CSHORE Execution

The CSHORE model is a combined wave, current, and sand transport model that operates under the assumption of longshore uniformity. Wave and current estimates derive from the numerical integration of the depth-averaged energy, momentum, and continuity equations. Process-based sediment transport algorithms for a nearshore breaking wave environment provide distinct estimates for bedload, suspended load, and wave-related sediment transport. Generally speaking, when applied in an appropriate manner, the CSHORE model provides more accurate results when compare to previously-used models.

The application of CSHORE is appropriate for cases of approximately alongshore-uniform beaches with waves approaching with angles less than 80 degrees with respect to a shore normal. The profile can be comprised of a mixture of sediment and hardbottom, although CSHORE is formulated for use with a single grain size, and so application to cases of wide or bimodal grain size distribution may be inappropriate. The CSHORE model was developed making use of the simplifying assumption that overtopping is wave-driven and intermittent. The officially-supported CSHORE code will terminate execution is the water level at the seaward boundary exceeds the highest bed elevation point in the domain. Users who are inclined to use CSHORE without his restriction can contact Bradley.D.Johnson@usace.army.mil for code without restriction, but advised to exercise caution in this model application.

CSHORE is distributed as FORTRAN code located in the src-repo directory. Two pre-compiled executables for Windows and Linux, with filenames cshore_usace_win.out and CSHORE_USACE_LINUX.out, respectively, are also included in the usace_distribute_bundle/bin/ directory. CSHORE is version reporting is provided at time of execution, with a version date provided as output.

Model execution is completed through either scripting or execution at the command line. A Matlab script example is provided in usace_distribute_bundle/example_application as run_model.m. Command line execution is accomplished by calling the CSHORE executable from a directory that includes an input file named infile. For example, execution from a Windows operating system:

Z:\wes\cshore-git>cd usace_distribute_bundle\example_application

Z:\wes\cshore-git\usace_distribute_bundle\example_application>\bin\cshore_usace_win.out CSHORE USACE version, 2014 last edit 2024-03-14
CSHORE applied to idealized planar slope
Similarly, execution from a Linux system:
<pre>\$ cd usace_distribute_bundle/example_application/ \$/bin/CSHORE_USACE_LINUX.out CSHORE USACE version, 2014 last edit 2024-03-14</pre>
CSHORE applied to idealized planar slope

CSHORE Parameters

The CSHORE family of models has dependencies on the following scalars:

 d_{50} = median sediment grain size

sg = sediment specific gravity

 $w_f = \text{sediment fall velocity}$

por = bed porosity

 e_B = breaking efficiency

 e_f = bottom dissipation efficiency

slp = suspended load parameter

slpot = suspended load parameter for over-topping

blp = wave-related bed load parameter

 f_w = wave friction factor

 γ = ratio of breaking wave height to water depth

Physical Parameters

Some parameters are physical and are prescribed by field measurements or estimation. The median grain size, d_{50} , for instance, is specified according to measured or assumed data. Likewise the sediment fall velocity w_f and porosity por are physical attributes of the model domain. Typical values of these parameters is given:

Parameter	Typical Value	Units
d_{50}	0.20	mm
w_f	0.026	m/s
sg	2.65	
por	0.40	

Table 1: Physical parameters

Empirical and Numerical Parameters

The 1-D CSHORE model formulation includes empirical devices for estimation of nearshore hydrodynamics and sediment transport. Typical values for the parameters is provided along with a range of acceptable values. It should be noted that the breaking model in CSHORE relies on a user-supplied γ , the ratio of wave height to water depth in the saturated breaking region. Strictly speaking, this is not an empirical model parameter, and data from the surf zone is usually available in the laboratory for guidance. In the typical application with field conditions, however, it is not practical to collect surf zone information, and typical values are provided in Table 2.

Parameter	Typical Value	Range
dx	1	0.1 (lab) - 1 (field)
γ	0.7	0.5 - 0.9
e_B	0.005	0.001 - 0.01
e_f	0.01	
slp	0.5	0.2 - 0.5
slpot	0.1	0.05 - 0.2
$\tan \phi$	0.63	0.63
blp	0.001	0.0005 - 0.002
f_w	0.015	0.005 - 0.03
rwh	0.03	0.01 (lab)05 (field)

Table 2: Empirical parameters

Input file structure

The CSHORE model developers, over time, have added capabilities and code branches to extend the range of application. The optional processes are included with an array of logical parameters that are given below. It is suggested, at present, to provide the user with a limited set of options to avoid unadvised application before complete scrutiny by the USACE. The following four tables detail the input file structure required by CSHORE.

