1. Sketch graphically the problem

$$\begin{aligned} \min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) &= (x_1 + 1)^2 + (x_2 - 2)^2 \\ subjected \ to: g_1 &= x_1 - 2 \leq 0, \qquad g_3 = -x_1 \leq 0 \\ g_2 &= x_2 - 1 \leq 0, \qquad g_4 = -x_2 \leq 0 \end{aligned}$$

$$L = (x_1 + 1)^2 + (x_2 - 2)^2 + \mu_1(x_2 - 2) + \mu_2(x_1 - 1) + \mu_3(-x_1) + \mu_4(-x_2)$$

Conditions for μ

$$\begin{array}{lll} \mbox{if $x_2-2=0$}\,, & then \, \mu_1>0 & \mbox{if $x_2-1<0$}, & then \, \mu_1=0 \\ \mbox{if $x_1-1=0$}\,, & then \, \mu_2>0 & \mbox{if $x_1-2<0$}, & then \, \mu_2=0 \\ \mbox{if $-x_1=0$}\,, & then \, \mu_3>0 & \mbox{if $-x_1<0$}, & then \, \mu_3=0 \\ \mbox{if $-x_2=0$}\,, & then \, \mu_4>0 & \mbox{if $-x_2<0$}, & then \, \mu_4=0 \end{array}$$

For point (0,0) the active constraints are $g_{\rm 3}$ and $g_{\rm 4}$

So
$$\nabla g_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 and $\nabla g_4 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

For point (2,0) the active constraints are $\,g_1^{}$ and $\,g_4^{}$

So
$$\nabla g_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$
 and $\nabla g_4 = \left[\begin{array}{c} 0 \\ -1 \end{array} \right]$

For point (2,1) the active constraints are g_{1} and $\ g_{\mathrm{2}}$

So
$$\nabla g_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\nabla g_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

For point (0,1) the active constraints are $g_{\rm 3}$ and $\ g_{\rm 2}$

So
$$\nabla g_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 and $\nabla g_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

As we can see at point (0,1) all directions are ascent and there is no feasible descent direction,

Hence the $x_* = (0,1)^T$ is the minimizer.

We can also check (0,1) point by Applying the KKT Necessary and Sufficient conditions.

- Necessary conditions:
 - \circ $\;$ The g_3 and $\;g_2$ are the active constrains mean $\mu_3\;and\;\mu_2\;>0$ and $\mu_1\;and\;\mu_4\;equal\;to\;0$

$$\nabla f - \mu^{T} \nabla g = 0$$

$$\begin{bmatrix} 2(x_{1} + 1) \\ 2(x_{2} - 2) \end{bmatrix} + \begin{bmatrix} -\mu_{3} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2(0 + 1) \\ 2(1 - 2) \end{bmatrix} + \begin{bmatrix} -\mu_{3} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 - \mu_{3} \\ -2 + \mu_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

from here we have $\mu_3=2$ and $\mu_2=2$ that satisfied the KKT necessary conditions.

- Sufficient conditions:
 - o The Hessian of Lagrangian = $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, $\lambda_1 = 2$ and $\lambda_2 = 2$

Here Hessian of Lagrangian is positive definite everywhere. Therefore, $x_* = (0,1)^T$ is the global minimum.

2. Graph the problem

$$\min f - x_1 \\ subject \ to: g_1 = x_2 - (1 - x_1)^3 \le 0 \ and \ x_2 \ge 0$$

First let's convert $x_2 \ge 0$ to $-x_2 \le 0$

As we can see at point $x_* = (1,0)^T$ is the solution

Checking the KKT conditions at $x_* = (1,0)^T$

$$L = -x_1 + \mu_1(x_2 - (1 - x_1)^3) + \mu_2(-x_2)$$

- Necessary conditions:
 - $\circ\quad$ The g_1 and $~g_2$ are the active constrains mean $\mu_1~and~\mu_2~>0$

$$\nabla f - \mu^{\mathsf{T}} \nabla g = 0$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 3(1 - x_1)^2 \\ 1 \end{bmatrix} + \mu_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
at $x_* = (1,0)$,
$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 3(1 - 1)^2 \\ 1 \end{bmatrix} + \mu_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \mu_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-1 = 0: contradict$$

$$\mu_1 - \mu_2 = 0$$

So, the point $x_* = (1,0)$ is not a KKT point because this is not a regular point.

3. Find a local solution to the problem

$$\max f = x_1 x_2 + x_2 x_3 + x_1 x_3$$

subjected to $h = x_1 + x_2 + x_3 - 3 = 0$

You can use either the reduced gradient or the Lagrangian method.

