TC405 In dieser Schaltung ist $R = 6.4 \text{ k}\Omega$.

Die Impedanz zwischen den Anschlüssen A und B beträgt somit

Lösung: $0,4 \text{ k}\Omega$.

Das Impedanzverhältnis eines Übertragertrafos ist $\ddot{\text{U}}^2$.

$$\ddot{U}^2 =$$
 4 • 4 = 16
geteilt durch 6,4 k Ω ÷ 16 = 0,4 k Ω

Weshalb das Impedanzverhältnis gleich dem Quadrat des Übersetzungsverhältnisses ist, ist sehr einfach erklärt.

Die Formelsammlung kann den Laien da doch eher verunsichern.

Das Übersetzungsverhältnis ist das Verhältnis der Windungszahlen primär zu sekundär also 1 zu 4.

Schicken wir z.B. 100 Volt mit 1 Ampere in die Primärwicklung des Übertragers. Das sind 100 Watt. ($U \cdot I$)

Dann bekommen wir auf der Sekundärseite 400 V mit 0,25 A heraus. Sekundär also ebenfalls 100 Watt.

Die Stromstärke ist ein Viertel von der, die primär eingespeist wurde, weil sich die entnehmbare Leistung ja nicht vermehren kann.

Jetzt hilft das Ohm'sche Gesetz verblüffend einfach weiter :

Impedanz U/I primär = 100 v geteilt durch 1 A = 100 Ohm. Impedanz U/I sekundär = 400 v geteilt durch 0,25 A = 1600 Ohm.

Das Impedanzverhältnis ist damit 1:16 - oder \ddot{U}^2 .