К6. Числено решаване на 2D уравнението на Поасон

Намерете функция $u(x_1, x_2)$ удовлетворяваща уравнението на Поасон

$$-\frac{\partial^2 u}{\partial x_1^2} - \frac{\partial^2 u}{\partial x_2^2} = f(x_1, x_2)$$

в единичния квадрат $0 < x_1, x_2 < 1$ с гранично условие на Дирихле u = 0 по границата на квадрата.

Напишете програма, която решава горната задача приближено. Дясната част $f(x_1, x_2)$ на уравнението на Поасон да бъде входен параметър за програмата. За целта извършете стъпките а), б) и в) по-долу.

- а) Въведете равномерна мрежа със стъпка h(h = 1/(N+1)) и по двете направления x_1 и x_2 и направете стандартната апроксимация за уравнението на Поасон по шаблона "кръст". Граничните условия се задават точно.
- б) Получената линейна система алгебрични уравнения с неизвестни $y_{i,j}, i=0,...,N+1, j=0,...,N+1$ решете с итерационния метод на Якоби (Jacobi's method). Забележете, че явния вид на матрицата на системата не се използва.

Една итерация по метода на Якоби се задава така:

for i=1.N

for i=1,N

$$y_{i,j}^{(k+1)} = (y_{i-1,j}^{(k)} + y_{i+1,j}^{(k)} + y_{i,j-1}^{(k)} + y_{i,j+1}^{(k)} + h^2 f_{i,j})/4$$

end for

end for

Тук $y_{i,j}^{(k+1)}$ е новото приближение (на k+1-та итерация), а $y_{i,j}^{(k)}$ е предишното приближение (от k-тата итерация) . С други думи, всяко ново приближение за $y_{i,j}$ се получава с усредняване на неговите 4 съседи по шаблона "кръст"от предишната итерация с $h^2 f_{i,j}$.

За начално приближение вземете $y_{i,j}^{(0)}=0$. Итерациите да продължават докато $\max_{i,j}|y_{i,j}^{(k+1)}-y_{i,j}^{(k+1)}|<\varepsilon$.

в) Въведете три вложени мрежи със стъпки h, h/2, h/4. Намерете приближените решения $y_h, y_{\frac{h}{2}}, y_{\frac{h}{4}}$. Пресметнете практическия ред на сходимост $\alpha(x)$ по формулата:

$$log \left| \frac{y_h(x) - y_{\frac{h}{2}}(x)}{y_{\frac{h}{2}}(x) - y_{\frac{h}{4}}(x)} \right| / log(2),$$

където x е точка от най-едрата мрежа.