Developed an automated machine learning model to estimate insurance premiums for new medical insurance policies. The model leverages key input features, including age, gender, BMI, number of dependents, smoking status, and region of residence, to accurately predict premium charges.


```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRFRegressor
```

df.head()

→		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

number of rows and columns
df.shape

```
(1338, 7)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1338 entries, 0 to 1337
    Data columns (total 7 columns):
         Column
                  Non-Null Count Dtype
                  -----
         age
                  1338 non-null
                                 int64
     1
         sex
                1338 non-null object
     2
              1338 non-null float64
         bmi
     3
         children 1338 non-null
                               int64
     4
                 1338 non-null
                               object
         smoker
     5
         region 1338 non-null
                               object
         charges 1338 non-null
                                float64
     6
    dtypes: float64(2), int64(2), object(3)
    memory usage: 73.3+ KB
```

Categorical Variables

Sex

Smoker

Region

checking for missing values
df.isnull().sum()

	0
age	0
sex	0
bmi	0
children	0
smoker	0
region	0
charges	0
dtype: int6	4

df.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
import plotly.express as px
import matplotlib
import seaborn as sns
%matplotlib inline
```

The following settings will improve the default style and font sizes for our charts.

df.age.describe()

	age
count	1338.000000
mean	39.207025
std	14.049960
min	18.000000
25%	27.000000
50%	39.000000
75%	51.000000
max	64.000000

dtype: float64

```
fig.update_layout(bargap=0.1, height=600)
fig.show()
```

Distribution of Age

Body Mass Index

The distribution of BMI (Body Mass Index) of customers, using a histogram and box plot.

Distribution of BMI (Body Mass Index)

The measurements of body mass index seem to form a Gaussian

 distribution centered around the value 30, with a few outliers towards the right.

Annual Medical Charges

most customers, the annual medical charges are under \$10,000. Only a small fraction of customer have higher medical expenses, possibly due to accidents, major illnesses and genetic diseases. The distribution follows a "power law" There is a significant difference in medical expenses between smokers and non-smokers.

Annual Medical Charges

#Smoker
df.smoker.value_counts()

count

smoker	
no	1064
yes	274

dtype: int64

```
#Smokers Distribution by Sex
fig = px.histogram(
    df,
    x='smoker',
    color='sex',
    title='Smokers Distribution by Sex'
)
```

```
fig.update_layout(
     width=800,
     height=600
)
fig.show()
```

Smokers Distribution by Sex


```
# region column
plt.figure(figsize=(6,6))
sn.countplot(x='region', data=df)
plt.title('region')
plt.show()
```



```
# children column
plt.figure(figsize=(6,6))
sn.countplot(x='children', data=df)
plt.title('Children')
plt.show()
```


df['children'].value_counts()

count

children			
0	574		
1	324		
2	240		
3	157		
4	25		
5	18		

dtype: int64

```
# region column
plt.figure(figsize=(6,6))
sn.countplot(x='smoker', data=df)
plt.title('Smoker')
plt.show()
```


df['smoker'].value_counts()

count

smoker	
no	1064
yes	274

dtype: int64

sns.barplot(data=df, x='smoker', y='charges');

sns.barplot(data=df, x='sex', y='charges')

<Axes: xlabel='sex', ylabel='charges'>

Age vs. Charges

BMI vs. Charges

df.corr()

	age	sex	bmi	children	smoker	region	charges
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.299008
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.057292
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.198341
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.067998
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.787251

 region
 0.002127
 0.004588
 0.157566
 0.016569
 -0.002181
 1.000000
 -0.006208

 charges
 0.299008
 0.057292
 0.198341
 0.067998
 0.787251
 -0.006208
 1.000000

#Heatmap
plt.figure(figsize=(8,6))
sn.heatmap(df.corr(), annot=True, cmap='Blues')

sn.pairplot(df)

df.head()

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

non_smoker_df = df[df.smoker == 0]

non_smoker_df.head(4)

	age	sex	bmi	children	smoker	region	charges
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061

4 32 1 28.880 0 0 1 3866.85520

plt.title('Age vs. Charges')
sns.scatterplot(data=non_smoker_df, x='age', y='charges', alpha=0.7, s=15);

Model

In the above case, the x axis shows "age" and the y axis shows "charges". Thus, we're assuming the following relationship between the two:

charges=w×age+b

We'll try determine ww and bb for the line that best fits the data.

This technique is called linear regression, and we call the above equation a linear regression model,

The numbers ww and bb are called the parameters or weights of the model.

The values in the "age" column of the dataset are called the inputs to the model and the values in th

Let define a helper function estimate charges, to compute charges, given age, w and b.

