

< bitmask2

Main Page \rightarrow Exercises \rightarrow Homework 2 \rightarrow C \rightarrow Solve an Exercise

bitset1 >

You are working on problem set: Homework 2 (Pause)

Language/Type:

C C <u>bitwise operators bit</u>

manipulation

Author:

Julie Zelenski (on

2018/02/03)

Assume x and y are 32-bit signed ints and that right-shift performs an arithmetic (not logical) shift. For each listed expression, work out what result it produces.

- 1 << x
- a. O clears lowest "on" bit in x
- b. O 2 to the x power
- c. O -x, arithmetic negation
- d. -1 if x was negative, 0 otherwise (order shuffled)

 $^{x} + 1$

- a. O -1 if x was negative, 0 otherwise
- b. o -x, arithmetic negation
- c. O clears lowest "on" bit in x
- d. O 2 to the x power

(order shuffled)

x >> 31

- a. -1 if x was negative, 0 otherwise
- b. -x, arithmetic negation
- c. 2 to the x power
- d. clears lowest "on" bit in x (order shuffled)

- x &= (x 1)
- a. O clears lowest "on" bit in x
- b. O 2 to the x power
- c. O -1 if x was negative, 0 otherwise
- d. O -x, arithmetic negation (order shuffled)

✓ You passed 4 of 4 tests.

#	question	your answer	result
1	1 << x	2 to the x power	pass
2	~x + 1	-x, arithmetic negation	pass
3	x >> 31	-1 if x was negative, 0 otherwise	pass
4	x &= (x - 1)	clears lowest "on" bit in x	pass

Need help?

Stuck on an exercise? Contact your TA or instructor.

If something seems wrong with our site, please contact us.

X