Міністерство освіти і науки України Національний університет «Запорізька Політехніка»

Кафедра програмних засобів

3BIT

з лабораторної роботи №5

з дисципліни «Моделювання та Аналіз Програмного Забезпечення» на тему:

«Моделювання довільних дисциплін обслуговування з використанням лангюгів користувача; вивчення принципів побудови гістограм»

Виконав:	
Студент групи КНТ-122	О. А. Онищенко
Прийняли:	
Викладач:	Ж. К. Камінська

МОДЕЛЮВАННЯ ДОВІЛЬНИХ ДИСЦИПЛІН ОБСЛУГОВУВАННЯ З ВИКОРИСТАННЯМ ЛАНГЮГІВ КОРИСТУВАЧА; ВИВЧЕННЯ ПРИНЦИПІВ ПОБУДОВИ ГІСТОГРАМ

Мета роботи

Метою роботи є освоєння процедур будування вибором випадкових величин та графічного виводу інформації в системі імітаційного моделювання SIMC; вивчення принципів моделювання різних дисциплін, які обслуговуються на основі списків користувача.

Результати виконання

Код програми

```
#include "../simc/simc.h"
#include <iostream>
using namespace std;
void one() {
  auto Total_Modeling_Time = 8*60*60;
  auto Last_Time = NULL;
  auto Interval_Min=300-20;
  auto Interval_Max=300+20;
  auto First_Delay_Min=100-20;
  auto First_Delay_Max=100+20;
  auto Second_Delay_Min=110-25;
  auto Second_Delay_Max=110+25;
  /*
  first: first, second
  second: first, second
  third: first
  */
  pfacility First_Worker;
  pfacility Second_Worker;
```

```
signalp Signal;
  phistogram Interval_Graphics;
  initlist(Total_Modeling_Time);
  initcreate(1, 0);
  newfac(First_Worker, "\"First Worker\"");
  newfac(Second_Worker, "\"Second Worker\"");
  newhist(Interval_Graphics, 177,277, 10, true, "\"Intervals\"");
  while (systime < Total_Modeling_Time) {</pre>
    plan();
    switch (sysevent) {
      case 1: create(randab(Interval_Min,Interval_Max,v1)); Last_Time =
systime; break;
      case 2: split(1,8); break;
      case 3: seize(First_Worker); break;
      case 4: delayt(randab(First_Delay_Min,First_Delay_Max,v1)); break;
      case 5: outfac(First_Worker); break;
      case 6: if (Second_Worker->status == facility::seized)
accept(Signal); else send(Signal); break;
      case 7: next(13); break;
      case 8: seize(Second_Worker); break;
      case 9: delayt(randab(Second_Delay_Min, Second_Delay_Max, v1));
break;
      case 10: outfac(Second_Worker); break;
      case 11: if (First_Worker->status == facility::seized)
accept(Signal); else send(Signal); break;
      case 12: next(18); break;
      case 13: seize(First_Worker); break;
      case 14: delayt(randab(First_Delay_Min,First_Delay_Max,v1)); break;
      case 15: outfac(First_Worker); break;
      case 16: if (Second_Worker->status == facility::seized)
accept(Signal); else send(Signal); break;
      case 17: next(22); break;
      case 18: seize(Second_Worker); break;
      case 19: delayt(randab(Second_Delay_Min, Second_Delay_Max, v1));
break;
      case 20: outfac(Second_Worker); break;
      case 21: if (First_Worker->status == facility::seized)
accept(Signal); else send(Signal); break;
      case 22: assemble(2); break;
      case 23: tabulate(Interval_Graphics, systime - Last_Time);
destroy(); break;
    }
  }
  printall();
```

```
cout << "Modeling finished, glory to Jesus Christ our Holy Lord GOD</pre>
Almighty King of Kings and Lord of Lords" << endl << endl;
void two() {
  auto Patient_Interval_Min=6-1;
  auto Patient_Interval_Max=6+1;
  auto Doctor_Interval_Min=7-2;
  auto Doctor_Interval_Max=7+2;
  auto Total_Modeling_Time = 3*60;
  auto Total_Patients = 0;
  pfacility Doctors_Office;
  plistt Doctors_Queue;
  initlist(Total_Modeling_Time);
  initcreate(1, 0);
  newfac(Doctors_Office, "\"Doctors Office\"");
  newuserlt(Doctors_Queue, "\"Doctor Queue\"");
  while (systime < Total_Modeling_Time) {</pre>
    plan();
    switch (sysevent) {
      case 1: create(randab(Patient_Interval_Min, Patient_Interval_Max,
v1)); break;
      case 2: trans->testprty = false; inlfifo(Doctors_Queue);
outuserlt(Doctors_Queue); break;
      case 3: seize(Doctors_Office); break;
      case 4: delayt(randab(Doctor_Interval_Min, Doctor_Interval_Max,
v1)); break;
      case 5: outfac(Doctors_Office); break;
      case 6: Total_Patients+=1; destroy(); break;
    }
  }
  cout << "Total Patients: " << Total_Patients << endl;</pre>
  printall();
}
int main()
  one();
 two();
 return 0;
}
```

