An introduction to Al and **Neural Networks**

@ENSPIMA - Bordeaux INP

Jean-Luc.Charles@ENSAM.EU

September 2022

Welcome to the course "An introduction to AI & Neural Networks"

Welcome

An introduction to get familiarised with...

- Machine learning
- Training & operating Artificial Neural Networks
- Tensorflow & keras Python modules
- Applications to Predictive Maintenance.

Welcome to the course "An introduction to AI & Neural Networks"

Welcome

An introduction to get familiarised with...

- Machine learning
- Training & operating Artificial Neural Networks
- Tensorflow & keras Python modules
- Applications to Predictive Maintenance.

Ressources

- 3 hours of lecture and 4 × practical work Python sessions (4 x 3h) on your laptop
- Dedicated github repository with all the course material (PDF, notebooks, videos...)

Practical Work: 4 × 3h

Welcome

0

Self training: Wake up your Python!

Start with the 2 notebooks
Wake_up_your_Python-part1.ipynb and ...part2.ipynb

References

Practical Work: 4 × 3h

0

Self training: Wake up your Python!

Start with the 2 notebooks Wake_up_your_Python-part1.ipynb and ...part2.ipynb

Self training: Al & Machine Learning

- 3 notebooks ML1_MNIST_en.ipynb, ML2_DNN_part1_en.ipynb and part2 target the skills:
 - load and pre-process MNIST images
 - build a **dense** neural network with tensorflow & keras
 - train the network to recognize MNIST images
 - evaluate and operate the trained network.

Practical Work: 4 × 3h

Self training: Wake up your Python!

Start with the 2 notebooksWake_up_your_Python-part1.ipynb and ...part2.ipynb

Self training: AI & Machine Learning

- 3 notebooks ML1_MNIST_en.ipynb,
 ML2_DNN_part1_en.ipynb and part2 target the skills:
 - load and pre-process MNIST images
 - build a dense neural network with tensorflow & keras
 - train the network to recognize MNIST images
 - evaluate and operate the trained network.

Mini-project: application to Predictive Maintenance

 use your skills to process a case of predictive maintenance with a dense neural network...

The historical wav...

00000

(from : developer.nvidia.com/deep-learning)

Artificial Intelligence?

Artificial Intelligence 1: remains an ambiguous term with multiple definitions varying with time:

- "...the science of making computers do things that require intelligence when done by humans." Alan Turing, 1940
- "the field of study that gives computers the ability to learn without being explicitly programmed." Arthur Samuel, 1960
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." Tom Mitchell, 1997
- Notion of intelligent agent or rational agent "...agent that acts in such a way as to reach the best solution or, in an uncertain environment, the best predictable solution."

first used in 1956 by John McCarthy, researcher at Stanford during the Dartmouth conference

Artificial Intelligences?

00000

Strong Al

Weak Al

General Al

Narrow Al

Artificial Intelligences ?

00000

Strong Al

- Build systems that think exactly the same way that people do.
- Try also to explain how humans think...
- Whe are not yet here...

Weak Al

General Al

Narrow Al

References

Artificial Intelligences?

00000

Strong Al

- Build systems that think exactly the same way that people do.
- Try also to explain how humans think...
- Whe are not yet here...

Weak Al

- Build systems that can behave like humans.
- The results will tell us nothing about how humans think.
- We already are there... We use it every day! (anti-spam, facial or voice recognition, language translation...)

General Al

Narrow Al

Artificial Intelligences?

00000

Strong Al

- Build systems that think exactly the same way that people do.
- Try also to explain how humans think...
- Whe are not yet here...

Weak Al

- Build systems that can behave like humans.
- The results will tell us nothing about how humans think.
- We already are there... We use it every day! (anti-spam, facial or voice recognition, language translation...)

General Al

Al systems designed for the ability to reason in general.

Narrow Al

Al systems designed for specific tasks.

Artificial Intelligence

00000

- Runs in much of our present technology (smartphone apps...)
- Powered by rapid advances in data storage, computer processing power
- Powered by free dataset acces via Internet and code publishing as open source environments
- Rate of acceleration is already astounding
- Will likeky shape our future more powerfully than any other innovation this century.

