Machine learning Part 2 Dimensionality reduction & cross-validation

Jérôme Dockès & Nikhil Bhagwat

QLS course 2021-07-30

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Model evaluation and selection

- Out-of-sample generalization; independent test set
- Performance metrics:
 - regression: mean squared error
 - · classification: accuracy, ROC curve
- Cross-validation

Supervised learning

- Regression: least-squares linear regression
- · Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Model evaluation and selection

- Out-of-sample generalization; independent test set
- Performance metrics:
 - · regression: mean squared error
 - · classification: accuracy, ROC curve
- Cross-validation

Don't remember? watch Part 1 again!

$$Y = f(X) + E \tag{1}$$

• $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors, independent variables)

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- X ∈ R^p: features (a.k.a. inputs, regressors, descriptors, independent variables)
- $E \in \mathbb{R}$: unmodelled noise

$$Y = f(X) + E$$

• $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict

• $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors,

- independent variables)
- $E \in \mathbb{R}$: unmodelled noise
- f: the function we try to approximate

Example: linear regression

$$V = R \cdot 1$$

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + E$$

(2)

(1)

"learning" = estimating
$$\beta_0 \in \mathbb{R}$$
 and $\beta \in \mathbb{R}^p$

How to estimate parameters: Empirical Risk Minimization

Given \mathfrak{n} training examples $X \in \mathbb{R}^{\mathfrak{n} \times \mathfrak{p}}$, $\mathfrak{y} \in \mathbb{R}^{\mathfrak{n}}$, find $\hat{\beta}_0 \in \mathbb{R}$, $\hat{\beta} \in \mathbb{R}^{\mathfrak{p}}$ that minimize the empirical risk:

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \|\mathbf{y} - \hat{\boldsymbol{\beta}}_{0} - \mathbf{X}\,\hat{\boldsymbol{\beta}}\|_{2}^{2}$$

$$= \sum_{i=1}^{n} (\mathbf{y}_{i} - \hat{\boldsymbol{\beta}}_{0} - \sum_{j=1}^{p} \mathbf{X}_{ij}\,\hat{\boldsymbol{\beta}}_{j})^{2}$$
(5)

"Fitting" the parameters to X, y.

Need for fresh test data

When you hear "best", "maximum", "select", ... think "bias"

- I have 4 dice and want to find one that rolls high numbers
- I roll them all once and select the die that gives the highest number
- The selected die rolled a 5. Is 5 a good estimate of that die's average result? What if I had 1,000 dice?
- I need to roll it again to get an unbiased estimate

Estimating prediction performance

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- **Select** β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

scikit-learn "estimator API": fit; predict

```
estimator = Ridge()
estimator.fit(X_train, y_train)
predictions = estimator.predict(X_test)
```

```
https://scikit-learn.org/stable/getting_started.html
sklearn.linear_model.Ridge
```

Evaluating performance with sklearn.metrics

```
estimator = Ridge()
estimator.fit(X_train, y_train)
predictions = estimator.predict(X_test)

mse = metrics.mean_squared_error(y_test, predictions)
```

https://scikit-learn.org/stable/getting_started.html sklearn.linear_model.Ridge sklearn.metrics more info on model evaluation

```
ex_01_fit_predict.py
```

Cross-validation

scikit-learn.org/stable/modules/cross_validation.html
sklearn.model_selection.cross_validate
ex_02_cross_validate.py

 $\mathsf{Bias}(\hat{\beta}_{i}) = \mathbb{E}(\hat{\beta}_{i}) - \beta_{i}$

Setting hyperparameters

How can we choose the ridge hyperparameter λ ?

Try a few and pick the best one... But measure its performance on separate data!

