Leçon 101. Groupe opérant sur un ensemble. Exemples et applications.

1. Notion d'action de groupe

1.1. Action de groupe

- 1. DÉFINITION. Une action d'un groupe G sur un ensemble X est la donnée d'un morphisme de groupes $G \longrightarrow \mathfrak{S}(X)$.
- 2. Proposition. Soit $\varphi \colon G \times X \longrightarrow X$ une application. Alors l'application

$$\begin{vmatrix} G \longrightarrow \mathfrak{S}(X), \\ g \longmapsto \varphi(d, \cdot) \end{vmatrix}$$

est bien définie et est une action si et seulement si, pour tous éléments $g,h\in G$ et tout élément $x\in X$, on a

$$\varphi(gh, x) = \varphi(g, \varphi(h, x))$$
 et $\varphi(e, x) = x$.

3. Remarque. Lorsqu'un groupe G agit sur un ensemble X, cette action est donnée par un morphisme $\rho \colon G \longrightarrow \mathfrak{S}(X)$, ce dernier sera implicite et on note $g \cdot x \coloneqq \rho(g)(x)$ pour $g \in G$ et $x \in X$. De la sorte, les dernières relations se réécrivent sous la forme

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 et $e \cdot x = x$.

- 4. EXEMPLE. Soit X un ensemble. Alors le groupe $\mathfrak{S}(X)$ agit naturellement sur l'ensemble X par l'action définie par la relation $\sigma \cdot x \coloneqq \sigma(x)$ avec $\sigma \in \mathfrak{S}(X)$ et $x \in X$.
- 5. EXEMPLE. Soit E un espace vectoriel. Alors le groupe $\mathrm{GL}(E)$ agit naturellement sur l'espace E.
- 6. Proposition. Soit G un groupe sur un ensemble X. Soit $H \leq G$ un sous-groupe. Alors l'action du groupe G sur l'ensemble X induit une action du groupe H sur ce dernier par le morphisme composée $H \hookrightarrow G \longrightarrow \mathfrak{S}(X)$.

1.2. Des actions particulières

7. DÉFINITION. Un $point\ fixe$ sous l'action d'un groupe G sur un ensemble X est un élément $x\in X$ vérifiant

$$\forall g \in G, \qquad g \cdot x = x$$

On note $X^G \subseteq X$ l'ensemble des points fixes.

- 8. Exemple. Le vecteur nul est un point fixe pour l'action du groupe $\mathrm{GL}(E)$ sur l'espace E.
- 9. DÉFINITION. Soit $k \in \mathbf{N}^*$ un entier non nuls. Une action d'un groupe G sur un ensemble X est
 - fidèle si le morphisme $G \longrightarrow \mathfrak{S}(X)$ est injectif, c'est-à-dire si

$$\forall g \in G, \quad (\forall x \in X, g \cdot x = x) \implies g = e;$$

- libre si, pour tous élément $x \in X$ et $g \in G$, on a

$$g \cdot x = x \implies g = e.$$

- k-transitive si, pour tous k-uplets $(x_1, \ldots, x_k) \in X^k$ et $(y_1, \ldots, y_k) \in X^k$, il existe un élément $g \in G$ tel que

$$\forall i \in \{1, \dots, k\}, \qquad g \cdot x_i = y_i ;$$

- simplement k-transitive si elle est k-transitive et un tel élément g est unique;
- transitive si elle est 1-transitive.
- simplement transitive si elle est simplement 1-transitive.
- 10. Proposition. Une action fidèle est libre.
- 11. EXEMPLE. L'action du groupe $GL_n(k)$ sur l'espace k^n est fidèle et simplement n-transitive. Elle es k-transitive et elle n'est pas simplement k-transitive pour k < n.
- 12. EXEMPLE. Lorsque $n \ge 3$, l'action du groupe alterné \mathfrak{A}_n sur l'ensemble $\{1, \ldots, n\}$ est n-2 transitive.

