

Pattern Recognition

Lecture 6: Feature Selection & Classifier Combination

Dr. Andreas Fischer andreas.fischer@unifr.ch

Feature Selection

Example: Digit Recognition

- Preprocessing:
 - Binarization
 - Slant correction (shearing operation)
 - Thickness (morphological operations)
 - Size (scale to n x n pixels)
- Pixel features:
 - Raw 0/1 values
- Row/column/diagonal features:
 - Number of black pixels (projection profile)
 - Black/white transitions
 - Margin until first black pixel
- Grid features (k x k cells):
 - Number of black pixels
 - Histogram of contour orientations
- ...

Feature Normalization

- Combining different feature domains problematic for distance-based classifiers such as KNN.
- Notation: x_{ii} is the feature j of the learning sample i.
- Linear normalization:
 - min-max (set n_{ii}=0 if n_{ii} < 0 and n_{ii} = 1 if n_{ii} > 1 for test samples):

$$n_{ij} = \frac{x_{ij} - \min}{\max - \min}; \min = \min\{x_{ij} : 1 \le i \le N\}; \max = \max\{x_{ij} : 1 \le i \le N\}$$

z-score:

$$n_{ij} = \frac{x_{ij} - \mu}{\sigma}; \ \mu = \frac{1}{N} \sum_{i=1}^{N} x_{ij}; \ \sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_{ij} - \mu)^2}$$

- Non-linear normalization:
 - sigmoid (parameter c > 0 controls steepness):

$$n_{ij} = \frac{1}{1 + \exp(-c\alpha)}; \ \alpha = \frac{x_{ij} - \mu}{\sigma}$$

Feature Selection

- Goal: Find subset of features to reduce the dimensionality and to improve the classification performance.
- Classification performance expected to improve:
 - When removing irrelevant, noisy, and redundant features.
 - When focusing on independent features that capture complementary properties of the patterns.
- Quality J(F) of a feature set F drives the search procedure:
 - Filter method: J measures the class overlap in the feature space.
 - Wrapper method: J is the performance of a classifier.

Sequential Forward Search (SFS)

Bottom-up method that iteratively adds the best remaining feature.

sequential forward search

```
input: F = \{x_1, \dots, x_n\}; n' < n

output: F' = \{x_{i1}, x_{i2}, \dots, x_{in'}\} \subseteq F

begin

F' = \emptyset

for i = 1 to n' do

j = argmax_{x_k \in F - F'} J(F' \cup \{x_k\})

F' = F' \cup \{x_j\}

endfor

end
```

Dynamic SFS

• Feature selection can be stopped dynamically if the quality J(F') cannot be improved anymore.

sequential forward search with dynamic number of features

```
input: F = \{x_1, \dots, x_n\}; n' < n

output: F' = \{x_{i1}, x_{i2}, \dots, x_{in'}\} \subseteq F

begin

F' = \emptyset
while true do

j = argmax_{x_k \in F - F'} J(F' \cup \{x_k\})
if J(F' \cup \{x_j\}) \leq J(F')

then output F';

exit while-loop

F' = F' \cup \{x_j\}
endwhile
```

Sequential Backward Search (SBS)

Top-down variant that iteratively removes a feature from F.

sequential backward search

```
input: F = \{x, \dots, x_n\}; n' < n

output: F' = \{x_{i1}, x_{i2}, \dots, x_{in'}\} \subseteq F

begin

F' = F

for i = 1 to n - n' do

j = argmax_{x_k \in F'} J(F' - \{x_k\})
F' = F' - \{x_j\}
endfor

end
```

Sequential Floating Forward Search (SFFS)

- Plus-I minus-r: Add I features, then remove r < I features.</p>
- SFFS: Add one feature, then remove as many features as possible until the quality J(F') cannot be improved anymore.

```
plus-l minus-r forward search
input: F = \{x, \dots, x_n\}; l; r; r < l
output: F' = \{x_{i1}, x_{i2}, \dots, x_{in'}\} \subseteq F
begin
       F' = \emptyset
       for i = 1 to max do
            for i'=1 to l do
                j = argmax_{x_k \in F - F'} J(F' \cup \{x_k\})
                F' = F' \cup \{x_i\}
            endfor
            for i' = 1 to r do
                j = argmax_{x_k \in F'} J(F' - \{x_k\})
                F' = F' - \{x_i\}
            endfor
       endfor
end
```

Genetic Algorithms

Genetic Algorithms (GA)

- Search procedure inspired by evolutionary selection mechanisms, survival of the fittest.
- Chromosomes y∈Y consisting of genes y_i are states in the search space. For feature selection:

$$y_1 \quad y_2 \quad \dots \quad y_i \quad \dots \quad y_n$$

$$y_i = \begin{cases} 0 \Leftrightarrow \text{ feature i is not used} \\ 1 \Leftrightarrow \text{ feature i is used} \end{cases}$$

The fitness function J(y) measures the quality of the chromosome y. For feature selection this could be the cross-validation performance of a classifier (wrapper method) based on the selected features.

