MATEMÁTICA

Notações

 $\mathbb{N} = \{1, 2, 3, \dots\}$: o conjunto dos números naturais.

 \mathbb{R} : o conjunto dos números reais.

 \mathbb{C} : o conjunto dos números complexos.

i: unidade imaginária, $i^2 = -1$.

Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

Questão 1. Considere $g:\{a,b,c\}\to\{a,b,c\}$ uma função tal que g(a)=b e g(b)=a. Então, temos:

A () a equação g(x) = x tem solução se, e somente se, g é injetora

 ${f B}$ () g é injetora, mas não é sobrejetora

 \mathbf{C} () g é sobrejetora, mas não é injetora

D () se g não é sobrejetora, então g(g(x)) = x para todo x em $\{a, b, c\}$

E () n.d.a.

Questão 2. Sejam A e B conjuntos infinitos de números naturais. Se $f: A \to B$ e $g: B \to A$ são funções tais que f(g(x)) = x, para todo x em B e g(f(x)) = x, para todo x em A, então, temos:

A () existe x_0 em B, tal que $f(y) = x_0$, para todo y em A

 ${\bf B}$ () existe a função inversa de f

C () existem x_0 e x_1 em A, tais que $x_0 \neq x_1$ e $f(x_0) = f(x_1)$

D () existem a em B, tal que $g(f(g(a))) \neq g(a)$

E () n.d.a.

Questão 3. Suponhamos que $z_1 = a + xi$ e $z_2 = a + yi$, $a \neq 0$, $x \neq 0$ são dois números complexos, tais que $z_1.z_2 = 2$ Então temos: (Observação $\bar{z}indicaconjugadodez$)

1

A () $z_1 = \bar{z_2} e |z_1| = |z_2| = 2$

B () $z_1 = z_2 \text{ e } |z_1| = |z_2| = \sqrt{2}$

C () $z_1 = \bar{z_2} e |z_1| = |z_2| = \sqrt{2}$

D () $z_1 + z_2 = 2a e a^2 + y^2 = 4$

E () n.d.a.

Questão 4. As raízes de ordem 4 do número $e^{\pi i/2}$, onde i é a unidade imaginária, são:

A () $z_k = \cos \theta_k + i \sin \theta_k$, onde $\theta_k = \frac{1 + 4k}{8} \pi \text{ com } k = 0, 1, 2, 3$

B () $z_k = e^{i\theta_k}$, onde $\theta_k = \frac{1+3k}{8}\pi \text{ com } k = 0, 1, 2, 3$

C () $z_k = e^{i\theta_k}$, onde $4k\pi$ com k = 0, 1, 2, 3

D ()
$$z_k = e^{i\theta_k}$$
, onde $\theta_k = \frac{1 - 4k}{8}\pi \text{ com } k = 0, 1, 2, 3$

E () n.d.a.

Questão 5. Os valores reais $a \in b$, tais que os polinômios $x^3 - 2ax^2 + (3a + b)x - 3b \in x^3 - (a + 2b)x + 2a$ sejam divisíveis por x+1, são:

A () dois números inteiros positivos

B () dois números inteiros negativos

) números inteiros, sendo que um é positivo e o outro negativo

) dois números reais, sendo um racional e outro irracional.

) n.d.a.

Questão 6. Se designarmos por S_n a soma dos n primeiros termos de uma progressão geométrica de infinitos termos, de razão q > 1 e primeiro termo $a_1 > 0$, podemos afirmar que:

A ()
$$\frac{S_n}{S_{2n} - S_n} = \frac{S_{2n} - S_n}{S_{3n} - S_{2n}}$$
 C () $\frac{S_n}{S_{2n} - S_n} = S_{3n} - S_{2n}$ **E** () n.d.a.

$$\mathbf{C}$$
 () $\frac{S_n}{S_{2n} - S_n} = S_{3n} - S_{2n}$

B ()
$$\frac{S_n}{S_{2n} - S_n} = \frac{S_{2n}}{S_{3n} - S_{2n}}$$
 D () $S_{3n} = S_{2n} + S_n$

$$D () S_{3n} = S_{2n} + S_n$$

Questão 7. Dado um paralelepípedo retângulo, de volume V, cujas arestas estão em progressão geométrica, de razão q, podemos garantir que sua área total é dada por:

A ()
$$\frac{2V^{2/3}}{q}(q^2+q+1)$$
 C () $\frac{V^{2/3}}{q+1}(q^2+q+1)$

C ()
$$\frac{V^{2/3}}{q+1}(q^2+q+1)$$

B ()
$$\frac{V^{2/3}}{q}(q^2+q-1)$$
 D () $\frac{V^2}{q^3}(q+1)$

D ()
$$\frac{V^2}{q^3}(q+1)$$

Questão 8. Numa superfície esférica de área A > 1, considere inscrito um cone, tal que a área

A () a equação tem uma e somente uma solução.

B () a equação tem duas e somente duas soluções.

C () a equação tem três e somente três soluções.

D () a equação não tem solução.

E () n.d.a.

Questão 9. O valor da expressão $x = \frac{2 \tan \theta}{1 - \tan^2 \theta}$, quando $\cos \theta = -\frac{3}{7}$ e $\tan \theta < 0$, é:

A ()
$$4\sqrt{10}/31$$

C ()
$$2\sqrt{10}/15$$

B ()
$$-2\sqrt{10}/3$$

D ()
$$3\sqrt{10}/7$$

Questão 10. $\left[\frac{1-\tan x}{1+\tan x}\right]^2$ vale:

A ()
$$\frac{1-2\sin 2x}{1+\sin 2x}$$

C ()
$$\frac{1 + \sin 2x}{1 + \sin 2x}$$

B ()
$$\frac{1+2\sin 2x}{1-\sin 2x}$$

D ()
$$\frac{1 - \sin 2x}{1 + \sin 2x}$$

Questão 11. Seja BC = CD no quadrilátero ABCD, mostrado na figura abaixo. Então podemos garantir que:

A ()
$$\frac{\sin \gamma}{\sin \delta} = \frac{\sin \alpha}{\sin \beta}$$

B ()
$$\delta \alpha = \beta \gamma$$

C ()
$$\tan \alpha \tan \beta = \tan \delta \tan \gamma$$

$$\mathbf{D} \ (\) \ BC^2 = AB.AB$$

Questão 12. A reta que passa pelas interseções das circunferências $x^2 + y^2 = 1$ e $(x - 1)^2 + (y - 1)^2 = 2$, é tal que:

$${\bf A}$$
 () tem equação $\frac{3}{5}x-\frac{2}{3}y+\frac{1}{4}=0$

B () não passa pela origem.

C () passa pela origem.

 ${\bf D}$ ($\,$) não é perpendicular à reta que passa pelos centros das circunferências.

 ${\bf E}$ () n.d.a.

Questão 13. Os zeros da função $P(x) = 3x^6 - 8x^5 + 3x^4 + 2x^3$:

A () todos inteiros.

B () 2 imaginários puros e 4 reais

 ${\bf C}$ ($\,$) todos racionais

 ${f D}$ () 4 racionais e 2 irracionais

E () n.d.a.

Questão 14. A equação $x^n - 1$, onde n é um número natural maior do que 5, tem:

 ${\bf A}$ () 1 raiz positiva, 1 raiz negativa e (n-2) raízes complexas quando n é par.

B () 1 raiz positiva, (n-1) raízes não reais quando n é par.

 ${\bf C}$ ($\,\,$) 1 raiz negativa, (n-1) raízes complexas quando n é ímpar.

 ${f D}$ () 1 raiz positiva, 1 raiz negativa e (n-2) raízes complexas quando n é um número natural qualquer.

E () n.d.a.

Questão 15. O valor absoluto da soma das duas menores raízes da equação $x^2 + 1/x^2 + x + 1/x = 4$ é:

A () 2

B () 3

C () $\frac{4-\sqrt{3}}{2}$ D () 4

E () n.d.a.

