$$= \frac{1}{0.04} \begin{cases} -0.0060 - 0.0015 + 0.0001 + 0.0001 \\ -0.0060 - 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.0060 - 0.00075 + 0.000167 \\ +0.000166 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.0003343 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.006716 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.0003343 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.0003343 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.00075 + 0.00075 + 0.000167 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.006716 \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.006716$$

$$\frac{dp}{dx} = \frac{d}{dx} \left(\frac{x - x_n}{h} \right)^{\frac{1}{2}}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x) - \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x) - \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x) - \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{1}{h} \left\{ \frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right\}$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2}} \right)$$

$$= \frac{d}{dx} \left(\frac{d}{dx} (x_n) + \frac{d}{dx} (x_n)^{\frac{1}{2$$

table we are formal few forward interpolations formula,

(a)
$$\frac{dx}{dx} = \frac{1}{1} \int_{0}^{1} \Delta y_{0} + \frac{(2p-1)}{2} \Delta^{2} y_{0} + \frac{(3p^{2} - 4p+2)}{2} \Delta^{2} y_{0}$$
 $+ \frac{(2p^{2} - 4p^{2} + 11p - 3)}{6} \Delta^{4} y_{0} + \dots y_{0}^{2} - 0$

where $p = \frac{2 - 2}{10}$

there, $p = \frac{2 - 2}{10}$
 $\frac{4}{10}$
 $\frac{1}{10}$
 $\frac{1}{$

Scanned with CamScanner

To find
$$\frac{dy}{dx}$$
 at $x = x_0$

Here $P = \frac{x - x_0}{h}$

$$= \frac{x_0 - x_0}{h} = 0$$

$\frac{d^2y}{dx}$ at $x = x_0 = 0$

$$= \frac{1}{h^2} \left\{ \Delta^2 y_0 - \frac{1}{4} \Delta^2 y_0 + \frac{1}{4} \Delta^3 y_0 + \frac{1}{4} \Delta^4 y_0 + \frac{1}{4} \Delta^$$

(a)
$$\frac{dy}{dx} = AY_0 + \frac{1}{2} \int_{0}^{2} f^{2} f^{2} f^{2} + \frac{1}{2} \int_{0}^{2} f^{2} f^{2} f^{2} f^{2} + \frac{1}{2} \int_{0}^{2} f^{2} f^{$$

3) f'(50) and f''(
3) f'(50) and f''(50) from the following table.
X 50 51 52 53 54
y(x) 3.68 3.70 3.73 3.75 3.77
Sol: ANS: dy = 0.05751 dy = 0.0008
Here x=50, is nearer to te
the table we use Newton's forward formula
Here xo=50, x1=51, x2=52, x3=53, x4=54.
2 = 30 4 h = 1
$P = \frac{x - x_0}{h} = \frac{50 - 50}{1} = 0$
$\frac{dy}{dx} = \frac{1}{h} \left\{ \Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right\} - 0$
The series are distance of the police of the series of the
$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left\{ \Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right\} - 0$
ax n [
The diff table is as follows
x $y=y(x)$ Δy $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$
50 3.68 0.02 51 3.70 0.01
0.03 A240 -0.02
0.02 0.01 0.03 0.02
54 3.77 0.02

27.07.2016 UNIT-4 NUMERICAL DIFFERENTIATION 1) W.K.T. the Newtons forward interpolation y(x)=90+PΔY0+P(P-1) Δ2Y0+P(P-1)(P-2) Δ3Y0+P(P-1)(P-2)(P-3)Δ4Y0 where $p = \frac{x - x_0}{h}$. $y(x)=y_0+P\Delta y_0+\frac{P^2-P}{2}\Delta^2 y_0+\frac{(P^3-3P^2+2P)}{6}\Delta^3 y_0+\frac{(P^3-3P^2$ (P4-6P3+11P2-6P) D440+... Central Interpolation To find dy * forward -> 0 cpc1 Now dy = dy . dp - D * backward= 12 P20

