Back to Reality: Predictions With a Single Sample

Contents

5.3 Back to Reality: Predictions With a Single Sample
5.3.1 Predictive Accuracy as a Population Attribute
5.3.1.1 The Single Subset Version
Training and Test Set
5.3.1.2 The Multiple Subset Version
5.3.2 Choosing the Subsets
5.3.2.1 The Single Subset Version
The Sampling Mechanism
Picking a Training Set Size
5.3.2.2 The Multiple Subset Version
Remaining Questions

5.3 Back to Reality: Predictions With a Single Sample

- Predictive accuracy provides insight into the performance of a predictor function, and can be used to choose between competing ones.
 - The key to this usefulness, however, is that the predictive accuracy can be measured on population \mathcal{P} about which we want to make inference.
- Unfortunately, we typically only have \mathcal{S}_{ℓ}
 - $\text{ but not } \mathcal{P} \text{ nor } \mathcal{T} = \mathcal{P} \setminus \mathcal{S}.$
- So what do we do? All of our APSE calculations have assumed we have $\mathcal{P}...$
- This is the basic problem of inductive inference.
 - Experience says that whenever interest lies in some attribute of the population $a(\mathcal{P})$, we might use $a(\mathcal{S})$ as an estimate of that attribute.

5.3.1 Predictive Accuracy as a Population Attribute

- We cast predictive accuracy as an attribute of population \mathcal{P}
 - and then use the corresponding attribute evaluated on \mathcal{S} as its estimate.
- In particular, we care about the attribute

$$a_1(\mathcal{P}) = APSE(\mathcal{P}, \widehat{\mu}_{\mathcal{S}}) = \frac{1}{N} \sum_{u \in \mathcal{P}} (y_u - \widehat{\mu}_{\mathcal{S}}(\mathbf{x}_u))^2$$

in the **single subset** paradigm

- this definition relies on the single sample S and so we will call it the <u>single subset version</u> of APSE.
- We also care about the attribute

$$a_2(\mathcal{P}) = APSE(\mathcal{P}, \widetilde{\mu}) = \frac{1}{N_{\mathcal{S}}} \sum_{j=1}^{N_{\mathcal{S}}} APSE(\mathcal{P}, \widehat{\mu}_{\mathcal{S}_j})$$

in the $\mathbf{multiple}\ \mathbf{subset}\ \mathrm{paradigm}$

- this definition relies on many (perhaps all possible) samples S_1, \ldots, S_{N_S} and so we will call it the multiple subset version of APSE.
- *These are two distinct population attributes, each a slightly different measure of an average prediction squared error.
- However, we are usually more concerned with how well each predictor function performs on the population which was **not** used to construct the estimate.
 - Thus the single and multiple subset attributes may be more usefully defined as

$$a_1(\mathcal{P}) = APSE(\mathcal{T}, \widehat{\mu}_{\mathcal{S}}) = \frac{1}{N-n} \sum_{u \in \mathcal{T}} (y_u - \widehat{\mu}_{\mathcal{S}}(\mathbf{x}_u))^2$$

and

$$a_2(\mathcal{P}) = APSE(\mathcal{T}, \widetilde{\mu}) = \frac{1}{N_S} \sum_{j=1}^{N_S} APSE(\mathcal{T}_j, \widehat{\mu}_{S_j})$$

5.3.1.1 The Single Subset Version

• Suppose we were interested in estimating

$$APSE(\mathcal{T}, \widehat{\mu}_{\mathcal{S}}) = \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} (y_i - \widehat{\mu}_{\mathcal{S}}(\mathbf{x}_i))^2$$

where

- the predictor function $\widehat{\mu}_{\mathcal{S}}$ is constructed using \mathcal{S}
- the prediction errors are evaluated on $\mathcal{T} = \mathcal{P} \setminus \mathcal{S}$
- the $|\cdot|$ operator denotes *cardinality*, not an absoluate value
- If all we ever observed was the sample S from P, we might approximate the single subset version of the APSE by
 - selecting a partition of \mathcal{S} into \mathcal{S}_{0} and its complement \mathcal{T}_{0} (i.e., $\mathcal{S} = \mathcal{S}_{0} \cup \mathcal{T}_{0}, \, \mathcal{S}_{0} \cap \mathcal{T}_{0} = \emptyset$)

2

• We then use these pieces to estimate \mathcal{P} , \mathcal{S} , and \mathcal{T} . In particular:

$$\begin{aligned}
-\widehat{\mathcal{P}} &= \mathcal{S} \equiv \mathcal{P}_0 \\
-\widehat{\mathcal{S}} &= \mathcal{S}_0 \\
-\widehat{\mathcal{T}} &= \mathcal{T}_0
\end{aligned}$$

