Cryptography and Network Security Block Ciphers and DES

Fifth Edition by William Stallings

Content

- Block Cipher Principles
- ◆ The Data Encryption Standard
- ◆ DES Details
- ◆ DES Design Issues and Attacks
- ◆ 3DES, AES and Other Block Ciphers

The objectives

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- focus on DES (Data Encryption Standard)
- > to illustrate block cipher design principles

Block Ciphers

- ◆ Encrypt data one block at a time
- ,Used in broader range of applications
- ◆ ,Typical block size 64 128 bits
- ,Most algorithms based on a structure referred to as Feistel block cipher

Block vs Stream Ciphers

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Block cipher principles

- n-bit block cipher takes n bit plaintext and produces n bit ciphertext
- ◆ 2ⁿ possible different plaintext blocks
- Encryption must be reversible (decryption possible)
- Each plaintext block must produce unique ciphertext block
- lack Total transformations is $2^n!$

Reversible Mapping									
Plaintext	Ciphertext								
00	11								
01	10								
10	00								
11	01								

Irreversible Mapping								
Plaintext	Ciphertext							
00	11							
01	10							
10	01							
11	01							

Ideal Block Cipher

key is mapping; Key length 16×4 bits = 64 bits . i.e. concatenate all bits of ciphertext table

Encryption/decryption table

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext				
0000	1110				
0001	0011				
0010	0100				
0011	1000				
0100	0001				
0101	1100				
0110	1010				
0111	1111				
1000	0111				
1001	1101				
1010	1001				
1011	0110				
1100	1011				
1101	0010				
1110	0000				
1111	0101				

Ideal Block Cipher

- n-bit input maps to 2ⁿ possible input states
- ◆ Substitution used to produce 2ⁿ output states
- Output states map to n-bit output
- ◆ Ideal block cipher allows maximum number of possible encryption mappings from plaintext block
- Problems with ideal block cipher:
 - Small block size: equivalent to classical substitution cipher; cryptanalysis based on statistical characteristics feasible
 - Large block size: key must be very large; performance/implementation problems

♦ Key length:

- In general, key length is $2^n \times n$
- ,Actual block size is at least 64 bit (,Key length will be $2^{64} \times 64 \approx 10^{21}$,bits)

Feistel Structure for Block Ciphers

- Feistel proposed applying two or more simple ciphers in sequence so final result cryptographically stronger than component ciphers
- **n-bit** block length; **k-bit** key length; **2**^k transformations (rather than 2ⁿ!)
- Feistel cipher alternates: substitutions, transpositions (permutations)
- Applies concepts of diffusion and confusion
- Applied in many ciphers today
- Approach:
 - Plaintext split into halves
 - Subkeys (or round keys) generated from key
 - Round function, F, applied to right half
 - Apply substitution on left half using XOR
 - Apply permutation: interchange to halves
- implements Shannon's S-P net concept

Feistel Cipher Structur

Output (plaintext)

Confusion and Diffusion

Diffusion

- Statistical nature of plaintext is reduced in ciphertext
- E.g. A plaintext letter affects the value of many ciphertext letters
- How: repeatedly apply permutation (transposition) to data, and then apply function

Confusion

- Make relationship between ciphertext and key as complex as possible
- Even if attacker can find some statistical characteristics of ciphertext, still hard to find key
- How: apply complex (non-linear) substitution algorithm

Using the Feistel Structure

- Exact implementation depends on various design features
 - ➤ Block size, e.g. 64, 128 bits: larger values leads to more diffusion
 - ➤ **Key size**, e.g. 128 bits: larger values leads to more confusion, resistance against brute force
 - ➤ **Number of rounds**, e.g. 16 rounds
 - > Subkey generation algorithm: should be complex
 - **Round function F**: should be complex
- Other factors include fast encryption in software and ease of analysis
- > Tradeoff : security vs performance

Feistel Example

Figure 3.4 Feistel Example

Data Encryption Standard (DES)

- Symmetric block cipher
 - 56-bit key, 64-bit input block, 64-bit output block
- ◆ One of most used encryption systems in world
 - Developed in 1977 by NBS/NIST
 - Designed by IBM (Lucifer) with input from NSA
 - Principles used in other ciphers, e.g. 3DES, IDEA

Figure 3.5 General Depiction of DES Encryption Algorithm

DES
Encryption
Algorithm

Permutation Tables for DES

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (\mathbf{IP}^{-1})

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Permutation Tables for DES

3: Expansion permutation (E)

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

4: Permutation Function (P)

16	7	20	21	29	12	28	17 10 9
16 1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	24 30	6	22	11	4	25

Single Round of DES Algorithm

DES Round Structure

Definition of DES S-Boxes

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{s}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
s_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Definition of DES S-Boxes

	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
s_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
s_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES Key Schedule Calculation

(a) Input Key

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

y (b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

(d) Schedule of Left Shifts

Round Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits Rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Table 3.2

DES Example

(Table can be found on page 75 in textbook)

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	cl1bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

DES Example

Round	K _i	L_i	R_i
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP −1		da02ce3a	89ecac3b

Avalanche Effect

- ◆ Aim: small change in key (or plaintext) produces large change in ciphertext
- Avalanche effect is present in DES (good for security)
- ◆ Following examples show the number of bits that change in output when two different inputs are used, differing by 1 bit
 - Plaintext 1: 02468aceeca86420
 - Plaintext 2: 12468aceeca86420
 - Ciphertext difference: 32 bits
 - Key 1: 0f1571c947d9e859
 - Key 2: 1f1571c947d9e859
 - Ciphertext difference: 30