1.3. Orbites, stabilisateurs et équation aux classes

13. DÉFINITION. Soit G un groupe agissant sur un ensemble X. L'orbite d'un élément $x \in X$ est l'ensemble

$$\operatorname{Orb}_G(x) := \{g \cdot x \mid g \in G\} \subset X$$

et son stabilisateur est l'ensemble

$$\operatorname{Stab}_G(x) := \{ g \in G \mid g \cdot x = x \} \subset G.$$

L'ensemble des orbites est noté G/X.

- 14. EXEMPLE. En considérant l'action du groupe \mathfrak{S}_3 sur l'ensemble $\{1,2,3\}$, le stabilisateur de l'entier 1 est l'ensemble $\mathrm{Stab}_{\mathfrak{S}_3}(1) = \{\mathrm{Id},(2\ 3)\}$ et son orbite est l'ensemble $\mathrm{Orb}_{\mathfrak{S}_3}(1) = \{1,2,3\}$.
- 15. Remarque. Une action est transitive si elle n'admet qu'une seule orbite.
- 16. Proposition. Les stabilisateurs sont des sous-groupes de G.
- 17. PROPOSITION. Soit $x \in X$ un élément. Alors l'application

est une bijection.

18. COROLLAIRE. Soit $x \in X$ un élément. Alors $|\operatorname{Orb}_G(x)| = [G : \operatorname{Stab}_G(x)]$. En particulier, si le groupe G est fini, alors

$$|\operatorname{Orb}_G(x)| = |G| / |\operatorname{Stab}_G(x)|.$$

19. Théorème (équation aux classes). Soit G un groupe agissant sur ensemble fini X. Soit $\{x_1, \ldots, x_r\}$ un système de représentants des orbites. Alors

$$|X| = \sum_{i=1}^{r} \frac{|G|}{|\operatorname{Stab}_{G}(x_{i})|}.$$

- 20. Remarque. Si l'action est transitive, alors $|X| = |G| / |\operatorname{Stab}_G(x)|$ avec $x \in X$.
- 21. COROLLAIRE. Soit $\{x_1,\ldots,x_r\}$ un système de représentants des orbites non ponctuelles. Alors

$$|X| = |X^G| + \sum_{i=1}^r \frac{|G|}{|\operatorname{Stab}_G(x_i)|}.$$

22. COROLLAIRE. Soit G un p-groupe agissant sur un ensemble fini. Alors

$$|X^G| \equiv |X| \mod p.$$

- 23. APPLICATION (théorème de Gauchy). Soient G un groupe fini et p un diviseur premier de son ordre. Alors le groupe G admet un élément d'ordre p.
- 24. Théorème (Burnside). Soit G un groupe fini agissant sur un ensemble fini X. Pour un élément $g \in G$, on note

$$Fix(g) := \{ x \in X \mid g \cdot x = x \}.$$

Alors le nombre d'orbites $t \ge 1$ vérifiant la relation

$$\sum_{g \in G} |\operatorname{Fix}(g)| = t |G|.$$

2. Des actions classiques et applications

2.1. L'action par translation

25. DÉFINITION. L'action par translation (à gauche) d'un groupe G est l'action sur lui-même définie par l'égalité

$$q \cdot h := qh, \qquad q, h \in G.$$

- 26. PROPOSITION. L'action par translation est fidèle et transitive. En particulier, l'action donne un morphisme de groupes injectif $G \hookrightarrow \mathfrak{S}(G)$.
- 27. THÉORÈME (Cayley). Soit G un groupe fini d'ordre n. Alors il est isomorphe à un sous-groupe du groupe \mathfrak{S}_n .
- 28. HYPOTHÈSE. À présent, on considère l'action par translation du groupe $GL_n(k)$ sur l'ensemble $\mathcal{M}_{n,m}(k)$ qui se définie de la même manière.
- 29. Théorème. Soient $A, B \in \mathcal{M}_{n,m}(k)$ deux matrices. Alors les points suivants sont équivalents :
 - les matrices A et B sont dans la même orbite, c'est-à-dire qu'il existe une matrice inversible $P \in GL_n(k)$ telle que A = PB;
 - elle ont le même noyau.
- 30. Théorème (pivot de Gauss). Soit $A \in \mathcal{M}_{n,m}(k)$ une matrice. Alors il existe une matrice inversible $P \in GL_n(k)$ qui est un produit de matrices de permutation et de transvection telle que la matrice PA soient échelonnée en ligne.
- 31. Exemple. Par opérations sur les lignes, on obtient les transformations

