

IIC1253 — Matemáticas Discretas 1'2020

GUIA 2 Lógica de predicados

1. Demuestre la siguiente equivalencia lógica:

$$(\exists x. \alpha(x)) \wedge (\exists x. \beta(x)) \equiv \exists y. \exists z. (\alpha(y) \wedge \beta(z))$$

donde y, z no son variables libres en $\alpha(x)$ o $\beta(x)$. En otras palabras, y, z son variables nuevas no mencionadas en $\alpha(x)$ o en $\beta(x)$.

- 2. Indique si las siguientes afirmaciones son ciertas. Justifique su respuesta.
 - (a) $\{ \forall x \forall y \, R(x,y) \to R(y,x), \, \forall x \forall y \forall z \, (R(x,y) \land R(y,z)) \to R(x,z) \} \models \forall x \, R(x,x) \}$
 - (b) $\{ \forall x \exists y \, R(x,y), \, \forall x \forall y \, R(x,y) \rightarrow R(y,x), \, \forall x \forall y \forall z \, (R(x,y) \land R(y,z)) \rightarrow R(x,z) \} \models \forall x \, R(x,x) \}$
- 3. Considere el símbolo de predicado \leq y las interpretaciones $\mathcal{I}_{\mathbb{R}}$ y $\mathcal{I}_{\mathbb{N}}$ tal que:
 - $\mathcal{I}_{\mathbb{R}}(dom) = \mathbb{R}$ y $\mathcal{I}_{\mathbb{R}}(\leq)$ es el orden sobre \mathbb{R} .
 - $\mathcal{I}_{\mathbb{R}}(dom) = \mathbb{N}$ y $\mathcal{I}_{\mathbb{N}}(\leq)$ es el orden sobre \mathbb{N} .
 - a) Escriba dos formulas α y β que cumplan las siguientes propiedades:
 - $\mathcal{I}_{\mathbb{R}} \models \alpha \ \ \text{y} \ \ \mathcal{I}_{\mathbb{N}} \not\models \alpha.$
 - $\mathcal{I}_{\mathbb{R}} \not\models \beta$ y $\mathcal{I}_{\mathbb{N}} \models \beta$.
 - b) Decimos que una formula α en lógica de predicados es existencial si es de la forma:

$$\exists x_1.\cdots\exists x_n.\beta(x_1,\ldots,x_n)$$

donde $\beta(x_1, \ldots, x_n)$ es una formula sin cuantificadores (solo usa el símbolo de predicado \leq y conectivos lógicos). Por ejemplo, la siguientes es una formula existencial:

$$\exists x. \exists y. \exists z. (x < y) \rightarrow (x < z \land \neg (z < y))$$

Demuestre que para todo formula existencial α se cumple que $\mathcal{I}_{\mathbb{R}} \models \alpha$ si, y solo si, $\mathcal{I}_{\mathbb{N}} \models \alpha$.

4. Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal{I}_{\text{primos}}$ definida como:

$$\mathcal{I}_{\mathrm{primos}}(\mathrm{dom}) := \mathbb{N}$$

 $\mathcal{I}_{\text{primos}}(=) := n = m \text{ si, y solo si, } n \text{ es igual a } m.$

 $\mathcal{I}_{\text{primos}}(\leq) := n \leq m \text{ si, y solo si, } n \text{ es menor o igual que } m.$

 $\mathcal{I}_{\text{primos}}(P) := P(n)$ si, y solo si, n es un número primo.

Recuerde que un número se dice primo si es mayor a 1 y no es divisible por ningún número exceptuando el número 1 y él mismo.

a) Para la siguiente fórmula de predicados:

$$\alpha := \forall x. \ P(x) \to (\exists y. \ x \le y \land \neg (x = y) \land P(y))$$

diga si es verdadera o falsa en la interpretación $\mathcal{I}_{\text{primos}}$ explicando su significado.

b) Escriba la siguiente fórmula en lógica de predicados sobre $\mathcal{I}_{\text{primos}}$.

"Para todo par de números primos distintos de 2 y 3, existe un número entre ellos que no es primo."

