Package 'MclustSepCov'

January 2, 2019

Type Package				
Title Model based Clustering via Mixture Distribution under Covariance Separability				
Version 1.0				
Date 2019-01-02				
Author Seongoh Park [aut, cre], Johan Lim [aut], Hye Jeong Choi [aut], Minjung Kwak [aut] Maintainer Seongoh Park <seongohpark6@gmail.com></seongohpark6@gmail.com>				
License GPL-3				
Encoding UTF-8				
Imports Rcpp (>= 0.12.19)				
Suggest mytnorm				
LinkingTo Rcpp, RcppArmadillo				
RoxygenNote 6.1.1				
NeedsCompilation yes				
R topics documented:				
MclustSepCov-package	. 3			
Index	8			
MclustSepCov-package Model based Clustering via Mixture Distribution under Covaria Separability	nce			

Description

Perform clustering with multivariate longitudinal data based on the Gaussian mixture distribution with separable covarinace matrix.

2 getCovariance

Details

The DESCRIPTION file:

Package: MclustSepCov Type: Package

Title: Model based Clustering via Mixture Distribution under Covariance Separability

Version: 1.0

Date: 2019-01-02

Author: Seongoh Park [aut, cre], Johan Lim [aut], Hye Jeong Choi [aut], Minjung Kwak [aut]

Maintainer: Seongoh Park <seongohpark6@gmail.com>

Description: Perform clustering with multivariate longitudinal data based on the Gaussian mixture distribution with so

License: GPL-3 Encoding: UTF-8

Imports: Rcpp (>= 0.12.19)

Suggest: mvtnorm

LinkingTo: Rcpp, RcppArmadillo

RoxygenNote: 6.1.1

Index of help topics:

MclustSepCov-package Model based Clustering via Mixture Distribution

under Covariance Separability

Mclust_SEP_cpp The model-based clustering for longitudinal

data

Mclust_SEP_each_cpp The maximum likelihood estimation of the

mixture distribution

Optimization Newton-Raphson's algorithm to find the optimal

temporal correlation

getCovariance Generate temporal covariance matrices

Author(s)

Seongoh Park [aut, cre], Johan Lim [aut], Hye Jeong Choi [aut], Minjung Kwak [aut]

Maintainer: Seongoh Park <seongohpark6@gmail.com>

getCovariance Generate temporal covariance matrices

Description

Return a covariance matrix with temporal structure.

Usage

```
getCovariance(q, rho, type)
```

Mclust_SEP_cpp 3

Arguments

q	Dimension of a covariance matrix.
rho	Temporal correlation in $(-1,1)$. For type='CS', $-1/\sqrt{q-1}$ is a lower bound of rho for the returned matrix to be positive definite.
type	A character string indicating one of types of temporal structure; autoregressive model if type='AR' and compound symmetry model if type='CS'. See 'Details' for their structures.

Details

Following temporal structures are available.

- 1. Autogressive structure: $V = (\rho^{|i-j|}; 1 \le i, j \le q)$.
- 2. Compound symmetry structure: $V = (I(i = j) + \rho I(i \neq j); 1 \leq i, j \leq q)$.

Value

A q-by-q temporal covariance matrix with diagonals 1.

Examples

```
getCovariance(3, 0.3, "AR") # AR
getCovariance(3, 0.3, "CS") # CS

# AR structure with heterogeneous variances
hvar <- c(1, 2, 3) # variances
diag(sqrt(hvar)) %*% getCovariance(3, 0.3, "AR") %*% diag(sqrt(hvar))</pre>
```

Mclust_SEP_cpp

The model-based clustering for longitudinal data

Description

This is a wrapper function of Mclust_SEP_each_cpp. All arguments except save_fit will be passed to Mclust_SEP_each_cpp.

Usage

```
Mclust_SEP_cpp(Y, p, q, Ks, type_cov, tol = 0.001, maxit = 500,
    save_fit = TRUE)
```

Arguments

Υ	A r-by- $(p*q)$ matrix where r is the sample size, and ordering of columns should be carefully set (see 'Details').
p, q	An integer value for the number of multi-variables and the number of time points, respectively.
Ks	A sequence of positive integers indicating the number of mixture components, each of which will be used in K of Mclust_SEP_each_cpp.

