

Smithsonian Miscellaneous Collections

GS

854

Smithsonian Institution

SMITHSONIAN

GEOGRAPHICAL TABLES

PREPARED BY

R. S. WOODWARD

SECOND EDITION

91945

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1897

The Riverside Press, Cambridge, Mass., U. S. A. Electrotyped and Printed by H. O. Houghton & Co.

ADVERTISEMENT TO SECOND EDITION.

THE edition of the Smithsonian Geographical Tables issued in 1894 having become exhausted, a second edition is now printed with a few necessary changes made in the plates.

S. P. LANGLEY,
Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY, October 30, 1897.

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852 as a volume of the Miscellaneous Collections.

A second edition was published in 1857, and a third edition, with further amendments, in 1859.

Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by meteorologists and physicists that, after twenty-five years of valuable service, the work was again revised, and a fourth edition was published in 1884.

In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish the new work in three parts: Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Doctor Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation, that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893. The present volume, forming the second of the series, the Geographical Tables, has been prepared by Professor R. S. Woodward, formerly of the United States Coast and Geodetic Survey, but now of Columbia College, New York, who has brought to the work a very wide experience both in field work and in the reduction of extensive geodetic observations.

S. P. LANGLEY, Secretary.

PREFACE.

In the preparation of the following work two difficulties of quite different kinds presented themselves. The first of these was to make a judicious selection of matter suited to the needs of the average geographer, and at the same time to keep the volume within prescribed limits. Of the vast amount of material available, much must be omitted from any work of limited dimensions, and it was essential to adopt some rule of discrimination. The rule adopted and adhered to, so far as practicable, was to incorporate little material already accessible in good form elsewhere. Accordingly, while numerous references are made in the volume to such accessible material, an attempt has been made wherever feasible to introduce new matter, or matter not hitherto generally available.

The second difficulty arose from the present uncertainty in the relation of the British and metric units of length, or rather from the absence of any generally adopted ratio of the British yard to the metre. The dimensions of the earth adopted for the tables are those of General Clarke, published in 1866, and now most commonly used in geodesy. These dimensions are expressed in English feet, and in order to convert them into metres it is necessary to adopt a ratio of the foot to the metre. The ratio used by General Clarke, and hitherto generally used, is now known to be erroneous by about one one hundred thousandth part. The ratio used in this volume is that adopted provisionally by the Office of Standard Weights and Measures of the United States and legalized by Act of Congress in 1866. But inasmuch as a precise determination of this ratio is now in progress under the auspices of the International Bureau of Weights and Measures, and inasmuch as the value for the ratio found by this Bureau will doubtless be generally adopted, it has been thought best in the present edition to restrict quantities expressed in metric measures to limits which will require no change from the uncertainty in question. In conformity with this decision the dimensions of the earth are given in feet only, and, with a few unimportant exceptions, to which attention is called in the proper places, tables giving quantities in metres are limited to such a number of figures as are definitely known.

vi Preface.

It is a matter of regret that, owing to the cause just stated, less prominence has been given in the tables to metric than to British units of length. On the other hand, it seems probable that the more general use of British units will meet the approval of the majority of those for whose use the volume is designed.

The introductory part of the volume is divided into seven sections under the heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of Errors, and Explanation of Source and Use of Tables, respectively. In presenting the subjects embraced under the first six of these headings an attempt was made to give only those features leading directly to practical applications of the principles involved. It is hoped, however, that enough has been given of each subject to render the work of value in a broader sense to those who may desire to go beyond mere applications.

The most of the calculations required in the preparation of the tables were made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work was done with skill and fidelity, and it is believed that the systematic checks applied by them have rendered the tables they computed entirely trustworthy. Mention of the particular tables computed by each of them is made in the Explanation of Source and Use of Tables, where full credit is given also for data not specially prepared for the volume.

The Appendix to the present volume is that prepared by Mr. George E. Curtis for the Meteorological Tables. Its usefulness to the geographer is no less obvious and general than to the meteorologist.

The proofs have been read independently by Mr. Charles H. Kummell and the editor. The plate proofs, also, have been read by the editor; and while it is difficult to avoid errors in a first edition of a work containing many formulas and figures, it is believed that few, if any, important errata remain in this volume.

R. S. WOODWARD.

COLUMBIA COLLEGE, New York, N. Y., June 15, 1894.

CONTENTS.

	USEFUL FORMULAS.					
	ALGEBRAIC FORMULAS					PAGE XIII
1.	a. Arithmetic and geometric means					xiii
	b. Arithmetic progression					xiii
	c. Geometric progression					xiii
	d. Sums of special series					xiii
	e. The binomial series and applications	•	•	•	•	xiv
	f. Exponential and logarithmic series	•	•	•	•	xiv
	g. Relations of natural logarithms to other logarithms				•	XV
2	TRIGONOMETRIC FORMULAS				•	xv
۷.	a. Signs of trigonometric functions	•	•		•	xv
	b. Values of functions for special angles					xv
	c. Fundamental formulas					xv
	d. Formulas involving two angles					xvi
	e. Formulas involving multiple angles					xvi
	f. Exponential values. Moivre's formula	•	•	•	•	xvi
	g. Values of functions in series					xvii
	h. Conversion of arcs into angles and angles into arcs				•	xvii
•	Formulas for Solution of Plane Triangles				•	xviii
	FORMULAS FOR SOLUTION OF SPHERICAL TRIANGLES				•	XX
4.	a. Right angled spherical triangles				•	XX
	b. Oblique angled triangles	•	•	•	•	XX
_	ELEMENTARY DIFFERENTIAL FORMULAS	•	•	٠	٠	xxi
5.	a. Algebraic	•	•	•	•	xxi
	b. Trigonometric and inverse trigonometric	•			•	xxi
6	Taylor's and Maclaurin's Series		٠		•	xxi
0.	a. Taylor's series	٠	•	•	•	xxii
	b. Maclaurin's series				٠	xxii
	c. Example of Taylor's series				•	xxii
	d. Example of Maclaurin's series				•	xxiii
_	ELEMENTARY FORMULAS FOR INTEGRATION					xxiii
7.	a Indefinite intermals	•	•	•	•	xxiii
	a. Indefinite integrals	•	•	•	•	xxvi
	b. Definite integration	•	•	•	•	XXVI
	MENSURATION.					
Τ.	Lines					xxviii
	a. In a circle	•	•	•	•	xxviii
	h In regular polygon	•	•	•	•	xxviii
	b. In regular polygon	•	•	•	•	AAVIII

2.	AREAS	XXIX
	a. Area of plane triangle	xxix
	b. Area of trapezoid	xxix
	c. Area of regular polygon	XXX
	d. Area of circle, circular annulus, etc	XXX
	e. Area of ellipse	XXX
	f. Surface of sphere, etc	xxx
	g. Surface of right cylinder	xxx
	h. Surface of right cone	xxx
	i. Surface of spheroid	xxx
3.	Volumes	xxxii
-	a. Volume of prism	xxxii
	b. Volume of pyramid	xxxii
	c. Volume of right circular cylinder	xxxii
	d. Volume of right cone with circular base	xxxii
	e. Volume of sphere and spherical segments	xxxii
	f. Volume of ellipsoid	xxxiii
	•	
	UNITS.	
ı.	STANDARDS OF LENGTH AND MASS	xxxiv
2.	BRITISH MEASURES AND WEIGHTS	xxxvii
	a. Linear measures	xxxvii
	b. Surface or square measures	
	c. Measures of capacity	
	d. Measures of weight	
2	METRIC MEASURES AND WEIGHTS	x x
	THE C. G. S. SYSTEM OF UNITS	xlii
11.		2211
	GEODESY.	
	FORM OF THE EARTH. THE EARTH'S SPHEROID. THE GEOID	xliii
	Adopted Dimensions of Earth's Spheroid	xliii
	AUXILIARY QUANTITIES	xliii
	EQUATIONS TO GENERATING ELLIPSE OF SPHEROID	xliv
	LATITUDES USED IN GEODESY	xliv
2.	RADII OF CURVATURE	xlv
	LENGTHS OF ARCS OF MERIDIANS AND PARALLELS OF LATITUDE.	xlvi
/.	a. Arcs of meridian	xlvi
	b. Arcs of parallel	xlix
Q	RADIUS-VECTOR OF EARTH'S SPHEROID	1
٥.	Areas of Zones and Quadrilaterals of the Earth's Surface	î
70	SPHERES OF EQUAL VOLUME AND EQUAL SURFACE WITH EARTH'S	•
٠.	SPHEROID	lii
	Co-ordinates for the Polyconic Projection of Maps	liii
	LINES ON A SPHEROID,	lvi
12.	a. Characteristic property of curves of vertical section	lvi
	b. Characteristic property of geodesic line	lvii
	b. Characteristic property of geodesic fine	1411

CONTENTS.	ix

13.	SOLUTION OF SPHEROIDAL TRIANGLES	lvii
	a. Spherical or spheroidal excess	lviii
14.	GEODETIC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH	lviii
	a. Primary triangulation	lviii
	b. Secondary triangulation	lx
15.	TRIGONOMETRIC LEVELING	lxi
_	a. Computation of heights from observed zenith distances	lxi
	b. Coefficients of refraction	lxiii
	c. Dip and distance of sea horizon	lxiii
16.	MISCELLANEOUS FORMULAS	lxiii
	a. Correction to observed angle for eccentric position of instrument	lxiii
	b. Reduction of measured base to sea level	lxiv
	c. The three-point problem	lxiv
17.	SALIENT FACTS OF PHYSICAL GEODESY	lxv
	a. Area of earth's surface, areas of continents, area of oceans.	1xv
	b. Average heights of continents and depths of oceans	lxv
	c. Volume, surface density, mean density, and mass of earth	lxv
	d. Principal moments of inertia and energy of rotation of earth.	lxvi
	ASTRONOMY.	
τ.	THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE.	lxvii
	Spherical Co-ordinates	lxvii
	a. Notation	lxvii
	b. Altitude and azimuth in terms of declination and hour angle.	lxviii
	c. Declination and hour angle in terms of altitude and azimuth .	lxix
	d. Hour angle and azimuth in terms of zenith distance	lxix
	e. Formulas for parallactic angle	lxix
	f. Hour angle, azimuth, and zenith distance of a star at elongation	lxx
	g. Hour angle, zenith distance, and parallactic angle for transit of	
	a star across prime vertical	lxx
	h. Hour angle and azimuth of a star when in the horizon, or at the	0
	time of rising or setting	lxxi
	i. Differential formulas	lxxii
3.	RELATIONS OF DIFFERENT KINDS OF TIME USED IN ASTRONOMY.	lxxii
	a. The sidereal and solar days	lxxii
	b. Relation of apparent and mean time	lxxiii
	c. Relation of sidereal and mean solar intervals of time	lxxiii
	d. Interconversion of sidereal and mean solar time	lxxiii
	e. Relation of sidereal time to the right ascension and hour angle	
	of a star	lxxiv
4.	DETERMINATION OF TIME	lxxiv
	a. By meridian transits	lxxiv
	b. By a single observed altitude of a star	lxxvi
	c. By equal altitudes of a star	lxxvii
5.	DETERMINATION OF LATITUDE	lxxvii
	a. By meridian altitudes	lxxvii
	b. By the measured altitude of a star at a known time	lxxviii
	c. By the zenith telescope	lxxix

X CONTENTS.

6. Dete	RMIN	IAT	ION	OF	A	ZIM	UTI	H							•	•	•	•				lxxix
	Вуо																					lxxix
b.	By a	in c	bse	erve	d a	ltit	ude	of	a	sta	r											lxxxi
c.	By a By e	qu	al a	ltiti	ude	s of	Еa	sta	r													lxxxi
						TI	HE	OR	Y	OF	F	ERF	RO1	RS.								
1. Laws																						lxxxiii
	Prob																					lxxxiv
b.	Prob																					
	pc	olat	ed l	loga	ıritl	nms	, tı	igo	no	me	tri	c fu	nct	tion	ıs,	etc.						lxxxv
2. THE	Мет	HO	D O	F I	EAS	ST	SQ	UAF	ES	•												lxxxvi
	Gen																					
b.	Rela	itio	n o	f pr	oba	ble	, m	eai	n, a	and	a	vera	ıge	eri	ors	;						lxxxviii
c.	Case	e of	as	sing	le ι	ınk	no	wn	qu	ant	ity	•										lxxxix
d.	Case	e of	ob	ser	ved	fur	ncti	on	of	sev	er	al u	nk	nov	vn	qua	int	itie	s			xc
e.	Case	e of	fu	ncti	ons	of	se	ver	al d	obs	erv	ved	qu	ant	itie	s						xciii
f.	Com	ıpu	tati	on	of 1	nea	ın a	ınd	pr	oba	ıbl	e e	rro	rs (of :	fun	cti	ons	0	fо	b-	
	se	rve	d g	uar	ıtiti	es												•				xcv
	EX	PLI	AN.	AT:	ION	1 C	F	SC)U	RC:	E	AN	D	US	šΕ	O	ም 1	ГΑ	BL	ES	•	
Tables 1	and:	2.																				xcix
Table 3																						xcix
Table 4																						xcix
Tables 5																						xcix
Tables 7																						, с
Table 9.																						С
Tables 10																						С
Table 12																						С
Tables 13																						С
Tables 15																						ci
Table 17																						ci
Table 18																						cii
Tables 19																						cii
Tables 25																						ciii
Table 30																						ciii
Table 31																						civ
Tables 32																					•	civ
Tables 34	and	1 25	, '	•	•	•	•	٠			•			·		•	•	i		·		civ
Tables 36																					•	civ
Table 38																					•	civ
Table 39																					•	civ
Table 40																						civ
Table 41																					•	cv
Table 42																						cv
- aut 44	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

TABLES.

I.	For converting U. S. Weights and Measures — Customary to	INU
	Metric	2
2.	For converting U. S. Weights and Measures - Metric to Cus-	
	tomary	3
3.	Values of reciprocals, squares, cubes, square roots, cube roots,	·
	and common logarithms of natural numbers	4-22
. 4.	Circumference and area of circle in terms of diameter d	23
5.	Logarithms of numbers, 4-place	24-25
6.	Antilogarithms, 4-place	26-27
7.	Natural sines and cosines	28-29
8.	Natural tangents and cotangents	30-31
9.	Traverse table (differences of latitude and departure)	32-47
10.	Logarithms of meridian radius of curvature in English feet	48-56
II.	Logarithms of radius of curvature of normal section in English feet	57-65
12.	Logarithms of radius of curvature (in metres) of sections oblique	· · ·
	to meridian	66-67
13.	Logarithms of factors for computing spheroidal excess of triangles	•
Ĭ	(unit = English foot)	68
14.	Logarithms of factors for computing spheroidal excess of triangles	
•	$(unit = the metre) \dots \dots \dots \dots \dots$	69
15.	Logarithms of factors for computing differences of latitude, longi-	
	tude, and azimuth in secondary triangulation (unit = English	
	foot)	70-73
16.	Logarithms of factors for computing differences of latitude, longi-	, , , ,
	tude, and azimuth in secondary triangulation (unit = the metre)	74-77
17.	Lengths of terrestrial arcs of meridian (in English feet)	78-80
18.	Lengths of terrestrial arcs of parallel (in English feet)	81-83
19.	Co-ordinates for projection of maps, scale $= 1/250000$	84–91
20.	Co-ordinates for projection of maps, scale = $1/125000$	92-101
21.		102-109
22.		110-121
23.	Co-ordinates for projection of maps, scale = $1/200000$	
24.	Co-ordinates for projection of maps, scale = $1/80000$	132-141
25.	Areas of quadrilaterals of the earth's surface of 10° extent in latitude and longitude	142
26.	Areas of quadrilaterals of the earth's surface of 1° extent in lati-	•
	tude and longitude	144-145
27.	Areas of quadrilaterals of the earth's surface of 30' extent in lati-	
		146-148
28.	tude and longitude	
		150-154
29.	Areas of quadrilaterals of the earth's surface of 10' extent in lati-	
	tude and longitude	156-159
30.	Determination of heights by the barometer (formula of Babinet) .	160
	Mean astronomical refraction	161

32.	Conversion of arc into time	162
33.	Conversion of time into arc	163
	Conversion of mean time into sidereal time	164
	Conversion of sidereal time into mean time	165
	Length of 1° of the meridian at different latitudes (in metres,	5
30.	statute miles, and geographic miles)	166
27	Length of 1° of the parallel at different latitudes (in metres, stat-	100
37.	ute miles, and geographic miles)	167
-0		•
	Interconversion of nautical and statute miles	168
39•	Continental measures of length, with their metric and English	-
	equivalents	168
40.	Acceleration (g) of gravity on surface of earth and derived functions	169
	Linear expansions of principal metals	•
		170
42.	Fractional change in a number corresponding to a change in its	
	logarithm	170
	APPENDIX.	
Numa	erical Constants	
		171
Goede	etical Constants	171
	nomical Constants	172
	cal Constants	172
Synop	otic conversion of English and Metric Units —	
	English to Metric	173
	Metric to English	174
Dimer	nsions of physical quantities	175
INDE	CY.	177

USEFUL FORMULAS.

I. ALGEBRAIC.

a. Arithmetic and geometric means. The arithmetic mean of n quantities a, b, c, \ldots is

$$\frac{1}{n}(a+b+c+\dots);$$

their geometric mean is

$$(a \ b \ c \ldots)^{\frac{1}{n}}$$

A case of special interest is

$$\sqrt{a \ b} = \frac{1}{2} (a+b) \left\{ 1 - \left(\frac{a-b}{a+b}\right)^2 \right\}^{\frac{1}{2}}.$$

b. Arithmetic progression. If a is the first term, and a+d, a+2 d, a+3 d, ... are the successive terms, the *n*th or last term z is

$$z = a + (n - 1) d.$$

The sum s of the n terms of this series is

$$s = \frac{1}{2} (a + z) n = \{a + \frac{1}{2} (n - 1) d\} n$$

$$= \{z - \frac{1}{2} (n - 1) d\} n$$

$$= \frac{1}{2} (a + z) \left(\frac{z - a}{d} + 1\right).$$

c. Geometric progression. If a is the first term, and a r, $a r^2$, ... are the successive terms, the nth or last term z is

$$z = a r^{n-1}.$$

The sum of the n terms is

$$s = \frac{a(r^{n}-1)}{r-1} = \frac{rz-a}{r-1} = \frac{z(r^{n}-1)}{(r-1)r^{n-1}}$$
$$r < 1 \text{ and } n = \infty,$$
$$s = \frac{a}{1-r}.$$

If

d. Sums of special series.

$$\begin{array}{lll}
\mathbf{I} + 2 + 3 + 4 + \dots + n & = \frac{1}{2} n (n + 1) \\
2 + 4 + 6 + 8 + \dots + 2 n & = n (n + 1) \\
\mathbf{I} + 3 + 5 + 7 + \dots + (2 n - 1) & = n^2 \\
\mathbf{I}^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 & = \frac{1}{6} n (n + 1) (2 n + 1) \\
\mathbf{I}^8 + 2^8 + 3^8 + 4^8 + \dots + n^8 & = \frac{1}{4} n^2 (n + 1)^2.
\end{array}$$

e. The binomial series and applications.

For
$$a > b$$
,
$$(a \pm b)^n = a^n \pm n \ a^{n-1} b + \frac{n (n-1)}{1 \cdot 2} a^{n-2} b^2$$

$$\pm \frac{n (n-1) (n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^3 + \cdots$$
For $x < 1$,
$$(1 \pm x)^n = 1 \pm n x + \frac{n (n-1)}{1 \cdot 2} x^2 \pm \frac{n (n-1) (n-2)}{1 \cdot 2 \cdot 3} x^3 + \cdots$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \cdots$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$$

$$\frac{1}{(1-x)^2} = 1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + \cdots$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2} x - \frac{1}{8} x^2 + \frac{1}{16} x^3 - \frac{5}{128} x^4 + \cdots$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2} x + \frac{3}{8} x^2 - \frac{5}{16} x^3 + \frac{35}{128} x^4 - \cdots$$

$$\frac{1}{(1+x)^{\frac{1}{2}}} = 1 + \frac{1}{2} x + \frac{3}{8} x^2 - \frac{5}{16} x^3 + \frac{35}{128} x^4 - \cdots$$

$$\frac{1}{(1-x)^{\frac{1}{2}}} = 1 + \frac{1}{2} x + \frac{3}{8} x^2 + \frac{5}{16} x^3 + \frac{35}{128} x^4 + \cdots$$

f. Exponential and logarithmic series.

For
$$-\infty < x < \infty$$
,
 $e^x = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \dots$

The number e is the base of the natural or "Napierian" system of logarithms. For x = + 1, the above series gives

$$e = 2.718281828459...$$

In the natural system the following series hold with the limitations indicated:

$$a^{x} = \mathbf{i} + \frac{\log a}{\mathbf{i}} x + \frac{(\log a)^{2}}{\mathbf{i} \cdot 2} x^{2} + \frac{(\log a)^{8}}{\mathbf{i} \cdot 2 \cdot 3} x^{8} \dots$$

$$- \infty < x < \infty;$$

$$\log (\mathbf{i} + x) = x - \frac{x^{2}}{2} + \frac{x^{8}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots$$

$$x \le \mathbf{i};$$

$$\log (\mathbf{i} - x) = -x - \frac{x^{2}}{2} - \frac{x^{8}}{3} - \frac{x^{4}}{4} - \frac{x^{5}}{5} - \dots$$

$$x < \mathbf{i};$$

$$\log x = 2 \left\{ \frac{x - \mathbf{i}}{x + \mathbf{i}} + \frac{1}{3} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{3} + \frac{1}{3} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{5} + \frac{1}{7} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{7} + \dots \right\}$$

$$0 < x < \infty;$$

$$\log \frac{x + y}{x} = 2 \left\{ \frac{y}{2x + y} + \frac{1}{3} \left(\frac{y}{2x + y} \right)^{3} + \frac{1}{3} \left(\frac{y}{2x + y} \right)^{5} + \dots \right\}$$

$$y^{2} < (2x + y)^{2}.$$

g. Relations of natural logarithms to other logarithms.

B =base of any system,

N =any number,

 $L = \log N$ to base $B = \log_B N$,

 $l = \log N$ to base $e = \log_e N$.

Then

$$N = e^{l} = B^{L},$$

 $L = l \log_{B} e = l/\log_{e} B,$

 $\log_{B} = 1/\log_{e} B = \mu$, say, which is called the *modulus* of the system whose base is B. In the common, or Briggean system,

$$\mu = \log_{10} \ell = 0.43429448 \dots$$
 $\log \mu = 9.6377843 - 10.$

2. TRIGONOMETRIC FORMULAS.

a. Signs of trigonometric functions.

Function.	1st Quadrant.	2d Quadrant.	3d Quadrant.	4th Quadrant.
sine	+	+	_	_
cosine	+	-	_	+
tangent	+	-	+	_
cotangent	+	_	+	

b. Values of functions for special angles.

-	o°	90°	180°	270°	360°	30°	45°	60°
sine	0 _	+1	0	– 1	0	1/2	$\frac{1}{2}\sqrt{2}$	1√3
cosine	+1	0	<u>-</u> 1	o	+1	½ V3	$\frac{1}{2}\sqrt{2}$	1/2
tangent	0	∞	0	∞	0	½√3	r	√ ₃
cotangent	∞	0	. ∞	o	∞	√ ₃	I	½√3

c. Fundamental formulas.

$$\sin^{2} a + \cos^{2} a = 1, \qquad \tan a \cot a = 1,$$

$$\cos a \sec a = 1, \qquad \sin a \csc a = 1,$$

$$\tan a = \frac{\sin a}{\cos a}, \qquad \cot a = \frac{\cos a}{\sin a},$$

$$1 + \tan^{2} a = \frac{1}{\cos^{2} a} = \sec^{2} a, \qquad 1 + \cot^{2} a = \frac{1}{\sin^{2} a} = \csc^{2} a,$$

$$\text{versed sin } a = 1 - \cos a,$$

d. Formulas involving two angles.

$$\sin (a \pm \beta) = \sin a \cos \beta \pm \cos a \sin \beta,$$

$$\cos (a \pm \beta) = \cos a \cos \beta \mp \sin a \sin \beta.$$

$$\tan (a \pm \beta) = (\tan a \pm \tan \beta)/(1 \mp \tan a \tan \beta),$$

$$\cot (a \pm \beta) = (\cot a \cot \beta \mp 1)/(\cot a \pm \cot \beta).$$

$$\sin a + \sin \beta = 2 \sin \frac{1}{2}(a + \beta) \cos \frac{1}{2}(a - \beta),$$

$$\sin a - \sin \beta = 2 \cos \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$$

$$\cos a + \cos \beta = 2 \cos \frac{1}{2}(a + \beta) \cos \frac{1}{2}(a - \beta),$$

$$\cos a + \cos \beta = -2 \sin \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$$

$$\tan a \pm \tan \beta = \frac{\sin (a \pm \beta)}{\cos a \cos \beta},$$

$$\cot a \pm \cot \beta = \frac{\sin (\beta \pm a)}{\sin a \sin \beta}.$$

$$2 \sin a \sin \beta = \cos (a - \beta) - \cos (a + \beta),$$

$$2 \cos a \cos \beta = \cos (a - \beta) + \cos (a + \beta),$$

$$2 \sin a \cos \beta = \sin (a - \beta) + \sin (a + \beta).$$

$$\sin a + \sin \beta = \tan \frac{1}{2}(a + \beta) \cot \frac{1}{2}(a - \beta),$$

$$\cos a + \cos \beta = -\cot \frac{1}{2}(a + \beta) \cot \frac{1}{2}(a - \beta).$$

e. Formulas involving multiple angles.

$$\sin 2 \ a = 2 \sin \alpha \cos \alpha,$$

$$\sin 3 \ a = 3 \sin \alpha \cos^2 \alpha - \sin^8 \alpha.$$

$$\cos 2 \ a = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1,$$

$$\cos 3 \ a = \cos^8 \alpha - 3 \sin^2 \alpha \cos \alpha.$$

$$\tan \frac{1}{2} \ a = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \left(\frac{1 - \cos \alpha}{1 + \cos \alpha}\right)^{\frac{1}{2}},$$

$$\tan 2 \ a = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}, \qquad \cot 2 \ a = \frac{\cot^2 \alpha - 1}{2 \cot \alpha},$$

$$\sin \alpha = \frac{2 \tan \frac{1}{2} \alpha}{1 + \tan^2 \frac{1}{2} \alpha}, \qquad \cos \alpha = \frac{1 - \tan^2 \frac{1}{2} \alpha}{1 + \tan^2 \frac{1}{2} \alpha}$$

$$2 \sin^2 \alpha = 1 - \cos 2 \alpha, \qquad 2 \cos^2 \alpha = 1 + \cos 2 \alpha,$$

$$4 \sin^8 \alpha = 3 \sin \alpha - \sin 3 \alpha, \qquad 4 \cos^8 \alpha = 3 \cos \alpha + \cos 3 \alpha.$$

f. Exponential values. Moivre's formula.

$$e$$
 = base of natural logarithms,
 $i = \sqrt{-1}$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, etc.
 $\cos x = \frac{1}{2} (e^{ix} + e^{-ix})$, $\sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$,
 $\cos ix = \frac{1}{2} (e^{-x} + e^x)$, $\sin ix = \frac{1}{2i} (e^{-x} - e^x)$.
 $(\cos x \pm i \sin x)^m = \cos mx \pm i \sin mx$.

g. Values of functions in series.

For x in arc the following series hold within the limits indicated.

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots,$$

$$- \infty < x < + \infty.$$

$$\tan x = x + \frac{1}{3} x^8 + \frac{1}{15} x^5 + \frac{1}{315} x^7 + \dots,$$

$$\sec x = 1 + \frac{1}{2} x^2 + \frac{5}{24} x^4 + \frac{6}{120} x^6 + \dots,$$

$$- \frac{1}{2} \pi < x < + \frac{1}{2} \pi.$$

$$\cot x = \frac{1}{x} \left(1 - \frac{1}{3} x^2 - \frac{1}{45} x^4 - \frac{2}{9245} x^6 - \dots \right),$$

$$\csc x = \frac{1}{x} \left(1 + \frac{1}{6} x^2 + \frac{7}{360} x^4 + \frac{2}{13120} x^6 + \dots \right),$$

$$- \pi < x < + \pi.$$

$$\arcsin x = x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{1}{152} x^7 + \dots,$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots,$$

$$- 1 < x < + 1.$$

$$x = \sin x + \frac{1}{6} \sin^8 x + \frac{3}{40} \sin^5 x + \frac{1}{152} \sin^7 x + \dots,$$

$$- \frac{1}{2} \pi < x < + \frac{1}{2} \pi.$$

$$x = \tan x - \frac{1}{3} \tan^8 x + \frac{1}{6} \tan^5 x - \frac{1}{6} \tan^7 x + \dots,$$

$$- \frac{1}{4} \pi < x < + \frac{1}{4} \pi.$$

$$\log \sin x = \log x - \mu \left(\frac{1}{6} x^2 + \frac{1}{180} x^4 + \frac{1}{2835} x^6 + \dots \right),$$

$$x \text{ positive and } < \pi,$$

$$\mu = \text{ modulus of common logarithms. See p. xv.}$$

$$\log \tan x = \log x + \mu \left(\frac{1}{3} x^2 + \frac{7}{10} x^4 + \frac{2}{2835} x^6 + \dots \right),$$

$$x \text{ positive and } < \frac{1}{6} \pi.$$

h. Conversion of arcs into angles and angles into arcs.

Denote by x° , x', and x'' respectively the angle (in degrees, minutes, or seconds) corresponding to the arc x. Then by equality of ratios

$$\frac{360^{\circ}}{x^{\circ}} = \frac{360 \times 60'}{x'} = \frac{360 \times 60 \times 60''}{x''} = \frac{2 \pi}{x},$$

$$x^{\circ} = x \frac{180^{\circ}}{\pi},$$

$$x' = x \frac{180 \times 60'}{\pi},$$

$$x'' = x \frac{180 \times 60 \times 60''}{\pi}.$$

whence

Put

$$\frac{180^{\circ}}{\pi} = \rho^{\circ} = \text{number of degrees in the radius,}$$

$$\frac{180 \times 60'}{\pi} = \rho' = \text{number of minutes in the radius,}$$

$$\frac{180 \times 60 \times 60''}{\pi} = \rho'' = \text{number of seconds in the radius.}$$

Then

$$x^{\circ} = x \ \rho^{\circ}, \quad x' = x \ \rho', \quad x'' = x \ \rho''.$$

$$\rho^{\circ} = 57.^{\circ}2957795, \quad \log \rho^{\circ} = 1.75812263,$$

$$\rho' = 3437.'74677, \quad \log \rho' = 3.53627388,$$

$$\rho'' = 206264.''806, \quad \log \rho'' = 5.31442513.$$

3. Formulas for Solution of Plane Triangles.

a, b, c = sides of triangle,

$$a, \beta, \gamma =$$
 angles opposite to a, b, c , respectively,

A = area of triangle,

r = radius of inscribed circle,

R = radius of circumscribed circle,

$$s = \frac{1}{2}(a + b + c)$$
.

$$\frac{a}{\sin a} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2 R.$$

$$a = b \cos \gamma + c \cos \beta$$
, $b = c \cos \alpha + a \cos \gamma$, $c = a \cos \beta + b \cos \alpha$.

$$r = 4 R \sin \frac{1}{2} a \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma = \frac{a b c}{4 R s}$$

$$(a+b)\cos\frac{1}{2}(\alpha+\beta) = c\cos\frac{1}{2}(\alpha-\beta),$$

$$(a-b)\sin\frac{1}{2}(\alpha+\beta) = c\sin\frac{1}{2}(\alpha-\beta).$$

$$\frac{a+b}{a-b} = \frac{\tan \frac{1}{2} (\alpha + \beta)}{\tan \frac{1}{2} (\alpha - \beta)} = \frac{\tan \frac{1}{2} \gamma}{\tan \frac{1}{2} (\alpha - \beta)}$$

$$a^2 = b^2 + c^2 - 2 b c \cos a = (b + c)^2 - 4 b c \cos^2 \frac{1}{2} a$$

$$\sin \frac{1}{2} \alpha = \sqrt{\frac{(s-b)(s-c)}{bc}}, \qquad \cos \frac{1}{2} \alpha = \sqrt{\frac{s(s-a)}{bc}}.$$

$$\tan \frac{1}{2} a = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{r}{s-a}$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

$$A = \frac{1}{2} a b \sin \gamma = \frac{a^2 \sin \beta \sin \gamma}{2 \sin a} = 2 R^2 \sin a \sin \beta \sin \gamma$$

$$= r^2 \cot \frac{1}{2} a \cot \frac{1}{2} \beta \cot \frac{1}{2} \gamma = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= r s = \frac{1}{4} a b c / R.$$

In right angled triangles let

a = altitude, b = base, c = hypothenuse, $\gamma = 90^{\circ}$.

Then

$$a = c \sin a = c \cos \beta = b \tan a = b \cot \beta,$$

$$b = c \sin \beta = c \cos a = a \tan \beta = a \cot a.$$

$$A = \frac{1}{2} a b = \frac{1}{2} a^2 \cot a = \frac{1}{2} b^2 \tan a = \frac{1}{4} c^2 \sin 2 a.$$

Table for solution of oblique triangles.

Given.	Sought.	Formula.
a, b, c	a	$\sin \frac{1}{2} a = \sqrt{\frac{(s-b)(s-c)}{bc}}, s = \frac{1}{2} (a+b+c),$
		$\cos \frac{1}{2} a = \sqrt{\frac{s(s-a)}{bc}},$
	A	$\tan \frac{1}{2} a = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$ $A = \sqrt{s(s-a)(s-b)(s-c)}.$
		$A = \sqrt{s(s-a)(s-b)(s-b)}.$
a, b, a	β	$\sin \beta = b \sin a/a$. When $a > b$, $\beta < 90^{\circ}$ and but one value results. When $b > a$,
	0	β has two values.
	γ	$\gamma = 180^{\circ} - (\alpha + \beta).$
	С	$c = a \sin \gamma / \sin \alpha$.
	\boldsymbol{A}	$A = \frac{1}{2} a b \sin \gamma.$
a, a, β	ь	$b = a \sin \beta / \sin \alpha$.
	γ	$\gamma = 180^{\circ} - (\alpha + \beta).$
	C	$c = a \sin \gamma / \sin \alpha = a \sin (\alpha + \beta) / \sin \alpha$
	A	$A = \frac{1}{2} a b \sin \gamma = \frac{1}{2} a^2 \sin \beta \sin \gamma / \sin \alpha.$
a, b, γ	α	$\tan a = \frac{a \sin \gamma}{b - a \cos \gamma}.$
	α, β	$\frac{1}{2}(\alpha+\beta)=90^{\circ}-\frac{1}{2}\gamma,$
		$\tan \frac{1}{2}(a-\beta) = \frac{a-b}{a+b} \cot \frac{1}{2} \gamma.$
		$c = (a^2 + b^2 - 2 \ a \ b \cos \gamma)^{\frac{1}{2}},$
		$= \{(a+b)^2 - 4 \ a \ b \cos^2 \frac{1}{2} \gamma\}^{\frac{1}{2}},$
		$= \{(a-b)^2 + 4 \ a \ b \sin^2 \frac{1}{2} \gamma\}^{\frac{1}{2}},$
		$=(a-b)/\cos \phi$, where $\tan \phi = 2 \sqrt{ab} \sin \frac{1}{2} \gamma/(a-b)$,
		$= a \sin \gamma / \sin \alpha$
	A	$A = \frac{1}{2} a b \sin \gamma.$

4. Formulas for Solution of Spherical Triangles.

a. Right angled spherical triangles.

a, b, c = sides of triangle, c being the hypotenuse, a, β , $\gamma =$ angles opposite to a, b, c, respectively, $\gamma = 90^{\circ}$.

$$\sin a = \sin c \sin a$$
, $\sin b = \sin c \sin \beta$,
 $\tan a = \tan c \cos \beta$, $\tan b = \tan c \cos \alpha$,
 $= \sin b \tan a$, $= \sin \alpha \tan \beta$;

$$\cos \alpha = \cos \alpha \sin \beta$$
, $\cos \beta = \cos b \sin \alpha$;

 $\cos c = \cos a \cos b = \cot a \cot \beta$.

b. Oblique angled triangles.

a, b, c = sides of triangle, a, β , $\gamma =$ angles opposite to a, b, c, respectively, $s = \frac{1}{2}(a + b + c)$, $\sigma = \frac{1}{2}(a + \beta + \gamma)$, $\epsilon = \alpha + \beta + \gamma - 180^{\circ} =$ spherical excess, S = surface of triangle on sphere of radius r.

$$\frac{\sin a}{\sin a} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$$

 $\cos a = \cos b \cos c + \sin b \sin c \cos a,$

$$\sin^2 \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\sin \beta \sin \gamma}, \quad \cos^2 \frac{1}{2} a = \frac{\cos (\sigma - \beta) \cos (\sigma - \gamma)}{\sin \beta \sin \gamma},$$

$$-\cos \sigma \cos (\sigma - a)$$

$$\tan^2 \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\cos (\sigma - \beta) \cos (\sigma - \gamma)}.$$

$$\sin^2 \frac{1}{2} \alpha = \frac{\sin (s - b) \sin (s - c)}{\sin b \sin c}, \quad \cos^2 \frac{1}{2} \alpha = \frac{\sin s \sin (s - a)}{\sin b \sin c},$$

$$\tan^2 \frac{1}{2} \alpha = \frac{\sin (s - b) \sin (s - c)}{\sin s \sin (s - a)}.$$

$$\cot \frac{1}{2} \epsilon = \frac{\cot \frac{1}{2} a \cot \frac{1}{2} b + \cos \gamma}{\sin \gamma},$$

 $\tan^2 \frac{1}{4} \epsilon = \tan \frac{1}{2} s \tan \frac{1}{2} (s - a) \tan \frac{1}{2} (s - b) \tan \frac{1}{2} (s - c)$

$$S = \frac{\epsilon}{180^{\circ}} \pi r^2.$$

Napier's analogies.

$$\tan \frac{1}{2} (a + b) = \frac{\cos \frac{1}{2} (a - \beta)}{\cos \frac{1}{2} (a + \beta)} \tan \frac{1}{2} c, \quad \tan \frac{1}{2} (a - b) = \frac{\sin \frac{1}{2} (a - \beta)}{\sin \frac{1}{2} (a + \beta)} \tan \frac{1}{2} c,$$

$$\tan \frac{1}{2} (a + \beta) = \frac{\cos \frac{1}{2} (a - b)}{\cos \frac{1}{2} (a + b)} \cot \frac{1}{2} \gamma, \quad \tan \frac{1}{2} (a - \beta) = \frac{\sin \frac{1}{2} (a - b)}{\sin \frac{1}{2} (a + b)} \cot \frac{1}{2} \gamma.$$

Gauss's formulas.

$$\cos \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$$

$$\sin \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma,$$

$$\cos \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$$

$$\sin \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma.$$

5. ELEMENTARY DIFFERENTIAL FORMULAS.

a. Algebraic.

 $u, v, w, \ldots =$ variables subject to differentiation, $a, b, c, \ldots =$ constants.

$$d(a + u) = du, \quad d(a u) = a du,$$

$$d(u + v + w + \dots) = du + dv + dw + \dots,$$

$$d(u v) = u dv + v du,$$

$$d(u v w \dots) = \left(\frac{du}{u} + \frac{dv}{v} + \frac{dw}{w} + \dots\right) u v w \dots,$$

$$d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2} = \frac{du}{v} - \frac{u dv}{v^2},$$

$$d\left(\frac{a + b u}{h + g u}\right) = \frac{b h - a g}{(h + g u)^2} du.$$

$$dv^n = n v^{n-1} dv, \qquad d\sqrt{v} = \frac{dv}{2\sqrt{v}},$$

$$da^v = a^v \log a dv, \qquad de^v = e^v dv$$

$$(e = \text{base of natural logarithms}),$$

$$d \log v = dv/v.$$

$$dF(u, v, w ...) = \frac{\partial F}{\partial u} du + \frac{\partial F}{\partial v} dv + \frac{\partial F}{\partial w} dw +$$

b. Trigonometric and inverse trigonometric.

$$d\sin x = \cos x \, dx,$$

$$d\tan x = \sec^2 x \, dx,$$

$$d\cot x = -\cos^2 x \, dx,$$

$$d\cot x = -\csc^2 x \, dx,$$

$$d\cot x = -\csc^2 x \, dx,$$

$$d\csc x = \sec^2 x \sin x \, dx,$$

$$d\csc x = -\csc^2 x \cos x \, dx.$$

$$d\log \sin x = \cot x \, dx,$$

$$d\log \cos x = -\tan x \, dx.$$

$$d\arctan \sin x = \pm \frac{dx}{\sqrt{1 - x^2}},$$

$$d\arctan \cos x = \pm \frac{dx}{\sqrt{1 - x^2}},$$

$$d\arctan \cot x = \frac{dx}{1 + x^2},$$

$$d\operatorname{arc} \cot x = -\frac{dx}{1 + x^2}.$$

6. Taylor's and Maclaurin's Series.

a. Taylor's series.

If u = f(x + h), any finite and continuous function of x + h, h being an arbitrary increment to x; and if du/dx, d^2u/dx^2 , . . . are finite and determinate,

$$u = f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + f'''(x)\frac{h^3}{1 \cdot 2 \cdot 3} + \cdots,$$

where f(x), f'(x), f''(x), ... are the values of f(x+h), du/dx, d^2u/dx^2 , ... when h = 0. This is Taylor's series or theorem. The remainder after the first n terms in h is expressed by the definite integral

$$\frac{1}{1.2.3...n} \int_{0}^{h} f^{n+1} (x+h-z) z^{n} dz.$$

b. Maclaurin's series.

If in Taylor's series we make x = 0, and h = x, the result is

$$u = f(x) = f(0) + f'(0) x + f''(0) \frac{x^2}{1 \cdot 2} + f'''(0) \frac{x^3}{1 \cdot 2 \cdot 3} + \dots,$$

where f(0), f'(0), f''(0), ... are the values of f(x), du/dx, d^2u/dx^2 , ... when x = 0. This is Maclaurin's series or theorem. The remainder after the first n terms in x is expressed by the definite integral

$$\frac{1}{1 \cdot 2 \cdot 3 \cdot \dots n} \int_{0}^{x} f^{n+1} (x-z) z^{n} dz.$$

c. Example of Taylor's series.

$$u = f(x+h) = \log (x+h).$$

$$f(x) = \log x,$$

$$\frac{du}{dx} = \frac{1}{x+h}, \qquad f'(x) = +x^{-1},$$

$$\frac{d^2u}{dx^2} = -\frac{1}{(x+h)^2}, \qquad f''(x) = -x^{-2},$$

$$\frac{d^3u}{dx^3} = +\frac{2}{(x+h)^3}, \qquad f'''(x) = +2 x^{-3},$$

Hence for common logarithms, μ being the modulus,

 $\log (x + h) = \log x + \mu (x^{-1} h - \frac{1}{2} x^{-2} h^2 + \frac{1}{3} x^{-3} h^3 - \dots),$ and the sum of the remaining terms is

$$-\frac{\mu}{1\cdot 2\cdot 3}\int_{0}^{h}\frac{2\cdot 3}{(x+h-z)^{4}}z^{8} dz.$$

Since x is the least value of (x + h - z) within the limits of this integral, the sum of the remaining terms is negative, and numerically

$$<\frac{1}{4}\mu\left(\frac{h}{x}\right)^4$$

If, for example, (h/x) = r/100, the remainder in question is less than $\frac{1}{4} \times 0.434 \times 10^{-8}$, or about one unit in the ninth place of decimals.

d. Example of Maclaurin's series.

$$u = f(x) = \sin x.$$

$$f(0) = 0,$$

$$\frac{du}{dx} = \cos x, \qquad f'(0) = +1,$$

$$\frac{d^2u}{dx^2} = -\sin x, \qquad f''(0) = 0,$$

$$\frac{d^3u}{dx^3} = -\cos x, \qquad f'''(0) = -1,$$

Hence

$$f(x) = \sin x = x - \frac{x^6}{1 \cdot 2 \cdot 3} + \frac{x^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots,$$

and the sum of the remaining terms is

$$-\frac{1}{5!}\int\limits_{0}^{x}\sin\left(x-z\right)z^{\delta}\,dz.$$

If g is the greatest value of $\sin (x - z)$ within the limits of this integral the remainder in question is negative and numerically

$$<\frac{g}{6}\times\frac{1}{5!}x^6.$$

If, for example, $x = \pi/6$ (the arc of 30°), $g = \frac{1}{2}$, and the remainder is numerically less than 0.0000143.

7. ELEMENTARY FORMULAS FOR INTEGRATION.

a. Indefinite integrals.

$$\int a dx = a \int dx = ax + C.$$

$$\int f(x) dx + \int \phi(x) dx = \int \{f(x) + \phi(x)\} dx.$$

If
$$x = \phi(y)$$
, and $dx = \phi'(y) dy$,

$$\int f(x) dx = \int f \{\phi(y)\} \phi'(y) dy.$$

$$\frac{d}{dy} \int f(x, y) dx = \int \frac{df(x, y)}{dy} dx.$$

Since
$$d(uv) = udv + vdu$$
,

$$\int u dv = uv - \int v du; \text{ and}$$

 $\int f(x) \, \frac{d\phi(x)}{dx} \, dx = f(x) \, \phi(x) - \int \phi(x) \frac{df(x)}{dx} \, dx.$

 $\int dx \int f(x, y) dy = \int dy \int f(x, y) dx.$

if
$$u = f(x)$$
 and $v = \phi(x)$,

$$\int dx \int f(x) \, dx = x \int f(x) \, dx - \int x f(x) \, dx.$$

$$\int x^n dx = \frac{1}{n+1} x^{n-1} + C.$$

$$\int \frac{dx}{x^n} = -\frac{1}{n-1} x^{-(n-1)} + C, \qquad n > 1.$$

$$\int (a+bx)^n \, dx = \frac{(a+bx)^{n+1}}{(n+1)b} + C.$$

$$\int \frac{dx}{x} = \log x + C, \qquad \int \frac{dx}{a+bx} = b^{-1} \log (a+bx).$$

$$\int \frac{dx}{x^2} = -\frac{1}{x} + C, \qquad \int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)} + C.$$

$$\int \frac{dx}{1+x^2} = \arctan x + C, \qquad \int \frac{-dx}{1+x^2} = \operatorname{arc} \cot x + C.$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \log \frac{1+x}{1-x} + C, \qquad \int \frac{dx}{x^2-1} = \frac{1}{2} \log \frac{x-1}{x+1} + C.$$

$$\int \frac{dx}{a+bx^2} = (ab)^{-\frac{1}{2}} \arctan (b/a)^{\frac{1}{2}} x + C, \text{ for } a \text{ and } b \text{ both positive,}$$

$$= (ab)^{-\frac{1}{2}} \arctan (b/a)^{\frac{1}{2}} + C, \text{ for } a \text{ and } b \text{ both negative,}$$

$$= \frac{1}{2} (-ab)^{-\frac{1}{2}} \log \frac{(-ab)^{\frac{1}{2}} - bx}{(-ab)^{\frac{1}{2}} + bx} + C, \text{ for } ab \text{ negative.}$$

$$\int \frac{dx}{a+2bx+cx^2} = (ac-b^2)^{-\frac{1}{2}} \arctan \frac{b+cx}{(ac-b^2)^{\frac{1}{2}}} + C, \text{ for } ac-b^2 > 0,$$

$$= \frac{1}{2} (b^2 - ac)^{-\frac{1}{2}} \log \frac{(b^2 - ac)^{\frac{1}{2}} - b - cx}{(b^2 - ac)^{\frac{1}{2}} + b + cx} + C, \text{ for } b^2 - ac > 0.$$

$$\int (a+x^2)^{\frac{1}{2}} \, dx = \frac{1}{2} x (a+x^2)^{\frac{1}{2}} + \frac{1}{2} a \log \{x+(a+x^2)^{\frac{1}{2}}\} + C.$$

$$\int (a^2 - x^2)^{\frac{1}{2}} \, dx = \frac{1}{2} x (a^2 - x^2)^{\frac{1}{2}} + \frac{1}{2} a^2 \arcsin \frac{x}{a} + C.$$

$$\int (a+bx)^{\frac{1}{2}} \, dx = \frac{2}{3} (a+bx)^{\frac{3}{2}}/b + C.$$

^{*} This is the formula for integration by parts.

[†] Natural logarithms are used in this and the following integrals. For relation of natural to common logarithms see section 1, g.

$$\int (a+2bx+cx^2)^{\frac{1}{2}} dx = \frac{1}{2} (b+cx) (a+2bx+cx^2)^{\frac{1}{2}} (a+2bx+cx^2)^{-\frac{1}{2}} dx + C.$$

$$\int (a+bx)^{-\frac{1}{2}} dx = 2(a+bx)^{\frac{1}{2}} b + C.$$

$$\int (a+bx)^{-\frac{1}{2}} dx = \frac{2}{3} (3ab-2a\beta+bbx) (a+bx)^{\frac{1}{2}} b^{\frac{1}{2}} + C.$$

$$\int (a^2-x^2)^{-\frac{1}{2}} dx = \pm \arcsin \frac{x}{a} + C,$$

$$= \mp \arccos \frac{x}{a} + C,$$

$$= 2 \arctan \left(\frac{a+x^3}{a-x}\right)^{\frac{1}{2}} + C.$$

$$\int (a+x^2)^{-\frac{1}{2}} dx = \log \left\{x + (a+x^2)^{\frac{1}{2}} + C, \text{ for } c < 0.$$

$$\int (a+x^2)^{-\frac{1}{2}} dx = \frac{1}{\sqrt{c}} \log \left\{b+cx+(ac+bcx+c^2x^2)^{\frac{1}{2}}\right\} + C, \text{ for } c < 0.$$

$$\int a^x dx = a^x |\log a + C, \qquad \int c^x dx = c^x + C.$$

$$\int (\log x)^n x^{-1} dx = \frac{1}{n+1} (\log x)^{n+1} + C.$$

$$\int \sin x dx = -\cos x + C, \qquad \int \cos x dx = \sin x + C.$$

$$\int \sin x dx = -\log \cos x + C, \qquad \int \cot x dx = \log \sin x + C.$$

$$\int \frac{dx}{\sin x} = \log \tan \frac{1}{2} x + C, \qquad \int \frac{dx}{\cos x} = \log \tan \frac{1}{2} (x + \frac{1}{2} \pi) + C.$$

$$\int \frac{dx}{\sin^2 x} = -\cot x + C, \qquad \int \frac{dx}{\cos^2 x} = \tan x + C.$$

$$\int e^{xx} \sin bx dx = \frac{a \sin bx - b \cos bx}{a^2 + b^2} e^{xx} + C.$$

$$\int \arctan x dx = x \arcsin x dx = x \arcsin x \pm (1-x^2)^{\frac{1}{2}} + C.$$

$$\int \arctan x dx = x \arcsin x dx = x \arcsin x \pm (1-x^2)^{\frac{1}{2}} + C.$$

$$\int \arctan x dx = x \arcsin x dx = x \arcsin x \pm (1-x^2)^{\frac{1}{2}} + C.$$

$$\int \arctan x dx = x \arcsin x + C = x \cot x + \frac{1}{2} \log (1+x^2) + C.$$

$$\int \arctan x dx = x \arctan x - \frac{1}{2} \log (1+x^2) + C.$$

$$\int \arctan x dx = x \arctan x - \frac{1}{2} \log (1+x^2) + C.$$

$$\int \arctan x dx = x \arctan x - \frac{1}{2} \log (1+x^2) + C.$$

b. Definite Integration.

$$\int_{a}^{n} \phi(x) dx = \int_{a}^{b} \phi(x) dx + \int_{b}^{c} \phi(x) dx + \dots \int_{m}^{n} \phi(x) dx.$$

$$\int_{a}^{b} \phi(x) dx = -\int_{b}^{a} \phi(x) dx.$$

$$\int_{a}^{a} \phi(x) dx = \int_{a}^{a} \phi(x) dx.$$

If $\phi(x) = \phi(-x)$, an "even function" of x,

$$\int_{0}^{a} \phi(x) dx = \int_{-a}^{0} \phi(x) dx = \frac{1}{2} \int_{-a}^{a} \phi(x) dx.$$

If $\phi(x) = -\phi(-x)$, an "odd function" of x,

$$\int_{-a}^{\circ} \phi(x) dx = \int_{\circ}^{a} \phi(x) dx, \text{ and } \int_{-a}^{+a} \phi(x) dx = 0.$$

If A be the greatest and B the least value of $\phi(x)$ within the limits a and b,

$$A(b-a) > \int_{a}^{b} \phi(x) dx > B(b-a),$$

a formula useful in determining approximate values of integrals. See, e. g., section 6, d.

If
$$u = \int_{a}^{b} \phi(x) dx$$
,
$$\frac{du}{da} = -\phi(a), \qquad \frac{du}{db} = \phi(b).$$

$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{2}\pi.$$

$$\int_{0}^{I} \frac{dx}{1+x^{2}} = \int_{I}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{4}\pi.$$

$$\int_{0}^{\infty} \frac{dx}{1+bx^{2}} = \frac{1}{2}\pi/\sqrt{ab}, \qquad \int_{0}^{a} \frac{dx}{\sqrt{a^{2}-x^{2}}} = \frac{1}{2}\pi.$$

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi}, \qquad \int_{0}^{\infty} e^{-a^{2}x^{3}} dx = \frac{1}{2} \sqrt{(\pi/a^{2})}.$$

$$\int_{0}^{\infty} e^{-a^{2}x^{2}} x^{2n} dx = 1 \cdot 3 \cdot 5 \dots (2 \ n-1) \ a^{-n} (2 \ a)^{-(n+1)} \sqrt{\pi}.$$

$$\int_{0}^{\infty} e^{-ax} x^{-\frac{1}{2}} dx = \sqrt{(\pi/a)}.$$

$$\int_{0}^{\infty} \sin mx \sin nx \ dx = \int_{0}^{\infty} \cos mx \cos nx \ dx = 0.$$

when m and n are unequal integers.

$$\int_{0}^{\pi} \sin mx \cos nx \, dx = \frac{2 \, m}{m^2 - n^2} \quad \text{for } m \text{ and } n \text{ integers and } m - n \text{ odd,}$$

$$= 0, \text{ for } m \text{ and } n \text{ integers and } m - n \text{ even.}$$

$$\int_{0}^{\pi} \sin^{2} mx \, dx = \int_{0}^{\pi} \cos^{2} mx \, dx = \frac{1}{2} \pi, \text{ for } m \text{ an integer.}$$

$$\int_{0}^{\frac{1}{2}\pi} \sin^{n} x \, dx = \int_{0}^{\frac{1}{2}\pi} \cos^{n} x \, dx = \int_{0}^{\pi} (1 - x^{2})^{\frac{1}{2}(n-1)} \, dx.$$

$$\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} \, dx = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} \sin x^{2} \, dx = \int_{0}^{\infty} \cos x^{2} \, dx = \frac{1}{2} \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} e^{-a^{2}x^{2}} \cos 2bx \, dx = \frac{1}{2} e^{-(b/a)^{2}} \sqrt{(\pi/a)}.$$

$$\int_{0}^{\infty} e^{-a^{2}x^{2}} \sin 2bx \, dx = 0.$$

MENSURATION.

I. LINES.

a. In a circle.

r =radius of circle,

c = length of any chord,

s =arc subtended by c,

a =angle corresponding to s,

h = height of arc s above c, or perpendicular distance from middle point of arc to chord.

Circumference =
$$2 \pi r$$
,
 $\pi = 3.14 \cdot 159 \cdot 265$, $\log \pi = 0.49 \cdot 714 \cdot 987$,
 $2 \pi = 6.28 \cdot 318 \cdot 531$, $\log 2 \pi = 0.79 \cdot 817 \cdot 987$.
 $c = 2 r \sin \frac{1}{2} a$, $s = ra$.

Length of perpendicular from center on chord

b. In regular polygon.

r = radius of inscribed circle,

R =radius of circumscribed circle,

n = number of sides,

s =length of any side,

 $\beta =$ angle subtended by s,

p = perimeter of polygon.

$$\beta = 360^{\circ}/n,$$

 $s = 2 r \tan \frac{1}{2} \beta = 2 R \sin \frac{1}{2} \beta,$
 $p = n s = 2 n r \tan \frac{1}{2} \beta = 2 n R \sin \frac{1}{2} \beta.$

See table under c, below.

c. In ellipse.

$$a = \text{semi-axis major,}$$

$$b = \text{semi-axis minor,}$$

$$e = \text{eccentricity} = (\mathbf{1} - b^2/a^2)^{\frac{1}{2}},$$

$$P = \text{perimeter of ellipse,}$$

$$n = (a - b)/(a + b)$$

$$= \frac{\mathbf{1} - \sqrt{\mathbf{1} - e^2}}{\mathbf{1} + \sqrt{\mathbf{1} - e^2}} = \frac{e^2}{4} + \frac{e^4}{8} + \frac{5}{64} + \cdots$$

Distance from centre to focus = a e, Distance from focus to extremity of major axis = a (i - e), Distance from focus to extremity of minor axis = a.

$$P = \pi (a + b) (1 + \frac{1}{4} n^2 + \frac{1}{16} n^4 + \frac{1}{256} n^6 + \dots)$$

$$= \pi (a + b) q, \text{ say, where } q \text{ stands for the series in } n. \text{ The values of } q \text{ corresponding to a few values of } n \text{ are } :-$$

n	q	n	<i>q</i> .
o	1.0000	0.5	1.0635
0.1	1.0025	0.6	1.0922
0.2	1.0100	0.7	1.1267
0.3	1.0226	0.8	1.1677
0.4	1.0404	0.9	1.2155
		1.0	1.2732

2. Areas.

a. Area of plane triangle.

(See table on p. xix.)

b. Area of Trapezoid.

 b_1 = upper base of trapezoid,

 b_2 = lower base of trapezoid,

a = altitude of trapezoid, or perpendicular distance between bases.

Area =
$$\frac{1}{2}(b_1 + b_2) a$$
.

c. Area of regular polygon.

A = area,

r, R = radii of inscribed and circumscribed circles,

s =length of any side,

n = number of sides,

 β = angle subtended by $s = 360^{\circ}/n$.

 $A = n r^2 \tan \frac{1}{2} \beta = \frac{1}{2} n R^2 \sin \beta = \frac{1}{4} n s^2 \cot \frac{1}{2} \beta$.

TABLE OF VALUES.

n	β	A	A	R	s
3	120°	0.4330 s²	1.2990 R ²	0.5774 s	1.7321 R
4	90	1.0000	2.0000	0.7071	1.4142
5	72	1.7205	2.3776	0.8507	1.1756
6	60	2.5981	2.5981	1.0000	1.0000
7	513	3.6339	2.7364	1.1524	0.8678
8	45	. 5.8284	2.8284	1.3066	0.7654
9	40	6.1818	2.8925	1.4619	0.6840
10	36	7.6942	2.9389	1.6180	0.6180
11	3231	9.3656	2.9735	1.7747	0.5635
12	30	11.1962	3.0000	1.9319	0.5176
13	28 ₁₃	13.1858	3.0207	2.0893	0.4786
14	255	15.3345	3.0372	2.2470	0.4450
15	24	17.6424	3.0505	2.4049	0.4158
16	22 1 2	20.1094	3.0615	2.5629	0.3902

d. Area of circle, circular annulus, etc.

r = radius of circle,

d = diameter,

 α = angle of any sector,

 r_1 , r_2 = smaller and greater radii of an annulus.

Area of circle
$$= \pi r^2 = \frac{1}{4} \pi d^2$$
,
 $\pi = 3.14159265$, $\log \pi = 0.49714987$.

Area of sector $= a r^2$, for a in arc, $= \pi r^2 (a/360)$, for a in degrees.

Area of annulus = $\pi (r_2^2 - r_1^2)$.

e. Area of ellipse.

a, b = semi axes respectively

$$e =$$
 eccentricity = $(a^2 - b^2)^{\frac{1}{2}}/a$
= $\{(a + b) (a - b)\}^{\frac{1}{2}}/a$.

Area of ellipse
$$= \pi \ a \ b$$
,
 $= \pi \ a^2 \sqrt{1 - e^2}$,
 $= \pi \ a^2 \cos \phi$, if $e = \sin \phi$.

f. Surface of sphere, etc.

r = radius of sphere,

 ϕ_1 , ϕ_2 = latitudes of parallels bounding a zone, ϵ = spherical excess of a spherical triangle

= sum of spherical angles less 180°,

Total surface = $4 \pi r^2$.

Surface of zone =
$$2 \pi r^2 (\sin \phi_2 - \sin \phi_1)$$
,
= $4 \pi r^2 \cos \frac{1}{2} (\phi_2 + \phi_1) \sin \frac{1}{2} (\phi_2 - \phi_1)$.

Surface of spherical triangle
$$= r^2 \epsilon$$
, for ϵ in arc,
 $= r^2 \epsilon/\rho''$, for ϵ in seconds,
 $\rho'' = 206\ 264.8''$, $\log \rho'' = 5.31\ 442\ 513$.

g. Surface of right cylinder.

r = radius of bases of cylinder, h = altitude of cylinder.

Area cylindrical surface = $2 \pi r h$.

Total surface =
$$2 \pi r (r + h)$$
.

h. Surface of right cone.

r = radius of base, h = altitude, s = slant height.

Conical surface $= \pi r s = \pi r (h^2 + r^2)^{\frac{1}{2}}$, Total surface $= \pi r (s + r)$.

i. Surface of spheroid.

a, b = semi axes, $e = \text{eccentricity} = \{(a + b) (a - b)\}^{\frac{1}{2}}/a$.

Surface of oblate spheroid =
$$2 \pi a^2 \left\{ 1 + \frac{1 - e^2}{2 e} \log \left(\frac{1 + e}{1 - e} \right) \right\}^*$$

= $4 \pi a^2 \left(1 - \frac{1}{3} e^2 - \frac{1}{15} e^4 - \frac{1}{35} e^6 - \dots \right)$.

Surface of prolate spheroid =
$$2 \pi a b \left\{ (1 - e^2)^{\frac{1}{6}} + \frac{\arcsin e}{e} \right\}$$

= $4 \pi a b \left(1 - \frac{1}{6} e^2 - \frac{1}{40} e^4 - \frac{1}{12} e^6 - \dots \right)$.

^{*} The logarithm in this formula refers to the natural or "Napierian" system. For areas of zones and quadrilaterals of an oblate spheroid, see pp. l-lii.

3. Volumes.

a. Volume of prism.

A = area of base, h = altitude, V = volume.

$$V = A h$$
.

For an oblique triangular prism whose edges a, b, c are inclined at an angle a to the base,

$$V = \frac{1}{3} (a + b + c) A \sin a$$
.

b. Volume of pyramid.

A = area of base, h = altitude, V = volume.

$$V = \frac{1}{3} A h$$
.

For a truncated pyramid whose parallel upper and lower bases have areas A_1 and A_2 respectively and whose distance apart is h,

$$V = \frac{1}{3} h (A_2 + \sqrt{A_2 A_1} + A_1).$$

The volume of a wedge and obelisk may be expressed by means of the volumes of pyramids and prisms.

c. Volume of right circular cylinder.

 $r = \text{radius of base}, \quad h = \text{altitude}, \quad V = \text{volume}.$

$$V = \pi r^2 h$$
.

$$\pi = 3.14159265$$
, $\log \pi = 0.49714987$.

For an obliquely truncated cylinder (having a circular base) whose shortest and longest elements are h_1 and h_2 respectively,

$$V = \frac{1}{2} \pi r^2 (h_2 + h_1).$$

For a hollow cylinder the radii of whose inner and outer surfaces are r_1 and r_2 respectively, and whose altitude is h,

$$V = \pi h (r_2^2 - r_1^2)$$

d. Volume of right cone with circular base.

 $r = \text{radius of base}, \quad h = \text{altitude}, \quad V = \text{volume}.$

$$V = \frac{1}{3} \pi r^2 h$$
.

For a right truncated cone the radii of whose upper and lower parallel bases are r_1 and r_2 respectively, and whose altitude is h,

$$V = \frac{1}{3} \pi h (r_2^2 + r_2 r_1 + r_1^2).$$

e. Volume of sphere and spherical segments.

r = radius of sphere, h = altitude of segment, V = volume.

For the entire sphere

$$V = \frac{4}{3} \pi r^3 = 4.1888 r^3$$
 approximately.
(For π and $\log \pi$ see c above.)

For a spherical segment of height h

$$V = \pi h^2 (r - \frac{1}{3} h).$$

For a zone, or difference in volume of two segments whose altitudes are h_1 and h_2 respectively

$$V = \pi r (h_2^2 - h_1^2) - \frac{1}{3} \pi (h_2^3 - h_1^3)$$

= $\frac{1}{6} \pi \Delta h (3 r_2^2 + 3 r_1^2 + \Delta h^2),$

where r_1 and r_2 are the radii of the bases of the zone and $\Delta h = h_2 - h_1$.

f. Volume of ellipsoid.

$$a, b, c =$$
 semi axes, $V =$ volume.

$$V = \frac{4}{3} \pi a b c$$
.

For an ellipsoid of revolution about

the a-axis,
$$V = \frac{4}{3} \pi a b^2$$
,
the b-axis, $V = \frac{4}{3} \pi a^2 b$.

UNITS.

I. STANDARDS OF LENGTH AND MASS.

THE only systems of units used extensively at the present day are the British and metric. The fundamental units in these systems are those of time, length, and mass. From these all other units are derived. The unit of time, the mean solar second, is common to both systems.

The standard unit of length in the British system is the Imperial Yard, which is defined to be the distance between two marks on a metallic bar, kept in the Tower of London, when the temperature of the bar is 62° F.

The standard unit of mass in the British system is the Imperial Pound Avoirdupois. It is a cylindrical mass of platinum marked "P. S. 1844, 1 lb.," preserved in the office of the Exchequer at Westminster.

In the metric system the standard unit of length is the Metre, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

The standard of mass in the metric system is the Kilogramme, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

Both systems of units have been legalized by the United States. Virtually, however, the material standards of length and mass of the United States are certain Prototype Metres and certain Prototype Kilogrammes. The present status of the two systems of units so far as it relates to the United States is set forth in the following statement from the Superintendent of Standard Weights and Measures, bearing the date April 5, 1893.

Fundamental Standards of Length and Mass.*

"While the Constitution of the United States authorizes Congress to 'fix the standard of weights and measures,' this power has never been definitely exercised, and but little legislation has been enacted upon the subject. Washington regarded the matter of sufficient importance to justify a special reference to it in his first annual message to Congress (January, 1790), and Jefferson, while Secretary of State, prepared a report at the request of the House of Representatives, in which he proposed (July, 1790) 'to reduce every branch to the decimal ratio already established for coins, and thus bring the calculation of the principal affairs of life within the arithmetic of every man who can multiply and divide.' The consideration of the subject being again urged by Washington, a committee

^{*} Bulletin 26, U. S. Coast and Geodetic Survey. Washington: Government Printing Office, 1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geodetic Survey.

UNITS. XXXV

of Congress reported in favor of Jefferson's plan, but no legislation followed. In the mean time the executive branch of the Government found it necessary to procure standards for use in the collection of revenue and other operations in which weights and measures were required, and the Troughton 82-inch brass scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilogramme and metre, by Gallatin, in 1821, and a Troy pound from London in 1827, also by Gallatin. In 1828 the latter was, by act of Congress, made the standard of mass for the Mint of the United States, and although totally unfit for such purpose it has since remained the standard for coinage purposes.

mass. At the same time the Department adopted the wine gallon of 231 cubic inches for liquid measure and the Winchester bushel of 2 150.42 cubic inches for dry measure. In 1836 the Secretary of the Treasury of the Treasury was authorized to cause a comparison to be made of the standards of weight and measure used at the principal custom-houses, as a result of which large discrepancies were disclosed in the weights and measures in use. The Treasury Department, being obliged to execute the constitutional provision that all duties, imposts, and excises shall be uniform throughout the United States, adopted the Troughton scale as the standard of length; the avoirdupois pound to be derived from the Troy pound of the Mint as the unit of mass. At the same time the Department adopted the wine gallon of 231 cubic inches for liquid measure and the Winchester bushel of 2 150.42 cubic inches for dry measure. In 1836 the Secretary of the Treasury was authorized to cause a complete set of all weights and measures, adopted as standards by the Department for the use of custom-houses and for other purposes, to be delivered to the Governor of each State in the Union for the use of the States respectively, the object being to encourage uniformity of weights and measures throughout the Union. At this time several States had adopted standards differing from those used in the Treasury Department, but after a time these were rejected, and finally nearly all the States formally adopted by act of legislature the standards which had been put in their hands by the National Government. Thus a good degree of uniformity was secured, although Congress had not adopted a standard of mass or of length other than for coinage purposes as already described.

"The next and in many respects the most important legislation upon the subject was the Act of July 28, 1866, making the use of the metric system lawful throughout the United States, and defining the weights and measures in common use in terms of the units of this system. This was the first *general* legislation upon the subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country.

subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country.

"In 1875 an International Metric Convention was agreed upon by seventeen governments, including the United States, at which it was undertaken to establish and maintain at common expense a permanent International Bureau of Weights and Measures, the first object of which should be the preparation of a new international standard metre and a new international standard kilogramme, copies of which should be made for distribution among the contributing governments. Since the organization of the Bureau, the United States has regularly contributed to its support, and in 1889 the copies of the new international prototypes were ready for distribution. This was effected by lot, and the United States received metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilogrammes are made from the same material, which is an alloy of platinum with ten per cent of iridium.

xxxvi Units.

"On January 2, 1890, the seals which had been placed on metre No. 27 and kilogramme No. 20, at the International Bureau of Weights and Measures near Paris, were broken in the Cabinet room of the Executive Mansion by the President of the United States, in the presence of the Secretary of State and the Secretary of the Treasury, together with a number of invited guests. They were thus adopted as the National Prototype Metre and Kilogramme.

"The Troughton scale, which in the early part of the century had been tentatively adopted as a standard of length, has long been recognized as quite unsuitable for such use, owing to its faulty construction and the inferiority of its graduation. For many years, in standardizing length measures, recourse to copies of the imperial yard of Great Britain had been necessary, and to the copies of the metre of the archives in the Office of Weights and Measures. The standard of mass originally selected was likewise unfit for use for similar reasons, and had been practically ignored.

"The recent receipt of the very accurate copies of the International Metric Standards, which are constructed in accord with the most advanced conceptions of modern metrology, enables comparisons to be made directly with those standards, as the equations of the National Prototypes are accurately known. It has seemed, therefore, that greater stability in weights and measures, as well as much higher accuracy in their comparison, can be secured by accepting the international prototypes as the fundamental standards of length and mass. It was doubtless the intention of Congress that this should be done when the International Metric Convention was entered into in 1875; otherwise there would be nothing gained from the annual contributions to its support which the Government has constantly made. Such action will also have the great advantage of putting us in direct relation in our weights and measures with all civilized nations, most of which have adopted the metric system for exclusive use. The practical effect upon our customary weights and measures is, of course, nothing. The most careful study of the relation of the yard and the metre has failed thus far to show that the relation as defined by Congress in the Act of 1866 is in error. pound as there defined, in its relation to the kilogramme, differs from the imperial pound of Great Britain by not more than one part in one hundred thousand, an error, if it be so called, which utterly vanishes in comparison with the allowances in all ordinary transactions. Only the most refined scientific research will demand a closer approximation, and in scientific work the kilogramme itself is now universally used, both in this country and in England.*

* Note. — Reference to the Act of 1866 results in the establishment of the following: -

Equations.

1 yard =
$$\frac{3600}{3937}$$
 metre.

1 pound avoirdupois = $\frac{1}{2.2046}$ kilo.

A more precise value of the English pound avoirdupois is $\frac{1}{2\cdot 20462}$ kilo., differing from the above by about one part in one hundred thousand, but the equation established by law is sufficiently accurate for all ordinary conversions.

As already stated, in work of high precision the kilogramme is now all but universally used, and no conversion is required.

UNITS. XXXVII

"In view of these facts, and the absence of any material normal standards of customary weights and measures, the Office of Weights and Measures, with the approval of the Secretary of the Treasury, will in the future regard the International Prototype Metre and Kilogramme as fundamental standards, and the customary units, the yard and the pound, will be derived therefrom in accordance with the Act of July 28, 1866. Indeed, this course has been practically forced upon this office for several years, but it is considered desirable to make this formal announcement for the information of all interested in the science of metrology or in measurements of precision.

T. C. MENDENHALL, Superintendent of Standard Weights and Measures.

"Approved:

J. G. CARLISLE,

Secretary of the Treasury.

April 5, 1893."

No ratios of the yard to the metre and of the pound to the kilogramme have as yet been adopted by international agreement; but precise values of these ratios will doubtless be determined and adopted within a few years by the International Bureau of Weights and Measures. In the mean time, it will suffice for most purposes to use the values of the ratios adopted provisionally by the Office of Standard Weights and Measures of the United States. These values are—

1 yard = 3539 metres, or 1 metre = 3237 yards,
1 pound = \frac{12822}{28228} kilogrammes, or 1 kilogramme = \frac{28848}{28848} pounds.

These ratios were legalized by Act of Congress in 1866. Expressed decimally these values are *—

1 yard = 0.914 402 metres, 1 metre = 1.093 611 yards, 1 pound = 0.45 359 kilogrammes, 1 kilogramme = 2.20 462 pounds.

The above values of the relations of the standards of the British and Metric systems of units are adopted in this work. Tables 1 and 2 give the equivalents of multiples of the standard units and also equivalents of multiples of the derived units of surface and volume. These tables are published by the Office of Standard Weights and Measures of the United States, and are here republished by permission of the Superintendent of that Office.

2. British Measures and Weights.

a. Linear measures.

The unit of linear measure is the yard. Its principal sub-multiples and multiples are the inch; the foot; the rod, perch, or pole; the furlong; and the mile. The following table exhibits the relations among these measures:—

* The actual error of the relation of the yard to the metre may be as great as 1/200 000th part, and the actual error of the relation of the pound to the kilogramme as great as 1/100 000th part.

xxxviii units.

Inches.	Feet.	Yards.	Rods.	Furlongs.	Miles.	
1	0.083	0.028	0.00505	0.00012626	0.0000157828	
12	ı.	0.333	0.06060	0.00151515	0.00018939	
36	3.	1.	0.1818	0.004545	0.00056818	
198	16.5	5.5	ı.	0.025	0.003125	
7920	660.	220.	40.	1.	0.125	
63360	5280.	1760.	320.	8.	ı.	

Other measures are the -

Surveyor's or Gunter's chain = 4 rods = 66 feet = 100 links of 7.92 inches each.

Fathom = 6 feet; Cable length = 120 fathoms.

Hand = 4 inches; Palm = 3 inches; Span = 9 inches.

b. Surface or square measures.

The unit of square measure is the square yard. Its relations to the principal derived units in use are shown in the following table:—

Sq. feet.	Sq. yards.	Sq. rods.	Roods.	Acres.	Sq. miles.
ı.	0.1111	0.00367309	0.000091827	0.000022957	
9. 272.25	30.25	0.0330579 1.	0.025	0.00625	
10890.	1210.	40.	I.	0.25	
43560.	4840.	160.	4.	I.	
27878400	3097600.	102400.	2560.	640.	I.

c. Measures of capacity.

The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). The units of capacity for liquid measure are the British gallon (of 277.3 cubic inches about) and the wine gallon (of 231 cubic inches, nominally). The latter gallon is most commonly used in the United States. The following table shows the relations of the sub-multiples and multiples of the bushel and gallon:—

Dry Meas	ares.	Liquids.	
Pint	$=\frac{1}{64}$ bushel	Gill	$=\frac{1}{32}$ gall.
Quart = 2 pints	$=\frac{1}{32}$ "	Pint = 4 gills	= 1 "
Peck = 8 quarts	= 1 "	Quart = 2 pints	= } "
Bushel = 4 pecks	= ı "	Gallon = 4 quarts	= ı "
		Barrel = 31½ gallons	$=31\frac{1}{2}$ "
		Hhd. = 2 barrels	=63 "
		II	

Besides the above measures of capacity the following volumetric units are used: —

Cubic foot = 1728 cubic inches.

Cubic yard = 27 cubic feet = 46656 cubic inches.

Board-measure foot = 1 square foot $\times 1$ inch thickness = 144 cubic inches.

Perch (of masonry) = 1 perch (16.5 feet) length \times 1 foot height \times 1.5 feet thickness = 24.75 cubic feet; 25 cubic feet are commonly called a perch for convenience.

Cord (of wood) = 8 feet length \times 4 feet breadth \times 4 feet height. = 128 cubic feet.

d. Measures of weight.

The unit of weight is the avoirdupois pound. One 7000th part of this is called a grain, and 5760 such grains make the troy pound. The sub-multiples and multiples of these two pounds are exhibited in the following table:—

	Avoirdupois.				Troy.		
Dram		=	216 lb.	Grain		= 5	760 lb.
Ounce	= 16 drs.	=	16 "	Pennyweig	ght == 24 grs.	=	240 "
Pound	= 16 ozs.	=	ı "	Ounce	= 20 dwt.	=	12 "
Quarter	== 28 lbs.	=	28 "	Pound	= 12 ozs.	=	ı "
Hundred-w	t. = 4 qrs.	=	112 "				
Long ton	== 20 cwt.	= 2	240 "				
Short ton	=	= 2	000 "				

3. METRIC MEASURES AND WEIGHTS.

As explained in section r above, the standards of length and mass in the metric system are the metre and the kilogramme. Two material representatives of each of these standards are possessed by the United States and preserved at the Office of Standard Weights and Measures at Washington, D. C.

The standards of length are Prototype Metres Nos. 21 and 27. These are platinum iridium bars of X cross section, and their lengths are defined by lines ruled on their neutral surfaces. Their lengths at any temperature t Centigrade are given by the following equations:—

Prototype No. 21 =
$$1^m + 2.45 + 8.4665 t + 0.400 100 t^2$$
,
Prototype No. 27 = $1^m - 1.46 + 8.4657 t + 0.400 100 t^2$,

where the symbol μ stands for one micron, or one millionth of a metre. The probable errors of these Prototypes may be taken as not exceeding \pm 0. μ 2, or 1/5 000 000th of a metre for temperatures between 0° and 30° C.

The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are cylindrical masses of platinum iridium. Their masses and volumes are given by the following equations:—

Mass. Volume. Prototype Kilogramme No.
$$4 = r^{kg} - o.^{mg}o75$$
, $46.^{ml}418$, Prototype Kilogramme No. $2o = r^{kg} - o.^{mg}o39$, $46.^{ml}402$,

where the ---

Symbol kg stands for one kilogramme, Symbol mg stands for one milligramme = $0.^{kg}$ 000001, Symbol ml stands for one millilitre = one cubic centimetre.

The definitive probable error assigned to the Prototype Kilogrammes by the International Bureau is $\pm 0.^{mg}$ 002, or 1/500000 000th of a kilogramme.

The act of Congress approved July 28, 1866, authorizing the use of the metric system in the United States, provides that the tables in a schedule annexed shall be recognized "as establishing, in terms of the weights and measures now in use in the United States, the equivalents of the weights and measures expressed therein in terms of the metric system; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system." The following copy of that schedule gives the denominations of the multiples and sub-multiples of the measures of length, surface, capacity, and weight in the metric system as well as their legalized equivalents in British units.

Schedule annexed to Act of July 28, 1866.

Measures of Length.

Metric Denominations.											Values in Metres.	Equivalents in Denominations in Use
Myriametre Kilometre .											10000	6.2137 miles. o.62137 mile, or 3280 feet and 10 inches.
Hectometre											100.	328 feet and r inch.
Decametre .											10.	393.7 inches.
Metre											1.	39-37 inches.
Decimetre .											0.1	3.937 inches.
Centimetre .											10.0	0.3937 inch.
Millimetre .											100.0	0.0394 inch.

Measures of Surface.

Metric Denominations.											Values in Square Metres.	Equivalents in Denominations in Use.				
Hectare . Are Centare .							:								10000 100 1	2.471 acres. 119.6 square yards. 1550 square inches.

Measures of Capacity.

Metric Den	ominations a	nd Values.	Equivalents in Denominations in Use.			
Names.	No. of Litres.	Cubic Measure.	Dry Measure.	Liquid or Wine Measure.		
Kilolitre or stere . Hectolitre	1000. 100, 10. 1. 0.1 0.01 0.001	r cubic metre	1.308 cubic yards 2 bus. and 3.35 pks. 9.08 quarts 0.908 quart 6.1022 cubic inches 0.6102 cubic inch 0.061 cubic inch	264-17 gallons. 26-417 gallons. 2.6417 gallons. 1.0567 quarts. 0.845 gill. 0.338 fluid-ounce. 0.27 fluid-drachm.		

Measures of Weight.

Metric	Equivalents in Denominations in Use.		
Names.	Number of Grammes.	Weight of what Quantity of Water at Maximum Density.	Avoirdupois Weight.
Millier or tonneau Quintal Myriagramme Kilogramme, or kilo Hectogramme Decagramme Gramme Decigramme Centigramme Milligramme	100000. 10000. 1000. 1000. 100. 10. 1. 0.1 0.01	1 cubic metre	2204.6 pounds. 220.46 pounds. 22.046 pounds. 2.2046 pounds. 3.5274 ounces. 0.3527 ounce. 15.432 grains. 1.5432 grains. 0.1543 grain.

xlii Units.

4. The C. G. S. System of Units.

The C. G. S. system of units is a metric system in which the fundamental units are the centimetre, the gramme, and the mean solar second. It is the system now generally used for the expression of physical quantities.

The most important of the derived units in the C. G. S. system, their equivalents in terms of ordinary units, and their dimensions in terms of the fundamental units of length, mass, and time, are given in the Appendix to this volume.

For an elaborate consideration of the subject of units and their interrelations the reader may be referred to "Units and Physical Constants," by J. D. Everett, London, Macmillan & Co., 12mo, 4th ed., 1891.

GEODESY.

1. FORM OF THE EARTH. THE EARTH'S SPHEROID. THE GEOID.

The shape of the earth is defined essentially by the sea surface, which embraces about three fourths of the entire surface. The sea surface is an equipotential surface due to the attraction of the earth's mass and to the centrifugal force of its rotation. We may imagine this surface to extend through the continents, and thus to be continuous. Its position at any continental point is the height at which water would stand if a canal connected the point with the ocean.

Geodetic measurements show that this surface is represented very closely by an oblate spheroid, whose shorter axis coincides with the rotation axis of the earth. This is called the earth's spheroid: The actual sea surface, on the other hand, is called the geoid. With respect to the spheroid the geoid is a wavy surface lying partly above and partly below; but the extent of the divergence of the two surfaces is probably confined to a few hundred feet.

2. Adopted Dimensions of Earth's Spheroid.

The dimensions of the earth's spheroid here adopted are those of General A. R. Clarke, published in 1866, to wit:—

Semi major axis, a = 20926062 English feet. Semi minor axis, b = 20855121 ""

3. Auxiliary Quantities.

The following quantities are of frequent use in geodetic formulas: -

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}, \text{ the eccentricity of generating ellipse,}$$

$$f = \frac{a - b}{a}, \text{ the flattening, ellipticity, or compression,}$$

$$n = \frac{a - b}{a + b}.$$

$$b = a\sqrt{1 - e^2} = a(1 - f) = a\frac{1 - n}{1 + n}.$$

$$e^2 = 2f - f^2.$$

$$f = 1 - \sqrt{1 - e^2} = \frac{e^2}{2} + \frac{e^4}{8} + \frac{e^6}{16} + \frac{5}{128} + \dots$$

$$= \frac{2n}{1 + n} = 2(n - n^2 + n^3 - n^4 + \dots).$$

xliv Geodesy.

$$n = \frac{f}{2-f} = (\frac{1}{2}f) + (\frac{1}{2}f)^2 + (\frac{1}{2}f)^3 + (\frac{1}{2}f)^4 + \dots$$

$$e^2 = \frac{4^n}{(1+n)^2} = 4 (n-2^n)^2 + 3^n - 4^n + \dots$$

$$m = \frac{e^2}{2-e^2} = \frac{e^2}{2} + \frac{e^4}{4} + \frac{e^6}{8} + \frac{e^8}{16} + \dots$$

$$n = \frac{1-\sqrt{1-e^2}}{1+\sqrt{1-e^2}} = \frac{e^2}{4} + \frac{e^4}{8} + \frac{5^6}{64} + \frac{7^6}{128} + \dots$$

The numerical values of the most useful of these quantities and their logarithms are —

	log
a = 20926 062 feet,	7.3206875,
b = 20855121 feet,	7.3192127,
e^2 = 0.00676866,	7.8305030 — 10,
m = 0.00339583,	7.5309454 — 10,
n = 0.00169792,	7.2299162 — 10.

4. Equations to Generating Ellipse of Spheroid.

With the origin at the centre of the ellipse, and with its axes as coördinate axes, the equation in Cartesian co-ordinates is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,\tag{1}$$

a and b being the major and minor axes respectively, and x and y being parallel to those axes respectively.

For many purposes it is useful to replace equation (1) by the two following:—

$$\begin{aligned}
 x &= a \cos \theta, \\
 y &= b \sin \theta,
 \end{aligned}
 \tag{2}$$

which give (1) by the elimination of θ . This angle is called the reduced latitude. See section 5.

5. Latitudes used in Geodesy.

Three different latitudes are used in geodesy, namely: (1) Astronomical or geographical latitude; (2) geocentric latitude; (3) reduced latitude. The astronomical latitude of a place is the angle between the normal (or plumb line) at that place and the plane of the earth's equator; or when the plumb line at the place coincides with the normal to the generating ellipse, it is the angle between that normal and the major axis of the ellipse. The geocentric latitude of a place is the angle between the equator and a line drawn from the place to the earth's centre; or it is the angle between the radius-vector of the place and the equator. The reduced latitude is defined by equations (2) in section 4 above. The geometrical relations of these different latitudes are shown in Fig. 1 by the notation given below.

In order to express the analytical relations between the different latitudes let

 ϕ = the astronomical latitude, ψ = the geocentric latitude,

 θ = the reduced latitude.

Then, referring to equations (1) and (2) under section 4 above, and to Fig. 1, it appears that

$$\tan \phi = -\frac{dx}{dy} = +\frac{a^2y}{b^2x},$$

$$\tan \phi = \frac{y}{x}, \quad \tan \theta = \frac{ay}{bx}.$$

Hence

$$\tan \psi = \frac{b^2}{a^2} \tan \phi = (1 - e^2) \tan \phi,$$

$$\tan \theta = (1 - e^2)^{\frac{1}{2}} \tan \phi = (1 - e^2)^{-\frac{1}{2}} \tan \psi.$$

$$\phi - \psi = m \sin 2 \phi - m^2 \sin 4 \phi + \dots,$$

$$\phi - \theta = n \sin 2 \phi - \frac{1}{2} n^2 \sin 4 \phi + \dots$$

For the adopted spheroid

$$\log (1 - e^2) = 9.9970504$$

and

$$\phi - \psi$$
 (in seconds) = 700."44 sin 2 $\phi - 1$."19 sin 4 ϕ , $\phi - \theta$ (in seconds) = 350."22 sin 2 $\phi - 0$."30 sin 4 ϕ .

6. RADII OF CURVATURE.

 ρ_m = radius of curvature of meridian section of spheroid at any point whose latitude is $\phi = PO$, Fig. 1,

 ρ_n = radius of curvature of normal section perpendicular to the meridian at the same point = PQ, Fig. 1,

 $\rho_a = \text{radius of curvature of normal section making angle } a \text{ with the meridian at same point.}$

$$\rho_{m} = a (\mathbf{I} - e^{2}) (\mathbf{I} - e^{2} \sin^{2} \phi)^{-\frac{3}{2}},
\rho_{n} = a (\mathbf{I} - e^{2} \sin^{2} \phi)^{-\frac{1}{2}},
\frac{\mathbf{I}}{\rho_{a}} = \frac{\cos^{2} a}{\rho_{m}} + \frac{\sin^{2} a}{\rho_{n}}
= \frac{\mathbf{I}}{a} (\mathbf{I} + \frac{e^{2}}{\mathbf{I} - e^{2}} \cos^{2} \phi \cos^{2} a) (\mathbf{I} - e^{2} \sin^{2} \phi)^{\frac{1}{2}},
\log (\mathbf{I} - e^{2} \sin^{2} \phi)^{-\frac{1}{2}} = + \log (\mathbf{I} + n)
- \mu n \cos 2\phi
+ \frac{1}{2} \mu n^{2} \cos 4\phi
- \frac{1}{3} \mu n^{3} \cos 6\phi$$

 $\mu = \text{modulus of common logarithms and } n$ is same as in section 3. For the adopted spheroid —

Radius of curvature of meridian section ρ_m in feet.

$$\log \rho_m = +7.3199482 - [4.34482] \cos 2\phi + [1.274] \cos 4\phi$$

Radius of curvature of normal section ρ_n in feet.

$$\log \rho_n = + 7.3214243
- [3.86770] \cos 2\phi
+ [0.797] \cos 4\phi
-$$

The numbers in brackets in these formulas are logarithms to be added to the logarithms of cos 2ϕ and cos 4ϕ . The numbers corresponding to the sums of these logarithms will be in units of the seventh decimal place of the first constant. Thus, for $\phi = 0$,

$$\log \rho_n = 7.3214243 - 7373.9 + 6.3 = 7.3206875 = \log a.$$

7. Length of Arcs of Meridians and Parallels of Latitude.

a. Arcs of Meridian.

For the computation of short meridional arcs lying between given parallels of latitude the following simple formulas suffice:

$$\Delta \phi = \phi_2 - \phi_1,
\phi = \frac{1}{2}(\phi_2 + \phi_1),
\Delta M = \rho_m \Delta \phi.$$
(1)

In these, ϕ_1 and ϕ_2 are the latitudes of the ends of the arc, ΔM is the required length, and ρ_m is the meridian radius of curvature for the latitude ϕ of the middle point of the arc. The formula for ΔM implies that $\Delta \phi$ is expressed in parts of the radius. If $\Delta \phi$ is expressed in seconds, minutes, or degrees of arc, the formula becomes -

Meridional distance ΔM in feet.

Meridional distance
$$\Delta M$$
 in feet.
$$\Delta M = \frac{\rho_m \Delta \phi \text{ (in seconds)}}{206264.8},$$

$$= \frac{\rho_m \Delta \phi \text{ (in minutes)}}{3437.747},$$

$$= \frac{\rho_m \Delta \phi \text{ (in degrees)}}{57.29578};$$

$$\log (1/206264.8) = 4.6855749 - 10,$$

$$\log (1/3437.747) = 6.4637261 - 10,$$

 $\log (1/57.29578) = 8.2418774 - 10.$

 ϕ_1 , ϕ_2 = end latitudes of arc, $\Delta \phi = \phi_2 - \phi_1$, $\rho_m =$ meridian radius of curvature for $\phi = \frac{1}{2}(\phi_2 + \phi_1)$; for log ρ_m see Table 10. GEODESY. xlvii

The relations (2) will answer most practical purposes when $\Delta \phi$ does not exceed 5°. A comparison with the precise formula (3) below shows in fact that the error of (2) is very nearly

 $\frac{1}{8}e^2\Delta\phi^2\cos 2\phi \cdot \Delta M$,

which vanishes for $\phi = 45^{\circ}$, and which for $\Delta \phi = 5^{\circ}$ is at most $\frac{1}{155000} \Delta M$, or about 11 feet.

Numerical example. Suppose -

$$\phi_2 = 37^{\circ} 29' 48.''17,$$

 $\phi_1 = 35^{\circ} 48' 29.''89.$

Then

$$\phi = \frac{1}{2}(\phi_2 + \phi_1) = 36^{\circ} 39' \quad 09.''03,
\Delta\phi = \phi_2 - \phi_1 = 1^{\circ} 41' \quad 18.''28,
= 6078.''28.$$

From the first of (2)

cons't. log 4.6855749 — 10
Table 10, log
$$\rho_m$$
 7.3193112
log $\Delta \phi$ 3.7837807
$$\Delta M = 614705 \text{ feet, log } \Delta M$$
 5.7886668

The values of ΔM for intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are given in Table 17 for each degree of latitude from 0° to 90°.

For precise computation of long meridional arcs the following formula is adequate: —

$$\Delta M = A_0 \, \Delta \phi - A_1 \cos 2\phi \sin \Delta \phi$$

$$+ A_2 \cos 4\phi \sin 2\Delta \phi$$

$$- A_3 \cos 6\phi \sin 3\Delta \phi$$

$$+ A_4 \cos 8\phi \sin 4\Delta \phi$$

$$- \dots$$
(3)

In this, ΔM , ϕ , and $\Delta \phi$ have the same meanings as above, and A_0 , A_1 , ... are functions of a and e or of a and n.

Thus, in terms of a and n,

$$A_{0} = a (1 + n)^{-1} (1 + \frac{1}{4} n^{2} + \frac{1}{64} n^{4} + \dots),$$

$$A_{1} = 3a (1 + n)^{-1} (n - \frac{1}{8} n^{8} - \dots),$$

$$A_{2} = \frac{1}{8} a (1 + n)^{-1} (n^{2} - \frac{1}{4} n^{4} - \dots),$$

$$A_{3} = \frac{3}{2} a (1 + n)^{-1} (n^{8} - \dots),$$

$$A_{4} = \frac{3}{2} a (1 + n)^{-1} (n^{4} - \dots).$$

Introducing the adopted values of a and n, these constants become —

log.

$$A_0 = 20 890 606 \text{ feet}, 7.3199510,$$

 $A_1 = 106 411 \text{ feet}, 5.0269880,$
 $A_2 = 113 \text{ feet}, 2.0528,$
 $A_3 = 0.15 \text{ feet}, 9.174 - 10.$

xlviii GEODESY.

It appears, therefore, that the first three terms of (3) will give ΔM with an accuracy considerably surpassing that of the constant A_0 . In the use of (3) it will generally be most convenient to express $\Delta \phi$ in degrees, and in this case A_0 must be divided by the number of degrees in the radius, viz.: 57.2957795 [1.7581226]. Applying this value and writing the logarithms of A_0 , A_1 , etc., in rectangular brackets in place of A_0 , A_1 , etc., (3) becomes

Meridional distance ΔM in feet.

$$\Delta M = \begin{bmatrix} 5.5618284 \end{bmatrix} \Delta \phi \text{ (in degrees)}$$

$$- \begin{bmatrix} 5.0269880 \end{bmatrix} \cos 2\phi \sin \Delta \phi$$

$$+ \begin{bmatrix} 2.0528 \end{bmatrix} \cos 4\phi \sin 2\Delta \phi$$

$$- \dots$$

$$2\phi = \phi_2 + \phi_1, \qquad \Delta \phi = \phi_2 - \phi_1, \qquad \phi_1, \phi_2 = \text{end latitudes of arc.}$$
(4)

Formula (4) will suffice for the calculation of any portion or the whole of a quadrant. The length of a quadrant is the value of the first term of (4) when $\phi = 45^{\circ}$ and $\Delta \phi = 90^{\circ}$, since all of the remaining terms vanish.

Numerical examples. — 1°. Suppose

 $\phi_1 = \circ^{\circ} \text{ and } \phi_2 = 45^{\circ}.$ $2\phi = 45^{\circ},$ $\Delta\phi = 45^{\circ}.$

Then

$$\begin{array}{c} \log \\ \text{cons't} \\ 45 \\ \text{1.6532125} \\ \text{1st term} + 16407443 \text{ feet} \\ \text{1st term} \\ \frac{2}{3} \\ \text{1.6532125} \\ \text$$

The third term of the series vanishes by reason of the factor $\cos 4 \phi = \cos 90^{\circ}$ = 0. The sum of the first two terms, or length of a meridional arc from the equator to the parallel of 45° , is 16354237 feet.

2°. Suppose
$$\phi_1 = 45^\circ$$
 and $\phi_2 = 90^\circ$.
Then $2\phi = 135^\circ$, $\Delta\phi = 45^\circ$.

The numerical values of the terms will be the same as in the previous example, but the sign of the second term will be *plus*. Hence the length of the meridional arc between the parallel of 45° and the adjacent pole is 16 460 649 feet. The sum of these two computed distances, or the length of a quadrant, is 32 814 886 feet.

GEODESY. xlix

This agrees as it should with the length given by (4) when $2\phi = 90^{\circ}$ and $\Delta\phi = 90^{\circ}$.*

b. Arcs of parallel.

The radius of any parallel of latitude is equal to the product of the radius of curvature of the normal section for the same latitude by the cosine of that latitude. That is, see Fig. 1, r being the radius of the parallel—

$$r = \rho_n \cos \phi$$
,

and the entire length of the parallel is -

$$2 \pi r = 2 \pi \rho_n \cos \phi.$$

Designate the portion of a parallel lying between meridians whose longitudes are λ_1 and λ_2 by ΔP , and call the difference of longitude $\lambda_2 - \lambda_1$, $\Delta \lambda$.

Then -

Arc of parallel ΔP in feet.

$$\Delta P = \frac{2 \pi \rho_n \cos \phi}{1296000} \Delta \lambda \text{ (in seconds),}$$

$$= \frac{2 \pi \rho_n \cos \phi}{21600} \Delta \lambda \text{ (in minutes),}$$

$$= \frac{2 \pi \rho_n \cos \phi}{360} \Delta \lambda \text{ (in degrees).}$$
(1)

$$\log (2 \pi/1296000) = 4.6855749 - 10,
\log (2 \pi/21600) = 6.4637261 - 10,
\log (2 \pi/360) = 8.2418774 - 10.$$

 $\lambda_1, \lambda_2 = \text{end longitudes of arc}, \quad \Delta \lambda = \lambda_2 - \lambda_1$

 ρ_n = radius of curvature of normal section for latitude of parallel; for log ρ_n see Table II.

Numerical Example. — Suppose $\phi = 35^{\circ}$, and $\Delta \lambda = 72^{\circ}$. Then from the third of (9)

* The best formula for computing the entire length of a meridian curve is this:

$$\pi (a + b) (1 + \frac{1}{4} n^2 + \frac{1}{64} n^4 + \ldots),$$

in which a, b, and n are the same as defined in section 2. For the values here adopted —

The length of the perimeter of the generating ellipse, or the meridian circumference of the earth, is, therefore —

131 259 550 feet = 24 859.76 miles.

The values of ΔP for intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are given in Table 18 for each degree of latitude from 0° to 90°.

8. Radius-Vector of Earth's Spheroid.

$$\rho = \text{radius-vector}$$

$$= \sqrt{x^2 + y^2}$$

$$= a \left(1 - 2e^2 \sin^2 \phi + e^4 \sin^2 \phi \right)^{\frac{1}{2}} \left(1 - e^2 \sin^2 \phi \right)^{-\frac{1}{2}}.$$

$$\log \rho = \log \frac{a \left(2 - e^2 \right)}{1 + \sqrt{1 - e^2}} + \mu \left(m - n \right) \cos 2\phi$$

$$- \frac{1}{2} \mu \left(m^2 - n^2 \right) \cos 4\phi$$

$$+ \frac{1}{3} \mu \left(m^3 - n^4 \right) \cos 6\phi$$

For the adopted spheroid

log (
$$\rho$$
 in feet) = 7.3199520 + [3.86769] cos 2 ϕ
- [1.2737] cos 4 ϕ ,

the logarithms for the terms in ϕ corresponding to units of the seventh decimal place. Thus, for $\phi = 0$,

$$\log \rho = 7.3199520 + 7373.8 - 18.8 = 7.3206875 = log a.$$

9. Areas of Zones and Quadrilaterals of the Earth's Surface.

An expression for the area of a zone of the earth's surface or of a quadrilateral bounded by meridians and parallels may be found in the following manner:—

The area of an elementary zone dZ, whose middle latitude is ϕ and whose width is $\rho_m d\phi$, is (see Fig. 1),

$$dZ = 2 \pi r \rho_m d\phi$$

= 2 \pi \rho_m \rho_n \cos \phi d\phi.

By means of the relations in section 6 this becomes

$$dZ = 2 \pi a^{2} (1 - e^{2}) \frac{\cos \phi \, d\phi}{(1 - e^{2} \sin^{2} \phi)^{2}}$$

$$= 2 \pi a^{2} \frac{1 - e^{2}}{e} \frac{d (e \sin \phi)}{(1 - e^{2} \sin^{2} \phi)^{2}}.$$
(1)

The integral of this between limits corresponding to ϕ_1 and ϕ_2 , or the area of a zone bounded by parallels whose latitudes are ϕ_1 and ϕ_2 respectively, is

$$Z = \pi \ a^{2} \frac{1 - e^{2}}{e} \left\{ \begin{array}{c} \frac{e \sin \phi_{2}}{1 - e^{2} \sin^{2} \phi_{2}} - \frac{e \sin \phi_{1}}{1 - e^{2} \sin^{2} \phi_{1}} \\ + \frac{1}{2} \text{ Nap. } \log \frac{(1 + e \sin \phi_{2}) \ (1 - e \sin \phi_{1})}{(1 - e \sin \phi_{2}) \ (1 + e \sin \phi_{1})} \end{array} \right\}. \quad (2)$$

GEODESY. li

To get the area of the entire surface of the spheroid, make $\phi_1 = -\frac{1}{2} \pi$ and $\phi_2 = +\frac{1}{2} \pi$ in (2). The result is

Surface of spheroid =
$$2 \pi a^2 \left[1 + \frac{1 - e^2}{2 e} \text{ Nap. log} \left(\frac{1 + e}{1 - e} \right) \right]$$
. (3)

For numerical applications it is most advantageous to express (3) in a series of powers of c. Thus, by Maclaurin's theorem,

Surface of spheroid =
$$4 \pi a^2 \left(1 - \frac{e^2}{3} - \frac{e^4}{15} - \frac{e^5}{35} - \dots \right)$$
. (4)

For the calculation of areas of zones and quadrilaterals it is also most advantageous to expand (2) in a series of powers of $e \sin \phi_1$ and $e \sin \phi_2$ and express the result in terms of multiples of the half sum and half difference of ϕ_1 and ϕ_2 . Thus, (2) readily assumes the form

$$Z = 2 \pi a^2 (1 - e^2) \left[(\sin \phi_2 - \sin \phi_1) + \frac{2}{3} e^2 (\sin^8 \phi_2 - \sin^8 \phi_1) + \dots \right].$$

From this, by substitution and reduction, there results

$$Z = 2 \pi \left\{ \begin{array}{c} C_1 \cos \phi \sin \frac{1}{2} \Delta \phi - C_2 \cos 3\phi \sin \frac{3}{2} \Delta \phi \\ + C_3 \cos 5\phi \sin \frac{5}{2} \Delta \phi - . \end{array} \right\}, \tag{5}$$

wherein

$$\phi = \frac{1}{2}(\phi_{2} + \phi_{1}),$$

$$\Delta\phi = \phi_{2} - \phi_{1},$$

$$C_{1} = 2 a^{2} \left(1 - \frac{e^{2}}{2} - \frac{e^{4}}{8} - \frac{e^{6}}{16} - \dots\right),$$

$$C_{2} = 2 a^{2} \left(\frac{e^{2}}{6} + \frac{e^{4}}{48} + \circ + \dots\right),$$

$$C_{3} = 2 a^{2} \left(\frac{3 e^{4}}{80} + \frac{e^{6}}{40} + \dots\right).$$
(6)

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are ϕ_1 and ϕ_2 and by meridians whose difference of longitude is $\Delta\lambda$,

$$Q = \frac{\Delta \lambda}{2\pi} Z$$
.

Hence, using the English mile as unit of length, (5) and (6) give for the adopted spheroid —

Area of quadrilateral in square miles.

$$Q = \Delta\lambda \text{ (in degrees)} \begin{cases} c_1 \cos \phi \sin \frac{1}{2} \Delta\phi - c_2 \cos 3\phi \sin \frac{3}{2} \Delta\phi \\ + c_3 \cos 5\phi \sin \frac{5}{2} \Delta\phi - \dots \end{cases} ,$$

$$\log c_1^* = 5.7375398,$$

$$\log c_2 = 2.79173,$$

$$\log c_3 = 9.976 - 10.$$
(7)

$$\phi = \frac{1}{2} (\phi_1 + \phi_1), \quad \Delta \phi = \phi_2 - \phi_1,$$

 $\phi_1, \quad \phi_2 = \text{latitudes of bounding parallels,}$
 $\Delta \lambda = \text{difference of longitude of bounding meridians.}$

^{*} c_1 , c_2 , c_3 are obtained from C_1 , C_2 , respectively by dividing the latter by the number of degrees in the radius, viz: 57.29578.

Numerical examples. — 1° . Suppose $\phi_1 = 0$, $\phi_2 = 90^{\circ}$ and $\Delta\lambda = 360^{\circ}$. Then (7) should give the area of a hemispheroid. The calculation runs thus:

Twice this is the area of the spheroidal surface of the earth; i. e., 196 940 378 square miles.

2°. The last result may be checked by (4). Thus,

$$\left(\frac{e^2}{3} + \frac{e^4}{15} + \dots\right) = 0.00225928$$

$$\log\left(1 - \frac{e^2}{3} - \dots\right) = 9.9990177$$

$$\log a^2 = 7.1961072$$

$$\log 4 \pi = 1.0992099$$

$$\log (196940407) = 8.2943348$$

This number agrees with the number derived above as closely as 7-place logarithms will permit, the discrepancy between the two values being about $\frac{60000000}{10000}$ part of the area. Hence, with a precision somewhat greater than the precision of the elements of the adopted spheroid warrants,

Area earth's surface = 196 940 400 square miles.

The areas of quadrilaterals of the earth's surface bounded by meridians and parallels of 1°, 30′, 15′, and 10′ extent respectively, in latitude and longitude, are given in Tables 25 to 29.

10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid.

 r_1 = radius of sphere having same volume as the earth's spheroid, r_2 = radius of sphere having same surface as that spheroid.

$$r_1 = \sqrt[3]{a^2 b}$$

= $a \left(1 - \frac{1}{6} e^2 - \frac{5}{75} e^4 - \frac{555}{266} e^6 - \dots \right)$.

$$r_2 = a \left(1 - \frac{e^2}{3} - \frac{e^4}{15} - \frac{e^6}{35} - \dots \right)^{\frac{1}{2}}$$

$$= a \left(1 - \frac{1}{6} e^2 - \frac{17}{360} e^4 - \frac{67}{3624} e^6 - \dots \right).$$

$$a - r_1 = \frac{1}{6} a e^2 \left(1 + \frac{5}{12} e^2 + \dots \right) = 0.00113 \ a, \text{ about.}$$

$$r_2 - r_1 = \frac{1}{45} a e^4 + \dots = 0.000001 \ a, \text{ about.}$$

II. Co-ordinates for the Polyconic Projection of Maps.

In the polyconic system of map projection every parallel of latitude appears on

the map as the developed circumference of the base of a right cone tangent to the spheroid along that parallel. Thus the parallel EF (Fig. 2) will appear in projection as the arc of a circle EOF (Fig. 3) whose radius OG = l is equal to the slant height of the tangent cone EFG (Fig. 2). Evidently one meridian and only one will appear as a straight line. This meridian is generally made the central meridian of the area to be projected. The distances along this central meridian between consecutive parallels are made equal (on the scale of the map) to the real A distances along the surface of the spheroid. The circles in which the parallels are developed are not concentric, but their centres all lie on the central meridian. The meridians are concave

Fig.3.

areas, they cross the parallels at angles differing little from right angles.

In the practical work of map making, the meridians and parallels are most advantageously defined by the co-ordinates of their points of intersection. These coordinates may be expressed in the following manner: For any parallel, as EOF (Fig. 3), take the origin O at the intersection with the

central meridian, and let the rectangular axes of Y (OG) and X (OQ) be respectively coincident with and perpendicular to this meridian. Call the interval in longitude between the central meridian and the next adjacent one $\Delta\lambda$, and denote the angle at the centre G subtended by the developed arc OP by a.

liv GEODESY.

Then from Fig. 3 it appears that

$$x = l \sin \alpha,$$

$$y = 2 l \sin^2 \frac{1}{2} \alpha.$$

But from Figs. 2 and 3,

$$l = \rho_n \cot \phi,$$

$$la = r \Delta \lambda = \rho_n \Delta \lambda \cos \phi,$$

whence

$$a = \Delta \lambda \sin \phi$$
.

Hence, in terms of known quantities there result

$$x = \rho_n \cot \phi \sin (\Delta \lambda \sin \phi),$$

$$y = 2 \rho_n \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi).$$
(1)

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta\lambda = 25^{\circ} = 90000''$.

Then

log 90000" = 4.9542425,
log sin 40° = 9.8080675 - 10,
log 57850."88 = 4.7623100;

$$\Delta\lambda \sin \phi$$
 = 16° 04' 10."88,
 $\frac{1}{2} (\Delta\lambda \sin \phi)$ = 8° 02' 05."44.

log. log. $\sin (\Delta \lambda \sin \phi) \ 9.4421760 - 10$ $\sin \frac{1}{2} (\Delta \lambda \sin \phi) 9.1454305 - 10$ $\sin \frac{1}{2} (\Delta \lambda \sin \phi) 9.1454305 - 10$ $\cot \phi$ 0.0761865 ρ_n , Table 11 7.3212956 $\cot \phi$ 0.0761865 ρ_n , Table 11 7.3212956 0.3010300 6.8396581 5.9893731 xx = 6.912.865 feet y = 975 828 feet.

The equations (1) are exact expressions for the co-ordinates. But when $\Delta\lambda$ is small, one may use the first terms in the expansions of $\sin(\Delta\lambda\sin\phi)$ and $\sin^2\frac{1}{2}(\Delta\lambda\sin\phi)$ and reach results of a much simpler form.

Thus,

$$\sin (\Delta \lambda \sin \phi) = \Delta \lambda \sin \phi - \frac{1}{6} (\Delta \lambda \sin \phi)^{8} + \dots,$$

$$\sin^{2} \frac{1}{2} (\Delta \phi \sin \phi) = \frac{1}{4} (\Delta \lambda \sin \phi)^{2} - \frac{1}{4} \frac{1}{8} (\Delta \lambda \sin \phi)^{4} + \dots;$$

whence, to terms of the second order,

$$x = \rho_n \Delta \lambda \cos \phi \left[\mathbf{r} - \frac{1}{6} (\Delta \lambda \sin \phi)^2 \right],$$

$$y = \frac{1}{4} \rho_n (\Delta \lambda)^2 \sin 2\phi \left[\mathbf{r} - \frac{1}{12} (\Delta \lambda \sin \phi)^2 \right].$$
(2)

If the terms of the second order in these equations be neglected, the value of x will be too great by an amount somewhat less than $\frac{1}{6}(\Delta\lambda\sin\phi)^2$. x, and the value of y will be too great by an amount somewhat less than $\frac{1}{12}(\Delta\lambda\sin\phi)^2$. y. An idea of the magnitudes of these fractions of x and y may be gained from the following table, which gives the values of $\frac{1}{6}(\Delta\lambda\sin\phi)^2$ for a few values of the arguments $\Delta\lambda$ and ϕ .

Values of $\frac{1}{6}(\Delta \lambda \sin \phi)^2$.

	φ									
Δλ	20°	40°	60°							
0	•									
I	1/168000	1/47700	1/26260							
2	1/42000	1/11900	1/6560							
3	1/18700	1/5300	1/2920							

It appears from this table that the first terms of (2) will suffice in computing the co-ordinates for projection of all maps on ordinary scales, and of less extent in longitude than 2° from the middle meridian. For example, the value of x for $\Delta\lambda = 2^{\circ}$, and $\phi = 40^{\circ}$, and for a scale of two miles to one inch (1/126720), is 53.063 inches less 1/11900 part, or about 0.004 inch, which may properly be regarded as a vanishing quantity in map construction. For the computation of the co-ordinates given in the tables 19 to 24, where $\Delta\lambda$ does not exceed 1°, it is amply sufficient, therefore, to use

$$x = \rho_n \Delta\lambda \cos \phi,$$

$$y = \frac{1}{4} \rho_n (\Delta\lambda)^2 \sin 2\phi.$$
(3)

In these formulas and in (2), if $\Delta\lambda$ is expressed in seconds, minutes, or degrees, it must be divided by the number of seconds, minutes, or degrees in the radius. The logarithms of the reciprocals of these numbers are given on p. xlvi. In the construction of tables like 19 to 24, it is most convenient, when English units are used, to express $\Delta\lambda$ in minutes and x and y in inches. For this purpose, supposing $\log \rho_n$ to be taken from Table 11, if s be the scale of the map, or scale factor, equations (3) become —

Co-ordinates x and y in inches for scale s.

$$x = \frac{12}{3437.747} \rho_n s \Delta \lambda \cos \phi,$$

$$y = \frac{3}{(3437.747)^2} \rho_n s (\Delta \lambda)^2 \sin 2\phi,$$

$$\Delta \lambda \text{ in minutes };$$

$$\log (12/3437.747) = 7.54291 - 10,$$
(4)

Tables 19 to 24 give the values of x and y for various scales and for the zone of the earth's surface lying between o° and $8o^{\circ}$.

 $\log (3/(3437.747)^2) = 3.4046 - 10.$

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta\lambda = 15'$; and let the scale of the map be one mile to the inch, or s = 1/63360. Then the calculation by (4) runs thus:

log. log. cons't 7.54291 — 10 cons't 3.4046 — 10
$$\rho_n$$
 7.32130 ρ_n 7.3213 ρ_n 7.3213 ρ_n 7.3213 ρ_n 7.3213 ρ_n 7.322 ρ_n 7.322 ρ_n 7.3223 ρ_n 7.3223 ρ_n 7.3223 ρ_n 7.323 ρ_n 7.3213 ρ_n 7.3213 ρ_n 7.3213 ρ_n 7.3223 ρ_n 7.3213 ρ_n 7.3223 ρ_n 8.2697 — 10 ρ_n 7.3223 ρ_n 8.2697 — 10 ρ_n 7.3213 ρ_n 7.3223 ρ_n 8.2697 — 10 ρ_n 7.3213 ρ_n 8.2697 — 10 ρ_n 7.3213

These values of x and y, it will be observed, agree with those corresponding to the same arguments in Table 22.

When many values for the same scale are to be computed, $\log s$ should, of course, be combined with the constant logarithms of (4). Moreover, since in (4) x varies as $\Delta\lambda$ and y as $(\Delta\lambda)^2$, when several pairs of co-ordinates are to be computed for the same latitude, it will be most advantageous to compute the pair corresponding to the greatest common divisor of the several values of $\Delta\lambda$ and derive the other pairs by direct multiplication.

12. Lines on a Spheroid.

The most important lines on a spheroid used in geodesy are (a) the curve of a vertical section; (b) the geodesic line; and (c) the alignment curve. Imagine two points in the surface of a spheroid, and denote them by P_1 and P_2 respectively. The vertical plane at P_1 containing P_2 and the vertical plane at P_2 containing P_1 give vertical section curves or lines. The curves cut out by these two planes coincide only when P_1 and P_2 are in a meridian plane. The geodesic line is the shortest line joining P_1 and P_2 , and lying in the surface of the spheroid. The alignment curve on a spheroid is a curve whose vertical tangent plane at every point of its length contains the terminal points P_1 and P_2 . The curve (a) lies wholly in one plane, while (b) and (c) are curves of double curvature. In the case of a triangle formed by joining three points on a spheroid by lines lying in its surface, the curves of class (a) give two distinct sets of triangle sides, while the curves of classes (b) and (c) give but one set of sides each. For all intervisible points on the surface of the earth, these different lines differ immaterially in length; the only appreciable differences they present are in their azimuths (see formula under b below). Of the three classes of curves the first two only are of special importance.

a. Characteristic property of curves of vertical section.

Let $a_{1,2} =$ azimuth of vertical section at P_1 through P_2 ,

 $a_{2,1}$ = azimuth of vertical section at P_2 through P_1 ,

 θ_1 , θ_2 = reduced latitudes of P_1 and P_2 respectively,

 δ_1 , δ_2 = angles of depression at P_1 and P_2 respectively of the chord joining these points.

Then the characteristic property of the vertical section curve joining P_1 and P_2 is

$$\sin a_{1.2} \cos \theta_1 \cos \delta_1 = \sin (a_{2.1} - 180^\circ) \cos \theta_2 \cos \delta_2$$

GEODESY. lvii

The azimuths $a_{1,2}$ and $a_{2,1}$, it will be observed, are the astronomical azimuths, or the azimuths which would be determined astronomically by means of an altitude and azimuth instrument.

b. Characteristic property of geodesic line.

Let .

 $a'_{1,2}$ = azimuth of geodesic line at P_1 , $a'_{2,1}$ = azimuth of geodesic line at P_2 , θ_1 , θ_2 = reduced latitudes of P_1 and P_2 respectively.

Then the characteristic property of the geodesic line is

$$\sin \alpha_{1,2} \cos \theta_1 = \sin (180^\circ - \alpha_{2,1}) \cos \theta_2 = \cos \theta_0$$

where θ_0 is the reduced latitude of the point where the geodesic through P_1 and P_2 is at right angles to a meridian plane.

