

10 R.G./LAMBERT

THIS WORK WAS PERFORMED ON NAVY CONTRACT NO0019-78C-0407

B127

DTC ELECTE AUG 2 4 1981

Approved for public release;

Distribution

THE COPY

GENERAL ELECTRIC COMPANY AEROSPACE ELECTRONIC SYSTEMS DEPARTMENT UTICA, NEW YORK 13503

GENERAL ELECTRIC

81 8 24 005

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO. 14.10-6/03 2//	. 3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVER
Computation Methods	
	6. PERFORMING ORG. REPORT NUMBE
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*) Navy Contract
R. G. Lambert	N00019-78-C-0407
Performing organization name and address General Electric Company Aerospace Electronic Systems Division Utica, New York 13503	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS Naval Electronic Systems Command	12. REPORT DATE
Washington, D.C. 20360	March 1980 13. NUMBER OF PAGES
Attn: Code 8131 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	122 15. SECURITY CLASS, (of this report)
. MUNITURING AGENCY NAME & ADDRESS(II dillerent from Controlling Utilice)	Unclassified
	15a. DECLASSIFICATION/DOWNGRADIN SCHEDULE
DISTRIBUTION STATEMENT (of this Report)	
Distribution Unlimited. Approved for public re	lease.
Distribution Unlimited. Approved for public re	
Distribution Unlimited. Approved for public re DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different for	om Report)
Distribution Unlimited. Approved for public re	om Report)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

COMPUTATION METHODS

Α.	GAMMA FUNCTION COMPUTATION	
	Definition Tabular Method Calculator Method Basic Language Program Listing TI-59 Methods HP-67 Method HP-34C Method	1 2 9 12 13 16
В.	INCOMPLETE GAMMA FUNCTIONS COMPUTATION	20
	Definition Tabular Method TI-59 (ML-09) TI-59 (MU-17) Basic Language Program Listing HP-34C Method HP-67 Method	20 21 33 42 45 46
С.	GAMMA FUNCTIONS COMPUTATION PROGRAMS	54
D.	ERROR FUNCTION COMPUTATION	60
	Definition TI-59 Method HP-34C Method HP-67 Method (Math Pac 1) HP-67 Method (PL-10) Tabular Method	60 62 65 67 68
Ε.	INVERSE ERROR FUNCTION COMPUTATION	83
	Definition TI-59 Method HP-67 Method HP-34C Method	83 83 88 88
F.	PROBABILITY OF FAILURE COMPUTATION	91
	TI-59 Method Basic Language Method Tabular Method	91 94 94
G.	HP-34C PROGRAMS	105
н.	ACCELERATED RANDOM TEST LEVEL COMPUTATION	108
I.	Basic Language (PL-16) TI-59 (PL-17) HP-34C (PL-15) SYMBOLS	112 114 118 121
-	REFERENCES	122

LIST OF FIGURES, TABLES AND COMPUTER PROGRAM LISTINGS

FIGURE	TITLE	PAGE
1	Plot of Gamma Function Versus $\boldsymbol{\alpha}$	1
2	Pictorial Representation of the Incomplete Gamma Functions	22
3	Gamma Functions for $\alpha = 1.5$; $\tau = 0.9$	39
4	Gamma Functions for $\alpha = 5.64$; $\tau = 8$	41
5	Error Function Versus α	61
TABLE	TITLE	PAGE
I	GAMMA FUNCTION (1 $\leq \alpha \leq 2$)	3
	(Table 6.1 pp. 267-270 of Abramowitz [1])	7
II	GAMMA FUNCTION (α : INTEGER) (Table 6.3 pp. 272, 273 of Abramowitz [1])	7
III	tabulation of Q ($\chi^2 v$)	27
IV	COMPUTATION EXAMPLES $(\alpha = NON-INTEGER)$	58
v	COMPUTATION EXAMPLES $(\alpha = INTEGER)$	59
VI	ERROR FUNCTION VERSUS α	74
VII	FAILURE PROBABILITY VERSUS α (-4 $\leq \alpha \leq 4$)	96

\Box
es
r

PROGRAM LISTING	TITLE	LANGUAGE	PAGE
PL-1	Γ (α)	Basic	12
PL-2	Γ (α)	TI-59	15
PL-3	Γ (α)	HP-67	17
PL-4	ML-09	T1-59	34
PL-5	MU-17	TI-59	43
PL-6	γ(α,τ); Q(α,τ)	Basic	45
PL-7	γ(α,τ); Q(α,τ)	HP-67	51
PL-8	$\Gamma(\alpha)$; $\gamma(\alpha,\tau)$; $Q(\alpha,\tau)$	Basic	56
PL-9	ERF (α)	TI-59	63
PL-10	ERF (α) & INVERSE	HP-67	69
PL-11	ERF (a)	Basic	73
PL-12	INVERSE ERF (α)	TI-59	85
PL-13	F(N)	TI-59	92
PL-14	F(N)	Basic	95
PL-15	ERF (α) & INVERSE;	HP-34C	106
	γ(α,τ); Q(α,τ);		
	transcendental f(x)		
PL-16	transcendental f(x)	Basic	113
PL-17	transcendental $f(x)$	TI-59	115

COMPUTATION METHODS BASIC FUNCTIONS

INTRODUCTION

The computation methods described in this section are for use in fatigue analyses. The functions to be computed are the Gamma Function, the two Incomplete Gamma Functions, an Error Function and its Inverse, a Probability of Failure Function, and a transcendental accelerated test level function.

These methods are intended to be user oriented. The user is given a choice of methods. Tables and interpolation methods are included for those who prefer to use tables. Techniques are also included for use with calculators, with the modern TI-59, HP-67, HP-34C and HP-41C Programmable Calculators and with large computers (i.e. Basic Language). Both numerical integration and closed form equation methods are given. Examples using each method are worked out. Computer program listings are also shown.

It should be noted that the same programs can be used for both the HP-67 and HP-41C programmable calculators. Only the HP-67 is referred to in the listings for simplicity.

A. GAMMA FUNCTION COMPUTATION

Definition:

The Gamma Function is defined as follows:

$$\Gamma (\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$

 $\Gamma(\alpha)$ is undefined for α = 0 and for negative integer values of α . For fatigue analyses α > 1. Figure 1 shows $\Gamma(\alpha)$ versus α for $0 < \alpha < 4$. The curve increases monotonically for α > 4.

Figure 1 Plot of Gamma Function Versus $\boldsymbol{\alpha}$

TABULAR METHOD

Table I (Table 6.1 pages 267-270 of Abramowitz [1]) gives values to ten places of Γ (α) versus α for $1 \le \alpha \le 2$. Table II (Table 6.3 pages 272, 273 of Abramowitz [1]) gives values to eleven places of Γ (α) for integer and half-integer values of α for $1 \le \alpha \le 101$.

EXAMPLE

FIND: Γ (1.225)

SOLUTION: In Table I (Table 6.1 page 267 [1])
Γ (1.225) = 0.9119156071

EXAMPLE:

FIND: Γ (8.5)

SOLUTION: In Table II (Table 6.3 page 272 [1]) $\Gamma (8.5) = 1.4034407 \times 10^{4}$

The following expression can be used recursively:

$$\Gamma$$
 (α) = (α -1) Γ (α -1)

EXAMPLE:

FIND: Γ (5.64)

SOLUTION: Γ (5.64) = 4.64 x 3.64 x 2.64 x 1.64 x Γ (1.64)

In Table 6.1 page 269 $\boxed{1}$ Γ (1.64) = 0.8986420302 Γ (5.64) = 65.71338911

267

GAMMA FUNCTION AND RELATED FUNCTIONS

	GAMMA, DI	GAMMA AND TRI	GAMMA FUNCTIO	NS Ta	ble 6.1
	$\Gamma(x)$	$\ln r(r)$	∲ (x)	∜ '(x)	
1.000	1.00000 00000	0.0000 00000	-0.57721 56649	1.64493 40668	0.000
1.005	0.99713 85354	-0.00286 55666	-0.56902 09113	1.63299 41567	0.005
1.010	0.99432 58512	-0.00569 03079	-0.56088 54579	1.62121 35283	0.010
1.015	0.99156 12888	-0.00847 45187	-0.55280 85156	1.60958 91824	0.015
1.020	0.98884 42033	-0.01121 84893	-0.54478 93105	1.59811 81919	0.020
1.025	0.98617 39633	-0.01392 25067	-0.53682 70828	1.58679 76993	0.025
1.030	0.98354 99506	-0.01658 68539	-0.52892 10873	1.57562 49154	0.030
1,035	0.98097 15606 0.97843 82009	-0.01921 18101 -0.02179 76511	-0.52107 05921	1.56459 71163	0.035
1,040 1,045	3,97594 92919	-0.02177 76511	-0.51327 48789 -0.50553 32428	1.55371 16426 1.54296 58968	0.040 0.045
	0.97350 42656	0.03406.30336	0.40704.40014		-
1.050 1.055	0.97110 25663	-0.02685 30725 -0.02932 31868	-0.49784 49913 -0.49020 94448	1.53235 73421	0.050
1,060	0.96874 36495	-0.03175 52537	-0.48262 59358	1.52188 35001 1.51154 19500	0.055 0.060
1.065	0.96642 69823	-0.03414 95318	-0.47509 38088	1.50133 03259	0.065
1,070	0.96415 20425	-0.03650 62763	-0.46761 24199	1.49124 63164	0.070
1.075	0.96191 83189	-0.03882 57395	-0.46018 11367	1.48128 76622	0.075
1.080	0.95972 53107	-0.04110 81702	-0.45279 93380	1.47145 21556	0.080
1.085	0.95757 25273	-0.04335 38143	-0.44546 64135	1.46173 76377	0.085
1.090	0.95545 94882	-0.04556 29148	-0.43818 17635	1.45214 19988	0.090
1.095	0.95338 57227	-0.04773 57114	-0.43094 47988	1.44266 31755	0.095
1.100	0.95135 07699	-0.04987 24413	-0.42375 49404	1,43329 91508	0.100
1,105	0.94935 41778	-0.05197 33384	-0.41661 16193	1.42404 79514	0.105
1.110	0.94739 55040	-0.05403 86341	-0.40951 42761	1.41490 76482	0.110
1.115	0.94547 43149	-0.05606 85568	-0.40246 23611	1.40587 63535	0.115
1.120	0.94359 01856	-0.05806 33325	-0.39545 53339	1.39695 22213	0.120
1.125	0.94174 26997	-0.06002 31841	-0.38849 26633	1.38813 34449	0.125
1.130	0.93993 14497	-0.06194 83322	-0.38157 38268	1.37941 82573	0.130
1.135 1.140	0.93815 60356 0.93641 60657	-0.06383 89946	-0.37469 83110	1.37080 49288	0.135
1.145	0.93471 11562	-0.06569 53867 -0.06751 77212	-0.36786 56106 -0.36107 52291	1.36229 17670 1.35387 71152	0.140 0.145
1.150	0.93304 09311	0.04030.43003	0.00400 //700		
1.155	0.93140 50217	-0.06930 62087 -0.07106 10569	-0.35432 66780 -0.34761 94768	1.34555 93520 1.33733 68900	0.150
1.160	0.92980 30666	-0.07278 24716	-0.34095 31528	1,32920 81752	0.155 0.160
1.165	0.92823 47120	-0.07447 06558	-0.33432 72413	1.32117 16859	0.165
1.170	0.92669 96106	-0.07612 58106	-0.32774 12847	1.31322 59322	0.170
1.175	0.92519 74225	-0.07774 81345	-0,32119 48332	1.30536 94548	0.175
1.180	0.92372 78143	-0.07933 78240	-0.31468 74438	1.29760 08248	0.180
1.185	0.92229 04591	-0.08089 50733	-0.30821 86809	1,28991 86421	0.185
1.190 1.195	0.92088 50371	-0.08242 00745	-0.30178 81156	1.28232 15358	0,190
	0.91951 12341	~0.08391 30174	-0.29539 53259	1.27480 81622	0,195
1.200	0.91816 87424	-0.08537 40900	-0.28903 98966	1.26737 72054	0,200
1.205 1.210	0.91685 72606	-0.08680 34780	-0.28272 14187	1.26002 73755	0,205
1.215	0.91557 64930	-0.08820 13651	-0.27643 94897	1.25275 74090	0.210
1,220	0.91432 61500 0.91310 59475	-0.08956 79331 -0.09090 33619	-0.27019 37135 -0.26398 37000	1.24556 60671 1.23845 21360	0,215 0,220
1.225	0.91101 64021	A 40000 T000			-
1.230	0.91191 56071 0.91075 48564	-0.09220 78291 -0.09348 15108	-0.25780 90652 -0.25166 94307	1.23141 44258 1.22445 17702	0,225 0,230
1.235	0.90962 34274	-0.09472 45811	-0.24556 44243	1.21756 30254	0.235
1.240	0.90852 10583	-0.09593 72122	-0.23949 36791	1.21074 70707	0.240
1.245	0.90744 74922	-0.09711 95744	-0.23345 68341	1.20400 28063	0.245
1.250	0.90640 24771	-0.09827 18364	-0.22745 35334	1.19732 91545	0.250
	y!	ln y!	$\frac{d}{dy} \ln y!$	$\frac{d^2}{dy^2}$ in $y!$	y
	[(~6)67	r(-6)51	-3 Γ(_6\77		
	$\begin{bmatrix} (-6)6\\ 5 \end{bmatrix}$	$\begin{bmatrix} (-6)5\\ 5\end{bmatrix}$	$\begin{bmatrix} (-6)7\\5\end{bmatrix}$	$\begin{bmatrix} (-5)2\\ 5\end{bmatrix}$	
07 2 > 9	e Examples 1 1		-		
		310 -110			

For r>2 see Examples 1-1.

Compiled from H. T. Davis, Tables of the higher mathematical functions, 2 vols. (Principia Press, Bloomington, Ind., 1933, 1935) (with permission). Known error has been corrected.

GAMMA FUNCTION AND RELATED FUNCTIONS

Table 6.1 GAMMA, DIGAMMA AND TRIGAMMA FUNCTIONS

				111-1	
r	$\Gamma(x)$	$\ln r(x)$	$\psi(x)$	V'(x)	0.250
1.250	0.90640 24771	-0.09827 18364	-0.22745 35334 -0.22148 34266	1.19732 91545 1.19072 50579	0.250
1.255	0.90538 57663 0.90439 71178	-0.09939 41651 -0.10048 67254	-0.21554 61686	1.18418 94799	0.260
1.260 1.265	0.90343 62946	-0.10154 96809	-0.20964 14193	1.17772 14030	0.265 0.270
1.270	0.90250 30645	-0.10258 31932	-0.20376 88437	1.17131 98301	0.270
1.275	0.90159 71994	-0.10358 74224	-0.19792 81118	1.16498 37821	0.275
1.280	0.90071 84765	-0.10456 25269	-0.19211 88983	1.15871 22990 1.15250 44385	0.280 0.285
1.285	0.89986 66769	-0.10550 86634 -0.10642 59872	-0.18634 08828 -0.18059 37494	1.14635 92764	0.290
1.290 1.295	0.89904 15863 0.89824 29947	-0.10731 46519	-0.17487 71870	1.14027 59053	0.295
		0.10017.40005	-0.16919 08889	1,13425 34350	0.300
1.300	0.89747 06963 0.89672 44895	-0.10817 48095 -0.10900 66107	-0.16353 45526	1,12829 09915	0.305
1.305 1.310	0.89600 41767	-0.10981 02045	-0.15790 78803	1.12238 77175 1.11654 27706	0.310 0.315
1.315	0.89530 95644	-0.11058 57384	-0.15231 05782 -0.14674 23568	1,11075 53246	0.320
1.320	0.89464 04630	-0.11133 33587	-		0 005
1.325	0.89399 66866	-0.11205 32100	-0.14120 29305	1.10502 45678 1.09934 97037	0.325 0.330
1.330	0.89337 80535	-0.11274 54356 -0.11341 01772	-0.13569 20180 -0.13020 93416	1.09372 99497	0.335
1.335 1.340	0.89278 43850 0.89221 55072	-0.11404 75756	-0.12475 46279	1.08816 45379	0.340
1.345	0.89167 12485	-0.11465 77697	-0.11932 76069	1.08265 27136	0.345
1 250	0.89115 14420	-0.11524 08974	-0.11392 80127	1.07719 37361	0.350
1.350 1.355	0.89065 59235	-0.11579 70951	-0.10855 55827	1.07178 68773 1.06643 14226	0.355 0.360
1.360	0.89018 45324	-0.11632 64980	-0.10321 00582 -0.09789 11840	1.06112 66696	0.365
1.365 1.370	0.88973 71116 0.88931 35074	-0.11682 92401 -0.11730 54539	-0.09259 87082	1.05587 19286	0.370
1.570				1,05066 65216	0.375
1.375	0.88891 35692 0.88853 71494	-0.11775 52707 -0.11817 88209	-0.08733 23825 -0.08209 19619	1.04550 97829	0.380
1.380 1.385	0.88818 41041	-0.11857 62331	-0.07687 72046	1.04040 10578	0.385 0.390
1.390	0.88785 42918	-0.11894 76353	-0.07168 78723 -0.06652 37297	1.03533 97036 1.03032 50881	0.395
1.395	0.88754 75748	-0.11929 31538	-0.00002 31271		
1,400	0.88726 38175	-0.11961 29142	-0.06138 45446	1.02535 65905 1.02043 36002	0.400 0.405
1.405	0.88700 28884	-0.11990 70405 -0.12017 56559	-0.05627 00879 -0.05118 01337	1.01555 55173	0.410
1.410 1.415	0.88676 46576 0.88654 89993	-0.12041 88823	-0.04611 44589	1.01072 17518	0.415
1.420	0.88635 57896	-0.12063 68406	-0.04107 28433	1.00593 17241	0.420
1,425	0.88618 49081	-0.12082 96505	-0.03605 50697	1.00118 48640	0.425
1.425	0.88603 62361	-0.12099 74307	-0.03106 09237	0.99648 06113 0.99181 84147	0.430 0.435
1.435	0.88590 96587	-0.12114 02987 -0.12125 83713	-0.02609 01935 -0.02114 26703	0.98719 77326	0.440
1.440 1.445	0.88580 50635 0.88572 23397	-0.12135 17638	-0.01621 81479	0.98261 80318	0.445
-			-0.01131 64226	0.97807 87886	0.450
1.450	0.88566 13803 0.88562 20800	-0.12142 05907 -0.12146 49657	-0.00643 72934	0.97357 94874	0.455
1.455 1.460	0.88560 43364	-0.12148 50010	-0.00158 05620	0.96911 96215 0.96469 86921	0.460 0.465
1.465	0.88560 80495	-0.12148 08083 -0.12145 24980	+0.00325 39677 0.00806 64890	0.96031 62091	0.470
1.470	0.88563 31217				0.475
1.475	0.88567 94575	-0.12140 01797	0.01285 71930 0.01762 62684	0.95597 16896 0.95166 46592	0.480
1.480	0.88574 69646 0.88583 55520	-0.12132 39621 -0.12122 39528	0.02237 39013	0.94739 46509	0.485
1.485 1.490	0.88594 51316	-0.12110 02585	0.02710 02758	0.94316 12052	0.490 0.495
1.495	0.88607 56174	-0.12095 29852	0.03180 55736	0.93896 38700	-
1.500	0.88622 69255	-0.12078 22376	0.03648 99740	0.93480 22005	0.500
-	y!	$\ln y!$	$\frac{d}{dy} \ln y!$	$\frac{d^2}{dy^2} \ln y!$	y
	r(-6)47	$\begin{bmatrix} (-6)4 \\ 4 \end{bmatrix}$	$\begin{bmatrix} (-6)4\\5 \end{bmatrix}$	$\begin{bmatrix} (-6)9 \\ 5 \end{bmatrix}$	
	$\begin{bmatrix} (-6)4\\ 5\end{bmatrix}$		•	Гој	
	<u>-</u>	$\log_{10} e = 0.48$	3429 44819		

Table I (Cont'd)

GAMMA, DIGAMMA AND TRIGAMMA FUNCTIONS

GAMMA FUNCTION AND RELATED FUNCTIONS

C Table 6.1

269

s	$\Gamma(x)$	$\ln \Gamma(x)$	↓ (r)	$\psi'(x)$	
1.500	0.88622 69255	-0.12078 22376	0.03648 99740	0.93480 22005	0,500
1.505	0.88639 89744	-0.12058 81200	0.04115 36543	0.93067 57588	0,505
1.510	0.88659 16850	-0.12037 07353	0.04579 67896	0.92658 41142	0,510
1.515	0.88680 49797	-0.12013 01860	0.05041 95527	0.92252 68425	0,515
1.520	0.88703 87833	-0.11986 65735	0.05502 21146	0.91850 35265	0,520
1.525	0.88729 30231	-0.11957 99983	0.05960 46439	0.91451 37552	0.525
1.530	0.88756 76278	-0.11927 05601	0.06416 73074	0.91055 71245	0.530
1.535	0.88786 25287	-0.11893 83580	0.06871 02697	0.90663 32361	0.535
1.540	0.88817 76586	-0.11858 34900	0.07323 36936	0.90274 16984	0.540
1.545	0.88851 29527	-0.11820 60534	0.07773 77400	0.89888 21253	0.545
1.550	0.88886 83478	-0.11780 61446	0.08222 25675	0.89505 41371	0.550
1.555	0.88924 37830	-0.11738 38595	0.08668 83334	0.89125 73596	0.555
1.560	0.88963 91990	-0.11693 92928	0.09113 51925	0.88749 14249	0.560
1.565	0.89005 45387	-0.11647 25388	0.09556 32984	0.88375 59699	0.565
1.570	0.89048 97463	-0.11598 36908	0.09997 28024	0.88005 06378	0.570
1.575	0.89094 47686	-0.11547 28415	0.10436 38544	0.87637 50766	0.575
1.580	0.89141 95537	-0.11494 00828	0.10873 66023	0.87272 89402	0.580
1.585	0.89191 40515	-0.11438 55058	0.11309 11923	0.86911 18871	0.585
1.590	0.89242 82141	-0.11380 92009	0.11742 77690	0.86552 35815	0.590
1.595	0.89296 19949	-0.11321 12579	0.12174 64754	0.86196 36921	0.595
1.600	0.89351 53493	-0.11259 17657	0.12604 74528	0,85843 18931	0.600
1.605	0.89408 82342	-0.11195 08127	0.13033 08407	0,85492 78630	0.605
1.610	0.89468 06085	-0.11128 84864	0.13459 67772	0,85145 12856	0.610
1.615	0.89529 24327	-0.11060 48737	0.13884 53988	0,84800 18488	0.615
1.620	0.89592 36685	-0.10990 00610	0.14307 68404	0,84457 92455	0.620
1.625	0.89657 42800	-0.10917 41338	0.14729 12354	0.84118 31730	0.625
1.630	0.89724 42326	-0.10842 71769	0.15148 87158	0.83781 33330	0.630
1.635	0.89793 34930	-0.10765 92746	0.15566 94120	0.83446 94315	0.635
1.640	0.89864 20302	-0.10687 05105	0.15983 34529	0.83115 11790	0.640
1.645	0.89936 98138	-0.10606 09676	0.16398 09660	0.82785 82897	0.645
1.650	0,90011 68163	-0.10523 07282	0.16811 20776	0.82459 04826	0.650
1.655	0,90088 30104	-0.10437 98739	0.17222 69122	0.82134 74802	0.655
1.660	0,90166 83712	-0.10350 84860	0.17632 55933	0.81812 90092	0.660
1.665	0,90247 28748	-0.10261 66447	0.18040 82427	0.81493 48001	0.665
1.670	0,90329 64995	-0.10170 44301	0.18447 49813	0.81176 45875	0.670
1.675	0.90413 92243	-0.10077 19212	0.18852 59282	0.80861 81094	0.675
1.680	0.90500 10302	-0.09981 91969	0.19256 12015	0.80549 51079	0.680
1.685	0.90588 18996	-0.09884 63351	0.19658 09180	0.80239 53282	0.685
1.690	0.90678 18160	-0.09785 34135	0.20058 51931	0.79931 85198	0.690
1.695	0.90770 07650	-0.09684 05088	0.20457 41410	0.79626 44350	0.695
1.700	0.90863 87329	-0.09580 76974	0.20854 78749	0.79323 28302	0.700
1.705	0.90953 57079	-0.09475 50552	0.21250 65064	0.79022 34645	0.705
1.710	0.91057 16796	-0.09368 26573	0.21645 01462	0.78723 61012	0.710
1.715	0.91156 66390	-0.09259 05785	0.22037 89037	0.78427 05060	0.715
1.720	0.91258 05779	-0.09147 88929	0.22429 28871	0.78132 64486	0.720
1.725	0.91301 34904	-0.09034 76741	0.22819 22037	0.77840 37011	0.725
1.730	0.91466 53712	-0.08919 69951	0.23207 69593	0.77550 20396	0.730
1.735	0.91573 62171	-0.08802 69286	0.23594 72589	0.77262 12424	0.735
1.740	0.91682 60252	-0.08683 75466	0.23980 32061	0.76976 10915	0.740
1.745	0.91793 47950	-0.08562 89203	0.24364 49038	0.76692 13714	0.745
1.750	0.91906 25268 y!	-0.08440 11210 ln //!	0.24747 24535 $\frac{d}{dy} \ln y!$	0.76410 18699 $\frac{d^2}{dy^2} \ln y!$	0.750 <i>!</i> /
	$\begin{bmatrix} \begin{pmatrix} 6/3 \\ 4 \end{bmatrix}$	$\begin{bmatrix} (-6)3\\4\end{bmatrix}\\\log_{10} = 0.43$	$\begin{bmatrix} (&6)3\\&4\end{bmatrix}$	$\begin{bmatrix} 1 & 6 & 14 \\ 5 & 5 \end{bmatrix}$	

Table 6.1 GAMMA, DIGAMMA AND TRIGAMMA TUNCHONS

3	1'(7)	$\ln r(x)$	∜ (1)	$\psi'(x)$	
1.750 1.755	0.91906 25268 0.92020 92224	-0.08440 11210 -0.08315 42192	0.24747 24535 0.25128 59559	0.76410 18699 0.76130 23773	0.750 0.755
1.760 1.765	0.92137 48846 0.92255 95178	-0.08188 82847 -0.08060 33871 -0.07929 95955	0.25508 55103 0.25887 12154 0.26264 31686	0.75852 26870 0.75576 25950 0.75302 19003	0.760 0.765 0.770
1.770 1.775	0.92376 31277 0.92498 57211	-0.07797 69782	0.26640 14664	0.75030 04040	0.775
1.780 1.785	0.92622 73062 0.92748 78926	-0.07663 56034 -0.07527 55386	0.27014 62043 0.27387 74769	0.74759 79107 0.74491 42268	0.780 0.785 0.790
1.790 1.795	0.92876 74904 0.93006 61123	-0.07389 68509 -0.07249 96070	0.27759 53776 0.28129 99992	0.74224 91617 0.73960 25271	0.795
1.800 1.805	0.93138 37710 0.93272 04811	-0.07108 38729 -0.06964 97145	0.28499 14333 0.28866 97707	0.73697 41375 0.73436 38093	0.800 0.805
1.810 1.815 1.820	0.93407 62585 0.93545 11198 0.93684 50832	-0.06819 71969 -0.06672 63850 -0.06523 73431	0.29233 51012 0.29598 75138 0.29962 70966	0.73177 13620 0.72919 66166 0.72663 93972	0.810 0.815 0.820
1,825	0.93825 81682	-0.06373 01353	0.30325 39367	0.72409 95297	0.825
1,830 1,835	0.93969 03951 0.94114 17859	-0.06220 48248 -0.06066 14750	0.30686 81205 0.31046 97335 0.31405 88602	0.72157 68426 0.71907 11662 0.71658 23333	0.830 0.835 0.840
1.840 1.845	0.94261 23634 0.94410 21519	-0.05910 01483 -0.05752 09071	0.31763 55846	0.71411 01788	0.845
1.850 1.855	0.94561 11764 0.94713 94637	-0.05592 38130 -0.05430 89276	0.32119 99895 0.32475 21572	0.71165 45396 0.70921 52546 0.70679 21650	0.850 0.855 0.860
1.860 1.865 1.870	0.94868 70417 0.95025 39389 0.95184 01855	-0.05267 63117 -0.05102 60260 -0.04935 81307	0.32829 21691 0.33182 01056 0.33533 60467	0.70438 51138 0.70199 39461	0.865 0.870
1.875	0.95344 58127	-0.04767 26854	0.33884 00713	0.69961 85089 0.69725 86512	0.875 0.880
1.880 1.885	0.95507 08530 0.95671 53398	-0.04596 97497 -0.04424 93824	0.34233 22577 0.34581 26835	0.69491 42236 0.69258 50790	0.885 0.890
1.890 1.895	0.95837 93077 0.96006 27927	-0.04251 16423 -0.04075 65875	0.34928 14255 0.35273 85596	0.69027 10717	0.895
1.900 1.905	0.96176 58319 0.96348 84632	-0.03898 42759 -0.03719 47650	0.35618 41612 0.35961 83049	0.68797 20582 0.68568 78965	0.900 0.905
1.910 1.915	0.96523 07261 0.96699 26608	-0.03538 81118 -0.03356 43732	0.36304 10646 0.36645 25136	0.68341 84465 0.68116 35696	0.910 0.915
1.920	0.96877 43090	-0.03172 36054	0.36985 27244 0.37324 17688	0.67892 31293	0.920 0.925
1.925 1.930	0.97057 57134 0.97239 69178	-0.02986 58646 -0.02799 12062 -0.02609 96858	0.37661 97179 0.37998 66424	0.67448 50194 0.67228 70846	0.930 0.935
1.935 1.940 1.945	0.97423 79672 0.97609 89075 0.97797 97861	-0.02609 96536 -0.02419 13581 -0.02226 62778	0.38334 26119 0.38668 76959	0.67010 30559 0.66793 28044	0.940 0.945
1.950	0.97988 06513	-0.02032 44991	0.39002 19627	0.66577 62034	0.950
1.955 1.960	0.98180 15524 0.98374 25404	-0.01836 60761 -0.01639 10621	0.39334 54805 0.39665 83163	0.66363 31270 0.66150 34514	0.955 0.960
1.965 1.970	0.98570 36664 0.98768 49838	-0.01439 95106 -0.01239 14744	0.39996 05371 0.40325 22088	0.65938 70538 0.65728 38134	0.965 0.970
1.975 1.980	0.98968 65462 0.99170 84087	-0.01036 70060 -0.00832 61578	0.40653 33970 0.40980 41664	0.65519 36104 0.65311 63266	0.975 0.980
1.985 1.990	0.99375 06274 0.99581 32598	-0.00626 89816 -0.00419 55291	0.41306 45816 0.41631 47060	0.65105 18450 0.64900 00505	0.985 0.990
1.995	0.99789 63643 1.00000 00000	-0.00210 58516 0.00000 00000	0.41955 46030 0.42278 43351	0.64696 08286 0.64493 40668	0.995
2.000	y!	ln y!	$\frac{d}{dy} \ln y!$	$\frac{d^2}{dy^2} \ln y!$	y
	_	$\begin{bmatrix} (-6)2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} (-6)2\\ 4 \end{bmatrix}$	$\begin{bmatrix} \frac{dy^2}{4} \end{bmatrix}$	
	$\begin{bmatrix} (-6)2\\4\end{bmatrix}$		[4] 43429 44819	[4 J	

