Contents

1	Mu	Multivariable Calculus				
	1.1	Linear Algebra	3			
	1.2	Derivative	6			

Chapter 1

Multivariable Calculus

1.1 Linear Algebra

1.1.1 Vector Spaces

Definition (Normed vector space): Let V be a vector space. A **norm** is a real valued function $\|\cdot\|:V\to\mathbb{R}$ which has the following properties

- 1. $\forall x \in V, ||x|| > 0.$
- 2. $||x|| = 0 \implies x = 0$.
- 3. $\forall x \in V \ \forall \alpha \in \mathbb{F}, \ \|\alpha x\| = |\alpha| \ \|x\|.$
- 4. $\forall x, y \in V \|x + y\| \le \|x\| + \|y\|$.

Each normed vector space induces a metric space (V, d) where d(x, y) = ||y - x||.

Theorem 1.1. In every normed space $(V, \|\cdot\|)$ we have

$$|||v|| - ||w||| \le ||v - w||$$

Hence the norm is Lipschitz continuous.

Definition: Assume V is a vector space and let $\|\cdot\|_1$, $\|\cdot\|_2$ be two norms for V. They are said to be equivalent when

$$\exists c_1, c_2 > 0 \ \forall x: \qquad c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|$$

To check if the above definition is indeed an equivalence relation, we must show that following:

Reflexive $\|\cdot\|_1 \sim \|\cdot\|_1$.

 $\mathbf{Symmetric} \ \left\| \ \cdot \ \right\|_1 \sim \left\| \ \cdot \ \right\|_2 \implies \left\| \ \cdot \ \right\|_2 \sim \left\| \ \cdot \ \right\|_1.$

$$\textbf{Transitive} \ \|\cdot\|_1 \sim \|\cdot\|_2 \,, \ \|\cdot\|_2 \sim \|\cdot\|_3 \implies \|\cdot\|_1 \sim \|\cdot\|_3.$$

Remark 1. Equivalent norms induce equivalent metrics, hence they induce the same topology.

Theorem 1.2. All norms defined on a finite dimensional vector space V are equivalent.

Proof. Let $\|\cdot\|$ be an arbitrary norm on V and $\{e_1, e_2, \ldots, e_n\}$ be a basis of V. Let $\|\cdot\|_2$ be L_2 -norm (Euclidean norm). It will suffice to show $\|\cdot\| \sim \|\cdot\|_2$. Let

$$M = \max(\|e_1\|, \dots, \|e_n\|)$$

Take $x \in V$, writing $x = \sum_{i=1}^n \xi_i e_i$ we have:

$$||x|| = \left\| \sum_{i=1}^{n} \xi_i e_i \right\| \le \sum_{i=1}^{n} |\cdot| \xi_i ||e_i|| \le M\sqrt{n} ||x||_2$$

Taking $c_2 = M\sqrt{n}$ proves the right inequality. For the left inequality we need the following lemma

Lemma 1.3. If V is a normed vector space with $\|\cdot\|_2$, as defined above, is viewed as metric space $(V, \|\cdot\|_2)$ then $\|\cdot\| : V \to \mathbb{R}$ is continuous.

Proof. Let $x_0 \in V$ and M be defined as above. For any $\epsilon > 0$ consider $\delta = \frac{\epsilon}{M\sqrt{n}}$ then if $\|x - x_0\|_2 < \delta$

$$|||x| - || \cdot ||x_0|| \le ||x - x_0|| \le M\sqrt{n} ||x - x_0|| \le \epsilon$$

Now consider the sphere of radius r=1 centered at 0, $S_1(0)=S_1=\{x\in V:\|x\|_2=1\}$. One can show that S is compact. Therefore, $\|x\|$ assumes its minimum on S. Let $a=\|x_0\|$ be the minimum. Since $0\notin S$ then a>0. By letting $y=x/\|x\|_2$, we have $y\in S$ and thus $a\leq \|y\|$ which is

$$a\,\|x\|_2\leq\|x\|$$

Taking $c_1 = a$ proves the theorem.

