第一章 计算机系统概述

2022年9月6日 星期二 16:45

操作系统的概念

- 操作系统负责管理协调硬件,软件等计算机资源的工作
- 操作系统为上层用户,应用程序提供简单易用的服务
- 操作系统是一种系统软件

操作系统的特征

- 并发和共享最基本的两个性质
- 并发和共享互为存在条件 没有并发和共享,就谈不上虚拟和异步
- | *并发* | 并发:两个或多个事件在同一时间间隔内发送【同一时间间隔】
- 并行:系统具有同时进行运算或操作的特性【同一时刻】
 - 可并行的有【处理机与设备】【处理机与通道】【设备与设备】
 - 不可并行的有【进程与进程】
- 真正实现并行的是多核处理机 ● 共享: 是指系统中的资源可供内存中多个并发执行的程序共同使用
- 互斥共享方式 A用完之后,才可以给B用
 - 如对摄像头设备的共享使用
- 同时共享方式 一段时间内由多个进程同时访问

● 如对硬盘资源的共享使用

- 虚拟是指把一个物理上的实体变为若干逻辑上的对应物
- 空分复用技术【虚拟的扩充空间】 如虚拟存储器 时分复用技术【虚拟的扩充时间】 ● 如处理器的分时共享
- 进程的执行不是一贯到底的,而是走走停停的,它以不可预知的速度向前推进

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
资源的管理者

资源的管理者	• 处理器管理
	○ 处理机的分配和运行都以进程为基本单位,处理器管理=对进程的管理
	○ 主要功能: 进程控制+进程同步+进程通信+死锁处理+处理机调度
	• 存储器管理
	○ 为了给多道程序的运行提供良好的环境,方便用户使用及提高内存的利用率
	○ 主要功能: 内存分配与回收+地址映射+内存保护+共享和内存扩充
	• 文件管理
	○ 计算机的信息都是以文件的形式存在的
	↑ ○ 主要功能:文件存储空间的管理+目录管理+文件读写管理和保护
	• 设备管理
	○ 主要是完成用户的I/O请求,方便用户使用各种设备,提高设备的利用率
	○ 主要功能:缓冲管理+设备分配+设备处理+虚拟设备 ————————————————————————————————————
为用户和计算机硬件系统	
	○ GUI用户图像界面○ 命令接口
	<mark>联机命令接口</mark> 【用户发送一个命令,系统就执行一次,主要特点是 <mark>交互性</mark> ,适用于分时或实时系
	统】
	<mark>脱机命令接口</mark> 【用户一次性发送命令清单,系统按清单执行, <mark>中途不能干预</mark> ,适用于批处理系统
	【解决独占问题】
	● 给软件/程序员使用的
	○ 程序接口【即系统调用】
对计算机资源的扩充	• 裸机: 没有任何软件支持的计算机

• 微内核OS知识点补充

- 优点: 【内核足够小】【基于C/S模式】【应用机制与策略分离原理】【采用面向对象技术】
- 缺点: 【性能问题】【开销偏大】

	特性、思想	优点	缺点	
公尺结构	内核分多层,每层可单向调用更低一层提供的接	○ 1. 便于调试和验证,自底向上逐层调试验证	1. 仅可调用相邻低层,难以合理定义各层的边界	
分层结构	•	2. 易扩充和易维护,各层之间调用接口清晰固定	○ 2. 效率低,不可跨层调用,系统调用执行时间长	
Z	将内核划分为多个模块,各模块之间相互协作。 内核 = 主模块+可加载内核模块 ○ 主模块: 只负责核心功能, 如进程调度、内存管理 可加载内核模块: 可以动态加载新模块到内核,	1. 模块间逻辑清晰易于维护,确定模块间接口后即可多模块同时开发	1. 模块间的接口定义未必合理、实用	
模块化		2. 支持动态加载新的内核模块(如:安装设备驱 □ 动程序、安装新的文件系统模块到内核),增强	§)	
		OS适应性	×	
	而无需重新编译整个内核 3. 任何模块都可以直接调用其他模块,无需消息传递进行通信,效率高		2. 模块间相互依赖,更难调试和验证	
			○ 1. 内核庞大功能复杂,难以维护	
7-10100 1-01000		○ 1. 性能高,内核内部各种功能都可以直接相互调用 用	2. 大内核中某个功能模块出错,就可能导致整个系统崩溃	
	只把中断、原语、进程通信等最核心的功能放入 内核。进程管理、文件管理、设备管理等功能以 用户进程的形式运行在用户态 2. 内核外的某个功能模块出错不会导致整个系统 崩溃	只把中断、原语、进程通信等最核心的功能放入	○ 1. 内核小功能少、易于维护,内核可靠性高	1. 性能低,需要频繁的切换 用户态/核心态。 用
微内核		3/1/2		
		崩溃	2. 用户态下的各功能模块不可以直接相互调用, 只能通过内核的"消息传递"来间接通信	
外核(exokernel)	□ 1. 外核可直接给用户进程分配"不虚拟、不抽象" □ 1. 外核可直接给用户进程分配"不虚拟、不抽象" □ 1. 外核可直接给用户进程可以更灵活的使用硬件 □ 2. 降低 □ 3. 降低 □ 3. 下降低 □ 3. 下降 □ 4. 下降 □ 4	1. 降低了系统的一致性		
7) 12 (exokerner)	负责保证资源使用安全	○ 2. 减少了虚拟硬件资源的"映射层",提升效率	2. 使系统变得更复杂	

