concrete_data

Shiva Sankar Modala

2023-03-01

```
#install.packages("tidyverse")
# readxl packages to load Excel data
#install.packages("readxl")
#install.packages("magrittr")
#install.packages("corrplot")
# Use the mgcv package to create a generalized additive model
#install.packages("mgcv")
# Visualize the regression using the visreg package,
#install.packages("visreg")
library(tidyverse)
## — Attaching core tidyverse packages —
                                                               - tidyverse
2.0.0 --
                        √ readr
## √ dplyr
              1.1.0
                                    2.1.4
## √ forcats 1.0.0

√ stringr

                                    1.5.0
## √ ggplot2 3.4.1

√ tibble 3.1.8

## ✓ lubridate 1.9.2
                        √ tidyr
                                    1.3.0
## √ purrr
              1.0.1
## — Conflicts -
tidyverse conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force
all conflicts to become errors
library(readxl)
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
      set_names
## The following object is masked from 'package:tidyr':
##
##
      extract
```

```
library(corrplot)
## corrplot 0.92 loaded
library(mgcv)
## Loading required package: nlme
## Attaching package: 'nlme'
##
## The following object is masked from 'package:dplyr':
##
##
       collapse
##
## This is mgcv 1.8-41. For overview type 'help("mgcv-package")'.
library(visreg)
# Load the Concrete Compressive Strength sample dataset
concrete data <- read excel("C:/Users/shiva/OneDrive/Desktop/dpa</pre>
Assignments/Assignment3/Concrete Data.xls")
summary(concrete_data)
## Cement (component 1)(kg in a m^3 mixture)
## Min.
           :102.0
## 1st Qu.:192.4
## Median :272.9
## Mean
         :281.2
## 3rd Qu.:350.0
## Max.
          :540.0
## Blast Furnace Slag (component 2)(kg in a m^3 mixture)
## Min.
         : 0.0
## 1st Qu.: 0.0
## Median : 22.0
## Mean
         : 73.9
## 3rd Qu.:142.9
         :359.4
## Fly Ash (component 3)(kg in a m^3 mixture)
## Min.
          : 0.00
## 1st Qu.: 0.00
## Median : 0.00
         : 54.19
## Mean
## 3rd Qu.:118.27
## Max.
          :200.10
## Water (component 4)(kg in a m^3 mixture)
## Min.
          :121.8
## 1st Qu.:164.9
## Median :185.0
## Mean
         :181.6
## 3rd Qu.:192.0
## Max. :247.0
```

```
Superplasticizer (component 5)(kg in a m^3 mixture)
## Min.
         : 0.000
## 1st Qu.: 0.000
## Median : 6.350
##
   Mean
         : 6.203
   3rd Qu.:10.160
##
## Max.
          :32.200
                     (component 6)(kg in a m^3 mixture)
## Coarse Aggregate
          : 801.0
##
   1st Qu.: 932.0
##
   Median : 968.0
##
   Mean
         : 972.9
   3rd Qu.:1029.4
##
## Max.
          :1145.0
##
   Fine Aggregate (component 7)(kg in a m^3 mixture)
                                                       Age (day)
   Min. :594.0
                                                     Min.
                                                           : 1.00
##
   1st Qu.:731.0
                                                     1st Qu.: 7.00
## Median :779.5
                                                     Median : 28.00
         :773.6
## Mean
                                                     Mean
                                                           : 45.66
                                                     3rd Qu.: 56.00
## 3rd Qu.:824.0
## Max.
          :992.6
                                                     Max.
                                                            :365.00
## Concrete compressive strength(MPa, megapascals)
## Min.
          : 2.332
## 1st Qu.:23.707
## Median :34.443
## Mean
          :35.818
##
   3rd Qu.:46.136
           :82.599
##
   Max.
colnames(concrete_data) = c("cem", "bfs", "fa", "water", "sp", "cagg",
"fagg", "age", "ccs")
column_names = c("cem", "bfs", "fa", "water", "sp", "cagg", "ccs")
concrete_data = concrete_data[column_names]
summary(concrete_data)
##
                        bfs
                                         fa
         cem
                                                        water
                                                    Min.
## Min.
           :102.0
                   Min.
                          :
                             0.0
                                   Min.
                                             0.00
                                                           :121.8
  1st Qu.:192.4
                   1st Qu.: 0.0
                                   1st Qu.: 0.00
                                                    1st Qu.:164.9
##
## Median :272.9
                   Median : 22.0
                                   Median :
                                             0.00
                                                    Median :185.0
##
   Mean
           :281.2
                   Mean
                          : 73.9
                                   Mean
                                          : 54.19
                                                    Mean
                                                           :181.6
##
   3rd Qu.:350.0
                   3rd Qu.:142.9
                                   3rd Qu.:118.27
                                                    3rd Qu.:192.0
## Max.
          :540.0
                   Max.
                          :359.4
                                   Max.
                                          :200.10
                                                    Max.
                                                           :247.0
##
          sp
                         cagg
                                          ccs
         : 0.000
## Min.
                    Min. : 801.0
                                     Min.
                                            : 2.332
##
   1st Qu.: 0.000
                    1st Qu.: 932.0
                                     1st Qu.:23.707
## Median : 6.350
                    Median : 968.0
                                     Median :34.443
         : 6.203
                           : 972.9
##
   Mean
                    Mean
                                     Mean
                                            :35.818
    3rd Qu.:10.160
                    3rd Qu.:1029.4
                                     3rd Qu.:46.136
## Max. :32.200
                    Max. :1145.0
                                     Max. :82.599
```

```
water
                                                cagg