- 5. Sea a, b, c, \ldots, z las letras del alfabeto y considere el *conjunto de todas las palabras* de una o mas letras. Por ejemplo, 'perro', 'matematicas', 'tematica', 'a', 'mat' y 'tam' son palabras en el dominio de todas las palabras (note que las palabras no tienen porque tener un significado). Dado dos palabras u y v, considere el predicado $x \leq y$ con los siguientes dominios:
 - El dominio de las "palabras y prefijos" donde $u \leq v$ es verdadero si u es un prefijo de v (asuma que toda palabra es prefijo de si misma). Por ejemplo, 'mat' \leq 'matematicas' es verdadero y 'tematica' \prec 'matematicas' es falso.
 - El dominio de las "palabras y subpalabras" donde $u \leq v$ es verdadero si u es una subpalabra de v (asuma que toda palabra es subpalabra de si misma). Por ejemplo, 'tematica' \leq 'matematicas' es verdadero y 'tam' \leq 'matematicas' es falso.

Dado estos dominios, responda las siguientes preguntas sobre el predicado $x \leq y$.

a) Para la formula en lógica de predicados:

$$\alpha := \forall x. \forall y. \, \neg (y \preceq x) \vee \left(\forall z. \, z \preceq x \vee \neg (z \preceq y) \right)$$

explique el significado de α y evalúe si α es verdadera o falsa sobre cada uno de los dominios.

- b) Encuentre una formula β tal que β sea verdadera sobre el dominio de las "palabras y prefijos" pero sea falsa sobre el dominio de las "palabras y subpalabras". Explique su respuesta.
- 6. Una palabra infinita w sobre el alfabeto $\{a, b, c\}$ es una secuencia de la forma: $w = x_0x_1x_2x_3...$ donde $x_i \in \{a, b, c\}$ para todo $i \ge 0$. Por ejemplo, la siguiente es una palabra infinita:

u = aabaccabaaccaabaacaacbaaacaacaa...

Considere los símbolos de predicados \leq , $A(\cdot)$, $B(\cdot)$ y $C(\cdot)$ con A, B, y C símbolos unarios. Toda palabra infinita $w = x_0x_1x_2x_3\dots$ es posible representarla como una interpretación \mathcal{I}_w con dominio \mathbb{N} tal que:

$$\mathcal{I}_w(dom) := \mathbb{N}$$
 $\mathcal{I}_w(\leq) := \text{ orden sobre los naturales.}$
 $\mathcal{I}_w(A) := A(i) = 1 \text{ si, y solo si, } x_i = a.$
 $\mathcal{I}_w(B) := B(i) = 1 \text{ si, y solo si, } x_i = b.$
 $\mathcal{I}_w(C) := C(i) = 1 \text{ si, y solo si, } x_i = c.$

En otras palabras, la interpretación $\mathcal{I}(w)$ usa los naturales y su orden para codificar las posiciones de la palabra infinita w, y los predicados A, B y C para codificar las posiciones w que tiene la letra a, b y c, respectivamente. Por ejemplo, la interpretación \mathcal{I}_u para la palabra infinita u del ejemplo cumple que $A(0), A(1), B(2), A(3), C(4), C(5), \ldots$ son verdaderos y todos los otros casos son falsos.

Sea w una palabra infinita cualquiera y \mathcal{I}_w la interpretación que representa w. Para cada propiedad X de más abajo usted debe escribir una formula α_X en lógica de predicados tal que la palabra infinita w cumple la propiedad X si, y solo si, $\mathcal{I}_w \models \alpha_X$.

