COOPERATIVE DATA ENRICHMENT ALGORITHMS

Tanguy Lefort IMAG, Univ Montpellier, CNRS Inria, LIRMM,

ONGOING WORK WITH...

- ► Alexis Joly
- ► Benjamin Charlier
- ▶ Joseph Salmon

- ▶ Pierre Bonnet
- ► Antoine Affouard

PL@NTNET ONLINE VOTES

× Chitalpa tashkentensis T.S.Elias & Wisura World flora

Observation

USERS CAN MAKE CORRECTIONS

Vesalea grandifolia (Villarreal) Hua Feng Wang & Landrein Flore mondiale Observation

Corrected initial submission

BUT SOMETIMES USERS CAN'T BE TRUSTED

Espèce non identifiée Flore mondiale

Corrected?

Observation

BUT SOMETIMES USERS CAN'T BE TRUSTED

Espèce non identifiée Flore mondiale Observation Ernst Fürst 23 janv. 2022 0 9 % 8 2 Nom le plus probable Espèce non identifiée Nom soumis Noms suggérés Voter pour le nom d'espèce Plantago subulata L. Plantago subulata L. Plantain à feuilles en alène £75 € Espèce non identifiée ı∂ 2 🎎 Polytrichum commune Hedw. iÓ 2 ♣5 Polytrichum commune ற் 1 🚉 Contributeurs Sylvain Gaudin PlantNet Curator (Vanessa Hequet) Majority is wrong Fermer Voter pour un organe Voter pour la qualité

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

► The good: Fast, easy, cheap data collection

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills
- ► The ugly: Very few theory, ad-hoc methods to handle noise from users

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills
- ► The ugly: Very few theory, ad-hoc methods to handle noise from users

Pl@ntNet.

- ▶ 20+ million observations from around the world
- ► 6+ million users
- ► 22+ million votes
- ▶ 49 720 species

PL@NTNET GENERAL DESIGN

Key concept of Pl@ntNet: Collaborative AI

PL@NTNET LABEL AGGREGATION EM BASED ALGORITHM

Weighting users vote by their estimated number of identified species

ACTIVE DATASET ANY OBSERVATION LABELING IS ACTIVE

Rai Luca Mei

Initial setting

Label switch

ACTIVE DATASET ANY OBSERVATION LABELING IS ACTIVE

Invalidating label

CHOICE OF WEIGHT FUNCTION

$$f(n_u) = n_u^{\alpha} - n_u^{\beta} + \gamma \text{ with } \begin{cases} \alpha = 0.5\\ \beta = 0.2\\ \gamma = \log(1.7) \simeq 0.74 \end{cases}$$

OTHER EXISTING STRATEGIES

► Majority Vote (MV)

OTHER EXISTING STRATEGIES

- ► Majority Vote (MV)
- ► Worker agreement with aggregate (WAWA) (Appen 2021)
 - Majority vote
 - ▶ Weight user by how much they agree with the majority
 - ▶ Weighted majority vote

OTHER EXISTING STRATEGIES

- ► Majority Vote (MV)
- ► Worker agreement with aggregate (WAWA) (Appen 2021)
 - Majority vote
 - ▶ Weight user by how much they agree with the majority
 - ▶ Weighted majority vote
- ▶ iNaturalist
 - ► Need 2 votes
 - ▶ 2/3 of agreements

EXTRACTING A SUBSET OF A PL@NTNET DESIGN AND SOME NUMBERS

- ► South Western European flora obs since 2017
- ▶ 823 000 users answered more than 11000 species
- ► 6700 000 observations
- 9 000 000 votes casted
- ▶ **Imbalance**: 80% of observations are represented by 10% of total votes

EXTRACTING A SUBSET OF A PL@NTNET DESIGN AND SOME NUMBERS

- ► South Western European flora obs since 2017
- ▶ 823 000 users answered more than 11000 species
- ► 6700 000 observations
- 9 000 000 votes casted
- ▶ **Imbalance**: 80% of observations are represented by 10% of total votes

No ground truth available to evaluate the strategies

EXTRACTING A SUBSET OF A PL@NTNET CREATION OF TEST SETS

► Extraction of 98 experts (TelaBotanic + prior knowledge – thanks to Pierre Bonnet)

Pl@ntnet South-Western Europe flora dataset

PERFORMANCE ACCURACY AND VOLUME OF CLASSES KEPT

PERFORMANCE ACCURACY AND VOLUME OF CLASSES KEPT

In short

- ▶ Pl@ntNet aggregation performs better overall
- ▶ iNaturalist is highly impacted by their reject threshold
- ▶ In ambiguous settings (right), strategies weighting users are better

PERFORMANCE PRECISION, RECALL AND VALIDITY

PERFORMANCE PRECISION, RECALL AND VALIDITY

In short

- ▶ Pl@ntNet aggregation performs better overall
- ▶ iNaturalist has good precision but bad recall
- ▶ We indeed remove some data but less than iNaturalist

AGGREGATING LABELS: WITH WHAT TOOLS?

Peerannot: Python library to handle crowdsourced data

Questions?

Cookies?

INTEGRATING THE AI VOTE

Why?

- ► More data
- ► Could correct non expert users
- ► Could invalidate bad quality data

INTEGRATING THE AI VOTE

Why?

- ► More data
- ► Could correct non expert users
- Could invalidate bad quality data

Dangers

- ► Redundancy: users are already guided by AI prediction
- ▶ Model collapse from training on its generated data
- ▶ If the network acts as a control agent, who controls the network?

STRATEGIES TO INTEGRATE AI VOTE

- ► Al as worker: naive integration
- ▶ Al **fixed weight**: weight= 1.7 to invalidate two new users, but $< \theta_{conf}$
- ► Al **invalidating**: fixed weight but can only invalidate observations
- lacktriangle Al **confident**: fixed weight on data with $\mathbb{P}(\text{predicted species}) > heta_{ ext{score}}$

PL@NTNET COMPUTER VISION MODEL

DinoV2 (Oqab et. al 2024) trained monthly (transformers based)

PERFORMANCE COMPARISON

Performance comparison

In short

- ► AI should not be considered as any other user
- \blacktriangleright More stable results: **confident AI** with $\theta_{\rm score} = 0.7$

NOTE ON CALIBRATION OVER OR UNDERCONFIDENCE?

If we use probability outputs: can they be considered as probabilities?

Conclusion

Aggregation strategy

- ▶ Pl@ntNet aggregation fits the large scale framework
- ▶ With a system to invalidate data and clean the training set

Conclusion

Aggregation strategy

- ► Pl@ntNet aggregation fits the large scale framework
- ▶ With a system to invalidate data and clean the training set

Al vote

- ► Confident AI seems the best performing
- ▶ We should calibrate the network before deployment

Thank you!

