```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression,Lasso,Ridge
```

```
In [3]: from sklearn.linear_model import ElasticNet
from sklearn import metrics
```

```
In [4]: df=pd.read_csv("10_USA_Housing.csv")
df
```

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

5000 rows × 7 columns

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [6]: df.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x2a536e93070>

In [8]: sns.displot(df['Price'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x2a5382d15e0>

In [9]: df1=df.drop(['Address'],axis=1)
 df1

Out[9]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06

5000 rows × 6 columns

```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>


```
In [11]: y=df['Price']
    x=df1.drop(['Price'],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [12]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[12]: -2624991.144460169

In [13]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff

Out[13]:

	Coefficient
Avg. Area Income	21.514407
Avg. Area House Age	164315.852135
Avg. Area Number of Rooms	119839.139324
Avg. Area Number of Bedrooms	2503.010663
Area Population	15.272390

```
In [14]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x2a538999f40>


```
In [15]: model.score(x_test,y_test)
```

Out[15]: 0.9212486361174832

0.9212019555165926

Out[16]: 0.9212480013228878

```
In [17]: en=ElasticNet()
    en.fit(x_train,y_train)
    print(en.coef_)
    print(en.intercept_)
    print(en.predict(x_test))
    print(en.score(x_test,y_test))
```

```
[2.13520337e+01 1.09116497e+05 7.53523245e+04 1.49000056e+04 1.50889073e+01]
-2016355.419140495
[ 926559.3353008    947524.30558017    979581.46430639    ... 1704221.47260598    1329984.976759    1272854.93285785]
0.8832584113113195
```

```
In [18]: print("MAE",metrics.mean_absolute_error(y_test,prediction))
print("MSE",metrics.mean_squared_error(y_test,prediction))
print("RMSE",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

MAE 82276.85863634048 MSE 10469741838.554108 RMSE 102321.75642821085

```
In [19]: df2=pd.read_csv("9_bottle.csv")
df2
```

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3165:
DtypeWarning: Columns (47,73) have mixed types.Specify dtype option on import or s
et low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[19]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	

STheta O2Sat ...

Cst Cnt Btl Cnt Sta ID Depth ID Depthm T degC Salnty O2ml L

20-1611SR-

```
093.4
                                                     MX-310-
             864862
                         34404 864863
                                                                    15 17.533 33.3880
                                                                                               5.774 24.15297 105.66 ...
                                           026.4
                                                        2239-
                                                   09340264-
                                                     0015A-3
            864863 rows × 74 columns
In [20]: df2.isna().sum()
Out[20]: Cst Cnt
                                                  0
            Btl_Cnt
                                                  0
                                                  0
            Sta ID
            Depth ID
                                                  0
            Depthm
                                                  0
            TA1
                                           862779
            TA2
                                           864629
            pH2
                                           864853
            pH1
                                           864779
            DIC Quality Comment
                                           864808
            Length: 74, dtype: int64
In [21]: |df2.columns
Out[21]: Index(['Cst_Cnt', 'Btl_Cnt', 'Sta_ID', 'Depth_ID', 'Depthm', 'T_degC',
                      'Salnty', 'O2ml_L', 'STheta', 'O2Sat', 'Oxy_µmol/Kg', 'BtlNum', 'RecInd', 'T_prec', 'T_qual', 'S_prec', 'S_qual', 'P_qual', 'O_qual', 'SThtaq', 'O2Satq', 'ChlorA', 'Chlqua', 'Phaeop', 'Phaqua', 'PO4uM',
                      'PO4q', 'SiO3uM', 'SiO3qu', 'NO2uM', 'NO2q', 'NO3uM', 'NO3q', 'NH3uM', 'NH3q', 'C14As1', 'C14A1p', 'C14A1q', 'C14As2', 'C14A2p', 'C14A2q',
                      'DarkAs', 'DarkAp', 'DarkAq', 'MeanAs', 'MeanAp', 'MeanAq', 'IncTim', 'LightP', 'R_Depth', 'R_TEMP', 'R_POTEMP', 'R_SALINITY', 'R_SIGMA',
                      'R_SVA', 'R_DYNHT', 'R_O2', 'R_O2Sat', 'R_SIO3', 'R_PO4', 'R_NO3',
                                'R_NH4', 'R_CHLA', 'R_PHAEO', 'R_PRES', 'R_SAMP', 'DIC1',
                      'DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],
                    dtype='object')
In [22]: df3=df2.drop(['DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],axis=1)
 In [ ]:
 In [ ]:
```

