Week 2: Random Variables

Lecture Outline

Random Variables:

Random Variables Notation/Symbols Cheat Sheet	
Symbol	Meaning
X(s)	X is a random variable function which assigns
	a numerical value to a specific outcome s
	$e.g.$ $s_1 = \{Tails\}, s_2 = \{Heads\}$
	$X(s_1) = 0, X(s_2) = 1$
€	"is an element of"; "is one possible outcome
	within the range of'
S	The range of possible outcomes resulting
	from an experiment
	e.g. " $S = \{H, T\}$ " means that in our
	experiment (which flips a coin) we can
	produce outcomes of either heads or tails
$s \in S$	s represents just one specific, possible
	outcome which could occur within the range
	of possible outcomes represented by S
	e.g. " $s = \{H\} \in S$ " means getting heads is
	one possible outcome (s) of the two possible
	outcomes (S) from flipping a coin

- 1. **Random Variables** (**r.v.**)- The single number value associated w/ a specific outcome (realization) of one random process which can realize a different number value if the random process produces a different outcome when repeated
 - a. In English: A variable that takes on specific number values depending on which outcome happens
 - b. E.g. Tails = 0, Heads = 1 i. $S = \{s_1 = T, s_2 = H\}$ 1. $s_1 = (\{T\} \in S), s_2 = (\{T\} \in S)$ ii. $X(s_1) = 0, X(s_2) = 1$
- 2. **Discrete Random Variable** Random variables which can take on a *finite* number of distinct values
 - a. E.g. Dice rolls can only result in 6 possible outcomes
- 3. **Continuous Random Variable** Random variables which can take on an *infinite* number of distinct values
 - a. *E.g.* The exact crop yield of a given year can result in an infinite number depending on decimal precision
 - b. *NOTE*: A random variable can still be discrete despite being constructed on a continuous sample

i. *E.g.* A random variable could be assigned to whether a crop yield is greater than or less than a certain value (only 2 outcomes)

Distribution Functions:

Random Variables Notation/Symbols Cheat Sheet	
Symbol	Meaning
p(X = xi)	The probability distribution function (pdf)
	which gives the probability of realizing
OR	outcome x_i from all possible outcomes in r.v.
	X
p(xi)	
	<i>e.g.</i> " $p(3)$ " is shorthand for " $p(X = 3) = p(S_j)$
	$\in S: X(S_j)=3)$ "
f(x)	The pdf for continuous variables (described
	by "likelihood", not probability)
P(x)	The cumulative distribution function (cdf)
	describing the probability of realizing
	outcomes with values less than or equal to x
	e.g. " $P(x)$ " is shorthand for " $P(X \le x_i) =$
	$P(Sj \in S: X(Sj) \leq x_i)$ "
$F(x) = \int_{u}^{ub} f(x) dx$	The cdf $(F(x))$ of a continuous random
$F(x) = \int_{B} f(x)dx$	variable (X) is the integral from a lower
- 10	bound (lb) to an upper bound (ub) of a
	continuous pdf $(f(x))$
$\frac{dF(x)}{dx} = f(x)$	The pdf $(f(x))$ of a continuous random
$\frac{dx}{dx} - f(x)$	variable (<i>X</i>) is the derivative of a continuous
	$\operatorname{cdf}(F(x))$

- 1. **Probability Distribution Function (pdf)** the probability (p) that a discrete random variable (X) takes on the value of x_i
 - a. In English: What's the probability of getting a specific outcome(s) considering the range of all possible outcomes?
 - b. i.e. $p(X = x_i)$ for the probability of realizing discrete variables
 - i. Given H = 2 means that two of three flipped coins came up heads...
 - ii. p(H = 2) = p(2) = 3/8
 - 1. 3 of the 8 equally possible outcomes result in two heads (HHT, HTH, THH)
 - c. NOTE: pdf becomes f(x) when describing the likelihood of realizing continuous variables
- 2. Cumulative Distribution Function (cdf)- the corresponding cumulative probability (P) that a discrete random variable (X) takes on a value less than or equal to x_i

