CS310: Automata Theory 2019

Lecture 20: Pumping lemma for CFLs

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-02-21

Yield size

Theorem 20.1

Let a parse tree be according to a Chomsky-Normal-Form grammar, and the yield of the tree is w. If the length of the longest path is n, then $|w| \le 2^{n-1}$.

Exercise 20.1

Prove the above theorem via an induction on n.

Pumping lemma for CFLs

Theorem 20.2

Let L be a CFL. Then there is a constant n such that if $z \in L$ such that |z| > n, then we can write

$$z = uvwxy,$$

subject to the following conditions:

1. $|vwx| \le n$, Called "tandem" 2. |vx| > 0, and pumping 3. for each $i \ge 0$, $uv^iwx^iy \in L$.

Exercise 20.2

Can the following strings be empty?

Example: tandem pumping

Example 20.1

Consider a parse tree for word $10 \times 0 + 1 + 11$ due to some CFG

We can use repeated S on a path to generate tandem pumping.

Example: tandem pumping (contd.)

$$\underbrace{10\times}_{V}\underbrace{10\times}_{V}\underbrace{0+1}_{W}\underbrace{+11}_{X}\underbrace{+11}_{X}$$

If parse tree is large enough, we will repeat some nonterminal in a path.

Therefore, tandem pumping.

Pumping lemma for CFLs

Proof.

Let G = (N, T, P, S) be a CNF grammar for L- $\{\epsilon\}$.(why?) Let |N| = m.

We cannot find such a grammar if L is \emptyset or $\{\epsilon\}$.

However, in both the cases the theorem trivially holds.(why?)

We need not worry of ϵ word, since we can always choose n > 0.

Let $n=2^m$. Let us choose $z \in L$ such that $|z| \ge n$.

Let us consider a parse tree for z.

Pumping lemma for CFLs II

Proof(Contd.).

Due to theorem 20.1, if largest path is a parse tree is m, then the largest yield is $2^{m-1} = n/2$.

Therefore, the parse tree of z has a path longer than m. Consider annotations on the path be $A_1...A_ka$ where k > m.

Pumping lemma for CFLs III

Proof(Contd.).

There must be i and j such that $A_i = A_j$ and

$$\underbrace{k - m \le i < j \le k}_{\text{must be a repeat in } m + 1 \text{ nodes}}.$$

z is broken down to uvwxy according the scheme in the figure.

Pumping lemma for CFLs IV

Proof(Contd.).

claim: $|v w x| \leq n$

All paths in subtree from A_i are at most m+1. vwx is the yield of the subtree.

Due to theorem 20.1, $|v w x| \le 2^{(m+1)-1} = n$.

Pumping lemma for CFLs V

Proof(Contd.).

claim: |vx| > 0

@**()**(\$(0)

Since the grammar G is in in CNF, no unit or epsilon productions.

Therefore, one side of the green zone is not empty.(why?)

Pumping lemma for CFLs VI

Proof(Contd.).

claim: for each $i \ge 0$, $uv^i w x^i y \in L$

 $uvvwxxy \in L$ because of the following parse tree.

Pumping lemma for CFLs VII

Proof(Contd.).

 $uwy \in L$ because of the following parse tree.

Following the above examples, we can construct a parse tree for each i.

Contrapositive of the pumping lemma for CFLs

Theorem 20.3

A language L is not a CFL, if for each n there is a $z \in L$ such that $|z| \ge n$, and for each breakup of z = uvwxy, if

- 1. $|vwx| \leq n$ and
- 2. |vx| > 0,

then there is a $k \ge 0$ such that $uv^k w x^k y \notin L$.

Very similar structure as RL pumping lemma.

We use the theorem to show that languages are not CFLs.

Example 1: using pumping lemma

Example 20.2

Consider language $L = \{0^n 1^n 2^n | n \ge 1\}$.

- For each n, choose $z = uvwxy = 0^n1^n2^n \in L$.
- consider all the subwords $v \mathbf{w} x$ of $0^n 1^n 2^n$ such that $|v \mathbf{w} x| \leq n$.
- \triangleright vwx can not have both 0 or 2.(why?) Wlog, assume vwx has no 2.

$$\underbrace{0\ldots 01\ldots 12\ldots 2}_{y}$$

- ▶ consider all splits of v w x such that |v x| > 0.
- ▶ In all splits, the length of either 0s or 1s will not be n in uwy.(why?)
- Therefore, uwy ∉ L.(why?)

Therefore, L is not CFL.

Example 2: using pumping lemma

Example 20.3

Consider language $L = \{0^n 1^m 2^n 3^m | n \ge 1\}.$

- For each n, choose $z = uvwxy = 0^n1^n2^n3^n \in L$.
- consider all the subwords $v \mathbf{w} x$ of $0^n 1^n 2^n 3^n$ such that $|v \mathbf{w} x| \leq n$.
- vwx can not have more than two symbols.(why?)
- ► There are three cases

Example 2: using pumping lemma II

- Now consider all splits of v w x such that |vx| > 0.
- In all splits, the length of one of

 Os, 1s, 2s, or 3s

 with he counterpart

 will not be n in uwy and the length of the counterpart

 2s, 3s, 0s, or 1s

 will be n respectively.(why?)
- ► Therefore, $uv^0wx^0y \notin L_{(why?)}$

Therefore, *L* is not CFL.

Exercise 20.3
Is
$$L = \{0^n 1^m 2^m 3^n | n \ge 1\}$$
 CFL?

Example 3: using pumping lemma

Example 20.4

Consider language $L = \{ww | w \in \{0, 1\}^*\}.$

- For each n, choose $z = uvwxy = 0^n1^n0^n1^n \in L$.
- ▶ consider subwords v w x of $0^n 1^n 0^n 1^n$ such that $|v w x| \le n$ and |v x| > 0

v and x can only be uv^0wx^0y cases from same block or $(n > k_1 + k_2 > 0)$ neighboring blocks. $0^{n-k_1}1^{n-k_2}0^{n}1^{n}$ $\not\in L$ $0^{n}1^{n-k_1}0^{n-k_2}1^{n}$ 0......01......10.......01......1 $\not\in L$ vwx $0^{n}1^{n}0^{n-k_{1}}1^{n-k_{2}}$ 0......10......1 $\not\in L$

Therefore, L is not CFL.

End of Lecture 20

