

Grado en Físicas Métodos Numéricos Tema 4. Sistemas de Ecuaciones Diferenciales Ordinarias

Alejandro Medina

Noviembre 2016

ESQUEMA

- Introducción
- 2 MÉTODOS DE UN PASO
- 3 Ejercicios

ESQUEMA

- Introducción
- 2 Métodos de un paso
- 3 EJERCICIOS

Introducción

EJEMPLOS SENCILLOS DE ECUACIONES DIFERENCIALES ORDINARIAS EN FÍSICA

Oscilador armónico amortiguado y circuito RCL:

$$m\frac{d^2x(t)}{dt^2} = -kx(t) - b\frac{dx(t)}{dt}$$

$$L\frac{d^2Q(t)}{dt^2} = -\frac{Q(t)}{C} - R\frac{dQ(t)}{dt}$$

SISTEMA DE ECUACIONES DIFERENCIALES ORDINARIAS

Ecuación diferencial de segundo orden:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x) \longrightarrow \begin{cases} \frac{dy}{dx} = z(x) \\ \frac{dz}{dx} = r(x) - q(x)z(x) \end{cases}$$

SISTEMA DE ECUACIONES GENÉRICO

$$\frac{dy_{\alpha}}{dx} = f_{\alpha}(x; \{y_{\alpha}\})$$
 $\alpha = 1, 2 \dots n$

Condiciones iniciales conocidas: $\{y_{\alpha}(x_i)\}$ $\alpha = 1, 2 \dots n$

$$\{y_{\alpha}(x_{i+1})\}$$
 ??

Sistema de Ecuaciones Diferenciales Ordinarias

Ecuación diferencial de segundo orden:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x) \longrightarrow \begin{cases} \frac{dy}{dx} = z(x) \\ \frac{dz}{dx} = r(x) - q(x)z(x) \end{cases}$$

SISTEMA DE ECUACIONES GENÉRICO

$$\frac{dy_{\alpha}}{dx} = f_{\alpha}(x; \{y_{\alpha}\}) \qquad \alpha = 1, 2 \dots n$$

Condiciones iniciales conocidas:
$$\{y_{\alpha}(x_i)\}$$
 $\alpha = 1, 2 \dots n$

$$\{y_{\alpha}(x_{i+1})\}$$
 ??

ESQUEMA

- 1 Introducción
- 2 MÉTODOS DE UN PASO
 - Método de la serie de Taylor
 - Método de Euler
 - Caso general
 - Métodos de Runge-Kutta
- 3 EJERCICIOS

MÉTODOS DE UN PASO

Consideremos un problema de valores iniciales con una única ecuación:

$$\frac{dy}{dx} \equiv y' = f(x; y)$$
$$y(x_i) = y_i$$

$$y(x_{i+1}) \equiv y_{i+1} = y_i + h_i F(h_i, x_i, y_i; f)$$
 donde: $x_{i+1} = x_i + h_i$

Si el paso $h_i \equiv h$ es constante se dice que el método es de paso fijo

MÉTODO DE LA SERIE DE TAYLOR

Conocido $y(x_i)$ se puede obtener $y(x_{i+1}) = y(x_i + h)$ con un desarrollo en serie así:

$$y(x_{i+1}) = y(x_i + h) = y(x_i) + h \frac{dy(x)}{dx} \bigg|_{x_i} + \frac{h^2}{2!} \frac{d^2y(x)}{dx^2} \bigg|_{x_i} + \frac{h^3}{3!} \frac{d^3y(x)}{dx^3} \bigg|_{x_i} + \dots$$

donde:

