1. Field Basic Lemmas

1.1. Overview

Lemmas about division (semi)rings and (semi)fields, focusing on division and fraction operations.

1.2. Division Semiring

1.2.1. Addition and Division

 $\label{eq:add_div:} \begin{array}{l} {\rm add_div:} \ \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c} \\ \\ \bullet \ \ {\rm Division \ distributes \ over \ addition} \end{array}$

 $\label{eq:div_add_div_same:} \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ • Common denominator addition

 ${\tt same_add_div,\,div_add_same:\,For}\ b \neq 0$

- $\frac{b+a}{b} = 1 + \frac{a}{b}$ $\frac{a+b}{b} = \frac{a}{b} + 1$

1.2.2. Inverse Addition

 inv_add_inv' : For $a,b \neq 0$

•
$$a^{-1} + b^{-1} = a^{-1} * (a+b) * b^{-1}$$

• See inv_add_inv for commutative version

add_div', div_add': Mixed addition with division

- $b + \frac{a}{c} = \frac{b*c+a}{c}$ for $c \neq 0$ $\frac{a}{c} + b = \frac{a+b*c}{c}$ for $c \neq 0$

1.2.3. Commutative Versions

Commute.div_add_div: If b commutes with c and d, and $b,d\neq 0$

•
$$\frac{a}{b} + \frac{c}{d} = \frac{a*d+b*c}{b*d}$$

 ${\tt Commute.inv_add_inv:} \ \ {\tt If} \ a \ \ {\tt commutes} \ \ {\tt with} \ b \ \ {\tt and} \ \ {\tt both} \ \ {\tt nonzero}$

•
$$a^{\{-1\}} + b^{\{-1\}} = \frac{a+b}{a*b}$$

1.2.4. Halves

For [NeZero (2 : K)]:

$$\operatorname{add_self_div_two:} \tfrac{a+a}{2} = a$$

$$\operatorname{add_halves:} \tfrac{a}{2} + \tfrac{a}{2} = a$$

1.3. Division Ring

1.3.1. Negative Division

div_neg_self:
$$\frac{a}{-a} = -1$$
 for $a \neq 0$

neg_div_self:
$$\frac{-a}{a} = -1$$
 for $a \neq 0$

1.3.2. Subtraction and Division

$$\label{eq:div_sub_div_same:} \frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$$

• Division distributes over subtraction

$${\sf same_sub_div:} \, \frac{b-a}{b} = 1 - \frac{a}{b} \; {\sf for} \; b \neq 0$$

div_sub_same:
$$\frac{a-b}{b}=\frac{a}{b}-1$$
 for $b\neq 0$

$$\mathrm{sub_div:}\ \tfrac{a-b}{c} = \tfrac{a}{c} - \tfrac{b}{c}$$

1.3.3. Inverse Subtraction

$$inv_sub_inv'$$
: For $a,b \neq 0$

•
$$a^{\{-1\}} - b^{\{-1\}} = a^{\{-1\}} * (b-a) * b^{\{-1\}}$$

 ${\tt Commute.inv_sub_inv:} \ \, \text{If} \, \, a \, \, \text{commutes with} \, b \, \, \text{and both nonzero} \, \,$

•
$$a^{\{-1\}} - b^{\{-1\}} = \frac{b-a}{a*b}$$

1.3.4. Half Subtraction

$$\mathrm{sub_half:}\, a - \tfrac{a}{2} = \tfrac{a}{2}$$

half_sub:
$$\frac{a}{2} - a = -(\frac{a}{2})$$

1.3.5. Domain Instance

DivisionRing.isDomain: Every division ring is an integral domain

- No zero divisors
- Priority 100 to allow more specific instances

1.4. Semifield

1.4.1. General Division Addition

 ${\tt div_add_div:} \ {\tt For} \ b,d \neq 0$

$$\frac{a}{b} + \frac{c}{d} = \frac{a*d+b*c}{b*d}$$

• Uses commutativity

one_div_add_one_div: For $a,b\neq 0$ • $\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a*b}$

•
$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{a*b}$$

inv add inv: For
$$a, b \neq 0$$

inv_add_inv: For
$$a,b \neq 0$$

• $a^{\{-1\}} + b^{\{-1\}} = \frac{a+b}{a*b}$

• Simpler than inv_add_inv' due to commutativity

1.5. Implementation Notes

- @[field simps] attribute for simplification in field contexts
- Commute versions handle non-commutative cases
- NeZero typeclass for characteristic constraints
- Priority settings for instance resolution