          cem
                                                        SOO
                  pts
                         ā
 cem
         1.00
               -0.28
                       -0.40
                                                      0.50
                                                                0.8
                                                                0.6
  bfs
        -0.28
                1.00
                       -0.32
                                              -0.28
                                                                0.4
        -0.40
               -0.32
                        1.00
    fa
                                       0.38
                                                                0.2
water
                               1.00
                                      -0.66
                                                      -0.29
                                                                 0
                                                                -0.2
                                                      0.37
   sp
                        0.38
                               -0.66
                                       1.00
                                                                -0.4
               -0.28
                                      -0.27
                                               1.00
cagg
                                                                -0.6
                                                                -0.8
  CCS
         0.50
                               -0.29
                                       0.37
                                                      1.00
```

```
# gam function) to predict the Concrete Compressive Strength
dataModel1 <- gam(ccs ~ cem + bfs + fa + water + sp + cagg ,</pre>
data=concrete_data)
summary(dataModel1)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## ccs ~ cem + bfs + fa + water + sp + cagg
##
## Parametric coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                5.326997
                          10.510518
                                       0.507 0.612387
## cem
                0.108256
                           0.005214
                                      20.761 < 2e-16 ***
## bfs
                0.079357
                            0.006193
                                      12.814 < 2e-16 ***
## fa
                0.055928
                           0.009287
                                       6.022
                                              2.4e-09 ***
                                      -3.737 0.000197 ***
## water
               -0.103871
                           0.027796
                                       3.229 0.001281 **
## sp
                0.356016
                           0.110251
## cagg
                0.008027
                           0.006272
                                       1.280 0.200940
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
```

```
## R-sq.(adj) = 0.445 Deviance explained = 44.9%
## GCV = 155.83 Scale est. = 154.77
                                       n = 1030
# compare the R2 value for a GAM with linear terms as well as smoothed terms
cat("The corrected R-squared + shows that a sizable portion of the variation
is present, and it appears that we have statistical effects for CEM and BFS
but not for CAGG.")
## The corrected R-squared + shows that a sizable portion of the variation is
present, and it appears that we have statistical effects for CEM and BFS but
not for CAGG.
# Use the s() function to apply smoothing using the default bs of tp).
dataModel2 \leftarrow gam(ccs \sim s(cem) + s(bfs) + s(fa) + s(water) + s(sp) + s(cagg)
, data=concrete_data)
summary(dataModel2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## ccs \sim s(cem) + s(bfs) + s(fa) + s(water) + s(sp) + s(cagg)
##
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                     100.4 <2e-16 ***
## (Intercept) 35.8178
                           0.3566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
             edf Ref.df
                              F p-value
           4.464 5.513 69.530 < 2e-16 ***
## s(cem)
## s(bfs)
           2.088 2.578 48.091 < 2e-16 ***
## s(fa)
            5.332 6.404 1.784
                                  0.101
## s(water) 8.567 8.936 13.504 < 2e-16 ***
## s(sp)
           7.133 8.143 5.498 1.22e-06 ***
## s(cagg) 1.000 1.000 0.018
                                  0.892
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## R-sq.(adi) = 0.531
                        Deviance explained = 54.4%
## GCV = 134.84 Scale est. = 130.96
cat("We should also remark that this model, with an adjusted R-squared
of.531, explains a large portion of the variance in CCS. In summary, it
appears that the CEM and CCS are connected.")
## We should also remark that this model, with an adjusted R-squared of.531,
explains a large portion of the variance in CCS. In summary, it appears that
the CEM and CCS are connected.
```

```
# showing the fit as a function of each predictor
dataModel1.sse <- sum(fitted(dataModel1)-concrete data$ccs)^2</pre>
dataModel1.ssr <- sum(fitted(dataModel1) -mean(concrete_data$ccs))^2</pre>
dataModel1.sst = dataModel1.sse + dataModel1.ssr
Rsquared=1-(dataModel1.sse/dataModel1.sst)
cat(Rsquared)
## 0.4967177
dataModel2.sse <- sum(fitted(dataModel2)-concrete data$ccs)^2</pre>
dataModel2.ssr <- sum(fitted(dataModel2) -mean(concrete data$ccs))^2</pre>
dataModel2.sst = dataModel2.sse + dataModel2.ssr
Rsquared sm=1-(dataModel2.sse/dataModel2.sst)
cat(Rsquared_sm)
## 0.5000744
anova(dataModel1, dataModel2, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: ccs ~ cem + bfs + fa + water + sp + cagg
## Model 2: ccs \sim s(cem) + s(bfs) + s(fa) + s(water) + s(sp) + s(cagg)
    Resid. Df Resid. Dev
                              Df Deviance Pr(>Chi)
## 1
       1023.00
                   158334
## 2
        996.43
                   131019 26.574
                                     27315 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cat("Although we couldn't have known as much already, new statistical
evidence suggests that adding in the variables' nonlinear correlations
enhances the model.")
## Although we couldn't have known as much already, new statistical evidence
suggests that adding in the variables' nonlinear correlations enhances the
model.
visreg(dataModel1, 'cem')
```


