

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Aula 7 - Sistemas Lineares

Estudo do Conjunto Solução, Sistema de Cramer,

Métodos de Eliminação de Gauss e Gauss-Jordan

Professora: Isamara Alves

18/03/2021

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{rrrr} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix}$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3 \end{cases}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2 \end{cases}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2\\ x_3 = 2 \end{cases}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2\\ x_3 = 2 \end{cases}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2\\ x_3 = 2 \end{cases}$$

Conjunto Solução:
$$X = X' =$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2\\ x_3 = 2 \end{cases}$$

Conjunto Solução:
$$X = X' = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 3\\ x_2 = -2\\ x_3 = 2 \end{cases}$$

Conjunto Solução:
$$X = X' = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} \Rightarrow$$
 "solução única"

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{rrrr} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{rrrr} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times4} = \left[\begin{array}{rrrrr} 1 & 1 & 1 & 2 \\ 1 & -1 & -1 & -3 \\ 3 & 1 & 1 & 1 \end{array} \right]$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times4} = \left[\begin{array}{cccc} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{array} \right] \sim C'_{3\times4} = \left[\begin{array}{cccc} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{array} \right]$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times4} = \left[\begin{array}{cccc} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{array} \right] \sim C'_{3\times4} = \left[\begin{array}{cccc} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{array} \right]$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = -\frac{1}{2} \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

Conjunto Solução:
$$X = X' =$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C_{3\times 4}' = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

$$Conjunto Solução: X = X' = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -x_3 & | & \frac{1}{2} & -x_3 \\ 0 & = 0 & | & -\frac{1}{2} & -$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

Conjunto Solução:
$$X=X^{'}=\begin{bmatrix} \frac{1}{2}\\ \frac{5}{2}-x_3\\ x_3 \end{bmatrix}$$
 ; $x_3\in\mathbb{R}\Rightarrow$ "infinitas soluções"

Estudo do Conjunto Solução

EXEMPLO.2 Conjunto solução dos sistemas lineares

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 2 \\ x_1 & -x_2 & -x_3 & = -3 \\ 3x_1 & +x_2 & +x_3 & = 1 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = -\frac{1}{2} \\ x_2 & +x_3 & = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2} - x_3 \\ 0 & = 0 \end{array} \right.$$

CONJUNTO SOLUÇÃO:
$$X = X' = \begin{bmatrix} -\frac{1}{2} \\ \frac{5}{2} - x_3 \\ x_3 \end{bmatrix}$$
; $x_3 \in \mathbb{R} \Rightarrow$ "infinitas soluções" com a variável x_3

livre.

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & =1\\ 2x_1 & -x_2 & -x_3 & =2\\ 2x_1 & +x_2 & +x_3 & =3 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & =1\\ 2x_1 & -x_2 & -x_3 & =2\\ 2x_1 & +x_2 & +x_3 & =3 \end{array} \right.$$

$$C_{3\times 4} = \left[\begin{array}{cccc} 1 & 1 & 1 & | & 1\\ 2 & -1 & -1 & | & 2\\ 2 & 1 & 1 & | & 3 \end{array} \right]$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 1 \\ 2x_1 & -x_2 & -x_3 & = 2 \\ 2x_1 & +x_2 & +x_3 & = 3 \end{array} \right.$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 1 \\ 2x_1 & -x_2 & -x_3 & = 2 \\ 2x_1 & +x_2 & +x_3 & = 3 \end{array} \right.$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + x_2 + x_3 = 1\\ 2x_1 - x_2 - x_3 = 2\\ 2x_1 + x_2 + x_3 = 3 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1\\ 2 & -1 & -1 & | & 2\\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1\\ 0 & 1 & 1 & | & 0\\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 1 \end{cases}$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{lll} x_1 & +x_2 & +x_3 & = 1 \\ 2x_1 & -x_2 & -x_3 & = 2 \\ 2x_1 & +x_2 & +x_3 & = 3 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C_{3\times 4}' = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \left\{ \begin{array}{lll} x_1 & & = 1 \\ x_2 & +x_3 & = 0 \Rightarrow x_2 = -x_3 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 1 \\ 2x_1 & -x_2 & -x_3 & = 2 \\ 2x_1 & +x_2 & +x_3 & = 3 \end{array} \right.$$

$$C_{3\times 4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C_{3\times 4}' = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = 1 \\ x_2 & +x_3 & = 0 \Rightarrow x_2 = -x_3 \\ 0 & & = 1 \end{array} \right.$$

Estudo do Conjunto Solução

$$S: \begin{cases} x_1 + x_2 + x_3 = 1\\ 2x_1 - x_2 - x_3 = 2\\ 2x_1 + x_2 + x_3 = 3 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1\\ 2 & -1 & -1 & | & 2\\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1\\ 0 & 1 & 1 & | & 0\\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 1\\ x_2 + x_3 = 0 \Rightarrow x_2 = -x_3\\ 0 = 1 \end{cases}$$

Estudo do Conjunto Solução

EXEMPLO.3 Conjunto solução dos sistemas lineares

$$S: \left\{ \begin{array}{cccc} x_1 & +x_2 & +x_3 & = 1 \\ 2x_1 & -x_2 & -x_3 & = 2 \\ 2x_1 & +x_2 & +x_3 & = 3 \end{array} \right.$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \left\{ \begin{array}{cccc} x_1 & & = 1 \\ x_2 & +x_3 & = 0 \Rightarrow x_2 = -x_3 \\ 0 & & = 1 \end{array} \right.$$

CONJUNTO SOLUÇÃO:

Como existe uma inconsistência na 3^a equação de S',

Estudo do Conjunto Solução

EXEMPLO.3 Conjunto solução dos sistemas lineares

$$S: \begin{cases} x_1 + x_2 + x_3 = 1\\ 2x_1 - x_2 - x_3 = 2\\ 2x_1 + x_2 + x_3 = 3 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & 1\\ 2 & -1 & -1 & 2\\ 2 & 1 & 1 & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 1\\ x_2 + x_3 = 0 \Rightarrow x_2 = -x_3\\ 0 = 1 \end{cases}$$

CONJUNTO SOLUÇÃO:

Como existe uma inconsistência na 3^a equação de S', $\not\exists X'$

Estudo do Conjunto Solução

EXEMPLO.3 Conjunto solução dos sistemas lineares

$$S: \begin{cases} x_1 + x_2 + x_3 = 1\\ 2x_1 - x_2 - x_3 = 2\\ 2x_1 + x_2 + x_3 = 3 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1\\ 2 & -1 & -1 & | & 2\\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1\\ 0 & 1 & 1 & | & 0\\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 1\\ x_2 + x_3 = 0 \Rightarrow x_2 = -x_3\\ 0 = 1 \end{cases}$$