In [24]: df4.isna().sum()/len(df4)*100

Out[24]: Cst Cnt 0.000000 Btl Cnt 0.000000 Sta_ID 0.000000 Depth_ID 0.000000 Depthm 0.000000 T_degC 1.267600 Salnty 5.475318 02ml L 19.501586 STheta 6.092179 02Sat 23.540029 Oxy_µmol/Kg 23.540723 RecInd 0.000000 T_prec 1.267600 S_prec 5.475318 P qual 22.096910 02Satq 74.817168 ChlorA 73.952869 Chlqua 26.096272 Phaeop 73.952984 Phaqua 26.095809 PO4uM 52.210119 P04q 47.762131 SiO3uM 59.058140 Si03qu 40.930991 NO2uM 60.967691 NO2q 38.779437 NO3uM 60.987694 NO3q 38.726365 NH3q 6.540227 C14A1q 1.879835 C14A2q 1.877754 DarkAq 2.823915 MeanAq 2.824031 R Depth 0.000000 R TEMP 1.267600 R POTEMP 5.324196 5.475318 R SALINITY R SIGMA 6.111488 R SVA 6.101660 R DYNHT 5.394727 R_02 19.501586 R_02Sat 22.941784 R SIO3 59.057215 R P04 52.209194 R NO3 60.986769 R NO2 60.966766 R_CHLA 73.952406 R_PHAEO 73.952522 R PRES 0.000000 dtype: float64

```
In [ ]:
```

In [25]: df4.describe()

Out[25]:

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	O2ml_L	
count	864863.000000	864863.000000	864863.000000	853900.000000	817509.000000	696201.000000	812
mean	17138.790958	432432.000000	226.831951	10.799677	33.840350	3.392468	
std	10240.949817	249664.587267	316.050259	4.243825	0.461843	2.073256	
min	1.000000	1.000000	0.000000	1.440000	28.431000	-0.010000	
25%	8269.000000	216216.500000	46.000000	7.680000	33.488000	1.360000	
50%	16848.000000	432432.000000	125.000000	10.060000	33.863000	3.440000	
75%	26557.000000	648647.500000	300.000000	13.880000	34.196900	5.500000	
max	34404.000000	864863.000000	5351.000000	31.140000	37.034000	11.130000	

8 rows × 47 columns

In [26]: df4.shape

Out[26]: (864863, 49)

Out[27]: (5000, 49)

```
In [28]: per=df5.isna().sum()/len(df5)*100
    per1=pd.DataFrame(per,df5.columns,)
    per1
```

Out[28]:

	0
Cst_Cnt	0.00
Btl_Cnt	0.00
Sta_ID	0.00
Depth_ID	0.00
Depthm	0.00
T_degC	0.40
Salnty	3.04
O2ml_L	43.80
STheta	3.34
O2Sat	45.74
Oxy_µmol/Kg	45.74
RecInd	0.00
T_prec	0.40
S_prec	3.04
P_qual	0.00
O2Satq	52.88
ChlorA	100.00
Chlqua	0.00
Phaeop	100.00
Phaqua	0.00
PO4uM	79.08
PO4q	20.92
SiO3uM	100.00
SiO3qu	0.00
NO2uM	100.00
NO2q	0.00
NO3uM	100.00
NO3q	0.00
NH3q	0.00
C14A1q	0.00
C14A2q	0.00
DarkAq	0.00
MeanAq	0.00
R_Depth	0.00
R_TEMP	0.40
R_POTEMP	4.50

```
0
R_SALINITY
             3.04
  R_SIGMA
             5.62
    R_SVA
             5.62
 R_DYNHT
             4.28
     R_O2
            43.80
  R_O2Sat
            46.20
    R_SIO3 100.00
    R_PO4
            79.08
    R_NO3 100.00
    R_NO2 100.00
   R_CHLA 100.00
 R_PHAEO 100.00
   R_PRES
             0.00
```

```
In [30]: |df6=df5.drop(['ChlorA', 'Phaeop', 'PO4uM', 'SiO3uM', 'NO2uM', 'NO3uM', 'R_SIO3',
                 'R_PO4', 'R_NO3', 'R_NO2', 'R_CHLA', 'R_PHAEO'],axis=1)
          df6.isna().sum()/len(df5)*100
Out[30]: Cst_Cnt
                          0.00
          Btl_Cnt
                          0.00
          Sta ID
                          0.00
          Depth_ID
                          0.00
          Depthm
                          0.00
          T_degC
                          0.40
          Salnty
                          3.04
          02ml_L
                         43.80
          STheta
                          3.34
          02Sat
                         45.74
                         45.74
          Oxy_μmol/Kg
          RecInd
                          0.00
          T_prec
                          0.40
          S_prec
                          3.04
          P_qual
                          0.00
          02Satq
                         52.88
                          0.00
          Chlqua
          Phaqua
                          0.00
          P04q
                         20.92
          Si03qu
                          0.00
          NO2q
                          0.00
                          0.00
          NO3q
                          0.00
          NH3q
          C14A1q
                          0.00
          C14A2q
                          0.00
          DarkAq
                          0.00
          MeanAq
                          0.00
                          0.00
          R Depth
          R TEMP
                          0.40
          R POTEMP
                          4.50
          R SALINITY
                          3.04
          R_SIGMA
                          5.62
          R SVA
                          5.62
          R DYNHT
                          4.28
          R_02
                         43.80
          R O2Sat
                         46.20
          R PRES
                          0.00
          dtype: float64
```

```
In [31]:
         nul_col = df6.columns[df6.isnull().any()].tolist()
         nul_col
Out[31]: ['T_degC',
           'Salnty',
           'O2ml_L',
           'STheta',
           '02Sat',
           'Oxy_μmol/Kg',
           'T_prec',
           'S_prec',
           '02Satq',
           'P04q',
           'R TEMP',
           'R_POTEMP'
           'R SALINITY',
           'R SIGMA',
           'R SVA',
           'R DYNHT',
           'R_02',
           'R 02Sat']
In [32]:
         #for i in nul col:
             #df6[i]= df6.fillna(df6[i].mean())
In [33]: #df6
In [34]: df6.fillna(df6["T_degC"].mean())
         df6.fillna(df6["Salnty"].mean())
         df6.fillna(df6["O2ml L"].mean())
         df6.fillna(df6["STheta"].mean())
         df6.fillna(df6["02Sat"].median())
         df6.fillna(df6["Oxy \u00e4mol/Kg"].mean())
         df6.fillna(df6["T_prec"].mean())
         df6.fillna(df6["S_prec"].mean())
         df6.fillna(df6["02Satq"].mean())
         df6.fillna(df6["PO4q"].mean())
         df6.fillna(df6["R_TEMP"].mean())
         df6.fillna(df6["R_POTEMP"].mean())
         df6.fillna(df6["R SALINITY"].mean())
         df6.fillna(df6["R_SIGMA"].mean())
         df6.fillna(df6["R SVA"].mean())
         df6.fillna(df6["R_DYNHT"].mean())
         df6.fillna(df6["R O2"].mean())
         df6=df6.fillna(df6["R_02Sat"].mean())
```

In [35]:	df6.isna().sum	n()
Out[35]:	Cst_Cnt	0
	Btl_Cnt	0
	Sta_ID	0
	Depth_ID	0
	Depthm	0
	T_degC	0
	Salnty	0
	02m1_L	0
	STheta	0
	02Sat	0
	Oxy_μmol/Kg	0
	RecInd	0
	T_prec	0
	S_prec	0
	P_qual	0
	02Satq	0
	Chlqua	0
	Phaqua	0
	PO4q	0
	SiO3qu	0
	NO2q	0
	NO3q	0
	NH3q	0
	C14A1q	0
	C14A2q	0
	DarkAq	0
	MeanAq	0
	R_Depth	0
	R_TEMP	0
	R_POTEMP	0
	R_SALINITY	0
	R_SIGMA	0
	R_SVA	0
	R_DYNHT	0
	R_02	0
	R_02Sat	0
	R_PRES	0
	dtype: int64	

In [36]: df7=df6.iloc[:10,:10]
sns.pairplot(df7)

