Калибриране на МЕМЅ Акселерометри

Курсов проект на:

Никола Тотев

ПО

Приложение на Математиката за Моделиране на Реални Процеси

Съдържание

Резюме	1
Въведение	4
Запознаване с акселерометри	2
MEMS акселерометри	2
Видове грешки	
Constant Bias	3
Scaling Errors	3
Errors due to the non-orthogonality of the axes	
Математически модел	. 4
Входни данни	2
Очакван резултат	2
Детайли калибрация	2
Използвани методи за калибрация	2
Метод на НМК	3
Метод на Нютон	3
Резултати	2
Практически приложения	4
Приложения в индустрията	2
Приложения в роботиката	
Пример проект по "Практическа роботика и умни	
неща"	3
Заключения	4

1. Резюме

В рамките на този проект се запознавам с различите видове акселерометри. Задълбочавам се в разглеждането на MEMS акселерометри, как функционират, за какво се използват, какви грешки могат да се наблюдават при използването и начини за калибриране на тези грешки.

В следващите точки разглеждам всяка една от тези теми поотделно, като повече внимание обръщам на математическия модел и приложенията на акселерометрите в роботиката.

За математическия модел основни точки са анализирането на входните и изходните данни получени от алгоритъма за калибрация, както и методите използвани при калибрацията на входните данни.

2. Въведение

• Запознаване с акселерометри

Акселерометрите са вид сензор, който измерва ускорение. Има множество различни начини по който може да се измери ускорение, но основните видове са следните:

- o piezoelectric
- o piezoresistive
- o capacitive accelerometers
- MEMS Accelerometers

MEMS акселерометри

MEMS акселерометрите са един от многото видове, като едно от предимствата са им, че имат малки размери и лесно могат да бъдат използвани в проекти където има ограничено място.

MEMS е съкращение за *Microelectromechanical systems* и такъв вид акселерометри се изработва от силиций.

Фигура 1

На *фигура 1* е показано начина на работа на MEMS акселерометър.

• Видове грешки

Като всяко измервателно устройство и при акселерометрите има различни видове грешки които се наблюдават. Примери са грешки, които се появяват заради условията при,които работи акселерометъра или електромагнитен шум. В този проект се фокусирам върху грешки които се получават при производството на сензорите. Тези грешки включват:

Constant Bias

Това е някакъв постоянен офсет, който възниква при производство. При такава грешка, при положение на покой сензора може да показва ускорение различно от (X, Y, Z) (0, 0, 9.8)

Scaling Errors

Тази грешка означава, че данните които идват от сензора са в неизвестна за нас мерна единица, (вместо m/s например)

Errors due to the non-orthogonality of the axes

Тази грешка е отново грешка, която се появява при производството на сензора и както се показва в името означава, че осите X, Y, Z не са ортогонални една на друга и това води до неправилни измервания.

3. Математически модел

• Входни данни

Като входни данни използвам dataset от една статия. Първоначалния план беше да използвам данни от собствен сензор, но това не се реализира, защото при по-задълбочено проучване на сензорите, които мога да закупя се оказа, че те се калибрират от производителя.

В таблици 1 & 2 показвам данните преди калибрация както и нормата им.

Uncalibrated		
X	Υ	Z
0.686143985	9.693013241	0.146230973
0.307313184	-9.555131822	0.121707371
10.20588166	0.146627372	0.293913142
-9.235730337	0.149835656	-0.153514714

Таблица 1

Norms Before Calibration
9.71837
9.56085
10.2112
9.23822
9.72837

Таблица 2

• Очакван резултат

Когато сензора се намира в покой и е успореден на равнината XY, очакваните данни са (X, Y, Z)=(0, 0, 9.8) или нормата на вектора (X, Y, Z) да бъде 9.8. От таблиците 1.1 & 1.2 се вижда, че при сурови данни – данни директно от сензора, това условие не е изпълнено. Целта на този проект е да разработи математически модел, който обработва данните по такъв начин, че да се стигне до норма на калибрираните вектори 9.8.

• Детайли за калибрацията

Както беше обяснено в предишната точка едно условие, което показва дали данни от сензор са калибрирани е дали нормата на вектора (X, Y,Z) е 9.8. Това условие използвам за да калибрирам данните.

Ако искаме да разберем дали данни са калибрирани, може да го направим като вземем следната разлика

$$(vector\ norm) - 9.8^2$$

Ако това дава нула, означава, че данните са калибрирани. Това ще го означа като Err(M,B). Това може да се разглежда като грешката от калибрацията.

