Capítulo 2

FUNÇÕES VETORIAIS

Neste capítulo introduzimos as funções vetoriais. As funções vetoriais são uma grande fonte de aplicações em diversas Ciências. Por exemplo, as curvas parametrizadas e os campos de vetores são funções vetoriais importantes.

2.1 Funções Vetoriais

Seja $n \ge 1$, denotemos o espaço vetorial euclidiano de dimensão n, por;

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \dots \mathbb{R}$$
, *n*-vezes

e por:

$$\{\vec{e}_1, \vec{e_2}, \dots, \vec{e}_{n-1}, \vec{e}_n\}$$

a base canônica de \mathbb{R}^n .

Definição 2.1. Sejam $n \ge 1$ e $m \ge 1$. Uma função vetorial:

$$F:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$$

é uma regra que associa a cada ponto $\mathbf{u} \in A$ um único vetor $F(\mathbf{u}) \in \mathbb{R}^m$.

Observação 2.1. Analogamente como no caso de uma variável:

1. O conjunto $A \subset \mathbb{R}^n$ onde F é definida é chamado **domínio** de F e é denotado por Dom(F).

2. O conjunto $\{F(\mathbf{u})\,/\,u\in Dom(F)\}\subset\mathbb{R}^m$ é chamado **imagem** de F e é denotado por F(A).

Definição 2.2. Seja $F:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ uma função vetorial:

1. A função F define m funções reais

$$F_i:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$$

tais que:

$$F(u) = F_1(u) \vec{e}_1 + F_2(u) \vec{e}_2 + \dots + F_m(u) \vec{e}_n$$

= $(F_1(u), F_2(u), \dots, F_m(u)), \forall u \in A.$

2. As F_i são chamadas **funções coordenadas** de F e denotamos:

$$F = (F_1, F_2, \dots, F_m).$$

3. Se $A \subset \mathbb{R}^n$ um conjunto aberto. A função $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ é contínua, diferenciável ou de classe C^k em $\mathbf{u} \in A$ se cada uma de suas componentes F_i , é função contínua, diferenciável ou de classe C^k em $\mathbf{u} \in A$, respectivamente.

Por exemplo, se $A\subset \mathbb{R}^n$ um conjunto aberto e $F:A\subset \mathbb{R}^n\longrightarrow \mathbb{R}^m$, então:

1. Seja $a \in U$ tal que $A \subset U$:

$$\lim_{u\to a} F(u) = \Big(\lim_{u\to a} F_1(u), \lim_{u\to a} F_2(u), \dots, \lim_{u\to a} F_m(u)\Big),$$

se os limites $\lim_{u \to a} F_i(u)$ existem, para todo $i = 1, \dots, m$.

2. Denotamos por $F^{(n)}$ a n-ésima derivada de F, se existir e $F^{(0)}=F$:

$$F^{(n)}(u) = (F_1^{(n)}(u), F_2^{(n)}(u), \dots, F_m^{(n)}(u)),$$

Proposição 2.1. Sejam $A \subset \mathbb{R}^n$ um conjunto aberto, $F, G : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ funções vetoriais e $f, g : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ funções . Se F, G, f e g são contínuas, diferenciáveis ou de classe C^k em $\mathbf{u} \in A$, respectivamente. Então:

- 1. $[f F \pm g G](u) = f(u) F(u) \pm g(u) G(u)$, para todo $u \in A$.
- 2. $[F \cdot G](u) = F(u) \cdot G(u)$, para todo $u \in A$.
- 3. $[F \times G](u) = F(u) \times G(u)$, para todo $u \in A$ e m = 3.

São contínuas, diferenciáveis ou de classe C^k em $\mathbf{u} \in A$, respectivamente.

Prova: Exercício.

Observação 2.2. Como todo \mathbb{R} -espaço vetorial de dimensão finita p é isomorfo a \mathbb{R}^p , podemos extender todo o anterior para \mathbb{R} -espaços vetoriais de dimensão finita.

