

Construction of Pbs.PGK.PCR1

FIG. I

Construction of pIG.E1a.E1b.X

FIG. 2

FIG. 3A

Construction of pIG.E1a.NEO

FIG. 3B

FIG. 4

Construction of pIG.E1a.E1b

Construction of pIG.NEO

FIG. 5

Overview of available adenovirus packaging constructs and assessment of their capacity to transform primary kidney cells

transformation of primary kidney cells

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

nd

$1\mu\text{g}$
 $5\mu\text{g}$

NEO p(A)

nd

1

+ SV40.E1B (1 μg)

nd

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

*average of 5 plates 21 days after transselection

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

NEO p(A)

E1b

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

$1\mu\text{g}$
 $5\mu\text{g}$

nd

nd

nd

Western blotting analysis of A549 clones transfected
with pIG.E1A.NEO and PER clones
(HER cells transfected with pIG.E1A.E1B)

FIG. 7

Southern blot analyses of 293, 911 and PER cell lines

FIG. 8

Transfection efficiency of PER.C3, PER.C5, PER.C6 and 911 cells. Cells were cultured in 6-well plates and transfected ($n=2$) with 5 μ g pRSV.lasZ by calcium-phosphate co-precipitation. Forty-eight hours later the cells were stained with X-GAL. The mean percentage of blue cells is shown.

FIG. 9

Construction of pMLP1.TK

FIG. 10

New recombinant adenoviruses and packaging constructs without sequence overlap

FIG. 1A

Packaging system based on primary cells

New recombinant adenoviruses and packaging constructs without sequence overlap

Packaging system based on established cell lines: transfection with E1a and selection with G418
FIG. I |B

Generation of recombinant adenovirus

FIG. 12

FIG. 13

Replication of Adenovirus

FIG. 14

The potential hairpin conformation of a single-stranded DNA molecule that contains the HP/asp sequences used in these studies. Restriction with the restriction endonucleases *Asp718I* of plasid pICLHa, containing the annealed oligonucleotide pair HP/asp1 en HP/asp2 will yield a linear double-stranded DNA fragment. In cells in which the required adenovirus genes are present, replication can initiate at the terminus that contains the ITR sequence. During the chain elongation, the one of the strands will be displaced. The terminus of the single-stranded displaced-strand molecule can adopt the conformation depicted above. In this conformation the free 3'-terminus can serve as a primer for the cellular and/or adenovirus DNA polymerase, resulting in conversion of the displaced strand in a double-stranded form.

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

Cloned adenovirous fragments

FIG. 20

Adapter plasmid pAd5/L420-HSA

195

FIG. 21

Adapter plasmid pAd5/CLIP

FIG. 22

Generation of recombinant adenoviruses

Minimal adenovirus vector pMV/L420H

FIG. 24

Construction of pWE/Ad Δ 5'

pBr/Ad.Bam-rrTR.pac
x BamHI and PacI

pBr/Ad.Cla-Bam
x EcoRI and AfI(partial)

pcr fragment
left ITR

pAd/rrTR(Δ 5')-BamHI
xPacI, BamHI

+ pWE15.Pac x PacI

xPacI, BamHI

FIG. 25

FIG. 26A

FIG. 26C

FIG. 26B

CDNA insert

Average percentage CPE efficiency: 86 %

FIG. 27

Gene Insert kb

Gene	Insert kb	Average titer $0.8 \pm 0.7 \times 10^9$ pfu/ml
cenOS	3.6	
hTERT	3.5	
hTERT D712A	3.5	
lacZ	3.2	
hCAT1	2.2	
GLVR2	2.0	
Luc	1.7	
SOD3	1.4	
MAX1	.550	
hVEGF121	.511	
hIL3	.434	
UBC9	.412	
ANG1-7	.104	

FIG. 28

% wells producing functional virus

Gene	Number of CPE+ wells
ceNOS	19/19
IL3	7/7
lacZ	36/36
Luc	40/40
GFP	48/48

Gene	Number of plaques
ceNOS	9/9
IL3	9/9
lacZ	40/40
Luc	9/9
EGFP	IP
GLVR2	9/9

FIG. 29

FIG. 3IA

FIG. 3IB

FIG. 3IC

FIG. 32

FEB 02 2004
PATENT & TRADEMARK OFFICE
U.S.

FIG. 33

FIG. 34A

FIG. 34B

FIG. 34C

FIG. 34D

FIG. 34E

FIG. 34F

Ad5 pp 3511-6095

FIG. 34G

FIG. 34H

FIG. 34 |

FIG. 34J

FIG. 34K

FIG. 34L

FIG. 34M

Relative amounts of wells with CPE after transfection of PER.C6/E2A cells with pCLIP-LacZ and the adapter plasmid pIPspAdapt2.

Transfection of pIPspAdapt2 to PER.C6/E2A

FIG. 34N

FIG. 35

Construction total Adeno cDNA Library (1)

Cells/tissue → mRNA isolation → cDNA →

E.coli transformation

transfer colonies

Isolation of adapter plasmids
with c DNA

Linearize
adapters

FIG. 36A

Construction total Adeno cDNA Library (II)

FIG. 36B

EXAMPLE 21. 384 WELL PLATE IN PROGRESS

Co-transfections on 384 well plates

FIG. 37A

Co-transfections on 96 well plates
(control plate)

FIG. 37B

Co-transfections on 384 well plates

FIG. 37C

Co-transfections on 96 well plates
(control plate)

FIG. 37D

Medium changed 7 days after transfection

FIG. 38A

Medium not changed

FIG. 38B

Propagation 7 days after transfection

FIG. 38C

FIG. 40

FIG. 4I

FIG. 42

FIG. 43

FIG. 44