Hardware Accelerated Computing Elective Course (Semester VI)

Motivation

- A few years back...
 - Intel bought Altera, an FPGA vendor, for \$17 Billion
 - Google developed Tensor Processing Unit accelerator for AI/ML processing
- A few weeks back...
 - AMD bought Xilinx, another FPGA vendor, for \$35 Billion
 - Amazon shifted Alexa Cloud AI processing to its own Inferentia accelerator
- What is the mystery behind established CPU companies buying these so-called FPGA vendors? And software companies developing hardware accelerators?
- Might such developments impact your career and job prospects?

Hardware Acceleration crucial for compute intensive, big data workloads such as AI/ML

Prerequisites

Digital Design and Computer Organization

Syllabus

Topics in Hardware Acceleration

(4-0-0-0-4)

- Introduction Business and technical motivations (Moore/Dennard scaling challenges and ML / big data computation requirements), illustrative acceleration use case (NFA based regular expression matching)
- PFGA hardware and software Architecture and organization (logic blocks, interconnect, memory and arithmetic blocks) of modern FPGAs (Field Programmable Gate Arrays), HDLs (Hardware Description Languages) and CAD tools
- Accelerator Logic Efficient logic structures for Signed Digit arithmetic, CORDIC, FFT and convolution computations
- 4 High Level Synthesis (HLS) Need for HLS, HLS Languages for FPGA/ASIC (System C and Open CL), FPGA tools for HLS, ASIC tools for HLS, matrix multiplication design and implementation using HLS
- Platforms and Case Studies Hardware acceleration platforms (FPGAs, GPUs and TPUS) and case studies (search engines in data centers and machine learning in cloud)

Reference Material

- High Level Synthesis: from Algorithm to Digital Circuit, Editors: Coussy Philppe, Morawiec Adam. Springer, 2008
- ② Digital Arithmetic (1st Edition) by Milo D. Ercegovac and Tomás Lang, Morgan Kaufmann, 2004
- Parallel Programming for FPGAs by Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer, Creative Commons, 2018
- Relevant academic papers and Intel/AMD user manuals

Evaluation Scheme

ISA 1	10
ISA 2	10
Assignments /	30
Mini Project	
ESA	50

Course Objectives and Outcomes

Course Objectives

To provide a sound understanding of:

- The motivations for the increasing trend of hardware acceleration
- The architecture of modern programmable logic devices
- Efficiencies obtained over software by direct implementation of computation in hardware
- Modern industry standard development tools

Course Outcomes

The course will be enable the student to:

- Comprehend the rationale behind and adapt to the shift towards hardware acceleration in mainstream computing
- Build efficient computation structures to accelerate computation
- Use industry standard tools to implement accelerator logic
- Obesign and implement accelerator logic to speed up an application