Ejemplo comparación de resultados predictores in sillico

Cambio de estudio CLDN12 c.*581T>C (chr7:90413992 T/C, NM_001185072.3: c.*581T>C)

Exón 3 e intrones adyacentes:

ACAGTCCTTTCCTGTGTGGAATCGCCTCAGTAGCAGGCCTCTTTGCAGGCACTCTG CTTCCCAACTGGAGAAATTACGATTGATCACATTCAACAGAAACGAGAAGAACCTGACT GTTTACACAGGCCTGTGGGTGAAATGTGCCCGGTATGACGGGAGCAGTGAC CTACCCTCAGCATGCTGATCGCCATGGCTGCCCTGCTCTCTGCTCATTGGAATGTGC AACACT<mark>GC</mark>CTTCAGGTCCT<mark>CGG</mark>TGCCCA<mark>AC</mark>ATCAAACTGGCCAAGTGTCT<mark>GG</mark>TC<mark>AA</mark>TA<mark>G</mark>T GCAGGTTGCCA<mark>CC</mark>TGGT<mark>GGC</mark>TGG<mark>G</mark>CT<mark>GCTATT</mark>TTTCCTGGC**A**GG**T**ACT<mark>G</mark>TGAGCCTCT<mark>CC</mark> CCATCTATCTGGGTCATCTTTTATAACATCCATCTGAACAAGAAGTTTGAGCCAGT CTCTCTGCCATTGAAATTGACATTCCAGTAGTTTCACACACCACTTAATGGGGAAATA 'TTTATGAGAAGTATATTA<mark>T</mark>ATTAAAT<mark>G</mark>TGAATTTTT STG<mark>GA</mark>AGAGG<mark>C</mark>CTGCATCACAA<mark>T</mark>TGAGGTAATGTAGAGCAAC<mark>AT</mark>GTTAA<mark>A</mark>GAATGATG GTTAGCAGAAGCTGTTGTATACAATCTTCATGAAAATTTCAGTGTGTATTTTTCTTTTTC AGGGTAATATTTTAATAGTAGTCAATAATCTAGCTTAAGGCTGTAACTCTTCTATCGGGG CCTCATGCCACTGTTTAAAAGTAAAACGTATTTTAACGATGTTAGAATAAGACTACCATT CTAAATATCACCTACTTATGAATAACATGTAATAATTTTTTAACAT**TA**ATGAT**T**CCATAAA TTGTATTATTGGGATTAGAATGTGCTTTATGACAGGTTAGTGTTTCCTCTGAGGCAGAAA

