3P2b Symmetries: Examples Sheet 2

Michaelmas 2020

Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in prior to the class to your examples class supervisor, for feedback.

- 1* This question regards Pauli matrices, SO(3) and SU(2)
 - (a) Verify the following properties of the Pauli matrices $\boldsymbol{\sigma} := (\sigma_1, \sigma_2, \sigma_3)$:
 - (i) $\sigma_i \sigma_j = I \delta_{ij} + i \epsilon_{ijk} \sigma_k$,
 - (ii) $\sigma_2 \boldsymbol{\sigma} \sigma_2 = -\boldsymbol{\sigma}^*$,
 - (iii) $\exp(-i\theta \mathbf{n} \cdot \boldsymbol{\sigma}/2) = I\cos(\theta/2) i\mathbf{n} \cdot \boldsymbol{\sigma}\sin(\theta/2).$
 - (b) Three 3×3 matrices $\mathbf{T} := (T_1, T_2, T_3)$ are defined by $(T_i)_{jk} = -i\epsilon_{ijk}$.
 - (i) Prove $[T_i, T_j] = i\epsilon_{ijk}T_k$.
 - (ii) Prove $(\mathbf{n} \cdot \mathbf{T})^3 = |\mathbf{n}|^2 \mathbf{n} \cdot \mathbf{T}$.
 - (iii) What are the possible eigenvalues of $\mathbf{n} \cdot \mathbf{T}$ if \mathbf{n} is a unit vector?
 - (iv) We may represent a rotation by an angle θ about an axis that points along the unit vector n by the member of SO(3) $R_{ij}(\mathbf{n}, \theta) := \exp(-i\theta \mathbf{n} \cdot \mathbf{T})_{ij}$. By convention, \mathbf{n} points in any direction and $0 \le \theta \le \pi$. Evaluate R_{ij} explicitly by summing the Taylor series of the exponential, and show that

$$R_{ij}(\mathbf{n}, \theta) = n_i n_j + (\delta_{ij} - n_i n_j) \cos \theta - \epsilon_{ijk} n_k \sin \theta.$$

- (c) Verify the formula: $e^{-i\theta\mathbf{n}\cdot\boldsymbol{\sigma}/2}\,\sigma_j\,e^{i\theta\mathbf{n}\cdot\boldsymbol{\sigma}/2}=R_{ij}(n,\theta)\,\sigma_i$.
- (d) The set of matrices $\exp(-i\theta \mathbf{n} \cdot \boldsymbol{\sigma}/2)$ constitutes the defining representation of SU(2). Prove that this representation is *pseudoreal* (defined to be that the complex conjugate returns minus the initial matrix: see later in the course).
- 2. Let $T^{\alpha_1...\alpha_{2j}}$ be a symmetric SU(2) tensor for $j=\frac{1}{2},1,\frac{3}{2},\ldots$
 - (a) Show that the action of the spin operator is given by

$$\mathbf{S}^{\alpha_1...\alpha_{2j}}{}_{\beta_1...\beta_{2j}}T^{\beta_1...\beta_{2j}} = \sum_{i=1}^{2j} \frac{1}{2} (\boldsymbol{\sigma})^{\alpha_i}{}_{\beta}T^{\alpha_1...\alpha_{i-1}\beta\alpha_{i+1}...\alpha_{2j}} ,$$

where σ are the Pauli matrices.

(b) Defining (for $m = -j, -j + 1, \dots, j$)

$$T^{(jm)} = \left[(j+m)!(j-m)! \right]^{-\frac{1}{2}} T_{\underbrace{j+m}}^{\underbrace{1...1}}_{j-m}^{\underbrace{2...2}},$$

calculate $S_{\pm}T^{(jm)}$ and $S_3T^{(jm)}$.

- (c) Show that $\bar{T}_{\alpha_1...\alpha_{2j}}T^{\alpha_1...\alpha_{2j}}=(2j)!\sum_m T^{(jm)*}T^{(jm)}$ for $\bar{T}_{\alpha_1...\alpha_{2j}}$ being the conjugate tensor.
- 3* A field $\phi(x)$ transforms under the action of a Poincaré transformation (Λ, a) such that $U[\Lambda, a]\phi(x)U[\Lambda, a]^{-1} = \phi(\Lambda x + a)$. For an infinitesimal transformation, $\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu}$ and correspondingly $U[\Lambda, a] = 1 i\frac{1}{2}\omega^{\mu\nu}M_{\mu\nu} ia^{\mu}P_{\mu}$.

