Conrelated streetegy and equilibrium

Recap: MSNE → weakest notion of equilibrium so far existence is guaranteed for finite games Computationally expansive

Alternative approach - entry of a mediating agent/device

- Why? (1) Alternative explanation of player rationality
 - 2) Utility for all players may get better
 - 3 Computational treachability

Example			
P2			
PI '	Wait	Go	
Wait	0,0	1,2	Busy cross Hoad P2
40	2,1	-10,-10	

Nash solutions are (1) one waits other goes on (2) large probability on waiting In practice something else happens

A traffic light guides the players - and The players agree to this plan - Why? The trusted third party is called The mediator

Role: randomize over the strategy profiles and suggest the corresponding strategies to the players

If the strategies are enforceable then it is an equilibrium (correlated)

Definition: A cornelated strategy is a mapping $\pi: S \to [0,1]$ $\Lambda:t. \supseteq \pi(\Lambda) = 1$ $\Lambda \in S$

example: $\pi(W,W)=0$, $\pi(W,G)=\pi(G,W)=\frac{1}{2}$, $\pi(G,G)=0$.

A correlated strategy is a correlated equilibrium when no player "gains" from deviating while others are following the suggested strategies

The correlated strategy π is a common knowledge

Definition: A correlated equilibrium is a correlated strategy π s.t.

Discussions: the mediator suggests the actions after running its randomization device π , every agent's best response is to follow it if others are also following it.

Ex. 1

	F	
F	2,1	0,0
C	0,0	2را

MSNE : $\left(\left(\frac{2}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{2}{3}\right)\right)$

Q: $9_x \pi(c,c) = \frac{1}{2} = \pi(F,F)$ a CE?

Expected utility: $MSNE = \frac{2}{3}$, $CE = \frac{3}{2}$

Ex. 2

	Wait	Go
Wait	0,0	1,2
40	2,1	-10,-10

Consider $\pi(W,G) = \pi(W,W) = \pi(G,W) = \frac{1}{3}$

Is this a CE?

Are there other CEs?