Diseño de Bases de Datos

Introducción a la Administración de BD

Tipos de usuarios

- Distintos tipos de usuarios / responsabilidades / competencias
 - Usuario de BD
 - interactúan con la BD a través de aplicaciones
 - Desarrollador (de aplicaciones)
 - diseño y desarrollo de la aplicación, incluyendo la estructura de la BD
 - estimación de requisitos de almacenamiento, eficiencia, seguridad, etc.
 - ¿quién cuida del DBMS que permita hacer todo esto de forma adecuada?

- Administrador de la BD (DBA)

- instala y actualiza el DBMS y las herramientas asociadas (¿decidir el DBMS a utilizar?)
- establece y reserva el sistema de almacenamiento
- crea los objetos primarios (tablas, vistas, índices), una vez que los desarrolladores han realizado el diseño
- modifica la estructura de la base de datos, integrando la información de distintas aplicaciones
- gestiona el acceso de usuarios y sus privilegios
- establece políticas de seguridad y las monitoriza
- monitoriza y optimiza el rendimiento de la BD
- establece procedimientos de copias / recuperaciones
- gestiona el soporte técnico con la distribuidora del DBMS

Tareas típicas

Instalar el DBMS (inc. evaluación del hw)

- estructura de almacenamiento (Oracle): tablespaces,
 archivos de datos, discos de almacenamiento
- efecto en el rendimiento general del sistema

Creación, arranque y parada de BD

 layout de ficheros, inicialización, tamaño de bloque, ficheros de log, ...

Gestión de usuarios

 establecimiento de políticas de seguridad, gestión de usuarios y recursos - - -

Implementación del diseño (lógico)

- objetos del esquema: tablas, campos, claves, vistas, ...
- estructuras por defecto, índices primarios, ... (d. físico)

Optimización del rendimiento / ajuste / tuning

- optimización de consultas: árboles relacionales, rutas de acceso y planes de ejecución
- optimización sintáctica, semántica y estadística; reglas, costes y pistas
- optimización de las estructuras de datos del diseño físico: índices y su influencia en las consultas

Metadatos

- Datos
- Metadatos: definición, uso
 - » ¿son diferentes a los datos?
 - » ¿se almacenan por separado?
 - » ¿se describen con distintos modelos de datos?
 - » ¿existe un esquema para los metadatos —metaesquema—?
 - » ¿existen meta-esquemas internos y externos?
 - » ¿se gestionan igual que los datos?
 - » ¿se pueden cambiar los esquemas dinámicamente?
 - » ¿los cambios son reflejados automáticamente en los datos?

Concurrencia / transacciones

Concurrencia

- Acciones sobre las mismas tablas al mismo tiempo
- Problemas: update perdido, lectura sucia, problema fantasma

Sistema transaccional

 Ejecución todo-o-nada, sin interferencias entre programas; (cuasi-)paralelos

Protocolos de bloqueos

 Hace que los accesos a los datos por distintas transacciones sean mutuamente excluyentes . . .

Recuperación

- » x/0, deadlock, ...
- Fallo de una transacción; pérdida datos

- 1. transacciones terminadas (committed) pero no persistentes (en la bd) \Rightarrow REDO
- transacciones no terminadas (quizás algunas escrituras hechas en la bd) ⇒ UNDO
- Copia
 que permita restaurar un estado consistente

. . .

- lecturas/escrituras en el búfer
 si el objeto está disponible
 valor de retorno
- si el objeto no está disponible, pide al G.búfer que lo haga disponible
 —ack—
- Log: información sobre qué acciones de qué transacciones ya han afectado al estado actual de la bd
 <transacción, objeto, acción>
 - imagen_antes
 - imagen_después

Optimización

```
select distinct P.nombre
from prof P, calif C
where P.dni=C.dni_prof
and C.nia alumno='---';
#(prof) = 100
#(calif) = 10.000
```

1	sin optimización	10 ⁶	
i.	prof x calif	leer 10 ⁴ t, 100 veces	106
		escribir 10 ⁶ (no m.p.)	10 ⁶
ii.	restricción	leer 106t, 50 m.p.	106
iii.	proyección	I	_

2	optimización A:	cambiar orden de operaciones	104
i.	restric. calif	leer 10^4 t, 50 a m.p.	104
ii.	x prof	leer 100	10 ²
iii.	proyección	_	_

3	optimización B:	índice sobre nia_alumno	10 ²
i.	restric. calif	leer índice, 50 a m.p.	102
ii.	x prof	leer 100	10 ²
iii.	proyección		_

Diseño físico

Representación física

- Atributo \leftrightarrow campo

-Tupla \leftrightarrow registro

Colección de tuplas ↔ bloque

− Relación→ fichero

Estructuras de datos

- Secuenciales
- Índices
- Árboles
- Dispersión

Secuenciales

» n registros almacenados uno_detrás_de_otro en bloques con b registros

Búsqueda

Todo el fichero: O(n/b)

Inserción
 En el último bloque si hay espacio libre

Deja un espacio libre en el bloque ⇒ reorganización (*recolección de basura*)

Modificación

Indexados

Búsqueda

Denso: valores únicos: binaria + localización en el bloque no únicos: binaria + localización del 1º + secuencial No denso: binaria + (si no localizado) secuencial

Inserción

Similar a ficheros ordenados, salvo el índice si no denso

Borrado

Similar a ficheros ordenados, salvo el índice si no denso

Modificación

Árboles

Árboles B

» árbol dirigido balanceado cada nodo (bloque) contiene entre d y 2d registros cada bloque se ordena por valores clave cada registro tiene una parte clave y una no clave

todos los valores contenidos en el nodo referenciado por P_i son menores que k_i (resp. mayores para P_{i+1})

- Búsqueda
- Inserción / Borrado

Dispersión

- » no se recorre un índice, sino que la dirección (bloque) es calculada directamente a partir de los valores de la clave
- Espacio de dispersión
 n direcciones organizadas en bloques

- Función de dispersión
 método del resto del valor respecto al espacio
- Colisiones
 cuando coincide la dirección (bloque) para dos valores distintos
 - a) Overflow (disp. abierta)
 - b) Redispersión (disp. cerrada)
- Redistribución (disp. dinámica)

Índices secundarios

- 1. Columnas de restricción, no de selección
- 2. Columnas de join
- 3. La más restrictiva

 Devuelve pocos y éstos se tratan más fácilmente
- Depende de:
 - veces que se ejecuta la consulta
 - tiempo aceptable de respuesta
 - importancia de la consulta
- Coste de mantenimiento