Théorie de l'information, 4TCY806U: DSI du 20 février 2024

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité Informatique

Responsable: Elena Berardini

Durée : 1h30. Sans document. Les exercices sont indépendants. Toutes les réponses doivent être justifiées.

- EXERCICE 1. On tire à pile ou face avec une pièce équilibrée.
 - a) Quelle est l'information mutuelle entre chacune des deux faces de la pièce?
 - b) Supposons que l'on effectue 4 lancers à la suite
 - (i) On appelle X_{12} le nombre de «face» obtenus au cours des lancers 1 et 2 et X_{23} le nombre de «face» obtenus au cours des lancers 2 et 3. Calculer l'information mutuelle $I(X_{12}, X_{23})$.
 - (ii) On appelle X_{123} le nombre de «face» obtenus au cours des trois premiers lancers et X_{234} le nombre de «face» obtenus au cours des trois derniers lancers. Calculer $I(X_{123}, X_{234})$.
- EXERCICE 2. On forme un quadruplet aléatoire $X=(X_1,X_2,X_3,X_4)$ de la manière suivante : on part du quadruplet (1,2,3,4). Puis on tire deux variables Y,Z indépendantes et uniformes dans $\{1,2,3,4\}$. On retire ensuite l'entier Y du quadruplet (1,2,3,4) pour l'insérer en position Z. Par exemple pour Y=2 et Z=3 on obtient X=(1,3,2,4). Pour Y=4 et Z=1 on obtient X=(4,1,2,3).
 - a) Calculer H(X).
 - b) Calculer $H(X_1)$.
 - c) Calculer $H(X_2|X_1)$.
- EXERCICE 3. Soit $X = \sum_{i=1}^{n} X_i$ où les variables X_i sont indépendantes et de même loi de Bernoulli $B(\alpha)$ de paramètre $P(X_i = 1) = \alpha$. En d'autres termes, X suit une loi binomiale de paramètres n et α .
 - a) Rappeler ce que vaut la divergence de Kullback $D(B(\beta) \parallel B(\alpha))$ où $B(\alpha)$ et $B(\beta)$ sont deux lois de Bernoulli de paramètres α et β respectivement.

b) En supposant que αn et βn sont des entiers, montrer que

$$P(X = \beta n) \leqslant 2^{-nD(B(\beta)||B(\alpha))}.$$

- EXERCICE 4. Soit X une variable aléatoire à valeurs dans $\mathcal{X} = \{A, B, C, D\}$ et soit p = (0.25, 0.125, 0.5, 0.125) la loi sur X.
 - a) Calculer H(p).
 - b) Soit q = (0.625, 0.125, 0.125, 0.125) une autre loi sur X. Calculer H(q) et $D(p \parallel q)$.
 - c) Soit $c: \mathcal{X} \to C$ l'encodage de X suivant :

$$c(A) = 000, c(B) = 001, c(C) = 01, c(D) = 1.$$

Donner les définitions de codage sans perte et uniquement décodable, puis déterminer si le code C est sans perte et/ou uniquement décodable.

- d) Calculer la distribution des longeurs du code C. Est-ce que C vérifie l'inégalité de Kraft?
- e) Calculer la longueur moyenne du code pour la loi p et pour la loi q. Enoncer le premier théorème de Shannon. Est-ce que le code C est optimal pour la loi p? Et pour la loi q?
- Exercice 5. Un joueur A jette deux dés équilibrés. On note X la somme des deux faces.
 - a) Décrire l'image \mathcal{X} de la variable aléatoire X et sa loi.
 - b) Construire un arbre binaire de Huffman pour X.
 - c) Un joueur B doit découvrir la valeur de X en posant à A des questions dont la réponse est «oui» ou «non». Une procédure est dite optimale si elle permet au joueur B de poser une suite de questions successives dont les réponses déterminent X, et telle que le nombre moyen de questions est minimum.
 - (i) Quel est le nombre moyen de questions pour une procédure optimale?
 - (ii) Quelle est la première question de la procédure optimale?