CC1004 - Modelos de Computação Pratica 1 - Resolução de alguns exercícios da Folha 1

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

22-26 de Fevereiro 2021

Problema 1a)

Linguagem das palavras de $\{a,b\}^*$ que terminam em b mas não em bb

 s_0 : palavras que não terminam em b (i.e., ε ou que terminam em a)

 s_1 : palavras que terminam em b mas não em bb

s₂: palavras que terminam em bb

Problema 1b)

Linguagem das palavras de $\{a,b\}^*$ cujo comprimento é zero ou maior do que dois.

 s_0 : palavras de comprimento 0 (ou seja, apenas ε)

 s_1 : palavras de comprimento 1 (ou seja, apenas a e b)

 s_2 : palavras de comprimento 2 (ou seja, apenas , aa, ab, ba e bb)

 s_3 : palavras de comprimento 3 ou superior

Problema 1c)

Linguagem das palavras de $\{a,b\}^*$ cujo comprimento é inferior a quatro.

 s_0 : palavras de comprimento 0 (ou seja, apenas ε)

 s_1 : palavras de comprimento 1 (ou seja, apenas a e b)

 s_2 : palavras de comprimento 2 (ou seja, apenas, aa, ab, ba e bb)

 s_3 : palavras de comprimento 3

s₄: palavras de comprimento 4 ou superior

Problema 1e)

Linguagem das palavras de $\{a,b\}^*$ que não terminam em aba

 s_0 : ε ou termina em b mas não em ab

 s_1 : termina em a mas não em aba

s₂: terminam em ab

s₃: termina em *aba*

Problema Adicional

Que linguagem reconhece?

O conjunto palavas de alfabeto $\{a,b\}$ cujo **comprimento é múltiplo de 3**. A palavra mais pequena que aceita é ε , com comprimento zero.

Problema Adicional

Que linguagem reconhece?

O conjunto palavas de alfabeto $\{a,b\}$ cujo **comprimento é múltiplo de 3**. A palavra mais pequena que aceita é ε , com comprimento zero.

Problema 1h)

Linguagem das palavras de $\{a,b\}^*$ cujo número de b's é múltiplo de 4

- s_0 : número de b's é múltiplo de 4 (i.e., é 4k, com $k \in \mathbb{N}$)
- s_1 : número de b's excede em 1 unidade um múltiplo de 4 (é 1+4k, com $k\in\mathbb{N}$)
- s_2 : número de b's excede em 2 unidades um múltiplo de 4 (é 2+4k, com $k\in\mathbb{N}$)
- s_3 : número de b's excede em 3 unidades um múltiplo de 4 (é 3+4k, com $k\in\mathbb{N}$)

Problema 1i)

Linguagem das palavras de $\{a,b\}^*$ cujo número de b's consecutivos não excede três e não tem a's consecutivos.


```
s_0: \{\varepsilon\}
s_1: \{x \mid x \text{ termina em a e não tem aa nem bbbb como subpalavra}\}
s_2: \{x \mid x \text{ tem aa ou bbbb como subpalavra}\}
s_3: \{x \mid x \text{ termina em b mas não em bb e não tem aa nem bbbb como subpalavra}\}
s_4: \{x \mid x \text{ termina em bb mas não em bbb e não tem aa nem bbbb como subpalavra}\}
s_5: \{x \mid x \text{ termina em bbb e não tem aa nem bbbb como subpalavra}\}
```

- 3a) Quaisquer que sejam L e M, se $\varepsilon \in M$ então $L \subseteq LM$. Verdade. Seja $x \in L$. Como $\varepsilon \in M$ então, por definição de LM, tem-se $x\varepsilon \in LM$. Como $x\varepsilon = x$, concluimos que $x \in LM$. Logo, $L \subseteq LM$.
- 3b) Quaisquer que sejam L e M, se $\emptyset \neq L \subseteq LM$ então $\varepsilon \in M$. **Verdade.**

Sejam $x \in L$ e $y \in M$, quaisquer. Notar que y existe porque $M \neq \emptyset$. De facto, sendo L não vazia e $L \subseteq LM$, se M fosse vazia, teriamos uma contradição, pois $LM = L\emptyset = \emptyset \not\supseteq L$.

