Estequiometria

$$aA + bB \longrightarrow cC + dD$$

Estequiometria

$$aA + bB \longrightarrow cC + dD$$

Por convenção, consideramos A o reagente limitante e que o valor absoluto do respectivo coeficiente estequiométrico, é 1

Estequiometria

$$aA + bB \longrightarrow cC + dD$$

Por convenção, consideramos A o reagente limitante e que o valor absoluto do respectivo coeficiente estequiométrico, é 1

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_{A} = N_{A0} - N_{A0} X$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° de moles à conversão X
$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_{B} = N_{B0} - \frac{b}{a} N_{A0} X$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_{A} = N_{A0} - N_{A0} X = N_{A0} (1 - X)$ $N_{B} = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_{A} = N_{A0} - N_{A0} X = N_{A0} (1 - X)$ $N_{B} = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_{B} - \frac{b}{a} X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$\begin{aligned} N_{A} &= N_{A0} - N_{A0} X = N_{A0} (1 - X) \\ N_{B} &= N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_{B} - \frac{b}{a} X) \end{aligned}$
N _{C0}		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N V	$N_{\cdot} = N_{\cdot} \cdot \cdot \cdot \cdot N$ $V = N_{\cdot} \cdot (1 - V)$
1 VAU	-1\A0 A	$N_A - N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$\begin{aligned} N_{A} &= N_{A0} - N_{A0} X = N_{A0} (1 - X) \\ N_{B} &= N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_{B} - \frac{b}{a} X) \end{aligned}$
Nco	$+\frac{c}{a}N_{A0}X$	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$\begin{split} N_{A} &= N_{A0} - N_{A0} X = N_{A0} (1 - X) \\ N_{B} &= N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_{B} - \frac{b}{a} X) \end{split}$
Nco		$N_{\rm C} = N_{\rm C0} + \frac{c}{a} N_{\rm A0} X$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$\begin{split} N_{A} &= N_{A0} - N_{A0} X = N_{A0} (1 - X) \\ N_{B} &= N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} \left(\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X \right) = N_{A0} \left(\frac{\theta_{B}}{a} - \frac{b}{a} X \right) \end{split}$
Nco		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Variação	Nº de moles à conversão X
- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
$+\frac{c}{a}N_{A0}X$	$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
	$-N_{A0} X$ $-\frac{b}{a}N_{A0} X$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
N _{C0}	$+\frac{c}{a}N_{A0}X$	$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
Nco	$+\frac{c}{a}N_{A0}X$	$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}	$+\frac{\mathrm{d}}{\mathrm{a}}\mathrm{N}_{\mathrm{A}\mathrm{0}}\;\mathrm{X}$	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
N _{C0}		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}	$+\frac{d}{a}N_{A0}X$	$N_D = N_{D0} + \frac{d}{a} N_{A0} X$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}		$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
Nco		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}	$+\frac{\mathrm{d}}{\mathrm{a}}\mathrm{N}_{\mathrm{A0}}\;\mathrm{X}$	$N_D = N_{D0} + \frac{d}{a} N_{A0} X = N_{A0} (\frac{N_{D0}}{N_{A0}} + \frac{d}{a} X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
N _{C0}		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} (\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X) = N_{A0} (\theta_{C} + \frac{c}{a} X)$
N _{D0}	$+\frac{d}{a}N_{A0}X$	$N_D = N_{D0} + \frac{d}{a} N_{A0} X = N_{A0} \left(\frac{N_{D0}}{N_{A0}} + \frac{d}{a} X \right) = N_{A0} \left(\theta_d + \frac{d}{a} X \right)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N_{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N_{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$N_B = N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_B - \frac{b}{a} X)$
Nco		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}	$+\frac{\mathrm{d}}{\mathrm{a}}\mathrm{N}_{\mathrm{A0}}\mathrm{X}$	$N_D = N_{D0} + \frac{d}{a} N_{A0} X = N_{A0} \left(\frac{N_{D0}}{N_{A0}} + \frac{d}{a} X \right) = N_{A0} \left(\theta_d + \frac{d}{a} X \right)$

$$N_{T0} = N_{A0} + N_{B0} + N_{C0} + N_{D0}$$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

