MAT1830 - Discrete Mathematics for Computer Science Assignment #2 Solutions

1.

p	q	$p \rightarrow q$	$\neg(p \to q)$	$p \lor \neg (p \to q)$	$\neg(p \vee \neg(p \to q))$
Т	Т	Т	F	T	F
\mathbf{T}	F	F	T	T	F
\mathbf{F}	Γ	T	\mathbf{F}	F	m T
F	F	Γ	F	F	T

[3]

So this is a not tautology (because the final column in the truth table contains some Ts and some Fs).

2.

a	b	c	$\neg b$	$a \wedge \neg b$	$b \lor c$	$(a \land \neg b) \to (b \lor c)$	$\neg a \lor b$	$\neg a \lor b \lor c$
Τ	Τ	Τ	F	F	Τ	T	Т	T
T	T	F	F	F	Τ	T	Т	T
T	F	Т	T	Т	Τ	${ m T}$	F	T
T	F	F	Т	Т	F	F	F	F
F	T	Т	F	F	Τ	${ m T}$	Т	T
F	T	F	F	F	Τ	${ m T}$	Т	Γ
F	F	Т	T	F	Τ	m T	T	T
F	F	F	T	F	\mathbf{F}	Т	T	T

[3]

[1]

So the two statements are logically equivalent (because the corresponding columns in the truth table are identical).

[1] [OR]

OR

$$(a \land \neg b) \to (b \lor c) \equiv \neg (a \land \neg b) \lor (b \lor c)$$
 (using the implication law)
$$\equiv (\neg a \lor b) \lor (b \lor c)$$
 (using DeMorgan's laws)

$$\equiv \neg a \lor (b \lor b) \lor c$$
 (using the associative laws)

(using the idempotent laws) [3]

So the two statements are logically equivalent.

 $\equiv \neg a \vee b \vee c$

[1]

[1]

[1]

4.
$$\bullet r \lor s$$

•
$$(p \wedge r) \rightarrow \neg s$$
 [2]

•
$$(p \land \neg r) \lor (q \land \neg s)$$
 [2]

(Other answers are possible for these.)

5.
$$(\neg p \lor \neg q) \to \neg q \equiv \neg (\neg p \lor \neg q) \lor \neg q$$
 (using the implication law)
$$\equiv (p \land q) \lor \neg q \qquad \text{(using DeMorgan's laws)}$$

$$\equiv (p \lor \neg q) \land (q \lor \neg q) \qquad \text{(using the distributive laws)}$$

$$\equiv (p \lor \neg q) \land \text{T} \qquad \text{(using the inverse laws)}$$

$$\equiv p \lor \neg q \qquad \text{(using the identity laws)}$$

$$[4]$$

(You don't have to name-check the logic laws if you don't want to. I do it to help you see what's going on.)