Channel Structures of Online Retail Platforms

Modeling Framework: The Base Case

M: Manufacturer

I: Online intermediary

Options:

• Model R: reselling channel

· Model A: agency channel

Model D: dual channel

Model R:

unit wholesale price

· intermediary determine quantity

Model A:

· determine quantity

ullet pay unit commission rate r

exogenous

Inverse demand function:

$$p = a - q_M - q_I + e$$

ullet a: potential market size

• q_M : manufacturer quantity (agency)

• q_I : intermediary quantity (reselling)

• *e*: service effort by intermediary

 $\frac{ke^2}{2}$: cost of service effort

Model A:

- 1. Manufacturer decide q_{M} and intermediary decide e
- 2. p realised

Model R:

- 1. Manufacturer decide w
- 2. intermediary decide q_I and e
- 3. p realised

Model D:

- 1. Manufacturer decide w
- 2. intermediary decide q_I
- 3. Manufacturer decide q_{M} and intermediary decide e
- 4. p realised

Assumption 1

$$k>\underline{k}\equiv \max\left[rac{1}{2},rac{r}{2},rac{1}{3-r},rac{r(4-r)}{4(3-r)}+rac{1}{4}\sqrt{rac{(2-r)^2(r^2-4r+12)}{(r-3)^2}}
ight]=rac{r(4-r)}{4(3-r)}+rac{1}{4}\sqrt{rac{(2-r)^2(r^2-4r+12)}{(r-3)^2}}.$$

- · profit functions are concave
- · service effort is not low

4 Equilibruim Price and Effort Decisions

4.1 Centralized Model

system profit:

$$pQ - rac{ke^2}{2}$$

optimal solution:

$$egin{aligned} Q^* &= rac{ak}{2k-1}, \ e^* &= rac{a}{2k-1}. \end{aligned}$$

4.2 Model A

For Manufacturer:

$$\max_{q_M} \left(a - q_M + e
ight) q_M (1 - r)$$

For intermediary:

$$\max_e \left(a - q_M + e\right) q_M r - \frac{1}{2} k e^2.$$

The equilibrium:

$$q_M^A=rac{ak}{2k-r},\ e^A=rac{ar}{2k-r}.$$

Then we get:

$$egin{aligned} \pi_M^A &= rac{a^2 k^2 (1-r)}{(r-2k)^2}, \ \pi_I^A &= rac{a^2 k r}{4k-2r}. \end{aligned}$$

4.3 Model R

Given w, intermediary have:

$$\max_{e,q_I} \left(a - q_I + e - w
ight) q_I - rac{1}{2} k e^2$$

Then we get:

$$\hat{q}_I(w)=rac{k(a-w)}{2k-1},\ \hat{e}(w)=rac{a-w}{2k-1}.$$

Then for manufacturer:

$$\max_{w} w \hat{q}_I(w)$$

Then:

$$w^R=rac{a}{2}$$
 $q_I^R=rac{ak}{2(2k-1)}$ $e^R=rac{a}{2(2k-1)}$

Finally:

$$\pi_M^R = rac{a^2 k}{4(2k-1)}, \ \pi_I^R = rac{a^2 k}{8(2k-1)}.$$

4.4 Model D

Given w, q_I , for manufacturer:

$$\max_{q_M} wq_I + \left(a - q_M - q_I + e\right)q_M(1-r).$$

For intermediary:

$$egin{aligned} \max_e \left(a - q_M - q_I + e - w
ight) q_I + \left(a - q_M - q_I + e
ight) q_M r \ - rac{1}{2} k e^2 \end{aligned}$$

Then we get:

$$egin{aligned} \hat{q}_{M}\left(q_{I}
ight) &= rac{ak+(1-k)q_{I}}{2k-r}, \ \hat{e}\left(q_{I}
ight) &= rac{ar+(2-r)q_{I}}{2k-r}. \end{aligned}$$

For intermediary:

$$egin{aligned} \max_{q_I} \left(a - \hat{q}_M \left(q_I
ight) - q_I + \hat{e} \left(q_I
ight) - w
ight) q_I \ + \left(a - \hat{q}_M \left(q_I
ight) - q_I + \hat{e} \left(q_I
ight)
ight) \hat{q}_M \left(q_I
ight) r - rac{1}{2} k \left(\hat{e} \left(q_I
ight)
ight)^2 \end{aligned}$$

Then we get:

$$\hat{q}_I(w) = \frac{ak(1-r)-w(2k-r)}{k(2-r)}.$$

For manufacturer:

$$egin{aligned} \max_{w} w \hat{q}_I(w) + \left(a - \hat{q}_I(w) - \hat{q}_M\left(\hat{q}_I(w)\right)
ight. \ \left. + \hat{e}\left(\hat{q}_I(w)
ight)
ight) \hat{q}_M\left(\hat{q}_I(w)
ight) (1-r). \end{aligned}$$

Finally:

$$egin{aligned} w^D &= rac{ak(1-r)\left(2k^2(3-r)-kr(4-r)-2(1-r)
ight)}{2(k(3-r)-1)(k-r+1)(2k-r)}, \ q^D_I &= rac{ak(2-r)(1-r)}{2(k(3-r)-1)(k-r+1)}, \ q^D_M &= rac{ak(k(3-r)-r+1)}{2(k(3-r)-1)(k-r+1)}, \ e^D &= rac{a((3-r)rk+2(1-r))}{2(k(3-r)-1)(k-r+1)}. \end{aligned}$$

5 Equilibrium Profits and Channel Structure

Proposition 1

- (a) Wholesale price effect: $w^D < w^R$ and $\partial w^D/\partial r < 0$.
- (b) Channel flexibility effect: $\partial q_M^D/\partial r>0$, $\partial q_I^D/\partial r<0$, $\partial \left(q_M^D+q_I^D\right)/\partial r>0$ and $\partial e^D/\partial r>0$.

