Curso de C

Recursão

Roteiro:

- Idéia do procedimento recursivo
- Exemplos

Recursão Idéia 20/05/2009 17:00

$$fat(n) = n x (n-1) x (n-2) x ... x 2 x 1$$

$$fat(n) = n x (n-1) x (n-2) x ... x 2 x 1$$

$$fat(1) = 1$$

$$fat(n) = n x (n-1) x (n-2) x ... x 2 x 1$$

$$fat(1) = 1$$

 $fat(2) = 2 \times 1 = 2$

$$fat(n) = n x (n-1) x (n-2) x ... x 2 x 1$$

$$fat(1) = 1$$

$$fat(2) = 2 \times 1 = 2$$

$$fat(3) = 3 \times 2 \times 1 = 6$$

$$fat(n) = n x (n-1) x (n-2) x ... x 2 x 1$$

$$fat(1) = 1$$

$$fat(2) = 2 \times 1 = 2$$

$$fat(3) = 3 \times 2 \times 1 = 6$$

$$fat(4) = 4 \times 3 \times 2 \times 1 = 24$$

Método:

• É dado um problema P, parametrizado por um valor n.

Método:

• É dado um problema P, parametrizado por um valor n.

- No exemplo:
 - P é calcular a função fatorial, fat
 - n é o parâmetro da função

Casos base:

- Para alguns valores de n, sabemos diretamente o valor de P(n):
 - Usualmente são os primeiros (mais baixos) valores de n.

Casos base:

- Para alguns valores de n, sabemos diretamente o valor de P(n):
 - Usualmente são os primeiros (mais baixos) valores de n.
- No exemplo:
 - fat(1) = 1, diretamente.

Passo indutivo:

- Para um valor de n, diferente do caso base, assumimos que já temos prontos os valores de P(n-1), P(n-2),
- Usamos esses valores para calcular P(n).

Passo indutivo:

- Para um valor de n, diferente do caso base, assumimos que já temos prontos os valores de P(n-1), P(n-2),
- Usamos esses valores para calcular P(n).
- No exemplo:
 - fat(n) = n x (n-1) x ... x 2 x 1 = n x fat(n-1)

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 \times fat(3)$$

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 x fat(3)$$

$$fat(3) = 3 \times fat(2)$$

20/05/2009 17:00 Fat 16

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 x fat(3)$$

$$fat(3) = 3 \times fat(2)$$

$$fat(2) = 2 \times fat(1)$$

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 \times fat(3)$$

$$fat(3) = 3 \times fat(2)$$

$$fat(2) = 2 \times fat(1)$$

20/05/2009 17:00

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 \times fat(3)$$

$$fat(3) = 3 \times fat(2)$$

$$\int_{1}^{1} fat(2) = 2 \times fat(1)$$

1

20/05/2009 17:00

Fat

19

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 \times fat(3)$$

$$fat(3) = 3 \times fat(2)$$

$$fat(2) = 2 \times fat(1)$$

$$2 \times 1 = 2$$

1

20/05/2009 17:00

Fat

20

Podemos calcular P(n) para qualquer n:

$$fat(4) = 4 \times fat(3)$$

20/05/2009 17:00 Fat 2

Podemos calcular P(n) para qualquer n:

20/05/2009 17:00

Fat

22

Recursão deve tratar todos os casos de valores do parâmetro n:

Recursão deve tratar todos os casos de valores do parâmetro n:

20/05/2009 17:00

Recursão deve tratar todos os casos de valores do parâmetro n:

20/05/2009 17:00

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

20/05/2009 17:00 26 Potencia

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

Caso base:

20/05/2009 17:00 27 Potencia

Calcular pot(n) = 2^n , recursivamente, para n >= 0:

- Caso base:
 - -n = 0,

20/05/2009 17:00 28 Potencia

Calcular pot(n) = 2^n , recursivamente, para n >= 0:

Caso base:

$$-n = 0$$
, e $2^{0} = 1$.

20/05/2009 17:00 29 Potencia

Calcular pot(n) = 2^n , recursivamente, para n >= 0:

- Caso base:
 - -n = 0, e $2^{0} = 1$.
- Passo indutivo:

20/05/2009 17:00 Betansia

Calcular pot(n) = 2^n , recursivamente, para n >= 0:

Caso base:

$$-n = 0$$
, e $2^{0} = 1$.

Passo indutivo:

$$-n > 0$$
,

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

Caso base:

$$-n = 0$$
, e $2^{0} = 1$.

Passo indutivo:

-n > 0, e já sei calcular $2^{(n-1)}$, $2^{(n-2)}$, etc.

20/05/2009 17:00 Betansia

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

- Caso base:
 - -n = 0, e $2^{0} = 1$.
- Passo indutivo:
 - -n > 0, e já sei calcular $2^{(n-1)}$, $2^{(n-2)}$, etc.
 - Para calcular 2ⁿ:

20/05/2009 17:00 Betansia

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

- Caso base:
 - -n = 0, e $2^{0} = 1$.
- Passo indutivo:
 - -n > 0, e já sei calcular $2^{(n-1)}$, $2^{(n-2)}$, etc.
 - Para calcular 2ⁿ:
 - calculamos $z = 2^{(n-1)}$, *recursivamente*

20/05/2009 17:00

Calcular $pot(n) = 2^n$, recursivamente, para $n \ge 0$:

- Caso base:
 - -n = 0, e $2^{0} = 1$.
- Passo indutivo:
 - -n > 0, e já sei calcular $2^{(n-1)}$, $2^{(n-2)}$, etc.
 - Para calcular 2ⁿ:
 - calculamos $z = 2^{(n-1)}$, *recursivamente*
 - calculamos $2^n = 2^z$.

20/05/2009 17:00

35

Curso de C

- PotBaseGen
- Hex2dec
- MDC
- Hanoi
- Newton
- Fibo
- Fibo2

- Merge
- Quick
- BuscaBin
- Transposta
- FormulaInfixa
- Rainhas