CS 580 ALGORITHM DESIGN AND ANALYSIS

NP and Computational Tractability

Vassilis Zikas

SUMMARY

- So far:
 - Algorithms
- For the next few lectures:
 - Lack of algorithms!

PATTERNS

- Algorithms so far had "design patterns"
 - Greedy
 - · D&C
 - Dynamic Programming
 - Duality
 - Local search
 - Randomized algorithms
- We've been amazingly successful!
 - E.g. a graph with n vertices could have n^{n-2} spanning trees, but we found the minimum weight one in time O(|E| + nlogn)
- However, this is not really representative of reality
 - For most problems out there, we have no idea how to navigate among the exponentially many possible solutions

- Since we can't solve these problems, why don't we try to at least classify them?
 - Proposed category 1: Those that we can solve in polynomial time
 - Proposed category 2: Those that we cannot solve in polynomial time
- Frustrating news: Huge number of fundamental problems have defied classification for years
- This module: Show that these problems are "computationally equivalent"
 - Different manifestations of a single hard problem

- Suppose we could solve a problem X in polynomial time
- What else could we do in polynomial time?
- We've already seen this: circulation via network flow
- Reductions: A problem X is polynomial time reducible to a problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of "standard" computational steps
 - Polynomial number of calls to an "oracle" that solves problem Y
- We will also say "X reduces to Y" or "Y is at least as hard as X"
- Notation: $X \leq_P Y$

- Note: We do pay for writing down instances of Y, so the instances of Y we ask our oracle to solve should have polynomial size (in terms of the size of the input of X)
- This notion of reduction is called a Cook reduction (named after Stephen Cook)
 - Different than Karp reductions

- Purpose: Classify problems according to relative difficulty
- Positive results: If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time
- Negative results (intractability): If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time
- Equivalence: If $X \leq_P Y$ and $Y \leq_P X$, then we use notation $X \equiv_P Y$
- Absolutely amazing...

Independent set and Vertex Cover

INDEPENDENT SET

- Input: Undirected graph G = (V, E) and an integer k
- Question: Is there an independent set of size at least *k*?
 - $S \subseteq V$ is an independent set if for every edge $e \in E$, at most one of its endpoints in S

INDEPENDENT SET

- Is there an IS of size at least 6?
 - Yes
- Is there an IS of size at least 7?
 - No

VERTEX COVER

- Input: Undirected graph G = (V, E) and an integer k
- Question: Is there a vertex cover of size at most k?
 - $S \subseteq V$ is a vertex cover if for every edge $e \in E$, at least one of its endpoints is in S

VERTEX COVER

- Input: Undirected graph G = (V, E) and an integer k
- Question: Is there a vertex cover of size at most *k*?
 - $S \subseteq V$ is a vertex cover if for every edge $e \in E$, at least one of its endpoints is in S

VERTEX COVER

- Is there a vertex cover of size at most 4?
 - Yes
- Is there a vertex cover of size at most 3?
 - No

- Claim: INDEPENDENT SET \equiv_P VERTEX COVER
- Proof: We'll show that if S is an independent set, then $V \setminus S$ is a vertex cover

- Claim: INDEPENDENT SET \equiv_P VERTEX COVER
- (1)
 - Let *S* be any independent set
 - \circ Consider an arbitrary edge (u, v)
 - At least one of the following holds: $u \notin S$ or $v \notin S$
 - Thus, $u \in V \setminus S$ or $v \in V \setminus S$
 - \circ Thus, $V \setminus S$ covers (u, v)
- (2)
 - \circ Let $V \setminus S$ be any vertex cover
 - Consider two nodes $v \in S$ and $u \in S$
 - ∘ Since $V \setminus S$ is a vertex cover, $(u, v) \notin E$
 - Thus, no two nodes in *S* have an edge between them
 - Thus, *S* is an independent set

- Claim: INDEPENDENT SET \equiv_P VERTEX COVER
- Proof:
 - ∘ INDEPENDENT SET \leq_P VERTEX COVER:
 - Say we have an oracle for VERTEX COVER
 - If you want to know where there exists an IS with size at least k ask the oracle if there exists a VC with size at most n-k
 - ∘ INDEPENDENT SET \geq_P VERTEX COVER:
 - Say we have an oracle for INDEPENDENT SET
 - If you want to know where there exists a VC with size at most k ask the oracle if there exists an IS with size at least n k.

