$$\alpha = Hb \sqrt{\frac{N}{\sum E_c Ig}}$$

$$\leq 0.6$$

$$\leq 0.6$$
 for $n \geq 4$

$$\leq 0.2 + 0.1$$
n for $n < 4$

for
$$n < 4$$

$$\alpha_{x} = Hb \sqrt{\frac{N}{\sum E_{c} Iy}}$$

$$\boldsymbol{\alpha}_{y} = Hb \sqrt{\frac{N}{\sum E_{c} Ix}}$$

$$H_e = K H_o$$

TABLE 1:Ratio of H_e/H_o for braced column

Condition of upper end	Condition of lower end			
	1	2	3	
1	0.75	0.8	0.9	
2	0.8	0.85	0.95	
3	0.9	0.95	1.0	

 $K \le 1$

TABLE 2:Ratio of H_e/H_o for unbraced column

Condition of upper end	Condition of lower end			
	1	2	3	
1	1.20	1.30	1.60	
2	1.30	1.50	1.80	
3	1.60	1.80		
4	2.20			

K > 1

Slenderness Ratio (λ)

For rectangular columns

Calculate λ in both directions:

$$\lambda_{\rm b} = \frac{H_e}{b}$$

$$\lambda_{\rm t} = \frac{H}{t}$$

For Circular columns

$$\lambda_{\rm D} = \frac{H_e}{D}$$

For all shapes

$$\lambda_{i} = \frac{H_{e}}{i} \qquad i = \sqrt{\frac{I_{a}}{A_{g}}}$$

	Unbraced column		Braced column		
Column type Sho	Short column	Long column	Short column	Long column	
Rectangular	$10 \leq \lambda_{b, t}$	$10 < \lambda_{b, t} \le 23$	15 ≤ λ _{b, t}	$15 < \lambda_{b, t} \leq 30$	
Circular	8 ≤ λ _D	$8 < \lambda_D \le 18$	12 ≤ λ _D	$12 < \lambda_D \le 25$	
General shapes	35 ≤ λ _i	35 < λ _i ≤ 70	50 ≤ λ _i	50 < λ _I ≤ 100	

Design moments in long braced column

1- Calculation of additional moments due to buckling

$$M_{add} = P \delta$$

For rectangular columns

• If the column is slender in t direction (y-direction)

$$\delta_t = \frac{{\lambda_t}^2 \cdot t}{2000}$$

$$M_{add(x)} = P_u \cdot \delta_t$$

For Circular columns

$$\delta = \frac{\lambda_D^2 \cdot D}{2000}$$

• If the column is slender in b direction (x-direction)

$$\delta_b = \frac{{\lambda_b}^2 \cdot t}{2000}$$

$$M_{add(y)} = P_u \cdot \delta_b$$

For columns with general shape

$$\delta = \frac{\lambda_i^2 \cdot t'}{30000}$$

$$\mu_{\rm min} = 0.25 + 0.052\lambda_b$$
 (for rectangular column)

$$\mu_{\min} = 0.25 + 0.015\lambda_i$$
 (for other column)

Design moments in long braced column

The design moment for braced column is the largest value of:

$$M_2$$
 $M_1 + M_{add} / 2$
 $M_i + M_{add}$
 $P e_{min}$

 $M_2 \& M_1$ equal zero if the column is hinged at the two ends so the only existing design moment is M_{add} .

Design moments in long unbraced column

The design moment for unbraced column is the largest value of:

 $M_2 \& M_1$ equal zero if the column is hinged at the two ends so the only existing design moment is M_{add} .

Approximate Method (M_{su} Method)

$$e_s = e + \frac{t}{2} - \text{cove}$$

$$M_{SU=}P_U e_S$$

Cairo University Prof. Dr. Hamed Hadhoud e > (d - d')/2t/2 Big Eccentric е \mathbf{M}_{U} t/2 T_U $\mathbf{T_{U}} \quad e = \frac{M_{U}}{T_{U}}$ t/2 cover e < (d - d')/2**Small Eccentric** н. Hahoud

 \mathbf{M}_{SU}

Big Eccentric Tension

cover $M_{SU=}T_{U}\;e_{S}$

t/2

t/2

н.

Small Eccentric Tension

According to ECP section 4.2.1.4 (a) section capacity is carried only by reinforcing bars in this case

$$T_{U1} = \frac{T_U}{2} + \frac{M_U}{(d-d')}$$
 $A_{S1} = \frac{T_{U1}}{(f_v/\gamma_S)}$

$$A_{S1} = \frac{T_{U1}}{\left(f_{y}/\gamma_{S}\right)}$$

Н.

$$T_{U2} = \frac{T_U}{2} - \frac{M_U}{(d-d')}$$
 $A_{S2} = \frac{T_{U2}}{(f_v/\gamma_S)}$

Cairo University

Н.

