贝叶斯分类器

1.极大似然估计原理

最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致 这样结果的参数值。

极大似然估计是建立在极大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知"。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量 $\vec{\theta}$ 。记已知的样本集为:

$$D = \vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$$

似然函数 (likelihood function) : 联合概率密度函数 $p(D|\vec{\theta})$ 称为相对于 $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ 的 $\vec{\theta}$ 的似然函数。

$$l(ec{ heta}) = p(D|ec{ heta}) = p(ec{x}_1,ec{x}_2,\ldots,ec{x}_n|ec{ heta}) = \prod_{i=1}^n p(ec{x}_i|ec{ heta})$$

如果 $\hat{\vec{\theta}}$ 是参数空间中能使似然函数 $l(\vec{\theta})$ 最大的 $\vec{\theta}$ 值,则 $\hat{\vec{\theta}}$ 应该是"最可能"的参数值,那么 $\hat{\vec{\theta}}$ 就是 θ 的极大似然估计量。它是样本集的函数,记作:

$$\hat{ec{ heta}} = d(D) = rg \max_{ec{ heta}} l(ec{ heta})$$

 $\hat{\vec{\theta}}(\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n)$ 称为极大似然函数估计值。

2.贝叶斯分类器基本原理

贝叶斯决策论通过相关概率已知的情况下,利用误判损失来选择最优的类别分类。

假设有N种可能的分类标记,记为 $Y = \{c_1, c_2, \ldots, c_N\}$,那对于样本x,考虑其类别:

step 1. 算出样本x属于第i个类的概率,即 $P(c_i|x)$;

step 2. 通过比较所有的 $P(c_i|x)$,得到样本x所属的最佳类别。

step 3. 将类别 c_i 和样本x代入到贝叶斯公式中,得到:

$$P(c_i|oldsymbol{x}) = rac{P(oldsymbol{x}|c_i)P(c_i)}{P(oldsymbol{x})}.$$

 $P(c_i)$ 为先验概率, $P(\boldsymbol{x}|c_i)$ 为条件概率, $P(\boldsymbol{x})$ 是用于归一化的证据因子。对于 $P(c_i)$ 可以通过训练样本中类别为 c_i 的样本所占的比例进行估计;此外,由于只需要 找出最大的 $P(\boldsymbol{x}|c_i)$,因此我们并不需要计算 $P(\boldsymbol{x})$ 。

3.朴素贝叶斯分类器

假设样本x包含d个属性,即 $x = \{x_1, x_2, \ldots, x_d\}$ 。于是有:

$$P(\boldsymbol{x}|c_i) = P(x_1, x_2, \cdots, x_d|c_i)$$

这个联合概率难以从有限的训练样本中直接估计到,于是朴素贝叶斯(Naive Bayesian)采用了"**属性条件独立性假设**":对已知类别,假设所有属性相互独立,则有:

$$P(x_1,x_2,\cdots,x_d|c_i) = \prod_{j=1}^d P(x_j|c_i)$$

则可以推出相应的判定准则:

$$h_{nb}(oldsymbol{x}) = rgmax_{c_i \in Y} P(c_i) \prod_{j=1}^d P(x_j|c_i)$$

条件概率 $P(x_i|c_i)$ 的求解:

如果 x_j 是标签属性,那么我们可以通过**计数**的方法估计 $P(x_j|c_i)$

$$P(x_j|c_i) = rac{P(x_j,c_i)}{P(c_i)} pprox rac{\#(x_j,c_i)}{\#(c_i)}$$

其中, $\#(x_j,c_i)$ 表示在训练样本中 x_j 与 c_i 共同出现的次数。

如果 x_j 是数值属性,通常我们假设类别中 c_i 的左右样本第j个属性服从正态分布。首先故居这个分布的均值 μ 和方差 σ ,然后计算 x_j 在这个分布中的概率密度 $P(x_j|c_i)$

