PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H01L 21/304, 21/308, C11D 17/08, 1/12,

(11) 国際公開番号

WO97/18582

(43) 国際公開日

(74) 代理人

1997年5月22日(22.05.97)

(21) 国際出願番号

PCT/JP96/03313

A1

(22) 国際出願日

1996年11月11日(11.11.96)

弁理士 田村 巌(TAMURA, Iwao) 〒560 大阪府豊中市寺内1丁目4番5-103号 田村特許事務所 Osaka, (JP)

(30) 優先権データ

特願平7/322291

1995年11月15日(15.11.95)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, DE,

特願平7/322292

1995年11月15日(15.11.95)

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

ダイキン工業株式会社(DAIKIN INDUSTRIES, LTD.)[JP/JP]

〒530 大阪府大阪市北区中崎西2丁目4番12号

(71) 出願人(米国を除くすべての指定国について)

梅田センタービル Osaka、(JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

毛塚健彦(KEZUKA, Takehiko)[JP/JP]

陶山 誠(SUYAMA, Makoto)[JP/JP]

上谷文宏(KAMIYA, Fumihiro)[JP/JP]

板野充司(ITANO, Mitsushi)[JP/JP]

〒566 大阪府摂津市西一津屋1-1

ダイキン工業株式会社 淀川製作所内 Osaka, (JP)

添付公開書類

国際調査報告書

(54)Title: WAFER-CLEANING SOLUTION AND PROCESS FOR THE PRODUCTION THEREOF

(54)発明の名称 ウエハ処理液及びその製造方法

(57) Abstract

A wafer-cleaning solution comprising 20 to 60 wt.% of hydrogen fluoride containing 0.1 to 1000 ppm of at least one compound selected from among C_n H_{2n+1} ph(SO₃ M)Oph(SO₃ M), C_n H_{2n+1} phO(CH₂ CH₂ O)_m SO₃ M and C_n H_{2n+1} O(CH₂ CH₂ O)_m SO₃ M (wherein ph is phenylene; n is 5 to 20; m is 0 to 20; and M is hydrogen or a salt group) dissolved therein, and the balance of water (with the total amount being 100 wt.%); and a process for producing a wafer-cleaning solution by adding water, H2 O2, HNO3, CH3 COOH, NH4 F and so on to the above solution. Another wafer-cleaning solution comprising HF, H₂O₂, HNO₃, CH₃COOH, NH₄F, HCl, H₃PO₄, at least one ammonium hydroxide of the general formula: [(R₁)(R₂)(R₃)(R₄)N]⁺ OH⁻ (R₁, R₂, R₃ and R₄ being each independently optionally hydroxylated C₁ -C₆ alkyl), 0,01 to 1000 ppm of at least one surfactant selected from among C_n H_{2n+1} ph(SO₃ M)Oph(SO₃ M), C_n H_{2n+1} phO(CH₂ CH₂ O)_m SO₃ M and C_n H_{2n-1} O(CH₂ CH₂ O)_m SO₃ M (wherein ph, n, m and M are each as described above) which is dissolved in the above compounds, and the balance of water (with the total amount being 100 wt.%).

(57) 要約

 $20\sim60$ w t %のフッ化水素(HF)に、 C_nH_{2n+1} p h (SO₃M)Op h (SO₃M) (p h はフェニレン基、n は $5\sim20$ 、Mは水素または塩を示す)、 C_nH_{2n+1} p h O (CH₂CH₂O)_mSO₃M (p h はフェニレン基、n は $5\sim20$ 、m は $0\sim20$ 、Mは水素または塩を示す)及び、 C_nH_{2n+1} O (CH₂CH₂O)_mSO₃M (n は $5\sim20$ 、mは $0\sim20$ 、Mは水素または塩を示す)の少なくとも1つが0.1~1000 p p m 溶解し残部が水(合計100 w t %)からなるウエハ処理液、及びこの処理液に水、 H_2O_2 、HNO₃、CH₃COOH、NH₄F等を加えて低濃度のウエハ処理液を製造する方法。

またHF、H₂O₂、HNO₃、CH₃COOH、NH₄F、HC1、H₃PO₄及び 式

$[(R_1)(R_2)(R_3)(R_4)N]^+OH^-$

	情報としての用		
PCTに基づいて公開され	れる国際出顧をパンフレット第一頁	『にPCT加盟国を同定するために使月	用されるコード
•	ESIRABEHNRUESTPEGPRZIK ESIRABEHNRUESTPEGPRZIK エスファガイグガギギハアアイ日ケキ朝大カリス アンンリジナアシガルスリ アギ民民フテラ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロザヒリ スペイラボギルーニリンイイタ本ニル鮮ロボビリス を長 イ スペイラボール シカ	RELET リルラー・ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	RSSSSSSSTTTTTTTUUUUVY RSSSSSSSSSTTTTTTTTUUUUVY RSSSSSSSSSSTTTTTTTTUUUUVY RSSSSSSSSSSSTTTTTTTTUUUUVY RSSSSSSSSSSSSSSTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSTTTTTTTTTUUUUVY RSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

明細書

ウエハ処理液及びその製造方法

(技術分野)

本発明はシリコンウエハの処理液、及びウエハ処理液を得る方法、更に詳しくはシリコンウエハ表面の微粒子による汚染を防止するシリコンウエハの処理液及びその製造方法に関する。

(背景技術)

