# Interval Graph

An undirected graph formed from a set of intervals on the real line with a vertex for every interval and an edge between those vertices whose intervals intersect

### Interval Graph

An undirected graph formed from a set of intervals on the real line with a vertex for every interval and an edge between those vertices whose intervals intersect



# **Interval Graph**





In the online setting, there is an order  $[I_1, I_2, I_3, \dots, I_n]$  and intervals appear in this order

In the online setting, there is an order  $[I_1, I_2, I_3, \dots, I_n]$  and intervals appear in this order

Order: 
$$[I_1, I_2, I_3, I_4, I_5]$$



In the online setting, there is an order  $[I_1, I_2, I_3, \dots, I_n]$  and intervals appear in this order

A color is assigned to the interval  $I_i$  before the appearance of interval  $I_{i+1}$ 

Goal is to use as few colors as possible without recoloring any of the intervals from

$$| 1_1, | 1_2, | 1_3, \dots |_{i-1}$$

Order:  $[I_1, I_2, I_3, I_4, I_5]$ 



Kierstead and Trotter presented a 3-competitive algorithm [KT]

Kierstead and Trotter also proved that their result is optimum

color assigned to vertex v is a tuple (p(v), o(v))

p(v) is called position or level o(v) is called offset

color assigned to vertex v is a tuple (p(v), o(v)) p(v) is called position or level o(v) is called offset

Key property is that for every edge  $\{u, v\}$  (p(u), o(u)) is different from (p(v), o(v))

Imagine X-Y plane

Intervals from X-axis Levels are integer points on Y-axis



#### Imagine X-Y plane

#### Intervals from X-axis Levels are integer points on Y-axis



How to compute p(v) and o(v)?

#### Computing p(v)

 $I_i$  is the interval appearing and  $v_i$  is the corresponding vertex in the interval graph G

#### Computing p(v)

$$\begin{aligned} \mathbf{G_r}(\mathbf{v_i}) \text{ is the induced subgraph of G on} \\ \{\mathbf{v_j}|\mathbf{v_j} \in \mathbf{V(G)}, \mathbf{j} < \mathbf{i}, \mathbf{p(v_j)} \leq \mathbf{r}, (\mathbf{v_i}, \mathbf{v_j}) \in \mathbf{E(G)} \} \end{aligned}$$

#### Computing p(v)



#### Computing p(v)



#### Computing p(v)

0

$$\mathbf{p}(\mathbf{v_i}) = \min\{\mathbf{r} | \omega(\mathbf{G_r}(\mathbf{v_i}) \leq \mathbf{r}\}$$

#### Computing p(v)

 $\mathbf{G_r}(\mathbf{v_i})$  is the induced subgraph of G on  $\{\mathbf{v_j}|\mathbf{v_j} \in \mathbf{V}(\mathbf{G}), \mathbf{j} < \mathbf{i}, \mathbf{p}(\mathbf{v_j}) \leq \mathbf{r}, (\mathbf{v_i}, \mathbf{v_j}) \in \mathbf{E}(\mathbf{G})\}$ 



#### Computing p(v)

 $\mathbf{G_r}(\mathbf{v_i})$  is the induced subgraph of G on  $\{\mathbf{v_j}|\mathbf{v_j} \in \mathbf{V}(\mathbf{G}), \mathbf{j} < \mathbf{i}, \mathbf{p}(\mathbf{v_j}) \leq \mathbf{r}, (\mathbf{v_i}, \mathbf{v_j}) \in \mathbf{E}(\mathbf{G})\}$ 

$$\mathbf{p}(\mathbf{v_i}) = \min\{\mathbf{r} | \omega(\mathbf{G_r}(\mathbf{v_i}) \le \mathbf{r}\}$$

$$\omega(\mathbf{G_0}(\mathbf{v_6})) = \mathbf{1}$$





#### Computing p(v)

 $\mathbf{G_r}(\mathbf{v_i})$  is the induced subgraph of G on  $\{\mathbf{v_j}|\mathbf{v_j} \in \mathbf{V}(\mathbf{G}), \mathbf{j} < \mathbf{i}, \mathbf{p}(\mathbf{v_j}) \leq \mathbf{r}, (\mathbf{v_i}, \mathbf{v_j}) \in \mathbf{E}(\mathbf{G})\}$ 

$$\mathbf{p}(\mathbf{v_i}) = \min{\{\mathbf{r} | \omega(\mathbf{G_r}(\mathbf{v_i}) \leq \mathbf{r}\}}$$

$$\omega(\mathbf{G_1}(\mathbf{v_6})) = \mathbf{2}$$





#### Computing p(v)

$$\mathbf{p}(\mathbf{v_i}) = \min{\{\mathbf{r} | \omega(\mathbf{G_r}(\mathbf{v_i}) \leq \mathbf{r}\}}$$

$$\omega(\mathbf{G_2}(\mathbf{v_6})) = 3$$





#### Computing p(v)

$$\mathbf{p}(\mathbf{v_i}) = \min{\{\mathbf{r} | \omega(\mathbf{G_r}(\mathbf{v_i}) \leq \mathbf{r}\}}$$

$$\omega(\mathbf{G_3}(\mathbf{v_6})) = \mathbf{3}$$





#### Computing p(v)

Compute :  $G_r(v)$  for  $r \ge 0$ 

Assign:  $\mathbf{p}(\mathbf{v}) = \min\{\mathbf{r}|\omega(\mathbf{G_r}(\mathbf{v})) \leq \mathbf{r}\}$ 

#### Computing p(v)

Compute :  $G_r(v)$  for  $r \ge 0$ 

Assign:  $\mathbf{p}(\mathbf{v}) = \min\{\mathbf{r}|\omega(\mathbf{G_r}(\mathbf{v})) \le \mathbf{r}\}$ 

#### Properties satisfied by p(v)

P1:  $\mathbf{p}(\mathbf{v}) \leq \omega - 1$ 

P2:  $\{\mathbf{v}|\mathbf{p}(\mathbf{v}) = \mathbf{0}\}$  is an independent set

P3: Induced subgraph on  $\{\mathbf{v_j}|\mathbf{p}(\mathbf{v_j})=\mathbf{i}\}$  has max degree 2

#### Computing p(v)

Compute :  $G_{\mathbf{r}}(\mathbf{v})$  for  $\mathbf{r} \geq \mathbf{0}$ 

Assign:  $\mathbf{p}(\mathbf{v}) = \min\{\mathbf{r}|\omega(\mathbf{G}_{\mathbf{r}}(\mathbf{v})) \leq \mathbf{r}\}$ 

#### Properties satisfied by p(v)

P1:  $\mathbf{p}(\mathbf{v}) \leq \omega - 1$ 

P2:  $\{\mathbf{v}|\mathbf{p}(\mathbf{v})=\mathbf{0}\}$  is an independent set

P3: Induced subgraph on  $\{\mathbf{v_j}|\mathbf{p}(\mathbf{v_j})=\mathbf{i}\}$  has max degree 2

#### Computing o(v)

Vertex v has at most 2 neighbors such that their level is p(v). Compute the smallest value in the set  $\{1,2,3\}$  different from the offset of these neighbors and set it to o(v)