System Description and Risk Analysis

Cyrill Krähenbühl Silvan Egli Lukas Bischofberger

November 24, 2016

Contents

1	\mathbf{Sys}	tem Cl	naracterization 3
	1.1	Systen	Overview
	1.2	System	Functionality
		1.2.1	Components
		1.2.2	User Authentication
		1.2.3	Profile Changes 6
		1.2.4	Logout
		1.2.5	Certificate Issuing 6
		1.2.6	Certificate Download
		1.2.7	Certificate Revocation
		1.2.8	CA Administrator interface
		1.2.9	Backup
		1.2.10	System Administration
	1.3	Securit	ty Design
	1.4		onents
		1.4.1	Platforms
	1.5	Applie	ations
		1.5.1	User web interface
		1.5.2	Admin web interface
		1.5.3	Webserver
		1.5.4	Firewall
		1.5.5	Backup
		1.5.6	CA core application
		1.5.7	User database
	1.6	Data r	ecords
		1.6.1	User information
		1.6.2	Certificates
		1.6.3	Private keys
		1.6.4	Configuration files
		1.6.5	Log files

		1.6.6	User credentials	10
	1.7	Backde	oors	10
		1.7.1	Easy Backdoor	10
		1.7.2	Hard Backdoor	10
	1.8	Additi	onal Material	10
2	Risl	k Anal	ysis and Security Measures	11
	2.1	Assets	·	11
		2.1.1	Physical assets	11
		2.1.2	Logical assets	11
		2.1.3	Logical software assets	11
		2.1.4	Logical information assets	12
		2.1.5	Persons	13
		2.1.6	Intangible assets	14
	2.2	Threat	Sources	14
	2.3	Risks 1	Definitions	15
	2.4	Risk E	Evaluation	16
		2.4.1	Evaluation physical asset: Hardware	16
		2.4.2	Evaluation physical asset: Internal network	16
		2.4.3	Evaluation physical asset: External network	17
		2.4.4	Evaluation logical asset: Firewall software	17
		2.4.5	Evaluation logical asset: CA server software	18
		2.4.6	Evaluation logical asset: CA server application	18
		2.4.7	Evaluation logical asset: CA server database	18
		2.4.8	Evaluation logical asset: Backup server software	18
		2.4.9	Evaluation information asset: User data	19
		2.4.10	Evaluation information asset: Certificates	19
		2.4.11	Evaluation information asset: Private keys	19
		2.4.12	Evaluation information asset: CRL	19
		2.4.13	Evaluation information asset: Server configuration	20
		2.4.14	Evaluation information asset: Logs	20
		2.4.15	Evaluation information asset: Login credentials	20
		2.4.16	Evaluation information asset: JWT	21
		2.4.17	Evaluation information asset: Archive key	21
		2.4.18	Evaluation information asset: Root key	21
		2.4.19	Evaluation person asset: User/Employee	21
		2.4.20	Evaluation person asset: CA administrator / Insider	22
		2.4.21	Evaluation person asset: System administrator	22
		2.4.22	Evaluation person asset: Private key holder	22
		2.4.23	Evaluation intangible asset: User confidence	23
		2.4.24	Detailed Description of Selected Countermeasures	23
		2.4.25	Risk Acceptance	23

1 System Characterization

1.1 System Overview

Figure 1: System overview

The mission of the system consist of providing a certificate authority (CA) service through which employees of the fictional company iMovies can request and revoke digital certificates. These certificates will be used for secure e-mail communication between employees. In the following these employees will be referred to as clients and users.

Figure 1 shows an overview of the proposed system. It consist of four subsystems, namely firewall, caserver, cacore and backup and forms the CA Intranet. Clients either use the service from inside the company's network or from the Internet. They are interfaced with the system by the firewall which blocks unallowed connections and forwards the request to the caserver. The caserver subsystem provides a web interface for clients and administrators. It performs the authentication and authorization and handles the user requests as well as their sessions. In order to do so, the caserver makes use of the cacore's service. The cacore's task is to control the process of issuing and revoking certificates as well as managing the user data. The backup is responsible for maintaining a copy of all system relevant data, including information on users, certificates, keys, logs and configurations. Therefore the backup has access to the other three subsystems.

1.2 System Functionality

In this section we describe the systems functions in terms of system design based on the use cases given in the project assignment. The focus lies on the implementation and the information flows. In subsection 1.4 the properties of the mentioned applications will be described in more detail.

