T3 a) A = 1x>(x1 - ivz xx81 + ivz B>(x1)	
	Since INS and IBS form outhonorm. Bosic for the
	1 5'7 al 18> = 5°7 -
	F17 C1 07 - F17 E0 M 1: - F07-
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
	aubiliary 14'>
	AIV> = 214> Where 2 is cifancetors
	A147 - 2147 =0
200	(A-2In)14)=0 det (A-7In)=0
	$\mathcal{C}_{+}[[i]_{z}^{2} - i]_{z}^{2}] = 0 (2 + 2) - (-i\sqrt{2})(i\sqrt{2}) = 0 (2 - 2)(2 + 1) = 0$
	$x^{2}-\lambda - (2)=0$ $x^{2}-x^{2}=0$ $x^{2}+2,-1$
b)	(A74 = (4) A147
	$[c^*, c^*] \begin{bmatrix} 1 & -i \sqrt{z} \end{bmatrix} [c] = [c^*, c^*] [c - i \sqrt{z} c] $ $[i \sqrt{z} c] = [c^*, c^*] [c] = [c^*, c^*] [c - i \sqrt{z} c] $ $[i \sqrt{z} c] = [c^*, c^*] [c] = [c^*, c^*] [c - i \sqrt{z} c] $
	[WE 0][E] . [WLC] (+ C(WCC))
	BUY SINCE - (414) = 1, Then Ect, CT [7] = 2Ct C = ZC2 = 1
	$= \frac{1}{2} \cdot \frac{1}{5c} + \frac{1}{32} = \frac{1}{2} = \langle A \rangle_{\psi}$
c)	Proj (A14>=2) + Proj (A14>=-1) = 1
	+2PIOL(A14)=2) -1Pra(A14)=1)= /2 2 -1 /2
	Pros(A14)=2) = 1/2
	Pros(A/4>=-1) = /2

