Package 'SacoGraci'

August 29, 2022
Type Package
Title SacoGraci, a data-driven optimization method for coarse-graining gene regulatory network
Version 1.0
Author Cristian Caranica, Mingyang Lu
Maintainer Cristian Caranica <c.caranica@northeastern.edu></c.caranica@northeastern.edu>
Description SacoGraci R package for gene network coarse-graining
License MIT + file LICENSE
Encoding UTF-8
LazyData true
VignetteBuilder knitr
Imports sRACIPE, igraph, doParallel, visNetwork, SummarizedExperiment, foreach, parallel, utils, graphics, stats
Suggests knitr
RoxygenNote 7.1.2

R topics documented:

adjMatCGrProb	2
centMedVarCutDistPerc	2
convAdjTop	3
convTopAdj	3
delEdges_topNew	4
difLen	4
find_inout	5
find_in_list	5
find_topology	6
gaInitial_gen	6
geneClustInd	7
geneClustMedian	7
gen_heatmap_hca	8
gen_pca_plot	8
gen_RACIPE	8
initialize_topology	9
inNrepsample_topology	9
inNWsimilarityRefCGr	C
modClustHCA	(

2 centMedVarCutDistPerc

	modClustKmeans	.1
	opt_MH	1
	opt_MH_multi	2
	opt_SA	3
	opt_SA_multi	4
	opt_TE 1	6
	plot_network	7
	reordering	7
	signChanges_top	8
Index	1	9
HIUCA		. 7

adjMatCGrProb

Builds the adjacency matrix with probabilities

Description

Builds the adjacency matrix with probabilities

Usage

```
adjMatCGrProb(data_top, gene_list)
```

Arguments

data_top topology of the full network gene_list gene clustering output

Value

adj_cgr: adjacency matrix with probabilities

centMedVarCutDistPerc Identify the center and radius of each model cluster

Description

Identify the center and radius of each model cluster

Usage

```
centMedVarCutDistPerc(data, clusterRef, percThr = 0.01)
```

Arguments

data gene expression matrix
clusterRef cluster indices of all models
percThr Threshold of permutation test

Value

: a list of (center, variance, radius(centroid & medoid)) for each cluster

convAdjTop 3

convAdjTop	Converting the adjacency matrix of a gene circuit to the topology file
	(Source/Target/Interaction Type)

Description

Converting the adjacency matrix of a gene circuit to the topology file (Source/Target/Interaction Type)

Usage

```
convAdjTop(adjMatL, numbG, colN)
```

Arguments

adjMatL adjacency matrix
numbG the number of genes
colN a vector of gene names

Value

data_cgr_top: a data frame of the circuit topology

convTopAdj	Converting the topology file (Source/Target/Interaction Type) of a gene
	circuit to the adjacency matrix d

Description

Converting the topology file (Source/Target/Interaction Type) of a gene circuit to the adjacency matrix d

Usage

```
convTopAdj(data_t, numbG, colN)
```

Arguments

data_t a data frame of the circuit topology

numbG the number of genes
colN a vector of gene names

Value

```
adjMatL: adjacency matrix
```

4 difLen

delEdges_topNew Deleting some edges from a circuit topology while trying to maintain a connected circuit	delEdges_topNew	
--	-----------------	--

Description

Deleting some edges from a circuit topology while trying to maintain a connected circuit

Usage

```
delEdges_topNew(samp_top, numb_genes, numb_del, pos_del, inNodes, list_top)
```

Arguments

samp_top	the current circuit topology
numb_genes	number of genes of the circuit
numb_del	number of edges to be deleted
pos_del	indices of edges that can be deleted
inNodes	a list of input nodes, output from the function find_inout
list_top	list of sampled circuit topologies, we make sure they are not sampled again

Value

adj_fin: the modified circuit topology

difLen

Mismatches between the sampled and reference circuit topologies

Description

Mismatches between the sampled and reference circuit topologies

Usage

```
difLen(samp_top, ref_top)
```

Arguments

samp_top Adjacency matrix of the sampled circuit topology ref_top Adjacency matrix of the reference circuit topology

