Figures

1-1	A Package Composed of CPU Dies, Accelerator Die(s), and I/O Tile Die Connected through UCIe	36
1-2	UCIe enabling long-reach connectivity at Rack/Pod Level	30 37
1-3	Standard Package interface	37
1-4	Advanced Package interface: Example 1	
1-5	Advanced Package interface: Example 2	
1-6	Advanced Package interface: Example 3	38
1-7	Example of UCIe-3D	39
1-8	UCIe Layers and functionalities	
1-9	Physical Layer components	
1-10	Single module configuration: Advanced Package	
1-11	Single module configuration: Standard Package	
1-12	Two-module configuration for Standard Package	
1-13	Four-module configuration for Standard Package	
1-14	Example of a Two-module Configuration for Advanced Package	
1-15	One-port Sideband-only Link	
1-16	Two-port Sideband-only Link	
1-17	Four-port Sideband-only Link	
1-18	Block Diagram for UCIe Retimer Connection	
2-1	Color-coding Convention in Flit Format Byte Map Figures	
2-1	68B Flit Format on FDI	
3-1	Functionalities in the Die-to-Die Adapter	
3-2	Example Configurations	
3-3	Stages of UCIe Link Initialization	. 60
3-4	or "CXL 256B Flit Mode" is 1 in {FinCap.Adapter})	61
3-5	Both Stacks are CXL or PCIe	04
3-6	Stack 0 is PCIe, Stack 1 is Streaming	
3-7	Stack 0 is Streaming, Stack 1 is PCIe	
3-8	Both Stacks are Streaming	
3-9	Stack 0 is Streaming, Stack 1 is CXL	
3-10	Format 1: Raw Format	
3-11	Format 2: 68B Flit Format	
3-12	Format 2: 68B Flit Format PDS Example 1	
3-13	Format 2: 68B Flit Format PDS Example 2 — Extra 0s Padded	
	to Make the Data Transfer a Multiple of 256B	.74
3-14	Format 3: Standard 256B End Header Flit Format for PCIe	. 76
3-15	Format 3: Standard 256B End Header Flit Format for Streaming Protocol	.76
3-16	Format 3: Standard 256B End Header Flit Format	
	for Management Transport Protocol	. 76
3-17	Format 4: Standard 256B Start Header Flit Format	
	for CXL.cachemem or Streaming Protocol	
3-18	Format 4: Standard 256B Start Header Flit Format for CXL.io or PCIe	77
3-19	Format 4: Standard 256B Start Header Flit Format	
2 20	for Management Transport Protocol	/ /
3-20	Format 5: Latency-Optimized 256B without Optional Bytes Flit Format for CXL.io	. 80
3-21	Format 5: Latency-Optimized 256B without Optional Bytes Flit Format for CXL.cachemem and Streaming Protocol	Q1
3-22	Format 5: Latency-Optimized 256B without Optional Bytes Flit Format	. 01
J-22	for Management Transport Protocol	81

3-23	Format 6: Latency-Optimized 256B with Optional Bytes Flit Format for CXL.io or PCIe	81
3-24	Format 6: Latency-Optimized 256B with Optional Bytes Flit Format for CXL.cachemem	
3-25	Format 6: Latency-Optimized 256B with Optional Bytes Flit Format for Streaming Protocol	
3-26	Format 6: Latency-Optimized 256B with Optional Bytes Flit Format for Management Transport Protocol	
3-27	State Machine Hierarchy Examples	02 88
3-28	Example of Hierarchical PM Entry for CXL	
3-29	Diagram of CRC Calculation	
3-30	Successful Parity Feature negotiation between Die 1 Tx and Die 0 Rx	
3-31	Unsuccessful Parity Feature negotiation between Die 1 Tx and Die 0 Rx	
4-1	Bit arrangement within a byte transfer	
4-1 4-2	Byte map for x64 interface	
4-2 4-3	Byte map for x32 interface	
4-4	Byte map for x16 interface	
4-5	Byte to Lane mapping for Standard package x16 degraded to x8	
4-6	Valid framing example	
4-7	Clock gating	