Conjunto Solução:

Como existe uma inconsistência na 3^a equação de S', $\not\exists X' \Rightarrow "S$ não tem solução"

Estudo do Conjunto Solução

EXEMPLO.3 Conjunto solução dos sistemas lineares

$$S: \begin{cases} x_1 + x_2 + x_3 = 1\\ 2x_1 - x_2 - x_3 = 2\\ 2x_1 + x_2 + x_3 = 3 \end{cases}$$

$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1\\ 2 & -1 & -1 & | & 2\\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 1\\ 0 & 1 & 1 & | & 0\\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

$$S': \begin{cases} x_1 = 1\\ x_2 + x_3 = 0 \Rightarrow x_2 = -x_3\\ 0 = 1 \end{cases}$$

Conjunto Solução:

Como existe uma inconsistência na 3^a equação de S', $\not\exists X' \Rightarrow "S$ não tem solução"

Sistemas de Equações Lineares

Estudo do Conjunto Solução

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema lineare Homogêneo
$$S: \left\{ \begin{array}{ccc} 4x_1 & -x_3 & = 0 & \longrightarrow 1^a \text{equação: } C \\ \end{array} \right.$$

Estudo do Conjunto Solução

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema lineare Homogêneo

Estudo do Conjunto Solução

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema lineare Homogêneo

$$S: \left\{ \begin{array}{ccccc} 4x_1 & -x_3 & = 0 & \longrightarrow 1^a \text{equação: } C \\ 10x_1 & -2x_4 & = 0 & \longrightarrow 2^a \text{equação: } H \\ 2x_2 & -2x_3 & -x_4 & = 0 & \longrightarrow 3^a \text{equação: } O \end{array} \right.$$

$$C_{3\times 5} = \left[\begin{array}{cccccc} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{array} \right]$$

Estudo do Conjunto Solução

EXEMPLO: Problema.2 Conjunto solução do sistema lineare Homogêneo

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \left\{ \begin{array}{ccc} x_1 & -\frac{1}{5}x_4 & =0 & \longrightarrow 1^a \text{equação: } C \\ S': \end{array} \right.$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \end{cases}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \end{cases}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$\begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \\ x_2 = \frac{13}{10}x_4 & \longrightarrow 2^a \text{equação: } H \end{cases}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \\ x_2 = \frac{13}{10}x_4 & \longrightarrow 2^a \text{equação: } H \\ x_3 = \frac{4}{5}x_4 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \\ x_2 = \frac{13}{10}x_4 & \longrightarrow 2^a \text{equação: } H \\ x_3 = \frac{4}{5}x_4 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$X = X' = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \\ x_2 = \frac{13}{10}x_4 & \longrightarrow 2^a \text{equação: } H \\ x_3 = \frac{4}{5}x_4 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$X = X' = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R} \Rightarrow \text{"infinitas soluções"}$$

EXEMPLO: PROBLEMA.2 Conjunto solução do sistema linear Homogêneo
$$S': \begin{cases} x_1 & -\frac{1}{5}x_4 = 0 & \longrightarrow 1^a \text{equação: } C \\ x_2 & -\frac{13}{10}x_4 = 0 & \longrightarrow 2^a \text{equação: } H \\ x_3 & -\frac{4}{5}x_4 = 0 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$\begin{cases} x_1 = \frac{1}{5}x_4 & \longrightarrow 1^a \text{equação: } C \\ x_2 = \frac{13}{10}x_4 & \longrightarrow 2^a \text{equação: } H \\ x_3 = \frac{4}{5}x_4 & \longrightarrow 3^a \text{equação: } O \end{cases}$$

$$X = X' = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R} \Rightarrow \text{"infinitas soluções" com a variável } x_4 \text{ livre.}$$

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \end{bmatrix}$$

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \end{bmatrix}$$

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \end{bmatrix}$$

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4\\ \frac{13}{10}x_4\\ \frac{4}{5}x_4\\ x_4 \end{bmatrix}$$

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4\\ \frac{13}{10}x_4\\ \frac{4}{5}x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

Conjunto Solução - Problema.2

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

OBSERVAÇÃO: Neste caso, temos que restringir os valores de x_4 a fim de atribuir valores inteiros às variáveis.

Conjunto Solução - Problema.2

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

OBSERVAÇÃO: Neste caso, temos que restringir os valores de x_4 a fim de atribuir valores inteiros às variáveis.

Então, obtemos o menor valor de x_4 fazendo o $m.m.c.\{5,10\}=10$

 \Rightarrow

Conjunto Solução - Problema.2

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

OBSERVAÇÃO: Neste caso, temos que restringir os valores de x_4 a fim de atribuir valores inteiros às variáveis.

Então, obtemos o menor valor de x_4 fazendo o $m.m.c.\{5,10\} = 10$

$$\Rightarrow 10. \begin{bmatrix} \frac{1}{5} \\ \frac{13}{10} \\ \frac{4}{5} \\ 1 \end{bmatrix} =$$

Conjunto Solução - Problema.2

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

OBSERVAÇÃO: Neste caso, temos que restringir os valores de x_4 a fim de atribuir valores inteiros às variáveis.

Então, obtemos o menor valor de x_4 fazendo o $m.m.c.\{5,10\} = 10$

$$\Rightarrow 10. \begin{bmatrix} \frac{1}{5} \\ \frac{13}{10} \\ \frac{4}{5} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 13 \\ 8 \\ 10 \end{bmatrix}$$

Conjunto Solução - Problema.2

Conjunto solução:
$$X = \begin{bmatrix} \frac{1}{5}x_4 \\ \frac{13}{10}x_4 \\ \frac{4}{5}x_4 \\ x_4 \end{bmatrix} \Rightarrow x_4 \in \mathbb{R}$$

OBSERVAÇÃO: Neste caso, temos que restringir os valores de x_4 a fim de atribuir valores inteiros às variáveis.

Então, obtemos o menor valor de x_4 fazendo o $m.m.c.\{5,10\} = 10$

$$\Rightarrow 10. \begin{bmatrix} \frac{1}{5} \\ \frac{13}{10} \\ \frac{4}{5} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 13 \\ 8 \\ 10 \end{bmatrix} \Rightarrow 2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$$

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares.

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL)

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução.