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 6 & 7 & 8 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & -5 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 29/2 \end{pmatrix}.$$

2.2. L'action par conjugaison

32. DÉFINITION. L'action par translation d'un groupe G est l'action sur lui-même définie par l'égalité

$$g \cdot h := ghg^{-1}, \qquad g, h \in G.$$

L'orbite d'un élément $h \in G$ est appelée sa classe de conjugaison et son stabilisateur est appelé son centralisateur, noté $Z_G(h)$.

33. EXEMPLE. On a $Z_G(e) = G$.

- 34. PROPOSITION. Soit $h \in G$ un élément. Alors l'action par conjugaison vérifie les points suivants :
 - si le groupe G n'est pas trivial, alors elle n'est jamais libre;
 - la classe de conjugaison du neutre e est réduite à l'élément e;
 - on a $h \in \mathcal{Z}(G) \Leftrightarrow \mathcal{Z}_G(h) = G$.
- 35. COROLLAIRE. Un élément appartient au centre si et seulement si sa classe de conjugaison est réduit à un seul élément. En particulier, le centre est l'union des classes de conjugaison de taille une.
- 36. APPLICATION. Le centre d'un p-groupe n'est pas trivial.
- 37. Application (Weddenburn). Tout corps fini est commutatif.
- 38. LEMME. Soient $\sigma \in \mathfrak{S}_n$ une permutation et $a_1, \ldots, a_k \in \{1, \ldots, n\}$ des entiers deux à deux distincts. Alors $\sigma(a_1 \cdots a_n)\sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_n))$.
- 39. THÉORÈME. Deux permutations du groupe \mathfrak{S}_n sont conjuguées si et seulement si leurs décompositions en produit de cycles à supports disjoints contiennent le même nombre de k-cycles pour tout entier $k \in \{2, \ldots, n\}$.
- 40. EXEMPLE. Les permutations (1 6 3)(2 4) et (1 4)(2 3 5) sont conjuguées dans le groupe \mathfrak{S}_6 .

2.3. Les actions au service du dénombrement

- 41. LEMME. Soit E un k-espace vectoriel de dimension n. Soient $u \in \mathcal{L}(E)$ un endomorphisme nilpotent et $x \in E \setminus \{0\}$ un vecteur non nul. Soit $r \in \mathbf{N}^*$ l'entier maximal tel que la famille $(x, u(x), \dots, u^{r-1}(x))$ soit libre. Alors $u^r(x) = 0$.
- 42. THÉORÈME. Soit \mathbf{F}_q le corps fini à q éléments. Alors l'ensemble des matrices nilpotentes de taille n à coefficients dans le corps \mathbf{F}_q est de cardinal $q^{n(n-1)}$.
- 43. LEMME. Une matrice de taille n à coefficients dans le corps \mathbf{F}_q est diagonalisable si et seulement si elle est annulée par le polynôme $X^q X$.
- 44. Théorème. Le nombre de matrices diagonalisables de $\mathrm{GL}_n(\mathbf{F}_q)$ vaut

$$\sum_{\substack{(n_1,\dots,n_{q-1})\in\mathbf{N}^{q-1}\\n_1+\dots+n_{q-1}=n}}\frac{|\mathrm{GL}_n(\mathbf{F}_q)|}{|\mathrm{GL}_{n_1}(\mathbf{F}_q)|\cdots|\mathrm{GL}_{n_{q-1}}(\mathbf{F}_q)|}.$$

