## Determination of photon PDF from High Mass Drell Yan data at LHC

F. Giulli and The xFitter Collaboration: V. Berone, A. Cooper-Sarkar, A. Glazov, R. Placakyte, V. Radescu, J. Rojo, A. Sapronov, etc. (Dated: November 24, 2016)

1

1

1

1

2

2

2

abstract goes here: ...

IIntroduction

### CONTENTS

| III heory                                |  |  |
|------------------------------------------|--|--|
| I <b>R</b> esults ASensitivity BPDF Fits |  |  |
| I <b>C</b> onclusions                    |  |  |
| References                               |  |  |

### I. INTRODUCTION

#### II. THEORY

Two processes contribute to opposite sign, same family, dilepton production at the LHC: the Drell-Yan quark-antiquark process and the photon-induced process. Both the contributions can be simulated with Mad-Graph5\_aMC@NLO (version 2.4.3) and interfaced to APPLgrid (version 01-04-70) and aMCfast (version 01-03-00). A special release of APPLgrid is used to account for the photon PDF within the proton need references for the programmes. Both contributions are generated in the 5-flavour scheme, where all the quarks, except for the top quark, are treated as massless quarks; all the calculations are performed at fixed-order (FO) without parton showers.

Theoretical predictions for both the one-dimensional  $\frac{d\sigma}{dm_{ll}}$  distribution (where  $m_{ll}$  is the invariant mass of the dilepton pair in the final state) and the double-differential distributions  $\frac{d^2\sigma}{dm_{ll}d|y_{ll}|}$  (where  $|y_{ll}|$  is the rapidity of the dilepton pair) and  $\frac{d^2\sigma}{dm_{ll}\Delta\eta_{ll}}$  (where  $\Delta\eta_{ll}$  represents the difference in pseudorapidity between the two leptons) are generated for both the electron and the muon channels.

These predictions are generated using the same selections as in reference [?] as follows:

- the invariant mass of the lepton pair is required to be greater than 116 GeV;
- the absolute value of the pseudorapidity of each lepton is required to be less than 2.5;
- the transverse momentum  $(p_T)$  of the leading lepton has to be greater than 40 GeV;

• the  $p_T$  of the sub-leading lepton has to be greater than 30 GeV.

The binning used is the same as used in reference [?]. For the invariant mass distribution, there are 12 bins between 116 GeV and 1.5 TeV with variable bin widths; and for both of the two-dimensional distributions, there are five different histograms, each one for a different invariant mass range: (a) 116 GeV  $< m_{ll} < 150$  GeV; (b) 150 GeV  $< m_{ll} < 200$  GeV; (c) 200 GeV  $< m_{ll} < 300$  GeV; (d) 300 GeV  $< m_{ll} < 500$  GeV; (e) 500 GeV  $< m_{ll} < 1500$  GeV. The APPLgrids for the first three  $m_{ll}$  intervals are divided into 12 bins with fixed bin width between  $|y_{ll}^{mim}|$  ( $|\Delta \eta_{ll}|$ ) = 0.0 (0.0) and  $|y_{ll}^{max}|$  ( $|\Delta \eta_{ll}|$ ) = 2.4 (3.0), while the final two  $m_{ll}$  intervals are divided into 6 bins with fixed bin width scanning the same  $|y_{ll}|$  and  $|\Delta \eta_{ll}|$  ranges.

Dynamical renormalization ( $\mu_R$ ) and factorization ( $\mu_R$ ) scales are used in the calculations and both are set to  $m_{ll}$ . The theoretical calculations were validated by comparing both the NLO QCD + LO EW predictions and the LO PI predictions to those computed using the FEWZ 3.1 framework. These calculations are evaluated in the  $G_F$  electroweak scheme, with the following values for the couplings:  $\alpha_S = 0.118$ ;  $1/\alpha_{EW} = 1/127$ . The difference between the two predictions is at most 1%, for both the 1-dimensional and the 2-dimensional distributions.

In order to make a next-to-next-to-leading order (NNLO) fit k-factors  $(k_F)$  are computed matching the NLO QCD + LO EW cross sections to higher order (HO) calculations. These are computed using FEWZ, with the same input parameters as for the NLO computations. The  $k_F$  are defined as:

$$k_F = \frac{NNLO\ QCD + NLO\ EW\sigma}{NLO\ QCD + LO\ EW\sigma} \tag{1}$$

The MMHT2014NNLO PDF set is used to compute both numerator and denominator. The  $k_F$  are close to the unity and their variation is  $\sim 2\%$ . provide Table of Final k-factors?

