

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 161005	
1.0	Matemática -	Álgebra	1.a Série	М	11/04/2016		
Questões Testes Páginas Professor(es)							
11	5	8	Fábio Cáceres / Fátima Regina / Sílvia Guitti				
Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.							
Aluno(a)				Turma	N.o		

Aluno(a)		Turma	N.o
Nota	Professor	 Assinatura do) Professor

Instruções

- 1. Coloque nome, número e turma em todas as folhas da prova.
- 2. Leia a prova com calma e atenção, selecione por onde começar.
- 3. Comece pelo que julgar mais fácil e tente não deixar nenhuma questão em branco.
- 4. Tenha ordem e capricho, tudo é importante na sua avaliação.
- 5. A prova pode ser feita a lápis com respostas a tinta.
- 6. Questões rasuradas ou desorganizadas serão anuladas.
- 7. Não escreva no tampo da mesa. Existem espaços reservados para rascunho na própria prova.
- 8. Não é permitido o uso de calculadoras.
- 9. A compreensão da prova é parte integrante dela, portanto não faça perguntas ao professor aplicador.
- 10. O gabarito será publicado na internet após as 14h30 min.

Boa sorte! Ótima prova!

Parte I: Testes (valor: 1,5)	Parte	tes (valor: 1,5)	Rascunho
------------------------------	-------	------------------	----------

- 01. Considere os conjuntos: $P = \{1, 2, 3, 4, 5\}$ e $Q = \{4, 5, 6, 7\}$. O complementar de $P \cap Q$ em relação a $P \cup Q$ é igual a:
 - a. {4, 5}
 - b. {1, 2, 3}
 - c. {1, 2, 3, 6, 7}
 - d. {1, 2, 3, 4, 5, 6, 7}
 - e. não se define
- 02. (F. Carlos Chagas) Se $x \in \mathbb{R}$, tal que o inverso de $x \sqrt{3}$ é igual a $x + \sqrt{3}$, então x^2 é igual a:
 - a. 4
 - b. 3
 - c. 2
 - d. 1
 - e. 0

Rascunho

03. (PUC-MG) O valor da fração: $\frac{a^2-b^2}{a^2+2ab+b^2}$, quando a=51 e b=49 é igual a:

- a. 0.02
- b. 0,2
- c. 2
- d. 20
- e. 200

04. (PUCCAMP) Considere as sentenças a seguir:

1.
$$(3x-2y)^2 = 9x^2 - 4y^2$$

II.
$$5xy + 15xm + 3zy + 9zm = (5x + 3z) \cdot (y + 3m)$$

III.
$$81x^6 - 49a^8 = (9x^3 + 7a^4) \cdot (9x^3 - 7a^4)$$

Dessas sentenças, somente:

- a. I é verdadeira.
- b. II é verdadeira.
- c. III é verdadeira.
- d. I e II são verdadeiras.
- e. Il e III são verdadeiras.

05. (FGV) Se
$$x^2 + \frac{1}{x^2} = 14 \text{ com } x > 0$$
, então $\left(x + \frac{1}{x}\right)^5$ é igual a:

- a. $2^2 \cdot 7^2$ b. 7^3 c. $2^3 \cdot 7^2$ d. 2^{10} e. 7^{10}

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01	02	03	04	05
а					
b					
С					
d					
е					

Aluno(a)

Turma

N.o

P 161005

р3

Rascunho

Parte II: Questões (valor: 8,5)

01. (valor: 1,0) Dado o conjunto $A = \{\emptyset, 1, 2, \{1\}, \{2\}, 3\}$

I. (valor: 0,2) Responda:

$$n(A) =$$

$$n(P(A)) =$$

II. (valor: 0,8) Assinalar se é **verdadeiro** (**V**) ou **falso** (**F**).

- a. $\{\{1\}, \{2\}\} \subset A$ ()
- $e. \varnothing \not\subset A$ ()

b. $\{1\} \notin A$ ()

f. $\{2\} \in \emptyset$ ()

c. $\{1, 2\} \in A$ ()

g. $\{3\} \subset A$ ()

 $d. \varnothing \in A ()$

h. $\{1, 2, 3\} \in A$ ()

02. (valor: 0,7) Se A = $\{x \in \mathbb{N} | x \in \text{impar} \land 3 \le x < 7\};$

B = $\{x \in \mathbb{R} | x^2 - 6x + 5 = 0\}$ e U = $\{x \in \mathbb{N} | x \le 7\}$, determine:

