MUSTERERKENNUNG

Vorlesung im Sommersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 17. März 2017

Neuronale Architektur

Feed-Forward

SLP

MLP Anwendung

Rekurrente Netzwerke

Modellneuronen und ihre Verschaltung

Feed-Forward-Netzwerke

Klassisches Perzeptron

Mehrschichtenperzeptron

MLPs für Prädiktion, Extraktion, Klassifikation

Rekurrente Netzwerke

Teil VIII

Künstliche Neuronale Netze

Neuronale Architektur

Neuronale Architektur

Feed-Forward

SLP

MLP

Anwendung Re

Rekurrente Netzwerke

Rekurrente Netzwerke

Das menschliche Zentralnervensystem

Die "nassen" Neuronen der anthropomorphen Blaupause

Das Neuron

ist die elementare Verarbeitungseinheit.

- ca. 10^{12} Nervenzellen
- ca. 10¹⁴ Verbindungen

Axon Macht die **Grundaktivität** einer Nervenzelle in Form elektrischer Impulse verfügbar

Synapse Übermittlung an andere Neuronen über **synaptische** Verbindungen unterschiedlicher Stärke

Feuern Überschreitet die gesammelte **Eingangserregung** einen bestimmten Betrag, führt dies zu einer Aktivitätsänderung (erhöhte Impulsfrequenz)

Grundbaustein des Paradigmas massiv-paralleler Verarbeitung

Parallel-Distributed Processing

Ein Künstliches Neuronales Netz (KNN) ist ein Arrangement von Modellneuronen und ihren Verbindungen.

Dynamisches Verhalten

bestimmt durch

- Aktivierungsbegriff
- Kombination der Eingänge
- Aktivierungsfunktion
- Verschaltungstopologie

Neuronale Architektur

SIP

Anwendung

Rekurrente Netzwerke

Neuronales Aktivierungsniveau

Die Eingabesignale des Modellneurons

Gewichtung der Eingangserregungen

Modellierung der Stärke synaptischer Verbindungen

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1N} \\ \vdots & & \ddots & \vdots \\ w_{N1} & w_{N2} & \cdots & w_{NN} \end{pmatrix}$$

Exzitatorische Synapsen Inhibitorische Synapsen

$$w_{ij} > 0$$

 $w_{ii} < 0$

Kombination der Eingangserregungen

Die gesammelte Eingangserregung des k-ten Modellneurons (zur Zeit t) wird mit σ_k bzw. mit $\sigma_k(t)$ bezeichnet und akkumuliert gemäß:

$$\sigma_k(t) \ = \ \left\{ egin{array}{ll} \sum_j w_{jk} \cdot x_j(t) & ext{(Linearkombination)} \ \sum_j (w_{jk} - x_j(t))^2 & ext{(Unähnlichkeit)} \end{array}
ight.$$

Neuronales Aktivierungsniveau

Das Ausgabesignal des Modellneurons

Ausgangserregung

Mit $x_k(t)$ bezeichnen wir die Ausgangserregung des k-ten Modellneurons zum Zeitpunkt *t*.

Der **Gesamtsystemzustand** ist durch x(t) charakterisiert.

Wertebereich

Feuern oder ruhen Quantitatives Erregungspotenzial

$$egin{aligned} & arphi_k(t) \in \{1,0\} \ & arphi_k(t) \in
eal \mathrm{R} \end{aligned}$$

Aktivierung

Schwellenwert: Neuron #k aktiv gdw. $x_k(t) > \theta$ Feuerrate: Neuron #k aktiv gdw. Anzahl Spikes/Zeiteinheit $> \theta$

Zeitraster

dynamisch — stetige Zeitskala dynamisch — diskrete Zeitskala nicht-dynamisch

Neuronale Architektur

Rekurrente Netzwerke

Neuronale Aktivierungsfunktionen

Lineare Aktivierung

$$x_k = a \cdot \sigma_k + b$$

 $x_k = \begin{cases} 1 & \sigma_k > \theta_k \\ 0 & \sigma_k < \theta_k \end{cases}$

klassisches Perzeptron

lineare Netzwerke

Zielwertaktivierung

$$x_k = \exp\left\{-C\cdot(\sigma_k-\theta_k)^2\right\}$$

selbstorganisierende Karten

Sprungfunktion Sigmoidfunktion

$$x_k = \frac{1}{1 + \exp(-\sigma_k)}$$

Mehrschichtenperzeptron

Neuronale Verschaltung

Verbindungstopologie

Die Gewichtmatrix $\boldsymbol{W} \in \mathbb{R}^{N \times N}$ definiert einen gerichteten Graphen $(\mathcal{N}, \mathcal{E})$ über dem Neuronenvorrat $\mathcal{N} = \{1, \dots, N\}$ durch:

$$j \prec k \Leftrightarrow (j,k) \in \mathcal{E} \Leftrightarrow w_{jk} \neq 0$$
, $(\forall j,k \in \mathcal{N})$

Rekurrente Netzwerke

Die Verschaltung besitzt Zyklen.

dynamisches System

Feed-Forward-Netzwerke

Die Verschaltung ist zyklenfrei.

endliche Berechnung

Anwendung

Neuronale Architektur

Feed-Forward

Rekurrente Netzwerke

Feed-Forward-Netzwerke

Nichtrekurrente (zyklenfreie) künstliche neuronale Netze

Definition

Ein KNN mit Gewichtmatrix $\boldsymbol{W} \in \mathbb{R}^{N \times N}$ und zyklenfreier neuronaler Verknüpfungsrelation '≺' heißt **nichtrekurrentes KNN** oder Vorwärtsnetz.

