### **Contents**

Mealy and Moore m/cs



#### **Section outline**

- Mealy and Moore m/cs
  - Mealy m/c
  - D flip flop
  - Mealy m/c ex 1
  - Mealy m/c ex 2
  - Mealy m/c ex 3
  - Mealy m/c ex 4

- Moore m/c
- Moore m/c ex 1
- Moore m/c ex 2
- Moore m/c ex 3
- Moore m/c ex 4
- Mealy to Moore conversion
- Mealy→Moore ex 1
- Mealy→Moore ex 2
- Moore→Mealy ex 1





# Mealy m/c

- Mealy machines are finite state machines whose outputs depends on the present state and on the inputs
- It can be defined as  $\langle Q, q_0, \Sigma, \Delta, \delta, \lambda \rangle$  where:
- is a finite set of states.
  - $q_0$  is the initial state
  - $\sum$  is the input alphabet
  - is the output alphabet
  - $\delta$  is transition function which maps  $Q \times \Sigma \rightarrow Q$
  - $\lambda$  is the output function which maps  $Q \times \Sigma \rightarrow \Delta$





### D flip flop

- At the appropriate edge of clock data is transferred from D to Q
- Two SR latches in series clocked with complementary clocks to prevent racing through the FF and the combinational circuits
- Synchronous or asynchronous preset/clear possible
- Some problems still possible, better circuit to be discussed later





DFF (-ve edge) with synchronous present/clear

DFF (-ve edge) with asynchronous present/clear



- $\Sigma = \{0, 1\}$
- $\Delta = \{0, 1\}$





#### Example (2's complement of input, starting from LSB)

- $\Sigma = \{0, 1\}$
- $\Delta = \{0, 1\}$

start  $\rightarrow q_0$ 



5/17

• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$







• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$







• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$



|    | 0  |   | 1  |   |
|----|----|---|----|---|
| PS | NS | 0 | NS | 0 |
|    |    |   |    |   |
|    |    |   |    |   |



• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$



| I 0   |                       | 0 |                       |   |
|-------|-----------------------|---|-----------------------|---|
| PS    | NS                    | 0 | NS                    | 0 |
| $q_0$ | <b>q</b> <sub>0</sub> | 0 | <i>q</i> <sub>1</sub> | 1 |





• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$



| I     | 0     |   | 1     |   |
|-------|-------|---|-------|---|
| PS    | NS    | 0 | NS    | 0 |
| $q_0$ | $q_0$ | 0 | $q_1$ | 1 |
| $q_1$ | $q_1$ | 1 | $q_1$ | 0 |





• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$



| F     | nco | dings             | Other    | en-      |              |
|-------|-----|-------------------|----------|----------|--------------|
|       |     | $\frac{q_1}{q_1}$ | <u> </u> | codings  | also         |
| $q_0$ | '   | 41                | U        | possible | <del>,</del> |

| I     | 0     |   | 1     |   |
|-------|-------|---|-------|---|
| PS    | NS    | 0 | NS    | 0 |
| $q_0$ | $q_0$ | 0 | $q_1$ | 1 |
| $q_1$ | $q_1$ | 1 | $q_1$ | 0 |





#### Example (2's complement of input, starting from LSB)

• 
$$\Sigma = \{0, 1\}$$

• 
$$\Delta = \{0, 1\}$$



| _                         | noo | dina       | Other        | en-      |   |
|---------------------------|-----|------------|--------------|----------|---|
| Encodings $q_0$ 1 $q_1$ 0 |     |            | codings also |          |   |
| $q_0$                     | '   | <b>9</b> 1 | U            | possible | 9 |

| I     | 0     |   | 1     |   |
|-------|-------|---|-------|---|
| PS    | NS    | 0 | NS    | 0 |
| $q_0$ | $q_0$ | 0 | $q_1$ | 1 |
| $q_1$ | $q_1$ | 1 | $q_1$ | 0 |

| I  | 0  |   | I 0 1 |   | 1 |  |
|----|----|---|-------|---|---|--|
| PS | NS | 0 | NS    | 0 |   |  |
| 0  | 0  | 1 | 0     | 0 |   |  |
| 1  | 1  | 0 | 0     | 1 |   |  |

