

Ministry of Education, Culture, and Research of the Republic of Moldova

Technical University of Moldova

Department: Software Engineering and Automatic Control

Study Program: Software Engineering

Report

At Data Analysis and Visualisation

Laboratory 1

Done by: st. Dana Speianu, IS-211 M
Checked by: prof.univ. Nistor Grozavu

Chişinău, 2022

Laboratory 1

Theme: Data analysis and visualization with machine learning

1. Data normalization

There are different types of data normalization. Assume you have a dataset X, which has N rows(entries) and D columns(features). X[:,i] represent feature i and X[j,:] represent entry j. We have:

Z Normalization(Standardization):

$$\hat{X}[:,i] = \frac{X[:,i] - \mu_i}{\sigma_i}, (\mu_i = \frac{1}{N} * \sum_{k=1}^{N} X[k,i], \sigma_i = \sqrt{\frac{1}{N-1} * \sum_{k=1}^{N} (X[k,i] - \mu_i)^2})$$

I used to falsely think this method somehow yields a standard Gaussian result. In fact, standardization does **not change** the type of distribution:

$$\widehat{X} = aX + b \to f_{\widehat{X}}(x) = \frac{1}{|a|} f\left(\frac{x-b}{a}\right)$$

This transformation sets the mean of data to 0 and the standard deviation to 1. In most cases, standardization is used feature-wise

Min-Max Normalization:

This method rescales the range of the data to [0,1]. In most cases, standardization is used feature-wise as well.

$$\widehat{X}[:,i] = \frac{X[:,i] - \min(X[:,i])}{\max(X[:,i]) - \min(X[:,i])}$$

Machine learning is like making a mixed fruit juice. If we want to get the best-mixed juice, we need to mix all fruit not by their size but based on their right proportion. We just need to remember apples and strawberries are not the same unless we make them similar in some context to compare their attribute. Similarly, in many machine learning algorithms, to bring all features in the same standing, we need to do scaling so that one significant number doesn't impact the model just because of its large magnitude.

Feature scaling in machine learning is one of the most critical steps during the pre-processing of data before creating a machine learning model. Scaling can make a difference between a weak machine learning model and a better one.

The most common techniques of feature scaling are Normalization and Standardization.

Normalization is used when we want to bound our values between two numbers, typically, between [0,1] or [-1,1]. While Standardization transforms the data to have zero mean and a variance of 1, they make our data **unitless**. Refer to the below diagram, which shows how data looks after scaling in the X-Y plane.

Why do we need scaling?

Machine learning algorithm just sees number — if there is a vast difference in the range say few ranging in thousands and few ranging in the tens, and it makes the underlying assumption that higher ranging numbers have superiority of some sort. So these more significant number starts playing a more decisive role while training the model.

The machine learning algorithm works on numbers and does not know what that number represents. A weight of 10 grams and a price of 10 dollars represents completely two different things — which is a no-brainer for humans, but for a model as a feature, it treats both as the same.

Scaling is critical while performing **Principal Component Analysis(PCA)**. PCA tries to get the features with maximum variance, and the variance is high for high magnitude features and skews the PCA towards high magnitude features.

Algorithms like **Linear Discriminant Analysis(LDA)**, Naive Bayes is by design equipped to handle this and give weights to the features accordingly. Performing feature scaling in these algorithms may not have much effect.

Few key points to note:

- Mean centering does not affect the covariance matrix.
- The scaling of variables does affect the covariance matrix.
- Standardizing affects the covariance.

2. Principal Component Analysis(PCA)

The principal components of a collection of points in a real coordinate space are a sequence of p unit vectors, where the i-th vector is the direction of a line that best fits the data while being orthogonal to the first i-l vectors. Here, a best-fitting line is defined as one that minimizes the average squared distance from the points to the line. These directions constitute an orthonormal basis in which different individual dimensions of the data are linearly uncorrelated. Principal component analysis (PCA) is the process of computing the principal components and using them to perform a change of basis on the data, sometimes using only the first few principal components and ignoring the rest.

PCA is used in exploratory data analysis and for making predictive models. It is commonly used for dimensionality reduction by projecting each data point onto only the first few principal components to obtain lower-dimensional data while preserving as much of the data's variation as possible. The first principal component can equivalently be defined as a direction that maximizes the variance of the projected data. The *i-th* principal component can be taken as a direction orthogonal to the first *i-1* principal components that maximize the variance of the projected data.