Die Menge ${\mathcal N}$ aller Netzknoten zerfällt in die Teilmengen

$$\mathcal{N}_{E} = \{k \in \mathcal{N} \mid \neg \exists j : j \prec k\}$$

$$\mathcal{N}_{A} = \{j \in \mathcal{N} \mid \neg \exists k : j \prec k\}$$

$$\mathcal{N}_{H} = \mathcal{N} \setminus (\mathcal{N}_{E} \cup \mathcal{N}_{A})$$

der Eingabe-, der Ausgabe- bzw. der verborgenen Neuronen.

Feed-Forward

Feed-Forward-Netzwerke

Neuronale Architektur

Feed-Forward

MLP

Rekurrente Netzwerke Anwendung

Rekurrente Netzwerke

Feed-Forward-Netzwerke

Serielle Traversierbarkeit nichtrekurrenter KNNs

Fakt

Die Knoten eines zyklenfreien KNN lassen sich in ≺-verträglicher Weise linear anordnen, d.h., es gilt

$$\forall j, k \in \mathcal{N}: \quad j \prec k \quad \Rightarrow \quad j < k$$

nach entsprechender Umnummerierung.

Neuronale Architektur Feed-Forward Rekurrente Netzwerke Neuronale Architektur

Spielarten nichtrekurrenter Netzwerke

Neuronenschichten & Verbindungsebenen

nichtrekurrent keine Anregungszyklen

benachbarten Schichten

Module zyklenfreier Modulgraph Metakanten voll verdrahtet

Definition

Zerfällt die Knotenmenge $\mathcal N$ eines zyklenfreien KNNs in eine Folge $\mathcal{N}_0, \dots, \mathcal{N}_L$ disjunkter Schichten mit der Eigenschaft

$$w_{jk} \neq 0 \Leftrightarrow (\exists \ell) \ j \in \mathcal{N}_{\ell-1} \land k \in \mathcal{N}_{\ell}$$

(vollständige Verschaltung benachbarter Schichten), so sprechen wir von einem **Mehrschichtenperzeptron** (MLP = $multi-layer\ perceptron$).

Neuronale Architektur Feed-Forward SLP Rekurrente Netzwerke Anwendung

Klassisches Perzeptron

Berechnungsprozeß in nichtrekurrenten Netzwerken

Zyklenfreie KNNs kommen ohne explizite Zeitrechnung aus

Lemma

Die Ausgangserregungen $x_k(t)$ der Neuronen eines Mehrschichtenperzeptrons sind nicht von der Zeit, sondern nur von den Zuständen $\mathbf{x}_E = (x_k | k \in \mathcal{N}_E)^{\top}$ abhängig und berechnen sich durch die Vorwärtsrekursion

$$x_k = f\left(\sum_{j \prec k} w_{jk} \cdot x_j\right)$$
 bzw. $x_k = f\left(\sum_{j \in \mathcal{N}_{\ell-1}} w_{jk} \cdot x_j\right)$

für alle $\left\{ \begin{array}{ll} \textit{FFN}: & \textit{k} = 1, 2, \dots, N \\ \textit{MLP}: & \textit{k} \in \mathcal{N}_{\ell}, \ \ell = 1..L \end{array} \right.$ mit der Aktivierungsfunktion $f(\cdot)$. Das Netzwerk definiert folglich eine **nichtlineare Abbildung**

$$\boldsymbol{u}: \left\{ \begin{array}{ll} \mathbb{R}^{|\mathcal{N}_{\boldsymbol{E}}|} & \to & \mathbb{R}^{|\mathcal{N}_{\boldsymbol{A}}|} \\ \boldsymbol{x}_{\boldsymbol{E}} & \mapsto & \boldsymbol{u}(\boldsymbol{x}_{\boldsymbol{E}}) = \boldsymbol{x}_{\boldsymbol{A}} = (x_k | k \in \mathcal{N}_{\boldsymbol{A}})^{\top} \end{array} \right..$$

Neuronale Architektur

Feed-Forward

SLP

MIP

Anwendung

Rekurrente Netzwerke

Klassisches Perzeptron

Rosenblatt 1962

Definition

Ein einschichtiges KNN mit N Eingabeknoten, K Ausgabeknoten, der Gewichtmatrix $\mathbf{W} \in \mathbb{R}^{N \times K}$ und dem Systemverhalten

$$y_k(\mathbf{x}) = \operatorname{sign}\left(\sum_{j=1}^N w_{jk} \cdot x_j\right), \quad k = 1, \dots, K$$

heißt einstufiges (oder klassisches) Perzeptron.

Bemerkungen

- 1. Das Perzeptron kann zu Klassifikationszwecken für N-dimensionale Merkmalvektoren aus K Musterklassen herangezogen werden; Prüfgrößen sind die Aktivierungsniveaus $y_k(x)$ der Ausgabeneuronen.
- 2. Das Verhalten der Ausgabeneuronen eines Perzeptrons ist vollständig entkoppelt; es genügt also, Perzeptren mit einem Ausgabeneuron zu betrachten.