- a. In English: What's the probability of getting outcomes less than or equal to a specific value considering the range of all possible outcomes?
- b. A function is a cdf if and only if it...
 - i. Equals zero near negative infinity
 - ii. Equals one near positive infinity
 - iii. Is a non-decreasing function of x
 - iv. Is right continuous
- c. i.e. P(x) for the probability of realizing discrete variables
 - i. Given H = 2 means that two of three flipped coins came up heads...
 - ii. $P(2) = p(X = H \le 2) = 7/8$
 - 1. 7 of the 8 equally possible outcomes results in less than or exactly two heads (TTT, TTH, THT, HTT, THH, HTH, HHT)
- d. *NOTE*: pdf becomes F(x) when describing the likelihood of realizing continuous variables

3. Continuous PDFs and CDFs

- a. Characteristics
 - i. A random variable is continuous if its range includes an interval on the real number line with an infinite number of outcomes
 - ii. The likelihood of any given outcome occurring is a positive measure but with zero value
 - iii. pdf sums to infinity given all outcomes have a positive measure
- b. Calculus
 - i. We take the derivative to move from a cdf to a pdf of a continuous r.v. (the pdf is the derivative of the cdf)

1. *i.e.*
$$\frac{dF(x)}{dx} = f(x)$$

ii. We take the integral to move from a pdf to a cdf of a continuous r.v. (the cdf is the integral of the pdf)

1. *i.e.*
$$F(x) = \int_{lb}^{ub} f(x) dx$$

iii. [lb, ub]- the range over which the continuous r.v. has positive measure

Figure: CDF

Figure: PDF

Moments:

c.

Random Variables Notation/Symbols Cheat Sheet	
Symbol	Meaning

$E[Y] = \sum_{y \in Y(S)} yp(y)$	The calculation for the expected value of a discrete random variable
	e.g. The expected value of a dice roll: $E[D] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{7}{2}$
$E[Z] = \int_{lb}^{ub} z f(z) dx$	The calculation for the expected value of a continuous random variable
$E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$	The calculation for the variance of a random variable
	e.g. The variance of random variable (H) that counts the number of heads on 3 coin tosses: $\left(0 - \frac{3}{2}\right)^2 \left(\frac{1}{8}\right) + \left(1 - \frac{3}{2}\right)^2 \left(\frac{3}{8}\right) + \left(2 - \frac{3}{2}\right)^2 \left(\frac{3}{8}\right) + \left(3 - \frac{3}{2}\right)^2 \left(\frac{3}{8}\right) = \frac{3}{4}$
$\sigma_{\!\scriptscriptstyle \chi}$	The standard deviation (square root of the variance)

- 1. **Expected Value** The average or expected value (central tendency) of a random variable given a large sample of its realizations
 - a. For a discrete random variable (Y): $E[Y] = \sum_{y \in Y(S)} yp(y)$
 - i. In English: The expected value of a discrete random variable is equal to the sum of each possible multiplied by its probability
 - b. For a continuous random variable (Z): $E[Z] = \int_{lb}^{ub} zf(z)dx$
 - i. In English: The expected value of a continuous random variable is equal to the integral of the product of each differential outcome and its probability
 - c. Properties:

i.
$$E[ag(X) + b = aE[g(X)] + b$$

- 2. **Moment** n^{th} moment of a random variable is $E[X^n]$
 - a. Expected value is a special case of the first moment
 - b. Second moment is useful in calculating variance
- 3. Variance- summarizing measure of a random variable's dispersion

a. i.e.
$$E[(X - E[X])^2] = E[X^2] - E[X]^2$$

- b. Properties
 - i. It is always greater than or equal to zero
 - ii. The **standard deviation** (σ_x) is the square root of the variance
 - iii. $var(aX + b) = a^2 var(X)$
 - iv. When the distribution of the outcomes of a random variable is independent and identical (uniform), $var(\sum_{i=1}^{n} Z_i = \sum_{i=1}^{n} var(Z_i)$

Distributions:

