Integrating the AI Model into the Hospital System

To successfully deploy the patient readmission prediction model, the following steps will be taken:

- 1. **Model Packaging**: The trained model will be serialized using tools like joblib or pickle.
- 2. **API Development**: A RESTful API will be created using Flask or FastAPI.
- 3. **Integration with EHR System**: Collaborate with IT to connect the API to hospital systems.
- 4. User Interface: A front-end dashboard or form will allow clinicians to access results.
- 5. **Monitoring**: Use tools like Sentry or Logstash to track performance and errors.

Ensuring HIPAA Compliance

To comply with HIPAA and protect patient data:

- a) Encrypt data in transit and at rest.
- b) Use access control and secure logins.
- c) Maintain audit trails.
- d) Anonymize data for training.
- e) Use HIPAA-compliant cloud services if needed.

Ethics & Bias in Patient Prediction

Biased training data may result in unfair or inaccurate predictions for underrepresented groups.

For example, the model may misclassify **elderly** or **minority** patients due to limited data.

Mitigation Strategy:

- i. Balance data using re-sampling.
- ii. Use tools like IBM AI Fairness 360 to test for fairness.
- iii. Regularly retrain with updated data.

Model Interpretability vs Accuracy

In healthcare, interpretability is critical. Doctors must trust AI decisions.

- i. Logistic Regression and Decision Trees offer high interpretability.
- ii. Neural Networks offer high accuracy but low explainability.

Use simple models in clinical settings to maintain transparency.

Impact of Limited Computational Resources

If the hospital has limited servers or slow systems:

- i. Use lightweight models (e.g., Logistic Regression, Naive Bayes).
- ii. These models run faster, use less memory, and are easier to deploy.

Avoid deep learning unless resources are sufficient.