

Rafbók

REIT rafeindatækni 11. Kafli Common collektor Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efnisyfirlit

l 1. kafli Formúlur og útskýringar fyrir common collector-dæmin	3
11. kafli Transistorar, ac-magnari common collector	5
Dæmi 11.1	5
Dæmi 11.2	5
Dæmi 11.3	6
Dæmi 11.4	7
Dæmi 11.5	8
Dæmi 11 6	10

11. kafli Formúlur og útskýringar fyrir common collector-dæmin.

Svörin við öllum útreikningum eru miðuð við þetta formúlublað. Leitast er við að nota þá formúlu sem gefur sem nákvæmasta útkomu miðað við þær upplýsingar sem gefnar eru upp í dæminu. Það þýðir að fleiri upplýsingar gefa nákvæmari útkomu. Munur er áútreikningum með mismunandi formúlum. Ath. RL = Rá || Re

Tengimyndin sýnir skammstafanir og heiti sem notuð eru í formúlunum.

20.02.2020 3 www.rafbok.is

	Venjuleg notkun:	Nákvæmari, fleiri upplýsingar:
	$h_{fe} = \beta$ er eina þekkta	hfe, hie, hre, hoe eru þekkt
	upplýsingin (parameter)	
r'e = jafngildisriðstraums-		$r'e = \frac{hie}{hfe}$
viðnám á milli base og	$r'e = \frac{1}{40 \cdot I_e} = \frac{25m}{I_e}$	$re - \overline{hfe}$
emitter.		
Spennumögnun	$Av = \frac{R_L}{r'e + R_L}$	$Av = 1 - \frac{hie}{R_{ht} R_{hh}}$
Av [sinnum]	$r'e + R_L$	$ R_{bt} = 1 - \frac{1}{R_{bt}} R_{bb} $
Spennumögnun,		hie
nákvæmari formúla		$AV = 1 - \frac{hie}{hie + ((1 + hfe) \cdot R_L)}$
Gain = Av í dB	$G = 20 \log Av$	$G = 20 \log Av$
Inngangs-impedans Z _{inn}	$Z_{inn} = (R_L \cdot hfe) R_{bt} R_{bb}$	$Z_{inn} = (r'e + R_L \cdot (1 + hfe)) R_{bt} R_{bb}$
Útgangs-impedans $Z_{\text{út}}$ Ef R_s er óþekkt er það reiknað sem fullkomið, þ.e.a.s. $R_s = 0\Omega$	$Z_o = R_e \left\ \left(r'e + \frac{R_s R_{bt} R_{bb}}{hfe} \right) \right\ $	$Z_o = R_e \left \frac{1}{\left(hoe + \frac{1 + hfe}{hie + R_s}\right)} \right $
Inngangsþéttir C _{inn}	C. – 1	C 1
fn = neðsta tíðni -3dB	$C_{inn} = \frac{1}{2 \cdot \pi \cdot fn \cdot Z_{inn}}$	
Útgangsþéttir C _{út}	$C_{\acute{\mathbf{u}}t} = \frac{1}{2 \cdot \pi \cdot fn \cdot (R_{\acute{\mathbf{u}}} + Z_{\acute{\mathbf{u}}t})}$	$C_{inn} = \frac{1}{2 \cdot \pi \cdot fn \cdot (Z_{inn} + R_s)}$ $C_{\acute{u}t} = \frac{1}{2 \cdot \pi \cdot fn \cdot (R_{\acute{a}} + Z_{\acute{u}t})}$

11. kafli Transistorar, ac-magnari common collector

Dæmi 11.1

- A. Reiknaðu út base-strauminn Ib.
- B. Reiknaðu út emitter-viðnámið R_e.
- C. Reiknaðu út base-toppviðnámið R_{bt}.
- D. Reiknaðu út base-botnviðnámið R_{bb}.
- E. Merktu ac, inn- og útgangsspennu rásarinnar inn á tengimyndina.
- F. Hvað er annað algengt nafn fyrir common collector-rás?

Dæmi 11.2

- A. Reiknaðu út r'e transistorsins.
- B. Reiknaðu út spennumögnun Av-rásarinnar.
- C. Reiknaðu út inngangs-impedans Z_{inn}-rásarinnar.
- D. Reiknaðu út útgangs-impedans Zo-rásarinnar.
- E. Hve margar gráður er fasamismunurinn á milli inngangs- og útgangsspennu rásarinnar?