* Stirling=) -1 < P21 Now dp = d {x-x0} $= \frac{1}{h} \int \frac{d(x)}{dx} - \frac{d(x_0)}{dx}$ $=\frac{1}{h}\left[1\right]=\frac{1}{h}$ dy = d (40) + d (P) DY0 + 1 Sd (P2) - d (P) 2 D2 y0 + $+\frac{1}{6} \left\{ \frac{d(P^3)}{dp} - 3\frac{d(P^2)}{dp} + 2\frac{d(P)}{dp} \right\} + \frac{1}{24} \left\{ \frac{d(P^4)}{dp} - 6\frac{d(P^3)}{dp} \right\}$ + 11d (P2) - 6d (P) 4 14 40 + ...

$$= \frac{d}{dp} \left\{ \frac{1}{h} \left[\nabla g_{h} + \frac{2P+1}{2} \nabla^{2} g_{h} + \frac{3P+16P+2}{6} \nabla^{3} g_{h} + \frac{4P^{3}+18P^{4}+22P+6}{6} \nabla^{4} g_{h} + \frac{4P^{3}+18P^{4}+2P^{4}$$

$$\frac{dy}{dx} = \frac{d}{dx}(p) = \frac{1}{h}\frac{d}{dx}(x - x_0) = \frac{1}{h}(1)$$

$$\frac{dy}{dx} = \frac{1}{h}$$

$$=\frac{1}{h^2}\left\{\frac{d}{dp}\left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{d}{dp}\left(p^2\right)\left(\frac{\Delta^2 y_{-1}}{2}\right) + \frac{d}{dp}\left(p^2\right) + \frac{d}{dp}\left(p^2$$

Here
$$\chi_{0} = 1931$$
, $\chi_{1} = 1941$, $\chi_{2} = 1951$, $\chi_{3} = 1961$)

$$A_{1} = \chi_{1} = 1971$$

$$A_{2} = \frac{\chi_{1} - \chi_{1}}{h} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10}$$

$$A_{1} = \frac{\chi_{1} - \chi_{1}}{h} = \frac{10}{10} = \frac{10}{$$

Here
$$x=500$$
 is neaver to the begining of the table we use Newton's forward formula.

Here $x_0=500$, $x_1=50$, $x_2=520$, $x_3=530$, $x_4=540$,

 $x_1=550$.

Also, $x=500$, h=10:

$$P=\frac{x-20}{h}=\frac{500-500}{10}=0$$
.

$$\frac{dy}{dx}=\frac{1}{h}\left\{\Delta^2y_0-\Delta^2y_0+\frac{\Delta^3y_0}{3}-\frac{\Delta^4y_0}{4}+\frac{\Delta^5y_0}{5}\right\}$$

ii) Here $x=550$ is neaver to the begining of the table we use Newton's backward formula:

$$y_0 = \frac{x-x_0}{h} = \frac{550-550}{10} = 0$$
.

$$\frac{dy}{dx}=\frac{1}{h}\left\{\nabla y_0+\frac{1}{2}\nabla^2y_0+\frac{1}{3}\nabla^3y_0+\frac{1}{4}\nabla^4y_0+\frac{1}{5}\nabla^5y_0\right\}$$

$$\frac{dy}{dx}=\frac{1}{h^2}\left\{\nabla^2y_0+\frac{1}{3}\nabla^3y_0+\frac{1}{4}\nabla^4y_0+\frac{1}{5}\nabla^5y_0\right\}$$

Scanned with CamScanner

where,
$$p = \frac{x-x_0}{h}$$
 $\frac{x}{1} = \frac{x}{1}$.

$$y(x) = y_0 + x \Delta y_0 + \frac{x}{2}(x-1) \Delta^2 y_0 + \frac{x}{2}(x-1)(x-2) \Delta^3 y_0$$

$$+ \frac{x}{2}(x-1)(x-2)(x-3) \Delta^4 y_0 + \cdots$$

$$\frac{dy}{dx} = \frac{1}{h} \left\{ \Delta^2 y_0 + \frac{(2x-1)}{2} \Delta^3 y_0 + \frac{(3x^2-6x+2)}{6} \Delta^3 y_0 + \cdots \right\}$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left\{ \Delta^2 y_0 + (x-1) \Delta^3 y_0 + \frac{6x^2-(3x+1)}{12} \Delta^4 y_0 + \cdots \right\}$$
The tabular column as follows:
$$x \quad y \quad \Delta y \quad \Delta^2 y \quad \Delta^3 y \quad \Delta^4 y \quad \Delta^5 y$$

