	SET CODE: 12
HALLTICKET NO.	BOOKLET SL. NO. 313134
NAME OF THE CANDIDATE	BOOKLET CODE: B
SIGNATURE OF THE CANDIDATE	INVIGILATOR'S SIGNATURE

(MEC)

MECHANICAL ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING BALL POINT PEN (BLUE/BLACK) ONLY ON THE OMR RESPONSE SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check.
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators. Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using Ball Point Pen (Blue/Black) only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using Ball Point Pen (Blue/Black) only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Note: (1) Answer all questions.

(2) Each question carries I mark. There are no negative marks.

(3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than one circle is shaded against each question.

MATHEMATICS

$$1. \qquad \int \left(\frac{x+2}{x+1}\right) dx =$$

(1)
$$x \log (x+1) + c$$

(2)
$$x \log (x+1) + 2 \log (x+1) + c$$

(3)
$$x + \log(x+1) + c$$

$$(4) \quad \frac{1}{x}\log(x+1)+c$$

$$2. \qquad \int \frac{x^2}{\sqrt{1+x^6}} \, dx =$$

(1)
$$\frac{1}{2}\sin^{-1}(x^3)+c$$

(2)
$$2\cos^{-1}(x^3) + c$$

$$(3)$$
 $\frac{1}{2}\cos h^{-1}(x^3) + c$

(4)
$$\frac{1}{3}\sin h^{-1}(x^3) + c$$

3.
$$\int 8x^3 e^{2x} dx =$$

(1)
$$(4x^3-6x^2+6x-3)e^{2x}+c$$

(2)
$$4x^3 + 6x^2 + 6x + 3e^{2x} + c$$

(3)
$$\left(\frac{4x^2}{3} - \frac{2}{3}x + \frac{1}{3}\right)e^{2x} + c$$

(4)
$$\left(\frac{4x^2}{3} + \frac{2}{3}x - \frac{1}{3}\right)e^{2x} + c$$

4.
$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right] =$$

(1)
$$\frac{\pi}{3}$$

$$(2) \quad \frac{\pi}{4}$$

Set Code: T2

Booklet Code :

$$5. \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx =$$

- $(1) \quad \frac{\pi}{2} \qquad \qquad (2) \quad \frac{\pi}{4}$
- (3) 0
- (4) 2
- The area of the region in the first quadrant enclosed by x-axis, y-axis, y = 3x-2 and y = 4 is 6.
 - (1) 16
- (2) 8
- (3) $\frac{16}{2}$
- $(4) \frac{8}{2}$
- The root mean square (RMS) value of $\log x$ over the range x = 1 to x = e is 7.

$$(1) \quad \frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$$

- (1) $\frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$ (2) $\frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$ (3) $\frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$ (4) $\frac{\sqrt{(e+2)}}{\sqrt{(e-1)}}$
- The differential equation formed by eliminating the arbitrary constants a and b in the relation 8. $y = a \cos(nx+b)$ is

(1)
$$\frac{d^2y}{dx^2} + n^2y = 0$$

(2)
$$\frac{d^3y}{dx^3} - x^3y = 0$$

$$(3) \quad \frac{dy}{dx} + ny = 0$$

$$(4) \quad \frac{d^2y}{dx^2} - y = 0$$

- The solution of $\frac{dy}{dx} = e^{x-y}$

- The solution of the differential equation $\tan x \frac{dy}{dx} + y = \sec x$ is
 - (1) $y \sin x x = c$

(2) $y \cot x + x = c$

(3) $y = \tan x + c$

(4) y. cosec x = x + c

11. The solution of the linear third order equation $\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 16\frac{dy}{dx} - 12y = 0$ is

(1) $y = c_1 e^{3x} + c_2 e^x + c_3 e^{4x}$

- (2) $y = c_1 e^{3x} + c_2 x e^x + c_3 e^{4x}$
- (3) $y = c_1 e^{2x} + c_2 x e^{3x} + c_3 e^{4x}$
- (4) $y = c_1 e^{3x} + (c_2 + c_3 x) e^{2x}$

12. If $y_1 = e^x$ and $y_2 = e^{-x}$ are two solutions of the homogeneous differential equation; then

- (1) $y_3 = e^{2x}$ and $y_4 = e^{-2x}$ are also solutions of the equation
- (2) $y_3 = xe^x$ and $y_4 = xe^{-x}$ are also solutions of the equation
- (3) $y_1 = \cosh x$ and $y_4 = \sinh x$ are also solutions of the equation
- (4) $y_1 = \cos x$ and $y_4 = \sin x$ are also solutions of the equation

13. The particular integral (P.I) of the equation $(D^2+D-6)y = 5e^{2x} + 6$ is

(1) $xe^{2x}-1$

(2) $e^{2x} + 1$

(3) $5xe^{2x} + 1$

(4) $e^{2x} - 1$

14. The particular integral of $(D^2+16)y = 8 \cos 4x$ is

(1) cos 4x

(2) $x \sin 4x$

 $(3) \quad -\frac{1}{4}\sin 4x$

 $(4) \quad -\frac{1}{4}\cos 4x$

15. If $A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ -3 & 5 & 1 \end{bmatrix}$ then,

(1) $A = A^T$

(2) A is a diagonal matrix

(3) A is a singular matrix

(4) A is a nonsingular matrix

16. If
$$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 then

- (1) The minors of first row elements are respectively -3, -1, 5
- (2) The cofactors of second row elements respectively are 1, −1, 1
- (3) The cofactors of first row elements respectively are -3, -1, -5
- The minors of second row elements respectively are 7, 5, -13
- 17. If A, B, C are non singular matrices of order 3 then