45. DÉFINITION. Dans un corps fini \mathbf{F}_p avec p>2, on définit le symbole de Legendre par l'égalité

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \in \{\pm 1\}.$$

46. Lemme. Soient p un nombre premier impair et $a \in \mathbf{F}_p^\times$ un élément non nul. Alors

$$|\{x \in \mathbf{F}_p \mid ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

47. REMARQUE. On peut faire agir le groupe ${\bf Z}/p{\bf Z}$ sur l'ensemble ${\bf F}_q^p$ par l'action définie par l'égalité

$$k \cdot (x_1, \dots, x_p) \coloneqq (x_{1+k}, \dots, x_{p+k}), \qquad k \in \mathbf{Z}/p\mathbf{Z}, \ (x_1, \dots, x_p) \in \mathbf{F}_q^p.$$

48. Théorème. Soient p et q deux nombres premiers impairs distincts. Alors

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)/2 \times (q-1)/2}.$$

3. Les actions de groupes en algèbre et géométrie

3.1. Classifications en algèbre linéaire : actions sur des espaces de matrices

- 49. DÉFINITION. Deux matrices $A, B \in \mathcal{M}_n(k)$ sont semblables si elles appartiennent à la même classe de conjugaison, c'est-à-dire s'il existe une matrice inversible $P \in GL_n(k)$ vérifiant $A = PBP^{-1}$.
- 50. Théorème (réduction de Frobenius). Soit $u \in \mathcal{L}(E)$. Alors il existe un unique entier $r \geq 1$, des uniques polynômes unitaires non constants $P_1, \ldots, P_r \in \mathbf{K}[X]$ et des sous-espaces vectoriels $E_1, \ldots, E_r \subset E$ stables par l'endomorphisme u tels que
 - $-E = E_1 \oplus \cdots \oplus E_r;$
 - $-P_r \mid \cdots \mid P_1;$
 - pour tout entier $i \in [1, r]$, l'endomorphisme $u|_{E_i}$ induit sur le sous-espace vectoriel E_i est cyclique de polynôme minimal P_i .

La suite $(P_1, \dots P_r)$ sont les *invariants de similitude* de l'endomorphisme u.

51. COROLLAIRE. Avec les mêmes hypothèses et notations, il existe une base de E dans laquelle l'endomorphisme u ait pour matrice

$$\operatorname{diag}(C_{P_1},\ldots,C_{P_r}).$$

De plus, on a $P_1 = \pi_u$ et $P_1 \cdots P_r = \chi_u$.

- 52. COROLLAIRE. Deux matrices de taille n sont semblables si et seulement si elles ont les mêmes invariants de similitude.
- 53. DÉFINITION. Notons $\mathscr{S}_n(k)\subset \mathscr{M}_n(k)$ l'ensemble des matrices symétriques. L'action de congruence est l'action du groupe $\mathrm{GL}_n(k)$ sur l'ensemble $\mathscr{S}_n(k)$ définie par l'égalité

$$P \cdot A := PA^{t}P.$$

Deux matrices de $\mathscr{S}_n(k)$ sont *congruentes* si elles appartiennent à la même orbite pour l'action de congruence.

- 54. Remarque. Deux matrices symétriques congruentes sont congruentes si et seulement si elles représentent la même forme quadratique dans deux bases.
- 55. Théorème (de classification des formes quadratiques). Les orbites de l'action de congruence sont caractérisées par
 - si $k = \mathbf{C}$, le rang;
 - si $k = \mathbf{R}$, la signature;
 - si $k = \mathbf{F}_q$, le discriminant.

