Solution Key

Name, Last Name:		
STUDENT NUMBER: SECTION (A OR B):	-	
Math 204 – Midterm 1 – March 7, 20 Instructors: A. Qureshi (Section A), Nurdagül Anbar Meidl (Section B). Time allowed is 120 minutes. There are ?? problems worth a total of You MUST show your work and give explanations.		
Problem 1: (15 points) Determine if the following statements are true (T) or false(F). (No explanation require	d)	
1. $ \{\emptyset\} = 1$		$[\mathbf{F}]$
2. $\mathcal{P}(\{\emptyset,\mathcal{P}(\emptyset)\})$ has 2 element.	$[\mathbf{T}]$	(F)
3. $\forall x (P(x) \lor Q(x))$ is logically equivalent to $\forall x P(x) \lor \forall x Q(x)$.	$[\mathbf{T}]$	(F)
4. $\forall x (P(x) \land Q(x))$ is logically equivalent to $\forall x P(x) \land \forall x Q(x)$.		$[\mathbf{F}]$
5. $A \times B \times C = A \times (B \times C)$.	$[\mathbf{T}]$	
6. Let S and T be two finite sets such that $f: S \to T$ is surjective. Then $ S \ge T $.	T	$[\mathbf{F}]$
7. $p \to q$ is logically equivalent to $\neg q \to \neg p$.		[F]
8. If $x \in \mathbb{R}$ and $n \in \mathbb{Z}$, then $\lceil x - n \rceil = \lceil x \rceil - n$.		$[\mathbf{F}]$
9. Let a_1, a_2, \ldots be a sequence. Then $\sum_{i=1}^{n} (a_i - a_{i+1}) = a_1 - a_{n+1}$.	T	$[\mathbf{F}]$
10. If A and B are countable then $A \cup B$ is not necessarily countable.	$[\mathbf{T}]$	\mathbf{F}
11. For any set S, we have $ S < P(S) $.		$[\mathbf{F}]$
12. If A and B are uncountable sets then $A \cap B$ must be uncountable.	$[\mathbf{T}]$	\mathbf{F}
13. The function $f(x) = \frac{x+1}{x+2}$ defines a bijection from $\mathbb R$ to $\mathbb R$.	[T]	(F)
14. Let f and g be two bijective functions from A to B . Then $f+g$ is also a bijective function from A to B .	[T]	$\widehat{\mathbf{F}}$

[T]

15. A map $f: A \to B$ is injective if $x_1 = x_2$ then $f(x_1) = f(x_2)$, for every $x_1, x_2 \in A$.

Problem 2: (12 points)

- 1. Express each of these statements using predicates, quantifiers, logical connectives, and mathematical operators where the domain consists of all integers.
 - (a) The absolute value of the product of two integers is the product of their absolute values.

(b) For every non-zero real number, there exists a real number such that their product is 1.

- 2. Express the negations of each of the following statements so that all negation symbols immediately precede predicates.
 - (a) $\exists y \ (\exists x R(x,y) \lor \forall x S(x,y))$

(b) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$

$$\exists x \exists y (x^2 + y^2 \land x = y)$$

3. Determine the truth value of each of the following statements if the domain for each variable is set of real numbers. Explain your answer briefly.

(a)
$$\exists x \forall y (y \neq 0 \rightarrow x = \frac{1}{y})$$

(b) $\forall x \exists y (y^2 < x)$

FALSE, because

Problem 3: (3 points)

Let P be the statement that you have a flu, Q be the statement that you miss the final exam and R be the statement that you pass the course. Translate the following proposition into English sentence.

If you have a flue, then you will not pass the course; or if you miss the final exam, then you will not pass the course = you do not have flue or you do not miss the the final exam or you do not pass the course wrong: (PVQ) -> -1 R

Problem 4: (7 points)

Determine whether $(p \iff q) \oplus (p \iff \neg q)$ is a tautology by construction truth table. Explain your answer briefly.

p	q	PHA	79	PHYTA	(p+9) (p+79)
T	T	T	F.	#	T
T	F	F	T	T	T
F	Т	F	F	T	T
F	F	T	T	F	T

Answer:

Since the argument (ptoq) & (ptoq) is always true (T), it is a tautology.

Problem 5: (10 points)

Let A, B and C be sets. Using set identities, show that $(B \cup (A - C)) \cap (B \cup (A \cap C)) = B$. Note: Proof by using Venn diagram is NOT allowed.