Parameter	Allowed Values	Meaning and Conditional	
ILINE	1	Single transect	
IPROFL	0, 1	0=no sediment transport, 1=sediment transport	
ISEDAV	0	unlimited sediment availability, Conditional on	
		IPROFL = 1	
IPERM	0	neglect permeability	
IOVER	1	Allow overtopping and compute runup statistics	
IWTRAN	0	No standing water in landward zone, Condi-	
		tional on $IOVER = 1$	
IPOND	0	No ridge and runnel, Conditional on IOVER =	
		1	
INFILT	0	No inflitration landward of dune crest, Condi-	
		tional on $IOVER = 1$ and $IWTRAN=0$	
IWCINT	0	No wave-current interaction	
IROLL	0	No roller effect	
IWIND	0	No wind effect	
ITIDE	0	No pressure effect	
IVEG	0	No vegitation effect	
DXC	dx	see above	
GAMMA	γ	see above	
D50 WF SG	$d_{50} w_f sg$	see above, Conditional on $IPROFL = 1$	
EFFB EFFF SLP SLPOT	$e_b e_f slp slpot$	see above, Conditional on $IPROFL = 1$	
TANPHI BLP	$\tan \phi \ blp$	see above, Conditional on $IPROFL = 1$	
RWH	rwh	See above	
ILAB	0	Assume continuous and bounded boundary con-	
		dition data	
NWAVE		Number of wave conditions. Provide $nwave + 1$	
		conditions for interpolation with ILAB=0	
NSURGE		Number of water level conditions. Provide	
		nsurge + 1 conditions for interpolation with	
		ILAB=0	

	time(s)	wave period(s)	root-mean-square wave height(m)	wave setup(m)
-	011110(5)	wave period(b)	1000 mean square wave neight(m)	wave becap(iii)

time(s)	water level(m)

Parameter	Allowed Values	Meaning and Conditional
NPINP		Number of bottom position data points

$x(m) \mid z_b(m) \mid f_w$

Sample INFILE For cases of fixed bed, IPROFL=0

3 CSHORE applied to idealized planar slope 1 ->ILINE 0 ->IPROFL 0 ->IPERM 1 ->IOVER 0 ->IWTRAN 0 ->IPOND 0 ->IWCINT 0 ->IROLL 0 ->IWIND 0 ->ITIDE 0 ->IVEG 1.0000 ->DXC 0.8000 ->GAMMA 0.0200 ->RWH 0 ->ILAB 5 ->NWAVE 5 ->NSURGE 0.00 8.0000 2.1000 0.0000 3600.00 8.0000 2.2000 0.0000 7200.00 8.0000 2.3000 0.0000 10800.00 8.0000 2.4000 0.0000 14400.00 8.0000 2.5000 0.0000 8.0000 18000.00 2.6000 0.0000 0.00 0.0000 3600.00 0.5000 7200.00 0.8660 10800.00 1.0000 14400.00 0.8660 18000.00 0.5000 301 ->NBINP 0.0000 -8.0000 0.0150 1.0000 -8.0000 0.0150 2.0000 -8.0000 0.0150 3.0000 -8.0000 0.0150 4.0000 -8.0000 0.0150 5.0000 -8.0000 0.0150

. 297.0000 7.7600 0.0150 298.0000 7.8400 0.0150 299.0000 7.9200 0.0150 300.0000 8.0000 0.0150

For cases including sediment transport, IPROFL=1 $\,$

3

· ------

CS	HORE applie	ed to idealiz	zed planar	slope				
1				->ILINE				
1				->IPROFL				
0				->ISEDAV				
0				->IPERM				
1				->IOVER				
0				->IWTRAN				
0				->IPOND				
0				->INFILT				
0				->IWCINT				
0				->IROLL				
0				->IWIND				
0				->ITIDE				
0				->IVEG				
	1.0000			->DXC				
	0.8000			->GAMMA				
	0.3000	0.0448	2.6500	->D50 WF	SG			
	0.0050	0.0100	0.5000	0.1000	->EFFB	EFFF	SLP	SLPOT
	0.6300	0.0010		->TANPHI	BLP			
	0.0200			->RWH				
0				->ILAB				
5				->NWAVE				
5				->NSURGE				
	0.00	8.0000	2.1000	0.0000				
	3600.00	8.0000	2.2000	0.0000				
	7200.00	8.0000	2.3000	0.0000				
	10800.00	8.0000	2.4000	0.0000				
	14400.00	8.0000	2.5000	0.0000				
	18000.00	8.0000	2.6000	0.0000				
	0.00	0.0000						
	3600.00	0.5000						
	7200.00	0.8660						
	10800.00	1.0000						

14400.00	0.8660		
18000.00	0.5000		
301			->NBINP
0.0000	-8.0000	0.0150	
1.0000	-8.0000	0.0150	
2.0000	-8.0000	0.0150	
3.0000	-8.0000	0.0150	
4.0000	-8.0000	0.0150	
5.0000	-8.0000	0.0150	
•			
•			
297.0000	7.7600	0.0150	
298.0000	7.8400	0.0150	
299.0000	7.9200	0.0150	
300.0000	8.0000	0.0150	