Cryptographic Building Blocks

GROUP: 2

MEMBERS:

KAZI FARHAN HASAN TANJIM (18701018)

SHARIAR HASAN (18701012)

ZIHAD BEEN MOHSIN(17701009)

ROMAN MIA(18701076)

SHANTA ISLAM (17701093)

ALAMIN(17701087)

MAMUN CHOUDHURY (17701024)

ABDULLAH AL MARUF(17701075)

Digital signatures and verification using public keys

- ✓ Like electronic "fingerprints" In the form of a coded message.
- ✓ Use PKI to provide the highest levels of security and universal acceptance.

SENDER A

- Properties:
 - Data origin authentication
 - Non-repudiation
 - Data integrity

✓ Doesn't provide confidentiality.

RECEIVER B

Cryptographic hash functions

✓ Hash function H accepts a variable length block of input data called as 'M' and produces the fixed size hash value can be represented as:

$$h = H(M)$$

- ✓ When hash function provides security, this is called cryptographic hash functions.
- ✓ Hash function protects the integrity of the message.

Cryptographic hash functions

- ✓ one-way property (or preimage resistance):
 - for essentially all possible hash values h, given h it should be infeasible to find any m such that H(m) = h.
- ✓ second-preimage resistance:
 - For message m1, it means that it is difficult to produce another message m2 such that H(m1) = H(m2).
 - i.e., it means it is infeasible to find two different messages with the same hash value.
 - Its bound to a particular input m1.
- ✓ collision resistance:
 - It means that it is difficult to find any two different messages that hash to the same value.
 - i.e., it means it is hard to find m1 & m2 such that same hash value H(m1) = H(m2).
 - Its applies to any arbitrary inputs m1, m2.

Cryptographic hash functions

✓ Characteristics of the Hash Function:

- Quick to calculate hash value
- (H) can be applied to variable length of data block.
- Small change in input \rightarrow big change in hash value.
- One-way property, So its impossible to generate message from given hash value.
- Uses all the input data.
- Generates very different hash values for similar message.

Message Authentication

- ✓ Why Message Authentication?
 - Protecting the integrity of a message.
 - Validating identity of originator.
 - Non-repudiation of origin
- Done by data value/tag(MAC)
- ✓ Same key use for verification.

Figure 1: Working of MAC

Authenticated encryption and further modes of operation

- ✓ Authenticated Encryption (AE) can be achieved by using
 - Block cipher for encryption
 - Separate MAC algorithm for authentication
- ✓ How it works:
 - Produces an authentication tag
 - Also encrypts the message
 - Combines cipher and MAC
- ✓ Advantages:
 - Can provide security against chosen cipher attack
 - Allows detection of unauthorized cipher text manipulation
- ✓ Three approaches for operation:
 - Encrypt then MAC
 - Encrypt and MAC
 - MAC then encrypt

Authenticated encryption and further modes of operation

- ✓ Authenticated Encryption with Associated Data(AEAD) :
 - Same as AE
 - but need some additional information to be authenticated
 - Authenticated information can be processed before the encryption of the entire message
- ✓ Counter mode with CBC- MAC(CCM):
 - Two pass block cipher mode
 - In essence a stream cipher with CBC-MAC for authentication

Certificates, elliptic curves and equivalent key lengths

✓ Certificates:

- A public key certificates is a data structure.
- It includes:
 - 1) A serial number to uniquely identify
 - 2) An expiry date
 - 3) Identity information for the CA.
 - 4) Algorithm identifiers
 - 5) Revocation information

✓ Certification Authorities(CA):

 CA carries out appropriate due diligence to confirm the identity of the named subject and their association with the public key. The role of CA is critical.

Certificates, elliptic curves and equivalent key lengths

✓ Certificate Revocation:

It allows a certificate's validity, which by default continues until the expiry date, to be terminated earlier.

✓ NIST Recommended Key lengths:

NIST recommended at least 112 bits of security strength for symmetric key encryption and related digital signature applications.

✓ Elliptic Curve Public Key System:

Public key functionalities can be implemented using elliptic curve.

Advantages:

Elliptic Curve Cryptography (ECC) offers computational and storage efficiencies due to smaller key size.

Disadvantages:

- It is expensive
- It uses complex mathematics

THANK YOU