•

$$\frac{dy(x)}{dx}\Big|_{x_i} = y'(x_i) = f(x_i, y_i)$$

•

$$\frac{d^2y(x)}{dx^2} = \frac{d}{dx}f[x,y(x)] = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} \equiv f_x + f_yy' = f_x + f_yf$$

$$\frac{d^2y(x)}{dx^2}\bigg|_{x_i} = f_x(x_i,y_i) + f_y(x_i,y_i)f(x_i,y_i)$$

MÉTODO DE LA SERIE DE TAYLOR

Se puede demostrar que,

$$\frac{d^3y(x)}{dx^3} = f_{xx} + 2ff_{xy} + f_xf_y + ff_y^2 + f^2f_{yy}$$

$$\frac{d^3y(x)}{dx^3}\bigg|_{x_i} = f_{xx}(x_i, y_i) + 2f(x_i, y_i)f_{xy}(x_i, y_i) + f_x(x_i, y_i)f_y(x_i, y_i) + f(x_i, y_i)f_y(x_i, y_i) + f(x_i, y_i)f_y(x_i, y_i) + f(x_i, y_i)f_y(x_i, y_i)$$

Sustituyendo todos estos términos en el desarrollo en serie:

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2!} [f_x(x_i, y_i) + f_y(x_i, y_i) f(x_i, y_i)] + \frac{h^3}{3!} [f_{xx}(x_i, y_i) + \dots] + \dots$$

MÉTODO DE EULER

$$y'=f(x,y)$$
 \Longrightarrow $\int_{y_i}^{y_{i+1}} dy = \int_{x_i}^{x_{i+1}} f[x,y(x)] dx.$

Integrando entre x_i y x_{i+1} se tiene:

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f[x, y(x)] dx,$$

y aplicamos a la integral del término de la derecha una fórmula de cuadratura (que debe ser abierta, pues no se conoce $y(x_{i+1})$).

$$\int_{x_i}^{x_{i+1}} f[x, y(x)] dx \simeq (x_{i+1} - x_i) f[x_i, y(x_i)],$$

Podemos escribir el método como:

$$y_{i+1} \simeq y_i + h_i f[x_i, y(x_i)] = y_i + h_i y'(x_i).$$

Interpretación geométrica del método de Euler

MÉTODO DE EULER PARA UN SISTEMA DE ECUACIONES

$$\begin{cases} \alpha' = f_{\alpha}(x; \alpha, \beta \dots) \\ \beta' = f_{\beta}(x; \alpha, \beta \dots) \\ \dots \dots \end{cases}$$

considerando conocidas las condiciones iniciales: $\alpha(x_i)$, $\beta(x_i)$, . . .

$$\begin{cases} \alpha(x_{i+1}) = \alpha(x_i) + h_i f_{\alpha}[x_i; \alpha(x_i), \beta(x_i) \dots] \\ \beta(x_{i+1}) = \beta(x_i) + h_i f_{\beta}[x_i; \alpha(x_i), \beta(x_i) \dots] \\ \dots \dots \end{cases}$$

EJEMPLO DEL MÉTODO DE EULER

Estudiemos como ejemplo la ecuación diferencial, y'=y, con la condición, y(0)=1,00. Solución analítica, $y(x)=e^{x}$. Método de Euler: $y_{i+1}=y_{i}+hy_{i}$. Para un paso h=0.1:

× _i	<i>y</i> exacto	$y_{ m Euler}$
0,100000	1,105171	1,10000
0,200000	1,221403	1,210000
0,300000	1,349859	1,331000
0,400000	1,491825	1,464100
0,500000	1,648721	1,610510
0,600000	1,822119	1,771561
0,700000	2,013753	1,948717
0,800000	2,225541	2,143588
0,900000	2,459603	2,357947
1,000000	2,718282	2,593742
1,100000	3,004166	2,853116
1,200000	3,320117	3,138428
1,300000	3,669297	3,452271
1,400000	4,055200	3,797498
1,500000	4,481689	4,177248
1,600000	4,953032	4,594972
1,700000	5,473947	5,054470
1,800000	6,049647	5,559917
1,900000	6,685894	6,115909
2,000000	7,389056	6,727499

