Math 644 - Homework 6 - Due Friday, Oct. 19, 2012

- 1. Solve Evans, Problem 17 in Chapter 2. (subsolutions to Heat Eq.)
- 2. (A method for deducing decay estimates.) Building upon the previous problem... Suppose that U = (0,1) and $u \in C_1^2(U_T)$ solves:

$$\begin{cases} u_t(x,t) - u_{xx}(x,t) = 0 \text{ for } (x,t) \in (0,1) \times (0,+\infty) \\ u(x,0) = x(1-x) \text{ for } x \in [0,1] \\ u(0,t) = u(1,t) = 0 \text{ for } t > 0. \end{cases}$$
 (1)

Show that $u \geq 0$.

c) For u as in (1), show that there exist constants $\alpha, \beta > 0$ such that:

$$u(x,t) \le \alpha x(1-x)e^{-\beta t}$$
.

Deduce that $u(x,t) \to 0$ as $t \to +\infty$.

3. (Heat eqn on a periodic domain.) Suppose $g \in C(\mathbb{T}^n) \cap L^{\infty}(\mathbb{T}^n)$ on the periodic domain $\mathbb{T}^n = [-\pi, \pi]^n$. We suppose that g is periodic in the following sense: g(x) = g(y) if $x, y \in \partial \mathbb{T}^n$ and $x - y = 2\pi j$ for some $j \in \mathbb{Z}^n$.

We aim to solve the Heat equation

$$\begin{cases} u_t - \Delta u = 0 \text{ for } (x,t) \in (-\pi,\pi)^n \times (0,+\infty) \\ u(x,0) = g(x) \text{ for } x \in \mathbb{T}^n. \\ u(x,t) = u(y,t) \text{ for } t > 0, \ x,y \in \partial \mathbb{T}^n, \frac{x-y}{2\pi} \in \mathbb{Z}^n. \end{cases}$$
 (2)

The last line in (2) assures the boundary condition that u remains periodic.

Show that $u(x,t) = (K_t * g)(x) = \int_{\mathbb{T}^n} K_t(x-y)g(y)dy$ solves (2) where

$$K_t(x) = \sum_{j \in \mathbb{Z}^n} \Phi(x + 2\pi j, t),$$

and $\Phi(x,t)$ is the fundamental solution to the Heat equation on \mathbb{R}^n . Is the equation satisfied? does the initial condition hold? Is $u \in C^{\infty}$? Is u periodic? Justify all calculations rigorously.

(Hint: define $\tilde{g}: \mathbb{R}^n \to \mathbb{R}$ by assuming that $\tilde{g}(x) = g(x)$ for $x \in \mathbb{T}^n$ and $\tilde{g}(x) = \tilde{g}(x + 2\pi j)$ for all $j \in \mathbb{Z}^n$.)

4. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with smooth boundary. Suppose that we can find $F_j \in C^{\infty}(\Omega) \cap L^{\infty}(\Omega)$ such that $\sup_{j \in J} \|F_j\|_{L^{\infty}(\Omega)} \leq C < \infty$ and

$$\begin{cases} \Delta F_j = \lambda_j F_j \text{ in } \Omega \\ F_j(x) = 0 \text{ for } x \in \partial \Omega. \end{cases}$$
 (3)

We further suppose $\lambda_j \leq 0$ and $\{F_j\}_{j\in J}$ form an orthonomial basis for $L^2(\Omega)$. (For example on \mathbb{T}^n , we have $\{e^{x\cdot j\sqrt{-1}}\}_{j\in \mathbb{Z}^n}$ with $\lambda_j = -|j|^2$.)

Let $f = \sum_{j \in J} a_j F_j$, where $\sum_{j \in J} |a_j| < \infty$. We would like to solve the heat equation:

$$\begin{cases} u_t - \Delta u = 0 \text{ for } (x, t) \in \Omega \times (0, +\infty) \\ u(x, 0) = f(x) \text{ for } x \in \Omega. \end{cases}$$
(4)

Solve (4) explicitly as an infinite series in terms of the basis $\{F_j\}_{j\in J}$ and prove that the series converges in a strong sense.

5. Building upon the last question, we will solve the inhomogeneous problem

$$\begin{cases} u_t - \Delta u = g(x, t) \text{ for } (x, t) \in \Omega \times (0, +\infty) \\ u(x, 0) = 0 \text{ for } x \in \Omega. \end{cases}$$
 (5)

In (5) we suppose $g(x,t) = \sum_{j \in J} b_j(t) F_j(x)$, where

$$\sum_{j \in I} \int_0^\infty |b_j(t)| dt \le C < \infty.$$

In this problem solve (5) explicitly as an infinite series in terms of the basis $\{F_j\}_{j\in J}$ and prove that the series converges in a strong sense. (The solution end-up as an inhomogenous version of the solution in the previous problem.)