Exercise session 1

Definition 1. Let f, g be functions $\mathbb{N} \to \mathbb{R}_{\geq 0}$.

$$f \in \mathcal{O}(g)$$
 means $(\exists c, n_0 \in \mathbb{N})(\forall n \ge n_0)(f(n) \le cg(n))$ (\le)

$$f \in o(g)$$
 means $(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(f(n) < \varepsilon g(n))$ (<)
or equivalently $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f \in \Omega(g)$$
 means $g \in \mathcal{O}(f)$ (\geq)

$$f \in \omega(g)$$
 means $g \in o(f)$ $(>)$

$$f \in \theta(g)$$
 means $f \in \mathcal{O}(g) \cap \Omega(g)$ (=)

Exercise 1.

- 1. Let $f(n) = pn^3 + qn^2 + rn + s$ for some $p, q, r, s \in \mathbb{R}$. Show $f(n) \in \mathcal{O}(n^3)$ and $f(n) \in o(n^4)$.
- 2. Show $|\sin n| \in \mathcal{O}(1)$ and $|\sin n| \notin o(1)$.
- 3. Show $\mathcal{O}(f+g) = \mathcal{O}(\max(f,g))$.
- 4. Show $n^{\log n} \in \mathcal{O}(2^n)$.