El cambio se encuentra en la antepenúltima fila del 3'UTR después del exón 3 (la t en color gris).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice s	•				Donor splice	sites, direct	strand		
	pos 5'->3' 273 524 1258 1536		0.37 0.69 0.54 0.00	5' exon intron 3 AATGTGCCCG^GTATGACGGG TTCCTGGCAG^GTACTGTGAG TTTATTTCAG^GTAAGGGTAA TTTATGACAG^GTTAGTGTTT	,	pos 5'->3' 273 524 1258 1536	phase strand 2 + 1 + 0 +	confidence 0.37 0.69 0.56 0.00	5' exon intron 3' AATGTGCCCG^GTATGACGGG TTCCTGGCAG^GTACTGTGAG TTTATTTCAG^GTAAGGGTAA TTTATGACAG^GTTAGTGTTT
Donor splice s	sites, comple	ement strand			Donor splice	sites, comple	ement strand		
pos 3'->5' 753	pos 5'->3' 808	phase strand 1 -	confidence 0.86	5' exon intron 3 AGGGCTGTGA^GTAAGTATGC	pos 3'->5' 753	pos 5'->3' 808	phase strand 1 -	confidence 0.86	5' exon intron 3' AGGGCTGTGA^GTAAGTATGC
Acceptor splic	ce sites, dir	rect strand			Acceptor spli	e sites, di			
	pos 5'->3' 172 194 221 228 231 371	phase strand 1 + 2 + 2 + 0 + 0 + 2 +	confidence 0.19 0.32 0.19 0.18 0.17 0.25	5' intron exon 3 CTCTTTGCAG^GGACTCTGCT CCAACTGGAG^AAAATTACGA CATTCAACAG^AAACGAGAAG CAGAAACGAGAAACTGA AAACGAGAAACTGA TACCCCTCAG^CATGCTGATC		pos 5'->3' 172 194 221 228 231 371		confidence 0.19 0.32 0.19 0.18 0.17 0.25	5' intron exon 3' CTCTTTGCAG^GGACTCTGCT CCAACTGGAG^AAAATTACGA CATTCAACAG^AAACGAGAAG CAGAAACGAG^AAACCTGA AAACGAGAAACTGACTG TACCCCTCAG^CATGCTGATC
Acceptor splic	ce sites, com	mplement stran	nd		Acceptor spli	ce sites, cor	mplement strand	I	
pos 3'->5' 1391 1215 493 469 457 438 253	pos 5'->3' 170 346 1068 1092 1104 1123 1308	phase strand 2 - 1 - 0 - 2 - 0 - 2 -	0.25 0.33 0.07 0.18 0.18 0.07 0.27	5' intron exon 3 TTTTAAACAG^TGGCATGAGG TTCTTTGCAG^TTAAAGGTAT CAGCCACCAG^GTGGCAACCT TATTGACCAG^ACACTTGGCC ACTTGGCCAG^TTTGATGTTG GGGCACCGAG^GACCTGAAGG TCACCCACAG^GCCTGTGTAA	' pos 3'->5' 1391 1215 493 469 457 438 253	pos 5'->3' 170 346 1068 1092 1104 1123 1308	phase strand 2 - 1 - 0 - 2 - 0 - 2 - 2 -	confidence 0.24 0.33 0.07 0.18 0.18 0.07 0.27	5' intron exon 3' TTTTAAACAG^TGGCATGAGG TTCTTTGCAG^TTAAAGGTAT CAGCCACCAG^GTGGCAACCT TATTGACCAG^ACACTTGGCC ACTTGGCCAG^TTTGATGTTG GGGCACCGAG^GACCTGAAGG TCACCCACAG^GCCTGTGTAA

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 10.42.0.139.572497.0:

Donor site predictions for 10.42.1.119.572509.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
266	280	0.78	gtgcccg gt atgacg	266	280	0.78	gtgcccg gt atgacg
517	531	0.83	ctggcag gt actgtg	517	531	0.83	ctggcag gt actgtg
1103	1117	0.88	aattgag gt aatgta	1103	1117	0.88	aattgag gt aatgta
1134	1148	0.71	aatgatg gt tagcag	1134	1148	0.71	aatgatg gt tagcag
1251	1265	1.00	atttcag gt aagggt	1251	1265	1.00	atttcag gt aagggt
1529	1543	0.98	atgacag gt tagtgt	1529	1543	0.98	atgacag gt tagtgt

Acceptor site predictions for 10.42.0.139.572497.0:

Acceptor site predictions for 10.42.1.119.572509.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
40	80	0.41	ctcttgtgtg	tcacccct ag tctgactgacagtactccac	40	80	0.41	ctcttgtgtgtc	accccct ag tctgactgacagtactccac
152	192	0.78	cagtagcagg	cctctttgc ag ggactctgcttcccaactgg	152	192	0.78	cagtagcaggcc	tctttgc ag ggactctgcttcccaactgg
230	270	0.49	agaacctgac	tgtttacac ag gcctgtgggtgaaatgtgcc	230	270	0.49	agaacctgactg	tttacac ag gcctgtgggtgaaatgtgcc
334	374	0.75	ctggacctgc	gtgtcctcc ag tttgccctacccctcagcat	334	374	0.75	ctggacctgcgt	gtcctcc ag tttgccctacccctcagcat
351	391	0.64	ccagtttgcc	ctaccctc ag catgctgatcgccatgggtg	351	391	0.64	ccagtttgccct	acccctc ag catgctgatcgccatgggtg
414	454	0.83	aatgtgcaac	actgccttc ag gtcctcggtgcccaacatca	414	454	0.83	aatgtgcaacac	tgccttc ag gtcctcggtgcccaacatca
503	543	0.98	ggctgctatt	tttcctggc ag gtactgtgagcctctcccca	503	543	0.98	ggctgctatttt	tcctggc ag gtactgtgagcctctcccca
1515	1555	0.73	ttagaatgtg	ctttatgac ag gttagtgtttcctctgaggc	1515	1555	0.73	ttagaatgtgct	ttatgac ag gttagtgtttcctctgaggc