- a) La palabra infinita contiene una cantidad infinita de letras a.
- b) Las tres primeras letras de la palabra infinita son a, b y c (en ese orden).
- c) La palabra infinita contiene la subpalabra finita de la forma $abb \dots bc$, esto es, una letra a seguido de una secuencia finita de una o más letras b y terminada en una c.
- d) En cada posición par, la palabra infinita tiene una letra a y, en cada posición impar, la palabra infinita tiene una letra b.
- 7. Sea = un símbolo de predicado binario y sea Eq el conjunto de todas las interpretaciones \mathcal{I} tal que x = y es verdadero en la interpretación \mathcal{I} si, y solo si, x e y son el mismo elemento. En otras palabras, Eq tiene todas las interpretaciones que "interpretan" el predicado = como la igualdad de elementos.
 - a) Escriba una formula α en lógica de predicados usando el símbolo = tal que para toda interpretación $\mathcal{I} \in \text{Eq}$ se cumple que $\mathcal{I} \models \alpha$ si, y solo si, el dominio $\mathcal{I}(dom)$ tiene dos o más elementos.
 - b) Para $k \ge 1$, escriba una formula α_k en lógica de predicados usando el símbolo = tal que para todo $\mathcal{I} \in \text{Eq}$ se cumple que $\mathcal{I} \models \alpha_k$ si, y solo si, el dominio $\mathcal{I}(dom)$ tiene k o más elementos.
 - c) Muestre un conjunto de formulas Σ (el conjunto puede ser infinito) tal que para todo $\mathcal{I} \in \text{Eq}$ se cumple que $\mathcal{I} \models \Sigma$ si, y solo si, $\mathcal{I}(dom)$ es infinito.
- 8. Demuestre que la siguiente oración es satisfacible, esto es, existe una interpretación \mathcal{I} que la satisface:

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 (x_1 = y_1 \land x_2 = y_2 \land P(x_1, x_2)) \rightarrow P(y_1, y_2)$$

tal que \mathcal{I} interpreta = como la igualdad de elementos.

- 9. Sea R un símbolo de predicado binario y = un predicado binario que se interpreta siempre como igualdad. Construya una oración α usando el predicado R tal que α es satisfacible y para toda interpretación \mathcal{I} se tiene que si $\mathcal{I} \models \alpha$, entonces el dominio de \mathcal{I} es infinito.
- 10. Sea R un símbolo de predicado binario y = un predicado binario que se interpreta siempre como igualdad. Decimos que una oración α es existencial si $\alpha = \exists x_1 \dots \exists x_k \beta$, donde β es una fórmula sin cuantificadores.
 - (a) Sea α una oración existencial. Demuestre que si α es satisfacible, entonces existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \alpha$ y \mathcal{I} tiene un dominio finito.
 - (b) Utilizando (a) y el ejercicio 9, demuestre que existe una oración β tal que para toda oración existencial α , se tiene que $\beta \not\equiv \alpha$.
- 11. Sea R un símbolo de predicado binario y = un predicado binario que se interpreta siempre como igualdad. Construya una oración α tal que:
 - para todo $n \in \mathbb{N}$, existe una interpretación \mathcal{I} con dominio A tal que A es finito, $|A| \ge n$ y $\mathcal{I} \models \alpha$; y
 - para toda interpretación \mathcal{I} con dominio A, si $\mathcal{I} \models \alpha$ y A es finito, entonces A tiene un número par de elementos.
- 12. Sea < un símbolo de predicado binario y = un predicado binario que se interpreta siempre como igualdad. Sea Σ un conjunto formado por las siguientes oraciones:

$$\begin{array}{lcl} \alpha_1 & = & \forall x \, \neg (x < x) \\ \alpha_2 & = & \forall x \forall y \forall z \, ((x < y \wedge y < z) \rightarrow x < z) \\ \alpha_3 & = & \forall x \forall y \, (x < y \vee y < x \vee x = y). \end{array}$$

Conteste las siguientes preguntas.

- (a) Construya una interpretación \mathcal{I}_1 tal que $\mathcal{I}_1 \models \Sigma$.
- (b) Construya una interpretación \mathcal{I}_2 tal que $\mathcal{I}_2 \models \Sigma \cup \{\alpha_4, \alpha_5, \alpha_6\}$, donde:

$$\begin{array}{rcl} \alpha_4 & = & \forall x \exists y \ (x < y) \\ \alpha_5 & = & \forall x \exists y \ (y < x) \\ \alpha_6 & = & \forall x \forall y \ (x < y \rightarrow \exists z \ (x < z \land z < y)). \end{array}$$