1.2.1 Components

client Clients use the system through a web interface which is built using the Angular2¹ framework written in TypeScript². The web front end consumes the RESTful³ service provided by the back end on the caserver by performing http requests to the firewall.

firewall In order to block connection attempts to unallowed ports the firewall makes use of the iptables 4 functionality. In addition to the packet filtering, iptables is configured to act as a NAT and thus forwarding requests from the internet and the company's intranet to the web server on the caserver. In order to configure iptables the ${\rm csf}^5$ application is used.

caserver The nginx⁶ webserver is responsible for handling the forwarded requests from the firewall. This includes delivering static content (front end and certificate revocation list) and forwarding the other requests to the back end. In addition it checks if the client sent a user certificate and verifies it using the root certificate.

The back end consist of a Django⁷ application written in python which is served by a uwsgi⁸ application server The following tasks are subject to the backend:

- user authentication
- authorization checks
- session management
- user input validation
- output sanitization
- database queries
- site calls to the cacore subsystem

¹https://angular.io/

²https://www.typescriptlang.org/

³https://en.wikipedia.org/wiki/Representational_state_transfer

⁴http://ipset.netfilter.org/iptables.man.html

 $^{^5}$ https://configserver.com/cp/csf.html

⁶https://nginx.org/

⁷https://www.djangoproject.com/

⁸https://uwsgi-docs.readthedocs.io/en/latest/

- providing the CA administrator interface
- providing a RESTful³ API to the front end

cacore On the cacore there is a MySQL⁹ database containing the legacy user data table and all tables needed by the Django application. The caserver accesses the database over the network. In addition, the cacore provides the functionality of a CA by using the openSSL¹⁰ library. There is an intermediate CA and a root CA on the cacore. The intermediate CA is used for issuing the user certificates. It's private key is not encrypted in order to sign the user certificates non interactively. The root CA's only task was to issue and sign the intermediate CA's certificate. It's private key is encrypted and kept offline. From now on, when speaking of the CA, the intermediate CA is referenced if not stated otherwise. The CA supports the creation of new X509¹¹ user certificates as well as their revocation by using the "ca" command of openSSL¹⁰. The certificate creation and revocation are implemented as a Bash¹² script which are called by the Django⁷ application using ssh¹³.

backup The backup periodically (once every hour) backs up all system relevant data of the firewall, cacore and caserver. This includes application and system logs, configurations on all machines and the key/certificates archive and database on the cacore. To perform a backup, the backup mounts the filesystem of each server that should be backed up using SSH file system (sshfs)¹⁴. All of the servers have the public key of the backup stored in their roots authorized_keys file, such that the backup can connect to the machine without password prompt and access any file. The relevant folders are incrementally backed up using duplicity¹⁵ which encrypts the backed up data on the system. Duplicity is based on rsync¹⁶ and GnuPG¹⁷ and allows encrypted and signed incremental backups. The backup is scheduled using cron and executed by the root user and the backed up data, the backup scripts and the mounted file system are only modifiable by root.

1.2.2 User Authentication

The first thing a user has to do before using the system is to authenticate. This can be done in two different ways. The term Django will be used interchangeably for the Django⁷ application from now on.

• credentials

⁹https://www.mysql.com/

¹⁰ https://www.openssl.org/

¹¹https://en.wikipedia.org/wiki/X.509

¹²https://www.gnu.org/software/bash/bash.html

 $^{^{13}} labels shhttps://en.wikipedia.org/wiki/Secure_Shell$

¹⁴https://github.com/libfuse/sshfs

¹⁵http://duplicity.nongnu.org/

¹⁶https://sourceforge.net/projects/librsync/

¹⁷ https://www.gnupg.org/

- Client calls https://web.seclab/ and enters his username and password
- 2. Information is forwarded to the Django application which compares the credentials with the existing ones in the database.
- 3. If they match a json web token (JWT)¹⁸ containing all user data together with an expiration date is issued. The JWT is signed using Django's secret key.
- 4. For further authentication, the front end sends the obtained JWT with every subsequent request.

• user certificate

- 1. Client calls https://web.seclab/ and selects "Login with certificate". The prompt for a user certificate should have been performed by the browser.
- 2. The nginx web server notices that a certificate is attached. It validates the certificate using the the key contained in CA's certificate and checks if the certificate is valid using the certificate revocation list. If the verification is okay, nginx extracts the user data out of the subject field of the user certificate. If not, "a verification failed" header field is added to the request. The request and the information are forwarded to Django.
- 3. The following steps are identical to the case with credentials.

1.2.3 Profile Changes

The user can update his information by submitting the new values in the Profile form. The values are validated by Django before being written to the database.

1.2.4 Logout

A click on "Logout" makes the front end delete the current jwt.

1.2.5 Certificate Issuing

- 1. The user logs in according to section 1.2.2.
- 2. The user can correct his information as described in 1.2.3.
- 3. After having chosen a certificate name (must be alphanumeric only) the request is submitted.
- 4. Django calls the certificate create script on the cacore via ssh.