2.2 Exemplos

[1] Seja $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que:

$$F(x,y) = (k x, k y), \quad k \in \mathbb{R}, \ k \neq 0.$$

A função F, tem como funções coordenadas:

$$F_1, F_2: \mathbb{R}^2 \longrightarrow \mathbb{R},$$

onde $F_1(x,y) = k x$ e $F_2(x,y) = k y$, ambas de classe C^k ; logo, F é de classe C^k .

Consideremos o disco:

$$A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\} \subset \mathbb{R}^2$$

e a restrição de *F*:

$$F: A \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2.$$

Para todo $(x, y) \in A$, fazemos:

$$\begin{cases} u = k x \\ v = k y, \end{cases}$$

então o par (u,v) satisfaz : $u^2+v^2\leq k^2$. Então:

$$F(A) = \{(u, v) / u^2 + v^2 \le k^2\},\$$

F(A) é um disco fechado de raio k.

Este tipo de função é chamada de dilatação de fator k, se k>1 e contração de fator k, se 0< k<1.

Figura 2.1: A região \boldsymbol{A} para diferentes \boldsymbol{k}

[2] Seja $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que:

$$F(x, y, z) = (x, y).$$

Esta função é chamada projeção e é tal que $F(\mathbb{R}^3)=\mathbb{R}^2.$

[3] Seja $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que:

$$F(x,y) = (x,y,0).$$

Esta função é chamada de inclusão e é tal que $F(\mathbb{R}^2)$ é o plano xy em \mathbb{R}^3 .

[4] Seja $F:A\subset\mathbb{R}^2\longrightarrow\mathbb{R}^3$ tal que:

$$F(x,y) = (x\cos(y), x\sin(y), y),$$

onde o domínio de F é a faixa $A=[0,+\infty)\times [0,6\,\pi].$

A imagem por F do segmento de reta x=a , $a\in [0,+\infty)$ para $0\leq y\leq 6\,\pi$ é a curva:

$$\begin{cases} u = a\cos(y) \\ v = a\sin(y) \\ w = y; \quad 0 \le y \le 6\pi. \end{cases}$$

Figura 2.2: Exemplo [5]

[5] Seja o quadrado $D^* = [0,1] \times [0,1]$ e:

$$T: D^* \longrightarrow \mathbb{R}^2$$

 $(u, v) \longrightarrow (u + v, u - v).$

Determinemos $T(D^*)$.

Fazendo:

$$\begin{cases} x = u + v \\ y = u - v, \end{cases}$$

então:

$$\begin{cases} u = 0 & \Longrightarrow y = -x \\ v = 0 & \Longrightarrow y = x \\ u = 1 & \Longrightarrow y = 2 - x \\ v = 1 & \Longrightarrow y = x - 1. \end{cases}$$

A região $D=T(D^*)$ é a região do plano xy limitada pelas curvas

$$y = x$$
, $y = -x$, $y = x - 2$ e $y = 2 - x$.

Figura 2.3: Gráficos de D^* e D, respectivamente

[6] Seja D^* a região limitada pelas curvas:

$$u^2 - v^2 = 1$$
, $u^2 - v^2 = 9$, $uv = 1$ e $uv = 4$

no primeiro quadrante e:

$$T: D^* \longrightarrow \mathbb{R}^2$$

 $(u, v) \longrightarrow (u^2 - v^2, u v).$

Determinemos $T(D^*) = D$.

Fazendo:

$$\begin{cases} x = u^2 - v^2 \\ y = u v; \end{cases}$$

então:

$$\begin{cases} u^2 - v^2 = 1 & \Longrightarrow x = 1 \\ u^2 - v^2 = 9 & \Longrightarrow x = 9 \\ u v = 1 & \Longrightarrow y = 1 \\ u y = 4 & \Longrightarrow y = 4. \end{cases}$$

D é a região limitada por estas retas (T é injetiva):

Figura 2.4: Gráficos de D^* e D, respectivamente

Observação 2.3. Outros exemplos importantes de funções vetoriais, são as mudanças e coordenadas. Utilizando as notações usuais das mudanças de coordenadas. Assim, chamamos as funções vetoriais que determinam as mudanças de variáveis de transformações.