Klassisches Perzeptron mit einem Ausgabeneuron

ADALINE — adaptive linear engine

Schwellenwertneuron

Feuerschwelle als Gewicht des 1-Neurons:

$$y = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} - \theta)$$

= $(\theta, \mathbf{w}^{\top}) \cdot \begin{pmatrix} -1 \\ \mathbf{x} \end{pmatrix}$

Überwachtes Lernen

Ideale Zielgrößenvorgabe $y^* \in \{-1, +1\}$ lautet:

$$\operatorname{sign}(\boldsymbol{w}^{\top}\boldsymbol{x}) \stackrel{!}{=} y^*$$

Mit der Hilfsgröße $z := y^*x$ übersetzt in die Bedingung

$$\boldsymbol{w}^{\top}\boldsymbol{z} \stackrel{!}{\geq} 0$$

Neuronale Architektur

Feed-Forward

SLP

Anwendung

Exklusive ODER-Funktion

 $y(x_1, x_2) = \begin{cases} -1 & x_1 = x_2 \\ +1 & x_1 \neq x_2 \end{cases}$

unmöglich durch Gerade zu trennen

Rekurrente Netzwerke

Was ein Perzeptron lernen kann

... und was ein Perzeptron leider nicht lernen kann

Inklusive ODER-Funktion

$$y(x_1, x_2) = \begin{cases} -1 & x_1 = 0 = x_2 \\ +1 & \text{sonst} \end{cases}$$

affin separierbare Muster

Bemerkung

Nach dieser Hiobsbotschaft (1962) ruhte die Perzeptronforschung in Frieden bis zur (Wieder-)Entdeckung des Backpropagation-Algorithmus (1972/85).

Die Perzeptron-Lernregel

Stapelweise versus instantane Auffrischung der Gewichte

Auffrischungsvorschrift

Korrektur von **w** proportional zur *negativen* Projektion von w auf z:

$$\mathbf{w} \leftarrow \left\{ \begin{array}{ll} \mathbf{w} & \mathbf{w}^{\top} \mathbf{z} > 0 \\ \mathbf{w} - \eta \cdot (\mathbf{w}^{\top} \mathbf{z}) \cdot \mathbf{z} & \text{sonst} \end{array} \right.$$

Der Koeffizient η heißt **Lernrate**.

Gradientenabstieg

$$w_{jk} \leftarrow w_{jk} - \\ \eta \Delta w_{jk}$$

Instantan:

$$\Delta w_{jk} = \frac{\partial \varepsilon(\mathbf{z})}{\partial w_{jk}}$$

Stapelweise:

$$\Delta w_{jk} = \sum_{\mathbf{z} \in \omega} \frac{\partial \varepsilon(\mathbf{z})}{\partial w_{jk}}$$

Neuronale Architektur

Feed-Forward

SLP

MLP

Anwendung

Rekurrente Netzwerke

Mehrschichtenperzeptron

Das Mehrschichtenperzeptron (MLP)

Asymptotisch universeller Funktionsapproximator

Satz

Mehrschichtennetzwerke mit nichtlinearer Aktivierungsfunktion (z.B. Signum oder Sigmoid) und mindestens zwei verborgenen Neuronenschichten ($L \geq 3$ Stufen) können — **asymptotisch** mit wachsender Neuronenzahl — beliebige Klassengebiete bzw. Funktionen approximieren.

Beweis.

Durch genaues Hinschauen.

Neuronale Architektur

Feed-Forward

SLP

Anwendung

Rekurrente Netzwerke

Optimierung der neuronalen Gewichtmatrix

MIP

Quadratischer Vorhersagefehler

zwischer idealer und neuronaler Prüfgröße:

$$\varepsilon(\omega|\mathbf{W}) = \sum_{\mathbf{x}\in\omega} \|\mathbf{d}(\mathbf{x}) - \mathbf{y}(\mathbf{x})\|^2$$

Stapelweise Auffrischung (batch learning)

$$\mathbf{W}' = \mathbf{W} - \eta \nabla_{\mathbf{W}} \left\{ \varepsilon(\omega | \mathbf{W}) \right\} , \quad \nabla_{\mathbf{W}} \varepsilon = [\partial \varepsilon / \partial w_{jk}]_{j \prec k}$$

Additive Zerlegung des Gesamtfehlers

$$\frac{\partial \varepsilon(\omega | \mathbf{W})}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} \sum_{\mathbf{x} \in \omega} \| \mathbf{d}(\mathbf{x}) - \mathbf{y}(\mathbf{x}) \|^2 = \sum_{\mathbf{x} \in \omega} \frac{\partial \varepsilon(\mathbf{x} | \mathbf{W})}{\partial w_{jk}}$$

Das Mehrschichtenperzeptron (MLP)

Beispiel: 2–3–3-Perzeptron (drei Schichten · zwei Stufen)

Konfiguration eines MLP als Klassifikator

- 1. D Eingabeneuronen und (K-1) Ausgabeneuronen D=2 und K=4 im Beispiel
- 2. Wieviele verborgene Schichten?

eine verborgene Schicht im Beispiel

3. Wieviele Neuronen in verborgenen Schichten? 3 verborgene Neuronen im Beispiel

MI P

4. Maschinelles Lernen der Gewichtmatrizen

 (3×3) und (4×3) im Beispiel

Neuronale Architektur

Feed-Forward

SLP

Anwend

Rekurrente Netzwerke

Error-Backpropagation-Algorithmus

Satz (Werbos 1972)

Gegeben sei ein nichtrekurrentes KNN mit Neuronen \mathcal{N} , Gewichtmatrix \boldsymbol{W} und sigmoider Aktivierungsfunktion

$$f(\sigma) = \frac{1}{(1+e^{-\sigma})}.$$

Dann gilt für die partiellen Ableitungen des quadratischen Fehlers

$$\varepsilon(\boldsymbol{W}|\boldsymbol{x}) = \sqrt[1]{2} \cdot \|\boldsymbol{d} - \boldsymbol{x}_A\|^2$$

zwischen der Zielvorgabe ${\it d}$ und der Netzausgabe ${\it x}_A$ zur Netzeingabe ${\it x}_E$ die Aussage

$$\partial \varepsilon / \partial w_{jk} = x_j \cdot x_k \cdot (1 - x_k) \cdot \beta_k$$

mit den rekursiv berechenbaren Größen

$$\beta_{j} = \frac{\partial \varepsilon}{\partial x_{j}} = \begin{cases} (x_{j} - d_{j}) & j \in \mathcal{N}_{A} \\ \sum_{k|j \prec k} \beta_{k} x_{k} (1 - x_{k}) w_{jk} & j \notin \mathcal{N}_{A} \end{cases}.$$

Beweis.