(a) Show that

$$[M_{\mu\nu}, \phi(x)] = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})\phi(x), \qquad [P_{\mu}, \phi(x)] = i\partial_{\mu}\phi(x).$$

- (b) Verify that $M_{\mu\nu} \to i(x_{\mu}\partial_{\nu} x_{\nu}\partial_{\mu})$ and $P_{\mu} \to -i\partial_{\mu}$ satisfy the algebra for $[M_{\mu\nu}, M_{\sigma\rho}]$ and $[M_{\mu\nu}, P_{\sigma}]$ expected for the Poincaré group.
- 4. (a) Show how $B(\theta, \mathbf{n}) \in SL(2, \mathbb{C})$ where

$$B(\theta, \mathbf{n}) = I \cosh \frac{\theta}{2} + \sigma \cdot \mathbf{n} \sinh \frac{\theta}{2}, \quad \mathbf{n}^2 = 1,$$

corresponds to a Lorentz boost with velocity $\mathbf{v} = \tanh \theta \mathbf{n}$.

(b) Show that

$$(1 + \frac{1}{2}\sigma \cdot \delta \mathbf{v})B(\theta, \mathbf{n}) = B(\theta', \mathbf{n}')R,$$

where, to first order in $\delta \mathbf{v}$,

$$\theta' = \theta + \delta \mathbf{v} \cdot \mathbf{n}, \quad \mathbf{n}' = \mathbf{n} + \coth \theta (\delta \mathbf{v} - \mathbf{n} \ \mathbf{n} \cdot \delta \mathbf{v}),$$

and R is an infinitesimal rotation given by

$$R = 1 + \frac{i}{2} \tanh \frac{\theta}{2} (\delta \mathbf{v} \times \mathbf{n}) \cdot \sigma = 1 + \frac{i}{2} \frac{\gamma}{\gamma + 1} (\delta \mathbf{v} \times \mathbf{v}) \cdot \sigma, \qquad \gamma = (1 - \mathbf{v}^2)^{-\frac{1}{2}}.$$

- (c) Show that we must have $\mathbf{v}' = \mathbf{v} + \delta \mathbf{v} \mathbf{v} \ \mathbf{v} \cdot \delta \mathbf{v}$. [NB $\sigma \cdot \mathbf{a} \ \sigma \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} \ 1 + i \sigma \cdot (\mathbf{a} \times \mathbf{b})$.]
- 5. The group of four dimensional space-time symmetries may be expanded to conformal transformations $x \to x'$ defined by the requirement

$$\mathrm{d}x'^2 = \Omega(x)^2 \mathrm{d}x^2 \,,$$

where $dx^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$. For an infinitesimal transformation $x'^{\mu} = x^{\mu} + f^{\mu}(x)$, $\Omega(x)^2 = 1 + 2\sigma(x)$.

(a) Obtain in this case

$$\partial_{\mu} f_{\nu} + \partial_{\nu} f_{\mu} = 2\sigma g_{\mu\nu} \quad \Rightarrow \quad 4\sigma = \partial \cdot f.$$

(b) Hence obtain

$$4 \partial_{\sigma} \partial_{\mu} f_{\nu} = g_{\mu\nu} \partial_{\sigma} \partial \cdot f + g_{\sigma\nu} \partial_{\mu} \partial \cdot f - g_{\sigma\mu} \partial_{\nu} \partial \cdot f.$$

From this obtain $2\partial_{\sigma}\partial_{\mu}\partial \cdot f = -g_{\sigma\mu}\partial^{2}\partial \cdot f$ and hence show that we must have $\partial_{\sigma}\partial_{\mu}\partial \cdot f = 0$.

(c) Why does it then follow that $f_{\mu}(x)$ can only be quadratic in x? Show that $f^{\mu}(x)$ must then have the general form

$$f^{\mu}(x) = a^{\mu} + \omega^{\mu}_{\ \nu} x^{\nu} + \lambda x^{\mu} + b^{\mu} x^{2} - 2b \cdot x \, x^{\mu} \,, \quad \omega_{\mu\nu} = -\omega_{\nu\mu} \,.$$

- (d) Show also that an inversion $x'^{\mu} = x^{\mu}/x^2$ is a conformal transformation. Calculate the finite conformal transformation obtained by an inversion followed by a translation by b^{μ} followed by another inversion and show that it is compatible with the result for $f^{\mu}(x)$.
- 6. Verify the Baker-Campbell-Hausdorff formula

$$\exp A = \exp \left(A + B + \frac{1}{2}[A, B] + \frac{1}{12}\{[A, [A, B]] + [B, [B, A]]\} + \dots\right)$$

to the order shown.