$$0 \quad 0 \quad y_0 \quad 0.25 \quad 0.25 \quad 0.25 \quad 3 \quad \Delta^3 y_0 \quad 6 \quad \Delta^4 y_0 \quad 0.25 \quad 0.25 \quad 0.25 \quad 3 \quad \Delta^3 y_0 \quad 6 \quad \Delta^4 y_0 \quad 0.25 \quad 0$$

6) A rod es rotating in a plane-The following
table gives the angle o (radians) through
which the rod has turned for various values
of time t (se conds).
t 0 0.2 0.4 0.6 0.8 1.0
0 0 0.12 0.49 1.12 2.02 3.20
calculate the angular velocity and the
acceleration of the rod when t=0.6 seconds
201:
Here t=0.6 is in the middle of the table
we use Stir Striling's formula to find
angular valacta I and milian
ie) To find (do) at t=0.6 and (do) at t=0.6
Now, p=t-to
h.
Choose to =0.6 and here h=0.2.
$P = \underbrace{0.6 - 0.6}_{0}$
P=0 120 120 120 120 120 120 120
W.K.T. $\left(\frac{do}{dt}\right)_{at} t = t_0 = \frac{1}{h} \left[\frac{\Delta y_0 + \Delta y_{-1}}{2} - \frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right]$
and $\left(\frac{d^2o}{dt^2}\right)_{at}$ = $\frac{1}{h^2} \left\{ \Delta^2 y_{-1} - \Delta^4 y_{-2} + \dots \right\}$
[

$$= 0.25 + (2x - 1) (0.1) + 3x^{2} 6x + 2 + 2x^{2} 9x^{2} + 10x + 2$$

$$= 0.25 - (2x - 1) + 3x^{2} 4x + 2 + 2x^{2} 9x^{2} + 10x - 3$$

$$= 1 - 2x + 1 + 6x^{2} - 12x + 4 + 4x^{2} - 18x^{2} + 22x + 6$$

$$= 4x^{3} - 12x^{2} + 8x = 0$$

$$4x^{3} - 12x^{2} + 8x = 0$$

$$4x (x^{2} - 3x + 2) = 0$$

$$x = 0 (0x) x^{2} - 3x + 2 = 0$$

$$x = 0, 1, 2.$$
i) When $x = 0$, $\frac{d^{2}y}{dx^{2}} = \left[-0.5 - (3) + \frac{11}{12}(6)\right]$

$$= \left[-0.5 - 3 + \frac{11}{2}\right] = -\frac{1 - 6 + 11}{2} = \frac{4}{2}$$

$$= 2 > 0.$$
ii) When $x = 1$, $\frac{d^{2}y}{dx^{2}} = \left[-0.5 - \frac{1}{12}(6)\right] = -0.5 - \frac{1}{2}$

$$= -\frac{1 - 1}{2} = -\frac{2}{2} = -1 < 0.$$
iii) When $x = 2$, $\frac{d^{2}y}{dx^{2}} = \left[-0.5 + 3 - \frac{1}{12}(6)\right] = \left[-0.5 + 3 - \frac{1}{12}\right]$

$$= -\frac{1 + 6 - 1}{2} = \frac{4}{2} = 2 > 0.$$

$$\therefore y(x) \text{ attains min, when } x = 0, 2 & y(x)$$
ttains max, when $x = 1$ the max value is

$$= 0 + 2(0.25) + \frac{2}{2}(-0.5) = 0.5 - 0.5 = 0.$$

$$= 0 + 2(0.25) + \frac{2}{2}(-0.5) = 0.5 - 0.5 = 0.$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.25$$

