Exercise 4

January 6, 2021

1. Show that $\langle .,. \rangle$ define for all $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in R^2$ and $y = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T \in R^2$:

 $\langle x, y \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2(x_2 y_2)$ is an inner product

Solution:

We must show that $\langle \cdot, \cdot \rangle$ is a bilinear, symmetric, positive definite map.

It is a calculation to show that $\langle \alpha x + \beta x', y \rangle = \alpha \langle x, y \rangle + \beta \langle x', y \rangle$, and similarly for the second argument, and so $\langle \cdot, \cdot \rangle$ is bilinear.

We have $\langle y, x \rangle = y_1 x_1 - (y_1 x_2 + y_2 x_1) + 2y_2 x_2 = \langle x, y \rangle$ indeed, so we have symmetry.

Finally, $\langle x, x \rangle = x_1^2 - 2x_1x_2 + 2x_2^2 = (x_1 - x_2)^2 + x_2^2$. Clearly, if x = 0, then $\langle x, x \rangle = 0$. If $x \neq 0$, then either $x_2 \neq 0$, in which case $\langle x, x \rangle > 0$; or $x_2 = 0$ with $x_1 \neq 0$, so $\langle x, x \rangle > 0$ again (since it's the sum of two squares of real numbers). Therefore $\langle \cdot, \cdot \rangle$ is an inner product indeed!

2. Compute the distance between:

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, y = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$
 using

(a)
$$\langle x, y \rangle := x^T y$$

(b)
$$\langle x, y \rangle := x^T A y, A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Solution:

We have
$$d(x,y) = \sqrt{\langle (x-y), (x-y) \rangle} = \sqrt{\left\langle \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} \right\rangle}$$
.

- (a) Thus $d(x,y) = \sqrt{22}$.
- (b) Here, $d(x, y) = \sqrt{47}$.
- 3. Compute the angle between: $x = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$, $y = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$ using:
 - (a) $\langle x, y \rangle := x^T y$
 - (b) $\langle x, y \rangle := x^T B y, B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$

Solution:

We have that the angle ω between the two vectors is given by $\omega = \cos^{-1}\left(\frac{\langle x,y\rangle}{\|x\|\|y\|}\right)$, where $\|x\| = \sqrt{\langle x,x\rangle}$.

- (a) Here, $||x|| = \sqrt{6}$ and $||y|| = \sqrt{2}$. Also, $\langle x, y \rangle = -3$. Thus $\omega = \cos^{-1}\left(\frac{-3}{\sqrt{12}}\right) = \frac{5\pi}{6}$.
- (b) Now, $||x|| = \sqrt{18}$ and $||y|| = \sqrt{7}$. Also, $\langle x, y \rangle = -11$. Thus $\omega = \cos^{-1}\left(\frac{-11}{\sqrt{126}}\right) = \cos^{-1}\left(\frac{-11\sqrt{14}}{42}\right)$.
- 4. Consider the Euclidean vector space R^5 with the dot product. A subspace $U \subseteq R^5$ are given by:

$$U = span \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 5 \\ 0 \\ 7 \end{bmatrix}, x = \begin{bmatrix} -1 \\ -9 \\ -1 \\ 4 \\ 1 \end{bmatrix}$$

- (a) Determine the orthogonal projection $\pi_U(x)$ of x onto U
- (b) Determine the distance d(x, U)

Solution:

(a) Let v_1, \ldots, v_4 be the four vectors defined in the question. Observe that $rank[v_1|v_2|v_3|v_4]=3$. Moreover, $rank[v_1|v_2|v_3]=3$, so these three vectors form a basis of U. Let B be this matrix of basis vectors, i.e. $B=[v_1|v_2|v_3]$.

Now we compute $B^{\mathsf{T}}B = \begin{bmatrix} 9 & 9 & 0 \\ 9 & 16 & -14 \\ 0 & -14 & 31 \end{bmatrix}$ and $B^{\mathsf{T}}x = \begin{bmatrix} 9 \\ 23 \\ -25 \end{bmatrix}$.

Next, we solve $B^{\mathsf{T}}B\lambda = B^{\mathsf{T}}x$ for λ . Using Gaussian elimination, we obtain $\lambda = \begin{bmatrix} -3\\4\\1 \end{bmatrix}$.

