COMPITO B

Algebra e Geometria, Fisica, (Fioresi)

	20 Dicembre, 2018	
NOME:		

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
Totale	

COGNOME:

Esercizio 1 (50 punti)

- a) Si dimostri che una matrice hermitiana $A \ n \times n$ e' definita positiva se e solo se $\langle Av, v \rangle > 0$ per ogni $v \in \mathbb{C}^n$ (ove \langle , \rangle denota il prodotto hermitiano standard).
- b) Si risponda vero o falso motivando la risposta con una dimostrazione oppure con un controesempio.
- I) Se A e B sono matrici in $M_n(\mathbf{C})$ con la stessa forma di Jordan allora hanno lo stesso polinomio caratteristico.
- II) Un sistema lineare reale di 6 equazioni di 4 incognite ha sempre infinite soluzioni.
- III) Sia A una matrice complessa $n \times n$. Se $A = -A^*$ allora A ha autovalori immaginari puri (cioe' del tipo αi , $\alpha \in \mathbf{R}$).
- IV) Sia V uno spazio vettoriale reale finito dimensionale con un prodotto scalare non degenere e W un suo sottospazio. Allora $(W^{\perp})^{\perp} = W$.

CREDITO EXTRA. Si dimostri che se A e' una matrice hermitiana definita positiva e invertibile allora esiste N invertibile tale che $A = N^*N$.

Esercizio 2 (50 punti)

a) Dato il sottospazio vettoriale W di ${\bf C}^3$ definito dall'equazione:

$$bx + iy + bz = 0,$$

Si calcoli una base ortonormale per W rispetto al prodotto hermitiano standard in \mathbb{C}^3 .

b) Data in \mathbb{R}^2 la conica di equazione:

$$x^2 + 3xy + (k+1)y^2 = 1$$

Si dica al variare di k di che conica si tratta. Posto k=0 se ne dia un disegno di massima.

Esercizio 3 (50 punti)

Si consideri la matrice reale

$$A = \begin{pmatrix} a & 0 & 0 \\ 2 & -2 & -2 \\ 2 & -3 & -1 \end{pmatrix}$$

- a) Si scriva la forma bilineare associata. E' un prodotto scalare?
- b) Si determini (se possibile) P tale che $P^{-1}AP$ sia diagonale. E' possibile scegliere P ortogonale? Si motivi la risposta.