ELEC S347F Multimedia Technologies

Advanced Video Compression

MPEG Video Standards

- Motion Picture Expert Group (MPEG) established around
 1990 to create standard for delivery of audio and video
 - Different MPEG standards have been developed for various target domains that need different compression approaches
- MPEG-1 (1991): Target at VHS quality on a CD-ROM
 - 320x240 resolution + CD audio (1.5 Mbps)
- MPEG-2 (1994): Target at DVD video and digital TV broadcasting
 - MPEG-3: Target at HDTV (merged with MPEG-2)
- MPEG-4 (1998): Originally targeted at very low bit-rate communication (4.8 to 64 kbps), but later for wide range of bitrates
 - MVC (2008): Target at 3D Blu Ray Disc

MPEG-1 and H.261: Similarities

- MPEG-1 video is similar to the H.261 standard
 - Both use YCbCr color model and 4:2:0 Chroma subsampling
 - Macroblocks(MB)-based motion estimation and compensation
 - Intra mode and Inter mode MB compression
 - Subdivide a frame in coding to improve the robustness of a frame and allow resynchronization
 - ■GOB (for H.261) and Slice (for MPEG-1)

- Robustness and Resynchronization
 - ■H.261: Group of Blocks (GOB)
 - A GOB contains 33 MBs
 - MPEG-1: Slice
 - Slices within a frame may vary in size

- Target applications
 - H.261: target at video telephony and conferencing on ISDN
 - Real-time two-way applications
 - Require low encoding and decoding complexity
 - Low tolerance to delay
 - Supporting to random access, video thumbnails are not required
 - Low transmission rate
 - Typical data rate of ISDN: 64 kbps (with audio)
 - MPEG-1: target at high quality video storing on CD-ROMs
 - Stored one-way video
 - Allow higher encoding complexity
 - Allow longer playback delay
 - Should support random access, fast forward/backward, video thumbnails
 - Higher data rate
 - Typical reading speed of a 1X CD-ROM: 1.2 Mbps
 - MPEG-1: 1.2 Mbps for video, 0.3 Mbps for audio

- Asymmetric Complexity
 - MPEG encoders are generally more complex than decoders

- Intra Mode and Inter Mode Encoding
 - H.261: applied in MB level
 - i.e. some MBs are intra mode coded, some are inter mode coded
 - MPEG-1: applied in MB level and frame level
 - Intraframe-encoded Frame (I-Frame): all MBs in the frame are encoded in intra mode
 - I-Frames allow random access, fast forward/backward, video thumbnails for MPEG-1 video
 - Predicted Frame: each MB can be coded in intra mode or inter mode
 - Forward Predicted Frame (P-Frame): similar to H.261's
 - Bidirectional Predicted Frame (B-Frame): introduced in MPEG-1

Reference Frame

- H.261: always reference the previous frame
 - Motion vectors are computed from the previous frame
- MPEG-1: can reference previous or future frame or both
 - Forward Prediction (P-Frame)
 - As before in H.261, compute the motion vector for each MB from the nearest preceding I/P-frame
 - Backward Prediction (B-Frame):
 - Compute the motion vector for each MB from the nearest succeeding I/P-Frame
 - Bidirectional Prediction (B-Frame):
 - Compute two motion vectors for each MB from the nearest preceding I/P-Frame and the nearest succeeding I/P-Frame

Backward Prediction

Frame)

■ Bidirectional Prediction

Advantages

- Improve accuracy for motion estimation
 - More choices of MVs for each MB
 - Especially good for MBs which contain moving objects that are hided by other objects in some frames
- Better coding efficiency
 - Typical compression ratio:
 - I-Frames: 7:1, P-Frames: 20:1, B-Frames: 50:1
- Improve robustness
 - Errors in a B-Frame will not be propagated to future frames

Disadvantages

- Introduce extra delay in playback
 - B-Frames reference future frames
 - So, require to encode and transmit reference frames first
 - Decoders will receive the frames out of order
 - E.g. consider the frame sequence in previous example
- Higher memory requirement
 - Require more memory in encoder and decoder to accommodate the extra reference frame and frames pending for encoding
 - E.g. in previous example,
 - Decoder: requires remembering frame 9 and 12 to decode frame 10, 11
 - Encoder: require remembering frame 9, 10, 11 before encoding frame 12
- Higher complexity
 - More MV searches required than P-Frames

Group of Pictures (GOP)

- A group of pictures (GOP) is a sequence of frames that can be removed without destroying the integrity of the video
 - A GOP begins with an I-Frame or one or more B-Frames followed by an I-Frame
 - And ends with an I-Frame or P-frame
- A closed GOP
 - Begins with an I-Frame
 - Can be decoded independently out of the video
- An open GOP
 - Begins with one or more bidirectional predicted B-Frames followed by an I-Frame
 - Can be decoded only if the preceding GOP is available

Group of Pictures (GOP)

Group of Pictures (GOP)