visreg(dataModel2,'cem')


```
cat("The end result, with all other model variables maintained constant,
    is a plot showing how the expected value of the CCS changes as a function
of x (CEM).
    It contains the following information: (1) the expected value (blue
line),
    (2) a confidence interval for the expected value (gray band), and
    (3) partial residuals (dark gray dots).")
## The end result, with all other model variables maintained constant,
       is a plot showing how the expected value of the CCS changes as a
function of x (CEM).
##
       It contains the following information: (1) the expected value (blue
line),
       (2) a confidence interval for the expected value (gray band), and
##
       (3) partial residuals (dark gray dots).
##
# Visualizing the feature with the function of their feature
visreg(dataModel1, 'bfs')
```


visreg(dataModel2,'bfs')

visreg(dataModel1,'fa')

visreg(dataModel2,'fa')

visreg(dataModel1,'water')

visreg(dataModel2,'water')

visreg(dataModel1,'sp')

visreg(dataModel2,'sp')

visreg(dataModel1,'cagg')

visreg(dataModel2,'cagg')

cat("We can see from the CEM graph that the confidence interval has a higher value after adding the smoothing function than the model had without it. Using the smoothing function improves the confidence interval.")

We can see from the CEM graph that the confidence interval has a higher value after adding the smoothing function than the model had without it. Using the smoothing function improves the confidence interval.