Week 4 Lab
Quiz, 12 questions

12/12 points (100%)

/	Congratulations! You passed! Next Item			
~	1/1 point			
1.				
Is this	an observational study or an experiment?			
0	Observational study			
Corr	ect			
Corr				
	Experiment			
	1/1			
	point			
2. Which	of the following statements is false about the distribution of weekly wages?			
VVIIICII				
	The median of the distribution is 905.			
	25% of respondents make at least 1160 dollars per week.			
0	10 of the respondents make strictly less than 300 dollars per week.			
Corr	ect			
Correct.				
	wage is right-skewed, meaning that more respondents fall below the mean wage than above it.			

12/12 points (100%)

Fit a new model that uses **educ** (education) to predict average weekly wages. Using the estimates from the R output, write the equation of the posterior mean of the regression line and obtain a 95% credible interval for the coefficients.

What does the slope tell us in the context of the relationship between education and earnings?					
	Each additional year of education increases weekly wages by \$60.21.				
	Each additional year of education increases weekly wages by \$146.95.				
	For each additional year of education, there is a 95% chance that average weekly wages will possibly decrease by \$5.56 or increase by \$299.47.				
0	For each additional year of education, there is a 95% chance that average weekly wages will increase by \$49.04 to \$71.39				
Corr	ect				
~	1/1 point				
4. Which	of the following statements about the residual plots are false ?				
	The residuals appear to be randomly distributed around 0				
0	The residuals are strongly left skewed, hence the normal distribution of errors condition is not met				
Correct					
	The variability of residuals appears to increase as the fitted increase, suggesting that the constant variance assumption does not hold.				
	There are more individuals where the model under predicts weekly wages rather than over estimates weekly wages.				

/

1/1 point

	questions 12/12 points (1				
	Case 434 has a probability of close to 1 that it an outlier under the normal error model for regressing lwage on iq				
	Case 514 has a probably of close to 1 that it an outlier under the normal error model for regressing lwage on iq				
	Case 616 has a probably of close to 1 that it an outlier under the normal error model for regressing lwage on iq				
Corr	rect				
Case 784 has a probably of close to 1 that it an outlier under the normal error model for regress lwage on iq					
	1/1				
	point				
	e new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an				
serv	e new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an				
serv	te new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an $\dot{\gamma}$?				
serv	be new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an $rac{1}{2}$? Case 434				
serv	The new value of k to calculate the posterior probability of each observation being an outlier. Which wation has a posterior probability of being an outlier that exceeds the prior probability of being an $\frac{1}{2}$? Case 434 Case 514				
serv	The new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an exceed the prior probability of being an example of the prior prior probability of being an example of the prior prior probability of being an example of the prior prior prior probability of being an example of the prior prio				
serv ttlier	The new value of k to calculate the posterior probability of each observation being an outlier. Which vation has a posterior probability of being an outlier that exceeds the prior probability of being an exceed the prior probability of being an example of the prior prior probability of being an example of the prior prior probability of being an example of the prior prior prior probability of being an example of the prior prio				

From the model, all else begin equal, who would you expect to make more: a married black man or a single

The married black man

non-black man?

Week 4 Lab
Quiz, 12 questions

12/12 points (100%)

	The single non-black man			
~	1/1 point			
8. E l imina	ation of which variable from the full model yielded the lowest BIC?			
	brthord			
	sibs			
0	feduc			
Correct.				
	meduc			
~	1/1 point			
	on this reduced data set, according to Bayesian model averaging, which of the following variables has vest marginal posterior inclusion probability?			
	kww			
	black			
	south			
0	age			
Correct.				

/17/2019	Bayesian Statistics - Home Coursera		
Week 4 Quiz, 12 ques	Lab ^{1/1} point stions	12/12 points (100%	
10. True o	or False: The naive model with all variables included has posterior probability r-Siow null prior for the coefficients and a $\mathrm{Beta}(1,1)$ prior for the models.)	/ greater than 0.5. (Use a	
	True		
0	False		
Corr	rect		
~	1 / 1 point		
	on these results, which covariates are included in all of the following: the boan probability model, and the highest posterior probability model?	est predictive model, the	
	kww, married, urban		
	married, age, black		
	black, south, married		
0	meduc, urban, married		
Corr	rect		
_	1 / 1		
	point of these calculations for a 95% prediction interval for the individual who is predicted wages based on the best predictive model.	edicted to have the highest	
	[414, 1717]		

https://www.coursera.org/learn/bayesian/exam/hjOGb/week-4-lab

[782, 1571]

[782, 3154]

Week4rcab Quiz, 12 questions	12/12 points (100%)
[706, 2950]	
$ \mathcal{F} $	