SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

Zagreb, 2019.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	
1.	, predsjednik
2.	, član
3.	 , član
Povjerenstvo je rad ocijenilo ocjenom	<u> </u>
	Potpisi članova povjerenstva:
	1.
	2.
	3.

Sadržaj

Sa	adržaj	iv
U	vod	1
1	Rijetka rješenja	3
	1.1 Rijetsko i sažetost vektora	3
Bi	ibliografija	5

Uvod

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1, 2, ..., N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \setminus S$.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$supp(\mathbf{x}) := \{ j \in [N] : x_i \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := card(supp(\mathbf{x})) \le s$$

Primjetimo,

$$||\mathbf{x}||_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = card(\{j \in [N] : x_j \neq 0\}) = ||\mathbf{x}||_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j \neq 0\}} = 1$ ako je $x_j \neq 0$ te $\mathbf{1}_{\{x_j \neq 0\}} = 0$ ako je $x_j = 0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$||\mathbf{x} + \mathbf{y}|| \le C(||\mathbf{x}|| + ||\mathbf{y}||)$$

za neku konstantu $C \ge 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora, pa je stoga prirodno zahtjevati slabiji uvjet *kompresibilnosti*.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf\{||\mathbf{x} - \mathbf{z}||_p, \ \mathbf{z} \in \mathbb{C}^N \ je \ s\text{-rijedak}\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima ne-nul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^N$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

te postoji permutacije $\pi: [N] \to [N]$ takva da $x_j^* = |x_{\pi(j)}|$ za sve $j \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \leq \frac{1}{s^{1/p-1/q}} ||\mathbf{x}||_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$. Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \le (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p} \le \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \le \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p} = \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

Prva nejednakost slijedi iz činjenice da je $x_j^* \le x_s^*$ za svaki $j \ge s + 1$. Druga nejednakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s 1/q slijedi tvrdnja.

Bibliografija

Sažetak

Ukratko ...

Summary

In this ...

Životopis

Dana ...