Chapter 12 Probability

12.1 Permutations and Combinations

Permutations: ⁿP_m

Combinations: ⁿC_m

Whole numbers: n, m

$$n! = 1 \cdot 2 \cdot 3 \dots (n-2)(n-1)n$$

 $0! = 1$

1252.
$${}^{n}P_{n} = n!$$

1253.
$$^{n}P_{m} = \frac{n!}{(n-m)!}$$

1254. Binomial Coefficient

$$^{n}C_{m} = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

1255.
$${}^{n}C_{m} = {}^{n}C_{n-m}$$

1256.
$${}^{n}C_{m} + {}^{n}C_{m+1} = {}^{n+1}C_{m+1}$$

1257.
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

1258. Pascal's Triangle

Row 0							1						
Row 1						1		1					
Row 2					1		2		1				
Row 3				1		3		3		1			
Row 4			1		4		6		4		1		
Row 5		1		5		10		10		5		1	
Row 6	1		6		15		20		15		6		1

12.2 Probability Formulas

Events: A, B Probability: P

Random variables: X, Y, Z

Values of random variables: x, y, z

Expected value of X: µ

Any positive real number: ϵ

Standard deviation: σ

Variance: σ²

Density functions: f(x), f(t)

1259. Probability of an Event

$$P(A)=\frac{m}{n}$$
,

where

m is the number of possible positive outcomes, n is the total number of possible outcomes.

1260. Range of Probability Values
$$0 \le P(A) \le 1$$

1261. Certain Event
$$P(A) = 1$$

1262. Impossible Event
$$P(A) = 0$$

1263. Complement
$$P(\overline{A}) = 1 - P(A)$$

1264. Independent Events

$$P(A/B) = P(A)$$
,
 $P(B/A) = P(B)$

1265. Addition Rule for Independent Events
$$P(A \cup B) = P(A) + P(B)$$

1266. Multiplication Rule for Independent Events
$$P(A \cap B) = P(A) \cdot P(B)$$

1267. General Addition Rule
$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$
where
$$A \cup B \text{ is the union of events A and B,}$$

$$A \cap B \text{ is the intersection of events A and B.}$$

1268. Conditional Probability
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

1269.
$$P(A \cap B) = P(B) \cdot P(A/B) = P(A) \cdot P(B/A)$$

1270. Law of Total Probability

$$P(A) = \sum_{i=1}^{m} P(B_i) P(A/B_i),$$

where B_i is a sequence of mutually exclusive events.

1271. Bayes' Theorem

$$P(B/A) = \frac{P(A/B) \cdot P(B)}{P(A)}$$

1272. Bayes' Formula

$$P(B_i/A) = \frac{P(B_i) \cdot P(A/B_i)}{\sum_{k=1}^{m} P(B_i) \cdot P(A/B_i)},$$

where

B_i is a set of mutually exclusive events (hypotheses),

A is the final event,

 $P(B_i)$ are the prior probabilities,

 $P(B_i / A)$ are the posterior probabilities.

1273. Law of Large Numbers

$$P\left(\left|\frac{S_n}{n}-\mu\right|\geq \epsilon\right)\to 0 \text{ as } n\to\infty$$
,

$$P\left(\left|\frac{S_n}{n}-\mu\right|<\varepsilon\right)\to 1 \text{ as } n\to\infty$$
,

where

S_n is the sum of random variables, n is the number of possible outcomes.

1274. Chebyshev Inequality

$$P(|X-\mu| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$
,

where V(X) is the variance of X.

1275. Normal Density Function

$$\varphi(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}},$$

where x is a particular outcome.

1276. Standard Normal Density Function

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

Average value $\mu = 0$, deviation $\sigma = 1$.

Figure 210.

1277. Standard Z Value

$$Z = \frac{X - \mu}{\sigma}$$

1278. Cumulative Normal Distribution Function

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

where

x is a particular outcome, t is a variable of integration.

