ST5215 Advanced Statistical Theory, Lecture 25

HUANG Dongming

National University of Singapore

12 Nov 2020

Overview

Last time

- Properties of LSE without normality
- Consistency of LSE

Today

- Asymptotic normality of LSE
- Bayes estimator and Minimaxity
- Empirical Bayes estimator and Inadmissiblity

Recap: BLUE and L_2 consistency

$$X = Z\beta + \epsilon, \tag{1}$$

- A *linear estimator* is a linear function of X, i.e., $\mathbf{c}^{\top}X$ for some fixed vector \mathbf{c} .
- Suppose $\ell \in \mathcal{R}(Z)$, the best linear unbiased estimator (BLUE) of $\ell^{\top} \beta$ is $\ell^{\top} \hat{\beta}$ if
 - $\operatorname{Var}(\epsilon) = \sigma^2 I$
 - ▶ $Var(\epsilon) = \Sigma$ and $\mathbf{P}_Z \Sigma = \Sigma \mathbf{P}_Z$ (Robustness)
- If Z is of full rank and $\epsilon \sim N_n(0, \Sigma)$, where Σ is an unknown positive definite matrix, then $\ell^{\top}\hat{\beta}$ is a UMVUE of $\ell^{\top}\beta$ for any $\ell \in \mathcal{R}^p$ if $\mathbf{P}_Z\Sigma = \Sigma\mathbf{P}_Z$
- If $\sup_n \|\Sigma\| < \infty$ and $\|(Z^\top Z)^-\| \to 0$, then $\ell^\top \hat{\beta}$ is L_2 -consistent for $\ell^\top \beta$ for any $\ell \in \mathcal{R}(Z)$

Asymptotic Normality of LSE

- Consider model $X = Z\beta + \epsilon$ under assumption A3
- Assume that ϵ_i 's are independent with variances σ_i^2 's
- For $\ell \in \mathcal{R}(Z)$, the asymptotic behavior of $\ell^{\top}(\hat{\beta} \beta)$ is determined by $\ell^{\top}A_nZ^{\top}\epsilon$, where $A_n = (Z^{\top}Z)^-$

Theorem

Suppose that $\tau := \inf_n \sigma_n^2 > 0$ and that

$$\lim_{n\to\infty} \max_{1\leq i\leq n} Z_i^\top A_n Z_i = 0.$$
 (2)

12 Nov 2020

4/25

If (a) $\sup_i E|\epsilon_i|^{2+\delta} < \infty$ or (b) if ϵ_i 's have the same distribution, then for any $\ell \in \mathcal{R}(Z)$,

$$\ell^{\top}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / \sqrt{\operatorname{Var}(\ell^{\top}\hat{\boldsymbol{\beta}})} \rightarrow_{d} N(0, 1).$$
 (3)

Proof

• Since $\ell \in \mathcal{R}(Z)$,

$$\ell^{\top} (Z^{\top} Z)^{-} Z^{\top} Z \beta - \ell^{\top} \beta = 0$$

• Let $c_n = Z(Z^\top Z)^- \ell$, then

$$\ell^{\top}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \ell^{\top}(Z^{\top}Z)^{-}Z^{\top}\epsilon = \sum_{j=1}^{n} c_{n,j}\epsilon_{j}$$

Note that

$$||c_n||^2 = (Z(Z^{\top}Z)^{-\ell})^{\top} Z(Z^{\top}Z)^{-\ell} = \ell^{\top}(Z^{\top}Z)^{-\ell}$$

and

$$\max_{1 \leq j \leq n} |c_{n,j}|^2 \leq \max_{1 \leq j \leq n} [\ell^\top (Z^\top Z)^- Z_j]^2 \leq \ell^\top (Z^\top Z)^- \ell \max_{1 \leq j \leq n} Z_j^\top (Z^\top Z)^- Z_j.$$

These together with Condition (2) imply that

$$\lim_{n\to\infty} \left(\max_{1\leq j\leq n} |c_{n,j}|^2 \middle/ \|c_n\|^2 \right) = 0.$$

H.D. (NUS)

Proof (Cont.)

The rest is to check the Lindeberg's condition holds for the triangular array $\{c_{n,j}\epsilon_j:1\leq j\leq n,n=1,2,\ldots\}$.