- (a) $\pi_I^D \geq \pi_I^A, \pi_M^D \geq \pi_M^A$, and $\pi_I^D + \pi_M^D \geq \pi_I^A + \pi_M^A$.
- (b) There exists \tilde{r}_{SC} such that $\pi_I^D + \pi_M^D \geq \pi_I^R + \pi_M^R$ if $r \geq \tilde{r}_{SC}$ and $\pi_I^D + \pi_M^D < \pi_I^R + \pi_M^R$ otherwise.
- (c) There exists $ilde r_I\in(0,1/2)$ such that $\pi_I^D\geq\pi_I^R$ if $r\geq ilde r_I$ and $\pi_I^D<\pi_I^R$ otherwise.
- (d) There exist $ilde{r}_M$ and $ilde{k}_M$ such that $\pi_M^D \geq \pi_M^R$ if
- (i) $k \geq ilde{k}_M$ and $r \leq 1/2$ or
- (ii) k>1 and $1/2 < r \leq ilde{r}_M$, and $\pi_M^D < \pi_M^R$ otherwise.

Regions	Profit Comparison	Regions	Profit Comparison
A	$\mid \pi_I^D \geq \pi_I^R, \pi_M^D < \pi_M^R$	C	$\mid \pi_I^D < \pi_I^R, \pi_M^D < \pi_M^R$
B	$\pi_I^D \geq \pi_I^R, \pi_M^D \geq \pi_M^R$	D	$\pi_I^D < \pi_I^R, \pi_M^D \geq \pi_M^R$

Corollary 1

As
$$k o\infty,e^D_I o0,q^D_I o0,q^D_M o q^A_M=Q^*$$
 , and $\pi^D_I+\pi^D_M o\pi^A_I+\pi^A_M=a^2/4$.

- (a) When the intermediary chooses the channel structure, the equilibrium is dual channel if $r \geq \tilde{r}_I$ (Regions A and B) and reselling channel otherwise (Regions C and D).
- (b) When the manufacturer chooses the channel structure, the equilibrium is dual channel if (i) $k \geq \tilde{k}_M$ and $r \leq 1/2$ or
- (ii) k>1 and $1/2 < r \le \tilde{r}_M$ (Regions B and D) and reselling channel otherwise (Regions A and C).

Extensions

Regions	Profit Comparison	Regions	Profit Comparison
A	$\mid \pi_I^D \geq \pi_I^R, \; \pi_M^D < \pi_M^R$	C	$\mid \pi_I^D < \pi_I^R, \; \pi_M^D < \pi_M^R \mid$
В	$ \pi_I^D \geq \pi_I^R, \pi_M^D \geq \pi_M^R $	D	$\pi_I^D < \pi_I^R, \; \pi_M^D \geq \pi_M^R$

6.1 Observable Service Effort

(b) Simultaneous Quantity Decisions 1.0 8.0 Region A 0.6 0.4 Region B Region D 0.0 8.0 1.0 1.2 1.4 1.6 1.8 2.0 k \tilde{r}_M (base case) $- - \tilde{r}_M$ (simultaneous quantity) \tilde{k}_M (base case) \tilde{k}_M (simultaneous quantity)

6.2 Simultaneous Quantity Decisions

 \tilde{r}_{l} (base case) \tilde{r}_{l} (simultaneous quantity)

6.3 Manufacturer Service Effort

- (a) There exists $ilde r_I \in (0,1/4)$ such that $\pi_I^A \geq \pi_I^R$ if $r \geq ilde r_I$ and $\pi_I^A < \pi_I^R$ otherwise.
- (b) There exist $ilde r_M\in (1/2,1)$ such that $\pi_M^A\geq \pi_M^R$ if $r\leq ilde r_M$ and $\pi_M^A<\pi_M^R$ otherwise.

Regions	Profit Comparison	Regions	Profit Comparison
A	$\mid \pi_I^A \geq \pi_I^R, \; \pi_M^A < \pi_M^R$	C	$\mid \pi_I^A < \pi_I^R, \; \pi_M^A < \pi_M^R \mid$
В	$\pi_I^A \geq \pi_I^R, \; \pi_M^A \geq \pi_M^R$	D	$\pi_I^A < \pi_I^R, \ \pi_M^A \geq \pi_M^R$

- (a) There exist $ilde r_{I1}\in (1/2,1)$ and $ilde r_{12}\in (0,1/4)$ such that $\pi_I^A\geq \pi_I^R$ if
- (i) $k \leq 1/2$ and $r \leq \tilde{r}_{11}$ or
- (ii) k>1/2 and $r\geq ilde{r}_{12}$ and $\pi_I^A<\pi_I^R$ otherwise.
- (b) $\pi_M^A \geq \pi_M^R$ if $r \leq ilde{r}_M \equiv 1/2$ and $\pi_M^A < \pi_M^R$ otherwise.