Product sales forecasting

→ Approach of solving this problem

Name – Shivani Sadani

This project focuses on developing a predictive model that uses historical sales data from different stores to forecast sales for upcoming periods.

Data Description

Train Data

Rows: 188340, Columns: 10 Y Variable: Sales

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 188340 entries, 0 to 188339
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ID	188340 non-null	object
1	Store_id	188340 non-null	int64
2	Store_Type	188340 non-null	object
3	Location_Type	188340 non-null	object
4	Region_Code	188340 non-null	object
5	Date	188340 non-null	object
6	Holiday	188340 non-null	int64
7	Discount	188340 non-null	object
8	#Order	188340 non-null	int64
9	Sales	188340 non-null	float64
dtype	es: float64(1),	int64(3), object((6)
memor	ry usage: 14.4+	MB	

	Store_id	Holiday	#Order	Sales
count	188340.000000	188340.000000	188340.000000	188340.000000
mean	183.000000	0.131783	68.205692	42784.327982
std	105.366308	0.338256	30.467415	18456.708302
min	1.000000	0.000000	0.000000	0.000000
25%	92.000000	0.000000	48.000000	30426.000000
50%	183.000000	0.000000	63.000000	39678.000000
75%	274.000000	0.000000	82.000000	51909.000000
max	365.000000	1.000000	371.000000	247215.000000

	ID	Store_Type	Location_Type	Region_Code	Date	Discount
count	188340	188340	188340	188340	188340	188340
unique	188340	4	5	4	516	2
top	T1000001	S1	L1	R1	2018-01-01	No
freq	1	88752	85140	63984	365	104051

Steps in Building ML Model

1 Reading Data

5

Setting up Validation Strategy

 Splitting train & validation set based on date

Data Preprocessing

- Handling Missing Values
- Handling Outliers

6

Feature Scaling

MinMax Scaler

Exploratory Data Analysis

Exploring data to reveal hidden insights

7

Model Building

Feature Engineering

- Generating New Features
- Categorical Encodings

8

Cross Validation

To make model robust over fitting

Data Preprocessing

Exploratory Data Analysis Feature Engineering

Feature Scaling

Validation Strategy

Model Building & Comparison

Checking for Missing Values

No missing values in Dataset

```
train_data.isnull().sum()

ID 0
Store_id 0
Store_Type 0
Location_Type 0
Region_Code 0
Date 0
Holiday 0
Discount 0
#Order 0
Sales 0
dtype: int64
```

Handling Outliers

- Sales & Order column contain outliers
- Can't remove orders' outliers since these data points reveal important information.
- And outliers of sales column is being replaced by median.


```
#Handle Outliers
```

```
# Calculate Q1, Q3, and IQR
q1 = train['Sales'].quantile(0.25)
q3 = train['Sales'].quantile(0.75)
iqr = q3 - q1

# Calculate outlier thresholds
Lower_tail = q1 - 1.5 * iqr
Upper_tail = q3 + 1.5 * iqr|

# Calculate the median
med = np.median(train['Sales'])

# Replace outliers with the median
train['Sales'] = np.where((train['Sales'] < Lower_tail) | (train['Sales'] > Upper_tail), med, train['Sales'])
```


New Features

- Day
- Week
- Month
- Quarter

Feature Encoding

One Hot Encoding for nominal categorical variables

```
# One Hot Encoding
l = ['Store_Type','Location_Type','Region_Code']
tr_x = pd.get_dummies(tr_x, columns = l,drop_first=True)
val_x = pd.get_dummies(val_x, columns = l,drop_first=True)
test = pd.get_dummies(test, columns = l,drop_first=True)
```

```
tr_x['Discount'] = tr_x['Discount'].replace({'Yes':1,'No':0})
val_x['Discount'] = val_x['Discount'].replace({'Yes':1,'No':0})
test['Discount'] = test['Discount'].replace({'Yes':1,'No':0})
```


MinMax Scaler for Numeric Columns

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(tr_x[numcols])
tr_x[numcols] = scaler.transform(tr_x[numcols])
val_x[numcols] = scaler.transform(val_x[numcols])
test[numcols] = scaler.transform(test[numcols])
```


- Data Before 1st April 2019 : Train Set
 - Data from 1st April 2019: Validation Set
- Building models and tuning hyper parameters on train set and evaluating on validation set.
- KFold cross validation on train set for final model evaluation.

Regression

Built: 6

• Best performing model is LightGBM

	Models	MSLE
0	LinearRegression	100.474017
1	DecisionTree	227.379557
2	RandomForest	160.476955
3	AdaBoost	111.297497
4	XGBoost	194.490098
5	LightGBM	102.501614

After Kfold Cross validation it is found that LightGBM scores is better because both the validation and training MSLE values are lower i.e. 64.6.