- a. (valor: 0,1) $A \cup B =$
- a. (valor: 0,1) $A \cap B =$
- c. (valor: 0,1) $(A \cap B) (A \cup B) =$
- d. (valor: 0,1) $\overline{A \cup B} =$
- e. (valo: 0,1) $\binom{B}{A}$ =
- f. (valor: 0,2) P(A) =

03. (valor: 1,0) Simplificar:

$$\frac{0,4-0,\overline{6}\cdot(0,75-1)}{0,\overline{3}-3\cdot(0,2\overline{7}-2,1666\ldots)}$$

Rascunho

04. (valor: 0,6) Dados:

$$A = 0.1^{4^2} \cdot (0.01^{-3})^{-2} \cdot 0.001^4$$

e B =
$$(0.01^4)^{3^2} \cdot 0.0001^{-3^2}$$

Determine: A : B =

Aluno(a)	Turma	N.o	P 161005
			p 5

05. (valor: 0,6) Se $A = (0.25^2)^3 \cdot (0.125)^{2^3}$

Rascunho

e B =
$$(0.0625^{-2})^3 \cdot 0.5^{-4}$$

Determine $A \cdot B$

A · B = _____

06. (valor: 0,8) Efetue:

a.
$$\frac{4}{5}a^2b^2 \cdot (15a^3b) \cdot \frac{2}{3}ab =$$

c.
$$38 a^3 b^4 c^2 : 19 ab^2 c^2 =$$

Rascunho

b.
$$6 xy \cdot (2x^2 - 3xy - 2y^2) =$$

$$d. \left(\frac{a^2}{b} - \frac{b^2}{a}\right)^2 =$$

07. (valor: 0,7) Simplifique:

$$(x+2)(x-5) + (x-2)^3 - (2x+3)^2 - (3-4x)(3+4x) =$$

Aluno(a)	Turma	N.o	P 161005
			p 7

08. (valor: 0,8) Fatore e simplifique a expressão:

Rascunho

$$\frac{a^2 + a - 2}{a^3 - 3a^2} \cdot \left[\frac{(a+2)^2 - a^2}{4a^2 - 4} - \frac{3}{a^2 - a} \right]$$

Resposta:

09. (valor: 0,7) Resolva a equação:

$$x^2 + 1 + \sqrt{x^2 + 1} = 6$$

10. (valor 0,8) Considere o número	$\alpha = 1 +$	$\frac{4}{10}$ +	$\frac{1}{10^2}$ +	$-\frac{1}{10^3}$	+ …
------------------------------------	----------------	------------------	--------------------	-------------------	-----

Rascunho

Se ele for racional, coloque-o na forma decimal e na forma de fração irredutível.

200000+01		
Resposta:		

- 11. (valor: 0,8) (UECE/Modificada) Uma pesquisa com todos os trabalhadores da FABRITEC, na qual foram formuladas duas perguntas, revelou os seguintes números:
 - 205 responderam à primeira pergunta;
 - 205 responderam à segunda pergunta;
 - 210 responderam somente a uma das perguntas;
 - Um terço dos trabalhadores não quis participar da entrevista.
 - Com esses dados, determine o número de trabalhadores da FABRITEC.

P 161005G 1.a Série Matemática – Álgebra Fábio Cáceres/Fátima Regina/Sílvia Guitti 11/04/2016

Parte I: Testes (valor: 1,5)

- 01. Considere os conjuntos: $P = \{1, 2, 3, 4, 5\}$ e $Q = \{4, 5, 6, 7\}$. O complementar de $P \cap Q$ em relação a $P \cup Q$ é igual a:
 - a. {4, 5}

 $\bigcap_{(P \cap Q)} (P \cap Q) = \bigcap_{\{1, 2, 3, 4, 5, 6, 7\}} \{1, 2, 3, 4, 5, 6, 7\}$

- b. {1, 2, 3}
- c. $\{1, 2, 3, 6, 7\}$
- d. {1, 2, 3, 4, 5, 6, 7}
- e. não se define.
- 02. (F. Carlos Chagas) Se $x \in \mathbb{R}$, tal que o inverso de $x \sqrt{3}$ é igual a $x + \sqrt{3}$, então x^2 é igual a:

 - b. 3
 - c. 2
 - d. 1
 - e. 0

- $\frac{1}{x \sqrt{3}} = x + \sqrt{3} \Rightarrow (x \sqrt{3}) \cdot (x + \sqrt{3}) = 1$ $x^2 3 = 1$

 $\frac{(a+b)\cdot(a-b)}{(a+b)^2} = \frac{a-b}{a+b} = \frac{51-49}{51+49} = \frac{2}{100} = 0.02$

- 03. (PUC-MG) O valor da fração: $\frac{a^2-b^2}{a^2+2ab+b^2}$, quando a=51 e b=49 é igual a:
 - a. 0.02
 - b. 0,2
 - c. 2
 - d. 20
 - e. 200
- 04. (PUCCAMP) Considere as sentenças a seguir:
 - $(3x-2v)^2 = 9x^2 4v^2$ I.