Table 6.3 GAMMA AND DIGAMMA FUNCTIONS FOR INTEGER AND HALF-INTEGER VALLES

24	$\Gamma(n)$	1/1	1:01:	€(#)	() (() () () () () () () () (
1	(0)1.00000 00000	(0)1.00000 000	(-1)8,86226 93	-0.57721 56649	1.08443 755 0.57721 566
2	(0)1.00000 00000	(0)1.00000 000	(0)1,32934 04	+0.42278 43351	1.04220 712 0.27036 285
3	(0)2.00000 00000	(- 1)5.00000 000	(0)3,32335 10	0.92278 43351	1.02806 452 0.17582 795
4	(0)6.00000 00000	(- 1)1.66666 667	(1)1,16317 28	1.25611 76684	1.02100 830 0.13017 669
5	(1)2.40000 00000	(- 2)4.16666 667	(1)5,23427 78	1.50611 76684	1.01678 399 0.10332 024
6 7 8 9	(2)1.20000 00000 (2)7.20000 00000 (3)5.04000 00000 (4)4.03200 00000 (5)3.62880 00000	(- 3) 8.33333 333 (- 3) 1.38888 889 (- 4) 1.98412 698 (- 5) 2.48015 873 (- 6) 2.75573 192	(2)2.87885 28 (3)1.87125 43 (4)1.40344 07 (5)1.19292 46 (6)1.13327 84	1.70611 76684 1.87278 43351 2.01564 14780 2.14064 14780 2.25175 25891	1.01397 285 0.08564 180 1.01196 776 0.07312 581 1.01046 565 0.06380 006 1.00429 843 0.05658 310 1.00836 536 0.05083 250
11	(6) 3.62880 00000	(-7)2.75573 192	(7)1.18994 23	2.35175 25891	1.00760 243 0.04614 268
12	(7) 3.99168 00000	(-8)2.50521 084	(8)1.36843 37	2.44266 16800	1.00696 700 0.04224 497
13	(8) 4.79001 60000	(-9)2.08767 570	(9)1.71054 21	2.52599 50133	1.00642 758 0.03895 434
14	(9) 6.22702 08000	(-10)1.60590 438	(10)2.30923 18	2.60291 80902	1.00596 911 0.03613 924
15	(10) 8.71782 91200	(-11)1.14707 456	(11)3.34838 61	2.67434 66617	1.00557 019 0.03370 354
16	(12)1.30767 43680	(-13) 7.64716 373	(12) 5.18999 85	2.74101 33283	1.00522 124 0.03157 539
17	(13)2.09227 89888	(-14) 4.77947 733	(13) 8.56349 74	2.80351 33283	1.00491 343 0.02970 002
18	(14)3.55687 42810	(-15) 2.81145 725	(15) 1.49861 21	2.86233 68577	1.00463 988 0.02803 490
19	(15)6.40237 37057	(-16) 1.56192 070	(16) 2.77243 23	2.91789 24133	1.00439 519 0.02654 657
20	(17)1.21645 10041	(-18) 8.22063 525	(17) 5.40624 30	2.97052 39922	1.00417 501 0.02520 828
21	(18)2.43290 20082	(-19) 4.11031 762	(19) 1.10827 98	3.02052 39922	1.00397 584 0.02399 845
22	(19)5.10909 42172	(-20) 1.95729 411	(20) 2.38280 16	3.06814 30399	1.00379 480 0.02289 941
23	(21)1.12400 07278	(-22) 8.89679 139	(21) 5.36130 3%	3.11359 75853	1.00362 953 0.02189 663
24	(22)2.58520 16739	(-23) 3.86817 017	(23) 1.25990 63	3.15707 58462	1.00347 806 0.02097 798
25	(23)6.20448 40173	(-24) 1.61173 757	(24) 3.08677 05	3.19874 25129	1.00333 872 0.02013 331
26	(25)1.55112 10043	(-26) 6.44695 029	(25) 7.87126 49	3.23874 25129	1.00321 011 0.01935 403
27	(26)4.03291 46113	(-27) 2.47959 626	(27) 2.08588 52	3.27720 40513	1.00309 105 0.01863 281
28	(28)1.08888 69450	(-29) 9.18368 986	(28) 5.73618 43	3.31424 10884	1.00298 050 0.01796 342
29	(29)3.04888 34461	(-30) 3.27988 924	(30) 1.63481 25	3.34995 53741	1.00287 758 0.01734 046
30	(30)8.84176 19937	(-31) 1.13099 629	(31) 4.82269 69	3.38443 81327	1.00278 154 0.01675 925
31	(32)2.65252 85981	(-33) 3.76998 763	(33)1.47092 26	3.41777 14660	1.00269 170 0.01621 574
32	(33)8.22283 86542	(-34) 1.21612 504	(34)4.63340 61	3.45002 95305	1.00260 748 0.01570 637
33	(35)2.63130 83693	(-36) 3.80039 076	(36)1.50585 70	3.48127 95305	1.00252 837 0.01522 803
34	(36)8.68331 76188	(-37) 1.15163 356	(37)5.04462 09	3.51158 25608	1.00245 392 0.01477 796
35	(38)2.95232 79904	(-39) 3.38715 754	(39)1.74039 42	3.54099 43255	1.00238 372 0.01435 374
36	(40)1.03331 47966	(-42) 2.68822 027	(40)6.17839 94	3.56956 57541	1.00231 744 0.01395 318
37	(41)5.71993 32679	(-42) 2.68822 027	(42)2.25511 58	3.59734 35319	1.00225 474 0.01357 438
38	(43)1.37637 53091	(-44) 7.26546 018	(43)8.45668 42	3.62437 05589	1.00219 534 0.01321 560
39	(44)5.23022 61747	(-45) 1.91196 320	(45)3.25582 34	3.65068 63484	1.00213 899 0.01287 530
40	(46)2.03978 82081	(-47) 4.90246 976	(47)1.28605 02	3.67632 73740	1.00208 546 0.01255 208
41	(47)8.15915 28325	(-48)1.22561 744	(48)5.20850 35	3.70132 73740	1.00203 455 0.01224 469
42	(49)3.34525 26613	(-50)2.98931 083	(50)2.16152 90	3.72571 76179	1.00198 606 0.01195 200
43	(51)1.40500 61178	(-52)7.11740 673	(51)9.18649 81	3.74952 71417	1.00193 983 0.01167 297
44	(52)6.04152 63063	(-53)1.65521 087	(53)3.99612 67	3.77278 29557	1.00189 570 0.01140 668
45	(54)2.65827 15748	(-55)3.76184 288	(55)1.77827 64	3.79551 02284	1.00185 354 0.01115 226
46	(56)1.19622 22087	(-57) 8.35965 084	(56) 8.09115 74	3.81773 24506	1.00181 321 0.01090 895
47	(57)5.50262 21598	(-58) 1.81731 540	(58) 3.76238 82	3.83947 15811	1.00177 460 0.01067 602
48	(59)2.58623 24151	(-60) 3.86662 851	(60) 1.78713 44	3.86074 81768	1.00173 759 0.01045 283
49	(61)1.24139 15593	(-62) 8.05547 607	(61) 8.66760 18	3.88158 15102	1.00170 210 0.01023 879
50	(62)6.08281 86403	(-63) 1.64397 471	(63) 4.29046 29	3.90198 96734	1.00166 803 0.01003 333
51	(64) 3.04140 93202	(-65) 3.28794 942	(65)2.16668 38	3.92198 96734 d	1.00163 530 0.00983 596
	$\frac{(n-1)!}{n! \cdot (2\pi)^{\frac{1}{2}} n^{n-\frac{1}{2}} e^{-n} f_1}$	$\frac{1/(n-1)!}{\Gamma(n) - (2\pi)^{\frac{1}{2}}n^n}$	$(n-\frac{1}{2})!$ $-\frac{1}{2}, nf_1(n) \qquad \psi(n-\frac{1}{2})$	$\frac{\overline{dn}}{dn} \ln (n-1)! *$ $u) = \ln n \cdot f_3(n)$	(2*) ¹ = 2.50662 82746 31001

 $[\]psi(n)$ compiled from H. T. Davis, Tables of the higher mathematical functions, 2 vols. (Principia Press, Bloomington, Ind., 1933, 1935) (with permission).

^{&#}x27;See page D

GAMMA AND DIGAMMA FUNCTIONS FOR INTEGER AND HALF-INTEGER VALUES. Table 6.3

1/r(n)x(n+1)(- 65) 3.28794 942 (65) 2,16668 38 (67) 1,11584 21 (68) 5,85817 12 (70) 3,13412 16 (64) 3.04140 93202 3.92198 96734 1.00163 530 0.00983 596 3.94159 75166 1.00160 383 0.00964 620 3.96082 82858 1.00157 355 0.00946 363 51 (- 67) 6.44695 964 (- 68) 1.23979 993 66) 1.55111 87533 0.00964 620 52 67) 8.06581 75171 69) 4.27488 32841 (-70)2,339245153.97969 62103 1.00154 438 0.00928 784 72) 1,70809 63 (-72)4.331935473.99821 47288 1.00151 628 0.00911 846 1.00148 919 73) 1.26964 03354 73) 9, 47993 44 4.01639 65470 0.00895 514 4.03425 36899 4.05179 75495 0.00879 758 74) 7.10998 58780 (- 75)1.40647 255 75) 5, 35616 29 1,00146 304 (- 77) 2.46749 571 (- 79) 4.25430 295 76) 4.05269 19505 77) 3.07979 37 1,00143 780 0.00864 546 78) 2,35056 13313 79) 1,80167 93 4.06903 89288 1.00141 341 0.00849 852 80) 1.38683 11855 (-81) 7.21068 296 81) 1.071 99 92 4.08598 80814 1,00138 984 0.00835 648 (- 82)1.20178 049 (- 84)1.97013 196 (- 86)3.17763 219 (- 88)5.04386 062 61 8118.32098 71127 82)6.48559 51 4.10265 47481 1.00136 704 0.00821 912 1.00134 498 1.00132 362 83)5.07580 21388 85)3.14699 73260 87)1.98260 83154 62 84) 3.98864 10 4.11904 81907 0.00808 619 86) 2.49290 06 88) 1.58299 19 63 4.13517 72229 4.15105 02388 0.00795 750 1.00130 292 0.00783 284 64 89)1.26886 93219 (-90)7.8810322190) 1.02102 98 4.16667 52388 1.00128 286 0.00771 203 90) 8.24765 05921 (- 91) 1.21246 649 91)6.68774 50 4.18205 98542 1.00126 341 0.00759 489 66 93) 4.44735 04 95) 3.00196 15 67 92) 5.44344 93908 (-93)1.837070444,19721 13693 1.00124 455 0.00748 125 94) 3.64711 10918 (-95)2.7418961968 4,21213 67425 1,00122 623 0.00737 096 96) 2.48003 55424 - 97) 4, 03220 028 97) 2, 05634 36 4.22684 26248 1.00120 845 0.00726 388 98) 1.71122 45243 - 99) 5.84376 852 99)1.42915.88 4.24133 53785 1.00119 118 0.00715 986 (100)1.19785 71670 71 (-101)8.34824074(101)1.00755 70 4.25562 10927 1.00117 439 (102)7.20403 24 (104)5.22292 35 72 (101)8.50478 58857 (-102)1.17580 856 4.26970 55998 1.00115 807 0.00696 052 (-104) 1.63306 744 (-106) 2.23707 868 (103)6.12344 58377 4.28359 44887 1.00114 220 73 0.00686 495 (105) 4, 47011 54615 4,29729 31188 1.00112 675 0.00677 197 74 (106) 3.83884 87 (107)3.30788 54415 (-108)3.02307930(108) 2.85994 23 4,31080 66323 1.00111 172 0.00668 148 (-110) 4.03077 240 4.32413 99657 4.33729 78604 4.35028 48734 (109)2,48091 40811 (110) 2.15925 64 1.00109 709 0.00659 337 (-112)5.30364 789 (-114)6.88785 441 (-116)8.83058 257 (111) 1.88549 47017 (112)1.65183 12 (114)1.28016 92 1.00108 283 1.00106 894 0.00650 756 0.00642 395 (113)1.45183 09203 78 1.00105 540 (115)1.13242 81178 (116)1,00493 28 4,36310 53862 0.00634 247 (116)8.94618 21308 (-117)1.11779 526 (117)7.98921 57 4.37576 36140 1,00104 220 0.00626 302 81 (118) 7.15694 57046 -119) 1.39724 408 (119)6.43131 87 4.38826 36140 1.00102 933 0.90618 554 (-121) 1.72499 269 (-123) 2.10364 962 82 (121)5,24152 47 4.40060 92931 1,00101 677 (120)5.79712 60207 0.00610 995 83 (122)4.75364 33370 (123) 4.32425 79 4.41280 44150 1.00100 452 0.00603 619 R4 124) 3,94552 39697 -125) 2.53451 761 125) 3,61075 53 4.42485 26078 1.00099 255 0.00596 419 85 (126) 3.31424 01346 (-127) 3.01728 287 (127) 3.05108 83 4.43675 73697 1.00098 087 0.00589 389 (129)2.60868 05 (131)2.25650 86 (133)1.97444 50 4.44852 20756 4.46014 99825 1.00096 946 1.00095 831 86 (128) 2.81710 41144 -129) 3.54974 456 0.00582 522 (-129) 3.54974 456 (-131) 4.12760 995 (130)2.42270 95384 37 0.00575 814 -133) 4.74437 926 -135) 5.39134 006 4.47164 42354 0.00569 258 (132)2.10775 72984 1.00094 741 88 89 (134) 1.85482 64226 (136) 1.65079 55161 0,00562 850 135) 1.74738 38 4.48300 78718 1.00093 676 0.00556 584 1.00092 635 (137)1.56390 85 (-137)6-05768 546 4.49424 38268 91 4,50535 49379 1.00091 617 0.00550 457 (138) 1,48571 59645 (-139)6.73076163(139)1.41533 72 (141)1.29503 36 (-141) 7.39644 134 (-143) 8.03961 016 (-145) 8.64474 211 (140)1.35200 15277 4.51634 39489 1.00090 620 0.00544 463 (142)1.24384 14055 (144)1.15677 25071 (143)1.19790 60 (145)1.12004 22 93 4.52721 35142 1.00089 646 0.00538 598 0.00532 858 4.53796 62023 1.00088 691 (146) 1.08736 61567 (-147) 9.19653 415 (147)1.05843 98 4.54860 45002 1.00087 757 0.00527 239 (-149) 9.68056 227 (149)1.01081 00 0.00521 738 (148) 1.03299 78488 4,55913 08160 1.00086 843 97 (149) 9.91677 93487 (151) 9.61927 59682 (-150)1.00839 190 (-152)1.03957 928 (150) 9.75431 69 (152) 9.51045 90 1.00085 947 1.00085 070 4.56954 74827 0.00516 350 78 4.57985 67610 0.00511 072 153) 9,42689 04489 -154) 1.06079 519 154) 9.36780 21 4.59006 08426 1.00084 210 0.00505 901 100 (155) 9.33262 15444 (-156)1.07151 029 (156) 9.32096 31 4.60016 18527 1.00083 368 0.00500 833 101 (157) 9.33262 15444 (-158) 1.07151 029 (158) 9.36756 79 4.61016 18527 1.00082 542 0.00495 866 * $\frac{d}{2} ln(n-1)!$ $\begin{bmatrix} (-7)2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} (-6)1 \\ 4 \end{bmatrix}$ (n 1)! $n! = (2\pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n} f_1(n)$ $=\Gamma(n) = (2\pi)^{\frac{1}{2}}n'' = \frac{1}{4}r = nf_1(n)$ $-(2r)^{\frac{1}{2}}$ 2.50662 82746 31001 $\psi(n)$ ln $n = f_3(n)$

8

*See page II.

CALCULATOR METHOD

The expression Γ (α + 1) = α Γ (α) is applied repeatedly to increase the value of the argument until is it greater than 9, when Stirling's formula can be applied. If the argument is initially greater than 9, Stirling's formula is used at once.

Stirling's formula is given in Abramowitz [1]

For
$$\alpha > 9$$
:

Define
$$Y = \alpha + 1$$

 $X = (\alpha + 1)\alpha$
 $S = 0.9.89575332 - Y + (Y + 0.5) ln Y$
 $+ \frac{1}{(12 Y)} \left[1 - \frac{1}{30 Y^2} + \frac{1}{105 Y^4} \right]$

$$T(\alpha) = \frac{e^{s}}{x}$$

EXAMPLE

SOLUTION:
$$Y = 11.4$$
; $X = (11.4)(10.4)$

$$+\frac{1}{(12)(11.4)}\left[1-\frac{1}{30(11.4)^2}+\frac{1}{105(11.4)^4}\right]$$

$$S = 18.48624553$$

$$e^5 = 1.067761911 \times 10^8$$

$$X = 118.56$$

$$\Gamma(10.4) = \frac{e^5}{X} = 900608.9$$

$$X = \alpha (\alpha + 1)(\alpha + 2) \times ... Y$$

$$5 = 0.9189385332 - Y + (Y + 0.5) ln Y$$

$$+\frac{1}{(12 \text{ Y})} \left[1-\frac{1}{30 \text{ Y}^2}+\frac{1}{150 \text{ Y}^4}\right]$$

$$\Gamma(\alpha) = \frac{e^{s}}{x}$$

EXAMPLE

FIND: Γ (2.4)

SOLUTION:

Y = 9.4

 $X = 9.4 \times 8.4 \times 7.4 \times 6.4 \times 5.4 \times 4.4 \times 3.4 \times 2.4$

X = 725029.0842

 $S = 0.9189385332 - 9.4 + 9.9 \ln 9.4$

$$+\frac{1}{(12)(9.4)}\left[1-\frac{1}{30(9.4)^2}+\frac{1}{150(9.4)^4}\right]$$

5 = 13.71082637

$$\Gamma(2.4) = \frac{e^5}{X} = \frac{9.006089021 \times 10^5}{7.250290842 \times 10^5}$$

$$\Gamma(2.4) = 1.242169346$$

AS A CHECK

$$\Gamma(2.4) = 1.4 \ \Gamma(1.4) = 1.4 \times 0.8872638175$$
L See TABLE I

$$\Gamma(2.4) = 1.242169345$$

BASIC LANGUAGE PROGRAM

The previous calculator method is shown as a program listing in Basic Language, PL-1.

PL-1

PROGRAM LISTING FOR () IN BASIC LANGUAGE

10 REM A: ALTHA 20 R.M.G. GAMMA FUNCTION WITH ARGUMENT ALPHA 30 A=5.44 40 Y=A 50 X=A 60 Y=Y+1 70 X=X*Y 80 D=Y-9 90 IF D>=0 THEN 110 100 GO TO 60 110 8-.9189385332 120 S=S+(Y+.5)*LOG(Y)-Y 130 V=1-(1/(30*Y+2))+(1/(105*Y+4)) 140 V=(1/(12*Y))*V 150 S=S+V 160 G=EXP(S)/X 170 PRINT A.G 180 END

TI-59 Methods

A. USER ENTERED PROGRAM

The following program PL-2 is for use with the TI-59 Programmable Calculator and is part of Texas Instrument's Math 39 program exchange. It calculates the Gamma Function $\Gamma(x)$ for integer and non-integer values of the agrument x.

An internal accuracy check using a fractional argument can be made by calculating $\Gamma(0.5)$, then squaring the answer. The result should be π . Subtracting the stored value of π from the previously calculated value gives 4×10^{-10} . Thus, the error is 4 in the 11th digit. Other non-integer values have been compared with the National Bureau of Standards Tables [1] and almost all agree within +/- one unit in the 10th digit. PL-2 accuracy is considered accurate for all practical purposes.

To use enter the value of x; then press D. The computed value of $\Gamma(x)$ will ultimately be displayed.

x < 69.5

Calculation time is 5 to 15 seconds, depending on x.

EXAMPLE: Compute $\Gamma(6.5)$

Enter 6.5. PRESS D

The displayed output is 287.8852778

Thus, $\Gamma(6.5) = 287.8852778$

TI-59 Methods (Cont'd)

B. MATH UTILITY MODULE PROGRAM MU-11

The new math utility module can be used for computing $\Gamma(x)$ directly.

EXAMPLE: Compute Γ(6.3)

ENTER PRESS DISPLAY

[2nd] [Pgm] 11

6.3 [A] 201.8132752

Thus, $\Gamma(6.3) = 201.8132752$

GAMMA FUNCTION;

LISTING FOR TI-59 PROGRAMMABLE CALCULATOR

LOC	CODE	KEY	TOC	CODE	KEY
LOC 00123456789012345678901234567890123456789012345678901234567890123456789042234567890423456789044234444444444444444444444444444444444	74420213253405315203159400709709107833325943535353315331533153	LD 0001P 1L0 CO = TOCL1	047 047 049 050 051 051 053 054 055 056 057 061 062 064 067 077 077 077 077 077 078 088 088 089 091 091	63313551253153315335105454423530 640274084035512531533403353403335105454423530 600535540335105454423530	XC11X C1 + C11X (1 - (C11X 30) X + (C11X C1 + C11X X 105) X) VX + (C11X X X X 105) X) VX + (C11X X X X X 105) X) VX + (C11X X X X X X X X X X X X X X X X X X X
046		Š	093 094		= R/S

HP-67 Method

A program listing is shown (PL-3) for computing $\Gamma(\alpha)$ on an HP-67 Programmable Calculator using the previously described Stirling's approximation formula.

STEP	INSTRUCTIONS	INPUT DATA UNITS	KEYS	OUTPUT DATA/UNITS
1	ENTER ARGUMENT VALUE	A		A
2	PRESS- A			(A)
3	PRESS R/S			Α
	FOR NEW CASE GO TO STEP 1			
	(OVER)			
 				
 				
 				<u> </u>
			[<u> </u>
 				
				
				<u> </u>
			\	
			l l l l	
-			[] <u> </u>	ļ
				ļ
Ī				
<u> </u>			i i i i	
			i fif i	
				<u> </u>
	17		-	
	1/		<u> </u>	<u> </u>

PL-3 (CONT'D)

151. 31 25 170 23 0 1	\$120	na ENTRY	KEY COLE	Con . E	.NIS	SIEP	KEY ENTRY	KEY CODE	c	OMMENTS
STO1										
STO2 33 02 02 02 03 04 05 05 05 05 05 05 05	<u> </u>						RCL 2	34 02	1	
LBLB 31 25 12 1		STO2	33 02]	
1	Ĺ					060			4	
STOY-2				ı					4	
RCL2 34 02	 					<u> </u>			-i	
RCL3	<u> </u>					}			-	
STO STO									4	
STO3 33 03 RCL2 34 02 RCL3 34 01	010					<u> </u>			┥	
RCL2 34 02 9 09	F								┪	
9 09	 	RCL2				 			1	
Note	<u> </u>								7	
X < 0 31 71						070			1	
So		x < 0					RCL1	34 01]	
9 09 1 00 8 08 9 09 3 003 8 08 5 09 9 09 3 003 8 08 5 09 8 08 5 09 8 08 5 09 8 08 6 08 6 08 6 08 6 08 6 08 6 08 6 08		GTO B	22 12				RTN	35 22]	
020	 	1	83			L		<u> </u>]	
020	<u> </u>					<u></u>		<u> </u>	_}	
9 09 3 09 3 03 8 08 8 08 8 08 8 08 8 08						<u></u>	 	 	4	
3	050						 		-{	
S	├			1			 	- 	-	
S	}						 	+	┪	
3 03 3 03 2 02 RCL2 34 02 - 51 600 RCL2 34 02 - 51 600 RCL2 34 02 - 1	<u> </u>					080	 	+	1	
3								+	┪	
RC12 34 02	<u> </u>						· · · · · · · · · · · · · · · · · · ·	+	┥	
RCL2	}			•			 	+	1	
CSO RCL2 34 02							i	1	1	
Section Sect				•					1	
F LN 31 52 RCL2 34 02	030	RCL2]	
S		f LN]	
S	ļ	RCL2	34 02			ļ				
+ 61 x 71 + 61 STO 4 33 04 RCL2 34 02 900 g x ² 32 54 3 03 0 0 00 x 71 h 1/x 35 62 CHS 42 1 01 + 61 RCL2 34 02 4 04 050 h y ^x 35 63 1 01 0 00 5 05 x 71 h 1/x 35 62 + 61 RCL2 34 02 4 04 050 h y ^x 35 63 1 1 01 0 0 00 5 5 05 x 71 h 1/x 35 62 + 61 REGISTERS	}						.	<u> </u>	4	
X	}					090		 	-i	
The state of the	} -					}	 		4	
STO 4 33 04 RCL2 34 02							<u></u>		-{	
RCL2 34 02 040 g x² 32 54 3 03 0 00 x 71 h 1/x 35 62 CHS 42 1 01 + 61 RCL2 34 02 4 04 050 h y² 35 63 1 01 0 00 0 00 0 5 x 71 h 1/x 35 62	 -		33 04					- -	┪	
040	}						 	 	1	
3	040			•		<u> </u>	f	 	1	
O								1	1	
X								<u> </u>]	
CHS		x	71]	
1						100			4	
+						<u> </u>	ļ	 	4	
RCL2 34 02	 					<u> </u>	ļ	 	4	
050 h y ^X 35 63	}		61					 	4	
050 h y ^X 35 63	}					<u> </u>	 	 	4	
1	050						}	 	┥	
0 00 00	 	+n y				 		 	1	
S	<u> </u>	1 6				<u> </u>	 	 	1	
h 1/x 35 62			05]	
+ 61 REGISTERS O						110			1	
REGISTERS 0				}		ļ	ļ	·	4	
0		<u> </u>	61	Ļ <u>.</u>			L		<u> </u>	
A Y X S V So	<u> </u>	 	12	19 1	4	le.	ls.	77		- To
	ľ		f Y	l x	3	٧ '`	١	ľ	j°	١
	50		S2	153	S4	S5	S6	S 7	S8	S9
A B C D E I	1	Ĭ.	[1	-		1	i	1	ł
	A		В	c		D		E	T ₁	
	l	j	l	ł		l		1	- 1	

HP-34C METHOD

The key x: can be used directly to calculate $\Gamma(x)$ using the following relationship:

$$\Gamma(x) = (x - 1) !$$

EXAMPLE: Calculate Γ(6.3)

KEYSTROKES	DISPLAY	COMMENT		
6.3	6.3	x		
ENTER + 1[-]	5.3	x-1		
[h] [x!]	201.8132	Γ(6.3)		

B. INCOMPLETE GAMMA FUNCTIONS COMPUTATION

Definition:

The two Incomplete Gamma Functions $\gamma(\alpha,\tau)$ and $Q(\alpha,\tau)$ are defined as follows:

$$\gamma(\alpha,\tau) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$

$$Q(\alpha,\tau) = \int_{-\infty}^{\infty} x^{\alpha-1} e^{-x} dx$$

The Incomplete Gamma Functions are related to the Complete Gamma Function Γ (α) as follows:

$$\Gamma(\alpha) = \gamma (\alpha, \tau) + Q (\alpha, \tau)$$

That is

$$\int_{0}^{\infty} y \, dx = \int_{0}^{\infty} y \, dx + \int_{\infty}^{\infty} y \, dx$$

where
$$y = x^{\alpha-1} e^{-x}$$

TABULAR METHOD

On page 941 of Abramowitz [1]

$$\gamma(\alpha,\tau) = \Gamma(\alpha) P(\chi^2|\nu)$$

where $\chi^2 = 2\tau$; $\nu = 2\alpha$

Q
$$(\alpha, \tau) = \Gamma(\alpha) - \gamma(\alpha, \tau)$$

Also Q $(\alpha, \tau) = \Gamma(\alpha) Q (\chi^2 | \nu)$

NOTE: Q (α , τ) \neq Q ($\chi^2 | \nu$)

$$P(\chi^{2}|v) = 1 - Q(\chi^{2}|v)$$

Values of Q ($\chi^2 \mid \nu$) are tabulated in Table III, on pages 978-983 [1]

$$\alpha-1$$
 -x where y = x e

A pictorial representation is shown in figure 2. Note that y_{max} occurs at $x = \alpha - 1$.