Complete the realisation using DFF





- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$

### Example (Output A on 101, B on 110, C otherwise)

- $\Sigma = \{0, 1\}$
- $\bullet \Delta = \{A, B, C\}$



 $\left(q_{1}\right)$ 

 $\left(q_2\right)$ 

 $q_3$ 

### Example (Output A on 101, B on 110, C otherwise)

- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$







 $\left(q_3\right)$ 

- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$



- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$



- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$



- $\Sigma = \{0, 1\}$



• 
$$\Sigma = \{0, 1\}$$



| I  | 0  |   | 1  |   |
|----|----|---|----|---|
| PS | NS | 0 | NS | 0 |
|    |    |   |    |   |
|    |    |   |    |   |
|    |    |   |    |   |
|    |    |   |    |   |

| start $\rightarrow q_0$ 1/C | $q_1$ | 1/A<br>0/C | $q_2$ |
|-----------------------------|-------|------------|-------|
| 0/C                         | 1/C   | 0/B        | /     |
| 1/C                         | $q_3$ |            |       |

### **Example (Output A on 101, B on 110, C otherwise)**

- $\Sigma = \{0, 1\}$



| $\bullet \ \Delta = \{A, B, C\}$ |       |            |       |
|----------------------------------|-------|------------|-------|
|                                  | 0/C   | _          |       |
| start $\rightarrow q_0$ 1/C      | $q_1$ | 1/A<br>0/C | $q_2$ |
| 0/C                              | 1/C   | 0/B        |       |
| 1/C                              | $q_3$ |            |       |

0

С

• 
$$\Sigma = \{0, 1\}$$
  
•  $\Lambda = \{A, B, C\}$ 



| ı                                | 0                                |   | 1                                |    |
|----------------------------------|----------------------------------|---|----------------------------------|----|
| PS                               | NS                               | 0 | NS                               | 0  |
| 9 <sub>0</sub><br>9 <sub>1</sub> | 9 <sub>0</sub><br>9 <sub>2</sub> | C | 9 <sub>1</sub><br>9 <sub>3</sub> | CC |
|                                  |                                  |   |                                  |    |

|                             | 0/C   | _                         |
|-----------------------------|-------|---------------------------|
| start $\rightarrow q_0$ 1/C | $q_1$ | 1/A<br>0/C q <sub>2</sub> |
| 0/C                         | 1/C   | 0/B                       |
| 1/C                         | $q_3$ |                           |





| 1 |                       |                       | • |                       |   |
|---|-----------------------|-----------------------|---|-----------------------|---|
|   | I                     | 0                     |   | 1                     |   |
|   | PS                    | NS                    | 0 | NS                    | 0 |
|   | $q_0$                 | $q_0$                 | С | $q_1$                 | С |
|   | $q_1$                 | <b>q</b> <sub>2</sub> | C | <b>q</b> <sub>3</sub> | С |
|   | <b>q</b> <sub>2</sub> | $q_1$                 | C | $q_1$                 | Α |
|   |                       |                       |   |                       |   |





| 1 | •     |       |   |                       |   |  |
|---|-------|-------|---|-----------------------|---|--|
|   | I     | 0     |   | 1                     |   |  |
|   | PS    | NS    | 0 | NS                    | 0 |  |
|   | $q_0$ | $q_0$ | С | $q_1$                 | C |  |
|   | $q_1$ | $q_2$ | C | $q_3$                 | С |  |
|   | $q_2$ | $q_1$ | C | $q_1$                 | Α |  |
|   | $q_3$ | $q_2$ | В | <b>q</b> <sub>3</sub> | С |  |

0/C

# Mealy m/c ex 2

### Example (Output A on 101, B on 110, C otherwise)







| start $\rightarrow q_0$ 1/C | $q_1$ | 1/A<br>0/C | 9        |
|-----------------------------|-------|------------|----------|
| 0/C                         | 1/C   | 0/B        | <i>†</i> |
| 1/C                         | $q_3$ |            |          |
| Encodingo                   |       |            |          |

