Indexing for complex queries

Indexing: preprocess a text or a collection of texts into a data structure that allows locating occurrences of a query pattern in the texts.

• If the query is a string, multiple space- and time-efficient solutions exist

However, it is desirable to allow for more general queries!

- For <u>regular expression</u> patterns, there cannot be a data structure with polynomial-time preprocessing and sublinear query time, conditioned on the online matrix-vector multiplication conjecture [Thankanchan and Gibney, 2021]
- What about simpler models with just two patterns?

Indexing for complex queries

Indexing: preprocess a text or a collection of texts into a data structure that allows locating occurrences of a query pattern in the texts.

- If we are looking for all texts in a collection that contains two string patterns P_1, P_2 , or all texts containing P_1 but not P_2 , the asymptotically fastest linear-space solutions use $O(\sqrt{N})$ query time, where N is the total length of the texts [Hon et al. 2010, Hon et al. 2012]
- This was shown to be optimal conditioned on Boolean Matrix Multiplication [Larsen et al. 2014] and on the 3SUM conjecture [Kopelowitz et al. 2016]

Indexing for complex queries

Indexing: preprocess a text or a collection of texts into a data structure that allows locating occurrences of a query pattern in the texts.

- [Kopelowitz and Krauthgamer 2016] considered the problem of retrieving the pair of closest occurrences of two patterns P_1, P_2 in a text T.
- For a text of length N, they showed an index using space $\tilde{O}(N^{1.5})$ with $\tilde{O}(N\sqrt{N})$ preprocessing time and $\tilde{O}(|P_1|+|P_2|+\sqrt{N})$ query time.
- By establishing a connection with Boolean Matrix Multiplication, they highlighted a difficulty in removing the \sqrt{N} factor both from the preprocessing and the query time.

Gapped consecutive indexing

Gapped indexing for consecutive occurrences: preprocess an text T of length N into a data structure, which allows, given a range [a,b] and two patterns P_1, P_2 , to retrieve all pairs of consecutive occurrences of P_1, P_2 separated by distance $d \in [a,b]$.

Gapped consecutive indexing

Gapped indexing for consecutive occurrences: preprocess an N-length text T into a data structure, which allows, given a range [a,b] and two string patterns P_1, P_2 , to retrieve all pairs of consecutive occurrences of P_1, P_2 separated by distance $d \in [a,b]$.

- [Navarro and Thankanchan 2016] For the case $P_1=P_2$, $O(N\log N)$ -space index with $O(|P_1|+|P_2|+{\rm occ})$ query time.
- [Bille et al. 2021] For the general case $P_1 \neq P_2$, no $\tilde{O}(N)$ -space index can achieve $\tilde{O}(|P_1| + |P_2| + \sqrt{N})$ query time conditioned on the Set Disjointness conjecture.

For highly compressible texts, can we design an efficient index for this problem?

Choice of compression method

The answer, of course, depends on the chosen compression method...

• We assume that the text is represented by a straight-line program (SLP), which is a context-free grammar describing exactly one string.

Example: The SLP $\{A \to BC, B \to ba, C \to DD, D \to na\}$ generates banana.

- SLPs are capable of describing strings of exponential length (in the size of the representation).
- Capture the popular Lempel-Ziv compression method up to a log factor.
- On the other hand, SLPs provide a convenient interface, allowing e.g. for efficient random access [Bille et al. 2015].

Indexing in compressed space

Assuming that a string T of length N is described by an SLP with g productions, there are multiple $\tilde{O}(g)$ -space indexes for classic pattern matching:

Space	Query time	Reference
O(g)	$O(m \log \log N + \operatorname{occ} \log g)$	Claude and Navarro 2012
$O(g \log N)$	$O((m + occ)\log g)$	Claude et al. 2021
$O(g \log N)$	$O(m + \operatorname{occ} \log^{\varepsilon} N)$	Christiansen et al. 2021
$O(g \log N)$	$O((m\log m + \operatorname{occ})\log g)$	Díaz-Domínguez et al. 2021

Lower bounds for compressed data

Some problems cannot avoid a high dependency on the size of an uncompressed string:

- Pattern matching with wildcards [Aboud et al. 2017]
- Longest common subsequence [Aboud et al. 2017]
- Median edit distance [Kociumaka et al. 2022]
- Center edit distance [Kociumaka et al. 2022]

What about consecutive pattern matching?

Our results

Grammar compressed indexing for gapped consecutive occurrences:

preprocess an N-length text T given as a grammar of size g into a data structure, which allows, given a range [a,b] and two string patterns P_1,P_2 , of length m to retrieve all pairs of consecutive occurrences of P_1,P_2 separated by distance $d \in [a,b]$.

Cases	Space	Query time
unbounded (a = 0, b = N)	$O(g^2 \log^4 N)$	$O(m \log N + (1 + occ) \cdot \log^3 N \log \log N)$
a = 0	$O(g^5 \log^5 N)$	$O(m \log N + (1 + \operatorname{occ}) \cdot \log^4 N \log \log N)$

We obtain those results by using locally consistent grammars!

