

### University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

# SEMESTER II RESIT EXAMINATIONS 2010/11

#### **CHEM 10030**

#### **Chemistry for Engineers**

**Professor Wayne** 

Professor Waghorne

Dr Sullivan\*

Dr Baldelli

**Time Allowed: 2 Hours** 

#### **Instructions for Candidates**

The assignment of marks to parts of a question is indicated (as a percentage of the entire paper) in parentheses.

Use a separate answer book provided for each question

No loose rough work sheets are to be used. The rough work for each question should be included in the answer book for that question.

# ONLY STUDENTS SEEKING TO IMPROVE THEIR LABORATORY GRADE SHOULD ATTEMPT QUESTION 3

#### **Instructions for Invigilators**

The use of electronic calculators is permitted
Graph paper should be provided
A Periodic Table of the Elements is attached to these sheets

| (i)   | Briefly discuss how isotopes differ from one another and name three areas where the isotopes                                                                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | have given diagnostic or historical information. (10)                                                                                                                                                                           |
| (ii)  | Charged particles are deflected as they move through a magnetic field. State the features that affect the extent of this deflection. (10)                                                                                       |
| (iii) | Draw Lewis structures of the following molecules: H <sub>2</sub> S, PH <sub>3</sub> , CBr <sub>4</sub> . Use VSEPR theory to determine their shapes. (13)                                                                       |
| (b) A | answer <i>all</i> parts (i) – (iii).                                                                                                                                                                                            |
| (i)   | Explain why the combustion of CH <sub>4</sub> releases heat. (10)                                                                                                                                                               |
| (ii)  | $0.230~g$ of a hydrocarbon is burned in excess $O_2$ and produces $0.758~g$ of $CO_2$ and $0.207~g$ of $H_2O$ . Determine the empirical formula. (10)                                                                           |
| (iii) | Determine the percentage of C in $C_6H_6$ . What mass of $CO_2$ and what number of moles of $H_2O$ are produced from the combustion of 1 mole of $C_6H_6$ ? (13)                                                                |
| (c) A | answer <b>both</b> sections (i) and (ii).                                                                                                                                                                                       |
| (i)   | Draw a diagram showing the experiment that Curie performed using radioactive radium and explain how her conclusions following this experiment furthered the development of modern atomic theory. (20)                           |
| (ii)  | Chlorine has two stable isotopes, <sup>35</sup> Cl with a mass of 34.97 and <sup>37</sup> Cl with a mass of 36.95. Given the atomic mass of chlorine is 35.45 determine the ratio of <sup>35</sup> Cl to <sup>37</sup> Cl. (13) |
| (d) / | Answer <b>all</b> sections (i) – (iii).                                                                                                                                                                                         |
| (i)   | Explain, with examples, ionic bonding. (10)                                                                                                                                                                                     |
|       | Explain covalent bonding in terms of the attractions and repulsions that components of an aton                                                                                                                                  |

**1.** Answer *any three* parts (a) - (e).

(iii) Given the following data, roughly sketch (on one plot) the potential energy curves for the formation of C − C, C=C and C≡C bonds (carbon – carbon single, double and triple bonds).
 (13)

|       | Bond length / pm | Bond strength kJ mol <sup>-1</sup> |
|-------|------------------|------------------------------------|
| C - C | 154              | 346                                |
| C=C   | 134              | 610                                |
| C≡C   | 120              | 835                                |

- (e) Answer **both** sections (i) (ii).
  - (i) Discuss the hydrogen emission spectrum in terms of the Bohr model of the atom. (20)
  - (ii) For a hydrogen atom, calculate the wavelength of a photon that results from the transition n = 4 to n = 2. The Rydberg constant is  $2.180 \times 10^{-18}$  J, the speed of light is  $2.998 \times 10^{8}$  m s<sup>-1</sup> and Planck's constant is  $6.626 \times 10^{-34}$  J s. (13)
- 2. Answer any two parts (a) (c).
  - (a) The reaction between chlorine and methane

is endothermic. Write an expression for the equilibrium constant for the reaction.