N° inicial de moles	Variação	Nº de moles à conversão X
N _{A0}	- N _{A0} X	$N_A = N_{A0} - N_{A0} X = N_{A0} (1 - X)$
N _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{N}_{\mathbf{A}0}\mathbf{X}$	$\begin{aligned} N_{A} &= N_{A0} - N_{A0} X = N_{A0} (1 - X) \\ N_{B} &= N_{B0} - \frac{b}{a} N_{A0} X = N_{A0} (\frac{N_{B0}}{N_{A0}} - \frac{b}{a} X) = N_{A0} (\theta_{B} - \frac{b}{a} X) \end{aligned}$
Nco		$N_{C} = N_{C0} + \frac{c}{a} N_{A0} X = N_{A0} \left(\frac{N_{C0}}{N_{A0}} + \frac{c}{a} X \right) = N_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
N _{D0}	$+\frac{d}{a}N_{A0}X$	$N_{D} = N_{D0} + \frac{d}{a} N_{A0} X = N_{A0} \left(\frac{N_{D0}}{N_{A0}} + \frac{d}{a} X \right) = N_{A0} \left(\theta_{d} + \frac{d}{a} X \right)$

$$N_{T0} = N_{A0} + N_{B0} + N_{C0} + N_{D0} \qquad N_{T} = N_{A0} - N_{A0} X + N_{B0} - \frac{b}{a} N_{A0} X + N_{C0} + \frac{c}{a} N_{A0} X + N_{D0} + \frac{d}{a} N_{A0} X$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\mathcal{S}} N_{A0} X$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\mathcal{S}} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\mathcal{S}} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\mathcal{S}} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X \qquad y_{A0} = \frac{N_{A0}}{N_{T0}}$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\delta} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X \qquad y_{A0} = \frac{N_{A0}}{N_{T0}} \qquad \therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$y_{A0} = \frac{N_{A0}}{N_{T0}}$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\delta} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X \qquad y_{A0} = \frac{N_{A0}}{N_{T0}} \qquad \therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$y_{A0} = \frac{N_{A0}}{N_{T0}}$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$N_{T} = \underbrace{\left(N_{A0} + N_{B0} + N_{C0} + N_{D0}\right)}_{N_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\delta} N_{A0} X$$

$$\therefore N_T = N_{T0} + N_{A0} \delta X$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \frac{N_{A0}}{N_{T0}} \delta X \qquad y_{A0} = \frac{N_{A0}}{N_{T0}} \qquad \therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$y_{A0} = \frac{N_{A0}}{N_{T0}}$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{N_T}{N_{T0}} = 1 + \varepsilon X$$

Equação dos gases perfeitos

Equação dos gases perfeitos

À conversão X

Equação dos gases perfeitos

$$\dot{\mathbf{A}}$$
 conversão \mathbf{X} $PV = N_T RT$

$$PV = N_T RT$$

Equação dos gases perfeitos

À conversão X
$$PV = N_T RT$$

$$PV = N_T RT$$

Equação dos gases perfeitos

$$PV = N_T RT$$

$$P_0 V_0 = N_{T0} R T_0$$

Equação dos gases perfeitos

$$\dot{\mathbf{A}}$$
 conversão \mathbf{X} $PV = N_T RT$

$$PV = N_T RT$$

$$\boldsymbol{P}_0 \boldsymbol{V}_0 = \boldsymbol{N}_{\boldsymbol{T}0} \boldsymbol{R} \boldsymbol{T}_0$$

$$\frac{\boldsymbol{P}}{\boldsymbol{P}_0} \cdot \frac{\boldsymbol{V}}{\boldsymbol{V}_0} = \frac{\boldsymbol{N}_T}{\boldsymbol{N}_{T0}} \cdot \frac{\boldsymbol{T}}{\boldsymbol{T}_0}$$

Equação dos gases perfeitos

À conversão X

$$PV = N_T RT$$

$$P_0 V_0 = N_{T0} R T_0$$

$$\frac{\boldsymbol{P}}{\boldsymbol{P}_0} \cdot \frac{\boldsymbol{V}}{\boldsymbol{V}_0} = \frac{\boldsymbol{N}_T}{\boldsymbol{N}_{T0}} \cdot \frac{\boldsymbol{T}}{\boldsymbol{T}_0}$$

$$\frac{N_T}{N_{T0}} = 1 + \varepsilon X$$

Equação dos gases perfeitos

À conversão X

$$PV = N_T RT$$

$$\boldsymbol{P}_0 \boldsymbol{V}_0 = \boldsymbol{N}_{\boldsymbol{T}0} \boldsymbol{R} \boldsymbol{T}_0$$

$$\frac{\boldsymbol{P}}{\boldsymbol{P}_0} \cdot \frac{\boldsymbol{V}}{\boldsymbol{V}_0} = \frac{\boldsymbol{N}_T}{\boldsymbol{N}_{T0}} \cdot \frac{\boldsymbol{T}}{\boldsymbol{T}_0}$$

$$\frac{N_T}{N_{T0}} = 1 + \varepsilon X$$

$$\therefore \frac{P}{P_0} \cdot \frac{V}{V_0} = (1 + \varepsilon X) \cdot \frac{T}{T_0}$$