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	Ll distance	Ranking (L1)
aaacg(t/c)atttt	tatttt	catttt	31133	81%

CRYP-SKIP

Human Splicing Finder

Este tipo de nomenclatura no la permite.

SVM-BPfinder

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés (la primera **a** en minúsculas detrás de las mayúsculas, que indican el exón) no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

seq id	agez	cc dict	bp seq bp scr	y cont not off	ppt len ppt scr	evm ecn			
wt	52	133	tgttgaaga	-1.00956740914	0.5625 4	14	30	0.21443	176
wt	52	127	agattactt	-1.88101073987	0.573770491803	1	11	26	0.029497937
wt	52	114	ttgtgactt	1.10624650428	0.550458715596	1	16	32	1.2475164
wt	52	99	acctcatgc	1.00201220116	0.550458715550	9	14	0.89612	
wt	52	87	tgtttaaaa	-3.9786620974	0.475609756098	12	6	13	-1.6409222
wt	52		•		0.481481481481	11	6	13	-0.58375036
	52	86	gtttaaaag	-1.44518207278			6		
wt		80	aagtaaaac	-0.527492388703		5	_	13	0.16349253
wt	52	69	attttaacg	-3.64777439711	0.5 18	10	16	-1.8553	
wt	52	68	ttttaacga	0.714929736122	0.507936507937	17	10	16	-0.081262664
wt	52	60	atgttagaa	-4.72411342716	0.509090909091	9	10	16	-1.7041458
wt	52	54	gaataagac	-0.842110751682		3	10	16	0.2091737
wt	52	40	ttctaaata	0.246333338382	0.542857142857	4	12	17	0.57873205
wt	52	34	atatcacct	-0.938217719104	0.551724137931	1	9	14	0.27973553
wt	52	26	tacttatga	-1.01486748302	0.47619047619	21	0	0	-1.1710599
wt	52	23	ttatgaata	-2.01321219191	0.5 18	0	0	-1.3643	3743
wt	52	19	gaataacat	0.970303282875	0.571428571429	14	0	0	0.080075666
mut	52	133	tgttgaaga	-1.00956740914	0.5625 4	14	30	0.21443	376
mut	52	127	agattactt	-1.88101073987	0.573770491803	1	11	26	0.029497937
mut	52	114	ttgtgactt	1.10624650428	0.550458715596	1	16	32	1.2475164
mut	52	99	acctcatgc	1.00201220116	0.5 3	9	14	0.89612	2524
mut	52	87	tgtttaaaa	-3.9786620974	0.475609756098	36	10	16	-3.1321344
mut	52	86	gtttaaaag	-1.44518207278	0.481481481481	35	10	16	-2.0749625
mut	52	80	aagtaaaac	-0.527492388703		29	10	16	-1.3277197
mut	52	69	attttaacg	-3.64777439711	0.5 18	10	16	-1.8553	
mut	52	68	ttttaacga	0.714929736122	0.507936507937	17	10	16	-0.081262664
mut	52	60	atgttagaa	-4.72411342716	0.509090909091	9	10	16	-1.7041458
mut	52	54	gaataagac	-0.842110751682		3	10	16	0.2091737
mut	52	40	ttctaaata	0.246333338382	0.542857142857	4	12	17	0.57873205
mut	52	34	atatcacct	-0.938217719104		1	9	14	0.27973553
						_	_	_	
mut	52	26	tacttatga	-1.01486748302	0.47619047619	21	0	0	-1.1710599
mut	52	23	ttatgaata	-2.01321219191	0.5 18	0	0	-1.3643	
mut	52	19	gaataacat	0.970303282875	0.571428571429	14	0	0	0.080075666

Variant Effect Predictor tool

Se trata de una variante que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal.

ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	3_prime_UTR_variant	CLDN12	ENSG00000157224 Transcript	ENST00000287916.8	protein_coding	3/3	1603	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C	downstream_gene_variant	CLDN12	ENSG00000157224 Transcript	ENST00000394604.5	protein_coding	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	3_prime_UTR_variant	CLDN12	ENSG00000157224 Transcript	ENST00000394605.2	protein_coding	3/3	1526	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	downstream_gene_variant	CLDN12	ENSG00000157224 Transcript	ENST00000416322.5	protein_coding	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	downstream_gene_variant	CLDN12	ENSG00000157224 Transcript	ENST00000427904.1	protein_coding	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	intron_variant, non_coding_transcript_variant	CLDN12	ENSG00000157224 Transcript	ENST00000451941.6	processed_transcript	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	downstream_gene_variant	CLDN12	ENSG00000157224 Transcript	ENST00000462636.5	retained_intron	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	intron_variant, non_coding_transcript_variant	AC006153.1	ENSG00000273299 Transcript	ENST00000480135.1	IncRNA	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	intron_variant, non_coding_transcript_variant	CLDN12	ENSG00000157224 Transcript	ENST00000483862.5	processed_transcript	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	3 prime UTR variant	CLDN12	ENSG00000157224 Transcript	ENST00000496677.6	protein_coding	4/4	1571	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	intron_variant, non_coding_transcript_variant	CLDN12	ENSG00000157224 Transcript	ENST00000498033.5	processed_transcript	-	-	-	-	-	-	-
ENST00000394605.2:c.*581T>C 7:90413992- C 90413992	downstream_gene_variant	CLDN12	ENSG00000157224 Transcript	ENST00000498326.5	processed_transcript	-	-	-		-	-	-

ESEfinder

Se tienen dos resultados con sus acciones positivas sobre las materias 5':

1386 (-175) TGCCACTGTTTAAAAGTAAAACGTATTTTA	3.40630	1386 (-175) TGCCACTGTTTAAAAGTAAAACGTATTTTA -11.32190	1386 (-175) TGCCACTGTTTAAAAGTAAAACGTATTTTA	2.79880	1386 (-175) TGCCACTGTTTAAAAGTAAAACGTATTTTA -14.57930
1406 (-155) ACGTATTTTAACGATGTTAGAATAAGACTA	0.97340	1406 (-155) ACGTATTTTAACGATGTTAGAATAAGACTA -16.22440			1406 155) ACGTATTTTAACGATGTTAGAATAAGACTA -17.94610

Si se comparan con los resultados para la secuencia mutante se observa que las puntuaciones han aumentado ligeramente:

1386 (-175) TGCCACTGTTTAAAAGTAAAACGCATTTTA	3.73950	1386 (-175) TGCCACTGTTTAAAAGTAAAACGCATTTTA -10.85380	1386 (-175) TGCCACTGTTTAAAAGTAAAACGCATTTTA	3.28730	1386 (-175) TGCCACTGTTTAAAAGTAAAACGCATTTTA -14.15910 1386 (-175) TGCCACT -4.	.00960
1406 (-155) ACGCATTTTAACGATGTTAGAATAAGACTA	1.74920	1406 (-155) ACGCATTTTAACGATGTTAGAATAAGACTA -16.62950	1406 (-155) ACGCATTTTAACGATGTTAGAATAAGACTA	1.32640		5.01670

Por lo tanto podría estar activándose o haciéndose más fuerte un sitio donor.