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja *S* um Sistema de Equações Lineares. Dizemos que *S* é CONSISTENTE (ou POSSÍVEL) se, e somente se, *S* **possui solução**. Caso contrário, dizemos que *S* é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Classificação do sistema 5 quanto ao conjunto solução:

SISTEMA CONSISTENTE

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Sistemas Consistentes e Inconsistentes

DEFINIÇÃO: Seja S um Sistema de Equações Lineares. Dizemos que S é CONSISTENTE (ou POSSÍVEL) se, e somente se, S possui solução. Caso contrário, dizemos que S é INCONSISTENTE (ou IMPOSSÍVEL).

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix}$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \quad \mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix}$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \quad \mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$$

$$\mathcal{N}(A) = 3 - 3 = 0$$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Estudo do Conjunto Solução

Sejam os sistemas lineares representados pelas suas matrizes ampliadas;

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \quad \mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$$

2. $C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2 \quad \text{e}$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \quad \mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$$

2. $C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2 \quad \text{e} \quad \mathcal{N}(A) = 3 - 2 = 1$$

Estudo do Conjunto Solução

Sejam os sistemas lineares representados pelas suas matrizes ampliadas;

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \quad \mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$$

2. $C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2 \quad \text{e} \quad \mathcal{N}(A) = 3 - 2 = 1 > 0$$

Estudo do Conjunto Solução

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 $\mathcal{P}(A) = \mathcal{P}(C) = 2 \quad \text{e} \quad \mathcal{N}(A) = 3 - 2 = 1 > 0$

3.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix}$$

Estudo do Conjunto Solução

Sejam os sistemas lineares representados pelas suas matrizes ampliadas;

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 $\mathcal{P}(A) = \mathcal{P}(C) = 2 \quad \text{e} \quad \mathcal{N}(A) = 3 - 2 = 1 > 0$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2$$
 e $\mathcal{N}(A) = 3 - 2 = 1 > 0$

3.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

Estudo do Conjunto Solução

Sejam os sistemas lineares representados pelas suas matrizes ampliadas;

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2$$
 e $\mathcal{N}(A) = 3 - 2 = 1 > 0$

3.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \quad \mathcal{P}(A) = 2 \neq \mathcal{P}(C) = 3$$

Estudo do Conjunto Solução

Sejam os sistemas lineares representados pelas suas matrizes ampliadas;

1.
$$C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 $\mathcal{P}(A) = \mathcal{P}(C) = 3 \text{ e}$ $\mathcal{N}(A) = 3 - 3 = 0$

2.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & -1 & | & -3 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 1 & | & \frac{5}{2} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 2$$
 e $\mathcal{N}(A) = 3 - 2 = 1 > 0$

3.
$$C_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 3 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \quad \mathcal{P}(A) = 2 \neq \mathcal{P}(C) = 3$$

Estudo do Conjunto Solução

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix}$$

Estudo do Conjunto Solução

$$C_{\mathbf{3}\times\mathbf{5}} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{\mathbf{3}\times\mathbf{4}} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

Estudo do Conjunto Solução

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3$$

Estudo do Conjunto Solução

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0$$

Estudo do Conjunto Solução

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0$$

Estudo do Conjunto Solução

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0$$

Estudo do Conjunto Solução

Estudo do Conjunto Solução

Classificação do sistema S quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada;

Estudo do Conjunto Solução

Classificação do sistema S quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada; e a NULIDADE da matriz dos coeficientes:

Estudo do Conjunto Solução

Classificação do sistema S quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada; e a NULIDADE da matriz dos coeficientes:

Estudo do Conjunto Solução

Classificação do sistema S quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada; e a NULIDADE da matriz dos coeficientes:

Estudo do Conjunto Solução

Classificação do sistema 5 quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada; e a NULIDADE da matriz dos coeficientes:

Estudo do Conjunto Solução

Classificação do sistema 5 quanto ao conjunto solução utilizando o POSTO das matrizes dos coeficientes e ampliada; e a NULIDADE da matriz dos coeficientes:

Estudo do Conjunto Solução

Estudo do Conjunto Solução

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

Então:

(i) O sistema é possível se, e somente se,

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

Então:

(i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se,

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$. Neste caso, $\mathcal{N}(A)$

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$. Neste caso, $\mathcal{N}(A)$ é o número de **incógnitas livres**

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$. Neste caso, $\mathcal{N}(A)$ é o número de incógnitas livres (ou o grau de liberdade) do sistema.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$. Neste caso, $\mathcal{N}(A)$ é o número de incógnitas livres (ou o grau de liberdade) do sistema, ou seja, incógnitas que podem assumir qualquer valor em K.

Estudo do Conjunto Solução

Teorema de Rouché-Capelli (ou Teorema do Posto) Seja um sistema linear com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. Sejam $\mathcal{P}(C)$ e $\mathcal{P}(A)$ os postos da matriz ampliada e da matriz dos coeficientes do sistema. respectivamente.

- (i) O sistema é possível se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C)$.
- (ii) O sistema é possível e determinado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) = n$.
- (iii) O sistema é possível e indeterminado se, e somente se, $\mathcal{P}(A) = \mathcal{P}(C) < n$. Neste caso, $\mathcal{N}(A)$ é o número de incógnitas livres (ou o grau de liberdade) do sistema, ou seja, incógnitas que podem assumir qualquer valor em K.

Estudo do Conjunto Solução

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

(i) Se,
$$\mathcal{P}(A) = n$$
,

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

(i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado,

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

(i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL.

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

(i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando m=n

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

(i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e

Estudo do Conjunto Solução

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas. $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$:

(i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e A é invertível.

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas. $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$:

- (i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e A é invertível.
- (ii) Se. $\mathcal{P}(A) = r < n$.

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas. $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$:

- (i) Se. $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e A é invertível.
- (ii) Se. $\mathcal{P}(A) = r < n$, então o sistema é possível e indeterminado,

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

- (i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e A é invertível.
- (ii) Se, $\mathcal{P}(A) = r < n$, então o sistema é possível e indeterminado, ou seja, admite infinitas soluções incluindo a TRIVIAL.

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas, $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$;

- (i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m=n\Rightarrow \mathcal{N}(A)=0$ e A é invertível.
- (ii) Se, $\mathcal{P}(A) = r < n$, então o sistema é possível e indeterminado, ou seja, admite infinitas soluções incluindo a TRIVIAL. Em particular, isto sempre ocorre quando m < n

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas. $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$:

- (i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m = n \Rightarrow \mathcal{N}(A) = 0$ e A é invertível.
- (ii) Se, $\mathcal{P}(A) = r < n$, então o sistema é possível e indeterminado, ou seja, admite infinitas soluções incluindo a TRIVIAL. Em particular, isto sempre ocorre quando $m < n \Rightarrow \mathcal{N}(A) > 0$.