Prof. Dr. Hamed Hadhoud

$$M'_y = M_y + \beta \left(\frac{b'}{a'}\right) M_x$$

etaشكل (٦-٢٥-ب) قيمة المعامل

$$M'_{x} = M_{x} + \beta \left(\frac{a'}{b'}\right) M_{y}$$

β جدول (٦-١٢-أ) قيم المعامل

$R_{b} = \frac{P_{u}}{f_{cu}.b.a}$	≤ 0.2	0.3	0.4	0.5	≥ 0.6
β	0.80	0.75	0.70	0.65	0.60

3- ECP Simplified Method (Symmetrical RFT)

في حالة القطاعات المستطيلة المتساوية التسليح على كل وجهين متقابلين في قطاع العمود (شكل ٦-٢٦) وبشرط أن

 P_{u} تكون القيمة $\frac{P_{u}}{f_{u}.b.a}$ أقل من أو تساوى ٢٠،٤٠ يمكن تصميم العمود بطريقة مبسطة لمقاومة القوة المحورية

وكل من عزمي الأنحناء المعدلين التاليين M'_y ، M'_y كل على حدة كالتالي:

$$M'_x = M_x \cdot Q_b$$

$$M'_{y} = M_{y} \cdot \alpha_{b}$$

Eq. [6-46a]

Eq. [6-46b]

Smaller of (Mx/a')/(My/b') (My/b')/Mx/a') Rb = Pu/(fcu b.a)	0	0.33	0.5	1
$R_b = 0$	1	0.95	0.9	0.9
R _b = 0.1	1	1.20	1.25	1.30
$R_b = 0.2$	1	1.35	1.50	1.75
$R_b = 0.3$	1	1.25	1.35	1.40
$R_b = 0.4$	1	0.95	0.95	0.95

н.

Empirical Dimensions

Notes

- Main Supporting Element Must be in The Short Directions
- Use Expansion Joints to divide long halls into smaller ones with maximum length = 45.0m

$$t_{g} = \frac{L}{12 \sim 16}$$
 $t_{1} = (0.8 \sim 1.0) t_{g}$
 $t_{2} = 0.6 t_{g}$
 $b = 30,35,40 cm$
 $t_{link} = \frac{L}{20}$
 $t_{cant} = from \ design$
 $t_{3} = 0.67 t_{cant}$

Start frame design by assuming preliminary Dimensions;

Frame girder thickness $t_g = Span/(14 - 16) = 24.0/16 = 1.50m$

Column top thickness $t_1 = (0.8 - 1.0) t_g = 1.50 m$

Column bottom thickness $t_2 = (0.6-0.8)t_g = 1.0m$

Frame breadth $b = 30 - 40 \text{ cm} \rightarrow \text{Choose b=40cm}$

Frame spacing (4.0-6.0m) = 6.0m

Secondary beam dimensions = 20×60 (span 6.0m)

Edge beam dimensions = 25×60 (span 6.0m)

Wall beam dimensions = 25×60 (span 6.0m)

Slab thickness = 12.0cm

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left(1 - \left(\frac{M_{cr}}{M_a}\right)^3\right) I_{cr} \le I_g$$

$$M_{cr} = \frac{f_{ctr} I_g}{y_t}$$

$$f_{ctr} = 0.6 \sqrt{f_{cu}} N/mm^2$$

$$\frac{bz^2}{2} - n As(d-z) = 0 \quad \Longrightarrow \quad \mathbf{Z}$$

$$I_{cr} = \frac{bz^3}{3} + nAs(d-z)^2$$

$$n = \frac{E_s}{F} = 15$$

Long term deflection

شكل رقم (٤-٣١) علاقة زمن تحميل المنشأ بمعامل الترخيم للأحمال الدائمة

$$\alpha = \frac{\xi}{1 + 50 \,\mu'}$$

♦ بعد ٦ شهور

$$\mu' = \frac{A_S'}{h d}$$

Hahoud

Н.

Deflection Limits

ECP Clause 4-3-1-2

(1) Total deflection;

$$\left(\Delta_{DL+LL} + \Delta_{long \, term}\right) \le \frac{L}{250}$$
 \Rightarrow for beams and slabs $\frac{L}{450}$ \Rightarrow for cantilevers

$$\Delta_{long\ term} = \alpha(\Delta_{DL+sustained\ LL})$$

$$\alpha$$
 is calculated at 5 years (ζ =2)

If unsafe, either increase cross section or make cambering

تحديب فرم بطنيات الكمرات والبلاطات طبقا للبيانات الواردة بمستندات المشروع. وفي حالة عدم توافر هذه (9-0-4-3).

