The relative approximation degree I

Freitag, 8. Dezember 2023 12:01

Where are we?

We want to prove (CIMM) / Heuselian rationality

Proof structure

finite rank (4) arbitrary rank

Franzi outlined the proof two weeks ago

black boxes:

- · Galois-degree-p-extensions → Lemma 48 (Artin-Scheies-extension) equi-p, Sylvy last week)
 - → Lemma 4.9 (Kunnes extensions/ mixed char, ???)
- TODAY: Kuhlmann-Vlahu, Theorem 11.1 (K,v) valued field, rank 1,

(FIK,v) immediate function field, fr.deg(FIK)-1

Suppose these is $X \in F^h \setminus K^c$ with transcendental approximation type ove K such that $F^h = K(x)^h$

Then there is already some yeF such that Fh=K(y)h such that Fh=K(y)h

5 Approximation Types

Definition

- · Bx(c, K) {ae K: v(a-c) ≥ x} "closed" ball in (K, v) of radius xe vK" = vKu {~}
- · An approximation type over (KIV) is a collection $\underline{A} = \{ \mathcal{B}_{\alpha}(C_{\alpha}, K) : \alpha \in S \}$

where SEVK is an initial regment

and the balls $B_{x}(c_{x}, K)$ are

write S= supp A • For $\alpha \in VK^{\infty}$, $\underline{A}_{\alpha} := \begin{cases} B_{\alpha}(c_{\alpha}, K) & \text{if } \alpha \in \text{supp } \underline{A} \\ \emptyset & \text{otherwise} \end{cases}$

Remark

A is determined by $(A_{x})_{x\in T}$ where T_{color}^{S} supp A(Because for $\beta < \alpha \in \text{supp } \underline{A}$, $\underline{A}_{\beta} = \mathcal{B}_{\beta}(c_{\beta}, K) = \mathcal{B}_{\beta}(c_{\alpha}, K)$

<u>Definition</u>

(LIK, V), xeL. Define $appr(x, K)_{\alpha} := \{ce K : v(x-c) \ge \alpha \} = \mathcal{B}_{\alpha}(x, L) \cap K$ $appr(x, K) := \{appr(x, K)_{\alpha} : \alpha \in vK^{\infty}, appr(x, K)_{\alpha} \neq \emptyset\},$ And the approximation type of x over K.

5 Immediate Approximation Types

Definition

A approximation type ovo (Kv).

• (LK_1V), $X\in L$ Say x realizes A (in (L_1V)) \Leftrightarrow $A = appr(x_1K)$

• A is Aviral : A is realized by some $c \in K$ $A = \{c\} \iff A_{\infty} = \{c\} \iff \text{supp } A = v \text{ } K$

• \triangle is immediate \iff $\bigcap \triangle := \bigcap_{\alpha \in Supp \triangle} \triangle_{\alpha} = \emptyset$

Remark (immediate => non-trivial)

A trivial $\Rightarrow \cap A - A_{\infty} + \emptyset \Rightarrow A$ not immediate

Fact/Kaplansky [KV, Proposition 6.6]

Every immediate approximation type is realized in some immediate simple valued field extension

Lemma [KV, Lemma 4.1]

(LIK,v), xeL

(a) appr(x, K) is immediate $\iff v(x-K)$ has no maximal element

(c) appr(x,K) is immediate \implies supp appr(x,K) = v(x-K)

Proof (a) \rightarrow ": $\underline{A} = appr(x, K)$ immediate: $\bigcap_{\alpha \in \omega_{add}} \underline{A}_{\alpha} = \emptyset$, $c \in K$ orbitary

 \Rightarrow 3 xe supp \underline{A} : $c \notin \underline{A}_{\alpha} = B_{\alpha}(x_1 L) \cap K \Rightarrow v(x-c) > \alpha$

Let $c' \in A_{\kappa} = B_{\kappa}(x, L) \cap K \neq \emptyset \implies v(x-c') \ge \alpha > v(x-c)$

So v(x-K) has no maximal element

": appr(x,K) imm. ⇒ xeLx (non-trivial)

Suppose v(x-K) has no max: $\forall c \in K \exists c' \in K \cdot v(x-c') > v(x-c)$

To show: for every cck ex. xcsuppappr(x,K), sth. cdappr(x,K)

 \Rightarrow $v(c''-c') \in v(x-K)$, $c \notin appr(x,K)_{v(c''-c')} \Rightarrow c'$

(c) "s': α esupp appr(x, K) => appr(x, K) $_{\alpha} \neq \emptyset$ -> $\exists cek: v(x-c) > \alpha$

- V(X-C) = Q \Longrightarrow $Q \in V(X-K)$

- $v(x-c) > \alpha$: Let de K with $v(d) = \alpha$, then $v(x-(c+d)) = v(d) = \alpha \in v(x-K)$

"2": CEK. Since v(x-K) has no maximal element, there is c'EKsth.

