Bài 9 Mạng LSTM và các ứng dụng

Lê Thanh Hương Trường Công nghệ Thông tin và Truyền thông, ĐHBKHN

Nội dung buổi học

- Giới thiệu RNN
- Giới thiệu LSTM
- Các ứng dụng với RNN và LSTM
 - LSTM cho mô hình ngôn ngữ
 - LSTM cho gán nhãn chuỗi
 - LSTM cho phân loại
 - LSTM cho dịch máy

Mạng nơ ron truyền thẳng

- Input layer x di qua hidden layer h và cho ra output layer y với full connected giữa các layer
- Không phù hợp với những bài toán dạng chuỗi như mô tả, hoàn thành câu, ...

Mạng nơ ron hồi quy

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks

Các mô hình RNN

Vấn đề với RNN

- Giả sử chuỗi có 30 phần tử
- Đạo hàm của L với W ở state thứ i:

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} * \frac{\partial y}{\partial s_{30}} * \frac{\partial s_{30}}{\partial s_i} * \frac{\partial s_i'}{\partial W} \text{, trong d\'o } \frac{\partial s_{30}}{\partial s_i} = \prod_{j=i}^{29} \frac{\partial s_{j+1}}{\partial s_j}$$

- Vấn đề: Phụ thuộc xa, dễ "quên thông tin cũ"
- => Mong muốn: RNN có khả năng "nhớ"

Long Short-Term Memory

 Ý tưởng: Sử dụng một đường trực tiếp từ các đầu vào phía trước đến đầu ra hiện tại

Long Short-Term Memory

Các công thức tính trong LSTM:

Long Short-Term Memory

Cho chuỗi đầu vào $x^{(t)}$, tính chuỗi trạng thái ẩn $h^{(t)}$ và các trạng thái cell $c^{(t)}$. Tại bước t:

LSTM giải quyết vấn đề quên thế nào?

- Kiến trúc LSTM cho phép lưu thông tin qua thời gian dài dễ dàng hơn so với RNN
 - Ví dụ, nếu cổng forget = 1 cho mọi cell và cổng input = 0 thì thông tin trong cell đó được giữ mãi mãi
- LSTM không đảm bảo không bị quên, nhưng có thể nhớ các phụ thuộc dài dễ hơn so với RNN

Các ứng dụng với RNN và LSTM

Các ứng dụng

- Mô hình ngôn ngữ
 - Tiên đoán ký tự/từ tiếp theo
 - Tính xác suất xâu
- Gán nhãn chuỗi
 - Gán nhãn từ loại, nhận diện thực thể có tên, ...
- Phân loại
 - Phân tích quan điểm, ...
- Dịch máy
 - P(high winds tonight) > P (large winds tonight)
- Sửa lỗi văn bản
 - The office is about fifteen *minuets* from my house
 - P ("about fifteen *minutes* from") > P(about fifteen minuets from)
- Nhận dạng giọng nói
 - P(I saw a van) > P(eyes awe of an)
- Tóm tắt, hỏi đáp, ..

Dự đoán ký tự tiếp theo với RNN

Tính xác suất câu với RNN

 $\hat{y}^{(4)} = P(x^{(5)}|\text{the students opened their})$

books

$$\hat{y} = \text{softmax}(W_2 h^{(t)} + b_2)$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t + b_1)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

$$c_1, c_2, c_3, c_4$$

Sinh văn bản sử dụng RNN

 Tương tự mô hình ngôn ngữ n-gram, ta có thể sử dụng RNN để sinh văn bản bằng cách lặp lại quá trình lấy mẫu. Đầu ra 1 bước trở thành đầu vào bước sau.

Đánh giá mô hình

• Độ đo chuẩn: perplexity. $\operatorname{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\operatorname{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})}\right)^{1/T}$ Chuẩn hóa theo số từ Nghịch đảo xác suất trên tập ngữ liệu $\bullet \text{ Trong drops} \text{ Trong drops} \text{ or ong với hàm mũ củ} \boldsymbol{\mathcal{I}}(\boldsymbol{\theta})$ cross-entropy loss $= \prod_{t=1}^T \left(\frac{1}{\hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}}\right)^{1/T} = \exp\left(\frac{1}{T}\sum_{t=1}^T -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}\right) = \exp(J(\boldsymbol{\theta}))$

Perplexity càng thấp càng tốt

So sánh kết quả sử dụng n-gram và RNN

	Model	Perplexity
n-gram model ——	Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
	RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
	RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
Tăng độ phức tạp của RNNs	Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
	LSTM-2048 (Jozefowicz et al., 2016)	43.7
	2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
	Ours small (LSTM-2048)	43.9
	Ours large (2-layer LSTM-2048)	39.8

Cải thiện perplexity (thấp là tốt)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

LSTM cho gán nhãn chuỗi

- Gán nhãn từ loại (Part Of Speech Tagging POS)
 - Mỗi từ trong câu được gán với 1 từ loại
 John saw the saw and decided to take it to the table.