FIGURE 2 PICTORIAL REPRESENTATION OF THE INCOMPLETE GAMMA FUNCTIONS

EXAMPLE

FIND:
$$\gamma(1.5,0.9)$$
, Q (1.5,0.9)
SOLUTION: $\alpha = 1.5$; $\tau = 0.9$
 $\Gamma(1.5) = 0.8862269255$ from Table I (Table 6.1 page 268 $\begin{bmatrix} 1 \end{bmatrix}$)
 $\chi^2 = 2\tau = 1.8$; $\nu = 2\alpha = 3$
In Table 26.7 page 978 $\begin{bmatrix} 1 \end{bmatrix}$
 $Q(\chi^2|\nu) = 0.61493$
 $P(\chi^2|\nu) = 1 - Q(\chi^2|\nu) = 0.38507$
 $\gamma(1.5,0.9) = \Gamma(1.5) P(\chi^2|\nu) = 0.34126$
 $Q(1.5,0.9) = \Gamma(1.5) Q(\chi^2|\nu) = 0.54497$

$$\gamma(1.5,0.9) + Q(1.5,0.9) = 0.88623$$
 to five places = $\Gamma(1.5)$

Interpolation formulas are shown on the bottom of p. 981 [1] (Table III). One formula is for interpolation on χ^2 alone. The Double Entry Enterpolation formula is for interpolation on both χ and ν .

where
$$\phi = \frac{1}{2} (\chi^2 - \chi_0^2)$$

 $w = v - v_0 > 0$

For interpolation on ν alone, the Double Entry formula can be modified by letting ϕ = 0 (i.e. χ^2 = χ_0^2) as follows:

$$Q(\chi^{2}|v) = Q(\chi^{2}_{0}|v_{0}-1) \left[\frac{1}{2}w^{2} - \frac{w}{2} \right] + Q(\chi^{2}_{0}|v_{0}) \left[1 - w^{2} \right] + Q(\chi^{2}_{0}|v_{0}+1) \left[\frac{1}{2}w^{2} + \frac{w}{2} \right]$$

EXAMPLE:

FIND:
$$\gamma(5.64, 8)$$
, Q (5.64, 8)

SOLUTION:

$$\alpha$$
 = 5.64 ; τ = 8

 $\Gamma(5.64) = 4.64 \times 3.64 \times 2.64 \times 1.64 \times \Gamma(1.64)$
 $\Gamma(1.64) = 0.8986420302$ from Table I (Table 6.1 page 269 [1])

 $\Gamma(5.64) = 65.71338911$
 $x_0^2 = x^2 = 2\tau = 16$; $v = 2\alpha = 11.28$

In this example

$$v_0 = 11$$
; $v_0 - 1 = 10$; $v_0 + 1 = 12$
 $w = v - v_0 = 11.28 - 11 = 0.28$

Thus

$$Q(\chi^{2}|\nu) = (0.09963) \frac{.28}{2} - \frac{.28}{2}$$

$$+ (0.14113) \left[1 - .28^{2} \right]$$

$$+ (0.19124) \left[\frac{.28^{2}}{2} + \frac{.28}{2} \right]$$

$$= -0.01004 + 0.13006 + 0.03427$$

$$Q(\chi^{2}|\nu) = 0.15429$$

 $P(\chi^{2}|\nu) = 1 - Q(\chi^{2}|\nu) = 0.84571$
 $\gamma(5.64, 8) = \Gamma(5.64) P(\chi^{2}|\nu) = 55.574$
 $Q(5.64, 8) = (5.64) Q(\chi^{2}|\nu) = 10.139$

As a check

$$\gamma(5.64, 8) + Q(5.64, 8) = 65.713$$
 to five places = $\Gamma(5.64)$

EXAMPLE

FIND:
$$\gamma(4.3, 3.77)$$
, Q (4.3, 3.77)

SOLUTION:

$$\alpha = 4.3$$
 ; $\tau = 3.77$
 $\Gamma (4.3) = 3.3 \times 2.3 \times 1.3 \times \Gamma(1.3)$
 $\Gamma (4.3) = 8.855343359$
 $\chi^2 = 2\tau = 7.54$; $\nu = 2\alpha = 8.6$

For this example

$$\chi^{2} = 7.54$$
; $\chi_{0}^{2} = 7.4$
 $.\phi = \frac{1}{2} (7.54 - 7.4) = 0.07$
 $v = 8.6$; $v_{0} = 8$; $v_{0} + 1 = 9$
 $v_{0} - 4 = 4$
 $v_{0} - 2 = 6$
 $v_{0} - 1 = 7$

EXAMPLE (Cont'd)

$$w = 8.6 - 8 = 0.6$$

The Double Entry Interpolation expression on page 981 [1] (Table III) will be used.

$$Q(\chi_{0}^{2}|v) = Q(\chi_{0}^{2}|v_{0}-4) \left[\frac{1}{2}\phi^{2}\right]$$

$$+Q(\chi_{0}^{2}|v_{0}-2) \left[\phi - \phi^{2} - w\phi\right]$$

$$+Q(\chi_{0}|v_{0}-1) \left[\frac{1}{2}w^{2} - \frac{1}{2}w + w\phi\right]$$

$$+Q(\chi_{0}|v_{0}) \left[1 - w^{2} - \phi + \frac{1}{2}\phi^{2} + w\phi\right]$$

$$+Q(\chi_{0}|v_{0}) \left[\frac{1}{2}w^{2} + \frac{1}{2}w - w\phi\right]$$

$$Q(\chi^{2}|v) = (0.11620) \left[\frac{1}{2} (.07)^{2} \right]$$

$$+ (0.28543) \left[.07 - .07^{2} - (.6)(.07) \right]$$

$$+ (0.38845) \left[\frac{1}{2} (.6)^{2} - \frac{1}{2} (.6) + (.6)(.07) \right]$$

$$+ (0.49415) \left[1 - .6^{2} - .07 + \frac{1}{2} (.07)^{2} + (.6)(.07) \right]$$

$$+ (0.59555) \left[\frac{1}{2} (.6)^{2} + \frac{1}{2} (.6) - (.6)(.07) \right]$$

$$Q(\chi^2|\nu) = 0.00028469 + 0.006593433$$
$$-0.0302991 + 0.30363046 + 0.2608509$$
$$= 0.5410603905$$

Q(4.3, 3.77) =
$$\Gamma(4.3)$$
 Q($\chi^2 | \nu$)
= 4.7913 to five places 4.791276 to seven places
Y (4.3, 3.77) = $\Gamma(4.3) \left[1 - Q(\chi^2 | \nu) \right]$
= 4.0641 to five places 4.064068 to seven places
 $\frac{4.064068}{8.85534}$ to six places

TABLE III TABULATION OF $Q(\chi^2|v)$

PROPABILITY TUNCTIONS

1178

4.55c 26.7 PROBABILITY INTEGRAL OF CODISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION

1 2 3 4	0.001 0.0005 0.97477 0.99950 0.99999	0.002 0.0010 0.96433 0.99900 0.99998	0.003 0.0015 0.95632 0.99850 0.99996	0.004 0.0020 0.94957 0.99800 0.99993	0.005 0.0025 0.94363 0.99750 0.99991	0.006 0.0030 0.93826 0.99700 0.99988	0.007 0.0035 0.93332 0.99651 0.99984 0.99999	0.008 0.0040 0.92873 0.99601 0.99981 0.99999	0.009 0.0045 0.92442 0.99551 0.99977 0.99999	0.010 0.0050 0.92034 0.99501 0.99973 0.99999
1 2 3 4 5	12 0.01 12 0.005 13 0.92034 14 0.99501 15 0.99973 16 0.99999	0.02 0.010 0.88754 0.99005 0.99925 0.99995	0.03 0.015 0.86249 0.98511 0.99863 0.99989 0.99999	0.04 0.020 0.84148 0.98020 0.99790 0.99980 0.99998	0.05 0.025 0.82306 0.97531 0.99707 0.99969 0.99997	0.06 0.030 0.80650 0.97045 0.99616 0.99956 0.99995	0.07 0.035 0.79134 0.96561 0.99518 0.99940 0.99993	0.08 0.040 0.77730 0.96079 0.99412 0.99922 0.99991	0.09 0.045 0.76418 0.95600 0.99301 0.99902 0.99987	0.10 0.050 0.75183 0.95123 0.99184 0.99879 0.99984
6							0.99999	0.99999	0.99999	0.99998
1 2 3 4 5	x ² 0.1 m 0.05 0.75183 0.95123 0.99184 0.99879 0.99984	0.2 0.10 0.65472 0.90484 0.97759 0.99532 0.99911	0.3 0.15 0.58388 0.86071 0.96003 0.98981 0.99764	0.4 0.20 0.52709 0.81873 0.94024 0.98248 0.99533	0.5 0.25 0.47950 0.77880 0.91889 0.97350 0.99212	0.6 0.30 0.43858 0.74082 0.89643 0.96306 0.98800	0.7 0.35 0.40278 0.70469 0.87320 0.95133 0.98297	0.8 0.40 0.37109 0.67032 0.84947 0.93845 0.97703	0.9 0.45 0.34278 0.63763 0.82543 0.92456 0.97022	1.0 0.50 0.31731 0.60653 0.80125 0.90980 0.96257
6 7 8 9 10	0.99998	0.99985 0.99997	0.99950 0.99990 0.99998	0.99885 0.99974 0.99994 0.99999	0.99784 0.99945 0.99987 0.99997 0.99999	0.99640 0.99899 0.99973 0.99993 0.99998	0.99449 0.99834 0.99953 0.99987 0.99997	0.99207 0.99744 0.99922 0.99978 0.99994	0.98912 0.99628 0.99880 0.99964 0.99989	0.98561 0.99483 0.99825 0.99944 0.99983
11 12							0.99999	0.99998	0.99997 0.99999	0.99995 0.99999
1 2 3 4 5	2 1.1 m 0.55 0.29427 0.57695 0.77707 0.89427 0.95410	1.2 0.60 0.27332 0.54881 0.75300 0.87810 0.94488	1.3 0.65 0.25421 0.52205 0.72913 0.86138 0.93493	1.4 0.70 0.23672 0.49659 0.70553 0.84420 0.92431	1.5 0.75 0.22067 0.47237 0.68227 0.82664 0.91307	1.6 0.80 0.20590 0.44933 0.65939 0.80879 0.90125	1.7 0.85 0.19229 0.42741 0.63693 0.79072 0.88890	1.8 0.90 0.17971 0.40657 0.61493 0.77248 0.87607	1.9 0.95 0.16808 0.38674 0.59342 0.75414 0.86280	2.0 1.00 0.15730 0.36788 0.57241 0.73576 0.84915
6 7 8 9	0.98154 0.99305 0.99753 0.99917 0.99973	0.97689 0.99093 0.99664 0.99882 0.99961	0.97166 0.98844 0.99555 0.99838 0.99944	0.96586 0.98557 0.99425 0.99782 0.99921	0.95949 0.98231 0.99271 0.99715 0.99894	0.95258 0.97864 0.99092 0.99633 0.99859	0.94512 0.97457 0.98887 0.99537 0.99817	0.93714 0.97008 0.98654 0.99425 0.99766	0.92866 0.96517 0.98393 0.99295 0.99705	0.91970 0.95984 0.98101 0.99147 0.99634
11 12 13 14 15	0.99992 0.99998 0.99999	0.99987 0.99996 0.99999	0.99981 0.99994 0.99998 0.99999	0.99973 0.99991 0.99997 0.99999	0.99962 0.99987 0.99996 0.99999	0.99948 0.99982 0.99994 0.99998 0.99999	0.99930 0.99975 0.99991 0.99997 0.99999	0.99908 0.99966 0.99988 0.99996 0.99999	0.99882 0.99954 0.99983 0.99994 0.99998	0.99850 0.99941 0.99977 0.99992 0.99997
16										

 $(V(x^2 \nu) - 1 - P(x^2 | \nu)) = \left[2^2 \Gamma\left(\frac{\nu}{2}\right) \right]^{-1} \int_{-\pi/2}^{\infty} e^{-\frac{t}{2}t^2 - 1} dt = \left[\Gamma\left(\frac{\nu}{2}\right) \right]^{-1} \int_{-\frac{1}{2}x^2}^{\infty} e^{-\frac{t}{2}t^2 - 1} dt = \left[\frac{c - 1}{2} e^{-mmD/j} \right] (v \text{ even, } c = \frac{1}{2}v, m = \frac{1}{2}x^2)$

Compiled from E. S. Pearson and H. O. Hartley (editors), Biometrika tables for statisticians, vol. 1. Cambridge Univ. Press, Cambridge, England, 1954 (with permission).

PROBABILITY FUNCTIONS

PROBABILITY INTEGRAL OF ADISTRIBUTION, INCOMPLETE GAMMA FUNCTION Table 26.7 CUMULATIVE SUMS OF THE POISSON DISTRIBUTION										
1 2 3 4 5	2 2.2 m 1.1 0.13801 0.33287 0.53195 0.69903 0.82084	2.4 1.2 0. 12134 0. 30119 0. 49363 0. 66263 0. 79147	2.6 1.3 0.10686 0.27253 0.45749 0.62682 0.76137	2.8 1.4 0.09426 0.24660 0.42350 0.59183 0.73079	3.0 1.5 0.08327 0.22313 0.39163 0.55783 0.69999	3.2 1.6 0.07364 0.20190 0.36181 0.52493 0.66918	3.4 1.7 0. 06520 0. 18268 0. 33397 0. 49325 0. 63857	3.6 1.8 0.05778 0.16530 0.30802 0.46284 0.60831	3.8 1.9 0. 05125 0. 14957 0. 28389 0. 43375 0. 57856	4.0 2.0 0.04550 0.13534 0.26146 0.40601 0.54942
6 7 8 9	0.90042 0.94795 0.97426 0.98790 0.99457	0.87949 0.93444 0.96623 0.98345 0.99225	0,85711 0,91938 0,95691 0,97807 0,98934	0.83350 0.90287 0.94628 0.97170 0.98575	0.80885 0.88500 0.93436 0.96430 0.98142	0.78336 0.86590 0.92119 0.95583 0.97632	0.75722 0.84570 0.90681 0.94631 0.97039	0.73062 0.82452 0.89129 0.93572 0.96359	0.70372 0.80250 0.87470 0.92408 0.95592	0.67668 0.77978 0.85712 0.91141 0.94735
11 12 13 14 15	0.99766 0.99903 0.99961 0.99985 0.99994	0.99652 0.99850 0.99938 0.99975 0.99990	0.99503 0.99777 0.99903 0.99960 0.99984	0.99311 0.99680 0.99856 0.99938 0.99974	0.99073 0.99554 0.99793 0.99907 0.99960	0.98781 0.99396 0.99711 0.99866 0.99940	0.98431 0.99200 0.99606 0.99813 0.99913	0.98019 0.98962 0.99475 0.99743 0.99878	0.97541 0.98678 0.99314 0.99655 0.99832	0.96992 0.98344 0.99119 0.99547 0.99774
16 17 18 19 20	0.99998 0.99999	0.99996 0.99999	0.99994 0.99998 0.99999	0.99989 0.99996 0.99998 0.99999	0.99983 0.99993 0.99997 0.99999	0.99974 0.99989 0.99995 0.99998 0.99999	0.99961 0.99983 0.99993 0.99997 0.99999	0.99944 0.99975 0.99989 0.99995 0.99998	0.99921 0.99964 0.99984 0.99993 0.99997	0.99890 0.99948 0.99976 0.99989 0.99995
21 22								0. 99999	0.99999	0. 99998 0. 99999
	x2 4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0
1 2 3 4 5	m 2.1 0.04042 0.12246 0.24066 0.37962 0.52099	2.2 0.03594 0.11080 0.22139 0.35457 0.49337	2.3 0.03197 0.10026 0.20354 0.33085 0.46662	2.4 0.02846 0.09072 0.18704 0.30844 0.44077	2.5 0.02535 0.08209 0.17180 0.28730 0.41588	2.6 0.02259 0.07427 0.15772 0.26739 0.39196	2.7 0. 02014 0. 06721 0. 14474 0. 24866 0. 36904	2.8 0.01796 0.06081 0.13278 0.23108 0.34711	2.9 0.01603 0.05502 0.12176 0.21459 0.32617	3.0 0.01431 0.04979 0.11161 0.19915 0.30622
6 7 8 9	0,64963 0,75647 0,83864 0,89776 0,93787	0.62271 0.73272 0.81935 0.88317 0.92750	0.59604 0.70864 0.79935 0.86769 0.91625	0.56971 0.68435 0.77872 0.85138 0.90413	0.54381 0.65996 0.75758 0.83431 0.89118	0.51843 0.63557 0.73600 0.81654 0.87742	0.49363 0.61127 0.71409 0.79814 0.86291	0.46945 0.58715 0.69194 0.77919 0.84768	0.44596 0.56329 0.66962 0.75976 0.83178	0.42319 0.53975 0.64723 0.73992 0.81526
11 12 13 14 15	0.96370 0.97955 0.98887 0.99414 0.99701	0.95672 0.97509 0.98614 0.99254 0.99610	0.94898 0.97002 0.98298 0.99064 0.99501	0. 94046 0. 96433 0. 97934 0. 98841 0. 99369	0.93117 0.95798 0.97519 0.98581 0.99213	0.92109 0.95096 0.97052 0.98283 0.99029	0. 91026 0. 94327 0. 96530 0. 97943 0. 98816	0.89868 0.93489 0.95951 0.97559 0.98571	0.88637 0.92583 0.95313 0.97128 0.98291	0.87337 0.91608 0.94615 0.96649 0.97975
16 17 18 19 20	0.99851 0.99928 0.99966 0.99985 0.99993	0.99802 0.99902 0.99953 0.99978 0.99990	0.99741 0.99869 0.99936 0.99969 0.99986	0.99666 0.99828 0.99914 0.99958 0.99980	0.99575 0.99777 0.99886 0.99943 0.99972	0.99467 0.99715 0.99851 0.99924 0.99962	0.99338 0.99639 0.99809 0.99901 0.99950	0.99187 0.99550 0.99757 0.99872 0.99934	0.99012 0.99443 0.99694 0.99836 0.99914	0.98810 0.99319 0.99620 0.99793 0.99890
21 22 23 24 25	0. 99997 0. 99999 0. 99999	0. 99995 0. 99998 0. 99999	0.99993 0.99997 0.99999 0.99999	0.99991 0.99996 0.99998 0.99999	0.99987 0.99994 0.99997 0.99999 0.99999	0.99982 0.99991 0.99996 0.99998 0.99999	0.99975 0.99988 0.99994 0.99997 0.99999	0.99967 0.99984 0.99992 0.99996 0.99998	0.99956 0.99978 0.99989 0.99995 0.99998	0.99943 0.99971 0.99986 0.99993 0.99997
26 27	Interpola	ition on x2	•		$=\frac{1}{2}(\mathbf{x}^2 - \mathbf{x}_0^2)$) 10 - 15		0.99999	0.99999 0.99999	0.99998 0.99999

 $Q\left(x^{2},\mathbf{r}\right) = Q\left(x_{0}^{2},\mathbf{r}_{0}-4\right)\left[\frac{1}{2}\phi^{2}\right] + Q\left(x_{0}^{2},\mathbf{r}_{0}-2\right)\left[\phi+\phi^{2}\right] + Q\left(x_{0}^{2},\mathbf{r}_{0}\right)\left[1-\phi+\frac{1}{2}\phi^{2}\right]$

Double Entry Interpolation

$$\begin{split} Q\left(\chi^{2}|_{r}\right) = &Q\left(\chi_{0}^{2}|_{r_{0}}-4\right)\left[\frac{1}{2}|_{\Phi}^{2}\right] + Q\left(\chi_{0}^{2}|_{r_{0}}-2\right)\left[\phi-\phi^{2}-w\phi\right] + Q\left(\chi_{0}^{2}|_{r_{0}}-1\right)\left[\frac{1}{2}|_{W}^{2} + \frac{1}{2}|_{W}+w\phi\right] \\ + &Q\left(\chi_{0}^{2}|_{r_{0}}\right)\left[1-w^{2}-\phi+\frac{1}{2}|_{\Phi}^{2}+w\phi\right] + Q\left(\chi_{0}^{2}|_{r_{0}}+1\right)\left[\frac{1}{2}|_{W}^{2} + \frac{1}{2}|_{W}+w\phi\right] \end{split}$$

Table 26.7 PROBABILITY INTEGRAL OF χ^2 - DISTRIBUTION, INCOMPLETE GAMMA. FUNCTION CUMULATIVE, SUMS OF THE POISSON DISTRIBUTION

	COMPLATIVE SUMS OF THE POISSON DISTRIBUTION									
	χ^{2} 6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0
1 2 3 4 5	m 3.1 0.01278 0.04505 0.10228 0.18470 0.28724	3.2 0.01141 0.04076 0.09369 0.17120 0.26922	3.3 0.01020 0.03688 0.08580 0.15860 0.25213	3.4 0.00912 0.03337 0.07855 0.14684 0.23595	3.5 0.00815 0.03020 0.07190 0.13589 0.22064	3.6 0.00729 0.02732 0.06579 0.12569 0.20619	3.7 0.00652 0.02472 0.06018 0.11620 0.19255	3.8 0.00584 0.02237 0.05504 0.10738 0.17970	3.9 0.00522 0.02024 0.05033 0.09919 0.16761	4.0 0.00468 0.01832 0.04601 0.09158 0.15624
6 7 8 9	0.40116 0.51660 0.62484 0.71975 0.79819	0.37990 0.49390 0.60252 0.69931 0.78061	0.35943 0.47168 0.58034 0.67869 0.76259	0.33974 0.45000 0.55836 0.65793 0.74418	0. 32085 0. 42888 0. 53663 0. 63712 0. 72544	0.30275 0.40836 0.51522 0.61631 0.70644	0.28543 0.38845 0.49415 0.59555 0.68722	0.26890 0.36918 0.47349 0.57490 0.66784	0.25313 0.35056 0.45325 0.55442 0.64837	0. 23810 0. 33259 0. 43347 0. 53415 0. 62884
11 12 13 14 15	0.85969 0.90567 0.93857 0.96120 0.97619	0.84539 0.89459 0.93038 0.95538 0.97222	0.83049 0.88288 0.92157 0.94903 0.96782	0.81504 0.87054 0.91216 0.94215 0.96296	0. 79908 0. 85761 0. 90215 0. 93471 0. 95765	0.78266 0.84412 0.89155 0.92673 0.95186	0.76583 0.83009 0.88038 0.91819 0.94559	0.74862 0.81556 0.86865 0.90911 0.93882	0. 73110 0. 80056 0. 85638 0. 89948 0. 93155	0,71330 0,78513 0,84360 0,88933 0,92378
16 17 18 19 20	0.98579 0.99174 0.99532 0.99741 0.99860	0. 98317 0. 99007 0. 99429 0. 99679 0. 99824	0.98022 0.98816 0.99309 0.99606 0.99781	0, 97693 0, 98599 0, 99171 0, 99521 0, 99729	0.97326 0.98355 0.99013 0.99421 0.99669	0.96921 0.98081 0.98833 0.99307 0.99598	0.96476 0.97775 0.98630 0.99176 0.99515	0.95989 0.97437 0.98402 0.99026 0.99420	0.95460 0.97064 0.98147 0.98857 0.99311	0.94887 0.96655 0.97864 0.98667 0.99187
21 22 23 24 25	0. 99926 0. 99962 0. 99981 0. 99990 0. 99995	0. 99905 0. 99950 0. 99974 0. 99987 0. 99994	0,99880 0,99936 0,99967 0,99983 0,99991	0.99850 0.99919 0.99957 0.99978 0.99989	0.99814 0.99898 0.99945 0.99971 0.99985	0.99771 0.99873 0.99931 0.99963 0.99981	0.99721 0.99843 0.99913 0.99953 0.99975	0.99662 0.99807 0.99892 0.99941 0.99968	0.99594 0.99765 0.99867 0.99926 0.99960	0.99514 0.99716 0.99837 0.99908 0.99949
26 27 28 29 30	0. 99998 0. 99999	0, 99997 0, 99999 0, 99999	0, 99996 0, 99998 0, 99999	0. 99994 0. 99997 0. 99999 0. 99999	0. 99992 0. 99996 0. 99998 0. 99999	0. 99990 0. 99995 0. 99998 0. 99999 0. 99999	0.99987 0.99993 0.99997 0.99998 0.99999	0.99983 0.99991 0.99996 0.99998 0.99999	0.99978 0.99989 0.99994 0.99997 0.99999	0.99973 0.99985 0.99992 0.99996 0.99998
	$\chi^2 = 8.2$	8.4	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0
1 2 3 4 5	m 4.1 0.00419 0.01657 0.04205 0.08452 0.14555	4.2 0,00375 0,01500 0,03843 0,07798 0,13553	4.3 0.00336 0.01357 0.03511 0.07191 0.12612	4.4 0.00301 0.01228 0.03207 0.06630 0.11731	4.5 0.00270 0.01111 0.02929 0.06110 0.10906	4.6 0.00242 0.01005 0.02675 0.05629 0.10135	4.7 0.00217 0.00910 0.02442 0.05184 0.09413	4.8 0.00195 0.00823 0.02229 0.04773 0.08740	4.9 0.00175 0.00745 0.02034 0.04394 0.08110	5.0 0.00157 0.00674 0.01857 0.04043 0.07524
6 7 8 9 10	0. 22381 0. 31529 0. 41418 0. 51412 0. 60931	0, 21024 0, 29865 0, 39540 0, 49439 0, 58983	0.19736 0.28266 0.37715 0.47499 0.57044	0, 18514 0, 26734 0, 35945 0, 45594 0, 55118	0.17358 0.25266 0.34230 0.43727 0.53210	0.16264 0.23861 0.32571 0.41902 0.51323	0,15230 0,22520 0,30968 0,40120 0,49461	0.14254 0.21240 0.29423 0.38383 0.47626	0, 13333 0, 20019 0, 27935 0, 36692 0, 45821	0. 12465 0. 18857 0. 26503 0. 35049 0. 44049
11 12 13 14 15	0. 69528 0. 76931 0. 83033 0. 87865 0. 91551	0.67709 0.75314 0.81660 0.86746 0.90675	0.65876 0.73666 0.80244 0.85579 0.89749	0.64035 0.71991 0.78788 0.84365 0.88774	0.62189 0.70293 0.77294 0.83105 0.87752	0.60344 0.68576 0.75768 0.81803 0.86683	0,58502 0,66844 0,74211 0,80461 0,85569	0.56669 0.65101 0.72627 0.79081 0.84412	0. 54846 0. 63350 0. 71020 0. 77666 0. 83213	
16 17 18 19 20	0.94269 0.96208 0.97551 0.98454 0.99046	0.97207 0.98217 0.98887	0, 92897 0, 95198 0, 96830 0, 97955 0, 98709	0.92142 0.94633 0.96420 0.97666 0.98511	0.91341 0.94026 0.95974 0.97348 0.98291	0, 90495 0, 93378 0, 95493 0, 97001 0, 98047	0.89603 0.92687 0.94974 0.96623 0.97779	0.88667 0.91954 0.94418 0.96213 0.97486	0.87686 0.91179 0.93824 0.95771 0.97166	0, 93191 0, 95295 0, 96817
21 22 23 24 25	0, 99424 0, 99659 0, 99802 0, 99888 0, 99937	0. 99320 0. 99593 0. 99761 0. 99863 0. 99922	0.99203 0.99518 0.99714 0.99833 0.99905	0. 99070 0. 99431 0. 99659 0. 99799 0. 99884	0. 98921 0. 99333 0. 99596 0. 99760 0. 99860	0, 98755 0, 99222 0, 99524 0, 99714 0, 99831	0.98570 0.99098 0.99442 0.99661 0.99798	0.98365 0.98958 0.99349 0.99601 0.99760	0.98139 0.98803 0.99245 0.99532 0.99716	0.97891 0.98630 0.99128 0.99455 0.99665
26 27 28 29 30	0, 99966 0, 99981 0, 99990 0, 99995 0, 99997	0. 99957 0. 99977 0. 99987 0. 99993 0. 99997	0.99947 0.99971 0.99984 0.99991 0.99996	0, 99934 0, 99963 0, 99980 0, 99989 0, 99994	0.99919 0.99955 0.99975 0.99986 0.99993	0.99902 0.99944 0.99969 0.99983 0.99991	0.99882 0.99932 0.99962 0.99979 0.99988	0.99858 0.99917 0.99953 0.99973 0.99985	0.99830 0.99900 0.99942 0.99967 0.99982	0.99798 0.99880 0.99930 0.99960 0.99977
($Q(x^2 y) = 1 - F$	$^{\prime}(x^{2} y)=\left[2^{2}\right]$	$r\binom{r}{2}$ $\binom{r}{2}$	2/2 //	$\left[\Gamma \left({}^{\nu}_{2} \right) \right]$	1 5 42" 1	$(2^{-1})_{ij} = \sum_{n=0}^{\infty} (n^n)_{ij}$	∾ ຫານ/j!(veven, r≖	$\frac{1}{2}y, m = \frac{1}{2}x^2$

