

Author/Editor	Date	Version	Edits	Status	Reviewed/Approved by
Prince Yeboah Okyere	Sep 2, 2025	1.00		Draft	
John Mudekwe	Sep 6, 2025	1.01	Fine-tuning various text		
Lukeman Haruna	Sep 22, 20	1.02		Finalized	
	□ Date				Thomas Ansre

Community Native Ecosystem Restoration Project Species Coding System Manual

1. Purpose

This manual establishes a standardized species coding system to be used across all components of the Community Native Ecosystem Restoration Project in Ghana.

The system ensures consistency, traceability, and interoperability of species data across seed collection, nursery operations, field planting, monitoring, biodiversity assessments, and carbon accounting.

It draws inspiration from the European and Mediterranean Plant Protection Organization (EPPO) code system but has been simplified and adapted to the project's specific operational needs. By applying this system, all project staff from nursery managers, seed collection teams, planting teams to monitoring teams, can easily reference species in a uniform and transparent manner.

2. Guiding Principles

The system is governed by the following principles:

- Uniqueness: Each species is assigned a single, non-duplicated code.
- Simplicity: Codes are short, intuitive, and based on Latin names.
- Compatibility: It aligns with the EPPO five-letter style format.
- Expandability: It easily accommodates new species introduced into the project.

3. Code Structure

Each code consists of five letters, generated as follows:

- The first three letters of the Genus name (capitalized).
- The first two letters of the Species epithet (lowercase).

Formula: GEN + sp \rightarrow 5-character code

Examples:

Afzelia africana → AFZaf Ceiba pentandra → CElpe Milicia excelsa → MILex Terminalia superba → TERsu Khaya ivorensis → KHAiv

If conflicts occur (two species producing identical codes), numerals or additional letters are appended for distinction.

4. Governance and Use

The Nursery Manager maintains the official register for seed and seedling tracking. The Forest Operations Manager applies codes in field inventories and planting maps. The M&E Team ensures codes are consistently used across databases and reporting. The register will be reviewed annually to capture new species and resolve conflicts.

5. Applications

- Seed Collection: Codes are used for seed lot labels and tracking.
- Nursery Management: Codes appear on seedling tags, growth sheets, and pest/disease logs.
- Field Operations: Codes support planting maps, GIS integration, and block registers.
- Monitoring & Reporting: Codes streamline biodiversity and carbon data analysis.

6. Species Coding Register (Alphabetical Order)

This is the list of codes for the 30 native species to be planted.

No.	Scientific Name	Code	Local Names
1	Afzelia africana	AFZaf	Papao
2	Albizia adianthifolia	ALBad	Petia
3	Albizia ferruginea	ALBfe	Awiemfosamina
4	Albizia zygia	ALBzy	Okoro
5	Alstonia boonei	ALSbo	Nyamedua
6	Antiaris toxicaria	ANTto	Kyenkyen

7	Blighia sapida	BLIsp	Akye
8	Ceiba pentandra	CElpe	Onyina
9	Celtis mildbraedii	CELmi	Esafufuo
10	Celtis zenkeri	CELze	Esa-kokoo
11	Cola gigantea	COLgi	Watapuo
12	Entandrophragma angolense	ENTan	Edinam/ Tamatama
13	Ficus exasperata	FICex	Nyankom/ Nyankoma
14	Khaya anthotheca	KHAan	Krumben
15	Khaya ivorensis	KHAiv	Dubini/ Kokrodua
16	Lovoa trichilioides	LOVtr	Kusia-bese
17	Mansonia altissima	MANal	Oprono
18	Milicia excelsa	MILex	Odum
19	Milletia thonningii	MILth	Sepea/ Pesea
20	Morinda lucida	MORlu	Konkronma
21	Nauclea diderrichii	NAUdi	Kusia
22	Parkia biglobosa	PARbi	Dawadawa
23	Piptadeniastrum africanum	PIPaf	Dahoma
24	Pterocarpus erinaceus	PTEer	Osese
25	Terminalia ivorensis	TERiv	Emire
26	Terminalia superba	TERsu	Ofram
27	Tetrapleura tetraptera	TETte	Prekese
28	Tieghemella heckelii	TIEhe	Bako
29	Triplochiton scleroxylon	TRIsc	Wawa

30 Vitallaria paradoxa VITpa Shea tree/ Nkuto

7. Conclusion

This coding framework provides a consistent, transparent, and practical system for managing species data across the Community Native Ecosystem Restoration Project. It supports operational efficiency, enhances biodiversity monitoring, and ensures data quality for both local management and global reporting standards such as VM0047 and the CCB Standards.