Medical Image Processing for Diagnostic Applications

Written Exam

06.08.2019

60 minutes, 60 points

Image Undistortion

a) Name and explain the two types of image distortion.

b)
$$x = \sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i,j} y'^{j} x'^{i}$$

Evaluate x0 for d = 2.

- c) Construct the measurement matrix M from $(x_0,y_0),(x_1,y_1)$ and (x_2,y_2) in terms of above equation
- d) Write down the linear system that needs to be solved.
- e) What is maximum rank of the measurement matrix? Can this linear equation will be solved when you have a full rank matrix?
- f) Name two ways how this system can be solved.

Polynomial surface fitting

- a) Given the equation of entropy, asked to name it
- b) Given the equation of cross- entropy, asked to name it
- c) Write one property of KL divergence
- d) Given (x_0, y_0) , (x_1, y_1) and (x_2, y_2) values and write measurement matrix in terms of regression problem

Filtering

- a) Given $h(s) = \int |w| e^{2\pi i \omega t}$ How is the filter called?
- b) Given $h(s) = \frac{1}{2} sinc(s) \frac{1}{4} sinc^2(s)$ Write in discrete form?
- c) How is the discrete filter called?

Reconstruction

- a) How is this image called?
- b) Explain these 3 lines in sinogram? Explain the location and shape of these lines?
- c) Fourier Slice Theorem: (write in 4 blanks) It states that the <u>1-D Fourier transform</u> $P(\omega,\theta)$ of a <u>projection</u> $p(s,\theta)$ in parallel beam geometry for a fixed rotation angle θ is identical to the 1-D profile through the <u>origin</u> of the <u>2-D Fourier transform</u> $F(\omega\cos\theta,\omega\sin\theta)$ of the irradiated object

ART

- a) What is the main drawback of ART (Kaczmark method)?
- b) Mention and explain 2 other ART methods?

Rigid Registration

$$R = \arg\min||p_i - \mathbf{R}q_t - t||$$

- a) What is R and t? Explain briefly. Why optimization is required?
- b) Explain rigid transformation
- c) This is non-linear. How will you make it linear?