Como assumimos $y \neq \varepsilon$, a palavra xy tem mais símbolos do que x, dado que |xy| = |x| + |y| > |x|.

Isso implica que a palavra de L que tem comprimento mínimo não estaria em LM, contrariando $L \subseteq LM$. O absurdo resultou de se ter suposto que $\varepsilon \notin M$. Portanto, $\varepsilon \in M$.

Em \mathbb{R} , temos, $|xy| = |x \times y| = |x| \times |y|$, para o valor absoluto. Em CC2006, |x| designa o número de símbolos em x exy a concatenação de palavras. Portanto, |xy| = |x| + |y|

- 3a) Quaisquer que sejam L e M, se $\varepsilon \in M$ então $L \subseteq LM$. Verdade. Seja $x \in L$. Como $\varepsilon \in M$ então, por definição de LM, tem-se $x\varepsilon \in LM$. Como $x\varepsilon = x$, concluimos que $x \in LM$. Logo, $L \subseteq LM$.
- 3b) Quaisquer que sejam L e M, se $\emptyset \neq L \subseteq LM$ então $\varepsilon \in M$. Verdade. Suponhamos, por **redução ao absurdo**, que $\emptyset \neq L \subseteq LM$ e $\varepsilon \notin M$. Sejam $x \in L$ e $y \in M$, quaisquer. Notar que y existe porque $M \neq \emptyset$. De facto, sendo L não vazia e $L \subseteq LM$, se M fosse vazia, teriamos uma contradição, pois $LM = L\emptyset = \emptyset \not\supset L$.

Como assumimos $y \neq \varepsilon$, a palavra xy tem mais símbolos do que x, dado que |xy| = |x| + |y| > |x|.

Isso implica que a palavra de L que tem comprimento mínimo não estaria em LM, contrariando $L \subseteq LM$. O absurdo resultou de se ter suposto que $\varepsilon \notin M$. Portanto, $\varepsilon \in M$.

Em \mathbb{R} , temos, $|xy|=|x\times y|=|x|\times |y|$, para o valor absoluto. Em CC2006, |x| designa o número de símbolos em x exp a concatenação de palavras. Portanto, |xy|=|x|+|y|

- 3a) Quaisquer que sejam L e M, se $\varepsilon \in M$ então $L \subseteq LM$. Verdade. Seja $x \in L$. Como $\varepsilon \in M$ então, por definição de LM, tem-se $x\varepsilon \in LM$. Como $x\varepsilon = x$, concluimos que $x \in LM$. Logo, $L \subseteq LM$.
- 3b) Quaisquer que sejam L e M, se $\emptyset \neq L \subseteq LM$ então $\varepsilon \in M$. Verdade. Suponhamos, por **redução ao absurdo**, que $\emptyset \neq L \subseteq LM$ e $\varepsilon \notin M$. Sejam $x \in L$ e $y \in M$, quaisquer. Notar que y existe porque $M \neq \emptyset$. De facto, sendo L não vazia e $L \subseteq LM$, se M fosse vazia, teriamos uma contradição, pois $LM = L\emptyset = \emptyset \not\supseteq L$.

Como assumimos $y \neq \varepsilon$, a palavra xy tem mais símbolos do que x, dado que |xy| = |x| + |y| > |x|.

Isso implica que a palavra de L que tem comprimento mínimo não estaria em LM, contrariando $L \subseteq LM$. O absurdo resultou de se ter suposto que $\varepsilon \notin M$. Portanto, $\varepsilon \in M$.

