Operaciones básicas en Numpy y Sympy

Sea A, B arreglos de Numpy y sea J, K matrices de Sympy. m y n representan números enteros positivos. a, b, c, d representan enteros que están dentro de los límites de tamaño de las matrices.

Referencia		Numpy		Sympy	
Operaciones matriciales	Forma básica	np.array()	El argumento debe ser una lista de listas	sp.Matrix()	El argumento debe ser una lista de listas
	Suma	A+B	Las matrices deben tener el mismo tamaño	J+K	Las matrices deben tener el mismo tamaño
	Multiplicación	A@B	Debe haber consistencia de tamaños	J*K	Debe haber consistencia de tamaños
	Determinante	np.linalg.det(A)	La matriz debe ser cuadrada	K.det()	La matriz debe ser cuadrada
	Inversa	np.linalg.inv(A)	El determinante no puede ser cero y la matriz debe ser cuadrada	K.inv()	También funciona A**-1. El determinante no puede ser cero y la matriz debe ser cuadrada
	Transpuesta	A.T		K.T	
	Multiplicación por sí misma	A@A	La matriz debe ser cuadrada	K**2	La matriz debe ser cuadrada
	Multiplicación por sí misma varias veces	A@A@A	La matriz debe ser cuadrada	K**3	La matriz debe ser cuadrada
	Tamaño	A.shape		K.shape	
Matrices especiales	Matriz de unos	np.ones((m, n))	Para que sea matriz debe tener dos argumentos y dentro de paréntesis	sp.ones(m, n)	Recibe uno o dos argumentos
	Matriz de ceros	np.zeros((m, n))	Para que sea matriz debe tener dos argumentos y dentro de paréntesis	sp.zeros(m, n)	Recibe uno o dos argumentos
	Matriz identidad	np.eye(m, n)	Recibe uno o dos argumentos	sp.eye(m, n)	Recibe uno o dos argumentos
Formas de llamado	Elemento	A[a, b]		K[a, b]	También se puede usar B[a] , pero su llamado es estirando la matriz fila por fila.
	Fila	A[a, :]	También se puede usar A[a], pero puede ser confusa.	K[a, :]	Se puede usar también K.row(a), pero no es tan general.
	Columna	A[:, b]		K[:, b]	Se puede usar también K.col(b), pero no es tan general.
	Partes de la matriz	A[a:b, c:d]		K[a:b, c:d]	

Operaciones no matriciales con numpy				
A*B	Hace una multiplicación fila a fila y columna a columna que no cumple con la reglas matriciales.			
A**2	Eleva al cuadrado cada elemento del arreglo			
A+10	Le suma el escalar a cada elemento del arreglo			
1/A	Invierte cada elemento del arreglo			

Métodos Numéricos Aplicados a la Ingeniería Civil Docente:. Juan Nicolás Ramírez Giraldo