Equação dos gases perfeitos

À conversão X

$$PV = N_T RT$$

$$P_0 V_0 = N_{T0} R T_0$$

$$\frac{\boldsymbol{P}}{\boldsymbol{P}_0} \cdot \frac{\boldsymbol{V}}{\boldsymbol{V}_0} = \frac{\boldsymbol{N}_T}{\boldsymbol{N}_{T0}} \cdot \frac{\boldsymbol{T}}{\boldsymbol{T}_0}$$

$$\frac{N_T}{N_{T0}} = 1 + \varepsilon X$$

$$\therefore \frac{P}{P_0} \cdot \frac{V}{V_0} = (1 + \varepsilon X) \cdot \frac{T}{T_0}$$

$$\mathbf{V} = \mathbf{V}_0 \cdot (\mathbf{1} + \varepsilon X) \cdot \frac{T}{T_0} \cdot \frac{P_0}{P}$$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} \left(\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X \right) = F_{A0} \left(\theta_B - \frac{b}{a} X \right)$
$\mathbf{F}_{\mathbf{C0}}$		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
$\mathbf{F}_{\mathbf{C0}}$	$+\frac{c}{a}F_{A0}X$	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
$\mathbf{F}_{\mathbf{C0}}$	$+\frac{c}{a}F_{A0}X$	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_C + \frac{c}{a} X \right)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
$\mathbf{F}_{\mathbf{C0}}$	$+\frac{c}{a}F_{A0}X$	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_C + \frac{c}{a} X \right)$
$\mathbf{F}_{\mathbf{D0}}$		

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
$\mathbf{F}_{\mathbf{C0}}$	$+\frac{c}{a}F_{A0}X$	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_C + \frac{c}{a} X \right)$
$\mathbf{F}_{\mathbf{D0}}$	$+\frac{d}{a}F_{A0}X$	

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
$\mathbf{F}_{\mathbf{C0}}$	$+\frac{c}{a}F_{A0}X$	$F_{C} = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_{C} + \frac{c}{a} X \right)$
$\mathbf{F}_{\mathbf{D0}}$	$+\frac{\mathrm{d}}{\mathrm{a}}\mathrm{F}_{\mathrm{A0}}\mathrm{X}$	$F_D = F_{D0} + \frac{d}{a} F_{A0} X = F_{A0} \left(\frac{F_{D0}}{F_{A0}} + \frac{d}{a} X \right) = F_{A0} \left(\theta_D + \frac{d}{a} X \right)$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação		Caudal molar à saída (à conversão X)
$\mathbf{F_{A0}}$	- F _{A0} X		$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
$\mathbf{F_{B0}}$	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}$	X	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
moiar		X	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} (\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X) = F_{A0} (\theta_C + \frac{c}{a} X)$
		X	$F_D = F_{D0} + \frac{d}{a} F_{A0} X = F_{A0} \left(\frac{F_{D0}}{F_{A0}} + \frac{d}{a} X \right) = F_{A0} \left(\theta_D + \frac{d}{a} X \right)$

$$F_{T0} = F_{A0} + F_{B0} + F_{C0} + F_{D0}$$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} \left(\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X \right) = F_{A0} \left(\theta_B - \frac{b}{a} X \right)$
F _{C0}	$+\frac{c}{a}F_{A0}X$	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_C + \frac{c}{a} X \right)$
$\mathbf{F}_{\mathbf{D0}}$	$+\frac{d}{a}F_{A0}X$	$F_D = F_{D0} + \frac{d}{a} F_{A0} X = F_{A0} \left(\frac{F_{D0}}{F_{A0}} + \frac{d}{a} X \right) = F_{A0} \left(\theta_D + \frac{d}{a} X \right)$

