

Detecting Pneumonia in X-rays

Authors: Tony Samaniego, Malhar Pandya, Yoosuf Batliwala

CECS456
Dr. Wenlu Zhang
CSULB College of Engineering - Dept. of Computer Science

Introduction

- Dataset: Kaggle's Chest X-Ray Images(Pneumonia)
 - o Given training, testing and validation folder
- Task: Determine if an X-Ray belongs to 'normal' or 'pneumonia' class
 - No other classes, binary classification
- Data is from Mendeley Data with images being 256 X 256 X 3
- Networks modelled after: alexnet2012, zfnet2013, vggnet2014

Chest X-Ray Dataset

- The dataset is classified into 2 different categories:
 "NORMAL" and "PNEUMONIA"
- The dataset was verified by two expert physicians before being classified for Al training.
- The dataset was partitioned with 5,216 images for training, 16 images for validation, and 624 images for testing (5,856 images in total).
- The training dataset consisted of 1,341 "NORMAL" images and 3,875 "PNEUMONIA" images resulting in a data imbalance.

NORMAL

PNEUMONIA

VGGNET2014

- Model initially based off of the VGG16NET.
- Images resized to 224x224x3
- Has 5 convolution layers and 5 max pool layers
- 7,122,434 total and trainable parameters
- As a solution to the data imbalance:
 - Equal number of true pos and true neg samples were used in training set.
 - The model was trained for 40 epochs, tested for accuracy against the testing dataset, augmented the training dataset, and repeated for a total of 120 epochs.

Input 3x3, conv 64 Pool 3x3, conv 128 Pool 3x3, conv 256 Pool 3x3, conv 512 Pool 3x3, conv 512 Pool

FC 128

Softmax

Methodology

The initial training set yielded very low accuracy with the VGG16 clone. Through trial and error, I found that the more simple I made the model, the better the results I would achieve. Once I settled on my model, I began training the same model with 3 sets of augmented data. Each training session consisted of 40 epochs for a total of 120 total epochs. With each consecutive training session, the testing accuracy and F1 score increased.

		Predicted		
		1 0		
Actual	1	373	17	
	0	48	186	

Training Session	Preprocessing		
1	Image Size: (224, 224)Rescaling: 1./255		
2	 Image Size: (224, 224) Rescaling: 1./255 Horizontal Flip: True Vertical Flip: True Random Rotation: 0.2 		
3	 Image Size: (224, 224) Rescaling: 1./255 Horizontal Flip: True Vertical Flip: True Random Rotation: 0.2 Random Brightness: 0.3 Random Contrast: 0.3 		

Training Results

Training 1) loss: 4.505, accuracy 0.8013

Training 2) loss: 0.856, accuracy 0.8365

Training 3) loss: 0.473, accuracy 0.8958

- Training session 2 had an higher average training and validation accuracy with the lowest training and validation loss.
- Training session 3 yielded the highest testing accuracy and lowest testing loss.

Training 1	Training 2	Training 3	
Accuracy: 80.1%Precision: 76.0%Recall: 99.7%F1: 86.3%	Accuracy: 83.7%Precision: 80.3%Recall: 97.9%F1: 88.2%	Accuracy: 89.6%Precision: 88.6%Recall: 95.6%F1: 92.0%	

Alexnet Methodology

- Alexnet Paper was designed around the Imagenet LSVRC contest
- One problem with classifying objects is the variety objects offer
- Alexnet was designed to overcome this difficulty
- The model I made had around 58 million parameters
- Preprocessing:
 - Alexnet preprocessed their data by centering images on their RGB values
 - They also used horizontal flip for data augmentation and dropout on last 2 FC to combat overfitting

Experimental setup for Alexnet

Training 1	Training 2	Training 3
Accuracy: 73.4%Precision: 71%Recall : 96.6%F1: 81.8%	Accuracy: 80.297%Precision: 77%Recall: 97.1%F1: 85.8%	Accuracy:86.86 %Precision: 85.6%Recall 94.8 %F1:89.9 %
Preprocessing:	Preprocessing:	Preprocessing
• None	Rescale values[0,1]2 Dropouts(0.3)	 Rescale[0,1] Horizontal and vertical flip Random rotation(0.2) Dropout first FC(0.5)

		Predicted		
		1 0		
Actual -	1	370	20	
	0	62	172	

ZFnet Methodology

- Based on the Alexnet model, with improvements such as reduced filter sizes, and local contrast operations.
- Uses a deconvolutional network—essentially the CNN in reverse—to give a visualization of the types of features that it detects in an image.
- Results were hovering around 62.5% with no preprocessing of the images.
- ZFnet paper specified 256x246 crop as well as cropping to center and random flips.
- Paper trained for 70 epochs, I trained for 100.

ZFnet Structure & Results

Training Session with Above Preprocessing (100 epochs)

- Accuracy on test data: 90.71%
- Accuracy on training data: 96.22%
 - Precision: 88%
- Recall: 99%
- F1: 93%

	Preprocessing		
100 epochs	 Resizing: 256,256 Rescaling: 1.0, 127.5 Random flip: Horizontal and Vertical Random Rotation: 0.2 Random Contrast: 0.5 Random Crop: 127,255 		

2.0 -	Training Validatio	Loss in Loss		MM	V
0.5 -					
	-			at with the same	

Training and Validation Lags

		Predicted	
		1	0
Actual	1	387	3
	0	55	179

Analysis of Results

- Three different models, with different pre-processing and methodologies, so it's hard to compare.
- Our preprocessing (resizing, rescaling, augmentation) improved all of our results tremendously.
- Overall, ZFnet achieved the highest accuracy out of the three, but all three were fairly close.

VGGNet Clone	AlexNet	ZFnet
Accuracy: 89.6%	Accuracy: 86.86%	Accuracy: 90.71%

Conclusion

- The reason we picked the X-Ray Pneumonia Dataset is because it was a dataset with highly practical application.
- We analysed our models by comparing the validation accuracy with our test accuracies.
- In conclusion, the network you pick matters, for example VGG outperformed
 Alexnet
- The way you preprocess the data also has a huge impact