

Tanjina Helaly

CSI 207: Algorithms

SHORTEST PATH

- Applicable for directed weighted graph.
- Available paths from A to E
 - A -> B -> E = 10
 - A->C->D->E=6
 - A->C->D->B->E=6
 - A -> E = 5

SHORTEST PATH

- Applicable for directed weighted graph.
- Available paths from A to E
 - A -> B -> E = 10
 - A->C->D->E=6
 - A->C->D->B->E=6
 - A -> E = 5
- Shortest among all available path = 5

SHORTEST PATH - DEFINITION

- *Given* a weighted, directed graph G = (V,E), with weight function w: E -> R mapping edges to real-valued weights.
- The weight w(p) of path $p = \langle v_0, v_1, \ldots, v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
 where $(v_{i-1}, v_i) \in E$

• We define the **shortest-path weight** $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise}. \end{cases}$$

• A shortest path from vertex u to vertex v is then defined as any path p with weight

$$w(p) = \delta(u, v)$$

SHORTEST PATH - VARIANTS

- o 3 variants
 - Source-Sink: From one vertex to another
 - Single source/Destination: from one vertex to every other
 - Example : GPS. Will find
 - All pairs: between all pairs of vertices
- Restrictions on edge weight
 - Non-negative
 - Arbitrary weight
 - Euclidean weight
- Cycles?
 - No directed cycle
 - No negative cycle.

ASSUMPTION

• There is path from s to every other vertices.

APPLICATIONS

- Google map to find shortest distance from one location to another
- Robot navigation
- Urban traffic planning
- Optimal pipelining of VLSI chip

How to solve

• There are exponential number of ways to get from one vertex to another.

• So, try all possible combination and select the shortest one.

• Algorithm:

Initialize d[s]=0 and $d[v]=\infty$ for all other vertices. Repeat until optimal condition is satisfied, select edge (u,v)Relax edge (u,v)

RELAXATION

• Relaxation:

If
$$d[v]>d[u]+w(u,v)$$

 $d[v]=d[u]+w(u,v)$
 $\prod[v]=u$

Relaxation — example

• Relaxation:

If
$$d[v]>d[u]+w(u,v)$$

 $d[v]=d[u]+w(u,v)$
 $\prod[v]=u$

OPTIMAL CONDITION

• For all edges, $d[v] \le d[u] + w(u, v)$ [i.e. we found shortest path for all vertices]

$$d[D]+w(D,B) = 5+1=6 < d[B]$$

So there is a shorter way to get to B via D node.

• Relaxation:

If
$$d[v]>d[u]+w(u,v)$$

 $d[v]=d[u]+w(u,v)$
 $\prod[v]=u$

$$d[D]+w(D,B) = 5+1=6 < d[B]$$

So, Relax edge (D,B)
-means remove the
AB path and add DB
to get to node B

Optimal Condition:

For all edges, $d[v] \le d[u] + w(u, v)$ [i.e. we found shortest path for all vertices]

Haven't check the (D,E) edge yet.

Optimal Condition:

For all edges, $d[v] \le d[u] + w(u, v)$ [i.e. we found shortest path for all vertices]

d[E] < d[D] + w(D,E). So, no need to relax.

- Efficient Implementations:
 - How to choose which edge to relax?
 - Ans: Greedy Algorithm
 - Dijkstra's algorithm (non-negative weights)
 - \circ O(V lg V+E) = O(E) as E=O(V²)
 - Bellman-Ford algorithm (no negative cycles)
 - O(VE)

SOME NOTATION

- o d(v) distance to v from source node
- $\circ \prod[v]$: predecessor on current best path to v.
- \circ $\delta(v)$ shortest path from source to v.

GREEDY ALGORITHM

OPTIMAL SUBSTRUCTURE

- Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it.
- Subpath of a shortest path is also a shortest path
- If shortest path from s to d,
 - $\delta(s, d) = p_i + p_j + p_d$
 - Then p_i, p_i, and p_d are also shortest path

OPTIMAL SUBSTRUCTURE

• Formal def:

• Given a weighted, directed graph G = (V,E) with weight function $w: E \rightarrow R$, let $p = (v_0, v_1, \ldots, v_k)$ be a shortest path from vertex 0 to vertex k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = (v_i, v_{i+1}, \ldots, v_j)$ be the subpath of p from vertex i to vertex j. Then, p_{ij} is a shortest path from i to j.

