Large-Scale Convex Optimization

Silvan Stadelmann silvasta@ethz.ch 3. Juli 2025

1 Introduction

Large Scale Problem of dimension n but iterations $\ll n$ desired Convex One of the only problem classes that are "solvable" **Optimization** with decision variable x, objective function f and

feasible set $\mathcal{C} = \{ \xi \in \mathbb{R}^n : g(\xi) < 0, \ h(\xi) = 0 \}$ **Local minimum** x^* if $\exists \epsilon > 0$ s.t. $f(x^*) < f(x)$,

 $\forall x \in \mathcal{C} \cap B_{\epsilon}(x^{\star}), B_{\epsilon}(x^{\star}) := \{ \xi \in \mathbb{R}^n : |\xi - x^{\star}| < \epsilon \}$ **Proposition 1.** f (lower-semi-)continuous, $f(x) \to \infty$ for $|x| \to \infty$, C closed $\Rightarrow \exists$ of OP with: $\min_{x \in C} f(x)$ and $x^* \in$ $\operatorname{argmin}_{x \in \mathcal{C}} f(x)$ **Definition 1** (Lipschitz continuity). $q: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz

with constant L if: $|q(x) - q(y)| \le L|x - y| \forall x, y \in \mathbb{R}^m$ f is **Lipschitz** (Lip) with constant $L \Leftrightarrow |\nabla f(x)|_2 < L$ OP class \mathcal{P} with $\mathcal{C} = [0,1]^n$, f is l^{∞} -Lipschitz with constant L

Proposition 2. For any algorithm \exists problem in \mathcal{P} , s.t. achieving $|f(x_N)-f(x)|<\epsilon$ requires $N\geq (|\frac{L}{2\epsilon}|)^n-1$ **Definition 2.** OP convex if, f and q_i convex functions, h affine. **Definition 3.** $q: \mathbb{R}^n \to \mathbb{R}$ convex (affine) if $\forall x, y \in \mathbb{R}^n$ $q(\theta x + (1 - \theta)y) \le \theta q(x) + (1 - \theta)q(y) \quad \forall \theta \in [0, 1]$ Proposition 3. If OP convex, local minimum == global minimum

2 Convex Optimization Problem

Definition 4 (Convex Set). A set C is convex if and only if $\theta x + (1 - \theta)y \in \mathcal{C}, \forall x, y \in \mathcal{C}, \forall \theta \in [0, 1]$ (hyperplane \parallel half-space) $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x (= \parallel \leq) b\}$

polyhedra $\{x \in \mathbb{R}^n \mid A^{q \times n} x \prec b^{q \times 1}, C^{r \times n} x = d^{r \times 1}\}$ Operations that preserve convexity (sets)

Intersection C_1, C_2 cv $\Rightarrow C_1 \cap C_2$ convex (cv)

Image under affine map $\mathcal{C} \subseteq \mathbb{R}^n$ $cv \Rightarrow \{Ax + b \mid x \in \mathcal{C}\}$ cvInverse loam $\mathcal{C} \subseteq \mathbb{R}^m$ cv $\Rightarrow \{x \in \mathbb{R}^n \mid Ax + b \in \mathcal{C}\}$ cv

Separating Hyperplane Theorem

Theorem 1. $\mathcal{C} \subseteq \mathbb{R}^n$ non-empty closed (cl) convex set, $y \notin \mathcal{C}$ $\rightarrow \exists a \neq 0, b \in \mathbb{R} \text{ s.t. } a^{\mathsf{T}}x + b < a^{\mathsf{T}}y + b, \forall x \in \mathcal{C}$

Corollary 1. $\mathcal{C}_{\text{cl,cv}}$: intersection of cl half-spaces that contain \mathcal{C} **Support function**

Idea represent any cl,cv set by its supporting hyperplanes

$$\begin{split} \sigma_{\mathcal{C}}(a) &= \sup_{x \in \mathcal{C}} a^\mathsf{T} x \quad \text{if known, one can construct} \\ \mathcal{C} &= \bigcap_{a \in \mathbb{R}^n} \{x \in \mathbb{R}^n \mid a^\mathsf{T} x - \sigma_{\mathcal{C}}(a) \leq 0\} \\ &= \{x \in \mathbb{R}^n \mid \sup_{a \in \mathbb{R}^n} a^\mathsf{T} x - \sigma_{\mathcal{C}}(a) \leq 0\} \end{split}$$

