AMS 553.430 - Introduction to Statistics

Lectures by Dwijavanti P Athreya Notes by Kaushik Srinivasan

Johns Hopkins University Fall 2018

Lecture 0 (2018-08-30)

1

Lecture 1 (2018-08-30)

8

Introduction

Math 553.430 is one of the most important courses that is required/recommended for the engineering-based majors at Johns Hopkins University.

These notes are being live-TeXed, through I edot for Typos and add diagrams requiring the TikZ package separately. I am using Texpad on Mac OS X.

I would like to thank Zev Chonoles from The University of Chicago and Max Wang from Harvard University for providing me with the inspiration to start live-TeXing my notes. They also provided me the starting template for this, which can be found on their personal websites.

Please email any corrections or suggestions to ksriniv40jhu.edu.

Lecture 0 (2018-08-30)

Introduction to Probability (553.420) Review

Part 1 - Counting

- (1) Multiplication rule (Basic Counting Principle)
- (2) Combinations/Permutations
 - ullet Sampling with or without replacement. \Rightarrow Inclusion-Exclusion Principle
- (3) Birthday Problem
- (4) Matching Problem (inclusion-exclusion principle)
- (5) n balls going into m boxes (all are distinguishable)
- $\stackrel{\textstyle \frown}{}$ Multinomial Coefficients e.g. assign A, B, C, D, to different students \rightarrow anagram problem
- (7) Pairing Problem

$$2n \text{ people, paired up} \begin{cases} \text{ordered: } \binom{2n}{2,2,\cdots,2} & \text{e.g. different courts for players} \\ \text{unordered: } \frac{\binom{2n}{2,2,\cdots,2}}{n!} \end{cases}$$

8 Partition of integers $\rightarrow \binom{n}{n+k-1}$ where n is the sum of integer and k is the number of partitions

Basics of Probability

Axioms

- $\bigcirc 1$ $0 \le P(A) \le 1, \forall A$
- (2) $P(\Omega) = 1 \rightarrow$ where Ω is the sample space
- (3) Countable additivity
 - if A_1, \dots, A_n are mutually exclusive, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P(A_1) + P(A_2) + \dots = \sum_{i=1}^{\infty} P(A_i)$$

$$\Rightarrow P(A) = 1 - P(A^c)$$

$$P(A) = \frac{|A|}{|\Omega|}$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes Rule

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{j} P(B|C_{j})P(C_{j})} \qquad \bigcup_{\substack{j \text{ partition of } \Omega}} C_{j} = \Omega$$

Law of Total Probability

$$P(A) = \sum_{j} P(A|B_{j})P(B_{j}) = \sum_{j} P(A \cap B_{j}) \qquad \bigcup_{\substack{j \text{ partition of } \Omega}} B_{j} = \Omega$$

Part 2 - Discrete and Continuous Random Variables

Function	Discrete	Continuous
Probability Function	PMF: $P(X = x)$	PDF: $f_x(x)$
Probability Distribution	$\sum_{x} P(X = x) = 1$	$\int_{x} f_{x}(x)dx = 1$
Expectation	$E[X] = \sum_{x} x P(X = x)$	$ E[X] = \int_{\mathcal{X}} x f(x) dx $
Variance	$Var[X] = E[X^2] - (E[X])^2$	$Var[X] = E[X^2] - (E[X])^2$

Law of the Unconscious Statistician (LOTUS)

1-dim
$$E[g(x)] = \sum_{x} g(x)P(X=x) \bigg/ E[g(x)] = \int_{x} g(x)f(x)dx$$
 2-dim
$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y)P(X=x,Y=y) \bigg/ E[g(X,Y)] = \int_{y} \int_{x} g(x,y)f(x,y)dxdy$$

Special notes on Discrete Distributions

Binomial Distribution

A sum of i.i.d. (identical, independent distribution) Bernoulli(p) R.V.

- Approximation method \Rightarrow if n is large, p very small and np < 10.
 - use Poisson (np), otherwise preferably $p \approx \frac{1}{2}$
 - use Normal (np, np(1-p))
- Mode:
 - if (n+1)p integer, mode = (n+1)p or (n+1)p 1.
 - if $(n+1)p \notin \mathbb{Z}$ mode is $\lfloor (n+1)p \rfloor$
 - **Proof:** consider $\frac{P(X=x)}{P(X=x-1)}$ going below 1.

Negative Binomial

$$X \backsim NB(r, p)$$
 $x = r, r + 1, \cdots$
 $r = \dots$
 $p = \text{probability of success}$

A sum of i.i.d Geometric(p) R.V.

 $\blacksquare a^{th}$ head before b^{th} tail

Example. A coin has probability p to land on a head, q = 1 - p to land on a tail. $P[5^{th}$ tail occurs before the 10^{th} head]?

$$\begin{cases} = P[5\text{th tail occurs before or on the 14th flip}] \\ = P[\text{Neg Binomial}(5,q) = 5, 6, 7, \cdots, 14] \\ = \sum_{x=5}^{14} {x-1 \choose 4} q^5 p^{x-5} \end{cases}$$
 (or)
$$\begin{cases} = P[\text{at least 5 tails in 14 flips}] \\ = P[binom(14,q) = 5, 6, 7, \cdots, 14] \\ = \sum_{x=5}^{14} {14 \choose x} q^x p^{14-x} \end{cases}$$

Geometric Distribution

Example. ■ Coupon Question

<u>Variation A</u>: N different types of coupons $\rightarrow P(\text{ get a specific type}) = \frac{1}{N}$ <u>Question:</u> E[draws to get 10 different coupons]?<u>Answer:</u>

$$X = X_1 + X_2 + \cdots + X_{10}$$
 $X_i = \#$ draws to get the ith distinct coupon type

 $X_i \sim Geo(p_i)$ p_i : prob to get a new coupon \leftarrow success, given that we have i-1 types of coupons

Hence,
$$E[X_1] = 1$$

 $E[X_2] = \frac{1}{p_2} = \frac{1}{\frac{N-1}{N}} = \frac{N}{N-1}$
 $E[X_3] = \frac{1}{p_3} = \frac{1}{\frac{N-2}{N}} = \frac{N}{N-2}$
:

$$E[X_{10}] = \frac{1}{p_{10}} = \frac{1}{\frac{N-9}{N}} = \frac{N}{N-9}$$
So,
$$E[X] = E[X_1] + E[X_2] + \dots + E[X_{10}] = E[\sum_{i=1}^{10} X_i] = 1 + \frac{N}{N-1} + \frac{N}{N-2} + \dots + \frac{N}{N-9}$$

<u>Variation B</u>: Same setting, now you draw 10 times.

Question: E[# different types of coupons]?

Answer:

$$X = I_1 + I_2 + \dots + I_N$$

$$I_i \begin{cases} 1 & \text{if we have this type of coupon} \\ 0 & \text{o/w} \end{cases}$$

$$E[I_i] = P(\text{we draw coupon i in 10 draws})$$

$$= 1 - P(\text{we don't have coupon i}) \qquad \text{we use binomial distribution where } 1 - P(N = 0)$$

$$= 1 - \left(\frac{N-1}{N}\right)^{10}$$

$$E[X] = E[\sum_{i=1}^{N} I_i] = NE[I_i] = NE[I_i]$$

Special Notes on some Continuous Distributions

Normal Distribution

Normal:
$$X \backsim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \backsim N(0, 1)$$
 with CDF $P(Z \le z) = \Phi(z)$
$$\Phi(-x) = 1 - \Phi(x)$$

Chi-Square

Chi-Square:
$$\chi_n^2$$
 is Chi-square with degrees of Freedom n

$$\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2 \quad \text{where } Z_i \backsim \text{standard normal.} Z_i \backsim Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\Rightarrow \chi_n^2 = n \text{ i.i.d. } Z_i \backsim Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$= Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

Exponential distribution

Lack of memory property - $P(X \ge s + t | X \ge t) = P(X \ge s)$

- $M = \min \text{ of } exp(\lambda) \text{ and } exp(\mu) \Rightarrow M \backsim exp(\lambda + mu)$
- $M = \min \text{ of } X_1, X_2, \cdots, X_n, \text{ where } X_i \backsim_{\text{i.i.d.}} exp(\lambda) \Rightarrow exp(n\lambda)$