Discuss theory improvements: addition of the NLO QED+QCD piece

## III. RESULTS

### A. Sensitivity

show impact of HM DY on PDFs using sensitivity studies based on pseudo-data, for which we only use the data

uncertainties, while central value are fixed: HERA I+II vs HERA I+II + HMDY -> see the sensitivity plots from the previous email

conclusion: HMDY data has a large impact on photon PDF

### B. PDF Fits

In order to make a full PDF fit the ATLAS Drell-Yan data data are fitted together with the final combined inclusive cross section data from HERA [?]. The HERA data provide information on the quark/antiquark and gluon content of the proton and the Drell-Yan data add information on the photon content of the proton. The NLO and NNLO pQCD predictions are fitted to the data using the xFitter open source pQCD fitting platform [? ]. The DGLAP equations [? ] are solved using the programme QCDNUM which has been modified to include the photon PDF in the proton [?]. The DGLAP equations yield the PDFs at all scales if they are input as functions of x at a starting scale  $Q_0^2$ , which should be large enough that perturbative QCD can be assumed to be valid. For the present analysis this value is chosen to be  $Q_0^2 = 7.5 \text{ GeV}^2$ . This is also the value chosen for the minimum value of  $Q^2$  for data entering the fit. The charm and beauty masses are chosen to be  $m_c = 1.47$  GeV and  $m_b = 4.5 \text{ GeV}$  following the HERA analysis. The value of  $\alpha_s(M_Z)$  is chosen to be  $\alpha_s(M_Z) = 0.118$  [?]. The value of  $Q_0^2$  is above the charm mass squared, however a version of the programme is used which displaces the charm threshold from the charm mass [?] such that the threshold is at  $Q_0^2$ . The form of the  $\chi^2$  used for the fit is that defined in the H1 paper [?]. Alternative forms have also been tried with no significant difference to our

The PDF parametrisation input at  $Q_0^2$  is determined by the technique of saturation of the  $\chi^2$  [?]. The parametrised PDFs are the valence distributions  $xu_v$  and  $xd_v$ , the gluon distribution xg, and the u-type and d-type sea,  $x\bar{U}$ ,  $x\bar{D}$ , where  $x\bar{U}=x\bar{u}$  and  $x\bar{D}=x\bar{d}+x\bar{s}$ , and finally the photon distribution  $x\gamma$ . The following standard functional form is used to parametrise them:

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$
 (2)

where the normalisation parameters  $A_{uv}$ ,  $A_{dv}$  and  $A_g$  are constrained by the number sum-rules and the momentum sum-rule, respectively. The B parameters  $B_{\bar{U}}$  and  $B_{\bar{D}}$  are set equal, such that there is a single B parameter for the sea distribution. The data are not sensitive to the strangeness content of the proton which is thus set such that  $x\bar{s}=0.5\bar{D}$ , following the ATLAS analysis [?]. The further constraint  $A_{\bar{U}}=0.5A_{\bar{D}}$  is imposed such that  $\bar{u}=x\bar{d}$  as  $x\to 0$ . The D and E parameters are introduced one by one until no significant improvement in  $\chi^2$  is found.

For the NNLO fit a  $\chi^2/ndf=1.18$ , with a partial  $\chi^2/ndp=1.15$  for the high-mass Drell-yan data [up-

date with final numbers], is achieved for the following parametrisation, which has 11 parameters for the quarks and gluons and 5 parameters for the photon:

$$xu_v(x) = A_{u_v} x^{B_{u_v}} (1 - x)^{C_{u_v}} (1 + E_{u_v} x^2),$$
 (3)

$$xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}},$$
 (4)

$$x\bar{U}(x) = A_{\bar{U}}x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}},$$
 (5)

$$x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}},$$
 (6)

$$xg(x) = A_g x^{B_g} (1 - x)^{C_g} (1 + E_g x^2),$$
 (7)

$$x\gamma(x) = A_{\gamma}x^{B_{\gamma}}(1-x)^{C_{\gamma}}(1+D_{\gamma}x+E_{\gamma}x^2)$$
 (8)

(9)

The parametrisation for HERA data differs from that of the HERAPDF2.0 PDF since the starting scale  $Q_0^2$  is higher and the additional negative term in the gluon parametrisation is not necessary. Parametrisation and model uncertainties are considered according to the HERAPDF procedure [?] by adding extra terms which make little difference to the  $\chi^2$  of the fit, but which can change the shape of the PDFs. Additional parameters considered are: the extra negative term for the gluon;  $D_{u_v}$ ,  $D_{\bar{u}}$  and  $E_{\bar{d}}$ . Model variations considered are the variation of:  $m_b$  from 4.25 to 4.75 GeV;  $m_c$  from 1.41 to 1.53 GeV;  $Q_0^2$  up to 10 GeV<sup>2</sup>;  $Q_{cut}^2$  up to 10 GeV<sup>2</sup>; the strangeness fraction down to  $f_s = 0.4$ ; the value of  $\alpha_s(M_Z)$  from 0.116 to 0.120.

