INTRODUCTION TO LIE ALGEBRAS – SOLUTION 9

Denote the Lie algebras from (i) and (ii) by \mathfrak{g}_1 and \mathfrak{g}_2 respectively. Let us choose the basis in the Lie algebra \mathfrak{g}_2 of the three matrices

$$E_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_{23} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

We can define a bijective linear map $\varphi: \mathfrak{g}_1 \to \mathfrak{g}_2$ by

$$\varphi(E) = E_{13}, \quad \varphi(F) = E_{12}, \quad \varphi(G) = E_{23}.$$

Let us prove that φ is an isomorphism of Lie algebras. Because of Exercise 2, we only have to prove that $[E_{13}, E_{12}] = 0$, $[E_{13}, E_{23}] = 0$ and $[E_{12}, E_{23}] = E_{13}$. But this is clear.

INTRODUCTION TO LIE ALGEBRAS – SOLUTION 10

By definition, for any two derivations $D, D' \in \text{Der}(\mathfrak{g})$ their Lie bracket is the usual commutator:

$$[D, D'] = DD' - D'D.$$

Now suppose that the derivation D' is inner: $D' = \operatorname{ad} X$ for some element $X \in \mathfrak{g}$. This means that for any $Y \in \mathfrak{g}$ we have D'(Y) = [X, Y] in \mathfrak{g} . Let us prove that $[D, D'] \in \operatorname{Der}(\mathfrak{g})$ is again an inner derivation. Indeed, for any $Y \in \mathfrak{g}$ we have

$$[D, D'](Y) = (DD' - D'D)(Y) = D(D'(Y)) - D'(D(Y)) = D([X, Y]) - [X, D(Y)].$$

By the Leibniz rule for the derivation D, the right hand side of this equalities coincides with [D(X), Y]. This means that $[D, D'] = \operatorname{ad}(D(X))$, the inner derivation corresponding to the element $D(X) \in \mathfrak{g}$.