¹⁸https://jwt.io/

5. A new X509 certificate containing the user's id and email is created. The certificate is signed with the CA's private key. Additionally, the certificate is bundled together with the corresponding rsa private key into a file in PKCS#12 format (pkcs12 file). The key, certificate and pkcs12 files are stored on the file system.

1.2.6 Certificate Download

- 1. In his certificate list, the user selects a valid certificate to download.
- 2. Django uses the python sftp client pysftp¹⁹ to read the pkcs12 file of the user on the cacore.
- 3. The file is attached to the response which is sent back to the client.

1.2.7 Certificate Revocation

- 1. In his certificate list, the user selects a non revoked certificate to download.
- 2. Django calls the certificate revoke script on the cacore via ssh.
- 3. The CA on the cacore revokes the certificate and build the new Certificate Revocation List (CRL)
- 4. The new CRL from the cacore is fetched to the caserver via scp and nginx is reloaded in order to make the changes visible. The CRL is published under https://web.seclab/crl.txt (human readable) and https://web.seclab/crl.pem (binary).

1.2.8 CA Administrator interface

CA administrators have access to the same web interface with the same functionality like a normal user. By providing a valid admin certificate, a CA administrator can additionally consult the CA's current state under https://web.seclab/api/certificates-info. The dedicated web interface provides a list with all issued certificates including their information and revocation status. The current serial number is displayed too.

1.2.9 Backup

The functionality of the automated backup is described in section 1.2.1

¹⁹https://pypi.python.org/pypi/pysftp

1.2.10 System Administration

In order to administrate the system remotely, all subsystem except from the backup run an openSSH²⁰ server which is accessible from the firewall. The backup is only accessible through a reverse ssh tunnel ²¹. The tunnel from the backup to the firewall is established using autossh²²

1.3 Security Design

Describe the system's security design, including key and session management and security of data at rest and in transit.

1.4 Components

1.4.1 Platforms

Network

CA intranet The internal network connects the firewall, cadmin, cacore and the backup using layer 2 switches. Its subnetmask is 10.0.0.255 and the standard gateway is defined to be the firewall at 10.0.0.1.

iMovies intranet The iMovies intranet connects the machines of all the employees using a layer 2 switch and several wifi hotspots. Its subnetmask is 192.168.??? and ...

Internet Connects the firewall to the ISP.

firewall The f runs on a dual core machine with 1GB ram and has an ethernet slot connected to the switch of the CA intranet, an ethernet slot connected to the iMovies intranet and an etherne slot connected to the internet. The operating system is a Ubuntu server operating system 16.10^{23} and is connected to the CA intranet with the ip 10.0.0.1.

Caserver The backup runs on a dual core machine with 1GB ram and has an ethernet slot connected to the switch of the CA intranet. The operating system is a Ubuntu server operating system 16.10²⁴ and is connected to the CA intranet with the ip 10.0.0.2.

 $^{^{20} \}mathtt{https://help.ubuntu.com/lts/serverguide/openssh-server.html}$

 $^{^{21} \}texttt{http://unix.stackexchange.com/questions/46235/how-does-reverse-ssh-tunneling-work}$

²²https://linux.die.net/man/1/autossh

²³https://www.ubuntu.com/server

²⁴https://www.ubuntu.com/server

Cacore The backup runs on a dual core machine with 1GB ram and has an ethernet slot connected to the switch of the CA intranet. The operating system is a Ubuntu server operating system 16.10^{25} and is connected to the CA intranet with the ip 10.0.0.3.

Backup The backup runs on a dual core machine with 1GB ram and has an ethernet slot connected to the switch of the CA intranet. The operating system is a Ubuntu server operating system 16.10²⁶ and is connected to the CA intranet with the ip 10.0.0.4. The backup is connected to the firewall using an SSH tunnel, which allows users on the firewall to open an SSH connection the local port 10022 which is forwarded to the backup. The firewall of the backup is Uncomplicated Firewall (ufw)²⁷, which is configured to allow only outgoing SSH connections.

1.4.2 Applications

User web interface

Admin web interface

Webserver

Firewall

Backup The backup periodically (once every hour) backs up all relevant applications, configurations and data of the firewall, cadmin and caserver. To perform a backup, the backup mounts the filesystem of each server that should be backed up using SSH file system (sshfs)²⁸. All of the servers have the public key of the backup stored in their roots authorized keys file, such that the backup can connect to the machine without password prompt and access any file. The relevant folders are incrementally backed up using duplicity²⁹ which encrypts the backed up data on the system. Duplicity is based on rsync³⁰ and GnuPG³¹ and allows encrypted and signed incremental backups. The backup is scheduled using cron and executed by the root user and the backed up data, the backup scripts and the mounted file system are only modifiable by root.