CDF in General

•
$$F_x(t) = P(X \le t)$$

$$= \sum_{x \le t} P(X = x) \qquad \text{discrete}$$

$$= \int_{-\infty}^t f(x) dx \qquad \text{continuous}$$

• **Discrete:** "Left open, right closed" \Rightarrow if you flip the sign (from < to \le) in the left, you flip the sign of a (from a to a^-)

$$- P(a < x \le b) = F(b) - F(a)$$

$$- P(a \le x \le b) = F(b) - F(a^{-})$$

$$- P(a < x < b) = F(b^{-}) - F(a)$$

 $-P(a \le x \le b) = F(b^{-}) - F(a^{-})$

• Continuous: (because a point doesn't have a mass)

$$P(a \le x \le B) = \int_a^b f(x)dx = F(b) - F(a)$$

Density Transformation

• Use CDF: Computer $P(Y \le y) = P(g(x) = y)$

• 1-dim: If Y is monotonically increasing or decreasing: Y = g(x) $f_Y(y) = f_X(x(y)) \cdot |x'(y)|$

• **2-dim:** Joint Density:

$$(X,Y) \to (U,V) \qquad U = h_1(X,Y) \qquad V = h_2(X,Y)$$

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v),y(u,v)) \cdot |J|$$
where
$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
 determinant

• if Z = X + Y (2-dim \to 1-dim) use CDF. Compute $P(Z \le z) = P(X + Y \le z)$. Integrate f(x,y) over this region.

Joint Disrtibtuion

$$\begin{array}{ll} \textbf{Discrete} & \textbf{Continuous} \\ P_{X,Y}(x,y) = & P(X=x,Y=y) & F_{X,Y}(x,y) = f_X(x)f_Y(y) \\ & \text{Indep} \Rightarrow & P_X(x)P_Y(y) & = \frac{\partial}{\partial x \partial y}F_{X,Y}(x,y) \end{array}$$

• Marginal Density/PMF:

Continuous:
$$f_X(x) = \int_x f_{X,Y}(x,y) dy$$
 and $f_Y(y) = \int_y f_{X,Y}(x,y) dx$

 st the bounds for y in the integration can depend on x, and vice versa

Discrete:
$$P_X(x) = \sum_y P(X = x, Y = y)$$
 and $P_Y(y) = \sum_x P(X = x, Y = y)$

• Use joint pdf to compute probability

• Independence: If X, Y are independent, then

Continuous:
$$f(x,y) = f_X(x)f_Y(y)$$

Discrete: $P(X = x, Y = y) = P(X = x)P(Y = y)$

• Convolution: assume X, Y are independent

Discrete:
$$P_{X+Y}(a) = \sum_{y} P_X(a-y) P_Y(y) = \sum_{x} P_X(x) P_Y(a-x)$$

Continuous:
$$f_{X+Y}(a) = \int_y f_X(a-y) f_Y(y) dy = \int_y f_X(x) f_Y(a-x) dx$$

MGF: we can use this $M_{X+Y}(t) = M_X(t)M_Y(t) \longrightarrow$ then identify dist of X+Y from mgf

Conditional distribution

$$\begin{aligned} \textbf{Discrete} & \quad P_{X|Y=y}(x|y) = \frac{P_{X,Y}(x,y)}{P_Y(y)} = \frac{P(X=x,Y=y)}{P(Y=y)} \\ & \quad \Rightarrow \sum_y P_{X,Y}(x,y) = \sum_y P_{X|Y=y}(x|y) \cdot P_Y(y) \end{aligned} \\ \textbf{Continuous} & \quad f_{X|Y=y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \\ & \quad \Rightarrow f_X(x) = \int_y f(x,y) dy = \int_y f_{X|Y=y}(x|y) \cdot f_Y(y) dy \end{aligned}$$

