Lecture 05

§11 Quantifiers (Continued)

- Negating Quantified Statements
 - $(1) \neg \forall = \exists \neg$
 - $(2) \neg \exists = \forall \neg$
 - (3) $\neg (A \text{ and } B) = \neg (A) \text{ or } \neg (B)$
 - (4) $\neg (A \text{ or } B) = \neg (A) \text{ and } \neg (B)$
- Examples
 - (1) Disprove the following statement: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}$, such that $x^2 y^2 = x + y$ and $x^3 y^3 = x y$.

§12 Set II: Operations

- $A \cup B$: the union of A and B, the set of all elements that are in A or in B.
- $A \cap B$: the intersection of A and B, the set of all elements that are in both A and B.
- A few facts about union and intersection:
 - (1) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
 - $(2) \ A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C.$
 - (3) $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.
 - (4) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. One useful tool to visualize these identities is the so-called venn diagram.
- $|A| + |B| = |A \cup B| + |A \cap B|$, or equivalently, $|A \cup B| = |A| + |B| |A \cap B|$.
- We say A and B disjoint provided $A \cap B = \emptyset$. If A and B are disjoint, then $|A \cup B| = |A| + |B|$. We say sets A_1, A_2, \dots, A_n are pairwise disjoint provided that $A_i \cap A_j = \emptyset$ whenever $i \neq j$. If A_1, A_2, \dots, A_n are pairwise disjoint, then $|A_1 \cup A_2 \cup \dots \cup A_n| = |A_1| + |A_2| + \dots + |A_n|$.
- Examples
 - (2) How many integers between 1 and 2000 are divisible by 3 and 5?
 - (3) How many integers between 1 and 2000 are not divisible by any of 2,3 or 5?
- Difference and Symmetric Difference: A − B
 A − B: the difference of A and B, the set of all elements that are in A but not B.
 A ΔB = (A − B) ∪ (B − A): the symmetric difference of A and B.
- Examples
 - (4) $B = (A \cup B) (A \cap B)$.
 - (5) $A (B \cup C) = (A B) \cap (A C)$.
 - (6) $A (B \cap C) = (A B) \cup (A C)$.

(7)
$$A\Delta(B\Delta C) = (A\Delta B)\Delta C$$
.

- Cartesian Product $A \times B = \{(a, b) : a \in A, b \in B\}.$
- Properties of Cartesian product: $A \times B \neq B \times A$. $|A \times B| = |A| \times |B|$.
- (Optional topic) Relation between Set Operations and Boolean Algebra $x \in A \cap B \iff (x \in A) \land (x \in B)$. $x \in A \cup B \iff (x \in A) \lor (x \in B)$. $x \in A B \iff (x \in A) \land (x \notin B) \iff (x \in A) \land \neg (x \in B)$. $x \in A \triangle B \iff ((x \in A) \land (x \notin B)) \lor ((x \notin A) \land (x \in B))$.

HW3(a) (Due 2/17/2016)

- 12.3
- 12.21 (including your proof or counterexample for each statement).