THE CATEGORIES OF RETRACTS

LOCALLY CARTESIAN CLOSED

Let C be any category, and take f:C(B,A).

$$C \downarrow A \xrightarrow{f^*} C \downarrow B$$

RELATIVELY CARTESIAN CLOSED

Some categories do not have f^* or \prod_f for all f. But sometimes we can choose full subcategories of 'display maps' (or 'fibrations') $C \downarrow_H B \subseteq C \downarrow B$ such that

- Composition of display maps is a display map;
- Terminal projections are display maps (so $C \downarrow_H T = C \downarrow T \simeq C$);
- Pullbacks of display maps along any map exist.

Cartesian closed relative to H if f^* has a right adjoint.

Let A be a category. Let $\ \ \ : A \hookrightarrow \operatorname{Psh} A$ be the Yoneda embedding. Let B, C, D be the categories given by:

SCOTT'S VERSION

$$B_0 = \sum_{X:A} \sum_{f:A(X,X)} f \cdot f = f$$

$$B((X_1, f_1), (X_2, f_2)) = \{g : A(X_1, X_2) \mid f_1 \cdot g \cdot f_2 = g\} :$$

$$f_1 \left(X_1 \xrightarrow{g} X_2 \right) f_2$$

FIRST INTERPRETATION OF THE EQUIVALENT NOTION

$$C_{0} = \sum_{P: Psh \ A} \sum_{X: A} \sum_{s: A(P, \sharp(X))} \sum_{r: A(\sharp(X), P)} s \cdot r = id$$

$$C((P_{1}, X_{1}, r_{1}, s_{1}), (P_{2}, X_{2}, r_{2}, s_{2})) = Psh \ A(P_{1}, P_{2}) :$$

$$\sharp(X_{1}) \xrightarrow{s_{1}} P_{1} \xrightarrow{g} P_{2} \xrightarrow{s_{2}} \sharp(X_{2})$$

SECOND INTERPRETATION OF THE EQUIVALENT NOTION

$$D_{0} = \sum_{P: P \le h A} \left\| \sum_{X: A} \sum_{s: A(P, \sharp(X))} \sum_{r: A(\sharp(X), P)} s \cdot r = id \right\|$$

$$D((P_{1}, X_{1}, r_{1}, s_{1}), (P_{2}, X_{2}, r_{2}, s_{2})) = P \le h A(P_{1}, P_{2}) :$$

$$\sharp(X_{1}) \xrightarrow{r_{1}} P_{1} \xrightarrow{g} P_{2} \xrightarrow{r_{2}} \sharp(X_{2})$$

B
$$f_{1} \bigoplus_{X_{1}} X_{1} \xrightarrow{g} X_{2} \xrightarrow{k} f_{2}$$
C
$$\sharp (X_{1}) \bigoplus_{s_{1}}^{r_{1}} P_{1} \xrightarrow{g} P_{2} \bigoplus_{r_{2}}^{s_{2}} \sharp (X_{2})$$
D
$$\sharp (X_{1}) \bigoplus_{s_{1}}^{r_{1}} P_{1} \xrightarrow{g} P_{2} \bigoplus_{r_{2}}^{s_{2}} \sharp (X_{2})$$

Properties

	В	\mathbf{C}	D
Embeds fully faithfully into $Psh A$	✓	✓	√
Subcategory of $Psh A$	X	X	✓
Univalent	X	X	✓
Scott's construction	✓	X	X
Taylor's construction	✓	X	X
$R \xrightarrow{\sim} C \hookrightarrow D \subset \operatorname{Psh} A$			

TAYLOR

Taylor works in Scott's category of retracts B of a category A that is based on a monoid:

$$f_1 \bigcirc * \stackrel{g}{\longrightarrow} * \bigcirc f_2$$

For X:B, Taylor constructs a category of 'indexed types' B^X (which behaves like functions $X\to B$) with a fully faithful embedding

$$\sum_X:B^X\hookrightarrow B\downarrow X.$$

He chooses D such that i is essentially surjective onto $B \downarrow_H X$ and shows that we have an adjunction

$$B^{X} \xrightarrow{f^{*}} B^{Y}$$

$$\downarrow \Sigma_{X} \qquad \Pi_{f} \qquad \downarrow \Sigma_{Y}$$

$$B \downarrow_{H} X \qquad B \downarrow_{H} Y$$

In this case, B is a set category, so the functors \sum become equivalences under the axiom of choice and we can lift $f^* \dashv \prod_f$ to $B \downarrow_H X$ and $B \downarrow_H Y$. In fact we have mere existence of pullbacks and to turn this into the mere existence of a pullback functor already requires the axiom of choice.

Note that if we try to do a similar thing in C, we would expect to have easy candidates for \prod_f and \sum_f , but again we only have mere existence of pullbacks and now that is an even bigger problem because C is not a set category.

$$\sharp(*) \xrightarrow{r_1} P_1 \xrightarrow{g} P_2 \xrightarrow{r_2} \sharp(*)$$

HYLAND

For $X : \operatorname{Psh} A$, Hyland considers 'the category of retracts' $\mathbb{R}(X)$ of

$$\pi_1: X \times \mathfrak{k}(*) \to X$$

in Psh $A \downarrow X$. He proceeds to construct retractions of $(Y \times \sharp(*), \pi_1)$ onto $\prod_f (X, g)$ and $\sum_f (X, g)$ for $f: Y \to X$ in $\mathbb{R}(X)$ and for a retraction of $(X \times \sharp(*), \pi_1)$ onto (X, g). That is,

$$\prod_f, \sum_f : \operatorname{Psh} A \downarrow X \to \operatorname{Psh} A \downarrow Y$$

send objects in $\mathbb{R}(X)$ to $\mathbb{R}(Y)$.

Furthermore, he claims that

- Scott's category of retracts $B = \mathbb{R}(\mathfrak{t}(*))$ is a subcategory of Psh A.
- For $X \in B$ and $Y \in \mathbb{R}(X)$, $Y \in B$.
- From this, Taylor's theorem follows.

This suggests that Hyland attempts to lift \prod_f and \sum_f along the weak equivalences

$$(\mathbb{R}\downarrow_{H}X) \longleftarrow f^{*} \longrightarrow (\mathbb{R}\downarrow_{H}Y)$$

$$\downarrow^{\psi_{X}} \qquad \downarrow^{\psi_{Y}}$$

$$\mathbb{R}(\varphi(X)) \longleftarrow \varphi(f)^{*} \longrightarrow \mathbb{R}(\varphi(Y))$$

$$\Pi_{\varphi(f)} \longrightarrow (\mathbb{R}\downarrow_{H}Y)$$

But since we are working with presheaf categories here, a weak equivalence does not give an adjoint equivalence.

THE SOLUTION

If we abandon the need to replicate Taylor's proof, we can actually do a lot better: We will work in D, the Rezk completion of B and C:

$$\sharp(X_1) \xrightarrow{r_1} P_1 \xrightarrow{g} P_2 \xrightarrow{s_2} \sharp(X_2)$$

We take $(Y, f): D \downarrow_H X$ if there merely exists a retraction from $\pi_1: X \times \sharp(*) \to X$ onto (Y, f). We can show that this forms a class of display maps, and using Hyland's proof, we can show that \prod_f restricts to the relative slices, so D is cartesian closed relative to H.