MÉTODOS DE UN PASO: CASO GENERAL

Consideremos la ecuación diferencial escrita en la forma integral:

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f[x, y(x)] dx \simeq h \sum_{\mu=0}^{n} \alpha_{\mu} f[\xi_{\mu}, y(\xi_{\mu})]$$

$$h = x_{i+1} - x_i \qquad x_i \le \xi_0 \le \xi_1 \le \dots \le \xi_n \le x_{i+1}$$

$$y(\xi_{\mu}) = y(x_i) + \int_{x_i}^{\xi_{\mu}} f[x, y(x)] dx \qquad (\mu = 0, 1, \dots, n),$$

MÉTODOS DE UN PASO: CASO GENERAL

$$\begin{split} &\eta_0 = y_i \\ &\eta_1 = \eta_0 + h\alpha_{1,0} f(\xi_0, \eta_0) \qquad \text{donde} \quad \xi_0 \equiv x_i \\ &\eta_2 = \eta_0 + h \left[\alpha_{2,0} f(\xi_0, \eta_0) + \alpha_{2,1} f(\xi_1, \eta_1) \right] \end{split}$$

 $\eta_{\mu} = \eta_0 + h \sum_{k=0}^{\mu-1} \alpha_{\mu k} f(\xi_k, \eta_k)$

Algunos casos particulares: Método de Heun

$$y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f[x, y(x)] dx \simeq \frac{h}{2} [f(\xi_0, \eta_0) + f(\xi_1, \eta_1)].$$

$$y_{i+1} \simeq y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \eta_1)] = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

MÉTODO DEL PUNTO MEDIO

$$y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f[x, y(x)] dx \simeq hf[\xi_1, \eta_1]$$

En este caso, $\alpha_0 = 0$, $\xi_0 = x_i$, $\eta_0 = y_i$, $\xi_1 = x_i + h/2$, $y(x_i + h/2) \simeq \eta_1$.

$$\eta_1 = y\left(x_i + \frac{h}{2}\right) = y(x_i) + \int_{x_i}^{x_i + h/2} f[x, y(x)] dx \simeq y_i + \frac{h}{2} f(x_i, y_i)$$

$$\implies y_{i+1} \simeq y_i + hf\left[x_i + \frac{h}{2}, y_i + \frac{h}{2} f(x_i, y_i)\right]$$

EJEMPLO

Ecuación diferencial y'=y con la condición y(0)=1,00. Su solución analítica es: $y(x)=e^x$. Los métodos de Heun y el punto medio llevan a la misma ecuación recursiva:

$$y_{i+1} = y_i \left[1 + h \left(1 + \frac{h}{2} \right) \right] = y_i \left(1 + h + \frac{h^2}{2} \right)$$

×i	<i>y</i> exacto	y _{Heun} ó y _{p.m.}
0,100000	1,105171	1,105000
0,200000	1,221403	1,221025
0,300000	1,349859	1,349233
0,400000	1,491825	1,490902
0,500000	1,648721	1,647447
0,600000	1,822119	1,820429
0,700000	2,013753	2,011574
0,800000	2,225541	2,222789
0,900000	2,459603	2,456182
1,600000	4,953032	4,940791
1,700000	5,473947	5,459574
1,800000	6,049647	6,032829
1,900000	6,685894	6,666276
2,000000	7,389056	7,366235

EJEMPLO

MÉTODOS DE RUNGE-KUTTA

Métodos de Runge-Kutta de 2° orden para resolver la ecuación diferencial, $\frac{dy}{dx} = f[x, y(x)]$:

$$y_{i+1} = y_i + \omega_1 hf(x_i, y_i) + \omega_2 hf[x_i + \alpha h, y_i + \beta hf(x_i, y_i)]$$

$$\begin{cases} \omega_1 + \omega_2 = 1\\ \omega_2 \alpha = \frac{1}{2}\\ \omega_2 \beta = \frac{1}{2} \end{cases}$$

que es exacta hasta el término h^2 incluido. Estas últimas ecuaciones constituyen un sistema de 3 ecuaciones con 4 incógnitas, por lo que la solución no es única.

