#### IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

# DC Circuits

### 1) Resistors 'R'

Function: resist or limit electrical current in a circuit.

Unit: ohm 'Ω'

Representation



Note: parameters associated with a resistor 1) length (l) 2) cross-section

area (A).

# 2) Capacitors 'C' OR called condensers

Function: store electrical charge.

Unit: Farad 'F'



### 3) Inductors 'L' or called coils

Function: used to store energy in an electromagnetic field.

Unit: Henry 'H'

Representation



# Transformers

Function: they are used to couple ac voltage from one point in a circuit to another, or to increase or decrease the ac voltage.



\_\_\_\_\_

### Electronic Devices:

1) Voltmeter: measure voltage.

2) Ammeter: measure electrical current.

3) Ohmmeter: measure resistance.

4) Multimeter: measure voltage, electrical current, electrical current.

5) Oscilloscope: it is an instrument that measures and observes ac voltage.

\_\_\_\_\_

Electrical units: electrical quantities & their correspond with SI (System International) symbols.

Note: time is not an electrical quantity.

| QUANTITY      | SYMBOL           | SI UNIT | SYMBOL       |
|---------------|------------------|---------|--------------|
| Capacitance   | C                | Farad   | F            |
| Charge        | Q                | Coulomb | C            |
| Conductance   | $\boldsymbol{G}$ | Siemens | S            |
| Energy (work) | W                | Joule   | J            |
| Frequency     | f                | Hertz   | Hz           |
| Impedance     | $\boldsymbol{z}$ | Ohm     | Ω            |
| Inductance    | L                | Henry   | Н            |
| Power         | $\boldsymbol{P}$ | Watt    | $\mathbf{w}$ |
| Reactance     | X                | Ohm     | Ω            |
| Resistance    | R                | Ohm     | Ω            |
| Voltage       | $\boldsymbol{v}$ | Volt    | v            |

### Powers of ten (Scientific notations):

Some positive and negative powers of ten.

```
10^{6} = 1,000,000 10^{-6} = 0.000001

10^{5} = 100,000 10^{-5} = 0.00001

10^{4} = 10,000 10^{-4} = 0.0001

10^{3} = 1,000 10^{-3} = 0.001

10^{2} = 100 10^{-2} = 0.01

10^{1} = 10 10^{-1} = 0.1
```

Engineering notation : is a special case of scientific which uses powers of three & its doubles and called metric prefixes (  $10^{\pm 3}$  ,  $10^{\pm 6}$  ,  $10^{\pm 9}$  ,  $10^{\pm 12}$  )

# Metric prefixes:

| METRIC PREFIX | SYMBOL | POWER OF TEN     | VALUE             |
|---------------|--------|------------------|-------------------|
| femto         | f      | $10^{-15}$       | one-quadrillionth |
| pico          | p      | $10^{-12}$       | one-trillionth    |
| nano          | n      | 10 <sup>-9</sup> | one-billionth     |
| micro         | $\mu$  | $10^{-6}$        | one-millionth     |
| milli         | m      | 10 <sup>-3</sup> | one-thousandth    |
| kilo          | k      | $10^{3}$         | one thousand      |
| mega          | M      | $10^{6}$         | one million       |
| giga          | G      | $10^{9}$         | one billion       |
| tera          | T      | 10 <sup>12</sup> | one trillion      |

\_\_\_\_\_\_ please take some break :)

Voltage 'V': is expressed as energy divided by charge.

$$V = W/Q$$

## Sources of voltage:

- \* Battery: converts chemical energy into electrical energy.
- \* Electronic power supply: converts ac to dc.
- \* Solar cell: converts light into electrical energy.
- \* Electronic generators: converts mechanical energy into electrical energy.

Current: rate of flow of charges.

$$I = Q/t$$

Resistance: is opposition to current.