Finally, $\pi_U(x)$ is given by $B\lambda = \begin{bmatrix} 1 \\ -5 \\ -1 \\ -2 \\ 3 \end{bmatrix}$.

(b) By construction, $d(x,U) = d(x,\pi_U(x))$. This is given by $||x - u||_{L^2(x)}$

$$|\pi_U(x)|| = \begin{vmatrix} -2 \\ -4 \\ 0 \\ 6 \\ -2 \end{vmatrix}.$$

This norm is given by the square root of the dot product of the vector with itself, so $d(x, U) = \sqrt{60} = 2\sqrt{15}$.

5. Consider R^3 with the inner product:

$$\langle x,y\rangle := x^T \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} y$$

Furthermore, we define e_1, e_2, e_3 as the standard/canonical basis in \mathbb{R}^3

(a) Determine the orthogonal projection $\pi_U(e_2)$ of e_2 onto: $U = span \begin{bmatrix} e_1 & e_3 \end{bmatrix}$

3

Hint: Orthogonality is defined through the inner product

- (b) Compute the distance $d(e_2, U)$
- (c) Draw the scenario: standard basis vectors and $\pi_U(e_2)$

Solution:

(a) We require $\langle e_1, e_2 - \pi_U(e_2) \rangle = 0$ and $\langle e_3, e_2 - \pi_U(e_2) \rangle = 0$. That is to say, $\left\langle \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\lambda_1 \\ 1 \\ -\lambda_2 \end{bmatrix} \right\rangle = 0$, and $\left\langle \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -\lambda_1 \\ 1 \\ -\lambda_2 \end{bmatrix} \right\rangle = 0$.

Computing the first gives us $\lambda_1 = \frac{1}{2}$, while the second gives $\lambda_2 = -\frac{1}{2}$.

Therefore, $\pi_U(e_2) = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$.

(b) Part b We have $d(e_2, U) = ||e_2 - \pi_U(e_2)|| = \sqrt{\left\langle \begin{bmatrix} -\frac{1}{2} \\ 1 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ 1 \\ \frac{1}{2} \end{bmatrix} \right\rangle} = 1.$

- 6. Let V be a vector space and π an endomorphism of V
 - (a) Prove that π is a projection if and only if $id_V \pi$ is a projection, where id_V is the identity endomorphism on V
 - (b) Assume now that π is a projection. Calculate $Im(id_V \pi)$ and $\ker(id_V \pi)$ as a function of $Im(\pi)$ and $\ker(\pi)$

Solution

(a) Let $x \in V$. Observe that $((id - \pi) \circ (id - \pi))(x) = (id - \pi)(x - \pi(x)) = (x - \pi(x)) - (\pi(x) - \pi^2(x)) = x - 2\pi(x) + \pi^2(x)$. Hence $(id - \pi)$ is a projection if and only if $x - \pi(x) = x - 2\pi(x) + \pi^2(x)$. This happens if and only if $\pi(x) = \pi^2(x)$, that is to say, where π is a projection.

(b) We have $Im(id-\pi) = \{(id-\pi)(x) : x \in V\} = \{x-\pi(x) : x \in V\}$. Observe that $\pi(x-\pi(x)) = \pi(x) - \pi^2(x) = 0$, since π is a projection. Thus, $Im(id-\pi) \subseteq \ker \pi$.

Now, suppose $k \in \ker \pi$. Then $k - \pi(k) = k$, so $k \in Im(id - \pi)$. Thus $\ker \pi \subseteq Im(id - \pi)$. Therefore, we have that $Im(id - \pi) = \ker \pi$.

We have that $\ker(id - \pi) = \{x \in V : (id - \pi)(x) = 0\} = \{x \in V : x = \pi(x)\}$. Clearly, $\ker(id - \pi) \subseteq Im\pi$.

Take $x \in Im\pi$. Then there exists some $y \in V$ such that $\pi(y) = x$. Observe that $(id - \pi)(x) = x - \pi(x) = \pi(y) - \pi^2(y) = 0$, since π is a projection. Hence $Im\pi \subseteq \ker(id - \pi)$. Therefore we have that $\ker(id - \pi) = Im\pi$.