20.02.2020 5 www.rafbok.is

- A. Reiknaðu út spennumögnun rásarinnar.
- B. Reiknaðu út útgangsspennu rásarinnar.
- C. Reiknaðu út inngangs-impedans Z_{inn}-rásarinnar.
- D. Reiknaðu út útgangs-impedans Z_{o} -rásarinnar.
- E. Reiknaðu út hve mörg F inngangsþéttirinn C_{inn} á að vera ef lægsta tíðnin 3dB sem hleypt er inn á rásina er 15Hz.
- F. Reiknaðu út hve mörg F útgangsþéttirinn C_{út} á að vera ef lægsta tíðnin (-3dB) sem hann hleypir í gegn er 2Hz.
- G. Hve mörg Hz er neðri marktíðni fn-rásarinnar?
- H. Reiknaðu út hve mörgum sinnum straummögnun rásarinnar A_i er. $A_i = i_{\text{út}}/i_{\text{inn}}$
- I. Reiknaðu út hve mörg V útgangsspenna rásarinnar verður ef 220 Ω -álagsviðnámið er aftengt.

- A. Reiknaðu út emitter-viðnámið R_e.
- B. Reiknaðu út spennumögnun rásarinnar A_v.
- C. Reiknaðu inngangs-impedans rásarinnar Z_{inn}.
- D. Reiknaðu út inngangsspennu u_{inn} -rásarinnar.
- E. Reiknaðu út útgangsafl rásarinnar, þ.e.a.s. aflið í heyrnartólinu.
- F. Reiknaðu út straummögnun rásarinnar A_i.
- G. Reiknaðu útgangs-impedans rásarinnar Zo.
- H. Reiknaðu út neðri tíðnimörk rásarinnar fn. Þú þarft að reikna bæði fn í inngangi og útgangi rásarinnar. Hæsta marktíðnin ræður fn fyrir rásina sem heild.

- A. Teiknaðu C_{cb} og C_{be} inn á tengimyndina.
- B. Efri tíðnimörkum (-3dB) rásarinnar er stjórnað af rýmdinni C_{cb} á milli collectors og base transistorsins. Rýmdin C_{be} á milli base og emitter er straumlaus og þess vegna ósýnileg þar sem sama ac-spenna er báðum megin við þéttinn. Séð frá inngangi emitter-fylgju magnarans virðist C_{cb} vera eina rýmdin sem tekur straum. Þéttirinn C_{cb} er riðstraumslega tengdur við jörð. Þess vegna er inngangsrýmd transistors í cc-rás sama sem C_{cb}. Hvað er C_{inn} rásarinnar?
- C. Reiknaðu út efri tíðnina fe (-3dB) sem rásin magnar. Ath. R_s og C_{inn} stjórna fe með því að mynda LP-síu.
- D. Reiknaðu út f
n rásarinnar. Mundu að það er C_{inn} og Z_{inn} sem mynda HP-síu.

E. Teiknaðu tíðnisvar rásarinnar inn í log lin-línuritið. Línuritinu er skipt í tvennt svo auðveldara sé að koma fn og fe fyrir.

F. Berðu saman bandbreidd emitter-fylgju magnarans og bandbreidd $C_{\rm e}$ magnarans með sama vinnupunkt í dæmi 10.7.

Hvers vegna er fe miklu hærri?

Hvers vegna er fn miklu lægri?

- A. Reiknaðu emitter-strauminn I_e og spennumögnun í CE-inngangsmagnaranum einum sér án álags á útganginn.
- B. Reiknaðu inn- og útgangs-impedans fyrir CE-inngangsmagnarann.
- C. Reiknaðu emitter-strauminn I_e og spennumögnun í CCútgangsmagnaranum einum sér án álags á útganginn.
- D. Reiknaðu inn- og útgangs-impedans fyrir CC-útgangsmagnarann einan sér án álags.
- E. Reiknaðu út hve mörg V útgangsspenna rásarinnar er ef inngangsspennan er 10 mV. Notaðu thevinin-líkönin fyrir inngangs- og útgangsmagnara til þess að halda utan um útreikningana.
- F. Reiknaðu út hve mörg dB gain rásarinnar eru.
- G. Hve margar gráður er fasamunurinn á milli inn- og útgangsrásarinnar við 1 kHz.
- H. Hver er aðalmunurinn á rásinni hér og rásinni í dæmi 10.10.