Vegetation data access and evaluation of taxon names Version 0.1

Florian Jansen

November 10, 2009

Abstract

An example session to show the usage of R library *vegdata*. After installation of package vegdata you can run this script with > vignette("vegdata")

The package can be downloaded from http://geobot.botanik.uni-greifswald.de/download/. It is not yet available through official R-cran Sites.

1 Provided functionality

1.1 Taxonomic evaluation

One of the most important step in using vegetation data (from different sources) is to take care about the taxonomic content of the used taxon names. That is, to make sure, that exactly one (correct and valid) name defines one biological entity. Most researchers remember to convert synonyms to valid names, but in many cases the care about e.g. monotypic subspecies or ambiguous taxonomic levels, is lacking. The package offers the function tv.taxval() with options for the adjustment of formas, synonyms, monotypic taxa, subspecies, members of aggregates and undetermined genera.

1.2 Cover standardization

Turboveg provides different abundance codes and all kinds of user defined cover codes can easily be added. For vegetation analysis an unique platform is needed which will mostly be the percentage cover of the observed area, so for every abundance code class the mean cover percentage is defined in Turboveg. Since different scales can occur in a database and the storage format of the code table in Turboveg is somewhat strange, the function tv.coverperc() provides automatic conversion.

1.3 Layer aggregation

The main sample unit in vegetation science is a so called relevé. A Braun-Blanquet relevé is a sample of names and coverage (abundance) of species in a specified area (usually between 1 an 1000 sqm). It contains (is intended to contain) a complete list of phytoautotrophic plants (or a special guild) in that area. The information can be stored in a three-column list of relevé ID, Taxon ID and performance measure (e.g. cover code).

Often additional information about the kind of occurrence of the specific plants is wanted. In Turboveg one additional column for the most widespread attribute is default: growth height classes. E.g. in a forest it is of interest, if a woody species reaches full height (tree layer) or occurs only as a small individual (herb

layer). Other attributes like micro location (hummock or depression, rock or dead wood), development stage (juvenile or not, age, flowering status etc.) or the month of survey in a multi-seasonal survey could be of interest and can be added in Turboveg. For analysis you may want to differentiate species growing in different layers. Function tv.veg() provides options for species-plot attribute handling.

1.4 Vegetation matrix

Turboveg stores relevés as a list of occurrences (s. above) but almost all functions and programs for vegetation analyses are using plot / species tables with a 0 value for non-occurrence (measured absence). Function tv.veg() inflates the Turboveg list to matrix format.

2 Examples

Maybe the best way to introduce into the functionalities of the package is a session with example code.

2.1 Preparations

You can download the package from http://geobot.botanik.uni-greifswald.de/download. Please ensure the right path to the R installation directory on your local computer. For a default Windows installation the procedure can look like this:

We load the library as usual into our R environment.

```
> library(vegdata)
```

If you want to use the taxonomic standard list for Germany, please look at: 'http://geobot.botanik.uni-greifswald.de/portal/reflist'

The package includes some example datasets and the taxonomic reference list Germansl 1.1, which can be loaded with option sysPath=TRUE. To get a better idea about the intended functionality of the code you can copy the datasets into your local Turboveg directory structure (see Turboveg help) and omit option "sysPath=TRUE".

```
> download.file("http://geobot.botanik.uni-greifswald.de/download/GermanSL%201.1/elbaue.zip",
+ file.path(tempdir(), "elbaue.zip"), method = "internal",
+ mode = "wb")
> zip.unpack(file.path(tempdir(), "elbaue.zip"), file.path(tv.home(),
+ "Species"))
```

Define your Turboveg Database (for general information about database structure see Turboveg Help). The function tries to guess the path of Turboveg installation (for Windows and Linux with Wine), please specify explicit in case of trouble.

Main functions The package contains two main functions:

tv.veg() is a wrapper for other functions to support the database load from Turboveg, taxonomic amendment, cover unification, layer combination and matrix generation.

tv.site() will load the site (header) data and does some basic corrections.