$$= 0.5 + 0.2$$

Scanned with CamScanner

The tabular column as follows:							
					40	A50	
0	0						
0.2	0.12	0.12	0-25	0.01		11 2 10 70	
0.4	0.49		0.26	25	040	0	
0.6	1.12	0.63	0.27	48	0 190	SA 1.00	
0.8	2.02	0.9	0-28	0.01	ala.a	- Towns 24	
1-0	3.20	1-18	-			0 000	
Hero	Δο.	0.9	10	100	43	-	
Here $\Delta \theta_0 = 0.9$, $\Delta \theta_{-1} = 0.63$, $\Delta^3 \theta_{-1} = 0.01$, $\Delta^3 \theta_{-2} = 0.01$, $\Delta^2 \theta_{-1} = 0.27$, $\Delta^4 \theta_{-2} = 0$.							
. 0	becon	mes,				to be seen	
$\left(\frac{do}{dt}\right)_{at} = \frac{1}{h} \left\{\frac{\Delta y_0 + \Delta y_{-1}}{2} - \frac{\Delta^3 y_1 + \Delta^3 y_{-2}}{12} + \cdots\right\}$							
$=\frac{1}{0.2}\left\{\frac{0.9+0.63}{2}-\frac{0.01+0.01}{12}\right\}$							
$= \frac{1}{0.2} \left\{ \frac{1.53}{2} - \frac{0.02}{12} \right\}$							
$=\frac{1}{0.2}\left\{0.765-0.00167\right\}$							
Commence of the North State of the State of							
= 5 [0.765 -0.00167]							
= 5× 0.76333							
ANS: = 3.81663.							
(do	att=	0.6	3-82	radio	ens/sec		

Scanned with CamScanner

$$x = \frac{48 \pm \sqrt{(48)^2 - 7(6)(67)}}{2(6)} = \frac{48 \pm 26 \cdot 4}{12}$$

$$= \frac{48 \pm \sqrt{696}}{12} = \frac{48 \pm 26 \cdot 4}{12}$$

$$= \frac{48 \pm 26 \cdot 4}{12} , \frac{48 - 36 \cdot 4}{12}$$

$$= \frac{48 \pm 26 \cdot 4}{12} , \frac{21 \cdot 6}{12}$$

$$= \frac{174 \cdot 4}{12} , \frac{21 \cdot 6}{12}$$

$$= \frac{12}{4x^2} + \left[12 + (1.8 - 1)(-4)\right] = 12 + 0.8(-4) = 12 - 3.2$$

$$= 8.850.$$
ii) When $x = 6.2$

$$= \frac{d^2y}{dx^2} = 1\left[12 + (6.2 - 1)(-4)\right] = 12 + 5.2(-4) = 12 - 20$$

$$= -8.8 \times 0.$$
When $x = 6.2$

$$= -8.8 \times 0.$$

$$= -8.8 \times 0.$$

$$= -8.8 \times 0.$$
The min value of $x = 6.2$.
The min value of $x = 6.2$.
$$= -8.8 \times 0.$$

$$=$$

UNIT-4 (continution) 2) from the following table find the maximum value of f(x). X 0 1 2 3 4 f(x) 58 43 40 45 52 60. Sol: Here Xo=0, X1=1, X2=2, X3=3, X4=4 & h=1, X5=5 W. K. T. Newton's forward interpolation formula 13, Y(x)= 40+60 40+ P(P-1) 024, + P(P-1)(P-2) 034.+ P(P-1)(P-2)(P-3) A4 yo+... and dy = 1 & Ayo + 2P-1 D240 + 3P2-6P+2 A340 + 2 P3 9 P2 +11 P-3 A4 y +... and d29 = 1 { \D2 40 + (P-1) \D3 40 + 6P2-18P+11 \D4 40+...} } -(3) where $p = \frac{x - x_0}{h}$ Here $p = \frac{x - 0}{h} = x = \sum_{i=1}^{n} p_i = x$. O be comes, Y(x)= y0+x Dy0+ 2(x-1) D2y0+ 2(x-1) (x-2) 03 y0+...