```
#create a function
def estimate_charges(age, w, b):
    return w * age + b
```

The estimate_charges function is our very first model.

Let's guess the values for w and b and use them to estimate the value for charges.

```
w = 50
b = 100

ages = non_smoker_df.age
estimated_charges = estimate_charges(ages, w, b)

plt.plot(ages, estimated_charges, 'r-o');
plt.xlabel('Age');
plt.ylabel('Estimated Charges');
```


As expected, the points lie on a straight line.

We can overlay this line on the actual data, so see how well our model fits the data.

```
target = non_smoker_df.charges

plt.plot(ages, estimated_charges, 'r', alpha=0.9);
plt.scatter(ages, target, s=8,alpha=0.8);
plt.xlabel('Age');
plt.ylabel('Charges')
plt.legend(['Estimate', 'Actual']);
```



```
def try_parameters(w, b):
    ages = non_smoker_df.age
    target = non_smoker_df.charges

    estimated_charges = estimate_charges(ages, w, b)

    plt.plot(ages, estimated_charges, 'r', alpha=0.9);
    plt.scatter(ages, target, s=8,alpha=0.8);
    plt.xlabel('Age');
    plt.ylabel('Charges')
    plt.legend(['Estimate', 'Actual']);

try_parameters(60, 200)
```

Estimate . . .

Loss/Cost Function

We can compare our model's predictions with the actual targets using the following method:

```
Calculate the difference between the targets and predictions (the differenced is called the "residual Square all elements of the difference matrix to remove negative values.

Calculate the average of the elements in the resulting matrix.

Take the square root of the result
```

The result is a single number, known as the root mean squared error (RMSE). The above description can be stated mathematically as follows: WCanPkA.png

Geometrically, the residuals can be visualized as follows: II3NL80.png

Let's define a function to compute the RMSE.

```
def rmse(targets, predictions):
    return np.sqrt(np.mean(np.square(targets - predictions)))
```

Let's compute the RMSE for our model with a sample set of weights

```
targets = non_smoker_df['charges']
```

```
predicted = estimate_charges(non_smoker_df.age, w, b)
rmse(targets, predicted)
8461.949562575493
```

Linear Regression using Scikit-learn

In practice, you'll never need to implement either of the above methods yourself. You can use a library like scikit-learn to do this for you.

```
model = LinearRegression()

inputs = non_smoker_df[['age']]

targets = non_smoker_df.charges
print('inputs.shape :', inputs.shape)
print('targes.shape :', targets.shape)

inputs.shape : (1064, 1)
targes.shape : (1064,)
```

Model for Non-Smokers

```
#Let's fit the model to the data.

model.fit(inputs, targets)

**LinearRegression (i) ?*
LinearRegression()

## We can now make predictions using the model. Let's try predicting the charges for t model.predict(np.array([[23], [37], [61]]))

/usr/local/lib/python3.11/dist-packages/sklearn/base.py:439: UserWarning:

X does not have valid feature names, but LinearRegression was fitted with feature array([ 4055.30443855, 7796.78921819, 14210.76312614])
```

try_parameters(model.coef_, model.intercept_)


```
X = df.drop(columns='charges', axis=1)
Y = df['charges']
print('X :', X.shape)
print('Y :', Y.shape)
```

First complete Model

```
model2.fit(X_train, Y_train)
     ▼ LinearRegression
     LinearRegression()
# w & b
model2.coef_,model2.intercept_
     (array([ 251.36689613, -35.4338166,
                                               330.76133485,
                                                               589.05862101,
             23905.96516848, -323.62760276]),
      -11747.4671720888)
cat_cols = ['smoker', 'sex']
categorical_data = df[cat_cols].values
from sklearn.preprocessing import StandardScaler
numeric_cols = ['age', 'bmi', 'children', 'region']
scaler = StandardScaler()
scaler.fit(df[numeric_cols])
     ▼ StandardScaler
     StandardScaler()
weights_df = pd.DataFrame({
    'feature': np.append(numeric_cols + cat_cols, 'Intercept'),
    'waight' no annoud/madal2 coaf modal2 intancant \
```