The difference between the astronomical azimuth $\alpha_{1,2}$ and the geodesic azimuth $\alpha'_{1,2}$ is expressed by the following formula:

$$a_{1,2} - \alpha'_{1,2}$$
 (in seconds) $= \frac{1}{12} \rho'' e^2 \left(\frac{s}{a}\right)^2 \cos^2 \phi \sin 2\alpha_{1,2}$

where

 $s = \text{length of geodesic line } P_1 P_2,$ a = major semi-axis of spheroid, e = eccentricity of spheroid, $\rho'' = 206264.''8,$ $\phi = \text{astronomical latitude of } P_1,$ $a_{1.2} = \text{azimuth (astronomical or geodesic) of } P_1 P_2,$

$$\log \frac{1}{12} \rho'' \left(\frac{e}{a}\right)^2 = 7.4244 - 20$$
, for a in feet.

Thus, for $\phi = 0$ and $a_{1,2} = 45^{\circ}$, for which $\cos^2 \phi \sin 2a_{1,2} = 1$, the above formula gives

 $a_{1.2} - a'_{1.2} = 0.$ "074, for s = 100 miles, = 0.296, for s = 200 miles, = ...;

so that for most geodetic work this difference is of little if any importance.

13. SOLUTION OF SPHEROIDAL TRIANGLES.

The data for solution of a spheroidal triangle ordinarily presented are the measured angles and the length of one side. This latter may be either a geodesic line or a vertical section curve, since their lengths are in general sensibly equal. Such triangles are most conveniently solved in accordance with the rule afforded by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of any measurable size on the earth) are sensibly equal to the sides of a plane triangle having a base of the same length and angles equal respectively to the spheroidal angles diminished each by one third of the excess of the spheroidal triangle. In other words, the computation of spheroidal triangles is thus made to depend on the computation of plane triangles.

lviii Geodesy.

a. Spherical or spheroidal excess.

The excess of a spheroidal triangle of ordinary extent on the earth is given by

$$\epsilon$$
 (in seconds) = $\rho'' \frac{S}{\rho_m \rho_n}$,

where S is the area of the spheroidal or corresponding plane triangle; ρ_m , ρ_n are the principal radii of curvature for the mean latitude of the vertices of the triangle; and $\rho'' = 206\ 264$."8. For a sphere, $\rho_m = \rho_n = \text{radius}$ of the sphere.

Denote the angles of the spheroidal triangle by A, B, C, respectively; the corresponding angles of the plane triangle by a, β , γ (as on p. xviii); and the sides common to the two triangles by α , β , c. Then

$$S = \frac{1}{2} ab \sin \gamma = \frac{1}{2} bc \sin \alpha = \frac{1}{2} ca \sin \beta.$$

$$a = A - \frac{1}{3} \epsilon, \qquad \beta = B - \frac{1}{3} \epsilon, \qquad \gamma = C - \frac{1}{3} \epsilon.$$

Tables 13 and 14 give the values of $\log (\rho''/2\rho_m\rho_n)$ for intervals of 1° of astronomical or geographical latitude.*

14. Geodetic Differences of Latitude, Longitude, and Azimuth.

a. Primary triangulation.

Denote two points on the surface of the earth's spheroid by P_1 and P_2 respectively. Let

s =length of geodesic line joining P_1 and P_2 ,

 ϕ_1 , ϕ_2 = astronomical latitudes of P_1 and P_2 ,

 $\lambda_1, \lambda_2 = \text{longitudes of } P_1 \text{ and } P_2,$

 $\Delta \lambda = \lambda_2 - \lambda_1$

 $a_{1.2} = azimuth of P_1 P_2 (s) at P_1,$

 $\alpha_{2.1}$ = azimuth of $P_2 P_1$ (s) at P_2 ,

e = eccentricity of spheroid,

 ρ_m , ρ_n = principal (meridian and normal) radii of curvature at the point P_1 .

Then for the longest sides of measurable triangles on the earth the following formulas will give ϕ_2 , λ_2 , and $\alpha_{2,1}$ in terms of ϕ_1 , λ_1 , $\alpha_{1,2}$, and s. The azimuths are astronomical, and are reckoned from the south by way of the west through 360°.

$$a' = 180^{\circ} - a_{1.2},$$
 and $a_{2.1} = 180^{\circ} + a'',$ for $a_{1.2} < 180^{\circ}$
 $a' = a_{1.2} - 180^{\circ},$ and $a_{2.1} = 180^{\circ} - a'',$ for $a_{1.2} > 180^{\circ}$

$$\eta = \frac{s}{\rho_n} \left\{ 1 + \frac{1}{6} \frac{e^2}{1 - e^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 \alpha' \right\}$$
 (2)

$$\zeta = \frac{1}{4} \frac{e^2 \eta^2}{1 - e^2} \cos^2 \phi_1 \sin 2a' \tag{3}$$

^{*} For the solution of very large triangles and for a full treatment of the theory thereof, consult Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie, von Dr. F. R. Helmert. Leipzig, 1880, 1884.

$$\tan \frac{1}{2}(a'' + \Delta\lambda + \zeta) = \frac{\cos \frac{1}{2}(9\circ^{\circ} - \phi_{1} - \eta)}{\cos \frac{1}{2}(9\circ^{\circ} - \phi_{1} + \eta)} \cot \frac{1}{2} a'$$

$$\tan \frac{1}{2}(a'' - \Delta\lambda + \zeta) = \frac{\sin \frac{1}{2}(9\circ^{\circ} - \phi_{1} - \eta)}{\sin \frac{1}{2}(9\circ^{\circ} - \phi_{1} + \eta)} \cot \frac{1}{2} a'$$
(4)

$$\phi_2 - \phi_1 = \frac{s}{\rho_m} \frac{\sin \frac{1}{2}(\alpha'' - \alpha' + \zeta)}{\sin \frac{1}{2}(\alpha'' + \alpha' + \zeta)} \{ 1 + \frac{1}{12} \eta^2 \cos^2 \frac{1}{2}(\alpha'' - \alpha') \}.$$
 (5)

To express η , ζ , and $\phi_2 - \phi_1$ in seconds of arc we must multiply the right hand sides of (2), (3), and (5) by $\rho'' = 206264.$ ''8. For logarithmic compution of η'' and ζ'' , or η and ζ in seconds, we may write with an accuracy generally sufficient

$$\log \eta'' = \log (\rho'' s / \rho_n) + \frac{1}{6} \frac{\mu e^2}{1 - e^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 \alpha', \tag{6}$$

$$\log \zeta'' = \log \frac{1}{4} \frac{e^2}{(1 - e^2) \rho''} + \log \{ (\eta'')^2 \cos^2 \phi_1 \sin 2 \alpha' \}, \tag{7}$$

where μ in (6) is the modulus of common logarithms. For units of the 7th decimal place of log η'' we have for the adopted spheroid

 $\log \frac{1}{6} \frac{\mu e^2}{1 - e^2} = 3.69309.$

Also

$$\log \frac{1}{4} \frac{e^2}{(1 - e^2)\rho'} = 1.91697 - 10.$$

Similarly, for the computation of the logarithm of the last factor in (5) we have

$$\log \{1 + \frac{1}{12} \eta^2 \cos^2 \frac{1}{2} (a'' - a')\} = \log \{1 + \frac{1}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{1}{2} (a'' - a')\}.$$

Putting for brevity

$$q = \frac{1}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{1}{2} (a'' - a')$$

the logarithm of the desired logarithm is given to terms of the second order inclusive in q by

 $\log \log (1+q) = \log \mu \, q - \frac{1}{2} \, \mu \, q.$

For the adopted spheroid

$$\log \frac{\mu}{12(\rho'')^2} = 4.92975 - 10$$

for units of the seventh decimal place.

For a line 200 miles (about 320 kilometres) long, the maximum value of the second term in (6) is but 12.6 units in the 7th place of $\log \eta''$. For the same length of line, the maximum value of ξ'' is 0."895, and the maximum value of the logarithm of the last factor in (5), or $\log (1+q)$, is less than 922 units in the seventh place of decimals.

For computing differences of latitude, longitude, and azimuth in primary triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less in length, the most convenient means are formulas giving $\phi_2 - \phi_1$, $\lambda_2 - \lambda_1$, and

IX GEODESY.

 $a_{2.1} - (180^{\circ} - a_{1.2})$, in series proceeding according to powers of the distance s. Formulas of this kind with convenient tables for facilitating the computations are given in the Reports of the U. S. Coast and Geodetic Survey.*

b. Secondary triangulation.

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or less in length, and wherein differences of latitude and longitude are needed to the nearest hundredth of a second only, the following formulas may suffice. Using the same notation as in the preceding section, the formulas are:—

$$\phi_2 = \phi_1 + \Delta \phi,
\lambda_2 = \lambda_1 + \Delta \lambda,
\alpha_{2.1} = 180^\circ + \alpha_{1.2} + \Delta \alpha,$$
(1)

$$\Delta \phi = - a_1 s \cos a_{1,2} - a_2 s^2 \sin^2 a_{1,2},
\Delta \lambda = + b_1 \sec \phi_1 s \sin a_{1,2} - b_2 s^2 \sin a_{1,2} \cos a_{1,2},
\Delta a = -c_1 \tan \phi_1 s \sin a_{1,2} + c_2 s^2 \sin a_{1,2} \cos a_{1,2},$$
(2)

The constants entering the latter equations are defined by the following expressions, wherein ρ_m and ρ_n are the principal radii of curvature of the spheroid at the point whose latitude is ϕ_1 and $\rho'' = 206264.$ "8:

$$a_1 = \frac{\rho''}{\rho_m}, \qquad b_1 = c_1 = \frac{\rho''}{\rho_n},$$

$$a_2 = \frac{\rho'' \tan \phi_1}{2 \rho_m \rho_n}, \qquad b_2 = \frac{\rho'' \sec \phi_1 \tan \phi_1}{\rho_n^2}, \qquad c_2 = \frac{\rho'' (1 + 2 \tan^2 \phi_1)}{2 \rho_n^2}.$$

The logarithms of the factors a_1 , b_1 , c_1 , a_2 , b_2 , c_2 , are given in Table 15 for the English foot as unit, and in Table 16 for the metre as unit, the argument being the initial latitude ϕ_1 for all of them.

When all of the differences given by (2) are computed, they may be checked by the formula

$$\sin \frac{1}{2}(\phi_2 + \phi_1) = \frac{\Delta \alpha}{\Delta \lambda}.$$
 (3)

For convenience of reference in numerical applications of the above formulas, (2) may be written thus:

$$\Delta \phi = A_1 + A_2,$$

$$\Delta \lambda = B_1 + B_2,$$

$$\Delta \alpha = C_1 + C_2,$$

in which, for example, A_1 and A_2 are the first and second terms respectively of $\Delta \phi$, due regard being paid to the signs of the functions of $\alpha_{1,2}$.

Numerical example. The following example will serve to illustrate the use of formulas (1) to (3). The value of $\log s$ is for s in English feet, s being in this case about 12.3 miles.

^{*} See Appendix 7, Report of 1884, for latest edition of these tables.

lxi

15. TRIGONOMETRIC LEVELING.

a. Computation of heights from observed zenith distances.

s =sea level distance between two points P_1 and P_2 ,

 H_1 , H_2 = heights above sea level of P_1 and P_2 ,

 $z_1 =$ observed zenith distance of P_2 from P_1 ,

 z_2 = observed zenith distance of P_1 from P_2 ,

 ρ = radius of curvature of vertical section at P_1 through P_2 , or at P_2 through P_1 , the curvature being sensibly the same for both for this purpose,

C = angle at centre of curvature subtended by s,

 m_1 , m_2 = coefficients of refraction at P_1 and P_2 ,

 Δz_1 , Δz_2 = angles of refraction at P_1 and P_2 .

Then, the fundamental relations are

$$C = \frac{s}{\rho}, \quad \Delta z_1 = m_1 C, \quad \Delta z_2 = m_2 C,$$

 $z_1 + z_2 + \Delta z_1 + \Delta z_2 = 180^\circ + C,$ (1)

$$H_2 - H_1 = s \tan \frac{1}{2}(z_2 + \Delta z_2 - z_1 - \Delta z_1) \left(1 + \frac{H_2 + H_1}{2 \rho} + \frac{s^2}{12 \rho^2} + \ldots \right).$$
 (2)

When the zenith distances z_1 and z_2 are simultaneous, or when Δz_1 and Δz_2 are assumed to be equal, (2) becomes

 $H_2 - H_1 = s \tan \frac{1}{2}(z_2 - z_1) \left(1 + \frac{H_2 + H_1}{2 \rho} + \frac{s^2}{12 \rho^2} + \ldots \right).$ (3)

For the case of a single observed zenith distance z_1 , say, and a known or assumed value of $m = m_1 = m_2$, the following formula may be applied:

$$H_2 - H_1 = s \cot z_1 + \frac{1-2m}{2\rho} s^2 + \frac{1-m}{\rho} s^2 \cot^2 z_1.$$
 (4)

The coefficient of refraction m varies very greatly under different atmospheric conditions. Its average value for land lines is about 0.07. The following table gives the values of $\log \frac{1}{2}(1-2m)$ and $\log (1-m)$ for values of m ranging from 0.05 to 0.10. It is taken from Appendix 18, Report of U. S. Coast and Geodetic

lxii GEODESY.

Survey for 1876. Table 12 taken from the same source gives values of $\log \rho$ needed for use in (3) and (4).

Table of valu	les of $\log \frac{1}{2}(1$	-2m) and log (<u> </u>	m).
---------------	-----------------------------	-----	-------------	----------	-----

m	$\log \frac{1}{2}(1-2m).$	log (1 — m).	m	$\log \frac{1}{2}(1-2m).$	log (1 — m).
0.050	9.65321	9.978	0.075	9.62839	9.966
51	65225	77	76	62737	66
52	65128	77	77	62634	65
52 53 54	65031 64933	76 76 76	78 78 79	62531 62428	65 64
0.055	9.64836	9·975	0.080	9.62325	9.964
56	64738	75	81	62221	63
57	64640	75	82	62118	63
58	64542	74	83	62014	62
59	64444	74	84	61910	62
0.060	9.64345	9·973	o.o85	9.61805	9.961
61	64246	73	86	61700	61
62	64147	72	87	61595	60
63	64048	72	88	61490	60
64	63949	71	89	61384	60
o.o65	9.63849	9.971	0.090	9.61278	9.959
66	63749	70	91	61172	59
67	63649	70	92	61066	58
68	63548	69	93	60959	58
69	63448	69	94	60853	58
0.070	9.63347	9.968	0.095	9.60746	9·957
71	63246	68	96	60638	56
72	63144	68	97	60531	56
73	63043	67	98	60423	55
74	62941	67	99	60315	55
			0.100	9.60206	9.954

For less precise work one may use equation (4) in the form

$$H_2 - H_1 = s \cot z_1 + \epsilon s^2, \tag{5}$$

wherein, if we make m = 0.07 and use for ρ its average value, or $\sqrt{\rho_m \rho_n}$, for latitude 45°,

$$\log c = 2.313 - 10$$
 for s in feet,
= 2.829 - 10 for s in metres.

Thus, for a distance (s) of 10 miles the value of the term c s² in (5) is 57.3 feet.

If altitudes a_1 , say, are observed in the place of zenith distances z_1 , it is most convenient to write (5) thus:—

$$H_2 - H_1 = \pm s \tan \alpha_1 + c s^2, \tag{6}$$

GEODESY. lxiii

where the upper sign is used when a_1 is an angle of elevation and the lower sign when a_1 is an angle of depression.

b. Coefficients of refraction.

When z_1 and z_2 are both observed for a given line, a coefficient of refraction may be computed from the assumption of equality of coefficients at the two ends of the line. Thus, equations (1) give

$$\Delta z_1 + \Delta z_2 = 180^{\circ} + C - (z_1 + z_2),$$

or

$$(m_1 + m_2) \frac{s}{a} = 180^{\circ} + \frac{s}{a} - (z_1 + z_2),$$

whence

$$m_1 + m_2 = 1 - \frac{\rho}{s}(z_1 + z_2 - 180^\circ).$$

Assuming $m_1 = m_2 = m$, and supposing $z_1 + z_2 - 180^\circ$ expressed in seconds of arc,

$$m = \frac{1}{2} \left\{ 1 - \frac{\rho}{s \rho''} (z_1 + z_2 - 180^\circ) \right\}.$$

$$\rho'' = 206264.''8$$
, $\log \rho'' = 5.3144251$.

c. Dip and distance of sea horizon.

Let

h = height of eye above sea level,

 $\delta = \text{dip or angle of depression of horizon,}$

s = distance of horizon from observer.

Then

$$δ$$
 (in seconds) = $58.82 \sqrt{h}$ in feet,
= $106.54 \sqrt{h}$ in metres.

$$s$$
 (in miles) = 1.317 \sqrt{h} in feet,

s (in kilometres) = 3.839
$$\sqrt{h}$$
 in metres.

The above formulas take account of curvature and refraction. They depend on the value 0.0784 for the coefficient of refraction, and are quite as accurate as the uncertainties in such data justify. For convenience of memory, and for an accuracy amply sufficient in most cases, the coefficients of the radicals in the last two formulas may be written $\frac{4}{3}$ and $\frac{1}{3}$ 9 respectively.

MISCELLANEOUS FORMULAS.

a. Correction to observed angle for eccentric position of instrument

Let C' be the eccentric position of the instrument, and C_0 the observed value of the angle at that point between two other points A and B. Let C denote the central point as well as the angle ACB desired. Call the distance CC' r and denote the angle ACC' by θ . Denote the lines BC and AC, which are assumed to be sensibly the same as BC' and AC', by a and b respectively. Then

$$C - C_0 \text{ (in seconds)} = \frac{\rho'' r \sin (\theta - C_0)}{a} - \frac{\rho'' r \sin \theta}{b},$$

$$\rho'' = 206 \ 264.''8, \qquad \log \rho'' = 5.3144251.$$

Attention must be paid to the signs of $\sin (\theta - C_0)$ and $\sin \theta$, and to the fact that angles are counted from A towards B through 360° . A diagram drawn in accordance with the above specifications will elucidate any special case.

b. Reduction of measured base to sea level.

Let l be the length of the bar, tape or other unit used in measuring the base. Let l_0 be the corresponding length reduced to sea level for a height h, this latter being the observed height of l. Then if ρ denote the radius of curvature of the earth's surface in the direction of the base,

$$l_0 = \frac{\rho l}{\rho + h} = \left(1 - \frac{h}{\rho} + \dots\right) l$$

with sufficient accuracy. Hence, for the whole length of the base,

$$\Sigma l_0 = \Sigma l - \frac{1}{\rho} \Sigma lh.$$

If L denote the total measured length, L_0 the corresponding total sea level length, and H the mean value of the heights h, the above equation gives

$$L_0 = L - L \frac{H}{\rho}.$$

c. The three-point problem.

In this problem the positions of three points A, B, C, and hence the elements of the triangle they form, are given together with the two angles APC and BPC at a point P whose position is required. Denote the angles and the sides of the known triangle by A, B, C, and a, b, c, respectively. Also put

$$APC = \beta$$
, $BPC = \alpha$, $PAC = x$, $PBC = y$.

Then the sum of the angles in the quadrilateral PACB is

$$a + \beta + x + y + C = 360^{\circ}$$

whence

$$\frac{1}{2}(x+y) = 180^{\circ} - \frac{1}{2}(\alpha + \beta + C). \tag{1}$$

Compute an auxiliary angle z from the equation

$$\tan z = \frac{a \sin \beta}{b \sin a};\tag{2}$$

Then

$$\tan \frac{1}{2}(x-y) = \tan (z-45^{\circ}) \tan \frac{1}{2}(x+y). \tag{3}$$

These three equations give all the data essential to a complete determination of the position of P. Any special case should be elucidated by a diagram drawn in accordance with the specifications given above.

When the positions of the points A, B, C are given on a map, the position of P on the same map may be found graphically by drawing lines making angles with each other equal to the given angles a and β from a point on a piece of tracing paper, and then placing this tracing on the map so as to meet the required conditions. This ready method of solving the problem is often sufficient.

17. SALIENT FACTS OF PHYSICAL GEODESY.

a. Area of earth's surface, areas of continents, area of oceans.*

								Square miles.
To	tal area	of earth	h's surfac	е.				196 940 000
Are	ea conti	nent of	Europe.				•	3 820 000
6	6	66	Asia					17 230 000
6	4	"	Africa .					11 480 000
•	4	66	Australia	a.		٠		3 4 0 6 000
6	•	"	America					15 950 000
To	tal area	of cont	inents .					51 886 000
To	tal area	of ocea	ns					145 054 000

b. Average heights of continents and depths of oceans t

										Feet.	Metres.
Average height of continent of Europe									980	300	
44	"	"	A	sia						1640	500
66	"	"	A	fric	ca					1640	500
"	"	"	A	ust	ral	ia				820	250
"	"	"	A	me	rica	ı .				1340	410
Average	height c	of all	•	•	•	•		•	•	1440	440
										Feet.	Metres.
Average depth of Atlantic Ocean 12 100									3680		
"	"	Pacific Ocea	an							12 700	3890
44	"	Indian Oce	an							11 000	3340
Average	depth of	fall				٠.				11 300	3440

c. Volume, surface density, mean density, and mass of earth.

> Surface density of earth = 2.56 ± 0.16 ‡ Mean density of earth = 5.576 ± 0.016 .

- * Derived from relative areas given in Helmert's Geodäsie, Band II. p. 313.
- † Helmert's Geodäsie, Band II. p. 313.

[†] These densities are given by Professor Wm. Harkness in his memoir on *The Solar Parallax* and Related Constants. The surface density applies to that portion of the earth's crust which lies above and within a shell ten miles thick, the lower surface of this shell being ten miles below sea level.

lxvi GEODESY.

Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62° F.),

Mass of earth * =
$$13284 \times 10^{21}$$
 pounds.
= 6642×10^{18} tons (of 2000 lbs.).
= 60258×10^{20} kilogrammes.

d. Principal moments of inertia and energy of rotation of earth.

M =mass of earth,

A = moment of inertia of earth about an axis in its equator,

C = moment of inertia about axis of rotation,

a =equatorial axis of earth,

 ω = angular velocity of earth,

= $(2 \pi/86164)$ for mean solar second as unit of time.

Then †

$$A = 0.325 Ma^2$$
, $C = 0.326 Ma^2$.

Energy of rotation of earth $= \frac{1}{2} \omega^2 C$. $= 0.163 \omega^2 Ma^2$. $= 504 \times 10^{28}$ foot-poundals. $= 217 \times 10^{28}$ kilogramme-metres. $= 212 \times 10^{35}$ ergs.

References.

The most exhaustive treatise on the theory of geodesy is found in "Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie," von Dr. F. R. Helmert. Leipzig: B. G. Teubner; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excellent work on the practical as well as theoretical features of the subject is "Die geodätischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae; autorisirte deutsche Ausgabe, von E. Lamp. Berlin: Robert Oppenheim, 8vo, 1878. Of works in English the most comprehensive is "Geodesy," by A. R. Clarke. Oxford: The Clarendon Press, 8vo, 1880.

^{*} The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about 66×10^{14} tons.

 $[\]dagger$ The values of A and C are those given by Harkness, *loc. cit.*, but they are here abridged to three places of decimals.

ASTRONOMY.

I. THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE.

THE celestial sphere is a sphere to which it is convenient to refer stars and other celestial objects. Its centre is assumed to be coincident with the eye of the observer, and the objects referred to it are supposed to lie in its surface. The orientation of this sphere is defined by its equator, which is assumed to be parallel to the earth's equator. The equator is thus the principal plane of reference. Other planes of reference are the plane of the horizon, which is perpendicular to the plumb line at the place; the meridian, which is a plane through the place and the earth's axis of rotation; the prime-vertical, which is a vertical plane at the place at right angles to the meridian; and the ecliptic, which is a plane parallel to the plane of the earth's orbit. These planes cut the surface of the sphere in great circles called the equator, the horizon, the meridian, etc. The points on the sphere defined by the intersection of the meridians, or the points where the axis of the equator pierces the sphere, are called the poles. Similarly, the prolongation of the plumb line upwards pierces the sphere in the zenith, and its prolongation downwards pierces the sphere in the nadir. Great circles passing through the zenith are called vertical circles.

2. SPHERICAL CO-ORDINATES.

a. Notation.

The position of a celestial body may be defined by several systems of co-ordinates. The most important of these in practical astronomy are the azimuth and altitude system and the hour angle and declination system. In the first of these the azimuth of a star or other body is the angle between the meridian plane of the place and a vertical plane through the star. It is measured, in general, from the south around by the west through 360°. The altitude of a star is its angular distance above the horizon, and its zenith distance is the complement of the altitude. In the second system the hour angle of a star is the angle between the meridian plane of the place and a meridian plane through the star. It is measured towards the west through 360°. The declination of a star is its angular distance above or below the equator; the complement of the declination is called the polar distance.

The angular distance of the pole above the horizon is equal to the zenith distance of the equator, or to the latitude of the place. Likewise, the altitude of the equator and the zenith distance of the pole are each equal to the complement of the latitude at any place.

These quantities are usually designated by the following notation: -

A = the azimuth of a star or object,

h = its altitude.

z =its zenith distance $= 90^{\circ} - h$,

t = its hour angle,

 δ = its declination,

 $p = \text{its polar distance} = 90^{\circ} - \delta$,

q = the parallactic angle, or angle at the star between the pole and the zenith,

 ϕ = the latitude of the place of observation.

b. Altitude and azimuth in terms of declination and hour angle.

The fundamental relations for this problem are -

$$\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t,
\cos h \cos A = -\cos \phi \sin \delta + \sin \phi \cos \delta \cos t,
\cos h \sin A = \cos \delta \sin t. \tag{1}$$

When it is desired to compute both A and h by means of logarithms, the most convenient formulas are,

$$m \sin M = \sin \delta,$$

$$m \cos M = \cos \delta \cos t,$$

$$\tan M = \frac{\tan \delta}{\cos t},$$

$$\sin h = m \cos (\phi - M),$$

$$\tan A = \frac{\tan t \cos M}{\sin (\phi - M)},$$

$$\cos h \cos A = m \sin (\phi - M),$$

$$\cos h \sin A = \cos \delta \sin t,$$

$$\tan h = \frac{\cos A}{\tan (\phi - M)}.$$
(2)

 $A > 180^{\circ}$ when $t > 180^{\circ}$ and $A < 180^{\circ}$ when $t < 180^{\circ}$.

For the computation of A and z separately, the following formulas are useful:

$$\tan A = -\frac{\sin t}{\cos \phi \tan \delta (\mathbf{i} - \tan \phi \cot \delta \cos t)}$$

$$= -\frac{a \sin t}{\mathbf{i} - b \cos t},$$
(3)

where

$$a = \sec \phi \cot \delta$$
, $b = \tan \phi \cot \delta$.

Formulas (3) are especially appropriate for the computation of a series of azimuths of close circumpolar stars, since a and b will be constant for a given place and date.

$$\cos z = \cos (\phi \sim \delta) - 2 \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$\sin^2 \frac{1}{2} z = \sin^2 \frac{1}{2} (\phi \sim \delta) + \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$(\phi \sim \delta) = \phi - \delta, \text{ for } \phi > \delta$$

$$= \delta - \phi, \text{ for } \phi < \delta.$$
(4)

For logarithmic application of (4) we may write

$$m^{2} = \cos \phi \cos \delta, \qquad n^{2} = \sin^{2} \frac{1}{2} (\phi \sim \delta),$$

$$\tan N = \frac{m}{n} \sin \frac{1}{2} t,$$

$$\sin \frac{1}{2} z = \frac{n}{\cos N} = \frac{m}{\sin N} \sin \frac{1}{2} t.$$
(5)

c. Declination and hour angle in terms of altitude and azimuth.

The fundamental relations for this case are

$$\sin \delta = \sin \phi \sin h - \cos \phi \cos h \cos A,$$

$$\cos \delta \cos t = \cos \phi \sin h + \sin \phi \cos h \cos A,$$

$$\cos \delta \sin t = \cos h \sin A.$$
(1)

For logarithmic computation by means of an auxiliary angle M one may write

$$m \sin M = \cos h \cos A$$
, $\tan M = \cot h \cos A$,
 $m \cos M = \sin h$,
 $\sin \delta = m \sin (\phi - M)$, $\tan t = \frac{\tan A \sin M}{\cos (\phi - M)}$, (2)
 $\cos \delta \cos t = m \cos (\phi - M)$,
 $\cos \delta \sin t = \cos h \sin A$, $\tan \delta = \tan (\phi - M) \cos t$.

d. Hour angle and azimuth in terms of zenith distance.

$$\cos t = \frac{\cos z - \sin \phi \sin \delta}{\cos \phi \cos \delta}.$$

$$\tan^2 \frac{1}{2} t = \frac{\sin (\sigma - \phi) \cos (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$$

$$\cos A = \frac{\sin \phi \cos z - \sin \delta}{\cos \phi \sin z}.$$

$$\tan^2 \frac{1}{2} A = \frac{\sin (\sigma - \phi) \cos (\sigma - z)}{\cos \sigma \sin (\sigma - \delta)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$$

e. Formulas for parallactic angle.

$$\cos z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos t,$$

$$\sin z \cos q = \cos \delta \sin \phi - \sin \delta \cos \phi \cos t,$$

$$\sin z \sin q = \cos \phi \sin t,$$

$$\sin \delta = \cos z \sin \phi + \sin z \cos \phi \cos t,$$

$$\cos \delta \cos q = \sin z \sin \phi + \cos z \cos \phi \cos A,$$

$$\cos \delta \sin q = \cos \phi \sin A.$$
(1)

The first three of these are adapted to logarithmic computation as follows: -

$$n \sin N = \cos \phi \cos t,$$

$$n \cos N = \sin \phi,$$

$$\cos z = n \sin (\delta + N),$$

$$\sin z \cos q = n \cos (\delta + N),$$

$$\sin z \sin q = \cos \phi \sin t;$$

whence

$$\tan N = \cot \phi \cos t,$$

$$\tan z \sin q = \frac{\tan t \sin N}{\sin (\delta + N)},$$

$$\tan z \cos q = \cot (\delta + N).$$
(2)

A similar adaptation results for the last three of equations (1) by interchanging δ and z. The equations (2) give both z and q in terms of ϕ , δ , and t, without ambiguity, since tan z is positive for stars above the horizon.

If A, z, and q are all required from ϕ , δ , and t, they are best given by the Gaussian relations

$$\sin \frac{1}{2} z \sin \frac{1}{2} (A + q) = \sin \frac{1}{2} t \cos \frac{1}{2} (\phi + \delta),
\sin \frac{1}{2} z \cos \frac{1}{2} (A + q) = \cos \frac{1}{2} t \sin \frac{1}{2} (\phi - \delta),
\cos \frac{1}{2} z \sin \frac{1}{2} (A - q) = \sin \frac{1}{2} t \sin \frac{1}{2} (\phi + \delta),
\cos \frac{1}{2} z \cos \frac{1}{2} (A - q) = \cos \frac{1}{2} t \cos \frac{1}{2} (\phi - \delta).$$
(3)

f. Hour angle, azimuth, and zenith distance of a star at elongation.

In this case the parallactic angle is 90° and the required quantities are given by the formulas

$$\cos t = \frac{\tan \phi}{\tan \delta},$$

$$\sin A = \frac{\cos \delta}{\cos \phi},$$

$$\cos z = \frac{\sin \phi}{\sin \delta}.$$
(1)

When all of the quantities t, A, and z are to be computed the following formulas are more advantageous:—

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\sin t = \frac{K}{\cos \phi \sin \delta}, \quad \cos A = \frac{K}{\cos \phi}, \quad \sin z = \frac{K}{\sin \delta}, \quad (2)$$

$$\tan t = \frac{K}{\sin \phi \cos \delta}, \quad \tan A = \frac{\cos \delta}{K}, \quad \tan z = \frac{K}{\sin \phi}.$$

g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical.

In this case the azimuth angle is 90° and the required quantities are given by the formulas

$$\cos t = \frac{\tan \delta}{\tan \phi},$$

$$\cos z = \frac{\sin \delta}{\sin \phi},$$

$$\sin q = \frac{\cos \phi}{\cos \delta};$$
(1)

or, if all of them are to be computed, by the formulas

$$K^{2} = \sin (\phi + \delta) \sin (\phi - \delta),$$

$$\sin t = \frac{K}{\sin \phi \cos \delta}, \quad \sin z = \frac{K}{\sin \phi}, \quad \cos q = \frac{K}{\cos \delta},$$

$$\tan t = \frac{K}{\cos \phi \sin \delta}, \quad \tan z = \frac{K}{\sin \delta}, \quad \tan q = \frac{\cos \phi}{K}.$$
(2)

For special accuracy the following group will be preferred: -

$$\tan^2 \frac{1}{2} t = \frac{\sin (\phi - \delta)}{\sin (\phi + \delta)},$$

$$\tan^2 \frac{1}{2} z = \frac{\tan \frac{1}{2} (\phi - \delta)}{\tan \frac{1}{2} (\phi + \delta)},$$
(3)

$$\tan^2(45^\circ - \frac{1}{2}q) = \tan \frac{1}{2}(\phi + \delta) \tan \frac{1}{2}(\phi - \delta).$$

h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting.

In this case the zenith distance of the star is 90°, and the required quantities are given by

$$\cos t = -\tan \phi \tan \delta,$$

$$\cos A = -\frac{\sin \delta}{\cos \phi};$$

or by

$$\tan^{2} \frac{1}{2} t = \frac{\cos (\phi - \delta)}{\cos (\phi + \delta)},$$

$$\tan^{2} \frac{1}{2} A = \frac{\tan \frac{1}{2}(90^{\circ} - \phi + \delta)}{\tan \frac{1}{2}(90^{\circ} - \phi - \delta)}.$$

On account of refraction, the values of t and A given by these formulas are subject to the following corrections, to wit:—

$$\Delta t = \frac{R}{\cos \phi \cos \delta \sin t}, \quad \Delta A = \frac{\tan \phi}{\sin A} R,$$

where R is the refraction in the horizon. Thus the actual values of the hour angle and azimuth at the time of rising or setting of a star are

$$t + \Delta t$$
 and $A + \Delta A$.

i. Differential formulas.

The general differential relations for the altitude and azimuth and the declination and hour angle systems of coördinates are:—

$$dz = -\cos q \, d\delta + \sin q \cos \delta \, dt + \cos A \, d\phi,$$

$$\sin z \, dA = \sin q \, d\delta + \cos q \cos \delta \, dt - \cos z \sin A \, d\phi.$$
(1)

$$d\delta = -\cos q \, dz + \sin q \sin z \, dA + \cos t \, d\phi,$$

$$\cos \delta \, dt = \sin q \, dz + \cos q \sin z \, dA + \sin \delta \sin t \, d\phi.$$
(2)

The following values derived from (1) are of interest as showing the dependence of z and A on t in special cases:—

3. RELATIONS OF DIFFERENT KINDS OF TIME USED IN ASTRONOMY.

a. The sidereal and solar days.

The sidereal day is the interval between two successive transits of the vernal equinox over the same meridian. The sidereal time at any instant is the hour angle of the vernal equinox reckoned from the meridian towards the west from o to 24 hours. The sidereal time at any place is o when the vernal equinox is in the meridian of that place.

The solar day is the interval between two successive transits of the sun across any meridian; and the solar time at any instant is the hour angle of the sun at that instant. The solar day begins at any place when the sun is in the meridian of that place.

The mean solar day is the interval between two successive transits over the same meridian of a fictitious sun, called the mean sun, which is assumed to move uniformly in the equator at such a rate that it returns to the vernal equinox at the same instant with the actual sun.

Time reckoned with respect to the actual sun is called apparent time, while that reckoned with respect to the mean sun is called mean time. The difference between apparent and mean time, which amounts at most to about 16^m, is called the equation of time. This quantity is given for every day in the year in ephemerides.

The sidereal time when a star or other object crosses the meridian is called the right ascension of the object. The right ascension of the mean sun is also called the sidereal time of mean noon. This time is given for every day in the year in ephemerides for particular meridians, and can be found for any meridian by allowing for the difference in longitude.

The time to which ephemerides and most astronomical calculations are referred

is the solar day, beginning at noon, and divided to hours numbered continuously from o^h to 24^h. This is called astronomical time; and such a day is called the astronomical day. It begins, therefore, 12 hours later than the civil day.

b. Relation of apparent and mean time.

A = apparent time = hour angle of real sun,

M = mean time = hour angle of mean sun,

E = equation of time.

$$M = A + E$$
.

In the use of this relation, E may be most conveniently derived (by interpolation for the place of observation) from an ephemeris.

c. Relation of sidereal and mean solar intervals of time.

I = interval of mean solar time,

I' =corresponding interval in sidereal time,

r = the ratio of the tropical year expressed in sidereal days to the tropical year expressed in mean solar days

$$=\frac{366.2422}{365.2422}=1.002738.$$

$$I' = rI = I + (r - 1) I = I + 0.002738 I$$

 $I = r^{-1} I' = I' - (1 - r^{-1}) I' = I' - 0.002730 I'.$

Tables for making such calculations are usually given in ephemerides (see, for example, the American Ephemeris). Short tables for this purpose are Tables 34 and 35 of this volume.

Frequent reference is made to the relations

24^h sidereal time = 23^h 56^m 04.º091 solar time, 24^h mean time = 24^h 03^m 56.º555 sidereal time.

d. Interconversion of sidereal and mean solar time.

 $T_m =$ mean time at any place,

 T_{\bullet} = corresponding sidereal time,

= right ascension of meridian of the place,

A = right ascension of mean sun for place and date,

= sidereal time of mean noon for place and date.

 $T_s = A + T_m$ expressed in sidereal time.

$$T_m = (T_s - A)$$
 expressed in mean time.

The quantity A is given in the ephemerides for particular meridians, and can be found by interpolation for any meridian whose longitude with respect to the meridian of the ephemeris is known. The formulas assume that A is taken out of the ephemeris for the next preceding mean noon.

e. Relation of sidereal time to the right ascension and hour angle of a star.

 $T_s = \text{sidereal time at any place,}$

= right ascension of the meridian of the place.

 $\alpha =$ right ascension of a star,

t = the hour angle of the star at the time T_s .

$$T_s = \alpha + t$$
, $t = T_s - \alpha$.

4. DETERMINATION OF TIME.

a. By meridian transits.

A determination of time consists in finding the correction to the clock, chronometer, or watch used to record time. If T_0 denote the true time at any place of an event, T the corresponding observed clock time, and ΔT the clock correction,

$$T_0 = T + \Delta T$$

The simplest way to determine the clock correction is to observe the transit of a star, whose right ascension is known, across the meridian. In this case the true time $T_0 = a$, the right ascension of the star; and if T is the observed clock time of the transit,

$$\Delta T = a - T$$

Meridian transits of stars may be observed by means of a theodolite or transit instrument mounted so that its telescope describes the meridian when rotated about its horizontal axis. The meridian transit instrument is specially designed for this purpose, and affords the most precise method of determining time.*

Since it is impossible to place the telescope of such an instrument exactly in the meridian, it is essential in precise work to determine certain constants, which define this defect of adjustment, along with the clock correction. These constants are the azimuth of the telescope when in the horizon, the inclination of the horizontal axis of the telescope, and the error of collimation of the telescope.

Let

a = azimuth constant,

b = inclination or level constant.

c = collimation constant

 α is considered plus when the instrument points east of south; b is plus when the west end of the rotation axis is the higher; and c is intrinsically plus when the star observed crosses the thread (or threads) too soon from lack of collimation. (The latter constant is generally referred to the clamp or circle on the horizontal axis of the instrument.)

^{*} The best treatise on the theory and use of this instrument is to be found in Chauvenet's Manual of Spherical and Practical Astronomy, which should be consulted by one desiring to go into the details of the subject.

[†] Other equivalent constants may be used, but those given are most commonly employed.

Also let

 $\phi = \text{latitude of the place},$ $\delta = \text{declination of star observed},$ a = right ascension of star observed, T = observed clock time of star's transit, $\Delta T = \text{the clock correction at an assumed epoch } T_0,$ r = the rate of the clock, or other timepiece, $A = \frac{\sin (\phi - \delta)}{\cos \delta} = \text{the "azimuth factor,"}$ $B = \frac{\cos (\phi - \delta)}{\cos \delta} = \text{the "level factor,"}$ $C = \frac{1}{\cos \delta} = \text{the "collimation factor."}$

Then, when a, b, c are small (conveniently less than 10° each, and in ordinary practice less than 1° each),

$$T + \Delta T + Aa + Bb + Cc + r(T - T_0) = a.$$

This is known as Mayer's formula for the computation of time from star transits. The quantity Bb is generally observed directly with a striding level. Assuming it to be known and combined with T, the above equation gives

$$\Delta T + Aa + Cc + r(T - T_0) = a - T. \tag{1}$$

This equation involves four unknown quantities, ΔT , α , c, and r; so that in general it will be essential to observe at least four different stars in order to get the objective quantity ΔT . Where great precision is not needed, the effect of the rate, for short intervals of time, may be ignored, and the collimation c may be rendered insignificant by adjustment. Then the equation (r) is simplified in

$$\Delta T + Aa = a - T. \tag{2}$$

This shows that observations of two stars of different declinations will suffice to give ΔT . Since the factor A is plus for stars south of the zenith (in north latitude) and minus for stars north of the zenith, if stars be so chosen as to make the two values of A equal numerically but of opposite signs, ΔT will result from the mean of two equations of the form (2). With good instrumental adjustments (b and c small), this simple sort of observation with a theodolite will give ΔT to the nearest second.

A still better plan for approximate determination of time is to observe a pair of north and south stars as above, and then reverse the telescope and observe another pair similarly situated, since the remaining error of collimation will be partly if not wholly eliminated. Indeed, a well selected and well observed set of four stars will give the error of the timepiece used within a half second or less. This method is especially available to geographers who may desire such an approximate value of the timepiece correction for use in determining azimuth. It will suffice in the application of the method to set up the instrument (theodolite or transit) in the vertical plane of Polaris, which is always close enough to the meridian. The determination will then proceed according to the following programme:—

- 1. Observe time of transit of a star south of zenith,
- 2. Observe time of transit of a star north of zenith.

Reverse telescope,

- 3. Observe time of transit of another star south of zenith,
- 4. Observe time of transit of another star north of zenith.

Each star observation will give an equation of the form (1), and the mean of the four resulting equations is

$$\Delta T + a \frac{\Sigma A}{4} + c \frac{\Sigma C}{4} + r \frac{\Sigma (T - T_0)}{4} = \frac{\Sigma (\alpha - T)}{4}.$$

Now the coefficient of r in this equation may be always made zero by taking for the epoch T_0 the mean of the observed times T. Likewise, ΣA and ΣC may be made small by suitably selected stars, since two of the A's and C's are positive and two negative. The value $\frac{1}{4}\Sigma(a-T)$ is thus always a close approximation to ΔT for the epoch $T_0 = \frac{1}{4}\Sigma T$, when ΣA and ΣC approximate to zero. But if these sums are not small, approximate values of a and c may be found from the four equations of the form (1), neglecting the rate, and these substituted in the above formula will give all needful precision.

For refined work, as in determining differences of longitude, several groups of stars are observed, half of them with the telescope in one position and half in the reverse position, and the quantities ΔT , α , c, and r are computed by the method of least squares. In such work it is always advantageous to select the stars with a view to making the sums of the azimuth and collimation coefficients approximate to zero, since this gives the highest precision and entails the simplest computations.*

b. By a single observed altitude of a star.

An approximate determination of time, often sufficient for the purposes of the geographer, may be had by observing the altitude or zenith distance of a known star. The method requires also a knowledge of the latitude of the place.

Let

 z_1 = the observed zenith distance of the star,

R = the refraction,

z = the true zenith distance of the star,

 $= z_1 + R$

 α , δ , = the right ascension and declination of the star,

t = hour angle of star at time of observation,

T = observed time when z_1 is measured,

 $\Delta T =$ correction to timepiece,

 ϕ = latitude of place.

Then the hour angle t may be computed by

$$\tan^2 \frac{1}{2} t = \frac{\sin (\sigma - \phi) \cos (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$$

^{*} For details of theory and practice in time work done according to this plan see Bulletin 49, U. S. Geological Survey.

Having the hour angle the clock correction ΔT is given by

$$\Delta T = a + t - T$$

in which all terms must be expressed in the same unit; i. e., in sidereal or in mean time.

The refraction R may be taken from Table 31.

The most advantageous position of the star observed, so far as the effect of an error in the measured quantity z_1 is concerned, is in the prime vertical, but stars near the horizon should be avoided on account of uncertainties in refraction. The least favorable position of the star is in the meridian.

Compared with the preceding method the present method is inferior in precision, but it is often available when the other cannot be applied.

c. By equal altitudes of a star.

This method is an obvious extension of the preceding method, and has the advantage of eliminating the effect of constant instrumental errors in the measured altitudes or zenith distances. Thus it is plain that the mean of the times when a (fixed) star has the same altitude east and west of the meridian, whether one can measure that altitude correctly or not, is the time of meridian transit.

This method may, therefore, give a good approximation to the timepiece correction when nothing better than an engineer's transit, whose telescope can be clamped, is available. When the instrument has a vertical circle (or when a sextant is used) a series of altitudes may be observed before meridian passage of the star, and a similar series in the reverse order with equal altitudes respectively after meridian passage. The half sums of the times of equal altitudes on the two sides of the meridian will give a series of values for the time of meridian transit from which the precision attained may be inferred.

This method is frequently applied to the sun, observations being made before and after noon. For the theory of the corrections essential in this case on account of the changing position of the sun, on account of inequalities in the observed altitudes, etc., the reader must be referred to special treatises on practical astronomy.*

5. DETERMINATION OF LATITUDE.

a. By meridian altitudes.

The readiest method of determining the latitude of a place is to measure the meridian zenith distance or altitude of a known star. When precision is not required this process is a very simple one, since it is only essential to follow a (fixed) star near the meridian until its altitude is greatest, or zenith distance least. Thus, if the observed zenith distance is z_1 , the true zenith distance z, and the refraction R,

$$z=z_1+R;$$

^{*} The best work of this kind is Chauvenet's Manual of Spherical and Practical Astronomy. It should be consulted by all persons desiring a knowledge of the details of practical astronomy.

and if the declination of the star is δ and the latitude of the place ϕ ,

$$\phi = \delta \pm z$$

according as the star is south or north of the zenith.

A more accurate application of the same principle is to observe the altitudes of a circumpolar star at upper and lower culmination (above and below the pole). The mean of these altitudes, corrected for refraction, is the latitude of the place. This process, it will be observed, does not require a knowledge of the star's declination.

b. By the measured altitude of a star at a known time.

h = measured altitude corrected for refraction,

 T_s = observed sidereal time,

a, δ = right ascension and declination of star,

t =hour angle of star,

 $\phi =$ latitude of place.

Then ϕ may be computed by means of the following formulas:—

$$t = T_s - a,$$

$$\tan \beta = \frac{\tan \delta}{\cos t}, \qquad \cos \gamma = \frac{\sin \lambda \sin \beta}{\sin \delta},$$

$$\phi = \beta \pm \gamma.$$

In the application of these β may be taken numerically less than 90°, and since t may also be taken less than 90°, β may be taken with the same sign as δ . γ is indeterminate as to sign analytically, but whether it should be taken as positive or negative can be decided in general by an approximate knowledge of the latitude, which is always had except in localities near the equator.

The most advantageous position of a star in determining latitude by this method is in the meridian, and the least advantageous in the prime vertical. When a series of observations on the same star is made, they should be equally distributed about the meridian; and when more than one star is observed it is advantageous to observe equal numbers of them on the north and south of the zenith.

The application of this method to the pole star is especially well adapted to the means available to the geographer and engineer, namely, a good theodolite and a good timepiece. In this case the following simple formula for the latitude may be used:—

$$\phi = h - p \cos t + \frac{1}{2} p^2 \sin x'' \sin^2 t \tan h,$$

where p is the polar distance of Polaris in seconds (about 5400"), and the other symbols have the same meaning as defined above. Tables giving the logarithms of p and $\frac{1}{2}p^2 \sin x$ " are published in the American Ephemeris.

c. By the zenith telescope.

The zenith telescope furnishes the most precise means known for the determination of the latitude of a place. For the theory of the instrument and method when applied to refined work the reader must be referred to special treatises.* It will suffice here to state the principle of the method, which may sometimes be advantageously applied by the geographer. Let z_s be the meridian zenith distance of a star south of the zenith, and z_n the meridian zenith distance of another star north of the zenith. Let δ_s and δ_n denote the declinations of these stars respectively. Then

 $z_s = \phi - \delta_s,$ $z_n = \delta_n - \phi_s$

whence

$$\phi = \frac{1}{2} (\delta_s + \delta_n) + \frac{1}{2} (z_s - z_n).$$

It appears, therefore, that this method requires only that the difference $(z_s - z_n)$ be measured. Herein lies the advantage of the method, since that difference may be made small by a suitable selection of pairs of stars. With the zenith telescope the stars are so chosen that the difference $(z_s - z_n)$ may be measured by means of a micrometer in the telescope.

The essential principles and advantages of this method may be realized also with a theodolite, or other telescope, to which a vertical circle is attached, the difference $(z_s - z_n)$ being measured on the circle; and a determination of latitude within 5" or less is thus easy with small theodolites of the best class (i. e., with those whose circles read to 10" or less by opposite verniers or microscopes).

6. Determination of Azimuth.

a. By observation of a star at a known time.

 $T_s =$ sidereal time of observation,

a, δ = right ascension and declination of star observed,

t = hour angle of star,

 $=T_s-a,$

 ϕ = latitude of place,

 $A = \text{azimuth of the star at the time } T_s \text{ counted from the south around by the west through 360°.}$

The azimuth A may be computed by the formulas

$$a = \sec \phi \cot \delta, \qquad b = \tan \phi \cot \delta,$$

$$\tan A = -\frac{a \sin t}{1 - b \cos t}.$$
(1)

The angle A will fall in the same semicircle as t, and A is thus determined by its tangent without ambiguity. The quantities a and b will be sensibly constant for

^{*} Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best.

a given star and date; and hence they need be computed but once for a series of observations on the same star on one date.

The effects of small errors Δt , $\Delta \phi$, and $\Delta \delta$ in the assumed time, latitude, and declination are expressed by

$$\frac{\cos \delta \cos q}{\sin z} \, \Delta t, \qquad -\sin A \cot z \, \Delta \phi, \qquad \frac{\sin q}{\sin z} \, \Delta \delta,$$

respectively, where z and q are the zenith distance and parallactic angle of the star. Hence the effect of Δt will vanish for a star at elongation; the effect of $\Delta \phi$ vanishes for a star in the meridian, and is always small (in middle latitudes) for a close circumpolar star; the effect of $\Delta \delta$ vanishes for a star in the meridian. It appears advantageous, therefore, to observe for azimuth (in middle latitudes) close circumpolar stars at elongations, since the effect of the time error is then least, and the effects of errors in the latitude and declination are small and may be eliminated entirely by observing the same star at both elongations.

The hour angle t_e , the azimuth A_e , and the altitude h_e of a star at elongation are given by the formulas (2) of section 2, f. Those best suited to the purpose are

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\tan t_{e} = \frac{K}{\sin \phi \cos \delta} \quad \tan A_{e} = \frac{\cos \delta}{K}, \quad \tan h_{e} = \frac{\sin \phi}{K}.$$
 (2)

Knowing the time of elongation of a close circumpolar star, it suffices for many purposes to observe the angle between the star and some reference terrestrial mark at or in the vicinity of that time.

For precise determinations of azimuth it is customary to observe a star near its elongation repeatedly, thus obtaining a series of results whose mean will be sensibly free from errors of observation and errors due to instrumental defects.

The computation of the azimuth A may be made accurately in all cases by the formulas (x); but when a close circumpolar star is observed near elongation, it may be more convenient to use the following formulas:—

 $\Delta t = (t - t_e)$, or the interval before or after elongation at the time of observation,

$$\Delta A = (A - A_e)$$
, or the difference in azimuths of the star at the time of elongation and at the time of observation, (3)

$$\Delta A'' = \frac{(15)^2 \sin \delta \cos \delta}{2 \rho''} \frac{(\Delta t^s)^2}{\sin t_e \cos \phi} (\Delta t^s)^2 \pm \frac{(15)^8}{2 (\rho'')^2} \frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} (\Delta t^s)^8.$$

* To the same order of approximation one may write in the first term of this expression

$$\frac{(15)^2}{2 \rho''} (\Delta t^s)^2 = \rho'' \ 2 \sin^2 \frac{1}{2} \Delta t = \frac{2 \sin^2 \frac{1}{2} \Delta t}{\sin 1''},$$

which latter is the most convenient form when tables giving $\log \frac{(2 \sin^2 \frac{1}{2} \Delta t)}{\sin x'}$ for the argument Δt in time are at hand. Such tables are given in Chauvenet's Manual of Spherical and Practical Astronomy (for full title see p. lxxxii), and in Formeln und Hülfstafeln für Geographische Ortsbestimmungen, von Dr. Th. Albrecht. Leipzig: Wilhelm Engelmann, 4to, 2d ed., 1879.

This last formula gives ΔA in seconds of arc when Δt is expressed in seconds of time; Δt is considered positive in all cases (in the use of the formula), and with this convention the positive sign is used when the star is between either elongation and upper culmination, and the negative sign when the star is between either elongation and lower culmination. For a given star, place, and date the coefficients of $(\Delta t^a)^2$ and $(\Delta t^a)^3$ will be sensibly constant and their logarithms will thus be constant for a series of observations of a star on any date. By reason of the large factors $(\rho'') = 206 264.''8)^2$ and $\tan t_a$ in the denominator of the second term, it will be very small unless Δt^a is large. Hence this term may often be neglected. Using both terms, the formula will give ΔA for Polaris to the nearest o."or when $\Delta t < 40^m$ and when observations are made in middle latitudes.

By reference to formulas (2) of section 2, f, it is seen that

$$\frac{\sin \delta \cos \delta}{\sin t_e \cos \phi} = \frac{\sin^2 \delta \cos \delta}{K},$$

$$\frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} = \frac{\sin^2 \delta \cos^2 \delta \sin \phi}{K^2},$$

$$K^2 = \sin (\delta + \phi) \sin (\delta - \phi).*$$

b. By an observed altitude of a star.

h = true altitude of star observed; i. e., the observed altitude less the refraction,

 ϕ = latitude of place,

p = polar distance of star,

A = azimuth of star.

$$\tan^2 \frac{1}{2} A = \frac{\sin (\sigma - \phi) \sin (\sigma - h)}{\cos \sigma \cos (\sigma - \rho)},$$

$$\sigma = \frac{1}{2} (\phi + h + \rho).$$

The most advantageous position of the star, on account of possible error in the observed value of h, is that in which $\sin A$ is a maximum. This position is then at elongation for stars which elongate, in the prime vertical for stars which cross this great circle, and in the horizon for a star which neither elongates nor crosses the prime vertical. A star will elongate when $p < 90^{\circ} - \phi$; it will cross the prime vertical when p lies between $90^{\circ} - \phi$ and 90° ; and it will neither elongate nor cross the prime vertical when $p > 90^{\circ}$, or when the declination (δ) of the star is negative.

c. By equal altitudes of a star.

By this method, when a fixed star is observed first east of the meridian and then west of the meridian at the same altitude, the direction of the meridian will

* In precise work the computed azimuth requires the following correction for daily aberration, namely:—

 $\Delta A = -0.^{\prime\prime} 32 \frac{\cos \phi}{\sin z} \cos A,$

where A is to be reckoned from the south by way of the west through 360°.

obviously be given by the mean of the azimuth circle readings for the two observed directions. This process will thus give the direction of the meridian free from the effect of any instrumental errors common to the equal altitudes observed. Neither does it require any knowledge of the star's position (right ascension and declination). It is therefore available to one provided with nothing but an instrument for measuring altitudes and azimuths, and is susceptible of considerable precision when a series of such equal altitudes is carefully referred to a terrestrial mark.

When the sun is observed, it is essential to take account of its change in declination between the first and the second observation. Let A_1 and A_2 be the true azimuths counted from the meridian toward the east and west respectively at the times t_1 and t_2 of the two observations. Also, let $\Delta\delta$ be the increase in declination of the sun in the interval $(t_2 - t_1)$. Then

$$A_2 - A_1 = \frac{\Delta \delta}{\cos \phi \sin \frac{1}{2}(t_2 - t_1)}.$$

Calling the azimuth circle readings for the east and west observations R_1 and R_2 respectively, the resulting azimuths are

$$A_1 = \frac{1}{2}(R_2 - R_1) - \frac{1}{2}(A_2 - A_1),$$

$$A_2 = \frac{1}{2}(R_2 - R_1) + \frac{1}{2}(A_2 - A_1).$$

References.

Many excellent treatises on spherical and practical astronomy are available. Among these the most complete are the following:—

"A Manual of Spherical and Practical Astronomy," by William Chauvenet. Philadelphia: J. B. Lippincott & Co., 2 vols., 8vo, 5th ed., 1887. "A Treatise on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doolittle. New York: John Wiley & Sons, 8vo, 2d ed., 1888. "Lehrbuch der Sphärischen Astronomie," von F. Brünnow. Berlin: Fred. Dümler, 8vo, 1851. "Spherical Astronomy," by F. Brünnow. Translated by the author from the second German edition. London: Asher & Co., 8vo, 1865.

THEORY OF ERRORS.

I. LAWS OF ERROR.

The theory of errors is that branch of mathematical science which considers the nature and extent of errors in derived quantities due to errors in the data on which such quantities depend. A law of error is a relation between the magnitude of an error and the probability of its occurrence. The simplest case of a law of error is that in which all possible errors (in the system of errors) are equally likely to occur. An example of such a case is had in the errors of tabular logarithms, natural trigonometric functions, etc.; all errors from zero to a half unit in the last tabular place being equally likely to occur.

When quantities subject to errors following simple laws are combined in any manner, the law of error of the quantity resulting from the combination is in general more complex than that of either component.

Let ϵ denote the magnitude of any error in a system of errors whose law of error is defined by $\phi(\epsilon)$. Then if ϵ vary continuously the probability of its occurrence will be expressed by $\phi(\epsilon)d\epsilon$. If ϵ vary continuously between equal positive and negative limits whose magnitude is a, the sum of all the probabilities $\phi(\epsilon)d\epsilon$ must be unity, or

$$\int_{-a}^{+a} \phi(\epsilon) d\epsilon = 1.$$

For the case of tabular logarithms, etc., alluded to above, $\phi(\epsilon) = c$, a constant whose value is $1/(2 \ a) = 1$, since a = 0.5.

For the case of a logarithm interpolated between two consecutive tabular values, by the formula $v = v_1 + (v_2 - v_1)$ $t = v_1 (\mathbf{r} - t) + v_2 t$, where v_1 and v_2 are the tabular values, and t the interval between v_1 and the derived value v, $\phi(\epsilon)$ has the following remarkable forms when the extra decimals (practically the first of them) in $(v_2 - v_1)$ t are retained:—

$$\phi(\epsilon) = \frac{\frac{1}{2} + \epsilon}{(\mathbf{i} - t) t} \text{ for values of } \epsilon \text{ between } -\frac{1}{2} \text{ and } -(\frac{1}{2} - t),$$

$$= \frac{\mathbf{i}}{\mathbf{i} - t} \text{ for values of } \epsilon \text{ between } -(\frac{1}{2} - t) \text{ and } +(\frac{1}{2} - t),$$

$$= \frac{\frac{1}{2} - \epsilon}{(\mathbf{i} - t) t} \text{ for values of } \epsilon \text{ between } +(\frac{1}{2} - t) \text{ and } +\frac{1}{2}.$$
(1)

It thus appears that $\phi(\epsilon)$ in this case is represented by the upper base and the two sides of a trapezoid.

When, as is usually the practice, the quantity $(v_2 - v_1)$ t is rounded to the nearest unit of the last tabular place, $\phi(\epsilon)$ becomes more complex, but is still represented by a series of straight lines. It is worthy of remark that the latter species of interpolated value is considerably less precise than the former, wherein an additional figure beyond the last tabular place is retained.

When an infinite number of infinitesimal errors, each subject to the law of constant probability and each as likely to be positive as negative, are combined by addition, the law of the resultant error is of remarkable simplicity and generality. It is expressed by

 $\phi(\epsilon) = \frac{h}{\sqrt{\pi}} e^{-k^2 \epsilon^2} \qquad (2)$

where e is the Napierian base, $\pi = 3.14159$ +, and h is a constant dependent on the relative magnitude of the errors in the system. This is the law of error of least squares. It is the law followed more or less closely by most species of observational errors. Its general use is justified by experience rather than by mathematical deduction.

a. Probable, mean, and average errors.

For the purposes of comparison of different systems of errors following the same law, three different terms are in use. These are the *probable error*,* or that error in the system which is as likely to be exceeded as not; the *mean error*, or that error which is the square root of the mean of the squares of all errors in the system; and the *average error*, which is the average, regardless of sign, of all errors in the system. Denote these errors by ϵ_p , ϵ_m , ϵ_a , respectively. Then in all systems in which positive and negative errors of equal magnitude are equally likely to occur, and in which the limits of error are denoted by -a and +a, the analytical definitions of the probable, mean, and average errors are:

$$\int_{-a}^{-\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{\infty} \phi(\epsilon) d\epsilon = \int_{0}^{+\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{+\epsilon_{p}} \phi(\epsilon) d\epsilon = \frac{1}{4},$$

$$+ a$$

$$+ a$$

$$+ a$$

$$+ a$$

$$+ a$$

$$+ a$$

$$- a$$
(3)

* The reader should observe that the word probable is here used in a specially technical sense. Thus, the probable error is not "the most probable error," nor "the most probable value of the actual error," etc., as commonly interpreted.

b. Probable, mean, average, and maximum actual errors of interpolated logarithms, trigonometric functions, etc.

When values of logarithms, etc., are interpolated from numerical tables by means of first differences, as explained above, the probable and other errors depend on the magnitude of the interpolating factor. Thus, the interpolated value is

$$v = v_1 + (v_2 - v_1) t$$

where v_1 and v_2 are consecutive tabular values and t is the interpolating factor.

For the species of interpolated value wherein the quantity $(v_2 - v_1) t$ is not rounded to the nearest unit of the last tabular place (or wherein the next figure beyond that place is retained) the maximum possible actual error is 0.5 of a unit of the last tabular place, and formulas (1) and (3) show that the probable, mean, and average errors are given by the following expressions:—

$$\epsilon_p = \frac{1}{4} (\mathbf{i} - t) \quad \text{for } t \text{ between o and } \frac{1}{3},$$

$$= \frac{1}{2} - \frac{1}{2} \sqrt{2t} (\mathbf{i} - t) \text{ for } t \text{ between } \frac{1}{3} \text{ and } \frac{2}{3},$$

$$= \frac{1}{4} t \quad \text{for } t \text{ between } \frac{2}{3} \text{ and } \mathbf{i}.$$

$$\epsilon_m = \left\{ \frac{\mathbf{i} - (\mathbf{i} - 2t)^4}{96 (\mathbf{i} - t) t} \right\}^{\frac{1}{3}}.$$

$$\epsilon_a = \frac{\mathbf{i} - (\mathbf{i} - 2t)^3}{24 (\mathbf{i} - t) t} \quad \text{for } t \text{ between o and } \frac{1}{2},$$

$$= \frac{\mathbf{i} - (2t - 1)^3}{24 (\mathbf{i} - t) t} \quad \text{for } t \text{ between } \frac{1}{2} \text{ and } \mathbf{i}.$$

It thus appears that the probable error of an interpolated value of the species under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place as t increases from 0 to 0.5. Hence such interpolated values are more precise than tabular values.

For the species of interpolated values ordinarily used, wherein $(v_2 - v_1)$ t is rounded to the nearest unit of the last tabular place, the probable, mean, and average errors are greater than the corresponding errors for tabular values. The laws of error for this ordinary species of interpolated value are similar to but in general more complex than those defined by equations (1). It must suffice here to give the practical results which flow from these laws for special values of the interpolating factor t.* The following table gives the probable, mean, average, and maximum actual error of such interpolated values for $t = 1, \frac{1}{2}, \frac{1}{3}, \ldots \frac{1}{10}$. It will be observed that t = 1 corresponds to a tabular value.

^{*} For the theory of the errors of this species of interpolated values see Annals of Mathematics, vol. ii. pp. 54-59.

Characteristic Errors of Interpolated Logarithms, etc.

Interpolating factor	Probable error ϵ_p	Mean error ϵ_m	Average error ϵ_a	Maximum actual error
ı	0.250	0.289	0.250	1/2
1/2	.292	.408	·333	I
1/3	.256	-347	.287	<u>5</u>
1	.276	.382	.313	I
1/5	.268	.370	.303	10
1 6	.277	.385	.315	I
7	•274	.380	.311	13
18	.279	.389	.318	I
19	.278	.386	.316	178
10	.281	.392	.320	1

2. The Method of Least Squares.

a. General statement of method.

When the errors to which observed quantities are subject follow the law expressed by

$$\phi(\epsilon) = \frac{h}{\sqrt{\pi}} e^{-h^2 \epsilon^2},$$

a unique method results for the computation of the most probable values of the observed quantities and of quantities dependent on the observed quantities. The method requires that the sum of the weighted squares of the corrections to the observed quantities shall be a minimum,* subject to whatever theoretical conditions the corrections must satisfy. These conditions are of two kinds, namely, those expressing relations between the corrections only, and those expressing relations between the corrections and other unknown quantities whose values are disposable in determining the minimum. A familiar illustration of the first class of conditions is presented by the case of a triangle each of whose angles is measured, the condition being that the sum of the corrections is a constant. An equally familiar illustration of the second class of conditions is found in the case where the sum and difference of two unknown quantities are separately observed; in this case the two unknowns are to be found along with the corrections.

Mathematically, the general problem of least squares may be stated in two

equations. Thus, let x, y, z, \ldots be the observed quantities with weights p, q, r, \ldots . Let the corrections to the observed quantities be denoted by $\Delta x, \Delta y, \Delta z, \ldots$; so that the corrected quantities are $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$. Let the disposable quantities whose values are to be determined along with the corrections be denoted by ξ, η, ζ, \ldots . Then, the theoretical conditions which must be satisfied by $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$ and by ξ, η, ζ, \ldots may be symbolized by

 $F_n(\xi, \eta, \zeta, \ldots x + \Delta x, y + \Delta y, z + \Delta z, \ldots) = 0.$ (4)

Subject to the conditions specified by the n equations (4), we must also have

$$p(\Delta x)^{2} + q(\Delta y)^{2} + r(\Delta z)^{2} + \dots = \text{a minimum}$$

$$= u, \text{ say.}$$
(5)

Equations (4) and (5) contain the solution of every problem of adjustment by the method of least squares. Two examples may suffice to illustrate their use.

First, take the case of the observed angles of a triangle alluded to above. Calling the observed angles x, y, z, we have

$$x + \Delta x + y + \Delta y + z + \Delta z = 180^{\circ} + \text{spherical excess},$$

 $\Delta x + \Delta y + \Delta z = 180^{\circ} + \text{spherical excess} - (x + y + z)$
 $= c$, say.

This is the only condition of the form (4). The problem is completely stated, then, in the two equations

$$\Delta x + \Delta y + \Delta z = c$$

$$p(\Delta x)^2 + q(\Delta y)^2 + r(\Delta z)^2 = a \text{ min.} = u.$$

To solve this problem the simplest mode of procedure is to eliminate one of the corrections by means of the first equation and then make u a minimum. Thus, eliminating Δz , there results

$$u = p (\Delta x)^2 + q (\Delta y)^2 + r (c - \Delta x - \Delta y)^2.$$

The conditions for a minimum of u are:—

or

where

$$\frac{\partial u}{\partial \Delta x} = (p+r) \Delta x + r \Delta y - rc = 0,$$

$$\frac{\partial u}{\partial \Delta y} = r \Delta x + (q+r) \Delta y - rc = 0;$$

and these give, in connection with the value $\Delta z = c - \Delta x - \Delta y$,

$$\Delta x = \frac{Q}{p}, \qquad \Delta y = \frac{Q}{q}, \qquad \Delta z = \frac{Q}{r}.$$

$$Q = \frac{c}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}.$$

When the weights are equal, or when p = q = r, the corrections are --

$$\Delta x = \Delta y = \Delta z = \frac{1}{3} c.$$

Secondly, take the case, also alluded to above, of the observed sum and the observed difference of two numbers. Denote the numbers by ξ and η , the latter being the smaller. Let the observed values of the sum $(\xi + \eta)$ be denoted by $x_1, x_2, \ldots x_m$ and their weights $p_1, p_2, \ldots p_m$ respectively. Likewise, call the observed values of the difference $(\xi - \eta), y_1, y_2, \ldots y_n$, and their weights $q_1, q_2 \ldots q_n$ respectively. Then there will be m + n equations of the type (4), namely:—

and the minimum equation is

$$u = p_1 (\Delta x_1)^2 + p_2 (\Delta x_2)^2 + \ldots + q_1 (\Delta y_1)^2 + q_2 (\Delta y_2)^2 + \ldots = a \text{ min. (b)}$$

The equations of group (a) give

$$\Delta x_1 = \xi + \eta - x_1,$$

$$\Delta x_2 = \xi + \eta - x_2,$$

$$\dots$$

$$\Delta y_1 = \xi - \eta - y_1,$$

$$\Delta y_2 = \xi - \eta - y_2,$$

$$\dots;$$
(c)

and these values in (b) give

$$u = p_1 (\xi + \eta - x_1)^2 + \ldots + q_1 (\xi - \eta - y_1)^2 + \ldots$$
 (d)

Thus it appears that all conditions will be satisfied if ξ and η are so determined as to make u in (d) a minimum. Hence, using square brackets to denote summation of like quantities, the values of ξ and η must be found from

$$\frac{\partial u}{\partial \xi} = [p+q] \xi + [p-q] \eta - [px+qy] = 0,$$

$$\frac{\partial u}{\partial \eta} = [p-q] \xi + [p+q] \eta - [px-qy] = 0.$$
(e)

Equations (e) give ξ and η , and these substituted in (c) will give the corrections to the observed quantities.

b. Relation of probable, mean, and average errors.

The introduction of the law of error (2) in equations (3) furnishes the following relations, when it is assumed that the limits of possible error are $-\infty$ and $+\infty$:

$$\epsilon_p = 0.6745 \; \epsilon_m = 0.8453 \; \epsilon_a. \tag{6}$$

c. Case of a single unknown quantity.

The case of a single unknown quantity whose observed values are of equal or unequal weight is comprised in the following formulas:—

 $x_1, x_2, \ldots x_m$ = observed values of unknown quantity, $p_1, p_2, \ldots p_m$ = the weights of x_1, x_2, \ldots $v_1, v_2, \ldots v_m$ = most probable corrections to x_1, x_2, \ldots x = most probable value of the unknown quantity, m = the number of *independent* observations.

Then the conditional equations (4) are

$$x - x_1 = v_1,$$

$$x - x_2 = v_2,$$

$$x - x_m = v_m;$$

the minimum equation (5) is

$$p_1v_1^2 + p_2v_2^2 + \ldots = [pv^2] = [p(x-x_i)^2] = a \text{ min.},$$

where $i = 1, 2, \ldots m$, and

$$x = \frac{p_1 x_1 + p_2 x_2 + \dots p_m x_m}{p_1 + p_2 + \dots p_m} = \frac{[px]}{[p]}.$$

When the weights are equal, $p_1 = p_2 = \ldots = p_m$, and

$$x=\frac{[x]}{m},$$

or the arithmetic mean of the observed values.

Weight of x = [p] when the p's are unequal, = m when the p's are equal.

Mean error of an observed value of weight unity $=\sqrt{\frac{pvv}{m-1}}$ for unequal weights,

$$=\sqrt{\frac{[vv]}{m-1}}$$
 for equal weights.

Mean error of an observed value of weight $p = \sqrt{\frac{[pvv]}{(m-1)p}}$ for unequal weights.

Mean error of
$$x = \sqrt{\frac{[pvv]}{(m-1)[p]}}$$
 for unequal weights,
$$= \sqrt{\frac{[vv]}{m(m-1)}}$$
 for equal weights.

The corresponding probable errors are found by multiplying these values by 0.6745. See equation (6).

A formula for the average error sometimes useful is

Average error
$$=\frac{[\not pv]}{\sqrt{(m-1)[\not p]}}$$
 for unequal weights.
 $=\frac{[v]}{\sqrt{m(m-1)}}$ for equal weights.

In these the residuals v are all taken with the same sign. A sufficient approximation in many cases of equal weights is $\frac{[v]}{m}$; but the above formulas dependent on the squares of the residuals are in general more precise.

An important check on the computation of x is [pv] = 0; i. e., the sum of the residuals v, each multiplied by its weight, is zero if the computation is correct.

d. Case of observed function of several unknown quantities ξ , η , ζ

A case of frequent occurrence, and one which includes the preceding case, is that in which a function of several unknown quantities is observed. Thus, for example, the observed time of passage of a star across the middle thread of a transit instrument is a function of the azimuth and collimation of the transit instrument and the error of the timepiece used. In cases of this kind the conditional equations of the type (4) assume the form

$$F(\xi, \eta, \zeta \ldots x + \Delta x) = 0;$$

that is, each of them contains but one observed quantity x along with several disposable (disposable in satisfying the minimum equation) quantities ξ , η , ζ ...

The process of solution in this case consists in eliminating the corrections $\Delta x_1, \Delta x_2, \ldots$ from the above conditional equations, substituting their values in the minimum equation (5), and then placing the differential coefficients of u with respect to $\xi, \eta, \zeta \ldots$ separately equal to zero. There will thus result as many independent equations as there are unknown quantities of the class in which $\xi, \eta, \zeta \ldots$ fall, the remaining unknown quantities $\Delta x_1, \Delta x_2, \ldots$, or the corrections to the observed values, are then found from the conditional equations.

In many applications it happens that the conditional equations

$$F(\xi, \eta, \zeta, \ldots x + \Delta x) = 0,$$

are not of the linear form. But they may be rendered linear in the following manner. First, eliminate the quantities $x + \Delta x$ from the conditional equations. The result of this elimination may be written

Secondly, put
$$f(\xi, \eta, \zeta \ldots) - x - \Delta x = 0.$$
 $\xi = \xi_0 + \Delta \xi,$ $\eta = \eta_0 + \Delta \eta,$

where ξ_0, η_0, \ldots are approximate values of ξ, η, \ldots , found in any manner, and $\Delta \xi, \Delta \eta, \ldots$ are corrections thereto. Then supposing the approximate values

 ξ_0, η_0, \ldots so close that we may neglect the squares, products, and higher powers of $\Delta \xi, \Delta \eta, \ldots$, Taylor's series gives

$$f(\xi_0, \eta_0, \zeta_0, \ldots) + \frac{\partial f}{\partial \xi} \Delta \xi + \frac{\partial f}{\partial \eta} \Delta \eta + \frac{\partial f}{\partial \zeta} \Delta \zeta + \ldots - x - \Delta x = 0,$$

which is linear with respect to the corrections $\Delta \xi$, $\Delta \eta$, For brevity, and for the sake of conformity with notation generally used, put

$$n = x - f(\xi_0, \eta_0, \zeta_0 \dots),$$

$$v = \Delta x,$$

$$a = \frac{\partial f}{\partial \xi}, \quad b = \frac{\partial f}{\partial \eta}, \quad c = \frac{\partial f}{\partial \zeta}, \dots$$

$$x = \Delta \xi, \quad y = \Delta \eta, \quad z = \Delta \zeta, \dots$$

Then the conditional equations will assume the form

$$ax + by + cz + \ldots - n = v;$$

and if they are m in number they may be written individually thus:—

$$a_1x + b_1y + c_1z + \dots - n_1 = v_1,$$

 $a_2 + b_2 + c_2 + \dots - n_2 = v_2,$
 $a_m + b_m + c_m + \dots - n_m = v_m.$
(a)

The minimum equation (5) becomes

$$u = [pv^2] = [p(ax + by + cz + \dots - n)^2];$$

so that placing $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, ... separately equal to zero will give as many independent equations as there are values of x, y, z, \ldots . The resulting equations are in the usual (Gaussian) notation of least squares:—

$$[paa]x + [pab]y + [pac]z + \dots - [pan] = 0,$$

$$[pab] + [pbb] + [pbc] + \dots - [pbn] = 0,$$

$$[pac] + [pbc] + [pcc] + \dots - [pcn] = 0,$$
(b)

The equations (a) are sometimes called observation-equations. The absolute term n is called the observed quantity. It is always equal to the observed quantity minus the computed quantity $f(\xi_0, \eta_0, \zeta_{...})$, which latter is assumed to be free from errors of observation. The term v is called the residual. It is sometimes, though quite erroneously, replaced by zero in the equations (a).

The equations (b) are called normal equations. They are usually formed directly from equations (a) by the following process: Multiply each equation by the coefficient of x and by the weight p of the v in the same equation, and add the products. The result is the first equation of (b), or the normal equation in x. The normal equations in y, z, ... are found in a similar manner.

A noteworthy peculiarity of the normal equations is their symmetry. Hence in forming equations (b) from (a) it is not essential to compute all the coefficients of x, y, z, \ldots except in the first equation.

Checks on the computed values of the numerical terms in the normal equations are found thus: Add the coefficients a, b, c, \ldots of x, y, z, \ldots in (a) and put

$$a_1 + b_1 + c_1 + \ldots = s_1,$$

 $a_2 + b_2 + c_2 + \ldots = s_2,$

Multiply each of these, first, by its pa; secondly, by its pb, etc., and then add the products. The results are

$$[paa] + [pab] + [pac] + \dots = [pas]$$
$$[pab] + [pbb] + [pbc] + \dots = [pbs]$$

These will check the coefficients of x, y, z, \ldots in (b). To check the absolute terms, multiply each of the above sums by its np, and add the products. The result is

$$[pan] + [pbn] + [pcn] + \ldots = [psn],$$

which must be satisfied if the absolute terms are correct.

Checks on the computation of x, y, z, \ldots from (b) and of v_1, v_2, \ldots from (a) are furnished by

$$[pav] = 0$$
, $[pbv] = 0$, $[pcv] = 0$, ...

To get the unknowns x, y, z, and their weights simultaneously, the best method of procedure is, in general, the following: For brevity replace the absolute terms in (b) by A, B, C, ... respectively. Then the solution of (b) will be expressed by

$$x = a_1 A + \beta_1 B + \gamma_1 C + \dots, y = a_2 + \beta_2 + \gamma_2 + \dots, z = a_3 + \beta_3 + \gamma_3 + \dots,$$
 (c)

in which $\alpha_l,\,\beta_l,\,\gamma_l,\,\dots$ are numerical quantities; and

weight of
$$x = \frac{1}{\alpha_1}$$
,
weight of $y = \frac{1}{\beta_2}$,
weight of $z = \frac{1}{\gamma_3}$,

To compute mean (and hence probable) errors the following formulas apply: -

m = the number of observed quantities n

= number of equations of condition,

 $\mu =$ number of the quantities x, y, z, \dots

 ϵ_m = mean error of an observed quantity (n) of weight unity,

 $\epsilon_p = \text{corresponding probable error} = 0.6745 \ \epsilon_m$

$$\epsilon_m = \sqrt{\frac{[pvv]}{m-\mu}}$$
 for unequal weights,
$$= \sqrt{\frac{[vv]}{m-\mu}}$$
 for equal weights,

Mean error of any observed quantity (n) of weight $p = \frac{\epsilon_m}{\sqrt{p}}$.

Mean error of $x = \epsilon_m \sqrt{\alpha_1}$,

Mean error of $y = \epsilon_m \sqrt{\beta_2}$,

Mean error of $z = \epsilon_m \sqrt{\gamma_3}$,

where a_1 , β_2 , γ_3 , ... are defined by equations (c) and (d) above.

e. Case of functions of several observed quantities x, y, z,

This case is that in which the conditional equations (4) contain no disposable quantities ξ , η , ζ , It is the opposite extreme to that represented by the case of the preceding section.* It finds its most important and extensive application in the adjustment of triangulation, wherein the observed quantities are the angles and bases of the triangulation, and the conditions (4) arise from the geometrical relations which the observed quantities *plus* their respective corrections must satisfy.

An outline of the general method of procedure in this case is the following:—
The first step consists in stating the conditional equations and in reducing them to the linear form if they are not originally so. The form in which they present themselves is (4) with ξ , η , ζ , . . . suppressed, or

$$F(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3, ...) = 0,$$

wherein x, y, z, \ldots of (4) are replaced by $x_1, x_2, x_3 \ldots$ for the purpose of simplicity in the sequel. If this equation is not linear, Taylor's series gives

$$F(x_1, x_2, x_3...) + \frac{\partial F}{\partial x_1} \Delta x_1 + \frac{\partial F}{\partial x_2} \Delta x_2 = ... = 0,$$

since the method supposes that the squares, products, etc., of $\Delta x_1, \Delta x_2 \dots$ may be neglected. The last equation is then linear with respect to the corrections $\Delta x_1, \Delta x_2 \dots$ which it is desired to find.

For brevity put

$$F(x_1, x_2, x_3...) = q_1$$
, a known quantity,

$$\frac{\partial F}{\partial x_1} = a_1, \qquad \frac{\partial F}{\partial x_2} = a_2, \qquad \frac{\partial F}{\partial x_2} = a_3, \ldots$$

Then the conditional equations will be of the type

$$a_1\Delta x_1 + a_2\Delta x_2 + a_3\Delta x_3 + \ldots + q_1 = 0.$$

^{*} The middle ground between these extremes has been little explored; indeed, most practical applications fall at one or the other of the extremes.

There will be as many equations of this type as there are independent relations which the quantities $x_1 + \Delta x_1$, $x_2 + \Delta x_2$, ... must satisfy. Suppose there are k such relations, and let the differential coefficients $\partial F/\partial x_1$, $\partial F/\partial x_2$, ... for the second relation be denoted by b_1 , b_2 , b_3 , ...; for the third relation by c_1 , c_2 , c_3 , ..., etc. Then all of the conditional equations may be written thus:

$$a_1 \Delta x_1 + a_2 \Delta x_2 + a_3 \Delta x_3 + \dots + q_1 = 0,$$

 $b_1 + b_2 + b_3 + \dots + q_2 = 0,$
 $c_1 + c_2 + c_3 + \dots + q_3 = 0,$
(a)

the number of these equations being k.

Call the weights of the observed quantities $x_1, x_2, \ldots p_1, p_2, \ldots$ Then, subject to the conditions (a) we must have (in accordance with (5))

$$u = p_1(\Delta x_1)^2 + p_2(\Delta x_2)^2 + \dots = [p(\Delta x)^2]$$
 (b)

a minimum.

Equations (a) and (b) contain the solution of all problems falling under the present case. Obviously, the number of conditions (a) must be less than the number of observed quantities x, or less than the number of Δx 's in (b); in other words, if m denote the number of observed quantities, m > k, for if $m \ge k$ the minimum equation (b) has no meaning.

The question presented by (a) and (b) is one of elimination only. Two methods, the one direct and the other indirect, are available. Thus, by the direct method one finds from (a) as many Δx 's as there are equations (a), or k such values, and substitutes them in (b). The remaining (m-k) values of Δx in (b) may then be treated as independent and the differential coefficients of u with respect to each of them placed equal to zero. Thus all of the corrections Δx become known.

By the indirect process, one multiplies the first of equations (a) by a factor Q_1 , the second by Q_2 , the third by Q_3 , ... and subtracts the differential (with respect to the Δx 's) of the sum of these products from half the differential of (b). The result of these operations is

$$\frac{1}{2} du = \{ p_1 \Delta x_1 - (a_1 Q_1 + b_1 Q_2 + c_1 Q_3 + \ldots) \} d\Delta x_1
+ \{ p_2 \Delta x_2 - (a_2 Q_1 + b_2 Q_2 + c_2 Q_3 + \ldots) \} d\Delta x_2
+ \cdots
+ \{ p_m \Delta x_m - (a_m Q_1 + b_m Q_2 + c_m Q_3 + \ldots) \} d\Delta x_m$$

Now we may choose the factors $Q_1, Q_2, \ldots Q_k$ in such a way as to make k of the coefficients of the differentials in this equation disappear; and after thus eliminating k of these differentials we are at liberty to place the coefficients of the remaining (m-k) differentials equal to zero. Thus all conditions are satisfied by making

$$a_{1}Q_{1} + b_{1}Q_{2} + c_{1}Q_{3} + \dots - p_{1}\Delta x_{1} = 0,$$

 $a_{2} + b_{2} + c_{2} + \dots - p_{2}\Delta x_{2} = 0,$
 \dots
 $a_{m} + b_{m} + c_{m} + \dots - p_{m}\Delta x_{m} = 0;$
(c)

and the values of the corrections will be given by these equations when the factors Q_1, Q_2, \ldots are known. To find the latter it suffices to substitute the values

of Δx , Δx_2 , ... from (c) in (a), whereby there will result k equations containing the Q_1 , Q_2 ... Q_k alone as unknowns. The result of this substitution is

$$\begin{bmatrix} \frac{aa}{p} \end{bmatrix} Q_1 + \begin{bmatrix} \frac{ab}{p} \end{bmatrix} Q_2 + \begin{bmatrix} \frac{ac}{p} \end{bmatrix} Q_3 + \dots + q_1 = 0,$$

$$\begin{bmatrix} \frac{ab}{p} \end{bmatrix} + \begin{bmatrix} \frac{bb}{p} \end{bmatrix} + \begin{bmatrix} \frac{bc}{p} \end{bmatrix} + \dots + q_2 = 0,$$

$$\begin{bmatrix} \frac{ac}{p} \end{bmatrix} + \begin{bmatrix} \frac{bc}{p} \end{bmatrix} + \begin{bmatrix} \frac{cc}{p} \end{bmatrix} + \dots + q_3 = 0,$$

$$(d)$$

These equations (d) are derived directly from (c) in the following manner: multiply the first of (c) by $\frac{a_1}{p_1}$, the second by $\frac{a_2}{p_2}$, etc., sum the products, and compare the sum with the first of (a). The first of (d) is then evident; the others are obtained in a similar way.

The mean error of an observed quantity of weight unity is in this case given by the formula

$$\epsilon_m = \sqrt{\frac{[p(\Delta x)^2]}{k}},$$

where k is the number of conditions (a); and the mean error of any observed value of weight p is

$$\frac{\epsilon_m}{\sqrt{p}}$$
.

f. Computation of mean and probable errors of functions of observed quantities.

Let V denote any function of one or more independently observed quantities x, y, z, \ldots ; that is, let

 $V = f(x, y, z \ldots).$

A question of frequent occurrence with respect to such functions is, What is the mean * error of V in terms of the mean errors of x, y, z, \ldots ? The answer to this question given by the method of least squares assumes that the actual errors (whatever they may be) of x, y, z, \ldots are so small that the actual error of V is a linear function of the errors of x, y, z. In other words, if e_x, e_y, e_z, \ldots denote the actual errors of x, y, z, \ldots , and ΔV denote the corresponding actual error of V, the method assumes that

$$\Delta V = \frac{\partial V}{\partial x} e_x + \frac{\partial V}{\partial y} e_y + \frac{\partial V}{\partial z} e_z + \dots, \qquad (a)$$

wherein the squares, products, etc., of e_x , e_y , e_z , . . . are omitted.

This condition being fulfilled, let ϵ denote the mean error of V, and ϵ_x , ϵ_y , ϵ_z ... denote those of x, y, z, ... respectively. Then the law of error of least squares requires that

 $\epsilon^{2} = \left(\frac{\partial V}{\partial x}\right)^{2} \epsilon_{x}^{2} + \left(\frac{\partial V}{\partial y}\right)^{2} \epsilon_{y}^{2} + \left(\frac{\partial V}{\partial z}\right)^{2} \epsilon_{z}^{2} + \dots$ (b)

^{*} Since the probable error is 0.6745 times the mean error the latter only need be considered.

This equation includes all cases. Its analogy with (a) should be noted, since the step from (a) to (b) is clear when the correct form of (a) is known. Mistakes in the application of (b) are most likely to arise from a lack of knowledge of the *independently observed* quantities x, y, z, \ldots or from a lack of knowledge of the true form of (a). Hence,* in deriving probable errors of functions of observed quantities attention should be given first to the construction of the expression for the actual error (a).

A few examples may serve to illustrate the use of (a) and (b).

(1.) Suppose

Then

$$V = f(x, y, z, ...) = a(x - y) + b(y + z) + c(z - 1).$$

$$\frac{\partial V}{\partial x} = a, \quad \frac{\partial V}{\partial y} = b - a, \quad \frac{\partial V}{\partial z} = b + c,$$

$$\Delta V = ae_x + (b - a)e_y + (b + c)e_z,$$

$$\epsilon^2 = a^2\epsilon_x^2 + (b - a)^2\epsilon_y^2 + (b + c)^2\epsilon_z^2.$$

(2.) Suppose

$$V = f(x, y, z \dots) = \frac{a}{x} + b \frac{y}{z^2}.$$

Then

$$\frac{\partial V}{\partial x} = -\frac{a}{x^2}, \quad \frac{\partial V}{\partial y} = \frac{b}{z^2}, \quad \frac{\partial V}{\partial z} = -\frac{2 by}{z^3},$$

$$\Delta V = -\frac{a}{x^2} e_x + \frac{b}{z^2} e_y - \frac{2 by}{z^3} e_z,$$

$$\epsilon^2 = \frac{a^2}{x^4} \epsilon_x^2 + \frac{b^2}{z^4} \epsilon_y^2 + \frac{4 b^2 y^2}{z^5} \epsilon_z^2.$$

(3.) Suppose

$$V = a \log x + b \sin y + c \log \tan z$$
.

Then

$$\frac{\partial V}{\partial x} = \frac{a\mu}{x}, \qquad \frac{\partial V}{\partial y} = b \cos y, \qquad \frac{\partial V}{\partial z} = \frac{c\mu}{\sin z \cos z},$$

and

$$\epsilon^2 = \left(\frac{a\mu}{x}\right)^2 \epsilon_x^2 + (b\cos y)^2 \epsilon_y^2 + \left(\frac{2c\mu}{\sin 2z}\right)^2 \epsilon_z^2.$$

(4.) Suppose the case of a single triangle all of whose angles are observed. What is the mean error, 1st, of an observed angle; 2d, of the correction to an observed angle; and 3d, of the corrected or adjusted angle?

Let x, y, z denote the observed angles, p, q, r their weights, and Δx , Δy , Δz the corresponding corrections.

Then, as shown on p. lxxxvii,

$$\Delta x + \Delta y + \Delta z = c = 180^{\circ} + \text{sph. excess} - (x + y + z)$$

$$= \text{error of closure of triangle,}$$

$$Q = \frac{c}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}},$$

$$\Delta x = \frac{Q}{p}, \qquad \Delta y = \frac{Q}{q}, \qquad \Delta z = \frac{Q}{r}.$$

^{*} As remarked by Sir George Airy in his Theory of Errors.

 $[\]dagger \mu = \text{modulus of common logarithms.}$

For brevity, put

 $g = 180^{\circ} + \text{spherical excess}, \quad h = \frac{1}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$

Then

$$Q = h (g - x - y - z) = hc,$$

$$\Delta x = \frac{h}{p} (g - x - y - z),$$

$$x + \Delta x = \frac{h}{p} (g - x - y - z) + x,$$

with similar expressions for the other two angles.

Now by the formula on p. xcv the square of the mean error of an observed angle of weight unity is (since there is but one condition to which Δx , Δy , Δz are subject),

 $p(\Delta x)^2 + q(\Delta y)^2 + r(\Delta z)^2 = \frac{Q^2}{h} = hc^2.$

Hence, the squares of the mean errors of the *observed* angles x, y, z, their weights being p, q, r respectively, are

 $\frac{hc^2}{p}$, $\frac{hc^2}{q}$, $\frac{hc^2}{r}$,

respectively.

To get the mean error of a correction, Δx for example, formula (a) gives

$$\Delta V = \Delta(\Delta x) = -\frac{h}{\rho}(e_x + e_y + e_z),$$

and the corresponding expressions for the actual errors of Δy and Δz are found from this by replacing p by q and r respectively. Thus by (b), observing that the mean errors of x, y, z are given above, there result

Square of mean error of
$$\Delta x = (hc/p)^2$$
,

" " $\Delta y = (hc/q)^2$,

" $\Delta z = (hc/r)^2$.

Likewise, the formula for the actual error of $x + \Delta x$ is

$$\Delta V = \Delta(x + \Delta x) = \left(\mathbf{I} - \frac{h}{p}\right)e_x - \frac{h}{p}e_y - \frac{h}{p}e_z$$

and the corresponding expressions for the actual errors of $y + \Delta y$ and $z + \Delta z$ are found by interchange of q and r with p. Thus the squares of the mean errors of the *adjusted* angles are:—

for
$$(x + \Delta x)$$
, $\frac{hc^2}{p} \left(\mathbf{I} - \frac{h}{p} \right)$,
for $(y + \Delta y)$, $\frac{hc^2}{q} \left(\mathbf{I} - \frac{h}{q} \right)$,
for $(z + \Delta z)$, $\frac{hc^2}{r} \left(\mathbf{I} - \frac{h}{r} \right)$.

In case the weights are equal, or in case p = q = r, $h = \frac{1}{3}$, and there result, —

Square of mean error of observed angle $= \frac{1}{3} c^2$,

""" " correction to observed angle $= \frac{1}{9} c^2$,

""" " adjusted angle $= \frac{2}{3} c^2$,

where c is the error of closure of the triangle; so that in this case of equal weights the three mean errors are to one another as $\frac{1}{3}\sqrt{3}$, $\frac{1}{3}$, and $\frac{1}{3}\sqrt{2}$.

References.

The literature of the theory of errors, especially as exemplified by the method of least squares, is very extensive. Amongst the best treatises the following are worthy of special mention: Method of Least Squares, Appendix to vol. ii. of Chauvenet's "Spherical and Practical Astronomy." Philadelphia: J. B. Lippincott & Co., 8vo, 5th ed., 1887. "A Treatise on the Adjustment of Observations, with Applications to Geodetic Work and Other Measures of Precision," by T. W. Wright. New York: D. Van Nostrand, 8vo, 1884. "On the Algebraical and Numerical Theory of Errors of Observation and on the Combination of Observations," by Sir George Biddle Airy. London: Macmillan & Co., 12mo, 2d ed., 1875. "Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente," von F. R. Helmert. Leipzig: B. G. Teubner, 8vo, 1872.

EXPLANATION OF SOURCE AND USE OF THE TABLES.

TABLES 1 and 2 are copies of tables issued by the Office of Standard Weights and Measures of the United States, edition of November, 1891.

Table 3 is derived from standard tables giving such data. The arrangement is that given in "Des Ingenieurs Taschenbuch, herausgegeben von dem Verein 'Hütte'"* (11th edition, 1877). The numbers have been compared with those given in the latter work, and also with those in Barlow's "Tables." The logarithms have been checked by comparison with Vega's 7-place tables.

Table 4 is abridged from a similar table in the Taschenbuch just referred to.

Tables 5 and 6 are copies of standard forms for such table. They have been checked by comparison with standard higher-place tables. The mode of using these tables will be evident from the following examples:—

- (1.) To find the logarithm of any number, as 0.06944, we look in **Table 5** in the column headed N for the first two significant figures of the number, which are in this case 69. In the same horizontal line with 69 we now look for the number in the column headed with the next figure of the given number, which is in the present case 4. We thus find .8414 for the mantissa of the logarithm of the number 694. To get the increase due to the additional figure 4, we look in the same horizontal line under Prop. Parts in the column headed 4 and find the number 2, which is the amount in units of the fourth place to be added to the part of the mantissa previously found. Thus the mantissa of log (0.06944) is .8416. The characteristic for the logarithm in question is -2 = 8 10. Hence $\log (0.06944) = 8.8416 10$.
- (2.) To find the number corresponding to any logarithm, as 8.8416-10, we look in Table 6 in the column headed L for the first two figures of the mantissa, which are in this case 84. In the same horizontal line with 84 we now look for the number in the column headed by the next figure of the mantissa, which is in this case 1. We thus find 6394 for the number corresponding to the mantissa 8410. To get the increase due to the additional figure 6, we look in the same horizontal line under Prop. Parts in the column headed 6 and find 10, which is the amount in units of the fourth place to be added to the number previously found. Thus the significant figures of the number are 6944, and since the characteristic of the logarithm is 8-10=-2, the required number is 0.06944.

^{*} Berlin: Verlag von Ernst & Korn. This work is an invaluable one to the engineer, architect, geographer, etc.

Tables 7 and 8 are taken from "Smithsonian Meteorological Tables" (the first volume of this series). Their mode of use will be apparent from the following example: Required the sine and tangent for 28° 17'.

sine 28° 10', Table 7			0.4720.	Tabular difference = 26.
Proportional part for 7' (7 \times 2.6)	•		18.	
sine 28° 17′	•	•	0.4738.	
tangent 28° 10', Table 8			0.5354.	Difference for $1' = 3.8$.
Increase for $7'$ (7×3.8)			•	
tangent 28° 17'	•	•	0.5381.	

Table 9 is a copy of a similar table published in "Professional Papers, Corps Engineers," U. S. A., No. 12. It has been checked by comparison with other tables in general use. This table is useful in computing latitudes and departures in traverse surveys wherein the bearings of the lines are observed to the nearest quarter of a degree, and in other work where multiples of sines and cosines are required. Thus, if L denote the length and B the bearing from the meridian of any line, the latitude and departure of the line are given by

$L\cos B$ and $L\sin B$

respectively; the "latitude" being the distance approximately between the parallels of latitude at the ends of the line, and the "departure" being the distance approximately between the meridians at the ends of the line. As an example, let it be required to compute the latitude and departure for L=4837, in any unit, and $B=36^{\circ}$ 15'. The computation runs thus:—

								Latitude.	Departure.
For 4000								3225.77	2365.23
8 0 0	•							645.16	473.05
30	•		•	•			•	24.19	17.74
7	•	•	•	•	•		•	5.63	4.14
4837					Lc	osz	B=	= 3900.77	$L\sin B = \overline{2860.16}$

Tables 10 and 11 give the logarithms of the principal radii of curvature of the earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and carefully checked by differences. They depend on the elements of Clarke's spheroid of 1866. The use of these tables is sufficiently explained on p. xlv-xlix.

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sections inclined to the meridian sections. It is abridged to 5 places from a 6-place table published in the "Report of the U. S. Coast and Geodetic Survey for 1876." Its use is explained on pp. lxi-lxiv.

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal excess of triangles on the earth's spheroid. No. 13 is constructed for the English foot as unit, and No. 14 for the metre. These tables were computed by Mr.

Charles H. Kummell. Their use is explained on p. lviii. The following example will illustrate their use:—

Latitude of vertex
$$A$$
 of triangle 48° o8'

" " B " 47 52

" " C " 47 04

Mean latitude 47 11

Angle $C = 51^{\circ}$ 22' 55" log sin C 9.89283 — 10

log a (feet) 5.64401

log b (feet) 5.58681

log factor, Table 13, for 47° 41' 0.37176

Spheroidal excess = 31."290, log 1.49541

Tables 15 and 16 give logarithms of factors for computing differences of latitude, longitude, and azimuth in secondary triangulation whose lines are 12 miles (20 kilometres) or less in length. These tables were computed by Mr. Charles H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16 for the metre as unit. The use of these tables is illustrated by a numerical example given on pp. lx and lxi. For lines not exceeding the length mentioned, the tables will give differences of latitude and longitude to the nearest hundredth of a second of arc, using 5-place logarithms of the lengths of the lines.

Table 17 gives lengths of terrestrial arcs of meridians corresponding to latitude intervals of 10", 20", ... 60", and 10', 20', ... 60', or lengths corresponding to arcs less than 1°. The unit of length is the English foot. The table was computed by Mr. B. C. Washington, Jr.

The length corresponding to any latitude interval is the distance along the meridian between parallels whose latitudes are less and greater respectively than the given latitude by half the interval. Thus, for example, the length corresponding to the interval 30' and latitude 37° (182047.3 feet) is the distance along the meridian from latitude 36° 45' to latitude 37° 15'.

By interpolation, we may get from this table the meridional distance corresponding to any interval. The following example illustrates this use: Required the distance between latitude 41° 28′ 17.″8 and latitude 41° 39′ 53.″4. The difference of these latitudes is 11′ 35.″6, and their mean is 41° 34′ 05.″6. The computation runs thus:—

	Latitude 41°.	Tabular difference.			
10'	60724.60 feet	10.70 feet	10.70 feet		
ı'	6072.46 "	1.07 "			
30"	3036.23 "	·54 "			
5"	506.04 "	.09 "			
o.″6	60.72 "	.01 "			
$\frac{34.09}{60}$ × 12.41	7.05 "	sum, 12.41 "			
Distance	= 70407.10 "				

When the degree of precision required is as great as that of the example just

given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this example, —

log.
$$\Delta \phi = 695.''6$$
 2.8423596 $\phi = 41^{\circ} 34' \circ 5.''6$, ρ_m (Table 10) 7.3196820 cons't $\frac{4.6855749}{4.8476165}$

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longitude intervals of 10'', 20'', ... 60'', and 10', 20', ... 60', or lengths corresponding to arcs less than 1° . The unit is the English foot. This table was computed by Mr. B. C. Washington, Jr.

The method of using this table is similar to that applicable to **Table 17** explained above. For the computation of long arcs it will in general be less laborious to use the formulas (1) on p. xlix than to resort to interpolation from **Table 18**.

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in accordance with the polyconic system explained on pp. liii-lvi, for the following scales respectively:—

Table 19, scale
$$\frac{1}{25000}$$

" 20, " $\frac{1}{12500}$

" 21, " $\frac{1}{126720}$ (2 miles to 1 inch)

" 22, " $\frac{1}{63300}$ (1 mile to 1 inch)

" 23, " $\frac{1}{200000}$

" 24, " $\frac{1}{8000}$ unit = millimetre.

These tables were computed by Mr. B. C. Washington, Jr.

The use of these tables and their application in the construction of maps may be best explained by an example. Suppose it is required to draw meridians and parallels for a map of an area of 1° extent in longitude, lying between the parallels of 34° and 35°. Let the scale of the map be one mile to the inch, or 1/63360, and let the meridians and parallels be 10' apart respectively. Draw on the projection paper an indefinite straight line AB, Fig. 4, to represent the middle meridian of the map. Take any convenient point, as C, on this line for the latitude 34°, and lay off from this point the meridional distances CD, CE, CF, . . . CI, given in the second column of Table 22, p. 114.* Through the points D, E, F, . . . I, thus found, draw indefinite straight lines perpendicular to AB. By means of these lines and the tabular co-ordinates, points on the developed parallels and meridians are readily found. Thus, for example, the abscissas for points ten minutes apart on the parallel 34° 20' are 9.53, 19.06, and 28.59 inches. These distances are to be laid off on NN' in both directions from AB. At the points L, M, N, L', M', N', so determined, erect perpendiculars to NN' equal in length, respectively, to the ordinates corresponding to the longitude intervals

^{*} The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 are one twentieth of the true or tabular values. The ordinates of points on the developed parallels are the tabular values.

to', 20', 30'. The curved line joining the extremities of these perpendiculars is the parallel required. It may be drawn by means of a flexible ruler. The other parallels are constructed in the same manner. They are all concave towards the north or south according as the map shows a portion of the northern or southern hemisphere. The meridians are drawn in a similar manner through the points (e. g., P, Q, M, R, S, T, U in Fig. 4) having the same longitude relative to the middle meridian. All meridians are concave towards the middle meridian.

A test of the graphical work which should always be applied is the approximation to equality of corresponding diagonals in the various quadrilaterals formed. Thus in Fig. 4, VX should be equal to WY, CN to CN', EV to EW, etc.*

Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, of the earth's surface. They are taken from "Bulletin 50, U. S. Geological Survey." The unit of length used is the English mile, and the areas are thus given in square miles. The method of using these tables is obvious.

Table 30 gives data for the computation of heights, from barometric measures, in accordance with the formula of Babinet.† This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The manner of using it is explained in connection with the table.

^{*} It should be noted that CN is not equal to EV, N and V referring here to points on the developed parallels.

[†] Comptes Rendus, Paris, 1850, vol. xxv. p. 309.

part.

Table 31 gives the mean astronomical refraction in terms of the apparent altitude of a star or other object outside the earth's atmosphere. It is taken from Vega's 7-place table of logarithms. Its use will be evident from the following example:—

Apparent altitude of star =
$$34^{\circ}$$
 17' 12."7
Refraction = 1' 24."3 + $\frac{3}{20}$ × 1."1 = 1 24.5
True altitude of star = 34° 17' 12."7

Tables 32 and 33 facilitate the interconversion of arc and time. They are taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The following examples illustrate their use:—

(1.) To convert 68° 29' 48."8 into time we have from Table 32 -

$$68^{\circ} = 4^{h} 32^{m} 00^{s}$$

$$29' = 1 56$$

$$48'' = 3.20$$

$$0.''8 = .05$$
Equivalent in time = 4 33 59.25

(2.) To convert 5^h 43^m 28.88 into arc we have from Table 33 —

$$5^{h} = 75^{\circ} \text{ oo' oo''}$$

$$43^{m} = 10 45 00$$

$$28^{s} = 7 00$$

$$0.^{s}8 = 12$$
Equivalent in arc = 85 52 12

Tables 34 and 35 facilitate the interconversion of mean solar and sidereal time intervals. They are taken from Vega's 7-place table of logarithms. The mode of using them is explained in the tables themselves.

Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians and parallels expressed in metres,* statute miles (English), and geographic miles (distance corresponding to 1' on the earth's equator). These tables are taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 38 facilitates the interconversion of statute (English) miles and nautical miles. The nautical mile used is that defined by the U. S. Coast and Geodetic Survey, namely: the length of a minute of arc of a great circle of the sphere whose surface equals that of the earth (Clarke's spheroid of 1866). For formula for radius of such sphere see p. lii. This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 39 gives the English and metric equivalents of other standards of length still in use or obsolescent. It is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 40 gives values of the acceleration (g) of gravity, $\log g$, $\log (1/2g)$, $\log \sqrt{2g}$,

* It should be observed that the metric values given in these tables depend on Clarke's value of the ratio of the yard to the metre, which is now known to be erroneous by about the 1/100000th

and (g/π^2) or the length of a seconds pendulum, for intervals of 5° of geographical latitude. It was computed by the editor, and is based on the formula for g given by Professor William Harkness in his memoir "On the Solar Parallax and its Related Constants."*

Table 41 gives the linear expansions of the principal metals. It was compiled by the editor from various sources. The values given for the expansion per degree Centigrade have been rounded (with one exception) to the nearest unit in the millionths place, or to the nearest micron, since different specimens of the same metal vary more or less in the ten-millionths place.

Table 42 gives the fractional changes in numbers corresponding to changes in the 4th, 5th, ... 7th place of their logarithms. These fractions are often convenient in showing the approximate error in a number due to a given error in its logarithm, or the converse. Thus, for example, referring to the remark in a foot-note under explanation of Tables 36 and 37 above, the error in the logarithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place of decimals; the Table 42 shows, then, that the metric equivalents in Tables 36 and 37 are erroneous by about 1/100 000th part.

^{*} Washington, Government Printing Office, 1891.

GEOGRAPHICAL TABLES

TABLE 1. FOR CONVERTING U. S. WEIGHTS AND MEASURES.* CUSTOMARY TO METRIC.

		LINEAR	· ·				CAPACI	TY.		
	Inches to milli- metres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millilitres or cubic centi- metres.	Fluid ounces to milli- litres.	Quarts to litres.	Gallons to litres.	
1 == 2 == 3 == 4 == 5 == 7 == 9 ==	25'4001 50'8001 76'2002 101'6002 127'0003 152'4003 177'8004 203'2004 228'6005	0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405	1.828804 2.743 2 05 3.657607 4.572009 5.486411	9.65608 11.26543 12.87478	I = 2 = 3 = 4 = 5 = 7 = 9 = 9	3'70 7'39 11'09 14'79 18'48 22'18 25'88 29'57 33'27	29°57 59°15 88°72 118°29 147°87 177°44 207°02 236°59 266°16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	3'78543 7'57987 11'35630 15'14174 18'92717 22'71261 26'49804 30'28348 34'06891	
		SQUARE	č.				WEIGH	T.	7	
	Square inches to square centimetres.	Square feet to square deci- metres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.	
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 9	6·452 12·903 19·355 25·807 32·258 38·710 45·161 51·613 58·065	9.290 18·581 27·871 37·161 46·452 55'742 65'032 74'323 83'613	0.836 1.672 2.508 3.344 4.181 5.017 5.853 6.689 7.525	0'4047 0'8094 1'2141 1'6187 2'0234 2'4281 2'8328 3'2375 3'6422	1 = 2 = 3 = 4 = 5 = 7 = 8 = 9 =	64,7989 129,5978 194,3968 259,1957 323,9946 388,7935 453,5924 518,3914 583,1903	28·3495 56·6991 85·0486 113·3981 141·7476 170·0972 198·4467 226·7962 255·1457	0°45359 0°90719 1°36078 1°81437 2°26796 2°72156 3°17515 3°62874 4°08233	31°10348 62°20696 93°31044 124°44392 155°51740 186°62088 217°72437 248°82785 279°93133	
	4	CUBIC.								
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.						
1 == 2 == 3 == 4 == 5 == 6 == 7 == 8 == 9 ==	16·387 32·774 49·161 65·549 81·936 98·323 114·710 131·097	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154	I Gunter's chain = 20°1168 metres. I sq. statute mile = 259°000 hectares. I fathom = 1°829 metres. I nautical mile = 1853°25 metres. I foot = 0.304801 metre, 9°4840158 log. I avoir. pound = 453°5924277 gram. 15432°35639 grains = 1 kilogramme.					

The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at 50.62 Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

the British yard.

The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The British gallon = 4.54346 litres. The British bushel = 36.3477 litres.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

^{*} Issued by U. S. Office of Standard Weights and Measures, and republished here by permission of Superintendent of Coast and Geodetic Survey.

FOR CONVERTING U. S. WEIGHTS AND MEASURES.

METRIC TO CUSTOMARY.

<u> </u>					1						
		LINEA	R.				CAI	PACIT	ry.		
	Metres to inches.	Metres to feet.	Metres to yards.	Kilo- metres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.	Litre		Deca- litres to gallons	litres to
1 = 2 = 3 = 4 = 5 = 7 = 9 = 9	39'3700 78'7400 118'1100 157'4800 196'8500 236'2200 275'5900 314'9600 354'3300	6·56167 9·84250 13·12333 16·40417 19·68500 22·96583 26·24667	2·187222 3·280833 4·374444 5·468056 6·561667	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	0°27 0°54 0°81 1°08 1°35 1°62 1°89 2°16 2°43	0°338 0°676 1°014 1°353 1°691 2°029 2°367 2°705 3°043	1.00 2.11 3.11 4.22 5.26 6.33 7.33 8.41 9.55	700 267 834 401 968	2.641 5.283 7.925 10.566 13.208 15.850 18.491 21.133 23.775	4 5.6755 1 8.5132 8 11.3510 15 14.1887 12 17.0265 9 19.8642 16 22.7019
	SQUARE.					1	W	EIGH'	т.		
	Square centi- metres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes (grains.	Kil gramn grai	es to	Hee gran to ou avoi po	nmes	Kilo- grammes to pounds avoirdu- pois.
1 = 2 = 3 = 4 = 5 = 7 = 8 = 9 =	0°1550 0°3100 0°4650 0.6200 0°7750 0.9300 1°0850 1°2400 1°3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1'196 2'392 3'588 4'784 5'980 7'176 8'372 9'568 10'764	2.471 4.942 7.413 9.884 12.355 14.826 17.297 19.768 22.239	1 = 2 = 3 = 5 = 7 = 9	0.01543 0.03086 0.04630 0.06173 0.09756 0.10803 0.12346 0.13889	3086 4629 6172 7716 9259 10802	8.85	7.0 10.3 14.1 17.6 21.1 24.6 28.2	5274 5548 5822 1096 5370 1644 5918 2192 7466	2'20462 4'40924 6'61387 8'81849 11'02311 13'22773 15'43236 17'63698 19'84160
		CUBIC				WE	EIGHT -	— (co.	ntin	ued).	
	Cubic centi-metres to cubic inches.	Cubic deci- metres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.		Quintal pounds	s to	Millier tonnes pounds	s to		logrammes to ounces Troy.
1 = 2 = 3 = 4 = 5 = 7 = 8 = 9 =	0'0610 0'1220 0'1831 0'2441 0'3051 0'3661 0'4272 0'4882 0'5492	61'023 122'047 183'070 244'094 305'117 366'140 427'164 488'187 549'210	35°314 70°629 105°943 141°258 176°572 211°887 247°201 282°516 317°830	1·308 2·616 3·924 5·232 6·540 7·848 9·156 10·464 11·771	1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	220'4 440'9 661'3 881'8 1102'3 1322'7 1543'2 1763'7 1984'1	99 55 31 77	2204 4409 6613 8818 11023 13227 15432 17637 19841	3°2 3°5 3°1 7°7 2°4		32:1507 64:3015 96:4522 128:6030 160:7537 192:9044 225:0552 225:0552 225:0552

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were elected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments and are called National prototype standards. Those apportioned to the United States were received in 1890 and are in the keeping of this office. The metric system was legalized in the United States in 1866.