(1)
$$A(BC) \neq (AB)C$$

(2)
$$(ABC)^T = A^T B^T C^T$$

(3)
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

(4)
$$(ABC)^{-1} = 1/(ABC)$$

18. If
$$\begin{bmatrix} 3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
, then

(1)
$$x=-1, y=4$$

(3) $x=4, y=-1$

(2)
$$x = 2, y = -1$$

(3)
$$x = 4, y = -1$$

(4)
$$x = -1, y = 2$$

19. If w is the cube root of unity then
$$\begin{bmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{bmatrix} =$$

- (1) 0
- (2) 1
- (3) -1
- (4) 2

20. If
$$\frac{x^2 + 13x + 15}{(2x+3)(x+3)^2} = \frac{A}{2x+3} + \frac{B}{x+3} + \frac{C}{(x+3)^2}$$
 then $C = \frac{A}{(x+3)^2}$

- (1) 10
- (2) 5
- (3) 3
- (4) 1

21. If
$$\frac{2x+1}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$
 then $A = \frac{C}{x^2+1}$

- (1) -1
- (2) $\frac{2}{3}$ (3) $-\frac{3}{2}$

	Which o	C.1	C 11			:-	TDI	IE
77	Which	of the	tollov	ving s	iaiemeni	15	150	Æ

- (A) The period of $\sin x$ is π and the period of cosec x is 2π
- (B) The period of $\cos x$ is 2π and the period of $\sec x$ is 2π
- (C) The period of $\tan x$ is 2π and the period of $\cot x$ is π
- (D) The period of cosec x is π and the period of sec x is 3π
- (1) A
- (2) B
- (3) C
- (4) D

23. The range of
$$3\cos\theta - 4\sin\theta$$
 is

- (1) [-1, 1]
- (2) [0,4]
- (3) [-5,5]
- (4) [-4,0]

24. If
$$A+B=45^{\circ}$$
, then $(1+\tan A)(1+\tan B)=$

- (1) 0
- (2) 1
- (3) $\frac{1}{2}$
- (4) 2

25.
$$\left(\frac{\sin 2A}{1-\cos 2A}\right) \left(\frac{1-\cos A}{\cos A}\right) =$$

- (1) $\tan \frac{A}{2}$ (2) $\cos \frac{A}{2}$
- (3) $\sec \frac{A}{2}$ (4) $\csc \frac{A}{2}$

26. The value of
$$\frac{\sin 70^{\circ} - \cos 40^{\circ}}{\cos 50^{\circ} - \sin 20^{\circ}} =$$

- (1) 1
- $(2) \quad \frac{1}{\sqrt{2}}$
- (3) $\sqrt{3}$
- (4) 0

27.
$$4 \sin \frac{11\theta}{2} \cos \frac{11}{2}\theta \cos 5\theta$$
 expressed as sum or difference is

(1) $\sin 15 \theta - \sin 6 \theta$

 $\sin 16 \theta + \sin 6 \theta$

(3) $\sin 11 \theta + \sin 8 \theta$

(4) $\sin 11 \theta - \sin 8 \theta$

28. If
$$2\cos^2\theta + 11\sin\theta = 7$$
, the principal value of θ is

- (1) 60°
- (2) 45°
- (3) 30° (4) $22\frac{1}{2}$

Set Code:

Booklet Code:

Which one of the following equation is FALSE

(1) $\cos^{-1}(-x) = \pi - \cos^{-1}x$

- (2) $\sin^{-1}(-x) = \pi \sin^{-1}x$
- (3) If $-1 \le x \le 1$, then $\cos^{-1}x + \sin^{-1}x = \frac{\pi}{2}$ (4) $\sin^{-1}x \ne \frac{1}{\sin x}$

In any triangle ABC, $\Sigma(b+c)\cos A =$

- (1) a+b+c
- (2) 2(a+b+c)
- (3) 3(a+b+c)
- (4) 0

With the usual notation, in a triangle ABC

$$s\left[\frac{r_1-r}{a}+\frac{r_2-r}{b}+\frac{r_3-r}{c}\right]=$$

- (1) $2(r_1+r_2+r_3)$ (2) $3(r_1+r_2+r_3)$ (3) $r_1+r_2+r_3$
- (4) 0

32. The modulus amplitude form of $-\sqrt{3} + i$ is

- (1) $2 \operatorname{cis} \frac{5\pi}{6}$ (2) $2 \operatorname{cis} \frac{3\pi}{6}$ (3) $2 \operatorname{cis} \frac{\pi}{3}$ (4) $2 \operatorname{cis} \frac{\pi}{6}$

33. If $x = \cos \theta + i \sin \theta$, then the value of $x^6 + \left(\frac{1}{x^6}\right)$

- (1) 0
- (2) $2i\sin\theta\theta$
- (3) $2\cos 6\theta$
- $2(\cos 6 \theta + \sin 6 \theta)$ (4)

34. The most general second degree equation $ax^2+2hxy+by^2+2gx+2fy+c=0$ represents a circle if

(1) a+b=0, h=0

(2) a-b=0, h=0

(3) $a-b=0, h \neq 0$

(4) $a+b \neq 0, h \neq 0$

35. The equation of the circle whose radius is $\sqrt{(a^2-b^2)}$ and whose center is (-a, -b) is

- (1) $x^2+y^2+2ax+2by+2a^2=0$
- (2) $x^2+y^2-2ax+2(a^2+b^2)=0$
- (3) $x^2+v^2+2ax+2bv+2(a^2-b^2)=0$ (4) $x^2+y^2+2ax+2bx+2b^2=0$

36. The coordinates of the parabola $y^2 = 18x$ such that the ordinate equals to three times of the abscissa is

- (1) (3, 9)
- (2) (2,6)
- (3) (1,3)
- (4) (162, 54)

Set Code : T2

Booklet Code :

37. With respect to the ellipse $5x^2+7y^2=11$, the point (4, -3)

(1) Is a focus

- (2) lies with in the ellipse
- (3) lies outside the ellipse
- (4) lies on the ellipse

