

TI – Traitement d'Images Semaine 11 : Acquisition d'images couleur et dématriçage Olivier Losson

Master ASE: http://master-ase.univ-lille1.fr Master Informatique: http://www.fil.univ-lille1.fr Spécialité IVI: http://master-ivi.univ-lille1.fr

Plan du cours

- 1 Problématique du dématriçage
 - charge coupled device
 - Capteurs 3CCD et 1CCD pour l'acquisition d'images couleur
 - CFA et images CFA
 - **→** De l'image CFA à l'image couleur estimée : formalisation du dématriçage
- 2 Introduction aux méthodes de dématriçage
 - Dématriçage par copie de pixels, par interpolation bilinéaire
 - Artefacts de dématriçage
 - Principales hypothèses de dématriçage
- 3 Méthodes de dématriçage avancées
 - Méthodes exploitant la corrélation spatiale
 - Méthodes fréquentielles
 - Critères et évaluation de la qualité
- Sélection de références

Acquisition d'images couleur (1/3)

- Une image numérique couleur
 - \rightarrow possède 3 composantes (R, G, B) par pixel
 - est définie par 3 *plans* couleur

Acquisition d'images couleur (2/3)

Caméras 3CCD

charge coupled device

Système à prismes dichroïques

Acquisition d'images couleur (3/3)

Caméras 1CCD

Système à mosaïque de filtres couleur monochromatiques

CFA = Color Filter Array

CFA et images CFA (1/2)

- Image CFA
 - **→** Seul 1 niveau de composante est connu en chaque pixel
 - Dépend des filtres du CFA et de leur disposition

CFA et images CFA (2/2)

L = large (rouge) M = medium (vert) S = short (bleu)

Méthodes avancées

De l'image CFA à l'image couleur (1/3)

3CCD vs. 1CCD

- **→** 3CCD
 - fournissent directement une image couleur
 - ♥ prismes délicats à ajuster, électronique plus complexe ⇒ coûteux
- **→** 1CCD
 - 🕯 un seul capteur (single-chip) ⇒ bon marché, grand public
 - nécessitent un traitement (supplémentaire) pour obtenir l'image couleur

De l'image CFA à l'image couleur (2/3)

- Formalisation du dématriçage
 - $ightharpoonup^*$ À partir de l'image CFA I^{CFA} dans laquelle 1 seul niveau de composante (R ou G ou B) est connu en chaque pixel,
 - On forme une image couleur \hat{I} dans laquelle les 3 niveaux de composantes (R, G et B) sont connus en chaque pixel, 2 d'entre eux étant estimés.

De l'image CFA à l'image couleur (3/3)

Formalisation du dématriçage

- Formalisme utilisé
 - Désignation du pixel de coordonnées (x, y), avec $0 \le x < w$ et $0 \le y < h$
 - générique P(x, y) ou $P_{x,y}$
 - d'une image en niveaux de gris I(x, y) ou $I_{x,y}$
 - d'une image couleur I(x, y) ou $I_{x,y}$
 - d'un plan de composante d'une image couleur $I^k(x, y)$ ou $I^k_{x,y}$, $k \in \{R,G,B\}$
 - Image CFA

$$I_{x,y}^{CFA} = \begin{cases} R_{x,y} & \text{si } x \text{ impair et } y \text{ pair} \\ B_{x,y} & \text{si } x \text{ pair et } y \text{ impair} \\ G_{x,y} & \text{sinon} \end{cases}$$

Image estimée

$$\widehat{\boldsymbol{I}}_{x,y} = \begin{cases} (R_{x,y}, \widehat{G}_{x,y}, \widehat{B}_{x,y}) & \text{si } x \text{ impair et } y \text{ pair} \\ (\widehat{R}_{x,y}, \widehat{G}_{x,y}, B_{x,y}) & \text{si } x \text{ pair et } y \text{ impair} \\ (\widehat{R}_{x,y}, G_{x,y}, \widehat{B}_{x,y}) & \text{sinon} \end{cases}$$

Cas du CFA de Bayer

Introduction aux méthodes de dématriçage (1/3)

- CFA de Bayer (1976)
 - Hypothèses:
 la luminance
 (intensité lumineuse)
 est représentée par
 la composante G,
 la chrominance
 (information de couleur)
 par R et B.

La sensibilité spectrale V(λ) de l'œil humain en vision photopique est maximale autour de λ=555 nm
 ⇒ 2 fois plus d'échantillons G que de R et B.