A SECOND REDUCTION

- Simple reduction strategy:
 - From special case to general case
 - E.g. if a problem is difficult for bipartite graphs it should be difficult for general graphs

SET COVER

- Input: A set U of elements, a collection S_1, S_2, \dots, S_m of subsets of U and an integer k
- Question: Does there exist a collection of at most k of these subsets whose union equals U?
 - $\circ \exists S_{i_1}, S_{i_2}, \dots, S_{i_k} : \bigcup_{j=1}^k S_{i_j} = U?$

SET COVER

• Example:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$\circ k = 2$$

$$\circ$$
 $S_1 = \{3, 7\}$

$$S_2 = \{3, 4, 5, 6\}$$

$$\circ S_3 = \{1\}$$

$$S_4 = \{2, 4\}$$

$$S_5 = \{5\}$$

$$S_6 = \{1, 2, 6, 7\}$$

SET COVER

• Example:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$\circ k = 2$$

$$\circ$$
 $S_1 = \{3, 7\}$

$$\circ$$
 $S_2 = \{3, 4, 5, 6\}$

$$\circ S_3 = \{1\}$$

$$S_4 = \{2, 4\}$$

$$S_5 = \{5\}$$

$$S_6 = \{1, 2, 6, 7\}$$

SET COVER AND VERTEX COVER

- Claim: VERTEX COVER \leq_P SET COVER
- Proof: Given an instance of VERTEX COVER, i.e. a graph G = (V, E) and an integer k, we construct a set cover instance with size at most the size of the vertex cover
- Construction:
 - $k = k, U = E, S_v = \{e \in E : e \text{ incident to } v\}$
 - Set cover size $\leq k$ if and only if vertex cover $\leq k$


```
SET COVER

U = \{1, 2, 3, 4, 5, 6, 7\}
k = 2
S_a = \{3, 7\}
S_c = \{3, 4, 5, 6\}
S_d = \{5\}
S_e = \{1\}
S_f = \{1, 2, 6, 7\}
```

A THIRD REDUCTION

- Gadgets!
 - Most common reduction "type"

- Literal: A Boolean variable, or its negation
 - $\circ x_i \text{ or } \overline{x_i}$
- Clause: A disjunction (OR) of literals
 - \circ $C_i = x_1 \vee x_5 \vee \overline{x_6} \vee x_{11}$
- Conjuctive normal form: A propositional formula ϕ that is the conjuction of clauses
 - $\circ \quad \phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$
- SAT problem: Given a CNF formula ϕ , decide whether there exists a satisfying assignment
 - That is, an assignment $x_1 = true, x_2 = false, ...$, such that ϕ is true
- **3-SAT:** Every clause has at most 3 literals
 - \circ **E.g.** $(x_1 \lor x_4 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_3)$
 - \circ Yes: $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 0$

- Claim: $3-SAT \leq_P INDEPENDENT SET$
- Thinking about 3-SAT
 - Make a 0/1 assignment to each of the variables and manage to satisfy every clause (at least one of the 3 literals in every clause)
 - Select a literal from each clause to satisfy the clause. Selection across clauses has no conflicts
 - E.g. not using x_1 to satisfy C_1 and $\overline{x_1}$ to satisfy C_2

- Claim: $3-SAT \leq_P INDEPENDENT SET$
- Proof: Given a CNF formula ϕ with k clauses
- Construction:
 - G contains 3 vertices for each clause, one for each literal
 - Connect 3 literals in a clause in a triangle
 - Connect literal to its negations (across clauses)

- Claim: 3-SAT \leq_P INDEPENDENT SET
- Proof: Given a CNF formula ϕ with k clauses
- Construction:
 - G contains 3 vertices for each clause, one for each literal
 - Connect 3 literals in a clause in a triangle
 - Connect literal to its negations (across clauses)

- Claim: $3-SAT \leq_P INDEPENDENT SET$
- Proof: Let S be an independent set of size k
 - S must contain exactly one vertex from each triangle
 - Set the corresponding literals to true (and all other variables consistently)
 - This truth assignment is consistent and all clauses are satisfied

- Claim: $3-SAT \leq_P INDEPENDENT SET$
- Proof: Let $x_1, ..., x_n$ be a satisfying assignment
 - Select one true literal from each clause/triangle
 - This is an independent set of size *k*

TRANSITIVITY

- If $X \leq_P Y$ and $Y \leq_P Z$ then $X \leq_P Z$
- Thus, we have shown that $3\text{-SAT} \leq_P$ INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER

SUMMARY

- Defined Cook reductions
- Saw some simple reduction strategies
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER
- 8.1 and 8.2 in KT