

- Sources of return
- Macaulay duration

© Kaplan, Inc.

Sources of Return: Example

An investor purchases a new 10-year, 6.2% annual coupon priced at par, holding it to maturity.

The return consists of:

- 1. Coupons and principal payments
- 2. Reinvestment income from any coupon payments
- 3. Any capital gain or loss if sold before maturity (n/a)

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it to maturity.

- 1. Coupons and principal payments = $(\$6.20 \times 10) + \$100 = \$162$
- 2. Reinvestment income from any coupon payments =

Assume coupons are reinvested at YTM. As bond is priced at par, YTM = coupon = 6.2%. Find FV of coupons:

N = 10; I/Y = 6.2; PV = 0; PMT = 6.2; FV CPT =

\$82.49 represents of coupons plus of reinvestment income.

4

Source: CFA Institute. Used with permission.

© Kaplan, Inc.

Sources of Return: Example

Total return across 10 years =

Annual return = = (i.e., YTM)

-2

Source: CFA Institute. Used with permission.

Sources of Return

- Therefore, if interest rate declines after purchase (e.g., from 6.2% to 5.2%):
 - Coupon reinvestment income will be lower (reinvestment risk)
 - Price of the bond will increase (price risk)

Reinvestment risk + price risk = interest rate risk

• The two work in **opposite directions**

© Kaplan, Inc.

Sources of Return: Example

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it to maturity. **Rates immediately decline after purchase to 5.2%.**

- 1. Coupons and principal payments = $(\$6.20 \times 10) + \$100 = \$162$
- 2. Reinvestment income from any coupon payments =

Coupons now reinvested at 5.2%. Find FV of coupons:

$$N = 10$$
; $I/Y = 5.2$; $PV = 0$; $PMT = 6.2$; $FV CPT =$

\$78.71 represents of coupons plus of reinvestment income.

-4

Total return across 10 years =

Annual return = =

- Lower HPR as coupons were not able to be reinvested at 6.2% (reinvestment risk)
- No price risk here as held until maturity

© Kaplan, Inc.

Sources of Return: Example

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it for 4 years and then selling it for \$95.263. Interest rates immediately rose to 7.2% after purchase.

- 1. Coupons and principal payments = =
- 2. Reinvestment income from any coupon payments =

Find FV of coupons:

N = 4; I/Y = 7.2; PV = 0; PMT = 6.2; FV CPT =

\$27.61 represents of coupons plus of reinvestment income.

4

Source: CFA Institute. Used with permission.

Total return across 4 years =

Annual return = =

Higher interest rates meant the coupons were able to be reinvested at a higher rate, but this was more than offset by a lower sales price.

-3

© Kaplan, Inc.

Sources of Return: Conclusions

An increase in interest rates after purchase will:

• increase HPR due to higher reinvestment income (assuming there are coupons)

but

 decrease HPR due to lower sales price of bond (assuming sold before maturity)

So, which dominates?

Macaulay Duration

The investment horizon where reinvestment risk exactly cancels out price risk = Macaulay duration:

If investment horizon > MacD, reinvestment risk will dominate (-ve duration gap)

If investment horizon < MacD, price risk will dominate (+ve duration gap)

Duration gap = MacDur – investment horizon

© Kaplan, Inc.

Interest Rate Risks: Example

An investor intends to hold a bond with eight years remaining to maturity for eight years. The bond's Macaulay duration is 6.841. The investor is *primarily* exposed to which of the following interest rate risks:

- A. Price risk.
- B. Reinvestment risk.
- C. Neither price nor reinvestment risk.

-1

Source: CFA Institute. Used with permission.

Macaulay Duration

How to calculate:

- Calculate the cash flow at each time period
- Find the PV of each cash flow, discounted at the bond's YTM
- Find the weight of each PV: PV of CF / total PV
- Multiply each weight by time to receipt (i.e., ×1 for 1 year, ×2 for 2 years)
- Sum of weighted receipts = Macaulay duration

-5

© Kaplan, Inc.

Macaulay Duration: Example

Find the MacD of a 5-year, 6.2% annual-pay bond, par value \$100. Trading at par, so YTM = 6.2%.

