Concept Learning

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering
National Taiwan University
tianliyu@ntu.edu.tw

Readings: ML Chapter 2 (AIMA 19.1 & 19.2 cover a little)

Outline

- Learning From Examples
- 2 Hypothesis
- Find-S
- 4 Version space
- Candidate Elimination
- 6 Inductive bias

Learning From Examples

• Training Examples for ENJOYSPORT.

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Sunny	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

• What is the general concept?

Prototypical Concept Learning Task

Given:

- Instances X: Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind, Water, Forecast.
- Target function $c: EnjoySport: X \rightarrow \{0,1\}$
- Hypotheses *H*: Conjunctions of literals. E.g. **Cold**, *High*, ?, ?, ?\.
- Training examples D: Positive and negative examples of the target function $\langle x_1, c(x_1) \rangle, \dots, \langle x_m, c(x_m) \rangle$

Determine:

- A hypothesis h in H such that $\overline{C} = c(x)$ for all x in D?
- A hypothesis h in H such that h(x) = c(x) for all x in X?

Hypothesis

- Many possible representations.
- Here, *h* is conjunction of constraints on attributes.
- Each constraint can be
 - A specific value (Water = Warm).
 - Don't care (Water =?).
 - May be empty ($Water = \phi$).
- For example, \(\seta Sky, AirTemp, Humid, Wind, Water, Forecast\) = \(\seta Sunny, ?, ?, Strong, ?, Same\).

The Inductive Learning Hypothesis

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Tian-Li Yu(NTUEE) Concept Learning 5 / 24

Instance and Hypotheses

$$h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$
 $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$
 $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

Models and "More General Than"

Definition: Model m(h)

Model m(h) is a set of instances x where h(x) is true:

$$m(h) = \{x \mid h(x) = true\}$$

Definitions

$$h_1 <_g h_2 \text{ iff } (h_1) \subset m(h_2).$$

$$h_1 \leq_g h_2 \text{ iff } m(h_1) \subseteq m(h_2).$$

FIND-S Algorithm

FIND-S

- 1 Initialize h to the most specific hypothesis in H.
- 2 **for each** positive training instance x
- 3 **for each** attribute constraint a_i in h
- If a_i in h is NOT satisfied by x, replace a_i in h by the next
- 5 more general constraint that is satisfied by x.
- 6 Output hypothesis *h*.

Hypothesis Space Search by FIND-S

```
 \begin{array}{l} x_1 = \langle \mathit{Sunny}, \mathit{Warm}, \mathit{Normal}, \mathit{Strong}, \mathit{Warm}, \mathit{Same} \rangle : + \\ x_2 = \langle \mathit{Sunny}, \mathit{Warm}, \mathit{High}, \mathit{Strong}, \mathit{Warm}, \mathit{Same} \rangle : + \\ x_3 = \langle \mathit{Rainy}, \mathit{Cold}, \mathit{High}, \mathit{Strong}, \mathit{Warm}, \mathit{Change} \rangle : - \\ x_4 = \langle \mathit{Sunny}, \mathit{Warm}, \mathit{High}, \mathit{Strong}, \mathit{Cool}, \mathit{Change} \rangle : + \\ \end{array}
```


$$\begin{array}{l} h_0 = \langle \phi, \phi, \phi, \phi, \phi, \phi \rangle \\ h_1 = \langle \textit{Sunny}, \textit{Warm}, \textit{Normal}, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ h_2 = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ h_3 = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, \textit{Warm}, \textit{Same} \rangle \\ h_4 = \langle \textit{Sunny}, \textit{Warm}, ?, \textit{Strong}, ?, ? \rangle \end{array}$$

Properties of FIND-S

- For hypothesis spaces that are described by conjunctions of attributes constraints, FIND-S is guaranteed to output the most specific hypothesis within the hypothesis space that is consistent with positive training examples.
- The output is also consistent with negative training examples provided the correct concept is in the hypothesis space.

Proof

$$c \in H \Rightarrow h \leq_{g} c \Rightarrow m(h) \subseteq m(c)$$
$$c(x) : -\Rightarrow x \notin m(c) \Rightarrow x \notin m(h) \Rightarrow h(x) : -$$

• Has the learner converged to the correct target concept?

- Why prefer the most specific hypothesis?
- Are the training examples consistent?
- What if there are several maximally specific consistent hypotheses?

Version Space (VS)

Definition: Consistency

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for all $\langle x, c(x) \rangle$ in D.

$$abla$$
sistent $(h,D)\equiv (orall \langle x,c(x)
angle \in D)\ h(x)=c(x)$

Definition: Version Space

The version space, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H \mid Consistent(h, D)\}$$

Tian-Li Yu (NTUEE)

LIST-THEN-ELIMINATE Algorithm

LIST-THEN-ELIMINATE

- 1 VS = a set containing every hypothesis in H.
- 2 for each training example $\langle x, c(x) \rangle \in D$
- Remove from VS any hypothesis h for which $h(x) \neq c(x)$.
- 4 Output the list of hypotheses in *VS*.
 - LIST-THEN-ELIMINATE outputs all hypotheses that are consistent with examples.
 - Theoretically, it works for any finite version spaces.
 - However, the requirement of memory is impractical.
 - We need more compact representation of VS.