Seja $A^*\subset\mathbb{R}^n$ uma região elementar em \mathbb{R}^n , $n=2,\,3.$ Denotamos a função ou transfomação vetorial, por:

$$T: A^* \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
,

tal que: $T(u_1, u_2, \dots, u_n) = (f_1(u_1, u_2, \dots, u_n), \dots, f_n(u_1, u_2, \dots, u_n))$, também denotadas por:

$$\begin{cases} x_1 &= f_1(u_1, u_2, \dots, u_n) \\ x_2 &= f_2(u_1, u_2, \dots, u_n) \\ \vdots & & \\ x_n &= f_n(u_1, u_2, \dots, u_n), \end{cases}$$

onde cada : $f_i: A^* \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, $i=1,\ldots,n$. Denotemos a imagem de A^* por T como $A=T(A^*)$.

Observação 2.4. A seguintes notações sã usualmente utilizadas:

1. Para n=2, T é uma transformação do plano uv no plano xy, e:

$$\begin{cases} x = x(u, v) \\ y = y(u, v), \quad (u, v) \in A^*. \end{cases}$$

2. Para n = 3, T é uma transformação do do espaço uvw no espaço xyz, e:

$$\begin{cases} x = & x(u, v, w) \\ y = & y(u, v, w) \\ z = & z(u, v, w), \quad (u, v, w) \in A^* \end{cases}$$

3. Lembramos que uma boa mudança de coordenadas deve ser diferenciável e injectiva.

Exemplo 2.1.

[1] **Mudança Linear**: A mudança linear é definida pela seguinte transformação:

$$T(u,v) = (a_1 u + b_1 v, a_2 u + b_2 v),$$

onde, $a_1 b_2 - a_2 b_1 \neq 0$. Equivalentemente:

$$\begin{cases} x = x(u, v) = a_1 u + b_1 v \\ y = y(u, v) = a_2 u + b_2 v; \end{cases}$$

Observação 2.5. Não é difícil ver que as inversas da transformação T, são:

$$\begin{cases} u = u(x,y) = \frac{b_2 x - b_1 y}{a_1 b_2 - a_2 b_1}, \\ v = v(x,y) = \frac{-a_2 x + a_1 y}{a_1 b_2 - a_2 b_1}, \end{cases}$$

Por exemplo, seja A a região limitada pelas curvas y-2 x=2, y+2 x=2, y-2 x=1 e y+2 x=1.

Figura 2.5: Região *D*

A presença dos termos y + 2x e y - 2x sugerem a seguinte mudança:

$$\begin{cases} u = y + 2x \\ v = y - 2x. \end{cases}$$

 A^{\ast} é a região limitada pelas seguintes curvas: u=1, u=2, v=1 e v=2.

Figura 2.6: Região D^*

[2] **Mudança Polar de Coordenadas** Um ponto P=(x,y) em coordenadas retangulares tem coordenadas polares (r,θ) onde r é a distância da origem a P e θ é o ângulo formado pelo eixo dos x e o segmento de reta que liga a origem a P.

Figura 2.7: Mudança polar de coordenadas

A relação entre as coordenadas (x, y) e (r, θ) é dada por:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = arctg(\frac{y}{x}), & x \neq 0. \end{cases}$$

Ou, equivalentemente:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta); \end{cases}$$

logo:

$$T(r, \theta) = (r\cos(\theta), r\cos(\theta)).$$

Esta mudança é injetiva em:

$$A^* = \{(r, \theta)/r > 0, \theta_0 < \theta < \theta_0 + 2\pi\},\$$

com θ_0 =constante.