- The frequency of I-Frame can be fixed or dynamic
 - Fixed: start a new I-Frame regularly
 - Dynamic: start a new I-Frame based on the residual between prediction and actual frame data
 - When there is scene change, the residual is getting large
 - Should start a new I-Frame
- The higher the frequency of I-Frame, the higher the random access capability, and the higher the resistance to error propagation
 - However, I-Frames demand the highest bandwidth (B-Frames the least)
 - This causes large delay variation between frames and not good for network streaming

MPEG-2 Video/H.262

MPEG-2 Video

- ISO/IEC 13818-2
 - MPEG-2 Part 2
 - Jointly developed by ITU-T and MPEG
 - Commonly known as MPEG-2 Video and H.262
 - Target at storing high quality video on DVDs
 - Later expanded to SD and HD TV broadcasting over the air or cable
 - Backward compatible to MPEG-1 Video
 - But support higher bit rate, higher resolutions and interlaced video

MPEG-2 Video vs. MPEG-1 Video

- MPEG-2 Video originally target at storing high quality video on DVDs
 - As opposed to MPEG-1's on VCDs
 - Allow higher data rate and larger frame resolution
- More options for Chroma subsampling
 - In addition to 4:2:0, support 4:4:4 and 4:2:2
 - Higher video quality but higher data rate
- MPEG-2 Video supports interlaced video
 - Search motion vectors on fields, not just frames

MPEG-2 Video vs. MPEG-1 Video

- More scalable than MPEG-1
 - Support playing the same video in different resolutions and frame rates
 - Allows a video to be coded into two layers
 - The base layer provides a coarse but low bandwidth version of the video
 - The enhancement layer when added to the base layer provides a detailed and more accurate representation
 - Especially useful for broadcasting to enhance robustness and support two versions of broadcasting using one signal
- Extended to support HDTV
 - MPEG-3 originally for HDTV, but later merged into MPEG-2

MPEG-2 Video: Layered Video

MPEG-2 has 4 ways to generate layered video

- 1) Data Partition
 - A video is first coded using conventional method
 - The base layer contains the motion vectors and the first few low-frequency DCT coefficients of the residual
 - The enhancement layer includes the remaining DCT coeff.
- 2) SNR Scalability
 - A video is coded using conventional method but with a large quantization step size and form the base layer
 - Then the quantization error for the DCT coeff. are quantized again using a smaller step size and form the enhancement layer

MPEG-2 Video: Layered Video

3) Spatial Scalability

- The base layer codes a subsampled version of the original video
- The enhancement layer codes the original size
 - Using either the past coded frame in the original size, interpolated version of the current frame produced by the base layer, or a weighted sum of both for frame prediction

4) Temporal Scalability

- The base layer codes the original video at a lower frame rate
- The enhancement layer codes the skipped frame
 - Using either the coded frames in the base layer, or past coded frames in the enhancement layer for frame prediction

MPEG-4 AVC/H.264

MPEG-4 Part 2 and Part 10

- ISO/IEC 14496-2
 - MPEG-4 Part 2
 - Commonly known as MPEG-4 Visual
 - Compatible to H.263
- ISO/IEC 14496-10
 - MPEG-4 Part 10
 - Jointly developed by ITU-T and MPEG
 - Commonly known as MPEG-4 Advanced Video Coding (AVC) and H.264
 - Target for storage of HD video, interactive multimedia, games
 - Achieve up to 30%-50% better compression than MPEG-2 Video and up to 30% over H.263+
 - Not only aim to improve compression, but also functionality and interactivity

- Improvement on prediction accuracy
 - Multiple Forward/Backward Reference
 - AVC/H.264 allows finding the best reference in 2 possible directions (forward and backward) each contains up to 16 frames
 - As opposed to MPEG-1/2 which can reference one frame in each direction for prediction
 - Flexible Weighting of Reference Frames
 - AVC/H.264 allows prediction from reference frames with any weighting
 - While MPEG-1/2's B-Frames use averaged weighting for bidirectional prediction

- Improvement on prediction accuracy
 - Finer Search Step Size of Motion Estimation
 - AVC/H.264 allows quarter-pixel (1/4 pixel) step size
 - 16X choices
 - As opposed to H.263's half-pixel (1/2 pixel) step size,
 - 4X choices
 - ■MPEG-1/2's one-pixel step size
 - Original pixel:
 - **A**, B, C, D
 - Interpolated half-pixel and quarter-pixel:
 - f, m, o, q, x, e, g, h, i, j, k, l, n, p, r, s, t, u, v, w, y

- Improvement on prediction accuracy
 - More Options for Block Partition
 - AVC/H.264 supports block size of 16x16, 8x8, 16x8, 8x16, 4x4, 8x4, 4x8
 - As opposed to MPEG-1/2 and H.261's 16x16, H.263's 16x16 and 8x8

