Misinformation Exposure and the False Belief that Trump Won the 2020 U.S. Presidential Election

Ross Dahlke

February 07, 2024

Data

Top-line difference

```
weights::wtd.t.test(
 x = main_data %>% filter(trump_support_pre == 1) %>% pull(won_election_trump),
 weight = main_data %>% filter(trump_support_pre == 1) %>% pull(weight))
## $test
## [1] "One Sample Weighted T-Test"
## $coefficients
## t.value
                 df p.value
   19.4667 427.0000
##
                      0.0000
## $additional
## Difference
                     Mean Alternative
                                         Std. Err
## 0.47019208 0.47019208 0.00000000 0.02415366
```

Exposure Descriptives

```
t.test(main_data %>% pull(untrustworthy_flag_test)) %>%
  broom::tidy()
## # A tibble: 1 x 8
     estimate statistic
                          p.value parameter conf.low conf.high method
                                                                         alternative
        <dbl>
                  <dbl>
                            <dbl>
                                       <dbl>
                                                <dbl>
                                                          <dbl> <chr>
                                                          0.424 One Sam~ two.sided
## 1
        0.396
                   28.0 7.75e-133
                                       1193
                                               0.368
t.test(main_data %>% filter(untrustworthy_n_test > 0) %>% pull(untrustworthy_n_test)) %>%
 broom::tidy()
## # A tibble: 1 x 8
   estimate statistic
                            p.value parameter conf.low conf.high method alternative
```

Gelbach Decomposition

Binary

```
save(binary_model1, file = "tables_and_figures/binary_model1")
save(binary_model2, file = "tables_and_figures/binary_model2")
save(binary_model3, file = "tables_and_figures/binary_model3")
save(binary_model4, file = "tables_and_figures/binary_model4")
save(binary_model5, file = "tables_and_figures/binary_model5")
save(binary_model6, file = "tables_and_figures/binary_model6")
save(binary_model7, file = "tables_and_figures/binary_model7")
save(binary_model8, file = "tables_and_figures/binary_model8")
save(binary_model9, file = "tables_and_figures/binary_model10")
```

Dosage

paste(outcome,

```
outcome <- "won_election_trump"</pre>
lm1 <- as.formula(</pre>
     paste(outcome,
                       paste(c("untrustworthy_n_test"), collapse = " + "),
                       sep = " ~"))
dosage_model1 <- lm(lm1, data = main_data, weights = main_data$weight)</pre>
lm2 <- as.formula(</pre>
     paste(outcome,
                       paste(c("untrustworthy_n_test", "trump_support_pre"), collapse = " + "),
                       sep = " ~ "))
dosage_model2 <- lm(lm2, data = main_data, weights = main_data$weight)</pre>
lm3 <- as.formula(</pre>
     paste(outcome,
                       paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre"), collapse = " + "),
                       sep = " ~ "))
dosage_model3 <- lm(lm3, data = main_data, weights = main_data$weight)</pre>
lm4 <- as.formula(</pre>
     paste(outcome,
                       paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ4_college_
                       sep = " ~ "))
dosage_model4 <- lm(lm4, data = main_data, weights = main_data$weight)</pre>
lm5 <- as.formula(</pre>
     paste(outcome,
                       paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ
                       sep = " ~ "))
dosage_model5 <- lm(lm5, data = main_data, weights = main_data$weight)</pre>
lm6 <- as.formula(</pre>
```

```
paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ4_college_
                           sep = " ~ "))
dosage_model6 <- lm(lm6, data = main_data, weights = main_data$weight)</pre>
lm7 <- as.formula(</pre>
      paste(outcome,
                          paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ4_college_
                          sep = " ~ "))
dosage_model7 <- lm(lm7, data = main_data, weights = main_data$weight)</pre>
lm8 <- as.formula(</pre>
      paste(outcome,
                           paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ
                           sep = " ~ "))
dosage_model8 <- lm(lm8, data = main_data, weights = main_data$weight)</pre>
lm9 <- as.formula(</pre>
      paste(outcome,
                          paste(c("untrustworthy_n_test", "total_n_pre", "trump_support_pre", "educ4_college_grad", "educ4
                           sep = " ~"))
dosage_model9 <- lm(lm9, data = main_data, weights = main_data$weight)</pre>
lm10 <- as.formula(</pre>
      paste(outcome,
                          paste(c("untrustworthy n test", "total n pre", "trump support pre", "educ4 college grad", "educ
                           sep = " ~ "))
dosage model10 <- lm(lm10, data = main data, weights = main data$weight)
save(dosage model1, file = "tables and figures/dosage model1")
save(dosage_model2, file = "tables_and_figures/dosage_model2")
save(dosage_model3, file = "tables_and_figures/dosage_model3")
save(dosage_model4, file = "tables_and_figures/dosage_model4")
save(dosage_model5, file = "tables_and_figures/dosage_model5")
save(dosage model6, file = "tables and figures/dosage model6")
save(dosage_model7, file = "tables_and_figures/dosage_model7")
save(dosage_model8, file = "tables_and_figures/dosage_model8")
save(dosage_model9, file = "tables_and_figures/dosage_model9")
save(dosage_model10, file = "tables_and_figures/dosage_model10")
```

