Dual General Purpose Transistors

NPN/PNP Duals (Complementary)

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-363/SC-88 which is designed for low power surface mount applications.

Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS - NPN

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846, SBC846 BC847, SBC847 BC848	V _{CEO}	65 45 30	V
Collector-Base Voltage BC846, SBC846 BC847, SBC847 BC848	V _{CBO}	80 50 30	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current - Continuous	Ic	100	mAdc

MAXIMUM RATINGS - PNP

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846, SBC846 BC847, SBC847 BC848	V _{CEO}	-65 -45 -30	V
Collector-Base Voltage BC846, SBC846 BC847, SBC847 BC848	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current - Continuous	I _C	-100	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

SOT-363 CASE 419B STYLE 1

MARKING DIAGRAM

XX = Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Mark	Package	Shipping [†]
BC846BPDW1T1G	BB	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC846BPDW1T1G	BB	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC846BPDW1T2G	BB	SOT-363 (Pb-Free)	3,000 / Tape & Reel
BC847BPDW1T1G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC847BPDW1T1G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
BC847BPDW1T2G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
BC848CPDW1T1G	BL	SOT-363 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation Per Device FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	380 250 3.0	mW mW/°C mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	328	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

^{1.} $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ELECTRICAL CHARACTERISTICS (NPN) (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1		•	•	•
Collector – Emitter Breakdown Voltage (I _C = 10 mA) BC846, SBC846 Series BC847, SBC847 Series BC848 Series	V _(BR) CEO	65 45 30	- - -	- - -	V
Collector – Emitter Breakdown Voltage (I _C = 10 µA, V _{EB} = 0) BC846, SBC846 Series BC847B, SBC847B Only BC848 Series	V _{(BR)CES}	80 50 30	- - -	- - -	V
Collector – Base Breakdown Voltage (I _C = 10 µA) BC846, SBC846 Series BC847, SBC847 Series BC848 Series	V _{(BR)CBO}	80 50 30	- - -	- - -	V
Emitter – Base Breakdown Voltage (I _E = 1.0 μA) BC846, SBC846 Series BC847, SBC847 Series BC848 Series	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current $(V_{CB} = 30 \text{ V})$ $(V_{CB} = 30 \text{ V}, T_A = 150^{\circ}\text{C})$	I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS					
DC Current Gain	h _{FE}	- - 200 420	150 270 290 520	- - 475 800	-
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$)	V _{CE(sat)}	- -	- -	0.25 0.6	V
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)	V _{BE(sat)}	- -	0.7 0.9	- -	V
Base – Emitter Voltage $(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V})$	V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS	1				
Current – Gain – Bandwidth Product (I _C = 10 mA, V _{CE} = 5.0 Vdc, f = 100 MHz)	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	-	4.5	pF
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	-	-	10	dB

ELECTRICAL CHARACTERISTICS (PNP) ($T_A = 25$ °C unless otherwise noted)

Symbol	Min	Тур	Max	Unit
V _(BR) CEO	-65 -45 -30	- - -	- - -	V
V _(BR) CES	-80 -50 -30	- - -	- - -	V
V _(BR) CBO	-80 -50 -30	- - -	- - -	V
V _{(BR)EBO}	-5.0 -5.0 -5.0	- - -	- - -	V
Ісво	- -	- -	-15 -4.0	nA μA
h _{FE}	- - 200	150 270 290	- - 475	-
V _{CE(sat)}	- -	- -	-0.3 -0.65	V
V _{BE(sat)}		-0.7 -0.9	- -	V
V _{BE(on)}	-0.6 -	- -	-0.75 -0.82	V
•				•
f _T	100	-	-	MHz
C _{ob}	_	_	4.5	pF
	V(BR)CEO V(BR)CES V(BR)CBO ICBO hFE VCE(sat) VBE(sat) TT	V(BR)CEO -65 -45 -30 V(BR)CES -80 -50 -30 V(BR)CBO -80 -50 -30 V(BR)EBO -50 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 VCE(sat)	V(BR)CEO -65	V(BR)CEO -65