Questão 16. Se a, b e c são raízes da equação $x^3 - 2x^2 + 3x - 4 = 0$, então o valor de 1/a + 1/b + 1/c é:

B () -1/4 **C** () 3/4

D () 3/2

Questão 17. O conjunto de todos os valores de x para os quais existe um y real de modo que

$$y = \log\left[\log\left(\frac{7 - 2x - x^2}{3 - 4x^2}\right)\right]$$

A () intervalo aberto A, de extremos $-\sqrt{2}$ e $\sqrt{2}$

B () intervalo aberto A, de extremos $-\sqrt{3}$ e $\sqrt{3}$

C () intervalo aberto A, de extremos 0 e $\sqrt{3}/2$

D () intervalo aberto A, de extremos $-\sqrt{3}/2$ e 1

E () n.d.a.

Questão 18. Um lado de um triângulo ABC mede lcm. Os valores dos ângulos e dos lados do triângulo formam duas progressões aritméticas. A área S desse triângulo é:

A () $l^2(\sqrt{3}+1) cm^2$

B () $l^2(\sqrt{3}-1) cm^2$

C () $l^2\sqrt{3} cm^2$

D () $\frac{l^2\sqrt{3}}{4} cm^2$

E () n.d.a.

Questão 19. Sendo a_1, a_2, \ldots, a_n números reais, o maior valor de n tal que as igualdades ao lado são verdadeiras é:

$$\log 123478 = a_1$$

$$\log a_1 = a_2$$

$$\log a_{n-1} = a_n$$

A () n = 3 **B** () n = 4 **C** () n = 5 **D** () n = 6 **E** () n.d.a.

Questão 20. Seja $M=1/a^2+1/b^2+1/c^2$, onde a,b e c são as raízes da equação $x^3-\sqrt{3}x^2+54=0$. Então podemos afirmar que:

 \mathbf{A} () $\log_3 M$ é um número irracional

 \mathbf{B} () $\log_3 M$ é um número primo

C () $\log_3 M = 5/3$

D () $\log_3 M = -5/2$

E () n.d.a.

Questão 21. Deseja-se construir uma ferrovia ligando o ponto A ao ponto B que está $40\sqrt{2}$ km a sudeste de A. Um lago, na planície onde estão A e B impede a construção em linha reta. Para contornar o lago, a estrada será construída e 2 trechos retos com o vértice no ponto C, que está 36 km a leste e 27 km ao sul de A. O comprimento do trecho CB é:

A () 182

C () 184

E () n.d.a.

B () 183

D () 185

Questão 22. O conjunto dos valores de k, para os quais $f(x) = x^3 - 2x^2 + 3x - k$ tem um ou três zeros reais entre 1 e 2, é:

A () k < 2

C () 2 > k ou k > 6

E () n.d.a.

B () 1 < k < 2

D () k > 7

Questão 23. Seja c um quarto de circunferência AB de raio R e centro O, e seja t a reta tangente a c em A. Traça-se pelo centro O de c uma reta que corta c num ponto M, e corta a reta tangente num ponto N, distintos de A. Se k a razão entre o volume gerado pelo setor OAM e o volume gerado pelo triângulo OAN, ambos obtidos girando-se de 2π em torno de AO. O comprimento do segmento AN é igual ao raio R se:

A () 1 < k < 2, 5

C () $0 < k \le 2$

E () n.d.a.

B () $2, 5 \le k \le 3$

D () 0 < k < 1, 5

Questão 24. Um cone equilátero está inscrito em uma esfera de raio 4 cm. Cortam-se os sólidos (esfera e cone) por um plano paralelo à base, de modo que a diferença entre as áreas das secções seja igual à área da base do cone. O raio da secção do cone é:

A () $2\sqrt{3}$ cm

C () $\sqrt{3}/3$ cm

E () n.d.a.

 \mathbf{B} () $\sqrt{3}$ cm

D () $4\sqrt{3}/3$ cm

Questão 25. Seja a_k um número complexo, solução da equação $(z+1)^5 + z^5 = 0$, K = 0, 1, 2, 3, 4. Podemos afirmar que:

A () todos os z_k , $K = 0, 1, \dots, 4$ estão sobre uma circunferência.

B () todos os z_k , $K=0,1,\ldots,4$ estão sobre uma reta paralela ao eixo real.

 ${f C}$ () todos os z_k , $K=0,1,\ldots,4$ estão sobre uma reta paralela ao eixo imaginário.

 ${\bf D}$ ($\,$) a equação não admite solução

E () n.d.a.