Population

- A population P⊆Y is a finite set of chromosomes, providing a set of solutions. Goal is to improve from one population to the next.
- Two methods to derive a population P(t+1) from a population P(t):
 - Mutation: Randomly change a gene. For feature selection, change 0 to 1 and 1 to 0.
 - Cross-Over: Combine two chromosomes to obtain two new chromosomes.
 - Single-point cross-over:

$$x = (0,0,1,0,1,1,1,0)$$

 $y = (1,0,1,1,1,0,0,1)$ \Rightarrow $u = (0,0,1,1,1,0,0,1)$
 $v = (1,0,1,0,1,1,1,0)$

Double-point cross-over:

$$x = (0,0,1,0,1,1,1,0)$$

 $y = (1,0,1,1,1,0,0,1)$ \Rightarrow $u = (0,0,1,1,1,1,1,0)$
 $v = (1,0,1,0,1,0,0,1)$

Algorithm

1: generate initial population P(0)

2: t = 0

3: while termination criterion not fullfilled do

4: select parent subset $R \subseteq P(t)$

5: generate new children population P(t+1) based on R

6: t = t + 1

7: end while

- Initialization: typically random genes.
- Termination criterion: fixed number of iterations, small change of average or maximum fitness.
- Parent selection:
 - Deterministic: n-best chromosomes.
 - Stochastic: selection with probability $p(y) = \frac{J(y)}{\sum_{z \in P(t)} J(z)}$
 - Two-stage selection with competition: stage 1 randomly selects chromosomes, stage 2 selects the best among them. The two stages are repeated until R has the desired size.

New Population

- 1: $P(t+1) = \emptyset$
- 2: repeat
- 3: randomly select two chromosomes x and y from R
- 4: generate u and v from x and y by cross-over
- 5: Generate w from u and z from v by mutation
- **6**: $P(t+1) = P(t+1) \cup \{w, z\}$
- 7: **until** P(t+1) has the desired size
- Apply cross-over with probability p_c (typically a high probability).
 Chromosomes u and v are identical to x and y with probability (1-p_c).
- Apply mutation with probability p_m (typically a low probability).
 Chromosomes w and z are identical to u and v with probability (1-p_m).
- Elite principle: variant that ensures that the n-best chromosomes are added without change to P(t+1).
- Note that by means of random changes, it is possible to avoid local optima in the search space.

Parameters

- Size of the population.
- Probabilities p_c and p_m.
- Specific choice of methods for initialization, selection, and generation.
- Reasonable defaults that have proven successful for several applications:
 - $(|P(0)|, p_c, p_m) = (100, 0.6, 0.001)$
 - $(|P(0)|, p_c, p_m) = (30, 0.9, 0.01)$

Feature Transformation

Principal Component Analysis (PCA)

- Feature space transformation method that removes linear correlations among the features and reduces the number of features.
- Step 1: Center the features around the origin by subtracting the mean vector m.

$$\hat{x} = x - m$$

- Step 2: Compute the eigenvectors $e_1, ..., e_n$ of the covariance matrix (see lecture 2) and order them according to their eigenvalues $\lambda_1 \ge ... \ge \lambda_n$.
- Step 3: Apply principal axis transform to obtain a diagonal covariance matrix in the new feature space Y. $y = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} \hat{x}$

- The new coordinate system is spanned by the eigenvectors.
- First eigenvector points in the direction with maximum variance.
- Step 4: Select k first features to reduce dimensionality while keeping most of the variance.

Example

Example: Face Recognition

Reconstruct faces by means of eigenfaces.

Other Feature Transformations

- Independent component analysis (ICA) aims to improve the statistical independence among the features.
 - E. Oja. Independent component analysis: algorithms and applications. Neural Networks 13: 411-430, 2000.
- PCA is kernelizable (see lecture 4), hence kernel PCA can be applied.
 - B. Schölkopf, A. Smola, and K.R. Müller. Kernel principal component analysis. In: Advances in Kernel Method – Support Vector Learning. MIT Press, pages 327-352, 1999.

Example: Handwriting Recognition

Example: Writer Identification

 100 features extracted from text lines, including slant, ascender and descender heights, width, size and form of convex hulls, ...

Experiment	N. of Features	Writer Id. Rate
Baseline	100	92.08%
SBS	42	94.26%
SFS	51	92.35%
SFBS	42	93.17%
SFFS	55	93.44%
GA	50	95.08%
PCA	59	92.35%

Classifier Combination

Multiple Classifier Systems

- Idea: consult several experts. Ideally, they do not commit the same mistakes and can help each other.
- Two levels of combination.
 - Early fusion:
 - Combine sensor data, e.g. color image and depth image.
 - Combine features, e.g. by concatenation $(x_1,...x_n,x_{n+1},x_{n+m})$.
 - Late fusion:
 - Combine classifier output. Each classifier is trained independently with its own data and features.

Example: Person Identification

- Combining frontal and profile views.
- Reliability can be further improved by combining with other biometric traits such as voice.

Serial Combination

Classifiers 1,...,N-1 can be interpreted as feature transformations.

Hierarchical Combination

• Often used for large number of classes $C=\{C_1,...,C_K\}$, $C^i \subset C$.