PROBABILITY FUNCTIONS

Table 26.7

PROI	PROBABILITY INTEGRAL OF *DISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION									UNCTION
	$x^2 = 10.5$	демет. - 11.0	111.5	(US O 12.0	12.5	POISSO 13.0	N DIST 13.5	14.0	ON 14.5	15.0
ν	m = 5.25	5.5	5.75	6.0	6.25	6.5	6.75	7.0	7.25	7.5
1	0.00119	0.00091	0.0007J	J. 00053	0.00041	0.00031	0.00024	0.00018	0.00014	0.00011
3	0.00525 0.01476	0.00409	0.00318	0.00248 0.00738	0.00193	0.00150	0.00117	0.00091	0.00071	0.00055 0.00182
4 5	0.03280 0.06225	0.02656 0.05138	0.02148	0.01735 0.03479	0.01400 0.02854	0.01128 0.02338	0.00907 0.01912	0.00730 0.01561	0.00586 0.01273	0.00470 0.01036
6 7	0.10511	0.08838	0.07410	0.06197 0.10056	0.05170 0.08527	0.043J4 0.07211	0.03575	0. 02964	0.02452 0.04297	0.02026 0.03600
8	0. 16196 0. 23167	0.13862	0.11825 0.17495 0.24299	0.15120	0.13025	0.11185	0.06082 0.09577 0.14126	0.05118 0.08177 0.12233	0.06963	0.05915 0.09094
10	0. 31154 0. 39777	0. 27571 0. 35752	0.31991	0, 21331 0, 28506	0. 25299	0.16261 0.22367	0.19704	0.17299	0.10562 0.15138	0.13206
11 12	0.48605	0.44326	0.40237	0.36364 0.44568	0.32726 0.40640	0.29333 0.36904	0.26190 0.33377	0.23299 0.30071	0.20655 0.26992	0.18250 0.24144
13	0.57218 0.65263	0.61082	0.56901	0.52764	0.48713	0.44781	0.40997	0.37384	0.33960	0. 30735
15	0.72479 0.78717	0.68604 0.75257	0.64639 0.71641	0.60630 0.67903	0.56622 0.64086	0.52652 0.60230	0.48759 0.56374	0. 52553	0.41316 0.48800	0.37815 0.45142
16 17	0.83925 0.88135	0.80949 0.85650	0.77762	0.74398 0.80014	0.70890 0.76895	0.67276 0.73619	0, 63591 0, 70212	0.59871 0.66710	0.56152 0.63145	0.52464 0.59548
18 19	0, 91436 0, 93952	0.89435 0.92384	0.87195	0.84724	0.82018 0.86316	0.79157 0.83857	0.76106 0.81202	0.72909 0.78369	0.69596 0.75380	0.66197 0.72260
20	0.95817	0.94622	0. 93221	0.91608	0.89779	0.87738	0.85492	0.83050	0.80427	0. 77641
21 22	0,97166 0,98118	0.96274 0.97475	0.95214	0. 93962 0. 95738	0.92513 0.94618	0.90862 0.93316	0.89010 0.91827	0.86960 0.90148	0.84718 0.88279	0.82295 0.86224
23	0.98773 0.99216	0.98319	0.97748 0.98498	0.97047	0.96201 0.97367	0.95199 0.96612	0.94030	0.92687	0.91165 0.93454	0.89463 0.92076
25	0. 77507	0. 99295	0.99015	0.98657	0. 98206	0.97650	0. 96976	0.96173	0. 95230	0.94138
26 27	0.99696 0.99816	0.99555	0. 99 ³ 66 0. 3 9548	0.99117 0.99429	0.98798 0,99208	0.98397 0.98925	0.97902 0.98567	0.97300 0.98125	0. 96581 0. 97588	0.95733 0.96943
28 29	0.99890 0.99935	0.99831	0.99749	0.99637	0.99487	0.99290 0.99538	0.99037	0.98719 0.99138	0.98324 0.98854	0.97844 0.98502
30	0. 49963 3 = 15.5	0, 99940	0, 99907	0.99860	0.99794	0.99704	0. 99585	0, 99428	0. 99227	0.98974
v	m = 7.75	8.0	8.25	8.5	$\frac{17.5}{8.75}$	18.0 9.0	9.25	19.0 9.5	19.5 9.75	20.0 10.0
1 2	0.00008	0.00006	0.00005	0.00004	0.00003	0.00002	0.00002	0.00001	0. 00001	0.00001
3	0.00043 0.00144	0.00034	0.00026	0.00020	0.00016 0.00056	0.00012 0.00044	0.00010	0.00008 0.00027	0.00006 0.00022	0.00005 0.00017
5	0.00377 0.00843	0.00302 0.00684	0.00242	0.00193 0.00450	0.00154 0.00364	0.00123 0.00295	0.00099 0.00238	0.00079 0.00192	0.00063 0.00155	0.00050 0.00125
6 7	0.01670 0.03010	0.01375 0.02512	0.01131	0.00928 0.01740	0.00761 0.01444	0.00623 0.01197	0.00510 0.00991	0.00416 0.00819	0.00340	0.00277
8	0.05012 0.07809	0.04238	0.03576	0.03011	0. 02530	0.02123	0. 01777	0.01486	0.00676 0.01240	0.00557 0.01034
10	0.11487	0. 09963	0. 08619	0. 07436	0.06401	0.05496	0.02980 0.04709	0.04026	0.02126 0.03435	0.01791 0.02925
11	0.16073 0.21522	0.14113	0.12356 0.16939	0.10788 0.14760	0.09393 0.13174	0.08158 0.11569	0.07068 0.10133	0.06109 0.08853	0.05269 0.07716	0.04534 0.06709
13	0, 27719 0, 34485	0.24913	0.22318	0.19930	0. 17744 0. 23051	0.15752 0.20678	0.13944	0.12310	0.10840	0.09521 0.13014
15	0.41604	0. 38205	0.34962	0.31886	0. 28986	0.26267	0. 23729	0. 21373	0.14671 0.19196	0. 17193
16 17	0.48837 0.55951	0,45296 0,52383	0.41864	0.38560 0.45437	0.35398 0.42102	0.32390 0.38884	0.29544 0.35797	0.26866 0.32853	0.24359 0.30060	0.22022 0.27423
18 19	0.62747 0.69033	0.59255	0.55770	0.52311 0.58987	0. 48902 0. 55603	0.45565	0.42320 0.48931	0.39182	0.36166 0.42521	0.33282 0.39458
20	0. 74712	0. 71662	0.68516	0.65297	0.62031	0.58741	0.55451	0.52183	0.48957	0, 45793
21 22	0.79705 0.83990	0.76965 0.81589	0.74093 0.79032	0.71111 0.76336	0.68039 0.73519	0.64900 0.70599	0.61718 0.67597	0.58514 0.64533	0.55310 0.61428	0.52126 0.58304
23 24	0.87582 0.90527	0.85527 0.88808	0.83304	0.80925 0.84866	0. 78402 0. 82657	0.75749 0.80301	0.72983 0.77810	0.70122	0.67185	0.64191 0.69678
25	0. 92891	0.91483	0.89912	0.88179	0. 86287	0.84239	0. 82044	0.75199 0.79712	0. 77254	0.74683
26 27	0. 94749 0. 96182	0.93620 0.95295	0.92341 0.94274	0.90908 0.93112		0.87577 0.90352	0.85683 0.88750	0.83643 0.87000	0.81464 0.85107	0.79156 0.83076
28 29	0.97266 0.98071	0.96582 0.97554	0.95782	0.94859	0. 93805	0.92615	0.91285	0.89814	0.88200	0.86446 0.89293
30	0. 98659	0. 98274	0.97810	0.97258	0.95383 0.96608	0.95853	0.94986	0. 94001	0. 92891	0.91654
14	$\phi_{2}^{-1}(x^{2} x_{0}^{2}) = w \cdot v_{0} \cdot 0$									
int	Interpolation on x^2									
D~	$Q(\chi_0^2 \mathbf{r}_0 Q(\chi_0^2 \mathbf{r}_0 4)[\frac{1}{2}\phi^2] \cdot Q(\chi_0^2 \mathbf{r}_0 2)[\phi \phi^2] \cdot Q(\chi_0^2 \mathbf{r}_0)[1 \phi \cdot \frac{1}{2}\phi^2]$ Double between Interpolation									
DO	Double Entry Interpolation $Q(\mathbf{x}^2 \nu) \cdot Q(\mathbf{x}^2_0 r_0, 4) \begin{bmatrix} \frac{1}{2}\boldsymbol{\sigma}^2 \end{bmatrix} \cdot Q(\mathbf{x}^2_0 r_0, 2) \begin{bmatrix} \boldsymbol{\sigma} & \boldsymbol{\sigma}^2 & w\boldsymbol{\sigma} \end{bmatrix} \cdot Q(\mathbf{x}^2_0 r_0, 1) \begin{bmatrix} \frac{1}{2}\boldsymbol{w}^2 - \frac{1}{2}\boldsymbol{w} \cdot w\boldsymbol{\sigma} \end{bmatrix}$									
	A.G. N				_	-		-	u·Φ]	
		·Q	(5,2) [11° •	φ- 10φ -	$Q(\mathbf{x}_0^2 \mathbf{y}_0)$	$1) \left[\frac{1}{2} w^2 \cdot \frac{1}{2} \right]$	w wo		

980

PROBABILITY I US TIONS

Table 26.7 PROBABILITY INTEGRAL OF χ^2 -distribution, incomplete Gamma function cumulative sums of the poisson distribution

			CONCLA	IIVE SC	115 (11 11	11 130125	us mei	Kibe HO	•	
	χ^2 6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0
1 2 3 4 5	m 3.1 0,01278 0,04505 0,10228 0,18470 0,28724	3.2 0.01141 0.04076 0.09369 0.17120 0.26922	3.3 0.01020 0.03688 0.08580 0.15860 0.25213	3.4 0.00912 0.03337 0.07855 0.14684 0.23595	3.5 0.00815 0.03020 0.07190 0.13589 0.22064	3.6 0.00729 0.02732 0.06579 0.12569 0.20619	3.7 0.00652 0.02472 0.06018 0.11620 0.19255	3.8 0.00584 0.02237 0.05504 0.10738 0.17970	3.9 0.00522 0.02024 0.05033 0.09919 0.16761	4.0 0.00468 0.01832 0.04601 0.09158 0.15624
6 7 8 9	0, 40116 0, 51660 0, 62484 0, 71975 0, 79819	0.37990 0.49390 0.60252 0.69931 0.78061	0.35943 0.47168 0.58034 0.67869 0.76259	0.33974 0.45000 0.55836 0.65793 0.74418	0.32085 0.42888 0.53663 0.63712 0.72544	0.30275 0.40836 0.51522 0.61631 0.70644	0.28543 0.38845 0.49415 0.59555 0.68722	0.26890 0.36918 0.47349 0.57490 0.66784	0.25313 0.35056 0.45325 0.55442 0.64837	0.23810 0.33259 0.43347 0.53415 0.62884
11 12 13 14 15	0.85969 0.90567 0.93857 0.96120 0.97619	0, 84539 0, 89459 0, 93038 0, 95538 0, 97222	0.83049 0.88288 0.92157 0.94903 0.96782	0.81504 0.87054 0.91216 0.94215 0.96296	0.79908 0.85761 0.90215 0.93471 0.95765	0.78266 0.84412 0.89155 0.92673 0.95186	0.76583 0.83009 0.88038 0.91819 0.94559	0.74862 0.81556 0.86865 0.90911 0.93882	0.73110 0.80056 0.85638 0.89948 0.93155	0.71330 0.78513 0.84360 0.88933 0.92378
16 17 18 19 20	0.98579 0.99174 0.99532 0.99741 0.99860	0.98317 0.99007 0.99429 0.99679 0.99824	0.98022 0.98816 0.99309 0.99606 0.99781	0.97693 0.98599 0.99171 0.99521 0.99729	0. 97326 0. 98355 0. 99013 0. 99421 0. 99669	0.96921 0.98081 0.98833 0.99307 0.99598	0.96476 0.97775 0.98630 0.99176 0.99515	0.95989 0.97437 0.98402 0.99026 0.99420	0.95460 0.97064 0.98147 0.98857 0.99311	0,94887 0,96655 0,97864 0,98667 0,99187
21 22 23 24 25	0, 99926 0, 99962 0, 99981 0, 99990 0, 99995	0.99905 0.99950 0.99974 0.99987 0.99994	0.99880 0.99936 0.99967 0.99983 0.99991	0.99850 0.99919 0.99957 0.99978 0.99989	0.99814 0.99898 0.99945 0.99971 0.99985	0.99771 0.99873 0.99931 0.99963 0.99981	0.99721 0.99843 0.99913 0.99953 0.99975	0.99662 0.99807 0.99892 0.99941 0.99968	0.99594 0.99765 0.99867 0.99926 0.99960	0.99514 0.99716 0.99837 0.97908 0.99949
26 27 28 29 30	0.99998 0.99999	0.99997 0.99999 0.99999	0. 99996 0. 99998 0. 99999	0, 99994 0, 99997 0, 99999 0, 99999	0, 99992 0, 99996 0, 99998 0, 99999	0.99990 0.99995 0.99998 0.99999 0.99999	0.99987 0.99993 0.99997 0.99998 0.99999	0.99983 0.99991 0.99996 0.99998 0.99999	0.99978 0.99989 0.99994 0.99997 0.99999	0.99973 0.99985 0.99992 0.99996 0.99998
	$\chi^2 = 8.2$	8.4	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0
1 2 3 4 5	m - 4.1 0.00419 0.01657 0.04205 0.08452 0.14555	4.2 0.00375 0.01500 0.03843 0.07798 0.13553	4.3 0.00336 0.01357 0.03511 0.07191 0.12612	4.4 0.00301 0.01228 0.03207 0.06630 0.11731	4.5 0.00270 0.01111 0.02929 0.06110 0.10906	4.6 0.00242 0.01005 0.02675 0.05629 0.10135	4.7 0.00217 0.00910 0.02442 0.05184 0.09413	4.8 0.00195 0.00823 0.02229 0.04773 0.08740	4.9 0.00175 0.00745 0.02034 0.04394 0.08110	5.0 0.00157 0.00674 0.01857 0.04043 0.07524
6 7 8 9	0. 22381 0. 31529 0. 41418 0. 51412 0. 60931	0. 21024 0. 29865 0. 39540 0. 49439 0. 58983	0.19736 0.28266 0.37715 0.47499 0.57044	0. 18514 0. 26734 0. 35945 0. 45594 0. 55118	0.17358 0.25266 0.34230 0.43727 0.53210	0. 16264 0. 23861 0. 32571 0. 41902 0. 51323	0.15230 0.22520 0.30968 0.40120 0.49461	0. 14254 0. 21240 0. 29423 0. 38383 0. 47626	0. 13333 0. 20019 0. 27935 0. 36692 0. 45821	0. 12465 0. 18857 0. 26503 0. 35049 0. 44049
1) 12 13 14 15	0.69528 0.76931 0.83033 0.87865 0.91551	0.67709 0.75314 0.81660 0.86746 0.90675	0, 65876 0, 73666 0, 80244 0, 85579 0, 89749	0.64035 0.71991 0.78788 0.84365 0.88774	0. 62189 0. 70293 0. 77294 0. 83105 0. 87752	0. 60344 0. 68576 0. 75768 0. 81803 0. 86683	0.58502 0.66844 0.74211 0.80461 0.85569	0.56669 0.65101 0.72627 0.79081 0.84412	0.54846 0.63350 0.71020 0.77666 0.83213	0.53039 0.61596 0.65193 0.76.18 0.81974
16 17 18 19 20	0.94269 0.96208 0.97551 0.98454 0.99046	0. 93606 0. 95723 0. 97207 0. 98217 0. 98887	0.92897 0.95198 0.96830 0.97955 0.98709	0.92142 0.94633 0.96420 0.97666 0.98511	0. 91341 0. 94026 0. 95974 0. 97348 0. 98291	0.90495 0.93378 0.95493 0.97001 0.98047	0.89603 0.92687 0.94974 0.96623 0.97779	0.88667 0.91954 0.94418 0.96213 0.97486	0.87686 0.91179 0.93824 0.95771 0.97166	0.86663 0.90361 0.93191 0.95295 0.96817
21 22 23 24 25	0. 99659 0. 99802 0. 99888 0. 99937	0. 99593 0. 99761 0. 99863 0. 99922	0. 99203 0. 99518 0. 99714 0. 99833 0. 99905	0.99070 0.99431 0.99659 0.99799 0.99884	0. 98921 0. 99333 0. 99596 0. 99760 0. 99860	0.98755 0.99222 0.99524 0.99714 0.99831	0,98570 0,99098 0,99442 0,99661 0,99798	0.98365 0.98958 0.99349 0.99601 0.99760	0.98139 0.98803 0.99245 0.99532 0.99716	0.97891 0.98630 0.99128 0.99455 0.99665
26 27 28 29 30	0. 99966 0. 99981 0. 99990 0. 99995 0. 99997	0. 99957 0. 99977 0. 99987 0. 99993 0. 99997	0.99947 0.99971 0.99984 0.99991 0.99996	0.99934 0.99963 0.99980 0.99989	0.99919 0.99955 0.99975 0.99986 0.99993	0.99902 0.99944 0.99969 0.99983 0.99991	0.99882 0.99932 0.99962 0.99979 0.99988	0,99858 0,99917 0,99953 0,99973 0,99985	0.99830 0.99900 0.99942 0.99967 0.99982	0.99798 0.99880 0.99930 0.99960 0.99977
Q	$P(x^2 \nu) = 1 - P$	$(x^2 \nu) = \begin{bmatrix} 2^2 \end{bmatrix}$	$\binom{r}{2}$	212 111	$-\left[r \binom{r}{2} \right]^{-1}$	$\int_{\frac{1}{2}\lambda^2}^{\infty} e^{-\frac{t}{2}} t^2$	-1 di = (-1 r	\cdot ຫານ $/j!($ ຍ	even, $c=rac{1}{2}$	$y, m = \frac{1}{2}x^2$

PROBABILITY FUNCTIONS

Table 26.7

PRO	BABILITY									UNCTÍO:
	x^2 - 10.5	.CMC1.5	VTIVE S 11.5	12.0	12.5	13.0	13.5	14.0	UN 14.5	15.0
1 2 3 4 5	m - 5.25 0.00119 0.00525 0.01476 0.03280 0.06225	5.5 0.00091 0.00409 0.01173 0.02656 0.05138	5.75 0.00073 0.00318 0.00931 0.02148 0.04232	6.0 3.00053 0.00248 3.00738 0.01735 0.03479	6.25 0.00041 0.00193 0.00585 0.01400 0.02854	6.5 0.00031 0.00150 0.00464 0.01128 0.02338	6.75 0.00024 0.00117 0.00367 0.00907 0.01912	7.0 0.00018 0.00091 0.00291 0.00730 0.01561	7.25 0.00014 0.00071 0.00230 0.00586 0.01273	7.5 0.00011 0.00055 0.00182 0.00470 0.01036
6 7 8 9	0.10511 0.16196 0.23167 0.31154 0.39777	0. 08838 0. 13862 0. 20170 0. 27571 0. 35752	0,07410 0,11825 0,17495 0,24299 0,31991	0,06197 0,10056 0,15120 0,21331 0,28506	0,05170 0,08527 0,13025 0,18657 0,25299	0.04304 0.07211 0.11185 0.16261 0.22367	0,03575 0,06082 0,09577 0,14126 0,19704	0.02964 0.05118 0.08177 0.12233 0.17299	0.02452 0.04297 0.06963 0.10562 0.15138	0.02026 0.03600 0.05915 0.09094 0.13206
11 12 13 14 15	0.48605 0.57218 0.65263 0.72479 0.78717	0.44326 0.52892 0.61082 0.68604 0.75254	0.40237 0.48662 0.56901 0.64639 0.71641	0. 36364 0. 44568 0. 52764 0. 60630 0. 67903	0, 32726 0, 40640 0, 48713 0, 56622 0, 64086	0. 29333 0. 36904 0. 44781 0. 52652 0. 60230	0.26190 0.33377 0.40997 0.48759 0.56374	0. 23299 0. 30071 0. 37384 0. 44971 0. 52553	0.20655 0.26992 0.33960 0.41316 0.48800	0.18250 0.24144 0.30735 0.37815 0.45142
16 17 18 19 20	0. 83925 0. 88135 0. 91436 0. 93952 0. 95817	0.80949 0.85550 0.89435 0.92384 0.94622	0.77762 0.82942 0.87195 0.90587 0.93221	0.74398 0.80014 0.84724 0.88562 0.91608	0.70890 0.76895 0.82018 0.86315 0.89779	0.67276 0.73619 0.79157 0.83857 0.87738	0.63591 0.70212 0.76106 0.81202 0.85492	0.59871 0.66710 0.72909 0.78369 0.83050	0.56152 0.63145 0.69596 0.75380 0.80427	0.52464 0.59548 0.66197 0.72260 0.77641
21 22 23 24 25	0.97166 0.98118 0.98773 0.99216 0.99507	0,96279 0,97475 0,98319 0,98901 0,99295	0.95214 0.96686 0.97748 0.98498 0.99015	0.93962 0.95738 0.97047 0.97991 0.98657	0.92513 0.94618 0.96201 0.97367 0.98206	0.90862 0.93316 0.95199 0.96612 0.97650	0.89010 0.91827 0.94030 0.95715 0.96976	0.86960 0.90148 0.92687 0.94665 0.96173	0. 84718 0. 88279 0. 91165 0. 93454 0. 95230	0.82295 0.86224 0.89463 0.92076 0.94138
26 27 28 29 30	0. 99696 0. 99815 0. 99890 0. 99935 0. 99963 $\chi^2 = 15.5$	0.99555 0.99724 0.99831 0.99899 0.99940 16.0	0.99366 0.99598 0.99749 0.99846 0.99907 16.5	0,99117 0,99429 0,99637 0,99773 0,99860 17.0	0.98798 0.99208 0.99487 0.99672 0.99794 17.5	0. 98397 0. 98925 0. 99290 0. 99538 0. 99704 18.0	0.97902 0.98567 0.99037 0.99363 0.99585 18.5	0.97300 0.98125 0.98719 0.99138 0.99428 19.0	0, 96581 0, 97588 0, 98324 0, 98854 0, 99227 19.5	0. 95733 0. 96943 0. 97844 0. 98502 0. 98974 20.0
1 2 3 4 5	m = 7.75 0.0008 0.00043 0.00144 0.00377 0.00843	8.0 0.00006 0.00034 0.00113 0.00302 0.00684	8.25 0.00005 0.00026 0.00090 0.00242 0.00555	8.5 0.00004 0.00020 0.00071 0.00193 0.00450	8.75 0.00003 0.00016 0.00056 0.00154 0.00364	9.0 0.00002 0.00012 0.00044 0.00123 0.00295	9.25 0.00002 0.00010 0.00035 0.00099 0.00238	9.5 0.00001 0.00008 0.00027 0.00079 0.00192	9.75 0.00001 0.00006 0.00022 0.00063 0.00155	10.0 0.00001 0.00005 0.00017 0.00050 0.00125
6 7 8 9	0.01670 0.03010 0.05012 0.07809 0.11487	0.0137° 0.02512 0.04238 0.06688 0.09963	0.01131 0.02092 0.03576 0.05715 0.08619	0.00928 0.01740 0.03011 0.04872 0.07436	0.00761 0.01444 0.02530 0.04144 0.06401	0.00623 0.01197 0.02123 0.03517 0.05496	0.00510 0.00991 0.01777 0.02980 0.04709	0.00415 0.00819 0.01486 0.02519 0.04026	0.00340 0.00676 0.01240 0.02126 0.03435	0.00277 0.00557 0.01034 0.01791 0.02925
11 12 13 14 15	0.16073 0.21522 0.27719 0.34485 0.41604	0.14113 0.19124 0.24913 0.31337 0.38205	0, 12356 0, 16939 0, 22318 0, 28380 0, 34962	0.10788 0.14960 0.19930 0.25618 0.31886	0.09393 0.13174 0.17744 0.23051 0.28986	0.08158 0.11569 0.15752 0.20678 0.26267	0.07068 0.10133 0.13944 0.18495 0.23729	0.06109 0.08853 0.12310 0.16495 0.21373	0.05269 0.07716 0.10840 0.14671 0.19196	0.04534 0.06709 0.09521 0.13014 0.17193
16 17 18 19 20	0.48837 0.55951 0.62740 0.69033 0.74712	0.45296 0.52383 0.59255 0.65728 0.71662	0.41864 0.48871 0.55770 0.62370 0.68516	0.38560 0.45437 0.52311 0.58987 0.65297	0.35398 0.42102 0.48902 0.55603 0.62031	0, 32390 0, 38884 0, 45565 0, 52244 0, 58741	0.29544 0.35797 0.42320 0.48931 0.55451	0.26866 0.32853 0.39182 0.45684 0.52183	0,24359 0,30060 0,36166 0,42521 0,48957	0.22022 0.27423 0.33282 0.39458 0.45793
21° 22 23 24 25	0. 79705 0. 83990 0. 87582 0. 90527 0. 92891	0.76965 0.81589 0.85527 0.88808 0.91483	0.74093 0.79032 0.83304 0.86919 0.89912	0,71111 0,76336 0,80925 0,84866 0,88179	0.68039 0.73519 0.78402 0.82657 0.86287	0.64900 0.70599 0.75749 0.80301 0.84239	0.61718 0.67597 0.72983 0.77810 0.82044	0.58514 0.64533 0.70122 0.75199 0.79712	0.55310 0.61428 0.67185 0.72483 0.77254	0.52126 0.58304 0.64191 0.69678 0.74683
26 27 28 2 9 30	0, 94749 0, 96182 0, 97266 0, 98071 0, 98659	0. 93620 0. 95295 0. 96582 0. 97554 0. 98274	0. 92341 0. 94274 0. 95782 0. 96939 0. 97810	0.96218	0, 89320 0, 91806 0, 93805 0, 95383 0, 96608 χ^2_0	0, 87577 0, 90352 0, 92615 0, 94427 0, 95853	0.94986	0.83643 0.87000 0.89814 0.92129 0.94001	0.81464 0.85107 0.88200 0.90779 0.92891	0. 79156 0. 83076 0. 86446 0. 89293 0. 91654
Interpolation on x ²										
$Q(\mathbf{x}^2 \mathbf{r}) \cdot Q(\mathbf{x}^2_0 \mathbf{r}_0 4) \begin{bmatrix} \frac{1}{2}\mathbf{\phi}^2 \end{bmatrix} \cdot Q(\mathbf{x}^2_0 \mathbf{r}_0 2) \begin{bmatrix} \mathbf{\phi} \cdot \mathbf{\phi}^2 \end{bmatrix} \cdot Q(\mathbf{x}^2_0 \mathbf{r}_0) \begin{bmatrix} 1 \cdot \mathbf{\phi} \cdot \frac{1}{2}\mathbf{\phi}^2 \end{bmatrix}$ Double Entry Interpolation										
:[](Provide Entry interpolation $Q(\mathbf{x}_0^2 \mathbf{r}_0 \mathbf{A}) \begin{bmatrix} 1/\mathbf{s}^2 \\ 1/\mathbf{s}^2 \end{bmatrix} Q(\mathbf{x}_0^2 \mathbf{r}_0 \mathbf{A}) \begin{bmatrix} 1/\mathbf{s}^2 \\ 1/\mathbf{s}^2 \end{bmatrix} Q(\mathbf{x}_0^2 \mathbf{r}_0 \mathbf{A}) \begin{bmatrix} 1/\mathbf{s}^2 \\ 1/\mathbf{s}^2 \end{bmatrix} Q(\mathbf{x}_0^2 \mathbf{r}_0 \mathbf{A})$									
	$= Q(\mathbf{x}_0^2 \mathbf{y}_0) \left[1 - w^2 - \phi \cdot \frac{1}{2}\phi^2 \cdot w\phi\right] \cdot Q(\mathbf{x}_0^2 \mathbf{y}_0 \cdot 1) \left[\frac{1}{2}w^2 \cdot \frac{1}{2}w \cdot w\phi\right]$									

