

					Pri	inted	l Pa	ge: 1	of 2	j
				Subject Code: KAS103						
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	Find the e	igen value of A^3 where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.		1
		the system of vectors $X_1 = (1, -1, 1), X_2 = (2, 1, 0, 2)$ are linearly dependent or linearly independent.	1), and	1
Q1(c)	If $y = A s$	$\sin nx + B\cos nx$, prove that $y_2 + n^2y = 0$.		2
Q1(d)	Find the a	symptotes parallel to y-axis of the curve $\frac{a^2}{x} + \frac{b^2}{y} = 1$		2
Q1(e)	If $x = rcc$	$ os\theta, y = rsin\theta, find \frac{\partial(r,\theta)}{\partial(x,y)}. $		3
		of 2% is made in measuring length and breadth then e area of the rectangle.	find the percentage	3
Q1(g)	Evaluate	$\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx.$		4
Q1(h)	Find the v	folume common to the cylinders $x^2 + y^2 = a^2$ and	$x^2 + z^2 = a^2.$	4
Q1(i)	Find p suc solenoidal	th that $\vec{A} = (px + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 1)$.	$-4\cos x^2y)k$ is	5
Q1(j)	State Gree	en's theorem for a plane region.		5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	Find the eig	gen values and corresponding eigen vectors of $A = \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2 & -3 \\ 1 & -6 \\ -2 & 0 \end{bmatrix}$.	1
Q2(b)	Verify Roll	e's theorem for the function $f(x) = \sqrt{4 - x^2}$ in $[-2, 2]$].	2
Q2(c)		st six terms of the expansions of the function $e^x \log(1 + e^x)$ neighborhood of the point $(0,0)$.	y) in a Taylor	3
Q2(d)	Change the same.	e order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence e	evaluate the	4
Q2(e)		field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$ Is th? If so, find its scalar potential.	is field	5

SECT	ION-C	Attempt AN	Y ONE following	Question		Marks (1X10=10)	CO
Q3(a)	Find for w	vhat values o	of λ and μ the sys	tem of lin	ear inequation	on: x + y + z = 6,	1
	x + 2y +	5z = 10,2	$x + 3y + \lambda z = \mu$	has(i) a u	nique solutio	n, (ii) no solution,	
	(iii) infini	te solution.	Also find the solu	ution for	$\lambda = 2$ and μ	= 8.	
Q3(b)	Find the r	ank of matri	x reducing it to no				1
			$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 6 \end{bmatrix}$	3 4 -1 3 -5 2 -3 8	2 2 2 6		

					Pri	inted	l Pa	ge: 2	2 of 2	,
				Subject Code: KAS103						į
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate y_n		2
	$(1-x^2)y = -(2n+1)xy = -n^2y = 0$ and calculate y	(0)	
	$(1 x y_{n+2} (2n 1)xy_{n+1} n y_n = 0 \text{ and calculate } y_n$	(0).	
Q4(b)	Verify mean value theorem for the function $f(x) = x(x - 1)$	$(x-2)$ in $[0, \frac{1}{2}]$.	2
	1) construction and the function of the second seco	-, [°, 2].	

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO			
	A rectangular box which is open at the top having capacity 32c.c.Find the dimension					
	of the box such that the least material is required for its constr	uctions.				
	If u, v and w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 \frac{\partial (u,v,w)}{\partial (x,y,z)}$.	$=0$, cubic in λ , find	3			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
		ouble integration the area enclosed by the pair of curves		4
	y=2-x	$x ext{ and } y^2 = 2(2-x).$		X
Q6(b)	Find C.G.	of the area in the positive quadrant of the curve $x^{\frac{2}{3}} + y$	$\frac{1}{2^{3}} = a^{\frac{2}{3}}$.	4

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Find the o	directional derivative of $f(x, y, z) = xyz$ at the point	P(1, -1, 2) in the	5
	direction	of the vector $(2i - 2j + 2k)$.		
Q7(b)	Verify Sto	oke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - (yz + 4)j$	(xz)k over the surface	5
	of cube <i>x</i>	y = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the XO	OY plane.	
		OA-AP1-2022.08i.3		