Modelos de regresión

"Dementia patient health and prescriptions dataset."

Info del dataset

	columns (total 24 columns)		
#	Column	Non-Null Count	Dtype
0	diabetic	485 non-null	object
1	alcohol_level	485 non-null	float6
2	heart_rate	485 non-null	int64
3	blood_oxygen_level	485 non-null	float6
4	body_temperature	485 non-null	float6
5	weight	485 non-null	float6
6	mri_delay	485 non-null	float6
7	prescription	485 non-null	object
8	dosage_in_mg	485 non-null	float6
9	age	485 non-null	int64
10	education_level	485 non-null	object
11	dominant_hand	485 non-null	object
12	gender	485 non-null	object
13	family_history	485 non-null	object
14	smoking_status	485 non-null	object
15	apoe_4	485 non-null	object
16	physical_activity	485 non-null	object
17	depression_status	485 non-null	object
18	cognitive_test_scores	485 non-null	int64
19	medication history	485 non-null	object
20	nutrition_diet	485 non-null	object
21	sleep_quality	485 non-null	object
22	chronic health conditions	397 non-null	object
23	dementia	485 non-null	object

El dataset utilizado para el entrenamiento de los modelos es un subconjunto del dataset original, donde solo se utilizarán aquellas filas con caso de demencia positiva.

Elección del Atributo para la Regresión

Dado que ninguno de los atributos numéricos presentes en el dataset tiene una relevancia clara y directa que justifique una regresión sobre ellos en el contexto de los datos, hemos decidido suponer que el atributo "age" representa la edad en la cual el paciente fue diagnosticado con demencia.

Esta suposición le otorga un contexto clínico relevante, haciendo que la predicción de esta variable tenga un sentido más lógico dentro del análisis de los datos.

count	485.0000	
mean	74.3258	
std	9.3398	
min	60.0000	
25%	66.0000	
50%	73.0000	
75%	82.0000	
max	90.0000	
Name:	age, dtype:	float64

Datos de entrenamiento y test

Estos datos fueron divididos, en datos de entrenamiento y test, por una única vez utilizando train_test_split.

A partir de estos datos de entrenamiento y test, se han generado dos subconjuntos de datos de entrenamiento para posterior comparación:

- Totalidad de los atributos.
- Selección de atributos más importantes en base al modelo RandomForest (feature importance).

GridSearchCV fue utilizado en todos los modelos para la obtención de los mejores hiperparámetros.

neg_mean_squared_error fue utilizado como scoring para minimizar el impacto de los errores grandes.

Modelos utilizados

Modelos Individuales:

- SVR
- Decision Tree Regressor
- Logistic Regression Multinomial

Modelos de Ensamble:

- Random Forest Regressor
- SVR + Adaboost
- XGB Regressor

Comparación de métricas: Error absoluto máximo (M)

Model	Dataset	М
RandomForestRegressor	total_data	18.0000
RandomForestRegressor	partial_data	20.0000
SVR_RBF	total_data	16.0000
SVR_RBF	partial_data	16.0000
DecisionTreeRegressor	total_data	24.0000
DecisionTreeRegressor	partial_data	25.0000
LogisticRegressionMultinomial	total_data	29.0000
LogisticRegressionMultinomial	partial_data	29.0000
SVR_RBF_Adaboost	total_data	16.0000
SVR_RBF_Adaboost	partial_data	16.0000
XGBRegressor	total_data	18.0000
XGBRegressor	partial_data	16.0000

Comparación de métricas: Error absoluto medio (MAE)

Model	Dataset	MAE
RandomForestRegressor	total_data	8.0412
RandomForestRegressor	partial_data	8.2784
SVR_RBF	total_data	7.9794
SVR_RBF	partial_data	8.0000
DecisionTreeRegressor	total_data	8.9278
DecisionTreeRegressor	partial_data	8.7629
LogisticRegressionMultinomial	total_data	11.3814
LogisticRegressionMultinomial	partial_data	12.0722
SVR_RBF_Adaboost	total_data	8.0103
SVR_RBF_Adaboost	partial_data	8.0000
XGBRegressor	total_data	8.1031
XGBRegressor	partial_data	8.2062

Comparación de métricas: Error cuadrático medio (MSE)