TRIANGLE INEQUALITY

- If v_1 , v_2 , v_3 forms a triangle and $\delta(v_1, v_2)$, $\delta(v_1, v_3)$ and $\delta(v_3, v_2)$ are shortest paths between 2 vertices than we can write
 - $\delta(v_1, v_2) < \delta(v_1, v_3) + \delta(v_3, v_1)$

DIJKSTRA'S ALGORITHM

DIJKSTRA'S ALGORITHM

- Requirement/criteria
 - all edge weights are nonnegative.
- It maintain 2 lists.
 - set S of vertices whose final shortest-path weights from the source s have already been determined.
 - Another list Q for the vertices shortest-path weights has not been determined.
 - At each pass a vertex u will move from Q to S.
 - And relaxes all edges leaving u

DIJKSTRA'S ALGORITHM

```
DIJKSTRA(G, w, s)
                                                  RELAX(u,v,w):
1 INITIALIZE-SINGLE-SOURCE
                                                    if (d[v] > d[u] + w(u, v))
2S = \phi;
                                                       d[v] = d[u] + w(u, v)
3 for each vertex v ∈ G.V d[v] = ∞;
                                                       \pi[v] = u
4 d[s] = 0
5 Q = G.V [priority queue where key is d[v]]
6 while Q \neq \phi
                                                          Greedy Choice
    u = EXTRACT - MIN(Q)
   S = S \cup \{u\}
8
    for each vertex v \in G. Adj(u)
9
10
       RELAX(u,v,w)
```


S=S U {u}	Q {s t x y z}	{u}	
$\{\Phi\}$	$\{0 \infty \infty \infty \infty\}$		$ \mathbf{Q} = 0$

S=S U {u}	Q {s t x y z}	{u}	
{Φ}	$\{0 \propto \infty \propto \infty \}$	{s}	Q =5

S=S U {u}	Q {s t x y z}	{u}	
{Φ}	$\{0 \propto \infty \propto \infty\}$	{s}	
{s}	$\{0\ 10\ \infty\ 5\ \infty\}$		Q =

S=S U {u}	$Q \{s t x y z\}$	{u}	
{Φ}	$\{0 \propto \infty \propto \infty\}$	{s}	
{s}	$\{0 \ 10 \ \infty \ 5 \ \infty\}$	{y}	$ \mathbf{Q} $

S=S U {u}	Q {s t x y z}	{u}	
{Φ}	$\{0 \propto \infty \propto \infty\}$	{s}	
{s}	$\{0 \ 10 \ \infty \ 5 \ \infty\}$	{y}	
$\{s, y\}$	{ 0 8 14 5 7 }		Q =8

S=S U {u}	$Q \{s t x y z\}$	{u}	
$\{\Phi\}$	$\{0 \propto \infty \propto \infty\}$	{s}	
{s }	$\{0 \ 10 \ \infty \ 5 \ \infty\}$	{y}	
$\{s, y\}$	{ 0 8 14 5 7 }	{z}	$ \mathbf{Q} = 3$

S=S U {u}	Q {s t x y z}	{u}	
{Φ}	$\{0 \propto \infty \propto \infty \}$	{s}	
{s}	$\{0\ 10 \infty \ 5 \infty\}$	{y}	
{s, y}	{ 0 8 14 5 7 }	{ z }	
$\{s, y, z\}$	{ 0 8 13 5 7 }		Q =2

S=S U {u}	$Q \{s t x y z\}$	{u}	
$\{\Phi\}$	$\{0 \propto \infty \propto \infty\}$	{s}	
{s}	$\{0 \ 10 \ \infty \ 5 \ \infty\}$	{y}	
$\{s, y\}$	{ 0 8 14 5 7 }	{ z }	
$\{s, y, z\}$	{ 0 8 13 5 7 }	{t}	Q =2

S=S U {u}	Q {s t x y z}	{u}
{Φ}	$\{0 \propto \infty \propto \infty \}$	{s}
{s}	$\{0\ 10 \infty \ 5 \infty\}$	{y}
{s, y}	{ 0 8 14 5 7 }	{ z }
{s, y, z}	{ 0 8 13 5 7 }	{t}
${s, y, z, t}$	{ 0 8 9 5 7 }	

 $|\mathbf{Q}| = 1$

S=S U {u}	Q {s t x y z}	{u}
{Φ}	$\{0 \propto \infty \propto \infty \}$	{s}
{s}	$\{0\ 10 \infty \ 5 \infty\}$	{y}
{s, y}	{ 0 8 14 5 7 }	{ z }
$\{s, y, z\}$	{ 0 8 13 5 7 }	{t}
$\{s, y, z, t\}$	{0 8 9 5 7 }	{ x }

|Q| = 1

DIJKSTRA'S ALGORITHM - EXAMPLE

S=S U {u}	Q {s t x y z}	{u}
{Φ}	$\{0 \propto \infty \propto \infty\}$	{s}
{s}	$\{0\ 10 \infty \ 5 \infty\}$	{y}
{s, y}	{ 0 8 14 5 7 }	{z}
{s, y, z}	{ 0 8 13 5 7 }	{t}
$\{s, y, z, t\}$	{0 8 9 5 7 }	{x}
${s, y, z, t,x}$	{0 8 9 5 7 }	