Random Variables Notat	ion/Symbols Cheat Sheet
Symbol	Meaning
$p(1) = \pi$	The probability of returning the outcome with
	the value of one (success) in a Bernoulli
	distribution;
$0 < \pi < 1$	
	This probability is always greater than zero
(0)	and less than one in a Bernoulli distribution;
$p(0) = 1 - \pi$	
	The probability of returning the outcome with
	the value of zero
n	The number of Bernoulli random variables
	being summed together to form a binomial
$rac{1}{\sqrt{n}}$	distribution The calculation for the binomial distribution
$Z = \sum_{i=1}^{n} X_i$	(Z) of a random variable;
<i>i</i> =1	(Z) of a fandom variable,
OR	Can also be written in shorthand
$Z(n,\pi)$	
$ \frac{Z(n,\pi)}{E[Z] = n\pi} $	The calculation for the expected value of a
	binomial distribution
$var(Z) = n\pi(1-\pi)$	The calculation for the variance of a binomial
<u></u>	distribution
$p(z) = \binom{n}{z} \pi^z (1 - \pi)^{n-z}$	The calculation for the probability of returning
` Z '	a value (z) from a binomial distribution;
$= \frac{n!}{z!(n-z)!} \pi^{z} (1-\pi)^{n-z}$	Con he colved in D
Z: (n Z):	Can be solved in R
OR	
dbinom(z, n, π)	
P(z)	The cumulative probability of returning a
	value (z) from a binomial distribution ($\leq z$);
OR	
	Can be solved in R
pbinom(z, n, π)	
$X \sim U[a, b]$	Notation for a uniform distribution of a
	random variable (X) across range ([a, b])
$f(y) = c$ if $a \le y \le b$ and 0 if $y < a$ or $y > b$	Pdf of a uniform distribution;
b	
	Can be solved in R
OR	
dunif(# guantilos a h)	
dunif(# quantiles, a, b)	

$c = \frac{1}{b-a}$	Probability of returning a value in a uniform distribution
$c = \frac{1}{b-a}$ $F(y) = 0 \text{ if } y \le a, \frac{1}{b-a} \text{ if } a < y < b, 1 \text{ if } y \ge a$	Cdf of a uniform distribution;
OR	Can be solved in R
punif(# quantiles, a, b) $\mu = \int_{-\infty}^{\infty} xf(x)dx$ $\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x)dx - \mu^2$	Central tendency/mean/expected value of a normal distribution
$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$	Variance of a normal distribution
$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	Conditions for a normal distribution of a random variable;
OR	Can also be written in shorthand
$X \sim N(\mu, \sigma^2)$ $a + bQ \sim N(a + \mu, b^2 q^2)$	
$a + bQ \sim N(a + \mu, b^2q^2)$	Scalar transformations of a normal distribution
$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ $\phi(z)$	Scalar transformations of a normal distribution to convert into a standard normal distribution
$\phi(z)$	Pdf for normal distribution
$\Phi(z)$	Cdf for normal distribution
$\phi(z) = \phi(-z)$	Probability symmetry property of normal distribution
$\Phi(c) = 1 - \Phi(-c);$	Inverse probability equality principle of normal distribution
$P(c > Z) = P(Z < -c) = \Phi(-c)$ $= 1 - \Phi(c)$	
$= 1 - \Phi(c)$ $pnorm(x, \mu, \sigma)$	R-code for solving for the cumulative probability of a random variable to the value (x)

- 1. **Bernoulli Distribution of a Random Variable** Probability distributions which model random variables with binary situations (outcome of either 0 or 1) with $p(1) = \pi$, and $p(0) = 1 \pi$.
 - a. In English: Bernoulli distributions model random variables that have only two possible results. Given that the total probability is equal to one and the probability of returning one outcome, represented by π is > 0 and < 1, the probability of the alternate outcome is $1-\pi$.
 - b. E.g. coin flips, win/loss, success/failure, above/below
 - c. Variance for Bernoulli Distributions- $\pi(1-\pi)$

- 2. **Binomial Distribution of a Random Variable** Probability distribution defined as a series of independently and identically distributed (iid) Bernoulli random variables
 - a. i.e. $Z = \sum_{i=1}^{n} X_i$ where $X_1, X_2, ..., X_n$ is a series of iid Bernoulli random variables
 - i. **Independently distributed** the realization of one outcome (X_i) has no bearing on the value of another outcome (X_i)
 - ii. **Identically distributed** the probability that $X_1, X_2, ..., X_n = 1$ have the same π
 - b. Shorthand: $Z(n,\pi)$
 - c. Facts about Z:
 - i. $E[Z] = n\pi$
 - ii. $var(Z) = n\pi(1 \pi)$

iii.
$$p(z) = \binom{n}{z} \pi^z (1-\pi)^{n-z} = \frac{n!}{z!(n-z)!} \pi^z (1-\pi)^{n-z}$$

