



# Dokumentacja Projektu grupowego Raport semestralny

Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

{wersja dokumentu wzorcowego: wersja 2/2023}

| Nazwa i akronim projektu:              | Zleceniodawca:         |                        |
|----------------------------------------|------------------------|------------------------|
| Symulator pojazdu autonomicznego – SPA | dr inż. Krzysztof Manu | szewski                |
| Numer zlecenia:                        | Kierownik projektu:    | Opiekun projektu:      |
| 4@KAMS'2023/24                         | Łukasz Nowakowski      | dr inż. Paweł Kowalski |
| Nazwa / kod dokumentu:                 | No more:               | _ <b>L</b>             |
| Nazwa / Kod dokumentu:                 | Nr wersji:             |                        |

| Nazwa / kod dokumentu:      | Nr wersji:                               |
|-----------------------------|------------------------------------------|
| Raport semestralny – RS     |                                          |
|                             | 1.00                                     |
| Odpowiedzialny za dokument: | Data pierwszego sporządzenia:            |
| Konrad Bryłowski            | 20.01.2024                               |
|                             | Data ostatniej aktualizacji:             |
|                             | 20.01.2024                               |
|                             | Semestr realizacji Projektu grupowego: 1 |
|                             |                                          |

#### Historia dokumentu

| Wersja | Opis modyfikacji | Rozdział / strona | Autor modyfikacji | Data       |
|--------|------------------|-------------------|-------------------|------------|
| 1.00   | wstępna wersja   | całość            | Konrad Bryłowski  | 20.01.2024 |

# Spis treści

| 1 |      | Dwadzenie - o dokumencie                     |   |
|---|------|----------------------------------------------|---|
|   |      | Cel dokumentu                                |   |
|   |      | Zakres dokumentu                             |   |
|   | 1.3  | Odbiorcy                                     | 3 |
|   |      | Terminologia                                 |   |
| 2 | Rezi | ultaty projektu                              | 3 |
|   | 2.1  | Założenia początkowe                         | 3 |
|   | 2.2  | Zakres wykonanych prac i ich charakterystyka | 3 |
|   | 2.3  | Charakterystyka pracy zespołowej             | 3 |
|   | 2.4  | Osiagniete wyniki                            | 4 |
|   | 2.5  | Rozbieżności i zmiany w realizacji projektu  | 4 |
|   | 2.6  | Postanowienia                                | 4 |
|   | 2.7  | Plany na kolejny semestr prac                | 4 |
| 3 | Załą | czniki                                       |   |

## 1 Wprowadzenie - o dokumencie

#### 1.1 Cel dokumentu

Celem dokumentu jest okresowe wskazanie wykonanych prac z podaniem ich krótkiej charakterystyki, wskazanie rozbieżności wykonywanych prac w stosunku do planowanych, podsumowanie prac z wykazaniem pracy zespołowej, krótkie wskazanie planów na II semestr oraz wyspecyfikowanie listy dokumentów, wytworzonych w projekcie (wersji końcowych), które zostały umieszczone i zatwierdzone przez opiekuna w serwisie SPG.

#### 1.2 Zakres dokumentu

Dokument opisuje postęp prac nad projektem po pierwszym semestrze realizacji oraz plany na następny semestr z uwzględnieniem zmian wynikających z decyzji podjętych w trakcie realizacji.

#### 1.3 Odbiorcy

Odbiorcami dokumentu są członkowie zespołu projektowego oraz zleceniodawca i opiekun projektu.

#### 1.4 Terminologia

code review – przegląd kodu przez innego członka zespołu projektowego mający na celu wykrycie i poprawienie błędów i niezgodności z przyjętą w zespole konwencją

Discord – komunikator

GitHub – platforma do przechowywania i publikowania projektów wykorzystujących system kontroli wersji Git

kanban – metoda planowania pracy zespołowej polegająca na umieszczaniu wszystkich zadań na tablicy z podziałem na kolumny np. "do zrobienia", "w trakcie", "do przetestowania", "gotowe"

SI – sztuczna inteligencja

#### 2 Rezultaty projektu

#### 2.1 Założenia początkowe

Celem projektu jest opracowanie symulatora pojazdu autonomicznego do przeprowadzania badań z obszaru sztucznej inteligencji. Symulator powinien umożliwiać umieszczenie w nim jednego lub więcej modelu pojazdu i trenowanie sieci neuronowych do sterowania pojazdem bez konieczności posiadania fizycznego pojazdu.

#### 2.2 Zakres wykonanych prac i ich charakterystyka

W pierwszym semestrze podjęto następujące prace:

- Przegląd istniejących rozwiązań przegląd rynku symulatorów do trenowania SI do sterowania pojazdami, a także silników graficznych oraz rozwiązań wdrażających fizykę do symulatora.
- 2. Projektowanie symulatora zaprojektowano podstawowy interfejs użytkownika oraz edytor scenerii, a także zamodelowano w symulatorze pojazd udostępniony przez opiekuna projektu.
- 3. Implementacja głównego silnika symulatora wybrano silnik Unity, zaimplementowano sterowanie pojazdem przez operatora za pomocą klawiatury i joysticka oraz podstawy fizyki, którą użytkownik może manipulować za pomocą różnych parametrów.