982

PROBABILITY FUNCTIONS

Tabl	Table 26.7 PROBABILITY INTEGRAL OF α -distribution, incomplete gamma function cumulative sums of the poisson distribution									
	x2 21	22	23	24	25	26	27	28	29	30
		11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0
i	m 10.5	11.0	11.5	12.0	12.0	10.0	10.0	14.0	14.0	10.0
2	0.00003	0.00002	0.00001	0.00001						
3 4	0.00011 0.00032	0.00007 0.00020	0.00004 0.00013	0.00003 0.00008	0.00002 0.00005	0.00001 0.00003	0.00001	0.00001	0.00001	0.00001
5	0.00081	0.00052	0.00034	0.00022	0.00014	0.00009	0.00006	0.00004	0.00002	0.00002
6	0.00184	0.00121	0.00080	0.00052	0.00034	0.00022	0.00015	0.00009	0.00006	0.00004
7 8	0.00377	0.00254	0.00171	0.00114	0.00076	0.00050	0.00033	0.00022	0.00015	0.00010 0.00021
9	0.00715 0.01265	0.00492 0.00888	0.00336 0.00620	0.00229 0.00430	0.00155 0.00297	0.00105 0.00204	0.00071 0.00140	0.00095	0.00065	0.00044
10	0. 02109	0.01511	0.01075	0.00760	0.00535	0.00374	0.00260	0.00181	0.00125	0.00086
11	0.03337	0.02437	0.01768	0.01273	0.00912	0.00649	0.00460	0.00324	0.00227	0.00159
12 13	0.05038 0.07293	0.03752 0.05536	0.02773 0.04168	0.02034 0.03113	0.01482 0.02308	0.01073 0.01700	0.00773 U.01244	0.00553 0.00905	0.00394 0.00655	0.00279
14	0.10163	0.07861	0.06027	0.04582	0.03457	0.02589	0.01925	0.01423	0.01045	0.00763
15	0.13683	0.10780	0.08414	0.06509	0.04994	0.03802	0.02874	0.02157	0.01609	0.01192
16	0.17851	0.14319	0.11374	0.08950	0.06982	0.05403	0.04148	0.03162	0.02394	0.01800
17 18	0.22629 0.27941	0.18472 0.23199	0.14925 0.19059	0.11944 0.15503	0.09471 0.12492	0.07446 0.09976	0.05807 0.07900	0.04494 0.06206	0.03453 0.04838	0.02635
19	0,33680	0.28426	0.23734	0.19615	0.16054	0.13019	0.10465	0.08343	0.06599	0.05180
20	0.39713	0.34051	0.28880	0.24239	0.20143	0.16581	0.13526	0.10940	0. 08776	0.06985
21 22	0.45894	0.39951	0.34398	0.29306	0.24716	0.20645	0.17085 0.21123	0.14015 0.17568	0.11400 0.14486	0.09199 0.11846
23	0.52074 0.58109	0.45989 0.52025	0.40173 0.46077	0.34723 0.40381	0.29707 0.35029	0.25168 0.30087	0.25597	0.21578	0, 18031	0.14940
24 25	0.63873 0.69261	0.57927	0.51980 0.57756	0.46160 0.51937	0.40576 0.46237	0.35317 0.40760	0.30445 0.35588	0.26004 0.30785	0. 22013 0. 26392	0.18475 0.22429
	0. 67261	0.63574	-							
26 27	0.74196 0.78629	0, 68870 0, 73738	0.63295 0.68501	0.57597	0.51898 0.57446	0.46311 0.51860	0.40933 0.46379	0.35846 0.41097	0.31108 0.36090	0.26761 0.31415
28	0.82535	0.78129	0.73304	0.68154	0.62784	0.57305	0.51825	0.46445	0.41253	0.36322
29 30	0.85915 0.88789	0.82019 0.85404	0.77654 0.81526	0.72893 0.77203	0.67825 0.72503	0.62549 0.67513	0.57171 0.62327	0.51791 0.57044	0.46507 0.51760	0.41400 0.46565
	2 ² 31	32	33	34	35	36	37	38	39	40
٠	m 15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0
5 6	0.00001 0.00003	0.00001 0.00002	0.00001	0.00001						
7	0.00006	0.00004	0.00003	0.00002	0.00001	0.00001				
8 9	0.00014 0.00030	0.00009 0.00020	0.00006 0.00013	0.00004	0.00003 0.00006	0.00002 0.00004	0.00001 0.00003	0.00001 0.00002	0.00001	0,00001
10 11	0.00059 0.00110	0.00040 0.00076	0.00027 0.00053	0.00019 0.00036	0.00012 0.00025	0.00008 0.00017	0.00006 0.00012	0.00004 0.00008	0.00003 0.00005	0.00002 0.00004
12	0.00197	0.00138	0.00097	0.00068	0.00047	0.00032	0.00022	0.00015	0.00011	0.00007
13 14	0.00337 0.00554	0.00240 0.00401	0.00170 0.00288	0.00120 0.00206	0.00085 0.00147	0.00059 0.00104	0.00041 0.00074	0.00029 0.00052	0, 00020 0, 00036	0.00014 0.00026
15										
16	0.00878 0.01346	0.00644 0.01000	0.00469 0.00739	0.00341 0.00543	0.00246 0.00397	0.00177 0.00289	0.00127 0.00210	0.00090 0.00151	0.00064 0.00109	0.00045 0.00078
17 18	0.01997 0.02879	0.01505	0.01127	0.00840	0.00622	0.00459	0.00337	0.00246	0.00179	0.00129
19	0.04037	0.02199 0.03125	0.01669 0.02404	0.01260 0.01838	0.00945 0.01397	0.00706 0.01056	0.00524 0.00793	0.00387 0.00593	0.00285 0.00442	0.00209 0.00327
20	0.05519	0.04330	0.03374	0, 02613	0,02010	0.01538	0.01170	0.00886	0,00667	0.00500
21	0.07366	0. 05855	0.04622	0. 03624	0.02824	0.02187	0.01683	0.01289	0.00981	0.00744
22 23	0. 09612 0. 12279	0.07740 0.10014	0.06187 0.08107	0.04912 0.06516	0. 03875 0. 05202	0.03037 0.04125	0.02366 0.03251	0.01832 0.02547	0.01411 0.01984	0.01081 0.01537
24	0. 15378	0. 12699	0.10407	0.08467	0.06840	0.05489	0.04376	0.03467	0.02731	0.02139
25	0.18902	0.15801	0.13107	0,10791	0, 08820	0.07160	0.05774	0, 04626	0, 03684	0.02916
26 27	0, 22827 0, 27114	0.19312	0.16210	0.13502	0. 11165	0.09167	0.07475	0.06056	0.04875	0.03901
28	0.31708	0, 23208 0, 27451	0.19707 0.23574	0.16605 0.20087	0.13887 0.16987	0.11530 0.14260	0.09507 0.11886	0.07786 0.09840	0.06336 0.08092	0.05124 0.06613
29	0, 36542	0.31987	0.27774	0, 23926	0, 20454	0.17356	0.14622	0.12234	0.10166	0.08394
30	0.41541	0.36753	0.32254	0, 28083	0. 24264	0.20808	0,17714	0.14975	0.12573	0.10486

PROBABILITY FUNCTIONS

PRO	PROBABILITY INTEGRAL OF x2-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION Table 26.7 CUMULATIVE SUMS OF THE POISSON DISTRIBUTION									
y	$x^2 = 42$ $m = 21$	44 22	46 23	48 24	50 25	52 26	54 27	56 28	58 29	60 30
10 11 12 13 14	0.00001 0.00002 0.00003 0.00006 0.00012	0.00001 0.00002 0.00003 0.00006	0.00001 0.00001 0.00003	0.00001 0.00001	0.00001					
15 16 17 18 19	0.00023 0.00040 0.00067 0.00111 0.00177	0.00011 0.00020 0.00034 0.00058 0.00094	0.00005 0.00010 0.00017 0.00030 0.00050	0.00003 0.00005 0.00009 0.00015 0.00026	0.00001 0.00002 0.00004 0.00008 0.00013	0.00001 0.00001 0.00002 0.00004 0.00007	0.00001 0.00001 0.00002 0.00003	0.00001 0.00001 0.00002	0.00001	
20 21 22 23 24	0.00277 0.00421 0.00625 0.00908 0.01291	0.00151 0.00234 0.00355 0.00526 0.00763	0.00081 0.00128 0.00198 0.00299 0.00443	0.00043 0.00069 0.00109 0.00167 0.00252	0.00022 0.00036 0.00059 0.00092 0.00142	0.00011 0.00019 0.00031 0.00050 0.00078	0.00006 0.00010 0.00016 0.00027 0.00043	0.00003 0.00005 0.00009 0.00014 0.00023	0.00001 0.00003 0.00004 0.00007 0.00012	0.00001 0.00001 0.00002 0.00004 0.00006
25 26 27 28 29	0.01797 0.02455 0.03292 0.04336 0.05616	0.01085 0.01512 0.02068 0.02779 0.03670	0.00642 0.00912 0.01272 0.01743 0.02346	0.00373 0.00543 0.00768 0.01072 0.01470	0.00213 0.00314 0.00455 0.00647 0.00903	0.00120 0.00180 0.00265 0.00384 0.00545	0.00066 0.00102 0.00152 0.00224 0.00324	0.00036 0.00056 0.00086 0.00129 0.00189	0.00020 0.00031 0.00048 0.00073 0.00109	0.00011 0.00017 0.00026 0.00041 0.00062
30	0.07157	0.04769	0. 03107	0.01983	0.01240	0.00762	0.00460	0.00273	0.00160	0.00092
	$\chi^2 = 62$	64	66	68	70	72	74	76		
21 22 23 24 25	m - 31 0,00001 0,00001 0,00002 0,00003 0,00006	32 0.00001 0.00001 0.00002 0.00003	33 0.00001 0.00001 0.00002	3.4 0.00001	35	36	37	38		
26 27 28 29 30	0.00009 0.00014 0.00023 0.00035 0.00052	0.00005 0.00008 0.00012 0.00019 0.00029	0.00003 0.00004 0.00007 0.00011 0.00016	0.00001 0.00002 0.00004 0.00006 0.00009	0.00001 0.00001 0.00002 0.00003 0.00005	0.00001 0.00001 0.00002 0.00003	0.00001 0.00001 0.00001	0.00001		
Q(x)	$Q(\mathbf{x}^{2} _{\mathbf{v}}) \approx 1 - P(\mathbf{x}^{2} _{\mathbf{v}}) = \left[2^{\frac{r}{2}} \Gamma\left(\frac{\mathbf{v}}{2}\right)\right]^{-1} \int_{\mathbf{x}^{2}}^{\infty} e^{-\frac{t^{-r}}{2}t^{2} - t} dt = \left[\Gamma\left(\frac{\mathbf{v}}{2}\right)\right]^{-1} \int_{\frac{1}{2}\mathbf{x}^{2}}^{\infty} e^{-\frac{t^{-r}}{2}t^{2} - t} dt = \sum_{j=0}^{r-1} e^{-mmj} j! (\mathbf{v} \text{ even, } e = \frac{1}{2}\mathbf{v}, m = \frac{1}{2}\mathbf{x}^{2})$ $= \frac{1}{2} \left(\mathbf{x}^{2} - \mathbf{x}_{0}^{2}\right) = m = \mathbf{v} - \mathbf{v}_{0} > 0$									
	$\varphi^{-\frac{1}{2}}\left(x^2-x_0^2\right) \qquad w \mapsto \nu_0>0$									
Inter	polation on	χ^2								

$$Q\left(\mathbf{x}^{2}|\mathbf{r}\right) - Q\left(\mathbf{x}^{2}_{0}|\mathbf{r}_{0}-4\right)\left[\frac{1}{2}\phi^{2}\right] + Q\left(\mathbf{x}^{2}_{0}|\mathbf{r}_{0}-2\right)\left[\phi-\phi^{2}\right] + Q\left(\mathbf{x}^{2}_{0}|\mathbf{r}_{0}\right)\left[1+\phi+\frac{1}{2}\phi^{2}\right]$$

Double Entry Interpolation

$$\begin{split} Q\left(\left|x^{2}\right|_{\nu}\right) &= Q\left(\left|x_{0}^{2}\right|_{\nu_{0}} - 4\right) \left[\frac{1}{2}\phi^{2}\right] + Q\left(\left|x_{0}^{2}\right|_{\nu_{0}} - 2\right) \left[\phi - \phi^{2} - w\phi\right] + Q\left(\left|x_{0}^{2}\right|_{\nu_{0}} - 1\right) \left[\frac{1}{2}w^{2} - \frac{1}{2}w + w\phi\right] \\ &+ Q\left(\left|x_{0}^{2}\right|_{\nu_{0}}\right) \left[1 - w^{2} - \phi + \frac{1}{2}\phi^{2} + w\phi\right] + Q\left(\left|x_{0}^{2}\right|_{\nu_{0}} + 1\right) \left[\frac{1}{2}w^{2} + \frac{1}{2}w - w\phi\right] \end{split}$$

TI-59 METHOD (ML-09)

The TI-59 Programmable Calculator has a numerical integration program it its Master Library, ML-09. Included in PL-4 are pages 29-31 of the TI-59 User's Manual. The method uses Simpson's Rule. $\gamma(\alpha,\tau)$ and $Q(\alpha,\tau)$ can be computed using ML-09. The integration limits will be different for the two Incomplete Gamma Functions.

			$\gamma(\alpha,\tau)$	$Q(\alpha, \tau)$
Lower	Limit	x _o	0	τ
Upper	Limit	X _n	τ	∞*

*A suitably large real number must be found to represent ∞ .

This would be a value such that a large value would result in a negligible increase in the value of the integral. A value of $X_n > 227$ will cause underflow.

A sufficiently large value for n must be established. The larger the value of n used, the better the accuracy of the integral. The computation time also increases.

A listing for f(x) is also included.

SIMPSON'S APPROXIMATION (CONTINUOUS)

This program may be used to approximate the integral, I, of a function defined by the user, over an interval x_0 to x_0 , using Simpson's Rule.

$$i = \int_{x_0}^{x_n} f(x) dx$$

The function f(x) must be expressed as a sequence of keystrokes in the user program memory.

Solid State Softwares TI © 1977-75
SIMPSON'S APPROXIMATION (CONTINUOUS) ML-09 5
THE REAL PROPERTY AND ASSESSED.
TAS THE STATE OF T

Use reisyructions

STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1	Initialize	· , • ,•	[RST]	0.
2	Setult learn mode		[LRN]	0 00 00
3	Use A´ as ਦਿਸਦਾ		[2nd] [3]]	001 00 002 00
4	Enter f(x) as a series of kaystrokas. Do not use 😑 or [CLR], Do not use registers 0.5.			
5	End f(x) with [Inv] (sed)		[INV] [SRP]	xxx 00
ថ	Leave learn mode		[LRN]	0.
7	Select program		[2nd] [3] 09	
8	Enter lower limit	x ₀	[A]	×o
9	Enter upper limit	x _n	[8]	×n
10	Enterin(n = 2, 4, 6, + + +, display flashes if not legal entry)	n	[6]	h
11	Compute integral		[0]	t
12	For a new interval or a new n, repret Steps 7-11,			

NOTE: 1. Evaluate expressions using parabitheses only.

2. Running time is dependent on input data.

Evaluate
$$\int_{0}^{\pi/2} \frac{1}{\cos x + 2} dx \text{ using two subintervals.}$$

					OPTIONAL PRINTOUT*		
REF.	ENTER	PRE SS	DISPLAY	COMMENTS	REF.	PRINT	
		RST	0.		1	0.	
		LRN	00 0 00			0.	
		[2nd] [1]	001 00		2	1.570/96327	
		2nd	002 00			1.570796 127	
		2nd	003 00		3	2 78533316 34	
		[(] [2nd] 📆	005 00	Key in f(x)	_		
		[+][2][]	008 00		4	.785@31c34 0.60444 203	
		[1/x] [INV] SBR	010 00				
		[LRN]	0.				
		[2nd] [3] 09	0.	Select program			
1	0	[A]	0.	× ₀			
		2nd 🙀 📑	3.141592 654				
2	2	(=] (B]	1.570796327	$x_2(\pi/2)$			
3	2	[C]	.7853981 634	h			
4		0]	0 6049989 03	l			

^{*} The printout shown is obtained using the print routine of Program 01.

Register Contents

Roo		R _{os} n	R ₁₀	Rıs
Roi	×o	R 06	R	R 16
Roz	x_n	R _o ,	R 12	R 17
R _{o3}	h	Ros	R 13	Ris
R ₀₄	1	R _o ,	R 14	R

Method Used

Calculations are based on Simpson's rule:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \cdots + 2f_{n-2} + 4f_{n-1} + f_n)$$

where:

$$h = \frac{x_n - x_0}{n}, x_n > x_0$$

 $n = number of subintervals = 2, 4, 6, 8, \cdots$

LISTING FOR ML-09 f(x)

LRN

LOC CODE KEY	
)00 42 ST O)01 00 00)02 53 (
)03 43 RCL)04 00 00 005 75 - 006 01 1	Enter
007 54) 008 42 ST O	RST
009 08 08 010 91 R/S	α
011 76 LBL 012 16 A'	2nd Pgm 09
013 42 STO	x _o : lower limit
015 53 (x _n : upper limit
017 06 06	n(n = 2, 4, 6
018 45 YX 019 43 RCL 020 08 08 021 54) 022 42 STD 023 07 07 024 53 (025 53 RCL 026 43 RCL 027 06 06 028 94 +/- 029 22 INV 030 23 LNX 031 65 X 032 43 RCL 033 07 07 034 54)	Compute Integral

Press

R/S

A

LRN

EXAMPLE

FIND:
$$\gamma(1.5, 0.9)$$
 and Q (1.5, 0.9)

$$\alpha = 1.5$$

$$x_0 = 0$$
; $x_n = 0.9$

$$n \gamma(1.5, 0.9)$$

$$\gamma(1.5, 0.9) = 0.341249$$

Accuracy could be improved by increasing n still further or by breaking the integral into two integrals with limits from 0-0.5 and 0.5-0.9 respectively.

$$n = 512$$

$$\gamma_{0-0.5} = 0.1761333892$$

$$\gamma_{0.5-0.9} = 0.1651191608$$

$$\gamma(1.5, 0.9) = 0.34125255$$

n = 128 for each of the following integrals:

$$Q_{0.9-4} = \int_{0.9}^{4} y dx = 0.504195085$$

$$Q_{4-8} = 0.0397718$$

$$Q_{8-20} = 0.001005$$

$$Q_{20-40} = 0.0000000094$$

$$Q(1.5, 0.9) = 0.54497189$$

$$\gamma(1.5, 0.9) + Q(1.5, 0.9) = 0.88622444$$

EXAMPLE

FIND:
$$\gamma(5.64, 8)$$

$$x_0 = 0; x_n = 8; n = 128$$

$$\gamma(5.64, 8) = 55.57279$$
 (55.5728 to six places)

$$x_0 = 8; x_n = \infty \text{ (say, } x_n = 64)$$
 $n = 128$

$$Q(5.64, 8) = 10.14056 (10.1406 to six places)$$

$$\gamma(5.64, 8) + Q(5.64, 8) = 65.7134$$

FIND: $\Gamma(5.64)$

から というという

$$x_0 = 0$$
; $x_n = 64$; $n = 256$

一般のでは、 これを でいた

B. TI-59 METHOD (MU-17)

The new Math Utility module can also be used for computing the Gamma Functions. The numerical integration program, MU-17, is much faster in execution time than ML-09 (i.e. PL-4) and simpler to use. This method uses the systematic procedure called Romberg Integration. The subroutine for f(x) must be entered (see PL-5) along with the integration limits and expected accuracy of the result. The program then quickly computes the integral.

MU-17 LISTING FOR f(x)

RST LRN

ENTER f(x):

LOC	CODE	KEY	ENTE	<u>R</u>	PRESS	DISPLAY
000	43	510	¹¹ α	11	R/S	"α-1"
āāi oos	00 53	00	2nd Pgm	17		
003	43	FIL	a, lower	limit	Α	
004 005	00 75	00	b, upper	limít	В	
006 007	01 54	1	ε		С	
008 009	42 06	5 70 06			D	Integral
010	91	R/S			D	integral
011 012	716 16 16	LBL A'				
013 014	42 01 53	STO				
015	53	01 (
016 017	43 01	RCL 01				
Q18	45	γ×	NOTE: b	≤ 227 ;	otherwis	se underflow will
019 N2N	43 06	RCL D6	c	ccur in	computing	; f(x)
020 021 022	54)				
022 023	42 02	STO 02				
024	53	Ţ				
025 026	53 43	(RCL				
026 027	01	O1				
028 029	94 22	+				
030	23	LHX				
031 032	54 65) X				
033	43 02	ROL				
. 034 035	54	02)				
036	92	RTH				

LRN

RST

EXAMPLES:

FIND: γ (5.64, 8)

		APPROXIMATE EXECUTION
ε	γ (5.64, 8)	TIME
.01	55,57467363	45 sec
1E-3*	55.574674	1 min
1E-4	55.572748	1 min 20 sec
1E-5	55.57279	2 min 30 sec
1E-6	55.57279	4 min

FIND: Q (5.64, 8)

b = upper limit

			EXECUTION
_ε	<u>b</u>	Q(5.64, 8)	TIME
1E-5	25	10.140547	2 min 30 sec
1E-6	50	10.140599	5 min
1E-6	200	10.140599	30 min

*
$$1E-3 = 10^{-3}$$
; $1E-4 = 10^{-4}$; etc.

NOTE: $\Gamma(5.64) = 65.71338 = 55.57279 + 10.140599$

BASIC LANGUAGE PROGRAM LISTING FOR COMPUTING THE INCOMPLETE GAMMA FUNCTIONS USING SIMPSON'S NUMERICAL INTEGRATION TECHNIQUE

```
16 REM A = ALPHA
20 REM T = TAU
30 REM I = INCOMPLETE GAMMA FUNCTION WITH ARGUMENT ALPHA. TAU
46 REM XØ = LOWER INTEGRAL LIMIT
50 REM X1 = UPPER INTEGRAL LIMIT
60 REM N = NUMBER OF INTEGRATION SUBINTERVALS (MUST BE EVEN NUMBER)
70 REM INTEGRATION CALCULATIONS ARE BASED ON SIMPSON'S RULE
8Ø A=5.64
90 T=8.0
                                 \gamma(\alpha,\tau) ; Q(\alpha,\tau)
100 X0=0
110 X1=8
120 N=32
130 H=(X1-X0)/N
140 S1=0
150 S2≈0
160 DIM Y (500)
17Ø X=XØ
180 Y(\emptyset) = (X + (A-1)) * (EXF(-X))
19Ø N2≈N-1
200 Y(N) = (X1+(A-1)) *(EXP(-X1))
210 FOR J=1 TO N2
220 X=X+H
23Ø Y(J) = (X+(A-1))*(EXP(-X))
240 NEXT J
250 FOR J=2 TO (N-2) STEP 2
260 S1=S1+Y(J)
270 NEXT J
28Ø S1=Y(Ø)+Y(N)+(2*S1)
290 FOR J=1 TO N2 STEP 2
300 S2=S2+Y(J)
310 NEXT J
J20 S2=4*S2
330 I = (H/3) * (S1+S2)
340 PRINT "ALPHA = ";A
350 PRINT "TAU = "FT
                       ";xø
360 PRINT "X(LOWER) =
370 PRINT "X(UPPER) = ";X1
380 PRINT "N = "IN
390 PRINT
400 PRINT
410 PRINT "INTEGRAL = ";I
420 END
```

HP-34C METHOD

The program for computing the Incomplete Gamma Functions on the HP-34C is listed in PL-15 which also computes other functions. The following listing for $\gamma(\alpha,\tau)$ and $Q(\alpha,\tau)$ are included for information only. This computer has a very fast and accurate numerical integration scheme built into it.

HP34C INCOMPLETE GAMMA FUNCTIONS $\gamma(\alpha,\tau) \ , \ Q(\alpha,\tau)$

$\gamma(\alpha,\tau)$:

Put value of α in X-register

Press ENTER +

Put value of τ in X-register *

Press GTO 4

Press R/S

Display will be $\gamma(\alpha,\tau)$

$Q(\alpha,\tau)$:

Put value of α in X-register

Press ENTER +

Put value of τ in X-register *

Press GTO 3

Press R/S

Display will be $Q(\alpha, \tau)$

NOTE: The upper integration limit that represents ∞ is stored in R_{.1}. For example: upper limit = 50. Put 50 in the X-register. Press STO .1. The upper limit should be less than 227; otherwise underflow will occur in computing f(x). An upper limit of 50 has proven to give accurate results. See page 44.

* Press f SCI 7 (for accuracy of 7 significant figures)

EXAMPLES

FIND: $\gamma(5.64, 8)$

		APPROXIMATE
		EXECUTION
ACCURACY	$\gamma(5.64, 8)$	TIME
f SCI 5	55.5728	4 min
f SCI 7	55.57279	7 min

FIND: Q(5.64, 8)

Upper limit (i.e. ∞) = 50

ACCURACY	Q(5.64, 8)	APPROXIMATE EXECUTION TIME
f SCI 5	10.1406	5 min
f SCI 6	10.14060	6 min
f SCI 7	10.14059	7 min

HP34C INCOMPLETE GAMMA FUNCTIONS

HP-67 Method

が 一般 かっと 見る かいけ

Simpson's Numerical Integration Technique is most conveniently found as program 19-01 of Hewlett-Packard's Math Pac 1 package.

Included also in PL-7 is a program listing for computing the Incomplete Gamma Functions on the HP-67.

User Instructions

PL-7

1 2 3	Enter a into X Register Enter † Enter t into X Register PRESS A OR Enter a into X Register Enter †		4 1 1		α α τ γ(α,τ)
2 3	Enter † Enter τ into X Register PRESS A OR Enter α into X Register	τ			τ
1 2	PRESS A OR Enter α into X Register	τ	[1] [1]		
2	PRESS A OR Enter α into X Register		i 1 	1 1	γ(α,τ)
2	OR Enter a into X Register	α		i i	
2	Enter α into X Register	α	į	, ,	
2	Enter α into X Register	α	, ,	II I	
2		, ~ ,	1 1	i i	α
			i 4 i	1 1	α
			ii	i - i	τ
- 4	Enter t into X Register		j		Q(α,τ)
	PRESS E		1 1		Q(a,t)
			, , 	ii	
			!	1	
					
			-	1 1	
- - f-			1 . !		
			[]	1 1	
			1 1 1 1	1 1	
			[[1 1	
			1 1	1 1	
			! J	1 1	
]]	
				1 .1	
			1. 1	1 1	
			1 !		
				1 1	
			[[ļ
			[]	1 .	
_ 1			[]	1	
				1	
				[]	
			1		
			į	ų i	
-			į į	i i	

Col. Ref. 31 25 11	STEP	KEY ENTRY	KEY CODE	COMM	ENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
Cl. REC 31 43	001	LBL A	31 25 11				e ^x	32 52	<u> </u>
RV 35 53 600 LBL E 31 25 15 STO 6 33 06 RCL 1 34 01 7 7 07 7 07 7 07 7 07 7		CL REG	31 43						1
STO 6 33 06 STO 1 32 01 STO 1 33 01 STO 1 34 01 STO 1 STO 1 34 01 STO 1 STO 1 STO 1 STO 1 STO		STO 1	33 01				RTN	35 22	1
SCL 1 34 0]		RV	35 53			060	LBL E	31 25 15	
T		STO 6	33 06				CL REG	31 43	1
O		RCL 1	34 01				STO 1	33 01	
STO 9 33.09 5 05 00 00 STO 3 33.03 RCL 2 34.02 9 09 09 09 09 09 09 0		7	07					35 53]
STO 3 33 03 3		0	00				STO 6	33 06]
STO 3 33 03 RCL 2 34 02 STO 44 33 61 04 STO 9 33 09 RCL 2 34 02 STO 14 33 61 04 STO 15 STO 14 STO 15		STO 9	33 09					05	j
RCL 2	010	÷	81						4
SSB C 31 22 13 13 61 04 131 18 13 12 12 12 13 14 15 12 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 14 15 13 14 15 15 15 15 15 15 15		STO 3	33 03			L	RCL 1		1
STO +4	L	RCL 2	34 02						1
SIO 7 3 3 10 10 10 10 10 10		GSB C	31 22 13						<u> </u>
RCL 3		STO +4	33 61 04			070			1
STO +2	L	LBL B	31 25 12				STO 9		<u> </u>
RCL 2		RCL 3	34 03				÷		1
CSB C 31 22 13 CSB C 31 22 12 CSB C 31 22 12 CSB C 31 22 13 CSB C 31 22 12 CSB C 31 22 13 CSB C 31 36 104 CSB C 31 35 13		STO +2	33 61 02			<u></u>	STO 3		4
STO	<u></u>					L			1
X	<u></u>	GSB C				J	STO 2		1
STO +4	020		04						4
STO +5 33 61 05 RCL 5 34 05 RCL 9 34 09 X = Y 32 51 CTO D 22 14 RCL 3 34 02 RCL 2 34 02 RCL 2 34 02 RCL 2 34 02 RCL 3 36 10 02 RCL 2 34 02 RCL 3 36 10 02 RCL 2 34 02 RCL 3 36 10 02 RCL 2 34 02 RCL 3	L								4
STO + 5		STO +4	33 61 04				GTO B	22 12	4
RCL 5						000	 	ļ	4
RCL 9						080	ļ	ļ	-
X = y 32 51		7-					ļ	<u> </u>	4
CTO D							 		4
RCL 3		7	1						4
STO +2 33 61 02 RCL 2 34 02 SSB C 31 22 13 STO +4 33 61 04 STO +4 33 61 02 STO +2 33 61 02 SSD C STO +4 33 61 04 RCL 4 34 04 STO +4 33 61 04 RCL 4 34 04 STO +4 35 61 04 STO +4 ST						<u> </u>	·		{
RCL 2 34 02 CSB C 31 22 13 2 02 X 71 ST0 +4 33 61 04 GT0 B 22 12 LBL D 31 25 14 RCL 3 34 03 ST0 +2 33 61 02 CSE C 31 22 13 ST0 +4 33 61 04 CSE C 31 22 13 ST0 +4 33 61 04 RCL 2 34 02 CSE C 31 22 13 ST0 +4 33 61 04 RCL 4 34 04 RCL 4 34 04 RCL 5 31 25 13 RCL 7 34 07 CRC 6 34 06 1 01 - 51 YX 35 63 RCL 7 34 07 CRS C 31 SSE SS	1320		7 — — —						4
GSB C 31 22 13 2	030	7				ļi	Ĺ		-{
STO +4		7				<u> </u>			4
X	<u> </u>	T				<u> </u>		 	{ .
STO +4		·				000	 		4
GTO B		T				030	 		1
LBL D	_	1		,		-	ļ <u>-</u>		1
RCL 3									{
STO +2	<u> </u>	T		ļ		<u> </u>	 -	 	1
OSB C 31 22 13 STO +4 33 61 04 STO +4 S	— —								1
CSB C 31 22 13	040			Ì		k	 	 	1
STO +4 33 61 04 RCL 4 34 04 33 03 34 03 34 03 34 03 34 03 34 03 34 03 34 03 34 05 31 25 13 35 22 31 35 63 RCL 6 34 06 1 01 51 51 34 07 CHS 42	-					├ ──			1
RCL 4 34 04 3 03 \$\frac{1}{2}\$ 81 RCL 3 34 03 X 71 RTN 35 22 LBL C 31 25 13 050 STO 7 33 07 RCL 6 34 06 1 01 51 51 y* 35 63 RCL 7 34 07 CHS 42 REGISTERS 0 1 USED 2 USED 3 USED 4 USED 5 USED 7 USED 8 9 USED S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 A B C C D E I				}		<u> </u>			1
3				1		— —		 	1
RCL 3				 		100			1
RCL 3	 			1		<u> </u>			1
X	_			j				 	1
RTN 35 22	 			1		h		 	1
LBL C 31 25 13)		<u> </u>	 	 	1
STO 7 33 07				1			l	<u> </u>	1
RCL 6	050					ſ]	1	1
1]
Yx 35 63			01]
RCL 7 34 07				l					1
CHS 42				ļ		110	ļ <u>.</u>	<u> </u>	4
	ļ			l			ļ	 	4
0 1 USED 2 USED 3 USED 5 USED 6 USED 7 USED 8 9 USED S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 A B C D E I		I CHS	42	L			<u> </u>	L	<u></u>
USED USED <th< td=""><td><u></u></td><td></td><td>To To</td><td>12</td><td></td><td></td><td>16</td><td>17</td><td>le lo</td></th<>	<u></u>		To To	12			16	17	le lo
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 A B C D E I	lo	licen						USED	
A B C D E I	so								
1 1 1	1	۲		1	1	آ "	ات	<u> </u>	
1 1 1	A		В	lc lc		D		E	1
	1		-	1	52				\
	<u> </u>					·			

大学 と

Program Description

Program Title Incomplete Gamma Functions By HP-67

Name

Date

Address

City

State New York

Zip Code

Program Description, Equations, Variables, etc.