### R = V/I

### Types of resistors:

- 1) Fixed resistors:
  - a) Carbon resistors
  - b) Wire wound resistors
- 2) Variable resistors:

A)

- a) Potentiometer
- b) Rheostat

B)

- a) Thermistor
- b) Photoconductive cells

### Resistor color codes:

First two bands represent value. Third represents multiplier. Fourth for tolerance.

| band color | Tolerance |
|------------|-----------|
| Gold       | ± 5%      |
| Silver     | ± 10%     |
| No-band    | ± 20%     |

Note: if the third band was gold or silver they are calculated as multiplier, where gold = -1, silver = -2

| Digit | Color  |
|-------|--------|
| 0     | black  |
| 1     | Brown  |
| 2     | Red    |
| 3     | Orange |
| 4     | yellow |
| 5     | green  |
| 6     | Blue   |
| 7     | Víolet |
| 8     | Grey   |
| 9     | White  |

### Label resistors:

First three Numbers or Symbols represents value. Fourth for multiplier.

Fifth for tolerance.

| Symbol     | F   | G   | J   | K    | М    | $\mathcal R$     |
|------------|-----|-----|-----|------|------|------------------|
| Percentage | ±1% | ±2% | ±5% | ±10% | ±20% | •                |
| tolerance  |     |     |     |      |      | (decímal<br>dot) |

Ground: is the reference point in electric circuit and has a potential of 'OV' wrt other points.



Commonly used ground symbols.

Symbol

Ohm's law: states the current varies directly with voltage & inversely with resistance.

Energy 'W': is the fundamental ability to do work.

**Power** P': is the rate at which energy is used.

$$P = W/t$$

Power rating of resistors  $P_r$ : it's the max amount of power that resistor can dissipate without being damaged.

Power dissipate: is the consumed power.

Note: power rating must be greater than power dissipate otherwise the circuit is subjected to resistor failure & resistor is damaged.

Note: In problems, if resistor is damaged we consider it short circuit not open circuit.

# Series circuit

Series circuit: it's a circuit, which provides only one path for current between 2 given points in a circuit, so the current is the same through each series resistor.

$$I_{T} = 11 = 12 = 13 = ... = I_{n}$$

\* The total resistance of a series circuit is equal to the algebraic sum of resistances of each individual resistor.

$$R_t = R1 + R2 + R3 + ... + R_n$$

$$R_t = N * R \rightarrow IFR1 = R2 = R3 = ... = R_n$$

Ohm's law: ~

$$1 = V_s/R_t$$

Voltage sources in series: when 2 or more voltage sources are in series, the total voltage is equal to the algebraic sum of the individual source voltages.

#### ▲ FIGURE 22

Voltage sources in series add algebraically. If a source is reversed, it subtracts from the total voltage as shown in part (b). This is not a normal configuration for batteries.

Kirchhoff's voltage law: the sum of the voltage drops equals the total voltage source.

$$V_{c} = V1 + V2 + V3 + ... + V_{M}$$

Voltage divider:

$$V_X = (R_X/R_t)*V_s$$

Power in a series circuit: the total amount of power in a series resistive circuit is equal to the sum of the powers in each resistor in series.

$$P_{t} = P1 + P2 + P3 + ... + P_{n}$$

where  $P_{x} = IV_{x} = i^{2}R_{x} = (V_{s})^{2}/R_{x}$ 
 $OR P_{t} = IV_{s} = I^{2}Rt = (V_{s})^{2}/R_{t}$ 

# Parallel circuit

Parallel circuit: it's a parallel circuit has more than one current path (branches) between 2 given points.

Voltage drop in parallel circuits: the voltage across any given branch of a parallel circuit is equal to the voltage drop across each of the other branches in parallel.

$$V_{s} = V1 = V2 = V3 = ... = V_{n}$$

Kirchhoff current law: the sum of the currents into a junction  $I_{T'in}$ , is equal to the sum of the currents out of that junction  $I_{T'out}$ .

$$I_{+} = 11 + 12 + 13 + ... + I_{n}$$

$$I_{+'in'} = I_{+'out'}$$

 $l_{1'in'} + l_{2'in'} + l_{3'in'} + \dots + l_{n'in'} = l_{1'Out'} + l_{2'Out'} + l_{3'Out'} + \dots + l_{n'out'}$ 



please take some break :) it's the last part .