4 Mclust_SEP_cpp

type_cov	A sequence of character strings indicating covariance structures, each of which will be used in Mclust_SEP_each_cpp. Default is 'all', which runs all available models. See 'Details'.
tol	Tolerance constant for convergence. Default is 1e-3.
maxit	Maximum number of iterations. Default is 500.
save_fit	A logical value indicating whether to save all fitted mixture models. If FALSE, the best model is only available by best_model. Default is TRUE.

Details

The first q components from each row of Y denote q variables at time point 1, the second q are those at time point 2, and so on until time point p. Under separability, the covariance matrix of row vectors of Y is represented by $U_{p \times p} \otimes V_{q \times q}$ for some covariance factors $U_{p \times p}, V_{q \times q}$.

type_cov should be in "XXX-YYY" format. "XXX" is for the multivariable covariance $U_{p \times p}$, and "YYY" for the temporal covariance $V_{q \times q}$. They will be passed respectively to type_vari and type_time in Mclust_SEP_each_cpp. Available options are as follows;

- Heteroscadatsic covariance structure: VVV-VUN (unstructured), VVV-VAR (AR), VVV-VCS (CS).
- Homoscadatsic covariance structure : EEE-EUN (unstructured), EEE-EAR (AR), EEE-ECS (CS).

For initialization of cluster membership, see 'Details' in Mclust_SEP_each_cpp.

Value

A list with components:

best_model	A list of the mixture models with the largest BIC. If there is a tie, they are all returned.
bic_table	Table filled with BIC values. Type of covariance models are given by rows and values in Ks by columns.
res_Mclust_SEP	If save_fit is TRUE, all fitted models are stored. It is a nested list with the first layer corresponding to covariance models specified in type_cov and the second to values of Ks.

See Also

```
Mclust_SEP_each_cpp
```

Examples

```
# Gaussian mixture model with two components
K <- 2
p <- 2
q <- 3
U <- lapply(1:K, function(noarg) getCovariance(p, 0.3, "AR"))
V <- lapply(1:K, function(noarg) getCovariance(q, 0.2, "CS"))
Sigma <- Map(kronecker, U, V) # separable covariance matrix
mu <- list(rep(0, p * q), 5 / sqrt(p*q) * rep(1, p * q)) # distinct mean vectors
Y <- vector(mode = "list", length = K)
for(i in 1:K){
    Y[[i]] <- mvtnorm::rmvnorm(n = 20, mean = mu[[i]], sigma = Sigma[[i]])
}
fit <- Mclust_SEP_cpp(Y = Reduce(rbind, Y), p = p, q = q, Ks = 2, type_cov = "EEE-ECS")</pre>
```

Mclust_SEP_each_cpp

The maximum likelihood estimation of the mixture distribution

Description

Perform the EM algorithm for fitting the finite Gaussian mixture distribution with covariance separability.

Usage

```
Mclust_SEP_each_cpp(Y, p, q, K, type_vari, type_time, tol = 0.001,
   maxit = 500L)
```

Arguments

Y Same as in Mclust_SEP_cpp.

p, q Same as in Mclust_SEP_cpp.

K A positive integer indicating the number of mixture components.

type_vari, type_time

A character string indicating a structure of covariance factors, passed from Mclust_SEP_cpp.

See 'Details' for available options.

tol Same as in Mclust_SEP_cpp.
maxit Same as in Mclust_SEP_cpp.

Details

Cluster membership from 1 to K is randomly assigned to each sample.

type_vari specifies a type of the multivariable covariance $U_{p \times p}$;

• Heteroscadatsic : VVV (unstructured)

• Homoscadatsic : EEE (unstructured)

and type_time the temporal covariance $V_{q\times q}$;

 $\bullet \ \ Heteroscadatsic: \ \ VUN \ (unstructured), \ \ VAR \ (AR), \ \ VCS \ (CS)$

• Homoscadatsic : EUN (unstructured), EAR (AR), ECS (CS)

Value

A list with components:

loglik The log-likelihood function.

df The degrees of freedom or the number of parameters of the mixture model.

