Problem set #2

- 1. A projectile is fired vertically; at initial speed v_o , in a uniform gravitational field. The drag is proportional to v^2 , such that the terminal velocity is v_T .
 - a. How long would the projectile take to reach maximum height with no drag?
 - b. What is the actual time to reach maximum height?
 - c. What is the velocity of the projectile when it hits the ground?
- 2. Two superballs are dropped from a height, h, with the light ball (mass = m) on top of the heavy ball (mass = M). The balls are lined up perfectly so that all motion is in the vertical direction.
 - a. What percentage of the total energy is in the small ball after the collision?
 - b. How high does the light ball bounce?
- 3. A single stage rocket has an initial mass, m_0 , and burns fuel at a constant rate, α . The burned fuel is expelled at a relative velocity, u, to the rocket.
 - a. What is the height of burnout of the rocket in a uniform gravitational field?

For a specific rocket $m_0 = 5 * 10^4$ kg, $\alpha = 200$ kg/s, and u = 2000 m/s. It carries 10^4 kg of fuel.

- b. How long does this rocket take to lift off?
- c. What is the height of the rocket at burnout?
- d. What is wrong with the design of this rocket?