Dto de Computación - FCEFQyN, UNRC Asignatura: Programación Avanzada Primer Cuatrimestre de 2017

Práctico 8: Derivaciones

Ejercicio 1. Especificar y derivar las siguientes funciones.

- f.xs dice si todos los elementos son iguales.
- f.xs.x nos dice si existe un elemento de xs que es igual a x.
- f.xs.x nos dice si todos los elementos de xs son iguales a x.
- f.xs.ys nos dice si xs e ys son iguales.

Ejercicio 2. * Derivar una función que dada una lista determina si los elementos de esta lista están ordenados de forma creciente.

Ejercicio 3. Sea $m:[Num]\to Num$ una función que devuelve el mínimo de una lista dada. Especificar y derivar m.

Ejercicio 4. Especificar y derivar una función que dada una lista determina si existe un elemento en ella que sea igual a la suma del resto de los elementos de la lista.

 $\bf Ejercicio~5.~^*$ Dado el siguiente predicado, determina si una lista es un segmento de otra lista

P.xs.ys = $\langle \exists as, bs :: ys = as + +xs + +bs \rangle$.

Ejercicio 6. * Derivar la siguiente especificación: P.xs = $\langle \exists as, bs : xs = as \not \mid bs : sum.as = sum.bs \rangle$.

Ejercicio 7.* Derivar la siguiente especificación: P.xs.ys = $\langle Mini, j : 0 \le i < \ne xs \land 0 \le j < \ne ys : | sx.i - ys.j | \rangle$.

Ejercicio 8. Calcular la cantidad de números pares e impares de una lista dada, recorriendo la lista una sola vez (Ayuda: utilizar tuplas.)

Ejercicio 9. Implementar todas las funciones obtenidas de las derivaciones dadas en el teórico y en el práctico.