Conditional Expectation

$$E[X|Y=y] = \int_x x f(x|y) dx$$

$$E[X|Y] : \text{compute } E[X|Y=y] \text{ first, replace } y \text{ with } Y$$

Ordered Statistics

Consider
$$X_1, X_2, \dots, X_n$$
 $X_{(j)} = j$ -th smallest
$$F_{\max(X_i)}(t) = P(\max X_i \le t) = P(X_1 \le t) \cdot P(X_2 \le t) \cdots P(X_n \le t)$$

$$= [F_X(t)]^n \qquad \boxed{f_{\max X_i}(t) = nF(t)^{n-1} f_X(t)}$$

$$F_{\min(X_i)}(t) = 1 - P(\min x_i \ge t) = 1 - P(X_1 \ge t) \cdot P(X_2 \ge t) \cdots P(X_n \ge t)$$

$$= 1 - [1 - F_X(t)]^n \qquad f_{\min X_i}(t) = n[1 - F(t)]^{n-1} f_X(t)$$

General: j-th order statistic

$$f_{x(j)}(t) = \binom{n}{j-1, 1, n-j} F_X(t)^{j-1} \cdot f_X(t) \cdot [1 - F_X(t)]^{n-j}$$

Expectation and Variance

Expectation

- (1) linearity of expectation
- (2) How to compute
 - (a) LOTUS or definition (use density to integrate)
 - (b) MGF: $M^{(n)}(0) = E[X^n]$ or by recognition
 - (c) $E[X^2] = Var[X] + E[X]^2$
 - (d) Tail probability X is non-neg R.V. (x > 0) then $E[X] = \sum_{t=0}^{\infty} P(X \ge t)$ or $= \int_{0}^{\infty} P(X \ge t) dt$

Variance

(1)
$$Var(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n Var(X_i) + \sum_{i \neq j} Cov(X_i, X_j)$$

if X_i, X_j identical (not independent) = $nVar(X_i) + n(n-1)Cov(X_i, X_j)$ $i \neq j$

(2) Covariance:

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$Cov(X,c) = 0 c is a constant$$

$$Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)$$

$$Cov(cX,dZ) = cd \cdot Cov(X,Z)$$

(3) Correlation Coefficient:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$$

Lecture 1 (2018-08-30)

Survey Sampling

We have a <u>population of objects</u> under study (people, animals, places, etc.). We will consider a single numerical measurement associated to object $i: x_i$

Example. $N = 5000, x_i = \text{height of person } i$, Population size = N. We denote population measurements $\{x_1, x_2, \dots, x_N\}$

Compute population quantities:

• population total
$$\tau = \sum_{i=1}^{N} x_i$$
 • population mean $\mu = \frac{\tau}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$

Note: τ and μ are population parameters, their computation depends on all the population data.

Question. How to estimate τ and μ based on a sample of observation from this population?

Classical Answer: Choose a "random" sample of objects and associated measurements denoted $\{x_1, x_2, \dots, x_n\}$. Note: capital X_i denote random variables. Whiter "Random"? Two types of ways to sample:

with replacement

Claim 1. If X_i are drawn without replacement, then the distribution of X_1 and X_2 are identical. Is this true? In fact, it is \Rightarrow They are NOT independent but they are identically distributed.

$$P(Ace in Pos 1) = P(Ace in Pos 2) = \frac{4}{52}$$

Combinatorial Approach

"well-shuffled deck" \leftrightarrow all 52! rearrangements of the card are equally likely. How many rearrangements have ace at pos 1? $4 \cdot 51!$

$$P(A_1) = \frac{4 \cdot 51!}{52!} = \frac{4}{52} = P(A_2) = P(A_{19}) = P(A_{36})$$

Question. If X_1 and X_2 are identically distributed, then how do they differ between corresponding draws with replacement?

Answer. Independence. We can have Random Variables that are identically distributed and not independent. Note if independent, $P(A_2|A_1) = P(A_2)$.

with replacement without replacement
$$P(A_1) = \frac{4}{52}, \quad P(A_2) = \frac{4}{52}$$
 $P(A_1) = \frac{4}{52}, \quad P(A_2) = \frac{4}{52}$ $P(A_2|A_1) = \frac{3}{51}$

We can see from this that depending on sampling method, we gain or lose independence. In the finite population sampling method, we have $1, \ldots, N$ objects we care about.

Loss of Independence when choosing sampling method is important.