ALGORITMOS EM GRAFOS

DIGRAFOS
GRAFOS DIRIGIDOS ACÍCLICOS

Prof. Alexei Machado

PUC MINAS

CIÊNCIA DA COMPUTAÇÃO

Digrafos¹

□ Digrafo ou grafo direcionado: é um grafo no qual as arestas são pares ordenados de vértices ,

 □ As arestas em um digrafo são comumente chamadas de arcos

^{1 - &}quot;A palavra digrafo é uma adaptação do termo digraph em inglês, que resultou da contração de directed e graph. Já dígrafo (com acento) é outra coisa muito diferente!" — Feofiloff, Paulo (2016) em http://www.ime.usp.br/~pf/algoritmos_para_grafos/aulas/digraphs.html

Digrafos

- □ Vértice inicial e vértice final de um arco
- □ Dois arcos são antiparalelos ou simétricos se o vértice inicial de um é o vértice final de outro e vice versa

Digrafos

- □ Grau de entrada de um vértice: d⁻(v)
- □ Grau de saída de um vértice: d⁺(v)

$$\sum_{i=1}^{n} d^{+}(v_{i}) = \sum_{i=1}^{n} d^{-}(v_{i})$$

Digrafos e grafos correspondentes

Isomorfismo de digrafos

 Isomorfismo de digrafos: a direção das arestas deve ser a mesma

Isomorfismo de digrafos

 Isomorfismo de digrafos: a direção das arestas deve ser a mesma

□ G1 e G2 não são isomorfos

Digrafos simétricos

Um digrafo é simétrico se para toda aresta (v_a,v_b)
 existe uma aresta (v_b,v_a)

Digrafos simétricos

Um digrafo é simétrico se para toda aresta (v_a,v_b)
 existe uma aresta (v_b,v_a)

□ == grafo!

Digrafos completos

Digrafo balanceado

□ Se, para todo vértice v de um digrafo, temos

$$d^+(\mathbf{v}) = d^-(\mathbf{v})$$

o digrafo é dito balanceado.

Caminhos e circuitos em digrafos

- □ Caminho dirigido: segue a orientação das arestas
 - Semi-caminho: é um caminho no grafo correspondente mas não é no dígrafo
- □ Caminho simples dirigido e Semi-caminho simples
- □ Circuito dirigido e Semi-circuito

Conectividade

- Digrafo fortemente conexo: existe um caminho dirigido entre quaisquer pares de vértices
- Digrafo fracamente conexo: digrafo não é fortemente conexo, mas seu grafo correspondente é conexo
- □ Se falarmos que um digrafo é conexo, simplesmente significa que seu grafo correspondente é conexo

Eulerianos

- Digrafos Eulerianos: possuem um caminho fechado dirigido que passa por todas as arestas exatamente uma vez
- □ TEOREMA: Um dígrafo é euleriano se, e somente se, ele for fortemente conexo e balanceado

$$d^+(v)=d^-(v) \forall v \in V$$

Eulerianos

Digrafos e representação

■ Matriz de adjacência

	v 1	v2	v3	v 4	v5
v 1	0	1	1	1	0
v2	0	1	0	0	0
v3	0	0	0	1	1
v 4	1	0	0	0	0
v 5	0	0	1	1	0

Digrafos e representação

□ Listas de adjacência

Grafos dirigidos acíclicos

Grafos dirigidos acíclicos

- São digrafos que não possuem ciclos, isto é, para qualquer vértice v não existe um circuito iniciando-se e terminando em v
- Conhecidos como DAG (directed acyclic graph)

Busca em profundidade e ciclos

□ Como usar a busca em profundidade para descobrir

se um digrafo é um DAG?

Busca em profundidade e ciclos

- □ Classificação de arestas
 - □ Arestas de árvore
 - Arestas de cruzamento ou avanço
 - Arestas de retorno

□ Arestas de árvore: as que levam a vértices ainda não

visitados

□ Arestas de árvore: as que levam a vértices ainda não

visitados

□ Arestas de árvore: as que levam a vértices ainda não

visitados

□ Iniciando a busca em A

■ Chegada em um vértice branco:

aresta de árvore

Arestas de árvore: as que levam a vértices ainda não

visitados

□ Iniciando a busca em A

Chegada em um vértice branco:

aresta de árvore

□ Arestas de retorno: as que conectam um vértice u a

um predecessor seu, v

□ Arestas de retorno: as que conectam um vértice u a

um predecessor seu, v

□ Iniciando a busca em A

Chegando em um vértice cinza:

aresta de retorno

Arestas de cruzamento ou avanço: indicam o avanço
 em uma árvore existente ou o

cruzamento de uma árvore a outra

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

□ Arestas de cruzamento ou avanço: indicam o avanço

em uma árvore existente ou o cruzamento de uma árvore a outra

Iniciando a busca em A: chegando a um vértice preto:

Avanço, se u vem antes de v

DAG e arestas de retorno

Um digrafo é DAG se e somente se na busca em profundidade não for encontrada nenhuma aresta de retorno.