Definition 5. $f: \mathbb{R}^n \to \mathbb{R}$ cv \Leftrightarrow epigraph of f is cv set $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} | f(x) < t\}$

$$ightarrow$$
 this provides a link between convex sets and functions

Operations that preserve convexity (functions) - the point wise maximum of convex functions is convex

- the sum of convex functions is convex -f(Ax+b) is convex if f is convex

Check Convexity f is convex if it is composition of simple convex function with convexity preserving operations or if $f: \mathbb{R}^n \to \mathbb{R}$ twice differentiable, $\partial^2 f/\partial x^2 \succeq 0 \ \forall \ x \in \mathbb{R}^n$ $g:\mathbb{R} \to \mathbb{R}$ with g(t)=f(x+tv) convex in $t \ \forall \ x,v \in \mathbb{R}^n$ $\rightarrow f$ convex (restriction to a line)

Extended real numbers $\mathbb{\bar{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ Indicator function $\psi_{\mathcal{C}}(x) := \left\langle
ight.$

We can write $\min_{x \in \mathcal{C}} f(x)$ as $\min_{x \in \mathbb{R}^n} f(x) + \psi_{\mathcal{C}}(x)$ **Definition 6** (3). $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ is called proper if f is bounded below and if $\exists x \in \mathbb{R}^n$ s.t. $f(x) < \infty$ **Definition 7** (Legendre Transformation). The conjugate function of $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ is defined as $f^*(y) = \sup_{x \in \mathbb{R}^n} y^T x - f(x)$ **Concave** $\nabla_x^2 f^* \prec 0 \Rightarrow$ maximizer of sup satisfies $\nabla_x f^* = 0$

Theorem 2 (Conjugate of Conjugate). $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ (i) f proper, cv, epi(f) closed $\Rightarrow f^{**} = f$ (ii) $f(x) > f^{**}(x), \forall x \in \mathbb{R}^n$

3 KKT and Lagrange Duality

Basic 2d Example for derivation: $\min_{x \in \mathbb{R}^2} f(x)$ s.t. h(x) = 0 $\rightarrow \nabla f(x^*)$, $\nabla h(x^*)$ co-linear $\Leftrightarrow \exists \nu^* \in \mathbb{R} : \nabla f(x^*) +$ $\nu^* \nabla h(x^*) = 0 \Leftrightarrow f(x) + \nu^* h(x)$ is stationary at x^*

Generalization for $n \to \infty$ and with constraints We consider $f^\star = \inf_{x \in \mathbb{R}^n} f(x)$ s.t. $g(x) \le 0, h(x) = 0$ (1)

 $\mathcal{L}(x,\lambda,\nu) = f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$ $d(\lambda,\nu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda,\nu)$ Lagrange **Dual Function**

Proposition 4 (Weak Duality). $d(\lambda, \nu) < f^*, \forall \lambda > 0, \nu \in \mathbb{R}^h$ **Definition 8** (Constraint qualification). C convex, **Slaters Condi**tion holds if $\exists \hat{x} \in \mathbb{R}^n$ s.t. $h(\hat{x}) = 0$ and $g(\hat{x}) < 0$ Proposition 5 (Strong Duality). If Slater's condition holds and (1) is convex $\Rightarrow \exists \lambda \geq 0, \nu \in \mathbb{R}^{n_h}$ s.t. $d(\lambda, \nu) = f^*$

KKT (Karush-Kuhn-Tucker) Conditions

Theorem 3 (KKT Conditions). Slater's condition holds and (1) is convex $\to x^\star \in \mathbb{R}^n$ is a minimizer of the primal (1) and $(\lambda^{\star} \geq 0, \nu^{\star}) \in \mathbb{R}^{n_g} \times \mathbb{R}^{n_h}$ is a maximizer of the dual \Leftrightarrow

$$\begin{array}{ll} \nabla_x \mathcal{L}(x^\star, \lambda^\star, \nu^\star) = 0 & \text{KKT-1 (Stationary Lagrangian)} \\ g(x^\star) \leq 0, h(x^\star) = 0 & \text{KKT-2 (primal feasibility)} \\ \lambda^\star \geq 0, \nu^\star \in \mathbb{R}^{n_h} & \text{KKT-3 (dual feasibility)} \\ \lambda^{\star T} g(x^\star) = 0 = \nu^{\star T} h(x^\star) & \text{KKT-4 (compementary slackness)} \end{array}$$

