In [545 In [546	#Homework 3 complete #Took me approximately 5 days to figure this out! import matplotlib.pyplot as plot import pandas as pd import seaborn as sns import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # Problem 1 # loads imported cancer dataset breast = load_breast_cancer()
In [547 Out[547	<pre>breast_data = breast.data breast_data.shape (569, 30)</pre>
In [548 Out[548	#Visualizes dataset breast_input = pd.DataFrame(breast_data) breast_input.head() 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 26 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28
In [571	<pre># Generates dependent variable breast_labels = breast.target breast_labels.shape labels = np.reshape(breast_labels, (569, 1))</pre>
In [572 Out[572	<pre># Adds labels to the dataset dataset = pd.DataFrame(np.concatenate([breast_data, labels], axis=1)) features = breast.feature_names features array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',</pre>
In [573 In [574	<pre>'worst symmetry', 'worst fractal dimension'], dtype='<u23') #generates="" 'label')="" and="" dataset="" dataset.columns="features_labels" dataset.head()<="" features="" features_labels="np.append(features," labels="" of="" pre=""></u23')></pre>
Out[574	mean radius mean radius mean perimeter mean area mean smoothness compactness concavity mean concave points mean fractal dimension worst texture worst texture worst area sm 0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 0.07871 17.33 184.60 2019.0 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667 23.41 158.80 1956.0
In [575	<pre>5 rows × 31 columns n = breast_data.shape[1] x = dataset.values[:, :n] y = dataset.values[:, n]</pre>
In [576	<pre># Processes cost function for linear regression # Computes value of cost function J for each iteration # This funnction takes into account on each iteration def gradient_descent(x, y, theta, alpha, iterations): cost_history = np.zeros(iterations) acc_history = np.zeros(iterations) m = x.shape[0] x = np.hstack((np.ones((m, 1)), x.reshape(m, n))) for i in range(iterations): predictions = np.divide(1, 1 + np.exp(-1 * x.dot(theta))) theta = theta - (alpha / m) * x.transpose().dot(predictions - y) log1 = np.multiply(y, np.log(predictions)) log2 = np.multiply(1 - y, np.log(1 - predictions)) cost_history[i] = -1 / m * np.sum(log1 + log2) # Computes accuracy for each iteration acc_history[i] = (m - np.sum(np.abs(np.round(predictions) - y))) / m return theta, cost_history, acc_history</pre>
In [577 In [578	<pre>#Implements Min max scaling mins = MinMaxScaler() x = mins.fit_transform(x) #Standardization implementation strds = StandardScaler() x = strds.fit_transform(x) #80% and 20% split used for evaluation</pre>
In [580	<pre>np.random.seed(0) x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8,</pre>
In [581 In [560	<pre>theta, train_cost, train_acc = gradient_descent(x_train, y_train, theta, alpha, it) test_cost, test_acc = gradient_descent(x_test, y_test, theta, alpha, it)[1:] # Evaluates model using accuracy evaluation metric print('Accuracy of model:', test_acc[0])</pre>
In [582	<pre># Plots training and test cost history for the logistic regression plot.figure(1) plot.plot(np.linspace(1, it, it), train_cost, color='green',</pre>
Out[582	<pre><matplotlib.legend.legend 0x21d15a7f0d0="" at=""> Graph of Test and Train input variable for logistic regression 0.7 Training cost Test cost 0.6</matplotlib.legend.legend></pre>
	0.5 0.4 tg 0.3
	0.1 0.0 0 200 400 600 800 1000 1200 1400
In [562	#Performs logistic regression for training classifier = LogisticRegression(random_state = 0); classifier.fit(x_train, y_train) y_pred = classifier.predict(x_test) y_pred[0:9] array([0., 1., 1., 1., 1., 1., 1., 1.])
