WHAT IS CLAIMED IS:

1	1. A method for generating electrical power from low frequency,		
2	vibrational energy, the method comprising:		
3	receiving vibrational energy having a low frequency;		
4	converting the low frequency, vibrational energy to vibrational		
5	energy having a high frequency greater than the low frequency; and		
6	converting the high frequency, vibrational energy to electrical poverting		
1	2. The method as claimed in claim 1, wherein the step of		
2	converting the high frequency, vibrational energy is performed piezoelectrically or		
3	electrostatically or electromagnetically.		
1	The method as claimed in claim 1, wherein the low frequency		
2	is in the range of 1 to 100 Hz.		
1	4. The method as claimed in claim 3, wherein the low frequency		
2	is in the range of 1 to 10 Hz.		
1	5. The method as claimed in claim 1, wherein the step of		
2	converting the low frequency, vibrational energy is performed mechanically.		
1	6. The method as claimed in claim 1, wherein the step of		
2	receiving the low frequency, vibrational energy includes the step of providing a		
3	micromechanical first resonator device, the first resonator device resonating in		
4	response to the received vibrational energy.		
1	7. The method as claimed in claim 6, wherein the first resonator		
2	device has a mechanical resonance frequency in the range of 1 to 100 Hz.		
,			
1	8. The method as claimed in claim 6, wherein the step of		
2	converting the low frequency, vibrational energy includes the step of providing a		

3	micromechanical second resonator device, the second resonator device resonating			
4	at the high frequency in response to the resonating first resonator device.			
1	9. The method as claimed in claim 7, wherein the second			
2	resonator device has a mechanical resonance frequency in the range of 1 to 10 l			
1	10. The method as claimed in claim 8, wherein the second			
2	resonator device includes an array of micromechanical resonators.			
1	11. A micro power generator for generating electrical power from			
2	low frequency, vibrational energy, the generator comprising:			
3	means for receiving vibrational energy having a low frequency;			
4	means for converting the low frequency, vibrational energy to			
5	vibrational energy having a high frequency greater than the low frequency; and			
6	means for converting the high frequency, vibrational energy to			
7	electrical power.			
1	12. A micro power generator for generating electrical power from			
2	low frequency, vibrational energy, the generator comprising:			
3	a micromechanical first resonator device which resonates in respons			
4	to the vibrational energy;			
5	a micromechanical second resonator device; and			
6	a circuit coupled to the resonator devices for coupling the resonato			
7	devices together so that the second resonator device resonates at a high frequency			
8	greater than the low frequency when the first resonator device resonates, the circuit			
9	also converting the high frequency, vibrational energy to electrical power.			
1	13. The generator as claimed in claim 12, wherein the high			
2	frequency, vibrational energy is converted electromagnetically.			
1	14. The generator as claimed in claim 12, wherein the low			
2	frequency is in the range of 1 to 100 Hz.			

1	15.	The generator as claimed in claim 14, wherein the low		
2	frequency is in the range of 1 to 10 Hz.			
1	16.	The generator as claimed in claim 12, wherein the conversion		
2	of the low frequency,	vibrational energy is performed mechanically.		
1	17.	The generator as claimed in claim 12, wherein the circuit		
2	includes a magnet and at least one coil which moves relative to the magnet and			
3	wherein voltage is induced on the at least one coil by electromagnetic induction.			
1	18.	The generator as claimed in claim 17, wherein the first		
2	resonator device has a	mechanical resonance frequency in the range of 1 to 100 Hz.		
1	19.	The generator as claimed in claim 17, wherein at least one of		
2	the magnet and the at least one coil is mechanically coupled to the resonator devices			
3	so that the magnet and the at least one coil move relative to one another to generate			
4	voltage on the at least one coil.			
1	20.	The generator as claimed in claim 18, wherein the second		
2		mechanical resonance frequency in the range of 1 to 10 kHz.		
1	21.	The generator as claimed in claim 19, wherein the second		
2	resonator device includes an array of micromechanical resonators and wherein each			
3	of the resonators has a			