In addition we have: $\sup_{\lambda>0} \sup_{\nu\in\mathbb{R}^{n_h}} q(\lambda,\nu) = \inf_{x\in\mathcal{C}} f(x)$ **Remark** Without Slater, KKT1-4 still implies x^* minimizes (1) and λ , ν maximizes dual, but the converse is no longer true. There can be primal-minimizer/dual-maximizer not satisfy KKT.

Subdifferential

For cv f we have $f(x) > f(\bar{x}) + \nabla f(\bar{x})^{\mathsf{T}} (x - \bar{x}), \ \forall x, \bar{x} \in \mathbb{R}^n$ **Definition 9.** $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ cv, the subdifferential of f at \bar{x} is: $\partial f(\bar{x}) := \{ \lambda \in \mathbb{R}^n \mid f(x) > f(\bar{x}) + \lambda^{\mathsf{T}}(x - \bar{x}), \forall x \in \mathbb{R}^n \}$ **Proposition 6.** f (like D9), $x^* \in \operatorname{argmin}_x f(x) \Leftrightarrow 0 \in \partial f(x^*)$ **Proposition 7** (Relation to conjugate functions). For convex fwith $\operatorname{epi}(f)$ closed: $y \in \partial f(x) \leftrightarrow x \in \partial f^*(y)$

4 Convex Optimization Problems

Optimal value $f^* = \inf\{f(x) \mid g_i(x) \leq 0, h_i = 0\}$ $f^{\star} = +\infty$ OP is infeasible, $f^{\star} = -\infty$ OP is unbound below

Feasibility Problem

Special case $f(x) = 0, \forall x \Leftrightarrow \min_{s} \text{ s.t. } g_i(x) \leq s, h_i(x) = 0$ **Linear Programming** minimize $c^{\mathsf{T}}x$ s.t. $Ax - b \ge 0, x \ge 0$ Step 1: $\mathcal{L}(x,\lambda_1,\lambda_2) = c^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}(Ax-b) - \lambda_2^{\mathsf{T}}x, \ \lambda_i \geq 0$ Step 2: $\inf_{x\in\mathbb{R}^n}\mathcal{L}=\lambda_1^\mathsf{T}b$, if $c-A^\mathsf{T}\lambda_1-\lambda_2=0$, else $-\infty$

Proposition 8. The optimal solution of a linear program (if it exists) lies always on the boundary of the feasible set and there exists an optimal solution that is a vertex of the feasible set. **Quadratic Programming** convex if $P = P^{\mathsf{T}}$ positiv semi-definite

minimize $\frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$ s.t. Gx < h, Ax = b

Second-Order Cone Program minimize $f^{\mathsf{T}}x$ s.t. $|A_ix+b| \leq c_i^{\mathsf{T}}x+d_i, Fx=q$

Second-order cone $C_{n+1} = \{(x,t) \mid x \in \mathbb{R}^n, t \in \mathbb{R}, |x| < t\}$ $|A_ix+b| < c_i^{\mathsf{T}}x+d_i \Leftrightarrow (A_ix+b,c_i^{\mathsf{T}}x+d_i) \in C_{n+1}$ **Semi-Definite Programming** with symmetric F_i, X, A_i minimize $c^{\mathsf{T}}x$ s.t. $\sum_{i=1}^{n} x_i F_i + G \leq 0$, Ax = b**Standard form** minimize tr(CX) s.t. $X \ge 0$, $tr(A_iX) = b_i$ $\operatorname{tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}, C \in \mathbb{R}^{n \times n}, i = 1, ..., m$ $LP \subset QP \subset QCQP$ (Quadratically Constrained QP) $\subset SOCP \subset SDP$

