MTH 532 Homework 6

Roy Howie

March 2, 2017

1.7 Sard's Theorem and Morse Functions

Exercise 4

Recall that the countable union of sets of measure zero has measure zero. \mathbb{Q} is countable and each of its points has measure zero. Therefore, \mathbb{Q} has measure zero. \square

Exercise 6

Per the hint, let $f: S^1 \to S^k$ with k > 1. Then $p \in S^k$ is a regular value iff it is not in the image of f. But Sard's Theorem says the set of critical values of a smooth map has measure zero, so there must be a point $p_0 \notin f(S^1)$. Again, per the hint, recall that S^k minus a single point is isomorphic to \mathbb{R}^k via the stereographic projection. Hence, from problem 1.6.6, as \mathbb{R}^k is contractible, we have that it is also simply connected. Thus S^k is simply connected.

1.8 Embedding Manifolds in Euclidean Space

Exercise 5

Let $p: T(X) \to X$ be the mentioned projection. Let $p = (x, v) \in T(X)$ and let O(p) be an open neighborhood of p. Let N be a neighborhood of x such that $a: N \to \mathbb{R}^k$ is locally equivalent to the canonical submersion, i.e. $(x_1, x_2, \cdots, x_k) \mapsto (x_1, x_2, \cdots, x_l)$. Let b be the same for the neighborhood O(p). Let p' be the restriction of p to O(p). Note that $a \circ p' \circ b^{-1}$ maps local coordinates to local coordinates, so p is a local submersion at p, which was arbitrary.

Exercise 6

Let \vec{v} be a vector field on X, then, per the given definition, $\vec{v}(x)$ is tangent to x. Thus, we can define a smooth map $t: X \to T(X)$ defined by $x \mapsto (x, \vec{v}(x))$. Then $p \circ t$ is the identity map, so (1) implies (2).

Conversely, assume there is a smooth map t (as before) such that $p \circ t$ is the identity map. But then there is a function \vec{v} such that $p(x, \vec{v}) = x$, so we may define t as the map $x \mapsto (x, \vec{v}(x))$. By the definition of T(X), we have that both x and $\vec{v}(x)$ lie in \mathbb{R}^N . Thus, \vec{v} is a vector field on X and (2) implies (1).

Exercise 7

(Haha, I used this hint on my past algebra exam!) Let $x \in S^k$ and let k be odd. Suppose $x = (x_1, x_2, \dots, x_{k+1})$ and note that $x^{\perp} = (-x_2, x_1, \dots, -x_{k+1}, x_k)$ is orthogonal to x. Let \vec{v} be the map $x \mapsto x^{\perp}$. We wish only to show that \vec{v} is nowhere vanishing, so note that $|\vec{v}(x)| = |x^{\perp}| = |x| = 1$.

Exercise 8

Note that from 1.6.7 (last week's homework) we have that $x \mapsto -x$ is homotopic to the identity iff k is odd. But we just proved that k is odd if S^k has a nonvanishing vector field (and it was given that this does not occur for even k).

Exercise 10

Let $X \subset \mathbb{R}^N$ be an immersion for N > 2k (otherwise, it's not very interesting) and let $g: T(X) \to \mathbb{R}^N$ be the map $(x,v) \mapsto df_x(v)$. Then by Sard's Theorem we can pick a regular value a which is not in the image of g. That means we can project \mathbb{R}^{k+1} onto \mathbb{R}^k via some map π , as there are k dimensions orthogonal to a. We wish to show that $\pi \circ f$ is an immersion. This is true, as $d(\pi \circ f) = d\pi_{f(x)} \circ df_x = D$. So if D(v) vanishes, then $df_x(v) = ta$ for some $t \in \mathbb{R}$ (we used this fact in class), which is impossible as a is a regular value of g. Thus, we have dropped the dimension of our immersion from N to N-1. Repeat until N=2k.

2.2 One-Manifolds and Some Consequences

Exercise 1

No, consider the 3-1 trefoil knot.