38. For the Hyperbola $4x^2-9y^2=36$, the coordinates of the foci are

- (1) $(\pm\sqrt{13},0)$ (2) $(\pm\sqrt{31},0)$ (3) $(\pm6,0)$ (4) $(0,\pm6)$

Which of the following statements are FALSE

- (A) The equation of the tangent at the point (x', y') of the circle $x^2 + y^2 = a^2$ is $xx' + yy' = a^2$
- (B) The eccentricity of a parabola is unity
- (C) The eccentricity of an ellipse is greater than unity
- (D) The eccentricity of a hyperbola is less than unity
- (1) A,B
- (2) A, D
- (3) B,C
- (4) C, D

40. $\lim_{x \to \infty} \frac{3^{x+1} + 4}{3^{x+2} + 4} =$

- (1)
- (2) 0
- (3) $\frac{3}{4}$
- (4) $\frac{1}{3}$

41. Derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with reference to x is

- (1) $\frac{2}{1+x^2}$ (2) $\frac{1}{1-x^2}$
- (3) 2x
- $(4) \quad \sqrt{1+x^2}$

42. If $y = x^{3x}$. (x > 0) then $\frac{dy}{dx} =$

- (1) $3. x^{3x-1}$
- (2) $3x^{2x}$
- (3) $3y(1+\log x)$ (4) $\frac{3y}{\log x}$

Set Code : T2 Booklet Code :

43. If
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 then $\frac{dy}{dx} =$

- (1) $\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (2) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (4) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$

The derivative of log sec x with respect to $\tan x$ is

- (1) $\sec x \cdot \tan x$ (2) $\cos x \cdot \cot x$ (3) $\cos x \cdot \sin x$ (4) $\sec x \cdot \cot x$

45. The coordinates of the point P(x, y) on the curve of $y = x^2 - 4x + 5$ such that the tangent at P is parallel to y = 2x+4 are

- (1) (3, 2)
- (2) (1,2)
- (3) (2, 1) (4) (5, 4)

46. The function $f(x) = x \log^2 x$ has

(1) Maximum value occurs when $x = \frac{1}{e}$ (2) Maximum value occurs when x = e

(3) Maximum value occurs when $x = e^{-2}$ (4) Maximum value occurs when $x = e^2$

47. In a cube the percentage increase in side is 2 units. The percentage increases in the volume of the cube is

- (1) 3
- (2) 6
- (3) 8
- (4) 16

48. The curves $x = y^2$ and xy = m cut at right angle if

- (1) m = 0
- (2) $m^2 = 8$
- (3) $8m^2 = 1$ (4) m = -1

49. If $u = e^{ax} \sin by$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} =$

- (1) $(a^2-b^2)u$ (2) a^2+b^2 (3) $(a^2+b^2)u$ (4) (a+b)u

50. $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx =$

(1) $\sqrt{x} \sin \sqrt{x} + c$ (2) $2 \sin \sqrt{x} + c$ (3) $\sqrt{\cos x} + c$ (4) $\frac{\sin \sqrt{x}}{\sqrt{c}} + c$

Set Code :	T2
Booklet Code :	В

PHYSICS

51.	In thermodynamics, $dQ = 0$ and $dU = -4$	dW is true	for			
	(1) Isothermal process		Adiabatic pr			
	(3) Isochoric process	(4)	Isobaric pro	cess		
52.	A sample of an ideal gas has volume V, p of the gas is m. The density of the gas i			ure T. The	e mass of eac	h molecule
	(1) P/kVT (2) mkT		mP/kT	(4)	P/kT	
53.	A gas does 4.5 J of external work during	ng adiabat	ic expansion	. Its temp	erature falls	by 2 K. Its
	internal energy will be					
	(1) increase by 4.5 J	(2)	increase by	9.0 J		
	(3) decrease by 4.5 J	(4)	decrease by	2.25 J		
54.	One mole of an ideal gas ($\gamma = 5/3$) is mi	xed with o	one mole of d	iatomic g	as (γ=7/5). 1	he value of
	y of the mixture (1) 3/2 (2) 4/3	(3)	23/15	(4)	35/23	
55.	In a given process on an ideal gas, dW	= 0 and d(Q < 0. Then fo	or the gas		
	(1) the temperature will decrease	(2)	the volume	will incre	ease	
	(3) the pressure will remain constant	(4)	the tempera	ture will	increase	
56.		hose work	function is V	V _o is λ _o . T	he threshold	wavelength
	for a metal whose work function is W_0 (1) $\lambda_0/4$ (2) $\lambda_0/2$	d ²	42	(4)	22	
	$(1) \lambda_{ij}/4 \qquad (2) \lambda_{ij}/2$	(3)	4A ₀	(4)	$2\lambda_0$	
57.	The propagation of light through an op	otical fiber	goes by the	principle		
	(1) Refraction	(2)	Total interr	nal reflec	tion	
	(3) Interference	(4)	Diffraction	Ì		
58.	The dimensions of angular momentum	n are				
-	(1) MLT^{-1} (2) $ML^{-1}T$	(3)	ML ⁰ T ⁻²	(4)	ML ² T-1	
59.	The SI unit of universal gas constant I	? is	<u>84</u>			
5.50	(1) Newton K ⁻¹ mol ¹	(2)	Joule K-1 r	nol-I		
	(3) Watt K ⁻¹ mol ⁻¹	(4)		1-1		1
	10 1 10 10 10 10 10 10 10 10 10 10 10 10	10.00	The second secon			

