Boston University CS 506 - Lance Galletti

Intro to Neural Networks

https://medium.com/@gallettilance/list/introducing-neural-networks-d74f0dc2 5400

where
$$\sigma(x) = rac{1}{1 + e^{-x}}$$

X ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

x ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

Recall, the **OR** function is linearly separable:

x ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	1

XOR(
$$x_1, x_2$$
) = **OR**(**AND**($x_1 = 0, x_2 = 1$), **AND**($x_1 = 1, x_2 = 0$))
= ($x_1 = 0 \land x_2 = 1$) \lor ($x_1 = 1 \land x_2 = 0$)
= $h_1 \lor h_2$

x ₁	x ₂	h ₁	h ₂	у
0	0	0	0	0
1	0	0	1	1
0	1	1	0	1
1	1	0	0	0

But, the **AND** function is also linearly separable:

x ₁	x ₂	у
0	0	0
1	0	0
0	1	0
1	1	1

Since we can learn h₁ and h₂ automatically through logistic regression

Since we can learn h₁ and h₂ automatically through logistic regression

Input layer

Hidden layer

Output layer

We need to define:

- 1. How input flows through the network to get the output (forward propagation)
- 2. How the weights and biases gets updated (Backpropagation)

$$h_1 = \sigma(w^{(1)}_{00} x_1 + w^{(1)}_{01} x_2 + b^{(1)}_1)$$

$$h_2 = \sigma(w^{(1)}_{10} x_1 + w^{(1)}_{11} x_2 + b^{(1)}_2)$$

$$y = \sigma(w^{(2)}_0 h_1 + w^{(2)}_1 h_2 + b^{(2)}_1)$$

Using matrix notation:

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{00}^{(1)} & w_{01}^{(1)} \\ w_{10}^{(1)} & w_{11}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_{1}^{(1)} \\ b_{2}^{(1)} \end{bmatrix} \right)$$

$$y = \sigma(\begin{bmatrix} w_{00}^{(2)} \\ w_{01}^{(2)} \end{bmatrix}^{T} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} + b^{(2)})$$

Q: if all the weights and biases are initialized to 0, what will be the output of the network?

Q: why have σ at all?

If we don't, we just end up with normal logistic regression on x_1 and x_2 .

$$h_1 = w_{00}^{(1)} x_1 + w_{01}^{(1)} x_2 + b_{1}^{(1)}$$

$$h_2 = w_{10}^{(1)} x_1 + w_{11}^{(1)} x_2 + b_{2}^{(1)}$$

Then

$$y = \sigma(w^{(2)}_{0}h_{1} + w^{(2)}_{1}h_{2} + b^{(2)}_{1})$$

$$= \sigma(w^{(2)}_{0}(w^{(1)}_{00}x_{1} + w^{(1)}_{01}x_{2} + b^{(1)}_{1}) + w^{(2)}_{1}(w^{(1)}_{10}x_{1} + w^{(1)}_{11}x_{2} + b^{(1)}_{2}) + b^{(2)}_{1})$$

$$= \sigma(w_{1}x_{1} + w_{2}x_{2} + b_{2})$$

How do weights and biases get updated?

Recall for logistic regression:

Cost(w, b)

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i} + b)) \right]$$

$$\nabla \text{Cost}(w, b) = \left[\frac{\partial}{\partial w} \text{Cost}, \frac{\partial}{\partial b} \text{Cost} \right]$$

$$\frac{\partial}{\partial w} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} h_i (y_i - \sigma(-w^T h_i + b))$$

$$\frac{\partial}{\partial b} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} \sigma(-w^T h_i + b) - y_i$$

Using the chain rule:

$$\frac{\partial C}{\partial W^{(2)}} = \frac{\partial C}{\partial u^{(2)}} \frac{\partial u^{(2)}}{\partial W^{(2)}} \quad \text{where} \quad u^{(2)} = W^{(2)}h + b^{(2)}$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot h = \frac{1}{n} \sum_{i=1}^{n} h(y_i - \sigma(u^{(2)}))$$

$$h = \sigma(W^{(1)} X + b^{(1)})$$

Similarly:

$$\frac{\partial C}{\partial b^{(2)}} = \frac{\partial C}{\partial u^{(2)}} \frac{\partial u^{(2)}}{\partial b^{(2)}} = \frac{1}{n} \sum_{i=1}^{n} y_i - \sigma(u^{(2)})$$

