Eco 4306 Economic and Business Forecasting

Lecture 16

Chapter 10: Forecasting the Long Term: Deterministic and Stochastic Trends

Motivation

- ▶ ARMA models require the data are to be second order weakly stationary
- they thus can not be used for time series that grow over time, unless we transform them (by taking first differences, or using log and then taking first differences)
- our next goal is to learn how to analyze nonstationary data account for the persistent upward or downward tendency in many economic and business time series

Overview

main objectives of Chapter 10

- understand deterministic and stochastic trends, construct models that produce these trends and analyze their properties and forecasts
- design statistical procedures to detect deterministic and stochastic trends in the data

10.1 Deterministic Trends

simple linear model with a deterministic trend

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t$$

where β_0 is the intercept and β_1 slope and ε_t a white noise error

- but trends can have different shapes, linear trend is just one particular case
- ▶ more generally, a model with deterministic trend can be written as

$$Y_t = g(t) + \varepsilon_t$$

where g(t) is some function that specifies the deterministic trend

U.S. Nonfarm Business Sector, Output and Productivity, Indices, 1947Q1=100

- Real Output - Output per Hour

- Employment - Hours Per Worker

Relative Labor Force Participation Rate: Women/Men

Relative to Overall Employment — Relative to Total Population

most common trend specifications

- ▶ linear trend, $g(t) = \beta_1 t$
- quadratic trend, $g(t) = \beta_0 + \beta_1 t + \beta_2 t^2$
- lacksquare polynomial trend, $g(t)=eta_0+eta_1t+eta_2t^2+\ldots+eta_nt^n$
- exponential trend, $g(t) = \beta_0 e^{\beta_1 t}$
- \blacktriangleright logistic trend, $g(t) = \frac{\beta_2}{1+\beta_0 e^{\beta_1 t}}$

10.1.2 Trend Stationarity

- \blacktriangleright consider a process with a deterministic trend, $Y_t=g(t)+\varepsilon_t$, where ε_t is white noise
- ▶ the unconditional mean is

$$\mu_t = E(Y_t) = E(g(t) + \varepsilon_t) = E(g(t)) + E(\varepsilon_t) = g(t)$$

▶ the unconditional variance is

$$\gamma_0 = var(Y_t) = E[(Y_t - \mu_t)^2] = E[\varepsilon_t^2] = \sigma_\varepsilon^2$$

▶ autocovariance of order k is

$$\gamma_k = E[(Y_t - \mu_t)(Y_{t-k} - \mu_{t-k})] = E[\varepsilon_t \varepsilon_{t-k}] = 0$$

ightharpoonup autocorrelation of order k is

$$\rho_k = \frac{\gamma_k}{\gamma_0} = 0$$

10.1.2 Trend Stationarity

- ightharpoonup thus the unconditional mean μ_t is time varying, but the unconditional variance is not, and the auto-covariance and autocorrelation functions do not depend on time
- lacktriangle because the mean of a process Y_t is not constant over time, it is not first order weakly stationary process
- but because the variance and autocovariances satisfy the requirements for second order weak stationarity, the detrended process, $\tilde{y}_t = y_t \mu_t$, that is, $\tilde{y}_t = y_t g(t)$, is second order weakly stationary, and we say that y_t is **trend-stationary**

10.1.3 Optimal Forecast

- recall: under quadratic loss function the optimal forecast is the conditional mean $f_{t,h} = \mu_{t+h}|_t = E(Y_{t+h}|I_t)$ for $h=1,2,\ldots,s$
- \blacktriangleright we next analyze this optimal forecast under quadratic loss function for $h=1,2,\ldots$

10.1.3 Optimal Forecast

if $Y_t=g(t)+arepsilon_t$ where $arepsilon_t$ is white noise, for the forecasting horizon h=1 we have

1. optimal point forecast

$$f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(g(t+1) + \varepsilon_{t+1}|I_t) = g(t+1)$$

2. forecast error

$$e_{t,1} = Y_{t+1} - f_{t,1} = g(t+1) + \varepsilon_{t+1} - g(t+1) = \varepsilon_{t+1}$$

uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+1|t}^2 = var(e_{t,1}|I_t) = var(\varepsilon_{t+1}) = \sigma_{\varepsilon}^2$$