4-8	Example 64-bit Sideband Serial Packet Transfer	
4-9	Sideband Packet Transmission: Back-to-Back	
4-10	Example 64-bit Sideband Serial Packet Transfer in Sideband Performant Mode	
4-11	Sideband Packet Transmission: Back-to-Back in Sideband Performant Mode	102
4-12	Data Lane remapping possibilities to fix potential defects	105
4-13	Data Lane remapping: Mux chain	106
4-14	Example of Single Lane failure remapping	
4-15	Example of Single Lane remapping implementation	
4-16	Example of Two Lane failure remapping	
4-17	Example of Two Lane remapping implementation	
4-18	Clock and Track repair	
4-19	Clock and track repair: Differential Rx	
4-20	Clock and track repair: Pseudo Differential Rx	
4-21	Clock and Track Lane repair scheme	
4-22	Clock and track repair: CKP repair	
4-23 4-24	Clock and track repair: CKN repair	
4-2 4 4-25	Clock and track repair: Track repair	
4-25 4-26	Valid Repair: Repair Path	
4-27	Test and training logic	
4-28	Lane failure detection	
4-29	All Lane error detection	
4-30	LFSR implementation	
4-31	LFSR alternate implementation	
4-32	Example Retimer bring up when performing speed/width match	
4-33	Link Training State Machine	130
4-34	MBINIT: Mainband Initialization and Repair Flow	136
4-35	Example Sideband Management Transport Protocol Negotiation – Single-module Scenario	120
4-36	Example Sideband Management Transport Protocol Negotiation –	130
7 30	Two-module Scenario	139
4-37	Example Sideband MPM Logical Flow with Two Modules and No Module Reversal	
4-38	Example Sideband MPM Logical Flow with Two Modules and Module Reversal	
4-39	MBINIT "Stall" Example 1	
4-40	MBINIT "Stall" Example 2	144

4-41	Mainband Training155
4-42	Example of Byte Mapping for Matching Module IDs171
4-43	Example of Byte Mapping for Differing Module IDs
4-44	Example of Width Degradation with Byte Mapping for Differing Module IDs 172
4-45	Example of Byte Mapping with Module Disable
4-46	Decision Flow Chart for Multi-module Advanced Package
4-47	Decision Flow Chart for Multi-module Standard Package
4-48	Implementation Example Showing Two Different Operating Modes of the Same Hardware Implementation
4-49	RDI Byte-to-Module Assignment Example for x64 Interop with x32
4-50	Example of Encapsulated MTPs Transmitted on Sideband Link without Sideband PMO
4-51	Example of a Large Management Packet Split into Two Encapsulated
	MTPs, with No Segmentation, No Sideband PMO, and with
	Two Link Management Packets between the Two Encapsulated MTPs
5-1	Example Common Reference Clock
5-2	x64 or x32 Advanced Package Module
5-3	x16 or x8 Standard Package Module
5-4	Transmitter
5-5	Transmitter driver example circuit
5-6	Transmitter de-emphasis
5-7	Transmitter de-emphasis waveform
5-8	Receiver topology
5-9	Receiver Termination Map for Table 5-6 (Tx Swing = 0.4 V)
5-10	Receiver termination
5-11	Receiver termination map for Table 5-7 (TX Swing = 0.85 V)
5-12	Example CTLE
5-13	Clocking architecture
5-14	Track Usage Example
5-15	Example Eye diagram
5-16	Example Eye Simulation Setup
5-17	Circuit for VTF calculation
5-17	Loss and Crosstalk Mask
5-19	Viewer Orientation Looking at the Defined UCIe Bump Matrix
5-20	10-column x64 Advanced Package Bump Map
5-20 5-21	16-column x64 Advanced Package Bump Map
5-21	8-column x64 Advanced Package Bump Map
5-23	10-column x64 Advanced Package Bump map: Signal exit order