Métodos de Runge-Kutta

• Si consideramos la solución con $\omega_1=\omega_2=1/2$ y $\alpha=\beta=1$, se obtiene:

$$y_{i+1} = y_i + \frac{1}{2}hf(x_i, y_i) + \frac{1}{2}hf[x_i + h, y_i + hf(x_i, y_i)]$$

que coincide con el método de Euler mejorado o método de Heun.

• Si consideramos $\omega_1 = 0$, $\omega_2 = 1$, $\alpha = \beta = 1/2$,

$$y_{i+1} = y_i + hf\left[x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)\right]$$

que coincide con el *método de Euler modificado o método del punto medio*. Por ello a este método se le conoce también como el método clásico de Runge-Kutta de 2° orden.

Métodos de Runge-Kutta de orden 4

$$y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

$$\begin{cases} K_1 &= f(x_i, y_i) \\ K_2 &= f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1) \\ K_3 &= f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2) \\ K_4 &= f(x_i + h, y_i + hK_3) \end{cases}$$

EJEMPLO MÉTODO RK4

Ecuación y' = y con un paso h = 0,1.

$$y' = f(x; y) \longrightarrow \text{en nuestro caso} \quad f(x; y) = y$$

$$\begin{cases} K_1 = y_i \\ K_2 = y_i + \frac{h}{2}y_i = y_i \left(1 + \frac{h}{2}\right) \\ K_3 = y_i + \frac{h}{2}\left(y_i + \frac{h}{2}y_i\right) = y_i \left(1 + \frac{h}{2} + \frac{h^2}{4}\right) \\ K_4 = y_i + h\left[y_i \left(1 + \frac{h}{2} + \frac{h^2}{4}\right)\right] = y_i \left[1 + h\left(1 + \frac{h}{2} + \frac{h^2}{4}\right)\right] \end{cases}$$

EJEMPLO MÉTODO RK4

× _i	yexacto	$y_{ m Heun}$	y _{RK4}	e _{Heun} (%)	e _{RK4} (%)
0,100000	1,105171	1,105000	1,105171	0,154653×10 ⁻¹	0,766780×10 ⁻⁵
0,200000	1,221403	1,221025	1,221403	0,309282×10 ⁻¹	0,153356×10 ⁻⁴
0,300000	1,349859	1,349233	1,349858	0,463887×10 ⁻¹	0,230034×10 ⁻⁴
0,400000	1,491825	1,490902	1,491824	$0,618469 \times 10^{-1}$	0,306712×10 ⁻⁴
0,500000	1,648721	1,647447	1,648721	$0,773026 \times 10^{-1}$	0,383390×10 ⁻⁴
0,600000	1,822119	1,820429	1,822118	0,927560×10 ⁻¹	0,460068×10 ⁻⁴
0,700000	2,013753	2,011574	2,013752	0,108207	0,536746×10 ⁻⁴
0,800000	2,225541	2,222789	2,225540	0,123656	0,613424×10 ⁻⁴
0,900000	2,459603	2,456182	2,459601	0,139102	0,690102×10 ⁻⁴
1,000000	2,718282	2,714081	2,718280	0,154545	0,766780×10 ⁻⁴
1,100000	3,004166	2,999059	3,004163	0,169987	0,843458×10 ⁻⁴
1,200000	3,320117	3,313960	3,320114	0,185426	0,920136×10 ⁻⁴
1,300000	3,669297	3,661926	3,669293	0,200863	0,996814×10 ⁻⁴
1,400000	4,055200	4,046429	4,055196	0,216297	0,107349×10 ⁻³
1,500000	4,481689	4,471304	4,481684	0,231729	$0,115017 \times 10^{-3}$
1,600000	4,953032	4,940791	4,953026	0,247158	0,122685×10 ⁻³
1,700000	5,473947	5,459574	5,473940	0,262585	0,130353×10 ⁻³
1,800000	6,049647	6,032829	6,049639	0,278010	0,138020×10 ⁻³
1,900000	6,685894	6,666276	6,685885	0,293432	0,145688×10 ⁻³
2,000000	7,389056	7,366235	7,389045	0,308852	0,153356×10 ⁻³

