Pointless Topology 勉強ノート

中村仁宣

2024年6月13日~

1 Preliminary

1.1 Topology トポロジー

Let $\mathcal{P}(X)$ denote the power set of X.

定義 1.1 (Topology トポロジー). A topological space is an ordered pair (X,τ) , $\tau \subseteq \mathcal{P}(X)$ which satisfies the following properties

- 1. $\emptyset \in \tau$ and $X \in \tau$.
- 2. if $U, V \in \tau$, then $U \cap V \in \tau$.
- 3. if $\forall I, U_i \in \tau$ forall $i \in I$, then $\bigcup_{i \in I} U_i$.

 τ is called the **topology** of X. The members of the topology $U \in \tau$ is said to be **open** and $V \subseteq X$ is said to be **closed** if $\exists U$ open such that $V = U^c$.

定義 1.2 (Separation Axioms 分離公理). A space (X, τ) is called T_i , if respectively satisfies the following conditions,

- 1. $T_0: \forall x, y \in X \exists$ an open set $U \in \tau$ such that U contains one of x, y and not the other.
- 2. $T_1: \forall x, y \in X \exists a \text{ nhood of each not containing the other.}$

例 1.1 (T_0 -space). $X = \{a, b\}, \tau = \{\emptyset, \{a\}, X\}$

1.2 Posets, Lattices 半順序集合、束

定義 1.3 (Posets). A partial order (半順序) on a set X is a binary relation $R \subseteq X \times X$ satisfying,

- 1. ∀a, aRa (reflexivity, 反射律),
- 2. $\forall a, b, c, aRb \& bRc \Rightarrow aRc (transitivity, 推移律),$
- 3. $\forall a, b, aRb \& bRa \Rightarrow a = b \ (antisymmetry, 反対称律).$

if moreover

4. $\forall a, b \text{ either } aRb \text{ or } bRa \text{ holds},$

it is said to be a **linear** or **total** order.

A **poset** or **partially ordered set**, (X, \leq) is a set with a partial order. If the order of a poset is linear (or total), it is called a **linearly ordered set**, **totally ordered set** or **chain**. A relation that satisfies only (1) and (2) is called **preorder**.

定義 1.4 (Suprema, infima). A supremum s of a subset $M \subseteq (X, \leq)$ the least upper bound of M, that is

- 1. $\forall m \in M, m \leq s$,
- 2. $\forall m \in M, m < x \Rightarrow s < x$.

Similarly, a **infimum** of a subset $M \subseteq (X, \leq)$ the greatest lower bound of M.

We also call a supremum a **join** and an infimum **meet** and notate $\sup M$, $\inf M$ or $\bigvee M$, $\bigwedge M$ respectively.

For finite cases, we wirte $a \lor b := \sup\{a, b\}$ or $a_1 \lor \cdots \lor a_n := \sup\{a_1 \ldots a_n\}$ and $a \land b := \inf\{a, b\}$ or $a_1 \land \cdots \land a_n := \inf\{a_1 \ldots a_n\}$.

Since each $x \in X$ is both a lower and an upper bound of the empty set \emptyset ,

$$\sup \emptyset$$
 is the least element of X (1.1)

and

$$\inf \varnothing$$
 is the greatest element of X (1.2)

We use the symbols 0 or \perp for the former and 1 or \top for the latter.

定義 1.5 (Semilattices, Lattice). A meet-semilattice is a poset X such that $\forall a, b \in X$ there exists an infimum $a \wedge b$.

A **join-semilattice** is a poset X such that $\forall a, b \in X$ there exists an supremum $a \lor b$.

A lattice is a poset X such that $\forall a, b \in X$ both an infimum $a \land b$ and a supremum $a \lor b$ exist.

A bounded lattice is a poset in which all finite subsets have infima and suprema (i.e. a lattice with bottom and top).

A poset is a complete lattice if every subset has a supremum and an infimum.

In a bounded semilattice, \wedge or \vee is a binary operation and satisfies the following properties,

$$a \wedge a = a \tag{1.3}$$

$$a \wedge b = b \wedge a \tag{1.4}$$

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) \qquad (a \vee b) \vee c = a \vee (b \vee c) \qquad (1.5)$$

$$a \wedge 1 = a \qquad \qquad a \vee 0 = a. \tag{1.6}$$

In other words, bounded semilattices are commutative monoids (semigroup with unit/identity element) in which every element is idempotent.

定理 1.1. Let $(A, \vee, 0)$ be a commutative monoid in which every element is idempotent. Then there exists a unique partial order on A such that $a \wedge b$ is the join of a and b, and 0 is the least element.

証明. Clearly, if such a partial order exists,

$$a \le b \Leftrightarrow a \lor b = b. \tag{1.7}$$

A lattice can also be defined purely algebraically in those terms,

定義 1.6. A lattice (L, \vee, \wedge) is an algebra (a set with two binary operations) that satisfy

$$(L1) a \wedge a = a (idempotency)$$

$$(L2) a \wedge b = b \wedge a a \vee b = b \vee a (commutativity)$$

$$(L3) (a \wedge b) \wedge c = a \wedge (b \wedge c) (a \vee b) \vee c = a \vee (b \vee c) (associativity)$$

$$(L4) a \lor (a \land b) = a a \land (a \lor b) = a (absorption identities)$$

定義 1.7 (Ideal). An ideal in a bounded distributive lattice L is a subset $J \subseteq L$ such that

$$0 \in J, \tag{1.8}$$

$$a, b \in J \Rightarrow a \lor b \in J,$$
 (1.9)

$$b \le a \& a \in J \Rightarrow b \in J. \tag{1.10}$$

定義 1.8 (Filter). A filter in a bounded distributive lattice L is a subset $F \subseteq L$ such that

$$1 \in F, \tag{1.11}$$

$$a, b \in F \Rightarrow a \land b \in F,$$
 (1.12)

$$b \ge a \& a \in F \Rightarrow b \in F. \tag{1.13}$$

2 Stone Spaces

3 Spaces and Lattices of Open Sets

We will suppose that all topological spaces that appear here will be T_0 .

3.1 Sober spaces

定義 3.1 (meet-irrducibility). Let (X, τ) be a top.space. $W \in \tau$ is said to be a **meet-irreducible** open set if $U, V \in \tau$ and $U \cap V \subseteq W$, then either $U \subseteq W$ or $V \subseteq W$.

定義 3.2 (sober space). X is said to be **sober** if all the meet-irreducible open sets are of the form $X\setminus \overline{\{x\}}$.

命題 3.1. Each Haudorff space is sober.

証明. Suppose
$$W$$
 is meet-irreducible, for contradiction, there exists $x_1, x_2 \notin W$ and $x_i \in U_i, x_j \notin U_i (i \neq j)$. Then $W = (W \cup U_1) \cap (W \cup U_2)$ and $W \cup U_i \nsubseteq W$.

参考文献

[1] Jorge Picado, Aleš Putlr, Frames and Locales: Topology without points, Birkhäuser.