BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 15 January 2004 (15.01.2004)

PCT

(10) International Publication Number WO 2004/004652 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/021145

(22) International Filing Date:

3 July 2003 (03.07.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/394,313

8 July 2002 (08.07.2002) US

- (71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BUSER-DOEP-NER, Carolyn, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). COLEMAN, Paul, J. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). COX, Christopher, D. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). FRALEY, Mark, E. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). GARBACCIO, Robert, M. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). HARTMAN, George, D. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

HEIMBROOK, David, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). KUO, Lawrence, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). HUBER, Hans, E. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SARDANA, Vinod, V. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). TORRENT, Maricel [ES/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). YAN, Youwei [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MITOTIC KINESIN BINDING SITE

(57) Abstract: The present invention is directed to the identification, characterization and three-dimensional structure of a novel ligand binding site of KSP. Binding of ligands to the novel binding site result in a conformational change in the three-dimensional structure of the protein and a modulation of the activity of KSP. This conformational change in turn results in the formation of a novel binding pocket in the KSP protein, which comprises the novel binding site of the instant invention.

WO 2004/004652 A2

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE OF THE INVENTION MITOTIC KINESIN BINDING SITE

FIELD OF THE INVENTION

5 The present invention generally pertains to the fields of molecular biology, protein purification, protein crystallization, X-ray diffraction analysis, three-dimensional structural determination, rational drug design and molecular modeling of motor proteins, in particular -Kinesin Spindle Protein (KSP). Compositions and crystals of KSP with a 10 KSP inhibitor bound to the protein at the novel ligand binding site identified herein are also provided. The crystallized KSP is physically analyzed by Xray diffraction techniques. The resulting X-ray diffraction patterns are of sufficiently high resolution to be useful for determining the threedimensional structure of inhibitor-bound KSP. Those atomic coordinates are useful in molecular modeling of related proteins and rational drug design 15 (RDD) of mimetics and ligands for KSP and related proteins. Methods of using the structure coordinates of KSP in complex with an inhibitor for the design of pharmaceutical compositions which inhibit the biological function of KSP, particularly those biological functions mediated by molecular 20 interactions involving KSP are also disclosed.

BACKGROUND OF THE INVENTION

25

30

35

Cancer remains one of the leading causes of death in the United States. Clinically, a broad variety of medical approaches, including surgery, radiation therapy and chemotherapeutic drug therapy are currently being used in the treatment of human cancer (see the textbook CANCER: Principles & Practice of Oncology, 6th Edition, De Vita et al., eds., J. B. Lippincott Company, Philadelphia, Pa., 2001). However, it is recognized that such approaches continue to be limited by a fundamental lack of a clear understanding of the precise cellular bases of malignant transformation and neoplastic growth.

The control of cell division is one of the most basic aspects of multicellular existence. Uncontrolled cell growth and division, which produces cells that divide when they should not, produces contiguous cellular masses called tumors that are the basis for many cancers.

A common strategy for cancer therapy is the development of drugs that interrupt the cell cycle during mitosis. Compounds that perturb shortening (depolymerization) or lengthening (polymerization) cause arrest of the cell cycle in mitosis due to perturbation of the normal microtubule dynamics necessary for the chromosome movement. (Compton, D. A., et al., (1999) Science 286:913-914). A common denominator attending these compounds is that they arrest cells in mitosis by inhibiting spindle assembly (Compton, D. A., et al., (1999) Science 286:313-314). More recently, some agents such as monastrol have been implicated in inhibiting mitosis by blocking the function of essential proteins, such as mitotic proteins. (Mayer, T.U. et al., (1999) Science 286: 971-974).

5

10

30

35

The motor protein, kinesin, was discovered in 1985 in squid axoplasm. R. D. Vale et al., Identification of a Novel Force-generating Protein, Kinesin, Involved in Microtubule-based Motility, Cell 42:39-50 (1985). In the last few years, it has been discovered that kinesin is just one member of a very large family of motor proteins. E.g., S. A. Endow, The Emerging Kinesin Family of Microtubule Motor Proteins, 16 Trends Biochem. Sci. 221 (1991); L. S. B. Goldstein, The Kinesin Superfamily: Tails of Functional Redundancy, 1 Trends Cell Biol. 93 (1991); R. J.

Stewart et al., Identification and Partial Characterization of Six Members of the Kinesin Superfamily in Drosophila. *Proc. Nat'l Acad. Sci. USA* 88:8470 (1991). Other motor proteins include dynein, e.g. M.-G. Li et al., Drosophila Cytoplasmic Dynein, a Microtubule Motor that is Asymmetrically Localized in the Oocyte, *J. Cell Biol.* 126:1475-1493 (1994), and myosin, e.g. T. Q. P.
Uyeda et al., *J. Mol. Biol.* 214:699-710 (1990).

Mitotic kinesins are enzymes essential for assembly and function of the mitotic spindle, but are not generally part of other microtubule structures, such as in nerve processes. These essential microtubule-based motor proteins travel along microtubules reaching into every corner of the cell. Mitotic kinesins play essential roles during all phases of mitosis. These proteins can be conceptualized as biological machines that transduce chemical energy into mechanical forces and motion. Kinesins use the energy derived from ATP hydrolysis to power their movement unidirectionally along microtubules and to transport molecular cargo to specific destinations. During mitosis, kinesins organize

microtubules into the bipolar structure that is the mitotic spindle. Kinesins mediate movement of chromosomes along spindle microtubules, as well as structural changes in the mitotic spindle associated with specific phases of mitosis. Experimental perturbation of mitotic kinesin function causes malformation or dysfunction of the mitotic spindle, frequently resulting in cell cycle arrest and cell death. It is rapidly becoming clear that mictrotubule motors play a crucial role in the functions of microtubules in mitosis.

5

10

15

20

25

30

35

Among the mitotic kinesins which have been identified is Kinesin Spindle Protein (KSP). KSP belongs to the BimC family of kinesins which are essentially a conserved kinesin subfamily of plus end-directed microtubule motors that assemble into bipolar homotetramers consisting of anti-parallel homodimers. Human KSP (also termed HsEg5) has been described [Blangy, et al., Cell, 83:1159-69 (1995); Whitehead, et al., Arthritis Rheum., 39:1635-42 (1996); Galgio et al., J. Cell Biol., 135:339-414 (1996); Blangy, et al., J Biol. Chem., 272:19418-24 (1997); Blangy, et al., Cell Motil Cytoskeleton, 40:174-82 (1998); Whitehead and Rattner, J. Cell Sci., 111:2551-61 (1998); Kaiser, et al., JBC 274:18925-31 (1999); GenBank accession numbers: X85137, NM004523 and U37426], and a fragment of the KSP gene (TRIP5) has been described [Lee, et al., Mol Endocrinol., 9:243-54 (1995); GenBank accession number L40372]. Xenopus KSP homologs (Eg5), as well as Drosophila K-LP61 F/KRP 130 have been reported. KSP is a mitotic kinesin protein essential for proper DNA division in cells.

During mitosis KSP associates with microtubules of the mitotic spindle. Microinjection of antibodies directed against KSP into human cells prevents spindle pole separation during prometaphase, giving rise to monopolar spindles and causing mitotic arrest and induction of programmed cell death. The current model of KSP function in mitosis envisions that KSP and related kinesins in other, non-human organisms, bundle antiparallel microtubules and slide them relative to one another, thus forcing the two spindle poles apart. KSP may also mediate anaphase B spindle elongation and focusing of microtubules at the spindle pole. The mitotic spindle has been the subject of considerable research. The study of mitotic spindle proteins, such as microtubules, has yielded anti-mitotic compounds with important applications in cancer chemotherapy. The

demonstrated effectiveness of these anti-mitotic compounds in important medical and agricultural applications demonstrates the desirability of identifying and characterizing anti-mitotic compound development candidates.

5

10

15

20

25

30

35

Because defects in the function of KSP have been implicated in cell cycle arrest, agents and/or compounds that modulate the activity of this kinesin will find use in the treatment of hyper-proliferative cell disorders such as cancer.

Medicaments generally exhibit their biological activities through strong interactions with their respective targets. Recently, advances in protein crystallography and computational chemistry have introduced a new method of structure-based drug design into the field of drug development. X-ray crystallography (crystallography) is an established, well-studied technique that provides what can be best described as a three-dimensional picture of what a molecule looks like in a crystal. Scientists have used crystallography to solve the crystal structures for many biologically important molecules. Many classes of biomolecules can be studied by crystallography, including, but not limited to, proteins, DNA, RNA and viruses.

Crystallography has been used extensively to view ligandprotein complexes for structure-based drug design. To view such complexes, known ligands are usually soaked into the target molecule crystal, followed by crystallography of the complex. Sometimes, it is necessary to cocrystallize the ligands with the target molecule to obtain a suitable crystal.

Given a "picture" of a target biomolecule or a ligand-protein complex, scientists can look for pockets or receptors where biological activity can take place. Thereafter, scientists can experimentally or computationally design high-affinity ligands (or drugs) for the protein/receptors. Computational methods have alternatively been used to screen for the binding of small molecules. This approach is also useful for developing new anti-mitotic agents.

Recently, independent efforts have confirmed the role of mitotic kinesins as critical mediators of microtubule organization during mitosis. It is postulated that blocking the biological function of motor proteins, e.g., human KSP, will lead to cell cycle arrest. While the binary

structure of KSP complexed with ADP has been published, (Turner et al., Journal of Biological Chemistry, 276; 25496-25502 (2001), no ternary structure of KSP complexed with a modulator, e.g., inhibitor, has heretofore been published. Consequently, until the present invention, which details the structural coordinates of human KSP with various ligands, albeit inhibitors, the identity and characterization of the novel binding site detailed herein was heretofore never available for rational drug design. As such, drug discovery efforts directed towards the KSP protein have been hampered by the lack of structural information about this protein and its complex with a ligand, e.g., monastrol. Such structural information would provide valuable information in discovery of anti-mitotic agents.

5

10

15

20

25

30

The inventors provide herein crystals of KSP, complexed with a ligand, containing a novel, induced-fit binding site and have determined its three-dimensional structure. With this information, it is now possible, for the first time, to rationally design inhibitors of KSP, which can function as anti-mitotic agents, e.g. compounds which inhibit spindle pole separation during mitosis, thereby effectively inducing cell cycle arrest. It is believed that no one has heretofore reported determining the three-dimensional structure of the binding site identified herein.

Advantageous therapeutic embodiments would therefore comprise therapeutic and/or diagnostic agents based on or derived from the three-dimensional crystal structure of KSP including its novel binding site identified herein that have one or more than one of the functional activities of KSP. Additional therapeutic embodiments would comprise therapeutic and/or diagnostic agents based on or derived from molecular modeling of other members of the BimC protein family using the three-dimensional crystal structure of KSP and its binding site provided herein.

In accordance therewith, the novel-binding site disclosed herein is considered a potential target for anti-mitotic agents. In addition, the invention provides a process for creation of ligand candidate structures by means of a computer, using the structural coordinates of KSP's binding site provided herein. Furthermore, the information provided herein will enable one to search for ligand structures from a three-dimensional structure database containing known compounds.

SUMMARY OF THE INVENTION

The present invention is directed to the identification, characterization and three-dimensional structure of a novel ligand binding site of KSP. Binding of ligands to the novel binding site result in a conformational change in the three-dimensional structure of the protein and a modulation of the activity of KSP. This conformational change in turn results in the formation of a novel binding pocket in the KSP protein, which comprises the novel binding site of the instant invention. It has been further discovered that the formation of the novel binding pocket is facilitated by the concurrent binding of a nucleotide substrate or substrates to the protein. Moreover, the instant invention provides an attractive target for the rational design of potent and selective inhibitors of KSP identified by the methods of the invention, particularly new lead compounds useful in treating hyper-proliferative and KSP-dependent disorders.

15

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 An X-ray oscillation diffraction picture from a crystal of KSP in complex with (+)-monastrol and ADP (Compound 5-2b).

20

25

35

FIGURE 2 The KSP-ADP-(+)-monastrol complex as shown in a ribbon presentation. The structure of the KSP-ADP-(+)-monastrol (Compound 5-2b) complex is shown in a ribbon representation. The bound conformations of ADP and Compound 5-2b are also given together with their respective electron density. The location of Compound 5-2b, the active isomer of monastrol, is seen at a novel induced-fit site, some 12Å distal from the nucleotide-binding site and catalytic center of the enzyme.

30 FIGURE 3 (+)-Monastrol binding between helix-α2 and helix-α3. (+)-monastrol (Compound 5-2b) is seen to bind in between (the insertion loop of) helix-α2 and helix-α3 (which is immediately preceding the 'Switch 1' typically seen in all kinesins). Also shown are the side-chains of Arg119, Tyr211 and Trp127. The Arg119 and Tyr211 residues move

upward and outward, yielding space to accommodate the binding of the

inhibitor. At the same time, the insertion loop of helix-α2 relocates its main-chain location with a downward shift of ~8Å; the side-chain of its Trp127 as a result swings inward by ~10Å, capping the entrance of the induced-fit cavity together with the side-chains of Arg119 and Tyr211. Lining the newly formed pocket and surrounding the inhibitor are residues 115–119, 127, 130, 132–134, 136, 137, 160, 211, 214, 215, 217, 218, 221 and 239.

5

FIGURE 4 Comparison between the binary and ternary

structure shown in ribbon presentation. The conformational alteration observed for the kinesin structure upon Compound 5-2b binding to the ADP-binary complex is not limited to the immediate vicinity of the inhibitor. Rearrangements of protein moieties are spread throughout the enzyme upon (+)-monastrol binding, including the switch I, switch II and neck linker region, with the exception that the nucleotide binding site of the protein as well as its β-sheet structure remaining basically unchanged.

FIGURE 5 Conformational alteration of KSP structure upon ligand binding shown in ribbon presentation. In the Switch I area of KSP, as circled, the main-chain re-orients its geometry significantly on both ends of Ala230. Although the helicity of the Switch I region is unchanged, the pitch at the C-terminal end of helix-α3 is increased in the ternary complex from that in the binary complex.

25 FIGURE 6 Conformational alteration of KSP structure upon ligand binding shown in ribbon presentation. In the Switch II region of KSP, which is located on the opposite side of the binding site, as circled, the C-terminal end of helix-α-4 is repositioned significantly. The tip of the helix, in the Switch II region of KSP, near Arg305 is moved by ~6Å in the ternary complex from its location in the binary complex.

FIGURE 7 <u>Conformational alteration of KSP structure</u> <u>upon ligand binding shown in ribbon presentation.</u> In the neck-linker region of KSP, which is the C-terminal portion of the protein construct, the residues

beginning from Lys357 to Phe362 swing by almost 180° in the ternary complex from its position in the ADP binary complex. Although residues 363–368 are present in the protein, they are disordered in the crystal and hence offer no electron density. The neck-linker region of KSP is circled. A close-up view is depicted, comparing the neck-linker region in the ternary complex to that in the binary complex.

FIGURE 8 Conformational alteration of KSP structure
upon ligand binding. A close-up view comparing the nucleotide-binding site
in the binary and ternary complexes of KSP is shown. Within experimental
errors, most of the backbone and side-chains for the two complexes in this
region of the protein can be super-positioned.

FIGURE 9 Motor Domain of Human KSP, Amino Acids 1-368.

FIGURE 10 Binding Pocket of human KSP.

15

30

FIGURE 11 KSP/Compound 5-2b fluorescence data.

20 Compound 5-2b demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 5-2b does not cause a decrease on Trp127 fluorescence, suggesting the inability of 5-2b to bind to KSP in the absence of the nucleotide.

FIGURE 12 KSP/Compound 8-1 fluorescence data. Compound 8-1 demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 8-1 does not cause a decrease on Trp127 fluorescence, suggesting the inability of 8-1 to bind to KSP in the absence of the nucleotide.

FIGURE 13 KSP/Compound 1-7 fluorescence data.

Compound 1-7 demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 1-7 does not cause a decrease on Trp127 fluorescence, suggesting the inability of 1-7 to bind to KSP in the absence of the nucleotide.

FIGURES 14A and 14B KSP Inhibitor Pharmacophore Models.

The two pharmacophore models derived from analysis and further computational processing of the crystallized complex are illustrated. Spheres represent a center of a hydrophobic group and boxes represent either a hydrogen bond acceptor (HA) or hydrogen bond donor (HD). All distances are in Å.

15 FIGURE 15 KSP Inhibitor Pharmacophore Models in KSP Binding

Site. A schematic view of the two pharmacophore models superimposed and mapped onto the ligand binding site of KSP defined, in part, by the amino acids of Figure 10.

Only relevant KSP protein residues are shown.

20 FIGURE 16 KSP Inhibitor Pharmacophore Model.

A pharmacophore model derived from analysis and further computational processing of a crystallized complex is illustrated. Spheres represent a center of a hydrophobic group and boxes represent either a hydrogen bond acceptor (HA).

25

5

TABLE 1 <u>KSP motor domain/Compound 5-2b X-ray</u> coordinates.

TABLE 2 KSP motor domain/Compound 1-7 X-ray

30 coordinates.

TABLE 3 <u>KSP motor domain/Compound 2-7 X-ray</u> coordinates.

TABLE 4 KSP motor domain/Compound 4-2a X-ray

coordinates.

10

15

20

25

30

35

TABLE 5 Novel KSP ligand binding site/Compound 5-

5 2b X-ray coordinates.

DETAILED DESCRIPTION OF THE INVENTION

"Conservative substitutions" are those amino acid substitutions which are functionally equivalent to the substituted amino acid residue, either by way of having similar polarity, steric arrangement, or by belonging to the same class as the substituted residue (e.g., hydrophobic, acidic or basic), and includes substitutions having an inconsequential effect on the three-dimensional structure of KSP with respect to the use of said structure for the identification and design of KSP or KSP complex inhibitors, for molecular replacement analyses and/or for homology modeling.

Amino acid sequence "similarity" is a measure of the degree to which aligned amino acid sequences possess identical amino acids or conservative amino acid substitutions at corresponding positions.

A "fragment" of KSP is meant to refer to a protein molecule which contains a portion of the complete amino acid sequence of the wild type or reference protein.

As used herein, a "variant" of a KSP protein refers to a polypeptide having an amino acid sequence with one or more amino acid substitutions, insertions, and/or deletions compared to the sequence of the invention receptor protein.

Generally, differences are limited so that the sequences of the reference (native or wild type KSP) and the variant are closely similar overall, and in many regions, identical. Such variants are generally biologically active and necessarily have less than 100% sequence identity with the polypeptide of interest.

Preferably, the biologically active variant KSP has an amino acid sequence sharing at least about 80% amino acid sequence identity with the reference KSP, preferably at least about 85%, more preferably at least about 90%, and most preferably at least about 95%. Amino-acid substitutions are preferably substitutions of single amino-acid residues. Preferably, such polypeptides also possess characteristic structural features and biological activity of a native KSP polypeptide.

For example, variants of KSP are characterized as containing key functional residues that participate in ligand binding. These polypeptide fragments, in turn, have been derivatized by methods akin to traditional drug development. Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one GPR25 activity.

Sequence similarity or percent similarity can be determined, for example, by comparing sequence information using sequence analysis software such as the GAP computer program, version 6.0, available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443, 1970), as revised by Smith and Waterman (Adv. Appl. Math. 2:482, 1981).

10

15

20

25

30

35

As used herein, a "binding site" refers to a region of a molecule or molecular complex that, as a result of its shape and charge potential, favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibody or drug) via various covalent and/or non-covalent binding forces.

The terms "ligand binding site" and "binding site" are used interchangeably and refer to a region of a human KSP resulting from the complex of a ligand with KSP. It is believed that this ligand binding site, as a result of its shape and charge potential, favorably interacts or associates with a ligand or binding partner, which is preferably an inhibitor of KSP function. The binding of the ligand to this binding site induces global conformational changes to the KSP protein, thereby potentially modulating the mitotic activity of the protein and thereby inhibiting cell division and facilitating cell cycle arrest. A ligand binding site according to the present invention may include, for example, the actual site of any one of the herein disclosed compounds binding with KSP, as well as any other moiety - chemical or biological - which preferably inhibits the activities of KSP by binding to the ligand binding site disclosed herein.

As used herein, the terms "bind" and "binding" when used to describe the interaction of a ligand with a binding site or a group of amino acids means that the binding site or group of amino acids are capable of forming a covalent or non-covalent bond or bonds with the ligand.

Preferably, the binding between the ligand and the binding site or amino acid(s) is non-covalent. Such a non-covalent bond includes a hydrogen bond, an electrostatic bond, a van der Waals bond or the like. The binding of the ligand to the binding site may also be characterized by the ability of the ligand to co-crystallize with KSP within the novel binding pocket of the instant invention. It is further understood that the use of the terms "bind" and "binding" when referring to the interaction of a ligand with the novel binding site of the instant invention includes the covalent or non-covalent interactions of the ligand with all or some of the amino acid residues comprising the binding site.

5

10

15

20

25

30

A "KSP complex" refers to a co-complex of a molecule/complex comprising the KSP in bound association with a ligand either by covalent or non-covalent binding forces at the binding site disclosed herein. A non-limiting example of a KSP complex includes KSP-(+)-monastrol, or KSP bound to any one of the compounds listed herein.

The present invention relates to the three-dimensional structure of ligand bound-KSP or of a KSP analogue, and more specifically, to the structure of KSP's binding site as determined using X-ray crystallography and various computer modeling techniques. The coordinates of KSP bound to ADP and one of the ligand compounds described herein as shown in Tables 1-4 (relating to the entire motor domain), are useful for a number of applications, including, but not limited to, the characterization of a three-dimensional structure of KSP including its novel binding site, as well as the visualization, identification and characterization of a KSP ligand binding site. The ligand binding site structure(s) may then be used to predict the orientation and binding affinity of a designed or selected inhibitor of KSP, a KSP analogue or of a KSP complex. In general, KSP structures referred to herein are the KSP-ligand bound conformation of KSP. As an example, when referring to an antibody specific for the KSP of the invention, it means an antibody having an affinity for the KSP-ligand bound conformation disclosed herein.

In particular, the invention is drawn to the three-dimensional structure of a ligand bound KSP e.g., when bound to a ligand, preferably an inhibitor.

The amino acid sequence of the motor domain of human KSP is depicted in SEQ ID NO:1. These amino acids correspond to residues 1-368 of the native protein. Another aspect of the invention is a substantially pure isolated amino acid of the amino acid sequence set forth in SEQ ID NO:1. Another aspect of the invention is a variant of that isolated amino acid. Preferably the variant of the amino acid of SEQ ID NO:1 comprises one or more amino acid substitution(s) or deletion(s) of one or more of the amino acids that form the novel binding pocket of the instant invention.

More preferably the variant of the amino acid of SEQ ID NO:1 comprises an amino acid substitution of one of the amino acids which form the novel binding pocket of the instant invention.

5

10

15

20

25

30

Another aspect of the invention is an isolated variant of KSP wherein the variant comprises one or more amino acid substitution(s) or deletion(s) of one or more of the amino acids that form the novel binding pocket of the instant invention. More preferably the variant of KSP comprises an amino acid substitution of one of the amino acids which form the novel binding pocket of the instant invention.

The KSP of the invention preferably comprises a ligand binding site characterized by the amino acid residues as set forth in Figure 10 or the relative structural coordinates of those amino acid residues according to Tables 1-4 \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0 Å (or more preferably, not more than about 1.0 Å, and most preferably, not more than about 0.5 Å). It is understood that the amino acids listed above represent the residues defining the novel binding pocket formed upon the complexation of a ligand of the invention with KSP. It is further understood that specific binding interactions between the listed residues may or may not occur based on the size of the ligand and structure of the ligand. It is also understood that the computational length of the allowable van der Waals interactions is also a factor when determining whether an amino acid residue binds to a ligand. It is therefore understood that the binding of a ligand of the instant invention may take place between those residues listed in Figure 10 or a subset thereof.

It has been surprisingly discovered that compounds previously disclosed as kinesin inhibitors, and other recently identified

inhibitors of KSP, bind to the KSP protein at the novel binding site described herein. In particular, (+)-monastrol (Compound 5-2b), a compound previously described as inhibiting KSP kinesin activity (see Mayer, T. U. et al. Science 286:971 (1999)) has been found to be a ligand of the novel binding site of the invention. Inhibitors of KSP have also been disclosed in pending U.S. provisional applications Ser. Nos. 60/344,453 (Case 20990PV), 60/338,383 (Case 20995PV), 60/338,380 (Case 20996PV), 60/338,779 (Case 20997PV), 60/338,344 (Case 20998PV), 60/338,379 (Case 20999PV), 60/362,922 (Case 21047PV), 60/383,449 (Case 21018PV), 60/383,478 (Case 21060PV), 60/388,621 (Case 21114PV, filed June 14, 2002) and 60/388,828 (Case 21119PV, filed June 14, 2002). Additionally, inhibitors of KSP kinesin activity are described in PCT Publications WO 01/30768 and WO 01/98278.

5

10

15

20

25

30

35

The 3-dimensional structure of KSP, bound with Mg⁺⁺-ADP and Compound 5-2b, was determined at 2.5Å resolution. Compound 5-2b was found to bind to KSP via an induced-fit some 12Å away from the catalytic center of the enzyme, resulting in the creation of a previously unknown binding pocket that is non-existent in the absence of Compound 5-2b (or the other ligands described herein). The binding of Compound 5-2b also introduced significant alteration to the structural conformation in other regions of the KSP motor protein, with the interesting exception that the nucleotide-binding pocket was virtually unaltered from that seen in the ADP binary complex. An analysis of the temperature-factor distribution in the ADP binary and ADP/5-2b ternary complexes of KSP revealed that the protein region surrounding the induced-fit binding pocket of 5-2b became highly rigid upon 5-2b binding.

Using the seeding method, high quality single crystals were obtained for KSP prepared in the presence of ADP and 5-2b. A diffraction data set to 2.5\AA resolution was collected and processed in the orthorhombic $P2_12_12_1$ space group. The R_{sym} was 0.084 and the data completeness was 99%. The cell dimensions were 69.5\AA , 79.5\AA and 159.0\AA . An oscillation X-ray diffraction picture of a KSP crystal is given in Figure 1.

The 3-dimensional, tertiary structure of KSP, bound with Mg⁺⁺-ADP and 5-2b, was determined at 2.5Å resolution with use of phases derived from a combination of molecular replacement, extensive manual

rebuilding, and dynamic refinement. Two identical protein complexes were found in the asymmetric unit of the crystal and were related by a local, non-crystallographic 2-fold axis. For each, the electron density of the protein as well as those of the ligands (ADP, Mg⁺⁺, and 5-2b) was all well defined. 5-2b was seen to be of the S handedness. Residues 2-17, 272-286, and 363-368 were disordered and showed no electron densities (The N-terminal Met1 residue was processed upon expression).

5

10

15

20

25

30

The structure of the KSP/ADP/Compound 5-2b complex is shown (Figure 2) in a ribbon representation. The bound conformations of ADP and 5-2b are also given together with their respective electron density. The location of 5-2b is seen at a novel induced-fit site, some 12Å distal from the nucleotide-binding site and catalytic center of the enzyme. An enlarged section of this region is shown in Figure 3, together with 5-2b.

In Figure 3 the Compound 5-2b is seen to bind in between (the insertion loop of) helix-\alpha2 and helix-\alpha3 (which is immediately preceding the 'Switch 1' typically seen in all kinesins). Also shown are the side-chains of Arg119, Tyr211 and Trp127. The Arg119 and Tyr211 residues move upward and outward, yielding space to accommodate the binding of the inhibitor. At the same time, the insertion loop of helix-\alpha2 relocates its main-chain location with a downward shift of \alpha8\hat{A}; the side-chain of its Trp127 as a result swings inward by \alpha10\hat{A}, capping the entrance of the induced-fit cavity together with the side-chains of Arg119 and Tyr211. Lining the newly formed pocket and surrounding the inhibitor are the amino acid residues listed in Figure 10. A comparison of this region in the binary and ternary complex is given in Figure 4.

The binding pocket of Compound 5-2b is novel and not previously known, insofar that this binding site does not exist until an inhibitor binds. Hence, this pocket is "induced-fit" by a ligand such as Compound 5-2b. This allosteric binding pocket, located away from the nucleotide-binding site of the motor protein, is not restricted to Compound 5-2b, but is also observed upon the crystal structure determination of complexes of KSP with other compounds of diverse chemical structure that are inhibitors of KSP activity. These results have a profound impact on the design of non-active-site directing inhibitors of KSP.

In a further embodiment of the invention is a method of causing a conformational alteration in the structure of KSP by exposing the KSP to a ligand of the novel ligand binding site of the instant invention.

The conformational alteration observed for the kinesin structure upon

Compound 5-2b binding (and the binding of other compounds) to the ADP-KSP binary complex is not limited to the immediate vicinity of the inhibitor. Rearrangements of protein moieties are spread throughout the enzyme upon 5-2b binding, with the exception that the nucleotide binding site of the protein as well as its β-sheet structure remain basically unchanged. Among the changes away from the induced-fit pocket, three are noteworthy:

1. In the Switch I area of KSP, as circled in Figure 5 and in a close-up view, the main-chain re-orients its geometry significantly on both ends of Ala230. It can be seen that although the helicity of the Switch I region is unchanged, the pitch at the C-terminal end of helix- α 3 is increased in the ternary complex from that in the binary complex.

15

20

25

- 2. In the Switch II region of KSP, which is located on the opposite side of the 5-2b binding site as circled in Figure 6 and in a close-up view, the C-terminal end of helix- α 4 is repositioned significantly. The tip of this helix near Arg305 is moved by \sim 6Å in the ternary complex from its location in the binary complex.
- 3. In the neck-linker region of KSP, which is the C-terminal portion of our protein construct, the residues beginning from Lys357 to Phe362 swing by almost 180° in the ternary complex from its position in the ADP binary complex. Although residues 363–368 are present in our protein, they are disordered in the crystal and hence offer no electron density. The neck-linker region of KSP is circled in Figure 7. A close-up view is depicted comparing this region in the ternary complex to that in the binary complex.

In addition to these changes, there are other smaller regional repositionings of main-chains and side-chains of the protein. Most interestingly, the nucleotide-binding site of the motor protein, where ATP hydrolysis occurs, is basically unaltered upon 5-2b binding. A close-up view comparing this site in the binary and ternary complexes of KSP is shown in Figure 8. Within experimental errors, most of the backbone and

side-chains for the two complexes in this region of the protein can be superimposed.

The effect of overall conformational changes induced by Compound 5-2b could also be examined by comparing the distribution of temperature factors.

5

10

15

20

25

30

35

High quality single crystals were also obtained for other compounds that are inhibitors of KSP. 3-Dimensional structure determined at 2.5 Å with those crystals demonstrated that the other inhibitor compounds also induce-fit into the protein in the same manner as compound 5-2b.

Consequently, an embodiment of the invention provides protein crystals of KSP complexed with a ligand bound to the ligand binding site disclosed herein and methods for making KSP or a KSP homolog. The crystals provide means to obtain atomic modeling information of the specific amino acids and their atoms forming the binding site and that interact with molecules e.g., ligands or binding partners that bind to the KSP, via the binding site.

The crystals also provide modeling information regarding the protein-ligand interaction, as well as the structure of ligands bound thereto. The KSP crystal or a KSP homolog according to the present invention can be obtained by crystallizing it with a material or compound or molecule which binds to the herein disclosed binding site of the KSP. The KSP crystal according to the present invention includes KSP (human Eg5) and the material which binds to the specific binding site of KSP.

Preferred crystalline compositions of this invention are capable of diffracting X-rays to a resolution of better than about 3.5 Å, and more preferably to a resolution of about 2.6 Å or better, and even more preferably to a resolution of about 2.0 Å or better, and are useful for determining the three-dimensional structure of the material. (The smaller the number of angstroms, the better the resolution.)

The relative structural coordinates of the amino acid residues of the KSP motor domain, when the X-ray diffraction is obtained for the crystalline complex of KSP and a ligand compound described herein, are shown in Tables 1-4.

In another aspect, the present invention provides the threedimensional structure of human KSP as well as the identification and

characterization of a binding site there within. The identification of this site permits design and identification of compounds that bind to the ligand binding site and modulate KSP related activities. The compounds include inhibitors which specifically inhibit cell proliferation.

Of equal import is the fact that knowledge of the threedimensional structure of the binding site of KSP provides a means for investigating the mechanism of action of the protein and tools for identifying inhibitors of its function.

5

10

15

20

25

30

As used herein, a ligand binding site also includes KSP or KSP analog residues which exhibit observable NMR perturbations in the presence of a binding ligand, such as any one of the herein disclosed inhibitors or any other ligand. While such residues exhibiting observable NMR perturbations may not necessarily be in direct contact with or immediately proximate to ligand binding residues, they may be critical to KSP residues for rational drug design protocols.

For example, knowledge of the three-dimensional structure of the ligand binding site allows one to design molecules, preferably pharmaceutical agents, capable of binding thereto, including molecules which are thereby capable of inhibiting the interaction of KSP with its native ligands, thereby inducing cell arrest.

Assays may be performed and the results analyzed to determine whether the agent is an inhibitor (i.e., the agent may reduce or prevent binding affinity between KSP and its native ligand/binding partner), or has no effect on the interaction between KSP and its native ligand. Agents identified using the foregoing methods, and preferably inhibitors of KSP, may then be tested as therapeutics in the treatment and/or prevention of hyper-proliferative cell disorders and other diseases that are also characterized by the presence of the hyper-proliferative cells such as cancer.

Once a KSP binding agent/inhibitor has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties – that is its affinity for the ligand binding site disclosed herein. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analyzed for efficiency of fit the ligand binding site of KSP by the same computer methods described in detail above.

Various molecular analysis and rational drug design techniques are further disclosed in U.S. Pat. Nos. 5,834,228, 5,939,528 and 5,865,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148, the contents of which are hereby incorporated by reference.

5

10

15

20

25

35

In another aspect of the instant invention, the high quality single crystals of the KSP complexes comprising the KSP, ADP and the compounds described herein could be used to obtain single crystals of a KSP complex which comprises a compound that weakly binds to KSP or one or more weakly binding fragments of a compound that binds to KSP. This method may be termed intra-crystal ligand exchange. Thus, for example and not limiting in the scope of this embodiment, high quality single crystals of KSP-ADP-Compound 5-2b complex are exposed to the crystallization buffer described in the Materials and Methods which further contains 1mM of a test compound that weakly binds to KSP. It is expected that the test compound will intercalate into the crystal and replace the compound 5-2b in the binding site. One or more molecular fragments of compounds that strongly bind to KSP may also be utilized in this technique.

X-ray diffraction data may be collected (as described in the Materials and Methods) from the high quality single crystals obtained by the intra-crystal ligand exchange technique. The 3-dimensional, tertiary structure of KSP bound to such a weakly binding compound could be utilized to guide the structural modification of the compound and, as a result, optimize the binding of the modified compound to KSP. The 3-dimensional tertiary structure of KSP bound to molecular fragment(s) could be utilized to guide in the identification of a new template for a compound having optimal binding to KSP.

Once the material is designed or selected, the affinity of the material to

KSP may be calculated. For the inhibitor to be effective, it should have a high affinity for the ligand binding site, low energy difference between that energy calculated before and after binding. The affinity of the inhibitor may be measured by calculating the dissociation constant of the complex of KSP and the inhibitor. The dissociation constant is preferably 100 micromoles or less. The inhibitor preferably also maintains the bonding with KSP stably after binding. In order to do this, electrostatic repulsion such as charge-charge interactions, dipole-dipole and charge-dipole interactions between the inhibitor and KSP should not occur or be minimized. The sum of

electrostatic interaction should be neutral or give a positive effect to the enthalpy of the bonding. Examples of programs designed for calculating such affinity include, but

are not limited to as follows: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. © 1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Fransisco, © 1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. © 1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif., © 1994). Using the lead compound selected by the method, a stronger inhibitor can be made or designed. This process will be described below.

5

10

15

20

25

30

35

As well, any compound or anti-mitotic agent (lead compound) selected or designed in accordance with the methods disclosed herein can be changed or modified. Atoms, substituents or a part of the structure may be altered to increase the binding affinity to KSP. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It is noted that components known in the art to alter conformation should be avoided. The substituted chemical compounds may then be analyzed for fit with KSP by the same computer methods described herein.

After the material designed by the computer method described above is prepared and bound to KSP to produce a crystal, the 3-dimensional structure of the complex may be determined at high enough resolution (over 0.28 nm) using X-ray crystallographic methods. The information gained therefrom e.g., about the interaction between KSP and the inhibitor obtained from this can then be used to modify the inhibitor and to increase the affinity of the inhibitor for the ligand binding site of KSP.

Thus, for example, those atoms considered to be involved in binding to the ligand binding site of KSP disclosed herein can be mutated by exchanging one or more of the amino acid residues in the ligand binding site or in the motor domain of KSP that eventually effects the function of KSP on the underlying cell. As an example, if a cell's hyper-proliferative state is not effected by the mutated KSP, it may be surmised that the mutation very likely has not affected the function of KSP. In the alternative scenario, where the mutation decreases the hyper-proliferative state of the diseased cell, then one may surmise that the mutation has affected the ability of KSP to function in its intended purpose, e.g. hydrolyze ATP to ADP or bind microtubule etc. due to the substitution of the amino acid residue. This method can be used to identify amino acid residues in the original KSP which are important in the binding of the ligand to the binding site of KSP disclosed herein.

Once the amino acid residues in the ligand binding site of KSP have been identified as involved in the overall function attending KSP. the structure of the binding site can be identified based on the threedimensional structure of KSP. Based on the structure of the binding site, a compound such as a peptide or other compound can be screened and designed which will fit into the three-dimensional model of the binding site.

5

10

15

20

30

Likewise, just as the three-dimensional modeling of KSP is provided by the present invention using the coordinates from the X-ray defraction patterns, these can be either analyzed directly to provide the threedimensional structure (if of sufficiently high resolution). Alternatively, the atomic coordinates for the crystallized KSP, as provided herein, can be used for structure determination. The X-ray diffraction patterns obtained by methods of the present invention, can be provided on computer readable media, and used to provide electron density maps.

The electron density maps, provided by analysis of the X-ray coordinates of KSP complexed with Compound 5-2b, provided herein, may then be fitted using suitable computer algorithms to generate secondary, tertiary and/or quaternary structures and/or domains of KSP, which structures and/or domains are then used to provide an overall threedimensional structure, as well as binding and/or active sites of KSP.

Knowledge obtained concerning KSP including the binding site defined herein can also be used to model the tertiary structure of related kinesin proteins, in particular members of the BimC protein family.

As an example, the structure of renin has been modeled using 25 the tertiary structure of endothiapepsin as a starting point for the derivation. Model building of cercarial elastase and tophozoite cysteine protease were each built from known serine and cysteine proteases that have less than 35% sequence identity. The resultant models were used to design inhibitors in the low micromolar range. (Proc. Natl. Acad. Sci. 1993, 90, 3583).

Furthermore, alternative methods of tertiary structure determination that do not rely on X-ray diffraction techniques and thus do not require crystallization of the protein, such as NMR techniques, are simplified if a model of the structure is available for refinement using the additional data gathered by the alternative technique. Thus, knowledge of the tertiary

35 structure of the KSP binding site provides a significant window to the

structure of the other kinesin family members. Thus, an embodiment of this invention envisions use of atomic coordinates of KSP protein, or fragment, analog or variant thereof, to model a KSP protein.

5

10

15

25

30

One skilled in the relevant art may use conventional molecular modeling methods to identify a ligand binding site of a KSP of another species. Specifically, coordinates provided by the present invention may be used to characterize a three-dimensional structure of the target KSP molecule, liganded or unliganded. Importantly, such a skilled artisan may, from such a structure, computationally visualize a putative binding site and identify and characterize other features based upon the coordinates provided herein. Such putative ligand binding sites may be further refined using chemical shift perturbations of spectra generated from various and distinct KSP complexes, e.g. from other species, competitive and non-competitive inhibition experiments, and/or by the generation and characterization of KSP or ligand mutants to identify critical residues or characteristics of the ligand binding site.

Such identification of a putative ligand binding site is of great import in rational drug design.

It is noted that in order to use the structural coordinates 20 generated from the complex KSP described herein in Tables 1-4, it may be necessary to display the relevant coordinates as, or convert them to, a threedimensional shape or graphical representation, or to otherwise manipulate them. In general, such a three-dimensional representation of the structural coordinates will find use in rational drug design, molecular replacement analysis, homology modeling, and mutation analysis. This is typically accomplished using any of a wide variety of commercially available software programs capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structural coordinates. The scientific art is replete with conventional software programs, which are incorporated by reference herein in their entirety. Refer to, for example, GRID (Oxford University, Oxford, UK); AUTODOCK (Scripps Research Institute, La Jolla, Calif.); Flo99 (Thistlesoft, Morris Township, N.J.) etc.

For storing, transferring and using such programs, a machine, 35 such as a computer, is also contemplated, which produces a three-

dimensional representation of the KSP binding site. The machine would comprise a machine-readable data storage medium comprising a data storage material encoded with machine-readable data. Machine-readable storage media comprising data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magnetooptical, optical, floptical and other media which may be adapted for use with a computer. The machine further comprises a working memory for storing instructions for processing the machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machinereadable data storage medium for the purpose of processing the machinereadable data into the desired three-dimensional representation. As well, the machine of the present invention further comprises a display connected to the CPU so that the three-dimensional representation may be visualized by the user. Accordingly, when used with a machine programmed with instructions for using said data, e.g., a computer loaded with one or more programs of the sort identified above, the machine provided for herein is capable of displaying a graphical three-dimensional representation of the KSP complex described herein and set forth in Tables 1-4.

10

15

30

35

The structural coordinates of the present invention enable one.

20 to use various molecular design and analysis techniques in order to (i) solve the three-dimensional structures of related molecules, preferably molecular complexes such as those of other species or members of BimC family of proteins; as well as (ii) design, select, and synthesize chemical agents capable of favorably associating or interacting with a ligand binding site of a KSP molecule, wherein the molecular chemical entity would preferably inhibit KSP function including inducing mitotic arrest in cells contacted therewith.

Thus, the present invention provides a method for determining the molecular structure of a molecular complex whose structure is unknown, comprising the steps of obtaining the molecular complex whose structure is unknown, e.g., from a related species, and then generating NMR data there from. The NMR data from the molecular complex whose structure is unknown can then be compared to the structure data obtained from the KSP complex of the present invention. Then, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques can be used to conform the 3D structure described

herein for the KSP complexes disclosed in Tables 1-4 to the NMR data from unknown target molecular complex. Alternatively, molecular replacement may be used to conform the 3D structure of the present invention to X-ray diffraction data from crystals of the unknown target molecular complex.

5

10

15

30

35

Molecular replacement involves correctly orienting and positioning the known structure into the crystal unit cell of the unknown structure. This is accomplished by a six dimensional (three positional and three rotational) search process that involves computation of a set of theoretical diffraction data using the known structure for every orientation and position searched and comparing it with the observed diffraction data of the unknown structure. The best match defines the correct position and orientation of the known structure in the unknown unit cell. This match offers phase information for use in conjunction with X-ray diffraction data of the unknown structure for the determination of its 3-dimensional structure.

In another aspect, this invention envisions use of atomic coordinates of the KSP protein disclosed herein, to design a chemical compound capable of associating with KSP or a fragment, analog or variant thereof.

For example, one method of this invention for evaluating the
ability of a chemical entity to associate with any of the proteins or proteinligand complexes set forth herein comprises the steps of: a) employing
computational means to perform a fitting operation (docking) between the
chemical entity and a binding pocket or other surface feature of the molecule
or molecular complex; and b) analyzing the results of said fitting operation
to quantify the association between the chemical entity and the binding
pocket.

In another aspect, the invention envisions use of atomic coordinates of the KSP protein to design a model of ligands in the binding site defined herein.

Preferred embodiments of the aforementioned uses are those wherein the KSP protein comprises a binding site characterized by amino acid residues as set forth in Figure 10.

As a general rule, one may use knowledge of the geography of the various regions of the ligand binding site disclosed herein, e.g. hydrophobic and/or hydrophilic to design KSP analogs (mutant) in which

the overall KSP structure is not changed, but change does affect biological activity ("biological activity" being used here in its broadest sense to denote function). Thus, one may make changes to the amino acid sequences to effectively obtain a KSP analog/mutant that exhibits a greater affinity for its binding ligand. As well, one may correlate biological activity to structure. If the structure is not changed, and the mutation has no effect on biological activity, then the mutation has no biological function. If, however, the structure is not changed and the mutation does affect biological activity, then the residue (or atom) is essential to at least one biological function.

5

10

15

20

25

30

KSP.

Similar molecular modeling is also provided by the present invention for rational drug design (RDD) of mimetics and ligands of KSP, "ligand" being used in the broadest sense, referring to any substance capable of observable binding to the KSP protein at the herein disclosed binding site. The drug design paradigm uses computer modeling programs to determine potential mimetics and ligands which are expected to interact with sites on the protein. The potential mimetics or ligands are then screened for activity and/or binding. For KSP-related mimetics or ligands, screening methods can be selected from assays for at least one biological activity of KSP, e.g., antimitotic activity. Thus, an embodiment of the invention envisions use of the structural information from the ligand/protein complexes found herein including the information derived therefrom in designing new chemical or biological moieties that bind tighter, bind more specifically, have better biological activity or have better safety profile than known ligands that bind

The computer modeling method disclosed herein can also be used to remodel the mimetics or ligands to improve the affinity or solubility, and produce an optimized pharmaceutical agent.

The resulting optimized mimetics or ligands can thereafter be prepared and the inhibitory activity for KSP can be tested *in vitro* and *in vivo*. If the test confirms that the material does indeed inhibit KSP, then the material or a derivative can be used as an anti-mitotic agent. Using the method as described above, the compound identified to have inhibitory activity may thereafter be used as a lead compound to obtain an improved inhibitor.

In order to confirm the affinity predicted by the computer modeling method, the dissociation constant of the complex may be experimentally measured.

The resulting mimetics or ligands are then provided by methods of the present invention and are useful for treating, inhibiting or preventing KSP-modulated diseases in animals, including humans.

Preferably the ligands of the novel binding site provided herein are useful in the treatment or prevention of a hyper-proliferative disease, preferably cancer. Preferably, the ligand(s) identified by the methods described herein are useful in the treatment of cancer.

5

10

15

20 -

25

30

The ligands identified by the methods of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice. The ligands can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specific amounts, as well as any product which results, directly or indirectly, from combination of the specific ingredients in the specified amounts.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. When a ligand according to this invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, sex and response of the individual patient, as well as the severity of the patient's symptoms.

In one exemplary application, a suitable amount of a ligand of the novel KSP ligand binding site is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.

Consequently, an object of the invention is to provide a method for determining the three-dimensional structure of a protein containing the ligand binding site as disclosed herein, or a complex of the protein with a ligand thereof, using homology modeling techniques and structural coordinates for a composition of this invention. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related proteins, protein domains and/or subdomains. Homology modeling may be conducted by fitting common or homologous portions of the protein or peptide whose three-dimensional structure is to be solved to the three-dimensional structure of homologous structural elements. Homology modeling can include rebuilding part or all of a three-dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.

5

10

15

20

25

30

35

One of the objects of this invention is to provide threedimensional structural information on new complexes of BimC family members of which KSP is a member with various ligands, as well as muteins or other variants of any of the foregoing. To that end, the invention provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to solve, e.g., by molecular replacement, the three-dimensional structure of a crystalline form of such a ligand-protein complex, typically involving a protein containing at least one ligand binding site as disclosed herein. Doing so involves obtaining X-ray diffraction data for crystals of the protein-ligand complex for which one wishes to determine the three-dimensional structure. Then, one determines the three-dimensional structure of that protein or complex by analyzing the X-ray diffraction data using molecular replacement techniques with reference to the previous structural coordinates. As described in U.S. Pat. No. 5,353,236, for instance, molecular replacement uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample.

Still further, the invention also includes compositions and methods for identifying binding sites of other members of the BimC protein family. The methods involve examining the surface of a protein of interest, preferably a kinesin, to identify residues that facilitate binding to the binding site. The residues can be identified by homology to the ligand binding site of

human KSP described herein. Overlays and super-positioning with a threedimensional model of a KSP binding site, or a portion thereof that contains a ligand binding site, also can be used for this purpose.

An alternative method of this invention provides for selecting from a database of chemical structures a compound capable of binding to a BimC family protein. The method starts with structural coordinates of a crystalline composition of the invention, e.g., coordinates defining the three-dimensional structure of a BimC family protein or a portion thereof e.g., the herein provided coordinates relative to human KSP.

10 Points associated with that three-dimensional structure are characterized with respect to the extent of favorable interactions with one or more functional groups. A database of chemical structures is then searched for candidate compounds containing one or more functional groups disposed for favorable interaction with the protein based on the prior characterization.

Compounds having structures which best fit the points of favorable interaction with the three-dimensional structure are thus identified.

15

20

25

30

35

An exemplary embodiment of the invention provides methods for identifying and designing small molecules that bind to the binding site using atomic models of KSP provided herein. The method involves modeling test compounds that fit spacially into the binding site of interest using an atomic structural model comprising a KSP binding site or portion thereof, screening the test compounds in a biological assay characterized by binding of a test compound to KSP, and identifying a test compound that binds to KSP.

Also provided is a method for identifying a potential inhibitor of KSP, comprising the steps of using a three-dimensional structure of a KSP binding site as defined by the relative structural coordinates set forth in Table 5 or the relative structural coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 to design or select a potential inhibitor, and obtaining or synthesizing said potential inhibitor. The inhibitor may be selected by screening an appropriate database, may be designed de novo by analyzing the steric configurations and charge potentials of an empty KSP binding site in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors to create "hybrid" inhibitors. The inhibitor may then be contacted with KSP, and the effect of

the inhibitor on KSP related function may be assessed. For instance, a potential inhibitor identified by this method may be contacted with KSP in the presence of one or two KSP substrates selected from ATP and microtubules, and determining the effect the potential inhibitor has on KSP ATPase activity. It is also within the confines of the present invention that a potential inhibitor may be designed or selected by identifying chemical entities or fragments capable of associating with KSP; and assembling the identified chemical entities or fragments into a single molecule to provide the structure of the potential inhibitor.

In furtherance of the above, there is provided a method for identifying an anti-mitotic agent comprising providing the atomic coordinates comprising the relative atomic structural coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.00Å thereof to a computerized modeling system; modeling compounds which fit spacially into the KSP binding site; and identifying in an assay for KSP activity a compound that inhibits or decreases the activity of the KSP through binding to the binding site.

Once the agent has been identified, it may be contacted with KSP and the effect the agent has on KSP may then be assessed. In addition, the agent may be contacted with KSP in the presence of a KSP binding molecule and the effect the agent has on binding between KSP and the KSP binding molecule may then be assessed.

Also disclosed herein is a process for identifying a potential anti-mitotic agent which upon binding to a human KSP inhibits cell proliferation, the process comprising the steps of:

- exposing the KSP to a mixture of at least two potential ligands;
- b) attempting to crystallize said KSP in the presence of said mixture;
- c) if crystals are obtained, obtaining an X-ray diffraction pattern of the KSP crystal; and
- d) determining whether a ligand/KSP complex is formed by comparing the electron density map calculated from the X-ray diffraction pattern of said KSP crystal

5

10

15

20

25

30

when exposed to said mixture of said at least two potential ligands to the electron density map calculated from the X-ray diffraction pattern set forth in a table selected from Table 1, 2, 3 and 4.

Also provided herein is a method of identifying a compound that modulates the binding of a ligand to a ligand binding site of a human KSP, said method comprising: modeling test compounds that fit spatially into a KSP ligand binding site using an atomic structural model of a KSP binding site having the relative structural coordinates as set forth in a table selected from the group consisting of Tables 1, 2, 3 and 4 for the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; screening the test compounds in an assay characterized by binding of a ligand to the ligand binding site; and identifying a test compound that modulates binding of said ligand to the KSP at its binding site.

5

10

15

20

25

30

35

Further provided is a method for identifying a potential inhibitor of human kinesin spindle protein (KSP), the method comprising the steps of:

- (i) providing a three-dimensional structure of a ligandbound KSP as defined by atomic coordinates set forth in a table selected from Tables 1, 2, 3 and 4;
- (ii) comparing the three-dimensional coordinates of the ligand when it is bound to KSP as set forth in Table 1, 2, 3 or 4 to the three-dimensional coordinates of a compound in a database of compound structures; and
 - (iii) selecting from said database at least one compound that is structurally similar to said ligand when it is bound to said KSP, wherein the selected compound is a potential inhibitor of said KSP.

Also provided is a method for identifying an anti-mitotic agent which upon binding to a target human KSP inhibits cell proliferation, the method comprising the steps of:

a) exposing a target KSP to a mixture of at least two potential ligands;

b) attempting to crystallize said target KSP in the presence of said mixture;

- obtaining a crystal of said target KSP exposed to said mixture to determine whether ligand/KSP complex is formed; and
- d) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.

Further provided is a method for identifying an anti-mitotic agent which upon binding to a target human KSP inhibits cell proliferation, the method comprising the steps of:

15

25

30

- (a) obtaining a crystal of KSP, where said KSP has been crystallized while exposed to a mixture of at least two potential ligands;
- (b) determining whether a ligand/KSP complex is formed in said crystal; and
- (c) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.
- In the methods described hereinabove, potential ligands of KSP include the test compounds and Mg++ and ADP.

Also provided is a method of modulating, e.g., inhibiting the activity of a KSP. The method can be *in vitro* or *in vivo*. The method comprises administering, *in vitro* or *in vivo*, a sufficient amount of a compound that binds to the binding site disclosed herein.

Also provided is a method of identifying a compound that selectively inhibits the activity of one type of KSP compared to other KSPs or kinesins, e.g., a KSP of one species over another or a KSP over another member of the BimC family, of which KSP is a member. Thus, the method enables the identification of KSP and KSP like proteins in the same family, e.g., BimC or the KSP in one species over another. The method is exemplified by modeling test compounds that fit spacially and preferentially into a KSP ligand binding site of interest using an atomic structural model of

a KSP ligand binding site, selecting a compound that interacts with one or more residues of the ligand binding site unique in the context of that site, and identifying in an assay for ligand binding activity a compound that selectively binds to the ligand binding site compared to other KSP. The unique features involved in receptor-selective ligand binding can be identified by comparing atomic models of different receptors or isoforms of the same type of receptor.

The present invention also provides for computer programs for the expression (such as visual display) of the KSP or analog three-dimensional structure, and further, a computer program which expresses the identity of each constituent of a KSP molecule and the precise location within the overall structure of that constituent, down to the atomic level.

10

15

20

25

30

35

There are many currently available computer programs for the expression of the three-dimensional structure of a molecule. Generally, these programs provide for inputting of the coordinates for the three-dimensional structure of a molecule (i.e., for example, a numerical assignment for each atom of a KSP molecule along an x, y, and z axis or the assignment for each atom of the binding site described in Tables 1-4), means to express (such as visually display) such coordinates, means to alter such coordinates and means to express an image of a molecule having such altered coordinates. One may program crystallographic information, i.e., the coordinates of the location of the atoms of a KSP binding site molecule in three dimension space, wherein such coordinates have been obtained from crystallographic analysis of said KSP molecule, into such programs to generate a computer program for the expression (such as visual display) of the KSP three-dimensional structure.

In furtherance of the above, the present invention provides a machine, such as a computer, programmed in memory with the coordinates of KSP or portions thereof, together with a program capable of converting the coordinates into a three-dimensional graphical representation of the structural coordinates on a display connected to the machine.

As well, there is provided a computer program for the expression of KSP's three-dimensional structure together with the structure of the novel KSP binding site. Preferred is the computer program QUANTA 2000, available from Molecular simulations or Insight II, version 4, available

from Biosym, San Diego, Calif., with the coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 input. Preferred expression means are well known to a skilled artisan. Alternatively, the present KSP crystallographic coordinates and diffraction data are also deposited in the Protein Data Bank, Chemistry Department, Brookhaven National Laboratory, Upton, N.Y. 119723, USA. One may use these data in preparing a different computer program for expression of the three-dimensional structure of a KSP molecule or analog thereof.

Structural coordinates of a crystalline composition of this
invention may be stored in a machine-readable form on a machine-readable
storage medium, e.g. a computer hard drive, diskette, DAT tape, etc., for
display as a three-dimensional shape or for other uses involving computerassisted manipulation of, or computation based on, the structural coordinates
or the three-dimensional structures they define. For example, data defining
the three-dimensional structure of a KSP protein or portions or structurally
similar homologues of such proteins, may be stored in a machine-readable
storage medium, and may be displayed as a graphical three-dimensional
representation of the protein structure, typically using a computer capable of
reading the data from said storage medium and programmed with
instructions for creating the representation from such data.

This invention thus encompasses a machine, such as a computer, having a memory which contains data representing the structural coordinates of a crystalline composition of this invention, e.g. the coordinates set forth in Tables 1-4, together with additional optional data and instructions for manipulating such data. Such data may be used for a variety of purposes, such as the elucidation of other related structures and drug discovery. For example, a machine having a memory containing such data aids in the rational design or selection of inhibitors of KSP binding or activity, including the evaluation of the ability of a particular chemical entity to favorably associate with KSP as disclosed herein, as well as in the modeling of compounds, proteins, complexes, etc. related by structural or sequence homology to KSP.

25

30

35

Thus, three-dimensional modeling of KSP provided by the present invention using the coordinates from the X-ray diffraction patterns can be entered into one or more computer programs for molecular modeling.

Such molecular modeling programs generate atomic coordinates that reflect the secondary, tertiary and/or quaternary structures of the protein which contribute to its overall three-dimensional structure and provide information related to binding and/or active sites of the protein.

5

10

15

20

25

30

35

The present invention further contemplates the use of the structural coordinates of the present invention with standard homology modeling techniques to determine the unknown three-dimensional structure of a target molecule or molecular complex. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related protein molecules/molecular complexes or parts thereof (i.e., ligand binding sites). In general, homology modeling entails fitting common or homologous portions of the protein whose three-dimensional structure is to be solved to the three-dimensional structure of homologous structural elements in the known molecule, specifically using the relevant (i.e., homologous) structural coordinates provided in Tables 1-4. Homology may be determined using amino acid sequence identity, homologous secondary structure elements, and/or homologous tertiary folds. Homology modeling can include rebuilding part or all of a three-dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved. Examples of programs for homology modeling include, but are not limited to: QUANTA (Molecular Simulations, Inc.), Molecular Operating Environment or MOE (Chemical Computing Group, Inc. 2002), MODELLER (copyright © 1989-2002 Andrej Sali; Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, Mission Bay Genentech Hall, University of California San Francisco) and others.

In accordance with the above, a three-dimensional structure for the unknown molecule/molecular complex may be generated using the three-dimensional structure of the KSP molecule of the present invention, Tables 1-4, refined using a number of techniques well known in the art, and then used in the same fashion as the structural coordinates of the present invention, for instance, in applications involving molecular replacement analysis, homology modeling, and rational drug design.

Among other aspects, the coordinates in Table 1-4 define the relative relationship between the protein, the nucleotide and the ligand. Such sets of

coordinates are dependent upon the particular coordinate system used. Those skilled in the art will recognize that rotation, translation or other mathematical manipulation of these coordinates may change the specific values of these coordinates, but the new set(s) will still define the relationship between the multiple components of the crystal structure disclosed herein."

5

10

15

20

25

30

35

The determination of the three-dimensional structure of the ligand binding site of KSP as disclosed herein is advantageous over conventional drug assay techniques, in which the only way to identify such an agent is to screen thousands of test compounds until an agent having the desired inhibitory effect on a target compound is identified. Generally, such conventional screening methods are expensive, time consuming, and do not elucidate the method of action of the identified agent on the target compound. In sharp contrast, advancing X-ray, spectroscopic and computer modeling technologies allow researchers to visualize the three-dimensional structure of a targeted compound (i.e., KSP ligand binding site), and using such a three-dimensional structure to identify putative binding sites and then identify or design agents to interact with these binding sites. These agents can thereafter be screened for an inhibitory effect upon the target molecule. Consequently, an embodiment of the invention details a method for identifying a potential inhibitor of KSP. The proposed method comprises using a three-dimensional structure of KSP and the novel binding site of the invention as defined by the relative structural coordinates of Tables 1-4 and the relative structural coordinates of the amino acid residues of Figure 10 as set forth in Table 1-4 to design or select a potential inhibitor of KSP activity, followed by synthesizing or obtaining the said potential inhibitor. The inhibitor may be selected by screening an appropriate database. Alternatively, it may be designed de novo by analyzing the steric configurations and charge potentials of a ligand bound KSP complex in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors of KSP.

An entity/agent that interacts or associates with the ligand binding site of KSP may be identified by performing computer fitting analyses to identify an agent which interacts or associates with said site. Computer fitting analyses utilize various computer software programs that evaluate the "fit" between the binding site and the identified agent, by (a)

generating a three-dimensional model of the ligand binding site using homology modeling or the atomic structural coordinates of the binding site in Tables 1-4, and (b) determining the degree of association between the binding site and the identified agent. The degree of association may be determined computationally by any number of commercially available software programs, or may be determined experimentally using standard binding assays.

5

10

15

20

25

30

35

Preferably, the method of the present invention includes the use of a ligand binding site characterized by the three-dimensional structure comprising the relative structural coordinates of amino acid residues listed in Figure 10 as set forth in Tables 1-4 \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0 Å, preferably not more than about 1.0 Å, and most preferably not more than about 0.5 Å. It is understood that the method of the present invention includes additional embodiments comprising conservative substitutions of the noted amino acids which result in the same structural coordinates of the corresponding residues in Tables 1-4 within the stated root mean square deviation.

The effect of an agent identified by computer fitting analyses on human KSP activity may be further evaluated computationally, or experimentally by competitive binding experiments or by contacting the identified agent with KSP and measuring the effect of the agent on the target's biological activity. Standard enzymatic assays may be performed and the results analyzed to determine whether the agent is an inhibitor of KSP activity (i.e., induce cell cycle arrest or inhibit the association of KSP with a microtubule as well as any other known activities attending a kinesin). Further tests may be performed to evaluate the selectivity of the identified agent to KSP with regard to other KSP proteins (other species) or other members of the BimC protein family.

Preferably, the agent designed or selected to interact with KSP is capable of associating with KSP and of assuming a three-dimensional configuration and orientation that complements the relevant ligand binding site of KSP.

Consequently, using these criteria, the structural coordinates of the KSP molecule as disclosed herein, and/or structural coordinates

derived therefrom using molecular replacement or homology modeling, agents may be designed having increased potency and/or selectivity versus known inhibitors, e.g, by modifying the structure of known inhibitors or by designing new agents de novo via computational inspection of the three-dimensional configuration of KSP's novel ligand binding site described herein (relative structural coordinates of amino acid residues listed in Figure 10 as set forth in Tables 1-4 and the relative structural coordinates set forth in Table 5).

