(11)Publication number:

10-158025

(43)Date of publication of application: 16.06.1998

(51)Int.CI.

CO3B 37/018 // GO2B 6/00

(21)Application number: 08-315900

(71)Applicant: SHIN ETSU CHEM CO LTD

(22)Date of filing:

27,11,1996

(72)Inventor: SHIMADA TADAKATSU

HIRASAWA HIDEO

(54) PRODUCTION OF OPTICAL FIBER PREFORM

(57)Abstract:

PROBLEM TO BE SOLVED: To produce an optical fiber preform having a uniform deposit dimension in the longitudinal direction, at a high production rate. SOLUTION: This production method comprises depositing fine glass particles used for a clad on the surface of a core rod 1 and sintering the deposited fine glass particles, by using plural burners. In the production, the device for this production is provided with plural shafts for moving the plural burners and a detection mechanism for the deposited amount of the fine glass particles, wherein the plural shafts include a partial traverse shaft 3 that is provided with ≥5 burners 6 placed in a row on the shaft 3 and is used for partially traversing the burners 6 in the longitudinal direction and a whole range traverse shaft 4 that is provided with a burner 5 and is used for traversing the burner 5 over the whole range in the longitudinal direction. Based on the detection results obtained by using a CCD(charge coupled device) camera 8 of the deposited amount

detection mechanism, values of the deposited amount in the longitudinal direction are corrected by using the burner 5 on the whole range traverse shaft 4.

BEST AVAILABLE COPY

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-158025

(43)公開日 平成10年(1998)6月16日

(51) Int.Cl.⁶

識別記号

FΙ

C 0 3 B 37/018

C

C 0 3 B 37/018 // G02B 6/00

356

G 0 2 B 6/00

356A

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出願番号

(22)出願日

特願平8-315900

平成8年(1996)11月27日

(71)出願人 000002060

信越化学工業株式会社

東京都千代田区大手町二丁目6番1号

(72)発明者 島田 忠克

群馬県安中市磯部2丁目13番1号 信越化

学工業株式会社精密機能材料研究所内

(72)発明者 平沢 秀夫

群馬県安中市磯部2丁目13番1号 信越化

学工業株式会社精密機能材料研究所内

(74)代理人 弁理士 山本 亮一 (外1名)

(54) 【発明の名称】 光ファイパブリフォームの製造方法

(57)【要約】

(修正有)

【課題】 長手方向に堆積寸法が均一な光ファイバプリ フォームを高速生産すること。

【解決手段】 複数のバーナーを用いて、コア用ロッド 1の表面にクラッド用ガラス微粒子を堆積させこれを焼 結する光ファイバブリフォームの製造方法において、バ ーナーを移動させる複数の軸と長手方向の堆積量の検出 機構を備え、複数の軸が、5本以上のバーナー6を配置 し長手方向に部分トラバースさせる部分トラバース軸3 と、バーナー5を配置し長手方向全域にトラバースさせ る全域トラバース軸4よりなり、堆積量検出機構のCC Dカメラ8の検出結果に基づいて全域トラバース軸4上 のバーナー5により長手方向の堆積量を修正する。

2

【特許請求の範囲】

【請求項1】複数のバーナーを用いて、コア用ロッドの 表面にクラッド用ガラス微粒子を堆積させこれを焼結す る光ファイバプリフォームの製造方法において、バーナ ーを移動させる複数の軸と長手方向の堆積量を検出する 機構を備え、複数の軸が、5本以上のバーナーを配置し 長手方向に部分トラバースさせる部分トラバース軸と、 バーナーを配置し長手方向全域にトラバースさせる全域 トラバース軸よりなり、堆積量検出機構の検出結果に基 づいて全域トラバース軸上のバーナーにより長手方向の 10 いる。 堆積量を修正することを特徴とする光ファイバプリフォ ームの製造方法。

【請求項2】全域トラバース軸上のバーナーの原料ガス 供給量及び/又は移動速度を変化させることにより長手 方向の堆積量を修正する請求項1に記載の光ファイバブ リフォームの製造方法。

