5. Sequence modeling with recurrent neural networks 5.2b. Training an RNN. The backpropagation through time

Manel Martínez-Ramón Meenu Ajith Aswathy Rajendra Kurup

Gradient with respect to the output weights

- The derivation of the gradient with respect to parameters  $\mathbf{W}_{oh}$  is done from the output of the recurrent neural network.
- It can be expressed as

$$\mathbf{f}(\mathbf{x}_t) = \operatorname{softmax}\left(\mathbf{z}_t^{(o)}\right) = \operatorname{softmax}\left(\mathbf{W}_{oh}^{\top}\mathbf{h}_t + \mathbf{b}_o\right)$$
 (1)

• This matrix is not revisited in the recursion.

Gradient with respect to the output weights

• The derivative of the cost function at instant t with respect to parameter  $w_{oh,i,j}$  is

$$\frac{dJ_{ML}}{dw_{oh,i,j}} = \sum_{t=1}^{T} \frac{dJ_{ML}}{do_{j,t}} \frac{do_{j,t}}{dz_{j,t}^{(o)}} \frac{dz_{j,t}}{dw_{oh,i,j}}$$

$$= \sum_{t=1}^{T} \frac{dJ_{ML}}{do_{j,t}} o'_{j,t} h_{i,t}$$

$$= \sum_{t=1}^{T} \delta_{j,t} h_{i,t}$$
(2)

Gradient with respect to the output weights

• In vector notation, the gradient with respect matrix  $\mathbf{W}_{oh}$  is then

$$\nabla_{\mathbf{W}_{oh}} J_{ML} \left( \mathbf{o}_{t} \right) = \sum_{t=1}^{T} \mathbf{h}_{t} \boldsymbol{\delta}_{t}^{\top}$$
 (3)

where  $\delta_t$  has components  $\delta_{j,t}$ . When the output of the RNN is a softmax,  $\delta_{j,t} = \operatorname{softmax}(z_{j,t}) - y_{j,t}$ , therefore

$$\boldsymbol{\delta}_t = \operatorname{softmax}(\mathbf{z}_t^{(o)}) - \mathbf{y}_t$$
 (4)

#### Gradient with respect to the output weights

• The derivation can be repeated for biases  $\mathbf{b}_o$ 

$$\frac{dJ_{ML}}{db_{o,j}} = \sum_{t=1}^{T} \frac{dJ_{ML}}{do_{j,t}} \frac{do_{j,t}}{dz_{j,t}^{(o)}} \frac{dz_{j,t}}{db_{o,j}}$$

$$= \sum_{t=1}^{T} \frac{dJ_{ML}}{do_{j,t}} o'_{j,t}$$

$$= \sum_{t=1}^{T} \delta_{j,t}$$
(5)

• with the result

$$\nabla_{\mathbf{b}_o} J_{ML}(\mathbf{o}_t) = \sum_{t=1}^{T} \boldsymbol{\delta}_t \tag{6}$$

Gradient with respect to the output weights



- The error term  $\boldsymbol{\delta}_t$  must be backpropagated through  $\mathbf{W}_{oh}$  in order to reach  $\mathbf{W}_{hx}$  at input  $\mathbf{x}_t$ .
- It has to be repeatedly backpropagated through  $\mathbf{W}_{hh}$  in order to reach the input matrix at each one of the inputs  $\mathbf{x}_{t-t'}$ .

Gradient with respect to the input weights

To compute directly the gradient with respect to the weights, the chain rule must be used as follows.

- **①** Compute the gradient  $(\nabla_{\mathbf{h}_t} J_{ML})$  of the cost function respect to  $\mathbf{h}_t$ .
- ② Compute the derivatives of the components of  $\mathbf{h}_t$  with respect to each component of  $\mathbf{z}_t^{(x)}$ , which gives the derivative of the tanh activation.
- **3** Compute the gradient of  $\mathbf{z}_{t}^{(x)}$  with respect to  $\mathbf{W}_{hx}$ , which gives vector  $\mathbf{x}_{t}$ .

#### Gradient with respect to the input weights

- The product of these elements has to be written in the right order so the gradient has the same dimensions as matrix  $\mathbf{W}_{hx}$ .
- The result is

$$\nabla_{\mathbf{W}_{hx}} J_{ML} = \sum_{t=1}^{T} \nabla_{\mathbf{W}_{hx}} \mathbf{z}_{t}^{(x)} \left( \nabla_{\mathbf{h}_{t}} J_{ML} \right)^{\top} \frac{\delta \mathbf{h}_{t}}{\delta \mathbf{z}_{t}^{(x)}}$$

$$= \sum_{t=1}^{T} \mathbf{x}_{t} \left( \nabla_{\mathbf{h}_{t}} J_{ML} \right)^{\top} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t}^{(x)} \right) \right)$$
(7)

where the derivative of the hyperbolic tangent activation is expressed as a Jacobian represented by a diagonal matrix.