Sejam a>0 e região A, limitada pelo círculo $x^2+y^2=a^2$, em coordenadas polares é dada por:

$$A^* = \{(r, \theta) \in \mathbb{R}^2 / 0 \le r \le a, \ 0 \le \theta \le 2\pi\} = [0, a] \times [0, 2\pi].$$

O cilindro circular reto de raio a, em coordenadas cartesianas é definido como o seguinte conjunto:

$$C = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = a^2, a \ge 0\};$$

em coordenadas polares:

$$C^* = \{(r, \theta, z) \in \mathbb{R}^3 / r = a, \ 0 \le \theta \le 2\pi\}.$$

[3] Coordenadas Cilíndricas: Se P=(x,y,z) é um ponto no espaço xyz, suas coordenadas cilíndricas são (r,θ,z) , onde (r,θ) são as coordenadas polares da projeção de P no plano xy e são definidas por:

$$\begin{cases} x = r\cos(\theta), \\ y = r\sin(\theta), \\ z = z, \end{cases}$$

ou, explicitamente $r = \sqrt{x^2 + y^2}$, z = z e:

$$\theta = \begin{cases} arctg(\frac{y}{x}) & \text{se } x, y > 0, \\ \pi + arctg(\frac{y}{x}) & \text{se } x < 0, \\ 2\pi + arctg(\frac{y}{x}) & \text{se } x > 0, y < 0. \end{cases}$$

Se x=0, então $\theta=\frac{\pi}{2}$ quando y>0 e $\theta=\frac{3\pi}{2}$ quando y<0. Se x=y=0, θ não é definido.

Figura 2.8: Coordenadas cilíndricas

Por exemplo, o cone com base num disco D de raio 1.5 centrado na origem e altura 3. Em coordenadas cilíndricas:

$$z=z, \quad 0 \le r \le \frac{3}{2}, \quad 0 \le \theta \le 2\pi$$

logo, o cone em coordenadas cilíndricas:

$$S = \{r, \theta, z\} \in \mathbb{R}^3 / 0 \le r \le \frac{3}{2}, \ 0 \le \theta \le 2\pi, \ 0 < z < 3\}.$$

Figura 2.9: O cone do exemplo

[4] Coordenadas Esféricas Seja P=(x,y,z) um ponto no espaço xyz. Suas coordenadas esféricas são (ρ,θ,ϕ) onde ρ é a distância do ponto P à origem, θ é o ângulo formado pelo eixo positivo dos x e o segmento de reta que liga (0,0,0) a (x,y,0) e ϕ é o ângulo formado pelo eixo positivo dos z e o segmento de reta que liga P à origem:

$$\begin{cases} x = & \rho \cos(\theta) \operatorname{sen}(\phi) \\ y = & \rho \operatorname{sen}(\theta) \operatorname{sen}(\phi) \\ z = & \rho \cos(\phi), \end{cases}$$

onde:

$$\begin{cases} \rho = \sqrt{x^2 + y^2 + z^2} \\ 0 \le \theta < 2\pi \\ 0 \le \phi \le \pi, \end{cases}$$

o que define uma região no espaço $\rho \theta \phi$.

Figura 2.10: Coordenadas esféricas

Em coordenadas esféricas uma esfera de raio a, centrada na origem é:

$$S = \{(\rho, \phi, \theta) \in \mathbb{R}^3 / \rho = a, 0 \le \phi \le \pi, 0 \le \theta \le 2\pi\}.$$

Os cones circulares com eixos coincidentes com o eixo dos z são caracterizados por:

$$S = \{ (\rho, \phi, \theta) \in \mathbb{R}^3 / \rho \in [0, +\infty), \ \phi = c_0, \ 0 \le \theta \le 2\pi \},$$

onde $c_0 \in \mathbb{R}$.

Casos particulares:

- 1. Se $c_0=0$ e $\phi=0$, S representa o semi-eixo positivo dos z.
- 2. Se $c_0=\pi$ e $\phi=\pi$, S representa o semi-eixo negativo dos z.
- 3. Se $c_0 = \frac{\pi}{2}$ e $\phi = \frac{\pi}{2}$, S representa o plano xy.
- 4. Se $0 < c_0 < \frac{\pi}{2}$ e $\phi = c_0$, o cone "abre"para cima.
- 5. Se $\frac{\pi}{2} < c_0 < \pi$ e $\phi = c_0$, o cone "abre"
para baixo.

Observação 2.6. Nosso interesse nestas notas é estudar com alguma profundidade as funções de \mathbb{R} em \mathbb{R}^n e de \mathbb{R}^n em \mathbb{R}^n . As primeiras são chamadas curvas ou caminhos e as segundas campos de vetores.