Out[36]: <seaborn.axisgrid.PairGrid at 0x2a538c09e80>


```
In [37]: sns.heatmap(df7.corr())
```

Out[37]: <AxesSubplot:>


```
In [38]: df6=df6.drop(["Sta_ID","Depth_ID"],axis=1)
```

```
In [39]: x=df6.drop(["R_02"],axis=1)
    y=df6["R_02"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    model1=LinearRegression()
    model1.fit(x_train,y_train)
    model1.intercept_
```

Out[39]: 8.562039965909207e-13

In [40]: coeff=pd.DataFrame(model1.coef_,x.columns,columns=["Coefficient"])
coeff

Out[40]:

	Coefficient
Cst_Cnt	-5.994744e-14
Btl_Cnt	1.913400e-15
Depthm	2.003080e-15
T_degC	-2.119780e-15
Salnty	1.326320e-16
O2ml_L	1.000000e+00
STheta	-5.510215e-15
O2Sat	-4.037433e-16
Oxy_µmol/Kg	1.815876e-15
RecInd	-4.143030e-16
T_prec	1.748088e-15
S_prec	4.233931e-15
P_qual	-2.636780e-16
O2Satq	-1.707158e-15
Chiqua	-1.110223e-16
Phaqua	-8.326673e-17
PO4q	5.375136e-16
SiO3qu	0.000000e+00
NO2q	1.734723e-18
NO3q	7.589415e-19
NH3q	0.000000e+00
C14A1q	0.000000e+00
C14A2q	0.000000e+00
DarkAq	0.000000e+00
MeanAq	0.000000e+00
R_Depth	4.109804e-17
R_TEMP	-4.442587e-15
R_POTEMP	1.172777e-15
R_SALINITY	-9.341113e-16
R_SIGMA	1.052802e-15
R_SVA	-2.598983e-15
R_DYNHT	-8.467467e-16
R_O2Sat	-8.506138e-16
R_PRES	-2.418154e-15

```
In [41]: pred=model1.predict(x_test)
plt.scatter(y_test,pred)
```

```
Out[41]: <matplotlib.collections.PathCollection at 0x2a53a420280>
```

```
50 - 40 - 30 - 20 - 10 - 20 30 40 50
```

```
In [42]: model1.score(x_test,y_test)
```

Out[42]: 1.0

```
In [43]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
    la=Lasso(alpha=10)
    la.fit(x_train,y_train)
    print(rr.score(x_test,y_test))
    la.score(x_test,y_test)
```

0.9999999992144969

Out[43]: 0.998824916729663

```
In [44]: en=ElasticNet()
    en.fit(x_train,y_train)
    print(en.coef_)
    print(en.intercept_)
    print(en.predict(x_test))
    print(en.score(x_test,y_test))
```

```
[ 0.00000000e+00 -9.82451263e-05
                              1.03329903e-07
                                            0.0000000e+00
-0.00000000e+00 9.86723609e-01 -0.00000000e+00
                                            0.0000000e+00
0.00000000e+00 -7.19474451e-03
                              0.0000000e+00
                                            0.0000000e+00
-0.00000000e+00 0.00000000e+00
                              0.00000000e+00
                                            0.0000000e+00
 0.00000000e+00 0.0000000e+00
                              0.00000000e+00
                                            0.0000000e+00
 0.00000000e+00 2.56085023e-05
                              0.00000000e+00 -0.00000000e+00
 -0.00000000e+00 -0.00000000e+00
                              6.94836798e-04 -0.00000000e+00
 0.00000000e+00 5.43491997e-05]
0.6473596034558149
[ 2.01446189 50.37821802 50.48878652 ... 0.57884409 5.34386109
 5.85369593]
0.9999840098922101
```

```
In [45]: print("MAE", metrics.mean_absolute_error(y_test, prediction))
    print("MSE", metrics.mean_squared_error(y_test, prediction))
    print("RMSE", np.sqrt(metrics.mean_squared_error(y_test, prediction)))

MAE 1232001.5361151793
    MSE 1638369493614.9846
    RMSE 1279988.0833878824

In [46]: import pickle

In [49]: file="prediction"
    model=pickle.dump(model,open(file,'wb'))

In []:
In []:
```