Disciplinas:

MAP 5706 - Introdução à Análise Real (DINTER)

MAP 0216 - Introdução à Análise Real

MAT 0206 - Análise Real

Semestre: 2020/2

Professor: Rodrigo Bissacot - Sala 147A - IME-USP

mail: rodrigo.bissacot@gmail.com

Listas de exercícios e informações sobre o curso em:

https://sites.google.com/site/matbissacot/Home/teaching/analise2020

Monitores:

João Maia - mail: joao.vitor.maia@usp.br Rafael Severiano - mail: rafaelseveriano@usp.br Thiago Alexandre - mail: thiago2.alexandre@usp.br Thiago Raszeja - mail: tcraszeja@gmail.com

Monitorias:

João Maia - Segundas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Alexandre - Terças 17h-18h - Link: FÓRUM DE DISCUSSÃO Rafael Severiano - Quintas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Raszeja - Sexta 19h-20h - Link: FÓRUM DE DISCUSSÃO.

Lista 6: Sequências Parte II: Sequências importantes e seus limites. Topologia da Reta Parte III: Ponto de acumulação de um conjunto. Intervalos. Compactos (de novo)

Funções contínuas Parte II: funções contínuas em intervalos, funções contínuas em compactos.

SOBRE A LISTA

NÃO PRECISA ENTREGAR - MAS CAI NA P2

Exercício 1.

(a) Seja $(s_n)_{n\in\mathbb{N}}$ uma sequência não-decrescente de números reais não-negativos, ou seja, $0 \le s_n \le s_{n+1}, \forall n \in \mathbb{N}$.

Prove que $(s_n)_{n\in\mathbb{N}}$ é convergente se, e somente se, $(s_n)_{n\in\mathbb{N}}$ é limitada.

(b) Nas mesmas hipóteses do item (a), mostre que se $(s_n)_{n\in\mathbb{N}}$ não é convergente então $\lim_{n\to\infty}s_n=+\infty$.

Exercício 2.

(Existência e unicidade da raiz n-ésima de números positivos) O objetivo desse exercício é mostrar que, dado um número real $a \ge 0$ e $n \ge 2$, n natural, existe um único número real b não-negativo tal que

 $b^n = a$. Esse número será denotado por $\sqrt[n]{a}$ ou $a^{\frac{1}{n}}$.

(a) (unicidade)

Mostre (por indução?) que dados $0 \le b_1 < b_2$ temos que $b_1^n < b_2^n$. A partir disso conclua a unicidade da raiz n-ésima (supondo que esta exista). Justifique também que a função raiz n-ésima é estritamente crescente. Ou seja, se $0 \le a_1 < a_2$ então $\sqrt[n]{a_1} < \sqrt[n]{a_2}$.

(b) (Existência)

Vamos mostrar que $\sqrt[n]{a} = \sup E$ onde $E = \{0 \le y; y^n \le a\}$.

De fato, se a = 0 então $E = \{0\}$, donde segue que $\sqrt[n]{0} = 0$.

O caso interessante é quando a > 0, que segue dos seguintes exercícios:

(b.1) Prove que $E \neq \emptyset$.

Dica: Defina $t = \frac{a}{a+1}$. Mostre que para todo $n \ge 1$ temos que $t^n < a$.

(b.2) Prove que é limitado superiormente.

Dica: Defina s = a + 1. Mostre que s é cota superior de E.

(b.3) De (b.1) e (b.2) segue que existe sup E. Mostre que $\sqrt[n]{a} = \sup E$. **Dica:** Em outras palavras, o que você quer provar é que se $b = \sup E$, então $b^n = a$. Isso será feito usando a tricotomia de \mathbb{R} , mostrando que não podemos ter nem $b^n > a$ e nem $b^n < a$. Então, obrigatoriamente, segue que $b^n = a$.

Prova de que não podermos ter $b^n < a$.

Suponha, por absurdo, que tenhamos $b^n < a$.

Tome 0 < h < 1 satisfazendo $h < \frac{a-b^n}{(b+1)^n-b^n}$. (Por que existe?)

Mostre que $(b+h)^n < a$. [O que contradiz b ser o supremo de E].

Prova de que não podermos ter $b^n > a$.

Suponha, por absurdo, que tenhamos $b^n > a$.

Tome 0 < h < 1 satisfazendo $h < \frac{b^n - a}{(b+1)^n - b^n}$ e h < b. (Por que existe?) Mostre que t = b - h satisfaz $t^n > a$. Prove que t é uma cota superior de E menor que b. [O que contradiz b ser o supremo de E].

Exercício 3. Prove que $f:[0,\infty)\to\mathbb{R}$ definida por $f(x)=\sqrt{x}$ é contínua em $[0,\infty)$ usando a definição com ε e δ .

Exercício 4. Neste exercício $n \in \mathbb{N}$.

4.1 Mostre que $\lim_{n\to\infty} \sqrt[n]{n} = 1$ seguindo os seguintes passos:

Passo 1. Definindo $y_n = \sqrt[n]{n} - 1$, mostre que $y_n \ge 0$.

Passo 2. Dado $c \ge 0$ mostre que: $(1+c)^n \ge 1 + nc + \frac{n \cdot (n-1)}{2}c^2$.

Passo 3. Fazendo $c = \sqrt[n]{n} - 1$ no item anterior, mostre que:

$$0 \le \sqrt[n]{n} - 1 \le \sqrt{\frac{2}{n-1}}, \forall n \ge 2.$$

Use o exercício 3 anterior e conclua a prova.

