1 13.5: Lines and Planes in Space

Recall the equation of a line in \mathbb{R}^2 :

$$y = mx + b$$

where b is the intercept and m is the slope. This idea can be extended into higher dimensions:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Here, \mathbf{r}_0 is a fixed point, and \mathbf{v} is the position vector that is parallel to the line \mathbf{r} .

Equation of a Line

A vector equation of the line passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, or

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle, \quad \text{for} \quad -\infty < t < \infty$$

Equivalently, the corresponding parametric equations of the line are

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, for $-\infty < t < \infty$

Distance Between a Point and a Line

The distance d between the point Q and the $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ is

$$d = \frac{\left| \mathbf{v} \times \overrightarrow{PQ} \right|}{\left| \mathbf{v} \right|},$$

where P is any point on the line and \mathbf{v} is a vector parallel to the line.

Definition. (Plane in \mathbb{R}^3)

Given a fixed point P_0 and a nonzero **normal vector n**, the set of points P in \mathbb{R}^3 for which $\overline{P_0P}$ is orthogonal to **n** is called a **plane** (Figure 13.72)

General Equation of a Plane in \mathbb{R}^3

The plane passing through the point $P_0(x_0, y_0, z_0)$ with a nonzero normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 or $ax + by + cz = d$,

where $d = ax_0 + by_0 + cz_0$.

Definition. (Parallel and Orthogonal Planes)

Two distinct planes are **parallel** if their respective normal vectors are parallel (that is, the normal vectors are scaling multiples of each other). Two plans are **orthogonal** if their respective normal vectors are orthogonal (that is, the dot product of the normal vectors is *zero*).