Symulacja Monte Carlo Modelu Isinga

Katarzyna Sznajd-Weron

7 kwietnia 2022

Napisz program, który implementuje algorytm Metropolisa dla modelu Isinga bez pola magnetycznego na dwuwymiarowej sieci kwadratowej $L \times L$. Pojedyncza symulacja polega na ustawieniu stanu początkowego - rekomenduję uporządkowany tzn. S[i,j]=1 dla wszystkich węzłów i,j. Po inicjalizacji wykonujecie algorytm Metropolisa przez $K=10^6$ kroków Monte Carlo (MC). Po każdym kroku liczycie magnetyzację, ale potem do średniej bierzecie tylko $K-K_0$ kroków (pierwszych $K_0=10^4$ to termalizacja). Wykonajcie symulacje dla L=10,50,100 i narysujcie wykresy prezentujące:

- 1. Konfigurację spinów dla L=10 i L=100 dla $T^*=K_BT/J=1 < T_c^*, T^*=2.26 \approx T_c^*, T^*=2.26 \approx T_c^*, T^*=4 > T_c^*.$
- 2. Pojedyncze trajektorie dla temperatur: $T^* = 1.7$ dla każdego L (3 osobne rysunki)
- 3. Magnetyzację jako funkcję temperatury dla zakresu temperatur $T \in (1, 3.5)$. Tu wszystkie wielkości sieci na jednym rysunku i legenda dla L
- 4. Podatność magnetyczną jako funkcję temperatury dla zakresu temperatur $T \in (1,3.5)$. Tu wszystkie wielkości sieci na jednym rysunku i legenda dla L.

Program powinien zwracać wynikowe pliki tekstowe, zawierające dane umożliwiające wykonanie rysunków, a następnie rysunki wykonane w dowolnie wybranym programie.

Wszystkie rysunki powinny być umieszczone w jednym pliku pdf (max do 50MB) i podpisane. Plik powinien być podpisany Imieniem i Nazwiskiem studenta wg. schematu NazwiskoImi_IsingMC.pdf np. WeronKatarzyna_IsingMC.pdf. Proszę być przygotowanym na to, że mogę poprosić o przesłanie plików wynikowych z danymi, z których przygotowane zostały rysunki lub/i kodu programu.