							1	Booklet Code : B
0.	The	magnitude of the	result	ant of (A+B) an	nd (A-	B) is		
	(1)	2.4			(2)	$\sqrt{\left(A^2 + B^2\right)}$ $\sqrt{\left(A^2 - B^2\right)}$		
	(3)	2 <i>B</i>			(4)	$\sqrt{\left(A^2-B^2\right)}$		
1.	Give	n A.B = 0 and A>	c = 0	, the angle betw	een B	and C is		
	(1)	135°	(2)	90°	(3)	180°	(4)	45°
52.	A pr	ojectile has a max	cimun	n range of 200m	. The	maximum height	attair	ned by it is
		75 m			(2)	100 m		
	33 35	25 m			(4)	50 m		
63.	to th	ock of mass M is leed to block and a force k will be	e F is	on a horizontal f applied at the fr	ee end	parallel to the su	e end o irface.	of a rope mass m is fixed. The force acting on the
	(1)	FM/(M-m)			(2)	Fm/(M+m)		
	(3)	FM/(M+m)			(4)	F		
54.	A bl of 10 is _ (1)	ock of weight 200 00 N acting at an 0.58	angle	of 30°. The coe	fficien	orizontal surface t of friction betw 0.45	e at a c veen th (4)	onstant speed by a force ne block and the surface 0.65
					20.000		1000	
65.	the	by wants to climbe weight of the boy ch the boy should	y. If g	is the accelera b down the rope	tion de	ue to gravity, the	e mini	nsion equal to two-thirds mum acceleration with
	(1)	g/3	(2)	2 g /3	(3)	3g/2	(4)	g
66.		ullets each of ma n a wall. The reac nNv/m Nmv/n			all to t . (2)			of n bullets per second,
67.	can	nachine gun fires exert a maximu ond is	a bu m for	llet of mass 40 ree of 144 N o	g with n the	a velocity of 1 gun. The numb	200 n er of	n/s. The man holding it bullets he can fire per
	(1)	4	(2)	1	(3)	3	(4)	8
					12-B	4		

Set Code: T2

								Booklet Code	: B
68.	of fr thro	iction betweer ugh a distance	the box	and the floor	is 0.25. T	he work do		ol floor. If the co	
	(1)	49 J			(2)	147 J			
	(3)	196 J			(4)	98 J			
69.	of th	ne rod in this	osition i	S				nd. The potenti	al energy
	(1)	mgl/4	(2)	mgl/2	(3)	mgl	(4)	mgl/3	
70.	If m	omentum is ir	creased	by 20%, then	kinetie e	energy incre	eases by		
		44%							
71.	-	article is execu fraction of kin 1/5						ent is half the a	mplitude
72.		a particle exec						hase is $\frac{\pi}{2}$ wh	en it has
		half the disp							
7 3.	T ₁ a (1)	erticle execute and to go from $T_1 = 2 T_2$ $T_1 < T_2$	A/2 to A	is T _v . Then	(2)		ne taken for	it to go from 0	to A/2 is
74.		sounds of wa speed of sour			n, travell —	ing in a me	dium produ	ce 10 beats pe	r second.
	(1)	300 m/s	(2)	320 m/s	(3)	350 m/s	(4)	1200 m/s	
75.	sou	observer move nd. The appare 3%		ise in frequen		sound with	a velocity	one tenth the ve	elocity of

Set Code : T2

Set Code : T2

Booklet Code : B

CHEMISTRY

76.	Glas	s is corroded by		
	(1)	Fluorine (dry or wet)	(2)	Sulphuric acid (concentrated)
	(3)	Phosphoric acid	(4)	Carbonic acid
7 7 .	The	most resistant material to alkaline corr	osion	is
	(1)	Cast iron	(2)	Nickel
	(3)	Aluminium	(4)	Brass
78.	The	monomer of polyvinyl chloride is		
	(1)	Chloro ethene	(2)	Ethylene dichloride
	(3)	Ethyl chloride	(4)	Chloroform
79.	Poly	thene is		
		An addition polymerization product	(2)	A condensation polymerization product
	(3)		(4)	Polymer of amylopectin
80.	Tefl	on is		•
	(1)	Phenol formaldehyde	(2)	An inorganic polymer
	(3)		(4)	A monomer
81.	Wat	ter gas constitutes mainly of		
	(1)	CO and H,	(2)	CO and N,
	(3)	CO ₂ and H ₂	(4)	CH ₄ and H ₂
82.	The	e lightest particle is		<u> </u>
	(1)		(2)	Neutron
	(3)		(4)	α-particle
83.	Ifa	n electron has spin quantum number of	+1/2 aı	nd magnetic quantum number of -1, it cannot be
	pre	sent in d orbital (2) forbital		p orbital (4) s orbital
	1.1	(2)) 0101111	(-)	

				047				
84.		ion that is iso ele NO*	ctroni (2)	Control of the contro	(3)	0-	(4)	N_2^+
85.		hydrogen bond is O-HS		gest in S-HO	(3)	F-HF	(4)	F-H O
86.		molecule having PCI,	pyram (2)		(3)	CO ₃ 2-	(4)	NO ₃ -
87.		stals of a sodium Orthorhombic			(3)	em Trigonal	(4)	Monoclinic
88.	The	pH of 0.05 M ac 2	etic ac) ⁻⁵) (3)	10-3	(4)	3
89.	solu	volume in ml. of ation of H ₃ PO ₃ is	Č	solution of NaC		quired to complet		utralize 100 ml of 0.3 M
90.	carl	P ^{ks} values of for boxylic acid amo 4.19	ng the	oxylic acids are m is the one havi 3.41	ing P ^k	4.19, 0.23 and 3. value of 0.23		pectively. The stronges
91.	If p	H value of a solu 7	ition is			will be 6	(4)	10
92.	0.0	00 and ÷0.80 V i	etion prespect	ively. Which is	the str	n ⁺² /Zn; H ⁺ /H ₂ ar rongest reducing Zn	agent	*/Ag are -3.05, -0.762 ? Li
93.	Zn Fc Th	e standard reduct = Zn ⁻² + 2e ⁻ E ⁰ = = Fe ⁺² + 2e ⁻ E ⁰ = e E.M.F. for the () = 0.32 V	= - 0.7 = -0.44 cell rea	'6V 4V	→ Zn	1 ⁺² + Fe will be		nre −1.20 V