Theorem 1.4. Let $(V, \|\cdot\|)$ be a normed space. The following are equivalent

- 1. V is finite dimensional.
- 2. every bounded closed set in V is compact.
- 3. the closed unit ball in V is compact.

Proof.

1.1.2 Linear Maps

Let V and W be a vector spaces over \mathbb{F} . A map $T:V\to W$ is **linear** if

$$T(x + \lambda y) = T(x) + \lambda T(y)$$

for all $x, y \in V$ and $\lambda \in \mathbb{F}$.

Definition: Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces then, a linear transformation $T: V \to W$ is **bounded** if there exists a constant C > 0 such that

$$\|Tv\|_W \le C \, \|v\|_V$$

for all $v \in V$.

Definition: If $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ are normed spaces then the **operator norm** of a linear transformation $T: V \to W$ is

$$\|T\| = \sup\left\{\frac{\|Tv\|_W}{\|v\|_V}\bigg|v \neq 0\right\}$$

Theorem 1.5. Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces and $T: V \to W$ be a linear transformation. The following are equivalent

- 1. ||T|| is finite.
- 2. T is bounded.
- 3. T is Lipschitz continuous.
- 4. T is continuous at a point.
- 5. $\sup_{\|v\|_{V}=1} \|Tv\|_{W} < \infty$.

Proof. item $1 \Rightarrow$ item 2: Obviously

$$\begin{split} &\frac{\left\|Tv\right\|_{W}}{\left\|v\right\|_{V}} \leq \left\|T\right\| \\ \Longrightarrow &\left\|Tv\right\|_{W} \leq \left\|T\right\| \left\|v\right\|_{V} \end{split}$$

note that if v = 0 then Tv = 0 as well and thus the last inequality holds for all $v \in V$. item $2 \Rightarrow$ item 3:

$$||Tv - Tu||_W = ||T(u - v)||_W \le C ||u - v||_V$$

item $3 \Rightarrow$ item 4: Trivial.

item $4 \Rightarrow$ item 5: Let T be continuous at $u \in V$. Then there is a $\delta > 0$ such that

$$\|v-u\|<\delta \implies \|Tv-Tu\|_W=\|T(v-u)\|_W<1$$

Now for an arbitrary non-zero v we have

$$\left\| \left(\frac{\delta v}{2 \left\| v \right\|_{V}} + u \right) - u \right\|_{V} < \delta$$

Therefore

$$\begin{split} & \left\| T \bigg(\frac{\delta v}{2 \left\| v \right\|_{V}} \bigg) \right\|_{W} < 1 \\ & \left\| T \bigg(\frac{v}{\left\| v \right\|_{V}} \bigg) \right\|_{W} < \frac{2}{\delta} \end{split}$$

item $5 \Rightarrow$ item 1: Let $v \in V$ be an arbitrary vector. Then

$$\sup \left\| T \left(\frac{v}{\|v\|_V} \right) \right\| < \infty$$

$$\implies \sup \|Tv\| < \infty$$

Theorem 1.6. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ linear transformation is invertible if and only if there exists a c such that:

$$c \|x\| \le \|f(x)\|$$

Proof. A linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one if and only if it is surjective because dim Im $f + \dim \ker f = n$. Hence, we only need to show that f is one-to-one.

1.2 Derivative

Let $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ where U is open. Then f is differentiable at x_0 when a linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ such that

$$\lim_{\|h\| \to 0} \frac{\|f(x_0 + h) - f(x_0) - T(h)\|}{\|h\|} = 0$$

Usually, T is represented by $f'(x_0)$.

Proposition 1.7. Assume $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 and let $u \in \mathbb{R}^n$ then

$$\lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t} = f'(x_0) \cdot u$$

Definition (Partial derivative): define

Proposition 1.8. If f is differentiable then its partial derivatives exist.

Proposition 1.9. $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 if and only if every component is differentiable at x_0 .

Theorem 1.10. $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ has all of its partial derivative and they're continuous then f is differentiable.