 NNP VBD DT NN CC VBD TO VB PRP IN DT NN
- Trích chọn thông tin
 - Xác định cụm từ trong văn bản liên quan đến một nội dung cụ thể.
 - Trích thông tin trong quảng cáo xe hơi

```
make model year mileage price
```

- For sale, 2002 Toyota Prius, 20,000 mi, \$15K or best offer.
 Available starting July 30, 2006.
- Nhận diện thực thể có tên (Named entity recognition)

```
people organizations places
```

 Michael Dell is the CEO of Dell Computer Corporation and lives in Austin Texas.

LSTM cho gán nhãn chuỗi

- Semantic Role Labeling
 - Với mỗi vế, xác định vai trò ngữ nghĩa của mỗi cụm danh từ so với động từ
 - agent patient source destination instrument
 - John drove Mary from Austin to Dallas in his Toyota Prius.
 - The hammer broke the window.
- Gán nhãn cho chuỗi gen trong phân tích bộ gen
 - extron intron
 - AGCTAACGTTCGATACGGATTACAGCCT

Nhận dạng thực thể có tên (NER)

- Mục đích: Phát hiện các thực tế có tên trong văn bản và phânloại vào các lớp được định nghĩa trước
- Các thực thể thông dụng: người (PER), vị trí (LOC), tố chức (ORG)
- Các thực thể khác (tùy thuộc vào ứng dụng): datetime, email, quantity, product name, price, URL, ...

Nhận dạng thực thể có tên

Ví dụ

Lady Gaga is playing a concert for the Bushes in Texas next September

Person Person Location Time

- Úng dụng của NER:
 - Dịch máy
 - Hỏi đáp
 - Truy vấn thông tin
 - Tổng hợp giọng nói

NER dựa trên biLSTM

Tầng đầu vào

- Biểu diễn nhúng kết hợp:
 - Biểu diễn từ: Sử dụng từ nhúng huấn luyện trước bởi word2vec trên 2 triệu văn bản
 - Biểu diễn ký tự: Sử dụng mạng LSTM hai chiều để học biểu diễn ký tự với khởi tạo ngẫu nhiên
 - Biểu diễn từ loại: Biểu diễn one-hot
 - Biểu diễn cụm: Biểu diễn one-hot

Học biểu diễn ký tự

LSTM hai chiều

- Sử dụng hai mạng LSTM theo chiều tiến và chiều lùi
 - Mục đích: Các từ ở đầu câu có thể sử dụng cả thông tin ở cuối câu để dự đoán và ngược lại
- Đầu ra được ghép nối để đưa vào tầng đầu ra

Tầng đầu ra

- Dự đoán các nhãn BIO ứng với các loại thực thể
 - VD: Với 3 loại thực thể ORG, PER, LOC, tập nhãn có 7 nhãn (B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC, O)
- Tầng đầu ra có thể được đưa vào một mô hình CRFs để thể hiện quan hệ với nhãn ở thời điểm trước thông qua xác suất chuyển đổi

Đánh giá kết quả

Phân loại quan điểm với LSTM

 Đầu ra của từ cuối cùng được sử dụng làm đặc trưng để xây dựng bộ phân lớp

Phân loại quan điểm với LSTM

Đặc trưng được tính dựa trên đầu ra các từ

LSTM cho dịch máy

- Dịch: Chuyển từ câu nguồn f (tiếng Pháp) sang câu đích e (tiếng Anh)
- Ước lượng P(e|f) sử dụng NN

$$p(e|f) = p(e_1, e_2, ..., e_m|f)$$

$$= p(e_1|f) \cdot p(e_2|e_1, f) \cdot p(e_3|e_2, e_1, f) \cdot ...$$

$$= \prod_{i=1}^{m} p(e_i|e_1, ..., e_{i-1}, f)$$

Mô hình sequence to sequence

Gồm 2 RNNs khác nhau để có mô hình

$$\prod_{i=1}^{m} p(e_i | e_1, ..., e_{i-1}, f)$$

- RNN đầu tiên gọi là encoder, mã hóa câu f (tiếng Pháp)
- RNN thứ 2 gọi là decoder, sinh câu e (Tiếng Anh)

Mô hình Seq2Seq

1) Encoder: Nén câu nguồn thành vector

2) Decoder: Là mô hình ngôn ngữ, sinh câu đích với điều kiện vector nguồn

Huấn luyện mô hình Seq2Seq

Tham số của mô hình

$$W^{enc}, W^{dec}, W_{out}$$

Bước giải mã

Với mô hình Seq2Seq đã huấn luyện: Cho 1 câu tiếng Pháp,
 cần xác định câu tiếng Anh có xác suất cao nhất.

• Tim
$$\arg \max \prod_{i=1}^{m} p(e_i | e_1, ..., e_{i-1}, f)$$

Giải pháp đơn giản nhất: giải mã tham lam

Dùng beam search

- Giải mã tham lam: Chúng ta không thể quay lại để kiểm tra quyết định của bước trước.
 - les pauvres sont démunis (the poor don't have any money)
 - → the ____
 - \rightarrow the poor ____
 - → the poor are_____
- Ý tưởng: Sử dụng beam search.
 - Lưu k bản dịch tại mỗi thời điểm thay vì chỉ 1
 - Thường beam size k khoảng 5 10

Ví dụ beam search

• Beam size = 2

Q&A

Thank you!