

NP. K Gt or
$$C_1 = B_2$$

(1) $I_{c_1} = I_{b_1} + I_{b_2}$

NTK A: $3 - (R+1) I_{b_1} \cdot 9 | K - 0.7 - 100 K \cdot I_{b_1} = 0 \Longrightarrow$
 $I_{c_1} = 2.25 \mu A$
 $I_{c_1} = 1_{c_2} = 0.225 \mu A$
 $I_{c_1} = 1_{c_2} = 0.225 \mu A$

 $V_{3} - (-3) = I_{Q}$

NTK B)
$$-3+J_{R}.9.1K-V_{BE_{2}}-J_{E_{2}}.4.3K=-3 \Rightarrow 10$$
 $I = J_{R}.9.1K-\hat{J}_{E_{2}}.4.3K=V_{BE_{2}}.29$
 $J_{R}=0.799mA$
 $J_{R}=3\mu A$
 $J_{R}=3\mu A$
 $J_{R}=J_{R}=3\mu A$
 $J_{R}=J_{R}$

Θέμα 2°

Το παρακάτω κύκλωμα είναι ένας ενισχυτής με ένα τρανζίστορ. Θεωρείστε ότι τα transistors βρίσκονται στην ορθή ενεργό περιοχή. Αγνοείστε το φαινόμενο Early $(V_A=\infty)$, και το ρεύμα βάσης $(\beta=\infty)$. Οι τιμές των παραμέτρων και των εξαρτημάτων είναι:

$V_D = V_{BE} = 0.7 V$	$R_1 = 10k\Omega$	$R_2 = 5k\Omega$	$R_3 = 1k\Omega$	$R_4 = 1k\Omega$
$V_{dd} = 10 V$	$R_5 = 3k\Omega$	$R_6 = 1k\Omega$	$R = 4k\Omega$	

Α. DC Ανάλυση:

Να υπολογιστεί η τάση V_{B1} Ερώτημα 1:

Nα υπολογιστεί η τάση V_{E1} : $V_{E1} = V_{B1} - 0.7$ Ερώτημα 2:

Ερώτημα 3: Να υπολογιστεί η τάση συλλέκτη \underline{V}_{C1} του Q1 συναρτήσει της τάσης συλλέκτη \underline{V}_{C2} του Q2 μέσω του I_{C1} (Q1) στη μορφή $V_{C1} = A_1 + B_1 V_{C2}$

Ερώτημα 4: Να υπολογιστεί η τάση συλλέκτη V_{C2} του Q2 συναρτήσει της τάσης συλλέκτη V_{C1} του Q1 μέσω του I_{C2} (Q2) στη μορφή $V_{C2} = A_2 + B_2 V_{C1}$.

Με βάση τα ερωτήματα (2) & (3) υπολογίστε την τάση V_{C1} . Ερώτημα 5:

Ερώτημα 6: Με βάση τα ερωτήματα (2) & (3) υπολογίστε την τάση V_{C2} .

Με βάση τα παραπάνω αποτελέσματα, υπολογίστε το ρεύμα I_{C1} Ερώτημα 7:

Με βάση τα παραπάνω αποτελέσματα, υπολογίστε το ρεύμα I_{C2}