The International Standard Metre is derived from the Mêtre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n^8	\n	ξn	log. n
1	1000.000	1	1	1.0000	1.0000	0.00000
2	500.000	4	8	1.4142	1.2599	0.30103
3	333.333	9	27	1.7321	1.4422	0.47712
4	250.000	16	64	2.0000	1.5874	0.60206
5	200.000	25	125	2.2361	1.7100	0.69897
6	166.667	36	216	2.4495	1.8171	0.77815
7	142.857	49	343	2.6458	1.9129	0.84510
8	125.000	64	512	2.8284	2.0000	0.90309
9	111.111	81	729	3.0000	2.0801	0.95424
10	100.000	100	1000	3.1623	2.1 544	1.00000
11	90.9091	121	1331	3.3166	2.2240	1.04139
12	83.3333	144	1728	3.4641	2.2894	1.07918
13	76.9231	169	2197	3.6056	2.3513	1.11394
14	71.4286	196	2744	3.7417	2.4101	1.14613
15	66.6667	225	3375	3.8730	2.4662	1.17609
16	62.5000	256	4096	4.0000	2.5198	1.20412
17	58.8235	289	4913	4.1231	2.5713	1.23045
18	55.5556	324	5832	4.2426	2.6207	1.25527
19	52.6316	361	6859	4.3589	2.6684	1.27875
20	50,0000	400	8000	4.4721	2.7144	1.30103
21	47,6190	441	9261	4.5826	2.7589	1.32222
22	45,4545	484	10648	4.6904	2.8020	1.34242
23	43,4783	529	12167	4.7958	2.8439	1.36173
24	41,6667	576	13824	4.8990	2.8845	1.38021
25	40.0000	625	15625	5.0000	2.9240	1.39794
26	38.4615	676	17576	5.0990	2.9625	1.41497
27	37.0370	729	19683	5.1962	3.0000	1.43136
28	35.7143	784	21952	5.2915	3.0366	1.44716
29	34.4828	841	24389	5.3852	3.0723	1.46240
30	33·3333	900	27000	5.4772	3.1072	1.47712
31	32·2581	961	29791	5.5678	3.1414	1.49136
32	31·2500	1024	32768	5.6569	3.1748	1.50515
33	30·3030	1089	35937	5.7446	3.2075	1.51851
34	29·4118	1156	39304	5.8310	3.2396	1.53148
35	28.5714	1225	42875	5.9161	3.2711	1.54407
36	27.7778	1296	46656	6.0000	3.3019	1.55630
37	27.0270	1369	50653	6.0828	3.3322	1.56820
38	26.3158	1444	54872	6.1644	3.3620	1.57978
39	25.6410	1521	59319	6.2450	3.3912	1.59106
40	25.0000	1600	64000	6.3246	3.4200	1.60206
41	24.3902	1681	68921	6.4031	3.4482	1.61278
42	23.8095	1764	74088	6.4807	3.4760	1.62325
43	23.2558	1849	79507	6.5574	3.5034	1.63347
44	22.7273	1936	85184	6.6332	3.5303	1.64345
45	22.2222	2025	91125	6.7082	3.5569	1.65321
46	21.7391	2116	97336	6.7823	3.5830	1.66276
47	21.2766	2209	103823	6.8557	3.6088	1.67210
48	20.8333	2304	110592	6.9282	3.6342	1.68124
49	20.4082	2401	117649	7.0000	3.6593	1.69020
50	20.0000	2500	125000	7.0711	3.6840	1.69897
51	19.6078	2601	132651	7.1414	3.7084	1.70757
52	19.2308	2704	140608	7.2111	3.7325	1.71600
53	18.8679	2809	148877	7.2801	3.7563	1.72428
54	18.5185	2916	157464	7.3485	3.7798	1.73239

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n8	Jn	⁸ √n	log. n
55	18.1818	3025	166375	7.4162	3.8030	1.74036
56	17.8571	3136	175616	7.4833	3.8259	1.74819
57	17.5439	3249	185193	7.5498	3.8485	1.75587
58	17.2414	3364	195112	7.6158	3.8709	1.76343
59	16.9492	3481	205379	7.6811	3.8930	1.77085
60	16.6667	3600	216000	7.7460	3.9149	1.77815
61	16.3934	3721	226981	7.8102	3.9365	1.78533
62	16.1290	3844	238328	7.8740	3.9579	1.79239
63	15.8730	3969	250047	7.9373	3.9791	1.79934
64	15.6250	4096	262144	8.0000	4.0000	1.80618
65	15.3846	4225	274625	8.0623	4.0207	1.81291
66	15.1515	4356	287496	8.1240	4.0412	1.81954
67	14.9254	4489	300763	8.1854	4.0615	1.82607
68	14.7059	4624	314432	8.2462	4.0817	1.83251
69	14.4928	4761	328509	8.3066	4.1016	1.83885
70	14.2857	4900	343000	8.3666	4.1213	1.84510
71	14.0845	5041	357911	8.4261	4.1408	1.85126
72	13.8889	5184	373248	8.4853	4.1602	1.85733
73	13.6986	5329	389017	8.5440	4.1793	1.86332
74	13.5135	5476	405224	8.6023	4.1983	1.86923
75	13.3333	5625	421875	8.6603	4.2172	1.87506
76	13.1579	5776	438976	8.7178	4.2358	1.88081
77	12.9870	5929	456533	8.7750	4.2543	1.88649
78	12.8205	6084	474552	8.8318	4.2727	1.89209
79	12.6582	6241	493039	8.8882	4.2908	1.89763
80	12.5000	6400	512000	8.9443	4.3089	1.90309
81	12.3457	6561	531441	9.0000	4.3267	1.90849
82	12.1951	6724	551368	9.0554	4.3445	1.91381
83	12.0482	6889	571787	9.1104	4.3621	1.91908
84	11.9048	7 056	592704	9.1652	4.3795	1.92428
85	11.7647	7225	614125	9.2195	4.3968	1.92942
86	11.6279	7396	636056	9.2736	4.4140	1.93450
87	11.4943	7569	658503	9.3274	4.4310	1.93952
88	11.3636	7744	681472	9.3808	4.4480	1.94448
89	11.2360	7921	704969	9.4340	4.4647	1.94939
90	11.1111	8100	729000	9.4868	4.4814	1.95424
91	10.9890	8281	753571	9.5394	4.4979	1.95904
92	10.8696	8464	778688	9.5917	4.5144	1.96379
93	10.7527	8649	804357	9.6437	4.5307	1.96848
94	10.6383	8836	830584	9.6954	4.5468	1.97313
95	10.5263	9025	857375	9.7468	4.5629	1.977 72
96	10.4167	9216	884736	9.7980	4.5789	1.9822 7
97	10.3093	9409	912673	9.8489	4.5947	1.98677
98	10.2041	9604	941192	9.8995	4.6104	1.99123
99	10.1010	9801	970299	9.9499	4.6261	1.99564
100	10.0000	10000	1000000 .	10.0000	4.6416	2.00000
101	9.90099	10201	1030301	10.0499	4.6570	2.00432
102	9.80392	10404	1061208	10.0995	4.6723	2.00860
103	9.70874	10609	1092727	10.1489	4.6875	2.01284
104	9.61538	10816	1124864	10.1980	4.7027	2.01703
105	9.52381	11025	1157625	10.2470	4.7177	2.02119
106	9.43396	11236	1191016	10.2956	4.7326	2.02531
107	9.34579	11449	1225043	10.3441	4.7475	2.02938
108	9.25926	11664	1259712	10.3923	4.7622	2.03342
109	9.17431	11881	1295029	10.4403	4.7769	2.03743

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

				···-		
n	1000.1	n ²	n³	Jп	∛n	log. n
110	9.09091	12100	1331000	10.4881	4.7914	2.04139
111	9.00901	12321	1367631	10.5357	4.8059	2.04532
112	8.92857	12544	1404928	10.5830	4.8203	2.04922
113	8.84956	12769	1442897	10.6301	4.8346	2.05308
114	8.77193	12996	1481544	10.6771	4.8488	2.05690
115	8.69565	13225	1520875	10.7238	4.8629	2.06070
116	8.62069	13456	1520875 1560896	10.7703	4.8770	2.06446
117	8.54701	13689	1601613	10.8167	4.8910	2.06819
118	8.47458	13924	1643032	10.8628	4.9049	2.07188
119	8.40336	14161	1685159	10.9087	4.9187	2.07555
120	8 22222	7.4.600	1728000	*0.054F	4.0004	207018
121	8.33333 8.26446	14400 14641	1720000	10.9545	4.9324	2.0791 8 2.08279
122	8.19672	14884	1771561 1815848	11.0000	4.9461	2.08636
123	8.13008		1860867	11.0454	4.9597	2.08991
123	8.06452	15129	1906624	11.0905	4.9732	
124	0.00432	15376	1900024	11.1355	4.9866	2.09342
125	8.00000	15625	1953125	11.1803	5.0000	2.09691
126	7.93651	15876	2000376	11.2250	5.0133	2.10037
127	7.87402	16129	2048383	11.2694	5.0265	2.10380
128	7.81250	16384	2097152	11.3137	5.0397	2.10721
129	7.75194	16641	2146689	11.3578	5.0528	2.11059
130	7.69231	16900	2197000	11.4018	5.0658	2.11394
131	7.63359	17161	2248091	11.4455	5.0788	2.11727
132	7.57576 7.51880	17424	2299968	11.4891	5.0916	2.12057
133	7.51880	17689	2352637	11.5326	5.1045	2.12385
134	7.46269	17956	2406104	11.5758	5.1172	2.12710
135	7.40741	18225	2460375	11.6190	5.1299	2.13033
136	7.35294	18496	2515456	11.6619	5.1426	2.13354
137	7.29927	18769	2571353	11.7047	5.1551	2.13672
138	7.24638	19044	2571353 2628072	11.7473	5.1676	2.13988
139	7.19424	19321	2685619	11.7473 11.7898	5.1801	2.14301
140	7.14286	19600	2744000	11.8322	5.1925	2.14613
141	7.09220	19881	2803221	11.8743	5.2048	2.14922
142	7.04225	20164	2863288	11.9164	5.2171	2.15229
143	6.99301	20449	2924207	11.9583	5.2293	2.15534
144	6.94444	20736	2985984	12.0000	5.2415	2.15836
145	6.89655	21025	3048625	12.0416	E 2526	2.16137
146	6.84932	21316	3112136	12.0830	5.2536 5.2656	2.16435
147	6.80272	21609	3176523	12.1244	5.2776	2.16732
148	6.75676	21904	3241792	12.1655	5.2896	2.17026
149	6.71141	22201	3307949	12.2066	5.3015	2.17319
150	6.66667	22500	227 5000	122474	F 2722	2.17609
151	6.62252	22500 22801	337 5000	12.2474 12.2882	5.3133 5.3251	2.17898
151	6.57893	23104	3442951 3511808	12.2002	5.3251	2.17696
153	6.53595	23409	3581577	12.3266	5.3485	2.18469
154	6.49351	23716	3652264	12.4097	5.3601	2.18752
155					_	
156	6.45161 6.41026	24025 24226	3723875	12.4499	5.3717	2.19033
157	6.36943	24336 24649	3796416 3869893	12.4900	5.3832	2.19312
158	6.32911	24964	3944312	12.5300 12.5698	5.3947 5.4061	2.19866
159	6.28931	25281	4019679	12.6095	5.4175	2.20140
160	6.25000	25600	1006000			2 20 172
161	6.21118	25600 2592I	4096000 4173281	12.6491 12.6886	5.4288	2.20412 2.20683
162	6,17284	25921 26244		12.7279	5.4401	
163	6.13497	26569	4251528	12.7671	5.4514 5.4626	2.20952 2.21219
164	6.09756	26896	4330747 4410944	12.8062		2.21219
11	30 30	20090	4410944	12.0002	5.4737	2.2.404
	1					

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n ³	Jn2	⁸ J22	log. n
165	6.06061	27225	4492125	12.8452	5.4848	2.21748
166	6.02410	27556	4574296	12.8841	5.4959	2.22011
167	5.98802	27889	4657463	12.9228	5.5069	2.22272
168	5.95238	28224	4741632	12.9615	5.5178	2.22531
169	5.91716	28561	4826809	13.0000	5.5288	2.22789
170	5.88235	28900	4913000	13.0384	5·5397	2.23045
171	5.84795	29241	5000211	13.0767	5·5505	2.23300
172	5.81395	29584	5088448	13.1149	5·5613	2.23553
173	5.78035	29929	5177717	13.1529	5·5721	2.23805
174	5.74713	30276	5268024	13.1909	5·5828	2.24055
175	5.71429	30625	5359375	13.2288	5·5934	2.24304
176	5.68182	30976	5451776	13.2665	5·6041	2.24551
177	5.64972	31329	5545233	13.3041	5·6147	2.24797
178	5.61798	31684	5639752	13.3417	5·6252	2.25042
179	5.58659	32041	5735339	13.3791	5·6357	2.25285
180	5-55556	32400	5832000	13.4164	5.6462	2.25527
181	5-52486	32761	5929741	13.4536	5.6567	2.25768
182	5-49451	33124	6028568	13.4907	5.6671	2.26007
183	5-46448	33489	6128487	13.5277	5.6774	2.26245
184	5-43478	33856	6229504	13.5647	5.6877	2.26482
185	5.40541	34225	6331625	13.6015	5.6980	2.26717
186	5.37634	34596	6434856	13.6382	5.7083	2.26951
187	5.34759	34969	6539203	13.6748	5.7185	2.27184
188	5.31915	35344	6644672	13.7113	5.7287	2.27416
189	5.29101	35721	6751269	13.7477	5.7388	2.27646
190	5.26316	36100	6859000	13.7840	5.7489	2.27875
191	5.23560	36481	6967871	13.8203	5.7590	2.28103
192	5.20833	36864	7077888	13.8564	5.7690	2.28330
193	5.18135	37249	7189057	13.8924	5.7790	2.28556
194	5.15464	37636	7301384	13.9284	5.7890	2.28780
195	5.12821	38025	7414875	13.9642	5-7989	2.29003
196	5.10204	38416	7529536	14.0000	5-8088	2.29226
197	5.07614	38809	7645373	14.0357	5-8186	2.29447
198	5.05051	39204	7762392	14.0712	5-8285	2.29667
199	5.02513	39601	7880599	14.1067	5-8383	2.29885
200	5.00000	40000	8000000	14.1421	5.8480	2.30103
201	4.97512	40401	8120601	14.1774	5.8578	2.30320
202	4.95050	40804	8242408	14.2127	5.8675	2.30535
203	4.92611	41209	8365427	14.2478	5.8771	2.30750
204	4.90196	41616	8489664	14.2829	5.8868	2.30963
205	4.87805	42025	861 512 5	14.3178	5.8964	2.31175
206	4.85437	42436	87 418 16	14.3527	5.9059	2.31387
207	4.83092	42849	886 97 43	14.3875	5.9155	2.31597
208	4.80769	43264	89 98 912	14.4222	5.9250	2.31806
209	4.78469	43681	912 932 9	14.4568	5.9345	2.32015
210	4.76190	44100	9261000	14.4914	5.9439	2.32222
211	4.73934	44521	9393931	14.5258	5.9533	2.32428
212	4.71698	44944	9528128	14.5602	5.9627	2.32634
213	4.69484	45369	9663597	14.5945	5.9721	2.32838
214	4.67290	45796	9800344	14.6287	5.9814	2.33041
215	4.65116	4622 5	9938375	14.6629	5.9907	2.33244
216	4.62963	46656	10077696	14.6969	6.0000	2.33445
217	4.60829	47089	10218313	14.7309	6.0092	2.33646
218	4.58716	47524	10360232	14.7648	6.0185	2.33846
219	4.56621	47961	10503459	14.7986	6.0277	2.34044

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

	·····					
n	1000.1/n	n^2	n^3	√n	3/11	log. n
220	4·54545	48400	10648000	14.8324	6.0368	2.34242
221	4·52489	48841	10793861	14.8661	6.0459	2.34439
222	4·50450	49284	10941048	14.8997	6.0550	2.34635
223	4·48431	49729	11089567	14.9332	6.0641	2.34830
224	4·46429	50176	11239424	14.9666	6.0732	2.35025
225	4.44444	50625	11390625	15.0000	6.0822	2.35218
226	4.42478	51076	11543176	15.0333	6.0912	2.35411
227	4.40529	51529	11697083	15.0665	6.1002	2.35603
228	4.38596	51984	11852352	15.0997	6.1091	2.35793
229	4.36681	52441	12008989	15.1327	6.1180	2.35984
230	4·347 ⁸ 3	52900	12167000	15.1658	6.1269	2.36173
231	4·32900	53361	12326391	15.1987	6.1358	2.36361
232	4·31034	53824	12487168	15.2315	6.1446	2.36549
233	4·29185	54289	12649337	15.2643	6.1534	2.36736
234	4·27350	54756	12812904	15.2971	6.1622	2.36922
235	4.25532	55225	12977875	15.3297	6.1710	2.37107
236	4.23729	55696	13144256	15.3623	6.1797	2.37291
237	4.21941	56169	13312053	15.3948	6.1885	2.37475
238	4.20168	56644	13481272	15.4272	6.1972	2.37658
239	4.18410	57121	13651919	15.4596	6.2058	2.37840
240	4.16667	57600	13824000	15.4919	6.2145	2.38021
241	4.14938	58081	13997521	15.5242	6.2231	2.38202
242	4.13223	58564	14172488	15.5563	6.2317	2.38382
243	4.11523	59049	14348907	15.5885	6.2403	2.38561
244	4.09836	59536	14526784	15.6205	6.2488	2.38739
245	4.08163	60025	14706125	15.6525	6.2573	2.38917
246	4.06504	60516	14886936	15.6844	6.2658	2.39094
247	4.04858	61009	15069223	15.7162	6.2743	2.39270
248	4.03226	61504	15252992	15.7480	6.2828	2.39445
249	4.01606	62001	15438249	15.7797	6.2912	2.39620
250	4.00000	62500	15625000	15.8114	6.2996	2.39794
² 51	3.98406	63001	15813251	15.8430	6.3080	2.39967
2 52	3.96825	63504	16003008	15.8745	6.3164	2.40140
² 53	3.95257	64009	16194277	15.9060	6.3247	2.40312
² 54	3.93701	64516	16387064	15.9374	6.3330	2.40483
255	3.92157	65025	16581375	15.9687	6.3413	2.40654
256	3.90625	65536	16777216	16.0000	6.3496	2.40824
257	3.89105	66049	16974593	16.0312	6.3579	2.40993
258	3.87597	66564	17173512	16.0624	6.3661	2.41162
259	3.86100	67081	17373979	16.0935	6.3743	2.41330
260	3.84615	67600	17576000	16.1245	6.3825	2.41497
261	3.83142	68121	17779581	16.1555	6.3907	2.41664
262	3.81679	68644	17984728	16.1864	6.3988	2.41830
263	3.80228	69169	18191447	16.2173	6.4070	2.41996
264	3.78788	69696	18399744	16.2481	6.4151	2.42160
265	3.77358	70225	18609625	16.2788	6.4232	2.42325
266	3.75940	70756	18821096	16.3095	6.4312	2.42488
267	3.74532	71289	19034163	16.3401	6.4393	2.42651
268	3.73134	71824	19248832	16.3707	6.4473	2.42813
269	3.71747	72361	19465109	16.4012	6.4553	2.42975
270	3:70370	72900	19683000	16.4317	6.4633	2.43136
271	3.69004	73441	19902511	16.4621	6.4713	2.43297
272	3.67647	73984	20123648	16.4924	6.4792	2.43457
273	3.66300	74529	20346417	16.5227	6.4872	2.43616
274	3.64964	75076	20570824	16.5529	6.4951	2.43775

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

	19, AND					
n	1000-1	n^2	n8	√n2	ВIn	log. n
275	3.63636	7 5 625	20796875	16.5831	6.5030	2.43933
276	3.62319	76176	21024576	16.6132	6.5108	2.44091
277	3.61011	76729	21253933	16.6433	6.5187	2.44248
278	3.59712	77284	21484952	16.6733	6.5265	2.44404
279	3.58423	77841	21717639	16.7033	6.5343	2.44560
280	3.57143	78400	21952000	16.7332	6.5421	2.44716
281	3.55872	78961	22188041	16.7631	6.5499	2.44871
282	3.54610	79524	22425768	16.7929	6.5577	2.45025
283	3.53357	80089	22665187	16.8226	6.5654	2.45179
284	3.52113	80656	22906304	16.8523	6.5731	2.45332
285	3.50877	81225	23149125	16.8819	6.5808	2.45484
286	3.49650	81796	23393656	16.9115	6.5885	2.45637
287	3.48432	82369	23639903	16.9411	6.5962	2.45788
288	3.47222	82944	23887872	16.9706	6.6039	2.45939
289	3.46021	83521	24137569	17.0000	6.6115	2.46090
290	3.44828	84100	24389000	17.0294	6.6191	2.46240
291	3.43643	84681	24642171	17.0587	6.6267	2.46389
292	3.42466	85264	24897088	17.0880	6.6343	2.46538
293	3.41297	85849	25153757	17.1172	6.6419	2.46687
294	3.40136	86436	25412184	17.1464	6.6494	2.46835
295	3.38983	87025	25672375	17.1756	6.6569	2.46982
296	3.37838	87616	25934336	17.2047	6.6644	2.47129
297	3.36700	88209	26198073	17.2337	6.6719	2.47276
298	3.35570	88804	26463592	17.2627	6.6794	2.47422
299	3.34448	89401	26730899	17.2916	6.6869	2.47567
300	3·33333	90000	27000000	17.3205	6.6943	2.47712
301	3·32226	90601	27270901	17.3494	6.7018	2.47857
302	3·31126	91204	27543608	17.3781	6.7092	2.48001
303	3·30033	91809	27818127	17.4069	6.7166	2.48144
304	3·28947	92416	28094464	17.4356	6.7240	2.48287
305	3.27869	93025	28372625	17.4642	6.7313	2.48430
306	3.26797	93636	28652616	17.4929	6.7387	2.48572
307	3.25733	94249	28934443	17.5214	6.7460	2.48714
308	3.24675	94864	29218112	17.5499	6.7533	2.48855
309	3.23625	95481	29503629	17.5784	6.7606	2.48996
310	3.22581	96100	29791000	17.6068	6.7679	2.49136
311	3.21543	96721	30080231	17.6352	6.7752	2.49276
312	3.20513	97344	30371328	17.6635	6.7824	2.49415
313	3.19489	97969	30664297	17.6918	6.7897	2.49554
314	3.18471	98596	30959144	17.7200	6.7969	2.49693
315	3.17460	99225	31255875	17.7482	6.8041	2.49831
316	3.16456	. 99856	31554496	17.7764	6.8113	2.49969
317	3.15457	100489	31855013	17.8045	6.8185	2.50106
318	3.14465	101124	32157432	17.8326	6.8256	2.50243
319	3.13480	101761	32461759	17.8606	6.8328	2.50379
320	3.12500	102400	32768000	17.8885	6.8399	2.50515
321	3.11527	103041	33076161	17.9165	6.8470	2.50651
322	3.10559	103684	33386248	17.9444	6.8541	2.50786
323	3.09598	104329	33698267	17.9722	6.8612	2.50920
324	3.08642	104976	34012224	18.0000	6.8683	2.51055
325	3.07692	105625	34328125	18.0278	6.8753	2.51188
326	3.06748	106276	34645976	18.0555	6.8824	2.51322
327	3.05810	106929	34965783	18.0831	6.8894	2.51455
328	3.04878	107584	35287552	18.1108	6.8964	2.51587
329	3.03951	108241	35611289	18.1384	6.9034	2.51720

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

NOO						
n	$1000,\frac{1}{n}$	n^2	n^3	√n	∛n	log. n
330	3.03030	108900	35937000	18.1659	6.9104	2.51851
331	3.02115	109561	36264691	18.1934	6.9174	2.51983
332	3.01205	110224	36594368	18.2209	6.9244	2.52114
333	3.00300	110889	36926037	18.2483	6.9313	2.52244
334	2.99401	111556	37259704	18.2757	6.9382	2.52375
335	2.98507	112225	37 59 537 5	18.3030	6.9451	2.52504
336	2.97619	112896	37 93 30 56	18.3303	6.9521	2.52634
337	2.96736	113569	38 27 27 53	18.3576	6.9589	2.52763
338	2.95858	114244	38 61 44 72	18.3848	6.9658	2.52892
339	2.94985	114921	38 95 8 21 9	18.4120	6.9727	2.53020
340	2.94118	115600	39304000	18.4391	6.9795	2.53148
341	2.93255	116281	39651821	18.4662	6.9864	2.53275
342	2.92398	116964	40001688	18.4932	6.9932	2.53403
343	2.91545	117649	40353607	18.5203	7.0000	2.53529
344	2.90698	118336	40707584	18.5472	7.0068	2.53656
345	2.89855	119025	41063625	18.5742	7.0136	2.53782
346	2.89017	119716	41421736	18.6011	7.0203	2.53908
347	2.88184	120409	41781923	18.6279	7.0271	2.54033
348	2.87356	121104	42144192	18.6548	7.0338	2.54158
349	2.86533	121801	42508549	18.6815	7.0406	2.54283
350	2.85714	122500	4287 5000	18.7083	7.0473	2.54407
351	2.84900	123201	43243551	18.7350	7.0540	. 2.54531
352	2.84091	123904	43614208	18.7617	7.0607	2.54654
353	2.83286	124609	43986977	18.7883	7.0674	2.54777
354	2.82486	125316	44361864	18.8149	7.0740	2.54900
355	2.81690	126025	44738875	18.8414	7.0807	2.55023
356	2.80899	126736	45118016	18.8680	7.0873	2.55145
357	2.80112	127449	45499293	18.8944	7.0940	2.55267
358	2.79330	128164	45882712	18.9209	7.1006	2.55388
359	2.78552	128881	46268279	18.9473	7.1072	2.55509
360	2.77778	129600	46656000	18.9737	7.1138	2,55630
361	2.77008	130321	47045881	19.0000	7.1204	2,55751
362	2.76243	131044	47437928	19.0263	7.1269	2,55871
363	2.75482	131769	47832147	19.0526	7.1335	2,55991
364	2.74725	132496	48228544	19.0788	7.1400	2,56110
365	2.73973	133225	48627125	19.1050	7.1466	2.56229
366	2.73224	133956	49027896	19.1311	7.1531	2.56348
367	2.72480	134689	49430863	19.1572	7.1596	2.56467
368	2.71739	135424	49836032	19.1833	7.1661	2.56585
369	2.71003	136161	50243409	19.2094	7.1726	2.56703
370	2.70270	136900	50653000	19.2354	7.1791	2.56820
371	2.69542	137641	51064811	19.2614	7.1855	2.56937
372	2.68817	138384	51478848	19.2873	7.1920	2.57054
373	2.68097	139129	51895117	19.3132	7.1984	2.57171
374	2.67380	139876	52313624	19.3391	7.2048	2.57287
375	2.66667	140625	52734375	19.3649	7.2112	2.57403
376	2.65957	141376	53157376	19.3907	7.2177	2.57519
377	2.65252	142129	53582633	19.4165	7.2240	2.57634
378	2.64550	142884	54010152	19.4422	7.2304	2.57749
379	2.63852	143641	54439939	19.4679	7.2368	2.57864
380	2.63158	144400	54872000	19.4936	7.2432	2.57978
381	2.62467	145161	55306341	19.5192	7.2495	2.58092
382	2.61780	145924	55742968	19.5448	7.2558	2.58206
383	2.61097	146689	56181887	19.5704	7.2622	2.58320
384	2.60417	147456	56623104	19.5959	7.2685	2.58433

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000,1	n^2	n23	\n	³ √12	log. n
385	2.59740	148225	57066625	19.6214	7.2748	2.58546
386	2.59067	148996	57512456	19.6469	7.2811	2.58659
387	2.58398	149769	57960603	19.6723	7.2874	2.58771
388	2.57732	150544	58411072	19.6977	7.2936	2.58883
389	2.57069	151321	58863869	19.7231	7.2999	2.58995
390	2.56410	152100	59319000	19.7484	7.3061	2.59106
391	2.55754	152881	59776471	19.7737	7.3124	2.59218
392	2.55102	153664	60236288	19.7990	7.3186	2.59329
393	2.54453	154449	60698457	19.8242	7.3248	2.59439
394	2.53807	155236	61162984	19.8494	7.3310	2.59550
395	2.53165	156025	61629875	19.8746	7·337 ²	2.59660
396	2.52525	156816	62099136	19.8997	7·3434	2.59770
397	2.51889	157609	62570773	19.9249	7·3496	2.59879
398	2.51256	158404	63044792	19.9499	7·355 ⁸	2.59988
399	2.50627	159201	63 5 21199	19.9750	7·3 ⁶ 19	2.60097
400	2.50000	160000	64000000	20.0000	7.3681	2.60206
401	2.49377	160801	64481201	20.0250	7.3742	2.60314
402	2.48756	161604	64964808	20.0499	7.3803	2.60423
403	2.48139	162409	65450827	20.0749	7.3864	2.60531
404	2.47525	163216	65939264	20.0998	7.3925	2.60638
405	2.46914	164025	66430125	20.1246	7.3986	2.60746
406	2.46305	164836	66923416	20.1494	7.4047	2.60853
407	2.45700	165649	67419143	20.1742	7.4108	2.60959
408	2.45098	166464	67917312	20.1990	7.4169	2.61066
409	2.44499	167281	68417929	20.2237	7.4229	2.61172
410	2.43902	168100	68921000	20.2485	7.4290	2.61278
411	2.43309	168921	69426531	20.2731	7.4350	2.61384
412	2.42718	169744	69934528	20.2978	7.4410	2.61490
413	2.42131	170569	70444997	20.3224	7.4470	2.61595
414	2.41546	171396	70957944	20.3470	7.4530	2.61700
415	2.40964	172225	71473375	20.3715	7.4590	2.61805
416	2.40385	173056	71991296	20.3961	7.4650	2.61909
417	2.39808	173889	72511713	20.4206	7.4710	2.62014
418	2.39234	174724	73034632	20.4450	7.4770	2.62118
419	2.38663	175561	73560059	20.4695	7.4829	2.62221
420	2.38095	176400	74088000	20.4939	7.4889	2.62325
421	2.37530	177241	74618461	20.5183	7.4948	2.62428
422	2.36967	178084	75151448	20.5426	7.5007	2.62531
423	2.36407	178929	75686967	20.5670	7.5067	2.62634
424	2.35849	179776	76225024	20.5913	7.5126	2.62737
425	2.35294	180625	76765625	20.6155	7.5185	2.62839
426	2.34742	181476	77308776	20.6398	7.5244	2.62941
427	2.34192	182329	77854483	20.6640	7.5302	2.63043
428	2.33645	183184	78402752	20.6882	7.5361	2.63144
429	2.33100	184041	78953589	20.7123	7.5420	2.63246
430	2.32558	1849 00	79507000	20.7364	7.5478	2.63347
431	2.32019	185761	80062991	20.7605	7.5537	2.63448
432	2.31481	186624	80621568	20.7846	7.5595	2.63548
433	2.30947	187489	81182737	20.8087	7.5654	2.63649
434	2.30415	188356	81746504	20.8327	7.5712	2.63749
435 436 437 438 439	2.29885	189225	82312875	20.8567	7.5770	2.63849
	2.29358	190096	82881856	20.8806	7.5828	2.63949
	2.28833	190969	83453453	20.9045	7.5886	2.64048
	2.28311	191844	84027672	20.9284	7.5944	2.64147
	2.27790	192721	84604519	20.9523	7.6001	2.64246

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

						·
n	1000.1	n^2	118	√n	%n	log. n
440	2.27273	193600	85184000	20.9762	7.6059	2.64345
441	2.26757	194481	85766121	21.0000	7.6117	2.64444
442	2.26244	195364	86350888	21.0238	7.6174	2.64542
443	2.25734	196249	86938307	21.0476	7.6232	2.64640
444	2.25225	197136	87528384	21.0713	7.6289	2.64738
444		-97-30	-/ 33-4	1,-5	7.0209	
445	2.24719	198025	88121125	21.0950	7.6346	2.64836
446	2.24215	198916	88716536	21.1187	7.6403	2.64933
447	2.23714	199809	89314623	21.1424	7.6460	2.65031
448	2.23214	200704	8991 5392	21.1660	7.6517	2.65128
449	2.22717	20160 i	90518849	21.1896	7.6574	2.65225
450	2.22222	202500	91125000	21.2132	7.6631	2.65321
451	2.21730	203401	91733851	21.2368	7.6688	2.65418
452	2.21239	204304	92345408	21.2603	7.6744	2.65514
453	2.207 51	205209	92959677	21.2838	7.6801	2.05010
454	2.20264	206116	93576664	21.3073	7.6857	2.65706
455	2.19780	207025	94196375	27 2207	7.6914	2.65801
456	2.19780	207025 207936	94818816	21.3307 21.3542	7.6970	2.65896
	2.18818	208849				2.65992
457	2.18341		95443993	21.3776	7.7026	2.05992
458	2.10341	209764	96071912	21.4009	7.7082	2.66087
459	2.17865	210681	96702579	21.4243	7.7138	2.66181
460	2.17391	211600	97336000	21.4476	7.7194	2.66276
461	2.16920	212521	97972181	21.4709	7.7250	2.66370
462	2.16450	213444	98611128	21.4942	7.7306	2.66464
463	2.15983	214369	99252847	21.5174	7.7362	2.66558
464	2.15517	215296	99897344	21.5407	7.7418	2.66652
404	2.13317	213290	99097344	21.5407	7.7410	2.00032
465	2.1 5054	216225	100544625	21.5639	7.7473	2.66745
466	2.14592	217156	101194696	21.5870	7.7529	2.66839
467	2.14133	218089	101847563	21.6102	7.7584	2.66932
468	2.13675	219024	102503232	21.6333	7.7639	2.67025
469	2.13220	219961	103161709	21.6564	7.7695	2.67117
470	2.12766	220000	102822000	27 6705	5 77 FO	2.67210
		221841	103823000	21.6795	7.7750	
47 I	2.12314 2.11864			21.7025	7.7805 7.7860	2.67302
472		222784	105154048	21.7256		2.67394
473	2.11416	223729	105823817	21.7486	7.7915	2.67486
474	2.10970	224677	106496424	21.7715	7.7970	2.67578
475	2.10526	225625	107171875	21.7945	7.8025	2.67669
476	2.10084	226576	107850176	21.8174	7.8079	2.67761
477	2.09644	227529	108531333	21.8403	7.8134	2.67852
478	2.09205	228484	109215352	21.8632	7.8188	2 67943
479	2.08768	22944i	109902239	21.8861	7.8243	2.68034
480	2 00 225				- 9-0-	268724
	2.08333	230400	110592000	21.9089	7.8297	2.68124
481	2.07900	231361	111284641	21.9317	7.8352	2.68215
482	2.07469	232324	111980168	21.9545	7.8406	2.68305
483	2.07039	233289	112678587	21.9773	7.8460	2.68395
484	2.06612	234256	113379904	22.0000	7.8514	2.68485
485	2.06186	235225	114084125	22.0227	7.8568	2.68574
486	2.05761	236196	114791256	22.0454	7.8622	2.68664
487	2.05339	237169	115501303	22.0681	7.8676	2.68753
488	2.04918	238144	116214272	22.0907	7.8730	2.68842
489	2.04499	239121	116930169	22.1133	7.8784	2.68931
490	2.04082	240100	117649000	22.1359	7.8837	2.69020
491	2.03666	241081	118370771	22.1585	7.8891	2.69108
492	2.03252	242064	119095488	22.1811	7.8944	2.69197
493	2.02840	243049	119823157	22.2036	7.8998	2.69285
494	2.02429	244036	120553784	22.2261	7.9051	2.69373
	<u> </u>	l	l	1		

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n ⁸	√n.	∛n	log. n
495	2.02020	245025	121287375	22.2486	7.9105	2.69461
496	2.01613	246016	122023936	22.2711	7.9158	2.69548
497	2.01207	247009	122763473	22.2935	7.9211	2.69636
498	2.00803	248004	123505992	22.3159	7.9264	2.69723
499	2.00401	249001	124251499	22.3383	7.9317	2.69810
500	2.00000	250000	125000000	22.3607	7.9370	2.69897
501	1.99601	251001	125751501	22.3830	7.9420	2.69984
502	1.99203	252004	126506008	22.4054	7.9476	2.70070
503	1.98807	253009	127263527	22.4277	7.9528	2.70157
504	1.98413	254016	128024064	22.4499	7.9581	2.70243
505	1.98020	255025	128787625	22.4722	7.9634	2.70329
506	1.97628	256036	129554216	22.4944	7.9686	2.70415
507	1.97239	257049	130323843	22.5167	7.9739	2.70501
508	1.96850	258064	131096512	22.5389	7.9791	2.70586
509	1.96464	259081	131872229	22.5610	7.9843	2.70672
510	1.96078	260100	132651000	22.5832	7.9896	2.707 57
511	1.95695	261121	133432831	22.6053	7.9948	2.70842
512	1.95312	262144	134217728	22.6274	8.0000	2.70927
513	1.94932	263169	135005697	22.6495	8.0052	2.71012
514	1.94553	264196	135796744	22.6716	8.0104	2.71096
515	1.94175	265225	136590875	22.6936	8.0156	2.71181
516	1.93798	266256	137388096	22.7156	8.0208	2.71265
517	1.93424	267289	138188413	22.7376	8.0260	2.71349
518	1.93050	268324	138991832	22.7596	8.0311	2.71433
519	1.926 7 8	269361	139798359	22.7816	8.0363	2.71517
520	1.92308	270400	140608000	22.8035	8.0415	2.71600
521	1.91939	271441	141420761	22.8254	8.0466	2.71684
522	1.91571	272484	142236648	22.8473	8.0517	2.71767
523	1.91205	273529	143055667	22.8692	8.0569	2.71850
524	1.90840	274576	143877824	22.8910	8.0620	2.71933
525 526 527 528 529	1.90476	27 562 5	144703125	22.9129	8.0671	2.72016
	1.90114	27 667 6	145531576	22.9347	8.0723	2.72099
	1.89753	2777 29	146363183	22.9565	8.0774	2.72181
	1.89394	278 784	147197952	22.9783	8.0825	2.72263
	1.89036	2798 41	148035889	23.0000	8.0876	2.72346
530	1.88679	280900	148877000	23.0217	8.0927	2.72428
531	1.88324	281961	149721291	23.0434	8.0978	2.72509
532	1.87970	283024	150568768	23.0651	8.1028	2.72591
533	1.87617	284089	151419437	23.0868	8.1079	2.72673
534	1.87266	285156	152273304	23.1084	8.1130	2.72754
535 536 537 538 539	1.86916	286225	153130375	23.1301	8.1180	2.7 283 5
	1.86567	287296	153990656	23.1517	8.1231	2.72916
	1.86220	288369	154854153	23.1733	8.1281	2.72997
	1.85874	289444	155720872	23.1948	8.1332	2.73078
	1.85529	290521	156590819	23.2164	8.1382	2.73159
540	1.85185	291600	157464000	23.2379	8.1433	2.73239
541	1.84843	292681	158340421	23.2594	8.1483	2.73320
542	1.84502	293764	159220088	23.2809	8.1533	2.73400
543	1.84162	294849	160103007	23.3024	8.1583	2.73480
544	1.83824	295936	160989184	23.3238	8.1633	2.73560
545	1.83486	297025	161878625	23.3452	8.1683	2.73640
546	1.83150	298116	162771336	23.3666	8.1733	2.73719
547	1.82815	299209	163667323	23.3880	8.1783	2.73799
548	1.82482	300304	164566592	23.4094	8.1833	2.73878
549	1.82149	301401	165469149	23.4307	8.1882	2.73957

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n ²	n ³	√n	⁸ √n	log. n
550	1.81818 1.81488	302500 303601	166375000 167284151	23.4521 23.4734	* 8.1932 8.1982	2.74036
551 552	1.81159	304704	168196608	23.4947	8.2031	2.74115 2.74194
553	1.80832	305809	169112377	23.5160	8.2081	2.74273
554	1.80505	306916	170031464	23.5372	8.2130	2.74351
555	1.80180	308025	170953875	23.5584	8.2180	2.74429
556	1.79856	309136 310249	171879616	23.5797 23.6008	8.2229 8.2278	2.74507 2.74586
557 558	1.79533 1.79211	311364	173741112	23.6220	8.2327	2.74663
559	1.78891	312481	174676879	23.6432	8.2377	2.74741
560	1.78571	313600	175616000	23.6643	8.2426	2.74819
561 562	1.78253	314721	176558481	23.6854	8.2475	2.74896
563	1.77936 1.77620	31 5844 316969	177504328 178453547	23.7065 23.7276	8.2524 8.2573	2.74974 2.75051
564	1.77305	318096	179406144	23.7487	8.2621	2.75128
565	1.76991	319225	180362125	23.7697	8.2670	2.75205
566	1.76678	320356	181321496	23.7908 23.8118	8.2719	2.75282
567 568	1.76367	321489	182284263	23.8118 23.8328	8.2768 8.2816	2.75358
569	1.76056 1.75747	322624 323761	183250432 184220009	23.8537	8.2865	2.75435 2.75511
570	1.75439	324900	185193000	23.8747	8.2913	2.75587
571	1.75131	326041	186169411	23.8956	8.2962	2.75664
572	1.74825	327184	187149248	23.9165	8.3010	2.75740
573 574	1.74520 1.74216	328329 329476	188132517 189119224	23.9374 23.9583	8.3059 8.3107	2.75815 2.75891
575	1.73913	330625	190109375	23.9792	8.3155	2.75967
576	1.73611	331776	191102976	24.0000	8.3203	2.76042
577	1.73310	332929	192100033	24.0208	8.3251	2.76118
578 579	1.73010	334084 335241	193100552	24.0416 24.0624	8.3300 8.3348	2.76193 2.76268
580	1.72414	336400	195112000	24.0832	8.3396	2.76343
581	1.72117	337561	196122941	24.1039	8.3443	2.76418
582	1.71821	338724	197137368	24.1247	8.3491	2.76492
583	1.71527	339889	198155287	24.1454	8.3539	2.76567
584	1.71233	341056	199176704	24.1661	8.3587	2.76641
585 586	1.70940	342225	200201625	24.1868	8.3634	2.76716
587	1.70648 1.70358	343396 344569	201230056	24.2074 24.2281	8.3682 8.3730	2.76790 2.76864
588	1.70068	345744	203297472	24.2487	8.3777	2.76938
589	1.69779	346921	204336469	24.2693	8.3825	2.77012
590	1.69492	348100	205379000	24.2899	8.3872	2.77085
591	1.69205	349281	206425071	24.3105	8.3919	2.77159
592 593	1.6891 9 1.68634	350464 351649	207474688	24.3311 24.3516	8.3967 8.4014	2.77232 2.77305
594	1.68350	352836	209584584	24.3721	8.4061	2.77379
595	1.68067	354025	210644875	24.3926	8.4108	2.77452
596	1.67785	355216	211708736	24.4131	8.4155	2.77525
597 598	1.67504 1.67224	356409	212776173	24.4336 24.4540	8.4202 8.4249	2.77 59 7 2.77670
599	1.66945	357604 358801	214921799	24.4540 24.4745	8.4296	2.77743
600	1.66667	360000	216000000	24.4949	8.4343	2.77815
601	1.66389	361201	217081801	24.5153	8.4390	2.77887
602 603	1.6611 3 1.65837	362404	218167208	24.5357	8.4437	2.77960
604	1.65563	363609 364816	220348864	24.5561 24.5764	8.4484 8.453 0	2.78032 2.78104
]			- 755-	-,

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

	TO, AND					
n	1000.1/n	n^2	n^8	√n	⁸ √11	log. n
605	1.65289	366025	221445125	24.5967	8.4577	2.78176
606	1.65017	367236	222545016	24.6171	8.4623	2.78247
607	1.64745	368449	223648543	24.6374	8.4670	2.78319
608	1.64474	369664	224755712	24.6577	8.4716	2.78390
609	1.64204	370881	225866529	24.6779	8.4763	2.78462
610	1.63934	372100	226981000	24.6982	8.4809	2.78533
611	1.63666	373321	228099131	24.7184	8.4856	2.78604
612	1.63399	374544	229220928	24.7386	8.4902	2.78675
613	1.63132	375769	230346397	24.7588	8.4948	2.78746
614	1.62866	376996	231475544	24.7790	8.4994	2.7881 7
615	1.62602	378225	232608375	24.7992	8.5040	2.78888
616	1.62338	379456	233744896	24.8193	8.5086	2.78958
617	1.62075	380689	234885113	24.8395	8.5132	2.79029
618	1.61812	381924	236029032	24.8596	8.5178	2.79099
619	1.61551	383161	237176659	24.8 7 97	8.5224	2.79169
620	1.61290	384400	238328000	24.8998	8.5270	2.79239
621	1.61031	385641	239483061	24.9199	8.5316	2.79309
622	1.60772	386884	240641848	24.9399	8.5362	2.79379
623	1.60514	388129	241804367	24.9600	8.5408	2.79449
624	1.60256	389376	242970624	24.9800	8.5453	2.79518
625	1.60000	390625	244140625	25.0000	8.5499	2.79934
626	1.59744	391876	245314376	25.0200	8.5544	2.79657
627	1.59490	393129	246491883	25.0400	8.5590	2.79727
628	1.59236	394384	247673152	25.0599	8.5635	2.79796
629	1.58983	395641	248858189	25.0799	8.5681	2.79865
630	1.58730	396900	250047000	25.0998	8.5726	2.79934
631	1.58479	398161	251239591	25.1197	8.5772	2.80003
632	1.58228	399424	252435968	25.1396	8.5817	2.80072
633	1.57978	400689	253636137	25.1595	8.5862	2.80140
634	1.57729	401956	254840104	25.1794	8.5907	2.80209
635	1.57480	403225	2560478 7 5	25.1992	8.5952	2.80277
636	1.57233	404496	257259456	25.2190	8.5997	2.80346
637	1.56986	405769	258474853	25.2389	8.6043	2.80414
638	1.56740	407044	259694072	25.2587	8.6088	2.80482
639	1.56495	408321	260917119	25.2784	8.6132	2.80550
640	1.56250	409600	262144000	25.2982	8.6177	2.80618
641	1.56006	410881	263374721	25.3180	8.6222	2.80686
642	1.55763	412164	264609288	25.3377	8.6267	2.807 54
643	1.55521	413449	265847707	25.3574	8.6312	2.80821
644	1.55280	414736	267089984	25.3772	8.6357	2.80889
645	1.55039	416025	268336125	25.3969	8.6401	2.80956
646	1.54799	417316	269586136	25.4165	8.6446	2.81023
647	1.54560	418609	270840023	25.4362	8.6490	2.81090
648	1.54321	419904	272097792	25.4558	8.6535	2.81158
649	1.54083	421201	273359449	25.4755	8.6579	2.81224
650	1.53846	422500	274625000	25.4951	8.6624	2.81291
651	1.53610	423801	275894451	25.5147	8.6668	2.81358
652	1.533 7 4	425104	277167808	25.5343	8.6713	2.81425
653	1.53139	426409	278445077	25.5539	8.6757	2.81491
654	1.52905	427716	279726264	25.5734	8.6801	2.81558
655	1.52672	429025	281011375	25.5930	8.6845	2.81624
656	1.52439	430336	282300416	25.6125	8.6890	2.81690
657	1.52207	431649	283593393	25.6320	8.6934	2.81757
658	1.51976	432964	284890312	25.6515	8.6978	2.81823
659	1.51745	434281	286191179	25.6710	8.7022	2.81889

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000-1	n^2	n ³	√n	8jn	log. n		
660	1.51515	435600	287496000	25.6905	8.7066	2.81954		
166	1.51286	436921	288804781	25.7099	8.7110	2.82020		
662	1.51057	438244	290117528	25.7294	8.7154	2.82086		
663	1.50830	420560		25.7488	8.7198	2.82151		
664	1.50602	439569 440896	291434247	25.7682		2.82217		
004	1.50002	440090	292 754 944	25.7002	8.7241	2.02217		
665	1.50376	442225	294079625	25.7876	8.7285	2.82282		
6 66	1.50150	443556 444889	295408296	25.8070	8.7329	2.82347		
667	1.49925	444889	296740963	25.8263	8.7373	2.82413		
668	1.49701	446224	298077632	25.8457	8.7416	2.82478		
669	1.49477	447561	299418309	25.8650	8.7460	2.82543		
670	1.49254	448900	300763000	25.8844	8.7503	2.82607		
671	1.49031	450241	302111711	25.9037	8.7547	2.82672		
672	1.48810	451584	303464448	25.9230	87500	2.82737		
673	1.48588	452929	304821217		8.7590 8.7634	2.82802		
674	1.48368	454276	306182024	25.9422	8.7677	2.82866		
	1.40300	454270	300102024	25.9615	0.70//			
675	1.48148	455625	307546875	25.9808	8.7721	2.82930		
676	1.47929	456976	308915776 310288733	26.0000	8.7764	2.82995		
677 678	1.47710	458329	310288733	26.0192	8.7807	2.83059		
678	1.47493	459684	311665752	26.0384	8.7850	2.83123		
679	1.47275	461041	311665752 313046839	26.0576	8.7893	2.83187		
680	1.47059	462400	314432000	26.0768	8.7937	2.83251		
681	1.46843 1.46628	463761	315821241	26.0960	8.7980	2.83315		
682	1.46628	465124	317214568	26.1151	8.8023	2.83378		
683	1.46413	466489	318611987	26.1343	8.8066	2.83442		
684	1.46199	467856	320013504	26.1534	8.8108	2.83506		
		40/030	320013304					
685	1.45985	469225	321419125	26.1725	8.8152	2.83569		
686	1.45773	470596	322828856	26.1916	8.8194	2.83632		
687	1.45560	471969	324242703	26.2107	8.8237	2.83696		
688	1.45349	473344	325660672	26.2298	8.8280	2.83759		
689	1.45138	474721	327082769	26.2488	8.8323	2.83822		
690	1.44928	476100	328509000	26.2679	8.8366	2.83885		
691	1.44718	477481	329939371	26.2869	8.8408	2.83948		
692	1.44509	478864	331373888	26.3059	8.8451	2.84011		
693	1.44300	480249	332812557	26.3249	8.8493	2.84073		
694	1.44092	481636	334255384	26.3439	8.8536	2.84136		
695	1.43885	483025	335702375	26.3629	8.8578	2.84198		
696	1.43678	484416	337153536	26.3818	8.8621	2.84261		
697	1.43472	485809	338608873	26.4008	8.8663	2.84323		
698	1.43266	487204	340068392	26.4197	8.8706	2.84386		
699	1.43062	48 8601	341 532099	26.4386	8.8748	2.84448		
				-				
700	1.42857	490000	343000000	26.4575	8.8 ₇ 90 8.88 ₃₃	2.84510		
701	1.42653	491401	344472101	26.4764	8.8833	2.84572		
702	1.42450	492804	345948408	26.4953	8.8875	2.04034		
703	1.42248	494209	347428927	26.5141	8.8917	2.84696		
704	1.42045	495616	348913664	26.5330	8.8959	2.84757		
705	1.41844	497025	350402625	26.5518	8.9001	2.84819		
706	1.41643	498436	351895816	26.5707	8.9043	2.84880		
707	1.41443	499849	353393243	26.5895	8.9085	2.84942		
708	1.41243	501264	354894912	26.6083	8.9127	2.85003		
709	1.41044	502681	356400829	26.6271	8.9169	2.85065		
710	1.40845	504100	357911000	26.6458	8.9211	2.85126		
711	1.40647	505521	359425431	26.6646	8.9253	2.85187		
712	1.40449	506944	360944128	26.6833	8.9295	2.85248		
713	1.40252	508369	362467097	26.7021	8.9337	2.85309		
714	1.40056	509796	363994344	26.7208	8.9378	2.85370		
1-4	42020	3-3/30	3-3554344	_5.,200	93/-	3370		
		<u> </u>		····				

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n8	√n	₹n	log. n
715	1.39860	511225	365525875	26.7395	8.9420	2.85431
716	1.39665	512656	367061696	26.7582	8.9462	2.85491
717	1.39470	514089	368601813	26.7769	8.9503	2.85552
718	1.39276	515524	370146232	26.7955	8.9545	2.85612
719	1.39082	516961	371694959	26.8142	8.9587	2.85673
720	1.38889	518400	373248000	26.8328	8.9628	2.85733
721	1.38696	519841	374805361	26.8514	8.9670	2.85794
722	1.38504	521284	376367048	26.8701	8.9711	2.85854
723	1.38313	522729	377933067	26.8887	8.9752	2.85914
724	1.38122	524176	379503424	26.9072	8.9794	2.85974
725	1.37931	525625	381078125	26.9258	8.9835	2.86034
726	1.37741	527076	382657176	26.9444	8.9876	2.86094
727	1.37552	528529	384240583	26.9629	8.9918	2.86153
728	1.37363	529984	385828352	26.9815	8.9959	2.86213
729	1.37174	531441	387420489	27.0000	9.0000	2.86273
730	1.36986	532900	389017000	27.0185	9.0041	2.86332
731	1.36799	534361	390617891	27.0370	9.0082	2.86392
732	1.36612	535824	392223168	27.0555	9.0123	2.86451
733	1.36426	537289	393832837	27.0740	9.0164	2.86510
734	1.36240	538 7 56	395446904	27.0924	9.0205	2.86570
735 736 737 738 739	1.36054	54022 5	397065375	27.1109	9.0246	2.86629
	1.35870	541696	398688256	27.1293	9.0287	2.86688
	1.35685	543169	400315553	27.1477	9.0328	2.86747
	1.35501	544644	401947272	27.1662	9.0369	2.86806
	1.35318	546121	403583419	27.1846	9.0410	2.86864
740	1.35135	547600	405224000	27.2029	9.0450	2.86923
741	1.34953	549081	406869021	2 7. 2213	9.0491	2.86982
742	1.34771	550564	408518488	27.2397	9.0532	2.8 7 040
743	1.34590	552049	410172407	27.2580	9.0572	2.8 7 099
744	1.34409	553536	411830784	27.2764	9.0613	2.87157
745	1.34228	555025	413493625	27.2947	9.0654	2.87216
746	1.34048	556516	415160936	27.3130	9.0694	2.87274
747	1.33869	558009	416832723	27.3313	9.0735	2.87332
7 48	1.33690	559504	418508992	27.3496	9.0775	2.87390
7 49	1.33511	561001	420189749	27.3679	9.0816	2.87448
750	1.33333	562500	421875000	27.3861	9.0856	2.87506
751	1.33156	564001	423564751	27.4044	9.0896	2.87564
752	1.32979	565504	425259008	27.4226	9.0937	2.87622
753	1.32802	567009	426957777	27.4408	9.0977	2.87679
754	1.32626	568516	428661064	27.4591	9.1017	2.87737
755	1.32450	570025	430368875	27.4773	9.1057	2.87795
756	1.32275	571536	432081216	27.4955	9.1098	2.87852
757	1.32100	573949	433798093	27.5136	9.1138	2.87910
758	1.31926	574564	435519512	27.5318	9.1178	2.87967
759	1.31752	576081	437245479	27.5500	9.1218	2.88024
760	1.31579	577600	438976000	27.5681	9.1258	2.88081
761	1.31406	579121	440711081	27.5862	9.1298	2.88138
762	1.31234	580644	442450728	27.6043	9.1338	2.88195
7 63	1.31062	582169	444194947	27.6225	9.1378	2.88252
764	1.30890	583696	445943744	27.6405	9.1418	2.88309
765	1.30719	58522 5	447697125	27.6586	9.1458	2.88366
766	1.30548	586756	449455096	27.6767	9.1498	2.88423
767	1.30378	588289	451217663	27.6948	9.1537	2.88480
768	1.30208	589824	452984832	27.7128	9.1577	2.88536
769	1.30039	591361	454756609	27.7308	9.1617	2.88593

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

r====									
n	1000.1	n ²	n ³	√n	∛n	log. n			
770	1.29870	592900	456533000	27.7489	9.1657	2.88649			
771	1.29702	594441	458314011	27.7669	9.1696	2.88705			
772	1.29534	595984	460099648	27.7849	9.1736	2.88762			
773	1.29366	597529	461889917	27.8029	9.1775	2.88818			
774	1.29199 •	599076	463684824	27.8209	9.1815	2.88874			
			6.0	0.00	0	. 00			
775	1.29032	60062 5 6021 7 6	465484375 467288576	27.8388	9.1855 9.1894	2.8893 0 2.88986			
776	1.28700			27.8568 27.8747		2.89042			
777	1.20/00	603729	469097433		9.1933	2.89098			
778	1.28535	605284	470910952	27.8927	9.1973	2.09090			
779	1.28370	606841	472729139	27.9106	9.2012	2.89154			
780	1.28205	608400	474552000	27.9285	9.2052	2.89209			
781	1.28041	609961	476379541	27.9464	9.2091	2.89265			
782	1.27877	611524	478211768	27.9643	9.2130	2.89321			
783	1.27714	613089	480048687	27.9821	9.2170	2.89376			
784	1.27551	614656	481890304	28.0000	9.2209	2.89432			
785	7.27280	616225	482726627	28.0179	9.2248	2.89487			
786	1.27389 1.27226	617796	483736625 485587656	28.0357	9.2248	2.89542			
787			485,443403	28.035/		2.09542			
707 788	1.27065	619369	487443403	28.0535 28.0713	9.2326	2.89597			
	1.26904	620944	489303872		9.2365	2.89653			
7 89	1.26743	622521	491169069	28.0891	9.2404	2.89708			
790	1.26582	624100	493039000	28.1069	9-2443	2.89763			
7 91	1.26422	625681	494913671	28.1247	9.2482	2.89818			
792	1.26263	627264	496793088	28.1425	9.2521	2.89873			
793	1.26103	628849	498677257	28.1603	9.2560	2.89927			
794	1.25945	630436	500566184	28.1780	9.2599	2.89982			
795	1.25786	632025	502459875	28.1957	9.2638	2.90037			
796	1.25628	633616	504358336	28.2135	9.2677	2.90091			
797	1.25471	635209	506261573	28.2312	9.2716	2.90146			
798		636804	508169592	28.2489	9.2754	2.90200			
799	1.25156		1.25313 1.25156	1.25156	638401	510082399	28.2666	9.2793	2.90255
800	Y 07000	640000	********	28.2843	0.0800	2.00200			
801	1.25000 1.24844	640000	512000000	20,2043	9.2832	2.90309			
802	1.24044	641601	513922401	28.3019	9.2870	2.90363			
	1.24688	643204 644809	515849608	28.3196	9.2909	2.90417			
803	1.24533 1.24378	646476	517781627	28.3373	9.2948	2.90472			
804	1.243/0	646416	519718464	28.3549	9.2986	2.90526			
805	1.24224	648025	521660125	28.3725	9.3025	2.90580			
806	1.24069	649636	523606616	28.3901	9.3063	2.90634			
807	1.23916	651249	525557943	28.4077	9.3102	2.90687			
808	1.23762	652864	527514112	28.4253	9.3140	2.90741			
809	1.23609	65448i	529475129	28.4429	9.3179	2.90795			
810	1.23457	656100	531441000	28.4605	9.3217	2.90849			
811	1.23305	657721	533411731	28.4781	9.3255	2.90902			
812	1.23153	659344	535387328	28.4956	9.3294	2.90956			
813	1.23001	660969	537367797	28.5132	9.3332	2.91009			
814	1.22850	662596	539353144	28.5307	9.3370	2.91062			
815	1.22699	664225	541343375	28.5482	9.3408	2.91116			
816	1.22549	665856	543338496	28.5657	9.3447	2.91169			
817	1.22399	667489	545338513	28.5832	9.3485	2.91222			
818	1.22249	669124	547343432	28.6007	9.3523	2.91275			
819	1.22100	670761	549353259	28.6182	9.3561	2.91328			
820	1 21051	672400	551368000	28.6356	0.2500	201281			
821	1.21951	674041	553387661	28.6531	9.3599 9.3637	2.91381 2.91434			
822	1.21655	67 5684	555412248	28.6705	9.3675	2.91434			
823	1.21555	677329	557441767	28.6880		2.91407			
824	1.21359	678976	559476224	28.7054	9.3713 9.3751	2.91593			
324	****339	0,09,0	3394/0224	20.7034	9.3/3.	2.9.393			
L			1						

TABLE 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n ³	V12	⁸ √12	log. n
825	1.21212	680625	561 51 562 5	28.7228	9.3789	2.91645
826	1.21065	682276	563 5599 76	28.7402	9.3827	2.91698
827	1.20919	683929	56 569 28 3	28.7576	9.3865	2.91751
828	1.20773	685584	567 663 552	28.7750	9.3902	2.91803
829	1.20627	687241	569 7 2 2 7 8 9	28.7924	9.3940	2.91855
830	1.20482	688900	571787000	28.8097	9.3978	2.91908
831	1.20337	690561	573856191	28.8271	9.4016	2.91960
832	1.20192	692224	575930368	28.8444	9.4053	2.92012
833	1.20048	693889	578009537	28.8617	9.4091	2.92065
834	1.19904	695556	580093704	28.8791	9.4129	2.92117
835	1.19760	697225	5821828 7 5	28.8964	9.4166	2.92169
836	1.19617	698896	584277056	28.9137	9.4204	2.92221
837	1.19474	700569	586376253	28.9310	9.4241	2.92273
838	1.19332	702244	588480472	28.9482	9.4279	2.92324
839	1.19190	703921	590589719	28.9655	9.4316	2.92376
840	1.19048	705600	592704000	28.9828	9.4354	2.92428
841	1.18906	707281	594823321	29.0000	9.4391	2.92480
842	1.18765	708964	596947688	29.0172	9.4429	2.92531
843	1.18624	710649	599077107	29.0345	9.4466	2.92583
844	1.18483	712336	601211584	29.0517	9.4503	2.92634
845	1.18343	714025	603351125	29.0689	9.4541	2.92686
846	1.18203	715716	605495736	29.0861	9.4578	2.92737
847	1.18064	717409	607645423	29.1033	9.4615	2.92788
848	1.17925	719104	609800192	29.1204	9.4652	2.92840
849	1.17786	720801	611960049	29.1376	9.4690	2.92891
850	1.17647	722500	614125000	29.1548	9.4727	2.92942
851	1.17509	724201	616295051	29.1719	9.4764	2.92993
852	1.17371	725904	618470208	29.1890	9.4801	2.93044
853	1.17233	727609	620650477	29.2062	9.4838	2.93095
854	1.17096	729316	622835864	29.2233	9.4875	2.93146
855	1.16959	731025	625026375	29.2404	9.4912	2.93197
856	1.16822	732736	627222016	29.2575	9.4949	2.93247
857	1.16686	734449	629422793	29.2746	9.4986	2.93298
858	1.16550	736164	631628712	29.2916	9.5023	2.93349
859	1.16414	737881	633839779	29.3087	9.5060	2.93399
860	1.16279	739600	636056000	29.3258	9.5097	2.93450
861	1.16144	741321	638277381	29.3428	9.5134	2.93500
862	1.16009	743044	640503928	29.3598	9.5171	2.93551
863	1.15875	744769	642735647	29.3769	9.5207	2.93601
864	1.15741	746496	644972544	29.3939	9.5244	2.93651
865	1.15607	748225	647214625	29.4109	9.5281	2.93702
866	1.15473	749956	649461896	29.4279	9.5317	2.93752
867	1.15340	751689	651714363	29.4449	9.5354	2.93802
868	1.15207	753424	653972032	29.4618	9.5391	2.93852
869	1.15075	755161	656234909	29.4788	9.5427	2.93902
870	1.14943	756900	658503000	29.4958	9.5464	2.93952
871	1.14811	758641	660776311	29.5127	9.5501	2.94002
872	1.14679	760384	663054848	29.5296	9.5537	2.94052
873	1.14548	762129	665338617	29.5466	9.5574	2.94101
874	1.14416	763876	667627624	29.5635	9.5610	2.94151
875	1.14286	765625	669921875	29.5804	9.5647	2.94201
876	1.14155	76737 6	672221376	29.5973	9.5683	2.94250
877	1.14025	769129	674526133	29.6142	9.5719	2.94300
878	1.13895	770884	676836152	29.6311	9.5756	2.94349
879	1.13766	772 6 41	679151439	29.6479	9.5792	2.94399

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n ⁸	√n	8)n	log. n
880	1.13636	774400	681472000	29.6648	9.5828	2.94448
881	1.13507	776161	683797841	29.6816	9.5865	2.94498
882	1.13379	777924	686128968	29.6985	9.5901	2.94547
883	1.13250	779689	688465387	29.7153	9.5937	2.94596
884	1.13122	781456	690807104	29.7321	9.5973	2. 94645
885	1.12994	783225	693154125	29.7489	9.6010	2.94694
886	1.12867	784996	695506456	29.7658	9.6046	2.94743
887	1.12740	786769	697864103	29.7825	9.6082	2.94792
888	1.12613	788544	700227072	29.7993	9.6118	2.94841
889	1.12486	790321	702595369	29.8161	9.6154	2.94890
890	1.12360	792100	704969000	29.8329	9.6190	2.94939
891	1.12233	793881	707347971	29.8496	9.6226	2.94988
892	1.12108	795664	709732288	29.8664	9.6262	2.95036
893	1.11982	797449	712121957	29.8831	9.6298	2.95085
894	1.11857	799236	714516984	29.8998	9.6334	2.95134
895	1.11732	801025	716917375	29.9166	9.6370	2.95182
896	1.11607	802816	719323136	29.9333	9.6406	2.95231
897	1.11483	804609	721734273	29.9500	9.6442	2.95279
898	1.11359	806404	724150792	29.9666	9.6477	2.95328
899	1.11235	808201	726572699	29.9833	9.6513	2.95376
900	1.11111	810000	729000000	30.0000	9.6549	2.95424
901	1.10988	811801	731432701	30.0167	9.6585	2.95472
902	1.10865	813604	733870808	30.0333	9.6620	2.95521
903	1.1074 2	815409	736314327	30.0500	9.6656	2.95569
904	1.10619	817216	738763264	30.0666	9.6692	2.95617
905	1.10497	819025	741217625	30.0832	9.6727	2.95665
906	1.10375	820836	743677416	30.0998	9.6763	2.95713
907	1.10254	822649	746142643	30.1164	9.6799	2.95761
908	1.10132	824464	748613312	30.1330	9.6834	2.95809
909	1.10011	826281	751089429	30.1496	9.6870	2.95856
910	1.09890	828100	753571000	30.1662	9.6905	2.95904
911	1.09769	829921	756058031	30.1828	9.6941	2.95952
912	1.09649	831744	758550528	.30.1993	9.6976	2.95999
913	1.09529	833569	761048497	30.2159	9.7012	2.96047
914	1.09409	835396	763551944	30.2324	9.7047	2.96095
915	1.09290	837225	766060875	30.2490	9.7082	2.9614 2
916	1.09170	839056	768575296	30.2655	9.7118	2.96190
917	1.09051	840889	771095213	30.2820	9.7153	2.96237
918	1.08932	842724	773620632	30.2985	9.7188	2.96284
919	1.08814	844561	776151559	30.3150	9.7224	2.96332
920	1.08696	846400	778688000	30.3315	9.7259	2.96379
921	1.08578	848241	781229961	30.3480	9.7294	2.96426
922	1.08460	850084	783777448	30.3645	9.7329	2.96473
923	1.08342	851929	786330467	30.3809	9.7364	2.96520
924	1.08225	853776	788889024	30.3974	9.7400	2.96567
925	1.08108	855625	791453125	30.4138	9·7435	2.96614
926	1.07991	857476	794022776	30.4302	9·7470	2.96661
927	1.07875	859329	796597983	30.4467	9·7505	2.96708
928	1.07759	861184	799178752	30.4631	9·7540	2.96755
929	1.07643	863041	801765089	30.4795	9·7575	2.96802
930	1.07527	864900	804357000	30.4959	9.7610	2.96848
931	1.07411	866761	806954491	30.5123	9.7645	2.96895
932	1.07296	868624	809557568	30.5287	9.7680	2.96942
933	1.07181	870489	812166237	30.5450	9.7715	2.96988
934	1.07066	872356	814780504	30.5614	9.7750	2.97035

TABLE 3.
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

r====						
n	1000.1	n^2	728	√n	₹/n	log. n
935	1.06952	874225	817400375	30.5778	9.7785	2.97081
936	1.06838	876096	820025856	30.5941	9.7819	2.97128
937	1.06724	877969	822656953	30.6105	9.7854	2.97174
938	1.06610	879844	825293672	30.6268	9.7889	2.97220
939	-1.06496	881721	827936019	30.6431	9.7924	2.97267
940	1.06383	883600	830584000	30.6594	9.7959	2.97313
941	1.06270	885481	833237621	30.6757	9.7993	2.97359
942	1.06157	887364	835896888	30.6920	9.8028	2.97405
943	1.06045	889249	838561807	30.7083	9.8063	2.97451
944	1.05932	891136	841232384	30.7246	9.8097	2.97497
945	1.05820	893025	843908625	30.7409	9.8132	2.97543
946	1.05708	894916	846590536	30.7571	9.8167	2.97589
947	1.05597	896809	849278123	30.7734	9.8201	2.97635
948	1.05485	898704	851971392	30.7896	9.8236	2.97681
949	1.05374	900601	854670349	30.8058	9.8270	2.97727
950	1.05263	902500	857375000	30.8221	9.8305	2.97772
951	1.05152	904401	860085351	30.8383	9.8339	2.97818
952	1.05042	906304	862801408	30.8545	9.8374	2.97864
953	1.04932	908209	865523177	30.8707	9.8408	2.97909
954	1.04822	910116	868250664	30.8869	9.8443	2.97955
955	1.04712	912025	870983875	30.9031	9.8477	2.98000
956	1.04603	913936	873722816	30.9192	9.8511	2.98046
957	1.04493	915849	876467493	30.9354	9.8546	2.98091
958	1.04384	917764	879217912	30.9516	9.8580	2.98137
959	1.04275	919681	881974079	30.9677	9.8614	2.98182
960	1.04167	921600	884736000	30.9839	9.8648	2.98227
961	1.04058	923521	887503681	31.0000	9.8683	2.98272
962	1.03950	925444	890277128	31.0161	9.8717	2.98318
963	1.03832	927369	893056347	31.0322	9.8751	2.98363
964	1.03734	929296	895841344	31.0483	9.8785	2.98408
965	1.03627	931225	898632125	31.0644	9.8819	2.98453
966	1.03520	933156	901428696	31.0805	9.8854	2.98498
967	1.03413	935089	904231063	31.0966	9.8888	2.98543
968	1.03306	937024	907039232	31.1127	9.8922	2.98588
969	1.03199	938961	909853209	31.1288	9.8956	2.98632
970	1.03093	940900	912673000	31.1448	9.8990	2.98677
971	1.02987	942841	915498611	31.1609	9.9024	2.98722
972	1.02881	944784	918330048	31.1769	9.9058	2.98767
973	1.02775	946729	921167317	31.1929	9.9092	2.98811
974	1.02669	948676	924010424	31.2090	9.9126	2.98856
975	1.02564	950625	9268 5937 5	31.2250	9.9160	2.98900
976	1.02459	952576	9297 1 4 1 7 6	31.2410	9.9194	2.98945
977	1.02354	954529	932 57 4 8 3 3	31.2570	9.9227	2.98989
978	1.02249	956484	935 4 4 1 3 5 2	31.2730	9.9261	2.99034
979	1.02145	958441	938 3 1 3 7 3 9	31.2890	9.9295	2.99078
980	1.02041	960400	941192000	31.3050	9.9329	2.99123
981	1.01937	962361	944076141	31.3209	9.9363	2.99167
982	1.01833	964324	946966168	31.3369	9.9396	2.99211
983	1.01729	966289	949862087	31.3528	9.9430	2.99255
984	1.01626	968256	952763904	31.3688	9.9464	2.99300
985	1.01523	970225	955671625	31.3847	9.9497	2.99344
986	1.01420	972196	958585256	31.4006	9.9531	2.99388
987	1.01317	974169	961504803	31.4166	9.9565	2.99432
988	1.01215	976144	964430272	31.4325	9.9598	2.99476
989	1.01112	978121	967361669	31.4484	9.9632	2.99520

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS.

n	$1000.\frac{1}{n}$	n^2	n^3	\sqrt{n}	8 n	log. n
990	1.01010	980100	970299000	31.4643	9.9666	2.99564
991	1.00908	982081	973242271	31.4802	9.9699	2.99607
992	1.00806	984064	976191488	31.4960	9.9733	2.99651
993	1.00705	986049	979146657	31.5119	9.9766	2.99695
994	1.00604	988036	982107784	31.5278	9.9800	2.99739
995	1.00503	990025	985074875	31.5436	9.9833	2.99782
996	1.00402	992016	988047936	31.5595	9.9866	2.99826
997	1.00301	994009	991026973	31.5753	9.9900	2.99870
998	1.00200	996004	994011992	31.5911	9.9933	2.99913
999	1.00100	998001	997002999	31.6070	9.9967	2.99957

CIRCUMFERENCE AND AREA OF CIRCLE IN TERMS OF DIAMETER d_{\bullet}

ď	πď	$\frac{1}{4}\pi d^2$	ď	πd	$\frac{1}{4}\pi d^2$	ď	πď	$\frac{1}{4}\pi d^2$
IO	31.416	78.5398	40	125.66	1256.64	70	219.91	3848.45
II	34.558	95.0332	41	128.81	1320.25	71	223.05	3959.19
I2	37.699	113.097	42	131.95	1385.44	72	226.19	4071.50
13	40.841	132.732	43	135.09	1452.20	73	229.34	4185.39
14	43.982	153.938	44	138.23	1520.53	74	232.48	4300.84
15	47.124	176. 7 15	45	141.37	1590.43	75	235.62	4417.86
16	50.265	201.062	46	144.51	1661.90	76	238.76	4536.46
17	53.407	226.980	47	147.65	1734.94	77	241.90	4656.63
18	56.549	254.469	48	150.80	1809.56	78	245.04	4778.36
19	59.690	283.529	49	153.94	1885.74	79	248.19	4901.67
20	62.832	314.159	50	157.08	1963.50	80	251.33	5026.55
21	65.973	346.361	51	160.22	2042.82	81	254.47	5153.00
22	69.115	380.133	52	163.36	2123.72	82	257.61	5281.02
23	72.257	415.476	53	166.50	2206.18	83	260.75	5410.61
24	75.398	452.389	54	169.65	2290.22	84	263.89	5541.77
25	78.540	490.874	55	172.79	2375.83	85	267.04	5674.50
26	81.681	530.929	56	175.93	2463.01	86	270.18	5808.80
27	84.823	572.555	57	179.07	2551.76	87	273.32	5944.68
28	87.965	61 5.7 52	58	182.21	2642.08	88	276.46	6082.12
29	91.106	660. 520	59	185.35	2733.97	89	279.60	6221.14
30	94.248	706.858	60	188.50	2827.43	90	282.74	6361.73
31	97.389	754.768	61	191.64	2922.47	91	285.88	6503.88
32	100.53	804.248	62	194.78	3019.07	92	289.03	6647.61
33	103.67	855.299	63	197.92	3117.25	93	292.17	6792.91
34	106.81	907.920	64	201.06	3216.99	94	295.31	6939.78
35	109.96	962.113	65	204.20	3318.31	95	298.45	7088.22
36	113.10	1017.88	66	207.35	3421.19	96	301.59	7238.23
37	116.24	107 5.21	67	210.49	3525.65	97	304.73	7389.81
38	119.38	1134.11	68	213.63	3631.68	98	307.88	7542.96
39	122.52	1194.59	69	216.77	3739.28	99	311.02	7697.69

LOCARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9			F	rop	p. I	?ar	ts.		
10 11 12 13 14	0414 0792 1139	0453 0828 1173	0086 0492 0864 1206 1523	0531 0899 1239	0569 0934 1271	060 7 0969 1303	0645 1004 1335	0682 1038 1367	0719 1072 1399	0374 0755 1106 1430 1732	1 4 4 3 3 3	8 8 7 6	3 12 11 10 10	4 17 15 14 13	21 19 17 16	23 21 19	29 26 24	33 30 28 26	34 31 29
15 16 17 18 19	204I 2304	2068 2330	1818 2095 2355 2601 2833	2122 2380	2148	2175 2430 2672	2201 2455 2695	2227 2480 2718	2253 2504 2742	2014 2279 2529 2765 2989	3 3 2 2 2	6 5 5 5 4	8 8 7 7		13	16 15 14	18 17 16	22 21 20 19 18	24 22 21
20 21 22 23 24	3222	3243	3054 3263 3464 3655 3838	3284	3304	33 ² 4 35 ² 2 37 ¹ 1	3139 3345 3541 3729 3909	3365 3560 3747	3385 3579 3766	3404 3598 3784	2 2 2 2 2	4 4 4 4	6 6 6 5	8	11 10 10 9	12 12 11	13		18 17 17
25 26 27 28 29	4150 4314 4472	4166 4330 4487	4014 4183 4346 4502 4654	4200 4362 4518	4216 4378 4533	4232 4393 4548	4249 4409	4265 4425 4579	4281 4440 4594	4456 4609	2 2 2 2 I	3 3 3 3	5 5 5 4	7 7 6 6 6	8 8 8	10 10 9 9	12 11 11 11 10	13 13 12	15 14 14
30 31 32 33 34	4914 5051 5185	4928 5065 5198	4800 4942 5079 5211 5340	4955 5092 5224	4969 5105 5237	4983 5119 5250	4857 4997 5132 5263 5391	5011 5145 5276	5024 5159 5289	5038 5172 5302	I I I I	3 3 3 3	4 4 4 4	6 5 5 5	7 7 7 6 6	98 8 8 8	9		12 12 12
35 36 37 38 39	5563 5682 5798	5575 5694 5809	5465 5587 5705 5821 5933	5599 5717 5832	5611 5729 5843	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	55 ² 7 5 ⁶ 47 57 ⁶ 3 5 ⁸ 77 59 ⁸ 8	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	I	2 2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 6 5	7 7 7 7	98 8 8	9	11 10 10
40 41 42 43 44	6128 6232 6335	6138 6243 6345	6042 6149 6253 6355 6454	6160 6263 6365	6170 6274 6375	6180 6284 6385	6085 6191 6294 6395 6493	6201 6304 6405	6212 6314 6415	6222 6325 6425	1 1	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5	6 6 6 6	8 7 7 7	9 8 8 8 8	9 9 9 9
45 46 47 48 49	6628 6721 6812	6637 6730 6821	6551 6646 6739 6830 6920	6656 6749 6839	6665 6758 6848	6675 6767 6857	6590 6684 6776 6866 6955	6693 6785 6875	6702 6794 6884	6803 6893	I I I I	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 4 4	6 5 5 5	7 7 6 6 6	8 7 7 7 7	9 8 8 8
50 51 52 53 54	7076 7160 7243	7084 7168 7251	7007 7093 7177 7259 7340	7101 7185 7267	7110 7193 7275	7284	7042 7126 7210 7292 7372	7300	7308	7310	I I I I	2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5	6 6 6 6	7 7 7 6 6	8 8 7 7 7
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9			F	rop). E	ar	ts.		
55 56 57 58 59	7482 7559 7634	7490 7566 7642	7497 7574 7649	7427 7505 7582 7657 7731	7513 7589 7664	7520 7597 7672	7451 7528 7604 7679 7752	7536 7612 7686	7543 7619 7694	7551 7627 7701	1 I I I I I	2 2 2 2 I I	2 2 2 2 2	4 3 3 3 3 3	5 4 4 4 4 4	5 5 5 4 4	7 5 5 5 5 5 5	8 6 6 6 6	9 7 7 7 7
60 61 62 63 64	7 ⁸ 53 79 ²⁴ 7993	7860 7931 8000	7868 7938 8007	7803 7875 7 945 8014 8082	7882 7952 8021	7889 7959 8028	7825 7896 7966 8035 8102	7903 7973 8041	7910 7980 8048	7917 7987 8055	I I I I	I I I I	2 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 5 5	6 6 5 5	6 6 6 6
65 66 67 68 69	8195 8261 8325	8202 8267 8331	8209 8274 8338	8215 8280	8287 8351	8228 8293 8357	8169 8235 8299 8363 8426	8241 8306 8370	8248 8312 8376	8319 8382	I I I I	I I I I	2 2 2 2	3 3 3 2	3 3 3 3	4 4 4 4	5 5 4 4	5 5 5 5	6 6 6 6
70 71 72 73 74	8513 8573 8633	8519 8579 8639	8525 8585 8645	8531 8591 8651	8476 8537 8597 8657 8716	8543 8603 8663	8549 8609 8669	8555 8615 8675	8561 8621 8681	8627	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5	6 5 5 5
75 76 77 78 79	8808 8865 8921	8814 8871 8927	8820 8876 8932	8768 8825 8882 8938 8993	8831 8887 8943	8837 8893 8949	8785 8842 8899 8954 9009	8848 8904 8960	8854 8910 8965	8915	I I I I I	I I I I	2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	5 5 4 4 4	5 5 5 5 5
80 81 82 83 84	9085 9138 9191	9090 9143 9196	9096 9149 9201	9047 9101 9154 9206 9258	9106 9159 9212	9112 9165 9217	9063 9117 9170 9222 9274	9122 9175 9227	9128 9180 9232	9133 9186 9238	I I I I	I I I I	2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5
85 86 87 88 89	9345 9395 9445	9350 9400 9450	9355 9405 9455	9309 9360 9410 9460 9509	9365 9415 9465	9370 9420 9469	9325 9375 9425 9474 9523	9380 9430 9479	9385 9435 9484	9390 9440 9489	I I 0 0	I I I I	2 2 1 1 1	2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 4 4 4
90 91 92 93 94	9590 9638 9685	9595 9643 9689	9600 9647 9694	9557 9605 9652 9699 9745	9609 9657 9703	9614 9661 9708	9571 9619 9666 9713 9759	9624 9671 9717	9628 9675 9722	9633 9680	00000	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 4 4
95 96 97 98 99	9823 9868 9912	9827 9872 9917	9832 9877 9921	9791 9836 9881 9926 9969	9841 9886	9845 9890 993 <u>4</u>	9805 9850 9894 9939 9983	9854 9899 9943	9859 9903 9948	9863	00000	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 3	4 4 4 4
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

TABLE 6.

ANTILOGARITHMS.

L.	0	1	2	3	4	5	6	7	8	9			F	roj	p. 1	Par	ts.		
.00 .01 .02 .03 .04	1023 1047 1072	1026 1050 1074	1028 1052 1076	1007 1030 1054 1079 1104	1033 1057 1081	1035 1059 1084	1062 1086	1040 1064 1089	1042 1067 1091	1021 1045 1069 1094 1119	00000	0 0 0 0	3 I I I I	4 I I I I	5 1 1 1 1	6 I I I I 2	7 2 2 2 2 2 2	8 2 2 2 2 2	9 2 2 2 2 2
.05 .06 .07 .08 .09	1148 1175 1202	1151 1178 1205	1153 1180 1208	1130 1156 1183 1211 1239	1159 1186 1213	1161 1189 1216	1219	1167 1194 1222	1169 1197 1225	1172 1199	00000	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 1 1	I I I	2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 3 3
.10 .11 .12 .13	1288	1291 1321	1294	1268 1297 1327 1358 1390	1300	1303 1334 1365	1306	1309 1340 1371	1312 1343 1374	1285 1315 1346 1377 1409	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	I I I I	I 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 3 3	3 3 3 3
.15 .16 .17 .18	1445 1479 1514	1449 1483 1517	1452 1486 1521	1422 1455 1489 1524 1560	1459 1493 1528	1462 1496 1531	1432 1466 1500 1535 1570	1469 1503 1538	1472 1507 1542	1476 1510 1545	0 0 0 0	I I I I	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	2 2 2 2 3	3 3 3 3	3 3 3 3
.20 .21 .22 .23 .24	1622 1660 1698	1626 1663 1702	1629 1667 1706	1596 1633 1671 1710 1750	1637 1675 1714	1641 1679 1718	1607 1644 1683 1722 1762	1648 1687 1726	1652 1690 1730	1656 1694 1734	0 0 0 0	I I I I	I I I I	1 2 2 2 2	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	3 3 4 4
.25 .26 .27 .28 .29	1820 1862 1905	1824 1866 1910	1828 1871 1914	1791 1832 1875 1919 1963	1837 1879 1923	1841 1884 1928	1803 1845 1888 1932 1977	1849 1892 1936	1854 1897 1941	1858 1901 1945	00000	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	2 3 3 3	3 3 3 3	3 3 4 4	4 4 4 4
.30 .31 .32 .33 .34	2042 2089 2138	2046 2094 2143	2051 2099 2148	2009 2056 2104 2153 2203	2061 2109 2158	2065 2113 2163	2023 2070 2118 2168 2218	2075 2123 2173	2080 2128 2178	2084 2133 2183	0 0 0 1	I I I I	I I I I 2	2 2 2 2 2	2 2 2 2 3	3 3 3 3	3 3 3 4	4 4 4 4	4 4 4 5
.35 .36 .37 .38 .39	2291 2344 2399	2296 2350 2404	2301 2355 2410	2254 2307 2360 2415 2472	2312 2366 2421	237 I 2427	2270 2323 2377 2432 2489	2382 2438	2388 2443	2393 2449	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 5	5 5 5 5 5
.40 .41 .42 .43 .44	2570 2630 2692	2576 2636 2698	2582 2642 2704	2529 2588 2649 2710 2773	2594 2655 2716	2600 2661 2723	2547 2606 2667 2729 2793	2612 2673 2735	2618 2679 2742	2624 2685 2748	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2 2	2 2 2 3 3	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5	5 5 6 6 6
.45 .46 .47 .48 .49	2884 2951	2891 2958	2897 2965	2838 2904 2972 3041 3112	2911 2979	2917 2985	28 58 29 24 29 92 30 62 31 33	2931 2999	2938 3006	2944 3013	I I I I	I I I I	2 2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 4	5 5 5 5	5 5 5 6 6	6 6 6 6
L.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	8

ANTILOGARITHMS.

L.	0	1	2	3	4	5	6	7	8	9			P	rop	. F	ar	ts.		
.50 .51 .52 .53 .54	3388	3319 3396	33 ² 7 3404	3184 3258 3334 3412 3491	3342 3420	3350	3206 3281 3357 3436 3516	3365	3373	3381	1 I I I I	2 1 2 2 2 2	3 2 2 2 2 2 2	4 3 3 3 3 3	5 4 4 4 4 4	6 4 5 5 5	7 5 5 6 6	8 6 6 6 6 6	9 7 7 7 7 7 7
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3 ⁸ 73 3963	3622 3707 3793 3882 3972	I I I I	2 2 2 2 2	2 3 3 3	3 3 4 4	4 4 4 5	5 5 5 5 5	6 6 6 6	7 7 7 7 7	7 8 8 8
.60 .61 .62 .63 .64	4074 4169 4266	4083 4178 4276	4093 4188 4285	4009 4102 4198 4295 4395	4111 4207 4305	4121 4217 4315	4036 4130 4227 4325 4426	4140 4236 4335	41 50 4246 4345	41 59 42 56 43 55	I I I I	2 2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6 6	6 7 7 7 7	7 8 8 8 8	8 9 9 9
.65 .66 .67 .68 .69	4571 4677 4786	4581 4688 4797	4592 4699 4808	4498 4603 4710 4819 4932	4613 4721 4831	4624 4732 4842	4529 4634 4742 4853 4966	4645 4753 4864	4656 4764 4875	4667 4775 4887	I I I I	2 2 2 2 2	3 3 3 3	4 4 4 4 5	5 5 5 6 6	6 7 7 7	7 7 8 .8	9	9 10 10 10
.70 .71 .72 .73 .74	5129 5248 5370	5140 5260 5383	51 52 5272 5395	5047 5164 5284 5408 5534	5176 5297 5420	5188 5309 5433	5082 5200 5321 5445 5572	5212 5333 5458	5224 5346 5470	5236 5358 5483	I I I I	2 2 2 3 3	4 4 4 4	5 5 5 5 5	6 6 6 6	7 7 7 8 8	8 9 9	9 10 10	11 11 11
. 75 .76 .77 .78 .79	5623 5754 5888 6026 6166	5636 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	5675 5808 5943 6081 6223	5957 6095	5702 5834 5970 6109 6252	5984 6124	5998 6138	6152	I I I I	3 3 3 3 3	4 4 4 4	5 5 6 6	7 7 7 7	8 8 8 8		11	12 12 13
.80 .81 .82 .83 .84	6607	6622	6792	6353 6501 6653 6808 6966	6823	6531 6683 6839	6397 6546 6699 6855 7015	6561 6714 6871	6577 6730 6887	6592 6745 6902	I 2 2 2 2 2	3 3 3 3 3	4 5 5 5 5	6 6 6 6	8	9 9 9 9	10 11 11 11	12 12 13	14 14 14
.85 .86 .87 .88 .89	7244 7413 7586	7261 7430 7603	7278 7447 7621	7129 7295 7464 7638 7816	7311 7482 7656	7328 7499	7178 7345 7516 7691 7870	7362 7534	7379 7551	7396 7568	2 2 2 2 2	3 3 4 4	5 5 5 5	7 7 7 7	8 9 9	10 10 10 11	12 12 12 12 13	13 14 14	15 16 16
.90 .91 .92 .93 .94	8318	8337	8356	7998 8185 8375 8570 8770	8395	8222 8414 8610	8054 8241 8433 8630 8831	8260 8453 8650	8279 8472 8670	8299 8492 8690	2 2 2 2 2 2	4 4 4 4 4	6 6 6 6	8	9 10 10	I 2 I 2	13 14 14 14	15 15 16	17
.95 .96 .97 .98 .99	9120	9141	9162	8974 9183 9397 9616 9840	9204	9226 9441 9661	9036 9247 9462 9683 9908	9268 9484 9705	9290 9506 9727	9311 9528 9750	2 2 2 2 2	4 4 4 4 5	6 7 7 7	8 9 9	11		15 16	17 17 18	19 19 20 20
L.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

TABLE 7.

NATURAL SINES AND COSINES.

Natural Sines.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1/.
0° I 2 3 4	.0000 00	.0029 09	.0058 18	.0087 27	.0116 35	.0145 44	.0174 52	89°	2.9
	.0174 52	.0203 6	.0232 7	.0261 8	.0290 8	.0319 9	.0349 0	88	2.9
	.0349 0	.0378 I .	.0407 1	.0436 2	.0465 3	.0494 3	.0523 4	87	2.9
	.0523 4	.0552 4	.0581 4	.0610 5	.0639 5	.0668 5	.0697 6	86	2.9
	.0697 6	.0726 6	.0755 6	.0784 6	.0813 6	.0842 6	.0871 6	85	2.9
5 6 7 8 9	.0871 6	.0900 5	.0929 5	.0958 5	.0987 4	.1016 4	.1045 3	84	2.9
	.1045 3	.1074 2	.1103 1	.1132 0	.1160 9	.1189 8	.1218 7	83	2.9
	.1218 7	.1247 6	.1276 4	.1305 3	.1334	.1363	.1392	82	2.9
	.1392	.1421	.1449	.1478	.1507	.1536	.1564	81	2.9
	.1564	.1593	.1622	.1650	.1679	.1708	.1736	80	2.9
10 11 12 13 14	.1736 .1908 .2079 .2250	.1765 .1937 .2108 .2278	.1794 .1965 .2136 .2306	.1822 .1994 .2164 .2334 .2504	.1851 .2022 .2193 .2363 .2532	.1880 .2051 .222 1 .2391 .2560	.1908 .2079 .2250 .2419 .2588	79 78 77 76 75	2.9 2.9 2.8 2.8 2.8
15	.2588	.2616	.2644	.2672	.2700	.2728	.2756	74	2.8
16	.2756	.2784	.2812	.2840	.2868	.2896	.2924	73	2.8
17	.2924	.2952	.2979	.3007	.3035	.3062	.3090	72	2.8
18	.3090	.3118	.3145	.3173	.3201	.3228	.3256	71	2.8
19	.3256	.3283	.3311	.3338	.3365	.3393	.3420	70	2.7
20 21 22 23 24	.3420 .3584 .3746 .3907 .4067	.3448 .3611 .3773 .3934 .4094	·3475 .3638 .3800 .3961 .4120	.3502 .3665 .3827 .3987 .4147	.3529 .3692 .3854 .4014 .4173	·3557 ·3719 ·3881 ·4041 ·4200	•35 ⁸ 4 •3746 •3997 •4067 •4226	69 68 67 66 65	2.7 2.7 2.7 2.7 2.7 2.7
25 26 27 28 29	.4226 .4384 .4540 .4695 .4848	.4253 .4410 .4566 .4720 .4874	.4279 .4436 .4592 .4746 .4899	.4305 .4462 .4617 .4772 .4924	.4331 .4488 .4643 .4797 .4950	.4358 .4514 .4669 .4823 .4975	.4384 .4540 .4695 .4848	64 63 62 61 60	2.6 2.6 2.6 2.6 2.5
30	.5000	.5025	.5050	.5075	.5100	.5125	.5150	59	2.5
31	.51 50	.5175	.5200	.5225	.5250	.5275	.5299	58	2.5
32	.5299	.5324	.5348	.5373	.5398	.5422	.5446	57	2.5
33	.5446	.5471	.5495	.5519	.5544	.5568	.5592	56	2.4
34	.5592	.5616	.5640	.5664	.5688	.5712	.5736	55	2.4
35	.5736	.5760	.5783	.5807	.5831	.5 ⁸ 54	.5878	54	2.4
36	.5878	.5901	.5925	.5948	.5972	.5995	.6018	53	2.3
37	.6018	.6041	.6065	.6088	.6111	.6134	.6157	52	2.3
38	.6157	.6180	.6202	.6225	.6248	.6271	.6293	51	2.3
39	.6293	.6316	.6338	.6361	.6383	.6406	.6428	50	2.3
40	.6428	.6450	.6472	.6494	.6517	.6539	.6561	49	2.2
41	.6561	.6583	.6604	.6626	.6648	.6670	.6691	48	2.2
42	.6691	.6713	.6734	.6756	.6777	.6799	.6820	47	2.2
43	.6820	.6841	.6862	.6884	.6905	.6926	.6947	46	2.1
44	.6947	.6967	.6988	.7009	.7030	.7050	.7071	45	2.1
	60′	50′	40′	30′	20′	10′	0′	Angle.	

NATURAL SINES AND COSINES.

Natural Sines.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1/.
45° 46 47 48 49	.7071 .7193 .7314 .7431 .7547	.7092 .7214 .7333 .7451 .7566	.7112 .7234 .7353 .7470 .7585	.7133 .7254 .7373 .7490 .7604	.7153 .7274 .7392 .7509 .7623	.7173 .7294 .7412 .7528 .7642	.7193 .7314 .7431 .7547 .7660	44° 43 42 41 40	2.0 2.0 2.0 1.9
50 51 52 53 54	.7660 .7771 .7880 .7986 .8090	.7679 .7790 .7898 .8004 .8107	.7698 .7808 .7916 .8021 .8124	.7716 .7826 .7934 .8039 .8141	.7735 .7844 .7951 .8056 .8158	.7753 .7862 .7969 .8073 .8175	.7771 .7880 .7986 .8090 .8192	39 38 37 36 35	1.9 1.8 1.8 1.7
55 56 57 58 59	.8192 .8290 .8387 .8480 .8572	.8208 .8307 .8403 .8496 .8587	.8225 .8323 .8418 .8511 .8601	.8241 .8339 .8434 .8526 .8616	.8258 .8355 .8450 .8542 .8631	.8274 .8371 .8465 .8557 .8646	.8290 .8387 .8480 .8572 .8660	34 33 32 31 30	1.6 1.6 1.5 1.5
60 61 62 63 64	.8660 .8746 .8829 .8910 .8988	.8675 .8760 .8843 .8923 .9001	.8689 .8774 .8857 .8936 .9013	.8704 .8788 .8870 .8949 .9026	.8718 .8802 .8884 .8962 .9038	.8732 .8816 .8897 .8975 .9051	.8746 .8829 .8910 .8988 .9063	29 28 27 26 25	I.4 I.4 I.3 I.3
65 66 67 68 69	.9063 .9135 .9205 .9272 .9336	.9075 .9147 .9216 .9283 .9346	.9088 .9159 .9228 .9293 .9356	.9100 .9171 .9239 .9304 .9367	.9112 .9182 .9250 .9315 .9377	.9124 .9194 .9261 .9325 .9387	.9135 .9205 .9272 .9336 .9397	24 23 22 21 20	I.2 I.2 I.1 I.1 I.0
70 71 72 73 74	.9397 .9455 .9511 .9563 .9613	.9407 .9465 .9520 .9572 .9621	.9417 .9474 .9528 .9580 .9628	.9426 .9483 .9537 .9588 .9636	.9436 .9492 .9546 .9596 .9644	.9446 .9502 .9555 .9605 .9652	.9455 .9511 .9563 .9613 .9659	19 18 17 16 15	1.0 0.9 0.9 0.8 0.8
75 76 77 78 79	.9659 .9703 .9744 .9781 .9816	.9667 .9710 .9750 .9787 .9822	.9674 .9717 .9757 .9793 .9827	.9681 .9724 .9763 .9799 .9833	.9689 .9730 .9769 .9805 .9838	.9696 .9737 .9775 .9811 .9843	.9703 .9744 .9781 .9816 .9848	14 13 12 11 10	0.7 0.7 0.6 0.6 0.5
80 81 82 83 84	.9848 .9877 .9903 .9925 .9945	.9853 .9881 .9907 .9929 .9948	.9858 .9886 .9911 .9932 .9951	.9863 .9890 .9914 .9936 .9954	.9868 .9894 .9918 .9939 .9957	.9872 .9899 .9922 .9942 .9959	.9877 .9903 .9925 .9945 .9962	9 8 7 6 5	0.5 0.4 0.4 0.3 0.3
85 86 87 88 89	.9962 .9976 .9986 .9994 .9998	.9964 .9978 .9988 .9995 .9999	.9967 .9980 .9989 .9996 .9999	.9969 .9981 .9990 .9997 1.0000	.9971 .9983 .9992 .9997	.9974 .9985 .9993 .9998	.9976 .9986 .9994 .9998	3 2 1	0.2 0.2 0.1 0.1 0.0
	60′	50′	40′	30′	20′	10′	O'	Angle.	

TABLE 8.

NATURAL TANGENTS AND COTANGENTS.

Natural Tangents.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1'.
0° 1 2 3 4	.0000 0 .0174 6 .0349 2 .0524 I .0699 3	.0029 I .0203 6 .0378 3 .0553 3 .0728 5	.0058 2 .0232 8 .0407 5 .0582 4 .0757 8	.0087 3 .0261 9 .0436 6 .0611 6 .0787 0	.0116 4 .0291 0 .0465 8 .0640 8	.0145 5 .0320 1 .0494 9 .0670 0 .0845 6	.01746 .03492 .05241 .06993 .08749	89° 88 87 86 85	2.9 2.9 2.9 2.9
5 6 7 8 9	.0874 9 .1051 0 .1227 8 .1405 .1584	.0904 2 .1080 5 .1257 4 .1435 .1614	.0933 5 .1109 9 .1286 9 .1465	.0962 9 .1139 4 .1316 5 .1495 .1673	.0992 3 .1168 8 .1346 .1524 .1703	.1021 6 .1198 3 .1376 .1554 .1733	.1051 0 .1227 8 .1405 .1584 .1763	84 83 82 81 80	2.9 2.9 3.0 3.0 3.0
10 11 12 13 14	.1763 .1944 .2126 .2309 .2493	.1793 .1974 .2156 .2339 .2524	.1823 .2004 .2186 .2370 .2555	.1853 .2035 .2217 .2401 .2586	.1883 .2065 .2247 .2432 .2617	.1914 .2095 .2278 .2462 .2648	.1944 .2126 .2309 .2493 .2679	79 78 77 76 75	3.0 3.0 3.1 3.1 3.1
15 16 17 18 19	.2679 .2867 .3057 .3249 .3443	.2711 .2899 .3089 .3281 .3476	.2742 .2931 .3121 .3314 .3508	.2773 .2962 .3153 .3346 .3541	.2805 .2994 .3185 .3378 .3574	.2836 .3026 .3217 .3411 .3607	.2867 .3057 .3249 .3443 .3640	74 73 72 71 70	3.1 3.2 3.2 3.2 3.3
20 21 22 23 24	.3640 .3839 .4040 .4245 .4452	,3673 .3872 .4074 .4279 .4487	.3706 .3906 .4108 .4314 .4522	·3739 ·3939 ·4142 ·4348 ·4557	·3772 ·3973 ·4176 ·4383 ·4592	.3805 .4006 .4210 .4417 .4628	.3839 .4040 .4245 .4452 .4663	69 68 67 66 65	3·3 3·4 3·4 3·5 3·5
25 26 27 28 29	.4663 .4877 .5095 .5317 .5543	.4699 .4913 .5132 .5354 .5581	.4734 .4950 .5169 .5392 .5619	.4770 .4986 .5206 .5430 .5658	.4806 .5022 .5243 .5467 .5696	.4841 .5059 .5280 .5505 .5735	.4877 .5095 .5317 .5543 .5774	64 63 62 61 60	3.6 3.6 3.7 3.8 3.8
30 31 32 33 34	.5774 .6009 .6249 .6494 .6745	.5812 .6048 .6289 .6536 .6787	.5851 .6088 .6330 .6577 .6830	.5890 .6128 .6371 .6619 .6873	.5930 .6168 .6412 .6661 .6916	.5969 .6208 .6453 .6703 .6959	.6009 .6249 .6494 .6745	59 58 57 56 55	3.9 4.0 4.1 4.2 4.3
35 36 37 38 39	.7002 .7265 .7536 .7813 .8098	.7046 .7310 .7581 .7860 .8146	.7089 .7355 .7627 .7907 .8195	.7133 .7400 .7673 .7954 .8243	.7177 .7445 .7720 .8002 .8292	.7221 .7490 .7766 .8050 .8342	.7265 .7536 .7813 .8098 .8391	54 53 52 51 50	4.4 4.5 4.6 4.7 4.9
40 41 42 43 44	.8391 .8693 .9004 .9325 .9657	.8441 .8744 .9057 .9380 .9713	.8491 .8796 .9110 .9435 .9770	.8541 .8847 .9163 .9490 .9827	.8591 .8899 .9217 .9545 .9884	.8642 .8952 .9271 .9601 .9942	.8693 .9004 .9325 .9657	49 48 47 46 45	5.0 5.2 5.4 5.5 5.7
	60 [′]	50′	40′	30′	20′	10′	0′	Angle.	

NATURAL TANCENTS AND COTANGENTS.

Natural Tangents.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1'.
45°	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295	1.0355	44°	5.9
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.0661	1.0724	43	6.1
47	1.0724	1.0786	1.0850	1.0913	1.0977	1.1041	1.1106	42	6.4
48	1.1106	1.1171	1.1237	1.1303	1.1369	1.1436	1.1504	41	6.6
49	1.1504	1.1571	1.1640	1.1708	1.1778	1.1847	1.1918	40	6.9
50	1.1918	1.1988	1.2059	1.2131	1.2203	1.2276	1.2349	39	7.2
51	1.2349	1.2423	1.2497	1.2572	1.2647	1.2723	1.2799	38	7.5
52	1.2799	1.2876	1.2954	1.3032	1.3111	1.3190	1.3270	37	7.9
53	1.3270	1.3351	1.3432	1.3514	1.3597	1.3680	1.3764	36	8.2
54	1.3764	1.3848	1.3934	1.4019	1.4106	1.4193	1.4281	35	8.6
55	1.4281	1.4370	1.4460	1.4550	1.4641	1.4733	1.4826	34	9.1
56	1.4826	1.4919	1.5013	1.5108	1.5204	1.5301	1.5399	33	9.6
57	1.5399	1.5497	1.5597	1.5697	1.5798	1.5900	1.6003	32	10.1
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534	1.6643	31	10.7
59	1.6643	1.6753	1.6864	1.6977	1.7090	1.7205	1.7321	30	11.3
60	1.7321	1.7437	1.7556	1.7675	1.7796	1.7917	1.8040	29	12.0
61	1.8040	1.8165	1.8291	1.8418	1.8546	1.8676	1.8807	28	12.8
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486	1.9626	27	13.6
63	1.9626	1.9768	1.9912	2.0057	2.0204	2.0353	2.0503	26	14.6
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25	15.7
65	2.1445	2.1609	2.1775	2.1943	2.2113	2.2286	2.2460	24	16.9
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369	2.3559	23	18.3
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545	2.4751	22	19.9
68	2.4751	2.4960	2.5172	2.5386	2.5605	2.5826	2.6051	21	21.7
69	2.6051	2.6279	2.6511	2.6746	2.6985	2.7228	2.7475	20	23.7
70 71 72 73 74	2.7475 2.9042 3.0777 3.2709 3.4874	2.7725 2.9319 3.1084 3.3052 3.5261	2.7980 2.9600 3.1397 3.3402 3.5656	2.8239 2.9887 3.1716 3.3759 3.6059	2.8502 3.0178 3.2041 3.4124 3.6470	2.8 ₇₇ 0 3.0475 3.2 ₃₇ 1 3.4495 3.6891	2.9042 3.0777 3.2709 3.4874 3.7321	19 18 17 16	
75	3.7321	3.7760	3.8208	3.8667	3.9136	3.9617	4.0108	14	
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747	4.3315	13	
77	4.3315	4.3 ⁸ 97	4.4494	4.5107	4.5736	4.6382	4.7046	12	
78	4.7046	4.77 ² 9	4.8430	4.9152	4.9894	5.0658	5.1446	11	
79	5.1446	5. ²² 57	5.3093	5.3955	5.4845	5.5764	5.6713	10	
80	5.6713	5.7694	5.8708	5.9758	6.0844	6.1970	6.3138	9	
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682	7.1154	8	
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530	8.1443	7	
83	8.1443	8.3450	8.5555	8.7769	9.0098	9.2553	9.5144	6	
84	9.5144	9.7882	10.0780	10.3854	10.7119	11.0 5 94	11.4301	5	
85 86 87 88 89	11.4301 14.3007 19.0811 28.6363 57.2900	11.8262 14.9244 20.2056 31.2416 68.7501	12.2505 15.6048 21.4704 34.3678 85.9398	12.7062 16.3499 22.9038 38.1885 114.5887	17.1693	13.7267 18.0750 26.4316 49.1039 343.7737	14.3007 19.0811 28.6363 57.2900	4 3 2 1 0	
	60′	50′	40′	30′	20′	10′	0′	Angle.	

TABLE 9.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.

						1			
ites.	ınce.	C)°]		2	0	ınce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	1.00000 2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.99984 1.99969 2.99954 3.99939 4.99923 5.99908 6.99893 7.99878 8.99862	0.01745 0.03490 0.05235 0.06980 0.08726 0.10471 0.12216 0.13961 0.15707	0.99939 1.99878 2.99817 3.99756 4.99695 5.99634 6.99573 7.99512 8.99451	0.03490 0.06980 0.10470 0.13960 0.17450 0.20940 0.24430 0.27920 0.31410	1 2 3 4 5 6 7 8	60
15	1 2 3 4 5 6 7 8 9	0.99999 1.99998 2.99997 3.99996 4.99995 5.99994 6.99993 7.99992 8.99991	0.00436 0.00872 0.01308 0.01745 0.02181 0.02617 0.03054 0.03490 0.03926	0.99976 1.99952 2.99928 3.99904 4.99881 5.99857 6.99833 7.99809 8.99785	0.02181 0.04363 0.06544 0.08725 0.10907 0.13089 0.15270 0.17452 0.19633	0.99922 1.99845 2.99768 3.99691 4.99614 5.99537 6.99460 7.99383 8.99306	0.03925 0.07851 0.11777 0.15703 0.19629 0.23555 0.27481 0.31407 0.35333	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.99996 1.99992 2.99988 3.99984 4.99981 5.99977 6.99973 7.99969 8.99965	0.00872 0.01745 0.02617 0.03490 0.04363 0.05235 0.06108 0.06981 0.07853	0.99965 1.99931 2.99897 3.99862 4.99828 5.99794 6.99760 7.99725 8.99691	0.02617 0.05235 0.07853 0.10470 0.13088 0.15706 0.18323 0.20941 0.23559	0.99904 1.99809 2.99714 3.99619 4.99524 5.99428 6.99333 7.99238 8.99143	0.04361 0.08723 0.13085 0.17447 0.21809 0.26171 0.30533 0.34895 0.39257	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.99991 1.99982 2.99974 3.99965 4.99957 5.99948 6.99940 7.99931 8.99922	0.01308 0.02617 0.03926 0.05235 0.06544 0.07853 0.09162 0.10471 0.11780	0.99953 1.99906 2.99860 3.99813 4.99766 5.99720 6.99673 7.99626 8.99580	0.03053 0.06107 0.09161 0.12215 0.15269 0.18323 0.21376 0.24430 0.27484	0.99884 1.99769 2.99654 3.99539 4.99424 5.99309 6.99193 7.99078 8.98963	0.04797 0.09595 0.14393 0.19191 0.23989 0.28786 0.33584 0.33584 0.43180	1 2 3 4 5 6 7 8 9	15
Min	Dist	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dis	Min
Minutes.	Distance.	8	9 °	8	3 °	8'	7 °	Distance.	Minutes.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

tes.	ınce.	3	o	4	٥	5	o	ince.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
O	1 2 3 4 56 78 9	0.99863 1.99726 2.99589 3.99452 4.99315 5.99178 6.99041 7.98904 8.98767	0.05233 0.10467 0.15700 0.20934 0.26168 0.31401 0.36635 0.41868 0.47102	0.99756 1.99512 2.99269 3.99025 4.98782 5.98538 6.98294 7.98051 8.97807	0.06975 0.13951 0.20926 0.27902 0.34878 0.41853 0.48829 0.55805 0.62780	0.99619 1.99238 2.98858 3.98477 4.98097 5.97716 6.97336 7.96955 8.96575	0.08715 0.17431 0.26146 0.34862 0.43577 0.52293 0.61008 0.69724 0.78440	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.99839 1.99678 2.99517 3.99356 4.99195 5.99935 6.98874 7.98713 8.98552	0.05669 0.11338 0.17007 0.22677 0.28346 0.34015 0.39684 0.45354 0.51023	0.99725 1.99450 2.99175 3.98900 4.98625 5.98350 6.98075 7.97800 8.97525	0.07410 0.14821 0.22232 0.29643 0.37054 0.44465 0.51875 0.50286 0.66697	0.99580 1.99160 2.98741 3.98321 4.97902 5.97482 6.97063 7.96643 8.96224	0.09150 0.18300 0.27450 0.36600 0.45750 0.54900 0.64051 0.73201 0.82351	1 2 3 4 56 78 9	45
30	1 2 3 4 56 78 9	0.99813 1.99626 2.99440 3.99253 4.99067 5.98880 6.98694 7.98507 8.98321	0.06104 0.12209 0.18314 0.24419 0.30524 0.36629 0.42733 0.48838 0.54943	0.99691 1.99383 2.99075 3.98766 4.98458 5.98150 6.97842 7.97533 8.97225	0.07845 0.15691 0.23537 0.31383 0.39229 0.47075 0.54921 0.62767 0.70613	0.99539 1.99079 2.98618 3.98158 4.97698 5.97237 6.96777 7.96316 8.95856	0.09584 0.19169 0.28753 0.38338 0.47922 0.57507 0.67092 0.76676 0.86261	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 56 . 78 9	0.99785 1.99571 2.99357 3.99143 4.98929 5.98715 6.98501 7.98287 8.98073	0.06540 0.13080 0.19620 0.26161 0.32701 0.39241 0.45782 0.52322 0.58862	0.99656 1.99313 2.98969 3.98626 4.98282 5.97939 6.97595 7.97252 8.96908	0.08280 0.16561 0.24842 0.33123 0.41404 0.49684 0.57965 0.66246 0.74527	0.99496 1.98993 2.98490 3.97987 4.97484 5.96981 6.96477 7.95974 8.95471	0.10018 0.20037 0.30056 0.40075 0.50094 0.60112 0.70131 0.80150 0.90169	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce.	8	6°	8	5°	8	4 °	nce.	es.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

								_	
ıtes.	Distance.	6	;0	7	0	8	0	Distance.	ites.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minutes.
0	1 2 3 4 5 6 7 8 9	0.99452 1.98904 2.98356 3.97808 4.97261 5.96713 6.96165 7.95617 8.95069	0.10452 0.20905 0.31358 0.41811 0.52264 0.62717 0.73169 0.83622 0.94075	0.99254 1.98509 2.97763 3.97018 4.96273 5.95519 6.94782 7.94038 8.93291	0.12186 0.24373 0.36560 0.48747 0.60934 0.73121 0.85308 0.97495 1.09682	0.99026 1.98053 2.97080 3.96107 4.95134 5.94160 6.93187 7.92214 8.91241	0.13917 0.27834 0.41751 0.55669 0.69586 0.83503 0.97421 1.11338 1.25255	1 2 3 4 5 6 7 8	60
15	1 2 3 4 56 78 9	0.99405 1.98811 2.98216 3.97622 4.97028 5.96433 6.95839 7.95245 8.94650	o.16886 o.21773 o.32660 o.43546 o.54433 o.65320 o.76206 o.87093 o.97980	0.99200 1.98400 2.97601 3.96801 4.96002 5.95202 6.94403 7.93603 8.92804	o.12619 o.25239 o.37859 o.50479 o.63099 o.75719 o.88339 1.00959	0.98965 1.97930 2.96895 3.95860 4.94825 5.93790 6.92755 7.91721 8.90686	0.14349 0.28698 0.43047 0.57397 0.71746 0.86095 1.00444 1.14794 1.29143	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 78 9	0.99357 1.98714 2.98071 3.97428 4.96786 5.96143 6.95500 7.94857 8.94214	0.11320 0.22640 0.33960 0.45281 0.56601 0.67921 0.79242 0.90562 1.01882	0.99144 1.98288 2.97433 3.96577 4.95722 5.94866 6.94011 7.93155 8.92300	0.13052 0.26105 0.39157 0.52210 0.65263 0.78315 0.91368 1.04420	0.98901 1.97803 2.96704 3.95606 4.94508 5.93409 6.92311 7.91212 8.90114	0.14780 0.29561 0.44342 0.59123 0.73904 0.88685 1.03466 1.18247 1.33028	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 56 78 9	0.99306 1.98613 2.97920 3.97227 4.96534 5.95841 6.95147 7.94454 8.93761	0.11753 0.23507 0.35261 0.47014 0.58768 0.70522 0.82276 0.94029 1.05783	0.99086 1.98173 2.97259 3.96346 4.95432 5.94519 6.93606 7.92692 8.91779	0.13485 0.26970 0.40455 0.53940 0.67425 0.80910 0.94395 1.07880 1.21365	0.98836 1.97672 2.96508 3.95344 4.94180 5.93016 6.91853 7.90689 8.89525	0.15212 0.30424 0.45637 0.60849 0.76061 0.91274 1.06486 1.21698 1.36911	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
tes.	ınce.	8	3°	8	2 °	83	l°	ınce.	ıtes.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—Continued.

es.	nce.	9	o	10)°	13	Lo.	nce.	es.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 56 78 9	0.98768 1.97537 2.96306 3.95975 4.93844 5.92612 6.91381 7.90150 8.88919	0.15643 0.31286 0.46930 0.62573 0.78217 0.93860 1.09504 1.25147 1.40791	0.98480 1.96961 2.95442 3.93923 4.92403 5.90884 6.89365 7.87846 8.86327	0.17364 0.34729 0.52094 0.69459 0.86824 1.04188 1.21553 1.38918 1.56283	0.98162 1.96325 2.94488 3.92650 4.90813 5.88976 6.87139 7.85301 8.83464	0.19081 0.38162 0.57243 0.76324 0.95405 1.14486 1.33566 1.52648 1.71729	1 2 3 4 56 78 9	60
15	1 2 3 4 56 78 9	o.98699 1.97399 2.96098 3.94798 4.93498 5.92197 6.90897 7.89597 8.88296	o.16074 o.32148 o.48222 o.64297 o.80371 o.96445 1.12519 1.28594	0.98404 1.96808 2.95212 3.93616 4.92020 5.90424 6.88828 7.87232 8.85636	0.17794 0.35588 0.53383 0.71177 0.88971 1.06766 1.24560 1.42354 1.60149	0.98078 1.96157 2.94235 3.92314 4.90392 5.88471 6.86549 7.84628 8.82706	0.19509 0.39018 0.58527 0.78036 0.97545 1.17054 1.36563 1.56072 1.75581	1 2 3 4 56 78 9	45
30	1 2 3 4 5 6 7 8 9	0.98628 1.97257 2.95885 3.94514 4.93142 5.91771 6.90399 7.89028 8.87657	0.16504 0.33009 0.49514 0.66019 0.82523 0.99028 1.15533 1.32038 1.48542	0.98325. 1.96650 2.94976 3.93301 4.91627 5.89952 6.88278 7.86603 8.84929	0.18223 0.36447 0.54670 0.72894 0.91117 1.09341 1.27564 1.45788	6.97992 1.95984 2.93977 3.91969 4.89962 5.87954 6.85947 7.83939 8.81932	0.19936 0.39873 0.59810 0.79747 0.99683 1.19620 1.39557 1.59494	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.98555 1.97111 2.95666 3.94222 4.92778 5.91333 6.89889 7.88444 8.87000	0.16935 0.33870 0.50805 0.67740 0.84675 1.01610 1.18545 1.35480	0.98245 1.96490 2.94735 3.92980 4.91225 5.89470 6.87715 7.85960 8.84205	0.18652 0.37304 0.55957 0.74609 0.93262 1.11914 1.30566 1.49219 1.67871	0.97904 1.95809 2.93713 3.91618 4.89522 5.87427 6.85331 7.83236 8.81140	0.20364 0.40728 0.61092 0.81456 1.01820 1.22185 1.42549 1.62913 1.83277	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
es.	ice.	86	0°	7:	9°	7	8 °	ice.	es.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

r								_	
Minutes.	Distance.	1:	2 °	1	3°	1	4 °	Distance.	Minutes.
Min	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Min
0	1 2 3 4 56 78 9	0.97814 1.95629 2.93444 3.91259 4.89073 5.86888 6.84703 7.82518 8.80332	0.20791 0.41582 0.62373 0.83164 1.03955 1.24747 1.45538 1.66329 1.87120	0.97437 1.94874 2.92311 3.89748 4.87185 5.84622 6.82059 7.79496 8.76933	0.22495 0.44990 0.67485 0.89980 1.12475 1.34970 1.57465 1.79960 2.02455	0.97029 1.94059 2.91088 3.88118 4.85147 5.82177 6.79206 7.76236 8.73266	0.24192 0.48384 0.72576 0.90768 1.20961 1.45153 1.69345 1.93537 2.17729	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.97723 1.95446 2.93169 3.90892 4.88615 5.86338 6.84061 7.81784 8.79507	0.21217 0.42435 0.63653 0.84871 1.06088 1.27306 1.48524 1.69742 1.90959	0.97337 1.94675 2.92013 3.89351 4.86689 5.84027 6.81365 7.78703 8.76041	0.22920 0.45840 0.68760 0.91680 1.14600 1.37520 1.60440 1.83360 2.06280	0.96923 1.93846 2.90769 3.87692 4.84615 5.81538 6.78461 7.75384 8.72307	0.24615 0.49230 0.73845 0.98461 1.23076 1.47691 1.72307 1.96922 2.21537	1 2 3 4 56 78 9	45
30	1 2 3 4 56 78 9	0.97629 1.95259 2.92888 3.90518 4.88148 5.85777 6.83407 7.81036 8.78666	0.21644 0.43288 0.64932 0.86576 1.08220 1.29864 1.51508 1.73152 1.94796	0.97237 1.94474 2.91711 3.88948 4.86185 5.83422 6.80659 7.77896 8.75133	0.23344 0.46689 0.70033 0.93378 1.16722 1.40067 1.63411 1.86756 2.10100	0.96814 1.93629 2.90444 3.87259 4.84073 5.80888 6.77703 7.74518 8.71332	0.25038 0.50076 0.75114 1.00152 1.25190 1.50228 1.75266 2.00304 2.25342	1 2 3 4 56 78 9	30
45	1 2 3 4 5 6 7 8 9	0.97534 1.95068 2.92602 3.90136 4.87671 5.85205 6.82739 7.80273 8.77808	0.22069 0.44139 0.66209 0.88278 1.10348 1.32418 1.54488 1.76557 1.98627	0.97134 1.94268 2.91402 3.88536 4.85671 5.82805 6.79939 7.77073 8.74207	0.23768 0.47537 0.71305 0.95074 1.18843 1.42611 1.66380 1.90148 2.13917	0.96704 1.93409 2.90113 3.86818 4.83523 5.80227 6.76932 7.73636 8.70341	0.25460 0.50920 0.76380 1.01840 1.27301 1.52761 1.78221 2.03681 2.29141	1 2 3 4 56 78 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
	ce.	7'	7°	7	6°	7:	5°	ce.	š.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

	1			1					
ites.	ince.	1	5°	1	.6°	1	7 °	nce.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 56 78 9	0.96592 1.93185 2.89777 3.86370 4.82962 5.79555 6.76148 7.72740 8.69333	0.25881 0.51763 0.77645 1.03527 1.29409 1.55291 1.81173 2.07055 2.32937	0.96126 1.92252 2.88378 3.84504 4.80630 5.76757 6.72883 7.69009 8.65135	0.27563 0.55127 0.82691 1.10254 1.37818 1.65382 1.92946 2.20509 2.48073	0.95630 1.91260 2.86891 3.82521 4.78152 5.73782 6.69413 7.65043	0.29237 0.58474 0.87711 1.16948 1.46185 1.75423 2.04660 2.33897 2.63134	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.96478 1.92957 2.89436 3.85914 4.82393 5.78872 6.75351 7.71829 8.68308	0.26303 0.52606 0.78909 1.05212 1.31515 1.57818 1.84121 2.10424 2.36728	0.96005 1.92010 2.88015 3.84020 4.80025 5.76030 6.72035 7.68040 8.64045	0.27982 0.55965 0.83948 1.11931 1.39914 1.67897 1.95880 2.23863 2.51846	0.95502 1.91004 2.86506 3.82008 4.77510 5.73012 6.68514 7.64016 8.59518	0.29654 0.59308 0.88962 1.18616 1.48270 1.77924 2.07579 2.37233 2.66887	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.96363 1.92726 2.89089 3.85452 4.81815 5.78178 6.74541 7.70904 8.67267	0.26723 0.53447 0.80171 1.06895 1.33619 1.60343 1.87066 2.13790 2.40514	0.95882 1.91764 2.87646 3.83528 4.79410 5.75292 6.71174 7.67056 8.62938	0.28401 0.56803 0.85204 1.13606 1.42007 1.70409 1.98810 2.27212 2.55613	0.95371 1.90743 2.86115 3.81486 4.76858 5.72230 6.67601 7.62973 8.58345	0.30070 0.60141 0.90211 1.20282 1.50352 1.80423 2.10494 2.40564 2.70635	1 2 3 4 56 78 9	30
45	1 2 3 4 5 6 7 8 9	0.96245 1.92491 2.88736 3.84982 4.81227 5.77473 6.73718 7.69964 8.66209	0.27144 0.54288 0.81432 1.08576 1.35720 1.62864 1.90008 2.17152 2.44296	0.95757 1.91514 2.87271 3.83028 4.78785 5.74542 6.70299 7.66057 8.61814	0.28819 0.57639 0.86458 1.15278 1.44098 1.72917 2.01737 2.30557 2.59376	0.95239 1.90479 2.85718 3.80958 4.76197 5.71437 6.66677 7.61916 8.57156	o.30486 o.60972 o.91459 1.21945 1.52432 1.82918 2.13405 2.43891 2.74377	1 2 3 4 56 78 9	15
Minutes.	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	mce.	74	٥	73	3°	72	2 °	ince.	ites.

