Running the Updated HIREXSR Analysis Code (9/16/10)

The following should be added to your .bashrc file

LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/home/labombard/idl_lib/fortran
To compile the code run @hirexsr_ini.bat and compile *widgets* as necessary (use .compile *widgetname*).

1)	run HIREXSR_UPDATE_TREE which will create the HIREXSR node in spectroscopy and the				
	ANALYSIS, CALIB and INFO structures.				
2)	fill in INFO data from .info files using HIREXSR_LOAD_INFO2TREE or copy from another				
	shot uing HIREXSR_COPY_INFO				
	MOD #1	MOD #2	MOD #3	MOD #4	
3)	write rest wavelength table to new shot using HIREXSR_WRITE_WAVELENGTHS				
4)	a) <u>PERFORM CALIBRATIONS USING LOCKED MODE</u>				
	1. compile and run the calibration widget w_hirexsr_calib for each module.				
	MOD #1	MOD #2	MOD #3	MOD #4	
	2. verify or modify the crystal detector alignment using the alignment widget				
	w_hirexsr_det_align				
	MOD #1	MOD #2	MOD #3	MOD #4	
	3. write white field calibration HIREXSR_WRITE_WHITE				
	MOD #1	MOD #2	MOD #3	MOD #4	
	4. write filter transmission HIREXSR_WRITE_TRANS				
	b) COPY CALIBRATION DATA from another shot using HIREXSR_COPY_CALIB				
5)	write module ordering using HIREXSR_WRITE_MORDER				
6)	write binning using HIREXSR_WRITE_BINNING or copy from another shot using				
	HIREXSR_COPY_BINNING				
		H-LIKE			
7)	run HIREXSR_CALC_DATA to form averages spectra and moments, write them to the tree and				
		_		ne the spectra and moments	
	W(0)	X(1)	Z(2)	LYA1(3)	
8)	run HIREXSR_INVERT_DATA to calculate profiles, write them to the tree and use				
	w_hirexsr_profiles to examine the inversions.				
	W(0)	X(1)	Z(2)	LYA1(3)	