5

30

35

As such, an embodiment of the invention proposes using the 10 structural coordinates of Tables 1-4 of the present invention, or structural coordinates derived therefrom using molecular replacement or homology modeling techniques as discussed above to screen a database for agents that may act as potential inhibitors of KSP activity. As an example, the obtained structural coordinates of the present invention may be read into a software 15 package and the three-dimensional structure analyzed graphically. A number of computational software packages may be used for the analysis of structural coordinates, e.g., Sybyl (Tripos Associates) etc. Additional software programs may be optionally used to check the coordinates with regard to features such as bond and atom types. If necessary, the three-20 dimensional structure may be modified and then energy minimized using the appropriate software until all of the structural parameters are at their equilibrium/optimal values. The energy minimized structure can then be superimposed against the original structure to make sure there are no significant deviations between the original and the energy minimized 25 coordinates.

Once the specific interaction between KSP and a known inhibitor is determined, e.g., such as the information provided in Tables 1-4, docking studies with different inhibitors will allow one skilled in the art to generate initial models of new inhibitors bound to KSP. The integrity of these new models may be evaluated a number of ways, including constrained conformational analysis using molecular dynamics methods; that is where both KSP and the bound inhibitor are allowed to sample different three-dimensional conformational states until the most favorable state is reached or found to exist between the protein and the bound agent etc. Once models are obtained of the original known agent bound to KSP

(Tables 1-4) and computer models of other molecules bound to KSP are as well obtained, strategies may be proposed determined for designing modifications into the inhibitors to improve their activity and/or enhance their selectivity.

5

10

15

20

30

35

For example, once a KSP binding agent has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties for KSP. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analyzed for efficiency of fit to KSP by the same computer methods described in detail above. Further molecular analysis and rational drug design techniques are disclosed in U.S. Pat. Nos. 5,834,228, and 5,939,528 the contents of which are incorporated by reference in their entirety.

Thus, an exemplary embodiment of the invention envisions a method of three-dimensional modeling of a KSP protein, comprising the steps of:

- (a) providing three-dimensional atomic coordinates derived from X-ray diffraction measurements of a KSP protein in a computer readable format;
 - (b) inputting the data from step (a) into a computer with appropriate software programs; and
- (c) generating a three-dimensional structural representation of
 the KSP protein suitable for visualization and further computational manipulation.

This invention further provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to identify reactive amino acids within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to generate and visualize a molecular surface, such as a water-accessible surface or a surface comprising the space-filling van der Waals surface of all atoms; to calculate and visualize the size and shape of surface features of the protein or complex, e.g., ligand binding pockets; to locate potential H-bond donors and acceptors within the three-dimensional structure, preferably within or

adjacent to a ligand binding site; to calculate regions of hydrophobicity and hydrophilicity within the three-dimensional structure, preferably within or adjacent to a ligand binding site; and to calculate and visualize regions on or adjacent to the protein surface of favorable interaction energies with respect to selected functional groups of interest (e.g. amino, hydroxyl, carboxyl, methylene, alkyl, alkenyl, aromatic carbon, aromatic rings, heteroaromatic rings, substituted and unsubstituted phosphates, substituted and unsubstituted phosphonates, substituted and unsubstituted fluoro and difluorophosphonates; etc.). One may use the foregoing approaches for characterizing the protein and its interactions with moieties of potential ligands to design or select compounds capable of specific covalent attachment to reactive amino acids (e.g., cysteine) and to design or select compounds of complementary characteristics (e.g., size, shape, charge, hydrophobicity/hydrophilicity, ability to participate in hydrogen bonding, etc.) to surface features of the protein, a set of which may be preselected. Using the structural coordinates, one may also predict or calculate the orientation, binding constant or relative affinity of a given ligand to the protein in the complexed state, and use that information to design or select compounds of improved affinity.

5

10

15

20

25

30

35

In such cases, the structural coordinates of the KSP protein, or portion or complex thereof, are entered in machine readable form into a machine programmed with instructions for carrying out the desired operation and containing any necessary additional data, e.g. data defining structural and/or functional characteristics of a potential ligand or moiety thereof, defining molecular characteristics of the various amino acids, etc.

The present invention is additionally directed to a method of determining the three-dimensional structure of a molecule or molecular complex whose structure is unknown, comprising the steps of first obtaining crystals of the molecule or molecular complex whose structure is unknown, and then generating X-ray diffraction data from the crystallized molecule or molecular complex and/or generating NMR data from the solution of the molecule or molecular complex. The generated diffraction or spectroscopy data from the molecule or molecular complex can then be compared with the solution coordinates or three-dimensional structure of KSP as disclosed herein, and the three-dimensional structure of the unknown molecule or

molecular complex conformed to the KSP structure using standard techniques such as molecular replacement analysis, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques, and computer homology modeling. Alternatively, a three-dimensional model of the unknown molecule may be generated by generating a sequence alignment between KSP and the unknown molecule, based on any or all of amino acid sequence identity, secondary structure elements or tertiary folds, and then generating by computer modeling a three-dimensional structure for the molecule using the three-dimensional structure of, and sequence alignment with, KSP.

5

10

15

20

25

30

35

Preferred embodiments of the aforementioned methods are those methods wherein the KSP protein comprises a binding site characterized by amino acid residues described in Figure 10.

This invention also provides peptidomimetic methods for designing a compound capable of binding to a KSP protein or KSP homolog. One such method involves graphically displaying a three-dimensional representation based on coordinates defining the three-dimensional structure of a KSP family protein or a portion thereof complexed with a ligand. Interactions between portions of a ligand and the protein may then be analyzed in order to identify candidate moieties for replacement. One or more portions of the ligand which interact with the protein may be replaced with substitute moieties selected from a knowledge base of one or more candidate substitute moieties, and/or moieties may be added to the ligand to permit additional interactions with the protein.

In another aspect of the instant invention, the structural coordinates of a crystalline composition of this invention, or portions thereof, may be used to identify one or more pharmacophores of a chemical compound that binds to the ligand binding site. Such a pharmacophore is described as a set of atoms, chemical groups, pseudo-atoms or vectors, and the relative positions in space of each of these pharmacophore features. Each feature, alone or in combination with its relative position, forms a pharmacophore parameter. Thus, the pharmacophore includes the pharmacophore features, and the relative position of each descriptor with regard to all other descriptors comprising the pharmacophore.

Pharmacophore models can be constructed either directly or indirectly.

In the direct method, the pharmacophore feature spatial centers are inferred from

studying the X-ray structural coordinates or NMR structure of a receptor-ligand complex, followed by a shape-complementarity function analysis of the receptor binding site, usually performed using a computer and a computer-readable medium. In the indirect method, the structure of the receptor is unknown and the pharmacophore feature spatial centers are inferred by overlaying the three-dimensional conformations of active compounds and finding the common, overlapping functional groups.

5

10

15

20

25

30

35

The pharmacophore models of the present invention, obtained by combining both direct and indirect methods, are herein described, by way of example only and without any intention of being limiting, with reference to Figures 14A and B.

The first model pharmacophore (FIG. 14A) is represented by three pharmacophore features having the planar orientation shown: a sphere indicating the center of an aryl, heteroaryl or cycloalkyl ring (or, in general, of a hydrophobic group), and two small boxes (labeled HA and HD), representing the heterocenters of a hydrogen bond acceptor and a hydrogen bond donor, respectively. The second model pharmacophore (FIG. 14B) is represented by three pharmacophore features: two spheres indicating the centers of two aryl, heteroaryl or cycloalkyl rings (or hydrophobic groups in general), and a small box representing the heteroatomic center of a hydrogen bond acceptor (HA).

As used herein, "aryl" is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic. Examples of such aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl and biphenyl. In cases where the aryl substituent is bicyclic and one ring is non-aromatic, it is understood that attachment is via the aromatic ring.

The term heteroaryl, as used herein, represents a stable monocyclic or bicyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S. Heteroaryl groups within the scope of this definition include but are not limited to: acridinyl, carbazolyl, cinnolinyl, quinoxalinyl, pyrrazolyl, indolyl, benzotriazolyl, furanyl, thienyl, benzothienyl, benzofuranyl, quinolinyl, isoquinolinyl, oxazolyl, isoxazolyl, indolyl, pyrazinyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrahydroquinoline. In an embodiment of the instant invention, heteroaryl does not include quinazolinone.

As used herein, "cycloalkyl" is intended to include monocyclic saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.

For example, "cycloalkyl" includes cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, and so on. In an embodiment of the invention the term "cycloalkyl" includes the groups described immediately above and further includes monocyclic unsaturated aliphatic hydrocarbon groups. For example, "cycloalkyl" as defined in this embodiment includes cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, cyclopentenyl, cyclobutenyl and so on.

5

10

15

20

25

30

35

The, cycloalkyl, aryl, heteroaryl and heteroaryl substituents may be substituted or unsubstituted, unless specifically defined otherwise. For example, an aryl may be substituted with one, two or three substituents selected from OH, alkyl, halogen, alkoxy or dialkylamino.

The active structural motifs designated herein as the model pharmacophores of the present invention can be used to screen libraries of molecules for the existence of a predefined structural motif, and in particular identifying molecules that meet the constraints imposed by the pharmacophore. The pharmacophore feature spatial centers are globally associated with a specific biological activity. The molecules being evaluated may be designed *de novo* using computer methods, or alternatively, be either a scaffold or a full chemical entity (e.g., chosen from a library of compounds). Using the model pharmacophores disclosed herein one of ordinary skill may predict the inhibitory potency of a compound based upon its fit with any of these two pharmacophore models shown in FIG. 14A and B.

In an embodiment, the compound identified by the use of a pharmacophore model described herein has a binding affinity for KSP of about 0.1 nM to about 100 nM. In a further embodiment, the binding affinity range is from about 1 nM to about 20 nM.

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 14A does not incorporate a 2-thioxo-1,2,3,4-tetrahydropyrimidine moiety, a dihydropyrimidine moiety or a 5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]-pyrido[3.4-b]indole-1,3(2H)-dione moiety.

An additional pharmacophore model is illustrated by Figure 16. The pharmacophore model of Figure 16 is represented by four pharmacophore features: three spheres indicating the centers of aryl, heteroaryl or cycloalkyl rings (or hydrophobic groups in general), and a small box representing the heteroatomic center of a hydrogen bond acceptor (HA). In reference to Figure 16, the distances in Å between the pharmacophore features are listed in the following table:

	1	2	3	4
1	-			
2	5.1±0.6	-		
3	8.5±0.7	6.9±0.7	-	•
4	3.7±0.5	5.8±0.6	5.7±0.7	-

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 16 does not incorporate a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety. In a further embodiment, the compound identified by its fit with the pharmacophore model of Figure 16 does not incorporate a quinazolinone, phenothiazine or triphenylmethane moiety.

5

10

15

20

25

30

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 14B does not incorporate a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety. In a further embodiment, the compound identified by its fit with the pharmacophore model of Fig. 14B does not incorporate a quinazolinone, phenothiazine or triphenylmethane moiety.

The degree of fit of a particular compound structure to the pharmacophore models is calculated by determining, using computer methods, if the compound possesses the chemical features of the pharmacophore model and if the features can adopt the necessary three-dimensional arrangement to fit the model. The modeling program will indicate those features in the pharmacophore model having a fit with the particular compound or chemical feature of the compound being tested. The term "fit" when referring to a compound and a pharmacophore or binding site includes both compounds that occupy only the spatial area of the pharmacophore or binding site and compounds of which the chemical features or a portion of the molecule occupy the spatial area of the pharmacophore or binding site.

Fitting of a compound to the ligand binding site volume can be done in a number of different ways using computational methods well known by those skilled in the art. Visual inspection and manual docking of compounds into the induced-fit active site volume can be done using molecular modeling software such as QUANTA (Molecular Simulations, Burlington, MA, 1992), SYBYL (Tripos Associates, Inc., St. Louis, MO, 1992), AMBER (Weiner et al., J. Am. Chem. Soc., 106: 765-784, 1984), CHARMM (Brooks et al., J. Comp. Chem., 4: 187-217, 1983) or other modeling

programs known to those of skill in the art. This modeling step may be followed by energy minimization using standard force fields, such as CHARMM and AMBER, or others. More specialized modeling programs include MCSS (Miranker & Karplus, Function and Genetics, 11: 29-34, 1991), GRID (Goodford et al., J. Med. Chem., 28: 849-857, 1985), AUTODOCK (Goodsell & Olsen, Proteins: Structure, Function and Genetics, 8: 195-202, 1990), and DOCK (Kuntz et al., J. Mol. Biol., 161: 269-288, 1982). In addition, inhibitor compounds may be constructed *de novo* in the empty active site or in the active site including some portions of a known inhibitor using computer programs such as LEGEND (Nishibata & Itai, Tetrahedron, 47: 8985, 1991), LeapFrog (Tripos Associates, St. Louis, MO), LUDI (Bohm, J. Comp. Aid. Molec. Design, 6: 61-78, 1992), AutoLudi (Accelrys Inc., San Diego, CA) or others.

5

10

15

20

25

30

Another aspect of the invention relates to a complementary protein having a structure substantially complementary to the three-dimensional structure according to Tables 1-4; or to a medicinally effective part thereof, particularly a ligand binding region. A complementary protein is one whose three-dimensional structure is substantially complementary to the Tables 1-4 structure or a part thereof, such that the complementary structure may bind thereto and may form a complex. The lifetime of the complex may be long in the case of an inhibiting complementary protein. Of course, binding will also require an appropriate choice of amino acid sequence. Such a complementary protein may act as an inhibitor of KSP. Such inhibitors may be used *in vivo* or *in vitro* to modify the activity of KSP.

In the pharmaceutical industry, new or known compounds are routinely screened for new uses employing a variety of known *in vitro* or *in vivo* screens. Often such screens involve complex natural substances and are correspondingly expensive to carry out, and the result may be difficult to interpret. The knowledge of the three-dimensional protein structure according to the invention allows a preliminary screening to be carried out on the basis of the three-dimensional structure of a region thereof, and the structural similarity of a molecule which is being screened. This is usually carried out in conjunction with a knowledge of the amino sequence of the region. Such screening can conveniently be carried out using computer modeling techniques, which match the three-dimensional structure of the protein or part thereof (or complementary protein or part thereof) with the

structure of the molecule being screened, thereby allowing one to predict potential inhibitor activity.

The binding of a ligand to the novel binding site of the instant invention and the formation of the novel binding pocket as a result can also be indirectly assessed by spectroscopically determining the shift in the fluorescence of the amino acid 127 tryptophan residue. Thus it has been discovered that the fluorescent emission of Trp127 is modulated when KSP is treated with one of the inhibitors described above in the presence of a nucleotide or nucleotides.

5

10

15

20

25

30

35

A further embodiment of the instant invention is an *in vitro* assay for the determination of binding of a test compound to the novel KSP binding site described herein. The assay comprises the steps of:

- contacting KSP with the test compound and a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for Trp127 in KSP;
- contacting KSP with a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for Trp127 in KSP; and
- comparing the fluorescence of the mixture of KSP, the test compound and the nucleotide with the fluorescence of the mixture of KSP with the nucleotide alone.

In another embodiment of the *in vitro* fluorescence assay the nucleotide is selected from ADP and AMPPNP (a non-hydrolysable analog of ATP, adenosine 5'- $(\beta,\gamma$ -imido)triphosphate tetralithium salt hydrate).

In an embodiment of the *in vitro* fluorescence assay the mixtures additionally contain a source of magnesium ion. Preferably the source of magnesium ion is MgCl₂.

In another embodiment of the *in vitro* fluorescence assay the measurement of the fluorescence of the KSP, test compound and nucleotide mixture is performed at several different concentrations of the test compound.

Because the KSP kinesin's three-dimensional structure is uniquely suited to the formation of the novel binding pocket of the instant invention, the methods of identification of compounds that bind to the novel binding pocket described herein, such as the fluorescence assay described

above, may be used to identify selective inhibitors of KSP which may not inhibit other mitotic kinesins. Such identification of a selective KSP inhibitor may offer particular advantages over an inhibitor which is competitive with the binding of the nucleotide substrate of KSP or which binds to the site of microtubule binding.

5

10

15

20

25

30

35

A still further aspect of the invention relates to antibodies (including monoclonal antibodies) directed to the KSP protein or complementary protein, for the detection thereof or for the modulation of its medicinal activity, it being understood that the antibody is specific for the KSP-ligand, e.g., inhibitor bound conformation.

Compounds of the structures selected or designed by any of the foregoing means may be tested for their ability to bind to a KSP protein, inhibit the binding of a KSP protein to a natural or non-natural ligand therefor, and/or inhibit a biological function mediated by a KSP protein or a BimC family member.

Finally, the present invention provides agents or inhibitors designed or selected using the methods disclosed herein. Such compounds may be utilized as described in the following sections.

Utilities

The compounds designed or selected using the methods of the invention find use in a variety of applications. As will be appreciated by those in the art, mitosis may be altered in a variety of ways; that is, one can affect mitosis either by increasing or decreasing the activity of a component in the mitotic pathway. Stated differently, mitosis may be affected (e.g., disrupted) by disturbing equilibrium, either by inhibiting or activating certain components. Similar approaches may be used to alter meiosis.

In a preferred embodiment, the compounds designed or selected using the methods of the invention are used to modulate mitotic spindle formation, thus causing prolonged cell cycle arrest in mitosis. By "modulate" herein is meant altering mitotic spindle formation, including increasing and decreasing spindle formation. By "mitotic spindle formation" herein is meant organization of microtubules into bipolar structures by mitotic kinesins. By "mitotic spindle dysfunction" herein is meant mitotic arrest and monopolar spindle formation.

The compounds designed or selected using the methods of the invention are useful to bind to and/or modulate the activity of a mitotic kinesin. In a

preferred embodiment, the mitotic kinesin is a member of the bimC subfamily of mitotic kinesins (as described in U.S. Patent No. 6,284,480, column 5). In a further preferred embodiment, the mitotic kinesin is human KSP, although the activity of mitotic kinesins from other organisms may also be modulated by the compounds of the present invention. In this context, modulate means either increasing or decreasing spindle pole separation, causing malformation, i.e., splaying, of mitotic spindle poles, or otherwise causing morphological perturbation of the mitotic spindle. Also included within the definition of KSP for these purposes are variants and/or fragments of KSP. See PCT Publ. WO 01/31335: "Methods of Screening for Modulators of Cell Proliferation and Methods of Diagnosing Cell Proliferation States", filed Oct. 27, 1999, hereby incorporated by reference in its entirety. In addition, other mitotic kinesins may be inhibited by the compounds of the present invention.

5

10

15

20

25

30

35

The compounds designed or selected using the methods of the invention are used to treat cellular proliferation diseases. Disease states which can be treated by the methods and compositions provided herein include, but are not limited to, cancer (further discussed below), autoimmune disease, arthritis, graft rejection, inflammatory bowel disease, proliferation induced after medical procedures, including, but not limited to, surgery, angioplasty, and the like. It is appreciated that in some cases the cells may not be in a hyper- or hypoproliferation state (abnormal state) and still require treatment. For example, during wound healing, the cells may be proliferating "normally", but proliferation enhancement may be desired. Similarly, as discussed above, in the agriculture arena, cells may be in a "normal" state, but proliferation modulation may be desired to enhance a crop by directly enhancing growth of a crop, or by inhibiting the growth of a plant or organism which adversely affects the crop. Thus, in one embodiment, the invention herein includes application to cells or individuals afflicted or impending affliction with any one of these disorders or states.

The compounds, compositions and methods provided herein are particularly deemed useful for the treatment of cancer including solid tumors such as skin, breast, brain, cervical carcinomas, testicular carcinomas, etc. More particularly, cancers that may be treated by the compounds, compositions and methods of the invention include, but are not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar)

carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma; Gastrointestinal: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, vipoma), small bowel (adenocarcinoma, lymphoma, 5 carcinoid tumors, Karposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large bowel (adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma); Genitourinary tract: kidney (adenocarcinoma, Wilm's tumor [nephroblastoma], lymphoma, leukemia), bladder and urethra 10 (squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma), prostate (adenocarcinoma, sarcoma), testis (seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, lipoma); Liver: hepatoma (hepatocellular carcinoma), cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular 15 adenoma, hemangioma; Bone: osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple mycloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors; 20 Nervous system: skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germinoma [pinealoma], glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, meningioma, glioma, sarcoma); Gynecological: 25 uterus (endometrial carcinoma), cervix (cervical carcinoma, pre-tumor cervical dysplasia), ovaries (ovarian carcinoma [serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma], granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), 30 vagina (clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma (embryonal rhabdomyosarcoma), fallopian tubes (carcinoma); Hematologic: blood (myeloid leukemia [acute and chronic], acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-Hodgkin's lymphoma [malignant lymphoma]; Skin: malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Karposi's sarcoma, moles 35

dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, psoriasis; and <u>Adrenal glands</u>: neuroblastoma. Thus, the term "cancerous cell" as provided herein, includes a cell afflicted by any one of the above-identified conditions.

The compounds designed or selected using the methods of the instant invention may also be useful as antifungal agents, by modulating the activity of the fungal members of the bimC kinesin subgroup, as is described in U.S. Patent No. 6,284,480.

5

10

15

20

25

30

35

The compounds designed or selected using the methods of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice. The compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specific amounts, as well as any product which results, directly or indirectly, from combination of the specific ingredients in the specified amounts.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, microcrystalline cellulose, sodium crosscarmellose, corn starch, or alginic acid; binding agents, for example starch, gelatin, polyvinyl-pyrrolidone or acacia, and lubricating agents, for example, magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to mask the unpleasant taste of the drug or delay disintegration and absorption in the gastrointestinal tract and

thereby provide a sustained action over a longer period. For example, a water soluble taste masking material such as hydroxypropyl-methylcellulose or hydroxypropylcellulose, or a time delay material such as ethyl cellulose, cellulose acetate buryrate may be employed.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

5

10

15

20

25

30

35

Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in

admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

5

10

15

20

25

30

35

The pharmaceutical compositions of the invention may also be in the form of an oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally occurring phosphatides, for example soy bean lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavoring agents, preservatives and antioxidants.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous solutions. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.

The sterile injectable preparation may also be a sterile injectable oil-inwater microemulsion where the active ingredient is dissolved in the oily phase. For example, the active ingredient may be first dissolved in a mixture of soybean oil and lecithin. The oil solution then introduced into a water and glycerol mixture and processed to form a microemulation.

The injectable solutions or microemulsions may be introduced into a patient's blood stream by local bolus injection. Alternatively, it may be advantageous to administer the solution or microemulsion in such a way as to maintain a constant circulating concentration of the instant compound. In order to maintain such a constant concentration, a continuous intravenous delivery device may be utilized. An example of such a device is the Deltec CADD-PLUSTM model 5400 intravenous pump.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension for intramuscular and subcutaneous administration. This suspension may be formulated according to the known art using

those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butane diol. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Compounds designed or selected using the methods disclosed herein may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable nonirritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.

For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compound are employed. (For purposes of this application, topical application shall include mouth washes and gargles.)

The compounds designed or selected using the methods of the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles and delivery devices, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen. Compounds of the present invention may also be delivered as a suppository

employing bases such as cocoa butter, glycerinated gelatin, hydrogenated vegetable

oils, mixtures of polyethylene glycols of various molecular weights and fatty acid

esters of polyethylene glycol.

5

10

15

20

25

30

35

When a compound according to this invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, sex and response of the individual patient, as well as the severity of the patient's symptoms.

In one exemplary application, a suitable amount of compound is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body

weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.

5

10

15

20

25

30

The compounds designed or selected using the methods disclosed herein (hereafter referred to as the "instant compounds") are also useful in combination with known therapeutic agents and anti-cancer agents. For example, instant compounds are useful in combination with known anti-cancer agents. Combinations of the presently disclosed compounds with other anti-cancer or chemotherapeutic agents are within the scope of the invention. Examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita and S. Hellman (editors), 6th edition (February 15, 2001), Lippincott Williams & Wilkins Publishers. A person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved. Such anti-cancer agents include, but are not limited to, the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cytostatic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, inhibitors of cell proliferation and survival signaling, and agents that interfere with cell cycle checkpoints. The instant compounds are particularly useful when co-administered with radiation therapy.

In an embodiment, the instant compounds are also useful in combination with known anti-cancer agents including the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.

"Estrogen receptor modulators" refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of mechanism. Examples of estrogen receptor modulators include, but are not limited to, tamoxifen, raloxifene, idoxifene, LY353381, LY117081, toremifene, fulvestrant, 4-[7-(2,2-dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone, and SH646.

"Androgen receptor modulators" refers to compounds which interfere or inhibit the binding of androgens to the receptor, regardless of mechanism.

Examples of androgen receptor modulators include finasteride and other 5α-reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.

"Retinoid receptor modulators" refers to compounds which interfere or inhibit the binding of retinoids to the receptor, regardless of mechanism. Examples of such retinoid receptor modulators include bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis-retinoic acid, α-difluoromethylornithine, ILX23-7553, trans-N-(4'-hydroxyphenyl) retinamide, and N-4-carboxyphenyl retinamide.

5

10

15

20

25

30

"Cytotoxic/cytostatic agents" refer to compounds which cause cell death or inhibit cell proliferation primarily by interfering directly with the cell's functioning or inhibit or interfere with cell myosis, including alkylating agents, tumor necrosis factors, intercalators, hypoxia activatable compounds, microtubule inhibitors/microtubule-stabilizing agents, inhibitors of mitotic kinesins, inhibitors of kinases involved in mitotic progression, antimetabolites; biological response modifiers; hormonal/anti-hormonal therapeutic agents, haematopoietic growth factors, monoclonal antibody targeted therapeutic agents, topoisomerase inhibitors, proteosome inhibitors and ubiquitin ligase inhibitors.

Examples of cytotoxic agents include, but are not limited to, sertenef, cachectin, ifosfamide, tasonermin, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcitol, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improsulfan tosilate, trofosfamide, nimustine, dibrospidium chloride, pumitepa, lobaplatin, satraplatin, profiromycin, cisplatin, irofulven, dexifosfamide, cis-aminedichloro(2-methyl-pyridine)platinum, benzylguanine, glufosfamide, GPX100, (trans, trans, trans)-bis-mu-(hexane-1,6-diamine)-mu-[diamine-platinum(II)]bis[diamine(chloro)platinum (II)]tetrachloride, diarizidinylspermine, arsenic trioxide, 1-(11-dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthine, zorubicin, idarubicin, daunorubicin, bisantrene, mitoxantrone, pirarubicin, pinafide, valrubicin, amrubicin, antineoplaston, 3'-deamino-3'-morpholino-13-deoxo-10-hydroxycarminomycin, annamycin, galarubicin, elinafide, MEN10755, and 4-demethoxy-3-deamino-3-aziridinyl-4-methylsulphonyl-daunorubicin (see WO 00/50032).

An example of a hypoxia activatable compound is tirapazamine.

Examples of proteosome inhibitors include but are not limited to lactacystin and MLN-341 (Velcade).

Examples of microtubule inhibitors/microtubule-stabilising agents include paclitaxel, vindesine sulfate, 3',4'-didehydro-4'-deoxy-8'-

norvincaleukoblastine, docetaxol, rhizoxin, dolastatin, mivobulin isethionate, auristatin, cemadotin, RPR109881, BMS184476, vinflunine, cryptophycin, 2,3,4,5,6-pentafluoro-N-(3-fluoro-4-methoxyphenyl) benzene sulfonamide, anhydrovinblastine, N,N-dimethyl-L-valyl-L-valyl-L-prolyl-L-proline-t-butylamide, TDX258, the epothilones (see for example U.S. Pat. Nos. 6,284,781 and 6,288,237) and BMS188797. In an embodiment the epothilones are not included in the

and BMS188797. In an embodiment the epothilones are not included in the microtubule inhibitors/microtubule-stabilising agents.

Some examples of topoisomerase inhibitors are topotecan,

5

30

hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3',4'-O-exo-benzylidene10 chartreusin, 9-methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridine-2-(6H)
propanamine, 1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H,12Hbenzo[de]pyrano[3',4':b,7]-indolizino[1,2b]quinoline-10,13(9H,15H)dione,
lurtotecan, 7-[2-(N-isopropylamino)ethyl]-(20S)camptothecin, BNP1350, BNPI1100,
BN80915, BN80942, etoposide phosphate, teniposide, sobuzoxane, 2'-

- dimethylamino-2'-deoxy-etoposide, GL331, N-[2-(dimethylamino)ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxamide, asulacrine, (5a, 5aB, 8aa,9b)-9-[2-[N-[2-(dimethylamino)ethyl]-N-methylamino]ethyl]-5-[4-hydro0xy-3,5-dimethoxyphenyl]-5,5a,6,8,8a,9-hexohydrofuro(3',4':6,7)naphtho(2,3-d)-1,3-dioxol-6-one, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]-
- phenanthridinium, 6,9-bis[(2-aminoethyl)amino]benzo[g]isoguinoline-5,10-dione, 5-(3-aminopropylamino)-7,10-dihydroxy-2-(2-hydroxyethylaminomethyl)-6H-pyrazolo[4,5,1-de]acridin-6-one, N-[1-[2(diethylamino)ethylamino]-7-methoxy-9-oxo-9H-thioxanthen-4-ylmethyl]formamide, N-(2-(dimethylamino)ethyl)acridine-4-carboxamide, 6-[[2-(dimethylamino)ethyl]amino]-3-hydroxy-7H-indeno[2,1-c] quinolin-7-one, and dimesna.

Examples of inhibitors of mitotic kinesins, and in particular the human mitotic kinesin KSP, are described in PCT Publications WO 01/30768 and WO 01/98278, and pending U.S. Ser. Nos. 60/338,779 (filed December 6, 2001), 60/338,344 (filed December 6, 2001), 60/338,383 (filed December 6, 2001), 60/338,380 (filed December 6, 2001), 60/338,379 (filed December 6, 2001) and 60/344,453 (filed November 7, 2001). In an embodiment inhibitors of mitotic kinesins include, but are not limited to inhibitors of KSP, inhibitors of MKLP1, inhibitors of CENP-E, inhibitors of MCAK and inhibitors of Rab6-KIFL.

"Inhibitors of kinases involved in mitotic progression" include, but are not limited to, inhibitors of aurora kinase, inhibitors of Polo-like kinases (PLK) (in particular inhibitors of PLK-1), inhibitors of bub-1 and inhibitors of bub-R1.

"Antiproliferative agents" includes antisense RNA and DNA

oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231, and INX3001, and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabine ocfosfate, fosteabine sodium hydrate, raltitrexed, paltitrexid, emitefur, tiazofurin, decitabine, nolatrexed, pemetrexed, nelzarabine, 2'-deoxy-2'-methylidenecytidine, 2'-fluoromethylene-2'-deoxycytidine, N-[5-(2,3-dihydro-benzofuryl)sulfonyl]-N'-(3,4-dichlorophenyl)urea, N6-[4-deoxy-4-[N2-[2(E),4(E)-tetradecadienoyl]glycylamino]-L-glycero-B-L-manno-heptopyranosyl]adenine, aplidine, ecteinascidin, troxacitabine, 4-[2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4-b][1,4]thiazin-6-yl-(S)-ethyl]-2,5-thienoyl-L-glutamic acid, aminopterin, 5-flurouracil, alanosine, 11-acetyl-8-

15 (carbamoyloxymethyl)-4-formyl-6-methoxy-14-oxa-1,11-diazatetracyclo(7.4.1.0.0)-tetradeca-2,4,6-trien-9-yl acetic acid ester, swainsonine, lometrexol, dexrazoxane, methioninase, 2'-cyano-2'-deoxy-N4-palmitoyl-1-B-D-arabino furanosyl cytosine, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone and trastuzumab.

Examples of monoclonal antibody targeted therapeutic agents include
those therapeutic agents which have cytotoxic agents or radioisotopes attached to a
cancer cell specific or target cell specific monoclonal antibody. Examples include
Bexxar.

"HMG-CoA reductase inhibitors" refers to inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase. Compounds which have inhibitory activity for HMG-CoA reductase can be readily identified by using assays well-known in the art. For example, see the assays described or cited in U.S. Patent 4,231,938 at col. 6, and WO 84/02131 at pp. 30-33. The terms "HMG-CoA reductase inhibitor" and "inhibitor of HMG-CoA reductase" have the same meaning when used herein.

25

Examples of HMG-CoA reductase inhibitors that may be used include but are not limited to lovastatin (MEVACOR®; see U.S. Patent Nos. 4,231,938, 4,294,926 and 4,319,039), simvastatin (ZOCOR®; see U.S. Patent Nos. 4,444,784, 4,820,850 and 4,916,239), pravastatin (PRAVACHOL®; see U.S. Patent Nos. 4,346,227, 4,537,859, 4,410,629, 5,030,447 and 5,180,589), fluvastatin (LESCOL®; see U.S. Patent Nos. 5,354,772, 4,911,165, 4,929,437, 5,189,164, 5,118,853, 5,290,946 and 5,356,896), atorvastatin (LIPITOR®; see U.S. Patent Nos. 5,273,995,

4,681,893, 5,489,691 and 5,342,952) and cerivastatin (also known as rivastatin and BAYCHOL®; see US Patent No. 5,177,080). The structural formulas of these and additional HMG-CoA reductase inhibitors that may be used in the instant methods are described at page 87 of M. Yalpani, "Cholesterol Lowering Drugs", *Chemistry & Industry*, pp. 85-89 (5 February 1996) and US Patent Nos. 4,782,084 and 4,885,314. The term HMG-CoA reductase inhibitor as used herein includes all pharmaceutically acceptable lactone and open-acid forms (i.e., where the lactone ring is opened to form the free acid) as well as salt and ester forms of compounds which have HMG-CoA reductase inhibitory activity, and therefor the use of such salts, esters, open-acid and lactone forms is included within the scope of this invention. An illustration of the lactone portion and its corresponding open-acid form is shown below as structures I and II.

5

10

15

20

25

In HMG-CoA reductase inhibitors where an open-acid form can exist, salt and ester forms may be formed from the open-acid, and all such forms are included within the meaning of the term "HMG-CoA reductase inhibitor" as used herein. In an embodiment, the HMG-CoA reductase inhibitor is selected from lovastatin and simvastatin, and in a further embodiment, simvastatin. Herein, the term "pharmaceutically acceptable salts" with respect to the HMG-CoA reductase inhibitor shall mean non-toxic salts of the compounds employed in this invention which are generally prepared by reacting the free acid with a suitable organic or inorganic base, particularly those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc and tetramethylammonium, as well as those salts formed from amines such as ammonia, ethylenediamine, N-methylglucamine, lysine, arginine, ornithine, choline, N,N'-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, 1-p-

chlorobenzyl-2-pyrrolidine-1'-yl-methylbenz-imidazole, diethylamine, piperazine, and tris(hydroxymethyl) aminomethane. Further examples of salt forms of HMG-CoA reductase inhibitors may include, but are not limited to, acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynapthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, pamaote, palmitate, panthothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, triethiodide, and valerate.

Ester derivatives of the described HMG-CoA reductase inhibitor compounds may act as prodrugs which, when absorbed into the bloodstream of a warm-blooded animal, may cleave in such a manner as to release the drug form and permit the drug to afford improved therapeutic efficacy.

15

"Prenyl-protein transferase inhibitor" refers to a compound which inhibits any one or any combination of the prenyl-protein transferase enzymes, including farnesyl-protein transferase (FPTase), geranylgeranyl-protein transferase type I (GGPTase-I), and geranylgeranyl-protein transferase type-II (GGPTase-II. also 20 called Rab GGPTase). Examples of prenyl-protein transferase inhibiting compounds include (+)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3chlorophenyl)-1-methyl-2(1H)-quinolinone, (-)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone, (+)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl) methyl]-4-(3-chlorophenyl)-1-25 methyl-2(1H)-quinolinone, 5(S)-n-butyl-1-(2,3-dimethylphenyl)-4-[1-(4cyanobenzyl)-5-imidazolylmethyl]-2-piperazinone, (S)-1-(3-chlorophenyl) -4-[1-(4cyanobenzyl)-5-imidazolylmethyl]-5-[2-(ethanesulfonyl) methyl)-2-piperazinone, 5(S)-n-Butyl-1-(2-methylphenyl)-4-[1-(4-cyanobenzyl)-5-imidazolylmethyl]-2piperazinone, 1-(3-chlorophenyl) -4-[1-(4-cyanobenzyl)-2-methyl-5-30 imidazolylmethyl]-2-piperazinone, 1-(2,2-diphenylethyl)-3-[N-(1-(4-cyanobenzyl)-1H-imidazol-5-ylethyl)carbamoyl]piperidine, 4-{5-[4-hydroxymethyl-4-(4chloropyridin-2-ylmethyl)-piperidine-1-ylmethyl]-2-methylimidazol-1-ylmethyl} benzonitrile, 4-{5-[4-hydroxymethyl-4-(3-chlorobenzyl)-piperidine-1-ylmethyl]-2methylimidazol-1-ylmethyl}benzonitrile, 4-{3-[4-(2-oxo-2H-pyridin-1-yl)benzyl]-3H-35

imidazol-4-ylmethyl}benzonitrile, 4-{3-[4-(5-chloro-2-oxo-2H-[1,2']bipyridin-5'-ylmethyl]-3H-imidazol-4-ylmethyl}benzonitrile, 4-{3-[4-(2-oxo-2H-[1,2'] bipyridin-5'-ylmethyl]-3H-imidazol-4-ylmethyl}benzonitrile, 4-[3-(2-oxo-1-phenyl-1,2-dihydropyridin-4-ylmethyl)-3H-imidazol-4-ylmethyl}benzonitrile, 18,19-dihydro-19-oxo-5H,17H-6,10:12,16-dimetheno-1H-imidazo[4,3-c][1,11,4]dioxaazacyclononadecine-9-carbonitrile, (±)-19,20-dihydro-19-oxo-5H-18,21-ethano-12,14-etheno-6,10-metheno-22H-benzo[d]imidazo[4,3-k][1,6,9,12]oxatriaza-cyclooctadecine-9-carbonitrile, 19,20-dihydro-19-oxo-5H,17H-18,21-ethano-6,10:12,16-dimetheno-22H-imidazo[3,4-h][1,8,11,14]oxatriazacycloeicosine-9-carbonitrile, and (±)-19,20-dihydro-3-methyl-19-oxo-5H-18,21-ethano-12,14-etheno-6,10-metheno-22H-benzo [d]imidazo[4,3-k][1,6,9,12]oxa-triazacyclooctadecine-9-carbonitrile.

Other examples of prenyl-protein transferase inhibitors can be found in the following publications and patents: WO 96/30343, WO 97/18813, WO 97/21701, WO 97/23478, WO 97/38665, WO 98/28980, WO 98/29119, WO 95/32987,

- U.S. Patent No. 5,420,245, U.S. Patent No. 5,523,430, U.S. Patent No. 5,532,359,
 U.S. Patent No. 5,510,510, U.S. Patent No. 5,589,485, U.S. Patent No. 5,602,098,
 European Patent Publ. 0 618 221, European Patent Publ. 0 675 112, European Patent
 Publ. 0 604 181, European Patent Publ. 0 696 593, WO 94/19357, WO 95/08542, WO 95/11917, WO 95/12612, WO 95/12572, WO 95/10514, U.S. Patent No. 5,661,152,
- 20 WO 95/10515, WO 95/10516, WO 95/24612, WO 95/34535, WO 95/25086, WO 96/05529, WO 96/06138, WO 96/06193, WO 96/16443, WO 96/21701, WO 96/21456, WO 96/22278, WO 96/24611, WO 96/24612, WO 96/05168, WO 96/05169, WO 96/00736, U.S. Patent No. 5,571,792, WO 96/17861, WO 96/33159, WO 96/34850, WO 96/34851, WO 96/30017, WO 96/30018, WO 96/30362, WO
- 25 96/30363, WO 96/31111, WO 96/31477, WO 96/31478, WO 96/31501, WO 97/00252, WO 97/03047, WO 97/03050, WO 97/04785, WO 97/02920, WO 97/17070, WO 97/23478, WO 97/26246, WO 97/30053, WO 97/44350, WO 98/02436, and U.S. Patent No. 5,532,359.

30

- For an example of the role of a prenyl-protein transferase inhibitor on angiogenesis see European J. of Cancer, Vol. 35, No. 9, pp.1394-1401 (1999).
 - "Angiogenesis inhibitors" refers to compounds that inhibit the formation of new blood vessels, regardless of mechanism. Examples of angiogenesis inhibitors include, but are not limited to, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2),
- inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors,

MMP (matrix metalloprotease) inhibitors, integrin blockers, interferon- α , interleukin-12, pentosan polysulfate, cyclooxygenase inhibitors, including nonsteroidal antiinflammatories (NSAIDs) like aspirin and ibuprofen as well as selective cyclooxygenase-2 inhibitors like celecoxib and rofecoxib (PNAS, Vol. 89, p. 7384 (1992); 5 JNCI, Vol. 69, p. 475 (1982); Arch. Opthalmol., Vol. 108, p.573 (1990); Anat. Rec., Vol. 238, p. 68 (1994); FEBS Letters, Vol. 372, p. 83 (1995); Clin, Orthop. Vol. 313, p. 76 (1995); J. Mol. Endocrinol., Vol. 16, p.107 (1996); Jpn. J. Pharmacol., Vol. 75, p. 105 (1997); Cancer Res., Vol. 57, p. 1625 (1997); Cell, Vol. 93, p. 705 (1998); Intl. J. Mol. Med., Vol. 2, p. 715 (1998); J. Biol. Chem., Vol. 274, p. 9116 (1999)), 10 steroidal anti-inflammatories (such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone), carboxyamidotriazole, combretastatin A-4, squalamine, 6-O-chloroacetyl-carbonyl)fumagillol, thalidomide, angiostatin, troponin-1, angiotensin II antagonists (see Fernandez et al., J. Lab. Clin. Med. 105:141-145 (1985)), and antibodies to VEGF 15 (see, Nature Biotechnology, Vol. 17, pp.963-968 (October 1999); Kim et al., Nature, 362, 841-844 (1993); WO 00/44777; and WO 00/61186).

Other therapeutic agents that modulate or inhibit angiogenesis and may also be used in combination with the compounds of the instant invention include agents that modulate or inhibit the coagulation and fibrinolysis systems (see review in Clin. Chem. La. Med. 38:679-692 (2000)). Examples of such agents that modulate or inhibit the coagulation and fibrinolysis pathways include, but are not limited to, heparin (see Thromb. Haemost. 80:10-23 (1998)), low molecular weight heparins, GPIIb/IIIa antagonists (such as tirofiban), warfarin, thrombin inhibitors and carboxypeptidase U inhibitors (also known as inhibitors of active thrombin activatable fibrinolysis inhibitor [TAFIa]) (see Thrombosis Res. 101:329-354 (2001)). TAFIa inhibitors have been described in U.S. Serial Nos. 60/310,927 (filed August 8, 2001) and 60/349,925 (filed January 18, 2002).

20

25

30

"Agents that interfere with cell cycle checkpoints" refer to compounds that inhibit protein kinases that transduce cell cycle checkpoint signals, thereby sensitizing the cancer cell to DNA damaging agents. Such agents include inhibitors of ATR, ATM, the Chk1 and Chk2 kinases and cdk and cdc kinase inhibitors and are specifically exemplified by 7-hydroxystaurosporin, flavopiridol, CYC202 (Cyclacel) and BMS-387032.

"Inhibitors of cell proliferation and survival signalling pathway" refer to compounds that inhibit signal transduction cascades downstream of cell surface receptors. Such agents include inhibitors of serine/threonine kinases (including but not limited to inhibitors of Akt such as described in WO 02/083064, WO 02/083139, WO 02/083140 and WO 02/083138), inhibitors of Raf kinase (for example BAY-43-9006), inhibitors of MEK (for example CI-1040 and PD-098059), inhibitors of mTOR (for example Wyeth CCI-779), and inhibitors of PI3K (for example LY294002).

The combinations with NSAID's are directed to the use of NSAID's which are potent COX-2 inhibiting agents. For purposes of this specification an NSAID is potent if it possess an IC₅₀ for the inhibition of COX-2 of $1\mu M$ or less as measured by cell or microsomal assays.

The invention also encompasses combinations with NSAID's which are selective COX-2 inhibitors. For purposes of this specification NSAID's which are selective inhibitors of COX-2 are defined as those which possess a specificity for inhibiting COX-2 over COX-1 of at least 100 fold as measured by the ratio of IC50 for COX-2 over IC50 for COX-1 evaluated by cell or microsomal assays. Such compounds include, but are not limited to those disclosed in U.S. Patent 5,474,995, issued December 12, 1995, U.S. Patent 5,861,419, issued January 19, 1999, U.S.

Patent 6,001,843, issued December 14, 1999, U.S. Patent 6,020,343, issued February 1, 2000, U.S. Patent 5,409,944, issued April 25, 1995, U.S. Patent 5,436,265, issued July 25, 1995, U.S. Patent 5,536,752, issued July 16, 1996, U.S. Patent 5,550,142, issued August 27, 1996, U.S. Patent 5,604,260, issued February 18, 1997, U.S. 5,698,584, issued December 16, 1997, U.S. Patent 5,710,140, issued January 20,1998,

WO 94/15932, published July 21, 1994, U.S. Patent 5,344,991, issued June 6, 1994, U.S. Patent 5,134,142, issued July 28, 1992, U.S. Patent 5,380,738, issued January 10, 1995, U.S. Patent 5,393,790, issued February 20, 1995, U.S. Patent 5,466,823, issued November 14, 1995, U.S. Patent 5,633,272, issued May 27, 1997, and U.S. Patent 5,932,598, issued August 3, 1999, all of which are hereby incorporated by reference.

Inhibitors of COX-2 that are particularly useful in the instant method of treatment are:

3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone; and

25

30

5

10

15

5-chloro-3-(4-methylsulfonyl)phenyl-2-(2-methyl-5-pyridinyl)pyridine;

5

10

15

or a pharmaceutically acceptable salt thereof.

General and specific synthetic procedures for the preparation of the COX-2 inhibitor compounds described above are found in U.S. Patent No. 5,474,995, issued December 12, 1995, U.S. Patent No. 5,861,419, issued January 19, 1999, and U.S. Patent No. 6,001,843, issued December 14, 1999, all of which are herein incorporated by reference.

Compounds that have been described as specific inhibitors of COX-2 and are therefore useful in the present invention include, but are not limited to, the following:

$$H_2N$$
 N CF_3 H_3C

or a pharmaceutically acceptable salt thereof.

Compounds which are described as specific inhibitors of COX-2 and are therefore useful in the present invention, and methods of synthesis thereof, can be found in the following patents, pending applications and publications, which are herein incorporated by reference: WO 94/15932, published July 21, 1994, U.S. Patent No. 5,344,991, issued June 6, 1994, U.S. Patent No. 5,134,142, issued July 28, 1992, U.S. Patent No. 5,380,738, issued January 10, 1995, U.S. Patent No. 5,393,790, issued February 20, 1995, U.S. Patent No. 5,466,823, issued November 14, 1995, U.S. Patent No. 5,633,272, issued May 27, 1997, and U.S. Patent No. 5,932,598, issued August 3, 1999.

Compounds which are specific inhibitors of COX-2 and are therefore useful in the present invention, and methods of synthesis thereof, can be found in the following patents, pending applications and publications, which are herein incorporated by reference: U.S. Patent No. 5,474,995, issued December 12, 1995,

5 U.S. Patent No. 5,861,419, issued January 19, 1999, U.S. Patent No. 6,001,843, issued December 14, 1999, U.S. Patent No. 6,020,343, issued February 1, 2000, U.S. Patent No. 5,409,944, issued April 25, 1995, U.S. Patent No. 5,436,265, issued July 25, 1995, U.S. Patent No. 5,536,752, issued July 16, 1996, U.S. Patent No. 5,550,142, issued August 27, 1996, U.S. Patent No. 5,604,260, issued February 18, 1997, U.S. Patent No. 5,698,584, issued December 16, 1997, and U.S. Patent No. 5,710,140, issued January 20,1998.

Other examples of angiogenesis inhibitors include, but are not limited to, endostatin, ukrain, ranpirnase, IM862, 5-methoxy-4-[2-methyl-3-(3-methyl-2-butenyl)oxiranyl]-1-oxaspiro[2,5]oct-6-yl(chloroacetyl)carbamate, acetyldinanaline, 5-amino-1-[[3,5-dichloro-4-(4-chlorobenzoyl)phenyl]methyl]-1H-1,2,3-triazole-4-carboxamide,CM101, squalamine, combretastatin, RPI4610, NX31838, sulfated mannopentaose phosphate, 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolocarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino]-bis-(1,3-naphthalene disulfonate), and 3-[(2,4-dimethylpyrrol-5-yl)methylene]-2-indolinone (SU5416).

15

20

25

30

35

As used above, "integrin blockers" refers to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the $\alpha_V\beta_3$ integrin, to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the $\alpha_V\beta_5$ integrin, to compounds which antagonize, inhibit or counteract binding of a physiological ligand to both the $\alpha_V\beta_3$ integrin and the $\alpha_V\beta_5$ integrin, and to compounds which antagonize, inhibit or counteract the activity of the particular integrin(s) expressed on capillary endothelial cells. The term also refers to antagonists of the $\alpha_V\beta_6$, $\alpha_V\beta_8$, $\alpha_1\beta_1$, $\alpha_2\beta_1$, $\alpha_5\beta_1$, $\alpha_6\beta_1$ and $\alpha_6\beta_4$ integrins. The term also refers to antagonists of any combination of $\alpha_V\beta_3$, $\alpha_V\beta_5$, $\alpha_V\beta_6$, $\alpha_V\beta_8$, $\alpha_1\beta_1$, $\alpha_2\beta_1$, $\alpha_5\beta_1$, $\alpha_6\beta_1$ and $\alpha_6\beta_4$ integrins.

Some specific examples of tyrosine kinase inhibitors include N-(trifluoromethylphenyl)-5-methylisoxazol-4-carboxamide, 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl)indolin-2-one, 17-(allylamino)-17-demethoxygeldanamycin, 4-(3-chloro-4-fluorophenylamino)-7-methoxy-6-[3-(4-morpholinyl)propoxyl]quinazoline, N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine, BIBX1382, 2,3,9,10,11,12-hexahydro-10-(hydroxymethyl)-10-hydroxy-9-methyl-9,12-epoxy-1H-

diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one, SH268, genistein, STI571, CEP2563, 4-(3-chlorophenylamino)-5,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidinemethane sulfonate, 4-(3-bromo-4-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, SU6668, STI571A, N-4-chlorophenyl-4-(4-pyridylmethyl)-1-phthalazinamine, and EMD121974.

5

30

Combinations with compounds other than anti-cancer compounds are also encompassed in the instant methods. For example, combinations of the instantly claimed compounds with PPAR-γ (i.e., PPAR-gamma) agonists and PPAR-δ (i.e., 10 PPAR-delta) agonists are useful in the treatment of certain malingnancies. PPAR-y and PPAR-δ are the nuclear peroxisome proliferator-activated receptors γ and δ. The expression of PPAR-y on endothelial cells and its involvement in angiogenesis has been reported in the literature (see J. Cardiovasc. Pharmacol. 1998; 31:909-913; J. Biol. Chem. 1999;274:9116-9121; Invest. Ophthalmol Vis. Sci. 2000; 41:2309-2317). More recently, PPAR-y agonists have been shown to inhibit the angiogenic response 15 to VEGF in vitro; both troglitazone and rosiglitazone maleate inhibit the development of retinal neovascularization in mice. (Arch. Ophthamol. 2001; 119:709-717). Examples of PPAR-γ agonists and PPAR-γ/α agonists include, but are not limited to, thiazolidinediones (such as DRF2725, CS-011, troglitazone, rosiglitazone, and pioglitazone), fenofibrate, gemfibrozil, clofibrate, GW2570, SB219994, AR-20 H039242, JTT-501, MCC-555, GW2331, GW409544, NN2344, KRP297, NP0110, DRF4158, NN622, GI262570, PNU182716, DRF552926, 2-[(5,7-dipropyl-3trifluoromethyl-1,2-benzisoxazol-6-yl)oxyl-2-methylpropionic acid (disclosed in USSN 09/782,856), and 2(R)-7-(3-(2-chloro-4-(4-fluorophenoxy) phenoxy)-25 2-ethylchromane-2-carboxylic acid (disclosed in USSN 60/235,708 and 60/244,697).

Another embodiment of the instant invention is the use of the presently disclosed compounds in combination with gene therapy for the treatment of cancer. For an overview of genetic strategies to treating cancer see Hall et al (Am J Hum Genet 61:785-789, 1997) and Kufe et al (Cancer Medicine, 5th Ed, pp 876-889, BC Decker, Hamilton 2000). Gene therapy can be used to deliver any tumor suppressing gene. Examples of such genes include, but are not limited to, p53, which can be delivered via recombinant virus-mediated gene transfer (see U.S. Patent No. 6,069,134, for example), a uPA/uPAR antagonist ("Adenovirus-Mediated Delivery of a uPA/uPAR Antagonist Suppresses Angiogenesis-Dependent Tumor Growth and

Dissemination in Mice," Gene Therapy, August 1998;5(8):1105-13), and interferon gamma (J Immunol 2000;164:217-222).

The compounds designed or selected using the methods of the instant invention may also be administered in combination with an inhibitor of inherent multidrug resistance (MDR), in particular MDR associated with high levels of expression of transporter proteins. Such MDR inhibitors include inhibitors of p-glycoprotein (P-gp), such as LY335979, XR9576, OC144-093, R101922, VX853 and PSC833 (valspodar).

A compound designed or selected using the methods of the present 10 invention may be employed in conjunction with anti-emetic agents to treat nausea or emesis, including acute, delayed, late-phase, and anticipatory emesis, which may result from the use of a compound of the present invention, alone or with radiation therapy. For the prevention or treatment of emesis, a compound of the present invention may be used in conjunction with other anti-emetic agents, especially 15 neurokinin-1 receptor antagonists, 5HT3 receptor antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or others such as disclosed in U.S.Patent Nos. 2,789,118, 2,990,401, 3,048,581, 3,126,375, 3,929,768, 3,996,359, 3,928,326 and 3,749,712, an 20 antidopaminergic, such as the phenothiazines (for example prochlorperazine, fluphenazine, thioridazine and mesoridazine), metoclopramide or dronabinol. For the treatment or prevention of emesis that may result upon administration of the instant compounds, conjunctive therapy with an anti-emesis agent selected from a neurokinin-1 receptor antagonist, a 5HT3 receptor antagonist and a corticosteroid is 25 preferred.

Neurokinin-1 receptor antagonists of use in conjunction with the compounds of the present invention are fully described, for example, in U.S. Patent Nos. 5,162,339, 5,232,929, 5,242,930, 5,373,003, 5,387,595, 5,459,270, 5,494,926, 5,496,833, 5,637,699, 5,719,147; European Patent Publication Nos. EP 0 360 390, 0 394 989, 0 428 434, 0 429 366, 0 430 771, 0 436 334, 0 443 132, 0 482 539, 0 498 069, 0 499 313, 0 512 901, 0 512 902, 0 514 273, 0 514 274, 0 514 275, 0 514 276, 0 515 681, 0 517 589, 0 520 555, 0 522 808, 0 528 495, 0 532 456, 0 533 280, 0 536 817, 0 545 478, 0 558 156, 0 577 394, 0 585 913,0 590 152, 0 599 538, 0 610 793, 0 634 402, 0 686 629, 0 693 489, 0 694 535, 0 699 655,

30

0 699 674, 0 707 006, 0 708 101, 0 709 375, 0 709 376, 0 714 891, 0 723 959, 0 733 632 and 0 776 893; PCT International Patent Publication Nos. WO 90/05525, 90/05729, 91/09844, 91/18899, 92/01688, 92/06079, 92/12151, 92/15585, 92/17449. 92/20661, 92/20676, 92/21677, 92/22569, 93/00330, 93/00331, 93/01159, 93/01165, 93/01169, 93/01170, 93/06099, 93/09116, 93/10073, 93/14084, 93/14113, 93/18023, 93/19064, 93/21155, 93/21181, 93/23380, 93/24465, 94/00440, 94/01402, 94/02461, 94/02595, 94/03429, 94/03445, 94/04494, 94/04496, 94/05625, 94/07843, 94/08997, 94/10165, 94/10167, 94/10168, 94/10170, 94/11368, 94/13639, 94/13663, 94/14767, 94/15903, 94/19320, 94/19323, 94/20500, 94/26735, 94/26740, 94/29309, 95/02595. 95/04040, 95/04042, 95/06645, 95/07886, 95/07908, 95/08549, 95/11880, 95/14017, 95/15311, 95/16679, 95/17382, 95/18124, 95/18129, 95/19344, 95/20575, 95/21819, 95/22525, 95/23798, 95/26338, 95/28418, 95/30674, 95/30687, 95/33744, 96/05181, 96/05193, 96/05203, 96/06094, 96/07649, 96/10562, 96/16939, 96/18643, 96/20197, 96/21661, 96/29304, 96/29317, 96/29326, 96/29328, 96/31214, 96/32385, 96/37489, 97/01553, 97/01554, 97/03066, 97/08144, 97/14671, 97/17362, 97/18206, 97/19084, 97/19942 and 97/21702; and in British Patent Publication Nos. 2 266 529, 2 268 931, 2 269 170, 2 269 590, 2 271 774, 2 292 144, 2 293 168, 2 293 169, and 2 302 689. The preparation of such compounds is fully described in the aforementioned patents and publications, which are incorporated herein by reference.

5

10

15

20

25

30

In an embodiment, the neurokinin-1 receptor antagonist for use in conjunction with the compounds of the present invention is selected from: 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4-triazolo)methyl)morpholine, or a pharmaceutically acceptable salt thereof, which is described in U.S. Patent No. 5,719,147.

A compound designed or selected using the methods of the instant invention may also be administered with an agent useful in the treatment of anemia. Such an anemia treatment agent is, for example, a continuous eythropoiesis receptor activator (such as epoetin alfa).

A compound designed or selected using the methods of the instant invention may also be administered with an agent useful in the treatment of neutropenia. Such a neutropenia treatment agent is, for example, a hematopoietic growth factor which regulates the production and function of neutrophils such as a human granulocyte colony stimulating factor, (G-CSF). Examples of a G-CSF include filgrastim.

A compound designed or selected using the methods of the instant invention may also be administered with an immunologic-enhancing drug, such as levamisole, isoprinosine and Zadaxin.

Thus, the scope of the instant invention encompasses the use of the compounds designed or selected using the methods disclosed herein in combination with a second compound selected from:

	-	
	1)	an estrogen receptor modulator,
	2)	an androgen receptor modulator,
	3)	retinoid receptor modulator,
10	4)	a cytotoxic/cytostatic agent,
	5)	an antiproliferative agent,
	6)	a prenyl-protein transferase inhibitor,
	7)	an HMG-CoA reductase inhibitor,
	8)	an HIV protease inhibitor,
15	9)	a reverse transcriptase inhibitor,
	10)	an angiogenesis inhibitor,
	11)	a PPAR-γ agonists,
	12)	a PPAR-δ agonists,
	13)	an inhibitor of inherent multidrug resistance,
20	14)	an anti-emetic agent,
	15)	an agent useful in the treatment of anemia,
	16)	an agent useful in the treatment of neutropenia,
	17)	an immunologic-enhancing drug,
	18)	an inhibitor of cell proliferation and survival signaling, and
25	19)	an agent that interfers with a cell cycle checkpoint.

The term "administration" and variants thereof (e.g., "administering" a compound) in reference to a compound of the invention means introducing the compound or a prodrug of the compound into the system of the animal in need of treatment. When a compound of the invention or prodrug thereof is provided in combination with one or more other active agents (e.g., a cytotoxic agent, etc.), "administration" and its variants are each understood to include concurrent and sequential introduction of the compound or prodrug thereof and other agents.

30

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any

product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

5

10

15

20

35

The term "therapeutically effective amount" as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.

The term "treating cancer" or "treatment of cancer" refers to administration to a mammal afflicted with a cancerous condition and refers to an effect that alleviates the cancerous condition by killing the cancerous cells, but also to an effect that results in the inhibition of growth and/or metastasis of the cancer.

In an embodiment, the angiogenesis inhibitor to be used as the second compound is selected from a tyrosine kinase inhibitor, an inhibitor of epidermal-derived growth factor, an inhibitor of fibroblast-derived growth factor, an inhibitor of platelet derived growth factor, an MMP (matrix metalloprotease) inhibitor, an integrin blocker, interferon-α, interleukin-12, pentosan polysulfate, a cyclooxygenase inhibitor, carboxyamidotriazole, combretastatin A-4, squalamine, 6-O-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin-1, or an antibody to VEGF. In an embodiment, the estrogen receptor modulator is tamoxifen or raloxifene.

Also included in the scope of the claims is a method of treating cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with radiation therapy and/or in combination with a compound selected from:

1) an estrogen receptor modulator, 2) an androgen receptor modulator, 25 3) a retinoid receptor modulator, a cytotoxic/cytostatic agent, 4) 5) an antiproliferative agent, 6) a prenyl-protein transferase inhibitor, 7) an HMG-CoA reductase inhibitor, 30 8) an HIV protease inhibitor, 9) a reverse transcriptase inhibitor, 10) an angiogenesis inhibitor,

PPAR-y agonists,

PPAR-δ agonists,

11)

12)

13) an inhibitor of inherent multidrug resistance,

14) an anti-emetic agent,

5

10

15

20

- 15) an agent useful in the treatment of anemia,
- 16) an agent useful in the treatment of neutropenia,
- 17) an immunologic-enhancing drug,
- 18) an inhibitor of cell proliferation and survival signaling, and
- 19) an agent that interfers with a cell cycle checkpoint.

And yet another embodiment of the invention is a method of treating cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with paclitaxel or trastuzumab.

The invention further encompasses a method of treating or preventing cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with a COX-2 inhibitor.

The instant invention also includes a pharmaceutical composition useful for treating or preventing cancer that comprises a therapeutically effective amount of a compound designed or selected using the methods disclosed herein and a compound selected from:

- 1) an estrogen receptor modulator,
- an androgen receptor modulator,
 - 3) a retinoid receptor modulator,
 - 4) a cytotoxic/cytostatic agent,
 - 5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
- 25 an HMG-CoA reductase inhibitor,
 - 8) an HIV protease inhibitor,
 - 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor, and
 - 11) a PPAR-γ agonist,
- 30 12) a PPAR-δ agonists;
 - 13) an inhibitor of cell proliferation and survival signaling, and
 - 14) an agent that interfers with a cell cycle checkpoint.

In each of the aforementioned uses of atomic coordinates of KSP, the coordinates according to Tables 1-4 are preferred.

Additional objects of the present invention will be apparent from the description which follows.

As used herein, the following terms and phrases shall have the meanings set forth below:

5

10

15

20

25

30

35

Unless otherwise noted, "KSP" includes both native and wild type Kinesin Spindle Protein as well as "KSP analogues", defined herein as proteins or peptides comprising a ligand binding site substantially as set forth in SEQ ID NO:1. Such KSP analogues include, but are not limited to, a ligand binding site characterized by a three-dimensional structure comprising the relative structural coordinates of amino acid residues set forth in Figure 10 as set forth in Tables 1-4, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 3.005 Å, more preferably not more than about 2.0Å, and most preferably not more than about 0.5 Å.

Unless otherwise indicated, "protein" or "molecule" shall include a protein, protein domain, polypeptide or peptide.