Double ML

Binary

```
obj_dml_plr <- DoubleMLPLR$new(dml_data, ml_g = ml_g, ml_m = ml_m)
obj_dml_plr$fit()
obj_dml_plr
## ======= DoubleMLPLR Object =========
##
##
## ----- Data summary
## Outcome variable: won_election_trump
## Treatment variable(s): untrustworthy_flag_test
## Covariates: untrustworthy_flag_pre, total_n_pre, trump_support_pre, educ4_college_grad, educ4_hs_or_
## Instrument(s):
## No. Observations: 1194
## ----- Score & algorithm -----
## Score function: partialling out
## DML algorithm: dml2
## ----- Machine learner
## ml_l: regr.ranger
## ml_m: regr.ranger
##
## ----- Resampling
## No. folds: 5
## No. repeated sample splits: 1
## Apply cross-fitting: TRUE
##
## ----- Fit summary
                                    -----
## Estimates and significance testing of the effect of target variables
                         Estimate. Std. Error t value Pr(>|t|)
## untrustworthy_flag_test    0.05732
                                    0.02195 2.612 0.00901 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Dosage
dml_data <- DoubleMLData$new(main_data %>% as.data.frame() %>% select(won_election_trump, untrustworthy
                          y col = "won election trump",
                          d_cols = "untrustworthy_n_test",
                          x_cols = c("untrustworthy_flag_pre", "trump_support_pre", "college", "fema
learner <- lrn("regr.ranger", num.trees = 500, mtry = floor(sqrt(12)), max.depth = 5, min.node.size = 2</pre>
ml_g <- learner$clone()</pre>
ml_m <- learner$clone()</pre>
obj_dml_plr <- DoubleMLPLR$new(dml_data, ml_g = ml_g, ml_m = ml_m)
obj_dml_plr$fit()
obj_dml_plr
## ======= DoubleMLPLR Object =========
##
##
## ----- Data summary
```

```
## Outcome variable: won_election_trump
## Treatment variable(s): untrustworthy_n_test
## Covariates: untrustworthy_flag_pre, trump_support_pre, college, female, non_white, knowledge, intere
## Instrument(s):
## No. Observations: 1194
##
## ----- Score & algorithm -----
## Score function: partialling out
## DML algorithm: dml2
##
## ----- Machine learner
## ml_l: regr.ranger
## ml_m: regr.ranger
## ----- Resampling
## No. folds: 5
## No. repeated sample splits: 1
## Apply cross-fitting: TRUE
## ----- Fit summary
## Estimates and significance testing of the effect of target variables
                      Estimate. Std. Error t value Pr(>|t|)
## untrustworthy_n_test 0.00034902 0.00006612 5.278 0.00000013 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Causal Forest

```
set.seed(1)
X_binary <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_h
Y_binary <- main_data$won_election_trump
W_binary <- main_data$untrustworthy_flag_test
tau.forest_binary <- causal_forest(X_binary, Y_binary, W_binary, num.trees = 4000)</pre>
tau.hat_binary <- predict(tau.forest_binary, X_binary, estimate.variance = TRUE)</pre>
sigma.hat_binary <- sqrt(tau.hat_binary$variance.estimates)</pre>
average_treatment_effect(tau.forest_binary, target.sample = "overlap")
    estimate
                 std.err
## 0.04194356 0.01966475
binary_w_regression <- regression_forest(X_binary, W_binary, num.trees = 4000)
test calibration(binary w regression)
##
## Best linear fit using forest predictions (on held-out data)
## as well as the mean forest prediction as regressors, along
## with one-sided heteroskedasticity-robust (HC3) SEs:
##
                                   Estimate Std. Error t value
## mean.forest.prediction
                                  0.998751
                                              0.031050 32.166
```

```
##
                                                 Pr(>t)
## mean.forest.prediction
                                  < 0.00000000000000022 ***
## differential.forest.prediction < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
name_conversion_table <- tibble(x = c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_gra-</pre>
                                name = c("MisinfoExposureWave1", "Conservative", "EduCollegeGrad", "Edu
tibble(x = binary_w_regression$X.orig %>% colnames(),
       importance = variable_importance(binary_w_regression)) %>%
  left_join(name_conversion_table) %>%
  ggplot(aes(importance, reorder(name, importance))) +
  geom_point() +
  labs(title = "Variable Importance: Predicting Misinformation Exposure",
       x = "Importance",
      y = "Variable") +
  theme bw()
```

Variable Importance: Predicting Misinformation Exposure


```
# Plot ROC curve
{
    ggroc(.$roc_curve) +
    ggtitle(paste("ROC Curve - AUC =", round(.$auc_value, 3))) +
    xlab("False Positive Rate") +
    ylab("True Positive Rate") +
    theme_bw()
}
```

ROC Curve - AUC = 0.754

ROC Curve - AUC = 0.752

binary_w_regression

```
## GRF forest object of type regression_forest
## Number of trees: 4000
## Number of training samples: 1194
## Variable importance:
                               5
                                     6
                                            7
                                                8
                                                       9 10
## 0.653 0.070 0.011 0.013 0.007 0.011 0.023 0.017 0.003 0.007 0.021 0.093 0.026
      14
            15
                  16
## 0.007 0.016 0.009 0.013
r-value analysis
r_val <- tipr::r_value(effect_observed = 0.04194356, se = 0.01966475, df = (1194-17))
residuals_treatment_effect <- tau.hat_binary$predictions</pre>
var_residuals <- var(residuals_treatment_effect)</pre>
rsq_values <- apply(X_binary, 2, function(col) {</pre>
  mod <- lm(residuals_treatment_effect ~ col)</pre>
  summary(mod)$r.squared
})
is_potential_confounder <- ifelse(rsq_values > r_val, "Yes", "No")
# Create dataframe with results
```