【請求項3】 堆積量検出機構として全域トラバース軸上 に堆積体の外径測定手段を備えた請求項1又は2のいず れかに記載の光ファイバプリフォームの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、長手方向に堆積寸 法が均一で、高速生産することのできる光ファイバプリ フォームの製造方法に関するものである。

[0002]

【従来の技術】光ファイバプリフォームの製造について は、開発の初期においてはコア用ガラスにクラッド用ガ ラス管を被覆するという方法 (特公昭41-11071号公報参 照)が行われていたが、近年における特性、精度の著し い向上とプリフォームサイズの大型化に伴って、気体ガ ラス原料を酸水素火炎バーナーに導入し、その火炎加水 分解で生成したガラス微粒子を回転しているコア用ガラ ス棒の外周に吹きつけ、該バーナーを軸方向に平行に往 復運動させることによって該ガラス微粒子をコア用ガラ ス棒状に一層づつ積層させて多孔質ガラス母材を形成さ せ、ついでこれを加熱し脱水、透明ガラス化して光ファ イバプリフォームとする方法(特開昭49-84258号公報参 照) に移行してきている。この光ファイバプリフォーム の製造方法についてはガラス微粒子を垂直方向に連続し て堆積させる方法 (特開昭55-116638 号公報参照) 、多 40 ―ナーの往復運動の開始位置を順次移動分散させる方法 孔質ガラス母材に複数本のバーナーから組成の異なるガ ラス形成原料を供給すると共に芯棒をバーナーに対して 相対的に往復運動させ、1回の運動毎にガラス形成原料 の組成を変えることによって、半径方向に所望の屈折率 分布を有するプリフォームを得る方法(特開昭57-18333 0 号公報参照)、芯棒を回転させると共にこれを長手方 向に運動させ、ガラス粒子の生成に振動運動を与える方 法 (特開昭56-120528 号公報参照、特開昭58-9835 号公 報参照)、製造しようとするコア用ガラス棒の長さとほ ぼ等しい長さの横幅を持つ薄型の酸水素火炎バーナー、

または多数の酸水素火炎バーナーを横に1列に並べてバ ーナー列を作り、移動を行わないでガラス微粒子をコア 用ガラス棒に吹き付ける方法 (特開昭53-70449号公報参 照)、さらに光ファイバ母材ではないが複数のバーナー に供給されるガス量を調整するか、バーナー面とガラス 微粒子の堆積面との距離を調整し、あるいは耐熱性基体 の回転数を調整してガラス微粒子の堆積密度を半径方向 に沿って変化させて多孔質ガラス母材のひび割れを防止 する方法 (特開昭64-9821 号公報参照) 等が提案されて

【0003】しかし、特開昭49-84258号公報に開示され ている方法ではバーナーが1本であるためにガラス微粒 子の堆積速度が遅く、長尺、太径のものを製造する場合 には熱量が不足し、堆積シリカ層が機械的強度の小さい ものとなるのでひび割れが発生するという不利があり、 特開昭56-120528 号、特開昭57-183330 号、特開昭58-9 835 号の各公報に開示されている方法ではコア層、クラ ッド層が1工程で得られるという利点があるものの、コ ア層、クラッド層とも密度が低いので大型化するときの 20 取扱いが困難となり、また設備が大型化し、コアの屈折 率分布が不明のままこれにクラッド層が付着されるので 製品が目標値から外れるという欠点があり、特開昭53-7 0449号公報に開示されている方法ではバーナーのスリッ トから噴出するガスがコア用ガラス棒の全長上で同一の 条件にするということが保証できないので、各バーナー およびバーナー間で堆積ムラが生じ、現実的には得られ るプリフォーム母材の堆積厚さの精度が悪くなり、特開 昭64-9821 号公報に開示されている方法では堆積速度が 速く、大型のものが作られるという利点はあるものの、 長手方向に一定の振幅で往復するのでバーナーの停止点 と移動部が常に同一位置で繰り返されるために堆積ムラ が生じ、得られる堆積体は表面に凹凸をもち、芯材のア ルミニウムが金属不純物としてシリカ層にドープされる という欠点があるので光ファイバ母材の製造用には利用 できない。