Program to evaluate the following two functions:

$$\gamma(\alpha,\tau) = \int_0^{\tau} x^{\alpha-1} e^{-x} dx$$

$$Q(\alpha,\tau) = \int_{\tau}^{\infty} x^{\alpha-1} e^{-x} dx$$

Comments: Running time for $\gamma < 3$ min, Q < 4 min

Operating Limits and Warnings Generally accurate to at least three significant figures. To increase accuracy for γ increase number in program lines 7 and 8 to a greater even number. To increase accuracy for calculating Q increase number on lines 65 and 66 (upper limit) and increase number on lines 69 and 70 to a greater even number.

DO NOT USE THIS SPACE

C. GAMMA FUNCTIONS COMPUTATION PROGRAM (BASIC LANGUAGE)

Included in PL-8 is a computer program written in Basic Language which quickly, conveniently and accurately computes the three Gamma Functions: $\Gamma(\alpha)$, $\gamma(a,t)$, $Q(\alpha,\tau)$.

The method for computing $\Gamma(\alpha)$ is as previously described. The method for computing the two Incomplete Gamma Functions has not been previously described. This method uses an approximation formula as described in Abramowitz 1 to calculate a "Normalized Incomplete Gamma Function: $Q_{0}(\alpha,\tau)$. $Q_{0}(\alpha,\tau)$ is extremely accurate for α = integer. τ may be either an integer or non-integer.

$$Q_{O}(\alpha,\tau) = \frac{Q(\alpha,\tau)}{(\alpha-1)!}$$

$$(\alpha-1)! = \Gamma(\alpha)$$
 for $\alpha = integer$

The approximation formula is as follows:

$$Q_{0}(\alpha, \gamma) = \frac{\alpha - 1}{(\alpha - 1)!} \left[1 + \sum_{N=2}^{\infty} \frac{(-1)^{N+1} (N-1)}{\tau^{N-1} (N-\alpha)} (N-\alpha) \right]$$

$$1 < \alpha < 350$$

NOTE: For most fatigue analysis applications 5 < α < 15.

C. GAMMA FUNCTIONS COMPUTATION PROGRAM (Cont'd)

For α = non-integer the interpolation method in Abramowitz $\begin{bmatrix} 1 \end{bmatrix}$ is used.

Define:

$$\alpha_{0} = \text{integer part of } \alpha$$

$$w = \alpha - \alpha_{0}$$

$$Q_{0}(\alpha, \tau) = Q_{0}(\alpha_{0} - 1, \tau) \left[\frac{1}{2} w^{2} - \frac{1}{2} w \right]$$

$$+Q_{0}(\alpha_{0}, \tau) \left[1 - w^{2} \right]$$

$$+Q_{0}(\alpha_{0} + 1, \tau) \left[\frac{1}{2} w^{2} + \frac{1}{2} w \right]$$

Then

を記述されていまえないは

$$Q(\alpha,\tau) = \Gamma(\alpha) Q_{0}(\alpha,\tau)$$

$$\gamma(\alpha,\tau) = \Gamma(\alpha) \left[1 - Q(\alpha,\tau)\right]$$

Several computation runs are included. It can be seen that the accuracy is sufficient for practical applications. Refer to Tables IV and V.

In PL-8

$$N = \alpha$$

$$Z = \tau$$

$$G\emptyset = Q_{O}(\alpha, \tau)$$

$$G1 = \gamma(\alpha, \tau)$$

$$G2 = Q(\alpha, \tau)$$

$$G5 = \Gamma(\alpha)$$

GAMMA FUNCTIONS COMPUTATION PROGRAM (BASIC LANGUAGE)

```
10 REM QO IS THE NORMALIZED INCOMPLETE GAMMA FUNCTION
20 REMINITH INTEGRATION LIMITS TAU TO INFINITY AND
30 REM WITH ARGUMENT CHI-SQUARED, NU
40 REM
50 REM ALPHA MUST BE >= UNITY.
60 REM ALPHA= N
70 REM TAU= Z
80 REM
9Ø DEF FNG(N,Z)
100 IF N>1 THEN 130
11Ø QØ=EXP(-Z)
12Ø GO TO 48Ø
130 H=Z/6
140 A=0
150 M=N
160 L=INT((N-4)/6)
17Ø FOR I=2 TO M
180 Y=G=1
19Ø FOR K=1 TO I-1
200 Y=(K-N)/Z*Y
210 V1=ABS(Y)
220 IF V1<1E-30 THEN 240
23Ø NEXT K
240 A=A+Y+(-1)+(I+1)
25Ø NEXT I
260 Q=A+1
270 IF N<10 THEN 430
28Ø J=Ø
29Ø FOR B=1 TO N-1
300 IF G<1E34 THEN 330
310 J=J+1
320 G=G/10
.33Ø G=Z/B*G
340 IF B=L THEN 400
35Ø IF B=2*L THEN 400
360 IF B=3*L THEN 400
370 IF B=4*L THEN 400
380 IF B=5*L THEN 400
39Ø GO TO 41Ø
400 G=G*EXP(-H)
41Ø NEXT B
42Ø GO TO 47Ø
430 FOR B=1 TO N-1
440 G=Z/B*G
```

450 NEXT B

は という という という

GAMMA FUNCTIONS COMPUTATION PROGRAM (BASIC LANGUAGE) CONTINUED

```
460 G=G*EXF(-H*5)
470 Q0=G*Q*10+(J/2)*EXF(-H)*10+(J/2)
480 FNG≈Q0
490 FNEND
500 N=12.5
510 Z=12.5
520 W=N-INT(N)
530 IF W>0 THEN 560
540 G0=FNG(N+Z)
550 GO TO 640
560 L6=.5*(W+2-W)
570 L7=1-W+2
580 L8=.5*(W+2+W)
590 N4=INT(N)-1
600 N5=INT(N)
610 N6=INT(N)+1
620 G0=FNG(N4,Z)*L6+FNG(N5,Z)*L7+FNG(N6,Z)*L8
630 GO TO 640
640 PRINT "ALPHA="IN
650 PRINT "TAU=";Z
660 PRINT
670 PRINT "NORM'D GAMMA FNC=":G0
680 PRINT
690 G4=1-G0
700 R=N
710 X=N
720 R=R+1
730 X=X*R
740 D=R-9
750 IF D>=0 THEN 770
760 GO TO 720
770 8=.9109305332
780 S=S+(R+.5)*LOG(R)-R
790 V=1-(1/(30*R+2))+(1/(105*R+4))
800 V=(1/(12*R))*V
810 S=S+V
おとめ G5≈EXP(S)/X
830 PRINT "GAMMA(ALPHA) =";G5
840 PRINT
850 G1=G5*G4
860 PRINT "FIRST GAMMA FNC=":G1
870 G2=G5*G0
880 PRINT "SECOND GAMMA FNC="1G2
898 END
```

THE RESERVE OF THE PROPERTY OF THE PARTY OF

TABLE IV COMPUTATION EXAMPLES (a = non-integer)

ALPHA= 14.5 TAU= 18

NORM'D GAMMA FNC= .1735187 (ACTUAL .17356)

GAMMA(ALPHA) = 2.30923e 10

FIRST CAMMA FNC= 1.90854e 10 SECOND CAMMA FNC= 4.00695e 09

ready #500 N=5.64 #510 Z=8 #RUN

ALPHA= 5.64 TAU= 8

NORM'D GAMMA FNC= .1543015 (ACTUAL .15429)

GAMMA(ALPHA) = 65.71338

FIRST GAMMA FNC= 55.57371 SECOND GAMMA FNC= 10.13967

ALPHA= 2.5 TAU= 2

NORM'D GAMMA FNC= .5413411 (ACTUAL .54924)

GAMMA(ALPHA) = 1.32934

FIRST GAMMA FNC= .6097138 SECOND GAMMA FNC= .7196266

TABLE V COMPUTATION EXAMPLES (a = integer)

ALPHA= 1 TAU= 1

NORM'D GAMMA FNC= .3678794 (ACTUAL .36788)

GAMMA (ALPHA) = .9999999

FIRST GAMMA FNC= .6321205
- SECOND GAMMA FNC= .3678794

ALPHA= 2 TAU= 1.5

NORM'D GAMMA FNC= .5578254 (ACTUAL .55783)

GAMMA (ALPHA) = .9999999

FIRST GAMMA FNC= .4421746 SECOND GAMMA FNC= .5578254

ALPHA= 8 TAU= 7

NORM'D GAMMA FNC= .5987138 (ACTUAL .59871)

GAMMA(ALPHA) = 5040

FIRST GAMMA FNC= 2022.482 SECOND GAMMA FNC= 3017.517

ALPHA= 13 TAU= 17.5

NORM'D CAMMA FNC= .1116488 (ACTUAL .11165)

GAMMA(ALPHA) = 4.79001e 08

FIRST GAMMA FNC= 4.25521e Ø8 SECOND GAMMA FNC= 5.348ØØe Ø7

D. ERROR FUNCTION COMPUTATION

Definition

The Error Function used is that of Papoulis [2]:

$$ar_{p}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\alpha} e^{-\frac{x^{2}}{2}} dy$$

$$erf_{p}(0) = 0 ; erf_{p}(\infty) = 0.5$$

$$\operatorname{erf}_{p}(-\alpha) = -\operatorname{erf}_{p}(\alpha)$$

Hereafter the above subscript p will be dropped for convenience.

It will be understood that erf (α) = erf $_p$ (α).

Figure 5 shows a graph of erf (a) versus $\alpha.$

FIGURE 5 ERROR FUNCTION VERSUS &

TI-59 METHOD

The TI-59 Programmable Calculator can be used as the program listing PL-9 to calculate $erf(\alpha)$.

EXAMPLE:

FIND: erf (1.5)

SOLUTION: Use PL-9

Enter 1.5

Press A

erf(1.5) = 0.4331927713

Display

1.5

0.4331927713

EXAMPLE:

Find: erf(-0.125)

Enter .125

Press +/-

Press A

erf(-0.125) = -0.0497382658

Display

.125

-.125

-.0497382658

ERROR FUNCTION COMPUTATION PROGRAM (TI-59)

LOC	CODE	KEY	LOC	CODE	KEY
000	76	LBL	042	03	03
001	11 22	Ĥ	043 044	35 53	1/8
002	22	INV	045	53	((
003 004	86 01	STF 01	046	42 02	STD
005	29	CP	047	02	02
006	01 29 77	GE	048 049	45 04	γ× 4
007	87	IFF +/-	047 050	6 5	X
008 009	87 94 86	STF	050 051	01	1
010	01	01 LBL	052	93	•
011	76	LBL	053 054	03 03	3
012	87	ĪFF (055	00	0
013 014	23 42	STO	056	02	2
015 016 017 018 019	01673232352 540322352 60	03	057	07	.330274429 L
016	33	<u>%</u> 2	058 059	04 04	4
017	22	INV LNX	060	02	2
019	65 65		061	09	9
020 021 022	02	× 2 ×	062	75 43	- rocu
021	65 89		063 064	93 02	02
- UZZ - 023	55 54	1Ĭ `}	065	45	YΧ
024	54 34	tX)	066	03	3
025	35	17X	067 068	65 01	× 1
026	42 01	ST O 01	069	93	
- 027 - 028	93		070 071 072	08	8
029	Ū2	2	071	02	2
023 024 025 026 027 028 029 030	03	2316	072 073	01	2
031 032	01 : 06	1 4	074	05	5
033	: 04	4	075	05	5
034	. 01	1	076	. 09 ' 07	
035	09	9 PRD	077 078	07 08	8
036 037			079	85	+
038	01	1	080	43	
039	9 44	F SUM	081 082		02 7×
040 041			083		
1147	. +√.	a transfer		_	

ERROR FUNCTION COMPUTATION PROGRAM (TI-59)

LOC	CODE	KEY
084	65 0:	×
086 086	ul 93	1
087 088	07 08	7 8
089	01 04	1
091	04 07	7
092 093	07 09	7 9
094 nas	03 07	3 7
096	75 - 75	; -
098	43 02	KUL 02
099 100	65 93	X -
101	03	3
103	05 06	5 6
104 105	05 06	5 6
106 107	03 nz	3 7
108	08 08	8
110	UZ 85	2 +
111 112	93 03	3
113	01	ī
115	03	3
116 117	U8 Oi	8 1
118 119	05 03	5 3
120	54 4	Š
088678901234567890109000000000000000000000000000000000	513781477937532533565637825331938153453253 60900000007406900000000890000000564064	X1.781477937-L2 ROX.356563782+.31938153)XCOXC
123 124	02 65	02 ×
125	43 F	RCL

LOC	CODE	KEY
126	01	01
127	54)
128	42	STO
129	04	04
130 131 132 133 134 135	87	IFF
131	01	01
132	01	01
133	41	41
134	53	(
135	94	+/-
136 137	85	41 (+/- +
137	93	=
138	05	5
139	54) R/S
140	91	R/S
141	53	(
138 139 140 141 142	43	RCL
143	04	04
144	75	-
145	93	
146	05	5
147	54)
148	91	5) R/S

HP-34C METHOD

The program listing for erf (α) is given in PL-15 and will not be shown here. The program is used as follows to calculate erf (α):

HP-34C

ERF(a)

GIVEN: Positive or negative value of α

FIND: $ERF(\alpha)$

Put the value of α into X-register (i.e. Display register)

Key in desired accuracy *

Press B

Final display will be the value of $erf(\alpha)$

*Accuracy: In scientific notation set the display for the value of $\alpha \ \text{to the desired number of significant digits desired for}$ the final value of $erf(\alpha)$.

EXAMPLE:

GIVEN: $\alpha = 1$.

FIND: $ERF(\alpha)$

Put "1" in X-register

Press f SCI 7 (for accuracy of 7 significant figures)

Press B

 $ERF(\alpha) = 0.3413447$ will be displayed

HP-67 METHOD

A. MATH PAC 1

An Error Function Program is most conveniently obtained as program 18-02 of Hewlett-Packard's Math Pac 1 package. The Error Function of program 18-02 is defined slightly different than Papoulis' Error Function. Program 18-02 can still be used to calculate erf $_{\rm D}$ (α) as follows:

- a) Use α divided by $\sqrt{2}$ instead of α as the argument value.
- b) Divide the final answer by 2.

B. PL-10

Program listing PL-10 computes both erf (α) and its inverse.

TABULAR METHODS

Table VI tabulates values of erf (α) versus α for values of α from zero to 4.0. These values were computed using the BASIC LANGUAGE Program as listed in PL-11.

EXAMPLE:

$$erf(2.05) = 0.4798178$$

FIND erf
$$(-1.72)$$

$$erf(1.72) = 0.4572838$$

$$erf(-1.72) = -0.4572838$$

FIND erf (2.044)

$$erf(2.045) = 0.4795726$$

$$erf(2.040) = 0.4793249$$

Using linear interpolation:

$$erf(2.044) = 0.4795230$$

$$erf(2.044)_{actual} = 0.4795232$$

TABULAR METHOD (Cont'd)

FIND: erf (0.068)

erf(0.065) = 0.0259131

erf(0.070) = 0.0279032

Using linear interpolation

erf(0.068) = 0.0271071

 $erf(0.068)_{actual} = 0.0271072$

User Instructions PL - 10

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	To calculate erf(α)	α	j j	1 1	α
2	Thrace 1	-	11	1	erf(a)
3	To calculate α given erf(α)	erf(a)	1 4 1	1 1	erf(a)
4		L I	1 1		1 1
	Input maximum allowable error	L I	ı	וֹ , וֹ	E
_5	PRESS D (Runs about 10 minutes)	 		1 4 1	α
			1 1		<u> </u>
		-		[]	ļ
			1 1]	<u> </u>
				1 1	<u> </u>
			[[1 1	<u> </u>
		-{	Į Į	{ }	
			[()	
					
			1 1		ļ
		_			
		_			
			1 1		
		I			
			1 1		
			1 }	{]	
			[]	[]	
			1 1	[]	
]]]	
			1 1		
'					
,			1		
			[]	1 1	
			i i	ii	
			i i	i i	
			ii	i i	
			ìi	i i	
			ii	i i	f
		4	1 1		h
		+	1 1 1 1		
			1 1 1		<u> </u>
			[1 I	
		- 	1 1		
					J
			_ !		
				<u> </u>	

STEP	KEY ENTRY	KEY CODE	сомме	ENTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
001	LBL A	31 25 11				5	05		
	2	02				STO x 9	33 71 09		
	<u></u>	31 54				GTO 0	22 00)	
	•	81			060	LBL 3	31 25 03		
	STO 1	33 01				RCL 7	34 07		
	ENTER	41				RCL 9	34 09	ļ	
	X	71				+	61	1	
 	2	02				GSB C	31 22 13	1	
-						STO 5	33 05	1	
010	X CTO 2	$\frac{71}{2202}$						Í	
	STO 2	33 02				RCL 7	34 07		
	1	01				GSB C	31 22 13	ł	
	STO 3	33 03			<u> </u>	RCL 5	34 05	1	
↓	RCL 1	34 01				X	71	1	
	LBL 1	31 25 01			070	x < 0	31 74	1	
[RCL 2	34 02			L	GTO 4	22 04	j	
	RCL 3	34 03				RCL 7	34 07	ļ	
	2	02				RCL 9	34 09	1	
	+	61				+	61	1	
	STO 3	33 03				GTO 2	22 02	[
020	:	81				LBL 4	31 25 04	1	
	RCL 1	34 01			$\overline{}$	LBL 4	83	1	
		71			<u> </u>	5	05	1	
-	X				<u></u>	STO x 9	33 71 09	i	
	STO 1	33 01			080	RCL 9		1	
— 	+.	61					34 09	ł	
	x ≠ y	32 61				RCL 7	34 07	Į.	
	GTO 1	22 01			<u> </u>	+	61	1	
	_2	02				GSB C	31 33 13	1	
	X	71			L	STO 5	33 05	i	
	π	35 73				RCL 7	34 07		
030	√ <u></u>	31 54				GSB C	31 22 13	l	
	RCL 2	34 02				RCL 5	34 05	i	
	2	02			<u> </u>	X	71	1	
	÷	81				x < 0	31 71	f	
	ex	32 52			090	GTO 5	22 05	1	
	X	71			<u> </u>	RCL 9	34 09	1	
								1	
	<u> </u>	81				STO + 7	33 61 07	ł	
	2	02				LBL 5	31 25 05	4	
		81			<u> </u>	RCL 6	34 06	ł	
	RTN	35 22			<u> </u>	RCL 9	34 09	ł	
040	LBL B	31 25 12				x > y	32 81	į	
	RCL 5	34_05				GTO 4	22 04	1	
	RCL 4	34 04				RCL 7	34 07	1	
		51				RTN	35 22	1	
	STO 9	33 09			100	LBL 6	31 25 06	1	
	LBL O	31 25 00				RCL 4	34 04	1	
	RCL 6	34 06				RTN	35 22	1	
	RCL 9	34 09				LBL D	31 25 14	1	
	x < y	32 71				CL REG	31 43	1	
-		22 06			}	STO 6	33 06	1	
050	GTO 6							1	
	RCL 4	34 04			——	CTO C	35 53	1	
	STO 7	33 07				STO 8	33 08	1	
	LBL 2	31 25 02			— —	π	35 73	ł	
	RCL 5	34 05			110	2	02	1	
	x > y	32 81			110	+	61	1	
	GTO 3	22 03			<u> </u>	STO 5	33 05	4	
		83			1	CHS	42		
		To .	12		STERS	le ····	15	To To	To
	יו	2 USED	USED	USED	5 USED	6 USED	USED	8 USED	9 USED
0	JUSED		1					S8	S9
	USED		IS3	SA	95	IS6	15/		
SO	S1 USED	S2	S3	S4	S5	S6	\$7	30	22
		S2	S3 C	S4	S5 D		E	11	29

()

の は 一般 かっと ならいけ

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	IENTS
	·	83					T	
	1	01	}	170]	
	-	51	ļ		\		4	
	STO 4	33 04 22 12	{				4	
	CTO B LBL C	31 25 13				 	┨	
	GSB A	31 22 11	}				†	
:20	RCL 8	34 08	İ				1	Ì
	-	51	1				1	
	RTN	35 22]	
	ļ	ļ					4	
				180			}	j
			}	 			}	
	 -			 			┨	
				<u> </u>		 	1	
							1	-
130]	
]	}
				<u> </u>			1	į.
			1	190	<u> </u>		∤	1
							1	}
		· · · · · · · · · · · · · · · · · · ·					i	
							1	ſ
							1	}
]	}
:40]	
		ļ		 			ł	f
				}			ł	I
			1	200			1	ł
				<u> </u>			1	1
							}	1
						·]	1
		·					1	Ì
•50				 			1	j
							}	}
							1	
							1	1
				210			1	ĺ
							ì	ì
				<u> </u>			ļ	l
				 			ł	
				 			ł	}
60							į	}
							}	Ì
							}	ĺ
								i
				220			j	}
				 			ł	[
						·	ł	ĺ
							<u> </u>]
			LABELS		FLAGS	<u> </u>	SET STATUS	
USE			1 0360	Ë	0	FLAGS	TRIG	DISP
1	ь	c	d	е	1	ON OFF	DEG 🗆	FIX 🖄
USEI	D 1 USE	D ² US	ED ³ USED	4 USED	2	0 0 0	GRAD [SCI 🖸
		.D 3	CD USED	9	3	- 2	RAD 🗆	ENG TO
USEI	D SE	D 1		71	<u> </u>	3 🗆 🗆		n

Program Description

Program Title Papoulis Error Function and Its Inverse - HP-67

Name

Date

Address

City

State

Zip Code

Program Description, Equations, Variables, etc.

Evaluates erf(a)

 $\frac{1}{\sqrt{2\pi}}$ \int_0^{α}

 $-\frac{x^2}{2}$

dx

As well as the inverse function.

Operating Limits and Warnings The computing time for the inverse error function is long. It is a function of the maximum error ϵ desired.

For an error <.0005 the running time is about 10 minutes.

Range of α for inverse error function $-5 \rightarrow +5$.

DO NOT USE THIS SPACE

ERROR FUNCTION PROGRAM LISTING (BASIC LANGUAGE)

```
10 DEF FNE(X)
20 P=.2316419
30 T=1/(1+P*X)
4Ø B1=.31938153
50 D2=-.356563782
60 BC=1.781477937
70 B4=-1.821255978
PW B5=1.330274429
70 Ha.39894228
100 Z=H*EXP(-.5*X+2)
110 C=B1*T+B2*T+Z+B0*T+3
120 S=S+B4*1+4+B5*T*5
130 Q=Z*S
                                X = \infty

F = erf(\alpha)
140 FNE=.5-0
150 FNEND
160 PRINT " A", "ERF(A)"
170 FOR X=.005 TO 1 STEP .005
180 F = FNE (X)
190 PRINT X.F
200 NEXT X
 210 END
```

TABLE VI ERROR FUNCTION VERSUS α

<u>α</u>	ERF(a)	$\underline{\alpha}$	ERF (a)
う .005	.0019947	. 235	.0928956
.000	. 003989 4	.24	.0748348
.015	.005984	.245	.0967717
.02	.0079784	.25	.0987063
.025	.0099725	.255	.1004384
.ø3	.0119665	.26	.102568
.035	.0139602	.265	.1044952
.04	.Ø159 5 35	.27	.1054198
.045	.0179464	.275	.1083418
.05	.0197389	.28	.1102612
.055	.0219308	.285	.1121779
.06	.0239222	.29	.1140918
.065	.0259131	.295	.116003
.47	.0279032	.3	.1179113
.075	.0298927	.005	.1178168
.Ø3	.0318814	.31	.1217174
.085	.0338694	.315	.1236191
.09	.0358565	.32	.1255158
.095	.0378427	.325	.1274094
. 1	.0398279	.33 .335	.1311874
. 105	.0418122 .0437954	.34	.1330717
.11	.Ø457775	.345	.1349528
.115	.0437773 .0477585	. 35 . 35	.1368306
.125	.Ø497383	.355	.1387Ø51
.13	.0517168	.36	.1405764
.105	.0536941	.365	.1424442
.14	.05587	.37	.1443087
.145	.0576446	.375	.1461697
.15	.0596177	.38	.1480272
.155	.06 15 8 9 3	.305	.1498812
.16	.0635595	.39	.1517317
.165	.065528	.395	.1535785
.17	.067495	. 4	.1554217
.175	.0694602	. 405	.1572612
.18	.0714237	.41	.159097
.185	.0733855	.415	.160929 .1627572
.17	.0753454 .0773035	.42	.1645816
.195	.0773033 .0792 5 97	.425	.1664021
.2	.00772377 .00812139	.43 .435	.1682188
.205 .21	.0831661	.433	.1700314
.215	.0851163	,445	.1718401
.213	.0870644	.45	.1736447
.225	.0890103	.455	.1754454
.23	.0909541	.46	.1772419

TABLE VI ERROR FUNCTION VERSUS $\boldsymbol{\alpha}$

<u>a</u>	ERF (a)		
		$\frac{\alpha}{}$	$ERF(\alpha)$
.465	.1790343	.69	.254903
.47	.1808225	.695	.2564724
. 475	.1824045	. 7	.2580364
.48	.1843863	.705	.259595
. 435	.1861618	.71	.261148
.49	.187933	.715	.2626955
. 495	.1096999	.72	.2642376
.5	.1914624	.725	.2657741
.5Ø5	.1932206	.73	.2673 05
.51	.1949743	.735	.2688303
.515	.1967235		
.52	.1984682	.74	.2703 501
.525	.2002084	.745	.2718642
.53	.2019441	.75	.2733727
.535	.2036751	. 755	.2748756
.54	.2054015	.76	.2743728
545	.2071233	.765	.2778643
.55	.2088403	•77	.2793501
.555	.2105527	.775	.2806302
.56	.2122403	.78	.2823046
.565	.2122693	.7 85	.283 773 3
		.79	.2852362
.57	.2156612	.795	.2866933
.575	.2173544	.8	.2881447
.58	.2190427	.805	.2895902
.585	.2207262	.81	.29103
.59	.2224047	.815	.2924639
.595	.2240783	.82	.293892
. 6	.2257469	.825	.2955142
. 605	.2274106	.83	.29673 07
.61	.2290691		.2981412
.615	.2307227	.835	.2995 459
.62	.2323712	.04	.3009446
.625	.2340145	.845	
.63	.2356528	.85	.3023375
.635	.2372859	.855	.3037245
.64	.2389138	.86	.3051055
.645	.2405365	.845	.3064806
.65	.242154	.87	.3078498
.655	.2437662	.875	.3092131
.66	.2453731	.88	.31Ø57 Ø4
.665	.2469748	.885	.3119217
.67	.2485712	.89	.3132 671
675	.2501622	.895	.3146Ø65
.68	.2517478	. 9	.3159399
.685	.2533281	. 905	.3172673
• -5-2-3	4 =	• • • •	

TABLE VI ERROR FUNCTION VERSUS α

	EDE (a)	<u>α</u>	$ERF(\alpha)$
$\underline{\alpha}$	$ERF(\alpha)$		
	540 5 000	1.135	.3718123
.91	.3185888	1.14	.3728568
.915	.3199042	1.145	.3738953
1/2	.9212136	1.15	.374928
. 725	.3225171	1.155	.3759547
.93	.3238145	1.16	.3769755
.935	.3251059	1.165	.3779904
.94	.32/0912	1.17	.3789994
945	.3276706	1.175	.3800026
.95	.3289439	1.18	.3807998
.755	.3302112	1.185	.3819712
.96	.3314724	1.19	.3829767
.965	.3327276	1.195	.3837564
.763	.3339768	1.173	.3849302
.975	.3352197		.3858983
.9/3	.3364569	1.205	.3868605
	.337688	1.21	.3878169
. 985	.3389129	1.215	.3887675
.09	.0401319	1.22	.3897123
.995		1.225	.3906513
1	.3413447	1.23	-
1.005	.3425516	1.235	.3915846
1.01	.3437523	1.24	.3925122
	.3449471	1.245	.393434
1.Ø15 1.⊖2	.3461358	1.25	.3943501
	.3473184	1.255	.3952605
1.025	.348495	1.26	.3961652
1.03	.3496655	1.265	.3970642
1.035	.35083	1.27	.3979576
1.04	.3519885	1.275	.3988453
1.045	.3531409	1.28	.3997273
1.05	.3542873	1.285	.4004037
1.055	.3554277	1.29	.4014746
1.06	.356562	1.295	.4023398
1.065	.3576903	1.3	.4031994
1.07	.3588126	1.305	.4040535
1.075	.3599289	1.31	.404902
1.08		1.315	.4057449
1.085	.3610391	1.32	.4065824
1.09	.3621434	1.325	.4074143
1.095	.3632416	1.33	.4082408
1.1	.3643339	1.335	.4090617
1.105	.3654201	1.34	.4098772
1.11	.3665004	1.345	.4106873
1.115	.3675747	1.35	.4114919
1.12	.368643	1.355	.4122911
1.125	.3697054	1.36	.4130849
1.13	.3707618	1.365	.4138734
		≥ ± Granta	