When you hear "best", "maximum", "select", ... think "bias"

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- Select β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- Select β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

Setting the hyperparameters

- Repeat step 1 for a few values of λ, k, etc.., fitting and testing several models
- Select the hyperparameter that obtains the best prediction on test data
- The prediction score of that model on *test* data is biased: evaluate it again on unseen data

One split

Train

FALL 2

15 / 45

Implementing nested CV

 ${\tt ex_05_nested_cross_validation.py}$

Dimensionality reduction

Until now

Add a step in the pipeline: simplifying the inputs

Dimensionality reduction

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 X_{:,1} + \hat{\beta}_2 X_{:,1} + \dots + \hat{\beta}_p X_{:,p}$$
 (6)

Problems when the number of features p becomes large

- Bigger errors on test data (larger variance of predictions)
- Numerical stability issues
- · Computational cost and memory usage

Simulated data for linear regression

- Generate $X \in \mathbb{R}^{n \times 3}$, $\beta \in \mathbb{R}^3$, $e \in \mathbb{R}^n$ and $y = X\beta + e \in \mathbb{R}^n$
- Append columns containing random noise to X
- Now $X \in \mathbb{R}^{n \times p}$, with $p \geqslant 3$, but only the first 3 columns are linked with y
- Split into training and testing tests and evaluate a linear regression model: what happens when p becomes large?

See sklearn.datasets.make_regression for generating data

Model complexity: overfitting

- Model complexity increases with dimension.
- Example: a linear model in dimension p can fit exactly (0 training error) any set of p+1 points.
- Risk of overfitting: fitting exactly training data but failing on test data

Same plot in log scale

Solution 1: univariate feature selection

- a.k.a. feature screening, filtering . . .
- Check features (columns of X) one by one for association with the output y
- Keep only a fixed number or percentage of the features

Solution 1: univariate feature selection

- a.k.a. feature screening, filtering . . .
- Check features (columns of X) one by one for association with the output y
- Keep only a fixed number or percentage of the features

Simple (linear) association criteria

- for regression: correlation
 - for classification: ANalysis Of VAriance

Read more in the scikit-learn user guide

```
https://scikit-learn.org/stable/modules/feature_selection.
html#feature-selection
```

Univariate feature selection

Keeping only the 10 best features (most correlated with y)

Same plot in log scale

Dataset transformations

Typical pipeline

Example

scikit-learn "transformer API": fit; transform

```
transformer = SelectKBest()
transformer.fit(X_train)
transformed_X = transformer.transform(X_train)
```

can also be written:

```
transformer = SelectKBest()
transformed_X = transformer.fit_transform(X_train)
```

```
sklearn.preprocessing.StandardScaler
scikit-learn "getting started"
scikit-learn "user guide"
```

```
ex_03_transformer.py
```

scikit-learn "transformer API": fit; transform

```
transformer = SelectKBest()
transformed_X = transformer.fit_transform(X_train)
transformed_X_test = transformer.transform(X_test)
sklearn.preprocessing.StandardScaler
scikit-learn "getting started"
scikit-learn "user guide"
```

Example: feature_selection.SelectKBest

fit:

- compute ANOVA or correlation for each column of X
- Remember the indices of the k columns with highest scores

transform:

Index input to keep only the k selected columns

```
sklearn.feature_selection.SelectKBest
https:
//scikit-learn.org/stable/modules/feature_selection.html
ex_04_feature_selection.py
```

Solution 2: linear decomposition methods

Maybe OK to drop X_2 :

Data low-dimensional but no feature can be dropped:

Find a better referential in which to represent the data

Linear regression: projection on the column

space of X

$$\hat{y} = X \hat{\beta}$$
 (7)

- Too many features: high variance & unstable solution
- Feature selection: drop some columns of X
- Other ways to build a family of k vectors on which to regress y?

Linear decomposition: low-rank approximation of \mathbf{X}

Minimize

$$\|X - WH\|_{F}^{2} = \sum_{i,j} (X_{i,j} - (WH)_{i,j})^{2}$$
 (8)

Linear regression after dimensionality reduction

(9)

Prediction for a new data point $x \in \mathbb{R}^p$

- Find the combination of rows of H that is closest to x: regress x on H^T
- Multiply by $\hat{\beta}$

$$x \in \mathbb{R}^p o \mathsf{projection} o w \in \mathbb{R}^k o \langle \cdot \,, \, \hat{eta}
angle o \hat{y} \in \mathbb{R}$$
 (10)