Model	Dataset	MSE
RandomForestRegressor	total_data	88.3093
RandomForestRegressor	partial_data	94.3814
SVR_RBF	total_data	86.1649
SVR_RBF	partial_data	86.4124
DecisionTreeRegressor	total_data	103.1753
DecisionTreeRegressor	partial_data	121.4021
LogisticRegressionMultinomial	total_data	180.6392
LogisticRegressionMultinomial	partial_data	209.9691
SVR_RBF_Adaboost	total_data	86.4433
SVR_RBF_Adaboost	partial_data	86.4124
XGBRegressor	total_data	91.4845
XGBRegressor	partial_data	90.6186

Comparación de métricas: Raíz cuadrada del error cuadrático medio

(RMSE)

Model	Dataset	RMSE
RandomForestRegressor	total_data	9.3973
RandomForestRegressor	partial_data	9.7150
SVR_RBF	total_data	9.2825
SVR_RBF	partial_data	9.2958
DecisionTreeRegressor	total_data	10.1575
DecisionTreeRegressor	partial_data	11.0183
LogisticRegressionMultinomial	total_data	13.4402
LogisticRegressionMultinomial	partial_data	14.4903
SVR_RBF_Adaboost	total_data	9.2975
SVR_RBF_Adaboost	partial_data	9.2958
XGBRegressor	total_data	9.5648
XGBRegressor	partial_data	9.5194

Comparación de métricas

Model	Dataset	М	MAE	MSE	RMSE
RandomForestRegressor	total_data	18.00	8.04	88.31	9.40
RandomForestRegressor	partial_data	20.00	8.28	94.38	9.72
SVR_RBF	total_data	16.00	7.98	86.16	9.28
SVR_RBF	partial_data	16.00	8.00	86.41	9.30
DecisionTreeRegressor	total_data	24.00	8.93	103.18	10.16
DecisionTreeRegressor	partial_data	25.00	8.76	121.40	11.02
LogisticRegressionMultinomial	total_data	29.00	11.38	180.64	13.44
LogisticRegressionMultinomial	partial_data	29.00	12.07	209.97	14.49
SVR_RBF_Adaboost	total_data	16.00	8.01	86.44	9.30
SVR_RBF_Adaboost	partial_data	16.00	8.00	86.41	9.30
XGBRegressor	total_data	18.00	8.10	91.48	9.56
XGBRegressor	partial_data	16.00	8.21	90.62	9.52

Predicción con instancias de prueba

```
DecisionTreeRegressor, total data.
                                               DecisionTreeRegressor, partial data.
Prediccion:
                74 68 74
                                               Prediccion:
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
SVR RBF, total data.
                                               SVR RBF, partial data.
Prediccion:
                74 74 74
                                               Prediccion:
                                                                74 74 74
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
LogisticRegressionMultinomial, total data.
                                               LogisticRegressionMultinomial, partial data.
Prediccion:
                                               Prediccion:
                                                              89 75 75
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
RandomForestRegressor, total data.
                                               RandomForestRegressor, partial data.
Prediccion:
                                               Prediccion:
                                                                74 75 73
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
SVR RBF Adaboost, total data.
                                               SVR RBF Adaboost, partial data.
Prediccion:
                74 74 74
                                               Prediccion:
                                                                74 74 74
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
XGBRegressor, total data.
                                               XGBRegressor, partial data.
Prediccion:
                74 72 73
                                               Prediccion:
                                                                74 75 73
Valor esperado: [74 75 73]
                                               Valor esperado: [74 75 73]
```

Algoritmos de Clasificación

Conjunto de Datos de Salud y Prescripciones de Pacientes con Demencia

Contenido

Objetivo

Comparar algoritmos y seleccionar el modelo que mejor clasifique, en base a parámetros relacionados con el estilo de vida y resultados médicos, a pacientes con y sin demencia.

Algoritmos utilizados

Bosques Aleatorios

Máquinas de Soporte Vectorial (SVM)

Regresión Logística

Métricas

Accuracy

Precision

Recall

F1 score

Curva ROC

Modelos

Total de Características PCA

Importancia de Características

Variables utilizadas para la clasificación

- Diabético
- Nivel de alcohol
- Ritmo cardíaco
- Nivel de oxígeno en sangre
- Temperatura corporal
- Peso
- Retraso de MRI
- Edad
- Nivel de Educación
- Mano Dominante
- Sexo

