Name:	Maths Class Teacher:

SYDNEY TECHNICAL HIGH SCHOOL

Extension 2 Mathematics

HSC Assessment Task 1 March 2011

General Instructions

- Working time 70 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Start each question on a new page.
- Place your papers in order with the question paper on top and staple or pin them.

Total Marks - 50

- Attempt Questions 1 3
- Mark values are shown with the questions.

(For markers use only)

Q1	Q2	Q3	Total
17	16	17	50

Question 1

17 Marks

(a) In each case below. z = 3 - 2i.

4

Express the following in the form x + iy where x and y are real numbers:

- (i) $\overline{(iz)}$
- (ii) $(z-1)^2$

Evaluate:

- (iii) arg (z) (in radians to one decimal place)
- (iv) |z| (leave in exact form)
- (b) (i) Express $1 + i\sqrt{3}$ in modulus argument form.

2

(ii) Hence evaluate $(1+i\sqrt{3})^5$

2

(Express your answer in the domain defined for the argument.)

- (c) For z = x + iy,
 - (i) Express $\frac{1}{z}$ as a complex number.

1

(ii) Hence find the solutions for z if Re(z - $\frac{1}{z}$) = 0,

3

and show on the Argand diagram.

- (d) Sketch the following loci.
 - (i) $\left|\arg z\right| \le \frac{\pi}{4}$

1

(ii) |z+2|+|z-2|=6

1

(e) Sketch the region where the inequalities $|z-2+i| \le 5$ and $|z-1| \ge |z+1|$ both hold.

3

(a) Give the inequalities which describe this region on the Argand diagram. (Give your answer in terms of z.)

3

(b) If 1 - 2i is a root of the equation $2z^3 - 5z^2 + 12z - 5 = 0$

(i) Explain why 1 + 2i is also a root.

1

(ii) Find all roots of the equation.

2

(c) (i) Show on an Argand diagram the positions of the roots of $z^3 = -1$.

1

(ii) Explain algebraically why these are among the roots of $z^6 = 1$.

2

(iii) By referring to the roots of $z^6 = 1$, find the roots of $z^4 + z^2 + 1 = 0$ in mod-arg form.

3

(d) (i) Solve $z^4 = 1$ for all z.

1

(ii) Hence, or otherwise, solve $z^4 = (z - 1)^4$.

3

Question 3

17 Marks

(a) Sketch the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. State the following:

5

- (i) the eccentricity
- (ii) the coordinates of the foci
- (iii) the equations of the directrices.
- (b) Find the equation of the tangent to the curve $x^2 xy^2 8y + 32 = 0$ at the point (1, 3).
- (c) Prove that the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$ can be expressed as $\frac{x_1y}{a^2} \frac{xy_1}{b^2} = \frac{x_1y_1}{a^2} \frac{x_1y_1}{b^2}$.
- (d) The tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$ cuts the y axis at A

 while the normal at P cuts the y axis at B. If S is a focus of the ellipse, show that $\angle ASB = 90^\circ$. (Equation of tangent $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$)

End of Exam

SOLUTIONS EXTENSION 2 ASSESSMENT / 2011

(ii)
$$(z-1)^2 = (3-2i-1)^2$$

= $(2-2i)^2$
= $4-4-8i$
= $-8i$

(iii) and
$$z = tan^{-1}(\frac{-2}{3})$$

 $\frac{1}{2} - 33^{\circ} 41^{\circ}$
or -0.6°

(iv)
$$|2| = \sqrt{3^2 + (-2)^2}$$

= $\sqrt{9 + 4}$
= $\sqrt{13}$

b)(i)
$$z = 1 + 1\sqrt{3}$$

-1. $|2| = \sqrt{1+3}$
= z

$$(1+1\sqrt{3})^5 = (2 \text{ cis } \frac{\pi}{3})^5$$

= 32 cis $\frac{3\pi}{3}$
= 32 cis $(\frac{3\pi}{3})^5$
ang $z = \frac{\pi}{3}$ ($\sqrt{3}$)

b(ii)

e) (i)
$$\frac{1}{z} = \frac{1}{2(+iy)} \times \frac{x-iy}{x-iy}$$

$$= \frac{x-iy}{x-iy}$$

(ii)
$$Re(z-\frac{1}{z}) = Re(x+iy) - \frac{x-iy}{x^2+iy^2}$$
, $z\neq 0$ (ii) $|z+z| + |z-z| = 6$
= $\frac{1}{2c^2+iy^2}$

Inside carelo centre 2-i with radius 5 (including circle) and left of y-ascis.

