ABELE Image Explainer

XAI course 2021/2022 Trenta Alessandro

ABELE – Model description

- Local: it generates explanations of an image based on its neighborhood obtained with a generative algorithm.
- Black-box model: the predictor is treated as a black-box
- Based on the usage of an adversarial autoencoder.
- Neighborhood found in the latent space of the autoencoder: using features/concepts instead of pixels.
- Generates a decision tree in the latent space neighborhood to generate explanations.

ABELE – Process and outputs

- ABELE generates a neighborhood in the latent space using a generative algorithm.
- A decision tree on the latent space is generated for label prediction using the black box.
- Using the decision tree and the decoder of our network ABELE generates a saliency map, exemplars and counterexemplars.

Cifar10 dataset

- 50000 train images, 10000 test images
- 32x32 pixel colored images

Example outputs

Decision tree explanatory rule

```
e = \{
                                             r = \{205 \le 1.76, 39 > 2.60, 171 \le -0.17, 220 > -0.04, 211 \le 0.38, 239 \le 0.50\} \rightarrow \{\text{class}: 7\}
                                             c = \{ \{39 \le 2.60\} \to \{\text{class}: 4\}, \{171 > -0.17\} \to \{\text{class}: 3\}, \{220 \le -0.04\} \to \{\text{class}: 3\}, \{171 > -0.17\} \to \{\text{class}
                                             \{239 > 0.50\} \rightarrow \{\text{class}: 4\}, \{205 > 1.76\} \rightarrow \{\text{class}: 4\}, \{211 > 0.38\} \rightarrow \{\text{class}: 4\}\}
```

Prototypes

model prediction: 8 - ship

Saliency map

Image to explain - black box 8 - ship

Counterexemplars

model prediction: 0 - airplane

Attention area respecting latent rule

The Black Box

Description

- Convolutional Neural Network
- 3 Conv2D layers, then 2 dense layers
- 50 epochs
- Batch size: 128
- Loss: categorical cross entropy
- Metrics: accuracy

	Loss (CatCrossEnt)	Accuracy
Training	0.0680	0.9782
Test	2.4969	0.6975

Structure

Layer	filters	kernel_size	stride	units	activation
Conv2D	32	3x3	1x1	/	ReLU
MaxPooling2D	/	2x2	/	/	/
Conv2D	64	3x3	1x1	/	ReLU
MaxPooling2D	/	2x2	/	/	/
Conv2D	128	3x3	1x1	/	ReLU
Flatten	/	/	/	/	/
Dense	/	/	/	100	ReLU
Dense	/	/	/	50	ReLU
Output	/	/	/	10	/

Adversarial Autoencoder (AAE)

- Similar to Variational Autoencoder (VAE).
- Encoder decoder network with an additional discriminator network.
- Given x input, z its latent representation we want p(z|x) to match a Gaussian N(0,1) distribution.
- In VAEs this is done via information theory.
- In AAEs this is done in a generative way where the encoder plays the role of the generator

AAE

Description

- Encoder network is a deep CNN with 4 Conv2D layers and 2 dense layers.
- Decoder network is the symmetric
- Discriminator network is a FCNN with 2 dense layers.
- 149 epochs
- Batch size: 256
- Latent dimension: 256

Structure

Layer	filters	kernel_size	strides	units	activation	padding
Conv2D*	64	4	2	/	LeakyReLU ($\alpha = 0.2$)	same
Conv2D*	128	4	2	/	LeakyReLU ($\alpha = 0.2$)	same
Conv2D*	256	3	2	/	LeakyReLU ($\alpha = 0.2$)	same
Conv2D*	512	3	2	/	LeakyReLU ($\alpha = 0.2$)	same
Flatten	/	/	/	/	/	/
Dense*	/	/	/	1000	ReLU	/
Dense (output)	/	/	/	512	/	/

Table 1: * Layers with L2 kernel regularization and batch normalization

Discrimnator: 2 dense layers of 200 units with L2 kernel regularization and ReLU activation

AAE - training

Epoch	Learning Rate
0 - 50	0.0001
50 - 75	0.00005
75 - 100	0.00002
100-149	0.00001

2 -	•	•	• •	•	•
1 -	•	, al			
0 -		A	13.50		
	•		65.50	10000	
-1 -		•			

Analysis and results

We are going to look at some example image prediction using ABELE:

- Decision tree explainatory rules are omitted due to lack of interpretability.
- ABELE gives us the decision tree prediction and the fidelity of the decision tree in the neighborhood
- Fidelity is defined as the ratio of correct decision tree predictions matching the black box prediction.
- The latent space dimension is high, therefore the prototypes appear to be confused. We are going to omit them unless relavant.

Example 1 – ship – fidelity 64%

Image to explain - black box 8 - ship

Attention area respecting latent rule

- Saliency map showing the black box is working well
- Second counterexemplar similar to original image
- First counterexemplar has different background color

model prediction: 0 - airplane

model prediction: 8 - ship

Example 2 – horse – fidelity 90%

Image to explain - black box 7 - horse

- Black box is predicting correctly but not focusing on the horse itself.
- Counterexemplars are all animals.

model prediction: 3 - cat

Example 3 – airplane – fidelity 64%

Image to explain - black box 4 - deer

- Wrong prediction
- The attention area is correctly identified.
- All counterexemplars are still animals.

model prediction: 4 - deer

Example 4 – truck – fidelity 95%

Image to explain - black box 2 - bird

- Black box AND decision tree predict a bird.
- Blue points are mostly in the background and floor.
- Most counterexemplars are predicted correctly.
- Some of them are animals.
- Complex neighborhood?

model prediction: 9 - truck

model prediction: 9 - truck

Example 5 – frog – fidelity 70%

Image to explain - black box 6 - frog

- Same issue as before
- Interesting prototype.
- Confused counterexemplars but all animals

model prediction: 6 - frog

Final remarks

- Saliency maps and counterexemplars are the most meaningful and interpretable outputs.
- It can show the black box is not following the right patterns.
- High reconstruction error and a not so powerful AAE lead to confused image.
- Prototypes are not human-undestandable for high latent dimensions.
- Without a clear understaning of latent space variables the explainatory rules and the decision tree are not interpretable.
- Low fidelity may indicate bad interpretations.
- Slow to get results.
- The algorithm doesn't produce outputs every time.

Thank you!