#### Encodings

|       |    | _ |    |               |      |
|-------|----|---|----|---------------|------|
| $q_0$ | 00 | Α | 01 | Other codings | en-  |
| $q_1$ | 01 | В | 10 | codings       | also |
| $q_2$ | 10 | С | 00 | possible      | е    |
| $q_3$ | 11 |   |    |               |      |

### Example (Output A on 101, B on 110, C otherwise)

0/B





 $q_3$ 

Encodings

0/C

| $q_0$ | 00 | Α | 01 | Other    | en-  |
|-------|----|---|----|----------|------|
| $q_1$ | 01 | В | 10 | codings  | also |
| $q_2$ | 10 | С | 00 | possible | е    |
| $q_3$ | 11 |   |    |          |      |

1/C

|                       | 0     |   | 1     |   |
|-----------------------|-------|---|-------|---|
| PS                    | NS    | 0 | NS    | 0 |
| <b>q</b> <sub>0</sub> | $q_0$ | С | $q_1$ | C |
| $q_1$                 | $q_2$ | C | $q_3$ | С |
| $q_2$                 | $q_1$ | C | $q_1$ | Α |
| <b>q</b> <sub>3</sub> | $q_2$ | В | $q_3$ | С |

| I  | 0  |    | 1  |    |
|----|----|----|----|----|
| PS | NS | 0  | NS | 0  |
| 00 | 00 | 00 | 01 | 00 |
| 01 | 10 | 00 | 11 | 00 |
| 10 | 01 | 00 | 01 | 01 |
| 11 | 10 | 10 | 11 | 00 |

Complete the realisation using DFF

- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$

- $\Sigma = \{0, 1\}$
- $\bullet \Delta = \{A, B, C\}$





start 
$$\rightarrow q_0$$





- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$





- $\Sigma = \{0, 1\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{A, B, C\}$  0/C 0/C 0/A 0/A

#### Example (Output on ending with 00:A, 11:B, C, otherwise)

- $\Sigma = \{0, 1\}$

 $q_3$ 

1/B

• 
$$\Sigma = \{0, 1\}$$



| 4, 11.D, 0, otherwise) |    |   |    |   |  |  |
|------------------------|----|---|----|---|--|--|
| ı                      | 0  |   | 1  |   |  |  |
| PS                     | NS | 0 | NS | 0 |  |  |
|                        |    |   |    |   |  |  |
|                        |    |   |    |   |  |  |
|                        |    |   |    |   |  |  |
|                        |    |   |    |   |  |  |
|                        |    |   |    |   |  |  |

• 
$$\Sigma = \{0, 1\}$$



| • | r, IIID, O, Other Mide) |                       |   |                       |   |  |
|---|-------------------------|-----------------------|---|-----------------------|---|--|
|   | I                       | 0                     | 0 |                       |   |  |
|   | PS                      | NS                    | 0 | NS                    | 0 |  |
|   | <b>q</b> 0              | <i>q</i> <sub>1</sub> | С | <i>q</i> <sub>3</sub> | С |  |

• 
$$\Sigma = \{0, 1\}$$



| A, TTIB, O, Other Misc)          |                                  |   |                                  |   |  |
|----------------------------------|----------------------------------|---|----------------------------------|---|--|
| I                                | 0 1                              |   |                                  |   |  |
| PS                               | NS                               | 0 | NS                               | 0 |  |
| 9 <sub>0</sub><br>9 <sub>1</sub> | q <sub>1</sub><br>q <sub>2</sub> | С | 9 <sub>3</sub><br>9 <sub>0</sub> | С |  |
| $q_1$                            | $q_2$                            | Α | $q_0$                            | С |  |
|                                  |                                  |   |                                  |   |  |
|                                  |                                  |   |                                  |   |  |
|                                  |                                  |   |                                  |   |  |