```
res_var_binary <- tibble(</pre>
  variable = names(rsq_values),
 residual_variance = rsq_values,
  potential_confounder = is_potential_confounder
main_data_predictions_binary <- main_data %>%
  cbind(tau.hat_binary)
average_treatment_effect(tau.forest_binary, target.sample = "overlap", subset = main_data$trump_support
    estimate
                std err
## 0.12587578 0.05555805
r_val <- tipr::r_value(effect_observed = 0.12587578, se = 0.05555805, df = (432-17))
residuals_treatment_effect <- tau.hat_binary$predictions[main_data$trump_support_pre == 1]
var residuals <- var(residuals treatment effect)</pre>
rsq_values <- apply(X_binary[main_data$trump_support_pre == 1, ], 2, function(col) {
 mod <- lm(residuals_treatment_effect ~ col)</pre>
  summary(mod)$r.squared
})
is_potential_confounder <- ifelse(rsq_values > r_val, "Yes", "No")
# Create dataframe with results
res_var_binary_trump <- tibble(</pre>
 variable = names(rsq_values),
 residual_variance = rsq_values,
  potential_confounder = is_potential_confounder
average_treatment_effect(tau.forest_binary, target.sample = "overlap", subset = main_data$trump_support
##
                  std.err
     estimate
## -0.00177385 0.00884615
test_calibration(tau.forest_binary)
## Best linear fit using forest predictions (on held-out data)
## as well as the mean forest prediction as regressors, along
## with one-sided heteroskedasticity-robust (HC3) SEs:
##
##
                                 Estimate Std. Error t value Pr(>t)
## mean.forest.prediction
                                 ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Dosage
X_dosage <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_h
Y_dosage <- main_data$won_election_trump
```

```
W_dosage <- main_data$untrustworthy_n_test
tau.forest_dosage <- causal_forest(X_dosage, Y_dosage, W_dosage, num.trees = 4000)</pre>
tau.hat_dosage <- predict(tau.forest_dosage, X_dosage, estimate.variance = TRUE)</pre>
sigma.hat_dosage <- sqrt(tau.hat_dosage$variance.estimates)</pre>
average_treatment_effect(tau.forest_dosage, target.sample = "overlap")
        estimate
                        std.err
## 0.00032778941 0.00007799424
r_val <- tipr::r_value(effect_observed = 0.00033741188, se = 0.00007802666, df = (1194-17))
residuals_treatment_effect <- tau.hat_dosage$predictions
var_residuals <- var(residuals_treatment_effect)</pre>
rsq values <- apply(X dosage, 2, function(col) {
  mod <- lm(residuals_treatment_effect ~ col)</pre>
  summary(mod)$r.squared
})
is_potential_confounder <- ifelse(rsq_values > r_val, "Yes", "No")
# Create dataframe with results
res_var_dosage <- tibble(</pre>
  variable = names(rsq_values),
  residual_variance = rsq_values,
  potential_confounder = is_potential_confounder
main_data_predictions_dosage <- main_data %>%
  cbind(tau.hat_dosage)
average_treatment_effect(tau.forest_dosage, target.sample = "overlap", subset = main_data$trump_support
##
       estimate
                      std.err
## 0.0003442079 0.0000963162
r_val <- tipr::r_value(effect_observed = 0.00035346681, se = 0.00009593705, df = (432-17))
residuals_treatment_effect <- tau.hat_dosage$predictions[main_data$trump_support_pre == 1]
var_residuals <- var(residuals_treatment_effect)</pre>
rsq_values <- apply(X_dosage[main_data$trump_support_pre == 1, ], 2, function(col) {
  mod <- lm(residuals treatment effect ~ col)</pre>
  summary(mod)$r.squared
})
is_potential_confounder <- ifelse(rsq_values > r_val, "Yes", "No")
# Create dataframe with results
res_var_dosage_trump <- tibble(</pre>
  variable = names(rsq_values),
  residual_variance = rsq_values,
```

```
potential_confounder = is_potential_confounder
average_treatment_effect(tau.forest_dosage, target.sample = "overlap", subset = main_data$trump_support
##
       estimate
                      std.err
## 0.00007672086 0.00012514945
test_calibration(tau.forest_dosage)
## Best linear fit using forest predictions (on held-out data)
## as well as the mean forest prediction as regressors, along
## with one-sided heteroskedasticity-robust (HC3) SEs:
##
##
                                 Estimate Std. Error t value Pr(>t)
                                 ## mean.forest.prediction
## differential.forest.prediction -0.38607
                                            0.75223 -0.5132 0.69606
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
cbind(main data,
     y_hat = tau.forest_binary$Y.hat,
     tau.hat_binary) %>%
 mutate(treated = if_else(untrustworthy_n_test > 0, 1, 0),
        y_hat_untreated = case_when(
          treated == 1 ~ y_hat - predictions,
          treated == 0 ~ y_hat
        ),
        y_hat_treated = case_when(
          treated == 1 ~ y_hat,
          treated == 0 ~ y_hat + predictions
        ),
        rank = rank(y_hat_untreated),
        ) %>%
 ggplot(aes(x = rank, color = as.factor(trump_support))) +
 geom_point(aes(y = y_hat_untreated), size = .5) +
 geom_point(aes(y = y_hat_treated), size = .5) +
 geom_segment(aes(y = y_hat_untreated, yend = y_hat_treated, xend = rank), alpha = .2) +
 scale_color_manual(values = c("darkblue", "darkred")) +
 theme bw()
```

Individual Treatment Effects (ITEs) of Misinformation Exposure on the False Belief in a Fraudulent 2020 Election

Point Estimate & 95% Confidence Interval

Figure 1: Plot of estimated conditional average differences and 95% confidence interval of misinformation exposure on the belief that Donald Trump won the 2020 U.S. Presidential Election for each individual in our sample. Participants are ordered along the x-axis in order from lowest estimated conditional difference to the highest. The y-axis is the estimated conditional average difference.

Figure 2: Plot of estimated conditional average differences and 95% confidence interval of misinformation exposure on the belief that Donald Trump won the 2020 U.S. Presidential Election for each individual in our sample. Participants are ordered along the x-axis in order from lowest estimated conditional difference to the highest. The y-axis is the estimated conditional average difference.