CA core application

User database

 $^{^{25} \}rm https://www.ubuntu.com/server$

²⁶https://www.ubuntu.com/server

²⁷https://launchpad.net/ufw

²⁸https://github.com/libfuse/sshfs

²⁹http://duplicity.nongnu.org/

³⁰https://sourceforge.net/projects/librsync/

³¹ https://www.gnupg.org/

1.4.3 Data records

All relevant data records are regularly backed up over an SSH secured channel to the backup and stored encryped.

User information

Certificates

Private keys

Configuration files

Log files

User credentials

1.5 Backdoors

In the following sections we describe the backdoors we implemented which should give a potential outsider control over the system, such that he can compromise the purpose of the system.

1.5.1 Easy Backdoor

We allowed a known potential vulnerability in some JWT libraries. In JWT the client specifies the algorithm used to sign the token, the library with the vulnerability allow the client to choose the 'none' algorithm. This basically allows the client to create any token with a 'none' signing algorithm where he can omit the signature. Therefore the attacker then can login as any user and perform actions in their name.

1.5.2 Hard Backdoor

The second backdoor finally exposes an open telnet connection with default credentials telnet:telnet which allows the attacker to connect to the CA server as root. To open that channel, the attacker needs to perform two actions: First we implemented port knocking on the firewall, this opens the port TODO. Then we implemented a script listening for a specific ICMP packet on the firewall which will input NAT rules to the firewall, it also sends another packet to the CA server to open the telnet port.

1.6 Additional Material

You may have additional sections according to your needs.

2 Risk Analysis and Security Measures

2.1 Assets

2.1.1 Physical assets

Firewall: The firewall is located in a locked and air conditioned room. There is redundant power supply for its server rack. The states of the firewall are running, compromised and down. Running means everything works as expected, compromised means an unauthorized user has had physical access to the machine and down means the firewall is not running.

Application server: The application server is located in the same server room with redundant power supply, but in a different rack than the firewall. The same states as in the firewall apply here.

Backup server: The backup server is located in the same rack as the application server also equipped with redundant power supply. The same states as in the firewall apply here.

Internal network: The internal network is an Ethernet local area network connecting the above mentioned components. The components are connected using layer 2 switches located in the server room. The states are running, compromised and down. A running state indicates that only authorized devices are connected to the network. A compromised state may indicate that an unauthorized user has added his own device to the network and is sniffing connections or injecting and blocking messages. A down state indicates that the network is shut down.

External network: The external network connects the firewall to the internet by Ethernet cable using a router that is also located in the server room. The same states as in the internal network apply here.

2.1.2 Logical assets

Connectivity: Connections between each components and connection to the ISP. For the system to work properly, all components need to be properly connected. The states are connected and not connected.

2.1.3 Logical software assets

Firewall operating system: The operating system of the firewall is the latest Ubuntu server edition. It is managed by the system administrator who installs all relevant updates and patches within few hours after their release. The states are running, vulnerable, compromised and down. A vulnerable state indicates that the system is not up-to-date and vulnerable to known exploits. A compromised state means the system was already exploited by an attacker.

- **Firewall service:** The firewall that separates the internal and external network is the latest edition of the Config Server Firewall (csf). The states are the same as for the Firewall operating system.
- **Appserver operating system:** The operating system of the appserver is the same as for the firewall and the same states apply.
- Appserver webserver: The appserver runs a nginx webserver which handles all http and https requests. It is updated by the system adminstrator. Its states are running, compromised and down. A compromised webserver allows an attacker for example to perform a man-in-the-middle attack.
- Appserver application: The application is written in python and uses the Django framework. It manages the database and creates, revokes and provides certificates to the user. Both python and the Django framework are regularly updated by the system administrator. The states are similar to the webserver, but in a compromised state, an attacker might change the behaviour of the application.
- Appserver certificate authority scripts: The functionality as a certificate authority is provided by a set of scripts that rely on the opensal library. The behaviour of the scripts is monitored by the system administrators. The states are similar to the webserver states, but in a compromised state an attacker also has access to certificate related functionality.
- Appserver database The database is running MySQL and is updated and monitored for misbehaviour by the system administrator. The states are similar to the webserver, but in a compromised state an attacker has altered the database.
- **Backupserver operating system:** The operating system of the backupserver is the same as for the firewall and the same states apply.
- **Backupserver duplicity:** Duplicity periodically runs on the backupserver and backs up and encrypts valuable data from both the firewall and the appserver such as configurations, logs, certificates, private keys and the database.

2.1.4 Logical information assets

- **User database:** The database contains user ids, email addresses and hashed passwords. The states are confidential and leaked. A confidential state means that only authorized system administrators and corresponding users have access to these information. In a leaked state, an attacker was able to read the whole or part of the database.
- **Certificates:** The certificates of each user, the certificate of the webserver and the root certificate. If a certificate is used by someone other than its owner or a certificate is used even though it was revoked, its state is invalid.

