# Divide and Conquer Prune and Search

## Divide and Conquer

- Termination: If the problem is small enough, then solve it directly.
- Divide: Break-down the problem into one or more subproblems.
- ▶ Conquer: Solve the subproblems
- Combine: Compute the solution by combining the solutions of subproblems

# Long Multiplication

| 234         | 234        | 234        | 234        |
|-------------|------------|------------|------------|
| <u>×123</u> | <u>× 3</u> | <u>× 2</u> | <u>× 1</u> |
| 702         | 12         | 8          | 4          |
| 468         | 9          | 6          | 3          |
| <u>234</u>  | _6         | _4         |            |
| 28782       | 702        | 468        | 234        |

# Long Multiplication

- **▶** Termination: x,y∈{0,...,9}
- ▶ Divide: If  $y=y_n...y_0 \ge 10$ , then divide the problem into  $x \times y_n,...,x \times y_0$ . If  $x=x_m...x_0 \ge 10$  and y<10, then divide the problem into  $x_m \times y,...,x_0 \times y$ .
- ▶ Conquer: Solve the subproblems
- ▶ Combine: Compute  $\Sigma_{0 \le i \le n} x \times y_i \times 10^i$  for the first case or  $\Sigma_{0 \le j \le m} x_j \times y \times 10^j$  for the second.

# Faster Multiplication

- Andrey Kolmogorov conjectured multiplication takes  $\Omega(nm)$  in 1952.
- In 1960, a 23-year-old student, Anatolii Alexeevitch Karatsuba, found a simple O(n<sup>1.59</sup>)-time algorithm.
- ► Toom-Cook: O(n<sup>log(2k-1)/logk</sup>)

# Karatsuba Algorithm

- Let  $x = x_H B + x_L$  and  $y = y_H B + y_L$  where  $x_L < B$ ,  $y_L < B$ , and  $y \le x < B^2$ .
- $\rightarrow xy = x_H y_H B^2 + x_L y_H B + x_H y_L B + x_L y_L$ .
- ▶ 4 subproblems x<sub>H</sub>y<sub>H</sub>, x<sub>L</sub>y<sub>H</sub>, x<sub>H</sub>y<sub>L</sub>, x<sub>L</sub>y<sub>L</sub>.
- $T(n)=4T(n/2)+O(n)=O(n^2)$
- Karatsuba's Goal: reduce the number of subproblems to 3!

# Karatsuba Algorithm

Z=ZHB²+ZMB+ZL
=xy=xhyhB²+xLyhB+xhyLB+xLyL
ZH=XHYH and ZL=XLYL
ZM=XLYH+XHYL
=(XH+XL)×(YH+YL)-XHYH-XLYL
=(XH+XL)×(YH+YL)-ZH-ZL

## Karatsuba Algorithm

- Termination: If x and y are small, multiply them by long multiplication.
- $\rightarrow$  Divide:  $x_H \times y_H$ ,  $x_L \times y_L$ ,  $(x_H + x_L) \times (y_H + y_L)$
- ▶ Conquer: Solve the subproblems
- Combine: Let  $z_H = x_H y_H$ ,  $z_L = x_L y_L$ ,  $z_M = (x_H + x_L) \times (y_H + y_L) z_H z_L$ , and  $x \times y = z_H B^2 + z_M B + z_L$ .
- Time:  $T(n)=3T(n/2)+O(n)=O(n^{1.59})$

## Quick Sort

Sort A[1],...,A[n]

- ▶ Termination: It is sorted when n=1.
- Divide: Reorder A and find m such that
  - For i < m,  $A[i] \le A[m]$ .
  - For i>m,  $A[i] \ge A[m]$ .
- ▶ Conquer: Sort A[1..m−1] and A[m+1..n].
- Combine: No need.
- Time: T(n)=T(m-1)+T(n-m)+O(n)







If A[P]<A[L]: swap(A[L],A[R]) R=R-1

If A[P]≥A[L]: L=L+1

If A[P]<A[L]: swap(A[L],A[R]) R=R-1



If A[P]<A[L]: swap(A[L],A[R]) R=R-1

If A[P]≥A[L]: L=L+1

If R<L: swap(A[P],A[R]) return R

#### Partition: Worst Case 1



## Partition: Worst Case 2



#### Partition: Worst Case 3



## Modified Partition



## Modified Partition



## Modified Partition



If A[P]=A[L]: P=P+1 swap(A[P],A[L]) L=L+1

If A[P]<A[L]: swap(A[L],A[R]) R=R-1

qsort(A[1..R]) qsort(A[L..n])

## Quick Sort

- Worst case:
  - $T(n)=T(n-1)+O(n)=O(n^2)$
- Average case:
  - What is average? The input sequence is uniformly randomly sampled.
  - T(n)=(2/n)(T(1)+...+T(n-1))+O(n)=O(nlogn)

## Merge Sort

- ▶ Input:  $\langle a_1,...,a_n \rangle$
- ▶ Termination: n=1.  $\langle a_1 \rangle$  is sorted.
- Divide: split  $\langle a_1,...,a_n \rangle$  into  $\langle a_1,...,a_{n/2} \rangle$  and  $\langle a_{1+n/2},...,a_n \rangle$ .
- ▶ Conquer: Sort  $\langle a_1,...,a_{n/2} \rangle$  and  $\langle a_{1+n/2},...,a_n \rangle$
- Combine: Merge two sorted lists into a sorted list  $\langle b_1,...,b_n \rangle$

## Merge Sort





1



$$25689$$

3>2







3<5







4<5



7



7>5



7

6 8 9

7>6



7

89

7<8





#### Left half is empty!



# Merge Sort



## Merge Sort



## Decrease and Conquer

- ▶ A special case of divide and conquer
  - ▶ There is only one subproblem.
- ▶ For example: Greatest common divisor
  - $\rightarrow$  GCD(a,o)=a
  - $\blacktriangleright$  GCD(a,b)=GCD(b,a) ... use this if a<b
  - $\rightarrow$  GCD(a,b)=GCD(a-b,b)

#### Prune and Search

- A special case of decrease and conquer
- T(n)=T(pn)+O(f(n)) where p<1
- Example:
  - Binary search
  - Bisection method
  - Golden section search
  - Extended Euclidean algorithm

# Binary search

- Given x and a sorted array A[1..n].
- ▶ If  $x \in A$ , then find out k such that x = A[k].
- If  $x \notin A$ , then find out k such that A[k-1] < x < A[k]. (Suppose  $A[o] = -\infty$  and  $A[n+1] = \infty$ .)

### Binary search

- Strategy:
  - ▶ If n=1, then return if A[1]=x.
  - Suppose there are n elements in A, check if A[n/2]=x.
  - If  $A[n/2] \neq x$ , then check if A[n/2] < x.
    - Y: k=bSearch(A[o..(n/2)],x)
    - N: k=n/2+bSearch(A[(n/2)+1..(n+1)],x)
- Can be done in O(logn)
- Iterative implementation?























Done!!



<100

### Is Sorted Needed?



<10













Step=0

Done!

### Golden section search

- Given a convex array A[1..n], find out the minimum element in A.
- Convex array: cA[i]+(1-c)A[j]≥A[ci+(1-c)j] for ci+(1-c)j is an integer between i and j.
- ▶ How many elements have to be queried?
  - O(logn)
  - ▶ How?

















### Golden section



Recycle the samples by golden ratio sampling