But first look at the metainfo which should always be created for every Turboveg database. We recommend a simple text format stored in the (Turboveg) database directory which can than be loaded by:

```
> metainfo("database_name")
```

2.2 Site data

```
> require(vegdata)
> db <- "taxatest"
> site <- tv.site(db, sysPath = TRUE)</pre>
 The following columns contain no data and are omitted
 [1] REFERENCE TABLE_NR
                           NR_IN_TAB PROJECT
                                                  AUTHOR.
                                                             SYNTAXON
 [7] UTM
                ALTITUDE
                           EXPOSITION MOSS_IDENT LICH_IDENT
 The following numeric columns contain only 0 values and are omitted
 [1] COV_TOTAL COV_TREES COV_SHRUBS COV_HERBS COV_MOSSES COV_LICHEN
 [7] COV_ALGAE COV_LITTER COV_WATER COV_ROCK
                                                  TREE_HIGH TREE_LOW
[13] SHRUB_HIGH SHRUB_LOW HERB_HIGH HERB_LOW
                                                  HERB_MAX
                                                             CRYPT_HIGH
The following numeric fields contain 0 values:
[1] INCLINATIO
Please check if these are really measured as 0 values
or if they are not measured and wrongly assigned
because of Dbase restrictions.
If so, use something like:
 site$Column_name[site$Column_name==0] <- NA</pre>
 summary(site[,c('INCLINATIO')])
```

The function **tv.site()** is quite straightforward. After loading the file tvhabita.dbf of the specified database, warnings are given for plots without specified relevé area or date and the fields are checked if they are empty (a lot of predefined header fields in Turboveg are often unused) or contain probably mistakable 0 values in numerical fields, due to DBase deficiencies (DBase can not handle NA = not available values reliably). It is stated in the output, if you have to check 0 values.

2.3 Vegetation data

Now we care about the species occurrencies data. Simple loading of species observation data from Turboveg is done by function **tv.obs()**

```
> obs <- tv.obs(db, sysPath = TRUE)</pre>
reading observations ...
> head(obs)
  RELEVE_NR SPECIES_NR COVER_CODE LAYER DET_CERT SEASON MICROREL FLOWER
           2
                      27
                                  2b
                                          0
                                                    0
                                                            0 Schlenke
1
2
           2
                                                    0
                     100
                                    1
                                          0
                                                            0 Schlenke
                                                                              0
3
           2
                    4685
                                                    0
                                          1
                                                            0 Schlenke
4
           2
                    4685
                                    1
                                          2
                                                    1
                                                            0 Schlenke
                                                                              0
5
           2
                    4685
                                    1
                                          6
                                                    0
                                                            0
                                                                   < NA >
                                                                             10
           2
6
                    4721
                                    4
                                          0
                                                    0
                                                            1 Schlenke
                                                                              0
```

Data is stored in Turboveg as a flat table of occurrency values, that is one species-plot occurrence per row. Field **RELEVENR** contains the plot number, **SPECIESNR** the taxon codes, **COVERCODE** the performance code and all other columns show species-plot attributes like growth hight classes.

2.3.1 Names and entities

2780

<NA>

<NA>

If you want to know the species name for a species number or shortletter or vice versa you can use: > tax("ACERNEG", sysPath = TRUE)

```
SPECIES_NR LETTERCODE
                           SHORTNAME
                                         ABBREVIAT
                                                     NATIVENAME AUTHOR SYNONYM
6
                ACERNEG Acer negundo Acer negundo Eschen-Ahorn
  VALID_NR
         8
6
> tax(27, tax = TRUE, sysPath = TRUE)
     SPECIES NR.
                                 ABBREVIAT SYNONYM VALID_NR
             27 Achillea millefolium agg.
2780
                                             FALSE
                                                         27
                    VALID_NAME GRUPPE RANG
                                              AGG
                                                        AGG_NAME
2780 Achillea millefolium agg.
                                    S
                                       AGG 60728 Achillea spec.
                              NACHWEIS
                                                                  SECUNDUM HYBRID
2780 BfN (Wisskirchen & Haeupler 1998) BfN (Wisskirchen & Haeupler 1998)
     BEGRUENDUN IN_QUELLE_ AUTONYM ELTER_1 ELTER_2 ELTER_3 EDITSTATUS
```

<NA>

As stated in the beginning the care about the taxonomic entegrity of your database should stay at the beginning of every vegetation analyses. For Turboveg databases with taxnomic reference list GermanSL (versions 0.9, 1.0 or 1.1) this can be done semi-automatic.