Corolário: (Teorema de Rouché-Capelli) Seja um sistema linear homogêneo com m equações e *n* incógnitas. $S: A_{m \times n} X_{n \times 1} = O_{m \times 1}$:

- (i) Se, $\mathcal{P}(A) = n$, então o sistema é possível e determinado, ou seja, admite apenas a solução TRIVIAL. Em particular, isto ocorre quando $m = n \Rightarrow \mathcal{N}(A) = 0$ e A é invertível.
- (ii) Se, $\mathcal{P}(A) = r < n$, então o sistema é possível e indeterminado, ou seja, admite infinitas soluções incluindo a TRIVIAL. Em particular, isto sempre ocorre quando $m < n \Rightarrow \mathcal{N}(A) > 0$.

Estudo do Conjunto Solução - Sistema Homogêneo

$$1. S: \begin{cases} 4x_1 & -x_3 = 0 \end{cases}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0 \\ 10x_1 & -2x_4 & = 0 \end{cases}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0 \\ 10x_1 & -2x_4 & = 0 \\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3 \Rightarrow \underline{\text{Sistema Possível}}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3 \Rightarrow \underline{\text{Sistema Possível}}$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3 \Rightarrow \underline{\text{Sistema Possível}}$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0 \Rightarrow$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0\\ 10x_1 & -2x_4 & = 0\\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0\\ 10 & 0 & 0 & -2 & | & 0\\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0\\ 0 & 1 & 0 & -\frac{13}{10} & | & 0\\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3 \Rightarrow \underline{\text{Sistema Possível}}$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0 \Rightarrow \underline{\text{Sistema Indeterminado}}$$

1.
$$S: \begin{cases} 4x_1 & -x_3 & = 0 \\ 10x_1 & -2x_4 & = 0 \\ 2x_2 & -2x_3 & -x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & 0 & -1 & 0 & | & 0 \\ 10 & 0 & 0 & -2 & | & 0 \\ 0 & 2 & -2 & -1 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} & | & 0 \\ 0 & 1 & 0 & -\frac{13}{10} & | & 0 \\ 0 & 0 & 1 & -\frac{4}{5} & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 3 \Rightarrow \underline{\text{Sistema Possível}}$$

$$\mathcal{N}(A) = 4 - 3 = 1 > 0 \Rightarrow \underline{\text{Sistema Indeterminado com 1 (uma) variável livre:}} \quad x_4 \in \mathbb{R}.$$

2.
$$S: \begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ & & & \end{cases}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \end{cases}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0\\ x_1 & -x_2 & -x_3 & +x_4 & = 0\\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \end{cases}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0\\ x_1 & -x_2 & -x_3 & +x_4 & = 0\\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0\\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0\\ x_1 & -x_2 & -x_3 & +x_4 & = 0\\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0\\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

2.
$$S: \left\{ \begin{array}{cccccccccc} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{array} \right.$$

$$C_{3\times5} = \left[\begin{array}{cccccccc} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{array} \right]$$

2.
$$S: \begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

2.
$$S: \begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4$$

2.
$$S:$$

$$\begin{cases}
4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\
x_1 & -x_2 & -x_3 & +x_4 & = 0 \\
4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\
x_1 & -4x_2 & -x_3 & -3x_4 & = 0
\end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$P(A) = P(C) = 4 \Rightarrow \text{Sistema Possível}$$

2.
$$S:$$

$$\begin{cases}
4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\
x_1 & -x_2 & -x_3 & +x_4 & = 0 \\
4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\
x_1 & -4x_2 & -x_3 & -3x_4 & = 0
\end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4 \Rightarrow \underbrace{\text{Sistema Possível}}_{\mathcal{N}(A)} = 4 - 4 = 0$$

2.
$$S:$$

$$\begin{cases}
4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\
x_1 & -x_2 & -x_3 & +x_4 & = 0 \\
4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\
x_1 & -4x_2 & -x_3 & -3x_4 & = 0
\end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4 \Rightarrow \underbrace{\text{Sistema Possível}}_{\mathcal{N}(A)} = 4 - 4 = 0 \Rightarrow$$

2.
$$S:$$

$$\begin{cases}
4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\
x_1 & -x_2 & -x_3 & +x_4 & = 0 \\
4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\
x_1 & -4x_2 & -x_3 & -3x_4 & = 0
\end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$P(A) = P(C) = 4 \Rightarrow \underbrace{Sistema\ Possível}_{Sistema\ Determinado}$$

$$N(A) = 4 - 4 = 0 \Rightarrow \underbrace{Sistema\ Determinado}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4 \Rightarrow \underbrace{\text{Sistema Possível}}_{\text{Sistema Determinado}} \Rightarrow \text{Solução única}$$

2.
$$S:$$

$$\begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$P(A) = P(C) = 4 \Rightarrow \underbrace{Sistema\ Possível}_{Sistema\ Determinado} \Rightarrow Solução\ única \Rightarrow Solução\ TRIVIAL$$

$$\Rightarrow X = O_{4\times1};$$

$$2. \ S: \begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4 \Rightarrow \underbrace{Sistema\ Possível}_{Sistema\ Determinado} \Rightarrow Solução\ única \Rightarrow Solução\ TRIVIAL \Rightarrow X = O_{4\times1}; \ isto\ \acute{e},\ x_1 = x_2 = x_3 = x_4 = 0.$$

2.
$$S: \begin{cases} 4x_1 & -2x_2 & -3x_3 & -2x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 4x_1 & +x_2 & -3x_3 & -x_4 & = 0 \\ x_1 & -4x_2 & -x_3 & -3x_4 & = 0 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 4 & -2 & -3 & -2 & | & 0 \\ 1 & -1 & -1 & 1 & | & 0 \\ 4 & 1 & -3 & -1 & | & 0 \\ 1 & -4 & -1 & -3 & | & 0 \end{bmatrix} \sim C'_{3\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = \mathcal{P}(C) = 4 \Rightarrow \text{Sistema Possível}$$

$$\mathcal{N}(A) = 4 - 4 = 0 \Rightarrow \overline{\text{Sistema Determinado}} \Rightarrow \text{Solução única} \Rightarrow \overline{\text{Solução TRIVIAL}} \Rightarrow X = O_{4 \times 1}$$
; isto é, $x_1 = x_2 = x_3 = x_4 = 0$.

$$A \sim I_4 \Rightarrow \exists A^{-1}$$

Sistema de Cramer

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas,

$$S: A_n X_{n \times 1} = B_{n \times 1}.$$

Sistema de Cramer

Definição: Seia um sistema linear com n equações e n incógnitas, $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um SISTEMA DE CRAMER se, e somente se,

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas, $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um SISTEMA DE CRAMER se, e somente se, a matriz dos coeficientes, A_n , é invertível.