So we can update $W^{(2)}$ and $b^{(2)}$ as follows:

$$\begin{bmatrix} W_{new}^{(2)} \\ b_{new}^{(2)} \end{bmatrix} = -\alpha \begin{bmatrix} \frac{\partial C}{\partial W^{(2)}} \\ \frac{\partial C}{\partial b^{(2)}} \end{bmatrix}$$

But how do we update W⁽¹⁾ and b⁽¹⁾

How do weights and biases get updated?

$$h_1 = \sigma(w_{00}^{(1)} x_1 + w_{01}^{(1)} x_2 + b_{1}^{(1)})$$

$$h_2 = \sigma(w_{10}^{(1)} x_1 + w_{11}^{(1)} x_2 + b_{2}^{(1)})$$

$$y = \sigma(w_{01}^{(2)} h_1 + w_{11}^{(2)} h_2 + b_{1}^{(2)})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i} + b)) \right]$$

Using the chain rule:
$$\frac{\partial C}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} \quad \text{where}$$

$$\frac{\partial C}{\partial W^{(2)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial u^{(1)}}{\partial h} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot \frac{\partial u^{(2)}}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)}) \cdot x$$

Already computed

Similarly:

$$\frac{\partial C}{\partial b^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)})$$

Already computed

Backpropagation: update $W^{(1)}$ and $b^{(1)}$ without recomputing values that are computed when getting the gradients of the previously updated layer.

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Important Note:

$$\frac{\partial C}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} \quad \text{where} \quad u^{(1)} = w^{(1)}x + b^{(1)}$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot \frac{\partial u^{(2)}}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)}) \cdot x$$

Depends on both data and weights Initializing all weights to zero then is not a good idea

The hope:

Image from 3b1b

The reality:

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

	Before	After
Trusted the bad model	10 out of 27	3 out of 27
Snow as a potential feature	12 out of 27	25 out of 27

Table 2: "Husky vs Wolf" experiment results.

Image from "Why Should I Trust You?": Explaining the Predictions of Any Classifier (2016)Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

The scary reality:

(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n

Figure 8. (a) FGM results; (b) Three discriminative features ρ , d and θ .

from "Automated Inference on Criminality using Face Images", Xiaolin Wu, Xi Zhang

According to this model, if you don't smile, you're a criminal

Neural Networks

Can do both **Classification** and **Regression**

Neural Networks - Tuning Parameters

- 1. Step size α
- 2. Number of BackPropagation iterations
- 3. Batch Size
- 4. Number of hidden layers
- 5. Size of each hidden layer
- 6. Activation function used in each layer
- 7. Cost function
- 8. Regularization (to avoid overfitting)

Activation Functions

Identity -> >

Sigmoid \rightarrow $\sigma(x)$

Tanh -> tanh(x)

ReLU \rightarrow max(0, x)

Note: can use any function you want in order to introduce non-linearity. These are just the popular ones that have been shown to work in practice.

Tuning the activation function is equivalent to feature engineering.

Demo

Neural Networks

First: Normalize your data

https://medium.com/mlearning-ai/tuning-neural-networks-part-i-normalize-your-data-6821a28b2cd8

Neural Networks - Initialization Gotchas

https://medium.com/mlearning-ai/tuning-neural-networks-part-ii-considerations-for-initialization-4f82e525da69

Neural Networks - Challenges

- 1. High risk of overfitting as you're optimizing on the training set.
- 2. As the dimensionality of the input increases:
 - a. So does the number of weights
 - b. The gradients typically get smaller: Vanishing gradient problem
- 3. Doesn't do well for computer vision where the object of detection can be anywhere in the image
- 4. Doesn't handle sequences of inputs (i.e. providing context for data)

Neural Networks - Regularization

Two main ways:

1. Early termination of weight / bias updates

2. Dropout - kill neurons (by setting them to 0) randomly

Recall: Our network learns weights for each cell

W ₁	W ₂
W_3	W ₄

/	×	

~	×	×

•	×	×
X		

✓	×	×
×	•	

/	×	×
X	✓	×

•	×	×
×	•	×
×		

✓	×	×
×	•	×
×	×	

✓	×	x
×	•	×
×	×	•

Creating such a filter allows us to:

- 1. Reduce the number of weights
- 2. Capture features all over the image

The process of applying a filter (or kernel) is called a convolution

To reduce the weights even further, another phase is done after convolution called Pooling:

Image from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Main application: Computer vision

Recurrent Neural Networks

Handling sequences of input.

Intuition: What a word is / might be in a sentence is easier to figure out if you know the words around it.

Applications:

- 1. Predicting the next word
- 2. Translation
- 3. Speech Recognition
- 4. Video Tagging

Recurrent Neural Networks

Neural Networks - Auto Encoders