Set Code :	T2
Booklet Code :	B

in

94.	In sa	ilt bridge, KCl is u	ised l	pecause									
	(1)	KCI is present in calomel electrode											
	(2)	K* and CF ions are not iso electronic											
	(3)	K* and Cl* ions b	ave	the same to	ransport num	ber							
	(4)	KCl is an electro	olyte										
95.	The	metal that cannot	be o	btained by	electrolysis	of aqueo	ous solution	of its salt is					
	(1)	Λg	(2)	Λu	(3)	Cu	(4)	Λl					
96.	BOI	O of raw municipa	l sew	age may b	e about								
	(1)	2-5 mg/lit			(2)	5-10 mg	g/lit						
	(3)	150-300 mg/lit			(4)	2000-30	000 mg/lit						
97.	The	pH value of potab	le wa	ater should	i be between								
	(1)	I to 1.5			(2)	6.5 to 8							
	(3)	13 to 14			(4)	4 to 5							
98.	Dea	eration of high pr	essui	e boiler fe	eed water is	done to re	educe						
	(1)	Foaming from b	oiler	S	(2)	Its disso	lved oxyger	n content					
	(3)	Its silica conten	t		(4)	Caustic	embrittlem	ent					
9 9 .	Pres	sence of non-biod	legra	dable sub	stances like	alkyl ben	zene sulph	onate from d	letergents				
	poll	uted water stream	caus	ies									
	(1)	Fire hazards			(2)	Explosion	on hazards						
•	(3)	Persistent foam			(4)	Depletio	on of dissolv	ved oxygen					
1 0 0	. Pres	sence of soluble o	rgani	ies in poll	uted water ca	nuses							
	(1)	Undesirable plan	nts gr	owth	(2)	Depletion	on of oxyge	n					
	(3)	Fire hazards	5		(4)	Explosi	on hazards						

Set Code	:	T2
	-	

Booklet Code : B

MECHANICAL ENGINEERING

101.	The	hydraulic efficiency of an impu	alse turbin	e is maximum when velocity of wheel is
	(1)	1/4	(2)	1/2
	(3)	3/4	(4)	double
102	The	speed ratio in case of Francis turbi	ne varies f	rom
	(1)	 A Control of the Contro		0.4 to 0.5
	0.00	0.6 to 0.9	(4)	Vi (2000)
103.	Ina	centrifugal pump, the regulating va	ilve is prov	ided on the
	(1)	Casing	(2)	Delivery pipe
	(3)	Suction pipe	(4)	Impeller
104.	Ina	reciprocating pump, air vessels are	used to	*
	(1)	Smoothen the flow	(2)	Reduce suction head
	(3)	Increase delivery head	(4)	Reduce acceleration head
105		ich of the following hydraulic unit driven shaft?	is used for	transmitting increased or decreased torque to
	(1)	Hydraulic ram	(2)	Hydraulic intensifier
	(3)	Hydraulic torque converter	(4)	Hydraulic accumulator
106	. The	best suited boiler for meeting the	fluctuating	demand of steam is
	(1)	Cornish boiler	(2)	Lancashire boiler
	(3)	Babcock and Wilcox boiler	(4)	Locomotive boiler

Set Code :	T2
oklet Code	D

107. In order to compare the capacity of boilers, the feed water temperature and working pressure are taken as

- (1) 100°C and normal atmospheric pressure
- (2) 100°C and 1.1 bar pressure
- (3) 50°C and normal atmospheric pressure
- (4) 50°C and 1.1 bar pressure

108. The power of a boiler may be defined as

- (1) The evaporation of 15.653 kg of water per hour from and at 100°C
- (2) The ratio of heat actually used in producing the steam to the heat liberated in the furnace
- (3) The amount of water evaporated or steam produced in kg per kg of fuel burnt
- (4) The amount of water evaporated from and at 100°C to produce dry and saturated steam

109. The shape of the nozzle used for obtaining supersonic velocities is

- (1) Short length convergent nozzle (2) Long length convergent nozzle
- (3) Divergnet nozzle

(4) Convergent - Divergent nozzle

110. Generally the limit of super saturation is upto a dryness fraction of about

(1) 98% - 100%

(2) 96% - 98%

(3) 94% - 96%

(4) 92% - 94%

111. A single stage impulse turbine with diameter of 2m runs at 3600 rpm. If the blade speed ratio is 0.4, then the inlet velocity of the steam will be

(1) 120.9 m/s

(2) 150.8 m/s

(3) 942.6 m/s

(4) 1440.4 m/s

112. The efficiency of reaction turbine is maximum when

- (1) $V_b = 0.5 \text{ V } \cos \alpha$
- (2) $V_b = V \cos \alpha$
- (3) $V_b = 0.5 \text{ V}^2 \cos \alpha$
- $(4) \quad V_h = V^2 \cos \alpha$

Where, V_b = blade speed, V = absolute velocity of steam, α = nozzle angle

								Boo	klet Code :[В
113.		am turbine, in wh				-				eating
	(1)	Impulse turbine		-		ALLO STATE OF THE SECOND				
	(3)	Low pressure tur	bine		(4)	Pass out turbine				
114.	The	capacity of domes	stic re	efrigerator is in the	ne ran	ige of				
	(1)	0.1 to 0.3 TR	•		(2)	1 to 3 TR				
	(3)	3 to 5 TR			(4)	5 to 7 TR				
115.		ndenser of refrigo wer of 50 kW. The		110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					mpressor cons	sumes
	(1)	1/3	(2)	1/2	(3)	2	(4)	3		
116.	The	material of pipe li	ines f	or a system using	Fred	on as a refrigeran	t shou	ıld t	e	
	(1)	Copper	8		(2)					
	(3)	Brass			(4) .	Aluminium				•
117.	In a beca	vapour compress use	ion r	efrigeration syste	m, a	throttle valve is	used i	in pl	lace of an exp	ander
	(1)	Reduces mass o	f the	system						
	(2)	Improves COP a	s the	condenser is small	all					
	(3)	Positive work in	isen	tropic expansion	of liq	uid is very small				
	(4)	Leads to signific	cant r	eduction						
118.	In b	reak-even chart th	ie e xp	enditure on publ	icity	to promote sales	is sho	wn	below the	
	(1)	Fixed cost line			(2)	Variable cost lin	ne			
	(3)	Total cost line			(4)	Sales revenue li	ine			
119.	. Serv	vice time in queui	ng th	cory is usu ally a s	sume	d to follow				Ü
	(1)	Poisons distribu	ition		(2)	Normal distribu	ution			
	(3)	Erlang distributi	ion		(4)	Exponential lav	V			

