23 Φεβρουαρίου 2016

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΕΞΙΣΩΣΕΙΣ 2ΟΥ ΒΑΘΜΟΥ

ΘΕΜΑ 1 ΘΕΩΡΙΑ

i. Αν x_1, x_2 είναι οι λύσεις της εξίσωσης 2ου βαθμού $ax^2 + \beta x + \gamma = 0$ να αποδειχτούν οι τύποι του Vieta :

$$S = -\frac{\beta}{a} \text{ kal } P = \frac{\gamma}{a}$$

Μονάδες 3

- ii. Να χαρακτηριστούν οι παρακάτω εξισώσεις ως σωστές (Σ) ή λανθασμένες (Λ).
 - α'. Αν για μια εξίσωση 2ου βαθμού έχουμε $\Delta > 0$ τότε έχει 2 άνισες λύσεις.
 - β΄. Αν για μια εξίσωση 2ου βαθμού έχουμε $\Delta < 0$ τότε έχει μια διπλή λύση.
 - y'. Η εξίσωση $ax^2 + \beta x + \gamma = 0$ παριστάνει μια εξίσωση 2ου βαθμού για κάθε τιμή του a.
 - δ'. Αν x_1, x_2 είναι οι λύσεις μιας εξίσωσης 2ου βαθμού τότε: $x_1 + x_2 = \frac{\beta}{a}$ και $x_1 \cdot x_2 = \frac{\gamma}{a}$.
 - ε΄. Αν x_1, x_2 είναι οι λύσεις μιας εξίσωσης 2ου βαθμού με $x_1 = -x_2$ τότε $\beta = 0$.

Μονάδες 2

ΘΕΜΑ 2 ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

Να λυθεί η παρακάτω εξίσωση για την οποία ισχύει $x \neq 0$.

$$\left(1 + \frac{1}{x}\right)^2 + 3 \cdot \frac{x+1}{x} - 2 = 0$$

Μονάδες 5

ΘΕΜΑ 3 ΠΑΡΑΜΕΤΡΙΚΗ ΕΞΙΣΩΣΗ

Να δειχθεί οτι η εξίσωση

$$x^2 + x - \lambda^2 = 0$$

έχει 2 άνισες λύσεις για κάθε τιμή του $\lambda \in \mathbb{R}$.

Μονάδες 5

ΘΕΜΑ 4 ΠΑΡΑΜΕΤΡΙΚΉ ΕΞΙΣΩΣΗ

Αν x_1, x_2 είναι οι λύσεις της παρακάτω παραμετρικής εξίσωσης

$$x^2 - (\lambda - 2) + \lambda + 2 = 0$$

με $\lambda \in \mathbb{R}$, τότε να βρεθεί η τιμή της παραμέτρου λ ώστε

Η εξίσωση να έχει μια διπλή λύση.

Μονάδες 3

ii. $x_1^2x_2 + x_1x_2^2 = -3$

Μονάδες 2