"Structural coordinates" are the Cartesian coordinates corresponding to an atom's spatial relationship to other atoms in a molecule or molecular complex. Structural coordinates may be obtained using X-ray crystallography techniques or NMR techniques, or may be derived using molecular replacement analysis or homology modeling. Various software programs allow for the graphical representation of a set of structural coordinates to obtain a three-dimensional representation of a molecule or molecular complex. The structural coordinates of the present invention may be modified from the original sets provided in Tables 1-4 by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, it is recognized that the structural coordinates of the present invention are relative, and are in no way specifically limited by the actual x, y, z coordinates of Tables 1-4.

An "agent", "ligand" or "binding partner" shall include a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound or drug.

"Root mean square deviation" is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from the structural coordinates

described herein. The present invention includes all embodiments comprising conservative substitutions of the noted amino acid residues resulting in same structural coordinates within the stated root mean square deviation.

5

MATERIALS AND METHODS

Materials and methods provided are intended to assist in a further understanding of the invention and are not to limit the reasonable scope thereof.

10

25

Motor Domain of Human KSP, Amino Acids 1-368
MASQPNSSAK KKEEKGKNIQ VVVRCRPFNL AERKASAHSI
VECDPVRKEV SVRTGGLADK SSRKTYTFDM VFGASTKQID
VYRSVVCPIL DEVIMGYNCT IFAYGQTGTG KTFTMEGERS

- 15 PNEEYTWEED PLAGIIPRTL HQIFEKLTDN GTEFSVKVSL
 LEIYNEELFD LLNPSSDVSE RLQMFDDPRN KRGVIIKGLE
 EITVHNKDEV YQILEKGAAK RTTAATLMNA YSSRSHSVFS
 VTIHMKETTI DGEELVKIGK LNLVDLAGSE NIGRSGAVDK
 RAREAGNINQ SLLTLGRVIT ALVERTPHVP YRESKLTRIL
- 20 QDSLGGRTRT SIIATISPAS LNLEETLSTL EYAHRAKNIL NKPEVNOK

Binding Pocket of Human KSP

Lining the newly formed pocket and surrounding the ligand are amino acid residues:

115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P) (from helix- α 2 and its insertion loop; residue 116 is at the end of the first portion of helix- α 2 and residue 134 is at the beginning of the second portion of helix- α 2 thus the insertion loop starts at residue 116

30 and ends at residue 134);

160(L) (from beta strain- β 4); 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) (from helix- α 3); and 239(F) (from beta strain- β 6).

35 KSP Expression

E. coli cells harboring the KSP (368 residues) vector were grown at 37°C in LB medium containing 100 µg/ml ampicillin. KSP expression was induced at 25°C with 0.5mM isopropyl-D (-)-thiogalactopyranoside, and the cells were grown for four additional hours at 25°C prior to harvest.

5 Cells from 10 litre were suspended in 75 ml lysis buffer (50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA, protease inhibitor tablets (one tablet per 50ml buffer)) and homogenized. Cells were disrupted by passing the homogenized suspension thrice through 10 a Microfluidizer (Model 110-S). The cell lysate was centrifuged at 15,000 rpm for 30 minutes and the supernatant mixed with DE-52 resin (100 ml) pre-equilibrated in SP sepharose Buffer A (50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA). Supernatant was removed after spinning at 1000 rpm for 10 minutes. Resin was washed twice with one resin 15 volume (100ml) of 50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA. The supernatants were pooled and loaded onto SP sepharose column (50ml, 2.6cm diameter column, Amersham Biosciences). Kinesin with ~95% purity was eluted at 0.15 to 0.2 M KCl using 0-30% KCl gradient. The fractions containing KSP (by SDS-PAGE analysis) were 20 pooled and diluted with SP sepharose buffer A to a final KCl concentration of 50mM. The pool was mixed with 10ml of High performance Q-sepharose (Amersham Biosciencs) equilibrated in SP sepharose BufferA. The supernatent was collected by spinning at 1000rpm for 10 minutes. The resin was washed four times with two resin volume. The washes and supernatant 25 were pooled and concentrated on Centriprep-10 to 15 to 17mg/ml and stored in small alicots at -70° C. The protein was characterized by N-terminal sequence analysis by Edman degradation on an Applied Biosystem model 470A gas phase sequencer. Protein concentration was determined with quantitative amino acid analysis by using a post column ninhydrin 30 derivatization method on a Beckman 6300 analyzer. Molecular weight was determined on Deca-LCQ (Finnegan) mass spectrometer. Molar mass and size distribution was determined by multi-angle light scattering detector (Wyatt technology, DAWN EOS) connected to size exclusion column on Millenium HPLC.

Crystallization

5

10

30

The concentrated kinesin (ADP, Mg⁺⁺) protein at about 15mg/ml in 50mM PIPES buffer at pH 6.8 in the presence of 2mM MgCl₂, 1mM TECP, 1mM ATP, 84mM KCl, and 1mM EGTA was incubated with 1mM inhibitor Compound 5-2b ((+)-monastrol). Small single crystal seeds were obtained by hanging drop method with well solution containing 20% PEG3350, 0.15M K₂HPO₄ and 0.1M HEPES buffer at pH7.0 in about four days. Crystals suitable for X-ray data collection were obtained by macroseeding in hanging drops with well solution containing 14% PEG3350, 0.2M K₂HPO₄ and 0.1M HEPES at pH 6.8 in about two weeks. Hanging drops were formed by equal volume of protein and well solutions.

X-ray Data Collection and Procession

The X-ray diffraction data at 2.5 Å resolution were collected at 100K at synchrotron beamline 17-ID of the Advanced Photon Source at Argonne National Laboratory. Prior to data collection the crystal was soaked in the cryo-protectant solution for 20 minutes that contains 20% PEG3350, 0.15M K₂HPO₄, 20% PEG200, and 0.1M HEPES buffer at pH6.8. The crystal was then frozen in liquid nitrogen. The X-ray wavelength was set to 1Å. The data were collected at 0.2° oscillation per frame with 1000 frames total and 1 second exposure per frame at 250 mm detector to crystal distance. The data were processed and scaled by use of HKL2000 package. The crystal is in orthorhombic space group of P2₁2₁2₁ with cell dimensions of a= 69.5 Å b=79.5 Å and c=159.0 Å. The

Structure Determination and Refinement

The structure was determined by the use of the molecular replacement method in cooperation with extensive model rebuilding and dynamic refinement. The kinesin protein coordinates in the binary complex crystal structure of kinesin bound with ADP (Mg⁺⁺) was used as the search model. The molecular replacement solution was obtained with use of program AmoRe at 4.0Å to 15Å resolution range, which gave R-factor of 0.48 and correlation coefficient of 0.60. The initial protein model was

rebuilt and refined literally at 2.5Å resolution, those included dynamic refinement, energy minimization and temperature factor refinement. The Compound 5-2b density became apparent at the fourth rebuilding and refinement cycle. Finally, 441 water molecules were added in the model and 5 the R-factor was 0.21 with R-free of 0.26 with good geometry (RMSD_{bonds} = 0.007 Å, RMSD_{angles} = 1.32°). The current protein model binds with one ADP, one Mg⁺⁺ ion and one Compound 5-2b. It starts at residue Asn18 to Lys362 with a gap from residue Asn271 to Asn287 (missing loop11 from Ile272 to Gly286) due to lack of electron density. There are two complexes in an asymmetric unit.

Tertiary Structure of KSP/ADP/Compound 5-2b

The 3-dimensional, tertiary structure of KSP, bound with Mg⁺⁺-ADP and Compound 5-2b ((+)-monastrol), was determined at 2.5Å resolution with 15 use of phases derived from a combination of molecular replacement, extensive manual rebuilding, and dynamic refinement. Two identical protein complexes were found in the asymmetric unit of the crystal and were related by a local, non-crystallographic 2-fold axis. For each, the electron density of the protein as well as those of the ligands (ADP, Mg⁺⁺, and 20 Compound 5-2b) was all well defined. Compound 5-2b was seen to be of the

S handedness. Residues 2-17, 272-286, and 363-368 were disordered and showed no electron densities (The N-terminal Met 1 residue was processed upon expression). See Figures 1-8.

25 Fluorescence of Trp127 of KSP(368)-ADP -/+ Inhibitors

Materials

10

- -2X kinesin buffer: 160 mM K-Hepes, 2 mM MgCl₂, 2 mM EGTA, 2 mM DTT (added fresh daily), and 100 mM KCl, pH 6.8.
- 30 -Nucleotide: nucleotide is resuspended to 200 mM in 50 mM K-Hepes (pH 6.8).
 - -Nucleotide is diluted 1:1 with 200 mM MgCl₂ to a stock concentration of 100 mM of 1:1 nucleotide:MgCl₂.
 - -Cuvette volume = 300 µl

Methods

1) Add 281 μ l of 1X kinesin buffer, \pm nucleotide, and H₂O (Nucleotide = none, 1 mM AMPPNP, or 1 mM ADP (final concentration)).

- 5 2) Add 18.75 µl of 4 µM stock nucleotide-free KSP(367H).
 - 3) Add compound sequentially from DMSO stock (with all the volume of all additions $\leq 0.6 \,\mu$ l).
 - 4) Measure fluorescence after each addition (starting with buffer only).
- Example titration for Compound 8-1 with KSP(367H)ADP:
 281 μl of 1X kinesin buffer + 1 mM ADP:
 add 250 nM KSP (18.75 μl of 4 uM nucleotide-free stock)
 add 1 nM Compound 8-1 (1 nM_f) (addition of 0.3 μl of 0.001 mM stock)
 add 2 nM Compound 8-1 (3 nM_f) (addition of 0.6 μl of 0.001 mM stock)
- add 4 nM Compound 8-1 (7 nM_f) (addition of 0.12 μ l of 0.01 mM stock) add 3 nM Compound 8-1 (10 nM_f) (addition of 0.09 μ l of 0.01 mM stock) add 20 nM Compound 8-1 (30 nM_f) (addition of 0.6 μ l of 0.01 mM stock) add 40 nM Compound 8-1 (70 nM_f) (addition of 0.12 μ l of 0.1 mM stock) add 30 nM Compound 8-1 (100 nM_f) (addition of 0.09 μ l of 0.1 mM stock)
- add 200 nM Compound 8-1 (300 nM_f) (addition of 0.6 μl of 0.1 mM stock) add 400 nM Compound 8-1 (700 nM_f) (addition of 0.12 μl of 1 mM stock) add 300 nM Compound 8-1 (1000 nM_f) (addition of 0.09 μl of 1 mM stock) add 2000 nM Compound 8-1 (3000 nM_f) (addition of 0.6 μl of 1 mM stock).
- 6) After each addition, measure steady-state fluorescence under the following conditions:
 - $\lambda_{ex} = 388$ nm, $\lambda_{em} = 342-346$ nm, band width = 3 nm ex/3 nm em, wavelength increment = 0.5 nm, integration time = 2 s.
- Repeat the same titration series:

 in the absence of KSP (to determine compound-related background), and

 in the absence of KSP, but in the presence of 1 μM L-tryptophan (to determine compound-related effects on the amino acid itself).

Calculations

At the peak emission wavelength for W127 in KSP(367H) (=344 nm) measure the compound emission in kinesin buffer as a function of [compound]; measure fluorescence of L-tryptophan as a function of [compound]; measure fluorescence of KSP(367H) as a function of [compound]; correct KSP(367H) fluorescence for its decrease over time (due to losses of protein to the cuvette); subtract compound emission from L-tryptophan emission; subtract compound emission from KSP(367H) emission. Calculate the fraction of fluorescence of L-tryptophan vs [compound]: (L-trp fluorescence (344 nm) at given [compound]) / (L-trp fluorescence (344 nm) at given [compound]) / (KSP fluorescence (344 nm) at given [compound]) / (KSP fluorescence (344 nm) at 0 cpd); then normalize: KSP (frcn fl) / L-trp(frcn fl) and plot vs [compound].

Results of this assay are illustrated in Figures 11-13.

15

Compounds that were utilized in the identification and testing of the novel KSP binding site that is disclosed herein may be prepared by the methods described below:

SCHEME 1

5 <u>Step 1</u>: 3-[3-(benzyloxy)phenyl]-1-(2-chlorophenyl)prop-2-en-1-one (1-4)

To a solution of 2'-chloroacetophenone (1-1) (1.26mL, 9.70mmol) in 40 mL of THF at -78°C was slowly added 10.7 mL (10.7mmol) of a 1M LiHMDS solution in THF. After stirring for 1h at - 78°C, a solution of 2.05g (9.70mmol) of 3-benzyloxy-benzaldehyde (1-2) in

<u>1-</u>7 R = Me

8 mL of THF was added, and stirring was continued at that temperature for an additional hour. The mixture was then dumped into a separatory funnel containing 100 mL of saturated aqueous NH₂Cl and extracted twice with 100 mL of EtOAc. The organic phases were combined, washed with 100 mL of brine, and dried over Na₂SO₄. After filtering off the drying agent, the solvent was removed on a rotary evaporator, and the residue was dissolved in 50 mL of CH₂Cl₂. After cooling to -78°C, 4 mL of triethylamine and 2 mL of trifluoroacetic anhydride were added sequentially, and the mixture was allowed to warm to rt and stir for 12h. The reaction was then dumped into a separatory funnel with 100 mL of 1M HCl, the layers were separated, and the aqueous phase extracted again with CH₂Cl₂. The organic layers were combined, washed again with 1 M HCl, washed with water, and dried over Na₂SO₄. After concentration, the crude material was purified by chromatography on silica gel with a gradient of 0 to 40% EtOAc in hexanes over 45 min to provide 1-4 as a viscous yellow oil. Data for 1-4: 1HNMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.5 - 7.0 \text{ (m, 15H) } 5.1 \text{ (s, 2H) ppm.}$

10

15

35

Step 2: 1-(2-chlorophenyl)-3-(hydroxyphenyl)prop-2-en-1-one (1-5)
To a solution of 740 mg (2.12mmol) of 1-4 in 15 mL of

CH₂Cl₂ at -78°C was added dropwise 2.75 mL (2.75mmol) of a 1M solution of BBr₃ in CH₂Cl₂. After stirring for 30 min at that temperature, 1 mL of MeOH was added, and the mixture was dumped into water, extracted twice with 50 mL of CH₂Cl₂, washed again with water, and dried over Na₂SO₄. After concentration, the residue was purified by column chromatography on silica gel with a gradient of 2 to 70% EtOAc in hexanes over 30 min to provide 1-5 as a beige solid. Data for 1-5: HNMR (500 MHz, CDCl₃) δ 7.5 - 7.3 (m, 5H), 7.25 (m, 1H), 7.2 - 7.0 (m, 3H), 6.9 (m, 1H), 5.1 (bs, 1H) ppm.

30 Step 3: 3-[1-acetyl-3-(2-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol (1-7)

To a solution of 120mg (0.46mmol) of chalcone $\underline{1-5}$ in 4 mL of acetic acid was added 50 μ L (0.93mmol) of hydrazine hydrate. The reaction was then placed in an oil bath at 110°C for 24h. After cooling to rt, the solvents were removed on a rotary evaporator, the residue was dissolved

in 50 mL of CH₂Cl₂, washed twice with aqueous NaHCO₃, dried over Na₂SO₄, and concentrated. The residue was then purified by column chromatography on silica gel with a gradient of 5 to 75% EtOAc in hexanes over 30 min to provide 1-7 as a fluffy white solid. Data for 1-7: ¹HNMR
5 (500 MHz, CDCl₃) δ 7.75 (m, 1H), 7.45 (m 1H), 7.4 – 7.3 (m, 2H), 7.2 (m, 1H), 6.8 (d, 1H), 6.7 (m, 2H), 5.5 (m, 1H), 3.9 (m, 1H), 3.3 (m, 1H), 2.4 (s, 3H) ppm. HRMS (ES) calc'd M + H for C₁₇H₁₅ClN₂O₂: 315.0895. Found: 315.0904.

SCHEME 2

F NOBF₄

$$F$$
 NH_2
 $CH_3CN, 0 \, ^{\circ}C;$
 F
 $2-1$

1. N
 F
 N_2^+
 $N_2^$

Step 1: 2,5-difluorobenzenediazonium tetrafluoroborate (2-1)

5

15

20

25

30

35

Nitrosonium tetrafluoroborate (905 mg, 7.75 mmol, 1.00 equiv) was added to a solution of 2,5-difluoroaniline (0.780 mL, 7.75 mmol, 1 equiv) in acetonitrile (50 mL) at 0°C. The resulting mixture was stirred for 1 h, then diluted with ethyl ether (150 mL). The precipitate was filtered and air-dried to give 2,5-difluorobenzenediazonium tetrafluoroborate (2-1) as a tan solid. ¹H NMR (300 MHz, CD₃OD) δ 8.54 (m, 1H), 8.24 (m, 1H), 7.95 (m, 1H).

10 Step 2: tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2-2)

Palladium(II) acetate (67 mg, 0.30 mmol, 0.020 equiv) was added to a vigourously stirred, deoxygenated mixture of tert-butyl 2,5dihydro-1H-pyrrole-1-carboxylate (2.59 mL, 15.0 mmol, 1 equiv) and 2,5difluorobenzenediazonium tetrafluoroborate (2-1, 3.42 g, 15.0 mmol, 1.00 equiv) in water and carbon tetrachloride (1:1, 150 mL) at 23°C, and the resulting mixture was stirred for 20 h. The reaction mixture was concentrated, and the residue partitioned between ethyl acetate (300 mL) and saturated aqueous sodium bicarbonate solution (75 mL). The organic layer was washed with brine, then dried over sodium sulfate and concentrated. The residue was dissolved in toluene (200 mL), and the resulting solution concentrated in vacuo to facilitate azeotropic removal of residual water. 2,6-Lutidine (3.50 mL, 30.0 mmol, 2.00 equiv) and trifluoroacetic anhydride (1.48 mL, 10.5 mmol, 0.700 equiv) were then sequentially added to a solution of the residue in toluene (100 mL) at -10°C. The resulting mixture was allowed to warm to 10 °C over 16 h, then heated at reflux for 1 h. The reaction mixture was allowed to cool to 23°C, then concentrated. The residue was partitioned between ethyl acetate (300 mL) and saturated aqueous sodium bicarbonate solution (150 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography (hexanes initially, grading to 20% EtOAc in hexanes) to give tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1carboxylate (2-2) as a red oil. ¹H NMR (500 MHz, CDCl₃) major rotamer: δ 7.03-6.84 (m, 3H), 6.70 (br s, 1H), 5.01 (br s, 1H), 4.42 (m, 1H), 4.13 (m, 1H), 3.60 (m, 1H), 1.50 (s, 9H).

Step 3: tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4)

5

10

15

20

25

30

35

Tris(dibenzylideneacetone)dipalladium(0) (59 mg, 064 mmol, 0.020 equiv) was added to a deoxygenated mixture of tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2-2, 900 mg, 3.20 mmol, 1 equiv), benzenediazonium tetrafluoroborate (1-3, prepared by the method described above for 2-3, 614 mg, 3.20 mmol, 1.00 equiv), and sodium acetate trihydrate (1.32 g, 9.60 mmol, 3.00 equiv) in acetonitrile (70 mL) at 23°C. The reaction mixture was stirred for 16 h, then partitioned between saturated aqueous sodium bicarbonate solution and ethyl acetate (2 x 70 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography (hexanes initially, grading to 40% hexanes in EtOAc) to provide tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4) as an orange oil. LRMS m/z (M+H-CH₃) 343.0 found, 343.1 required.

Step 4: 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5)

Trifluoroacetic acid (20 mL) was added to a solution of tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4, 700 mg, 1.96 mmol, 1 equiv) in dichloromethane (50 mL) at 23 °C, and the resulting mixture was stirred for 30 min, then concentrated to give 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5) as a TFA salt (brown oil). LRMS m/z (M+H) 258.1 found, 258.1 required.

<u>Step 5</u>: 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-6)

Triethylamine (1.37 mL, 9.79 mmol, 5.00 equiv) and dimethylcarbamoyl chloride (0.180 mL, 1.96 mmol, 1.00 equiv) were added to a solution of 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5, 1.96 mmol) in dichloromethane (50 mL) at 23°C, and the resulting mixture was stirred for 2 h, then concentrated. The residue was partitioned between saturated aqueous sodium bicarbonate solution (75 ml) and ethyl acetate (100 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN

gradient w/ 0.1 % TFA present) to provide 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-6) as an off-white solid. 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.29 (m, 4H), 7.25 (m, 1H), 7.05 (m, 1H), 7.00 (m, 1H), 6.96 (m, 1H), 6.40 (br s, 1H), 6.13 (m, 1H), 4.88 (ddd, 1H, J = 13.7, 5.6, 2.0 Hz), 4.52 (d, 1H, J = 13.7 Hz), 2.88 (s, 6H). LRMS m/z (M+H) 329.1 found, 329.1 required.

<u>Step 6</u>: Enantiomers of 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-7 and 2-8)

5

10

Resolution of enantiomers of racemic 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-6) by chiral normal-phase HPLC (Chiralcel OD column: 0.1 % diethylamine in 40% ethanol in hexanes) provided in order of elution 2-7 (-) and 2-8 (+).

SCHEME 3

5

Step 1: (2S,4S)-tert-Butyl 4-hydroxy-2-phenylpyrrolidine-1-carboxylate (3-2)

To a flame dried flask equipped with stir bar was added tertbutyl (2S,4S)-4-{[tert-butyl(dimethyl)silyl]oxy}-2-phenylpyrrolidine-1-5 carboxylate (3-1, prepared from (S)-(-)-4-chloro-3-hydroxybutyronotrile by the method of Maeda, et al Synlett 2001, 1808-1810, 7.8 g, 20.7 mmol) and anhydrous acetonitrile (20.0 mL). The resulting solution was treated with triethylamine trihydrofluoride (10.1 mL, 62.0 mmol) while stirring under N₂. The reaction stirred 12 h at 40 °C. The reaction was then diluted with EtOAc 10 (100 mL) and poured into 5% aq. NaHCO₃. Following cessation of gas evolution, the organic layer was washed three addition times with 5% aq. NaHCO₃. The organic layer was dried over magnesium sulfate, filtered and concentrated to provide crude product. Recrystallization was effected from EtOAc/hexanes to provide (2S,4S)-tert-butyl 4-hydroxy-2-15 phenylpyrrolidine-1-carboxylate (3-2) as a white crystalline solid. ¹H NMR (300 MHz, CDCl₃) rotamers δ 7.38-7.18 (m, 5H), 4.90 (m, 1H), 4.42 (m, 1H), 3.88 (m, 1H), 3.56 (dd, J = 11.5, 4.0 Hz, 1H), 2.60 (m, 1H), 2.03 (m, 1H), 1.50 and 1.20 (br s, 9H); MS 208.0 found, 208.1 (M – C(CH₃)₃)

20

required.

Step 2: (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1-carboxylate (3-3)

To a flame dried flask equipped with stir bar was added 150 mL anhydrous dichloromethane which was cooled to -78 °C. Oxalyl 25 chloride (3.8 mL, 44 mmol) and DMSO (4.8 mL, 61 mmol) were added sequentially and the reaction stirred for 10 min. (2S,4S)-tert-butyl 4hydroxy-2-phenylpyrrolidine-1-carboxylate (3-2, 2.28 g, 8.73 mmol) in 10 mL anhydrous dichloromethane was added dropwise and stirred 1 h at -78°C. Triethylamine (12 mL, 87mmol) was added and the reaction was 30 warmed to 0°C over 1 h. Upon completion, the reaction was washed with 5% NaHCO₃, brine and dried over MgSO₄. The organic layer was concentrated to provide crude (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1carboxylate (3-3). Recrystallization was effected with EtOAc/hexanes. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (m, 3H), 7.17 (m, 2H), 5.38 (m, 1H), 4.08 35 (d, J = 19.5 Hz, 1H), 3.90 (d, J = 19.3 Hz, 1H), 3.13 (dd, J = 18.8, 9.8 Hz, 1.14)

1H), 2.58 (dd, J = 18.6, 2.4 Hz, 1H), 1.40 (br s, 9H); MS 206.0 found, 206.1 (M – C(CH₃)₃) required.

Step 3: (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}-2,5-dihydro-1H-pyrrole-1-carboxylate (3-4)

.5

25

30

To a flame dried flask equipped with stir bar was added ketone (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1-carboxylate (3-3, 0.16 g, 0.62 mmol) and anhydrous THF (2 mL). The resulting solution was cooled to -78 °C, and treated dropwise with lithium hexamethyldisilylamide 10 (LHMDS, 0.68 mL, 1M in THF, 0.68 mmoL). The reaction stirred 1 h at -78 °C, and N-(5-chloropyridin-2-yl)-1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]-methanesulfonamide (0.27 g, 068 mmol) was added neat in one portion. The reaction was allowed to warm to 0 °C and stirred 4 hours total. The reaction was diluted with Et2O (10mL) and washed 15 successively with H₂O (10mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column choromatography (0-20% EtOAc/hexanes gradient, 15 min) to provide (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}-2,5dihydro-1H-pyrrole-1-carboxylate (3-4). ¹H NMR (300 MHz, CDCl₃) major rotamer: δ 7.30 (m, 5H), 5.72 (m, 1H), 5.48 (m, 1H), 4.42 (m, 2H), 1.18 (s, 20 9H); MS 379.0 found 379.1 (M – CH₃) required.

Step 4: (2S)-4-(2,5-difluorophenyl)-2-phenyl-N,N-dimethyl-2,5-dihydro-1H-pyrrole-1-carboxamide (3-5)

To a flame dried flask equipped with stir bar was added (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}-2,5-dihydro-1H-pyrrole-1-carboxylate (3–4, 0.250 g, 0.636 mmol), 2,5-difluorophenyl boronic acid (0.251 g, 1.59 mmol), Na₂CO₃ (0.202 g, 1.91 mmol), and LiCl (0.081 g, 1.91 mmol). The solids were dissolved in 20 mL 4:1 DME/H₂O and degassed with nitrogen. Pd(PPh₃)₄ (0.037 g, 0.032 mmol) was added and the reaction was sealed under nitrogen and heated to 90 °C for 2 h. Upon completion, the reaction was partitioned between 5% aq. NaHCO₃ and EtOAc (3 x 50 mL), and the combined organic layers were dried over MgSO₄. Following filtration, the organic layer was concentrated and

purified via flash column chromatography (SiO₂, 0-20% EtOAc/hexanes gradient) to provide (2S)-tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (3-5). Further transformations followed those described in Scheme 1 to provide the instant compound 2-6.

5

15

20

SCHEME 4

10 Trans-1H-Imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione,5,6,11,11a-tetrahydro-2-methyl-5-(3-hydroxyphenyl) (4-2a)

To a mixture of DL-tryptophan (1.5 g, 7.44 mmol), 3-hydroxybenzaldehyde (0.90, 7.44 mmol) in EtOH (3 mL) was added aq. H₂SO₄ (14.9 mL of a 0.5 M solution). The reaction was heated to 50 C for 12 h. The reaction mixture was partly concentrated to remove EtOH and resuspended in H₂O (5 mL). The precipitate was collected by filtration and dried in vacuo. The portion of this solid residue (0.14 g, 0.47 mmol) was dissolved in acetone (3 mL) and treated with methyl isocyanate. The reaction mixture was heated at 150 C in a sealed vessel for 15 min in a microwave reactor. The reaction was cooled to r.t. and concentrated. The residue was absorbed onto silica gel then purified on an ISCO automated system affixed with a Biotage flash 40(s) cartridge eluting with 0-100% EtOAc in hexane at 20 mL/min over 30 min to afford a mixture of 4-2a/4-2b Trituration of this mixture with diethyl

ether provided pure $\underline{4\text{-}2a}$. Data for $\underline{4\text{-}2a}$: HNMR (600 MHz, CD₃OD) δ 7.52 (d, J=8 hz, 1H), 7.27 (d, J=8 hz, 1H), 7.18 (m, 1H), 7.12 (m, 1H), 7.07 (m, 1H), 6.84 (m, 1H), 6.74 (m, 2H), 6.24 (s, 1H), 4.44 (m, 1H), 3.43 (m, 1H), 3.01 (s, 3H), 2.88 (m, 1H) ppm. HRMS Calcd (M+1) 348.1270; found 348.1343.

SCHEME 5

10

5

(-)4-(3-Hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-4H-pyrimidin-5-carboxylic acid ethyl ester (5-2a) and (+)-4-(3-Hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-4H-pyrimidin-5-carboxylic acid ethyl ester (5-2b)

15

20

Racemic monastrol (50 mg, Tocris) was resolved by chiral HPLC (Chiralpak AD column 5 x 50 cm; 20% EtOH/80% (hexanes + 0.1% diethylamine); flow = 60 mL/min) to yield (-)-enantiomer $\underline{1\text{-}2A}$ (R_T =57.0 min) and (+)-enantiomer $\underline{5\text{-}2B}$ (R_T = 71.2 min). Enantiomer $\underline{5\text{-}2B}$ was crystallized from hexanes to yield a yellow solid.

SCHEME 6

SCHEME 6 (continued)

SCHEME 6 (continued)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

tert-Butyl 3-[(benzylamino)carbonyl]thien-2-ylcarbamate (6-2)

5

10

A solution of tert-butyllithium in pentane (1.7 M, 42.5 mL, 72.3 mmol, 2.40 equiv) was added to a solution of tert-butyl thien-2-ylcarbamate (6-1, 6.00 g, 30.1 mmol, 1 equiv) in THF (300 mL) at -78 °C. The reaction mixture was stirred for 45 min, then solid CO₂ (approximately 20 g) was added and the resulting mixture was warmed to 0 °C and stirred for 30 minutes. The reaction mixture was partitioned between aqueous 1 N hydrochloric acid solution and ethyl acetate (2 x 150 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue

was purified by flash column chromatography (hexanes initially, grading to 100% ethyl acetate), and the polar fractions were concentrated. A solution of the residue, benzylamine (6.61 g, 61.7 mmol, 2.05 equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.91 g, 30.8 mmol, 1.02 equiv), 1-hydroxy-7-azabenzotriazole (4.19 g, 30.8 mmol, 1.02 equiv), and triethylamine (8.59 mL, 61.7 mmol, 2.05 equiv) in DMF (100 mL) was stirred at 55°C for 24 h. The reaction mixture was concentrated, and the residue was partitioned between saturated aqueous sodium bicarbonate solution and ethyl acetate (3 x 100 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to give tert-butyl 3-[(benzylamino)carbonyl]thien-2-ylcarbamate (6-2) as a colorless oil. 1 H NMR (300 MHz, CDCl₃) δ 7.37 (m, 5H), 6.87 (d, 1H, J = 5.8 Hz), 6.69 (d, 1H, J = 5.8 Hz), 6.13 (s, 1H), 4.61 (d, 2H, J = 5.5 Hz), 1.52 (s, 9H).

N-benzyl-2-(butyrylamino)thiophene-3-carboxamide (6-3)

10

15

A solution of tert-butyl 3-[(benzylamino)carbonyl]thien-2ylcarbamate (6-2, 500 mg, 1.50 mmol, 1 equiv) was saturated with HCl gas at 0 °C, and the resulting solution was stirred at 0 °C for 1 h, then allowed to 20 warm to 23 °C and stirred for 1 h. The reaction mixture was concentrated and the residue was dissolved in pyridine (10 mL). The resulting solution was cooled to 0 °C, and butyryl chloride (420 µL, 4.04 mmol, 2.69 equiv) was added in three equal portions over 1 h. The reaction mixture was partitioned between aqueous sodium bicarbonate solution and ethyl acetate 25 (50 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to give N-benzyl-2-(butyrylamino)thiophene-3carboxamide (6-3) as an off-white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (m, 5H), 6.92 (d, 1H, J = 6.1 Hz), 6.76 (d, 1H, J = 5.8 Hz), 6.23 (s, 1H), 30 4.62 (d, 2H, J = 5.8 Hz), 2.47 (t, 2H, J = 7.3 Hz), 1.80 (sextet, 2H, J = 7.3Hz), 1.01 (t, 3H, J = 7.3 Hz).

3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4)

A mixture of N-benzyl-2-(butyrylamino)thiophene-3-carboxamide (6-3, 230 mg, 0.76 mmol, 1 equiv) and sodium hydroxide (3 mg, 0.08 mmol, 0.1 equiv) in ethylene glycol (5 mL) was heated at 130 °C for 5 h. The reaction mixture was allowed to cool, then partitioned between a half-saturated aqueous sodium chloride solution and ethyl acetate (2 x 75 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to provide 3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4) as a colorless oil which solidified upon standing. ¹H NMR (300 MHz, CDCl₃) & 7.48 (d, 1H, *J* = 5.8 Hz), 7.31 (m, 3H), 7.19 (d, 1H, *J* = 5.8 Hz), 7.17 (d, 2H, *J* = 7.9 Hz), 5.42 (s, 2H), 2.72 (t, 2H, *J* = 7.6 Hz), 1.78 (sextet, 2H, *J* = 7.6 Hz), 0.97 (t, 3H, *J* = 7.3 Hz).

3-benzyl-5,6-dibromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-5) and 3-benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-6)

A solution of 3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4, 100 mg, 0.35 mmol, 1 equiv), potassium acetate (207 mg, 2.1 mmol, 6 equiv) and bromine (338 mg, 2.1 mmol, 6 equiv) in acetic acid 20 (2 mL) was heated at 100°C for 3 hr. The reaction was concentrated, and the residue was purified by flash chromatography. Elution with 30 % hexanes/EtOAc gave 3-benzyl-5,6-dibromo-2-(1-bromopropyl)thieno[2,3d]pyrimidin-4(3H)-one (6-5) as a colorless solid. ¹H NMR (500 MHz, 25 CDCl₃) δ 7.30 (m, 1H), 7.14 (d, J = 7.3 Hz, 2H), 6.19 (d, J = 16.3 Hz, 1H), 4.87 (d, J = 16.3 Hz, 1H), 4.62 (t, J = 7.3 Hz, 1H), 2.35 (m, 1H), 2.18 (m, J= 1H), 0.72 (t, J = 7.3 Hz, 3H). Further elution with the same eluant gave 3benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (2-6) as a colorless gum. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.34 (m, 30 2H), 7.29 (m, 1H), 7.12 (d, J = 7.3 Hz, 2H), 6.21 (d, J = 16.3 Hz, 1 H), 4.88 (d, J = 16.3 Hz, 1H), 4.62 (t, J = 7.2 Hz, 1H), 2.37 (m, 1H), 2.18 (m, 1H),

0.72 (t, J = 7.3 Hz, 3H).

3-benzyl-5,6-dibromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-7)

A solution of 3-benzyl-5,6-dibromo-2-(1-

5

10

15

20

25

30

35

bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-5, 35 mg, 0.066 mmol, 1 equiv) and N,N-dimethylethylenediamine (17 mg, 0.198 mmol, 3 equiv) in ethanol (5mL) was heated at reflux for 18 h. The reaction was concentrated, and the residue was partitioned between EtOAc and brine. The organic layer was dried (MgSO₄) and concentrated to provide 3-benzyl-5,6-dibromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno-[2,3-d]pyrimidin-4(3H)-one (6-7) as a yellow gum. MS(M+1) = 526.8.

3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8)

A solution of 3-benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-6, 35 mg, 0.079 mmol, 1 equiv) and N,N-dimethylethylenediamine (21 mg, 0.237 mmol, 3 equiv) in ethanol (5mL) was heated at reflux for 18 h. The reaction was concentrated, and the residue was partitioned between EtOAc and brine. The organic layer was dried (MgSO₄) and concentrated to provide 3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]amino}-propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8) as a yellow gum. MS(M+1) = 449.9.

N-[1-(3-benzyl-5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-9)

A solution of 4-bromobenzoyl chloride (19 mg, 0.085 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-5,6-dibromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8, 45 mg, 0.085 mmol, 1 equiv) and N,N-diisopropylethylamine (11 mg, 0.085 mmol, 1 equiv) in dichloromethane (5 mL), and the resulting reaction mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, then brine, and dried (MgSO₄) and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN gradient w/ 0.1 % TFA present) to provide N-[1-(3-benzyl-5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-

d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-9) as a colorless foam. MS(M+1) = 708.9

N-[1-(3-benzyl-6-bromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-5 yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-10) A solution of 4-bromobenzoyl chloride (19 mg, 0.085 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-6bromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3d]pyrimidin-4(3H)-one (6-9, 38 mg, 0.085 mmol, 1 equiv) and N,N-10 diisopropylethylamine (11 mg, 0.085 mmol, 1 equiv) in dichloromethane (5 mL), and the resulting reaction mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, and brine, then dried (MgSO₄) and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN gradient w/ 0.1 % TFA present) to provide N-[1-(3-benzyl-6-bromo-4-oxo-3,4-dihydrothieno[2,3-15 d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-10) as a colorless foam. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (m, 3H), 7.31 (m, 5H), 7.14 (m, 2H), 6.04 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.92 (m,

15.4 Hz, 1H), 3.37 (m, 2H), 2.05 (m, 4 H), 1.83 (m, 6H), 0.65 (m, 3H).

10

SCHEME 7

5 3-benzyl-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1)

A mixture of 3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]-amino}propyl)-thieno[2,3-d]pyrimidin-4(3H)-one (6-8,17 mg, 0.38 mmol, 1 equiv) and 10 % Pd/C in ethyl acetate (5 mL) was hydrogenated at 1 atm. for 3 h. The mixture was filtered and the filtrate concentrated to provide 3-benzyl-2-(1-{[2-

5

10

15

20

(dimethylamino)ethyl]amino)propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1) as a pale yellow gum. MS(M+1) = 371.1.

N-[1-(3-benzyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (7-2)

A solution of 4-bromobenzoyl chloride (8 mg, 0.035 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1, 13 mg, 0.035 mmol, 1 equiv) and N,N-diisopropylethylamine (5 mg, 0.035 mmol, 1 equiv) in dichloromethane (1 mL), and the resulting mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, and brine, then dried (MgSO₄) and concentrated. The residue was purified by flash chromatography. Elution with CH₂Cl₂ to 5 % NH₃-EtOH/CH₂Cl₂ gave N-[1-(3-benzyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (7-2) as an off-white foam. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (m, 5H), 7.14 (m, 2H), 6.09 (d, J = 15.6 Hz, 1H), 5.94 (m, 1H), 5.10 (d, J = 15.6 Hz, 1H), 3.40 (m, 2H), 2.11 (m, 1H), 2.03 (m, 2H), 1.87 (m, 1H), 1.79 (s, 6H), 0.66 (t, J = 6.6 Hz, 3H).

SCHEME 8

O H
O H
O N
Br
NaCNBH₃
AcOH, MeOH
60°C
Br
8-1

3-benzyl-2-(1-{(4-bromobenzyl)[2-

(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one(8-1)

A solution of 3-benzyl-2-(1-{[2-

- (dimethylamino)ethyl]amino}-propyl)thieno[2,3-d]pyrimidin-4(3H)-one(7-1, 175 mg, 0.47 mmol, 1 equiv) and 4-bromobenzaldehyde (174 mg, 0.94 mmol, 2 equiv) in methanol (20 mL) was treated with a solution of sodium cyanoborohydride in tetrahydrofuran (1 M, 0.94 mL, 0.94 mmol, 2 equiv). Acetic acid was added to obtain a pH of 6-7 and the reaction was warmed at 60 °C for 18 h. An additional 2 equivalents of 4-bromobenzaldehyde and sodium cyanoborohydride were added after 18, 42 and 66 hours while maintaining the pH at 6-7 with acetic acid. After warming 90 h at 60°C, the reaction was concentrated and the residue was partitioned between EtOAc and aqueous saturated NaHCO3 solution. The organic layer was washed with
- brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography. Elution with EtOAc to 5 % NH₃-EtOH/EtOAC gave 3-benzyl-2-(1-{(4-bromobenzyl)[2-
 - (dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one(8-1) as a pale yellow gum. ^{1}H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 6 Hz, 1H),
- 7.33 (d, J = 8 Hz, 2H), 7.21 (m, 4H), 7.05 (d, J = 8 Hz, 2H), 6.84 (d, J = 7 Hz, 2H), 5.85 (d, J = 16 Hz, 1H), 5.32 (d, J = 16 Hz, 1H), 3.87 (d, J = 14 Hz, 1H), 3.73 (dd, J = 11, 3 Hz, 1H), 3.50 (d, J = 14 Hz, 1H), 2.92 (m, 1H), 2.61 (m, 1H), 2.28 (m, 2H), 2.15 (m, 1H), 2.07 (s, 6H), 1.74 (m, 1H), 0.64 (t, J = 7 Hz, 3H).

TABLE 1

```
REMARK complex 1 with water molecules surrounding it
       REMARK r= 0.2114 free_r= 0.2639
  5
       REMARK rmsd bonds= 0.006712 rmsd angles= 1.32262
       REMARK B rmsd for bonded mainchain atoms= 1.570 target= 1.5
REMARK B rmsd for bonded sidechain atoms= 2.570 target= 2.0
       REMARK B rmsd for angle mainchain atoms= 2.729 target= 2.0
REMARK B rmsd for angle sidechain atoms= 3.936 target= 2.5
10
       REMARK sg= P2(1)2(1)2(1) a= 69.48 b= 79.54 c= 158.98 alpha= 90. beta= 90. gamma= 90.
       REMARK reflection file= k2a.cv
       REMARK B-correction resolution: 6.0 - 2.5
       REMARK FILENAME="kin_16dpb.pdb"
                                          37.472
                                                  -7.942 100.393 1.00 28.28
       ATOM
                     CB ASN
                                 18
                                                                                       A
                  1
15
       ATOM
                  2
                     CG
                          ASN
                                  18
                                          38.236
                                                   -7.260 101.506
                                                                     1.00 31.25
                                                                                       Α
                                          38.752
                                                   -7.913 102.413
       ATOM
                  3
                     OD1 ASN
                                 18
                                                                     1.00 36.19
                                                                                       Α
       MOTA
                  4
                     ND2 ASN
                                 18
                                          38.310
                                                   -5,940 101.448
                                                                     1.00 32.46
                                                                                       Α
                                                   -7.311 101.124
       ATOM
                  5
                     С
                          ASN
                                 18
                                          35.178
                                                                     1.00 24.09
                                                                                       A
       ATOM
                     0
                          ASN
                                 18
                                          34.900
                                                   -6.997 102.284
                                                                     1.00 23.76
20
       MOTA
                     N
                          ASN
                                 18
                                          35.576
                                                   -9.454
                                                           99.859
                                                                     1.00 25.44
                                          36.124
                                                   -8.484 100.856
       ATOM
                  8
                     CA
                         ASN
                                 18
                                                                    1.00 25.50
       ATOM
                  9
                     N
                          ILE
                                 19
                                          34.708
                                                   -6.636 100.074
                                                                     1.00 21.79
                                                                                      Α
                 10
                                 19
                                          33.759
                                                   -5.540 100.278
                                                                     1.00 19.48
       ATOM
                     CA
                         ILE
                                                                                      Α
                                 19
                                                                     1.00 20.49
       ATOM
                     CB
                          ILE
                                          33.425
                                                   -4.791
                                                           98.970
                 11
25
                                                   -3.992
                     CG2 ILE
                                 19
                                          32.124
                                                            99,129
                                                                     1.00 19.87
       ATOM
                 12
                                                                                      Α
                                 19
                                                   -3.846
                                                            98.613
                                                                    1.00 20.82
       MOTA
                 13
                     CG1 ILE
                                          34.573
                                 19
                                          34.194
       MOTA
                 14
                     CD1 ILE
                                                   -2.801
                                                           97.563
                                                                    1.00 19.23
                                                                                      Α
                                                   -6.185 100.820
       MOTA
                 15
                     С
                          ILE
                                 19
                                          32.487
                                                                    1.00 18.08
       MOTA
                 16
                     0
                          ILE
                                 19
                                          31.929
                                                   -7.079 100.190
                                                                    1.00 17.25
                                                                                      A
30
                         GLN
                                 20
                                          32.044
                                                   -5.743 101.991
                                                                    1.00 16.72
       ATOM
                 17
                     N
       ATOM
                 18
                     CA
                         GLN
                                 20
                                          30.863
                                                   -6.315 102.624
                                                                    1.00 17.94
       ATOM
                 19
                     CB
                         GLN
                                 20
                                          30.996
                                                   -6.207 104.143
                                                                    1.00 18.71
                                                                                      Α
       ATOM
                 20
                     CG
                         GLN
                                 20
                                          32.221
                                                   -6.950 104.689
                                                                    1.00 19.97
                                                                                      Α
                                          32.369
                                                   -6.829 106.196
                                                                    1.00 21.29
       ATOM
                 21
                     CD
                         GLN
                                 20
                                                                                      Α
35
                                                                    1.00 22.63
                                                   -5.730 106.734
                     OE1 GLN
                                 20
       ATOM
                 22
                                          32.511
                                                                                      Α
                                                   -7.964 106.885
       ATOM
                 23
                     NE2 GLN
                                 20
                                          32.336
                                                                    1.00 22.16
                                                                                      Α
                                 20
                                                   -5.681 102.147
       ATOM
                 24
                     С
                         GLN.
                                          29.560
                                                                    1.00 17.78
                                                                                      A
       MOTA
                 25
                     O
                         GLN
                                 20
                                          29.396
                                                   -4.462 102.184
                                                                    1.00 19.12
                                                                                      Α
       MOTA
                 26
                     N
                         VAL
                                 21
                                          28.640
                                                   -6.528 101.695
                                                                    1.00 14.78
40
       ATOM
                 27
                     CA
                         VAL
                                 21
                                          27.355
                                                   -6.080 101.176
                                                                    1.00 13.75
       ATOM
                     CB
                         VAL
                                 21
                                          27.144
                                                   -6.609
                                                           99.738
                                                                    1.00 14.14
       ATOM
                 29
                     CG1
                         VAL
                                 21
                                          25.854
                                                   -6.065
                                                           99.155
                                                                    1.00 11.78
                                                                                      Α
       MOTA
                     CG2 VAL
                                 21
                                          28.339
                                                   -6.238 98.875
                                                                    1.00 13.09
                                                                                      A
                                 21
                                                   -6.571 102.036
       ATOM
                 31
                     C
                         VAL
                                          26.198
                                                                    1.00 14.04
                                                                                      Α
45
                                                   -7.756 102.365
                 32
                     0
                         VAL
                                 21
                                          26.128
                                                                    1.00 13.35
       ATOM
                                                                                      Α
                         VAL
                                 22
                                          25.294
                                                   -5.659 102.396
                                                                    1.00 14.49
       ATOM
                33
                     N
                                                                                      Α
                                                   -6.011 103.194
                                          24.123
                                                                    1.00 14.01
                     CA
                         VAL
                                 22
       ATOM
                34
                                                                                      Α
                                                  -5.423 104.627
-5.628 105.201
                                                                    1.00 15.50
                     CB
                         VAL
                                 22
                                          24.197
       ATOM
                35
                                                                                      Α
                     CG1 VAL
                                          25.588
       MOTA
                36
                                 22
                                                                    1.00 16.80
                                                                                      Α
50
                                                   -3.968 104.623
                     CG2 VAL
                                          23.817
       MOTA
                37
                                 22
                                                                    1.00 15.97
                                                                                      Α
                                                   -5.518 102.532
       MOTA
                38
                     С
                         VAL
                                 22
                                          22.838
                                                                    1.00 13.29
                                                                                      A
       MOTA
                39
                     0
                         VAL
                                 22
                                          22.811
                                                   -4.469 101.884
                                                                    1.00 13.40
                                                                                      Α
       MOTA
                40
                     N
                         VAL
                                 23
                                          21.773
                                                   -6.292 102.694
                                                                    1.00 12.04
                                                                                      Α
       MOTA
                41
                     CA
                         VAL
                                 23
                                          20.478
                                                   -5.953 102.125
                                                                    1.00 11.16
                                                                                      Α
55
       ATOM
                42
                     CB
                         VAL
                                 23
                                          19.890
                                                   -7.155 101.350
                                                                    1.00 10.39
                                                                                      Α
                                                   -6.883 100.979
      ATOM
                43
                     CG1
                         VAL
                                 23
                                          18.423
                                                                    1.00
                                                                           6.97
                                                                                      A
       ATOM
                     CG2
                         VAL
                                 23
                                          20.733
                                                  -7.429 100.112
                                                                    1.00
                44
                                                                           5.75
                                                                                      Α
                                 23
                                                  -5.551 103.220
                                                                    1.00 12.26
      ATOM
                45
                         VAL
                                          19.496
                     С
                                                                                      A
                                         19.433
18.734
                                                                    1.00 12.72
                                 23
                                                  -6.180 104.276
       MOTA
                46
                     O
                         VAL.
60
                                                  -4.497 102.965
      MOTA
                47
                    N
                         ARG
                                 24
                                                                    1.00 12.29
                                                                                      A
      ATOM
                48
                     CA
                         ARG
                                 24
                                          17.741
                                                  -4.033 103.925
                                                                    1.00 11.98
      ATOM
                49
                     CB
                         ARG
                                 24
                                          18.150
                                                  -2.711 104.572
                                                                    1.00
                                                                           9.94
                         ARG
                                 24
                                          17.092
                                                  -2.197 105.533
                                                                    1.00
      ATOM
                50
                     CG
                                                                           9.40
                                 24
                                          17.412
                                                  -0.826 106.110
                                                                    1.00 11.24
      MOTA
                51
                     CD
                         ARG
                                                                                      A
65
      MOTA
                52
                    NE
                         ARG
                                 24
                                          16.638
                                                  -0.585 107.326
                                                                    1.00
                                                                          8.87
                                                                                      Α
                                                   0.540 108.033
                                                                    1.00 11.40
      ATOM
                53
                     CZ
                         ARG
                                 24
                                          16.668
                                                                                      Α
                54
                    NH1 ARG
                                          17.432
                                                   1,563 107,649
                                                                    1.00 11.52
      ATOM
                                 24
                                                                                      Α
                                         15.956
                55
                         ARG
                                                   0.629 109.151
                                                                    1.00 12.63
      MOTA
                    NH2
                                 24
                                                                                      Α
                                                  -3.831 103.230
      MOTA
                56
                    С
                         ARG
                                 24
                                         16.404
                                                                    1.00 13.62
                                                                                      Α
70
      MOTA
                57
                    0
                         ARG
                                 24
                                          16.248
                                                  -2.918 102.415
                                                                    1.00 14.61
      ATOM
                58
                    N
                         CYS
                                 25
                                         15.446
                                                  -4.690 103.553
                                                                    1.00 12.77
```

										_
	ATOM	59	CA	CYS	25	14.117	-4.599	102.983	1.00 13.88	A
	MOTA	60	CB	CYS	25	13.461	-5 980	102.951	1.00 15.60	A
	MOTA	61	SG	CYS	25	11.855	-6.006	102.134	1.00 21.58	A
	MOTA	62		CYS	25	13.292		103.865	1.00 13.78	A
_										
5	MOTA	63	0 (CYS	25	13.293	~3.820	105.084	1.00 15.62	A
	MOTA	64	N .	ARG	26	12.605	_2 713	103.261	1.00 12.12	A
	MOTA	65	CA	arg	26	11.774	-1.815	104.045	1.00 12.61	A
					26	11.601	0 466	103.343	1.00 10.76	
	MOTA	66		ARG	26					. А
	MOTA	67	CG	ARG	26	10.679	-0.499	102.128	1.00 7.66	A
10										
10	MOTA	68		ARG	26	10.181		101.775	1.00 7.16	A
	MOTA	69	NE A	arg	26	9.592	0.934	100.442	1.00 7.55	A
								100.125		
	MOTA	70		ARG	26	8.413			1.00 8.80	А
	MOTA	71	NH1	ARG	26	7.677	-0.194	101.052	1.00 8.81	A
						_				
	MOTA	72	NH2	AKG	26	7.980	0.472	98.876	1.00 7.02	A
15	MOTA	73	C i	ARG	26	10.407	-2.470	104.215	1.00 15.65	A
	MOTA	74	0 7	ARG	26	10.058	-3.420	103.500	1.00 17.10	· A
	MOTA	75	N I	PRO	27	9.615	-1.982	105.170	1.00 17.31	A
	ATOM	76	CD 1	PRO	27	9.957	-1.053	106.262	1.00 18.01	A
	MOTA	77	CA 1	PRO	27	8.287	-2.562	105.382	1.00 20.54	A
20										
20	MOTA	78	CB 1	PRO	27	8.037	-2.211	106.858	1.00 19.92	A
	MOTA	79	CG I	PRO	27	8.639	-0.932	107.017	1.00 17.88	A
	MOTA	80	C I	PRO	27	7.237	-1.89/	104.492	1.00 23.41	A
	MOTA	81	0 1	PRO	27	7.482	-0 833	103.916	1.00 23.28	A
	MOTA	82	N I	PHE	28	6.080	-2.542	104.371	1.00 26.52	A
25	MOTA	83	CA I	PHE	28	4.976	-2 003	103.584	1.00 29.18	A
	ATOM	84	CB 1	PHE	28	3.805	-2.982	103.588	1.00 27.65	A
	ATOM	85	CG 1	PHE	28	3.948	_4 107	102.610	1.00 28.35	A
	MOTA	86	CD1	PHE	28	3.947	-5.425	103.045	1.00 28.03	A
	ATOM	87	CD2	DHE	28	4.038	_3 850	101.243	1.00 27.68	A
20										
30	ATOM	88	CE1 I	PHE	28	4.026	-6.477	102.139	1.00 27.56	A
	MOTA	89	CE2		28	4.119	4 002	100.324	1.00 29.26	A
	MOTA	90	CZ I	PHE	28	4.112	-6.212	100.773	1.00 27.81	A
	MOTA	91	C I	PHE	28	4.513	-0 600	104.191	1.00 32.56	A
	ATOM	92	0 1	PHE	28	4.426	-0.548	105.411	1.00 33.43	A
35		93		ASN	29	4.217		103.345	1.00 37.21	A
55	MOTA									
	ATOM	94	CA A	ASN	29	3.744	1.595	103.829	1.00 42.32	A
					29			102.809		
	MOTA	95		ASN		4.073	2.092	102.009	1.00 42.04	A
	ATOM	96	CG A	ASN	29	3.604	2.344	101.410	1.00 41.31	A
40	MOTA	97	OD1 A	ASN	29	2.409	2.1//	101.168	1.00 41.82	A
40	MOTA	98	ND2 A	ASN	29	4.546	2.228	100.482	1.00 40.11	A
	MOTA	99	C A	ASN	29	2.232	1.526	104.054	1.00 46.51	A
	MOTA	100	0 7	ASN	29	1.606	0.505	103.768	1.00 46.59	A
	MOTA	101	N I	LEU	30	1.650	2.612	104.562	1.00 51.19	A
	MOTA	102	CA I	EU	30	0.212	2.661	104.826	1.00 54.81	A
45										
43	MOTA	103	CB I	LEU	30	-0.178	4.040	105.362	1.00 56.40	A
	ATOM	104	CG I	LEU	30	-1.659	4.234	105.705	1.00 58.19	A
	MOTA	105	CD1 I	ÆU	30	-2.058	3.273	106.820	1.00 57.83	A
	ATOM	106	CD2 I	EII	30	-1.899	5 680	106.130	1.00 59.11	A
	MOTA	107	C I	,EU	30	-0.637	2.343	103.592	1.00 56.70	A
50	MOTA	108	0 L	EU	30	-1.552	1 525	103.658	1.00 56.66	A
50										
	ATOM	109	N A	LA	31	-0.329	2.992	102.471	1.00 59.03	A
	MOTA	110	CA A	LA	31	-1.062	2.787	101.222	1.00 61.19	A
	MOTA	111		LA	31	-0.414		100.100	1.00 61.28	A
	MOTA	112	C A	LA	31	-1.125	1.316	100.833	1.00 62.78	A
55										
55	MOTA	113		LA	31	-2.123		100.282	1.00 62.16	A
	ATOM	114	N G	LU	32	-0.048	0.593	101.117	1.00 65.22	· A
	MOTA	115	CA G	LU	32	0.031	-0.827	100.801	1.00 67.27	Α
	MOTA	116	CB G	LU	32	1.501	-1.249	100.702	1.00 66.96	Α
	MOTA	117	CG G	LU	32	2.199	-0.712	99.453	1.00 67.12	A
60	MOTA	118	CD G	LU	32	3.713	-0.641	99.590	1.00 67.26	A
50										
	MOTA	119	OE1 G		32	4.392	-0.422	98.563	1.00 66.83	A
	MOTA	120	OE2 G		32	4.223		100.723	1.00 65.99	A
	ATOM	121	C G	LU	32	-0.706	-1.666	101.844	1.00 68.26	A
	ATOM	122		LU	32	-1.260		101.526	1.00 68.16	A
45										
65	MOTA	123	N A	RG	33	-0.722	-1.191	103.087	1.00 69.65	A
	ATOM	124		RG	33	-1.403		104.169	1.00 71.22	
										A
	MOTA	125	CB A	RG	33	-1.196	-1.162	105.498	1.00 72.33	A
	MOTA			RG						
		126			33	0.239		106.009	1.00 73.65	A
	ATOM	127	CD A	RG	33	0.695	-2.508	106.479	1.00 74.57	A
70										
70	MOTA	128		RG	33	2.043		107.041	1.00 76.44	A
	MOTA	129	CZ A	RG	33	2.692	-3.517	107.521	1.00 76.91	A
	MOTA	130	NH1 A		33	2.119		107.513	1.00 76.68	A
	MOTA	131	NH2 A	RG	33	3.918	-3.376	108.007	1.00 77.35	A
		~ ~ *				2.720	2.3.0			••

	3 TOM	122	-	NDC	2.2	2 001	2 01	101 005	1 00 21 74	
	ATOM	132	C	ARG		-2.901		103.885	1.00 71.74	A
	ATOM	133	0	ARG		-3.464		103.900	1.00 71.46	A
	MOTA	134	N	LYS	34	-3.536	-0.870	103.632	1.00 71.80	A
_	MOTA	135	CA	LYS	34	-4.967	-0.817	7 103.349	1.00 71.67	A
5	MOTA	136	CB	LYS	34	-5.426	0.641	103.195	1.00 72.94	A
	MOTA	137	CG	LYS	34	-4.734		102.072	1.00 74.72	A
	ATOM	138	CD	LYS	34	-5.218		101.986	1.00 75.69	A
									1.00 75.79	
	MOTA	139	CE	LYS	34	-6.680		101.565		A
10	MOTA	140	NZ	LYS	34	-7.149	4.343		1.00 74.45	A
10	MOTA	141	С	LYS	34	-5.315	-1.604	102.088	1.00 70.68	A
	MOTA	142	0	LYS	34	-6.448	-2.064	101.924	1.00 70.80	A
	ATOM	143	N	ALA	35	-4.338	-1.753	101.198	1.00 68.59	A
	MOTA	144	CA	ALA	35	-4.539	-2.501		1.00 66.37	A
	ATOM	145	СВ	ALA	35	-3.639	-1.949		1.00 65.65	A
15	ATOM	146	C	ALA	35	-4.199			1.00 64.89	
13								100.241		A
	MOTA	147	0	ALA	35	-4.277	-4.807		1.00 64.01	A
	ATOM	148	N	SER	36	-3.825		101.491	1.00 63.72	A
	ATOM	149	CA	SER	36	-3.454	-5.574	101.937	1.00 62.31	A
	MOTA	150	CB	SER	36	-4.711	-6.422	102.194	1.00 62.73	Α
20	MOTA	151	OG	SER	36	-5.556	-6.469	101.056	1.00 63.14	A
	ATOM	152	С	SER	36	-2.542		100.920	1.00 60.52	A
	ATOM	153	ŏ	SER	36	-2.933		100.256	1.00 60.52	A
	ATOM	154		ALA	37	-1.316		100.230	1.00 57.81	
			N							A
25	MOTA	155	CA	ALA	37	-0.339	-6.291		1.00 54.58	A
25	MOTA	156	CB	ALA	37	0.709	-5.228		1.00 53.39	A
	MOTA	157	С	ALA	37	0.351	-7.562	100.359	1.00 51.84	A
	MOTA	158	0	ALA	37	0.586	-7.754	101.554	1.00 50.84	Α
	ATOM	159	N	HIS	38	0.669	-8.429		1.00 48.60	A
	ATOM	160	CA	HIS	38	1.363	-9.672		1.00 45.12	A
30	ATOM	161	СВ	HIS	38		-10.810		1.00 48.05	A
50				HIS						
	MOTA	162	CG		38		-10.528		1.00 50.18	A
	MOTA	163		HIS	38		-10.171		1.00 51.32	A
	MOTA	164	ND1	HIS	38	1.875	-10.621	96.566	1.00 50.53	A
	MOTA	165	CE1	HIS	38	1.552	-10.337	95.317	1.00 50.82	A
35	. ATOM	166	NE2	HIS	38	0.261	-10.059	95.275	1.00 51.95	A
	ATOM	167	С	HIS	38	2.836	-9.436		1.00 40.69	A
	ATOM	168	ŏ	HIS	38	3.165	-9.005	98.244	1.00 39.51	A
	MOTA	169	N	SER	39	3.714		100.312	1.00 34.50	A
40	MOTA	170	CA	SER	39	5.138		100.106	1.00 29.81	A
40	MOTA	171	СВ	SER	39	5.860	-9.458	101.449	1.00 29.59	A
	MOTA	172	OG	SER	39	7.263	-9.361	101.265	1.00 30.93	A
	MOTA	173	С	SER	39	5.753	-10.578	99.242	1.00 27.18	A
	MOTA	174	0	SER	39		-11.758	99.456	1.00 27.84	A
	ATOM	175	N	ILE	40		-10.179	98.263	1.00 23.70	A
45										
7.7	ATOM	176	CA	ILE	40		-11.148	97.403	1.00 20.93	A
	MOTA	177	CB	ILE	40		-10.677	95.945	1.00 21.59	A
	MOTA	178	CG2	ILE	40	5.868	-10.554	95.381	1.00 21.07	A
	MOTA	179	CG1	ILE	40	8.025	-9.343	95.857	1.00 21.01	A
	ATOM	180	CD1	ILE	40	8.377	-8.954	94.443	1.00 17.86	A
50	MOTA	181	С	ILE	40	8.638	-11.366	97.895	1.00 19.29	A
	ATOM	182	ō	ILE	40		-12.130	97.306	1.00 18.82	A
	MOTA	183	N	VAL	41		-10.696	98.988	1.00 18.43	A
	ATOM		CA							
		184		VAL	41		-10.801	99.572	1.00 19.01	A
55	MOTA	185	CB	VAL	41	10.974	-9.394	99.666	1.00 18.10	A
22	MOTA	186		VAL	41	12.231		100.525	1.00 17.03	A
	MOTA	187	CG2	VAL	41	11.303	-8.881	98.279	1.00 16.81	A
	MOTA	188	С	VAL	41	10.286	-11.420	100.976	1.00 21.10	A
	ATOM	189	0	VAL	41	9.401	-11.122	101.779	1.00 22.16	A
	ATOM	190	N	GLU	42			101.269	1.00 21.96	A
60	MOTA	191	CA	GLU	42			102.595	1.00 24.43	
00										A
	MOTA	192	CB	GLU	42			102.588	1.00 26.41	Α
	MOTA	193	CG	GLU	42			102.535	1.00 33.53	A
	MOTA	194	CD	GLU	42	8.646	-15.717	102.435	1.00 37.53	A
	MOTA	195	OE1	GLU	42	7.400	-15.830	102.388	1.00 37.91	A
65	ATOM	196		GLU	42			102.399	1.00 39.48	A
	ATOM	197	c	GLU	42			103.042	1.00 23.06	A
		198	o		42	13.672			1.00 23.00	
	ATOM			GLU						A
	MOTA	199	N	CYS	43			104.267	1.00 22.56	A
70	ATOM	200	CA	CYS	43		-12.417		1.00 22.27	A
70	MOTA	201	CB	CYS	43	14.688	-11.032	105.350	1.00 21.27	A
	ATOM	202	SG	CYS	43	14.515	-9.727	104.119	1.00 26.40	A
	MOTA	203	С	CYS	43		-13.458		1.00 23.32	A
	ATOM	204	ō	CYS	43		-13.850		1.00 25.24	A
			-	0				-00.017	23.24	^