Introduction aux méthodes de dématriçage (2/3)

Configurations rencontrées dans le CFA de Bayer

$B_{-1,-1}$	$G_{0,-1}$	$B_{1,-1}$
$G_{-1,0}$	R _{0,0}	$G_{1,0}$
$B_{-1,1}$	$G_{0,1}$	$B_{1,1}$

{GRG}

{GBG}

{RGR}

{BGB}

- Dématriçage par « copie de pixel »
 - **→** En un pixel, une composante manquante est recopiée à partir des pixels proches où elle est disponible.

$$\{GRG\}: \widehat{G} = G_{1,0}, \widehat{B} = B_{1,-1} \ \{GBG\}: \widehat{G} = G_{1,0}, \widehat{R} = R_{1,-1}$$

$$\{\mathbf{RGR}\}: \widehat{R} = R_{1,0}, \widehat{B} = B_{0,-1} \quad \{\mathbf{BGB}\}: \widehat{R} = R_{0,-1}, \widehat{B} = B_{1,0}$$

Introduction aux méthodes de dématriçage (3/3)

Dématriçage par interpolation bilinéaire

Utilisation d'un voisinage 3x3

Configuration {GRG} (id. en {GBG}):

$$\widehat{B} = \frac{1}{4} (B_{-1,-1} + B_{1,-1} + B_{-1,1} + B_{1,1})$$

$$\widehat{G} = \frac{1}{4} (G_{0,-1} + G_{-1,0} + G_{1,0} + G_{0,1})$$

Configuration {RGR} (id. en {BGB}) :

$$\widehat{R} = \frac{1}{2} (R_{-1,0} + R_{1,0})$$

$$\widehat{B} = \frac{1}{2} (B_{0,-1} + B_{0,1})$$

Sciences et Technologies

Artefacts de dématriçage (1/3)

Illustration des artefacts générés par l'interpolation bilinéaire

Artefacts de dématriçage (2/3)

- Artefacts caractéristiques du dématriçage (1/2)
 - Couleurs aberrantes (« Fausses couleurs »)
 - symptôme : écart important entre la couleur de référence et celle estimée

I

ĵ

- localisation : contours et HF spatiales
- causes:
 - sous-échantillonnage spatial (*aliasing*)
 - interpolation au travers d'un contour

Artefacts de dématriçage (3/3)

- Artefacts caractéristiques du dématriçage (2/2)
 - Effet de « fermeture éclair » (ang. « zipper effect »)

symptôme : répétition de motifs alternés colorés (*crénelage*), transitions moins

nettes

- localisation : contours horizontaux et verticaux
- causes
 - disposition en quinconce des niveaux de G disponibles dans I^{CFA}
 - interpolation au travers d'un contour horizontal ou vertical

Principes exploités pour le dématriçage (1/3)

Corrélation spatiale

- Une image est composée de régions homogènes juxtaposées.
- Au sein d'une région, tous les pixels ont des niveaux similaires, et ce, pour chaque composante couleur.
- Zones de transition entre deux régions ⇔ forte variation locale des composantes.
- Principe: pour estimer les composantes manquantes en un pixel, utiliser seulement des pixels voisins qui appartiennent à la même région.

Interpolation bilinéaire

Interpolation de niveaux voisins sélectionnés

Principes exploités pour le dématriçage (2/3)

Corrélation spectrale

- Dans une image naturelle, les trois composantes couleurs sont fortement corrélées.
- Preuve [GAM02] : les coefficients de corrélation inter-composantes, par exemple

$$r^{R,G} = \frac{\sum_{x=0}^{w-1} \sum_{y=0}^{h-1} \left(R_{x,y} - \mu^R \right) \left(G_{x,y} - \mu^G \right)}{\sqrt{\sum_{x=0}^{w-1} \sum_{y=0}^{h-1} \left(R_{x,y} - \mu^R \right)^2} \sqrt{\sum_{x=0}^{w-1} \sum_{y=0}^{h-1} \left(G_{x,y} - \mu^G \right)^2}} \quad \text{avec} \quad \mu^R = \frac{\sum_{x=0}^{w-1} \sum_{y=0}^{h-1} R_{x,y}}{wh}$$

sont élevés pour toutes les composantes et toutes les sous-bandes fréquentielles.

- Cette corrélation est particulièrement élevée dans les zones de hautes fréquences spatiales.
- Principe: prendre en compte cette corrélation spectrale (entre composantes couleur) en un pixel donné pour y estimer les composantes manquantes.