4. the density forecast is the conditional probability density function $f(Y_{t+1}|I_t)$, assuming ε_{t+1} is normally distributed white noise, we have

$$Y_{t+1}|I_t \sim N(g(t+1), \sigma_{\varepsilon}^2)$$

10.1.3 Optimal Forecast

• in general if $Y_t = g(t) + \varepsilon_t$ where ε_t is white noise, for the forecast at horizon h = s we have

$$f_{t,s} = g(t+s)$$

$$e_{t,s} = \varepsilon_{t+s}$$

$$\sigma_{t+s|t}^2 = \sigma_{\varepsilon}^2$$

$$Y_{t+s}|I_t \sim N(g(t+s), \sigma_{\varepsilon}^2)$$

- ightharpoonup note that the uncertainty of the forecast is thus same regardless of the forecasting horizon, because we assumed that ε_t is white noise
- in general, model with deterministic trend can accommodate linear dependence in its stochastic component: instead of $Y_t = g(t) + \varepsilon_t$ where ε_t is white noise, we then have $Y_t = g(t) + u_t$ where u_t follows some ARMA(p,q) model

- time series plot shows that earnings per share of Johnson and Johnson grew exponentially in the period from 1960Q1 to 1980Q4
- in addition, there is a seasonal pattern that will need to be incorporated into the estimated model

- ▶ to build a model for forecasting, we start by generating time series for trend: choose Object → Generate Series and enter t = @trend
- ▶ to estimate a model with exponential trend

$$JNJ_t = \beta_0 + \beta_1 e^{\beta_2 t} + \varepsilon_t$$

choose Object \rightarrow New Object \rightarrow Equation, in the Equation specification box enter JNJ = c(1) + c(2)*exp(c(3)*t) and in Sample 1960Q1 1978Q4

Dependent Variable: JNJ
Method: Least Squares (Gauss-Newton / Marquardt steps)
Date: 03/26/17 Time: 16:40
Sample: 1960Q1 1978Q4
Included observations: 76
Convergence achieved after 23 iterations
Coefficient covariance computed using outer product of gradients
JNJ = C(1) + C(2)*EXP(C(3)*T)

	Coefficient	Std. Error t-Statistic		Prob.
C(1)	-0.805113	0.374703	0.0350	
C(2)	1.079629	0.232709	4.639389	0.0000
C(3)	0.032518	0.002683 12.12037		0.0000
R-squared	0.962673	Mean dependent var		3.853158
Adjusted R-squared	0.961650	S.D. depende	3.253986	
S.E. of regression	0.637234	Akaike info cr	1.975315	
Sum squared resid	29.64294	Schwarz criterion		2.067318
Log likelihood	-72.06197	Hannan-Quinn criter.		2.012084
F-statistic	941.3322	Durbin-Watson stat		1.711509
Prob(F-statistic)	0.000000			

the plot with actual vs fitted data and the regression residuals, which can be obtained by selecting $View \rightarrow Actual$, Fitted, Residual $\rightarrow Actual$, Fitted, Residual Graph reveals two problems with the estimated model:

- ▶ it can match the trend, but not the seasonal pattern
- ▶ the variance of residuals does not appear to be constant, it is increasing over time

 to deal with issue of variance of residuals increasing over time we reestimate the model using log transformed data

$$\log JNJ_t = \beta_0 + \beta_1 t + \varepsilon_t$$

- ▶ note that this is equivalent to a multiplicative model $JNJ_t = \tilde{\beta}_0 e^{\beta_1 t} \tilde{\varepsilon}_t$ where $\tilde{\beta}_0 = e^{\beta_0}$ and $\tilde{\varepsilon}_t = e^{\varepsilon_t}$
- ▶ to estimate this model choose Object → New Object → Equation, in the Equation specification box write log(JNJ) c t and in Sample 1960Q1 1978Q4

Dependent Variable: LOG(JNJ) Method: Least Squares Date: 03/26/17 Time: 16:40 Sample: 1960Q1 1978Q4 Included observations: 76

