Data Analytics CS301 Tidy Data and Import

Week 6
Fall 2018
Oliver Bonham-Carter

On Exam 1, 2:30pm, 12th Oct 2018

- Online exam: multiple choice, matching, True and False.
- Up through week 6: Exploratory Data Analysis Material, and Tidy Data and Import
- Study your slides and notes.
- Turn to the book to provide further detail as needed.
- Be familiar with the graphing code in R. You do not have to write code, but you will have to recognize working code.
- Be familiar with concepts discussed in class such as problems using bin-widths, working with outliers or missing information, categorical variables and others discussion points.

On Exam 1, 2:30pm, 12th Oct 2018

- Topics
 - Google Analytics
 - Web traffic Information: understanding terms and reading plots
 - Data Visualizations: types and meanings
 - R Statistics: recognizing the code to make particular plots
 - Basic syntax and methods
 - Library features:
 - Tidyverse, nycflights13, lubridate
 - Concepts:
 - Exploratory data analysis
 - Tidy data manipulation
 - Managing date and time
 - Others from recent lessons

Where in the Web? Where in the Book?

- Note the chapter differences!
- Book:
 - Chap 8
- Web:
 - Chap 11

Tidy Data and Import

Now That We Are RStudio Programmers...

- Consider starting with a clean-slate, without a bunch of old data tables.
- Consider not saving your Renvironment after each session.
- Instead, your work and code should come source files and not be textmined from the command history.

- Consider
 stopping the
 workspace from
 being saved
 each time.
- This move will encourage you to begin writing code to be opened in RStudio.
- Better command archive for future works.

Entering Data as a Table

Your own data typed in:

```
read_csv("a,b,c
1,2,3
4,5,6")
```

```
read_csv("a,b,c \n 1,2,3\n4,5,6")
read_csv("1,2,3\n4,5,6", col_names = FALSE)
read_csv("1,2,3\n4,5,6", col_names = c("a", "b", "c"))
```


Loading Data and Saving Plots

```
#Rscript:
library(tidyverse)
sunSpotData1 <- read.table(file.choose(),</pre>
sep=",",header = TRUE)
#sunSpotData2 <- read.table(data/sunSpots.csv,
sep=",",header = TRUE)
sunSpotData3 <- read_csv("PATH/sunSpots.csv")</pre>
ggplot(data = sunSpotData1) + geom_point(mapping =
aes(x = frac0fYear, y = sunspotNum, color = month))
#save the plot to file
ggsave("~/Desktop/fractOfYearVersusSunspots.png")
```

Save only good code and then have it to run later.

How Do We Deal With Messy Data?

- We may try to use a data table only to find:
 - There are numbers mixed with characters
 - Different types of entries are mixed in a column
 - Mixed makes things messy.

The Organization of Data

```
#Naturally tidy data:
data_frame(x = 1:5, y = 1, z = x \wedge 2 + y)
                                What are the qualities
                                 that make data tidy?!
library(tidyverse)
# The same data displayed in multiple ways; each data set
below organizes the values in a different way
table1 # country year cases population
table2 # country year type count
table3 # country year rate
table4a # country `1999` `2000`
```

table4b # country `1999` `2000`

Tidy Data

- What does tidy data look like?
 - A column should be of all same types and description
- There are three interrelated rules which make a data set tidy:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.

ALLEGHENY COLLEGE

Tidy Data

- Be tidy: it matters how your data is arranged
- Trends could be missed due to mess
- Code is easiest to implement when data from a column is same

Figure 9-1 shows the rules visually.

Figure 9-1. The following three rules make a dataset tidy: variables are in columns, observations are in rows, and values are in cells

Which Table is Most Tidy?

View(table1)

- There are three interrelated rules which make a data set tidy:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.
- Table 1 is the most tidy for for data-organization

```
> table1
 A tibble: 6 x 4
                     cases population
      country year
       <chr> <int>
                     <int>
                                <int>
 Afghanistan
               1999
                       745
                             19987071
                      2666
 Afghanistan
               2000
                             20595360
3
      Brazil
               1999
                     37737
                            172006362
              2000
                     80488
      Brazil
                            174504898
               1999 212258 1272915272
       China
        China
               2000 213766 1280428583
```

All same types and descriptions in columns, but it seems that two sets are mixed

Not Tidy!!