	MOTA	205	N	ASP	44	15.936 -13.900 105.909 1.00 24.3	35 A
	MOTA	206	CA	ASP	44	16.398 -14.897 106.873 1.00 24.4	19 A
	ATOM	207	CB	ASP	44	16.579 -16.251 106.182 1.00 24.	72 A
	MOTA	208	CG	ASP	44	16.638 -17.408 107.164 1.00 27.0)3 A
5	MOTA	209		ASP	44	17.089 -17.201 108.313 1.00 28.3	
,							
	ATOM	210		ASP	44		
	ATOM	211	С	ASP	44	17.745 -14.403 107.404 1.00 24.3	
	ATOM	212	0	ASP	44	18.804 -14.795 106.923 1.00 23.0	06 A
	ATOM	213	N	PRO	45	17.721 -13.527 108.411 1.00 25.0	55 A
10	ATOM	214	CD	PRO	45	16.551 -12.911 109.059 1.00 25.9	98 A
	ATOM	215		PRO	45	18.967 -12.999 108.971 1.00 26.3	
			-		45	18.482 -12.143 110.133 1.00 25.0	
	MOTA	216	CB	PRO			
	MOTA	217	CG	PRO	45	17.153 -11.658 109.657 1.00 26.5	
	MOTA	218	С	PRO	45	19.972 -14.051 109.418 1.00 26.5	95 A
15	MOTA	219	0	PRO	45	21.159 -13.952 109.111 1.00 26.6	54 A
	ATOM	220	N	VAL	46	19.502 -15.059 110.140 1.00 27.4	12 A
	ATOM	221	CA	VAL	46	20.401 -16.088 110.636 1.00 28.9	91 A
	ATOM	222	СВ	VAL	46	19.634 -17.105 111.522 1.00 28.5	
20	ATOM	223		VAL	46	18.882 -18.096 110.655 1.00 28.0	
20	ATOM	224		VAL	46	20.600 -17.807 112.465 1.00 28.6	
	MOTA	225	С	VAL	46	21.148 -16.810 109.506 1.00 30.1	.7 A
	ATOM	226	0	VAL	46	22.279 -17.264 109.688 1.00 29.9	3 A
	ATOM	227	N	ARG	47	20.530 -16.893 108.333 1.00 30.7	73 A
	MOTA	228	CA	ARG	47	21.161 -17.552 107.195 1.00 31.9	
25	ATOM	229	СВ	ARG	47	20.156 -18.495 106.515 1.00 35.5	-
25							
	ATOM	230	CG	ARG	47	19.909 -19.796 107.286 1.00 43.1	-
	ATOM	231	CD	ARG	47	18.670 -20.554 106.799 1.00 48.3	
	ATOM	232	NE	ARG	47	18.660 -20.769 105.352 1.00 52.9	14 A
	ATOM	233	CZ	ARG	47	17.705 -21.426 104.697 1.00 53.9	7 A
30	MOTA	234	NH1	ARG	47	16.675 -21.940 105.356 1.00 54.3	3 A
	ATOM	235	NH2		47	17.773 -21.561 103.381 1.00 54.5	
	ATOM	236	C	ARG	47	21.736 -16.560 106.171 1.00 30.2	
							_
	ATOM	237	0	ARG	47	22.232 -16.965 105.122 1.00 27.9	
25	ATOM	238	N	LYS	48	21.682 -15.266 106.484 1.00 29.5	
35	MOTA	239	CA	LYS	48	22.200 -14.228 105.586 1.00 28.3	9 A
	MOTA	240	CB	LYS	48	23.719 -14.362 105.425 1.00 28.2	4 A
	ATOM	241	CG	LYS	48	24.497 -14.762 106.662 1.00 29.1	.3 A
	ATOM	242	CD	LYS	48	24.560 -13.656 107.677 1.00 31.5	
	ATOM	243	CE	LYS	48	25.701 -13.897 108.651 1.00 34.1	
40							
40	ATOM	244	NZ	LYS	48	27.015 -13.908 107.950 1.00 34.1	
	MOTA	245	С	LYS	48	21.564 -14.415 104.209 1.00 27.1	
	MOTA	246	0	LYS	48	22.244 -14.330 103.188 1.00 27.9	4 A
	MOTA	247	N	GLU	49	20.261 -14.645 104.170 1.00 25.6	9 A
	MOTA	248	CA	GLU	49	19.616 -14.908 102.895 1.00 26.1	9 A
45	ATOM	249	СВ	GLU	49	19.300 -16.398 102.827 1.00 28.9	
••	MOTA	250	CG	GLU	49	18.711 -16.897 101.534 1.00 34.4	
	ATOM	251	CD	GLU	49	18.082 -18.269 101.710 1.00 39.3	
	MOTA	252		GLU	49	16.880 -18.326 102.067 1.00 40.1	
- 0	MOTA	253	OE2	GLU	49	18.794 -19.285 101.516 1.00 39.9	3 A
50	ATOM	254	С	GLU	49	18.355 -14.113 102.607 1.00 24.3	8 A
	MOTA	255	0	GLU	49	17.545 -13.868 103.496 1.00 24.7	2 A
	MOTA	256	N	VAL	50	18.196 -13.715 101.349 1.00 22.0	
	ATOM	257	CA	VAL	50	17.010 -12.989 100.928 1.00 21.1	
	ATOM	258	CB	VAL	50		
55							
55	MOTA	259		VAL	50	18.150 -11.619 99.127 1.00 21.6	
	MOTA	260	CG2		50	16.071 -10.764 100.190 1.00 21.1	
	MOTA	261	С	VAL	50	16.392 -13.834 99.821 1.00 19.9	8 A
	MOTA	262	0	VAL	50	17.088 -14.282 98.912 1.00 20.1	5 A
	ATOM	263	N	SER	51	15.087 -14.074 99.917 1.00 21.0	
60	ATOM	264	CA	SER	51	14.368 -14.890 98.934 1.00 21.3	
••							
	ATOM	265	CB	SER	51	13.742 -16.106 99.629 1.00 20.3	
	ATOM	266	OG	SER	51	13.065 -16.943 98.712 1.00 23.4	
	ATOM	267	С	SER	51	13.280 -14.067 98.256 1.00 20.5	
	MOTA	268	0	SER	51	12.496 -13.401 98.925 1.00 21.6	4 A
65	ATOM	269	N	VAL	52	13.237 -14.107 96.929 1.00 21.2	
	ATOM	270	CA	VAL	52	12.238 -13.348 96.189 1.00 22.4	
		271			52		
	MOTA		CB	VAL			
	ATOM	272	CG1		52	11.813 -11.462 94.605 1.00 18.6	
70	MOTA	273	CG2		52	13.835 -11.417 96.091 1.00 19.8	
70	MOTA	274	С	VAL	52	11.336 -14.220 95.322 1.00 24.8	2 A
	MOTA	275	0	VAL	52	11.802 -15.099 94.597 1.00 26.2	
	ATOM	276	N	ARG	53	10.036 -13.964 95.409 1.00 27.2	
	ATOM	277	CA	ARG	53	9.034 -14.690 94.638 1.00 29.7	
	0.1		-A		22	J. 054 14.050 54.050 1.00 25.7	~ ^

	ATOM	278	СВ	ARG	53	7 670 14 662 05 741 1 00 20 44	
	MOTA	279	CG	ARG	53 53	7.679 -14.562 95.341 1.00 29.44 6.511 -15.238 94.658 1.00 32.62	A A
	ATOM	280	CD	ARG	53	5.277 -15.124 95.536 1.00 32.33	A
_	ATOM	281	NE	ARG	53	5.486 -15.812 96.805 1.00 34.30	A
5	ATOM	282	CZ	ARG	53	4.754 -15.618 97.894 1.00 35.73	A
	MOTA	283		ARG	53	3.751 -14.743 97.877 1.00 35.26	A
	MOTA	284		2 ARG	53	5.029 -16.297 99.001 1.00 33.24	Α
	MOTA	285	C	ARG	53	8.992 -14.062 93.243 1.00 30.22	A
10	ATOM	286	0	ARG	53	8.554 -12.922 93.080 1.00 28.70	A
10	MOTA	287	N CA	THR THR	54 54	9.457 -14.809 92.244 1.00 32.13	A
	ATOM ATOM	288 289	CB	THR	54	9.506 -14.314 90.872 1.00 35.09 10.785 -14.788 90.153 1.00 34.03	A A
	ATOM	290		THR	54	10.798 -16.218 90.086 1.00 33.22	Ä
	ATOM	291		THR	54	12.026 -14.305 90.898 1.00 33.36	Ä
15	ATOM	292	c	THR	54	8.317 -14.705 90.011 1.00 38.38	Α
	ATOM	293	0	THR	54	8.081 -14.098 88.970 1.00 39.08	. A
	MOTA	294	N	GLY	55	7.574 -15.717 90.435 1.00 42.35	A
	MOTA	295	CA	GLY	5 5	6.433 -16.145 89.653 1.00 47.68	A
20	ATOM	296	С	GLY	55	5.137 -15.562 90.171 1.00 52.55	A
20	ATOM	297	0	GLY	55	4.638 -14.562 89.651 1.00 52.62	A
	MOTA MOTA	298 299	N CA	GLY	56 56	4.589 -16.196 91.204 1.00 56.07 3.343 -15.734 91.789 1.00 58.64	A
	ATOM	300	C	GLY	56	2.660 -16.804 92.620 1.00 60.65	A A
	ATOM	301	ŏ	GLY	56	2.917 -17.999 92.444 1.00 60.57	Ä
25	ATOM	302	N	LEU	57	1.795 -16.364 93.532 1.00 62.43	A
	ATOM	303	CA	LEU	57	1.039 -17.253 94.421 1.00 63.41	A
	MOTA	304	CB	LEU	57	0.439 -18.425 93.627 1.00 63.91	A
	MOTA	305	CG	LEU	57	-0.466 -18.152 92.419 1.00 64.67	A
20	MOTA	306		LEU	57	-0.951 -19.486 91.873 1.00 64.88	A
30	MOTA	307		LEU	57	-1.654 -17.276 92.806 1.00 64.92	A
	MOTA	308 309	C	LEU	57 57	1.873 -17.800 95.586 1.00 63.25 2.934 -18.393 95.383 1.00 63.31	A
	ATOM ATOM	310	O N	LEU ALA	58	2.934 -18.393 95.383 1.00 63.31 1.385 -17.591 96.807 1.00 62.63	A A
	MOTA	311	CA	ALA	58	2.063 -18.074 98.010 1.00 61.38	Ä
35	MOTA	312	CB	ALA	58	1.586 -17.286 99.229 1.00 60.84	A
	ATOM	313	С	ALA	58	1.752 -19.562 98.184 1.00 60.68	A
	ATOM	314	0	ALA	58	2.385 -20.261 98.979 1.00 60.38	A
	ATOM	315	N	ASP	59	0.765 -20.024 97.422 1.00 59.38	A
40	MOTA	316	CA	ASP	59	0.321 -21.413 97.427 1.00 57.30	A
40	ATOM	317	CB	ASP	59	-1.058 -21.498 96.770 1.00 58.25	A
	ATOM ATOM	318 319	CG	ASP ASP	59 59	-1.438 -22.907 96.386 1.00 58.65 -1.549 -23.767 97.285 1.00 58.25	A
	ATOM	320	OD2		59	-1.549 -23.767 97.285 1.00 58.25 -1.628 -23.151 95.175 1.00 59.46	A A
	ATOM	321	C	ASP	59	1.314 -22.267 96.652 1.00 55.60	Ä
45	ATOM	322	0	ASP	59	1.588 -23.414 97.007 1.00 55.05	A
	MOTA	323	N	LYS	60	1.849 -21.681 95.587 1.00 53.85	A
	MOTA	324	CA	LYS	60	2.819 -22.340 94.718 1.00 51.83	A
	MOTA	325	CB	LYS	60	2.099 -23.322 93.787 1.00 52.01	A
50	ATOM	326	CG	LYS	60	2.982 -23.940 92.720 1.00 51.22	A
50	MOTA	327	CD	LYS	60	2.184 -24.835 91.795 1.00 50.89	A
	MOTA MOTA	328 329	CE NZ	LYS LYS	60 60	3.054 -25.341 90.663 1.00 52.06 3.650 -24.213 89.891 1.00 52.67	A A
	ATOM	330	C	LYS	60	3.534 -21.258 93.900 1.00 50.64	A
	ATOM	331	ō	LYS	60	2.894 -20.350 93.358 1.00 51.26	A
55	MOTA	332	N	SER	61	4.855 -21.347 93.805 1.00 46.71	A
	ATOM	333	CA	SER	61	5.582 -20.340 93.056 1.00 42.61	A
	ATOM	334	ÇВ	SER	61	5.478 -18.996 93.778 1.00 42.79	A
	MOTA	335	OG.	SER	61	6.132 -19.048 95.039 1.00 41.39	A
60	MOTA	336	C	SER	61	7.049 -20.668 92.846 1.00 40.50	A
OO	ATOM	337 338	O N	SER	61 62	7.581 -21.619 93.412 1.00 39.84 7.691 -19.856 92.017 1.00 37.70	A
	ATOM ATOM	339	N CA	SER SER	62	7.691 -19.856 92.017 1.00 37.70 9.104 -19.998 91.732 1.00 34.42	A
	MOTA	340	CB	SER	62	9.363 -19.776 90.245 1.00 34.68	A A
	ATOM	341	OG	SER	62	10.742 -19.881 89.964 1.00 38.74	Â
65	ATOM	342	C	SER	62	9.796 -18.917 92.554 1.00 32.09	A
	ATOM	343	0	SER	62	9.181 -17.903 92.888 1.00 29.47	A
	MOTA	344	N	ARG	63	11.062 -19.126 92.896 1.00 30.00	A
	ATOM	345	CA	ARG	63	11.775 -18.136 93.690 1.00 29.48	A
70	ATOM	346	CB	ARG	63	11.685 -18.472 95.189 1.00 31.57	A
70	MOTA	347	CG	ARG	63 63	10.273 -18.695 95.710 1.00 35.27	A
	MOTA MOTA	348 349	CD NE	ARG ARG	63 63	10.178 -18.504 97.218 1.00 37.21 10.260 -17.093 97.590 1.00 42.67	A A
	ATOM	350	CZ	ARG	63	9.885 -16.601 98.768 1.00 44.05	A A
						1.100 01111 001100 2100 44.00	•

	MOTA	351	NH1	ARG	63	9.995	-15.299	99.014	1.00 42.72	A
	MOTA	352	NH2	ARG	63	9.394	-17.408	99.700	1.00 46.01	A
	ATOM	353	С	ARG	63		-17.994		1.00 27.46	. А
	ATOM	354	õ	ARG	63		-18.887		1.00 26.59	A
5										
,	MOTA	355	N	LYS	64		-16.853	93.693	1.00 25.59	A
	MOTA	356	CA	LYS	64		-16.539		1.00 23.77	A
	MOTA	357	CB	LYS	64	15.353	-15.299	92.587	1.00 25.43	A
	MOTA	358	CG	LYS	64	15.991	-15.532	91.231	1.00 26.32	A
	MOTA	359	CD	LYS	64	15.095	-16.338	90.323	1.00 28.26	A
10	ATOM	360	CE	LYS	64		-16.456		1.00 29.50	A
10		361	NZ	LYS	64		-15.135	88.250	1.00 27.38	
	ATOM									. A
	MOTA	362	C	LYS	64		-16.257	94.854	1.00 23.10	A
	MOTA	363	0	LYS	64		-15.488	95.637	1.00 22.42	A
	MOTA	364	N	THR	65	16.943	-16.876	95.154	1.00 22.03	A
15	MOTA	365	CA	THR	65	17.586	-16.715	96.452	1.00 20.67	A
	ATOM	366	CB	THR	65	17.595	-18.081	97.179	1.00 21.12	A
	ATOM	367		THR	65		-18.252	97.870	1.00 22.06	A
			CG2		65		-18.187	98.154	1.00 27.20	A
	MOTA	368								
20	MOTA	369	C	THR	65		-16.136	96.363	1.00 19.65	A
20	MOTA	370	0	THR	65		-16.430	95.425	1.00 22.34	A
	MOTA	371	N	TYR	66	19.377	-15.300	97.331	1.00 17.01	A
	ATOM	372	CA	TYR	66	20.714	-14.695	97.349	1.00 15.46	A
	ATOM	373	CB	TYR	66	20.686	-13.244	96.829	1.00 14.31	A
	ATOM	374	ĊĠ	TYR	66		-13.055	95.482	1.00 14.28	A
25				TYR			-12.984		1.00 12.32	A
23	ATOM	375			66			95.366		
	MOTA	376		TYR	66		-12.799	94.130	1.00 14.42	A
	MOTA	377		TYR	66		-12.938	94.320	1.00 12.69	A
	MOTA	378	CE2	TYR	66	20.207	-12.752	93.079	1.00 10.53	A
	MOTA	379	CZ	TYR	66	18.829	-12.682	92.993	1.00 13.34	A
30	MOTA	380	ОН	TYR	66	18.214	-12.483	91.776	1.00 14.95	A
	ATOM	381	C	TYR	66		-14.675	98.754	1.00 14.50	A
	MOTA	382	ō	TYR	66		-14.461	99.733	1.00 13.73	Α.
									1.00 13.75	
	ATOM	383	N	THR	67		-14.880	98.854		A
26	MOTA	384	CA	THR	67			100.154	1.00 15.82	A
35	MOTA	385	CB	THR	67	24.083	-16.127	100.386	1.00 16.72	A
	MOTA	386	OG1	THR	67	23.209	-17.261	100.418	1.00 17.16	A
	ATOM	387	CG2	THR	67	24.845	-16.045	101.698	1.00 17.80	A
	MOTA	388	C	THR	67			100.203	1.00 16.72	A
	MOTA	389	õ	THR	67		-13.450	99.293	1.00 17.55	A
40										
40	ATOM	390	N	PHE	68			101.249	1.00 16.84	A
	ATOM	391	CA	PHE	68			101.405	1.00 18.85	A
	MOTA	392	СB	PHE	68	24.119	-10.371	101.340	1.00 17.59	A
	MOTA	393	CG	PHE	68	23.343	-10.206	100.080	1.00 17.32	A
	ATOM	394	CD1	PHE	68	22.105	-10.823	99.926	1.00 16.89	A
45	MOTA	395		PHE	68	23.855	-9.447	99.036	1.00 17.68	A
	ATOM	396		PHE	68		-10.680	98.752	1.00 15.86	A
		397		PHE	68	23.144	-9.296	97.852	1.00 16.89	A
	MOTA									
	ATOM	398	CZ	PHE	68	21.906	-9.916	97.708	1.00 17.47	Α
50	MOTA	399	С	PHE	68			102.745	1.00 19.38	A
50	ATOM	400	0	PHE	68	25.505	-12.703	103.479	1.00 21.74	A
	ATOM	401	N	ASP	69	26.388	-10.688	103.078	1.00 19.56	Α
	ATOM	402	CA	ASP	69	27.105	-10.670	104.344	1.00 20.30	A
	ATOM	403	СВ	ASP	69	28.177		104.313	1.00 20.07	A
	MOTA	404	CG	ASP	69	29.306		103.332	1.00 22.41	A
55								102.143	1.00 20.37	
55	MOTA	405	OD1		69	29.245				A
	MOTA	406	OD2		69			103.756	1.00 27.46	A
	MOTA	407	С	ASP	69	26.150	-10.500	105.531	1.00 20.55	A
	ATOM	408	0	ASP	69	26.369	-11.073	106.600	1.00 20.31	A
	ATOM	409	N	MET	70	25.091	-9.718	105.325	1.00 21.04	A
60	ATOM	410	CA	MET	70	24.065		106.338	1.00 20.59	A
•	ATOM	411	СВ	MET	70	24.464		107.257	1.00 23.87	A
	MOTA	412	CG	MET	70 70	25.600		108.202	1.00 27.55	A
	MOTA	413	SD	MET	70	25.794		109.420	1.00 28.63	A
	MOTA	414	CE	MET	70	24.665		110.676	1.00 29.22	A
65	ATOM	415	С	MET	70	22.737	-9.115	105.678	1.00 20.50	A
	ATOM	416	0	MET	70	22.697	-8.426	104.657	1.00 19.82	A
	ATOM	417	N	VAL	71	21.646		106.258	1.00 18.11	A
	ATOM	418	CA	VAL	71	20.335		105.713	1.00 17.48	Ä
									1.00 17.16	
70	MOTA	419	CB	VAL	71		-10.516			A
70	ATOM	420	CG1		71			103.802	1.00 14.56	A
	MOTA	421	CG2		71		-11.662		1.00 19.68	A
	MOTA	422	С	VAL	71	19.424	-8.791	106.822	1.00 16.09	A
	MOTA	423	0	VAL	71	19.395		107.913	1.00 14.72	A
	-					-	_		_	

	MOTA	424	N	PHE	72	18.714	-7.706	106.529	1.00 16.25	A
	MOTA	425	CA	PHE	72	17.793	-7.079	107.460	1.00 15.53	A
	MOTA	426	CB	PHE	72	18.289		107.799	1.00 14.92	A
5	MOTA	427	CG	PHE	72	19.575		108.575	1.00 17.03	A
)	MOTA	428	CD1	PHE	72	19.590	-6.004	109.925	1.00 16.20	A
	MOTA	429	CD2	PHE	72	20.782	-5.332	107.950	1.00 17.34	A
	ATOM	430		PHE	72	20.785		110.649	1.00 16.42	A
	MOTA	431		PHE	72	21.979		108.660	1.00 16.87	A
10	MOTA	432	CZ	PHE	72	21.983	-5.702	110.016	1.00 16.79	A
10	MOTA	433	С	PHE	72	16.388	-7.007	106.874	1.00 15.43	A
	ATOM	434	0	PHE	72	16.163		105.834	1.00 13.98	A
	MOTA	435	N		73	15.445		107.557	1.00 18.08	
				GLY						A
	MOTA	436	CA	GLY	73	14.067		107.104	1.00 17.75	A
	MOTA	437	С	GLY	73	13.343	-6.377	107.478	1.00 19.38	A
15	MOTA	438	0	GLY	73	13.918	-5.477	108.101	1.00 19.14	A
	MOTA	439	N	ALA	74	12.069		107.103	1.00 20.07	A
	MOTA	440	CA		74	11.228		107.363	1.00 20.00	
				ALA						A
	MOTA	441	CB	ALA	74	9.840	-5.399	106.800	1.00 19.61	A
	MOTA	442	С	ALA	74	11.124	-4.709	108.834	1.00 19.69	A
20	MOTA	443	0	ALA	74	10.972	-3.525	109.123	1.00 21.06	A
	MOTA	444	N	SER	75	11.213		109.765	1.00 18.30	A
	MOTA	445	CA	SER	75	11.103		111.177	1.00 18.31	A
	MOTA	446	СВ	SER	75	10.789	-6.553	111.991	1.00 16.40	A
	MOTA	447	OG	SER	75	11.886	-7.450	111.971	1.00 15.90	A
25	MOTA	448	. C	SER	75	12.359	-4.625	111.748	1.00 18.96	A
	ATOM	449	ō	SER	75	12.368		112.902	1.00 19.99	
										A
	MOTA	450	N	THR	76	13.407		110.937	1.00 18.45	A
	MOTA	451	CA	THR	76	14.667	-3.932	111.390	1.00 17.88	A
	MOTA	452	CB	THR	76	15.783	-4.165	110.347	1.00 18.01	A
30	MOTA	453	OG1		76	15.861		110.019	1.00 17.20	A
-						17.109		110.902		
	MOTA	454	CG2		76				1.00 17.48	A
	MOTA	455	С	THR	76	14.570		111.687	1.00 17.40	A
	MOTA	456	0	THR	76	14.064	-1.667	110.877	1.00 18.84	A
	ATOM	457	N	LYS	77	15.061	-2.034	112.853	1.00 16.09	A
35	MOTA	458	CA	LYS	77	15.032		113.262	1.00 17.09	A
55										
	MOTA	459	CB	LYS	77	14.667		114.751	1.00 19.20	A
	ATOM	460	CG	LYS	7 7	13.337	-1.181	115.120	1.00 20.20	A
	ATOM	461	CD	LYS	7 7	12.198	-0.604	114.302	1.00 24.17	A
	MOTA	462	CE	LYS	77	10.882	-1.325	114.556	1.00 28.56	A
40	ATOM	463	N2	LYS	77	9.741		113.832	1.00 29.29	A
10										
	MOTA	464	С	LYS	77	16.383		113.007	1.00 16.81	A
	MOTA	465	0	LYS	77	17.382	-0.638	112.760	1.00 16.91	A
	MOTA	466	N	GLN	78 ·	16.414	1.368	113.067	1.00 14.39	A
	MOTA	467	CA	GLN	78	17.657	2.101	112.831	1.00 13.21	A
45	ATOM	468	CB	GLN	78	17.422		112.945	1.00 10.26	A
7.5										
	ATOM	469	CG	GLN	78	16.343		112.017	1.00 10.24	A
	MOTA	470	CD	GLN	78	16.799	4.325	110.579	1.00 8.85	A
	ATOM	471	OE1	GLN	78	17.170	3.348	109.922	1.00 10.32	Α
	MOTA	472	NE2	GLN	78	16.776	5.555	110.081	1.00 6.58	A
50	ATOM	473	c	GLN	78	18.750		113.821	1.00 13.02	
50										A
	MOTA	474	0	GLN	78	19.933		113.474	1.00 11.38	A
	MOTA	475	N	ILE	79	18.352	1.392	115.053	1.00 12.89	A
	MOTA	476	CA	ILE	79	19.313	1.013	116.085	1.00 13.42	A
	MOTA	477	CB	ILE	79	18.635	0.959	117.479	1.00 13.40	A
55			CG2							
55	ATOM	478			79	17.591		117.508	1.00 14.83	A
	MOTA	479	CG1		79	19.684		118.571	1.00 13.65	A
	MOTA	480	CD1	ILE	79	20.653	1.906	118.775	1.00 14.47	A
	MOTA	481	С	ILE	79	19.972	-0.329	115.771	1.00 12.91	A
	MOTA	482	0	ILE	79	21.157		116.044	1.00 12.01	A
60										
UU	MOTA	483	N	ASP	80	19.204		115.182	1.00 13.40	A
	MOTA	484	CA	ASP	80	19.719		114.815	1.00 14.93	A
	MOTA	485	CB	ASP	80	18.581	-3.461	114.303	1.00 17.57	Α
	MOTA	486	CG	ASP	80	17.428		115.300	1.00 20.41	A
		487	OD1		80					
65	ATOM					17.692		116.504	1.00 22.08	A
\mathbf{u}_{J}	MOTA	488	OD2		80	16.253		114.879	1.00 21.37	A
	MOTA	489	С	ASP	80	20.777	-2.393	113.719	1.00 15.46	A
	MOTA	490	0	ASP	80	21.845	-3.007	113.769	1.00 15.07	A
	ATOM	491	N	VAL	81	20.467		112.730	1.00 15.97	A
						21.380				
70	MOTA	492	CA	VAL	81			111.625	1.00 16.25	A
70	MOTA	493	CB	VAL	81	20.747		110.555	1.00 16.07	A
	MOTA	494	CG1	VAL	81	21.787	0.027	109.526	1.00 14.56	A
	ATOM	495	CG2		81	19.568		109.857	1.00 14.48	A
	ATOM	496	C	VAL	81	22.667		112.142	1.00 18.57	
	n. or	320	_	****	-	22.00/	-0.001	-16.146	1.00 10.3/	A

	ATOM	497	0	VAL	81	23.758	-1.079	111.733	1.00 20.96	A
	ATOM	498	N		82	22.549		113.046	1.00 19.05	A
				TYR						
	MOTA	499	CA	TYR	82	23.732		113.583	1.00 20.41	A
	MOTA	500	СВ	TYR	82	23.339	2.132	114.471	1.00 23.17	A
5	ATOM	501	CG	TYR	82	24.532	2.903	114.992	1.00 24.73	A
_	ATOM	502		TYR	82	25.137		116.198	1.00 24.58	A
	ATOM	503		TYR	82	26.284	-	116.638	1.00 25.15	A
	MOTA	504	CD2	TYR	82	25.107	3.928	114.237	1.00 25.38	A
	MOTA	505	CE2	TYR	82	26.258	4.576	114.668	1.00 25.61	Α
10	ATOM	506	CZ	TYR	82	26.842		115.868	1.00 25.89	A
10										
	MOTA	507	ОН	TYR	82	28.000		116.297	1.00 26.74	A
	MOTA	508	С	TYR	82	24.633	-0.002	114.375	1.00 22.16	A
	ATOM	509	0	TYR	82	25.835	-0.104	114.103	1.00 22.17	A
	ATOM	510	N	ARG	83	24.059	-0.694	115.352	1.00 21.11	Α
15	ATOM	511	CA	ARG	83	24.834		116.170	1.00 20.40	A
13										
	MOTA	512	CB	ARG	83	23.928		117.222	1.00 18.85	A
	MOTA	513	CG	ARG	83	23.521	-1.315	118.339	1.00 21.14	A
	ATOM	514	CD	ARG	83	22.272	-1.804	119.065	1.00 21.88	A
	ATOM	515	NE	ARG	83	22.478	-3.061	119.779	1.00 22.27	A
20	ATOM		CZ	ARG	83	23.184		120.899	1.00 23.18	A
20		516								
	MOTA	517		ARG	83	23.757		121.434	1.00 23.11	A
	MOTA	518	NH2	ARG	83	23.308	-4.356	121.490	1.00 23.57	A
	ATOM	519	С	ARG	83	25.553	-2.694	115.361	1.00 19.49	A
	ATOM	520	ō	ARG	83	26.702		115.647	1.00 17.49	A
25										
25	MOTA	521	N	SER	84	24.885		114.341	1.00 19.74	A
	ATOM	522	CA	SER	84	25.462	-4.283	113.519	1.00 19.67	A
	MOTA	523	CB	SER	84	24.359	-5.135	112.888	1.00 21.49	Α
	MOTA	524	0G	SER	84	23.716	-5.931	113.865	1.00 28.64	A
	ATOM	525	Ċ	SER	84	26.419		112.426	1.00 18.56	A
30										
30	MOTA	526	0	SER	84	27.487		112.302	1.00 19.77	A
	ATOM	527	N	VAL	85	26.058	-2.866	111.624	1.00 18.63	A
	ATOM	528	CA	VAL	85	26.949	-2.470	110.542	1.00 19.52	A
	ATOM	529	СВ	VAL	85	26.161		109.222	1.00 19.26	A
					85	25.165		109.011	1.00 20.45	A
35	ATOM	530	CG1	VAL						
33	MOTA	531		VAL	85	25.448		109.251	1.00 22.19	A
	MOTA	532	С	VAL	85	27.828	-1.252	110.810	1.00 19.41	A
	ATOM	533	0	VAL	85	29.034	-1.289	110.558	1.00 19.81	A
	ATOM	534	N	VAL	86	27.236		111.342	1.00 19.42	A
40	MOTA	535	CA	VAL	86	27.959		111.603	1.00 19.60	A
40	MOTA	536	CB	VAL	86	26.971	2.226	111.815	1.00 18.59	A
	ATOM	537	CG1	VAL	86	27.724	3.545	111.800	1.00 19.00	A
	ATOM	538	CG2	VAL	86	25.899	2.208	110.736	1.00 18.56	A
	MOTA	539	c	VAL	86	28.950		112.773	1.00 20.31	A
15	MOTA	540	0	VAL	86	30.060		112.637	1.00 19.36	A
45	MOTA	541	N	CYS	87	28.559		113.919	1.00 21.30	A
	MOTA	542	CA	CYS	87	29.438	0.535	115.082	1.00 23.03	A
	MOTA	543	CB	CYS	87	28.777	-0.187	116.254	1.00 26.09	Α
	MOTA	544	SG	CYS	87	29.481		117.859	1.00 36.72	A
					87	30.824		114.804	1.00 21.77	
50	MOTA	545	C	CYS						A
50	ATOM	546	0	CYS	87	31.835		115.145	1.00 21.30	A
	MOTA	547	N	PRO	88	30.894	-1.241	114.185	1.00 20.49	A
	MOTA	548	CD	PRO	88	29.856	-2.240	113.881	1.00 20.97	A
	ATOM	549	CA	PRO	88	32.231	-1.783	113.926	1.00 20.97	Α
	ATOM	550	СВ	PRO	88	31.948		113.473	1.00 18.41	A
55										
ככ	ATOM	551	CG	PRO	88	30.571		112.895	1.00 20.02	A
	MOTA	552	С	PRO	88	33.052		112.905	1.00 21.87	A
	MOTA	553	0	PRO	88	34.280	-0.937	113.000	1.00 22.69	A
	ATOM	554	N	ILE	89	32.380	-0.373	111.934	1.00 21.27	A
	ATOM	555	CA		89	33.068		110.915	1.00 20.39	A
60				ILE						
UU	MOTA	556	CB	ILE	89	32.130		109.720	1.00 20.42	A
	MOTA	557	CG2		89	32.791	1.710	108.762	1.00 16.94	A
	MOTA	558	CG1	ILE	89	31.786	-0.584	108.998	1.00 20.17	Α
	ATOM	559	CD1		89	30.749		107.886	1.00 21.44	A
65	MOTA	560	C	ILE	89	33.577		111.515	1.00 21.10	A
65	MOTA	561	0	ILE	89	34.640		111.144	1.00 22.45	A
	MOTA	562	N	LEU	90	32.818	2.287	112.449	1.00 20.96	A
	ATOM	563	CA	LEU	90	33.229	3.522	113.103	1.00 20.72	A
	MOTA	564	CB	LEU	90	32.086		113.940	1.00 18.19	A
70	MOTA	565	CG	LEU	90	32.407		114.687	1.00 19.36	A
70	MOTA	566	CD1		90	32.779		113.702	1.00 17.91	A
	MOTA	567	CD2	LEU	90	31.203	5.799	115.515	1.00 19.74	A
	MOTA	568	C	LEU	90	34.443		113.989	1.00 21.43	Α
	ATOM	569	Ö	LEU	90	35.346		114.089	1.00 22.10	A
	AIVII	203	•	DEU	J u	JJ. J40	4.001	A14.003	1.00 22.10	^

	3000	570		N C D	91	34.471	2 004	114.632	1.00 21.61	А
	MOTA		N	ASP						
	MOTA	571	CA	ASP	91	35.611	1.731	115.476	1.00 22.75	A
	MOTA	572	CB	ASP	91	35.404	0.380	116.172	1.00 22.67	A
					-					
_	ATOM	573	CG	ASP	91	34.535	0.486	117.410	1.00 25.39	A
5	MOTA	574	OD1	ASP	91	34.386	1.604	117.947	1.00 24.95	A
_								117.859	1.00 27.30	A
	MOTA	575	UDZ	ASP	91	34.006				
	MOTA	576	С	ASP	91	36.877	1.667	114.618	1.00 22.42	Α
		577	0	ASP	91	37.956	2 020	115.077	1.00 20.39	A
	MOTA									
	MOTA	578	N	GLU	92	36.749	1.199	113.378	1.00 20.58	A
10	MOTA	579	CA	GLU	92	37.907	1 130	112.499	1.00 22.88	A
10										
	ATOM	580	СВ	GLU	92	37.599	0.311	111.238	1.00 24.90	A
	ATOM	581	CG	GLU	92	38.131	-1.120	111.282	1.00 31.75	A
									-	
	MOTA	582	CD	GLU	92	38.517		109.902	1.00 35.40	A
	MOTA	583	OE1	GLU	92	39.330	-1.007	109.203	1.00 36.87	A
15				GLU	92	38.017		109.519	1.00 37.95	A
13	MOTA	584								
	MOTA	585	С	GLU	92	38.358	2.537	112.100	1.00 22.24	A
	MOTA	586	0	GLU	92	39.554	2 799	111.964	1.00 21.80	A
	MOTA	587	N	VAL	93	37.398	3.438	111.909	1.00 20.21	A
	MOTA	588	CA	VAL	93	37.712	4.808	111.532	1.00 18.97	A
20										
20	MOTA	589	CB	VAL	93	36.422		111.228	1.00 17.93	A
	MOTA	590	CG1	VAL	93	36.755	7.102	111.094	1.00 14.46	A
	MOTA	591		VAL	93	35.781	5 124	109.937	1.00 16.29	A
	MOTA	592	С	VAL	93	38.489	5.482	112.657	1.00 19.09	A
	MOTA	593	0	VAL	93	39.477	6 174	112.414	1.00 18.02	A
25										
25	MOTA	594	N	ILE	94	38.044	5.263	113.889	1.00 19.70	A
	MOTA	595	CA	ILE	94	38.690	5.845	115.056	1.00 21.90	A
									1.00 22.69	
	MOTA	596	CB	ILE	94	37.815		116.317		A
	MOTA	597	CG2	ILE	94	38.519	6.128	117.571	1.00 22.60	A
	MOTA	598	CG1		94	36.472	6 336	116.124	1.00 22.49	A
20										
30	MOTA	599	CD1	ILE	94	35.480	6.155	117.266	1.00 22.50	A
	MOTA	600	C	ILE	94	40.116	5 302	115.265	1.00 24.26	А
	MOTA	601	0	ILE	94	40.924	5.931	115.945	1.00 24.34	A
	MOTA	602	N	MET	95	40.428	4.148	114.672	1.00 25.73	Α
25	MOTA	603	CA	MET	95	41.767		114.777	1.00 27.17	A
35	MOTA	604	CB	MET	95	41.732	2.047	114.532	1.00 29.33	A
		605	CG	MET	95	41.102		115.643	1.00 35.68	A
	MOTA									
	MOTA	606	SD	MET	95	41.281	-0.526	115.337	1.00 44.01	A
	MOTA	607	CE	MET	95	39.718	-0 911	114.541	1.00 39.10	A
	MOTA	608	C	MET	95	42.722	4.183	113.761	1.00 27.37	A
40	MOTA	609	0	MET	95	43.907	3.832	113.711	1.00 26.10	Α
. •										
	MOTA	610	N	GLY	96	42.197		112.939	1.00 26.75	A
	ATOM	611	CA	GLY	96	43.020	5.753	111.941	1.00 26.52	A
		612		GLY	96	42.861		110.529	1.00 25.69	A
	ATOM		Ç							
	ATOM	613	0	GLY	96	43.752	5.373	109.690	1.00 25.52	A
45	ATOM	614	N	TYR	97	41.720	4 597	110.264	1.00 25.64	Α
15										
	MOTA	615	CA	TYR	97	41.439	4.033	108.949	1.00 24.96	A
	MOTA	616	CB	TYR	97	40.932	2.592	109.113	1.00 29.74	A
					97	42.007		109.444	1.00 34.33	
	MOTA	617	CG	TYR						A
	MOTA	618	CD1	TYR	97	42.993	1.243	108.514	1.00 36.66	A
50	ATOM	619	CEI	TYR	97	43.970	0 292	108.798	1.00 39.73	A
50										
	MOTA	620		TYR	97	42.025		110.680	1.00 35.77	A
	MOTA	621	CE2	TYR	97	42.998	-0.037	110.979	1.00 38.01	Α
	ATOM	622	CZ	TYR	97	43.969	_0 342	110.033	1.00 40.42	A
	MOTA	623	ОН	TYR	97	44.956	-1.264	110.325	1.00 41.65	A
55	MOTA	624	С	TYR	97	40.407	4.854	108.163	1.00 22.65	А
	MOTA	625	0	TYR	97	39.749		108.711	1.00 22.45	A
	MOTA	626	N	ASN	98	40.290	4.565	106.872	1.00 19.89	Α
		627		ASN	98	39.312		106.021	1.00 18.57	A
	MOTA		CA							
	MOTA	628	CB	ASN	98	39.941	5.682	104.702	1.00 19.70	A
60	ATOM	629	CG	ASN	98	40.867	6 863	104.873	1.00 21.50	A
50										
	MOTA	630	ODI	ASN	98	40.543	7.826	105.574	1.00 23.29	A
	ATOM	631	ND2	ASN	98	42.020	6.807	104.222	1.00 20.02	A
	MOTA	632	С	ASN	98	38.195		105.713	1.00 18.68	A
	MOTA	633	0	ASN	98	38.459	3.087	105.346	1.00 16.93	A
65										
U)	MOTA	634	N	CYS	99	36.949		105.865	1.00 18.23	A
	ATOM	635	CA	CYS	99	35.825	3.776	105.575	1.00 17.76	A
					99	35.244		106.867	1.00 18.42	
	MOTA	636	СВ	CYS						A
	ATOM	637	SG	CYS	99	36.378	2.095	107.771	1.00 19.49	A
	MOTA	638	C	CYS	99	34.727		104.790	1.00 15.84	A
70										
70	MOTA	639	0	CYS	99	34.508		104.920	1.00 13.06	A
	MOTA	640	N	THR	100	34.044	3.696	103.968	1.00 15.18	A
	ATOM	641	CA	THR	100	32.968		103.130	1.00 14.06	A
	MOTA	642	CB	THR	100	33.417	4.278	101.657	1.00 12.78	A

	MOTA	643	OG1	THR	100	34.485	5 223	101.539	1.00 14.13	A
	MOTA	644		THR	100	32.262		100.773	1.00 12.44	A
	MOTA	645	С	THR	100	31.759	3.260	103.200	1.00 14.15	A
	MOTA	646	0	THR	100	31.907	2.034	103.263	1.00 13.80	A
5	ATOM	647			101				1.00 12.37	
J			N	ILE		30.568		103.199		A
	MOTA	648	CA	ILE	101	29.329	3.088	103.202	1.00 11.07	A
	MOTA	649	CB	ILE	101	28.608	3.158	104.551	1.00 10.99	A
	MOTA	650		ILE	101	27.404		104.527	1.00 11.07	A
	MOTA	651	CG1	ILE	101	29.551	2.756	105.682	1.00 11.36	A
10	ATOM	652	CD1	ILE	101	28.880	2 767	107.071	1.00 11.31	A
	MOTA	653	С	ILE	101	28.394		102.123		A
	MOTA	654	0	ILE	101	28.077	4.842	102.133	1.00 8.62	A
	MOTA	655	N	PHE	102	27.980	2 807	101.192	1.00 8.88	A
15	MOTA	656	CA	PHE	102	27.089		100.113	1.00 8.18	A
15	ATOM	657	CB	PHE	102	27.521	2.554	98.798	1.00 8.39	A
	ATOM	658	CG	PHE	102	28.786	3.107	98.212	1.00 8.44	A
	MOTA	659		PHE	102	28.746	4.237	97.400	1.00 8.21	A
	MOTA	660	CD2	PHE	102	30.004	2.449	98.402	1.00 7.42	A
	ATOM	661	CE1	PHE	102	29.901	4.712	96.770	1.00 10.64	A
20										
20	ATOM	662		PHE	102	31.167	2.910	97.780	1.00 9.88	A
	ATOM	663	CZ	PHE	102	31.119	4.044	96.957	1.00 10.26	A
	ATOM	664	С	PHE	102	25.686	2.695	100.418	1.00 9.34	A
	ATOM	665	0	PHE	102	25.514		101.084	1.00 9.83	A
~-	MOTA	666	N	ALA	103	24.686	3.420	99.937	1.00 8.83	A
25	ATOM	667	CA	ALA	103	23.301	3.008	100.088	1.00 6.41	A
		668	CB	ALA		22.503				
	ATOM				103			100.836	1.00 6.59	A
	ATOM	669	С	ALA	103	22.887	2.920	98.619	1.00 5.06	A
	MOTA	670	0	ALA	103	22.988	3.898	97.890	1.00 3.08	A
		671		TYR	104					
20	ATOM		N			22.476	1.735	98.184	1.00 4.26	A
30	ATOM	672	CA	TYR	104	22.110	1.498	96.791	1.00 4.91	A
	ATOM	673	CB	TYR	104	23.142	0.552	96.137	1.00 3.89	A
	ATOM	674	CG	TYR	104	22.911	0.238	94.666	1.00 4.19	Α
	MOTA	675	CD1	TYR	104	21.933	-0.675	94.260	1.00 6.04	A
	ATOM	676	CEL	TYR	104	21.722	-0.946	92.898	1.00 7.93	A
35										
55	MOTA	677		TYR	104	23.667	0.868	93.679	1.00 5.77	A
	MOTA	678	CE2	TYR	104	23.466	0.608	92.326	1.00 5.74	A
	ATOM	679	CZ	TYR	104	22.500	-0.295	91.944	1.00 6.93	A
	MOTA	680	ОН	TYR	104	22.326	-0.551	90.604	1.00 8.61	A
	MOTA	681	С	TYR	104	20.718	0.893	96.678	1.00 5.23	A
40	MOTA	682	0	TYR	104	20.346	0.007	97.445	1.00 7.02	A
	MOTA	683	N	GLY	105	19.955	1.368	95.704	1.00 3.82	A
	ATOM	684	CA	GLY	105	18.620	0.857	95.521	1.00 5.02	A
	MOTA	. 685	С	GLY	105	17.705	1.803	94.773	1.00 5.87	A
		686	ō							
15	MOTA			GLY	105	17.981	2.992	94.590	1.00 6.06	A
45	ATOM	687	N	GLN	106	16.598	1.244	94.326	1.00 4.13	Α
	MOTA	688	CA	GLN	106	15.601	1.986	93.591	1.00 6.44	A
	MOTA	689	CB	GLN	106					
						14.513	0.998	93.158		A
	MOTA	690	CG	GLN	106	13.175	1.585	92.817	1.00 11.96	A
	MOTA	691	CD	GLN	106	12.136	0.511	92.499	1.00 14.57	A
50	MOTA	692	OE1		106	12.060	-0.539	93.172	1.00 12.16	
50										A
	ATOM	693	NE2	GLN	106	11.318	0.774	91.483	1.00 10.80	A
	ATOM	694	С	GLN	106	15.047	3.091	94.488	1.00 7.89	A
	ATOM	695	0	GLN	106	15.083	2.992	95.725	1.00 8.30	
										A
E E	ATOM	696	N	THR	107	14.558	4.157	93.869	1.00 8.49	A
55	ATOM	697	CA	THR	107	13.981	5.259	94.620	1.00 8.83	Α
	MOTA	698	CB	THR	107	13.532	6.371	93.668	1.00 10.17	A
			OG1			14.681				
	MOTA	699			107		6.936	93.023	1.00 11.92	A
	ATOM	700	CG2	THR	107	12.783	7.464	94.431	1.00 9.05	Α
	MOTA	701	С	THR	107	12.763	4.751	95.392	1.00 11.60	A
60										
00	ATOM	702	0	THR	107	11.936	4.017	94.838	1.00 13.74	A
	MOTA	703	N	GLY	108	12.66 1	5.121	96.668	1.00 11.74	A
	MOTA	704	CA	GLY	108	11.527	4.703	97.476	1.00 9.99	A
	ATOM									
		705		GLY	108	11.738	3.461	98.330	1.00 11.25	A
	MOTA	706	0	GLY	108	10.812	3.004	99.018	1.00 12.52	A
65	MOTA	707	N	THR	109	12.947	2.915	98.313	1.00 9.04	A
	MOTA	708		THR	109	13.216	1.716	99.090	1.00 8.13	A
	MOTA	709	CB	THR	109	14.053	0.703	98.291	1.00 8.11	Α
	MOTA	710	OG1		109	15.274	1.321	97.857	1.00 5.32	A
70	ATOM	711	CG2		109	13.269	0.220	97.079	1.00 2.18	A
70	ATOM	712	С	THR	109	13.914	1.990	100.405	1.00 8.77	A
	MOTA	713		THR	109	14.029		101.236	1.00 9.56	A
	ATOM	714		GLY	110	14.411		100.599	1.00 6.93	A
	MOTA	715	CA	GLY	110	15.037	3.517	101.878	1.00 7.00	A

	ATOM	716		CLV	110	16 401	2 050	101 005	1:00 8:39	
				GLY	110	16.491		101.985		A
	MOTA	717	0	GLY	110	17.052	3.953	103.089	1.00 6.64	A
	MOTA	718	N	LYS	111	17.106	4.346	100.869	1.00 8.77	A
	ATOM	719	CA	LYS	111	18.493		100.888	1.00 8.41	A
5										
9	MOTA	720	СB	LYS	111	18.938		99.495	1.00 9.46	A
	ATOM	721	CG	LYS	111	19.086	4.134	98.462	1.00 8.41	A
	MOTA	722	CD	LYS	111	19.650	4.651	97.133	1.00 7.10	A
	ATOM	723	CE	LYS	111	18.772	5.741	96.526	1.00 8.55	A
••	MOTA	724	NZ	LYS	111	17.364	5.298	96.325	1.00 7.14	A
10	MOTA	725	С	LYS	111	18.643	5.956	101.862	1.00 8.34	A
	ATOM	726	0	LYS	111	19.448		102.789	1.00 9.08	A
	MOTA	727	N	THR	112	17.851		101.651	1.00 8.83	A
	MOTA	728	CA	THR	112	17.896	8.198	102.502	1.00 7.73	A
	MOTA	729	CB	THR	112	17.027	9.342	101.903	1.00 8.07	A
15	ATOM	730		THR	112	17.347		100.502	1.00 8.01	A
I J										
	MOTA	731		? THR	112	17.287		102.650	1.00 4.02	A
	ATOM	732	С	THR	112	17.454	7.905	103.945	1.00 8.81	A
	MOTA	733	0	THR	112	17.997	8.458	104.894	1.00 8.08	A
		734	N	PHE	113	16.476		104.114	1.00 11.03	
20	MOTA									A
20	MOTA	735	CA	PHE	113	16.008	6.664	105.448	1.00 11.19	A
	ATOM	736	CB	PHE	113	14.806	5.727	105.361	1.00 10.34	A
	ATOM	737	CG	PHE	113	14.208	5.385	106.699	1.00 10.76	A
	ATOM	738		PHE	113	13.247		107.276	1.00 9.64	A
25	MOTA	739	CD2	PHE	113	14.623	4.249	107.393	1.00 9.33	A
25	ATOM	740	CE1	PHE	113	12.703	5.917	108.523	1.00 10.99	A
	ATOM	741		PHE	113	14.084		108.646	1.00 11.97	A
	MOTA	742	CZ	PHE	113	13.120		109.212		
										A
	MOTA	743	С	PHE	113	17.120	5.943	106.205	1.00 11.21	A
	ATOM	744	0	PHE	113	17.254	6.081	107.418	1.00 11.83	A
30	ATOM	745	N	THR	114	17.908	5 159	105.483	1.00 10.89	A
-										
	ATOM	746	CA	THR	114	18.992		106.101	1.00 9.91	A
	MOTA	747	CB	THR	114	19.458	3.267	105.173	1.00 12.09	A
	MOTA	748	OG1	THR	114	18.375	2.336	105.001	1.00 10.83	A
	ATOM	749		THR	114	20.677		105.763	1.00 9.73	A
35										
22	ATOM	750	С	THR	114	20.167		106.438	1.00 10.11	A
	MOTA	751	0	THR	114	20.650	5.328	107.569	1.00 10.60	A
	MOTA	752	N	MET	115	20.606	6.125	105.466	1.00 11.39	A
	ATOM	753	CA	MET	115	21.745		105.666	1.00 11.76	
										A
40	ATOM	754	CB	MET	115	22.286		104.323	1.00 14.08	A
40	ATOM	755	CG	MET	115	22.774	6.402	103.406	1.00 21.28	A
	ATOM	756	SD	MET	115	24.093	5.411	104.142	1.00 28.02	A
	ATOM	757	CE	MET	115	25.184		104.670	1.00 16.59	A
	ATOM	758	c	MET	115	21.489		106.547	1.00 11.39	A
15	ATOM	759	0	MET	115	22.347		107.349	1.00 11.70	A
45	ATOM	760	N	GLU	116	20.322	8.868	106.410	1.00 10.32	A
	MOTA	761	CA	GLU	116	20.023	10.064	107.197	1.00 9.04	A
	ATOM	762	СВ	GLU	116	19.498		106.299	1.00 11.83	A
	MOTA	763	CG	GLU	116	20.215	11.349	104.970	1.00 15.21	A
	MOTA	764	CD	GLU	116	19.911	12.682	104.319	1.00 17.70	A
50	ATOM	765	OE1	GLU	116	18.751	13,137	104.405	1.00 20.63	A
	ATOM	766	OE2			20.830		103.715	1.00 19.36	A
				-	116					
	ATOM	767	C	GLU	116	19.021		108.319	1.00 8.57	A
	MOTA	768	0	GLU	116	19.225	10.344	109.430	1.00 6.66	A
	ATOM	769	N	GLY	117	17.937	9.162	108.024	1.00 10.69	A
55	MOTA	770	CA	GLY	117	16.894		109.011	1.00 12.05	Α
55										
	ATOM	771	C	GLY	117	15.906	10.119		1.00 14.49	A
	MOTA	772	0	GLY	117	16.009	10.967	108.030	1.00 15.09	A
	MOTA	773	N	GLU	118	14.954	10.176	109.844	1.00 15.27	A
	ATOM	774	CA	GLU	118	13.955	11.240		1.00 17.05	
60										A
UU	ATOM	775	CB	GLU	118	12.680	10.764		1.00 18.95	A
	MOTA	776	CG	GLU	118	12.881	10.219	107.732	1.00 24.85	A
	MOTA	777	CD	GLU	118	11.659	9,462	107.228	1.00 28.50	A
	ATOM	778		GLU	118	11.639		106.047	1.00 29.02	
										A
65	ATOM	779		GLU	118	10.715		108.025	1.00 31.54	A
65	MOTA	780	С	GLU	118	13.601	11.631	111.246	1.00 15.85	A
	ATOM	781	0	GLU	118	14.159	11.111		1.00 17.29	A
	ATOM	782	N	ARG	119	12.660	12.549			
									1.00 14.03	A
	MOTA	783	CA	ARG	119	12.238	12.955		1.00 12.36	A
	ATOM	784	CB	ARG	119	12.058	14.469	112.765	1.00 9.51	A
70	ATOM	785	CG	ARG	119	13.311	15.275		1.00 9.85	A
. •	ATOM	786	CD	ARG	119	14.517	14.768			
									1.00 9.11	A
	ATOM	787	NE	ARG	119	14.226	14.503		1.00 11.37	A
	MOTA	788	CZ	ARG	119	14.274	15.409	115.601	1.00 9.83	A

	ATOM	789	NH1 ARG	119	14.607	16.663 115.326	1.00 8.80	A
	ATOM	790	NH2 ARG	119	14.003		1.00 8.38	A
	MOTA	791	C ARG	119	10.909	12.278 113.012	1.00 13.30	A
5	ATOM	792	O ARG	119	10.055	12.134 112.140	1.00 12.33	A
,	MOTA MOTA	793 794	N SER CA SER	120 120	10.746 9.478	11.819 114.244 11.232 114.630	1.00 14.08	A A
	ATOM	795	CB SER	120	9.563	10.651 116.037	1.00 13.18	Ä
	MOTA	796	OG SER	120	10.380	9.500 116.043	1.00 13.75	A
10	ATOM	797	C SER	120	8.542	12.434 114.610	1.00 14.70	A
10	MOTA	798	O SER	120	8.966	13.556 114.877	1.00 14.22	A
	ATOM	799	N PRO	121	. 7.263	12.222 114.295 10.969 113.860	1.00 15.80	A
	MOTA MOTA	800 801	CD PRO	121 121	6.629 6.312	13.340 114.253	1.00 15.88 1.00 16.98	A A
	ATOM	802	CB PRO	121	5.037	12.699 113.703	1.00 17.68	A
15	ATOM	803	CG PRO	121	5.528	11.476 112.967	1.00 18.94	A
	ATOM	804	C PRO	121	6.036	14.035 115.589	1.00 17.31	A
	ATOM	805	O PRO	121	6.316	13.495 116.662	1.00 17.01	A
	MOTA	806	N ASN	122	5.493	15.249 115.498	1.00 18.27	A
20	ATOM ATOM	807 808	CA ASN CB ASN	122 122	5.079 3.899	16.029 116.659 15.303 117.323	1.00 19.75 1.00 22.14	A A
	MOTA	809	CG ASN	122	2.806	16.243 117.782	1.00 25.67	A
	MOTA	810	OD1 ASN	122	2.331	17.090 117.020	1.00 28.24	A
	MOTA	811	ND2 ASN	122	2.386	16.089 119.029	1.00 29.36	Α
25	MOTA	812	C ASN	122	6.137	16.341 117.714	1.00 20.30	A
25	ATOM ATOM	813 814	O ASN N GLU	122 123	5.810 7.398	16.490 118.889 16.443 117.312	1.00 19.52 1.00 20.21	A A
	MOTA	815	CA GLU	123	8.460	16.745 118.267	1.00 20.21	A
	MOTA	816	CB GLU	123	8.341	18.185 118.781	1.00 20.11	A
20	MOTA	817	CG GLU	123	8.519	19.249 117.731	1.00 20.41	A
30	MOTA	818	CD GLU	123	8.575	20.654 118.319	1.00 21.92	A
	MOTA ATOM	819	OE1 GLU OE2 GLU	123	7.688	21.013 119.133	1.00 18.15	A
	ATOM	820 821	C GLU	123 123	8.446	21.404 117.951 15.806 119.468	1.00 21.94 1.00 21.37	A A
	ATOM	822	O GLU	123	8.632	16.247 120.602	1.00 19.07	Ä
35	ATOM	823	N GLU	124	8.226	14.518 119.233	1.00 22.79	A
	ATOM	824	CA GLU	124	8.210	13.577 120.339	1.00 22.88	A
	MOTA	825	CB GLU	124	7.685	12.215 119.887	1.00 25.26	A
	MOTA MOTA	826 827	CG GLU	124 124	7.600 6.924	11.205 121.033 9.899 120.636	1.00 30.44	A A
40	MOTA	828	OE1 GLU	124	6.827	9.003 121.508	1.00 33.81	A
	MOTA	829	OE2 GLU	124	6.494	9.772 119.464	1.00 37.51	A
	MOTA	830	C GLU	124	9.592	13.404 120.964	1.00 22.45	A
	MOTA	831	O GLU	124	9.715	13.235 122.180	1.00 23.30	A
45	MOTA MOTA	832 833	N TYR CA TYR	125 125	10.635 11.988	13.452 120.142 13.269 120.657	1.00 20.18	A
73	ATOM	834	CB TYR	125	12.602	11.953 120.150	1.00 17.84	A
	ATOM	835	CG TYR	125	11.805	10.695 120.391	1.00 17.89	A
	MOTA	836	CD1 TYR	125	10.791	10.304 119.513	1.00 18.58	A
50	ATOM	837	CE1 TYR	125	10.086	9.120 119.713	1.00 18.72	A
30	MOTA MOTA	838 839	CD2 TYR	125 125	12.090 11.395	9.871 121.477 8.691 121.686	1.00 17.89	A
	ATOM	840	CZ TYR	125	10.398	8.321 120.804	1.00 17.82 1.00 19.43	A A
	ATOM	841	OH TYR	125	9.724	7.142 121.017	1.00 23.55	A
ے ہے	MOTA	842	C TYR	125	12.941	14.377 120.260	1.00 18.68	A
55	ATOM	843	O TYR	125	12.678	15.144 119.338	1.00 20.06	A
	MOTA ATOM	844	N THR	126	14.061	14.445 120.971 15.402 120.651	1.00 18.30	A
	ATOM	845 846	CA THR CB THR	126 126	15.106 16.063	15.618 121.839	1.00 18.04 1.00 18.63	A A
	ATOM	847	OG1 THR	126	16.592	14.356 122.254	1.00 20.05	A
60	MOTA	848	CG2 THR	126	15.339	16.258 123.014	1.00 18.83	A
	MOTA	849	C THR	126	15.838	14.653 119.537	1.00 17.89	A
	ATOM	850	O THR	126	15.606	13.455 119.355	1.00 16.79	A
	MOTA MOTA	851 852	N TRP	127 127	16.708 17.401	15.322 118.789 14.636 117.711	1.00 16.50 1.00 16.42	A
65	ATOM	852 853	CB TRP	127	18.198	15.642 116.868	1.00 16.42	A A
	MOTA	854	CG TRP	127	19.443	16.133 117.506	1.00 12.21	Ä
	MOTA	855	CD2 TRP	127	20.746	15.554 117.381	1.00 12.40	A
	MOTA	856	CE2 TRP	127	21.634	16.350 118.138	1.00 12.89	A
70	MOTA	857	CE3 TRP	127	21.250	14.436 116.703	1.00 10.82	A
70	MOTA MOTA	858 859	CD1 TRP NE1 TRP	127 127	19.580 20.899	17.225 118.314 17.365 118.698	1.00 12.48 1.00 14.38	A A
	MOTA	860	CZ2 TRP	127	22.997	16.063 118.233	1.00 14.38	A
	MOTA	861	CZ3 TRP	127	22.607	14.148 116.800	1.00 8.68	A