シリコン単結晶からなる半導体基板(ウエハ)上にLSIを形成する半導体集積回路装置の製造工程では、基板表面の酸化膜(Si〇 $_2$)をパターニングしたり、熱処理工程で基板表面に形成される自然酸化膜を除去したりする際に、フッ酸(HF)水溶液を用いたウェットエッチング処理が行われる。またSiО $_2$ 表面のエッチング処理にはフッ酸(HF)水溶液やバッファードフッ酸水溶液(HF-NH $_4$ F-H $_2$ O)で処理が行われる。またSi $_3$ N $_4$ のエッチング処理にはリン酸(H $_3$ PO $_4$)水溶液で処理が行われる。またSi表面のエッチング処理にはフッ酸(HF)一硝酸(HNO $_3$)水溶液あるいは、フッ酸(HF)一硝酸(HNO $_3$)一酢酸(CH $_3$ COOH)水溶液で処理が行われる。また配線形成工程などで基板の表面に付着した金属を除去する際には、フッ酸(HF)水溶液、フッ酸(HF)一過酸化水素(H $_2$ O $_2$)水溶液、あるいは塩酸(HC1)一過酸化水素(H $_2$ O $_2$)水溶液を用いたウェット洗浄処理が行われる。これらのウェット洗浄処理においては、上記酸化膜や金属等を除去した後の活性な基板の表面に異物が付着するのを防止するため、エッチング液又は洗浄液を循環濾過させるなど、エッチング液又は洗浄液の清浄度を保つ工夫が必要となる。

ところが集積回路の微細化に伴い、上記エッチング液又は洗浄液にはさらに高い清浄度が求められているにもかかわらず、ウエハプロセスの増加やウエハの大口径化により、処理槽に持ち込まれる異物はむしろ増加する傾向にある。

そのため、これまでに上記の処理液などに界面活性剤を添加する技術が開発されているが、いずれの方法においても、高濃度のHF、或いは H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4F 、HC1、 H_3PO_4 及び一般式 $[(R_1)(R_2)(R_3)(R_4)$ $N]^*OH^*(R_1,R_2,R_3,R_4$ はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表されるアンモニウムヒドロキシドに界面活性剤を溶解度まで溶解させても、希釈または他薬品と混合した場合、界面活性剤が薄まってしまい粒子付着を低減する効果が得られなくなるといった問題がある。また、界面活性剤を希釈または他薬品との混合時に添加した場合でも、手間がかかるだけでなく、充分な粒子付着低減効果を得るためには、界面活性剤を多量に添加する必要があり、泡立ちが激しくなってしまうといった問題が生じていた。

本発明者らはこのような観点から、低濃度のフッ酸等にアニオン系界面活性剤もしくは非イオン系界面活性剤を添加した処理液により処理してシリコンウエハ表面の微粒子による汚染を防止する方法(特開平6-41770号)を提案したが、保管及び運搬効率に劣るという問題があった。また、このような特開平6-41770号に記載の界面活性剤が高濃度のフッ酸に高濃度に溶解するか否か不明であった。

本発明の目的はウエハ表面を洗浄処理又はエッチング処理するにおいて、特定の界面活性剤を高濃度のHF、或いは H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4 F、HC1、 H_3PO_4 及び一般式 $[(R_1)(R_2)(R_3)(R_4)N]$ OH $(R_1$ 、 R_2 、 R_3 、 R_4 はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表されるアンモニウムヒドロキシドに含有させても、泡立ちが問題とならず溶解性に優れ、保管及び運搬効率が高く、且つ使用時に希釈して低濃度にした場合にもウエハ表面の微粒子による汚染を防止する作用に優れたウエハの処理液を提供することにある。

また本発明の目的はウエハ表面を洗浄処理又はエッチング処理するにおいて、 シリコンウエハ表面の微粒子による汚染を防止する作用に優れたウエハの処理液 を提供することにある。

(発明の開示)

本発明は $20\sim60$ w t %のフッ化水素(HF)に、 C_nH_{2n+1} p h (SO_3M) O p h (SO_3M) (p h はフェニレン基、n は $5\sim20$ 、M は水素または塩を示す)、 C_nH_{2n-1} p h O (CH_2CH_2O) $_mSO_3M$ (p h はフェニレン基、n は $5\sim20$ 、m は $0\sim20$ 、M は水素または塩を示す)及び、 $C_nH_{2n-1}O(CH_2CH_2O)$ $_mSO_3M$ (n は $5\sim20$ 、m は $0\sim20$ 、M は水素または塩を示す)の少なくとも 1つが 0. $1\sim1000$ p p m 溶解し残部が水(合計 100 w t %)からなるウエハ処理液、及びこの処理液に水、 H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4F 等を加えて低濃度のウエハ処理液を製造する方法に係る。

また本発明はHF、 H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4F 、HC1、 H_3 PO_4 及び式

$[(R_1)(R_2)(R_3)(R_4)N]^{*}OH^{*}$

 $(R_1, R_2, R_3, R_4$ はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表されるアンモニウムヒドロキシドの少なくとも 1 種に、 C_nH_{2n-1} ph(SO_3M)Oph(SO_3M)(phはフェニレン基、nは $5\sim 2$ 0、Mは水素または塩を示す)、 C_nH_{2n-1} phO(CH_2CH_2O) $_nSO_3M$ (phはフェニレン基、nは $5\sim 2$ 0、mは $0\sim 2$ 0、Mは水素または塩を示す)及び、 C_nH_2 0、Mは水素または塩を示す)及び、 C_nH_2 1の(CH_2CH_2O) $_nSO_3M$ (nは $5\sim 2$ 0、mは $0\sim 2$ 0、Mは水素または塩を示す)で表される界面活性剤の少なくとも 1つが0.01~1000ppm溶解し残部が水(合計 100 wt %)からなるウエハ処理液に係る。