البيانات تُحدب الفرم للبحور التي تصل أو تزيد على ثمانية أمتار للكمرات أو سته أمتار للبلاطات بقيمة من H.
(٣٠٠/١) إلى (٥٠٠/١) من طول البحر. وفي حالة الكوابيل التي يزيد بروزها على متر ونصف يكون التحديب في

حدود (١٥٠/١) للكمرات و (١٠٠/١) للبلاطات من طول الكابولي.

Deflection Limits

ECP Clause 4-3-1-2

(2) For beams and slabs supporting non-structural elements that are not likely to be damaged by large deflections;

$$\begin{split} & \Delta_{LL} \leq \frac{L}{360} \\ & \Delta_{LL} = \Delta_{DL+LL} - \Delta_{DL} \\ & \Delta_{DL+LL} \quad \text{is calculated using} \quad I_{e(DL+LL)} \\ & \Delta_{DL} \quad \text{is calculated using} \quad I_{e(DL)} \end{split}$$

Deflection Limits

ECP Clause 4-3-1-2

(3) For beams and slabs supporting non-structural elements that are likely to be damaged by large deflections (like glass facades);

$$(\Delta_{LL-sustained\ LL}) + \Delta_{Long\ term,finishes} \le \frac{L}{480}$$

For beams and slabs supporting non-structural elements that are not likely to be damaged by large deflections;

$$(\Delta_{LL-sustained\ LL}) + \Delta_{Long\ term,finishes} \le \frac{L}{240}$$

 $\Delta_{Long\ term}$ is the total additional deflection occur after construction of nonstructural elements

$$\Delta_{Long\ term,finishes} = (\alpha_1 - \alpha_2)(\Delta_{DL+sustained\ LL})$$

$$(\alpha_1)$$
 is calculated at 5 years (ζ =2)

 (α_2) is calculated at the time of adding the nonstructural elements It may be assumed at 12 months (ζ =1.4)

a

Deflection Calculation

ECP Clause 4-3-1-1

н.

d h o . . .

 $E_c = 4400\sqrt{f_{cu}} \ N / mm^2$

Prof. Dr. Hamed Hadhoud

$$\Delta_3 = \frac{M_2 L^2}{16EI_e}$$

 $\Delta = \Delta_1 - \Delta_2 - \Delta_3$

 $E_c = 4400 \sqrt{f_{cu}} \ N / mm^2$

1- Plain concrete footing

$$P_w \cong \frac{P_u}{1.5}$$
 Effect of soil weight above footing

$$P_{w} \cong \frac{P_{u}}{1.5}$$
 Effect of soil weight above footing $A_{1} B_{1} \cong \frac{\sqrt{1.1}P_{w}}{q_{all)gross}}$ OR $A_{1} B_{1} \cong \frac{P_{w}}{q_{all)net}}$ — 1

$$A_1 - B_1 = a - b - 2$$

From (1) and (2) get A_1 and B_1

$$t_1 = 300 \sim 500 \text{ mm}$$

$$x = (0.8 \sim 1) t_1$$

$$q_n = \frac{P_w}{A_1 B_1}$$

$$q_n = \frac{P_w}{A_1 B_1}$$

$$M = q_n \times \frac{x^2}{2} \qquad f_t = \frac{6M}{1000 t_1^2}$$

$$check \ f_{t} \leq \frac{f_{ctr}}{\eta} = \frac{0.6\sqrt{f_{cu}}}{1.6} \ N/mm^{2}$$

2- Reinforced concrete footing

$$A = A_1 - 2x \quad B = B_1 - 2x$$

Assume $t \ge 500 \, mm \Rightarrow check \, punching$, shear, flexure

d = t - 50 mm

Punching (Two-way shear)

$$p_n = \frac{P_u}{AB}$$

$$punching area = b_o d = [2(a+d+b+d)]d$$

punching load =
$$Q_{up} = P_u - p_n(a+d)(b+d)$$

$$q_{up} = \frac{Q_{up}}{A_n} = \frac{Q_{up}}{b_o d} \le q_{cup}$$

Pu

- 4 (interior column)
- α { 3 (exterior column)

Critical

section

B1

2 (corner column)

