CHAPTER 4

TREES

§1 Preliminaries

1. Terminology

Lineal Tree

Pedigree Tree (binary tree)

- **Definition** A tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of
- (1) a distinguished node r, called the root;
- (2) and zero or more nonempty (sub)trees T_1 , ..., T_k , each of whose roots are connected by a directed edge from r.

Note:

- > Subtrees must not connect together. Therefore every node in the tree is the root of some subtree.
- \triangleright There are N-1 edges in a tree with N nodes.
- > Normally the root is drawn at the top.

- degree of a node ::= number of subtrees of the node. For example, degree(A) = 3, degree(F) = 0.
- degree of a tree ::= $\max_{\text{node} \in \text{tree}} \{ \text{degree(node)} \}$ For example, degree of this tree = 3.

- parent ::= a node that has subtrees.
- children ::= the roots of the subtrees of a parent.
- siblings ::= children of the same parent.
- leaf (terminal node) ::= a node with degree 0 (no children).

§1 Preliminaries

- path from n_1 to $n_k := a$ (unique) sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is the parent of n_{i+1} for $1 \le i < k$.
- length of path ::= number of edges on the path.
- **depth of** $n_i ::=$ length of the unique path from the root to n_i . Depth(root) = 0.

- height of n_i ::= length of the longest path from n_i to a leaf. Height(leaf) = 0, and height(D) = 2.
- height (depth) of a tree ::= height(root) = depth(deepest leaf).
- ancestors of a node ::= all the nodes along the path from the node up to the root.
- descendants of a node ::= all the nodes in its subtrees.

2. Implementation

A List Representation

So the size of each node depends on the number of branches.
Hmmm... That's not good.

FirstChild-NextSibling Representation

Note: The representation is not unique since the children in a tree can be of any order.

§2 Binary Trees

【 Definition 】 A binary tree is a tree in which no node can have more than two children.

Rotate the FirstChild-NextSibling tree clockwise by 45°.

Expression Trees (syntax trees)

[Example] Given an infix expression:

Constructing and Expression Pree (from postfix expression)

(from postfix expression)

[Example] (a+b)*(c*(d+e))=ab+cde+**

§2 Binary Trees

Tree Traversals — visit each node exactly once

Preorder Traversal

```
void preorder ( tree_ptr tree )
{  if ( tree ) {
     visit ( tree );
     for (each child C of tree )
         preorder ( C );
     }
}
```

Postorder Traversal

```
void postorder ( tree_ptr tree )
{ if ( tree ) {
    for (each child C of tree )
        postorder ( C );
    visit ( tree );
    }
}
```

Levelorder Traversal

```
void levelorder ( tree_ptr tree )
{  enqueue ( tree );
  while (queue is not empty) {
    visit ( T = dequeue ( ) );
    for (each child C of T )
        enqueue ( C );
    }
}
```


Inorder Traversal

```
void inorder ( tree_ptr tree )
{ if ( tree ) {
    inorder ( tree->Left );
    visit ( tree->Element );
    inorder ( tree->Right );
    }
}
```

[Example] Given an infix expression:

```
A + B * C/D
```



```
visit (tree->Element);

tree = tree->Right; }

}

Then inorder traversal \Rightarrow A + B * C/D

postorder traversal \Rightarrow A B C * D/+

preorder traversal \Rightarrow +A/*BCD
```

void iter_inorder (tree_ptr tree)

for (; tree; tree = tree->Left)

tree = Top (S); Pop(S);

Push (tree, S);

if (! tree) break;

{ Stack S = CreateStack(MAX_SIZE);

Iterative Program

for (;;) {

Example Directory listing in a hierarchical file system.

Listing format: files that are of depth d_i will have their names indented by d_i tabs.

```
/usr
  mark
      book
            Ch1.c
            Ch2.c
            Ch3.c
       course
            cop3530
                 fall96
                        syl.r
                 spr97
                        syl.r
                 sum97
                        syl.r
      hw.c
  alex
      hw.c
  bill
      work
       course
            cop3212
                 fall96
                        grades
                        p1.r
                        p2.r
                 fall97
                        p2.r
                        p1.r
                        grades
```

```
static void ListDir ( DirOrFile D, int Depth ) {
    if ( D is a legitimate entry ) {
        PrintName (D, Depth );
        if ( D is a directory )
            for (each child C of D )
            ListDir ( C, Depth + 1 );
    }
}

T(N) = O(N)
```

```
Note: Depth is an internal variable and must not be seen by the user of this routine. One solution is to define another interface function as the following:

void ListDirectory ( DirOrFile D )

{ ListDir( D, 0 ); }
```

Example Calculating the size of a directory.


```
static int SizeDir ( DirOrFile D )
{
  int TotalSize;
  TotalSize = 0;
  if ( D is a directory )
    for (each child C of D )
        TotalSize += SizeDir(C);
  } /* end if D is legal */
  return TotalSize;
  }
  T(N) = O(N)
```

***** Threaded Binary Trees

Because I enjoy giving 'vidding.

They are

A. J. Perlis and C. Thornton.

I wish 1 framy done it

Here comes

Then who should take the credit?

- Rule 1: If Tree->Left is null, replace it with a pointer to the inorder predecessor of Tree.
- Rule 2: If Tree->Right is null, replace it with a pointer to the inorder successor of Tree.
- Rule 3: There must not be any loose threads. Therefore a threaded binary tree must have a head node of which the left child points to the first node.

Example Given the syntax tree of an expression (infix)

Note: In a tree, the order of children does not matter. But in a binary tree, left child and right child are different.

are two different binary trees.

Skewed Binary Trees

Skewed to the left Skewed to the right

Complete Binary Tree

All the leaf nodes are on two adjacent levels

- Properties of Binary Trees
- ☑ The maximum number of nodes on level i is 2^{i-1} , i 1. The maximum number of nodes in a binary tree of depth k is $2^{k}-1$, k 1.
- \square For any nonempty binary tree, $n_0 = n_2 + 1$ where n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2.
- **Proof:** Let n_1 be the number of nodes of degree 1, and n the total number of nodes. Then

$$n = n_0 + n_1 + n_2$$
 1

Let B be the number of branches. Then n=B+1. 2 Since all branches come out of nodes of degree 1 or 2, we have $B=n_1+2$ n_2 . 3

$$\Rightarrow n_0 = n_2 + 1$$

Path of Equal Weight

(2 points)

Due: Tuesday, January 7th, 2020 at 23:59pm

The problem can be found and submitted at

https://pintia.cn/