16 MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Sistema de Cramer

Definição: Seia um sistema linear com n equações e n incógnitas,

 $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um SISTEMA DE CRAMER se, e somente se, a matriz dos coeficientes, A_n , é invertível.

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas,

 $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um SISTEMA DE CRAMER se, e somente se, a matriz dos coeficientes, A_n , é invertível.

$$A_n X_{n \times 1} = B_{n \times 1}$$

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas.

 $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um SISTEMA DE CRAMER se, e somente se, a matriz dos coeficientes, A_n , é invertível.

$$A_nX_{n\times 1}=B_{n\times 1}$$

$$A_n^{-1}A_nX_{n\times 1}=A_n^{-1}B_{n\times 1}$$

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas. $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um Sistema de Cramer se, e

somente se, a matriz dos coeficientes, A_n , é invertível.

$$A_n X_{n \times 1} = B_{n \times 1}$$

$$A_n^{-1}A_nX_{n\times 1}=A_n^{-1}B_{n\times 1}$$

$$I_n X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas. $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um Sistema de Cramer se, e somente se, a matriz dos coeficientes, A_n , é invertível.

$$A_n X_{n \times 1} = B_{n \times 1}$$

$$A_n^{-1} A_n X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

$$I_n X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

$$X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

Sistema de Cramer

Definição: Seja um sistema linear com n equações e n incógnitas. $S: A_n X_{n \times 1} = B_{n \times 1}$. Dizemos que S é um Sistema de Cramer se, e somente se, a matriz dos coeficientes, A_n , é invertível.

OBSERVAÇÃO: $X_{n\times 1} = ?$

$$A_n X_{n \times 1} = B_{n \times 1}$$

$$A_n^{-1} A_n X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

$$I_n X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

$$X_{n \times 1} = A_n^{-1} B_{n \times 1}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$S: \left\{ \begin{array}{rrrr} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{rrrr} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right]$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right] = I_3$$

$$S: \left\{ \begin{array}{ll} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{ll} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{ll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{ll} x_1 & +4x_2 & +3x_3 & =1 \\ 2x_1 & +5x_2 & +4x_3 & =4 \\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$

$$X_{3\times 1} = A_3^{-1}B_{3\times 1}$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$

$$X_{3\times 1} = A_3^{-1}B_{3\times 1}$$

$$X_{3\times 1} = \begin{bmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{bmatrix}.$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & =1 \\ 2x_1 & +5x_2 & +4x_3 & =4 \\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$

$$X_{3\times 1}=A_3^{-1}B_{3\times 1}$$

$$X_{3\times 1} = \begin{bmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} =$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$

$$X_{3\times 1}=A_3^{-1}B_{3\times 1}$$

$$X_{3\times 1} = \begin{bmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$

$$X_{3\times 1} = A_3^{-1}B_{3\times 1}$$

$$X_{3\times 1} = \begin{bmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Conjunto Solução:
$$X = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Sistema de Cramer - Exemplo.1

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{cccc} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$

$$X_{3\times 1} = A_3^{-1}B_{3\times 1}$$

$$X_{3\times 1} = \begin{bmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Conjunto Solução:
$$X = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} \Rightarrow$$
 "solução única"

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)}.adj(A).B_{n\times 1} \Rightarrow$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) \cdot B_{n\times 1} \Rightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)}.adj(A).B_{n\times 1} \Rightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)}.$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)}.adj(A).B_{n\times 1} \Rightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)}.\begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix}$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) \cdot B_{n\times 1} \Rightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \cdot \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \Rightarrow$$

Sistema de Cramer

OBSERVAÇÃO: Ao determinarmos o conjunto solução do Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

$$A^{-1} = \frac{1}{\det(A)}.adj(A)$$

Assim,
$$X_{n\times 1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) \cdot B_{n\times 1} \Rightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \cdot \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \Rightarrow$$

$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)}; \forall i = 1,\ldots,n$$

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer :

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer :

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)}$$

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer :

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer :

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)} = \frac{1}{\det(A)}.\begin{vmatrix} a_{11} & \ldots & b_1 & \ldots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & \ldots & b_i & \ldots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \ldots & b_n & \ldots & a_{nn} \end{vmatrix}; \forall i = 1, \ldots, n$$

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)} = \frac{1}{\det(A)}.\begin{vmatrix} a_{11} & \ldots & b_1 & \ldots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & \ldots & b_i & \ldots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \ldots & b_n & \ldots & a_{nn} \end{vmatrix}; \forall i = 1, \ldots, n$$

OBSERVAÇÃO: No numerador aparece o determinante da matriz obtida a partir da matriz A ao substituir a i-ésima coluna pela matriz dos termos independentes.

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

Então,
$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)} = \frac{1}{\det(A)}.\begin{vmatrix} a_{11} & \ldots & b_1 & \ldots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & \ldots & b_i & \ldots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \ldots & b_n & \ldots & a_{nn} \end{vmatrix}; \forall i = 1, \ldots, n$$

OBSERVAÇÃO: No numerador aparece o determinante da matriz obtida a partir da matriz A ao substituir a i-ésima coluna pela matriz dos termos independentes. No **denominador** aparece o determinante da matriz A.

Sistema de Cramer - Regra de Cramer

REGRA DE CRAMER para determinar o conjunto solução de um Sistema de Cramer:

$$X_{n\times 1}=A_n^{-1}.B_{n\times 1}$$

Então.

Então,
$$x_i = \frac{b_1.C_{1i} + \ldots + b_n.C_{ni}}{\det(A)} = \frac{1}{\det(A)}.\begin{vmatrix} a_{11} & \ldots & b_1 & \ldots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & \ldots & b_i & \ldots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \ldots & b_n & \ldots & a_{nn} \end{vmatrix}; \forall i = 1, \ldots, n$$

OBSERVAÇÃO: No numerador aparece o determinante da matriz obtida a partir da matriz A ao substituir a i-ésima coluna pela matriz dos termos independentes. No **denominador** aparece o determinante da matriz A.