Em \mathbb{R} , temos, $|xy| = |x \times y| = |x| \times |y|$, para o valor absoluto. Em CC2006, |x| designa o número de símbolos em x e xy a concatenação de palavras. Portanto, |xy| = |x| + |y|

- 3a) Quaisquer que sejam L e M, se $\varepsilon \in M$ então $L \subseteq LM$. Verdade. Seja $x \in L$. Como $\varepsilon \in M$ então, por definição de LM, tem-se $x\varepsilon \in LM$. Como $x\varepsilon = x$, concluimos que $x \in LM$. Logo, $L \subseteq LM$.
- 3b) Quaisquer que sejam L e M, se ∅ ≠ L ⊆ LM então ε ∈ M. Verdade.
 Suponhamos, por redução ao absurdo, que ∅ ≠ L ⊆ LM e ε ∉ M.
 Sejam x ∈ L e y ∈ M, quaisquer. Notar que y existe porque M ≠ ∅. De facto, sendo L não vazia e L ⊂ LM, se M fosse vazia, teriamos uma

contradição, pois $LM = L\emptyset = \emptyset \not\supseteq L$. Como assumimos $y \neq \varepsilon$, a palavra xy tem mais símbolos do que x, dado que |xy| = |x| + |y| > |x|.

Isso implica que a palavra de L que tem comprimento mínimo não estaria em LM, contrariando $L \subseteq LM$. O absurdo resultou de se ter suposto que $\varepsilon \notin M$. Portanto, $\varepsilon \in M$.

Em \mathbb{R} , temos, $|xy| = |x \times y| = |x| \times |y|$, para o valor absoluto. Em CC2006, |x| designa o número de símbolos em x xy a concatenação de palavras. Portanto, |xy| = |x| + |y|

- 3a) Quaisquer que sejam L e M, se $\varepsilon \in M$ então $L \subseteq LM$. Verdade. Seja $x \in L$. Como $\varepsilon \in M$ então, por definição de LM, tem-se $x\varepsilon \in LM$. Como $x\varepsilon = x$, concluimos que $x \in LM$. Logo, $L \subseteq LM$.
- 3b) Quaisquer que sejam L e M, se $\emptyset \neq L \subseteq LM$ então $\varepsilon \in M$. Verdade. Suponhamos, por redução ao absurdo, que $\emptyset \neq L \subseteq LM$ e $\varepsilon \notin M$.

Sejam $x \in L$ e $y \in M$, quaisquer. Notar que y existe porque $M \neq \emptyset$. De facto, sendo L não vazia e $L \subseteq LM$, se M fosse vazia, teriamos uma contradição, pois $LM = L\emptyset = \emptyset \not\supseteq L$.

Como assumimos $y \neq \varepsilon$, a palavra xy tem mais símbolos do que x, dado que |xy| = |x| + |y| > |x|.

Isso implica que a palavra de L que tem comprimento mínimo não estaria em LM, contrariando $L \subseteq LM$. O absurdo resultou de se ter suposto que $\varepsilon \notin M$. Portanto, $\varepsilon \in M$.

Em \mathbb{R} , temos, $|xy| = |x \times y| = |x| \times |y|$, para o valor absoluto. Em CC2006, |x| designa o número de símbolos em x e xy a concatenação de palavras. Portanto, |xy| = |x| + |y|

• 3c) Qualquer que seja L, se $\varepsilon \notin L$ então $\varepsilon \notin L^*$.

Falso. Por definição de fecho de Kleene, ε pertence sempre a L^* .

- 3d) Quaisquer que sejam L e M, se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$. Falso. Basta que $L = \emptyset$ ou $M = \emptyset$. Por exemplo, se $L = \emptyset$ e $M = \Sigma^*$, tem-se $LM = \emptyset$.
- 3e) Quaisquer que sejam L e M, se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$.

 Verdade. Porque, se $L = \emptyset$ ou $M = \emptyset$, então $LM = \emptyset$.
- 3f) Quaisquer que sejam L e M, se L∪ M = Ø então L = Ø e M = Ø.
 Verdade. Todos os elementos de L e todos os elementos de M pertencem a L∪ M. Logo, se L∪ M = Ø, nenhum dos dois conjuntos tem elementos.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$. Falso. Basta $L = \{\varepsilon\}$ e $M = \{\}$. Ou, $M = \{\varepsilon\}$ e $L = \{\}$.