Otherwise its state is valid. The severity of an invalid certificate depends on which certificate it is and if the usage of such an invalid certificate was detected, since user certificates can easily be revoked.

- **Appserver configuration:** Configuration files of different services such as webserver, database, Django, certificate authority or ssh can give insight into how the system behaves and might help detect misconfigured and thus exploitable services. The states are the same as for the user database.
- **Private keys:** The private keys for certificates or for ssh connections within the system. Similar states to user database, but the private key is either private or leaked.
- **Crl:** The certificate revocation list has to be up-to-date and available to any user. The states are available if any user can get the list and unavailable if this is not the case.
- **Backupserver configuration:** Configuration files for services such as duplicity. The states are the same as for the appserver configuration.
- **Logs:** Logging information about various services. The states are the same as for certificates.
- **Login credentials:** Login credentials for ssh connections to different machines that may be leaked by a system administrators and login credentials from users that log into the application server. The states are the same as for the private keys, but for ssh login credential the security concern is much higher.
- **JWT:** A JSON web token (JWT) describes an active connection of a user to the webserver. If an attacker manages to compromise the system in a way that he is also part of this connection, the state is compromised. For an active confidential connection the state is confidential and after the connection is closed the state is closed.
- **Archive key:** The key that is used to encrypt all backed up data on the backupserver. The states are similar to the private keys.
- Intermediate & Root key: The intermediate key to sign the webserver certificate and user certificates and the root key which signs the intermediate certificate. The states are similar to private keys.

2.1.5 Persons

User/Employee: The users of the authenticated mail server, which are employees of iMovie. The state of a user is either loyal or unloyal depending on which relation he has to the company.

- **CA Administrator:** The CA administrators can query the certificate authority for additional information about its state but cannot modify, revoke or create any certificates (except for his own). The states are the same as for user/employee.
- **System Administrator/Insider:** The system administrators manages the system. The states are the same as for user/employee.
- **Private key holder:** The CA administrator holds the private key of the root certificate. The states are the same as for user/employee.

2.1.6 Intangible assets

User confidence: The trust a user has in the system. This is influenced by security breaches, usability of the webserver and other factors. The user either has confidence in the system or not, which means there are two states, confident and not confident.

2.2 Threat Sources

- Nature: Environmental factors can hinder the execution of the system. There could be water leaks that would cause damage to servers and where data can be lost.
- **User:** The employees of iMovie can intentionally misbehave and manipulate the system or unknowingly help an attacker compromise the system.
- **System administrator/Insider:** A system administrator is a more impactful threat source to the system than a user, since a compromised system administrator leads to much bigger security concerns than a compromised user.
- Script kiddies: Script kiddies most likely do not have iMovie as their primary target, but might still try for example to infect the servers with malware to use them in a botnet. They do not have the skills to infiltrate a well protected system and so the usual security measurements and regular updates should be enough to sufficiently protect against them.
- Skilled hacker: A skilled hacker is a big threat source and the usual security measurements most likely do not give enough protection against such an attacker. He might try to infiltrate the CA server and extract private keys to be able to imitate the webserver itself, issue arbitrary certificates or use the keys to perform man-in-the-middle attacks between employees and extract valuable information. He is most likely to be hired by a competitor or a criminal.
- Malware: There is always the possibility of either directed or undirected malware infection if users with infected systems interact with the system.

Organized crime: Criminals that try to extract information from the system to blackmail people or steal valuable login credentials that are used across multiple systems.

Competitors: Competitors that want to undermine the reputation of iMovie, gain knowledge about company secrets or simply cause them damage.

2.3 Risks Definitions

The risk and the likelyhood are both defined qualitatively with the values: **Low**, **Medium** and **High**. The definition of each value is taken from "Applied Information Security - A Hands-on Approach" [?].

	Likelihood
Likelihood	Description
High	The threat source is highly motivated and sufficiently capable of exploiting a given vulnerability in order to change the assets state. The controls to prevent the vulnerability from being exploited are ineffective.
Medium	The threat source is motivated and capable of exploiting a given vulnerability in order to change the assets state, but controls are in place that may impede a successful exploit of the vulnerability.
Low	The threat source lacks motivation or capabilities to exploit a given vulnerability in order to change the assets state. Another possibility that results in a low likelihood is the case where controls are in place that prevent (or at least significantly impede) the vulnerability from being exercised.

