PART A: Literature Exploration and Comparison

DOMAIN: Application for cancer detection

	Paper 1	Paper 2	Paper 3
Title	Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence	Intelligent Deep Learning Framework for Breast Cancer Prediction using Feature Ensemble Learning	Breast Cancer Prediction Using Deep Learning Technique RNN and GRU
Authors	Wang, B., Li, Y., Zhou, M. et al	C. N. Rao, K. Chatrapathy, A. J. Fathima, G. Sathish, S. Mukherjee and P. C. S. Reddy	N. Routray, S. K. Rout and B. Sahu
Year	2023	2023	2023
Architecture	1) CNN with 5 convolutional layers and two fully connected layers 2) Convolutional layers have 3X3 filters and ReLU activation functions followed by Max pooling layers with 2X2 kernels 3) Fully connected layers have 512 and 2 neurons, respectively, and use softmax activation for the final output 4) Network also uses dropout and batch normalization to prevent overfitting and improve generalization	1) The proposed framework consists of three main components: feature extraction, feature ensemble learning, and classification. 2) The feature extraction component uses two types of deep learning models: convolutional neural network (CNN) and recurrent neural network (RNN). 3) The CNN model extracts spatial features from the mammogram images using five convolutional layers with ReLU activation functions, followed by max pooling layers and dropout layers. 4) The RNN model extracts temporal features from the clinical data using two bidirectional long short-term memory (LSTM) layers with tanh activation functions, followed by dropout layers and fully connected layers. 5) The feature ensemble learning component combines the features from both CNN and RNN models using a weighted average method based on the feature importance scores computed by a random forest algorithm. 6) The classification component uses a logistic regression model to predict the breast cancer status (benign or malignant) based on the ensembled features.	1) The paper proposes two deep learning models: Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU). 2) Both models have three layers: an input layer, a hidden layer, and an output layer. 3) The input layer takes the gene expression data as input and feeds it to the hidden layer. 4) The hidden layer consists of either RNN cells or GRU cells, depending on the model. These cells are able to capture the temporal dependencies among the gene expression data. 5) The output layer uses a softmax function to produce the probability of cancer for each sample. 6) A unique feature of the models is that they use a bidirectional approach, meaning that they process the input data from both forward and backward directions, and concatenate the outputs of the hidden layer from both directions.

Network Role The network is helping 1) The network is helping the The network is helping the the overall task by overall task by performing overall task of cancer classifying the images of both feature engineering and prediction by learning the microfluidic devices classification. features from the gene captured by a smartphone 2) The feature engineering part expression data and camera into positive or involves extracting and classifying the samples into negative results based on combining relevant features benign or malignant from different types of data the presence or absence categories. of color changes in the sources (image and text) using detection zones. The deep learning models (CNN network is able to learn and RNN). the features of the images 3) The classification part that are relevant for the involves predicting the breast classification task, cancer status based on the without requiring manual ensembled features using a feature engineering or logistic regression model. preprocessing. The network is trained 1) The training strategy The paper uses the following Training training procedures for both using the involves splitting the data into procedures training, validation, and testing 1) Adam optimizer with models: sets with a ratio of 70:15:15. a learning rate of 0.0001 1) Optimization algorithm: and a batch size of 32. 2) The optimization algorithms Adam with a learning rate of 2) trained for 100 epochs used are Adam for the CNN 0.001 and RNN models, and gradient with early stopping based 2) Batch size: 32 on the validation descent for the logistic 3) Regularization technique: regression model. Dropout with a rate of 0.2 accuracy. 3) trained on a balanced 3) The learning rates are 0.001 4) Loss function: Crossdataset of 800 images for the CNN and RNN models. (400 positive and 400 and 0.01 for the logistic 5) Number of epochs: 100 negative) that are regression model. randomly split into 80% 4) The batch sizes are 32 for training and 20% the CNN and RNN models, validation sets. and 1 for the logistic 4) trained on a GPU regression model. using TensorFlow and 5) The regularization Keras frameworks. techniques used are dropout for the CNN and RNN models, and L2 regularization for the logistic regression model. 6) The dropout rates are 0.2 for the CNN model, and 0.5 for the RNN model. 7) The L2 regularization parameter is 0.01 for the logistic regression model.

Evaluation /	The network is evaluated	1) The performance metric	The paper uses the following
Performance	1) on a test set of 200	used is accuracy, which is	evaluation / performance
	images (100 positive and	defined as the ratio of correctly	metrics to compare the
metric used	100 negative) that are	predicted instances to the total	models:
	different from the	number of instances.	1) Accuracy
	training and validation	2) The accuracy is computed	2) Precision
	sets.	for both the training and	3) Recall
	2) using the accuracy,	testing sets, and compared	4) F1-score
	precision, recall, and F1-	with the baseline models	5) ROC curve
	score metrics, as well as	(CNN, RNN, and CNN+RNN	6) AUC score
	the confusion matrix and	without feature ensemble	,
	the receiver operating	learning).	
	characteristic (ROC)		
	curve.		
	3) The network achieves		
	an accuracy of 99.5%, a		
	precision of 0.99, a recall		
	of 1.0, and an F1-score of		
	0.995 on the test set,		
	outperforming the human		
	experts and other existing		
	methods.	4) 777	
Name of	uses a custom dataset of	1) The dataset used is the	The paper uses a public
Dataset used	images of microfluidic	Breast Cancer Wisconsin	dataset called Breast Cancer
	devices that are	(Diagnostic) Dataset	Wisconsin (Diagnostic) Data
	fabricated and tested by	2) The dataset contains 569	Set from the UCI Machine
	the authors. The paper	instances with 32 attributes,	Learning Repository.
	does not provide a URL	including the diagnosis	
	for the dataset, but it mentions that the dataset	(benign or malignant), the ID number, and 30 real-valued	
	is available upon request	features computed from the	
	from the corresponding	digitized images of the fine	
	author.	needle aspirate (FNA) of	
	dution.	breast masses.	
Conclusion	presents a novel	1) The conclusion of the paper	the proposed deep learning
	smartphone-based	is that the proposed framework	models, combination of RNN
	platform that implements	achieves a high accuracy of	and GRU, are able to achieve
	microfluidic detection	98.25% on the testing set,	high accuracy and
	with image-based	which is significantly better	performance in predicting
	artificial intelligence.	than the baseline models	breast cancer from gene
	The paper demonstrates	(CNN: 95.61%, RNN: 94.74%,	expression data. The paper
	that the proposed	CNN+RNN: 96.49%).	also claims that the
	platform can achieve	2) The paper also claims that	bidirectional approach
	high accuracy and	the proposed framework is	improves the results by
	reliability in detecting	more interpretable than the	capturing more information
	various biomarkers, such	baseline models, as it provides	from the data. The paper
	as glucose, cholesterol,	the feature importance scores	suggests that the models can
	and prostate-specific	for each feature, and the contribution of each data	be applied to other types of cancer and diseases as well.
	antigen (PSA), using a simple and low-cost	source (image and text) to the	Cancer and diseases as well.
	device. The paper also	prediction.	
	shows that the proposed	3) The paper suggests that the	
	platform can be easily	proposed framework can be	
	adapted to different	generalized to other medical	
	applications and	domains that involve both	
L			I .

scenarios, such as point- of-care testing, environmental monitoring, and food safety inspection. The paper suggests that the proposed platform can provide a powerful and convenient tool for rapid and accurate diagnosis and screening.	image and textual data, such as lung cancer, brain tumor, and skin cancer.	
---	--	--