5 Gradient methods - Part I

Definition 10 (smoothness). $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth (L-sm) if $\nabla f(x)$ satisfies $|\nabla f(x) - \nabla f(y)| \leq L|x-y| \ \forall x,y \in \mathbb{R}^n$ Taylor $\rightarrow f(y) < f(x) + \nabla f(x)^{\mathsf{T}} (y-x) + \frac{L}{2} |x-y|^2$ **Definition 11** (strong convexity). $f: \mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex (μ -scv) if $f(y) > f(x) + \nabla f(x)^{\mathsf{T}} (y-x) + \frac{\mu}{2} |x-y|^2$ **How to find** μ/L , Spectra of Hessian $\nabla^2 f$, min/max eigenvalue **Gradient Descent** $x_{k+1} = x_k - T\nabla f(x_k)$ for $k = (k_0, \dots, k_N)$ given x_0, T

Assume $f(x) = c_0 + b^{\mathsf{T}} x + \frac{1}{2} x^{\mathsf{T}} H x$, $H \succ 0 \Rightarrow H x^* = -b$ $x_{k+1} - x^* = x_k - x^* - T(b + Hx_k) = (I - TH)(x_k - x^*)$

Convergence given by eigenvalues of I - TH, use $H = U\Lambda U^{\mathsf{T}}$ $x_N - x^* = U(I - T\Lambda)^N U^\mathsf{T}(x_0 - x^*) \to \text{conv-rate } 1 - T\lambda_i$ $f: L\text{-sm}, \mu\text{-scv} \to \mu \leq \min \lambda_i, \max \lambda_i \leq L, \to \text{conv-rate } \rho(T)$

 $=: \max_{u \le h \le L} |1 - Th| \to |x_N - x^*| \le \rho(T)^N |x_0 - x^*|$ $T^\star = \frac{2}{L+u}$, with condition number $\kappa := \frac{L}{u}$ and $1-\xi \le e^{-\xi}$ $\rho(T^{\star}) = \frac{L-\mu}{L+\mu} = \frac{\kappa-1}{\kappa+1} = (1-\frac{2}{\kappa+1}) \le e^{-\frac{2}{\kappa+1}} \to \text{algebraic}$ complexity $N \geq \frac{\kappa+1}{2} \ln(\frac{|x_0-x^{\star}|}{\epsilon})$ to achieve $|x_N-x^{\star}| \leq \epsilon$

Momentum-based methods $q_{k+1} = q_k + Tp_{k+1}$

 $p_{k+1} = (1 - 2dT)p_k - T\nabla f(q_k + \beta p_k)/L$ **Nesterov** accelerated gradient $T=1, d=\frac{1}{\sqrt{k}+1}$, $\beta=\frac{\sqrt{k}-1}{\sqrt{k}+1}$

Heavy Ball tuned on quadratic $T=\frac{2\sqrt{k}}{\sqrt{k+1}}$, $d=\frac{1}{\sqrt{k+1}}$, $\beta=0$
$$\begin{split} C_{\mathsf{Nesterov}}(1-\frac{1}{\sqrt{\kappa}})^N &\approx \frac{|q_N - q^\star|}{|q_0 - q^\star|} \approx C_{\mathsf{HeavyBall}}(1-\frac{2}{\sqrt{\kappa+1}})^N \\ \mathbf{Theorem 4.} \quad f \colon L\text{-sm}, \mu\text{-scv} \to \mathsf{Nesterov's method satisfies:} \end{split}$$

$$\begin{split} |q_N-q^\star| &\leq \sqrt{\kappa+1}(1-1/\sqrt{\kappa})^{N/2}|q_0-q^\star| \\ f(q_N) - f^\star &\leq \frac{L+\mu}{2}(1-1/\sqrt{\kappa})^N|q_0-q^\star|^2 \\ \text{Requires } N &\geq 2\sqrt{\kappa} \ln(\frac{|q_0-q^\star|}{\epsilon}) \text{ to achieve } |x_N-x^\star| \leq \epsilon \\ \text{Theorem 5. For any first-order method } \exists f: \mathbb{R}^\infty \to \mathbb{R}, \mu\text{-scv,} \end{split}$$

L-sm, s.t. $|x_k - x^{\star}| \ge (1 - \frac{2}{\sqrt{\kappa} + 1})^k |x_0 - x^{\star}| \forall k \ge 0$ **Line search** optimal step $\nu_t^* = \operatorname{argmin}_{\nu \in \mathbb{R}} f(x_t - \nu \nabla f(x_t))$ Adaptive Methods gradient, momentum to adjust stepsize

