Assignment - 5 (submission deadline: 9th April, 2021)

Note: Unless otherwise stated, notation used is as defined in the class.

- 1. Let G be a group, then prove that G is abelian when $a^2 = a \ \forall a \in G$ holds.
- 2. Which of the following algebraic structures $(R, +, \cdot)$ form a ring?
 - (a) Let X be any set and R = P(X), the power set of X. Define $A + B = A \triangle B$ and $A \cdot B = A \cap B$ for all $A, B \in R$ (where $A \triangle B = (A B) \cup (B A)$)
 - (b) In the above set R, define $A + B = A \cup B$ and $A \cdot B = A \cap B$ for all $A, B \in R$.
 - (c) Let R be the set of all real-valued continuous functions defined on \mathbb{R} . Define (f+g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(g(x))$ for all $f, g \in R$ and for all $x \in \mathbb{R}$.
 - (d) Let R be the set of all twice differentiable real-valued functions having second derivative zero at x = 0. Define (f + g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(x)g(x)$ for all $f, g \in R$ and for all $x \in \mathbb{R}$.
- 3. Let R be a commutative ring with characteristic p, where p is a prime number. Prove that $(a+b)^p = a^p + b^p$.
- 4. Show that
 - (a) \mathbb{Z} is not a field.
 - (b) $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$ is not a field.
- 5. Find all c such that $\mathbb{Z}_3[x]/\langle x^3+cx^2+1\rangle$ is a field.
- 6. (a) Determine the Galois field $GF(3^3)$ generated by $x^3 + 2x + 1 = 0$ and list down the polynomial equivalents for each ternary 3-tuple in this field.
 - (b) Find the inverse and square root of 121 in $GF(3^3)$ generated by $x^3 + 2x + 1 = 0$.
 - (c) Find all the quadratic residues (or squares) in the field $GF(3^3)$ (half of the nonzero elements of this field are quadratic residues and half are quadratic non-residues).
- 7. The field $\mathsf{GF}(2^5)$ can be constructed as $\mathbb{Z}_2[x]/(x^5+x^2+1)$.
 - (a) Compute $(x^4 + x^2) \times (x^3 + x + 1)$.
 - (b) Using the **Extended Euclidean algorithm**, compute $(x^3 + x^2)^{-1}$.
- 8. Let E be the modular elliptic curve defined by $y^2 = x^3 + 3x \pmod{17}$.
 - (a) Find all points of E (including the point at infinity).
 - (b) Find 2(8, 14).
 - (c) Determine $\operatorname{ord}_E((8,14))$.

