What is Kubernetes?

Kubernetes (K8s) is an open-source container orchestration platform that automates the deployment, scaling, and management of containerized applications. It helps in managing containers (such as Docker containers) across clusters of machines.

How CI/CD and Docker Fit Together:

1. Code Development:

o Developers write code and store it in a source code repository like GitHub or GitLab.

2. CI/CD Pipeline:

- The code is integrated into a CI/CD pipeline (e.g., Jenkins).
- Maven is used to build the code and generate artifacts.

3. Deployment:

- The artifact is deployed into a testing or lab environment.
- Errors may occur due to dependencies or environmental differences.

4. Docker:

- Docker is used to bundle the code and all its dependencies into a Docker image.
- The image is stored in a Docker registry (e.g., Docker Hub).
- This allows you to pull and deploy the containerized application anywhere.

Why Kubernetes?

While Docker solves the problem of packaging and running applications, Kubernetes provides solutions for managing containers at scale:

• Limitations of Docker:

Docker alone does not provide features like auto-scaling, self-healing, or handling the complexities of running containers at scale in production environments.

• Why Kubernetes (K8s):

- Kubernetes provides auto-healing and auto-scaling based on application load.
- It ensures zero downtime during deployment, which is critical for most companies.
- Kubernetes uses Pods: A Pod is the smallest deployable unit in Kubernetes and can hold one or more containers.

Kubernetes Architecture:

1. Nodes:

- Kubernetes clusters consist of two types of nodes:
 - Master Node: Controls and manages the Kubernetes cluster.
 - Worker Node: Executes the tasks assigned by the master node (runs containers).

2. Components of Kubernetes:

- **Kubelet**: Responsible for ensuring that containers are running in the Pods.
- **Kube-proxy**: Manages networking and communication between Pods and services.
- **API Server**: The heart of Kubernetes that interacts with the Kubernetes cluster via kubectl commands.
- Scheduler: Assigns Pods to nodes based on resource requirements.
- Controller Manager: Manages controllers like ReplicaSets, ensuring that the desired state of the system is maintained.
- ETCD: A distributed key-value store that stores cluster configuration data and state information.

3. Scaling:

- Kubernetes automatically manages scaling using ReplicaSets. You can specify the
 desired number of replicas (containers), and Kubernetes ensures they are running as
 required.
- Auto-scaling adjusts the number of Pods based on resource usage or custom metrics.

Kubernetes Services in Cloud:

- Kubernetes can be managed through cloud services like **AWS EKS** (Elastic Kubernetes Service), which simplifies the setup and management of Kubernetes clusters.
- To interact with Kubernetes, you need certain tools installed:
 - AWS CLI: AWS Command Line Interface for managing AWS resources.
 - o **kubectl**: Command-line tool to interact with the Kubernetes cluster.
 - **eksctl**: A tool for creating and managing AWS EKS clusters.

Tools Needed for Kubernetes Setup:

- 1. Visual Studio Code (for code writing and editing).
- 2. AWS CLI (for interacting with AWS resources).
- 3. **kubectl** (for managing Kubernetes clusters).
- 4. **eksctl** (for managing AWS EKS).

Before setting up Kubernetes, ensure these tools are installed on your system.