* W. K. T. Weddleg's rule is + jfcx)dx = 3k ((4+54+44+44+44+54) 16 46 + 5 42 - 1 38 + 6 44 + 20 + 24 + - + (28n-6+54n-5+4n-4+64n-3 + 4n-2 +54n-1+4n) NOTE: For weddles rule put n=6 in newton's cote's defor quadrature formula. Phlms: 1) i) Evaluate \(\int \frac{dx}{1+x^2} = \) \tan^-1x \taking \(h = 1 \) using 11) Trapezoidal rule, sii) Simpson's 13rd rule, iti) simpson's 3, th rule, iv) weddles rule, v) Also check up by direct integration which rule gives the value dosets to the actual value. Sol: Let y(x)=1/1x2 => tan-1x G. 7- h=1. The tablular column is as follows. 0 1 2 3 4 5 6 y=1 1 0.5 0.2 0.1 0.0588 0.0385 0.0270.

- to f1.5+2.7+8-29923 - 1 f10-97723 = 0.69317 40.6930 11) WK To the 89 mpson's 3 th rule is. (f(x) dx = 3h f (40+40)+ (3(4+44)) +3(45+4+) Jdx = 3(1) {(1.5)+3(0.8571+0.6)+ 3 (0.75+0.5455) +2 (0.6667)} = 1691.5+4.3731+3.8865+1.33347 = 16 { 11.0912} = 0.06932. (v) $\int \frac{d2}{1+x} = \int \frac{d(1+x)}{1+x}$ log 2 = 0.3010 = [log(1+2)] log e = 0.4343 = loge 2 - loge 1 = 0.6931. Trapezoidal rule, Error = Exact value - Approx. == 0.0018. Sempson's 13rd rule Error = 0.6931 - 0.6932 - - 0.000 P Simpson's 3/8 th rule, Error = 0.6931-0.6932

Fet
$$g(x) = \frac{1}{1+x}$$
. Gi. T. $h = \frac{1}{6}$.

The tabular column is as follows.

 $x = 0 \frac{1}{6} \frac{1}{3} \frac{1}{4} \frac{2}{3} \frac{3}{5} \frac{5}{6} \frac{1}{6}$
 $y = \frac{1}{1+x} = \frac{1}{6} \frac{6}{7} \frac{3}{4} \frac{2}{3} \frac{3}{5} \frac{5}{6} \frac{1}{6}$

Here, $y_6 = 1$, $y_1 = 0.8571$, $y_2 = 0.75$, $y_3 = 0.6667$,

 $y_4 = 0.6$; $y_5 = 0.5455$; $y_6 = 0.5$.

i) $WK = 7$: Trapezoidal rule is,

$$\int \frac{dx}{1+x} = \frac{1}{2} \left\{ (1+0.5) + 2(1+0.8571) + 0.75 + 0.6667 + 0.6667 + 0.6 + 0.5455 \right\}$$
 $= \frac{1}{12} \left\{ 1.5 + 2(3.4193) \right\}$
 $= \frac{1}{12} \left\{ 3.3386 \right\} = 0.69488 = 0.6949$.

ii) $WK = 7$: the Simpsons $\frac{1}{3}$ if rule is,

$$\int \frac{dx}{1+x} = \frac{1}{3} \left\{ (9.49n) + 2(9.494 + ... + 90.2) + 4(9.493 + ... + 90.2) \right\}$$
 $+ 4(9.493 + ... + 90.2)$
 $+ 4(9.493 + ... + 90.2)$
 $+ 6.667 + 0.5455$)

Here,
$$y_0 = 0$$
, $y_1 = 0.2588$, $y_2 = 0.5$, $y_3 = 0.7071$, $y_4 = 0.8660$, $y_4 = 0.9656$, $y_{6} = 1$.

W.K. T. Simpsons y_1 rd rule is,

$$\int_{0}^{1} f(x) dx = \frac{1}{3} \left((y_0 + y_0) + 2(y_2 + y_4 + \cdots + y_{n-2}) + 4(y_1 + y_3 + \cdots + y_{n-2}) \right)$$

$$= \frac{1}{3} \left((0 + 1) + 2(0 + 1 + 0.8660) + 4(0 + 2588 + 0.7071 + 0.9651) \right)$$