```
weight : np.appenu(modeiz.coei_, modeiz.intercept_)
})
# Sort the DataFrame by weight
weights_df = weights_df.sort_values('weight', ascending=False)
print(weights df)
         feature weight
          smoker 23905.965168
    4
    3
          region 589.058621
    2 children 330.761335
    0
             age 251.366896
    1
                   -35.433817
             bmi
    5
             sex -323.627603
    6 Intercept -11747.467172
# prediction on training data
training_data_prediction =model2.predict(X_train)
# R squared value
r2_train = metrics.r2_score(Y_train, training_data_prediction)
print('R squared vale : ', r2_train)
    R squared vale : 0.7519923667088932
# Compute loss to evalute the model
loss = rmse(Y_train, training_data_prediction)
print('Train Loss:', loss)
    Train Loss: 6008.670641259382
# prediction on test data
test_data_prediction =model2.predict(X_test)
# R squared value
r2_test = metrics.r2_score(Y_test, test_data_prediction)
print('R squared vale : ', r2_test)
    R squared vale : 0.7445422986536503
# Compute loss to evalute the model
loss = rmse(Y_test, test_data_prediction)
print('Test Loss:', loss)
    Test Loss: 6193.935113523997
```

Because different columns have different ranges, we run into two issues:

We can't compare the weights of different column to identify which features are important A column with a larger range of inputs may disproportionately affect the loss and dominate the optimi

For this reason, it's common practice to scale (or standardize) the values in numeric column by subtracting the mean and dividing by the standard deviation.

dT5fLFI.png

We can apply scaling using the StandardScaler class from scikit-learn.

df

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520
1333	50	1	30.970	3	0	1	10600.54830
1334	18	0	31.920	0	0	0	2205.98080
1335	18	0	36.850	0	0	2	1629.83350
1336	21	0	25.800	0	0	3	2007.94500
1337	61	0	29.070	0	1	1	29141.36030

1338 rows × 7 columns

scaler.mean_

```
array([39.20702541, 30.66339686, 1.09491779, 1.51569507])

scaler.var_
    array([197.25385199, 37.16008997, 1.45212664, 1.2198583])

scaled_inputs = scaler.transform(df[numeric_cols])
scaled_inputs

array([[-1.43876426, -0.45332 , -0.90861367, 1.34390459],
```

```
[-1.50996545, 0.5096211 , -0.07876719, 0.43849455],
[-0.79795355, 0.38330685, 1.58092576, 0.43849455],
...,
[-1.50996545, 1.0148781 , -0.90861367, 0.43849455],
[-1.29636188, -0.79781341, -0.90861367, 1.34390459],
[ 1.55168573, -0.26138796, -0.90861367, -0.46691549]])

scaled_df = pd.DataFrame(scaled_inputs, columns=numeric_cols)
scaled_df
```

	age	bmi	children	region
0	-1.438764	-0.453320	-0.908614	1.343905
1	-1.509965	0.509621	-0.078767	0.438495
2	-0.797954	0.383307	1.580926	0.438495
3	-0.441948	-1.305531	-0.908614	-0.466915
4	-0.513149	-0.292556	-0.908614	-0.466915
1333	0.768473	0.050297	1.580926	-0.466915
1334	-1.509965	0.206139	-0.908614	-1.372326
1335	-1.509965	1.014878	-0.908614	0.438495
1336	-1.296362	-0.797813	-0.908614	1.343905
1337	1.551686	-0.261388	-0.908614	-0.466915

1338 rows × 4 columns

Second Model After Regularisation of (age bmi children region)data

```
inputs = np.concatenate((scaled_inputs, categorical_data), axis=1)
targets = df.charges

# Create and train the model
model3 = LinearRegression().fit(inputs, targets)
r_squared = model3.score(inputs, targets)
# Generate predictions
predictions = model3.predict(inputs)

# Compute loss to evalute the model
loss = rmse(targets, predictions)
```

```
print('Loss:', loss)
print(f"R-squared (model3.score): {r_squared}")

Loss: 6043.811701706331
    R-squared (model3.score): 0.7507372027994937
```

Model Specification

```
charges = b_1 	imes age + b_2 	imes bmi + b_3 	imes children + b_4 	imes smoker + b_5 	imes sex + b_6 \ 	imes region + b
```