2.3 Exercícios

1. Seja
$$F(t) = (\sqrt{1-t^2}, \cos(t-1), \frac{1}{t^3-t})$$
:

- (a) Determine o domínio de F
- (b) Calcule: $\lim_{t\to 1} F(t)$
- (c) Calcule: F''(1)
- (d) Calcule: ||F'(1)|| e ||F''(1)||.

2. Seja
$$F(x, y, z) = (\sqrt{x-1}, e^{2yz}, \sqrt{\ln(x^2 + y^2 + z)})$$
:

- (a) Determine o domínio de *F*
- (b) Calcule: $\lim_{(x,y,z)\to(1,0,1)} F(x,y,z)$
- (c) Calcule: F''(1, 1, 1)
- (d) Calcule: ||F'(1,1,1)|| e ||F''(1,1,1)||.

3. Verifique que:

(a)
$$[F \pm G]'(u) = f(u) F'(u) \pm g(u) G'(u)$$

(b)
$$[F \cdot G]'(u) = F'(u) \cdot G(u) + F(u) \cdot G'(u)$$

(c)
$$[F \times G]'(u) = F'(u) \times G(u) + F(u) \times G'(u)$$

4. Verifique que:

(a)
$$[F \pm G]'(u) = f(u) F'(u) \pm g(u) G'(u)$$

(b)
$$[F \cdot G]'(u) = F'(u) \cdot G(u) + F(u) \cdot G'(u)$$

(c)
$$[F \times G]'(u) = F'(u) \times G(u) + F(u) \times G'(u)$$

- 5. Sejam $F(t) = (t^4 + 3t^2, 5t^3 t, 8t^5 5t)$ e $G(t) = (t^2 + 2t, t^2 t, t^3 3t)$, calule:
 - (a) $\left[F \cdot G'\right]'(t)$
 - (b) $\left[F \times F'\right]'(t)$
 - (c) $\left[F' \times G'\right]'(t)$
 - (d) $\|[F \times F']'(t)\|$
 - (e) $\|[F' \times G']'(t)\|$
- 6. Seja o quadrado $A^* = [0, 1] \times [0, 1]$ e:

$$T: A^* \longrightarrow \mathbb{R}^2$$

 $(u, v) \longrightarrow (2u - v, u + 2v).$

Determine $T(A^*)$.

- 7. Seja D a região limitada pelas curvas y=2x, y=x, y=2x-2 e y=x+1. Utilzando coordenadas lineares, determine $T(A^*)$.
- 8. Seja D a região limitada pelas curvas y+x=1, y+x=4, x-y=-1 e x-y=1. Utilzando coordenadas lineares, determine $T(A^*)$.
- 9. A lemniscata de Bernoulli é uma curva de equação cartesiana: $(x^2+y^2)^2=a^2\,(x^2-y^2)$. Verifique que em coordenadas polares fica $r^2=a^2\cos(2\theta)$.
- 10. Seja cilindro C circular reto de raio a, em coordenadas cartesianas determine C em coordenadas polares.
- 11. Determine em coodenadas polares:
 - (a) A região D, limitada por $(x-a)^2 + y^2 \le a^2$
 - (b) A região D, limitada por $x^2 + (y a)^2 \le a^2$

- 12. Utilize coordenadas cilíndricas para descrever o sólido W é limitado superiormente por z=4 e inferiormente por $z=x^2+y^2$, tal que x=0 e y=0.
- 13. Utilize coordenadas cilíndricas para descrever o sólido W limitado por $x^2+y^2=1$, $z=1-x^2-y^2$ abaixo do plano z=4.
- 14. Utilize coordenadas esféricas para descreve o sólido limitado por $x^2+y^2+z^2 \geq 1$ e $x^2+y^2+z^2 \leq 4$
- 15. Utilize coordenadas esféricas para descreve o sólido limitado inferiormente por $z=\sqrt{x^2+y^2}$ e superiormente por $x^2+y^2+(z-\frac{1}{2})^2=\frac{1}{4}$.