$$= \frac{180}{36} \left((1 + 2.732 + 7.7272 \right)$$

$$= 5 \cdot 7.296 = \frac{22}{7x36} \left((1 + 2.732 + 7.7272 \right)$$

$$= 5 \cdot 7.296 = \frac{22}{7x36} \left((1 + 2.732 + 7.7272 \right)$$
ANS:
$$= \frac{22}{7x36} \left((1 + 2.732 + 7.7272 \right)$$

$$= \frac{22}{11.45923} \left((1 + 2.732 + 7.7272 \right)$$

$$= \frac{25}{11.45923} = \frac{1.0004}{252} \left((2 + 2.732 + 2.7272 \right)$$
4) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x} \text{ using i) Trapezoidal rule,}$$
ii) Simpsons $3 \cdot x \cdot x \cdot y_1 = \frac{1.0004}{252} \left((2 + 2.732 + 2.7272 \right)$
iv) find the exporting each method by comparing with actual integration up to 4 places of decimals.

Take $\frac{1}{11.45923} = \frac{1.0004}{6} = \frac{1.0004$

3) Find the minimum value of fox) which has o the values. Sol'. Here 20=0, x1=2, x2=4, x=6 and h=6. W.K.T. Newton's find interpolation formula is, Y(x)= 40+PA40+ P(P-1) A40+ P(P-1)(P-2) A340+ P(P-1)(P-2)(P-3) A+y+... dy = 1 { A40 + (2p-1) A20 + 3p2-6p+12 A340 + ...} -0 124 = 1 5 124 + (P-1) 1340 + 6P-18P+11 12 12 12 where $p = \frac{x-x_0}{h}$ Here $p = \frac{x-0}{2} = \frac{x}{2} = \sqrt{p} = \sqrt{2}$. O becomes, $y(x) = y_0 + \frac{xy_0}{2} + \frac{y_2(x_2-1)}{2} 0^2 y_0 + \frac{x(x-1)(x-2)}{3} 0^3 y_0 + \frac{x}{3}$ $\frac{\chi(\chi+)(\chi-2)(\chi-3)}{4} \delta^{4} y_{0} + \cdots$ dy = 1 { Ayo + (2/2-1) D240+ (3x2+6x+2) A340+... dy = 1 { 12 { 12 4 20 + (x-1) 13 40 + ...} - (6)

2) Evaluate frame by using trapezoidal rule with 11 Coordinates. Cy. T. there are 11 co-ordinates Number of Intervals n=10 Now h= b-a = 5-10 = 5/10 = 1/2 = 0.5 [h = 0.5 Let y(2):____ The tabular column is as follows. X 0 05 1 1.5 2 2.5 3 3.5 4 4.5 5 4 = 1 0.2 0.1424 0.11 0.0904 2017 0.0667 5-3588 0-0576 0-0435 Here yo = 0.2, 4, = 0.1429, 42 = 0-1111, 43 = 0.0909, y = 0.0769. y = 0.0667, y = 0.0588, 47 = 0.0526, 48 = 0.0476 7 = 0.0435, Yeo = 0.04. W. K. T. trapezoidal rule is. Jf(x) dx = 1 (40+4n) +2 (41+42+...+4n-1)} 1 Ax+5 dx = h { (40+40)+2 (41+42+43+44+45+44+45

$$y_{s} = 0.0385, \quad y_{t} = 0.0270$$
i) W.K.T. the trapezoidal rule is,
$$\int \frac{dx}{4x^{2}} = \frac{1}{2} \int (1+0.0385) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.2+0.(1+0.0588) + 2(0.5+0.158) + 2(0.5+0.(1+0.0588) + 2(0.5+0.0588)$$

iii) W. K. T. the simpsons
$$\frac{3}{8}$$
th rule is,

$$\int_{0}^{4} \frac{dx}{1+x^{2}} = \frac{3h}{8} \left\{ (y_{0} + y_{0}) + 3(y_{1} + y_{4}) + 3(y_{2} + y_{5}) + 2y_{3} \right\}$$

$$= \frac{3}{8} \left\{ (1+0.0270) + 3(0.5+0.0588) + 2(0.1) \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.5588) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.558) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.558) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.558) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.558) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0270 + 3(0.558) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0$$