Describe and explain the effects of the following changes on the position of equilibrium:

- (i) Addition of HCI;
- (ii) Addition of the inert gas helium;
- (iii) An increase in the temperature. (50)

(b) Methanol is produced commercially from the reaction between carbon monoxide and hydrogen

$$CO(g) +2H_2(g) \rightarrow CH_3OH(g)$$

Using the data given below, calculate the enthalpy,  $\Delta H^{\ominus}$ , entropy,  $\Delta S^{\ominus}$ , and free energy,  $\Delta G^{\ominus}$ , changes and the equilibrium constant, K, at 298K for the reaction.

|          | $\Delta H_{\rm f}^{-\Theta}$ / kJ mol <sup>-1</sup> | $S^{-\Theta}/JKmol^{-1}$ |
|----------|-----------------------------------------------------|--------------------------|
| CO(g)    | -110                                                | 198                      |
| $H_2(g)$ | 0                                                   | 131                      |
| CH₃OH(g) | -201                                                | <b>240 (50)</b>          |

- (c) Answer **both** sections (i) **and** (ii).
  - (i) Explain the effect of a catalyst on the rate and position of equilibrium of a chemical reaction;
  - (ii) Determine the activation energy of an elementary reaction in which the rate constant doubles when the temperature increases from 300 K to 1000 K.

(Gas constant, 
$$R_1 = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$
) (50)

## 3. STUDENTS SHOULD ONLY ANSWER THIS QUESTION IF THEY SEEK TO IMPROVE THEIR PRACTICAL MARK.

Answer one part (a) or (b).

- (a) Describe an experiment used to measure the strength of a hydrogen bond using infrared spectroscopy; (40)
- (b) Describe an experiment which separates, identifies and quantifies the chemical components of a mixture. (40)