6 Gradient Methods - Part II

Definition 12. $\operatorname{prox}_{\mathcal{C}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} \frac{1}{2} |x - y|^2 \ \mathcal{C} \subset \mathbb{R}^n$ **Lemma 1.** cl, $\operatorname{cv} \mathcal{C} \subset \mathbb{R}^n \to |\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y)| \leq |x - y|$ $\leftarrow |\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y)|^2 \le (\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y))^{\mathsf{T}}(x - y)$ **Projected Gradient Descent**

 $x_{k+1} = \text{prox}_{\mathcal{C}}(x_k - T\nabla f(x_k)), \text{ for } x_0, k_{0..N}, T \in (0, 2/L)$ **Proposition 9.** f: L-sm, μ -scv \to projected GD with $T = \frac{2}{L+\mu}$ satisfies $|x_N - x^{\star}| \leq |x_0 - x^{\star}| (1 - \frac{2}{\kappa + 1})^N \left(\kappa \text{ still } \frac{L}{\mu}\right)$

Lemma 2. $f: \mathbb{R}^n \to \mathbb{R}$, L-sm, $\mathbf{cv} \to \tilde{f}$ strongly-cv $\hat{f}(x) = f(x) + \frac{\mu}{2}|x - x_0|^2$ and $|\tilde{x}^* - x_0| \le |x^* - x_0|$ and $f(x) - f(x^*) \leq \tilde{f}(x) - \tilde{f}(\tilde{x}^*) + \frac{\mu}{2} |x^* - x_0|^2, \mu > 0$ \rightarrow from here one can apply GD or Nesterov, which results in: $f(x_N) - f(x_0) \le \epsilon$ after $N \sim L|x^* - x_0|^2/\epsilon$ iterations **Proposition 10** (Subgradient Method). cl, cv \mathcal{C} contained in ball of radius R, $x_{0..N-1}$ satisfy $f(\frac{1}{N}\sum_{k=0}^{N-1}) - f(x^{\star}) \leq \frac{RL_f}{\sqrt{N}}$

under $x_{k+1} = \operatorname{prox}_{\mathcal{C}}(x_k - Tg_k) g_k \in \partial f(x_k)$, $T = \frac{R}{L_f \sqrt{N}}$ Method Optimal GD $\kappa \ln(1/\epsilon)$ μ -sc, L-sm NAG $\sqrt{\kappa} \ln(1/\epsilon)$ Yes GD L-smooth No $1/\epsilon$ NAG varving T $1/\sqrt{\epsilon}$ Yes L-Lip, cmp set Subgradient $1/\epsilon^2$

7 Stochastic Gradient Descent (SGD)

Stochastic Gradient $(\tilde{y}_i - \phi(\tilde{x}_i; \theta))^{\mathsf{T}} \frac{\partial \phi}{\partial \theta} \big|_{\tilde{x}_i: \theta}, i \sim \{1, ..., m\}$ Problem formulation: $\min_{x \in \mathbb{R}^n} F(x) = \min_{x \in \mathbb{R}^n} \mathbb{E}[f(x, \xi)]$

$$\mathbb{E}_{\xi}[f(x,\xi)] = \begin{cases} \int_{\mathbb{R}^q} f(x,\bar{\xi}) p_{\xi}(\bar{\xi}) d\bar{\xi} & \text{continuous Random V} \\ \sum_{\bar{\xi}} f(x,\bar{\xi}) p_{\xi}(\bar{\xi}) & \text{discrete R Variable} \end{cases}$$

 $\operatorname{Var}_{\mathcal{E}}[g(x,\xi)] = \mathbb{E}_{\mathcal{E}}[|g(x,\xi)|^2] - |\nabla F(x)|^2 \text{ Step 1: } \xi_k \leftarrow$ generate realization of ε

Step 2: $x_{k+1} = x_k - T_k g(x_k, \xi_k)$, step size T_k , SG g(.) $\nabla_x f(x,\bar{\xi}), \bar{\xi} \sim p_\epsilon \text{ or } \frac{1}{n_{mb}} \sum_{i=1}^{n_{mb}} \nabla_x f(x,\bar{\xi}_i), \xi_i \sim p_\epsilon$

 \Rightarrow The iterate x_k is now a random variable!