• 
$$\Sigma = \{0, 1\}$$



| ,                                                  | , -,                                           |   |                                                    | , |  |
|----------------------------------------------------|------------------------------------------------|---|----------------------------------------------------|---|--|
| I                                                  | 0                                              |   | 1                                                  |   |  |
| PS                                                 | NS                                             | 0 | NS                                                 | 0 |  |
| $q_0$                                              | $q_1$                                          | С | <b>q</b> <sub>3</sub>                              | С |  |
| 9 <sub>0</sub><br>9 <sub>1</sub><br>9 <sub>2</sub> | <b>q</b> <sub>2</sub><br><b>q</b> <sub>2</sub> | Α | 9 <sub>3</sub><br>9 <sub>0</sub><br>9 <sub>3</sub> | С |  |
| <b>q</b> 2                                         | $q_2$                                          | Α | <b>q</b> <sub>3</sub>                              | С |  |
|                                                    |                                                |   |                                                    |   |  |
|                                                    |                                                |   |                                                    |   |  |

• 
$$\Sigma = \{0, 1\}$$



| ,                                              | , -,  |   |                       | , |  |
|------------------------------------------------|-------|---|-----------------------|---|--|
| ı                                              | 0     |   | 1                     |   |  |
| PS                                             | NS    | 0 | NS                    | 0 |  |
| $q_0$                                          | $q_1$ | С | <b>q</b> <sub>3</sub> | С |  |
| $ q_1 $                                        | $q_2$ | Α | $q_0$                 | С |  |
| <b>q</b> <sub>2</sub><br><b>q</b> <sub>3</sub> | $q_2$ | Α | <b>q</b> <sub>3</sub> | С |  |
| <b>q</b> <sub>3</sub>                          | $q_0$ | С | $q_4$                 | В |  |
|                                                |       |   |                       |   |  |

• 
$$\Sigma = \{0, 1\}$$
  
•  $\Delta = \{A, B, C\}$ 



| ,                     | , ,   |   |                       | , |  |  |
|-----------------------|-------|---|-----------------------|---|--|--|
| I                     | 0     |   | 1                     |   |  |  |
| PS                    | NS    | 0 | NS                    | 0 |  |  |
| $q_0$                 | $q_1$ | С | <b>q</b> <sub>3</sub> | С |  |  |
| $\mid q_1 \mid$       | $q_2$ | Α | $q_0$                 | C |  |  |
| <b>q</b> 2            | $q_2$ | Α | <b>q</b> 3            | C |  |  |
| <b>q</b> <sub>3</sub> | $q_0$ | С | $q_4$                 | В |  |  |
| $q_4$                 | $q_1$ | C | $q_4$                 | B |  |  |

• 
$$\Sigma = \{0, 1\}$$



| E | Enco | dings |  |
|---|------|-------|--|
|   |      | ~ ~ ~ |  |

| $q_0$ | 000        | $q_3$ | 011 | Α | 01 |
|-------|------------|-------|-----|---|----|
| $q_1$ | 000<br>001 | $q_4$ | 100 | В | 10 |
| $q_2$ | 010        |       |     | С | 00 |

| ,                     | , ,   |   |                       | , |
|-----------------------|-------|---|-----------------------|---|
| I                     | 0     |   | 1                     |   |
| PS                    | NS    | 0 | NS                    | 0 |
| <b>q</b> <sub>0</sub> | $q_1$ | С | <b>q</b> <sub>3</sub> | С |
| $q_1$                 | $q_2$ | Α | $q_0$                 | C |
| <b>q</b> 2            | $q_2$ | A | <b>q</b> <sub>3</sub> | C |
| <b>q</b> <sub>3</sub> | $q_0$ | C | $q_4$                 | B |
| $q_4$                 | $q_1$ | C | $q_4$                 | В |

 $q_4$ 

1/B

# Mealy m/c ex 3

## Example (Output on ending with 00:A, 11:B, C, otherwise)



$$\Delta = \{A, B, C\}$$

$$0/C$$

$$0/A$$

$$q_1$$

$$0/A$$

$$q_2$$

$$1/C$$

$$0/C$$

$$1/B$$

Encodings

 $q_3$ 

0/C

1/C

|       | Litoutings |                       |     |   |    |  |  |  |  |  |  |
|-------|------------|-----------------------|-----|---|----|--|--|--|--|--|--|
| $q_0$ | 000        | <b>q</b> <sub>3</sub> | 011 | Α | 01 |  |  |  |  |  |  |
| $q_1$ | 000<br>001 | $q_4$                 | 100 | В | 10 |  |  |  |  |  |  |
| $q_2$ | 010        |                       |     | С | 00 |  |  |  |  |  |  |