	MOTA	862	CHO	TRP	127	23.463	14 959	117.558	1.00 10.75	A
	ATOM	863	С	TRP	127	18.318	13.500	118.191	1.00 18.04	A
	MOTA	864	0	TRP	127	18.496	12.507	117.491	1.00 17.73	A
						18.874		119.390	1.00 20.55	
_	ATOM	865	N	GLU	128					A
5	MOTA	866	CA	GLU	128	19.773	12.630	119.954	1.00 22.98	A
_	MOTA	867	CB	GLU	128	20.449		121.216	1.00 24.66	A
	MOTA	868	CG	GLU	128	21.328	14.375	121.028	1.00 30.86	Α
	MOTA	869	CD	GLU	128	21,812	1/ 020	122.359	1.00 34.39	A
	MOTA	870	OE1	GLU	128	22.271	14.126	123.204	1.00 36.58	A
10	MOTA	871	OF?	GLU	128	21.734	16 160	122.562	1.00 36.22	A
10										
	MOTA	872	С	GLU	128	19.092	11.322	120.336	1.00 21.59	A
	ATOM	873	0	GLU	128	19.744	10.291	120.456	1.00 20.67	A
	MOTA	874	N	GLU	129	17.784	11.362	120.539	1.00 22.17	A
	ATOM	875	CA	GLU	129	17.073	10.167	120.974	1.00 22.68	A
15										
13	MOTA	876	CB	GLU	129	16.487		122.364	1.00 23.27	A
	ATOM	877	CG	GLU	129	17.550	10.770	123.392	1.00 28.13	A
		878	CD	GLU	129	16.965	11 157	124.737	1.00 32.95	A
	ATOM									
	MOTA	879	OE1	GLU	129	17.752	11.323	125.702	1.00 33.26	A
	ATOM	880	OF2	GLU	129	15.724	11 301	124.827	1.00 31.63	A
20										
20	ATOM	881	С	GLU	129	15.983	9.679	120.035	1.00 20.72	A
	MOTA	882	0	GLU	129	15.273	8.728	120.343	1.00 23.09	A
	MOTA	883	N	ASP	130	15.862		118.885	1.00 18.40	A
	MOTA	884	CA	ASP	130	14.846	9.945	117.918	1.00 16.36	Α
					130	14.770		116.828	1.00 15.71	
25	ATOM	885	СВ	ASP						A
25	ATOM	886	CG	ASP	130	13.495	10.947	116.031	1.00 15.49	A
					130	13.044		115.545	1.00 17.27	A
	ATOM	887		ASP						
	ATOM	888	OD2	ASP	130	12.950	9.839	115.874	1.00 15.06	A
	ATOM	889	С	ASP	130	15.168	8 573	117.326	1.00 15.41	A
	MOTA	890	0	ASP	130	16.196	8.377	116.680	1.00 15.65	A
30	ATOM	891	N	PRO	131	14.287	7.597	117.548	1.00 14.81	A
50										
	MOTA	892	CD	PRO	131	12.980	7.675	118.222	1.00 14.52	A
	MOTA	893	CA	PRO	131	14.523	6.255	117.018	1.00 15.02	A
	MOTA	894	CB	PRO	131	13.348		117.579	1.00 15.21	A
	ATOM	895	CG	PRO	131	12.267	6.478	117.656	1.00 16.02	A
35		896		PRO	131	14.607		115.492	1.00 15.04	A
55	ATOM		C							
	MOTA	897	0	PRO	131	15.103	5.196	114.943	1.00 12.71	A
	ATOM	898	N	LEU	132	14.125	7 224	114.814	1.00 14.88	A
	ATOM	899	CA	LEU	132	14.161	7.254	113.354	1.00 14.03	A
	MOTA	900	CB	LEU	132	12.947	8.007	112.796	1.00 12.82	A
40										
40	ATOM	901	CG	LEU	132	11.562	1.434	113.129	1.00 14.44	A
	ATOM	902	CD1	LEU	132	10.506	8.271	112.397	1.00 8.97	Α
	ATOM	903		LEU	132	11.470		112.724	1.00 8.90	A
	ATOM	904	С	LEU	132	15.446	7.861	112.786	1.00 12.21	A
		905	0	LEU	132	15.626		111.573	1.00 11.16	Α
4.5	ATOM									
45	ATOM	906	N	ALA	133	16.337	8.321	113.655	1.00 11.83	A
	ATOM	907	CA	ALA	133	17.604	8 891	113.186	1.00 11.94	A
	MOTA	908	CB	ALA	133	18.447	9.345	114.377	1.00 7.70	A
	ATOM	909	С	ALA	133	18.367	7.825	112.373	1.00 12.53	A
~~	MOTA	910	0	ALA	133	18.308		112.693	1.00 12.95	A
50	ATOM	911	N	GLY	134	19.074	8.256	111.330	1.00 13.23	A
						19.832		110.506	1.00 13.31	
	ATOM	912	CA	GLY	134					A
	MOTA	913	С	GLY	134	21.314	7.273	110.858	1.00 14.51	A
	ATOM	914	0	GLY	134	21.727	7.771	111.910	1.00 12.96	Α
	MOTA	915	N	ILE	135	22.111	0.085	109.962	1.00 13.27	A
55	ATOM	916	CA	ILE	135	23.547	6.529	110.158	1.00 10.64	A
-	ATOM	917	CB	ILE	135	24.211		108.945	1.00 12.21	A
	MOTA	918	CG2	ILE	135	25.728	5.725	109.166	1.00 9.26	A
	ATOM	919	CG1	TLE	135	23.606	4 433	108.749	1.00 9.44	A
	ATOM	920	CD1	ILE	135	24.194	3.659	107.563	1.00 7.34	A
60	ATOM	921	С	ILE	135	24.319	7.817	110.429	1.00 11.04	A
	ATOM	922	0	ILE	135	25.101		111.370	1.00 12.98	A
	ATOM	923	N	ILE	136	24.117	8.843	109.606	1.00 10.10	Α
					136	24.822		109.783		
	MOTA	924	CA	ILE					1.00 10.16	A
	MOTA	925	CB	ILE	136	24.393	11.137	108.709	1.00 9.76	A
65		926	CG2		136	25.052		108.966	1.00 7.05	
05	MOTA									A
	ATOM	927	CG1	ILE	136	24.783	10.611	107.327	1.00 8.04	A
		928	CD1		136	24.420		106.177	1.00 8.70	A
	ATOM									
	ATOM	929	С	ILE	136	24.680	10.734	111.180	1.00 10.98	A
	ATOM	930	0	ILE	136	25.673	10.974	111.848	1.00 11.07	A
70										
70	ATOM	931	N	PRO	137	23.449	11.015	111.637	1.00 12.76	A
	ATOM	932	CD	PRO	137	22.118	10.891	111.018	1.00 12.91	A
	ATOM	933	CA	PRO	137	23.344	11.609	112.974	1.00 13.27	A
	ATOM	934	CB	PRO	137	21.863	11.966	113.079	1.00 12.28	A
			-	_						

	ATOM	935	CG	PRO	137	21 210	10 020	112.226	1.00 12.44	А
	ATOM	936	C	PRO	137	21.210 23.814		114.117	1.00 12.44	A
	ATOM	937	ŏ	PRO	137	24.349		115.118	1.00 13.93	A
	ATOM	938		ARG	138	23.616		113.982	1.00 13.99	A
5	MOTA	939	CA	ARG	138	24.061		115.034	1.00 14.63	A
	MOTA	940	CB	ARG	138	23.520	7.083	114.788	1.00 11.07	A
	MOTA	941	CG	ARG	138	22.026		115.030	1.00 10.07	A
	MOTA	942	CD	ARG	138	21.514		114.706	1.00 12.89	A
10	MOTA	943	NE	ARG	138	20.063		114.816	1.00 14.12	A
10	ATOM	944	CZ	ARG	138	19.395		115.961	1.00 16.84	A
	MOTA	945		ARG	138	20.043 18.070		117.123 115.943	1.00 17.01 1.00 16.58	A A
	MOTA MOTA	946 947	C.	ARG ARG	138 138	25.590		115.105	1.00 14.82	À
	MOTA	948	Ö	ARG	138	26.175		116.189	1.00 17.18	A
15	MOTA	949	N	THR	139	26.227		113.943	1.00 13.19	A
	ATOM	950	CA	THR	139	27.676		113.864	1.00 14.27	A
	MOTA	951	CB	THR	139	28.134	8.347	112.394	1.00 15.10	A
	MOTA	952	OG1	THR	139	27.671		111.877	1.00 16.74	A
20	MOTA	953	CG2		139	29.663		112.290	1.00 15.25	A
20	MOTA	954	С	THR	139	28.315		114.473	1.00 14.96	A
	MOTA	955	0	THR	139	29.268		115.247	1.00 16.32 1.00 13.16	A
	MOTA MOTA	956 957	N CA	LEU LEU	140 140	27.802 28.374		114.128 114.664	1.00 13.10	A A
	ATOM	958	CB	LEU	140	27.742		113.988	1.00 13.68	 A
25	MOTA	959	CG	LEU	140	28.065		112.489	1.00 15.01	A
-	ATOM	960		LEU	140	27.116		111.824	1.00 15.28	A
	MOTA	961	CD2	LEU	140	29.535	13.845	112.286	1.00 12.18	A
	MOTA	962	С	LEU	140	28.168		116.165	1.00 14.55	A
20	MOTA	963	0	LEU	140	29.031		116.900	1.00 14.87	A
30	ATOM	964	N	HIS	141	27.021		116.621	1.00 15.53	A
	MOTA	965	CA	HIS	141	26.715 25.241		118.041	1.00 15.51 1.00 17.50	A
	MOTA MOTA	966 967	CB CG	HIS HIS	141 141	24.809		118.265 119.698	1.00 17.50	A A
	MOTA	968		HIS	141	24.144		120.400	1.00 20.09	Ä
35	ATOM	969		HIS	141	25.057		120.584	1.00 22.94	A
	ATOM	970		HIS	141	24.561		121.769	1.00 21.94	A
	MOTA	971	NE2	HIS	141	24.002	11.880	121.683	1.00 21.59	A
	MOTA	972	С	HIS	141	27.638		118.787	1.00 14.45	A
40	MOTA	973	0	HIS	141	28.133		119.864	1.00 12.82	Α
40	ATOM	974	N	GLN	142	27.893		118.202	1.00 12.87	A
	MOTA MOTA	975 976	CA CB	GLN GLN	142 142	28.753 28.542		118.852 118.239	1.00 14.02 1.00 13.39	A A
	MOTA	977	CG	GLN	142	27.299		118.741	1.00 20.05	À
	MOTA	978	CD	GLN	142	27.237		120.262	1.00 21.32	A
45	MOTA	979		GLN	142	26.660		120.910	1.00 21.37	A
	MOTA	980	NE2	GLN	142	27.850	5.454	120.837	1.00 19.74	A
	MOTA	981	С	GLN	142	30.243		118.862	1.00 13.74	A
	MOTA	982	0	GLN	142	30.961		119.759	1.00 14.17	A
50	MOTA	983	N	ILE	143	30.713	-	117.870	1.00 13.21	A
50	ATOM ATOM	984 985	CA CB	ILE	143 143	32.119 32.435		117.826 116.576	1.00 13.39 1.00 11.43	A A
	ATOM	986		ILE	143	33.847		116.678	1.00 13.15	Ä
	ATOM	987		ILE	143	32.282		115.324	1.00 9.90	A
	ATOM	988	CD1	ILE	143	32.437		114.012	1.00 8.46	A
55	MOTA	989	С	ILE	143	32.454		119.082	1.00 14.99	A
	MOTA	990	0	ILE	143	33.473		119.724	1.00 13.04	A
	MOTA	991	N	PHE	144	31.581		119.419	1.00 17.68	A
	MOTA	992	CA	PHE	144	31.741		120.599	1.00 20.78	A
60	MOTA MOTA	993 994	CB CG	PHE	144 144	30.771 31.153		120.548 119.549	1.00 17.56 1.00 18.09	A A
00	MOTA	995	CD1		144	32.205		119.809	1.00 18.10	Ä
	ATOM	996	CD2		144	30.492		118.327	1.00 17.52	A
	ATOM	997	CE1		144	32.596		118.864	1.00 19.03	A
	MOTA	998	CE2		144	30.873	15.949	117.371	1.00 16.50	A
65	MOTA	999	CZ	PHE	144	31.926		117.639	1.00 18.32	A
	MOTA	1000	С	PHE	144	31.481		121.877	1.00 24.06	A
	ATOM	1001	0	PHE	144	32.059		122.917	1.00 25.61	A
	MOTA	1002	N	GLU	145	30.596	10.924		1.00 28.05	A
70	ATOM ATOM	1003 1004	CA CB	GLU GLU	145 145	30.270 29.052		122.963	1.00 32.18 1.00 34.92	A A
, 0	ATOM	1004	CG	GLU	145	28.382		123.877	1.00 34.92	A
	ATOM	1005	CD	GLU	145	27.459		124.604	1.00 46.68	À
	MOTA	1007	OE1		145	26.808		125.583	1.00 48.85	A

					145	22 222	10 772	124 225	1 00 40 22	
	MOTA	1008	-	GLU	145	27.379		124.205	1.00 48.27	A
	MOTA	1009	C	GLU	145	31.472		123.300	1.00 33.53	A
	MOTA	1010	0	GLU	145	31.796		124.465	1.00 35.14	A
5	MOTA	1011	N	LYS	146	32.139		122.272	1.00 33.94	A
)	MOTA	1012	CA	LYS	146	33.289		122.460	1.00 35.62	A
	ATOM	1013	CB	LYS	146	33.493		121.218	1.00 35.76	A
	ATOM	1014	CG	LYS	146	32.398		120.990	1.00 38.40	A
	MOTA	1015	CD	LYS	146	32.750		119.853	1.00 39.00	A
10	MOTA	1016	CE	LYS	146	31.822		119.842	1.00 40.55	A
10	MOTA	1017	NZ	LYS	146	32.108		118.719	1.00 42.99	A
	MOTA	1018	C	LYS	146	34.600		122.781	1.00 37.30	A
	MOTA	1019	0	LYS	146	35.279		123.746	1.00 38.30	A
	MOTA	1020	N	LEU	147	34.959		121.978	1.00 37.75	A
15	MOTA	1021	CA	LEU	147	36.212		122.182	1.00 39.45	A
13	MOTA	1022	CB	LEU	147	36.611		120.894	1.00 36.70	A
	ATOM	1023	ÇG	LEU	147	36.769		119.652	1.00 34.99	A
	MOTA	1024		LEU	147	37.244		118.483	1.00 32.76	A
	MOTA	1025		LEU	147	37.754		119.940	1.00 33.24	A
20	MOTA	1026	C	LEU	147	36.250		123.355	1.00 41.40	A
20	ATOM	1027	0	LEU	147	37.329		123.803	1.00 41.57	A
	MOTA	1028	N	THR	148	35.091		123.855	1.00 43.50	A
	MOTA	1029	CA	THR	148	35.078		124.972	1.00 46.76	A
	MOTA	1030	CB	THR	148	33.735		125.068	1.00 46.73	A
25	MOTA	1031		THR	148	33.559		123.901	1.00 45.09	A
25	MOTA	1032		THR	148	33.717		126.299	1.00 45.59	A
	MOTA	1033	C	THR	148	35.327		126.266	1.00 50.09	A
	MOTA	1034	0	THR	148	36.050		127.149	1.00 50.49	A
	MOTA	1035	N	ASP	149	34.734		126.367	1.00 53.41	A
30	ATOM	1036	CA	ASP	149	34.899		127.545	1.00 56.45	A
30	ATOM	1037	CB	ASP	149	34.094		127.395	1.00 57.31	A
	MOTA	1038	CG	ASP	149	32.677		127.926	1.00 59.22	A
	MOTA	1039		ASP	149	32.519		129.090	1.00 59.37	A
	MOTA	1040		ASP	149	31.723		127.191 127.778	1.00 59.44	A
35	MOTA	1041	C	ASP	149	36.365		128.800	1.00 57.60 1.00 57.84	A
55	MOTA	1042	0	ASP	149	36.948		126.824	1.00 57.84	A
	MOTA	1043	N	ASN	150	36.955		126.919	1.00 59.63	A A
	MOTA	1044	CA	ASN	150	38.354 38.699		125.793	1.00 62.63	A
	ATOM	1045 1046	CB CG	ASN ASN	150 150	37.845		125.832	1.00 65.36	A
40	ATOM				150	37.880		126.803	1.00 66.45	À
40	ATOM ATOM	1047 1048		ASN ASN	150	37.070		124.774	1.00 66.13	Ä
	ATOM	1048	C	ASN	150	39.248		126.833	1.00 58.25	A
	MOTA	1050	ō	ASN	150	38.814		126.382	1.00 58.50	Ä
	MOTA	1051	N	GLY	151	40.492		127.279	1.00 56.63	Ä
45	MOTA	1052	CA	GLY	151	41.416		127.233	1.00 55.03	A
••	ATOM	1053	c	GLY	151	41.915		125.820	1.00 53.26	A
	MOTA	1054	ō	GLY	151	42.983		125.449	1.00 52.83	A
	ATOM	1055	N	THR	152	41.149		125.029	1.00 50.83	A
	ATOM	1056	CA	THR	152	41.519		123.643	1.00 47.73	A
50	ATOM	1057	СВ	THR	152	40.763		122.680	1.00 47.39	A
50	ATOM	1058		THR	152	40.890		123.127	1.00 48.20	A
	ATOM	1059		THR	152	41.326		121.271	1.00 45.61	A
	ATOM	1060	c	THR	152	41.237		123.180	1.00 46.24	A
	ATOM	1061	ō	THR	152	40.163		123.425	1.00 46.24	A
55	ATOM	1062	N	GLU	153	42.217		122.510	1.00 43.69	A
	ATOM	1063	CA	GLU	153	42.066		121.957	1.00 41.25	A
	ATOM	1064	CB	GLU	153	43.386		122.014	1.00 42.93	A
	ATOM	1065	CG	GLU	153	43.815		123.407	1.00 46.50	A
	ATOM	1066	CD	GLU	153	45.193		123.421	1.00 48.91	Α
60	ATOM	1067		GLU	153	46.181		123.196	1.00 49.46	A
	MOTA	1068		GLU	153	45.288		123.649	1.00 52.22	A
	ATOM	1069	С	GLU	153	41.677		120.508	1.00 38.96	A
	ATOM	1070	ō	GLU	153	42.232		119.874	1.00 38.36	A
	ATOM	1071	N	PHE	154	40.730		119.980	1.00 35.01	A
65	ATOM	1072	CA	PHE	154	40.289	15.434		1.00 30.73	A
-	ATOM	1073	СВ	PHE	154	39.416	14.177		1.00 27.60	A
	MOTA	1074	CG	PHE	154	38.102	14.340		1.00 24.32	A
	ATOM	1075		PHE	154	36.965	14.742		1.00 22.22	A
	ATOM	1076		PHE	154	38.009	14.130		1.00 24.15	A
70	ATOM	1077		PHE	154	35.751	14.929		1.00 22.43	A
	ATOM	1078		PHE	154	36.797	14.316		1.00 24.33	A
	ATOM	1079	CZ	PHE	154	35.664	14.718		1.00 23.63	A
	ATOM	1080	С	PHE	154	39.498	16.590	118.024	1.00 28.48	A

	MOTA	1081	0	PHE	154	38.921	17.402	118.744	1.00 27.87	A
	MOTA	1082	N	SER	155	39.474	16.653	116.702	1.00 26.86	A
	ATOM	1083	CA	SER	155	38.713		116.006	1.00 25.68	· A
	ATOM	1084	СВ	SER	155	39.635		115.347	1.00 24.22	A
5	ATOM	1085	OG	SER	155	40.401		114.309	1.00 25.09	A
-	ATOM	1086	c	SER	155	37.920		114.947	1.00 26.10	A
	MOTA	1087	0	SER	155	38.402		114.380	1.00 26.26	A
	MOTA	1088	N	VAL	156	36.697	_	114.700	1.00 25.35	A
10	MOTA	1089	ÇA	VAL	156	35.836		113.712	1.00 23.66	A
-10	MOTA	1090	CB	VAL	156	34.549		114.371	1.00 22.75	A
	ATOM	1091	CG1	VAL	156	33.671	15.499	113.331	1.00 20.72	A
	MOTA	1092	CG2	VAL	156	34.910	15.257	115.497	1.00 20.01	A
	MOTA	1093	С	VAL	156	35.447	17.733	112.622	1.00 24.01	A
	MOTA	1094	0	VAL	156	34.960	18.832	112.916	1.00 24.09	A
15	MOTA	1095	N	LYS	157	35.679	17.344	111.369	1.00 21.25	A
	MOTA	1096	CA	LYS	157	35.332	18.172	110.220	1.00 20.34	A
	MOTA	1097	СВ	LYS	157	36.559		109.347	1.00 24.12	A
	MOTA	1098	CG	LYS	157	37.755		110.028	1.00 28.05	A
	MOTA	1099	CD	LYS	157	37.474		110.410	1.00 31.98	A
20	MOTA	1100	CE	LYS	157	38.755		110.845	1.00 35.17	A
20	MOTA	1101	NZ	LYS	157	39.737		109.726	1.00 35.17	A
	MOTA	1102	C	LYS	157	34.333		109.382	1.00 19.05	A
	MOTA	1103	0	LYS	157	34.475		109.209	1.00 18.10	A
25	MOTA	1104	N	VAL	158	33.315		108.865	1.00 15.97	A
23.	ATOM	1105	CA	VAL	158	32.340		108.025	1.00 14.22	A
	MOTA	1106	СВ	VAL	158	30.941		108.690	1.00 12.88	A
	MOTA	1107		VAL	158	31.014		109.931	1.00 10.13	A
	ATOM	1108	CG2		158	30.419		109.031	1.00 13.23	A
20	ATOM	1109	С	VAL	158	32.221		106.706	1.00 13.72	A
30	ATOM	1110	0	VAL	158	32.469		106.610	1.00 14.66	A
	MOTA	1111	N	SER	159	31.845		105.677	1.00 14.86	A
	MOTA	1112	CA	SER	159	31.702		104.362	1.00 16.10	A
	MOTA	1113	СВ	SER	159	33.034		103.618	1.00 17.14	A
25	MOTA	1114	OG	SER	159	32.904		102.279	1.00 23.83	A
35	MOTA	1115	С	SER	159	30.609		103.642	1.00 15.89	A
	MOTA	1116	0	SER	159	30.477	15.976	103.822	1.00 15.28	A
	MOTA	1117	N	LEU	160	29.820		102.838	1.00 15.69	A
	ATOM	1118	CA	LEU	160	28.728	17.268	102.098	1.00 15.26	A
	ATOM	1119	СВ	LEU	160	27.388	17.679	102.715	1.00 15.28	A
40	MOTA	1120	CG	LEU	160	26.121	17.071	102.104	1.00 15.37	A
	MOTA	1121	CD1	LEU	160	26.236	15.559	102.087	1.00 12.97	A
	ATOM	1122	CD2	LEU	160	24.904	17.517	102.904	1.00 14.38	Α
	MOTA	1123	С	LEU	160	28.799	17.689	100.640	1.00 15.74	A
	ATOM	1124	0	LEU	160	28.331	18.766	100.263	1.00 15.17	A
45	MOTA	1125	N	LEU	161	29.394	16.822	99.829	1.00 15.44	A
	ATOM	1126	CA	LEU	161	29.577	17.052	98.401	1.00 15.04	A
	ATOM	1127	CB	LEU	161	30.923	16.472	97.968	1.00 16.39	A
	MOTA	1128	CG	LEU	161	31.753	17.038	96.815	1.00 19.66	A
	ATOM	1129	CD1	LEU	161	32.749	15.955	96.386	1.00 20.66	A
50	ATOM	1130		LEU	161	30.887	17.437	95.641	1.00 20.16	A
	MOTA	1131	С	LEU	161	28.470	16.311	97.680	1.00 15.70	A
	ATOM	1132	ō	LEU	161	28.200	15.161	97.989	1.00 17.10	Ä
	ATOM	1133	N	GLU	162	27.829	16.952	96.713	1.00 15.78	A
	MOTA	1134	CA	GLU	162	26.763	16.286	95.984	1.00 13.96	A
55	MOTA	1135	CB	GLU	162	25.413	16.834	96.428	1.00 14.46	A
	MOTA	1136	CG	GLU	162	25.218	16.645	97.928	1.00 17.99	A
	ATOM	1137	CD	GLU	162	23.781	16.776	98.372	1.00 18.53	Ä
	ATOM	1138		GLU	162	23.532	16.663	99.588	1.00 20.86	Ä
	MOTA	1139		GLU	162	22.902	16.984	97.513	1.00 17.99	Ä
60	MOTA	1140	C	GLU	162	26.948	16.403	94.489	1.00 17.56	Ä
00	MOTA	1141	Ö	GLU	162	27.425	17.414	93.985	1.00 12.30	
	MOTA	1142	N		163	26.575	15.346	93.782	1.00 12.93	A
				ILE			15.303	92.340		A
	MOTA	1143	CA	ILE	163	26.736			1.00 11.19	A
65	ATOM	1144	CB	ILE	163	27.588	14.077	91.941	1.00 10.80	A
UJ.	ATOM	1145		ILE	163	27.790	14.044	90.436	1.00 9.29	A
	MOTA	1146		ILE	163	28.927	14.121	92.681	1.00 10.31	A
	MOTA	1147		ILE	163	29.667	12.777	92.718	1.00 12.19	A
	MOTA	1148	C	ILE	163	25.393	15.238	91.626	1.00 11.81	A
70	MOTA	1149	0	ILE	163	24.524	14.441	91.985	1.00 13.50	A
70	MOTA	1150	N	TYR	164	25.228	16.089	90.620	1.00 10.80	A
	MOTA	1151	CA	TYR	164	24.011	16.125	89.826	1.00 11.96	A
	ATOM	1152	CB	TYR	164	23.038	17.194	90.353	1.00 11.56	A
	MOTA	1153	CG	TYR	164	21.746	17.240	89.573	1.00 10.77	A

						•				
	ATOM	1154	CD1	TYR	164	21.639	18.009	88.408	1.00 9.75	A
	MOTA	1155	CEI		164	20.479				Ä
	MOTA	1156		TYR	164	20.653			1.00 8.92	A
_	ATOM	1157		TYR	164	19.483	16.428	89.187	1.00 9.51	A,
5	MOTA	1158	CZ	TYR	164	19.405	17.197	88.031	1.00 10.37	A
	MOTA	1159	ОН	TYR	164	18.264	17.167	87.261	1.00 9.00	A
	MOTA	1160	С	TYR	164	24.415	16.443		1.00 12.68	A
	MOTA	1161	ō	TYR	164	25.048	17.468		1.00 13.49	A
	MOTA	1162	N		165	24.075			1.00 12.65	
10				ASN			15.550			A
10	MOTA	1163	CA	ASN	165	24.410	15.745		1.00 14.45	A
	MOTA	1164	CB	ASN	165	23.541	16.864	85.515	1.00 18.24	A
	MOTA	1165	CG	ASN	165	23.498	16.869	84.010	1.00 24.46	A
	MOTA	1166	OD1	ASN	165	23.396	15.817	83.374	1.00 29.01	A
	MOTA	1167	ND2	ASN	165	23.556	18.061	83.422	1.00 27.99	A
15	ATOM	1168	C	ASN	165	25.903	16.069		1.00 14.74	A
10	MOTA	1169	ŏ	ASN	165	26.290	16.972		1.00 13.82	· A
	MOTA	1170	N	GLU	166	26.729	15.321		1.00 13.32	A
	MOTA	1171	CA	GLU	166	28.178	15.475		1.00 13.84	A
20	MOTA	1172	CB	GLU	166	28.730	15.118	85.265	1.00 11.37	A
20	MOTA	1173	CG	GLU	166	28.676	13.635	84.952	1.00 13.48	A
	ATOM	1174	CD	GLU	166	29.270	12.781	86.069	1.00 15.85	A
	ATOM	1175		GLU	166	28.518	12.411		1.00 14.50	A
	MOTA	1176		GLU	166	30.491	12.490		1.00 14.74	A
						28.724				
25	MOTA	1177	C	GLU	166		16.835		1.00 15.33	A
23	ATOM	1178	0	GLU	166	29.809	17.229		1.00 16.01	A
	MOTA	1179	N	GLŲ	167	27.970	17.555		1.00 16.84	A
	ATOM	1180	CA	GLU	167	28.415	18.850	88.381	1.00 16.72	A
	MOTA	1181	CB	GLU	167	27.403	19.949	88.052	1.00 19.43	A
	MOTA	1182	CG	GLU	167	27.235	20.216	86.570	1.00 23.50	A
30	ATOM	1183	CD	GLU	167	26.307	21.388		1.00 28.67	A
	MOTA	1184		GLU	167	25.176	21.382		1.00 32.20	A
	MOTA	1185		GLU	167	26.707	22.316		1.00 31.83	A
	ATOM	1186	C	GLU	167	28.522	18.685		1.00 15.13	A
25	MOTA	1187	0	GLU	167	27.773	17.908		1.00 15.63	A
35	MOTA	1188	N	LEU	168	29.449	19.408	90.501	1.00 12.84	A
	MOTA	1189	CA	LEU	168	29.672	19.312	91.939	1.00 12.94	A
	MOTA	1190	CB	LEU	168	31.171	19.220	92.217	1.00 14.17	A
	ATOM	1191	CG	LEU	168	31.859	17.853	92.232	1.00 18.45	A
	MOTA	1192		LEU	168	31.289	16.947		1.00 19.30	A
40	MOTA	1193		LEU	168	33.366	18.058	92.047		
70									1.00 18.21	Α
	MOTA	1194	C	LEU	168	29.080	20.467		1.00 11.51	A
	MOTA	1195	0	LEU	168	29.228	21.631	92.357	1.00 12.03	A
	ATOM	1196	N	PHE	169	28.415	20.138	93.834	1.00 8.76	A
	ATOM	1197	CA	PHE	169	27.812	21.152	94.682	1.00 10.79	A
45	MOTA	1198	CB	PHE	169	26.286	21.155	94.543	1.00 8.69	A
	ATOM	1199	CG	PHE	169	25.804	21.329	93.127	1.00 9.29	A
	ATOM	1200		PHE	169	25.568	20.219	92.314	1.00 8.53	A
	ATOM	1201		PHE	169	25.605	22.595	92.598	1.00 7.95	A
50	ATOM	1202		PHE	169	25.140	20.372	90.996	1.00 9.35	A
JU	MOTA	1203		PHE	169	25.178	22.762	91.284	1.00 7.75	A
	MOTA	1204	CZ	PHE	169	24.945	21.648	90.479	1.00 9.59	A
	MOTA	1205	С	PHE	169	28.187	20.923	96.138	1.00 12.65	A
	MOTA	1206	0	PHE	169	28.319	19.788	96.593	1.00 13.12	Α
	MOTA	1207	N	ASP	170	28.369	22.027	96.850	1.00 12.78	A
55	ATOM	1208	CA	ASP	170	28.724	22.018	98.253	1.00 13.35	A
	MOTA	1209	СВ	ASP	170	29.817	23.060	98.502	1.00 12.29	
										A
	ATOM	1210	CG	ASP	170	30.300	23.072	99.931	1.00 13.08	A
	MOTA	1211		ASP	170	29.577		100.817	1.00 14.08	A
.	MOTA	1212	OD2	ASP	170	31.404	23.598	100.176	1.00 15.39	A
60	MOTA	1213	С	ASP	170	27.456	22.413	99.001	1.00 15.21	A
	MOTA	1214	0	ASP	170	27.086	23.588	99.003	1.00 13.76	A
	MOTA	1215	N	LEU	171	26.797	21.445	99.635	1.00 16.64	A
	MOTA	1216	CA	LEU	171	25.563		100.365	1.00 10.04	Ä
				LEU						
65	MOTA	1217	CB		171	24.650		100.376	1.00 18.16	A
65	MOTA	1218	CG	LEU	171	23.677	20.315	99.200	1.00 20.70	A
	MOTA	1219	CD1		171	22.739	21.515	99.130	1.00 21.59	A
	ATOM	1220	CD2	LEU	171	24.436	20.192	97.900	1.00 19.74	A
	MOTA	1221	С	LEU	171	25.724		101.794	1.00 21.95	A
	ATOM	1222	ō	LEU	171	24.747		102.536	1.00 24.93	A
70	ATOM	1223	N	LEU	172	26.931		102.197	1.00 24.33	
										A
	MOTA	1224	CA	LEU	172	27.108		103.558	1.00 25.95	A
	MOTA	1225	CB	LEU	172	28.101		104.353	1.00 22.64	A
	MOTA	1226	CG	LEU	172	27.683	20.835	104.713	1.00 21.08	A

	MOTA	1227		LEU	172	28.747	20.208	105.584	1.00 19.49	A
	MOTA	1228	CD2	LEU	172	26.353	20.821	105.450	1.00 20.02	A
	MOTA	1229	C	LEU	172	27.550	24.592	103.579	1.00 28.46	A
	MOTA	1230	0	LEU	172	27.222	25.328	104.512	1.00 33.47	A
5	MOTA	1231	N	ASN	173	28.280		102.557	1.00 27.52	A
_	ATOM	1232	CA	ASN	173	28.733		102.479	1.00 28.63	A
		1233	CB	ASN	173	29.491		101.166	1.00 28.72	A
	ATOM									
	MOTA	1234	CG	ASN	173 .	30.022		101.013	1.00 30.51	A
10	MOTA	1235		ASN	173	30.709		100.038	1.00 32.23	A
10	MOTA	1236	ND2	ASN	173	29.709	28.898	101.969	1.00 31.50	A
	MOTA	1237	С	ASN	173	27.514	27.331	102.555	1.00 30.66	A
	ATOM	1238	0	ASN	173	26.639	27.296	101.688	1.00 30.81	A
	MOTA	1239	N.	PRO	174	27.434		103.602	1.00 32.10	A
	ATOM	1240	CD	PRO	174	28.196		104.862	1.00 32.35	A
15		1241	CA	PRO	174	26.298		103.741	1.00 34.00	A
1.7	MOTA									
	MOTA	1242	CB	PRO	174	26.085		105.243	1.00 33.56	A
	MOTA	1243	CG	PRO	174	27.500		105.740	1.00 33.25	A
	MOTA	1244	С	PRO	174	26.566		103.179	1.00 35.77	A
	ATOM	1245	0	PRO	174	26.014	31.452	103.667	1.00 38.93	A
20	ATOM	1246	N	SER	175	27.404	30.557	102.155	1.00 36.48	A
	MOTA	1247	CA	SER	175	27.734		101.568	1.00 36.56	A
	MOTA	1248	CB	SER	175	29.104		102.064	1.00 36.53	A
	ATOM	1249	OG	SER	175	29.142		103.481	1.00 38.61	A
						27.746				
25	ATOM	1250	C	SER	175			100.059	1.00 36.99	A
23	ATOM	1251	0	SER	175	28.234	32.639	99.366	1.00 37.49	A
	MOTA	1252	N	SER	176	27.226	30.631	99.560	1.00 37.22	A
	MOTA	1253	CA	SER	176	27.142	30.385	98.125	1.00 38.02	A
	ATOM	1254	CB	SER	176	28.296	29.483	97.662	1.00 37.78	A
	MOTA	1255	OG	SER	176	28.200	28.177	98.213	1.00 37.44	A
30	MOTA	1256	С	SER	176	25.807	29.699	97.862	1.00 37.53	A
50	ATOM	1257	ŏ	SER	176	25.277	29.016	98.734	1.00 37.34	A
		1258	N		177		29.891	96.676	1.00 38.02	A
	MOTA			ASP		25.248				
	MOTA	1259	CA	ASP	177	23.983	29.243	96.366	1.00 39.18	Α
25	MOTA	1260	CB	ASP	177	23.012	30.229	95.704	1.00 41.03	A
35	MOTA	1261	CG	ASP	177	23.585	30.879	94.466	1.00 42.23	Α
	MOTA	1262	OD1	ASP	177	23.936	30.156	93.511	1.00 43.11	A
	MOTA	1263	OD2	ASP	177	23.679	32.122	94.447	1.00 44.29	A
	MOTA	1264	С	ASP	177	24.219	28.031	95.471	1.00 38.57	A
	MOTA	1265	ō	ASP	177	25.274	27.910	94.849	1.00 37.31	A
40	ATOM	1266	N	VAL	178	23.232	27.141	95.415	1.00 38.30	A
40										
	MOTA	1267	CA	VAL	178	23.329	25.918	94.626	1.00 38.53	A
	MOTA	1268	CB	VAL	178	22.091	25.018	94.830	1.00 38.67	A
	ATOM	1269	CG1		178	22.040	24.532	96.266	1.00 38.55	A
	MOTA	1270	CG2	VAL	178	20.828	25.780	94.472	1.00 38.63	A
45	MOTA	1271	С	VAL	178	23.526	26.111	93.129	1.00 38.49	A
	MOTA	1272	0	VAL	178	23.589	25.138	92.385	1.00 39.24	A
	ATOM	1273	N	SER	179	23.618	27.357	92.683	1.00 38.10	A
	ATOM	1274	CA	SER	179	23.823	27.626	91.268	1.00 37.56	A
	ATOM	1275	CB	SER	179	23.265	29.000	90.905	1.00 39.68	A
50		1276								
50	MOTA			SER	179	21.942	29.155	91.390	1.00 45.54	A
	MOTA	1277		SER	179	25.318	27.594	90.981	1.00 36.56	Α
	MOTA	1278		SER	179	25.740	27.516	89.828	1.00 37.57	A
	MOTA	1279	N	GLU	180	26.112	27.663	92.044	1.00 34.30	A
	MOTA	1280	CA	GLU	180	27.566	27.651	91.938	1.00 34.69	A
55	MOTA	1281	CB	GLU	180	28.173	28.564	93.018	1.00 36.86	A
	ATOM	1282		GLU	180	27.906	30.055	92.767	1.00 41.33	A
	MOTA	1283		GLU	180	28.262	30.958	93.945	1.00 42.95	A
	MOTA	1284	OE1		180	27.629	30.832	95.017	1.00 43.98	A
60	MOTA	1285	OE2		180	29.174	31.798	93.795	1.00 44.03	Α
OU	MOTA	1286		GLU	180	28.147	26.241	92.048	1.00 32.62	A
	MOTA	1287		GLU	180	28.084	25.614	93.104	1.00 31.99	A
	MOTA	1288	N	ARG	181	28.706	25.745	90.951	1.00 30.63	A
	MOTA	1289	CA	ARG	181	29.292	24.415	90.941	1.00 30.51	A
	MOTA	1290		ARG	181	29.050	23.739	89.587	1.00 34.25	A
65	ATOM	1291		ARG	181	29.575	24.493	88.379	1.00 40.52	A
U J	ATOM					29.025			1.00 46.73	
		1292		ARG	181		23.901	87.069		A
	MOTA	1293		ARG	181	29.587	22.592	86.721	1.00 50.11	A
	ATOM	1294		ARG	181	30.818	22.400	86.251	1.00 52.44	A
70	MOTA	1295	NH1		181	31.629	23.435	86.070	1.00 53.59	Α
70	ATOM	1296	NH2	ARG	181	31.236	21.173	85.951	1.00 52.52	A
	MOTA	1297	C .	ARG	181	30.781	24.480	91.249	1.00 28.82	A
	ATOM	1298		ARG	181	31.438	25.483	90.979	1.00 29.29	A
	MOTA	1299		LEU	182	31.308	23.408	91.829	1.00 25.57	A
	013	1000	•-		~~*		20.400	22.023		••

	MOTA	1300	CA	LEU	182	32.718	23.348	92.182	1.00 21.92	A
	ATOM	1301	CB	LEU	182	32.899	22.553		1.00 20.02	A
	MOTA	1302	CG	LEU	182	32.155	23.087	94.700	1.00 20.20	A
	ATOM	1303		LEU	182	32.161	22.044	95.812	1.00 17.99	A
5										
J	ATOM	1304	CD2	LEU	182	32.802	24.379	95.159	1.00 16.82	A
	ATOM	1305	С	LEU	182	33.515	22.696	91.069	1.00 22.08	A
	MOTA	1306	õ	LEU	182	32.960	21.949		1.00 19.82	A
	MOTA	1307	N	GLN	183	34.814	23.000	91.028	1.00 22.61	A
	ATOM	1308	CA	GLN	183	35.726	22.435	90.034	1.00 20.55	A
10						36.702	23.488		1.00 22.39	A
10	MOTA	1309	CB	GLN	183					
	MOTA	1310	CG.	GLN	183	36.100	24.557	88.652	1.00 28.44	A
	ATOM	1311	CD	GLN	183	36.981	25.799	88.593	1.00 32.88	A
				GLN	183	37.054	26.572		1.00 34.28	A
	MOTA	1312		-						
	ATOM	1313	NE2	GLN	183	37.664	25.989	87.468	1.00 33.10	A
15	ATOM	1314	С	GLN	183	36.518	21.327	90.702	1.00 19.22	A
		1315			183	36.795	21.390		1.00 18.40	- A
	MOTA		0	GLN						
	MOTA	1316	N	MET	184	36.902	20.330	89.915	1.00 18.69	A
	MOTA	1317	CA	MET	184	37.646	19.191	90.416	1.00 19.64	A
					184	36.747	17.951	90.361	1.00 21.90	A
20	MOTA	1318	СВ	MET						
20	MOTA	1319	CG	MET	184	37.304	16.701	91.011	1.00 25.13	A
	MOTA	1320	SD	MET	184	36.147	15.306	90.921	1.00 31.12	A
			CE		184	36.591	14.620		1.00 23.65	A
	MOTA	1321		MET						
	ATOM	1322	С	MET	184	38.897	18.983	89.568	1.00 21.60	A
	MOTA	1323	0	MET	184	38.840	19.035	88.341	1.00 21.33	A
25								90.230	1.00 23.48	
23	MOTA	1324	N	PHE	185	40.026	18.750			A
	MOTA	1325	CA	PHE	185	41.299	18.531	89.544	1.00 25.16	A
	ATOM	1326	CB	PHE	185	42.231	19.736	89.709	1.00 25.59	A
	MOTA	1327	CG	PHE	185	41.595	21.064	89.414	1.00 25.42	A
	ATOM	1328	CD1	PHE	185	40.791	21.691	90.360	1.00 23.63	A
30	MOTA	1329	CD2	PHE	185	41.857	21.718	88.211	1.00 26.39	A
50										
	MOTA	1330		PHE	185	40.261	22.956	90.124	1.00 24.23	A
	MOTA	1331	CE2	PHE	185	41.332	22.987	87.961	1.00 27.17	A
	ATOM	1332	CZ	PHE	185	40.533	23.609	88.921	1.00 25.70	A
									1.00 26.03	
25	MOTA	1333	С	PHE	185	42.002	17.326	90.149		A
35	ATOM	1334	0	PHE	185	41.709	16.937	91.275	1.00 25.54	A
	ATOM	1335	N	ASP	186	42.941	16.743	89.414	1.00 29.33	A
	MOTA	1336	CA	ASP	186	43.692	15.603	89.930	1.00 33.38	A
	ATOM	1337	CB	ASP	186	44.461	14.913	88.801	1.00 35.26	A
	ATOM	1338	CG	ASP	186	43.546	14.212	87.816	1.00 37.12	A
40										
40	MOTA	1339	ODI	ASP	186	43.644	14.505	86.603	1.00 37.66	A
	ATOM	1340	OD2	ASP	186	42.733	13.368	88.257	1.00 36.31	A
	ATOM	1341	С	ASP	186	44.675	16.117	90.977	1.00 35.30	A
	MOTA	1342	0	ASP	186	45.167	17.238	90.865	1.00 35.53	A
	ATOM	1343	N	ASP	187	44.959	15.313	91.996	1.00 38.26	A
45	MOTA	1344	CA	ASP	187	45.890	15.739	93.037	1.00 43.31	A
13										
	MOTA	1345	CB	ASP	187	45.489	15.138	94.385	1.00 42.12	A
	MOTA	1346	CG	ASP	187	46.217	15.784	95.546	1.00 42.51	A
	MOTA	1347		ASP	187	45.755	15.631	96.696	1.00 42.87	A
50	MOTA	1348	ODZ	ASP	187	47.252	16.442	95.307	1.00 41.23	Α
50	MOTA	1349	С	ASP	187	47.307	15.318	92.665	1.00 46.67	A
	ATOM	1350	0	ASP	187	47.644	14.138	92.719	1.00 48.15	A
							16.283			
	MOTA	1351	N	PRO	188	48.160		92.286	1.00 50.27	A
	MOTA	1352	CD	PRO	188	47.945	17.735	92.408	1.00 50.91	A
	ATOM	1353	CA	PRO	188	49.548	15.996	91.897	1.00 53.10	A
55		_								_
JJ	ATOM	1354	СВ	PRO	188	50.107	17.376	91.561	1.00 52.20	A
	MOTA	1355	CG	PRO	188	49.364	18.263	92.503	1.00 52.65	A
	ATOM	1356	C	PRO	188	50.366	15.279	92.966	1.00 55.80	A
	MOTA	1357	0	PRO	188	51.319	14.568	92.650	1.00 56.91	A
	MOTA	1358	N	ARG	189	49.996	15.466	94.228	1.00 58.59	A
60	MOTA	1359	CA	ARG	189	50.703	14.812	95.321	1.00 61.67	· A
									1.00 63.13	
	MOTA	1360	CB	ARG	189	50.294	15.428	96.658		A
	MOTA	1361	CG	ARG	189	50.839	16.823	96.881	1.00 65.91	A
	ATOM	1362	CD	ARG	189	50.181	17.468	98.083	1.00 68.55	A
10	ATOM	1363	NE	ARG	189	48.754	17.670	97.855	1.00 70.63	A
65	MOTA	1364	CZ	ARG	189	47.906	18.095	98.784	1.00 72.05	A
	ATOM	1365	NH1		189	48.340		100.010	1.00 72.50	A
	MOTA	1366	NH2	ARG	189	46.623	18.252	98.484	1.00 72.44	A
	MOTA	1367	С	ARG	189	50.402	13.316	95.321	1.00 63.14	A
	MOTA	1368	ŏ	ARG	189	51.085	12.537	94.652	1.00 63.21	A
70										
70	MOTA	1369	N	ASN	190	49.377	12.916	96.070	1.00 64.30	A
	MOTA	1370	CA	ASN	190	49.000	11.509	96.140	1.00 65.20	A
	MOTA	1371	СВ	ASN	190	48.225	11.220	97.439	1.00 66.56	A
	MOTA	1372	CG	ASN	190	47.172	12.273	97.753	1.00 67.73	A

					•					
	ATOM	1373	ODI	ASN	190	47.491	13.443	97.982	1.00 67.83	A
	ATOM	1374		ASN	190	45.909	11.858		1.00 67.20	A
	ATOM	1375	c	ASN	190	48.197	11.061		1.00 64.94	A
	ATOM	1376	ō	ASN	190	47.182	11.662		1.00 64.53	Ä
5	ATOM	1377	N	LYS	191	48.669	9.999	94.273	1.00 64.72	A
,					191	48.018	9.463		1.00 63.98	
	MOTA	1378	CA	LYS						A
	MOTA	1379	CB	LYS	191	48.810	8.266		1.00 65.18	A
	ATOM	1380	CG	LYS	191	48.799	7.041	93.447	1.00 66.13	A
10	MOTA	1381	CD	LYS	191	49.405	5.830		1.00 67.02	A
10	MOTA	1382	CE	LYS	191	49.274	4.572		1.00 68.29	A
	MOTA	1383	NZ	LYS	191	49.860	3.375		1.00 69.29	A
	MOTA	1384	С	LYS	191	46.577	9.039	93.358	1.00 62.26	A
	MOTA	1385	0	LYS	191	46.151	8.963	94.513	1.00 63.17	A
	ATOM	1386	N	ARG	192	45.843	8.756	92.282	1.00 58.36	A
15	ATOM	1387	CA	ARG	192	44.440	8.350	92.348	1.00 54.26	A
	MOTA	1388	CB	ARG	192	44.308	6.833	92.578	1.00 56.88	A
	ATOM	1389	CG	ARG	192	44.776	6.289	93.926	1.00 59.69	A
	ATOM	1390	CD	ARG	192	43.939	5.062	94.306	1.00 62.18	A
	MOTA	1391	NE	ARG	192	44.633	4.121	95.181	1.00 64.60	A
20	ATOM	1392	cz	ARG	192	45.640	3.344	94.792	1.00 66.61	A
20	ATOM	1393		ARG	192	46.074	3.400	93.539	1.00 66.97	A
			NH2		192	46.209	2.505	95.650	1.00 67.30	Ä
	MOTA	1394					9.106	93.391	1.00 50.08	
	MOTA	1395	c	ARG	192	43.619			1.00 50.08	A
25	MOTA	1396	0	ARG	192	42.742	8.538	94.049		A
23	MOTA	1397	N	GLY	193	43.909	10.395	93.531	1.00 44.14	A
	MOTA	1398	CA	GLY	193	43.183	11.231	94.469	1.00 35.61	A
	MOTA	1399	С	GLY	193	42.799	12.482	93.712	1.00 30.34	A
	MOTA	1400	0	GLY	193	43.343	12.732	92.639	1.00 30.32	A
20	MOTA	1401	N	VAL	194	41.865	13.264	94.238	1.00 25.49	A
30	MOTA	1402	CA	VAL	194	41.463	14.489	93.557	1.00 21.22	A
	ATOM	1403	CB	VAL	194	40.078	14.359	92.884	1.00 20.31	A
	MOTA	1404	CG1	VAL	194	40.100	13.289	91.809	1.00 19.29	A
	MOTA	1405	CG2	VAL	194	39.032	14.059	93.935	1.00 18.96	A
	ATOM	1406	С	VAL	194	41.375	15.668	94.505	1.00 20.08	A
35	MOTA	1407	0	VAL	194	41.417	15.515	95.722	1.00 20.27	A
	MOTA	1408	N	ILE	195	41.238	16.853	93.930	1.00 20.12	A
	ATOM	1409	CA	ILE	195	41.109	18.065	94.713	1.00 18.57	A
	ATOM	1410	CB	ILE	195	42.298	19.014	94.477	1.00 20.69	A
	ATOM	1411	CG2		195	42.011	20.362	95.118	1.00 21.74	A
40	ATOM	1412	CG1	ILE	195	43.584	18.392	95.029	1.00 21.99	A
70	ATOM	1413	CD1	ILE	195	44.853	19.212	94.722	1.00 23.27	Ä
				ILE	195	39.838	18.791	94.297	1.00 23.27	A
	MOTA	1414	C							
	MOTA	1415	0	ILE	195	39.639	19.077	93.115	1.00 15.50	A
45	ATOM	1416	N	ILE	196	38.962	19.066	95.256	1.00 17.01	A
43	MOTA	1417	CA	ILE	196	37.751	19.805	94.939	1.00 18.54	A
	MOTA	1418	CB	ILE	196	36.493	19.251	95.639	1.00 18.28	A
	MOTA	1419		ILE	196	35.299	20.143	95.314	1.00 13.69	A
	ATOM	1420	CG1	ILE	196	36.209	17.819	95.171	1.00 17.38	A
~~	MOTA	1421	CD1	ILE	196	37.016	16.775	95.894	1.00 21.62	Α.
50	MOTA	1422	С	ILE	196	37.981	21.232	95.407	1.00 20.22	A
	ATOM	1423	0	ILE	196	38.001	21.517	96.606	1.00 20.32	A
	MOTA	1424	N	LYS	197	38.158	22.122	94.441	1.00 21.72	A
	ATOM	1425	CA	LYS	197	38.418	23.524	94.709	1.00 23.72	A
	MOTA	1426	СВ	LYS	197	38.807	24.209	93.397	1.00 26.40	A
55	ATOM	1427	CG	LYS	197	39.068	25.693	93.481	1.00 29.01	A
	ATOM	1428	CD	LYS	197	39.519	26.211	92.125	1.00 32.62	A
	ATOM	1429	CE	LYS	197	39.538	27.728	92.088	1.00 33.50	. A .
	MOTA	1430	NZ	LYS	197	38.172	28.259	92.341	1.00 36.03	A
	MOTA	1431	c	LYS	197	37.226	24.225	95.348	1.00 24.04	A
60					197	36.139	24.261	94.782	1.00 24.54	
00	ATOM	1432	0	LYS						A
	MOTA	1433	N	GLY	198	37.436	24.763	96.543	1.00 24.46	A
	MOTA	1434	CA	GLY	198	36.377	25.478	97.227	1.00 25.68	A
	MOTA	1435	C	GLY	198	35.413	24.681	98.088	1.00 26.82	A
45	ATOM	1436	0	GLY	198	34.482	25.256	98.652	1.00 27.32	A
65	MOTA	1437	N	LEU	199	35.612	23.373	98.202	1.00 27.36	A
	MOTA	1438	CA	LEU	199	34.714	22.558	99.017	1.00 27.19	, A
	MOTA	1439	CB	LEU	199	35.008	21.068	98.819	1.00 26.21	A
	MOTA	1440	CG	LEU	199	33.908	20.008	99.023	1.00 27.04	A
	ATOM	1441	CD1	LEU	199	34.563	18.778	99.630	1.00 25.53	A
70	MOTA	1442	CD2		199	32.779	20.497	99.924	1.00 24.18	A
	ATOM	1443	c	LEU	199	34.920		100.484	1.00 27.51	A
	ATOM	1444	ŏ	LEU	199	36.024		101.005	1.00 28.57	A
	MOTA	1445	N	GLU	200	33.856		101.150	1.00 28.60	A
		2-30								••

	ATOM	1446	CA	GLU	200	33.950	23.721	102.553	1.00 31.25	A
	MOTA	1447	CB	GLU	200	32.788		102.935	1.00 34.22	A
	MOTA	1448	CG	GLU	200	32.933	26.067	102.419	1.00 39.68	A
		1449	CD	GLU	200	34.051		103.108	1.00 42.07	A
_	MOTA									
5	ATOM	1450	OE1	GLU	200	33.921	27.118	104.317	1.00 44.27	A
	MOTA	1451	OE2	GLU	200	35.065	27.120	102.443	1.00 44.71	A
	MOTA	1452	С	GLU	200	33.986	22.540	103.516	1.00 30.44	A
	ATOM	1453	0	GLU	20 0	33.381	21.497	103.282	1.00 28.54	A
10	ATOM	1454	N	GLU	201	34.716		104.606	1.00 30.76	A
10	ATOM	1455	CA	GLU	201	34.841	21.730	105.649	1.00 29.99	A
	MOTA	1456	CB	GLU	201	36.281	21 247	105.742	1.00 29.82	. A
	MOTA	1457	CG	GLU	201	36.755	20.516	104.511	1.00 32.15	A
	ATOM	1458	CD	GLU	201	38.156	19.977	104.676	1.00 35.25	A
	ATOM	1459		GLU	201	38.408		105.699	1.00 34.69	A
15										
15	MOTA	1460	OE2	GLU	201	39.000	20.227	103.786	1.00 36.53	A
	ATOM	1461	С	GLU	201	34.439	22.418	106.943	1.00 29.40	A
									1.00 30.31	
	MOTA	1462	0	GLU	201	35.183		107.465		A
	ATOM	1463	N	ILE	202	33.256	22.089	107.449	1.00 27.91	A
	MOTA	1464	CA	ILE	202	32.765	22 694	108.679	1.00 25.94	A
20										
20	MOTA	1465	CB	ILE	202	31.207	22.720	108.720	1.00 27.58	A
	MOTA	1466	CG2	ILE	202	30.721	23.125	110.096	1.00 24.19	A
	ATOM	1467		ILE	202	30.662		107.682	1.00 28.28	A
	MOTA	1468		ILE	202	30.809		106.256	1.00 30.78	A
	MOTA	1469	C	ILE	202	33.277	21.932	109.889	1.00 25.41	A
25	ATOM	1470	ō	ILE	202	33.195		109.945	1.00 25.37	A
	MOTA	1471	N	THR	203	33.811	22.667	110.856	1.00 23.88	А
	MOTA	1472	CA	THR	203	34.321	22.070	112.083	1.00 22.88	A
	MOTA	1473	CB	THR	203	35.397		112.742	1.00 22.77	A
	MOTA	1474	OG1	THR	203	36.542	23.064	111.883	1.00 23.19	A
30	MOTA	1475	CG2	THR	203	35.813	22.441	114.112	1.00 19.08	A
-									1.00 22.21	
	MOTA	1476	С	THR	203	33.143		113.038		A
	MOTA	1477	0	THR	203	32.385	22.867	113.242	1.00 22.47	A `
	MOTA	1478	N	VAL	204	32.977	20.728	113.606	1.00 21.39	A
								114.549	1.00 21.47	
25	MOTA	1479	CA	VAL	204	31.891				A
35	ATOM	1480	CB	VAL	204	31.248	19.102	114.278	1.00 20.28	A
	ATOM	1481	CGI	VAL	204	30.034	18.906	115.162	1.00 21.96	A
					204					
	MOTA	1482		VAL		30.859		112.820	1.00 20.66	A
	MOTA	1483	С	VAL	204	32.531	20.490	115.939	1.00 23.52	A
	ATOM	1484	0	VAL	204	33.083	19.484	116.385	1.00 24.43	Α
40										
40	MOTA	1485	N	HIS	205	32.468		116.615	1.00 23.51	A
	ATOM	1486	CA	HIS	205	33.088	21.782	117.933	1.00 24.78	A
	ATOM	1487	СВ	HIS	205	32.979	23.238	118.407	1.00 24.16	Α
	MOTA	1488	CG	HIS	205	33.597		117.460	1.00 28.16	A
	ATOM	1489	CD2	HIS	205	34.887	24.595	117.281	1.00 28.25	A
45	MOTA	1490	ND1	HIS	205	32.870	24.885	116.493	1.00 29.05	Α
	MOTA	1491		HIS	205	33.684		115.759	1.00 27.33	Α
	MOTA	1492	NE2	HIS	205	34.914	25.464	116.216	1.00 28.33	A
	MOTA	1493	С	HIS	205	32.586	20 836	119.018	1.00 24.15	A
~ ^	MOTA	1494	0	HIS	205	33.341		119.909	1.00 24.11	A
50	MOTA	1495	N	ASN	206	31.318	20.458	118.945	1.00 25.62	A
	MOTA	1496	CA	ASN	206	30.758	19.552	119.939	1.00 26.43	Α
	ATOM	1497	CB	ASN	206	30.598		121.281	1.00 25.52	A
	MOTA	1498	CG	ASN	206	29.689	21.488	121.186	1.00 26.18	A
	MOTA	1499	OD1	ASN	206	28.498	21.358	120.906	1.00 28.63	A
55					206	30.246		121.414	1.00 24.14	_
55	ATOM	1500		ASN						Α
	ATOM	1501	С	ASN	206	29.422	18.960	119.496	1.00 27.20	A
	MOTA	1502	0	ASN	206	28.804	19.416	118.533	1.00 27.37	A
		1503	N	LYS	207	28.993		120.212	1.00 27.93	
	MOTA									A
	ATOM	1504	CA	LYS	207	27.751	17.243	119.924	1.00 30.13	A
60	ATOM	1505	CB	LYS	207	27.449	16.252	121.060	1.00 32.58	A
									1.00 36.84	
	MOTA	1506	CG	LYS	207	26.151		120.906		A
	MOTA	1507	CD	LYS	207	25.112	15.921	121.929	1.00 40.39	A
	MOTA	1508	CE	LYS	207	25.525	15.543	123.349	1.00 41.61	Α
<i>C</i>	ATOM	1509	NZ	LYS	207	24.489		124.350	1.00 43.85	A
65	ATOM	1510	С	LYS	207	26.571	18.196	119.725	1.00 29.76	A
	ATOM	1511	0	LYS	207	25.738		118.850	1.00 30.05	A
	MOTA	1512	N	ASP	208	26.505		120.523	1.00 28.95	A
	MOTA	1513	CA	ASP	208	25.402	20.214	120.429	1.00 27.71	A
	ATOM	1514	СВ	ASP	208	25.280		121.751	1.00 28.92	A
70										
70	ATOM	1515	CG	ASP	208	24.772		122.895	1.00 33.21	A
	MOTA	1516	OD1	ASP	208	24.967	20.444	124.081	1.00 32.92	A
					208	24.165		122.609	1.00 34.60	
	MOTA	1517	OD2							A
	ATOM	1518	С	ASP	208	25.524	21.169	119.240	1.00 26.33	A

			_						_
	MOTA	1519	0	ASP	208	24.836	22.186 119.156	1.00 26.39	A
	MOTA	1520	N	GLU	209	26.381	20.810 118.296	1.00 24.27	A
	MOTA	1521	CA	GLU	209	26.580	21.630 117.116	1.00 21.87	A
	MOTA	1522	CB	GLU	209	28.039	22.074 117.066	1.00 23.60	A
5	ATOM	1523	ÇG	GLU	209	28.331	23.202 116.106	1.00 25.30	A
•	ATOM	1524	CD	GLU	209	29.678	23.849 116.384	1.00 25.66	A
	MOTA	1525		GLU	209	29.872	24.362 117.507	1.00 25.63	. А
	MOTA	1526	OE2	GLU	209	30.538	23.845 115.481	1.00 26.97	A
••	MOTA	1527	С	GLU	209	26.217	20.819 115.874	1.00 19.67	A
10	MOTA	1528	0	GLU	209	26.125	21.350 114.769	1.00 18.53	A
	MOTA	1529	N	VAL	210	25.988	19.528 116.075	1.00 16.60	Α
	ATOM	1530	CA	VAL	210	25.648	18.625 114.985	1.00 17.06	A
				VAL	210			1.00 17.27	
	MOTA	1531	CB			25.654	17.148 115.479		A
15	MOTA	1532		VAL	210	25.307	16.224 114.330	1.00 18.17	A
15	MOTA	1533	CG2	VAL	210	27.028	16.779 116.068	1.00 17.55	A
	MOTA	1534	С	VAL	210	24.305	18.895 114.270	1.00 16.45	A
	MOTA	1535	0	VAL	210	24.267	19.119 113.063	1.00 17.67	A
	ATOM	1536	N	TYR	211	23.203	18.882 115.003	1.00 14.85	A
	ATOM	1537	CA	TYR	211	21.911	19.072 114.366	1.00 15.99	A
20									
20	MOTA	1538	СВ	TYR	211	20.789	19.050 115.404	1.00 14.76	A
	MOTA	1539	CG	TYR	211	19.431	18.850 114.780	1.00 14.73	A
	MOTA	1540	CD1	TYR	211	19.179	17.755 113.953	1.00 12.63	A
	ATOM	1541	CE1	TYR	211	17.923	17.557 113.387	1.00 14.15	Α
	MOTA	1542	CD2	TYR	211	18.395	19.746 115.025	1.00 15.52	A
25	ATOM	1543	CE2		211	17.136	19.559 114.466	1.00 16.40	A
	ATOM	1544	CZ	TYR	211	16.903	18.462 113.649	1.00 15.49	A
	MOTA	1545	ОН	TYR	211	15.645	18.271 113.116	1.00 12.99	A
	MOTA	1546	С	TYR	211	21.763	20.303 113.483	1.00 15.43	A
	MOTA	1547	0	TYR	211	21.220	20.207 112.383	1.00 17.14	A
30	MOTA	1548	N	GLN	212	22.238	21.456 113.925	1.00 15.05	Α
	MOTA	1549	CA	GLN	212	22.080	22.624 113.081	1.00 17.00	A
	MOTA	1550	CB	GLN	212	22.384	23.912 113.855	1.00 18.93	A
	MOTA	1551	CG	GLN	212	23.803	24.099 114.319	1.00 25.15	A
35	MOTA	1552	CD	GLN	212	23.892	25.178 115.379	1.00 29.02	A
33	MOTA	1553		GLN	212	23.354	26.276 115.209	1.00 30.43	A
	MOTA	1554	NE2	GLN	212	24.562	24.870 116.486	1.00 30.19	Α
	MOTA	1555	С	GLN	212	22.903	22.543 111.799	1.00 16.71	A
	MOTA	1556	0	GLN	212	22.459	23.030 110.749	1.00 16.05	A
	ATOM	1557	N	ILE	213	24.077	21.913 111.865	1.00 14.80	A
40	ATOM	1558	CA	ILE	213	24.921	21.776 110.678	1.00 13.74	A
40									
	ATOM	1559	CB	ILE	213	26.309	21.148 111.036	1.00 14.83	A
	MOTA	1560		ILE	213	27.118	20.846 109.764	1.00 11.99	A
	MOTA	1561	CG1	ILE	213	27.099	22.122 111.926	1.00 13.49	A
	MOTA	1562	CD1	ILE	213	28.495	21.607 112.366	1.00 12.70	A
45	MOTA	1563	С	ILE	213	24.170	20.909 109.662	1.00 14.25	A
	ATOM	1564	Ō	ILE	213	24.135	21.223 108.474	1.00 14.16	A
	MOTA	1565	N	LEU	214	23.546	19.838 110.142	1.00 12.87	A
	MOTA	1566	CA	LEU	214	22.778	18.968 109.273	1.00 13.78	A
50	MOTA	1567	CB	LEU	214	22.355	17.705 110.022	1.00 11.53	, А
50	ATOM	1568	CG	LEU	214	23.467	16.843 110.623	1.00 10.45	A
	ATOM	1569	CD1	LEU	214	22.840	15.626 111.257	1.00 10.08	A
	MOTA	1570	CD2	LEU	214	24.454	16.418 109.552	1.00 9.12	Α
	MOTA	1571	С	LEU	214	21.536	19.695 108.749	1.00 16.52	A
	ATOM	1572	ō	LEU	214	21.172	19.527 107.591	1.00 19.62	Ä
55		4							_
33	ATOM	1573	N	GLU	215	20.881	20.495 109.590	1.00 16.71	A
	ATOM	1574	CA	GLU	215	19.690	21.239 109.152	1.00 19.78	A
	ATOM	1575	CB	GLU	215	19.085	22.053 110.306	1.00 19.90	A
	MOTA	1576	CG	GLU	215	18.435	21.249 111.418	1.00 21.54	A
	MOTA	1577	CD	GLU	215	17.901	22.154 112.513	1.00 24.54	A
60	ATOM	1578	OE1		215	16.661	22.267 112.659	1.00 25.81	A
O	ATOM	1579	OE2		215	18.728	22.768 113.219	1.00 23.71	
									A
	MOTA	1580	С	GLU	215	20.049	22.211 108.025	1.00 20.52	A
	MOTA	1581	0	GLU	215	19.311	22.361 107.048	1.00 19.08	A
	MOTA	1582	N	LYS	216	21.189	22.878 108.189	1.00 21.26	A
65	MOTA	1583	CA	LYS	216	21.677	23.840 107.215	1.00 22.33	Α
	ATOM	1584	СВ	LYS	216	23.046	24.367 107.656	1.00 24.51	A
	MOTA	1585	CG	LYS	216	23.510	25.619 106.938	1.00 28.98	
									A
	MOTA	1586	CD	LYS	216	22.872	26.865 107.523	1.00 33.02	A
70	MOTA	1587	CE	LYS	216	23.331	27.078 108.959	1.00 35.90	A
70	ATOM	1588	NZ	LYS	216	24.819	27.142 109.072	1.00 37.29	A
	MOTA	1589	С	LYS	216	21.782	23.150 105.850	1.00 22.36	A
	ATOM	1590	ō	LYS	216	21.371	23.708 104.832	1.00 23.95	Α
	MOTA	1591	N	GLY	217	22.318	21.931 105.838	1.00 20.62	Ä
	017		••			-2.310	22.731 103.030	1.00 20.02	^