MÉTODO RK4 PARA UN SISTEMA DE ECUACIONES

Dado el sistema:

$$\frac{dy_{\alpha}}{dx} = f_{\alpha}(x; \{y_{\alpha}\}) \quad \text{con} \quad \alpha = 1, 2 \dots N$$

su solución RK4 es:

$$y_{1,i+1} = y_{1,i} + \frac{h}{6}(K_{11} + 2K_{12} + 2K_{13} + K_{14})$$

$$y_{2,i+1} = y_{2,i} + \frac{h}{6}(K_{21} + 2K_{22} + 2K_{23} + K_{24})$$

$$\dots$$

$$y_{N,i+1} = y_{N,i} + \frac{h}{6}(K_{N1} + 2K_{N2} + 2K_{N3} + K_{N4})$$

MÉTODO RK4 PARA UN SISTEMA DE ECUACIONES

Las constantes se calculan en el siguiente orden:

$$K_{11} = f_1(x_i; y_{1,i}, y_{2,i}, \dots y_{N,i})$$

$$K_{21} = f_2(x_i; y_{1,i}, y_{2,i}, \dots y_{N,i})$$

$$\dots$$

$$K_{N1} = f_N(x_i; y_{1,i}, y_{2,i}, \dots y_{N,i})$$

$$K_{12} = f_1 \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{11}, y_{2,i} + \frac{h}{2} K_{21} \dots y_{N,i} + \frac{h}{2} K_{N1} \right)$$

$$K_{22} = f_2 \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{11}, y_{2,i} + \frac{h}{2} K_{21} \dots y_{N,i} + \frac{h}{2} K_{N1} \right)$$
.....

$$K_{N2} = f_N \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{11}, y_{2,i} + \frac{h}{2} K_{21} \dots y_{N,i} + \frac{h}{2} K_{N1} \right)$$

MÉTODO RK4 PARA UN SISTEMA DE ECUACIONES

8

$$K_{13} = f_1 \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{12}, y_{2,i} + \frac{h}{2} K_{22} \dots y_{N,i} + \frac{h}{2} K_{N2} \right)$$

$$K_{23} = f_2 \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{12}, y_{2,i} + \frac{h}{2} K_{22} \dots y_{N,i} + \frac{h}{2} K_{N2} \right)$$

.

$$K_{N3} = f_N \left(x_i + \frac{h}{2}; y_{1,i} + \frac{h}{2} K_{12}, y_{2,i} + \frac{h}{2} K_{22} \dots y_{N,i} + \frac{h}{2} K_{N2} \right)$$

$$K_{14} = f_1 \left(x_i + h; y_{1,i} + hK_{13}, y_{2,i} + hK_{23} \dots y_{N,i} + hK_{N3} \right)$$

$$K_{24} = f_2 \left(x_i + h; y_{1,i} + hK_{13}, y_{2,i} + hK_{23} \dots y_{N,i} + hK_{N3} \right)$$

$$\dots$$

$$K_{N4} = f_N \left(x_i + h; y_{1,i} + hK_{13}, y_{2,i} + hK_{23} \dots y_{N,i} + hK_{N3} \right)$$

ESQUEMA

- Introducción
- 2 Métodos de un paso
- 3 Ejercicios

1.- Se considera la siguiente ecuación diferencial (la prima indica derivada respecto a t),

$$x''' - (\sin x'' + e^t x')^2 + \cos x = 0,$$

con las condiciones iniciales: x(0) = 3, x'(0) = 4, x''(0) = 5.