- 3c) Qualquer que seja L, se ε ∉ L então ε ∉ L*.
 Falso. Por definição de fecho de Kleene, ε pertence sempre a L*.
- 3d) Quaisquer que sejam L e M, se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$. Falso. Basta que $L = \emptyset$ ou $M = \emptyset$. Por exemplo, se $L = \emptyset$ e $M = \Sigma^*$, tem-se $LM = \emptyset$.
- 3e) Quaisquer que sejam L e M, se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$.

 Verdade. Porque, se $L = \emptyset$ ou $M = \emptyset$, então $LM = \emptyset$.
- 3f) Quaisquer que sejam L e M, se L∪ M = Ø então L = Ø e M = Ø.
 Verdade. Todos os elementos de L e todos os elementos de M pertencem a L∪ M. Logo, se L∪ M = Ø, nenhum dos dois conjuntos tem elementos.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$. Falso. Basta $L = \{\varepsilon\}$ e $M = \{\}$. Ou, $M = \{\varepsilon\}$ e $L = \{\}$.

- 3c) Qualquer que seja L, se ε ∉ L então ε ∉ L*.
 Falso. Por definição de fecho de Kleene, ε pertence sempre a L*.
- 3d) Quaisquer que sejam $L \in M$, se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$.

 Falso. Basta que $L = \emptyset$ ou $M = \emptyset$.

 Por exemplo, se $L = \emptyset$ e $M = \Sigma^*$, tem-se $LM = \emptyset$.
- 3e) Quaisquer que sejam L e M, se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$.

 Verdade. Porque, se $L = \emptyset$ ou $M = \emptyset$, então $LM = \emptyset$.
- 3f) Quaisquer que sejam L e M, se L∪ M = Ø então L = Ø e M = Ø.
 Verdade. Todos os elementos de L e todos os elementos de M pertencem a L∪ M. Logo, se L∪ M = Ø, nenhum dos dois conjuntos tem elementos.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$. Falso. Basta $L = \{\varepsilon\}$ e $M = \{\}$. Ou, $M = \{\varepsilon\}$ e $L = \{\}$.

- 3c) Qualquer que seja L, se ε ∉ L então ε ∉ L*.
 Falso. Por definição de fecho de Kleene, ε pertence sempre a L*.
- 3d) Quaisquer que sejam L e M, se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$. **Falso.** Basta que $L = \emptyset$ ou $M = \emptyset$. Por exemplo, se $L = \emptyset$ e $M = \Sigma^*$, tem-se $LM = \emptyset$.
- 3e) Quaisquer que sejam L e M, se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$.

 Verdade. Porque, se $L = \emptyset$ ou $M = \emptyset$, então $LM = \emptyset$.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \emptyset$ então $L = \emptyset$ e $M = \emptyset$.

 Verdade. Todos os elementos de L e todos os elementos de M pertencem a $L \cup M$. Logo, se $L \cup M = \emptyset$, nenhum dos dois conjuntos tem elementos.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$. Falso. Basta $L = \{\varepsilon\}$ e $M = \{\}$. Ou, $M = \{\varepsilon\}$ e $L = \{\}$.

3c) Qualquer que seja L, se ε ∉ L então ε ∉ L*.
 Falso. Por definição de fecho de Kleene, ε pertence sempre a L*.

- 3d) Quaisquer que sejam L e M, se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$.

 Falso. Basta que $L = \emptyset$ ou $M = \emptyset$.

 Por exemplo, se $L = \emptyset$ e $M = \Sigma^*$, tem-se $LM = \emptyset$.
- 3e) Quaisquer que sejam L e M, se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$.

 Verdade. Porque, se $L = \emptyset$ ou $M = \emptyset$, então $LM = \emptyset$.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \emptyset$ então $L = \emptyset$ e $M = \emptyset$.

 Verdade. Todos os elementos de L e todos os elementos de M pertencem a $L \cup M$. Logo, se $L \cup M = \emptyset$, nenhum dos dois conjuntos tem elementos.
- 3f) Quaisquer que sejam L e M, se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$. Falso. Basta $L = \{\varepsilon\}$ e $M = \{\}$. Ou, $M = \{\varepsilon\}$ e $L = \{\}$.