Сега е момента да разгледаме начина по който данните се калибрират.

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \underbrace{\begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}}_{M} \cdot \begin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix} + \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix}$$

Уравнение 1

В уравнение 1 са показани:

- Вектора $\binom{X}{Y}$ той представлява калибрираните данни.
- Матрицата М тази матрица се грижи за ортогоналноста на осите X, Y, Z както и за мащаба.
 По диагонала са коефициентите за мащаба, а останалите са за ортогоналноста
- Вектора $egin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix}$ представлява суровите данни от сензора.

 Вектора В – този вектор се грижи за коригирането на офсета.

Очевидно е, че след прости операции с матрици стигаме до следните уравнения:

$$X = M_{xx}x_i + M_{xy}x_i + M_{xz}x_i + B_x$$

 $Y = M_{yx}y_i + M_{yy}y_i + M_{yz}y_i + B_y$
 $Z = M_{zx}z_i + M_{zy}z_i + M_{xz}z_i + B_z$
Уравнение 2

Това са стойностите за вектора $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$. За него може да

намерим норма и замествайки в *уровнение 1*. Ако нямаме коефициентите от матрицата М и вектора В за да калибрираме вектора минимизираме грешката за да ги получим. Това е показано в уравнение 3.

$$\begin{aligned} & Err(M,B) = \sum_{i=1}^{n} \left(M_{xx} x_i + M_{xy} y_i + M_{xz} z_i + B_x \right)^2 + \\ & \left(M_{yx} x_i + M_{yy} y_i + M_{yz} z_i + B_y \right)^2 + \left(M_{zx} x_i + M_{zy} y_i + M_{xz} z_i + B_z \right)^2 - g^2 \end{aligned}$$

Уравнение 3

- Използвани методи при калибрация За минимизирането на уравнение 2 има различни варианти, като първоначално се спрях на метода на най-малките квадрати, а след това използвам метода на Нютон.
 - Метод на НМК

• Метод на Нютон

Втория начин по който минимизирам уравнение 3 е чрез метода на Нютон.

За да мога да го използвам, направих собствена имплементация на този метод във Wolfram Mathematica. Този метод е популярен за минимизиране на функции. Намирам частните производни на уравнение 3 които са 12 на брой и нелинейни. Използвайки метода на Нютон, но вместо за едно уравнение, за система, намирам коефициентите, за които уравнение 3 се минимизира.

• Резултати

Norms After Calibration (LSM)
9.79577
9.7911
9.80487
9.79417
9.7825

Norms After Calibration (NM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таблица 4

Таблица 3

Таблици 3 & 4 показват нормите след калибрацията на векторите. Както се вижда имплементацията на Метода на Нютон (*MH*), която съм направил извежда еднакви резултати като Метода на Най-Малките Квадрати (*MHMK*), който използва вградени функции за минимизация.

M Matrix Values (LSM)		
1.00432	-0.0247	-0.0738
0.01773	1.01322	-0.0892
0.07967	0.08645	0.99275

M Matrix Values (NM)		
0.22671	0.07337	0.97174
0.60662	0.7872	-0.1967
-0.772	0.64003	0.12634

Таблица 5

Таблица 6

Таблиците 5 & 6 показват стойностите на матрицата М. Както описах по-горе това са коефициентите при които грешката (уравнение 3) е най-малка. Вижда се, че тук вече има разлика между МНМК и МН.

B Matrix Values (LSM)
-0.488037
-0.0814727
0.0155627

B Matrix Values (NM)
-0.0558736
-0.35741
0.337929

Таблица 7

Таблица 8

Таблиците 7 & 8 показват стойностите на вектора В, като отново както при матрицата М и тук има разминаване между стойностите получени с МНМК и МН.

Calibrated (LSM)		
X	Y	Z
-0.0487887	9.73885	1.05333
0.0473013	-9.76837	-0.665145
9.73665	0.22181	1.13312
-9.75604	-0.0796934	-0.859694

Calibrated (NM)		
X	Y	Z
0.952926	7.66039	6.03053
-0.568964	-7.71673	-5.9995
2.55426	5.89126	-7.40974
-2.28789	-5.81181	7.54415

Таблица 9

Таблица 10

Таблиците 9 & 10 показват данните след калибрация, съответно с МНКМ и МН. Отново се виждат разлики между двата метода.

Въпреки разликите, в матрицата М и вектора В, от нормите ясно се вижда, че данните са калибрирани.

- 4. Практически приложения
- 5. Заключения

```
//подобно на резюмето
// резултати от двата метода
```