Fig. 1 shows the PDF distributions  $x_{u_v}, xd_{d_v}, x\bar{u}, x\bar{d}, xg$  at  $Q^2 = 7.5^2$  GeV<sup>2</sup>, including model and parametrisation uncertainties, while Fig. 2 shows them at  $Q^2 = 10^4$  GeV<sup>2</sup>. Add model and parametrisation variations, Use NNLO MC central. In these figures comparisons are made to the NNPDF3.0PDF set and the HERAPDF2.0 set. The shape of the  $xd_{u_v}$  distribution is close to that of HERAPDF2.0 because of the dominance of HERA data in the fit.

Fig. 3 shows the comparison between the high-mass Drell-Yan double differential distribution and the predictions. The  $\chi^2$  values for the high-mass Drell Yan data and the output parameters from NNLO fit can be found in Table. 4 and Table. 5 respectively.

The NNLO photon PDF distribution is shown both at the starting scale (7.5  $\,\mathrm{GeV^2}$ ) and at  $10^4~\mathrm{GeV^2}$  in Fig. 6, where it is also compared to an NLO extraction of the photon distribution. The x-range of the figure is restricted to the range of sensitivity of the high-mass drell-Yan data; 0.045 < x < 0.35. The NLO and NNLO photon PDFs are compatible over this range.

Fig. 7 shows the photon distribution in the restricted range compared to the NNPDF3.0qed NNLO photon PDF. The uncertainties are considerably reduced. The comparison is shown at scale 100 GeV² and at  $10^4~{\rm GeV^2}$ , where the value of  $100~{\rm GeV^2}$  is chosen such that comparisons can also be made to the LUXqed [? ] photon PDF, which is only defined above this scale. The HKR photon PDF [? ] is also shown in this figure. The fit predictions from the present analysis agree with the LUXqed and the HKR photon PDFs at the  $1\text{-}\sigma$  level.





| Dataset              | xFit  |
|----------------------|-------|
| Dataset              |       |
|                      | epH   |
| HMDY rap 116-150     | 9.3 / |
| HMDY rap 150 200     | 17 /  |
| HMDY rap 200 300     | 15 /  |
| HMDY rap 300 500     | 3.8 / |
| HMDY rap 500 1500    | 4.2 / |
| Correlated $\chi^2$  | 4.98  |
| Log penalty $\chi^2$ | -3.6  |
| Total $\chi^2$ / dof | 55 /  |
| $\chi^2$ p-value     | 0.01  |

Figure 4.  $\chi^2$  for high-mass Drell Yan data, for the NNLO fit

# IV. CONCLUSIONS

| Parameter     | xFitter epHMDY                                       |  |
|---------------|------------------------------------------------------|--|
| ′Bg′          | $-0.220^{+0.014}_{-0.013}$ $6.92^{+0.62}_{-0.61}$    |  |
| 'Cg'          | $6.92^{+0.62}_{-0.61}$                               |  |
| 'Buv'         | $0.761 \pm 0.017$                                    |  |
| 'Cuv'         | $5.060^{+0.064}_{-0.092}$                            |  |
| 'Euv'         | 0.07 + 0.80                                          |  |
| 'Bdv'         | $8.07_{-0.82}^{+0.050}$<br>$1.009_{-0.056}^{+0.050}$ |  |
| 'Cdv'         | $5.61^{+0.24}_{-0.22}$                               |  |
| 'Cubar'       | $6.37_{-0.38}^{+0.56}$ $0.3226_{-0.0083}^{+0.0078}$  |  |
| 'Adbar'       | $0.3226^{+0.0078}_{-0.0083}$                         |  |
| 'Bdbar'       | $-0.1921^{+0.0033}_{-0.0033}$ $14.0^{+2.0}_{-1.7}$   |  |
| 'Cdbar'       | $14.0^{+2.0}_{-1.7}$                                 |  |
| 'alphas'      | 0.1180                                               |  |
| 'rs'          | 1.0000                                               |  |
| 'Aph'         | $0.00120^{+0.031}_{-0.00089}$                        |  |
| 'Bph'         | $0.00120^{+0.031}_{-0.00089} -0.62^{+0.63}_{-0.36}$  |  |
| 'Cph'         | $10.0^{+13}_{-5.0}$                                  |  |
| 'Dph'         | $-4^{+210}_{-15}$<br>87 <sup>+257</sup>              |  |
| 'Eph'         | 87 <sup>+257</sup> <sub>-140</sub>                   |  |
| Fit status    | MC-replica                                           |  |
| Uncertainties | median±68cl                                          |  |

Figure 5. PDF parameters for the NNLO fit.



Figure 6. Comparison between the photon PDF distributions at NNLO and NLO: (a) at the starting scale; (b) at the evolved scale.



Figure 7. Comparison between the NNLO photon PDF distributions for the present analysis, NNPDF3.0QED, LUXqed, HKR: (a) at scale  $100~{\rm GeV}^2$ ; (b) at the evolved scale  $10000~{\rm GeV}^2$ .