Scanned with CamScanner

Scanned with CamScanner

SIMPONS 30 TH RULE IN THE WAR THE WAR Put n=3 in 3 .. The values of x are x , x , x 2, x 3 ... The 4th order differences and higher order differences will be comes zero. Sf(x)dx = h { 340+ 9 440+ (27-92) 124=+(1-27+9) 04 = h {34. + 2 (4, -4.) + 9 (42-24, +4.) + 3 (443-342+34) * h { 24 yo + 364, -3640 + 1842 - 364, +1840 + 343 - 940 i) f(x)dx = h f340+94, +940+343} = (42-42) - (42-47) my ff(x)dx = 3h fy3 + 344 + 345 + 46} = 43-342+341-40 food = 3h fy6+347+348+493 (650) + (60-10) + + 64793 = 7 = + 60034 $f(x)dx = \frac{3h}{8} \{ y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n \}$ 26+cn-37h

$$\int_{x_{0}}^{x_{0}} f(x) dx = h \begin{cases} 24_{0} + \frac{2}{3} & Ay_{0} + \left(\frac{2^{3}}{3} - \frac{2^{3}}{32}\right) \frac{A^{2}y_{0}}{2} \end{cases}$$

$$= h \left\{ 24_{0} + 24_{0} + \frac{1}{3} \frac{A^{2}y_{0}}{3} \right\}$$

$$= h \left\{ 24_{0} + 24_{1} - 24_{0} + \frac{1}{3} \left(44_{1} - 44_{0}\right)\right\}$$

$$= \frac{h}{3} \left\{ 64_{1} + 44_{2} - 4_{1} - 44_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{0} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{1} + 4_{1} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{1} + 4_{1} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_{1} + 4_{1} \right\}$$

$$= \frac{h}{3} \left\{ 4_{0} + 44_{1} + 4_$$

Substituting this value of
$$y_1$$
 in y_2

$$\Rightarrow A_0 = \frac{h}{2} \begin{cases} y_0 + y_0 + hy_0' + \frac{h^2}{2!} y_0'' + \frac{h^3}{3!} y_0''' + \dots \end{cases}$$

$$\Rightarrow A_0 = \frac{h}{2} \begin{cases} y_0 + y_0 + hy_0' + \frac{h^2}{2!} y_0'' + \frac{h^3}{3!} y_0''' + \dots \end{cases}$$

$$= hy_0 + \frac{h^2}{2} y_0' + \frac{h^3}{4} y_0''' + \frac{h^4}{10!} y_0''' + \dots \end{cases}$$

$$\Rightarrow \int y dx - A_0 = \begin{cases} hy_0 + \frac{h^2}{2} y_0' + \frac{h^3}{6} y_0'' + \frac{h^4}{4} y_0''' + \dots \end{cases}$$

$$= \frac{1}{6} - \frac{1}{4} h^3 y_0'' + \dots$$

$$= \frac{1}{12} h^3 y_0'' + \dots$$

$$= \frac{1}{12} h^3 y_0'' + \dots$$
The error in the interval $(x_1, x_2) \simeq -\frac{h^3}{12} y_0'' + \dots$
The error in the interval $(x_1, x_2) \simeq -\frac{h^3}{12} y_0'' + \dots$
The total error E is given by, $[\vdots |a+b| \le |a+b|]$

$$E = -\frac{h^3}{12} \left[y_0'' + y_1'' + y_2'' + \dots + y_{n-1}'' \right]$$

$$|E| = \left| -\frac{h^3}{12} \left[y_0'' + y_1'' + y_2'' + \dots + y_{n-1}'' \right] \right| \le \frac{h^3}{12} \left[y_0''' + y_0''' + y_0''' + \dots + y_{n-1}'' \right]$$

$$|E| = \left| -\frac{h^3}{12} \left[y_0'' + y_1'' + y_2'' + \dots + y_{n-1}'' \right] \right| \le \frac{h^3}{12} \left[y_0''' + |y_0''' + |y_0'' + |y_0'' + |y_0''' + |y_0'' + |y_0''' + |y_0'' + |y_0'' + |y_0''$$