19-B

Set Code : T2

(MEC)

				Set Code: T2
				Booklet Code : B
120.	PER	T requires		i.e.
	(1)	Single time estimate	(2)	Double time estimate
	(3)	Triple time estimate	(4)	Quatraple time estimate
121.	The	type of organization preferred for a ste	el ind	lustry
	(1)	Line organization	(2)	Functional organization
	(3)	Line and staff organization	(4)	Line, staff and functional organization
1 2 2.		is the total items consumed per year, P is ntory carrying cost per item, then the m		procurement cost per order and C is the annual conomic ordering quantity is given by
	(1)	(AP/C)	(2)	(AP/C) ²
	(3)	$\sqrt{2(\Lambda P/C)}$	(4)	(2AP/C)
123.	The (1) (2) (3) (4)	type of layout suitable for manufacturing Product layout Process layout Combination of product and process layout Fixed position layout		
124.			he be	est use of limited resources of a company in
		maximum manner is		
	(1)	Queuing theory	(2)	Value analysis
	(3)	Network analysis	(4)	Linear programming
125.	ISO	9000 is a common quality language a	mone	the suppliers and the
	(1)	Manufactures	(2)	Customer
	(3)	Consumer	(4)	Manager
126.	Six	sigma level of quality control means		
	(1)	2.1 defects per million opportunites	(2)	3.4 defects per million opportunites
	(3)	4.3 defects per million opportunites	(4)	5.7 defects per million opportunites

								Set C	ode: T2
								Booklet C	ode : B
27.	The resear	transportation to	echniq	ue belongs to	one of the	following ma	thematic	al models i	n operations
	(1)	Allocation mo	del		(2)	Sequencing r	nodel		
	(3)	Queuing mode	:l		(4)	Inventory mo	ndel		
28.	The calle	tilting of the fro	ont who	eels away fro	om the vert	tical, when vio	ewed fro	m the front	of the car is
	(1)	Camber			(2)	Caster			
	(3)	Toe-in			(4)	Toe-out			
29.	The	starter motor is	driven	by					
	(1)	Chain drive			(2)	Gear drive			
	(3)	Flat belt drive			(4)	V-belt drive	2		
30.	The	parking brake g	enerali	ly acts on					
	(1)	Front wheels		255	(2)	Rear wheels			
	(3)	Front and rear	wheels	S	(4)	Propeller sha	aft		
31.	The	gear shift lever	requir	es two separ	ate motion	s to shift gear	s, the fir	st moment	
	(1)	Selects the syr	nchron	izer	(2)	Moves the sy	nchroni	zer	
	(3)	Meshes the ge	ars		(4)	Operates the	clutch		
32.	The	maximum torq	ue mul	tiplication ra	itio in a tor	que converter	is about		
	(1)	2.5	(2)	4.5	(3)	6.5	(4)	8.5	
133.	Two	speed reverse	gear an	rangement is	generally	provided in ca	ase of		
	(1)	Passenger car	S		(2)	Metadors			
	(3)	Tractors			(4)	Trucks			
134.	The	component tha	t conne	ects the steer	ing rack to	the knuckles	is		
	(1)	Tie-rod			(2)	Sector gear			*

(4)

Spline

(3) Pivot

(1)		er to are uest	icu snape is called
(1)		(2)	Piercing
(3)	Punching	(4)	Blanking
136. Ah	acksaw blade is specified by its		
(1)		(2)	Material
(3)	Width	(4)	Number of teeth
137. The	accuracy of micrometers, calipe	ers and dial in	directors can be checked by
(1)	Feeler gauge	(2)	100 A
(3)	Ring gauge		Plug gauge
138. As	ine bar is specified by		
(1)		een the rolle	rs
(2)			āT:
(3)	Diameter of the rollers		
(4)	Its weight		-
139. In:	a carpentry shop, rebating is the p	orocess of ma	king
(1)		7	
(2)			
(3)	A recess on the edge of work	piece	
	A recess in the middle of work		
140. Co	ontinuous chips with built up edge	e are formed o	during machining of
(1		(2)	
(3) Hard metals	(4)	
141. Tu	imbler gears in lathe are used to		
(1			
(2	Drill a hole in work piece		
(3	[1]		
	. 6: 1: 11: 6	1000	12002

Set Code : T Booklet Code : T
le the drill is fed into Wor
g machine
g machine
ne
g machine
controlled machine

... which of the following machine, the work is usually rotated while (2) Sensitive drilling Radial drilling machine (4) Deep hole drilling (3) Gang drilling machine 143. In lapping operation, the amount of thickness of metal removed is (2) 0.01 to 0.1 mm 0.005 to 0.01 mm (4) 0.5 to 1 mm (3) 0.05 to 0.1 mm 144. Internal or external threads of different pitches can be produced by (1) Pantograph milling machine (2) Profiling machin (4) Planetary milling (3) Plano miller 145. Gear finishing operation is called (1) Shaping Milling (2) Burnishing (3) Hobbing (4) 146. FMS is possible for products (1) High volume, low variety, continuous flow (2) Low volume, low variety, continuous flow (3) Low volume, high variety, intermittent flow (4) High volume, high variety, intermittent flow 147. CNC drilling machine is considered to be (1) P.T.P. controlled machine (2) Continuous path (4) Adaptive controlled machine (3) Servo controlled machine 148. Seam welding is best adopted for metal thickness ranging from (2) 3 to 5mm (1) 0.025 to 3mm (4) 8 to 10mm (3) 5 to 8mm