TABLE VI ERROR FUNCTION VERSUS $\boldsymbol{\alpha}$

$\underline{\alpha}$	ERF (a)	<u> </u>	ERF (a)
1.37	.41 4 6564	1.6	. 4452007
1.375	.4154342	1.405	.4457531
1.38	.4:62066	1.61	.4463011
1.385	.4169707	1.615	.4468446 .4473839
1.39	.4177354	1.62 1.875	,4479187
1.375	.418472		.4484493
1.4	.4192432	1.63 1.635	.4489755
1.405	.4199893	1.64	.4494974
1.41	.4207301	1.645	.4500151
1.415	.4214656	1.45	.4505285
1.42	.4221961	1.655	.4510378
1.425	.4229213	1.66	.4515428
1.43	.4236414	1.665	.4520436
1.435	.4243543	1.67	.4525403
1.44	.4250462	1.675	.4530329
1.445	.425771	1.68	.4535214
1.45	.4264706	1.485	.4540057
1.455	.4271653	1.69	.454486
1.46	.4278549	1.695	.4549623
1.465	.4285374	1.7	.4554345
1.47	.429219	1.705	.4559028
1.475	.4298936	1.71	.4563671
1.48	.4305633 .43122 8	1.715	.4568274
1.485	.4318878	1.72	.4572838
1.49	.4325427	1.725	.4577363
1.495	.4323427	1,73	.4581849
i • ")		1.735	.4586296
1.505	.4338379	1.74	.4590705
1.51	.4344783	1.745	.4595076
1.515	.4351138	1.75	.4599409
1.52	.4357445	1.755	.4603704
1.535	.4363704	1.76	.4607961
1.53	.4369916	1.765	.4612181
1.595	.4376081	1.77	.4616365 .4620511
1.54	.4382198	1.775	.462462
1.545	.4388268	1.78	.4628694
1.55	.4394292	1.785	.4632731
1.555	.4400259 .44052	1,79 1,795	.4636732
1.56	.44062 .4412085	1.775	.4640697
1.565	.4417924	1.805	.4644627
1.57	.4423718	1.81	.4648521
1.575	.4429466	1.815	.4652381
1.58	.4435168	1.82	.4656205
1.585 1.59	.4440826	1.825	4659995
1.57	,4446439	1.83	.4663751
1.575	*********	2 9 WW	• · • • • • • •

TABLE VI ERROR FUNCTION VERSUS $\boldsymbol{\alpha}$

	EDE («)	<u>α</u>	ERF (a)
<u>a</u>	$ERF(\alpha)$	2.Ø75	.4810068
1.835	.4667472	2.073 2.08	.4812373
1.84	.4671159	2.085	.4814654
1.845	.4674813	2.09	.4816912
1.85	.4678433	2.075	.4819146
	.4682019	2.1	.4821354
1.855 1.86	.4685573	2.105	.4823544
1.00	.4689093	2.11	.4825709
1.07	.4692581		.4827851
1.875	.4696037	2.115 2.12	.482997
1.88	.469946	2.125	.4832067
1.085	.4702851	2.13	.4834142
1.87	.4706211	2.135	.4836195
1.875	.4709538	2.14	.4838227
1.9	.4712835	2.145	.4840236
1.905	.47161	2.145	.4842224
1.903	.4719334	2.15	.4344191
1.915	.4722538		.4846137
1.92	.4725711	2.16 2.165	.4848062
1.925	.4728054	2.17	.4849966
1.93	.4731966	2.175	.485185
1.935	.4735049	2.18	.4853713
1.94	.4730102	2.185	.4855556
1.945	.4741126	2.19	.4857379
1.95	.474412	2.195	.4859182
1.955	.4747Ø85	2.77	.4860966
1.96	.4750021	2.205	.486273
1.965	.4752929	2.21	.4864475
1.97	.4755809	2.215	.48662
1.975	.475866	2.22	.4867907
1.98	.4731483	2.225	.4869594
1.985	.4764278	2.73	.4871263
1.99	.4767046	2.235	.4872914
1.995	.4769786	2.24	.4874546
2	.4772499	2.245	.487516
	4778105	2.25	.4877756
2.005	.4775185	2.255	.4879334
2.01	.4777845	2.26	.4880894
2.015	.4780477 .4783084	2.265	.4882437
2.02	.4785664 .4785664	2.27	.4883962
2.025	.4788218	2.275	.4885471
2.03	.4790746	2.28	.4 886962
2.035	.4793249	2.285	.4888436
2.04	.4795726	2.29	.4889894
2.045	.4798178	2.295	.4891335
2.05 2.055	.48006 06	2.3	.4892759
2.006	.4803008	2.305	.4894167
2.065	.4805386	2.31	.4895559
2.07	.480773 9	2.315	.4896935
L 177 /	- , ·		

TABLE VI ERROR FUNCTION VERSUS $\boldsymbol{\alpha}$

α	ERF (a)	$\underline{\alpha}$	ERF (a)
		2.565	.4948412
2.32	.4898296	2.57	.494915
2.325	.489964	2.575	.494988
2.03	.4900969	2.58	.4 9506
2.335	.4902283	2.585	.495131
2.34	.4903581 .4904865	2.59	.4952012
2.345	.4906133	2.575	.4952704
2.35	.4907387	2.6	.4953388
2.355 2.36	.4908625	2.60 5	.4954062
2.365	.470985	2.61	.4954728
2.303	.491106	2.615	.4955384
2.375	.4912255	2.62	.4956035
2.38	.4913437	2.605	.4956675
2.385	.4914604	2.63	.4957307
2.39	.4915758	2.405	.4957931
2.395	.4916398	2.64	.4958547
2.4	.4718025	2.645	.4959154 .4959754
2.405	.4919138	2.65	.4960345
2.41	.4920237	2.655 2.66	.4960929
2.415	.4921324	2.665	.4961505
2.42	.4922397	2.67	.4962074
2.425	.4923458	2.675	.4962635
2.43	.4924506	2.68	.4963188
2.435	.4925541	2.485	.4963735
2.44	.4926564	2.69	.4964273
2.445	.4927574	2.695	.4964805
2.45	.4928572	2.7	.4 96 5 33
2.455	.4929558 .4930531	2.705	.4965847
2.46 2.465	.4931493	2.71	.4966358
2.400	.4932443	2.715	.4966862
2.475	.4933382	2.72	.4967358
2.48	.4934309	2.725	.4967849
2.485	.4935224	2.73	.4968332
2.49	.4936128	2.735	.4968809
2.495	.4937021	2.74	.496928
2.5	.4937903	2.745	.4969744
2.505	.4938774	2.75 2.755	. 4 970202 . 4 970653
2.595	.4739634	2.76	.4971099
2.515	.4940484	2.76 2.765	.4971538
2.52	.4941322	2.77	.4971971
2.525		2.775	.4972399
2.53		2.78	.497282
2.535		2.785	.4973236
2.54	.4944574	2.79	.4973645
2.545	.4945,361	2.795	.497405
2.55	•	2.8	.4974448
2.555	.4946906	2.805	.4974841
2.56	.4947664		

TABLE VI ERROR FUNCTION VERSUS α

<u>α</u>	ERF (a)	<u>α</u>	ERF (a)
2.81	.4975229	3.055	.4988746
2.815	.4975611	3.06	.4988932
2.82	.4975988	3.065	.4989116
2.825	.4976359	3.07	.4989296
2.83	.4976725	3.075	.4989474
2.835	.4977Ø86	3.08	.4989649
2.84	.4977443	3 .0 85	.4989822
2.845	.4977794	3.09	.4989991
2.85	.497814	3 .075	.4990159
2.855	.4978481	3.1	.499Ø323
2.86	.4978817	3.105	.4990485
2.865	.4979149	3.11	.4990645
2.87	.4979476	3.115	.4990802
2.875	.4 9797 9 8	3.12	.4990957
2.88	.4980116	3.125	.4991109
2.885	.4980429	3.13	.4991259
2.89	.4980737	3.135	.4991407
2.895	.4981041	3.14	.4991552
2.9	.4981341	3.145	.4991695
2.905	.4981637	3.15 3.155	.4991836
2.91	.4981928	3.155 3.16	.4991974 .4992111
2.915	.4982215	3.165	.4992245
2.92	.4982498	3.17	.4992377
2.925	.4982776	3.175	.4992508
2.93	.4983051	3.18	.4992636
2.935 2.94	.4983322	3.185	.4992762
2.945	.4983589	3.19	.4992886
2.745	.4983852 .4984111	3.195	.4993008
2.955	.4984366	3.2	.4993128
2.96	.4984617	3.205	.4993246
2.965	.4984865	3.21	.4993363
2.97	.4985109	3.215	.4993477
2.975	.498535	3.22	.499359
2.98	.4985587	3.225	.4993701
2.985	.498582	3.23	.499381
2.99	.498605	3.235	.4993917
2.995	.4986277	3.24	.4994023
3	.49865	3.245	.4994127
2 445		3.25	.4994229
3.005 3.01	.498672 .4986937	3.255	.499433
3.015	.498715	3.26	.4994429
3.02	.4987361	3.265	.4994526
3.025	.4987568	3.27	.4994622
3.03	.4987772	3.275	.4994716
3.035	.4987972	3.28	.4994809
3.04	.498817	3.285	.49949
3.045	.4988365	3.29	.499499
3.05	.4988557	3.295	.4995 6 78

TABLE VI ERROR FUNCTION YERSUS $\boldsymbol{\alpha}$

	ERF (a)	<u>a</u> _	$ERF(\alpha)$
<u> </u>	<u> </u>	3.545	.499 8037
3.3	.4995165	3.55	.4998073
3.005	.4995251	3.555	.499811
3.31	.4995335	3.56	4998145
3.315	.4995417	3.565	.479818
3.32	.4995499	3.57	.4998215
3.325	.4995578	3.575	,4993248
0.33	.4995657	3.58	.4998282
3.335	.4995734	3.585	.4998314
3.34	.4995811	3.57	.49/8346
3.345	.4995885	3.575	.4998378
3.35	.4995957	3.6	.4998439
0.055	. 49 96031	3.405	.4978437
3.36	.4996102	3.61	.4798467
3.345	.4996172	3.615	.4998498
3.37	.4995241	3.62	.4998527
3.375	.4996309	3.625	.4998555
3.38	. 4996375	3.63	4793583
3.305	.4996441	3.695	.499861
3.39	.4996505	3.64	.4998636
3.395	.4796568	3.645	.4998663
3.4	.499663	3.65	.4998688
3.405	.4996691	3.655	.4998714
3.41	.4996751	3.66	.4998739
3.415	.499681	3.665	.4998763
0.42	.4996368	3.67	.4998787
3.425	.4993925	3.675	.499881
3.43	.4996982	3.68	.4998833
3.435	.4997037	3.685	.4998856
3.44	.4997091	3.49	.4998878
0.445	.1997144	3.695	.49989
ଃ.45	.4997197	3.7	.4998922
3.455	.4797248	3.705	.4998943
3.46	.4997299	3.71	.4998963
3.465	.4997348	3.715	.4998984
3.47	.4997397	3.72	.4999004
3.475	.4997445	3.725	.4999023
3.48	.4797492	3.73	.4999042
3.485	.499 7 539	3.735	.4999Ø61
3.49	.4997584	3.74	.499908
3.495	.4997629	3.745	.4799098
3.5	.479 767 3	3,75	.4999116
3.505	.4997717	3 .7 55	.4999133
3.51	.4997759	3.76	.499915
3.515	.4997801	3.765	.4999167
3.52	.4997842	3.77	.4999183
3.525	.4997882	3.775	.49992
3.53	.4997922	3.78	.4999216
3.535	.4997961	3.785	.4999231
3.54	.4997999	3.79	.4999246
~ • •			

Table VI error function versus $\boldsymbol{\alpha}$

<u>α</u>	ERF (a)
3.775 3.805 3.815 3.825 3.825 3.835 3.845 3.855 3.855 3.865 3.8855 3.8855 3.895 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995	.4999261 .4999276 .4999291 .4999305 .4999333 .4999333 .4999359 .4999385 .4999385 .4999385 .4999385 .4999421 .4999421 .4999421 .4999421 .499948 .499948 .499948 .4999538 .4999538 .4999538 .4999538 .4999538 .4999538 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999584 .4999633
3.96 3.965 3.97 3.975	.4999625 .4999633 .499964 .4999648
3.975 3.98 3.985 3.99 3.995	.4999648 .4999655 .4999662 .4999669 .4999676
•	

E. INVERSE ERROR FUNCTION COMPUTATION

Definition

The Inverse Error Function is that value of α that yields a specified value of erf (α). That is, given the value of erf (α), find α .

TI-59 METHOD:

The following computation method applies to positive values of α .

For negative values of α use the relationship

$$erf(-\alpha) = -erf(\alpha)$$

That is, calculate erf (α) and change the sign of erf (α) for negative α values.

Define

$$K = erf (\alpha)$$
; $0 < K < 0.5$

$$z = \sqrt{-2 \ln(2K)}$$

$$x = g_0 + g_1 z + g_2 z^2 + ... + g_{10} z^{10}$$

Where:

$$g_0 = 6.55864 \times 10^{-4}$$
 $g_1 = -0.02069$
 $g_2 = 0.737563$
 $g_3 = -0.207071$
 $g_4 = -2.06851 \times 10^{-2}$
 $g_5 = 0.03444$
 $g_6 = -1.17213 \times 10^{-2}$
 $g_7 = 2.10941 \times 10^{-3}$
 $g_8 = -2.18541 \times 10^{-4}$
 $g_9 = 1.23163 \times 10^{-5}$
 $g_{10} = -2.93138 \times 10^{-7}$

TI-59 METHOD (Cont'd)

The following listing PL-12 is for the TI-59 Programmable Calculator. It utilizes the equations previously described. To use: enter the value of erf (α); then press A. The computed value of α will ultimately be displayed. Table VI can be used as a check on the reasonableness of the answer. Computation time is approximately 10 seconds.

 $0 < erf(\alpha) < 0.5$

For negative values of erf (α), calculate α for the positive value of erf (α). Then change the sign of α .

Example:

Find α for erf $(\alpha) = 0.4995$

Enter 0.4995; Press A

Display: 3.29049

Thus $\alpha = 3.29049$

Example:

Find α for erf $(\alpha) = -0.4975$

Enter 0.4975; Press A

Display: 2.8066

Thus $\alpha = -2.8066$

INVERSE ERROR FUNCTION; LISTING FOR TI-59 PROGRAMMABLE CALCULATOR

LOC	CODE	KTY			LOC	COI	<u>)E</u>	KEY	<u>.</u>
00123455678901234556789000000000000000000000000000000000000	1524442263558642444333306 593400900005094050900	LATO1 (L1			0445 0466 0467 0467 047 048 047 051 053 053 053 053 053 053 053 053 053 053	0.554 0.000	3244443733756321453405440323070712144353405405)	2 -M3 - L2 (M3)

INVERSE ERROR FUNCTION; LISTING FOR TI-59 PROGRAMMABLE CALCULATOR

LOC 0889 0890 0991 0993 0995 0997 0997 0991 0991 1031 1041 1051 1071 1081 1091 1191 1191 1211 1211 1211 1211 121	43 02 54 45 04 54 94 03 53 93	× RCL 02) Y× 5	LOC 133451356 1334 1356 1356 1356 1356 1356 1356 1356 1356	65 × 53 (43 RCL 02 02 54) 45 Y× 07 7 54)
129 130 131 132	54 44 03 53	: Q3	173 174 175 176	03 03

INVERSE ERROR FUNCTION; LISTING FOR TI-59 PROGRAMMABLE CALCULATOR

LOC	CODE	KEY
1778 1790 1823 1834 5 6 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3185412445332458444433123163254533245944433223 900005096540540594050900005096540540540509	.18541E4/×/CC/×8//UC/1.23163E5/×/CC/×9/UC/2.

LOC	CODE	KEY
221	09	9
221 2223 2234 225 227 227	09 03	9 3 1 3 8 EE 7 + X < CL
223	01	1
224	03	3
225	08	_8
226	08 52 07	EĒ
227 220	07	(
220	74 25	*/ *
230	90 53	
231	43	ROL
1229 2230 2331 2332 2334 2334 2336	94533344 53334 54354	
233	54	υΖ) YX 1 0
234	45	Υ×
235	01	1
236	00	0
237 238 239 240	54) +/-
238 990	94 44	+/-
237 240	03	SUM
241	43	03 RCL
242	03	0.3
243	91	R/S GTO
244	61	GT0
245	01	01
246	10	10
247	81	RST

INVERSE ERROR FUNCTION (HP-67 METHOD)

Refer to PL-10.

INVERSE ERROR FUNCTION (HP-34C METHOD)

The program listing for the Inverse Error Function and other functions for the HP-34C is given in PL-15. Included here is a brief listing for erf (α) and its inverse as well as an example in its use.

HP34C

ERF (α) AND INVERSE (α)

 $erf(\alpha) \rightarrow R_6$

LBL 0

2

÷

CHS

 $\mathbf{e}^{\mathbf{X}}$

RTN

LBL 1

GSB B

RCL 6

STO 7

RTN

LBL B

STO 7

0

ENTER ↑

RCL 7

ſO

2

x

1/x

x

RTN

HP-34C INVERSE ERROR FUNCTION

GIVEN: $ERF(\alpha)$; positive or negative value

FIND: α

Put the value of $erf(\alpha)$ into the X-register Key in desired accuracy * Store the value of $erf(\alpha)$ into register 6

Put initial estimate on bounds of α . Upper and lower bounds must bracket true value of α . Lower bound is put into X-register. Then press ENTER † . Then put upper bound in X-register. Press f SOLVE 1.

Execution time is approximately as follows:

Accuracy	Time
f SCI 3	$7 \overline{\text{minutes}}$
f SCI 5	14 minutes
f SCI 7	24 minutes

EXAMPLE:

GIVEN: $ERF(\alpha) = -.4331927$

FIND: a

Put -.4331927 in X-register

* Press f SCI 7 (for accuracy of 7 significant figures)

Press STO 6

Press 2 CHS (i.e. -2)

Press ENTER +

bounds on answer

Press .1 CHS (i.e. -.1)

Press f SOLVE 1

Final Display = -1.500

F. PROBABILITY OF FAILURE COMPUTATION

TI-59 METHOD

Many probability of failure $F(\alpha)$ expressions are of the form $F(\alpha) = 0.5 + erf(\alpha)$

This expression can be conveniently computed using PL-13. To use enter the value of α and press A. The value for $F(\alpha)$ will ultimately be displayed.

EXAMPLE:

FIND: $F(\alpha)$ for $\alpha = -2.305$, -1.365, -0.68, -0.365, -0.125, 0.125, 0.365, 0.68, 1.365, 2.305

<u>a</u>	<u>F(α)</u>
-2.305	0.0105832588
-1.365	0.0861265831
-0.68	0.24825221581
-0.365	0.3575557601
-0.125	0.4502617342
0.125	0.5497382658
0.365	0.6424442399
0.68	0.7517478419
1.365	0.9138734169
2.305	0.9894167412

PROBABILITY OF FAILURE COMPUTATION (TI-59)

LOC	CODE	KEY	LOC	CODE KEY
LOC 0001 0003 0004 0005 0005 0005 0005 0005 0005	CODE 76126197774661673233235235240132316419993143323523523523540903000000000000000000000000000000000	KEY LAVING CONTRACTOR OF STATE	043 0445 0446 0446 047 048 047 048 047 048 051 053 053 053 061 062 064 064 067 067 077 078 079 079 079 079 079 079 079 079 079 079	03X (D2 035335422
041	43	ROL	083	02 2

CODE KEY

01)

IFF

54) 91 R/S

01

01 54 87

Ō1

01

PROBABILITY OF FAILURE COMPUTATION (TI-59)

LOC	CODE	KEY	LOC
LOC 45678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789000000000000000000000000000000000000	6513780047700937532565637825	KEY 1 .781477937 L2 .356563782+ .319381530×L2 R0×	LOC 126 127 128 129 130 131 133 134 135 137
118 119 120 121 122 123	65 43 02 65		
125	43	RCL	

BASIC LANGUAGE METHOD

PL-14 is a modification of PL-11 to calculate $F(\alpha)$.

$$F(\alpha) = 0.5 + erf(\alpha)$$

TABULAR METHOD

Table VII tabulates $F(\alpha)$ versus α .

EXAMPLE:

FIND: F(-2.305) using Table VII

F(-2.3) = 0.0107241

F(-2.31) = 0.010444

Using linear interpolation

F(-2.305) = 0.010584

 $F(-2.305)_{ACTUAL} = 0.010583$

EXAMPLE:

FIND: F(.368) using Table VII

F(.36) = 0.6405764; F(.37) = 0.6443087

Using linear interpolation: F(.368) = 0.6435622

 $F(.368)_{ACTUAL} = 0.6435633$

FAILURE PROBABILITY PROGRAM LISTING (BASIC LANGUAGE)

10 REM A=ALPHA 20 DEF FNE(X) 3Ø P=.2316419 40 T=1/(1+P*X) 50 B1=.31938153 60 B2=-.356563782 70 B3=1.781477937 80 B4=-1.821255978 90 B5=1.330274429 100 H=.39894228 110 Z=H*EXP(-.5*X+2) 120 S=B1*T+B2*T+2+B3*T+3 130 S=S+B4*T+4+B5*T+5 140 Q=Z*S 150 FNE= 5-0 160 FNEND 170 FOR A=-2 TO -1 STEF .01 180 IF A>≈0 GO TO 220 190 X=ABS(A) 200 F=.5-FNE(X) 210 GO TO 230 220 F=.5+FNE(A) 230 PRINT AFF 246 NEXT A 250 END

TABLE VII FAILURE PROBABILITY VERSUS α

<u>a</u>	$\underline{F(\alpha)}$	<u>α</u>	F(a)
-4	3.14873e- 05	-3 .5 3	.0002078
·3.99	3.30545e-05	-3.52	.0002158
·3.98	3.44738e- 05	-3.51	.0002241
-3.97	3,59528e-Ø5	-3.5	.0002327
-3.96	3.74913e-Ø5	-3.49	.0002416
-3.95	3.90932e-05	-3.48	.0002508
-3.94	4.07584e-05	-3.47	.0002603
-3.93	4.24944e-05	-3.46	.0002701
-3.92	4.42937e-05	-3.45	.0002803
-3.91	4.61675e-Ø5	-3.44	.0002909
-3.9	4.81158e-Ø5	-3.43	.0003018
-3.89	5.01424e-05	-3.42	.0003132
-3.88	5.225Ø9e-Ø5	-3.41	.0003249
-3.87	5.44414e-05	-3.4	.000337
-3.86	5.67175e-Ø5	-3.39	.0003495
-3.85	5.90831e-05	-3.38	.ØØØ3625
-3.84	6.15418e-Ø5	-3.37	.0003759
-3.83	6.40973e-05	-3.36	.0003898
-3.82	ბ.67 4 98e-05	-3.35	.0004041
-3°.81	ბ.951 0 2e-05	-3.34	.0004189
-3.8	7.23749e-Ø5	-3.33	.0004343
-3.79	7.53514e-Ø5	-3.32	.0004501
-3 .7 8	7.84397e-Ø5	-3.31	.0004665
-3.77	8.16509e-05	-3.3	.0004835
-3.76	8.49850e-05	-3.29	.000501
-3.75	8.84458e-Ø5	-3.28	.0005191
-3.74	9.20407e-05	-3.27	.0005378
-3.73	9 .57 698e-Ø5	-3.26	.0005571
-3.72	9.96441e-05	-3.25	.0005771
-3.71	.0001037	-3.24	.0005977
-3.7	.0001078	-3.23	.000619
-3.69	.0001122	-3.22	.000641
-3.68	.0001167	-3.21	.0006637
-3.67	.0001213	-3.2	.0006872
<u>-3.66</u>	.0001261	-3.19	.0007114
-3.65	.0001312	-3.18	.0007364
-3.64	.0001364	-3.17	.0007623
-3.63	.0001417	-3.16 -3.15	.0007889
-3.62	.0001473	-3.15 -3.14	.ØØØ8164 .ØØØ8448
-3.61	.0001531	3.13	.0008741
3.6	J0001591	-3.12	.0003741
-3.59 -3.58	.0001654 .0001718	-3.11	.ØØØ9355
-3.58 -3.57	.0001718 .0001785	-3.1	.0009677
-3.5/ -3.56	.0001855	-3.09	.0010009
-3.55	.0001833	-3.08	.0010351
-3.54		3.07	0010704

TABLE VII FAILURE PROBABILITY VERSUS α

		~	F(a)
α	$\underline{\mathbf{F}(\alpha)}$	-2.59	.0047988
-3.06	.ØØ11Ø68		.00494
-3.05	.0011443	-2.58	.005085
-3.04	.001183	-2.57	.0052336
-3.03	.0012228	-2.56	.0053862
-3.02	.0012639	-2.55	.0055426
-3.01	.0013043	-2.54	.0057031
-3	.00135	-2.53	.0058678
-2.99	.001395	-2.52	.0058676 .0060366
-2.98	.0014413	-2,51	.0060505
-2.97	.0014891	-2.5	.0062077
-2.96	.øø15383	-2.49	.0065671
-2.95	.øø15889	-2.48	.0067557
-2.94	.0016411	-2.47	.0067337 .0069 4 69
-2.93	.0016949	-2.46	.0057467
-2.92	.0017502	-2.45	.0073436
-2.91	.0018072	-2.44	.0075494 .0075494
-2.9	.0018659	-2.43	.0073474 .0077603
-2.89	.0019263	-2.42	
-2.88	.0019884	-2.41	.0079763
-2.87	.0020524	-2.4	.0081975 .0084242
-2.86	.øø21183	-2.39	.0086563
-2.85	.002186	-2.38	.008894
-2.84	.0022557	-2.37	.0091375
-2.83	.0023275	-2.36	.0093867
-2.82	.0024012	-2.35	.0075807
-2.81	.0024771	-2.34	.0078413
-2.8	.0025552	-2.33	.0101704
-2.79	.0026355	-2.32	.010444
-2.78	.øø2718	-2_31	.0107241
-2.77	.0028029	-2.3 -2.29	.0110106
-2.76	.0028901	-2.28	.0113038
-2.75	.øø29798	-2.27	.0116038
-2.74	.003072	-2.26	.0119106
-2.73	.0031668	-2.25	.Ø122244
-2.72	.0032641	-2.24	Ø125454
-2.71	.0033642	-2.23	.0128737
-2.7	.003467	-2.22	.0132093
-2.69	.øø35726	-2.21	.0135525
-2.68	.0036812	-2.2	.0139034
-2.67	.0037926	-2.19	.0142621
-2.66	.0039071	~2.18	.Ø146287
-2.65	.0040246	-2.17	.0150034
-2.64	.0041453	-2.16	.0153863
-2.63	.0042693	-2.15	.0157775
-2.62	.0043965	-2.14	.0161773
-2.61	.0045271	-2.13	.0165857
-2.6	.0046612	-2.13	

TABLE VII FAILURE PROBABILITY VERSUS α

<u>a</u>	$F(\alpha)$	<u>a</u>	F(a)
-2.12	.Ø17ØØ29	-1.65	.0494714
-2.11	.0174291	-1.64	.0505025
-2.1	.Ø178643	-1.63	.Ø51 550 7
-2.09	.ø183ø88	-1.62	.0526161
-2.08	.Ø187627	-1.61	.Ø536989
-2.07	.Ø192261	-1.6	.0547992
-2.06	.Ø196992	-1.59	.Ø559174
-2.Ø5	.0201821	-1.58	.0570534
-2.04	.0206751	-1.57	. 05 82 0 75
-2.03	.Ø211782	-1.56	.0593799
-2.02	.0216916	-1.55	.0605707
-2.01	.0222155	-1.54	.0617801
-2	.02275	-1.53	.063 00 83
-1.99	.0232954	-1.52	.0642554
-1.98	.Ø238 517	-1.5 <u>1</u>	.0655217
-1.97	.0244191	~1.5	.0668072
-1.96	.0249978	-1.49	.0681121
-1.95	.Ø25588	-1.48	. Ø69 4 366
-1.94	.0261898	-1.47	.0707809
-1.93	.0268033	-1.46	.0721451
-1.92	.0274289	-1.45	.0735293
-1.91	.0280665	-1.44	.Ø749337
-1.9	.0287165	-1.43	.0763585
-1.89	.0293789	-1.42	.0778039
-1.88	.030054	-1-41	.0792699
-1.87	.Ø3Ø7418	-1.4	.0807567
-1.86	.Ø314427	-1.39	.0822645
-1.85	.Ø321567	-1.38	.0837934
-1.84	.Ø328841	-1.37	.0853435
-1.83	.0336249	-1.36	.086915
-1.82	.0343794	-1.35	.088508
-1.81	.Ø351478	-1.34	.0901227
-1.8	.0359302	-1.33 -1.32	.0917592
-1.79	.0367269	-1.32	.0934176
-1.78	.0375379	-1.3	.095098 .0968005
-1.77	.0383635	-1.29	
-1.76	.0392038	-1.28	.0985254 .1002726
-1.75	.0400591	-1.27	.1020423
-1.74	.0409294	-1.26	
-1.73	.Ø418151 .Ø427162	-1.25	.1038347 .1056498
-1.72		-1.23	.1074877
-1.71	.Ø436329	-1.23	.1074877
-1.7 -1.69	.Ø445654 .Ø455139	-1.22	.1112325
-1.68	.Ø453786	-1.21	.1131395
-1.67	.Ø474596	-1.2	.1150697
-1.66	.0474576	-1.19	.1170232
- I - OO	· 2070/6	A # A 7	

