Campo Minado

Nome do arquivo fonte: campominado.c, campominado.cpp, campominado.pas, campominado.java, ou campominado.py

Leonardo Viana é um garoto fascinado por jogos de tabuleiro. Nas férias de janeiro, ele aprendeu um jogo chamado "Campo minado", que é jogado em um tabuleiro com N células dispostas na horizontal. O objetivo desse jogo é determinar, para cada célula do tabuleiro, o número de minas explosivas nos arredores da mesma (que são a própria célula e as células imediatamente vizinhas à direita e à esquerda, caso essas existam). Por exemplo, a figura abaixo ilustra uma possível configuração de um tabuleiro com 5 células:

A primeira célula não possui nenhuma mina explosiva, mas é vizinha de uma célula que possui uma mina explosiva. Nos arredores da segunda célula temos duas minas, e o mesmo acontece para a terceira e quarta células; a quinta célula só tem uma mina explosiva em seus arredores. A próxima figura ilustra a resposta para esse caso.

Leonardo sabe que você participa da OBI e resolveu lhe pedir para escrever um programa de computador que, dado um tabuleiro, imprima o número de minas na vizinhança de cada posição. Assim, ele poderá conferir as centenas de tabuleiros que resolveu durante as férias.

Entrada

A primeira linha da entrada contém um inteiro N indicando o número de células no tabuleiro. O tabuleiro é dado nas próximas N linhas. A i-ésima linha seguinte contém 0 se não existe mina na i-ésima célula do tabuleiro e 1 se existe uma mina na i-ésima célula do tabuleiro.

Saída

A saída é composta por N linhas. A i-ésima linha da saída contém o número de minas explosivas nos arredores da i-ésima célula do tabuleiro.

Restrições

• $1 \le N \le 50$

Exemplos

Entrada	Saída
	4
5	
0	2
1	2
1	2
0	1
1	

Entrada	Saída
5	1
0	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
1	3
1	2
1	1
0	