5-23 5-24	10-column x64 Advanced Package Bump Map Example
J-24	for 32 GT/s Implementation
5-25	16-column x64 Advanced Package Bump Map Example
5 25	for 16 GT/s Implementation
5-26	8-column x64 Advanced Package Bump Map Example
3 20	for 32 GT/s Implementation
5-27	10-column x32 Advanced Package Bump Map
5-28	16-column x32 Advanced Package Bump Map
5-29	8-column x32 Advanced Package Bump Map
5-30	10-column x32 Advanced Package Bump Map: Signal Exit Order
5-31	10-column x32 Advanced Package Bump Map Example
J J 1	for 32 GT/s Implementation
5-32	16-column x32 Advanced Package Bump Map Example
	for 16 GT/s Implementation
5-33	8-column x32 Advanced Package Bump Map Example
	for 32 GT/s Implementation

5-34	Example of Normal and Mirrored x64-to-x32 Advanced Package Module Connection	. 218
5-35	Example of Normal and Mirrored x32-to-x32 Advanced Package Module Connection	
5-36	Naming Convention for One-, Two-, and Four-module Advanced Package Paired with "Standard Die Rotate" Configurations	
5-37	Naming Convention for One-, Two-, and Four-module Advanced Package Paired with "Mirrored Die Rotate" Configurations	
5-38	Examples for Advanced Package Configurations Paired with "Standard Die Rotate" Counterparts, with a Different Number of Modules	
5-39	Examples for Advanced Package Configurations Paired with "Mirrored Die Rotate" Counterparts, with a Different Number of Modules	
5-40	Standard Package Bump Map: x16 interface	. 225
5-41	Standard Package x16 interface: Signal exit order	
5-42	Standard Package Bump Map: x32 interface	
5-45	Standard Package reference configuration	
5-43	Standard Package x32 interface: Signal exit routing	
5-44	Standard Package cross section for stacked module	
5-46	Standard Package Bump Map: x8 Interface	
5-47	Naming Convention for One-, Two-, and Four-module Standard Package Paired with "Standard Die Rotate" Configurations	
5-48	Naming Convention for One-, Two-, and Four-module Standard Package Paired with "Mirrored Die Rotate" Configurations	
5-49	Examples for Standard Package Configurations Paired with "Standard Die Rotate" Counterparts, with a Different Number of Modules	
5-50	Examples for Standard Package Configurations Paired with "Mirrored Die Rotate" Counterparts, with a Different Number of Modules	
5-51	Additional Examples for Standard Package Configurations Paired with "Mirrored Die Rotate" Counterparts, with a Different Number of Modules	
5-52	Example of a Configuration for Standard Package, with Some Modules Disabled	
5-52 5-53	UCIe-S Sideband-only Port Bump Map	
5-54	UCIe-S Sideband-only Port Supported Configurations	
5-55		
5-55 5-56	Data Lane repair resources	
	Data Lane repair	
5-57	Valid Framing	
5-58	Data, Clock, Valid Levels for Half-rate Clocking: Clock-gated Unterminated Link	. 238
5-59	Data, Clock, Valid Levels for Quarter-rate Clocking: Clock-gated Unterminated Link	. 238
5-60	Data, Clock, Valid Levels for Half-rate Clocking: Continuous Clock Unterminated Link	. 238
5-61	Data, Clock, Valid Gated Levels for Half-rate Clocking: Terminated Link	. 239
5-62	Data, Clock, Valid Gated Levels for Quarter-rate Clocking: Terminated Link	. 239
5-63	Data, Clock, Valid Gated Levels for Half-rate Clocking: Continuous Clock Terminated Link	. 239
5-64	Sideband signaling	. 240
6-1	Example of 3D Die Stacking	