4.2 Use o item 4.1 e mostre que se $1 \le a$ então $\lim_{n \to \infty} \sqrt[n]{a} = 1$. **4.3** Use o item 4.2 e mostre que se 0 < a < 1 então $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Exercício 5. Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências de números reais.

(5.1)
$$(x_n)_{n\in\mathbb{N}}$$
 limitada e $\lim_{n\to\infty}y_n=\infty$. Então $\lim_{n\to\infty}\frac{x_n}{y_n}=0$

(5.1)
$$(x_n)_{n \in \mathbb{N}}$$
 limitada e $\lim_{n \to \infty} y_n = \infty$. Então $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$
(5.2) Se $0 < x_n, \forall n \in \mathbb{N}$. Então, $\lim x_n = +\infty \Leftrightarrow \lim \frac{1}{x_n} = 0$.

Exercício 6. Prove as seguintes afirmações: (neste exercício $n \in \mathbb{N}$)

- (6.1) Mostre que $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$.
- **(6.2)** Dados $1 \le a$ e $k \in \mathbb{N}$. Mostre que $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.

(6.3) Seja a > 1 e P(x) um polinômio. Mostre que $\lim_{n \to \infty} \frac{P(n)}{a^n} = 0$. [Potência (base maior que 1) cresce mais rápido que qualquer polinômio.] **Dica:** Use o item anterior.

(6.4) Dado 0 < a. Mostre que $\lim_{n \to \infty} \frac{a^n}{n!} = 0$. [Fatorial cresce mais rápido que potência (base maior que 1).] **Exercício 7.** Mostre que $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ existe seguindo o seguinte roteiro:

(7.1) Mostre que a sequência $x_n = \left(1 + \frac{1}{n}\right)^n$ é monótona não-decrescente.

(7.2) Mostre que para $n \geq 2$ temos que $x_n \leq 3$.

Conclua que a sequência então converge.

Obs: Chamamos o limite de número de Euler e o denotamos por e.

Exercício 8.

Seja (x_n) uma sequência de números reais tal que $\lim_{n\to\infty} x_n = a \in \mathbb{R}$. Seja (y_n) a sequência de números reais definida por:

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Prove que $\lim_{n\to\infty} y_n = a$.

Exercício 9. $f: \mathbb{R} \to \mathbb{R}$ uma função.

Prove que as seguintes afirmações são equivalentes:

- (a) f é contínua em \mathbb{R} .
- (b) Para todo A aberto de \mathbb{R} temos que $f^{-1}(A)$ é aberto de \mathbb{R} .
- (b) Para todo F fechado de \mathbb{R} temos que $f^{-1}(F)$ é fechado de \mathbb{R} .

Teorema do ponto fixo de Brouwer

Seja $\overline{B}_1(0) = \{x \in \mathbb{R}^n; ||x|| \le 1\}$ a bola fechada unitária do \mathbb{R}^n , $(n \ge 1)$. Seja $f : \overline{B}_1(0) \to \overline{B}_1(0)$ contínua, então f tem um ponto fixo.

Ou seja, existe $x_0 \in \overline{B}_1(0)$ tal que $f(x_0) = x_0$.

Esse é um teorema de topologia. Mas podemos provar a versão unidimensional facilmente usando o Teorema do Valor Intermediário:

Exercício 10.

(10.1) Seja $\overline{B}_1(0)=\{x\in\mathbb{R};|x|\leq 1\}=[-1,1]$ a bola fechada unitária de \mathbb{R} e $f:[-1,1]\to[-1,1]$ contínua.

Mostre que existe $x_0 \in [-1, 1]$ tal que $f(x_0) = x_0$.

Dica: Considere a função g(x) = f(x) - x e use o Teorema do Valor Intermediário.

(10.2) Seja $f:[a,b] \rightarrow [a,b]$ contínua.

Mostre que existe $x_0 \in [a, b]$ tal que $f(x_0) = x_0$.

Dica: Use o exercício anterior.

Exercício 11.

- (11.1) Seja $p(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$ um polinômio com coeficientes reais tal que n é par e a_n é positivo. Mostre que p(x) atinge seu mínimo em algum valor real, ou seja, existe x_0 tal que $p(x_0) \leq p(x)$ para todo x real.
- (11.2) Seja $p(x) = a_n.x^n + a_{n-1}.x^{n-1} + ... + a_1.x + a_0$ um polinômio com coeficientes reais tal que n é ímpar. Mostre que existe x_0 tal $p(x_0) = 0$.

Exercício 12. Seja $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$. Mostre que se $x_0 \in X$ e f é descontínua em x_0 então $x_0 \in X'$.

Exercício 13. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função por:

$$f(x) = \begin{cases} x & \text{se } x \text{ \'e racional;} \\ 1 - x & \text{se } x \text{ \'e irracional.} \end{cases}$$

Mostre que f é contínua em x_0 se, e somente se, $x_0 = \frac{1}{2}$.

Exercício 14. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função por:

$$f(x) = \begin{cases} -x & \text{se } x \text{ \'e racional;} \\ \frac{1}{x} & \text{se } x \text{ \'e irracional.} \end{cases}$$

- (14.1) Mostre que f é bijeção.
- (14.2) Mostre que f é descontínua em todos os pontos de \mathbb{R} .

Exercício 15. Seja a > 0 e $f : [a, b] \to \mathbb{R}$ definida por:

$$f(x) = \left\{ \begin{array}{ll} 0 & \text{ se } x \text{ \'e irracional;} \\ \\ \frac{1}{q} & \text{ se } x = \frac{p}{q} \text{ \'e uma fração irredut\'ivel e } q > 0. \end{array} \right.$$

Mostre que f é contínua somente nos pontos irracionais de [a, b].