| ı |       | 0     |    |   | - 1                              |     |   |    |
|---|-------|-------|----|---|----------------------------------|-----|---|----|
| ĺ | PS    | NS    | 0  | I | NS                               | С   |   |    |
|   | $q_0$ | $q_1$ | С  |   | <b>q</b> 3                       | С   |   |    |
|   | $q_1$ | $q_2$ | Α  |   | $q_{0}$                          | C   |   |    |
|   | $q_2$ | $q_2$ | Α  |   | <b>q</b> 3                       | С   |   |    |
|   | $q_3$ | $q_0$ | С  |   | 9 <sub>4</sub><br>9 <sub>4</sub> | В   |   |    |
|   | $q_4$ | $q_1$ | O  |   | $q_4$                            | В   | } |    |
|   |       |       | 0  |   |                                  | 1   |   |    |
|   | PS    | NS    | С  | ) | NS                               |     |   | 0  |
| ĺ | 000   | 001   | 00 | ) | 01                               | 011 |   | 00 |
|   | 001   | 010   | 0. | 1 | 00                               | 0   | ( | 00 |
| ĺ | 010   | 010   | 0. | 1 | 01                               | 1   | ( | 00 |

Complete the realisation using DFF

00

00

000

001

010

100

100

100

01

01

- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$

## **Example (Serial adder, starting from LSB)**

- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$

start  $\rightarrow q_0$ 

 $q_1$ 

- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$
- $\Delta = \{00, 01, 10, 11\} \triangleq \{\langle s_i, c_i^0 \rangle\}, i \geq 0$



- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$
- $\Delta = \{00, 01, 10, 11\} \triangleq \{\langle s_i, c_i^0 \rangle\}, i \geq 0$



- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$ •  $\Delta = \{00, 01, 10, 11\} \triangleq \{\langle s_i, c_i^o \rangle\}, i \geq 0$
- 10/10 01/10

  start  $q_0$ 00/10 00/00 11/01

  11/11

| I  | 00 | 00 |    | 00 01 |    | 10 |    | 11 |  |
|----|----|----|----|-------|----|----|----|----|--|
| PS | NS | 0  | NS | 0     | NS | 0  | NS | 0  |  |
|    |    |    |    |       |    |    |    |    |  |

- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$
- $\Delta = \{00, 01, 10, 11\} \triangleq \{\langle s_i, c_i^0 \rangle\}, i \geq 0$



|       | 0                     | 0  | 01                    |    | 10    |    | 11    |    |
|-------|-----------------------|----|-----------------------|----|-------|----|-------|----|
| PS    | NS                    | 0  | NS                    | 0  | NS    | 0  | NS    | 0  |
| $q_0$ | <b>q</b> <sub>0</sub> | 00 | <b>q</b> <sub>0</sub> | 10 | $q_0$ | 10 | $q_1$ | 01 |

- $\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$
- $\bullet \ \Delta = \left\{00, 01, 10, 11\right\} \triangleq \left\{\left\langle s_i, c_i^{\text{o}}\right\rangle\right\}, i \geq 0$



| I     | 00    |    |       |    | 10    |    | 11    |    |
|-------|-------|----|-------|----|-------|----|-------|----|
| PS    | NS    | 0  | NS    | 0  | NS    | 0  | NS    | 0  |
| $q_0$ | $q_0$ | 00 | $q_0$ | 10 | $q_0$ | 10 | $q_1$ | 01 |
| $q_1$ | $q_0$ | 10 | $q_1$ | 01 | $q_1$ | 01 | $q_1$ | 11 |