6-1 6-2	UCIe-3D Illustration	
6-2 6-3		
	UCIe-3D PHY	
6-4	Start Edge and Sample Edge	
6-5	Dtx and Drx Spec Range for 4 GT/s	
6-6	UCIe-3D Module Bump Map	
6-7	x70 Module	
6-8	Bundle Repair	. 250

7-1	Format for Register Access Request	257
7-2	Format for Register Access Completions	
7-3	Format for Messages without Data	
7-4	Format for Messages with data payloads	266
7-5	Common Fields in MPM Header of all MPM with Data Messages on Sideband	274
7-6	Encapsulated MTP on Sideband	
7-7	Vendor-defined Management Port Gateway Message with Data on Sideband	276
7-8	Common Fields in MPM Header of all MPM without Data Messages on Sideband	277
7-9	Management Port Gateway Capabilities MPM on Sideband	
7-10	Credit Return MPM on Sideband	
7-11	Init Done MPM on Sideband	
7-12	PM MPM on Sideband	
7-13	Vendor-defined Management Port Gateway MPM without Data on Sideband	280
7-14	Example Flow for Remote Register Access Request	
	(Local FDI/RDI Credit Checks Are Not Explicitly Shown)	
8-1	Example UCIe Chiplet that Supports Manageability	286
8-2	Example SiP that Supports Manageability	
8-3	UCIe Manageability Protocol Hierarchy	
8-4	Relationship Between the Various Types of Management Entities	289
8-5	UCIe Management Transport Packet	
8-6	Management Network ID Format	
8-7	Access Control Determination in a Responder Management Entity	300
8-8	Memory Map for Management Entities	
8-9	Management Capability Structure Organization	
8-10	Vendor Defined Management Capability Structure Organization	
8-11	Management Capability Directory	
8-12	Capability Pointer	
8-13	Chiplet Capability Structure Organization	
8-14	Chiplet Capability Structure	
8-15	Management Port Structure	
8-16	Route Entry	
8-17	Access Control Capability Structure	
8-18	Standard Asset Class Access Table	
8-19	Vendor Defined Asset Class Access Table	
8-20	Security Clearance Group Capability Structure	
8-21	Security Clearance Group Context	
8-22	UCIe Memory Access Request Packet Format	
8-23	UCIe Memory Access Response Packet	
8-24	UCIe Memory Access Protocol Capability Structure	
8-25	UCIe Sideband Management Path Architecture	
8-26	UCIe Mainband Management Path Architecture	333
8-27	Supported Configurations for Management Port Gateway Connectivity	225
0 20	to D2D Adapter on Mainband	335
8-28 8-29	Encapsulated MTP on Mainband	
	Vendor-defined Management Port Gateway Message with Data on Mainband	
8-30 8-31	Common Fields in MPM Header of all MPM without Data Messages on Mainband	
8-31	Management Port Gateway Capabilities MPM on Mainband	
8-33	Init Done MPM on Mainband	
8-33 8-34	Vendor-defined Management Port Gateway Message without Data on Mainband	
8-35	Sideband Management Transport Initialization Phase Example	J + U
0-33	with RxQ-ID=0 and One VC (VC0)	343
8-36	Sideband Management Transport Initialization Phase Example	5.5
	with RxQ-ID=0, 1 and One VC (VC0)	344

8-37	Sideband Management Transport Initialization Phase Example with RxQ-ID=0 and Two VCs (VC0, VC1)	245
8-38	Mainhand Managomont Transport Initialization Phase Evample	
0 30	with RxQ-ID=0 and One VC (VC0)	348
8-39	Mainband Management Transport Initialization Phase Example	
	with RxQ-ID=0, 1 and One VC (VC0)	348
8-40	Mainband Management Transport Initialization Phase Example	
0.41	with RxQ-ID=0 and Two VCs (VC0, VC1)	349
