Analysis 2 Hausaufgabenblatt Nr. 8

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 20, 2023)

Problem 1. Untersuchen Sie die folgenden Abbildungen auf Stetigkeit:

(a)
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^4} & (x,y) \neq (0,0) \\ 0 & \text{sonst.} \end{cases}$$

(b) $g: (\mathcal{C}^1((a,b)), \|\cdot\|_{\infty}) \to (\mathcal{C}(a,b)), \|\cdot\|_{\infty})$ mit

$$g(u(x)) := u'(x).$$

(c) Eine beliebige Funktion $h:(X,d_{disk})\to (Y,d)$, wobei d_{disk} die diskrete Metrik und (Y,d) ein beliebiger metrischer Raum ist.

Proof. (a) Nicht stetig. Wir betrachten eine Folge $(y_n), y_n \in \mathbb{R}, y_n \searrow 0$ und die Folge $(1, y_n) \in \mathbb{R}^2$. Dann ist $(1, y_n) \to (1, 0)$ und

$$f(1,0) = 0.$$

Aber

$$f(1, y_n) = \frac{y_n^2}{1 + y_n^4}$$
$$= \frac{1}{y_n^{-2} + y_n^2}$$
$$\ge \frac{1}{y_n^2} = y_n^{-2}$$

und

$$\lim_{n \to \infty} f(1, y_n) \ge \lim_{n \to \infty} y_n^{-2} = \infty \ne 0.$$

(b) Nicht stetig. Sei f_n die Funktionfolge

$$f_n(x) = \frac{1}{\sqrt{n}} \exp(-nx^2).$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Weil $\exp(-nx^2) \le 1 \ \forall n \in \mathbb{N}, x \in \mathbb{R}$ konvergiert $f_n \to 0$ mit Ableitung 0' = 0.

Aber

$$f'_n(x) = -2x\sqrt{n}\exp(-nx^2).$$

Wir berechnen das Maximumpunkt:

$$f_n''(x) = 2\sqrt{n}\exp(-nx^2)(2nx^2 - 1) = 0$$

also $x^2 = \frac{1}{2n}$ und

$$f_n'\left(\sqrt{\frac{1}{2n}}\right) = -\sqrt{\frac{2}{e}}.$$

Daraus folgt, dass $g(f_n)$ keine konvergente Folge ist, obwohl f_n eine konvergente Folge ist, also g kann nicht stetig sein.

(c) Wir brauchen hier: Alle Mengen sind bzgl. der diskreten Metrik offen. Wegen $\{x_0\}$ = $B_{1/2}(x_0)$ sind alle Punktmengen in der Topologie. Weil beliebige Vereinigungen von offene Mengen auch offen sind, sind alle Mengen in der Topologie, also die Topologie ist einfach die Potenzmenge.

Sei $U \subseteq Y$ offen. $h^{-1}(U) \subseteq X$, aber wir haben schon gezeigt, dass alle Teilmengen offen sind, also $h^{-1}(U)$ ist offen. Daraus folgt: h ist stetig.

Problem 2. Untersuchen Sie die folgenden metrischen Räume auf Vollständigkeit:

- (a) (X, d), wobei $X \neq \emptyset$ und d die diskrete Metrik darstellt.
- (b) $(\mathcal{P}, \|\cdot\|_{\infty})$.
- (c) $(\mathcal{C}, \|\cdot\|_p)$ für $1 \le p < \infty$.

Hinweis: Finden Sie stetige Funktionen, welche eine Treppenfunktion approximieren.

- Proof. (a) Vollständig. Sei $(a_n), a_n \in X$ eine Cauchy-folge, also es gibt $N \in \mathbb{N}$, so dass $|a_n a_m| < 1/2 \ \forall n, m > N$. Aus der Definition folgt, dass $a_n = a_m \ \forall n, m > N$. Dann ist $a_n, n > N$ (egal welche N) der Grenzwert, weil a_n nach N eine konstante Folge ist.
 - (b) Vollständig. (Hier ist es angenommen, dass \mathcal{P} die Menge der Polynome ist). Sei p,q Polynome. Dann ist p-q ein Polynom. Alle Polynome sind bei $\pm \infty$ divergent, also $||p-q|| = \infty$. Daraus folgt, dass wenn $(a_n), a_n \in \mathcal{P}$ eine Cauchy-folge ist, ist

 (a_n) nach einer Zahl eine konstante Folge, also es konvergiert gegen ein Polynom (das Konstant).

(c) Nicht vollständig. Wir betrachten die Funktionfolge $f_n: [=1,1] \to \mathbb{R}$

$$f_n = \begin{cases} -1 & -1 \le x \le -1/n \\ nx & -1/n \le x \le 1/n \\ 1 & 1/n \le x \le 1 \end{cases}$$

Sei x > 0. Es gibt dann $N \in \mathbb{N}$, so dass 1/N < x. Dann ist $f_n(x) = 1$ für alle $n \ge N$, also $f_n(x) \to 1$. Ähnlich ist $f_n(x) \to -1$ für alle x < 0. Außerdem ist $f_n(0) = 0$ für alle $n \in \mathbb{N}$ (eine konstante Folge), also $f_n(0) \to 0$. Dann ist die Grenzfunktion

$$f = \begin{cases} -1 & 1 \le x < 0 \\ 0 & x = 0 \\ 1 & 0 < x \le 1 \end{cases}$$

was offenbar nicht stetig ist. Es bleibt zu zeigen: Die Folge ist eine Cauchyfolge. Wir betrachten $n, m \in \mathbb{N}$ mit $M = \min(n, m)$. Dann ist

$$||f_{n} - f_{m}|| = \int_{-1}^{1} |f_{n} - f_{m}| dx$$

$$= \left[\int_{-1}^{-1/M} |f_{n} - f_{m}|^{p} dx \right]^{1/p} + \left[\int_{-1/M}^{1/M} |f_{n} - f_{m}|^{p} dx \right]^{1/p}$$

$$+ \left[\int_{1/M}^{1} |f_{n} - f_{m}|^{p} dx \right]^{1/p}$$

$$= \left[\int_{-1/M}^{1/M} |f_{n} - f_{m}|^{p} dx \right]^{1/p}$$

$$\leq \left[\int_{-1/M}^{1/M} 2^{p} dx \right]^{1/p}$$

$$= 2 \left(\frac{2}{M} \right)^{1/p}$$

$$\to 0 \qquad M \to \infty$$

also die Folge ist eine Cauchyfolge.