Some AI famous dates

- May 11, 1997: the IBM computer Deep Blue defeated Gary Kasparov at chess.
 - Today, Kasparov says: "computer that defeated me at chess is no more intelligent than an alarm clock"
 - The ability to defeat a human is no more a criteria for defining AI.
- 2011: IBM's Watson computer wins television game show Jeopardy, defeating legendary human champions.
- 2015: Google Deepmind developped an agent that surpassed human performances at 49 Atari games
- 2016: Google DeepMind's AlphaGo defeats Go champion Lee Sedol.

Machine Learning and Al

Page from medium.com/machine-learning-for-humans/...

Machine learning ⊆ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal. Subfields: vision, robotics, machine learning, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

SUPERVISED LEARNING

Classification, regression

UNSUPERVISE LEARNING

Clustering, dimensionality reduction, recommendation

REINFORCEMENT

Reward maximization

Machine Learning for Humans 🖮 🐽

Branches of Machine Learning

Supervised learning

Needs data and labels...

- Classification
 - Images classification
 - Objects detection
 - speech recognition...
- Regression
 - predict a value...
- Anomaly detection
 - Spam detection
 - Manufacturing: finding known (learned) defects
 - Weather prediction
 - Diseases classification...

Branches of Machine Learning

Unsupervised learning

Needs only data...

- Clustering non labelled data Grouping
 - Data mining, web data grouping, news grouping...
 - Market segmentation
 - DNA grouping
 - Astronomical data analysis...

Anomaly Detection

- Fraud detection
- Manufacturing: finding defects even new ones
- Monitoring activity: detecte abnormal activity (failure, hacker, fraud...)
- Fake account on Internet...
- Dimensionality reduction
 - Compress data using fewer numbers...

Branches of Machine Learning

Reinforcement learning

An agent learns to drive an environment...

- Reward maximisation
 - ...
 - Control/command
 - Controlling robots, drones...
 - Factory optimization
 - Financial (stock) trading...
 - Decision making
 - games (video games)
 - financial analysis...

Machine Learning approaches

Several approaches/technics can be used to design *Machine Learning* algorithms:

- Genetic programming
- Bayesian inference
- Fuzzy logic
- Neural Networks
- ..

The following deals only with Artificial Neural Networks.

The artificial neuron

An artificial neuron:

• receives the input data $(x_i)_{i=1..n}$ affected by the **weights** $(w_i)_{i=1..n}$ (weights)

References

The artificial neuron

The computer model of the artificial neuron

An artificial neuron:

- receives the input data $(x_i)_{i=1...n}$ affected by the **weights** $(w_i)_{i=1..n}$ (weights)
- calculates the **weighted sum** of its entries minus the bias $\sum_i w_i x_i - b$

The artificial neuron

An artificial neuron:

- receives the input data $(x_i)_{i=1..n}$ affected by the **weights** $(w_i)_{i=1..n}$ (weights)
- calculates the **weighted sum** of its entries minus the bias $\sum_i w_i x_i b$
- outputs a **activation** $f(\sum_i w_i x_i b)$, computed with an activation function f (generally non-linear).

Artificial neuron

The activation function of a neuron:

- introduces a non-linear behavior.
- sets the range of the neuron output, for example [-1,1], [0,1] or even $[0,\infty[$.

The bias b sets the activation threshold of the neuron.

Neural networks studied

 Neural networks are more or less complex assemblies of artificial neurons grouped by layers.

- Two architectures are very common:
 - The Dense Neural Network (DNN), simple, generalist, can perform greatly when well tuned.
 - The more complex Convolutional Neural Network (CNN), mainly specialized in image processing.

A must example: trainig a Dense Network to classify the MNIST handwritten digit images

 MNIST: bank of 70000 labeled images (60000 training images and 10000 test images)

- grayscale images 28 × 28 pixels.
- Scores with a dense networks can reach 98% success...
- State of the art for image recognition : Convolutional Neural Networks (CNN)
 [will not be covered in this course limited to dense networks]

Dense Neural Network architecture

Each matrix $28 \times 28 \sim$ normalized vector of 784 components float $\in [0;1]$.

Structure of the network:

- An Input layer sets the size of network inputs to 784 values.
 It has no neurons.
- A Hidden layer of 784 neurons (we could have more, or less...), receives the input data. It is connected to the next layer.
- An Output layer of 10 neurons (1 neuron for each digit to be recognized).

