Sets, Algebra and Logic

O.O.Bogomolets National Medical University

October 12, 2012

Abstraction

- 1 Objects
- 2 Numbers
- 3 Arithmetic
- 4 Algebra
- 5 Cathegory

Sets

Definition

A set is a well defined collection of objects

Definition

A set is a well defined collection of objects

Naive set theory is not so simple and perfect:

$$R = \{x \mid x \notin x\}, \text{ then } R \in R \iff R \notin R$$

Membership and subsets

$$A = \{1, 2, 3, 4\}, B = \{\alpha, \beta, \gamma\}$$

$$1 \in A \mid \{1, 4\} \subset A$$

$$\alpha \in B \mid \{\alpha, \beta\} \nsubseteq A$$

$$\alpha \notin A \mid \{1, 2, 3, 4\} \subseteq A$$

Basic operations

Union:

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Intersection:

$$A \cap B = \{x : x \in A \land x \in B\}$$

Complement:

$$B \setminus A = \{x \in B \mid x \notin A\}$$

Cartesian product and power sets

Definition

Power set of any set *S*, written is the set of all subsets of *S*, including the empty set and *S* itself

Example

$$2^{\{1,2,3\}} = \{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\},\varnothing\}$$

Definition

Cartesian product:

$$X \times Y = \{ (x, y) \mid x \in X \text{ and } y \in Y \}$$

Example

$$\{1,2\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b)\}$$

Algebraic structure

Algebraic structure:

where C - carrier set and W - set of operations on C.

Example

$$< \mathbb{Z}, \{+, *\} >$$

Propositional Logic

 Proposition: statement that is either true or false.

Propositional Logic

- Proposition: statement that is either true or false.
- . "This statement is false."

Propositional language

- An infinite set of variables(propositions)
- A set of operators
- Separate values TRUE and FALSE

Propositional Operators

- Negation
- Disjunction
- Conjunction
- Implication
- Equivalence

Α	$ eg \mathcal{A}$
TRUE	FALSE
FALSE	TRUE

Disjunction (or)

$A \vee B$	TRUE	FALSE	В
TRUE	TRUE	TRUE	
FALSE	TRUE	FALSE	
Α			

Conjunction (and)

$A \wedge B$	TRUE	FALSE
TRUE	TRUE	FALSE
FALSE	FALSE	FALSE

Implication (if...then)

$A \Rightarrow B$	TRUE	FALSE
TRUE	TRUE	FALSE
FALSE	TRUE	TRUE

Equivalence

$A \Leftrightarrow B$	TRUE	FALSE
TRUE	TRUE	FALSE
FALSE	FALSE	TRUE

Algebra and Logic

$$<\{\mathit{TRUE},\mathit{FALSE}\}, \{\neg, \lor, \land, \Rightarrow, \Leftrightarrow\}>$$

Inference: Modus Ponens

Modus Ponens (rule of detachment):

Α	Ted is cold
$A \Rightarrow B$	If Ted is cold, he shivers
В	Ted shivers

Dixi