Stochastik

QQ-Plots, Parameterschätzung und z-Test

Mirko Birbaumer

Hochschule Luzern Technik & Architektur

QQ-Plots

2 z-Test

Beispieldatensatz Betondruckfestigkeit

k	$X_{(k)}$
1	24.4
2	27.6
3	27.8
4	27.9
5	28.5
6	30.1
7	30.3
8	31.7
9	32.2
10	32.8
11	33.3
12	33.5
13	34.1
14	34.6
15	35.8
16	35.9
17	36.8
18	37.1
19	39.2
20	39.7

- Messung der Betondruckfestigkeit an n = 20 verschiedenen Proben
- Wir wollen schauen, wie gut die Daten mit einer Normalverteilung beschrieben werden können

Beispieldatensatz Betondruckfestigkeit

k	$x_{(k)}$	$\alpha_k = (k - 0.5)/n$	$\Phi^{-1}(lpha_k)$	q_{lpha_k} (für $\mathcal{N}(32.54, \sigma^2)$)
1	24.4	0.025	-1.9600	24.53167
2	27.6	0.075	-1.4395	26.69133
3	27.8	0.125	-1.1503	27.89136
4	27.9	0.175	-0.9346	28.78670
5	28.5	0.225	-0.7554	29.53023
6	30.1	0.275	-0.5978	30.18445
7	30.3	0.325	-0.4538	30.78201
8	31.7	0.375	-0.3186	31.34273
9	32.2	0.425	-0.1891	31.88021
10	32.8	0.475	-0.0627	32.40478
11	33.3	0.525	0.0627	32.92522
12	33.5	0.575	0.1891	33.44979
13	34.1	0.625	0.3186	33.98727
14	34.6	0.675	0.4538	34.54799
15	35.8	0.725	0.5978	35.14555
16	35.9	0.775	0.7554	35.79977
17	36.8	0.825	0.9346	36.54330
18	37.1	0.875	1.1503	37.43864
19	39.2	0.925	1.4395	38.63867
20	39.7	0.975	1.9600	40.79833

QQ-Plot Betondruckfestigkeit

^x(11)

^x(6)

Normal-Plot

Wir plotten nun die theoretischen Quantile $q(\alpha_k) = \Phi^{-1}(\alpha_k)$ der Standardnormaverteilung gegen die empirischen Quantile $x_{(k)}$.

- (1) Datensatz: x_1, x_2, \ldots, x_n
- (2) $\alpha_{(k)} = \frac{k-0.5}{n}, \ k = 1, 2, \dots, n$
- (3) Theoretische Quantile: $q(\alpha_k) = \Phi^{-1}(\alpha_k)$
- (4) Empirische Quantile: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$
- (5) $(q(\alpha_k), x_{(k)})$ plotten

Normal-Plot mit R

Für obiges Beispiel lässt sich mit **R** direkt ein Normal QQ-Plot erstellen:

R-Befehl: qqnorm(x)

 $x \leftarrow c(24.4,27.6,27.8,27.9,28.5,30.1,30.1,30.3,31.7,32.2,32.8,33.3,33.5,34.1,34.6,35.8,35.9,36.8,37.1,39.2,39.7)$ qqnorm(x);qqline(x)

Beispiele Normalplots für 3 Datensätze mit n = 500

Normalplots von simulierten Standardnormalverteilungen

Beispiel: Statistischer Test für Durchschnittsgrösse

- Die Durchschnittsgrösse der Schweizer Frauen beträgt 1.64 m laut dem Bundesamt für Statistik. Sie möchten diese Aussage überprüfen, wie gehen Sie vor?
- Lösung: In der Stadt Luzern messen Sie zum Beispiel die Grösse von 150 Frauen.
- Die gemessenen Körpergrössen $x_1, \ldots x_{150}$ fassen wir auf als Realisierungen von X_1, \ldots, X_{150} i.i.d. $\sim \mathcal{N}(\mu, \sigma_X^2)$
- Als nächstes bestimmen Sie das arithmetische Mittel \overline{x}_{150} der 150 Messpunkte.
 - **Frage:** Wenn Sie jeden Tag eine solche Messreihe erheben würden, was würden Sie feststellen?
- **Antwort:** Die arithmetischen Mittel \overline{x}_{150} würden variieren. Das gemessene arithmetische Mittel \overline{x}_{150} fassen wir als Realisierung der Zufallsvariablen \overline{X}_{150} auf.