```
main data %>%
  cbind(tau.hat_dosage) %>%
  mutate(trump_support_factor = if_else(trump_support_pre == 0, "Liberal", "Conservative"),
         trump_support_factor = factor(trump_support_factor, levels = c("Liberal", "Conservative")),
         untrustworthy_n_test = untrustworthy_n_test + .1) %>%
  ggplot(aes(untrustworthy_n_test, predictions, color = trump_support_factor)) +
  geom_point(alpha = .2) +
  geom_smooth(method = "lm") +
  scale_color_manual(values = c("darkblue", "darkred")) +
  scale_x_{log10}(breaks = c(0, 1, 10, 100, 1000)) +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(title = "Individual Dosage Treatment Effect of Misinformation Exposure on
False Fraudulent Election Belief & # of Misinformation Exposures",
subtitle = "Each point represents one person",
x = "Log # of Misinformation Website Exposure",
y = "Participants' Individual Dosage Treatment Effect
on the False Belief that the Election was Fraudulent",
color = "") +
  theme bw()
```

Individual Dosage Treatment Effect of Misinformation Exposure on False Fraudulent Election Belief & # of Misinformation Exposures


```
ggsave("tables_and_figures/dosage_graph.pdf")
tribble(
  ~group, ~point, ~low, ~high,
  "All", 0.04194356, 0.00340065, 0.08048647,
  "Liberals", -0.00177385, -0.0191123, 0.0155646,
  "Conservatives", 0.12587578, 0.016982, 0.2347696
) %>%
  mutate(group = factor(group, levels = c("Liberals", "Conservatives", "All"))) %>%
  ggplot(aes(group, point, ymin = low, ymax = high, color = group)) +
  geom point(size = .7) +
  geom_pointrange(size = .7) +
  scale_color_manual(values = c("darkblue", "darkred", "black")) +
  coord_flip() +
  geom_hline(aes(yintercept = 0), linetype = "dashed") +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(title = "Treatment Effect of Online Misinformation Exposure
       on False Election Belief",
       y = "Treatment Effect") +
  theme bw() +
  theme(legend.position = "none")
```

Treatment Effect of Online Misinform on False Election Belief


```
ggsave("tables_and_figures/ate_graph.pdf")
tribble(
  ~group, ~point, ~low, ~high,
  "All", 0.04194356, 0.00340065, 0.08048647,
 "Liberals", -0.00177385, -0.0191123, 0.0155646,
  "Conservatives", 0.12587578, 0.016982, 0.2347696
) %>%
  ggplot(aes(group, point, ymin = low, ymax = high, color = group)) +
  geom_point(size = .7) +
  geom_pointrange(size = .7) +
  scale_color_manual(values = c("black", "darkred", "darkblue")) +
  geom_hline(aes(yintercept = 0), linetype = "dashed") +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(title = "Treatment Effect of Online Misinformation Exposure
      on False Election Belief",
      x = "",
      y = "Treatment Effect") +
  theme_bw() +
  theme(legend.position = "none")
```

Treatment Effect of Online Misinformation Exposure on False Election Belief


```
ggsave("tables_and_figures/ate_graph_2.pdf")
tribble(
  ~group, ~point, ~low, ~high,
  "All", 0.04194356, 0.00340065, 0.08048647,
  "Liberals", -0.00177385, -0.0191123, 0.0155646,
  "Conservatives", 0.12587578, 0.016982, 0.2347696
) %>%
  ggplot(aes(group, point, ymin = low, ymax = high, fill = group)) +
  geom col(color = "black") +
  geom errorbar(width = .1) +
  scale_fill_manual(values = c("grey", "darkred", "darkblue")) +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(title = "Treatment Effect of Online Misinformation Exposure
       on False Election Belief",
       x = "",
       y = "Treatment Effect") +
  theme_bw() +
  theme(legend.position = "none")
```

Treatment Effect of Online Misinformation Exposure on False Election Belief


```
ggsave("tables_and_figures/ate_graph_3.pdf")
diminishing_effects_model1 <- main_data %>%
  cbind(tau.hat_dosage) %>%
  lm(predictions ~ untrustworthy_n_test * trump_support_pre, data = .)
diminishing_effects_model2 <- main_data %>%
  cbind(tau.hat_dosage) %>%
  lm(predictions ~ log(untrustworthy_n_test + .01) * trump_support_pre, data = .)
save(diminishing_effects_model1, file = "tables_and_figures/diminishing_effects_model1")
save(diminishing_effects_model2, file = "tables_and_figures/diminishing_effects_model2")
main_data %>%
  cbind(w_hat_binary = tau.forest_binary$W.hat) %>%
  cbind(w_hat_dosage = tau.forest_dosage$W.hat) %>%
  pivot_longer(cols = c(w_hat_binary, w_hat_dosage)) %>%
  mutate(treated = if_else(untrustworthy_flag_test == 1, "treated", "untreated"),
         name = if_else(name == "w_hat_binary", "Binary (estimated propensity to be treated)", "Dosage
  ggplot(aes(value, fill = treated)) +
  geom_histogram(bins = 50) +
  scale_fill_grey() +
  theme bw() +
  theme(legend.position = "none") +
  facet wrap(name~treated, scales = "free", ncol = 2) +
 labs(title = latex2exp::TeX(r'(Distribution of \hat{W}s for binary exposure and dosage)'),
```