Our results

Gapped indexing for consecutive occurrences:

preprocess an N-length text T into a data structure, which allows, given a range [a,b] and two string patterns P_1,P_2 , of length m to retrieve all pairs of consecutive occurrences of P_1,P_2 separated by distance $d\in [a,b]$.

Cases	Space	and $\tilde{O}(m + \text{occ})$ query time would contradict the lower
unbounded ($a = 0$, $b = N$)	$O(g^2 \log^4 N)$	bound of Bille et al. 2021 $+ \operatorname{occ} \cdot \log^3 N \log \log N$
a = 0	$O(g^5 \log^5 N)$	$O(m \log N + (1 + occ) \cdot \log^4 N \log \log N)$

We obtain those results by using locally consistent grammars!

Our results

Gapped indexing for consecutive occurrences:

preprocess an N-length text T into a data structure, which allows, given a range [a,b] and two string patterns P_1,P_2 , of length pairs of consecutive occurrences of P_1,P_2 separat $\{f(a,b)\}$ in the unbounded case, it might be possible to achieve $\tilde{O}(g)$ space and $\tilde{O}(m+occ)$

Cases	Space	query time aery time
unbounded (a = 0, b = N)	$O(g^2 \log^4 N)$	$O(m \log N + (1 + \operatorname{occ}) \cdot \log^3 N \log \log N)$
a = 0	$O(g^5 \log^5 N)$	$O(m \log N + (1 + \operatorname{occ}) \cdot \log^4 N \log \log N)$

We obtain those results by using locally consistent grammars!

Run-length SLP

Run-length SLP a set of non-terminals, a set of terminals, an initial symbol, and a set of productions, such that:

- Each production has form $A \to BC$ or $A \to B^k$, where A is a non terminal and B, C can be either terminals or non-terminals.
- Every non-terminal is on the left-hand side of exactly one production (=> it generates exactly one string).

Expansion(S), is the string "generated" by the non-terminal S.

The string obtained by iterative replacement of non-terminals by the right-hand sides of the production rules, until only terminals remain.

A run-length SLP describes the expansion of its initial symbol.

Run-length SLP

The parse tree of a run-length SLP

non-terminals = $\{A, B, C, D, E, F\}$ and terminals = $\{x, y, z\}$

productions: $A \to BC$, $B \to D^4$, $D \to xy$, $C \to EF$, $E \to zx$, $F \to yx$

Run-length SLP

The parse tree of a run-length SLP

non-terminals = $\{A, B, C, D, E, F\}$ and terminals = $\{x, y, z\}$

productions: $A \to BC$, $B \to D^4$, $D \to xy$, $C \to EF$, $E \to zx$, $F \to yx$

SLP to a locally-consistent run-length SLP

Corollary of [Gawrychowski et al. 2018]

There is a Las-Vegas algorithm that converts an SLP of size g describing a string T of length N into a **locally-consistent** run-length SLP of size $O(g \log N)$ and height $O(\log N)$ describing the same string T in $O(g \log N)$ time.

SLP to a locally-consistent run-length SLP

Definition: Split

For an occurrence $T[\ell, r]$ of a pattern P, let w be the lowest node of a parse tree containing it, we say that $T[\ell, r]$ is relevant for the label of w (a non-terminal).

 $T[\ell, r]$ is split at position i if there exist children u, v of w such that $T[\ell, \ell + i]$ is contained in u and $T[\ell + i + 1, r]$ in v.

Example: Occurrence 1 xyx is split at position 2 and relevant for B, occurrence 2 is split at position 1 and relevant for C.

Why is local consistency interesting?

- ...because we can search for relevant occurrences quickly using the following structure:
- For every $A \to BC$, add $\operatorname{rev}(\operatorname{expansion}(B))$ to T_{pref} and $\operatorname{expansion}(C)$ to T_{suf}
- Create a point (r_B, r_C) (the lexicographic rank of the expensions) for every $A \to BC$
- Build an orthogonal range data structure on the points

Why is local consistency interesting?

To find relevant occurrences of a pattern P in non-terminals:

- For each split s, search for $\operatorname{pref}(P) = \operatorname{rev}(P[1..s])$ in T_{pref} to obtain an interval I_{pref} of leaves starting with it, and for $\operatorname{suf}(P) = P[s+1..]$ in T_{suf} to obtain an interval I_{suf}
- Report all non-terminals in $I_{pref} \times I_{suf}$

We show an even stronger result

For a run-length SLP representing a string T of length N, with size g and height $O(\log n)$, There is a $O(g^2 \log^2 N)$ -space data structure that preprocesses an m-length pattern P in $O(m \log N + \log^2 N)$ time and can, answer the following queries in polylog N time: For a given non terminal A, in expansion(A),

- Report relevant occurrences of P;
- Decide whether there is an occurrence of P;
- Report the leftmost/rightmost occurrence of P;
- Find a predecessor/successor occurrence of P given a position q.