Principal Component Analysis

Singular Value Decomposition of X:

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}} \tag{11}$$

with $X \in \mathbb{R}^{n \times p}$, $U \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{r \times p}$

- r = min(n, p)
- $S \succeq 0$ diagonal with decreasing values s_j along the diagonal
- $\mathbf{u}^\mathsf{T} \mathbf{u} = \mathbf{I}_r$
- $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}_{\mathsf{r}}$

Truncating the SVD to keep only the first k components gives the best rank-k approximation of \boldsymbol{X}

Singular Value Decomposition

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{v}_{1}$$

$$\mathbf{u}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{U}^\mathsf{T} \, \mathbf{U} = \mathrm{I}_{\mathsf{p}}$$

 $\mathbf{V}^\mathsf{T} \, \mathbf{V} = \mathrm{I}_{\mathsf{p}}$

$$\mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_n$$

Singular Value Decomposition

Explained variance: 0.84

$$\mathbf{U}^\mathsf{T}\,\mathbf{U} = \mathrm{I}_\mathrm{p} \tag{16}$$

$$\mathbf{V}^\mathsf{T}\,\mathbf{V} = \mathrm{I}_\mathrm{p} \tag{17}$$

$$\mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_{\mathfrak{p}}$$

(17)

(15)

Singular Value Decomposition

Explained variance: 0.97

$$\mathbf{U}^{\mathsf{T}} \, \mathbf{U} = \mathbf{I}_{\mathsf{p}} \tag{19}$$

$$\mathbf{V}^{\mathsf{T}} \, \mathbf{V} = \mathbf{I}_{\mathsf{p}} \tag{20}$$

$$\mathbf{V}^{\mathsf{T}}\,\mathbf{V} = \mathbf{I}_{\mathsf{p}} \tag{20}$$

Other decomposition methods

Many other methods use the same objective (sum of squared reconstruction errors), but add penalties or constraints on the factors

- · Dictionary Learning
- Non-negative Matrix Factorization
- · K-means clustering
- ...

What about u?

- PCA is an example of unsupervised learning: it does not use y
- Some other methods take it into account: e.g. Partial Least Squares

Ridge regression and PCA

- Both ridge regression and PC regression compute the coordinates of y in the basis given by the SVD of X
- Ridge shrinks the coordinate along u_j by a factor $s_j^2/(s_j^2+\lambda)$
- PC regression sets the coordinates to 0 except for those corresponding to the k largest s_j : shrinks by a factor $\mathbf{1}_{\{j\leqslant k\}}$

- e.g. fit PCA on all data, then do cross-validation on dim-reduced dataset
- USE sklearn.pipeline.Pipeline

- e.g. fit PCA on all data, then do cross-validation on dim-reduced dataset
- USE sklearn.pipeline.Pipeline

Ignoring dependencies between samples

- · Multiple datapoints per participant
- Time series

- e.g. fit PCA on all data, then do cross-validation on dim-reduced dataset
- use sklearn.pipeline.Pipeline

Ignoring dependencies between samples

- · Multiple datapoints per participant
- Time series

Ignoring dependencies between CV scores

 Training sets overlap: cross-validation scores of different splits are not independent

- e.g. fit PCA on all data, then do cross-validation on dim-reduced dataset
- USE sklearn.pipeline.Pipeline

Ignoring dependencies between samples

- Multiple datapoints per participant
- Time series

Ignoring dependencies between CV scores

 Training sets overlap: cross-validation scores of different splits are not independent

Over-interpreting good CV scores

 Good CV scores on one dataset do not mean the model will always perform well on a new dataset

Split choice example: time series Which is easier?

Remember that CV training sets overlap

So the scores are not independent! Their variance can be underestimated.

Supervised learning with fMRI

 Predict in which site / with which scanner a resting-state fMRI sequence was acquired

The prediction pipeline

- Masking: extracting voxels that are inside the brain
- Connectivity: measuring correlations between brain regions to build a feature vector for each participant
- Univariate feature selection with ANalysis Of VAriance
- Classifier: logistic regression

Implementation: in class