Principes exploités pour le dématriçage (3/3)

- Pour exploiter la corrélation spectrale, on interpole soit
 - le rapport des composantes couleur,
 - la différence des composantes couleur.

$$I^{R}$$

$$I^{\mathsf{R}}$$
- I^{G}

$$|I^R - I^G|$$
 $|I^B - I^G|$ $|I^R/I^G|$

$$I^R/I^G$$

$$I^{B}/I^{G}$$

- Exemple: dématriçage basé sur la constance de « teinte » [Cok86]
 - Estimer G par interpolation bilinéaire
 - Estimer R et B par interpolation du rapport des composantes couleur, ex. en {GRG}

$$\hat{B} = \hat{G} \cdot \frac{1}{4} \left[\frac{B_{-1,-1}}{\hat{G}_{-1,-1}} + \frac{B_{1,-1}}{\hat{G}_{1,-1}} + \frac{B_{-1,1}}{\hat{G}_{-1,1}} + \frac{B_{1,1}}{\hat{G}_{1,1}} \right]$$

Dématriçage exploitant la corrélation spatiale (1/3)

- Utilisation d'un gradient local pour estimer G
 - **→** But : réaliser l'interpolation le long de la transition et non à travers elle.
 - Principe : déterminer la direction de la transition locale en calculant une approximation (de la norme) du gradient.
- Méthode utilisant un développement au 1^{er} ordre [Hibbard95]

Exemple en {GRG}

Output Calcul des « gradients » horizontal Δ^x et vertical Δ^y :

$$\Delta^{x} = |G_{-1,0} - G_{1,0}|,$$

 $\Delta^{y} = |G_{0,-1} - G_{0,1}|.$

2 Interpolation du niveau de vert :

$$\hat{G} = \begin{cases} (G_{-1,0} + G_{1,0})/2 & \text{si}\Delta^x < \Delta^y, \\ (G_{0,-1} + G_{0,1})/2 & \text{si}\Delta^x > \Delta^y, \\ (G_{0,-1} + G_{-1,0} + G_{1,0} + G_{0,1})/4 & \text{si}\Delta^x = \Delta^y. \end{cases}$$

	b	b	h	h	h
	b	b	h	h	h
	b	Ъ	h	h	h
	b	b	ĥ	h	h
TI	b	b	h	h	h

Dématriçage exploitant la corrélation spatiale (2/3)

Utilisation d'un développement au 2^{ème} ordre [Hamilton&Adams97]

Exemple en {GRG}

1 Calcul des gradients horizontal Δ^x et vertical Δ^y :

$$\Delta^{x} = |G_{-1,0} - G_{1,0}| + |2R - R_{-2,0} - R_{2,0}| ,$$

$$\Delta^{y} = |G_{0,-1} - G_{0,1}| + |2R - R_{0,-2} - R_{0,2}| .$$

2 Interpolation du niveau de vert : hypothese que R - G est cstant

$$\hat{G} = \begin{cases} (G_{-1,0} + G_{1,0})/2 + (2R - R_{-2,0} - R_{2,0})/4 & \sin \Delta^x < \Delta^y, \\ (G_{0,-1} + G_{0,1})/2 + (2R - R_{0,-2} - R_{0,2})/4 & \sin \Delta^x > \Delta^y, \\ (G_{0,-1} + G_{-1,0} + G_{1,0} + G_{0,1})/4 \\ + (4R - R_{0,-2} - R_{-2,0} - R_{2,0} - R_{0,2})/8 & \sin \Delta^x = \Delta^y. \end{cases}$$

Problèmes restants

- Mauvais choix de la direction d'interpolation (zones de détails fins).
- Incohérences entre directions d'interpolation pour *R* et *B*.

Dématriçage exploitant la corrélation spatiale (3/3)

- Autres méthodes exploitant la corrélation spatiale
 - **→ Interpolation linéaire à pondération adaptative** [Kimmel99]

$$\hat{G} = \frac{w_{0,-1} \cdot G_{0,-1} + w_{-1,0} \cdot G_{-1,0} + w_{1,0} \cdot G_{1,0} + w_{0,1} \cdot G_{0,1}}{w_{0,-1} + w_{-1,0} + w_{1,0} + w_{0,1}}$$

les poids $w_{\delta x, \delta y}$ étant calculés à partir des gradients directionnels.