TYPICAL NPN CHARACTERISTICS - BC846/SBC846

Figure 1. DC Current Gain vs. Collector Current

Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

0.1

Figure 3. Base Emitter Saturation Voltage vs.
Collector Current

Figure 4. Base Emitter Voltage vs. Collector Current

Figure 5. Collector Saturation Region

Figure 6. Base-Emitter Temperature Coefficient

TYPICAL NPN CHARACTERISTICS - BC846/SBC846

Figure 7. Capacitance

Figure 8. Current-Gain - Bandwidth Product

TYPICAL PNP CHARACTERISTICS — BC846/SBC846

Figure 9. DC Current Gain vs. Collector Current

Figure 10. Collector Emitter Saturation Voltage vs. Collector Current

0.1

Figure 11. Base Emitter Saturation Voltage vs.
Collector Current

Figure 12. Base Emitter Voltage vs. Collector Current

Figure 13. Collector Saturation Region

Figure 14. Base-Emitter Temperature Coefficient

TYPICAL PNP CHARACTERISTICS — BC846/SBC846

100 V_{CE} = -5.0 V 100 L₂ COLLECTOR CURRENT (mA)

Figure 15. Capacitance

Figure 16. Current-Gain - Bandwidth Product

TYPICAL NPN CHARACTERISTICS - BC847/SBC847 SERIES

Figure 17. DC Current Gain vs. Collector Current

Figure 18. Collector Emitter Saturation Voltage vs. Collector Current

Figure 19. Base Emitter Saturation Voltage vs.
Collector Current

Figure 20. Base Emitter Voltage vs. Collector
Current

Figure 21. Collector Saturation Region

Figure 22. Base–Emitter Temperature Coefficient

TYPICAL NPN CHARACTERISTICS - BC847/SBC847 SERIES

Figure 23. Capacitances

Figure 24. Current-Gain - Bandwidth Product

TYPICAL PNP CHARACTERISTICS - BC847/SBC847 SERIES

Figure 25. DC Current Gain vs. Collector Current

Figure 26. Collector Emitter Saturation Voltage vs. Collector Current

Figure 27. Base Emitter Saturation Voltage vs.
Collector Current

Figure 28. Base Emitter Voltage vs. Collector
Current

Figure 29. Collector Saturation Region

Figure 30. Base-Emitter Temperature Coefficient

TYPICAL PNP CHARACTERISTICS - BC847/SBC847 SERIES

Figure 31. Capacitances

Figure 32. Current-Gain - Bandwidth Product

TYPICAL NPN CHARACTERISTICS - BC848 SERIES

Figure 33. DC Current Gain vs. Collector Current

Figure 34. Collector Emitter Saturation Voltage vs. Collector Current

Figure 35. Base Emitter Saturation Voltage vs.
Collector Current

Figure 36. Base Emitter Voltage vs. Collector
Current

Figure 37. Collector Saturation Region

Figure 38. Base–Emitter Temperature Coefficient

TYPICAL NPN CHARACTERISTICS - BC848 SERIES

Figure 39. Capacitances

Figure 40. Current-Gain - Bandwidth Product

TYPICAL PNP CHARACTERISTICS - BC848 SERIES

Figure 41. DC Current Gain vs. Collector Current

Figure 42. Collector Emitter Saturation Voltage vs. Collector Current

Figure 43. Base Emitter Saturation Voltage vs.
Collector Current

Figure 44. Base Emitter Voltage vs. Collector Current

0.1

-100

Figure 45. Collector Saturation Region

Figure 46. Base-Emitter Temperature Coefficient

TYPICAL PNP CHARACTERISTICS - BC848 SERIES

Figure 47. Capacitances

Figure 48. Current-Gain - Bandwidth Product

Figure 49. Thermal Response

Figure 50. Active Region Safe Operating Area

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 50 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 49. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

PACKAGE DIMENSIONS

SC-88/SOT-363/SC70-6

CASE 419B-02 **ISSUE W**

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
- 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
А3	0.20 REF			0.008 REF			
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0.026 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	

STYLE 1: PIN 1. EMITTER 2

- 2 BASE 2
- 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1

- 6. COLLECTOR 2

SOLDERING FOOTPRINT*

SC-88/SC70-6/SOT-363

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative