Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani - FACOM/UFU

Aula passada

Segurança da Informação – GBC083

Cifra de substituição geral – n=4

Cifra de substituição geral - Problemas...

- A ideia, então, seria aumentar o tamanho de n!
- Qual seria o tamanho da nossa chave para o caso com n=4?
 - Basta multiplicar 4 (bits) \times 2⁴ (linhas) = 64 bits (literalmente o tamanho da cadeia de bits da tabela anterior);
- Como ficaria a conta para um tamanho de bloco n "razoável"?
 - Com n = 64 teríamos: $64 \times 2^64 = 10^12$ bits!!! Isso é prático?

Cifra de Feistel – Cifragem (encryption)

Entradas do algoritmo:

- Um bloco de texto claro de tamanho 2w bits;
- Uma chave K.

Funcionamento básico:

- O bloco do texto claro é dividido em duas metades
 L₀ e R₀ (cada uma com w bits);
- As duas metades dos dados passam por n rodadas de processamento e depois se combinam para produzir o bloco do texto cifrado;
- Cada rodada i possui como entradas L_{i-1} e R_{i-1}, derivadas da rodada anterior, assim como uma subchave K_i derivada de K;

DES – Cifrar/decifrar

Tópicos da aula

- Ideia geral
- Geração das subchaves
- 3. Descrição de uma rodada e da função F
- 4. Discussão
- 5. Princípios de projeto de cifra de bloco

DES – Ideia geral

Segurança da Informação- GBC083

DES – Data Encryption Standard

- Cifra adotada pelo governo americano em 1977;
- Desenvolvida pela IBM;
- Gerou muita controvérsia por ser baseada em uma cifra patenteada pela IBM;
 - Havia a suspeita que o governo americano tinha uma backdoor.
- Até 1999 era o algoritmo simétrico padrão adotado pelo governo norte-americano e em diversos protocolos criptográficos (SSL, por exemplo).

DES

- Veremos que, em sua forma original, o DES não é mais seguro;
- Chave de 64 bits é muito pequena;
- Ainda em 1977, Diffie e Hellman **projetaram** uma máquina que poderia decifrar o DES.

DES – ideia básica

▶ Entrada

- Texto claro de 64 bits
- 2. Chave de 64 bits
- Usando uma rede de Feistel com uma série de substituições e permutações, o algoritmo transforma os 64 bits de entrada em uma saída de 64 bits (texto cifrado).
- As mesmas etapas, com a mesma chave, são usadas para obter o texto claro à partir do texto cifrado.

DES – representação geral

DES – diferenças com a cifra de Feistel

- ▶ Com exceção das permutações inicial (IP) e final (IP-1), o DES tem a estrutura exata de uma cifra de Feistel;
 - Já conhecemos a estrutura de uma cifra de Feistel!
- Dois itens ainda não foram esclarecidos:
 - I. Geração das subchaves;
 - 2. Conteúdo da função F.

DES – Geração das subchaves

Segurança da Informação- GBC083

DES – Geração das subchaves

- As subchaves são necessárias por dois motivos:
 - Projeto do algoritmo (cifra de produto) envolve uma série de rodadas;
 - 2. Usar chaves repetidas (ou até a mesma chave!) em cada uma das rodadas do algoritmo enfraquece a ideia de tornar obscura a relação entre texto claro e texto cifrado.

DES – Geração das subchaves

Algoritmo

- Entrada de 64 bits -> K
- 2. Escolha permutada de 56 bits -> K_p
- Deslocamento circular à esquerda em $K_p \rightarrow K_{pe}$
- 4. Escolha permutada de 48 bits em $K_{pe} \rightarrow K_1$

DES – Geração das subchaves (1)

DES – Geração das subchaves (2)

- - Escolha permutada usando a seguinte tabela:

 $\mathbf{K}_{\mathbf{p}} = 1111000 \ 0110011 \ 0010101 \ 0101111 \ 0101010$

DES - Geração das subchaves (3)

- $\mathbf{K}_{\mathbf{p}} = 1111000 0110011 0010101 010101 010111 0101010 1011001 1001111 0001111$
- $\mathbf{K}_{\mathbf{p}}$ é dividida em duas metades C_0D_0 ;
- Cada subchave K_n será gerada
 à partir de deslocamentos
 usando a tabela ao lado.
 - Mova o bit para esquerda, com exceção do primeiro que irá para o fim do bloco.

Iteration Number	Number of Left Shift
_	_
1	1
2	1
3	2
4	2
5	2
6	2
7	2
8	2
9	1
10	2
11	2
12	2
13	2
14	2
15	2
16	1

DES – Geração das subchaves (3)

	Iteration	Number of
	Number	Left Shifts
		_
	1	1
	2	1
	3	2
$C_0 = 111100001100110010101011111$	4	2
$D_0 = 0101010101100110011110001111$	5	2
-0	6	2
a 1110000110011001010101011111	7	2
$C_I = 111000011001100101010111111$	8	2
$D_I = 1010101011001100111100011110$	9	1
1	10	2
	11	2
	12	2
	13	2
	14	2
	15	2
	16	1

DES – Geração das subchaves (4)

- As subchaves estão quase prontas...
- Basta agora selecionar uma permutação delas usando a tabela ao lado;
- Se C₁D₁ = |||10000 ||100||10 0||0||0|| ||10||||1| ||10||0|| 0||100|| ||00|||10 ||00||110 então:
- $K_1 = 000110 110000 001011 101111 111111 000111 000001 110010$
- Qual é o tamanho das subchaves?