Activation functions

- In the intermediate layers the activation function relu often favors the learning of the network ² algorithm.
- Classification (last layer) uses the *softmax* function:

Activation function softmax

$$\begin{array}{c|c} \mathbf{1} & \mathbf{y_1} & \mathbf{Softmax} & \mathbf{Y_1} & \mathbf{[0\,;\,1]} & Y_1 = \frac{e^{y_1}}{\sum_i e^{y_i}} \\ \mathbf{2} & \mathbf{Softmax} & \mathbf{Y_2} & \mathbf{[0\,;\,1]} & Y_2 = \frac{e^{y_2}}{\sum_i e^{y_i}} \\ \end{array}$$

10
$$y_{10}$$
 Softmax Y_{10} [0;1] $Y_{10} = \frac{e^{y_{10}}}{\sum e^{y_{1}}}$

- The activation of neuron k is $Y_k = e^{y_k}/\sum_i e^{y_i}$ with $y_k = \sum_i \omega_i x_i b$ calculated by the neuron k.
- The outputs of the neurons are interpreted as probabilities in the interval [0,1].

The neuron with the greatest probability (activation) gives the response of the network by its associated label.

² avoids the *vanishing gradient* that appears in the *back propagation*

Purpose: to put the image labels in the format of the network output

- Image labels: **integers** from 0 to 9.
- Network output: **vector of 10** float in the interval [0,1] calculated by the softmax functions of the 10 output neurons.
- *one-hot* coding of an ordered collection of N unique elements:
- chiffre Y! : vecteur one-hot [10000000000] [0 1 0 0 0 0 0 0 0 0] [0010000000] [0 0 0 1 0 0 0 0 0 0] 3 [0 0 0 0 1 0 0 0 0 0] [0 0 0 0 0 1 0 0 0 0] 5 [0 0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 0 0 1]
- each element is coded by a vector of N null components except one.
- the *ith* element \sim vector with a 1 for *ith* component.

The one-hot encoding of labels '0' to '9' results in a 10-component vector, like the one computed by the neural network.

- An image processed by the network \sim vector \hat{Y} of 10 float to compare to the hot-one encoding Y of the label of the image.
- We use the error (or loss) function cross entropy adapted to the coding *one-hot*: $e(Y, \hat{Y}) = -\sum_{i} Y_{i} log(\hat{Y}_{i})$

Optimization and Back Propagation

- Feed forward stage: an optimization algorithm calculates the gradient of the loss function relative to network weights.
- Back Propagation: the BP algorithm modifies the weights of the network thanks to the gradient of the loss function. iterating from the last layer to the first layer.
- Examples of optimization algorithm used:
 - Gradient Descent (GD)
 - Stochastic Gradient Descent (SGD)
 - Adam (enhanced version of gradient descent)...

The module tf.keras.optimizers offers Python implementation of several optimization algorithms.

Dense Neural Network

Visualization of gradient descent algorithm iterations for an ultra-simple loss function with only 2 variables:

(source: github.com/Jaewan-Yun/optimizer-visualization)

back propagation algorithm explanation video:

Supervised learning strategy

Supervised learning: Feed Forward and Back Propagation

The full data set is splitted in (mini) batches of size batch_size

Supervised learning strategy

Supervised learning: Feed Forward and Back Propagation

- The full data set is splitted in (mini) batches of size batch_size
- After each batch has been fed forward: the Back Propagation algorithm modifies the weights of the network layer by layer to minimize the error e.

Supervised learning strategy

The training over the ful data set is repeated n_epoch times....

Videos

1/ Local; "Le deep learning - YouTube.webm"

Backpropagation

Local: "Gradient descent how neural networks learn.webn

4/ Local: "What is backpropagation really doing .webm

References

- [1] Artificial Intelligence: A Modern Approach (4th Edition), By Stuart Russell & Peter Norvig. Pearson, 2020. ISBN 978-0134610993. aima.cs.berkeley.edu
 - Intelligence artificielle Une approche moderne 4e éd., By Stuart Russell & Peter Norvig. Translated by L. Miclet, F. Popineau, & C. Cadet. Paris: Pearson Education France, 2021. ISBN 978-2326002210.
- [2] What is artificial intelligence (AI), and what is the difference between general AI and narrow AI?, Kris Hammond, 2015 www.computerworld.com/article/2906336/what-is-artificial-intelligence.html
- [3] Stanford Encyclopedia of Philosophy, plato.stanford.edu/entries/artificial-intelligence
- [4] Deep Learning., Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016), MIT Pres, ISBN 9780262035613

References