<NA>

<NA>

To run the taxonomic adjustments of the example dataset use tv.taxval()

<NA>

Original number of taxa: 35 6 Synonyms found in dataset, adapted SPECIES_NR ABBREVIAT VALID_NR 4338 20098 Achillea millefolium var. lanata 5230 27309 Armeria bottendorfensis 20585 7609 20096 Achillea millefolium ssp. collina 29 7763 25203 Abies alpestris 4269 9853 20585 20583 Armeria maritima ssp. bottendorfensis 80425 Brachythecium salebrosum var. palustre 80400 20090 VALID_NAME 4338 Achillea pannonica 5230 Armeria maritima ssp. halleri 7609 Achillea collina 7763 Picea abies 9853 Armeria maritima ssp. halleri 20090 Brachythecium mildeanum 6 Variants, forms, subspecies etc. found also at species level in dataset, combined at species level SPECIES_NR ABBREVIAT AGG AGG_NAME 1865 33 Achillea millefolium ssp. sudetica 31 Achillea millefolium 5313 4722 Ranunculus ficaria ssp. bulbilifer 4721 Ranunculus ficaria 13135 7161 Poa trivialis ssp. trivialis 26611 Poa trivialis 14576 100 Agrimonia eupatoria ssp. eupatoria 99 Agrimonia eupatoria 26287 90072 Adonis aestivalis * aestivalis 76 Adonis aestivalis 26288 90073 Adonis aestivalis * provincialis 76 Adonis aestivalis 4 members of occurring aggregates in dataset, aggregated: ABBREVIAT AGG SPECIES_NR 1863 31 Achillea millefolium 27 Achillea millefolium agg. 2923 Hieracium pilosella 12273 Hieracium subg. Pilosella 12032 12188 29 Achillea collina 27 Achillea millefolium agg. 14194 34 Achillea pannonica 27 Achillea millefolium agg. 5 Monotypic taxa found in dataset, species converted to lower rank. AGG_NAME AGG_RANG MEMBER_NR 4 99 Agrimonia eupatoria SPE 198 4721 Ranunculus ficaria SPE 4722 SPE 319 26611 Poa trivialis 7161 966 FAM 66142 Acoraceae spec. 61329 1404 94619 Anthocerotopsida spec. KLA 94653 MEMB_NAME MEMB_RANG Agrimonia eupatoria ssp. eupatoria 198 Ranunculus ficaria ssp. bulbilifer 319 Poa trivialis ssp. trivialis 966 Acorus spec. 1404 Anthocerotales spec. ORD 1 Monotypic taxa found in dataset, species converted to lower rank. AGG_NR AGG_NAME AGG_RANG MEMBER_NR MEMB_NAME MEMB_RANG 851 61329 Acorus spec. GAT 69 Acorus calamus Warning: Critical Pseudonym(s) in dataset, please check to_check checknr check agaifast SPECIES_NR VALID_NAME 4876 Galium mollugo 2555 Galium mollugo auct. 27395 Galium album 2549 BfN (Wisskirchen & Haeupler 1998) Warning: Critical species in dataset, please check to_check checknr 2112 Arenaria serpyllifolia 13703 6438 Dactylis glomerata ssp. glomerata 13464 12052

2555

check against SPECIES_NR

Galium mollugo

Arenaria serpyllifolia s. str.

2112

Have a look at ?tv.taxval or args(tv.taxval) for options.

Taxonomic evaluation of vegetation data sets can only be performed with checklists containing appropriate taxonomic information (see tax.dbf and monotypic-D.dbf for GermanSL 1.1 Jansen & Dengler (2008).