 $|\mathbf{Q}| = 0$

TIME COMPLEXITY

- Depends on how many times each operation takes place:
 - Inserts in Priority queue V times
 - Extract min operation V times
 - Decrease key operation(relaxation) E times

TIME COMPLEXITY — WITH DIFFERENT DATA STRUCTURE

With Array

- $\Theta(1)$ insert
- $\Theta(V)$ Extract min
- $\Theta(1)$ decrease key
- Total = V* $\Theta(1)$ + V* $\Theta(V)$ +E* $\Theta(1)$ = $\Theta(E)$ + $\Theta(V^2)$ = $\Theta(V^2)$

Binary mean heap

- $\Theta(\lg V) insert$
- $\Theta(\lg V)$ Extract min [deleting min is constant but resorting/updating after delete will take $\lg V$]
- Θ(lg V) decrease key
- Total = V* $\Theta(\lg V)$ + V* $\Theta(\lg V)$ +E* $\Theta(\lg V)$ = $\Theta(E \lg V)$

• Fibonacci heap:

- $\Theta(1)$ insert
- Θ(lg V)- Extract min
- $\Theta(1)$ decrease key
- Total = V* $\Theta(1)$ + V* $\Theta(\lg V)$ +E* $\Theta(1)$ = $\Theta(E + V \lg V)$

TIME COMPLEXITY — SUMMARY

Data Structure used	Insert (V times)	Extract- min (V times)	Decrease key(E times)	Total
Array	Θ(1)	$\Theta(V)$	$\Theta(1)$	$\Theta(V^2)$
Binary Heap	$\Theta(\lg V)$	Θ(lg V)	Θ(lg V)	$\Theta(E \lg V)$
Fibonacci Heap	$\Theta(1)$	Θ(lg V)	$\Theta(1)$	$\Theta(E + V \lg V)$

NEGATIVE WEIGHT VS. NEGATIVE CYCLE

- If the graph G (V,E) contains no negative weight cycles reachable from the source s,
 - then for all vertices $v \in V$, the shortest-path weight $\delta(s, v)$ remains well defined, even if it has a negative value.
- If the graph contains a negative-weight cycle reachable from s
 - shortest-path weights are not well defined.

NEGATIVE WEIGHT VS. NEGATIVE CYCLE

- Path weight of *e* and *f* continues to decrease as we follow the loop.
- As a result weight for **g** will also keep decreasing.
- So, path of these 3 nodes become undefined.

NEGATIVE WEIGHT VS. NEGATIVE CYCLE

- On the contrary even though path to **b** contains a negative weight but as there is no negative cycle, b will have a defined shortest path.
- Also **c** and **d** has a cycle but not negative cycle. So, they also have defined shortest path.

BELLMAN-FORD ALGORITHM

BELLMAN-FORD ALGORITHM

- The *Bellman-Ford algorithm solves* the general case in which edge weights may be negative.
- Given a weighted, directed Graph G(V,E) with source s and weight function w,
 - It returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source.
 - If there is such a cycle, the algorithm indicates that no solution exists.
 - If there is no such cycle, the algorithm produces the shortest paths and their weights.
 - The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.

Bellman-Ford algorithm

```
BELLMAN - FORD(G, w, s):
                                                      At each iteration, at least one
                                                      vertex reachable from s will have
1 INITIALIZE-SINGLE-SOURCE(G, s)
                                                      the shortest path.
2 for i = 1 to |G.V| - 1
                                                      So, after V-1 iteration all V-1
    for each edge (u, v) \in G.E
                                                      vertices will have their shortest
                                                      path
       RELAX(u, v, w)
// The loop below is for checking if we can farther
// reduce the cost. And if so, there is a cycle
5 for each edge (u, v) \in G.E
                                               If we can farther reduce the cost
   if v.d > u.d + w(u, v)
                                               then there is a cycle
      return FALSE
8 return TRUE
```

Bellman-Ford algorithm - Example

Process edges in following order.

5-6

4-6

4-3

2-3

1-2

1-4

1-5

Bellman-Ford algorithm - Example

Process edges in following order.

3-4

2-3

1-3

Bellman-Ford algorithm - Example

Process edges in following order.

3-4

2-3

4-2

1-3

TRY AT HOME

- Increase all weights by a fixed number.
- How to convert single source Shortest Path to a Single Destination Shortest path algorithm.
- Apply Dijkstra to a graph with negative weight/cycle.

REFERENCE

• Chapter 24 (Cormen) -> 24.1, 24.3