Assumptions on F(x) and $q(x, \xi)$

A1 F(x) is bounded below, ensures $\exists \min_x F(x)$ for F: L-sm **A2** $\mathbb{E}_{\varepsilon}[q(x,\xi)] = \nabla F(x), \forall x \in \mathbb{R}^n$, ensures SG unbiased. A3 $\exists M, M_v \geq 0$ s.t. $\mathsf{Var}_{\varepsilon}[g(x,\xi)] \leq M + M_v |\nabla F(x)|^2$ $\forall x \in \mathbb{R}^n$, ensures that variance is bounded.

Proposition 11. $F \mu$ -scv L-sm, SGD const. $T < \frac{1}{L(M_n+1)}$ $\mathbb{E}[F(x_k)] - F(x^*) \le \frac{TLM}{2\mu} + (1 - T\mu)^k (F(x_0) - F(x^*))$ $T = \frac{\ln(N)}{\mu N} \to N \sim \left(\frac{LM}{2\mu^2} + F(x_0) - F(x^*)\right)/\epsilon$ to ensure $\mathbb{E}[F(x_N)] - F(x^\star) \le \epsilon$ $(1 - T\mu)^N \le e^{-T\mu N}$ this in EQ

The role of mini batches $M o M/n_{mb}$, $M_v o M_v/n_{mb}$ Same analysis holds, But run SGD with T/nmb to get same result... Advantage in computation if paralellization possible!

Can we do non-(strongly-)convex functions?

Proposition 12. F, L-sm, SGD with $T \leq \frac{1}{L(1+M_n)}$ achieves

$$\mathbb{E}[\sum_{k=0}^{N-1} |\nabla F(x_k)^2|] \leq NTLM + \frac{2}{T}(F(x_0) - F_{\inf})$$
 $F_{\inf} = \inf_{x \in \mathbb{R}^n} F(x)$

SGD Table (1 and 3 optimal, except for finite-sum minimization)

F	$Criterion \leq \epsilon$	$N \sim$	$T_k \sim$
μ -sc L -sm	$\mathbb{E}[F(\bar{x}_N)] - F(x_0)$	$1/\epsilon$	1/k
L-sm	$\mathbb{E}\left[\frac{1}{N}\sum_{k=0}^{N-1} \nabla F(x_k) ^2\right]$	$1/\epsilon^2$	$1/\sqrt{k}$
Lip, cv	$\mathbb{E}[F(\bar{x}_N)] - F(x_0)$	$1/\epsilon^2$	$1/\sqrt{k}$

8 ADMM

Parallelization $\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x_i)$ s.t. $x_1 = \cdots = x_m$ **Dual ascent**

Consider: $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $Ax = b, A \in \mathbb{R}^{m \times n}$ Derive dual: $\mathcal{L}(x,\lambda) = f(x) + \lambda^{\mathsf{T}} A x - \lambda^{\mathsf{T}} b$ Derive dual: $\mathcal{L}(x,\lambda) = f(x) + \lambda \cdot Ax - \lambda \cdot o$ $\inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda) = \sup_{x \in \mathbb{R}^n} \{(-\lambda^\mathsf{T} A)x - f(x)\} - \lambda^\mathsf{T} b$ Dual can be stated as: $\sup_{\lambda \in \mathbb{R}^m} \underbrace{-f^\star(-A^\mathsf{T} \lambda) - \lambda^\mathsf{T} b}_{:=d(\lambda)}$

$$-f^{\star}(-A^{\mathsf{T}}\lambda)$$

Subgradient of d given by: $\partial d(\lambda) = A \partial f^*(-A^T\lambda) - b$ Recall $v \in \partial f^{\star}(u) \Leftrightarrow u \in \partial f(v)$ which means that the optimizer in $-\sup_{x\in\mathbb{R}^n}\{(-\lambda^\mathsf{T} A)x-f(x)\}$

satisfies: $-A^{\mathsf{T}}\lambda \in \partial f(x^{\star}) \Leftrightarrow x^{\star} \in \partial f^{\star}(-A^{\mathsf{T}}\lambda)$ As a Result, the subgradient $\partial d(\lambda)$ can be expressed via

 $\partial d(\lambda) = Ax - b$, where $x \in \operatorname{argmin}_{\hat{x} \in \mathbb{R}^n} \{ f(\hat{x}) + \hat{x}^\mathsf{T} A^\mathsf{T} \lambda \}$

