

CLAIM AMENDMENTS

1. (Previously Presented)

A highly filled elastomeric composition comprising an elastomeric resin, a filler of about 15% to about 500% by weight of the resin, and 1 to 400% by weight of resin of microsilica as a modifier to improve the processability, wherein the microsilica is particulate amorphous SiO₂ obtained from a process in which silica is reduced to SiO-gas and oxidized in vapor phase to form amorphous silica which contains at least 70% by weight silica (SiO₂) and has a specific density of 2.1 - 2.3 g/cm³ and a surface area of 15 - 40 m²/g, and has primary particles being substantially spherical with an average size of about 0.15 μm.

2. (Previously Presented)

The elastomeric composition according to claim 1, wherein said composition contains 5 to 300% by weight of resin of microsilica.

3. (Previously Presented)

The elastomeric composition according to claim 2, wherein said composition contains 10 to 150% by weight

resin of microsilica.

4. (Previously Presented)

A method for production of a highly filled elastomeric compound comprising:

forming a highly filled elastomeric compound from an elastomeric resin and a filler about 15% to about 500% by weight of the resin; and

adding microsilica to the highly filled elastomeric compound in an amount of 1 to 400% by weight of resin as a modifier to improve processability, wherein the microsilica is particulate amorphous SiO_2 obtained from a process in which silica is reduced to SiO -gas and oxidized in vapor phase to form amorphous silica which contains at least 70% by weight silica (SiO_2) and has a specific density of 2.1 - 2.3 g/cm^3 and a surface area of 15 - 40 m^2/g , and has primary particles being substantially spherical with an average size of about 0.15 μm .

5. (Previously Presented)

The method according to claims 4, wherein microsilica is added to the highly filled elastomeric compound in an amount of 5 to 300% by weight of resin.

6. (Previously Presented)

The method according to claims 4, wherein microsilica is added to the highly filled elastomeric compound in an amount of 10 to 150% by weight of resin.

7. (Previously Presented)

A method of using microsilica as a modifier to improve processability of a highly filled elastomeric compound having a filler content of about 15% to about 500% by weight of resin, comprising a step of adding 1 to 400% by weight of resin of microsilica to said compound, wherein the microsilica is particulate amorphous SiO₂ obtained from a process in which silica is reduced to SiO-gas and oxidized in vapor phase to form amorphous silica, which contains at least 70% by weight silica (SiO₂) and has a specific density of 2.1 - 2.3 g/cm³ and a surface area of 15 - 40 m²/g, and has primary particles being substantially spherical with an average size of about 0.15 μm.

8. (Cancelled)