- (a). Suppose $K = \sup_i E|\epsilon_i|^{2+\delta} < \infty$
 - The row sum of variance is $s_n^2 = \sum_{j=1}^n c_{n,j}^2 \mathrm{Var}(\epsilon_j) \ge \|c_n\|^2 \tau$
 - For any constant a > 0,

$$E\left(|c_{n,j}\epsilon_j|^2I_{|c_{n,j}\epsilon_j|>as_n}\right)\leq \frac{1}{a^\delta s_n^\delta}E|c_{n,j}\epsilon_j|^{2+\delta}\leq \frac{c_{n,j}^{2+\delta}}{a^\delta s_n^\delta}K$$

- $\bullet \ \ \frac{1}{s_n^2} \sum_{j \le n} E\left(|c_{n,j}\epsilon_j|^2 I_{|c_{n,j}\epsilon_j| > as_n}\right) \le \frac{\sum_{j \le n} c_{n,j}^{2+\delta}}{s_n^{2+\delta}} \frac{K}{a^{\delta}} \le \frac{\sum_{j \le n} c_{n,j}^{2+\delta}}{\|c_n\|^{2+\delta}} \frac{K}{\tau a^{\delta}}$
- Note that $\sum_{j\leq n} c_{n,j}^{2+\delta} \leq \sum_{j\leq n} c_{n,j}^2 \left(\max_{j\leq n} c_{n,j} \right)^{\delta}$, we have

$$\frac{\sum_{j \leq n} c_{n,j}^{2+\delta}}{\|c_n\|^{2+\delta}} \leq \left(\frac{\max_{j \leq n} |c_{n,j}|}{\|c_n\|}\right)^{\delta} = o(1)$$

- (b). Suppose ϵ_i 's have the same distribution. Then $\mathrm{Var}(\epsilon_j) = \tau$ for all j
 - The row sum of variance is $s_n^2 = \sum_{j=1}^n c_{n,j} \mathrm{Var}(\epsilon_j) = \|c_n\|^2 \tau$
 - For any constant a > 0,

$$\begin{split} &\frac{1}{s_n^2} \sum_{j \leq n} E\left(|c_{n,j}\epsilon_j|^2 I_{|c_{n,j}\epsilon_j| > as_n}\right) \\ &= \frac{1}{\tau \|c_n\|^2} \sum_j c_{n,j}^2 E|\epsilon|^2 I_{|c_{n,j}\epsilon| > as_n} \\ &\leq \frac{\sum_j c_{n,j}^2}{\tau \|c_n\|^2} \max_{j \leq n} E|\epsilon|^2 I_{|c_{n,j}\epsilon| > as_n} \\ &= \tau^{-1} E|\epsilon|^2 I\{\left(\max_{j \leq n} c_{n,j}^2 / \|c_n\|^2\right)^{1/2} |\epsilon| > a\}, \end{split}$$

which is o(1) because $\max_{j \le n} c_{n,j}^2 / \|c_n\|^2 = o(1)$ and by the DCT

H.D. (NUS) ST5215, Lecture 25 12 Nov 2020 7/25

Remarks

- Theorem 3.12 of the textbook is a more general result that allows the noise to be block-wise independent. Its proof uses Corollary 1.3.
- Condition (2) is almost necessary for the consistency of the LSE (choose ℓ to be Z_i the ith row of Z)

Proposition (Exercise 3.6.80)

For any fixed $i \leq n$, let $\hat{X}_i^{(n)} = Z_i^{\top} \hat{\beta}$ and $h_i^{(n)} = Z_i^{\top} (Z^{\top} Z)^{-} Z_i$. Suppose assumption A2 holds.

(a) For any $\delta > 0$,

$$P(|\hat{X}_i^{(n)} - E\hat{X}_i^{(n)}| \ge \delta) \ge \min\{P(\varepsilon_i \ge \delta/h_i^{(n)}), P(\varepsilon_i \le -\delta/h_i^{(n)})\}.$$
 (4)

(b) $\hat{X}_i - E\hat{X}_i \stackrel{P}{\to} 0$ if and only if $h_i \to 0$.