3.2. Les groupes d'isométries préservant un ensemble

- 56. DÉFINITION. Le groupe diédral de degré n est le groupe \mathbf{D}_n des isométries préservant le polygone régulier $\mathscr{P}_n \subset \mathbf{R}^2$ à n sommets.
- 57. REMARQUE. Le groupe \mathbf{D}_n agit naturellement sur le polygone \mathscr{P}_n .
- 58. Proposition. Le groupe \mathbf{D}_n est d'ordre 2n et il est isomorphe au groupe

$$\langle r, s \mid r^n = e, \ s^2 = e, \ srs^{-1} = r^{-1} \rangle.$$

- 59. Proposition. Soit G un groupe. Alors les points suivants sont équivalents :
 - le groupe G est isomorphe au groupe \mathbf{D}_n ;
 - il est engendré par deux éléments $a, b \in G$ tels que o(a) = o(ab) = 2 et o(b) = n.

- 60. DÉFINITION. Soit $\mathscr E$ un espace affine. Une isométrie $\varphi \in \mathrm{Isom}(\mathscr E)$ stabilise une partie $X \subset \mathscr E$ si $\varphi(X) \subset X$. On note $\mathrm{Isom}(X)$ le groupe des isométries de $\mathscr E$ stabilisant X ainsi que $\mathrm{Isom}^+(X)$ le groupe des isométries positives de $\mathscr E$ stabilisant X
- 61. LEMME. Soit $X \subset \mathscr{E}$. On suppose que la partie X est l'enveloppe convexe d'une partie $S \subset \mathscr{E}$ et que les points de S sont extrémaux. Alors toute isométrie stabilisant X stabilise S, c'est-à-dire Isom(X) = Isom(S).
- 62. Théorème. Les groupes d'isométries du cube $C \subset \mathbf{R}^3$ sont

$$\operatorname{Isom}^+(C) \simeq \mathfrak{S}_4$$
 et $\operatorname{Isom}(C) \simeq \mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

3.3. Vers la théorie des représentations linéaires des groupes finis

63. DÉFINITION. Une représentation linéaire d'un groupe fini G est la donnée d'un **C**-espace vectoriel V et d'un morphisme de groupes $\rho\colon G\longrightarrow \mathrm{GL}(V)$. Un morphisme entre deux représentations $\rho\colon G\longrightarrow \mathrm{GL}(V)$ et $\rho'\colon G\longrightarrow \mathrm{GL}(V')$ est une application linéaire $f\colon V\longrightarrow V'$ telle que

$$\forall g \in G, \qquad f \circ \rho(g) = \rho'(g) \circ f.$$

- 64. Remarque. Comme $\mathrm{GL}(V)\subset\mathfrak{S}(V),$ une représentation linéaire est un cas particulier d'action de groupe.
- 65. Exemple. L'espace vectoriel \mathbb{C}^3 représente le groupe \mathfrak{S}_3 par l'action

$$\sigma \cdot (x_1, x_2, x_3) \coloneqq (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}).$$

- 66. DÉFINITION. Une sous-représentation d'une représentation $\rho \colon G \longrightarrow \operatorname{GL}(V)$ est un sous-espace vectoriel $W \subset V$ qui est stable par tous les isomorphismes $\rho(g)$ avec $g \in G$. Une sous-représentation est irréductible si elle n'admet pas de sous-représentations autres que $\{0\}$ et V.
- 67. Théorème (Maschke). Toute sous-représentation possède un supplémentaire qui est une sous-représentation.
- 68. Théorème (Schur). Soit $f: V \longrightarrow V'$ une morphisme de représentations. Alors
 - il est soit nul soit un isomorphisme;
 - si V = V', alors c'est une homothétie.

^{1]} Josette Calais. Éléments de théorie des groupes. 3° édition. Presses Universitaires de France, 1998.

^[2] Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.

^[3] Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome second. Calvage & Mounet, 2018.

^[4] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.

^[5] Jean-Étienne Rombaldi. Mathématiques pour l'agrégation. Algèbre et géométrie. 2° édition. De Boeck Supérieur, 2021.

 ^[6] Felix Ulmer. Théorie des groupes. 2º édition. Ellipses, 2021.