

Course Methods Test 1 Year 12

Student name:	Teacher name:			
Task type:	Response			
Reading time for this test: 5 mins				
Working time allowed for this task: 40 mins				
Number of questions:	8			
Materials required:	No Cals allowed at all!			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper,			
Marks available:	40 marks			
Task weighting:	13%			
Formula sheet provided:	no but formulae listed on next page.			
Note: All part questions worth more than 2 marks require working to obtain full marks.				

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$	
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$	
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$	
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx = -\frac{1}{a} \cos(ax-b) + c$	
$\frac{d}{dx}\cos(ax-b) = -a\sin(ax-b)$		$\int \cos(ax-b) dx = \frac{1}{a} \sin(ax-b) + c$	
Product rule	If $y = uv$		If $y = f(x) g(x)$
	then	or	then
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y'=f'(x) g(x) + f(x) g'(x)
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$
	then	or	then
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
Chain rule	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$
	then	or	then
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\left \frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x) \right $	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$		
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$		

No calculators allowed!!!

Q1 (2 & 3 = 5 marks)

Determine the equation of the tangent to the following curves at the stated point:

a)
$$y = 2x^3 - 3x + 1$$
 at the point (1,0)

b)
$$y = -5x^3 + \frac{1}{x^2}$$
 at the point $(-1, 6)$

Q2 (3 & 3 = 6 marks)

Determine the derivatives of the following using the quotient rule and simplify your answer.

$$a) \quad f(x) = \frac{x+3}{2x^3+2}$$

b)
$$f(x) = \frac{3x^2 + 1}{(5x - 1)^3}$$

Q3 (5 marks)

Determine the coordinates of the stationary points of $f(x) = x^3 - 3x + 2$ using calculus and justify their nature.

Q4 (1, 2 & 3 = 6 marks)

Consider an object initially at the origin that moves only in a straight line with displacement from origin,

x, given by
$$x = \frac{t^3}{3} - \frac{3t^2}{2} + 2t$$
 at time, t seconds.

Determine:

- a) Acceleration at t = 1 second.
- b) The times the object is at rest.
- c) The distance travelled in the first 3 seconds.

Q5 (2, 2 & 2 = 6 marks)

The graphs of f and g are displayed below.

- a) Determine the derivative of f(x)g(x) at x = 3.
- b) Determine the derivative of $\frac{f(x)}{g(x)}$ at x = 2.

c) Determine the derivative of f(g(x)) at x = -1

Q6 (3 marks)

If $q = \frac{5}{t^{\frac{3}{2}}}$ use differentiation to determine the approximate percentage change in q when t increases

by 3%.

Q7 (5 marks)

Consider the function f(x) as graphed below. On the axes below sketch the function y = f'(x) and **on this graph** label and show the coordinates and nature of all important features of f(x). (Do not write on original function graph)

Q8 (4 marks)

A rectangle has one vertex at the origin, another on the positive x-axis, another on the positive y-axis and a fourth on the line y = ax + b where a & b are constants.

The greatest area occurs when x = 8 with an area of 32 sq units. **Using calculus**, determine the values of the constants a & b.