CS 207 :: Autumn 2021 September 11, 2021

1. $\phi(120) =$ ____.

Solution: $120 = 2^3 \cdot 3 \cdot 5$, so $\phi(120) = 2^2 \cdot (2-1)(3-1)(5-1) = 32$.

2. $\phi(540) =$ ____.

Solution: $540 = 2^2 \cdot 3^3 \cdot 5$, so $\phi(540) = 2 \cdot 3^2 \cdot (2-1)(3-1)(5-1) = 144$.

3. $\phi(600) =$ ____.

Solution: $600 = 2^3 \cdot 3 \cdot 5^2$, so $\phi(600) = 2^2 \cdot 5 \cdot (2-1)(3-1)(5-1) = 160$.

4. Chinese Remainder Theorem

Find the smallest positive integer solution to:

$$x \equiv 2 \pmod{19}$$

$$x \equiv 5 \pmod{20}$$

Show your work.

Solution: We execute the Extended Euclidean Algorithm to find two integers u, v such that 19u+20v=1:

$$gcd(19, 20) = gcd(19, 1 = 20 - 19) = 1$$

so that $1 = 1 \cdot 20 - 1 \cdot 19$. Therefore, u = -1 and v = 1.

Alt: It is OK to just list the sequence of pairs as:

$$(19, 20) \rightarrow (19, 1 = 20 - 19)$$

Then a solution for x is given by $19u \cdot 5 + 20v \cdot 2 = -19 \cdot 5 + 20 \cdot 2 = -55 = 380 - 55 \pmod{380} = 325 \pmod{380}$. This is the unique solution in the range [0, 380).

Alt: May derive this solution by considering, e.g., that $x_1 = 19u$ solves $x_1 \equiv 1 \pmod{20}$ and $x_1 \equiv 0 \pmod{1}9$, and similarly $x_2 = 20v$ solves $x_2 \equiv 0 \pmod{20}$ and $x_2 \equiv 1 \pmod{1}9$, and $x_3 \equiv 1 \pmod{1}9$, and $x_4 \equiv 1 \pmod{1}9$, and $x_5 \equiv 1 \pmod{1}9$.

5. Chinese Remainder Theorem

Find the smallest positive integer solution to:

$$x \equiv 3 \pmod{19}$$

$$x \equiv 10 \pmod{20}$$

Show your work.

Solution: We execute the Extended Euclidean Algorithm to find two integers u,v such that 19u+20v=1:

$$\gcd(19,20) = \gcd(19,1 = 20 - 19) = 1$$

so that $1 = 1 \cdot 20 - 1 \cdot 19$. Therefore, u = -1 and v = 1.

Alt: It is OK to just list the sequence of pairs as:

$$(19, 20) \rightarrow (19, 1 = 20 - 19)$$

Then a solution for x is given by $19u \cdot 10 + 20v \cdot 3 = -19 \cdot 10 + 20 \cdot 3 = -130 = 380 - 130 \pmod{380} = 250 \pmod{380}$. This is the unique solution in the range [0, 380).

Alt: May derive this solution by considering, e.g., that $x_1 = 19u$ solves $x_1 \equiv 1 \pmod{20}$ and $x_1 \equiv 0 \pmod{19}$, and similarly $x_2 = 20v$ solves $x_2 \equiv 0 \pmod{20}$ and $x_2 \equiv 1 \pmod{19}$, and $x_3 \equiv 1 \pmod{19}$, and $x_4 \equiv 10x_1 + 3x_2$.

6. Chinese Remainder Theorem

Find the smallest positive integer solution to:

$$x \equiv 2 \pmod{19}$$
$$x \equiv 10 \pmod{20}$$

Show your work.

Solution: We execute the Extended Euclidean Algorithm to find two integers u, v such that 19u+20v = 1:

$$gcd(19, 20) = gcd(19, 1 = 20 - 19) = 1$$

so that $1 = 1 \cdot 20 - 1 \cdot 19$. Therefore, u = -1 and v = 1.

Alt: It is OK to just list the sequence of pairs as:

$$(19, 20) \rightarrow (19, 1 = 20 - 19)$$

Then a solution for x is given by $19u \cdot 10 + 20v \cdot 2 = -19 \cdot 10 + 20 \cdot 2 = -150 = 380 - 150 \pmod{380} = 230 \pmod{380}$. This is the unique solution in the range [0, 380).

Alt: May derive this solution by considering, e.g., that $x_1 = 19u$ solves $x_1 \equiv 1 \pmod{20}$ and $x_1 \equiv 0 \pmod{19}$, and similarly $x_2 = 20v$ solves $x_2 \equiv 0 \pmod{20}$ and $x_2 \equiv 1 \pmod{19}$, and $x_3 \equiv 1 \pmod{19}$, and $x_4 \equiv 10x_1 + 2x_2$.

7. Chinese Remainder Theorem

Find the smallest positive integer solution to:

$$x \equiv 3 \pmod{19}$$
$$x \equiv 5 \pmod{20}$$

Show your work.