3. Linear Discriminant Analysis(LDA)

Linear Discriminant Analysis or Normal Discriminant Analysis or Discriminant Function Analysis is a dimensionality reduction technique that is commonly used for supervised classification problems. It is used for modeling differences in groups i.e. separating two or more classes. It is used to project the features in higher dimension space into a lower dimension space.

For example, we have two classes and we need to separate them efficiently. Classes can have multiple features. Using only a single feature to classify them may result in some overlapping as shown in the below figure. So, we will keep on increasing the number of features for proper classification.

	3 -Load the Iris dataset using: iris = datasets.load_iris() The variable iris is an object which contains the dataset matrix iris.data), a vector containing the lable/classes (target), the name of variables feature_names) and the name of classes (target_names). 4- Print the number of data, names of variables and the name of classes (use print).
	print(iris.data) [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1]
	[5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.1 3.8 1.5 0.3]
	[5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1]
	[5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.2] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.6 1.4 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6]
	[5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3]
	[6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1.] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1.] [5.9 3. 4.2 1.5] [6. 2.2 4. 1.] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5]
	[5.8 2.7 4.1 1.] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] [6.7 3. 5. 1.7] [6. 2.9 4.5 1.5]
	[5.7 2.6 3.5 1.] [5.5 2.4 3.8 1.1] [5.5 2.4 3.7 1.] [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [6. 3.4 4.5 1.6] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2]
	[6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1.] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [6.1 2.5 3. 1.1] [5.1 2.5 3. 1.1] [5.2 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9]
	[7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2] [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7] [7.3 2.9 6.3 1.8] [6.7 2.5 5.8 1.8] [7.2 3.6 6.1 2.5] [6.5 3.2 5.1 2.] [6.4 2.7 5.3 1.9] [6.8 3. 5.5 2.1] [5.7 2.5 5. 2.]
	[5.8 2.8 5.1 2.4] [6.4 3.2 5.3 2.3] [6.5 3. 5.5 1.8] [7.7 3.8 6.7 2.2] [7.7 2.6 6.9 2.3] [6. 2.2 5. 1.5] [6.9 3.2 5.7 2.3] [5.6 2.8 4.9 2.] [7.7 2.8 6.7 2.] [6.3 2.7 4.9 1.8] [6.7 3.3 5.7 2.1] [7.2 3.2 6. 1.8]
	[6.2 2.8 4.8 1.8] [6.1 3. 4.9 1.8] [6.4 2.8 5.6 2.1] [7.2 3. 5.8 1.6] [7.4 2.8 6.1 1.9] [7.9 3.8 6.4 2.] [6.4 2.8 5.6 2.2] [6.3 2.8 5.1 1.5] [6.1 2.6 5.6 1.4] [7.7 3. 6.1 2.3] [6.3 3.4 5.6 2.4] [6.4 3.1 5.5 1.8]
	[6. 3. 4.8 1.8] [6.9 3.1 5.4 2.1] [6.7 3.1 5.6 2.4] [6.9 3.1 5.1 2.3] [5.8 2.7 5.1 1.9] [6.8 3.2 5.9 2.3] [6.7 3.3 5.7 2.5] [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2.] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]]
•	<pre>print('The names of the dataset variables:\n',iris['feature_names']) The names of the dataset variables: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] print("Name of classes: \n", list(iris.target_names)) Name of classes: ['setosa', 'versicolor', 'virginica']</pre>
T a S b li f	B. Data normalization The sklearn.preprocessing package provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators. Standardization of datasets is a common requirement for many machine learning estimators implemented in the scikit: they might behave badly if the individual feature do not more or less look like standard normally distributed data: Gaussian with zero mean and unit variance. In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean value of each feature, then scale it by dividing non-constant features by their standard deviation. For instance, many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the I1 and I2 regularizes of linear models) assume that all features are centered around zero and have various as in the same order. If a feature has a various at that is and are of machine learning and the same order.
t 1	that all features are centered around zero and have variance in the same order. If a feature has a variance that is orders of magnitude large those others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. from sklearn.preprocessing import scale I- Create the following matrix X: 1, -1, 2, 2, 0, 0, 0, 1, -1 X=[[1,-1,2],[2,0,0], [0,1,-1]]
	<pre>print (X)</pre>
	<pre>scaled = scale(X) scaled array([[0.</pre>
