Menssis	914/25
Amonnements:	
- Final Proj Sign Up on Stad	c Channel
4 you need my approve	
- Final Proj:	
- Can vor use LMs?	
-> Yes for coding the	re app 1 graphic.
No for writing	the actual language
on the apple	105!
1 Want your	voize & your
perspection.	
Stir & Academi Honestz!!	
First anie West WK: Thurs &	5:50 -9:50AM
- Closed notes & Lypox	the finds theel
	ed on Canas/Spell
- 60 min	
- no calculators	
_ pactice Exam up on Conver	

Ly uninased est of
$$\sigma^2$$
:

$$MSE = \hat{B}^2 = \frac{\Sigma_1 e_1^2}{n-2} = \frac{SSE}{n2}$$

Sum of Squares Decomp $A = 1 + est$.

$$\Sigma_{i=1}^n (y_i - \bar{y})^2 = \tilde{\Sigma}(y_i - \hat{y}_i)^2 + \tilde{\Sigma}(\hat{y}_i - \bar{y})^2$$

$$SST = \frac{SSE}{1 + \frac{$$

$$\begin{array}{l}
\mathcal{C}\mathcal{E}\left(\widehat{\gamma}\left(x+80\right)-\gamma_{nex}(x+80\right)=\sqrt{Var}\left(\widehat{\gamma}\left(x+80\right)-\gamma_{nex}(x+80\right)\right) \\
Var\left(\widehat{\gamma}\left(x+80\right)-\gamma_{nex}(x+80)\right)=\sqrt{var}\left(\widehat{\gamma}\left(x+80\right)+\sqrt{var}\left(x+80\right)\right) \\
-2\left(\sqrt{\gamma}\left(x+80\right)-\gamma_{nex}(x+80)\right) \\
=\sqrt{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
\mathcal{O} Var(\widehat{\gamma}(x+80))=\sigma^{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
\mathcal{O} Var(\widehat{\gamma}(x+80))=\sqrt{var}\left(x+80\right) \\
=\sqrt{var}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
=\sigma^{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
=\sigma^{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
\mathcal{E}\left(\widehat{\gamma}(x+80)-\gamma_{nex}(x+80)\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right) \\
\mathcal{E}\left(\widehat{\gamma}(x+80)-\gamma_{nex}(x+80)\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(n-x)^{2}}{55x}\right)
\end{array}$$