If U and V are independent, then for $\epsilon > 0$,

$$P(|U+Y| \ge \epsilon) \ge P(U \ge \epsilon)P(Y \ge 0) + P(U \le -\epsilon)P(Y < 0)$$

H.D. (NUS) ST5215, Lecture 25 12 Nov 2020

Checking Condition (2)

Lemma (Lemma 3.3 of the textbook)

Each of the followings implies $\lim_{n\to\infty} \max_{1\leq i\leq n} \left(Z_i^\top (Z^\top Z)^- Z_i\right) = 0$

- (a) $\lambda_+[(Z^\top Z)^-] \to 0$ and $Z_n^\top (Z^\top Z)^- Z_n \to 0$, as $n \to \infty$.
- (b) There is an increasing sequence $\{a_n\}$ such that $a_n \to \infty$, $a_n/a_{n+1} \to 1$, and $Z^\top Z/a_n$ converges to a positive definite matrix.
 - Denote $(Z^{\top}Z)^{-}$ by A_n and $h_i^{(n)} = Z_i^{\top}A_nZ_i$
 - Let j_n be the integer such that $h_{j_n}^{(n)} = \max_{1 \le j \le n} h_j^{(n)}$. Suppose $\{i_n\}$ is a subsequence of $\{j_n\}$ such that $h_{j_n}^{(n)}$ does not converge to 0
 - If $\sup_n i_n \le c < \infty$, then

$$h_{i_n}^{(n)} = Z_{i_n}^{\top} A_n Z_{i_n} \leq \max_{1 \leq i \leq c} Z_i^{\top} A_n Z_i \leq \lambda_+ (A_n) \max_{1 \leq i \leq c} \|Z_i\|^2 \to 0.$$

• If i_n is unbounded then it has a subsequence $\{k_n\}$ that goes to ∞ , and $\lim_{n\to\infty}h_{k_n}^{(n)}=\lim_{n\to\infty}Z_{k_n}^{\top}A_nZ_{k_n}\leq\lim_{n\to\infty}Z_{k_n}^{\top}A_{k_n}Z_{k_n}=0,$

because $A_{k_n} \succ A_n$. Either leads to a contradiction.

H.D. (NUS)

ST5215, Lecture 2

In the last slide, we have use the following For any n,

$$Z^{(n),\top}Z^{(n)} = \sum_{j=1}^{n} Z_{j}Z_{j}^{\top} \succ \sum_{j=1}^{n-1} Z_{j}Z_{j}^{\top} = Z^{(n-1),\top}Z^{(n-1)}$$

SO

$$A_{n-1} \succ A_n$$

Remark. Note that in this course, a vector is by default a column vector. The notation Z_j here is the transpose of the jth row of Z.

Example: Simple linear models

• In a simple linear model,

$$X_i = \beta_0 + \beta_1 t_i + \epsilon_i, \quad i = 1, ..., n.$$
 (5)

10/25

• In this case, $Z_i = (1, t_i)^{\top}$, $t_i \in \mathcal{R}, i = 1, \dots, n$. and

$$Z^{\top}Z = \begin{pmatrix} n & \sum_{i=1}^{n} t_i \\ \sum_{i=1}^{n} t_i & \sum_{i=1}^{n} t_i^2 \end{pmatrix},$$

• If $n^{-1}\sum_{i=1}^n t_i^2 \to c$ and $n^{-1}\sum_{i=1}^n t_i \to d$, then

$$n^{-1}Z^{\top}Z
ightarrow \left(egin{array}{cc} 1 & d \ d & c \end{array}
ight).$$

• The limit is positive definite iff $c > d^2$, in which case condition (b) in Lemma 3.3 is satisfied with $a_n = n$ and Theorem 3.12 applies.

Example: One-way ANOVA

In the one-way ANOVA model (Example 3.13),

$$X_i = \mu_j + \epsilon_i, \qquad i = k_{j-1} + 1, ..., k_j, \ j = 1, ..., m,$$
 (6)

where $k_0 = 0$, $k_j = \sum_{l=1}^{j} n_l$, j = 1, ..., m, and $(\mu_1, ..., \mu_m) = \beta$, and

$$Z = \left(\begin{array}{ccc} J_{n_1} & \cdots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \cdots & J_{n_m} \end{array}\right),\,$$

where J_k is the k-vector of ones.

