

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Apucarana

Laboratório de Análise de Circuitos Elétricos 1 (FUCO5A) 5 º Experimento – Teorema de Superposição, Thévenin e Norton.

1) Objetivos

- Calcular a resistência em circuitos séries e circuitos paralelos;
- Calcular a tensão circuitos séries e circuitos paralelos;
- Calcular

2) Material utilizado

- Multímetro;
- Matriz de contato (protoboard);
- Cinco resistores de 470 Ω , de 560 Ω , de 820 Ω , de 1 k Ω ;
- Potenciômetro 10K Ω .
- Fonte de Tensão variável.

3) Parte prática 01

Teorema de Thévenin

i) Construa o Circuito ilustrado na Fig. 1. Assuma R1 como um potenciômetro ajustado em 1 $k\Omega$, R2=560 Ω e R3=820 Ω . E1= 6 Vcc e E3 = 3,5 Vcc.

Figura 1 - Circuito Genérico 01.

ii) Determine as correntes R1 através do teorema da superposição.

Tabela 2 – Corrente em R1=1k Ω

Corrente	Valor da corrente medida (A)	Teórica (A)
I'_{s1}		
$I_{s1}^{\prime\prime}$		
I_{s1}		

	1 através do teorema da superpo	
	Tabela 2 – Tensão em R1 = 1 k Ω	
Corrente	Medida (V)	Teórica (V)
V'_{R1}		
$V_{ m R1}^{\prime\prime}$		
$V_{ m R1}$		
iii) Prove que a potência não po	ode ser calculada parcialmente p	 pelo teorema de superposição.
, reve que a potencia nas po	ode ser carcaraga pareranneme p	vero teorema de saperposição
4) Parte prática 02		
<u>Teorema de Thevenin</u>		
i) Considere o Circuito ilustrad	lo na Fig. 1. Assuma R1 como ur	m potenciômetro, R2=560 Ω e

- R3=820 Ω . E1= 6 Vcc e E3 = 3,5 Vcc.
- ii) Determine a corrente R1 através do teorema de Thévenin.

Tabela 2 – Corrente em R1

Corrente	Valor da corrente medida (A)	Teórica (A)
I_{R1} (R1 = 1 k Ω)		
$I_{R1} (R1 = 150\Omega)$		
$I_{R1} (R1 = 550\Omega)$		

iii) Determine a corrente R1 atra	avés do teorema de Thévenin.	
	Tabela 2 – Tensão em R1	
Corrente	Medida (V)	Teórica (V)
$V_{\rm R1}({\rm R1}=1~{\rm k}\Omega)$		
$V_{\rm R1} ({\rm R1} = 150\Omega)$		
$V_{\rm R1} ({\rm R1} = 550 \Omega)$		
4) Parte prática 03		
Teorema de Norton		
i) Considere o Circuito ilustrado	na Fig. 1. Assuma R1 como um	n potenciômetro, R2=560 Ω e

- i) Considere o Circuito ilustrado na Fig. 1. Assuma R1 como um potenciômetro, R2=560 Ω \in R3=820 Ω . E1= 6 Vcc e E3 = 3,5 Vcc.
- ii) Determine a corrente R1 através do teorema de Thévenin.

Tabela 2 – Corrente em R1

Corrente	Valor da corrente medida (A)	Teórica (A)
I_{R1} (R1 = 1 k Ω)		
$I_{\rm R1} \; ({\rm R1} = 150 \Omega)$		
$I_{R1} (R1 = 550\Omega)$		

iii) Determine a corrente R1 atra	vés do teorema de Thévenin.	
	Tabela 2 – Tensão em R1	
Corrente	Medida (V)	Teórica (V)
$V_{\rm R1}({\rm R1}=1~{\rm k}\Omega)$		
$V_{\rm R1} \ ({\rm R1} = 150\Omega)$		
$V_{\rm R1} ({\rm R1} = 550 \Omega)$		