• The sample estimate of $APSE(\mathcal{T}, \widehat{\mu}_{\mathcal{S}})$ is thus

$$\widehat{APSE}(\mathcal{T}, \widehat{\mu}_{\mathcal{S}}) = APSE(\widehat{\mathcal{T}}, \widehat{\mu}_{\widehat{\mathcal{S}}}) = APSE(\mathcal{T}_0, \widehat{\mu}_{\mathcal{S}_0}) = \frac{1}{|\mathcal{T}_0|} \sum_{u \in \mathcal{T}_0} (y_u - \widehat{\mu}_{\mathcal{S}_0}(\mathbf{x}_u))^2$$

 $\not\models$ If, alternatively, interest lied in estimating $APSE(\mathcal{P}, \widehat{\mu}_{\mathcal{S}})$ we could do so similarly

$$\widehat{APSE}(\mathcal{P}, \widehat{\mu}_{\mathcal{S}}) = APSE(\widehat{\mathcal{P}}, \widehat{\mu}_{\widehat{\mathcal{S}}}) = APSE(\mathcal{P}_0, \widehat{\mu}_{\mathcal{S}_0}) = \frac{1}{|\mathcal{P}_0|} \sum_{u \in \mathcal{P}_0} (y_u - \widehat{\mu}_{\mathcal{S}_0}(\mathbf{x}_u))^2$$

Training and Test Set

- The set S_0 is sometimes called the **training** set.
 - Because the estimate $\widehat{\mu}_{\mathcal{S}_0}(\mathbf{x})$ is determined only from observations in \mathcal{S}_0
 - Because estimation of a prediction function is like **learning** the predictor function from the data (we sometimes say S_0 is used to "train" the predictor function).
- The out of sample set \mathcal{T}_0 is often called the **test** set.
 - Because it is used to assess the quality of the "learning".
 - The test set is also more traditionally called a **hold-out sample** to not be used in estimation but to assess the quality of prediction.
 - It has also long been called a **validation** set.
- Performing such a partitioning of your sample S into a training and a testing set is commonly referred to as **cross validation**
- \mathcal{A} Of course, the million dollar question is how to pick \mathcal{S}_0 from $\mathcal{P}_0 = \mathcal{S}$.

5.3.1.2 The Multiple Subset Version

• Suppose we were interested in estimating the average performance over all N_S possible samples

$$APSE(\mathcal{T}, \widetilde{\mu}) = \frac{1}{N_{\mathcal{S}}} \sum_{j=1}^{N_{\mathcal{S}}} APSE(\mathcal{T}_j, \widehat{\mu}_{\mathcal{S}_j})$$

where

- S_j is the j^{th} subset of $\mathcal{P}, j = 1, \dots, N_S$ the predictor function $\widehat{\mu}_{S_j}$ is constructed using S_j and
- the prediction errors are evaluated on $\mathcal{T}_j = \mathcal{P} \setminus \mathcal{S}_j$.
- Here we may similarly use the observed sample S as an estimate of P (i.e., $\hat{P} = P_0 = S$)
- Then to mimic taking many samples (and test sets) from \mathcal{P} , we do this with $\mathcal{P}_0 = \mathcal{S}$
 - This corresponds to defining many partitions of S: $(S_{0,j}, \mathcal{T}_{0,j}), j = 1, 2, \dots, N_S$
 - This is precisely what we did in the single subset case, but now we're just repeating it many (N_S) times.
- We then estimate $APSE(\mathcal{T}, \widetilde{\mu})$ by

$$\widehat{APSE}(\mathcal{T}, \widetilde{\mu}) = \frac{1}{N_S} \sum_{j=1}^{N_S} APSE(\mathcal{T}_{0,j}, \widehat{\mu}_{\mathcal{S}_{0,j}})$$

• As with a single subset, the question remains as to how to pick the subsets $S_{0,j}$ from P_0 for $j=1,\ldots,N_S$.

5.3.2 Choosing the Subsets

5.3.2.1 The Single Subset Version

 \mathcal{K} It is not always obvious how one should choose \mathcal{S}_0 and \mathcal{T}_0 in a given situation.

 \mathcal{A} One guide is that the method of selecting \mathcal{S}_0 from \mathcal{P}_0 should be as similar as possible to that of selecting the sample S from the study population P.

- That is, the same sampling mechanism would be used.
- For example, if S is a sample chosen at random from P, then so should S_0 be one chosen at random from $\mathcal{P}_0 = \mathcal{S}$.
 - Typically this is what is done.
 - However, in general, there could be different choices.