```
# 0=female; 1= male
# 0=No; 1=Yes
#4 = northeast; 3 =southwest; 2 = southeast; 1 = northwest
df_inputs = pd.DataFrame(inputs, columns=["age","sex","bmi","children","smoker","regic
pd.concat([df_inputs, targets], axis=1)
```

	age	sex	bmi	children	smoker	region	charges
0	-1.438764	-0.453320	-0.908614	1.343905	1.0	0.0	16884.92400
1	-1.509965	0.509621	-0.078767	0.438495	0.0	1.0	1725.55230
2	-0.797954	0.383307	1.580926	0.438495	0.0	1.0	4449.46200
3	-0.441948	-1.305531	-0.908614	-0.466915	0.0	1.0	21984.47061
4	-0.513149	-0.292556	-0.908614	-0.466915	0.0	1.0	3866.85520
1333	0.768473	0.050297	1.580926	-0.466915	0.0	1.0	10600.54830
1334	-1.509965	0.206139	-0.908614	-1.372326	0.0	0.0	2205.98080
1335	-1.509965	1.014878	-0.908614	0.438495	0.0	0.0	1629.83350
1336	-1.296362	-0.797813	-0.908614	1.343905	0.0	0.0	2007.94500
1337	1.551686	-0.261388	-0.908614	-0.466915	1.0	0.0	29141.36030

1338 rows × 7 columns

Building a Predictive System

```
input_data = (-1.438764,-0.453320, -0.908614, 1.343905, 1.0, 0.0)
# changing input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
```

```
# reshape the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = model3.predict(input_data_reshaped)
print(prediction)

print('The insurance cost is USD ', prediction[0])

[25111.24245598]
The insurance cost is USD 25111.242455983163
```

Random Forest¶

```
dt=RandomForestRegressor(n_estimators=10)
dt.fit(X_train,Y_train)
```

RandomForestRegressor
RandomForestRegressor(n_estimators=10)

XGBoost

```
xb=XGBRFRegressor()
xb.fit(X_train,Y_train)
```

0.8257546158063296

interaction_constraints=None, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=None, max_leaves=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
multi_strategy=None, n_estimators=None, n_jobs=None,
num_parallel_tree=None, objective='reg:squarederror',

Decision Tree

df

```
mt=DecisionTreeRegressor()
mt.fit(X_train,Y_train)

v DecisionTreeRegressor
DecisionTreeRegressor()

d_pred=mt.predict(X_train)
trainnn_acc=metrics.r2_score(Y_train,d_pred)

trainnn_acc

1.0

d1_pred=mt.predict(X_test)
testd_df=metrics.r2_score(Y_test,d1_pred)

testd_df

0.7612620918295904
```

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520
1333	50	1	30.970	3	0	1	10600.54830
1334	18	0	31.920	0	0	0	2205.98080
1335	18	0	36.850	0	0	2	1629.83350
1336	21	0	25.800	0	0	3	2007.94500
1337	61	0	29.070	0	1	1	29141.36030

1338 rows × 7 columns

input_data = (19, 0, 27.900, 0, 1, 3)

input_data_as_numpy_array = np.asarray(input_data)

changing input_data to a numpy array

reshape the array

```
input_data = (19, 0, 27.900, 0, 1, 3)

# changing input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = dt.predict(input_data_reshaped)
print(prediction)

print('The insurance cost is USD ', prediction[0])

[16904.5396]
   The insurance cost is USD 16904.5396
   /usr/local/lib/python3.11/dist-packages/sklearn/base.py:439: UserWarning:

X does not have valid feature names, but RandomForestRegressor was fitted with feature
```

```
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = xb.predict(input_data_reshaped)
print(prediction)

print('The insurance cost is USD ', prediction[0])

[18362.865]
    The insurance cost is USD 18362.865
```

The objective of this section is to demonstrate how to visualize the impact of independent variables on the target variable (Charges) for research purposes.