Set Code :	T2
Booklet Code :	В

149.	In su	bmerged arc weld	ling, a	an are is produ	uced betw	een a		
	(1)	Metal electrode	and th	ne work				
	(2)	Bare metal electr	rode a	and the work				8
	(3)	Carbon electrode	e and	the work				
	(4)	Two tungsten ele	ctroc	les and the wo	ork			
150.	The	commonly used g	ases i	n tungsten ar	c welding	are		
	(1)	Hydrogen and ox	ygen		(2)	Hydrogen and	d organ	
	(3)	Hydrogen and he	lium		(4)	Helium and a	rgon	
151.	Lind	e welding uses						
	(1)	Neutral flame an	d righ	ntward techni	que			
	(2)	Carburizing flan	ie and	i rightward te	chnique			
	(3)	Neutral flame an	d left	ward techniq	ue			
	(4)	Oxidizing flame	and I	eftward techn	ique			
152.	Weld	ding of glass is do	ne by	ř.				
	(1)	Ultrasonic weldi	ng		(2)	Electron bear	n weldir	ng.
	(3)	Laser beam weld	ling		(4)	Explosive we	lding	
153.	The	cold chisels are n	nade l	by				
	(1)	Drawing	(2)	Rolling	(3)	Forging	(4)	Piercing
154.	. The	process extensive	ely us	ed for making	g bolts an	d nuts is		
	(1)	Hot piercing			(2)	Extrusion		
	(3)	Cold peening			(4)	Cold heading	,	
155	. Stru	ctural sections su	ch as	rails, angles,	I-beams	are made by		
	(1)	Hot rolling		3	(2)	Hot drawing		
	(3)	Hot piercing			(4)	Hot extrusio	n	

								Set Code: 12
		•						Booklet Code : B
156.	The	mode of deforma	ation c	f the metal dur	ring spir	ning is		
	(1)	Bending		*	(2)	Stretching		
	(3)	Bending and str	etchin	g	(4)	Rolling and stro	etchin	9
157.	In di	e casting, machin	ning al	lowance is				
	(1)	Small	0.70		(2)	Large		
	(3)	Very large			(4)	Not provided		
158.	The	property of sand	due to	which the san	nd grains	stick together, i	s call	ed
	(1)	Collapsibility			(2)	Permeability		
	(3)	Cohesiveness			(4)	Adhesiveness		I.
159.		asting defect wh	ich oc	curs near the i	ingates a	as rough lumps	on the	surface of a casting is
	(1)	Shift	(2)	Sand wash	(3)	Swell ;	(4)	Scab
160.	The	symbol used for	butt r	esistance weld	is	*		
	(1)	0	(2)		(3)	۵	(4)	
161.	In the		olted	joints, the rac	dius of	chamber are fo	r the	bolt nominal diameter
	(1)	D	(2)	1.2D	(3)	1.5D	(4)	(1.5D + 3) mm
162	. Am	aterial is said to	be đu	etile if the clon	igation i	S		
	(1)	less than 5%			(2)	5 to 10%		
	(3)	10 to 15%			(4)	more than 15%	Ó	
163		property of the ore rupture is known			es it to b	e twisted, bent o	or stret	ched under a high stress
		Hardness			(2)	Toughness		

(3) resilience

(4) Strength

			•	Set Code: T2
			1	Booklet Code : B
164. The	shock resistance of steel is	s increased by addin	ng	
(1)	Nickel	(2)	Chromium	
(3)	Nickel and chromium	(4)	Cobalt and molybdenu	ım
165. For	hardening alloy steels and	high speed steels, t	hey are heated to	
(1)	500 to 600°C	(2)	700 to 900°C	
(3)	1100 to 1300°C	(4)	1300 to 1500°C	
166. The	heat treatment process use	ed for castings is	2	
(1)	Carburizing	(2)	Normalizing	
(3)	Annealing	. (4)	Tempering	
167. The	percentage of phosphorus	s in phosphor bronze	e is	
	0.3 (2) 1		11.i (4)	95.3
	owder metallurgy the rang compressed in moulds is	ge of pressures to w	which powdered metals	in desired proportions
(1)	10 to 50 bar	(2)	50 to 300 bar	
(3)	310 to 650 bar	(4)	690 to 13750 bar	
169. The	e angle between two forces	s to make their resu		maximum respectively
(1)	0° and 90°	(2)	180° and 90°	•
(3)	90° and 180°	(4)	180° and 0°	
170. Th	e Poisson's ratio for cast in	ron varies from		
(1)	0.23 to 0.27 (2) 0	.25 to 0.33 (3)	0.31 to 0.34 (4)	0.34 to 0.42
171. Th	e point of contraflexure oc	ceurs in		
(1)			Cantilever beams	
(3)	Fixed beams	(4)	Overhanging beams	

26-B

(MEC)

										Sookiet C	one: B
172.	bean	nply supported b n of the same dim as th	nensio	ns carries	1 breadth a central lo	b and oad ed	depth qual to	d carries a 2W. The o	a c def	entral load flection of	W. Another beam B will
		One fourth			. (2)	Ha	lf				
	(3)	Double			(4)		ur time	es			
173.		strain energy st			g, when su	bject	ed to i	maximum	le	ad, witho	ut suffering
	(1)	Impact energy			(2)	Pro	oof str	ess			
	(3)	Proof resilience	e		(4)	Mo	odulus	of resilier	nce	•	
174.	In a 3% 8	flat belt drive, if and driver and fo	the sli llowe	p betweer r pulley di	the driver	and b	elt is l	%, between velocity i	en rat	the belt and io of the dr	d follower is ive will be
	(1)	0.96	(2)	0.97	(3)	0.9	8	(4)	0.99	
175.	The	effective stress i	n wire	e ropes du	ring norma	l wor	king is	equal to t	the	stress due	to
	(1)	Sum of axial lo									
	(2)	Sum of acceler	ation •	or retarda	tion of mas	ses ar	d stre	ss due to b	en	ding	
	(3)	Sum of axial lo	ad an	d stress du	ie to accele	ration	or ret	ardation			
	(4)	Sum of bending	g and	stress due	to accelera	tion o	or retar	dation			
176.	The	centrifugal tensi	on in	the belt							
	(1)	Increases the p			d						
	(2)	Decreases the			00012						
	(3)	Has no effect of	n the	power tra	nsmitted						
	(4)	Is equal to max	imum	tension o	on the belt						
177	. In r	oller chain the ro	ller d	iameter is	approxima	itely .		of th	e p	oitch	
	(1)			6/8	202	7/			1)		hat
178	. Wh	ich one of the fo	llowir	ng springs	is used in r	necha	anical v	wrist watc	h?		
	(1)				(2		orsion				
	31.8	Bevel spring			(4			compressi	on	spring	