	MOTA	1592		GLY		22.458		104.595	1.00 19.15	A
	MOTA	1593		GLY		21.119		103.976	1.00 19.07	A
	MOTA	1594		GLY		20.938		102.760	1.00 18.70	A
5	MOTA	1595		ALA		20.168		104.812	1.00 17.10	A
,	ATOM	1596		ALA		18.845		104.330	1.00 15.84	A
	ATOM	1597		ALA		17.996		105.471	1.00 14.05	A
	MOTA MOTA	1598 1599		ALA		18.157		103.696 102.638	1.00 15.48	A
	ATOM	1600		ALA ALA		17.533 18.273		104.331	1.00 14.41	A
10	ATOM	1601	CA	ALA		17.638		103.800	1.00 14.41	A A
	ATOM	1602		ALA		17.776		104.787	1.00 12.71	A
	ATOM	1603		ALA	219	18.208		102.452	1.00 13.46	Ä
	ATOM	1604	ŏ	ALA	219	17.469		101.561	1.00 13.70	A
	MOTA	1605	N	LYS	220	19.525		102.304	1.00 13.95	A
15	MOTA	1606	CA	LYS	220	20.146		101.045	1.00 14.23	A
	MOTA	1607	CB	LYS	220	21.666	24.380	101.192	1.00 12.72	A
	MOTA	1608	CG	LYS	220	22.360	25.077	100.038	1.00 17.07	A
	MOTA	1609	CD	LYS	220	23.833	25.326	100.309	1.00 15.93	A
20	MOTA	1610	CE	LYS	220	24.512	25.923	99.080	1.00 17.58	A
20	MOTA	1611	NZ	LYS	220	25.991	26.097	99.261	1.00 15.01	A
	MOTA	1612	С	LYS	220	19.718	23.360	99.969	1.00 14.89	A
	MOTA	1613	0	LYS	220	19.497	23.722	98.809	1.00 15.14	A
	ATOM	1614	N	ARG	221	19.572		100.380	1.00 14.35	A
25	ATOM	1615	CA	ARG	221	19.166	21.024	99.492	1.00 15.09	A
23	MOTA	1616	CB	ARG	221	19.185		100.274	1.00 14.48	A
	MOTA	1617	CG	ARG	221	19.467	18.488	99.455	1.00 18.77	A
	MOTA MOTA	1618 1619	CD NE	ARG ARG	221 221	19.485 20.806		100.365	1.00 20.34 1.00 21.59	A
	MOTA	1620	CZ	ARG	221	21.148		101.357	1.00 21.60	A A
30	MOTA	1621		ARG	221	20.264		102.272	1.00 21.00	A
	ATOM	1622		ARG	221	22.367		101.344	1.00 19.97	Ä
	ATOM	1623	С	ARG	221	17.761	21.290	98.932	1.00 15.56	A
	ATOM	1624	Ō	ARG	221	17.419	20.858	97.827	1.00 15.28	A
	MOTA	1625	N	THR	222	16.945	22.004	99.698	1.00 14.05	A
35	MOTA	1626	CA	THR	222	15.608	22.325	99.253	1.00 13.31	A
	MOTA	1627	CB	THR	222	14.781	22.963	100.384	1.00 16.22	A
	ATOM	1628	OG1	THR	222	14.707	22.058	101.495	1.00 16.19	A
	MOTA	1629	CG2		222	13.367	23.252	99.904	1.00 17.44	A
40	MOTA	1630	С	THR	222	15.679	23.284	98.061	1.00 13.31	A
40	MOTA	1631	0	THR	222	14.850	23.205	97.156	1.00 12.26	A
•	MOTA	1632	N	THR	223	16.667	24.175	98.044	1.00 11.79	A
	ATOM	1633 1634	CA	THR	223 223	16.787 17.675	25.112 26.345	96.936	1.00 13.70	A
	ATOM ATOM	1635	CB	THR THR	223	19.058	25.979	97.287 97.247	1.00 14.50 1.00 18.73	A A
45	ATOM	1636		THR	223	17.343	26.870	98.669	1.00 10.63	A
	ATOM	1637	C	THR	223	17.387	24.398	95.729	1.00 15.22	A
	ATOM	1638	ō	THR	223	17.148	24.778	94.580	1.00 17.54	A
	ATOM	1639	N	ALA	224	18.176	23.361	95.986	1.00 14.46	A
	ATOM	1640	CA	ALA	224	18.773	22.607	94.896	1.00 13.62	A
50	MOTA	1641	CB	ALA	224	19.793	21.615	95.432	1.00 14.83	A
	MOTA	1642	С	ALA	224	17.665	21.867	94.171	1.00 13.10	A
	MOTA	1643	0	ALA	224	17.672	21.775	92.958	1.00 13.24	A
	MOTA	1644	N	ALA	225	16.710	21.346	94.932	1.00 13.91	A
55	MOTA	1645	CA	ALA	225	15.598	20.596		1.00 15.07	A
55	ATOM	1646	CB	ALA	225	14.817	19.903	95.498	1.00 15.97	A
	MOTA	1647	C	ALA	225	14.640	21.422	93.498	1.00 14.78	A
	MOTA	1648	0	ALA	225	14.070	20.908	92.532	1.00 13.24	A
	ATOM ATOM	1649 1650	N CA	THR THR	226 226	14.449 13.555	22.694 23.490	93.822 92.995	1.00 15.56 1.00 16.82	A
60	ATOM	1651	CB	THR	226	12.992	24.729	93.747	1.00 10.82	A
00	MOTA	1652		THR	226	13.314	25.921	93.015	1.00 17.00	A A
	MOTA	1653		THR	226	13.557	24.822	95.142	1.00 16.64	A
	ATOM	1654	c	THR	226	14.300	23.943	91.745	1.00 15.61	A
	ATOM	1655	ŏ	THR	226	13.685	24.257	90.726	1.00 13.81	Ä
65	ATOM	1656	N	LEU	227	15.629	23.947	91.828	1.00 14.58	A
	ATOM	1657	CA	LEU	227	16.473	24.361	90.716	1.00 14.64	A
	ATOM	1658	СВ	LEU	227	17.751	24.993	91.267	1.00 17.19	A
	MOTA	1659	CG	LEU	227	18.827	25.459	90.285	1.00 22.76	A
70	MOTA	1660		LEU	227	18.209	26.283	89.160	1.00 21.40	Α
70	MOTA	1661		LEU	227	19.873	26.272	91.055	1.00 24.08	A
	MOTA	1662	С	LEU	227	16.808	23.223	89.742	1.00 15.20	Α
	MOTA	1663	0	LEU	227	16.939	23.453	88.540	1.00 16.19	A
	MOTA	1664	N	MET	228	16.924	22.000	90.256	1.00 13.63	A

						•				
	ATOM	1665	CA	MET	228	17.244	20.842	89.424	1.00 14.22	A
	ATOM	1666		MET		18.607		89.852	1.00 17.08	A
	MOTA	1667		MET		19.771	21.243	89.583	1.00 18.22	A
	MOTA	1668	SD	MET	228	21.340	20.816	90.414	1.00 19.64	A.
5	MOTA	1669	CE	MET	228	21.189	21.761	91.964	1.00 16.95	A
•	ATOM	1670		MET		16.148	19.768	89.504	1.00 13.11	A
	MOTA	1671	0	MET	228	15.683	19.423	90.588	1.00 10.34	A
	MOTA	1672	N	ASN	229	15.748	19.243	88.348	1.00 12.86	A
	MOTA	1673	CA	ASN	229	14.676	18.246	88.259	1.00 13.74	A
10						14.319				
10	ATOM	1674	СВ	ASN			17.975	86.794	1.00 13.77	A
	MOTA	1675	CG	ASN		13.993	19.241	86.023	1.00 15.98	A
	MOTA	1676	OD1	ASN	229	13.899	19.221	84.790	1.00 16.80	A
	MOTA	1677	ND2	. ASN	229	13.814	20.352	86.740	1.00 15.44	A
	MOTA	1678	C	ASN	229	14.976	16.915	88.930	1.00 14.79	A
15										
13	MOTA	1679	0	ASN	229	16.036	16.322	88.713	1.00 15.96	A
	MOTA	1680	N	ALA	230	14.022	16.444	89.728	1.00 12.65	· А
	ATOM	1681	CA	ALA	230	14.155	15.182	90.443	1.00 13.20	A
	ATOM	1682	СВ	ALA	230	13.971	14.010	89.476	1.00 11.65	A
20	MOTA	1683	C	ALA	230	15.514	15.099	91.114	1.00 12.14	A
20	MOTA	1684	0	ALA	230	16.187	14.071	91.056	1.00 11.89	A
	MOTA	1685	N	TYR	231	15.906	16.190	91.753	1.00 11.37	A
	MOTA	1686	CA	TYR	231	17.190	16.270	92.435	1.00 12.67	A
	MOTA	1687	CB	TYR	231	17.325	17.625	93.128	1.00 13.10	A
~ ~	MOTA	1688	CG	TYR	231	18.685	17.843	93.720	1.00 13.58	A
25	MOTA	1689	. CD1	TYR	231	18.951	17.526	95.050	1.00 15.59	A
	MOTA	1690		TYR	231	20.235	17.687	95.583	1.00 15.33	A
	ATOM	1691		TYR	231	19.728	18.325	92.934	1.00 14.58	Α
	MOTA	1692	CE2	TYR	231	21.008	18.489	93.454	1.00 15.62	A
	MOTA	1693	CZ	TYR	231	21.251	18.169	94.777	1.00 14.53	A
30	MOTA	1694	OH	TYR	231	22.508	18.355	95.291	1.00 16.72	A
-							15.162			
	MOTA	1695	С	TYR	231	17.431		93.458	1.00 12.52	A
	MOTA	1696	0	TYR	231	18.470	14.500	93.436	1.00 12.31	A
	ATOM	1697	N	SER	232	16.457	14.968	94.341	1.00 12.51	A
	MOTA	1698	CA	SER	232	16.543	13.978	95.406	1.00 11.76	A
35					232	15.325		96.331		
33	ATOM	1699	СВ	SER			14.091		1.00 10.64	Α
	MOTA	1700	OG	SER	232	14.143	13.654	95.692	1.00 10.59	A
	MOTA	1701	С	SER	232	16.691	12.534	94.936	1.00 12.25	A
	MOTA	1702	0	SER	232	17.123	11.673	95.702	1.00 12.40	A
40	MOTA	1703	N	SER	233	16.332	12.244	93.695	1.00 11.36	A
40	MOTA	1704	CA	SER	233	16.485	10.876	93.241	1.00 12.78	A
	MOTA	1705	СВ	SER	233	15.146	10.341	92.712	1.00 13.58	A
	MOTA	1706	OG	SER	233	. 14.735	11.011	91.547	1.00 17.87	A
	MOTA	1707		SER	233	17.598	10.719	92.199	1.00 12.96	A
			C							
45	ATOM	1708	0	SER	233	18.129	9.628	92.018	1.00 12.33	A
45	MOTA	1709	N	ARG	234	17.984	11.817	91.552	1.00 13.08	A
	MOTA	1710	CA	ARG	234	19.022	11.770	90.519	1.00 12.98	A
	ATOM	1711	СВ	ARG	234	18.639	12.658	89.333	1.00 13.88	A
	MOTA	1712	CG	ARG	234	17.411	12.209	88.575	1.00 15.89	A
	ATOM	1713	ÇD	ARG	234	17.135	13.146	87.408	1.00 16.18	A
50	MOTA	1714	NE	ARG	234	15.961	12.713	86.672	1.00 20.62	A
	ATOM	1715	CZ	ARG	234	15.330	13.442	85.761	1.00 21.81	A
	MOTA	1716		ARG	234	15.764	14.662	85.459	1.00 21.30	A
	ATOM	1717	NH2	ARG	234	14.249	12.951	85.168	1.00 21.53	A
	MOTA	1718	С	ARG	234	20.409	12.182	90.972	1.00 11.75	A
55	ATOM	1719	ō	ARG	234	21.374	12.011	90.230	1.00 11.05	A
55										
	MOTA	1720	N	SER	235	20.510	12.744	92.170	1.00 9.69	A
	ATOM	1721	CA	SER	235	21.802	13.185	92.679	1.00 9.62	A
	ATOM	1722	CB	SER	235	21.656	14.525	93.409	1.00 9.37	A
	ATOM	1723	OG	SER	235	20.858	14.410	94.575	1.00 9.00	
60										A
60	MOTA	1724	С	SER	235	22.445	12.171	93.617	1.00 9.66	A
	MOTA	1725	0	SER	235	21.768	11.317	94.190	1.00 12.40	A
	ATOM	1726	N	HIS	236	23.762	12.287	93.758	1.00 8.64	A
	ATOM	1727	CA	HIS	236	24.573	11.436	94.627	1.00 5.39	A
	MOTA	1728	CB	HIS	236	25.795	10.898	93.878	1.00 6.60	A
65	MOTA	1729	CG	HIS	236	25.474	10.085	92.666	1.00 6.36	A
	ATOM	1730		HIS	236	25.516	10.398	91.350	1.00 6.40	A
	MOTA	1731		HIS	236	25.109	8.758	92.732	1.00 6.26	A
	MOTA	1732	CE1	HIS	236	24.945	8.287	91.509	1.00 4.95	Α
	MOTA	1733	NE2	HIS	236	25.186	9.261	90.652	1.00 5.93	A
70	ATOM	1734	C	HIS	236	25.092	12.348	95.732	1.00 6.58	
, ,										A
	MOTA	1735	0	HIS	236	25.676	13.396	95.446	1.00 5.89	A
	MOTA	1736	N	SER	237	24.902	11.972	96.990	1.00 7.32	A
	ATOM	1737	CA	SER	237	25.409	12.816	98.063	1.00 7.91	A

	MOTA	1738	CB	SER	237	24.287	13.204	99.022	1.00 8.40	A
	MOTA	1739	OG	SER	237	23.895	12.093	99.805	1.00 12.48	A
	MOTA	1740	С	SER	237	26.505	12.089		1.00 7.51	A
	ATOM	1741	ŏ	SER	237	26.365	10.916		1.00 10.56	A
5										
5	ATOM	1742	N	VAL	238	27.593	12.794	99.092	1.00 7.01	A
	MOTA	1743	CA	VAL	238	28.714	12.236	99.822	1.00 7.37	A
	MOTA	1744	CB	VAL	238	30.032	12.305	98.998	1.00 8.80	A
	MOTA	1745	CG1	VAL	238	31.145	11.578		1.00 6.78	A
	ATOM	1746		VAL	238	29.833	11.711	97.603	1.00 5.26	A
10										
10	ATOM	1747	С	VAL	238	28.938		101.107	1.00 8.29	A
	ATOM	1748	0	VAL	238	29.445		101.057	1.00 8.87	A
	ATOM	1749	N	PHE	239	28.549	12.454	102.247	1.00 7.65	A
	MOTA	1750	CA	PHE	239	28.756	13.114	103.531	1.00 7.41	A
	ATOM	1751	СВ	PHE	239	27.557		104.454	1.00 7.34	A
15								105.726		
IJ	MOTA	1752	CG	PHE	239	27.615			1.00 6.91	A
	MOTA	1753		PHE	239	28.508		106.744	1.00 7.70	A
	MOTA	1754	CD2	PHE	239	26.778	14.788	105.906	1.00 6.68	A
	ATOM	1755	CE1	PHE	239	28.567	14.102	107.931	1.00 7.54	A
	ATOM	1756		PHE	239	26.828		107.086	1.00 8.52	A
20	ATOM	1757	CZ	PHE	239	27.724		108.101	1.00 7.57	A
20										
	MOTA	1758	С	PHE	239	30.016		104.169	1.00 10.17	A
	ATOM	1759	0	PHE	239	30.063		104.486	1.00 10.87	A
	ATOM	1760	N	SER	240	31.036	13.356	104.350	1.00 9.89	A
	ATOM	1761	CA	SER	240	32.283	12.893	104.926	1.00 11.46	A
25	ATOM	1762	СВ	SER	240	33.441		103.966	1.00 10.05	A
23	ATOM			SER	240			102.681	1.00 14.59	A
		1763	OG			33.183				
	MOTA	1764	С	SER	240	32.598		106.285	1.00 12.92	A
	MOTA	1765	0	SER	240	32.405	14.705	106.509	1.00 12.61	A
	MOTA	1766	N	VAL	241	33.078	12.665	107.193	1.00 12.52	A
30	MOTA	1767	CA	VAL	241	33.468	13,113	108.511	1.00 13.59	A
	ATOM	1768	СВ	VAL	241	32.559		109.613	1.00 14.83	A
					241					
	MOTA	1769		VAL		32.526		109.492	1.00 17.21	A
	MOTA	1770		VAL	241	33.054		110.993	1.00 13.88	A
	MOTA	1771	С	VAL	241	34.931	12.718	108.731	1.00 13.59	A
35	MOTA	1772	0	VAL	241	35.305	11.548	108.607	1.00 10.71	A
	ATOM	1773	N	THR	242	35.759		109.024	1.00 14.44	A
	ATOM	1774	CA	THR	242	37.175		109.264	1.00 15.80	A
	MOTA	1775	СВ	THR	242	38.051		108.409	1.00 16.64	A
40	ATOM	1776	OG1	THR	242	37.719	14.238	107.025	1.00 19.41	A
40	MOTA	1777	CG2	THR	242	39.539	14.102	108.618	1.00 11.48	A
	ATOM	1778	С	THR	242	37.479	13.726	110.734	1.00 17.79	A
	MOTA	1779	Ó	THR	242	37.051		111.322	1.00 19.50	A
	ATOM	1780	N	ILE	243	38.224		111.326	1.00 18.66	A
15	MOTA	1781	CA	ILE	243	38.563		112.730	1.00 20.82	A
45	MOTA	1782	CB	ILE	243	37.972	11.714	113.500	1.00 20.34	A
	ATOM	1783	CG2	ILE	243	38.085	11.953	114.993	1.00 20.79	A
	MOTA	1784	CG1	ILE	243	36.506	11.524	113.114	1.00 21.41	A
	ATOM	1785	CD1	ILE	243	35.902		113.632	1.00 20.85	A
	ATOM	1786	C	ILE	243	40.076		112.958	1.00 23.56	A
50										
JU	ATOM	1787	0	ILE	243	40.782		112.664	1.00 23.06	A
	MOTA	1788	N	HIS	244	40.574		113.458	1.00 25.26	A
	ATOM	1789	CA	HIS	244	41.994	14.177	113.765	1.00 27.63	A
	MOTA	1790	CB	HIS	244	42.507	15.589	113.485	1.00 28.72	Α
	MOTA	1791	CG	HIS	244	42.974		112.079	1.00 32.69	A
55								111.544	1.00 33.88	_
55	ATOM	1792	CDZ		244	44.219				A
	MOTA	1793	ND1		244	42.111		111.038	1.00 34.05	A
	MOTA	1794	CE1		244	42.803		109.924	1.00 33.87	A
	MOTA	1795	NE2	HIS	244	44.085	16.075	110.203	1.00 35.45	A
	ATOM	1796	С	HIS	244	42.108	13.878	115.254	1.00 29.05	A
60	MOTA	1797	ō	HIS	244	41.541		116.084	1.00 28.16	A
-								115.592	1.00 29.99	
	ATOM	1798	N	MET	245	42.827				A
	MOTA	1799	CA	MET	245	42.968		116.988	1.00 32.41	A
	MOTA	1800	CB	MET	245	42.330		117.210	1.00 30.98	A
	MOTA	1801	CG	MET	245	40.880	10.959	116.795	1.00 29.47	A
65	MOTA	1802	SD	MET	245	40.390		116.608	1.00 28.28	A
	ATOM	1803	CE	MET	245	41.018		114.953	1.00 26.37	A
	MOTA	1804	C	MET	245	44.395		117.520	1.00 34.03	A
	MOTA	1805	0	MET	245	45.332		116.831	1.00 33.45	A
-	ATOM	1806	N	LYS	246	44.536		118.765	1.00 36.79	A
70	MOTA	1807	CA	LYS	246	45.813	12.813	119.456	1.00 41.41	A
	ATOM	1808	СВ	LYS	246	46.345		119.645	1.00 44.53	Α
	MOTA	1809	CG	LYS	246	47.765		120.187	1.00 48.98	A
	MOTA	1810	CD	LYS	246	48.360	13.0/8	120.048	1.00 52.77	A

	ATOM	1811	CE	LYS	246	49.830	15.693	120.448	1.00 55.09	A
	MOTA	1812	NZ	LYS	246	50.445	17 035	120.232	1.00 56.33	A
									1.00 42.14	
	MOTA	1813	С	LYS	246	45.496		120.799		A
_	MOTA	1814	0	LYS	246	45.157		121.764	1.00 42.94	A
5	MOTA	1815	N	GLU	247	45.586	10.859	120.834	1.00 42.88	A
	ATOM	1816	CA	GLU	247	45.286	10.090	122.027	1.00 45.27	A
		1817	СВ	GLU	247	44.896		121.623	1.00 45.22	A
	MOTA									
	MOTA	1818	CG	GLU	247	44.301		122.726	1.00 45.70	A
_	MOTA	1819	CD	GLU	247	44.075	6.396	122.282	1.00 47.91	A
10	ATOM	1820	OF1	GLU	247	43.507	6.194	121.186	1.00 48.39	A
					247	44.462		123.032	1.00 47.23	A
	ATOM	1821		GLU						
	MOTA	1822	С	GLU	247	46.463		122.995	1.00 46.56	A
	ATOM	1823	0	GLU	247	47.625	10.055	122.592	1.00 46.38	A
	ATOM	1824	N	THR	248	46.144	9.988	124.281	1.00 47.43	A
15	ATOM	1825	CA	THR	248	47.155		125.320	1.00 49.03	A
13									1.00 49.86	
	ATOM	1826	CB	THR	248	47.340		126.029		A
	ATOM	1827	OG1	THR	248	47.733	12.245	125.066	1.00 50.38	A
	MOTA	1828	CG2	THR	248	48.416	11.162	127.104	1.00 49.64	A
	ATOM	1829	С	THR	248	46.679	8.838	126.309	1.00 49.49	A
20	ATOM		ō	THR	248	45.810		127.148	1.00 49.04	A
20		1830								
	MOTA	1831	N	THR	249	47.244		126.177	1.00 50.47	A
	ATOM	1832	CA	THR	249	46.892	6.510	127.025	1.00 51.50	A
	ATOM	1833	CB	THR	249	47.684	5.252	126.621	1.00 51.30	A
	ATOM	1834		THR	249	49.072		126.933	1.00 50.45	A
25								125.127	1.00 50.34	
23	MOTA	1835		THR	249	47.539				A
	ATOM	1836	С	THR	249	47.157	6.813	128.493	1.00 52.76	Α
	MOTA	1837	0	THR	249	47.801	7.811	128.819	1.00 52.66	A
	ATOM	1838	N	ILE	250	46.663	5 948	129.375	1.00 53.97	A
	ATOM	1839	CA	ILE	250	46.842		130.812	1.00 55.19	A
30										
ĴŪ	ATOM	1840	CB	ILE	250	46.042		131.624	1.00 55.38	A
	MOTA	1841	CG2	ILE	250	44.596	5.061	131.147	1.00 55.55	A
	MOTA	1842	CG1	ILE	250	46.656	3.683	131.466	1.00 55.59	A
	ATOM	1843		ILE	250	46.516		130.073	1.00 56.12	A
								131.239	1.00 55.82	A
25	MOTA	1844	C	ILE	250	48.313				
35	MOTA	1845	0	ILE	250	48.634		132.408	1.00 55.54	A
	MOTA	1846	N	ASP	251	49.198	5.833	130.281	1.00 56.61	. А
	MOTA	1847	CA	ASP	251	50.633	5.776	130.543	1.00 57.44	A
	MOTA	1848	CB	ASP	251	51.285		129.679	1.00 57.92	A
40	MOTA	1849	CG	ASP	251	50.757		129.979	1.00 58.92	A
40	ATOM	1850	OD1	ASP	251	50.894	2.427	129.098	1.00 59.53	A
	ATOM	1851	OD2	ASP	251	50.217	3.088	131.089	1.00 57.67	A
	ATOM	1852	С	ASP	251	51.271	7.124	130.222	1.00 57.89	A
		1853		ASP	251	51.858		131.090	1.00 59.32	A
	ATOM		0							
45	ATOM	1854	N	GLY	252	51.141		128.967	1.00 57.36	A
45	MOTA	1855	CA	GLY	252	51.707	8.797	128.526	1.00 57.52	A
	ATOM	1856	С	GLY	252	52.089	8.717	127.060	1.00 57.92	A
	ATOM	1857	0	GLY	252	52.814		126.545	1.00 58.43	A
									1.00 57.56	
	MOTA	1858	N	GLU	253	51.602		126.392		A
50	MOTA	1859	CA	GLU	253	51.869		124.974	1.00 57.81	A
50	ATOM	1860	CB	GLU	253	51.552	6.006	124.598	1.00 59.90	A
	MOTA	1861	CG	GLU	253	52.084	4.968	125.573	1.00 62.49	A
	MOTA	1862	CD	GLU	253	51.543		125.294	1.00 63.65	A
	ATOM	1863		GLU	253	51.693		124.146	1.00 65.45	A
E E	MOTA	1864		GLU	253	50.970		126.219	1.00 63.15	A
55	MOTA	1865	С	GLU	253	50.959	8.381	124.179	1.00 56.36	A
	MOTA	1866	0	GLU	253	49.818	8.618	124.572	1.00 56.13	A
	MOTA	1867	N	GLU	254	51.451		123.067	1.00 54.64	A
		1868	CA		254	50.626		122.256	1.00 53.82	
	MOTA			GLU						A
~	MOTA	1869	СВ	GLU	254	51.269		122.151	1.00 54.89	A
60	MOTA	1870	CG	GLU	254	52.568	11.259	121.354	1.00 56.86	A
	MOTA	1871	CD	GLU	254	52.363	11.790	119.939	1.00 58.42	Α
	MOTA	1872	OE1		254	51.856		119.800	1.00 58.67	A
	MOTA	1873	OE2		254	52.713		118.968	1.00 57.93	A
	MOTA	1874	С	GLU	254	50.397		120.876	1.00 52.35	A
65	ATOM	1875	0	GLU	254	51.340	8.945	120.124	1.00 52.94	A
	ATOM	1876	N	LEU	255	49.135		120.560	1.00 50.68	A
		1877	CA	LEU	255	48.772		119.268	1.00 48.63	A
	MOTA									
	MOTA	1878	CB	LEU	255	47.828		119.439	1.00 49.85	A
~^	MOTA	1879	CG	LEU	255	48.236	5.895	120.231	1.00 52.23	A
70	MOTA	1880	CD1	LEU	255	49.595	5.409	119.752	1.00 53.67	A
-	ATOM	1881	CD2		255	48.278		121.720	1.00 53.72	A
	MOTA	1882	С	LEU	255	48.069		118.413	1.00 46.05	A
	MOTA	1883	0	LEU	255	46.978	9.832	118.755	1.00 45.38	A

	» mow	1004		1121	256	48.695	9.772 117.31	0 1.00 43.74	
	ATOM	1884	N	VAL	256				A
	ATOM	1885	CA	VAL	256	48.081	10.740 116.40		A
	MOTA	1886	СВ	VAL	256	49.084	11.791 115.94		A
_	MOTA	1887	CG1	VAL	256	48.442	12.680 114.89	7 1.00 38.91	A
5	MOTA	1888	CG2	VAL	256	49.543	12.614 117.13	2 1.00 40.08	A
	ATOM	1889	С	VAL	256	47.533	9.994 115.20	0 1.00 39.59	A
	ATOM	1890	0	VAL	256	48.276	9.619 114.29	1 1.00 39.95	. А
	ATOM	1891	N	LYS	257	46.221	9.780 115.21	2 1.00 36.47	A
	ATOM	1892	CA	LYS	257	45.534	9.056 114.15		A
10	ATOM	1893	СВ	LYS	257	44.733	7.902 114.75		Α
10	ATOM	1894	CG	LYS		45.525	7.024 115.71		A
							6.174 116.57		
	ATOM	1895	CD	LYS	257	44.613			A
	MOTA	1896	CE	LYS	257	43.767	7.045 117.48		A
15	MOTA	1897	NZ	LYS	257	42.941	6.216 118.41		A
15	ATOM	1898	С	LYS	257	44.585	9.965 113.38		A
	MOTA	1899	0	LYS	257	44.067	10.944 113.92		A
	MOTA	1900	N	ILE	258	44.361	9.624 112.12		A
	ATOM	1901	CA	ILE	258	43.451	10.372 111.26	3 1.00 26.14	A
	MOTA	1902	CB	ILE	258	44.223	11.174 110.20	9 1.00 26.23	А
20	ATOM	1903	CG2	ILE	258	43.265	11.782 109.20	5 1.00 26.22	Α
	MOTA	1904		ILE	258	45.027	12.271 110.90	1.00 27.27	A
	ATOM	1905		ILE	258	45.828	13.155 109.94		A
	ATOM	1906	C	ILE	258	42.493	9.400 110.57		A
	ATOM	1907	ō	ILE	258	42.912	8.562 109.77		A
25					259	41.208	9.509 110.899		A
23	MOTA	1908	N	GLY					
	ATOM	1909	CA	GLY	259	40.221	8.629 110.300		A
	ATOM	1910	С	GLY	259	39.214	9.376 109.44		A
	ATOM	1911	0	GLY	259	38.843	10.502 109.769		A
20	MOTA	1912	N	LYS	260	38.782	8.764 108.349		A
30	ATOM	1913	CA	LYS	260	37.803	9.399 107.48		A
	ATOM	1914	CB	LYS	260	38.480	9.983 106.24	1.00 13.95	A
	ATOM	1915	CG	LYS	260	37.557	10.866 105.414	1.00 14.12	A
	MOTA	1916	CD	LYS	260	38.254	11.500 104.220	1.00 14.32	A
	ATOM	1917	CE	LYS	260	37.256	12.328 103.410	1.00 16.28	A
35	ATOM	1918	NZ	LYS	260	37.881	13.104 102.303		A
	MOTA	1919	C	LYS	260	36.687	8.427 107.080		A
	ATOM	1920	ŏ	LYS	260	36.939	7.312 106.612		A
	ATOM	1921	N	LEU	261	35.449	8.868 107.277		A
						34.281	8.067 106.954		
40	MOTA	1922	CA	LEU	261				A
70	MOTA	1923	CB	LEU	261	33.461	7.830 108.217		A
	MOTA	1924		LEU	261	32.123	7.109 108.093		A
	ATOM	1925		LEU	261	32.319	5.722 107.514		A
	MOTA	1926		LEU	261	31.499	7.027 109.470		A
15	MOTA	1927	С	LEU	261	33.416	8.768 105.909		A
45	ATOM	1928	0	LEU	261	32.978	9.914 106.113		A
	MOTA	1929	N	ASN	262	33.180	8.079 104.786		A
	MOTA	1930	CA	ASN	262	32.360	8.608 103.702		A
	ATOM	1931	CB	ASN	262	33.042	8.371 102.348	1.00 10.45	A
	ATOM	1932	CG	ASN	262	34.436	8.948 102.294	1.00 14.30	A
50	ATOM	1933	OD1	ASN	262	35.420	8.220 102.136	1.00 16.96	A
	MOTA	1934	ND2	ASN	262	34.535	10.263 102.432	1.00 9.79	A
	MOTA	1935	С	ASN	262	31.003	7.905 103.721	1.00 9.32	A
	MOTA	1936	0	ASN	262	30.940	6.687 103.638	1.00 10.83	A
	ATOM	1937	N	LEU	263	29.923	8.673 103.839		A
55	ATOM	1938		LEU	263	28.572	8.108 103.874		A
	ATOM	1939	CB	LEU	263	27.832	8.607 105.108		A
	MOTA	1940	CG	LEU	263	28.620	8.253 106.375		
									A
	ATOM	1941	CD1		263	27.981	8.906 107.599		Α
60	ATOM	1942	CD2		263	28.679	6.728 106.520		A
60	MOTA	1943	С	LEU	263	27.878	8.545 102.595		A
	ATOM	1944	0	LEU	263	27.488	9.706 102.441		A
	MOTA	1945	N	VAL	264	27.716	7.597 101.682		A
	MOTA	1946	CA	VAL	264	27.161	7.891 100.378		A
/-	ATOM	1947	CB	VAL	264	28.089	7.329 99.291	1.00 10.33	A
65	MOTA	1948	CG1	VAL	264	27.734	7.907 97.928	1.00 8.01	A
	MOTA	1949	CG2		264	29.522	7.637 99.672		A
	ATOM	1950	c	VAL	264	25.765	7.403 100.104		A
	ATOM	1951	ō	VAL	264	25.465	6.212 100.226		A
	MOTA	1952		ASP	265	24.925	8.355 99.714	1.00 9.00	Ä
70	ATOM	1953		ASP	265	23.534	8.116 99.368		Ä
	MOTA	1954		ASP	265	22.650	9.211 99.985	1.00 5.48	
					265		8.994 99.713		A
	MOTA	1955		ASP		21.171		1.00 7.76	Α
	MOTA	1956	OD1	MOP	265	20.851	8.232 98.782	1.00 5.27	A

	MOTA	1957	OD2	ASP	265	20.328	9.589	100.421	1.00 9.82	A
	ATOM	1958	c	ASP	265	23.497	8.203	97.838	1.00 4.32	A
	ATOM	1959	ŏ	ASP	265	23.410	9.289	97.270	1.00 4.24	A
	ATOM	1960	N	LEU	266	23.575	7.060	97.172	1.00 4.44	A
5	MOTA	1961	CA	LEU	266	23.569	7.024	95.710	1.00 5.61	A
-	ATOM	1962	CB	LEU	266	23.941	5.616	95.222	1.00 1.02	A
	ATOM	1963	CG	LEU	266	25.345	5.124	95.622	1.00 5.57	A
	ATOM	1964		LEU	266	25.561	3.649	95.242	1.00 1.02	A
	ATOM	1965		LEU	266	26.379	6.020	94.942	1.00 4.62	A
10	ATOM	1966	C	LEU	266	22.252	7.451	95.065	1.00 7.56	A
	ATOM	1967	ō	LEU	266	21.190	7.438	95.694	.1.00 9.23	A
	ATOM	1968	N	ALA	267	22.336	7.845	93.801	1.00 7.43	A
	ATOM	1969	CA	ALA	267	21.156	8.220	93.047	1.00 6.36	Α
	ATOM	1970	CB	ALA	267	21.572	8.756	91.687	1.00 5.05	A
15	ATOM	1971	С	ALA	267	20.324	6.945	92.877	1.00 6.99	A
	ATOM	1972	0	ALA	267	20.844	5.840	93.020	1.00 5.27	. А
	ATOM	1973	N	GLY	268	19.042	7.105	92.571	1.00 9.81	A
	MOTA	1974	CA	GLY	268	18.170	5.961	92.378	1.00 12.51	A
	ATOM	1975	С	GLY	268	18.633	5.079	91.233	1.00 15.67	A
20	MOTA	1976	0	GLY	268	18.859	5.555	90.113	1.00 17.12	A
	MOTA	1977	N	SER	269	18.755	3.786	91.516	1.00 15.31	A
	MOTA	1978	CA	SER	269	19.220	2.802	90.543	1.00 18.23	A
	MOTA	1979	CB	SER	269	19.677	1.554	91.293	1.00 17.50	A
~-	MOTA	1980	0G	SER	269	18.596	1.027	92.043	1.00 12.64	A
25	MOTA	1981	С	SER	269	18.195	2.383	89.484	1.00 20.29	A
	MOTA	1982	0	SER	269	18.497	1.549	88.627	1.00 19.97	A
	MOTA	1983	N	GLU	270	16.994	2.950	89.537	1.00 22.91	A
	MOTA	1984	CA	GLU	270	15.949	2.576	88.587	1.00 26.68	A
20	MOTA	1985	CB	GLU	270	14.563	2.958	89.136	1.00 24.65	A
30	MOTA	1986	CG	GLU	270	14.251	4.460	89.210	1.00 22.35	A
	MOTA	1987	ÇD	GLU	270	14.960	5.185	90.349	1.00 21.47	A
	ATOM	1988	OE1		270	15.545	4.524	91.234	1.00 18.55	A
	MOTA	1989	OE2		270	14.922	6.433	90.354	1.00 22.04	A
25	MOTA	1990	С	GLU	270	16.117	3.139	87.177	1.00 31.14	A
35	MOTA	1991	0	GLU	270	16.608	4.256	86.981	1.00 30.32	A
	MOTA	1992	N	ASN	271	15.717	2.336	86.194	1.00 36.67	A
	ATOM	1993	CA	ASN	271	15.799	2.730	84.793	1.00 41.70	A
	MOTA	1994	СВ	ASN	271	16.856	1.900	84.059	1.00 45.31	A
40	MOTA	1995	CG	ASN	271	17.121	2.409	82.649	1.00 49.20	A
40	ATOM	1996	OD1		271	17.661	3.504	82.460	1.00 50.16	A
	ATOM	1997	ND2		271	16.733	1.618	81.650	1.00 50.41	A
	ATOM	1998	C	ASN	271	14.440	2.537	84.120	1.00 42.80	A
	ATOM	1999	0	ASN	271	13.799	1.494	84.276	1.00 44.21	A
45	MOTA	2000	N	ASN	287	17.192	11.408	81.710	1.00 47.26	A
45	ATOM	2001	CA	ASN	287	18.348	11.168	80.854	1.00 46.49	A
	MOTA	2002	CB	ASN	287	19.078	12.487	80.582 79.614	1.00 48.42 1.00 51.20	A
	MOTA	2003 2004	CG OD1	ASN ASN	287 287	18.323 18.724	13.385 14.526	79.368	1.00 51.20	A A
	MOTA	2004	ND2		287	17.230	12.870	79.053	1.00 50.69	A
50	MOTA	2005	C	ASN	287	19.324	10.139	81.437	1.00 45.61	A
30	MOTA MOTA	2007	0	ASN	287	18.912	9.131	82.021	1.00 45.57	Ä
	ATOM	2008	N	ILE	288	20.619	10.400	81.285	1.00 42.07	A
	ATOM	2009	CA	ILE	288	21.634	9.471	81.771	1.00 37.70	Α
	ATOM	2010	CB	ILE	288	22.657	9.156	80.646	1.00 37.70	A
55	ATOM	2011	CG2		288	21.964	8.416	79.511	1.00 38.36	A
75	ATOM	2012	CG1		288	23.269	10.450	80.095	1.00 40.59	A
	ATOM	2013	CD1		288	24.498	10.959	80.863	1.00 42.56	A
	ATOM	2014	C	ILE	288	22.385	9.924	83.019	1.00 33.61	A
	ATOM	2015	ŏ	ILE	288	22.668	11.113	83.194	1.00 34.30	A
60	ATOM	2016	N	ASN	289	22.682	8.970	83.897	1.00 26.00	A
•	MOTA	2017	CA	ASN	289	23.431	9.267	85.107	1.00 19.08	A
	MOTA	2018	СВ	ASN	289	22.810	8.599	86.334	1.00 17.79	A
	ATOM	2019	CG	ASN	289	23.253	9.253	87.645	1.00 18.18	A
	MOTA	2020	OD1		289	22.461	9.928	88.299	1.00 18.30	A
65	ATOM	2021	ND2		289	24.516	9.065	88.023	1.00 13.15	A
	ATOM	2022	C	ASN	289	24.808	8.679	84.861	1.00 15.55	A
	ATOM	2023	ō	ASN	289	25.033	7.493	85.072	1.00 12.50	A
	ATOM	2024		GLN	290	25.727	9.515	84.398	1.00 13.86	A
	ATOM	2025		GLN	290	27.079	9.070	84.088	1.00 12.24	A
70	ATOM	2026		GLN	290	27.896	10.253	83.560	1.00 11.18	A
-	ATOM	2027		GLN	290	29.284	9.913	83.068	1.00 10.23	A
	ATOM	2028		GLN	290	29.297	8.795	82.036	1.00 11.80	A
	ATOM	2029	OE1	GLN	290	28.336	8.609	81.273	1.00 12.41	A

	MOTA	2030	NE2	GLN	290	30.399	8.059	81.990	1.00 10.69	A
	ATOM	2031	C	GLN	290	27.778	8.414	85.276	1.00 11.63	A
		2032	ò			28.394	7.359		1.00 12.20	Ä
	MOTA			GLN	290			85.130		
5	ATOM	2033	N	SER	291	27.662	9.023	86.452	1.00 10.76	A
J	MOTA	2034	CA	SER	291	28.304	8.485	87.650	1.00 11.04	A
	MOTA	2035	CB	SER	291	28.163	9.450	88.830	1.00 10.12	A
	MOTA	2036	OG	SER	291	29.068	10.536	88.711	1.00 11.06	A
	MOTA	2037	С	SER	291	27.753	7.131	88.043	1.00 11.79	A
	ATOM	2038	0	SER	291	28.512	6.241	88.420	1.00 14.45	A
10	MOTA	2039	N	LEU	292	26.437	6.971	87.959	1.00 11.86	A
~~	ATOM	2040	CA	LEU	292	25.805	5.709	88.312	1.00 10.53	A
	MOTA	2041	CB	LEU	292	24.278	5.875	88.329	1.00 10.11	A
	MOTA	2042	CG	LEU	292	23.467	4.734	88.952	1.00 11.58	
	MOTA	2043	CD1	LEU	292	23.811	4.605	90.427	1.00 9.76	A
15	ATOM	2044	CD2	LEU	292	21.974	5.007	88.791	1.00 11.92	A
	MOTA	2045	С	LEU	292	26.216	4.653	87.289	1.00 10.87	A
	ATOM	2046	0	LEU	292	26.559	3.525	87.634	1.00 12.05	A
	MOTA	2047	N	LEU	293	. 26.196	5.043	86.022	1.00 11.04	A
	ATOM	2048	CA	LEU	293	26.566	4.165	84.929	1.00 11.19	A
20	ATOM	2049	CB	LEU	293	26.382	4.922	83.608	1.00 11.77	A
20					293					
	MOTA	2050	CG	LEU		25.394	4.442	82.532	1.00 15.36	A
	MOTA	2051		LEU	293	24.197	3.755	83.162	1.00 13.37	A
	MOTA	2052		LEU	293	24.948	5.638	81.690	1.00 11.70	A
~~	MOTA	2053	С	LEU	293	28.026	3.714	85.094	1.00 13.10	A
25	MOTA	2054	0	LEU	293	28.355	2.535	84.918	1.00 13.28	A
	MOTA	2055	N	THR	294	28.896	4.660	85.437	1.00 11.21	A
	MOTA	2056	CA	THR	294	30.313	4.372	85.613	1.00 10.86	A
	MOTA	2057	CB	THR	294	31.119	5.690	85.778	1.00 12.02	A
	ATOM	2058	0G1		294	30.934	6.497	84.611	1.00 11.95	A
30					294					
50	ATOM	2059	CG2			32.605	5.409	85.947	1.00 8.75	A
	MOTA	2060	С	THR	294	30.571	3.459	86.809	1.00 11.13	Ą
	ATOM	2061	О	THR	294	31.416	2.563	86.735	1.00 10.49	A
	MOTA	2062	N	LEU	295	29.843	3.686	87.906	1.00 11.70	A
	ATOM	2063	CA	LEU	295	29.983	2.870	89.117	1.00 11.27	Α
35	ATOM	2064	CB	LEU	295	29.033	3.348	90.224	1.00 10.76	A
	MOTA	2065	CG	LEU	295	28.993	2.535	91.529	1.00 10.99	Α
	ATOM	2066		LEU	295	30.352	2.540	92.214	1.00 12.41	A
	MOTA	2067		LEU	295	27.950	3.126	92.458	1.00 10.86	 A
	MOTA	2068	C	LEU	295		1.424	88.788	1.00 10.80	
40						29.683				A
40	MOTA	2069	0	LEU	295	30.365	0.521	89.252	1.00 12.59	A
	MOTA	2070	N	GLY	296	28.652	1.205	87.986	1.00 11.95	A
	MOTA	2071	CA	GLY	296	28.311	-0.153	87.607	1.00 12.43	A
	ATOM	2072	С	GLY	296	29.444	-0.772	86.810	1.00 13.06	A
	ATOM	2073	0	GLY	296	29.796	-1.938	87.007	1.00 15.18	A
45	ATOM	2074	N	ARG	297	30.021	0.014	85.906	1.00 11.06	Α
	MOTA	2075	CA	ARG	297	31.121	-0.458	85.086	1.00 9.97	А
	ATOM	2076	CB	ARG	297	31.369	0.517	83.943	1.00 9.77	A
	ATOM	2077	CG	ARG	297	30.264	0.487	82.909	1.00 10.57	A
		2078		ARG	297		1.789	82.136	1.00 10.37	
50	MOTA		CD			30.173				A
50	MOTA	2079	NE	ARG	297	29.014	1.776	81.259	1.00 10.33	A
	ATOM	2080	CZ	ARG	297	28.492	2.853	80.685	1.00 9.93	A
	MOTA	2081	_	ARG	297	29.033	4.044	80.892	1.00 10.65	A
	MOTA	2082	NH2	ARG	297	27.412	2.740	79.920	1.00 7.47	A
	ATOM	2083	С	ARG	297	32.395	-0.675	85.889	1.00 9.24	A
55	MOTA	2084	0	ARG	297	33.154	-1.597	85.594	1.00 10.04	A
	MOTA	2085	N	VAL	298	32.632	0.164	86.897	1.00 6.73	A
	MOTA	2086	CA	VAL	298	33.823	0.009	87.734	1.00 7.78	A
	MOTA	2087	СВ	VAL	298	33.988	1.196	88.719	1.00 7.07	Ä
			CG1		298			89.773		
60	MOTA	2088				35.026	0.865		1.00 2.16	A
OU	MOTA	2089	CG2		298	34.408	2.449	87.957	1.00 4.22	A
	MOTA	2090	С	VAL	298	33.775	-1.315	88.517	1.00 9.86	A
	MOTA	2091	0	VAL	298	34.761	-2.057	88.556	1.00 11.69	A
	ATOM	2092	N	ILE	29 9	32.625	-1.616	89.120	1.00 10.47	A
	MOTA	2093	CA	ILE	299	32.437	-2.858	89.879	1.00 10.02	A
65	ATOM	2094	СВ	ILE	299	31.004	-2.910	90.488	1.00 10.33	A
	MOTA	2095	CG2		299	30.710	-4.280	91.095	1.00 9.07	Ä
	MOTA	2096	CG1		299	30.869	-1.821	91.558	1.00 10.35	
										A
	ATOM	2097	CD1		299	29.445	-1.587	92.019	1.00 13.51	A
70	MOTA	2098	C	ILE	299	32.659	-4.070	88.972	1.00 11.19	A
70	MOTA	2099	0	ILE	299	33.341	-5.019	89.348	1.00 9.09	A
	MOTA	2100	N	THR	300	32.084	-4.031	87.771	1.00 14.08	A
	ATOM	2101	CA	THR	300	32.227	-5.125	86.808	1.00 13.98	A
	MOTA	2102	CB	THR	300	31.470	-4.813	85.506	1.00 13.76	A

	ATTOM	2103	001	THE	300	20 062	-4.803	95 770	1.00 14.55	A
	MOTA			THR		30.062		85.770		
	MOTA	2104		THR		31.783	-5.848	84.436	1.00 10.43	A
	MOTA	2105	С	THR		33.699	-5.394	86.472	1.00 16.17	A
_	MOTA	2106	0	THR	300	34.151	-6.536	86.533	1.00 16.23	A
5	ATOM	2107	N	ALA	301	34.442	-4.345	86.120	1.00 15.12	A
	MOTA	2108	CA	ALA	301	35.850	-4.502	85.791	1.00 14.70	A
	ATOM	2109	CB	ALA	301	36.449	-3.157	85.362	1.00 13.94	A
	ATOM	2110	c	ALA	301	36.622	-5.068	86.985	1.00 14.94	A
10	MOTA	2111	0	ALA	301	37.512	-5.893	86.819	1.00 15.20	A
10	MOTA	2112	N	LEU	302	36.282	-4.620	88.188	1.00 16.14	A
	MOTA	2113	CA	LEU	302	36.951	-5.101	89.392	1.00 19.53	A
	ATOM	2114	CB	LEU	302	36.585	-4.222	90.594	1.00 19.74	A
	ATOM	2115	CG	LEU	302	37.221	-2.830	90.688	1.00 17.91	A
	ATOM	2116		LEU	302	36.558	-2.045	91.802	1.00 17.40	A
15	ATOM	2117		LEU	302	38.717	-2.963	90.948	1.00 15.50	A
10		2118		LEU	302	36.643	-6.564	89.717	1.00 21.83	A
	MOTA		C							
	MOTA	2119	0	LEU	302	37.533	-7.302	90.127	1.00 23.13	A
	MOTA	2120	N	VAL	303	35.398	-6.993	89.535	1.00 24.49	A
20	MOTA	2121	CA	VAL	303	35.059	-8.379	89.838	1.00 27.38	A
20	ATOM	2122	CB	VAL	303	33.547	-8.571	90.069	1.00 26.90	A
	ATOM	2123	CG1	VAL	303	33.052	-7.570	91.101	1.00 26.40	A
	MOTA	2124		VAL	303	32.796	-8.428	88.770	1.00 29.98	A
	ATOM	2125	C	VAL	303	35.512	-9.341	88.744	1.00 30.52	A
	MOTA	2126	ŏ	VAL	303		-10.477	89.035	1.00 31.69	A
25										
23	MOTA	2127	N	GLU	304	35.491	-8.897	87.490	1.00 32.89	A
	MOTA	2128	CA	GLU	304	35.921	-9.750	86.389	1.00 35.74	A
	MOTA	2129	CB	GLU	304	35.203	-9.374	85.094	1.00 37.37	A
	MOTA	2130	CG	GLU	304	33.689	-9.307	85.221	1.00 39.61	A
	MOTA	2131	CD	GLU	304	32.999	-9.146	83.876	1.00 42.09	Α
30	ATOM	2132	OE1	GLU	304	33.515	-8.380	83.028	1.00 42.71	A
	ATOM	2133		GLU	304	31.939	-9.775	83.671	1.00 41.78	A
	ATOM	2134	C	GLU	304	37.426	-9.604	86.206	1.00 37.86	A
	ATOM	2135	0	GLU	304		-10.078	85.227	1.00 37.10	A
25	MOTA	2136	N	ARG	305	38.054	-8.937	87.169	1.00 40.46	A
35	MOTA	2137	CA	ARG	305	39.496	-8.716	87.177	1.00 42.89	A
	MOTA	2138	CB	ARG	305	40.215 -	-10.025	87.534	1.00 45.84	A
	MOTA	2139	CG	ARG	305	40.201 -	-10.328	89.040	1.00 50.55	A
	MOTA	2140	CD	ARG	305	40.942	-9.222	89.795	1.00 55.95	А
	MOTA	2141	NE	ARG	305	40.641	-9.139	91.227	1.00 60.56	A
40	ATOM	2142	CZ	ARG	305	41.079	-9.988	92.154	1.00 62.46	A
70										
	MOTA	2143		ARG	305		-11.016	91.816	1.00 63.45	A
	MOTA	2144		ARG	305	40.765	-9.793	93.431	1.00 62.35	A
	MOTA	2145	С	ARG	305	40.094	-8.101	85.913	1.00 43.03	A
4	MOTA	2146	0	ARG	305	41.257	-8.337	85.585	1.00 42.44	A
45	ATOM	2147	N	THR	306	39.292	-7.300	85.218	1.00 43.37	Α
	ATOM	2148	CA	THR	306	39.728	-6.607	84.009	1.00 43.89	A
	ATOM	2149	CB	THR	306	38.553	-5.823	83.373	1.00 44.73	Α
	MOTA	2150		THR	306	37.525	-6.738	82.967	1.00 46.53	A
	MOTA	2151		THR	306	39.021	-5.031	82.173	1.00 44.99	A
50				THR	306		-5.616	84.428	1.00 43.35	
50	MOTA	2152	C			40.816				A
	MOTA	2153	0	THR	306	40.648	-4.883	85.405	1.00 44.14	A
	ATOM	2154	N	PRO	307	41.944	-5.572	83.696	1.00 42.66	A
	ATOM	2155	CD	PRO	307	42.230	-6.282	82.436	1.00 43.08	A
	MOTA	2156	CA	PRO	307	43.039	-4.651	84.035	1.00 41.12	A
55	MOTA	2157	CB	PRO	307	44.109	-4.993	83.001	1.00 41.90	A
	MOTA	2158	CG	PRO	307	43.302	-5.410	81.811	1.00 42.89	A
	MOTA	2159	С	PRO	307	42.661	-3.165	84.023	1.00 39.78	A
	MOTA	2160	ō	PRO	307	43.151	-2.384	84.847	1.00 38.90	A
								83.099	1.00 36.76	
60	MOTA	2161	N	HIS	308	41.789	-2.773			A
UU	MOTA	2162	CA	HIS	308	41.373	-1.381	83.018	1.00 34.24	A
	ATOM	2163	CB	HIS	308	41.248	-0.946	81.558	1.00 35.68	A
	MOTA	2164	CG	HIS	308	40.936	0.507	81.395	1.00 38.11	A
	ATOM	2165	CD2	HIS	308	39.847	1.134	80.888	1.00 39.53	A
_	ATOM	2166	ND1		308	41.794	1.503	81.809	1.00 38.73	A
65	ATOM	2167	CE1		308	41.249	2.682	81.565	1.00 39.88	A
50	MOTA	2168	NE2		308	40.067	2.486	81.006	1.00 40.19	Ä
	ATOM	2169	C	HIS	308	40.052	-1.120	83.737	1.00 31.65	Α
	MOTA	2170	0	HIS	308	39.009	-1.661	83.362	1.00 32.49	Α
70	MOTA	2171	N	VAL	309	40.117	-0.282	84.769	1.00 26.89	A
70	MOTA	2172	CA	VAL	309	38.959	0.101	85.580	1.00 22.85	Α
	MOTA	2173	CB	VAL	309	39.298	-0.013	87.083	1.00 22.36	Α
	MOTA	2174	CG1		309	38.091	0.351	87.922	1.00 22.91	A
	MOTA	2175	CG2		309	39.765	-1.427	87.403	1.00 22.12	A
	017									••

	ATOM	2176	С	VAL	309	38.629	1.558	85.231	1.00 20.44	A
	ATOM	2177	0	VAL	309	39.450	2.446	85.433	1.00 19.97	A
						37.421	1.822	84.704	1.00 17.91	A
	ATOM	2178	N	PRO	310					
_	MOTA	2179	CD	PRO	310	36.413	0.834	84.277	1.00 14.72	A _.
5	ATOM	2180	CA	PRO	310	37.019	3.186	84.322	1.00 17.34	A
	MOTA	2181	CB	PRO	310	35.839	2.937	83.386	1.00 15.77	A
	ATOM	2182	CG	PRO	310	35.214	1.699	83.978	1.00 15.26	A
	MOTA	2183	С	PRO	310	36.689	4.227	85.404	1.00 16.65	, A
	ATOM	2184	0	PRO	310	35.673	4.908	85.317	1.00 15.99	A
10	MOTA	2185	N	TYR	311	37.557	4.368	86.402	1.00 18.31	A
	ATOM	2186	CA	TYR	311	37.346	5.335	87.485	1.00 18.33	λ
	MOTA	2187	CB	TYR	311	38.549	5.374	88.430	1.00 18.13	A
	MOTA	2188	CG	TYR	311	38.826	4.115	89.209	1.00 20.50	A
	MOTA	2189	CD1	TYR	311	37.943	3.660	90.194	1.00 19.61	A
15	ATOM	2190		TYR	311	38.242	2.538	90.957	1.00 19.17	A
13				TYR					1.00 19.30	
	MOTA	2191			311	40.008	3.407	89.005		A
	MOTA	2192	CE2	TYR	311	40.314	2.290	89.759	1.00 18.88	A
	MOTA	2193	CZ	TYR	311	39.432	1.860	90.732	1.00 20.10	A
	ATOM	2194	OH	TYR	311	39.754	0.749	91.480	1.00 23.13	A
20										
20	MOTA	2195	C	TYR	311	37.150	6.753	86.969	1.00 19.65	A
	MOTA	2196	0	TYR	311	36.288	7.485	87.449	1.00 20.71	A
	MOTA	2197	N	ARG	312	37.967	7.140	85.995	1.00 19.46	A
	ATOM	2198	CA	ARG	312	37.919	8.484	85.447	1.00 19.67	A
							8.775			
25	MOTA	2199	CB	ARG	312	39.223		84.699	1.00 24.48	A
25	MOTA	2200	CG	ARG	312	40.470	8.521	85.534	1.00 31.49	A
	MOTA	2201	CD	ARG	312	41.737	8.793	84.742	1.00 38.21	A
	ATOM	2202	NE	ARG	312	41.948	10.223	84.543	1.00 41.59	A
							11.040		1.00 43.45	
	ATOM	2203	CZ	ARG	312	42.419		85.479		A
~~	MOTA	2204	NH1	ARG	312	42.733	10.564	86.678	1.00 43.96	A
30	MOTA	2205	NH2	ARG	312	42.570	12.332	85.217	1.00 44.26	A
	ATOM	2206	С	ARG	312	36.736	8.826	84.547	1.00 17.18	A
							9.976	84.121	1.00 17.17	
	MOTA	2207	0	ARG	312	36.610		-		A
	MOTA	2208	N	GLU	313	35.856	7.869	84.262	1.00 14.11	A
	MOTA	2209	CA	GLU	313	34.729	8.178	83.378	1.00 11.27	A
35	ATOM	2210	СВ	GLU	313	34.258	6.911	82.646	1.00 10.67	A
55						35.399	6.213	81.891	1.00 15.89	A
	MOTA	2211	CG	GLU	313					
	MOTA	2212	CD	GLU	313	34.946	5.089	80.956	1.00 19.42	A
	MOTA	2213	OE1	GLU	313	35.821	4.301	80.519	1.00 20.64	A
	MOTA	2214	OE2	GLU	313	33.739	4.992	80.641	1.00 19.87	A
40	MOTA	2215	C	GLU	313	33.554	8.893	84.048	1.00 9.14	A
70										
	MOTA	2216	0	GLU	313	32.550	9.155	83.410	1.00 8.08	A
	MOTA	2217	N	SER	314	33.692	9.226	85.327	1.00 9.25	A
	ATOM	2218	CA	SER	314	32.647	9.951	86.051	1.00 11.62	A
	ATOM	2219	СВ	SER	314	31.508	9.011	86.467	1.00 14.09	A
45										
43	MOTA	2220	OG	SER	314	31.812	8.354	87.688	1.00 14.04	A
	MOTA	2221	С	SER	314	33.233	10.604	87.298	1.00 11.57	A
	ATOM	2222	0	SER	314	34.283	10.186	87.791	1.00 12.89	A
	MOTA	2223	N	LYS	315	32.541	11.615	87.812	1.00 12.14	A
•		2224	CA	LYS	315	32.981	12.340	89.002	1.00 14.40	A
50	MOTA									
50	MOTA	·2225	CB	LYS	315	32.082	13.556	89.246	1.00 17.33	A
	ATOM	2226	ÇG	LYS	315	32.015	14.559	88.105	1.00 19.52	A
	ATOM	2227	CD	LYS	315	33.175	15.536	88.143	1.00 22.04	A
	MOTA	2228	CE	LYS	315	33.021	16.584	87.054	1.00 22.29	A
					315	32.991	15.922	85.724	1.00 25.05	A
55	MOTA	2229	NZ	LYS	1 . 1					_
55	MOTA	2230	С	LYS	315	32.952	11.461	90.253	1.00 14.36	A
	ATOM	2231	0	LYS	315	33.899	11.459	91.042	1.00 15.78	Α
	ATOM	2232	N	LEU	316	31.859	10.723	90.430	1.00 12.10	A
	ATOM	2233	CA	LEU	316	31.693	9.864	91.591	1.00 12.11	A
~	MOTA	2234	СВ	LEU	316	30.346	9.132	91.521	1.00 11.47	A
60	ATOM	2235	CG	LEU	316	30.052	8.165	92.673	1.00 11.12	A
	ATOM	2236	CD1	LEU	316	29.755	8.941	93.947	1.00 10.52	A
	ATOM	2237	CD2		316	28.867	7.294	92.313	1.00 9.92	A
	MOTA	2238	C	LEU	316	32.816	8.846	91.790	1.00 12.47	A
	ATOM	2239	0	LEU	316	33.346	8.720	92.892	1.00 13.63	A
65	ATOM	2240	N	THR	317	33.192	8.124	90.738	1.00 13.16	A
	ATOM	2241	CA	THR	317	34.245	7.118	90.875	1.00 12.10	A
								89.783		
	MOTA	2242	СВ	THR	317	34.132	6.031			A
	MOTA	2243	0G1		317	34.077	6.642	88.496	1.00 9.89	A
	MOTA	2244	CG2	THR	317	32.870	5.200	89.994	1.00 10.70	A
70	MOTA	2245	C	THR	317	35.674	7.681	90.923	1.00 12.84	A
. •		2246	ō	THR	317	36.611	6.965	91.270	1.00 13.25	
	MOTA									A
	MOTA	2247	N	ARG	318	35.852	8.951	90.575	1.00 13.06	A
	MOTA	2248	CA	ARG	318	37.180	9.544	90.682	1.00 14.05	A

