

IN THE CLAIMS:

1 1. (Currently amended) An apparatus that provides at least one estimated
2 effective age of a product during the entire life of the product, comprising:
3
4 at least one sensor equipped on the product that provides data about
an environmental condition;
5
6 a device equipped on the product that uses said data to calculate an
age acceleration factor for said product for at least one of said sensors;
7
8 at least one accumulator equipped on the product that provides the
estimated effective age for said product, based upon said age acceleration
9 factor; and
10
11 a display equipped on the product capable of presenting said
estimated effective age to a user of said product.

1 - 2. (Original) The apparatus of claim 1, wherein said sensor includes an analog
3 to digital conversion function, and wherein said device that uses said data to
calculate an age acceleration factor is a digital processor.

1 4. (Original) The apparatus of claim 2, wherein said digital processor is
2 programmed to compute an Arrhenius estimate of said age acceleration.

1 5. (Original) The apparatus of claim 2, wherein said digital processor is
2 programmed to compute a Coffin-Manson estimate of age acceleration.

1 6. (cancelled) The apparatus of claim 2, wherein said digital processor is
2 programmed to compute a Hallberg-Peck estimate of age acceleration.

1 6. (Original) The apparatus of claim 2, wherein said accumulator is at least
2 partially implemented in nonvolatile storage.

1 7. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2 ferroelectric memory.

1 8. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2 flash memory.

1 9. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2 hard disk.

1 10. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2 volatile memory element, with continuity of power provided by a battery.

1 11. (currently amended) The apparatus of claim 1, wherein said sensor produces
2 an analog voltage output, said analog voltage output varying substantially
3 linearly responsive to a change in temperature, wherein said voltage output is
4 said data.

1 12. (currently amended) The apparatus of claim 11, wherein said device that uses
2 said data to calculate an age acceleration factor for said product is a VCO,
3 said VCO producing a VCO output signal having a frequency that varies
4 substantially exponentially responsive to a linear voltage change on an input
5 of the VCO.

1 13. (currently amended) The apparatus of claim 12, wherein said accumulator is
2 a counter; said counter being implemented, at least in part, in a nonvolatile or
3 effectively nonvolatile technology, and wherein said counter is clocked by the
4 VCO output signal.

1 14. (Original) The apparatus of claim 13, wherein said display is electrically
2 coupled to selected bits of said counter.

15. (Currently amended) A method for producing one or more estimates of effective age of a product, during the entire life of the product, comprising the steps of:

sensing, using a sensor equipped on the product one or more environmental conditions;

computing, using a computer equipped on the product, an age acceleration factor for each of the environmental conditions sensed, using a model that relates the environmental condition to the age acceleration factor;

computing, using the computer equipped on the product, effective age values, using said acceleration factors;

storing, using a storage equipped on the product, said effective age values into nonvolatile storage; and

displaying, using a display equipped on the product, said effective age values to a user of said product on a display.

16. (cancelled) The method of claim 15, wherein the step of computing an age acceleration factor comprises the use of the Arrhenius equation, the Hallberg-Peck equation, or the Coffin-Manson equation.

1 17. (cancelled) The method of claim 15, wherein the step of computing effective
2 age values further comprises the steps of:

3 time integrating the age acceleration factor for each of the
4 environmental conditions sensed, resulting in an effective age for the product
5 according to each said model;

6 computing a normalized effective age for some or all of the effective
7 ages by dividing the instant effective age by a wall clock age;

8 computing an effective life used value for some or all of the effective
9 ages by dividing the instant effective age by a predetermined estimate of life
10 of the product; and

11 computing an effective life remaining value for some or all of the
12 effective ages by subtracting said effective life used value from “1”.

1 18. (Original) The method of claim 15, wherein the step of displaying said
2 effective age values further comprises the steps of:

3 determining if any of said values are outside of predetermined ranges;
4 and

5 alerting the user if any of said values are outside of predetermined
6 ranges by lighting a light, sounding an audible alarm, or presenting said
7 values on said display.

1 19. (New) An apparatus that provides at least one estimated effective age of a
2 product comprising:

3 at least one sensor that provides data about an environmental
4 condition;

5 a device that uses said data to calculate an age acceleration factor for
6 said product for at least one of said sensors;

7 at least one accumulator that provides the estimated effective age for

8 said product, based upon said age acceleration factor; and

9 a display capable of presenting said estimated effective age to a user

10 of said product;

11 wherein the at least one sensor includes an analog to digital conversion

12 function, and wherein said device that uses said data to calculate an age

13 acceleration factor is a digital processor wherein said digital processor is

14 programmed to compute a Hallberg-Peck estimate of age acceleration.

3 sensing one or more environmental conditions;

4 computing an age acceleration factor for each of the environmental
5 conditions sensed, using a model that relates the environmental condition to
6 the age acceleration factor;

7 computing effective age values, using said acceleration factors;

8 storing said effective age values into nonvolatile storage; and

9 displaying said effective age values to a user of said product on a
10 display;

11 wherein the step of computing an age acceleration factor comprises the use of
12 the Arrhenius equation, the Hallberg-Peck equation, or the Coffin-Manson
13 equation.

21. (new) A method for producing one or more estimates of effective age of a product, comprising the steps of:

3 sensing one or more environmental conditions;

4 computing an age acceleration factor for each of the environmental
5 conditions sensed, using a model that relates the environmental condition to
6 the age acceleration factor;

7 computing effective age values, using said acceleration factors;

8 storing said effective age values into nonvolatile storage; and

9 displaying said effective age values to a user of said product on a
10 display;

11 wherein the step of computing effective age values further comprises the
12 steps of:

time integrating the age acceleration factor for each of the environmental conditions sensed, resulting in an effective age for the product according to each said model;

16 computing a normalized effective age for some or all of the effective
17 ages by dividing the instant effective age by a wall clock age;

computing an effective life used value for some or all of the effective ages by dividing the instant effective age by a predetermined estimate of life of the product; and

computing an effective life remaining value for some or all of the effective ages by subtracting said effective life used value from "1".