Let Mamax f yo'+ yi"+ M = max f ya", y, ", 40-13 : IEI & n h3 M = (+ 12) 1 = h = b a =) n = b-a 7 : |E| = (b-a) 13 M ie) | IEI = (b-a) h2 m 107 1 1032 0 +7131.07 =+ (+011) The Error in Trapezoidal rule is of order h2. PROBLEMS: 2 DEvaluate S dx using Trapezoidal rule with h=0.2 Hence determine the value of TT? Evaluate Trapezoidal rule by taking 5 internal Sol: (and) and (19 mon) (19 mon) 14 (0.00) Here y(x) = 1 and x0 = 0. 140011 The tabular column as follows: × 0 0.2 0.4 0.6 0.8 1.0. 4 1 0.9615 0.8621 0.7353 0.6098 0.5 Here 4 = 1, 4, = 0.9615, 42 = 0.8621, 43 = 0.7353,

$$= f(x_0) \int_{x_0}^{x_1} dx + f'(x_0) \int_{x_0}^{x_1} (x - x_0) d(x - x_0) + f''(x_0)$$

$$= \int_{x_0}^{x_1} (x - x_0)^2 d(x - x_0) + \frac{f''(x_0)}{h} (x - x_0) dx$$

$$= f(x_0) \left[\times \int_{x_0}^{x_1} + f'(x_0) \left[\frac{(x - x_0)^2}{2} \right]_{x_0}^{x_1} + \left[\frac{(x - x_0)^3}{3} \right]_{x_0}^{x_1} + \frac{f''(x_0)}{3} + \frac{f'''(x_0)}{3} + \frac{f'''(x_0$$

$$y_{4} = 0.6098, y_{5} = 0.5$$

$$W \times T \text{ the trapezoidal rule is,}$$

$$\int_{5}^{6} f(x) dx = \frac{h}{2} \left((y_{5} + y_{5}) + 2 (y_{1} + y_{2} + y_{3} + y_{4}) \right)^{2}$$

$$= \frac{h}{2} \left((y_{5} + y_{5}) + 2 (y_{1} + y_{2} + y_{3} + y_{4}) \right)^{2}$$

$$= \frac{h}{2} \left((1 + 0.5) + 2 (0.9615) + 0.862 + 0.7353 + 0.6098) \right)^{2}$$

$$= \frac{1}{10} \left\{ 1.5 + 6.3374 \right\}$$

$$= \frac{1}{10} \left\{ 7.8374 \right\}$$

$$= 0.7837$$

$$\int_{1+x^{2}}^{2} dx = \left[tan^{-1}(x) \right]_{1}^{2}$$

$$= tan^{-1}(1) - tan^{-1}(0)$$

$$= tan^{-1}(1) - tan^{-1}(tan 0)$$

$$= T_{4} - 0 = T_{4}$$

$$= 0.7837$$

$$Ans: T = 0.7837 \times 4$$

$$T = 3.1348$$

28.09-2016 UNIT-5- MATERIA NUMERICAL INTEGRATION NEWTONS COTE'S QUADRATURE FORMULA Let the function be y=f(x), let 4=f(x) $y_i = f(x_i), \dots y_n = f(x_n), \text{ let } I = \int f(x) dx$. Divide the interval [a,b] into the Subintervals such that D= a = xo, x, = xoth, 22=20+2h, ... xn = xo+nh where h is the length of the interval. by the interval. $T = \int f(x) dx \qquad 0$ $N(x, T) = \frac{\chi_0}{h} = \chi_0 = \chi_0 + \rho h$ $\therefore dx = d(x_0 + ph) = d(x_0) + hdp = hdp$ Duhere xx=xo=xo=xo+ph =) [P=n] W.K.T. Newtons interpolation formula PS. y(x) = y(x0+ph) = y0+PAy0+P(P-1) 12y0+P(P-1)(P-2) ie) $f(x_0+ph) = y_0 + p\Delta y_0 + \frac{p^2-p}{2} \Delta^2 y_0 + \frac{p^3-3p^2+2p}{6} \Delta^3 y_0 + \dots$ O Becomes, I = J+(x0+ph) hdp

Scanned with CamScanner