8-41	Example Illustration of a Large MTP Transmitted over Multiple RxQ-IDs on Sideband with Segmentation	353
8-42	Conceptual Illustration of Sideband Multi-module Ordering with Three RxQs	332 354
8-43	Example Illustration of a Large MTP Split into Multiple Smaller	55
0 .5	Encapsulated-MTPs for Transport over Sideband, without Segmentation	356
8-44	Management Flit NOP Message on Mainband	358
8-45	Management Transport Credit Return DWORD (CRD) Format on Mainband	
8-46	Valid MPM Header Start Locations for Various Flit Formats	
8-47	Example Mapping of MPMs and NOPs in Flit of Format 3	
8-48	Example Mapping of MPMs and NOPs in Flit of Format 5	361
8-49	Example MPM Mapping to Management Flit for Format 3 with MPM Rollover to Next Flit	265
8-50	UDA Overview in Each Chiplet – Illustration	302
8-51	Vendor-defined Test and Debug UDM	
8-52	UCIe-based Chiplet Testing/Debugging at Sort	
8-53	UCIe-based Testing of Chiplets in an SiP	
8-54	UCIe-based System Testing/Debug	
8-55	DMH/DMS Address Mapping	
8-56	DMH Capability Register Map	
8-57	Empty Spoke Register Map	374
8-58	Common DMS Registers for All Non-empty Spokes Register Map	
8-59	DMS Register Map for UCIe Spoke Types	
8-60	DMS Register Map for Vendor-defined Spoke Types	383
9-1	Software view Example with Root Ports and Endpoints	388
9-2	Software view Example with Switch and Endpoints	389
9-3	Software view Example of UCIe Endpoint	
9-4	UCIe Link DVSEC	
9-5	UCIe Link Health Monitor (UHM) DVSEC	
9-6	UCIe Test/Compliance Register Block	
10-1	Example configurations using RDI	
10-2	Example Waveform Showing Handling of Level Transition	
10-3	Data Transfer from Adapter to Physical Layer	
10-4	lp_irdy asserting two cycles before lp_valid	
10-5	lp_irdy asserting at the same cycle as lp_valid	
10-6 10-7	RDI State Machine Example flow of Link bring up on RDI	465
10-7	Successful PM entry flow	
10-8	PM Abort flow	
10-10	PM Exit flow	
10-11	RDI PM Exit Example Showing Interactions with LTSM	
10-12	Example configurations using FDI	
10-13	Example Waveform Showing Handling of Level Transition	
10-14	Data Transfer from Protocol Layer to Adapter	
10-15	Example for pl_flit_cancel for Latency-Optimized Flits	
	and CRC Error on First Flit Half	483
10-16	Example for pl_flit_cancel for Latency-Optimized Flits	
	and CRC Error on Second Flit Half	483

10-17	Example for pl_flit_cancel for Latency-Optimized Flits	
	and CRC Error on Second Flit Half, Alternate Implementation Example	483
10-18	Example for pl_flit_cancel for Standard 256B Flits	484
10-19	FDI State Machine	484
10-20	FDI Bring up flow	486
10-21	PM Entry example for CXL or PCIe protocols	489
10-22	PM Entry example for symmetric protocol	489
10-23	PM Abort Example	490
10-24	PM Exit Example	490
10-25	CXL.io Standard 256B Start Header Flit Format Example	491
10-26	FDI (or RDI) Byte Mapping for 64B Datapath to 256B Flits	492
10-27	FDI (or RDI) Byte Mapping for 128B Datapath to 256B Flits	492
10-28	FDI Byte Mapping for 128B Datapath for 68B Flit Format	492
10-29	RDI Byte Mapping for 128B Datapath for 68B Flit Format	493
10-30	LinkReset Example	504
10-31	LinkError example	505
10-32	Example of L2 Cross Product with Retrain on RDI	506
10-33	L2 Exit Example for RDI	507
11-1	Examples of Standard and Advanced Package setups for DUT and Golden Die	
	Compliance Testing	509
B-1	AIB interoperability	514