

G. Hénaff

Loading

G. Hénaff – 2016

Loading

G. Hénaff – 2016

Testing Machines

Servo-hydraulic: high cycle fatigue, propagation (f <50 Hz)

Resonant : high cycle fatigue, propagation (100 Hz < f < 200 Hz)

G. Hénaff – 2016

5

Methodology

- Fixed number of samples (geometry, surface);
- Stress amplitude levels fixed prior to testing
 ⇒ number of test pieces tested per stress
 level;
- For a given stress level, the distribution of lifetimes (number of cycles to failure) is determined.

G. Hénaff – 2016

Isoprobability curves

Wöhler Diagram

Endurance diagram

Arbitrary fatigue limit

G. Hénaff – 2016

Limited Endurance

- About 10⁵ to 10⁷ cycles
- Empirical relations:

- Weibull: $N \times (\sigma - \sigma_D) = Cste$

- Basquin : $N_f \times \sigma^a = Cste$

- Bastenaire : $N_f + B = \frac{A \times e^{-C(\sigma - \sigma_D)}}{\sigma - \sigma_D}$

G. Hénaff – 2016

ε-N curve

ε-N curve

G. Hénaff – 2016

Influence of Mean Stress

G. Hénaff – 2016

Influence of Mean Stress

G. Hénaff – 2016

Influence of Mean Stress

- Experimental observation: The permissible stress amplitude decreases when the mean stress increases
- Taken into account by the use of abacuses (admissible stress as a function of the mean stress)→ Different representations.

G. Hénaff – 2016

Haigh Diagram

G. Hénaff – 2016

17

Influence of mean stress

G. Hénaff – 2016

19

20

Goodman-Smith Diagram

Ros diagram

Example: Goodman-Smith

Example: Haigh diagram

Influence of loading mode

	Plane bending	Tension /	Torsion
		Compression	
$\mathbf{x} = \sigma_{\mathrm{D}}$ rotative	1.05	0.9	0.6
bending			

G. Hénaff – 2016

23

Scale effect

- Observation: for a given stress amplitude value, the higher the dimensions of the testpiece, the lower the fatigue strength.
- Causes:
 - · mechanical;
 - probabilistic.
- Scale effect coefficient :

24

Scale effect: stress gradient

- Difference in stress gradients:
 - small thickness ⇒ high gradient. The less loaded layers support the highly loaded surface layers;
 - high thickness ⇒ small gradient. All the surface layer are nearly loaded in a similar way ⇒ loss in fatigue resistance

G. Hénaff – 2016 25

Scale effect: probabilistic aspect

 The larger the dimensions of a component (volume, area), the more likely it is to have defects that behave as privileged initiation sites

G. Hénaff – 2016

27

Influence of surface finishing

Influence of surface finishing

Surface finishing factor: with :

 σ_{D_S} fatigue limit with the surface finishing under consideration ; σ_D fatigue imit with a reference surface finishing.

G. Hénaff – 2016

Residual stresses

- Induced (on purpose or not) by:
 - Inhomogeneous plastic deformations (especially in the vicinity of stress concentrators)
 - Process
 - Surface treatment (shot blasting, shot peening, coating,...)
 - Expanded holes
 - Joining

G. Hénaff – 2016

Residual stresses near a stress concentrator

G. Hénaff – 2016

Residual stresses induced by machining

				Maximum	1			
Surface	Machining parameters			surface Surface		Fatigue limit (MPa)		
finishing	Depth of	Advance	Cutting	reisudal	roughness		Withou	t After
	pass (mm)	(mm/tr)	speed (m/s)	stresses.	(µm)		anneali	ng annealing at
				(MPa)				650°C
Polished	0.1			-200	0.6	7	270	250
Turned	0.5	0.16	120	+100	17		215	240
Turned	0.5	0.32	120	+200	27		190	220
Turned	0.5	0.50	120	+600	46	\	175	205

G. Hénaff – 2016

Burnishing 7,0 6,5 6,0 5,0 4,5 4,5 Number of cycles

The residual stresses introduced by burnishing induce a higher fatigue resistance $_{\text{G. H\'e}naff-2016}$

16

Expanded holes

G. Hénaff – 2016

Influence of environment

- The fatigue life is lower in an active environment (air) than in an inert environment (vacuum)
- · Related effect: influence of frequency

G. Hénaff – 2016