Lecture # 19 CHE331A

Design/Analysis of Isothermal Reactors

Collection & Analysis of Data; Isothermal Reactor Design for Multiple Reactions

Nonelementary
Homogeneous
Reactions: Active
intermediates, PSSH &
Chain Reactions

Nonelementary
Homogeneous Reactions:
Active intermediates,
PSSH, Thermal Cracking &
Michaelis-Menten kinetics

Michaelis-Menten kinetics: Its constants, parameter determination, and various forms

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

- The Michaelis Menten equation $-r_s = \frac{k_{cat}C_{E_t}C_s}{C_s + K_M}$ is a form of the Michaelis Menten equation and contains two constants, k_{cat} and K_{M}
- $\blacktriangleright k_{cat}$ is referred to as the *turnover number*
 - Is the number of substrate molecules converted in a given time on a single enzyme molecule when the enzyme is saturated with substrate, $C_S \gg K_M$
- $ightharpoonup K_M$ (mol/dm³) is the Michaelis constant and is a measure of the attraction of the enzyme for its substrate, also called affinity constant
- ▶ Further, with V_{max} representing the maximum rate for a given C_{E_t}
- and the Michaelis Menten equation becomes ightharpoonup Then, $V_{max} = k_{cat}C_{E_t}$

$$-r_{\mathcal{S}} = \frac{V_{max}C_{\mathcal{S}}}{K_{\mathcal{M}} + C_{\mathcal{S}}}$$

The Michaelis – Menten equation and its constants

- ▶ The Michaelis Menten equation $-r_S = \frac{V_{max}C_S}{K_M + C_S}$
- $-r_{\mathcal{S}} \cong \frac{V_{max}C_{\mathcal{S}}}{K_{\mathcal{M}}}$ ightharpoonup At low C_S , $K_M \gg C_S$
 - Apparent 1st order in S
- ightharpoonup At high C_S , $K_M \ll C_S$ $-r_S \cong V_{max}$
 - Apparent 0 order in S
- ▶ If the C_S is such that the $-r_S = 0.5 V_{max}$
- ► Then, $0.5V_{max} = \frac{V_{max}C_{S_{1/2}}}{K_M + C_{S_{1/2}}}$ and

$$K_M = C_{S_{1/2}}$$

▶ The two constants, V_{max} and K_M , characterize the enzymatic reaction $\stackrel{\circ}{\xi}$

Finding the parameters (constants) of the Michaelis – Menten equation

- Constants for the Michaelis Menten equation $-r_S = \frac{V_{max}C_S}{K_M + C_S}$ are found by linearizing the equation and using data for $-r_S$ vs. C_S
- ► Three ways this can be done

 $ightharpoonup V_{max}$ and K_M are determined from the slope and intercept (example 7-3).

Finding the parameters (constants) of the Michaelis – Menten equation

- ► From the slope and intercept the values of V_{max} and K_M can be determined
- ▶ These values can be used as initial guesses for non-linear regression

Rate laws can be developed for different enzymatic mechanisms

- ▶ Product formation is reversible: $E + S \rightleftharpoons E.S \rightleftharpoons P + E$
 - \circ last step is reversible instead of being irreversible, $S \rightleftharpoons P$

$$-\boldsymbol{r_S} = \frac{V_{max}(C_S - C_P/K_C)}{K_M + C_S + K_P C_P}$$

- Inhibition of Enzyme reactions: Inhibitor given as species I
 - Competitive inhibition $E + S \rightleftharpoons E.S \rightarrow P + E \& E + I \rightleftharpoons E.I (inactive)$
 - Uncompetitive inhibition $E + S \rightleftharpoons E.S \rightarrow P + E \& E.S + I \rightleftharpoons E.S.I$ (inactive)
 - Noncompetitive inhibition: competitive & $E.S + I \rightleftharpoons E.S.I$ (inactive)

&
$$E.I + S \rightleftharpoons E.S.I$$
 (inactive)

Rate laws developed using PSSH (also quasi-equilibrium approach)