

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Department of Electrical & Computer Engineering
ENEE2103-Circuit And Electronics Laboratory
PreLab#3

Prepared by:

Saja Asfour

1210737

Instructor:

Mr.Nasser Ismail

Assistance:

Eng. Hazem Awaysa

Section:

Sec1

Date:

1/3/2024

Table of Contents

rigure:	2
A- RC circuit:	
B- RL circuit:	
C. RLC circuit:	
I. Response Type:	
II- Response parameters:	

Figure:

Figure1 : Rc Circuit	3
Figure 2:Vpulse in RC circuit	3
Figure 3: capacitor vpltage curve in Rc	3
Figure 4: RL circuit	4
Figure 5: Vpulse in RL circuit	4
Figure6: inductor voltage and current curve in RL circuit	5
Figure7: inductor voltage curve in RL circuit	5
Figure8: Vpulse for RL circuit when double the time constant	
Figure 9: inductor current and voltage curve in RL circuit when double the time constant.	6
Figure10 : RLC circuit	6
Figure 11: capactior voltage curve for RLC circuit	
Figure 12: RLC circuit with R=1k	7
Figure 13: RLC underdamped	7
Figure 14: RLC circuit with R=4.47k	8
Figure 15: RLC critical damped	8
Figure 16:curve to find the response parameter when R=1k	
Figure 17: double the C in RLC circuit	
Figure 18:curve to find the response parameter when double C	
Figure 19: RLC circuit with reduce L to the half	
Figure 20: curve to find the response parameter when reduce L to the half	

A-RC circuit:

Figure1: Rc Circuit

the cursor is pointed to measure the voltage at the capacitor

Figure 2:Vpulse in RC circuit

Figure 3: capacitor vpltage curve in Rc

The peak voltage equals 4.9519 so Vcharge=0.63 Vp=3.1196v

3.1239v is approximately at time 3.1739 ms

The beginning of rising is 1.0146ms

Time constant=3.1739-1.0146=2.1593ms (from graph)

Time constant=RC=22k*100n=2.2ms

C=time constant/R=2.1593ms/22k=98.15nF which is close to 100nF.

B-RL circuit:

Figure 4: RL circuit

Figure 5: Vpulse in RL circuit

Figure6: inductor voltage and current curve in RL circuit

As shown, the steady state voltage is equal to 10 volt so the Vdischarge=0.37*10=3.7volt.

3.7 volt is at time \rightarrow 1.2325ms

Start discharge at \rightarrow 1.0053ms

Time constant=1.2325ms-1.0053ms=227.2us

The steady state current is equal to \rightarrow 4.5141mA so the Ichargeing=0.63*4.5141=2.8439mA 2.8439mA is at time \rightarrow 1.2281ms

Starting charge at \rightarrow 1ms

Time constant=1.2281-1=228.1us

Time constant= L/R=500m/2.2k=227.3us which is close to two time constant from the graph.

Change the period of the periodic square wave to $T=2\tau L$ and display the result: time constant=2*L/R=2*500m/2.2k=454.545us

Figure8: Vpulse for RL circuit when double the time constant

Figure 9: inductor current and voltage curve in RL circuit when double the time constant

the period is become too small and not enough for charging and discharging.

C. RLC circuit:

I. Response Type:

Figure 10: RLC circuit

$$a=R/2L=22k/(2*500m)=22000$$

W=1 $\sqrt{(LC)}=4472$
a>w→Over damped

Figure 11: capactior voltage curve for RLC circuit

To be over damped \rightarrow a>w

To be under damped \rightarrow a<w

To be critical damped \rightarrow a=w

a=w

 $R/2L=1/\sqrt{LC} \Rightarrow R=2L/\sqrt{LC}$

So:

To be over damped \rightarrow R>4.47k

To be under damped \rightarrow R<4.47k

To be critical damped \rightarrow R=4.47k

Under damped case:

Let R=1k

Figure 12: RLC circuit with R=1k

Figure 13: RLC underdamped

Critical damped case:

R=4.47k

Figure 14: RLC circuit with R=4.47k

Figure 15: RLC critical damped

II- Response parameters:

We can chose any R<4.47k to be in under damped Let R=1k like figure 12

Figure 16:curve to find the response parameter when R=1k

(Va,Ta)→(7.4737,1.6864m)(Vb,Tb)→(5.7018,3.2649m) $V\infty$ =5volt Decay time constant $\rightarrow \tau = (tb-ta)/[ln(Va-Vo(\infty)/Vb-Vo(\infty))]=1253$ us Damping Coefficient $\rightarrow \alpha = 1/\tau \rightarrow 798$ rad/sec Damped radian frequency $\rightarrow \omega d = 2\pi/(tb-ta)=3.98$ rad/sec

When we double the value of $C \rightarrow c=200 nF$

Figure 17: double the C in RLC circuit

Figure 18:curve to find the response parameter when double C

 $(Va,Ta) \rightarrow (6.9032,2.0662m)$ $(Vb,Tb) \rightarrow (5.2773,4.2089m)$

 $V\infty=5$ volt

Decay time constant $\rightarrow \tau = (tb-ta)/[ln(Va-Vo(\infty)/Vb-Vo(\infty))]=1112us$

Damping Coefficient $\rightarrow \alpha = 1 / \tau \rightarrow 899 \text{ rad/sec}$

Damped radian frequency $\rightarrow \omega d = 2\pi/(tb-ta) = 2.93 \text{ rad/sec}$

When reset the C to its initial value and reduce L to its half value:

Figure 19: RLC circuit with reduce L to the half

Figure 20: curve to find the response parameter when reduce L to the half

 $(Va,Ta) \rightarrow (6.9030,1.5329m)$

(Vb,Tb)→(5.2768,2.6093m)

 $V\infty=5volt$

Decay time constant $\rightarrow \tau = (tb-ta)/[ln(Va-Vo(\infty)/Vb-Vo(\infty))]=558us$

Damping Coefficient $\rightarrow \alpha = 1 / \tau \rightarrow 1791 \text{rad/sec}$

Damped radian frequency $\rightarrow \omega d = 2\pi/(tb-ta) = 5.84 \text{ rad/sec}$