• Since $Z^{\top}Z = \text{Diag}(n_1, \dots, n_m), (Z^{\top}Z)^{-1} = \text{Diag}(n_1^{-1}, \dots, n_m^{-1})$ $\max_{1 \le i \le n} Z_i^{\top} (Z^{\top}Z)^{-} Z_i = \max_{1 \le j \le m} n_j^{-1}. \tag{7}$

• Conditions related to Z in Theorem 3.12 are satisfied iff all $n_i \to \infty$.

Bayes Estimator

- Apart from MOM estimators, MLEs, and UMVUEs by Rao-Blackwellization, a popular estimator is the Bayes estimator
- Recall that a *Bayes rule* w.r.t. π is a rule that minimizes the Bayes risk $r_T(\pi) = \int_{\Theta} R_T(\theta) d\pi(\theta)$ for any rule T, where π is a distribution on Θ .
- In an estimation problem, a Bayes rule is called a Bayes estimator.

Suppose $r_T(\theta) = E_{\theta}L(\theta, T)$.

- We can introduce two random elements $\tilde{\theta} \sim \pi$, and $X \mid \tilde{\theta} \sim P_{\tilde{\theta}}$, so that $r_T(\pi) = E \left[L(\tilde{\theta}, T(X)) \right]$
- ullet A Bayes estimator \mathcal{T}_* can be obtained by minimizing the conditional risk

$$T_*(x) := \arg\min_{a} E\left[L(\tilde{\theta}, a) \mid X = x\right]$$

Example: Normal Priors for Normal Distributions

- Suppose $X \sim N(\theta, 1)$
- To find an estimator of θ , we postulate a prior distribution $\theta \sim \pi_{\tau} = N(0, \tau)$ and consider the squared error $L(\theta, a) = (\theta a)^2$
- The posterior distribution is $\theta \mid X \sim \textit{N}(\frac{\tau X}{1+\tau}, \frac{\tau}{1+\tau})$
- Note that $E\left[L(\theta,a)^2\mid X\right]$ is minimized at $a=E(\theta\mid X)$, so a Bayes estimator is given by $\frac{\tau X}{1+\tau}$, whose Bayes risk is $\tau/(1+\tau)$.
- If τ is very large, the prior distribution is almost flat; it treats every possible value of θ equally and $\frac{\tau X}{1+\tau} \approx X$
- If τ is very close to 0, it indicates a strong preference towards small values of θ and the Bayes estimator shrinks the natural estimator X toward the prior mean 0

Bayes estimators with constant risk

Theorem (4.11 in the textbook)

If T is a Bayes estimator w.r.t. π and if

$$R_T(\theta) = \sup_{\theta'} R_T(\theta') \quad \pi \text{ -a.e.}, \tag{8}$$

14 / 25

then T is minimax. If T is the unique Bayes estimator w.r.t. π then it is the unique minimax estimator.

• Let S be any other estimator of ϑ . Then

$$\sup_{\theta \in \Theta} R_{S}(\theta) \geq \int_{\Theta_{\pi}} R_{S}(\theta) d\pi \geq \int_{\Theta_{\pi}} R_{T}(\theta) d\pi = \sup_{\theta \in \Theta} R_{T}(\theta),$$

where Θ_{π} is the complement of the null set in Eq (8).

For the uniqueness, the second inequality becomes strict.

Example (Cont.)

Suppose $X \sim N(\theta, 1)$. We will show that X is minimax for estimating θ

- For a prior distribution $\theta \sim \pi_{\tau} = N(0, \tau)$, the Bayes estimator is $\delta_{\tau} = \frac{\tau X}{1+\tau}$ and its Bayes risk is $r_*(\pi_{\tau}) = \tau/(1+\tau)$.
- Note that $X = \lim_{\tau \to \infty} \frac{\tau X}{1+\tau}$ and

$$E(X-\theta)^2=1=\lim_{\tau\to\infty}r_*(\pi_\tau).$$

For any other estimator S,

$$\sup_{\theta \in \Theta} R_{\mathcal{S}}(\theta) \geq \int R_{\mathcal{S}}(\theta) d\pi_{\tau} \geq \int R_{\delta_{\tau}}(\theta) d\pi_{\tau} = r_{*}(\pi_{\tau}).$$