- 1. Can be solved in R using "dbinom(z, n, π)"
- iv. P(z) can be solved in R using "pbinom(z, n, π)" and used to solve segmented probabilities (e.g. finding probability of returning $40 \le z \le 50$ through P(50) P(39).
- 3. **Uniform Distribution** The simplest distribution of a random variable (X) defined by a pdf that puts equal probability (U) on all outcomes over some interval on the number line ([a,b])
 - a. i.e. $X \sim U[a, b]$
 - i. In English: Random variable (*X*) can result in all values between *a* and *b* with equal probability
 - ii. E.g. dice roll
 - b. Facts about *X*:
 - i. Pdf of uniform random variable Y: f(y) = c if $a \le y \le b$ and 0 if y < a or y > b

$$1. \quad c = \frac{1}{b-a}$$

- ii. Cdf of uniform random variable Y: F(y) = 0 if $y \le a, \frac{1}{b-a}$ if a < y < b, 1 if $y \ge b$
- 4. **Normal Distribution** the most important distribution function defined for any value between $-\infty$ and $+\infty$, with parameters being the expected value/mean (μ) and variance (σ^2)
 - a. Notation:
 - i. Normal distribution for random variable X: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
 - 1. Shorthand notation: $X \sim N(\mu, \sigma^2)$
 - ii. Expected value: $\mu = \int_{-\infty}^{\infty} x f(x) dx$
 - iii. Variance: $\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx \mu^2$
 - b. Visualization of bell curve:

- i. c. Features:
 - i. $a + bQ \sim N(a + \mu, b^2q^2)$
 - ii. **Standard normal random variable-** often we want to use scalars a and b to transform normal distributions (F(x)) into standard normal distributions (F(z)) where $\mu = 0$ and $\sigma^2 = 1$

1. E.g. if
$$X \sim N(\mu, \sigma^2)$$
, then $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ where $\alpha = -\mu$ and $b = \frac{1}{\sigma}$

- a. Z: the number of standard deviations (1) an outcome's value lies away from the mean (0)
- 2. Use z-chart to find z-value for p(Z) (
- iii. Pdf: $\phi(z)$ and Cdf: $\Phi(z)$
 - 1. $\phi(z) = \phi(-z)$ due to symmetry around zero
 - 2. $\Phi(c) = 1 \Phi(-c)$
 - 3. $P(c > Z) = P(Z < -c) = \Phi(-c) = 1 \Phi(c)$
- d. Converting from normal random variable distribution F(x) to standard normal random variable F(z) to solve for P(x) using R: pnorm(x, μ , σ)
 - i. Can also use conversion formulas in conjunction with z-table

Confidence Intervals:

Random Variables Notation/Symbols Cheat Sheet	
Symbol	Meaning
$1-\alpha$;	The probability that the true expected value of
	a random variable is contained within the
	bounds of a confidence interval (e.g. a 95%
	confidence interval);
α	The probability that the expected value of a
	random variable is not contained within the
	bounds of a confidence interval (e.g. a 95%
	confidence interval has a 5% chance of failing
	to capture the true expected value)
<i>lb</i> and <i>ub</i>	The lower and upper bound, respectively, of a
	confidence interval

$\Phi(ub) - \Phi(lb)$	Calculation for finding the probability/degree
	of confidence $(1 - \alpha)$ of a confidence interval
$p(Q < lb) = p(Q > ub) \rightarrow \alpha_{lb} = \alpha_{ub} = \frac{\alpha}{2}$	Calculation for the tail-end probability of a symmetric, two-sided confidence interval
$p(\Phi^{-1}\left(\frac{\alpha}{2}\right) < Z < \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = 1 - \alpha$	Calculation for the lower and upper bounds of a symmetric, two-sided confidence interval
OR	given $1-\alpha$;
qnorm(1-α, μ, σ)	Can also be solved in R
qnorm(1- α , μ , σ) rbinom(n = 1, size = 100, prob = 0.5);	R code for Monte Carlo simulations of a binomial cdf distribution;
,	,
runif(n = 10, min = 3, max = 7);	R code for Monte Carlo simulations of a
	uniform cdf distribution;
rnorm(n = 1000, mean = 3, prob =	
7)	R code for Monte Carlo simulations of a
	normal cdf distribution;
<i>Y~F</i> ()	The cdf distribution of a random variable
<i>X</i> ∼ <i>U</i> [0,1]	Notation for running a Monte Carlo simulation of a cdf
$y = F^{-1}(x)$	Notation for indirectly/inversely sampling
	random variable values by matching value to
	their corresponding cdf probability when an
	inverse function $(F^{-1}())$ does exist
$y = \min(y)$ such that $F(y) \ge x$	Method for inverse transform sampling which
	matches random variable values to probability
	along probability intervals for when a formal
	inverse function (F^{-1}) does not exist

