Exercice 1:

Soit le circuit suivant :

Sachant que les 2 bascules Q_0 et Q_1 sont **initialisées à 0**, remplissez le chronogramme suivant :

Pour vous aider, remplissez le tableau suivant :

J0=Q0avant xor Q1barre avant

K0=Q0 avant xor Q1 avant

J1=Q0barre avant

K1=Q0 avant

J	K	Qn+1
0	0	Qn
O	1	つ
->^	0	1
\sim	17	Or

	Q_0 avant	Q_1 avant	J ₀	<mark>K₀</mark>	J ₁	K ₁	<mark>Q₀</mark> <mark>après</mark>	$rac{Q_1}{après}$
	0	0	1	0	1	0	<u>1</u>	1
	0	1	0	1	1	0	0	1
	1	0	0	1	0	1	0	0
,	1	1	1	0	0	1	1	0

Sachant que les 2 bascules Q_0 et Q_1 sont **initialisées à 0**, remplissez le chronogramme suivant :

Pour vous aider et justifier : relevez les valeurs de J0, K0, J1 et K1 :

J0=Q1barre

K0=Q1

J1=Q0 xor Q1

K1=Q0barre xor Q1barre

Puis, remplissez le tableau suivant :

	Q0 avant	Q1 avant	J0	K0	J1	K1	Q0 après	Q1 après	
1	0	0	1	O	0	0	1	0	
4	0	1	0	1	1	1	0	0	
2		0	1	0	1	1	1	1	-
3	1	1	0	1	0	0 (0	1	
J				5 K	Qno	Ţ			
				bl	ON				
) 1	Qn				
					1				
				1/1	(Q)				

Soit le circuit suivant :

Relevez les expressions qui entrent dans $J_0,\,K_0,\,J_1$ et K_1 :

J₀=Q0 xorbarre Q2

K₀=Q0 xor Q1barre

 J_1 =Q1barre xorbarre Q2barre

 $K_1=Q0 \text{ xor } Q1$

 $J_2=Q0 \text{ xor } Q2$

 $K_2=Q1 \text{ xor } Q2$

Puis, remplissez le tableau suivant :

(Q₀ avant	Q ₁ avant	Q ₂ avant	<mark>J</mark> o	K ₀	J ₁	K ₁	J ₂	<mark>K₂</mark>	Q₀ après	Q ₁ après	Q₂ après
ے طر	P	0	0	1	1	1	0	0	0	1	1	0
3	0	0	1	0	1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	1	0	1	1	0	0
4	6	1		0	0	1	1	1	0	0	0	1
2	J	0	0	0	0	1	1	1	0	1	1	1
	1	0	1	1	0	0	1	0	1	1	0	0
7	1	1	0	0	1	0	0	1	۲۲ <mark>1</mark>	0	1	1
2	J	1		1	1	1	0	0	0	0	1	1

Déduisez-en le tracé des chronogrammes de Q_0 , Q_1 et Q_2 , sachant qu'au début, $Q_0=0$, $Q_1=1$ et $Q_2=0$.

Exercice 2:

Les trois bascules D sont initialisées avec Q1=1, Q2=0, Q3=1.

Dresser un chronogramme avec les états de Q1, Q2, Q3 pour les dix premières périodes d'horloge (Justifiez les évolutions de Q1, Q2 et Q3).

Q1après=D1avant=Q1avant xor Q2avant

Q2après=D2avant=Q1avant

Q3après=D3avant=Q2avant

Justification:

	Q1avant	Q2avant	Q3avant	D1avant	D2avant	D3avant
				=Q1après	=Q2après	=Q3après
	0	0	0	0	0	0
	0	0	1	0	0	0
	0	1	0	1	0	1
2	b	Ι	V	, 1	0	1
	1	0	0	1	1	0
1	1	0		-> 1	1	0
2	J	1	0	~ 0	1	1
	1	1	1	0	1	1

Les trois bascules D sont initialisées avec Q1=1, Q2=0, Q3=0.

<u>Justification</u>

Q1après=D1avant=Q3avant

Q2après=D2avant=Q1avant xor Q2avant Q3après=D3avant=Q2avant xorbarre Q3avant

	Q1avant	Q2avant	Q3avant		D1avant	D2avant	D3avant
					=Q1après	=Q2après	=Q3après
6	0	0	0		0	0	1
7	0	0	1	_	1	0	0
`	0	1	0		0	1	0
2	0	1	1 -) 1	1	1
Λ	1	0	0		→ 0	1	1
6	1	0	1 -		→ 1	1	0
المح	1	1	0 -	_	• 0	0	0
7	1	1	1 –		1	0	1