Dual Subgradient Method

$$x_k \in \operatorname{argmin}_{\hat{x} \in \mathbb{R}^n} \{ f(\hat{x}) + \hat{x}^\mathsf{T} A^\mathsf{T} \lambda_k \}$$
$$\lambda_{k+1} = \lambda_k + T_k (A x_k - b), \quad T_k > 0$$
$$A f(x) = \sum_{k=1}^m f(x_k) \text{ with } A x_k - b$$

Example $f(x) = \sum_{i=1}^m f_i(x_i)$ with Ax = b $x = (x_1, \ldots, x_n)$ and $A = [A_1, \ldots, A_m]$

Dual subgradient becomes

 $x_{k_i} \in \operatorname{argmin}\{f_i(\hat{x_i}) + \lambda_k^{\mathsf{T}} A_i \hat{x_i}\}\ (\text{local minimization})$

 $\lambda_{k+1} = \lambda_k + T_k(\sum_{i=1}^m A_i x_{k_i} - b)$ (broadcasting)

Proposition 13. f convex with closed epigraph, f is μ -strongly convex if and only if f^* is $1/\mu$ -smooth.

Derive ADMM

Idea:
$$\min_{x \in \mathbb{R}^n} f(x) + \frac{\rho}{2} |Ax - b|^2$$
 s.t. $Ax = b$ with $\rho > 0$

Leads to this Augmented Lagrangian

$$x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} f(x) + \lambda_k^{\mathsf{T}} A x + \frac{\rho}{2} |Ax - b|^2$$
$$\lambda_{k+1} = \lambda_k + T_k (Ax_k - b) \quad \text{(typically } T_k = \rho)$$

Advantage Improved convergence properties even if f non-scv **Disadvantage** Loose of decomposability/parallelization due to augmentation with quadratic term.

This motivates ADMM which tries to combine the best of both worlds. (Well conditioned minimization and parallelization) Consider: $\min_{x \in \mathbb{R}^n, z \in \mathbb{R}^m} f(x) + g(z)$ s.t. Ax + Bz = cAugmented Objective: min $f(x) + g(z) + \frac{\rho}{2}|Ax + Bz - c|^2$ Augmented Lagrangian: objective + $\lambda^{\mathsf{T}}(Ax + Bz - c)$

Alternating Direction Method of Multipliers

$$\begin{split} x_k &= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \mathcal{L}_p(x, z_{k-1}, \lambda_k) \\ z_k &= \underset{z \in \mathbb{R}^m}{\operatorname{argmin}} \mathcal{L}_p(x_k, z, \lambda_k) \\ \lambda_{k+1} &= \lambda_k + \rho(Ax_k + Bz_k - c) \end{split}$$

 $\min_{x \in \mathbb{R}^n} |Ax - b|_1 \to \min_{x \in \mathbb{R}^n, z \in \mathbb{R}^m} |z|_1 \text{ s.t. } Ax - z = b$ **LP** $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}} x$ s.t. $Ax = b, x \geq 0$ $x_0 \in \mathbb{R}^n$ particular solution to $Ax_0 = b$ $Q \in \mathbb{R}^{n \times (n-m)}$ whose columns span null space of A. Any solution x to Ax=b can be represented by $x=x_0+Qw$ $\rightarrow \min_{w \in \mathbb{R}^{n-m}} c^{\mathsf{T}} Q w + c^{\mathsf{T}} x_0 \text{ s.t. } x_0 + Q w > 0$ $\to \min_{w,z} c^{\mathsf{T}} Q w + c^{\mathsf{T}} x_0 \text{ s.t. } x_0 + Q w - z = 0, z \ge 0$ $\rightarrow \min_{w,z} c^{\mathsf{T}} Q w + c^{\mathsf{T}} x_0 + \psi_Z(z) \text{ s.t. } x_0 + Q w - z = 0$

 $(Z = \{z \in \mathbb{R}^n | z > 0\})$ **UPDATE RULES**

9 Distributed optimization with ADMM

Goal Solve s.t. each term can be handled by its own processor.

$$\min_{x_1..,x_N,z\in\mathbb{R}^n}\sum_{i=1}^N f_i(x_i)\quad \text{s.t.}\quad x_i=z\quad (f_i \text{ convex})\quad \text{(2)}$$

