Lab #8: Magnitude comparators

Objective:

- Realization of 1-bit comparator using logic gates.
- Realization and implementation of 2-bit comparator using logic gates on breadboard.
- Implementation of 4-bit magnitude comparator on breadboard using IC 7485.

Components Required:

- Breadboard.
- IC Type 7486 Quadruple 2-input XOR gates.
- IC Type 7408 Quadruple 2-input AND gates.
- IC Type 7400 Quadruple 2-input NAND gates.
- IC Type 7410 Triple 3-input NAND gates.
- IC Type 74L85 4-bit magnitude comparator.
- Switches for inputs and
- LED displays for outputs.

Theory:

Magnitude comparator is a combinational logic circuit that compares between two binary numbers A and B and determines their relative magnitudes. The output of the circuit is specified by three binary variables whether: A>B, A=B or A<B.

Figure 1: Block diagram of n-bit Magnitude Comparator.

1-bit Magnitude Comparator:

A comparator used to compare two 1-bit binary numbers. It has two binary inputs A, B and three binary outputs: greater than, equal and less than relations. Figure 2 below shows the block diagram and truth table of a 1-bit magnitude comparator.

(a)Block diagram

A	В	A=B	A <b< th=""><th>A>B</th></b<>	A>B
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	1	0	0

(b) Truth table

Figure 2

The Boolean functions describing the 1-bit magnitude comparator according to the truth table are:

$$(A < B) = A'B$$

$$(A = B) = A'B' + AB = (A \oplus B)'$$

$$(A > B) = AB'$$

The logic diagram for 1-bit binary comparator implemented by XOR and basic logic gates is shown

below in figure 3.

Figure 3: Logic Diagram of 1-bit Comparator

So we conclude that digital comparators actually use **Exclusive-NOR** gates within their design for comparing their respective pairs of bits.

2-bit Magnitude Comparator:

A comparator used to compare two 2-bit numbers. It has 4 binary inputs (number A: A_1A_0 , number B: B_1B_0) and 3 binary outputs: greater than, equal and less than relations. Figure 4 below shows the block diagram and truth table of a 2-bit magnitude comparator.

	Inputs			Outputs		
$\mathbf{A_1}$	\mathbf{A}_0	B ₁	\mathbf{B}_0	A>B	A=B	A <b< td=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

(b) Truth table

Figure 4

Using key-map, the simplified Boolean function for the outputs A>B, A=B and A<B is shown below:

		For A	=B		
A1 A0	B1B0			٦	
	1				
		1			$\prod_{\mathbf{n}}$
			1		AO
Al				1	
		В	0	1	
A D					

A <b: $=A_1 'B_1+A_1'A_0 'B_1'B_0+A_1A_0 'B_1B_0$ $=A_1 'B_1+A_0 'B_0(A_1'B_1'+A_1B_1)$ $=A1 'B_1+A_0 'B_0(A_1 \oplus B_1) '$ $=A1 'B_1+X_1 A_0 'B_0$</b:
=A1 'B1+X1.A0 'B0

Based on the simplified Boolean functions for the three outputs A>B, A=B and A<B, the logic diagram of the 2-bit magnitude comparator is shown below:

Figure 5: Logic Diagram of 2-bit Comparator

4-bit Magnitude Comparator:

A comparator used to compare two 4-bit words. The two 4-bit numbers are word A: $A_3A_2A_1A_0$, and word B: $B_3B_2B_1B_0$) So the circuit has 8 inputs and 3 binary outputs: A>B, A=B and A<B.

Figure 6 shows the block diagram and pin configuration of IC 7485 for 4-bit magnitude comparator. Three inputs are available for cascading comparators.

This comparator generates an output of 1 at one of three comparison outputs such that:

- If word A is bigger than word B; A>B output (pin 5) is "1",
- If word A is smaller than word B; A<B output (pin 7) is "1",
- If word A is equal to word B; A=B output (pin 6) is "1".

This IC can be used to compare two 4-bit binary words by grounding the cascade inputs A<B (pin 2) and A>B (pin 4) and connecting the cascade input A=B (pin 3) to Vcc.

How does a 4-bit comparator work?

Equality:

Word A equal word B iff: $A_3=B_3$, $A_2=B_2$, $A_1=B_1$, $A_0=B_0$.

Inequality:

- If A3 = 1 and B3 = 0, then A is greater than B (A>B). Or
- If A3 and B3 are equal, and if A2 = 1 and B2 = 0, then A > B. Or
- If A3 and B3 are equal & A2 and B2 are equal, and if A1 = 1, and B1 = 0, then A>B. Or
- If A3 and B3 are equal, A2 and B2 are equal and A1 and B1 are equal, and if A0 = 1 and B0 = 0, then A > B.
- If A3 = 0 and B3 = 1, then A is less than B (A<B). Or
- If A3 and B3 are equal, and if A2 = 0 and B2 = 1, then A < B. Or
- If A3 and B3 are equal & A2 and B2 are equal, and if A1 = 0, and B1 = 1, then A<B. Or
- If A3 and B3 are equal, A2 and B2 are equal and A1 and B1 are equal, and if A0 = 0 and B0 = 1, then A < B.

Part A: Lab Tasks

Procedure:

- 1. Check all the components for their working.
- 2. Insert the appropriate ICs into the IC base.
- 3. Make connections as shown in the circuit diagram in figure 5.
- 4. Verify the Truth Table and observe the outputs.
- 5. Repeat the same steps but for the circuit diagram in figure 6 and apply inputs in the following table. Record the outputs for the given values of A and B.

A	В	Outputs
1001	0110	
1100	1110	
0011	0101	
0101	0101	

Conclusions: Magnitude comparator is studied.

Part B: Post Lab Task (Bonus, worth 5%):

- 1. Design an 8-bit comparator using two chips of IC 7485. The connections are given below.
- 2. Verify the given truth table.

PIN DIAGRAM FOR IC 7485

LOGIC DIAGRAM 8 BIT MAGNITUDE COMPARATOR

TRUTH TABLE

A	В	A>B	A=B	A <b< th=""></b<>
0000 0000	0000 0000	0	1	0
0001 0001	0000 0000	1	0	0
0000 0000	0001 0001	0	0	1