```
subtitle = "black = actually treated, grey = actually untreated",
x = latex2exp::TeX(r'(\hat{W})'),
y = "# of people")
```

Distribution of Ws for binary exposure and dosage

black = actually treated, grey = actually untreated

ggsave("tables_and_figures/w_hat_distributions.pdf")

```
main_data %>%
  cbind(tau.hat_binary) %>%
  cbind(propensity_point = tau.forest_binary$W.hat) %>%
  mutate(effect_point = predictions,
         effect_low = predictions - 1.96 * variance.estimates,
         effect_high = predictions + 1.96 * variance.estimates,
         model_weight = propensity_point * (1 - propensity_point)) %>%
  ggplot(aes(propensity point, effect point, color = as.factor(untrustworthy flag test), size = model w
  geom_point() +
  scale_color_manual(values = c("grey", "black")) +
  scale_y_continuous(labels = scales::percent_format()) +
  scale_size(range = c(0, 3)) +
  scale_x_continuous(limits = c(0, 1.01),
                     breaks = c(0, .25, .5, .75, 1)) +
 labs(title = "Propensity to be Exposed, Individual Treatment Effect, and Model Weight",
x = "Misinformation Website Exposure Propensity",
y = "Individual Treatment Effect",
color = "Treated",
size = "model weight") +
 theme_bw() +
```


Propensity to be Exposed, Individual Treatment Effect, and Model Weight


```
Treated
                       model weight
```

ggsave("tables_and_figures/model_weights.pdf")

Oster Omitted Variable Bias

Binary

```
f01c <- won_election_trump ~ untrustworthy_flag_test + untrustworthy_flag_pre + total_n_pre + trump_sup
f01u <- won_election_trump ~ untrustworthy_flag_test</pre>
fit01c <- lm(f01c, data = main_data, weights = main_data$weight)</pre>
main_data$infit01c <- is.element(rownames(main_data), names(fit01c$residuals))</pre>
fit01u <- lm(f01u, data = main_data, subset = infit01c, weights = main_data$weight)
z <- oster(fit01u, fit01c, "untrustworthy_flag_test")</pre>
b13 <- oster(fit01u, fit01c, "untrustworthy_flag_test", rm = 1.3)$beta
round(c(z$input$beta_o, z$input$beta_tilde, z$beta, b13, z$rmax), 6)
## [1] 0.173302 0.057813 -0.148747 0.000965 0.494875
```

20

Dosage

```
f01c <- won_election_trump ~ untrustworthy_n_test + untrustworthy_flag_pre + total_n_pre + trump_suppor
f01u <- won_election_trump ~ untrustworthy_n_test</pre>
fit01c <- lm(f01c, data = main_data, weights = main_data$weight)</pre>
main_data$infit01c <- is.element(rownames(main_data), names(fit01c$residuals))</pre>
fit01u <- lm(f01u, data = main_data, subset = infit01c, weights = main_data$weight)
z <- oster(fit01u, fit01c, "untrustworthy_n_test")</pre>
b13 <- oster(fit01u, fit01c, "untrustworthy_n_test", rm = 1.3)$beta
round(c(z\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct\struct
## [1] 0.000809 0.000381 -0.000069 0.000239 0.683844
temp <- robomit::o_beta_boot(y = "won_election_trump",</pre>
                                      x = "untrustworthy_n_test",
                                      con = "untrustworthy_flag_pre + total_n_pre + trump_support_pre + educ4_college_grad +
                                      data = main_data,
                                      R2max = 1.3*0.3798
                                      type = "lm",
                                      w = "weight",
                                      delta = 1,
                                      sim = 1000,
                                      obs = 1000,
                                      rep = T)
mean(temp$`beta*`)
## [1] 0.002398048
temp <- robomit::o_beta_boot(y = "won_election_trump",</pre>
                                      x = "untrustworthy_flag_test",
                                      con = "untrustworthy_flag_pre + total_n_pre + trump_support_pre + educ4_college_grad +
                                      data = main_data,
                                      R2max = 1.3*0.3821,
                                      type = "lm",
                                      w = "weight",
                                      delta = 1,
                                      sim = 1000,
                                      obs = 1000,
                                      rep = T,
                                      useed = 1)
median(temp$`beta*`)
## [1] 0.032089
temp <- robomit::o_beta_boot(y = "won_election_trump",</pre>
                                      x = "untrustworthy_n_test",
                                       con = "untrustworthy_flag_pre + total_n_pre + trump_support_pre + educ4_college_grad +
                                      data = main_data,
```

```
R2max = 1.3*0.3838,
               type = "lm",
               w = "weight",
               delta = 1,
               sim = 1000,
               obs = 1000,
               rep = T,
               useed = 1)
median(temp$`beta*`)
## [1] 0.000334
r-value table
res_var_binary %>%
 bind_cols(res_var_binary_trump %>% select(-variable)) %>%
 bind_cols(res_var_dosage %>% select(-variable)) %>%
 bind_cols(res_var_dosage_trump %>% select(-variable)) %>%
 mutate_at(vars(starts_with("residual_variance")), ~round(., 3)) %>%
 mutate(variable = case_when(
   variable == "untrustworthy_flag_pre" ~ "MisinfoExposureWave1",
   variable == "educ4_some_college" ~ "EduSomeCollege",
   variable == "female"
                                      ~ "Female",
   variable == "race4_black"
                                      ~ "RaceBlack",
   variable == "race4_hispanic"
                                     ~ "RaceHispanic",
   variable == "race4_other"
                                     ~ "RaceOther",
                                     ~ "RaceWhite",
   variable == "race4_white"
   variable == "knowledge"
                                      ~ "PoliticalKnowledge",
   variable == "interest"
                                     ~ "PoliticalInterest",
   variable == "age4_under_30"
                                     ~ "AgeUnder30",
   variable == "age4_30_44"
                                      ~ "Age30to44",
   variable == "age4_45_64"
                                      ~ "Age45to65",
   variable == "age4_65"
                                      ~ "Age65plus",
   TRUE
                                      ~ variable # keep the original name if it's not one of the abov
 )) %>%
 knitr::kable("latex", booktabs = TRUE,
              col.names = c("variable", "res. var.", "confounder", "res. var.", "confounder", "res. va
              escape = FALSE) %>%
 kableExtra::add_header_above(c(" " = 1, "Exposure" = 2, "Exposure - Trump Supporters" = 2, "Dosage" =
 kableExtra::add_footnote("",
          escape = FALSE,
          threeparttable = TRUE) %>%
 kableExtra::kable_styling(latex_options = "scale_down")
```

	Exposure		Exposure - Trump Supporters		Dosage		Dosage - Trump Supporters	
variable	res. var.	confounder	res. var.	confounder	res. var.	confounder	res. var.	confounder
MisinfoExposureWave1	0.040	No	0.001	No	0.000	No	0.006	No
Conservative	0.749	Yes	0.000	No	0.032	No	0.000	No
EduCollegeGrad	0.038	No	0.128	Yes	0.018	No	0.034	No
EduHSorLess	0.001	No	0.120	Yes	0.025	No	0.069	No
EduPostGrad	0.043	No	0.065	No	0.335	Yes	0.233	Yes
EduSomeCollege	0.114	Yes	0.525	Yes	0.428	Yes	0.425	Yes
Female	0.001	No	0.004	No	0.021	No	0.097	No
RaceBlack	0.028	No	0.001	No	0.004	No	0.000	No
RaceHispanic	0.004	No	0.009	No	0.004	No	0.009	No
RaceOther	0.000	No	0.005	No	0.001	No	0.004	No
RaceWhite	0.028	No	0.010	No	0.009	No	0.013	No
PoliticalKnowledge	0.000	No	0.019	No	0.127	Yes	0.157	No
PoliticalInterest	0.005	No	0.002	No	0.032	No	0.034	No
AgeUnder30	0.009	No	0.000	No	0.000	No	0.000	No
Age30to44	0.003	No	0.015	No	0.000	No	0.000	No
Age45to65	0.005	No	0.021	No	0.079	No	0.092	No
Age65plus	0.034	No	0.059	No	0.100	No	0.117	No

```
а
```

```
weights::wtd.t.test(x = main_data$untrustworthy_n_total,
                    weight = main_data$weight)
## $test
## [1] "One Sample Weighted T-Test"
## $coefficients
##
               t.value
                                         df
                                                        p.value
      5.41157750431008 1193.00000000000000
                                               0.0000007545303
##
##
## $additional
                                          Std. Err
##
  Difference
                      Mean Alternative
    15.422216
                15.422216
                              0.000000
                                          2.849856
weights::wtd.t.test(x = main_data %>% filter(untrustworthy_flag_total == 1) %>% pull(untrustworthy_n_to
                    weight = main_data %>% filter(untrustworthy_flag_total == 1) %>% pull(weight))
## [1] "One Sample Weighted T-Test"
##
## $coefficients
##
              t.value
                                      df
                                                     p.value
##
     5.78542153909954 534.00000000000000
                                           0.0000001233252
##
## $additional
                                          Std. Err
## Difference
                      Mean Alternative
##
    37.966261
                37.966261
                              0.000000
                                          6.562402
```

Articles mentioning "election"

```
set.seed(1)
X_binary <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_h
Y_binary <- main_data$won_election_trump
W_binary <- main_data$election_untrustworthy_flag_test</pre>
```