	Impact				
Impact	Description				
High	The event (1) may result in a highly costly loss of major tangible				
	assets or resources; (2) may significantly violate, harm, or impede				
	an organizations mission, reputation, or interest; or (3) may result				
	in human death or serious injury.				
Medium	The event (1) may result in a costly loss of tangible assets or				
	resources; (2) may violate, harm, or impede an organizations mis-				
	sion, reputation, or interest, or (3) may result in human injury.				
Low	The event (1) may result in a loss of some tangible assets or re-				
	sources or (2) may noticeably affect an organizations mission, rep-				
	utation, or interest.				

Risk Level					
Likelihood	Impact				
	Low	Medium	High		
High	Low	Medium	High		
Medium	Low	Medium	Medium		
Low	Low	Low	Low		

2.4 Risk Evaluation

In the following section we will give a risk evaluation for all possible threats and their impact on each of our assets described above.

2.4.1 Evaluation physical asset: Hardware

We can evaluate the risk for our servers and the firewall jointly as the same physical threats apply to them.

No.	Threat	Countermeasure(s)	L	I	Risk
1	Nature: Component failure	Standard configuration, configuration backups, spare machines / compo- nents	Medium	Medium	Medium
2	Insider: Accidental or intentional destruction of components	Restrictive room access policies, spare machines / components	Low	Medium	Low
3	Nature: Flooding, fire etc.	Place fire alarm and sprin- kler in server room, server room is located in a build- ing on elevated level	Low	High	Low
4	Competitors / Organized crime: Get physical access to server room	Location of server room not public, restrictive ac- cess policy	Low	High	Low

2.4.2 Evaluation physical asset: Internal network

The networking assets include the network cables and the switches/routers used in the server room.

No.	Threat	Countermeasure(s)	L	I	Risk
5	Nature: Component failure	Commodity switch/router, spare cables	Low	Medium	Low
6	Insider: Accidental or intentional destruction of components	Restrictive room access policies, spare cables, backup switch	Low	Medium	Low
7	Insider: Network misconfiguration	Standard configuration, clear documentation	Medium	Medium	Medium
8	Nature: Flooding, fire etc.	Place fire alarm and sprin- kler in server room, server room is located in a build- ing on elevated level	Low	Medium	Low
9	Competitors / Organized crime: Get physical access to server room	Location of server room not public, restrictive ac- cess policy	Low	Medium	Low

2.4.3 Evaluation physical asset: External network

No.	Threat	Countermeasure(s)	L	I	Risk
10	Nature: ISP failure	Redundant connection to	Low	Medium	Low
		ISP			

2.4.4 Evaluation logical asset: Firewall software

No.	Threat	Countermeasure(s)	L	1	Risk
11	System administrator: Misconfigure firewall, purposely include backdoor	System administrators check for misbehaviour of other system administra- tors	Low	High	Low
12	Skilled hacker: Bypass firewall	Use restrictive access rules, regularly update system, keep access logs	Medium	Medium	Medium
13	Espionage / Organized crime: Bypass firewall, use zero day exploits	As above	Medium	Medium	Medium

2.4.5 Evaluation logical asset: CA server software

No.	Threat	Countermeasure(s)	L	I	Risk
14	System Administrator: Install bad software (e.g. sniffer), do not correctly update/configure system	Use skilled employees for the task, review system by second party	Low	High	Low
15	Script kiddies: DDoS	Limit incoming connections from same IP in firewall	Medium	Medium	Medium
16	Skilled hacker / Organized Crime: Get system access	Stop all unused services, close all unnecessary ports	Low	High	Low
17	Malware: Use server for sending spam or distribute itself on webpages	Same as above	High	Medium	Medium

2.4.6 Evaluation logical asset: CA server application

No.	Threat	Countermeasure(s)	L	I	Risk
18	System Administrator: Cre-	Log all certificate creation	Low	High	Low
	ate certificate for some user	procedures			
19	Script kiddies / Skilled hacker	Validate and sanitize all in-	Low	High	Low
	/ Organized Crime: XSS	put			
20	Script kiddies / Skilled hacker	Only use HTTPS for com-	Low	High	Low
	/ Organized Crime: Eaves-	munication			
	drop on communication				

2.4.7 Evaluation logical asset: CA server database

No.	Threat	Countermeasure(s)	$_{\rm L}$	I	Risk
21	Script kiddies /	Sanitize all inputs	Medium	High	Medium
	Skilled hacker / Or-				
	ganized Crime: SQL				
	injection				

2.4.8 Evaluation logical asset: Backup server software

No.	Threat	Countermeasure(s)	L	I	Risk
22	System administra-	Monitor backup service	Low	Medium	Low
	tor: Turn off backup,				
	misconfigure backup				
	(encryption)				
23	Skilled hacker: Get access	Restrict access, turn off un-	Low	High	Low
	to system	used services, log activities			

2.4.9 Evaluation information asset: User data

No.	Threat	Countermeasure(s)	$_{\rm L}$	I	Risk
24	User: Lose their username and password	Allow them to login using a certificate	Low	Low	Low
25	System Administrator: Intentionally or accidentally modify user data	Don't allow data access to administrators	Low	Medium	Low
26	Script kiddies / Skilled hacker: Steal data	Always use encrypted com- munication, store data en- crypted on backup, restrict access on user data	Medium	Medium	Medium

2.4.10 Evaluation information asset: Certificates

No.	Threat	Countermeasure(s)	L	I	Risk
27	User: Lose the certificate	Ability to revoke certifi- cates	Medium	Low	Low
 28	System Administra- tor: Modify data linked to certificate	Restrict data access	Low	Medium	Low
29	Skilled hacker: Issue bogus certificate	Don't allow user registra- tion, log certificate cre- ations	Low	High	Low

$\textbf{2.4.11} \quad \textit{Evaluation information asset: Private keys}$

No.	Threat	Countermeasure(s)	L	I	Risk
30	System Administrator: Leak	Only root is allowed to ac-	Low	High	Low
	to external party	cess private keys			
31	Script kiddies / Skilled	Private keys are only ac-	Low	High	Low
	hacker: Steal private keys	cessible for root users, keys			
		are encrypted in transfer			

2.4.12 Evaluation information asset: CRL

1	No.	Threat			Countermeasure(s)	L	I	Risk
- 6	32	$\stackrel{\circ}{\operatorname{script}}$	Administra kiddies / Insert fake or ries	$\stackrel{'}{\mathrm{skilled}}$	Restrict write access to crl file to root	Low	High	Low

2.4.13 Evaluation information asset: Server configuration

No.	Threat	Countermeasure(s)	L	I	Risk
33	System Adminis- trator: Leak con-	Place configuration in standard place (secured by	Low	Medium	Low
	figuration	access policies)			
34	Script kiddies / Skilled hacker: Al- ter configuration (e.g. weaken pre- ferred security al- gorithms)	As above, additionally backup config incrementally (spot alterations)	Low	High	Low
35	Malware: Delete or alter configura- tion randomly	Backup configuration (incremental), access logs, restrictive access policies	Medium	High	Medium
36	Competitors / Espionage: Access configuration and use for own system	Hide internal configura- tions of the system from the outside	Low	Medium	Low

2.4.14 Evaluation information asset: Logs

No.	Threat	Countermeasure(s)	L	I	Risk
37	System Administrator: Accidentally or intentionally delete logs	Policy to not delete logs be- fore they are backed up	Low	Medium	Low
38	Script kiddies / Skilled hacker: Insert or delete messages from the logs	Restrict access to logs to application and root	Medium	Medium	Medium
39	Malware: Insert random logs	Restrict access to logs to application and root	Low	Medium	Low

2.4.15 Evaluation information asset: Login credentials

No.	Threat	Countermeasure(s)	L	I	Risk
40	System Administrator: For-	Backup offline, allow login	Low	Low	Low
	get login credentials	with ssh key			
41	Script kiddies / Skilled	Restrict amount of connec-	Low	High	Low
	hacker: Brute force password	tions from same IP, enforce			
	guessing	strong passwords			

2.4.16 Evaluation information asset: JWT

No.	Threat	Countermeasure(s)	L	I	Risk
42	User: Lose JWT	Saved in browser session	Low	Low	Low
43	Script kiddies: Steal JWT	Short lifetime of token	Low	High	Low
	from a not closed browser				
	window				
44	Skilled hacker: Steal JWT	Only store JWT in	Low	High	Low
	(e.g. by malicious browser	local session, short life-			
	plugin)	time of token, enforce			
		PW/certificate login			
		afterwards			

2.4.17 Evaluation information asset: Archive key

	No.	Threat	Countermeasure(s)	L	I	Risk
_	45	System Administrator: Lose	Store at different locations	Low	High	Low
		key (stored offline)	(e.g. in several safes)			

2.4.18 Evaluation information asset: Root key

No.	Threat		Countermeasure(s)	L	I	Risk
46	System Administrator: Lo	ose	Store at different locations	Low	High	Low
	key (stored offline)		(e.g. in several safes)			

2.4.19 Evaluation person asset: User/Employee

No.	Threat	Countermeasure(s)	L	I	Risk
47	Competitor / Skilled hacker: Steal private key to be able to read email communication	Instruct users how to safely store confidential informa- tion, regularly renew cer- tificate, use passphrases or keys to encrypt private key on harddisk	Medium	Medium	Medium
48	Competitor / organized crime: Blackmail or bribe users to hand over their private key	Have users sign non- disclosure agreements, prosecute them legally	Medium	Low	Low