Solution: We execute the Extended Euclidean Algorithm to find two integers u, v such that 19u+20v = 1:

$$gcd(19, 20) = gcd(19, 1 = 20 - 19) = 1$$

so that $1 = 1 \cdot 20 - 1 \cdot 19$. Therefore, u = -1 and v = 1.

Alt: It is OK to just list the sequence of pairs as:

$$(19,20) \rightarrow (19,1=20-19)$$

Then a solution for x is given by $19u \cdot 5 + 20v \cdot 3 = -19 \cdot 5 + 20 \cdot 3 = -35 = 380 - 35 \pmod{380} = 345 \pmod{380}$. This is the unique solution in the range [0, 380).

Alt: May derive this solution by considering, e.g., that $x_1 = 19u$ solves $x_1 \equiv 1 \pmod{20}$ and $x_1 \equiv 0 \pmod{1}9$, and similarly $x_2 = 20v$ solves $x_2 \equiv 0 \pmod{20}$ and $x_2 \equiv 1 \pmod{1}9$, and $x_3 \equiv 1 \pmod{1}9$, and $x_4 \equiv 1 \pmod{1}9$, and $x_5 \equiv 1 \pmod{1}9$.

8. System of Linear Equations

Solve the following system of equations modulo 10:

$$x + 4y \equiv 2 \pmod{10}$$

 $2x + 5y \equiv 3 \pmod{10}$

Show your work.

Solution: After multiplying the first equation by 2 and then subtracting the second equation from it, we get

$$3y \equiv 1 \pmod{10}$$

Since 3 and 10 are co-prime, the inverse of 3 exists modulo 10. It is not hard to see that 7 is the inverse of 3 modulo 10. Therefore, multiplying both sides of the above equation by 7, we get

$$y \equiv 7 \pmod{10}$$

Putting this in the first equation, we get

$$x + 28 \equiv 2 \pmod{10}$$
$$x \equiv -26 \pmod{10}$$
$$x \equiv 4 \pmod{10}$$

9. System of Linear Equations

Solve the following system of equations modulo 10:

$$2x + 5y \equiv 4 \pmod{10}$$
$$x + 4y \equiv 3 \pmod{10}$$

Show your work.

Solution:

After multiplying the second equation by 2 and then subtracting the first equation from it, we get

$$3y \equiv 2 \pmod{10}$$

Since 3 and 10 are co-prime, the inverse of 3 exists modulo 10. It is not hard to see that 7 is the inverse of 3 modulo 10. Therefore, multiplying both sides of the above equation by 7, we get

$$y \equiv 14 \equiv 4 \pmod{10}$$

Putting this in the second equation, we get

$$x + 16 \equiv 3 \pmod{10}$$
$$x \equiv -13 \pmod{10}$$
$$x \equiv 7 \pmod{10}$$

CS 207 :: Autumn 2021 :: Quiz 2

10. Suppose for integers a, b we have au + bv = g, where $g = \gcd(a, b)$, and u, v are integers. Then, describe the set of all integer solutions (x, y) for the equation

$$ax + by = c$$
,

where c is some integer. You may consider different cases for c, and write your solution separately for each case. Justify your answer.

Solution: Let L(a,b) denote the set of all linear combinations of a and b. Similarly let M(g) denote the set of all multiples of g. In class, it was shown that L(a,b)=M(g), where $g=\gcd(a,b)$. Since c is also a linear combination of a and b, we can say that there exists an integer b s.t. c=gb. Upon expanding as linear combinations of a and b, we get

$$ax + by = (au + bv)h$$
$$a(x - uh) = b(vh - y)$$

Dividing both sides of the above equation by g, we get

$$m(x - uh) = n(vh - y)$$

where m and n are co-prime to each other. This is only possible if m|(vh-y) and n|(x-uh). In other words, a|g(vh-y) and b|g(x-uh). In modulo terms, the first equation implies

$$g(vh - y) \equiv 0 \pmod{a}$$

 $gy \equiv vc \pmod{a}$

Similarly, the second equation implies

$$gx \equiv uc \pmod{b}$$

The above two equations describe the set of all integer solutions to the equation ax + by = c.

11. For integers x, m > 1, we say that x is *nil potent* modulo m if there exists a positive integer n such that

$$x^n \equiv 0 \pmod{m}$$
.

We define the "square-free part" of a positive integer m, denoted as SFP(m), as the smallest positive integer z for which there exists an integer y such that $m = zy^2$.

Characterize all numbers that are nil potent modulo m (where m > 1), in terms of SFP(m). Justify your answer.

Solution: First of all, if x is nil potent modulo m, then all prime factors of m are also factors of x. In fact, any integer x which is divided by all prime factors of m is nil potent modulo m. Therefore, one needs to extract the product of all prime factors of m in terms of SFP. For instance, define F(m) as the largest number z such that z|m and SFP(z)=z. Then, a recursive definition would work:

$$F(1) = 1, F(m) = \operatorname{lcm}\left(\operatorname{SFP}(m), F\left(\sqrt{\frac{m}{\operatorname{SFP}(m)}}\right)\right)$$

Then the final characterisation required would be "all multiples of F(m)".