Q2
a)
$$2 \le |z| \le 3$$

and $-\pi \le \arg z \le -\frac{\pi}{2}$

$$\phi(i)$$
 $z^4 = 1$
 $z^4 = 1$

(ii)
$$z^4 = (z-1)^4$$

 $z^2 = 1$
 $(z-1)^4$
 $(z-1)^4 = 1$
 $(z-1)^4 = 1$
 $z^2 = z^2 = z^2 = 1$

$$2(i-i) = -i$$

$$2 = -1$$

(i)
$$(\mathbf{Z} - (1-2i))(\mathbf{Z} - (1+2i))$$

= $\mathbf{Z}^2 - (1-2i)\mathbf{Z} - (1+2i)\mathbf{Z} + (1-2i)(1+2i)$
= $\mathbf{Z}^2 - 2\mathbf{Z} + 5$
 $22^3 - 52^2 + 122 - 5 = (2^2 - 22 + 5)(2z - 1)$
- noots we $z = \frac{1}{2}, 1-2i, 1+2i$

(ii)
$$z^{6} = 1$$

$$z^{6} - 1 = 0$$

$$(z^{3} + 1)(z^{3} - 1) = 0$$

$$z^{3} = 1 \text{ m} = 1$$

$$-1 = (z+1)(z-1)(z^4+z^2+1)$$
 — A

$$= (\hat{a}, \hat{b})^6 = 1$$

$$-1$$
 $\cos 60 = 1$

$$= \operatorname{dis}(\overline{11}k)$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

(i) :
$$ae = 4 \rightarrow focis (44,0)$$
 = $e^2 = 1 - \frac{9}{25}$
= $\frac{16}{25}$
(i) : $e = \frac{4}{5} \rightarrow eccentricity$

$$2x - xy^{2} - 8y = 0 (1.3)$$

$$2x - y^{2} - 2xy \cdot dy - 8dy = 0$$

$$2x - y^{2} - \frac{dy}{dx} (2xy + 8) = 0$$

$$\frac{dy}{dx} = \frac{2x - y^{2}}{2xy + 8}$$

$$= \frac{2 - 9}{6 + 8} at (1.3)$$

$$= -\frac{7}{14}$$

$$= -\frac{1}{2}$$

$$= \cot x \cdot \cot x + 3 \cdot \cot x = 0$$

$$= -\frac{1}{2} \cdot \cot x = 0$$

eath of tangent
$$\Rightarrow y-y_1 = m (x - x_1)$$

 $y-3 = -\frac{1}{2}(x - 1)$
 $2y-6 = -x + 1$
 $x - 2y - 7 = 0$

Deccentricity

$$x^{2} + y^{2} = 1$$

$$a^{2} + b^{2}$$

$$2x + 2y dy = 0$$

$$a^{2} + b^{2} dx$$

$$dy = -b^{2}x$$

$$dx = -b^{2}x$$

$$dx = a^{2}y$$

$$b^{2}x_{1}$$

$$dx = a^{2}y_{1}$$

$$dx = a^{2}x_{1}$$

$$dx = a^{2}y_{1}$$

$$dx = a^{2}x_{1}$$

$$dx = a^{2}$$

Now slope As x slope BS

= b1 x 91(1- 00)

=-1 as a2e2=a2-b2

 $=\frac{b^2-q^2}{a^2e^2}$

. AS LBS

(iii) directrices > x= = = =