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$S: \left\{ \begin{array}{rrrr} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{rrrr} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right]$$

$$S: \left\{ \begin{array}{rrrr} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$A_3 = \left[\begin{array}{rrrr} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{array} \right] \Rightarrow det(A) = 1 \neq 0$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{bmatrix} \Rightarrow det(A) = 1 \neq 0 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$

Sistema de Cramer - Exemplo.1

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{bmatrix} \Rightarrow det(A) = 1 \neq 0 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$
Então, o conjunto solução pode ser obtido utilizando a **Regra de Cramer**:

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Sistema de Cramer - Exemplo.1

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{bmatrix} \Rightarrow det(A) = 1 \neq 0 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer}}.$$
Então, o conjunto solução pode ser obtido utilizando a **Regra de Cramer**:

$$x_1 = \frac{\begin{vmatrix} 1 & 4 & 3 \\ 4 & 5 & 4 \end{vmatrix}}{\begin{vmatrix} 5 & -3 & -2 \end{vmatrix}} = 3 ;$$

Sistema de Cramer - Exemplo.1

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 &= 1\\ 2x_1 + 5x_2 + 4x_3 &= 4\\ x_1 - 3x_2 - 2x_3 &= 5 \end{cases}$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{bmatrix} \Rightarrow det(A) = 1 \neq 0 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um } \underline{\text{Sistema de Cramer.}}$$
Fire $\overline{z}_1 = z_1 + z_2 + z_3 = 1$

$$x_1 = \frac{\begin{vmatrix} 1 & 4 & 3 \\ 4 & 5 & 4 \\ \hline 5 & -3 & -2 \end{vmatrix}}{1} = 3 ; x_2 = \frac{\begin{vmatrix} 1 & 1 & 3 \\ 2 & 4 & 4 \\ \hline 1 & 5 & -2 \end{vmatrix}}{1} = -2 ; e,$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$A_3 = \begin{bmatrix} 1 & 4 & 3\\ 2 & 5 & 4\\ 1 & -3 & -2 \end{bmatrix} \Rightarrow det(A) = 1 \neq 0 \Rightarrow \exists A^{-1} \Rightarrow S \text{ \'e um Sistema de Cramer.}$$
Então, o conjunto solução pode ser obtido utilizando a **Regra de Cramer**:
$$x_1 = \begin{bmatrix} 1 & 4 & 3\\ 4 & 5 & 4\\ 5 & -3 & -2\\ 1 & 1 & 1 & 3\\ 2 & 4 & 4\\ 1 & 1 & 1 & 2\\ 2 & 1 & 1 & 3\\ 3 & 2 & 4 & 4\\ 1 & 1 & 2 & 3\\ 3 & 2 & 4 & 4\\ 1 & 2 & 3 & 4\\ 3 & 3 & 4 & 4\\ 1 & 3 & 3 & 4\\ 3 & 3 & 4 & 4\\ 1 & 3 & 4 & 4\\ 1 & 3 & 4 & 4\\ 1 & 3 & 4 & 4\\ 1 & 3 & 5 & 4\\ 1 & 3$$

Sistemas Lineares

Sistema de Cramer - Exemplo.1

Sistemas Lineares

Sistema de Cramer - Exemplo.1

Método de Eliminação de Gauss

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

Método de Eliminação de Gauss

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em

Método de Eliminação de Gauss

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em

(1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S'

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando SUBSTITUIÇÕES RETROATIVAS.

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando SUBSTITUIÇÕES RETROATIVAS.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

Método de Eliminação de Gauss

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando SUBSTITUIÇÕES RETROATIVAS.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

$$X = X'$$

Método de Eliminação de Gauss

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

- O MÉTODO DE ELIMINAÇÃO DE GAUSS consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter uma matriz linha equivalente na forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a matriz C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando SUBSTITUIÇÕES RETROATIVAS.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

$$X = X'$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$\left(1^{\circ}\right) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underline{\text{Matriz Ampliada do Sistema}}$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times 4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada do Sistema}}_{}$$

$$(2^{\circ}) \quad C_{3\times 4} \sim C_{3\times 4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}_{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}_{\text{matriz na forma escada linha equivalente a } C$$

$$S: \left\{ \begin{array}{ccccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}_{}$$

$$(2^{\circ}) \quad C_{3\times4} \sim \quad C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}_{}$$

$$(3^{\circ}) \quad C' \Rightarrow S' : \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ & -3x_2 & -2x_3 & = 2 \\ & & -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$S: \left\{ \begin{array}{ccccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}_{}$$

$$(2^{\circ}) \quad C_{3\times4} \sim \quad C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}_{}$$

$$(3^{\circ}) \quad C' \Rightarrow S' : \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ & -3x_2 & -2x_3 & = 2 \\ & & -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right. \hookrightarrow \underbrace{\text{Sistema Equivalente}}_{}$$

$$S: \left\{ \begin{array}{ccccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times 4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) \quad C_{3\times 4} \sim \quad C_{3\times 4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) \quad C' \Rightarrow S': \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ & -3x_2 & -2x_3 & = 2 \\ & & -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \quad \text{SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{cccc} 3^{\circ} \text{ equação} \longrightarrow \end{array} \right.$$

$$S: \left\{ \begin{array}{ccccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) \quad C_{3\times4} \sim \quad C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) \quad C' \Rightarrow S': \left\{ \begin{array}{c} x_1 & +4x_2 & +3x_3 & = 1 \\ -3x_2 & -2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & = -\frac{2}{3} & \\ \end{array} \right.$$

$$(4^{\circ}) \quad \text{SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{c} 3^{3} \text{equação} \longrightarrow & x_3 = 2 \end{array} \right.$$

$$S: \begin{cases} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 & +4x_2 & +3x_3 & = 1 \\ -3x_2 & -2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & =-\frac{2}{3} \end{cases}$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \begin{cases} 3^{3} \text{ equação} \longrightarrow \\ 2^{3} \text{ equação} \longrightarrow \end{cases} \qquad x_3 = 2$$

$$S: \begin{cases} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 & +4x_2 & +3x_3 & = 1 \\ & -3x_2 & -2x_3 & = 2 \\ & & -\frac{1}{3}x_3 & = -\frac{2}{3} \end{cases}$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \begin{cases} 3^{3} \text{ equação} \longrightarrow & x_3 = 2 \\ 2^{3} \text{ equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 + 4x_2 + 3x_3 & = 1 \\ -3x_2 - 2x_3 & = 2 \\ -\frac{1}{3}x_3 & = -\frac{2}{3} \end{cases}$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \begin{cases} 3^{3} \text{ equação} \longrightarrow -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \end{cases}$$