- a) Conviértase la ecuación diferencial anterior en un sistema de ecuaciones diferenciales de primer orden.
- b) Utilizando el *método de Euler mejorado* (también llamado *método de Heun*) con un paso, $h \equiv t_{i+1} t_i = 0,01$, estímese el valor de x(0,01), x'(0,01) y x''(0,01).

2.- Considera el siguiente sistema de ecuaciones diferenciales (la prima indica derivada respecto a t):

$$\begin{cases} (x'')^2 + te^y + y' = x' - x \\ y'y'' - \cos(xy) + \sin(tx'y) = x \end{cases}$$

con condiciones iniciales:

$$\begin{cases} x(1) = -3 \\ x'(1) = 0 \\ y(1) = 0 \\ y'(1) = 1 \end{cases}$$

- a) Convierte el sistema anterior en un sistema de ecuaciones diferenciales de primer orden.
- b) Utilizando el *método de Euler modificad*o (también llamado método *Runge-Kutta de 2º orden* o método del *punto medio*) estima el valor de,

$$\begin{cases} x(1,01) \\ y(1,01) \end{cases}$$

- 3.- Un proyectil de masa, m=0,11 kg, que ha sido disparado verticalmente hacia arriba con velocidad inicial, v(0)=8,00 m/s, se ve frenado por la fuerza de la gravedad, $f_{\rm g}=-m{\rm g}$ y por el rozamiento con el aire, $f_{\rm r}=-kv|v|$, donde se considera v positiva al ascender y k=0,002 Kg/m.
- a) Plantea la ecuación diferencial de su velocidad.
- b) Determina la velocidad del proyectil en $t=0,1;\,0,2;\,0,3\ldots 1$ s con los métodos de Taylor de 2° orden y el de Runge-Kutta de 2° orden.
- c) Determina, con precisión de décima de segundo, cuándo alcanza el proyectil su máxima altura y empieza a caer.

t	$v_{ m exacto}$	$v_{ m Taylor}$	$v_{ m RK2}$	e_{Taylor} (%)	$e_{ m RK2}$ (%)
0,100000	6.91773	6.91860	6.91805	$1,2 \times 10^{-2}$	4.6×10^{-3}
0,200000	5.86237	5.86400	5.86295	2.8×10^{-2}	9.9×10^{-3}
0,300000	4.82928	4.83161	4.83008	4.8×10^{-2}	$1,7 imes 10^{-2}$
0,700000	0.837815	0.84254	0.839262	$5,6 imes 10^{-1}$	$1,7 imes 10^{-1}$
0,800000	-0.143546	-0.138246	-0.141958	3.4	1.1
0,900000	-1.12367	-1.11953	-1.12369	$3.7 imes 10^{-1}$	1.8×10^{-3}
1.000000	-2.09980	-2.104810	-2.109430	$2,4 imes 10^{-1}$	$4,6 imes 10^{-1}$

4.- La ecuación diferencial para el voltaje entre los bornes de un condensador en un circuito RCL en serie viene dada por:

$$LC\frac{d^2V}{dt^2} + RC\frac{dV}{dt} + V = 0$$

Considérese que el condensador está inicialmente cargado con un voltaje $V(0) \equiv V_0 = 100$ V, que $V_0' \equiv V'(0) = 0$ y que los valores numéricos de los parámetros que aparecen en la ecuación son:

$$L = 0.5 \,\mathrm{H}; \quad C = 2 \times 10^{-6} \,\mathrm{F}; \quad R = 100 \,\Omega$$

Utilizando el método del punto medio, calcúlense:

$$V(t = 0.5 \times 10^{-4} \text{ s}); V(t = 10^{-4} \text{ s})$$

 $V'(t = 0.5 \times 10^{-4} \text{ s}); V'(t = 10^{-4} \text{ s})$