- View(table2)
- Not tidy
- The Cases are easily confused


```
> table2
 A tibble: 12 x 4
       country
                            type
                                       count
                year
         <chr> <int>
                           <chr>>
                                       <int>
                 1999
 1 Afghanistan
                           cases
                                         745
                1999 population
                                    19987071
 2 Afghanistan
 3 Afghanistan
                2000
                                        2666
                           cases
   Afghanistan
                2000 population
                                    20595360
                1999
 5
        Brazil
                                       37737
                           cases
                1999
                      population
                                   172006362
6
        Brazil
        Brazil
                2000
                                       80488
                           cases
8
                2000 population
        Brazil
                                   174504898
                                      212258
         China
                1999
                           cases
                1999
                      population 1272915272
10
         China
11
         China
                2000
                                      213766
                           cases
12
                 2000 population 1280428583
         China
```


- Use the functions that we already know
 - #Mutate() to Compute rate (new column) per 10,000
 table1 %>%
 mutate(rate = cases / population * 10000)
 - #Quick Computations of cases per year table1 %>% count(year, wt = cases)

```
# <int> <int> 1999: 745 + 37737 + 212258  
# 1 1999 250740  
# 2 2000 296920  
2000: 213766 + 80488 + 2666
```

```
table1 %>% count(country, wt =
          as.numeric(population))
# count the populations, aggregated by country
```


Implement Some Code

```
# Visualize changes over time on table1
library(ggplot2)
ggplot(table1, aes(year, cases)) +
geom_line(aes(group = country), colour =
"grey50") + geom_point(aes(colour = country))
```


Output From The Code

Bad Organization, Bad Luck!!

- We can apply code to data when in the right format (integers, strings, etc.)
- What happens when the data is badly stored; messy, and without any organization??!

Gather(): Table4a

- The Gather()
 function takes
 multiple columns
 and collapses into
 key-value pairs,
 duplicating all
 other columns as
 needed.
- Use gather() when you notice that you have columns that are not variables.

These variables could be better ordered as elements of "Year"

Reordering of Data: table4a

	country [‡]	1999 ‡	2000 ‡
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766


```
newTable <-
    table4a %>%
    gather(`1999`,`2000`,
    key = "year",
    value = "cases")
```


How did we do that?

```
newTable <- table4a %>%
    gather( `1999`,
    `2000`, key = "year",
value = "cases")
```

Here's how: Reorganize the data in the columns

Figure 12.2: Gathering table4 into a tidy form.

Reordering of Data: table4b

	country	1999 ‡	2000 ‡
1	Afghanistan	19987071	20595360
2	Brazil	172006362	174504898
3	China	1272915272	1280428583

newTable <table4b %>%
gather(`1999`, `2000`,
key = "year",
value = "population")

spread(): table2

Dealing with mixed values in the same column

spread(): table2

	country [‡]	year 🗦	type [‡]	count [‡]
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488

ng 1 to 8 of 12 entries

spread(table2,key =
type,value = count)

```
> spread(table2, key = type,
value = count)
# A tibble: 6 x 4
     country year
                     cases
        <chr> <int> <int>
1 Afghanistan
               1999
                       745
2 Afghanistan
              2000
                    2666
3
      Brazil
              1999
                    37737
      Brazil 2000
                     80488
        China 1999 212258
        China 2000 213766
  ... with 1 more variables:
#
    population <int>
```


separate(): table3

```
table3 %>%
separate(rate,
into = c("cases",
"population"),
sep = "/")
```

Here's how:
Push the data
into two columns

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

table3

separate(): table3

- What do I do if I know that my column contains mixed data entries?
- Given a regular expression of a vector is character positions, separate() turns a single character column into multiple columns.

	country [‡]	year [‡]	rate [‡]
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

Break the string into length 2 chunks and place left in new col *century* and other in col *year*.

```
table3 %>%
separate(year, into = c("century", "year"), sep = 2)
table3 %>%
separate(rate, into = c("cases", "pop"), sep = "/")
```


unite(): table6

table5 %>%
unite(new,
century,year)

