Mathematik III - Blatt 11

January 19, 2016

1. Sei \mathcal{B} eine ONB des \mathbb{R}^2 und sei $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ eine lineare Abbildung mit

$$A = A_{\alpha}^{\mathcal{B}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

- (a) Zeigen Sie, dass α eine orthogonale Abbildung ist.
- (b) Entscheiden Sie, ob es sich um eine Drehung oder eine Spiegelung handelt und geben Sie im Falle einer Drehung den Drehwikel, im Falle einer Spiegelung die Spiegelungsachse an.
- 2. (a) Seien $\alpha, \beta : \mathbb{R}^2 \to \mathbb{R}^2$ Achsenspiegelungen an zwei Ursprungsgeraden. Zeigen Sie, dass $\alpha \circ \beta$ eine Drehung ist.
 - (b) Sei $\gamma : \mathbb{R}^2 \to \mathbb{R}^2$ eine Drehung um den Nullpunkt und $\delta : \mathbb{R}^2 \to \mathbb{R}^2$ eine Achsenspiegelung an einer Ursprungsgeraden. Zeigen Sie, dass $\gamma \circ \delta$ eine Achsenspiegelung ist. Bestimmen Sie die Spiegelungsachse.
- 3. Sei die Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch $A_{\alpha}^{\mathcal{B}} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{6}}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{\sqrt{6}}{4} & \frac{1}{4} & \frac{3}{4} \end{pmatrix}$ bezüglich der kanonischen Basis \mathcal{B} .
 - (a) Zeigen Sie, dass es sich bei der Abbildung α um eine Achsendrehung handelt.
 - (b) Bestimmen Sie die Drehachse von α
 - (c) Bestimmen Sie eine ONB \mathcal{C} , sodass $A_{\alpha}^{\mathcal{C}}$ die Form $\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ hat und geben Sie den Winkel φ an.
- 4. (a) Sei $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ eine affine Abbildung, $\alpha \neq id$. Zeigen Sie, dass α entweder genau einen Fixpunkt, eine Gerade aus Fixpunkten oder keine Fixpunkte hat.
 - (b) Seien $\lambda, \mu \in \mathbb{R}$ und sei $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ die affine Abbildung mit

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \lambda - 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ \mu \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} \lambda + 1 \\ \mu - 1 \end{pmatrix}.$$

- i. Bestimmen Sie $A \in \mathcal{M}_2(\mathbb{R})$ mit $\alpha(v) = A \cdot v + b$ für alle $v \in \mathbb{R}^2$.
- ii. Für welche λ, μ hat α genau einen Fixpunkt, eine gerade aus Fixpunkten, bzw. keine Fixpunkte?
- 5. Es ist y = 3x 2 die Gleichung einer Geraden im \mathbb{R}^2 .
 - (a) Geben Sie diese Gerade als affinen Unterraum der Form $w + \langle u \rangle$ an mit $w, u \in \mathbb{R}^2$.
 - (b) Sei σ die Spiegelung an dieser Geraden. Geben Sie eine orthogonale 2x2-Matrix A und ein $b \in \mathbb{R}^2$ an, so dass $\sigma(v) = A \cdot v + b$ für alle $v \in \mathbb{R}^2$.