[0004]

【発明が解決しようとする課題】複数のバーナーを用い 大型の光ファイバプリフォームを高速で生産する方法と して、同一設計の複数のバーナーを等間隔に配置し、バ (特開平3-228845号公報参照)が開示されている。この 方法は堆積速度が飛躍的に増加する利点があるものの長 手方向の堆積量が不均一になるという問題点がある。

[0005]

【課題を解決するための手段】本発明は上記問題点に鑑 みなされたもので、堆積速度を飛躍的に増加させると共 に、長手方向に堆積量が均一な光ファイバプリフォーム の製造を可能にしたものである。すなわち本発明は、複 数のバーナーを用いて、コア用ロッドの表面にクラッド 50 用ガラス微粒子を堆積させこれを焼結する光ファイバブ

リフォームの製造方法において、バーナーを移動させる 複数の軸と長手方向の堆積量を検出する機構を備え、複 数の軸が、5本以上のバーナーを配置し長手方向に部分 トラバースさせる部分トラバース軸と、バーナーを配置 し長手方向全域にトラバースさせる全域トラバース軸よ りなり、堆積量検出機構の検出結果に基づいて全域トラ バース軸上のバーナーにより長手方向の堆積量を修正す ることを特徴とするものである。

[0006]

【発明の実施の形態】図1に基づき本発明を詳細に説明 10 する。図1は本発明による光ファイバプリフォームの製 造装置の1例を示す概略縦断面図で、1はコア用ロッ ド、2はガラス微粒子堆積体、3は部分トラバース軸、 4、11は全域トラバース軸、5、6はバーナー、7は 炎、8はCCDカメラ、9は部分トラバース幅、10は全 域トラバース幅、12はロッド回転機構をそれぞれ示す。 本発明の光ファイバプリフォームの製造方法は、コア用 ロッド1を回転させながら、部分トラバース軸3に5個 以上の複数の堆積用のバーナー6を配置し、部分トラバ ース軸3により各バーナー6を部分トラバースさせて、 該ロッド1の周りにクラッド用ガラス微粒子を堆積させ てガラス微粒子堆積体2を形成し、同時にこの堆積体2 を全域トラバース軸11上にセットしたCCDカメラ8に より、長手方向全域にわたって堆積体2の外径を測定 し、その測定結果に基づいて、全域トラバース軸4上に 取りつけた修正用のバーナー5によって、堆積体2の長 手方向の外径変動を修正するのである。次いでこの堆積 体を高温で脱水焼結して光ファイバプリフォームが製造

【0007】ここに使用されるコア用ロッドは目的とす 30 る光ファイバプリフォーム母材のコア部を含むもので、 公知のVAD法、OVD法、MCVD法などで作られた グレーデットインデックス型またはシングルモード型な どのプロフィルをもち、一定のクラッド層が存在し、ガ ラス化後の屈折率、寸法などの構造パラメーターが測定 されて確認されたものが好ましい。またこのロッドの全 長は外径変動が5%以下となるように仕上げた後表面を 洗浄し、ファイヤーポリッシュしたものが好ましい。

【0008】部分トラバース軸は長手方向に平行に配置 され、堆積用のバーナーが配置される。このバーナーは 40 クラッド用ガラス微粒子を高速で堆積するのが目的であ るので、5個未満では十分な堆積速度が得られないので 5個以上とすることが好ましい。また上限の個数は軸全 体に配置された場合で、軸の長さとバーナー間隔によっ て定まる。バーナー間隔は隣接する炎同士の干渉効果を 低減させるために、火炎の堆積体表面での炎の拡がりの 1.5 ~2.5 倍の範囲とすれば良い。炎の拡がりは堆積の 進行にともなって拡大していくが、堆積効率の点からバ ーナー間隔は大きい堆積径を基準に決めれば良い。部分 トラバース方法については、例えば特開平3-228845号公 50