	<pre>variance = np.var(scaled) print("The mean of the scaled matrix is: {:.2f}".format(mean)) print("The variance of the scaled matrix is: {:.2f}".format(variance)) print("Mean = {}".format(np.mean(scaled, axis=0))) print("Variance = {}".format(np.var(scaled, axis=0))) The mean of the scaled matrix is: 0.00 The variance of the scaled matrix is: 1.00 Mean = [0. 0. 0.] Variance = [1. 1. 1.]</pre> We have scaled our matrix so that all 3 features could be in the same scaling. We verified this by cheking the mean of the matrix and
t s	variance and we can observe that the mean is 0 and variance is 1, so they make our data unitless. This is because we have used the Standardization type for scaling, but there also is Normalization that is used when we want to bound our values between two numbers, typically, between [0,1] or [-1,1]. Machine learning algorithm just sees number — if there is a vast difference in the range say few ranging in thousands and few ranging in the tens, and it makes the underlying assumption that higher ranging numbers have superiority of some sort. So these more significant number starts playing a more decisive role while training the model. C. MinMax Normalization An alternative standardization is scaling features to lie between a given minimum and maximum value, often between zero and one. This
1	An alternative standardization is scaling features to lie between a given minimum and maximum value, often between zero and one. This can be achieved using MinMaxScaler. I- Create the following matrix X2: 1, -1, 2, 2, 0, 0, 0, 1, -1 X2=[[1,-1,2],[2,0,0], [0,1,-1]] 2- Print the matrix and compute the mean of the variables. print (X2) M = np.mean (X2)
	<pre>M = np.mean(X2) print("The mean of the variables is: {:.2f}".format(M)) [[1, -1, 2], [2, 0, 0], [0, 1, -1]] The mean of the variables is: 0.44 3- Normalize the data using MinMaxScaler. Print the scaled matrix and compute the mean and the variance. What can you conclude? from sklearn.preprocessing import MinMaxScaler print(X2) # define min max scaler scaler = MinMaxScaler()</pre>
N S	
1 T T L	D. Data visualization I- Import the Iris dataset using: iris = datasets.load_iris() This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. More information about this dataset can be found here:
(i (·	<pre>https://archive.ics.uci.edu/ml/datasets/iris The variable iris is an object in Phyton which contains the matrix of data iris.data), the corresponding label (target), the names of the variables feature_names) and the name of classes (target_names). iris = datasets.load_iris() 2- Plot the data points into 2D dimension with all the possible combination between variables and use the label for the color points. Vizually, which is the petter combination of variables? Justify the answer.</pre>
	<pre>import pandas as pd import plotly.express as px df = pd.DataFrame(data=iris.data, columns=iris.feature_names) target_map = {i: iris.target_names[i] for i in range(0, len(iris.target_names))} df['species'] = pd.Series(iris.target).map(target_map) import seaborn as sns</pre>
	<pre>df['species'] = pd.Series(iris.target).map(target_map) g = sns.pairplot(df,hue="species")</pre>
	4.5 4.0 4.5 3.5
	Species species setosa versicolor virginica
	25 (w) 15 10 0.5
s t n	3. Compute the correlations between each pair of variables by using the corrcoef function of numpy package. Can you validate the answer
	<pre>variables = iris.feature_names variables ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)',</pre>
	<pre>cov_data = np.corrcoef(iris.data.T) print(cov_data) [[1.</pre>
	print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[0]), str(iris.feature_names[3]) print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[1]), str(iris.feature_names[2]) print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[1]), str(iris.feature_names[3]) print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[2]), str(iris.feature_names[3]) } Correlation between sepal length (cm) and sepal width (cm) is -0.11756978413300198 Correlation between sepal length (cm) and petal length (cm) is 0.871753775886583 Correlation between sepal length (cm) and petal width (cm) is 0.8179411262715757 Correlation between sepal width (cm) and petal length (cm) is -0.4284401043305397 Correlation between sepal width (cm) and petal width (cm) is -0.36612593253643905 Correlation between petal length (cm) and petal width (cm) is 0.9628654314027965