- Historial Familiar
- Hábitos de Tabaquismo
- Apoe4
- Actividad Física
- Estado de Depresión
- Puntaje en Test Cognitivo
- Historial de Medicación
- Dieta Nutricional
- Calidad de Sueño
- Condiciones Crónicas de Salud

Importancia de Características

Puntajes en tests cognitivos - Estado de depresión - Apoe4 - Hábitos de tabaquismo - Nivel de oxígeno en sangre - Peso - Nivel de alcohol - Temperatura corporal - Edad - Retraso de MRI - Ritmo cardíaco - Nivel de educación (12)

Transformación de Datos

Codificación de variables categóricas

Se le asignó un valor numérico discreto a cada posible valor de las variables categóricas a utilizar

Escalado de los datos

Método de **corrección** para evitar resultados de análisis incorrectos

Búsqueda de **efectividad** en los algoritmos que lo requieran (Ej: Máquinas de Soporte Vectorial)

Justificación de los Algoritmos

Bosques Aleatorios

- Capturan fácilmente patrones no lineales

Máquinas de Soporte vectorial

- Efectivo en espacios de alta dimensionalidad
- Adecuado para conjuntos de datos pequeños o medianos
- Permite especificar funciones de kernel para datos no linealmente separables

Regresión Logística

- Clasificador binario

k-NN

- Pierde rendimiento con muchas dimensiones

Regresión Softmax

- Admite múltiples clases

Árboles de Decisión

- Sobreajuste con muchas dimensiones

Bayes Ingenuo

- No captura patrones no lineales

Bosques Aleatorios

Separación de conjuntos Escalado de características Búsqueda de hiperparámetros con Validación Cruzada

Reporte de cla	sificación:			
	precision	recall	f1-score	support
0	0.81	0.98	0.88	94
1	0.98	0.79	0.88	106
accuracy			0.88	200
macro avg	0.89	0.89	0.88	200
weighted avg	0.90	0.88	0.88	200
Exactitud del	modelo: 0.88	3		

Predicción de instancia 'sin demencia': [0]
Predicción de instancia 'con demencia': [1]

Bosques Aleatorios aplicando PCA

Separación de conjuntos

Escalado de características

Aplicación de PCA a las características de los

conjuntos

Búsqueda de hiperparámetros con Validación Cruzada

Reporte de cla	sificación:			
	precision	recall	f1-score	support
0	0.90	0.96	0.93	94
1	0.96	0.91	0.93	106
accuracy			0.93	200
macro avg	0.93	0.93	0.93	200
weighted avg	0.93	0.93	0.93	200
Exactitud del	modelo: 0.93	;		

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Azul: 0 Rojo: 1

Bosques Aleatorios aplicando importancia de características

Separación de conjuntos Escalado de características Búsqueda de hiperparámetros con Validación Cruzada

	0	1
0	94	0
1	0	106

Reporte de clas	sificación:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	94
1	1.00	1.00	1.00	106
accuracy			1.00	200
macro avg	1.00	1.00	1.00	200
weighted avg	1.00	1.00	1.00	200
Exactitud del n	modelo: 1.0			

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Comparación de Modelos Random Forest

	Accuracy	Precision	Recall	F1 score	Curva ROC	Clasificación
Random Forest	0.88	0.976744	0.792453	0.875000	0.885588	0
Random Forest PCA	0.93	0.960000	0.905660	0.932039	0.931554	0
Random Forest Importancia de Características	1.00	1.000000	1.000000	1.000000	1.000000	0

Mejor modelo: Random Forest aplicando Importancia de Características

SVM

Separación de conjuntos

Escalado de características

Implementación de kernel RBF porque los datos no son linealmente

separables

Búsqueda de hiperparámetros con Validación Cruzada

Reporte de clasificación:

,	precision	recall	f1-score	support
0	0.97	1.00	0.98	94
1	1.00	0.97	0.99	106
accuracy			0.98	200
macro avg	0.98	0.99	0.98	200
weighted avg	0.99	0.98	0.99	200

Exactitud del modelo: 0.985

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

SVM aplicando PCA

Separación de conjuntos

Escalado de características

Aplicación de PCA a las características de los

conjuntos

Búsqueda de hiperparámetros con Validación Cruzada

Reporte de cla	sificación:			
	precision	recall	f1-score	support
0	0.88	0.98	0.93	94
1	0.98	0.89	0.93	106
accuracy			0.93	200
macro avg	0.93	0.93	0.93	200
weighted avg	0.93	0.93	0.93	200
Exactitud del	modelo: 0.93	3		