• Take $\tau \to \infty$, we have $\sup_{\theta \in \Theta} R_{\mathcal{S}}(\theta) \ge R_{\mathcal{X}}(\theta)$ for any θ

Remark. Generally, if T has a constant risk that equals to the limit of the optimal Bayes risks for a sequence of prior distributions $\{\pi_j\}_{j=1}^{\infty}$, then T is minimax (Theorem 4.12 in the textbook)

Example with unknown variance

If $X \sim N(\mu, \sigma^2)$ where $(\mu, \sigma^2) \in \mathcal{R} \times (0, c]$, then X is minimax for estimating μ

- If σ^2 is known, then X is minimax and has risk σ^2
- For any other estimator T, note that

$$\begin{aligned} \sup_{(\mu,\sigma^2) \in \mathcal{R} \times (0,c]} R_T(\mu,\sigma^2) &\geq \sup_{(\mu,\sigma^2) \in \mathcal{R} \times \{c\}} R_T(\mu,\sigma^2) \\ &\geq \sup_{(\mu,\sigma^2) \in \mathcal{R} \times \{c\}} R_X(\mu,\sigma^2) \\ &= c \\ &\geq \sup_{(\mu,\sigma^2) \in \mathcal{R} \times (0,c]} R_X(\mu,\sigma^2) \end{aligned}$$

Remark. Note that the minimaxity of X for any fixed σ^2 implies that

$$\sup_{(\mu,\sigma^2)\in\mathcal{R}\times(0,\infty)}R_T(\mu,\sigma^2)=\sup_{(\mu,\sigma^2)\in\mathcal{R}\times(0,\infty)}\sigma^2=\infty, \qquad \forall\, T$$

so for $(\mu, \sigma^2) \in \mathcal{R} \times (0, \infty)$, minimaxity is meaningless

H.D. (NUS)

Empirical Bayes and Simultaneous Estimation

- The prior distribution used in the derivation of a Bayes estimator often depends on some parameters called hyperparameters
- If hyperparameters are unknown, we can estimate them using data.

 The resulting Bayes estimator is called an empirical Bayes estimator

Example:

- We have p different observations, each $X_i \sim N(\mu_i, 1)$
- ullet Estimating μ_i 's together is an example of simultaneous estimation
- Suppose a joint prior distribution is used: μ_i are i.i.d. from $N(0,\tau)$
- ullet Here au is the hyperparameter
- au can be estimated by $\hat{ au} = p^{-1} \sum_{i=1}^p X_i^2 1$ because integrating out μ_i 's, X_i 's is i.i.d. from $N(0, 1 + \tau)$
- The Bayes estimator of μ_i w.r.t. $\hat{\tau}$ is $\hat{\mu}_i^{EB} = (1 \frac{1}{1 + \hat{\tau}})X_i$ or

$$\hat{\mu}^{EB} = (1 - \frac{p}{\|X\|^2})X$$

Admissibility in Simultaneous Estimation

- Although $\hat{\mu}^{EB}$ is motivated from the Bayesian framework, it enjoys good frequentist's properties
- Using the technique in Exercise 3 of Tutorial 24, one can show that $R_{\hat{\mu}^{EB}}(\mu) = p p(p-4)E\frac{1}{\|X\|^2}$, which is strictly smaller than $R_X(\mu)$ for all $\mu \in \mathcal{R}^p$ if p > 4
 - ▶ See Theorem 4.15 in the textbook for a general result.
- \bullet For $p \geq$ 3, the $\it James-Stein\ estimator$ and its improvement dominates $\it X$

$$\delta_{JS} = (1 - \frac{p-2}{\|X\|^2})X, \qquad \delta_{JS}^+ = \min(0, 1 - \frac{p-2}{\|X\|^2})X.$$

- Above is surprising: although X is the MLE, the UMVUE, and also the minimax estimator of μ (extension of page 16), X is inadmissible
 - \triangleright X is admissible if p=1 and p=2 (Stein, 1956).
 - ▶ δ_{JS} and δ_{JS}^+ are also inadmissible, but can be substantially better than X if p is large and $\|\mu\|$ is close to 0