12. Unique Cube-Root

Give an explicit characterization of all prime numbers p such that there is a unique cube-root of 1 modulo p. That is, give a necessary and sufficient condition for a prime p to satisfy the following:

$$\forall x \in \mathbb{Z}, \ x^3 \equiv 1 \pmod{p} \to x \equiv 1 \pmod{p}.$$

Make your condition as simple as you can, and prove your claim.

Solution: Using Euler's Totient theorem, we can restate the above condition as

$$\forall x \in \mathbb{Z}, \ x^{3 \mod \phi(p)} \equiv 1 \pmod{p} \to x \equiv 1 \pmod{p}.$$

It is easy to see that a necessary and sufficient condition for this to hold is that $gcd(3, \phi(p)) = 1$. Since p is a prime, we can re-write this as gcd(3, p - 1) = 1. Therefore, either p - 1 = 3k + 1 or p - 1 = 3k + 2 for some integer k. Since p is a prime, we cannot have p - 1 = 3k + 2 as that would imply p = 3k + 3 = 3(k + 1). Therefore, the only valid solutions are p = 3k + 2 and p = 3, for all integers k.

13. Square Roots

Find all integers x in the range [0, 199] such that

$$x^2 \equiv 1 \pmod{200}$$

You should prove that these are the only solutions.

Solution: By CRT, $x^2 \equiv 1 \pmod{200}$ if and only if x satisfies the system of congruences $x^2 \equiv 1 \pmod{8}$ and $x^2 \equiv 1 \pmod{25}$.

Let us first find all possible solutions to $x^2 \equiv 1 \pmod 8$. Bringing 1 to the left and using a common identity, we can write

$$(x-1)(x+1) \equiv 0 \pmod{8}$$

Therefore, $x^2 \equiv 1 \pmod 8$ iff $(x+1)(x-1) \equiv 0 \pmod 8$. That is 8|(x+1)(x-1). This means that $2^i|(x+1)$ and $2^j|(x-1)$ for some i,j such that $i+j \geq 3$. Suppose $2^i|(x+1)$ and $2^j|(x-1)$. Note that if $i \geq 2$ and $j \geq 2$, then 4|(x+1) and 4|(x-1), which implies that 4|2, a contradiction. So we have the following 4 cases where at least one of i,j is < 2:

- i = 0. In this case $j \ge 3$, and so 8 | (x 1). That is $x \equiv 1 \pmod{8}$.
- i=1. In this case $j \ge 2$, and so 4|(x-1). That is x-1=4q. If q is even, have $x \equiv 1 \pmod 8$ as in the previous case. Otherwise, $x \equiv 5 \pmod 8$.
- i > 2, j = 1. In this case, working as above, we get $x \equiv -1 \pmod{8}$ or $x \equiv 4 1 \equiv 3 \pmod{8}$.
- $i \ge 3, j = 0$. In this case, working as above, we get $x \equiv -1 \equiv 7 \pmod{2^k}$.

Therefore, the solutions to $x^2 \equiv 1 \pmod 8$ are $x \equiv 1, 3, 5, 7 \pmod 8$. Similarly, the solutions for $x^2 \equiv 1 \pmod 25$ will be given by all x's s.t. 25|(x+1)(x-1). Since 5 cannot divide both x-1 and x+1, as that would imply that 5|2, we can say that either 25|x-1 or 25|x+1. Therefore, the only solutions to this are $x \equiv \pm 1 \pmod {25}$.

Therefore, the set of solutions of $x^2 \equiv 1 \pmod{200}$ are exactly those which satisfy

$$x \equiv 1, -1, 3, 5 \pmod{8}$$

 $x \equiv 1, -1 \pmod{25}$.

Each of the 8 pairs in $\{\pm 1, 4\pm 1\} \times \{\pm 1\}$ corresponds to the CRT representation of a unique x modulo 200. Using the fact that $8 \cdot (-3) + 25 \cdot (1) = 1$, we obtain these 8 solutions as 1, 49, 51, 99, 101, 149, 151, 199.

14. Speed of Euclid's Algorithm.

The Euclidean algorithm zooms into the answer quite quickly. This is because, at each step one of the numbers is replaced by a number which is at most half of it. To see this, prove the following. If x, y are positive integers with $y \le x$, and r is the remainder on dividing x by y, then r < x/2. That is, prove that if

$$x \equiv r \pmod{y}$$
 and $0 \le r < y$

then

$$r < \frac{x}{2}$$
.

Solution: By division lemma. Let x = yq + r, where 0 < r < y and $q \ge 0$. As, $x \ge y$, we have, $q \ge 1$.

<u>Proof 1</u>: Proof by contradiction.

Suppose, $r \geq \frac{x}{2}$.

Then, we have, $x=yq+r\geq yq+\frac{x}{2}$. This implies, $\frac{x}{2}\geq yq\geq y>r$, which is a contradiction. Hence proved.

Proof 2: Case study.

case 1: $y \leq \frac{x}{2}$.

Then as, y > r, we have, $r < \frac{x}{2}$.

case 2: $\frac{x}{2} < y \le x$.

In this case, q has to be 1.

This implies, $r = x - y < \frac{x}{2}$.

Thus, in all cases we have the desired output.