- Intra-prediction
 - Previous: MBs within a frame are coded independently
 - AVC/H.264: exploit spatial correlation between pixels in current block and adjacent blocks of a frame
- Integer Transformation
 - AVC/H.264 uses an integer version of the DCT
 - Eliminate any numerical errors between the forward transform at the encoder and the inverse transform at the decoder
 - Also, the transform block size can be varied from block to block depending on which one gives the best representation

- \blacksquare MPEG-1/2 Video use frame-based/block-based coding
- MPEG-4 AVC uses object-based coding
 - A video sequence is decomposed into multiple objects and each object is coded separately
 - The information transmitted for each object includes its shape, motion, and texture
- Advantages of object-based coding
 - Higher compression ratio
 - For block-based coding, it is possible that multiple potential matches yield small prediction errors since objects usually collide with each other
 - For object-based coding, each object is of arbitrary shape (not necessary be a rectangle) and ideally will obtain a unique motion vector consistent with the actual object motion

- Advantages of object-based coding
 - Allow encodes to code different objects with different accuracy
 - E.g. the foreground moving object can be coded more accurately than background
 - Easy manipulation of audiovisual scenes
 - Digital effects (e.g. fade-ins)
 - Animation and synthetic sound can be composed with natural audio and video
 - Insertions of subtitles
 - Content-based interactivity
 - A viewer can translate or remove a graphic overlay to view the video beneath it
 - Decoders can choose to compose the objects as desired (that means it can choose not to decode certain objects, or replace an object with some other pre-stored objects)

Shape Coding

- Bitmap:
 - A matrix in which a '1' means opaque and a '0' represents transparent of the corresponding pixel
- Alpha map:
 - A matrix whose element values refer to the transparency of the shape ranging from 255 (opaque) and 0 (completely transparent)
- The SAD computation is modified as
 - $\blacksquare SAD(i,j) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |C(x+k,y+l) R(x+k+l)|$

- Synthetic Object Coding
 - 2D Mesh
 - Useful for object animation
 - 3D Mesh
 - Useful for face objects and body objects which the face or body can be shaded or texture-mapped

Multi View Coding (MVC)

3D Video

- 3D content is made by showing a separate image (video) to each eye
- It can be broadly classified into glasses-based and glass-free technologies
- Each of the two captured views is presented to one of the eyes
- Can be multiplexed either spatially or temporally

Multiplexing Stereo Video

- Spatial Multiplexing
 - Half the resolution
 - (a) Side-by-Side layout
 - (b) Top-Bottom layout
 - (c) Horizontal layout
 - (d) Checkers layout
- Temporal Multiplexing
 - Double the frame rate
- L L R R (b) (a) (d)
 - Advantage: maintaining the full resolution of each view
 - Disadvantage: it is hardware representation dependent (acquisition process is tailored to a specific type of displays)

Multi-View Displays

- The most common form of multi-view displays utilize either lenticular screens or parallax barriers
 - Lenticular screens consist of a series of vertically aligned or slanted cylindrical lenses and parallax barriers vertically aligned apertures
 - Light is guided in the appropriate directions by either focusing it or by blocking unwanted rays

Multi-View Coding (MVC)

- MVC is a standard for compression of multiple video streams into one encoded streams
 - All streams are encoded as differences from the first stream
 - MVC with 2 video streams is 3D stereo

MVC Coding

Simulcast Encoding

- Encode each view independently
- Advantages: enable streaming each view over separate channels, clients can request as many views as their 3D displays require

Dependent Encoding

- Encode views by exploiting the inter-view redundancies
- Advantages: decrease the overall bit rate
- Disadvantages: require to employ a special inter-view prediction structure in order to enable view-scalable and view-selective adaptive streaming

H.264/AVC 3D Encoding

- There are two options for 3D H.264 AVC encoding
 - Regular encoding of a single video stream with two L/R frames packed into one frame
 - No signaling information is required
 - Informing the encoder the video is 3D
 - Encoder will insert Frame-Packing information by Frame Packing Arrangement (FPA) structure (e.g. side-by-side, top-bottom, interlaced, etc)
 - Decoder will switch to correct 3D mode based on its signaled frame packing information

H.264/AVC Multi-View Extension

- Multi-view Video Coding was standardized in 2008 and adopted for 3D Blu Ray in 2009
- Exploit temporal and inter-view dependencies using MPEG4-AVC/H.264
- Usage of hierarchical B pictures in temporal direction
- Usage of P or hierarchical B pictures in inter-view direction
- Frame reordering to optimize memory usage

H.264/AVC Multi-View Extension

- Coding structure allows AVC coder to select the best inter-view-temporal neighbors within the MVC sequence
 - Coding gain obtained by usage of hierarchical Bframes and by exploitation of inter-view dependencies
- MVC with only two cameras

H.264/AVC Multi-View Extension

- Enable inter-view prediction
 - Prediction structure is simplified by restricting interview prediction to anchor pictures only
 - Large disparity or different camera calibration affects coding efficiency