## **Example (Serial adder, starting from LSB)**

- $\Delta = \{00, 01, 10, 11\} \triangleq \{\langle s_i, c_i^{o} \rangle\}, i \geq 0$



| I     | 00    |    |       |    | 10    |    | 11    |    |
|-------|-------|----|-------|----|-------|----|-------|----|
| PS    | NS    | 0  | NS    | 0  | NS    | 0  | NS    | 0  |
| $q_0$ | $q_0$ | 00 | $q_0$ | 10 | $q_0$ | 10 | $q_1$ | 01 |
| $q_1$ | $q_0$ | 10 | $q_1$ | 01 | $q_1$ | 01 | $q_1$ | 11 |

## Encodings

 $q_0$  0  $q_1$ 

## **Example (Serial adder, starting from LSB)**

• 
$$\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$$

$$\bullet \ \Delta = \left\{00, 01, 10, 11\right\} \triangleq \left\{\left\langle s_i, c_i^{\text{o}}\right\rangle\right\}, i \geq 0$$



|       | 0     | 0        | 01    |    | 10    |          | 11    |    |
|-------|-------|----------|-------|----|-------|----------|-------|----|
| PS    | NS    | 0        | NS    | 0  | NS    | 0        | NS    | 0  |
| $q_0$ | $q_0$ | 00<br>10 | $q_0$ | 10 | $q_0$ | 10<br>01 | $q_1$ | 01 |
| $q_1$ | $q_0$ | 10       | $q_1$ | 01 | $q_1$ | 01       | $q_1$ | 11 |

| I  | 0  | 0  | 01 |    | 10 |    | 11 |    |
|----|----|----|----|----|----|----|----|----|
| PS | NS | 0  | NS | 0  | NS | 0  | NS | 0  |
| 0  | 0  | 00 | 0  | 10 | 0  | 10 | 1  | 01 |
| 1  | 0  | 10 | 1  | 01 | 1  | 01 | 1  | 11 |

Encodings

 $q_0$  0  $q_1$  1

Complete the realisation using DFF

### Moore m/c

- Moore machines are finite state machines whose outputs depends only on the present state
- It can be defined as  $\langle Q, q_0, \Sigma, \Delta, \delta, \lambda \rangle$  where:
- Q is a finite set of states
  - $q_0$  is the initial state
  - $\sum$  is the input alphabet
  - △ is the output alphabet
  - $\delta$  is transition function which maps  $Q \times \Sigma \rightarrow Q$
  - $\lambda$  is the output function which maps  $Q \to \Delta$





## Moore m/c

- Moore machines are finite state machines whose outputs depends only on the present state
- It can be defined as  $\langle Q, q_0, \Sigma, \Delta, \delta, \lambda \rangle$  where:
- Q is a finite set of states
  - $q_0$  is the initial state
  - ∑ is the input alphabet
  - △ is the output alphabet
  - $\delta$  is transition function which maps  $Q \times \Sigma \rightarrow Q$
  - $\lambda$  is the output function which maps  $Q \to \Delta$

#### Conversion of Moore m/c to a Mealy m/c

- The Mealy m/c has the same set of states and transitions as the Moore m/c
- $\forall a \in \Sigma, q \in Q : \lambda_{\mathsf{Mealy}}(q, a) = \lambda_{\mathsf{Moore}}(\delta_{\mathsf{Moore}}(q, a))$





## Example (Acceptor for even 0s, odd 1s)

- $\Sigma = \{0, 1\}$
- $\Delta = \{0, 1\}$



#### Encodings

EE 00 OE 01 EO 01 OO 11

## Example (Acceptor for even 0s, odd 1s)

• 
$$\Sigma = \{0, 1\}$$
  
•  $\Delta = \{0, 1\}$ 



| PS | N   | 0  |   |
|----|-----|----|---|
|    | I=0 |    |   |
| EE | OE  | EO | 0 |
| OE | EE  | 00 | 0 |
| EO | 00  | EE | 1 |
| 00 | EO  | OE | 0 |

## Encodings

| EE | 00 | OE          | 01 |
|----|----|-------------|----|
| FΩ | 01 | $\cap \cap$ | 11 |