Виконання програми

				C	M-CI++ v1.2				НУ"3П"	2024
				ж	. К. Камінська					
				C.	М. Сердюк					
3ar	альні парамет	гри середовища:								
Поточний час		28837.899								
Поточна подія		1								
Поточний транзакт		2								
Усього подій		2305.000								
Час моделювання		0.00 сек.								
Середній час виконання події		0.00000 сек/подія								
подія	1	2	3	4	5	6	7	8	9	10
УСЬОГО	97	96	96	96	96	96	96	96	96	96
подія	11	12	13	14	15	16	17	18	19	20
УСЬОГО	96	96	96	96	96	96	96	96	96	96
	, ,,	1 70	, ,,,	, ,,						
подія	21	22	23	24	25	26	27	28	29	30
УСЬОГО	96	192	96							
				Прилад	и					
Прилад	Ki.	лькість входжень	Середній час обробки		Завантаження		Кількість захоплень		Стан	
"First Worker"		192 98.573		.573	0.659		0		FREE	
"Second Worker"		192	92 111.207		0.743		0		FREE	

Гістограма "Intervals"

Діапазон вимірювань	177.000 277.000
Загальна кількість входжень	96
Середиє значения	227.87732
Дисперсія	245.87641
Число виходів за інтервал зліва	0
Число виходів за інтервал справа	0

Таблиця спостережень								
177.0000 188.1111	1	188.1111 199.2222	1	199.2222 210.3333	11			
210.3333 221.4444	20	221.4444 232.5556	26	232.5556 243.6667	21			
243 6667 254 7778	12	254 7778 265 8889	3	265.8889 277.0000	1			

Рисунок 1.1 – Загальне завдання – браузер

Enter a name for the Report HTML file: gen Modeling finished, glory to Jesus Christ our Holy Lord GOD Almighty King of Kings and Lord of Lords Enter a name for the Report HTML file: gen Total Patients: 25

Рисунок 1.2 – Загальне завдання – консолька †

Висновки

Таким чином ми освоїли процедури будування вибором випадкових величин та графічного виводу інформації в системі імітаційного моделювання SIMC, а також вивчили принципи моделювання різних дисциплін, які обслуговуються на основі списків користувача

Контрольні питання

Процедури створення гістограм в SIMC

Побудова гістограм у системі імітаційного моделювання SIMC відбувається за допомогою користувацького типу phistogram. У самій моделі посилатися на нього можна черезе phistogram h. Для ініціалізації нової гістограми використовується функція void newhist(phistogram, double, double hint2, bool, alfa); де перший параметр - посилання на гістограму, другий - нижня межа, третій - верхня межа, четвертий - число інтервалів, п'ятий - ключ печатки, шостий - навзва гістограми. Метод табулювання має наступний формат: void tabulate(phistogram hist, double r), де hist - посилання на гістограму, а r - табульоване значення

Процедури блокування транзактів в SIMC

У системі імітаційного моделювання SIMC існують два способи блокування транзактів: через функцію wait або через методи accept/send. Функція wait очікуватиме поки у системі не відбудеться зазначена подія. Функція має наступний вигляд: void wait(event e), де е - номер події на яку чекаємо. Методи accept/send мають наступний вигляд: void accept(signal s),

void send(signal s). У SIMC визначений тип сигнал signal, який приймає значненя від 1 до signmax.

Процедури збору статистики в SIMC

У системі імітаційного моделювання SIMC імплементовано автоматичний збір статистики під час виконання програми, однак існують способи виводу та видалення статистики вручну через відповідні методи. Такі методи включають: void resetall() для скидання всієї статистики, що була накопичена під час моделювання, а також void clear() аби повернути усі транзакти у delist та скинути всю поточну статистику.