- **→ Reconnaissance de formes** [Cok86]
 - Classer les niveaux de vert $(G_1 \geqslant G_2 \geqslant G_3 \geqslant G_4)$ des voisins 4-connexes en

 $b \text{ si } G < \overline{G}$ $h \text{ si } G \geqslant \overline{G}$

Estimer le niveau de vert selon la forme du voisinage

Exemple : si on est en présence d'un contour, $\hat{G} = M = (G_2 + G_3)/2$

Méthodes fréquentielles de dématriçage (1/3)

Dématriçage par sélection de fréquences [Alleysson04] Transformée de Fourier d'une image CFA L= luminance +0,5 0,6 0,5 0,4 0,3 0,5 0,5 C2b u-0,5 -0,5

-0,5

+0,5 \mathcal{U}

Méthodes fréquentielles de dématriçage (2/3)

Transformée de Fourier d'une image CFA (suite)

$$\boldsymbol{I} = f = [f^R f^G f^B]$$

$$m^{R} = \frac{1}{4} (1 - (-1)^{x}) (1 + (-1)^{y})$$

$$m^G = \frac{1}{2} (1 + (-1)^{x+y})$$

$$I = f = [f^R f^G f^B] \qquad m^B = \frac{1}{4} (1 + (-1)^x) (1 - (-1)^y) \qquad I^{CFA} = f^{CFA}$$

$$I^{CFA} \equiv f^{CFA}$$

$$f^{CFA}(x, y) = \sum_{k=R,G,B} f^{k}(x, y) m^{k}(x, y)$$

En posant
$$\begin{bmatrix} f^L \\ f^{CI} \\ f^{C2} \end{bmatrix} = \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ -1/4 & 1/2 & -1/4 \\ -1/4 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} f^R \\ f^G \\ f^B \end{bmatrix}$$
, on a:

$$F^{CFA}(u,v) = F^{L}(u,v) + F^{CI}(u-0.5,v-0.5) + \underbrace{F^{C2}(u-0.5,v)}_{F^{C2a}} \underbrace{-F^{C2}(u,v-0.5)}_{F^{C2b}}$$

Méthodes fréquentielles de dématriçage (3/3)

• Dématriçage par sélection de fréquences (fin)

Estimation des composantes de chrominance par filtres orthogonaux

Évaluation de la qualité du dématriçage (1/2)

Critères

- * Rapport signal-sur-bruit pic-à-pic (ang. Peak Signal to Noise Ratio)
 - Aussi utilisé en compression d'images
 - Mesure la qualité de l'image estimée \hat{I} par rapport à l'image de référence I en évaluant l'erreur quadratique moyenne (ang. Mean Square Error) :

$$PSNR(I, \hat{I}) = 10 \cdot \log_{10} \left(\frac{d^2}{MSE} \right)$$
 avec $MSE = \frac{1}{3wh} \sum_{k=R,G,B} \sum_{x=0}^{w-1} \sum_{y=0}^{h-1} \left(I_{x,y}^k - \hat{I}_{x,y}^k \right)^2$

d est la valeur maximale possible du signal (si composantes sur 8 bits, d=255).

- Le *PSNR* s'exprime en **décibels** (dB).
- Plus sa valeur est élevée, meilleure est l'estimation.
- Mesure la « proximité » entre 2 images, pas la qualité visuelle de l'image estimée.

Autres mesures

• Mesure perceptuelle (sans unité) dans l'espace $L^*a^*b^*$:

$$\Delta E^{L^* a^* b^*} = \frac{1}{3 w h} \sum_{x=0}^{w-1} \sum_{y=0}^{h-1} \sqrt{\sum_{k=L, a^*, b^*} \left(I_{x, y}^k - \hat{I}_{x, y}^k\right)^2}$$

Évaluation de la qualité du dématriçage (2/2)

Résultats (exemples) : images estimées et PNSR

bilinéaire 29,2 dB

31,7 dB

const. de teinte rec. formes [Cok86] gradient [H&A97] 34,7 dB

38,4 dB

sél. fréq. [All04] 41,5 dB

Sélection de références

Sites web

- → Deux sites sur la technologie des capteurs couleur mono-CCD. http://en.wikipedia.org/wiki/Bayer_filter et http://www.sciences-co.net/sc_image/?portfolio=capteurs-ccd
- Description, implémentation et comparaison des principaux algorithmes. http://scien.stanford.edu/pages/labsite/1999/psych221/projects/99/tingchen/main.htm
- Compilation (quasi-)exhaustive des approches de dématriçage existantes.
 http://www.danielemenon.netsons.org/top/demosaicking-list.php

Articles scientifiques

- → [All04] D. Alleysson, *30 ans de démoisaïçage*. Traitement du Signal, 21(6): 561-581, 2004.
- → [GAM02] B. K. Gunturk, Y. Altunbasak et R. M. Mersereau, *Color plane interpolation using alternating projections*. IEEE Transactions on Image Processing, 11(9): 997-1013, 2002.

