

Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels

T. El Ahmad*, L. Brogat-Motte*†, P. Laforgue‡ and F. d'Alché-Buc*

* LTCI, Télécom Paris, † L2S, CentraleSupélec, ‡ Università degli Studi di Milano

Motivation

IP PARIS

Problem. Learn a decision function $\hat{f}: \mathcal{X} \to \mathcal{Y}$, where \mathcal{Y} is a structured space.

Existing works. $\hat{f} = d \circ \hat{h}$: 2-step surrogate method based on input/output kernels [1, 2, 3].

- 1. generic (i.e., able to handle different tasks);
- 2. grounded theoretically;
- 3. simple algorithmically;
- 4. not scalable (both in training and inference).

We want to build a **low-rank** approximation \widetilde{h} thanks to **input and output** random projectors \widetilde{P}_X and \widetilde{P}_Y to obtain a **scalable** predictor \widetilde{f} .

Some Notations

Let $k_{\mathcal{Z}}: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ be a p.d. kernel, $\psi_{\mathcal{Z}}(z) := k_{\mathcal{Z}}(\cdot, z)$, and $\mathcal{H}_{\mathcal{Z}}$ its RKHS.

Given an i.i.d. sample $(z_i)_{i=1}^n \in \mathcal{Z}^n \sim \rho_{\mathcal{Z}}$, let

- $S_Z: f \in \mathcal{H}_Z \mapsto \frac{1}{\sqrt{n}} (f(z_1), \dots, f(z_n)) \in \mathbb{R}^n$
- $S_Z^\#: \alpha \in \mathbb{R}^n \mapsto \frac{1}{\sqrt{n}} \sum_{i=1}^n \alpha_i \psi_{\mathcal{Z}}(z_i) \in \mathcal{H}_{\mathcal{Z}}$
- $K_Z = (k_Z(z_i, z_j))_{1 \le i, j \le n} = nS_Z S_Z^\#$
- $C_Z = \mathbb{E}_z[\psi_{\mathcal{Z}}(z) \otimes \psi_{\mathcal{Z}}(z)]$
- $\widehat{C}_Z = (1/n) \sum_{i=1}^n \psi_{\mathcal{Z}}(z_i) \otimes \psi_{\mathcal{Z}}(z_i) = S_Z^{\#} S_Z$

Input Output Kernel Regression

Training: $\hat{\alpha}(x) = \underbrace{(K_X + n\lambda I_n)^{-1}}_{n \times n}^{-1} k_X^x$

Complexity: $\mathcal{O}(n^3)$

Inference: for a candidate set $\mathcal{Y}_c \subseteq \mathcal{Y}$ of size n_c

$$d(\psi_y(y)) = \underset{y' \in \mathcal{Y}_c}{\operatorname{argmin}} \|\psi_y(y) - \psi_y(y')\|_{\mathcal{H}_y}^2$$

For a test set X_{te} of size n_{te}

$$\underbrace{K_X^{te,tr}}_{n_{te}\times n} \left(\underbrace{K_X + n\lambda I_n}_{n\times n}\right)^{-1} \underbrace{K_Y^{tr,c}}_{n\times n_c}$$

Complexity: $\mathcal{O}\left(n^2n_c\right)$ if $n_{te} < n \leq n_c$

References

- [1] Weston et al. Kernel dependency estimation. NeurIPS '03
- [2] Brouard et al. Input output kernel regression: supervised and semi-supervised structured output prediction with operator-valued kernels. JMLR '16.
- [3] Ciliberto et al. A general framework for consistent structured prediction with implicit loss embeddings. JMLR '20.
- [4] Rudi et al. *Less is more: Nyström computational regular-ization.* NeurIPS '15.

SISOKR: low-rank estimator

Contribution: build a **low-rank** approximation h of \hat{h} thanks to orthogonal projectors \widetilde{P}_X and \widetilde{P}_Y .

How to build \widetilde{P}_X and \widetilde{P}_Y ? By sketching [4], i.e., random linear projections: let $m_{\mathcal{Z}} \ll n$ and $R_{\mathcal{Z}} \in \mathbb{R}^{m_{\mathcal{Z}} \times n}$ be a random matrix,

$$\widetilde{P}_Z = (R_Z S_Z)^\# \left(R_Z S_Z (R_Z S_Z)^\# \right)^\dagger R_Z S_Z$$

Training: $\tilde{\alpha}\left(x\right)=R_{\mathcal{Y}}^{\top}\widetilde{\Omega}_{Y}\widetilde{\Omega}_{X}R_{\mathcal{X}}k_{X}^{x}$ with

$$\widetilde{\Omega}_{Y} = \underbrace{(R_{\mathcal{Y}} K_{Y} R_{\mathcal{Y}}^{\top})^{\dagger} R_{\mathcal{Y}} K_{Y}}_{m_{\mathcal{Y}} \times m_{\mathcal{Y}}},$$

$$\widetilde{\Omega}_{x} = K_{X} R_{\mathcal{X}}^{\top} \underbrace{(R_{\mathcal{X}} K_{X}^{2} R_{\mathcal{X}}^{\top} + n \lambda R_{\mathcal{X}} K_{X} R_{\mathcal{X}}^{\top})^{\dagger}}_{m_{\mathcal{X}} \times m_{\mathcal{X}}}.$$