```
import statsmodels.api as sm

# Add a constant to inputs for the intercept
inputs = sm.add_constant(inputs)

# Fit the model
model = sm.OLS(targets, inputs).fit()

# Display summary
print(model.summary())
```

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.751				
Model:	OLS	Adj. R-squared:	0.750				
Method:	Least Squares	F-statistic:	668.1				
Date:	Wed, 29 Jan 2025	Prob (F-statistic)	0.00				
Time:	12:44:28	Log-Likelihood:	-13548.				
No. Observations:	1338	AIC:	2.711e+04				
Df Residuals:	1331	BIC:	2.715e+04				
Df Model:	6						
Covariance Type:	nonrobust						
=======================================		-============					
coet	f std err	t P> t	[0.025 0.975]				
const 8458.6374	4 246.361 3	34.334 0.000	7975.340 8941.935				
x1 3613.5362	2 166.932 2	21.647 0.000	3286.058 3941.014				
x2 2027.3168	3 168.992 1	1.997 0.000	1695.798 2358.836				
x3 577.6603	165.867	3.483 0.001	252.271 903.050				
x4 -390.585	5 167.799 -	2.328 0.020	-719.764 -61.407				
x5 2.382e+04	411.843	67.839 0.000	2.3e+04 2.46e+04				
x6 -131.1106	332.811 -	0.394 0.694	-784.001 521.780				
Omnibus:	299.003	Durbin-Watson:	2.088				
Prob(Omnibus):	0.000	713.975					

```
Skew:
                                 1.207
                                        Prob(JB):
                                                                   9.17e-156
    Kurtosis:
                                 5.642 Cond. No.
                                                                        2.97
    ______
    Notes:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly s
# Define feature names
feature_names = ["const", "age", "sex", "bmi", "children", "smoker", "region"]
# Convert inputs to a DataFrame with feature names
inputs_df = pd.DataFrame(inputs, columns=feature_names)
# Add a constant to inputs for the intercept
inputs_df = sm.add_constant(inputs_df)
# Flatten the target array to 1D
targets = targets.ravel()
# Fit the model
model = sm.OLS(targets, inputs_df).fit()
# Display the summary
print(model.summary())
```

OLS Regression Results

Dep. Variab	ole:	у		R-squared:			
Model:		Ol	_S Adj. F	R-squared:		0.750	
Method:		Least Square	es F-stat	F-statistic:			
Date:	We	ed, 29 Jan 202	25 Prob (<pre>Prob (F-statistic):</pre>			
Time:		12:44:3	38 Log-Li	ikelihood:		-13548.	
No. Observa	ations:	133	38 AIC:			2.711e+04	
Df Residual	ls:	133	BIC:			2.715e+04	
Df Model:			6				
Covariance	Type:	nonrobus	st 				
	coef	std err	t	P> t	[0.025	0.975]	
const	8458.6374	246.361	34.334	0.000	7975.340	8941.935	
age	3613.5362	166.932	21.647	0.000	3286.058	3941.014	
sex	2027.3168	168.992	11.997	0.000	1695.798	2358.836	
bmi	577.6603	165.867	3.483	0.001	252.271	903.050	
children	-390.5855	167.799	-2.328	0.020	-719.764	-61.407	
smoker	2.382e+04	411.843	57.839	0.000	2.3e+04	2.46e+04	
region	-131.1106	332.811	-0.394	0.694	-784.001	521.780	
Omnibus:	========	 299.00	======= 03 Durbir	======== n-Watson:	=======	2.088	
Prob(Omnibus):		0.00		e-Bera (JB):	•	713.975	
Skew:		1.20	•	• •	-	9.17e-156	
Kurtosis:		5.64	•	•		2.97	
========		========			=======		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly <ipython-input-93-1438cb63339b>:11: FutureWarning:

Series.ravel is deprecated. The underlying array is already 1D, so ravel is not ne

The Ordinary Least Squares (OLS) regression model explains 75.1% of the variation in the dependent variable (R-squared = 0.751), indicating a good fit. The adjusted R-squared (0.750) confirms this fit while accounting for the number of predictors. The F-statistic of 668.1 (p < 0.001) shows the overall model is statistically significant. Among the predictors, age, sex, BMI, and smoker status are statistically significant (p < 0.05), with smoker status showing the strongest positive effect (coefficient = 23,820). In contrast, region is not statistically significant (p = 0.694), suggesting it does not contribute meaningfully to the model. The intercept (8458.64) represents the baseline value of the dependent variable when all predictors are zero. Diagnostic tests indicate potential non-normality of residuals (Omnibus and Jarque-Bera tests, p < 0.001), but the Durbin-Watson statistic (2.088) suggests no significant autocorrelation.

Start coding or generate with AI.