- Falsa, pois $(3x 2y)^2 = 9x^2 12xy^2 + 4y^2$
- $5xy + 15xm + 3zy + 9zm = (5x + 3z) \cdot (y + 3m)$ 11.
- Verdadeira
- $81x^6 49a^8 = (9x^3 + 7a^4) \cdot (9x^3 7a^4)$
- Verdadeira

- Dessas sentenças, somente:
- a. I é verdadeira.
- b. II é verdadeira.
- c. III é verdadeira.
- d. I e II são verdadeiras.
- e. Il e III são verdadeiras.
- 05. (FGV) Se $x^2 + \frac{1}{x^2} = 14 \text{ com } x > 0$, então $\left(x + \frac{1}{x}\right)^5$ é igual a:

 - a. $2^2 \cdot 7^2$ b. 7^3
 - c. $2^3 \cdot 7^2$ d. 2^{10} e. 7^{10}
- $\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \cdot x \cdot \frac{1}{x} = 14 + 2 = 16$

- Portanto: $\left(x + \frac{1}{x}\right)^2 = 16 \Rightarrow x + \frac{1}{x} = \pm 4 \text{ como } x > 0 \Rightarrow x + \frac{1}{x} = 4$
- Logo: $\left(x + \frac{1}{x}\right)^5 = 4^5 = (2^2)^5 = 2^{10}$

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01.	02.	03.	04.	05.
a.		X	X		
b.					
C.	X				
d.					Χ
e.				X	

Parte II: Questões (valor: 8,5)

01. (valor: 1,0) Dado o conjunto $A = \{\emptyset, 1, 2, \{1\}, \{2\}, 3\}$

I. (valor: 0,2) Responda:

$$n(A) = 6$$

$$n(P(A)) = 2^6 = 64$$

II. (valor: 0,8) Assinalar se é **verdadeiro** (**V**) ou **falso** (**F**).

a.
$$\{\{1\}, \{2\}\} \subset A (V)$$

b.
$$\{1\} \notin A(F)$$

f.
$$\{2\} \in \emptyset$$
 (**F**)

c.
$$\{1, 2\} \in A(F)$$

g.
$$\{3\} \subset A(\mathbf{V})$$

$$d. \varnothing \in A(V)$$

h.
$$\{1, 2, 3\} \in A$$
 (**F**)

02. (valor: 0,7) Se A = $\{x \in \mathbb{N} | x \in \text{impar} \land 3 \le x < 7\}$;

B =
$$\{x \in \mathbb{R} | x^2 - 6x + 5 = 0\}$$
 e U = $\{x \in \mathbb{N} | x \le 7\}$, determine:

$$A = \{3, 5\}$$

$$B = \{1, 5\}$$

$$U = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

- a. (valor: 0,1) $A \cup B = \{1, 3, 5\}$
- b. (valor: 0,1) $A \cap B = \{5\}$
- c. (valor: 0,1) $(A \cap B) (A \cup B) = \{5\} \{1, 3, 5\} = \emptyset$
- d. (valor: 0,1) $\overline{A \cup B} = \bigcap_{U} (A \cup B) = \bigcap_{U} \{1, 3, 5\} = \{0, 2, 4, 6, 7\}$
- e. (valo: 0,1) $\binom{B}{A} =$ não se define pois, $B \not\subset A$
- f. (valor: 0,2) $P(A) = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}\$

