Tutorial 11

STAT3015/4030/7030 Generalised Linear Modelling

The Australian National University

Week 11, 2017

Overview

Summary

Two-way contingency table

Sampling Schemes for $R \times C$ tables

• **Poisson distribution** - a fixed amount of time (space, volume, money, etc.) is devoted to collecting a random sample from a single population, and each member of the population falls into one of the $R \times C$ cells. None of the marginal totals are known in advance.

Two-way contingency table

- **Multinomial distribution** Similar to Poisson sampling but the total sample size is known in advance.
- **Product multinomial distribution** row totals are fixed. Within each row, the response can fall into one of column j, (j = 1, ..., C). That is, each row defines a multinomial population. (Vice versa, can have column totals fixed and each column defines a multinomial population).

Test of independence/homogeneity

- fixed total $n \longrightarrow$ multinomial distribution \longrightarrow test of independence
- ullet fixed column totals $Y_{ullet j} \longrightarrow {\sf product}$ multinomial distribution $\longrightarrow {\sf test}$ of homogeneity within each column
- different philosophies but identical analysis techniques

Two tests

There are two "classical" tests of independence:

To test H_0 : no association between Factor 1 and Factor 2

Likelihood ratio

$$2\sum_{i=1}^{R}\sum_{j=1}^{C}O_{ij}\log\left(\frac{O_{ij}}{E_{ij}}\right)$$

Pearson Chi-squared

$$\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Both have an asymptotic χ^2 distribution with (r-1)(c-1) degrees of freedom

Pearson residuals

Interpretation of Pearson residuals: (Page 78 of brick)

- $(i,j)^{\text{th}}$ cell with a large positive residual $\longrightarrow O_{ij} \gg E_{ij}$, where E_{ij} is the expected value under the independence assumption.
- It indicates that individuals in the j^{th} column are more likely to be in the i^{th} row than individuals in the other columns
- vice versa

> rij1

(Cheese Tasting Example on Page 81) III stands for "best" and VIII for "worst"

Within each section (i.e. A, \dots, D) from left to right on the horizontal axis: $III, IV, \dots, VIII$