本発明においては、上記特定の界面活性剤を添加した、フッ化水素水溶液(H $F-H_2O$)、フッ酸過酸化水素水溶液($HF-H_2O_2-H_2O$)、フッ硝酸水溶液($HF-HNO_3-H_2O$)、フッ硝酸酢酸水溶液($HF-HNO_3-CH_3COOH-H_2O$)、バッファードフッ酸水溶液($HF-NH_4F-H_2O$)、塩酸過酸化水素水溶液($HC1-H_2O_2-H_2O$)、リン酸水溶液($H_3PO_4-H_2O$)、アンモニウムヒドロキシド過酸化水素水溶液($[(R_1)(R_2)(R_3)(R_4)N]^*OH^*-H_2O_2-H_2O$)等の洗浄及びエッチング処理液を得ることができる。

本発明においては、特定の界面活性剤を含有させた高濃度のフッ化水素水溶液 $(HF-H_2O)$ 系のウェハ処理液を得ることができ、このウェハ処理液に水、

 H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4F 等を加えて上記各種のウエハ処理液を調製した場合にも同等の効果を得ることが可能である。

本発明において上記界面活性剤を含有させたフッ酸水溶液からなるウエハ処理液においては、フッ酸濃度は $20\sim60$ w 1 %が好ましく、界面活性剤濃度は0. $1\sim1000$ p p m の範囲が好ましい。

これらのウエハ処理液に水、HゥOュ、HNOュ、CHュCOOH、NHォF等を 加えて各種のウエハ処理液を調製する場合、フッ酸水溶液 (HF-H₂O)にお いてはフッ酸濃度は0.1~5 w t %が好ましい。フッ酸過酸化水素水溶液(H $F-H_2O_2-H_2O$) においてはフッ酸濃度は $0.1\sim 1.0 \le 1.0 \le$ 0.01~30wt%が好ましい。フッ硝酸水溶液(HF-HNOs-H₂O)に おいてはフッ酸濃度は0.1~50wt%、HNO3濃度は0.1~70wt%が 好ましい。フッ硝酸酢酸水溶液(HF-HNO3-CH3COOH-H2O)にお いてはフッ酸濃度は0.1~50wt%、HNO3濃度は0.1~70wt%、C H₃COOH濃度は0.1~50wt%が好ましい。バッファードフッ酸水溶液(H $F-NH_4F-H_2O$) においてはフッ酸濃度は0.1-10w t %、 NH_4F 濃度 は1~40wt%が好ましい。塩酸過酸化水素水溶液(HC1-H2O2-H2O) においては塩酸濃度は $0.1 \sim 3.6 \text{ w t \%}$ 、 H_2O_2 濃度は $0.1 \sim 3.0 \text{ w t \%}$ が好 ましい。リン酸水溶液(H3PO4-H2O)においてはリン酸濃度は1~90w t%が好ましい。第4級アンモニウム塩過酸化水素水溶液 ([(R₁)(R₂)(R₃)(R $_4)N] OH -H_2O_2-H_2O)$ においてはアンモニウムヒドロキシド濃度はO. 01~10wt%、H₂O₂濃度は0.01~30wt%が好ましい。

本発明で用いられるアンモニウムヒドロキシドは式

 $[(R_1)(R_2)(R_3)(R_4)N]^*OH^*$

 $(R_1, R_2, R_3, R_4$ はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表される。アルキル基としてはメチル、エチル、プロピル、ブチル、ヘキシル等を挙げることができる。具体的な化合物としては例えば $[HOCH_2CH_2N(CH_3)_3]^+OH^-$ (コリン)、 $\{(CH_3)_4N\}^+OH^-$ 、 $\{(C_2H_5)_4N\}^+OH^-$ 等を挙げることができる。

本発明で用いられる界面活性剤としては式 C_nH_{2n-1} ph(SO_3M)Oph(SO_3M) (phは D_1 =レン基、nは D_2 =0、Mは水素または塩を示す)、 C_nH_{2n+1} phO(CH_2 CH $_2$ O) $_m$ SO $_3$ M (phは D_1 =レン基、nは D_2 =0、mは D_2 =0、Mは水素または塩を示す)及び、 D_3 M (nは D_2 =0、Mは水素または塩を示す)で表される界面活性剤が好ましい。ここで塩としてはナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩、第一、第二もしくは第三アミン塩等を挙げることができる。アミンとしては D_1 =0、 D_1 =0、 D_2 =0、 D_3 =0、 D_4 =0、 D_5 =0。 D_5 =0、 D_5 =0。 D_5 =0.