Round		δ	Round		δ
	02468aceeca86420	1	9	c11bfc09887fbc6c	32
	12468aceeca86420			99f911532eed7d94	
1	3cf03c0fbad22845	1	10	887fbc6c600f7e8b	34
	3cf03c0fbad32845			2eed7d94d0f23094	
2	bad2284599e9b723	5	11	600f7e8bf596506e	37
	bad3284539a9b7a3			d0f23094455da9c4	
3	99e9b7230bae3b9e	18	12	f596506e738538b8	31
	39a9b7a3171cb8b3			455da9c47f6e3cf3	
4	0bae3b9e42415649	34	13	738538b8c6a62c4e	29
	171cb8b3ccaca55e			7f6e3cf34bc1a8d9	
5	4241564918b3fa41	37	14	c6a62c4e56b0bd75	33
	ccaca55ed16c3653			4bc1a8d91e07d409	
6	18b3fa419616fe23	33	15	56b0bd7575e8fd8f	31
	d16c3653cf402c68			1e07d4091ce2e6dc	
7	9616fe2367117cf2	32	16	75e8fd8f25896490	32
	cf402c682b2cefbc			1ce2e6dc365e5f59	
8	67117cf2c11bfc09	33	IP-1	da02ce3a89ecac3b	32
	2b2cefbc99f91153			057cde97d7683f2a	

Table 3.3 Avalanche Effect in DES: Change in Plaintext

Round		δ	Round		δ
	02468aceeca86420	0	9	c11bfc09887fbc6c	34
	02468aceeca86420			548f1de471f64dfd	
1	3cf03c0fbad22845	3	10	887fbc6c600f7e8b	36
	3cf03c0f9ad628c5			71f64dfd4279876c	
2	bad2284599e9b723	11	11	600f7e8bf596506e	32
	9ad628c59939136b			4279876c399fdc0d	
3	99e9b7230bae3b9e	25	12	f596506e738538b8	28
	9939136b768067b7			399fdc0d6d208dbb	
4	0bae3b9e42415649	29	13	738538b8c6a62c4e	33
	768067b75a8807c5			6d208dbbb9bdeeaa	
5	4241564918b3fa41	26	14	c6a62c4e56b0bd75	30
	5a8807c5488dbe94			b9bdeeaad2c3a56f	
6	18b3fa419616fe23	26	15	56b0bd7575e8fd8f	33
	488dbe94aba7fe53			d2c3a56f2765c1fb	
7	9616fe2367117cf2	27	16	75e8fd8f25896490	30
	aba7fe53177d21e4			2765c1fb01263dc4	
8	67117cf2c11bfc09	32	IP-1	da02ce3a89ecac3b	30
	177d21e4548f1de4			ee92b50606b62b0b	

Table 3.4 Avalanche Effect in DES: Change in Key

Table 3.5

Average Time Required for Exhaustive Key Search

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 1013 decryptions/s
56	DES	2 56 ≈ 7.2 × 10 16	2 55 ns = 1.125 years	1 hour
128	AES	2 128 ≈ 3.4 × 10 38	2 127 ns = 5.3 × 10 21 years	5.3 × 10 17 years
168	Triple DES	2 168 ≈ 3.7 × 10 50	2 167 ns = 5.8 × 10 33 years	5.8 × 10 29 years
192	AES	2 192 ≈ 6.3 × 10 57	2 191 ns = 9.8 × 10 40 years	9.8 × 10 36 years
256	AES	2 256 ≈ 1.2 × 10 77	$2255 \text{ ns} = 1.8 \times 1060$ years	1.8 × 10 56 years
26 characters (permutation)	Monoalphabetic	26! = 4 × 10 26	2 × 10 26 ns = 6.3 × 10 9 years	6.3 × 10 6 years

Key size

- ◆ Although 64 bit initial key, only 56 bits used in encryption (other 8 for parity check)
- \bullet 2⁵⁶ = 7.2 x 10¹⁶
 - 1977: estimated cost \$US20m to build machine to break in 10 hours
 - 1998: EFF built machine for \$US250k to break in 3 days
 - Today: 56 bits considered too short to withstand brute force attack
- ◆ 3DES uses 128-bit keys

Attacks on DES

♦ Timing Attacks

- Information gained about key/plaintext by observing how long implementation takes to decrypt
- No known useful attacks on DES

♦ Differential Cryptanalysis

- Observe how pairs of plaintext blocks evolve
- Break DES in 247 encryptions (compared to 255); but require 247 chosen plaintexts

♦ Linear Cryptanalysis

- Find linear approximations of the transformations
- Break DES using 243 known plaintexts

DES Algorithm Design

- ◆ DES was designed in private; questions about the motivation of the design
 - S-Boxes provide non-linearity: important part of DES, generally considered to be secure
 - S-Boxes provide increased confusion
 - Permutation P chosen to increase diffusion

Multiple Encryption with DES

- ◆ DES is vulnerable to brute force attack
- ◆ Alternative block cipher that makes use of DES software/equipment/knowledge: encrypt multiple times with different keys
- Options:
 - − 1. Double DES: not much better than single DES
 - 2. Triple DES (3DES) with 2 keys: brute force 2^{112}
 - 3. Triple DES with 3 keys: brute force 2^{168}

Double Encryption

- ◆ For DES, 2 56-bit keys, meaning 112-bit key length
- lacktriangle Requires 2^{111} operations for brute force?
- ◆ Meet-in-the-middle attack makes it easier

Summary

- ♦ have considered:
 - block vs stream ciphers
 - Feistel cipher design & structure
 - DES
 - » details
 - » strength
 - Double DES
 - Triple DES