2.4.20 Evaluation person asset: CA administrator / Insider

No.	Threat	Countermeasure(s)	L	I	Risk
49	Competitor: Leak system	Use standard implementa-	Low	Low	Low
	implementation	tions if possible			
50	Skilled hacker: Steal private key to have access to CA information	Encrypt private key on harddisk, sign agreement to follow the company guidelines to keep key se- cret	Low	Low	Low
51	Competitor / organized crime: Blackmail or bribe CA administrators to hand over their private key	Have CA administrators sign non-disclosure agree- ments, prosecute them legally	Medium	Low	Low

2.4.21 Evaluation person asset: System administrator

No.	Threat	Countermeasure(s)	L	I	Risk
52	Skilled hacker: Steal private key to have full access to the sys- tem	Encrypt private key on harddisk, unmodifiable log files to detect intrusion into & modification of the sys- tem	Low	High	Low
53	Competitor / organized crime: Blackmail or bribe system administrators to hand over their private key	Have system administra- tors sign non-disclosure agreements, prosecute them legally	Medium	High	Medium

2.4.22 Evaluation person asset: Private key holder

No.	Threat	Countermeasure(s)	$_{\rm L}$	I	Risk
54	Skilled hacker: Steal private key to be able to imitate the CA and sign any certificate	Only store the private key encrypted on an isolated machine. Once the key is stolen, there is no pos- sible countermeasure since most security guarantees are based on the secrecy of this key	Low	High	Low
55	Competitor / organized crime: Blackmail or bribe the private key holder to hand over their private key	Have the private key holder sign non-disclosure agreements, prosecute them legally	Medium	High	Medium

2.4.23 Evaluation intangible asset: User confidence

No.	Threat	Countermeasure(s)	L	I	Risk
56	Competitor: Hires skilled	Insure against the risk of	Low	Low	Low
	hacker to breach the security	leaked customer data and			
	of the system to leak customer	the resulting damage			
	data, which reduces the confi-				
	dence of the user in the system				

2.4.24 Detailed Description of Selected Countermeasures

System design The system is designed to be as simple as possible while still retaining the necessary functionality, which means we used as few different applications as possible, because every application adds a potential vulnerability to the system. Any unnecessary port is closed and every application is executed with the smallest sufficient set of permissions.

Instruct users The biggest security concern is the behaviour of the users of the system. We have to train users to be sensitive to security concerns. An attacker can try to gain information about the system or access to the system through social engineering, extract keys from private unprotected machines, install malware on these machines that will infect the system or extract unencrypted mail correspondence from them.

Logging All relevant log files are periodically incrementally backed up. They should only be readable (and not writable) by the system administrator. If this is the case, an attack can be detected even if the attacker attains the same access rights to the system as the administrator.

Standard configurations Whenever possible we use standard configurations for our services. The first reason is that one is less likely to misconfigure a service (because of misunderstanding the exact functionality) by using the standard configuration. The second reason is that even if one perfectly understands the service, it is still possible to e.g. have a typo in a config file and introduce a vulnerability.

Redundancy Whenever there is a hardware component that is critical for the functionality and security of the system there has to be a replacement available at all time or the component has to be redundant itself. Since every configuration file and all applications are backed up, a replacement machine can quickly be installed.

2.4.25 Risk Acceptance

We list all risks that are classified as **Medium** or **High** and describe further countermeasures that could be implemented against them.

No. of threat	Proposed additional countermeasure including expected impact
1	Replicated hardware to ensure redundancy in any case or sign a service-
	level-agreement with a third party to provide a backup system, which
	can quickly be deployed.
7	Have the system administrators regularly review each others changes
	to the system.
12	Insure against the risk of a security breach and the resulting damage.
13	Same as above.
15	Install additional hardware and use a load balancer to be able to handle
	a bigger amount of requests.
17	Pay an external entity (Security operations center) to monitor the sys-
	tem for patterns that would indicate a malware infection. To protect
	against malware, it is important to install security updates as soon as
	possible.
21	Log all SQL requests and do a pattern matching on these logs that
	detects unusual requests (e.g. or ""=").
26	Insure against the risk of leaked user data and the damage that might
	arise for the company & the user.
35	The same countermeasures as for risk 17 apply here. A modification of
	the server configuration further impacts the security of the system by
	possibly introducing new vulnerabilities.
38	An attack that modifies the logs is especially problematic because it
	becomes almost impossible to detect the attack. An undetected attack
	is much more problematic, because the vulnerability causing it cannot
	be removed.
47	Allow users to only use company certified machines for work which are
-	generally better secured than personal machines.
53	Insure against the risk of a system administrator losing his private key
	and the resulting damage to the company.
55	Same as above. Additionally the company needs to instruct all users to
	stop using the (most likely compromised) system immediately, delete
	the now invalid certificates and create new certificates.