On the orbit algebra of P-oligomorphic

Justine Falque (LRI, Univ. Paris-Sud, France)

permutation groups

Nicolas Thiéry (LRI, Univ. Paris-Sud, France)

Proving two conjectures of Cameron and Macpherson

A conjecture of Cameron (70's)

- \bullet G: infinite permutation group, acting on a denumerable set E
- The age of G is the set of orbits of G for its induced action on the finite subsets of E.

The orbit of a subset of size n is of degree n.

- The profile $\varphi_G(n)$ counts the number of orbits of degree n.
- G is P-oligomorphic when $\varphi_G(n)$ is bounded by a polynomial.
- Conjecture (Cameron, 70's): If G is P-oligomorphic, the generating series of its profile is of shape $\frac{P(z)}{\prod_i (1-z^{d_i})}$ $(P(z) \in \mathbb{Z}[z])$. The analogue was proved in 2003 for permutation classes and in 2009 for undirected graphs.

Algebraization and a stronger conjecture

- The set algebra of E: a graded connected commutative algebra on (possibly infinite) formal linear combinations of finite subsets of E. Product: induced by the disjoint union of sets.
- The *orbit algebra* of G: the subalgebra \mathcal{A}_G whose basis is indexed by the orbits of subsets, each basis element being the formal sum of the subsets in that orbit.

Fact: The generating series of the profile $\sum_{n} \varphi_{G}(n) z^{n}$ coincides with the *Hilbert series* of the age algebra.

• Conjecture (Macpherson, 1985): If G is P-oligomorphic, then its orbit algebra is finitely generated.

Example: detailed product in a finite case

Product between two orbits (blue and red, resp.) of the cyclic group C_5

Result of the product:

Infinite example: a wreath product

 $G = \mathfrak{S}_3 \wr \operatorname{Aut}(\mathbb{Q})$ Independant copies of \mathfrak{S}_3 act within each block of size 3. Age: all integer compositions

Two ages isomorphic to integer partitions

• $G = \mathfrak{S}_k \wr \mathfrak{S}_{\infty}$

Age: the integer partitions of n with parts at most k, for every $n \in \mathbb{N}$

• $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{5}$

Age: the integer partitions of n with at most k parts, $n \in \mathbb{N}$ $\mathscr{A}_G \sim \mathbb{K}[x_1, \dots, x_5]^{\mathfrak{S}_5}$

The blue and red subsets are in the same orbit in each case.

Main Theorem (J.F. & N.T., 2017)

The orbit algebra of a P-oligomorphic group is finitely generated. Furthermore, it is a Cohen-Macauley algebra, leading the series of the profile to be of shape $\frac{P(z)}{\prod_i (1-z^{d_i})}$ with $P(z) \in \mathbb{N}[z]$.

Example: a typical P-oligomorphic group

Tools and ideas of the proof

- Strategy: make use of the fact that if the action of G on two stable parts E_1 and E_2 are independent, then $\mathscr{A}_G = \mathscr{A}_{G|E_1} \otimes \mathscr{A}_{G|E_2}$
- Pb: synchronizations between orbits of elements (ex: \mathfrak{S}_2 , \mathfrak{S}_∞)
- Idea: split E into blocks of elements and consider the G-orbits of blocks (when well defined)

Only two types if their support is infinite:

- → finitely many infinite blocks (ex: A on figure)
- \rightarrow infinitely many finite ones (ex: D)
- Canonical block system: chosen such that no synchronization between orbits of blocks is infinite (like between B and C). On the example, take $(A_i)_i$, $(BC_i)_i$ (joined), $(D_i)_i$ and F.
- This property is obtained using some infinite permutation group theory, such as the study of primitive groups by Cameron and Macpherson and the notion of *subdirect product*.
- The remaining synchronizations are isomorphic to finite groups $(\mathfrak{S}_2 \text{ and } C_3 \text{ on the example}).$ Take a finite index normal subgroup H of G that erases them.
- Apply the strategy on the orbits of blocks of H, which proves that Macpherson's conjecture holds for H.
- Invariant theory \Rightarrow the result can be lifted from H to G

Special thanks

We warmly thank Maurice Pouzet for suggesting to work on this conjecture and supporting us, and Peter Cameron for enlightening discussions while walking by a misty seashore or enjoying some winter ice cream!

References

P.J. Cameron, *Oligomorphic Permutation Groups* (1990) and "The algebra of an age" (1997) In: *Model theory of groups and auto- morphism groups*

H.D. Macpherson, "Growth rates in infinite graphs and permutation groups", In: *Proceedings of the London Mathematical Society* 3.2