## Total parallel resistance:

$$I_{+} = 11 + 12 + 13 + \dots + 1_{n}$$
 
$$\frac{V_{S}}{R_{t}} = \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}} + \dots + \frac{V_{n}}{R_{n}}$$
 But  $\forall s = \forall 1 = \forall 2 = \forall 3 = \dots = \forall_{n}$ 

Then

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 Then

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}}$$

Special Cases

$$R_T = R/N \rightarrow IFR1 = R2 = R3 = ... = R_n$$

$$R_T = rac{R_1 * R_2}{R_1 + R_2} 
ightarrow$$
 if R1 \neq R2 , Two resistors only

Ohm's law: 
$$= \sqrt{\frac{|x|}{R_t}}$$

Current divider :-

$$I_X = \left(\frac{R_T}{R_X}\right) \times I_T$$

$$I_1 = \left(\frac{R_2}{R_1 + R_2}\right) \times I_T$$

$$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) \times I_T$$

\*\* ف البسط المقاومة البعيدة ع مجموع المقاومتين , لو اكتر من مقاومتين باجيب المقاومة المكافئة للكل عدا المقاومة اللي عاوز احسب التيار فيها (اشيل المقاومة 2 و احط مكانها المقاومة المكافئة)

## Power in parallel circuits:

$$P_t = P1 + P2 + P3 + ... + P_n$$

Where  $P_X = IV_X = i^2 R_X = (V_S)^2 / R_X$ 
 $OR P_t = IV_S = I^2 R_t = (V_S)^2 / R$ 

# SERIES-PARALLEL CIRCUITS



Series parallel circuits: A circuit consists of

combinations of both series & parallel current paths.

$$R_{2.3} = \frac{R_3 * R_2}{R_3 + R_2}$$
 ;  $R_T = R_1 + R_{2.3}$ 

# Capacitors

### Capacitance

$$c = Q/V$$

The formula for the energy stored by a capacitor:

$$W = \frac{1}{2}CV^2 = \frac{1}{2}Q^2/C = \frac{1}{2}QV$$



While charging, I=Q/t is the same in circuits, so

both capacitors store the same

amount of charge

By applying KVL ---->

$$VS = V1 + V2$$

$$VS = QT/CT$$

$$QT/CT = Q1/C1 + Q2/C2$$

# Parallel capacitors:

the amount of charge on each capacitor is directly proportional to its capacitance value.

$$C = Q/V$$

$$QT = Q1 + Q2$$

$$CT = C1V1 + C2V2$$

But 
$$VS = V1 = V2$$

Then 
$$CT = C1 + C2$$







# Series-parallel capacitors:

- 1) Consider parallel capacitors as series resistances.
- 2) Consider series capacitors as parallel resistances.

## INDUCTORS

Series Inductors: the total inductance is the sum of individual inductances.

$$LT = L1 + L2 + L3 + ... + Ln - m - m - m - m$$

Parallel inductor:

$$L_T = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_n}}$$

### Important notes:

- 1- يجب ان تكتب القوانين لحساب كل شيء داخل المسالة
  - 2- ان تكتب الوحدات بعد كل ناتج



- 3- ان تختار اسهل الطرق لحل المسالة الا اذا طلب الحل بطريقة معينة
- 4- ف النواتج لا يجب ان تكتب ف صورة كسر اعتيادي و لكن كسر عشري
  - 5- عند كتابة ناتج به كسر عشري يكتب العلامة العشرية (.) و ليس (,)
- 6- ال(,) تستخدم ف الناتج بعد كل 3 ارقام داخل العدد و لايفضل استخدامها ف الامتحان لعدم التشتيت
- 7- ف مسائل السيريس باراليل يفضل تحويل الدائرة الي ابسط ما يمكن ثم حساب المطلوب مع التوضيح بالرسم خلال كل خطوة من التبسيط

### 9- PART OF NETWORK THEOREMS IN ANOTHER PDF

\*WILL BE MADE & UPLOADED SOON\*

8- والله لازم تكتب القوانين 🥝

10- حل الشيتات مهم لان الدكتور عاوز يعرف انت بتذاكر و المحتوي وصلك ولا لأ هو مش بيعملك اختبار ذكاء .

\* pictures from floyd

# #تم بحمد الله