$$F_{T0} = F_{A0} + F_{B0} + F_{C0} + F_{D0}$$

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

Caudal molar à entrada	Variação	Caudal molar à saída (à conversão X)
$\mathbf{F}_{\mathbf{A0}}$	- F _{A0} X	$F_A = F_{A0} - F_{A0} X = F_{A0} (1 - X)$
F _{B0}	$-\frac{\mathbf{b}}{\mathbf{a}}\mathbf{F}_{\mathbf{A}0}\mathbf{X}$	$F_B = F_{B0} - \frac{b}{a} F_{A0} X = F_{A0} (\frac{F_{B0}}{F_{A0}} - \frac{b}{a} X) = F_{A0} (\theta_B - \frac{b}{a} X)$
F _{C0}	$+\frac{c}{a}F_{A0}X$	$F_C = F_{C0} + \frac{c}{a} F_{A0} X = F_{A0} \left(\frac{F_{C0}}{F_{A0}} + \frac{c}{a} X \right) = F_{A0} \left(\theta_C + \frac{c}{a} X \right)$
$\mathbf{F}_{\mathbf{D0}}$	$+\frac{d}{a}F_{A0}X$	$F_D = F_{D0} + \frac{d}{a} F_{A0} X = F_{A0} \left(\frac{F_{D0}}{F_{A0}} + \frac{d}{a} X \right) = F_{A0} \left(\theta_D + \frac{d}{a} X \right)$

$$F_{T0} = F_{A0} + F_{B0} + F_{C0} + F_{D0}$$

$$F_{T} = \underbrace{\left(F_{A0} + F_{B0} + F_{C0} + F_{D0}\right)}_{F_{T0}} + \underbrace{\left(-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}\right)}_{\delta} F_{A0} X$$

 $\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \, \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \, \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \,\delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \,\delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore F_T = F_{T0} + F_{A0} \delta X$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\therefore -$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

$$\therefore F_{T} = F_{T0} + F_{A0} \delta X \qquad \therefore \frac{F_{T}}{F_{T0}} = 1 + \frac{F_{A0}}{F_{T0}} \delta X$$

$$\therefore \frac{F_{T}}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta \qquad \therefore \frac{F_{T}}{F_{T0}} = 1 + \varepsilon X$$

$$\therefore F_{T} = F_{T0} + F_{A0} \delta X \qquad \therefore \frac{F_{T}}{F_{T0}} = 1 + \frac{F_{A0}}{F_{T0}} \delta X$$

$$\therefore \frac{F_{T}}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$P v = F_T R T$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$P v = F_T R T$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$P v = F_T R T$$

$$P_0 v_0 = F_{T0} R T_0$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X} \qquad \qquad \therefore \quad \frac{\boldsymbol{F_T}}{\boldsymbol{F_{T0}}} = 1 + \frac{\boldsymbol{F_{A0}}}{\boldsymbol{F_{T0}}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$P v = F_T R T$$

$$P_0 v_0 = F_{T0} R T_0$$

$$\frac{P}{P_0} \cdot \frac{v}{v_0} = \frac{F_T}{F_{T0}} \cdot \frac{T}{T_0}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \frac{F_{A0}}{F_{T0}} \delta X$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

À conversão X

$$P v = F_T R T$$

$$P_0 v_0 = F_{T0} R T_0$$

$$\frac{P}{P_0} \cdot \frac{v}{v_0} = \frac{F_T}{F_{T0}} \cdot \frac{T}{T_0}$$

$$\therefore \frac{P}{P_0} \cdot \frac{v}{v_0} = (1 + \varepsilon X) \cdot \frac{T}{T_0}$$

$$\therefore \quad \boldsymbol{F_T} = \boldsymbol{F_{T0}} + \boldsymbol{F_{A0}} \, \delta \boldsymbol{X}$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \frac{F_{A0}}{F_{T0}} \delta X$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + y_{A0} \delta X$$

$$\varepsilon = y_{A0} \delta$$

$$\therefore \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

Equação dos gases perfeitos

À conversão X

$$P v = F_T R T$$

$$P_0 v_0 = F_{T0} R T_0$$

$$\frac{P}{P_0} \cdot \frac{v}{v_0} = \frac{F_T}{F_{T0}} \cdot \frac{T}{T_0}$$

$$\therefore \frac{\mathbf{P}}{\mathbf{P}_0} \cdot \frac{\mathbf{v}}{\mathbf{v}_0} = (1 + \varepsilon \mathbf{X}) \cdot \frac{\mathbf{T}}{\mathbf{T}_0}$$

$$v = v_0 \cdot (1 + \varepsilon X) \cdot \frac{T}{T_0} \cdot \frac{P_0}{P}$$