```
tau.forest_binary <- causal_forest(X_binary, Y_binary, W_binary, num.trees = 4000)</pre>
tau.hat_binary <- predict(tau.forest_binary, X_binary, estimate.variance = TRUE)</pre>
sigma.hat_binary <- sqrt(tau.hat_binary$variance.estimates)</pre>
average_treatment_effect(tau.forest_binary, target.sample = "overlap")
          estimate
                                  std.err
## 0.03454481 0.03330964
main_data_predictions_binary <- main_data %>%
    cbind(tau.hat_binary)
average_treatment_effect(tau.forest_binary, subset = main_data$trump_support == 1, target.sample = "ove
          estimate
                                  std.err
## 0.06959163 0.06517365
average_treatment_effect(tau.forest_binary, subset = main_data$trump_support == 0, target.sample = "ove
##
              estimate
                                          std.err
## -0.003126376 0.010726793
test_calibration(tau.forest_binary)
## Best linear fit using forest predictions (on held-out data)
## as well as the mean forest prediction as regressors, along
## with one-sided heteroskedasticity-robust (HC3) SEs:
##
##
                                                                    Estimate Std. Error t value Pr(>t)
## mean.forest.prediction
                                                                      0.21874 1.18784 0.1842 0.4270
## differential.forest.prediction -3.29265
                                                                                           1.84044 -1.7891 0.9631
Dosage
set.seed(1)
X_dosage <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_h
Y_dosage <- main_data$won_election_trump
W_dosage <- main_data$election_untrustworthy_n_test
tau.forest_dosage <- causal_forest(X_dosage, Y_dosage, W_dosage, num.trees = 4000)</pre>
tau.hat_dosage <- predict(tau.forest_dosage, X_dosage, estimate.variance = TRUE)</pre>
sigma.hat_dosage <- sqrt(tau.hat_dosage$variance.estimates)</pre>
average_treatment_effect(tau.forest_dosage, target.sample = "overlap")
##
              estimate
                                          std.err
## 0.0009247837 0.0002402091
main_data_predictions_dosage <- main_data %>%
    cbind(tau.hat_dosage)
average_treatment_effect(tau.forest_dosage, subset = main_data$trump_support == 1, target.sample = "overage_treatment_effect(tau.forest_dosage, subset = main_data$trump_support == 1, target.sample = "overage_treatment_effett(tau.forest_dosage, subset = main_data$trump_support == 1, target.sample = 1, target.
##
              estimate
                                          std.err
## 0.0009895525 0.0005202569
average_treatment_effect(tau.forest_dosage, subset = main_data$trump_support == 0, target.sample = "ove
##
              estimate
                                          std.err
```

```
X_binary <- main_data_2[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4
  # Extract the ATE
  ate <- average_treatment_effect(tau.forest_binary, target.sample = "overlap")
 return(ate)
}
# Apply the function to each dependent variable
results <- purrr::map(dependent_vars, calculate_ATE, main_data = main_data_2, X_binary = X_binary, W_bi
results df <- tibble(
  dependent variable = dependent vars,
  ATE = map_dbl(results, "estimate"),
  ATE_se = map_dbl(results, "std.err")
) %>%
  mutate(CI_lower = ATE - 1.96 * ATE_se,
```

DV	ATE	se	CI	z-value	p-value
Support - Trump	0.019	0.015	[-0.011, 0.049]	1.240	0.215
Attend Rally - Trump	0.002	0.009	[-0.016, 0.019]	0.208	0.835
Attend Rally - Biden	-0.003	0.007	[-0.017, 0.011]	-0.447	0.655
Attend Rally - Other	0.016	0.010	[-0.003, 0.036]	1.621	0.105
Volunteer - Biden	-0.014	0.013	[-0.039, 0.01]	-1.128	0.259
Volunteer - Trump	-0.004	0.006	[-0.016, 0.008]	-0.626	0.531
Volunteer - Other	-0.007	0.011	[-0.029, 0.015]	-0.643	0.520
Volunteer - Poll Worker	-0.012	0.008	[-0.027, 0.004]	-1.436	0.151
Donation - Trump	-0.001	0.015	[-0.031, 0.029]	-0.088	0.930
Donation - Biden	-0.003	0.023	[-0.047, 0.042]	-0.123	0.902
Donation - Other	0.006	0.024	[-0.041, 0.053]	0.248	0.804
Social Media - Trump	0.028	0.020	[-0.012, 0.068]	1.387	0.165
Social Media - Biden	-0.014	0.026	[-0.065, 0.038]	-0.512	0.608
Social Media - Other	0.047	0.025	[-0.001, 0.095]	1.919	0.055
Yard Sign - Trump	0.010	0.015	[-0.019, 0.039]	0.654	0.513
Yard Sign - Biden	-0.023	0.017	[-0.057, 0.012]	-1.297	0.195
Yard Sign - Other	-0.018	0.017	[-0.052, 0.016]	-1.054	0.292

On belief that Trump did't win the election.

```
get_ate_summary <- function(tau.forest) {

# Extract the average treatment effect and its standard error
ate_result <- average_treatment_effect(tau.forest, target.sample = "overlap")

estimate <- ate_result[["estimate"]]
std.err <- ate_result[["std.err"]]

# Compute the 95% confidence intervals
ci_lower <- estimate - 1.96 * std.err
ci_upper <- estimate + 1.96 * std.err

# Compute the p-value for the ATE (two-sided test against null hypothesis: ATE = 0)
p_val <- 2 * (1 - pnorm(abs(estimate / std.err)))

# Create a tibble to store the results
results_tibble <- tibble(
Estimate = as.numeric(estimate),
Standard_Error = as.numeric(std.err),</pre>
```