If your database is not referenced with GermanSL you can not use **tv.taxval** and you have to execute **tv.veg()** with option tax=FALSE or convert your database to GermanSL (Export to XML in Turboveg and re-import choosing the new GermanSL) assuming you have a central european database. You can download the reference list in different formats from:

http://geobot.botanik.uni-greifswald.de/portal/reflist.

German SL is based upon the **taxon views** (Berendsohn (1995) of available checklists but contains more than 16,000 synonyms which can be used to switch between different taxon views.

To deal with a different taxonomic concept than the one used in GermanSL, you can use the option **concept**. For this a file is necessary indicating the new synonymy status, valid names and new aggregation. Within the package only a small example list (**korneck1996.dbf**) for the taxonomic view of *Armeria maritima* from (Korneck *et al.*, 1996) is implemented. Please compare the following examples.

```
> tv.taxval("taxatest", quiet = TRUE, sysPath = TRUE)
> tv.taxval("taxatest", concept = "korneck1996", quiet = TRUE,
+ sysPath = TRUE)
```

2.3.2 Cover values

Cover is coded in Turboveg as an alphanumeric code. Different codes can be combined by using the mean cover percentage per cover class. Function **tv.coverperc** will do this job according to the definitions in *Turboveg/Popup/tvscale.dbf*.

> head(obs)

	RELEVE_NR	SPECIES_NR	COVER_CODE	LAYER	DET_CERT	SEASON	MICROREL	FLOWER
1	2	27	2b	0	0	0	Schlenke	0
2	2	100	1	0	0	0	Schlenke	0
3	2	4685	4	1	0	0	${\tt Schlenke}$	0
4	2	4685	1	2	1	0	${\tt Schlenke}$	0
5	2	4685	1	6	0	0	<na></na>	10
6	2	4722	4	0	0	1	Schlenke	0

> obs <- tv.coverperc(db, obs, sysPath = TRUE)</pre>

```
[1] Cover code used: Braun/Blanquet (old)
                                                    3
code
                         2
                                                         38
                                                                    68
                                                                               88
                                              13
perc
              1
[1] Cover code used: Braun/Blanquet (new)
                                                                            3
code
                                                      2a
perc
                                                                    18
                                                                               38
                                                                                          68
                                                                                                     88
              1
```

> head(obs)

	RELEVE_NR	SPECIES_NR	COVER_CODE	LAYER	DET_CERT	SEASON	MICROREL	FLOWER
1	2	27	2b	0	0	0	${\tt Schlenke}$	0
2	2	100	1	0	0	0	${\tt Schlenke}$	0
3	2	4685	4	1	0	0	${\tt Schlenke}$	0
4	2	4685	1	2	1	0	Schlenke	0
5	2	4685	1	6	0	0	<na></na>	10
6	2	4722	4	0	0	1	Schlenke	0
	COVERSCALE	COVER_PERO						
1	02	18	3					
2	02	3	3					
3	02	68	3					
4	02	3	3					
5	02	3	3					
6	02	68	3					

2.3.3 Pseudo-species, layer combinations and vegetation matrix

tv.veg() is a wrapper for the above mentioned functions and produces a vegetation matrix with releves as rows and species as columns. Additionally care about species-plot attribute differentiation and combination, the inflation of a vegetation matrix and the handling of species names is provided.

If we have more than one occurrence of the same species in a plot, e.g. because tree species growing as young stands and adult specimens were differentiated according to growth hight classes we have to create either pseudo-species which differntiate the occurrences in the resulting vegetation matrix or to combine species occurrences from different layers. For the latter we can use different calculations i.e. mean, max, min or first value. If we assume an independent occurrence of a species in different layers, a tree with a cover of 50% in tree layer and 50% in herb layer can be accounted with an overall cover of 75%. This is done with option lc = 'layer , the default.

If you want to differentiate species according to layer or other species-plot attributes you can specify which attributes should be used for differentiation, and how pseudo-species should be labelled (e.g. speciesname.layercode). Two example data frames for layer differentiation are included in the package. lc.0 uses all Turboveg layers (0 to 9) for pseudo-species differentiation. lc.1 combines tree layers and shrub layers to a maximum of three pseudo-species per taxon.