TABLE 9. TRAVERSE TABLE.
DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

tes.	nce.	1:	B°	19	9 °	20	0°	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 56 78 9	0.95105 1.90211 2.85316 3.80422 4.75528 5.70633 6.65739 7.60845 8.55950	0.30901 0.61803 0.92705 1.23606 1.54508 1.85410 2.16311 2.47213 2.78115	0.94551 1.89103 2.83655 3.78207 4.72759 5.67311 6.61863 7.56414 8.50966	0.32556 0.65113 0.97670 1.30227 1.62784 1.95340 2.27897 2.60454 2.93011	0.93969 1.87938 2.81907 3.75877 4.69846 5.63815 6.57784 7.51754 8.45723	0.34202 0.68404 1.02606 1.36808 1.71010 2.05212 2.39414 2.73616 3.07818	1 2 3 4 56 78 9	60
15	1 2 3 4 56 78 9	0.94969 1.89939 2.84909 3.79879 4.74849 5.69819 6.64789 7.59759 8.54729	0.31316 0.62632 0.93949 1.25265 1.56581 1.87898 2.19214 2.50531 2.81847	0.94408 1.88817 2.83226 3.77635 4.72044 5.66453 6.60862 7.55271 8.49680	0.32969 0.65938 0.98907 1.31876 1.64845 1.97814 2.30783 2.63752 2.96721	0.93819 1.87638 2.81457 3.75276 4.69095 5.62914 6.56733 7.50553 8.44372	0.34611 0.69223 1.03835 1.38446 1.73058 2.07670 2.44281 2.76893 3.11505	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 78 9	0.94832 1.89664 2.84497 3.79329 4.74161 5.68994 6.63826 7.58658 8.53491	0.31730 0.63460 0.95191 1.26921 1.58652 1.90382 2.22113 2.53843 2.85574	0.94264 1.88528 2.82792 3.77056 4.71320 5.65584 6.59849 7.54113 8.48377	0.33380 0.66761 1.00142 1.33522 1.66903 2.00284 2.33664 2.67045 3.00426	0.93667 1.87334 2.81001 3.74668 4.68336 5.62003 6.55670 7.49337 8.43004	0.35020 0.70041 1.05062 1.40082 1.75103 2.10124 2.45145 2.80165 3.15186	1 2 3 4 56 78 9	30
45	1 2 3 4 56 78 9	0.94693 1.89386 2.84079 3.78772 4.73465 5.68158 6.62851 7.57544 8.52237	0.32143 0.64287 0.96431 1.28575 1.60719 1.92863 2.25007 2.57151 2.89295	0.94117 1.88235 2.82352 3.76470 4.70588 5.64705 6.58823 7.52940 8.47058	0.33791 0.67583 1.01375 1.35166 1.68958 2.02750 2.36541 2.70333 3.04125	0.93513 1.87027 2.80540 3.74054 4.67567 5.61081 6.54594 7.48108 8.41621	0.35429 0.70858 1.06287 1.41716 1.77145 2.12574 2.48003 2.83432 3.18861	1 2 3 4 56 78 9	15
Minutes.	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
es.	nce.	7:	1°	7	0 °	6:	9°	nce.	es.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

tes.	ınce.	2:	l°	2	2°	2	3°	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.93358 1.86716 2.80074 3.73432 4.66790 5.60148 6.53506 7.46864 8.40222	0.35836 0.71673 1.07510 1.43347 1.79183 2.15020 2.50857 2.86694 3.22531	0.92718 1.85436 2.78155 3.70873 4.63591 5.56310 6.49028 7.41747 8.34465	0.37460 0.74921 1.12381 1.49842 1.87303 2.24763 2.62224 2.99685 3.37145	0.92050 1.84100 2.76151 3.68201 4.60252 5.52302 6.44353 7.36403 8.28454	0.39073 0.78146 1.17219 1.56292 1.95365 2.34438 2.73511 3.12584 3.51657	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.93200 1.86401 2.79602 3.72803 4.66004 5.59204 6.52405 7.45606 8.38807	0.36243 0.72487 1.08731 1.44975 1.81219 2.17462 2.53706 2.89950 3.26194	0.92554 1.85108 2.77662 3.70216 4.62770 5.55324 6.47878 7.40432 8.32986	0.37864 0.75729 1.13594 1.51459 1.89324 2.27189 2.65054 3.02918 3.40783	0.91879 1.83758 2.75637 3.67516 4.59395 5.51274 6.43153 7.35032 8.26912	0.39474 0.78948 1.18423 1.57897 1.97372 2.36846 2.76320 3.15795 3.55269	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.93041 1.86083 2.79125 3.72167 4.65208 5.58250 6.51292 7.44334 8.37375	0.36650 0.73300 1.09950 1.46600 1.83250 2.19900 2.56550 2.93200 3.29851	0.92388 1.84776 2.77164 3.69552 4.61940 5.54328 6.46716 7.39104 8.31492	0.38268 0.76536 1.14805 1.53073 1.91341 2.29610 2.67878 3.06146 3.44415	0.91706 1.83412 2.7 5118 3.66824 4.58530 5.50236 6.41942 7.33648 8.25354	0.39874 0.79749 1.19624 1.59499 1.99374 2.39249 2.79124 3.18999 3.58874	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.92881 1.85762 2.78643 3.71524 4.64405 5.57286 6.50167 7.43048 8.35929	0.37055 0.74111 1.11167 1.48222 1.85278 2.22334 2.59390 2.96445 3.33501	0.92220 1.84440 2.76660 3.68880 4.61100 5.53320 6.45540 7.37760 8.29980	0.38671 0.77342 1.16013 1.54684 1.93355 2.32026 2.70697 3.09368 3.48039	0.91 531 1.83062 2.74 593 3.661 24 4.576 55 5.491 86 6.4071 8 7.32249 8.23780	0.40274 0.80549 1.20824 1.61098 2.01373 2.41648 2.81922 3.22197 3.62472	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce	68	3°	6	7 °	6	6°	nce.	tes.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

tes.	nce.	24	1 °	2	5°	20	6°	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.91354 1.82709 2.74063 3.65418 4.56772 5.48127 6.39481 7.30836 8.22190	0.40673 0.81347 1.22020 1.62694 2.03368 2.44041 2.84715 3.25389 3.66062	0.90630 1.81261 2.71892 3.62523 4.53153 5.43784 6.34415 7.25046 8.15677	0.42261 0.84523 1.26785 1.69047 2.11309 .2.53570 2.95832 3.38094 3.80356	o.89879 1.79758 2.69638 3.59517 4.49397 5.39276 6.29155 7.19035 8.08914	0.43837 0.87674 1.31511 1.75348 2.19185 2.63022 3.06859 3.50696 3.94533	1 2 3 4 56 78 9	60
15	1 2 3 4 5 6 7 8 9	0.91176 1.82352 2.73528 3.64704 4.55881 5.47057 6.38233 7.29409 8.20585	0.41071 0.82143 1.23215 1.64287 2.05359 2.46431 2.87503 3.28575 3.69647	0.90445 1.80891 2.71336 3.61782 4.52227 5.42673 6.33118 7.23564 8.14009	0.42656 0.85313 1.27970 1.70627 2.13284 2.55941 2.98598 3.41254 3.83911	0.89687 1.79374 2.69061 3.58749 4.48436 5.38123 6.27810 7.17498 8.07185	0.44228 0.88457 1.32686 1.76915 2.21144 2.65373 3.09602 3.53830 3.98059	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 7 8 9	0.90996 1.81992 2.72988 3.63984 4.54980 5.45976 6.36972 7.27969 8.18965	0.41469 0.82938 1.24407 1.65877 2.07346 2.48815 2.90285 3.31754 3.73223	0.90258 1.80517 2.70775 3.61034 4.51292 5.41551 6.31809 7.22068 8.12326	0.43051 0.86102 1.29153 1.72204 2.15255 2.58306 3.01357 3.44408 3.87459	0.89493 1.78986 2.68480 3.57973 4.47467 5.36960 6.26454 7.15947 8.05440	0.44619 0.89239 1.33859 1.78479 2.23098 2.67718 3.12338 3.56958 4.01578	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.90814 1.81628 2.72442 3.63257 4.54071 5.44885 6.35700 7.26514 8.17328	0.41866 0.83732 1.25598 1.67464 2.09330 2.51196 2.93062 3.34928 3.76794	0.90069 1.80139 2.70209 3.60279 4.50349 5.40418 6.30488 7.20558 8.10628	0.43444 0.86889 1.30333 1.73778 2.17222 2.60667 3.04111 3.47556 3.91000	0.89297 1.78595 2.67893 3.57191 4.46489 5.35787 6.25085 7.14383 8.03681	0.45009 0.90019 1.35029 1.80039 2.25049 2.70059 3.15068 3.60078 4.05088	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
	i.	6:)	6	4 °	6	3 °	ė.	Ģ1

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—Continued.

ites.	Distance.	2'	7 °	2	3 °	29	9°	Distance.	ites.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minutes.
o	1 2 3 4 56 78 9	0.89100 1.78201 2.67301 3.56402 4.45503 5.34603 6.23704 7.12805 8.01905	0.45399 0.90798 1.36197 1.81596 2.26995 2.72394 3.17793 3.63193 4.08591	0.88294 1.76589 2.64884 3.53179 4.41473 5.29768 6.18063 7.06358 7.94652	0.46947 0.93894 1.40841 1.87788 2.34735 2.81682 3.28630 3.75577 4.22524	0.87462 1.74924 2.62386 3.49848 4.37310 5.24772 6.12234 6.996966 7.87156	0.48481 0.96962 1.45443 1.93924 2.42405 2.90886 3.39367 3.87848 4.36329	1 2 3 4 5 6 7 8 9	60
. 15	1 2 3 4 56 78 9	0.88901 1.77803 2.66705 3.55606 4.44508 5.33410 6.22311 7.11213 8.00115	0.45787 0.91574 1.37362 1.83149 2.28937 2.74724 3.20511 3.66299 4.12086	0.88089 1.76178 2.64267 3.52356 4.40445 5.28534 6.16623 7.04712 7.92801	0.47332 0.94664 1.41996 1.89328 2.36660 2.83992 3.31324 3.78656 4.25988	0.87249 1.74499 2.61748 3.48998 4.36248 5.23497 6.10747 6.97996 7.85246	0.48862 0.97724 1.46566 1.95448 2.44310 2.93172 3.42034 3.90896 4.39759	1 2 3 4 56 78 9	45
30	1 2 3 4 56 78 9	0.88701 1.77402 2.66103 3.54804 4.43505 5.32206 6.20907 7.09608 7.98309	0.46174 0.92349 1.38524 1.84699 2.30874 2.77049 3.23224 3.69398 4.15573	0.87881 1.75763 2.63645 3.51526 4.39408 5.27290 6.15171 7.03053 7.90935	0.47715 0.95431 1.43147 1.90863 2.38579 2.86295 3.34011 3.81727 4.29442	0.87035 1.74071 2.61106 3.48142 4.35177 5.22213 6.09248 6.96284 7.83320	0.49242 0.98484 1.47727 1.96969 2.46211 2.95454 3.44696 3.93938 4.43181	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.88498 1.76997 2.65496 3.53395 4.42493 5.30992 6.19491 7.07990 7.96488	0.46561 0.93122 1.39684 1.86245 2.32807 2.79368 3.25930 3.72491 4.19053	0.87672 1.75345 2.63018 3.50690 4.38363 5.26036 6.13708 7.01381 7.89054	0.48098 0.96197 1.44296 1.92395 2.40494 2.88593 3.36692 3.84791 4.32889	0.86819 1.73639 2.60459 3.47279 4.34099 5.20919 6.07739 6.94559 7.81378	0.49621 0.99243 1.48864 1.98486 2.48108 2.97729 3.47351 3.96973 4.46594	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
ites.	ınce.	6	2 ^ò	6	1°	6	0°	nce.	tes.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

tes.	nce.	_3	0°	3	1 °	3:	2°	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance	Minutes.
o	1 2 3 4 56 78 9	o.866o2 1.732o5 2.598o7 3.4641o 4.33012 5.19615 6.06217 6.9282o 7.79422	0.50000 1.00000 1.50000 2.00000 2.50000 3.00000 4.00000 4.50000	0.85716 1.71433 2.57150 3.42866 4.28583 5.14300 6.00017 6.85733 7.71450	0.51503 1.03007 1.54511 2.06015 2.57519 3.09022 3.60526 4.12030 4.63534	0.84804 1.69609 2.54414 3.39219 4.24024 5.08828 5.93633 6.78438 7.63243	0.52991 1.05983 1.58975 2.11967 2.64959 3.17951 3.70943 4.23935 4.76927	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 56 78 9	0.86383 1.72767 2.59150 3.45534 4.31917 5.18301 6.04684 6.91068 7.77451	0.50377 1.00754 1.51132 2.01509 2.51887 3.02264 3.52641 4.03019 4.53396	0.85491 1.70982 2.56473 3.41964 4.27456 5.12947 5.98438 6.83929 7.69420	0.51877 1.03754 1.55631 2.07509 2.59386 3.11263 3.63141 4.15018 4.66895	0.84572 1.69145 2.53718 3.38291 4.22863 5.07436 5.92009 6.76582 7.61155	o.53361 1.06722 1.60084 2.13445 2.66807 3.20168 3.73530 4.26891 4.80253	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 78 9	0.86162 1.72325 2.58488 3.44651 4.30814 5.16977 6.03140 6.89303 7.75466	0.50753 1.01507 1.52261 2.03015 2.53769 3.04523 3.55276 4.06030 4.56784	0.85264 1.70528 2.55592 3.41056 4.26320 5.11584 5.96948 6.82112 7.67376	0.52249 1.04499 1.56749 2.08999 2.61249 3.13499 3.65749 4.17998 4.70248	0.84339 1.68678 2.53017 3.37356 4.21695 5.06034 5.90373 6.74713 7.59052	0.53730 1.07460 1.61190 2.14920 2.68650 3.22380 3.76110 4.29840 4.83570	1 2 3 4 56 78 9	30
45	1 2 3 4 56 78 9	0.85940 1.71881 2.57821 3.43762 4.29703 5.15643 6.01584 6.87525 7.73465	0.51129 1.02258 1.53387 2.04517 2.55646 3.06775 3.57905 4.09034 4.60163	0.85035 1.70070 2.55105 3.40140 4.25176 5.10211 5.95246 6.80281 7.65316	0.52621 1.05242 1.57864 2.10485 2.63107 3.15728 3.68349 4.20971 4.73592	0.84103 1.68207 2.52311 3.36415 4.20519 5.04623 5.88827 6.72831 7.56935	0.54097 1.08194 1.62292 2.16389 2.70487 3.24584 3.78682 4.32779 4.86877	1 2 3 4 5 6 7 8 9	15
Minutes	Distance.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce.	59	90	58	8 °	5'	7 °	nce.	tes.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—Continued.

ites.	Distance.	3:	3°	34	4 °	3.	5°	nce.	tes.
Minutes.	Dista	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.83867 1.67734 2.51601 3.35468 4.19335 5.03202 5.87069 6.70936 7.54803	0.54463 1.08927 1.63391 2.17855 2.72319 3.26783 3.81247 4.35711 4.90175	0.82903 1.65807 2.48711 3.31615 4.14518 4.97422 5.80326 6.63230 7.46133	0.55919 1.11838 1.67757 2.23677 2.79596 3.35515 3.91435 4.47354 5.03273	0.81915 1.63830 2.45745 3.27660 4.09576 4.91491 5.73406 6.55321 7.37236	0.57357 1.14715 1.72072 2.29430 2.86788 3.44145 4.01503 4.58861 5.16218	1 2 3 4 56 78 9	60
15	1 2 3 4 56 78 9	0.83628 1.67257 2.50885 3.34514 4.18143 5.01771 5.85400 6.69028 7.52657	0.54829 1.09658 1.64487 2.19317 2.74146 3.28975 3.83805 4.38634 4.93463	0.82659 1.65318 2.47977 3.30636 4.13295 4.95954 5.78613 6.61272 7.43931	0.56280 1.12560 1.68841 2.25121 2.81402 3.37682 3.93963 4.50243 5.06524	o.81664 1.63328 2.44992 3.26656 4.08320 4.89984 5.71649 6.53313 7-34977	0.57714 1.15429 1.73143 2.30858 2.88572 3.46287 4.04001 4.61716 5.19430	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.83388 1.66777 2.50165 3.33554 4.16942 5.00331 5.83720 6.67108 7.50497	0.55193 1.10387 1.65581 2.20774 2.75968 3.31162 3.86355 4.41549 4.96743	0.82412 1.64825 2.47237 3.29650 4.12063 4.94475 5.76888 6.59300 7.41713	0.56640 1.13281 1.69921 2.26562 2.83203 3.39843 3.96484 4.53124 5.09765	0.81411 1.62823 2.44234 3.25646 4.07057 4.88469 5.69880 6.51292 7.32703	0.58070 1.16140 1.74210 2.32281 2.90351 3.48421 4.06492 4.64562 5.22632	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 56 78 9	0.83147 1.66294 2.49441 3.32588 4.15735 4.98882 5.82029 6.65176 7.48323	0.55557 1.11114 1.66671 2.22228 2.77785 3.33342 3.88899 4.4456 5.00013	0.82164 1.64329 2.46494 3.28658 4.10823 4.92988 5-75152 6.57317 7-39482	5.56999 1.13999 1.70999 2.27998 2.84998 3.41998 3.98997 4.55997 5.12997	0.81157 1.62314 2.43472 3.24629 4.05787 4.86944 5.68101 6.49260 7.30416	0.58425 1.16850 1.75275 2.33700 2.92125 3.50550 4.08975 4.67400 5.25825	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce.	50	6°	5	5°	5	4 °	nce.	tes.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

Minutes.	Distance.	3	6°	3	7 °	3	8°	Distance.	Minutes.
Min	Dis	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dis	Min
0	1 2 3 4 5 6 7 8 9	0.80901 1.61803 2.42705 3.23606 4.04508 4.85410 5.66311 6.47213 7.28115	0.58778 1.17557 1.76335 2.35114 2.93892 3.52671 4.11449 4.70228 5.29006	o.79863 1.59727 2.39590 3.19454 3.99317 4.79181 5.59044 6.38908 7.18771	0.60181 1.20363 1.80544 2.40726 3.00907 3.61089 4.21270 4.81452 5.41633	0.78801 1.57602 2.36403 3.15204 3.94005 4.72806 5.51607 6.30408 7.09209	o.61 566 1.23132 1.84698 2.46264 3.07830 3.69396 4.30963 4.92529 5.54095	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 56 78 9	0.80644 1.61288 2.41933 3.22577 4.03222 4.83866 5.64511 6.45155 7.25800	0.59130 1.18261 1.77392 2.36523 2.95654 3.54785 4.13916 4.73047 5.32178	0.79600 1.59200 2.38800 3.18400 3.98001 4.77601 5.57201 6.36801 7.16401	0.60529 1.21058 1.81588 2.42117 3.02647 3.63176 4.23705 4.84235 5.44764	1.78531 1.57063 2.35595 3.14126 3.92658 4.71190 5.49721 6.28253 7.06785	0.61909 1.23818 1.85728 2.47637 3.09547 3.71456 4.33365 4.95275 5.57184	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.80385 1.60771 2.41157 3.21542 4.01928 4.82314 5.62699 6.43085 7.23471	0.59482 1.18964 1.78446 2.37929 2.97411 3.56893 4.16375 4.75858 5.35340	0.79335 1.58670 2.38005 3.17341 3.96676 4.76011 5.55347 6.34682 7.14017	0.60876 1.21752 1.82628 2.43504 3.04380 3.65256 4.26132 4.87009 5.47885	0.78260 1.56521 2.34782 3.13043 3.91304 4.69564 5.47825 6.26086 7.04347	0.62251 1.24502 1.86754 2.49005 3.11257 3.73508 4.35760 4.98011 5.60263	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.80125 1.60250 2.40376 3.20501 4.00626 4.80752 5.60877 6.41003 7.21128	0.59832 1.19664 1.79497 2.39329 2.99162 3.58994 4.18827 4.78659 5.38492	0.79068 1.58137 2.37206 3.16275 3.95344 4.74413 5.53482 6.32551 7.11620	0.61221 1.22443 1.83665 2.44886 3.06108 3.67330 4.28552 4.89773 5.50995	0.77988 1.55946 2.33965 3.11953 3.89942 4.67930 5.45919 6.23907 7.01896	0.62592 1.25184 1.87777 2.50369 3.12961 3.75554 4.38146 5.00738 5.63331	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce.	50	3 °	5	2 °	5:	L°	nce.	tes.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.—Continued.

ites.	ınce.	3:	9°	4.	0°	4:	L°	nce.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 56 78 9	0.77714 1.55429 2.33143 3.10858 3.88573 4.66287 5.44002 6.21716 6.99431	0.62932 1.25864 1.88796 2.51728 3.14660 3.77592 4.40524 5.03456 5.66388	0.76604 1.53208 2.29813 3.06417 3.83022 4.59626 5.36231 6.12835 6.89439	0.64278 1.28557 1.92836 2.57115 3.21393 3.85672 4.49951 5.14230 5.78508	0.75470 1.50941 2.26412 3.01883 3.77354 4.52825 5.28296 6.03767 6.79238	o.656o5 1.31211 1.96817 2.62423 3.28029 3.93635 4.59241 5.24847 5.90453	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.77439 1.54878 2.32317 3.09757 3.87196 4.64635 5.42074 6.19514 6.96953	0.63270 1.26541 1.89811 2.53082 3.16352 3.79623 4.42893 5.06164 5.69434	0.76323 1.52646 2.28969 3.05293 3.81616 4.57939 5.34262 6.10586 6.86909	0.64612 1.29224 1.93837 2.58449 3.23062 3.87674 4.52286 5.16899 5.81511	0.75184 1.50368 2.25552 3.00736 3.75920 4.51104 5.26288 6.01472 6.76656	o.65934 1.31869 1.97803 2.63738 3.29672 3.95607 4.61542 5.27476 5.93411	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.77162 1.54324 2.31487 3.08649 3.85812 4.62974 5.40137 6.17299 6.94462	0.63607 1.27215 1.90823 2.54431 3.18039 3.81646 4.45254 5.08862 5.72470	0.76040 1.52081 2.28121 3.04162 3.80203 4.56243 5.32284 6.08324 6.84365	o.64944 1.29889 1.94834 2.59779 3.24724 3.89668 4.54613 5.19558 5.84503	0.74895 1.49791 2.24686 2.99582 3.74477 4.49373 5.24268 5.99164 6.74060	o.66262 1.32524 1.98786 2.65048 3.31310 3.97572 4.63834 5.30096 5.96358	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 56 78 9	0.76884 1.53768 2.30652 3.07536 3.84420 4.61305 5.38189 6.15073 6.91957	0.63943 1.27887 1.91831 2.55775 3.19719 3.83663 4.47607 5.11551 5.75495	0.75756 1.51513 2.27269 3.03026 3.78782 4.54539 5.30295 6.06052 6.81808	0.65276 1.30552 1.95828 2.61104 2.26380 3.91656 4.56932 5.22208 5.87484	0.74605 1.49211 2.23817 2.98422 3.73028 4.47634 5.22240 5.96845 6.71451	0.66588 1.33176 1.99764 2.66352 3.32960 3.99529 4.66117 5.32705 5.99293	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
es.	ice.	5	0°	4	9°	4	8 °	ice.	es.

TABLE 9. TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—CONTINUED.

ites.	Distance.	4:	2 °	4	3°	4	4 °	Distance.	ites.
Minutes.	Dista	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minntes.
0	1 2 3 4 56 78 9	0.74314 1.48628 2.22943 2.97257 3.71572 4.45886 5.20201 5.94515 6.68830	0.66913 1.33826 2.00739 2.67652 3.34565 4.01478 4.68391 5.35304 6.02217	0.73135 1.46270 2.19406 2.92541 3.65676 4.38812 5.11947 5.85082 6.58218	0.68199 1.36399 2.04599 2.72799 3.40999 4.09199 4.77398 5.45598 6.13798	0.71933 1.43867 2.15801 2.87735 3.59669 4.31603 5.03537 5.75471 6.47405	0.69465 1.38931 2.08397 2.77863 3.47329 4.16795 4.86260 5.55726 6.25192	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.74021 1.48043 2.22065 2.96087 3.70109 4.44130 5.18152 5.92174 6.66196	0.67236 1.34473 2.01710 2.68946 3.36183 4.03420 4.70656 5.37893 6.05130	0.72837 1.45674 2.18511 2.91348 3.64185 4.37022 5.09859 5.82696 6.55533	0.68518 1.37036 2.05554 2.74073 3.42591 4.11109 4.79628 5.48146 6.16664	0.71630 1.43260 2.14890 2.86520 3.58151 4.29781 5.01411 5.73041 6.44671	0.69779 1.39558 2.09337 2.79116 3.48895 4.18674 4.88453 5.58232 6.28011	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.73727 1.47455 2.21183 2.94910 3.68638 4.42366 5.16094 5.89821 6.63549	0.67559 1.35118 2.02677 2.70236 3.37795 4.05354 4.72913 5.40472 6.08031	0.72537 1.45074 2.17612 2.90149 3.62687 4.35224 5.07762 5.80299 6.52836	0.68835 1.37670 2.06506 2.75341 3.44177 4.13012 4.81848 5.50683 6.19519	0.71325 1.42650 2.13975 2.85300 3.56625 4.27950 4.99275 5.70600 6.41925	0.70090 1.40181 2.10272 2.80363 3.50454 4.20545 4.90636 5.60727 6.30818	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.7 3432 1.46864 2.20296 2.93729 3.67161 4.40593 5.14025 5.87458 6.60890	0.67880 1.35760 2.03640 2.71520 3.39400 4.07280 4.75160 5.43040 6.10920	0.72236 1.44472 2.16709 2.88945 3.61182 4.33418 5.05654 5.77891 6.50127	0.691 51 1.38 302 2.07 453 2.7660 5 3.457 56 4.14907 4.840 59 5.53210 6.22361	0.71018 1.42037 2.13055 2.84074 3.55092 4.26111 4.97129 5.68148 6.39166	0.70401 1.40802 2.11204 2.81605 3.52007 4.22408 4.92810 5.63211 6.33613	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
ites.	ınce.	4'	7 °	4	6°	4:	5°	ınce.	tes.

TRAVERSE TABLE.

DIFFERENCES OF LATITUDE AND DEPARTURE.—Continued.

	Distance.	4	5°	nnce.	
	Dista	Lat.	Dep.	Distance.	
•	1	0.70710	0.70710	1	
	2	1.41421	1.41421	2	
	3	2.12132	2.12132	3	
	4	2.82842	2.82842	4	
	5	3-53553	3.53553	5	
	6	4.24264	4.24264	6	
	7	4-94974	4.94974	7	
	8	5.65685	5.6568 5	8	
	9	6.36396	6.36396	9	
	Dist	Dep.	Lat.	Dist	
	Distance.	4:	5°	Distance.	

Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m IN ENGLISH FEET.

Lat.	o°	10	20	3°	4°	5°	6°	7°	80	9°	100	P	. P.
	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317		
0'	7379	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709		
1 2 3	7379 7379 7379	7392 7393 7394	7434 7435 7436	7501 7503 7504	7595 7597 7599	7716 7719 7721	7864 7866 7869	8037 8040 8043	8237 8240 8244	8462 8466 8470	8713 8718 8722		1
4 5 6	7379 7379 7379	7394 7395 7395	7437 7438 7438	7506 7507 7508	7600 7602 7604	7723 7726 7728	7872 7875 7877	8046 8050 8053	8247 8251 8255	8474 8478 8482	8727 8731 8735	10	.2
7 8 9	7379 7379 7379	7396 7396 7397	7439 7440 7441	7510 7511 7513	7606 7608 7610	773° 7732 7735	7880 7883 7885	8056 8059 8062	8258 8262 8265	8486 8490 8494	8740 8744 8749	50 40 50	·5 ·7 .8
10	7379	7397	7442	7514	7612	7737	7888	8065	8269	8498	8753	60	1.0
11 12 13	7379 7379 7379	7398 7398 7399	7443 7444 7445	7515 7517 7518	7614 7616 7618	7739 7742 7744	7891 7894 7896	8068 8071 8075	8273 8276 8280	8502 8506 8510	8758 8762 8767		2
14 15 16	7379 7380 7380	7399 7400 7401	7446 7447 7448	7520 7521 7522	7619 7621 7623	7746 7749 7751	7899 7902 7905	8078 8081 8084	8283 8287 8291	8514 8518 8523	8771 8776 8780	10	-3
17 18 19	7380 7380 7380	7401 7402 7402	7449 7450 7451	7524 7525 7527	7625 7627 7629	7753 7755 7757	7908 7910 7913	8087 8091 8094	8294 8298 8301	8527 8531 8535	8785 8789 8794	30 40	.7 1.0 1.3
20	7380	7403	7452	7528	7631	7760	7916	8097	8305	8539	8798	50 60	2.0
2 I 22 23	7380 7380 7381	7404 7404 7405	7453 7454 7455	7530 7531 7533	7633 7635 7637	7762 7765 7767	7919 7922 7924	8100 8104 8107	8309 8312 8316	8543 8547 8551	8803 8807 8812		3
24	7381	7405	7456	7534	7638	7770	7927	8110	8320	8555	8816		_
25 26 27	7381 7381 7381	7406 7407 7407	7458 7459 7460	7535 7537 7538	764 0 7642 7644	7772 7774 7777	7930 7933 7936	8114 8117 8120	8324 8327 8331	8559 8564 8568	8821 8826 8830	10 20	·5
28 29	7382 7382	7408 7408	7461 7462	7540 7541	7646 7648	7779 7782	7938 7941	8123	8335 8338	8572 8576	8835 8839	30 40 50	1.5 2.0 2.5
30	7382	7409	7463	7543	7650	7784	7944	8130	8342	8580	8844	60	3.0
31 32 33	73 ⁸ 2 73 ⁸ 3 73 ⁸ 3	7410 7410 7411	74 ⁶ 4 74 ⁶ 5 74 ⁶ 6	7545 754 ⁶ 754 ⁸	7652 7654 7656	7786 7789 7791	7947 7950 7953	8133 8137 8140	8346 8350 8353	8584 8588 8593	8849 8853 8858	- 1	4
34 35 36	73 ⁸ 3 73 ⁸ 4 73 ⁸ 4	7412 7413 7413	74 ⁶ 7 74 ⁶ 9 7470	7549 7551 7553	7658 7661 7663	7794 7796 7799	7956 7959 7961	8144 8147 8150	8357 8361 8365	8597 8601 8605	8862 8867 8872	10	.7
37 38 39	73 ⁸ 4 73 ⁸ 4 73 ⁸ 5	74 ¹ 4 74 ¹ 5 74 ¹ 5	7471 7472 7473	7554 755 ⁶ 7557	7665 7667 7 669	7801 7804 7806	7964 7 967 7970	8154 8157 8161	8369 8372 8376	8609 8614 8618	8876 8881 8885	30 40 50	1.3 2.0 2.7 3.3
40	7385	7416	7474	7559	7671	7809	7973	8164	838o	8622	8890	60	4.0
41 42 43	7385 7386 7386	7417 7418 7418	7 175 / 176 478	7561 7562 7564	7673 7675 7677	7811 7814 7816	7976 7979 7982	8167 8171 8174	8384 8388 8392	8626 8631 8635	8895 8899 8904		5
44 45 46	73 ⁸⁶ 73 ⁸ 7 73 ⁸ 7	7419 7420 7427	7479 7480 7482	7566 7567 7569	7679 7682 7684	7819 7821 7824	7985 7988 7991	8178 8181 8184	8396 8400 8403	8639 8643 8648	8909 8914 8918	10	.8
47 48 49	73 ⁸ 7 73 ⁸ 7 73 ⁸ 8	7422 7422 7423	74 ⁸ 3 74 ⁸ 4 74 ⁸ 6	7571 7573 7574	7686 7688 7690	7826 7829 7831	7994 7997 8000	8188 8191 8195	8407 8411 8415	8652 8656 8661	8923 8928 8932	30 40 50	1.7 2.5 3.3 4.2
50	7388	7424	7487	7576	7692	7834	8003	8198	8419	8665	8937	60	5.0
51 52 53	7388 7389 7389	7425 7426 7427	7488 7489 7490	7578 7579 7581	7694 7696 7699	7837 7839 7842	8006 8009 8012	8201 8205 8208	8423 8427 8431	8669 8674 8678	8942 8947 8951		
54 55 56	7390 7390 7390	7428 7429 7429	7491 7493 7494	7583 7584 7586	7701 7703 7705	7845 7848 7850	8015 8019 8022	8212 8215 8219	8435 8439 8442	8683 8687 8691	8956 8961 8966		
57 58 59	7391 7391 7392	7430 7431 7432	7496 7497 7498	7588 7590 7591	7707 7710 7712	7 ⁸ 53 7 ⁸ 56 7 ⁸ 58	8025 8028 8031	8222 8226 8229	8446 8450 8454	8696 8700 8705	8971 8975 8980		
60	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709	8985		
	1						j						

Table 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m IN ENGLISH FEET.

Lat.	110	120	130	14°	15°	16°	17°	180	19°	20°		P. P.
	7.317	7.317	7.317	7.317	7.318	7.318	7.318	7.318	7.318	7.318		
0'			9611									
,	8985	9285		9960	0333	0730	1149	1591	2054	2539		4
2	899 0 899 5	9290 9296	9617 9622 9628	9972	0340	0737 0744	1156	1599	2070	2547 2556		
3 4	8999 9004	930t	9633	9978 9984	0353	0750 0757	1171	1614 1621	2078 2086	2564 2572	10 20	1.3
5 6	9009 9014	93 12 93 17	9639 9645	9990 9996	0366 037 2	0764 0771	1185	1629 1637	2094 2102	2580 2589	30 40	2.0
7 8	9019	9322	9650	*0002	0379	0778	1199	1644	2110	2597	50 60	3.3 4.0
9	9023 9028	93 27 9333	9656 9661	*0008 *0014	0385 0392	0784 0791	1207	1652 1659	2118 2126	2605 2614		1
10	9033	9338	9667	*0020	0398	0798	1221	1667	2134	2622		5
11 12	9038 9043	9343 9349	9673 9678	*0026 *0032	0404 0411	0805	1228 1236	1675 1682	2142 2150	2630 2639		
13	9048	9354	9684	*0039	0418	0819	1243	1690	2158	2647	10	.8 1.7
14 15	9053 9058	9359 9365	9690 9696	*0045 *0051	0424 0430	0826 0833	1250 1258	1697 1705	2166 2174	2655 2663	30	2.5
16	9062	9370	9701	*0057 *0063	0437	o839 o846	1265	1713	2182 2190	2672 2680	50 60	3.3 4.2
18	9072 9077	9375 9380 9386	9713 9718	*0070 *0076	0443 0450 0456	0853 0860	1272 1279 1287	1728	2198 2206	2688 2697		5.0
20	9082	9391	9724	*0082	0463	0867	1294	1743	2214	2705		8
21 22	9087	9396 9402	9730 9736	*0088 *0094	0470 0476	0874 0881	1301	1751	2222	2713 2722		
23	9092	9402	9741	*0101	0483	o888	1316	1766	2238	2730	10	1.0
24 25	9102 9107	9413 9418	9747 9753	*0107 *0113	0489 0496	0895 0902	1323	1774 1781	2246 2254	2739 2747	30	3.0
26	G112	9423	9759	*0119	0503	0909	1338	1789	2262	2755	40 50	4.0 5.0
27 28	9117	9429 9434	976 5 9770	*0125 *0132	0509 0516	0916	1345 1352	1797	2270 2278	2764 2772		6.0
30	9127	9440	9776	*0138 *0144	0522	6930 b937	1360	1812	2286	2781		
31	9137	9450	9788	*0150	0536	0944	1374	1828	2302	2797		7
32 33	9142	9456 9461	9794 9800	*0156 *0163	0542 0549	0951	1382	1835 1843	2310 2318	2806 2814	10	1.2
34	9152	9467	9806	*0169	0555	0965	1397	1851	2326	2823	20 30	2.3 3.5
35 36	9157	9472 9477	9812 9817	*0175 *0181	0562 0569	0972	1404	1858 1866	2334 2343	2831 2840	40 50	4·7 5.8
37 38	9167-	9483 9488	9823 9829	*0187 *0194	0575 0582	0986 0993	1419	1874 1882	2351	2848 2857	60	7.0
39	9177	9494	9835	*0200	0588	1000	1434	1839	2359 2367	2865		
40	9182	9499	9841	*0206	0595	1007	1441	1897	2375	2874		8
41 42	9187	9505 9510	9847 9853	*0212 *0219	0602	1014	1448	1905	2383 2391	2882 2891		
43	9197	9516	9859	*0225	0615	1028	1463	1920	2400	2899	10	1.3
44 45	9202	9521 9527	9865 9871	*0231 *0238	0622	1035	1471	1928 1936	2408 2416	2908 2916	30 40	4.0 5.3
46	9213	9533	9876 9882	*0244 *0250	0635	1050	1486	1944	2424	2925	50	6.7 8.0
47 48	9218	9538 9544	9888	*0256 *0256 *0263	0642	1057	1494	1952	2432 2441	2933 2942		5.0
49 50	9228	9549	9894	*0269	0655	1071	1509	1967	2449 2457	2950 2959		9
51	9238	9561	9906	*0275	0669	1085	1524	1983	2465	2968		
52 53	9243 9249	9566 9572	9912	*0282 *0288	0676	1092	1531	1991	2473 2482	2976 2985	10	1.5
54	9254	9577	9924	*0295	0689	1106	1546	2007	2490	2993	20 30	3.0 4.5
55 56	9259 9264	95 ⁸ 3 95 ⁸ 9	9930 9936	*0301 *0307	o696 o703	1113	1554	2014	2498 2506	3002	40 50	6.0 7.5
57 58	9269	9594 9600	9942 9948	*0314 *0320	0710	1128	1569 1576	2030	2514 2523	3019	60	9.0
59	9275 9280	9605	9954	*0327	0710	1142	1584	2046	2523 2531	3036		
80	9285	9611	9960	*0333	0730	1149	1591	2054	2539	3045		

Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English FEET.

Lat.	210	220	23°	24°	25°	26°	27°	28°	29°	30°		P. P.
	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318		
0′	3045	3570	4115	4678	5259	5858	6474	7105	7751	8412		
1 2 3	3053 3062 3070	3579 3588 3597	4124 4133 4142	4688 4697 4707	5269 5279 5289	5868 5878 5889	6484 6494 6505	7116 7126 7137	7762 7773 7784	8423 8434 8445		
4 5 6	3079 3088 3096	3606 3614 3623	4152 4161 4170	4716 4726 4735	5299 5309 5319	5899 5909 5919	6515 6526 6536	7148 7158 7169	7795 7806 7817	8457 8468 8479		8
7 8 9	3105 3113 3122	3632 3641 3650	4179 4189 4198	4745 4754 4764	5328 5338 5348	5929 5939 5949	6546 6557 6567	7180 7190 7201	7828 7839 7850	8490 8501 8512	10	1.3
10	3131	3659	4207	4774	5358	5960	6578	7212	786o	8523	20 30	2.6 4.0
11 12 13	3139 3148 3157	3668 3677 3686	4216 4226 4235	47 ⁸ 3 4793 4802	5368 5378 5388	5970 5980 5990	6588 6599 6609	7222 7233 7244	7871 7882 7893	8535 8546 8557	40 50 60	5·3 6·7 8.0
14 15 16	3165 3174 3183	3695 3704 37 ¹ 3	4244 4254 4263	4812 4822 4831	5398 5408 5417	6000 6011 6021	6620 6630 6640	7254 7265 7276	7904 7915 7926	8568 8579 8591		9
17 18 19	3191 3200 3209	37 ²² 3731 3740	4272 4282 4291	4841 4851 4860	5427 5437 5447	6031 6041 6051	6651 6661 6672	7287 7297 7308	7937 7948 7959	8602 8613 8624	10	1.5
20	3217	3749	4300	4870	5457	6062	6682	7319	7970	8635	30	3.0 4.5
21 22 23	3226 3235 3244	375 ⁸ 37 ⁶ 7 377 ⁶	4310 4319 4328	4 ⁸ 79 4 ⁸ 89 4 ⁸ 99	54 ⁶ 7 5477 54 ⁸ 7	6072 6082 6092	6693 6703 6 7 14	73 ²⁹ 734 ⁰ 735 ¹	7981 7992 8003	8647 8658 8669	50 60	6.0 7.5 9.0
24 25 26	3252 3261 3270	3 7 85 3794 3804	4338 4347 4356	4908 4918 4928	5497 5507 5517	6102 6113 6123	6724 6735 6745	73 ⁶ 2 737 ² 73 ⁸ 3	8014 8025 8036	8680 8691 8703		10
27 28 29	3278 3287 3296	3813 3822 3831	4366 4375 43 ⁸ 4	4937 4947 4957	5527 5537 5547	6133 6143 6154	6756 6766 6777	7394 7405 7416	8047 8058 8069	8714 8725 8736	10	1.7
30	3305	3840	4394	4966	5557	6164	6787	7426	8080	8747	30 40	3·3 5.0 6.7
31 32 33	3313 3322 3331	3849 3858 3867	4403 4413 4422	4976 4986 4996	55 ⁶ 7 5577 55 ⁸ 7	6174 6185 6195	6798 6808 6819	7437 7448 7459	8091 8102 8113	8759 8770 8781	50 60	8.3
34 35 36	3349 3357	3876 3885 3894	4431 4441 4450	5005 5015 5025	5597 5607 5617	6205 6215 6226	6829 6840 6851	7469 7480 7491	8124 8135 8146	879 2 8804 881 5		11
37 38 39	3366 3375 3384	3904 3913 3922	4460 4469 4479	5034 5044 5054	5627 5637 5647	6236 6246 6256	6861 6872 6882	7502 7513 7523	8157 8168 8179	8826 8838 8849	10	1.8
40	3393	3931	4488	5064	5657	6267	6893	7534	8190	886o	30 40	5.5 7.3
41 42 43	3401 3410 3419	3949 3958	4498 4507 4516	5073 5083 5093	5667 5677 5687	6277 6287 6298	6903 6914 6924	7545 7556 75 ⁶ 7	8201 8212 8223	8871 8883 8894	50 60	9.2
44 45 46	3428 3437 3446	3967 3977 3986	4526 4535 4545	5103 5112 5122	5 ⁶ 97 57 ⁰ 7 57 ¹ 7	6308 6318 6329	6935 6946 6956	7578 7588 7599	8234 8246 8257	8905 8916 8928		12
47 48 49	3454 3463 3472	3995 4004 4013	4554 4564 4573	5132 5142 5151	5727 5737 5747	6339 6349 6360	696 7 697 7 6988	7610 7621 7632	8268 8279 8280	8939 8950 8962	10 20	. 2.0 4.0
50	3481	4022	4583	5161	5757	6370	6999	7643	8301	8973	30 40	6.o 8.o
51 52 53	3499 3499 3508	403 2 4041 4050	4592 4602 4611	5191 5191	57 ⁶ 7 5777 57 ⁸ 7	6380 6391 6401	7009 7020 7030	7653 7664 7675	8312 8323 8334	8984 8996 9007	50 60	10.0
54 55 56	3516 3525 3534	4059 4068 4078	4621 4630 4640	5200 5210 5220	5798 5808 5818	6411 6422 6432	7041 7052 7062	76 86 7697 7 708	8345 8356 8368	9018 9030 9041		
57 58 59	3543 3552 3561	4086 4096 4105	4649 4659 4668	5230 5240 5250	5828 5838 5848	6442 6453 6463	7073 7084 7094	7719 7729 7740	8379 8390 8401	9052 9064 9075		
60	3570	4115	4678	5259	5858	6474	7105	7751	8412	9086		

LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m IN ENCLISH FEET.

Lat.	310	32°	33°	34°	35°	36°	37°	38°	39°	40°]	P. P.
	7.318	7.318	7.319	7.319	7.319	7.319	7.319	7.319	7.319	7.319		
0	9086	9773	0472	1182	1902	2631	3369	4114	4866	5623		
1 2	9098	9785 9796	0484	1194 1206	1914 1926	2643 2656	3381 3394	4126 4139	4878 4891	5636 5649		
3	9120	9807	0507	1218	1938	2668	3406	4151	4904	5661		11
4 5	9132 9143	9819 9831	0519 0531	1230 1241	1950 1962	2680 2692	3418 3431	4164 4176	4916 4929	5674 5687		
5	9154	9843	0542	1253	1974	2705	3443	4189	4941	5699	10 20	1.8 3.7
8	9166	9854 9866	0554 0566	1265	1986	2717 2729	3455 3468	4201 4214	4954 4966	5712 5725	30 40	5.5 7.3
9	9189	9877	°577	1289	2011	2741	3480	4226	4979	5737	50 60	9.2 11.0
10	9200	9889	0590	1301	2023	2753	3492	4239	4992	5750		
11	9211	9900 9912	0601	1313 1325	2035 2047	2766 2778	35°5 3517	4251 4264	5004 5017	5763 5775		
13	9234 9245	9924 9935	o625 o637	1337	2059	2790 2803	3530 3542	4276 4289	5029 5042	5788 5801		
15 16	9257 9268	9947 9958	o648 o66o	1361 1373	2083 2095	2815 2827	3554 35 ⁶ 7	4301 4314	5055 5067	5813 5826		
17 18	9280 9291	9970 9982	0672 0684	1385	2108	2839 2852	3579 3592	4326 4339	5080 5092	5839 5851		į
19	9302	9993	0696	1409	2132	2864	3604	4351	5105	5864		
20	9314	*0005	0707	1421	2144	2876	3616	4364	5118	5877		
21 22	9325 9337	*0016 *0028	0719	1433 1445	2156 2168	2888 2901	3629 3641	4376 4389	5130 5143	5890 5902		
23	9348	*0040	0743	1457	2180	2913	3654	4401	5156	5915		12
24 25	9360 9371	*0051 *0063	0755	1469 1481	2192 2205	2925 2938	3666 3678	4414 4426	5168 5181	5928 5940		
26 27	9382	*0075 *0086	07 7 8 0790	1493	2217	2950 2962	3691 3703	4439 4451	5193 5206	5953 5966	10 20	2.0 4.0
28 29	9405 9417	*0098	0802 0814	1517	2241 2253	2974 2987	3716 3728	4464 4477	5219 5231	5078	30 40	6.o 8.o
30	9428	*012 t	0826	1541	2265	2999	3741	4489	5244	6004	50 60	10.0
31	9440	*0133	0837	1553	2278	3011	3753	4502	5256	6017		
32 33	9451 9463	*0144 *0156	0849 0861	1565 1577	2290 2302	3024 3036	3765 3778	4514 4527	5269 5282	6029 6042		
34 35	9474 9485	*0168 *0179	o873 o885	1589 1601	2314 2326	3048 3060	3790 3803	4539 4552	5294 5307	6055 6067		
36	9497	*0191	0897	1613	2338	3073	3815	4564	5320	608o		
37 38	9508 9520	*0203 *0214	0908	1625	2351 2363	3085 3097	3828 3840	4577 45 ⁸ 9	5332 5345	6093 6106		
39 40	9531	*0226	0932	1649	2375	3110	3852	4602	5358	6118		
42	9543 9554	*0249	0956	1673	2399	3134	3877	4627	5370	6144		
42 43	9566 9577	*0261 *0273	0968 0980	1685 1697	2411 2424	3147 3159	3890 3902	4640 4652	5395 5408	6156		13
44	9589	*0285	0992	1709	2436	3171	3915	4665	5421	6182		
45 46	9600 9612	*0296 *0308	1003	1721	2448 2460	3184 3196	3927 3939	4677 4690	5433 5 446	6195	10 20	2.2 4.3
47 48	9623 9635	*0320 *0331	1027	1745 1757	2472 2485	3208 3221	3952 3964	4702 4715	5459 5471	6220 6233	30 40	6.5 8.7
49	9646	*0343	1051	1769	2497	3233	3977	4727	5484	6245	50 60	10.8
50	9658	*0355	1063	1781	2509	3245	3989	4740	5497	6258		
51 52 53	9669 9681 9692	*0366 *0378 *0390	1075 1087 1098	1793 1805 1817	2521 2533 2546	3258 3270 3282	4002 4014 4027	4753 4765 4778	5509 5522 5535	6271 6284 6296		
54	9704	*0402	1110	1829	2558	3295	4039	4790	5547	6309		
55 56	9715 9727	*0413 *0425	1122	1841 1854	2570 2582	3307 3319	4052 4064	4803 4815	5560 5573	6322 6335		
57 58	9739 9750	*0437 *0449	1146 1158	1866 1878	2594 2607	3332 3344	4077 4089	4828 4841	5585 5598	6347 6360		
59	9762	*0460	1170	1890	2619	3356	4101	4853	5611	6373		
60	9773	*0472	1182	1902	2631	3369	4114	4866	5623	6385		

Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English FEET.

Lat.	41°	42°	43°	44°	45°	46°	47°	48°	49°	50°	1	P. P.
	7.319	7.319	7.319	7.319	7.319	7.320	7.320	7.320	7.320	7.320		
0'	6385	7152	7921	8692	9464	0236	1007	1776	2543	3306		
I 2	6398 6411	7164	7933	8704 8717	9476 9489	0248	1020	1789 1802	2556 2569	3319 3331		
3	6424	7177 7190	794 ⁶ 7959	8730	9502	0274	1045	1815	2581	3344		
4	6436	7203	7972	8743	9515	0287	1058	1827	2594	3357		
5 6	6449 6462	7216 7228	7985 7998	8756 8769	9528 9541	0300	1071	1840 1853	2607 2619	3369 3382		
7	6475	7241	8010	8782	9554	0326	1097	1866	2632	3395		
8	6487 6500	7254 7267	8023 8036	8794 8807	9566 9579	0338	1110	1879 1892	2645 2658	3407 3420		
10	6513	7280	8049	8820	9592	0364	1135	1904	2670	3433		12
11	6526	7292	8062	8833	9605	0377	1148	1917	2683	3445		
12	6538	7305	8075 8087	8846	9618	0390	1161	1930	2696	3458	10 20	2.0 4.0
13	6551 6564	7318 7331	8100	8859 8872	9631 9644	0403	1174	1943	2709 2721	3471 3483	30	6.o 8.o
15	6577	7344	8113	8884	9657	0429	1199	1968	2734	3496	40 50	10.0
16	6589 6602	7356 7369	8126 8139	8897 8910	9669 9682	0441	1212	1981	2747 2760	3509 3521	60	12.0
18	6615 6628	7382 7395	8152 8165	8923 8936	9695 9708	0454 0467 0480	1225 1238 1251	2007	2772 2785	3534 3547		
20	6640	7408	8177	8949	9721	0493	1264	2032	2798	3559		- 1
2 I 22	66 53 6666	7420	8190	8962	9734	0506	1276	2045	2811	3572		
23	6679	7433 7446	8203 8216	8975 898 7	9747 9760	0519	1289 1302	2058 2071	2823 2836	35 ⁸ 5 3597		
24	6692	7459	8229	9000	9772	0544	1315	2083	2849	3610		
25 26	6704 6717	7472 7485	8242 8254	9013 9026	9785 9798	0557 0570	1328 1341	2096 2109	2861 2874	3623 3635		
27	6730	7497	8267	9039	9811	0583	1353	2122	2887	3648		
28 29	6743 6755	7510 7523	8280 8293	9052 9065	9824 9837	0596	1366 1379	2134	2900 2912	3661 3673		
30	6768	7536	8306	9077	9850	0621	1392	2160	2925	3686		
31 32	6781 6794	7549 7561	8319 8332	9090 9103	9862 9875	0634 0647	1405	2173	2938 2950	3699 3711		13
33	6806	7574	8344	9116	9888	0660	1430	2198	2963	3724		
34	6819 6832	75 ⁸ 7 7600	8357 8370	9129 9142	9901 9914	o673 o686	1443	2211 2224	2976 2989	3736	10 20	2.2 4.3
35 36	6844	7613	8383	9155	9927	0699	1456 1469	2237	3001	3749 3762	30 40	6.5 8.7
37 38	685 8 6870	7626 7638	8396 8409	9168 9180	9940	0711	1482	2249	3014	3774	50	10.8
39	6883	7651	8422	9193	9953 9965	0724 0737	1494	2262 2275	3027 3039	3787 3800	60	13.0
40	6896	7664	8434	9206	9978	0750	1520	2288	3052	3812		
41 42	6909 6921	7677 769 0	8447 8460	9219 9232	9991 *0004	0763	1533	2301	3065	3825 3838		
43	6934	7702	8473	9232 9 2 45	*0004	0776 0788	1546 1559	2313 2326	3078 3090	3850		
44	6947 6960	7715	8486	9258	*0030	0801	1571	2339	3103	3863		
45 46	6973	7728 7741	8499 8512	9270 9283	*0043 *0055	0814 0827	1584	2352 2364	3116 3128	3 ⁸ 75 3 ⁸⁸⁸		
47	6985	7754	8524	9296	*0068	0840	1610	2377	3141	3901		
48 49	7011 6998	7767 7779	8537 8550	9309 9322	*0081 *0094	o853 o866	1623 1635	2390 2403	3154 3166	3913 3926		
50	7024	7792	8563	9335	*0107	0878	1648	2415	3179	3938		
51	7036	7805	8576	9348	*0120	0891	1661	2428	3192	3951		
52 53	7049 7062	7818 7831	8589 8692	9361 9373	*0133 *0146	0904	1674 1687	2441 2454	3205 3217	3964 3976		
54	7075 7088	7844 7856	8614	9386	*0158 *0171	0930	1699	2466	3230	3989 4002		
55 56	7100	7869	8627 8640	9399 9412	*0171 *0184	0943 0955	1712 1725	2479 2492	3243 3255	4002 4014		
57 58	7113	7882	86 53 8666	9425	*0197	0968	1738	2505	3268	4027		
58 59	7126 7139	7895 7908	8679	9438 9451	*0210 *0223	0981 0994	1751	2517 2530	3281 3293	4039 4052		
60	7152	7921	8692	9464	*0236	1007	1776	2543	3306	4065		

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m IN ENGLISH FEET.

Lat.	510	52°	53°	54°	55°	56°	57°	58°	59°	60°]	P. P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.321		
0′	4065	4817	5564	6303	7034	7756	8467	9168	9857	0534		
1 2 3	4077 4090 4102	4829 4842 4854	5576 5589 5601	6315 6327 6340	7046 7058 7070	7768 7780 7792	8479 8491 8502	9180 9191 9203	9868 9880 9891	0545 0556 0567		
4 5 6	4115 4127	4867 4879	5613 5625	6352 6364	7082 7094	7804 7815	8514 8526	9214 9226	9903 9914	0578 0589		13
7 8	4140 4152 4165	4892 4904 4917	5638 5650 5662	6376 6388 6401	7107 7119 7131	7827 7839 7851	8538 8550 8561	9238 9249 9261	9925 9937 9948	0601 0612 0623	10 20 30	2.2 4.3 6.5
9 10	4177	4929	5675	6413	7143	7863 7875	8573 8585	9272	9960	0634	40 50 60	8.7 10.8 13.0
11 12	4203 4215	4954 4967	5699 5712	6437 6449	7167 7179	7887 7899	8597 8608	9295 93 ⁹ 7	9982	o656 o667		
13	4228 4240	4979 4992	5724 5737	6462	7191 7203	7911 7923	8620 8632	9318	*0005 *0016	o678 o689		
15 16 17	4253 4266 4278	5004 5017 5029	5749 5761 5774	6486 6498 6510	7215 7227 7239	7934 7946 7958	8643 8655 8667	9341 9353 9364	*0027 *0039 *0050	0701 0712 0723		
18	4291 4303	5042 5054	5786 5799	6523 6535	7251 7263	7970 7982	8679 8690	9376 9387	*0061 *0073	9734 9745		
20	4316	5067	5811	6547	7275	7994	8702	9399	*0084	0756		
2 I 22 23	4328 4341 4353	5079 5092 5104	5823 5836 5848	6559 6571 6584	7287 7299 7311	8006 8018 8030	8714 8725 8737	9410 9422 9433	*0095 *0107 *0118	0767 0778 0789		
24 25 26	4366 4378 4391	5117 5129 5141	5860 5872 5885	6596 6608 6620	7323 7335 7348	8042 8053 8065	8749 8760 8772	9445 9456 9468	*0129 *0140 *0152	0800 0812 0823		12
27 28 29	4403 4416 4428	5154 5166 5179	5897 5909 5922	6632 6645 6657	7360 7372 7384	8077 8089 8101	8784 8796 8807	9479 9491 9502	*0163 *0174 *0186	0834 0845 0856	10 20 30	2.0 4.0 6.0
30	4441	5191	5934	6669	7396	8113	8819	9514	*0197	0867	40 50 60	8.0 10.0 12.0
31 32 33	4454 4466 4479	5203 5216 5228	5946 5959 5971	6681 6693 6706	7408 7420 7432	8125 8137 8148	8831 8842 8854	9525 9537 9548	*0208 *0219 *0231	0878 0889 0900		<u> </u>
34 35 36	4491 4504 4517	5241 5253 5266	5983 5995 6008	6718 6730 6742	7444 7456 7468	8160 8172 8184	8866 8877 8889	9560 9571 9583	*0242 *0253 *0264	0911 0922 0933		
37 38	4529 4542	5278 5291	6020 6032 6045	6754 6767	7480 7492	8196 8207 8219	8901 8913 8924	9594 9606 9617	*0275 *0287 *0298	0944 0955 0966		
39 40	4554	5303	6057	6779	75°4 7516	8231	8936	9629	*0309	0977		
4I 42,	4579 4592	5328 5341	6069 6082	6803 6815	7528 7540	8243	8948 8959	9640 9652	*0320 *0332	0988 0999		
43 44	4604 4617	5353 5366	6094 6106 6118	6828 6840 6852	7552 7564	8255 8266 8278	8971 8982	9663 9675 9686	*0343 *0354 *0365	1010 1021 1032		11
45 46 47	4629 4642 4654	5378 5390 5403	6131	6864	7576 7588 7600	8290 8302 8314	9006 9017	9697	*0377 *0388	1043	10 20	1.8 3.7
47 48 49	4667 4679	5415 5428	6155	6889 6901	7612 7624	8325 8337	9029 9040	9720 9732	*0399 *0411	1065	30 40 50	5.5 7.3 9.2
50	4692	5440	6180	6913	7636	8349	9052	9743	*0422	1087	60	11.0
51 52 53	4704 4717 4729	5452 5465 5477	6192 6205 6217	6925 6937 6949	7648 7660 7672	8361 8373 8384	9064 9075 9087	9754 9766 9777	*0433 *0444 *0456	1098 1109 1120		
54 55 56	474 ² 4754 47 ⁶ 7	5490 5502 5514	6229 6241 6254	6961 6973 6986	7684 7696 7708	8396 8408 8420	9098 9110 9122	9789 9800 9811	*0467 *0478 *0489	1131 1142 1153		
57 58 59	4779 4792 4804	5527 5539 5552	6266 6278 6291	6998 7010 7022	7720 7732 7744	8432 8443 8455	9133 9145 9156	9823 9834 9846	*0500 *0512 *0523	1164 1175 1186		
60	4817	5564	6303	7034	7756	8467	9168	9857	*0534	1197		

TABLE 10.

LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m IN ENCLISH FEET.

0'	7.321	7.321		1	65°	66°	67°	68°	69°	70°	1 1	P. P.
1			7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
1 1		1845	2479	3097	3698	4282	4848	5396	5924	6432		
	1208	1856 1866	2489 2500	3107 3117	3708 3718	4292 4301	4857 4867	5405 5414	5933 5941	6440 6448		
3	1230	1877	2510	3127	3728	4311	4876	5423	5950	6457		
4 5 6	1241 1251 1262	1888 1898 1909	2521 2531 2541	3137 3147 3158	373 ⁸ 3747 3757	4320 4330 4340	4885 4894 4904	5432 5440 5449	5958 5967 5976	6465 6473 6481		11
7 8 9	1273 1284 1295	1920 1931 1941	2552 2562 2573	3168 3178 3188	3767 3777 3787	4349 4359 4368	4913 4922 4932	5458 5467 5476	5984 5993 6001	6489 6498 6506	10	1.8 3.7
10	1306	1952	2583	3198	3797	4378	4941	5485	6010	6514	30 40 50	5.5 7.3 9.2
11 12 13	1317 1328 1338	1963 1973 1984	2593 2604 2614	3208 3218 3228	3807 3817 3826	43 ⁸ 7 4397 4406	4950 4959 4969	5494 5503 5512	6018 6027 6035	6522 6530 6539	60	11.0
14 15 16	1349 1360 1371	1994 2005 2016	2625 2635 2645	3238 3248 3259	3836 3846 3856	4416 4425 4435	4978 4987 4996	5521 5529 5538	6044 6052 6061	6547 6555 6563		
17 18 19	1382 1392 1403	2026 2037 2047	2656 2666 2677	3269 3279 3289	3866 3875 3885	4444 4454 4463	5005 5015 5024	5547 5556 5565	6069 6078 6086	6571 6580 6588		10
20	1414	2058	2687	3299	3895	4473	5033	5574	6095	6596		
21	1425	2069	2697	3309	3905	4482	5042	5583	6103	6604	10	1.7 3·3
22 23	1436 1447	2079 2090	2708 2718 2728	33 19 3329	3915 3924	4492 4501	5051 5060	5592 5600	6112 6120 6129	6612 6621 6629	30 40 50	5.0 6.7 8.3
24 25 26	1458 1468 1479	2111 2122	2738 2749	3339 3349 3360	3934 3944 3954	4511 4520 4530	5069 5078 5088	5609 5618 5627	6137 6146	6637 6645	60	10.0
27 28 29	1490 1501 1512	2132 2143 2153	2759 2769 2780	3370 3380 3390	3964 3973 3983	4539 4549 4558	5097 5106 5115	5636 5644 5653	6154 6163 6171	6653 6662 6670		
30	1523	2164	2790	3400	3993	4568	5124	5662	6180	6678		
31 32 33	1534 1545 1555	2175 2185 2196	2800 2811 2821	3410 3420 3430	4003 4012 4022	4577 45 ⁸ 7 459 ⁶	5133 5142 5151	5671 5680 5688	6188 6197 6205	6686 6694 6702		9
34 35 36	1566 1577 1588	2206 2217 2228	2831 2841 2852	3440 3450 3460	4032 4041 4051	4606 4615 4624	5160 5169 5179	5697 5706 5715	6214 6222 6230	6710 6718 6727	10 20 30	1.5 3.0
37 38 39	1599 1609 1620	2238 2249 2259	2862 2872 2883	3470 3480 3490	4061 4071 4080	4634 4643 4653	5188 5197 5206	5724 5732 5741	6239 6247 6256	6735 6743 6751	40 50 60	4·5 6.0 7·5 9.0
40	1631	2270	2893	3500	4090	4662	5215	5750	6264	6759		
41	1642	2280	2903	3510	4100	4671	5224	5759	6272	6767		
42 43	1652 1663 1674	2291 2301 2312	2913 2924 2934	3520 3530	4109 4119 4128	4681 4690 4699	5233 5242 5251	57 ⁶ 7 57 <mark>7</mark> 6 57 ⁸ 5	6281 6289 6298	6775 678 3 6791		
44 45 46	1684 1695	2312 2322 2333	2944 2954	3549 3559	4138 4148	4708 4718	5250 5270	5793 5802	6306 6314	6799 6807		8
47 48 49	1706 1717 1727	2343 2354 2364	2964 2975 2985	3569 3579 3589	4157 4167 4176	4727 4736 4746	5279 5288 5297	5811 5820 5828	6323 6331 6340	6815 6823 6831	10 20	1.3 2.6
50	1738	2375	2995	3599	4186	4755	5306	5837	6348	6839	30 40 50	4.0 5.3 6.7
51 52 53	1749 1759 1770	2385 2396 2406	3005 3015 3026	3609 3619 3629	4196 4205 4215	4764 4774 4783	5315 5324 5333	5846 5854 5863	6356 6365 6373	6847 6855 6863	60	8.0
54 55 56	1781 1791 1802	2417 2427 2437	3036 3046 3056	3639 3648 3658	4224 4234	4792 4801 4811	5342 5351 5360	5872 5880 5889	6382 6390 6398	6871 6879 6887		
57 58	1813 1824	2448 2458	3066 3077	3668 3678	4244 4253 4263	4820 4829	5369 5378	5898 5997	6407 6415	6895 690 3		
60 -	1834	2469 2479	3 ⁰⁸ 7 3 ⁰ 97	3688 3698	4272	4839 4848	53 ⁸ 7 539 ⁶	5915	6424	6919		

Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English FEET.

_												
Lat.	71°	72°	73°	74°	75°	76°	77°	78°	79°	8o°	F	P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.322	7.322		
0′	6919	7385	7829	8251	8650	9025	9377	9704	0007	0284		
I 2	6927	7392	7836 7843	8258 8265	8656 8663	9031	9383 9388	9709	0012 0017	0288		
3	6935 6943	7400 7407	7851	8271	8669	9037 9043	9394	9714 9720	0021	0293 0297		
4	6951 6958	7415	7858 7865	8278 8285	8676 8682	9049	9399	9725	0026	0302 0306		
5	6966	7422 7430	7872	8292	8688	9055	9405	9730 9735	0036	0310	10 20	1.3 2.6
7 8	6974 6982	7437 7445	7879 7887	8299 8305	8695 8701	9067	9416	9740 9746	0041 0045	0315	30 40	4.0 5.3
9	6990	7452	7894	8312	8708	9079	9427	9751	0050	0324	50 60	6.7 8.0
10	6998	7460	7901	8319	8714	9085	9433	9756	0055	0328		
11	7006	7467	7908	8326	8720	9091	9438	9761	0060	0332		
13	7014 7021	7475 7482	7915	8332 8339	8727 8733	9097	9444 9449	9766	0064	0337 0341		
14	7029	7490	7929	8346	8739	9109	9455	9776	0074	0345		7
15	7037 7045	7497 7505	7936 7944	8353 8359	8745 8752	9115	9460 9466	9781	0078	0349 0354		
17	7053	7512	7951	8366	8758	9127	9471	9792	0088	0358	10 20	1.2 2.3
18	7060 7068	7520 7527	7958 7965	8373 8379	8764 877 I	9133 9139	9477 9482	9797 9802	0093	0362 0367	30 40	3·5 4·7 5.8
20	7076	7535	7972	8386	8777	9145	9488	9807	0102	0371	50 60	7.0
2I 22	7084	7542	7979 7986	8393	8783	9151	9493	9812 9817	0107	0375		
23	7092	7550 7557	7993	8399 8406	8790 8 7 96	9157 9163	9499 9504	9822	0110	0379 0384		
24	7107	7565	8000	8413	8802	9169	9510	9827	0120	0388		6
25 26	7115	7572 7580	8007 8014	8419 8426	8808 8815	9174 9180	9515 9521	9832 9838	0125	0392		-
27 28	7131 7138	75 ⁸ 7 7595	8021 8028	8433 8440	8821 8827	9186	9526 9532	9843 9848	0134	0400	10	1.0
29	7146	7602	8035	8446	8834	9198	9537	9853	0143	0409	30 30	3.0
30	7154	7610	8042	8453	8840	9204	9543	9858	0148	0413	40 50 60	4.0 5.0 6.0
31 32 33	7162 7170 7177	7617 7625 7632	8049 8056 8063	8460 8466 8473	8846 8852 8859	9210 9216 9221	9548 9554 9559	9863 9868 9873	0153 0157 0162	0417 0421 0426		0.0
34	7185	7639	8070	8470	8865	9227	9565	9878	0166	0430		
35 36	7193 7201	7646 76 5 4	8077 8084	8486 8493	8871 8877	9233 9239	9570 9575	9883 9888	0171	0434 0438		5
37 38	7209 7216	7661 7668	8091 8098	8499 8506	8883 8890	9245 9250	9581 9586	9893 9898	0180	0442		
39	7224	7676	8105	8512	8896	9256	9592	9903	0189	0451	10	.8
40	7232	7683	8112	8519	8902	9262	9597	9908	0194	0455	30 40	2.5 3.3
41 42	7240 7247	7690 7798	8119 8126	8526 8532	8908 8914	9268 9274	9602 9608	9913	0199	0459 0463	50 60	4.2 5.0
43	7255	7705	8133	8539	8921	9279	9613	9923	0208	0467		
44 45	7263 7270	7712 7719	8140 8147	8545 8552	8927 8933	9285 9291	9619 9624	9928 9933	0212	0471		
46	7278	7727	8154	8559	8939	9297	9629	9938	0222	0480		
47 48	7286 7294	7734 7741	8161 8168	8565 8572	8945 8952	9303 9308	9635 9640	9943 9948	0226	0484 0488		4
49	7301	7749	8175	8578	8958	9314	9646	9953	0235	0492		
50	7309	7756	8182	8585	8964	9320	9651	9958	0240	0496	20	.7 1.3
51	7317	7763	8189	8591	8970	9326	9656 9662	9963	0244	0500	30 40	2.0
52 53	7324 7332	7771	8196 8203	8598 8604	8976 8982	9331 9337	9667	9968	0249	0504	50 60	3.3 4.0
54 55	7339 7347	7785 7792	8210	8611 8617	8988 8994	9343 9348	9672	9978	0258	0512		
56	7355	7800	8223	8624	9001	9354	9683	9987	0266	0520		
57 58	7362 7370	7807 7814	8230 8237	8630 8637	9007	9360 9366	9688 9693	9992 9997	0271	0524		•
59	7377	7822	8244	8643	9019	9371	9699	*0002	0280	0532		
60	7385	7829	8251	8650	9025	9377	9704	*0007	0284	0536		
	1	1	1	i	1	1	1	1				

Table 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English FEET.

Lat.	81°	82°	83°	84°	85°	86°	87°	88°	89°	P.	P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
0'	0536	0763	0963	1138	1285	1407	1501	1569	1609		
ı	0540	0766	0966	1141	1287	1409	1502	1570	1609	4	ŀ
3	°544 °548	0770 0773	0969 0972	1143	1289	1410	1504 1505	1571	1610 1610		
4	0552	0777	0975	1148	1294	1414	1506	1572	1611	10	.7
5	0556 0560	0780 0784	0978	1151	1296	1415	1507	1573	1611 1611	20 30	1.3 2.0
	0564	0787	0985	1156	1300	1419	1509	1574	1612	40 50	2.7 3·3
8	0568	0791	0988	1159	1303	1421	1511	1575	1612 1613	60	4.0
9	0572	0794	0991	1161	1305	1422	1513	1576			
10	0576	0798	0994	1164	1307	1424	1514	1577	1613		
11 12	0580	0801 0805	1000	1167	1309	1426	1515	1578 1579	1613 1614		
13	0588	o8o8	1003	1172	1314	1429	1518	1579	1614		
14	0592 0595	0812 0815	1006	1174	1316	1431 1432	1519 1520	1580 1581	1615 1615		
16	0599	0819	1012	1180	1320	1434	1522	1582	1615		
17 18	0603	0822 0826	1015	1182	1322 1325	1436 1438	1523 1524	1583 1583	1616 1616		
19	0611	0829	1021	1187	1327	1439	1526	1584	1617		
20	0615	0833	1024	1190	1329	1441	1527	1585	1617	10	.5
21	0619	0836	1027	1192	1331	1443	1528	1586	1617	20	1.0
22 23	0623	0840 0843	1030	1195	1333 1335	1444 1446	1529 1530	1586 1587	1617 1618	30 40	2.0
24	0630	0846	1036	1200	1337	1447	1531	1 588	1618	50 60	2.5 3.0
25 26	0634 0638	0849 0853	1039	1202 1205	1339	1449	1532	1588	1618 1618		J
	0642	0856	1042	1205	1341	1451	1534	1589 1590	1618		
27 28	0645 0649	0859 0863	1048	1210 1212	1345	1454	1536	1591	1619		
29 30			1051		1347	1455	1537	1591	1619		
	0653	0866	1054	1215	1349	1457	1538	1592	1619		
31 32	0657 0660	o869 o873	1057	1217	1351	1459 1460	1539 1540	1593 1593	1619		
33	0664	0876	1062	1222	1355	1462	1541	1594	1620	2	
34 35	o668 o671	0879 0882	106 5 1068	1225	1357 1359	1463 1465	1542 1543	1595 1595	1620 1620		
36	0675	o886	1071	1229	1361	1467	1545	1596	1620	10 20	-3 -7
37 38	0679 0683	0889 0892	1074	1232 1234	1363 1365	1468 1470	1546	1597 1598	1620 1621	30	1.0
39	0686	0896	1079	1237	1367	1471	1547 1548	1598	1621	40 50	1.3
40	0690	0899	1082	1239	1369	1473	1549	1599	1621	60	2.0
41	0694	0902	1085	1241	1371	1474	1550	1599	1621		
42 43	0697 0701	0906	1088	1244 1246	1373	1476 1477	1551	1600 1600	1621 1621		
44	0705	0912	1093	1249	1377	1479	1553	1601	1621		
45 46	0708	0915	1096	1251	1378 1380	1480 1481	1554 1555	1601 1602	1621 1622		
47 48	0716	0922	1102	1256	1382	1483	1556	1602	1622		
48 49	0720 0723	0925	1104	1258 1261	1384 1386	1484 1486	1557 1558	1603 1603	1622 1622	3	
50	0727			1263	1388	1487		1604	1622		
		0932			i		1559			10	.2
51 52	0731	0935	1113	1265 1267	1390 1392	1488	1560 1561	1604 1605	1622 1622	20 30	•3
53	0738	0941	1118	1270	1394	1491	1562	1605	1622	40 50	.8
54 55	0741	0944 0947	1121	1272 1274	1396 1397	1493	1563 1564	1606 1606	1622 1622	60	1,0
56	0749	0951	1127	1276	1399	1495	1565	1607	1623		
57 58	0752 0756	0954 0957	1130	1278 1281	1401	149 7 1498	1566 1567	1607 1608	1623 1623		
59	0759	0960	1135	1283	1405	1500	1568	1608	1623		
60	0763	0963	1138	1285	1407	1501	1569	1600	1623		

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENGLISH FEET.

Lat.	o°	Io	20	3°	4°	5°	6°	7°	8°	9°	100	P. P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	
O	6875	688o	6893	6916	6947	6987	7036	7094	7160	7235	7319	
1 2 3	6875 6875 6875	688o 688o 688o	6893 6894 6894	6916 6917 6917	6948 6949 6949	6988 6989 6989	7037 7038 7039	7095 7096 7097	7161 7162 7164	7236 7238 7239	7320 7322 7323	
4 5 6	6875 6875 6875	688a 1886 1886	6894 6894 6895	6918 6918	6950 6951	6990 6991 6992	7040 7041 7041	7098 7099 7100	7165 7166 7167	7240 7241 7243	7325 7326 7327	
7 8 9	6875 6875 6875	6881 6881	689 5 689 5 6896	6919 6919 6920	6951 6952 6953	6993 6993 6994	7042 7043 7044	7101 7102 7103	7168 7170 7171	7244 7245 7247	7329 7330 7332	
10	6875	6881	6896	6920	6953	6995	7045	7104	7172	7248	7333	
11 12 13	6875 6875 6875	6881 6881 6882	6896 6897 6897	6920 6921 6921	6954 6955 6955	6996 6996 6997	7046 7047 7048	7105 7106 7107	7173 7174 7176	7249 7251 7252	7334 7336 7338	1
14 15 16	6875 6876 6876	6882 6882 6882	6898 6898 6898	6922 6922 6923	6956 6956 6957	6998 6999 6999	7049 7050 7050	7108 7109 7111	7177 7178 7179	7254 7255 7256	7339 7341 7342	10 .2 20 .3 30 .5 40 .7
17 18 19	6876 6876 6876	6882 6883 6883	6899 6899 6900	6923 6924 6924	6957 6958 6959	7000 7001 7001	7051 7052 7053	7112 7113 7114	7180 7182 7183	7258 7259 7261	7343 7345 7346	40 .7 50 .8 60 1.0
20	6876	6883	6900	6925	6959	7002	7054	7115	7184	7262	7348	
21 22 23	6876 6876 6876	6883 6883 6884	6900 6901	6925 6926 6926	6960 6961	7003 7004 7004	7°55 7°56 7°57	7116 7117 7118	7185 7186 7188	7263 7265 7266	7350 7351 7353	
24 25 26	6876 6876 6876	6884 6884 6884	6901 6902 6902	6927 6927 6928	6962 6962 6963	7005 7006 7007	7058 7059 7060	7119 7120 7122	7189 7190 7191	7268 7269 7270	7354 7356 7358	
27 28 29	6876 6876 6876	6884 6885 6885	6902 6902 6903	6928 6929 6929	6964 6965 6965	7008 7008 7009	7061 7062 7063	7123 7124 7125	7192 7194 7195	7272 7273 7275	7359 7361 7362	
30	6876	6885	6903	6930	6966	7010	7064	7126	7196	7276	7364	
31 32 33	6877 6877 6877	6885 6886 6886	6903 6904 6904	6930 6931 6931	6967 6967 6 968	7011 7012 7013	7065 7066 7067	7127 7128 7129	7197 7199 7200	7277 7279 7280	7366 7367 7368	
34 35 36	6877 6877 6877	6886 6887 6887	6905 6905 6905	6932 6932 6933	6969 6969 6970	7014 7015 7015	7068 7069 7070	7130 7131 7133	7201 7202 7204	7282 7283 7284	7370 7371 7373	
37 38 39	6877 6877 6877	6887 6887 6888	6906 6906 6907	6933 6934 6935	6971 6972 6972	7016 7017 7018	7070 7071 7072	7134 7135 7136	7205 7206 7208	7286 7287 7289	7374 7376 7377	2
40	6877	6888	6907	6935	6973	7019	7073	7137	7209	7290	7379	
41 42 43	6877 6877 6877	6888 6888 6889	690 7 6908 6909	6936 6936 6937	6974 6974 6975	7020 7021 7021	7074 7075 7076	7138 7139 7140	7210 7212 7213	7291 7293 7294	7381 7382 7384	10 .3 20 .7 30 1.0 40 1.3
44 45 46	6877 6878 6878	6889 6889 6889	6909 6910	6937 6938 6938	6976 6976 6977	7022 7023 7024	7077 7078 7079	7141 7142 7144	7214 7216 7217	7296 7297 7298	7385 7387 7389	50 1.7 60 2.0
47 48 49	6878 6878 6878	6889 6890 6890	6911 6911	6939 6939 6940	6978 6979 69 7 9	7025 7025 7026	7080 7081 7082	7145 7146 7147	7218 7219 7221	7300 7301 7303	7390 7392 7393	
50	6878	689o	6911	6941	6980	7027	7083	7148	7222	7304	7395	
51 52 53	6878 6878 6879	6890 6891 6891	6912 6912 6913	6942 6942 6943	6981 6981 6982	7028 7029 7030	7084 7085 7086	7149 7150 7152	7223 7225 7226	73°5 73°7 73°8	7397 7398 7400	
54 55 56	6879 6879 6879	6891 6892 6892	6913 6914 6914	6943 6944 6944	6983 6983 6984	7031 7032 7032	7087 7088 7090	7153 7154 7155	7227 7228 7230	7310 7311 7313	7401 7403 7405	
57 58 59	6879 6880 6880	6892 6892 6893	6915 6916	6945 6945 6946	6985 6986 6986	7º33 7º34 7º35	7091 7092 7093	7156 7158 7159	7231 7232 7234	7314 7316 7317	7406 7408 7409	
60	688o	6893	6916	6947	6987	7036	7094	7160	7235	7319	7411	

TABLE 11.

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENGLISH FEET.

	0	120	7.00	140	15°	16°	17°	180	19°	20°		P. P.
Lat.	110	12	13°					10	<u> </u>	20		
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320		
0′	7411	7511	7619	7736	7860	7992	8132	8279	8434	8595		
1 2	7413 7414	7513 7514	7621 7623	7738 7740	7862 7864	7994 7997	8134 8137	8282 8284	8437 8439	8598 8601		
3	7416	7516	7625	7742	7867	7999	8139	8287	8442	8603		
5 6	7417 7419	7518 7519	7627 7628	7744 7746	7869 7871	8001 8003 8006	8142 8144 8146	8289 8292 8295	8444 8447 8450	8606 8609 8612		1
	7421 7422	7521 7523	7630 7632	7748 7750	7 ⁸ 73 7 ⁸ 75	8008	8149	8297	8452	8615		
7 8 9	74 ² 4 74 ² 5	7525 7526	7634 7636	7752 7754	7878 7 880	8013	8151 8154	8300 8302	8455 8457	8617 8620	10 20	.2 .3
10	7427	7528	7638	7756	7882	8015	8156	8305	8460	8623	30 40	·5 ·7 .8
11	7429 7430	7530 7532	764 0 7642	7758 7760	7884 7886	8017 8020	8158 8161	8307 8310	8463 8465	8626 8629	50 60	1.0
13	7432	7533	7644	7762	7888	8022	8163	8312	8468	8631		
14 15 16	7433 7435 7437	7535 7537 7539	7646 7647 7649	7764 7766 7768	7890 7892 7895	8024 8026 8029	8166 8168 8170	8315 8317 8 32 0	8471 8473 8476	8634 8637 8640		
17 18 19	7438 7440 7441	7541 7542 7544	7651 7653 7655	7770 7772 7774	7897 7899 7901	8031 8033 8036	8173 8175 8178	8322 8325 8327	8479 8482 8484	8643 8645 8648		
20	7443	7546	7657	7776	7903	8038	8180	8330	8487	8651		
21	7445	7548	7659	7778	7905	8040	8182	8333	8490	8654		
22 23	7446 7448	7550 7 55 1	7661 7663	7780 7782	7907 7910	8043 8045	8185 8187	8335 8338	8492 8495	8657 8659		
24 25 26	7450 7451 7453	7553 7555 7557	7665 7666 7668	7784 7786 7789	7912 7914 7916	8047 8049 8052	8190 8192 8195	8340 8343 8346	8498 8500 8503	8662 8665 8668		2
27	7455	7559	7670	7791	7918	8054	8197	8348	8506	8671		
28 29	7457 7458	7560 7562	7672 7674	7793 7795	7921 7923	8056 8059	8200 8202	8351 8353	8509 8511	8673 8676	10 20	·3 ·7
30	7460	7564	7676	7797	7925	8061	8205	8356	8514	8679	30 40 50	1.0 1.3 1.7
31 32 33	7462 7463 7465	7566 7568 7569	7678 7680 7682	7799 7801 7803	7927 7929 7932	8063 8066 8068	8207 8210 8212	8358 8361 8363	8517 8519 8522	8682 8685 8687	60	2.0
34 35 36	7466 7468 7470	7571 7573 7575	7684 7686 7688	7805 7807 7810	7934 7936 7938	8071 8073 8075	8215 8217 8219	8366 8368 8371	8525 8527 8530	8690 8693 8696		
37 38	7471 7473	7577 7578	7690 7692	7812 7814	794 0 7943	8078 8080	8222 8224	8373 8376	8533 8536	8699 8701		
39 40	7474	7580	7694	7816	7945	8083 8085	8227	8378	8538	8704		
41	747 ⁶	75 ⁸ 2	7696 7698	7820	7947 7949	8087	8229	8384	8541 8544	8707		
42	7479 7481	7586 7588	7700 7702	7822 7824	7952 7954	8090 8092	8234 8236	8386 8389	8546 8549	8713 8715		
44	7483	7590	7704	7826	7956	8094	8239	8391	8552	8718		
45 46	7484 7486	7591 7593	7708	7828 7831	7958 7961	8096 8099	8241 8244	8394 8397	8554 8557	8721 8724		3
47 48	7488 7490	7595 7597	7710 7712	7833 7835	7963 7965	8101 8103	8246 8249	8399 8402	8560 8563	8727 8729	10	-5
49	7491	7599	7714	7837	7968	8106	8251	8404	8565	8732	20 30	1.0
50	7493	7601	7716	7839	7970	8108	8254	8407	8568	8735	40 50	2.0
51 52 53	749 5 7497 7498	7603 7605 7606	7718 7720 7722	7841 7843 7845	7972 7974 7977	8113 8113	8256 8259 8261	8410 8412 8415	8571 8573 8576	873 8 8741 8743	60	3.0
54	7500	7608 7610	7724	7847	7979	8118	8264	8418	8579	8746		
55 56	7502 7504	7612	7726 7728	7849 7852	7981 79 83	8120 8122	8266 8269	8420 8423	8581 8584	8749 8752		
57 58 59	7506 7507 7509	7614 7615 7617	7730 7732 7734	7854 7856 7858	7985 7988 7990	8125 8127 8130	8271 8274 8276	8426 8429 8431	8587 8590 8592	8755 8757 8760		
60	7511	7619	7736	7860	7992	8132	8279	8434	8595	8763		
L	<u> </u>	1	1	<u> </u>	<u> </u>					<u> </u>		

LÖGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n in English feet.

Lat.	210	22°	23°	24°	25°	26°	27°	28°	29°	30°	F	P. P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.321	7.321	7.321		
0/	8763	8939	9120	9308	9502	9701	9907	0117	0332	0553		
1 2	8766 8769	8942 8945	9123 9126	9311 9314	9505 9508	9705 9708	9910 9913	0121 0124	0336 0340	0556 0560		
3	8772	8948	9129	9318	9512	9712	9917	0128	0343	0564		
4 5 6	8775 8778 8780	8951 8953 8956	9132 9136 9139	9321 9324 9327	9515 9518 9521	9715 9718 9722	9920 9924 9927	0131	0347 0351 0354	0567 0571 0575		
7 8 9	8784 8786 8789	8959 8962 8 9 65	9142 9145 9148	9330 9333 9337	9525 9528 9531	9725 9728 9732	9931 9934 9938	0142 0145 0149	0358 0361 0365	0579 0582 0586		2
10	8792	8968	9151	9340	9535	9735	9941	0153	0369	0590	10	-3
11	8795	8971	9154	9343	9538	9739	9945	0156	0372	0594	20 30	•7 1.0
13	8798 88 00	8974 8977	9157 9160	9346 9349	9541 9545	9742 9745	9948 9952	0159	0376	0597 0601	40 50	1.3
14 15 16	8804 8807 8810	8980 8983 8986	9163 9167 9170	9353 9356 9359	9548 9551 9554	9749 9752 9756	9955 9959 9962	0167 0170 0174	0383 0387 0391	0605 0608 0612	60	2.0
17 18	8812 8815 8818	8989 8992 8995	9173 9176 9179	9362 9365 9368	9558 9561 9564	9759 9762 9766	9966 9969 9973	0177 0181 0185	0394 0398 0402	0616 0620 0623		
20	8821	8998	9182	9372	9568	9769	9976	0188	0405	0627		
21	8824	9001	9185	9375	9571	9773	9980	0192	0409	0631		
22 23	8827 8830	9004	9191	9378 9381	9574 957 ⁸	9776 9779 9783	9983 9987	0195	0413	0635 0638 0642		
24 25 26	8833 8836 8839	9010 9013 9016	9195 9198 9201	9384 9388 9391	9581 9584 9588	9786 9790	9990 9994 9997	0203 0206 0210	0420 0424 0427	0646 0649		3
27 28 29	8841 8844 8847	9020 9023 9026	9204 9207 9210	9394 9398 9401	9591 9594 9598	9793 9796 9800	*0001 *0004 *0008	0213 0217 0220	0431 0435 0438	0653 0657 0661	10 20	·5 1.0
30	8850	9029	9213	9404	9601	9803	*0011	0224	0442	0664	30 40	2.0
31 32 33	8853 8856 8859	9032 9035 9038	9216 9220 9223	9407 9411 9414	9604 9608 9611	9807 9810 9814	*0015 *0018 *0022	0228 0231 0235	0446 0449 0453	0668 0672 0676	60	3.0
34 35 36	8862 8865 8868	9041 9044 9047	9226 9229 9232	9417 9420 9424	9614 9618 9621	9817 9820 9824	*0025 *0029 *0032	0238 0242 0246	0457 0460 0464	0679 0683 0687		
37 38	8871 8874	9050 9053	9235 9238	9427 9430	9624 9628	9827 9831	*0036 *0039	0249 0253	0468	0691 0694		
39	8877	9056	9242	9433	9631	9834	*0043	0256	0475	0698	·	
40	8879	9059	9245	9437	9634	9838	*0046	0260	0479	0702		
41 42 43	8882 8885 8888	9062 9065 9068	9248 9251 9254	9440 9443 9446	9638 9641 9644	9841 9844 9848	*0050 *0053 *0057	0264 0267 0271	0482 0486 0490	0706 0710 0713		4
44 45 46	8891 8894 8897	9071 9074 9077	9257 9260 9264	945 0 9453 9456	9648 9651 9654	9851 9855 9858	*0060 *0064 *0067	0274 0278 0282	0493 0497 0501	0717 0721 0725	10 20	.7 1.3
47 48 49	8900 8903 8906	9080 9083 9086	9267 9270 9273	9459 9463 9466	9658 9661 9664	9862 9865 9869	*0071 *0074 *0078	0285 0289 0293	0505 0508 0512	0728 0732 0736	30 40 50	2.0 2.7 3.3
50	8909	9089	9276	9469	9668	9872	*0082	0296	0516	0740	60	4.0
51 52 53	8912 8915 8918	9093 9096 9099	9279 9283 9286	9472 9476 9479	9671 9674 9678	9 ⁸ 75 9 ⁸ 79 9 ⁸ 82	*0085 *0089 *0092	0300 0303 0307	0519 0523 0527	0743 0747 0751		
54 55 56	8921 8924	9102 9105	9289 9292	9482 9485	9681 9685	9886 9889	*0096 *0099	0311	0530 0534	0755 0759		
	8927 8930	9108	9295 9298	9489 9492	9688 9691	989 3 9896	*0103 *0106	0318	0538	0762		
57 58 59	8933 8936	9114 9117	9302 9305	9495 9498	969 <u>5</u> 9698	9900 9903	*0113	0325 0329	0545 0549	0770 0774		
60	8939	9120	9308	9502	9701	9907	*0117	0332	0553	0777		

TABLE 11.

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENGLISH FEET.

T								Tarnet on					
1	Lat.	31°	32°	33°	34°	35°	36°	37°	38°	39°	40°		P. P.
		7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
	0′	0777	1006	1239	1476	1716	1959	2205	2453	2704	2956		
	1 2	0781 0785	1010	1243 1247	1480 1484	1720 1724	1963 1967	2209	2457 2462	2708 2712	2961 2965		
	3	0789	1018	1251	1488	1728	1971	2217	2466	2716	2969		3
	4 5	0793 0796	1022	1255 1259	1492 1496	1732 1736	1975 1979	222I 2226	2470 2474	2721 2725	2973 2978		
	6	0800	1029	1263	1500	1740	1983	2230	2478	2729	2982	10 20	·5 1.0
	8	0804 0808	1033	1267 1271	1504 1508	1744 1748	1988	2234 2238	2482 2487	2733 2737	2986 2990	30 40	1.5
	9	0811	1041	1275	1512	1752	1996	2242	2491	2742	2994	50 60	2.5
] 3	10	0815	1045	1279	1516	1756	2000	2246	2495	2746	2999		3.0
	11	0819 0823	1049 1053	1282 1286	1520 1524	1760 1764	2004	2250 2254	2499 2503	2750 2754	3003		
	13	0827	1057	1290	1528	1768	2012	2259	2507	2758	3011		
	14	0830 0834	1060 1064	1294	1532 1536	1772 1776	2016 2020	2263 2267	2512 2516	2763 2767	3016 3020		
11	16	0838 0842	1068	1302	1540	1780	2024	2271	2520	2771	3024		
H	17 18 19	0846 0849	1072 1076 1080	1306 1310 1314	1544 1548 1552	1784 1789 1793	2028 2033 2037	2275 2279 2283	2524 2528 2532	2775 2779 2784	3028 3032 3037		
2	10	o853	1084	1318	1556	1797	2041	2287	2537	2788	3041		
11	21	0857	1087	1322	1560	1801	2045	2292	2541	2792	3045		
• •	22	0861 0865	1091	1326	1564 1568	1805 1809	2049 2053	2296 2300	2545 2549	2796 2800	3049 3054		4
	24	0869 0872	1099	1334 1337	1572 1576	1813	2057 2061	2304 2308	2553 2557	2805 2809	3058 3062		
	26	0876	1107	1341	1580	1821	2065	2312	2562	2813	3066	10 20	·7 1.3
	27 28	0880 0834	1111	1345 1349	1584 1588	1825 1829	2069	2316 2321	2566 2570	2817 2822	3071 3075	30	2.0
:	29	o88Ś	1118	1353	1592	1833	2077	2325	2574	2826	3079	40 50 60	2.7 3·3
3	30	0 891	1122	13.57	1596	1837	2082	2329	2578	2830	3083	- 00	4.0
:	31	0895 0899	1126 1130	1361 1365	1604	1841 1845	2086 2090	2333 2337	2583 2587	2834 2838	3087 3092		
ш	33	0903	1134	1369	1608 1612	1849	2094	2341	2591	2843 2847	3096 3100		
	35 36	0910	1142	1377 1381	1616 1620	1857 1861	2102 2106	2350 2354	2599 2603	2851 2855	3104 3109		
	37 38	0918	1150	1385 1389	1624 1628	1865 1870	2110	2358	2608 2612	2859 2864	3113 3117		
:	39	0926	1157	1393	1632	1874	2119	2366	2616	2868	3121		
4	10	0930	1161	1397	1636	1878	2123	2370	2620	2872	3126		
	41 42	0933 0937	1165 1169	1401 1405	1640 1644	1882 1886	2127 2131	2374	2624 2629	2876 2880	3130 3134		
-	43	0941	1173	1409	1648	1890	2135	2379 2383	2633	2885	3138		5
Η.	44 45	0945 0949	1177	1412 1416	1652 1656	1894 1898	2139 2143	2387 2391	2637 2641	2889 2893	3143 3147		_
-	46	0953	1185	1420	1660	1902	2147	2395	2645	2897	3151	10 20	.8 1.7
	47 48	0956	1189	1424	1664 1668	1906	2151 2156	2399 2403	2649 2654	2902 2906	3155 3160	30 40	2.5 3.3
Ш	49	0964	1196	1432	1672	1914	2160	2408	2658	2910	3164	50 60	4.2 5.0
"	50	0968	1200	1436	1676	1918	2164	2412	2662	2914	3168		_
	51	0972	1204 1208	1440	1680 1684	1922 1926	2168	2416 2420	2666 2670	2918 2923	3172 3177		
11	53	0979	1212	1448	1688	1931	2176	2424	2675	2927	3181		
	54 55 56	0987	1216	1452	1692 1696	1935	2180 2184	2428 2433	2679 2683	2931 2935	3185 3189		
		0991	1224	1460 1464	1700	1943	2188	2437 2441	2687 2691	2940 2944	3193 3198		
	57 58 59	0999	1231	1468	1708 1712	1951	2193 2197 2201	2445	2696 2700	2948	3202 3206		
1	30	1006	1239	1476	1716	1955		2449		2952	3210		
Ι,	-		39	-4/0	.,	1939	2205	2453	2704	2956	3210		

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENCLISH FEET.

									·			
Lat.	41°	42°	43°	44°	45°	46°	47°	48°	49°	50°		P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0′	3210	3466	3722	3979	4236	4494	4751	5007	5263	5517		
1 2	3215 3219	3470	3726 3731	3983 3988	4241 4245	4498 4502	4755 4760	5012 5016	5267 5271	5522 5526		
3	3223	3474 3479	3735	3992	4249	4507	4764	5020	5276	5530		
4 5 6	3227 3232 3236	34 ⁸ 3 34 ⁸ 7 3491	3739 3744 3748	3996 4001 4005	4254 4258 4262	4511 4515 4520	4768 4772 4777	5024 5029 5033	5280 5284 5288	5534 5538 5543		
7 8 9	3240 3244 3249	3496 3500 3504	3752 3756 3761	4009 4013 4018	4267 4271 4275	4524 4528 4532	4781 4785 4789	5037 5042 5046	5293 5297 5301	5547 5551 5555		
10	3253	3508	3765	4022	4279	4537	4794	5050	5305	5560		
11 12 13	3257 3261 3266	3513 3517 3521	3769 3774 3778	4026 4031 4035	4284 4288 4292	4541 4545 4550	4798 4802 4807	5054 5059 5063	5310 5314 5318	5564 5568 5572		
14	3270	3526	3782	4039	4297	4554	4811	5067	5322	5576		•
15 16	3274 3278 3283	3530 3534 3538	3786 3791 3795	4043 4048 4052	4301 4305 4309	4558 4562 4567	4815 4819 4824	5071 5076 5080	5327 5331 5335	5581 5585 5589	10 20	.7 1.3
18	3287 3291	3543 3547	3799 3803	4056 4061	4314 4318	4571 4575	4828 4832	5084 5088	5335 5339 5344	5593 5598	30 40 50	2.0 2.7 3.3
20	3295	3551	3808	4065	4322	4580	4837	5093	5348	5602	60	4.0
2 I 22 23	3300 3304 3308	3555 3560 3564	3812 3816 3821	4069 4073 4078	43 ² 7 43 ³ 1 4335	45 ⁸ 4 45 ⁸ 8 459 ²	4841 4845 4849	5097 5101 5105	5352 5356 5361	5606 5610 5614		
24 25 26	3312 3317 3321	3568 3573 3577	3825 3829 3833	4082 4086 4091	4339 4344 4348	4597 4601 4605	4854 4858 4862	5110 5114 5118	5365 5369 5373	5619 5623 5627		
27 28 29	3325 3329 3334	3581 3585 3590	3838 3842 3846	4095 4099 4104	4352 4357 4361	4610 4614 4618	4866 4871 4875	5123 5127 5131	5378 5382 5386	5631 5636 5640		
30	3338	3594	3851	4108	4365	4622	4879	5135	5390	5644		
31 32 33	334 ² 3347 3351	3598 3602 3607	3855 3859 3863	4112 4116 4121	4369 4374 4378	4627 4631 4635	4884 4888 4892	5140 5144 5148	5395 5399 5403	5648 5652 5657		
34 35 36	3355 3359 3364	3611 3615 3620	3868 3872 3876	4125 4129 4134	43 ⁸ 2 43 ⁸ 7 4391	4640 4644 4648	4896 4901 4905	5152 5157 5161	5407 5412 5416	5661 5665 5669		
37 38 39	3368 3372 3376	3624 3628 3632	3881 3885 3889	4138 4142 4146	4395 4399 4404	4652 4657 4661	4909 4913 4918	5165 5169 5174	5420 5424 5428	5673 5678 5682		6
40	3381	3637	3893	4151	4408	4665	4922	5178	5433	5686	10	.8
41 42 43	33 ⁸ 5 33 ⁸ 9 3393	3641 3645 3649	3898 3902 3906	4155 4159 4164	4412 4417 4421	4670 4674 4678	4926 4931 4935	5182 5186 5191	5437 5441 5445	5690 5694 5699	20 30 40 50	1.7 2.5 3.3 4.2
44 45 46	3398 3402 3406	3654 3658 3662	3911 3915	4168 4172 4176	4425 4430	4682 4687 4691	4939 4943 4948	5195 5199 5203	5450 5454 5458	5703 5707 5711	60	5.0
47 48	3410 3415	3667 3671	3919 3923 3928	4181	4434 4438 4442	4695 4700	4952 4956	5208 5212	5462 5467	5716 5720		
49 50	3419	3675	3932	4189	4447	4704	4960	5216	5471	5724		
50	3423	3679	3936	4194	4451	4708	4965	5220	5475	5728		
51 52 53	3427 3432 3436	3684 3688 3692	3941 3945 3949	4198 4202 4206	4455 4460 4464	4712 4717 4721	4969 4973 4978	5225 5229 5233	5479 5484 5488	5732 5737 5741		
54 55	3440 3445	3697 3701	3953 3958	4211 4215	4468 4472	4725 4730	4982 4986	5237 5242	5492 5496	5745 5749		
56	3449	3705	3962	4219	4477	4734	4990	5246	5500	5753		
57 58 59	3453 3457 3462	3709 3714 3718	3966 3971 3975	4224 4228 4232	4481 4485 4490	473 ⁸ 474 ² 4747	4995 4999 5003	5250 5254 5259	5505 5509 5513	5758 5762 5766		
60	3466	3722	3979	4236	4494	4751	5007	5263	5517	5770		

TABLE 11.

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n in english feet.

							i -			· · · · · · · · · · · · · · · · · · ·		
Lat.	510	52°	53°	54°	55°	56°	57°	58°	59°	60°	:	P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0′	5770	6021	6270	6517	6760	7001	7238	7472	7701	7927		
I 2	5774 5778	6025 6029	6274 6278	6521 6525	6764 6768	7005 7009	7242 7246	7476 7480	7705 7709	7931 7934		
3	5783	6034	6282	6529	6772	7013	7250	7483	7712	7938		5
5	5787 5791	6038 6042	6286 6290	6533 6537	6776 6780	7017 7021	7254 7257	74 ⁸ 7 7491	7716 7720	7942 7945		
6 7	5795 5799	6046 6050	6295 6299	6541	6785 6789	7025 7029	7261 7265	7495 7499	7724 7728	7949 7953	10 20	.8
7 8 9	5804 5808	6055 6059	6303 6307	6549 6553	6793 6797	7033 7037	7269 7273	7502 7506	7731 7735	7957 7960	30	2.5
10	5812	6063	6311	6557	6801	7041	7277	7510	7739	7964	40 50 60	3·3 4·2 5·0
11	5816	6067	6315	6561	6805	7045	7281	7514	7743	7968		
12	5820 5825	6071 6075	6319 6324	6565 6569	6809 6813	7º49 7º53	7285 7289	7518 7522	7747 7750	7971 797 5		
14 15	5829 5833	6079 6083	6328 6332	6573 6577	6817 6821	7057 7060	7293 7296	7526 7529	7754 7758	79 79 7982		
16	5837	6088	6336	6582	6825	7064	7300	7533	7762	7986		
17 18 19	5841 5846 5850	6092 6096 6100	6340 6345 6349	6586 6590 6594	6829 6833 6837	7068 7072 7076	7304 7308 7312	7537 7541 7545	7766 7769 7773	7990 7994 7997		
20	5854	6104	6353	6598	6841	7080	7316	7549	7777	8001		
2 I 22	5858 5862	6108 6112	6357 6361	6602 6606	6845 6849	7084 7088	7320 7324	7552 7557	7781 7785	8005 8008		
23	5867	6117	6365	6610	6853	7092	7328	7560	7788	8012		
24 25	5871 5875	6121	6369 6373	6614 6618	6857 6861	7096 7100	7332 7335	7564 7568	7792 7796	8016 8019		4
26	5879 5883	6129	6378 6382	6623 6627	6865 6860	7104 7108	7339 7343	7572 7576	7800 7804	8023 8027	10	.7
27 28 29	5888 5892	6138	6386 6390	6631	6873 6877	7112 7116	7347 7351	7579 7583	7807	8031 8034	20 30	1.3 2.0
30	5896	6146	6394	6639	6881	7120	7355	7587	7815	8038	40 50 60	2.7 3·3 4.0
31 32	5900 5904	6150	6398 6402	6643 6647	6885 6889	7124 7128	7359 7363	7591 7595	7819 7822	8042 8045		
33 34	5909 5913	6158 6162	6406 6410	6651	6893 6897	7132 7136	7367 7371	7598 7602	7826 7830	8049 8053		
35 36	5917 5921	6166 6171	6414 6419	6659 6663	6901 6905	7139 7143	7374 7378	7606 7610	7 ⁸ 33 7 ⁸ 37	8056 8060		
37 38	5925	6175	6423 6427	6667 6671	6909 6913	7147 7151	7382 7386	7614 7617	7841	8064 8068		
39	5930 5934	6179	6431	6675	6917	7155	7390	7621	7845 7848	8071		
40	5938	6187	6435	6679	6921	7159	7394	7625	7852	8075		
41 42	594 2 5946	6191 6195	6439 6443	6683 6687	6925 6929	7163 7167	7398 7402	7629 7633	7856 7860	8079 8082		
43	5951	6200	6447	6691	6933	7171	7406	7636	7863	8086		3
44 45	5955 5959	6204 6208	6451 6455	669 5	6937 6941	7175 7179	7410 7413	7640 7644	7867 7871	8089 8093		
46	5963 5967	6212 6216	646a 6464	6704 6708	6945 6949	7183 7187	7417 7421	7648 7652	7875 7879	8097 8100	10 20	.5 1.0
47 48 49	5972 5976	6221 6225	6468 6472	6712 6716	6953 6957	7191 7195	7425 7429	7655 7659	7882 7886	8104 8107	30 40	1.5
50	5980	6229	6476	6720	6961	7199	7433	7663	7890	8111	50 60	2.5
5 r	5984	6233	6480	6724	6965	7203	7437	7667	7894	8115		
52 53	5988 5992	6237 6241	6484 6488	6728 6732	6969 6973	7207 7211	7441 7445	7671 7674	7897 7901	8118 8122		
54 55	5996 6000	6245 6249	6492 6496	6736 6740	6977 6981	7215 7218	7449 7452	7678 7682	7905 7908	8126 8129		
56	6005	6254	6501	6744	6985	7222	7456	7686	7912	8133		
57 58	6009	6258 6262	6505 6509	6748 6752	6989 6993	7226 7230	7460 7464	7690 7693	7916 7920	8137 8141		
59	6017	6266	6513	6756	6997	7234	7468	7697	7923	8144		
60	6021	6270	6517	6760	7001	7238	7472	7701	7927	8148		

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm M}$ IN ENGLISH FEET.

			1			1			1			
Lat.	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°	1	P. P .
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0'	8148	8364	8575	8781	8982	9176	9365	9548	9724	9893		
2	8152 8155	8368 8371	8578 8582	8784 8788	8985 8989	9179	9368 9371	9551 9554	9727 9730	9896 9898		
3 4	8159 8162	8375 8378	8585 8589	8791 8795	8992 8995	9186	9374 9377	9557 9560	9732 9735	9901 9904		
5 6	8166 8170	8382 8386	8592 8596	8798 8801	8998 9002	9192 9195	9380 9384	9562 9565	9738 9741	9906 9909		
7 8 9	8173 8177 8180	8389 8393 8396	8599 8603 8606	8805 8808 8812	9005 9008 9012	9198 9202 9205	93 ⁸ 7 9390 9393	9568 9571 9574	9744 9746 9749	9912 9915 9917		4
10	8184	8400	8610	8815	9015	9208	9396	9577	9752	9920	10	.7
11 12	8188	8403 8407 8410	8613 8617 8620	8818 8822 8825	9018 9021	9211	9399 9402	9580 9583	9755 9758	9923 9926	20 30 40	1.3 2.0 2.7
13	8195	8414	8624	8829	9025 9028	9218	9405 9408	9586 9589	9761 9764	9928 9931	50 60	3.3 4.0
15	8202 8206	8417 8421	8627 8631	8832 8835	9031 9034	9224 9227	9411 9415	9592 9595	9766 9769	9934 9937		
17 18 19	8209 8213 8216	8424 8428 8431	8634 8638 8641	8839 8842 8846	9037 9041 9044	9230 9234 9237	9418 9421 9424	9598 9601 9604	9772 9775 9778	9940 9942 9945		
20	8220	8435	8645	8849	9047	9240	9427	960 7	9781	9948		
2 I 22 23	8224 8227 8231	8438 8442 8445	8648 8652 8655	8852 8856 8859	9050 9054 9057	9243 9246 9250	9430 9433 9436	9610 9613 9616	9784 9787 9789	9951 9953 9956		
24 25 26	8235 8238 8242	8449 8452 8456	8659 8662 8665	8862 8865 8869	9060 9063 9067	9253 9256 9259	9439 9442 9445	9619 9621 9624	9792 9795 9798	9959 9961 9964		3
27 28 29	8246 8250 8253	8459 8463 8466	8669 8672 8676	8872 8875 8879	9070 9073 9077	9262 9266 9269	9448 9451 9454	9627 9630 9633	9801 9803 9806	9967 9970 9972	10 20	.5 1.0
30	8257	8470	8679	8882	9080	9272	9457	9636	9809	9975	30 40	1.5 2.0
31 32 33	8261 8264 8268	8473 8477 8480	8682 8686 8689	8885 8889 8892	9083 9086 9090	9275 9278 9281	9460 9463 9466	9639 9642 9645	9812 9815 9817	9978 9980 9983	50 60	3.0
34 35 36	8271 8275 8279	8484 8487 8491	8693 8696 8699	8896 8899 8902	9093 9096 9099	9284 9287 9291	9469 9472 9475	9648 9651 9654	9820 9823 9826	9986 9988 9991		
37 38	8282 8286 8289	8494 8498 8501	8703 8706 8710	8906 8909 8913	9102 9106 9109	9294 9297	9473 9478 9481 9484	9657 9660 9663	9829 9831 9834	9994 9997		
39 40	8293	8505	8713	8916	9112	9300	9487	9666	9837	9999 *0002		
41	8296	8508	8716	8919	9115	9306	9490	9669	9840	*0005		
42 43	8300 8303	8512 8515	8720 8723	8923 8926	9118	9309 9312	9493 9496	9672 9675	9843 9845	*0007		2
44 45 46	8307 8310 8314	8519 8522 8526	8727 8730 8733	8929 8932 8936	9125 9128 9131	9315 9318 9322	9499 9502 9506	9678 9680 9683	9848 9851 9854	*0013 *0015 *0018	10 20	1 ·3
47 48 49	8317 8321 8324	8529 8533 8536	8737 8740 8744	8939 8942 8946	9134 9138 9141	9325 9328 9331	9509 9512 9515	9686 9689 9692	9857 9859 9862	*0021 *0024 *0026	30 40 50	1.0 1.3 1.7 2.0
50	8328	8540	8747	8949	9144	9334	9518	9695	9865	*0029		
51 52 53	8332 8335 8339	8543 8547 8550	8750 8754 8757	8952 8956 8959	9147 9150 9154	9337 9340 9343	9521 9524 9527	9698 9701 9704	9868 9871 9873	*0032 *0034 *0037		
54 55 56	8342 8346 8350	8554 8557 8561	8761 8764 8767	8962 8965 8969	9157 9160 9163	9346 9349 9353	9530 9533 9536	9707 9709 9712	9876 9879 9882	*0039 *0042 *0045		
57 58 59	8353 8357 8360	8564 8568 8571	8771 8774 8778	8972 8975 8979	9166 9170 9173	9356 9359 9362	9539 9542 9545	9715 9718 9721	9885 9887 9890	*0047 *0050 *0052		
60	8364	8575	8781	8982	9176	9365	9548	9724	9893	*0055		

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_{π} IN ENCLISH FEET.

Lat.	71°	72°	73°	74°	75°	76°	7 7 °	78°	79°	8o°	1	P. P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
0′	0055	0210	0359	0499	0632	0757	0875	0984	1085	1177		
I 2	0058 0060	0213	0361 0364	0501 0504	0634 0636	0759 0761	0877 0879	0986 0987	1087	1178 1180		
3	0063	0218	0366	0506	0639	0763	o88o	0989	1090	1811		1
4 5 6	0068 0071	0220 0223 0226	0369 0371 0373	0508 0510 0513	0641 0643 0645	0765 0767 0769	0882 0884 0886	0991 0992 0994	1091 1093 1095	1183 1184 1186		3
7 8 9	0074 0077 0079	0228 0231 0233	0376 0378 0381	0515 0517 0520	0647 0650 0652	0771 0773 0775	0888 0889 0891	0996 0998 0 999	1096 1098 1099	1187 1189 1190	10 20	.5 1.0
10	0082	0236	0383	0522	0654	°77 7	0893	1001	1101	1192	30 40 50	1.5 2.0 2.5
11 12 13	0085 0087 0090	0238 0241 0243	0385 0388 0390	0524 0526 0529	o656 o658 o660	0779 0781 0783	0895 0897 0899	1003 1004 1006	1102 1104 1105	1193 1195 1196	60	3.0
14 15 16	0092	0246 0248 0251	0392 0394 0397	0531 0533 0535	0662 0664 0667	0785 0787 0789	0901 0902 0904	1008	1107 1108 1110	1198 1199 1200		
17 18 19	0100	0253 0256 0258	0399 0401 0404	0537 0540 0542	0669 0671 0673	0791 0793 0795	0906	1013 1015 1016	1111	1202 1203 1205		
20	0108	0261	0406	0544	0675	0797	0912	1018	1116	1206		
2 I 22	0111	0263 0266	0408	0546 0549	0677 0679	0799	0914	1020 1021	1119	1207		
23	0118	0268	0413 0416 0418	0551	0681 0683 0685	0803 0805 0807	0917	1023 1025 1026	1121 1122 1124	1210		
25 26 27	0124	0273 0276 0278	0420	o555 o558 o560	o688 o690	0809	0921 0923 0925	1028	1126	1213 1214 1216		2
28 29	0129	0281	0425	0562 0565	0692 0694	0813	0926	1032	1129	1217	10 20 30	.3 .7 1.0
30	0134	0286	0430	0567	0696	0817	0930	1035	1132	1220	40	1.3
31 32 33	0137 0139 0142	0288 0291 0293	0432 0435 0437	0569 0571 0574	0698 0700 0702	0819 0821 0823	0932 0934 0935	1037 1038 1040	1133 1135 1136	1221 1223 1224	-60 	2.0
34 35 36	0144 0147 0150	0296 0298 0300	0439 0441 0444	0576 0578 0580	0704 0706 0708	0825 0826 0828	093 7 0939 0941	1042 1043 1045	1138 1139 1141	1226 1227 1228		
37 38 39	0152 0155 0157	0303 0305 0308	0446 0448 0451	0582 0585 0587	0710 0712 0714	0830 0832 0834	0943 0944 0946	1047 1049 1050	1142 1144 1145	1230 1231 1233		
40	0 160	0310	0453	0589	0716	o836	0948	1052	1147	1234		1
41 42 43	0162 0165 0167	0312 0315 0317	0455 0458 0460	0591 0593 0596	0718 0720 0722	0838 0840 0842	0950 0952 0953	1054	1148 1150 1151	1235 1237 1238		
44	0170	0320	0462	0598	0724	0844	0955	1058	1153	1240		
45 46	0172	0322 0324	0464 0467	0600 0602	0726 0729	0846 0848	0957 0959	1060 1062	1154	1241		1
47 48 49	0177 0180 0182	0327 0329 0332	0469 0471 0474	0604 0607 0609	0731 0733 0735	0850 0852 0854	0961 0962 0964	1063 1065 1066	1157 1159 1160	1244 1245 1247	10 20	.2
50	0185	0334	0476	0611	0737	0856	0966	1068	1162	1248	40	.5 .7 .8
51	0187	0336	0478	0613	0739	0858	0968	1070	1163	1249	50 60	1.0
52 53	0190	0339 0341	0481	0615 0617	0741 0743	0860 0862	0970	1071	1165	1251 1252		1
54 55	0195	0344 0346	0485 0487	0619 0621	0745 0747	o864 o865	0973 0975	1075 1076	1168	1253 1254		
55 56	0200	0349	0490	0624	0749	0867	0977	1078	1171	1256	ŀ	
57 58 59	0202 0205 0207	0351 0354 0356	0492 0494 0497	0626 0628 0630	0751 0753 0755	0869 0871 0873	0979 0980 0982	1080 1082 1083	1172 1174 1175	1257 1258 1260		
60	0210	0359	0499	0632	0757	0875	0984	1085	1177	1261		

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm m}$ IN ENGLISH FEET.