(発明を実施するための最良の形態)

以下に実施例及び比較例を挙げて説明する。

実施例1~6及び比較例1~5

自然酸化膜のついた 4 インチシリコンウエハを 0.5% H F 水溶液に標準粒子として粒径約 0.6μ mのボリスチレンラテックスを微粒子数が 10^5 個/mlになるように添加し、さらに表 1 に示す各種の界面活性剤を添加して調合した処理液の中に 10 分間浸漬した。その後超純水でリンズし乾燥した後、レーザー表面検査装置(日立電子エンジニアリング製 1.5-5000)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表 1 に示す。表 1 の付着粒子数は各 2 枚づつのシリコンウエハを処理し、 2 枚の平均値を記載した。

【表1】

			į	0.5%H	F	50%	HF
		界面活性剤	濃度	付着粒子	数消泡性	濃度	溶解性
			(ppm)	(個/wafer	r)	(ppm)	· .
	1	C ₁₂ H ₂₅ ph(SO ₃ H)Oph(SO ₃ H)	0. 1	120	0.	10	10
実	2	同上	1	180	0	100	. 0
施	: 3	: 同上	2	180	0	200	<u> </u>
例	4	C ₁₂ H ₂₅ O(CH ₂ CH ₂ O) ₂ SO ₃ Na	1	210	<u> </u>	100	<u> </u>
	5	C ₉ H _{1 9} phO(CH ₂ CH ₂ O) ₄ SO ₃ Na	1	110	O T	100	
•	6	C ₉ H ₁ ₉ ph0(CH ₂ CH ₂ O) ₆ SO ₃ NH ₄	1	230	0	100	<u> </u>
	1	無添加	0	6000		0	: -
比	2	C ₁₂ H ₂₅ phSO ₃ Na	1	1300	<u> </u>	100	: 0 .
較	3	: 同上 ·	200	72	×	20000	× .
例	4	C ₁₂ H ₂₅ OSO ₃ Na	1	4000	0	100	<u> </u>
:	: 5	C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	: 1	6000	0	100	

実施例7~11及び比較例6~9

自然酸化膜のついた 4 インチシリコンウエハを希フッ酸過酸化水素水溶液(H F (0.5%) $-H_2O_2$ (10%) $-H_2O_3$ に標準粒子として粒径約0.6 μ mのポリスチレンラテックスを微粒子数が 10^5 個/mlになるように添加し、さらに表2に示す各種の界面活性剤を添加して調合した処理液の中に10分間浸漬した。その後超純水でリンスし乾燥した後、レーザー表面検査装置(LS-5000)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表2に示す。表2の付着粒子数は各2枚づつのシリコンウエハを処理し、2 枚の平均値を記載した。

【表2】

	HF(0.	5%)-H ₂ O ₂ (10	%)-H ₂ 0	5 0	%HF
界面活性剤	濃度	付着粒子数	消泡性	濃度	溶解性
	(ppm)	(個/wafer)	!	(ppm)	
実施例					
$7 : C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	0. 5	840	0	50	0
8 同上	1	660	0	. 100	0 '
9 ! C ₁₂ H ₂₅ O(CH ₂ CH ₂ O) ₂ SO ₃ Na	1	830	0	100	0
10 C ₉ H _{1.9} ph0(CH ₂ CH ₂ O); ₄ SO ₃ \a	1	950	0	100	<u> </u>
11 C ₉ H ₁₉ ph0(CH ₂ CH ₂ O) ₆ SO ₃ NH ₄	1	800	0	100	O
比較例					
6 無添加	0	2400		0	: - !
7 C _{1 2} H ₂₅ phSO ₃ Na	1	1900	0	; 100	0
8 : C ₁₂ H ₂₅ OSO ₃ Na	1	4500	0	100	0
9 1 C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	1	>10000	0	100	0

実施例12~13及び比較例10~13

自然酸化膜のついた 4 インチシリコンウエハをフッ硝酸水溶液 [HF (1%) - HNO $_3$ (5%) - H $_2$ O)に標準粒子として粒径約0. 6 μ mのポリスチレンラテックスを微粒子数が10 5 個/mlになるように添加し、さらに表3に示す各種の界面活性剤を添加して調合した処理液の中に10分間浸漬した。その後超純水でリンスし乾燥した後、レーザー表面検査装置(L S - 5 0 0 0)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表3 に示す。表3 の付着粒子数は各2 枚づつのシリコンウエハを処理し、2 枚の平均値を記載した。

【表3】

	HF(_ 1 ዖ	6)—HNO ₃ (59	50%HF		
界面活性剤	濃度		付着粒子数	消泡性	濃度	溶解性
; ;	[(ppm)	:	(個/wafer)		(ppm)	
実施例						
12 C ₁₂ H ₂₅ ph(SO ₃ H)Oph(SO ₃ H)	1	i	2800	0	100	<u> </u>
13 C ₉ H ₁₉ ph0(CH ₂ CH ₂ O) ₄ SO ₃ Na	1	:	1900	0	100	0
上較例						
10:無添加	0		7800	_	0	-
11 C ₁₂ H ₂₅ phSO ₃ Na	1	:	8900	<u>C</u>	100	
12 : C _{1 2} H _{2 5} OSO ₃ Na	1	i	6600	0	100	0
13 C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	1		6400	C.	100	0

実施例14~17及び比較例14~17

自然酸化膜のついた 4 インチシリコンウエハをバッファードフッ酸水溶液 [H F (6%) - NH $_4$ F (30%) - H $_2$ O] に標準粒子として粒径約0.6 μ mのボリスチレンラテックスを微粒子数が 10^5 個/mlになるように添加し、きらに表4に示す各種の界面活性剤を添加して調合した処理液の中に10 分間浸漬した。その後超純水でリンスし乾燥した後、レーザー表面検査装置(LS-5000)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表4に示す。表4の付着粒子数は各2枚づつのシリコンウエハを処理し、2 枚の平均値を記載した。