	As we can observe the biggest correlation is of variables petal length and petal width: 96,29%. 4- Subplots in matplotlib Test & Analyze the following code: import matplotlib.pyplot as plt # import chart_studio.plotly as py from plotly.offline import iplot import plotly.tools as tls fig = plt.figure() ax1 = fig.add_subplot(221) ax1.plot([1,2,3,4,5], [10,5,10,5,10], 'r-') ax2 = fig.add_subplot(222) ax2.plot([1,2,3,4], [1,4,9,16], 'k-') ax3 = fig.add_subplot(223) ax3.plot([1,2,3,4], [1,10,100,1000], 'b-') ax4 = fig.add_subplot(224) ax4.plot([1,2,3,4], [0,0,1,1], 'g-') plt.tight_layout() fig = plt.gcf()
	<pre>plotly_fig = tls.mpl_to_plotly(fig) plotly_fig['layout']['title'] = 'Simple Subplot Example Title' plotly_fig['layout']['margin'].update({'t':40}) iplot(plotly_fig) import matplotlib.pyplot as plt fig = plt.figure()</pre>
	<pre>ax1 = fig.add_subplot(231) ax1.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target, cmap=plt.cm.Set1) ax1.set_xlabel(iris.feature_names[0]) ax1.set_ylabel(iris.feature_names[1]) ax2 = fig.add_subplot(232) ax2.scatter(iris.data[:, 0], iris.data[:, 2], c=iris.target, cmap=plt.cm.Set1) ax2.set_xlabel(iris.feature_names[0]) ax2.set_ylabel(iris.feature_names[2]) ax3 = fig.add_subplot(233) ax3.scatter(iris.data[:, 0], iris.data[:, 3], c=iris.target, cmap=plt.cm.Set1) ax3.set_xlabel(iris.feature_names[0]) ax3.set_ylabel(iris.feature_names[0]) ax4.scatter(iris.data[:, 1], iris.data[:, 2], c=iris.target, cmap=plt.cm.Set1) ax4.set_xlabel(iris.feature_names[1]) ax4.set_ylabel(iris.feature_names[2]) 8 ax4 = fig.add_subplot(235) ax4.scatter(iris.data[:, 1], iris.data[:, 3], c=iris.target, cmap=plt.cm.Set1) ax4.set_xlabel(iris.feature_names[1]) ax4.set_ylabel(iris.feature_names[1]) ax4.set_ylabel(iris.feature_names[3])</pre>
	<pre>ax4 = fig.add_subplot(236) ax4.scatter(iris.data[:, 2], iris.data[:, 3], c=iris.target, cmap=plt.cm.Set1) ax4.set_xlabel(iris.feature_names[2]) ax4.set_ylabel(iris.feature_names[3]) plt.tight_layout() fig = plt.gcf()</pre> <pre></pre>
	betal length (cm) Sepal length (cm)
E	2 3 4 5 2 5 5.0 sepal width (cm) sepal width (cm) petal length (cm) E. Data reduction and visualization 1. Use the correlations information's found in D.3 and reduce the dataset to 3 variables then to 2 variables. In the following, we will apply PCA and LDA to visualize the datasets. We are not interested here in the details of these methods, as these approaches will be presented in Data Mining and Predictive Analytics lecture. • Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in
	the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. iris.feature_names = ['sepal length (cm)', 'petal length (cm)', 'petal width (cm)'] iris.data = iris.data[:, [0, 2, 3]]
	<pre>print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[0]), str(iris.feature_names[1]) print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[0]), str(iris.feature_names[2]) print("Correlation between {0} and {1} is {2}".format(str(iris.feature_names[1]), str(iris.feature_names[2]) Correlation between sepal length (cm) and petal length (cm) is 0.871753775886583 Correlation between sepal length (cm) and petal width (cm) is 0.8179411262715757 Correlation between petal length (cm) and petal width (cm) is 0.9628654314027965 iris.feature_names = ['petal length (cm)', 'petal width (cm)'] iris.data = iris.data[:, [1, 2]]</pre>
3	2- The PCA and LDA methods can be imported from the following packages: from sklearn.decomposition import PCA from sklearn.decomposition import PCA from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA 3- Analyze the help of these functions (pca and Ida) and apply them on the Iris dataset. You have to use here pca.fit(Iris).transform(Iris) and save the results in IrisPCA for the PCA and IrisLDA for the LDA.
	<pre>X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) Iris_PCA = pca.fit(X).transform(X) lda = LDA(n_components=2) Iris_LDA = lda.fit(X, y).transform(X)</pre>
p	A- Plot the data points on the new obtained projections: one image for the PCA and another for the LDA and use the label as color for the points. You should use the following function from Phyton: figure, scatter, title, xlim, ylim, xlabel, ylabel et show. Which difference you can see between the both results? Explain? plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(Iris_PCA[y == i, 0], Iris_PCA[y == i, 1], c=c, label=target_name) plt.legend() plt.ylim(-1.5, 1.5)
	<pre>plt.ylim(-1.5, 1.5) plt.xlim(-3.5, 4) plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(Iris_LDA[y == i, 0], Iris_LDA[y == i, 1], c=c, label=target_name) plt.legend() plt.ylim(-3.5, 3) plt.xlim(-10, 10.5) plt.title('LDA of IRIS dataset') plt.show()</pre>
	PCA of IRIS dataset 1.5 1.0 -
	-0.51.01.5 -3 -2 -1 0 1 2 3 4
	LDA of IRIS dataset
	3