 $\Lambda(X-C_1) > \Lambda(X-C)$

 $\Rightarrow \qquad \bigvee(C'-C) = \bigvee((X-C) - (X-C')) = \bigvee(Y-C) \in \bigvee$

 $v(x-c) \geq v(x-c) \implies c \in \operatorname{appr}(x,K)_{v(y-c)} \neq \emptyset \implies v(x-c) \in \operatorname{supp} \operatorname{appr}(x,K)$

§ Polynomials

Definition

 $\varphi(X)$ formula. A approximation type, (LIK, v), xel, for K variable $\gamma(X)$ term in $\gamma(X)$.

• Write $\varphi(c)$ for c/A if there is an engage A with $\varphi(c)$ holds for all $c\in \underline{A}_{\infty}$

• Write "c/x" for "c/A" if $\underline{A} = appr(x, K)$

• Write $\gamma(c)$ increases for $c \nearrow x$ if

there is $x \in \text{supp } A$ s.th. for all $c' \in A_{\alpha} \xrightarrow{f \times f}$: $\gamma(c) > \gamma(c')$ for $c \nearrow x$ where A = appr(x, K).

Definition

A approximation type over (K,v)

• $f \in K[X]$: A fixes the value of $f : \iff \exists \alpha \in VK : V(f(c)) = \alpha$ for $c \land A$ Then: this α is the fixed value V(f(c)) for $c \land A$

A is a transcendental approximation type
 : ⇔ A fixes the value of every f∈ K[X]
 Otherwise: A is an algebraic approximation type

- an associated minimal polynomial for Δ is a monic polynomial of minimal degree whose value is not fixed by Δ

- the degree of Δ is its associated minimal polynomial transcendental approximation type: degree d- ∞

Remark

· An associated minimal polynomial for A is is reducible

• If supp $A \subseteq VK$, then the associated minimal polynomial is not unique

Lemma [KV, Lemma 52; kaplansky, Lemma 4] Γ orobred abelian group, $\alpha_1,...,\alpha_m \in \Gamma$, $\gamma \subseteq \Gamma$ without max element. $t_1,...,t_m \in \mathbb{Z}$, distinct Then: ex. $\beta \in \Upsilon$, permutation $\sigma : \{1,...,m\} \rightarrow \{1,...,m\}$ s.th. f.a. $\gamma \in \Gamma$, $\gamma > \beta$ $\alpha_{\sigma(1)} + t_{\sigma(1)} \gamma > \alpha_{\sigma(2)} + t_{\sigma(2)} \gamma > ... > \alpha_{\sigma(m)} + t_{\sigma(m)} \gamma$

Lemma [KV, Lemma 5.2]

```
Hence,
```

(55)
$$V(f(x)-f(c)) = \beta_h + h \cdot V(x-c)$$
 for C/x

Consequently,

$$\begin{cases} v(f(x)-f(c)) > v(f(x)) = v(f(c)) & \text{for } c \nearrow x \text{,} & \text{if } \Delta \text{ fixes the value of } f \\ v(f(x)) > v(f(c)) = \beta_1 + h \cdot v(x-c) & \text{for } c \nearrow x \text{,} & \text{if } \Delta \text{ doesn't fix the value of } f \end{cases}$$
 Proof. Set $n = \deg(f)$.

