Machine Learning-based Mouse Tracking Enhances Adult ADHD Diagnosis

Anton Leontyev, Takashi Yamauchi, Moein Razavi a.g.leontiev@tamu.edu, takashi-yamauchi@tamu.edu, moeinrazavi@tamu.edu

Introduction

ADHD is usually diagnosed using clinical interviews and questionnaires. However, these measures are a) subjective, b) cannot study pathophysiology. Stop-signal task is a popular measure of impulsivity.

Poor performance on SST \Rightarrow pathological gambling, substance abuse, and ADHD

Figure 1: Stop-signal task
Problem: measures in traditional SST have
weak correlations with questionnaires scores

Participants & Design

Total: 100 participants

- 1. $\mathbf{s\text{-}SST}$: 50 (27 males and 23 females) \rightarrow Conners Adult ADHD questionnaire (CAARS)
- 2. Motor-SST: 50 (15 males and 35 females) \rightarrow Conners Adult ADHD questionnaire (CAARS)

Figure 4: Standard and Motor Stop-signal tasks

Analysis techniques

Predictors

- 1. standard SST (8 variables)
- 2. motor-SST (14 variables)

Machine learning models:

Figure 2: Nested cross-validation

Correlations between predicted & observed/permuted data

- Spearman's rank correlation (predicted vs. observed symptom scores, 10CV nested within 5 CV, repeated 20 times)
- Permutation tests (1000 times, predicted vs. permuted symptom scores)

Table 1: Correlations between predicted and observed scores

	DSM-IV:	DSM-IV:	DSM-IV:	ADHD		
	Inattentive	Hyperactive/	Combined	\mathbf{Index}		
		Impulsive				
s- SST						
Ridge	-0.27 (0.07)	-0.11 (0.12)	-0.24 (0.07)	-0.22 (0.06)		
Random	0.02	0.25	0.19	-0.06		
forest	(0.06)	(0.05)	(0.06)	(0.1)		
SVM	-0.28(0.11)	0.09 (0.13)	-0.12 (0.11)	-0.21 (0.09)		
Mouse-SST						
Ridge	0.25 (0.06)*	0.20 (0.07)	0.30 (0.04)*	0.34 (0.05)**		
Random	0.29	0.13	0.22	0.16		
forest	(0.07)	(0.1)	(0.08)	(0.06)		
SVM	-0.09 (0.13)	-0.25 (0.13)	0.16 (0.1)	-0.1 (0.1)		
$*_n > 05 **_n > 01$						

*p < .05, **p < .01.

Figure 3: Relative feature importance

Table 2: Correlations between predicted and permuted scores

	DSM-IV:	DSM-IV:	DSM-IV:	ADHD		
	Inattentive	Hyperactive/	Combined	Index		
		Impulsive				
s- SST						
Ridge	-0.16 (0.12)	-0.23 (0.16)	-0.16 (0.14)	-0.23 (0.13)		
Random	-0.01	-0.14	-0.009	0.04		
forest	(0.19)	(0.12)	(0.19)	(0.13)		
SVM	-0.16 (0.11)	-0.18 (0.18)	-0.19 (0.11)	-0.17(0.1)		
Mouse-SST						
Ridge	-0.02 (0.27)	-0.11 (0.18)	-0.09(0.17)	-0.08(0.23)		
Random	-0.09	-0.12	-0.08	-0.04		
forest	(0.19)	(0.15)	(0.15)	(0.17)		
SVM	-0.14(0.13)	-0.1 (0.17)	-0.21 (0.17)	-0.29 (0.14)		

Conclusions

- 1. Ridge regression produces the strongest and most stable associations between behavioral measures and questionnaire scores.
- 2. Introducing mouse movement measures improves predictive accuracy.
- 3. Machine Learning can be applied to mental disorder diagnosis.