WHAT WAS THE PROBLEM?

- ♦ Supervised machine learning-based approaches focus on **features**:
 - o surface features,
 - o lexical resources,
 - o knowledge-based features,
 - o linguistic features, or
 - user-based and platform-based metadata.

This requires:

- a well-defined feature extraction approach
- enough labelled data

SOLUTION!

Unsupervised language pre-trained model

+

Transfer Learning

 \pm

Fine-Tuning

Word Embeddings - Distributional Hypothesis

"You shall know the meaning of a word by the company it keeps"

Firth (1957)

Associate a low-dimensional, dense vector w with each word $w \in V$ so that similar words (in a distributional sense) share a similar vector representation.

Word Embeddings – Word2Vec

Word Embeddings – Properties

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

Country-Capital

Verb tense

Male-Female

Word Embeddings – Problem

I went to the bank

I went to the river bank

Word Embeddings – Problem

I went to the <u>bank</u>

I went to the river bank

[0.02, 0.04, ..., 0.07]

Word Embeddings – Problem

The service was poor, but the food was

yummy delicious poor

SOLUTION!

Train contextual representations on text corpus

I went to the <u>bank</u>

[0.01, 0.02, ..., 0.07]

I went to the river <u>bank</u>

[0.06, 0.04, ..., 0.09]

NLP's ImageNet moment

"If learning word vectors is like only learning edges, these approaches are like learning the full hierarchy of features, from edges to shapes to high-level semantic concepts."

Sebastian Ruder

Unsupervised language pre-trained model

- Unsupervised pre-training
- **♦** Supervised fine-tuning

"NLP's ImageNet moment has [MASK]"

"[MASK] ImageNet moment has arrived "

"NLP's ImageNet [MASK] has [MASK]"

Masking strategy

Unlabeled sentence: my dog is hairy

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word,
 e.g., my dog is hairy » my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy.

Next Sentence Prediction

To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence.

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

BERT – Pre-training

16

BERT input

BERT Architecture

- Multi-headed self attention
 - Models context
- ♦ Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning

Base and Large

♦ BERT-Base: 12-layer, 768-hidden, 12-head

♦ BERT-Large: 24-layer, 1024-hidden, 16-head

Model Training data

♦ Wikipedia (2.5B words)

♦ BookCorpus (800M words)

BERT – Fine-tuning

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9
The second secon	A PROPERTY.	MALE LE ROLL		The second second	Name of the last	· 请担于1960周8			

Multilingual BERT

♦ Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary

System	English	Chinese	Spanish
XNLI Baseline - Translate Train	73.7	67.0	68.8
XNLI Baseline - Translate Test	73.7	68.4	70.7
BERT - Translate Train	81.9	76.6	77.8
BERT - Translate Test	81.9	70.1	74.9
BERT - Zero Shot	81.9	63.8	74.3

Multilingual BERT

♦ Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary

Fine-tuning \setminus Eval	EN	DE	NL	ES
EN	90.70	69.74	77.36	73.59
DE	73.83	82.00	76.25	70.03
NL	65.46	65.68	89.86	72.10
ES	65.38	59.40	64.39	87.18

Table 1: NER F1 results on the CoNLL data.

Multilingual BERT - Problem

♦ Low-resource language are under-represented

♦ Wikipedia is not the only source

Language-specific BERT models

- ♦ These models are trained:
 - on different languages,
 - o on different data sets,
 - use different architectural variants.

There are at least two French, two Dutch, and four Italian models. Which one is the best?

https://bertlang.unibocconi.it/

Lost in (language-specific) BERT models? We are here to help!

We currently have indexed 31 BERT-based models, 19 Languages and 28 Tasks.

We have a total of 178 entries in this table; we also show Multilingual Bert (mBERT) results if available! (see our paper)

Curious which BERT model is the best for named entity recognition in Italian ? Just type "Italian NER" in the search bar!

Show	10 \$	entries entries	Search:	
SHOW	10 4	y chares	Search.	

Language ↑↓	Model ↑↓	NLP Task ↑↓	Dataset ↑↓	Dataset- Domain ↔	Measure ↑↓	Performance ↑↓	mBERT ↔	Difference with mBERT ᠰ	Source ↑↓
Arabic 🚾	Arabert v1	SA	AJGT	twitter	Accuracy	93.8	83.6	10.2	E 0
Arabic 🚾	Arabert v1	SA	HARD	hotel reviews	Accuracy	96.1	95.7	0.4	2 0
Arabic 🔼	Arabert v1	SA	ASTD	twitter	Accuracy	92.6	80.1	12.5	2 0
Arabic 🚾	Arabert v1	SA	ArSenTD-Lev	twitter	Accuracy	59.4	51.0	8.4	C O
Arabic 🚾	Arabert v1	SA	LABR	book reviews	Accuracy	86.7	83.0	3.7	C O

Models comparison

Task	Metric	LS BERT	mBERT	Δ
SA	Acc	90.49	83.80	6.69
SA	F1	73.67	68.42	5.25
NER	F1	86.09	82.96	3.13
NLI	Acc	82.54	74.60	7.94
TC	Acc	87.93	85.22	2.72
TC	F1	70.65	54.49	16.16
POS	Acc	97.41	95.87	1.54
POS	F1	91.36	88.88	2.48
POS	UPOS	98.28	97.33	0.95
PI	Acc	88.44	87.74	0.69