Tutorial

- Let X_1,\ldots,X_n be i.i.d. from $\mathrm{E}(0,\theta)$, where $\theta>0$ is unknown. Let $\hat{p}_n=\#\left\{i\leq n:X_i\geq 1\right\}/n$ and $\bar{X}_n=\left(X_1+\cdots+X_n\right)/n$. Determine the asymptotic relative efficiency of $-\log\hat{p}_n$ with respect to $1/\bar{X}_n$ for estimating $1/\theta$.
- ② Let X_1,\ldots,X_n be i.i.d. from $N(\mu,1)$, where $\mu>0$ is unknown. Consider estimating μ by $\bar{X}_n=(X_1+\cdots+X_n)/n$ and the sample median $m_n=X_{(\lfloor n/2\rfloor)}$. Determine the asymptotic relative efficiency of \bar{X}_n w.r.t. m_n .
- Exercise 2.6.118 in JS
- Exercise 4.6.112 in JS

Exercise 1

Let X_1,\ldots,X_n be i.i.d. from $\mathrm{E}(0,\theta)$, where $\theta>0$ is unknown. Let $\hat{p}_n=\#\left\{i\leq n:X_i\geq 1\right\}/n$ and $\bar{X}_n=\left(X_1+\cdots+X_n\right)/n$. Determine the asymptotic relative efficiency of $-\log\hat{p}_n$ with respect to $1/\bar{X}_n$ for estimating $1/\theta$.

Proof:

- By the CLT, $\sqrt{n} \left(\bar{X}_n \theta \right) \stackrel{\mathcal{D}}{\to} N \left(0, \theta^2 \right)$.
- Using δ -method with f(x) = 1/x, we have $\sqrt{n} \left(1/\bar{X}_n 1/\theta \right) \stackrel{\mathcal{D}}{\to} N \left(0, 1/\theta^2 \right)$.
- By the CLT for $I_{X_i \ge 1}$,

$$\sqrt{n}\left(\hat{p}_{n}-e^{-1/\theta}\right)\overset{\mathcal{D}}{\rightarrow}N\left[0,e^{-1/\theta}\left(1-e^{-1/\theta}\right)\right],$$

because $I_{X_i>1} \sim \text{Bern}(e^{-1/\theta})$.

• Using δ -method with $f(x) = -\log x$, we have

$$\sqrt{n}\left(-\log\hat{p}_n-1/ heta
ight)\stackrel{\mathcal{D}}{
ightarrow} N\left(0,e^{1/ heta}-1
ight),$$

because $f(e^{-1/\theta}) = 1/\theta$ and $f'(e^{-1/\theta}) = e^{1/\theta}$

• So the asymptotic relative efficiency is $\theta^{-2} \left(e^{1/\theta} - 1 \right)^{-1}$.

Exercise 2

Let X_1,\ldots,X_n be i.i.d. from $N(\mu,1)$, where $\mu>0$ is unknown. Consider estimating μ by $\bar{X}_n=(X_1+\cdots+X_n)/n$ and the sample median $m_n=X_{(\lfloor n/2\rfloor)}$. Determine the asymptotic relative efficiency of \bar{X}_n w.r.t. m_n .

Proof:

- By the CLT, $\sqrt{n}\left(\bar{X}_n-\mu\right)\stackrel{\mathcal{D}}{\to} N\left(0,1\right)$.
- By the asymptotic normality of sample median, we have

$$\sqrt{n}\left(m_n-\mu\right)\stackrel{\mathcal{D}}{ o} N(0,\frac{2\pi}{4}\right),$$

because the p.d.f. at $x = \mu$ is $1/\sqrt{2\pi}$.

 \bullet The asymptotic relative efficiency is $\frac{\pi}{2}>1$

Exercise 2.6.118

Let X_1,\ldots,X_n be i.i.d. from the $N\left(0,\sigma^2\right)$ distribution with an unknown $\sigma>0$. Consider the estimation of $\vartheta=\sigma$. Find the asymptotic relative efficiency of $\sqrt{\pi/2}\sum_{i=1}^n |X_i|/n$ w.r.t. $\left(\sum_{i=1}^n X_i^2/n\right)^{1/2}$

Proof:

• Since $E\left(\sqrt{\pi/2} |X_1|\right) = \sigma$ and $Var\left(\sqrt{\pi/2} |X_1|\right) = \left(\frac{\pi}{2} - 1\right) \sigma^2$, by the central limit theorem, we obtain that

$$\sqrt{n} \left(T_{1n} - \sigma \right) \stackrel{\mathcal{D}}{\to} N \left(0, \left(\frac{\pi}{2} - 1 \right) \sigma^2 \right)$$