## Example (Acceptor for even 0s, odd 1s)

- $\Sigma = \{0, 1\}$
- $\Delta = \{0, 1\}$



#### **Encodings**

| EE | 00 | OE | 01 |
|----|----|----|----|
| EO | 01 | 00 | 11 |

| PS | N   | 0  |   |
|----|-----|----|---|
|    | I=0 |    |   |
| EE | OE  | EO | 0 |
| OE | EE  | 00 | 0 |
| EO | 00  | EE | 1 |
| 00 | EO  | OE | 0 |

| PS | N   | 0  |   |
|----|-----|----|---|
|    | I=0 |    |   |
| 00 | 10  | 10 | 0 |
| 10 | 00  | 11 | 0 |
| 10 | 11  | 00 | 1 |
| 11 | 10  | 10 | 0 |

Complete the realisation using DFF

#### **Example (Remainder on division by 3, from MSB)**

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

#### **Encodings**

- Initial remainder is taken as zero
- On every new bit existing remainder is doubled
- Also, add 1 to new remainder on getting 1, nothing for 0





## Example (Remainder on division by 3, from MSB)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$



01

R2

10

- Initial remainder is taken as zero
- On every new bit existing remainder is doubled
- Also, add 1 to new remainder on getting 1, nothing for 0





R1

R0

## **Example (Remainder on division by 3, from MSB)**

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$



- Initial remainder is taken as zero
- On every new bit existing remainder is doubled
- Also, add 1 to new remainder on getting 1, nothing for 0

| PS      | N       | 0       |    |
|---------|---------|---------|----|
|         | I=0     | l=1     |    |
| R0 (00) | R0 (00) | R1 (01) | 00 |
| R1 (01) | R2 (10) | R0 (00) | 01 |
| R2 (10) | R1 (01) | R2 (10) | 10 |

Complete the realisation using DFF





## Example (Remainder on division by 3, from LSB)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

- Initial remainder is taken as zero
- 1 on an even index bit adds 1 to the accumulated remainder
- 1 on an odd index bit adds 2 to the accumulated remainder
- Need to keep track of parity of bit index being handled

## **Example (Remainder on division by 3, from LSB)**

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

- Initial remainder is taken as zero
- 1 on an even index bit adds 1 to the accumulated remainder
- 1 on an odd index bit adds 2 to the accumulated remainder
- Need to keep track of parity of bit index being handled



#### **Example (Remainder on division by 3, from LSB)**

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

#### Encodings

| E0 | 000 | E1 | 001        | E2 | 010 |
|----|-----|----|------------|----|-----|
| O0 | 100 | 01 | 001<br>101 | O2 | 110 |

Complete the realisation using DFF

- Initial remainder is taken as zero
- 1 on an even index bit adds 1 to the accumulated remainder
- 1 on an odd index bit adds 2 to the accumulated remainder
- Need to keep track of parity of bit index being handled



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$



## Example (Output A on 101, B on 110, C otherwise)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$

## Encodings

| 3-1-9- |     |       |     |                       |            |   |    |   |    |  |
|--------|-----|-------|-----|-----------------------|------------|---|----|---|----|--|
| $q_0$  | 000 | $q_1$ | 001 | $q_2$                 | 011        | Α | 01 | C | 00 |  |
| $q_3$  | 010 | $q_4$ | 110 | <b>q</b> <sub>5</sub> | 011<br>111 | В | 10 |   |    |  |

### Complete the realisation using DFF



• In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \dots, o_{k_j}$ 





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \dots, o_{k_s}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \dots, o_{k_s}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_{\ell}}/o_{k_{\ell}}$  means copy of Mealy m/c state  $s_{j}$  as  $s_{j,k_{\ell}}$  to output  $o_{k_{\ell}}$  in the Moore m/c





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \ldots, o_{k_j}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_\ell}/o_{k_\ell}$  means copy of Mealy m/c state  $s_j$  as  $s_{j,k_\ell}$  to output  $o_{k_\ell}$  in the Moore m/c
- If there is a transition from  $s_i$  to  $s_j$  on input a with output  $o_k$  in the Mealy m/c, create a transition on a from each copy of  $s_i$  to  $s_{j,k}$