Problem 3. Wir beweisen den Existenz- und Eindeutigkeitssatz von Picard-Lindelöf für Anfangswertprobleme. Er besagt (vereinfacht): Ist $f : \mathbb{R} \to \mathbb{R}$ Lipschitz-stetig (mit Konstante L), so besitzt die Gleichung

$$x'(t) = f(x(t)), \qquad x(a) = x_0, \qquad \forall t \in [a, b]$$

$$\tag{1}$$

für jedes b > a eine eindeutige Lösung (dies ist eine Differentialgleichung, die Lösung ist also eine Funktion $x : [a, b] \to \mathbb{R}$, welche stetig differenzierbar ist). Gehen Sie wie folgt vor:

(a) Es sei

$$x(t) = x_0 + \int_a^t f(x(s)) \, \mathrm{d}s, \qquad \forall t \in [a, b]. \tag{2}$$

Zeigen Sie für $x \in \mathcal{C}^1([a,b])$:

$$x \text{ erfüllt } (1) \iff x \text{ erfüllt } (2).$$

(b) Beweisen Sie, dass die Abbildung $F: (\mathcal{C}([a,b]), \|\cdot\|_{\infty}) \to (\mathcal{C}([a,b]), \|\cdot\|_{\infty})$ definiert durch

$$F(y(t)) = y_0 + \int_a^t f(y(s)) \, \mathrm{d}s$$

eine Lipschitz-stetige Selbstabbildung ist mit Lipschitz-Konstante L(b-a) ist.

(c) Folgern Sie mithilfe des Banachschen Fixpunktsatzes die Existenz einer eindeutigen Lösung zu (1), in dem Sie zunächst b-a klein genug wählen. Anschließend iterieren Sie das Argument endliche Male (warum?), um eine Lösung für ein beliebiges b>a zu konstuieren. Begründen Sie außerdem, warum die Lösung $x \in C^1([a,b])$ erfüllt.

Problem 4. Zur Wiederholung: Der Rang ∂A einer Menge $A \subset X$ ist definiert als die Menge der Punkte in X, welche sowohl Berührpunkte von A als auch A^c sind.

Es seien (X, d) ein metrischer Raum, $x_0 \in X$ und r > 0. Zeigen Sie, dass für $B_r(x_0) := \{x \in X : d(x, x_0) < r\}$ die folgenden Relationen gelten:

$$\partial B_r(x_0) \subset S_r(x_0) := \{ x \in X : d(x, x_0) = r \}$$
$$B_r(x_0)^{cl} \subset K_r(x_0) := \{ x \in X : d(x, x_0) < r \}.$$

Beweisen oder widerlegen Sie: Es gelten auch die umgekehrten Inklusionen.

Proof. Sei $x \in X, d(x, x_0) > r$. Sei $\epsilon = (d(x, x_0) - r)/2$. Wir behaupten, dass $B_{\epsilon}(x) \cap B_r(x_0) = \emptyset$. Sei $y \in B_r(x_0)$. Es folgt aus der Dreiecksungleichung:

$$d(x, x_0) \le d(x_0, y) + d(y, x)$$
$$d(y, x) \ge d(x, x_0) - d(x_0, y)$$
$$\ge d(x, x_0) - r$$
$$= 2\epsilon$$

also x ist kein Berührpunkt von $B_r(x_0)$ und

$$B_r(x_0)^{cl} \subset K_r(x_0).$$

Jetzt sei $x \in B_r(x_0)$. Es gilt $B_r(x_0)^c = \{x \in X : d(x, x_0) > r\}$. Sei noch einmal $\epsilon = \frac{r - d(x, x_0)}{2}$. Wir zeigen: x ist kein Berührspunkt von $B_r(x_0)^c$, also $B_\epsilon(x) \cap B_r(x_0)^c = \emptyset$. Sei $y \in B_r(x_0)^c$. Es gilt

$$d(x_0, y) \le d(x_0, x) + d(x, y)$$
$$d(y, x) \ge d(y, x_0) - d(x_0, x)$$
$$\ge r - d(x_0, x)$$
$$= 2\epsilon$$

also alle solche Punkte sind keine Berührspunkte von $B_r(x_0)^c$ und es folgt daraus:

$$\partial B_r(x_0) \subset S_r(x_0).$$

Die Umkehrrichtung ist falsch. Sei $X = \{a, b\}$ und die Metrik definiert:

$$d(x,y) = \begin{cases} 1 & (x,y) = (a,b) \text{ oder } (x,y) = (b,a) \\ 0 & \text{sonst.} \end{cases}.$$

Wir betrachten $B_1(a) = \{a\}$. Dann ist b kein Berührspunkt von $B_1(a)$, weil $B_1(b) = \{b\}$ und $\{b\} \cap \{a\} = \emptyset$. Dann ist b in weder $\partial B_r(x_0)$ noch $B_r(x_0)^{cl}$, obwohl $d(a,b) = 1 \le 1$. \square