(c) Construya una interpretación \mathcal{I}_3 tal que $\mathcal{I}_3 \models \Sigma \cup \{\alpha_6, \alpha_7, \alpha_8\}$, donde α_6 es la oración definida en (b) y:

$$\alpha_7 = \exists x \forall y (y < x \lor y = x)$$

 $\alpha_8 = \exists x \forall y (x < y \lor y = x)$

(d) Construya una interpretación \mathcal{I}_4 tal que $\mathcal{I}_4 \models \Sigma \cup \{\alpha_7, \alpha_8, \alpha_9\}$, donde α_7 y α_8 son las oraciones definida en (c) y:

$$\alpha_9 = \forall x (\exists y (x < y) \rightarrow \exists z (x < z \land \neg \exists w (x < w \land w < z))).$$

13. Una fórmula α en lógica de predicados está en Forma Normal Prenex (FNP) si:

$$\alpha = Q_1 x_1 \cdots Q_k x_k \beta,$$

donde $Q_i = \exists$ o $Q_i = \forall$, para cada $i \in \{1, \dots, k\}$, y β es una fórmula sin cuantificadores. Por ejemplo, la fórmula $\forall x \exists y (R(x,y) \land \neg T(y,x,z))$ está en FNP, mientras que la fórmula $\forall x (P(x) \rightarrow \exists y R(x,y))$ no lo está.

Sea α la oración:

$$\neg \bigg[\bigg(\bigg(\exists x \exists y \, (R(x,y) \land \neg S(y,x)) \bigg) \land \bigg(\forall x \, ((\exists y \, R(x,y)) \rightarrow (\exists y \, S(x,y)) \bigg) \bigg) \bigg) \\ \qquad \qquad \bigg(\forall x \exists z \, (R(x,z) \lor \forall y \, (S(x,y) \land R(z,y))) \bigg) \bigg].$$

Construya una oración β en FNP que sea equivalente a α .

- 14. Sea α una oración arbitraria. Demuestre que existe una oración β tal que:
 - las variables mencionadas en β son x_1 , x_2 , x_3 , x_4 y x_5 ; y
 - para cada interpretación \mathcal{I} cuyo dominio tiene 4 elementos, se tiene que $\mathcal{I} \models \alpha$ si, y sólo si, $\mathcal{I} \models \beta$.

Para esta pregunta usted puede utilizar el símbolo de igualdad = que se interpreta siempre como igualdad de elementos.

15. Dado una interpretación \mathcal{I} con dominio A y un conjunto $S \subseteq A$, decimos que S es definible en \mathcal{I} si existe una fórmula $\alpha(x)$ tal que:

$$S = \{a \in A \mid \mathcal{I} \models \alpha(a)\}$$

Suponga que +, \cdot son símbolos de predicados ternarios (esto es, x+y=z, $x\cdot y=z$), y suponga que \mathcal{I} es la interpretación sobre los reales donde $\mathcal{I}(dom)=\mathbb{R}$ y $\mathcal{I}(+)$, $\mathcal{I}(\cdot)$ son la interpretación de la suma y multiplicación sobre los reales.

- (a) Demuestre que $\{0\}$ y $\{1\}$ son definibles en \mathcal{I} .
- (b) Demuestre que $\{a \in \mathbb{R} \mid a > 0\}$ es definible en \mathcal{I} .

- (c) Sea n un número natural arbitrario. Demuestre que $\{n\}$ es definible en \mathcal{I} .
- (d) Sea n un número entero arbitrario. Demuestre que $\{n\}$ es definible en \mathcal{I} .
- (e) Sea r un número racional arbitrario. Demuestre que $\{r\}$ es definible en \mathcal{I} .
- 16. Considere la definición de definibilidad dada en la pregunta anterior. Suponga que +, \cdot son símbolos de predicados ternarios, y suponga que \mathcal{I} es la interpretación sobre los naturales donde $\mathcal{I}(dom) = \mathbb{N}$ y $\mathcal{I}(+)$, $\mathcal{I}(\cdot)$ son la interpretación de la suma y multiplicación sobre los naturales. En esta pregunta, usted debe demostrar que el conjunto:

 $S = \{a \in \mathbb{N} \mid \text{existe un número primo } p \text{ y un número } b \in \mathbb{N} \text{ tal que } p^b = a\}$

es definible en \mathcal{I} .