	N TOOM	2249	СВ	ARG	318	37.326	10.780	89.796	1.00 15.43	Α
	MOTA									
	MOTA	2250	CG	ARG	318	37.417	10.473		1.00 20.15	A
	MOTA	2251	CD	ARG	318	37.526	11.755	87.527	1.00 22.93	A
	MOTA	2252	NE	ARG	318	38.747	12.468	87.865	1.00 27.97	A
5	ATOM	2253	CZ	ARG	318	39.015	13.710		1.00 32.10	A
•	ATOM	2254		ARG	318	38.138	14.383		1.00 32.47	A
	MOTA	2255		ARG	318	40.162	14.276		1.00 33.23	A
	MOTA	2256	С	ARG	318	37.281	9.948	92.138	1.00 13.35	A
	MOTA	2257	0	ARG	318	38.276	9.679	92.801	1.00 15.31	A
10	MOTA	2258	N	ILE	319	36.222	10.575		1.00 12.79	A
10			CA	ILE	319	36.175	11.012		1.00 11.02	A
	MOTA	2259								
	MOTA	2260	СВ	ILE	319	34.837	11.727		1.00 9.24	A
	MOTA	2261	CG2	ILE	319	34.660	11.958	95.819	1.00 4.84	A
	MOTA	2262	CG1	ILE	319	34.786	13.047	93.561	1.00 9.26	A
15	MOTA	2263		ILE	319	33.431	13.786	93.692	1.00 9.14	A
	ATOM	2264	C	ILE	319	36.344	9.833		1.00 12.21	A
						37.127				
	MOTA	2265	0	ILE	319		9.913		1.00 12.33	A
	MOTA	2266	N	LEU	320	35.627	8.739	94.752	1.00 10.74	A
	ATOM	2267	CA	LEU	320	35.674	7.577	95.638	1.00 11.28	A
20	MOTA	2268	CB	LEU	320	34.240	7.142	95.965	1.00 8.50	A
	ATOM	2269	CG	LEU	320	33.364	8.196		1.00 11.65	A
								96.550	1.00 12.32	A
	MOTA	2270		LEU	320	31.909	7.774			
	MOTA	2271	CDZ	LEU	320	33.794	8.390		1.00 7.79	A
~ ~	MOTA	2272	С	LEU	320	36.466	6.359	95.146	1.00 12.31	A
25	ATOM	2273	0	LEU	320	36.276	5.254	95.658	1.00 10.52	A
	MOTA	2274	N	GLN	321	37.356	6.541	94.177	1.00 13.27	A
				GLN	321	38.110	5.401	93.668	1.00 16.08	A
	MOTA	2275	CA							
	MOTA	2276	CB	GLN	321	39.087	5.844	92.569	1.00 19.75	A
	MOTA	227 7	CG	GLN	321	40.196	6.756	93.006	1.00 21.68	A
30	MOTA	2278	CD	GLN	321	41.079	7.139	91.840	1.00 25.85	A
	ATOM	2279	OE1	GLN	321	41.622	6.266	91.152	1.00 22.98	A
	ATOM	2280	NE2		321	41.228	8.450	91.602	1.00 26.88	A
	ATOM	2281	С	GLN	321	38.842	4.548	94.723	1.00 14.28	A
0.5	MOTA	2282	0	GLN	321	38.972	3.335	94.543	1.00 12.19	A
35	ATOM	2283	N	ASP	322	39.305	5.151	95.817	1.00 12.59	A
	MOTA	2284	CA	ASP	322	39.978	4.351	96.835	1.00 14.78	A
	MOTA	2285	СВ	ASP	322	40.769	5.230	97.811	1.00 17.14	A
	MOTA	2286	CG	ASP	322	41.787	4.426	98.620	1.00 18.36	A
40	MOTA	2287		ASP	322	42.588	3.692	98.003	1.00 19.34	A
40	ATOM	2288	OD2	ASP	322	41.791	4.521	99.865	1.00 19.68	A
	ATOM	2289	С	ASP	322	38.988	3.473	97.609	1.00 15.66	A
	ATOM	2290	0	ASP	322	39.384	2.598	98.384	1.00 17.16	A
	ATOM	2291	N	SER	323	37.697	3.696	97.386	1.00 16.21	A
15	MOTA	2292	CA	SER	323	36.657	2.915	98.047	1.00 16.47	A
45	MOTA	2293	CB	SER	323	35.436	3.795	98.343	1.00 13.71	A
	MOTA	2294	OG	SER	323	35.749	4.804	99.284	1.00 11.67	A
	MOTA	2295	С	SER	323	36.247	1.735	97.166	1.00 18.02	A
	ATOM	2296	0	SER	323	35.459	0.876	97.574	1.00 18.75	Α
	ATOM	2297	N	LEU	324	36.795	1.696	95.956	1.00 18.69	A
50										
30	MOTA	2298	CA	LEU	324	36.495	0.635	95.009	1.00 19.76	A
	MOTA	2299	CB	LEU	324	35.782	1.225	93.789	1.00 19.37	A
	MOTA	2300	CG	LEU	324	34.461	1.920	94.127	1.00 19.69	A
	MOTA	2301	CD1	LEU	324	34.028	2.781	92.973	1.00 22.50	A
	MOTA	2302		LEU	324	33.394	0.887	94.449	1.00 20.33	A
55			_							_
55	ATOM	2303	C	LEU	324	37.789	-0.045	94.591	1.00 21.46	A
	MOTA	2304	0	LEU	324	38.427	0.353	93.618	1.00 23.00	A
	MOTA	2305	N	GLY	325	38.174	-1.074	95.341	1.00 22.77	.A
	MOTA	2306	CA	GLY	325	39.398	-1.794	95.047	1.00 21.76	A
	ATOM	2307	С	GLY	325	40.620	-1.028	95.516	1.00 24.37	A
60	ATOM	2308	ŏ	GLY	325	41.718	-1.239	95.005	1.00 24.93	A
VV										
	ATOM	2309	N	GLY	326	40.428	-0.132	96.484	1.00 24.40	A
	MOTA	2310	CA	GLY	326	41.526	0.663	97.002	1.00 24.15	A
	MOTA	2311	С	GLY	326	41.897	0.284	98.424	1.00 26.42	A
_	MOTA	2312	0	GLY	326	41.656	-0.840	98.856	1.00 25.60	A
65	ATOM	2313	N	ARG	327	42.470	1.220	99.168	1.00 25.86	A
JJ										
	MOTA	2314	CA	ARG	327	42.875		100.528	1.00 28.96	A
	MOTA	2315	CB	ARG	327	44.219		100.834	1.00 32.07	A
	ATOM	2316	CG	ARG	327	45.329	1.220	99.853	1.00 37.14	A
	MOTA	2317	CD	ARG	327	46.714	1.483	100.432	1.00 42.74	A
70	ATOM	2318	NE	ARG	327	47.800	1.031	99.556	1.00 47.24	A
. •			CZ	ARG	327	48.286	1.730	98.530	1.00 49.78	
	ATOM	2319								A
	MOTA	2320	NH1		327	47.787	2.926	98.237	1.00 50.77	A
	ATOM	2321	NH2	ARG	327	49.286	1.245	97.805	1.00 49.64	A

							•		
	ATOM	2322	С	ARG	327	41.831	1.320 101.569	1.00 28.96	A
	-					42.157	1.543 102.731	1.00 28.88	A
	MOTA	2323	0	ARG	327				
	ATOM	2324	N	THR	328	40.573	1.401 101.151	1.00 27.38	A
_	MOTA	2325	CA	THR	328	39.499	1.775 102.064	1.00 23.77	A
5	MOTA	2326	CB	THR	328	38.678	2.944 101.488	1.00 24.66	A
	ATOM	2327	OG1	THR	328	39.529	4.088 101.344	1.00 25.37	A
	ATOM	2328		THR	328	37.510	3.292 102.409	1.00 23.54	A
	MOTA	2329	С	THR	328	38.556	0.611 102.353	1.00 20.49	, A
10	MOTA	2330	0	THR	328	38.287	-0.213 101.480	1.00 19.13	A
10	MOTA	2331	N	ARG	329	38.072	0.532 103.588	1.00 17.06	A
	ATOM	2332	CA	ARG	329	37.139	-0.522 103.954	1.00 15.33	A
				ARG	329	37.126	-0.768 105.465	1.00 14.79	A
	MOTA	2333	CB						
	ATOM	2334	CG	ARG	329	36.035	-1.748 105.878	1.00 15.14	A
	MOTA	2335	CD	ARG	329	35.989	-2.023 107.370	1.00 17.09	A
15	ATOM	2336	NE	ARG	329	34.897	-2.947 107.655	1.00 21.72	A
	ATOM	2337	CZ	ARG	329	34.688	-3.553 108.819	1.00 22.49	A
							-3.343 109.841	1.00 20.08	
	ATOM	2338		ARG	329	35.504			A
	MOTA	2339	NH2	ARG	329	33.646	-4.366 108.958	1.00 22.92	A
	ATOM	2340	С	ARG	329	35.783	-0.001 103.539	1.00 14.65	A
20	ATOM	2341	0	ARG	329	35.352	1.046 104.030	1.00 15.12	A
	ATOM	2342	N	THR	330	35.107	-0.704 102.640	1.00 12.06	A
								1.00 14.04	
	MOTA	2343	CA	THR	330	33.809	-0.226 102.224		A
	MOTA	2344	CB	THR	330	33.837	0.332 100.782	1.00 15.17	A
	MOTA	2345	OG1	THR	330	33.694	-0.735 99.847	1.00 18.22	A
25	MOTA	2346	CG2	THR	330	35.147	1.052 100.513	1.00 14.36	A
	MOTA	2347	C	THR	330	32.707	-1.265 102.323	1.00 13.65	A
							-2.459 102.140	1.00 13.67	
	MOTA	2348	0	THR	330	32.936			A
	MOTA	2349	N	SER	331	31.509	-0.786 102.637	1.00 12.70	A
	ATOM	2350	CA	SER	331	30.340	-1.627 102.740	1.00 10.49	A
30	MOTA	2351	CB	SER	331	29.830	-1.648 104.177	1.00 12.02	A
	MOTA	2352	OG	SER	331	30.860	-2.026 105.072	1.00 18.36	A
	MOTA	2353	C	SER	331	29.259	-1.044 101.830	1.00 10.83	A
	MOTA	2354	0	SER	331	29.235	0.160 101.555	1.00 8.62	A
	MOTA	2355	N	ILE	332	28.376	-1.906 101.349	1.00 9.52	A
35	ATOM	2356	CA	ILE	332	27.288	-1.457 100.511	1.00 9.50	A
	MOTA	2357	СВ	ILE	332	27.374	-2.038 99.089	1.00 10.70	A
	MOTA	2358	CG2		332	26.143	-1.622 98.287	1.00 8.05	A
	MOTA	2359	CG1	ILE	332	28.650	-1.560 98.394	1.00 9.17	A
	MOTA	2360	CD1	ILE	332	28.773	-2.094 96.975	1.00 5.23	A
40	MOTA	2361	С	ILE	332	25.993	-1.939 101.138	1.00 9.51	A
	ATOM	2362	ŏ	ILE	332	25.843	-3.127 101.413	1.00 9.19	A
	MOTA	2363	N	ILE	333	25.074	-1.015 101.391	1.00 9.81	A
	MOTA	2364	CA	ILE	333	23.773	-1.376 101.942	1.00 8.92	A
	ATOM	2365	CB	ILE	333	23.335	-0.444 103.103	1.00 8.82	A
45	MOTA	2366	CG2	ILE	333	21.967	-0.863 103.614	1.00 7.93	A
	MOTA	2367	CG1	ILE	333	24.316	-0.548 104.272	1.00 6.76	A
	ATOM	2368	CD1	ILE	333	24.028	0.448 105.387	1.00 2.97	A
	MOTA	2369	С	ILE	333	22.777	-1.240 100.797	1.00 9.34	A
~~	MOTA	2370	0	ILE	333	22.483	-0.132 100.347	1.00 6.58	A
50	ATOM	2371	N	ALA	334	22.294	-2.376 100.303	1.00 9.13	A
	MOTA	2372	CA	ALA	334	21.325	-2.370 99.215	1.00 8.43	Α
	ATOM	2373	CB	ALA	334	21.543	-3.582 98.318	1.00 6.36	A
		2374				19.903	-2.381 99.807		
	MOTA		С	ALA	334				A
E E	MOTA	2375	0	ALA	334	19.555	-3.232 100.634	1.00 6.98	A
55	MOTA	2376	N	THR	335	19.089	-1.419 99.398	1.00 8.61	A
	MOTA	2377	CA	THR	335	17.727	-1.334 99.899	1.00 8.77	A
	MOTA	2378	СВ	THR	335	17.375	0.092 100.290	1.00 7.57	A
		2379		THR	335	17.538	0.949 99.157	1.00 8.21	A
	MOTA								
CO	MOTA	2380	CG2	THR	335	18.276	0.552 101.398	1.00 7.82	A
60	ATOM	2381	С	THR	335	16.729	-1.820 98.863	1.00 8.70	A
	MOTA	2382	0	THR	335	16.855	-1.530 97.671	1.00 8.21	A
	ATOM	2383	N	ILE	336	15.735	-2.560 99.338	1.00 8.74	A
	MOTA	2384	CA	ILE	336	14.717	-3.124 98.469	1.00 10.87	A
4	MOTA	2385	СВ	ILE	336	14.998	-4.613 98.216	1.00 10.46	Α
65	MOTA	2386	CG2	ILE	336	16.353	-4.769 97.532	1.00 8.62	A
	MOTA	2387	CG1	ILE	336	14.943	-5.379 99.543	1.00 10.60	A
	ATOM	2388	CD1		336	14.993	-6.921 99.386	1.00 10.91	A
	MOTA	2389			336	13.291	-2.995 99.004	1.00 12.03	
			C	ILE					A
70	MOTA	2390	0	ILE	336	13.069	-2.844 100.204	1.00 12.49	A
70	MOTA	2391	N	SER	337	12.331	-3.056 98.089	1.00 13.93	A
	ATOM	2392	CA	SER	337	10.918	-2.969 98.426	1.00 13.83	A
	ATOM	2393	CB	SER	337	10.180	-2.154 97.359	1.00 14.05	A
	ATOM	2394	OG	SER	337	8.790	-2.436 97.350	1.00 13.32	A
	111 011	~ > > =			55.	5.750		1.00 13.32	^

	MOTA	2395	С	SER	337	10.371	-4.386	98.464	1.00 14.60	A
	MOTA	2396	0	SER	337	10.829	-5.250	97.717	1.00 14.95	A
	ATOM	2397	N	PRO	338	9.398	-4.652	99.350	1.00 15.93	A
	ATOM	2398	CD	PRO	338	8.967		100.483	1.00 16.39	A
_										
5	ATOM	2399	CA	PRO	338	8.809	-5.990	99.451	1.00 15.42	A
	ATOM	2400	CB	PRO	338	8.461	-6.088	100.921	1.00 15.52	A
	MOTA	2401	CG	PRO	338	7.930	-4.705	101.176	1.00 17.59	A
	MOTA	2402	C	PRO	338	7.564	-6.138	98.576	1.00 15.52	A
				PRO				98.571	1.00 17.10	
10	MOTA	2403	0		338	6.929	-7.185			A
10	MOTA	2404	N	ALA	339	7.212	-5.091	97.841	1.00 15.73	A
	MOTA	2405	CA	ALA	339	6.023	-5.122	96.989	1.00 17.08	A
	MOTA	2406	СB	ALA	339	5.494	-3.699	96.765	1.00 13.90	A
	MOTA	2407	С	ALA	339	6.255	-5.793	95.647	1.00 17.79	A
								95.010		
15	MOTA	2408	0	ALA	339	7.290	-5.586		1.00 18.27	A
15	MOTA	2409	N	SER	340	5.270	-6.575	95.210	1.00 19.26	A
	MOTA	2410	CA	SER	340	5.339	-7.280	93.933	1.00 20.19	A
	MOTA	2411	СВ	SER	340	4.088	-8.151	93.741	1.00 21.56	A
	MOTA	2412	OG	SER	340	2.909	-7.370	93.812	1.00 24.50	A
	ATOM	2413	C	SER	340	5.495	-6.340	92.736	1.00 18.83	A
20										
20	MOTA	2414	0	SER	340	5.977	-6.755	91.687	1.00 17.98	A
	MOTA	2415	N	LEU	341	5.083	-5.084	92.883	1.00 19.49	A
									1.00 21.42	
	MOTA	2416	CA	LEU	341	5.212	-4.114	91.793		A
	MOTA	2417	CB	LEU	341	4.539	-2.787	92.159	1.00 24.24	A
	MOTA	2418	CG	LEU	341	3.056	-2.763	92.528	1.00 30.57	A
25										
23	MOTA	2419		LEU	341	2.838	-3.310	93.952	1.00 30.86	A
	ATOM	2420	CD2	LEU	341	2.563	-1.325	92.435	1.00 32.23	A
	ATOM	2421		LEU	341	6.678	-3.821	91.452	1.00 20.58	
			С							A
	ATOM	2422	0	LEU	341	7.017	-3.528	90.308	1.00 20.62	A
	MOTA	2423	N	ASN	342	7.544	-3.905	92.455	1.00 19.46	A
30										
50	MOTA	2424	CA	ASN	342	8.958	-3.620	92.267	1.00 18.47	A
	ATOM	2425	CB	ASN	342	9.471	-2.863	93.485	1.00 17.34	A
	MOTA	2426	CG	ASN	342	8.662	-1.618	93.763	1.00 16.86	Α
	MOTA	2427	OD1	ASN	342	8.564	-0.730	92.916	1.00 18.67	A
	MOTA	2428	ND2	ASN	342	8.070	-1.546	94.944	1.00 15.28	A
35	ATOM	2429	С	ASN	342	9.795	-4.871	92.041	1.00 18.85	A
	MOTA	2430	0	ASN	342	10.988	-4.893	92.351	1.00 17.91	A
	MOTA	2431	N	LEU	343	9.170	-5.908	91.493	1.00 17.20	A
	ATOM	2432	CA	LEU	343	9.863	-7.163	91.252	1.00 17.19	A
40	MOTA	2433	CB	LEU	343	8.917	-8.179	90.596	1.00 13.78	A
40	MOTA	2434	CG	LEU	343	9.593	-9.472	90.107	1.00 14.61	A
	MOTA	2435	נתי	LEU	343	10.343	-10.143	91.269	1.00 10.55	A
	ATOM	2436		LEU	343		-10.415	89.499	1.00 13.10	A
	ATOM	2437	С	LEU	343	11.115	-7.020	90.399	1.00 17.48	A
	ATOM	2438	0	LEU	343	12.211	-7.377	90.829	1.00 17.34	A
45										
43	MOTA	2439	N	GLU	344	10.946	-6.514	89.184	1.00 19.72	A
	ATOM	2440	CA	GLU	344	12.063	-6.358	88.263	1.00 20.96	A
	MOTA	2441	CB	GLU	344	11.598	-5.684	86.969	1.00 24.20	A
	MOTA	2442	CG	GLU	344	12.675	-5.635	85.887	1.00 32.62	A
	ATOM	2443	CĐ	GLU	344	12.213	-4.959	84.599	1.00 38.13	A
50	ATOM	2444		GLU	344	12.908	~5.115	83.566	1.00 40.01	A
50										
	MOTA	2445	OE2	GLU	344	11.165	-4.270	84.617	1.00 41.47	A
	MOTA	2446	С	GLU	344	13.208	-5.561	88.883	1.00 20.19	A
	MOTA	2447	0	GLU	344	14.371	-5.957	88.791	1.00 20.32	A
	ATOM	2448	N	GLU	345	12.883	-4.441	89.518	1.00 17.74	A
55	ATOM	2449	CA	GLU	345	13.909	-3.615	90.130	1.00 18.84	A
	ATOM	2450	CB	GLU	345	13.335	-2.240	90.496	1.00 21.25	A
	MOTA	2451	CG	GLU	345	13.076	-1.356	89.281	1.00 24.52	A
	MOTA	2452	CD	GLU	345	14.348	-1.036	88.492	1.00 27.03	A
<i>-</i> -	MOTA	2453		GLU	345	14.232	-0.592	87.325	1.00 29.83	A
60	MOTA	2454	OE2	GLŲ	345	15.462	-1.216	89.036	1.00 27.61	A
		2455	č		345		-4.270	91.346	1.00 16.79	
	MOTA			GLU		14.555				A
	MOTA	2456	0	GLU	345	15.762	-4.143	91.554	1.00 17.33	A
	MOTA	2457	N	THR	346	13.760	-4.978	92.140	1.00 14.42	A
<i>C</i>	MOTA	2458	CA	THR	346	14.286	-5.649	93.316	1.00 14.40	A
65	MOTA	2459	CB	THR	346	13.160	-6.304	94.138	1.00 15.55	A
-	MOTA	2460		THR	346	12.399	-5.285	94.801	1.00 13.04	A
	MOTA	2461	CG2	THR	346	13.735	-7.255	95.171	1.00 15.14	A
	ATOM	2462	С	THR	346	15.302	-6.705	92.896	1.00 14.50	A
	ATOM	2463	ō	THR	346	16.294	-6.922	93.590	1.00 13.63	A
70										
70	MOTA	2464	N	LEU	347	15.061	-7.362	91.763	1.00 14.51	A
	ATOM	2465	CA	LEU	347	16.005	-8.357	91.269	1.00 15.49	A
	ATOM	2466	СВ	LEU	347	15.369	-9.222	90.167	1.00 15.24	A
	MOTA	2467	CG	LEU	347	14.220	-10.158	90.571	1.00 15.51	A

	ATOM	2468	CD1	LEU	347	13 712	-10.902	89.351	1.00 11.90	A
	ATOM	2469		LEU	347		-11.142	91.627	1.00 13.17	
										A
	MOTA	2470	c	LEU	347	17.267	-7.666	90.734	1.00 16.52	A
~	ATOM	2471	0	LEU	347	18.376	-8.175	90.908	1.00 18.79	A
5	MOTA	2472	N	SER	348	17.111	-6.513	90.088	1.00 15.74	A
	ATOM	2473	CA	SER	348	18.274	-5.795	89.567	1.00 16.97	A
	MOTA	2474	CB	SER	348	17.857	-4.502	88.872	1.00 17.03	A
	ATOM	2475	OG	SER	348	17.008	-4.785	87.780	1.00 23.78	A
10	MOTA	2476	C	SER	348	19.199	-5.438	90.712	1.00 16.29	A
10	MOTA	2477	0	SER	348	20.415	-5.668	90.655	1.00 17.03	A
	ATOM	2478	N	THR	349	18.603	-4.864	91.751	1.00 13.43	A
	MOTA	2479	CA	THR	349	19.341	-4.452	92.925	1.00 12.53	A
	ATOM	2480	CB	THR	349	18.400	-3.808	93.953	1.00 11.53	A
	ATOM	2481	OG1		349	17.883	-2.583	93.416	1.00 12.14	A
15	ATOM	2482	CG2		349	19.143	-3.512	95.243	1.00 8.21	
13										A
	ATOM	2483	C	THR	349	20.074	-5.624	93.563	1.00 12.73	A
	MOTA	2484	0	THR	349	21.292	-5.590	93.732	1.00 10.74	A
	MOTA	2485	N	LEU	350	19.325	-6.660	93.916	1.00 14.33	A
	ATOM	2486	CA	LEU	350	19.923	-7.830	94.532	1.00 16.65	A
20	MOTA	2487	CB	LEU	350	18.855	-8.892	94.803	1.00 14.51	A
	ATOM	2488	CG	LEU	350	17.916	-8.537	95.960	1.00 13.75	A
	ATOM	2489	CD1		350	16.780	-9.516	96.035	1.00 10.80	A
	MOTA	2490	CD2		350	18.703	-8.526	97.258	1.00 15.25	A
25	ATOM	2491	С	LEU	350	21.033	-8.400	93.660	1.00 17.62	A
25	ATOM	2492	0	LEU	350	22.116	-8.695	94.148	1.00 19.69	A
	MOTA	2493	N	GLU	351	20.774	-8.540	92.368	1.00 18.77	A
	ATOM	2494	CA	GLU	351	21.783	-9.078	91.466	1.00 20.26	A
	MOTA	2495	CB	GLU	351	21.203	-9.215	90.061	1.00 23.16	A
	ATOM	2496	CG	GLU	351		-10.194	89.186	1.00 31.07	A
30										
50	MOTA	2497	CD	GLU	351		-11.652	89.508	1.00 35.15	A
	MOTA	2498	OE1		351		-12.531	89.070	1.00 37.94	A
	MOTA	2499	OE2	GLU	351	20.621	-11.921	90.180	1.00 35.11	A
	MOTA	2500	С	GLU	351	23.030	-8.181	91.440	1.00 18.73	A
	ATOM	2501	0	GLU	351	24.163	-8.662	91.407	1.00 18.86	A
35	MOTA	2502		TYR	352	22.810	-6.873	91.463	1.00 18.82	A
	ATOM	2503		TYR	352	23.893	-5.898	91.443	1.00 16.90	
										A
	MOTA	2504		TYR	352	23.304	-4.500	91.261	1.00 17.28	A
	ATOM	2505		TYR	352	24.306	-3.374	91.118	1.00 15.30	A
40	MOTA	2506	CD1	TYR	352	24.940	-2.833	92.227	1.00 12.89	A
40	MOTA	2507	CE1	TYR	352	25.779	-1.740	92.100	1.00 15.82	A
	MOTA	2508	CD2	TYR	352	24.550	-2.798	89.869	1.00 15.34	A
	ATOM	2509	CE2		352	25.382	-1.712	89.731	1.00 14.65	A
	ATOM	2510		TYR	352	25.989	-1.180	90.848	1.00 15.26	A
45	MOTA	2511		TYR	352	26.767	-0.050	90.715	1.00 17.76	A
43	MOTA	2512		TYR	35 2	24.688	-5.973	92.733	1.00 16.43	A
	ATOM	2513	0	TYR	352	25.917	-5.964	92.715	1.00 17.51	A
	ATOM	2514	N	ALA	353	23.989	-6.065	93.855	1.00 15.81	A
	ATOM	2515	CA	ALA	353	24.658	-6.137	95.145	1.00 16.65	A
	ATOM	2516		ALA	353	23.646	-5.931	96.269	1.00 15.23	A
50	ATOM	2517		ALA	353	25.405	-7.458	95.350	1.00 17.40	
50										A
	MOTA	2518		ALA	353	26.412	-7.497	96.050	1.00 18.96	A
	MOTA	2519		HIS	354	24.916	-8.535	94.744	1.00 18.26	A
	MOTA	2520	CA	HIS	354	25.555	-9.838	94.883	1.00 19.76	A
	MOTA	2521	CB	HIS	354	24.676	-10.932	94.266	1.00 19.50	A
55	MOTA	2522	CG	HIS	354	25.143	-12.324	94.566	1.00 21.21	A
	MOTA	2523	CD2		354		-13.246	93.786	1.00 20.11	A
	ATOM	2524	ND1		354		-12.894	95.817	1.00 20.61	A
			CE1				-14.105			
	MOTA	2525			354			95.796	1.00 20.62	A
~	MOTA	2526	NE2		354		-14.342	94.576	1.00 20.83	A
60	MOTA	2527	C :	HIS	354	26.936	-9.842	94.224	1.00 21.08	A
	MOTA	2528	0	HIS	354	27.903	-10.313	94.816	1.00 22.05	A
	MOTA	2529	N.	ARG	355	27.027	-9.314	93.004	1.00 22.49	Α
	MOTA	2530		ARG	355	28.308	-9.256	92.292	1.00 24.62	A
		2531		ARG	355	28.153	-8.619	90.905	1.00 25.83	
65	MOTA									A
$\mathbf{o}_{\mathcal{I}}$	MOTA	2532		ARG	355	27.358	-9.413	89.894	1.00 29.38	A
	MOTA	2533		ARG	355	27.482	-8.762	88.535	1.00 32.38	A
	MOTA	2534	NE .	ARG	355	27.233	-7.326	88.622	1.00 37.22	A
	MOTA	2535	CZ Z	ARG	355	27.902	-6.412	87.924	1.00 40.93	A
	ATOM	2536	NH1		355	28.860	-6.797	87.087	1.00 41.58	A
70	ATOM	2537	NH2		355	27.624	-5.117	88.066	1.00 39.72	A
. •						29.352				
	MOTA	2538		ARG	355		-8.447	93.054	1.00 24.34	A
	MOTA	2539		ARG	355	30.523	-8.821	93.098	1.00 25.69	A
	ATOM	2540	N I	ALA	356	28.923	-7.332	93.640	1.00 23.36	A

	ATOM	2541	CA	ALA	356	29.814	-6.447	94.387	1.00 22	. 82 A
	MOTA	2542	CB	ALA	356	29.016	-5.295		1.00 20	
	MOTA	2543	С	ALA	356	30.603	-7.161	95.484	1.00 23	.12 A
_	MOTA	2544	0	ALA	356	31.708	-6.751		1.00 20	
5	MOTA	2545	N	LYS	357	30.030	-8.222		1.00 24	
	MOTA	2546	CA	LYS	357	30.695	-8.981		1.00 26	
	MOTA	2547	CB	LYS	357		-10.195		1.00 25	
	MOTA	2548	CG	LYS	357	28.570	-9.854		1.00 27	
10	MOTA	2549	CD	LYS	357		-11.052 -12.220		1.00 28	
10	MOTA	2550 2551	CE NZ	LYS LYS	357 357		-13.483		1.00 29	
•	MOTA MOTA	2552	C	LYS	357 357	32.099	-9.453		1.00 27	
	ATOM	2553	Ö	LYS	357	32.968	-9.595		1.00 26	
	ATOM	2554	N	ASN	358	32.312	-9.691		1.00 28	
15	ATOM	2555	CA	ASN	358		-10.177		1.00 28	
	ATOM	2556	СВ	ASN	358		-10.897		1.00 31.	
	ATOM	2557	CG	ASN	358		-12.071		1.00 34.	
	MOTA	2558	OD1	ASN	358	32.743	-13.071	94.375	1.00 37.	.20 A
	ATOM	2559	ND2	ASN	358	31.226	-11.952	93.145	1.00 33.	.97 A
20	MOTA	2560	С	ASN	358	34.676	-9.118	94.751	1.00 27.	.98 A
	MOTA	2561	0	ASN	358	35.784	-9.426		1.00 28.	
	MOTA	2562	N	ILE	359	34.364	-7.871		1.00 25.	
	ATOM	2563	CA	ILE	359	35.350	-6.811		1.00 24.	
25	MOTA	2564	CB	ILE	359	34.673	-5.429		1.00 21.	
25	MOTA	2565		ILE	359	35.727	-4.329		1.00 19.	
	MOTA	2566		ILE	359	33.748	-5.367		1.00 19.	
	MOTA	2567		ILE	359	32.909	-4.109 -6.906		1.00 18. 1.00 25.	
	MOTA MOTA	2568 2569	С 0	ILE	359 359	36.290 35.847	-7.076		1.00 23.	
30	ATOM	2570	Ŋ	LEU	360	37.588	-6.817		1.00 23.	
50	ATOM	2571	CA	LEU	360	38.578	-6.917		1.00 32.	
	ATOM	2572	CB	LEU	360	39.478	-8.137		1.00 34.	
	ATOM	2573	CG	LEU	360	40.711	-8.333		1.00 36.	
	ATOM	2574		LEU	360	40.309	-8.930		1.00 37.	
35	ATOM	2575		LEU	360	41.687	-9.265		1.00 38.	
	MOTA	2576	C	LEU	360	39.438	-5.665	97.033	1.00 33.	54 A
	MOTA	2577	0	LEU	360	39.905	-5.174	96.008	1.00 32.	97 A
	ATOM	2578	N	ASN	361	39.635	-5.132	98.234	1.00 35.	62 A
40	MOTA	2579	CA	ASN	361	40.485	-3.962		1.00 39.	
40	MOTA	2580	CB	ASN	361	39.649	-2.672		1.00 41.	
	MOTA	2581	CG	ASN	361	38.490	-2.732		1.00 42.	
	MOTA	2582		ASN	361	37.523	-1.985	99.203	1.00 42.	
	MOTA	2583		ASN	361	38.578		100.330	1.00 45.	
45	MOTA MOTA	2584 2585	C O	ASN ASN	361 361	41.439 41.180	-4.056	99.565 100.532	1.00 41.	
7.7	ATOM	2586	Ŋ	LYS	362	42.560	-3.348	99.446	1.00 41.	
	MOTA	2587	CA	LYS	362	43.643		100.432	1.00 46.	
	ATOM	2588	CB	LYS	362	43.106		101.870	1.00 45.	
	MOTA	2589	CG	LYS	362	42.518		102.353	1.00 44.	
50	ATOM	2590	CD	LYS	362	42.184		103.841	1.00 44.	
	MOTA	2591	CE	LYS	362	43.444	-2.056	104.701	1.00 44.	
	MOTA	2592	NZ	LYS	362	44.224	-0.795	104.523	1.00 44.	09 A
	MOTA	2593	С	LYS	362	44.576	-4.504	100.173	1.00 48.	88 A
	MOTA	2594	0	LYS	362	44.928		101.141	1.00 50.	
55	MOTA	2595	ОХТ		362	44.955		98.992	1.00 49.	
	MOTA	2596		MG	603	16.038	9.381	98.154	1.00 22.	
	MOTA	2597	PB	ADP	601	14.871	6.512	98.896	1.00 9.	
	MOTA	2598	01B		601	14.389	7.073	97.604	1.00 11.	
60	MOTA	2599	02B		601	15.417	5.029 7.374	98.682	1.00 12. 1.00 9.	-
UU	ATOM ATOM	2600 2601	O3B PA	ADP	601 601	15.921 13.343		99.491 101.254	1.00 9. 1.00 13.	
	ATOM	2602	01A		601	14.336		102.280	1.00 13.	
	MOTA	2603	02A		601	13.336		101.013	1.00 12.	
	ATOM	2604	03A		601	13.536	6.373	99.912	1.00 12.	
65	MOTA	2605	05*		601	11.879		101.742	1.00 16.	
	ATOM	2606	C5*		601	10.894		101.155	1.00 16.	
	MOTA	2607	C4*		601	9.662		102.132	1.00 18.	
	ATOM	2608	04*		601	9.712		102.849	1.00 19.	
	ATOM	2609	C3*		601	9.700		103.229	1.00 18.	
70	MOTA	2610	03*	ADP	601	8.406	7.650	103.431	1.00 22.	72 ADP
	ATOM	2611	C2*		601	10.188		104.496	1.00 19.	
	MOTA	2612	02*		601	9.655		105.672	1.00 21.	
	MOTA	2613	C1*	ADP	601	9.788	4.947	104.281	1.00 19.	08 ADP

		2014					2 042			
	MOTA	2614	N9	ADP	601	10.778		104.795	1.00 19.36	ADP
	MOTA	2615	_ C8	ADP	601	11.895		104.137	1.00 19.33	ADP
	ATOM	2616	N7	ADP	601	12.535		104.859	1.00 19.29	ADP
5	ATOM	2617	C5	ADP	601	11.874		105.961	1.00 20.60	ADP
)	MOTA	2618	C6	ADP	601	12.043		107.091	1.00 20.38	ADP
	MOTA	2619	N6	ADP	601	13.085		107.178	1.00 20.28	ADP
	MOTA	2620	N1	ADP	601	11.118		108.120	1.00 22.79	ADP
	MOTA	2621	C2	ADP	601	10.028		108.081	1.00 22.78	ADP
10	MOTA	2622	N3	ADP	601	9.854		106.988	1.00 20.98	ADP
10	MOTA	2623	C4	ADP	601	10.736	3.301	105.936	1.00 20.39	ADP
	MOTA	2859	C1	5-2b	2	19.000	14.175	112.199	1.00 28.18	5-2b
	MOTA	2860	C2	5-2b	2	18.061	13.539	111.340	1.00 32.48	5-2b
	MOTA	2861	C3	5-2b	2	17.078	12.651	111.895	1.00 28.56	5-2b
	MOTA	2862	C4	5-2b	2	17.088	12.427	113.305	1.00 27.05	5-2b
15	MOTA	2863	C5	5-2b	2	18.039	13.044	114.157	1.00 26.16	5-2b
	MOTA	2864	C6	5-2b	2	19.015	13.950	113.622	1.00 28.62	5-2b
	MOTA	2865	C7	5-2b	2	18.128	13.723	109.878	1.00 39.58	5-2b
	ATOM	2866	N8	5-2b	2	19.295	13.211	109.173	1.00 34.03	5-2b
	MOTA	2867	C9	5-2b	2	20.221	14.007	108.603	1.00 31.92	5-2b
20	MOTA	2868		5-2b	2	19.947		108.469	1.00 36.78	5-2b
	MOTA	2869		5-2b	2	18.661		108.801	1.00 44.76	5-2b
	MOTA	2870		2 5-2b	2	17.708		109.368	1.00 52.53	5-2b
	MOTA	2871		5-2b	2	16.238		113.800	1.00 23.44	5-2b
	ATOM	2872		5-2b	2	16.264		109.536	1.00 70.42	5-2b
25	ATOM	2873		5-2b	2	15.927		109.475	1.00104.53	5-2b
	ATOM	2874		5-2b	2	14.579		109.627	1.00 95.04	5-2b
	ATOM	2875		5-2b	2.	14.646		109.575	1.00 97.91	5-2b
	ATOM	2876		5-2b	2	18.590		108.468	1.00 43.13	5-2b
	ATOM	2877		5-2b	2	15.462		109.721	1.00 72.50	5-2b
30	MOTA	2878		5-2b	2	21.688		108.038	1.00 18.17	5-2b
50	MOTA	2624	0	нон	ī	20.805	10.444	96.618	1.00 3.59	S S
	ATOM	2625	ŏ	нон	6	18.478	8.895	97.954	1.00 22.75	s
	MOTA	2626	ŏ	нон	7	8.678		114.749	1.00 5.86	S
	ATOM	2627	ŏ	нон	é 8	15.946	-1.691	94.899	1.00 5.80	s
35	ATOM	2628	ö	нон	11	21.220		106.339	1.00 1.72	s
55		2629	ŏ	нон	13	14.805	10.449	99.917	1.00 1.72	S
	MOTA		ö		16	13.355	-2.493			s
	ATOM	2630		нон				95.064		5
	ATOM	2631	0	нон	19	21.262		111.999	1.00 8.18	s
40	MOTA	2632	0	нон	20	10.684		117.065	1.00 18.83	s
70	ATOM	2633	0	нон	25	21.216	2.976	93.758	1.00 14.00	S
	MOTA	2634	0	нон	27	24.932		102.192	1.00 7.13	s
	MOTA	2635	0	нон	34	15.711		114.948	1.00 8.16	s
	ATOM	2636	0	нон	35	31.658	6.477	79.773	1.00 16.68	s
45	ATOM	2637	0	нон	36	16.262	7.930	95.115	1.00 13.14	s
43	ATOM	2638	0	нон	38	15.341		103.081	1.00 3.96	s
	MOTA	2639	0	нон	40	20.527		101.135	1.00 13.66	S
	MOTA	2640	0	нон	42	31.548	4.510	82.184	1.00 13.63	s
	MOTA	2641	0	нон	44	20.139		109.317	1.00 9.63	s
50	MOTA	2642	0	нон	46	38.748		117.615	1.00 16.12	s
50	MOTA	2643	0	нон	48	37.332	6.832	98.871	1.00 20.54	S
	ATOM	2644	0	нон	50	15.243		105.237	1.00 7.71	S
	MOTA	2645	0	нон	52	23.362		103.308	1.00 16.03	s
	MOTA	2646	0	нон	54	24.373	1.678	79.508	1.00 21.19	S
55	MOTA	2647	0	нон	55	38.272	4.890	80.366	1.00 15.34	s
<i>JJ</i>	ATOM	2648	0	нон	60	28.231	24.639	95.411	1.00 10.59	S
	MOTA	2649	0	нон	61	39.120	8.121	96.836	1.00 17.30	S
	ATOM	2650	0	нон	63	18.805		105.109	1.00 24.81	S
	MOTA	2651	0	нон	64	40.943	11.048	89.550	1.00 24.53	S
۲۸	MOTA	2652	0	нон	68	31.035	20.952	88.723	1.00 17.53	S
60	MOTA	2653	0	нон	69	19.610		118.241	1.00 28.77	S
	MOTA	2654	0	нон	70	23.256		117.749	1.00 12.03	S
	MOTA	2655	0	нон	71	21.279	14.920	97.265	1.00 17.07	S
	MOTA	2656	0	нон	72	11.571	8.465	98.099	1.00 17.54	S
<i>C</i>	MOTA	2657	0	нон	73	0.219	-7.157	96.638	1.00 36.34	S
65	MOTA	2658	0	нон	74	14.061		107.352	1.00 17.49	s
	MOTA	2659	0	нон	75	38.428		101.400	1.00 20.61	s
	MOTA	2660	0	нон	76	28.147	6.297	79.763	1.00 6.93	S
	MOTA	2661	0	нон	78		-15.702		1.00 42.69	S
70	MOTA	2662	0	нон	79	40.740	11.793	96.499	1.00 19.31	s
70	MOTA	2663	0	нон	82	38.334	-6.005	104.252	1.00 25.92	s
	MOTA	2664	0	нон	83	28.296	4.768	77.136	1.00 31.56	s
	ATOM	2665	0	нон	84	14.008	16.450	94.704	1.00 5.75	S
	MOTA	2666	0	нон	87	45.629	7.251	110.783	1.00 17.29	S

						•
	MOTA	2667	0	нон	90	13.592 18.093 92.309 1.00 13.66
	ATOM	2668	o	нон	91	9.122 2.181 96.091 1.00 36.98 S
	ATOM	2669	ŏ	нон	92	16.369 12.885 106.048 1.00 20.85 S
	ATOM				93	13.386 21.050 89.915 1.00 17.97 S
5	-	2670	0	нон		
,	MOTA	2671	0	нон	94	11.913 22.331 96.952 1.00 21.35 S
	MOTA	2672	0	нон	95	20.093 -2.163 89.951 1.00 16.99 S
	ATOM	2673	О	нон	96	17.551 -0.999 87.296 1.00 26.38 S
	ATOM	2674	0	HOH	97	20.767 15.478 84.877 1.00 51.52 S
	MOTA	2675	0	нон	99	35.477 1.749 79.785 1.00 19.87 S
10	MOTA	2676	ŏ	нон	101	21.955 8.778 118.594 1.00 28.07 S
10		2677	ŏ	нон	102	40.041 5.064 84.678 1.00 16.03 S
	ATOM					20.041 2.004 04.070 1.00 10.03 3
	MOTA	2678	0	нон	104	36.377 -3.662 102.275 1.00 18.75 S
	MOTA	2679	0	нон	106	3.852 11.665 120.058 1.00 30.71 S
	MOTA	2680	0	нон	108	39.673 -0.150 74.200 1.00 46.52 S
15	MOTA	2681	0	HOH	110	6.144 -12.000 92.235 1.00 50.82 S
	MOTA	2682	0	нон	111	30.628 20.566 102.526 1.00 21.67 S
	ATOM	2683	ō	нон	112	30.065 26.389 96.506 1.00 17.19 S
					113	14.004 8.985 104.371 1.00 25.20 S
	ATOM	2684	0	нон		
20	MOTA	2685	0	нон	114	33.791 0.715 74.652 1.00 19.53 S
20	MOTA	2686	0	нон	117	22.111 19.027 120.746 1.00 38.73 S
	MOTA	2687	0	HOH	118	26.607 0.227 84.656 1.00 17.38 S
	MOTA	2688	0	HOH	121	21.035 -9.445 110.275 1.00 13.05 S
	ATOM	2689	0	нон	122	32.184 14.826 101.349 1.00 11.39 S
	ATOM	2690	ō	нон	123	17.599 -1.616 90.813 1.00 13.59 S
25			ŏ		124	
25	ATOM	2691		нон		34.130 25.646 110.137 1.00 23.55 S
	ATOM	2692	0	нон	126	9.990 -6.133 95.389 1.00 15.79 S
	MOTA	2693	0	нон	129	3.202 -12.862 94.601 1.00 59.83 S
	ATOM	2694	0	нон	130	13.955 10.696 95.694 1.00 19.43 S
	ATOM	2695	0	нон	131	31.703 25.858 98.664 1.00 24.88 S
30	ATOM	2696	0	нон	132	35.057 22.912 85.606 1.00 40.74 S
	MOTA	2697	ō	нон	134	15.475 -7.722 86.631 1.00 12.20 S
	ATOM	2698	ŏ	нон	135	17.594 16.623 102.663 1.00 23.55 S
	ATOM	2699	0	нон	136	
25	ATOM	2700	0	нон	137	16.245 22.597 107.873 1.00 19.89 S
35	ATOM	2701	0	нон	139	9.431 -0.664 90.038 1.00 31.01 S
	MOTA	2702	0	HOH	145	19.183 30.020 93.555 1.00 40.54 S
	MOTA	2703	0	нон	146	27.383 12.738 122.250 1.00 22.34 S
	ATOM	2704	ō	нон	148	39.078 -6.174 93.184 1.00 34.51 S
	ATOM	2705	ŏ	нон	149	49.726 3.941 96.574 1.00 41.42 S
40						
40	MOTA	2706	0	нон	151	
	MOTA	2707	0	нон	152	49.848 18.275 102.636 1.00 39.85 S
	MOTA	2708	0	нон	153	27.728 -14.666 103.176 1.00 32.11 S
	ATOM	2709	0	HOH	154	17.610 7.968 89.633 1.00 32.29 S
	MOTA	2710	0	HOH	155	16.723 19.937 85.776 1.00 24.59 S
45	ATOM	2711	0	нон	158	31.015 -3.720 75.821 1.00 31.57 S
	ATOM	2712	ŏ	нон	159	39.461 15.014 103.524 1.00 34.83 S
			ŏ		164	45.236 2.614 116.065 1.00 33.66 S
	MOTA	2713		нон		
	MOTA	2714	0	нон	166	28.893 5.418 123.561 1.00 30.64 S
50	MOTA	2715	0	нон	167	35.887 12.107 99.622 1.00 11.12 S
50	MOTA	2716	0	нон	168	29.323 -10.874 107.683 1.00 39.92 S
	MOTA	2717	0	нон	170	33.078 22.456 122.206 1.00 27.20 S
	MOTA	2718	0	HOH	171	6.377 -23.385 91.461 1.00 39.35 S
	ATOM	2719	ō	нон	175	38.059 24.742 100.957 1.00 44.52 S
		2720	ŏ		179	12.119 -0.723 109.488 1.00 28.60 S
55	MOTA			нон		
55	MOTA	2721	0	нон	184	
	MOTA	2722	0	нон	186	5.690 -6.930 88.872 1.00 26.18 S
	MOTA	2723	0	HOH	187	3.662 -13.329 100.868 1.00 25.44 S
	MOTA	2724	0	HOH	188	8.547 -5.057 88.499 1.00 31.53 S
	MOTA	2725	0	нон	189	. 13.396 13.012 123.817 1.00 23.03 S
60	ATOM	2726	ō	нон	190	37.857 10.497 99.808 1.00 16.10 S
00					191	15.390 0.870 75.556 1.00 32.35 S
	MOTA	2727	0	нон		24 022 42 404 04 150 1 00 32 32
	MOTA	2728	0	нон	192	24.877 12.484 84.150 1.00 33.77 S
	MOTA	2729	0	нон	195	7.560 1.921 103.939 1.00 24.38 S
	MOTA	2730	0	нон	197	38.275 6.762 75.942 1.00 34.75 S
65	MOTA	2731	O	нон	198	11.981 14.135 109.242 1.00 26.93 S
	ATOM	2732	ŏ	нон	199	29.034 -13.318 94.699 1.00 32.78 S
					201	33.413 -10.638 103.290 1.00 31.96 S
	MOTA	2733	0	HOH		
	MOTA	2734	0	нон	203	25.859 12.342 87.393 1.00 39.56 S
70	MOTA	2735	0	нон	205	21.304 4.617 78.647 1.00 17.67 S
70	MOTA	2736	0	нон	207	23.255 12.937 88.372 1.00 28.66 S
	ATOM	2737	0	нон	208	7.965 2.363 93.256 1.00 39.90 S
	MOTA	2738	ŏ	нон	210	7.291 -19.119 97.337 1.00 39.55 s
	MOTA	2739	ŏ	нон	211	23.200 15.157 105.669 1.00 3.65 S
	AI OF	2,33	~			

	ATOM	2740	0	нон	212	16.820	11.748 98.364	1.00 4.40	s
	MOTA	2741	0	нон	215	37.029		1.00 9.34	S
	MOTA	2742	0	нон	217	45.218		1.00 50.32	S
_	ATOM	2743	0	нон	220	46.617	4.288 108.402	1.00 29.26	S
5	MOTA	2744	0	нон	221	18.955	8.984 95.378	1.00 23.41	S
	MOTA	2745	Ō	нон	223	22.905		1.00 15.81	S
						2.959		1.00 46.93	s
	MOTA	2746	0	нон	225				3
	MOTA	2747	0	нон	226	11.436		1.00 15.86	s
	MOTA	2748	0	нон	228	16.698	14.117 102.916	1.00 25.42	S
10	MOTA	2749	0	HOH	229	14.674	21.461 106.079	1.00 26.44	S
	ATOM	2750	ō	нон	232	21.595		1.00 14.15	S
									S
	MOTA	2751	0	нон	233	11.151		1.00 32.57	
	MOTA	2752	0	HOH	238	29.371		1.00 19.94	S
	ATOM	2753	0	HOH	241	13.508	12.891 99.625	1.00 20.34	S
15	MOTA	2754	0	нон	243	17.423	4.974 118.567	1.00 24.32	S
	ATOM	2755	ō	нон	244	21.246		1.00 39.07	S
									S
•	ATOM	2756	0	нон	245	11.590		1.00 19.24	5
	ATOM	2757	0	нон	247	51.802		1.00 55.38	S
	MOTA	2758	0	нон	251	8.180	5.024 99.128	1.00 31.61	s s
20	MOTA	2759	0	нон	252	21.300	12.368 98.575	1.00 31.29	S
	ATOM	2760	ō	НОН	253	41.894		1.00 30.47	S
									~
	MOTA	2761	0	нон	254	23.625		1.00 27.92	S
	MOTA	2762	0	нон	255	29.438	14.355 123.667	1.00 26.17	S
	ATOM	2763	0	нон	256	20.446	10.316 116.657	1.00 34.15	S
25	ATOM	2764	0	нон	257	11.975	9.878 91.516	1.00 18.84	S
	MOTA	2765	ŏ	нон	260	13.789		1.00 23.75	s
									5
	MOTA	2766	0	нон	262	7.623		1.00 30.74	S
	ATOM	2767	0	HOH	263	20.395		1.00 33.87	S
	MOTA	2768	0	нон	266	34.255	-0.467 81.343	1.00 30.08	S
30	MOTA	2769	0	нон	268	45.417	1.198 105.917	1.00 33.79	S
•	ATOM	2770	ŏ	нон	271	15.540		1.00 36.81	s
									5
	MOTA	2771	0	нон	272	31.560		1.00 25.41	S
	MOTA	2772	0	нон	273	10.820		1.00 27.96	S
	MOTA	2773	0	нон	275	16.259	16.032 106.228	1.00 15.83	S
35	MOTA	2774	0	нон	279	14.255	23.209 104.198	1.00 21.24	S
	MOTA	2775	ō	нон	280	14.152		1.00 30.26	s
	MOTA	2776	0	нон	281	28.645		1.00 35.08	S
	MOTA	2777	0	нон	283	15.855	18.951 102.400	1.00 31.06	S
	MOTA	2778	0	нон	288	15.557	2.812 116.261	1.00 19.13	s
40	ATOM	2779	0	нон	290	52.550	19.096 99.218	1.00 47.57	S
	MOTA	2780	ō	нон	291	26.202		1.00 53.97	s
	ATOM	2781	0	нон	294	20.086		1.00 37.20	S
	MOTA	2782	0	HOH	295	6.012		1.00 18.20	S
	MOTA	2783	0	нон	296	30.916	30.335 103.939	1.00 37.71	S
45	MOTA	2784	0	HOH	297	46.048	18.195 120.452	1.00 43.25	S
	MOTA	2785	0	НОН	299	31.569	-9.610 101.042	1.00 32.15	S
	ATOM	2786	ŏ	нон	300	21.162	-3.401 87.125	1.00 32.61	S
	MOTA	2787	0	нон	303	9.761	2.577 112.502	1.00 27.58	S
	MOTA	2788	0	нон	305	32.066	25.918 112.422	1.00 32.24	S
50	MOTA	2789	0	нон	307	33.480	-2.576 83.015	1.00 27.49	s
	MOTA	2790	0	нон	308	2.984	13.923 120.708	1.00 31.57	S
	MOTA	2791	ō	нон	309	34.596	·	1.00 43.06	Š
	MOTA	2792	0	нон	310	34.476	-4.326 104.147	1.00 46.76	S
~~	MOTA	2793	0	нон	313	18.109	-9.045 87.036	1.00 25.07	S
55	MOTA	2794	0	нон	314	2.837	9.810 121.659	1.00 42.28	s
	MOTA	2795	0	нон	315	13.698	1.784 111.141	1.00 35.74	S
	MOTA	2796	0	нон	317	34.111	18.005 122.006	1.00 28.52	S
	ATOM	2797		нон	318	29.111	-3.283 83.701	1.00 38.21	Š
			0						
70	MOTA	2798	0	нон	319	32.667	0.553 105.431	1.00 27.32	S
60	ATOM	2799	0	HOH	323	4.556	-19.468 88.447	1.00 56.20	S
	MOTA	2800	0	нон	324	-2.283	-4.890 97.004	1.00 48.36	S
	MOTA	2801	0	нон	327	28.636	-3.285 118.234	1.00 30.32	S
						29.441			s
	MOTA	2802	0	нон	328		25.536 120.010	1.00 30.29	
65	MOTA	2803	0	нон	331	25.024	1.315 88.662	1.00 35.16	S
65	MOTA	2804	0	нон	332	25.076	33.728 92.315	1.00 37.36	S
	MOTA	2805	0	нон	334	17.967	17.125 84.628	1.00 44.99	S
	MOTA	2806	ō	нон	336	35.277	-4.775 82.255	1.00 22.90	Š
	MOTA	2807		нон	338	5.655	-0.231 95.494	1.00 39.33	S
			0						
70	MOTA	2808	0	нон	340	46.414	-2.129 108.144	1.00 58.72	S
70	MOTA	2809	0	нон	342	10.262	-2.840 88.835	1.00 36.82	S
	MOTA	2810	0	нон	344	48.378	-0.812 102.187	1.00 39.43	s
	MOTA	2811	ō	нон	345	7.840	6.837 118.967	1.00 54.06	Š
						42.036			S
	MOTA	2812	0	нон	347	42.030	-0.811 90.785	1.00 34.08	3

	MOTA	2813	0	нон	351	51.775		133.541	1.00 37.45	S
	MOTA MOTA	2814 2815	0	нон	354 355	31.545 35.526	13.101 14.686	83.668	1.00 37.78 1.00 8.84	S S
	ATOM	2815	0	нон	361	12.290	20.796		1.00 17.59	S
5	ATOM	2817	ö	нон	363	40.627		127.391	1.00 17.39	S
,	ATOM	2818	ŏ	нон	365	30.371	-1.879	79.833	1.00 13.67	S
	ATOM	2819	ö	нон	367	11.687	18.291		1.00 13.07	S
	ATOM	2820	ŏ	нон	370	18.511		119.773	1.00 38.47	S
	MOTA	2821	ŏ	нон	371	17.908	13.463		1.00 12.12	·S
10	ATOM	2822	ŏ	нон	372	27.131	-3.005	76.310	1.00 16.74	s
- •	ATOM	2823	ŏ	нон	375	8.972	7.528	97.923	1.00 26.11	Š
	ATOM	2824	ŏ	нон	377	18.727	10.788	84.519	1.00 41.33	S
	ATOM	2825	0	нон	379	14.127	15.750	98.863	1.00 25.29	S
	MOTA	2826	0	нон	383	41.700	9.858	81.807	1.00 33.52	S
15	MOTA	2827	0	нон	385	35.261	15.280	106.016	1.00 28.87	S
	ATOM	2828	0	нон	386	12.726	21.661	115.689	1.00 46.81	S
	MOTA	2829	0	HOH	393	43.648	7.839	106.741	1.00 16.47	S
	MOTA	2830	0	HOH	394	37.259	24.740	104.054	1.00 14.17	S
-	ATOM	2831	0	нон	396	24.282	-6.502	87.829	1.00 42.62	S
20	MOTA	2832	0	нон	400	43.027	-3.036	92.095	1.00 34.87	S
	MOTA	2833	0	HOH	406	31.066	-3.244	81.803	1.00 24.95	S
	ATOM	2834	0	нон	409	36.251		119.019	1.00 19.28	s
	MOTA	2835	0	нон	415	10.534	10.025		1.00 39.35	S
25	MOTA	2836	0	нон	418	8.054		110.289	1.00 45.64	s
25	ATOM	2837	0	нон	422	39.306	16.744		1.00 34.28	S
	MOTA	2838	0	нон	425	6.396		103.157	1.00 32.56	S
	MOTA	2839	0	нон	426	39.952	24.546	98.144	1.00 27.08	S
	MOTA	2840	0	нон	429	39.863	6.685	82.133	1.00 40.09	s
30	ATOM	2841	0	HOH	430	21.921	12.487	85.799	1.00 40.68	S
30	ATOM ATOM	2842 2843	0	HOH	433 435	11.505 10.302	19.654 1 11.568 1		1.00 30.56 1.00 29.96	s s
	ATOM	2844	0	нон нон	435	23.476	-0.876	78.128	1.00 29.98	S
	ATOM	2845	Ö	нон	442	40.869	23.992		1.00 28.08	S
	ATOM	2846	ö	нон	444	36.147	28.207	94.921	1.00 46.43	S
35	ATOM	2847	ŏ	нон	445	23.713	3.771		1.00 42.21	S
-	ATOM	2848	ŏ	нон	447	27.306	-4.631	90.698	1.00 43.77	S
	ATOM	2849	ŏ	нон	448	45.805	6.819		1.00 28.04	S
	MOTA	2850	ŏ	нон	449	11.162	9.197		1.00 42.08	Š
	MOTA	2851	ō	НОН	450	51.897	9.884 1		1.00 37.33	Š
40	ATOM	2852	Ō	нон	452	28.491	3.721 1		1.00 32.94	S
	ATOM	2853	0	нон	454	8.173	10.098 1	105.141	1.00 50.50	S
	MOTA	2854	0	нон	459	42.750	5.736	87.519	1.00 36.93	S
	MOTA	2855	0	HOH	460	30.376	34.460	94.131	1.00 31.43	S
4.5	ATOM	2856	0	нон	466	25.986	1.393 1		1.00 52.81	s
45	MOTA	2857	0	нон	467	22.489		08.669	1.00 29.27	S
	MOTA	2858	0	нон	468	23.362	-2.077	86.180	1.00 37.76	S
	END									

50

TABLE 2

	REMARK	1	Сощо	ound	1-7_3d	pb.pdb mol	ecule B			
_	!CRYST		9.250	79			0.00 90.		P212121	
5	MOTA	20	CB	LYS	17		2 -12.458		1.00 51.00	В
	MOTA	21	CG	LYS	17		1 -12.492		1.00 53.34	В
	ATOM	22	CD	LYS	17		3 -12.316		1.00 53.77	В
	MOTA MOTA	23 24	CE NZ	LYS LYS	17 17		7 -13.512 2 -13.693		1.00 54.85 1.00 53.86	B B
10	MOTA	25	C	LYS	17		2 -13.093 5 -10.105		1.00 47.83	В
10	ATOM	26	ò	LYS	17		-10.140		1.00 48.69	В
	ATOM	27	N	LYS	17		-10.549		1.00 49.93	В
	MOTA	28	CA	LYS	17	24.91	-11.048	60.601	1.00 49.15	В
	MOTA	29	N	ASN	18	23.59	7 -9.260	59.599	1.00 45.98	В
15	MOTA	30	CA	ASN	. 18	23.24			1.00 43.66	В
	MOTA	31	CB	ASN	18	21.96			1.00 45.49	В
	ATOM	32	CG	ASN	18	20.740			1.00 49.80	В
	MOTA	33		ASN	18	20.45			1.00 50.22	B B
20	MOTA MOTA	34 35	C	ASN ASN	18 18	20.019 24.338			1.00 49.94 1.00 41.30	В
20	ATOM	36	Ö	ASN	18	24.67			1.00 41.62	В
	MOTA	37	N	ILE	19	24.90			1.00 37.77	В
	ATOM	38	CA	ILE	19	25.949			1.00 34.25	В
	ATOM	39	CB	ILE	19	26.325	-4.966	60.253	1.00 35.25	В
25	MOTA	40	CG2	ILE	19	26.548	3 -5.988	61.346	1.00 38.29	В
	MOTA	41	CG1		19	27.581			1.00 35.22	В
	MOTA	42		ILE	19	28.042			1.00 36.16	В
	MOTA	43	C	ILE	19	27.213			1.00 31.28	В
30	MOTA	44	O N	ILE GLN	19 20	27.730 27.699			1.00 31.52 1.00 27.50	B B
50	MOTA MOTA	45 46	CA	GLN	20	28.903		56.483	1.00 27.30	В
	ATOM	47	CB	GLN	20	28.889			1.00 25.10	В
	ATOM	48	CG	GLN	20	30.276			1.00 27.01	В
	MOTA	49	CD	GLN	20	30.232		52.843	1.00 29.81	В
35	MOTA	50	OE1	GLN	20	29.920	-6.026	52.016	1.00 30.67	В
	MOTA	51	NE2	GLN	20	30.546		52.493	1.00 30.62	В
	MOTA	52	C	GLN	20	30.162		57.176	1.00 25.43	В
	ATOM	53	0	GLN	20	30.211			1.00 27.09	В
40	MOTA	54	N	VAL	21	31.176		57.327	1.00 22.08	В
70	ATOM ATOM	55 56	CA CB	VAL VAL	21 21	32.427 32.472		57.989 59. 471	1.00 18.37 1.00 19.87	B B
	MOTA	57		VAL	21	33.802		60.125	1.00 16.85	В
	ATOM	58		VAL	21	31.300		60.291	1.00 14.97	B
	ATOM	59	С	VAL	21	33.648		57.221	1.00 18.19	В
45	ATOM	60	0	VAL	21	33.848	-7.771	57.081	1.00 16.60	В
	MOTA	61	N	VAL	22	34.457		56.722	1.00 17.58	В
	ATOM	62	CA	VAL	22	35.651		55.967	1.00 15.68	В
	MOTA	63	CB	VAL	22	35.568		54.532	1.00 17.56	В
50	MOTA	64	CG1		22	34.305		53.846	1.00 17.79	В
50	MOTA MOTA	65 66	CG2 C	VAL VAL	22 22	35.553 36.869		54.575 56.693	1.00 17.41 1.00 16.43	B B
	ATOM	67	Ö	VAL	22	36.746		57.549	1.00 14.89	В
	ATOM	68	N	VAL	23	38.038		56.358	1.00 14.83	В
	ATOM	69	CA	VAL	23	39.304		56.972	1.00 13.82	В
55	ATOM	70	CB	VAL	23	39.935	-6.745	57.768	1.00 13.54	В
	MOTA	71	CG1		23	41.330	-6.405	58.282	1.00 6.83	В
	MOTA	72	CG2		23	39.034	-7.112	58.944	1.00 13.12	В
	MOTA	73	C	VAL	23	40.304		55.928	1.00 13.37	В
60	MOTA	74	0	VAL	23	40.414		54.835	1.00 10.49	В
oo	ATOM	75	N	ARG	24	41.008		56.256	1.00 14.76	В
	ATOM ATOM	76 77	CA CB	ARG ARG	24 24	42.019 41.577		55.346 54.700	1.00 17.25	B B
	ATOM	78	CG	ARG	24	42.528		53.590	1.00 12.98	В
	ATOM	79	CD	ARG	24	42.331	-0.225	53.130	1.00 9.77	В
65	MOTA	80	NE	ARG	24	42.978	-0.006	51.838	1.00 9.97	В
	ATOM	81	cz	ARG	24	42.881	1.111	51.112	1.00 9.72	В
	ATOM	82	NH1		24	42.165	2.143	51.544	1.00 3.96	В
	MOTA	83	NH2		24	43.477	1.177	49.923	1.00 8.75	В
70	MOTA	84	C	ARG	24	43.328	-3.180		1.00 18.12	В
70	ATOM	85	0	ARG	24	43.384	-2.408		1.00 16.79	В
	MOTA	86	N	CYS	25	44.372	-3.874	55.657	1.00 21.17	В

