练习 1. 过直线 $\begin{cases} 10x + 2y - 2z = 27 \\ x + y - z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面,求此切平面的方程。

练习 2. 证明曲面 $f\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right) = 0$ 的所有切平面都交于一点 (a, b, c).

练习 3. 设函数 f(x, y) 有二阶连续偏导数,满足 $f_y \neq 0$ 且

$$f_x^2 f_{yy} - 2f_x f_y f_{xy} + f_y^2 f_{xx} = 0.$$

设 y=y(x,z) 是由方程 z=f(x,y) 所确定的函数,求 $\frac{\partial^2 y}{\partial x^2}$ 。

练习 4. 找出椭球面 $3x^2 + 9y^2 + 6z^2 = 10$ 上一点和平面 3x + 3y + 6z = 70 上一点,使得这两点的距离最小,并求出该距离。

练习 5. 设 $D: 1 \le x^2 + y^2 \le 4$,计算 $\iint_D (x+y^2)e^{-(x^2+y^2-4)}dxdy$

练习 6. 计算二重积分 $\iint_{x^2+y^2\leq 1} |x^2+y^2-x-y| dxdy$ 。

练习 7. 计算积分 $\int_0^{2\pi} \left[\int_x^{2\pi} \frac{\sin^2 t}{t^2} dt \right] x dx$.

练习 8. 求 $\iiint_{\Omega} \sqrt{\frac{1-x^2-y^2-z^2}{1+x^2+y^2+z^2}} dx dy dz$, 其中 $\Omega = \{(x,y,z)|x,y,z\geq 0, x^2+y^2+z^2\leq 1\}$

练习 9. 求曲面 $x^2 + y^2 = az$ 和 $z = 2a - \sqrt{x^2 + y^2}$ (a > 0) 所围立体的表面积。

练习 10. (10 分) 计算 $\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于 0 的常数。

练习 11. 设连续可微函数 z = z(x, y) 由方程 F(xz - y, x - yz) = 0 (其中 F(u, v) 具有连续偏导数) 唯一确定,L 为逆时针单位圆周,试求:

$$I = \int_{I} (xz^{2} + 2yz)dy - (2xz + yz^{2})dx.$$

练习 12. 设函数 f(s) 连续可导,并设

$$P = Q = R = f((x^2 + y^2)z),$$

假设有向曲面 Σ_t 是圆柱体 $x^2+y^2\leq t^2, 0\leq z\leq 1$ 的表面,方向朝外。记第二型曲面积分 $I_t=\iint_{\Sigma_t}Pdydz+Qdzdx+Rdxdy$ 。求极限 $\lim_{t\to 0^+}\frac{I_t}{t^4}$ 。

练习 13. 求 $\sum_{n=1}^{\infty} \frac{n}{3^n}$ 。

练习 14. (1) 设 f(x) 是定义在 $[1, \infty)$ 上的单调递减函数,且 $f(x) \ge 0$ 。设 $a_n = f(n)$, $n \in \mathbb{N}$ 。证明级数 $\sum_{n=1}^{\infty} a_n$ 与广义积分 $\int_1^{\infty} f(x) dx$ 具有相同的敛散性。

(2) 应用上述结论判断级数 $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 的敛散性。

练习 15. (证明) 设 $a_0=0$, $a_n=\sqrt{2+a_{n-1}}$ $(n\geq 1)$ 。证明: (1) $\lim_{n\to\infty}a_n$ 存在; (2) 判断级数 $\sum_{n=0}^{\infty}\sqrt{2-a_n}$ 的敛散性?

练习 16. 求 $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ 。(提示: 对函数 $f(x) = \frac{1}{2}(\pi - x)$, $x \in (0, \pi]$ 做奇延拓,并展开成傅里叶级数)