- 1. **Confidence Interval (CI)** the probability that the realization of a random variable will occur within a given range
- 2. Two approaches to constructing confidence intervals:
 - a. Given the value bounds, lb and ub, on the CI we find out the probability, 1α , that the random variable is contained in the CI
 - i. E.g. What is the probability that approval rate for the president is between 40% to 60%?
 - ii. *NOTE*: α is the probability that the random variable is *not* contained within the CI, therefore, 1α is the probability that the random variable is contained within the CI
 - 1. E.g. an $\alpha = 0.05$ would produce a 95% confidence interval (1 0.05 = 0.95)
 - iii. Solved using $\Phi(ub) \Phi(lb)$

- 1. *i.e.* subtracting the cumulative probabilities of realizing each bound to find the enclosed confidence interval probability
- b. Given the probability, 1α , that the random variable is contained in the CI, we find out the bounds, lb and ub, on the CI
 - i. *E.g.* Between which percentages is there a 95% probability does approval for the president lie?
 - ii. More complicated solution: need inverse cdf function which can provide multiple CI's with the same probability
 - 1. Usually, we are finding a **symmetric two-sided CI** which presents an equal probability of realizing the random variable above and below a statistic

a.
$$p(Q < lb) = p(Q > ub) \rightarrow \alpha_{lb} = \alpha_{ub} = \frac{\alpha}{2}$$

i. *i.e.* A 95% CI leaves 2.5% unincluded on either side of the CI below the lower bound and above the upper bound

b.
$$p(\Phi^{-1}\left(\frac{\alpha}{2}\right) < Z < \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = 1 - \alpha$$

i. $E.g.$ when $1 - \alpha = 0.99$, $p(\Phi^{-1}(0.005) < Z < \Phi^{-1}(0.995) = p(-2.576 < Z < 2.576)$

- c. Can be solved in R using qnorm $(1-\alpha, \mu, \sigma)$
- 3. **Monte Carlo Simulation** drawing realizations of random variables to simulate outcomes in a random process (cdf)
 - a. In English: Compiling the results from drawing a large number of random, possible samples in order to approximate the probability of producing an outcome
 - b. Performing Monte Carlo simulations in R:
 - i. "rbinom(n = 1, size = 100, prob = 0.5)" draws one random variables from a binomial distribution of 100 trials with each trial having a probability of success of 0.5
 - ii. "runif(n = 10, min = 3, max = 7)" draws 10 random variables from a uniform distribution between sd and 7
 - iii. "rnorm(n = 1000, mean = 3, prob = 7)" draws 1000 random variables from a normal distribution with a mean of 2 and a standard deviation of 4
 - iv. *NOTE:* Because these functions are simulations, we will get different values each time we run them unless we use the "set.seed()" function prior to drawing the random variables
- 4. **Inverse Transform Sampling Method** using a Monte Carlo simulation to approximate the pdf of a distribution of a random variable with a known cdf
 - a. We can apply the inverse transform sampling method for $Y \sim F()$ when $F^{-1}()$ exists by first performing a Monte Carlo simulation of known cdf probabilities $(X \sim U[0, 1])$ and then matching corresponding random variable values with their respective cdf probabilities from the cdf simulation $(y = F^{-1}(x))$. to produce a pdf distribution.
 - i. *E.g.* inverse transform sampling a random variable with a normal distribution

- b. We can also apply the inverse transform sampling method for $Y \sim F()$ when $F^{-1}()$ does *not* exist by first performing a Monte Carlo simulation of known cdf probabilities $(X \sim U[0,1])$ and then matching corresponding random variable values with their cdf probabilities from the cdf simulation (set $y = \min(y)$ such that $F(y) \geq x$) to produce a pdf distribution
 - i. *E.g.* to create a sampling distribution of a die roll we can use the inverse transform sampling method