oOo

### **Periodic Table of the Elements**

| 1<br>I                              | 2<br>11                                | Group (new notation) Group (old notation)        |                             |                            |                             |                              |                           |                           |                           |                           | 13<br>III                | 14<br>IV                                | 15<br>V                              | 16<br>VI                                | 17<br>VII                          | 18<br>VIII                           |                                    |
|-------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------|--------------------------------------|------------------------------------|
| 1<br>Hydrogen<br><b>H</b><br>1.0079 |                                        | N Name Atomic number Name  EI Symbol Atomic mass |                             |                            |                             |                              |                           |                           |                           |                           |                          |                                         |                                      |                                         | 2<br>Helium<br><b>He</b><br>4.0026 |                                      |                                    |
| 3<br>Lithium<br><b>Li</b><br>6.941  | 4<br>Beryllium<br><b>Be</b><br>9.0122  |                                                  |                             |                            | ·                           |                              |                           |                           |                           |                           |                          | 5<br>Boron<br><b>B</b><br>10.811        | 6<br>Carbon<br><b>C</b><br>12.0112   | 7<br>Nitrogen<br><b>N</b><br>14.0067    | 8<br>Oxygen<br><b>O</b><br>15.9994 | 9<br>Fluorine<br><b>F</b><br>18.9984 | 10<br>Neon<br><b>Ne</b><br>20.18   |
| 11<br>Sodium<br><b>Na</b><br>22.989 | 12<br>Magnesium<br><b>Mg</b><br>24.305 | 3                                                | 4                           | 5                          | 6                           | 7                            | 8                         | 9                         | 10                        | 11                        | 12                       | 13<br>Aluminium<br><b>Al</b><br>26.9815 | 14<br>Silicon<br><b>Si</b><br>28.086 | 15<br>Phosphorus<br><b>P</b><br>30.9738 | 16<br>Sulfur<br><b>S</b><br>32.066 | 17<br>Chlorine<br>CI<br>35.453       | 18<br>Argon<br><b>Ar</b><br>39.948 |
| 19<br>Potassium                     | 20<br>Calcium<br><b>Ca</b>             | 21<br>Scandium<br><b>SC</b>                      | 22<br>Titanium<br><b>Ti</b> | 23<br>Vanadium<br><b>V</b> | 24<br>Chromium<br><b>Cr</b> | 25<br>Manganese<br><b>Mn</b> | 26<br>Iron<br><b>Fe</b>   | 27<br>Cobalt<br><b>Co</b> | 28<br>Nickel<br><b>Ni</b> | 29<br>Copper<br><b>Cu</b> | 30<br>Zinc<br><b>Zn</b>  | 31<br>Gallium<br><b>Ga</b>              | 32<br>Germanium<br><b>Ge</b>         | 33<br>Arsenic<br><b>As</b>              | 34<br>Selenium<br><b>Se</b>        | 35<br>Bromine<br><b>Br</b>           | 36<br>Krypton<br><b>Kr</b>         |
| 39.0983<br>37<br>Rubidium           | 40.08<br>38<br>Strontium               | 44.956<br>39<br>Yttrium                          | 47.87<br>40<br>Zirconium    | 50.942<br>41<br>Niobium    | <u> </u>                    | 54.938<br>43<br>Technetium   | 55.847<br>44<br>Ruthenium | 58.933<br>45<br>Rhodium   | 58.69<br>46<br>Palladium  | 63.546<br>47<br>Silver    | 65.39<br>48<br>Cadmium   | 69.723<br>49<br>Indium                  | 72.61<br>50<br>Tin                   | 74.922<br>51<br>Antimony                | 78.96<br>52<br>Tellurium           | 79.904<br>53<br>Iodine               | 83.80<br>54<br>Xenon               |
| Rb                                  | Sr                                     | Y                                                | Zr                          | Nb                         | Мо                          | Tc                           | Ru                        | Rh                        | Pd                        | Ag                        | Cd                       | l n                                     | Sn                                   | Sb                                      | Te                                 | 100.004                              | Xe                                 |
| 85.468<br>55<br>Cesium              | 87.62<br>56<br>Barium                  | 88.905<br>57<br>Lanthanum                        | 91.224<br>72<br>Hafnium     | 92.906<br>73<br>Tantalum   | 95.94<br>74<br>Tungsten     | 98<br>75<br>Rhenium          | 76<br>Osmium              | 102.905<br>77<br>Iridium  | 78<br>Platinum            | 107.868<br>79<br>Gold     | 112.411<br>80<br>Mercury | 114.82<br>81<br>Thallium                | 118.71<br>82<br>Lead                 | 121.75<br>83<br>Bismuth                 | 127.60<br>84<br>Polonium           | 126.904<br>85<br>Astatine            | 131.29<br>86<br>Radon              |
| <b>Cs</b> 132.905                   | <b>Ba</b><br>137.34                    | <b>La</b><br>138.91                              | <b>Hf</b><br>178.49         | <b>Ta</b><br>180.948       | <b>W</b><br>183.85          | <b>Re</b> 186.207            | <b>Os</b><br>190.2        | <b>l r</b><br>192.22      | <b>Pt</b> 195.09          | <b>Au</b><br>196.967      | <b>Hg</b>                | <b>TI</b> 204.38                        | <b>Pb</b> 207.19                     | <b>Bi</b> 208.98                        | <b>Po</b>                          | <b>At</b> 210                        | <b>Rn</b>                          |
| 87<br>Francium                      | 88<br>Radium<br><b>Ra</b>              | 89                                               | 104<br>Rutherfordium        | 105<br>Dubnium             | 106<br>Seaborgium           | 107<br>Bohrium<br><b>Bh</b>  | 108<br>Hassium            | 109<br>Meitnerium         | 100.00                    | 100.007                   | 200.00                   | 201.00                                  | 207.10                               | 200.00                                  | 200                                | 210                                  |                                    |
| 223                                 | 226                                    | 227                                              | 261                         | 262                        | 266                         | 264                          | 269                       | 268                       |                           |                           |                          |                                         |                                      |                                         |                                    |                                      |                                    |
|                                     |                                        |                                                  | 58<br>Cerium                |                            | 60<br>Neodymium             |                              | 62<br>Samarium            | 63<br>Europium            | 64<br>Gadoloinium         |                           | 66<br>Dysprosium         |                                         | 68<br>Erbium                         | 69<br>Thulium                           | 70<br>Ytterbium                    | 71<br>Lutetium                       |                                    |
|                                     | Lanthanides                            |                                                  | nides                       | <b>Ce</b>                  | <b>Pr</b>                   | <b>Nd</b><br>144.24          | <b>Pm</b> 144.913         | <b>Sm</b> 150.35          | <b>Eu</b><br>151.96       | <b>Gd</b><br>157.25       | <b>Tb</b> 158.925        | <b>Dy</b> 162.50                        | <b>Ho</b><br>164.93                  | <b>Er</b><br>167.26                     | <b>Tm</b> 168.934                  | <b>Yb</b> 173.04                     | <b>Lu</b><br>174.97                |
|                                     |                                        |                                                  | 90                          | 91                         | 92                          | 93                           | 94                        | 95                        | 96                        | 97                        | 98                       | 99                                      | 100                                  | 101                                     | 102                                | 103                                  |                                    |
|                                     |                                        | Actinid                                          | les                         | Thorium <b>Th</b>          | Proactinium Pa              | Uranium<br><b>U</b>          | Neptunium <b>Np</b>       | Plutonium <b>Pu</b>       | Americium<br><b>Am</b>    | Curium Cm                 | Berkelium<br><b>Bk</b>   | Californium<br>Cf                       | Einsteinium<br><b>Es</b>             | Fermium <b>Fm</b>                       | Mendelevium Md                     | Nobelium<br><b>No</b>                | Lawrencium Lr                      |
| , (311111400                        |                                        | 232.038                                          | 231.036                     | 238.03                     | 237.048                     | 244.064                      | 243                       | 247                       | 247                       | 242.058                   | 254                      | 257.095                                 | 258.10                               | 259.101                                 | 260.105                            |                                      |                                    |