報に記載の方法で行えば良い。例えば図1に示すよう に、部分トラバースによる堆積ムラを少なくするために トラバースごとにバーナーのスタート位置を少しずつ移 動させて行うと良い。

【0009】長手方向の堆積量の検出機構としては、例 えば、CCDカメラが例示される。CCDカメラを操作 して、堆積体の外径を求め堆積量を検出することができ る。CCDカメラを全域トラバース軸に設置し、長手方 向の全域にわたって堆積体の外径を求め、この数値を例 えばCPU (中央情報処理装置)等で解析して設定値と の差を求め、それに基づいて修正用バーナーのガラス微 粒子量を調整して設定値となるようにするとよい。

【0010】本発明では、修正用バーナーによるガラス 微粒子量の調整方法として、①バーナーへの原料ガス供 給量を変化させる、②バーナーの移動速度を変化させ る、③バーナーへの原料ガス供給量とバーナーの移動速 度の両方を変化させる方法がある。①の方法は、調整用 のガラス微粒子量が多い場合はバーナーへの原料ガス供 給量を多くし、少ない場合は原料ガス供給量をすくなく する。②の方法は、調整用のガラス微粒子量が多い場合 はバーナーの移動速度を小さくし、少ない場合にはバー ナーの移動速度を大きくする。また③の方法は①と②の 方法を組み合わせて行えば良い。

[0011]

【実施例】以下、本発明の実施例を挙げて説明するが、 本発明はこれらに限定されるものではない。

実施例1

20

図1に示す装置を用い、外径50 ϕ 、1500mのコア用ロッ ド1を用意し、これに平行に配置した部分トラバース軸 3上に10本の外径35mmのバーナー6を150mm 間隔でセッ トし、部分トラバース軸3を長手方向にトラバース幅9 180mm で部分トラバースさせ、トラバースごとにバー ナーのスタートする位置を少しずつ移動させて部分トラ バース軸の中心を200mm 移動させ、ロッド1の周囲にク ラッド用ガラス微粒子を堆積させた。また別に用意した 全域トラバース軸11上にセットしたCCDカメラ8(ソ ニー社製商品名XC-77) を用いて堆積体2の長手方向の 外径を測定した。さらに部分トラバース軸3による堆積 と同時に、全域トラバース軸4にセットした外径35mmの 修正用のバーナー5により、ССDカメラ8による外径 の計測結果に基づき、外径が350mm となるよう修正用の バーナー5に送る原料ガスのSiCl。ガス流量を変化させ て堆積したところ、外径350 ø±1mm の堆積体2が得ら れた。この堆積体を脱水・焼結して得たプリフォームの 長手方向のカットオフ波長入c の変動幅を調べたところ ±2%であった。

【0012】実施例2

実施例1において、修正用バーナーに送る原料ガスのSi Cl、ガス流量を一定にして、修正用バーナーの移動速度 を変化させて堆積したところ、外径350 ø±1mm の堆積

6

体が得られた。この堆積体を脱水・焼結して得たプリフォームの長手方向のカットオフ波長入c の変動幅を調べたところ±1.5 %であった。

5

【0013】比較例

実施例 1 において、全域トラバース軸は用いずに部分トラバース軸のみでおこなったところ、得られた堆積対は外径350 ø± 10mm の範囲の値を示した。この堆積体を脱水・焼結して得たプリフォームの長手方向のカットオフ波長入c の変動幅を調べたところ±5%であった。

[0014]

【発明の効果】本発明により、堆積速度を飛躍的に増加させると共に、長手方向に堆積量が均一な大型の光ファイバプリフォームの製造が可能である。

【図面の簡単な説明】

【図1】光ファイバブリフォームの製造装置の概略縦断面図である。

【符号の説明】

1…コア用ロッド

2…ガラス微粒子堆積体

3…部分トラバース軸

4、11…全域トラバース軸

5、6…バーナー

7…炎

10 8…CCDカメラ

9…部分トラバース幅

10…全域トラバース幅

12…回転機構

【図1】