Unsere gewählte Aktivierungsfunktion besitzt eine besonders schöne erste Ableitung:

$$f'(\sigma) = f(\sigma) \cdot (1 - f(\sigma))$$

Für die gesuchte Gewichtableitung ergibt die Kettenregel

$$\frac{\partial \varepsilon}{\partial w_{ij}} = \frac{\partial \varepsilon}{\partial x_j} \cdot \frac{\partial x_j}{\partial w_{ij}}$$

Der rechte Faktor wird wie folgt zerlegt:

$$\frac{\partial x_j}{\partial w_{ij}} = \frac{\partial x_j}{\partial \sigma_j} \cdot \frac{\partial \sigma_j}{\partial w_{ij}}$$

Wegen

$$\frac{\partial x_j}{\partial \sigma_i} = \frac{\partial f(\sigma_j)}{\partial \sigma_i} = f'(\sigma_j) = f(\sigma_j) \cdot (1 - f(\sigma_j)) = x_j(1 - x_j)$$

und

$$\frac{\partial \sigma_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \sum_{k|k \prec i} x_k w_{kj} = x_i$$

folgt unmittelbar

$$\frac{\partial x_j}{\partial w_{ii}} = f'(\sigma_j) \cdot x_i = x_j(1-x_j) \cdot x_i$$

Neuronale Architektur

Feed-Forward

SLP

Anwendung

Rekurrente Netzwerke

Error-Backpropagation-Algorithmus

MLP

- 1 Initialisiere Gewichtmatrix W und setze $\nu = 0$.
- 2 Initialisiere Akkumulatoren $\Delta^{(\nu)}w_{ij}=0$.
- 3 Für alle Klassen $\kappa = 1, ..., K$ und für alle Muster $\mathbf{x}_{E} \in \omega_{\kappa}$:
 - Berechne Eingangserregungen $\sigma(x_E)$. Berechne Ausgangserregungen $x(x_E)$.
 - **b** Für alle Ausgabeneuronen $j \in \mathcal{N}_A$:

$$\beta_j = x_j - \begin{cases} 1 & \text{Neuron } j \text{ codiert } \Omega_{\kappa} \\ 0 & \text{sonst} \end{cases}$$

 \square Für alle anderen Neuronen $j \in \mathcal{N} \setminus \mathcal{N}_A$:

$$\beta_j = \sum_{k|i\prec k} \beta_k \cdot f'(\sigma_k) \cdot w_{jk}$$

d Für alle Neuronen $i, j \in \mathcal{N}$ mit $i \prec j$:

$$\Delta^{(\nu)} w_{ii} \leftarrow \Delta^{(\nu)} w_{ii} + \beta_i \cdot f'(\sigma_i) \cdot x_i$$

- 4 Berechnen der neuen Gewichte $oldsymbol{W} \leftarrow oldsymbol{W} + \eta \cdot oldsymbol{\Delta}^{(
 u)} oldsymbol{W}$
- 5 Abbruch? Sonst $\nu \leftarrow \nu + 1$ und weiter bei \rightsquigarrow 2.

Beweis.

Der **linke Faktor** beschreibt die Fehlerkomponente des j-ten Neurons. Für Ausgabeneuronen gilt einfach

$$\beta_j = \frac{\partial \varepsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \frac{1}{2} \cdot \sum_{k \in \mathcal{N}_A} (d_k - x_k)^2 = (x_j - d_j)$$

Für alle anderen Neuronen gilt die Rekursionsformel

$$\beta_{j} = \frac{\partial \varepsilon}{\partial x_{j}} = \sum_{k|j \prec k} \frac{\partial \varepsilon}{\partial x_{k}} \cdot \frac{\partial x_{k}}{\partial x_{j}}$$

$$= \sum_{k|j \prec k} \frac{\partial \varepsilon}{\partial x_{k}} \cdot \frac{\partial x_{k}}{\partial \sigma_{k}} \cdot \frac{\partial \sigma_{k}}{\partial x_{j}}$$

$$= \sum_{k|j \prec k} \beta_{k} \cdot f'(\sigma_{k}) \cdot w_{jk}$$

Insgesamt ergibt sich mit diesen Größen der Ausdruck

$$\frac{\partial \varepsilon}{\partial w_{ii}} = \beta_j \cdot f'(\sigma_j) \cdot x_i$$

für die partiellen Gewichtableitungen. Die Behauptung des Satzes folgt duch Einsetzen der Sigmoidfunktion.

Neuronale Architektur

Feed-Forward

CI

MLP

Anwendung

Rekurrente Netzwerk

Error-Backpropagation-Algorithmus

Mächtiges Lernverfahren mit mangelhaften Konvergenzeigenschaften

Anwendbarkeit

Alle nichtrekurrenten Netzwerke (incl. MLPs und TDNNs) Alle differenzierbaren Aktivierungsfunktionen Alle differenzierbaren Eingabekombinationen (incl. $\boldsymbol{w}_k^{\top} \boldsymbol{x}$ und $\|\boldsymbol{w}_k - \boldsymbol{x}\|$)

Konvergenzverhalten

Gradientenabstiegsverfahren findet nur lokale Fehlerminima Heuristische Schrittweite (Lernrate η) \bullet Oszillation \bullet Konvergenzrate

Konvergenzbeschleunigung

Der Korrekturterm wird durch Momentumterm erweitert:

$$\Delta^{(\nu)}w_{ij} = \eta \cdot \frac{\partial \varepsilon}{\partial w_{ii}} + \alpha \cdot \Delta^{(\nu-1)}w_{ij}$$

Resilienter EBP-Algorithmus, Gauß-Newton, Levenberg-Marquardt, ...