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \dots, o_{k_n}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_\ell}/o_{k_\ell}$  means copy of Mealy m/c state  $s_j$  as  $s_{j,k_\ell}$  to output  $o_{k_\ell}$  in the Moore m/c
- If there is a transition from  $s_i$  to  $s_j$  on input a with output  $o_k$  in the Mealy m/c, create a transition on a from each copy of  $s_i$  to  $s_{j,k}$
- For the Moore m/c, let  $o_{\epsilon}$  be a special symbol which is output at the beginning when no inputs have been received, then  $\Delta_{\mathsf{Moore}} = \Delta_{\mathsf{Mealv}} \cup \{o_{\epsilon}\}$





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \ldots, o_{k_s}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_\ell}/o_{k_\ell}$  means copy of Mealy m/c state  $s_j$  as  $s_{j,k_\ell}$  to output  $o_{k_\ell}$  in the Moore m/c
- If there is a transition from  $s_i$  to  $s_j$  on input a with output  $o_k$  in the Mealy m/c, create a transition on a from each copy of  $s_i$  to  $s_{j,k}$
- For the Moore m/c, let  $o_{\epsilon}$  be a special symbol which is output at the beginning when no inputs have been received, then  $\Delta_{\mathsf{Moore}} = \Delta_{\mathsf{Mealv}} \cup \{o_{\epsilon}\}$
- A new state  $q_0'/o_\epsilon$  is created as the initial state of the Moore m/c





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \dots, o_{k_n}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_\ell}/o_{k_\ell}$  means copy of Mealy m/c state  $s_j$  as  $s_{j,k_\ell}$  to output  $o_{k_\ell}$  in the Moore m/c
- If there is a transition from  $s_i$  to  $s_j$  on input a with output  $o_k$  in the Mealy m/c, create a transition on a from each copy of  $s_i$  to  $s_{j,k}$
- For the Moore m/c, let  $o_{\epsilon}$  be a special symbol which is output at the beginning when no inputs have been received, then  $\Delta_{\mathsf{Moore}} = \Delta_{\mathsf{Mealv}} \cup \{o_{\epsilon}\}$
- A new state  $q_0'/o_\epsilon$  is created as the initial state of the Moore m/c
- Sucessors of  $q_0'/o_\epsilon$  are same as those of any copy of  $q_0$  in the created Moore m/c





- In the Mealy m/c let  $s_j$  have input transitions with outputs  $o_{k_1}, o_{k_2}, \ldots, o_{k_s}$
- ullet In the Moore m/c create states  $s_{\jmath,k_1}/o_{k_1},s_{\jmath,k_2}/o_{k_2},\ldots,s_{\jmath,k_j}/o_{k_j}$
- $s_{j,k_\ell}/o_{k_\ell}$  means copy of Mealy m/c state  $s_j$  as  $s_{j,k_\ell}$  to output  $o_{k_\ell}$  in the Moore m/c
- If there is a transition from  $s_i$  to  $s_j$  on input a with output  $o_k$  in the Mealy m/c, create a transition on a from each copy of  $s_i$  to  $s_{j,k}$
- For the Moore m/c, let  $o_{\epsilon}$  be a special symbol which is output at the beginning when no inputs have been received, then  $\Delta_{\text{Moore}} = \Delta_{\text{Mealy}} \cup \{o_{\epsilon}\}$
- A new state  $q_0'/o_\epsilon$  is created as the initial state of the Moore m/c
- Sucessors of  $q_0'/o_\epsilon$  are same as those of any copy of  $q_0$  in the created Moore m/c
- However, if the start state in Mealy m/c has not been split to multiple states, that may be retained as the start state of the Moore m/c; here  $o_{\epsilon}$  is arbitrarily taken as the unique output of  $q_0$



### Example (2's complement of input, starting from LSB)



#### Example (2's complement of input, starting from LSB)



Here the output initial state state has been set to 0 as all incoming transitions to  $q_0$  in the Mealy m/c had output a 0



































#### **Example (Serial adder, starting from LSB)**



For the adder  $q_{i,o_{\epsilon}}/o_{\epsilon}$  is semantically not needed,  $q_{0,00}/00$  may be retained as the initial state



CM & PM (IIT Kharagpur)

# Moore→Mealy ex 1

### Example (Output A on 101, B on 110, C otherwise)



# Moore→Mealy ex 1

