

Fixed displacement axial piston motors

410 series

TECHNICAL CATALOGUE

PSM-HYDRAULICS

2011

Contents

Ordering Code	3
Technical characteristics	
Determination of the nominal size range of the motor	
Requirements for working fluids	
Overall dimensions. 56 ccm/rev	
Overall dimensions. 107 ccm/rev	
Hydraulic motor direction and drain pipe mounting scheme	18

Ordering Code

	Α		В		C		D	E		F		(3	Н		
4	1	0														

= standart program o = optional - = none

A - series

code	description
410	series 410

B - product version

code	description	41056	410107
0	basic	•	•
1	cartridge (build-in)	•	•

C - displacement

code	description	41056	410107
56	56 ccm/rev	•	-
107	107 ccm/rev	-	•

D - направление вращения

code	description	41056	410107
W	reverse	•	•

E - rotation

code	description	41056	410107
A1	splined W30x2x30x14x9g DIN5480	•	-
A2	splined W35x2x30x16x9g DIN5480	•	-
A3	splined W40x2x30x18x9g DIN5480	-	•
A4	splined W45x2x30x21x9g DIN5480	-	•
Z1	parallel keyed shaft Ø30k6 8x7x50 DIN 6885	•	-
Z2	parallel keyed shaft Ø40k6 12x8x63 DIN 6885	-	•
Z3	parallel keyed shaft Ø35k6 AS10x8x50 DIN 6885	•	-
Z4	parallel keyed shaft Ø45k6 AS14x9x63 DIN 6885	_	•

F - end cap ports and options

	code		description	41056	410107
F	1	0	flange ports at rear side	•	•
F	2	0	flange ports at opposite side	•	•
F	2	1	flange potrs at opposite site / FV	•	•
F	3	0	flange ports at same side	0	0
F	3	2	flange ports at same side / PRV	•	•
F	3	5	flange ports at same side / PRV, CV	•	•
F	6	0	2 threaded ports at side, 2 threaded ports at rear	0	0
	1	\downarrow			

	U	2 threaded ports at side, 2 threaded ports at rear					
1							
	valves						
	0	none					
	1	loop flushing valve (FV)					
	2	pressure-relief valves (PRV)					
	5	pressure-relief valves, check valves (PRV, CV)					
	6	no valves, speed sensor					
	7	loop flushing valve (FV), speed sensor					

syste	em ports (high pressure)
1	ports at rear side
2	ports at opposite side
3	ports at same side
6	2 threaded ports at side, 2 threaded ports at rear

G - special features

code	description	41056	410107
NN	none	•	•

H – shaft seal

	code	description	41056	410107
	В	NBR	•	•
Γ	F	FKM	•	•

I - climatic version and catergory of desposiotion

code	description	41056	410107
Y1	temperate climate, placing on open air	•	•
TB1	tropical climate, placing on open air	•	•

Technical characteristics.

Size	56	107
Displacement V _g , ccm/rev		106.7
Shaft speed n, rpm		
- min n _{min}	50	50
- nom n _{nom}	1800	1200
- max n _{max}	5000	4000
Flow Q, I/min		
- min Q _{min}	2.80	5.60
- nom Q _{nom}	100.80	128.40
- max Q _{max}	280.00	428.00
Input pressure P _{in} , bar		
- nom P _{nom}	320	320
- max working P _{max}	450	450
Output max pressure, P _{out max} , bar	250	250
Power N, kW		
- nom N _{nom} (at n _{nom} , P _{nom})	53.76	68.48
- max N _{max} (at n _{max} , P _{max})	75.60	96.30
Case drain pressure max, P _{dr} , bar	2	2
Torque T, Nm		
- nom T _{nom} (at P _{nom})	273.80	523.15
- max T _{max} (at P _{max})	385.03	735.68
Volume efficiency		0.95
Weight, kg		29

Torgues shown at Volume efficiency=0.95 All other values - theoretical

Determination of the nominal size range of the motor.

Flow Q=
$$\frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 I/min

Torque T=
$$\frac{V_g \cdot \Delta P \cdot \eta_{mh}}{20 \cdot \pi}$$
 N·m

Power N=
$$\frac{Q \cdot \Delta P \cdot \eta_t}{612}$$
 kW

Shaft speed n=
$$\frac{Q \cdot 1000 \cdot \eta_v}{V_g}$$
 rpm

where:

Q – flow, I/min T – torque, N•m N – power, kW

V_g – displacement, ccm/rev n – shaft speed, rpm ΔP – pressure difference, bar η_v – volume efficiency

 $\begin{array}{ll} \eta_{mh} & & - \mbox{ hydraulic mechanical efficiency} \\ \eta_{t} & & = \eta_{v} \bullet \eta_{mh} - \mbox{full efficiency coefficient} \end{array}$

Requirements for working fluids.

Working fluid temperature:

max constant in hydraulic tank

max peak (output from drain hole)

min short-term (at cold start)

+85°C

+100°C

-40°C

Kinematic viscosity of working fluid:
optimal (constant)

max starting

min short-term

20-35 mm²/s (cSt)

1500 mm²/s (cSt)

10 mm²/s (cSt)

Working fluid fineness:

not lower than class 12 as per GOST 17216-71
not lower than class 18/15 as per ISO/DIN 4406

Overall dimensions. 56 ccm/rev.