Mehrschichtenperzeptron

Serielle Notation mit abstrakten Verarbeitungsstufen

1 + L Variablenschichten zu je D_{ℓ} Komponenten:

$$\mathbf{\Omega}_{\ell} \triangleq \mathbb{R}^{D_{\ell}}$$

L Verarbeitungsstufen

zu je D_{ℓ} Einzelfunktionen:

$$f_{\ell,j}: \mathbf{\Omega}_{\ell-1} \to \mathrm{I\!R}$$

für
$$j = 1, \ldots, D_{\ell}$$

Beispielverarbeitungsstufen

Lineargewichtungsstufe

$$f_{\ell}: \left\{ \begin{array}{ccc} \mathbb{R}^n & \rightarrow & \mathbb{R}^m \\ \mathbf{x} & \mapsto & \mathbf{A}^{\top} \cdot \mathbf{x} + \mathbf{b} \end{array} \right.$$

Kompandierungsstufe (z.B. Sigmoid)

$$f_{\ell}: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R}^n \\ \mathbf{x} & \mapsto & (\varphi(\mathbf{x}_1), \dots, \varphi(\mathbf{x}_n))^{\top} \end{array} \right.$$

Softmaxstufe o.ä.

$$f_{\ell}: \left\{ \begin{array}{ccc} \mathbb{R}^n & \rightarrow & \mathbb{R}^k \\ x & \mapsto & (e^{x_j}/\sum_i e^{x_i})_{j=1..k} \end{array} \right.$$

Neuronale Architektur

Rekurrente Netzwerke

Kosten, Lerndaten und Gütefunktion

Optimierung der freien MLP-Parameter heta

Kostenfunktional

$$arepsilon(\hat{m{y}}, m{y}^*)$$
 für
Wunschergebnis $m{y}^*$ und
MLP-Ausgabe $\hat{m{y}} = f_{1:L}(m{x})$

Beispiel für

Regression/Klassifikation

$$\varepsilon(\hat{\mathbf{y}}, \mathbf{y}^*) = \frac{1}{2} ||\hat{\mathbf{y}} - \mathbf{y}^*||^2 \qquad (OLS)$$

$$\varepsilon(\hat{\mathbf{y}}, k^*) = -\log(\hat{\mathbf{y}}_{k^*}) \qquad (MAP)$$

Stichprobe $\omega = (\mathbf{x}^{(t)}, \mathbf{y}^{(t)})_{t=1...T}$ für überwachtes Lernen

Näherungsziel:
$$\mathcal{E}[\varepsilon(f_{\theta}(\mathbb{X}), \mathbb{Y})] \approx \sum_{t=1}^{T} \varepsilon(f_{\theta}(x^{(t)}), y^{(t)})$$
 (LLN)

Gradientenabstieg

$$\frac{\partial \mathcal{E}[\varepsilon(f_{\theta}(\mathbb{X}), \mathbb{Y})]}{\partial \theta} \; \approx \; \sum_{t=1}^{T} \frac{\partial \varepsilon(f_{\theta}(\boldsymbol{x}^{(t)}), \boldsymbol{y}^{(t)})}{\partial \theta}$$

Berechnung der Vorwärtsvariablen

Schichtenparallel von Stufe zu Stufe

Eingabe → Ausgabe

Zweistufen-MLP zur Klassifikation

$$f_{1:L}(x) = (f_1 \circ f_2 \circ \ldots \circ f_L)(x) = f_L(f_{L-1}(\ldots (f_2(f_1(x)))\ldots))$$

Neuronale Architektur

Neuronale Architektur

Feed-Forward

Ableitung nach den Vorwärtsvariablen

Fehlerrückführung vom MLP-Ausgang zum MLP-Eingang

$$\xi_{\ell,j} \stackrel{\mathsf{def}}{=} \partial \varepsilon / \partial x_{\ell,j} \qquad \text{für alle } \left\{ \substack{\ell = 0..L \\ j = 1..D_{\ell}} \right\}$$

Rekursionsbeginn

$$\xi_{L,j} = \frac{\partial}{\partial x_{L,j}} \varepsilon(\mathbf{x}_L, \mathbf{y}^*)$$

OLS-Regression

$$\xi_{L,j} = \frac{\partial}{\partial x_{L,j}} \frac{1}{2} \sum_{i} (x_{L,i} - y_i^*)^2$$
$$= x_{L,i} - y_i^*$$

Rekursionsschritt

$$\xi_{\ell-1,j} = \frac{\partial \varepsilon}{\partial x_{\ell-1,j}}$$

$$= \sum_{k} \frac{\partial \varepsilon}{\partial x_{\ell,k}} \cdot \frac{\partial x_{\ell,k}}{\partial x_{\ell-1,j}}$$

$$= \sum_{k} \xi_{\ell,k} \cdot \gamma_{\ell,j,k}$$

Lokale Ableitungen

zwischen den Variablen zweier benachbarter MLP-Stufen

$$\gamma_{\ell,j,k} \ \stackrel{\text{def}}{=} \ \partial \mathbf{x}_{\ell,k} \ \big/ \ \partial \mathbf{x}_{\ell-1,j} \qquad \text{ für alle } \left\{ \begin{smallmatrix} \ell = 1..L \\ j = 1..D_{\ell-1} \\ k = 1..D_{\ell} \end{smallmatrix} \right\}$$