Value

: number of mismatching edges

find_inout 5

find_inout	Identify input and output nodes from a circuit topology
------------	---

Description

Input nodes: nodes with only outward edges; Output nodes: nodes with only inward edges

Usage

```
find_inout(adjMatrPr, numb_cgnodes)
```

Arguments

adjMatrPr Adjacency matrix with probabilities of CG-circuits derived from the full net-

work

numb_cgnodes number of CG nodes (an output of gene clustering)

Value

resNod: a list of input nodes (1) and output nodes (2)

find_in_list Find an element in a list

Description

Find an element in a list

Usage

```
find_in_list(xli, n, elem)
```

Arguments

xli the list

n the length of the list elem the element to search

Value

indli: the index of the found element in the list, or 0 if not found

6 gaInitial_gen

find topology	Chack whather the circuit topology has been sampled or no	. +
find_topology	Check whether the circuit topology has been sampled or no	ι

Description

Check whether the circuit topology has been sampled or not

Usage

```
find_topology(top_list, samp_top, minN, maxN)
```

Arguments

top_list a list of sampled topologies

samp_top the current topology

minN the range of circuit topologies in the list to be searched (minimum index value)
maxN the range of circuit topologies in the list to be searched (maximum index value)

Value

i: the index of the found topology in the list, or 0 if not found

gaInitial_gen	Generating a series of randomly generated initial CG circuit topolo-
	gies

Description

Generating a series of randomly generated initial CG circuit topologies

Usage

```
gaInitial_gen(circuit_top, gene_list, numbNewTop)
```

Arguments

circuit_top the original circuit topology

gene_list gene clustering output

numbNewTop number of new circuit topologies to be generated

Value

resM: a list of randomly generated initial CG circuit topologies

geneClustInd 7

geneClustInd

GENE CLUSTERING BY INDIVIDUAL MODELS (HCA)

Description

GENE CLUSTERING BY INDIVIDUAL MODELS (HCA)

Usage

```
geneClustInd(logscData, numbGeneClust)
```

Arguments

logscData simulated data after log scaling and standardization

numbGeneClust number of gene clusters

Value

gene_list: gene clustering output

geneClustMedian

GENE CLUSTERING BY MEDIAN VALUES

Description

GENE CLUSTERING BY MEDIAN VALUES

Usage

```
geneClustMedian(clustData, clSize, numbGeneClust)
```

Arguments

clustData model clustering data

clSize size of each model clusters (an output of the model clustering results)

 $numb {\tt GeneClust} \quad number \ of \ gene \ clusters$

Value

gene_list: gene clustering output

gen_RACIPE

gen_heatmap_hca

Generating HCA Heatmap

Description

Generating HCA Heatmap

Usage

```
gen_heatmap_hca(logscData)
```

Arguments

logscData

simulated data after log scaling and standardization

gen_pca_plot

Generating PCA Scatterplot

Description

Generating PCA Scatterplot

Usage

```
gen_pca_plot(logscData)
```

Arguments

logscData

simulated data after log scaling and standardization

gen_RACIPE

RACIPE simulations

Description

RACIPE simulations

Usage

```
gen_RACIPE(dftop, nModels, integrateStepSize = 0.02, simulationTime = 200)
```

Arguments

dftop circuit topology

nModels number of RACIPE models generated

integrateStepSize

step size for the ODE integration

simulationTime simulation time of ODE for each RACIPE model

initialize_topology 9

Value

logscData: simulated data after log scaling and standardization

initialize_topology

Build the most dense circuit topology (adj. matrix in a vector")

Description

Build the most dense circuit topology (adj. matrix in a vector")