Predicción de instancia 'sin demencia': [0]
Predicción de instancia 'con demencia': [1]

SVM aplicando importancia de características

Separación de conjuntos Escalado de características Búsqueda de hiperparámetros con Validación Cruzada

	0	1
0	94	0
1	0	106

Reporte de cla	sificación:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	94
1	1.00	1.00	1.00	106
accuracy			1.00	200
macro avg	1.00	1.00	1.00	200
weighted avg	1.00	1.00	1.00	200
Exactitud del	modelo: 1.0			

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Comparación de Modelos de Máquinas de Soporte Vectorial

	Accuracy	Precision	Recall	F1 score	Curva ROC	Clasificación
SVM	0.985	1.000000	0.971698	0.985646	0.985849	0
SVM con PCA	0.930	0.979167	0.886792	0.930693	0.932758	0
SVM Importancia de Características	1.000	1.000000	1.000000	1.000000	1.000000	0

Mejor modelo: SVM aplicando Importancia de Características

Mejor método de Regresión Logística

- 1. LogisticRegression y GrdSearchCV
- 2. LogisticRegressionCV
- 3. LogisticRegression

	Accuracy	Precision	Recall	F1 score	Curva ROC
Regresión Logística 1	0.980	1.0	0.962264	0.980769	0.981132
Regresión Logística 2	0.985	1.0	0.971698	0.985646	0.985849
Regresión Logística 3	0.980	1.0	0.962264	0.980769	0.981132

Mejor método: 'LogisticRegressionCV'

Regresión Logística

Separación de conjuntos Escalado de características Penalidad 'Lasso' porque sólo una parte de las características son relevantes

	0	1
0	94	0
1	3	103

	11	54	
precision	recall	f1-score	support
0.07	4 00	0.00	
0.9/	1.00	0.98	94
1.00	0.97	0.99	106
		0.98	200
0.98	0.99	0.98	200
0.99	0.98	0.99	200
	0.98	precision recall 0.97 1.00 1.00 0.97 0.98 0.99	precision recall f1-score 0.97

Exactitud del modelo: 0.985

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Regresión Logística aplicando PCA

Separación de conjuntos Escalado de características Aplicación de PCA a las características de los conjuntos Búsqueda de hiperparámetros

	0	1
0	89	5
1	11	95

Reporte de clas	ificación:			
	precision	recall	f1-score	support
0	0.89	0.95	0.92	94
1	0.95	0.90	0.92	106
accuracy			0.92	200
macro avg	0.92	0.92	0.92	200
weighted avg	0.92	0.92	0.92	200
Exactitud del m	odelo: 0.92	2		

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Regresión Logística aplicando importancia de

características njuntos

Escalado de características

Búsqueda de hiperparámetros

	0	1
0	94	0
1	2	104

Reporte de cla	sificación:			
	precision	recall	f1-score	support
0	0.98	1.00	0.99	94
1	1.00	0.98	0.99	106
accuracy			0.99	200
macro avg	0.99	0.99	0.99	200
weighted avg	0.99	0.99	0.99	200
Exactitud del	modelo: 0.99)		

Predicción de instancia 'sin demencia': [0] Predicción de instancia 'con demencia': [1]

Comparación de Modelos de Regresión Logística

	Accuracy	Precision	Recall	F1 score	Curva ROC	Clasificación
Regresión Logísitca	0.985	1.00	0.971698	0.985646	0.985849	0
Regresión Logística PCA	0.920	0.95	0.896226	0.922330	0.921517	0
Regresión Logísitca Importancia de Características	0.990	1.00	0.981132	0.990476	0.990566	0

A pesar de que el algoritmo requiere de un análisis de componentes principales, el modelo con 12 características presentó un mejor rendimiento.

Comparación de Métricas

	Accuracy	Precision	Recall	F1 score	Curva ROC	Clasificación
Random Forest	0.880	0.976744	0.792453	0.875000	0.885588	0
SVC	0.985	1.000000	0.971698	0.985646	0.985849	0
Regresión Logística	0.985	1.000000	0.971698	0.985646	0.985849	0

Al comparar las métricas de los modelos con el total de características de cada algoritmo, concluímos tanto Máquinas de Soporte Vectorial como Regresión Logística tienen un mejor rendimiento para clasificar a pacientes con y sin demencia.