Time Period	Cash Flow	PV of Cash Flow	Weighting of CF	Weighting × Time
1	\$6.20	\$5.84	5.84%	0.0584
2	\$6.20	\$5.50	5.50%	0.1100
3	\$6.20	\$5.18	5.18%	0.1554
4	\$6.20	\$4.87	4.87%	0.1948
5	\$106.20	\$78.61	78.61%	3.9305
Totals	_	\$100	100%	4.45 years

Macaulay Duration: Example

Macaulay duration = 4.45 years. What does this mean?

Investment horizon where reinvestment risk exactly offsets price risk:

(i.e., the investor will earn the initial YTM of 6.2% regardless of interest rate movements)

If investment horizon > 4.45 years, reinvestment risk will dominate price risk:

Interest rates rise, overall HPR will increase; if interest rates fall, overall HPR will decrease

If investment horizon < 4.45 years, price risk will dominate:

Interest rates rise, overall HPR will decrease; if interest rates fall, overall HPR will increase

-4

© Kaplan, Inc.

Solutions

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it to maturity.

- 1. Coupons and principal payments = $(\$6.20 \times 10) + \$100 = \$162$
- 2. Reinvestment income from any coupon payments =

Assume coupons are reinvested at YTM. As bond is priced at par, YTM = coupon = 6.2%. Find FV of coupons:

$$N = 10$$
; $I/Y = 6.2$; $PV = 0$; $PMT = 6.2$; $FV CPT = 82.49

\$82.49 represents \$62 of coupons plus \$20.49 of reinvestment income.

-4

Source: CFA Institute. Used with permission.

© Kaplan, Inc.

Sources of Return: Example

Total return across 10 years =

$$\frac{\$62 + \$100 + \$20.49}{\$100} = 1.8249$$

Annual return = $1.8249^{1/10} - 1 = 6.2\%$ (i.e., YTM)

-2

Source: CFA Institute. Used with permission.

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it to maturity. **Rates immediately decline after purchase to 5.2%.**

- 1. Coupons and principal payments = $(\$6.20 \times 10) + \$100 = \$162$
- 2. Reinvestment income from any coupon payments =

Coupons now reinvested at 5.2%. Find FV of coupons:

$$N = 10$$
; $I/Y = 5.2$; $PV = 0$; $PMT = 6.2$; $FV CPT = 78.71

\$78.71 represents \$62 of coupons plus \$16.71 of reinvestment income.

-4

© Kaplan, Inc.

Sources of Return: Example

Total return across 10 years =

$$\frac{\$62 + \$100 + \$16.71}{\$100} = 1.7871$$

Annual return = $(1.7871)^{1/10} - 1 = 5.98\%$

- Lower HPR as coupons were not able to be reinvested at 6.2% (reinvestment risk)
- No price risk here as held until maturity

-3

An investor purchases a new 10-year, 6.2% annual coupon priced at par \$100, holding it for 4 years and then selling it for \$95.263. Interest rates immediately rose to 7.2% after purchase.

- 1. Coupons and principal payments = $(\$6.20 \times 4) + \$95.263 = \$120.06$
- 2. Reinvestment income from any coupon payments =

Find FV of coupons:

N = 4; I/Y = 7.2; PV = 0; PMT = 6.2; FV CPT = \$27.61

\$27.61 represents \$24.80 of coupons plus \$2.81 of reinvestment income.

-4

Source: CFA Institute. Used with permission.

© Kaplan, Inc.

Sources of Return: Example

Total return across 4 years =

$$\frac{$24.80 + $95.263 + $2.81}{$100} = 1.22873$$

Annual return = $(1.22873)^{1/4} - 1 = 5.28\%$

Higher interest rates meant the coupons were able to be reinvested at a higher rate, but this was more than offset by a lower sales price.

-3

Interest Rate Risks: Example

An investor intends to hold a bond with eight years remaining to maturity for eight years. The bond's Macaulay duration is 6.841. The investor is *primarily* exposed to which of the following interest rate risks:

- A. Price risk.
- (B.) Reinvestment risk.
- C. Neither price nor reinvestment risk.

-1

Source: CFA Institute. Used with permission.