Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

по дисциплине «Электроника и схемотехника»

Выполнил

студент гр. 23508/4 Е.Г.Проценко

Проверил

доцент А.Ф. Супрун

1. Цель работы

Исследовать отличия спектрального и временного представления сигналов; освоить методику расчета амплитудных и фазовых спектров периодических сигналов; изучить основные параметры анализатора спектра и экспериментально исследовать амплитудные спектры типовых периодических сигналов.

2. Ход работы

2.1. Определение формы и спектра гармонического сигнала

Электрическая схема лабораторного стенда.

Определение формы и спектра гармонического сигнала. Подадим от функционального генератора гармонический сигнал с амплитудой $0,1~\mathrm{B}~(=100~\mathrm{mB})$ и фиксированной частотой $5~\mathrm{k}\Gamma$ ц.

Настройки функционального генератора.

Осцилограмма этого сигнала

Показания спектрального анализатора.

2.2. Исследование зависимости спектра от формы сигнала.

2.3. Исследование спектра последовательности прямоугольных импульсов.

Изменение частоты с 2 кГц до 10 кГц.

Изменение амплитуды с 0,2 В до 0,5 В. (Амплитуда спектрального анализатора была изменена).

Изменение длительности (Duty Cycle): 50% -> 80%.

Использованные формулы для расчетов (для самой крайнего рассматриваемого сигнала):

$$C_{n=} = \frac{Sm*t*\sin(\frac{n\omega t}{2})}{T*n*\omega t/2}$$
 Комплексные амплитуды гармоник ряда Фурье.

 S_m – амплитуда импульсов.

t – длительность отдельного импульса.

T — период повторения импульса.

 \mathcal{C}_n - комплексная амплитуда n-ой гармоники.

$$\omega = 2*\pi/T$$
 Частота основной (первой) гармоники.

$$C_0 = \frac{Sm*t}{T} = 0.4$$
 Постоянная составляющая.

1	0,093548928
2	-0,075682673
3	0,050455115
4	-0,023387232
5	-7,21423E-17
6	0,015591488
7	-0,021623621
8	0,018920668
9	-0,010394325
10	-7,21423E-17

Амплитудный спектр

3. Вывод

В данной лабораторной работе было исследовано отличие спектрального и временного представления сигналов; освоена методика расчета амплитудных и фазовых спектров периодических сигналов; изучены основные параметры анализатора спектра.

Амплитудный спектр рассчитанный по формуле описывает картину, полученную в спектральном анализаторе.

По результатам работы можно сделать следующие выводы:

- 1. Любые сигналы отличные от гармонического можно описать через множество гармонических сигналов, пропущенных через фильтр(ы).
- 2. При увеличении частоты сигнала, на спектральном анализаторе пики амплитуды отодвигаются друг от друга.
- 3. При увеличении амплитуды сигнала, амплитуда на спектральном анализатор также увеличивается.
- 4. При изменении длительности прямоугольной волны, мы получили более сложную форму амплитудного спектра.