#### 2.3 Charakterystyka pracy zespołowej

Do organizacji pracy zespołowej wykorzystano platformę GitHub – założono organizację, do której przypisano członków zespołu, utworzono projekt z tablicą kanban pozwalającą na przypisanie zadania do konkretnych osób i integrującą się z funkcjami repozytorium, założono i skonfigurowano repozytorium tak, aby wymagało zatwierdzenia wprowadzanych zmian przez innego członka zespołu. Zespół spotykał się raz w tygodniu zdalnie na platformie Discord i omawiał co zostało zrobione od ostatniego spotkania oraz plany na kolejny tydzień.

Podział pracy zespołu:

| 1 odziai pracy zcop   | old.                                                                                                    |      |  |
|-----------------------|---------------------------------------------------------------------------------------------------------|------|--|
| Konrad Bryłowski      | <ul> <li>tworzenie dokumentacji</li> <li>dbanie o przejrzystość struktury repozytorium, nota</li> </ul> | •    |  |
|                       | i komentarzy oraz tablicy kanban                                                                        | alek |  |
|                       | code review                                                                                             |      |  |
|                       | przegląd rozwiązań fizyki                                                                               |      |  |
| Aleksander Czerwionka | generator losowej sceny                                                                                 |      |  |

|                     | <ul> <li>zbieranie obrazów otoczenia pojazdu w symulacji</li> <li>przegląd dostępnych silników symulacji</li> </ul> |
|---------------------|---------------------------------------------------------------------------------------------------------------------|
| Michał Krause       | interfejs użytkownika                                                                                               |
|                     | modelowanie pojazdu                                                                                                 |
|                     | implementacja sterowania                                                                                            |
| Krystian Nowakowski | implementacja sterowania                                                                                            |
|                     | edytor scen                                                                                                         |
|                     | <ul> <li>przegląd dostępnych na rynku symulatorów</li> </ul>                                                        |
|                     | implementacja fizyki symulacji                                                                                      |
| Łukasz Nowakowski   | kierowanie spotkaniami                                                                                              |
|                     | implementacja fizyki symulacji                                                                                      |
|                     | <ul> <li>implementacja zapisywania danych o jeździe pojazdu w symulacji</li> </ul>                                  |
|                     | code review                                                                                                         |

Każdy z członków zespołu umieszczał swoją część pracy w systemie SPG. Poza tym kierownik projektu (Łukasz Nowakowski) utworzył harmonogram i przedstawił go opiekunowi oraz umieścił w systemie Plakat.

Każdy z członków zespołu był przynajmniej na kilku spotkaniach stacjonarnych z opiekunem projektu w celu przedstawienia postępów prac, za komunikację mailową odpowiadał kierownik projektu.

#### 2.4 Osiągnięte wyniki

Obecny stan symulatora pozwala na sterowanie przez użytkownika modelem za pomocą klawiatury lub joysticka, wygenerowanie losowej mapy ze ścieżką do śledzenia oraz edytowanie mapy ze ścieżką w edytorze graficznym, zbiera dane o jeździe modelu w symulacji oraz obrazy otoczenia z symulowanych kamer. Zaimplementowano fizykę symulacji, którą można manipulować parametrami. Symulator jest uruchamiany z poziomu edytora Unity.

#### 2.5 Rozbieżności i zmiany w realizacji projektu

Z powodu problemów z uprawnieniami opiekuna projektu w SPG informacje o kierowniku projektu, harmonogram oraz pliki ukazujące postęp prac zostały w systemie umieszczone później niż zamierzono. W porozumieniu z opiekunem zdecydowano, że harmonogram w SPG będzie zawierał daty przeszłe, zgodne z pierwotnie zaplanowanymi, więc wszystkie pliki umieszczono w systemie po upływie dat w harmonogramie. Raport semestralny jako dokument pisany na podstawie zawartości umieszczonej w systemie jest napisany z opóźnieniem w stosunku do zaplanowanego terminu.

W trakcie prac zespołu okazało się, że prace nad symulacją rzeczywistej fizyki (etap E) są bardziej czasochłonne niż pierwotnie oszacowano, a dodatkowo nastąpiła awaria komputera jednego z członków zespołu, który się nimi zajmował, dlatego prace nad scenerią miejską (część etapu F) przeniesiono na kolejny semestr. Z prac pierwotnie zaplanowanych na kolejny semestr zrealizowano generator losowej sceny.

#### 2.6 Postanowienia

nie dotyczy

#### 2.7 Plany na kolejny semestr prac

W kolejnym semestrze zespół będzie pracować nad zaimplementowaniem interfejsów komunikacji między symulacją a sieciami neuronowymi, edytorem konfiguracji, możliwością dodania dodatkowych modeli, drugą scenerią, udoskonaleniem fizyki oraz testowaniem z wykorzystaniem popularnych architektur sieci neuronowych. Po przetestowaniu symulator wydany jako aplikacja instalowana za pomocą prostego instalatora.

## 3 Załączniki

Tabela. 3.1. Specyfikacja opracowanych dokumentów w 1 semestrze

| L.p. | Nazwa dokumentu                       | Nazwa pliku umieszczonego w SPG |
|------|---------------------------------------|---------------------------------|
| 1    | Informacje o projekcie                | PG_WETI_loP_wer. 1.02.pdf       |
| 2    | Harmonogram i specyfikacja<br>wymagań | PG_WETI_HiSW_wer. 1.02.pdf      |
| 3    | Dokumentacja techniczna<br>projektu   | PG_WETI_DTP_wer. 1.01.pdf       |
| 4    | Plakat                                | PG WETI Plakat.pdf              |

| 5 | Raport semestralny | PG WETI RS wer. 1.00.pdf |
|---|--------------------|--------------------------|
|---|--------------------|--------------------------|