Global Consensus Problem

Step 1: Augmented Lagrangian $i \in [1, N]$ to solve (2) with ADMM.

$$\mathcal{L}_{p}(x_{i},..,\lambda_{i}) = \sum_{i=1}^{N} f_{i}(x_{i}) + \lambda_{i}^{\mathsf{T}}(x_{i}-z) + \frac{\rho}{2}|x_{i}-z|^{2}$$

$$= \sum_{i=1}^{N} f_{i}(x_{i}) + \frac{\rho}{2}|x_{i}-z + \frac{1}{\rho}\lambda_{i}|^{2} - \frac{1}{2\rho}|\lambda_{i}|^{2}$$

Step 2: Formulate ADMM

$$\begin{split} x_i^{k+1} &= \underset{x_i \in \mathbb{R}^n}{\operatorname{argmin}} f_i(x_i) + \frac{\rho}{2} |x_i - z^k + \frac{1}{\rho} \lambda_i^k|^2 \\ z^{k+1} &= \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} \frac{\rho}{2} \sum_{i=1}^N |x_i^{k+1} - z + \frac{1}{\rho} \lambda_i^k|^2 \\ &= \frac{1}{N} \sum_{i=1}^N (x_i^{k+1} + \frac{1}{\rho} \lambda_i^k) \\ \lambda_i^{k+1} &= \lambda_i^k + \rho(x_i^{k+1} - z^{k+1}) \end{split}$$

FURTHER REFORMULATIONS...

Sharing Problem

$$\min_{x_1,\dots,x_N\in\mathbb{R}^n}\sum_{i=1}^N f_i(x_i) + g\left(\sum_{i=1}^N x_i\right) \tag{3}$$

- \rightarrow copy all the variables $x_i = z_i$
- → formulate augmented Lagrangian
- \rightarrow state ADMM dynamics

Optimization over Graphs

g = (V, E) undirected graph with vertices V and edges E

$$\begin{split} \min_{x \in \mathbb{R}^n} \sum_{i \in V} f_i(x) \Rightarrow & \min_{x_i \in |V|, z_i \in |E|} \sum_{i \in V}^N f_i(x_i) \\ \text{s.t. } x_i = z_{ij}, x_j = z_{ij} \quad \forall (i,j) \in E \end{split}$$

Step 1: Augmented Lagrangian

Step 2: Form the Algorithm **ALGORITHM**

10 Signal denoising and regression

Linear equation $y = Ax, y \in \mathbb{R}^n, x \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}$ classic setting $m\gg n$ | modern setting $m\ll n$ or $m\sim n$

Classic setting with outliers

 l_2 -norm: $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2$ results in heavy impact for outliers l_1 -norm: $\min_{x \in \mathbb{R}^n} |Ax - y|$ can be reformulated and solved as

.P:
$$\min_{z \in \mathbb{R}^m} z^\mathsf{T} \mathbf{1}$$
 s.t. $-z \le Ax - y \le z, 0 \le z$

$$\begin{aligned} & \text{LP:} \min_{z \in \mathbb{R}^m} z^{\text{T}} \mathbf{1} \text{ s.t. } -z \leq Ax - y \leq z, 0 \leq z \\ & \text{Combined:} \ \phi_{\text{Hub}}(u) = \begin{cases} u^2 & \text{if } |u| \leq M \\ 2Mu - M^2 & \text{if } |u| > M \end{cases} \end{aligned}$$

Ax = y infinite many solutions \rightarrow add regulizer to find best **Tikhonov** regression: $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 + \lambda |x|_2^2$

Least Absolute Shrinkage and Selection Operator

LASSO: $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 + \lambda |x|_1$ $\Leftrightarrow \min_{x \in \mathbb{R}^n} |Ax - y|_2^2 \text{ s.t.} |x|_1 \le c \text{ results in sparse solution}$

11 Classification

Setup Dataset with pairs of $(\tilde{x}_i, \tilde{y}_i), i = 1, ..., N$ with data $\tilde{x}_i \in \mathbb{R}^n$ and class $\tilde{y}_i \in \{1, 2, ..., K\}$ Naive approach, linear regression Slightly improved with probabilistic approach Linear Discriminant Analysis SVM aims to maximize margin of decision boundary

12 Adaptive decision-making

:D