Experimental Design

Biology 683

Lecture 1

Heath Blackmon

Me

I study the **evolution of traits**. Especially genomic traits. I use a variety of methods next-gen sequencing, experimental evolution, phylogenetic comparative methods, and theoretical approaches. I don't work with a single taxa; we have projects involving fish, mammals, reptiles, amphibians, insects, and bacteria all ongoing in my lab.

You all

Talk to those around you.

- 1. Find someone whose research interests or background you don't know—learn them.
- 2. Find out if you all have any concerns about this class

Pedagogy

Educational Evaluation and Policy Analysis Summer 1990, Vol. 12, No. 2, pp. 213–227

Class Size and Student Achievement: Research-Based Policy Alternatives

Allan Odden
University of Southern California

Our approach

- In class (MW 4-5:15) lecture, discussion, questions and answers, live coding
- Office hours (4 per week, 1 hour each) these are optional-ish you need to be there if you can not complete practice problems without assistance. Each office hour session will include a 30 minute live coding session followed by 30 minutes of question and answer time.

Our Team

Jorja Elliott
3 year Ph.D. student
Quantitative Genetics

Jorja Elliott 2 year Ph.D. student Phylogenetics

Jorja Elliott
2 year Ph.D. student
Genomics

My Goals

- I want to challenge each of you to grow as a scientist
- I want to make you better at "doing" science
- I want to have fun together as we work our way through a lot of material this semester!

My View on Graduate Courses

 I think graduate courses should open the door for you to become an expert in a field.

 However, you shouldn't need to become an expert to do well. Not every class is super central to your research.

• Therefor, I'm going to expose you to a lot of material and I hope really challenge you with some of the problems we solve. However, each of you can earn an A if you simply put forth an appropriate and reasonable amount of effort.

Today

- Teaching approach
- Syllabus / website / calendar
- Big problems in stats (outside world / within academia)
- Why you need this class
- Prep for future classes

My Objectives

- Help you build an intuitive understanding of statistics
- Help you develop the confidence to think about the characteristics of the data that you will be collecting in your research and how you might analyze it.
- Get you comfortable with the idea of coding in R
- Help you develop the skills to handle datasets in R
- Help you develop the skills to build informative, honest, and intuitive data visualizations in R
- Make you a more productive and successful scientist!

The public impression of statistics

- You can make statistics say anything
- Statistics are no substitute for common sense
 "I got sick after I got a flu shot so I don't get them
 anymore"

My opinions

Misuse of statistics is unethical as a scientist

My opinions

Misuse or ignorance of statistics is unethical as a scientist

Poor training and maleficence are both responsible for failures

Statistical literacy in the general public is essential and lacking

Do your part: learn science of important topics and help friends and family understand them! This includes the statistical analysis and how we should let them inform our belief!

Reproducibility crisis

 Started in the social sciences but some problems are widespread

possible causes of

f the reproducibility crisis

small sample sizes

p-hacking

260
- 195
- 130
- 65
- 2016 2017 2018 2019 2020 2021 2022 2023 0

e 2018

1098

Amy Cuddy
TED Talk 68.9 Million views
(2nd most popular TED Talk)

unethical researchers/developers

Can we trust the science we read?

Scenario 1

You have a question: Are fish in lake A or B on average bigger?

Collect N fish from both lakes using identical sampling methods. You then use a two-sample two sided T-test to determine if they differ in size then report your result.

Scenario 2

You collect N fish from both lakes using identical sampling methods you noticed that fish in lake A seems bigger than those in lake B

You use a two-sample one sided T-test to determine fish in lake A are larger than lake B.

Discuss What proportion of the time will these two scenarios each suggest a positive result even when the fish in the two lakes are on average identical. In other words what is the false positive rate for these two scenarios?

Can we trust the science we read?

Example in R

Open access, freely available online

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Solutions

- Study preregistration (COS)
- Discuss What are possible solutions to the reproducibility
- crisis?
- Systemic change unlikely

The Origin of Statistics

Much of modern statistics was an offshoot of genetics and evolution

K. PEARSON 1857-1936 CORRELATION

F. GALTON 1822-1911 REGRESSION

R. FISHER 1890-1962 ANOVA

S. WRIGHT 1889-1988 PATH ANALYSIS

1900 rediscovery of Mendel's work was motivating problem.

