Задачи за задължителна самоподготовка

ПО

Структури от данни и програмиране

email: kalin@fmi.uni-sofia.bq

5 януари 2017 г.

- 1. Да се дефинира функция, която проверява дали в даден граф има поне един цикъл.
- 2. За клас **Graph** да се дефинира оператор за събиране, реализиращ обединение на графи.

 \mathcal{A} ефиниция: Нека $G_1 = \langle V_1, E_1, w_1 \rangle$ и $G_2 = \langle V_2, E_2, w_2 \rangle$, са графи с теглови функции съответно w_1 и w_2 .

Тегловите функции w_k са от вида $w_k: E_k \to 2^C$, като $\forall e \in E_k, w_k \neq \emptyset$, т.е.

- Допускат се повече от едно тегло за всяка дъга
- Не може да има дъга без тегло

Множеството от допустими стойности на теглата C е еднакво за двата графа.

Обединение на G_1 и G_2 наричаме графа $G=< V_1 \cup V_2, E_1 \cup E_2, w_1 \cup w_2>$, където $w_1 \cup w_2: E_1 \cup E_2 \to 2^C$ и е изпълнено, че $\forall e \in E_1 \cup E_2$:

$$w_1 \cup w_2(e) = \begin{cases} w_1(e) \cup w_2(e) & e \in E_1 \& e \in E_2 \\ w_1(e) & e \in E_1 \& e \notin E_2 \\ w_2(e) & e \notin E_1 \& e \in E_2 \\ \emptyset & ow \end{cases}$$

3. За клас **Graph** да се дефинира оператор за сравнение <=, реализиращ проверка дали даден граф е подграф на друг граф.

Дефиниция: Нека $G_1 = \langle V_1, E_1, w_1 \rangle$ и $G_2 = \langle V_2, E_2, w_2 \rangle$, са графи с теглови функции съответно w_1 и w_2 . Тегловите функции w_k са от вида $w_k: E_k \to 2^C$, като $\forall e \in E_k, w_k \neq \emptyset$. Множество от допустими стойности на теглата C е еднакво за двата графа.

Казваме, че $G_1 \leq G_2$, т.с.т.к. $V_1 \subseteq V_2$, $E_1 \subseteq E_2$ и $\forall e \in E_1, w_1(e) \subseteq w_2(e)$.