Usage

```
initialize_topology(adj_matrProb, numb_cgnodes)
```

Arguments

```
\verb"adj_matrProb" adjacency matrix with probabilities
```

 $numb_cgnodes \qquad the \ number \ of \ CG \ nodes$

Value

adj_Matr: the adj. matrix of the most dense topology as a vector

```
inNrepsample_topology Circuit sampling
```

Description

Circuit sampling

Usage

```
inNrepsample_topology(adj_matrPr, numb_cgnodes, inNodes, outNodes, old_top)
```

Arguments

adj_matrPr adjacency matrix of the edge probability

numb_cgnodes the nuymber of CG nodes

inNodes a list of input nodes outNodes a list of output nodes old_top the last circuit topology

Value

```
new_top: the new circuit topology
```

10 modClustHCA

```
inNWsimilarityRefCGr Circuit scoring
```

Description

Circuit scoring

Usage

```
inNWsimilarityRefCGr(
  dataRow,
  clusterRef,
  cenMedRef,
  cutOffM,
  gene_list,
  inNodes,
  topol_cgr,
  modelsCGr = 10000
)
```

Arguments

dataRow gene expression matrix with gene in rows

clusterRef the cluster indices of all models

cenMedRef cluster centers cutOffM cluster radii

gene_list gene clustering output inNodes a list of input nodes

topol_cgr the current CG circuit topology

 $\verb|modelsCGr| & the number of RACIPE models to be simulated (10000)$

Value

scoresOuts: 1: the total score, 2: the number of noisy models

modClustHCA

Model Clustering By hierarchical clustering analysis (HCA)

Description

Model Clustering By hierarchical clustering analysis (HCA)

```
modClustHCA(logscData, numbClust)
```

modClustKmeans 11

Arguments

logscData simulated data after log scaling and standardization

numbClust number of model clusters

Value

res: model clustering output: (1: cluster sizes; 2: clustering rearranged data; 3: cluster indices)

modClustKmeans

MODEL CLUSTERING BY K-MEANS

Description

MODEL CLUSTERING BY K-MEANS

Usage

```
modClustKmeans(data, numbClust, clustCenters)
```

Arguments

data matrix for k-means clustering (either logscData or projected data)

 $numb {\tt Clusters} \\$

clustCenters coordinates of the cluster center

Value

res: model clustering output

opt_MH

Circuit optimization with Metropolis-Hastings (MH) algorithm

Description

Circuit optimization with Metropolis-Hastings (MH) algorithm

```
opt_MH(
  network_top,
  data,
  clusterRef,
  cenMedRef,
  cutOffM,
  gene_list,
  init_top,
  output = "Results",
  nRepeat = 5,
  nIter = 1400,
  modelsCGr = 10000,
  tempM = 60
)
```

12 opt_MH_multi

Arguments

network_top topology of the full network
data processed gene expression matrix
clusterRef cluster indices of all models

cenMedRef cluster centers cutOffM cluster radii

gene_list gene clustering output
init_top initial circuit topology

output a string of file prefix for saving results ("Results")

nRepeat number of repeats of RACIPE simulations for each new circuit topology (5) A

new circuit is simulated by RACIPE nRepeat times for robust score evaluation; The scores will then be saved and used in future iterations, when the circuits are

sampled again.

nIter number of iterations for each simulation (1400)
modelsCGr number of RACIPE models to be simulated (10000)

tempM temperature for MH (60)

Value

df: topology of the optimized CG circuit

opt_MH_multi Circuit optimization with Metropolis-Hastings (MH) algorithm (mul-

tiple threads)

Description

Circuit optimization with Metropolis-Hastings (MH) algorithm (multiple threads)

```
opt_MH_multi(
 network_top,
 data,
 clusterRef,
  cenMedRef,
  cutOffM,
 gene_list,
  inTopsM,
 output = "Results",
 nRepeat = 5,
 nIter = 1400,
 modelsCGr = 10000,
  tempM = 60,
 numbThr = 40,
 nSim = 20
)
```

opt_SA 13

Arguments

network_top topology of the full network data processed gene expression matrix clusterRef cluster indices of all models

cenMedRef cluster centers cutOffM cluster radii

gene_list gene clustering output

inTopsM a list of all initial circuit topologies

output a string of file prefix for saving results ("Results")

nRepeat number of repeats of RACIPE simulations for each new circuit topology (5) A

new circuit is simulated by RACIPE nRepeat times for robust score evaluation; The scores will then be saved and used in future iterations, when the circuits are

sampled again.