En cuento a los sitios ESE, parece que algunos de lo sitios se están modificando, por lo que podrían estar afectando al *splicing*:

h			P	
1403	1.42065	1403	1403	1403
(-158) AAAACGT		AAAACGT 0.27244	(-158) AAAACGTA -0.73529	(-158) AAAACGT -2.67967
1404	-1.94380	1404	1404	1404
(-157) AAACGTA		(-157) AAACGTA -1.65690	(-157) AAACGTAT -2.58192	(-157) AAACGTA -3.95077
1405	-4.27938	1405	1405	1405
AACGTAT		(-156) AACGTAT -3.27373	(-156) AACGTATT -2.65561	(-156) AACGTAT -4.30710
1406	-5.33565	1406	1406	1406
(-155) ACGTATT		(-155) ACGTATT -4.14202	(-155) ACGTATTT -4.33651	(-155) ACGTATT -4.12293
1407	-1.16515	1407	1407	1407
(-154) CGTATTT		(-154) CGTATTT 0.04748	(-154) CGTATTTT -3.59235	(-154) CGTATTT -2.12015
1408	-5.86862	1408	1408	1408
(-153) GTATTTT		(-153) GTATTTT -4.93691	(-153) GTATTTTA 1.62430	(-153) GTATTTT -3.52663
1409	-5.76604	1409	1409	1409
(-152) TATTTTA		(-152) TATTTTA -4.78866	(-152)	(-152) TATTTTA -4.02423
1403	-0.43275	1403	1403	1403
(-158)		(-158) AAAACGC -0.92425	(-158) AAAACGCA -1.37973	(-158) AAAACGC -1.14057
1404	-2.40151	1404	1404	1404
(-157) AAACGCA		(-157) AAACGCA -1.76090	(-157) AAACGCAT -0.85291	(-157) AAACGCA -2.23385
1405	-1.75565	1405	1405	1405
(-156) AACGCAT		(-156) AACGCAT -1.46194	(-156) AACGCATT -1.89637	(-156) AACGCAT -5.79835
1406	-3.87833	1406	1406	1406
(-155) ACGCATT		(-155) ACGCATT -2.88726	(-155) ACGCATTT -4.10567	(-155) ACGCATT -1.73830
1407	1.14487	1407	1407	1407
(-154) CGCATTT		(-154) CGCATTT 2.11634	(-154) CGCATTTT -3.02342	(-154) CGCATTT -3.46842
1408	-6.47155	1408	1408	1408
(-153) GCATTTT		(-153) GCATTTT -5.18569	(-153) GCATTTTA 0.23590	(-153) GCATTTT -3.21458
1409	-2.81555	1409	1409	1409
(-152)		(-152) CATTTTA -1.68361	(-152) CATTTTAA -0.69874	(-152) CATTTTA -4.38092

EX-SKIP

No se puede analizar porque las secuencias son demasiado largas.

