Chapitre 7 Trigonométrie

Dans le plan, on choisit une *orientation* : on décide de manière arbitraire que le *sens direct* est le sens de rotation contraire à celui des aiguilles d'une montre. L'autre sens et appelé *sens indirect*.

1 L'enroulement de R sur le cercle trigonométrique

Un cercle trigonométrique est un cercle de rayon 1. Il est fréquent de munir le plan d'un repère orthonormal $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ et de prendre pour cercle trigonométrique le cercle $\mathcal C$ de rayon 1 centré en O.

Soit (\mathcal{D}) la droite passant par I(1;0), orientée et dirigée par \overrightarrow{j} . La droite graduée (\mathcal{D}) représente alors l'ensemble \mathbf{R} .

On «enroule» R sur le cercle en faisant correspondre :

- zéro avec I;
- chaque point de (\mathcal{D}) représentant un réel positif x avec l'unique point M(x) du cercle tel que l'arc \widehat{IM} soit **direct** et de longueur x;
- chaque point de (\mathcal{D}) représentant un réel négatif x avec l'unique point M(x) du cercle tel que l'arc \widehat{IM} soit l'image de x sur \mathcal{C} et de longueur -x.

On appelle ce point M(x) l'image de x sur C.

Propriété

Le cercle trigonométrique a pour longueur 2π .

Propriété

• Deux nombres réels x et x' ont la même image sur \mathcal{C} si et seulement si ces deux nombres sont séparés par un multiple entier de 2π , ce qui peut s'écrire

$$x - x' = k \times 2\pi$$
 $(k \in \mathbf{Z})$

- Si M est l'image d'un réel x alors les nombres qui ont également M pour image sont les réels de la forme

$$x + k \times 2\pi$$
 $(k \in \mathbf{Z})$

Définition: radian

On définit l'unité $\ radian\$ comme ceci : un radian est la mesure d'un angle qui intercepte un arc de $\mathcal C$ de longueur 1.

360 degrés correspondent à 2π radians.

Propriété: Conversion des mesures d'angles usuelles

Angle (en degrés)	360	180	90	d	$r \times \frac{360}{2\pi}$
Angle (en radians)	2π	π	$\frac{\pi}{2}$	$d \times \frac{2\pi}{360}$	r

Exemples

• Un angle de 30° mesure radians.

• Un angle de 45° mesureradians.

2 Cosinus et sinus d'un nombre réel

Définition : cosinus et sinus d'un nombre réel

Soit $x \in \mathbf{R}$. Soit M son image sur \mathcal{C} .

On appelle $\cos inus de x$ et on note $\cos x$ l'abscisse

L'ordonnée de M est le sinus de x, noté sin x.

Propriétés

Pour tout $x \in \mathbf{R}$ et pour tout $k \in \mathbf{Z}$ on a :

$$\cdot -1 \leqslant \cos x \leqslant 1 \text{ et } -1 \leqslant \sin x \leqslant 1$$

$$egin{aligned} \cdot & -1 \leqslant \cos x \leqslant 1 \ ext{et} \ -1 \leqslant \sin x \leqslant 1 \end{aligned}$$
 $egin{aligned} \cdot & \cos (x + k imes 2\pi) = \cos x \ ext{et} \sin (x + k imes 2\pi) = \sin x \end{aligned}$ $egin{aligned} \cdot & \cos^2 x + \sin^2 x = 1 \end{aligned}$

$$\cdot \cos^2 x + \sin^2 x = 1$$

Cosinus et sinus classiques

x en degrés	0	30	45	60	90	180
$oldsymbol{x}$ en radians	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Preuve

Démonstrations en vidéo :

- Démontrer que $\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}$: https://youtu.be/ViDEbKPzd34
- Démontrer que $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ et que $\cos \frac{\pi}{3} = \frac{1}{2}$: https://youtu.be/gYeR0TzOHAw

À retenir