Corollary: unbounded case

Task: report all consecutive occurrences of P_1, P_2 in a N-length string T described by a run-length SLP of size g and height $\log N$.

- 1. Find the leftmost occurrence q_1' of P_1 in T[i...] (successor)
- 2. Find the leftmost occurrence $q_2 \ge q_1'$ of P_2 (successor)
- 3. Find the rightmost occurrence $q_1 \leq q_2$ of P_1 (predecessor)
- 4. Report (q_1, q_2) and set $i = q_2 + 1$

Time
$$\tilde{O}(m + (\text{occ} + 1)\text{polylog }N)$$
, space $\tilde{O}(g^2)$.

Idea of our index for the case a=0

Task: given an N-length string T described by a run-length SLP of size g and height $\log N$, report all consecutive occurrences of P_1, P_2 in T separated by distance in [0,b].

- For each non-terminal of the grammar, retrieve relevant consecutive occurrences separated by distance in [0,b].
- Generate all consecutive occurrences separated by distance in [0,b] by traversing a pruned parse tree of the grammar (using a standard technique borrowed from classic pattern matching compressed-space indexes).

Summary

Complex matching: Gapped consecutive occurrences: given a range [a,b] and two string patterns P_1, P_2 , retrieve all pairs of consecutive occurrences of P_1, P_2 separated by distance $d \in [a,b]$.

Sketch as input: Grammar compressed input (local consistency preserves splits)

Indexing: preprocess a text T of length N given as grammar g into a data structure.

Case	Space	Query time
unbounded (a = 0, b = N)	$O(g^2 \log^4 N)$	$O(m \log N + (1 + occ) \cdot \log^3 N \log \log N)$
a = 0	$O(g^5 \log^5 N)$	$O(m \log N + (1 + occ) \cdot \log^4 N \log \log N)$

Can better space be achieved? Solution for the general case?

Is the dual problem of consecutive compressed pattern matching easier?

Grammar compressed consecutive pattern matching

Dual problem: Given T of length N as grammar of size g, a range [a,b], and two string patterns P_1, P_2 , retrieve all pairs of consecutive occurrences of P_1, P_2 separated by distance $d \in [a,b]$. Process the text and the patterns at the same time!

If T is given uncompressed: we can just go from left to right, keeping track of the most recent occurrences of P_1 and P_2 .

$$\implies O(|T| + |P_1| + |P_2| + occ)$$
 time algorithm.

Grammar compressed pattern matching

For a single pattern P, matching in a text T given as a grammar of size g, [Ganardi & Gawrychowski, SODA'22] showed that we can detect whether P occurs in T in O(g + |P|) time.

Can we extend this result to two patterns consecutive (and reporting)? Yes!

Gawrychowski, Gourdel, Starikovskaya, Steiner (Unpublished)

Given T of length N as grammar of size g, and two string patterns P_1, P_2 , we can report all consecutive occurrences of P_1, P_2 in T in $O(g + |P_1| + |P_2| + occ)$ time.

Boundary information

For a pattern P, the P-boundary information of a string S is substrings occurring both in P and S:

If S occurs in P, then the position where it occurs is the P-substring information.

Else, let $\operatorname{prefix}_P(S)$ be the **longest prefix** of S which is a suffix of P.

let $suffix_P(S)$ be the **longest suffix** of S which is a prefix of P.

P-boundary information of two strings S and T allows to efficiently report new occurrences of P appearing in ST.

+ the boundary information for ST can be computed quickly.

(Secondary) Boundary information

P-boundary information of two strings Sand T allows to efficiently report new occurrences of P appearing in ST. + the boundary information for ST can be computed quickly.

For an SLP rule $A \rightarrow BC$, Compute bottom to top:

- P_1 -boundary information and P_2 -boundary information for \overline{A} (from the boundary informations for \overline{B} and \overline{C}).
- All crossing occurrences of P_1, P_2 in A.
- The rightmost occurrences of P_1, P_2 in \overline{A} .
- **Enough to detect pirmary co-occ** in $O(g + |P_1| + |P_2|)$ time!
- If the P_2 -suffix information for \overline{A} is (x_A,y_A) : P_1 -boundary information for x_A and y_A , all crossing occurrences of P_1 and leftmost rightmost.

Summary

Complex matching: Consecutive occurrences: given two string patterns P_1, P_2 , retrieve all pairs of consecutive occurrences of P_1, P_2 .

Sketch as input: Grammar compressed input (handled efficiently through boundary information)

Pattern matching: process P and T at the same time.

Gawrychowski, Gourdel, Starikovskaya, Steiner (Unpublished)

Given T of length N as grammar of size g, and two string patterns P_1, P_2 , we can report all consecutive occurrences of P_1, P_2 in T in $O(g + |P_1| + |P_2| + occ)$ time.

Corollary: Gapped consecutive matching in $O(g + |P_1| + |P_2| + occ)$ time and Top-k closest occurrences $O(g + |P_1| + |P_2| + k)$ time.