【表4】

;		HF(6	196	(309) - NH₄F(309	6)-H ₂ 0	5 0	%HF
:	界面活性剤	濃度		付着粒子数	消泡性	濃度	溶解性
		(ppm)	:	(個/wafer)		(mqq)	
実が	恒例						
14	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	1	:	1300	0	8. 3	0
15	同上	: 10		1100	0	83	0
16	C ₁₂ H ₂₅ O(CH ₂ CH ₂ O) ₂ SO ₃ NH ₄	20	•	1000	0	167	0
17	C ₈ H ₁₉ ph0(CH ₂ CH ₂ 0) ₄ SO ₃ Na	10		600	0_	83	<u> </u>
比較	交例						·
14	無添加	0		4000	_	0	
15	C ₁₂ H ₂₅ phSO ₃ Na	1	:	3900	<u> </u>	8. 3	0
16	C ₁₂ H ₂₅ OSO ₃ Na	· 1	:	4200	0	8. 3	0
1.7	C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	1		5800	0	8. 3	0

実施例18及び比較例18~21

自然酸化膜を除去した4インチシリコンウエハを塩酸過酸化水素水溶液(HC $1(36\%):H_2O_2(30\%):H_2O=1:1:6$ (容量比))に標準粒子として粒径約 $0.6\,\mu$ mのポリスチレンラテックスを微粒子数が 10^5 個/mlになるように添加し、さらに表4に示す各種の界面活性剤を添加して調合した処理液を80%に加熱し、10分間浸漬した。その後超純水でリンス $\rightarrow 0.5\%$ HFによる自然酸化膜の除去 \rightarrow 超純水リンス \rightarrow 乾燥した後、レーザー表面検査装置(LS-5000)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表5に示す。表5の付着粒子数は各2枚でのシリコンウエハを処理し、2枚の平均値を記載した。

【表5】

		HC1(36%):H ₂ O ₂ (30%):H ₂ O				
· 		=1:1:6(容量比)				
界面活性剤	ן	濃度	:	付着粒子数	消泡性	
 	i	(ppm)	:	(個/wafer)	:	
実施例						
18 C ₁₂ H ₂₅ ph(SO ₃ H)	Oph(SO ₃ H)	1	į	710	0	
比較例						
18:無添加	•	0		4100		
19 : C _{1 2} H ₂₅ phSO ₃ Na	:	1		8900	0	
20 1 C ₁₂ H ₂₅ OSO ₃ Na		1		> 10000	0_	
21 C ₁₂ H ₂₅ N(CH ₂ CH ₂)	OH) ₂	1		> 10000	. 0	

実施例19及び比較例22~25

膜厚100nmの Si_3N_4 膜の付いた5インチシリコンウエハを85w t %の H_3 PO $_4$ に標準粒子として粒径約0.6 μ mのポリスチレンラテックスを微粒子数が 10^5 個/mlになるように添加し、さらに表6に示す各種の界面活性剤を添加して調合した処理液を150℃に加熱し、10分間浸漬した。その後超純水でリンスし乾燥した後、レーザー表面検査装置(LS-5000)を使ってシリコンウエハ表面に付着した微粒子数を測定した。結果を表6に示す。表6の付着粒子数は各2枚つつのシリコンウエハを処理し、2枚の平均値を記載した。

【表6】

	85	%H ₃ PO ₄ (1	50℃)
: : 界面活性剤	濃度	付着粒子数	消泡性
:	(ppm)	(個/wafer)	!
実施例			
19 C _{1 2} H ₂₅ ph(SO ₃ H)Oph(SO ₃ H)	1	3200	. 0
比較例			
22!無添加	. 0	8000	
23 C _{1 2} H ₂₅ phSO ₃ Na	1	> 10000	<u> </u>
. 24 : C _{1 2} H ₂₅ 0SO ₃ Na	1	> 10000	0
25 C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	. 1	> 10000	0

実施例20~25及び比較例26~29

自然酸化膜を除去した4インチシリコンウエハ及び熱酸化膜付4インチウエハをコリン過酸化水素水溶液($[HOCH_2CH_2N(CH_3)_3]^*OH^*(0.1\%)$ - $H_2O_2(2\%)-H_2O$ ($60\sim70^{\circ}$)に標準粒子として粒径約 0.6μ mのポリスチレンラテックスを微粒子数が 10° 個/mlになるように添加し、さらに表7に示す各種の界面活性剤を添加して調合した処理液の中に10分間浸漬した。その後、超純水でリンスし乾燥した後、レーザー表面検査装置(LS-5000)を使ってウエハ表面に付着した微粒子数を測定した。結果を表7に示す。表7の付着粒子数は各3枚つつのウエハを処理し、3枚の平均値を記載した。