Lat.	810	82°	83°	84°	85°	86°	87°	88°	89°		P. P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
0',	1261	1337	1403	1461	1511	1551	1583	1605	1619		
1 2	1262 1264	1338	1404	1462 1463	1512 1512	1552 1552	1583 1584	1605 1606	1619 1619		
3	1265	1340	1406	1464	1513	1553	1584	1606	1619	•	
4 5 6	1266 1267	1341 1342	1407	1465 1465	1514 1514	1553 1554	1585 1585	1606 1606	1619 1619		
1	1269	1344	1410	1466	1515	1555	1585 1586	1607 . 1607	1620		
7 8	1270	1345 1346	1411	1467	1516	1555	1586	1607	1620 1620		
10	1273	1347	1413	1469	1517	1556	1587	1608	1620		
	1274	1348	1414	1470	1518	1557	1587	1608	1620		
11 12	1275	1349 1350	1415	1471	1519	1558 1558	1587	1608 1609	1620 1620		
13	1278	1352	1417	1473	1520	1559	1588 1589	1609 1609	1620 1620		2
15	1280	1354	1419	1474	1521	1560	1589	1609	1620		
17	1283	1355 1356	1421	1475	1522	1561	1590	1610	1621	20	•3
18	1284	1358 1359	1422 1423	1477	1524 1524	1562 1562	1590 1591	1611	1621 1621	30 40 50	1.0 1.3 1.7
20	1287	1360	1424	1479	1525	1563	1591	1611	1621	60	2.0
2I 22	1288	1361 1362	1425 1426	1480 1481	1526	1563 1564	1591	1611	1621 1621		
23	1291	1363	1427	1481	1526 1527	1564	1592 1592	1612	1621		
24 25	1292	1364 1365	1428	1482	1528 1528	1565 1565	1 593 1 593	1612 1612	1621 1621		
26	1295	1367	1430	1484	1529	1566	1593	1612	1622		
27 28	1296 1297	1368 1369	1431	1485	1530 1531	1566	1594 1594	1612 1613	1622 1622		
30	1299	1370	1433	1486	1531	1567	1595	1613	1622		
	1300	1371	1434	1487	1532	1568	1595	1613	1622		
31 32 33	1301 1302 1304	1372 1373 1374	1435 1436 1437	1488 1489 1489	1533 1533 1534	1568 1569 1569	1595 1596 1596	1613 1613 1614	1622 1622 1622		
34	1305 1306	1375	1438	1490	1535	1570	1597	1614 1614	1622 1622		
35 36	1307	1376	1438	1491	1535	1570	1597	1614	1623		
37 38	1308	1379 1380	1440 1441	1493	1537 1538	1571	1598	1614	1623 1623		1
39	1311	1381	1442	1494	1538	1572	1599	1615	1623	10	.2
40	1312	1382	1443	1495	1539	1573	1599	1615	1623	20 30	·3 ·5
41 42	1313	1383 1384	1444 1445	1496 1497	1540 1540	1573	1599	1615 1615	1623 1623	40 50	.7
43	1316	1385	1446	1497	1541	1574	1600	1616	1623	60	1.0
44 45 46	1317	1386 1387	1447	1498	1541 1542	1575	1600	1616 1616	1623 1623		
	1320	1389	1447	1500	1543	1576	1601	1616	1623 1623		
47 48	1321	1391	1449	1501	1543 1544	1576	1601	1616	1623		
49 50	1324	1392	1451	1502	1544	1577	1602	1617	1623		
	1325	1393	1452	1503	1545	1578	1602	1617	1623		
51 52	1326	1394	1453 1454	1504	1546 1546	1578	1602 1603	1617	1623 1623		
53 54	1329	1396	1455	1505	1547 1547	1579 1580	1603	1618	1623 1623		
55 56	1331	1398	1456	1507	1548 1549	1580	1603 1604	1618	1623		
57 58	1333	1400	1458	1509	1549	1581	1604	1618	1623		
58 59	1335 1336	1401	1459 1460	1509	1550 1550	1582 1582	1604 1605	1619	1623 1623		
60	1337	1403	1461	1511	1551	1583	1605	1619	1623	•	
	J	1	1	1	1	1	1				

Table 12. LOCARITHMS OF RADIUS OF CURVATURE ρ_{α} (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH α .

[Formula for pa given on p. xlv.]

Azimuth.					LATI	TUDE.				
	220	23°	24°	25°	26°	27°	28°	29°	30°	3t°
00	6.80237	6.80242	6.80248	6.80254	6.80260	6.80266	6.80272	6.80279	6.80285	6.80292
5	239	244	250	256	262	268	274	280	287	294
10	244	250	255	261	267	273	279	285	292	298
15	254	259	264	270	276	282	288	294	300	306
20	266	271	277	282	288	293	299	305	311	317
25	282	287	292	297	302	308	313	319	325	331
30	300	305	309	314	319	324	330	335	340	346
35	320	324	329	333	338	343	348	353	358	363
40	341	345	350	354	358	362	367	372	377	382
45	364	367	371	375	379	383	387	391	396	400
50	386	389	392	396	399	403	407	411	41 5	419
55	407	410	413	416	420	423	426	430	434	437
60	427	430	432	435	438	442	445	448	451	455
65	445	448	450	453	455	458	461	464	467	470
70	461	463	465	468	470	473	475	478	481	484
75	473	476	478	480	482	484	487	489	492	494
80	483	485	487	489	491	493	495	498	500	502
85	489	490	492	494	496	498	501	503	505	507
90	490	492	494	496	498	500	502	504	. 507	509
Azimuth.					LATIT	UDE.				
	32°	33°	34°	35°	36°	37°	38°	39°	40°	41°
o°	6.80299	6.80306	6.80313	6.80320	6.80327	6.80335	6.80342	6.80350	6.80357	6.80365
5	300	307	314	322	329	336	344	351	359	366
10	305	312	319	326	333	340	348	355	363	370
15	313	320	326	333	340	348	355	362	369	376
20	324	330	337	343	350	357	364	371	378	385
25	337	343	349	355	362	368	375	382	388	395
30	352	358	364	370	376	382	388	394	401	407
35	369	374	380	385	391	397	402	408	414	420
40	386	392	397	402	407	412	418	423	4 2 9	434
45	405	410	414	419	424	429	434	439	444	449
50 5 5 60	423 441 458	445	43 ² 449 465	436 453 469	457	445 461 476	450 465 480	469	459 474 487	464 478 491
65 70 75	473 486 497	476 489 500	492	495	498	501	493 504 513	507	510	514
80 85 90	505 510 511	507 512 514	510 514 516	517	515 519 521		520 524 526	527	529	532

TABLE 12.

LOCARITHMS OF RADIUS OF CURVATURE ρ_a (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.

[Formula for pa given on p. xlv.]

-										
Azimuth.					LAT	TUD:	Е.			
	42°	43°	44°	45°	46°	47°	48°	49°	50°	510
o°	6.80373	6.80380	6.80388	6.80396	6.80404	6.804	11 6.804	19 6.80426	6.80434	6.80442
5 10 15	374 378 384	382 385 391	389 393 399	39 7 400 406	404 408 413	4	12 15 4 20 4	20 428 23 430 28 435	438	443 445 450
20 25 30	392 402 413	399 408 420	406 415 426	413 422 433	420 429 439	4		34 44 ¹ 42 44 ² 52 45 ⁸	456	455 463 471
35 40 45	426 440 454	432 446 459	438 451 464	444 457 470	450 462 475			52 468 74 479 35 490	485	480 490 500
50 55 60	468 482 495	473 486 499	478 490 502	482 495 506	487 499 510	5	03 5	96 501 08 512 18 522	516	510 520 530
65 70 75	507 517 525	510 520 528	514 523 530	517 526 534	520 529 536	1 5	32 5	28 531 36 539 42 543	542	538 545 551
80 85 90	531 534 536 539 542 544 547 550 534 537 540 542 545 548 550 553 536 538 541 544 546 549 551 554		555	555 558 559						
					LATI	TUDI	E.			
Azimuth.		T	- 1			í	<u> </u>	<u> </u>		
	52°	53°	54°	55	° !	56°	57°	58°	59°	60°
o°	6.80449	6.80457	6.8046	6.80	471 6.8	0479	6.80486	6.80493	6.80500	6.80506
5 10 15	450 453 457	458 460 464			472 474 478	479 481 485	486 488 492	493 495 498	500 502 505	507 509 511
20 25 30	4 62 469 477	469 476 484	48	32 4	483 489 496	489 495 502	496 501 508	502 508 514	509 514 519	515 520 525
35 40 45	486 496 505	492 501 510	50	06	503 512 520	509 517 525	51 5 522 530	520 527 534	5 ² 5 53 ² 539	531 537 543
50 55 60	51 5 524 533	520 528 537	5.	33	528 537 544	533 541 548	537 545 552	542 548 555	546 552 558	550 556 562
65 70 7 5	541 548 554	545 551 557	5.	48 54 59	551 557 562	555 560 565	558 563 568	561 566 570	564 569 573	567 572 575
80 85 90	558 560 561	561 563 564	t 50	56	566 568 569	568 570 571	571 573 574	573 575 576	57 6 578 578	578 580 580

TABLE 13.

LOCARITHMS OF FACTORS $\frac{\rho''}{2\,\rho_m\,\rho_n}$ FOR COMPUTING SPHEROIDAL EXCESS OF TRIANGLES.

UNIT=THE ENGLISH FOOT.

[Derivation and use of table explained on p. lviii.]

φ	log. factor and change per minute.	φ	log. factor and change per minute.	φ	log. factor and change per minute.	φ	log. factor and change per minute.
0°	0.37498	20°	0.37429 0.12	40°	0.37255 — 0.18	60 °	0.37056
1	498 — 0.02	21	422 — 0.12	41	244 — 0.17	61	— 0.15 047 — 0.15
2	497 — 0.02	22	415 — 0.12	42	234 0.17	62	038 - 0.13
3	496 — 0.02	23	408 0.12	43	224 — 0.17	63	030
4	495 — 0.03	24	401 — 0.13	44	214 — 0.18	64	022 0.13
5	493 — 0.03	25	393 — 0.13	45	203 — 0.17	65	014 — 0.13
6	49I — 0.03	26	385 - 0.13	46	193 — 0.17	66	006 - 0.13
7	489 — 0.03	27	377 — 0.15	47	183 — 0.17	67	0.36998
8	487 — 0.05	28	368 — 0.13	48	173 — 0.18	68	991
9	484 — 0.07	29	360 — 0.15	49	162 — 0.17	69	984 — 0.12
10	480 — 0.07	30	351 — 0.15	50	152 — 0.17	70	977 — 0.10
11	476 — 0.07	31	342 — 0.15	51	142 — 0.17	71	971 — 0.12
12	472 — 0.07	32	333	52	132 — 0.17	72	964 — 0.08
13	468 — 0.08	33.	3 ² 3 - 0.15	53	122 — 0.17	73	959
14	463 — 0.07	34	314 0.17	54	— 0.15	74	953 — 0.08
15	459 — 0.10	35	304 — 0.15	55	103 — 0.17	75	948 — 0.08
16	453 — 0.08	36	295 — 0.17	56	993 — 0.17	76	943
17	448 — 0.10	37	285 — 0.17	57	083 — 0.15	77	938
18	442 — 0.10	38	275 — 0.17	58	074 — 0.15	78	934
19	436 — 0.12	39	265 — 0.17	59	065 — 0.15	79	930 0.07
20	429 — 0.12	40	255 — 0.18	60	056 — 0.15	80	926

TABLE 14.

LOGARITHMS OF FACTORS $\frac{\rho''}{2 \rho_m \rho_n}$ FOR COMPUTING SPHEROIDAL EXCESS OF TRIANCLES.

UNIT=THE METRE.

φ	log. factor and change per minute.	φ	log. factor and change per minute.	φ	log. factor and change per minute.	φ	log. factor and change per minute.
00	1.40695	20°	1.40626 — 0.12	40°	1.40452 — 0.18	60°	1.40253
1	. 695	21	619	41	44I — 0.17	61	244 — 0.15
2	694	22	612	42	431 - 0.17	62	235 — 0.13
3	693 — 0.02	23	605 — 0.13	43	42I 0.17	63	227 0.13
4	692 — 0.03	24	597 — 0.12	44	411 — 0.18	64	219 — 0.15
5	690 — 0.03	25	590 — 0.13	45	400 — 0.17	65	210 — 0.12
6	688 — 0.03	26	582 - 0.15	46	390 — 0.17	66	203
7	686 — 0.05	27	573 — 0.13	47	380	67	195
8	683 — 0.05	28	565 - 0.15	48	369 — 0.17	68	188
9	680 — 0.05	29	556 — 0.13	49	359 — 0.17	69	181 — 0.12
10	677	30	548	50	349	70	174
· II	- 0.07 673	31	- 0.15 539	51	- 0.17 339	71	-0.10 168 -0.12
12	— 0.07 669 — 0.07	32	— 0.15 530 — 0.17	52	-0.17 329 -0.17	72	161 — 0.10
13	665 — 0.08	33	520 	53	319 0.17	73	155 — 0.08
14	660 — 0.08	34	511 - 0.17	54	309 — 0.17	74	150 — 0.10
15	655	35	501	55	299	75	144
16	— 0.08 650 — 0.10	36	— 0.17 491 — 0.15	56	0.15 290 0.17	76	0.08 139
17	644 — 0.08	37	482 -0.17	57	280 — 0.15	* 77	- 0.07 135 - 0.08
18	639 - 0.12	38	472 — 0.17	58	271 — 0.15	78	130 — 0.07
19	632 — 0.10	39	462 0.17	59	262 — 0.15	79	126 — 0.05
20	626 — 0.12	40	452 — 0.18	60	²⁵³ — 0.15	80	123

TABLE 15.

LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT=THE ENGLISH FOOT.

							amed on p.				
φ	a_1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	<i>c</i> ₂	φ	<i>a</i> ₁	$b_1 = c_1$	a_2	b_2	c2
o°00′	7.99669	7.99374		∞	0.372	10°00′	7.99655	7.99369	9.621	9.926	0.398
10	669	374	7.839	8.137	0.372	10	655	369	9.628	9.933	0.399
20	669 669	374 374	8.140 8.316	8.438 8.614	0.372	20	654 654	369 369	9.636 9.643	9.941 9.948	0.400
30 40	669	374	8.441	8.739	0.372	30	654	369	9.650	9.940	0.401
50	669	374	8.538	8.836	0.372	50	653	369	9.657	9.963	0.403
1 00	669	374	8.617	8.915	0.372	11 00	653	368	9.663	9.970	0.404
10 20	669 668	374 374	8.684 8.742	8.982 9.040	0.372	10	652 652	368 368	9.670 9.677	9.977 9.983	0.404
30	668	374	8.793	9.091	0.373	30	651	368	9.683	9.990	0.406
40	668	374	8.839	9.137	0.373	40	651	368	9.690	9.997	0.407
50	668	374	8.880	9.179	0.373	50	650	368	9.696	0.003	0.408
2 00 10	668 668	374 373	8.918 8.953	9.216 9.251	0.373	12 00	650 649	367 367	9.702 9.708	0.010	0.409
20	668	373	8.985	9.283	0.373	20	649	367	9.714	0.023	0.412
30	668	373	9.015	9.314	0.374	30	648	367	9.720	0.029	0.413
40	668 668	373	9.043	9.342	0.374	40	648	367 367	9.726	0.035	0.414
3 ∞	668	373 373	9.069	9.368 9.393	0.374	13 00	647 646	367 366	9.732 9.738	0.041	0.415
10	667	373	9.118	9.417	0.375	10	646	366	9.744	0.054	0.417
20	667	373	9.140	9.439	0.375	20	645	366	9.749	0.060	0.418
30	667 667	373	9.161	9.460 9.481	0.375	30	645	366 366	9.755	0.065	0.419
40 50	6 67	373 373	9.201	9.500	0.376	40 50	644 644	365	9.761 9.766	0.071	0.420
4 00	667	373	9.220	9.519	0.376	14 00	643	365	9.771	0.083	0.423
10	666	373	9.237	9.537	0.377	10	642	365	9.777	0.088	0.424
20	666 666	373	9.254 9.271	9·554 9·570	0.377	20	642 641	365 365	9.782	0.094	0.425
30 40	666	373 373	9.271	9.586	0.378	30	640	364	9.792	0.105	0.428
50	666	373	9.302	9.602	0.378	50	640	364	9.798	0.111	0.429
5 ∞	665	373	9.317	9.617	0.379	15 00	639	364	9.803	0.116	0.430
10 20	665 665	373 372	9.331 9.345	9.631 9.645	0.379	10	639 638	364 363	9.808 9.813	0.121	0.431
30	665	372	9.358	9.659	0.380	30	637	363	9.818	0.132	0.434
40	664	372	9.372	9.672	0.380	40	637	363	9.822	0.137	0.435
6 00	664 664	372	9.384	9.685 9.697	0.381	16 00	636	363	9.827	0.142	0.437
10	664	372 372	9.397 9.409	9.709	0.382	10 00	635 635	363 362	9.832 9.837	0.147	0.438
20	663	372	9.420	9.721	0.383	20	634	362	9.841	0.158	0.441
30	663	372	9.432	9.732	0.383	30	633	362	9.846	0.163	0.442
40 50	663 662	372 372	9·443 9·453	9·744 9·755	0.384	40 50	632 632	362 361	9.851 9.855	0.168	0.443
7 00	662	372	9.464	9.765	0.385	17 00	631	361	9.860	0.178	0.446
10	662	37 I	9.474	9.776	0.386	10	630	361	9.864	0.182	0.448
20	662 661	371	9.484 9.494	9.786 9.796	0.386 0.387	20	630 629	361 360	9.869 9.873	0.187	0.449
30 40	661	37 I 37 I	9.494	9.806	0.387	30	628	360 360	9.878	0.192	0.450
50	661	371	9.513	9.816	0.388	50	627	360	9.882	0.202	0.453
8 00	660 660	371	9.523	9.825	0.389	18 00	627	360	9.886	0.206	0.455
10 20	659	37 I 37 I	9.532 9.541	9.834 9.843	0.389	10	626 625	359 359	9.890 9.895	0.211	0.456
30	659	371	0.540	9.852		30	624	359	9.899	0.220	- 1
40	659	370	9.558	9.861	0.392	40	624	359 358	9.903	0.225	0.461
9 ∞	6 <u>5</u> 8 6 <u>5</u> 8	370 370	9.566	9.870 9.878		19 00	623 622	358	9.907	0.229	0.463
10	657	370	9·57.5 9·583	9.886		19 00	621	358 358	9.915	0.239	0.466
20	657	370	9.591	9.895	0.395	20	620	358	9.919	0.243	0.467
30	657 656	370	9.598	9.903		30	620 619	357	9.923	0.248	0.469
40 50	656	370 369	9.606 9.614	9.910 9.918		40 50	618	357 357	9.927 9.931	0.252	0.470
10 00	655	369	9.621	9.926		20.00	617	357	9.935	0.261	0.474

TABLE 15. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE ENGLISH FOOT. [Derivation and use of table explained or a local second secon

		3 _ 4	-	<i>b</i> ₂		4	-		-		
φ	<i>a</i> ₁	$b_1 = c_1$				φ	<i>a</i> ₁	$b_2 = c_2$	<i>a</i> ₂	<i>b</i> ₂	C2
20°00′ 10	7.99617	7·99357 356	9.935 9.939	0.261	0.474	30°00′	7.99558 557	7·99337 337	0.135	0.496	0.593
20	615	356	9.943	0.270	0.477	20	556	336	0.141	0.503	0.598
30 40	615 614	356	9.947 9.9 51	0.274	0.479	30 40	555 554	336	0.144	0.507	0.600
50	613	355 355	9.955	0.282	0.482	50	553	335 335	0.149	0.514	0.605
21 00	612	355	9.958	0.287	0.484	31 00	552	335	0.152	0.518	0.607
10	611	355 354	9.962 9.966	0.291	0.486	10 20	550 549	334 334	0.155	0.522	0.610
30	609 608	354	9.970	0.299	0.489	30	548	333	0.161	0.529	0.615
40 50	608	354 353	9.973 9.977	0.304	0.491	40 50	547 546	333 333	0.164	0.532	0.617
22 00	607	353	9.981	0.312	0.494	32 00	545	332	0.169	0.540	0.622
10 20	606 605	353	9.984	0.316	0.496	10	544	332	0.172	0.543	0.624
30	604	353 352	9.988	0.320	0.498	30	542 541	33 ² 33 ¹	0.175	0.547	0.627
40	603	352	9.995	0.328	0.502	40	540	331	0.180	0.554	0.632
50 23 00	602 601	352 351	9.998	0.332	0.503	33 00	539 538	330	0.183	0.558	0.634 0.637
10	600	351	0.005	0.340	0.507	10	537	330	0.188	0.565	0.639
20	600	351	0.009	0.344	0.509	20	535	329	0.191	0.568	0.642
30 40	599 598	350 350	0.012	0.348	0.511	30	534 533	329 328	0.194	0.572	0.644
50	597	350	0.019	0.356	0.515	50	532	328	0.199	0.579	0.650
24 00	596 595	349 349	0.023	0.360	0.517	34 00	531 529	328 327	0.202	0.583	o.652 o.655
20	594	349	0.029	0.368	0.520	20	528	327	0.208	0.590	0.657
30	593	348 348	0.033	0.372	0.522	30	527 526	326 326	0.210	0.593 0.597	0.660
40 50	592 591	348	0.036	0.376	0.526	50	525	326	0.216	0.600	0.665
25 00	590	347	0.043	0.384	0.528	35 00	523	325	0.218	0.604	0.668
10	589 588	347 347	0.046	0.388	0.530	10 20	522 521	325 324	0.221	0.611	0.673
30	587	346	0.052	0.396	0.534	30	520	324	0.226	0.615	0.676
40 50	586 585	346 346	0.056	0.399	0.536	50	519 517	324 323	0.229	0.618	0.679
26 00	584	345	0.062	0.407	0.540	36 00	516	323	0.234	0.625	0.684
10	583 582	345 345	0.065	0.411	0.543	10 20	515 514	322 322	0.237	0.629	0.687
30	581	343	0.072	0.418	0.547	30	512	322	0.242	0.636	0.692
40	580	344	0.075	0.422	0.549	40	511	321	0.245	0.640	0.695
27 00	579 578	344 343	0.078	0.426	0.551	37 00	510	321 320	0.247	0.643	0.698
10	577	343	0.084	0.433	0.555	10	507	320	0.253	0.650	0.703
20	576	343	0.087	0.437	0.557	20	506 505	320	0.255	0.654	0.706
30	575 574	342 342	0.093	0.441	0.559	30 40	504	319	0.260	0.661	0.712
50	573	342	0.096	0.448	0.564	50	503	318	0.263	0.665	0.715
28 00	57 I 570	341 341	0.099 0.102	0.452	0.566	38 00	501 500	318	0.266	0.668	0.717
20	569	341	0.105	0.460	0.570	20	499	317	0.271	0.675	0.723
30 40	568 567	340 340	0.108	0.463		30 40	· 498 496	317	0.273	o.679 o.683	0.726
50	566	340	0.114	0.407		50	495	316	0.278	0.686	0.732
29 00 10	565	339	0.117	0.474		39 00	494	315	0.281	o.690 o.693	0.735 0.738
20	564 563	339 338	0.120	0.478		20	492 491	315	0.286	0.693	0.741
30	562	338	0.126	0.485	0.586	30	490	314	0.289	0.701	0.744
40 50	561 560	338	0.129	0.489		40 50	489 487	314	0.291	0.704	0.747
30 00	558	337	0.135		0.593	40 00	486	313	0.296	0.711	0.753
		1				1					

TABLE 15.

LOCARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT = THE ENGLISH FOOT.

UNIT = The service of table explained on p. lx.

φ	a_1	$b_1 = c_1$	_a ₂	<i>b</i> ₂	<i>C</i> ₂	φ	<i>a</i> ₁	$b_1 = c_1$	a ₂	<i>b</i> ₂	c ₂
40°00′	7.99486	7.99313	0.296	0.711	0.752	50°00′	7.99409	7.99287	0.448	0.939	0.955
10	485	312	0.299	0.715	0.755	10	408	287	0.450	0.944	0.958
20	484	312	0.301	0.719	0.759	20	407 406	287 286	0.453	0.948	0.962
30 40	482 481	312 311	0.304	0.722 0.726	0.762	30	404	286	0.458	0.952 0.956	0.970
50	480	311	0.309	0.730	0.768	50	403	285	0.460	0.960	0.974
41 00	479	310	0.312	0.733	0.771	51 00	402	285	0.463	0.964	0.978
10	477	310	0.314	0.737	0.774	10	401	284	0.466	0.968	0.982
20	476	309	0.317	0.740	0.777	20	399	284 284	0.468	0.972	0.985
30 40	475 473	30 9	0.319	0.744 0.748	0.780	30	398 397	283	0.471	0.976 0.981	0.993
50	472	308	0.324	0.751	0.786	50	396	283	0.476	0.985	0.997
42 00	471	308	0.327	0.755	0.789	52 00	394	282	0.478	0.989	1.001
10	470	307	0.329	0.759	0.792	10	393	282 281	0.481	0.993	1.005
20	468 467	307 306	0.332	0.762	0.796	20	392 391	281	0.484	0.998	1.009
30 40	466	306	0.334	0.770	0.802	30	189	281	0.489	1.006	1.017
50	464	306	0.339	0.774	0.805	50	388	280	0.491	1.010	1.021
43 00	463	305	0.342	0.777	0.808	53 00	387	280	0.494	1.015	1.025
10	462	305	0.344	0.781	0.812	10 20	386	279	0.497	1.019	1.030
20	461	304 304	0.347	0.785	0.818	30	384 383	279 279	0.499	1.023	1.034
30 40	459 458	303	0.352	0.792	0.821	40	382	278	0.502	1.032	1.042
50	457	303	0.354	0.796	0.824	50	381	278	0.507	1.036	1.046
44 00	455	303	0.357	0.800	0.828	54 ∞	379	277	0.510	1.041	1.050
10	454	302	0.359	0.803 0.807	0.831	10 20	378	277	0.512	1.045	1.055
20	453 452	302 301	0.364	0.811	0.838	30	377 376	277 276	0.515	1.049	1.059
30 40	450	301	0.367	0.815	0.841	40	375	276	0.520	1.058	1.067
50	449	300	0.370	0.818	0.844	50	373	275	0.523	1.063	1.072
45 00	448	300	0.372	0.822	0.848	55 00	372	275	0.526	1.067	1.076
10	446	300 299	0.375	0.826	0.851	20	371	275 274	0.528	1.072 1.076	1.080
30	444	299	0.380	0.833	0.858	30	369	274	0.534	1.081	1.089
40	443	298	0.382	0.837	0.861	40	367	273	0.537	1.085	1.093
50	441	298	0.385	0.841	0.865	50	366	273	0.539	1.090	1.098
46 00	440	297 297	0.387	0.845	0.868	56 00	365 364	273 272	0.542	1.094	1.102
20	439 437	297	0.390	0.853	0.875	20	363	272	0.545	1.104	1.111
30	436	296	0.395	0.856	0.878	30	361	271	0.550	1.108	1.115
40	435	296	0.397	0.860	0.882	40	360	271	0.553	1.113	1.120
50	434	295	0.400	0.864	0.885	50	359	271	0.556	1.118	1.124
47 00	432 431	295 294	0.402	0.872	0.892	57 00	358 357	270	0.558	1.122	1.129
20	430	294	0.407	0.876	0.896	20	356	269	0.564	1.132	1.138
30	428	294	0.410	0.880	0.900	30	354	269	0.567	1.137	1.143
40	427	293	0.412	0.884	0.903	40	353	269 268	0.569	1.141	1.147
48 00	426 425	293	0.415	0.891	0.907	58 00	35 ² 35 ¹	268	0.572	1.146	1.152
10	423	292	0.417	0.895	0.914	10	350	267	0.575	1.156	1.162
20	422	291	0.422	0.899	0.918	20	349	267	0.581	1.161	1.166
30	421	291	0.425		0.921	30	347	267	0.583	1.166	
40 50	420 418	291	0.427	0.907		40 50	346	266	0.586 0.589	1.170	1.176 1.181
49 00	1	290	0.432	0.915	1	59 ∞	343	266	0.592	1.180	
10	416	289	0.435	0.919	0.936	10	343	265	0.595	1.185	1.190
20	414	289		0.923	1 -	20	342	265	0.598	1.190	1.195
30	413	289 288	0.440			30	341	264 264	0.600	1.195	
50	411	288	0.443	0.931		40 50	339 338	264	0.606	1.205	
50 00		287	0.448	0.939		60 00	337	263	0.609	1.210	
		1			1						

TABLE 15. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. ____UNIT=THE ENGLISH FOOT.

60°00′		$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	C2	φ	a_1	$b_1 = c_1$	a_2	b2	62
	7.99337	7.99263	0.609	1.210	1.215	70°00′	7.99278	7.99244	0.809	1.575	1.576
10	336	263	0.612	1.216	1.220	10	277	243	0.813	1.583	1.584
20	335	263 262	0.615	1.221	1.225	20	277	243	0.817	1.590	1.591
30 40	334 333	262	0.621	1.226 1.231	1.230	30 40	276 275	243 242	0.821	1.598	1.599
50	332	261	0.624	1.236	1.240	50	274	242	0.829	1.613	1.614
61 00	331	261	0.627	1.241	1.245	71 00	273	242	0.833	1.621	1.621
10	320	261	0.630	1.247	1.251	10	273	242	0.837	1.629	1.629
20	328	260	0.633	1.252	1.256	20	272	241	0.841	1.636	1.637
30 40	327 326	260 260	o.636 o.639	1.257	1.261	30	27 I 270	24I 24I	0.845 0.849	1.644 1.652	1.645 1.653
50	325	259	0.642	1.268	1.272	50	269	241	0.854	1.660	1.661
62 00	324	259	0.645	1.273	1.277	72 00	269	240	0.858	1.669	1.669
10	323		0.648	1.279	1.282	10	26 8	240	0.862	1.677	1.677
20	322	259 258	0.651	1.284	1.288	20	267	240	0.866	1.685	1.686
30	321	258	0.654	1.290	1.293	30	266	240	0.871	1.694	1.694
40	320 319	257 257	0.657	1.295	1.298	40	266 265	239	0.875 0.880	I.702 I.7I0	1.702
50 63 00	318	257	0.663	1.301	1.304	50 73 00	264	239 239	0.884	1.719	1.720
10	317	256	0.666	1.312	1.315	73 00	264	239	0.889	1.728	1.728
20	316	256	0.669	1.318	1.320	20	263	238	0.893	1.737	1.737
30	315	256	0.672	1.323	1.326	30	262	238	0.898	1.745	1.746
40	314	255	0.676	1.329	1.332	40	261	238	0.903	1.754	1.755
50	313	255	0.679	1.335	1.337	50	261	238	0.907	1.763	1.764
64 00	312	255	0.682	1.341	1.343	74 00	260	238	0.912	1.772	1.773
20	311	254 254	0.688	I.346	1.349	10 20	259 259	237 237	0.917	1.782	1.782
30	309	254	0.692	1.358	1.360	30	258	237	0.927	1.800	1.801
40	308	253	0.695	1.363	1.366	40	257	237	0.931	1.810	1.810
50	307	253	0.698	1.370	1.372	50	257	236	0.936	1.820	1.820
65 ∞	306	253	0.701	1.376	1.378	75 ∞	256	236	0.941	1.829	1.830
10	305	252	0.705	1.382	1.384	10	255	236	0.946	1.839	1.839
20	304	252	0.708	1.388	1.390	20	255	236	0.952	1.849	1.849
30 40	303 302	252 251	0.715	1.394	1.402	30	254 254	236 235	0.957	1.869	1.869
50	301	251	0.718	1.406	1.408	50	253	235	0.967	1.879	1.880
66 00	300	251	0.721	1.413	1.414	76 00	252	235	0.973	1.890	1.890
10	299	250	0.725	1.419	1.421	10	252	235	0.978	1.900	1.901
20	298	250	0.728	1.425	1.427	20	251	235	0.984	1.911	1.911
30	297	250	0.732	1.432	1.433	30 40	250	234	0.989	1.922	1.922
40 50	296	249 249	0.735	1.438 1.444	1.440	50	250 249	234	1.000	1.933 1.944	1.933
67 00	294	249	0.742	1.451	1.452	77 00	249	234	1.006	1.955	1.955
10	293	249	0.746	1.457	1.459	10	248	234	1.012	1.966	1.966
20	292	248	0.749	1.464	1.465	20	248	233	1.018	1.978	1.978
30	291	248	0.753	1.470	1.472	30	247	233	1.024	1.989	1.989
40	290 289	248	0.756	1.477	1.478	40	247	233	1.030	2.001	2.001
68 oo	289	247	0.760	1.484	1.485	78 oo	246	233	1.036	2.013	2.013
10	288	247 247	0.767	1.491	I.492 I.499	78 00	245	² 33 ² 33	1.042	2.025	2.025
20	287	246	0.771	1.504	1.505	20	244	232	1.054	2.050	2.050
30	286	246	0.774	1.511	1.512	30	244	232	1.061	2.062	2.062
40	285	246	0.778	1.518	1.519	40	243	232	1.067	2.075	
50	284	246	0.782			50	243	232	1.074	2.088	
69 00	283 282	245	0.786	, 50	1.533	79 00 10	242	232	1.081	2.101	
20	282	245	0.789	1.539		20	242 242	232	1.007	2.114	
30	281	244	0.797	1.553	1.554	30	241	231	1.101	2.142	1
40	280	244	0.801	1.561	1.562	40	241	231	1.108	2.156	2.156
50	279	244	0.805	1.568	1.569	50	240	231	1.116	2.170	
70 00	278	244	0.809	1.575	1.576	80 00	240	231	1.123	2.184	2.184

TABLE 16.
LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.
UNIT = THE METRE.

The second of table explained on p. lx.1

					d use of				_		
φ	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	b_2	c ₂	φ	<i>a</i> ₁	$b_1 = c_1$	a_2	<i>b</i> ₂	c2
0°00′	8.51268	8.50973	∞	∞	1.404	10000	8.51254	8.50968	0.653	0.958	1.430
10	268	973	8.871	9.169	1.404	10	254	968	0.660	0.965	1.431
20	268 268	973	9.172	9.470	1.404	20	253	968	0.668	0.973	1.432
30 40	268	973 973	9.348 9.473	9.646	1.404 1.404	30	² 53 ² 53	968 968	0.675	0.980	1.433
50	268	973	9.570	9.868	1.404	50	252	967	0.689	0.995	1.435
1 00	267	973	9.649	9.947	1.404	11 00	252	967	0.695	1.002	1.436
10	267	973	9.716	0.014	1.404	10	251	967	0.702	1.009	1.436
20	267 267	973	9.774	0.072	1.404	20	251	967	0.709	1.015	1.437
30 40	267	973 973	9.871	0.123	1.405	30	250 250	967	0.715	1.022	1.439
50	267	973	9.912	0.211	1.405	50	249	966	0.728	1.035	1.440
2 00	267	972	9.950	0.248	1.405	12 00	249	966	0.734	1.042	1.441
10 20	267 267	972	9.985	0.283	1.405	10	248	966	0.740	1.048	1.442
30	266	972 972	0.017	0.315	1.405	30	248 247	966	0.746	1.055	I.444 I.445
40	266	972	0.047	0.374	1.406	40	246	966	0.758	1.067	1.446
50	266	972	0.101	0.400	1.406	50	246	965	0.764	1.073	1.447
3 00	266 266	972	0.126	0.425	1.406	13 00	245	965	0.770	1.080	1.448
10 20	266	972 972	0.150	0.449 0.471	I.407	20	245 244	965 965	0.776	1.086	1.449
30	266	972	0.193	0.492	1.407	30	244	965	0.787	1.092	1.451
40	266	972	0.214	0.513	1.408	40	243	964	0.792	1.103	1.452
50	266	972	0.233	0.532	1.408	50	242	964	0.798	1.109	1.454
4 00	265 265	972	0.252	0.551	1.408	14 00	242	964 964	0.803	1.115	1.455 1.456
20	265	972 972	0.286	0.586	1.409	10	24I 24I	964	0.814	1.126	1.457
30	265	972	0.303	0.602	1.409	30	240	963	0.819	1.132	1.458
40	265	972	0.319	0.618	1.410	40	239	963	0.824	1.137	1.460
50 5 00	264 264	972	0.334	0.634	1.410	50	239	963	0.830	1.143	1.461
300	264	972 971	0.349	0.649 0.663	1.411	15 00	238 237	963 963	0.835	1.140	1.462 1.463
20	264	971	0.377	0.677	1.411	20	237	962	0.845	1.159	1.465
30	264	971	0.390	0.691	1.412	30	236	962	0.850	1.164	1.466
40 50	263 263	971 971	0.404	0.704	1.412	40	² 35	962 962	0.854	1.169	1.467
6 00	263	971	0.428	0.729	1.413	16 00	234	961	0.864	1.179	1.470
10	263	971	0.440	0.741	1.414	10	233	961	0.869	1.185	1.471
20	262	971	0.452	0.753	1.415	20	233	961	0.873	1.190	1.473
30	262 262	971	0.464	0.764	1.415	30	232	961	0.878	1.195	1.474
40 50	261	971 971	0.485	0.776 0.787	1.416	50	23I 23I	960	0.887	1.205	1.475
7 00	261	970	0.496	0.797	1.417	17 00	230	960	0.892	1.210	1.478
10	261	970	0.506	0.808	1.417	10	229	960	0.896	1.214	1.480
20	260 260	970	0.516	0.818	1.418	20	228	960	0.901	1.219	1.481
30 40	260	970 970	0.526 0.536	0.828 0.838	1.419	30	228 227	959 959	0.905	1.224	1.482
50	259	970	0.545	0.848	1.420	50	226	959	0.914	1.234	1.485
8 00	259	970	0.555	0.857	1.421	18 00	225	959	0.918	1.238	1.487
10 20	259 258	970	0.564	0.866	1.421	10	225	958	0.922	1.243	1.489
30	258	970 969	0.573	0.875 0.884	1.422	20	224 223	958 958	0.927	1.248	1.490
40	258	969	0.590	0.893	1.424	30 40	223	958	0.935	1.257	1.493
50	257	969	0.598	0.902	1.424	50	222	957	0.939	1.261	1.495
900	257 256	969	0.607	0.910		19 00	221	957	0.943	1.266	
10 20	250 256	969 969	0.615	0.918		20	220 219	957 957	0.947 0.951	1.271	1.498
30	256	969	0.630	0.935	1.428	30	218	956	0.955	1.279	1.501
40	255	969	0.638	0.942	1.428	40	218	956	0.959	1.284	1.502
10 00	255	968 968	0.646			30 00	217 216	956	0.963	1.288	1.504
13 00	254	900	0.053	0.958	1.430	20 00	210	955	0.967	1.293	1.506
l		•									

TABLE 16.
LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.
UNIT=THE METRE.

			,				arned on pa				
φ	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	c2	φ	<i>a</i> ₁	$b_1 = c_1$	a_2	b_2	<i>c</i> ₂
20 ⁰ 00′	8.51216	8.50955	0.967	1.293	1.506	30°00′	8.51157	8.50936	1.167	1.528	1.625
10 20	215	955	0.971	1.297	1.507	10	156	936	1.170	1.532	1.627
30	214 214	955 955	0.975	1.301 1.306	1.509	30	155 154	935 935	1.173	1.535	1.630
40	213	954	0.983	1.310	1.512	40	153	934	1.178	1.543	1.635
50	212	954	0.987	1.314	1.514	50	152	934	1.181	1.546	1.637
21 00	211	954	0.990	1.319	1.516	31 00	151	934	1.184	1.550	1.639 1.642
10 20	210	953 953	0.994	1.323	1.518	20	149 148	933 933	1.187	1.554	1.644
30	208	953	1.002	1.331	1.521	30	147	933	1.193	1.561	1.646
40	207	953	1.005	1.336	1.523	40	146	932	1.195	1.564	1.649
22 00	207	952	1.009	1.340	1.524	50	145	932	1.198	1.568	1.651
10	206 205	952 952	1.013	1.344	1.526	32 00	144 143	931 931	1.201	1.572 1.575	1.656
20	204	951	1.020	1.352	1.530	20	141	931	1.207	1.579	1.659
30	203	951	1.023	1.356	1.532	30	140	930	1.209	1.582	1.661
40	202 201	951 951	1.027	1.360	1.534	40 50	139	930 929	1.212	1.586	1.664
23 00	200	950	1.034	1.368	1.535	33 00	137	929	1.218	1.593	1.669
10	199	950	1.037	1.372	1.539	10	136	929	1.220	1.597	1.671
20	198	950	1.041	1.376	1.541	20	134	928	1.223	1.600	1.674
30	197	949	1.044	1.380	1.543	30	. 133	928 927	1.226	1.604 1.607	1.676
40 50	197 196	949 949	1.048	1.384	I.545 I.547	40 50	132 131	927	1.229	1.611	1.679
24 00	195	948	1.055	1.392	1.549	34 00	130	927	1.234	1.615	1.684
10	194	948	1.058	1.396	1.550	10	128	926	1.237	1.618	1.687
20	193	948	1.061	1.400	1.552	20	127	926	1.239	1.622	1.689
30 40	192 191	947 947	1.065	1.404	1.554	30	126 125	925 925	1.242 1.245	1.625	1.692
50	190	947	1.071	1.412	1.558	50	124	925	1.248	1.632	1.697
25 00	189	946	1.075	1.416	1.560	35 00	122	924	1.250	1.636	1.700
10 20	188	946 946	1.078 1.081	I.420 I.424	1.562	10	I 2 I I 2 O	924 923	1.253	1.639	1.702
30	186	945	1.084	1.427	1.566	30	119	923	1.258	1.647	1.708
40	185	945	1.088	1.431	1.568	40	118	923	1.261	1.650	1.711
50	184	945	1.091	1.435	1.570	50	116	922	1.264	1.654	1.713
26 00 10	183 182	944 944	1.094	1.439 1.443	I.572 I.575	36 00	115	922 921	1.266	1.657 1.661	1.716
20	181	944	1.100	1.447	1.577	20	113	921	1.271	1.664	1.721
30	180	943	1.104	1.450	1.579	30	111	921	1.274	1.668	1.724
40	179	943	1.107	1.454	1.581	40	110	920	1.277	1.672	1.727
27 00	173	943 942	1.110	1.458	1.583	37 00	109	920	1.279	1.679	1.730
10	176	942	1.116	1.465	1.587	10	106	919	1.285	1.682	
20	175	942	1.119	1.469	1.589	20	105	919	1.287	1.686	1.735 1.738
30	174	941	1.122	1.473	1.591	30	104	918 918	1.290	1.689	1.741
40 50	172 171	941 941	1.125	I.477 I.480	1.594 1.596	40 50	103	917	1.292	1.693	I.744 I.747
28 00	170	940	1.131	1.484	1.598	38 00	100	917	1.298	1.700	1.749
10	169	940	1.134	1.488	1.600	10	099	916	1.300	1.704	1.752
20	168 167	940	1.137	1.492	1.602	20	098	916	1.303	1.707	1.755
30 40	166	939 939	1.140	1.495	1.605	30 40	097 095	916 915	1.305	1.711	1.761
50	165	939 9 3 8	1.146	1.503	1.609	50	094	915	1.310	1.718	1.764
29 00	164	938	1.149	1.506		39 00	093	914	1.313	1.722	1.767
10 20	163 162	938 937	1.152	1.510	1.614	10 20	092 090	914 914	1.316	1.725	1.770
30	161	937	1.158	1.517	1.618	30	0 89	914	1.321	1.733	1.776
40	160	937	1.161	1.521	1.620	40	o 88	913	1.323	1.736	1.779
50	158	936	1.164	1.525	1.623	50	086	912	1.326	1.740	
30 00	1 57	936	1.167	1.528	1.625	40 00	085	912	1.328	1.743	1.784
<u> </u>			-			1					

TABLE 16.
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.
UNIT=THE METRE.

	φ	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	c2	φ	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	·· b ₂	c2
40	^၀ ၀၀′	8.51085	8.50912	1.328	1.743	1.784	50°00′	8.51008	8.50886	1.480	1.971	1.987
	10	084	911	1.331	1.747	1.787	10	007	886	1.482	1.975	1.990
	20	083 081	911	1.333	1.751	1.790	20	006	885 885	1.485	1.980	1.994
1	30 40	080	910	1.336 1.338	1.754	1.793	30 40	005	885	1.490	1.988	2.002
li i	50	079	910	1.341	1.762	1.800	50	002	884	1.492	1.992	2.006
41		078	909	1.344	1.765	1.803	51 ∞	100	884	1.495	1.996	2.010
	10 20	076	909	1.346	1.769	1.806	20	8.50998	883 883	1.498	2.000	2.014
	30	075 074	908	1.349	1.772 1.776	1.812	30	997	882	1.500	2.008	2.021
	40	072	908	1.354	1.780	1.815	40	996	882	1.505	2.013	2.025
	50	071	907	1.356	1.783	1.818	50	994	882	1.508	2.017	2.029
42	2 00	070 069	907 906	1.359	1.787	1.821	52 00	993	881 881	1.510	2.021	2.033
	10 20	067	906	1.361	1.791 1.794	1.824	10 20	992	880	1.513	2.025	2.037 2.041
	30	066	905	1.366	1.798	1.831	30		880	1.518	2.034	2.045
	40	065	905	1.369	1.802	1.834	40	990 988	880	1.521	2.038	2.049
Ш.,	50	063	905	1.371	1.805	1.837	50	987	879	1.523	2.042	2.053
II 43	3 00 . 10	062 061	904 904	1.374	1.809	1.840	53 00	986 985	879	1.526	2.047 2.051	2.057
1)	20	060	903	1.379	1.817	1.847	20	983	878	1.531	2.055	2.066
H	30	058	903	1.381	1.820	1.850	30	982	877	1.534	2.060	2.070
1	40	057	902	1.384	1.824	1.853	40	981	877	1.537	2.064	2.074
11/4/	50 00	056 054	902 902	1.386	1.828	1.856	50 54 ∞	980	877 876	1.539	2.068	2.078
11	10	053	901	1.391	1.835	1.863	10	977	876	1.544	2.077	2.086
	20	052	901	1.394	1.839	1.866	20	976	875	1.547	2.081	2.091
1	30	051	900	1.396	1.843	1.870	30	975	875	1.550	2.086	2.095
	40 50	0 49 0 48	900 899	1.399	1.847	1.876	40 50	973	875 874	1.552	2.090	2.099
45	500	047	899	1.404	1.854	1.880	55 00	971	874	1.558	2.099	2.108
	10	045	899	1.407	1.858	1.883	10	970	873	1.560	2.104	2.112
1	20	044 043	898 898	1.409	1.862	1.886	20	969	873 873	1.563	2.108	2.116
	30 40	043	897	1.414	1.869	1.893	30 40	966	872	1.568	2.117	2.125
	50	040	897	1.417	1.873	1.897	50	965	872	1.571	2.122	2.130
46	00	039	896	1.419	1.877	1.900	56 00	964	871	1.574	2.126	2.134
	10 20	038 036	896 896	I.422 I.424	1.885	1.903	10	963	871 871	1.577	2.131 2.136	2.138
	30	035	895	1.427	1.888	1.910	30	960	870	1.582	2.140	2.147
H	40	034	895	1.429	1.892	1.914	40	959	870	1.585	2.145	2.152
-را[50 7 00	033	894 894	1.432	1.896	1.917	50	958	869 869	1.588	2.150	2.156
4/	10	030	893	I.434 I.437	1.904	1.921	57 00	957 956	869	1.590	2.154 2.159	2.166
	20	029	893	1.439	1.908	1.928	20	954	868	1.596	2.164	2.170
1	30	027	893 892	1.442	1.912	1.932	30	953	868	1.599	2.169	2.175
H	40 50	020	892	I.444 I.447	1.916	1.935	40 50	952 951	867 867	1.601	2.173 2.178	2.179
48	3 00	024	891	1.449	1.923	1.942	58 00	950	867	1.607	2.183	2.189
	10	022	891	1.452	1.927	1.946	10	949	866	1.610	2.188	2.193
	20	02I 020	890	1.454	1.931	1.950	20	947	866 866	1.613	2.193	2.198
	40	019	890	1.457	1.939	1.953 1.957	30	945	865	1.618	2.197	2.203
	50	017	889	1.462	1.943	1.961	50	944	865	1.621	2.207	2.213
49	10	016	889 888	1.464 1.467	1.947	1.964	59 00	943	864 864	1.624 1.627	2.212	
	20	013	888	1.469	1.951	1.968	20	942	864	1.630	2.217 2.222	
	30	012	888	1.472	1.959	1.975	30	939	863	1.632	2.227	2.232
1	40	010	887 887	1.475	1.963	1.979	40	938	863	1.635	2.232	2.237
50	50	010	886	1.477	1.967	1.983	60 00	937 936	863 862	1.638	2.237	
1130				11400	1.9/1	9~/	30 00	930	002	1.041	42	2.24/

TABLE 16.
LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.
UNIT=THE METRE.

ø	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	c2	φ	<i>a</i> ₁	$b_1 = c_1$	a ₂	<i>b</i> ₂	<i>c</i> ₂
60°00′	8.50936	8.50862	1.641	2.242	2.247	70°00′	8.50877	5.50842	1.841	2.607	2.608
IO	935	862	1.644	2.247	2.252	10	876	842	1.845	2.615	2.616
20	934	861	1.647	2.253	2.257	20	875	842	1.849	2.622	2.623
30 40	933	861 861	1.650 1.653	2.258	2.262	30 40	8 ₇₅ 8 ₇₄	842 841	1.853	2.630 2.637	2.631 2.638
50	932 931	860	1.656	2.268	2.272	50	873	841	1.861	2.645	2.646
61 00	929	860	1.659	2.273	2.277	71 00	872	841	1.865	2.653	2.653
10	928	860	1.662	2.279	2.283	10	871	841	1.860	2.661	2.661
20	927	859	1.665	2.284	2.288	20	871	840	1.873	2.668	2.669
30	926	859 858	1.668	2.289	2.293	30	870	840	1.877	2.676	2.677
40	925	858	1.671 1.674	2.295	2.298	40	869 868	840	1.881	2.684	2.685
62 00	924 923	858	1.677	2.300	2.303	72 00	868	840 839	1.890	2.692 2.701	2.693 2.701
10	923	857	1.680	2.311	2.314	10	867	839	1.894	2.709	2.709
20	921	857	1.683	2.316	2.320	20	866	839	1.898	2.717	2.718
30	920	857	1.686	2.322	2.325	30	865	839	1.903	2.725	2.726
40	919	856	1.689	2.327	2.330	40	865	838	1.907	2.734	2.734
50.	918	856	1.692	2.333	2.336	50	864	838	1.912	2.742	2.742
63 00	917	856 855	1.695 1.698	2.338	2.341	73 00	863 862	838 838	1.916	2.751 2.760	2.75I 2.760
20	915	855	1.701	2.344 2.350	2.347	20	862	837	1.925	2.769	2.769
30	913	855	1.704	2.355	2.358	30	861	837	1.930	2.777	2.778
40	912	854	1.708	2.361	2.364	40	860	837	1.935	2.786	2.787
50	911	854	1.711	2.367	2.369	50	860	837	1.939	2.795	2.796
64 00	910	854	1.714	2.373 2.378	2.375	74 00	859	836	1.944	2.804	2.805
10 20	909	853	1.717		2.381	10 20	858 858	836 836	1.949	2.814	2.814 2.823
30	907	853 853	1.720 1.724	2.384	2.387	30	857	836	1.954	2.832	2.833
40	906	852	1.727	2.396	2.398	40	1 856	836	1.063	2.842	2.842
50	905	852	1.730	2.402	2.404	50	856	835	1.968	2.851	2.852
65 00	904	852	1.733	2.408	2.410	75 00	855	835	1.973	2.861	2.861
10	903	851	1.737	2.414	2.416	10	854	835	1.978	2.871	2.87 I 2.88 I
20	902	851	1.740	2.420	2.422	20	854 853	835	1.984	2.891	2.891
30 40	901	851 850	I.743 I.747	2.426 2.432	2.434	30 40	852	834 834	1.994	2.901	2.901
50	900	850	1.750	2.438	2.440	50	852	834	1.999	2.911	2.912
66 00	899	850	1.753	2.445	2.446	76 00	851	834	2.005	2.922	2.922
10	898	849	1.757	2.451	2.453	10	851	834	2.010	2.932	2.933
20	897	849	1.760	2.457	2.459	20	850	833	2.015	2.943	2.943
30	896 895	849 848	1.764	2.464	2.465	30	849	833 833	2.021	2.954	2.954
50	894	848	1.771	2.470 2.476	2.472	50	849 848	833	2.032	2.965	2.976
67 00	893	848	1.774	2.483	2.484	77 00	848	833	2.038	2.987	2.987
10	892	847	1.778	2.489	2.491	10	847	832	2.044	2.998	2.998
20	891	847	1.781	2.496	2.497	20	847	832	2.050	3.010	3.010
30	890 889	847	1.785	2.502	2.504	30	846	832	2.056	3.021	3.021
40 50	888	847 846	1.788	2.509 2.516	2.510	50	845 845	832 832	2.068	3.033 3.045	3.033
68 00	887	846	1.795	2.522	2.524	78 00	844	832	2.074	3.057	3.057
10	887	846	1.799	2.529	2.531	IO	844	831	2.080	3.069	3.069
20	886	845	1.803	2.536	2.537	20	843	831	2.086	3.082	3.082
30	885	845	1.806	2.543	2.544	30	843	831	2.093	3.094	
40 50	88 ₄ 88 ₃	845 844	1.810	2.550 2.557	2.551	50	842 842	831 831	2.099	3.107	
69 00	882	844	1.818	2.564		79 00	841	831	2.113	-	4 -
10	881	844	1.821	2.571	2.572	10	841	830	2.119	3.146	3.146
20	880	844	1.825	2.578		20	840	830	2.126	3.160	
30	880	843	1.829	2.585	2.586	30	840	830	2.133	3.174	3.174
40	879 878	843	1.833	2.593	2.594	40	839	830	2.140	3.188	
70 00		843	1.837	2.600	2.601	80 00	839 839	830 830	2.148	3.202	3.202 3.216
1,500	87 7	842	1.041	2.00/	2.000	35 65	39	330	35	3.210	3.210
	1	•						·	1	•	

TABLE 17.
LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

Latitude Interval.	Latitude. O ^O	Latitude.	Latitude. 20	Latitude	Latitude.
	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1007.66	1007.66	1007.67	1007.68	1007.71
20	2015.31	2015-32	2015.34	2015.37	2015.41
30	3022.97	3022.98	3023.01	3023.06	3023.12
40	4030.63	4030.64	4030.68	4030.74	4030.83
50	5038.28	5038-30	5038.35	5038.42	5038.54
60	6045.94	6045.96	6046.02	6046.11	6046.24
10/	60459.4	60459.6	60460+2	60461.1	60462.4
20	120918.8	120919.2	120920.4	120922.2	120924.8
30	181378.3	181378.8	181380.6	181383.3	181387.3
40	241837.7	241838.4	241840.8	241844.4	241849.7
50	302297.1	302298.0	302301.0	302305.5	302312.1
60	362756.5	362757.6	362761.2	362766.6	362774-5
	5°	6°	7°	8°	9°
10//	***************************************	1007.77	1007 81	1007.86	1007.01
20	2015.47	2015.54	1007.81 2015.62	1007.86 2015.71	2015.82
30	3023.20	3023.31	3023.43	3023.56	3023.72
40	4030.94	4031.08	4031.24	4031.42	4031.63
50	5038.67	5038.84	5089.04	5039.28	5039.54
60	6046.41	6046.61	6046.85	6047.13	6047.45
10'	60464.1	60466.1	60468.5	60471.3	60474.5
20	120928.2	120932.3	120937-1	120942.6	120949.0
30	181392.3	181398.4	181405.6	181413.9	181423.4
40	241856.4	241864.6	241874.2	241885.2	241897.9
50 60	302320.5 362784.6	302330.7 362796.8	302342.7 362811.2	302356.5 362827.8	302372.4 362846.9
<u> </u>			302011.2		
	100	110	12°	13°	14°
10"	1007.97	1008.03	1008.10	1008.18	1008.26
20	2015.93	2016.06	2016.20	2016.35	2016.51
30	3023.90	3024.09	3024.30	3024-52	3024.77
40	4031.86	4032.12	4032.40	4032.70	4033.02
50 60	5039.83 6047.80	5040.15 6048.18	5040.50 6048.60	5040.88 6049.05	5041.28 6049.54
10'					
20	60478.0 120955.9	60481.8 120963.6	60486.0	60490.5 120981.0	60495.4
30	181433.9	181445.4	181458.0	181471.5	120990.7 181486.1
40	241911.8	241927.2	241944.0	241962.0	241981.4
50	302389.8	302409.0	302430.0	302452.5	241981.4 302476.8
60	362867.8	362890.8	362916.0	362943.0	362972.2
	15°	16°	17°	18°	19°
10//	1008.34	1008.44	1008.53	1008.63	1008.74
20	2016.69	2016.87	2017.06	2017.27	2017.48
30	3025.03	3025.30	3025.60	3025.90	3026.23
40	4033.37	4033.74	4034.13	4034-54	4034.97
50 60	5041.72 6050.06	5042.18 6050.61	5042.66 6051.19	5043.18 6051.81	5043.71 6052.45
10/	60500.6	60506.1	60511.9	60518.1	60524.5
20	121001.2	121012.2	121023.8	121036.2	121049.0
30	181501.7	181518.3	181535.8	181554.3	181573.6
40	242002.3	242024.4 302530.5	242047.7 302559.6	242072.4 302590.5	242098.1 302622.6
50 60	302502.9 363003.5	363036.6	363071.5	363108.6	363147.1
	20°	21°	220	23°	24°
10//	1008.86	*050	*05:		
20	2017.71	2017.95	2018.19	1009.22 2018.44	2018.70
30	3026.56	3026.92	3027.28	3027.66	3028.06
40	4035.42	4035.89	4036.38	4036.88	4037.41
50 60	5044.28	5044.86	5045.48	5046.10	5046.76
10/	6053.13	6053.84 60538.4	6054.57	6055.33	6056.11
20	121062.6	121076.8	60545.7	121106.5	121122.2
30	181593.9	181615.1	181637.1	181659.8	181683.4
40	242125.2	242153.5	242182.8	242213.0	242244.5
50	302656.5	302691.9	302728.5	302766.3	302805.6
60	363187.8	363230.3	363274.2	363319.6	363366.7
				•	

TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

Latitude Latitude Latitude 25° Latitude 27° Latitude 28° Latitude 29°						
10" 1009.49 1009.62 1009.77 1009.02 1010.07 200 2015.07 2019.03 2015.54 2016.83 2020.13 30 3028.46 3028.83 3029.35 3029.75 3030.30 40 4037.94 4038.51 4048.85 5049.55 5059.33 50 5047.44 5065.75 6058.62 6059.50 6060.40 6056.92 60577.6 6058.62 60595.50 6060.40 20 1211.35 1211.55 1211.73 1211.90 1212.86 3187.97 1387.32 1211.55 1211.73 1211.90 1212.86 30 1817.97 1817.32 1211.73 1211.90 1212.86 30 31.0 32.0 33.0 3297.49 30301.99 60 36341.54 363465.5 363517.1 363569.9 363623.9 30 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3297.49 30301.99 30 30.0 31.0 32.0 33.0 3207.99 30301.99 30 30.0 30.0 30.0 30.0 30.0 30.0 10" 1010.22 1010.38 1010.44 1010.70 2021.73 40 404.8 404.13 404.15 4042.15 4042.8 40 404.8 404.11 4042.15 4042.15 4042.8 40 404.8 4041.11 4042.15 4042.15 4042.8 40 404.8 4044.15 4042.15 4042.8 40 404.8 30.0 30.0 30.0 10" 6061.32 6062.26 6063.22 6064.20 6065.10 6061.32 6062.26 6063.22 6064.20 6065.10 6061.32 6062.26 6063.22 6064.20 6065.10 60 363670.3 363735.8 363793.3 36385.8 39.0 10" 1011.03 1011.20 1011.37 1011.55 1213.03 10" 1011.03 1011.20 1011.37 1011.55 1213.03 10" 1011.03 1011.20 1011.37 1011.55 1013.41 10" 1011.03 1011.20 1011.37 1011.55 1013.65 20 121323.9 121314.4 121364.9 12135.7 1246.7 20 121323.9 121314.4 121364.9 12135.7 1246.7 20 12133.9 6072.46 6073.53 6074.61 6069.20 40		Latitude.		Latitude. 27°	Latitude. 28°	
20		Feet.	Feet.	Feet.	Feet.	Feet.
40	10"	1009.49		1009.77	1009.92	1010.07
40			2019.25		2019.83	
So			4038.51		4020.67	3030.20
60 6056,92 6057,76 6058.62 6059,50 6060,40 10' 6056,92 6057,76 6058.62 121193.5 121155.2 121155.2 121157.3 121159.0 121138.5 181812.0 121193.5 18179.7 181733.7 181758.5 181785.0 121190.0 12128.0 181707.7 181733.7 181758.5 181785.0 121190.0 12128.0 181707.7 181733.7 181758.5 181785.0 121190.0 12128.0 12128.0 12129.0 12128.0 12129.0 1228.			5048.13	5048.85		
20	60	6056.92	6057.76	6058.62		
20	10'	60569.2	60577.6	60586.2	60595.0	60604.0
10	20	121138.5	121155.2	121172.3	121190.0	121208.0
So 30846.1 303487.9 303293.0 303297.9 303219.9 303219.9 30326.2 3030 310 32° 33° 34° 32° 33° 34° 32° 33° 34° 32° 33° 34° 33° 30° 33° 3		181707.7				181812.0
30° 31° 32° 33° 34°	50	302846.1	302887.0			
100/	60			363517.1		
200		30°	310	32°	33°	34°
200	70//	1010.22	1010.18	1010 54	1010.70	rozo 86
40 404.0.88 4041.51 5052.68 5051.50 5054.32 6066.22 6066.22 6064.20 6065.19 6061.32 6062.26 6063.22 6064.20 6065.19 100 6061.32 6062.26 6063.22 6064.20 6065.19 100 6061.32 121226.4 121245.3 121264.4 121283.9 121303.8 130 181839.7 181867.9 181866.6 181925.9 181955.7 40 242452.9 242490.5 242528.8 242507.9 242607.6 303056.1 303113.2 303161.1 3020.9 30250.4 30313.2 303161.1 3020.9 30250.4 30313.2 303161.1 3020.9 30250.4 30313.2 303161.1 3020.9 30250.4 30313.3 30331.1 3033.61 3034.12 3034.64 3035.17 40 4044.13 4044.81 404.50 404.41 3 4044.81 404.50 404.41 3 404.48 1 404.50 406.19 606.21 6066.24 6069.29 6070.34 100 60661.9 6067.21 6068.24 6069.29 6070.34 100 242647.8 242688.5 242729.7 242771.4 242813.4 40 242647.8 242688.5 242729.7 242771.4 242813.4 50 3033.97.7 30403.28 36409.6 30351.7 30404.3 3035.8 304094.6 3035.7 30404.3 3035.8 304094.6 3035.7 30404.3 3035.8 304094.6 3035.7 30404.3 3035.8 304094.6 3035.7 3035.8 3035.7 3035.8 3035.7 3035.7 3035.8 3035.7 3035.8 3035.7 3035.8 3035.7 3035.8 3035.7 3035.7 3035.8 3035.7 3035.7 3035.8 3035.7 3035.8 3035.7 3035.7 3035.8 3035.7 3035.7 3035.7 3035.7 3035.7 3035.7 3035.7 3035.7 3035.7				2021.07		
50		3030.66	3031.13	3031.61	3032.10	3032.59
60 6061,32 6062,26 6063,22 6064,20 6065,19 10' 60613,2 60622,6 6063,22 6064,20 6065,19 20 121226,4 121245,3 12126,4 12123,9 121303,8 181835,7 181807,9 18180,6 181935,9 181955,7 40 242452,9 242490,5 242528,8 242507,9 242607,6 303066,1 303113,2 303161,1 3020,9 30250,4 30250,4 30313,2 303161,1 3020,9 30250,4 30220,6 363679,3 363735,8 363793,3 363851,8 363911,3 3030,3 3033,10 3033,6 1 3034,12 3034,6 4 3035,17 40 4044,13 4044,8 1 4045,50 406,19 4046,8 50 5055,16 5056,01 5056,8 7 5057,7 4 5058,6 1 6066,1 9 6067,2 1 6068,2 4 6069,2 9 6070,3 4 6060,2 9 121233,9 121344,3 121304,9 121385,7 121406,7 30 181885,8 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,4 18204,7 3 182078,6 182016,1 10' 6061,9 6072,1 6068,2 4 6069,2 9 60703,4 100' 410 420 430 440,4 3 3035,16 18085,8 182016,4 18204,7 3 182078,6 182016,1 182016,1 1820	40	4040.88	4041.51			
10' 60613.2 60622.6 60632.2 60642.0 121236.4 30 181839.7 181867.9 181866.6 181925.9 181955.7 40 242452.9 242490.5 242458.8 242567.9 242467.6 50 303066.1 303113.2 303161.1 303209.9 303259.4 363979.3 363735.8 363793.3 363851.8 363911.3 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303209.9 303259.4 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.4 303259.9 303259.1 303259.9 303259.1 303259.9 303259.1 303259.9 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.1 303259.7 303	60	6061.32	6062.26		6064.20	6065.19
20	10/		60622.6	60612.2		60651.0
30		121226.4	121245.3	121264.4	121283.9	121303.8
So		181839.7	181867.9	181896.6	181925.9	181955.7
60 363679.3 363735.8 363793.3 363851.8 363911.3 35° 36° 37° 38° 39° 10′′ 1011.03 1011.20 1011.37 1011.55 1011.72 20 2022.06 2022.40 2022.75 2023.00 2023.44 30 3033.10 3033.61 3034.12 3034.64 3035.17 40 4044.13 4044.81 4045.50 4046.19 4046.85 50 5055.16 5056.01 5056.87 5057.74 5058.61 60 6066.19 6067.21 6068.24 6069.29 6070.34 10′ 60661.9 6067.21 6068.24 6069.29 6070.34 20 121323.9 121344.3 121364.9 121385.7 121406.7 30 181985.8 182016.4 182047.3 182078.6 182110.1 242647.8 242688.5 24279.7 242771.4 242813.4 50 303309.7 303360.6 303412.2 303464.3 303516.8 303971.7 364032.8 364094.6 364157.1 364220.2 40° 41° 42° 43° 44° 10′′ 1011.90 1012.08 1012.25 1012.43 303463.3 303516.8 30 3035.70 3036.23 30407.7 3037.30 3037.84 40 4047.60 4048.31 3036.73 3036.23 3036.77 3037.30 3037.84 40 4047.60 4048.31 4040.02 4049.74 4050.46 50 5059.50 5050.38 5061.28 5062.27 5063.07 50 5059.50 5060.38 5061.28 5062.27 5063.07 50 5059.50 5060.38 5061.28 5062.27 5063.07 50 303550.7 303623.3 30367.6 30373.4 4052.2 121427.9 121449.2 121470.6 12149.2 121427.9 121449.2 121470.6 122498.3 303784.3 303784.3 303550.7 303623.3 303576.6 303730.4 303784.3 303550.7 30363.8 303697.6 303730.4 303784.3 303784.3 303550.7 30363.3 30367.6 303730.4 303784.3 303784.3 303550.7 30363.8 303697.6 303730.4 303784.3 303784.3 303550.7 30363.3 303697.6 303730.4 303784.3 303784.3 30383.8 3038.38 3038.91 3038.94 3049.00 3049.00 3040.54 409.11 1012.79 1012.97 1013.15 1013.33 1013.51 2020.00 3038.38 3038.39 3038.38 3038.91 3039.46 3049.00 3040.54 409.11 4051.18 4051.19 4051.18 4051.19 4051.18 4051.19 4051.18 4051.19 4052.62 4053.34 4051.18 4051.19 4051.18 4051.19 4052.62 4053.34 4051.18 4051.19 4051.18 4051.19 4052.62 4053.34 4051.18 4051.19 4051.18 4051.19 4052.42 12153.5 112150.0 1121621.5 12	40	242452.9	242490.5	242528.8	242507.9	
35° 36° 37° 38° 39° 39° 39° 39° 39° 30°	60		363735.8			363011.3
10'/ 1011.03 1011.20 1011.37 1011.55 1011.72 20 2022.06 2022.40 2022.75 2023.09 2023.44 30 3033.10 3033.61 3034.12 3034.64 3035.17 404 4044.13 4044.81 4045.50 4046.19 4046.81 505.50 5055.16 5056.01 5056.87 5057.74 5058.61 606 6066.19 6067.21 6068.24 6069.29 6070.34 10' 60661.9 6067.21 6068.24 6069.29 6070.34 121385.7 121406.7 30 18198.8 812016.4 182047.3 182078.6 182110.1 242647.8 242688.5 24279.7 242771.4 242813.4						300
20 2022.66 2022.40 2022.75 2023.00 2023.44 3033.10 3033.61 3034.62 3034.62 4046.19 4044.13 4044.81 4045.50 4046.19 4046.89 50 5055.16 5056.01 5056.01 5056.87 5057.74 5058.61 6066.19 6067.21 6068.24 6069.29 6070.34 121323.9 121344.3 121364.9 121385.7 121406.7 130 181985.8 182016.4 182047.3 182078.6 182110.1 4242647.8 242688.5 24272.9.7 242771.4 242813.4 50 303309.7 303360.6 303412.2 303464.3 303516.8 36492.0 2 2023.80 2024.15 2024.51 2024.67 2023.80 2024.15 2024.51 2024.67 20373.8 40 4047.60 4048.31 4049.02 4047.40 4047.60 4048.31 4049.02 4049.74 405.40 6073.53 6074.61 6075.69 121427.9 121449.2 121427.9 503.03 6072.46 6073.53 6074.61 6075.69 121427.9 121449.2 121427.9 503.03 6072.46 6073.53 6074.61 6075.69 121427.9 121449.2 121470.6 121429.2 121527.6 121429.3 30363.27 30363.2 3036.77 3037.30 3037.84 40 4047.60 4048.31 4049.02 4049.74 4050.46 505.05 505.05 505.05 505.03 505.28 5061.28 5062.17 5063.07 505.05 505.05 505.38 5061.28 5062.17 5063.07 5063.07 50305.05 505.38 5061.28 5062.17 5063.07 5053.07 5063.07 30373.04 30373.44 40 427.60 4048.31 4049.02 4049.74 405.46 5073.53 6074.61 6075.69 121427.9 121449.2 121470.6 12149.2 121527.6 503.07 5053.07 5064.87 5065.77 5065.07 506						
303 3033.10 3033.61 3034.12 3034.64 3035.17 4046.89 4046.13 4044.81 4045.50 4046.19 4046.89 505.516 60 6067.21 505.68.7 5057.74 5058.61 60 6066.19 6067.21 6068.24 6069.29 6070.34 120 121323.9 121344.3 121364.9 121385.7 121406.7 30 181985.8 182016.4 182047.3 182078.6 182110.1 242613.4 50 303309.7 303360.6 303412.2 303464.3 303516.8 303971.7 304032.8 304094.6 304157.1 304220.2 400 410 420 430 440 400 410 420 430 440 4047.60 4048.31 4049.02 4049.74 4050.46 50 505.95 50 505.38 5061.28 5074.61 5075.09 5075.09 5050.38 5061.28 5074.61 6075.9 505.07 6075.9 5050.38 5061.28 5074.61 6075.9 505.07 6075.69 121449.2 121427.9 121449.2 121470.6 121427.9 121449.2 121470.6 121427.9 121449.2 121470.6 121427.9 121449.2 121470.6 121429.2 12153.7 60 30350.7 30362.3 30357.6 303550.7 303530.7 30362.3 30357.6 303550.7 303530.7 30362.3 303576.6 303450.4 5074.61 60755.9 5050.38 5051.28 5052.17 5053.07 6075.09 5050.38 5051.28 242883.3 242898.4 242941.3 303754.3 303754.3 303550.7 30362.3 303576.6 303730.4 303756.3 303550.7 30362.3 303676.6 303730.4 3037584.3 303550.7 303623.0 303576.6 303550.7 303623.0 303576.6 303730.4 3037584.3 304347.6 364411.9 364476.5 364541.2 1012.79 20 2025.59 2025.59 2026.31 2026.67 2027.02 30353.8 3035.8 3036.9 3035.9 3035.8 3035.9 3035.8 3035.9 3035.9 3035.8 3035.9 3035.9 3035.8 3035.9 3035.9 3035.8 3035.9 3035.9 3035.3 3035.9 3035.9 3035.3 3035.9 3035.3 3035.9 3035.3 3035.3 3035.9 3035.3		1011.03				
40			3033.61	3034.12	3034.64	
60 6066.19 6067.21 6068.24 6069.29 6070.34 10' 60661.9 60672.1 60682.4 6069.29 6070.34 20 121,323.9 121,344.3 121,364.9 121,385.7 121,406.7 30 181,985.8 182016.4 1820,47.3 1820,78.6 182110.1 40 242647.8 242688.5 242729.7 242771.4 242873.4 303,516.8 3640,94.6 3640,94.6 3040,95.1 202,20.2 303,309.7 303,360.6 33,412.2 303,464.3 303,516.8 304,97.7 304,97.7 303,516.8 30,4157.1 30,420.2 20 2023,80 2024.15 2024.51 2024.87 2025.23 30 3035.70 3036.23 3036.77 3037.30 3037.84 40 4047.60 4048.31 4049.02 4049.74 4050.45 50 5059.59 5060.38 5061.28 5062.27 5062.37 506.20 121,427.0 121,449.2 121,449.2 121,449.2 121,447.0 121,449.2 121,447.0 121,449.2 121,447.0 121,449.2 121,447.0 121,449.2 121,447.0 121,449.2 121,449.2 121,457.6 121,429.2 121,513.7 503,30 50 303,50,7 303,50,30,30,30,30,30,30,30,30,30,30,30,30,30	40	4044.13	4044.81	4045.50	4046.19	4046.89
10' 60661.9 60672.1 60682.4 60692.9 121385.7 121406.7 18210.1 21385.8 182016.4 182047.3 182036.6 182110.1 242647.8 242688.5 24279.7 242771.4 242813.4 50 303309.7 363360.6 303412.2 303464.3 303516.8 364920.2 2023.80 2024.15 2024.51 2024.67 2022.3 30 3035.70 3036.23 3036.7 3036.7 3036.7 3036.7 3036.23 3036.7 3037.7 364032.8 1012.25 1012.43 1012.61 202 2023.80 2024.15 2024.51 2024.67 2027.8 2024.67 2027.6 2027.8 2024.5 20	50	5055.16	5056.01	5056.87	5057.74	
20				· ·		
30 181985.8 182016.4 182047.3 182078.6 182110.1 242813.4 242814.8 242685.5 24279.7 303360.6 303309.7 303360.6 303412.2 303464.3 303516.8 364920.2 400 410 420 430 440 101.101.00 1012.08 1012.25 1012.43 1012.61 20 2023.80 2024.15 2024.51 2024.87 2037.2.2 30 303570. 3036.23 3040.7 3037.30 3037.84 40 4047.60 4048.31 4049.02 4049.74 4050.46 50 5051.39 6072.46 6073.53 6074.61 6075.69 121427.9 121449.2 121470.6 12149.2 121427.9 121449.2 121470.6 12149.2 121427.9 121449.2 121470.6 122485.8 2022.3 30 30350.7 3036.2 3 3036.7 3037.3 3037.8 40 4049.24 4050.46 5073.5 6074.61 8027.5 6075.6 6075.5 3 6074.6 1075.6 9 121427.9 121449.2 121470.6 121492.2 121513.7 18228.2 182270.6 20 121427.9 121449.2 121470.6 122492.2 121513.7 18228.2 182270.6 242855.8 242898.4 242941.3 242984.3 243027.4 303550.7 303523.0 303576.6 303730.4 303784.3 303784.3 304476.5 364481.9 364476.5 364541.1 9 1012.79 1012.97 1013.15 1013.33 1013.51 20.20.67 2025.50 2025.50 2025.95 2026.31 2026.67 2027.02 2027.02 2025.50 2025.95 2026.31 2026.67 2027.02 2027.02 2025.95 5050.97 5064.87 505-77 5066.07 5067.5 60 60676.77 6077.8 6078.9 6078.9 6080.0 6081.08 100 6067.7 6077.8 6078.3 6080.0 6081.08 100 6067.7 6077.8 6078.3 6080.0 6081.08 100 6067.7 6077.8 6078.3 6080.0 124323.3 30400.1 24323.3 30400.1 24323.3 50400.1 24323.3 50400.1 24323.3 50400.1 24323.3 50400.1 24323.3 50400.1 24323.3 5050.8 5050.9 121535.3 121556.9 121578.5 121600.1 121621.5 50. 303838.3 30382.4 303946.3 30400.0 123423.0 30400.1 24323.3 50400.0 30400.3 30400.1 24323.3 5050.9 303838.3 30380.4 30396.3 30360.0 6081.08 50.8 5050.0 123535.4 18230.1 243230.1 24323.3 50400.1 24323.3 5050.2 303838.3 30382.4 303946.3 30400.0 30400.1 30403.0 30400			60672.1		60692.9	60703.4
40 242647.8 242688.5 242729.7 242771.4 242813.4 303516.8 30399.7 30360.6 30342.2 30346.2 30346.2 30346.2 30346.2 30346.2 30346.2 30346.2 30346.2 3034515.1 303422.2 2 4009.1 1011.90 1012.08 1012.25 1012.43 1012.61 20 2023.80 2024.15 2024.51 2024.87 2024.87 2025.23 30 3035.70 3036.23 3036.77 3037.30 3037.84 40 4047.60 4048.31 4049.02 4049.74 4050.46 50 5059.50 5060.38 5061.28 5062.17 5063.07 506 60 6071.39 6072.46 6073.53 6074.61 6075.69 107 60713.9 60724.6 6073.53 6074.61 6075.69 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 121427.0 103238.2 182270.6 30356.7 30353.0 30356.7 30353.0 30356.7 30353.0 30356.0 30356.7 30353.0 30356.0 30356.7 30353.0 30356.0 30356.7 30353.0 30356.0 30356.7 30353.0 30356.0 303441.9 304476.5 364541.2 107 1012.79 1012.97 1013.15 1013.33 1013.51 20 20 2025.59 2025.95 2026.31 3026.67 2027.02 303 3038.38 3038.91 3039.46 3040.00 3040.54 409.11 8 4051.18 4051.09 4052.62 4053.34 4054.05 50 505.97 5064.87 5055.77 5066.07 5007.56 60 6076.77 6077.85 6078.93 6080.00 6081.08 107 6076.7 121535.3 121556.9 121578.5 121560.1 121621.5 100.8 18233.2 121535.3 121556.9 121578.5 121560.1 121621.5 12432.3 24333.0 18230.0 182335.4 18235.8 12356.8 121578.5 121560.1 121621.5 12050.5 12338.3 303838.3 303892.4 303946.3 30400.0 30405.3 4494.2 243070.6 243135.0 243157.0 243320.1 243243.0 50.0 303838.3 303892.4 303946.3 304000.1 30405.8 40000.2 30435.8 303838.3 303892.4 303946.3 124000.1 121621.5 121621.5 121600.1 121621.5 121600.1 121621.5 121600.1 121621.5 121578.5 1215600.1 121621.5 121578.5 1215600.1 121621.5 121600.1 121621.5 121600.1 121621.5 121600.1 121621.5 121600.1 121621.5 121578.5 1215600.1 121621.5 121600.1 121621.		181985.8	182016.4		182078.6	
60 363971.7 364032.8 364094.6 364157.1 364220.2 40° 41° 42° 43° 44° 101' 1011.90 1012.08 1012.25 1012.43 1012.61 20 2023.80 2024.15 2024.51 2024.87 2025.23 30 3035.70 3036.23 3036.77 3037.30 3037.84 4040.04 4047.60 4048.31 4049.02 4049.74 4050.46 50 5059.50 5060.38 5061.28 5062.17 5063.07 60 6071.39 6072.46 6073.53 6074.61 6075.69 121427.0 121427.0 121449.2 121513.7 182141.8 182173.8 182206.0 182238.2 135270.6 242855.8 242858.4 24294.3 24298.73 243027.4 303784.3 30356.77 303730.4 303784.3 303676.6 36364283.7 364347.6 364411.9 364476.5 364541.2 45° 46° 47° 48° 49° 10'' 1012.79 2025.95 2026.31 2026.67 2027.02 2025.95 2026.31 2026.67 2027.02 30353.8 30363.8 3038.94 3039.46 3040.00 3040.54 40 4051.18 4051.90 4052.62 4053.34 405.56 50 505.97 506.77 6077.85 6078.93 6080.00 6081.08 121535.3 121556.9 121578.5 121600.1 121621.5 10243.3 30 182330.0 182330.0 182335.4 18335.4 18336.3 18240.1 121535.3 121556.9 121578.5 121600.1 1221621.5 10338.8 3030.0 182330.0 182335.4 18335.4 18336.8 18240.1 12443.0 12443.0 12443.0 182335.4 183367.8 182400.1 243200.1 243243.0 50 30388.8 30308.2 43335.4 18336.8 182400.1 121621.5 182432.3 30 182330.0 182335.4 18335.4 18340.1 182432.3 18243.0 50 30388.8 30380.4 30396.3 182400.1 121232.3 182335.4 183367.8 182400.1 128243.3 5005.00 1003388.8 30380.4 30396.3 30400.0 1243243.0 50 30388.8 30380.4 30380.4 30396.3 18230.0 182335.4 183367.8 182400.1 243243.0 50 30388.8 30380.4 30396.2 40394.6 3000.0 1243243.0 50 30388.8 30380.4 30396.4 30396.3 30400.0 1243243.0 50 303888.8 30380.4 30396.3 30400.0 1243243.0 50 303888.8 30380.4 30396.3 30400.0 1243243.0 30400.0 303405.3 4000.0 30405.3 40000.0 30405.3 40000.0 30405.3 400000.0 30405.3 400000.0 30405.3 400000.0	40	242647.8	242688.5	242729.7	242771.4	242813.4
40° 41° 42° 43° 44° 10′′ 1011.90 1012.08 1012.25 1012.43 1012.61 20 2023.80 2024.15 2024.51 2024.67 2025.23 30 3035.70 3036.23 3036.77 3037.30 3037.84 40 4047.60 4048.31 4049.02 4049.74 405.46 50 505.05 506.038 5061.28 5062.17 5063.07 506.07 5072.46 6073.53 6074.61 6075.69 110′ 60713.9 6072.46 6073.53 6074.61 6075.69 121427.9 121449.2 121470.6 121492.2 121523.7 30 182141.8 182173.8 18206.0 182238.2 182230.6 18238.2 18238.2 182230.6 5062.83 5062.85 5062.85 5062.85 5062.85 5074.61 6075.69 121427.9 121449.2 121470.6 121492.2 121523.7 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18238.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.6 18235.2 182230.0 182335.2 18235.4 18230.1 182423.3 18235.4 18230.1 182423.3 18243.0 18235.4 18230.1 182432.3 18243.0 18235.4 18230.1 182432.3 18243.0 18235.4 18230.1 182432.3 18243.0 18235.4 18230.1 182432.3 18400.1 182432.3						303516.8
1011.00						
20 2023.80 2024.15 2024.51 2024.87 2037.30 2037.30 3037.30 3035.70 3036.23 3036.77 3037.30 3037.30 404 4047.60 4048.31 4049.02 4049.74 4050.46 50 5059.50 5060.38 5061.28 5062.17 5063.07 6075.69 6072.46 6073.53 6074.61 6075.69 121427.9 121449.2 121470.6 12149.2 121573.7 130 182141.8 182173.8 182206.0 182238.2 182270.6 242855.8 242898.4 242941.3 242984.3 243050.7 5063.07 607 364283.7 304347.6 304347.6 304476.5 3045476.5 3045476.5 303550.7 303623.0 303676.6 303730.4 303784.3 304476.5 304476.5 3045476.5 3		40				
30 3035.70 3036.23 3036.77 3037.30 3037.84 4040.02 4049.02 4049.02 4049.02 4049.02 4049.02 4049.02 4049.02 4049.02 4049.02 6073.53 606 6071.39 6072.46 6073.53 6074.61 6075.69 1074 60713.9 6072.46 6073.53 6074.61 6075.69 20 121427.9 121449.2 121470.6 12149.2 121573.7 182148.8 182173.8 182206.0 182238.2 182270.6 248255.8 242898.4 242941.3 242984.3 243027.4 303784.3 30363.47 364347.6 364411.9 364476.5 364541.2 1010.2.79 1012.79 1013.15 1013.33 1013.51 20 2025.95 2025.95 2026.31 2026.07 2027.02 303 3038.38 3038.92 3039.46 3040.00 3040.54 4051.18 4051.09 4052.62 4053.34 4054.05 60 6076.77 6077.85 6078.93 60800.0 6081.08 102490.0 182335.4 182307.0 24320.1 121621.5 1013.33 11256.9 121578.5 1076 6076.77 6077.8.5 6078.93 60800.0 6081.08 102490.0 182335.4 182367.8 182400.1 121621.5 10243.3 18230.0 182335.4 182367.8 182400.1 121621.5 103.38 30400.0 3040.34 40 24307.0 182335.4 182367.8 182400.1 121621.5 10243.3 18230.0 182335.4 182367.8 182400.1 121621.5 103.38 30400.0 30400.0 3040.34 40 24307.0 182335.4 182367.8 182400.1 121621.5 10243.3 18230.0 182335.4 182367.8 182400.1 121621.5 103.38 30400.0		1011.90			1012.43	
40		3035.70	3036.23	3036.77	3037.30	3037.84
\$60 \$505.50 \$607.60 \$6072.46 \$6073.53 \$6074.61 \$6075.69\$ 10' \$6071.99 \$60724.6 \$6073.53 \$6074.61 \$6075.69\$ 20	40	4047.60	4048.31	4049.02	4049.74	4050.46
10' 60713.9 60724.6 121449.2 121470.6 121492.2 121573.7 121449.2 121470.6 121492.2 121573.7 182141.8 182173.8 182256.0 182238.2 182270.6 242858.4 242941.3 242984.3 243027.4 50 303502.7 303623.0 303676.6 303730.4 303784.3 364283.7 364347.6 364411.9 364476.5 364541.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 60	5059.50	5000.38			5003.07 6075.60
20 121427.9 121449.2 1221470.6 121492.2 121513.7 123.7 123.7 123.6 123.7						
30 182141.8 182173.8 182205.0 182238.2 182270.6 40 242855.8 242898.4 242941.3 242984.3 243027.4 303505.7 303505.7 303623.0 303676.6 364283.7 364347.6 364411.9 364476.5 364541.2						
40 242855.8 242808.4 242941.3 242948.3 24307.4 30378.4 24307.4 30378.4 30378.4 30378.4 30378.4 30478.5 364283.7 364347.6 364411.9 364476.5 364541.2		182141.8	182173.8	182206.0	182238.2	182270.6
50 303560.7 303623.0 303676.6 303730.4 303784.3 364476.5 364283.7 364347.6 364411.9 364476.5 364541.2 45° 46° 47° 48° 49° 10″ 1012.79 1012.97 1013.15 1013.33 1013.51 200.25.59 2025.95 2026.31 2026.67 2027.02 30 3038.38 3038.93 3039.46 3040.00 3040.54 50 50 5051.08 4051.09 4052.62 4053.34 4054.05 50 5061.07 5064.87 5065.77 5066.67 5067.56 60 6076.77 6077.85 6078.93 6080.00 6081.08 100′ 6076.77 6077.85 6078.93 6080.00 6081.08 100′ 6076.77 6077.85 12157.5 6078.93 1026.01 121621.5 30 182303.0 182303.4 182367.8 182367.0 124320.1 12432.3 243137.0 243137.0 243137.0 24320.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304003.8	40	242855.8	242898.4	242941.3	242984.3	243027.4
. 45° 46° 47° 48° 49° 10'' 1012.79 1012.97 1013.15 1013.33 1013.51 20 2025.59 2025.95 2026.31 2026.67 2027.02 30 3038.38 3038.92 3039.46 3040.00 3040.54 40 4051.18 4051.90 4052.62 4053.34 4054.05 50 5063.07 5064.87 5065.77 5066.67 5067.56 60 6076.77 6077.85 6078.93 6080.00 6081.08 10' 60767.7 60778.5 6078.9.3 6080.0 6081.08 20 121535.3 121556.9 121578.5 1121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243113.0 243157.0 24320.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304003.8	50	303569.7	303623.0			
10'' 20' 2025-95 2025-95 2025-95 2026-31 2026-67 2027-02 30 30 3038-38 3038-92 3039-46 3040-00 3040-55 50 5063-97 5064-87 5078-5 60 6076-77 60778-5 6078-93 6080-00 6081-08 20 121535-3 121556-9 121578-5 12260-1 12360-1 124320-1 124320-1 124320-1 124320-1 124323-1 24330-0 3040-03 3040-1 3040-03 3040-1 3040-03 3040-1 3040-03 3040-1 3040-03 3040-1 3040-03 3040-1 3040-03 3040-1 3040-3348-33 3040-03 3040-03 3040-34 3040-34 3						
20 2025.95 2025.95 2026.31 2026.67 2027.02 30 3038.38 3038.92 3039.46 3040.00 3040.54 4051.18 4051.90 4052.62 4053.34 4054.05 50 5063.97 5064.87 5065.77 5066.67 5067.56 60 6076.77 6077.85 6078.93 6080.00 6081.08 20 121535.3 12156.9 121578.5 121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243173.0 243157.0 243200.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304053.8		45°		47°	48°	49°
30 3038.38 3038.92 3039.46 3040.00 3040.54 4054.05 4052.62 4053.34 4054.05 50 5063.07 5064.87 5065.77 5066.67 5067.56 60 6076.77 6077.85 6078.93 6080.00 6081.08 20 121535.3 121556.9 121578.5 12260.1 12260.1 12261.5 30 18230.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243113.0 243157.0 24320.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304003.8					1013.33	
40 4051.18 4051.90 4052.62 4053.34 4054.05 50 5063.97 5064.87 5065.77 5066.67 5067.56 6078.93 6080.00 6081.08 10' 6076.77 6077.8.5 6078.93 6080.00 6081.08 20 121535.3 121556.9 121578.5 121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243113.9 243157.0 243200.1 243243.0 50. 308383.3 30382.24 303946.3 304000.1 304053.8		2025.59	2025.95			
50 5053.97 5064.87 5055.77 5066.67 5067.56 60 60 6076.77 6077.85 6078.93 6080.00 6081.08 120 121535.3 121556.9 121578.5 121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243113.9 243157.0 24320.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304053.8	40	4051.18		4052.62		
60 6076.77 6077.85 6078.93 6080.00 6081.08 10' 60767.7 60778.5 60789.3 60800.0 60810.8 20 121535.3 121556.9 121578.5 121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182432.3 40 243070.6 243113.9 243157.0 243200.1 243243.0 50. 308838.3 303892.4 303946.3 304000.1 304053.8	50	5063.97	5064.87	5065.77	5066.67	5067.56
20 121535.3 121556.9 121578.5 121600.1 121621.5 30 182303.0 182335.4 182367.8 182400.1 182422.3 40 243070.6 243113.9 243157.0 243200.1 243243.0 50. 303838.3 303802.4 303946.3 304000.1 304053.8						
30 182303.0 182335.4 182307.8 182400.1 182432.3 40 243170.6 243113.9 243157.0 243200.1 243243.0 50. 308838.3 303892.4 303946.3 304000.1 304053.8						
40 243070.6 243113.9 243157.0 243200.1 243243.0 50. 303838.3 303892.4 303946.3 304000.1 304053.8						
	40	243070.6	243113.9	243157.0	243200.1	243243.0
304000.0 304070.0 304735.5 304000.2 304004.5					304000.1	304053.8
	30	304000.0	3040/0.8	304/35-5	304000.2	304004.5

TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

Latitude Interval.	Latitude. 50°	Latitude. 51°	Latitude.	Latitude.	Latitude. 54°	Latitude. 55°
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1013.69	1013.87	1014.04	1014.22	1014.39	1014.56
20 30	2027.38 3041.07	2027.74 3041.60	2028.09 3042.13	3042.65	2028.78	2029.12 3043.68
40	4054.76 5068.46	4055-47	4056.17	4056.87	4057.56	4058.24
50 60	5068.46 6082.15	5069.34 6083.21	5070.22 6084.26	5071.09	5071.96 6086.35	5072.80 6087.37
!		_		0003.31		0007.37
10/	60821.5	60832.1	60842,6	60853.1	60863.5	60873.7
20 30	121642.9 182464.4	121664.2 182496.2	121685.2 182527.7	121706.2 182559.2	121726.9 182590.4	121747.3 182621.0
40	243285.8	243328.3	243370.3	243412.3	243453.8	243494.6
50 60	304107.3 364928.8	304160.4 364992.5	304212.9 365055.5	304265.4 365118.5	304317.3 365180.8	304368.3 365242.0
	560	57°	580	59°	60°	610
10//	1014.73	1014.90	1015.06	1015.22	1015.38	1015.53
20 30	2029.46 3044.19	2029.79 3044.69	2030.12 3045.18	2030.44 3045.66	2030.76 3046.14	2031.07 3046.60
40	4058.92	4059.58	4060.24	4000.88	4061.52	4062.14
50 60	5073.65 6088.38	5074.48 6089.38	5075.30 6090.36	5076.10 6091.33	5076.90 6092.27	5077.67 6093.20
					1	
10 [/] 20	60883.8	60893.8	60903.6 121807.2	60913.3	60922.7 121845.5	60932.0 121864.1
30	182651.4	182681.3	182710.8	182739.8	182768.2	182796,1
40	243535.2	243575.0	243614.4	243653.0	243691.0	243728.2
50 60	304419.0 365302.8	304468.8 365362.6	304518.0 365421.6	304566.3 365479.6	304613.7 365536.4	304660,2 365592.2
	620	63°	64°	65°	66°	670
				<u> </u>		
10 ^{//} 20	1015.69 2031.37	1015.83 2031.67	1015.98 2031.96	1016.12	1016.26	1016.39
30	3047.06	3047.50	3047.94	2032.24 3048.36	2032.51 3048.77	2032.78 3049.16
40	4062.74	4063.34	4063.92	4064.48	4065.02	4065.55
50 60	5078.43 6094.12	5079.17 6095.00	5079.90 6095.87	5080.60 6096.71	5081.28 6097. 5 4	5081.94 6098.33
10/	60941.2	60950.0	60958.7	60967.1	60975.4	60983.3
20	121882.3	121900.1	121917.5	121934.3	121950.7	121966.6
30	182823.5	182850.1 243800.2	182876.2	182901.4	182926.1	182949.8
40 50	243764.6 30470 5 .8	304750.2	243835.0 304793.7	243868.6 304835.7	243901.4 304876.8	243933.1 304916.4
60	365647.0	365700.2	365752.4	365802.8	365852.2	365899.7
	68°	69°	70°	710	72 ⁰	73°
10//	1016.52	1016.64	1016.76	1016.87	1016.98	1017.09
20	2033.03	2033.28	2033.52 3050.28	2033.75 3050.62	2033.96	2034.17
30 40	3049.55 4066.07	3049.92 4066.56	4067.04	4067.49	3050.95 4067.93	3051.26 4068.34
50	5082.58	5083.20	5083.80	5084.36	5084.91	5085.43
60	6099.10	6199.84	6100.55	6101.24	6101.89	6102.52
10/	60991.0 121982.0	61998.4 121996.8	61005.5 122011.1	61012.4	61018.9	61025.2 122050.3
20 30	182973.1	182995.2	183016.6	122024.8 183037.1	122037.8 183056.8	183075.5
40	243964.1	243993.6	244022.2	244049.5	244075.7	244100.6
50 60	304955.1 365946.1	304992.0 365990.4	305027.7 366033.2	305061.9 366074.3	305094.6 366113.5	305125.8 366151.0
	74°	75°	76°	77°	78°	79°
10//	1017.18	1017.28	1017.37	1017.45	1017.53	1017.60
20	2034-37	2034.56	2034.73	2034.90	2035.05	2035.19
30 40	3051.56 4068.74	3051.84 4069.12	3052, 10 4069, 46	3052.35 4069.80	3052.58 4070.10	3052.79 4070.38
50	5085.92	5086.40	5086,83	5087.24	5087.63	5087.98
60	6103.11	6103.67	6104.20	6104.69	6105.16	6105.58
10 [/] 20	61031.1	61036.7 122073.5	61042.0 122083.9	61046.9 122093.9	61051.6	61055.8
30	183093.3	183110.2	183125.9	183140.8	183154.7	183167.3
40 50	244124.4 305155.5	244147.0 305183.7	244167.8 305209.8	244187.8	244206.2 305257.8	244223.0 305278.8
60	366186.6	366220.4	366251.8	305234.7 366281.6	366309.4	366334.6
<u> </u>				1		

TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

Longitude	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.
Interval.	0.	1	2	3	4
	Feet.	Feet.	Feet.	Feet.	Feet.
10"	1014.52	1014-37	1013.91	1013.14	1012.07
20	2029.05	1014-37 2028-74	2027.82	2026.29	2024.14
30	3043.57	3043.11	3041.73	3039-43	3036.21
40 50	4058.10 5072.62	4057-48 5071.86	4055.64 5069.55	4052.57	4048.28 5060.35
60	6087.14	6086.23	6083.46	5065.72 6078.86	6072.42
10'	60871.4	60862.3	60834.6	60788.6	60724.2
20	121742.9	121724.5	121669.2	121577.2	121448.4
30	121742.9 182614.3	182586.8	182503.8	182365.7	182172.6
40	243485.8 304357.2	243449.0 304311.3	243338.4 304173.0	243154.3 303942.9	242896.8 303621.0
50 60	365228.6	365173.6	365007.6	364731.5	364345-2
	5°	6°	7°	8°	9°
10//	1010.69	1009.00	1007.01	1004.72	1002.12
20	2021.38	2018.01	2014-03	2009.43	2004-23
30	3032.07	3027.01	3021.04	3014.15	3006.35
40 50	4042.76 5053-45	4036.02 5045.02	4028.05 5035.06	4018.87 5023.58	4008.47 5010.58
60	6064.14	6054.02	6042.08	6028.30	6012.70
10/	60641.4	60540.2	60420.8 120841.6	60283.0	60127.0
20	121282.8	121080.5	120841.6	120566.0 180849.1	120254.0
30 40	181924.2 242565.6	181620.7 242161.0	181262.3 241683.1	241132.1	180381.1 240508.1
50	303207.0	302701.2	302103.9	301415.1	300635.1
60 '	363848-4	363241.4	362524.7	361698.1	360762.1
	10°	110	120	130	14°
10//	999.21	996.01	992.50	988.69	984.58
20	1998.43	1992.01	1985.00	1977-38	1969.17
30 40	2997.64 3996.85	2988.02 3984.03	2977.50 3970.00	2966.07 3954.76	2953.75 3938.34
50	4996.06	4980.04	4962.50	4943.46	4922.92
60	5995.28	5976.04	5955.00	5932.15	5907-50
10/	59952.8	59760.4	59550.0	59321.5	59075.0
20	119905.6 179858.3	119520.8	119100.0	118642-9	118150.1
30 40	239811.1	239041.7	178650.0 238200.0	177964.4 237285.8	236300.2
50	299763.9	298802.1	297750.0	296607.3 355928.8	295375-2
60	359716.7	358562.5	357300.0	355928.8	354450-2
	15°	160	17°	180	19°
10"	980.18	975-47	970.48	965.18	959.60
20	1960.35	1950.95 2926.42	1940.95	1930.36 2895.55	1919.19 2878.79
30 40	3920.71	3901.90	2911.42 3881.90	3860.73	3838.38
50	3920.71 4900.88	4877.37 5852.84	4852.38 5822.85	4825.91	4797.98
60	5881.06			5791.09	5757-58
10 [/]	58810.6 117621.2	58528.4	58228.5	57910.9 115821.8	57575.8
30	176431.9	117056.9	116457.0	173732.8	172727.3
40	235242.5	234113.8	232914.0	231643.7	230303.0
50 60	294053.1 352863.7	292642.2	291142.5	289554.6 347465.5	287878.8 345454.6
		351170.6	349371.0		
	20°	21°	220	23°	24°
10//	953.72	947-55	941.10	934.36 1868.71	927-33
20 30	1907.44 2861.15	1895.10 2842.66	1882.19 2823.29	2803.07	1854.67 2782.00
40	3814.87	3790-21	3764.38	3737-43	3709-33
50 60	4768.59 5722.31	4737.76 5685.31	4705.48 5646.58	4671.78 5606.14	4636.66 5564.00
10/	57223.1	56853.1	56465.8	56061.4	55640.0
20	114446.2	113706.2	112931.5	112122.8	111280-0
30	171669.2	170559.4	169397.3	168184.3	166919.9
40 50	228892.3 286115.4	227412.5 284265.6	225863.0 282328.8	224245.7 280307.1	222559.9
60	343338.5	341118.7	338794.6	336368.5	333839-9
L					

TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

Long Inte	gitude rval.	Latitude.	Latitude. 260	Latitude, 27°	Latitude. 28°	Latitude. 290
		Feet.	Feet.	Feet.	Feet.	Feet.
1	0//	920.03	912.44	904.58	896.44	888.03
2	0	1840.05	1824.88	1809.16	1792.88	1776.06
3'	0	2760.08 3680.11	2737·33 3649·77	2713.74 3618.32	2689.32 3585.76	2664.09 3552.12
5	0	4600.14	4562.21	4522.89	4482.20	4440.15
6	0	5520.17	5474.65	5427-47	5378.64	5328.18
	o/	55201.7	54746.5	54274.7	53786.4	53281.8
30		110403.3	164239.5	108549.5 162824.2	107572.9 161359.3	106563.5
4	0	220806.6	218986.1	217099.0	215145.7	213127.1
5		276008.3 331209.9	273732.6 328479.1	271373.7 325648.4	268932.2 322718.6	266408.8 319690.6
		30°	310	32°	33°	34°
	-//					
20	o"	879.35 1758.70	870.40 1740.80	861.18 1722.37	851.71 1703.41	841.97 1683.94
39		2638.04	2611.20	2583.55	2555.12	2525.91
50		3517.39 4396.74	3481.59 4351.99	3444.74 4305.92	3406.83 4258.53	3367.88 4209.85
Ğ	•	5276.09	5222.39	5167.10	5110.24	5051.82
10		52760.9	52223.9	51671.0	51102.4	50518.2
30		105521.8	104447.8	103342.1	102204.8	101036.4
40	0	211043.5	208895.7	155013.1 206684.2	204409.7	202072.8
. 50	0	263804.4	261119.6	258355.2	255512.1	252591.0
<u> </u>	_	316565.3	313343.5	310026.3	306614.5	303109.2
		35°	36°	37°	38°	39°
	۰//	831.98	821.73	811.23	800.48	789.49
30		1663.95 2495.93	1643.46 246 5. 19	1622.46 2433.69	1600.97 2401.45	1578.98 2368.48
40	o	3327.91	3286.91	3244.92	3201.93	3157.97
50 60		4159.88 4991.86	4108.64	4056.15 4867.38	4802.42 4802.90	3947.46 4736.95
10	ا رہ	49918.6	49303.7	48673.8	48029.0	47369.5
30		99837.2 149755.8	98607.4 147911.2	97347.6 146021.4	96058.0 144087.0	94739.1 142108.6
49	。	199674.3	197214.9	194695.2	192116.0	189478.2
50	2	249592.9 299511.5	246518.6 295822.3	243369.0 292042.8	240145.0 288174.0	236847.7 284217.2
	_	40°	41°	42°	43°	44°
20	o″ o	778.26 1556.52	766.79 1533.58	755.08 1510.17	743.15 1486.29	730.98 1461.96
30	0	2334.78	2300.37	2265.25	2229.44	2192.95
40 50		3113.04 3891.30	3067.16 3833.94	3020.33 3775.42	2972.59 3715.73	2923.93 3654.91
50 60	•	4669.56	4600.73	4530.50	3715.73 4458.88	4385.89
10		46695.6	46007.3	45305.0 90610.0	44588.8	43858.9 87717.9
30		93391.2	92014.7 138022.0	135915.0	89177.6 133766.4	131576.8
40	0	186782.3	184029.3	181220.0	178355.2	175435.8
50 60	0	233477.9 280173.5	230036.7 276044.0	226525.0 271830.1	222944.0 267532.8	219294.7 263153.6
		45°	46°	47°	48°	49°
	0//	718.59	705.99	693.16	680.12	666.87
30		1437.19 2155.78	1411.97 2117.96	1386.32 2079.48	1360.24 2 040.36	1333.75 2000.62
40	0	2874.38	2823.94	2772.64	2720.49	2667.50
50 60	0	3592.97 4311.56	3529.93 4235.91	3465.80 4158.96	3400.61 4080.73	3334·37 4001.25
10		43115.6	42359.1	41589.6	40807.3	40012.5
20		86231.3	84718.2	83179.2	81614.6	80024.9
30		129346.9 172462.5	127077.3 169436.5	124768.7 166358.3	163229.2	120037.4
50	0	215578.2	211795.6	207947.9	204036.4	200062.3
°		258693.8	254154-7	249537-5	244843.7	240074.8

TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

Longitude Interval.	Latitude.	Latitude. 51°	Latitude. 520	Latitude.	Latitude.	Latitude.
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10"	653.42	639-77	625.92	611.88	597.65	583.23
20	1306.85	1279.54	1251.84	1223.76	1195.30	1166.47
30 40	1960.27 2613.69	1919-31 2559.08	1877.76 2503.68	1835.63 2447.51	1792.94 2390.59	1749.70 2332.93
50	3267-12	3198.85	3129.60	3059.39	2988.28	2916.16
60	3920.54	3838.62	3755-52	3671.27	3585.89	3499-40
10'	39205.4	38386.2	37555-2	36712.7	35858.9	34994.0
20	39205.4 78410.8	76772.4	75110.4	73425.4	71717.8	34994.0 69988.0
30 40	117616.1	115158.6	112665.6	110138.0	107576.6 143435-5	104981.9
50	196026.9	191931.0	187776.0	183563.4	179294.4	174969.9
60	235232.3	230317.2	225331.2	220276.1	215153.3	209963.9
	56°	57°	58°	59°	60°	61°
10//	568.64	553.87	538.93	523.82	508.55	493.13
30	1137.28	1107.74	1077.86 1616.79	1047.65	1017.11	986 .26 1479.38
40	2274.56	2215.48	2155.72	2095.29	2034.22	1972.52
50	2843.20	2769.35	2694.64	2619.12	2542.77	2465.64
60	3411.83	3323.22	3233-57	3142.94	3051.33	2958.77
10	34118.3	33232.2 66464.4	32335.7 64671.5	31429.4	30513.3 61026.6	29587.7
20 30	68236.7 102355.0	99696.6	97007.2	62858.8 94288.1	91539-9	59175.5 88763.2
40	136473.4	132928.8	129343.0	125717.5	122053.2	118351.0
50 60	170591.7 294710.0	166161.0	161678.7	157146.9 188576.3	152566.5	147938.7
		199393.2				177526.4
	62°	63°	64°	65°	66°	67°
10//	477-55	461.83	445.96	429.95	413.82	397-55
20 30	955.10 1432.66	923.65 1385.48	891.92 1337.88	859.91 1289.86	827.63 1241.44	795.10
40	1910.21	1847.31	1783.84	1719.81	1655.26	1590.19
50 60	2387.76 2865.31	2309.14 2770.96	2229.80 2675.75	2149.76 2579.72	2069.08 2482.89	1987.74 2385.29
10 ^f	28653.1 57306.2	27709.6	26757.5	25797.2 51594.4	24828.9 49657.8	23852.9 47705.8
30	85959.4	55419.2 83128.9	53515.1 80272.6	77391.5	74486.7	71558.6
40 50	114612.5	110838.5	107030.2	103188.7	99315.6 124144.5	95411.5
60	143265.6 171918.7	166257.7	160545.2	154783.1	148973.4	143117.3
	68°	69°	70°	71°	72°	73°
10"	381.16	364.65	348.03	331.30	314.47	
20	762.32	729.30	696.06	662.60	628.94	297·54 595.08 892.62
30	1143.47	1093.95 1458.60	1044.09	993.90	943·41 1257·88	892.62
40 50	1524.63 1905.79	1823.25	1392.12	1325.20 1656.50	1572.34 1886.81	1190.16
60	2286.95	2187.90	1740.14 2088.17	1987.81	1886.81	1785.23
10/	22869.5	21879.0	20881.7	19878.1	18868.1	17852.3
20	45739.0 68608.4	43758.0 65637.0	41763.5 62645.2	39756.1	37736.3 56604.4	35704.7
30 40	91477.9	87516.0	83527.0	59634.2 79512.2	75472.6	53557.0 71409.4
50	114347-4	109395.0	83527.0 104408.7	99390.3	94340.7	89261.7
60	137216.9	131274.0	125290.4	119268.4	113208.8	107114.0
	74°	75°	76°	77°	78°	79°
10//	280.52	263.41	246.22	228.96	211.62	104.22
30	561.04 841.56	526.82 790.23	492.44 738.66	457.91 686.86	423.24 634.85	388.43 582.64
40	1122.08	1053.64	984.88	915.82	846-47	776.86
50 60	1402.60 1683.11	1317.06 1580.47	1231.10	1144.78	1058.09	971.08
10'	16831.1	15804.7	14773-3	13737.3	12697.1	11652.9
20	33662.3	31609.3	29546.5	27474.6	25394.2	23305.8
30 40	50493.4 67324.6	47414.0 63218.6	44319.8	41211.9	38091.2	3495 ⁸ .7 46611.6
50	84155.7	79023-3	59093.0 73866.3	54949·2 68686.5	50788.3 63485.4	58264.5
60	100986.8	94828.0	88639.6	82423.8	76182.5	69917.4
<u></u>						

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000.

jo ,	Meridional distances from even degree parallels.		CO-ORD	INATES (OF DEVE	LOPED I	PARALLE	L FOR-	
Latitude o	Meridional tances fro even degr parallels.	15' lon	gitude.	30' lon	gitude.	45' long	gitude.	r° lon	gitude.
Lat	Me ta	x	у	x	у	x	у	х	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
0°00′ 15	4.353	4.383 4.383	.000	8.766 8.766	.000	13.148	.000	17.531	.000
30	8.706	4.383	.000	8.765	.000	13.148	.001	17.530	100.
45	13.059	4.382	.000	8.765	.001	13.147	100.	17.530	.002
1 00	17.412	4.382	.000	8.764	.001	13.146	.001	17.528	.003
15	4·353 8·706	4.382	.000	8.764	.001	13.145	.002	17.527	.003
30 45	13.059	4.381 4.381	.000	8.763 8.762	100.	13.144	.002	17.525	.004
2 00	17.412	4.380	.000	8.760	.001	13.141	.003	17.521	.005
					.001				_
15 30	4·353 8.706	4·379 4·379	.000	8.759 8.757	.001	13.138 13.136	.003	17.518	.006
45	13.059	4.378	.000	8.755	.002	13.133	.004	17.511	.007
3 ∞	17.413	4.377	.001	8.753	.002	13.130	.004	17.507	.008
15	4.353	4.376	.001	8.751	.002	13.127	.005	17.503	.008
30	8.706 13.060	4·375 4·373	.001	8.749 8.747	.002	13.124	.005	17.498	.009
45 4 00	17.413	4.372	.001	8.744	.003	13.116	.006	17.488	.010
		_			,	•		' '	
15 30	4.353 8:707	4.371 4.369	100.	8.742 8.739	.003	13.112	.006 .007	17.483	.011 .012
45	13.060	4.368	.001	8.736	.003	13.104	.007	17.472	.013
5 ∞	17.413	4.366	.001	8.732	.003	13.099	.007	17.465	.013
15	4.353	4.364	.001	8.729	.003	13.094	.008	17.458	.014
30 45	8.707	4.363 4.361	.001	8.725 8.722	.004	13.088	.008 .008	17.451	.014
600				8.718	·				
0 000	17.414	4.359	.001	'	.004	13.076	.009	17.435	.016
30	4.354 8.707	4·357 4·355	100.	8.714	.004	13.071	.009	17.428	.017 .017
45	13.061	4.353	.001	8.705	.004	13.058	.010	17.410	.018
7 00	17.414	4.350	.001	8.701	.005	13.051	.010	17.461	. 0 19
15	4.354	4.348	.001	8.696	.005	13.044	.011	17.392	.019
30	8.707	4.346	.001	8.691	.005	13.036	.011	17.382	.020
45	13.061	4.343	.001	8.686	.005	13.029	.011	17.372	.020
8 00	17.415	4.340	100.	8.681	.005	13.021	.012	17.362	.021
15	4.354	4.338	.001	8.675	.005	13.013	.012	17.351	.022
30 45	8.708 13.062	4·335 4·332	.001	8.670 8.664	.006	13.005	.013	17.340	.022
							_		
900	17.416	4.329	.002	8.658	.006	12.987	.013	17.316	.024
15	4·354 8.708	4.326	.002	8.652 8.646	.006	12.979	.014 .014	17.305	.024
30 45	13.062	4.323 4.320	.002	8.640	.006	12.960	.014	17.292	.025 .026
10 00	17.417	4.317	.002	8.633	.006	12.950	.015	17.266	.026
<u> </u>	 	1	l		l	1			

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000.