Direct shear (one-way shear)

$$Q_{u1} = p_n \left(\frac{A - a}{2} - \frac{d}{2} \right) B$$

$$q_{u1} = \frac{Q_{u1}}{Bd} \le 0.16 \sqrt{\frac{f_{cu}}{\gamma_c}} \ N/mm^2 \quad \text{Eq. 4-30}$$

$$Q_{u2} = p_n \left(\frac{B - b}{2} - \frac{d}{2} \right) A$$

$$q_{u2} = \frac{Q_{u2}}{Ad} \le 0.16 \sqrt{\frac{f_{cu}}{\gamma_c}} \ N/mm^2$$

If not increase d

Flexure

$$M_{u)1-1} = \frac{p_n \left(\frac{A-a}{2}\right)^2}{2} = \frac{p_n (A-a)^2}{8}$$

$$M_{u)2-2} = \frac{p_n \left(\frac{B-b}{2}\right)^2}{2} = \frac{p_n (B-b)^2}{8}$$

$$d_{1-1} = t - 50 \ mm \ \&b = 1000 mm$$

$$d_{2-2} = t - 70 \ mm \ \&b = 1000 mm$$

Bar development length requirements

Use U-shaped bars

Use staggered Lshaped bars OR U-shaped bars

Else

Use staggered Lshaped bars OR U-shaped bars

Design of Combined Footings

Prepared by Prof. Dr. Hamed Hadhoud

1- Plain concrete footing

$$P_{u2} > P_{u1}$$

$$R_{u} = P_{u1} + P_{u2}$$

$$\overline{x} = \frac{P_{u2} S}{R_u}$$

$$\frac{L_1}{2} \cong \bar{x} + \frac{a_1}{2} + 1m \implies get L_1$$

$$R_w \cong \frac{R_u}{1.5}$$
 Effect of soil weight above footing

$$L_1 B_1 \cong \frac{(1.1)R_w}{q_{all)gross}}$$

OR
$$L_1 B_1 \cong \frac{R_w}{q_{all)nat}}$$

1- Plain concrete footing

$$t_1 = 300 \sim 500 \text{ mm}$$

$$x = (0.8 \sim 1) t_1$$

$$q_{n} = \frac{R_{w}}{L_{1} B_{1}}$$

$$M = q_{n} \times \frac{x^{2}}{2} \qquad f_{t} = \frac{6M}{1000 t_{1}^{2}}$$

$$check f_{t} \leq \frac{f_{ctr}}{\eta} = \frac{0.6\sqrt{f_{cu}}}{1.6} N/mm^{2}$$

2- Reinforced concrete footing

$$L = L_1 - 2x \quad B = B_1 - 2x$$

Assume $t \ge 700 \text{ mm} \Rightarrow \text{check punching, shear, flexure}$

$$d = t - 70 \, mm$$

Punching (Two-way shear)

$$=\frac{R_{i}}{IJ}$$

 $punchingarea = b_a d = [2(a_i + d + b_i + d)]d$

 $punching load = Q_{up} = P_{ui} - p_n(a_i + d)(b_i + d)$

$$q_{up} = \frac{Q_{up}}{A} = \frac{Q_{up}}{b \ d} \le q_{cup}$$

a is the smaller
$$q_{cup} = least \ op$$

i denotes for 1 and 2

5

Direct shear (one-way shear)

$$w_n = \frac{R_n}{L}$$

Draw shearing force diagram

Decide critical section for shear (at distance d/2 from column face)

$$q_u = \frac{Q_{u \text{ max}}}{Bd} \le 0.16 \sqrt{\frac{f_{cu}}{\gamma_c}} \ N/mm^2 \quad \text{Eq. 4-30}$$

If not increase d

Flexure

Draw bending moment diagram

Decide critical section for negative moment (at zero shear) \rightarrow get M_{umax} -

Calculate maximum positive moment (at column face) $\rightarrow M_{umax+}$

$$d = t - 70 \ mm$$

$$R = \frac{M_{u \text{ max+}}}{f_{cu} B d^{2}}$$

$$A_{s+ve} = wBd \frac{f_{cu}}{f_{y}}$$

$$A_{s-ve} = wBd \frac{f_{cu}}{f_{y}}$$

$$A_{s-ve} = wBd \frac{f_{cu}}{f_{y}}$$

$$A_{s-ve} / m' = A_{s-ve} / B$$

$$A_{s-ve} / m' = A_{s-ve} / B$$

$$A_{S)\min} = \frac{0.15}{100} (1000 \ d) \, mm^2$$

$$\Phi_{\min} = 12 \, mm \, \& S_{\max} = 200 \, mm$$

Flexure in the transverse direction

Flexure in the transverse direction

$$w_{n1} = \frac{P_{u1}}{B} \& w_{n2} = \frac{P_{u2}}{B}$$

$$M_{u1} = \frac{w_{n1}(B - b_1)^2}{8} \& M_{u2} = \frac{w_{n2}(B - b_2)^2}{8}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$d=t-90 \text{ mm} \qquad \qquad \downarrow$$

$$A_{s1} \qquad A_{s2}$$

Details

Details

Details