> lc.1

```
LAYER
         COMB
1
      0
            0
2
         Tree
      1
3
      2
         Tree
4
      3 Tree
5
      4 Shrub
      5 Shrub
7
      6
8
      7
            0
      8
            0
            0
> veg <- tv.veg(db, lc = "sum", comb = list(lc.1, c("LAYER")),</pre>
     dec = 1, quiet = TRUE, sysPath = TRUE)
> veg[, 1:7]
  ABIEALB.Tree ABIECON.Tree ACERPSE ACERPSE.Shrub ACHI#MI ACOUCAL ADONAES
                         3
                            3 13
                                                      44
                                                              0
1
            3
2
            0
                         0
                                 0
                                               0
                                                      18
                                                               0
                                                                       6
                                                               3
                                                                       0
```

If you want to use only presence/absence information in your analyses you can do:

```
> veg[veg > 0] <- 1
```

2.4 Additional functions

freqtab produces a relative or absolute frequency table of a vegetation table classification with the possibility to filter according to threshold values.

```
> db <- "elbaue"
> veg <- tv.veg(db, quiet = TRUE, sysPath = TRUE)
reading observations ...
[1] "Germansl1.1"
Original number of taxa: 53
6 Synonyms found in dataset, adapted
No conflicting aggregates found.
 1 Monotypic taxa found in dataset, species converted to lower rank.
Warning: Critical species in dataset, please check
No undetermined genera or above found.
Number of taxa after validation: 53
 converting cover code ...
creating pseudo-species ...
combining occurrences using type LAYER and creating vegetation matrix ...
replacing species numbers with shortletters ...
> site <- tv.site(db, sysPath = TRUE)</pre>
The following columns contain no data and are omitted
 [1] REFERENCE TABLE_NR PROJECT AUTHOR SYNTAXON
 [7] ALTITUDE EXPOSITION INCLINATIO MOSS_IDENT LICH_IDENT REMARKS
The following numeric columns contain only 0 values and are omitted
 [1] COV_TOTAL COV_TREES COV_SHRUBS COV_HERBS COV_MOSSES COV_LICHEN
 [7] COV_ALGAE COV_LITTER COV_WATER COV_ROCK TREE_HIGH TREE_LOW
[13] SHRUB_HIGH SHRUB_LOW HERB_HIGH HERB_LOW HERB_MAX CRYPT_HIGH
The following numeric fields contain 0 values:
[1] INUND
           INUND_50
Please check if these are really measured as O values
or if they are not measured and wrongly assigned
because of Dbase restrictions.
If so, use something like:
site$Column_name[site$Column_name==0] <- NA</pre>
summary(site[,c('INUND','INUND_50')])
> cluster <- site$MGL < -100</pre>
```

> freqtab(veg, cluster, limit = 20, relfr = TRUE, sysPath = TRUE)

[1] "Number of clusters: 2"		
	FALSE.	TRUE.
Achillea millefolium	0	38
Agrostis capillaris	10	54
Agrostis stolonifera	30	15
Alopecurus geniculatus	30	0
Alopecurus pratensis	45	77
Anthoxanthum odoratum	20	23
Cardamine pratensis	45	8
Carex acuta	60	0
Carex praecox	5	69
Carex vesicaria	30	0
Carex vulpina	25	15
Elymus repens	15	77
Erophila verna	0	31
Euphorbia esula	0	23
Galium palustre	65	15
Galium verum ag.	5	46
Glyceria maxima	45	0
Holcus lanatus	30	8
Juncus effusus	35	0
Phalaris arundinacea	70	15
Poa palustris	45	38
Poa pratensis ag.	30	62
Poa trivialis s. trivialis	40	15
Potentilla anserina	25	0
Ranunculus flammula	30	0
Ranunculus repens	70	31
Rorippa sylvestris	25	15
Rumex thyrsiflorus	0	69
Silene flos-cuculi	25	0
Sium latifolium	35	0
Stellaria palustris	45	8
Taraxacum Sec. Alpina, Hamata et Ruderalia	20	62
Trifolium repens	30	0
Vicia cracca	15	23
Vicia tetrasperma	5	31

Use help(package='vegdata') for a complete list of available functions and data sets in vegdata.