Complexity: $\mathcal{O}\left(m_{\mathcal{X}}^3 + m_{\mathcal{Y}}^3\right)$

Inference: $K_X^{te,tr}R_{\mathcal{X}}^{\top} \underbrace{\widetilde{\Omega}_Y \widetilde{\Omega}_X}_{m_{\mathcal{X}} \times m_{\mathcal{Y}}} \underbrace{R_{\mathcal{Y}}K_Y^{tr,c}}_{m_{\mathcal{Y}} \times n_c}$

Complexity: $\mathcal{O}\left(n_{te}m_{\mathcal{Y}}n_{c}\right)$ if $n_{te}\leq m_{\mathcal{X}}, m_{\mathcal{Y}}$

Theoretical Guarantees

A 1 (Attainability) $\exists H : \mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}} \text{ s.t. } ||H|| < \infty$ and $h^*(x) := \mathbb{E}_y[\psi_{\mathcal{Y}}(y) \mid x] = H\psi_{\mathcal{X}}(x)$.

A 2 (Bounded kernel) $k_{\mathcal{Z}}(z,z) \leq \kappa_{\mathcal{Z}}^2$, $\forall z \in \mathcal{Z}$.

A 3 (Capacity) $Q_{\mathcal{Z}} \coloneqq \operatorname{Tr}(C_Z^{\gamma_{\mathcal{Z}}}) < +\infty$.

A 4 (Embedding) $\psi_{\mathcal{Z}}(z) \otimes \psi_{\mathcal{Z}}(z) \preceq b_{\mathcal{Z}} C_{\mathcal{Z}}^{1-\mu_{\mathcal{Z}}}$ a.s.

A 5 (Sub-gaussian sketches) $R_{\mathcal{Z}} \in \mathbb{R}^{m_{\mathcal{Z}} \times n}$ composed with i.i.d. entries s.t. (i) $\mathbb{E}\left[R_{\mathcal{Z}_{ij}}\right] = 0$, (ii) $\mathbb{E}\left[R_{\mathcal{Z}_{ij}}^2\right] = \frac{1}{m_{\mathcal{Z}}}$ and (iii) $R_{\mathcal{Z}_{ij}}\left(\frac{\nu_{\mathcal{Z}}^2}{m_{\mathcal{Z}}}\right)$ - subG.

Theorem (SISOKR learning rate). Assume that A 1-5 hold, and that $\|\psi_{\mathcal{Y}}(y)\|_{\mathcal{H}_{\mathcal{Y}}} = \kappa_{\mathcal{Y}}$. For $n \in \mathbb{N}$ s.t. $\frac{9}{n} \log(n/\delta) \leq n^{-\frac{1}{1+\gamma_{\mathcal{Z}}}} \leq \|C_{\mathcal{Z}}\|_{\mathrm{op}}/2$, and for sketching sizes $m_{\mathcal{Z}} \in \mathbb{N}$ such that

$$m_{\mathcal{Z}} \gtrsim \max\left(\nu_{\mathcal{Z}}^2 n^{\frac{\gamma_{\mathcal{Z}} + \mu_{\mathcal{Z}}}{1 + \gamma_{\mathcal{Z}}}}, \nu_{\mathcal{Z}}^4 \log\left(1/\delta\right)\right),$$

then with probability $1 - \delta$ we have

$$\left|\mathcal{R}(\tilde{f}) - \mathcal{R}(f^*) \lesssim \log\left(4/\delta\right) n^{-\frac{1 - \gamma_{\mathcal{X}} \vee \gamma_{\mathcal{Y}}}{2(1 + \gamma_{\mathcal{X}} \vee \gamma_{\mathcal{Y}})}}\right|$$

where $\mathcal{R}(f) = \mathbb{E}_{(x,y)\sim\rho}\left[\|\psi_{\mathcal{Y}}(y) - \psi_{\mathcal{Y}}(f(x))\|_{\mathcal{H}_{\mathcal{Y}}}^2\right]$.

Acknowledgements

The authors thank the Télécom Paris research chair on Data Science and Artificial Intelligence for Digitalized Industry and Services (DSAIDIS).

Experiments

Synthetic least squares regression:

Real-world multi-label classification:

	F1 scores	
Method	Bibtex	Bookmarks
SISOKR	44.1 ± 0.07	$\textbf{39.3} \pm \textbf{0.61}$
ISOKR	44.8 ± 0.01	NA
SIOKR	44.7 ± 0.09	39.1 ± 0.04
IOKR	44.9	NA
LR	37.2	30.7
NN	38.9	33.8
SPEN	42.2	34.4
PRLR	44.2	34.9
DVN	44.7	37.1

Training/inference times (in sec)

fraining/interence times (in sec)		
Method	od Bibtex	
SISOKR	$1.41 \pm 0.03 / 0.46 \pm 0.01$	
ISOKR	2.51 ± 0.06 / 0.58 ± 0.01	
SIOKR	1.99 ± 0.07 / 1.22 ± 0.03	
IOKR	2.54 / 1.18	
Method	Bookmarks	
SISOKR	118 \pm 1.5 / 20 \pm 0.2	
ISOKR	NA	
SIOKR	354 ± 2.1 / 297 ± 2.1	

NA

IOKR