• Solving it using Lagrangian Method:

$$L = -f + \lambda h$$

$$L = -(x_1 x_2 + x_2 x_3 + x_1 x_3) + \lambda (x_1 + x_2 + x_3 - 3)$$

$$\nabla_x L = \begin{bmatrix} -x_2 - x_3 + \lambda \\ -x_1 - x_2 + \lambda \\ -x_1 - x_3 + \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\nabla_x L = x_1 + x_2 + x_3 = 0$$

We have 4 unknown and 4 equations so by solving the system of linear equation

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 1$, $\lambda = 2$

- Check Sufficient conditions:
 - $\text{ The Hessian of Lagrangian } L_{xx} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$
 - The eigen value of Hessian of Lagrangian is $\lambda_1 = -2$, $\lambda_2 = 1$, $\lambda_3 = 1$.
 - As we can see all the eigen value of Hessian are not positive

But if we check the second order condition which is, $dx^T L_{xx} dx$

$$\begin{split} & \partial x L_{xx} \partial x : Second \ order \ pertubations \\ & \partial x^T L_{xx} \partial x = \left[\partial x_1 \ \partial x_2 \ \partial x_3 \right] \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \partial x_1 \\ \partial x_2 \\ \partial x_3 \end{bmatrix} \\ & = -2 \partial x_1 \partial x_2 - 2 \partial x_1 \partial x_3 - 2 \partial x_2 \partial x_3 \end{split}$$

We want the ∂x to be feasible so the feasible perturbation is such that $\frac{\partial h}{\partial x}\partial x = 0$

$$\left[\frac{\partial h}{\partial x_1}, \frac{\partial h}{\partial x_2}, \frac{\partial h}{\partial x_3}\right] \begin{bmatrix} \partial x_1 \\ \partial x_2 \\ \partial x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1, 1, 1 \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial x_2} \\ \frac{\partial x_3}{\partial x_3} \end{bmatrix} = 0 \to \partial x_1 + \partial x_2 + \partial x_3 = 0$$
$$\partial x_1 = -\partial x_2 - \partial x_3$$

So,

$$= -2(-\partial x_2 - \partial x_3)\partial x_2 - 2(-\partial x_2 - \partial x_3)\partial x_3 - 2\partial x_2\partial x_3$$

$$= 2(\partial x_2^2 + \partial x_2\partial x_3 + \partial x_3^2) \rightarrow 2\left(\partial x_2 + \frac{1}{2}\partial x_3\right)^2 + \frac{3}{4}\partial x_3^2 \ge 0$$

Further, for $\partial x^T L_{xx} \partial x$ to be 0, ∂x_2 and ∂x_3 must be 0, if so the ∂x_1 is also 0. Which mean $\partial x = 0$ which is not a perturbation. Therefore, $\partial x^T L_{xx} \partial x > 0$ for any non-zero feasible perturbations

So $x_{1*} = x_{2*} = x_{3*} = 1$ is global maximum to the original problem and if we plug this value in the main f so, $f_* = 3$

4. Find the solution to

$$\min f = x_1^2 + x_2^2 + x_3^2$$
 subjected to $h_1 = \frac{x_1^2}{4} + \frac{x_2^2}{5} + \frac{x_3^2}{25} - 1 = 0$ and $h_2 = x_1 + x_2 - x_3 = 0$

by implementing the generalized reduced gradient algorithm.

Python uploaded into Github:

https://github.com/siddahant/DESOPT/blob/fourth/generalized_reduced_gradient.ipynb

5. Consider the following garbage truck routing problem. Let there be N sites to be visited and consider them as nodes of a graph. The cost of moving from node i to j is c_{ij} if there is an edge between the nodes, or ∞ if there is none. Site 0 is the truck station where the truck starts and returns. Formulate the problem to minimize the total cost while the truck visits all sites and returns to the station

Problem Formulation:

$$\min_{x_{ij}} \sum_{ij}^{N} x_{ij} c_{ij}$$

Where x_{ij} is the movement form node $i \rightarrow j$

Forward movement: $x_{ij} = \begin{cases} 1 & \text{if i connected with } j \\ 0 & \text{if i not connected with } j \end{cases}$

Backward movement: $x_{ji} = \begin{cases} 1 & \text{if i connected with } j \\ 0 & \text{if i not connected with } j \end{cases}$

 c_{ij} is the cost of moving from node i to j

Forward Move Cost Follows:
$$x_{ij} = \begin{cases} c_{ji} & \textit{if i connected with } j \\ \infty & \textit{if i not connected with } j \end{cases}$$

Backward Move Cost Follows:
$$x_{ji} = \begin{cases} c_{ji} & \text{if i connected with } j \\ \infty & \text{if i not connected with } j \end{cases}$$

The constraint of objective function as follow:

 $\sum x_{ij} \geq N$: the truck needs to visit all the node where N is the number of Nodes

Traffic control:
$$\sum x_{ij} = \sum x_{ji}$$
 (times in = times out)

There must be a connection between starting to at least one neighbor node

For starting
$$\sum x_{0j} \ge 1 \ \forall j$$

For ending $\sum x_{i0} \ge 1 \ \forall j$

So, the final Problem is:

$$\min_{x_{ij}} \sum_{ij}^{N} x_{ij} c_{ij}$$

$$\sum x_{ij} \ge N$$

$$\sum x_{ij} = \sum x_{ji}$$

$$\sum x_{0j} \ge 1 \ \forall j$$

$$\sum x_{j0} \ge 1 \ \forall j$$