Here's how:
Pull the data
from two columns

country	year	rate					
Afghanistan	19 99	745 / 19987071					
Afghanistan	20 00	2666 / 20595360					
Brazil	19 99	37737 / 172006362					
Brazil	20 00	80488 / 174504898					
China	19 99	212258 / 1272915272					
China	20 00	213766 / 1280428583					

country	century	year	rate
Afghanistan	19	99	745 / 19987071
Afghanistan	20	0	2666 / 20595360
Brazil	19	99	37737 / 172006362
Brazil	20	0	80488 / 174504898
China	19	99	212258 / 1272915272
China	20	0	213766 / 1280428583

table6

unite(): table3

- What do I do if I know that two columns contains data that could go into one column?
- Given a regular expression of a vector is character positions, separate() turns a single character column into multiple columns.

Ex: Unite Compounded Entries

	country [‡]	century	year [‡]	rate [‡]
1	Afghanistan	19	99	745/19987071
2	Afghanistan	20	00	2666/20595360
3	Brazil	19	99	37737/172006362
4	Brazil	20	00	80488/174504898
5	China	19	99	212258/1272915272
6	China	20	00	213766/1280428583

What is the output of this?!

```
table5 %>%
  unite(new, century,
     year, sep = "")
```


Missing Values!?

- We may find that table entries are missing
- Two types of missing entries
 - Explicitly, i.e., flagged with NA.
 - Implicitly, i.e., simply not present in the data.

Missing Data Illustrated

```
# Make a table with a missing entry (NA). Missing qtr: stocks <- tibble(

year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016, 2016), qtr = c(1, 2, 3, 4, 2, 3, 4), return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66))
```

- Two missing values in this dataset:
 - The return for the **fourth** quarter of 2015 is explicitly missing, there is an entry of NA
 - The return for the first quarter of 2016 is implicitly missing, because it simply does not appear in the dataset.

year [‡] qtr [‡] return [‡]

	1	2015	1	1.88	Missing
	2	2015	2	0.59	
Missing "1"	3	2015	3	0.35	
	4	2015	4	NA	
	5	2016	2	0.92	_
	6	2016	3	0.17	

```
# Make a table with a missing entry (NA).

stocks <- tibble(

year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),

qtr = c( 1, 2, 3, 4, 2, 3, 4),

return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66))
```


	qtr [‡]	2015 ‡	2016 [‡]
1	1	1.88	NA
2	2	0.59	0.92
3	3	0.35	0.17
4	4	NA	2.66


```
# Make the implicit missing values explicit.
# Use spread() to place both years into own column.
stocks %>%
  spread(year, return)
```


Removing Missing Entries

```
# Remove the rows having holes in the data
# Create two cols for years 2015 and 2016
# Place years back into the same col again,
removing the missing entries.
stocks %>%
spread(year, return) %>% gather(year, return,
`2015`:`2016`, na.rm = TRUE)
```

The progression of the tables as the missing values are removed

	qtr ‡	year [‡]	return [‡]
1	1	2015	1.88
2	2	2015	0.59
3	3	2015	0.35
6	2	2016	0.92
7	3	2016	0.17
8	4	2016	2.66

	year	qtr	return *
1	2015	1	1.88
2	2015	2	0.59
3	2015	3	0.35
4	2015	4	NA
5	2016	2	0.92
6	2016	3	0.17
7	2016	4	2.66

	qtr	#	2015 =	2016
1		1	1.88	NA
2		2	0.59	0.92
3		3	0.35	0.17
4		4	NA	2.66

Let's Just Guess About The Missing Stuff...

```
#Create a table with missing entries
treatment <- tribble(
  ~ person, ~ treatment, ~response,
  "Derrick Whitmore", 1, 7,
  NA, 2, 10,
  NA, 3, 9,
  "Katherine Burke", 1, 4
```


 We assume that Derrick Whitmore's name makes up the missing entries.

	person	treatment	response
1	Derrick Whitmore	1	7
2	NA	2	10
3	NA	3	9
4	Katherine Burke	1	4

Whitmore To The Rescue?

	person	treatment	response
1	Derrick Whitmore	1	7
2	Derrick Whitmore	2	10
3	Derrick Whitmore	3	9
4	Katherine Burke	1	4

Can anything go wrong with this?!

treatment %>%
 fill(person)