Large Scale Inference of Deterministic Transductions

Tenjinno Problem 1

Alexander Clark Royal Holloway, University of London alexc@cs.rhul.ac.uk

Learning FSA

- Two families of algorithms for learning finite state automata
 - Deterministic automata
 - Construct Prefix tree automaton
 - Merge states and recursively determinise
 - Non-deterministic
 - Random ergodic FSA/HMM
 - Em based algorithm for training

Learning FST

- Two families of algorithms for learning finite state transducers
 - Deterministic transducers (OSTIA)
 - Construct Prefix tree automaton
 - Add outputs to leaf transitions
 - Convert to onward transducer
 - Merge, and push output
 - Non-deterministic
 - Random ergodic FST/PHMM/IOHMM
 - Em based algorithm for training

Problem overview

- Say 10,000 states, and alphabet of 1000/1001
- Neither approach will work
 - OSTIA relies on merge ordering
 - Won't work
 - PHMM is computationally intensive
 - Would work (?), but too much computation needed
 - Linear in both lengths, quadratic in states

Overall strategy

- 1)Learn input language with state-merging
 - Will be errors!
- 2)Do probabilistic alignment of a nondeterministic model
- 3)Use the non-determinism to identify errors
 - Split states until it is deterministic(*)
- 4) Merge the deterministic transducer
- 5) Finally merge to cover test data.

Phase 0

- Randomly split 95,000/5,000 train and validation set
- Throw away output labels
- Construct PTA
- Terminology:
 - Signature of a state is the set of labels on transitions out of that state

Histogram 0

Signature size	Types	Tokens	
	0	1	95000
	1	1001	860039
	2	15920	41278
	3	7580	12756
	4	4764	6259
	5	1955	2250
	6	77	84
	7	2	2
	8	0	0
Total		31300	1017668

Phase 1: learn DFA

- Standard state merging algorithm
 - Custom measure of similarity
- Index based on signatures
 - Compare all states that share three labels
 - Compare all states that share two labels
 -
- Need to have number of transitions < number of training pairs

Histogram after merging

Signature size	Types	Tokens	
	0	1	6520
	1	841	2090
	2	894	942
	3	2059	2362
	4	3906	3907
	5	2089	2089
	6	81	81
	7	4	4
	8	0	0
Total		9875	17995

Phase 2:Alignment algorithms

- Solve a relaxation of the real problem
- Given large DFA
 - For each transition have a distribution over outputs
 - Use EM algorithm to optimise this
- 3 problems
 - Initialisation
 - EM DP computation
 - Errors in original DFA

Exact alignment problem

- Solve linear word equations
 - -T1 + T2 + T3 = "abcd"
- Maybe 50,000 variables
- 100,000 equations
 - Just for length!
- Highly over-constrained, solvable using standard techniques (Krylov subspace acceleration ...)

Initialisation

- Assume correct model
 - If we have a transition t
 - Then the substring output by t must lie in the intersection of the substrings for all output strings
- Initialised with weights drawn from cooccurrence statistics

Example

ABC --> XYZ ABGE --> XYWW ADEF --> XYPQR

Transition for A must generate a string that is in the intersection of the substrings of { XYZ, XYWW, XYPQR}

Must be { X, XY, Y or empty string }

Use distribution over these 4 strings;

EM computation

2-d dynamic programming grid
Posterior expectation that a particular
transition generates a substring in the output

		X	Υ	Р	Q	R	
		0	1	2	3	4	5
	0	1	0	0	0	0	0
Α	1	0	0	1	0	0	0
D	2	0	0	0	1	0	0
Ε	3	0	0	0	0	1	0
F	4	0	0	0	0	0	1

At convergence

- When we train the model to
- Nearly all transitions have a distribution with exactly one string with a non-zero probability.
- But there were 11 transitions with more than one string in output distribution

Phase 3: Splitting states

- Some transitions will have a non-trivial distribution
- This is because they are incorrectly merged and correspond to two different transitions in original transducer
- We can now split them...

Example (Fragment)

DATA:

abc --> mx

ebd --> zy

Construct PTA

INPUT DATA: abc ebd

State 1 looks similar to State 5!

St Etienne GI 2006

Merge incorrectly

INPUT DATA: abc ebd

Determinise

INPUT DATA: abc ebd

Align

INPUT DATA: abc ebd

OUTPUT DATA: abc --> mx

ebd --> zy

Could generate m, mx, x, z, y, zy or sothing GI 2006

20-22 Nov 2006

zy or nothing

At convergence

INPUT DATA: abc ebd

OUTPUT DATA: abc --> mx

ebd --> zy

20-22 Nov 2006

Split to make outputs deterministic

INPUT DATA: abc ebd

OUTPUT DATA: abc --> mx

ebd --> zy

Merging the aligned automaton

- We now have a lot of extra information so we can merge states based not just on the input label but also on the output label.
 - Simple modification to similarity algorithm
 - Some more splitting is necessary

Final steps

- Merge using the training data.
- Given an input string not accepted by transducer
- Identify the state at which it leaves the transducer;
- Merge that state with the best match
 - Always have two arcs for this point.

Final Histogram

Signature size	Types	Tokens	
	0	1	1
	1	5	5
	2	23	23
	3	1923	1923
	4	3904	3904
	5	2089	2090
	6	81	81
	7	4	4
	8	0	0
Total		8030	8031

Other techniques

- Restricting the alignment algorithm
 - Tapering the alignment grids
- Aligning based on the PTA
- Segmentation of the output language
- Aligning based on per input letter distributions
- Oracle based techniques
 - Look for long output strings that are correlated with unique input symbols.

Implementation

- Lazy copying/ immutable substrings
- Cached hashcodes
- State merging with union find and generational dereferencing
- Efficient indexes
 - Hashing from signatures to hashsets
- Suffix arrays

Some thoughts on the competition

- These competitions are worthwhile
 - Drive focused research on particular issues
 - Large problems are important
- Some complaints
 - Exact identification is unrealistic
 - Error state identification and final merge are bogus
 - Random instances are too easy
 - Technical limitations of Oracle design limit nondeterminism
 - More natural to allow many different possible outputs

CFG Problems

- CFG models computationally intractable
- Most algorithms require global search/alignment algorithms
 - Cubic in both input lengths (some have length 1000!),
 - cubic in number of states (>> 1000)
 - 100,000 examples
 - operations/iteration = 10^{32}
- CFG problems much too large
- Probably wouldn't give an exact answer

Conclusions

- A new(-ish) family of algorithms for FST inference based on
 - Input model induction
 - Alignment
 - EM based method
 - Novel initialisation
 - Splitting
 - Non-determinism in outputs identifies erroneous states
- Large alphabets + random instances are easy