Variable	Coefficient	Std. Error t-Statistic		Prob.
C T	-0.646089 0.042448	0.034721 0.000799	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.974438 0.974093 0.152843 1.728722 35.92800 2820.966 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	0.945698 0.949594 -0.892842 -0.831507 -0.868330 1.674157

residuals shows that the variance is now roughly same over time, but the model still can not match the seasonal pattern

- b this finding is supported by the correlogram, obtained using View → Residual Diagnostics → Correlogram Q-statistics, which shows large significant component of PACF at lag 4, and significant components of ACF at lags 4, 8, 12
- the residuals are thus not white noise

Date: 03/26/17 Time: 16:40 Sample: 1960Q1 1978Q4 Included observations: 76

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- h-	l the l	1	0.101	0 101	0.8026	0.370
- 1	i (16)	2	0.058	0.048	1.0678	0.586
1 1	[3	0.004	-0.006	1.0693	0.784
		4	0.655	0.660	36.340	0.000
1 j 1	i 📹 · i	5	0.029	-0.179	36.409	0.000
1 1	(4)	6	-0.006	-0.066	36.412	0.000
1 1		7	0.005	0.120	36.414	0.000
		8	0.476	0.045	56.150	0.000
· 🗖 ·	🖷	9	-0.085	-0.204	56.786	0.000
(4)	(4)	10	-0.111	-0.073	57.896	0.000
· 🗐 · ·		11	-0.127	-0.157	59.369	0.000
· 🔚	(4)	12	0.281	-0.066	66.665	0.000
· II	1 (1)	13	-0.158	-0.033	69.003	0.000
— ·	' '	14	-0.184	-0.097	72.224	0.000
· = ·		15	-0.159	0.008	74.674	0.000
· III ·	100	16	0.145	-0.033	76.747	0.000

lacktriangle we thus include the seasonal term in the specification of the innovation u_t

$$\log JNJ_t = \beta_0 + \beta_1 t + u_t$$
$$u_t = \phi_4 u_{t-4} + \varepsilon_t$$

▶ to do this choose Object → New Object → Equation , in the Equation specification box enter log(JNJ) c t sar(4) and in Sample 1960Q1 1978Q4

Dependent Variable: LOG(JNJ)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 03/26/17 Time: 16:40
Sample: 1960Q1 1978Q4
Included observations: 76
Convergence achieved after 20 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statisti		Prob.
С	-0.558737	0.056365	0.0000	
T	0.040461	0.001536	26.34756	0.0000
AR(4)	0.834896	0.054380	15.35290	0.0000
SIGMASQ	0.009057	0.001312	6.906031	0.0000
R-squared	0.989822	Mean depend	0.945698	
Adjusted R-squared	0.989397	S.D. depende	0.949594	
S.E. of regression	0.097779	Akaike info ci	-1.698175	
Sum squared resid	0.688366	Schwarz crite	-1.575505	
Log likelihood	68.53066	Hannan-Quir	-1.649150	
F-statistic	2333.918	Durbin-Watson stat		1.317320
Prob(F-statistic)	0.000000			
Inverted AR Roots	.96	.0096i	.00+.96i	96

residuals no longer have any recognizable seasonal pattern

but the first lag in the ACF and PACF is significant, resulting in p-values for Ljung-Box test that are lower than 0.05

> Date: 03/26/17 Time: 16:40 Sample: 1960Q1 1978Q4 Included observations: 76

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
		1	0.310	0.310	7.6158	
· 🛅 ·		2	0.142	0.050	9.2285	0.002
1 1	1 10	3	-0.017	-0.083	9.2531	0.010
· = ·	<u>-</u> ■ -	4	-0.130	-0.123	10.646	0.014
· bi ·	· =	5	0.088	0.194	11.287	0.024
· 🛅 ·		6	0.091	0.047	11.992	0.035
. 🚞		7	0.256	0.199	17.628	0.007
· 🛅 ·	III	8	0.089	-0.086	18.316	0.011
1 1	1 (1)	9	-0.012	-0.029	18.328	0.019
1 1 1	1 (1)	10	-0.034	-0.010	18.431	0.030
· ·		11	-0.164	-0.104	20.886	0.022
1 1	[[[]]	12	-0.012	0.020	20.899	0.034
· 🗐 ·		13	-0.126	-0.168	22.403	0.033
- (1 (1)	14	-0.063	-0.044	22.786	0.044
1 ()		15	-0.097	-0.094	23.701	0.050
· 🗖 ·	[() ()	16	-0.099	0.017	24.663	0.055

^{*}Probabilities may not be valid for this equation specification.