Aktivierungsstufe
$$\gamma_{\ell,j,k} = \frac{\partial}{\partial x_{\ell-1,j}} \varphi(x_{\ell-1,k}) = \begin{cases} \varphi'(x_{\ell-1,k}) & j=k \\ 0 & j\neq k \end{cases}$$

Linearkombination
$$\gamma_{\ell,j,k} = \frac{\partial}{\partial x_{\ell-1,j}} \left(b_{\ell,k} + \sum_{i} A_{\ell,i,k} \cdot x_{\ell-1,i} \right) = A_{\ell,j,k}$$

Softmaxstufe
$$\gamma_{\ell,j,k} = \frac{\partial}{\partial x_{\ell-1,j}} \frac{e^{x_{\ell-1,k}}}{\sum_{i} e^{x_{\ell-1,i}}} = \begin{cases} -x_{\ell,j} \cdot x_{\ell,k} + x_{\ell,k} & j=k \\ -x_{\ell,j} \cdot x_{\ell,k} + 0 & j \neq k \end{cases}$$

Neuronale Architektur

MLP

Rekurrente Netzwerke

Ableitung nach den MLP-Parametern

"Synaptische Gewichte" des Neuronennetzes · Kompandierungsparameter

$$\frac{\partial \varepsilon}{\partial \theta_{\ell,i}} \, = \, \sum_{k} \frac{\partial \varepsilon}{\partial x_{\ell,k}} \cdot \frac{\partial x_{\ell,k}}{\partial \theta_{\ell,i}} \, = \, \sum_{k} \xi_{\ell,k} \cdot \frac{\partial}{\partial \theta_{\ell,i}} f_{\ell,k}(\mathbf{x}_{\ell-1}) \quad \text{ für alle } \left\{ \begin{smallmatrix} \ell & = & 1..L \\ i & = & 1..I_{\ell} \end{smallmatrix} \right\}$$

Linearkoeffizienten

$$\frac{\partial \varepsilon}{\partial A_{\ell,j,k}} = \frac{\partial \varepsilon}{\partial x_{\ell,k}} \cdot \frac{\partial x_{\ell,k}}{\partial A_{\ell,j,k}} = \xi_{\ell,k} \cdot \frac{\partial}{\partial A_{\ell,j,k}} \left(b_{\ell,k} + \sum_{i} A_{\ell,i,k} \cdot x_{\ell-1,i} \right) = \xi_{\ell,k} \cdot x_{\ell-1,j}$$

Aktivierungschwellen

$$\frac{\partial \varepsilon}{\partial b_{\ell,k}} = \frac{\partial \varepsilon}{\partial x_{\ell,k}} \cdot \frac{\partial x_{\ell,k}}{\partial b_{\ell,k}} = \xi_{\ell,k} \cdot \frac{\partial}{\partial b_{\ell,k}} \left(b_{\ell,k} + \sum_{i} A_{\ell,i,k} \cdot x_{\ell-1,i} \right) = \xi_{\ell,k} \cdot 1$$

Kompandierungsfunktionen und ihre Ableitungen

nichtlineare, monotone Skalentransformationen für Aktivierungsstufen

Name		Funktion	Ableitung	
Identität ¹	id(x)	X	1	
Stufe ²	sign(x)	$2\cdot \mathbf{I}_{x>0}(x)-1$	0 für $x \neq 0$	
Sigmoid ³	$\sigma(x)$	$1/(1+e^{-x})$	$\sigma(x)\cdot(1-\sigma(x))$	
Tangens ⁴	tanh(x)	$(e^{2x}-1)/(e^{2x}+1)$	$1 - \tanh^2(x)$	
Ellbogen ⁵	$\varphi_+(x)$	$\max(0,x)$	$I_{x>0}(x)$	
μ -Gesetz ¹	$\phi_{\mu}(x)$	$\operatorname{sign}(x) \cdot \log(1 + \mu x)$	$(x + 1/\mu)^{-1}$	
μ -invers ¹	$\varphi_{\mu}(x)$	$\operatorname{sign}(x)\cdot(e^{ x }-1)/\mu$	$e^{ x }/\mu$	

Bemerkung

Wertebereiche:

 ${}^{2}\left\{ -1,0,1\right\}$ ${}^{3}\left(0,1\right)$ ${}^{4}\left(-1,1\right)$

Neuronale Architektur

Fehlerrückführung in Matrixschreibweise

L-Stufen-MLP · Regressionsaufgabe · Methode der kleinsten Quadrate

- 1 Initialisiere die Parameterfelder \mathbf{A}_{ℓ} und \mathbf{b}_{ℓ} für $\ell=1..L$
- 2 Initialisiere Akkumulatorfelder $\mathbf{\Delta}_{\ell}^{A}$ und $\mathbf{\Delta}_{\ell}^{b}$ zu Null
- 3 Für alle Lernstichprobenpaare $(x, y) \in \omega$ berechne ...
 - $\textbf{vorwärtsvariable} \qquad \textbf{x}_{\ell} \ = \ \begin{cases} \textbf{x} \\ \textbf{A}_{\ell}^{\top} \cdot \textbf{x}_{\ell-1} + \textbf{b}_{\ell} \\ \varphi(\textbf{x}_{\ell-1}) \end{cases}$ $\textbf{Bückwärtsvariable} \qquad \boldsymbol{\xi}_{\ell} \ = \ \begin{cases} \textbf{x}_{L} \textbf{y} \\ \textbf{A}_{\ell+1} \cdot \boldsymbol{\xi}_{\ell+1} \\ \operatorname{diag}(\varphi(\textbf{x}_{\ell})) \cdot \boldsymbol{\xi}_{\ell+1} \end{cases}$ $\ell = 0$ linear skalar skalar
 - C Aktualisiere Δ_{ℓ}^{A} und Δ_{ℓ}^{b} um $\mathbf{x}_{\ell} \cdot \boldsymbol{\xi}_{\ell}^{\top}$ bzw. $\boldsymbol{\xi}_{\ell}$
- Verschiebe die alten Parameter in Gradientenrichtung
- Abbruch oder weiter bei → 2