At http://geobot.botanik.uni-greifswald.de/download/ a development version of package vegdata is available with additional functionalities (but less stability).

The package vegdata serves only as a helper for further analysis of vegetation data which can already be done by powerful R packages like vegan. But with the functions shown above we are now ready to execute all kinds of analyses in the wide area of vegetation analyses.

2.5 NMDS

For instance we can do a "Nonmetric Multidimensional Scaling with Stable Solution from Random Starts Axis Scaling and Species Scores" which is a wrapper for Kruskal's Non-metric Multidimensional Scaling (Cox & Cox, 1994, 2001) from Jari Oksanen (Oksanen *et al.*, 2008).

```
> library(vegan)
> veg.nmds <- metaMDS(veg, distance = "bray", trymax = 5, autotransform = FALSE,
      noshare = 1, expand = TRUE, trace = 2)
> plot(veg.nmds)
To show the result in comparison with environmental measurements we do some magic.
> library(labdsv)
This is mgcv 1.5-6. For overview type 'help("mgcv-package")'.
> library(akima)
> nmds.plot <- function(nmds, site, disp, var1, var2) {</pre>
      var.1 <- site[, var1]</pre>
      var.2 <- site[, var2]</pre>
      lplot <- nrow(nmds$points)</pre>
      lspc <- nrow(nmds$species)</pre>
      samp <- sample(1:lspc, lspc/5)</pre>
      stems <- colSums(veg)</pre>
      filled.contour(interp(nmds$points[, 1], nmds$points[, 2],
          var.1), ylim = c(-1, 1.1), xlim = c(-1.4, 1.4), color.palette = topo.colors,
          xlab = var1, ylab = var2, main = paste("NMDS of vegetation"),
          key.title = title(main = var1, cex.main = 0.8, line = 1,
              xpd = NA), plot.axes = {
              axis(1)
              axis(2)
              points(veg.nmds$points[, 1], veg.nmds$points[, 2],
                  xlab = "", ylab = "", pch = 19)
              points(veg.nmds$species[, 1], veg.nmds$species[,
                  2], xlab = "", ylab = "", col = 2, pch = "+")
              ordisurf(veg.nmds, var.2, col = 4, choices = c(1,
                  2), add = TRUE)
              orditorp(veg.nmds, display = disp, pcol = "gray",
                  pch = "+", pos = 3)
              legend("topright", paste("gam of ", var2), col = 4,
                  lty = 1)
          })
> print(nmds.plot(veg.nmds, site, disp = "species", var1 = "MGL",
      var2 = "SDGL"))
```

NULL

The first axis of our NMDS plot show the influence of mean groundwater level on the patterns of the dataset. Glyceria maxima is marking the wet side of the gradient, whereas Cnidium dubium Agrostis capillaris or Galium verum agg, occur only at low mean groundwater level. The second axis can be assigned to the fluctuation of water levels measured as standard deviation of mean groundwater level. Species indicating high water fluctuation are Agrostis stolonifera or Alopecurus geniculatus whereas Carex vesicaria occurrs only at more balanced situations.

References

Berendsohn, W.G. (1995). The concept of "potential taxa" in databases. *Taxon*, 44, 207–212. Cox, T.F. & Cox, M.A.A. (1994, 2001). *Multidimensional Scaling*. Chapman & Hall.

- Jansen, F. & Dengler, J. (2008). Germansl eine universelle taxonomische referenzliste für vegetationsdatenbanken. *Tuexenia*, 28, 239–253.
- Korneck, D., Schnittler, M. & Vollmer, I. (1996). Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. *Schriftenreihe für Vegetationskunde*, 28, 21–187.
- Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L. & Stevens, M.H.H. (2008). vegan: Community Ecology Package.