• Since $EX_1^2 = \sigma^2$ and $Var(X_1) = 2\sigma^4$, by CLT,

$$\sqrt{n}\left(n^{-1}\sum_{i=1}^{n}X_{i}^{2}-\sigma^{2}\right)\stackrel{\mathcal{D}}{\rightarrow}N\left(0,2\sigma^{4}\right)$$

• By the δ -method with $g(t) = \sqrt{t}$ and $g'(t) = (2\sqrt{t})^{-1}$,

$$\sqrt{n}\left(T_{2n}-\sigma\right)\stackrel{\mathcal{D}}{
ightarrow} N\left(0,\frac{1}{2}\sigma^2\right)$$

Exercise 4.6.112

Let X_1, \ldots, X_n be i.i.d. from the uniform distribution $U(0, \theta)$, where $\theta > 0$ is unknown. Let $\hat{\theta}$ be the MLE of θ and T be the UMVUE.

- (a) Obtain the ratio ${\sf mse}_{\mathcal{T}}(\theta)/\,{\sf mse}_{\hat{\theta}}(\theta)$ and show that the MLE is inadmissible when $n\geq 2$.
- (b) Let $Z_{a,\theta}$ be a random variable having the exponential distribution $E(a,\theta)$. Prove $n(\theta \hat{\theta}) \stackrel{\mathcal{D}}{\to} Z_{0,\theta}$ and $n(\theta T) \stackrel{\mathcal{D}}{\to} Z_{-\theta,\theta}$. Obtain the asymptotic relative efficiency of $\hat{\theta}$ w.r.t. T.

Proof: Part (i): Let $X_{(n)}$ be the largest order statistic.

- $\hat{\theta} = X_{(n)}$ and $T(X) = \frac{n+1}{n}X_{(n)}$.
- The MSE of $\hat{\theta}$ is $E\left(X_{(n)}-\theta\right)^2=\frac{2\theta^2}{(n+1)(n+2)}$
- The MSE of T is $E(T-\theta)^2 = \frac{\theta^2}{n(n+2)}$
- The ratio is $(n+1)/(2n) \le 1$ for $n \ge 2$. Therefore, the MLE $\hat{\theta}$ is inadmissible.

(ii)

Note that

$$P(n(\theta - \hat{\theta}) \le x) = P\left(X_{(n)} \ge \theta - \frac{x}{n}\right)$$

$$= \theta^{-n} \int_{\theta - x/n}^{\theta} nt^{n-1} dt$$

$$= 1 - \left(1 - \frac{x}{n\theta}\right)^{n}$$

$$\to 1 - e^{-x/\theta}, \quad \text{as } n \to \infty.$$

We conclude that $n(\theta - \hat{\theta}) \stackrel{\mathcal{D}}{\rightarrow} Z_{0,\theta}$.

Note that

$$n(\theta - T) = n(\theta - \hat{\theta}) - \hat{\theta}.$$

- By Slutsky's theorem, we conclude that $n(\theta T) \xrightarrow{\mathcal{D}} Z_{0,\theta} \theta$, which has the same distribution as $Z_{-\theta,\theta}$.
- The asymptotic relative efficiency of $\hat{\theta}$ with respect to T is $E\left(Z_{-\theta,\theta}^2\right)/E\left(Z_{0,\theta}^2\right)=\theta^2/\left(\theta^2+\theta^2\right)=\frac{1}{2}$

H.D. (NUS) ST5215, Lecture 25 12 Nov 2020

Final Exam

What will not be asked

- Questions directly on probability theory such as the Q(3,4,6) in Homework 3; but probability will be used almost everywhere!
- The last part: Minimaxity and Bayes Estimator, empirical Bayes, Jame-Stein estimator

What you need to pay attention to

- ullet Conditional expectation, Integration, SLLN, CLT, δ -method, USLLN
- Sufficiency, Completeness, UMVUE, Fisher information and C-R lower bound
- Consistency of Estimators
- Asymptotic Distributions of Estimators
- Linear model (assumptions and properties)