03. (valor: 1,0) Simplificar:
$$\frac{0,4-0,\overline{6}\cdot(0,75-1)}{0,\overline{3}-3\cdot(0,2\overline{7}-2,1666\ldots)} = \frac{\frac{2}{5}-\frac{2}{3}\cdot\left(\frac{3}{4}-1\right)}{\frac{1}{3}-3\cdot\left(\frac{5}{18}-\frac{13}{6}\right)} = \frac{\frac{2}{5}-\frac{\frac{1}{2}}{3}\cdot\left(-\frac{1}{\cancel{4}}\right)}{\frac{1}{3}-\frac{1}{3}\cdot\left(\frac{5-39}{\cancel{18}}\right)} = \frac{\frac{2}{5}+\frac{1}{3}\cdot\frac{1}{\cancel{2}}}{\frac{1}{3}-\frac{1}{3}\cdot\left(\frac{5-39}{\cancel{18}}\right)} = \frac{\frac{2}{5}+\frac{1}{3}\cdot\frac{1}{\cancel{2}}}{\frac{1}{3}-\left(-\frac{3\cancel{4}}{\cancel{6}}\right)} = \frac{\frac{2}{5}+\frac{1}{6}}{\frac{1}{3}+\frac{17}{3}} = \frac{\frac{12+5}{30}}{\frac{18}{3}} = \frac{17}{\cancel{30}}\cdot\frac{\cancel{18}}{\cancel{18}} = \frac{17}{\cancel{180}}$$

04. (valor: 0,6) Dados:

$$A = 0.1^{4^2} \cdot (0.01^{-3})^{-2} \cdot 0.001^4$$

$$A = (10^{-1})^{16} \cdot (10^{-2})^{6} \cdot (10^{-3})^{4}$$

$$A = 10^{-16} \cdot 10^{-12} \cdot 10^{-12}$$

$$A = 10^{-40}$$

$$e B = (0.01^4)^{3^2} \cdot 0.0001^{-3^2}$$

$$B = [(10^{-2})^4]^9 \cdot (10^{-4})^{-9}$$

$$B = 10^{-72} \cdot 10^{36}$$

$$B = 10^{-36}$$

Determine: A : B =
$$10^{-40}$$
 : $10^{-36} = 10^{-40+36} = 10^{-4}$

$$A: B = 10^{-4}$$

05. (valor: 0,6) Se $A = (0.25^2)^3 \cdot (0.125)^{2^3}$

$$A = (2^{-2})^6 \cdot (2^{-3})^8$$

$$A = 2^{-12} \cdot 2^{-24}$$

$$A = 2^{-36}$$

$$e B = (0.0625^{-2})^3 \cdot 0.5^{-4}$$

$$B = (2^{-4})^{-6} \cdot (2^{-1})^{-4}$$

$$B = 2^{24} \cdot 2^4$$

$$\mathbf{B} = 2^{28}$$

Determine $A \cdot B$

$$A \cdot B = 2^{-36} \cdot 2^{28} = 2^{-8}$$

$$\mathbf{A} \cdot \mathbf{B} = 2^{-8}$$

06. (valor: 0,8) Efetue:

a.
$$\frac{4}{5}a^2b^2 \cdot (15a^3b) \cdot \frac{2}{3}ab = \frac{4 \cdot 15 \cdot 2}{3 \cdot 5} \cdot a^{2+3+1} \cdot b^{2+1+1} = 8a^6b^4$$

b.
$$6xy \cdot (2x^2 - 3xy - 2y^2) = 12x^3y - 18x^2y^2 - 12xy^3$$

c.
$$38 a^3 b^4 c^2 : 19 ab^2 c^2 = \frac{38a^3 b^4 c^2}{19a b^2 c^2} = 2 \cdot a^{3-1} \cdot b^{4-2} \cdot c^{2-2} = 2a^2 b^2$$

$$d. \left(\frac{a^2}{b} - \frac{b^2}{a}\right)^2 = \left(\frac{a^2}{b}\right)^2 - 2\left(\frac{a^2}{b}\right)\left(\frac{b^2}{a}\right) + \left(\frac{b^2}{a}\right)^2 = \frac{a^4}{b^2} - 2 \cdot \frac{a^2}{b} \cdot \frac{b^2}{a} + \frac{b^4}{a^2} = \frac{a^4}{b^2} - 2ab + \frac{b^4}{a^2}$$

07. (valor: 0,7) Simplifique:

$$(x+2)(x-5) + (x-2)^3 - (2x+3)^2 - (3-4x)(3+4x) =$$

$$x^2 - 3x - 10 + x^3 - 3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 4 - 8 - (4x^2 + 12x + 9) - (9-16x^2) =$$

$$= \underline{x^2} - 3x - 10 + x^3 - \underline{6x^2} + 12x - 8 - \underline{4x^2} - 12x - 9 - 9 + \underline{16x^2} =$$

$$= x^3 + 7x^2 - 3x - 36$$

Resposta: $x^3 + 7x^2 - 3x - 36$

08. (valor: 0,8) Fatore e simplifique a expressão:

$$\frac{a^{2} + a - 2}{a^{3} - 3a^{2}} \cdot \left[\frac{(a+2)^{2} - a^{2}}{4a^{2} - 4} - \frac{3}{a^{2} - a} \right]$$

$$= \frac{(a+2)(a-1)}{a^{2} \cdot (a-3)} \cdot \left[\frac{(a+2+a)(a+2-a)}{4 \cdot (a^{2}-1)} - \frac{3}{a(a-1)} \right]$$

$$= \frac{(a+2)(a-1)}{a^{2} \cdot (a-3)} \cdot \left[\frac{a \cdot (2a+2) \cdot 2 - 12 \cdot (a+1)}{4a \cdot (a+1)(a-1)} \right]$$

$$= \frac{(a+2)(a-1)}{a^{2} \cdot (a-3)} \cdot \left[\frac{2a \cdot (2a+2) - 12a - 12}{4a \cdot (a+1)(a-1)} \right] = \frac{(a+2)}{a^{2} \cdot (a-3)} \cdot \left[\frac{4a^{2} + 4a - 12a - 12}{4a(a+1)} \right]$$

$$= \frac{(a+2)}{a^{2}(a-3)} \cdot \left[\frac{4 \cdot (a^{2} - 2a - 3)}{4 \cdot a \cdot (a+1)} \right] = \frac{a+2}{a^{2} \cdot (a-3)} \cdot \left[\frac{(a-3) \cdot (a+1)}{a(a+1)} \right] = \frac{a+2}{a^{3}}$$

Resposta: $\frac{a+2}{a^3}$

09. (valor: 0,7) Resolva a equação:

$$x^{2} + 1 + \sqrt{x^{2} + 1} = 6$$

$$\sqrt{x^{2} + 1} = 6 - x^{2} - 1$$

$$(\sqrt{x^{2} + 1})^{2} = (5 - x^{2})^{2}$$

$$x^{2} + 1 = 25 - 10x^{2} + x^{4}$$

$$x^{4} - 11x^{2} + 24 = 0$$

$$(x^{2} - 3) \cdot (x^{2} - 8) = 0$$

$$x^{2} = 3$$

$$x = \pm \sqrt{3}$$

$$x = \pm 2\sqrt{2}$$

Verificação:

$$x = \sqrt{3} \Rightarrow 3 + 1 + 2 = 6 = 6$$
 (V)

 (\vee)

$$x = -\sqrt{3} \implies 3 + 1 + 2 = 6 = 6$$

$$x = 2\sqrt{2} \implies 8 + 1 + 3 = 13 \neq 6$$
 (F)

$$x = -2\sqrt{2} \implies 8 + 1 + 3 = 13 \neq 6$$
 (F)

$$V = \{\sqrt{3}, -\sqrt{3}\}$$

Resposta: $\{\sqrt{3}, -\sqrt{3}\}$

10. (valor 0,8) Considere o número
$$\alpha = 1 + \frac{4}{10} + \frac{1}{10^2} + \frac{1}{10^3} + ...$$

Se ele for racional, coloque-o na forma decimal e na forma de fração irredutível.

$$\alpha = 1 + 0.4 + 0.01 + 0.001 + \dots$$

$$\alpha = 1.4111... \Rightarrow \alpha = 1.4\overline{1} \rightarrow \text{dízima periódica (forma decimal)}$$

$$\alpha = 1 \frac{41-4}{90} = 1 \frac{37}{90} = \frac{127}{90}$$
 (fração irredutível)

- 11. (valor: 0,8) (UECE/Modificada) Uma pesquisa com todos os trabalhadores da FABRITEC, na qual foram formuladas duas perguntas, revelou os seguintes números:
 - 205 responderam à primeira pergunta;
 - 205 responderam à segunda pergunta;
 - 210 responderam somente a uma das perguntas;
 - Um terço dos trabalhadores não quis participar da entrevista.
 - Com esses dados, determine o número de trabalhadores da FABRITEC.

Dispondo os dados do enunciado no diagrama de Venn-Euller, temos:

Sendo que 210 trabalhadores responderam somente a uma das perguntas, temos:

$$205 - x + 205 - x = 210$$

$$410 - 2x = 210$$

$$2x = 200 \Rightarrow x = 100$$

Assim, o diagrama de Venn-Euller, fica:

Seja t, o número total de trabalhadores.

Portanto,
$$105 + 100 + 105 = \frac{2}{3}t$$

$$\frac{2t}{3} = 310 \Rightarrow t = \frac{310 \cdot 3}{2} = 465$$

Resposta: 465