Beispiel: Statistischer Test für Durchschnittsgrösse

- Frage: Welche Verteilung hat die Durchschnittsgrösse von 150 Frauen?
- **Antwort:** Verteilung vom arithmetischen Mittel \overline{X}_{150} :

$$\overline{X}_{150} \sim \mathcal{N}(\mu, \sigma_{\overline{X}_{150}}^2)$$

- Wie entscheiden Sie, ob die von Ihnen gemessene Durchschnittsgrösse zu dem vom Statistikamt angegebenen Wert von 1.64 m passt?
- **Lösung:** Sie berechnen die Wahrscheinlichkeit, dass Sie den von ihnen gemessenen Wert \overline{x}_{150} oder einen extremeren Wert beobachten, unter der Annahme, dass

$$\overline{X}_{150} \sim \mathcal{N}\left(\mu = 1.64, rac{\sigma_X^2}{150}
ight)$$

ist.

Beispiel: Statistischer Test für Durchschnittsgrösse

• P-Wert bei einseitiger nach oben gerichteter Alternativhypothese:

$$P\left(\overline{x}_{150} < \overline{X}_{150}\right)$$

• P-Wert bei einseitiger nach unten gerichteter Alternativhypothese:

$$P\left(\overline{X}_{150} < \overline{x}_{150}\right)$$

• P-Wert bei zweiseitiger Alternativhypothese:

$$P\left(\overline{x}_{150} < |\overline{X}_{150}|\right)$$

- Nun unterscheiden wir zwei Fälle:
 - **1** σ_X ist bekannt (aus langjähriger Erfahrung) \longrightarrow **z-Test**
 - ② σ_X wurde aus den Daten geschätzt, d.h., wir kennen $\hat{\sigma}_X$ (was in der Praxis normalerweise der Fall ist) \longrightarrow **t-Test**

z-Test: σ_X bekannt

1. **Modell**: X_i ist eine kontinuierliche Messgrösse;

$$X_1, \ldots, X_n$$
 iid $\mathcal{N}(\mu, \sigma_X^2), \ \sigma_X$ bekannt

- 2. Nullhypothese: H_0 : $\mu = \mu_0$ Alternative: H_A : $\mu \neq \mu_0$ (oder "<" oder ">")
- 3. Teststatistik:

$$Z = \frac{\left(\overline{X}_n - \mu_0\right)}{\sigma_{\overline{X}_n}} = \frac{\left(\overline{X}_n - \mu_0\right)}{\sigma_X/\sqrt{n}} = \frac{\text{beobachtet - erwartet}}{\text{Standardfehler}}$$

Verteilung der Teststatistik unter $H_0: Z \sim \mathcal{N}(0,1)$

- 4. Signifikanzniveau: α
- 5. Verwerfungsbereich für die Teststatistik:

$$K = (-\infty, z_{\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, \infty)$$
 bei $H_A: \mu \neq \mu_0$ $K = (-\infty, z_{\alpha}]$ bei $H_A: \mu < \mu_0$ $K = [z_{1-\alpha}, \infty)$ bei $H_A: \mu > \mu_0$

 Testentscheid: Überprüfe, ob der beobachtete Wert der Teststatistik im Verwerfungsbereich liegt

Zweiseitiger Verwerfungsbereich beim Z-Test

Beispiel: z-Test

• Unsere Messreihe für die Körpergrösse von 150 Frauen in Luzern ergab:

$$\bar{x}_{150} = 168 \text{cm}$$

Wir vermuten, dass die Durchschnittsgrösse der Schweizerinnen grösser als 164 cm ist (einseitiger nach oben gerichteter Test).

- σ_X sei bekannt, und beträgt 8cm.
- Wir berechnen den P-Wert $P[\overline{X}_{150} > 168] = 1 P[\overline{X}_{150} \le 168]$ mit **R**:

R-Befehl: pnorm()

- > 1-pnorm(168,mean=164,sd=8/sqrt(150))
- 4.570649e-10
- In diesem Fall können wir die Nullhypothese auf dem Signifikanzniveau $\alpha=0.05$ verwerfen.