1279.
$$P(\alpha < X < \beta) = F\left(\frac{\alpha - \mu}{\sigma}\right) - F\left(\frac{\beta - \mu}{\sigma}\right)$$
,

where

X is normally distributed random variable, F is cumulative normal distribution function, $P(\alpha < X < \beta)$ is interval probability.

1280.
$$P(|X - \mu| < \varepsilon) = 2F(\frac{\varepsilon}{\sigma})$$
,

where

X is normally distributed random variable, F is cumulative normal distribution function.

1281. Cumulative Distribution Function

$$F(x) = P(X < x) = \int_{0}^{x} f(t) dt,$$

where t is a variable of integration.

1282. Bernoulli Trials Process

$$\mu = np$$
, $\sigma^2 = npq$,

where

n is a sequence of experiments,

p is the probability of success of each experiments,

q is the probability of failure, q = 1 - p.

1283. Binomial Distribution Function

$$b(n,p,q) = {n \choose k} p^k q^{n-k},$$

CHAPTER 12. PROBABILITY

$$\mu = np$$
, $\sigma^2 = npq$,
 $f(x) = (q + pe^x)^n$,

where

n is the number of trials of selections, p is the probability of success, q is the probability of failure, q = 1 - p.

1284. Geometric Distribution

$$P(T = j) = q^{j-1}p$$
,
 $\mu = \frac{1}{p}$, $\sigma^2 = \frac{q}{p^2}$,

where

T is the first successful event is the series, j is the event number, p is the probability that any one event is successful, q is the probability of failure, q = 1 - p.

1285. Poisson Distribution

$$P(X=k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \lambda = np,$$

$$\mu = \lambda$$
, $\sigma^2 = \lambda$,

where

 λ is the rate of occurrence, k is the number of positive outcomes.

1286. Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

1287. Continuous Uniform Density

$$f = \frac{1}{b-a}, \ \mu = \frac{a+b}{2},$$

CHAPTER 12. PROBABILITY

where f is the density function.

- 1288. Exponential Density Function $f(t) = \lambda e^{-\lambda t}$, $\mu = \lambda$, $\sigma^2 = \lambda^2$ where t is time, λ is the failure rate.
- 1289. Exponential Distribution Function $F(t)=1-e^{-\lambda t}$, where t is time, λ is the failure rate.
- 1290. Expected Value of Discrete Random Variables

$$\mu = E(X) = \sum_{i=1}^{n} x_i p_i,$$

where x_i is a particular outcome, p_i is its probability.

1291. Expected Value of Continuous Random Variables

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

1292. Properties of Expectations

$$E(X+Y)=E(X)+E(Y),$$

$$E(X-Y)=E(X)-E(Y),$$

$$E(cX) = cE(X),$$

$$E(XY) = E(X) \cdot E(Y)$$
,

where c is a constant.

1293. $E(X^2) = V(X) + \mu^2$,

where

 $\mu = E(X)$ is the expected value,

V(X) is the variance.

1294. Markov Inequality

$$P(X>k)\leq \frac{E(X)}{k}$$

where k is some constant.

1295. Variance of Discrete Random Variables

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_{i=1}^n (x_i - \mu)^2 p_i$$
,

where

x; is a particular outcome,

p_i is its probability.

1296. Variance of Continuous Random Variables

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

1297. Properties of Variance

$$V(X+Y)=V(X)+V(Y),$$

$$V(X-Y)=V(X)+V(Y),$$

$$V(X+c)=V(X),$$

$$V(cX)=c^2V(X),$$

where c is a constant.

1298. Standard Deviation

$$D(X) = \sqrt{V(X)} = \sqrt{E[(X - \mu)^2]}$$

1299. Covariance

$$cov(X,Y) = E[(X - \mu(X))(Y - \mu(Y))] = E(XY) - \mu(X)\mu(Y),$$

where

X is random variable,

V(X) is the variance of X,

 μ is the expected value of X or Y.

CHAPTER 12. PROBABILITY

1300. Correlation

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}},$$

where

V(X) is the variance of X,

V(Y) is the variance of Y.