Классическая криптография <u>Квантовые</u> вычисления

Мурашко И. В.

Санкт Петербургский Государственный Политехнический Университет

Введение

Это введение TBD

Алгоритм RSA. Генерация ключей

- Выбираются два простых числа р и q
- ullet Вычисляется произведение выбранных простых чисел $n=p\cdot q$
- ullet Вычисляется функция Эйлера $\phi \left(n
 ight) = \left(p 1
 ight) \left(q 1
 ight)$
- Выбирается целое число e такое что $1 < e < \phi(n)$ и e и $\phi(n)$ взаимно просты, т. е. НОД $(e,\phi(n))=1$.
- ullet вычисляем $d\equiv e^{-1}\mod\phi\left(n
 ight)$, т. е. $d\cdot e\equiv 1\mod\phi\left(n
 ight)$.

Открытый ключ состоит из двух чисел: модуля n и открытой экспоненты e. Именно эти два числа используются для шифрования исходного сообщения.

Закрытый ключ состоит тоже из двух чисел: модуля n и закрытой экспоненты d.

Алгоритм RSA. Генерация ключей. Пример

Example

(RSA. Генерация ключей) Выбираем два простых числа p=3 и q=7. Произведение этих чисел n=21. Функция Эйлера $\phi(n)=(p-1)(q-1)=2\cdot 6=12$.

Выбираем число e (открытая экспонента), таким образом, что 1 < e < 12 и НОД (e,12) = 1. Очевидно e = 5 удовлетворяет заявленным условиям.

Вычисляем закрытую экспоненту $d\equiv 5^{-1}\mod 12$, т. е. d=5. Действительно $5\cdot 5=25=2\cdot 12+1$, т. е. $5\cdot 5\equiv 1\mod 12$. Т. о. получаем

- ullet Открытый ключ (n=12, e=5)
- \bullet Закрытый ключ (n=12, d=5)

TBD