<u>a</u>	F(a)	<u>a</u>	$\underline{F(\alpha)}$
-1.18	.1190 001	71	.238 352
-1.17	.1210005	7	.2419636
-1.16	.1230244	69	.245 097
-1.15	.1250719	48	.2482 521
-1.14	,1271431	67	.2514288
-1.13	.1292381	66	.2546268
-1.12	.1313569	45	.257846
-1.11	.1334995	64	.2610862
-1.1	.135666	-,63	.2643472
-1.099	.1378565	62	.2676288
-1.07	.140071	61	.2709308
-1.00	.1423096	6	.2742531
-1.036	.1445722	59	.2775953
-1.05	.146859	58	.2809573
-1.03	.1491699	57	.2843388
-1.03	.1515049	56	.2877397
-1.03	.1538641	55	.2911596
	.1562476	54	.2945985
-1.01	.1584553	53	.2980559
-1		52	.3015318
99	.1610871	51	.30502 57
98	.1635431	5	.3085375
97	.1660232	49	.3120669
96	.1685276	43	.3156137
95	.1710561	47	.3191775
94	.1736Ø88	46	.3227581
93	.1761855	45	.3263552
92	.1787863	44	.3299686
91	.1814112	43	.3335979
9	.1840601	42	.3372428
39	.1867329	41	.340903
88	.1894296	4	.3445783
87	.1921501	39	.3482683
86	.1948945 .1976625	38	.3519727
85	.1976623	37	.3556913
84		36	.3594236
83	.2032693	~.35	.3631694
82	.206108 .20897	34	.3669283
81		33	.3707
8	.2118553	32	.3744842
79	.2147638	31	.3782805
78 - 77	.2176954 .220649 9	3	.3820886
77		29	.3859082
76	.22362 72	28	.3897388
75	.2266273	27	.3935802
74	.2296499	26	.3974319
73	.232695	25	.4012937
72	.2357624	* ** \tau	

TABLE VII FAILURE PROBABILITY VERSUS $\boldsymbol{\alpha}$

<u>a</u>	<u>F(a)</u>	$\underline{\alpha}$	<u></u> F(α)
24	.4051652	.23	.5909541
23	.4090459	.24	.5948348
22	.4129356	.25	.5987063
21	.4168339	.26	.6025681
2	.4207403	.27	.6064198
19	.4246546	.28	.6102612
18	.4285763	.29	.614Ø918
17	.432505	.3	.6179114
16	.4364405	.31	.6217194
15	.4403823	.32	.6255158
14	.44433	.33	.6292999
13	.4482832	.34	.6330717
12	.4522415	.35	.6368306
:1	.4562046	.36	.6405764
1	.4601721	.37	.6443087
09	.4641435	.38	.6480272
08	.4681185	.39	.6517317
07	.472Ø968	:4	.6554217
06	.476Ø7 7 8	.41	.659097
05	.4800611	.42	.6627572
04	.484Ø465	-43	.6664021
03	.4380335	.44	.6700314
02	.4920216	.45	.6736447
01	.496010 <u>6</u>	.46	.6772419
Ø	.5 ####################################	.4 7	.6808225
.Ø1	.5Ø39894	.43 .49	.6843863 .6879331
.02	.5079784 .5119665	.5	.6914625
.Ø3 .Ø4	.5159535	.51	.6949743
.Ø5	.5199389	.52	.6984682
.Ø3 .Ø6	.5239222	.53	.7019441
.07	.5279032	.54	.7054015
.ø/ .ø8	.5318814	.55	.7088403
. Ø9	.5358565	.56	.7122603
. 1	.5398279	.57	.7156612
.11	.5437954	.58	.7190427
.12	.5477585	.59	.7224047
.13	.5517168	.6	.7257469
. 14	.55567	18.	.7290691
15	.5596177	.62	.7323712
16	.5635595	.33	.7356528
.17	.567495	64	.7389138
.18	.5714237	.65	.7421539
.19	.5753454	.66	.7453731
.2	.5792597	.67	.7485712
.21	.5831661	.68	.7517478
.22	.5870644	.69	.754903

	7/.)	<u>a</u>	F(a)
α	<u>F(a)</u>	1.17	.8789994
.7	.7580364	1.18	.88Ø9998
.71	.761148	1.19	.8829767
.72	.7642376	1.2	.8849302
.73	.767305	1.21	.8868605
.74	.7703501	1.22	.8887675
.75	.7733727	1.23	.8906513
.76	.7763728	1.24	.8925122
.77	.7793501	1.25	.8943501
.78	.7823046	1.26	.8961652
.79	.7852362	1.27	.8979576
.8	.7881447	1.28	.8997273
.81	.791Ø3	1.29	.9014746
.82	.7 93892	1.3	.9031994
.83	.7967307	1.31	.904902
.84	.7995459	1,32	.9065824
.85	.8023375	1,33	.9082408
.86	.8051055	1.34	.9093772
.87	.8078498	1.35	.9114919
.88	.8105704	1,36	.913Ø849
.89	.8132671	1.37	.9146564
. 9	.8159399	1.38	.9162066
.91	.8185888	1.39	.9177354
.92	.8212136	1.4	.9192432
.93	.8238145	1.41	.92073
.94	.8263912	1.42	.9221961
.95	.8289439	1.43	.9236414
.96	.8314724	1.44	.9250662
.97	.8339768	1.45	.9264706
.98	.83 64 569	1.46	.9278549
.99	.8389129	1.47	.929219
1	.8413447 .8437523	1.43	.9305633
1.01	.8461358	1.49	.9318878
1.02	.848495	1.5	.9331927
1.03	.85083	1.51	.9344782
1.04	.8531409	1.52	.9357444
1.05	.8554277	1.53	.9369916
1.06	.8576903	1.54	.9382198
1.07	.8599289	1.55	.9394292
1.08	.8621434	1.56	.9417924
1.07	.8643339	1.57	.9429466
1.1	8665004	1.58	.9440826
1.11	.868643	1.59	.9452007
1.12	ニャルサナイ の	1.6	.9463011
1.13	.8728568	1.61 1.62	.9473839
$\frac{1.14}{1.15}$		1.62	.9484492
1.15	.8769755	1.00	*/ TOTT / S
1.10			

<u>a</u>	<u>F(a)</u>	<u>a</u>	F(a)
1.64	.9494974	2.11	.982 57 09
1.65	.9505285	2.12	.982997
1.66	.9515428	2.13	.9834142
1.67	.9525403	2.14	.9838227
1.68	.9535213	2.15	.9842224
1.69	.954486	2.16	.9846137
1.7	.9554346	2.17	.7849966
1.71	.9563671	2.18	.9853713
1.72	.9572838	2.19	.9857379
1.73	.95818 49	2.2	.9860966
1.74	.9590705	2.21	.9864475
1.75	.9599409	2.22	. 986 7 9 0 6
1.76	.96 07961	2.23	.9871263
1.77	.9616365	2.24	.9874546
1.78	.962462	2.25	.9877756
1.79	.9632731	2.26	.7880894
1.8	.9640697	2.27	.7883762
1.81	.9648521	2.28	.9886962
1.82	.9656205	2.29	.7887894
1.83	.9663 75 1	2.3	.9892759
1.84	.9671159	2.31	.9895559
1.85	.9678433	2.32	.9898296
1.86	.9685573	2.33	.9900969
1.87	.9692581	2.34	.9903581
1.88	.969946	2.35	.9906133
1.89	.9706211	2.36	.9908625
1.9	.9712835	2.37	.991106
1.91	.9719334	2.38	.9913437
1.92	.9725711	2.39	.9915758
1.73	.9731966	2.4	.9918025
1.74	.9738102	2.41	.9920237
1.95	.974412	2.42 2.43	.9922397
1.76	.9750021	2.44	.9924506
1.97	.9755809	2.45	.9926564 .9928572
1.98	.9761483	2.46	.9930531
1.79	.9767046	2.47	.9932443
2	.9772499	2.48	.9934309
2.01	.9777845	2.49	.9936128
2.02	.9783084	2.5	.9937903
2.03 2.04	.9788218 .97932 4 9	2.51	.9939634
	.9798178	2.52	.9941322
2.05 2.06	.7/751/5 .9803008	2.53	.9942968
2.05 2.07	.78 077 39	2.54	.9944573
2.08	.9812373	2.55	.9946138
2.009	.9816912	2.56	.9947664
2.1	.9821356	Z.57	.794915

0	F(α)	<u>α</u>	F(a)
<u>a</u>	<u>=\~~</u> .99506	3.ø5	.9988557
2.58	.7752012	3.06	.9988932
2.59	.9953388	3.07	.9989296
2.6	.7753300 .9 9547 28	3.08 3.08	.9989649
2.61 2.62	.9956Ø35	3.09	.9989991
2.63	.9957307	3.1	.9990323
2.64	.995,8547	3.11	9990645
2.65	.9959754	3.12	.7990957
2.66	.9960929	3.13	.9991259
2.67	.9962074	3.14	.9991552
2.68	.9963188	3.15	.9991836
2.69	.9964273	3.16	.9992111
2.7	.996533	3.17	.9992377
2.71	.9766358	3.18	.9992636
2.72	.9967358	3.19	.9992886
2.73	.9968332	3.2	.9993128
2.74	.996928	3.21	.9993363
2.75	.9970202	3.22	.999359
2.76	.9971099	3.23	.999381
2.77	.9971971	3.24	.99 94 023
2.78	.997282	3.25	.9994229
2.79	.9973645	3.26	.9994429
2.8	.9974448	3.27	.9994622
2.81	.9975229	3.28	.7994809
2.82	.9975988	3.29	.999499
2.83	.9976725	3.3	.9995165
2.84	.9977443	3.31	.9995335
2.85	.997814	3.32	.9995499
2.86	.9978817	3.33	.9995657
2.87	.9979476	3.34	.999581
2.88	.9980116	3.35	.9995959
2.89	.9980737	3.36	.9996102
2.9	.9981341	3 . 37	.7996241
2.91	.9981928	3.38	.9996375
2.92	.9982 49 8	3.39	.9996505
2.93	.9983Ø51	3 .4	.999663
2.94	.9983589	3.41	.9996751
2.95	.9984111	3.42	.9996868
2.96	.9984617	3.43	.7996982
2.97	.7985109	3.44	.9997091
2.98	.9985587	3.45	.9997197
2.79	.998605	3.46	.9997299
3	.99865	3.47	.9997397
3.01	.9986937	3.48	.9997492
3.02	.9987361	3.49	.9997584
3.03	.9987772	3.5	.9997673
3.04	.998817	773.51	.9997759

		<u>a</u>	F(a)
<u>a</u>	$\underline{\mathbf{F}(\alpha)}$.9999669
3.52	.9997842	3.97	.9999683
3.53	.9997922	4	. / / /
3.54	.9997999		
3.55	.9998073		
3.56	.9998145		
3.57	.9998215		
3.58	.9998282		
3.59	.9998346		
3.6	.99984Ø8 .9998469		
3.61	.9998527		
3.62	.9998583		
3.63 3.64	.99 9 8636		
3.65	.9998688		
3.66	.7998739		
3.67	.9998787		
3.68	.9998833		
3.69	.9998878		
3.7	.9998922		
3.71	.9998963 .9999ØØ4		
3.72 3.73	.9999Ø42		
3.73	. 799908		
3.75	.9999116		
3.76	.999915		
3.77	.9999183		
3.78	.9999216		
3.79	.9999246		
3.8	.9999276 .9999305		
3.81	.9999333		
3.82 3.83	.9999359		
3.84	.9999385		
3.85	.9999409		
3.86	.9999433		
3.87	.9999456		
3.88	.9999477		
3.89	.9999499 .9999519		
3.9	.7777517		
3.91 3.92	.9999557		
3.74 3.93	9999575		
3.73	.9999592		
3.95	.9999609		
3.96	.9999625		
3.77	.999964		
3 .9 8	.9999655		

G. HP-34C PROGRAMS

記して 一般で、上になること

The following program listing PL-15 is to be used to compute the Incomplete Gamma Functions, erf (α) and its inverse, and to solve the accelerated test rranscendental function (which is discussed in a later section).

PL-15

HP-34C

			
052	25 13 3	LBL 3	4
	23 8	STO 8	
	15 22	R↓	{
055	23 9	STO 9	•
	24 8	RCL 8 Q	(α,τ)
	31	ENTER ↑	
	24 .1	RCL .1	1
	14 72 2	∫2	Ţ
060	25 12	RTN	
	25 13 2	LBL 2	Å.
	23 .0	STO .0]
	32	CHS	ſ
	15 1	e ^X	1
065	24 .0	RCL .0	•
	24 9	RCL 9 C	ommon
	1	1	
	41	-	1
070	25 3	$y^{\mathbf{X}}$	· I
071	61	x	1
072	25 12	RTN	

The second secon

H. ACCELERATED RANDOM TEST LEVEL COMPUTATION

The computation methods in this section calculate the accelerated random input vibration level \ddot{x}_2 that will cumulate the same fatigue damage to a structural element being stressed for T2 hours as a random input vibration level \ddot{x}_1 for T1 hours. Fracture Mechanics effects causes the relationship between parameters to be a transcendental function as follows:

$$\ddot{x}_2 - b_4 [1 - b_2 \ddot{x}_2 \eta(\theta-2)]^{1/\eta\theta} = 0$$

 $\ddot{\mathbf{x}}_2$ is computed by solving the above function. These programs use the half-interval technique.

INPUT PARAMETERS:

 x_1 = input acceleration rms level at the service environment (g rms)

 C_{μ} = rms stress per g rms constant (ksi/g rms)

T₁ = service environment duration (time units)

 T_2 = accelerated test duration (same time units as T_1).

 η = damping linearity constant

 θ = material crack growth rate constant

Y = geometrical parameter

A = material sinusoidal fatigue curve constant (ksi)

_ = material random fatigue curve constant (ksi)

 ΔK_c = material fracture toughness (ksi \sqrt{in})

The constant C4 is the ratio of the rms stress in the structural element that is cumulating fatigue damage to the "black box" rms vibration input acceleration level. These programs assume that the power spectral density of the input acceleration retains the same shape at both \ddot{x}_1 and \ddot{x}_2 levels, expecially in the vicinity of structural resonant frequencies. Otherwise C4 will take on a different value at each input acceleration level. This is because the rms stress level in the structural element (hence, fatigue) is related to the square root of the power spectral density of the acceleration input in the regions of the resonant frequencies.

The constant η denotes the linearity of the structural assembly in relating the rms stress level σ of the structural element to the input acceleration level as follows:

$$\sigma_1 = C4 \ddot{x}_1^{\eta}$$
; $\sigma_2 = C4 \ddot{x}_2^{\eta}$

 η = 1 represents the damping linearity system. η = 0.833 represents a system whose damping is controlled by internal stress-strain hysteresis damping. η = 1.5 represents a system controlled by Coulomb friction damping.

Define

CONSTANTS:

$$b_{1} = \frac{1}{a_{1}} \left[\frac{\Delta K_{c}}{C_{5}Y} \right]^{2}$$

$$C_{5} = \left(\frac{2\overline{A}}{\overline{C}} \right) C_{4}$$

$$b_{2} = \left(\frac{1}{b_{1}} \right)^{\frac{\theta - 2}{2}}$$

$$b_{3} = 1 - b_{2} \ddot{x}_{1}$$

$$b_{4} = \ddot{x}_{1} \left(\frac{T_{1}}{T_{2}} \right)^{1/\eta \theta} \left(\frac{1}{b_{3}} \right)^{1/\eta \theta}$$

$$\ddot{x}_{2_{max}} = b_{1}^{1/2\eta}$$

For convenience let \ddot{x}_2 be also referred to as x. The value of x (i.e. \ddot{x}_2) to be solved for is that value that sets the following function equal to zero:

$$f(x) = x - b_4 [1 - b_2 x^{\eta(\theta - 2)}]$$

 \ddot{x}_2 is the largest value of x that will not cause computational max problems (e.g. £n of a negative number). It represents the largest value of x that has practical use. If $\ddot{x}_2 > \ddot{x}_2$, fatigue failure will occur during the application of the first vibration cycle. A similar practical limit is imposed on the selection of the value for a_i . If a_i is chosen larger than a_{c_2} (see below), \ddot{x}_2 will be less than \ddot{x}_1 , which is meaningless for an "accelerated" test.

$$a_{c_2}$$
 = critical crack size at \ddot{x}_2

$$a_{c_2} = \left[\frac{\Delta K_c}{Y C_5 \ddot{x}_2^{\eta}}\right]^2$$
 inches

1. BASIC LANGUAGE (PL-16)

PL-16 solves for \ddot{x}_2 .

INPUT DATA:

A1, C4, N, O, K, Y, C, A, T2, T1, X1

represents

 a_i , C4, n, θ , ΔK_c , Y, \overline{C} , \overline{A} , T_2 , T_1 , \ddot{x}_1

OUTPUT DATA:

 $x2 = \ddot{x}_2$

EXAMPLES:

RUN

WHAT ARE A1.C4,N.O.K.Y.C,A.T2,T1,X1 V.007,1,.833,4,20,1.77,60,180,1,1000,1 XZ= 7.869127

ready *RUN

WHAT ARE A1,04,N,0,K,Y,C,A,T2,T1,X1 7.6,1,.833,4,20,1.77,80,180,1,1000,1 X2= 0.890453

```
10 PRINT " WHAT ARE A1,C4,N,O,K,Y,C,A,T2,T1,X1"
20 INPUT A1,C4,N,O,K,Y,C,A,T2,T1,X1
30 E=1E-9
40 C5=2*A*C4/C
50 B1=(K/(C5*Y))**2/A1
60 B2=(1/B1)**((0-2)/2)
70 B3=X1**(N*(O-2))*(-B2)+1
80 B4 = (1/B3) **(1/(N*O))
90 B4=B4*X1*(T1/T2)**(1/(N*O))
100 M=B1**(1/(2*N))
110 DEF FNX(X)=X-B4*(1-B2*X**(N*(0-2)))**(1/(N*0))
120 H=M
130 X4=FNX(X)*FNX(H)
140 IF X4>0 THEN 230
150 H=H/2
160 X3=FNX(X)*FNX(X+H)
170 IF X3C 0 THEN 190
180 X=X+H
190 IF H<E THEN 210
200 GO TO 150
210 PRINT "X2=";X
220 GO TO 240
230 PRINT"PHYSICALLY IMPOSSIBLE DATA INPUT SET"
240 END
```

2. TI-59 (PL-17)

Enter PL-17 into the computer; then execute the program as shown in the following example:

INPUT		
PARAMETER	ENTER	PRESS
a _i	7×10^{-3}	R/S
"1	1	R/S
c ₄	1	R/S
T_1/T_2	10 ³	R/S
η	.833	R/S
θ	4	R/S
\overline{A}	180	R/S
\overline{c}	80	R/S
Y	1.77	R/S
ΔK _c	20	R/S

PRESS DISPLAY

R/S
$$\ddot{x}_2 = 7.8722755$$

For $a_i = 0.6$ inches $x_2 = 3.8934211$ g rms

Execution time \approx 2 minutes

TI-59 PL-17 LISTING

LRN				
LOC CODE	KEY	LOC	CODE	KEY
000 42	STO	050	53	
001 00	_00	US:	10 m	
002 91 000 40	ж. 5 Ітп	1972 1951	4 5	i de la companya de l
004 01	01	05×	11	11
005 91	RIS	055	55	~
006 42	6 [[U56	13	*LL
007 U3 000 91	- 보실 - 후 - 호	057 058	1 + = = = = = = = = = = = = = = = = = = =	÷
009 42	5T 0	059	43	RCL
010 03	03	060	<u></u> 9	08
311 91	R 8 cr n	961 062	54 54	:
012 74 013 04	1	063	33	3
014 91	R. S	Ü64	54	i
015 42	3 T_	065	55	
Ulb Ub		- UD5 - 047	4) AA	7 L L
018 42	5.0 3.10	068	5÷	
019 06	06	069	4.	4 T []
020 91	7:5 ****	U/U 071	15	10
021 42 022 07	- 0 1 4 117	072	ďΞ	Ξ
023 91	R 8	073	65	,H,
420123123124512612712325344445 0001234567894001234567894000000000000000000000000000000000000	00000180290360490500690790790119090804908080808079079079079080490808080808080808080808080808080808	0::3:4567890123456789012345678901234567 5555555555666666666777777777838888888 800000000000000000000		8 10 6 × L 4 D : T 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80 CXU 19 A90	- UC -4 4	970 - 076	94 54	_: +
027 42	ETO	Ō7Ŧ	42	3 T 🛛
028 11	11	078	17	1.7
029 F1		077 080	9 : 5 3	!.
031 03	2 RCL 04 7 1/X STD	031	43	
032 65	. A.	095	05	ij5
033 43	ROL	- U83 - noa	75 00	•
034 04 035 54	∟ "1 ;	085	54	1
036 35	1/X	086	55	+ 2
037 42	SŢŌ			
038 13 039 53	13	088 089	54 42	.! 3 T 🖸
040 02	(2 ×	090	42 20 53	20
041 65		091	53	20
042 43	RCL	092 093	53 43	RCL
043 06 044 55	06 ÷	073 D94	05	05
045 43	÷ RCL	095	75	-
046 07	07	096 097	02 54	2
047 54 048 42) Sto	098 098	54 65	×
049 14	14	099		RCL

LOC COL	E KEY	LOC	CODE	KEY
1001234567890123456789012345678	0) T1 L4 L5 KD2 (61 X L0 D3 (70 C1 L1 L3 R 1 X C2) T2 (70 C1 L1 L3 R 2) T2 (70 C2) T2 (7	15512345678501234567890123456785456785 15515566666666667777777788888888 1888888888888		KEY
101 5	(4) 7 :TN	151	U 3 45	US 1
102 7	·2 1 4 ·1 21	153	4.3	FIL 12
104 5		154	33	FOL 22
105 4	(3 FOL	155	급수 교통	
105 L	[부	157	53	
108 4	J ROL	158	53	
109	3	159	45	
110 3	; -	161	35	1 (L 1 (L)
112 3	10 40L 10 05 14 1 10 14 10 14 12	162	54	
115 3	<u> 22</u>	163 164	45 49	- 1 -⊊ []
114 5	16 18 (165	22	22
116	13 FCL	166	54	1.
117 1	16 16	167 169	54 49	: ::ΤΠ
118 . 119 5	30 i A 54)	169	25	25
120 -	15 //	170	53	:
121 4	43 RCL	171 172	03 49	: □ FI
144 a 123 5	#1654530423333341542544255454534423333334154254235442354	173	16	16
124	42 STO	174	45	7X DOM
125	23 23 Fo /	170 176	# 4년 - 13	13
125 t	Ja V 53 (177	54	, T
128	53 (178	54	
129	43 ROL	175 196	42 1 26	57 <u>0</u> 36
130 (ul ul 45 /K	181	53	(
132 .	43 RCL	182	00	Ü
133	21 21 = 4	165 194) 04 . 42	 ≒.⊤⊓
135	04 / 65 /	185	09	09
136	43 RCL	186	43	ROL
137	23 23 -	187 188	(45 (42	65 117
135 139	94 +/-	189	10	10
140		190 191	53	(
141	85 + 01 1 54)	192	43 2 10	- KUL 10
142 143	J4 / 42 STO	193	55	102 05 L6 L3 06 0.T09L600 L0 0.R2: 12 R 12 R 13 R S R S R S R S R
144	24 24	194	1 02	2
145 146	53 (43 RCL	195 196	5 54 5 42	S⊺∏
147	01 01	197	7 10	10
148	65 ×	198	3 53	(
149	53 (199	9 43	ROL

LOC CODE	KEY		CODE KEY
4 + 15 4 - 4 + 4 + 15 + 4 + 15 4 + 15 4 + 15 0 5 0 0 4 20 0 9 20 1 20 1 20 1 20 1 20 1 20 1 20	9 LO DELPER D512078 D8 L5 L8 D9 T19V 9 10 5 4 5 945 R 9 885 F 1 C1 T19 O T19V P1 1 T19V	0 - 20 4 5 6 7 8 5 0 1 23 4 5 6 7 8 5 0 1 23 4 5 6 7 8 5 0 1 23 3 4 5 6 7 8 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6	+) TLOVE22010L98L +) XC10VE22010L98L +) XR 1NG2C2010C9409166333333333753145334425980544534425980544534425980544534425980544534453444259805445344425980544534442598054453444259805445344425980544534442598054453444259805445
200 10 204 54	10 	259 259 251	43 RCL 10 10
206 12 207 43	5 1 U 1 2 ⊬0 L	256 257	77 GE 02 02
208 (9 209 42 209 5	71 0 94	258 259 946	62 62 61 GTO 01 01
210 2. 211 71 212 16	SER A!	261 262	90 90 43 RCL
213 42 214 15 245 22	57 0 - 1 5 - 50	263 264 245	09 09 91 R/S 76 FBL
216 12 217 48	12 ST 0	266 267	16 A • 53 (
218 27 219 71 330 34	- 27 - 98 R - 9 !	268 269 270	53 (53 (
221 42 221 18	STO 18	271 272	53 (53 (
223 53 224 43 335 15	₽(<u>L</u> • 5	273 274 275	43 RCL 27 27 45 YX
225 65 227 43	RCL	276 277	43 RCL 21 21
228 15 229 54 230 42	18) STA	278 279 280	04 / 65 X 43 RCL
231 19 232 53	19	281 282	23 23 54)
233 00 234 54 235 32	- 0 } - ∉tT	283 284 285	94 +/- 85 + 01 1
236 +3 237 19	RCL 19	286 287	54) 45 YX
239 77	GE	289	43 KUL 22 22 54) 65 ×
240 02 241 46 242 43 243 12 244 42 245 09 246 53 247 01 248 52	46 RQL	290 291 292 293 294 295 296 297	65 × 43 RCL
242 43 243 12 244 42 245 09	RÇL 12 ST O : 09	293 294 295	43 RCL 25 25 54) 94 +/- 85 +
245 09 246 53 247 01	(296 297	43 RCL
248 52 249 04		298 299 300	27 27 54) 92 RTN
		LRN	

ACCELERATED \ddot{x}_2 (HP-34C)

The following program listing solves for the accelerated random input vibration level \ddot{x}_2 to accomplish the same goal as PL-16. PL-16 is written in BASIC language. PL-15 is written for the HP-34C programmable Calculator. The constants C_5 , $\ddot{x}_{2_{max}}$, b_1 thru b_4 must be calculated separately as shown below. Then their values are entered into PL-15.

INPUT PARAMETERS:

$$\begin{array}{lll} a_{i} \text{ (inches)} & & \vartheta \\ \vdots & & & \Upsilon \\ C_{4} \text{ (ksi/g rms)} & & \overline{A} \text{ (ksi)} \\ T_{1}/T_{2} & & \overline{C} \text{ (ksi)} \\ \end{array}$$

CONSTANTS:

$$b_{1} = \frac{1}{a_{1}} \left[\frac{\Delta K_{c}}{C_{5}Y} \right]^{2}$$

$$c_{5} = \left(\frac{2\overline{A}}{\overline{C}} \right) c_{4}$$

$$b_{2} = \left(\frac{1}{b_{1}} \right)^{\frac{\theta - 2}{2}}$$

$$b_{3} = 1 - b_{2} \ddot{x}_{1}$$

$$b_{4} = \ddot{x}_{1} \left(\frac{T_{1}}{T_{2}} \right)^{\frac{1}{\eta \theta}} \left(\frac{1}{b_{3}} \right)^{\frac{1}{\eta \theta}}$$

$$\ddot{x}_{2_{max}} = b_{1}^{\frac{1}{2}\eta}$$

$$f(x) = x - b_4 \left[1 - b_2 x \right]^{1/\eta \theta}$$

EXA	MPLE:	HP-34C
	$b_2 = 1.1102214 \times 10^{-3} *$ $b_3 = 9.9888978 \times 10^{-1}$ $b_4 = 7.952523$	R ₀ R ₁
	$\eta(\theta - 2) = 1.666$	R ₂
	$1/\eta\theta = 3.0012005 \times 10^{-1}$. R ₄
	x ₂ ≈ 59.35586	
", ≡ x	×	R ₅

$$f(x) = R_5 - R_2 \left[1 - R_0 \times R_5^{R_3}\right]^{R_4}$$

Two initial guesses: \ddot{x}_1 ; $\ddot{x}_{2_{max}}$ (i.e. 1; 59.35)

Program uses 17 lines. Refer to the following page for execution instructions. The solution \ddot{x}_2 for the above example is:

$$\ddot{x}_2 = 7.8691$$

* $a_i = .007$ inches for all of the above parameter values.

 $a_i > .004$ inches for these equations to apply.

Turn On

Enter values of desired f(x) coefficients into $R_0 \rightarrow R_4$

Enter two initial guesses for x:

 \ddot{x}_1

ENTER +

[∴]x_{2max} *

f SOLVE A

*The value for $\ddot{x}_{2\max}^2$ entered should be slightly less than the actual value of $\ddot{x}_{2\max}^2$. Otherwise the program will take the \ln of a negative number (which is illegal) and "ERROR O" will appear. EXAMPLE: $\ddot{x}_{2\max}^2 = 3.0199$. For $\ddot{x}_{2\max}^2$ enter the value of 3.01.

J. REFERENCES

- 1. Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions, National Bureau of Standards, 10th Printing, December, 1972.
- Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York, 1965.

I. SYMBOLS

```
\Gamma(\alpha)
             Gamma Function with argument \alpha
             variable
             dummy variable, variable
             variable
             variable
\gamma(\alpha, \tau)
             Incomplete Gamma Function with argument parameters \alpha and \tau.
Q(\alpha, \tau)
             Incomplete Gamma Function with argument parameters \boldsymbol{\alpha} and \boldsymbol{\tau}.
             variable
             variable
             variable
             variable
           Incomplete Gamma Function Parameters
Q_{o}(\alpha, \tau)
             Normalized Incomplete Gamma Function with
             argument parameters \alpha and \tau.
             interpolation variable
             interpolation variable
erf_{p}(\alpha)
             error function defined by Papoulis 2
erf(a)
             inverse error function
F(N)
             probability of failure in N stress cycles
             variable
               constants
g_1, \dots, g_{10}
```

variable