操作系统引导【开机过程】

1. CPU加电,CS: IP指向FFFF0H

- 2. 执行JMP指令跳转到BIOS
- 3. 登记BIOS中断例程入口地址 4. 硬件自检
- 5. 进行操作系统引导

引导过程

step1:CPU从一个特定主存地址开始,取指令,执行ROM中的引导程序【即前面的启动过程】

- step2:将磁盘的第一块----主引导记录读入内存,执行磁盘引导程序,扫描分区表
- step3:从活动分区【又称主分区,即安装了操作系统的分区】读入分区引导记录,执行其中的程序 step4:从根目录下找到完整的操作系统初始化程序【即启动管理器】并执行,完成开机的一系列操作

注意点:

• 引导程序有两种

- 一种是位于ROM中的自举程序(BIOS的组成部分),用于启动具体的设备
- 一种是位于装有操作系统硬盘的活动分区的引导扇区的引导程序(称为启动管理器),用于引导操作系统
- 操作系统被装入RAM中 • 自举程序BIOS装在ROM中
- 引导程序装在硬盘中

• 使用虚拟化技术,将一台物理机器虚化为多台虚拟机器VM,每个虚拟机器都可用独立运行一个操作系统

	第一类VMM	第二类VMM
对物理资源的控制权	直接运行在硬件之上,能直接控制和分配物理资源	运行在Host OS之上,依赖于Host OS为其分配物 理资源
资源分配方式	在安装Guest OS时,VMM要在原本的硬盘上自行分配存储空间,类似于"外核"的分配方式,分配未经抽象的物理硬件	GuestOS 拥有自己的虚拟磁盘,该盘实际上是 Host OS 文件系统中的一个大文件。GuestOS分 配到的内存是虚拟内存
性能	性能更好	性能更差,需要HostOS作为"中介"
可支持的虚拟机数量	更多,不需要和 Host OS 竞争资源,相同的硬件 资源可以支持更多的虚拟机	更少,Host OS 本身需要使用物理资源,Host OS 上运行的其他进程也需要物理资源
虚拟机的可迁移性	更差	更好,只需导出虚拟机镜像文件即可迁移到另一台 HostOS 上,商业化应用更广泛
运行模式	第一类VMM运行在最高特权级(Ring 0),可以 执行最高特权的指令。	第二类VMM部分运行在用户态、部分运行在内核态。GuestOS 发出的系统调用会被 VMM 截获,并转化为 VMM 对 HostOS 的系统调用

操作系统发展历程

	定义	特点	优点	缺点
F工操作阶段				● 用户独占全机,资源利用率低
				● CPU等待手工操作,CPU的利用不充分
自道批处理系统		● 自动性, 顺序性, 单道性		● 资源利用率低,吞吐量小
多道批处理系统	● 批处理: 允许多个用户将若干个作业提交给计算机系统集中处理	● 多道,共享性,宏观上并行,微观上串行	● 资源利用率高	● 用户响应时间长
	● 多道性是为了提高系统利用率和吞吐量而提出的	• 引入多道后,系统就失去了封闭性和顺序性	● 系统吞吐量大	• 不提供人机交互能力【批处理作业时用户无法干预】【主要缺点】
		● 制约性,程序执行因为共享资源和协同所有产生了竞争,	相互制约 • CPU利用率高	
		● 考虑到竞争的公平性,程序的执行是断续的	● IO设备利用率高	
分时操作系统	● 允许多个用户以交互的方式使用计算机的操作系统	● 同时性	• 提供人机交互能力	● 不能再规定的时间内做出处理
	● 要求快速响应用户是导致分时系统出现的重要原因	● 交互性		
	● 响应时间 = 时间片*用户	● 独立性		
	● 进程调度通常采用抢占式的优先级高者优先	● 及时性		
实时操作系统	● 在该操作系统下,计算机系统能及时处理由过程控制反馈的数据,并及时值	故出响应 ● 硬实时系统: 必须在绝对严格的时间内	• 追求的目标: 【安全可靠】 【及时处	理】【快速处理】
		完成处理。如导弹控制系统,自动驾驶系统		
		• 软实时系统:能偶尔接受违反时间规定,如		
		12306火车订票系统		
分布式操作系统		● 分布性,并行性		
网络操作系统		● 网络中各种资源的关系及各台计算机之间的通信		

操作系统运行的环境