In [563	#Creates confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred) cnf_matrix array([[45, 2],
In [564	<pre>#Prints Precision accuracy and recall values print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) print("Precision:",metrics.precision_score(y_test, y_pred)) print("Recall:",metrics.recall_score(y_test, y_pred)) Accuracy: 0.9649122807017544 Precision: 0.9701492537313433 Recall: 0.9701492537313433</pre>
In [569	<pre>class_names = [0,1] fig, axis = plt.subplots() tick_marks = np.arange(len(class_names)) plot.xticks(tick_marks, class_names) plot.yticks(tick_marks, class_names) sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="winter",fmt='g') ax.xaxis.set_label_position("top") plot.tight_layout() plot.title('Confusion matrix', y=1.1) plot.ylabel('Actual label') plot.xlabel('Predicted label')</pre>
Out[569	Text(0.5, 51.0, 'Predicted label') Confusion matrix -60
	2 - 4550 -40 -40
	-30 -20
	-10 Predicted label
In [566	<pre># This function plots the test and training accuracy of all input variables plot.figure(2) plot.plot(np.linspace(1, it, it), train_acc, color='green',</pre>
Out[566	plot.xlabel('Iterations') plot.ylabel('Accuracy') plot.title('Test and training accuracy for all logistic regression input variables') plot.legend() <pre></pre>
	0.9
	0.6
In [567	0.4 Training accuracy Test accuracy 1000 1000 1200 1400
In [568	<pre>#Number 2 #Attempts PCA feature extrection pca = PCA() pcs = pca.fit_transform(x) #This function splits into two variables dependent and independant x = dataset.iloc[:, 0:29].values y = dataset.iloc[:, 30].values # Standardizing the features x = StandardScaler().fit_transform(x) # Performs 80% and 20% split of the labelled data into training and test sets x train p, x test p, y train p, y test p = train test split(pcs, y, train size=0.8,</pre>
In [514	<pre>test_size=0.2,</pre>
In [515 In [516	<pre>fig = plot.figure(figsize = (8,8)) axis = fig.add_subplot(1,1,1) axis.set_xlabel('Principal Component 1', fontsize = 15) axis.set_ylabel('Principal Componenet 2', fontsize = 15) axis.set_title('PCA Analysis', fontsize = 25) targets = [0, 1] colors = ['b', 'g'] for target, color in zip(targets, colors): indicesToKeep = finalDataframe['label'] == target axis.scatter(finalDataframe.loc[indicesToKeep, 'Principal Component 1']</pre>
	<pre>pca Analysis</pre> <pre> pca Analysis 12.5</pre>
	10.0 7.5 5.0 5.0
	7.5
In [517	# Iteratively trains and evaluates model for principal components # Performs logistic regression by instantiating LogisticRegression object accur = 0 optimalk = 0 for i in range(k): regress = LogisticRegression() regress.fit(x_train_p[:, :i + 1], y_train_p) y_pred = regress.predict(x_test_p[:, :i + 1]) accuracy[i] = metrics.accuracy_score(y_test_p, y_pred) precision[i] = metrics.recall_score(y_test_p, y_pred) if accuracy[i] > optimalk: accuracy_score(y_test_p, y_pred)
In [518	<pre>accur = accuracy[i] optimalk = i + 1 # Displays optimal K and corresponding accuracy, precision, and recall print('Optimal value of K:', optimalk) print('Accuracy:', optimalk) print('Precision:', precision[optimalk - 1]) print('Recall:', recall[optimalk - 1])</pre>
In [519	<pre>Optimal value of K: 1 Accuracy: 1 Precision: 0.8904109589041096 Recall: 0.9558823529411765 # Plots accuracy, precision, and recall for varying numbers of principal components plot.figure(3) plot.plot(np.linspace(1, k, k), accuracy, color='red',</pre>
Out[519	<pre>plot.plot(np.linspace(1, k, k), precision, color='green',</pre>
In [520	K principal coponents 100 0.98 0.96 0.90 0.90 Problem 3
In [521	<pre># This process conducts LDA on the training data lda = LinearDiscriminantAnalysis() lda.fit(x_train, y_train) y_pred = lda.predict(x_test) # Evaluates naive Bayes model using accuracy, precision, and recall evaluation metrics print('Accuracy:', metrics.accuracy_score(y_test, y_pred)) print('Precision:', metrics.precision_score(y_test, y_pred))</pre>
In [522	<pre>print('Recall:', metrics.recall_score(y_test, y_pred)) Accuracy: 0.9649122807017544 Precision: 0.9436619718309859 Recall: 1.0</pre>
In [523 In [524	# Performs 80% and 20% split of the labelled data into training and test sets x_trainl, x_testl, y_trainl, y_testl = train_test_split(lds, y, train_size=0.8,
In [525	<pre># Performs logistic regression by instantiating LogisticRegression object regres = LogisticRegression() regres.fit(x_trainl, y_trainl) y_pred = regres.predict(x_testl) print('Accuracy:', metrics.accuracy_score(y_testl, y_pred)) print('Precision:', metrics.precision_score(y_testl, y_pred)) print('Recall:', metrics.recall_score(y_testl, y_pred)) plt.show()</pre>
In []:	Accuracy: 0.9736842105263158 Precision: 0.9878048780487805 Recall: 0.9759036144578314