nIter number of iterations for each simulation (1400)
modelsCGr number of RACIPE models to be simulated (10000)

tempM temperature for MH (60)

numbThr number of requested threads for HPC (40)

nSim number of parallel simulations (20)

Value

df: topology of the optimized CG circuit

opt_SA

Circuit optimization with Simulated Annealing (SA) algorithm

Description

Circuit optimization with Simulated Annealing (SA) algorithm

```
opt_SA(
  network_top,
  data,
  clusterRef,
  cenMedRef,
  cutOffM,
  gene_list,
  init_top,
  output = "Results",
  nRepeat = 5,
  modelsCGr = 10000,
  maxT = 150,
  decayRate1 = 0.8,
  decayRate2 = 0.6,
  threshT = 40,
  iter_per_temp = 100
)
```

14 opt_SA_multi

Arguments

topology of the full network network_top processed gene expression matrix data clusterRef cluster indices of all models cenMedRef cluster centers cut0ffM cluster radii gene_list gene clustering output init_top initial circuit topology output a string of file prefix for saving results ("Results") nRepeat number of repeats of RACIPE simulations for each new circuit topology (5) A new circuit is simulated by RACIPE nRepeat times for robust score evaluation; The scores will then be saved and used in future iterations, when the circuits are sampled again. modelsCGr number of RACIPE models to be simulated (10000) maxT maximum/initial temperature in SA (150) 1st temperature decaying rate (geometrically decaying) (0.8) decayRate1 decayRate2 2nd temperature decaying rate (0.6), until temperature = 1 (current implementation) threshT a second temperature in SA, below which SA has a slower temperature decaying rate (40)

Value

iter_per_temp

df: topology of the optimized CG circuit

opt_SA_multi Circuit optimization with Simulated Annealing (SA) algorithm (multiple threads)

number of iterations for each fixed temperature (100)

Description

Circuit optimization with Simulated Annealing (SA) algorithm (multiple threads)

```
opt_SA_multi(
  network_top,
  data,
  clusterRef,
  cenMedRef,
  cutOffM,
  gene_list,
  inTopsM,
  output = "Results",
  nRepeat = 5,
```

opt_SA_multi

```
modelsCGr = 10000,
maxT = 150,
decayRate1 = 0.8,
decayRate2 = 0.6,
threshT = 40,
iter_per_temp = 100,
numbThr = 40,
nSim = 20
```

Arguments

network_top topology of the full network

data processed gene expression matrix

clusterRef cluster indices of all models

cenMedRef cluster centers
cutOffM cluster radii

gene_list gene clustering output

inTopsM a list of all initial circuit topologies

output a string of file prefix for saving results ("Results")

nRepeat number of repeats of RACIPE simulations for each new circuit topology (5) A

new circuit is simulated by RACIPE nRepeat times for robust score evaluation; The scores will then be saved and used in future iterations, when the circuits are

sampled again.

modelsCGr number of RACIPE models to be simulated (10000)

maxT maximum/initial temperature in SA (150)

decayRate1 1st temperature decaying rate (geometrically decaying) (0.8)

decayRate2 2nd temperature decaying rate (0.6), until temperature = 1 (current implementa-

tion)

threshT a second temperature in SA, below which SA has a slower temperature decaying

rate (40)

iter_per_temp number of iterations for each fixed temperature (100)

numbThr number of requested threads for HPC (40)

nSim number of parallel simulations (20)

