Processor Architecture

The CPU is a custom TTL design that shows significant similarities to the Hewlett-Packard 3000. It has virtual memory with a 2 kB page size, a stack-based instruction set, and fixed-width 16-bit instructions. Raw processor speed is about 0.8 MIPS per processor, giving 13 MIPS in a fully equipped 16-processor system.

Memory Addressing

The T/16 is a 16-bit machine, and the address space is limited to 16 bits in width. Even in the late 1970s, this was beginning to become a problem, and Tandem addressed it by providing a total of four address spaces at any one time:

User code

This address space contains the executable code. It is read-only and shared between all processes that use it. Due to the architecture (separate memory for each CPU), the code can be shared only on a specific CPU.

User data

The data space for user processes.

System code

The code for the kernel.

System data

The kernel data space.

With one exception, only one data space and one code space is accessible at any one time. They are specified in the *Environment Register*, which contains a number of flags describing the current CPU state, as shown in Figure 8-2.

FIGURE 8-2. E register

The SD bit determines the data space, and the SC bit determines the code space. The SG-relative addressing mode is an exception to this rule: it always addresses system data.