Weekly Activity Report

A Large Scale Structure Void Identifier for Galaxy Surveys Based on the β -Skeleton Graph Method

Felipe Leonardo Gómez-Cortés¹ Master Student

> Jaime E. Forero-Romero¹ Advisor

¹Physics Department, Universidad de Los Andes

ABSTRACT

The beta parameter graph, its definition.

The testing catalogs.

How the graph changes while variying β .

Keywords: Beta Skeleton Graph, Beta Parameter

1. THE ALGORYTHM

The algorytm uses the NGL library to create the β -Skeleton graph of a given set of points. Then, the histogram of connection lenghts is created (in a similar fashion to the two-point correlation function) for hhe 0.90-Skeleton and 1-Skeleton graphs. The average lenght for points inside a structure is defined (using the 1-Skeleton), and then those small conections are removed from the 0.9-Skeleton graph. The remaining graph contains the points over the surface of the voids.

1.1. Mock Catalog

In order to test the algorythm, two catalogs of points where created to emulate voids in the LSS. The emulated space is a cubic region of 60 Mpc/h. There where placed $\sim 5 \times 10^4$ points to have a similar volume density of points to the halo volumetric density in the AbacusCosmos simulations. $(8.7 \times 10^6 \text{ halos})$ in a cubic box of 720 Mpc/h length, 2.335×10^{-2} halo/(Mpc/h)³). Points where placed using an uniform density probability distribution.

The first set of points has an spherical empty region of radius 20 Mpc/h centered in the middle of the volume.

The second catalog has four non-overlapping spherical empty regions of radius between 8 and $20 \,\mathrm{Mpc/h}$.

1.2. The β -Skeleton Graph

The β -Skeleton graph is defined by the relative distance between points and a geometrical criterion using a real parameter $\beta \geq 0$.

Two points are connected in the graph if there is an empty region between them, without any other point. The shape of the empty region is function of the β /parameter.

The authors define the β -skeleton as follows:

"The so-called lune-based β -skeleton is a one-parameter generalization of the RNG [Relative Neighborhood Graph] and GG [Gabriel Graph], defined as follows:

- For 0 < beta < 1, the empty region is the intersection of all d-balls with diameter $d(p,q)/\beta$ that have p and q on the boundary.
- For $\beta \geq 1$, the empty region is the intersection of two d-balls with diameter $\beta d(p,q)$ centered at $(1-\frac{\beta}{2})p+\frac{\beta}{2}q$ and $\frac{\beta}{2}p+(1-\frac{\beta}{2})q$.

It follows that $\beta = 2$ gives the RGN, while $\beta = 1$ is the GG."

In the limit when β tends to zero, every point is conected to each point on the set, it corresponds to the graph used in the classic two-point correlation function. Each point has N connections. (With N as the number of points in the set).

When /beta is increasing, the number of connections per point is reduced. The first connections to vanish are the longer ones, while the near connections persists.

1.3. Structure dependence of β parameter

REFERENCES

•

Figure 1. Beta variations