James Rogers 1/19/23 jroger87@vols.utk.edu

Venetian Blinds Simulation Progress and Optimization

Determining optimal parameters for VB array, optimizing for neutron Time-of-Flight in HIBEAM ESS beam design

No VB

*No gravity

T.O.F. avg vs radius

Detector Image

Max ~15

counts/cm^2

Results with length=60cm

l=60cm

*No gravity

T.O.F. avg vs radius

Max ~35 counts/cm^2

Results with length=1m

Conclusions/ Continuation

Slightly higher flux at detector with longer blades

- Ф (no vb): 1.4e11

- Ф (60cm): 2.8e11

- Ф (100cm): 3.8e11

Slightly higher avg TOF for r=(0.05,0.2)

- No vb: 0.05s

- 60 cm: 0.06s

- 100 cm: 0.07s

Higher FOM

- No vb: 0.47e9

- 60 cm: 1.1e9

- 100 cm: 1.5e9

Future Goals:

- Account for effect of gravity on slow neutrons
- Implement "Continuous Deflection" of VB blades
 - Determine optimal configuration of VB, maximizing TOF for neutrons