Parallel Combination

Classifier Output

- Possible combiners for parallel combination depend on the output of the individual classifiers.
 - Type-1 Classifiers: output class label (e.g. 1NN).
 - Type-2 Classifiers: output ranked list of classes.
 - Type-3 Classifiers: output plausibility value p(C_i) for each class, for example posterior probability but also MLP output.
- Clearly, type-3 output can also be reduced to type-2 (ranking by plausibility), and type-2 output can be reduced to type-1 (top rank).

Example

 A possibility to transform type-1 output into type-3 is to compute a confusion matrix on the training set (class i classified as j).

	C_1	C_2	C_3
C_1	8	1	1
C_2	3	7	0
C_3	1	3	6

-
$$C_1$$
: $p(C_1|\mathbf{x}) = 8/12$; $p(C_2|\mathbf{x}) = 3/12$; $p(C_3|\mathbf{x}) = 1/12$;

-
$$C_2$$
: $p(C_1|\mathbf{x}) = 1/11$; $p(C_2|\mathbf{x}) = 7/11$; $p(C_3|\mathbf{x}) = 3/11$;

-
$$C_3$$
: $p(C_1|\mathbf{x}) = 1/7$; $p(C_2|\mathbf{x}) = 0$; $p(C_3|\mathbf{x}) = 6/7$;

Type-1 Combination

- Consensus voting: Choose class with most votes.
 - Tie resolution needed.
- Majority voting: Choose class with more than N/2 votes, otherwise reject.
 - Note that if classifiers are independent, have an error rate smaller than pure chance (K-1)/K, and N → ∞, it can be shown that the error rate of the multiple classifier system approaches 0.
- Weighted voting: Each vote is weighted, for example with the accuracy of the classifier achieved on the training set. Choose class with maximum sum of weights.
 - Weights can also be learned, for example with an MLP.

$$K_1 (w_1=0.9): C_1$$

 $K_2 (w_2=0.3): C_2$
 $K_3 (w_3=0.8): C_3$
 $K_4 (w_4=0.4): C_2$
 $C_1: 0.9$
 $C_2: 0.7$
 $C_3: 0.8$

Type-2 Combination

- Maximum rank: for each class, compute the best rank among all classifier results. Choose class with the best maximum rank.
 - Tie resolution needed.

Borda count: for each class C_i and classifier K_j , compute the number of classes with lower rank $B_i(C_i)$. Choose class with the maximum sum:

$$B(C_i) = \sum_{i=1}^{N} B_j(C_i)$$

Equivalently, sum up ranks over all classifiers. Choose class with the best rank sum.

Borda count:	Rank sum:
C_1 : 2+3+0+0=5	C ₁ : 2+1+4+4=11
C ₂ : 0+0+1+1=2	C_2 : 4+4+3+3=14
C_3 : 3+1+3+2=9	C_3 : 1+3+1+2=7
C_4 : 1+2+2+3=8	C_4 : 3+2+2+1=8

Type-3 Combination

- Combined plausibility p(C_i)=f(p₁(C_i),...,p_N(C_i)):
 - Maximum (f=max): optimistic estimate of p(C_i).
 - Minimum (f=min): conservative estimate of p(C_i).
 - Mean: $p(C_i) = \frac{1}{N} \sum_{j=1}^{N} p_j(C_i)$
 - Weighted sum: $p(C_i) = \sum_{j=1}^{N} w_j p_j(C_i)$
 - Product: assumes probability output and statistical independence, also known as Bayes' combination rule:

$$p(C_i) = \prod_{j=1}^{N} p_j(C_i)$$

- Plausibility values need to be normalized when combining different classifiers, e.g. Bayes posteriors and MLP outputs.
- Function f can also be replaced by a classifier, which receives the plausibility values as input features.

Ensemble Diversity

- Goal is to generate a diverse classifier ensembles.
- Consider two classifiers K₁ and K₂.
 - N₀₀: number of samples misclassified by K₁ and K₂
 - N₁₀: correctly classified by K₁, misclassified by by K₂
 - N₀₁: misclassified by K₁, correctly classified by K₂
 - N₁₁: correctly classified by K₁ and K₂
- Common pairwise diversity measures:
 - Disagreement (should be high): $\frac{N_{10} + N_{01}}{N_{00} + N_{10} + N_{01} + N_{11}}$
 - Double-fault (should be low): $\frac{N_{00}}{N_{00} + N_{10} + N_{01} + N_{11}}$
- Empirical results indicate that diversity measures correlate with gain in accuracy.

Ensemble Generation

- Variation of classifier architecture and parameters. For example, MLP:
 - Number of hidden layers, number of neurons per layer.
 - Initial weights.
 - Number of training iterations, order of learning samples, learning rate, parameter of sigmoid threshold function, etc.
 - Focus on a subset of features.
- Bagging (bootstrap aggregating):
 - Create K times a new training set with |S| elements by choosing |S| times a training sample.
 - Each training sample is chosen with equal probability 1 / |S|.
 Multiple selections are kept in the new training set.
 - Train K classifiers on the K different training sets.

Example: Person Identification (Individual)

Example: Person Identification (Combined)

