INTELLIGENT TUTORING SYSTEM

BY

SHUBHASHINI VIJAYASHREE SHIVANGI

Intelligent Tutoring Systems

- Traditional CAI
 - Fully specified presentation text
 - Canned questions and associated answers
 - Lack the ability to adapt to students
- ICAI: intelligent computer-aided instruction
 - Reasoning
 - Rich representation of domain
 - User modeling
 - Communication of information structures

Knowledge Representation

- Knowledge is the key to intelligent behavior
 - The form in which we store the knowledge is crucial to our abilities to use it
 - No general form suitable for all knowledge
- Challenge
 - determine the type of knowledge required, and suitable representation for that knowledge, to support teaching particular subjects

Script Representation

- WHY, a Socratic tutoring system
 - Test student's understanding of the major casual factors involved in rainfall
 - Require a representation with different levels of abstraction
- Script
 - Nodes represent processes and events, links represent such relations as X enables Y or X causes Y
 - Each node have a hierarchically-embedded subscript
 - Roles are bound to geographic or meteorological entities in a particular case

3. FACTORS INFLUENCING ITS Student Modeling

- Overlay Modeling
 - student's knowledge is viewed in terms of the tutor's domain knowledge
- Several approaches
 - Semantic net with nodes and links are added as they are taught
 - Stars with the expert knowledge base and annotates deviations that are subsequently discovered
 - Skill modeler: student modeled by the set of skills he has mastered

Problem Generation (Cont.)

- Problem generation, expert problem solving and student diagnosis can be viewed as a set of constraints on their solution
- We can evaluate student answers by checking that al constraints are satisfied
- Give student feedback on wrong answers by telling him which constraints he failed to satisfy

4. ITS CONVENTIONAL MODEL AND MAIN COMPONENTS

ITSs and Their Interaction

5. CASE-BASED REASONING (CBR) AND CBITS

- To represent the Student model and Domain Knowledge
- There are different sources to obtain cases:
 - o Produced by the learner himself
 - o Experience from other learner
 - o On-demand case generation
 - o Predefined cases given by human tutors

6. PERFECT TEACHER AND ITS

- Different roles of teacher:
 - ITS designer teacher
 - ITS implementer teacher
- (personality attributes, styles, preferences ...)
- Many implementer teachers distrust ITS as employing beliefs of the 'designer teacher

Teacher and ITS

7. DEVELOPMENT PROCESS TO CREAT ITS

Main Stages of ITS Development Process

- Phase 1: Select Domain:
 - Choose domain where problem solving plays a major role.
 - Building an ITS requires high investment of efficient developers and their expertise.

Phase 2: Choose ITS Model

- Most popular models are cognitive tutors (Model Tracing, Knowledge Tracing) [Developed by Carnegie Mellon University, Pittsburgh, PA] and Constraint Based Tutor [Developed by Conterbury University, New Zeland]
- Choose CT to teach procedural skills.
- Choose CBT to teach open-ended domains.

Main Stages of ITS Development Process (Cont.)

- Stage 3: Choose Learning Environment:
 - Student interface has to be simple and adapted to the domain (reduce memory load, motivate, etc.)
 - A lot of learning environments exist already and can be reused)
- > Stage 4: Interface Learning Environment (LE) and ITS:
 - Convert solution from learning environment into format required by ITS.
 - Possibly integrate LE into ITS to make it Web accessible.
 - Convert student solution to the XML web language format required by ITS.
 - Convert Java language application to Java applet required by Web

Main Stages of ITS Development Process (cont.)

▶Stage 5: Author ITS:

- Existing ITS Examples:
- *WETAS: a development environment authoring tool done through text files. WETAS is a domain model (knowledge base)
- *ASPIRE: a deployment environment authoring tool (ASPIRETutor). It guides author in the development process and considered a semi-automated process for building the domain model.
- Constraint Based Tutor Model domain with constraints
 - * IF X (relevance condition) is true

ThenY (satisfaction condition) has to be also true

- Feedback generated when:
 - * Relevance condition is true
 - * satisfaction condition is false

Main Stages of ITS Development Process (cont.)

Stage 6: Validate ITS:

- Test the knowledge base (constraints)
- Test if generated feedback is appropriate.

➤Stage 7: Deploy ITS:

- Make ITS available to students

Stage 7: Evaluate ITS:

- Identify aspects to be evaluated (example: effectiveness of the feedback).
- Use real students learning the domain
- Pre- and post test
- Comparison group (uses full version of ITS)
- Control group (uses version with no feedback).