Taylor expansion

$$f(x) - f(c) = f_1(c)(x-c) + ... + f_n(c)(x-c)^n$$

$$v(f_i(c)(x-c)^i) - \underbrace{\beta_i + i v(x-c)}_{\alpha_i} \quad \text{for} \quad c \nearrow x$$

A invn. app. type $\frac{L_{unin}}{4\pi}$ supp A has no maximal element Lemma 5.1. with $Y = \sup_{x \in A} A \subseteq VK$, $\alpha_i = \beta_i$, $t_i = i$:

There is $h \leq \deg(f)$, s.th. (5.4)

 $\beta_i + h \cdot v(x-c) < \beta_i + i \cdot v(x-c)$ for $c \wedge x$, $i \neq h$

This implies (5.5) using (*) and ultramedric \triangle -ineq

⇒ √

• if \triangle doesn't fix the value of f, then v(f(c)) + v(f(x)) for x/c=> $v(f(x) - f(c)) = \min \{v(f(x)), v(f(c))\}$ (5.5) = $\beta_h + h \cdot v(x-c)$ constant \wedge the minimum $\rightarrow \vee$ increases for x/c

Lemma 5.2. only for polynomials of degree = d. Now:

Lemma 54

Take an immediate algebraic approximation type A-appr(x,K) over (K,v) and an associated minimal polynomial $f \in K[X]$ for A. Further, take an arbitrary polynomial $g \in K[X]$ and write

where $c_i \in K[X]$ with $deg(c_i) < deg(f)$.

Then there is $1 \le m \le k$, $\beta \in VK$ such that with h from 52. $V(g(c) - G(c)) = V(C_m(c)) + m \cdot V(f(c)) = \beta + m \cdot h \cdot V(x-c)$ for $C \cap X$ Consequently,

$$\begin{cases} v(g(x)) = v(g(c)) = v(c_0(c)) = v(c_0(x)) < v(g(c) - c_0(c)) & \text{for } c \nearrow x \\ & \text{if } \underline{A} \text{ fixes the value of } g \\ v(g(x)) > v(g(c)) = \beta + m \cdot h \cdot v(x - c) & \text{for } c \nearrow x \\ & \text{if } \underline{A} \text{ doesn't fix the value of } g \end{cases}$$

Proof: Not in this talk.

3 Relative Approximation Degree

 \underline{A} imm. appr. type over $(K_i V)$, \underline{A} - appr(x, K)

Definition

Let $f \in K[X]$, $dig(f) \leq deg \underline{A}$. The integer h from Lumma 52. is called the relative approximation degree of f in x over K and is denoted by $h_K(x;f)$.

Remark

By Lemma 5.2,

$$1 \leq h_{k}(x \cdot f) \leq \deg(f)$$
 and
$$v(f(x) - f(c)) - \beta_{h_{k}(x \cdot f)} + h_{k}(x \cdot f) \cdot v(x - c) \qquad \text{for } c \nearrow x$$

Observation

geK[X], arbitrary degree.

There are unique BEVK, kEZ20 s.th.

(This is because \underline{A} is immediate and so v(x-c) takes infinitely many values for $c \wedge x$)

Definition

ge K[X], arbitrary degree.

The integer k from (#) is called relative approximation degree of g(x) in x, denoted by $h_K(x\cdot g)$. The value β from (#) is called relative approximation constant of g(x) in x, denoted by $\beta_K(x\cdot g)$.

§ Outlook - the proof of 11.1

Situation:

Q: What can we say about $[K(x)^h: K(y)^h]$?

[Naut: $[K(x)^h: K(y)^h] - 1$)

Thea: Define relative approximation degree of \times over y: Find polynomial $f \in K[X]$ s. th.

$$v(y-f(x)) \ge dist(y, K)$$

Smallest initial regneut of div(VK) containing Supp appr(y, K)

Lemma 10.2: In situation (10.1), such au f exists

Definition

 $h_{K}(x:y):=h_{K}(x:f)$, the relative approaches of y in x $\beta_{K}(x:y):=\beta_{K}(x:f)$.

where f is as in Lemma 10.2.

Lumma 10.3 · $h_k(x:y)$ and $\beta_k(x:y)$ are well-defined i.e. do not depend on f

Theorem 10.7: In situation (10.1), Needs many $EK(x)^h: K(y)^h = h_K(x:y)$.

Kuhlmann-Vlahu, Theorem 11.1

(K,v) valued field, rank 1,

(FIK,v) immediate function field, fr.deg (FIK)-1

Suppose there is $X \in F^h \setminus K^c$ with transcendental approximation type one K such that $F^h = K(x)^h$

Then there is already some $y \in F$ such that $F^h = K(y)^h$ such that $F^h = K(y)^h$

Proof idea of 11.1: Find ye F such that $h_K(x:y) = 1$ Then $[K(x)^h: K(y)^h] \le h_K(x:y) = 1$ by Thm 10.7. So $K(x)^h = K(y)^h$.

> Med dist & Stuff from [KV, Chapter 10]