【表7】

			濃度	= -	付着粒子数	34 3년 14L
		界面活性剤	(ppm)	ウエハ表面	(個/wafer)	消泡性
	20	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	1	シリコン	100	0
: : d=	21	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	5	シリコン	3 5	0
実	22	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	10	シリコン	7	0
施	23	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	1	熱酸化膜	0	0
· 例 :	24	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	5	熱酸化膜	0	\odot
	25	$C_{12}H_{25}ph(SO_3H)Oph(SO_3H)$	10	熱酸化膜	0	
LL	26	無添加	0	シリコン	210	_
比	27	無添加	0	熱酸化膜	1 9	_
. 較	28	$C_{12}H_{25}N(CH_2CH_2OH)_2$	3 0 0	シリコン	6900	×.
: 例	29	C ₁₂ H ₂₅ N(CH ₂ CH ₂ OH) ₂	300	熱酸化膜	2000	×

(産業上の利用可能性)

本発明のウエハ処理液は半導体素子の微細化、高集積化に対応して、洗浄もしくはエッチングを湿式で行う場合極めて有効なものである。本発明の処理液は特定の界面活性剤を高濃度のフッ酸に含有させても、泡立ちが問題とならず溶解性に優れ、保管及び運搬効率が高く、且つ使用時に希釈して低濃度にした場合にもウエハ表面の微粒子による汚染を防止する作用に優れている。また、ウエハ表面に付着する微粒子数が、本発明の処理液を使用することで減少することになるので歩留まりが向上する。

請求の範囲

- 1. $20\sim60$ w t %のフッ化水素(HF)に、 C_nH_{2n-1} p h (SO $_3$ M)O p h (SO $_3$ M) (p h はフェニレン基、n は $_5\sim20$ 、Mは水素または塩を示す)、 C_nH_{2n-1} p h O (C $_2$ C $_2$ C $_3$ M) (p h はフェニレン基、n は $_3\sim20$ 、m は $_3\sim20$ 、Mは水素または塩を示す)及び、 C_nH_{2n-1} O (C $_2$ C $_3\sim20$) $_3\sim20$ (n は $_3\sim20$) $_3\sim20$ (C $_3\sim20$) $_3\sim20$ 0 (C $_3\sim20$ 0 (
- 2. 請求の範囲第1項の処理液を水で希釈して、 $0.1\sim5$ w t %のフッ化水素(HF)に、 C_nH_{2n-1} ph(SO_3M)Oph(SO_3M)(phはフェニレン基、nは $5\sim2$ 0、Mは水素または塩を示す)、 C_nH_{2n-1} phO(CH_2 CH $_2$ O) $_m$ SO $_3$ M(phはフェニレン基、nは $5\sim2$ 0、mは $0\sim2$ 0、Mは水素または塩を示す)及び、 C_nH_{2n-1} O(CH_2 CH $_2$ O) $_m$ SO $_3$ M(nは $5\sim2$ 0、mは $0\sim2$ 0、Mは水素または塩を示す)の少なくとも1つが $0.01\sim100$ ppm溶解し残部が水(合計100wt%)からなるウエハ処理液を製造する方法。
- 3. 請求の範囲第1項の処理液に水、 H_2O_2 を加えて、 $O.1\sim10$ w t %のフッ化水素(HF)、 $O.01\sim30$ w t %の H_2O_2 に、 C_nH_{2n-1} p h (SO₃M)Op h (SO₃M)(p h はフェニレン基、n は $5\sim20$ 、M は水素または塩を示す)、 C_nH_{2n-1} p h O(CH₂CH₂O)_mSO₃M(p h はフェニレン基、n は $5\sim20$ 、m は $0\sim20$ 、M は水素または塩を示す)及び、 C_nH_{2n-1} O(CH₂CH₂O)_mSO₃M(n は $5\sim20$ 、M は水素または塩を示す)の少なくとも1つが $0.01\sim100$ p p m 溶解し残部が水(合計 100 w t %)からなるウエハ処理液を製造する方法。
- 4. 請求の範囲第1項の処理液に水、 HNO_3 を加えて、 $0.1\sim50$ w t %のフッ化水素(HF)、 $0.1\sim70$ w t %の HNO_3 に、 C_nH_{2n+1} p h (SO_3M) O p h (SO_3M) (p h はフェニレン基、n は $5\sim20$ 、Mは水素または

塩を示す)、 C_nH_{2n-1} phO(CH_2CH_2O)_mSO₃M (phはフェニレン基、 nは5~20、mは0~20、Mは水素または塩を示す)及び、 $C_nH_{2n-1}O$ (CH_2CH_2O)_mSO₃M (nは5~20、mは0~20、Mは水素または塩を示す)の少なくとも1つが0.01~100 ppm溶解し残部が水(合計100 wt%)からなるウエハ処理液を製造する方法。