4. 半朴素贝叶斯分类器

朴素贝叶斯采用了"属性条件独立性假设",半朴素贝叶斯基本想法时适当考虑一部分属性间的相互依赖信息。"**独依赖估计**"(One—Dependence Estimator,ODE)是半朴素贝叶斯最常用的一种策略,即:假设每个属性在类别之外最多依赖一个其他属性。

$$P(oldsymbol{x}|c_i) = \prod_{j=1}^d P(x_j|c_i, ext{pa}_j)$$

其中 pa_j 为属性 x_i 所依赖的属性,成为 x_i 的父属性。假设父属性 pa_j 已知,那么可以使用下面的公式估计 $P(x_j|c_i,\mathrm{pa}_j)$

$$P(x_j|c_i, ext{pa}_j) = rac{P(x_j, c_i, ext{pa}_j)}{P(c_i, ext{pa}_j)}$$

5.举例理解朴素贝叶斯分类器

使用经典的西瓜训练集如下:

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好 瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬 滑	0.697	0.460	是
2	乌黑	蜷缩	沉 闷	清晰	凹陷	硬 滑	0.774	0.376	是

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
3	乌黑	蜷缩	浊响	清晰	凹 陷	硬 滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹 陷	硬 滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹 陷	硬 滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软 粘	0.403	0.237	是
7	乌 黑	稍蜷	浊响	稍糊	稍凹	软 粘	0.481	0.149	是
8	乌 黑	稍蜷	浊响	清晰	稍凹	硬 滑	0.437	0.211	是
9	乌黑	稍蜷	沉 闷	稍糊	稍凹	硬 滑	0.666	0.091	否
10	青绿	硬 挺	清脆	清晰	平坦	软 粘	0.243	0.267	否
11	浅白	硬 挺	清脆	模 糊	平 坦	硬 滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模 糊	平坦	软 粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹 陷	硬 滑	0.639	0.161	否
14	浅白	稍蜷	沉 闷	稍糊	凹陷	硬 滑	0.657	0.198	否
15	乌 黑	稍蜷	浊响	清晰	稍凹	软 粘	0.360	0.370	否
16	浅白	蜷缩	浊响	模 糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬 滑	0.719	0.103	否

对下面的测试例"测1"进行分类:

编号	色泽	根蒂	敲声	纹 理	脐部	触感	密度	含糖 率	好 瓜
测1	青绿	蜷缩	浊响	清晰	凹陷	硬 滑	0.697	0.460	?

首先,估计类先验概率 $P(c_i)$,有

$$P($$
好瓜 $=$ 是 $)=rac{8}{17}=0.471$ $P($ 好瓜 $=$ 否 $)=rac{9}{17}=0.529$

然后,为每个属性估计条件概率(这里,对于连续属性,假定它们服从正态分布)

$$ho_{lpha ext{BE}: \ 0.697| ext{\mathcal{E}}} =
ho \ (lpha ext{BE} = 0.697| ext{M} = ext{\mathcal{E}}) \ = rac{1}{\sqrt{2\pi} imes 0.129} exp \left(-rac{(0.697 - 0.574)^2}{2 imes 0.129^2}
ight) pprox 1.959$$

$$ho_{ rac{lpha g_{: \ 0.697 \mid \Xi}}{2 imes 0.195}} =
ho \ (lpha g = 0.697 \mid$$
 好瓜 $= \Xi)$ $= rac{1}{\sqrt{2\pi} imes 0.195} exp \left(-rac{(0.697 - 0.496)^2}{2 imes 0.195^2}
ight) pprox 1.203$

$$ho_{\text{含糖: }0.460|\mathbb{R}} =
ho \; (密度 = 0.460|$$
好瓜 = 是)
$$= \frac{1}{\sqrt{2\pi} \times 0.101} exp\left(-\frac{(0.460 - 0.279)^2}{2 \times 0.101^2}\right) \approx 0.788$$

于是有

$$P$$
(好瓜 $=$ 是) $imes$ $P_{rac{\pi}{8}}$ $egin{aligned} & P_{rac{\pi}{8}}$ $egin{aligned} & P_{rac{\pi}{8}} & P_{
acm}{8} & P_{
acm} & P_{
acm}{8} & P_{
acm}{8} & P_{
acm} &$

$$P($$
好瓜 $=$ 否 $) imes P_{ ext{ iny fight}}$ $imes P_{ ext{ iny fight}}$

由于 $0.063 > 6.80 \times 10^{-5}$,因此,朴素贝叶斯分类器将测试样本"测1"判别为"好瓜"。