Value

df: topology of the optimized CG circuit

opt_TE

 opt_TE

Circuit optimization with temperature tempting (TE) algorithm

Description

Circuit optimization with temperature tempting (TE) algorithm

Usage

```
opt_TE(
  network_top,
  data,
  clusterRef,
  cenMedRef,
  cutOffM,
  gene_list,
  inTopsM,
  output = "Results",
  nRepeat = 5,
  modelsCGr = 10000,
  numbThr = 2,
 temp\_Array = c(1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.5, 2, 2.5, 3, 3.5, 4, 6, 9, 11,
    13, 20, 28, 40, 55, 70, 90, 120),
  iter_temp_add = c(50, 100, 150),
  numb_iter_extra = 1100,
  logAlpha = log(0.4)
```

Arguments

network_top	topology of the full network
data	processed gene expression matrix
clusterRef	cluster indices of all models
cenMedRef	cluster centers
cutOffM	cluster radii
gene_list	gene clustering output
inTopsM	a list of all initial circuit topologies
output	a string of file prefix for saving results ("Results")
nRepeat	number of repeats of RACIPE simulations for each new circuit topology (5) A new circuit is simulated by RACIPE nRepeat times for robust score evaluation; The scores will then be saved and used in future iterations, when the circuits are sampled again.
modelsCGr	number of RACIPE models to be simulated (10000)
numbThr	number of requested threads for HPC (40)
temp_Array	temperatures for all replicas Default: a total of 24 replicas with temperatures: $c(1,1.05,1.1,1.15,1.2,1.25,1.3,1.5,2.0,2.5,3.0,3.5,4.0,6,9,11,13,20,28,40,55,70,90,120)$
iter_temp_add	the number of iterations (proposed swaps per replica) during the temperature addition process Default: three runs of the procedure; $(c(50,100,150))$

plot_network 17

numb_iter_extra

number of extra iterations after the temperature addition process (1100)

logAlpha \log of the target swap rate ($\log(0.4)$)

Value

df: topology of the optimized CG circuit

plot_network

Visualize network topology

Description

Visualize network topology

Usage

```
plot_network(tf_links, height = "300px")
```

Arguments

tf_links circuit topology height plot height ("300px")

Value

network plot

reordering

Reordering the gene clusters in the gene expression matrix

Description

Reordering the gene clusters in the gene expression matrix

Usage

```
reordering(logscData, gene_list, geneGroupOrder = NULL)
```

Arguments

logscData current gene expression data matrix

gene_list gene clustering output

geneGroupOrder desired order of gene groups

Value

a list of reordered data (logscData) and an updated gene list (gene_list)

18 signChanges_top

signChanges_top

Making sign changes to some edges of a circuit topology

Description

this process will be tried 3 times if no new circuit topology is sampled

Usage

```
signChanges_top(
  samp_top,
  numb_genes,
  numb_changes,
  pos_changes,
  inNodes,
  list_top
)
```

Arguments

samp_top the current circuit topology numb_genes number of genes of the circuit

numb_changes number of edges with sign changes (>0)
pos_changes indices of edges that can have sign changes

inNodes a list of input nodes, output from the function find_inout

list_top list of sampled circuit topologies, we make sure they are not sampled again

Value

cTop: the modified circuit topology

Index

```
adjMatCGrProb, 2
centMedVarCutDistPerc, 2
convAdjTop, 3
convTopAdj, 3
delEdges_topNew, 4
difLen, 4
find_in_list, 5
find_inout, 5
find_topology, 6
gaInitial_gen, 6
gen_heatmap_hca, 8
gen_pca_plot, 8
gen_RACIPE, 8
geneClustInd, 7
geneClustMedian, 7
initialize\_topology, 9
inNrepsample_topology, 9
{\tt inNWsimilarityRefCGr, 10}\\
modClustHCA, 10
modClustKmeans, 11
opt_MH, 11
opt_MH_multi, 12
opt_SA, 13
opt_SA_multi, 14
opt_TE, 16
plot_network, 17
reordering, 17
signChanges\_top, 18
```