Neuronale Architektur Feed-Forward SLP MLP Anwendung Rekurrente Netzwerke Neuronale Architektur Feed-Forward SLP MLP Anwendung Rekurrente Netzwerke

Modellneuronen und ihre Verschaltung

Feed-Forward-Netzwerke

Klassisches Perzeptror

Mehrschichtenperzeptron

MLPs für Prädiktion, Extraktion, Klassifikation

Rekurrente Netzwerke

Neuronale Architektur

Feed-Forward

SLP

MLP

Anwendung

Rekurrente Netzwerke

Autoassoziatives Mehrschichtenperzeptron

neuralnet::neuralnet (formula, data, hidden=1, algorithm='rprop+', ...)

Funktionsargumente

formula Output/Input-Variablen
data Datensatz
hidden Zwischenschichtengrößen
algorithm {
 backprop, sag, slr
 rprop+, rpropreturn
 Objekt der Klasse nn

@-Programmcode

```
AANN <-function (X, k=2, sd=1/3, ...)
{
    require (neuralnet)
    X <- scale(X) * sd

    vn <- colnames(X)
    iv <- paste (vn, collapse="+")
    ov <- paste (paste (
        vn, 1, sep="."), collapse="+")
    fo <- formula (paste (iv, "~", ov))

    o <- neuralnet (formula=fo,
        data.frame(X,X), hid=k, ...)
    compute(o,X)$neurons[[2]][,-1]
}
```

Mehrschichtenperzeptron (MLP)

neuralnet::neuralnet (formula, data, hidden=1, algorithm='rprop+', ...)

s 10 15 20 25 speed

Funktionsargumente

Q-Programmcode

```
require (neuralnet)
s <- 100
H <- list (2, 3, c(2,2), c(2,3,2))
plot (cars, pch=19)
for (j in seq_along(H)) {
   o <- neuralnet (
        dist~speed, cars/s, H[[j]])
   y <- compute(o,cars$speed/s)$net
   lines (cars$speed, y*s, col=1+j)
   }
plot (o, rep="best")</pre>
```

Neuronale Architektur Feed-Forward

P MLP

Anwendung

Rekurrente Netzwerke

Dreischichtenperzeptron (SHLP)

Funktionsargumente

x, y Matrix/Dataframe für E/A formula, data (Formelinterface) size verborgene Neuronen skip Kurzschlusskanten? Wts, MaxNWts Startwerte, #max return Objekt der Klasse nnet

@-Programmcode

```
require (nnet)
for (h in 5*2:5) {
    o <- nnet (CLASS~., df[[1]],
        Wts=sin(1:nwts),
        MaxNWts=nwts,
        size=h)
    guess <- predict (o, df[[2]],
        type="class")
    plot (data.frame(true,guess),
        col=3+1:4)
}</pre>
```

Neuronale Architektur Feed-Forward SLP MLP Anwendung Rekurrente Netzwerke Neuronale Architektur Feed-Forward SLP MLP Anwendung

Modellneuronen und ihre Verschaltung

Feed-Forward-Netzwerke

Klassisches Perzeptror

Mehrschichtenperzeptron

MLPs für Prädiktion, Extraktion, Klassifikation

Rekurrente Netzwerke

Neuronale Architektur

Feed-Forward

SLP

Anwendung

Rekurrente Netzwerke

Hopfield-Netze

Vollständig verschaltetes CAM mit symmetrischer Gewichtmatrix

Definition

Das dynamische System mit dem Zustandsübergang

$$x_k(t+1) = \operatorname{sign}\left(\sum_{j=1}^N w_{jk} \cdot x_j(t)\right), \quad t \in \mathbb{N}, \ k=1,\ldots,N$$

mit der symmetrischen Gewichtmatrix ${\it W}$ heißt Hopfield-Netz. Es definiert eine (partielle) Abbildung

$$oldsymbol{u}: \left\{ egin{array}{lll} \{-1,+1\}^N &
ightarrow & \left\{-1,+1
ight\}^N \ oldsymbol{z} &
ightarrow & \lim_{t
ightarrow \infty} oldsymbol{x}(t) \mid_{oldsymbol{x}(0) = oldsymbol{z}} \end{array}
ight.$$

im Raum der N-dimensionalen Binärmuster.