The Origin of Statistics

K. PEARSON 1857-1936 CORRELATION

F. GALTON 1822-1911 REGRESSION

R. FISHER 1890-1962 ANOVA

The disgraceful history of biostatistics

- Much of statistics was developed with the idea of showing that we could measure, scientifically analyze, and improve the "quality" of humans.
- The majority of geneticists and statisticians in the early 1900s were proponents of eugenics.
- What are the problems with this scientific/ethical

Why do biologists need statistics

- •We want to learn about the world often by testing hypotheses.
- •To test a hypothesis we have to design an experiment
- •Not all experiments have a traditional control and experimental treatment and this isn't always how we want to test a hypothesis
- •It is quite possible to design a study or collect data that cannot answer the questions that we have
- •This leads to poor manuscripts and can lead to bad practices like p-hacking

Experimental Design

To design an experiment you need to understand how the data will be analyzed statistically.

- 1. How can you sample the population in which you are interested?
- 2. What tests are appropriate for your data?
- 3. What biases must be controlled for?
- 4. What sample size will be necessary?

Why not just collaborate with a statistician

- 1. In some cases this is a great option, but you have to understand enough to communicate.
- 2. If you publish a study you are responsible for its validity.
- 3. For most experiments simple methods suffice.
- 4. In many fields of biology there are sets of statistical tests that are expected for certain types of data.
- 5. For all of these reasons statistical analysis needs to involve people who understand the biological problem and the field of study.

My stats philosophy

- Statistics is just another tool
- My responsibility as a scientists is to report the truth as accurately as possible and statistics help me in this regard
- We may NEED statistics to discern patterns in our data
- You need to understand where the signal that makes for a significant test comes from. Visualizing your data in the right way can do this!

Why am I teaching this class?

What is R

- R is an open and free statistical programming language that focuses on stats and graphics
- It works very similarly on all major operating systems
- It's also a full-fledged high level programming language (similar to Python)
- Very popular in industry so looks great on a CV.

Why use R

- 1. Many statistical approaches have been implemented in the R environment.
- 2. Because it's open source, there are no proprietary secrets, as might be hiding in commercially available statistical packages.
- 3. Any program written in R will have access to all of R's tools for statistics and graphing.
- 4. New methods of analysis are being implemented in R by the scientists developing the methods.

Why use R

- If you use R you can include a script with your manuscript <u>example</u>
 Reproducibility / Open science
 Reviewing
 Revising
- 6. Many methods (mixed models, quantitative genetics, etc.) are only available in R.
- 7. PLOTTING
- 8. Once you've learned one language you can learn others more easily.

Downsides of R

- Learning curve
- Anyone can make a package so there is some junk out there
- Memory issues
- No language lasts forever and no language can do everything
 - Python
 - Awk
 - Julia

For Wednesday

- 1. Do office hours survey (link on course website).
- 2. Install R and Rstudio on the computer you will use this semester
- 3. See me if you have problems installing.

You can bring your laptop to class to follow along on coding that I do in front of you but this is not a requirement. Our room has insufficient plugs so charge ahead of time. I expect you to practice outside of class and come to office hours if you have problems

Heath Blackmon
BSBW 119C
coleoguy@gmail.com

Installing R and RStudio

Installing R

- 1. Go to the R homepage and click download R.
- 2. Pick a mirror that is in Texas or at least in the United States.
- 3. Select the correct version for your system and follow the prompts.

Installing Rstudio

- 1. Go to the <u>RStudio homepage</u> and click on the download link below the free version of RStudio Desktop.
- 2. Select the correct version for your system and follow the prompts.

How you will be learning

1. I will code live in front of you, I will have some days times that we set aside extra time for help. HOMEWORK!

Basics of R

1. Demo R

Data structures

- vector
- matrix
- dataframe
- list

Data types

- numeric
- character
- logical
- factor

Control elements

- for
- if
- while

Common functions

- C
- matrix
- list
- sum
- mean
- sd
- sqrt
- abs
- paste
- rnorm
- rbinom
- rexp
- sample
- rep
- data
- Help
- which

Basic base R plotting functions

- hist
- plot
- density
- abline
- lines

Operators

- <
- ==
- >
- <
- %in%
- {
- •
- + * / ^ %%

```
Practice

install.packages("swirl")

library("swirl")

swirl()

Complete two lessons of your choice
```