Théorème de Block et Thielmann (1951)

Définitions et notations :

- Pour tout $\alpha \in \mathbb{C}$, on note P_{α} le polynôme $X^2 + \alpha$.
- Pour $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ et $Q \in \mathbb{C}[X]$, on pose $P \circ Q = \sum_{k=0}^{n} a_k Q^k$.
- Pour tout polynôme $P \in \mathbb{C}[X]$, on note $\mathcal{C}(P)$ l'ensemble des polynômes complexes Q de degré supérieur ou égal à 1 tels que $P \circ Q = Q \circ P$.
- On dit que la famille de polynômes $(P_n)_{n\geq 1}$ est commutante si, pour tout $n\geq 1$, $\deg(P_n)=n$ et si, pour tout $n,m\geq 1$, $P_n\circ P_m=P_m\circ P_n$.

Objectif:

Le but du problème est de décrire toutes les familles commutantes de $\mathbb{C}[X]$.

I. - Quelques propriétés de la composition

- 1. On considère deux polynômes P et Q de degrés supérieurs ou égaux à 1. Quel est le degré de $P \circ Q$?
- 2. On considère $\alpha \in \mathbb{C}$ et $Q \in \mathcal{C}(P_{\alpha})$.

Montrer que Q est unitaire.

En déduire que $\mathcal{C}(P_{\alpha})$ contient au plus un polynôme de degré fixé $n \geq 1$.

[Indication : En supposant Q_1 et Q_2 unitaires de même degré dans $\mathcal{C}(P_\alpha)$, on pourra montrer que $R = Q_1 - Q_2$ vérifie $R \circ P_\alpha = R \times (Q_1 + Q_2)$.]

- 3. Déduire de la question précédente que $C(X^2) = \{X^n / n \in \mathbb{N}^*\}.$
- 4. Pour $a \in \mathbb{C}^*$, montrer que $\mathcal{C}(X+a) = \{X + b / b \in \mathbb{C}\}.$

II. - Conjugaison des polynômes

On note G l'ensemble des polynômes complexes de degré 1.

1. Montrer que G est un groupe pour la composition.

L'inverse d'un élément U de G est noté U^{-1} .

On dit que deux polynômes P et Q de $\mathbb{C}[X]$ sont affinement conjugués si l'on peut trouver un élément $U \in G$ tel que $Q = U \circ P \circ U^{-1}$.

- 2. Montrer que la relation précédente définit une relation d'équivalence sur $\mathbb{C}[X]$. Montrer que la classe d'équivalence de 1 est \mathbb{C} . Que peut-on dire du degré de deux polynômes appartenant à une même classe d'équivalence?
- 3. On considère deux polynômes $P_1, P_2 \in \mathbb{C}[X]$ et un polynôme $U \in G$, tels que $P_2 = U \circ P_1 \circ U^{-1}$. Exprimer $\mathcal{C}(P_2)$ en fonction de $\mathcal{C}(P_1)$.

- 4. On considère un polynôme $P = aX^2 + bX + c \in \mathbb{C}[X]$, avec $a \neq 0$. Montrer que l'on peut trouver un unique polynôme $U \in G$ et un unique $\alpha \in \mathbb{C}$, que l'on exprimera en fonction de a, b, c tels que $U \circ P \circ U^{-1} = P_{\alpha}$. Déterminer U et α lorsque $P = 2X^2 - 1$.
- 5. Si α et β sont deux nombres complexes distincts, P_{α} et P_{β} sont-ils affinement conjugués?

- Polynômes de Tchebychev

Il est clair que la famille de polynômes $(X^n)_{n\geq 1}$ est commutante. On construit ici une autre famille commutante de polynômes.

1. Pour tout $n \geq 1$, montrer qu'il existe un unique polynôme T_n , dont on précisera le degré, tel que, pour tout $x \in \mathbb{R}$, $T_n(\operatorname{ch}(x)) = \operatorname{ch}(nx)$.

[Indication : on pourra justifier que :

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, ch(nx) = \frac{1}{2}((ch(x) + sh(x))^n + (ch(x) - sh(x))^n).$$

Les polynômes T_n pour $n \ge 1$ sont appelés les polynômes de Tchebychev.

- 2. Montrer que la famille $(T_n)_{n\geq 1}$ est commutante.
- 3. Déterminer $\mathcal{C}(T_2)$.

IV. - <u>Théorème de Block et Thielmann</u>

- 1. On considère une famille $(Q_n)_{n\geq 1}$ de polynômes commutante et un polynôme $U\in G$. Montrer que la famille $(U \circ Q_n \circ U^{-1})_{n \geq 1}$ est commutante.
- 2. Montrer que les seuls nombres complexes α tels que $\mathcal{C}(P_{\alpha})$ contienne un polynôme de degré 3 sont 0 et -2.
- 3. En déduire le théorème suivant (Block et Thielmann) : si $(Q_n)_{n\geq 1}$ est une famille commutante de polynômes, il existe $U \in G$ tel que :
 - soit $Q_n = U \circ X^n \circ U^{-1}$ pour tout $n \ge 1$; soit $Q_n = U \circ T^n \circ U^{-1}$ pour tout $n \ge 1$.