

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

© The MIT Press, 2014

CHAPTER 2:

SUPERVISED LEARNING

Learning a Class from Examples

- Class C of a "family car"
 - \blacksquare Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training set X

Class C

Hypothesis class ${\mathcal H}$

S, G, and the Version Space

Margin

□ Choose *h* with largest margin

VC Dimension

- \square N points can be labeled in 2^N ways as +/-
- □ \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$

An axis-aligned rectangle shatters 4 points only!

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least 1 − δ, h has error at most ε?
 (Blumer et al., 1989)
- \Box Each strip is at most $\varepsilon/4$
- \square Pr that we miss a strip $1-\epsilon/4$
- \square Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 \varepsilon/4)^N$
- □ $4\exp(-\epsilon N/4) \le \delta$ and $N \ge (4/\epsilon)\log(4/\delta)$

Noise and Model Complexity

Use the simpler one because

- Simpler to use(lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

Multiple Classes, C_i i=1,...,K

Regression

$$\mathcal{X} = \left\{x^{t}, r^{t}\right\}_{t=1}^{N}$$

$$r^{t} \in \Re$$

$$r^{t} = f\left(x^{t}\right) + \varepsilon$$

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g\left(x^{t}\right)\right]^{2}$$

$$E(w_{1}, w_{0} \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - \left(w_{1}x^{t} + w_{0}\right)\right]^{2}$$

$$x \text{ milage}$$

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- lacktriangle The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- \square Overfitting: ${\mathcal H}$ more complex than C or f
- lacksquare Underfitting: ${\mathcal H}$ less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , c (\mathcal{H}),
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- \Box As N, $E \downarrow$
- \square As c (\mathcal{H}), first E^{\downarrow} and then E

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - □ Training set (50%)
 - □ Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

1. Model: $g(\mathbf{x} | \theta)$

Loss function:
$$E(\theta \mid \mathcal{X}) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$$

3. Optimization procedure:

$$\theta^* = \arg\min_{\theta} E(\theta \mid X)$$