▶ to fix this issue we include the first regular AR lag in the model, so that u_t is now given by a multiplicative AR(1)+SAR(1) specification

$$\log JNJ_{t} = \beta_{0} + \beta_{1}t + u_{t}$$

$$u_{t} = \phi_{1}u_{t-1} + \phi_{4}u_{t-4} + \phi_{1}\phi_{4}u_{t-5} + \varepsilon_{t}$$

b to estimate this model choose Object → New Object → Equation, in the Equation specification box enter log(JNJ) c t ar(1) sar(4) and in Sample 1960Q1 1978Q4

Dependent Variable: LOG(JNJ)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 03/26/17 Time: 16:40
Sample: 1960Q1 1978Q4
Included observations: 76
Convergence achieved after 60 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Stati:		Prob.
С	-0.525757	0.115973	0.0000	
T	0.039723	0.002461	16.14400	0.0000
AR(1)	0.297928	0.124682	2.389497	0.0195
SAR(4)	0.863483	0.051306	16.83009	0.0000
SIGMASQ	0.008312	0.001298	0.0000	
R-squared	0.990659	Mean depend	ient var	0.945698
Adjusted R-squared	0.990133	S.D. depende	0.949594	
S.E. of regression	0.094326	Akaike info cr	-1.747155	
Sum squared resid	0.631709	Schwarz crite	-1.593817	
Log likelihood	71.39189	Hannan-Quin	-1.685874	
F-statistic	1882.531	Durbin-Watson stat		1.871645
Prob(F-statistic)	0.000000			
Inverted AR Roots	.96 96	.30	.0096i	.00+.96i

residuals do not show any systematic pattern

correlogram also suggests that the residuals are white noise

Date: 03/26/17 Time: 16:40 Sample: 1960Q1 1978Q4 Included observations: 76

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
- 1	l olo	1	0.032	0.032	0.0795	
· b ·		2	0.075	0.074	0.5327	
1 ()	1 (1)	3 -	0.010	-0.014	0.5404	0.462
-	🖷 -	4 -	0.191	-0.198	3.5556	0.169
· 🗀 ·		5	0.119	0.138	4.7300	0.193
1 1		6	800.0	0.032	4.7356	0.316
· 🔚		7	0.262	0.249	10.641	0.059
1) 1	(4)	8	0.018	-0.050	10.670	0.099
1 1		9 -	0.015	-0.004	10.689	0.153
- j		10	0.041	0.034	10.842	0.211
<u> </u>		11 -	0.177	-0.094	13.712	0.133
· 🛍 ·	1 (1)	12	0.079	0.027	14.283	0.160
· 🔟 ·	·	13 -	0.111	-0.127	15.442	0.163
1 1	1 (1)	14	0.007	-0.031	15.447	0.218
- 4	III	15 -	0.073	-0.131	15.964	0.251
· 🖷 ·	1 (1)	16 -	0.086	-0.019	16.691	0.273

^{*}Probabilities may not be valid for this equation specification.

- ▶ to create h-quarter ahead forecasts for $h=1,2,\ldots,12$, so 1979Q1-1981Q4: choose **Forecast** and set "Series to forecast" to "JNJ"","Method" to "Dynamic forecast" and "Forecast sample" to "1979Q1 1981Q4"
- ► to create a sequence of 1-quarter ahead forecasts, from 1979Q1-1981Q4: choose Forecast and set "Series to forecast" to "JNJ"", "Method" to "Static forecast" and "Forecast sample" to "1979Q1 1981Q4"

- ► sequence of 1-step ahead forecasts is more precise than the multistep forecast RMSE is 0.8480 for the former and 0.9913 for the latter
- ▶ confidence interval is narrower in the case of the 1-step ahead forecasts
- multistep forecast is not able to account for a change in the seasonal pattern, 1-step ahead forecasts are eventually able to do that though with a one year delay