$$S: \left\{ \begin{array}{l} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) \quad C_{3\times4} \sim \quad C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C$$

$$(3^{\circ}) \quad C' \Rightarrow S': \left\{ \begin{array}{c} x_1 & +4x_2 & +3x_3 & = 1 \\ -3x_2 & -2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \quad \text{SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{c} 3^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow & -3x_2 & = 2 + 2x_3 \Rightarrow x_2 = -2 \\ \end{array} \right.$$

$$S: \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{array} \right.$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S' : \left\{ \begin{array}{ccc} x_1 + 4x_2 + 3x_3 & = 1 \\ -3x_2 - 2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{ccc} 3^{3} \text{ equação} \longrightarrow & x_3 = 2 \\ 2^{3} \text{ equação} \longrightarrow & x_1 = 1 - 4x_2 - 3x_3 \end{array} \right.$$

$$S: \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{array} \right.$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S' : \left\{ \begin{array}{ccc} x_1 + 4x_2 + 3x_3 & = 1 \\ -3x_2 - 2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{ccc} 3^{3} \text{ equação} \longrightarrow & x_3 = 2 \\ 2^{3} \text{ equação} \longrightarrow & x_1 = 1 - 4x_2 - 3x_3 \Rightarrow x_1 = 3 \end{array} \right.$$

$$S: \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{array} \right.$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & \frac{-1}{3} & | & \frac{-2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C}$$

$$(3^{\circ}) C' \Rightarrow S' : \left\{ \begin{array}{ccc} x_1 + 4x_2 + 3x_3 & = 1 \\ -3x_2 - 2x_3 & = 2 & \hookrightarrow \underbrace{\text{Sistema Equivalente}} \\ -\frac{1}{3}x_3 & = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS:} \left\{ \begin{array}{ccc} 3^{3} \text{ equação} \longrightarrow & x_3 = 2 \\ 2^{3} \text{ equação} \longrightarrow & x_1 = 1 - 4x_2 - 3x_3 \Rightarrow x_1 = 3 \end{array} \right.$$

Método de Eliminação de Gauss - Exemplo

Método de Eliminação de Gauss - Exemplo

Método de Eliminação de Gauss - Exemplo

$$S: \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{array} \right.$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C$$

$$(3^{\circ}) C' \Rightarrow S': \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ -3x_2 - 2x_3 = 2 \\ -\frac{1}{3}x_3 = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS: } \left\{ \begin{array}{c} 3^{3} \text{equação} \longrightarrow -3x_2 = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow x_1 = 1 - 4x_2 - 3x_3 \Rightarrow x_1 = 3 \end{array} \right.$$

$$(5^{\circ}) X = X' = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} \hookrightarrow \underbrace{\text{Conjunto Solução}}$$

Método de Eliminação de Gauss - Exemplo

$$S: \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{array} \right.$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada do Sistema}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \hookrightarrow \underbrace{\text{matriz na forma escada linha equivalente a } C$$

$$(3^{\circ}) C' \Rightarrow S': \left\{ \begin{array}{c} x_1 + 4x_2 + 3x_3 = 1 \\ -3x_2 - 2x_3 = 2 \\ -\frac{1}{3}x_3 = -\frac{2}{3} \end{array} \right.$$

$$(4^{\circ}) \text{ SUBSTITUIÇÕES RETROATIVAS: } \left\{ \begin{array}{c} 3^{3} \text{equação} \longrightarrow -3x_2 = 2 + 2x_3 \Rightarrow x_2 = -2 \\ 1^{3} \text{equação} \longrightarrow x_1 = 1 - 4x_2 - 3x_3 \Rightarrow x_1 = 3 \end{array} \right.$$

$$(5^{\circ}) X = X' = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} \hookrightarrow \underbrace{\text{Conjunto Solução}}$$

Método de Eliminação de Gauss-Jordan

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

Método de Eliminação de Gauss-Jordan

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em

Método de Eliminação de Gauss-Jordan

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$. O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em

(1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.

Método de Eliminação de Gauss-Jordan

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.

Método de Eliminação de Gauss-Jordan

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.

Método de Eliminação de Gauss-Jordan

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S'

Método de Eliminação de Gauss-Jordan

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando, se necessário, SUBSTITUIÇÕES.

Método de Eliminação de Gauss-Jordan

- Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.
- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando, se necessário, SUBSTITUIÇÕES.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

Método de Eliminação de Gauss-Jordan

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando, se necessário, SUBSTITUIÇÕES.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

$$X = X'$$

Método de Eliminação de Gauss-Jordan

Seja um sistema linear com m equações e n incógnitas, $S: A_{m \times n} X_{n \times 1} = B_{m \times 1}$.

- O MÉTODO DE ELIMINAÇÃO DE GAUSS-JORDAN consiste em
- (1°) Construir a matriz ampliada do sistema: $C = [A \mid B]$.
- (2°) Efetuar operações elementares sobre as linhas da matriz ampliada a fim de obter a sua matriz linha reduzida à forma escada: $C = [A \mid B] \sim C' = [A' \mid B']$.
- (3°) Construir o sistema linear S' equivalente utilizando a M.L.R.F.E. C' obtida anteriormente.
- (4°) Obter o conjunto solução X' do sistema linear S' efetuando, se necessário, SUBSTITUIÇÕES.
- (5°) Atribuir o conjunto solução do sistema equivalente S' ao sistema S:

$$X = X'$$

$$S: \left\{ \begin{array}{rrrr} x_1 & +4x_2 & +3x_3 & =1\\ 2x_1 & +5x_2 & +4x_3 & =4\\ x_1 & -3x_2 & -2x_3 & =5 \end{array} \right.$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times 4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix}$$

$$S: \left\{ \begin{array}{cccc} x_1 & +4x_2 & +3x_3 & = 1 \\ 2x_1 & +5x_2 & +4x_3 & = 4 \\ x_1 & -3x_2 & -2x_3 & = 5 \end{array} \right.$$

$$(1^{\circ}) \quad C_{3\times 4} = \left[\begin{array}{cccc} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{array} \right] \hookrightarrow \underline{\text{Matriz Ampliada}}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada}}_{0 & 1 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{\mathsf{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{\mathsf{M.L.R.F.E. de } C}.$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\text{Matriz Ampliada}}_{\text{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\text{M.L.R.F.E. de } C}_{\text{M.L.R.F.E. de } C}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 = 3 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3\\ x_2 & = -2 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3 \\ x_2 & = -2 \\ x_3 & = 2 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3 \\ x_2 & = -2 \\ x_3 & = 2 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{\mathsf{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{\mathsf{M.L.R.F.E. de } C}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3\\ x_2 & = -2 \hookrightarrow \underbrace{\mathsf{Sistema Equivalente}}_{\mathsf{X_3}} = 2 \end{cases}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ 2x_1 + 5x_2 + 4x_3 = 4 \\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3 \\ x_2 & = -2 \hookrightarrow \underbrace{\mathsf{Sistema Equivalente}} \\ x_3 & = 2 \end{cases}$$