27-B

Set Code:

(MEC)

								Booklet Code : B
179.	Whe	n two non inters	ecting	and non-coplan	ar sha	fls are connected	l by g	ears. the arrangement is
		vn as		-				100 og 200
	(1)	Spur gearing			(2)	Helical gearing		
	(3)	Bevel gearing	•		(4)	Spiral gearing		
100	776.				^			
100.		cam follower ex		ely used in aircra				
	(1)	Flat faced follo			(2)	Knife edge folk		
	(3)	Roller follower	r .		(4)	Spherical faced	follo	wer
	~ :		18 1			*		
181.			rentia	l stress to longitu	dinal	stress in a thin cy	linder	subjected to an internal
		sure is	(2)		(0)			2
	(1)	1/2	(2)	1	(3)	2	(4)	4
182	The	conding moment	M and	l a torque T is ann	died o	n a solid circulars	haft l	If the maximum bending
						, then M is equal		n die maximum bending
	(1)		(2)		(3)		(4)	4T
183.	In de	signing a key, it	is ass	umed that the dis	tribut	ion of forces alor	ng the	e length of key
	(1)	Varies linearly						
	(2)	Is uniform thro	ugh ou	ıt				
	(3)	Varies exponen	tially,	being more at th	e torq	ue input end		
	(4)			being less at the	-	8		
						MES		
184.	The	sleeve or muff co	ouplin	g is desi gned as :	a			
	(1)	Thin cylinder			(2)	Thick cylinder		
	(3),	Hollow shaft			(4)	Solid shaft		*
		8 98 W	2					
185.								_ of its original volume
			11772	_		pressure remain		
	(1)	1/27	(2)	1/93	(3)	1/1 7 3	(4)	1/273

Set Code : T2

Set Code :	
Booklet Code:	B

186.	The i	sentropic proces	s mea	ıns					
	(1) Reversible process			(2)	Adiabatic process				
	(3)	Reversible adia	batic p	process	(4)	Irreversible	adiabatic	process	
	,								
187.		The hyperbolic law is governed by				- . Assaulandardard			
		Gay-Lussac law			98	Avogadro's law			
	(3)	Boyle's law			(4)	Chales's law	′		
188.	A th	ermodynamic cy	cle co	onsisting of t	wo const	ant pressure	and two	isentropic pro-	cesses is
	knov			150		2			
	(1)	Carnot cycle			(2)	Joule cycle			
	(3)	Otto cycle			(4)	Stirling eye	le		
100	411	a a a sala da mambat	. alama	hann autono r	umber o	e			
189.		na-methyl-naphti					(4)	120	
	(1)	0	(2)	30	(3)	100	(4)	120	
190.	The	inlet valve of a f	our st	roke cycle int	ernal con	nbustion engi	ine remai	ns open for	
		150°		180°		230°		280°	
					esti a lidame	aaaa kaanin	a the com	necesion ratio s	some the
191		r standard diesel	cycle	as the cut of	ratio incr	eases keeping	g uie com	pression racio s	anie, me
		Increasing			(2)	Decreasing			
	(3)	Remains same			(4)	Tending to the efficiency of Otto cycle			cle
	18 33			11 (analysis 17 (an)					
192	. The	aim of providing		ced inlet valve	in the air			on ignition eng	ines is to
	(1) Control air flow		(2)						
	(3)	Induce primary	swirl		(4)	Induce seco	ondary tur	bulence	
193	. A tı	irbo-prop is pref	erred	to turbo-jet be	ecause of				
	(1)								
	,	 It's high propulsive efficiency at high speeds It can fly at super sonic speeds 							
	10	It can fly at high	in the second						
		It can have hig			£				

			•					Set Cod	e : T2
								Booklet Cod	e : B
194.	Sepa	rators are gene	rally us	ed in air compr	essor i	nstallations			
	0900	- 5		of ompression			er cool	er	
		3) After the inter cooler			Between the after cooler and receiver				
195.	ln a j	jet engine the ai	r-fuel	ratio is					
	(1)	20:1	(2)	40:1	(3)	60 :1	(4)	80:1	
196.	The	type of compre	ssor us	ed in gas turbine	es				
	(1)	Reciprocating			(2)	Axial			
	(3)	Centrifugal			(4)	Radial			
197.	The	variation in the	volum	e of a liquid with	h the v	ariation of pres	sure is	called its	
		Capillarity		•		Compressibili			
	(3)	Surface tensio	n		Bu 10.0	Viscosity	33 4 3		
198.	The	mercury does n	ot wet	the glass. This is	s due te	o property of lic	uid kn	own as	
	(1)	Cohesion		S		Adhesion			
	(3)	Viscocity			83	Surface tension	n		
199.	The	loss of head at	exit of	a pipe is					
		v²/2g		$0.5 \mathrm{v}^2/2\mathrm{g}$	(3)	$0.375 v^2/2g$	(4)	$0.75 v^2/2g$	
200.			The second secon	t the centre of a ximum efficien ce		할 뿐만 나는 이 사람은 중심하다 하는 이 사람들이 되었다.			
	(1)				(2)	1/3			•
		2/3			(4)	3/4			