- 5. 請求の範囲第4項の処理液に更にCH₃COOHを0.1~50wt %となるように加えるウエハ処理液の製造方法。
- 6. 請求の範囲第1項の処理液に水、NH₄Fを加えて、0.1~10 wt%のフッ化水素 (HF)、1~40wt%のNH₄Fに、C_nH_{2n-1}ph(SO₃M)Oph(SO₃M)(phはフェニレン基、nは5~20、Mは水素または塩を示す)、C_nH_{2n-1}phO(CH₂CH₂O)_mSO₃M(phはフェニレン基、nは5~20、mは0~20、Mは水素または塩を示す)及び、C_nH_{2n-1}O(CH₂CH₂O)_mSO₃M(nは5~20、mは0~20、Mは水素または塩を示す)の少なくとも1つが0.01~100ppm溶解し残部が水(合計100wt%)からなるウエハ処理液を製造する方法。
- 8. $0.1\sim10\,\mathrm{w}\,t$ %のフッ化水素(HF)、 $0.01\sim30\,\mathrm{w}\,t$ % の H_2O_2 に、 $C_nH_{2n+1}\,p\,h(SO_3M)O_p\,h(SO_3M)$ ($p\,h$ はフェニレン基、 $n\,d\,5\sim2\,0$ 、Mは水素または塩を示す)、 $C_nH_{2n+1}\,p\,h\,O(C\,H_2C\,H_2O)_m\,S$ O_3M ($p\,h$ はフェニレン基、 $n\,d\,5\sim2\,0$ 、 $m\,d\,0\sim2\,0$ 、Mは水素または塩を示す)及び、 $C_nH_{2n+1}\,O(C\,H_2C\,H_2O)_m\,S\,O_3M$ ($n\,d\,5\sim2\,0$ 、 $m\,d\,0\sim2\,0$ 、Mは水素または塩を示す)で表される界面活性剤の少なくとも1つが

- 0.01~1000ppm溶解し残部が水(合計100wt%)からなるウエハ処理液。
- $9.\ 0.1\sim50\ w\ t\ \%$ のフッ化水素(HF)、 $0.1\sim70\ w\ t\ \%$ の HNO3に、 C_nH_{2n-1} ph(SO3M)Oph(SO3M)(phはフェニレン基、nは5~20、Mは水素または塩を示す)、 C_nH_{2n+1} phO(CH2CH2O)mSO3M(phはフェニレン基、nは5~20、mは0~20、Mは水素または塩を示す)及び、 C_nH_{2n-1} O(CH2CH2O)mSO3M(nは5~20、mは0~20、Mは水素または塩を示す)で表される界面活性剤の少なくとも1つが0.01~1000pm溶解し残部が水(合計100wt%)からなるウエハ処理液。
- 10. 更にCH₃COOHを0.1~50wt%含む請求の範囲第9項のウエハ処理液。
- $11. \ 0.1 \sim 10 \, \mathrm{w} \, t \, \%$ のフッ化水素(HF)、 $1 \sim 40 \, \mathrm{w} \, t \, \%$ の $\mathrm{NH_4F}$ に、 $\mathrm{C_nH_{2n-1}ph}(\mathrm{SO_3M})\mathrm{Oph}(\mathrm{SO_3M})$ (ph はフェニレン基、 n は $5 \sim 20$ 、 M は水素または塩を示す)、 $\mathrm{C_nH_{2n-1}phO}(\mathrm{CH_2CH_2O})_{\mathrm{m}}\mathrm{SO_3M}$ (ph はフェニレン基、 n は $5 \sim 20$ 、 m は $0 \sim 20$ 、 M は水素または塩を示す)及び、 $\mathrm{C_nH_{2n-1}O}(\mathrm{CH_2CH_2O})_{\mathrm{m}}\mathrm{SO_3M}$ (n は $5 \sim 20$ 、 m は $0 \sim 20$ 、 M は水素または塩を示す)で表される界面活性剤の少なくとも 1つが 0.00 $1 \sim 1000 \, \mathrm{ppm}$ 溶解し 残部が水(合計 $100 \, \mathrm{wt}$ %)からなるウェハ処理液。
- $12.\ 0.1 \sim 3.6\ w\ t\ \%$ のHCl、 $0.1 \sim 3.0\ w\ t\ \%$ のH2O2に、 C_nH_{2n-1} ph(SO₃M)Oph(SO₃M)(phはフェニレン基、nは $5\sim 2.0$ 、 Mは水素または塩を示す)、 C_nH_{2n+1} phO(CH₂CH₂O)_mSO₃M(phはフェニレン基、nは $5\sim 2.0$ 、mは $0\sim 2.0$ 、Mは水素または塩を示す)及び、 C_nH_{2n+1} O(CH₂CH₂O)_mSO₃M(nは $5\sim 2.0$ 、mは $0\sim 2.0$ 、Mは水素または塩を示す)で表される界面活性剤の少なくとも1つが $0.01\sim 1.000$ ppm溶解し残部が水(合計 $1.00\ w\ t\ \%$)からなるウエハ処理液。
- $13.\ 1\sim 90\ w\ t\ \% oH_3PO_4 に、C_nH_2n-1ph(SO_3M)Oph$ (SO_3M) (phはフェニレン基、nは5~20、Mは水素または塩を示す)、 C_nH_2n+1phO(CH_2CH_2O)_mSO_3M (phはフェニレン基、nは5~20、

 $mは0\sim20$ 、Mは水素または塩を示す)及び、 $C_nH_{2n-1}O(CH_2CH_2O)_mSO_3M$ ($nは5\sim20$ 、 $mは0\sim20$ 、Mは水素または塩を示す)で表される界面活性剤の少なくとも1つが $0.01\sim1000$ pp m溶解し残部が水(合計 100 wt 100 からなるウエハ処理液。