BIC The Bayesian information crieteria.

K K from the input.

id_cluster Cluster membership of samples.

wt_cluster A matrix of dimension r-by-K whose row represents the maximum a posteriori

of a sample.

6 Optimization

See Also

```
Mclust_SEP_cpp
```

Examples

```
# Gaussian mixture model with two components
K <- 2
p <- 2
q <- 3
U <- lapply(1:K, function(noarg) getCovariance(p, 0.3, "AR"))
V <- lapply(1:K, function(noarg) getCovariance(q, 0.2, "CS"))
Sigma <- Map(kronecker, U, V) # separable covariance matrix
mu <- list(rep(0, p * q), 5 / sqrt(p*q) * rep(1, p * q)) # distinct mean vectors
Y <- vector(mode = "list", length = K)
for(i in 1:K){
    Y[[i]] <- mvtnorm::rmvnorm(n = 20, mean = mu[[i]], sigma = Sigma[[i]])
}
fit <- Mclust_SEP_each_cpp(Y = Reduce(rbind, Y), p = p, q = q, K = 2, type_vari = "EEE", type_time = "ECS")</pre>
```

Optimization

Newton-Raphson's algorithm to find the optimal temporal correlation

Description

Solve the constrained minimization problem using the log-barrier method to find the maximum likelihood estimator (MLE) of temporal correlation. The objective function is described in 'Details'.

Usage

```
LB_algorithm_cpp(a, Z, type, rho0, lambda = 1, maxit = 500L)
```

Arguments

а	A positive constant. See 'Details'.
Z	A matrix of sample vectors at row.
type	A character string indicating a type of temporal covariance matrix. Available options are 'AR' and 'CS'.
rho0	An initial value for the temporal correlation coefficient. We empirically found that 0.001 works well for type='AR' and 0.5 for type='CS'.
lambda	A positive constant multiplied to the log-barrier term. Default is 1.
maxit	The maximum number for iterations. Default is 500.

Optimization 7

Details

The objective function is divided into two parts; the Gaussian log-likelihood function (up to constant multiplication) with mean 0 and covariance matrix $\Sigma = \Sigma(\rho)$ and the log-barrier function. The former is written by

$$h(\rho; a, Z) = a \log |\Sigma| + \operatorname{tr}(\Sigma^{-1}S),$$

where a > 0 and $S = Z^{T}Z$, and the latter is

$$b(\rho; u, l) = \log(u - \rho) + \log(\rho - l),$$

where u, l is an upper and a lower bound of ρ , respectively. These quantities depend on type as follows;

- If type='AR', $\Sigma = \left(\rho^{|i-j|}; 1 \leq i, j \leq q\right)$ and l = -1, u = 1,
- if type='CS', $\Sigma=\left(\mathrm{I}(i=j)+\rho\mathrm{I}(i\neq j);1\leq i,j\leq q\right)$ and $l=-1/\sqrt{q-1},u=1$,

where q = ncol(Z). The objective function is, hence,

$$h(\rho; a, Z) - \lambda b(\rho; u, l)$$
.

Examples

```
q <- 10
# AR model
set.seed(6)
Y <- mvtnorm::rmvnorm(100, rep(0, q), getCovariance(q, 0.3, "AR"))
LB_algorithm_cpp(a = nrow(Y), Z = Y, rho0 = 1e-3, type = "AR")
# CS model
set.seed(6)
Y <- mvtnorm::rmvnorm(100, rep(0, q), getCovariance(q, 0.3, "CS"))
LB_algorithm_cpp(a = nrow(Y), Z = Y, rho0 = 1e-3, type = "CS")</pre>
```

Index

```
*Topic package
MclustSepCov-package, 1

getCovariance, 2

LB_algorithm_cpp (Optimization), 6

Mclust_SEP_cpp, 3, 5, 6

Mclust_SEP_each_cpp, 3, 4, 5

MclustSepCov (MclustSepCov-package), 1
MclustSepCov-package, 1

Optimization, 6
```