Algebra of Set Operations

Algebra of Set Operations

Not an Element

Proposition 1 (:B_{proposition}:)

Let A and B be sets and let x be any object. Then:

- $x \notin A \cap B \text{ iff } x \notin A \text{ or } x \notin B.$

De Morgan's Laws for Sets

Theorem 1 (De Morgan's Laws for Sets)

Let S, A, and B be sets. Then:

Distributive Laws for Unions and Intersections

Theorem 2 (Distributive Laws for Unions and Intersections)

Let S, A, and B be sets. Then:

$$2 S \cup (A \cap B) = (S \cup A) \cap (S \cup B).$$

Associative Laws for Unions and Intersections

Proposition 2 (Associative Laws for Unions and Intersections)

Let A, B, and C be sets. Then:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Commutative Laws for Unions and Intersections

Proposition 3 (Commutative Laws for Unions and Intersections)

Let A and B be sets. Then:

- $2 A \cap B = B \cap A$