14. $0.01 \sim 1.0 \text{ w t %の式}$ [(R₁)(R₂)(R₃)(R₄) N] OH

 $(R_1, R_2, R_3, R_4$ はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表されるアンモニウムヒドロキシド、 $0.01\sim 30$ w t %の H_2O_2 に、 C_nH_{2n-1} p h (SO_3M) O p h (SO_3M) (p h はフェニレン基、n は $5\sim 20$ 、Mは水素または塩を示す)、 C_nH_{2n-1} p h $O(CH_2CH_2O)_mSO_3M$ (p h はフェニレン基、n は $5\sim 20$ 、m は $0\sim 20$ 、Mは水素または塩を示す)及び、 $C_nH_{2n-1}O(CH_2CH_2O)_mSO_3M$ (n は $5\sim 20$ 、m は $0\sim 20$ 、M は水素または塩を示す)及水素または塩を示す)で表される界面活性剤の少なくとも 1 つが $0.01\sim 10$ 00 p p m 溶解し残部が水(合計 100 w 1%)からなるウエハ処理液。

15. H_2O_2 、 HNO_3 、 CH_3COOH 、 NH_4F 、HC1及び式 [(R_1)(R_2)(R_3)(R_4)N] OH

 $(R_1, R_2, R_3, R_4$ はそれぞれ水酸基を有しても良い炭素数 $1\sim 6$ のアルキル基を示す)で表されるアンモニウムヒドロキシドの少なくとも 1 種に、 C_nH_{2n-1} ph(SO_3M)Oph(SO_3M)(phはフェニレン基、nは $5\sim 2$ 0、Mは水素または塩を示す)、 C_nH_{2n-1} phO(CH_2CH_2O) $_mSO_3M$ (phはフェニレン基、nは $5\sim 2$ 0、mは $0\sim 2$ 0、Mは水素または塩を示す)及び、 C_nH_{2n-1} O(CH_2CH_2O) $_mSO_3M$ (nは $5\sim 2$ 0、Mは水素または塩を示す)で表される界面活性剤の少なくとも 1つが $0.01\sim 1000$ ppm溶解し残部が水(合計 1000 wt %)からなるウエハ処理液。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03313

A. CLA	SSIFICATION OF SUBJECT MATTER		
		08, C11D17/08, C11D1/1	.2, C11D3/04
According	to International Patent Classification (IPC) or to both	h national classification and IPC	
	LDS SEARCHED		
Minimum d	ocumentation searched (classification system followed b	y classification symbols)	
Int	. Cl ⁶ H01L21/304, H01L21/3	08, C11D17/08, C11D1/1	.2, C11D3/04
Documentat	tion searched other than minimum documentation to the		e fields searched
	suyo Shinan Koho ai Jitsuyo Shinan Koho	1972 - 1995 1972 - 1995	
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, search to	erms used)
C. DOCL	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.
Х	JP, 6-41770, A (Daikin Ind February 15, 1994 (15. 02.		7, 9
Y	JP, 6-41770, A (Daikin Ind February 15, 1994 (15. 02.	ustries, Ltd.), 94)(Family: none)	1-4, 8, 12
Y	JP, 7-45600, A (Hitachi, L February 14, 1995 (14. 02. Column 4, line 7 to column (Family: none)	95),	1-3, 6, 7, 8, 11
Y .	JP,6-84866, A (Hitachi, Lto March 25, 1994 (25. 03. 94 Column 2, line 17 to column (Family: none)),	1-3, 7, 8
·			
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	"T" later document published after the inter date and not in conflict with the applic the principle or theory underlying the	ation but cited to understand
"L" docume	ocument but published on or after the international filing date nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone	ered to involve an inventive
special r "O" documen	reason (as specified) nt referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the	step when the document is
	nt published prior to the international filing date but later than ity date claimed	being obvious to a person skilled in th	e art
Date of the a	ctual completion of the international search	Date of mailing of the international sear	ch report
	uary 3, 1997 (03. 02. 97)	February 12, 1997	(12. 02. 97)
Name and m	ailing address of the ISA/	Authorized officer	
Japa	nese Patent Office		
Facsimile No	,	Telephone No.	

国際出願番号 PCT/JP96/03313

「 パテントファミリーに関する別紙を参照。

発明の属する分野の分類(国際特許分類(IPC)) Α.

Int. Cl*

H01L21/304 H01L21/308 C 1 1 D 1 7 / 0 8 C11D1/12

C11D3/04

В. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl*

H01L21/304 H01L21/308

C11D17/08 C11D1/12

C11D3/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1972-1995年

日本国公開実用新案公報

1972-1995年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

	すると認められる文献	
引用文献の		関連する
カテゴリー		請求の範囲の番号
X	JP, 6-41770, A (ダイキン工業株式会社), 15. 2月, 1994 (15. 2. 94), (ファミリーなし)	7, 9
Y	JP、6-41770、A (ダイキン工業株式会社)、 15、2月、1994 (15、2、94)、 (ファミリーなし)	1-4.8.12
Υ .	JP. 7-45600. A (株式会社日立製作所). 14. 2月. 1995 (14. 2. 95). 第4欄7行一審9欄33行、(ファミリーなし)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献
国際調査を完了した日 03.02.97	国際調査報告の発送日 12.02.97
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4 M 9 3 5 5 松本 邦夫 印 電話番号 0 3 - 3 5 8 1 - 1 1 0 1 内線 3 4 6 3

図 C側の続きにも文献が列挙されている。

国際調查報告

国際出願番号 PCT/JP96/03313

ン(続き). 用文献の アゴリー*					
Y	5 用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP. 6-84866, A (株式会社日立製作所), 25. 3月. 1994(25. 3. 94), 第2欄17行-第10欄43行、(ファミリーなし)	請求の範囲の番号 1-3.7.8			
·					