Gradient with respect to the input weights

• A similar result can be found for the biases

$$\nabla_{\mathbf{b}_h} J_{ML} = \sum_{t=1}^{T} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_t^{(x)} \right) \right) \left( \nabla_{\mathbf{h}_t} J_{ML} \right) \tag{8}$$

$$\nabla_{\mathbf{b}_h} J_{ML} = \sum_{t=1}^{T} (\nabla_{\mathbf{h}_t} J_{ML})^{\top} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_t^{(x)} \right) \right)$$
(9)

Gradient with respect to the input weights

- The above equations have the same form as any previously computed gradient: it is the product of
  - lacktriangledown the input sample  $\mathbf{x}_t$  as a column vector
  - 2 a vector representing the backpropagated error
- The error is embedded in the (recursive) gradient with respect to the hidden state. This is, the error backpropagated to the input can be written as

$$\boldsymbol{\delta}_{t}^{(bp)} = \operatorname{diag}\left(tanh'\left(\mathbf{z}_{t}^{(x)}\right)\right)\left(\nabla_{\mathbf{h}_{t}}J_{ML}\right)$$

.

Gradient with respect to the hidden state weights

For this set of weights, the backpropagation of the error at instant t



- Starts from the output  $\mathbf{o}_t$ .
- It is transformed with output weights  $\mathbf{W}_{oh}$ 
  - This error is used to update  $\mathbf{W}_{hh}$ . The input is is  $\mathbf{h}_{t-1}$ .
  - The backpropagation then goes to the previous time instant, which requires another transformation of the error  $\mathbf{W}_{hh}$ .

#### Gradient with respect to the hidden state weights

 To see this, we can compute the gradient with respect to the hidden weights.

$$\nabla_{\mathbf{W}_{hh}} J_{ML} = \sum_{t=1}^{T} \nabla_{\mathbf{W}_{hh}} \mathbf{z}_{t}^{x} (\nabla_{\mathbf{h}_{t}} J_{ML})^{\top} \frac{\delta \mathbf{h}_{t}}{\delta \mathbf{z}_{t}^{(x)}}$$

$$= \sum_{t=1}^{T} \mathbf{h}_{t-1} (\nabla_{\mathbf{h}_{t}} J_{ML})^{\top} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t}^{(x)} \right) \right)$$
(10)

- The gradient of  $\mathbf{z}_t$  is computed now with respect to  $\mathbf{W}_{hh}$ .
- The result is the input to these weights  $\mathbf{h}_{t-1}$ .
- This is known as backpropagation through time (BPTT).
- For  $\mathbf{b}_h$ , if we remove  $\mathbf{h}_{t-1}$  from (10), we obtain the same result as in Eq. (8).

# Summary of the backpropagation through time Output weights

- Compute the output errors  $\delta_t$ ,  $1 \le t \le T$ .
- Use these errors to update the output weights with Eqs. (3) and (6).

$$\mathbf{W}_{oh} \leftarrow \mathbf{W}_{oh} - \mu \sum_{t=1}^{T} \mathbf{h}_{t} \boldsymbol{\delta}_{t}^{\top}$$

$$\mathbf{b}_{oh} \leftarrow \mathbf{b}_{oh} - \mu \sum_{t=1}^{T} \boldsymbol{\delta}_{t}$$
(11)

## Summary of the backpropagation through time

Input weights and hidden state weights

• Compute the gradient with respect to the hidden states

$$\nabla_{\mathbf{h}_{t}} J_{ML} = \mathbf{W}_{oh} \boldsymbol{\delta}_{t} + \mathbf{W}_{hh} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t+1}^{(x)} \right) \right) \left( \nabla_{\mathbf{h}_{t+1}} J_{ML} \right) \quad (12)$$

• Update with Eqs. (7), (8), and (10).

$$\mathbf{W}_{hx} \leftarrow \mathbf{W}_{hx} - \mu \sum_{t=1}^{T} \mathbf{x}_{t} \left( \nabla_{\mathbf{h}_{t}} J_{ML} \right)^{\top} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t}^{(x)} \right) \right)$$

$$\mathbf{b}_{h} \leftarrow \mathbf{b}_{h} - \mu \sum_{t=1}^{T} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t}^{(x)} \right) \right) \left( \nabla_{\mathbf{h}_{t}} J_{ML} \right)$$
(13)

$$\mathbf{W}_{hh} \leftarrow \mathbf{W}_{hh} - \mu \sum_{t=1}^{T} \mathbf{h}_{t-1} \left( \nabla_{\mathbf{h}_{t}} J_{ML} \right)^{\top} \operatorname{diag} \left( \tanh' \left( \mathbf{z}_{t}^{(x)} \right) \right) \quad (14)$$