Y[n]+=y[n-1]-==x[n]+2x[n-1]

$$y(n) = -1/2 y(n-1) + 1/3 y(n-2) + x(n) + 2x(n-1)$$

Y[n]+=y[n-1]-==x[n]+2x[n-1]

$$y(n) = -1/2 y(n-1) + 1/3 y(n-2) + x(n) + 2x(n-1)$$

Y[n]+=y[n-1]-==x[n]+2x[n-1]

$$y(n) = -1/2 y(n-1) + 1/3 y(n-2) + x(n) + 2x(n-1)$$

- i) Obtenga la secuencia de muestras de x(n) gráficamente.
 - Calcule la respuesta al impulso al sistema.
 - iii) Sugiera el procedimiento para obtener la salida del sistema.

$$(-1)y(n-1) + 1y(n-2)$$

- 4. El SDLI del diagrama, es excitado por la seña $x(n)=2^n(u(n)-u(n-4))*\delta(n-2)$
 - Obtenga la secuencia de muestras de x(n) gráficamente.
- ii) Calcule la respuesta al impulso al sistema.
 - Sugiera el procedimiento para obtener la salida del sistema.

$$(-1/2)x(n-1)+x(n) + (-1)y(n-1) + 1y(n-2) = y(n)$$

 $(-1/2)delta(n-1) + delta(n) + (-1)y(n-1) + 1y(n-2) = y(n)$

- 4. El SDLI del diagrama, es excitado por la señal $x(n) = 2^n(u(n) u(n-4)) * \delta(n-2)$
 - Obtenga la secuencia de muestras de x(n) gráficamente.
 - Calcule la respuesta al impulso al sistema.
- iii) Sugiera el procedimiento para obtener la salida del sistema.

$$x(n)=2^{-n}(u(n)-u(n-4))*delta(n-2)$$
 $x(n-1)=2^{-(n-1)}(u(n-1)-u(n-5))*delta(n-3)$
 $(-1/2)x(n-1) + x(n) + (-1)y(n-1) + 1y(n-2) = y(n)$

$$-1/2 \left[2^{-(n-1)(u(n-1)-u(n-5))*delta(n-3)}\right] + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(n-1)\left[2^{-(n-1)(u(n-1)-u(n-5))*delta(n-3)}\right] + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(n-2)(u(n-1)-u(n-5))*delta(n-3) + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(u(n-1)-u(n-5))*delta(n-3) + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(n-2)(u(n-1)-u(n-5))*delta(n-3) + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(u(n-1)-u(n-5))*delta(n-3) + 2^{-n(u(n)-u(n-4))*delta(n-2)} + (-1)y(n-1) + 1y(n-2) = y(n-2)(u(n-2)-u(n-2)) + (-1)y(n-2) + (-$$

Resolver la ec. diferencial

2. Determine gráficamente la respuesta al impulso del sistema equivalente, al interconectar en cascada, los sistemas que poseen la siguientes funciones de transferencia $h_1(n) = u(n+1) - u(n-3)$ y $h_2(n) = r(n) - u(n-4)r(n)$. (1).

M(m-n) (2 x > 4 -(x) (x) x < 0 -(x) (x) x < 0

2. Determine gráficamente la respuesta al impulso del sistema equivalente, al interconectar en cascada, los sistemas que poseen la siguientes funciones de transferencia $h_i(n) = u(n+1) - u(n-3)$ y $h_2(n) = r(n) - u(n-4)r(n)$.

Para calcular y(n) en el tiempo se requiere:

- i) Rotar h(n) en torno a k=0; $h(k) \rightarrow h(-k)$
- ii) Desplazar h(k) en $n_0 \rightarrow h(n_0-k)$
- * *iii*) Multiplicar x(n)h(n-k) obtener el resultado $\forall k$ $Rn_0(k)=x(n)h(n-k)$
- iv) Sumar todos los productos Rn_0 para obtener el punto $y(n_0)$
- v) Repetir desde i) para cada punto

