatrix} 1 & 2 & 2 & 3 & 3 \\ 3 & 6 & 6 & 9 & 9 \\ 1 & 4 & 6 & 1 & -1 \\ 1 & 1 & 2 & 2 & 3 \end{bmatrix}.$$

We have

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 3 & 5 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

a. Find a basis for ker(A). Find dim(ker(A)).

b. Find a basis for im(A). Find rank(A).

10. Let
$$V = \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$$
, where $\vec{v}_1 = \begin{bmatrix} \frac{1}{2} \\ \frac{2}{5} \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} \frac{3}{-4} \\ \frac{1}{5} \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} \frac{2}{-1} \\ \frac{1}{4} \end{bmatrix}$.

a. Find a basis for V.

b. Is the vector $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ in V? Explain.

11. Find a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix of $T(\vec{v}) = \begin{bmatrix} -5 & -9 \\ 4 & 7 \end{bmatrix} \vec{v}$ is $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

12. Let V be the subspace of \mathbb{R}^4 with basis $\left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$.

Use the Gram-Schmidt process to find an orthonormal basis for V.

13. Let V be the subspace of \mathbb{R}^3 with orthonormal basis $\left\{\begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}, \begin{bmatrix} -\frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{bmatrix}\right\}$. Find the matrix of the orthogonal projection onto V.

14. Using least squares, fit a function f(t) = a + bt to the data points (0,1), (1,3), (1,5).

15. Let P be the parallelepiped in \mathbb{R}^3 defined by the vectors

$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

a. Find the volume of P.

b. Let T be the linear tranformation given by $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x-y \\ y+3z \\ x-y+z \end{bmatrix}$. Find the volume of T(P).

- **16.** True or False. If true, give a reason. If false, give a reason or a counterexample.
 - **a.** If $T: \mathbb{R}^7 \to \mathbb{R}^6$ is a linear transformation, then $\ker(T) \neq 0$.
 - **b.** If $\{\vec{v_1}, \vec{v_2}\}$ is a set of two linearly independent vectors in \mathbb{R}^4 , then the set $\{c_1\vec{v_1} + c_2\vec{v_2}\}$ of all linear combinations forms a basis of a two dimensional subspace of \mathbb{R}^4 .
 - **c.** The matrix of an orthogonal projection onto a subspace in \mathbb{R}^n is an orthogonal matrix.
 - d. All diagonalizable matrices are invertible.
 - **e.** If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation with $T(\vec{v}) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $T(\vec{w}) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, then $T(\vec{v} + 2\vec{w}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

In Problems 17-18, do all calculations by hand and show all steps. You may check your work with a calculator.

17. Let A be the matrix

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}.$$

a. Find the characteristic polynomial $f_A(\lambda)$ of A.

b. Find the eigenvalues of A.

c. For each eigenvalue λ , find a basis for the eigenspace E_{λ} .

d. Is A diagonalizable? If so, find an eigenbasis for A and a diagonal matrix D which is similar to A. If not, give your reasons.

18. Let

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & 3 & -1 \end{bmatrix}.$$

A and B each have eigenvalues $\lambda=1,2,2$. Determine which of these matrices is diagonalizable. For those which are, find an eigenbasis and a diagonal matrix D which is similar. For those which are not, give your reasons.