CAM — Content-Addressable Memory

Assoziatives Gedächtnis: Zugriffsschlüssel \subseteq Datensatz

Getaktete Neuronen mit diskreten Zuständen

$$x_k(t) \in \{-1, +1\}$$
, $t \in \mathbb{N}$, $k \in \mathcal{N}$

• Nichtlineare Systemdynamik $x_t \mapsto x_{t+1}$

$$x_k(t+1) = \operatorname{sign}\left(\sum_j w_{jk} \cdot x_j(t)\right)$$

• Berechnung eines **Gleichgewichtszustandes** (Äquilibrium) **u**:

$$u(x_0) \stackrel{\mathsf{def}}{=} \lim_{t \to \infty} x(t)$$

• Zustandsraum $\{0,1\}^N$ zerfällt in **Attraktionsbassins**:

$$\mathbf{x} \cong \mathbf{y} \iff \mathbf{x} \stackrel{\infty}{\to} \mathbf{u} \stackrel{\infty}{\leftarrow} \mathbf{y}$$

Neuronale Architektur

Feed-Forward

SLP

MLP

Anwendung

Rekurrente Netzwerke

Rekurrente Netzwerke

Hebb'sche Lernregel

Lemma

Zur Speicherung von K "Prototypen" $\mathbf{y}_1, \ldots, \mathbf{y}_K$ sind die Gewichte w_{jk} proportional zum Aktivierungsratenprodukt der vernetzten Neuronen zu wählen:

$$w_{jk} = \sum_{\lambda=1}^{K} y_{\lambda,j} \cdot y_{\lambda,k}$$

Unter der Voraussetzung

$$K \leq 0.138 \cdot N$$

hinreichender **Kapazität** ist dann jeder Prototyp ein Äquilibrium des gelernten Netzwerks.

Beweis.

Für Gleichgewichtspunkte x = sign(Wx) gilt:

$$\sum_{j} w_{jk} x_{j} = \sum_{j} \sum_{\lambda} y_{\lambda,j} y_{\lambda,k} x_{j}$$

Für einen Prototypen $x = y_{\nu}$ gilt insbesondere

$$\sum_{j} w_{jk} y_{\nu,j} = \sum_{j} \sum_{\lambda} y_{\lambda,j} y_{\lambda,k} y_{\nu,j} = N \cdot y_{\nu,k} + \sum_{j} \sum_{\lambda \neq \nu} y_{\lambda,j} y_{\lambda,k} y_{\nu,j}$$

 \mathbf{y}_{ν} ist Gleichgewichtspunkt, wenn der rechte Term betragsmäßig kleiner als N ist. \square

Neuronale Architektur Feed-Forward SLP N

Zeitverzögerungsnetzwerke

Anwendung

Rekurrente Netzwerke

TDNN — time-delayed neural networks

Simulation rekurrenter Netzwerke

Das Verhalten eines rekurrenten Netzwerks mit ausschließlich **einfachen Zyklen** $k \prec k$, $k \in \mathcal{N}$ kann im Rahmen eines T-**Takte-Gedächtnisses** durch ein Feed-Forward-Netz mit $T \cdot N$ Neuronen simuliert werden.

Neuronale Architektur Feed-Forward SLP MLP Anwendung Rekurrente Netzwerke

Hopfield-Netze — Beispielanwendung

(John S. Denker, 1986)

Telefonbucheinträge		Erfolgreicher Zugriff				
(25 Zeichen/Zeile, 5 Bit/Zeichen)		t	$E = -x^{\top}Wx$	CAM-Zustand		
John Stewart Denker Lawrence David Jackel Richard Edward Howard Wayne P. Hubbard Brian W. Straughn	8128 7773 5952 7707 3126 8109	0.0 0.2 0.4 0.6 0.8 1.0 1.2 Erfo t 0.2 0.4 0.6 0.8 1.0 1.2	-0.0 -0.0784 -0.8426 -0.8451 -0.9099 -0.9824 $ g OSET Zug $ $E = -x^{T}Wx$ -0.0 -0.0244 -0.6280 -0.6904 -0.7595 -0.7709 -0.8276 -0.8282	john s john sdewirubneoimv john sdewirtbnenimv john sdewirtbnenimv john sdewirt nenkmv john stewart denker john stewart denker ZAM-Zustand garbage garbagee lafj naabd garbaged derjd naabd garbaged derjd naabd gasbafed derjd naabd gasbabed derjd naabd fasjebad derjd naabd fasjebad derjd naabd fasjebad derjd naabd	8109 8129 8128 8128 8128 8128 8128 5173 7173 7173 7173 7173 7173 7173 7173	

Neuronale Architektur Feed-Forward SLP MLP Anwendung Rekurrente Netzwerke

Zusammenfassung (8)

- 1. Das **Modellneuron** kombiniert seine **Eingangssignale** und berechnet daraus sein **Aktivierungsniveau**.
- Die Verschaltung der Modellneuronen ist durch das Nullenmuster der Gewichtmatrix synaptischer Verbindungen definiert.
- Rekurrente Netzwerke sind durch die Existenz zyklischer Verbindungen charakterisiert und beschreiben dynamische Systeme, deren Verhalten durch die Attraktionsgebiete ihrer Fixpunktzustände definiert ist.
- 4. **Nichtrekurrente** Netzwerke beschreiben pure Vorwärtsberechnungen und definieren durch die Zustände ihrer **Eingabe** und **Ausgabeneuronen** eine **nichtlineare Vektorabbildung**.
- Das einstufige Perzeptron ist nicht in der Lage, die logische XOR-Funktion zu lernen.
- Ein mehrstufiges Perzeptron (MLP) mit mindestens vier Neuronenschichten gilt als (asymptotisch) universeller Approximator.
- 7. Jedes MLP mit differenzierbarer Aktivierungsfunktion kann mittels Error-Backpropagation-Algorithmus seine Gewichtmatrix im Sinne kleinster Fehlerquadrate auf eine Lerndatenprobe optimieren.
- 8. Für die **numerische Klassifikation** verwendet man MLPs mit *D* Eingabeneuronen, *K* Ausgabeneuronen und einer der anvisierten **Modellkapazität** angemessenen Anzahl **verborgener Neuronen**.