Devoir maison 2 – À rendre le 6 janvier 2025 – Facultatif

Nature de deux filtres – corrigé

- 1) Pour le premier circuit, on obtient $\underline{u}_s = 0$ en BF et HF, il s'agit donc à priori d'un filtre passe bande. Pour le deuxième, on a $\underline{u}_s = 0$ en BF (bobine équivalente à un fil) puis $\underline{u}_s = \underline{u}_e$ en HF (condensateur équivalent à un fil et bobine à un fil). Il s'agit donc d'un filtre passe haut.
- 2) Pour le filtre passe bande, on sait que les asymptotes BF et HF se croisent lorsque $\omega = \omega_0$ donc $\omega_0 = 10^4 \ rad$. Le gain max en dB est obtenue à résonance et vaut ici -6dB ce qui donne $G_0 = 10^{-6/20} \approx 0.5$.

Les deux asymptotes ont pour expression $G_{dB,BF} = 20 \log(G_0) + 20 \log(x) - 20 \log(Q)$ et $G_{dB,HF} = 20 \log(G_0) - 20 \log(x) - 20 \log(Q)$ avec $x = \omega/\omega_0$. Ces asymptotes se croisent bien lorsque x = 1 avec une ordonnée de $20 \log(G_0/Q) \approx -20 \ dB$ par lecture graphique. On en déduit que $G_0/Q \approx 0.1 \Rightarrow Q = G_0/0.1 \approx 5$.

Pour le filtre passe haut, on observe de même que les asymptotes BF $(G_{dB,BF} = 20 \log(G_0) + 40 \log(x))$ et HF $(G_{dB,HF} = 20 \log(G_0))$ se croisent lorsque x = 1 soit lorsque $\omega = \omega_0 \approx 400 \ rad.s^{-1}$. Le gain HF étant nul, on en déduit que $G_0 = 1$.

Pour finir, on sait que $G_{db}(x=1)=20\log(G_0Q)\approx 20~dB$ par lecture graphique, on en déduit que $Q=10/G_0\approx 10$.

- 3) Seul le deuxième harmonique (pulsation 5ω) se trouve dans la bande passante donc on obtiendra un signal quasi harmonique de pulsation $5\omega = \omega_0$
- 4) Cette fois ci, l'ensemble du spectre se trouve dans une zone où le filtre à un comportement de type intégrateur. On obtiendra alors une primitive du signal créneau soit un signal triangulaire.