(BU (A-C)) n (BU (Anc))

= BU ((A-c)n (Anc)) by distributing law

= BU ((Anc) n(Anc)) since A-C = Anc

= Bu (Anche)

= BU (Anø) since onc=0

= BUØ since AnØ = Ø

 $=B^{\circ}$

Problem 6: (10 points)

Let A_1, A_2, \ldots, A_n and B be sets. Use mathematical induction to prove that

 $(A_1 \cup A_2 \cup \ldots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \ldots \cup (A_n \cap B)$

Base case: $n = \bot$

Left hand side = Right hand side = AINB. Hence the argument is trivially holds for n=1.

DK N=2., We have (AIUA2) NB=(AINB) N (AINB) by distributive law. Hence, the argument is true for n=2. Inductive step:

Assume that the argument is true for an integer k > 1. That is, we have

(A,UA2U--UAK) NB = (A, NB) U (A2NB) U. --- U (AKNB).

We show that the argument is also true for k+1.

(AIUA2U - UAKUAKHI) NB

= (-(AIUA2U...UAK)NB)U(AKHINB) by distributive law.

= ((AINB)U(A2NB)U---U(AKNB))U(AK+INB)
by induction
hypothesis

= (AINB)U(A2NB)U---U(AKNB)U(AK+1 NB)

This gives the desired conclusion.

Problem 7: (15 points)

1. Let $x \in \mathbb{R} \setminus \mathbb{Z}$. Decide what is the value of [x] - [x].

Let $x \in \mathbb{R} \setminus \mathbb{Z}$. Then there exists $n \in \mathbb{Z}$ such that n < x < n + 1 as $x \notin \mathbb{Z}$. Hence, $\bot x \rfloor = n$ and $\lceil x \rceil = n + 1$. Then $\lceil x \rceil - \bot x \rfloor = (n + 1) - n = 1$

2. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if $A_i = \{-i, \dots, i\}$, for every postive integer i.

A1 = $\sqrt{1-10.13}$, A2 = $\sqrt{1-2.000}$, A3 = $\sqrt{1-3.000}$, A3 = $\sqrt{1-3.000}$, A3 = $\sqrt{1-3.000}$, Note that A1 \subseteq A2 \subseteq A3 \subseteq ----.

Hence $\bigcap_{i=1}^{\infty}$ Ai = A1 = $\sqrt{1-10.13}$, and $\bigcap_{i=1}^{\infty}$ Ai = $\sqrt{2}$

3. Give an example of two uncountable sets such that their difference is countably infinite?

Let A=R and $B=R\setminus ZZ$. Then we have $A\setminus B=R\setminus (R\setminus Z)=ZZ$, which is countably infinite

Problem 8: (8 points)

Let $n \in \mathbb{Z}$. Prove that 3n+2 is odd if and only if 9n+5 is even .

- (=) Suppose that 3n+2 is odd. Then 3n is odd. This shows that n must be odd. Hence 9n is odd. Since 9n and 5 are odd, 9n+5 is even
- (=) Suppose that 9n+5 is even. Then 9n is odd. This shows that n must be odd, Hence 3n is odd. Since 3n is odd. Since

Problem 9: (10 points)

Prove that $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = egin{cases} rac{n}{2} & ext{if } n ext{ is even} \ rac{-(n+1)}{2} & ext{if } n ext{ is odd} \end{cases}$$

is bijective.

Note that we have the following correspondence:

Surjective: Let kEZL. We will show that there exist hein such that f(n)=k.

case(i): k=0

Then 1=0 since f(0)=0.

case(ii) : k<0

Than
$$n=-2k-1>0$$
 since $f(-2k-1)=\frac{-(-2k-1+1)}{2}=\frac{2k}{2}=k$

case (iii) i k>0

Then
$$N=2k$$
 since $f(2k)=\frac{2k}{k}=k$

Injective: Let f(n,)=f(n2) for some n1, n2 EIN

Case(i): Both n, and n2 are odd

$$f(n_1) = f(n_2) \neq 1$$
 $-\frac{(n_1+1)}{2} = -\frac{(n_2+1)}{2} \neq 1$ $n_1 = n_2$

case (ii) Both n1 and n2 are even

$$f(n_1) = f(n_2) \Rightarrow \frac{n_1}{2} = \frac{n_2}{2} \Leftrightarrow n_1 = n_2$$

say, no is odd and no is even.

$$f(n_1) = f(n_2) \iff -\frac{(n_1+1)}{2} = \frac{n_2}{2} \iff -n_1-1=n_2 \iff n_1+n_2=-1$$

Which is not possible since ninzell Contradiction.

Hence f is 1-1 since we have $f(n_1) = f(n_2) \Rightarrow n_1 = n_2$.