PC-2

DES – Geração das subchaves – Visão geral

DES – Descrição de uma rodada e da função F

Segurança da Informação – GBC083

Entradas do algoritmo:

- Um bloco de texto claro de tamanho 64 bits;
- Uma chave K de 64 bits.

Funcionamento básico:

- O bloco do texto claro é dividido em duas metades L_0 e R_0 (cada uma com 32 bits);
- As duas metades dos dados passam por 16 rodadas de processamento e depois se combinam para produzir o bloco do texto cifrado;
- Cada rodada i possui como entradas L_{i-1} e R_{i-1}, derivadas da rodada anterior, assim como uma subchave K_i derivada de K;
- Cada subchave possui 48 bits.

Permutação inicial (IP)

			IP				
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

O 58th bit da mensagem M original será agora o primeiro bit da mensagem M permutada e assim por diante...

DES – IP e IP⁻¹

- O intuito dessas tabelas nunca foi muito claro...
- Ela acontece antes de usar a chave e pode ser desfeita por qualquer um!
- Vale muito a pena olhar o porquê aqui:
 - https://crypto.stackexchange.c om/questions/3/what-are-thebenefits-of-the-twopermutation-tables-in-des

The Initial Permutation: IP

•	58	50	42	34	26	18	10	2
	60	52	44	36	28	20	12	4
	62	54	46	38	30	22	14	6
	64	56	48	40	32	24	16	8
	57	49	41	33	25	17	9	1
	59	51	43	35	27	19	11	3
	61	53	45	37	29	21	13	5
	63	55	47	39	31	23	15	7

A função rodada F é o coração de um algoritmo de criptografia simétrica;

- O DES, por exemplo, faz:
 - i) uma **permutação** (**difusão**) inicial: divide os bits em oito grupos de seis bits;
 - ii) uma **substituição (confusão)** em cada um dos grupos para produzir grupos de quatro bits;
 - iii) usa uma tabela de **permutação (difusão)** em cada um dos oito grupos de quatro bits.

- Antes de RE₀ entrar na função F é preciso realizar uma expansão de bits;
- ▶ RE₀ tem 32 bits e precisará aumentar para 48 bits (tamanho da subchave);

E BIT-SELECTION TABLE

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

- ➤ O primeiro passo feito dentro de F é fazer um XOR do bloco RE₀ estendido com a subchave K₁;
- Dits, envolve a aplicação de oito S-boxes.

- Para diminuir de 48 bits para 32 bits, primeiramente os 48 bits são organizados em oito grupos de seis bits;
- A ideia é transformar esses seis bits em quatro bits e aí eu voltaria a ter os 32 bits que preciso para o próximo passo (XOR com a LE₀);
- Isso será feito usando o conceito de S-box.

51

Column Number Row No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

- A tabela acima ilustra a primeira S-box, chamada de SI (no total são oito!);
- Ela será aplicada aos primeiros 6 bits;
- Exemplo:
 - Objetivo: 6 bits "viram" 4 bits;
 - SI(011011) = 0101 (primeiro e último bit fornecem a linha, os quatro bits do meio fornecem a coluna;

51

	Column Number																
Row No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	_
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
														1			

- A tabela acima ilustra a primeira S-box, chamada de SI (no total são oito!);
- Ela será aplicada aos primeiros 6 bits;
- Exemplo:
 - Objetivo: 6 bits "viram" 4 bits;
 - SI(011011) = 0101 (primeiro e último bit fornecem a linha, os quatro bits do meio fornecem a coluna;
 - ▶ Linha "01" = 1 e Coluna "1101" = 13, portanto, 5 = "0101".

- Após a execução das oito S-boxes o algoritmo terá um conjunto de 32 bits que é uma mistura da subchave com diversas substituições;
- O último passo da função F é justamente uma permutação em tais 32 bits;
- A saída da função F será combinada com LE₀ usando um XOR. Tal saída será o RE₁.

P

- As rodadas são executadas levando em consideração as subchaves calculadas e que $LE_{i+1} = RE_i$ ou seja, $LE_2 = RE_1$ e assim sucessivamente...
- ▶ A última rodada irá produzir o LE₁₆RE₁₆;
- Duas últimas permutações são feitas aqui:
 - Trocar RE com LE;
 - ▶ Usar uma última tabela de permutação IP-1

DES - Discussão

Segurança da Informação – GBC083

DES – Cifrar/decifrar

DES - Discussão

- Dado um texto cifrado com DES, quais seriam as opções para um criptoanalista?
 - Como o tamanho do bloco é de 64 bits, acertar o texto claro envolve percorrer as 2^64 possibilidades. O quão difícil é isso?
 - Dado que o algoritmo é público, o quão difícil seria fazer o processo inverso?

