CSC236 Term Test 1 Version 2 Solution

Hyungmo Gu

May 6, 2020

Question 1

• aa

Rough Work:

Define $P(n): f(n) = 3^n$.

I will use complete induction to prove that $\forall n \in \mathbb{N}, n > 2 \Rightarrow C(n)$.

1. Inductive Step

Inductive Step:

Let $n \in \mathbb{N}$. Assume n > 2. Assume $H(n) : \bigwedge_{i=0}^{n-1} P(i)$. I will prove C(n) follows. That is, $f(n) = 3^n$.

2. Base Case (n=0)

Base Case (n = 0):

Let n = 0.

Then, the definition of f(n) tells us f(n) = 1.

Then, we have

$$f(n) = 3^0 \tag{1}$$
$$= 3^n \tag{2}$$

$$=3^{n} \tag{2}$$

Thus, P(n) follows.

3. Base Case (n = 1)

Base Case (n = 1):

Let n=1.

Then, the definition of f(n) tells us f(n) = 3.

Then, we have

$$f(n) = 3^1 \tag{3}$$

$$=3^{n} \tag{4}$$

Thus, P(n) follows.

4. Base Case (n=2)

Base Case (n=2):

Let n=2.

Then, the definition of f(n) tells us f(n) = 9.

Then, we have

$$f(n) = 3^2 \tag{5}$$
$$= 3^n \tag{6}$$

$$=3^{n} \tag{6}$$

Thus, P(n) follows.

5. Case (n > 2)

Question 2

Question 3