Non-Existential Mathematical Oxymoron

 $team_{-}7$

October 25, 2018

Problem 1 2N students take a quiz in which the possible scores are $0, 1 \dots 10$. It is given that each of these scores appeared at least once, and the average of their scores is 7.4. Prove that the students can be divided into two sets of N student with both sets having an average score of 7.4.

Problem 2 Triangle ABC circumscribed (O) has A-excircle (J) that touches AB, BC, AC at F, D, E, resp.

- 1. L is the midpoint of BC. Circle with diameter LJ cuts DE, DF at K, H. Prove that (BDK), (CDH) has an intersecting point on (J).
- 2. Let $EF \cap BC = \{G\}$ and GJ cuts AB, AC at M, N, resp. $P \in JB$ and $Q \in JC$ such that

$$\angle PAB = \angle QAC = 90^{\circ}.$$

 $PM \cap QN = \{T\}$ and S is the midpoint of the larger BC-arc of (O). (I) is the incircle of ABC. Prove that $SI \cap AT \in (O)$.

Problem 3 Let p_n be the n^{th} prime counting from the smallest prime 2 in increasing order. For example, $p_1 = 2, p_2 = 3, p_3 = 5, \cdots$

1. For a given $n \geq 10$, let r be the smallest integer satisfying

$$2 \le r \le n - 2, \quad n - r + 1 < p_r$$

and define $N_s = (sp_1p_2 \cdots p_{r-1}) - 1$ for $s = 1, 2, \dots, p_r$. Prove that there exists $j, 1 \leq j \leq p_r$, such that none of p_1, p_2, \dots, p_n divides N_j .

2. Using the result of (3.1), find all positive integers m for which

$$p_{m+1}^2 < p_1 p_2 \cdots p_m$$