Jo .	ldis-		CO-ORD	INATES (OF DEVE	LOPED F	ARALLE	L FOR—	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	15' lon	gitude.	30' long	gitude.	45' long	ritude.	1º long	gitude.
La Ca	Meri tan eve par	х	у	x	у	х	У	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10°00′		4.317	.002	8.633	.006	12.950	.015	17.266	.026
15	4.354 8.709	4.313	.002	8.626 8.620	.007	12.940	.015	17.253	.027
30 45	13.063	4.310	.002	8.613	.007	12.930	.015 .016	17.240	.027
7.5	-5.005	7.300			,	1,.,		1,	
11 00	17.418	4.303	.002	8.606	.007	12.908	.016	17.211	.029
15	4.355	4.299	.002	8.598	.007	12.897	.016	17.196	.029
30 45	8.709	4.295 4.292	.002	8.591 8.583	.007	12.886	.017 .017	17.182	.030 .031
4-3	13.004	4.292	.002	0.303			.01/	17.100	.031
12 00	17.419	4.288	.002	8.575	.008	12.863	.017	17.150	.031
15	4.355	4.284	.002	8.567	.008	12.851	810.	17.134	.032
30	8.710	4.280	.002	8.559 8.551	.008 .008	12.839	.019 (210.	17.118	.032
45	13.005	4.275	.002	0.551	.000	12.020	.019	17.102	.033
1300	17.420	4.271	.002	8.542	.008	12.813	.019	17.084	.034
15	4·355 8.711	4.267	.002	8.534	.009	12.800	.019	17.067	.034
30	8.711	4.262	.002	8.525	.009	12.787	.020	17.050	.035
45	13.066	4.258	,002	8.516	.009	12.774	.020	17.032	•035
14 ∞	17.421	4.253	.002	8.507	.009	12.760	.020	17.013	.036
15	4.356	4.249	.002	8.498	.009	12.746	.02I	16.995	.036
30	4.356 8.711	4.244	.002	8.488	.009	12.732	.021	16.976	.037
45	13.067	4.239	.002	8.479	.009	12.718	.021	16.957	.038
15 ∞	17.423	4.234	.002	8.469	.010	12.703	.022	16.938	.038
15	4.356	4.229	.002	8.459	.010	12.688	.022	16.918	.039
30	8.712	4.224	.002	8.449	.010	12.673	.022	16.898	.039
45	13.068	4.219	.002	8.439	.010	12.658	.022	16.877	.040
16 ∞	17.424	4.214	.003	8.428	.010	12.642	.023	16.856	.041
15	4.356	4.209	.003	8.417	.010	12.626	.023	16.835	.041
30	4.356 8.713	4.204	.003	8.407	.010	12.610	.023	16.814	.042
45	13.069	4.198	.003	8.396	.011	12.594	.024	16.792	.042
17 00	17.426	4.192	.003	8.385	.011	12.577	.024	16.770	.043
15	4-357	4.187	.003	8.374	.011	12.561	.024	16.748	.043
30	8.714	4.181	.003	8.362	.011	12.544	.025	16.725	.044
45	13.071	4.175	.003	8.351	.011	12.526	.025	16.702	.044
1800	17.427	4.170	.003	8.339	110.	12.509	.025	16.679	.045
15	4-357	4.164	.003	8.327	.011	12.491	.026	16.655	.045
30	8.715	4.158	.003	8.316	.012	12.473	.026	16.631	.046
45	13.072	4.152	.003	8.303	.012	12.455	.026	16.606	.046
19 00	17.429	4.145	.003	8.291	.012	12.436	.026	16.582	.047
15	4.358	4.139	.003	8.278	.012	12.418	.027	16.557	.048
30	8.716	4.133	.003	8.266	.012	12.300	.027	16.532	.048
45	13.073	4.127	.003	8.253	.012	12.380	.027	16.506	.048
20 00	17.431	4.120	.003	8.240	.012	12.360	.028	16.480	.049
						1			

Table 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000

Jo	al dis- rom gree		CO-ORD	INATES	OF DEVE	LOPED	PARALLI	EL FOR-	
Latitude o	Meridional distances from even degree parallels.	15' lor	gitude.	30' lor	igitude.	45' lon	gitude.	rº lon	gitude.
Lat	Me tan ev pa	x	У	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20°00′ 15	4.358	4.120 4.114	.003	8.240 8.227	.012	12.360	.028 .028	16.480 16.454	.049
30 45	8.717	4.107 4.100	.003	8.214	.013	12.321	.028 .029	16.428	.050
21 00	17.433	4.094	.003	8.187	.013	12.280	.029	16.374	.051
15	4·359 8.718	4.087	.003	8.173	.013	12.260	.029	16.346	.052
30 45	8.718	4.080 4.073	.003	8.159 8.145	.013	12.239	.029 .030	16.318 16.291	.052
22 00	17.435	4.066	.003	8.131	.013	12.197	.030	16.262	.053
15	4.359 8.719	4.058	.003	8.117 8.102	.013	12.175	.030	16.234 16.205	.054
30 45	13.078	4.051 4.044	.003	8.088	.014 .014	12.154	.030 .031	16.176	.054 .055
23 00	17.437	4.036	.003	8.073	.014	12.109	.031	16.146	.055
15 30	4.360 8.720	4.029 4.021	.003	8.058 8.043	.014 .014	12.087 12.064	.031 .031	16.116	.055 .056
45	13.080	4.014	.004	8.028	.014	12.041	.032	16.055	.056
24 00	17.439	4.006	.004	8.012	.014	12.018	.032	16.024	.057
15 30 ,	4.360 8.721	3.998 3.990	.004 .004	7.997 7.981	.014 .014	11.995	.032	15.993 15.962	.057 .058
45	13.081	3.982	.004	7.965	.015	11.948	.033	15.930	.058
25 00	17.442	3.974	.004	7.949	.015	11.923	.033	15.898	.059
15 30	4.361 8.722	3.96 6 3.958	.004 .004	7.933 7.916	.015 .015	11.899 11.874	.033 .033	15.865 15.832	.059 .059
45	13.083	3.950	.004	7.900	.015	11.850	.034	15.800	.059 .060
26 00	17.444	3.942	.004	7.883	.015	11.825	.034	15.767	.060
15 30	4.362 8.723	3.933 3.925	.004	7.866 7.849	.015 .015	11.800	.034 .034	15.733 15.699	.061
45	13.085	3.916	.004	7.833	.015	11.749	.035	15.665	.061
27 00	17.446	3.908	.004	7.816	.015	11.723	.035	15.631	.062
15 30	4.362 8.724	3.899 3.890	.004 .004	7.798 7.780	.016 .016	11.697 11.671	.035 .035	15.596 15.561	.062 .063
45	13.087	3.881	.004	7.763	.016	11.644	.036	15.526	.063
28 00	17.449	3.873	.004	7.745	.016	11.618	.036	15.490	.064
15 30	4.363 8.726	3.863 3.854	.004 .004	7.727 7.709	.016 .016	11.591	.036 .036	15.454 15.418	.064 .064
45	13.088	3.845	.004	7.691	.016	11.536	.036	15.382	.065
29 00	17.451	3.836	.004	7.673	.016	11.509	.036	15.345	.065
30	4.363 8.727	3.827 3.817	.004 .004	7.654 7.635	.016 .016	11.481	.037 .037	15.308 15.270	.065 .066
45	13.091	3.808	.004	7.635 7.616	.016	11.425	.037	15.233	.066
30 00	17.454	3.799	.004	7.598	.017	11.396	.037	15.195	.066

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2500000

	1.4								-
₩ % .	Meridional dis- tances from even degree parallels.		CO-ORD	INATES (OF DEVI	ELOPED I	PARALLE	EL FOR—	
Latitude parallel.	ridior ses f en de rallel	15' lon	gitude.	30' lor	gitude.	45' lo	ngitude.	1º lon	gitude.
Lat	Mer	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
30°00′	4.364	3·799 3·789	.004	7.598 7.578	.017 .017	11.396	.037 .037	15.195	.066
30	8.728	3.779	.004	7.559	.017	11.338	.038	15.118	.067
45	13.092	3.770	.004	7.540	.017	11.309	.038	15.079	.067
31 00	17.457	3.760	.004	7.520	.017	11.280	.038	15.040	.068
15	4.365 8.730	3.750 3.740	.004 .004	7.500 7.480	.017 .017	11.250	.038 .038	15.001	.068 .068
30 45	13.095	3.730	.004	7.460	.017	11.191	.038	14.921	.068
32 00	17.460	3.720	.004	7.441	.017	11.161	.039	14.881	.069
15	4.366 8.731	3.710	.004	7.420	.017	11.130	.039	14.840	.069
30 45	8.731	3.700 3.690	.004	7.400	.017 .017	11.100	.039 .039	14.799	.069 .070
33 00	17.462	3.679	.004	7.359	.017	11.038	.039	14.718	.070
30	4.366 8.733	3.669 3.658	.004	7.338	810. 810.	11.007	.039 .040	14.676	.070 .070
45	13.099	3.648	.004	7.296	.018	10.943	.040	14.591	.071
34 00	17.465	3.637	.004	7.275	.018	10.912	.040	14.549	.071
15	4.367	3.626	.004	7.253	.018	10.879	.040	14.506	.071
30 45	8.734	3.616 3.605	.004	7.231 7.210	.018 810.	10.847	.040 .040	14.463	.071
35 00	17.468	3-594	.004	7.188	.018	10.782	.040	14.376	.072
15	4.368	3.583	.004	7.166	.018	10.749	.041	14.332	.072
30 45	8.735 13.103	3.572 3.561	.004	7.144 7.122	.018 810.	10.716	.041 .041	14.288	.072 .073
							•		
36 oo	17.471	3.550	.005	7.100	.018	10.650	.041	14.200	.073
15 30	4.368 8.736	3·539 3·5 ² 7	.005	7.077 7.054	.018 810.	10.616	.041 .041	14.154	.073 .073
45	13.105	3.516	.005	7.032	.018	10.547	.041	14.063	.073
37 ∞	17.473	3.504	.005	7.009	.018	10.513	.041	14.018	.074
15	4.369	3.493	.005	6.986	.018	10.479	.041	13.972	.074
30 45	8.738 13.108	3.481 3.470	.005	6.963 6.939	810. 810.	10.444	.042 .042	13.925 13.879	.074
38 oo	17.477	3.458	.005	6.916	.019	10.374	.042	13.832	.074
15	4.370	3.446	.005	6.892	.019	10.339	.042	13.785	.074
30 45	8.740 13.110	3.434 3.422	.005	6.869 6.845	.019	10.303	.042 .042	13.737 13.690	.075
39 00	17.480	3.411	.005	6.821	.019	10.232	.042	13.642	.075
						_ [
15 30	4.371 8.741	3.398 3.386	,005	6.797	.019	10.195	.042	13.594 13.545	.075
45	13.112	3-374	.005	6.748	.019	10.123	.042	13.497	.075
40 00	17.483	3.362	.005	6.724	.019	10.086	.042	13.448	.075

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000.

	l dis-		CO-ORDI	NATES (OF DEVE	LOPED I	ARALLE	L FOR-	
Latitude of parallel.	Meridional distances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45′ lon	gitude.	r° long	ritude.
Lati	Mer tan eve par	x	у	x	У	х	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′ 15 30 45	4.371 8.743 13.114	3.362 3.350 3.337 3.325	.005	6.724 6.699 6.675 6.650	.019 .019 .019	10.086 10.049 10.012 9.975	.042 .042 .043 .043	13.448 13.399 13.349 13.300	.075 .075 .076 .076
41 ∞	17.486	3.312	.005	6.625	.019	9.937	.043	13.250	.076
15 30 45	4.372 8.744 13.117	3.300 3.287 3.275	.005 .005	6.600 6.575 6.549	.019 .019	9.900 9.862 9.824	.043 .043 .043	13.200 13.149 13.098	.076 .076 .076
42 00	17.489	3.262	.005	6.524	.019	9.786	.043	13.048	.076
15 30 45	4-373 8-746 13.119	3.249 3.236 3.223	.005 .005 .005	6.498 6.472 6.447	.019 .019	9.747 9.709 9.670	.043 .043 .043	12.996 12.945 12.893	.076 .076 .076
43 00	17.492	3.210	.005	6.421	.019	9.631	.043	12.842	.076
15 30 45	4·374 8·747 13·121	3.197 3.184 3.170	.005 .005 .005	6.394 6.368 6.342	.019 .019	9.592 9.552 9.513	.043 .043 .043	12.789 12.736 12.684	.076 .076 .076
44 00	17.495	3.158	.005	6.316	.019	9.473	.043	12.631	.077
15 30 45	4.375 8.749 13.124	3.144 3.131 3.118	.005 .005 .005	6.289 6.262 6.235	.019 .019	9.433 9.393 9.353	.043 .043 .043	12.578 12.524 12.471	.077 .077 .077
45 ∞	17.498	3.104	.005	6.209	.019	9.313	.043	12.417	.077
15 30 45	4.375 8.751 13.126	3.091 3.077 3.063	.005 .005 .005	6.181 6.154 6.127	.019 .019	9.272 9.231 9.190	.043 .043 .043	12.363 12.308 12.254	.077 .077 .077
46 00	17.501	3.050	.005	6.100	.019	9.150	.043	12.200	.077
15 30 45	4.376 8.752 13.128	3.036 3.022 3.008	.005 .005 .005	6.072 6.044 6.017	.019 .019	9.108 9.067 9.025	.043 .043 .043	12.144 12.089 12.033	.077 .077 .077
47 00	17.504	2.994	.005	5.989	.019	8.983	.043	11.978	.076
15 30 45	4·377 8·754 13.131	2.980 2.966 2.952	.005 .005 .005	5.961 5.933 5.904	.019 .019	8.941 8.899 8.857	.043 .043 .043	11.922 11.865 11.809	.076 .076 .076
48 00	17.508	2.938	.005	5.876	.0 19	8.814	.043	11.752	.076
15 30 45	4.378 8.755 13.133	2.924 2.909 2.895	.005 .005 .005	5.848 5.819 5.790	.019 .019	8.771 8.728 8.686	.043 .043 .043	11.695 11.638 11.581	.076 .076 .076
49 00	17.511	2.881	.005	5.762	.019	8.643	.043	11.524	.076
15 30 45	4.378 8.757 1 3. 135	2.866 2.852 2.837	.005 .005 .005	5.733 5.704 5.675	.019 .019	8.599 8.555 8.512	.043 .043 .042	11.465 11.407 11.349	.076 .076 .076
50 00	17.514	2.823	.005	5.646	.019	8.468	.042	11.291	.076

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000

ا _. ا	rom gree		CO-ORDI	NATES (F DEVE	LOPED F	ARALLE	L FOR-	
Latitude o	Meridional dis- tances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	rº lon	gitude.
Lati	Mer	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
50°00′ .		2.823	.005	5.646	.019	8.468	.042	11.291	.076
15	4·379 8.758	2.808	.005	5.616	.019	8.424	.042	11.232	.075
30 45	13.137	2.793 2.779	.005 .005	5.587 5.557	.019	8.380 8.336	.042	11.174	.075
43	-33/				.0.9			·	10,5
51 ∞	17.517	2.764	.005	5.528	.019	8.291	.042	11.055	.075
15	4.380 8.760	2.749	.005	5.498	.019	8.247	.042	10.996	.075
30	13.140	2.734	.005 .005	5.468	.019	8.202 8.157	.042 .042	10.936	.075
45	13.140	2.719	.005	5.438	.019	0.15/	.042	10.070	.075
52 00	17.520	2.704	.005	5.408	.019	8.112	.042	10.816	.074
15	4.381	2.689	.005	5.378	.019	8.067	.042	10.756	.074
30	8.761	2.674	.005	5-347	.019	8.021	.041	10.695	.074
45	13.142	2.659	.005	5.317	.018	7.976	.041	10.634	.074
53 00	17.523	2.643	.005	5.287	.018	7.930	.041	10.573	.074
15	4.381 8.763	2.628	.005	5.256	.018	7.884	.041	10.512	.074
30		2.613	.005	5.225	.018	7.838	.041	10.451	.073
45	13.144	2.597	.005	5.195	.018	7.792	.041	10.389	.073
54 ∞	17.526	2.582	.005	5.164	.018	7.745	.041	10.327	.073
15	4.382	2.566	.005	5.133	.018	7.699	.041	10.266	.073
30	8.764	2.551	.005	5.102	.018	7.652	.041	10.203	.073
45	13.147	2.535	.005	5.070	.018	7.606	.041	10.141	.072
55 ∞	17.529	2.520	.005	5.039	.018	7-559	.041	10.078	.072
15	4.383	2.504	.004	5.008	.018	7.512	.040	10.016	.072
30	8.766	2.488	.004	4.976	.018	7.465	.040	9.953	.072
45	13.149	2.472	.004	4.945	.018	7-417	.040	9.890	.071
56 co	17.532	2.456	.004	4.913	.018	7-370	.040	9.826	.071
15	4.384	2.441	.004	4.881	.018	7.322	.040	9.763	.071
30	4.3 ⁸ 4 8.767	2.425	.004	4.849	.018	7.274	.040	9.699	.071
45	13.151	2.409	.004	4.817	.018	7.226	.040	9.635	.070
57 00	17.535	2.393	.004	4.785	.018	7.178	.039	9.571	.070
15	4.384	2.377	.004	4.753	.017	7.130	.039	9.507	.070
30	8.769	2.361	.004	4.721	.017	7.082	.039	9.442	.070
45	13.153	2.344	.004	4.689	.017	7.033	.039	9.378	.069
58 00	17.537	2.328	.004	4.656	.017	. 6.985	.039	9.313	.069
15	4.385	2.312	.004	4.624	.017	6.936	.039	9.248	.069
30	8.770	2.296	.004	4.591	.017	6.887	.038	9.183	.068
45	13.155	2.279	.004	4.559	.017	6.838	.038	9.117	.068
59 ∞	17.540	2.263	.004	4.526	.017	6.789	.038	9.052	.068
15	4.386	2.246	.004	4.493	.017	6.740	.038	8.986	.068
30	8.772	2.230	.004	4.460	.017	6.690	.038	8.920	.067
45	13.157	2.214	.004	4.427	.017	6.641	.038	8.854	.067
60 00	17.543	2.197	•004	4.394	.017	6.591	.037	8.788	.067

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2500000

of	1 dis-		CO-ORDINATES OF DEVELOPED PARALLEL FOR -							
Latitude o	Meridional distances from even degree parallels.	15' long	gitude.	30' longitude.		45' longitude.		ro longitude.		
Lati	Mer tan eve par	x	у	x	у	x	у	x	У	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	
60°00′ 15	4.386	2.197 2.180	.004 .004	4.394 4.361	.017 .017	6.591 6.541	.037 .037	8.788 8.722	.067	
30 45	8.773 13.159	2.164 2.147	.004	4.327 4.294	.016	6.491 6.441	.037 .037	8.655 8.588	.066 .066	
61 00	17.546	2.130	.004	4.261	.016	6.391	.037	8.521	.065	
15	4.387 8.774	2.114	.004 .004	4.227 4.194	.016	6.340 6.290	.036 .036	8.454 8.387	.065	
30 45	13.161	2.080	.004	4.160	.016	6.240	.036	8.320	.064	
62 00	17.548	2.063	.004	4.126	.016	6.189	.036	8.252	.064	
15 30	4.388 8.776	2.046 2.029	.004	4.092 4.058	.016	6.138 6.088	.036 .035	8.184 8.117	.063 .063	
45	13.163	2.012	.004	4.024	.016	6.036	.035	8.048	.063	
63 ∞	17.551	1.995	.004	3.990	.015	5.985	.035	7.980	.062	
15 30	4.388	1.978 1.961	.004	3.956	.015	5.934 5.883	.035 .034	7.912 7.844	.062	
45	13.165	1.944	.004	3.887	.015	5.831	.034	7.775	.061	
64 00	17.554	1.926	.004	3.853	.015	5.780	.034	7.706	.060	
15 30	4.3 ⁸ 9 8.77 ⁸	1.909	.004	3.819 3.784	.015	5.728 5.676	.034 .034	7.637 7.568	.060	
45	13.167	1.875	.004	3.749	.015	5.624	.033	7.499	.059	
65 00	17.556	1.857	.004	3.715	.015	5.572	.033	7.430	.059	
15 30	4.390 8.779	1.840	.004	3.680 3.645	.015	5.520 5.468	.033	7.360	.059 .058	
45	13.169	1.805	.004	3.610	.014	5.415	.032	7.220	.058	
66 00	17.559	1.788	.004	3.575	.014	5.363	.032	7.151	.057	
30	4.390 8.780	1.770	.004	3.540	.014	5.258	.032	7.080	.057	
45	13.171	1.735	.003	3.470	.014	5.205	.031	6.940	.056	
67 00	17.561	1.717	.003	3.435	.014	5.152	.031	6.870	.055	
30 45	4.391 8.782 13.172	1.682	.003	3.364 3.329	.014	5.046	.031	6.728	.054	
68 00	17.563	1.647	.003	3.293	.013	4.940	.030	6.586	.053	
15	4.391	1.629	.003	3.258	.013	4.886	.030	6.515	.053	
30 45	8.783	1.611	.003	3.222 3.186	.013	4.833	.029	6.444	.052 .052	
69 00	17.565	1.575	.003	3.151	.013	4.726	.029	6.301	.051	
15	4.392 8.784	1.557	.003	3.115	.013	4.672 4.618	.029 .028	6.230 6.158	.051	
30 45	13.176	1.540	.003	3.079	.013	4.564	.028	6.086	.050	
70 ∞	17.568	1.504	.003	3.007	.012	4.510	.028	6.014	.049	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000

The color of the	J _o	al dis-		CO-ORDI	NATES (F DEVE	LOPED I	ARALLE	L FOR—	
	itude crallel.	ridionz ices fr en deg	15' lon	gitude.	30' lon	gitude.	45' lor	gitude.	r° long	itude.
70°00' 1.504	Lati	Mer tar eve	x	у	x	у	x	у	х	у
15		Inches.		Inches.	Inches.	Inches.	Inches.			Inches.
30		4.392	1.504 1.486							
71 00	30	8.785	1.467	.003	2.025		4.402		5.870	.048
15		• • •								
30			·-							
45		4·393 8.786				1	4.239		5.652 5.580	
15						110.		.026	5.507	.046
30	72 00	17.572	1.358	.003	2.717	110.	4.075	.025	5.434	.045
45		4.393		.003	2.681		4.021		5.361	.045
15		13.180			2.607					.044
30 8,788 1.249 .003 2.461 .010 3.746 .024 4.994 .042 .041 74 00 17.575 1.212 .003 2.424 .010 3.636 .023 4.848 .041 15 4.394 1.193 .003 2.387 .010 3.580 .023 4.774 .040 30 8,788 1.175 .002 2.350 .010 3.525 .022 4.700 .040 45 13.183 1.156 .002 2.313 .010 3.470 .022 4.626 .039 75 00 17.577 1.138 .002 2.276 .010 3.414 .022 4.552 .038 15 4.395 1.119 .002 2.239 .009 3.358 .021 4.478 .038 30 8,789 1.101 .002 2.202 .009 3.303 .021 4.404 .037 45 13.184 1.082 .002 2.165 .009 3.247 .021 4.329 .037 76 00 17.579 1.064 .002 2.127 .009 3.191 .020 4.255 .036 15 4.395 1.045 .002 2.053 .009 3.039 .020 4.180 .035 30 8,790 1.026 .002 2.053 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 78 00 17.582 0.994 .002 1.998 .008 2.799 .018 3.732 .032 78 00 17.583 0.895 .002 1.993 .008 2.799 .018 3.732 .032 78 00 17.583 0.895 .002 1.791 .008 2.799 .018 3.732 .032 78 00 17.583 0.895 .002 1.791 .008 2.799 .018 3.732 .032 79 00 17.583 0.895 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.791 .008 2.686 .017 3.582 .031 30 8.792 0.801 .002 1.663 .007 2.461 .016 3.281 .028 30 8.792 0.801 .002 1.663 .007 2.461 .016 3.281 .028 30 8.792 0.801 .002 1.663 .007 2.4404 .016 3.205 .028 45 13.188 0.782 .002 1.663 .007 2.4404 .016 3.205 .028 45 13.188 0.782 .002 1.663 .007 2.4404 .016 3.205 .028 45 13.188 0.782 .002 1.663 .007 2.4404 .016 3.205 .028 30 8.792 0.801 .002 1.663 .007 2.4404 .016 3.205 .028 30 8.792 0.	73 ∞	17.573	1.285	.003	2.571	110.	3.856	.024	5.142	.043
45 13.181 1.230 .003 2.461 .010 3.691 .023 4.921 .041 74 00 17.575 1.212 .003 2.424 .010 3.636 .023 4.848 .041 15 4.394 1.193 .003 2.387 .010 3.580 .023 4.774 .040 30 8.788 1.175 .002 2.313 .010 3.470 .022 4.626 .039 75 00 17.577 1.138 .002 2.276 .010 3.414 .022 4.552 .038 15 4.395 1.101 .002 2.229 .009 3.358 .021 4.478 .038 30 8.789 1.101 .002 2.229 .009 3.358 .021 4.478 .038 30 8.789 1.101 .002 2.202 .009 3.358 .021 4.478 .038 30 8.781 1		4.394		.003						
15		13.181		.003			3.740			
30 8.788 1.175 .002 2.350 .010 3.525 .022 4.700 .040 45 13.183 1.156 .002 2.313 .010 3.470 .022 4.626 .039 75 17.577 1.138 .002 2.276 .010 3.414 .022 4.552 .038 15 4.395 1.119 .002 2.239 .009 3.358 .021 4.478 .038 30 8.789 1.101 .002 2.202 .009 3.303 .021 4.478 .038 45 13.184 1.082 .002 2.165 .009 3.247 .021 4.329 .037 76 17.579 1.064 .002 2.127 .009 3.135 .020 4.255 .036 15 4.395 1.045 .002 2.090 .009 3.135 .020 4.180 .035 30 8.790 1.026 .002	74 ∞	17-575	1.212	.003	2.424	.010	3.636	.023	4.848	.041
Total		4.394								
15 4.395 1.119 .002 2.239 .009 3.358 .021 4.478 .038 30 8.789 1.101 .002 2.202 .009 3.303 .021 4.478 .037 45 13.184 1.082 .002 2.165 .009 3.247 .021 4.329 .037 76 00 17.579 1.064 .002 2.127 .009 3.191 .020 4.255 .036 15 4.395 1.045 .002 2.090 .009 3.135 .020 4.180 .036 30 8.790 1.026 .002 2.053 .009 3.079 .020 4.106 .035 45 13.185 1.008 .002 2.016 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.882 .033 30 8.791 0.952 .002 1.941 .008 2.855 .018 3.807 .032 </td <td></td>										
30 8.789 1.101 .002 2.202 .009 3.303 .021 4.404 .037 76 00 17.579 1.064 .002 2.127 .009 3.191 .020 4.255 .036 15 4.395 1.045 .002 2.090 .009 3.135 .020 4.180 .036 30 8.790 1.026 .002 2.053 .009 3.079 .020 4.106 .035 45 13.185 1.008 .002 2.016 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 <t< td=""><td>75 ∞</td><td>17-577</td><td>1.138</td><td>.002</td><td>2.276</td><td>.010</td><td>3.414</td><td>.022</td><td>4-552</td><td>.038</td></t<>	75 ∞	17-577	1.138	.002	2.276	.010	3.414	.022	4-552	.038
45 13.184 1.082 .002 2.165 .009 3.247 .021 4.329 .037 76 00 17.579 1.064 .002 2.127 .009 3.191 .020 4.255 .036 15 4.395 1.045 .002 2.090 .009 3.135 .020 4.180 .036 45 13.185 1.008 .002 2.016 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.852 .034 15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 45 13.186 0.933 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002		4.395					3.358			.038
15 4.395 1.045 .002 2.090 .009 3.135 .020 4.180 .036 30 8.790 1.026 .002 2.053 .009 3.079 .020 4.180 .035 45 13.185 1.008 .002 2.016 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .032 45 13.186 0.933 .002 1.866 .008 2.799 .018 3.732 .032 78 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.753 .008 2.686 .017 3.582 .031 30						-				.037
30 8.790 1.026 .002 2.053 .009 3.079 .020 4.106 .035 45 13.185 1.008 .002 2.016 .009 3.079 .020 4.106 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 45 13.186 0.933 .002 1.828 .008 2.799 .018 3.732 .032 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.753 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002	76 ∞	17.579	1.064	.002	2.127	.009	3.191	.020	4.255	.036
45 13.185 1.008 .002 2.016 .009 3.023 .019 4.031 .034 77 00 17.580 0.989 .002 1.978 .008 2.967 .019 3.956 .034 15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 45 13.186 0.933 .002 1.828 .008 2.743 .018 3.657 .031 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.753 .008 2.630 .017 3.431 .030 79 00 17.583		4.395								
15 4.395 0.970 .002 1.941 .008 2.911 .019 3.882 .033 30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 45 13.186 0.933 .002 1.866 .008 2.799 .018 3.732 .032 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.753 .008 2.630 .017 3.506 .030 45 13.187 0.858 .002 1.716 .008 2.573 .017 3.431 .030 79 00 17.583 0.839 .002 1.678 .007 2.517 .016 3.281 .028 30 8.792 0.801 .002		13.185						,		.035
30 8.791 0.952 .002 1.903 .008 2.855 .018 3.807 .033 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.753 .008 2.630 .017 3.506 .030 45 13.187 0.858 .002 1.716 .008 2.573 .017 3.431 .030 79 00 17.583 0.839 .002 1.678 .007 2.517 .016 3.356 .029 15 4.396 0.820 .002 1.640 .007 2.461 .016 3.281 .028 30 8.792 0.801 .002 1.603 .007 2.404 .016 3.205 .028 45 13.188 0.782 .002	77 00	17.580	0.989	.002	1.978	.008	2.967	.019	3.956	.034
45 13.186 0.933 .002 1.866 .008 2.799 .018 3.732 .032 78 00 17.582 0.914 .002 1.828 .008 2.743 .018 3.657 .031 15 4.396 0.895 .002 1.791 .008 2.686 .017 3.582 .031 30 8.791 0.877 .002 1.753 .008 2.630 .017 3.506 .030 45 13.187 0.858 .002 1.716 .008 2.573 .017 3.431 .030 79 00 17.583 0.839 .002 1.678 .007 2.517 .016 3.256 .029 15 4.396 0.820 .002 1.640 .007 2.461 .016 3.281 .028 30 8.792 0.801 .002 1.603 .007 2.404 .016 3.205 .028 45 13.188 0.782 .002		4.395					2.911		3.882	.033
15		13.186		1	1.903					.033
30 8.791	78 00	17.582	0.914	.002	1.828	.008	2.743	.018	3.657	.031
45 13.187 0.858 .002 1.716 .008 2.573 .017 3.431 .030 79 00 17.583 0.839 .002 1.678 .007 2.517 .016 3.356 .029 15 4.396 0.820 .002 1.640 .007 2.461 .016 3.281 .028 30 8.792 0.801 .002 1.603 .007 2.404 .016 3.205 .028 45 13.188 0.782 .002 1.565 .007 2.348 .015 3.130 .027		4.396							3.582	
15 4.396 0.820 .002 1.640 .007 2.461 .016 3.281 .028 3.0 8.792 0.801 .002 1.603 .007 2.404 .016 3.205 .028 45 13.188 0.782 .002 1.565 .007 2.348 .015 3.130 .027		13.187								
30 8.792 0.801 .002 1.603 .007 2.404 .016 3.205 .028 45 13.188 0.782 .002 1.565 .007 2.348 .015 3.130 .027	79 ∞	17.583	0.839	.002	1.678	.007	2.517	.016	3.356	.029
45 13.188 0.782 .002 1.565 .007 2.348 .015 3.130 .027		4.396								
		13.188					2.404			
80 00 17.584 0.764 .002 1.527 .007 2.291 .015 3.054 .026		17.584	0.764	.002		.007				.026

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

		1								
ų	l dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	01		on
Latitude parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINAT DEVELO PARAL	OPED
0°00′	Inches. 5.804	Inches. 2.922 2.922	Inches. 5.844 5.843	Inches. 8.765 8.765	Inches. 11.687 11.687	Inches. 14.609 14.608	Inches. 17.531 17.530	Longitude interval.	o°	10
20 30 40 50	11.608 17.412 23.216 29.020	2.922 2.922 2.922 2.921	5.843 5.843 5.843 5.843	8.765 8.765 8.764 8.764	11.686 11.686 11.686 11.686	14.608 14.608 14.608 14.607	17.530 17.530 17.529 17.528	5'	Inches. 0.000	Inches. 0.000
1 00 10 20 30 40	5.840 11.608 17.412 23.216 29.020	2.921 2.921 2.921 2.921 2.920	5.843 5.842 5.842 5.841 5.841 5.840	8.764 8.763 8.763 8.762 8.761 8.761	11.685 11.684 11.684 11.683 11.682	14.606 14.606 14.604 14.604 14.602	17.528 17.527 17.525 17.524 17.522	15 20 25 30	.000	100. 100. 100. 100.
2 00		2.920	5.840	8.760	11.680	14.601	17.521		20	3°
10 20 30 40 50	5.804 11.608 17.412 23.216 29.020	2.920 2.919 2.919 2.918 2.918	5.839 5.839 5.838 5.837 5.836	8.759 8.758 8.757 8.756 8.755	11.678 11.677 11.676 11.674 11.673	14.598 14.596 14.594 14.592 14.591	17.518 17.516 17.513 17.511 17.509	5 10 15 20	000.000.000.100.100.100.100.100.100.100	0.000 .000 .001 .002
3 00 10 20 30	5.804 11.608 17.413	2.918 2.917 2.917 2.916	5.836 5.835 5.834 5.832	8.753 8.752 8.750 8.749	11.671 11.669 11.667 11.665	14.589 14.586 14.584 14.581	17.507 17.504 17.501 17.497	25 30	.002	.003
40 50	23.217 29.021	2.916 2.915	5.831 5.830	8.747 8.746	11.663 11.661	14.578 14.576	17.494 17.491		4°	5°
4 00 10 20 30 40 50	5.804 11.609 17.413 23.217 29.022	2.915 2.914 2.913 2.913 2.912 2.911	5.829 5.828 5.827 5.825 5.824 5.823	8.744 8.742 8.740 8.738 8.736 8.734	11.659 11.656 11.654 11.651 11.648 11.646	14.574 14.570 14.567 14.564 14.550	17.488 17.484 17.480 17.476 17.473 17.468	5 10 15 20 25 30	0.000 .001 .001 .002 .004	0.000 .001 .002 .003 .005
5 00 10 20	5.804 11.609	2.911 2.910 2.909 2.908	5.822 5.820 5.818 5.817	8.732 8.730 8.727 8.725	11.643 11.640 11.636 11.633	14.554 14.550 14.546	17.465 17.459 17.455		6°	7°
30 40 50 6 00 10 20 30 40	17.414 23.218 29.022 5.805 11.609 17.414 23.219	2.908 2.907 2.906 2.905 2.904 2.903 2.902	5.815 5.813 5.812 5.810 5.808 5.806 5.804	8.722 8.720 8.718 8.715 8.712 8.709 8.706	11.624 11.624 11.620 11.616 11.612 11.608	14.542 14.538 14.534 14.530 14.524 14.520 14.515 14.510	17.450 17.445 17.440 17.435 17.429 17.424 17.418	5 10 15 20 25 30	0.000 .001 .002 .004 .006	0.000 .001 .002 .004 .006
7 00	29.024	2.901	5.802 5.800	8.703 8.701	11.604	14.506	17.407		80	
10 20 30 40 50	5.805 11.610 17.415 23.220 29.025	2.899 2.898 2.897 2.896 2.895	5.798 5.796 5.794 5.791 5.789	8.697 8.694 8.690 8.687 8.684	11.596 11.592 11.587 11.583 11.578	14.496 14.490 14.484 14.478	17.395 17.387 17.381 17.374 17.368	5 10 15 20	0.000 .001 .003	
8 00		2.894	5.787	8 .6 So	11.574	14.468	17.361	25 30	.007 .010	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128000.

*5	al dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	0.7		
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	80	90
8°00′ 10	5.805	2.894 2.892 2.891	5.787 5.784	8.680 8.677	11.574	14.468	17.361	Long		,
20 30	11.610	2.890 2.888	5.782 5.779	8.673 8.669	11.564	14.455 14.448	17.346		Inches.	Inches.
40 50	23.221 29.026	2.887	5.777 5.775	8.666 8.662	11.554	14.442 14.436	17.331	5' 10	0.000	0.000
9 00 10 .20	5.806 11.611	2.886 2.885 2.883	5.772 5.769 5.767	8.658 8.654 8.650	11.544 11.539 11.533	14.430 14.424 14.416	17.317 17.308 17.300	20 25 30	.003 .005 .007	.003 .005 .008
30 40 50	17.417 23.222 29.028	2.882 2.881 2.879	5.764 5.761 5.758	8.646 8.642 8.637	11.528 11.522 11.516	14.410 14.402 14.396	17.291 17.283 17.275			
10 00		2.878	5.755	8.633	11.511	14.388	17.266		100	110
10 20	5.806	2.876 2.875	5.75 ² 5.749	8.628 8.624	11.504	14.380	17.257	5	0.000	0.000
30 40 50	17.417 23.223 29.029	2.873 2.872 2.870	5.746 5.743 5.740	8.619 8.614 8.610	11.492 11.486 11.480	14.366 14.358 14.350	17.239 17.229 17.220	10 15 20	.003	.002 .004 .006
11 00	5.806	2.869 2.867	5·737 5·734	8.606 8.601	11.474	14.342 14.334	17.211 17.201	25 30	.009	.010
20 30	11.612	2.865 2.864	5.730 5.727	8.596 8.590	11.461	14.326	17.191 17.181			
40 50	23.225	2.862 2.860	5.724 5.720	8.585 8.580	11.447	14.300	17.171		120	130
12 00 10	5.807	2.858 2.857	5.717 5.713	8.575 8.570	11.434	14.292 14.282	17.150 17.139	5	0.000	0.000 .002
20 30	.11.613	2.855 2.853	5.709 5.706	8.564 8.559	11.419	14.274	17.128	20	.004	2007
40 50	23.226 29.033	2.851	5.702 5.698	8.553 8.548	11.404	14.256	17.107	25 30	.011	.012
13 00 10 20	5.807	2.847 2.846 2.844	5.695 5.691 5.687	8.542 8.536 8.530	11.390 11.382 11.374	14.237 14.228 14.218	17.084 17.073 17.061		140	15°
30 40	17.421	2.842	5.683 5.679	8.524 8.519	11.366	14.208	17.049	_	0,000	
50	29.035	2.838	5.675	8.513	11.350	14.188	17.026	10	.002 .004	.002 .005
14 00	5.808	2.836 2.834	5.671 5.667	8.507 8.500	11.342 11.334	14.178 14.168	17.014	20 25	.008	.009
20 30	17.422	2.83I 2.829	5.663 5.658	8.494 8.488	11.326	14.157	16.988 16.975	30	810.	.019
40 50	23.230 29.038	2.827 2.825	5.654 5.650	8.481 8.475	11.308	14.136	16.963 16.950			
15 00	5.808	2.823 2.821	5.646 5.641	8.469 8.462	11.292	14.114	16.937 16.924		16°	
20 30	11.616	2.818	5.637 5.632	8.455 8.448	11.274	14.092	16.910	5	0.00I .002	
40 50	23.232	2.814	5.628 5.623	8.441 8.435	11.255	14.069	16.883	15	.005	
16 00		2.809	5.619	8.428	11.237	14.046	16.856	25 30	.014	

Table 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

of	ll dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	0.1	N 131 4 7	.EG 02)
Latitude o	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DEVELO PARALI	
16°00′	Inches.	Inches. 2.809	Inches. 5.619	Inches. 8.428	Inches.	Inches. 14.046	Inches. 16.856	Longitude interval.	16°	170
10 20 30 40	5.809 11.617 17.426 23.234	2.807 2.804 2.802 2.800	5.614 5.609 5.604 5.599	8.421 8.414 8.406 8.399	11.228 11.218 11.208 11.199	14.034 14.022 14.010 13.998	16.841 16.827 16.813 16.798		Inches.	Inches.
17 00	29.043	2.797 2.795	5.595	8.392 8.385	11.189	13.986	16.784	5' 10 15 20	.002 .005	0.001 .002 .005
10 20 30 40	5.809 11.618 17.427 23.236 29.046	2.792 2.790 2.787 2.785	5.585 5.580 5.575 5.570	8.377 8.369 8.362 8.354	11.170 11.159 11.149 11.139	13.962 13.949 13.936 13.924	16.754 16.739 16.724 16.709	25 30	.014	.015
18 00	29.040	2.782 2.780	5.564 5.559	8. ₃₄₇ 8. ₃₃₉	11.129	13.911	16.693		180	190
10 20 30 40 50	5.810 11.619 17.429 23.239 29.049	2.777 2.774 2.772 2.769 2.766	5.554 5.549 5.543 5.538 5.538	8.331 8.323 8.315 8.307 8.299	11.108 11.097 11.087 11.076 11.065	13.885 13.872 13.859 13.845 13.832	16.662 16.646 16.630 16.614 16.598	5 10 15 20	0.00I .002 .006	0.00I .003 .006
19 00 10 20	5.810 11.621	2.764 2.761 2.758	5.527 5.522 5.516	8.291 8.282 8.274	11.054 11.043 11.032	13.818 13.804 13.790	16.582 16.565 16.548	30	.016	.016
30 40 50	17.431 23.242 29.052	2.755 2.752 2.750	5.510 5.505 5.499	8.266 8.257 8.249	11.021 11.009 10.998	13.776 13.762 13.748	16.531 16.514 16.497		20 ⁰	210
20 00 10 20 30 40 50	5.811 11.622 17.433 23.244 29.055	2.747 2.743 2.741 2.738 2.735 2.732	5.493 5.487 5.482 5.476 5.470 5.464	8.240 8.231 8.222 8.213 8.204 8.196	10.987 10.975 10.963 10.951 10.939 10.928	13.734 13.719 13.704 13.689 13.674 13.660	16.480 16.462 16.445 16.427 16.409 16.391	5 10 15 20 25 30	0.001 .003 .006 .011 .017	0.001 .003 .006 .011 .018
21 00 10 20	5.812 11.623 17.435	2.729 2.726 2.723 2.720	5.458 5.452 5.445	8.187 8.177 8.168 8.159	10.916 10.903 10.891 10.878	13.645 13.629 13.614 13.598	16.373 16.355 16.336 16.318		220	23°
30 40 50	23.247	2.717	5.439 5.433 5.427	8.150 8.141	10.866	13.568	16.300	5	0.001	0.001
22 00 10 20 30 40	5.812 11.625 17.437 23.250	2.710 2.707 2.704 2.701 2.697	5.421 5.414 5.408 5.401 5.395 5.388	8.131 8.122 8.112 8.102 8.002	10.842 10.829 10.816 10.802 10.790	13.552 13.536 13.520 13.503 13.487	16.262 16.243 16.223 16.204 16.184	25 30	.007 .012 .018 .027	.007 .012 .019 .028
23 00	29.062	2.694	5.382	8.083	10.777	13.471	16.165		24°	
10 20 30 40 50	5.813 11.626 17.439 23.252 29.066	2.688 2.684 2.681 2.677 2.674	5·37 5 5·368 5·362 5·355 5·348	8.063 8.053 8.042 8.032 8.022	10.750 10.737 10.723 10.710 10.696	13.438 13.421 13.404 13.387 13.371	16.125 16.105 16.085 16.064 16.045	5 10 15 20	0.00I .003 .007	
24 00		2.671	5.341	8.012	10.683	13.354	16.024	²⁵ 30	.020	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{125000}$.

-										
J 0 .	al dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	OF	DINAT	EC OF
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	PARALL	PED
24°00′	Inches	Inches. 2.671	Inches. 5.341	Inches. 8.012	Inches. 10.683	Inches. 13.354	Inches. 16.024	Longitude interval.	24°	25°
10 20 30	5.814 11.628 17.442	2.667 2.664 2.660	5.334 5.327 5.320	8.002 7.991 7.981	10.669	13.336 13.319 13.301	16.003 15.982 15.961	7		
40 50	23.256 29.069	2.657 2.653	5.313 5.306	7.970 7.960	10.627	13.284	15.940	5 [']	Inches. 0.001 .003	Inches. 0.00I .003
25 00 10 20 30 40 50	5.815 11.629 17.444 23.259 29.074	2.650 2.646 2.642 2.639 2.635 2.631	5.299 5.292 5.285 5.278 5.270 5.263	7.949 7.938 7.927 7.916 7.905 7.894	10.599 10.584 10.570 10.555 10.540 10.526	13.249 13.231 13.212 13.194 13.176 13.157	15.898 15.877 15.854 15.833 15.811 15.788	20 25 30	.007 .013 .020 .028	.007 .013 .020 .029
26 00		2.628	5.256	7.883	10.511	13.139	15.767		26°	27°
10 20 30 40 50	5.816 11.631 17.446 23.262 29.077	2.624 2.620 2.616 2.613 2.609	5.248 5.240 5.233 5.225 5.218	7.872 7.861 7.849 7.838 7.827	10.496 10.481 10.466 10.451 10.436	13.120 13.101 13.082 13.063 13.045	15.744 15.721 15.698 15.676 15.654	5 10 15 20	0.001 .003 .008	0.00I .003 .008 .014
27 00 10 20	5.816 11.633	2.605 2.601 2.597	5.210 5.203 5.195	7.816 7.804 7.792	10.421 10.405 10.390	13.026 13.006 12.987	15.631 15.608 15.584	30	.030	.022
30 40 50	17.449 23.265 29.082	2.593 2.589 2.586	5.187 5.179 5.171	7.780 7.768 7.757	10.374 10.358 10.342	12.967 12.947 12.928	15.560 15.537 15.514		28°	29°
28 00 10 20 30 40 50	5.817 11.634 17.451 23.268 29.086	2.582 2.578 2.574 2.570 2.566 2.562	5.163 5.155 5.147 5.139 5.131 5.123	7.745 7.733 7.721 7.709 7.697 7.685	10.327 10.311 10.294 10.278 10.262 10.246	12.909 12.889 12.868 12.848 12.828	15.490 15.466 15.442 15.418 15.394 15.369	5 10 15 20 25 30	0.001 .004 .008 .014 .022 .032	0.001 .004 .008 .014 .023 .032
29 00 10 20	5.818 11.636	2.558 2.553 2.549	5.115 5.107 5.098	7.673 7.660 7.648	10.230 10.213 10.197	12.788 12.767 12.746	15.345 15.320 15.295		30°	310
30 40 50	17.454 23.272 29.090	2.545 2.541 2.537	5.090 5.082 5.073	7.635 7.622 7.610	10.180 10.163 10.146	12.725 12.704 12.683	15.270 15.245 15.220	5 10 15	0.00I .004 .008	0.00I .004 .008
30 00 10 20 30 40	5.819 11.638 17.457 23.276	2.533 2.528 2.524 2.520 2.515	5.065 5.056 5.048 5.039 5.031	7.598 7.585 7.572 7.559 7.546	10.130 10.113 10.096 10.078 10.061	12.662 12.641 12.620 12.598 12.577	15.195 15.169 15.143 15.118 15.092	25 30	.015 .023 .033	.015 .023 .034
31 00	29.094	2.511	5.022	7·533 7·520	10.044	12.555	15.066 15.040		32°	
10 20 30 40	5.820 11.640 17.460 23.280	2.502 2.498 2.493 2.489	5.005 4.996 4.987 4.978	7.507 7.494 7.480 7.467	9.992 9.974 9.956	12.512 12.490 12.467 12.445	15.014 14.987 14.960 14.934	5 10 15	0.001 .004 .009	
32 00	29.100	2.485 2.480	4.969 4.960	7·454 7·441	9.938	12.423	14.908	20 25 30	.015 .024 .034	

Table 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{125000}$.

of	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALLI	EL.	On	DIMAG	rc or
Latitude o parallel.	Meridional distances from even degree parallels.	5' Iongitude.	IO' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO ARALL	PED
32°00′	Inches.	Inches. 2.480	Inches. 4.960	Inches. 7.441	Inches. 9.921	Inches. 12.401	Inches. 14.881	Longitude interval.	32°	33°
10 20	5.821 11.642	2.476 2.471	4.951	7.427	9.903 9.884	12.379	14.854 14.827	73.≒		
30 40 50	17.462 17.462 23.283 29.104	2.467 2.462 2.458	4.942 4.933 4.924 4.915	7.413 7.400 7.386 7.373	9.866 9.848 9.830	12.355 12.333 12.310 12.288	14.800 14.772 14.745	5 [']	Inches. 0.001 .004	Inches. 0.001 .004
33 00 10 20 30 40	5.822 11.643 17.465 23.287	2.453 2.448 2.444 2.439 2.434	4.906 4.896 4.887 4.878 4.868	7·359 7·345 7·331 7·316 7·302	9.812 9.793 9.774 9.755 9.736	12.265 12.241 12.218 12.194 12.171	14.717 14.689 14.661 14.633 14.605	20 25 30	.009 .015 .024 .034	.009 .016 .024 .035
50	29,109	2.429	4.859	7.288	9.718	12.147	14.576		34°	35°
34 00 10	5.823	2.425 2.420	4.850 4.840	7.274 7.260	9.699 9.680	12.124	14.549			
20	11.645	2.415	4.830	7.246	9.661	12.076	14.491	5	0.001	0.001
30 40	17.468 23.291	2.410 2.406	4.821 4.811	7.231 7.217	9.642 9.622	12.052	14.462	10	.004	.004
50	29.113	2,401	4.802	7.203	9.604	12.004	14.405	20	.o16	.016
35 00		2.396	4.792	7.188	9.584	11.980	14.376	30	.025 .036	.025
10 20	5.824 11.647	2.391 2.386	4.782 4.773	7.174 7.159	9.565 9.545	11.956	14.347 14.318			
30	17.471	2.381	4.763	7.144	9.526	11.907	14.288			
40 50	23.294 29.118	2.377 2.372	4·753 4·743	7.130 7.115	9.506 9.486	11.883	14.259 14.230		36°	37°
36 00		2.367	4.733	7.099	9.466	11.833	14.200	5	0.001	0.001
10 20	5.824 11.649	2.362 2.357	4.723 4.713	7.085 7.070	9.446 9.426	11.808	14.170	10	,004 ,009	.004
30	17.473	2.351	4.703	7.055	9.406	11.757	14.109	20	.016	.016
40 50	23.297 29.122	2.346 2.341	4.693 4.683	7.039 7.024	9.386 9.366	11.732	14.078	25 30	.025	.026 .037
37 00	,	2.336	4.673	7.009		11.682	14.018			Ů.
10	5.826	2.331	4.662	6.994	9.345 9.325	11.656	13.987		38°	39°
20 30	11.651 17.477	2.326 2.321	4.652 4.642	6.978 6.963	9.304 9.284	11.630	13.956 13.925			
40 50	23.302 29.128	2.316 2.311	4.631 4.621	6.947 6.932	9.263 9.242	11.579	13.894 13.864	5	0.001	0.001
	29.120							10	.004	.004
38 oo 10	5.827	2.305	4.611 4.600	6.916 6.900	9.222	11.527	13.832 13.801	20	.017	.017
20	11.653	2.295	4.590	6.884	9.179	11.474	13.769	25 30	.026	.026
30 40	17.480 23.306	2.290 2.284	4·579 4·568	6.869 6.853	9.158 9.137	11.448	13.737 13.705			
50	29.133	2.279	4.558	6.837	9.116	11.395	13.673		40°	
39 00 10	5.828	2.274 2.268	4.548 4.537	6.821 6.805	9.095 9.073	11.369 11.342	13.642 13.610			
20	11.655	2.263	4.526	6.789	9.052	11.315	13.577	5	0.001	
30 40	17.483 23.310	2.258 2.252	4.515 4.504	6. 7 73 6.756	9.030 9.008	11.288 11.261	13.545 13.513	10	.004	
50	29.138	2.247	4.493	6.740	8.987	11.234	13.480	20	.017 .026	
40 00	· • • • · · · · ·	2.241	4.483	6.724	8.965	11.207	13.448	25 30	.038	
4 1										

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 126000.

١	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	DEVEL PARAL		
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	40°	41°
40°00′ 10	5.829	2.241	4.483 4.472	6.724 6.707 6.691	8.965	11.207	13.448	Long	40	4.
20 30 40 50	11.657 17.486 23.314 29.143	2.230 2.225 2.219 2.214	4.461 4.450 4.439 4.428	6.674 6.658 6.641	8.921 8.899 8.877 8.855	11.152 11.124 11.097 11.069	13.382 13.349 13.316 13.283	5'	Inches.	Inches 0.001
41 00	5.830	2.208	4.417	6.625	8.834 8.811	11.042	13.250	10 15 20	.004	.004
20 30 40	11.659 17.489 23.319	2.197 2.192 2.186	4·394 4·383 4·372	6.591 6.575 6.558	8.788 8.766 8.744	10.985 10.958 10.929	13.183 13.149 13.115	30	.026	.026
50	29.149	2.180	4.360	6.541	8.721	10.901	13.081		42°	43°
42 00 10 20	5.831 11.661	2.175 2.169 2.163	4.349 4.338 4.326	6.524 6.507 6.490	8.698 8.676 8.653	10.873 10.844 10.816	13.048 13.013 12.979	5	0.001	0.001
30 40 50	17.492 23.323 29.154	2.157 2.152 2.146	4.315 4.303 4.292	6.472 6.455 6.438	8.630 8.607 8.584	10.787 10.759 10.730	12.945 12.910 12.876	10 15 20	.004 .010	.004 .010 .017
43 00 10 20	5.832 11.663	2.140 2.135 2.129	4.281 4.269 4.257	6.421 6.403 6.386	8.561 8.538 8.514	10.702 10.672 10.643	12.842 12.807 12.772	30	.026	.027
30 40 50	17.495 23.327 29.159	2.123 2.117 2.111	4.246 4.234 4.222	6.368 6.351 6.333	8.491 8.468 8.444	10.614 10.585 10.556	12.737 12.701 12.667		44°	45°
44 00 10 20 30 40 50	5.833 11.666 17.498 23.331 29.164	2.105 2.099 2.093 2.087 2.081 2.076	4.210 4.199 4.187 4.175 4.163 4.151	6.316 6.298 6.280 6.262 6.244 6.227	8.421 8.397 8.373 8.350 8.326 8.302	10.526 10.496 10.467 10.437 10.407	12.631 12.596 12.560 12.524 12.489 12.453	5 10 15 20 25 30	0.001 .004 .010 .017 .027 .038	0.001 .004 .010 .017 .027 .038
45 00 10 20	5.834 11.668	2.070 2.064 2.057	4.139 4.127 4.115	6.209 6.191 6.172	8.278 8.254 8.230	10.348 10.317 10.288	12.417 12.381 12.345		46°	47°
30 40 50	23.335 29.169	2.051 2.045 2.039	4.103 4.091 4.079	6.154 6.136 6.118	8.206 8.181 8.157	10.257 10.226 10.197	12.308 12.272 12.236	5 10	0.001	0.001
46 00 10 20 30 40 50	5.835 11.670 17.504 23.339 29.174	2.033 2.027 2.021 2.015 2.009 2.003	4.067 4.054 4.042 4.030 4.017 4.005	6.100 6.081 6.063 6.044 6.026 6.008	8.133 8.108 8.084 8.059 8.034 8.010	10.166 10.136 10.104 10.074 10.043 10.013	12.199 12.163 12.125 12.089 12.052 12.015	15 20 25 30	.010 .017 .027 .038	.010 .017 .027 .038
47 00	5.836	1.996	3.992 3.980	5.989 5.970	7.985 7.960	9. 9 81 9.951	11.978		48°	
20 30 40 50	11.672 17.508 23.344 29.180	1.984 1.978 1.971 1.965	3.968 3.955 3.943 3.930	5.951 5.933 5.914 5.895	7.935 7.910 7.885 7.860	9.951 9.919 9.888 9.857 9.826	11.903 11.866 11.828 11.791	5 10 15 20	0.00I .004 .010	
48 00		1.959	3.917	5.876	7.835	9.794	11.752	25 30	.026 .038	

TABLE 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

.	al dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	01	D T) 1 N 1 A 7	res of
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	IO' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.		DEVEL PARAL	OPED
48°00′	Inches.	Inches.	Inches. 3.917	Inches. 5.876	Inches. 7.835	Inches. 9.794	Inches.	Longitude interval.	48°	49°
20 30 40 50	5.837 11.674 17.511 23.348 29.185	1.952 1.946 1.940 1.933 1.927	3.905 3.892 3.879 3.867 3.854	5.857 5.838 5.819 5.800 5.781	7.810 7.784 7.759 7.733 7. 708	9.762 9.730 9.699 9.667 9.635	11.714 11.677 11.638 11.600 11.562	5'	Inches. 0.001	Inches. 0.001
49 00 10 20 30 40	5.838 11.676 17.514 23.352	1.921 1.914 1.908 1.901 1.895	3.841 3.828 3.815 3.803 3.790	5.762 5.743 5.723 5.704 5.684	7.682 7.657 7.631 7.605 7.579	9.603 9.571 9.539 9.507 9.474	11.523 11.485 11.446 11.408 11.369	15 20 25 30	.010 .017 .026 .038	.010 .017 .026 .038
50 00	29.190	1.882	3.777 3.764	5.665	7·553 7·527	9.442	11.330		50°	510
10 20 30 40 50	5.839 11.678 17.517 23.356 29.194	1.875 1.869 1.862 1.856 1.849	3.750 3.737 3.724 3.711 3.698	5.626 5.606 5.587 5.567 5.547	7.501 7.475 7.449 7.422 7.396	9.376 9.344 9.311 9.278 9.245	11.251 11.212 11.173 11.134 11.094	5 10 15 20	0.001 .004 .009	0.001 .004 .009 017
51 00 10 20 30	5.840 11.680 17.520	1.842 1.836 1.829 1.823	3.685 3.672 3.658 3.645	5.528 5.507 5.488 5.468	7.370 7.343 7.317 7.290	9.21 2 9.179 9.146 9.113	11.055 11.015 10.975 10.936	25 30	.026 .038	.026 .037
40 50	23.360 29.200	1.816	3.632 3.618	5.448 5.428	7.264 7.237	9.080 9.046	10.895		52°	53°
52 00 10 20 30 40 50	5.841 11.682 17.523 23.364 29.204	1.803 1.796 1.789 1.782 1.776 1.769	3.605 3.592 3.578 3.565 3.551 3.538	5.408 5.388 5.367 5.347 5.327 5.307	7.210 7.184 7.156 7.130 7.103 7.076	9.013 8.980 8.946 8.912 8.878 8.844	10.816 10.775 10.734 10.694 10.654 10.613	5 10 15 20 25 30	0.001 .004 .009 .017 .026 .037	0.001 .004 .009 .016 .026
53 00 10 20	5.842 11.684	1.762 1.755 1.748	3.524 3.511 3.497	5.287 5.266 5.246	7.049 7.022 6.994	8.811 8.777 8.742	10.573 10.532 10.491		54°	55°
30 40 50	17.526 23.368 29.210	1.742 1.735 1.728	3.483 3.470 3.456	5.225 5.205 5.184	6.967 6.940 6.912	8.708 8.674 8.640	10.450 10.409 10.368		0.001	0.001
54 00 10 20 30 40 50	5.843 11.686 17.529 23.372 29.214	1.721 1.714 1.707 1.700 1.694 1.687	3.442 3.429 3.415 3.401 3.387 3.373	5.164 5.143 5.122 5.101 5.080 5.060	6.885 6.857 6.830 6.802 6.774 6.746	8.606 8.572 8.537 8.502 8.468 8.433	10.327 10.286 10.244 10.202 10.161 10.120	10 15 20 25 30	.004 .009 .016 .025 .036	.004 .009 .016 .025 .036
55 00		1.680	3-359	5.039	6.719	8.398	10.078		56°	
20 30 40 50	5.844 11.688 17.532 23.376 29.220	1.673 1.666 1.659 1.652 1.645	3.345 3.331 3.317 3.303 3.289	5.018 4.997 4.976 4.955 4.934	6.691 6.663 6.635 6.607 6.579	8.364 8.328 8.294 8.258 8.224	9.994 9.952 9.910 9.868	5 10 15 20	0.00I .004 .009 .016	
56 00		1.638	3.275	4.913	6.551	8.188	9.826	30	.025 .036	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 126000.

jų,	al dis- om ree	АВ	SCISSAS	OF DEV	ELOPED	PARALL	EL.	01	RDINAT	TEC OF
Latitude parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	PARALI	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	tude val.	56°	
56°00′ 10 20	5.845 11.690	1.638 1.631 1.624	3.275 3.261 3.247	4.913 4.892 4.870	6.551 6.522 6.494	8.188 8.153 8.118	9.826 9.784 9.741	Longitude interval.	30	57°
30 40 50	17.535 23.380 29.224	1.616 1.609 1.602	3.233 3.219 3.204	4.849 4.828 4.807	6.466 6.437 6.409	8.082 8.046 8.011	9.698 9.656 9.613	5	Inches. 0.001 .004	Inches. 0.00I .004
57 00 10 20 30 40 50	5.846 11.692 17.537 23.383 29.229	1.595 1.588 1.581 1.574 1.566 1.559	3.190 3.176 3.162 3.147 3.133 3.119	4.785 4.764 4.742 4.721 4.699 4.678	6.380 6.352 6.323 6.294 6.266 6.237	7.976 7.940 7.904 7.868 7.832 7.796	9.571 9.527 9.485 9.442 9.398 9.356	20 25 30	.009 .016 .025 .036	.009 .016 .024 .035
58 00		1.552	3.104	4.656	6.208	7.760	9.313		58°	59°
10 20 30 40 50	5.847 11.694 17.540 23.387 29.234	1.545 1.538 1.530 1.523 1.516	3.090 3.075 3.061 3.046 3.032	4.634 4.613 4.591 4.569 4.547	6.179 6.150 6.122 6.092 6.063	7.724 7.688 7.652 7.616 7.579	9.269 9.226 9.182 9.139 9.095	5 10 15 20	0.00I .004 .009 .015	0.001 .004 .008
59 00 10 20 30	5.848 11.695 17.543	1.509 1.501 1.494 1.487	3.017 3.003 2.988 2.973	4.526 4.504 4.482 4.460	6.034 6.005 5.976 5.946	7.543 7.506 7.470 7.433	9.052 9.008 8.963 8.920	30	.034	.024
40 50	23.391	1.479	2.959 2.944	4.438 4.416	5.917 5.888	7.396 7.360	8.876 8.831		60°	610
60 00 10 20 30 40 50	5.849 11.697 17.546 23.394 29.243	1.465 1.457 1.450 1.442 1.435 1.428	2.929 2.914 2.900 2.885 2.870 2.855	4·394 4·372 4·349 4·327 4·305 4·283	5.858 5.829 5.799 5.770 5.740 5.710	7.323 7.286 7.249 7.212 7.175 7.138	8.788 8.743 8.699 8.654 8.610 8.566	5 10 15 20 25 30	0.001 .004 .008 .015 .023 .033	0.001 .004 .008 .014 .023 .033
61 00 10 20	5.850 11.699	1.420 1.413 1.405	2.840 2.825 2.810	4.261 4.238 4.216	5.681 5.651 5.621	7.101 7.064 7.026	8.521 8.476 8.431	_	62°	63°
30 40 50	17.549 23.398 29.248	1.398 1.390 1.383	2.795 2.781 2.766	4.193 4.171 4.148	5.591 5.561 5.531	6.988 6.952 6.914	8.386 8.342 8.297	5	0.001	0.001
62 00 10 20 30 40 50	5.850 11.701 17.551 23.402 29.252	1.375 1.368 1.360 1.353 1.345 1.338	2.751 2.736 2.720 2.705 2.690 2.675	4.126 4.103 4.081 4.058 4.035 4.013	5.501 5.471 5.441 5.410 5.380 5.350	6.877 6.839 6.801 6.763 6.726 6.688	8.252 8.207 8.161 8.116 8.071 8.026	15 20 25 30	.008 .014 .022 .032	.008 .014 .022 .031
63 00		1.330	2.660 2.645	3.990	5.320	6.650 6.612	7.980		64°	
10 20 30 40 50	5.851 11.702 17.554 23.405 29.256	1.322 1.315 1.307 1.300 1.292	2.630 2.614 2.599 2.584	3.967 3.944 3.921 3.899 3.876	5.290 5.259 5.228 5.198 5.168	6.574 6.536 6.498 6.460	7.934 7.889 7.843 7.797 7.751	5 10 15 20	0.001 .003 .008	
64 00		1.284	2.569	3.853	5.137	6.422	7.706	²⁵ 30	.021 .030	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1220000

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DINAT DEVELO PARALL	PED
64°00′	Inches.	Inches.	Inches. 2.569	Inches. 3.853	Inches. 5.137	Inches. 6.422	Inches. 7.706	Longitude interval.	64° ,	65°
10	5.852 11.704	1.277 1.269	2.553 2.538	3.830 3.807	5.106 5.076	6.383 6.345	7.660 7.614	Login		
30 40 50	17.556 23.408 29.260	1.261 1.254 1.246	2.523 2.507 2.492	3.784 3.761 3.738	5.045 5.014 4.984	6.307 6.268 6.230	7.568 7.522 7.476	5' 10	Inches. 0.001 .003	Inches. 0.001 .003
65 00 10 20 30 40	5.853 11.706 17.558 23.411 29.264	1.238 1.231 1.223 1.215 1.207 1.200	2.477 2.461 2.446 2.430 2.415	3.715 3.692 3.668 3.645 3.622	4.953 4.922 4.891 4.860 4.829	6.192 6.153 6.114 6.075 6.037	7.430 7.384 7.337 7.290 7.244 7.198	25 30	.008 .013 .021 .030	.007 .013 .020 .029
66 00		1.192	2.399 2.384	3·599 3·575	4.798	5.998	7.190		66°	67°
10 20 30 40 50	5.854 11.707 17.561 23.414 29.268	1.184 1.176 1.168 1.161 1.153	2.368 2.352 2.337 2.321 2.305	3.552 3.529 3.505 3.482 3.458	4.736 4.705 4.673 4.642 4.611	5.920 5.881 5.842 5.803 5.764	7.104 7.05 7 7.010 6.963 6.916	5 10 15 20	0.001 .003 .007 .013	0.00I .003 .007 .012
67 00 10 20 30	5.854 11.709 17.563	1.145 1.137 1.129 1.121	2.290 2.274 2.258 2.243	3.435 3.411 3.388 3.364	4.580 4.548 4.517 4.485	5.725 5.685 5.646 5.607	6.869 6.822 6.775 6.728	25 30	.020	.019
40 50	23.418	1.113	2.227	3.340 3.317	4.454 4.422	5.567 5.528	6.68o 6.634		68°	69°
68 00 10 20 30 40 50	5.855 11.710 17.565 23.420 29.276	1.098 1.090 1.082 1.074 1.066 1.058	2.195 2.180 2.164 2.148 2.132 2.116	3.293 3.269 3.246 3.222 3.198 3.174	4.391 4.359 4.328 4.296 4.264 4.232	5.489 5.449 5.410 5.370 5.330 5.291	6.586 6.539 6.491 6.443 6.396 6.349	5 10 15 20 25 30	0.001 .003 .007 .012 .019	0.001 .003 .006 .011 .018
69 00 10 20 30	5.856 11.712 17.567	1.050 1.042 1.034 1.026	2.100 2.084 2.068 2.052	3.151 3.127 3.103 3.079	4.201 4.169 4.137 4.105	5.251 5.211 5.171 5.131	6.301 6.253 6.205 6.157		70°	710.
40 50	23.423 29.279	1.018	2.037 2.021	3.055 3.031	4.073 4.041	5.092 5.052	6.110 6.062	5 10	0.001	.003
70 00 10 20 30 40	5,856 11.713 17.570 23,426 29,282	1.002 .994 .986 .978 .970	2.005 1.989 1.972 1.956 1.940 1.924	3.007 2.983 2.959 2.935 2.911 2.886	4.009 3.977 3.945 3.913 3.881 3.848	5.012 4.972 4.931 4.891 4.851 4.811	6.014 5.966 5.91 7 5.869 5.821 5.773	20 25 30	.006 .011 .017 .024	.006 .010 .016 .024
71 00		·954	1.908	2.862	3.816	4.771	5.725		720	
10 20 30 40 50	5.857 11.714 17.572 23.429 29.286	.946 .938 .930 .922 .914	1.892 1.876 1.860 1.844 1.828	2.838 2.814 2.790 2.765 2.741	3.784 3.752 3.720 3.687 3.655	4.730 4.690 4.650 4.609 4.569	5.676 5.628 5.579 5.531 5.483	5 10 15 20	.003	
72 00		.906	1.811	2.717	3.623	4,529	5.434	²⁵ 30	.016	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 121000.

•	dis-	AE	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5'	20' longitude.	25' longitude.	30' longitude.			PED
72 ⁰ 00′	Inches.	Inches.	Inches.	Inches. 2.717	Inches. 3.623	Inches. 4.529	Inches.	Longitude interval.	72°	73°
10	5.858 11.716	.898	1.705	2.693	3.590	4.488	5.434 5.386	Z iii		
30 40 50	17.573 23.431 29.289	.881 .873 .865	1.779 1.763 1.746 1.730	2.644 2.620 2.595	3.558 3.525 3.493 3.460	4.447 4.407 4.366 4.325	5.336 5.288 5.239 5.190	5' 10	Inches. 0.00I .003	Inche 0.001
73 00 10 20 30 40 50	5.858 11.717 17.575 23.434 29.292	.857 .849 .841 .832 .824 .816	1.714 1.697 1.681 1.665 1.648 1.632	2.571 2.546 2.522 2.497 2.473 2.448	3.428 3.395 3.362 3.330 3.297 3.264	4.285 4.244 4.203 4.162 4.121 4.081	5.141 5.092 5.044 4.994 4.945 4.897	25 30	.006 .010 .016 .023	.010 .010 .011
74 00 10 20	5.859 11.718	.808 .800 .791	1.616 1.599 1.583 1.566	2.424 2.399 2.374	3.232 3.199 3.160	4.040 3.999 3.957	4.847 4.798 4.748		74°	75°
30 40 50	17.577 23.436 29.295	.783 .775 . 7 67	1.500 1.550 1.534	2.350 2.325 2.300	3.133 3.100 3.067	3.916 3.875 3.834	4.699 4.650 4.601	5	0.00I .002	0.001
75 00 10 20 30 40 50	5.860 11.719 17.578 23.438 29.298	.759 .750 .742 .734 .726	1.517 1.501 1.484 1.468 1.451 1.435	2.276 2.251 2.226 2.201 2.177 2.152	3.034 3.002 2.968 2.935 2.902 2.870	3·793 3·752 3·711 3·669 3·628 3·587	4·552 4·502 4·453 4·403 4·354 4·304	15 20 25 30	.005 .009 .014 .020	.00.
76 00 10 20	5.860 11.720	.709 .701 .692	1.418 1.402 1.385	2.127 2.102 2.078	2.836 2.803 2.770	3.546 3.504 3.463	4.255 4.205 4.155			0
30 40	17.580 23.440	.684 .676	1.368 1.352	2.053 2.028	2.737 2.704	3.421 3.380	4.105 4.056		76°	77°
50 77 00 10 20 30 40 50	5.860 11.721 17.582 23.442 29.302	.668 .659 .651 .643 .634 .626	1.335 1.319 1.302 1.285 1.269 1.252	2.003 1.978 1.953 1.928 1.903 1.878 1.853	2.671 2.638 2.604 2.571 2.538 2.504 2.471	3.339 3.297 3.256 3.214 3.172 3.131 3.089	3.956 3.907 3.856 3.806 3.757 3.706	5 10 15 20 25 30	0.001 .002 .005 .008 .013	.002 .004 .007 .012
78 00 10	5.861	.609 .601	1.219	1.828	2.438 2.404	3.047 3.005	3.656 3.606			
20 30 40	11.722 17.583 23.444	·593 ·584 ·576	1.185 - 1.169 1.152	1.778 1.753 1.728	2.371 2.338 2.304	2.964 2.922 2.880	3.556 3.506 3.456		78°	7 9°
79 00 10 20 30 40 50	5.861 11.723 17.584 23.445 29.306	.568 .559 .551 .542 .534 .526	1.135 1.119 1.102 1.085 1.068 1.052	1.703 1.678 1.653 1.628 1.602 1.577 1.552	2.237 2.237 2.204 2.170 2.136 2.103 2.070	2.838 2.797 2.755 2.713 2.629 2.587	3.406 3.356 3.305 3.255 3.205 3.155 3.104	5 10 15 20 25 30	0.000 .002 .004 .007 .011	0.000 .002 .004 .006 .010
80 00		.509	1.018	1.527	2.036	2.545	3.054			

Table 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{128720}$.

Latitude of parallel.	gragasi			'	JE DEVE		MALLE	L FOR —	
II .≍ E 1 €	ralle	15' long	itude.	30/ long	gitude.	45' long	gitude.	1º long	itude.
Lat pa	Mendonal distances from even degree parallels.	x	у	x	у	x	у	х	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
0°00′		8.647	.000	17.293	.000	25.940	.000	34.586	.000
30	8.588	8.646 8.646	.000	17.293	100.	25.939 25.938	100.	34.585 34.584	.001
	25.764	8.646	.000	17.291	.001	25.937	.002	34.582	.004
100	34-352	8.645	.000	17.291	100.	25.936	.003	34.581	.005
15	8.588	8.644	.000	17.289	.002	25.933	.003	34-577	.007
30	17.176	8.643	.000	17.287	.002	25.930	.004	34-573	.008
45	25.764	8.642	.001	17.285	.002	25.927	.005	34.569	.009
200	34.352	8.641	.001	17.283	.003	25.924	.006	34.565	011
15	8.588	8.640	.001	17.279	.003	25.919	.007	34.559	.012
	17.176 25.765	8.638 8.636	100.	17.276	.003	25.914	.007 .008	34.552	.014
45	25.705	8.030	.001	17.273	.004	25.909	.003	34.546	.015
3 ∞	34-353	8.635	.001	17.270	.004	25.904	.009	34-539	.016
15	8.588	8.633	100.	17.265	.004	25.898	.009	34.530	.013
	17.177	8.630 8.628	100.	17.260	.005	25.891	.010	34.521	.019
45	25.765	0.020	.001	17.256	.005	25.884	.011	34.512	.020
4 ∞	34-353	8.626	.001	17.251	.005	25.877	.012	34.502	.021
15	8.589	8.623	100.	17.245	.006	25.868	.012	34.491	.023
	17.177	8.620 8.617	100.	17.240	.006	25.859	.013	34.479	.024
45	25.766	0.017	.002	17.234	.006	25.850	.014	34.467	.025
5 00	34.354	8.614	.002	17.228	.007	25.842	.015	34.456	.026
15	8.589	8.610	.002	17.221	.007	25.831	.016	34-441	.028
	17.177	8.607	.002	17.213	.007	25.820	.016	34.427	.029
45	25.766	8.603	.002	17.206	.008	25.809	.017	34.412	.030
6 00	34-355	8.600	.002	17.199	.008	25.799	.018	34.398	.031
15	8.589	8.595	.002	17.191	.008	25.786	.019	34.381	.033
	17.178	8.591	.002	17.182	.008	25.773	.020	34.364	.034
45	25.767	8.587	.002	17.174	.009	25.760	.021	34-347	.035
7 ∞	34-356	8.583	.002	17.165	.009	25.748	.021	34.330	.037
15	8.589	8.578	.002	17.155	.009	25.733 25.718	.022	34.310	.038
30	17.179	8.573 8.568	.003	17.145	.009		.022	34.291	.040
45	25.768	8.568	.003	17.136	.010	25.704	.023	34.272	.041
8 00	34-358	8.563	.003	17.126	.010	25.689	.023	34.252	.042
15	8.590	8.558	.003	17.115	.010	25.673 25.656	.024	34.230	.044
30	17.180	8.552	.003	17.104	.011	25.656	.024	34.208	.045
45	25.769	8.546	.003	17.093	.011	25.639	.025	34.186	. 046
900	34-359	8.541	.003	17.082	.012	25.622	.026	34.163	.047
15	8.590	8.535 8.528	.003	17.069	.012	25.604	.027	34.138	.048
30	17.180	8.528	.003	17.057	.012	25.585	.027	34.114	.050
45	25.771	8.522	.003	17.045	.013	25.567	.028	34.089	.051
10 00	34.361	8.516	.003	17.032	.013	25.548	.029	34.064	.052

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 126720.

j _o	al dis-		CO-ORDI	NATES (F DEVE	LOPED F	ARALLE	L FOR -	
Latitude c	Meridional distances from even degree parallels.	15' long	gitude.	30' long	gitude.	45' long	gitude.	r° long	itude.
La	Me tar ev	x	у	x	у	x	у	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10000′		8.516	.003	17.032	.013	25.548	.029	34.064	.052
15 30	8.591 17.181	8.509 8.502	.003	17.005	.013	25.528 25.507	.030 .031	34.037 34.010	.054 .055
45	25.772	8.496	.003	16.991	.014	25.487	.032	33.982	.056
11 00	34.363	8.489	.004	16.977	.014	25.466	.032	33-955	.057
15	8.591	8.481	.004	16.962	.014	25.444	.033	33.925	.058
30	17.183	8.474	.004	16.947	.015	25.421	.033	33.895	.059 .060
45	25.774	8.466	.004	16.933	.015	25.399	.034	33.865	.000
12 00 .	34.365	8.459	.004	16.918	.015	25.376	.035	33.835	.061
15	8.592	8.451	.004	16.901	.016	25.352	.035	33.803	.063
30	17.184	8.443	.004	16.885 16.869	.016	25.328	.036	33.770	.064
45	25.776	8.434	.004	-	.016	25.304	.036	33.738	.065
13 00	34.368	8.426	.004	16.853	.017	25.279	.037	33.706	.066
15	8.592	8.418	.004	16.835 16.818	.017	25.253	.038	33.671	.067
30	17.185	8.409	.004		.017	25.227	.039	33.636	.069
45	25.778	8.400	.004	16.800	.018	25.201	.040	33.601	.070
14 00	34-370	8.391	.004	16.783	.018	25.174	.040	33.566	.071
15	8.593 17.186	8.382	.005	16.764	.018	25.146	.041	33.528	.072
30	17.186	8.373	.005	16.745	.018	25.118	.041	33.490	.073
45	25.780	8.363	.005	16.726	.019	25.090	.042	33-453	.074
15 00	34-373	8.354	.005	16.708	.019	25.061	.042	33.415	.075
15	8.594	8.344	.005	16.688	.019	25.031	.043	33-375	.077
30	17.188	8.334	.005	16.668	.019	25.001	.044	33-335	.078
45	25.782	8.324	.005	16.647	.020	24.971	.045	33-295	.079
16 00	34.376	8.314	.005	16.627	.020	24.941	.045	33-255	.080
15	8.595	8.303	.005	16.606	.020	24.909	.045	33.212	180.
30	17.190	8.292	.005	16.585	.020	24.877	.046	33.170	.082
45	25.784	8.282	.005	16.564	.021	24.845	.046	33.127	.083
17 ∞	34-379	8.271	.005	16.542	.021	24.813	.047	33.084	.084
15	8.596	8.260	.005	16.520	.021	24.779	.048	33.039	.085
30	17.191	8.249	.005	16.497	.021	24.746	.049	32.994	.087
45	25.787	8.237	.006	16.475	.022	24.712	.050	32.949	.088
18 00	34.382	8.226	.006	16.452	.022	24.678	.050	32.904	. o 89
15	8.596	8.214	.006	16.428	.022	24.642	.051	32.856	.090
30	17.193	8.202	.006	16.404	.023	24.607	.051	32.809	.091
45	25.790	8.190	.006	16.381	.023	24.571	.052	32.761	.092
19 00	34.386	8.178	.006	16.357	.023	24-535	.052	32.714	.093
15	8.597	8.166	.006	16.332	.023	24.498	.053	32.664	.094
3ŏ	17.195	8.153	.006	16.307	.024	24.460	.054	32.614	.095
45	25.792	8.141	.006	16.282	.024	24.422	.055	32.563	.096
20 00	34-390	8.128	.006	16.257	.024	24.385	.055	32.513	.097

Table 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{7}{126720}$.

jo	al dis-		CO-ORD	INATES	OF DEVE	ELOPED	PARALLI	EL FOR-	
Latitude o	Meridional distances from even degree parallels.	15' lor	gitude.	30' lor	gitude.	45' lor	ngitude.	ı° lor	gitude.
Lati	Mer tan eve par	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20°00′ I 5	8.598	8.128	.006	16.257	.024	24.385 24.346	.055	32.513	.097
30 45	17.197 25.795	8.102 8.089	.006 .006	16.204 16.178	.025 .025	24.306 24.267	.056 .057	32.408	.100
21 00	34-394	8.076	.006	16.152	.025	24.227	.057	32.303	.101
15 30	8.599 17.199	8.062 8.048	.006 .006	16.124 16.097	.025 .026	24.186 24.145	.058 .058	32.248 32.193	.102 .103
45	25.798	8.035	.007	16.069	.026	24.104	.059	32.138	.104
22 00	34.398	8.021	.007	16.042	.026	24.062	.059	32.083	.105
15 30	8.600 17.201	8.006 7.992	.007	16.013 15.984	.026	24.019 23.976	.060 .060 .061	32.026 31.968	.106
45	25.801	7.978 7.963	.007	15.955	.027	23.933	.061	31.911	.108
23 00	34.402 8.602	7.948	.007	15.897	.027	23.845	.062	31.794	.109
30 45	17.203	7.933 7.918	.007	15.867	.028	23.800	.062 .063	31.734	.110
24 00	34.406	7.904	:007	15.807	.028	23.711	.063	31.614	.112
15 30	8.603 17.205	7.888 7.872	.007	15.776 15.745	.028 .029	23.664 23.617	.064 .064	31.552 31.489	.113
45	25.808	7.857	.007	15.713	.029	23.570	.065	31.427	.115
25 ∞	34.410	7.841	.007	15.682	.029	23.524	.065	31.365	.116
30	8.604 17.207	7.825 7.809	.007 .007	15.650 15.617	.029 .029	23.475 23.426	.065 .066	31.300	.117
45	25.811	7.793	.007	15.585	.030	23.378	.067	31.170	.118
26 00	34.415	7.776	.007	15.553	.030	23.329	.067	31.106	.119
30	8.605 17.210 25.814	7.760 7.743 7.726	.007 .008 .008	15.519 15.486 15.452	.030 .030 .030	23.279 23.229 23.179	.067 .068 .068	31.039 30.972 30.905	.120 .121 .121
45 27 00	34.419	7.709	.008	15.419	.031	23.128	.069	30.838	.122
15	8.606	7.692	.008	15.384	.031	23.076	.069	30.769	.123
30 45	17.212 25.818	7.675 7.657	.008 .008	15.350	.031	23.024 22.972	.070 .070	30.699 30.630	.124
28 00	34-424	7.640	.008	15.280	.031	22.920	.070	30.560	.125
15 30	8.607 17.215	7.622 7.604	.008	15.244 15.208	.031 .032	22.866 22.813	.07 I .07 I	30.489 30.417	.126 .127
45	25.822	7.586	.008	15.173	.032	22.759	.072	30.345	.127
29 00	34-430	7.568	.008	15.137	.032	22.705	.072	30.274	.128
15 30	8.609 17.217	7.550 7.531	800.	15.100 15.063	.032 .032	22.650 22.594	.072 .073	30.200 30.125	.129
45	25.826	7.513	.008	15.026	.033	22.539	.073	30.051	.130
30 00	34.435	7.494	.008	14.989	.033	22.483	.074	29.978	131

ų, o	l dis-		CO-ORD	INATES (OF DEVI	ELOPED I	PARALLI	EL FOR-	
Latitude o	Meridional dis tances from even degree parallels.	15' lor	igitude.	30' lon	igitude.	45' lor	gitude.	r° lon	gitude.
Lati	Mer tan eve par	x	У	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
30°00′		7.494	.008	14.989	.033	22.483	.074	29.978	.131
15 30	8.610 17.220	7·475 7·456	.008 800.	14.951	.033 .033	22.426 22.369	.074 .074	29.902	.131
45	25.830	7.437	.008	14.874	.033	22.312	.075	29.749	.132 .133
31 00	34-440	7.418	.008	14.836	.033	22.254	.075	29.672	.133
15	8.611	7.398	.008	14.797	.033	22.195	.075	29.594	.134
30	17.213	7.379	.008	14.758	.034	22.137	.076	29.515	.135
45	25.834	7-359	.008	14.718	.034	22.078	.076	29.437	.135
32 00	34.446	7.340	.008	14.679	.034	22.019	.076	29.358	.136
15	8.613	7.319	.008	14.639	.034	21.958	.077	29.278	.136
30	17.225	7.299	.009	14.598	.034	21.898	.077	29.197	.137
45	25.838	7.279	.009	14.558	.034	21.837	.077	29.116	·1 37
33 ∞	34-451	7.259	.009	14.518	.034	21.777	.078	29.036	.138
15	8.614	7.238	.009	14.476	.035	21.714	.078	28.953	.138
30	17.228	7.217	.009	14.435	.035	21.652	.078	28.869	.139
45	25.842	7.197	.009	14.393	.035	21.590	.078	28.786	.139
34 00	34.456	7.176	.009	14.352	.035	21.527	.079	28.703	.140
15	8.615	7.154	.009	14.309	.035	21.464	.079	28.618	.141
30	17.231 25.846	7-133	.009	14.266	.035	21.400	.079	28.533	.141
45	25.040	7.112	.009	14.224	.035	21.336	.080	28.448	.142
35 ∞	34.462	7.091	.009	14.181	.035	21.272	.080	28.362	.142
15	8.617	7.069	.009	14.138	.036	21.207	.080	28.275	.142
30	17.234	7.047	.009	14.094	.036	21.141	.080	28.188	.143
45	25.851	7.025	.009	14.050	.036	21.076	. 0 80	28.101	.143
36 00	34.468	7.003	.009	14.007	.036	21.010	.081	28.014	.144
15	8.618	6.981	.009	13.962	.036	20.943	180.	27.924	.144
30	17.237	6.959	.009	13.917	.036	20.876	.081	27.835	.144
45	25.855	6.936	.009	13.873	.036	20.809	.081	27.745	.145
37 ∞	34-474	6.914	.009	13.828	.036	20.742	.082	27.655	.145
15	8.620	6.891	.009	13.782	.036	20.673	.082	27.564	.145
30	17.240 25.860	6.868 6.845	.009	13.736	.036	20.604	.082 .082	27.472	.146
45		0.045	.009	13.690	.037	20.536	.002	27.381	.146
38 00	34.480	6.822	.009	13.645	.037	20.467	.082	2 7.289	.147
15	8.621	6.799	.009	13.598	.037	20.397	.083	27.196	.147
30	17.243	6.775	.009	13.551	.037	20.326	.083	27.102	.147
45	25.864	6.752	.009	13.504	.037	20.256	.083	27.008	.147
39 ∞	34.485	6.729	.009	13.457	.037	20.186	.083	26.914	.148
15	8.623	6.705	.009	13.409	.037	20.114	.083	26.819	.148
30	17.246	6.681	.009	13.361	.037	20.042	.083	26.723	.148
45	25.868	6.657	.009	13.314	.037	19.970	.084	26.627	.148
40 00	34.491	6.633	.009	13.266	.037	19.899	.084	26.532	.149

TABLE 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 126720.

	dis ee		CO-ORD	INATES (OF DEVE	LOPED I	PARALLE	L FOR—	
Latitude of parallel.	Meridional distances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	to long	gitude.
Lati	Mer tan eve par	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′ 15	8.624	6.633 6.608	.009	13.266	.037 .037	19.899	.084 .084	26.532 26.434	.149 .149
30	17.249	6.584	.009	13.168	.037	19.752	.084	26.336	.149
45	25.873	6.560	.009	13.119	.037	19.679	.084	26.238	.149
41 00	34-497	6.535	.009	13.070	037	19.605	.084	26.140	.150
15	8.625	6.510	.009	13.020	.037	19.530	.084 .084	26.041	.1 50
30 45	17.250 25.875	6.485 6.460	.009	12.970	.037 .037	19.456	.084	25.941 25.841	.150 .150
42 00	34.500	6.435	.009	12.871	.037	19.306	.085	25.741	.150
15	8.627	6.410	.009	12.820	.037	19.230	.085	25.640	.150
30	17.255	6.385	.009	12.769	.037 .038	19.154	.085	25.538	.151
45	25.882	6.359	.009	12.718	.038	19.077	.085	25.436	.151
43 00	34.510	6.334	.009	12.667	.038	19.001	.085	25.335	.151
15	8.629	6.308	.009	12.615	.038	18.923	.085	25.231	.151
30 45	17.257 25.886	6.282 6.256	.009	12.563	.038	18.845 18.767	.085 .085	25.127 25.023	.151
44 00	34.515	6.230	.009	12.460	.038	18.689	.085	24.919	.151
		_				18.610	.085		-
30	8.630 17.261	6.203 6.177	.009	12.407	.038 .038	18.531	.085	24.814 24.708	.151
45	25.891	6.151	.009	12.301	.038	18.452	.085	24.603	.151
45 00	34.522	6.124	.009	12.249	.038	18.373	.085	24.497	.151
15	8.632	6.097	.009	12.195	.038	18.292	.085	24.390	.151
30	17.264 25.896	6.071 6.044	.009	12.141	.038 .038	18.212	.085 .085	24.283 24.175	.151
45		_	.009	1		t i	•		
46 00	34.528	6.017	.009	12.034	.038	18.051	.085	24.068	.151
15 30	8.633	5.990 5.962	.009	11.979	.038 .038	17.969 17.887	.085 .085	23.959 23.849	.151
45	25.901	5.935	.009	11.870	.038	17.805	.085	23.740	.151
47 00	34-534	5.908	.009	11.815	.038	17.723	.085	23.631	.151
15	8.635	5.880	.009	11.760	.038	17.640	.085	23.520	.151
30	17.270	5.852	.009	11.704	.038	17.556	.085	23.408	.151
45	25.905	5.824	.009	11.648	.038	17.473	.085	23.297	.151
48 00	34-540	5.796	.009	11.593	.038	17.389	.085	23.186	.1 50
15	8.637	5.768	.009	11.536	.038	17.305	.085	23.073	.1 50
30 45	17.273 25.910	5.740 5.712	.009	11.480	.038 .037	17.220	.084 .084	22.960	.150 .150
49 00	34.546	5.684	.009	11.367	.037	17.051	.084	22.734	.150
					-	16.965	.084	22.620	
30	8.638 17.276	5.655 5.626	.009	11.310	.037 .037	16.879	.084	22.505	.150 .150
45	25.914	5.598	.009	11.195	.037	16.793	.084	22.391	.150
50 00	34.552	5.569	.009	11.138	.037	16.707	.084	22.276	.1 50

The color of the	Jo .	il dis-		CO-ORDI	NATES (OF DEVE	LOPED I	PARALLE	L FOR—	
	tude callel.	idiona ces fra n deg	15' long	gitude.	30' lon	gitude.	45' long	gitude.	1º long	itude.
50\coc 5.569 5.569 11.138 15. 8.640 5.540	Lati	Mer tan eve par	x	у	x	у	x	у	x	у
15		Inches.		Inches.		Inches.	'Inches.	Inches.	Inches.	Inches.
30		8640	5.569		11.138		16.707			
Si oo 34.558 5.453		17.279	5.511	.009	11.022	.037	16.532	.084	22.043	
15 8.641 5.423 .009 10.846 .037 16.269 .083 21.692 .148 30 17.282 5.394 .009 10.787 .037 16.181 .083 21.574 .148 45 25.924 5.364 .009 10.669 .037 16.004 .083 21.338 .147 52 00 34.565 5.334 .009 10.669 .036 15.914 .082 21.218 .146 30 17.285 5.275 .009 10.699 .036 15.644 .082 21.099 .146 45 25.928 5.245 .009 10.430 .036 15.645 .082 20.979 .145 53 30 34.571 5.215 .009 10.369 .036 15.645 .082 20.738 .145 30 17.288 5.154 .009 10.309 .036 15.451 .082 20.738 .145 45	45	25.919	5.482	.009	10.963	.037	16.445		21.927	.149
30	51 00	34.558	5-453	.009	10.905	.037	16.358	.083	21.810	.148
45 25,924 5,364 .oog 10,728 .o37 16.092 .o83 21,356 .147 52 00 34,565 5,334 .oog 10,669 .o37 16.004 .o83 21,338 .147 15 8,643 5,305 .oog 10,609 .o36 15,914 .o82 21,218 .146 30 17,285 5,275 .oog 10,490 .o36 15,824 .o82 21,099 .145 45 25,928 5,245 .oog 10,490 .o36 15,645 .o82 20,099 .145 53 00 34,571 5,215 .oog 10,369 .o36 15,645 .o82 20,738 .145 30 17,288 5,154 .oog 10,369 .o36 15,645 .o82 20,738 .145 45 25,932 5,124 .oog 10,369 .o36 15,645 .o82 20,738 .145 45 25,932										
			5.394					.083		
30	52 00	34.565		.009	10.669	.037	16.004	.083	21.338	.147
36	15	8.643	5.305	.009	10.609	.036	15.914		21.218	.146
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	30	17.285	5.275			.036			21.099	
15		25.920		.009	10.490					.145
30	53 ∞			.009			15.645	1		.145
45 25.932 5.124 .009 10.248 .036 15.372 .081 20.496 .144 54 00 34.576 5.094 .009 10.187 .036 15.281 .081 20.374 .144 15 8.646 5.063 .009 10.064 .036 15.189 .081 20.252 .143 45 25.937 5.002 .009 10.003 .036 15.004 .080 20.252 .143 45 25.937 5.002 .009 10.003 .036 14.912 .080 19.883 .142 15 8.647 4.940 .009 9.879 .035 14.819 .080 19.759 .141 45 25.941 4.878 .009 9.637 .035 14.433 .079 19.634 .141 45 25.941 4.878 .009 9.630 .035 14.433 .079 19.386 .140 15 8.648 4.815									20.738	
15 8.646 5.063 .009 10.126 .036 15.189 .081 20.252 .143 30 17.291 5.032 .009 10.064 .036 15.097 .080 20.129 .143 45 25.937 5.002 .009 10.003 .036 14.912 .080 20.129 .143 55 34.582 4.971 .009 9.42 .036 14.912 .080 19.883 .142 15 8.647 4.940 .009 9.817 .035 14.419 .080 19.759 .141 30 17.294 4.909 .009 9.817 .035 14.726 .079 19.634 .141 45 25.941 4.878 .009 9.630 .035 14.539 .079 19.386 .140 15 8.648 4.815 .009 9.630 .035 14.445 .079 19.260 .140 15 8.658 4.844 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
30	54 ∞	34.576	5.094	.009	10.187	.036	15.281	.081	20.374	.144
45 25.937 5.002 .009 10.003 .036 15.004 .080 20.006 .142 55 34.582 4.971 .009 9.942 .036 14.912 .080 19.883 .142 15 8.647 4.940 .009 9.879 .035 14.819 .080 19.759 .141 30 17.294 4.909 .009 9.817 .035 14.726 .079 19.634 .141 45 25.941 4.878 .009 9.630 .035 14.633 .079 19.260 .140 56 34.588 4.846 .009 9.630 .035 14.453 .079 19.260 .140 15 8.648 4.815 .009 9.630 .035 14.455 .079 19.260 .140 15 8.648 4.815 .009 9.507 .035 14.455 .079 19.260 .140 15 8.659 4.784 <td< td=""><td>15</td><td></td><td>5.063</td><td></td><td></td><td></td><td></td><td></td><td>20.252</td><td></td></td<>	15		5.063						20.252	
55 00 34.582 4.971 .009 9.942 .036 14.912 .080 19.883 .142 15 8.647 4.940 .009 9.879 .035 14.819 .080 19.759 .141 30 17.294 4.909 .009 9.817 .035 14.726 .079 19.634 .141 45 25.941 4.878 .009 9.693 .035 14.539 .079 19.386 .140 56 00 34.588 4.846 .009 9.630 .035 14.539 .079 19.386 .140 15 8.648 4.815 .009 9.630 .035 14.445 .079 19.260 .140 45 25.946 4.752 .009 9.507 .035 14.455 .079 19.260 .140 45 25.946 4.752 .009 9.504 .035 14.256 .078 19.260 .140 15 8.650 4.689										
15 8.647 4.940 .009 9.879 .035 14.819 .080 19.759 .141 30 17.294 4.909 .009 9.817 .035 14.726 .079 19.634 .141 45 25.941 4.878 .009 9.630 .035 14.633 .079 19.510 .140 56 34.588 4.846 .009 9.630 .035 14.445 .079 19.260 .140 15 8.648 4.815 .009 9.630 .035 14.445 .079 19.260 .140 30 17.297 4.784 .009 9.567 .035 14.4351 .078 19.134 .139 45 25.946 4.752 .009 9.504 .035 14.256 .078 19.008 .139 57 00 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138										
30 17.294 4.909 .009 9.817 .035 14.726 .079 19.634 .141 45 25.941 4.878 .009 9.755 .035 14.633 .079 19.634 .140 56 34.588 4.846 .009 9.693 .035 14.539 .079 19.386 .140 15 8.648 4.815 .009 9.630 .035 14.451 .079 19.260 .140 45 25.946 4.752 .009 9.504 .035 14.256 .078 19.134 .139 57 00 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.250 .034 13.970 .077 18.627 .137 58 00 34.600 4.593 .009 9.186 .034 13.779 .076 18.372									1 0	
45 25.941 4.878 .009 9.755 .035 14.633 .079 19.510 .140 56 00 34.588 4.846 .009 9.693 .035 14.539 .079 19.386 .140 15 8.648 4.815 .009 9.630 .035 14.445 .079 19.260 .140 30 17.207 4.784 .009 9.507 .035 14.351 .078 19.134 .139 57 00 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.314 .034 13.970 .077 18.627 .137 58 00 34.600 4.593 .009 9.186 .034 13.779 .076 18.372 .136 15 8.651 4.561										
15 8.648 4.815 .009 9.630 .035 14.445 .079 19.260 .140 30 17.297 4.784 .009 9.567 .035 14.351 .078 19.134 .139 57 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.214 .034 13.970 .077 18.627 .137 45 25.950 4.625 .009 9.250 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.490 .075 17.986 .134			4.878	.009	9.755					.140
36 17.297 4.784 .009 9.567 .035 14.351 .078 19.134 .139 57 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.314 .034 13.970 .077 18.627 .137 45 25.950 4.625 .009 9.250 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.490 .075 17.986 .134 59 00 34.605 4.	56 ∞	34.588	4.846	.009	9.693	.035	14.539	.079	19.386	.140
45 25.946 4.752 .009 9.504 .035 14.256 .078 19.008 .139 57 00 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.214 .034 13.970 .077 18.627 .137 58 00 34.600 4.593 .009 9.186 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 45 25.954 4.407 .008 8.993 .034 13.490 .075 17.986 .134 59 00 34.605										
57 ∞ 34.594 4.720 .009 9.441 .035 14.162 .078 18.882 .138 15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.314 .034 13.970 .077 18.627 .137 45 25.950 4.625 .009 9.186 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 45 25.954 4.497 .008 8.993 .034 13.490 .075 17.986 .134 59 34.605 4.464 .008 8.929 .033 13.393 .075 17.858 .134 15 8.653 4.432 <								.078		
15 8.650 4.689 .009 9.377 .035 14.066 .077 18.754 .138 30 17.300 4.657 .009 9.314 .034 13.970 .077 18.627 .137 45 25.950 4.625 .009 9.250 .034 13.779 .076 18.372 .136 58 34.600 4.593 .009 9.186 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 45 25.954 4.497 .008 8.993 .034 13.490 .075 17.986 .134 59 00 34.605 4.464 .008 8.929 .033 13.393 .075 17.858 .134 15 8.653 4.432 .008 8.864 .033 13.296 .075 17.728 .133 30 17.305 4.399 .008 8.799 -033 13.198 .075 17.997 .133	ll -			.009				.078	18.882	
30 17.300 4.657 .009 9.314 .034 13.070 .077 18.627 .137 58 00 34.600 4.593 .009 9.186 .034 13.779 .076 18.372 .136 15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 45 25.954 4.497 .008 8.993 .034 13.490 .075 17.986 .134 59 34.605 4.464 .008 8.929 .033 13.393 .075 17.858 .134 15 8.653 4.432 .008 8.864 .033 13.296 .075 17.728 .133 30 17.305 4.399 .008 8.799 -033 13.198 .075 17.597 .133		8.650	4.680	.000	9.377	.035	14.066	.077	18.754	.138
58 co 34.6co 4.593 .cog 9.186 .cog4 13.779 .cof6 18.372 .136 15	30	17.300	4.657	.009	9.314	.034	13.970	.077	18.627	.137
15 8.651 4.561 .008 9.122 .034 13.683 .076 18.244 .135 30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 45 25.954 4.497 .008 8.993 .034 13.490 .075 17.986 .134 59 34.605 4.464 .008 8.929 .033 13.393 .075 17.858 .134 15 8.653 4.432 .008 8.864 .033 13.296 .075 17.728 .133 30 17.305 4.399 .008 8.799 -033 13.198 .075 17.597 .133			4.625	.009	9.250	.034	13.075	.077		.137
30 17.303 4.529 .008 9.058 .034 13.586 .076 18.115 .135 .134 .25.954 4.497 .008 8.993 .034 13.490 .075 17.986 .134 .135 .135 .136 .136 .136 .136 .136 .136 .136 .136	58 00		-		9.186	.034				.136
15 8.653 4.432 .008 8.993 .034 13.490 .075 17.986 .134 15 8.653 4.432 .008 8.864 .033 13.296 .075 17.858 .134 30 17.305 4.399 .008 8.799 .033 13.198 .075 17.728 .133 30 17.305 4.399 .008 8.799 .033 13.198 .075 17.597 .133			4.561							
15 8.653 4.432 .oo8 8.864 .o33 13.296 .o75 17.728 .133 30 17.305 4.399 .oo8 8.799 .o33 13.198 .o75 17.597 .133					8.993					
30 17.305 4.399 .008 8.799 .033 13.198 .075 17.597 .133	59 ∞	34.605	4.464	.008	8.929	.033	13.393	.075	17.858	.134
30 17.305 4.399 .008 8.799 .033 13.198 .075 17.597 .133	15		4.432			.033				
	30	17.305 25.958								
60 00 34.611 4.334 .008 8.669 .033 13.003 .074 17.337 .131				.008						

Table 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128720.

[Derivation of table explained on pp. liii-lvi.]

jo	ıl dis- om ree		CO-ORDI	NATES (F DEVE	LOPED F	ARALLE	L FOR —	
Latitude o parallel.	Meridional distances from even degree parallels.	15' lon	gitude.	30' lor	gitude.	45' lon	gitude.	1º lon	gitude.
Lati	Mer tan eve par	x	у	x	у	x	у	х	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches,	Inches.	Inches.
60°00′ 15	8.654	4.334 4.301	800.	8.669 8.603	.033 .032	13.003	.074 .074	17.337 17.206	.131
30 45	17.308 25.962	4.269 4.236	800.	8.537 8.471	.032	12.806 12.707	.073 .073	17.074 16.943	.130
61 00	34.616	4.203	.008	8.406	.032	12.608	.072	16.811	.128
15 30	8.655 17.311	4.170 4.136	.008 800.	8.339 8.273	.032	12.509	.072 .072	16.679 16.546	.128
45	25.966	4.103	.008	8.207	.031	12.310	.071	16.413	.126
62 00	34.621	4.070	.008	8.140	.031	12.210	.07 I	16.280	.125
15 30	8.657 17.313	4.036 4.003	800. 800.	8.073 8.006	.031 .031	12.110	.071 .070	16.146 16.012	.125
45	25.970	3.970	.008	7.939	.031	11.909	.070	15.878	.123
63 00	34.626	3.936	. oo 8	7.872	.031	11.808	.069	15.744	.122
15	8.658	3.902 3.868	.008	7.804	.030	11.707	.069 .068	15.609	.122
30 45	25.974	3.835	.007	7.737 7.669	.030	11.605	.068	15.474	.121
64 00	34.632	3.801	.007	7.602	.030	11.402	.067	15.203	.119
15	8.659	3.767	.007	7.533	.029	11.300	.067 .066	15.067	.119
30 45	17.318 25.977	3.733 3.698	.007	7.465 7.397	.029 .029	11.096	.066	14.930	.117
65 ∞	34.636	3.664	.007	7.329	.029	10.993	.065	14.658	.116
15	8.660 17.321	3.630 3.596	.007	7.260 7.191	.028 .028	10.890	.065 .064	14.520	.115
30 45	25.981	3.561	.007	7.123	.028	10.684	.064	14.245	.113
66 00	34.641	3.527	.007	7.054	.028	10.581	.063	14.108	.112
15	8.661	3.492	.007	6.984 6.915	.028 .027	10.477	.063 .062	13.969	III.
30 45	17.323 25.984	3.458 3.423	.007	6.846	.027	10.373	.062	13.692	.111
67 ∞	34.646	3.388	.007	6.776	.027	10.165	.061	13.553	.109
15	8.663 17.325	3.353 3.318	.007	6.706 6.637	.027 .026	10.060	.061	13.413	.108
30 45	25.988	3.283	.007	6.567	.026	9.850	.060	13.134	.106
68 ∞	34.650	3.248	.007	6.497	.026	9.746	.059	12.994	.105
15 30	8.664 17.327	3.213 3.178	.007 .006	6.427	.026 .025	9.640 9.535	.059 .058	12.854	.104
45	25.991	3.143	.006	6.356 6.286	.025	9.429	.058	12.572	.102
69 00	34.655	3.108	.006	6,216	.025	9.323	.057	12.431	.101
15 30	8.665	3.072	.006	6.145 6.074	.025	9.217	.057 .056	12.290	.100
45	25.994	3.002	.006	6.003	.024	9.005	.056	12.006	.098
70 00	34.659	2.966	.006	5.932	.024	8.899	.055	11.865	.097

	ldis-		CO-ORD	INATES (OF DEVE	LOPED I	PARALLE	L FOR -	
Latitude of parallel.	Meridional distances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	ro long	gitude.
Lati	Mer tan eve par	x	у	x	у	x	У	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
70°00′ 15	8.666	2.966 2.930	.006	5.932 5.861	.024 .024	8.899 8.792	.055 .055	11.865	.097
30 45	25.997	2.895 2.859	.006 .006	5.790 5.718	.023 .023	8.685 8.578	.054 .053	11.580	.095 .094
71 00	34.663	2.824	.006	5.647	.023	8.471	.052 `	11.294	.093
15	8.667	2.788	.006	5.576	.023	8.363	.052	11.151	.092
30 45	26.000	2.752 2.716	.006 .006	5.504 5.432	.022 .022	8.256 8.148	.051	11.008	.090
72 00	34.667	2.680	.006	5.360	.022	8.040	.050	10.720	.089
15	8.668	2.644	.006	5.288	.022	7.932	.050	10.576	.088
30	17.335	2.608	.005	5.216	.021	7.824	.049	10.432	.087
45	26.003	2.572	.005	5.144	.021	7.716	•249	10.288	.086
73 ∞	34.670	2.536	.005	5.072	.021	7.608	.048	10.144	.085
15	8.668	2.500	.005	4.999	.021	7.499	.048	9.998	.084
30 45	17.337 26.006	2.463 2.427	.005	4.927 4.854	.020 .020	7.390 7.281	.047 .046	9.854 9.708	.083
74 00	34.674	2.391	.005	4.782	.020	7.172	.045	9.563	.080
15	8.669	2.354	.005	4.709	.020	7.063	.044	9.417	.079
30 45	17.339 26.008	2.318 2.281	.005	4.636 4.563	.019	6.954 6.844	.044	9.272 9.126	.078 .077
75∞	34.677	2.245	.005	4.490	.019	6.735	.043	8.980	.076
15	8.670	2.208	.004	4.417	.019	6.625	.042	8.834	.074
30 45	17.340 26.010	2.172	.004	4.343 4.270	.018 810.	6.515 6.405	.042 .041	8.687 8.540	.073
76 00	34.680	2.098	.004	4.197	.018	6.296	.040	8.394	.071
15	8.671	2.062	.004	4.123	.018	6.185	.040	8.247	.069
30 45	26.013	2.025 1.988	.004 .004	4.050 3.976	.017 .017	6.075 5.964	.039 .038	8.100 7.952	.068 .067
77 ∞	34.684	1.951	.004	3.903	.017	5 .854	.037	7.805	.066
15	8.672	1.914	.004	3.829	.017	5.743	.037	7.658	.065
30 45	17.343 26.015	1.877 1.840	.004	3.755 3.681	.016 .016	5.632 5.522	.036 .036	7.510 7.362	.064 .063
78 ∞	34.686	1.804	.004	3.607	.015	5.411	.035	7.214	.062
15	8.672	1.766	.004	3.533	.015	5.300	.034	7.066	.060
30 45	17.344 26.017	1.729	.004 .004	3.459 3.385	.015	5.188 5.077	.034	6.918 6.769	.059 .058
79 00	34.689	1.655	.004	3.310	.014	4.966	.032	6.621	.057
15	8.673	1.618	.003	3.236	.014	4.854	.031	6.472	.055
30 45	17.346 26.018	1.581	.003	3.162 3.087	.013	4.742 4.631	.030	6.323 6.174	.054
80 00	34.691	1.506	.003	3.013	.013	4.519	.029	6.026	.052

TABLE 22.

jo	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude o	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	:	RDINAT DEVELO PARALI	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	al.		
0°00′		5.764	11.529	17.293	23.058	28.822	34.586	Longitude interval.	o°	10
10 20 30 40 50	11.451 22.901 34.352 45.803 57.254	5.764 5.764 5.764 5.764 5.764	11.528 11.528 11.528 11.528 11.527	17.293 17.292 17.292 17.291 17.291	23.057 23.056 23.056 23.055 23.054	28.821 28.821 28.820 28.819 28.818	34.585 34.585 34.583 34.583 34.582		Inches. 0.000 .000	Inches. 0.000 .000
1 00	68.704	5.764	11.527	17.291	23.054	28.818	34.581	20 25	.000	.001 .001
10 20 30 40 50	11.451 22.901 34.352 45.803 57.254	5.763 5.763 5.762 5.762 5.761	11.526 11.525 11.524 11.524 11.523	17.289 17.288 17.287 17.285 17.284	23.052 23.050 23.049 23.047 23.045	28.816 28.813 28.811 28.809 28.807	34·579 34·576 34·573 34·571 34·568	30	.000	.003
2 00	68.704	5.761	11.522	17.283	23.044	28.805	34.565		20	3°
10 20 30 40 50	11.451 22.902 34·353 45.804 57·254	5.760 5.759 5.759 5.758 5.758	11.520 11.519 11.517 11.516 11.514	17.281 17.278 17.276 17.274 17.272	23.041 23.038 23.035 23.032 23.029	28.801 28.797 28.794 28.790 28.786	34.561 34.556 34.552 34.548 34.543	5 10 15 20 25	0.000 .001 .001 .002 .004	0.000 .001 .002 .003
3 00	68.705	5.756	11.513	17.270	23.026	28.783	34-539	30	.005	.008
10 20 30 40	11.451 22.902 34.353 45.804	5.756 5.754 5.753 5.752	11.511 11.509 11.507 11.505	17.267 17.264 17.260 17.257	23.022 23.018 23.014 23.010	28.778 28.773 28.767 28.762	34·533 34·527 34·520 34·514			
50 4 00	57.255 68.706	5.751	11.503	17.254	23.006	28.757	34.508		4°	5°
10 20 30 40 50	11.451 22.903 34.354 45.805 57.256	5.75° 5.749 5.748 5.746 5.745 5.744	11.501 11.498 11.496 11.493 11.490 11.488	17.251 17.247 17.243 17.240 17.236 17.232	23.002 22.996 22.991 22.986 22.981 22.976	28.752 28.746 28.739 28.733 28.726 28.720	34.495 34.487 34.479 34.471 34.463	5 10 15 20 25 30	0.000 .001 .003 .005 .007	0.000 · .001 .003 .006 .009
5 00	68.708	5.743	11.485	17.228	22.970	28.713	34.456			
20 30	11.452 22.903 34.355	5.741 5.739 5.738	11.482 11.479 11.476	17.223 17.218 17.213	22.964 22.958 22.951	28.705 28.697 28.689	34.446 34.436 34.427			
40 50	45.806 57.258	5.736 5.735	11.472	17.209 17.204	22.945 22.938	28.681 28.673	34.417 34.408		6°	7°
6 00 10 20 30 40 50	68.710 11.452 22.904 34.356 45.808 57.260 68.712	5.733 5.731 5.729 5.727 5.726 5.724 5.722	11.466 11.462 11.458 11.455 11.451 11.447	17.199 17.193 17.188 17.182 17.177 17.171	22.932 22.924 22.917 22.910 22.902 22.894 22.887	28.665 28.656 28.646 28.637 28.628 28.618 28.609	34·398 34·375 34·375 34·364 34·353 34·342 34·330	5 10 15 20 25 30	0.000 .002 .004 .007 .011 .016	0.000 .002 .005 .008 .013 .018

<u></u>										
of	al dis- om gree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	0.1	RDINAT	ES OF
Latitude o	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	נ	PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	7°	80
7°00′	68.712	5.722	11.443	17.165	22.887	28.609	34.330	Long	,	
20 30 40 50	11.452 22.905 34.358 45.810 57.262	5.720 5.717 5.715 5.713 5.711	11.439 11.435 11.430 11.426 11.422	17.159 17.152 17.146 17.139 17.132	22.878 22.869 22.861 22.852 22.843	28.598 28.587 28.576 28.565 28.554	34.317 34.304 34.291 34.278 34.265	5	Inches. 0.000 .002	Inches. 0.001 .002
8 00	68.715	5.709	11.417	17.126	22.834	28.543	34.252	20 25	.005	.005 .009 .014
10 20 30 40 50	11.453 22.906 34.359 45.812 57.265	5.706 5.704 5.701 5.699 5.696	11.412 11.407 11.403 11.398 11.393	17.119 17.111 17.104 17.096 17.089	22.825 22.815 22.805 22.795 22.786	28.531 28.519 28.507 28.494 28.482	34-237 34-222 34-208 34-193 34-178	30	810.	.021
900	68.718	5.694	11.388	17.082	22.776	28.470	34.163		9°	100
10 20 30 40 50	11.454 22.907 33.361 45.814 57.268	5.691 5.688 5.686 5.683 5.680	11.382 11.377 11.371 11.366 11.360	17.073 17.065 17.057 17.049 17.040	22.764 22.754 22.742 22.732 22.720	28.456 28.442 28.428 28.415 28.401	34.147 34.130 34.114 34.097 34.081	5 10 15 20 25	0.001 .003 .006 .010	0.001 .003 .006 .011
10 00	68.722	5.677	11.355	17.032	22.710	28.387	34.064	30	.023	.026
10 20 30 40	11.454 22.909 34.263 45.817	5.674 5.671 5.668 5.665	11.349 11.343 11.337 11.331	17.023 17.014 17.005 16.996	22.698 22.685 22.673 22.661	28.372 28.357 28.342 28.327	34.046 34.028 34.010 33.992			
50	57.272	5.662	11.324	16.987	22.649	28.311	33.973		110	120
11 00 10 20 30 40 50	68.726 11.455 22.910 34.365 45.820 57.275	5.659 5.656 5.652 5.649 5.646 5.642	11.318 11.312 11.305 11.298 11.292 11.285	16.978 16.968 16.958 16.948 16.938 16.928	22.637 22.624 22.610 22.597 22.584 22.570	28.296 28.280 28.263 28.246 28.230 28.213	33.955 33.935 33.915 33.895 33.875 33.855	5 10 15 20 25 30	0.001 .003 .007 .013 .020	0.001 .003 .008 .014 .021
12 00	68.730	5.639	11.278	16.918	22.557	28.196	33.835			
10 20 30	11.456 22.912 34.367	5.636 5.632 5.628	11.271 11.264 11.257	16.907 16.896 16.885	22.542 22.528 22.514	28.178 28.160 28.142	33.814 33.792 33.770			
40 50	45.823 57-279	5.625 5.621	11.250 11.242	16.874 16.864	22.499 22.485	28.124 28.106	33·749 33·727		13°	140
13 ∞	68.735	5.618	11.235	16.853	22.470	28.088	33.706	5	0.001	0.001 .004
10 20 30 40 50	11.457 22.913 34.370 45.827 57.284	5.614 5.610 5.606 5.602 5.598	11.227 11.220 11.212 11.204 11.196	16.841 16.829 16.818 16.806 16.794	22.455 22.439 22.424 22.408 22.392	28.069 28.049 28.030 28.010 27.991	33.682 33.659 33.635 33.612 33.589	20 25 30	.008 .015 .023 .033	.009 .016 .025 .035
14 ∞	68.740	5-594	11.188	16.783	22.377	27.971	33.565			

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 53866.

بيه	l dis. om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.		RDINAT DEVELO PARALI	OPED
- 0- /	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	140	15°
14°00′	68.740	5.594	11.188	16.783	22.377	27.971	33.565	Z;		
10 20 30 40 50	11.458 22.915 34.373 45.830 57.288	5.590 5.586 5.582 5.578 5.573	11.180 11.172 11.163 11.155 11.147	16.770 16.758 16.745 16.733 16.720	22.360 22.344 22.327 22.310 22.294	27.950 27.930 27.909 27.888 27.867	33.540 33.515 33.490 33.465 33.440	5' 10 15	Inches. 0.001 .004 .009	Inches: 0.001 .004 .009
15 00	68.746	5.569	11.138	16.708	22.277	27.846	33.415	20 25	.016	.017
10 20 30 40 50	11.459 22.917 34.376 45.834 57.293	5.565 5.560 5.556 5.551 5.551	11.130 11.121 11.112 11.103 11.094	16.694 16.681 16.667 16.654 16.641	22,259 22,241 22,223 22,206 22,188	27.824 27.802 27.779 27.757 27.735	33.389 33.362 33.335 33.308 33.282	30	.035	.038
16 00	68.752	5.542	11.085	16.628	22.170	27.713	33-255		16°	17°
10 20 30 40 50	11.460 22.919 34.379 45.838 57.298	5.538 5.533 5.528 5.524 5.519	11.076 11.066 11.057 11.047 11.038	16.613 16.599 16.585 16.571 16.556	22.151 22.132 22.113 22.094 22.075	27.689 27.665 27.642 27.618 27.594	33.227 33.198 33.170 33.142 33.113	5 10 15 20	0.001 .004 .010	0.001 .005 .011
17 ∞	68.758	5.514	11.028	16.542	22.056	27.571	33.085	25 30	.028 .040	.029
10 20 30 40 50	11.461 22.921 34.382 45.843 57.304	5.509 5.504 5.499 5.494 5.489	11.018 11.008 10.998 10.988 10.978	16.527 16.512 16.497 16.482 16.467	22.036 22.016 21.996 21.976 21.956	27.546 27.521 27.495 27.470 27.445	33.055 33.025 32.994 32.964 32.934			
18 00	68.764	5.484	10.968	16.452	21.936	27.420	32.904		180	190
10 20 30 40 50	11.462 22.924 34.386 45.848 57.310	5.479 5.473 5.468 5.463 5.458	10.957 10.947 10.936 10.926 10.915	16.436 16.420 16.404 16.389 16.373	21.915 21.894 21.872 21.852 21.830	27.394 27.367 27.341 27.315 27.288	32.872 32.840 32.809 32.777 32.746	5 10 15 20 25 30	0.001 .005 .011 .020 .031	0.001 .005 .012 .021 .032 .046
19 ∞	68.771	5.452	10.905	16.357	21.809	27.262	32.714	,,,	-544	.540
10 20 30 40	11.463 22.926 34.390 45.853	5.447 5.441 5.436 5.430	10.893 10.882 10.871 10.860	16.340 16.324 16.307 16.290	21.787 21.765 21.742 21.720	27.234 27.206 27.178 27.150	32.680 32.647 32.614 32.580			
50	57.316	5.424	10.849	16.274	21.698	27.123	32.547		200	210
10 20 30 40 50	68.779 11.464 22.929 34.394 45.858 57.322	5.419 5.413 5.407 5.401 5.396 5.390	10.838 10.826 10.814 10.803 10.791 10.779	16.257 16.239 16.222 16.204 16.187 16.169	21.676 21.652 21.629 21.605 21.582 21.558	27.095 27.065 27.036 27.007 26.978 26.948	32.513 32.478 32.443 32.408 32.373 32.338	5 10 15 20 25 30	0.00I .005 .012 .022 .034 .049	0.001 .006 .013 .022 .035
21 00	68.787	5.384	10.768	16.151	21.535	26.919	32,303			

	e B gis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
21°00′	68.787	5.384	10.768	16.151	21.535	26.919	32.303	Longitude interval.	21°	22°
10 20	11.466 22.932	5.378 5.372	10.755	16.133 16.115	21.511	26.889 26.858	32.266 32.230			
30	34.397	5.366	10.731	16.097	21.462	26.828	32.193		Inches.	Inches.
40	45.863	5.359	10.719	16.078	21.438	26.797	32.156	5	0.001	0.001
50	57.329	5.353	10.707	16.060	21.413	26.767	32.120	10 15	.006	.006
22 00	68.795	5-347	10.694	16.042	21.389	2 6 .736	32.083	20	.022	.023
10	11.467	5.341	10.682	16.022	21.363	26.704	32.045	30	.035	.052
20	22.934	5.334	10.669	16.003	21.338	26.672	32.006			_
30	34.40I	5.328	10.656	15.984	21.312	26.641	31.969			
40	45.868	5.322	10.643	15.965	21.287	26.609	31.930			
50	57.336	5.315	10.631	15.946	21.261	26.577	31.892			
23 00	68.803	5.309	10.618	15.927	21.236	26.545	31.853		23°	24°
10	11.469	5.302	10.604	15.907	21.200	26.511	31.813			
20	22.937	5.296	10.591	15.887	21.182	26.478	31.774			
30	34.406	5.289	10.578	15.867	21.156	26.445	31.733	5	0.001	0.002
40	45.874	5.282	10.565	15.847	21.129	26.412	31.694	10	.006	.006
50	57.343	5.276	10.551	15.827	21.102	26.378	31.654	15	.014	.014
30	3/•343	3.270	10.331	13.02/	21.102		32.034	20	.024	.025
24 00	68.812	5.269	10.538	1 5.807	21.076	26.345	31.614	30	.038	.039 .056
IO	11.470	5.263	10.526	15.789	21.052	26.315	31.577			
20	22.940	5.256	10.512	15.767	21.023	26.279	31.535	ł		
30	34.410	5.249	10.498	15.746	20.995	26.244	31.493			
40	45.880	5.242	10.483	15.725	20.967	26.209	31.450			
50	57.350	5.235	10.469	15.704	20.938	26.173	31.408			
25 ∞	68.821	5.227	10.455	15.682	20.910	26.137	31.365		25°	26°
10	11.472	5.220	10.441	15.661	20.881	26.101	31.322	5	0.002	0.002
20	22.943	5.213	10.426	1 5.639	20.852	26.065	31.279	10	.006	.007
30	34.415	5.206	10.412	15.618	20.824	26.029	31.235	15	.014	.015
40	45.886	. 5.199	10.397	15.596	20.795	25.993	31.192	20	.026	.026
50	57.358	5.191	10.383	15.575	20.766	25.958	31.149	25	.040	.041
26 00	68.830	5.184	10.369	15.553	20.737	25.922	31.106	30	.058	.059
10	11.473	5.177	10.354	15.531	20.708	25.884	31.061			
20	22.946	5.169	10.339	15.508	20.678	25.847	31.017			
30	34.419	5.162	10.324	15.486	20.648	25.810	30.972			
40	45.892	5.154	10.309	15.463	20.618	25.772	30.927			
50	57.365	5.147	10.294	15.441	20.588	25.735	30.882		27°	28°
27 00	68.838	5.140	10.279	15.419	20.558	25.698	30.838	5	0.002	0.002
10	11.475	E.122	10.264	15.396	20.528	25.659	30.791	10	.007	.007
20	22.050	5.132	10.248		20.520	25.621	30.791	15	.015	.016
	22.950	5.124 5.116		15.373	20.497	25.582	30.699	20	.027	.028
30	34.424 45.899		10.233	15.349	20.435	25.544	30.653	25	.042	.043
40 50	57.374	5.109 5.101	10.213	15.303	20.435	25.505	30.607	30	.061	.063
28 00	68.849	5.093	10.187	15.280	20.374	25.467	30.560			
										_

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 88\$880.

	l dis- m ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	:	RDINAT DEVELO PARALI	OPED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	-00	
28°00′	68.849	5.093	10.187	15.280	20.374	25.467	30.560	Long	280	29°
10 20 30 40 50	11.476 22.953 34.430 45.906 57.3 ⁸ 3	5.085 5.077 5.069 5.061 5.054	10.171 10.155 10.139 10.123 10.107	15.256 15.232 15.208 15.185 15.161	20.342 20.310 20.278 20.246 20.214	25.427 25.387 25.347 25.308 25.268	30.513 30.465 30.417 30.369 30.321	5' 10 15	Inçhes. 0.002 .007	Inches. 0.002 .007 .016
29 00	68.859	5.046	10.091	15.137	20.182	25.228	30.274	20 25	.028 .043	.028
10 20 30 40 50	11.478 22.957 34.435 45.913 57.391	5.037 5.029 5.021 5.013 5.004	10.075 10.058 10.042 10.025 10.009	15.112 15.087 15.063 15.038 15.013	20.150 20.117 20.084 20.051 20.018	25.187 25.146 25.105 25.064 25.022	30.224 30.175 30.126 30.076 30.027	30	.063	.064
30 00	68.870	4.996	9-993	14.989	19.985	24.981	29.978		30°	31°
10 20 30 40 50	11.480 22.960 34.440 45.920 57.400	4.988 4.979 4.971 4.962 4.954	9.976 9.959 9.942 9.925 9.908	14.963 14.938 14.912 14.887 14.862	19.951 19.917 19.883 19.849 19.815	24.939 24.896 24.854 24.812 24.769	29.927 29.876 29.825 29.774 29.723	5 10 15 20 25	0.002 .007 .016 .029	0.002 .007 .017 .030 .046
31 00	68.88o	4.945	9.891	14.836	19.782	24.727	29.672	30	.045 .065	.067
10 20 30 40 50	11.482 22.964 34.446 45.927 57.409	4.937 4.928 4.919 4.910 4.902	9.873 9.856 9.838 9.821 9.804	14.810 14.784 14.758 14.731 14.705	19.747 19.712 19.677 19.642 19.607	24.683 24.640 24.596 24.552 24.509	29.620 29.568 29.515 29.463 29.411			
32 00	68.891	4.893	9.786	14.679	19.572	24.465	29.358		32°	33°
10 20 30 40 50	11.484 22.967 34.451 45.934 57.418	4.884 4.875 4.866 4.857 4.848	9.768 9.750 9.732 9.714 9.696	14.652 14.625 14.598 14.572 14.545	19.536 19.500 19.465 19.429 19.393	24.420 24.376 24.331 24.286 24.241	29.305 29.251 29.197 29.143 29.089	5 10 15 20 25 30	0.002 .007 .017 .030 .047 .068	0.002 .008 .017 .031 .048
33 00	68.902	4.839	9.679	14.518	19.357	24.196	29.036			
10 20 30 40	11.485 22.971 34.456 45.942	4.830 4.821 4.812 4.802	9.660 9.642 9.623 9.605	14.490 14.462 14.435 14.407	19.320 19.283 19.246 19.210	24.150 24.104 24.058 24.012	28.980 28.925 28.870 28.814			
50	57-427	4.793	9.586	14.379	19.173	23.966	28.759		34°	35°
34 00 10 20 30 40 50	68.913 11.487 22.975 34.462 45.949 57.437	4.784 4.774 4.765 4.755 4.746 4.737	9.568 9.549 9.530 9.511 9.492 9.473	14.352 14.323 14.295 14.267 14.238 14.210	19.136 19.098 19.060 19.022 18.984 18.946	23.920 23.872 23.825 23.778 23.730 23.683	28.647 28.590 28.533 28.476 28.420	5 10 15 20 25 30	0.002 .008 .017 .031 .049	0.002 .008 .018 .031 .049
35 ∞	68.924	4.727	9-454	14.181	18.908	23.636	28.363			

		-								
ğ	d dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	0.7	DINIAT	TEC OF
Latitude o	Meridional dis- tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30′ longitude.	1	RDINAT DEVELO PARALI	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	tude val.		
35°00′	68.924	4.727	9.454	14.181	18.908	23.636	28.363	Longitude interval.	35°	36°
10 20 30 40 50	11.489 22.978 34.468 45.957 57.446	4.717 4.708 4.698 4.688 4.679	9.435 9.415 9.396 9.377 9.357	14.152 14.123 14.094 14.065 14.036	18.870 18.831 18.792 18.753 18.714	23.587 23.539 23.490 23.442 23.393	28.305 28.246 28.188 28.130 28.072	5' 10 15	Inches. 0.002 .008 .018	Inches. 0.002 .008 .018
36 oo	68.935	4.669	9.338	14.007	18.676	23.345	28.014	20 25	.031 .049	.032
10 20 30 40 50	11.491 22.983 34.474 45.965 57.457	4.659 4.649 4.639 4.629 4.619	9.318 9.298 9.278 9.258 9.238	13.977 13.947 13.917 13.887 13.858	18.636 18.596 18.556 18.517 18.477	23.295 23.245 23.195 23.146 23.096	27.954 27.894 27.835 27.775 27.715	30	.071	.072
37 00	68.948	4.609	9.219	13.828	18.437	23.046	27.656		37°	38°
10 20 30 40 50	11.493 22.986 34.480 45.973 57.466	4.599 4.589 4.579 4.568 4.558	9.198 9.178 9.157 9.137 9.117	13.797 13.767 13.736 13.706 13.675	18.396 18.356 18.315 18.274 18.234	22.995 22.944 22.894 22.843 22.792	27.594 27.533 27.472 27.411 27.350	5 10 15 20 25	0.002 .008 .018 .032 .050	0.002 .008 .018
38 ∞	68.959	4.548	9.096	13.645	18.193	22.741	27.289	30	.073	.051
10 20 30 40	11.495 22.990 34.485 45.980	4.538 4.527 4.517 4.506	9.076 9.055 9.034 9.013	13.613 13.582 13.551 13.520	18.151 18.109 18.068 18.026	22.689 22.637 22.585 22.533	27.227 27.164 27.102 27.039			
50 39 ∞	57·475 68.970	4.496	8.992 8.971	13.488	17.984	22.481	26.977 26.914		39°	40°
10 20 30 40 50	11.497 22.994 34.491 45.988 57.485	4-475 4-464 4-454 4-443 4-433	8.950 8.929 8.908 8.886 8.865	13.425 13.393 13.361 13.330 13.298	17.900 17.858 17.815 17.773	22.375 22.322 22.269 22.216 22.163	26.851 26.787 26.723 26.659 26.595	5 10 15 20 25 30	0.002 .008 .018 .033 .051	0.002 .008 .019 .033 .052
40 00	68.982	4.422	8.844	13.266	17.688	22.110	26.532			
10 20 30	11.499 22.998 34.497	4.411 4.400 4.389	8.822 8.800 8.779	13.233 13.201 13.168	17.644 17.601 17.557	22.055 22.001 21.947	26.466 26.401 26.336			
40 50	45.996 57·495	4.378 4.368	8.757 8.735	13.135	17.514	21.892 21.838	26.271 26.206		41°	42°
41 00	68.994	4-357	8.713	13.070	17.427	21.784	26.140	5	0.002	0.002
10 20 30 40 50	11.501 23.002 34.503 46.004 57.506	4.346 4.335 4.324 4.312 4.301	8.691 8.669 8.647 8.625 8.603	13.037 13.004 12.971 12.937 12.904	17.383 17.338 17.294 17.250 17.205	21.728 21.673 21.618 21.562 21.507	26.074 26.007 25.941 25.875 25.808	15 20 25 30	.008 .019 .033 .052	.008 .019 .033 .052
42 00	69.007	4.290	8.581	12.871	17.161	21.451	25.742			
L				!						

Table 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{63380}$.

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DINAT DEVELO PARALL	PED
42°00′	Inches. 69.007	, Inches.	Inches. 8.581	Inches.	Inches. 17.161	Inches. 21.451	Inches. 25.742	Longitude interval.	42°	43°
10	11.503	4.279	8.558	12.837	17.116	21.395	25.674	ું.∺		
20 30 40 50	23.006 34.510 46.013 57.516	4.268 4.256 4.245 4.234	8.535 8.513 8.490 8.467	12.803 12.769 12.735 12.701	17.071 17.025 16.980 16.935	21.338 21.282 21.225 21.169	25.606 25.538 25.470 25.402	5' 10 15	Inches. 0.002 .008	Inches. 0.002 .008 .019
43 00	69.019	4.222	8.445	12.667	16.890	21.112	25.334	20 25	.033	.033
10 20 30 40 50	11.505 23.010 34.515 46.020 57.525	4.211 4.199 4.188 4.176 4.165	8.422 8.399 8.376 8.353 8.330	12.633 12.598 12.564 12.529 12.494	16.844 16.798 16.751 16.705 16.659	21.054 20.997 20.939 20.882 20.824	25.265 25.196 25.127 25.058 24.989	30	.075	.075
44 00	69.030	4.153	8.307	12.460	16.613	20.767	24.920		44°	45°
10 20 30 40 50	11.507 23.014 34.522 46.029 57.536	4.142 4.130 4.118 4.106 4.095	8.283 8.260 8.236 8.213 8.189	12.425 12.390 12.354 12.319 12.284	16.566 16.519 16.473 16.426 16.379	20.708 20.649 20.591 20.532 20.473	24.849 24.779 24.709 24.638 24.568	5 10 15 20	0.002 .008 .019 .034	0.002 .008 .019
45 00	69.043	4.083	8.166	12.249	16.332	20.415	24.498	25 30	.052	.053
10 20 30 40 50	11.509 23.018 34.528 46.037 57.546	4.071 4.059 4.047 4.035 4.023	8.142 8.118 8.094 8.070 8.046	12.213 12.177 12.141 12.105 12.070	16.284 16.236 16.188 16.141 16.093	20.355 20.295 20.236 20.176 20.116	24.426 24.354 24.283 24.211 24.139			
46 00	69.055	4.011	8.023	12.034	16.045	20.056	24.068		46°	47°
10 20 30 40 50	11.511 23.023 34.534 46.045 57.557	3.999 3.987 3.975 3.963 3.951	7.998 7.974 7.950 7.925 7.901	11.997 11.961 11.925 11.888 11.852	15.997 15.948 15.899 15.851 15.802	19.996 19.935 19.974 19.813 19.753	23.995 23.922 23.849 23.776 23.703	5 10 15 20 25 30	0.002 .008 .019 .034 .053	0.002 .008 .019 .034 .052
47 00	69.068	3.938	7.877	11.815	15.754	19.692	23.630	J-	,	-75
10 20 30	11.513 23.027 34.540	3.926 3.914 3.901	7.852 7.827 7.803	11.778 11.741 11.704	15.704 15.655 15.606	19.630 19.569 19.507	23.556 23.482 23.408			
40 50	46.053 57.567	3.889 3.877	7.778 7.753	11.667 11.630	15.556	19.445 19.383	23.334 23.260		48°	49°
48 00	69.080	3.864	7.729	11.593	1 5.457	19.322	23.186	5	0.002	0.002
10 20 30 40 50	11.516 23.031 34.546 46.062 57.577	3.852 3.839 3.827 3.814 3.802	7.704 7.679 7.653 7.628 7.603	11.555 11.518 11.480 11.442 11.405	15.407 15.357 15.307 15.257 15.206	19.259 19.196 19.134 19.071 19.008	23.111 23.035 22.960 22.885 22.810	10 15 20 25 30	.008 .019 .033 .052	.008 .019 .033 .052
49 00	69.093	3.789	7.578	11.367	15.156	18.945	22.734			

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
49°00′	69.093	3.789	7.578	11.367	15.156	18.945	22.734	Longitude interval.	49°	50°
10 20 30 40 50 50	11.517 23.035 34.552 46.070 57.587 69.105	3.776 3.764 3.751 3.738 3.725 3.713	7·553 7·527 7·502 7·476 7·451 7·425	11.329 11.291 11.253 11.214 11.176	15.105 15.054 15.003 14.952 14.901 14.850	18.882 18.818 18.754 18.690 18.627 18.563	22.658 22.581 22.505 22.429 22.352 22.276	5' 10 15 20 25 30	Inches. 0.002 .008 .019 .033 .052 .075	Inches. 0.002 .008 .019 .033 .052 .075
20 30 40 50	23.039 34.558 46.078 57.598	3.687 3.674 3.661 3.648	7.399 7.374 7.348 7.322 7.296	11.060 11.021 10.983 10.944	14.747 14.695 14.644 14.592	18.434 18.369 18.305 18.240	22.121 22.043 21.965 21.888			
51 00	69.117	3.635	7.270	10.905	14.540	18.176	21.811		51°	52°
20 30 40 50	23.043 24.564 46.086 57.607	3.622 3.609 3.596 3.583 3.570	7.244 7.218 7.191 7.165 7.139	10.866 10.827 10.787 10.748 10.709	14.488 14.436 14.383 14.330 14.278	18.110 18.045 17.979 17.913 17.848	21.732 21.653 21.574 21.496 21.417	5 10 15 20 25	0.002 .008 .019 .033	0.002 .008 .018 .033 .051
52 00	69.128	3.556	7.113	10.669	14.226	17.782	21.338	30	.074	.073
10 20 30 40 50	23.047 23.047 34.570 46.094 57.617	3.543 3.530 3.516 3.503	7.086 7.060 7.033 7.006 6.980	10.629 10.589 10.550 10.510 10.470	14.172 14.119 14.066 14.013 13.960	17.716 17.649 17.583 17.516 17.450	21.259 21.179 21.099 21.019			
53 00	69.140	3·490 3·477	6.953	10.430	13.906	17.383	20.939		53°	54°
10 20 30 40 50	11.525 23.051 34.576 46.102 57.627	3,463 3,450 3,436 3,423 3,409	6.926 6.899 6.872 6.845 6.818	10.389 10.349 10.309 10.268 10.228	13.852 13.798 13.745 13.691 13.637	17.316 17.248 17.181 17.114 17.046	20.779 20.698 20.617 20.536 20.455	5 10 15 20 25 30	0.002 .008 .018 .032 .050	0.002 .008 .018 .032 .050
54 00	69.152	3.396	6.791	10.187	13.583	16.979	20.374			
10 20 30 40	11.527 23.055 34.582 46.109	3.382 3.368 3.355 3.341	6.764 6.737 6.709 6.682	10.146 10.105 10.064 10.023	13.528 13.474 13.419 13.364	16.910 16.842 16.774 16.706	20.292 20.210 20.128 20.047			
50	57.636	3.327	6.655	9.982	13.310	16.637	19.964		55°	56°
55 00 10 20 30 40 50	69.164 11.529 23.059 34.588 46.117 57.646 69.176	3.314 3.300 3.286 3.272 3.258 3.245 3.231	6.628 6.600 6.572 6.545 6.517 6.489 6.462	9.941 9.900 9.859 9.817 9.776 9.734 9.693	13.255 13.200 13.145 13.089 13.034 12.979	16.569 16.500 16.431 16.362 16.293 16.224	19.883 19.800 19.717 19.634 19.551 19.468	5 10 15 20 25 30	0.002 .008 .018 .032 .049	0.002 .008 .018 .031 .049 .070
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-5.75	J. J. J.		5.093	9-4		- 5-3~3			

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 83380.

	l dis- m ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO PARALL	PED
56°00′	Inches. 69.176	Inches.	Inches. 6.462	Inches. 9.693	Inches. 12.924	Inches. 16.155	Inches. 19.385	Longitude interval.	56°	57°
50 00		3.231	·	1	' '		19.303	Login		
10 20 30 40 50	11.531 23.063 34.594 46.125 57.656	3.217 3.203 3.189 3.175 3.161	6.434 6.406 6.378 6.350 6.322	9.651 9.609 9.567 9.525 9.483	12.868 12.812 12.756 12.700 12.644	16.085 16.015 15.945 15.875 15.805	19.301 19.217 19.134 19.050 18.966	5' 10	Inches. 0.002 .008 .018	Inches 0.002 .008
57 00	69.188	3.147	6.294	9.441	12.588	15.735	18.882	20 25	.031	.031
10 20 30 40 50	11.533 23.066 34.599 46.132 57.666	3.133 3.119 3.104 3.090 3.076	6.266 6.237 6.209 6.181 6.152	9.398 9.356 9.314 9.271 9.229	12.531 12.475 12.418 12.362 12.305	15.664 15.594 15.523 15.452 15.381	18.797 18.712 18.627 18.542 18.457	30	.070	.069
58 00	69.199	3.062	6.124	9.186	12.248	15.311	18.373		580	59°
10 20 30 40 50	11.535 23.070 34.605 46.140 57.675	3.048 3.034 3.019 3.005 2.991	6.096 6.067 6.038 6.010 5.981	9.143 9.101 9.058 9.015 8.972	12.191 12.134 12.077 12.020 11.962	15.239 15.168 15.096 15.025 14.953	18.287 18.201 18.115 18.029 17.944	5 10 15 20	0.002 .008 .017 .030	0.002 .007 .017
59 00	69.210	2.976	5.953	8.929	11.905	14.882	17.858	25 30	.068	.046
10 20 30 40	11.537 23.074 34.610 46.147 57.684	2.962 2.947 2.933 2.918 2.904	5.924 5.895 5.866 5.837 5.808	8.885 8.842 8.799 8.755 8.712	11.847 11.790 11.732 11.674 11.616	14.809 14.737 14.665 14.592	17.771 17.684 17.597 17.510			
50 60 00	69.221	2.890	5.779	8.669	11.558	14.520	17.424		60°	610
10 20 30 40 50	11.539 23.077 34.616 46.154 57.693	2.875 2.860 2.846 2.831 2.816	5.7 50 5.7 21 5.691 5.662 5.633	8.625 8.581 8.537 8.493 8.450	11.500 11.441 11.383 11.324 11.266	14.375 14.302 14.229 14.156 14.083	17.249 17.162 17.074 16.987 16.899	5 10 15 20 25 30	0.002 .007 .016 .029 .045	0.002 .007 .016 .029
61 00	69.232	2.802	5.604	8.406	11.208	14.010	16.811	30	1.003	.00
10 20 30	11.540 23.081 34.621	2.787 2.772 2.758	5·574 5·545 5·115	8.361 8.317 8.273	11.148 11.090 11.030	13.936 13.862 13.788	16.723 16.634 16.546			
40 50	46.162 57.702	2.743 2.728	5.486 5.456	8.229 8.184	10.972	13.715	16.457 16.369		Ű2°	63°
62 00	69.242	2.713	5-427	8.140	10.854	13.567	16.280	5	0.002	0.00
10 20 30 40 50	11.542 23.084 34.626 46.168 57.710	2.699 2.684 2.669 2.654 2.639	5·397 5·367 5·337 5·308 5·278	8.096 8.051 8.006 7.961 7.917	10.794 10.734 10.675 10.615	13.493 13.418 13.344 13.269 13.195	16.191 16.102 16.012 15.923 15.833	10 15 20 25 30	.007 .016 .028 .044 .063	.007
63 00	69.253	2.624	5.248	7.872	10.496	13.120	15.744			

	4	ΔR	SCISSAS	OF DEV	FLOPED	PARALL	EI.			
de of lel.	Meridional dis- tances from even degree parallels.		SCISSAS	OF DEV	ELOPED		<u> </u>		DINAT	
Latitude parallel.	Merid tance even paral	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	P	ARALL	EL.
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ral.		
63°00′	69.253	2.624	5.248	7.872	10.496	13.120	15.744	Longitude interval.	63°	64°
10	11.544	2.609	5.218	7.827	10.436	13.045	15.654			
20	23.087	2.594	5.188	7.782	10.376	12.970	15.564		Inches.	Inches.
30	34.631	2.579	5.158	7.7.37	10.316	12.895	15.473	5	0.002	0.002
40	46.175	2.564	5.128	7.692	10.256	12.820	15.383	10	.007	.007
50	57.718	2.549	5.098	7.647	10.196	12.745	15.293	15	.015	.015
64 00	69.262	2.534	5.068	7.602	10.136	12.670	15.203	20 25	.027	.026 .041
10	11.545	2.519	5.037	7.556	10.075	12.594	15.112	30	.061	.060
20	23.091	2.504	5.007	7.511	10.014	12.518	15.022			
30	34.636	2.488	4.977	7.465	9.954	12.442	14.930			
40	46.182	2.473	4.947	7.420	9.893	12.367	14.840			
50	57.727	2.458	4.916	7.374	9.832	12.291	14.749			
65 00	69.272	2.443	4.886	7.329	9.772	12.215	14.658		65°	66°
10	11.547	2.428	4.855	7.283	9.711	12.139	14.566			
20	23.094	2.412	4.825	7.237	9.650	12.062	14.474	5	0.002	0.002
30	34.641	2.397	4.794	7.191	9.588	11.986	14.383	10	.006	.006
40	46.188	2.382	4.764	7.145	0.527	11.909	14.291	15	.014	.014
50	57.735	2.366	4.733	7.100	9.466	11.833	14.199	20	.026	.025
66 o o	69.282	2.351	4.702	7.054	9.405	11.756	14.107	25 30	.040	.039 .056
10	11.548	2.336	4.672	7.007	9.343	11.679	14.015			
20	23.097	2.320	4.641	6.961	9.282	11.602	13.922			
30	34.646	2.305	4.610	6.915	9.220	11.525	13.830			
40	46.194	2.290	4.579	6.869	9.158	11.448	13.738			
50	57.742	2.274	4.548	6.823	9.097	11.371	13.645		67°	68°
67 00	69.291	2.259	4.518	6.776	9.035	11.294	13.553	_		
10	11.550	2.243	4.487	6.730	8.973	11.217	13.460	10	.0001	.000
20	23.100	2.228	4.455	6.683	8.911	11.139	13.366	15	.014	.013
30	34.650	2.212	4.424	6.637	8.849	11.061	13.273	20	.024	.023
40	46.200	2.197	4.393	6.590	8.787	10.984	13.180	25	.038	.036
50	57.750	2.181	4.362	6.543	8.724	10.906	13.087	30	.054	.053
68 ∞	69.300	2.166	4.331	6.497	8.662	10.828	12.994			
10	11.552	2.150	4.300	6.450	8.600	10.750	12.900			
20	23.103	2.134	4.269	6.403	8.538	10.672	12.806			
30	34.654	2.119	4.237	6.356	8.475	10.594	12.712		6-0	0
40	46.206	2.103	4.206	6.309	8.412	10.516	12.619		69°	70°
50	57-758	2.088	4.175	6.263	8.350	10.438	12.525			
69 ∞	69.309	2.072	4.144	6.216	8.288	10.360	12.431	5	0.001	0.001
10	11.553	2.056	4.112	6.169	8.225	10.281	12.337	15	.013	.012
20	23.106	2.040	4.081	6.121	8.162	10.202	12.242	20	.022	.022
30	34.659	2.025	4.049	6.074	8.099	10.124	12.148	25	.035	.034
40	46.212	2.009	4.018	6.027	8.036	10.045	12.054	30	.051	.049
50	57.764	1.993	3.986	5.980	7.973	9.966	11.959			
70 ∞	69.317	1.977	3.955	5.932	7.910	9.888	11.865			
				l						

يو	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL.	EL.	0.10	D131 4 00	EG 08
Latitude of parallel.	Meridionel distances from even degree parallels.	5' longitude.	10' longitude.	I 5′ longitude.	20' longitude.	25' longitude.	30' longitude.	D	DINAT DEVELO ARALL	PED
70°00′	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	70°	· 71°
70~00	69.317	1.977	3.955	5.932	7.910	9.888	11.865	Long		
10 20 30 40 50	11.554 23.109 34.663 46.217 57.772	1.962 1.946 1.930 1.914 1.898	3.923 3.892 3.860 3.828 3.796	5.885 5.837 5.790 5.742 5.695	7.846 7.783 7.720 7.656 7.593	9.808 9.729 9.650 9.571 9.491	11.770 11.675 11.579 11.485 11.389	5' 10	Inches. 0.001 .005	Inches. 0.001 .005
71 00	69.326	1.882	3.765	5.647	7.530	9.412	11.294	20	.022 .034	.021
10 20 30 40 50	11.556 23.111 34.667 46.222 57.778	1.866 1.850 1.835 1.819 1.803	3.733 3.701 3.669 3.637 3.605	5.600 5.552 5.504 5.456 5.408	7.466 7.402 7.338 7.275 7.211	9·333 9·253 9·173 9·094 9·014	11.199 11.103 11.008 10.912 10.816	30	.049	.047
72 00	69.334	1.787	3.574	5.360	7.147	8.934	10.721		720	73°
10 20 30 40 50	11.557 23.114 34.670 46.227 57.784	1.771 1.755 1.739 1.723 1.707	3.542 3.509 3.477 3.445 3.413	5.312 5.264 5.216 5.168 5.120	7.083 7.019 6.955 6.891 6.826	8.854 8.774 8.694 8.614 8.533	10.625 10.528 10.432 10.336 10.240	5 10 15 20	0.00I .005 .011	0.001 .005 .011 .019
73 ∞	69.341	1.691	3.381	5.072	6.762	8.453	10.144	25 30	.031	.029
10 20 30 40 50	11.558 23.116 34.674 46.232 57.790	1.674 1.658 1.642 1.626 1.610	3.349 3.317 3.284 3.252 3.220	5.024 4.975 4.927 4.878 4.830	6.698 6.634 6.569 6.504 6.440	8.373 8.292 8.211 8.131 8.050	9.950 9.853 9.757 9.660			
74 00	69.348	1.594	3.188	4.782	6.376	7.970	9.563		74°	75°
10 20 30 40 50	11.559 23.118 34.677 46.236 57.796	1.578 1.562 1.545 1.529 1.513	3.155 3.123 3.091 3.058 3.026	4·733 4·685 4·636 4·587 4·539	6.311 6.246 6.181 6.116 6.052	7.889 7.808 7.727 7.645 7.565	9.466 9.369 9.272 9.175 9.077	5 10 15 20 25 30	0.001 .004 .010 .018 .028	0.001 .004 .009 .017 .026
75 ∞	69.355	1.497	2.993	4.490	5.987	7.484	8.980	30	.040	.030
10 20 30 40	11.560 23.120 34.681 46.241	1.480 1.464 1.448 1.432	2.961 2.928 2.896 2.863	4.441 4.392 4.344 4.295	5.922 5.856 5.792 5.726	7.402 7.321 7.240 7.158	8.882 8.785 8.687 8.590			
50	57.801	1.415	2.831	4.246	5.661	7.077	8.492		76°	77°
76 ∞	69.361	1.399	2.798	4.197	5.596	6.995	8.394	5	100.0	0.001
10 20 30 40 50	11.561 23.122 34.683 46.244 57.806	1.383 1.366 1.350 1.334 1.317	2.765 2.733 2.700 2.667 2.634	4.148 4.099 4.050 4.001 3.952	5.530 5.465 5.400 5.334 5.269	6.913 6.832 6.750 6.668 6.586	8.296 8.198 8.099 8.002 7.903	10 15 20 25 30	.004 .009 .016 .025 .036	.004 .008 .015 .023
77 00	69.367	1.301	2.602	3.903	5.204	6.505	7.805			

TABLE 22.

[Derivation of table explained on p. liii-lvi.]

•	l dis-	A	BSCISSAS	OF DEV	ELOPED	PARALE	L.			
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	EDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
77°00′	69.367	1.301	2.602	3.903	5.204	6.505	7.805	Longitude interval.	77°	78°
10	11.562	1.284	2,569	3.854	5.138	6.423	7.707			
20	23.124	1.268	2.536	3.804	5.072	6.341	7.609		Inches.	Inches
30	34.686	1.252	2.503	3.755	5.006	6.258	7.510	5		
40	46.248	1.235	2.470	3.706	4.941	6.176	7.411	10	100.0	0.001
50	57.810	1.219	2.438	3.656	4.875	6.094	7.313	15	.004	.003
78 00	69.373	1.202	2.405	3.607	4.810	6.012	7.214	20	.015 .023	.014 .021
10	11.563	1.186	2.372	3.558	4.744	5.930	7.115	30	.033	.031
20	23.126	1.169	2.339	3.508	4.678	5.930 5.847	7.016			
30	34.689	1.153	2.306	3.459	4.612	5.765	6.918			
40	46.252	1.136	2.273	3.410	4.546	5.683	6.819			
50	57.814	1.120	2.240	3.360	4.480	5.600	6.720			0-0
79 00	69.377	1.104	2.207	3.311	4.414	5.518	6.621		79°	80°
10	11.564	1.087	2.174	3.261	4.348	5.435	6.522	5	0.001	0.001
20	23.127	1.070	2.141	3.211	4.282	5.352	6.422	10	.003	.003
30	34.691	1.054	2.108	3.162	4.216	5.270	6.323	15	.007	.006
40	46.255	1.037	2.075	3.112	4.150	5.187	6.224	20	.013	.011
50	57.818	1.021	2.042	3.062	4.083	5.104	6.125	25 30	.020	.018 .026
80 00	69.382	1.004	2.000	3.013	4.017	5.022	6.026	20	.020	.020

SMITHSONIAN TABLES.

							_						-
,	Pr.		СО	-ORDIN	VATE	s of	DEVI	ELOPEI	PA	RALLE	L FO)R —	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	10' long	itude.	20' long	itude.	30/ long	itude.	40' long	itude.	50' long	itude.	1º long	itude.
Latit	Meri tang evel par	x	у	x	у	x	у	x	y	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°00′ 10 20 30 40 50	92.1 184.3 276.4 368.6 460.7	92.8 92.8 92.8 92.8 92.8 92.8	000000	185.5 185.5 185.5 185.5 185.5	000000	278.3 278.3 278.3 278.3 278.3 278.3	0 0 0 0 0	371.1 371.1 371.1 371.0 371.0	0 0 0 0 0	463.8 463.8 463.8 463.8 463.8 463.7	000000	556.6 556.6 556.6 556.6 556.6 556.5	.0 .0 .0 .0
1 00 10 20 30 40 50	92.1 184.3 276.4 368.6 460.7	92.8 92.7 92.7 92.7 92.7 92.7	000000	185.5 185.5 185.5 185.5 185.4 185.4	000000	278.3 278.2 278.2 278.2 278.2 278.2	0 0 0 0 0 0	371.0 371.0 371.0 370.9 370.9 370.9	.0 .0 .0 .0 .0	463.7 463.7 463.7 463.7 463.6 463.6	I. I. I. I.	556.5 556.4 556.4 556.4 556.3 556.3	.I .I .I .I .I
2 00 10 20 30 40 50	92.1 184.3 276.4 368.6 460.7	92.7 92.7 92.7 92.7 92.7 92.7	000000	185.4 185.4 185.4 185.3 185.3	000000	278.1 278.1 278.0 278.0 278.0 278.0	0. 0. 0. 0. 1.	370.8 370.8 370.8 370.7 370.6 370.6	I. I. I. I. I.	463.6 463.5 463.4 463.4 463.3 463.2	.I .I .I .I .2	556.3 556.2 556.1 556.0 556.0 555.9	.2 .2 .2 .2 .2
3 00 10 20 30 40 50	92.1 184.3 276.4 368.6 460.7	92.6 92.6 92.6 92.6 92.6 92.6	000000	185.3 185.2 185.2 185.2 185.1 185.1	000000	277.9 277.9 277.8 277.8 277.7 277.7	I. I. I. I. I.	370.6 370.5 370.4 370.4 370.3 370.2	I. I. I. I. I.	463.2 463.1 463.0 463.0 462.8 462.8	.2 .2 .2 .2 .2	555.8 555.7 555.7 555.5 555.4 555.4	2 3 3 3 3 3 3
4 00 10 20 30 40 50	92.1 184.3 276.4 368.6 460.7	92.5 92.5 92.5 92.5 92.5 92.4	000000	185.1 185.0 185.0 185.0 184.9 184.9	.0	277.6 277.6 277.5 277.4 277.4 277.3	I. I. I. I. I.	370.2 370.1 370.0 369.9 369.8 369.8	.2 .2 .2 .2 .2	462.7 462.6 462.5 462.4 462.3 462.2	.2 .2 .2 .3 .3	555.2 555.1 555.0 554.9 554.8 554.6	·3 ·3 ·3 ·4 ·4
5 00 10 20 30 40 50	92.2 184.3 276.4 368.6 460.7	92.4 92.4 92.4 92.3 92.3 92.3		184.8 184.7 184.7 184.7 184.6 184.6	I. I. I. I. I.	277.3 277.2 277.1 277.0 276.9 276.9	I. I. I. I.	369.7 369.6 369.5 369.4 369.2 369.2	.2 .2 .2 .2 .2 .2	462.1 462.0 461.8 461.7 461.6 461.4	·3 ·3 ·3 ·3 ·3 ·3	554-5 554-3 554-2 554-0 553-9 553-7	.4 .4 .4 .5 .5
6 00 10 20 30 40 50	92.2 184.3 276.4 368.6 460.7	92.3 92.2 92.2 92.2 92.1 92.1	000000	184.5 184.4 184.3 184.3 184.3	I. I. I. I. I.	276.8 276.7 276.6 276.5 276.4 276.3	I. I. I. I. I.	369.0 368.9 368.8 368.7 368.6 368.4	.2 .2 .2 .2 .2	461.3 461.2 461.0 460.8 460.7 460.6	·4 ·4 ·4 ·4 ·4	553.6 553.4 553.2 553.0 552.8 552.7	·5 ·5 ·5 ·6
7 00 10 20 30 40 50	92.2 184.3 276.4 368.6 460.7	92.1 92.0 92.0 92.0 91.9 91.9	000000	184.2 184.1 184.0 184.0 183.9 183.8	I. I. I. I. I.	276.2 276.1 276.0 275.9 275.8 275.7	I. I. I. I. I.	368.3 368.2 368.0 367.9 367.8 367.6	·3 ·3 ·3 ·3 ·3 ·3	460.4 460.2 460.0 459.9 459.7 459.5	·4 ·4 ·4 ·4 ·4	552.5 552.2 552.1 551.9 551.6 551.4	.6 .6 .6 .6
8 00		91.9	.0	183.7	.1	275.6	.2	367.5	-3	459.4	•5	551.2	-7

	.5		со	-ORDII	NATI	ES OF	DEV	ELOPE	D PA	RALLI	EL FO	OR —	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	10' longi	tude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	r ^o long	ritude.
Latí	Mer tan eve par	x	у	x	y	х	у	x	у	x	у	x	у
00.4	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
8°00′ 10 20 30 40 50	92.2 184.3 276.5 368.6 460.8	91.9 91.8 91.8 91.7 91.7	0 0 0 0 0	183.7 183.7 183.6 183.5 183.4 183.3	I. I. I. I. I.	275.6 275.5 275.4 275.2 275.1 275.0	.2 .2 .2 .2 .2	367.5 367.3 367.2 367.0 366.8 366.7	333333	459.4 459.2 459.0 458.8 458.6 458.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	551.2 551.0 550.7 550.5 550.3 550.0	·7 ·7 ·7 ·7 ·7
9 00 10 20 30 40 50	92.2 184.3 276.5 368.6 460.8	91.6 91.5 91.5 91.5 91.4	.0 .0 .0 .0	183.3 183.2 183.1 183.0 182.9 182.8	I. I. I. I. I.	274.9 274.8 274.6 274.5 274.4 274.2	.2 .2 .2 .2 .2	366.5 366.4 366.2 366.0 365.8 365.6	·3 ·3 ·3 ·4 ·4	458.2 458.0 457.7 457.5 457.3 457.0	·5 ·5 ·5 ·6	549.8 549.5 549.2 549.0 548.8 548.5	.8 .8 .8 .8 .8
10 00 10 20 30 40 50	92.2 184.3 276.5 368.7 460.8	91.4 91.3 91.3 91.2 91.2 91.1		182.7 182.6 182.5 182.4 182.3 182.2	I. I. I. I. I.	274.1 274.0 273.8 273.7 273.5 273.4	.2 .2 .2 .2 .2	365.5 365.3 365.1 364.9 364.7 364.5	•4 •4 •4 •4 •4	456.8 456.6 456.4 456.1 455.9 455.6	.6 .6 .6 .6	548.2 547.9 547.6 547.3 547.0 546.7	.8 .9 .9
11 00 10 20 30 40 50	92.2 184.3 276.5 368.7 460.8	91.1 91.0 91.0 90.9 90.9 90.8	000000	182.1 182.0 181.9 181.8 181.7 181.6	I. I. I. I. I.	273.2 273.1 272.9 272.7 272.6 272.4	.2 .2 .2 .2 .2	364.3 364.1 363.8 363.6 363.4 363.2	·4 ·4 ·4 ·4 ·4 ·4	455.4 455.1 454.8 454.6 454.3 454.0	.6 .6 .7 .7	546.4 546.1 545.8 545.5 545.2 544.8	.9 .9 .9 .9 I.0
12 00 10 20 30 40 50	92.2 184.4 276.5 368.7 460.9	90.8 90.7 90.6 90.6 90.5 90.5	000000	181.5 181.4 181.3 181.1 181.0 180.9	I. I. I. I. I.	272.2 272.1 271.9 271.7 271.6 271.4	.2 .2 .3 .3	363.0 362.8 362.5 362.3 362.1 361.8	·4 ·4 ·4 ·4 ·4	453.8 453.4 453.2 452.8 452.6 452.3	·7 ·7 ·7 ·7 ·7 ·7	544.5 544.1 543.8 543.4 543.1 542.8	I.0 I.0 I.0 I.0 I.0
13 00 10 20 30 40 50	92.2 184.4 276.6 368.8 461.0	90.4 90.3 90.3 90.2 90.2 90.1	000000	180.8 180.7 180.6 180.4 180.3 180.2	I. I. I. I. I.	271.2 271.0 270.8 270.6 270.4 270.3	3 3 3 3 3 3	361.6 361.4 361.1 360.8 360.6 360.4	·5 ·5 ·5 ·5 ·5 ·5	452.0 451.7 451.4 451.0 450.8 450.4	·7 ·8 .8 .8 .8	542.4 542.0 541.7 541.3 540.9 540.5	I.I I.I I.I I.I I.I
14 00 10 20 30 40 50	92.2 184.4 276.6 368.8 461.0	90.0 90.0 89.9 89.8 89.8 89.7	000000	180.1 179.9 179.8 179.7 179.5 179.4	.I .I .I .I .I	270.1 269.9 269.7 269.5 269.3 269.1	·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3	360.1 359.8 359.6 359.3 359.0 358.8	.5.5.5.5.5	450.2 449.8 449.5 449.2 448.8 448.5	.8 .8 .8 .8	540.2 539.8 539.4 539.0 538.6 538.2	I.I I.2 I.2 I.2 I.2 I.2
15 00 10 -20 30 40 50	92.2 184.4 276.6 368.8 461.0	89.6 89.5 89.4 89.3 89.3	000000	179.3 179.1 179.0 178.8 178.7 178.5	I. I. I. I. I.	268.9 268.7 268.5 268.3 268.0 267.8	.3 .3 .3 .3 .3 .3 .3	358.5 358.2 358.0 357.7 357.4 357.1	.5 .6 .6 .6	448.2 447.8 447.4 447.1 446.7 446.4	.8 .8 .9 .9	537.8 537.4 536.9 536.5 536.0 535.6	I.2 I.2 I.2 I.2 I.3 I.3
16 00		89.2	.0	178.4	ı.	267.6	-3	356.8	.6	446.0	.9	535.2	1.3

<u></u>					_				-				
	, sh		СС	-ORDI	NATI	ES OF	DEV	ELOPE	D PA	RALLI	EL F	OR —	
ude of	Meridional dis- tances from even degree parallels.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	r° long	gitude.
Latitude o	Meri tanc ever	x	у	x	у	x	у	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
16°00′ 10 20 30 40 50	92.2 184.4 276.6 368.8 461.0	89.2 89.1 89.0 89.0 88.9 88.8	000000	178.4 178.2 178.1 177.9 177.8 177.6	I. I. I. I. I.	267.6 267.4 267.2 266.9 266.7 266.5	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	356.8 356.5 356.2 355.9 355.6 355.3	.6 .6 .6 .6	446.0 445.6 445.2 444.8 444.4 444.1	999999	535.2 534.7 534.3 533.8 533.3 532.9	I.3 I.3 I.3 I.3 I.3 I.4
17 00 10 20 30 40 50	92.2 184.4 276.7 368.9 461.1	88.7 88.7 88.6 88.5 88.4 88.3	000000	177.5 177.3 177.2 177.0 176.8 176.7	.2 .2 .2 .2 .2 .2	266.2 266.0 265.7 265.5 265.2 265.0	·3 ·3 ·3 ·4 ·4	355.0 354.6 354.3 354.0 353.6 353.3	.6 .6 .6 .6	443.7 443.3 442.9 442.5 442.0 441.6	.9 1.0 1.0 1.0	532.4 532.0 531.5 531.0 530.5 530.0	1.4 1.4 1.4 1.4 1.4
18 00 10 20 30 40 50	92.2 184.5 276.7 368.9 461.2	88.3 88.2 88.1 88.0 87.9 87.8		176.5 176.3 176.2 176.0 175.8 175.6	.2 .2 .2 .2 .2 .2	264.8 264.5 264.2 264.0 263.7 263.5	·4 ·4 ·4 ·4 ·4	353.0 352.6 352.3 352.0 351.6 351.3	.6 .6 .6 .6 .7	441.2 440.8 440.4 440.0 439.6 439.1	I.0 I.0 I.0 I.0 I.0	529.5 529.0 528.5 528.0 527.5 526.9	1.4 1.4 1.5 1.5 1.5
19 00 10 20 30 40 50	92.2 184.5 276.7 369.0 461.2	87.7 87.6 87.6 87.5 87.4 87.3	.0 .0 .0 .0 .0 .0 .0	175.5 175.3 175.1 174.9 174.8 174.6	.2 .2 .2 .2 .2 .2	263.2 263.0 262.7 262.4 262.1 261.9	·4 ·4 ·4 ·4 ·4 ·4	351.0 350.6 350.2 349.9 349.5 349.2	·7 ·7 ·7 ·7 ·7 ·7	438.7 438.2 437.8 437.4 436.9 436.4	I.0 I.0 I.1 I.1 I.1	526.4 525.9 525.4 524.8 524.3 523.7	1.5 1.5 1.5 1.5 1.5
20 00 10 20 30 40 50	92.2 184.5 276.8 369.0 461.2	87.2 87.1 87.0 86.9 86.8 86.7	.0 .0 .0 .0 .0 .0 .0	174.4 174.2 174.0 173.8 173.7 173.5	.2 .2 .2 .2 .2 .2	261.6 261.3 261.0 260.8 260.5 260.2	·4 ·4 ·4 ·4 ·4	348.8 348.4 348.0 347.7 347.3 346.9	·7 ·7 ·7 ·7 ·7	436.0 435.6 435.0 434.6 434.2 433.6	I.I I.I I.I I.I I.I	523.2 522.7 522.1 521.5 521.0 520.4	1.6 1.6 1.6 1.6 1.6 1.6
21 00 10 20 30 40 50	92.3 184.5 276.8 369.0 461.3	86.6 86.5 86.4 86.3 86.2 86.1	.0 .0 .0 .0 .0 .0	173.3 173.1 172.9 172.7 172.5 172.3	.2 .2 .2 .2 .2 .2	259.9 259.6 259.3 259.0 258.8 258.4	·4 ·4 ·4 ·4 ·4 ·4	346.6 346.2 345.8 345.4 345.0 344.6	·7 ·7 ·7 ·7 ·7	433.2 432.7 432.2 431.7 431.2 430.8	I.I I.I I.I I.2 I.2 I.2	519.8 519.2 518.6 518.0 517.5 516.9	1.6 1.6 1.6 1.7 1.7
22 00 10 20 30 40 50	92.3 184.5 276.8 369.1 461.4	86.0 85.9 85.8 85.7 85.6 85.5	.0 .0 .0 .0 .0 .0	172.1 171.9 171.7 171.5 171.3	.2 .2 .2 .2 .2	258.2 257.8 257.6 257.2 256.9 256.6	.4 .4 .4 .4 .4	344.2 343.8 343.4 343.0 342.6 342.2	.7 .8 .8 .8 .8	430.2 429.8 429.2 428.8 428.2 427.7	I.2 I.2 I.2 I.2 I.2 I.2	516.3 515.7 515.1 514.5 513.8 513.2	I.7 I.7 I.7 I.7 I.7
23 00 10 20 30 40 50	92.3 184.6 276.8 369.1 461.4	85.4 85.3 85.2 85.1 85.0 84.9	000000	170.9 170.7 170.4 170.2 170.0 169.8	.2 .2 .2 .2 .2	256.3 256.0 255.7 255.3 255.0 254.7	.4 .4 .4 .4 .4	341.8 341.3 340.9 340.4 340.0 339.6	.8 .8 .8 .8	427.2 426.6 426.1 425.6 425.0 424.5	I.2 I.2 I.2 I.2	512.6 512.0 511.3 510.7 510.1 509.4	1.7 1.8 1.8 1.8 1.8
24 00		84.8	.0	169.6	.2	254.4	•4	339.2	.8	424.0	1.3	508.7	1.8

			СО	-ORDII	NATE	ES OF	DEV	ELOPE:	D PA	RALLE	L F)R —	
nde of Ilel.	Meridional dis- tances from even degree parallels.	10' long	gitude.	20' long	itude.	30' long	itude.	40' long	ritude.	50' long	itude.	1º long	ritude.
Latitude parallel.	Merio tanc ever para	x	у	x	у	x	у	x	у	x	y	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
24°00′ 10 20 30 40 50	92.3 184.6 276.9 369.2 461.5	84.8 84.7 84.6 84.5 84.4 84.2	000000	169.6 169.4 169.1 168.9 168.7 168.5	.2 .2 .2 .2 .2 .2	254.4 254.0 253.7 253.4 253.0 252.7	·4 ·5 ·5 ·5 ·5 ·5 ·5	339.2 338.7 338.3 337.8 337.4 337.0	.8 .8 .8 .8 .8	424.0 423.4 422.8 422.3 421.8 421.2	I.3 I.3 I.3 I.3 I.3	508.7 508.1 507.4 506.8 506.1 505.4	1.8 1.8 1.8 1.8 1.8
25 00 10 20 30 40 50	92.3 184.6 276.9 369.2 461.6	84.1 84.0 83.9 83.8 83.7 83.6	I. I. I. I. I.	168.3 168.0 167.8 167.6 167.3 167.1	.2 .2 .2 .2 .2	252.4 252.0 251.7 251.3 251.0 250.6	5555555	336.5 336.0 335.6 335.1 334.6 334.2	.8 .8 .8 .8 .8 .8	420.6 420.0 419.5 418.9 418.3 417.8	I.3 I.3 I.3 I.3 I.3	504.8 504.1 503.4 502.7 502.0 501.3	1.9 1.9 1.9 1.9
26 00 10 20 30 40 50	92.3 184.6 277.0 369.3 461.6	83.4 83.3 83.2 83.1 82.9 82.8	I. I. I. I. I.	166.9 166.6 166.4 166.1 165.9 165.7	.2 .2 .2 .2 .2	250.3 249.9 249.6 249.2 248.8 248.5	·5.5.5.5.5.5.5	333.7 333.2 332.8 332.3 331.8 331.3	999999	417.2 416.6 416.0 415.4 414.8 414.2	I.3 I.3 I.3 I.3 I.4 I.4	500.6 499.9 499.1 498.4 497.7 497.0	1.9 1.9 1.9 2.0
27 00 10 20 30 40 50	92.3 184.7 277.0 369.3 461.6	82.7 82.6 82.5 82.3 82.2 82.1	I. I. I. I. I.	165.4 165.2 164.9 164.7 164.4 164.2	.2 .2 .2 .2 .2	248.1 247.8 247.4 247.0 246.7 246.3	•5	330.8 330.4 329.8 329.4 328.9 328.4	99999	413.6 413.0 412.3 411.7 411.1 410.4	1.4 1.4 1.4 1.4 1.4	496.3 495.5 494.8 494.0 493.3 492.5	2.0 2.0 2.0 2.0 2.0 2.0
28 00 10 20 30 40 50	92.4 184.7 277.0 369.4 461.8	82.0 81.8 81.7 81.6 81.5 81.3	I. I. I. I. I.	163.9 163.7 163.4 163.2 162.9	.2 .2 .2 .2 .2	245.9 245.5 245.1 244.7 244.4 244.0	.5 .5 .5 .5	327.9 327.4 326.8 326.3 325.8 325.3	99999	409.8 409.2 408.6 407.9 407.3 406.6	I.4 I.4 I.4 I.4 I.4	491.0 490.3 489.5 488.8 488.0	2.0 2.0 2.0 2.0 2.0 2.0 2.1
29 00 10 20 30 40 50	92.4 184.7 277.1 369.4 461.8	81.2 81.1 80.9 80.8 80.7 80.5	I. I. I. I. I.	162.4 162.1 161.9 161.6 161.3 161.1	.2 .2 .2 .2 .2 .2 .2	243.6 243.2 242.8 242.4 242.0 241.6	·5 ·5 ·5 ·5 ·5	324.8 324.3 323.8 323.2 322.7 322.2	999999	406.0 405.4 404.7 404.0 403.4 402.7	1.4 1.4 1.4 1.4 1.4 1.5	487.2 486.4 485.6 484.8 484.0 483.2	2.I 2.I 2.I 2.I 2.I 2.I 2.I
30 00 10 20 30 40 50	92.4 184.8 277.1 369.5 461.9	80.4 80.3 80.1 80.0 79.9 79.7	I. I. I. I. I.	160.8 160.5 160.3 160.0 159.7 159.5	.2 .2 .2 .2 .2 .2 .2	241.2 240.8 240.4 240.0 239.6 239.2	·5 ·5 ·5 ·5	321.6 321.1 320.6 320.0 319.4 318.9	99999	402.0 401.4 400.7 400.0 399.3 398.6	1.5 1.5 1.5 1.5 1.5	482.5 481.6 480.8 480.0 479.2 478.4	2.1 2.1 2.1 2.1 2.1 2.1
31 00 10 20 30 40 50	92.4 184.8 277.2 369.6 462.0	79.6 79.4 79.3 79.2 79.0 78.9	I. I. I. I. I.	159.2 158.9 158.6 158.3 158.1 157.8	.2 .2 .2 .2 .2 .2	238.8 238.4 237.9 237.5 237.1 236.7	·5 ·5 ·5 ·5 ·5	318.4 317.8 317.2 316.7 316.1 315.6	0.1 0.1 0.1 0.1 0.1	398.0 397.2 396.6 395.8 395.2 394.4	1.5 1.5 1.5 1.5 1.5	477.5 476.7 475.9 475.0 474.2 473.3	2.I 2.I 2.2 2.2 2.2 2.2 2.2
32 00		78.8	ı.	1 57.5	.2	236.2	•5	315.0	1.0	393.8	1.5	472.5	2.2

		CO-ORDINATES OF DEVELOPED PARALLEL FOR											
	is:		СО	-ORDII	NATE	S OF	DEVI	ELOPE	D PA	RALLE	EL F	OR —	
Latitude of parallel.	Meridional distances from even degree parallels.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	10 long	tude.
Latit	Meri tan eve par	x	у	x	у	x	y	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
32°00′ 10 20 30 40 150	92.4 184.8 277.2 369.6 462.0	78.8 78.6 78.5 78.3 78.2 78.0	I. I. I. I. I.	157.5 157.2 156.9 156.6 156.3 156.0	.2 .2 .2 .2 .2 .2	236.2 235.8 235.4 235.0 234.5 234.1	;;;;;;;;	315.0 314.4 313.8 313.3 312.7 312.1	I.0 I.0 I.0 I.0	393.8 393.0 392.3 391.6 390.8 390.1	1.5 1.5 1.5 1.5 1.5	472.5 471.6 470.8 469.9 469.0 468.1	2.2 2.2 2.2 2.2 2.2 2.2 2.2
33 00 10 20 30 40 50	92.4 184.8 277.3 369.7 462.1	77.9 77.7 77.6 77.4 77.3 77.1	I. I. I. I. I.	155.8 155.5 155.2 154.9 154.6 154.3	.2 .2 .2 .2 .2 .2	233.6 233.2 232.7 232.3 231.9 231.4	.6 .6 .6 .6	311.5 310.9 310.3 309.7 309.2 308.6	I.0 I.0 I.0 I.0 I.0	389.4 388.6 387.9 387.2 386.4 385.7	1.5 1.5 1.6 1.6 1.6	467.3 466.4 465.5 464.6 463.7 462.8	2.2 2.2 2.2 2.2 2.2 2.2
34 00 10 20 30 40 50	92.4 184.9 277.3 369.7 462.1	77.0 76.8 76.7 76.5 76.4 76.2	I. I. I. I. I.	154.0 153.7 153.4 153.1 152.8 152.4	·3 ·3 ·3 ·3 ·3 ·3	231.0 230.5 230.0 229.6 229.1 228.7	.6 .6 .6 .6	308.0 307.4 306.7 306.1 305.5 304.9	I.0 I.0 I.0 I.0 I.0	384.9 384.2 383.4 382.6 381.9 381.1	1.6 1.6 1.6 1.6 1.6	461.9 461.0 460.1 459.2 458.3 457.3	2.3 2.3 2.3 2.3 2.3 2.3
35 00 10 20 30 40 50	92.4 184.9 277.4 369.8 462.2	76.1 75.9 75.8 75.6 75.4 75.3	I. I. I. I. I.	152.1 151.8 151.5 151.2 150.9 150.6	·3 ·3 ·3 ·3 ·3 ·3 ·3	228.2 227.8 227.3 226.8 226.4 225.9	.6 .6 .6 .6	304.3 303.7 303.0 302.4 301.8 301.2	I.0 I.0 I.0 I.0 I.0	380.4 379.6 378.8 378.0 377.2 376.5	1.6 1.6 1.6 1.6 1.6	456.4 455.5 454.6 453.6 452.7 451.8	2.3 2.3 2.3 2.3 2.3 2.3
36 00 10 20 30 40 50	92.5 184.9 277.4 369.8 462.3	75.1 75.0 74.8 74.7 74.5 74.3	I. I. I. I. I.	150.3 150.0 149.6 149.3 149.0 148.7	·3 ·3 ·3 ·3 ·3	225.4 224.9 224.5 224.0 223.5 223.0	.6 .6 .6 .6	300.6 299.9 299.3 298.6 298.0 297.4	1.0 1.0 1.0 1.0 1.0	375.7 374.9 374.1 373.3 372.5 371.7	1.6 1.6 1.6 1.6 1.6	450.8 449.9 448.9 448.0 447.0 446.0	2.3 2.3 2.3 2.3 2.3 2.3
37 00 10 20 30 40 50	92.5 185.0 277.4 369.9 462.4	74.2 74.0 73.8 73.7 73.5 73.4	I. I. I. I. I.	148.4 148.0 147.7 147.4 147.1 146.7	·3 ·3 ·3 ·3 ·3 ·3	222.5 222.1 221.6 221.1 220.6 220.1	.6 .6 .6 .6	296.7 296.1 295.4 294.8 294.1 293.4	I.0 I.0 I.0 I.0 I.0	370.9 370.1 369.2 368.4 367.6 366.8	1.6 1.6 1.6 1.6 1.6	445.I 444.I 443.I 442.I 441.2 440.2	2.3 2.3 2.3 2.3 2.4 2.4
38 00 10 20 30 40 50	92.5 185.0 277.5 370.0 462.5	73.2 73.0 72.9 72.7 72.5 72.4	I. I. I. I. I.	146.4 146.1 145.7 145.4 145.1 144.7	·3 ·3 ·3 ·3 ·3 ·3	219.6 219.1 218.6 218.1 217.6 217.1	.6 .6 .6 .6	292.8 292.1 291.4 290.8 290.1 289.4	1.0 1.1 1.1 1.1 1.1	366.0 365.1 364.3 363.5 362.6 361.8	1.6 1.6 1.6 1.6 1.6	439.2 438.2 437.2 436.2 435.2 434.2	2.4 2.4 2.4 2.4 2.4 2.4
39 00 10 20 30 40 50	92.5 185.0 277.5 370.0 462.6	72.2 72.0 71.8 71.7 71.5 71.3	.I .I .I .I .I	144.4 144.0 143.7 143.4 143.0 142.7	·3 ·3 ·3 ·3 ·3 ·3	216.6 216.1 215.6 215.0 214.5 214.0	.6 .6 .6 .6	288.8 288.1 287.4 286.7 286.0 285.3	1.1 1.1 1.1 1.1 1.1	361.0 360.1 359.2 358.4 357.5 356.6	1.7 1.7 1.7 1.7 1.7	433.1 432.1 431.1 430.1 429.0 428.0	2.4 2.4 2.4 2.4 2.4 2.4
40 00		71.2	.I	142.3	•3	213.5	.6	284.6	1.1	355.8	1.7	427.0	2.4

													1
	sig.		CO	-ORDIN	NATE	S OF	DEVI	ELOPEI) PA	RALLE	L FO)R —	
Latitude of parallel.	Meridional dis tances from even degree parallels.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º longi	tude.
Lati	Me tar eve	x	y	x	у	x	у	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
40°00′ 10 20 30 40 50	92.5 185.1 277.6 370.1 462.6	71.2 71.0 70.8 70.6 70.5 70.3	.I .I .I .I	142.3 142.0 141.6 141.3 140.9 140.6		213.5 212.9 212.4 211.9 211.4 210.8	.6 .6 .6 .6 .6	284.6 283.9 283.2 282.6 281.8 281.1	I.I I.I I.I I.I I.I	355.8 354.9 354.0 353.2 352.3 351.4	I.7 I.7 I.7 I.7 I.7	427.0 425.9 424.9 423.8 422.8 421.7	2.4 2.4 2.4 2.4 2.4 2.4
41 00 10 20 30 40 50	92.5 185.1 277.6 370.2 462.7	70.1 69.9 69.8 69.6 69.4 69.2	I. I. I. I. I.	140.2 139.9 139.5 139.2 138.8 138.4	·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3	210.3 209.8 209.2 208.7 208.2 207.7	.6 .6 .6 .6	280.4 279.7 279.0 278.3 277.6 276.9	I.I I.I I.I I.I I.I	350.6 349.6 348.8 347.9 347.0 346.1	I.7 I.7 I.7 I.7 I.7	420.7 419.6 418.5 417.5 416.4 415.3	2.4 2.4 2.4 2.4 2.4 2.4
42 00 10 20 30 40 50	92.6 185.1 277.7 370.2 462.8	69.0 68.9 68.7 68.5 68.3 68.1	I. I. I. I. I.	138.1 137.7 137.4 137.0 136.6 136.3	3 3 3 3 3 3	207.1 206.6 206.0 205.5 204.9 204.4	.6 .6 .6 .6	276.2 275.4 274.7 274.0 273.2 272.5	I.I I.I I.I I.I I.I	345.2 344.3 343.4 342.4 341.5 340.6	1.7 1.7 1.7 1.7 1.7	414.2 413.2 412.1 410.9 409.9 408.8	2.4 2.4 2.4 2.4 2.4 2.4
43 00 10 20 30 40 50	92.6 185.2 277.7 370.3 462.9	68.0 67.8 67.6 67.4 67.2 67.0	I. I. I. I.	135.9 135.5 135.2 134.8 134.4 134.0	.3 .3 .3 .3 .3 .3	203.8 203.3 202.7 202.2 201.6 201.1	.6 .6 .6 .6	271.8 271.0 270.3 269.6 268.8 268.1	1.1 1.1 1.1 1.1 1.1	339.8 338.8 337.9 337.0 336.0 335.1	1.7 1.7 1.7 1.7 1.7	407.7 406.6 405.5 404.4 403.3 402.1	2.4 2.4 2.4 2.4 2.4 2.4
44 00 10 20 30 40 50	92.6 185.2 277.8 370.4 463.0	66.8 66.6 66.5 66.3 66.1 65.9	I. I. I. I. I.	133.7 133.3 132.9 132.6 132.2 131.8	·3 ·3 ·3 ·3 ·3 ·3	200.5 200.0 199.4 198.8 198.3	.6 .6 .6 .6	267.4 266.6 265.8 265.1 264.4 263.6	1.1 1.1 1.1 1.1 1.1	334·2 333·2 332·3 331·4 330·4 329·5	1.7 1.7 1.7 1.7 1.7	401.0 399.9 398.8 397.7 396.5 395.4	2.4 2.4 2.4 2.4 2.4 2.4
45 00 10 20 30 40 50	92.6 185.2 277.8 370.4 463.0	65.7 65.5 65.3 65.1 64.9 64.7	I. I. I. I. I.	131.4 131.0 130.6 130.3 129.9	·3 ·3 ·3 ·3 ·3 ·3	197.1 196.6 196.0 195.4 194.8	.6 .6 .6 .6	262.8 262.1 261.3 260.5 259.8 259.0	1.1 1.1 1.1 1.1 1.1	328.6 327.6 326.6 325.6 324.7 323.7	1.7 1.7 1.7 1.7 1.7	394·3 393.1 391.9 390.8 389.6 388.4	2.4 2.4 2.4 2.4 2.4 2.4
46 00 10 20 30 40 50	92.6 185.3 277.9 370.5 463.1	64.6 64.4 64.2 64.0 63.8 63.6	I. I. I. I. I.	129.1 128.7 128.3 127.9 127.6 127.2	·3 ·3 ·3 ·3 ·3 ·3	193.6 193.1 192.5 191.9 191.3	.6 .6 .6 .6	258.2 257.4 256.6 255.9 255.1 254.3	1.1 1.1 1.1 1.1 1.1	322.8 321.8 320.8 319.8 318.9 317.9	I.7 I.7 I.7	387.3 386.2 385.0 383.8 382.7 381.5	2.4 2.4 2.4 2.4 2.4 2.4 2.4
47 00 10 20 30 40 50	92.6 185.3 277.9 370.6 463.2	63.4 63.2 63.0 62.8 62.6 62.4	I. I. I. I.	126.8 126.4 126.0 125.6 125.2 124.8	1.3	190.1 189.5 188.9 188.3 187.8 187.2	.6 .6 .6 .6	253.5 252.7 251.9 251.1 250.4 249.6	I.I I.I I.I	10 /	I.7 I.7 I.7 I.7	380.3 379.1 377.9 376.7 375.5 374.3	2.4 2.4 2.4 2.4 2.4 2.4 2.4
48 00		62.2	.I	124.4	.3	186.6	.6	248.8	1.1	311.0	1.7	373.1	2.4

	å		со	-ORDII	NATE	S OF	DEVI	ELOPEI	PA	RALLE	L FO	R-	
ude of	Meridional dis- tances from even degree parallels.	10' long	itude.	20/ long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º long	gitude.
Latitude c	Meri tang ever para	x	у	x	у	x	у	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
48°00′ 10 20 30 40 50	92.7 185.3 278.0 370.6 463.3	62.2 62.0 61.8 61.6 61.4 61.2	I. I. I. I. I.	124.4 124.0 123.6 123.2 122.8 122.4		186.6 186.0 185.4 184.7 184.1 183.5	.6 .6 .6 .6	248.8 248.0 247.2 246.3 245.5 244.7	I.I I.I I.I I.I I.I	311.0 310.0 309.0 307.9 306.9 305.9	1.7 1.7 1.7 1.7 1.7	373.1 371.9 370.7 369.5 368.3 367.1	2.4 2.4 2.4 2.4 2.4 2.4
49 00 10 20 30 40 50	92.7 185.4 278.0 370.7 463.4	61.0 60.8 60.6 60.4 60.2 60.0	I. I. I. I. I.	122.0 121.6 121.1 120.7 120.3 119.9	ပဲ့ပဲ့ပဲ့ပဲ့ပဲ	182.9 182.3 181.7 181.1 180.5 179.9	.6 .6 .6 .6	243.9 243.1 242.3 241.4 240.6 239.8	I.I I.I I.I I.I I.I	304.9 303.9 302.8 301.8 300.8 299.8	1.7 1.7 1.7 1.7 1.7	365.9 364.7 363.4 362.2 361.0 359.8	2.4 2.4 2.4 2.4 2.4 2.4
50 00 10 20 30 40 50	92.7 185.4 278.1 370.8 463.4	59.8 59.5 59.3 59.1 58.9 58.7	I. I. I. I. I.	119.5 119.1 118.7 118.2 117.8 117.4	333333	179.2 178.6 178.0 177.4 176.8 176.1	.6 .6 .6 .6 .6 .6	239.0 238.2 237.3 236.5 235.7 234.8	I.I I.I I.I I.I I.I	298.8 297.7 296 6 295.6 294.6 293.6	I.7 I.7 I.7 I.7 I.7	358.5 357.2 356.0 354.7 353.5 352.3	2.4 2.4 2.4 2.4 2.4 2.4 2.4
51 00 10 20 30 40 50	92.7 185.4 278.1 370.8 463.6	58.5 58.3 58.1 57.9 57.6 57.4	I. I. I. I. I.	117.0 116.6 116.2 115.7 115.3 114.9	, , , , , ,	175.5 174.9 174.2 173.6 173.0 172.3	.6 .6 .6 .6	234.0 233.2 232.3 231.5 230.6 229.8	I,I I,I I,I I,I I,I	292.5 291.4 290.4 289.4 288.2 287.2	1.7 1.6 1.6 1.6 1.6	351.0 349.7 348.5 347.2 345.9 344.6	2.4 2.4 2.4 2.4 2.4 2.4 2.4
52 00 10 20 30 40 50	92.7 185.4 278.2 370.9 463.6	57.2 57.0 56.8 56.6 56.4 56.2	I. I. I. I. I.	114.5 114.0 113.6 113.2 112.8		171.7 171.1 170.4 169.8 169.1 168.5	.6 .6 .6 .6 .6	228.9 228.1 227.2 226.4 225.5 224.6	I.0 I.0 I.0 I.0 I.0	286.2 285.1 284.0 283.0 281.9 280.8	1.6 1.6 1.6 1.6 1.6	343.4 342.1 340.8 339.5 338.3 337.0	2.4 2.4 2.4 2.3 2.3 2.3
53 00 10 20 30 40 50	92.7 185.5 278.2 371.0 463.7	56.0 55.7 55.5 55.3 55.1 54.9	I. I. I. I. I.	111.9 111.5 111.0 110.6 110.2 109.7		167.9 167.2 166.6 165.9 165.2 164.6	.6 .6 .6 .6 .6	223.8 222.9 222.1 221.2 220.3 219.5	I.0 I.0 I.0 I.0 I.0	279.8 278.6 277.6 276.5 275.4 274.4	1.6 1.6 1.6 1.6 1.6	335·7 334·4 333.1 331.8 330.5 329.2	2.3 2.3 2.3 2.3 2.3 2.3
54 00 10 20 30 40 50	92.8 185.5 278.3 371.0 463.8	54.6 54.4 54.2 54.0 53.8 53.6	I. I. I. I. I.	109.3 108.9 108.4 108.0 107.5	အဲ့အဲ့အဲ့အဲ့	164.0 163.3 162.6 162.0 161.3 160.6	.6 .6 .6 .6	218.6 217.7 216.8 216.0 215.1 214.2	I.0 I.0 I.0 I.0 I.0	273.2 272.1 271.0 269.9 268.8 267.7	1.6 1.6 1.6 1.6 1.6	327.9 326.6 325.3 323.9 322.6 321.3	2.3 2.3 2.3 2.3 2.3 2.3
55 00 10 20 30 40 50	92.8 185.5 278.3 371.1 463.8	53·3 53·1 52·9 52·7 52·4 52·2	I. I. I. I. I.	106.7 106.2 105.8 105.3 104.9 104.4	သက္ခဲ့တဲ့တဲ့ သ	160.0 159.3 158.7 158.0 157.3 156.7	.6 .6 .6 .6	213.3 212.4 211.6 210.7 209.8 208.9	I.0 I.0 I.0 I.0 I.0	266.6 265.6 264.4 263.4 262.2 261.1	1.6 1.6 1.6 1.6 1.6		2.3 2.3 2.3 2.3 2.3 2.3
56 00		52.0	ı.	104.0	.2	156.0	.6	208.0	1.0	260.0	1.6	312.0	2.3

			ço	-ORDII	NATI	s of	DEVI	ELOPE	D PA	RALLE	EL F)R —	
ude of illel.	Meridional distances from even degree parallels.	to' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	zº long	ritude.
Latitude o	Merio tanc ever para	x	у	x	у	x	у	×	у	x	y	x	у
56°00′ 10 20 30 40	92.8 185.6 278.4 371.2	mm. 52.0 51.8 51.6 51.3 51.1	mmI .I .I .I .I	mm. 104.0 103.6 103.1 102.6 102.2	mm2 .2 .2 .2 .2 .2	mm. 156.0 155.3 154.6 154.0 153.3	mm. .6 .6 .6 .6	mm. 208.0 207.1 206.2 205.3 204.4	mm. I.O I.O I.O I.O	mm. 260.0 258.9 257.8 256.6 255.5	mm. 1.6 1.6 1.6 1.6	mm. 312.0 310.7 309.3 307.9 306.6	mm. 2.3 2.3 2.2 2.2 2.2
57 00 10 20 30 40 50	92.8 185.6 278.4 371.2 464.0	50.9 50.6 50.4 50.2 50.0 49.7 49.5	.I .I .I .I .I	101.8 100.8 100.4 99.9 99.5 99.0	.2 .2 .2 .2 .2 .2 .2	152.6 152.0 151.3 150.6 149.9 149.2 148.5	.6 .6 .6 .6 .5	203.5 202.6 201.7 200.8 199.8 199.0 198.0	I.0 I.0 I.0 I.0 I.0	254.4 253.2 252.1 251.0 249.8 248.7 247.6	1.5 1.5 1.5 1.5 1.5	305.3 303.9 302.5 301.1 299.8 298.4 297.1	2.2 2.2 2.2 2.2 2.2 2.2 2.2
58 00 10 20 30 40 50	92.8 185.6 278.5 371.3 464.1	49.3 49.0 48.8 48.6 48.4 48.1	.I .I .I .I	98.6 98.1 97.6 97.2 96.7 96.3	.2 .2 .2 .2 .2	147.8 147.2 146.5 145.8 145.1 144.4	•5•5•5•5	197.1 196.2 195.3 194.4 193.4	I.0 I.0 I.0 I.0 I.0	246.4 245.2 244.1 243.0 241.8 240.6	1.5 1.5 1.5 1.5 1.5	295.7 294.3 292.9 291.5 290.2 288.8	2.2 2.2 2.2 2.2 2.2 2.2 2.1
59 00 10 20 30 40 50	92.8 185.7 278.5 371.3 464.2	47.9 47.7 47.4 47.2 47.0 46.7	I. I. I. I. I. I. I. I. I.	95.8 95.3 94.9 94.4 93.9 93.5	.2 .2 .2 .2 .2	143.7 143.0 142.3 141.6 140.9 140.2	·5.5.5.5.5.5	191.6 190.7 189.7 188.8 187.9 186.9	1.0 1.0 1.0 1.0	239.5 238.4 237.2 236.0 234.8 233.6	1.5 1.5 1.5 1.5 1.5	287.4 286.0 284.6 283.2 281.8 280.4	2.I 2.I 2.I 2.I 2.I 2.I 2.I
60 00 10 20 30 40 50	92.8 185.7 278.6 371.4 464.2	46.5 46.3 46.0 45.8 45.6 45.3	I. I. I. I. I.	93.0 92.5 92.1 91.6 91.1 90.6	.2 .2 .2 .2 .2 .2	139.5 138.8 138.1 137.4 136.7 136.0	·5 ·5 ·5 ·5 ·5	186.0 185.0 184.1 183.2 182.2 181.3	99999	232.5 231.3 230.2 229.0 227.8 226.6	1.5 1.4 1.4 1.4 1.4	279.0 277.6 276.2 274.8 273.4 271.9	2.I 2.I 2.I 2.I 2.I 2.I 2.I
61 00 10 20 30 40 50	92.9 185.7 278.6 371.4 464.3	45.1 44.8 44.6 44.4 44.1 43.9	I. I. I. I. I.	90.2 89.7 89.2 88.8 88.3 87.8	.2 .2 .2 .2 .2	135.3 134.6 133.9 133.1 132.4 131.7	·5 ·5 ·5 ·5 ·5	180.4 179.4 178.5 177.5 176.6 175.6	9 9 9 9 9	225.4 224.2 223.1 221.9 220.7 219.6	1.4 1.4 1.4 1.4 1.4	270.5 269.1 267.7 266.3 264.8 263.5	2.I 2.I 2.I 2.0 2.0 2.0
62 00 10 20 30 40 50	92.9 185.7 278.6 371.5 464.4	43.7 43.4 43.2 43.0 42.7 42.5	I. I. I. I. I.	87.3 86.9 86.4 85.9 85.4 84.9	.2 .2 .2 .2 .2	131.0 130.3 129.6 128.8 128.1 127.4	·5 ·5 ·5 ·5	174.7 173.7 172.8 171.8 170.8 169.9	.9	218.4 217.2 216.0 214.8 213.6 212.4	1.4 1.4 1.4 1.4 1.4	262.0 260.6 259.1 257.7 256.3 254.8	2.0 2.0 2.0 2.0 2.0 2.0
63 00 10 20 30 40 50	92.9 185.8 278.7 371.6 464.4	42.2 42.0 41.7 41.5 41.3 41.0	.I .I .I .I .I	84.5 84.0 83.5 83.0 82.5 82.0	.2 .2 .2 .2 .2	126.7 126.0 125.2 124.5 123.8 123.1	•5 •5 •5 •5	168.9 168.0 167.0 166.0 165.0 164.1	.9	211.2 210.0 208.8 207.5 206.3 205.1	1.4 1.4 1.3 1.3	253.4 251.9 250.5 249.0 247.6 246.1	2.0 2.0 2.0 1.9 1.9
64 00		40.8	ı.	81.6	.2	122.3	•5	163.1	.9	203.9	1.3	244.7	1.9

	J.		CO	-ORDI	NAT	ES OF	DEV	ELOPE	D PA	RALLE	EL FO	OR —	
Latitude of parallel.	Meridional distances from even degree parallels.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º long	gitude.
Lati	Mer tan eve par	x	у	x	у	x	у	x	У	x	у	x	У
64°00′	mm.	mm. 40.8	mm.	mm. 81.6	mm.	mm. 122.3	<i>mm</i> . ∙5	mm. 163.1	mm.	mm. 203.9	mm.	mm. 244.7	mm.
10 20 30 40 50	92.9 185.8 278.7 371.6 464.5	40.5 40.3 40.0 39.8 39.6	.I .I .I .I	81.1 80.6 80.1 79.6 79.1	.2 .2 .2 .2	121.6 120.9 120.1 119.4 118.7	·5 ·5 ·5 ·5	162.2 161.2 160.2 159.2 158.2	988888	202.7 201.4 200.2 199.0 197.8	1.3 1.3 1.3 1.3	243.2 241.7 240.2 238.8 237.4	1.9 1.9 1.9 1.9
65 00 10 20 30 40 50	92.9 185.8 278.7 371.6 464.6	39.3 39.1 38.8 38.6 38.3 38.1	I. I. I. I. I. I. I. I.	78.6 78.1 77.6 77.2 76.7 76.2	.2 .2 .2 .2 .2	117.9 117.2 116.5 115.7 115.0 114.2	·5 ·5 ·5 ·5 ·5 ·5	157.2 156.2 155.3 154.3 153.3 152.3	.8 .8 .8 .8	196.6 195.3 194.1 192.9 191.6 190.4	1.3 1.3 1.3 1.3 1.3	235.9 234.4 232.9 231.5 230.0 228.5	1.9 1.8 1.8 1.8
66 00 10 20 30 40 50	92.9 185.9 278.8 371.7 464.6	37.8 37.6 37.3 37.1 36.8 36.6	.i .o .o .o	75.7 75.2 74.7 74.2 73.7 73.2	.2 .2 .2 .2 .2	113.5 112.8 112.0 111.3 110.6 109.8	·5 ·4 ·4 ·4 ·4 ·4	151.4 150.4 149.4 148.4 147.4 146.4	.8 .8 .8 .8	189.2 188.0 186.7 185.4 184.2 183.0	1.3 1.3 1.2 1.2 1.2	227.0 225.5 224.0 222.5 221.1 219.6	1.8 1.8 1.8 1.8 1.8
67 00 10 20 30 40 50	92.9 185.9 278.8 371.8 464.7	36.4 36.1 35.8 35.6 35.4 35.1	000000	72.7 72.2 71.7 71.2 70.7 70.2	.2 .2 .2 .2 .2	109.0 108.3 107.6 106.8 106.0	·4 ·4 ·4 ·4 ·4	145.4 144.4 143.4 142.4 141.4	.8 .8 .8 .8 .8	181.8 180.5 179.2 178.0 176.8 175.5	I.2 I.2 I.2 I.2 I.2 I.2	218.1 216.6 215.1 213.6 212.1 210.6	1.8 1.7 1.7 1.7 1.7
68 00 10 20 30 40 50	93.0 185.9 278.8 371.8 464.8	34.8 34.6 34.4 34.1 33.8 33.6	.0 .0 .0 .0 .0	69.7 69.2 68.7 68.2 67.7 67.2	.2 .2 .2 .2 .2	104.6 103.8 103.0 102.3 101.5 100.8	·4 ·4 ·4 ·4 ·4 ·4	139.4 138.4 137.4 136.4 135.4	.8 .7 .7 .7 .7	174.2 173.0 171.8 170.4 169.2 168.0	I.2 I.2 I.2 I.I I.I	209.1 207.6 206.1 204.5 203.0 201.5	1.7 1.7 1.7 1.7 1.7
69 00 10 20 30 40 50	93.0 185.9 278.9 371.8 464.8	33·3 33·1 32·8 32·6 32·3 32·1	0 0 0 0 0	66.7 66.2 65.7 65.2 64.7 64.1	.2 .2 .2 .2 .2 .2	99.3 98.5 97.7 97.0 96.2	·4 ·4 ·4 ·4 ·4	133.4 132.4 131.3 130.3 129.3 128.3	·7 ·7 ·7 ·7 ·7	166.7 165.4 164.2 162.9 161.6 160.4	I.I I.I I.I I.I I.I	200.0 198.5 197.0 195.5 194.0 192.4	1.6 1.6 1.6 1.6 1.6
70 00 10 20 30 40 50	93.0 185.9 278.9 371.9 464.9	31.8 31.6 31.3 31.1 30.8 30.5	.0 .0 .0 .0 .0 .0	63.6 63.1 62.6 62.1 61.6 61.1	.2 .2 .2 .2 .2	95·5 94·7 93·9 93·2 92·4 91·6	•4 •4 •4 •4 •4	127.3 126.2 125.2 124.2 123.2 122.2	·7 ·7 ·7 ·7 ·7	1 59.1 1 57.8 1 56.6 1 55.3 1 54.0 1 52.7	1.1 1.1 1.1 1.1 1.1	190.9 189.4 187.9 186.4 184.8 183.2	1.6 1.6 1.5 1.5
71 00 10 20 30 40 50	93.0 186.0 278.9 371.9 464.9	30.3 30.0 29.8 29.5 29.3 29.0	.0 .0 .0 .0 .0 .0	60.6 60.1 59.6 59.0 58.5 58.0	.2 .2 .2 .2 .2 .2	90.9 90.1 89.3 88.6 87.8 87.1	·4 ·4 ·4 ·4 ·4 ·4	121.2 120.2 119.1 118.1 117.1 116.1	·7 ·7 ·7 ·7 ·6 ·6	151.4 150.2 148.9 147.6 146.4 145.1	I.0 I.0 I.0 I.0	181.7 180.2 178.7 177.1 175.6 174.1	I.5 I.5 I.5 I.5 I.5
72 00		28.8	.0	57.5	.2	86.3	•4	115.0	.6	143.8	1.0	172.6	1.4

i			_										
	dis-		CO	-ORDI	NATI	es of	DEV.	ELOPE	D PA	RALLI	EL F	OR —	
Latitude of parallel.	Meridional distances from even degree parallels.	10' long	ituđe.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	ro long	ritude.
Lati	Men tan eve pan	x	у	x	у	x	у	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
72°00′ 10 20 30 40 50	93.0 186.0 279.0 372.0 465.0	28.8 28.5 28.2 28.0 27.7 27.5	00000	57.5 57.0 56.5 56.0 55.5 54.9	.2 .2 .2 .2 .2	86.3 85.5 84.7 83.9 83.2 82.4	·4 ·4 ·3 ·3 ·3 ·3	115.0 114.0 113.0 111.9 110.9	.6 .6 .6 .6	143.8 142.5 141.2 139.9 138.6 137.4	I.0 I.0 I.0 I.0 I.0	172.6 171.0 169.4 167.9 166.4 164.8	1.4 1.4 1.4 1.4 1.4
73 00 10 20 30 40 50	93.0 186.0 279.0 372.0 465.0	27.2 27.0 26.7 26.4 26.2 25.9		54.4 53.9 53.4 52.9 52.3 51.8	.2 .1 .1 .1 .1	81.6 80.8 80.1 79.3 78.5 77.7	·3 ·3 ·3 ·3 ·3 ·3 ·3	108.8 107.8 106.8 105.7 104.7 103.6	.6 .6 .6 .6	136.0 134.8 133.4 132.2 130.8 129.6	999999	163.3 161.7 160.1 158.6 157.0	1.4 1.3 1.3 1.3
74 00 10 20 30 40 50	93.0 186.0 279.0 372.0 465.0	25.6 25.4 25.1 24.9 24.6 24.4	000000	51.3 50.8 50.3 49.7 49.2 48.7	I. I. I. I. I.	77.0 76.2 75.4 74.6 73.8 73.0	·3 ·3 ·3 ·3 ·3 ·3 ·3 ·3	102.6 101.6 100.5 99.5 98.4 97.4	.6 .6 .6 .6 .6	128.2 127.0 125.6 124.4 123.0 121.8	999999	153.9 152.3 150.8 149.2 147.7 146.1	I.3 I.3 I.3 I.3 I.2 I.2
75 00 10 20 30 40 50	93.0 186.0 279.1 372.1 465.1	24.I 23.8 23.6 23.3 23.0 22.8	000000	48.2 47.7 47.1 46.6 46.1 45.5	I. I. I. I. I.	72.3 71.5 70.7 69.9 69.1 68.3	·3 ·3 ·3 ·3 ·3 ·3 ·3	96.4 95.3 94.2 93.2 92.2 91.1	.5 .5 .5 .5	120.4 119.2 117.8 116.5 115.2 113.8	.8 .8 .8 .8 .8 .8	144.5 143.0 141.4 139.8 138.2 136.6	I.2 I.2 I.2 I.2 I.2 I.1
76 00 10 20 30 40 50	93.0 186.1 279.1 372.1 465.1	22.5 22.2 22.0 21.7 21.5 21.2	000000	45.0 44.5 44.0 43.4 42.9 42.4	.I .I .I .I .I	67.5 66.8 65.9 65.2 64.4 63.6	·3 ·3 ·3 ·3 ·3 ·3 ·3	90.0 89.0 87.9 86.9 85.8 84.8	.5.5.5.5.5	112.6 111.2 109.9 108.6 107.3 106.0	.8 .8 .8 .8 .8 .7	135.1 133.5 131.9 130.3 128.8 127.1	I.I I.I I.I I.I I.I
77 00 10 20 30 40 50	93.0 186.1 279.1 372.2 465.2	20.9 20.7 20.4 20.1 19.9 19.6	000000	41.9 41.3 40.8 40.3 39.8 39.2	.I. .I. .I. .I.	62.8 62.0 61.2 60.4 59.6 58.8	·3 ·3 ·3 ·3 ·3 ·3	83.7 82.7 81.6 80.6 79.5 78.4	.5 .5 .5 .4 .4	104.6 103.4 102.0 100.7 99.4 98.0	·7 ·7 ·7 ·7 ·7	125.6 124.0 122.4 120.8 119.3 117.7	I.I I.I I.O I.O I.O
78 00 10 20 30 40 50	93.0 186.1 279.1 372.2 465.2	19.4 19.1 18.8 18.6 18.3 18.0	000000	38.7 38.2 37.6 37.1 36.6 36.0	I. I. I. I. I.	58.0 57.2 56.5 55.7 54.9 54.1	.2 .2 .2 .2 .2	77.4 76.3 75.3 74.2 73.2 72.1	.4 .4 .4 .4 .4	96.8 95.4 94.1 92.8 91.4 90.1	·7 ·7 ·7 ·7 ·6 .6	116.1 114.5 112.9 111.4 109.7 108.1	1.0 1.0 1.0 1.0 9
79 00 10 20 30 40 50	93.0 186.1 279.2 372.2 465.2	17.8 17.5 17.2 17.0 16.7 16.4	0000000	35.5 35.0 34.5 33.9 33.4 32.9	I. I. I. I. I.	53·3 52·5 51·7 50·9 50·1 49·3	.2 .2 .2 .2 .2 .2	71.0 70.0 68.9 67.8 66.8 65.7	.4 .4 .4 .4 .4	88.8 87.4 86.2 84.8 83.4 82.2	.6 .6 .6 .6	106.6 104.9 103.4 101.8 100.1 98.6	99998
80 00		16.2	0	32.3	ı,	48.5	.2	64.6	•4	80.8	.6	97.0	.8

	dis-	АВ	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	IO' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	1	EDINAT DEVELO PARALI	PED
0°00′ 10	mm.	<i>mm</i> . 116.0	mm. 231.9 231.9	mm. 347·9 347·9	<i>mm</i> . 463.8 463.8	mm. 579.8 579.8	mm. 695.8 695.8	Longitude interval.	o°	10
20 30 40 50	460.7 691.0 921.4 1151.8	116.0 116.0 116.0 115.9	231.9 231.9 231.9 231.9	347.8 347.8 347.8 347.8	463.8 463.8 463.8 463.8	579.8 579.8 579.8 579.7	695.7 695.7 695.7 695.6	5'	mm. 0.0 0.0	<i>mm</i> . 0.0 0.0 0.0
1 00 10 20 30 40 50	230.4 460.7 691.0 921.4 1151.8	115.9 115.9 115.9 115.9 115.9	231.9 231.9 231.8 231.8 231.8 231.8	347.8 347.8 347.8 347.7 347.7 347.7	463.8 463.7 463.7 463.6 463.6 463.6	579.7 579.6 579.6 579.6 579.6 579.5	695.6 695.5 695.5 695.5 695.4	25 30	0.0 0.0 0.0	0.0
2 00		115.9	231.8	347.7	463.6	579-4	695.3		20	30
10 20 30 40 50	230.4 460.7 691.0 921.4 1151.8	115.9 115.9 115.8 115.8 115.8	231.8 231.7 231.7 231.7 231.6	347.6 347.6 347.5 347.5 347.5	463.5 463.4 463.4 463.3 463.3	579.4 579.3 579.2 579.2 579.1	695.3 695.2 695.0 695.0 694.9	5 10 15 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1
3 00 10 20 30	230.4 460.7 691.1	115.8 115.8 115.8 115.7	231.6 231.6 231.5 231.5	347·4 347·3 347·3 347·2	463.2 463.1 463.0 463.0	579.0 578.9 578.8 578.7	694.8 694.7 694.6 694.4	30	0.1	0.1
40 50	921.4	115.7	231.4 231.4	347.2 347.1	462.9 462.8	578.6 578.5	694.3 694.2		4°	5°
4 00 10 20 30 40 50	230.4 460.7 691.1 921.4 1151.8	115.7 115.7 115.6 115.6 115.6 115.6	231.4 231.3 231.3 231.2 231.1 231.1	347.0 347.0 346.9 346.8 346.7 346.6	462.7 462.6 462.5 462.4 462.3 462.2	578.4 578.2 578.2 578.0 577.8 577.8	694.1 693.9 693.8 693.6 693.4 693.3	5 10 15 20 25 30	0.0 0.0 0.1 0.1 0.1	0.0 0.0 0.1 0.1 0.2 0.3
5 00 10 20	230.4 460.7	115.5 115.5 115.5	231.0 231.0 230.9	346.6 346.5 346.4	462.1 462.0 461.8	577.6 577.4 577.3	693.1 692.9 692.8		6°	70
30 40 50	691.1 921.5 1151.8	115.4 115.4 115.4	230.8 230.8 230.7	346.3 346.2 346.1	461.7 461.6 461.4	577.1 577.0 576.8	692.5 692.3 692.2		0.0	0.0
6 00 10 20 30 40 50	230.4 460.8 691.1 921.5 1151.9	115.3 115.3 115.2 115.2 115.2 115.1	230.7 230.6 230.5 230.4 230.4 230.3	346.0 345.9 345.8 345.7 345.5 345.4	461.3 461.2 461.0 460.9 460.7 460.6	576.6 576.4 576.2 576.1 575.9 575.7	692.0 691.7 691.5 691.3 691.1 690.8	10 15 20 25 30	0.0 0.1 0.1 0.2 0.3	0.0 0.1 0.2 0.3 0.4
7 00	230.4	115.1	230,2 230.1	345·3 345·2	460.4 460.2	575-5	690.6 690.4		80	
20 30 40 50	460.8 691.1 921.5 1151.9	115.0 115.0 114.9 114.9	230.0 229.9 229.9 229.8	345.2 345.0 344.9 344.8 344.6	460.0 459.9 459.7 459.5	575.3 575.0 574.8 574.6 574.4	690.1 689.8 689.6 689.3	5 10 15 20	0.0 0.0 0.1 0.2	
8 00		114.8	229.7	344-5	459-4	574.2	689.0	²⁵ 30	0.3	

-	1 dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO ARALL	PED
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	tude val.		
8°00′ 10 20	230.4 460.8	114.8 114.8 114.7	229.7 229.6 229.5	344·5 344·4	459.4 459.2	574.2 574.0	689.0 688.7 688.4	Longitude interval.	8°	9°
30 40 50	691.2 921.6 1152.0	114.7 114.6 114.6	229.4 229.3 229.2	344.2 344.1 343.9 343.8	459.0 458.8 458.6 458.4	573.7 573.4 573.2 573.0	688.1 687.8 687.5	5'	<i>mm</i> .	mm. 0.0 0.1
9 00 10 20 30 40 50	230.4 460.8 691.2 921.6 1152.0	114.5 114.5 114.4 114.4 114.3	229.1 229.0 228.9 228.7 228.6 228.5	343.6 343.4 343.3 343.1 343.0 342.8	458.2 457.9 457.7 457.5 457.3 457.0	572.7 572.4 572.2 571.8 571.6 571.3	687.2 686.9 686.6 686.2 685.9 685.6	15 20 25 30	0.I 0.2 0.3 0.4	0.1 0.2 0.3 0.5
10 00		114.2	228.4	342.6	456.8	571.0	685.3		100	110
20 30 40 50	230.4 460.8 691.3 921.7 1152.1	114.2 114.1 114.0 114.0 113.9	228.3 228.2 228.0 227.9 227.8	342.4 342.3 342.1 341.9 341.7	456.6 456.4 456.1 455.8 455.6	570.8 570.4 570.1 569.8 569.5	684.9 684.5 684.1 683.8 683.4	5 10 15 20	0.0 0.1 0.1 0.2	0.0 0.1 0.1 0.2
11 00 10 20 30	230.4 460.9 691.3	113.8 113.8 113.7 113.6	227.7 227.5 227.4 227.3	341.5 341.3 341.1 340.9	455.4 455.1 454.8 454.6	569.2 568.8 568.6 568.2	683.0 682.6 682.3 681.8	25 30	0.4	0.4 0.6
40 50	921.8	113.6 113.5	227.I 227.0	340.7 340.5	454-3 454-0	567.8 567.6	681.4 681.1		120	13°
12 00 10 20 30 40 50	230.4 460.9 691.2 921.8 1152.2	113.4 113.4 113.3 113.2 113.2	226.9 226.7 226.6 226.4 226.3 226.2	340.3 340.1 339.9 339.7 339.4 339.2	453.8 453.5 453.2 452.9 452.6 452.3	567.2 566.8 566.5 566.1 565.8 565.4	680.6 680.2 679.8 679.3 678.9 678.5	5 10 15 20 25 30	0.0 0.1 0.2 0.3 0.4 0.6	0.0 0.1 0.2 0.3 0.5
13 00 10 20	230.5 460.9	113.0 112.9 112.8	226.0 225.9 225.7	339.0 338.8 338.6	452.0 451.7 451.4	565.0 564.6 564.2	678.1 677.6 677.1		14°	15°
30 40 50	691.4 921.9 1152.4	112.8 112.7 112.6	225.6 225.4 225.2	338.3 338.1 337.9	451.1 450.8 450.5	563.9 563.5 563.1	676.7 676.2 675.7	5	0.0	0.0
14 00 10 20 30 40	230.5 461.0 691.5 922.0	112.5 112.5 112.4 112.3 112.2	225.1 224.9 224.7 224.6 224.4	337.6 337.4 337.1 336.8 336.6	450.2 449.8 449.5 449.1 448.8	562.7 562.3 561.8 561.4 561.0	675.2 674.8 674.2 673.7 673.2	15 20 25 30	0.2 0.3 0.5 0.7	0.2 0.3 0.5 0.8
15 00	1152.4	112.1	224.2 224.1	336.4 336.1	448.5 448.1	560.6 560.2	672.7		160	
10 20 30 40 50	230.5 461.0 691.5 922.0 1152.6	111.9 111.8 111.8 111.7 111.6	223.9 223.7 223.5 223.3 223.2	335.8 335.6 335.3 335.0 334.7	447.8 447.4 447.0 446.7 446.3	559.7 559.2 558.8 558.4 557.9	671.6 671.1 670.6 670.0 669.5	5 10 15 20	0.0 0.1 0.2 0.4	
16 00		111.5	223.0	334-5	446.0	557-4	668.9	²⁵ 30	o.6 o.8	

TABLE 24.

jo	ll dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude o	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	EDINAT DEVELO PARALI	PED
769aa'	mm.	mm.	mm.	mm.	mm.	mm.	mm. 668.9	Longitude interval.	16°	17°
16°00′ 10 20	230.5 461.1	111.5	223.0 222.8 222.6	334·5 334·2 333·9	446.0 445.6 445.2	557.4 557.0 556.5	668.3 667.8	Lon		
30 40 50	691.6 922.1 1152.6	111.2 111.1 111.0	222.4 222.2 222.0	333.6 333.3 333.1	444.8 444.4 444.1	556.0 555.6 555.1	667.2 666.7 666.1	5' 10	mm. 0.0 0.1	mm. 0.0 0.1
17 00 10 20 30 40	230.6 461.1 691.6 922.2	110.9 110.8 110.7 110.6 110.5	221.8 221.6 221.4 221.2 221.0 220.8	332.8 332.5 332.2 331.9 331.6	443.7 443.3 442.9 442.5 442.1	554.6 554.1 553.6 553.1 552.6	665.5 664.9 664.3 663.7 663.1 662.5	25 30	0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8
50 18 00	1152.8	110.4	220.6	331.3	441.7	552.1 551.6	661.9		18°	19°
10 20 30 40 50	230.6 461.1 691.7 922.3 1152.8	110.2 110.1 110.0 109.9 109.8	220.4 220.2 220.0 219.8 219.6	330.6 330.3 330.0 329.7 329.4	440.8 440.4 440.0 439.6 439.2	551.0 550.6 550.0 549.4 549. 0	661.3 660.7 660.0 659.3 658.7	5 10 15 20	0.0 0.1 0.2 0.4	0.0 0.1 0.2 0.4
19 00 10 20 30	230.6 461.2 691.8	109.7 109.6 109.5 109.4	219.4 219.1 218.9 218.7	329.0 328.7 328.4 328.0	43 ⁸ ·7 43 ⁸ ·3 437·8 437·4	548.4 547.8 547.3 546.8	658.1 657.4 656.8 656.1	25 30	0. 6 0. 9	0.6 0.9
40 5 0	9 ² 2.4 1153.0	109.2	218.5 218.2	3 ² 7·7 3 ² 7·4	436.9 436. 5	546.1 545.6	655.4 654.7		200	210
20 00 10 20 30 40 50	230.6 461.2 691.9 922.5 1153.1	109.0 108.9 108.8 108.7 108.5 108.4	218.0 217.8 217.5 217.3 217.1 216.8	327.0 326.7 326.3 326.0 325.6 325.3	436.0 435.6 435.1 434.6 434.2 433.7	545.0 544.4 543.8 543.3 542.7 542.1	654.1 653.3 652.6 652.0 651.2 650.5	5 10 15 20 25 30	0.0 0.1 0.2 0.4 0.7 1.0	0.0 0.1 0.3 0.5 0.7 1.0
21 00 10 20 30	230.6 461.3 692.0	108.3 108.2 108.1 107.9	216.6 216.4 216.1 215.9	324.9 324.5 324.2 323.8	433.2 432.7 432.2 431.7	541.5 540.9 540.3 539.6	649.8 649.1 648.4 647.6		220	23°
40 50	922.6 1153.2	107.8 107.7	215.6 215.4	323.4 323.1	431.2 430.8	539.0 538.4	646.9 646.1	5	0.0	0.0
22 00 10 20 30 40	230.7 461.4 692.0 922.7	107.6 107.4 107.3 107.2	215.1 214.9 214.6 214.4 214.1	322.7 322.3 321.9 321.6 321.2	430.3 429.8 429.2 428.8 428.2	537.8 537.2 536.6 536.0 535.3	645.4 644.6 643.9 643.1 642.4	20 25 30	0.3 0.5 0.7 1.1	0.3 0.5 0.8 1.1
23 00	1153.4	106.9	213.9	320.8 320.4	427.7 427.2	534.6	641.6		24°	
10 20 30 40 50	230.7 461.4 692.1 922.8 1153.6	106.7 106.5 106.4 106.3 106.1	213.3 213.1 212.8 212.5 212.3	320.0 319.6 319.2 318.8 318.4	426.6 426.1 425.6 425.0 424.5	533·3 532·6 532·0 531·3 530·6	640.0 639.2 638.4 637.6 636.8	5 10 15 20	0.0 0.1 0.3 0.5	
24 00		106.0	212.0	318.0	424.0	530.0	636.0	25 30	0.8 1.1	

75	om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	OD	DINAT	TC OB
Latitude of parallel.	Meridional directions tances from even degree parallels.	5' longitude.	IO' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DINAT EVELO PARALI	PED
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	ude /al.		
24 ⁰ 00′	230.7	106.0	212.0 211.7	318.0 317.6	424.0 423.4	530.0 529.3	636.0 635.2	Longitude interval.	24°	25°
20 30 40 50	461.5 692.2 923.0 1153.7	105.7 105.6 105.4 105.3	211.4 211.2 210.9 210.6	317.2 316.7 316.3 315.9	422.9 422.3 421.8 421.2	528.6 527.9 527.2 526.5	634.3 633.5 632.6 631.8	5′	mm. 0.0 0.1	mm. 0.0 0.1
25 00 10 20 30 40	230.8 461.5 692.3 923.1	105.2 105.0 104.9 104.7 104.6	210.3 210.0 209.7 209.4 209.2	315.5 315.0 314.6 314.2 313.7	420.6 420.0 419.5 418.9 418.3	525.8 525.0 524.4 523.6 522.9	631.0 630.1 629.2 628.3 627.5	25 30	0.3 0.5 0.8 1.1	0.3 0.5 0.8 1.2
50	1153.8	104.4	208.9	313.3	417.7	522.2	626.6		26°	27°
26 00 10 20 30 40 50	230.8 461.6 692.4 923.2 1154.0	104.3 104.1 104.0 103.8 103.7 103.5	208.6 208.3 208.0 207.7 207.4 207.1	312.4 312.4 312.0 311.5 311.1 310.6	417.2 416.6 416.0 415.4 414.8 414.2	521.4 520.7 520.0 519.2 518.4 517.7	625.7 624.8 623.9 623.0 622.1 621.2	5 10 15 20	0.0 0.1 0.3 0.5	0.0 0.1 0.3 0.5 0.8
27 00 10 20 30	230.8 461.7 692.5	103.4 103.2 103.1 102.9	206.8 206.5 206.2 205.8	310.2 309.7 309.2 308.8	413.6 413.0 412.3 411.7	517.0 516.2 515.4 514.6	620.3 619.4 618.5 617.5	30	1.2	1.2
40 50	923.3 1154.2	102.8	205.5	308.3 307.9	411.1 410.5	513.8 513.1	616.6 615.7		280	290
28 00 10 20 30 40 50	230.9 461.7 692.6 923.5 1154.4	102.5 102.3 102.1 102.0 101.8	204.9 204.6 204.3 204.0 203.6	307.4 306.9 306.4 305.9 305.5 305.0	409.8 409.2 408.6 407.9 407.3 406.6	512.3 511.5 510.7 509.9 509.1 508.3	614.8 613.8 612.8 611.9 610.9	5 10 15 20 25 30	0.0 0.1 0.3 0.6 0.9	0.0 0.1 0.3 0.6 0.9
29 00 10 20	230.9 461.8 692.7	101.5 101.3 101.2	203.0 202.7 202.3	304.5 304.0 303.5	406.0 405.4 404.7	507.5 506.7 505.8	609.0 608.0 607.0 606.0		300	310
30 40 50	923.6 1154.5	100.8	202.0 201.7 201.4	303.0 302.5 302.0	404.0 403.4 402.7	505.0 504.2 503.4	605.0 604.1	5	0.0	0.0
30 00 10 20 30 40	230.9 461.9 692.8 923.8	100.5 100.3 100.2 100.0 99.8	201.0 200.7 200.3 200.0 199.6	301.5 301.0 300.5 300.0 299.5	402.0 401.4 400.7 400.0 399.3 398.6	502.6 501.7 500.8 500.0 499.1	603.1 602.0 601.0 599.9 598.9	25 30	0.3 0.6 0.9 1.3	0.3 0.6 0.9 1.3
31 00	1154.7	99.6 99.5	199.3	299.0	398.6	498.2 497.4	597.9 596.9		32°	
10 20 30 40 50	231.0 461.9 692.9 923.9 1154.8	99.3 99.1 99.0 98.8 98.6	198.6 198.3 197.9 197.6 197.2	297.9 297.4 296.9 296.3 295.8	397.2 396.5 395.8 395.1 394.4	496.5 495.6 494.8 493.9 493.0	595.8 594.8 593.8 592.7 591.6	5 10 15 20	0.0 0.2 0.3 0.6	
32 00		98.4	196.9	295.3	393.7	492.2	590.6	25 30	0.9	

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	D	DINAT EVELO ARALL	PED
32000		mm. 98.4	mm. 196.9	mm. 295.3	mm. 393·7	mm. 492.2	mm. 590.6	Longitude interval.	32°	33°
30 40	462.0 693.0 924.0	98.2 98.1 97.9 97.7	196.5 196.1 195.8 195.4	294.8 294.2 293.7 293.1	393.0 392.3 391.6 390.8	491.2 490.4 489.4 488.6 487.6	589.5 588.4 587.3 586.3 585.2	 5′	mm.	mm. 0.0
33 00 10 20 30 40	231.0 462.1 693.2 924.2	97·5 97·4 97·2 97·0 96.8 96.6	195.1 194.7 194.3 194.0 193.6 193.2	292.6 292.1 291.5 290.9 290.4 289.8	390.1 389.4 388.6 387.9 387.2 386.4	486.8 485.8 484.9 484.0 483.0	584.1 583.0 581.9 580.8 579.7 578.5	10 15 20 25 30	0.2 0.3 0.6 0.9 1.4	0.2 0.3 0.6 1.0 1.4
34 00		96.4	192.8	289.3 288.7	3 ⁸ 5.7 385.0	482.1	577.4		34°	35°
30 40 50	231.1 462.2 693.2 924.3	96.0 95.9 95.7 95.5 95.3	192.1 191.7 191.3 190.9 190.6	288.2 287.6 287.0 286.4 285.8	384.2 383.4 382.6 381.9 381.1	480.2 479.3 478.3 477.4 476.4	576.3 575.2 574.0 572.8 571.7	5 10 15 20	0.0 0.2 0.4 0.6	0.0 0.2 0.4 0.6
35 00 10 20 30	231.1	95.1 94.9 94.7 94.5	190.2 189.8 189.4 189.0	285.3 284.7 284.1 283.5	380.4 379.6 378.8 378.0	475·4 474·5 473·5 472·5	570.5 569.4 568.2 567.0	25 30	1.0	1.0
40 50	924.5	94.3 94.1	188.6 188.2	282.9 282.4	377.2 376.5	471.6 470.6	565.9 564.7		36°	37°
36 00 10 20 30 40	231.2 462.3 693.5 924.6	93·9 93·7 93·5 93·3 93·1 92·9	187.8 187.4 187.0 186.6 186.2 185.8	281.8 281.2 280.6 280.0 279.4 278.8	375.7 374.9 374.1 373.3 372.5 371.7	469.6 468.6 467.6 466.6 465.6 464.6	563.5 562.3 561.1 559.9 558.7 557.5	5 10 15 20 25 30	0.0 0.2 0.4 0.6 1.0	0.0 0.2 0.4 0.6 1.0
37 00 10 20 30	231.2	92.7 92.5 92.3 92.1	185.4 185.0 184.6 184.2	278.2 277.6 276.9 276.3	370.9 370.1 369.2 368.4	463.6 462.6 461.6 460.5	556.3 555.1 553.9 552.6		38°	39°
40	924.8	91.9 91.7	183.8	27 5.7 27 5.1	367.6 366.8	459.5 458.5	551.4 550.2	5	0.0	0.0 0.2
38 00 20 30 40 50	231.2 462.5 6 693.7 925.0	91.5 91.3 91.1 90.9 90.7	183.0 182.6 182.1 181.7 181.3 180.9	274.5 273.8 273.2 272.6 272.0 271.4	366.0 365.1 364.3 363.5 362.6 361.8	457.4 456.4 455.4 454.4 453.3	548.9 547.7 546.4 545.2 544.0 542.7	25 30	0.4 0.7 1.0 1.5	0.4 0.7 1.0 1.5
39 0	s	90.2	180.5	270.7	361.0	452.2	541.4		40°	
30 40	925.1 925.1	90.0 89.8 89.6 89.4 89.2	180.1 179.6 179.2 178.8 178.3	270.1 269.4 268.8 268.2 267.5	360.1 359.2 358.4 357.6 356.7	450.2 449.0 448.0 447.0 445.8	540.2 538.9 537.6 536.3 535.0	5 10 15 20	0.0 0.2 0.4 0.7	
40 0		89.0	177.9	266.9	355.8	444.8	533.8	25 30	1.6	

ų.	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALLI	EL.	0.0	D13140	na on
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	D	DINAT DEVELO ARALL	PED
	mm.	mm.	mm.	mm.	mm.	mm:	mm.	tude val.		
40°00′ 10 20	231.3 462.6	89.0 88.7 88.5	177.9 177.5 177.0	266.9 266.2 265.6	355.8 355.0	444.8 443.7 442.6	533.8 532.4 531.1	Longitude interval.	40°	41°
30 40 50	694.0 925.3 1156.6	88.3 88.1 87.9	176.6 176.2 175.7	264.9 264.2 263.6	354.1 353.2 352.3 351.4	441.5 440.4 439.3	529.8 528.5 527.2	5	mm. 0.0 0.2	mm. 0.0 0.2
41 00 10 20 30 40	231.4 462.7 694.1 925.4	87.6 87.4 87.2 87.0 86.8 86.5	175.3 174.8 174.4 173.9	262.9 262.3 261.6 260.9 260.2	350.6 349.7 348.8 347.9 347.0	438.2 437.1 436.0 434.8 433.8	525.8 524.5 523.1 521.8 520.5	15 20 25 30	0.4 0.7 1.0 1.5	0.4 0.7 1.0 1.5
50 42 00	1156.8	86.3	173.0	259.6 258.9	346.1 345.2	432.6	519.1		420	43°
10 20 30 40 50	231.4 462.8 694.2 925.6 1157.0	86.1 85.8 85.6 85.4 85.2	172.1 171.7 171.2 170.8 170.3	258.2 257.6 256.9 256.2 255.5	344-3 343-4 342-5 341-6 340.7	430.4 429.2 428.1 427.0 425.8	516.4 515.1 513.7 512.3 511.0	5 10 15 20 25	0.0 0.2 0.4 0.7	0.0 0.2 0.4 0.7
43 00 10 20 30	231.4 462.9 694.3	84.9 84.7 84.5 84.2	169.9 169.4 169.0 168.5	254.8 254.1 253.4 252.8	339.8 338.8 337.9 337.0	424.7 423.6 422.4 421.2	509.6 508.3 506.9 505.5	30	1.5	1.5
40 50	925.8	84.0 83.8	168.0 167.6	252.0 251.3	336.0 335.1	420.0 418.9	504.1 502.7		44°	45°
44 00 10 20 30 40 50	231.5 463.0 694.4 925.9 1157.4	83.6 83.3 83.1 82.8 82.6 82.4	167.1 166.6 166.2 165.7 165.2 164.7	250.6 249.9 249.2 248.5 247.8 247.1	334.2 333.2 332.3 331.4 330.4 329.5	417.8 416.6 415.4 414.2 413.0 411.8	501.3 499.9 498.5 497.0 495.6 494.2	5 10 15 20 25 30	0.0 0.2 0.4 0.7 1.1 1.5	0.0 0.2 0.4 0.7 1.1
45 00 10 20	231.5 463.1	82.1 81.9 81.6 81.4	164.3 163.8 163.3 162.8	246.4 245.7 245.0	328.5 327.6 326.6	410.6 409.4 408.2	492.8 491.3 489.9 488.5		46°	47°
30 40 50	694.6 926.1 1157.6	81.2 80.9	162.3 161.9	244.2 243.5 242.8	325.6 324.7 323.7	407.0 405.8 404.6	487.0 485.6	5	0.0	0.0
46 00 10 20 30 40	231.6 463.1 694.7 926.3	80.7 80.4 80.2 80.0 79.7	161.4 160.9 160.4 159.9	242.1 241.4 240.6 239.9 239.2	322.8 321.8 320.8 319.8 318.9	403.4 402.2 401.0 399.8 398.6	484.1 482.7 481.2 479.8 478.3 476.8	20 25 30	0.4 0.7 1.1 1.5	0.4 0.7 1.1 1.5
50 47 00		79.5 79.2	158.5	238.4	317.9	397·4 396.2	476.8		48°	
70 20 30 40 50	231.6 463.2 694.8 926.4 1158.0	79.0 78.7 78.5 78.2 78.0	158.0 157.5 157.0 156.5 156.0	236.9 236.2 235.5 234.7 234.0	31 5.9 314.9 314.0 313.0 312.0	394-9 393.6 392-4 391.2 390.0	473.9 472.4 470.9 469.4 467.9	5 10 15 20	0.0 0.2 0.4 0.7	
48 00		77-7	155.5	233.2	311.0	388.7	466.4	25 30	1.0	

of	al dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	OR	DINAT	ES OF
Latitude o	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	I	EVEL(PARALI	PED
00 /	mm.	mm.	mm.	mm.	mm.	mm.	mm.	Longitude interval.	48°	49°
48°00′ 10	231.6	77·7 77·5	155.5	233.2	311.0	388.7 387.4	466.4 464.9	Lon		.,
20 30	463.3 695.0	77.2 77.0	154.5 154.0	231.7 230.9	308.9 307.9	386.2 384.9	463.4 461.9			mm.
40	926.6	76.7	153.5	230.2	306.9	383.6	460.4	5	0.0	0.0
50	1158.2	76.5	152.9	229.4	305.9	382.4	458.8	10	0.2	0.2
49 00		76.2	1 52.4	228.7	304.9	381.1	457-3	20	0.4 0.7	0.4
10 20	231.7 463.4	76.0	151.9 151.4	227.9 227.1	303.8	379.8 378.6	455.8 454.3	25	1.0	1.0
30	695.1	75·7 75·4	150.9	226.4	301.8	377.2	454.3	30	1.5	1.5
40	926.8	75.2	150.4	225.6 224.8	300.8	376.0	451.1			
50	1158.4	74.9	149.9	224.0	299.8	374.7	449.6		50°	210
50 00		74.7	149.4	224.0	298.7	373.4	448.1			٥
10 20	231.7 463.5	74·4 74·2	148.8	223.3	297.7 296.6	372.1 370.8	446.5 445.0	5	0.0	0.0
30	695.2	73.9	147.8	221.7	295.6	369.5	443.4	10	0.2	0.2
40 50	926.9 1158.6	73.6 73.4	147.3 146.8	220.9 220.1	294.6 293. 5	368. 2 366.9	441.8	15 20	0.4	0.4
_	1130.0							25	1.0	1.0
51 00	231.8	73.I 72.9	146.2	219.4 218.6	292.5 291.4	365.6 364.3	438.7 437.2	30	1.5	1.5.
20	463.5	72.6	145.2	217.8	290.4	363.0	435-5			
30	695.3	72.3	144.7	217.0 216.2	289.3 288.3	361.6	434.0		52°	400
40 50	927.1 11 5 8.8	72.1 71.8	144.1 143.6	215.4	287.2	360.4 3 5 9.0	432.4 430.8			53°
52 00		71.5	143.1	214.6	286,2	357.7	429.2	5	0.0	0.0
10	231.8	71.3	142.5	213.8	285.1	356.4	427.6	10	0.2	0.2
20 30	463.6 695.4	71.0	142.0	213.0	284.0 283.0	355.0	426. I 424.4	20	0.4 0.7	0.4
40	927.2	70.5	140.9	211.4	281.9	353·7 352·4	422.8	25	1.0	1.0
50	1159.0	70.2	140.4	210.6	280.8	351.0	421.3	30	1.5	1.5
53 00		69.9 69.7	139.9	209.8 209.0	279.8 278.7	349.7	419.6 418.0			
10 20	231.8 463.7	69.4	139.3	208.2	277.6	348.4	416.4		54°	55°
30 40	695.6	69.1	138.3	207.4 206.6	276.5	345.6	414.8	-		
50	927.4 11 5 9.2	68.6	137.7	205.7	27 5.4 274.3	344.2 342.9	413.1	5	0.0	0.0
54 00		68.3	136.6	204.9	273.2	341.6	409.9	15	0.4 0.6	0.4
10	231.9	68.0	136.1	204.1	272.2	340.2	408.2	20 25	1.0	1.0
20 30	463.8	67.8	135.5	203.3	271.0	338.8 337.4	406.6 404.9	30	1.4	1.4
40	927.6	67.2	134.4	201.6	268.8	336.0	403.3			
50	1159.4	66.9	133.9	200.8	267.8	334.7	401.6		56°	
55 00 10	231.9	66. ₇	133.3	199.1	266.6 265.5	333.3	400.0 398.3	-		
20	463.9	66.1	132.2	198.3	264.4	330.5	396.6	5	0.0	
30 40	695.8	65.8	131.7	197.5	263.3	329.2 327.8	395.0	10	0.2	
50	1159.6	65.3	130.5	195.8	261.1	326.4	391.6	20	0.6	
56 00		65.0	130.0	195.0	260.0	325.0	389.9	25 30	I.0 I.4	
J		-5,00	-30.0	- 33.3	250.0	J. J. J. J	3-3-9	"		

	di e e	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	r	DINAT DEVELO ARALL	PED
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	ude /al.		
56°00′ 10 20	232.0 463.9	65.0 64.7 64.4	130.0 129.4 128.9	195.0 194.1 193.3	260.0 258.8 257.7	325.0 323.6 322.2	389.9 388.3 386.6	Longitude interval.	560	57°
30 40 50	695.9 927.9 1159.8	64.2 63.9 63.6	128.3 127.7 127.2	192.4 191.6 190.8	256.6 255.5 254.4	320.8 319.4 318.0	384.9 383.2 381.5	5	mm. 0.0 0.2	mm. 0.0 0.2
57 00 10 20 30 40 50	232.0 464.0 696.0 928.0	63.3 63.0 62.7 62.5 62.2 61.9	126.6 126.0 125.5 124.9 124.3 123.8	189.9 189.1 188.2 187.4 186.5 185.6	253.2 252.1 251.0 249.8 248.7 247.5	316.6 315.1 313.7 312.3 310.8	379.9 378.1 376.4 374.8 373.0 371.3	20 25 30	0.4 0.6 1.0 1.4	0.3 0.6 1.0 1.4
58 00		61.6	123.2	184.8	246.4	308.0	369.6		58°	59°
20 30 40 50	232.0 464.1 696.1 928.2 1160.2	61.3 61.0 60.7 60.4 60.2	122.6 122.0 121.5 120.9 120.3	183.9 183.1 182.2 181.4 180.5	245.2 244.1 242.9 241.8 240.6	306.6 305.1 303.6 302.2 300.8	367.9 365.1 364.4 362.7 361.0	5 10 15 20	0.0 0.2 0.3 0.6	0.0 0.1 0.3
59 00 10 20 30	232.1 464.2 696.2	59.9 59.6 59.3	119.7 119.2 118.6 118.0	179.6 178.7 177.9 177.0	239.5 238.3 237.2 236.0	299.4 297.9 296.4 295.0	359.2 357.5 355.7 354.0	30	1.0	0.9
40 50	928.3 1160.4	59.0 58.7 58.4	117.4	176.1 175.3	234.8 233.7	293.6 292.1	352.3 350.5		60°	61°
60 00 10 20 30 40 50	232.1 464.2 696.4 928.5 1160.6	58.1 57.8 57.5 57.2 57.0 56.7	116.3 115.7 115.1 114.5 113.9	174.4 173.5 172.6 171.7 170.8 170.0	232.5 231.4 230.2 229.0 227.8 226.6	290.6 289.2 287.7 286.2 284.8 283.3	348.8 347.0 345.2 343.4 341.7 340.0	5 10 15 20 25 30	0.0 0.1 0.3 0.6 0.9	0.0 0.1 0.3 0.6 0.9 1.3
61 00 10 20	232.2 464.3	56.4 56.1 55.8	112.7 112.1 111.5	169.1 168.2 167.3	225.4 224.2 223.1	281.8 280.3 278.8	338.2 336.4 334.6		62°	63°
30 40 50	696.4 928.6 1160.8	55·5 55·2 54·9	110.9 110.3 109.8	166.4 165.5 164.6	221.9 220.7 219.5	277.4 275.8 274.4	332.8 331.0 329.3	5	0.0	0.0
62 00 10 20 30 40	232.2 464.4 696.6 928.8	54.6 54.3 54.0 53.7 53.4	109.2 108.6 108.0 107.4 106.8	163.7 162.8 161.9 161.0 160.1	218.3 217.1 215.9 214.7 213.5	272.9 271.4 269.9 268.4 266.9	327.5 325.7 323.9 322.1 320.3	15 20 25 30	0.3 0.6 0.9 1.3	0.3 0.5 0.9 1.2
50 63 00	1161.0	53.1 52.8	106.2	159.2	212.3	265.4 263.9	318.5		64°	
10 20 30 40 50	232.2 464.4 696.7 928.9 1161.1	52.5 52.2 51.9 51.6 51.3	105.0 104.4 103.8 103.1 102.5	157.4 156.5 155.6 154.7 153.8	209.9 208.7 207.5 206.3 205.1	262.4 260.9 259.4 257.8 256.4	314.9 313.1 311.3 309.4 307.6	5 10 15 20	0.0 0.1 0.3	
64 00		51.0	101.9	152.9	203.9	254.8	305.8	30	0.8	

of	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	OR	DIN AT	,
Latitude o parallel.	Meridional distances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	D	DINAT EVELO ARALL	PED
64°00′	mm.	mm. 51.0	mm. 101.9	mm. 152.9	mm. 203.9	mm. 254.8	mm. 305.8	Longitude interval.	64°	65°
10 20 30 40	232.2 464.5 696.8 929.0 1161.2	50.7 50.4 50.1 49.8	101.3 100.7 100.1 99.5 98.9	152.0 151.1 150.2 149.2 148.3	202.6 201.4 200.2 199.0 197.8	253.3 251.8 250.3 248.8 247.2	304.0 302.2 300.4 298.5 296.6	 5'	mm. 0.0	mm.
65 00 10 20 30 40	232.3 464.6 696.9 929.1	49.4 49.1 48.8 48.5 48.2 47.9	98.3 97.7 97.1 96.4 95.8	147.4 146.5 145.6 144.7 143.7	196.6 195.3 194.1 192.9 191.6	245.7 244.2 242.6 241.1 239.6	294.8 293.0 291.2 289.3 287.5	10 15 20 25 30	0.1 0.3 0.5 0.8 1.2	0.1 0.3 0.5 0.8 1.2
50 66 00	1161.4	47.6 47.3	95.2 94.6	142.8	190.4	238.0 236.5	285.7 283.8		66°	67°
10 20 30 40 50	232.3 464.6 697.0 929.3 1161.6	47.0 46.7 46.4 46.1 45.8	94.0 93.4 92.7 92.1 91.5	141.0 140.0 139.1 138.2 137.2	188.0 186.7 185.5 184.2 183.0	235.0 233.4 231.8 230.3 228.8	281.9 280.1 278.2 276.4 274.5	5 10 15 20	0.0 0.1 0.3 0.5 0.8	0.0 0.1 0.3 0.5
67 ∞ 10 20	232.4 464.7	45.4 45.1 44.8	90.9 90.3 89.6 89.0	136.3 135.4 134.4	181.8 180.5 179.2 178.0	227.2 225.6 224.0 222.5	272.6 270.8 268.9 267.0	25 30	0.8	0.8
30 40 50	697.0 929.4 1161.8	44.5 44.2 43.9	88.4 87.7	133.5 132.6 13 1 .6	176.8	221.0 219.4	265.1 263.2		68°	69°
68 00 10 20 30 40 50	232.4 464.8 697.1 929.5 1161.9	43.6 43.2 42.9 42.6 42.3 42.0	87.1 86.5 85.9 85.2 84.6 84.0	130.7 129.8 128.8 127.9 126.9	174.2 173.0 171.7 170.5 169.2 168.0	217.8 216.2 214.6 213.1 211.6 210.0	261.4 259.5 257.6 255.7 253.9 251.9	5 10 15 20 25 30	0.0 0.1 0.3 0.5 0.7	0.0 0.1 0.3 0.5 0.7 1.0
69 00 10 20	232.4 464.8	41.7 41.4 41.0	83.4 82.7 82.1 81.5	125.0 124.1 123.2 122.2	166.7 165.4 164.2 162.9	208.4 206.8 205.2	250.1 248.2 246.3		70°	71°
30 40 50	697.2 929.6 1162.0	40.7 40.4 40.1	80.8 80.2	121.2	161.6 160.4	203.6 202.0 200.5	244.4 242.5 240.6	5	0.0	0.0 0.1
70 00 10 20 30 40	232.4 464.9 697.3 929.7	39.8 39.5 39.1 38.8 38.5	79.6 78.9 7 8.3 7 7.6 77.0	119.3 118.4 117.4 116.5	159.1 157.8 156.6 155.3 154.0	198.9 197.3 195.7 194.1 192.6	238.7 236.8 234.8 232.9 231.1	25 30	0.2 0.4 0.7 1.0	0.2 0.4 0.7 0.9
71 00	1162.2	38.2 37.9	76.4 75.7	114.6	152.8	189.4	229.I 227.2		72°	
10 20 30 40 50	232.5 464.9 697.4 929.8 1162.3	37.6 37.2 36.9 36.6 36.3	75.1 74.5 73.8 73.2 72.5	112.6 111.7 110.7 109.7 108.8	150.2 148.9 147.6 146.3 145.0	187.8 186.2 184.5 182.9 181.3	225.3 223.4 221.4 219.5 217.6	5 10 15 20	0.0 0.1 0.2 0.4	
72 00		35.9	71.9	107.8	143.8	179.7	215.6	²⁵ 30	0.6	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 80000

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	10' longitude.	15' longitude.	20' longitude.	25' longitude.	30' longitude.	ORDINATI DEVELO PARALLI		PED
72°00′	mm.	mm. 35.9	mm. 71.9	mm.	mm. 143.8	mm. 179.7	mm. 21 5.6	Longitude interval.	72°	73°
10 20 30	232.5 465.0 697.4	35.6 35.3 35.0	71.2 70.6 70.0	106.9 105.9 104.9	142.5 141.2 139.9	178.1 176.5 174.9	213.7 211.8 209.9	7.1	mm.	mm.
40 50	929.9 1162.4	34.6 343	69.3 68.7	104.0	138.6	173.2 171.6	207.9 206.0	5' 10 15	0.0 0.1 0.2	0.0 0.1 0.2
73 00 10 20 30 40	232.5 465.0 697.5 930.0	34.0 33.7 33.4 33.0 32.7	68.0 67.4 66.7 66.1 65.4	102.0 101.0 100.1 99.1 98.1	136.0 134.7 133.4 132.2 130.8	170.0 168.4 166.8 165.2 163.6	204.1 202.1 200.2 198.2 196.3	20 25 30	0.2 0.4 0.6 0.9	0.2 0.4 0.6 0.9
50 74 00	1162.6	32.4 32.1	64.8 64.1	97.1 96.2	129.5	161.9	194.3		74°	·75°
10 20 30 40 50	232.5 465.1 697.6 930.1 1162.6	31.7 31.4 31.1 30.8 30.4	63.5 62.8 62.2 61.5 60.9	95.2 94.2 93.2 92.3 91.3	127.0 125.6 124.3 123.0 121.8	158.7 157.0 155.4 153.8 152.2	190.4 188.5 186.5 184.6 182.6	5 10 15 20 25	0.0 0.1 0.2 0.4 0.6	0.0 0.1 0.2 0.3 0.5
75 00 10 20	232.6 465.1	30.1 29.8 29.4	60.2 59.6 58.9	90.3 89.3 88.4	120.4 119.1 117.8	150.6 148.9 147.2	180.7 178.7 176. 7	30	0.8	o.8
30 40 50	697.6 930.2 1162.8	29.1 28.8 28.5	58.3 57.6 56.9	87.4 86.4 85.4	116.5 115.2 113.9	145.6 144.0 142.4	174.8 172.8 170.8		76°	77°
76 00 10 20 30 40 50	232.6 465.1 697.7 930.3 1162.8	28.1 27.8 27.5 27.2 26.8 26.5	56.3 55.6 55.0 54.3 53.7 53.0	84.4 83.4 82.4 81.4 80.5 79.5	112.6 111.2 109.9 108.6 107.3 106.0	140.7 139.0 137.4 135.8 134.2 132.5	168.8 166.9 164.9 162.9 161.0 159.0	5 10 15 20 25 30	0.0 0.1 0.2 0.3 0.5	0.0 0.1 0.2 0.3 0.5 0.7
77 00 10 20	232.6 465.2	26.2 25.8 25.5	52.3 51.7 51.0	78.5 77.5 76.5	104.7 103.4 102.0	130.8 129.2 127.6	157.0 155.0 153.1		78°	79°
30 40 50	697.8 930.4 1163.0	25.2 24.8 24.5	50.4 49.7 49.0	75.5 74.6 73.6	100.7 99.4 98.1	125.9 124.2 122.6	151.1 149.1 147.1	5	0.0	0.0
78 00 10 20 30 40 50	232.6 465.2 697.8 930.4 1163.0	24.2 23.9 23.5 23.2 22.9 22.5	48.4 47.7 47.1 46.4 45.7 45.1	72.6 71.6 70.6 69.6 68.6 67.6	96.8 95.4 94.1 92.8 91.4 90.1	121.0 119.3 117.6 116.0 114.3 112.6	145.1 143.2 141.2 139.2 137.2 135.2	15 20 25 30	0.2 0.3 0.4 0.6	0.1 0.3 0.4 0.6
79 ∞	232.6	22.2	44-4	66.6 65.6	88.8 87.5	111.0	133.2		80°	
10 20 30 40 50	465.2 697.9 930.5	21.9 21.5 21.2 20.9 20.5	43.7 43.1 42.4 41.7 41.1	64.6 63.6 62.6 61.6	86.1 84.8 83.5 82.1	109.4 107.6 106.0 104.4 102.6	131.2 129.2 127.2 125.2 123.2	5 10 15 20	0.0 0.1 0.1 0.2	
80 00		20.2	40.4	60.6	80.8	101.0	121.2	25 30	0.4 0.5	

TABLE 25. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10° EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

Area in Square Miles.
474653
472895
467631
458891
446728
431213
412442
390533
365627
337890
307514
274714
239730
202823
164279
124400
83504
41924

TABLE 26.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT IN LATITUDE AND LONGITUDE.

	(-	Jerivation of table ex			
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.
0° 00′	4752-33	26° 00′	4282.50	52° 00′	2950.58
0 30	4752-16	26 30	4264.51	52° 30	2917.85
1 00	4751-63	27 00	4246.20	53° 00	2884.88
1 30	4750-75	27 30	4227.56	53° 30°	2851.68
2 00	4749·52	28 00	4208.61	54 .00	2818.27
2 30	4747·93	28 30	4189.33	54 30	2784.62
3 00	4746.00	29 00	4169.74	55 00	27 50.76
3 30	4743·71	29 30	4149.83	55 30	27 16.67
4 00	4741.07	30 00	4129.60	56 00	2682.37
4 30	4738.08	30 30	4109.06	56 30	2647.85
5 00	4734.74	31 00	4088.21	57 00	2613.13
5 30	4731.04	31 30	4067.05	57 30	2578.19
6 oo	4727.00	32 00	4045.57	58 00	2543.05
6 3o	4722.61	32 30	4023.79	58 30	2507.70
7 oo	4717.86	33 00	4001.69	59 00	2472.16
7 3o	4712.76	33 30	3979.30	59 30	2436.42
8 oo	4707.32	34 00	3956.59	60 00	2400.48
8 3o	4701.52	34 30	3933.59	60 30	2364.34
9 oo	4695.38	35 00	3910.28	61 00	2338.02
9 3o	4688.89	35 30	3886.67	61 30	2291.51
10 00 10 30 10 00	4682.05 4674.86 4667.32 4659.43	36 oo 36 30 37 oo 37 30	3862.76 3838.56 3814.06 3789.26	62 00 62 30 63 00 63 30	2254.82 2217.94 2180.89 2143.66
12 00	4651.20	38 co	3764.18	64 00	2106.26
12 30	4642.63	38 30	3738.80	64 30	2068.68
13 00	4633.71	39 co	3713.14	65 00	2030.94
13 30	4624.44	39 30	3687.18	65 30	1993.04
14 00	4614.82	40 00	3660.95	66 oo	1954.97
14 30	4604.87	40 30	3634.42	66 30	1916.75
15 00	4594.57	41 00	3607.62	67 oo	1878.37
15 30	4583.92	41 30	3580.54	67 30	1839.84
16 00	4572.94	42 00	3553.17	68 oo	1801.16
16 30	4561.61	42 30	3525.54	68 30	1762.33
17 00	4549.94	43 00	3497.62	69 oo	1723.36
17 30	4537.93	43 30	3469.44	69 30	1684.24
18 00	4525.59	44 00	3440.98	70 00	1645.00
18 30	4512.90	44 30	3412.26	70 30	1605.62
19 00	4499.87	45 00	3383.27	71 00	1566.10
19 30	4486.51	45 30	3354.01	71 30	1526.46
20 00	4472,81	46 00	33 ² 4·49	72 00	1486.70
20 30	4458.78	46 30	3 ² 94·7 ¹	72 30	1446.81
21 00	4444.41	47 00	3 ² 64·68	73 00	1406.81
21 30	4429.71	47 30	3 ² 34·39	73 30	1366.69
22 00	4414.67	48 00	3203.84	74 00	1326.46
22 30	4399.30	48 30	3173.04	74 30	1286.12
23 00	4383.60	49 00	3141.99	75 00	1245.68
23 30	4367.57	49 30	3110.69	75 30	1205.13
24 00	4351.21	50 00	3079.15	76 00	1164.49
24 30	4334.52	50 30	3047.37	76 30	1123.7 5
25 00	4317.51	51 00	3015.34	77 00	1082.91
25 30	4300.17	51 30	2983.08	77 30	1041.99

TABLE 26.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
78° 00′	1000.99	82° 00′	670.27	86° 00′	336.02
78 30	959.90	82 30	628.64	86 30	294.08
79 00	918.73	83 00	586.97	87 00	252.11
79 30	877.49	83 30	545.24	87 30	210.12
80 00	836.18	84 00	503.47	88 oo	168.12
80 30	794-79	84 30	461.66	88 30	126.10
81 00	753-34	85 00	419.81	89 oo	84.07
81 30	711.83	85 30	377.93	89 30	42.04

TABLE 27.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

		Derivation of table ex			
Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
o° oo′	1188.10	13° 00′	1158.44	26° 00′	1070.64
o 15	1188.08	13 15	1157.29	26 15	1068.40
o 30	1188.05	13 30	1156.12	26 30	1066.14
o 45	1188.00	13 45	1154.93	26 45	1063.86
1 00	1187.92	14 00	1153.72	27 00	1061.56
1 15	1187.82	14 15	1152.48	27 15	1059.24
1 30	1187.70	14 30	1151.23	27 30	1056.90
1 45	1187.56	14 45	1149.95	27 45	1054.54
2 00	1187.39	15 00	1148.65	28 00	1052.16
2 15	1187.20	15 15	1147.33	28 15	1049.76
2 30	1186.99	15 30	1145.99	28 30	1047.34
2 45	1186.76	15 45	1144.63	28 45	1044.90
3 00	1186.51	16 00	1143.25	29 00	1042.44
3 15	1186.24	16 15	1141.84	29 15	1039.97
3 30	1185.95	16 30	1140.41	29 30	1037.47
3 45	1185.62	16 45	1138.96	29 45	1034.95
4 00	1185.28	17 00	1137.50	30 00	1032.41
4 15	1184.92	17 15	1136.00	30 15	1029.85
4 30	1184.53	17 30	1134.49	30 30	1027.27
4 45	1184.13	17 45	1132.96	30 45	1024.68
5 00	1183.70	18 00	1131.41	31 00	1022.06
5 15	1183.24	18 15	1129.83	31 15	1019.43
5 30	1182.77	18 30	1128.24	31 30	1016.77
5 45	1182.28	18 45	1126.62	31 45	1014.10
6 00	1181.76	19 00	1124.98	32 00	1011.40
6 15	1181.22	19 15	1123.32	32 15	1008.69
6 30	1180.66	19 30	1121.64	32 30	1005.96
6 45	1180.08	19 45	1119.93	32 45	1003.20
7 00	1179.48	20 00	1118.21	33 00	1000.43
7 15	1178.85	20 15	1116.47	33 15	997.64
7 30	1178.20	20 30	1114.71	33 30	994.83
7 45	1177.53	20 45	1112.92	33 45	992.00
8 oo	1176.84	21 00	1111.11	34 00	989.16
8 15	1176.13	21 15	1109.28	34 15	986.29
8 30	1175.39	21 30	1107.44	34 30	983.41
8 45	1174.63	21 45	1105.57	34 45	980.50
9 00	1173.86	22 00	1103.68	35 00	977.58
9 15	1173.06	22 15	1101.77	35 15	974.64
9 30	1172.23	22 30	1099.84	35 30	971.68
9 45	1171.39	22 45	1097.88	35 45	968.70
10 00	1170.52	23 00	1095.91	36 00	965.70
10 15	1169.63	23 15	1093.92	36 15	962.68
10 30	1168.73	23 30	1091.90	36 30	959.65
10 45	1167.80	23 45	1089.87	36 45	956.60
11 00	1166.84	24 00	1087.81	37 00	953-52
11 15	1165.86	24 15	1085.74	37 15	950-43
11 30	1164.86	24 30	1083.64	37 30	947-32
11 45	1163.85	24 45	1081.52	37 45	944-21
12 00	1162.81	25 00	1079.39	38 00	941.05
12 15	1161.75	25 15	1077.23	38 15	937.88
12 30	1160.67	25 30	1075.05	38 30	934.71
12 45	1159.56	25 45	1072.85	38 45	931.51

TABLE 27.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

Mi	ddle latitude quadrilateral.	Area in square miles.	Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
	39° 00′	928.29	52° 00′ °	737.65	65° 00′	507.74
	39 15	925.06	52 15	733.57	65 15	503.01
	39 30	921.80	52 30	729.47	65 30	498.26
	39 45	918.53	52 45	725.36	65 45	493.51
	40 00	91 5.25	53 00	721.23	66 00	488.75
	40 15	91 1.94	53 15	717.08	66 5	483.97
	40 30	908.61	53 30	712.93	66 30	479.19
	40 45	905.27	53 45	708.76	66 45	474.40
	4I 00	901.91	54 00	704.57	67 00	469.60
	4I 15	898.54	54 15	700.38	67 15	464.78
	4I 30	895.14	54 30	696.16	67 30	459.96
	4I 45	891.73	54 45	691.94	67 45	455.13
	42 00	888.30	55 00	687.70	68 00	450.29
	42 15	884.85	55 15	683.44	68 15	445.45
	42 30	881.39	55 30	679.17	68 30	440.59
	42 45	877.91	55 45	674.89	68 45	435.72
	43 00	874.41	56 00	670.60	69 00	430.84
	43 15	870.90	56 15	666.29	69 15	425.96
	43 30	867.37	56 30	661.97	69 30	421.06
	43 45	863.82	56 45	657.64	69 45	416.16
	44 00	860.25	57 00	653.29	70 00	411.2 5
	44 15	856.67	57 15	648.93	70 15	406.34
	44 30	853.07	57 30	644.55	70 30	401.41
	44 45	849.46	57 45	640.17	70 45	396.47
	45 00	845.82	58 00	635.77	71 00	391.53
	45 15	842.18	58 15	631.36	71 15	386.58
	45 30	838.51	58 30	626.93	71 30	381.62
	45 45	834.83	58 45	622.49	71 45	376.65
	46 00	831.13	59 00	618.05	72 00	371.68
	46 15	827.42	59 15	613.59	72 15	366.70
	46 30	823.68	59 30	609.11	72 30	361.71
	46 45	819.94	59 45	604.62	72 45	356.71
	47 00	816.18	60 00	600.13	73 00	351.71
	47 15	812.40	60 15	595.62	73 15	346.69
	47 30	808.60	60 30	591.09	73 30	341.68
	47 45	804.79	60 45	586.56	73 45	336.65
	48 00	800.97	61 00	582.01	74 00	331.62
	48 15	797.13	61 15	577.45	74 15	326.58
	48 30	793.27	61 30	572.88	74 30	321.53
	48 45	789.39	61 45	568.30	74 45	316.48
	49 00	785.50	62 00	563.71	75 00	311.42
	49 15	781.60	62 15	559.11	75 15	306.36
	49 30	777.68	62 30	554.49	75 30	301.28
	49 45	773.74	62 45	549.86	75 45	296.21
	50 00	769.79	63 00	545.23	76 00	291.12
	50 15	765.83	63 15	540.58	76 15	286.04
	50 30	761.85	63 30	535.92	76 30	280.94
	50 45	757.85	63 45	531.25	76 45	275.84
	51 00	753.84	64 00	526.57	77 00	270.73
	51 15	749.82	64 15	521.88	77 15	265.62
	51 30	745.78	64 30	517.17	77 30	260.50
	51 45	741.72	64 45	512.46	77 45	255.38

TABLE 27.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
78° 00′	250.25	82° 00′	167.57	86° 00′	84.01
78 15	245.12	82 15	162.37	86 15	78.76
78 30	239.98	82 30	157.16	86 30	73.52
78 45	234.83	82 45	151.95	86 45	68.27
79 00	229.68	83 00	146.74	87 00	63.03
79 15	224.53	83 15	141.53	87 15	57.78
79 30	219.37	83 30	136.31	87 30	52.53
79 45	214.21	83 45	131.09	87 45	47.28
80 00	209.05	84 00	125.87	88 00	42.03
80 15	203.88	84 15	120.64	88 15	36.78
80 30	198.70	84 30	115.42	88 30	31.53
80 45	193.52	84 45	110.18	88 45	26.27
81 00	188.34	85 00	104.95	89 00	21.02
81 15	183.15	85 15	99.72	89 15	15.76
81 30	177.96	85 30	94.48	89 30	10.51
81 45	172.77	85 45	89.25	89 45	5.26

TABLE 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

		Derivation of table ex			
Middle latitude of quadrilateral	Area in square miles.	Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
0° 07′ 30″	297.02	6° 37′ 30″	295.09	13° 07′ 30″	289.47
0 15 00	297.02	6 45 ∞	295.02	13 15 00	289.33
0 22 30	297.02	6 52 30	294.95	13 22 30	289.18
0 30 00	297.01	7 ∞ ∞	294.87	13 30 00	289.03
0 37 30	297.01	7 07 30	294.79	13 37 30	288.88
0 45 00	297.00	7 15 00	294.71	13 45 00	288.73
0 52 30	296.99	7 22 30	294.63	13 52 30	288.58
1 00 00	296.98	7 30 00	294.55	14 00 00	288.43
I 07 30	296.97	7 37 30	294.47	14 07 30	288.28
I 15 00	296.96	7 45 00	294.39	14 15 00	288.12
I 22 30	296.94	7 52 30	294.30	14 22 30	287.96
I 30 00	296.93	8 00 00	294.21	14 30 00	287.81
I 37 30	296.91	8 07 30	294.12	14 37 30	287.65
I 45 00	296.89	8 15 00	294.03	14 45 00	287.49
I 52 30	296.87	8 22 30	293.94	14 52 30	287.33
2 00 00	296.85	8 30 00	293.85	15 00 00	287.17
2 07 30	296.82	8 37 30	² 93.7 5	15 07 30	287.00
2 15 00	296.80	8 45 00	293.66	15 15 00	286.83
2 22 30	296.77	8 52 30	293.56	15 22 30	286.67
2 30 00	296.75	9 00 00	² 93.47	15 30 00	286.50
2 37 30	296.72	9 07 30	293.37	15 37 30	286.33
2 45 00	296.69	9 15 00	293.27	15 45 00	286.16
2 52 30	296.66	9 22 30	293.16	15 52 30	285.99
3 00 00	296.63	9 30 00	293.06	16 00 00	285.82
3 07 30	296.60	9 37 30	292.9 5	16 07 30	285.64
3 15 00	296.56	9 45 00	292.8 5	16 15 00	285.46
3 22 30	296.53	9 52 30	292.74	16 22 30	285.28
3 30 00	296.49	10 00 00	292.63	16 30 00	285.10
3 37 30	296.45	10 07 30	292.52	16 37 30	284.92
3 45 00	296.41	10 15 00	292.41	16 45 00	284.74
3 52 30	296.36	10 22 30	292.30	16 52 30	284.56
4 00 00	296.32	10 30 00	292.19	17 00 00	284.38
4 07 30	296.28	10 37 30	292.07	17 07 30	284.19
4 15 00	296.23	10 45 00	291.95	17 15 00	284.00
4 22 30	296.18	10 52 30	291.83	17 22 30	283.81
4 30 00	296.13	11 00 00	291.71	17 30 00	283.62
4 37 30	296.08	11 07 30	291.59	17 37 30	283.43
4 45 00	296.03	11 15 00	291.47	17 45 00	283.24
4 5 ² 30	295.98	11 22 30	291.34	17 52 30	283.05
5 00 00	295.93	11 30 00	291.22	18 00 00	282.86
5 · 07 · 30	295.87	11 37 30	291.09	18 07 30	282.66
5 · 15 · 00	295.81	11 45 00	290.96	18 15 00	282.46
5 · 22 · 30	295.75	11 52 30	290.83	18 22 30	282.26
5 · 30 · 00	295.69	12 00 00	290.70	18 30 00	282.06
5 37 30	295.63	12 07 30	290.57	18 37 30	281.86
5 45 00	295.57	12 15 00	290.44	18 45 00	281.66
5 52 30	295.51	12 22 30	290.30	18 52 30	281.45
6 00 00	295.44	12 30 00	290.17	19 00 00	281.25
6 07 30	295.37	12 37 30	290.03	19 07 30	281.04
6 15 00	295.31	12 45 00	289.89	19 15 00	280.83
6 22 30	295.24	12 52 30	289.75	19 22 30	280.62
6 30 00	295.17	13 00 00	289.61	19 30 00	280.41

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

		Jerivation of table ex	planted on pp. 1-1		
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
19° 37′ 30″	280.20	26° 07′ 30″	267.38	32° 37′ 30″	251.15
19 45 00	279.99	26 15 00	267.10	32 45 00	250.80
19 52 30	279.77	26 22 30	266.82	32 52 30	250.45
20 00 00	279.55	26 30 00	266.54	33 00 00	250.11
20 07 30	279.34	26 37 30	266.25	33 07 30	249.76
20 15 00	279.12	26 45 00	265.97	33 15 00	249.41
20 22 30	278.90	26 52 30	265.68	33 22 30	249.06
20 30 00	278.68	27 00 00	265.39	33 30 00	248.71
20 37 30	278.46	27 07 30	265.10	33 37 30	248.36
20 45 00	278.23	27 15 00	264.81	33 45 00	248.00
20 52 30	278.00	27 22 30	264.52	33 52 30	247.65
21 00 00	277.78	27 30 00	264.23	34 00 00	247.29
21 07 30	277·55	27 37 30	263.93	34 07 30	246.93
21 15 00	277·32	27 45 00	263.64	34 15 00	246.57
21 22 30	277·09	27 52 30	263.34	34 22 30	246.21
21 30 00	276.86	28 00 00	263.04	34 30 00	245.85
21 37 30	276.63	28 07 30	262.74	34 37 30	245.49
21 45 00	276.39	28 15 00	262.44	34 45 00	245.13
21 52 30	276.16	28 22 30	262.14	34 52 30	244.76
22 00 00	275.92	28 30 00	261.84	35 00 00	244.40
22 07 30	275.68	28 37 30	261.53	35 07 30	244.03
22 15 00	275.44	28 45 00	261.23	35 15 00	243.66
22 22 30	275.20	28 52 30	260.92	35 22 30	243.29
22 30 00	274.96	29 00 00	260.61	35 30 00	242.92
22 37 30	274.72	29 07 30	260.30	35 37 30	242.55
22 45 00	274.47	29 15 00	259.99	35 45 00	242.18
22 52 30	274.22	29 22 30	259.68	35 52 30	241.80
23 00 00	273.98	29 30 00	259.37	36 00 00	241.43
23 07 30	273.73	29 37 30	259.05	36 07 30	241.05
23 15 00	273.48	29 45 00	258.74	36 15 00	240.67
23 22 30	273.23	29 52 30	258.42	36 22 30	240.29
23 30 00	272.98	30 00 00	258.10	36 30 00	239.91
23 37 30	272.72	30 07 30	257.78	36 37 30	239-53
23 45 00	272.47	30 15 00	257.46	36 45 00	239-15
23 52 30	272.21	30 22 30	257.14	36 52 30	238-77
24 00 00	271.95	30 30 00	256.82	37 00 00	238-38
24 07 30	271.69	30 37 30	256.49	37 07 30	237.9 9
24 15 00	271.44	30 45 00	256.17	37 15 00	237.61
24 22 30	271.17	30 52 30	255.84	37 22 30	237.22
24 30 00	270.91	31 00 00	255.52	37 30 00	236.83
24 37 30	270.65	31 07 30	255-19	37 37 30	236.44
24 45 00	270.38	31 15 00	254-86	37 45 00	236.05
24 52 30	270.11	31 22 30	254-53	37 52 30	235.66
25 00 00	269.85	31 30 00	254-19	38 00 00	235.26
25 07 30	269.58	31 37 30	253.86	38 07 30	234.87
25 15 00	269.31	31 45 00	253.53	38 15 00	234.47
25 22 30	269.04	31 52 30	253.19	38 22 30	234.07
25 30 00	268.76	32 00 00	252.85	38 30 00	233.68
25 37 30	268.49	32 07 30	252.51	38 37 30	233.28
25 45 00	268.21	32 15 00	252.17	38 45 00	232.88
25 52 30	267.94	32 22 30	251.83	38 52 30	232.48
26 00 00	267.66	32 30 00	251.49	39 00 00	232.07

TABLE 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

	(+	Derivation of table ex	paraet on pp. 1 is		
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
39° 07′ 30′′	231.67	45° 37′ 30″	209.17	52° 07′ 30″	183.90
39 15 00	231.27	45 45 00	208.71	52 15 00	183.39
39 22 30	230.86	45 52 30	208.25	52 22 30	182.88
39 30 00	230.45	46 00 00	207.78	52 30 00	182.37
39 37 30	230.04	46 07 30	207.32	52 37 30	181.85
39 45 00	229.63	46 15 00	206.86	52 45 00	181.34
39 52 30	229.22	46 22 30	206.39	52 52 30	180.82
40 00 00	228.81	46 30 00	205.92	53 00 00	180.31
40 07 30	228.40	46 37 30	205.45	53 07 30	179.79
40 15 00	227.99	46 45 00	204.99	53 15 00	179.27
40 22 30	227.57	46 52 30	204.52	53 22 30	178.75
40 30 00	227.15	47 00 00	204.05	53 30 00	178.23
40 37 30	226.73	47 07 30	203.57	53 37 30	177.71
40 45 00	226.32	47 15 00	203.10	53 45 00	177.19
40 52 30	225.90	47 22 30	202.63	53 52 30	176.67
41 00 00	225.48	47 30 00	202.15	54 00 00	176.14
41 07 30	225.06	47 37 30	201.67	54 07 30	175.62
41 15 00	224.64	47 45 00	201.20	54 15 00	175.10
41 22 30	224.21	47 52 30	200.72	54 22 30	174.57
41 30 00	223.79	48 00 00	200.24	54 30 00	174.04
4I 37 30	223.36	48 07 30	199.76	54 37 30	173.51
4I 45 00	222.93	48 15 00	199.28	54 45 00	172.99
4I 52 30	222.50	48 22 30	198.80	54 52 30	172.46
42 00 00	222.08	48 30 00	198.32	55 00 00	171.93
42 07 30	221.65	48 37 30	197.83	55 07 30	171.39
42 15 00	221.21	48 45 00	197.35	55 15 00	170.86
42 22 30	220.78	48 52 30	196.86	55 22 30	170.33
42 30 00	220.35	49 00 00	196.38	55 30 00	169.79
42 37 30	219.91	49 07 30	195.89	55 37 30	169.26
42 45 00	219.48	49 15 00	195.40	55 45 00	168.72
42 52 30	219.04	49 22 30	194.91	55 52 30	168.19
43 00 00	218.60	49 30 00	194.42	56 00 00	167.65
43 07 30	218.16	49 37 30	193.93	56 07 30	167.11
43 15 00	217.73	49 45 00	193.44	56 15 00	166.57
43 22 30	217.28	49 52 30	192.94	56 22 30	166.03
43 30 00	216.84	50 00 00	192.45	56 30 00	165.49
43 37 30	216.40	50 07 30	191.95	56 37 30	164.95
43 45 00	215.96	50 15 00	191.46	56 45 00	164.41
43 52 30	215.51	50 22 30	190.96	56 52 30	163.87
44 00 00	215.06	50 30 00	190.46	57 00 00	163.32
44 07 30	214.61	50 37 30	189.96	57 07 30	162.78
44 15 00	214.17	50 45 00	189.46	57 15 00	162.23
44 22 30	213.72	50 52 30	188.96	57 22 30	161.68
44 30 00	213.27	51 00 00	188.46	57 30 00	161.14
44 37 30	212.82	51 07 30	187.96	57 37 30	160.59
44 45 00	212.37	51 15 00	187.46	57 45 00	160.04
44 52 30	211.91	51 22 30	186.95	57 52 30	159.49
45 00 00	211.46	51 30 00	186.45	58 00 00	158.94
45 07 30	211.00	51 37 30	185.94	58 07 30	158.39
45 15 00	210.55	51 45 00	185.43	58 15 00	157.84
45 22 30	210.09	51 52 30	184.92	58 22 30	157.29
45 30 00	209.63	52 00 00	184.41	58 30 00	156.73

TABLE 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN

LATITUDE AND LONGITUDE.

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
58° 37′ 30″	156.18	65° 07′ 30″	126.34	71° 37′ 30″	94.78
58 45 00	155.62	65 15 00	125.75	71 45 00	94.16
58 52 30	155.07	65 22 30	125.16	71 52 30	93.54
59 00 00	154.51	65 30 00	124.57	72 00 00	92.92
59 07 30	153.96	65 37 30	123.97	72 07 30	92.30
59 15 00	153.40	65 45 00	123.38	72 15 00	91.68
59 22 30	152.84	65 52 30	122.78	72 22 30	91.05
59 30 00	152.28	66 00 00	122.19	72 30 00	90.43
59 37 30	151.72	66 07 30	121.59	72 37 30	89.80
59 45 00	151.16	66 15 00	120.99	72 45 00	89.18
59 52 30	150.60	66 22 30	120.40	72 52 30	88.55
60 00 00	150.03	66 30 00	119.80	73 00 00	87.93
60 07 30	149.47	66 37 30	119.20	73 07 30	87.30
60 15 00	148.91	66 45 00	118.60	73 15 00	86.67
60 22 30	148.34	66 52 30	118.00	73 22 30	86.05
60 30 00	147.77	67 00 00	117.40	73 30 00	85.42
60 37 30	147.21	67 07 30	116.80	73 37 30	84.79
60 45 00	146.64	67 15 00	116.20	73 45 00	84.16
60 52 30	146.07	67 22 30	115.59	73 5 ² 30	83.53
61 00 00	145.50	67 30 00	114.99	74 00 00	82.91
61 07 30	144.93	67 37 30	114.39	74 07 30	82.28
61 15 00	144.36	67 45 00	113.78	74 15 00	81.6 5
61 22 30	143.79	67 52 30	113.18	74 22 30	81.01
61 30 00	143.22	68 00 00	112.57	74 30 00	80.38
61 37 30	142.65	68 07 30	111.97	74 37 30	79·75
61 45 00	142.08	68 15 00	111.36	74 45 00	79·12
61 52 30	141.50	68 22 30	110.76	74 52 30	78·49
62 00 00	140.93	68 30 00	110.15	75 00 00	77·86
62 07 30	140.35	68 37 30	109.54	75 07 30	77.22
62 15 00	139.78	68 45 00	108.93	75 15 00	76.59
62 22 30	139.20	68 52 30	108.32	75 22 30	75.95
62 30 00	138.62	69 00 00	107.71	75 30 00	75.32
62 37 30	138.04	69 07 30	107.10	75 37 30	74.69
62 45 00	137.47	69 15 00	106.49	75 45 00	74.05
62 52 30	136.89	69 22 30	105.88	75 52 30	73.42
63 00 00	136.31	69 30 00	105.27	76 00 00	72.78
63 07 30	135.73	69 37 30	104.65	76 07 30	72.14
63 15 00	135.15	69 45 00	104.04	76 15 00	71.51
63 22 30	134.56	69 52 30	103.43	76 22 30	70.87
63 30 00	133.98	70 00 00	102.81	76 30 00	70.24
63 37 30	133.40	70 07 30	102.20	76 37 30	69.60
63 45 00	132.81	70 15 00	101.59	76 45 00	68.96
63 52 30	132.23	70 22 30	100.97	76 52 30	(8.32
64 00 00	131.64	70 30 00	100.35	77 00 00	67.68
64 07 30	131.06	70 37 30	99-74	77 07 30	67.04
64 15 00	130.47	70 45 00	99-12	77 15 00	66.41
64 22 30	129.88	70 52 30	98.50	77 22 30	65.77
64 30 00	129.29	71 00 00	97-88	77 30 00	65.13
64 37 30	128.70	71 07 30	97.26	77 37 30	64.49
64 45 00	128.12	71 15 00	96.65	77 45 00	63.85
64 52 30	127.53	71 22 30	96.03	77 52 30	63.20
65 00 00	126.94	71 30 00	95.41	78 00 00	62.56

TABLE 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
78° 07′ 30″	61.92	82° 07′ 30″	41.24	86° 07′ 30″	20.35
78 15 00	61.28	82 15 00	40.59	86 15 00	19.69
78 22 30	60.64	82 22 30	39.94	86 22 30	19.04
78 30 00	60.00	82 30 00	39.29	86 30 00	18.38
78 37 30	59·35	82 37 30	38.64	86 37 30	17.72
78 45 00	58.71	82 45 00	37.99	86 45 00	17.07
78 52 30	58.06	82 52 30	37.34	86 52 30	16.41
79 00 00	57·42	83 00 00	36.69	87 00 00	15.76
79 07 30	56.78	83 07 30	36.03	87 07 30	15.10
79 15 00	56.13	83 15 00	35.38	87 15 00	14.44
79 22 30	55.49	83 22 30	34.73	87 22 30	13.79
79 30 00	54.84	83 30 00	34.08	87 30 00	13.13
79 37 30	54.20	83 37 30	33.42	87 37 30	12.48
79 45 00	53.55	83 45 00	32.77	87 45 00	11.82
79 52 30	52.91	83 52 30	32.12	87 52 30	11.16
80 00 00	52.26	84 00 00	31.47	88 00 00	10.51
. 80 07 30	51.62	84 07 30	30.81	88 07 30	9.85
80 15 00	50.97	84 15 00	30.16	88 15 00	9.20
80 22 30	50.32	84 22 30	29.51	88 22 30	8.54
80 30 00	49.68	84 30 00	28.86	88 30 00	7.88
80 37 30	49.03	84 37 30	28.20	88 37 30	7.22
80 45 00	48.38	84 45 00	2.54	88 45 00	6.57
80 52 30	47.73	84 52 30	26.89	88 52 30	5.91
81 00 00	47.08	85 00 00	26.24	89 00 00	5.26
81 07 30	46.44	85 07 30	25.58	89 07 30	4.60
81 15 00	45.79	85 15 00	24.93	89 15 00	3.94
81 22 30	45.14	85 22 30	24.27	89 22 30	3.28
81 30 00	44.49	85 30 00	23.62	89 30 00	2.63
81 37 30 81 45 00 81 52 30 82 00 00	43.84 43.19 42.54 41.89	85 37 30 85 45 00 85 52 30 86 00 00	22.97 22.31 21.66 21.00	89 37 30 89 45 ∞ 89 52 30	1.97 1.31 0.66

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

		Derivation of table e	xpiamed on pp. 1-1	41.7	
Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
0° 05′	132.01	8° 45′	130.51	17° 25′	126.11
0 15	132.01	8 55	130.46	17 35	126.00
0 25	132.01	9 05	130.40	17 45	125.88
0 35	132.00	9 15	130.34	17 55	125.77
0 45	132.00	9 25	130.28	18 05	125.65
0 55	131.99	9 35	130.22	18 15	125.54
1 05	131.99	9 45	130.15	18 25	125.42
1 15	131.98	9 55	130.09	18 35	125.30
1 25	131.97	10 05	130.02	18 45	125.18
1 35	131.96	10 15	129.96	18 55	125.06
1 45	131.95	10 25	129.89	19 05	124.94
1 55	131.94	10 35	129.82	19 15	124.81
2 05	131.93	10 45	129.76	19 25	124.69
2 15	131.91	10 55	129.68	19 35	124.56
2 25	131.90	11 05	129.61	19 45	124.44
2 35	131.88	11 15	129.54	19 55	124.31
2 45	131.86	11 25	129.47	20 05	124.18
2 55	131.84	11 35	129.39	20 15	124.05
3 05	131.82	12 45	129.32	20 25	123.92
3 15	131.80	11 55	129.24	20 35	123.79
3 25	131.78	12 05	129.16	20 45	123.66
3 35	131.76	12 15	129.08	20 55	123.52
3 45	131.74	12 25	129.00	21 05	123.39
3 55	131.71	12 35	128.92	21 15	123.25
4 05	131.68	12 45	128.84	21 25	123.12
4 15	131.66	12 55	128.76	21 35	122.98
4 25	131.63	13 05	128.67	21 45	122.84
4 35	131.60	13 15	128.59	21 55	122.70
4 45	131.57	13 25	128.50	22 05	122.56
4 55	131.54	13 35	128.41	22 15	122.42
5 05	131.50	13 45	128.33	22 25	122.28
5 15	131.47	13 55	128.24	22 35	122.13
5 25	131.44	14 05	128.14	22 45	121.99
5 35	131.40	14 15	128.05	22 55	121.84
5 45	131.36	,14 25	127.96	23 05	121.69
5 55	131.33	14 35	127.87	23 15	121.55
6 05	131.29	14 45	127.77	23 25	121.40
6 15	131.25	14 55	127.67	23 35	121.25
6 25	131.21	15 05	127.58	23 45	121.10
6 35	131.16	15 15	127.48	23 55	120.94
6 45	131.12	15 25	127.38	24 05	120.79
6 55	131.07	15 35	127.28	24 15	120.64
7 05	131.03	15 45	127.18	24 25	120.48
7 15	130.98	15 55	127.08	24 35	120.33
7 25	130.93	16 05	126.98	24 45	120.17
7 35	130.88	16 15	126.87	24 55	120.01
7 45	130.84	16 25	126.77	25 05	119.85
7 55	130.79	16 35	126.66	25 15	119.69
8 05	130.73	16 45	126.55	25 25	119.53
8 15	130.68	16 55	126.44	25 35	119.37
8 25	130.63	17 05	126.33	25 45	119.21
8 35	130.57	17 15	126.22	25 55	119.04

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN

LATITUDE AND LONGITUDE.

1			Delivation of table ex			
	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
	26° 05′	118.87	34° 45′	108.94	43° 25′	96.50
	26 15	118.71	34 55	108.73	43 35	96.24
	26 25	118.54	35 05	108.51	43 45	95.98
	26 35	118.37	35 15	108.29	43 55	95.71
	26 45	118.21	35 25	108.07	44 °5	95.45
	26 55	118.04	35 35	107.85	44 15	95.19
	27 05	117.87	35 45	107.63	44 25	94.92
	27 15	117.69	35 55	107.41	44 35	94.65
	27 25	117.52	36 05	107.19	44 45	94.38
	27 35	117.35	36 15	106.96	44 55	94.11
	27 45	117.17	36 25	106.74	45 05	93.84
	27 55	116.99	36 35	106.51	45 15	93.58
	28 05	116.82	36 45	106.29	45 25	93.30
	28 15	116.64	36 55	106.06	45 35	93.03
	28 25	116.46	37 05	105.83	45 45	92.76
	28 35	116.28	37 15	105.60	45 55	92.48
	28 45	116.10	37 25	105.37	46 05	92.21
	28 55	115.92	37 35	105.14	46 15	91.94
	29 05	115.73	37 45	104.91	46 25	91.66
	29 15	115.55	37 55	104.68	46 35	91.38
	29 25	115.37	38 05	104.44	46 45	91.10
	29 35	115.18	38 15	104.21	46 55	90.82
	29 45	114.99	38 25	103.97	47 05	90.55
	29 55	114.81	38 35	103.74	47 15	90.27
	30 05	114.62	38 45	103.50	47 25	89.99
	30 15	114.43	38 55	103.26	47 35	89.70
	30 25	114.24	39 05	103.02	47 45	89.42
	30 35	114.04	39 15	102.78	47 55	89.14
	30 45	113.85	39 25	102.54	48 05	88.85
	30 55	113.66	39 35	102.30	48 15	88.57
	31 05	113.47	39 45	102.06	48 25	88.28
	31 15	113.27	39 55	101.82	48 35	88.00
	31 25	113.07	40 05	101.57	48 45	87.71
	31 35	112.88	40 15	101.33	48 55	87.42
	31 45	112.68	40 25	101.08	49 05	87.13
	31 55	112.48	40 35	100.83	49 15	86.84
	32 05	112.28	40 45	100.59	49 25	86.55
	32 15	112.08	40 55	100.34	49 35	86.26
	32 25	111.87	41 05	100.09	49 45	85.97
	32 35	111.67	41 15	99.84	49 55	85.68
	32 45	111.47	41 25	99·59	50 05	85.39
	32 55	111.26	41 35	99·33	50 15	85.09
	33 05	111.06	41 45	99·08	50 25	84.80
	33 15	110.85	41 55	98.83	50 35	84.50
	33 25	110.64	42 05	98.57	50 45	84.21
	33 35	110.43	42 15	98.32	50 55	83.91
	33 45	110.22	42 25	98.06	51 05	83.61
	33 55	110.01	42 35	97.80	51 15	83.31
	34 05	109.80	42 45	97·55	51 25	83.01
	34 15	109.59	42 55	97·29	51 35	82.71
	34 25	109.37	43 05	97·03	51 45	82.41
	34 35	109.16	43 15	96·77	51 55	82.11

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

		Serivation of table ex			
Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
52° 05′	81.81	60° 45′	65.17	69° 25′	46.97
52 15	81.51	60 55	64.84	69 35	46.60
52 25	81.20	61 05	64.50	69 45	46.24
52 35	80.90	61 15	64.16	69 55	45.88
52 45	80.60	61 25	63.82	70 05	45.51
52 55	80.29	61 35	63.48	70 15	45.15
53 05	79.98	61 45	63.14	70 25	44.78
53 15	79.68	61 55	62.80	70 35	44.42
53 25	79.37	62 05	62.46	70 45	44.05
53 35	79.06	62 15	62.12	70 55	43.69
53 45	78.75	62 25	61.78	71 05	43.32
53 55	78.44	62 35	61.44	71 15	42.95
54 05	78.13	62 45	61.10	71 25	42.58
54 15	77.82	62 55	60.75	71 35	42.22
54 25	77.51	63 05	60.41	71 45	41.85
54 35	77.19	63 15	60.06	71 55	41.48
54 45	76.88	63 25	59.72	72 05	41.11
54 55	76.57	63 35	59.37	72 15	40.74
55 05	76.25	63 45	59.03	72 25	40.37
55 15	75.94	63 55	58.68	72 35	40.00
55 25	75.62	64 05	58.33	72 45	39.63
55 35	75.30	64 15	57.99	72 55	39.26
55 45	74.99	64 25	57.64	73 05	38.89
55 55	74.67	64 35	57.29	73 15	38.52
56 05	74·35	64 45	56.94	73 25	38.15
56 15	74·03	64 55	56.59	73 35	37.78
56 25	73·71	65 05	56.24	73 45	37.41
5 6 35	73·39	65 15	55.89	73 55	37.03
56 45	73.07	65 25	55·54	74 05	36.66
56 55	72.75	65 35	55·19	74 15	36.29
57 05	72.43	65 45	54·83	74 25	35.91
57 15	72.10	65 55	54·48	74 35	35·54
57 25	71.78	66 05	54.13	74 45	35.17
57 35	71.46	66 15	53.78	74 55	34.79
57 45	71.13	66 25	53.42	75 05	34.42
57 55	70.80	66 35	53.06	75 15	34.04
58 05	70.48	66 45	52.71	75 25	33.66
58 15	70.15	66 55	52.35	75 35	33.29
58 25	69.82	67 05	52.00	75 45	32.91
58 35	69.49	67 15	51.64	75 55	32.53
58 45	69.17	67 25	51.28	76 05	32.16
58 55	68.84	67 35	50.93	76 15	31.78
59 05	68.51	67 45	50.57	76 25	31.40
59 15	68.18	67 55	50.21	76 35	31.03
59 25	67.84	68 05	49.85	76 45	30.65
59 35	67.51	68 15	49.49	76 55	30.27
59 45	67.18	68 25	49.13	77 05	29.89
59 55	66.85	68 35	48.77	77 15	29.51
60 05	66.51	68 45	48.41	77 25	29.13
60 15	66.18	68 55	48.05	77 35	28.76
60 25	65.84	69 05	47.69	77 45	28.37
60 35	65.51	69 15	47·33	77 55	27.99

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. l-lii.]

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.
78° 05′	27.62	82° 05'	18.43	86° 05′	9.14
78 15	27.24	82 15	18.04	86 15	8.75
78 25	26.85	82 25	17.65	86 25	8.36
7 8 35	26.47	82 35	17.27	86 35	7.97
78 45	26.09	82 45	16.88	86 45	7.59
78 55	25.71	82 55	16.50	86 55	7.20
79 05	25.33	83 05	16.11	87 05	6.81
79 15	24.95	83 15	15.73	87 15	6.42
79 25	24.57	83 25	15.34	87 25	6.03
79 35	24.18	83 35	14.95	87 35	5.64
79 45	23.80	83 45	14.57	87 45	5.25
79 55	23.42	83 55	14.18	87 55	4.86
80 05	23.04	84 05	13.79	88 05	4·47
80 15	22.65	84 15	13.40	88 15	4·09
80 25	22.27	84 25	13.02	88 25	3·70
80 35	21.89	84 35	12.63	88 35	3·31
80 45	21.50	84 45	12.24	88 45	2.92
80 55	21.12	84 55	11.86	88 55	2.53
81 05	20.73	85 05	11.47	89 05	2.14
81 15	20.35	85 15	11.08	89 15	1.75
81 25	19.97	85 25	10.69	89 25	1.36
81 35	19.58	85 35	10.30	89 35	0.97
81 45	19.20	85 45	9.92	89 45	0.58
81 55	18.81	85 55	9.53	89 55	0.19

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet,

$$Z = C \frac{B_o - B}{B_o + B}$$

$$C \text{ (in feet)} = 52494 \left[1 + \frac{t_o + t - 64}{900} \right] - \text{English Measures.}$$

$$C \text{ (in metres)} = 16000 \left[1 + \frac{2(t_o + t)}{1000} \right] - \text{Metric Measures.}$$

In which Z = Difference of height of two stations in feet or metres.

 B_0 , B = Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

Values of C.

 t_0 , t = Air temperatures at the lower and upper stations respectively.

ENGLISH MEASURES.

METRIC MEASURES.

 $\log C$.

4.18639

.19000 .19357 .19712

.20063

4.20412

.20758

.21101 .21442 .21780

4.22115

.22778 .23106

.23431

4.23754

.24075

.24393 .24709 .25022

4.25334 .25643

.25950

C.

Metres.

15360 15488 15616

1 5744 1 5872

16000

16128 16256 16384

16512

16640

16768 16896

17024

17152

17280

17408

17536 17664

17792

17920 18048

18176 18304

ENG	GLISH MEAS	JRES.	MET
$\frac{1}{2}(t_0+t).$	log C.	<i>C</i> .,	$\frac{1}{2}(t_0+t).$
F. 10° 15 20 25 30 35 40 45	4.69834 ·70339 ·70837 ·71330 ·71818 4.72300 ·72777 ·73248	Feet. 49928 50511 51094 51677 52261 52844 53428 54011	C10° -8 -6 -4 -2 0 +2 4 6 8
50 55 60	.73715 .74177 4.74633	54595 55178 55761	10 12 14 16 18
65 70 75 80	.75085 .75532 .75975 .76413	56344 56927 57511 58094	20 22 24 26 28
90 95 100	4.76847 .77276 .77702 .78123	58677 59260 59844 60427	30 32 34 36

MEAN REFRACTION.

FOR CONVERSION OF ARC INTO TIME.

•	h. m.	۰	h. m.	۰	h. m.	۰	h. m.	۰	h. m.	۰	h. m.	,	m. s.	"	s.
0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 3 14 15 16 17 18 19 12 10 12 12 23 24 4 25 2 26 27 28 2 20 30 30 31 32 33 34 4 4 4 5 6 4 6 7 4 8 8 4 9 9 6 5 5 5 5 5 5 5 5 6 6 5 7 5 8 5 9 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 4 8 0 12 0 16 0 0 2 8 0 0 3 6 0 0 4 4 8 0 0 5 5 6 0 0 4 8 1 1 1 6 1 2 0 1 2 4 4 1 3 2 1 3 6 0 1 4 4 4 8 1 5 5 6 0 1 1 4 8 1 1 5 6 0 1 1 4 8 1 1 5 6 0 1 1 4 8 1 1 5 6 0 1 1 4 8 1 1 5 6 0 1 1 4 8 1 1 5 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	600 610 620 630 645 666 667 688 699 700 717 727 738 747 757 758 759	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	120 121 122 123 124 125 126 127 128 139 130 131 134 135 136 144 145 145 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 178 179 180	8 0 0 8 4 8 2 8 8 8 12 6 2 8 8 8 8 12 6 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	234 235 236 237	12 0 4 12 12 12 12 12 14 12 28 12 12 13 16 12 12 13 16 13 12 13 16 13 12 13 16 14 14 14 14 14 14 14 14 14 14 14 14 14	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 267 268 267 271 272 273 274 275 276 277 280 281 282 283 284 285 288 290 291 292 293 300	16 0 16 48 16 16 24 16 16 28 16 16 36 16 16 24 16 16 26 16 16 24 16 16 26 16 27 17 18 16 16 16 17 17 18 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	300 301 302 303 303 304 305 305 305 305 305 305 305 305 305 305	20 0 4 20 8 20 12 20 16 20 20 24 20 28 20 36 20 40 20 56 21 0 4 20 21 18 21 16 21 20 21 24 21 28 21 32 21 36 21 44 21 48 21 556 22 20 22 24 42 22 28 22 22 36 22 24 44 22 24 88 22 22 25 6 0 22 24 48 22 22 28 22 22 36 22 24 44 23 48 22 31 56 22 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 22 25 6 0 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 22 24 48 22 25 20 23 24 23 36 23 44 23 36 23	00 11 22 33 34 44 15 16 17 18 19 20 21 12 22 32 24 25 52 26 27 28 39 40 41 42 43 44 45 50 55 56 57 58 59 60 8 19 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0 4 8 12 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54 55 56	0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.800 0.667 0.733 0.800 0.867 1.133 1.000 1.067 1.133 1.000 1.067 1.133 1.400 1.467 1.533 1.400 1.467 1.533 1.400 1.467 1.533 1.500 1.207 1.333 1.400 1.467 1.533 1.500 1.667 1.733 1.800 1.8667 1.733 1.800 1.867 1.733 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.800 1.867 1.933 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000

				Hou	rs of T	ime int	o Arc.				
Time.	Arc.	Time	. Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
hrs.	0	hrs.	۰	hrs.	•	hrs.	0	hrs.	0	hrs.	0
1 2 3 4	30 45 60	5 6 7 8	75 90 105 120	9 10 11 12	135 150 165 180	13 14 15 16	195 210 225 240	17 18 19 20	255 270 285 300	21 22 23 24	315 330 345 360
	Minut	es of	Time int	o Arc.			Seco	nds of	Time in	ito Arc.	
m.	0 /	m.	0 /	m.	0 /	s.	, ,,	s.	, ,,	s.	, ,,
1 2 3 4	0 15 0 30 0 45 1 0	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 0	1 2 3 4	0 15 0 30 0 45 1 0	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 ,0
5 6 7 8 9	1 15 1 30 1 45 2 0 2 15	25 26 27 28 29	6 15 6 30 6 45 7 0 7 15	45 46 47 48 49	11 15 11 30 11 45 12 0 12 15	5 - 6 7 8 9	1 15 1 30 1 45 2 0 2 15	25 26 27 28 29	6 15 6 30 6 45 7 0 7 15	45 46 47 48 49	11 15 11 30 11 45 12 0
10 11 12 13 14	2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30	10 11 12 13 14	2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30
15 16 17 18 19	3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45	15 16 17 18 19	3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45
20	5 0	40	10 0	60	15 0	20	5 0	40	10 0	60	15 0
			Hundr	edths c	f a Sec	ond of	Time i	nto Arc			
of a	redths Sec- Time.	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
9	3.	"	"	"	"	"	"	"	"	"	<i>"</i> .
	.00 .10 .20 .30	0.00 1.50 3.00 4.50 6.00	1.65 3.15 4.65	0.30 1.80 3.30 4.80 6.30	0.45 1.95 3.45 4.95 6.45	0.60 2.10 3.60 5.10 6.60	0.75 2.25 3.75 5.25 6.75	0.90 2.40 3.90 5.40 6.90	1.05 2.55 4.05 5.55 7.05	1.20 2.70 4.20 5.70 7.20	1.35 2.85 4.35 5.85 7.35
	.50 .60 .70 .80	7.50 9.00 10.50 12.00 13.50	9.15 10.65 12.15	7.80 9.30 10.80 12.30 13.80	7.95 9.45 10.95 12.45 13.95	8.10 9.60 11.10 12.60 14.10	8.25 9.75 11.25 12.75 14.25	8.40 9.90 11.40 12.90 14.40	8.55 10.05 11.55 13.05 14.55	8.70 10.20 11.70 13.20 14.70	8.85 10.35 11.85 13.35 14.85

TABLE 34.

CONVERSION OF MEAN TIME INTO SIDEREAL TIME.

s	m O	m I	m 2	m 3	1			
	h m s	h m s	h m s	h m s	s	m s	S	m s
0	000	6 5 15	12 10 29	18 15 44	0.00	0 0	0.50	3 3
I	065	6 11 20	12 16 34	18 21 49	10.0	0 4	0.51	3 6
2	0 12 10	6 17 25	12 22 40	18 27 54 18 33 59	0.02	07	0.52	3 10
3 4	0 24 21	6 23 30 6 29 36	12 34 50	18 40 5	0.03 0.04	0 15	0.53	3 I4 3 I7
5	0 30 26	6 35 41	12 40 55	18 46 10	0.05	0 18	0.55	3 21
5 6 7 8	0 36 31	6 41 46	12 47 I	18 52 15	0.06	0 22	0.56	3 25 3 28
7 8	0 42 37 0 48 42	6 47 51	12 53 6	18 58 20	0.07	0 26 0 29	0.57	3 28 3 32
9	0 54 47	7 0 2	13 5 16	19 10 31	0.09	0 33	0.59	3 35
IO	I O 52	7 6 7	13 11 21	19 16 36	0.10	0 37	0.60	3 39
II	1 6 58	7 12 12	13 17 27	19 22 41	0.11	0 40	0.61	3 43 3 46
12	1 13 3 1 19 8	7 18 17	13 23 32	19 28 47 19 34 52	0.12	0 44	0.62	3 40
13 14	1 25 13	7 30 28	13 35 42	19 40 57	0.14	0 51	0.64	3 50 3 54
15	1 31 19	7 36 33	13 41 48	19 47 2	0.15	0 55 0 58	0.65	3 57
16	I 37 24	7 42 38 7 48 44	13 47 53	19 53 7	0.16 0.17	0 58 I 2	0.66	4 1
17	1 43 29 1 49 34		13 53 58	19 59 13	0.17	1 6	0.68	4 5 4 8
19	1 55 40	8 0 54	14 6 9	20 11 23	0.19	<u> 19</u>	0.69	4 12
20	2 1 45	8 6 59	14 12 14	20 17 28	0.20	1 13	0.70	4 16
2I 22	2 7 50	8 13 5 8 19 10	14 18 19 14 24 24	20 23 34	0.21	I 17 I 20	0.71	4 19
23	2 13 55 2 20 1	8 25 15	14 30 30	20 29 39 20 35 44	0.23	I 24	0.72	4 23
24	2 26 6	8 31 20	14 36 35	20 41 49	0.24	1 28	0.74	4 30
25 26	2 32 11	8 37 26 8 43 31	14 42 40	20 47 55	0.25 0.26	1 31	0.75	4 34
27	2 38 16 2 44 22	8 49 36	14 48 45	20 54 0 21 0 5	0.27	1 35 1 39	0.76 0.77	4 38 4 41
28	2 50 27	8 55 41	15 0 56	21 6 10	0.28	I 42	0.78	4 45
29	2 56 32	9 1 47	15 7 1	21 12 16	0.29	1 46	0.79	4 49
30	3 2 37 3 8 43	9 7 5 ² 9 13 57	15 13 6	2I 18 2I 2I 24 26	0.30	1 50	0.80	4 52
32	3 8 43 3 14 48	9 13 57 9 20 2	15 25 17	21 30 31	0.32	1 53 1 57	0.82	4 56 4 59
33	3 20 53	9 26 8	15 31 22	21 36 37	0.33	2 I	0.83	5 3
34	3 26 58 3 33 3	9 32 13 9 38 18	15 37 27	21 42 42 21 48 47	0.34	2 4 2 8	0.84 0.85	5 7 5 10
35 36	3 39 9	9 44 23	15 43 33 15 49 38	21 54 52	0.36	2 11	0.86	5 14
37 38	3 45 14	9 50 28	15 55 43	22 0 58	0.37 0.38	2 15	0.87	5 14 5 18 5 21
38	3 51 19 3 57 24	9 56 34 10 2 39	16 1 48 16 7 54	22 7 3 22 13 8	0.38	2 19 2 22	0.88 0.89	5 21 5 25
40	4 3 30	10 8 44	16 13 59	22 19 13	0.40	2 26	0.90	5 29
41	4 9 35	10 14 49	16 20 4	22 25 19	0.41	2 30	0.91	
42	4 15 40	10 20 55	16 26 9	22 31 24	0.42	2 33	0.92	5 36
43 44	4 21 45 4 27 51	10 27 0	16 32 14 16 38 20	22 37 29 22 43 34	0.43 0.44	2 37 2 41	0.93 0.94	5 40 5 43
	4 33 56	10 39 10	16 44 25	22 49 39	0.45	2 44	0.95	
45 46	4 40 I	10 45 16	16 50 30	22 55 45	0.46	2 48	0.96	5 51
47 48	4 46 6 4 52 12	10 51 21	16 56 35 17 2 41	23 1 50 23 7 55	0.47 0.48	2 52 2 55	0.9 7 0.98	5 47 5 51 5 54 5 58 6 .2
49	4 58 17	11 3 31	17 8 46	23 14 0	0.49	2 59	0.99_	6.2
50	5 4 22	11 9 37	17 14 51	23 20 6	0.50	3 3	1.00	6 5
51	5 10 27 5 16 22	II 15 42 II 21 47	17 20 56	23 26 11	E	mnle · T ^+	the giver	mean
52 53	5 16 33 5 22 38	11 27 52	17 27 2 17 33 7	23 32 16 23 38 21		.mple : Let oe 14h 57m		incall
54	5 28 43	11 33 58	17 39 12	23 44 27	The	table give	es	
55	5 34 48 5 40 54	11 40 3 11 46 8	17 45 17	23 50 32	first for then for	or 14 ^h 54 ^m or 2		
57	5 46 59	11 52 13	17 57 28	23 56 37 24 2 42	then I	O1 2	•	7·44
54 55 56 57 58 59	5 53 4	11 58 19	18 2 22 1	24 8 48		sum		
60	5 59 9 6 5 15	12 4 24	18 9 38 18 15 44	24 14 53 24 20 f8		32°.56 +2° required s		
	O 3 13	12 10 29	10 15 44	24 20 58	15 the	required s	inciest (II	ne.

CONVERSION OF SIDEREAL TIME INTO MEAN TIME.

s	m O	m I	m 2	m 3					
0	h m s	h m s 6 6 1 5	h m s 12 12 29	h m s 18 18 44	s 0.00	m s O O	s 0.50	m s 3 3	
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0 6 6 0 12 12 0 18 19 0 24 25 0 30 31 0 36 37 0 42 44 0 48 50 0 54 56 1 1 2 1 7 9 1 13 15 1 19 21 1 25 27 1 31 34 1 37 40 1 43 46 1 49 52 1 55 59 2 8 11 2 14 17 2 20 24	6 12 21 6 18 27 6 24 33 6 30 40 6 36 6 42 52 6 48 58 6 55 4 7 1 11 7 7 17 7 13 23 7 19 29 7 25 36 7 31 42 7 37 48 7 43 54 7 50 7 8 2 13 8 8 19 8 14 26 8 20 32 8 26 38	12 18 35 12 24 42 12 30 48 12 36 54 12 43 0 12 49 7 12 55 13 13 1 19 13 7 25 13 13 31 13 19 38 13 25 44 13 31 50 13 37 56 13 44 3 13 56 15 14 2 21 14 8 28 14 14 34 14 20 40 14 26 46 14 32 53	18 24 50 18 30 56 18 37 2 18 43 9 18 49 15 18 55 21 19 1 27 19 7 34 19 13 40 19 19 46 19 25 52 19 31 59 19 44 11 19 50 17 19 56 23 20 2 30 20 8 36 20 14 42 20 20 48 20 26 55 20 33 1 20 39 7	0.01 0.02 0.03 0.04 0.05 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.18 0.19	0 4 0 7 0 11 0 15 0 18 0 22 0 26 0 29 0 33 0 37 0 40 0 44 0 48 0 51 0 55 0 59 1 2 1 6 1 10 1 13 1 17 1 21 1 24	0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69	3 7 3 10 3 14 3 18 3 21 3 25 3 29 3 32 3 36 3 40 3 43 3 47 3 51 3 54 3 58 4 2 4 5 4 9 4 13 4 16 4 20 4 24 4 27	
25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 39	2 26 30 2 32 36 2 38 42 2 44 49 2 50 55 2 57 1 3 3 7 3 9 14 3 15 20 3 21 26 3 27 32 3 33 38 3 39 45 3 45 3 45 3 45 3 51 57 3 58 3	8 32 44 8 38 51 8 44 57 8 51 3 8 57 3 9 5 3 16 9 9 22 9 15 28 9 21 34 9 27 41 9 33 47 9 39 53 9 45 59 9 52 5 9 58 12 10 4 18	14 38 59 14 45 5 14 51 11 14 57 18 15 3 24 15 9 30 15 15 36 15 21 43 15 27 49 15 33 55 15 46 8 15 52 14 15 58 20 16 4 26 16 10 33	20 45 13 20 51 20 20 57 26 21 3 32 21 9 38 21 15 45 21 21 51 21 27 57 21 34 3 21 40 10 21 46 16 21 52 22 21 58 28 22 4 35 22 10 41 22 16 47	0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38	1 28 1 32 1 35 1 39 1 43 1 46 1 50 1 54 1 57 2 1 2 5 2 16 2 19 2 23	0.74 0.75 0.75 0.77 0.78 0.79 0.81 0.82 0.83 0.84 0.85 0.87 0.88	4 31 4 35 4 38 4 42 4 46 4 49 4 53 4 57 5 5 4 5 8 5 11 5 15 5 19 5 22 5 26	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	4 4 10 4 10 16 4 16 22 28 4 28 35 4 34 41 4 40 47 4 46 53 6 5 5 12 5 11 18 5 17 25 5 29 37 5 35 43 5 47 56	10 10 24 10 16 30 10 22 37 10 28 43 10 34 49 10 40 55 10 47 2 10 53 8 10 59 14 11 5 20 11 11 27 11 17 33 11 23 39 11 29 45 11 41 58 11 48 4 11 54 10 12 0 17	16 16 39 16 22 45 16 28 51 16 34 57 16 41 47 10 16 53 16 16 59 22 17 5 9 22 17 17 41 17 23 47 17 29 54 17 36 0 17 42 6 17 48 12 17 54 19 18 0 25 18 6 31	22 22 53 22 29 0 22 35 6 22 47 18 22 53 24 22 59 31 23 5 37 23 17 49 23 23 56 23 30 2 23 36 8 23 42 14 23 48 21 23 54 27 24 0 33 24 6 39 24 12 46	0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 Exa The first fo	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
59 60	5 54 2 6 0 8 6 6 15	12 6 23	18 12 37	24 18 52 24 24 58		required n			

TABLE 36.

LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. I' of the Eq.
0° 1 2 3 4	110568.5 110568.8 110569.8 110571.5	68.703 68.704 68.705 68.706 68.707	59·594 59·594 59·595 59·596 59·597	45° 46 47 48 49	111132.1 111151.9 111171.6 111191.3 111210.9	69.054 69.067 69.079 69.091 69.103	59.898 59.908 59.919 59.929 59.940
5	110577.0	68.709	59-598	50	111230.5	69.115	59.951
6	110580.7	68.711	59-600	51	111249.9	69.127	59.961
7	110585.1	68.714	59-603	52	111269.2	69.139	59.972
8	110590.2	68.717	59-606	53	111288.3	69.151	59.982
9	110595.9	68.721	59-609	54	111307.3	69.163	59.992
10	110602.3	68.725	59.612	55	111326.0	69.175	60.002
11	110609.3	68.729	59.616	56	111344.5	69.186	60.012
12	110617.0	68.734	59.620	57	111362.7	69.198	60.022
13	110625.3	68.739	59.625	58	111380.7	69.209	60.032
14	110634.2	68.745	59.629	59	111398.4	69.220	60.041
15	110643.7	68.751	59.634	60	111415.7	69.230	60.051
16	110653.8	68.757	59.640	61	111432.7	69.241	60.060
17	110664.5	68.763	59.646	62	111449.4	69.251	60.069
18	110675.7	68.770	59.652	63	111465.7	69.261	60.077
19	110687.5	68.778	59.658	64	111481.5	69.271	60.086
20	110699.9	68.786	59.665	65	111497.0	69.281	60.094
21	110712.8	68.794	59.672	66	111512.0	69.290	60.102
22	110726.2	68.802	59.679	67	111526.5	69.299	60.110
23	110740.1	68.810	59.686	68	111540.5	69.308	60.118
24	110754.4	68.819	59.694	69	111554.1	69.316	60.125
25	110769.2	68.829	59.702	70	111567.1	69.324	60.132
26	110784.5	68.838	59.710	71	111579.7	69.332	60.139
27	110800.2	68.848	59.719	72	111591.6	69.340	60.145
28	110816.3	68.858	59.727	73	111603.0	69.347	60.151
29	110832.8	68.868	59.736	74	111613.9	69.354	60.157
30	110849.7	68.879	59·745	75	111624.1	69.360	60.163
31	110866.9	68.889	59·755	76	111633.8	69.366	60.168
32	110884.4	68.900	59·764	77	111642.8	69.372	60.173
33	110902.3	68.911	59·774	78	111651.2	69.377	60.177
34	110920.4	68.923	59·7 ⁸ 4	79	111659.0	69.382	60.182
35	110938.8	68.934	59·794	80	111666.2	69.386	60.186
36	110957.4	68.946	59.804	81	111672.6	69.390	60.189
37	110976.3	68.957	59.814	82	111678.5	69.394	60.192
38	110995.3	68.969	59.824	83	111683.6	69.397	60.195
39	111014.5	68.981	59.834	84	111688.1	69.400	60.197
40	111033.9	68.993	59.845	85	111691.9	69.402	60.199
41	111053.4	69.005	59.855	86	111695.0	69.404	60.201
42	111073.0	69.017	59.866	87	111697.4	69.405	60.20 2
43	111092.6	69.029	59.876	88	111699.2	69.407	60.203
44	111112.4	69.042	59.887	89	111700.2	69.407	60.204
45	111132.1	69.054	59.898	90	111700.6	69.407	60.204

TABLE 37.

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

[Derivation of table explained on p. xlix.]

Lat'tude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.
0°	111321.9	69.171 69.162	60.000 59.991	45° 46	788 50.0 77466.5	48.995 48.135	42.498 41.753
2	111254.6	69.130	59.964	47	76059.2	47.261	40.994
3	111170.4	69.078	59.918	48	74628.5	46.372	40.223
4	111052.6	69.005	59.855	49	73174.9	45.469	39.440
5	110901.2	68.911	59-773	50	71698.9	44.552 43.621	38.644
6	110716.2	68.796 68.660	59.673	51	70200.8	43.621	37.837
7 8	110497.7		59.556	52	68681.1	42.676	37.018
	110245.8	68.503	59.420	53	67140.3	41.719	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63997.1	39.766	34-493
11	109290.1	67.909	58.905	56	62395.7	38.771	33.630
12	108905.2	67.670	58.697	57 58	60775.1	37.764	32.757
13	108487.3	67.411	58.472	58	59135.7	36.745	31.873
14	108036.6	67.131	58.229	59	57478.1	35.715	30.979
15	107 553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	61	54110.2	33.622	29.164
17	107037.0	66.169	57-395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.082	63	50675.4	31.488	27.313
19	105294.7	65.427	56.751	64	48934.3	30.406	26.374
20 -	104649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103973.2	64.606	56.039	66	45407.I	28.215	24.473
22	103265.0	64.166	55.657	67 68	43622.2	27.106	23.511
23	102525.4	63.706	55.259		41823.8	25.988	22.542
24	101754.6	63.227	54.843	69	40012.4	24.862	21.566
25	100953.0	62.729	54.411	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593 18.598
27	99257.8	61.676	53.498	72	34506.2	21.441	18.598
28	98364.8	61.121	53.016	73	32648.6	20.287	17.597
29	97441.9	60.548	52.519	74	30780.9	19.126	16.590
30	96489.3	59.956	52.006	75	28903.6	17.960	15.578
31	95507.3	59.345	51.476	76	27017.4	16.788	14.562
32	94496.2	58.717	50.931	77	25122.8	15.611	13.541
33	93456.3	58.071	50.371	78	23220.4	14.428	12.515
34	92387.9	57-407	49.795	79	21310.8	13.242	11.486
35	91291.3	56.726	49.204	80	19394.6	12.051	10.453
36	91291.3 90166.8	56.027	48.598	81	17472.4	10.857	9.417 8.378
37 38	89014.8	55.311	47.977	82	15544.7	9.659	
38	87835.6	54.578 53.829	47.341	83	13612.2	8.458	7.337
39	86629.6	53.829	46.691	84	11675.5	7.255	6.293
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247
41	84128.4	52.281	45.349	86	7791.7	4.841	4.200
42	82854.0	51.483	44.656	87 88	5845.9	3.632	3.151
43	81544.2	50.669	43.950		3898.3	2.422	2.101
44	80209.4	49.840	43.23I	89	1949.4	1.211	1.051
45	78850.0	48.995	42.498	90	0.0	0.000	0.000

TABLE 38.
INTERCONVERSION OF NAUTICAL AND STATUTE MILES.

1 nautical mile *= 6080.27 feet.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
1	1.1516	1 2 3 4 5 6 7 8 9	0.8684
2	2.3031		1.7368
3	3.4547		2.6052
4	4.6062		3.4736
5	5.7578		4.3420
6	6.9093		5.2104
7	8.0609		6.0788
8	9.2124		6.9472
9	10.3640		7.8155

SMITHSONIAN TABLES.

TABLE 39.

CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENGLISH EQUIVALENTS.

The asterisk (*) indicates that the measure is obsolete or seldom used.

Measure.	Metric Equivalent.	English Equivalent.
El, Netherlands Fathom, Swedish = 6 feet Foot, Austrian,* old French * Russian Rheinlandisch or Rhenish (Prussia, Denmark, Norway) * Swedish * Spanish * = \frac{1}{2} vara *Klafter, Wiener (Vienna) *Line, old French = \frac{1}{4}\frac{1}{4} foot Mile, Austrian post *= 24000 feet Norwegian = 36000 feet Norwegian = 36000 feet Notherlands (mijl) Prussian (law of 1868) Danish Palm, Netherlands *Rode, Danish *Ruthe, Prussian, Norwegian Sagene, Russian *Toise, old French = 6 feet *Vara, Spanish Mexican Werst, or versta, Russian = 500 sagene	I metre. 1.7814 " 0.31608 " 0.32484 " 0.30480 " 0.31385 " 0.2969 " 0.2786 " 1.89648 " 0.22558 cm. 7.58594 km. 1.852 " 10.69 " 11.2986 " 1 " 7.500 " 7.5324 " 0.1 metre. 3.7662 " 3.7662 " 2.1336 " 1.0490 " 0.8359 " 0.8380 "	3.2808 feet. 5.8445 " 1.0370 " 1.0657 " 1 " 1.0297 " 0.9741 " 0.9140 " 6.2221 " 0.0888 inch. 4.714 statute miles. 1.1508 " " 6.642 " " 7.02 " " 0.6214 " " 4.660 " " 4.6804 " " 0.3281 feet. 12.356 " 7 6.3943 " 2.7424 " 2.7293 " 3500 "

^{*} As defined by the United States Coast and Geodetic Survey.

TABLE 40.

ACCELERATION (g) OF CRAVITY ON SURFACE OF EARTH AND DERIVED FUNCTIONS.

ε=9.77989 + 0.05221 sin2 φ

= 9.80599 — 0.02610 cos 2\$\phi\$ metres.* \$\phi\$ = geographical latitude.

φ	8	log g	$\log \frac{1}{2g}$	log √2g	$\frac{g}{\pi^2}$
	Metres.				Metres.
o°	9.7798	0.99033	8.70864-10	0.64568	0.99090
5	.7803	035	862	569	095
10	.7814	040	857	572	106
15	.7834	049	848	576	1 27
20	.7859	060	837	582	152
25	.7893	975	822	589	186
30	.7929	091	806	597	222
35	.7969	109	788	606	264
40	.8014	129	768	616	309
45	.8060	149	748	626	355.
50	.8105	169	728	636	401
55	.8150	189	708	646	447
60	.8191	207	690	655	488
65	.8227	223	674	663	525
70	.8261	238	659	670	559
75	.8286	. 249	648	676	584
80	.8306	258	639	68o	` 605
85	.8317	263	634	683	616
90	.8322	265	632	684	621

^{*} From The Solar Parallax and its Related Constants, by Wm. Harkness, Professor of Mathematics, U. S. N.; Washington: Government Printing Office, 1891.

[†] This is length of seconds pendulum.

TABLE 41.

LINEAR EXPANSIONS OF PRINCIPAL METALS, IN MICRONS PER METRE (OR MILLIONTHS PER UNIT LENGTH).

Name of metal.	Expansion per degree C.	Expansion per degree F.
Aluminum	20	11.1
Brass	19	10.5
Copper	17	9.4
Glass	9	5.0
Gold	15	5.0 8.3
Iron, cast	11	6.1
Iron, wrought	12	6.7
Lead	28	15.5
Platinum	1 9	5.0
Platinum-iridium 1	9 8. ₇	5.0 4.8
Silver	19	10.5
Steel, hard	12	6.7 6.1
Steel, soft	II	6.1
Tin	19	10.5
Zinc	29	16.1

SMITHSONIAN TABLES.

Table 42.
FRACTIONAL CHANGE IN A NUMBER CORRESPONDING TO A CHANGE IN ITS LOCARITHM.

Computed from the formula,

$$\frac{\Delta N}{N} = \frac{\Delta \log N}{\mu},$$

 $\mu = \text{modulus of common logarithms} = 0.43429448.$

For $\Delta \log N$ = 1 unit in	$rac{\Delta N}{N}$	For $\Delta \log N$ = 4 units in	$\frac{\Delta N}{N}$ (in round numbers)
4th place	4848	4th place	1000
5th "	48429	5th "	1000
6th "	484294	6th "	10000
7th "	4842945	7th "	100000

¹ Of International Prototype Metres.

APPENDIX.

CONSTANTS.

Numerical Constants.	Number.	Logarithm.		
	72.00	•		
Base of natural (Napierian) logarithms, Log e, modulus of common logarithms,	= e = 2.7182818	0.4342945		
Circumference of circle in degrees,	$= \mu = 0.4342945$ = 360	9.6377843 — 10		
" " in minutes.	= 300	2.5563025		
" " in seconds,	= 1296000	4-3344538 6.1126050		
Circumference of circle, diameter unity,	$=\pi = 3.14159265$	0.4971499		
Circumstence of circle, diameter unity,	3.14159205	0.49/1499		
Number. Logarithm.				
$2\pi = 6.2831853 \qquad 0.7981799$	$1/\pi^2 = 0.1013212$	9.0057003 — 10		
$\frac{\pi}{3}$ = 1.0471976 0.0200286	$\sqrt{\pi} = 1.7724539$	0.2485749		
3	$\frac{1}{\sqrt{\pi}} = 0.5641896$	9.7514251 — 10		
$\frac{1}{\pi}$ = 0.3183099 9.5028501 — 10	• *			
$\pi^2 = 9.8696044$ 0.9942997	$\sqrt{2} = 1.4142136$	0.1505150		
, , , , , , , , , , , , , , , , , , , ,	$\sqrt{3}$ = 1.7320508	0.2385607		
The arc of a circle equal to its radius is				
in degrees, $\rho^{\circ} = 180/\pi$	= 57.29578°	1.7581226		
in minutes, $\rho' = 60 \rho^{\circ}$	= 3437.7468'	3.5362739		
in seconds, $\rho'' = 60 \rho'$	= 206264.8''	5.3144251		
For a circle of unit radius, the				
$\operatorname{arc of } I^{\circ} = I/\rho^{\circ}$	= 0.0174533	8.2418774 — 10		
$\operatorname{arc} \operatorname{of} I' = I/\rho'$	= 0.0002909	6.463726 I — 10		
arc (or sine) of $I'' = I/\rho''$	= 0.00000485	4.6855749 — 10		
Geodetical Constants.				
Dimensions of the earth (Clarke's spheroid, 18	866) and derived quantiti	ec.		
Equatorial semi-axis in feet,	= a = 20926062.	7.3206875		
in miles,	= a = 3963.3	3.5980536		
Polar semi-axis in feet,	= b = 20855121.	7.3192127		
in miles,	= b = 3949.8	3.5965788		
a^2-b^2	$e^2 = 0.00676866$			
$(Eccentricity)^2 = \frac{a^2 - b^2}{a^2}$	<i>e</i> = 0.00070000	7.8305030 — 10		
Flattening $=\frac{a-b}{a}$	= f = 1/294.9784	7.5302098 — 10		
Perimeter of meridian ellipse,	= 24859.76 mi	les.		
Circumference of equator,	= 24901.96	"		
Area of earth's surface,	= 196940400 sq	uare miles.		
Mean density of the earth (HARKNESS)	= 5.576±0.016.			
Surface density " " "	$= 2.56 \pm 0.16.$			
Acceleration of gravity (HARKNESS):				
g (cm. per second) = 980.60 (1 - 0.002662	cos 2φ) for latitude φ a	nd sea level.		
g, at equator = 977.99; g, at Washington				
g, at poles = 983.21; g , at Greenwich = 981.17.				
Length of the seconds pendulum (HARKNESS):				
$l = 39.012540 + 0.208268 \sin^2 \phi$ inches =	0.990910 + 0.005290 sin	² φ metres.		

CONSTANTS. - Continued.

Astronomical Constants (HARKNESS).

Sidereal year = 365.256 357 8 mean solar days.

Sidereal day = 23^h 56m 4.5100 mean solar time.

Mean solar day = 24^h 3^m 56.8546 sidereal time.

Mean distance of the earth from the sun = 92800000 miles.

Physical Constants.

Velocity of light (HARKNESS) = 186 337 miles per second = 299 878 km. per second. Velocity of sound through dry air = 1090 $\sqrt{1 + 0.00367} t^{\circ} C$. feet per second.

Weight of distilled water, free from air, barometer 30 inches:

	Weight in	n grains.	Weight in grammes.		
Volume.	62° F.	4° C.	62° F.	4° C.	
1 cubic inch (determination of 1890)	252.286	252.568	16.3479	16.3662	
1 cubic centimetre (1890)	15.3953	15.4125	0.9976	0.9987	

1 cubic foot (1890) at 62° F. 62.2786 lbs.

A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm. and temperature o° C., under standard gravity at latitude 45° and at sea level.

1 standard atmosphere = 1033 grammes per sq. cm. = 14.7 pounds per sq. inch.

Pressure of mercurial column 1 inch high = 34.5 grammes per sq. cm. = 0.491 pounds per sq. inch.

Weight of dry air (containing 0.0004 of its weight of carbonic acid):

1 cubic centimetre at temperature 32° F. and pressure 760 mm. and under the standard value of gravity weighs 0.001 293 05 gramme.

Density of mercury at o° C. (compared with water of maximum density under atmospheric pressure) = 13.5956.

Freezing point of mercury = $-38.^{\circ}5$ C. (REGNAULT, 1862.)

Coefficient of expansion of air (at const. pressure of 760mm) for 1° C. (Do.): 0.003 670.

Coefficient of expansion of mercury for Centigrade temperatures (BROCH):

 $\Delta = \Delta_0 (1 - 0.000 181792 t - 0.000 000 000 175 t^2 - .000 000 000 035 116 t^8).$

Coefficient of linear expansion of brass for 1° C., $\beta = 0.0000174$ to 0.0000190.

Coefficient of cubical expansion of glass for 1° C, $\gamma = 0.000$ 021 to 0.000 028.

Ordinary glass (RECKNAGEL): at 10° C., $\gamma = 0.0000255$; at 100°, $\gamma = 0.0000276$.

Specific heat of dry air compared with an equal weight of water:

at constant pressure, $K_p = 0.2374$ (from 0° to 100° C., REGNAULT).

at constant volume, $K_v = 0.1689$.

Ratio of the two specific heats of air (RONTGEN): $K_p / K_v = 1.4053$.

Thermal conductivity of air (Graetz): k = 0.0000484 (1 + 0.001 85 t^0 , C.) $\frac{\text{gramme.}}{\text{cm. sec.}}$

[The quantity of heat that passes in unit time through unit area of a plate of unit thickness, when its opposite faces differ in temperature by one degree.]

Latent heat of liquefaction of ice (Bunsen) = 80.025 mass degrees, C.

Latent heat of vaporization of water = $606.5 - 0.695 t^{\circ} C$.

Absolute zero of temperature (Thomson, Heat, Encyc. Brit.) : $-273.^{\circ}$ 0 C. = $-459.^{\circ}$ 4 F.

Mechanical equivalent of heat: *

- I pound-degree, F. (the British thermal unit) = about 778 foot-pounds.
- I pound-degree, C = 1400 foot-pounds.
- I calorie or kilogramme-degree, C = 3087 foot-pounds = 426.8 kilogrammetres = 4187 joules (for g = 981 cm.).

^{*} Based on Prof. Rowland's determinations. (Proc. Am. Acad. Arts and Sci., 1880.)

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. English to Metric.

	Matrio	equivalents.	Logovithore
Units of length.	Metric	equivatents.	Logarithms.
ı inch.	2.54000	centimetres.	0.404 835
I foot.	0.304801	metre.	9.484 016 — 10
ı yard.	0.914402	66	9.961 137 - 10
ı mile.	1.60935	kilometres.	0.206 650
	,00		
Units of area.			
I square inch.	6.45163	square centimetres.	0.809 669
I square foot.	929.034	* " "	2.968 03 2
I square yard.	0.836131	square metre.	9.922 274 — 10
I acre.	0.404687	hectares.	9.607 120 — 10
I square mile.	2.59000	square kilometres.	0.413 300
- 66 66	259.000	hectares.	2.413 300
Unite of volume			
Units of volume.			
I cubic inch.	16.3872	cubic centimetres.	1.214 504
I cubic foot.	0.028317	cubic metres or steres.	8.452 047 — IO
ı cubic yard.	0.764559	cubic metres or steres.	9.883 411 — 10
Unite of consoity			
Units of capacity,		0 11.	
I gallon (U.S.) = 231 cubic	inches.	3.78544 litres.	0.578 116
1 quart (U. S.).		0.94636 litres.	9.976 056 — 10
I Imperial gallon (British).		4.54683 litres.	0.657 709
277.463 cubic inches (18		ad agos litus	
I bushel (U. S.) = 21 50.42 c I bushel (British).	ubic inches.	35.2393 litres.	1.547 027
1 busher (Billish).		36.3477 litres.	1.560 477
Units of mass.			
I grain.	64.7990	milligrammes.	1.811 568
I pound avoirdupois.	0.453593	kilogrammes.	9.656 666 10
I ounce avoirdupois.	28.3496	grammes.	1.452 546
i ounce troy.	31.1035	grammes.	1.492 810
I ton (2240 lbs.). I ton (2000 lbs.).	1.01605 0.907186	tonnes.	0.006 914
1 ton (2000 tos.).	0.907100	tomes.	9.957 696 — 10
Units of velocity.			
I foot per sec. (0.6818 miles	per hr) — 0.20	480 metres per sec — I 00	72 km per hr
i mile per hr. (1.4667 feet j	per sec.) = 0.30	704 metres per sec. = 1.600	2 km. per hr
I muo per mi (injec) reet j	, or 500.	, -4 Par sea. 1.00;	7J Pot III.
Units of force.			
ı poundal.		13825.5 dynes.	4.140 682
Weight of I grain for a -	28r.cm.).	62 cm dames	1.803 237
Weight of 1 pound av. (for	z = 081 cm.).	4.45×10^5 dynes.	5.648 335
l real transfer (tox)	, , , , .	. 13 /	J -1- JJJ
Units of stress—in g	ravitation measure.		
I pound per square inch = ;	0.307 gramme	es per sq. centimetre.	1.846 997
I pound per square foot =	4.8824 kilogran	nmes per sq. metre.	0.688 634
		• •	٠,
Units of work—in ab	solute measure.		
r foot-poundal.		42I 403 ergs.	5.624 698
•			
	vitation measure.		
I foot-pound (for $g = 981$ cr	$n.) = 1356.3 \times$	$10^4 \text{ ergs} = 0.138255 \text{ kilogr}$	am-metres.
		3 0 00 0	
Units of activity (rate			
I foot-pound per minute (for I horse-power (33 000 foot-p	g = 981 cm.) = ounds per min.	= 0.022605 watts. .) = 746 wa s = 1.0138 7 fc	orce de cheval.
Units of heat.			
			1
I pound-degree, F.	= 25	2 small calories or gramme	-aegrees, C.
1 pound-degree, C.	= 1.6	8 pound-degrees, F.	

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. Metric to English.

Illuite of length	Eng	rlish equivalents.	Logarithms.		
Units of length.	20.2700	inches.	1 505 165		
1 metre (106 microns).	39.3700 3.28083	feet.	1.595 165 0.515 984		
"	1.09361	yards.	0.038 863		
ı kilometre.	0.62137	miles.	9.793 350 — 10		
Units of area.	0.0213/		9.793 330 10		
	0.77700	causes inches	0.700.007		
1 square centimetre.	0.15500	square inches.	9.190 331 — 10		
ı square metre.	10.7639	square yards.	1.031 968 0.077 726		
ı hectare.	1.19599 2.47104	acres.	0.392 880		
1 square kilometre.	0.38610	square miles.	9.586701 — 10		
_	0.30010	square mnes.	9.300 / 01 — 10		
Units of volume.	6	auhia inahaa	9 -9 - 106		
r cubic centimetre.	•	cubic inches.	8.785 496 — 10		
1 cubic metre or stère.	35.3145	cubic feet.	1.547 953		
	1.30794	cubic yards.	0.116 589		
Units of capacity.					
1 litre (61.023 cubic inches).	0.26417	gallons (U. S.).	9.421 884 — 10		
66	1.05668	quarts (U. S.).	0.023 944		
	0.21993	Imp. gallons (British).			
ı hectolitre.	2.83774	bushels (U.S.).	0.452 973		
	2.75121	bushels (British).	0.439 523		
Units of mass.					
I gramme.	15.4324	grains.	1.188 433		
ı kilogramme.	2.20462	pounds avoirdupois.	0.343 334		
"	35.2739	ounces avoirdupois.	1.547 454		
44	32.1507	ounces troy.	1.507 190		
I tonne.	0.98421	tons (2240 lbs.).	9.993 086 — 10		
	1.10231	tons (2000 lbs.).	0.042 304		
Units of velocity.					
I metre per second.	3.2 808	feet per second.	0.515984		
	2.23 69	miles per hour.	0.349 653		
1 km. per hr. (0.2778 m. per sec.).	0.62137	miles per hour.	9.793 350 — 10		
Units of force.					
1 dyne (weight of (981)-1 grammes,	for $g = 981$	cm.) = $7.2330 \times 10^{-6} p$	oundals.		
Units of stress—in gravitation mea	sure.				
I gramme per square centimetre.		oounds per sq. inch.			
I kilogramme per square metre.		oounds per sq. foot.			
I standard atmosphere.			ee def. p. 172.)		
·					
Units of work—In absolute measure I erg.		10 ⁻⁶ foot poundals.			
I megalerg = 10 ⁶ ergs; I joule = 10		10 Tool poundais.			
— In gravitation measu					
I kilogramme-metre (for $g = 981$ cm		$10^{5} \text{ erg} \mathbf{s} = 7.2330 \text{ foot-p}$	ounds.		
Units of activity (rate of doing	•				
1 watt = 1 joule per sec. (= 44.2385		s per minute, for $g = 981$	cm.) = 0.10194		
kilogramme-metre per sec., for $g = 981$ cm.					
I force de cheval = 75 kilogramme-	metres per s	ec. = $735\frac{3}{4}$ watts = 0.986	32 horse-power.		
Units of heat.					

SMITHSONIAN TABLES.

I calorie or kilogramme-degree = 3.968 pound-degrees, F. = 2.2046 pound-degrees, C. I small calorie or therm, or gramme-degree = 0.001 calorie or kilogramme-degree.

APPENDIX.

DIMENSIONS OF PHYSICAL QUANTITIES.

L = length; M = mass; T = time.

	· · · · · · · · · · · · · · · · · · ·					
Quantity.	Dimensions Quantity.			Di	mensions.	
Area.	$[L^2]$	Moment	Momentum.			M T-1]
Volume.	$[L^8]$	Moment	Moment of Inertia.			1 L2]
Mass.	[M]	Force.	Force.			M T-2]
Density.	[M L-8]	Stress (per unit a	rea).	[]	_1 M T_2]
Velocity.	[L T ⁻¹]	Work of	r Energ	y.	[]	ℐ M T ²]
Acceleration.	[L T-2]	Rate of	Workin	g (Power)	. [I	2 M T ⁻⁸]
Angle.	[o]	Heat.			[1	.2 M T ⁻²]
Angular Velocit	y. [T ⁻¹]	Therma	l Condu	ıctivity.	[I	.−1 M T−1]
In	Electrostatics	.		Symbol.	Delect	Imensions in rostatic system.
Quantity of Electri	city.			e	[1	M T-1]
Surface Density:	quantity per u	nit area.		σ	[]	_ M T-1]
Difference of Po-	tential: qua	ntity of work	required	E	[1	L ¹ M ¹ T ⁻¹]
to move a quantity of tity moved).	of electricity;	(work done)	÷ (quan-			
Electric Force, of (quantity) ÷ (distant		otive Int	ensity:	F	[1	L-3 M3 T-1]
Capacity of an accu				$C ext{ or } q$		[L]
Specific Inducti	ve Capacit	у.		k		[0]
- tr	Magnetics.				el	Dimensions in ectro-magnetic system.
Opantity of Magnet	ism, or Strengt	th of Pole.		m		M T-1
Quantity of Magnetism, or Strength of Pole. Strength or Intensity of Field: (quantity) ÷ (distance ²).			s		-1 M1 T-1]	
Magnetic Force.				Þ	ſΙ	,} M [}] T1]
Magnetic Momen	t: (quantity)	× (length).		ml	Ĺľ	[§] M ^½ T ⁻¹]
Intensity of Mag			oment per	I	_	- M T-1]
Magnetic Potent				V or Ω	[L	[‡] M [‡] T ⁻¹]
Magnetic Induct	ive Capaci	t y.		μ		[0]
In Electro	-magnetics.		Symbol.	Dimensions electro-mag system	netic	Name of practical unit.
Intensity of Curren	it.		i	[L ¹ M ¹ T	-1]	Ampère.
Quantity of Electric (intensity) × (time).	•	-	e	[L ⁱ M ⁱ]		Coulomb.
Potential, or difference done) ÷ (quantity o work is done).			E	[L³ M³ T-	⁻²]	Volt.
Electric Force: t ing on electro-mag (mechanical force) :	netic unit of		E	[L ¹ M ¹ T	⁻²]	
		i.	R	[L T-1]		Ohm.
Resistance of a conductor: $E \div i$. R Capacity: quantity of electricity stored up per unit potential-difference produced by it.			[L 1 1] [L-1 T2]		Farad.	
Specific Conduc current passing acre action of unit electric	tivity: the in oss unit area	ntensity of		[L-2 T]		
Specific Resista specific conductivity.	nce: the rec	ciprocal of	r	[L ² T ⁻¹]		

INDEX.

PAGE	PAGE
Acceleration, dimensions of 175	Babinet, barometric formula of160
of gravity, formula for171	Barometer, heights by
table of values of169	Binomial seriesxiv
Air, cubical expansion, specific heat, thermal	Brass, linear expansion of
conductivity, and weight of	Brünnow, F., treatise citedlxxxii
Airy, Sir George, treatise citedxcviii	Bushel, Winchesterxxxv
Albrecht, Dr. Th., treatise citedlxxx	equivalent in litres2
Algebraic formulasxiii-xv	
Alignment curvelvi	
Aluminum, linear expansion of170	Cable lengthxxxviii
Ampère, dimensions of	Calorie, value of172
Angles, equivalents in arcsxviii	Capacity, measures of, Britishxxxviii
sum of, in spheroidal trianglelvii	Metricxli
Angular velocity, dimensions of175	Centarexli
Annulus, circular, area ofxxx	Chauvenet, Wm., treatise citedlxxxii
Antilogarithms, explanation of use ofxcix	Circumference, of circlexxviii
4-place table of	table of values of23
Appendix	of earthxlix, 171
Arcs, equivalents in anglesxvii	of ellipsexxix
of meridians and parallelsxlvi-l	C. G. S. system of unitsxlii
table of lengths of meridional78-80	Clarke, General A. R., spheroid ofxliii
table of lengths of parallel81-83	treatise citedlxvi
table of time equivalents162	Coefficient, of cubical expansion of air and
Arexli	mercury172
Area, of circlexxx	of linear expansion of metals170
table of values of23	of refractionlxiii Compression, of earthxliii
of surface of earthl-lii	Computation, of differences of latitude, lon-
Areas, of continentslxv	gitude, and azimuthlviii
of oceanslxv	of mean and probable errorsxcv
of plane and curved surfacesxxix-xxxi	Conductivity, thermal, of air
of zones and quadrilaterals of the	Cone, surface ofxxx
earth's surfacel-lii tables of values of142-159	volume ofxxxi
of regular polygonsxxx	Constants, astronomical
Arithmetic means, progression, and seriesxiii	geodetical171
Astronomical constants172	numerical171
co-ordinateslxvii	of earth's spheroidxliv
latitudexliv	Continental measures (table of British and
timelxxii	Metric equivalents)168
Astronomylxvii-lxxxii	Continents, areas oflxv
references to works onlxxxii	average heights oflxv
Atmosphere, mass of earth'slxvi	Conversion, of arcs into angles and angles
standard pressure of172	into arcsxvi
weight of unit of volume of 172	of British and Metric units2, 3, 173, 174
Average error, definition oflxxxiv	Co-ordinates, astronomicallxvi
Azimuth, astronomical and geodeticlvii	for projection of mapsliii-le
computation of differences oflviii-lxi	table of, scale 1/25000084-91
determination of	table of, scale 1/12500092-101

178 INDEX.

Co-ordinates (continued).	Earth (continued).
table of, scale 1/126720 102-109	density oflxv
table of, scale 1/63360110–121	dimensions ofxliii, 171
table of, scale 1/200000122-131	ellipticity ofxliii, 171
table of, scale 1/80000132-141	energy (of rotation) oflxvi
of generating ellipse of earth's spheroidxliv	equatorial perimeter ofxliii, 171
Copper, linear expansion of170	flattening ofxliii, 171
Cord (of wood), volume ofxxxix	mass oflxvi
Correction, for astronomical refraction, table	meridian perimeter ofxlix, 171
of mean values of	moments of inertia oflxvi
to observed angle for eccentric position	shape ofxliii
of instrumentlxiii	surface area oflii
to reduce measured base to sea levellxiv	volume oflxv
Cosines, table of natural28, 29	Eccentricity, of ellipsexliii
use of table explainedc	of earth's spheroidxliv, 171
Cotangents, table of natural30, 31	El, value of
use of table explainedc	Electric quantities, dimensions of
Coulomb, dimensions of	Electro-magnetic quantities, dimensions of . 175
Cubature, of volumesxxxii	Ellipse, area ofxxx
Cubes, table of4-22	equations toxliv
Cube roots, table of4-22	length of perimeter ofxxix
Cylinder, surface ofxxxi	Ellipsoid, volume of (see Spheroid)xxxiii
volume ofxxxii	Ellipticity, of earthxliii, 171
Volume of the contract of the	Energy, dimensions of175
	of rotation of earthlxvi
Day, sidereal and solarlxxii, 172	Equations, of ellipsexliv
Degrees, number of, in unit radius xviii	of Prototype Kilogrammesxl
of terrestrial meridianxlvi, 166	of Prototype metresxl
of terrestrial parallellix, 167	Error, in ratio of English yard to Metrexxxvii
Density, mean, of earth	Errors, probable, mean, averagelxxxiv, lxxxviii
mean, of superficial strata of earthlxv	table of, for interpolated quantitieslxxxvi
of mercury	theory oflxxxiii
Departures (and latitudes), table of32-47	Everett, J. D., treatise citedxlii
mode of use of table explainedc	Excess, spherical or spheroidallviii
Depths, average, of oceanslxv	Expansion, cubical, for air and mercury172
Determination, of azimuthlxxix	linear, of principal metals170
	initial, of principal metals/o
of heights, by barometer160	
by trigonometric levelinglxi of latitudelxxvii	Farad, dimensions of
of timelxxiv Difference, between astronomical and geo-	Fathom, length of
detic azimuthlvii	l control of the cont
of heights, by barometer160	Flattening, of earthxliii, 171
by trigonometric levelinglxi	Foot, Austrian
Differences, of latitude, longitude, and azi-	French, Rhenish, Spanish, Swedish168
muth, on earth's spheroidlviii	
table for computation of70-77	Force, dimensions of
Differential formulasxxi	Formulas, algebraicxiii-xv
	for differentiationxxi
Dimensions, of earthxliii, 171 of physical quantities175	for integration
Dip, of sea horizon	for solution of plane trianglesxviii
Distance, of sea horizonlxiii	
of sun from earth172	trigonometricxv
Doolittle, Prof. C. L., treatise cited lxxxii	Freezing point of mercury
Doontede, 1 tot. C. 13, treatise cited	Functions, trigonometric, of one anglexv
	of two anglesxvi
Earth, compression ofxliii, 171	special values ofxv values in seriesxvii
Larin, compression of	values in seriesxvii

Gallon, British and winexxxviii	Latitude, astronomical, geocentric, and re-
Gauss's formulas for spherical trianglesxxi	ducedxliv
Geocentric latitudexliv	determination oflxxvii
Geodesyxliii-lxvi	Latitudes and departures, table of32-47
references to works onlxvi	mode of use of table explainedc
Geodetic azimuthlvii	Lead, linear expansion of
Geodetic differences of latitude, longitude,	Least squares, method oflxxxvi
and azimuthlviii	references to works onxcviii
Geodetic linelvii	Legendre's theorem for solution of sphe-
Geodetical constants171	roidal triangleslvii
Geographical latitudexliv	Length, of arc of meridianxlvi
Geographical positions, computation of lviii-lxi	of arc of parallelxlix
Geoid, definition ofxliii	of equator of earth
Geometric means, progressionxiii	of meridian circumference of earth171
Glass, linear expansion of	of perimeter of ellipsexxix
Gold, linear expansion of170	of Prototype Metres Nos. 21 and 27xl
Gravity, acceleration of, formula for171	of seconds pendulum, formula for171
table of values of169	table of values of169
Gunter's chain, length ofxxxviii	Leveling, trigonometriclxi
	Line (French), value of
	Lines, lengths ofxxviii
Harkness, Prof. Wm., memoir cited	on a spheroidlvi
lxv, 169, 171, 172	Linear measures, Britishxxxvii
Heat, dimensions of	Metricxli
latent, of liquefaction of ice172	tables for interconversion of 2, 3, 173, 174
of vaporization of water172	Litrexli
mechanical equivalent of172	Logarithms, anti-, 4-place table of26, 27
Hectarexli	explanation of use ofxcix
Heights, average, of continentslxv	4-place table of common24, 25
determination of, by barometer160	of natural numbers, table of4-22
trigonometricallylxi	relations of differentxv
Helmert, Dr. F. R., treatise on geodesy	series forxiv
citedlxvi	
treatise on theory of errors citedxcviii	
Horizon, dip of sealxiii	Maclaurin's seriesxxii
	example ofxxiii
	Magnetic quantities, dimensions of175
Imperial pound and yardxxxiv	Maps, co-ordinates for projection of (see
Integrals, definitexxvi	Co-ordinates for projection of maps)liii
indefinitexxxiii	projection ofcii
Interconversion, of English and Metric	Mass, of earthlxv
units, 3, 173, 174	of earth's atmospherelxvi
of sidereal and solar timelxxiii	of Prototype Kilogrammes Nos. 4 and
tables for164, 165	20
Iron, linear expansion of170	Mayer's formula for transit instrumentlxxv
	Mean, arithmetic and geometricxiii
	Mean distance of earth from sun172
Joule, value of	Mean error, definition oflxxxiv
	computation ofxcv
	Mean timelxxii
Kilogramme, Prototypexxxiv	table for conversion to sidereal time 164
equations ofxl	Measuresxxxiv
relation to poundxxxvi, xli	of capacity, Britishxxxviii
Kinetic energy, dimensions of	Metricxli
of rotation of earthlxvi	of length, Britishxxxvij
Klafter, Wiener, in terms of foot and	Continental168
metre168	Metricxli

Measures (continued).	Polygons, regular, areas ofxxx
of surface, Britishxxxviii	lengths of lines ofxxvii
Metricxli	Potential (electric), dimensions of175
tables for interconversion of2, 3, 173, 174	Pothenot's problemlxiv
Mechanical equivalent of heat172	Pound, imperial, avoirdupoisxxxiv
Mechanical units, dimensions of	Power, dimensions of
Mensurationxxviii-xxxiii	Pressure, of atmosphere
Mercury, density and cubical expansion of 172	Prism, volume ofxxxii
Meridian, arcs of terrestrialxlvi	Probable error, definition oflxxxiv
table of lengths of78-80	computation ofxcv
circumference of earthxlix, 171	Projection of mapsliii, cii
Method of least squareslxxxvi	Prototype Kilogrammes and Metresxxxiv
Metre, Prototypexxxiv	equations ofxl
equations of Nos. 21 and 27xl	•
relation to British yardxxxvi, xli	
Metric system	Quadrilaterals, of earth's surface, areas of1
Mile, Austrian	tables of areas of142-159
British (statute)xxxvii	Quantity, of electricity, dimensions of175
	(,
Danish, German sea, Netherlands, Nor-	
wegian, Prussian, Swedish168	Radii, of curvaturexlv
Nautical	Radius of curvature, of meridian, table of
Modulus of common logarithmsxv	logarithms of48–56
Moivre's formulaxvi	of section normal to meridian, table of
Moment of inertia of mass, dimensions of175	logarithms of57-65
Moments of inertia of earthlxvi	of section oblique to meridian, table of
Momentum, dimensions of	logarithms of
	Radius vector of earth's surface
Napierian base (of logarithms)xiv, 171	Rate of working (power), dimensions of175
Napierian logarithmsxiv	Ratio, of pound to kilogrammexxxvi
Napier's analogiesxx	of specific heats of air172
Natural logarithmsxiv	of yard to metrexxxvi
Nautical mile, table of equivalents in statute	Reciprocals, of natural numbers, table of 4-22
miles168	Reduced latitudexliv
Numerical constants171	Reduction to sea level of measured base line.lxiv
	References, to works on astronomylxxxii
_	to works on geodesylxvi
Ohm, dimensions of	to works on the theory of errorsxcviii
	Refraction, astronomical, table of161
	example of computation ofciv
Palm, length of, Englishxxxviii	coefficients of terrestriallxiii
Netherlands168	Right ascensionlxxii
Parallel, arcs of terrestrialxlix	Rode, Danish168
table of lengths of81-83	Ruthe, Prussian, Norwegian168
Pendulum, length of seconds	
table of lengths of169	
Perch (of masonry) volume ofxxxix	Sagene, Russian168
Perimeter, of circlexxviii	Sea level (see Geoid), reduction of measured
of ellipsexxix	base line tolxiv
of regular polygonxxviii, xxx	Sea surface, area oflxv
Physical constants172	Secondary triangulation, differences of lati-
Physical geodesy, salient facts oflxv	tude, longitude, and azimuth inlx
Physical quantities, dimensions of175	Series, binomialxiv
Platinum, linear expansion of170	logarithmicxiv
Platinum iridium, linear expansion of170	of Maclaurin and Taylorxxii
Polyconic projection of mapsliii	trigonometricxvii
graphical process of, explainedcii	Sidereal day and year, length of172

Sidereal timelxxii	Table of (continued).
table for conversion to mean time165	antilogarithms, 4-place26, 27
Signs, of trigonometric functionsxv	areas of quadrilaterals of earth's surface
Silver, linear expansion of170	of 100 extent in latitude and longi-
Sines, table of natural28, 29	tude142
explanation of use of	10 extent in latitude and longi-
Solar timelxxii	tude144, 145
table for conversion of mean solar	30' extent in latitude and longi-
to sidereal164	tude146-148
Solution, of plane trianglesxviii	15' extent in latitude and longi-
of spherical trianglesxx	tude150-154
of spheroidal triangleslvii	10' extent in latitude and longi-
Span, length ofxxxviii	tude156-159
Specific heat of air172	areas of regular polygonsxxx
Sphere, equal in surface with earthlii	circumference and area of circle23
equal in volume with earthlii	constants, astronomical172
surface ofxxxi	geodetical171
volume ofxxxii	numerical
Spherical excess (see Spheroidal excess)lviii	for interconversion of English and
Spheroid, representing the earthxliii	Metric units2, 3, 173, 174
surface ofxxxi	Continental measures of length168
volume ofxxxiii	co-ordinates for projection of maps —
volume of earth'slxv	scale 1/25000084-91
Spheroidal excesslviii	scale 1/12500092-101
example of computation ofci	scale 1/126720102-109
Spheroidal trianglelvii	scale 1/63360110-121
Square roots, table of4-22	scale I/200000122-131
Squares, table of4-22	scale 1/80000132-141
Standards, of length and massxxxiv	departures and latitudes32-47
Steel, linear expansion of170	dimensions of physical quantities175
Stèrexli	errors of interpolated values from nu-
Stress, dimensions of175	merical tableslxxxvi
units of173, 174	expansions (linear) of principal metals170
Sums, of arithmetic and geometric progres-	formulas for solution of plane trianglesxix
sion, and special seriesxiii	fractional change in number due to
Surfaces (see Areas)xxix	change in its logarithm170
Surface measures, Britishxxxviii	latitudes and departures32-47
Metricxli	lengths of arcs of meridian78-80
tables for interconversion of2, 3, 173, 174	of arcs of parallel81-83
Surface, of continentslxv	of 1° of meridian166
of earth's spheroidlii	of 1° of parallel167
of oceanslxv	linear expansions of metals170
of sphere and spheroidxxxi	logarithms, 4-place24, 25
Surveyor's chain, length ofxxxviii	anti-, 4-place26, 27
	of factors for computing spheroidal
m11.4	excess
Table for conversion of arc into time162	of factors for computing differences
conversion of mean into sidereal time 164	of latitude, longitude, and azi-
conversion of sidereal into mean time 165	muth70-77
conversion of time into arc	of meridian radius of curvature48-55
determination of heights by barometer. 160	of radius of curvature of normal
interconversion of British and Metric	section:
units	of radius of curvature of oblique
interconversion of nautical and statute	sections66, 67
miles	measures and weights —
Table of acceleration of gravity and derived	9
quantities169	British, of capacityxxxix

Triangles (continued).
spherical, solution ofxx
spheroidal, solution oflvii
Triangulation, primary and secondary, differ-
ences of latitude, longitude, and azimuth
inlviii–lx
Trigonometric functions, of one anglexv
of two anglesxvi
series forxvii
Trigonometric levelinglxi
trigonometric levening
Units, British Systemxxxvii
C. G. S. Systemxlii
Metric Systemxl
standards of length and massxxxiv
tables for interconversion of British and
Metric
Useful formulasxiii-xxvii
Vara, Mexican and Spanish168
Velocity, dimensions of
of light and sound
Versta, Russian
Vertical section curve on spheroidlvi
Volt, dimensions of
Volume, of earthlxv
of solidsxxxii
or solids
Weight of distilled mater
Weight, of distilled water172
Weights and measures (see Measures and
weights), tables for interconversion of
British and Metric
Werst, Russian168
Work, dimensions of
Wright, Prof. T. W., treatise citedxcviii
Yard, imperialxxxiv
ratio of, to metrexxxvi, xxxvii
Zachariae, G., treatise citedxlvi
Zenith distances, use of, in trigonometric
levelinglxi
Zenith telescope, use oflxxix
Zero, of absolute temperature172
Zinc, linear expansion of
Zones, of earth's surface, area of

DO NOT
REMOVE
THE
CARD
FROM
THIS
POCKET

Acme Library Card Pocket LOWE-MARTIN CO. LIMITED