A p	as we know, to use the PCA we must firstly scale the data, but the LDA can handle the data that is not scaled. We can observe that the points have almost the same distribution, but th ranges are different: for PCA the X axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 3. We can picture PCA as a technique that inds the directions of maximal variance. In contrast to PCA, LDA attempts to find a feature subspace that maximizes class separability. from sklearn.manifold import TSNE tnse = TSNE (n_components=2)
A Pra a fi	as we know, to use the PCA we must firstly scale the data, but the LDA can handle the data that is not scaled. We can observe that the points have almost the same distribution, but th ranges are different: for PCA the X axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 3. We can picture PCA as a technique that inds the directions of maximal variance. In contrast to PCA, LDA attempts to find a feature subspace that maximizes class separability. from sklearn.manifold import TSNE tnse = TSNE (n_components=2) tnse.fit(iris.data) iris_tnse = tnse.fit_transform(iris.data) plt.scatter(iris_feature_names[0]) plt.xlabel(iris_feature_names[0]) plt.xlabel(iris_feature_names[1]) plt.title('TNSE') plt.show()
A Pra a f	setosa versicolor vers
Paaf	setosa versicor vigurica de la componenta de la component
Frafi	sets we stoke wersions were peak when the peak we must firstly scale the data, but the LDA can handle the data that is not scaled. We can observe that the coints have almost the same distribution, but thronges are different for PCA the X axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between range -10 and 10 and for Y axis is between -3.2 and 4, and Y axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. And for LDA the X axis is between -1.5 and 1.5. An
A Frantill 11 1	See we know, to use the PCA we must firstly scale the data but the LDA can handle the data that is not scaled. We can observe that the coints have almost the same distribution but thin ages are different to PCA the X axis is between -12 and A, and Y axis is between -13 and 45. And for LOA the X axis is between -13 and A, and Y axis is between -13 and 45. And for LOA the X axis is between -14 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And for LOA the X axis is between -15 and 15. And
A Fa a fi	The caregist shorted standards of TRACE will change from Various Value (Name of State of Stat
A Franti	The default learning states in 1982 will charge from 1993 to 1
A F a a f	The default location of the control
A Fa a f	The control of the co
A Fa a fi	The second control is to the PCA on must finding and the control by 100 can handle the date that is not second we are noticed to the finding and the control by 100 can handle the date that is not second we are noticed to the finding and the control by 100 can handle the date that is not second we are noticed to the finding of the finding and the control is not second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to a second to the control by 100 can handle control to the control by 100 can handle control by 100 can handle control to 100 can handle control by 100 can handle control to 100 can handle control
A part of the state of the stat	The control of the co
A part of the state of the stat	The content of the co
A pa a fi	F. MINIST dataset 1. Special and Control of the Co
A pa fi	For interest to the control of the state of the state of the control of the contr
A pa fi	Secretic to the control of the contr
A Franfi III 1	For MINIST classes: For MINIS
A Fa a fi	F. MINIST dataset 1. See the Constitution of
A Fa f	The control of the co
A Fa f	For MINIST dataset The MI
	E. MINIST dataset The property of the control of t

In [109	Classes [0 1 2 3 4 5 6 7 8 9] Number of classes: 10 3- Use the MNIST visulaization tutorial to visualize the digits. import matplotlib.pyplot as plt for i in range(0,10): plt.gray() plt.matshow(digits.images[i]) plt.show()
	plt.show() <pre> <pre> <pre> <pre></pre></pre></pre></pre>
	4- 5- 6- 7- <figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0- 1-</figure>
	2 - 3 - 4 - 4 - 5 - 6 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 7
	<pre><figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0</figure></pre>
	4- 5- 6- 7- <figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0- 1-</figure>
	2 - 3 - 4 - 4 - 5 - 6 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 7
	<pre><figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0- 1- 2- 3- 4- 5-</figure></pre>
	6- 7- <pre> </pre> <pre> <pre> <pre></pre></pre></pre>
	2-3-3-4-4-5-5-6-7
	0 1 2 3 4 5 6 7 0 -
	6- 7- <figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0- 1- 2-</figure>
	3-4-5
	0 -
	7
	4 -