- A few key questions still need to be addressed when doing this:
 - Should the sampling be done with, or without, replacement?
 - How large should the sample S_0 be?
 - Should \mathcal{T}_0 be the full complement of \mathcal{S}_0 or just a sample from the complement? And if just a sample from the complement, then how large should \mathcal{T}_0 be?
- We address these concerns below.

The Sampling Mechanism

- If predictive accuracy is meant to be an "out-of-sample" assessment, it would seem prudent to restrict ourselves to sampling without replacement.
 - There is a clear distinction between the training and test set.
 - Sampling without replacement reduces the possibility of overestimating the predictor's accuracy.
- Sampling with_replacement
 - would require redefining APSE to include duplicates in the samples.
 Unless APSE was calculated using only "out-of-sample" units.

Picking a Training Set Size

- We can gain insight into how large the training set should be from the fact that the predicted squared errors are averaged.
 - Recall that

$$SD\left(\overline{Y}\right) = \frac{\sigma}{\sqrt{n}}$$

- If the test set \mathcal{T}_0 contains $|\mathcal{T}_0|$ units then the standard deviation of the APSE will decrease proportionately to $1/\sqrt{|\mathcal{T}_0|}$.
- \mathscr{K} Thus, the larger $|\mathcal{T}_0|$ is, the better (i.e., less variable) will be our estimate of the APSE.
- Conversely, the larger $|\mathcal{T}_0|$ is, the smaller \mathcal{S}_0 will be.
 - The smaller the training set is, the lower the quality of the estimated predictor function $\hat{\mu}_{\mathcal{S}_0}(\mathbf{x})$
 - (This could easily lead to systematically underestimating the predictor accuracy for the full population)

*Clearly, choosing a sample size requires some trade-off between the variability and the bias of the estimate predictor function.

5.3.2.2 The Multiple Subset Version

• Every one of the concerns discussed above is also pertinent here when considering how to choose $S_{0,j}$ from S, but now there is an additional consideration:

– How many samples \mathcal{S}_{ij} should we take? One? Many? How many?

- A simple way to create a collection of samples \mathcal{S}_{ij} is to
 - partition \mathcal{P}_0 into pieces, or groups
 - then select some groups to form $S_{0,j}$ and the remainder to form $T_{0,j}$.
- Typically, \mathcal{P}_0 is partitioned into k groups G_1, G_2, \ldots, G_k of equal size (approximately equal in practice). We call this a k-fold partition of \mathcal{P}_0 :

- \nearrow Selecting any set of groups from the partition will define a sample $S_{0,j}$ and the remaining groups will define its complement $T_{0,j}$.
- The most common method of selecting the groups would be to select k-1 groups to form $S_{0,j}$ and the remaining group forms $T_{0,j}$.
 - For example, when k=5 we have the following partition of \mathcal{P}_0 with the green groups forming the sample and the red group forming the test.
 - In this case, $S_{0,j} = G_1 \cup G_2 \cup G_3 \cup G_5$ and $T_{0,j} = G_4$.

• Note that for a k-fold partition there can only be k different pairs of sample S_j and test set T_j . That is $N_S = k$.

A Calculating

$$\widehat{APSE}(\mathcal{T}, \widehat{\mu}) = \frac{1}{N_S} \sum_{i=1}^{N_S} APSE(\mathcal{T}_{0,j}, \widehat{\mu}_{\mathcal{S}_{0,j}}) = \sum_{\mathbf{k}} \underbrace{APSE(\mathcal{T}_{\mathbf{k},\mathbf{k}}, \widehat{\mathcal{F}}_{\mathbf{r}_{\mathbf{q},\mathbf{k}}})}_{\mathbf{k}}$$

using sampling that selects all k-1 groups from a k-fold partition is known as k-fold cross-validation in the literature.

Remaining Questions

- 1. How should the partition be constructed?
 - <u>Simple random sampling</u> is the obvious choice, but there may be contexts where other sampling protocols might also be considered.
- 2. What value should k take?
 - Clearly a large value of k will produce a large sample $S_{0,j}$ but a smaller test set $T_{0,j}$
 - A predictor based on a larger $S_{0,j}$ should be closer to that based on all of S, but would lead to smaller $T_{0,j}$ and thus a less precise estimate of the prediction error
 - A predictor based on a smaller $S_{0,j}$ should perform more poorly (being based on fewer observations) and so tend to systematically overestimate the prediction error
 - This suggests that there exists is a bias-variance trade-off that must be considered when selecting
 - Choosing an optimal value of k is difficult, but **experience and related literature** suggest that k=5 or k=10 often work well to balance the bias-variance trade-off