410.0.56 Fixed displacement motor. Standart mounting flange.

T1, T2 - case drain ports M18x1.5-14 DIN3852-1 / ISO9974-1

Shaft ends

W30x2x30x16x9g

W35x2x30x14x9g DIN5480

A10x5x50

End cap options

410.0.56...F20 - 2 flange at opposite side

410.1.56...F30 - 2 flange at same side

410.1.56...F30 - 2 flange at same side

Motors with build-in pressure-relief valves.

The motors has built-on two pressure-relief valves build-in in the back cap.

Pressure-relief valves of double action are intended for the restriction of the peak pressure in working lines.

Pressure-relief valves adjustment pressure (difference) $\Delta P = 220^{+1}$ bar (by default). Pressure-relief valves can be adjusted in negotiation with the consumer.

410.1.56...F32 - 2 flange at same side, pressure-relief valves.

Hydraulic circuit

General view

Motors with build-in pressure-relief valves and check valves.

The motors has built-on two pressure-relief valves and two check valves build-in in the back cap. Pressure-relief valves of double action are intended for the restriction of the peak pressure in working lines. Check valves are intended to protect motor from cavitation.

Pressure-relief valves adjustment pressure (difference) $\Delta P = 220^{+1}$ bar (by default). Pressure-relief valves can be adjusted in negotiation with the consumer.

410.0.56...F35 - 2 flange at same side, pressure-relief valves, check valves.

410.1.56...F35 - 2 flange at same side, pressure-relief valves, check valves.

Hydraulic circuit

General view

Motors with loop flushing valve.

Motors are intended for operation in hydrostatic transmissions (HST), with 416 series pumps. Loop flushing valve is mounted at motor end cap.

Loop flushing valve provides a compulsory exchange of a working fluid between a hydrotank and the closed circuit of hydrostatic transmission, also carrying out from closed circuit products extra earnings and deterioration in the filter and a hydrotank.

The purge relief valve adjustment pressure = 23^{+1} bar (by default). Can be adjusted in negotiation with the consumer.

410.0.56...F21 - 2 flange at opposite side, loop flushing valve

410.1.56...F21 - 2 flange at opposite side, loop flushing valve

Notes

Overall dimensions. 107 ccm/rev.

410.0.107. Fixed displacement motor. Standart mounting flange.

410.0.107. Fixed displacement motor. Cartridge flange design.

T1, T2 - case drain ports M18x1.5-14 DIN3852-1 / ISO9974-1

Shaft ends

A12x8x63

DIN6885 80

A14x9x63

General view

End cap options

410.0.107...F20 - 2 flange at opposite side

410.1.107...F20 - 2 flange at opposite side

410.0.107...F30 - 2 flange at same side

410.1.107...F30 - 2 flange at same side

Motors with build-in pressure-relief valves.

The motors has built-on two pressure-relief valves build-in in the back cap.

Pressure-relief valves of double action are intended for the restriction of the peak pressure in working lines.

Pressure-relief valves adjustment pressure (difference) $\Delta P = 220^{+1}$ bar (by default). Pressure-relief valves can be adjusted in negotiation with the consumer.

410.0.107...F32 - 2 flange at same side, pressure-relief valves

410.1.107...F32 - 2 flange at same side, pressure-relief valves

Hydraulic circuit

Motors with build-in pressure-relief valves and check valves.

The motors has built-on two pressure-relief valves and two check valves build-in in the back cap. Pressure-relief valves of double action are intended for the restriction of the peak pressure in working lines. Check valves are intended to protect motor from cavitation.

Pressure-relief valves adjustment pressure (difference) $\Delta P = 220^{+1}$ bar (by default). Pressure-relief valves can be adjusted in negotiation with the consumer.

410.0.107...F35 - 2 flange at same side, pressure-relief valves, check valves.

410.1.107...F35 - 2 flange at same side, pressure-relief valves, check valves.

Hydraulic circuit

General view

Motors with build-in pressure-relief valves and counterbalance valve GKP0.25.

The motors has built-on two pressure-relief valves build-in in the back cap. Counterbalance valve is mounted at motor end cap.

Pressure-relief valves of double action are intended for the restriction of the peak pressure in working lines. Counter balance hydraulic valves are intended to support the constant previously adjusted hydraulic motor shaft rotation speed under the same direction load in hydraulic systems open circuits.

Pressure-relief valves adjustment pressure (difference) $\Delta P = 220^{+1}$ bar (by default). Pressure-relief valves can be adjusted in negotiation with the consumer.

410.0.107...F32... + GKP0.25

- 2 flange at same side, pressure-relief valves, counterbalance valve

410.1.107...F32... + GKP0.25

- 2 flange at same side, pressure-relief valves, counterbalance valve

Motors with loop flushing valve.

Motors are intended for operation in hydrostatic transmissions (HST), with 416 series pumps. Loop flushing valve is mounted at motor end cap.

Loop flushing valve provides a compulsory exchange of a working fluid between a hydrotank and the closed circuit of hydrostatic transmission, also carrying out from closed circuit products extra earnings and deterioration in the filter and a hydrotank.

The purge relief valve adjustment pressure = 23^{+1} bar (by default). Can be adjusted in negotiation with the consumer.

410.0.107....F21 - 2 flange at opposite side, loop flushing valve

410.1.107....F21 - 2 flange at opposite side, loop flushing valve

Hydraulic circuit

General view

Hydraulic motor direction and drain pipe mounting scheme.

Any hydraulic motor direction of mounting is possible.

Hydraulic motor drain chamber is to be connected with hydraulic system drain line.

The drain chamber is recommended to be connected through the hydraulic motor housing upper hole.

The drain line should be located according to the schemes given on the Fig. in order to avoid the hydraulic motor housing natural pressure from the tank.

Notes