ttcctgctctgttctgctattgtcccctcatgatttgtcctcttgtgtgtcaccccctagTCTGACTGACAGTACTCCAC AAGCTTGCCTGCCATGGGCTGTCGGGATGTCCACGCACCACAGTCCTTTCCTGTGTGGAATCGCCTCAGTAGCAG GCCTCTTTGCAGGGACTCTGCTTCCCAACTGGAGAAAATTACGATTGATCACATTCAACAGAAACGAGAAGAACCTGACT GTTTACACAGGCCTGTGGGTGAAATGTGCCCGGTATGACGGGAGCAGTGACTGCCTGATGTACGACACTACTTGGTACTC ATCAGTTGACCAGCTGGACCTGCGTGTCCTCCAGTTTGCCCTACCCCTCAGCATGCTGATCGCCATGGGTGCCCTGCC TCTGCCTGATTGGAATGTGCAACACTGCCTTCAGGTCCTCGGTGCCCAACATCAAACTGGCCAAGTGTCTGGTCAATAGT TTATAACATCCATCTGAACAAGAAGTTTGAGCCAGTCTTTTCATTTGACTATGCAGTGTATGTCACTATTGCTAGTGCTG GGGGCCTGTTTATGACTTCCCTTATACTATTTATTTGGTATTGTACATGCAAATCTTTGCCTTCTCCTTTCTGGCAACCA TTGTACTCCCATCCACCCAGTATGCATACTTACTCACAGCCCTATTCAGCACGCTCTCGCCTCTCTCCCCATTGAAATTGA CATTCCAGTAGTTTCACACACCACTTAATGGGGAAATAGTTAATTGTTAAAGAAAACTTCTTGTAGCCTCACATTCCCCT AGGAATTTTAGCCTTCATATTGATATCTAATTAATTATTTAAGTGGAAGAGGCCTGCATCACAATTGAGGTAATGTAGAG CAACATGTTAAAGAATGATGGTTAGCAGAAGCTGTTGTATACAATCTTCATGAAAATTTCAGTGTGTATTTTTCTTTTTTC GTCAATAATCTAGCTTAAGGCTGTAACTCTTCTATCGGGGCTAATTGTATGAATAGGTGTCAGTATGTTGAAGATTACTT TCTTTTGTGACTTTCTTCTACCTCATGCCACTGTTTAAAAGTAAAACGTATTTTAACGATGTTAGAATAAGACTACCATT CTAAATATCACCTACTTATGAATAACATGTAATAATTTTTAACATTAATGATTCCATAAATTGTATTATTGGGATTAGAA TGTGCTTTATGACAGGTTAGTGTTTCCTCTGAGGCAGAAAACTCTTTTTTTGGAGATATCTTCCATCAAGCAGTACTCGTG AGGGGACAAGAAGTCTGTTCTTCAGTGAGTACACTAGAGATTTACTCTGGTGACTGCCTTTTGAGTTATGGGTGAAGTAA GGTATGGCTTTACCATAACCTTGATTCATTCACCCTTGATTCATTTCTCGCCCCCGTCACTGATTATTTCCTTGAGCATA TAATAGAGAAGATCAAAATGTTACCTGGCAGTTGGGGAATAATCTGACTTCGTTGGCAGTTGGCCTTAACTTCTTAATCA TTGATCCAGGAATATTTCAACCAGAGACACAACTTTCTGGCAGACAACAATTGTACAACACCAACAATATCCTGGACC TTGAAATTCTGTTTACTTCAGTCCATTGTATCCTTTAAGGCACCTGTGCTAGATTTTGTAATAACACTGATTTAT GAGAATGGACAAAAGTGGTAGGGAAATTGTTCCCTCTCCACTTCTGAAAGTATGATGATGTATTAAGGATGGAGGAGTTA TTAAAAATGTCTCTTCTGATGAGGTAACAATTAGATGAAACCATGTTAAAGCTGAGATGAACACTTAGAAATTCAGGGAT ATTGGGTCTTTAGCCTTATGAATTTGAGCTGCTTATTTAATTGGTGTAATTTACTACATATTAGTACTATATTCGTAAGG ATTTTTTATTAACCATTACAGATTTTACAAACAGCTAGTTATATGGTAAACAGATTATTATGCCTTTTTTGCAATTCTGAA TCTAGTTGTATAAATTTTTAAATGCCGTCAGTAGAAAGCACACAAGGTTATGATTTTTTAATTACTGGCTTCTGATTTC TTTCACTTCTGATCCTTTTCCTTTTTCTCAGATGTAGCTGAGTCTTGATCATTTTAAGACAACGATGGGTAGAATTTTGA GATTAATGTTAATTTTCCCTTTTTTGTTAATTTCAGTCCCCTCTCACTATGCTTTTTGTCCAGAAGGATCAAGAATTCTACC ATGGGATTGTAAATATAAACATTAACTTTCCTATAAGAATATTTTGGCTTTTGTAATCTATAGCCTCAAATTGGTATTTAT TATGGATTCACTAGACAACAGCTGTTTCCTTATTGTCTTTTTCTTTAGTGTTTTCTGATTTGCTATCAGTAGCTGTTTT TAAAGCCGTCCAAGGAAAATAATTTACAGTTTTTGAAGTCACTTTTGAGCCCTCATCAAGCTCTCATTGTGATGGGA GGGATACCTTTTTGTTGTTAAAAGCCTATTATTGTTAAAGGCCTTTTTATGGAAAACCAACTTGGAAAACAACCTTAAATGT TGGATAGTATATTTGCTGTAAACTACAATGTAAAACCTCAATAAAAGTGCGCTGTACTTTCTTAATGTTTATTAAAAGATG TATTTTTACAAgtttctgcttctgtttttttcctcagtgttttaaggtgaaatattttgagaaatgtttct