Representing Version Spaces

Definition: General Boundary

The **general boundary**, G, of version space $VS_{H,D}$ is the set of its maximally general members.

Definition: Specific Boundary

The **specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members.

$$S \equiv \{s \in H | \textit{Consistent}(s, D) \land (\neg \exists s' \in H \ (s' <_g s) \land \textit{Consistent}(s', D))\}$$

Tian-Li Yu (NTUEE) Concept Learning 13 / 24

Representing Version Spaces

Version Space Representation Theorem

Every member of the version space lies between these two boundaries.

$$VS_{H,D} = \{ h \in H \mid (\exists s \in S)(\exists g \in G) \ s \leq_g h \leq_g g \}.$$

<□▶◆∰▶◆臺▶◆臺▶○臺□♡Q

CANDIDATE-ELIMINATION Algorithm

- \bullet \bullet = set of maximally general hypotheses in \bullet .
- Some a property of the second of the seco
 - If *d* is positive,
 - Remove from G any hypothesis $\frac{1}{1}$ sistent with d
 - For each $s \in S$ inconsistent with d
 - Remove s from S.
 - Add to S all minimal generalization h of s s.t. h is consistent with d and some member of G is more general than h.
 - ullet Remove from S any hypothesis that is more general than another hypothesis in S.
 - If d is negative,
 - Remove from S any hypothesis inconsistent with d.
 - For each $g \in G$ inconsistent with d
 - Remove g from G.
 - Add to G all minimal specification h of g s.t. h is consistent with
 d and some member of S is more specific than h.
 - Remove from G any hypothesis that is more specific than another hypothesis in G.

Training examples

- (Sunny, Warm, Normal, Strong, Warm, Same): +
- (Sunny, Warm, High, Strong, Warm, Same): +
- (Rainy, Cold, High, Strong, Warm, Change): —
- $\bullet \ \langle \textit{Sunny}, \textit{Warm}, \textit{High}, \textit{Strong}, \textit{Cool}, \textit{Change} \rangle : +$

Initially,

- $S_0 = \langle \phi, \phi, \phi, \phi, \phi, \phi, \phi \rangle$
- $G_0 = \langle ?, ?, ?, ?, ?, ?, ? \rangle$

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

$$S_2$$
, S_3 : $\{ < Sunny, Warm, ?, Strong, Warm, Same > \}$

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

Training Example:

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Properties of Candidate Elimination

- Does it converge to the correct concept?
 - Yes if (1) there is no error in the training champles and (2) some hypothesis in *H* correctly describes the target concept.
 - When one of these (or both) doesn't hold, given enough data, eventually S and G crosses, and yields an empty VS.
- What training example should the learner request next?
 - A good query should be classified as positive by some $h \in H$ and negative by others.
 - An optimal query should be half-half, then only $\lceil \lg |VS| \rceil$ such queries are needed to learn the exact concept if any.
- How can partially learned concepts be used?
 - An instance is positive for the target concept if it satisfies every member in S.
 - An instance is negative for the target concept if it satisfies none in G.
 - We may calculate confidence for other instances given some prior.

Inductive Bias

- We talked about the difficulty where the target concept is not in the hypothesis space.
- Why not using a hypothesis space which includes every possible hypothesis?
- How does |H| affect the generalization of the learner?
- How does |H| affect required number of training examples?

Biased and Unbiased Hypothesis Space

- Inductive bias of CANDIDATE-ELIMINATION:
 The target concept is contained in the hypothesis space H.
- Our previous conjunctive hypothesis space:
 - Contains only $4 \times 3 \times 3 \times 3 \times 3 \times 3 + 1 = 973$ concepts, very biased.
- (Sunny, Warm, Normal, Strong, Cool, Change): (Cloudy, Warm, Normal, Strong, Cool, Change): (Rainy, Warm, Normal, Strong, Cool, Change): (Our algorithm will find zero hypothesis since it can't learn disjunctions such as Sky = Sunny ∨ Sky = Cloudy.
- Consider an unbiased hypothesis space.

 - We never have to worry whether the target concept is in *H*.

Tian-Li Yu (NTUEE) Concept Learning 22 / 24

Futility of Bias-Free Learning

- No generalization in such hypothesis space!
 - Positive examples: x_1, x_2, x_3 ; negative: x_4, x_5 .
 - $S = \{x_1 \lor x_2 \lor x_3\}.$
 - $G = \{ \neg x_4 \land \neg x_5 \}.$

- A learner that makes no prior assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances.
- No-free-lunch theorem
- No bias, no learning.

Summary

- Concept learning can be cast as a problem of searching through a large predefined space of potential hypotheses.
- Search with the general-to-specific partial ordering.
- FIND-S search from specific to general and outputs the most specific consistent hypothesis.
- CANDIDATE-ELIMINATION keeps the most general (G) and specific
 (S) hypothesis. It shrinks VS during the search by relaxing S with positive examples and restricting G with negative ones.
- Inductive learning algorithms are able to classify unseen data because of implicit inductive bias.