$$(4^{\circ}) X' =$$

$$S: \begin{cases} x_{1} + 4x_{2} + 3x_{3} &= 1\\ 2x_{1} + 5x_{2} + 4x_{3} &= 4\\ x_{1} - 3x_{2} - 2x_{3} &= 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz Ampliada}}_{\mathsf{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E. de } C}_{\mathsf{M.L.R.F.E. de } C}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_{1} & = 3\\ x_{2} & = -2 & \hookrightarrow \underbrace{\mathsf{Sistema Equivalente}}_{\mathsf{X3}} &= 2 \end{cases}$$

$$(4^{\circ}) X' = \begin{bmatrix} 3\\ -2\\ 2 \end{bmatrix}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz\ Ampliada}}_{\mathsf{Matriz\ Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E.\ de\ }C}_{\mathsf{M.L.R.F.E.\ de\ }C}.$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 & = 3\\ x_2 & = -2 \hookrightarrow \underbrace{\mathsf{Sistema\ Equivalente}}_{\mathsf{X_3}} = 2 \end{cases}$$

$$(4^{\circ}) X' = \begin{bmatrix} 3\\ -2\\ 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{resolvendo\ o\ Sistema\ Equivalente}}_{\mathsf{Paramonia}}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underline{\text{Matriz Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underline{\text{M.L.R.F.E. de } C}.$$

$$(3^{\circ}) C' \Rightarrow S' : \begin{cases} x_1 & = 3\\ x_2 & = -2 & \hookrightarrow \underline{\text{Sistema Equivalente}}\\ x_3 & = 2 \end{cases}$$

$$(4^{\circ}) X' = \begin{bmatrix} 3\\ -2\\ 2 \end{bmatrix} \hookrightarrow \underline{\text{resolvendo o Sistema Equivalente}}$$

$$(5^{\circ}) X = X'$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz\ Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E.\ de\ C}}.$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 & = 3\\ x_2 & = -2 \hookrightarrow \underbrace{\mathsf{Sistema\ Equivalente}}\\ x_3 & = 2 \end{cases}$$

$$(4^{\circ}) X' = \begin{bmatrix} 3\\ -2\\ 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{resolvendo\ o\ Sistema\ Equivalente}}_{\mathsf{Sistema\ Equivalente}}$$

$$(5^{\circ}) X = X' \hookrightarrow \mathsf{Conjunto\ Solução}$$

$$S: \begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

$$(1^{\circ}) C_{3\times4} = \begin{bmatrix} 1 & 4 & 3 & | & 1\\ 2 & 5 & 4 & | & 4\\ 1 & -3 & -2 & | & 5 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{Matriz\ Ampliada}}$$

$$(2^{\circ}) C_{3\times4} \sim C_{3\times4}' = \begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 0 & | & -2\\ 0 & 0 & 1 & | & 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{M.L.R.F.E.\ de\ C}}.$$

$$(3^{\circ}) C' \Rightarrow S': \begin{cases} x_1 & = 3\\ x_2 & = -2 \hookrightarrow \underbrace{\mathsf{Sistema\ Equivalente}}\\ x_3 & = 2 \end{cases}$$

$$(4^{\circ}) X' = \begin{bmatrix} 3\\ -2\\ 2 \end{bmatrix} \hookrightarrow \underbrace{\mathsf{resolvendo\ o\ Sistema\ Equivalente}}_{\mathsf{Sistema\ Equivalente}}$$

$$(5^{\circ}) X = X' \hookrightarrow \mathsf{Conjunto\ Solução}$$

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

(i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranio grande contém quatro rosas, oito margaridas e seis crisântemos.

Um dia a florista notou que havia usado um total de 24 rosas.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranio grande contém quatro rosas, oito margaridas e seis crisântemos.

Um dia a florista notou que havia usado um total de 24 rosas, 50 margaridas e 48 crisântemos ao preparar as encomendas desses três tipos de arranjos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

Um dia a florista notou que havia usado um total de 24 rosas, 50 margaridas e 48 crisântemos ao preparar as encomendas desses três tipos de arranjos. Quantos arranjos de cada tipo ela fez?

(a) Construa o sistema linear relacionado ao problema.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

Um dia a florista notou que havia usado um total de 24 rosas, 50 margaridas e 48 crisântemos ao preparar as encomendas desses três tipos de arranjos. Quantos arranjos de cada tipo ela fez?

(a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranio grande contém quatro rosas, oito margaridas e seis crisântemos.

- (a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.
- Determine, se possível, o conjunto solução do sistema utilizando a inversa da matriz dos coeficientes

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranio grande contém quatro rosas, oito margaridas e seis crisântemos.

- (a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.
- Determine, se possível, o conjunto solução do sistema utilizando a inversa da matriz dos coeficientes (efetue operações elementares para calcular a inversa de A).

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

- (a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.
- Determine, se possível, o conjunto solução do sistema utilizando a inversa da matriz dos coeficientes (efetue operações elementares para calcular a inversa de A).
- (c) Determine, se possível, o conjunto solução do sistema utilizando a Regra de Cramer.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

- (a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.
- (b) Determine, se possível, o conjunto solução do sistema utilizando a inversa da matriz dos coeficientes (efetue operações elementares para calcular a inversa de A).
- (c) Determine, se possível, o conjunto solução do sistema utilizando a Regra de Cramer.
- (d) Determine, se possível, o conjunto solução do sistema utilizando o Método de Eliminação de Gauss, e o Método de Eliminação de Gauss-Jordan.

Exercício.1

Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Os arranjos possuem as seguintes características:

- (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
- (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.
- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos.

- (a) Construa o sistema linear relacionado ao problema. e estude o conjunto solução do utilizando posto e nulidade.
- (b) Determine, se possível, o conjunto solução do sistema utilizando a inversa da matriz dos coeficientes (efetue operações elementares para calcular a inversa de A).
- (c) Determine, se possível, o conjunto solução do sistema utilizando a Regra de Cramer.
- (d) Determine, se possível, o conjunto solução do sistema utilizando o Método de Eliminação de Gauss, e o Método de Eliminação de Gauss-Jordan.