```
CI_Lower = as.numeric(ci_lower),
    CI_Upper = as.numeric(ci_upper),
    p_value = as.numeric(p_val)
 return(results_tibble)
}
set.seed(1)
X_binary <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_h
Y_binary <- 1 - main_data$won_election_trump</pre>
W_binary <- main_data$untrustworthy_flag_test
# For entire sample
tau.forest_all <- causal_forest(X_binary, Y_binary, W_binary, num.trees = 4000)</pre>
result_all <- get_ate_summary(tau.forest_all)</pre>
# Subsetting for Trump supporters
trump_supporters <- main_data$trump_support_pre == 1</pre>
tau.forest_trump <- causal_forest(X_binary[trump_supporters,], Y_binary[trump_supporters], W_binary[trump_supporters]
result_trump <- get_ate_summary(tau.forest_trump)</pre>
# Subsetting for non-Trump supporters
non_trump_supporters <- main_data$trump_support_pre == 0</pre>
tau.forest_non_trump <- causal_forest(X_binary[non_trump_supporters,], Y_binary[non_trump_supporters],
result_non_trump <- get_ate_summary(tau.forest_non_trump)</pre>
# Combining results
results <- bind_rows(All_Sample = result_all, Trump_Supporters = result_trump, Non_Trump_Supporters = r
results %>%
 kableExtra::kable()
```

Group	Estimate	Standard_Error	CI_Lower	CI_Upper	p_value
All_Sample	-0.0416443	0.0195604	-0.0799826	-0.0033060	0.0332528
Trump_Supporters	-0.1145491	0.0557412	-0.2238019	-0.0052964	0.0398773
Non_Trump_Supporters	-0.0027096	0.0088185	-0.0199939	0.0145746	0.7586401

Propsensity score matching

```
library(MatchIt)

# Defining the formula for the treatment model
formula <- W_binary ~ untrustworthy_flag_pre + trump_support_pre + educ4_college_grad + educ4_hs_or_les

# Computing propensity scores using logistic regression
m.out <- matchit(formula, data = main_data, method = "nearest")

# Matching data based on the propensity scores
matched_data <- match.data(m.out)

# Assessing balance for matched data
# love.plot(m.out)

# Fit a linear model</pre>
```

```
fit <- lm(won_election_trump ~ untrustworthy_flag_test + untrustworthy_flag_pre + trump_support_pre + e
# Get the coefficient for the treatment variable (W_binary)
att <- marginaleffects::avg_comparisons(fit,
                                 variables = "untrustworthy_flag_test",
                                 vcov = ~subclass,
                                 newdata = subset(matched_data, untrustworthy_flag_test == 1),
                                 wts = "weights")
att %>%
 kableExtra::kable()
                         contrast
                                  estimate
                                             std.error
                                                        statistic
                                                                    p.value
                                                                              conf.low
                                                                                        conf.high
                                  0.066495 \quad 0.0216832
                                                       3.066657
                                                                 0.0021647
                                                                            0.0239967
                                                                                       0.1089933
                        1 - 0
untrustworthy flag test
# Defining the formula for the treatment model
formula <- W_binary ~ untrustworthy_flag_pre + trump_support_pre + educ4_college_grad + educ4_hs_or_les
# Computing propensity scores using logistic regression
m.out <- matchit(formula, data = main_data, method = "nearest")</pre>
# Matching data based on the propensity scores
matched_data <- match.data(m.out)</pre>
# Assessing balance for matched data
# love.plot(m.out)
# Fit a linear model
fit <- lm(won_election_trump ~ untrustworthy_n_test + untrustworthy_flag_pre + trump_support_pre + educ-
# Get the coefficient for the treatment variable (W binary)
att <- marginaleffects::avg_comparisons(fit,</pre>
                                 variables = "untrustworthy_n_test",
                                 vcov = ~subclass,
                                 newdata = subset(matched_data, untrustworthy_n_test == 1),
                                 wts = "weights")
att %>%
 kableExtra::kable()
```

term	contrast	estimate	std.error	statistic	p.value	conf.low	conf.high
untrustworthy_n_test	+1	0.0003696	0.0000745	4.963495	0.0000007	0.0002237	0.0005156

Triple Machine Learning

```
# library(causalHAL)
#
# set.seed(1)
# X_binary <- main_data[, c("untrustworthy_flag_pre", "trump_support_pre", "educ4_college_grad", "educ4_
# Y_binary <- main_data$won_election_trump
# W_binary <- main_data$untrustworthy_flag_test
#
# forest_w <- regression_forest(X_binary, W_binary, tune.parameters = "all")
# w_hat <- predict(forest_w)$predictions
#
# Estimate the treatment-marginalized outcome regression using causal_forest</pre>
```

```
# tau.forest_outcome <- causal_forest(X_binary, Y_binary, W_binary, num.trees = 4000)
# # Extract treatment-marginalized outcome regression estimates
\# m_hat <- predict(tau.forest_outcome, X_binary, estimate.variance = TRUE)\$predictions
# # Adapt this line to your dataset structure
# ADMLE_fit <- fit_cate_hal_partially_linear(main_data$W_binary, main_data$A_binary, main_data$Y_binary
                                            m.hat = m hat,
#
                                            pi.hat = w_hat,
#
                                            smoothness_orders_cate = 1, num_knots_cate = c(50), max_deg
#
# # Provides estimates and CI for ATE
# inference_ate(ADMLE_fit)
# # If you have HAL9001 package, you can also use glmnet implementation with hal9001-basis design matri
# basis_list <- hal9001::enumerate_basis(main_data$W_binary, smoothness_orders = 1, num_knots = 50, max
# tau_basis <- hal9001::make_design_matrix(main_data$W_binary, basis_list)</pre>
# # Adapt this line to your dataset structure
# ADMLE_fit <- fit_cate_lasso_partially_linear(tau_basis, main_data$A_binary, main_data$Y_binary,
                                              m.hat = m.hat,
#
                                              pi.hat = pi.hat, standardize = FALSE)
#
# # Provides estimates and CI for ATE
# inference ate(ADMLE fit)
```

References