Postadresse: Institut: Telefon: Telefax:

D-52056 Aachen, Germany Jägerstraße 17-19, D-52066 Aachen ++49 241 80 96900 ++49 241 80 92184

http://www.xtal.rwth-aachen.de

GRUNDZÜGE DER KRISTALLOGRAPHIE

Lösung zur 8. Übung: Kugelpackungen

Aufgabe 1:

a) Die Mitten der Kugeln in der ersten Schicht der Stapelung befinden sich in den Lagen A (Abb. 1). Die Kugeln der 2. Schicht können über den "Zwickeln" B liege.Die 3. Schicht kann entweder in den "Zwickeln" A oder in C liegen. Damit ergeben sich die folgenden beiden einfachen dichtesten Kugelpackungen:

Schichtfolge ... ABABAB...: Wiederholung nach zwei Schichten; hexagonal dichteste Packung (kurz: hdp; engl.: hexagonal closed-packed, kurz: hcp).

Schichtfolge ... ABCABC ...: Wiederholung nach drei Schichten; kubisch dichteste Packung (kurz: kfz; engl.: face centered cubic, kurz: fcc).

Beispiele für Elemente, die kubisch dichteste (kubisch flächenzentrierte), hexagonal dichteste, sowie kubisch innenzentrierte (keine dichteste Kugelpackung!!!) Strukturen bilden:

kubisch dicht.	kubisch innen.	hexag. dicht.
Cu, Al, Ag	K, Cr, Rb	Mg, Be
Pt, Au, Pd	Mo, Cs, W	Ti, Zr
Pb, Ni, γ -Fe	Ba, V, Nb	Hf, Zn
	Ta, α -Fe	

Abb. 1

b) Die hexagonale Elementarzelle der hexagonal dichtesten Kugelpackung enthält zwei Atome mit den Lagekoordinaten 0, 0, 0 und $\frac{2}{3}, \frac{1}{3}, \frac{1}{2}$ (Abb. 2).

Die dreizähligen Achsen und die 6₃-Schraubenachsen verlaufen senkrecht zu den dichtesten Schichten. Koordinaten der Schnittpunkte mit den Schichten:

Achsen 6₃ (Symbol
$$\oint$$
): $x = \frac{1}{3}$, $y = \frac{2}{3}$ (Abb. 3)
Achsen 3 (Symbol \blacktriangle): $x = 0$, $y = 0$ und $x = \frac{2}{3}$, $y = \frac{1}{3}$

Kristallklasse der hexagonal dichtesten Kugelpackung: $\frac{6}{m} \frac{2}{m} \frac{2}{m}$ (kurz: 6/mmm)

Raumgruppe der hexagonal dichtesten Kugelpackung: $P \frac{6_3}{m} \frac{2}{m} \frac{2}{c}$ (kurz: $P6_3/mmc$)

c) Kubisch dichteste Kugelpackung:

Zahl der Atome in der Elementarzelle: 4 (Abb. 4).

Koordinaten der Atome: 0,0,0; $\frac{1}{2},\frac{1}{2},0$; $\frac{1}{2},0,\frac{1}{2}$; $0,\frac{1}{2},\frac{1}{2}$.

Bravais-Gitter: kubisch flächenzentriert.

Bravais-Gitter: kubisch flächenzentriert. Kristallklasse der kubisch dichtesten Kugelpackung: $\frac{4}{m} \overline{3} \frac{2}{m}$ (kurz: $m\overline{3}m$) Raumgruppe der kubisch dichtesten Kugelpackung: $F \frac{4}{m} \overline{3} \frac{2}{m}$ (kurz: $Fm\overline{3}m$)

Abb. 4

Aufgabe 2: Koordinationspolyeder (Abb. 5):

В **Abb. 5a:**

Hexagonal dichteste Packung, Koordinationspolyeder: Antikubooktaeder

Koordinationszahl: 12 Packungsdichte: 74 %

Abb. 5b:

В

В

В

Kubisch dichteste Packung, Koordinationspolyeder: Kubooktaeder

A Koordinationszahl: 12 Packungsdichte: 74 %

→ beide Strukturen haben die gleiche Packungsdichte.

Berechnung der Packungsdichte der kubisch dichtesten Packung:

a =

Die Diagonale d (Abb.6) der Würfelfläche berechnet sich: $d=\sqrt{a^2+a^2}=\sqrt{2}a$. Die Kugeln berühren sich in der kubisch dichtesten Packung entlang der Diagonalen, sodass gilt: d=4r. Durch Gleichsetzen der beiden Gleichungen und Umstellen ergibt sich: $a=\frac{4r}{\sqrt{2}}$.

Die Packungsdichte ist das Verhältnis des Volumens aller Kugeln innerhalb der Elementarzelle zum Gesamtvolumen der Elementarzelle: $\frac{n_{Kugeln} \cdot V_{Kugeln}}{V_{EZ}}$. Da die Anzahl der Atome in der Elementarzelle 4 entspricht (siehe auch Aufgabe 1c), ergibt sich folgende Formel:

$$\frac{n_{Kugeln} \cdot V_{Kugeln}}{V_{EZ}} = \frac{4 \cdot \frac{4}{3} \pi r^3}{a^3}$$

Durch Einsetzen von a kann nun die Packungsdichte berechnet werden (Zwischenschritte sind nicht angegeben): $\frac{4 \cdot \frac{4}{3} \pi r^3}{\frac{4r}{\sqrt{2}}} = \frac{\pi \sqrt{2}}{6} = \underline{0.74}$

Aufgabe 3:

a) Es gibt in beiden Kugelpackungen zwei verschiedene Typen von Lücken. Sie sind von Oktaedern oder Tetraedern umgeben. Betrachtet man eine Kugeldoppelschicht bei der die Kugelmittelpunkte die Positionen A bzw. B (gemäß Abb. 1) besetzen, so befinden sich die Tetraederlücken (Abb. 6a) oberhalb bzw. unterhalb einer jeden Kugel einer Schicht (bei einem Schichtenpaar AB Positionen A und B), während sich die Oktaederlücken (Abb. 6b) in den unbesetzten Zwickeln (Positionen C) befinden.

b) Kubisch dichteste Packung:

Die Elementarzelle enthält 4 Oktaeder- und 8 Tetraederlücken. Die Struktur besitzt also *eine* Oktaeder- und *zwei* Tetraederlücken pro Atom.

Hexagonal dichteste Packung:

Die Elementarzelle enthält 2 Oktaeder- und 4 Tetraederlücken. Auch hier entfallen auf ein Atom eine Oktaeder- und zwei Tetraederlücken pro Atom.

c) Koordinaten der Lückenmittelpunkte:

Kubisch dichteste Packung:

Oktaederlücken: $0, \frac{1}{2}, 0;$ $\frac{1}{2}, 0, 0;$ $0, 0, \frac{1}{2};$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}.$

Tetraederlücken: $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$; $\frac{1}{4}$, $\frac{1}{4}$, $\frac{3}{4}$; $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{4}$; $\frac{1}{4}$, $\frac{3}{4}$, $\frac{3}{4}$;

3/4, 1/4, 1/4; 3/4; 3/4; 3/4, 3/4, 1/4; 3/4; 3/4, 3/4.

Hexagonal dichteste Packung:

Oktaederlücken: $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$; $\frac{1}{3}$, $\frac{2}{3}$, $\frac{3}{4}$.

Tetraederlücken: $0, 0, \frac{3}{8}$; $0, 0, \frac{5}{8}$; $\frac{2}{3}, \frac{1}{3}, \frac{1}{8}$; $\frac{2}{3}, \frac{1}{3}, \frac{7}{8}$.