DES – Segurança

Dois pontos são importantes:

- I. Tamanho da chave
- 2. Natureza do algoritmo

DES – Segurança (tamanho da chave)

Tamanho de chave (bits)	Cifra	Número de chaves alternativas	Tempo exigido a 10 ⁹ decriptações/s	Tempo exigido a 10 ¹³ decriptações/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1,125 ano	1 hora
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5,3 × 10^{21} anos	5,3 × 10 ¹⁷ anos
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2^{167} ns = 5,8 × 10^{33} anos	5,8 × 10 ²⁹ anos
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	2^{191} ns = 9,8 × 10^{40} anos	9,8 × 10 ³⁶ anos
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1,8 × 10^{60} anos	1,8 × 10 ⁵⁶ ano

DES – Segurança (natureza do algoritmo)

- Outra preocupação é a possibilidade de que a criptoanálise seja possível explorando-se as características do algoritmo DES;
- O foco disso tem sido as oito tabelas de substituição, ou Sboxes;
- Como os critérios de projeto para essas caixas, e, na realidade, para o algoritmo inteiro, não se tornaram públicos, existe uma suspeita de que elas foram construídas de modo que a criptoanálise seja possível para um oponente que conheça as fraquezas nelas...

Triplo DES

- Para superar os problemas de segurança do DES, em 1979 foi criado o Triplo DES.
- O principal objetivo foi aumentar o tamanho da chave de segurança.
- Manteve a compatibilidade com sistema que usavam o DES.
- Utiliza três chaves de 56 bits:
 - Cifra com a chave I, decifra com a chave 2 e cifra com a chave I (56*3 = 168 bits).

Triplo DES - Adoção

- O 3DES ou (TDEA) ainda é utilizado em aplicações pelo mundo;
- OpenPGP é uma delas protocolo para cifragem de email;
- Contudo, diversas vulnerabilidades foram encontradas no 3DES, especialmente relacionadas ao tamanho máximo do bloco que é cifrado – 64 bits;
- ▶ O NIST já divulgou uma nota em que afirma que já está preparando a descontinuidade do 3DES:
 - https://csrc.nist.gov/CSRC/media/Publications/Shared/documents/itl-bulletin/itlbul2017-11.pdf

DES – Princípio de projeto de cifra de bloco

Segurança da Informação – GBC083

Princípios de projeto de cifra de bloco

Embora tenha havido muito progresso no projeto de cifras de bloco criptograficamente fortes, os princípios básicos não mudaram tanto desde o trabalho de Feistel e da equipe de projeto do DES, no inicio da década de 1970.

Três aspectos críticos para o projeto de cifra de bloco são:

- Número de rodadas;
- 2. Projeto da função F;
- 3. Algoritmo de geração de subchave.

Número de rodadas

- Quanto maior o número de rodadas, mais difícil é realizar a criptoanálise, mesmo para uma função F relativamente fraca;
- Em geral, o critério deverá ser de que o número de rodadas seja escolhido de modo que os esforços criptoanalíticos conhecidos exijam maior ação do que um ataque de busca de chave por força bruta.

Número de rodadas

- Análises no DES mostram que determinados tipos de ataques de criptoanálise são menos eficientes do que a força-bruta...
- Se o DES tivesse 15 ou menos rodadas a criptoanálise exigiria menos esforço do que a força-bruta;
- Esse é um critério interessante para avaliar e calcular o número de rodadas de um algoritmo simétrico de bloco.

Projeto da função F

- O núcleo da cifra de bloco de Feistel é a função F, que oferece a propriedade de confusão em uma cifra de Feistel;
- Ou seja, é preciso que seja difícil "desembaralhar" a substituição realizada por F;
 - Efeito avalanche;
 - Uma mudança em um bit da entrada deverá produzir alterações em muitos bits de saída.
- Em linhas gerais, quanto menos linear for F, mais difícil será qualquer tipo de criptoanálise...

Projeto da função F

- Uma propriedade desejável em algoritmos criptográficos é chamada de efeito avalanche;
- A ideia dessa propriedade é a de que uma pequena modificação na entrada (como a troca de um único bit, por exemplo), deve fazer com que a saída do algoritmo seja significantemente diferente.

Princípios de projeto de cifra de bloco – algoritmo de escalonamento de chave

- Selecionar subchaves de forma a maximizar a dificuldade de:
 - deduzir subchaves individuais;
 - recuperar a chave principal;
- ▶ O escalonamento de chave deve permitir a avalanche de bits.

Próximas aulas

- ▶ Outro algoritmo de bloco AES (substituto do DES);
- Modos de operação de cifra de bloco.

Roteiro de estudos

- Leitura das seções 3.2, 3.3, 3.4 e 3.5 do livro "Criptografia e segurança de redes. Princípios e práticas". William Stallings;
- Estudo das vídeo-aulas referentes ao tópico 6 (parte 1 e parte 2);
- Resolução do TP3.
- 4. "Brincar" com o DES usando alguma implementação disponível na Internet, por exemplo:
 - https://anycript.com/crypto/des
 - https://emvlab.org/descalc/