	MOTA	87	CA (CYS	25	45.688	-3.764	56.268	1.00 23.23	В
	MOTA	88		CYS	25	46.415	-5.140	56.254	1.00 23.67	В
	MOTA	89		CYS	25	48.096	-5.149	56.970	1.00 28.58	В
_	MOTA	90		CYS	25	46.464	-2.764	55.443	1.00 24.61	В.
5	MOTA	91		CYS	25	46.457 47.116	-2.836	54.211 56.109	1.00 24.46	В
	ATOM .	92 93		ARG ARG	26 26	47.116	-1.818 -0.829	55.380	1.00 25.36 1.00 27.69	B B
	ATOM	94		ARG	26	48.087	0.458	56.219	1.00 26.88	В
	ATOM	95		ARG	26	49.165	0.361	57.300	1.00 25.37	В
10	ATOM	96	CD A	ARG	26	49.817	1.722	57.544	1.00 26.81	В
	MOTA	97		ARG	26	51.181	1.599	58.060	1.00 30.34	В
	MOTA	98		ARG	26	51.504	1.598	59.349	1.00 31.91	В
	MOTA	99 100	NH1 A		26 26	50.566 52.767	1.721 1.459	60.277 59.714	1.00 32.84	B B
15	MOTA MOTA	101		ARG	26	49.268	-1.423	55.072	1.00 33.10	В
10	ATOM	102		ARG	26	49.673	-2.417	55.676	1.00 28.95	. B
	ATOM	103		PRO	27	49.991	-0.832	54.108	1.00 31.27	В
	MOTA	104		PRO	27	49.498	0.108	53.083	1.00 32.66	В
20	ATOM	105		PRO	27	51.327	-1.324	53.757	1.00 32.62	В
20	ATOM	106		PRO	27 27	51.452 50.745	-0.937 0.369	52.287 52.235	1.00 31.65	B B
	ATOM ATOM	107 108		PRO PRO	27	52.372	-0.626	54.642	1.00 31.02	В
	ATOM	109		PRO	27	52.065	0.364	55.311	1.00 33.16	В
	ATOM	110		HE	28	53.599	-1.141	54.652	1.00 34.79	В
25	MOTA	111		PHE	28	54.670	-0.545	55.451	1.00 34.86	В
	MOTA	112		HE	28	55.890	-1.393	55.401	1.00 33.35	В
	MOTA	113	CG F	HE	28	55.756	-2.691 -3.893	56.124 55.440	1.00 33.06	B B
	ATOM ATOM	114 115	CD2 F		28 28	55.856 55.590	-2.715	57.507	1.00 31.03	В
30	ATOM	116	CE1 F		28	55.801	-5.102	56.128	1.00 31.40	В
	ATOM	117	CE2 F		28	55.536	-3.918	58.193	1.00 30.69	В
	MOTA	118	CZ F	HE	28	55.644	-5.112	57.500	1.00 29.86	В
	ATOM	119		HE	28	55.043	0.842	54.956	1.00 36.62	В
35	MOTA	120		HE	28	55.102 55.297	1.080 1.755	53.752 55.885	1.00 36.72 1.00 39.15	B B
55	MOTA MOTA	121 122		SN SN	29 29	55.687	3.109	55.517	1.00 43.00	В
	MOTA	123		SN	29	55.449	4.078	56.693	1.00 41.82	В
	MOTA	124		SN	29	55.787	3.460	58.044	1.00 41.11	В
40	ATOM	125		SN	29	56.953	3.237	58.367	1.00 38.49	В
40	MOTA	126	ND2 A		29	54.758	3.178	58.838	1.00 40.06	В
	MOTA	127		SN	29	57.160	3.083 2.236	55.130 55.621	1.00 46.95 1.00 48.65	B B
	MOTA MOTA	128 129		SN EU	29 30	57.913 57.554	3.998	54.243	1.00 49.22	В
	ATOM	130		EU	30	58.930	4.106	53.751	1.00 49.70	В
45	ATOM	131		ΕŲ	30	59.142	5.490	53.121	1.00 49.24	В
	MOTA	132		EU	30	60.429	5.757	52.341	1.00 49.29	В
	MOTA	133	CD1 L		30	60.294	7.104	51.640	1.00 49.07	В
	MOTA	134	CD2 L		30	61.643 59.989	5.740 3.866	53.264 54.823	1.00 49.24 1.00 51.07	B B
50	MOTA MOTA	135 136		EU EU	30 30	60.877	3.032	54.649	1.00 50.68	В
50	ATOM	137		LA	31	59.889	4.605	55.925	1.00 52.87	В
	ATOM	138		LA	31	60.831	4.497	57.035	1.00 54.80	В
	MOTA	139		LA	31	60.399	5.420	58.157	1.00 53.50	В
55	MOTA	140		LA	31	61.011	3.077	57.576	1.00 56.55	В
33	MOTA	141 142		LA	31 32	62.140 59.906	2.649 2.354	57.837 57.751	1.00 56.62 1.00 59.00	B B
	MOTA MOTA	143		LU	32	59.958	0.989	58.272	1.00 61.92	В
	ATOM	144		LU	32	58.625	0.631	58.999	1.00 61.49	В
	MOTA	145		LU	32	57.413	0.441	58.094	1.00 60.80	В
60	MOTA	146		LU	32	56.101	0.376	58.872	1.00 59.87	В
	MOTA	147	OE1 G		32	55.038	0.196	58.242	1.00 58.45	В
	MOTA	148	OE2 G		32	56.129	0.514 -0.057	60.115	1.00 60.23	В
	MOTA MOTA	149 150		LU LU	32 32	60.270 60.610	-0.057	57.198 57.522	1.00 64.49	B B
65	MOTA	151		RG	33	60.148	0.330	55.927	1.00 67.16	В
	MOTA	152		RG	33	60.447	-0.573	54.813	1.00 69.70	В
	MOTA	153	CB A	RG	33	59.996	0.033	53.435	1.00 71.95	В
	MOTA	154		RG	33	58.567	0.570	53.353	1.00 75.31	В
70	MOTA	155		RG	33	58.383	1.377	52.056	1.00 78.38	В
10	MOTA MOTA	156 157		RG RG	33 33	57.203 56.937	2.248 3.167	52.066 51.136	1.00 80.30 1.00 80.67	B B
	MOTA	158	NH1 A		33	57.766	3.345	50.114	1.00 30.07	В
	MOTA	159	NH2 A		33	55.841	3.913	51.226	1.00 80.30	В

			_		2.2	61 06F	0.720	E 4 204	1.00 70.18	
	MOTA	160	C	ARG	33	61.965	-0.720 -1.813	54.794 54.599	1.00 70.18	B B
	MOTA	161	0	ARG	33	62.502 62.638	0.411	54.997	1.00 70.13	. В
	MOTA	162 163	N CA	LYS LYS	34 34	64.094	0.483	55.012	1.00 70.34	В
5	MOTA MOTA	164	CB	LYS	34	64.552	1.980	55.063	1.00 71.26	В
,	ATOM	165	CG	LYS	34	66.041	2.209	54.795	1.00 71.67	В
	ATOM	166	CD	LYS	34	66.407	3.688	54.868	1.00 71.50	. B
	MOTA	167	CE	LYS	34	66.116	4.260	56.251	1.00 72.55	В
	ATOM	168	NZ	LYS	34	66.513	5.694	56.388	1.00 72.95	В
10	ATOM	169	C	LYS	34	64.644	-0.288	56.211	1.00 70.18	В
10	ATOM	170	ō	LYS	34	65.707	-0.915	56.123	1.00 70.68	В
	MOTA	171	N	ALA	35	63.921	-0.236	57.330	1.00 68.80	В
	MOTA	172	CA	ALA	35	64.324	-0.952	58.540	1.00 67.64	B
	MOTA	173	CB	ALA	35	63.605	-0.381	59.760	1.00 67.24	
15	MOTA	174	c	ALA	35	63.958	-2.424	58.356	1.00 66.54	В
10	ATOM	175	ō	ALA	35	64.075	-3.232	59.286	1.00 65.43	В
	MOTA	176	N	SER	36	63.520	-2.750	57.138	1.00 64.95	В
	ATOM	177	CA	SER	36	63.113	-4.099	56.770	1.00 63.77	В
	ATOM	178	CB	SER	36	64.347	-4.974	56.532	1.00 63.33	В
20	ATOM	179	ŌĞ	SER	36	65.136	-4.438	55.481	1.00 61.84	В
	MOTA	180	c	SER	36	62.240	-4.670	57.879	1.00 63.32	В
	ATOM	181	ō	SER	36	62.731	-5.313	58.810	1.00 63.79	В
	ATOM	182	N	ALA	37	60.939	-4.417	57.772	1.00 61.85	В
	ATOM	183	CA	ALA	37	59.989	-4.873	58.773	1.00 59.96	В
25	ATOM	184	СВ	ALA	37	58.921	-3.806	58.987	1.00 59.90	٠В
	MOTA	185	c	ALA	37	59.344	-6.219	58.442	1.00 58.87	В
	ATOM	186	0	ALA	37	58.975	-6.499	57.301	1.00 58.65	В
	MOTA	187	N	HIS	38	59.215	-7.038	59.479	1.00 57.20	В
	MOTA	188	CA	HIS	38	58.638	-8.378	59.411	1.00 54.48	В
30	ATOM	189	CB	HIS	38	59.315	-9.263	60.513	1.00 56.18	В
	MOTA	190	CG	HIS	38	59.436	-8.582	61.851	1.00 56.74	В
	MOTA	191	CD2	HIS	38	59.058	-8.977	63.092	1.00 57.32	В
	MOTA	192	ND1	HIS	38	60.024	-7.344	62.011	1.00 55.67	В
	MOTA	193	CE1	HIS	38	60.005	-7.006	63.288	1.00 56.12	В
35	MOTA	194	NE2	HIS	38	59.424	-7.980	63.967	1.00 57.53	В
	MOTA	195	С	HIS	38	57.118	-8.352	59.615	1.00 51.90	В
	MOTA	196	0	HIS	38	56.642	-8.343	60.754	1.00 52.05	В
	MOTA	197	N	SER	39	56.356	-8.350	58.523	1.00 47.82	В
40	MOTA	198	CA	SER	39	54.893	-8.320	58.619	1.00 44.47	В
40	MOTA	199	CB	SER	39	54.255	-8.336	57.219	1.00 43.58	В
	MOTA	200	OG	SER	39	52.837	-8.377	57.305	1.00 37.62	В
	MOTA	201	С	SER	39	54.303	-9.468	59.435	1.00 43.06	В
	MOTA	202	0	SER	39	54.681		59.246	1.00 42.78	В
45	MOTA	203	N	ILE	40	53.373	-9.144	60.334	1.00 41.07	В
45	MOTA	204	CA	ILE	40		-10.162	61.157	1.00 39.33	В
	MOTA	205	CB	ILE	40	52.660	-9.761	62.665	1.00 39.17	В
	MOTA	206		ILE	40	54.063	-9.542	63.215	1.00 38.53	В
	MOTA	207		ILE	40	51.824	-8.511	62.858	1.00 39.67	В
50	MOTA	208		ILE	40	51.496	-8.238	64.319	1.00 38.82	В
30	MOTA	209	C	ILE	40		-10.456	60.663	1.00 38.28	В
	ATOM	210	0	ILE	40		-11.249	61.265 59.550	1.00 37.83	B B
	MOTA	211	N	VAL	41	50.932	-9.837 -10.047	59.000	1.00 38.34 1.00 38.90	В
	MOTA	212	CA	VAL	41 41	48.792	-8.724	58.956	1.00 39.34	В
55	MOTA	213	CB	VAL			-8.971	58.345	1.00 38.41	В
33	MOTA	214		VAL VAL	41 41	47.421 48.648	-8.154	60.360	1.00 38.28	В
	ATOM ATOM	215		VAL	41		-10.683	57.612	1.00 38.55	В
	MOTA	216 217	C O	VAL	41		-10.243	56.661	1.00 36.24	В
	MOTA	218	N	GLU	42		-11.729	57.513	1.00 40.08	В
60	MOTA	219	CA	GLU	42		-12.433	56.255	1.00 42.70	В
OO	MOTA	220	CB	GLU	42		-13.916	56.393	1.00 45.52	В
	MOTA	221	CG	GLU	42		-14.215	56.163	1.00 47.68	В
	MOTA	222	CD	GLU	42	50.783		56.578	1.00 50.75	В
	MOTA	223	OE1		42	49.991		56.323	1.00 52.01	В
65	MOTA	224	OE2		42		-15.816	57.151	1.00 51.85	В
J J	MOTA	225	C	GLU	42	47.050		55.896	1.00 41.88	В
	ATOM	226	ō	GLU	42		-12.740	56.683	1.00 42.51	В
	MOTA	227	N	CYS	43	46.754		54.718	1.00 40.93	В
	MOTA	228	CA	CYS	43	45.372		54.275	1.00 41.17	В
70	MOTA	229	CB	CYS	43	45.102		53.775	1.00 39.59	B
. •	MOTA	230	SG	CYS	43	44.959	-9.008	55.115	1.00 41.44	В
	ATOM	231	C	CYS	43	45.033		53.185	1.00 42.27	В
	ATOM	232	ŏ	CYS	43	45.736		52.182	1.00 43.23	В
			-							

	MOTA	233	N	ASP	44	43.953 -13.435	53.394	1.00 43.10	В
	ATOM	234	CA	ASP	44	43.504 -14.444		1.00 43.06	В
	MOTA	235	СВ	ASP	44	43.392 -15.831		1.00 45.99	В
_	MOTA	236	CG	ASP	44	43.414 -16.999		1.00 46.99	В
5	MOTA	237		ASP	44	42.678 -16.948		1.00 48.57	В
	MOTA	238		ASP	44	44.167 -17.971	52.398	1.00 44.91	В
	MOTA	239	C	ASP	44	42.140 -14.045		1.00 42.13	В
	MOTA	240	O N	ASP PRO	44 45	41.093 -14.446 42.142 -13.254	52.363 50.767	1.00 39.99 1.00 41.84	B B
10	ATOM ATOM	241 242	CD	PRO	45	43.328 -12.853	49.990	1.00 40.65	В
10	ATOM	243	CA	PRO	45	40.917 -12.791	50.107	1.00 41.77	В
	ATOM	244	CB	PRO	45	41.449 -12.001	48.918	1.00 41.50	В
	MOTA	245	CG	PRO	45	42.755 -12.688	48.614	1.00 40.93	В
	MOTA	246	С	PRO	45	39.940 -13.893	49.690	1.00 42.90	В
15	MOTA	247	0	PRO	45	38.750 -13.822	50.002	1.00 43.83	В
	MOTA	248	N	VAL	46	40.429 -14.908	48.985	1.00 42.74	В
	MOTA	249	CA	VAL	46 46	39.554 -15.990 40.348 -17.109	48.552 47.854	1.00 42.50 1.00 41.92	B B
	ATOM ATOM	250 251	CB	VAL VAL	46	39.428 -18.269	47.531	1.00 40.40	В
20	MOTA	252		VAL	46	40.983 -16.574	46.581	1.00 41.19	В
	ATOM	253	c	VAL	46	38.813 -16.577	49.751	1.00 43.26	В
	ATOM	254	0	VAL	46	37.587 -16.736	49.730	1.00 43.10	В
	ATOM	255	N	ARG	47	39.563 -16.896	50.797	1.00 43.54	В
25	MOTA	256	CA	ARG	47	38.975 -17.455	52.007	1.00 44.21	В
25	MOTA	257	CB	ARG	47	40.031 -18.250	52.784	1.00 47.76	В
	MOTA	258	CG	ARG	47	40.295 -19.635	52.203 52.208	1.00 52.08 1.00 55.86	В
	ATOM ATOM	259 260	CD NE	ARG ARG	47 47	41.776 -19.981 42.400 -19.743	53.508	1.00 59.28	B B
	ATOM	261	CZ	ARG	47	42.043 -20.346	54.638	1.00 60.15	В
30	MOTA	262		ARG	47	41.056 -21.237	54.639	1.00 60.50	В
	ATOM	263		ARG	47	42.674 -20.051	55.770	1.00 60.66	В
	ATOM	264	С	ARG	47	38.388 -16.360	52.883	1.00 41.71	В
	MOTA	265	0	ARG	47	37.673 -16.643	53.845	1.00 40.72	В
25	MOTA	266	N	LYS	48	38.695 -15.112	52.537	1.00 39.92	В
35	MOTA	267	CA	LYS	48	38.205 -13.947	53.268	1.00 38.19 1.00 38.15	B B
	MOTA MOTA	268 269	CB CB	LYS LYS	48 48	36.682 -13.912 36.106 -13.820	53.223 51.826	1.00 38.15	В
	ATOM	270	CD	LYS	48	34.638 -14.236	51.809	1.00 39.31	В
	ATOM	271	CE	LYS	48	34.020 -14.014	50.440	1.00 41.44	В
40	MOTA	272	NZ	LYS	48	34.853 -14.620	49.354	1.00 42.78	В
	MOTA	273	С	LYS	48	38.670 -13.925	54.723	1.00 37.09	В
	MOTA	274	0	LYS	48	37.905 -13.563	55.617	1.00 37.31	В
	MOTA	275	N	GLU	49	39.917 -14.314	54.961	1.00 35.98	В
45	MOTA	276		GLU	49 49	40.450 ~14.327 40.861 ~15.733	56.315 56.743	1.00 36.33	B B
45	MOTA MOTA	277 278		GLU GLU	49	39.752 -16.767	56.761	1.00 46.19	В
	MOTA	279		GLU	49	40.261 -18.163	57.122	1.00 49.22	В
	ATOM	280	OE1		49	39.482 -19.131	56.975	1.00 50.87	В
	MOTA	281	OE2		49	41.431 -18.293	57.555	1.00 49.58	В
50	MOTA	282		GLU	49	41.669 -13.444	56.445	1.00 35.96	В
	MOTA	283		GLU	49	42.326 -13.095	55.462	1.00 34.28	В
	ATOM	284		VAL	50	41.967 -13.097	57.685	1.00 34.47	В
	ATOM ATOM	285 286		VAL VAL	50 50	43.122 -12.292 42.704 -10.858	57.999 58.439	1.00 34.53	B B
55	ATOM	287	CG1		50	41.653 -10.918	59.512	1.00 30.31	В
	ATOM	288	CG2		50	43.916 -10.092	58.929	1.00 32.98	В
	ATOM	289		VAL	50	43.782 -13.059	59.135	1.00 35.60	В
	MOTA	290	0	VAL	50	43.136 -13.367	60.130	1.00 36.44	В
~	MOTA	291		SER	51	45.054 -13.411	58.976	1.00 36.72	В
60	MOTA	292		SER	51	45.748 -14.157	60.022	1.00 36.92	В
	MOTA	293		SER	51 51	46.320 -15.481	59.447	1.00 37.59	В
	ATOM ATOM	294 295		SER SER	51 51	46.556 -16.427 46.857 -13.315	60.482 60.656	1.00 36.23 1.00 37.31	B B
	MOTA	296		SER	51	47.694 -12.731	59.960	1.00 36.32	В
65	ATOM	297		VAL	52	46.852 -13.265	61.984	1.00 37.74	В
	ATOM	298		VAL	52	47.817 -12.474	62.735	1.00 39.56	В
	ATOM	299	СВ	VAL	52	47.092 -11.558	63.749	1.00 38.44	В
	ATOM	300	CG1		52	48.090 -10.668	64.454	1.00 37.83	В
70	ATOM	301	CG2		52 53	46.041 -10.737	63.042	1.00 37.78	В
70	ATOM	302		VAL	52 52	48.813 -13.328	63.507	1.00 41.45	В
	MOTA MOTA	303 304		VAL ARG	52 53	48.429 -14.296 50.091 -12.968	64.167 63.434	1.00 41.94 1.00 43.18	B B
	ATOM	305		ARG	53	51.106 -13.713	64.166	1.00 45.18	В
		202				21.100 15.,15	01.100		-

5 ATOM 311 OCZ ARG 53 56.036 -14.095 61.398 1.00 45.30 ATOM 312 NN12 ARG 53 56.028 -15.209 60.675 1.00 44.24 ARG ATOM 312 NN12 ARG 53 56.765 -13.056 61.011 1.00 44.19 ATOM 313 C ARG 53 51.259 -13.092 65.540 1.00 47.93 ATOM 315 N THR 54 51.156 -13.929 66.667 1.00 48.40 ATOM 315 N THR 54 51.156 -13.929 66.665 1.00 48.40 ATOM 316 CA THR 54 51.257 -13.473 67.941 1.00 51.39 ATOM 317 CB THR 54 49.91 -13.744 68.683 1.00 51.01 ATOM 319 CG2 THR 54 49.91 -13.744 68.683 1.00 51.01 ATOM 319 CG2 THR 54 48.775 -13.144 67.914 1.00 51.53 ATOM 319 CG2 THR 54 52.391 -14.139 68.709 1.00 52.60 ATOM 321 O THR 54 52.391 -14.139 68.709 1.00 52.60 ATOM 321 O THR 54 52.391 -14.139 68.709 1.00 52.60 ATOM 322 N GLY 55 53.009 -14.784 67.995 1.00 54.10 ATOM 323 CA GLY 55 53.109 -14.549 67.995 1.00 54.10 ATOM 323 CA GLY 55 53.109 -14.546 67.991 1.00 51.53 ATOM 322 N GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 325 O GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 326 C GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 327 CA GLY 56 57.682 -16.880 67.372 1.00 60.97 ATOM 328 C GLY 56 57.682 -16.880 67.372 1.00 60.97 ATOM 328 C GLY 56 57.682 -16.880 67.372 1.00 60.97 ATOM 328 C GLY 56 57.682 -16.880 67.372 1.00 60.97 ATOM 329 O GLY 56 56.940 -15.828 65.350 1.00 66.18 ATOM 331 CA LEU 57 59.032 -16.821 63.809 1.00 64.76 ATOM 332 C LEU 57 59.032 -16.821 63.809 1.00 64.76 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 64.92 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 64.92 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 333 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 330 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 330 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 330 CA LEU 57 59.032 -16.821 63.809 1.00 66.18 ATOM 340 CB ALA 58 57.687 -17.891 59.286 1.00 63.43 ATOM 340 CB ALA 58 57.687 -17.891 59.286 1.00 63.25 ATOM 340 CB ALA 58 5	B B B	1.00 45.91 1.00 44.72 1.00 45.80 1.00 46.75	63.434 64.064 63.034 62.514	52.452 -13.698 53.488 -14.619 54.490 -15.103 55.317 -14.018	53 53 53 53	ARG ARG ARG ARG	CB CG CD NE	306 307 308 309	ATOM ATOM ATOM ATOM	
10 ATOM 315 N THR 54 51.156-13.929 66.565 1.00 49.62 ATOM 316 CA THR 54 51.257 -13.473 67.941 1.00 51.39 ATOM 317 CB THR 54 49.941-13.744 68.683 1.00 51.01 ATOM 318 CG1 THR 54 49.735-15.157 68.795 1.00 49.13 ATOM 319 CG2 THR 54 48.775-13.144 67.914 1.00 51.53 ATOM 320 C THR 54 48.775-13.144 67.914 1.00 51.53 ATOM 320 C THR 54 52.391-14.139 68.799 1.00 52.60 ATOM 321 N GLY 55 53.309-14.058 69.933 1.00 53.07 ATOM 322 N GLY 55 53.309-14.784 67.991 0.00 52.60 ATOM 323 CA GLY 55 55.721-15.159 67.914 1.00 55.63 ATOM 323 CA GLY 55 55.721-15.159 67.914 1.00 59.62 ATOM 325 O GLY 55 55.721-15.159 67.914 1.00 59.62 ATOM 326 N GLY 56 56.393 -16.688 68.066 1.00 57.08 ATOM 327 CA GLY 56 56.393-16.688 68.016 1.00 60.97 ATOM 328 C GLY 56 57.682-16.880 67.372 1.00 62.99 ATOM 328 C GLY 56 57.682-16.880 67.372 1.00 62.99 ATOM 329 O GLY 55 56.490-15.828 65.350 1.00 66.18 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.96 ATOM 320 N GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 64.97 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 66.18 ATOM 320 C GLY 56 56.940-15.828 65.350 1.00 66.18 ATOM 330 N LEU 57 58.818 -17.074 65.235 1.00 64.97 ATOM 331 C LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 332 CB LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 334 CDL LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 334 CDL LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 335 CDL LEU 57 60.508 -17.137 63.407 1.00 66.125 ATOM 337 C LEU 57 58.080 -17.654 62.951 1.00 65.52 ATOM 339 C ALA 58 57.770 -19.838 60.847 1.00 65.52 ATOM 330 N ALA 58 57.870 -19.838 60.847 1.00 65.62 ATOM 330 N ALA 58 57.870 -19.838 60.847 1.00 65.52 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 65.52 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 65.52 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 65.65 ATOM 340 CB ALYS 60 57.341 -13.240 66.66 66.672 1.00 55.07	B B B	1.00 45.30 1.00 44.24 1.00 44.19	61.398 60.675 61.011	56.036 -14.095 56.028 -15.209 56.765 -13.056	53 53 53	ARG ARG ARG	CZ NH1 NH2	310 311 312	MOTA MOTA MOTA	5
ATOM 318 OGI THR 54 49.735 -15.157 68.795 1.00 49.13 ATOM 320 C THR 54 48.775 -13.144 67.914 1.00 51.53 ATOM 321 O THR 54 52.391 -14.139 68.709 1.00 52.60 ATOM 322 N GLY 55 53.309 -14.784 67.995 1.00 54.10 ATOM 323 CA GLY 55 55.4040 -15.459 68.666 1.00 57.08 ATOM 324 C GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 325 O GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 326 N GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 327 CA GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 328 C GLY 56 57.682 -16.880 67.372 1.00 62.99 ATOM 329 O GLY 56 57.682 -16.880 67.372 1.00 62.99 ATOM 320 O GLY 56 55.940 -15.828 65.350 1.00 64.97 ATOM 331 CA LEU 57 58.818 -17.074 65.235 1.00 64.97 ATOM 332 CB LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 333 CB LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 334 CDI LEU 57 61.684 -17.335 65.520 1.00 62.77 ATOM 335 CD2 LEU 57 62.928 -16.626 64.258 1.00 63.25 ATOM 336 C LEU 57 68.808 -17.137 63.407 1.00 63.25 ATOM 337 O LEU 57 58.808 -17.654 62.951 1.00 65.79 ATOM 338 N ALA 58 58.269 -17.597 61.636 1.00 65.79 ATOM 339 CA ALA 58 57.770 -19.838 60.847 1.00 65.23 ATOM 341 C ALA 58 57.770 -19.838 60.847 1.00 65.65 ATOM 344 CA ASP 59 59.599 -21.447 61.552 1.00 64.59 ATOM 344 CA ASP 59 59.599 -21.447 61.552 1.00 64.59 ATOM 346 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 347 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 348 OD2 ASP 59 60.973 -20.709 60.525 1.00 64.73 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 66.66 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 65.73 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 340 CB ASP 59 60.973 -20.709 60.525 1.00 64.75 ATOM 340 CB ASP 59 60.973 -20.709 60.525	B B B	1.00 48.40 1.00 49.62 1.00 51.39	65.667 66.565 67.941	51.466 -11.884 51.156 -13.929 51.257 -13.473	53 54 54	ARG THR THR	O N CA	314 315 316	MOTA MOTA MOTA	10
ATOM 323 CA GLY 55 54.404 -15.459 68.666 1.00 57.08 ATOM 324 C GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 325 O GLY 55 55.721 -15.519 67.914 1.00 59.62 ATOM 326 N GLY 56 56.393 -16.668 68.016 1.00 60.97 ATOM 327 CA GLY 56 57.682 -16.880 67.372 1.00 62.99 ATOM 328 C GLY 56 57.682 -16.880 67.372 1.00 62.99 ATOM 328 C GLY 56 57.782 -16.549 65.892 1.00 64.76 ATOM 329 O GLY 56 55.940 -15.828 65.350 1.00 66.18 ATOM 331 CA LEU 57 59.032 -16.881 67.372 1.00 62.99 ATOM 331 CA LEU 57 59.032 -16.821 63.809 1.00 64.97 ATOM 331 CA LEU 57 59.032 -16.821 63.809 1.00 64.97 ATOM 332 CB LEU 57 60.508 -17.137 63.407 1.00 63.43 ATOM 333 CG LEU 57 60.508 -17.137 63.407 1.00 63.25 ATOM 335 CD LEU 57 61.638 -16.508 64.258 1.00 63.25 ATOM 336 CD LEU 57 61.844 -17.335 65.520 1.00 62.77 ATOM 337 O LEU 57 58.080 -17.654 62.951 1.00 61.76 ATOM 337 O LEU 57 58.080 -17.654 62.951 1.00 65.79 ATOM 338 N ALA 58 58.269 -17.597 61.636 1.00 65.88 ATOM 334 CB ALA 58 57.435 -18.356 60.712 1.00 65.82 ATOM 340 CB ALA 58 57.435 -18.356 60.712 1.00 65.65 ATOM 341 C ALA 58 57.705 -19.838 60.847 1.00 65.82 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.82 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 64.59 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 57.705 -19.838 60.847 1.00 65.65 ATOM 340 CB ALA 58 59.948 -1	B B B	1.00 51.53 1.00 52.60	68.795 67.914 68.709 69.933	48.775 -13.144 52.391 -14.139	54 54	THR THR THR	OG1 CG2 C	318 319 320	MOTA MOTA MOTA	15
ATOM 327 CA GLY 56 57.682 -16.880 67.372 1.00 62.99 ATOM 328 C GLY 56 57.782 -16.549 65.892 1.00 64.76 ATOM 329 O GLY 56 56.940 -15.828 65.350 1.00 64.76 ATOM 330 N LEU 57 58.818 -17.074 65.235 1.00 64.97 ATOM 331 CA LEU 57 59.032 -16.621 63.809 1.00 64.92 ATOM 332 CB LEU 57 60.508 -17.137 63.407 1.00 63.43 ATOM 333 CG LEU 57 60.508 -17.137 63.407 1.00 63.43 ATOM 334 CDI LEU 57 61.638 -16.508 64.258 1.00 63.25 ATOM 335 CD2 LEU 57 61.638 -16.508 64.258 1.00 62.77 ATOM 336 C LEU 57 59.080 -17.654 62.951 1.00 62.77 ATOM 337 O LEU 57 57.186 -18.328 63.470 1.00 65.79 ATOM 339 CA ALA 58 58.269 -17.597 61.636 1.00 65.65 ATOM 340 CB ALA 58 57.780 -19.838 60.847 1.00 65.82 ATOM 340 CB ALA 58 57.687 -17.891 59.286 1.00 65.82 ATOM 341 C ALA 58 57.770 -19.838 60.847 1.00 65.82 ATOM 342 O ALA 58 56.953 -20.709 60.525 1.00 60.66 ATOM 346 CG ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 347 OD1 ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 349 C ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 349 C ASP 59 59.509 -21.447 61.542 1.00 61.95 ATOM 349 C ASP 59 59.863 -22.268 62.266 1.00 61.45 ATOM 349 C ASP 59 59.863 -22.2268 62.266 1.00 61.45 ATOM 349 C ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 349 C ASP 59 59.863 -22.274 62.519 1.00 56.73 ATOM 349 C ASP 59 59.863 -22.274 62.519 1.00 56.73 ATOM 350 C ASP 59 58.863 -22.274 62.519 1.00 56.73 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 56.73 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 56.73 ATOM 353 CB LYS 60 58.109 -21.591 63.513 1.00 56.73 ATOM 355 CD LYS 60 58.109 -21.591 63.513 1.00 51.18 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.18 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.19 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.19 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.19 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.19 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 51.19 ATOM 360 N SER 61 54.559 1.9.905 65.960 1.00 45.35 ATOM 361 CA SER 61 54.559 1.9.905 65.960 1.00 45.35 ATOM 365 C B SER 61 54.559 1.9.905 65.960 1.00 45.35 ATOM 365 C B SER 61 54.559 1.9.905 65	B B B	1.00 57.08 1.00 59.62 1.00 59.27	68.666 67.914 67.264	54.404 -15.459 55.721 -15.519 56.119 -14.549	55 55 55	GLY GLY GLY	CA C O	323 324 325	MOTA MOTA MOTA	20
ATOM 331 CA LEU 57 60.508 -17.137 63.407 1.00 64.92 ATOM 332 CB LEU 57 60.508 -17.137 63.407 1.00 63.43 ATOM 333 CG LEU 57 61.638 -16.508 64.258 1.00 63.25 ATOM 334 CD1 LEU 57 61.638 -16.508 64.258 1.00 63.25 ATOM 335 CD2 LEU 57 61.844 -17.335 65.520 1.00 62.77 ATOM 336 C LEU 57 62.928 -16.452 63.459 1.00 61.76 ATOM 337 O LEU 57 58.080 -17.654 62.951 1.00 65.79 ATOM 338 N ALA 58 58.269 -17.597 61.636 1.00 65.65 ATOM 339 CA ALA 58 57.435 -18.356 60.712 1.00 65.12 ATOM 340 CB ALA 58 57.687 -17.891 59.286 1.00 65.82 ATOM 341 C ALA 58 57.687 -17.891 59.286 1.00 64.20 ATOM 342 O ALA 58 56.953 -20.709 60.525 1.00 64.20 ATOM 344 CA ASP 59 59.509 -21.447 61.542 1.00 60.18 ATOM 346 CG ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 348 OD2 ASP 59 61.622 -22.682 62.266 1.00 61.95 ATOM 349 C ASP 59 61.622 -22.682 62.266 1.00 61.95 ATOM 349 C ASP 59 58.663 -23.155 61.370 1.00 65.507 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 352 CA LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 355 CD LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 356 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 357 NZ LYS 60 58.046 -24.839 67.368 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.86 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.86 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.86 ATOM 358 C LYS 60 57.301 -23.696 66.672 1.00 51.88 ATOM 360 N SER 61 54.599 -18.803 63.820 1.00 44.99 ATOM 361 CA SER 61 54.599 -18.803 63.820 1.00 44.99 ATOM 366 N SER 61 54.599 -18.803 63.820 1.00 44.99	B B B	1.00 62.99 1.00 64.76 1.00 66.18	67.372 65.892 65.350	57.682 -16.880 57.782 -16.549 56.940 -15.828	56 56 56	GLY GLY	CA C O	327 328 329	ATOM ATOM ATOM	25
30	B B B B	1.00 64.92 1.00 63.43 1.00 63.25	63.809 63.407 64.258	59.032 -16.821 60.508 -17.137 61.638 -16.508	57 57 57	LEU LEU	CA CB CG	331 332 333	ATOM ATOM ATOM	23
35 ATOM 340 CB ALA 58 57.435 -18.356 60.712 1.00 65.12 ATOM 340 CB ALA 58 57.687 -17.891 59.286 1.00 65.82 ATOM 341 C ALA 58 57.770 -19.838 60.847 1.00 64.20 ATOM 342 O ALA 58 56.953 -20.709 60.525 1.00 64.59 ATOM 343 N ASP 59 58.980 -20.099 61.340 1.00 62.61 ATOM 344 CA ASP 59 59.509 -21.447 61.542 1.00 60.18 ATOM 346 CB ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 346 CG ASP 59 61.622 -22.682 62.266 1.00 61.45 ATOM 348 OD2 ASP 59 61.396 -23.268 63.343 1.00 61.95 ATOM 349 C ASP 59 58.663 -22.274 62.519 1.00 58.06 ATOM 350 O ASP 59 58.663 -22.274 62.519 1.00 58.06 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 352 CA LYS 60 57.258 -22.200 64.528 1.00 52.63 ATOM 353 CB LYS 60 57.258 -22.200 64.528 1.00 51.86 ATOM 356 CE LYS 60 57.301 -23.079 65.525 1.00 51.66 ATOM 357 NZ LYS 60 58.046 -24.839 67.368 1.00 51.88 ATOM 357 NZ LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 358 C LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 357 NZ LYS 60 56.615 -21.023 65.248 1.00 51.19 ATOM 359 O LYS 60 57.314 -20.124 65.724 1.00 51.41 ATOM 360 N SER 61 54.891 -18.636 65.192 1.00 46.32 ATOM 361 CA SER 61 54.891 -18.636 65.192 1.00 44.99 ATOM 362 CB SER 61 54.559 -18.803 63.820 1.00 44.99 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 365 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 61.76 1.00 65.79 1.00 65.88	63.459 62.951 63.470	62.928 -16.452 58.080 -17.654 57.186 -18.328	57 57 57	LEU LEU	CD2	335 336 337	MOTA MOTA MOTA	30
ATOM 343 N ASP 59 58.980 -20.099 61.340 1.00 62.61 ATOM 344 CA ASP 59 59.509 -21.447 61.542 1.00 60.18 ATOM 345 CB ASP 59 60.973 -21.335 62.035 1.00 60.66 ATOM 346 CG ASP 59 61.622 -22.682 62.266 1.00 61.45 ATOM 347 OD1 ASP 59 61.396 -23.268 63.343 1.00 61.95 ATOM 348 OD2 ASP 59 62.356 -23.155 61.370 1.00 61.61 ATOM 349 C ASP 59 58.663 -22.274 62.519 1.00 58.06 45 ATOM 350 O ASP 59 58.663 -22.274 62.519 1.00 58.06 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 352 CA LYS 60 57.258 -22.200 64.528 1.00 52.63 ATOM 353 CB LYS 60 58.107 -23.079 65.525 1.00 51.66 ATOM 354 CG LYS 60 57.301 -23.079 65.525 1.00 51.66 ATOM 355 CD LYS 60 58.046 -24.839 67.368 1.00 53.18 ATOM 356 CE LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 357 NZ LYS 60 60.197 -25.492 68.528 1.00 52.09 ATOM 359 O LYS 60 57.314 -20.124 65.724 1.00 51.41 50 ATOM 360 N SER 61 54.599 -19.905 65.960 1.00 48.55 ATOM 361 CA SER 61 54.599 -19.905 65.960 1.00 44.99 ATOM 362 CB SER 61 54.559 -18.803 63.820 1.00 44.99 ATOM 364 C SER 61 53.092 -20.082 66.086 1.00 45.35 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 365 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 65.12 1.00 65.82 1.00 64.20	60.712 59.286 60.847	57.435 -18.356 57.687 -17.891 57.770 -19.838	58 58 58	ALA ALA ALA	CA CB C	339 340 341	MOTA MOTA MOTA	35
ATOM 347 OD1 ASP 59 61.396 -23.268 63.343 1.00 61.95 ATOM 348 OD2 ASP 59 62.356 -23.155 61.370 1.00 61.61 ATOM 349 C ASP 59 58.663 -22.274 62.519 1.00 58.06 ATOM 350 O ASP 59 58.519 -23.490 62.370 1.00 56.73 ATOM 351 N LYS 60 58.109 -21.591 63.513 1.00 55.07 ATOM 352 CA LYS 60 57.258 -22.200 64.528 1.00 52.63 ATOM 353 CB LYS 60 58.107 -23.079 65.525 1.00 51.66 ATOM 354 CG LYS 60 57.301 -23.696 66.672 1.00 51.86 ATOM 355 CD LYS 60 58.046 -24.839 67.368 1.00 51.86 ATOM 356 CE LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 357 NZ LYS 60 60.197 -25.492 68.528 1.00 52.09 ATOM 359 O LYS 60 56.615 -21.023 65.248 1.00 52.09 ATOM 359 O LYS 60 57.314 -20.124 65.724 1.00 51.41 ATOM 360 N SER 61 55.287 -21.010 65.313 1.00 48.55 ATOM 361 CA SER 61 54.599 -19.905 65.960 1.00 45.99 ATOM 362 CB SER 61 54.599 -19.905 65.960 1.00 44.99 ATOM 364 C SER 61 54.599 -19.905 65.449 1.00 44.99 ATOM 365 O SER 61 53.092 -20.082 66.086 1.00 45.35 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 365 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 62.61 1.00 60.18 1.00 60.66	61.340 61.542 62.035	58.980 -20.099 59.509 -21.447 60.973 -21.335	59 59 59	ASP ASP ASP	N CA CB	343 344 345	MOTA MOTA MOTA	40
ATOM 352 CA LYS 60 57.258 -22.200 64.528 1.00 52.63 ATOM 353 CB LYS 60 58.107 -23.079 65.525 1.00 51.66 ATOM 354 CG LYS 60 57.301 -23.696 66.672 1.00 51.86 ATOM 355 CD LYS 60 58.046 -24.839 67.368 1.00 51.88 ATOM 356 CE LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 357 NZ LYS 60 60.197 -25.492 68.528 1.00 52.09 ATOM 358 C LYS 60 56.615 -21.023 65.248 1.00 51.19 ATOM 359 O LYS 60 57.314 -20.124 65.724 1.00 51.41 ATOM 360 N SER 61 55.287 -21.010 65.313 1.00 48.55 ATOM 361 CA SER 61 54.599 -19.905 65.960 1.00 45.99 ATOM 362 CB SER 61 54.881 -18.636 65.192 1.00 46.32 ATOM 363 OG SER 61 54.559 -18.803 63.820 1.00 44.99 ATOM 364 C SER 61 53.092 -20.082 66.086 1.00 44.99 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 366 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 61.61 1.00 58.06	61.370 62.519	62.356 -23.155 58.663 -22.274	59 59	ASP ASP	OD2 C	348 349	ATOM ATOM	45
ATOM 356 CE LYS 60 59.349 -24.373 68.011 1.00 53.18 ATOM 357 NZ LYS 60 60.197 -25.492 68.528 1.00 52.09 ATOM 358 C LYS 60 56.615 -21.023 65.248 1.00 51.19 ATOM 359 O LYS 60 57.314 -20.124 65.724 1.00 51.41 ATOM 360 N SER 61 55.287 -21.010 65.313 1.00 48.55 ATOM 361 CA SER 61 54.599 -19.905 65.960 1.00 45.99 ATOM 362 CB SER 61 54.881 -18.636 65.192 1.00 46.32 ATOM 363 OG SER 61 54.559 -18.803 63.820 1.00 44.99 ATOM 364 C SER 61 53.092 -20.082 66.086 1.00 45.35 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 366 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 52.63 1.00 51.66	64.528 65.525	57.258 -22.200 58.107 -23.079	60 60	LYS LYS	CA CB	352 353	MOTA MOTA	
55 ATOM 360 N SER 61 55.287 -21.010 65.313 1.00 48.55 ATOM 361 CA SER 61 54.599 -19.905 65.960 1.00 45.99 ATOM 362 CB SER 61 54.881 -18.636 65.192 1.00 46.32 ATOM 363 OG SER 61 54.559 -18.803 63.820 1.00 44.99 ATOM 364 C SER 61 53.092 -20.082 66.086 1.00 45.35 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 366 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 53.18 1.00 52.09	68.011 68.528	59.349 -24.373 60.197 -25.492	60 60	LYS LYS	CE NZ	356 357	MOTA MOTA	50
60 ATOM 364 C SER 61 53.092 -20.082 66.086 1.00 45.35 ATOM 365 O SER 61 52.491 -20.950 65.449 1.00 44.81 ATOM 366 N SER 62 52.488 -19.242 66.922 1.00 43.72	B B B	1.00 48.55 1.00 45.99 1.00 46.32	65.313 65.960 65.192	55.287 -21.010 54.599 -19.905 54.881 -18.636	61 61 61	SER SER SER	N CA CB	360 361 362	MOTA MOTA MOTA	55
	B B B	1.00 45.35 1.00 44.81 1.00 43.72	66.086 65.449 66.922	53.092 -20.082 52.491 -20.950 52.488 -19.242	61 61 62	SER SER SER	C O N	364 365 366	MOTA MOTA MOTA	60
ATOM 368 CB SER 62 50.738 -19.050 68.592 1.00 41.39 ATOM 369 OG SER 62 51.608 -18.079 69.135 1.00 41.34 65 ATOM 370 C SER 62 50.440 -18.143 66.291 1.00 40.85	B B B	1.00 41.34 1.00 40.85	69.135 66.291	51.608 -18.079 50.440 -18.143	62 62	SER SER	OG C	369 370	MOTA MOTA	65
ATOM 371 O SER 62 51.147 -17.229 65.872 1.00 39.19 ATOM 372 N ARG 63 49.138 -18.221 66.031 1.00 40.24 ATOM 373 CA ARG 63 48.461 -17.207 65.226 1.00 38.90 ATOM 374 CB ARG 63 48.630 -17.514 63.695 1.00 39.76	B B B	1.00 40.24 1.00 38.90 1.00 39.76	66.031 65.226 63.695	49.138 -18.221 48.461 -17.207 48.630 -17.514	63 63 63	ARG ARG ARG	N CA CB	372 373 374	MOTA MOTA MOTA	70
70 ATOM 375 CG ARG 63 50.074 -17.554 63.205 1.00 41.62 ATOM 376 CD ARG 63 50.149 -17.897 61.725 1.00 43.20 ATOM 377 NE ARG 63 49.763 -16.776 60.866 1.00 46.47 ATOM 378 CZ ARG 63 50.526 -15.711 60.626 1.00 46.07	B B B	1.00 43.20 1.00 46.47	61.725 60.866	50.149 -17.897 49.763 -16.776	63 63	ARG ARG	CD NE	376 377	MOTA MOTA	70

	MOTA	379	NH1	ARG	63	51.728	-15.613	61.178	1.00 47.55	В
	MOTA	380	NH2	ARC	63	50 090	-14.741	59.833	1.00 45.86	В
	MOTA	381		ARG	63		-17.131	65.558	1.00 37.75	В
_	MOTA	382	0	ARG	63	46.410	-18.050	66.143	1.00 36.32	В
5	ATOM	383	N	LYS	64	46 356	-16.019	65.174	1.00 37.15	В
•										
	ATOM	384		LYS	64		-15.788	65.400	1.00 35.14	В
	MOTA	385	СВ	LYS	64	44.737	-14.607	66.342	1.00 36.48	В
	ATOM	386	CG	LYS	64	45 236	-14.826	67.760	1.00 37.70	В
									-	
10	ATOM	387	CD	LYS	64	44.1/4	-15.510	68.604	1.00 40.04	В
10	ATOM	388	CE	LYS	64	44.488	-15.408	70.087	1.00 40.04	В
	ATOM	389		LYS	64		-15.861	70.893	1.00 40.98	В
	MOTA	390		LYS	64		-15.467	64.041	1.00 33.82	В
	MOTA	391	0.	LYS	64	44.811	-14.590	63.329	1.00 35.17	В
	ATOM	392		THR	65	43 253	-16.173	63.669	1.00 31.23	В
15										
13	ATOM	393	CA	THR	65		-15.928	62.377	1.00 30.10	В
	ATOM	394	CB '	THR	65	42.784	-17.141	61.438	1.00 32.25	В
	MOTA	395	0G1	THR	65	44 171	-17.498	61.357	1.00 32.66	В
	ATOM	396	CG2		65		-16.799	60.028	1.00 33.40	В
	ATOM	397	C	THR	65	41.133	-15.597	62.503	1.00 28.24	В
20	ATOM	398	0	THR	65	40.440	-16.116	63.382	1.00 28.59	В
	MOTA	399		TYR	66		-14.720	61.630	1.00 24.28	В
	ATOM	400	CA '	TYR	66	39.244	-14.335	61.665	1.00 22.45	В
	ATOM	401	CB '	TYR	6 6	39.045	-12.976	62.362	1.00 19.03	В
25	ATOM	402		TYR	66		-12.804	63.674	1.00 16.05	В
25	MOTA	403	CD1 '	TYR	66	41.158	-12.594	63.697	1.00 11.74	В
	MOTA	404	CE1	TYR	66	41.829	-12.377	64.894	1.00 13.31	В
	MOTA	405	CD2 '		66		-12.802	64.891	1.00 15.60	В
	ATOM	406	CES '	TYR	66	39.753	-12.586	66.097	1.00 13.06	В
	ATOM	407	CZ '	TYR	66	41.121	-12.368	66.090	1.00 15.20	В
30							-12.100	67.272		
50	MOTA	408		TYR	66				1.00 19.72	В
	MOTA	409	c '	TYR	66	38.666	-14.241	60.271	1.00 22.39	В
	ATOM	410	0 '	TYR	66	39.355	-13.876	59.317	1.00 21.02	В
								60.167	1.00 23.76	
	ATOM	411		THR	67		-14.580			В
	MOTA	412	CA '	THR	67	36.678	-14.523	58.900	1.00 25.75	В
35	MOTA	413	CB '	THR	67	35.789	-15.754	58.699	1.00 24.72	В
	MOTA	414	OG1		67		-16.923	58.702	1.00 28.23	В
	ATOM	415	CG2 1	THR	67	35.043	-15.664	57.376	1.00 24.97	В
	MOTA	416	C 1	THR	67	35.787	-13.291	58.864	1.00 26.39	В
							-13.026			
40	ATOM	417		THR	67			59.811	1.00 26.22	В
40	MOTA	418	N I	PHE	68	35.899	-12.538	57.775	1.00 26.28	В
	ATOM	419	CA I	PHE	68	35.091	-11.342	57.565	1.00 27.23	В
		420			68		-10.056	57.673	1.00 25.89	В
	MOTA			PHE						
	ATOM	421	CG 1	PHE	68	36.634	-9.893	58.997	1.00 27.52	В
	MOTA	422	CD1	PHE	68	37.873	-10.485	59.230	1.00 26.70	В
45	MOTA	423	CD2		68	36.037	-9.161	60.023	1.00 26.12	В
17										
	ATOM	424	CE1	PHE	68	38.501	-10.350	60.464	1.00 25.62	В
	MOTA	425	CE2	PHE	68	36.662	-9.025	61.258	1.00 25.03	В
	ATOM	426		PHE	68	37.894	-9.619	61.478	1.00 25.92	В
50	MOTA	427	C 1	PHE	68	34.492	-11.434	56.171	1.00 27.19	В
50	ATOM	428	0 1	PHE	68	34.955	-12.206	55.328	1.00 27.43	В
	ATOM	429	N A	ASP	69	33 470	-10.631	55.926	1.00 26.71	В
	MOTA	430		ASP	69		-10.629	54.636	1.00 27.55	В
	MOTA	431	CB A	ASP	69	31.660	-9.635	54.684	1.00 27.61	В
	ATOM	432	CG A	ASP	69	30.623	-10.019	55.735	1.00 28.58	В
55										_
55	ATOM	433	OD1 A		69		-9.403	56.831	1.00 27.66	В
	MOTA	434	OD2 7	ASP	69	29.865	-10.972	55.461	1.00 28.48	В
	MOTA	435	C 7	ASP	69	33.738	-10.366	53.458	1.00 27.41	В
	ATOM	436		ASP	69		-10.771	52.334	1.00 27.23	
										В
	ATOM	437	N N	1ET	70	34.861	-9.710	53.732	1.00 28.30	В
60	MOTA	438	CA N	1ET	70	35.865	-9.396	52.717	1.00 28.88	В
					70		-8.213	51.821		
	MOTA	439		1ET		35.424			1.00 30.69	В
	ATOM	440		1ET	70	34.283	-8.469	50.867	1.00 31.73	В
	ATOM	441	SD M	1ET	70	33.894	-6.957	49.923	1.00 36.68	В
	ATOM	442		1ET	70	32.083	-7.049	49.877	1.00 34.73	В
65										
65	MOTA	443	C N	1ET	70	37.141	-8.983	53.433	1.00 28.83	В
	ATOM	444	0 M	1ET	70	37.098	-8.480	54.553	1.00 29.82	В
							-9.188	52.780	1.00 27.33	
	MOTA	445		/AL	71	38.274				В
	MOTA	446	ÇA V	/AL	71	39.553	-8.812	53.349	1.00 26.23	В
	MOTA	447	CB V	/AL	71	40.291	-10.021	54.003	1.00 27.99	В
70	ATOM				71		-10.381	55.319	1.00 28.32	В
70		448	CG1 V							
	MOTA	449	CG2 V	/AL	71	40.264	-11.219	53.076	1.00 28.60	В
	MOTA	450		/AL	71	40.398	-8.233	52.231	1.00 25.01	В
	MOTA	451	o v	/AL	71	40.363	-8.713	51.100	1.00 24.55	В

	MOTA	452	N	PHE	72	41.146	-7.191	52.571	1.00 24.93	В
	ATOM	453	CA	PHE	72	42.005	-6.475	51.645	1.00 24.43	В
	MOTA	454	СВ	PHE	72	41.444	-5.076	51.392	1.00 23.95	В
	MOTA	455	CG	PHE	72	40.024	-5.059	50.903	1.00 23.17	В
5	ATOM	456		PHE	72	39.722	-5.376	49.583	1.00 22.75	В
	MOTA	457	CD2	PHE	72	38.991	-4.680	51.754	1.00 23.31	В
	MOTA	458	CE1	PHE	72	38.414	-5.310	49.113	1.00 23.87	В
	MOTA	459	CE2	PHE	72	37.679	-4.612	51.294	1.00 23.71	В
	MOTA	460	CZ	PHE	72	37.389	-4.927	49.970	1.00 24.15	В
10	MOTA	461	С	PHE	72	43.381	-6.321	52.266	1.00 25.11	В
	ATOM	462	0	PHE	72	43.522	-5.683	53.312	1.00 26.80	В
	MOTA	463	N	GLY	73	44.394	-6.885	51.621	1.00 24.77	В
	MOTA	464	CA	GLY	73	45.741	-6.774	52.142	1.00 23.03	В
. ~	MOTA	465	С	GLY	73	46.352	-5.450	51.743	1.00 26.33	В
15	MOTA	466	0	GLY	73	45.698	-4.594	51.141	1.00 26.76	В
	MOTA	467	N	ALA	74	47.626	-5.284	52.062	1.00 27.88	В
	ATOM	468	CA	ALA	74	48.335	-4.054	51.752	1.00 28.98	В
	MOTA	469	CB	ALA	74	49.690	-4.074	52.427	1.00 29.52	В
20	MOTA	470	C	ALA	74	48.505	-3.802	50.260	1.00 29.91	В
20	MOTA	471	0	ALA	74	49.037	-2.773	49.865	1.00 31.84	В
	MOTA	472	N	SER	75	48.051	-4.726	49.426	1.00 31.43	В
	MOTA	473	CA	SER	75	48.209	-4.558	47.982	1.00 34.31	В
	MOTA	474	CB	SER	75 75	48.382	-5.914	47.318	1.00 32.52	В
25	MOTA	475	OG	SER	75 75	49.088	-6.785	48.183	1.00 36.15	В
23	MOTA	476	C	SER	75 75	46.994	-3.858 -3.236	47.395 46.327	1.00 34.29	B B
	MOTA	477	0	SER	75 76	47.066			1.00 34.53	В
	MOTA MOTA	478 479	N CA	THR THR	76 76	45.882 44.635	-3.963 -3.364	48.111 47.675	1.00 32.03	В
	ATOM	480	CB	THR	76	43.530	-3.549	48.744	1.00 32.77	В
30	ATOM	481	OG1		76	43.612	-4.863	49.305	1.00 32.04	В
50	ATOM	482		THR	76	42.158	-3.380	48.120	1.00 33.21	В
	ATOM	483	C	THR	76	44.803	-1.870	47.403	1.00 31.46	В
	ATOM	484	ō	THR	76	45.305	-1.134	48.251	1.00 32.33	В
	ATOM	485	N	LYS	77	44.394	-1.430	46.218	1.00 29.15	В
35	ATOM	486	CA	LYS	77	44.469	-0.015	45.875	1.00 27.33	В
	MOTA	487	СВ	LYS	77	44.906	0.155	44.423	1.00 29.39	В
	ATOM	488	CG	LYS	77	46.342	-0.341	44.187	1.00 32.84	В
	MOTA	489	CD	LYS	77	46.949	0.180	42.884	1.00 36.59	В
	MOTA	490	CE	LYS	77	46.241	-0.349	41.627	1.00 38.03	В
40	MOTA	491	NZ	LYS	77	44.818	0.106	41.501	1.00 38.31	В
	ATOM	492	С	LYS	77	43.096	0.625	46.134	1.00 25.52	В
	MOTA	493	0	LYS	77	42.127	-0.088	46.371	1.00 23.25	В
	MOTA	494	И	GLN	78	43.018	1.956	46.115	1.00 24.22	В
4.5	MOTA	495	CA	GLN	78	41.759	2.652	46.398	1.00 22.43	В
45	ATOM	496	CB	GLN	78	41.935	4.177	46.226	1.00 22.53	В
	MOTA	497	CG	GLN	78	43.014	4.799	47.088	1.00 21.23	В
	MOTA	498	CD	GLN	78	42.603	4.953	48.539	1.00 20.15	В
	MOTA	499		GLN	78	42.235	3.988	49.192	1.00 18.03	В
50	MOTA	500		GLN	78	42.661	6.178	49.045	1.00 21.65	В
50	MOTA OTA	501	C	GLN	78 70	40.624	2.177	45.504 45.986	1.00 22.10	B B
		502 503	N O	GLN ILE	78 79	39.533 40.898	1.839 2.153	44.203	1.00 20.46 1.00 21.56	В
	ATOM ATOM	504	CA	ILE	79 79	39.929	1.746	43.194	1.00 21.50	В
	ATOM	505	CB	ILE	79 79	40.590	1.749	41.774	1.00 23.18	В
55	ATOM	506	CG2		79	41.716		41.715		В
55	ATOM	507	CG1		79	39.574	1.416	40.705	1.00 21.98	В
	ATOM	508	CD1		79	38.563	2.492	40.470	1.00 23.15	В
	ATOM	509	C	ILE	79	39.303	0.366	43.475	1.00 25.91	В
	MOTA	510	ō	ILE	79	38.142	0.120	43.122	1.00 26.57	В
60	ATOM	511	N	ASP	80	40.061	-0.527	44.107	1.00 24.45	В
-	MOTA	512	CA	ASP	80	39.547	-1.857	44.416	1.00 25.05	В
	ATOM	513	СВ	ASP	80	40.694	-2.832	44.721	1.00 25.59	В
	MOTA	514	CG	ASP	80	41.691	-2.928	43.588	1.00 26.46	В
	ATOM	515	OD1		80	41.248	-2.925	42.414	1.00 26.20	В
65	MOTA	516	OD2		80	42.912	-3.016	43.877	1.00 27.35	В
	MOTA	517	С	ASP	80	38.612	-1.809	45.611	1.00 24.84	В
	MOTA	518	0	ASP	80	37.638	-2.553	45.686	1.00 23.83	В
	MOTA	519	N	VAL	81	38.924	-0.934	46.556	1.00 25.12	В
~ ^	MOTA	520	CA	VAL	81	38.102	-0.794	47.742	1.00 25.00	В
70	MOTA	521	CB	VAL	81	38.749	0.174	48.750	1.00 22.43	В
	MOTA	522	CG1		81	37.698	0.713	49.716	1.00 21.58	В
	MOTA	523	CG2		81	39.855	-0.555	49.509	1.00 20.63	В
	MOTA	524	С	VAL	81	36.753	-0.250	47.320	1.00 27.16	В

	ATOM	525	0	VAL		35.707	-0.746	47.747	1.00 27.22	В
	ATOM	526	N	TYR TYR		36.792 35.580	0.769 1.406	46.464 45.987	1.00 27.98 1.00 28.04	B B
	ATOM ATOM	527 528	CA CB	TYR		35.922	2.661	45.125	1.00 27.34	В
5	ATOM	529	CG	TYR		34.681	3.366	44.637	1.00 26.71	В
	ATOM	530		TYR		34.262	3.252	43.315	1.00 26.63	В
	ATOM	531	CE1	TYR	82	33.054	3.808	42.893	1.00 29.11	В
	ATOM	532		TYR		33.866	4.063	45.529	1.00 27.27	В
10	ATOM	533		TYR		32.660	4.620	45.128	1.00 28.67	В
10	MOTA	534	CZ	TYR		32.257	4.488	43.809	1.00 30.95	В
	MOTA MOTA	535 536	ОН	TYR TYR		31.047 34.705	5.021 0.454	43.418 45.183	1.00 34.58 1.00 29.38	B B
	MOTA	537	C O	TYR		33.498	0.322	45.448	1.00 28.44	В
	ATOM	538	N	ARG		35.312	-0.212	44.206	1.00 30.12	В
15	ATOM	539	CA	ARG	83	34.569	-1.136	43.365	1.00 32.33	В
	ATOM	540	CB	ARG	83	35.475	-1.667	42.238	1.00 32.84	В
	MOTA	541	CG	ARG	83	35.814	-0.610	41.177	1.00 36.78	В
	ATOM	542	CD	ARG	83	36.995	-1.024	40.298	1.00 39.59	В
20	MOTA	543	NE	ARG	83	36.692	-2.180	39.459	1.00 45.16	В
20	MOTA MOTA	544 545	CZ	ARG ARG	83 83	36.158 35.870	-2.110 -0.930	38.242 37.706	1.00 46.77 1.00 47.42	B B
	ATOM	546		ARG	83	35.897	-3.226	37.567	1.00 47.17	В
	MOTA	547	C	ARG	83	33.930	-2.291	44.142	1.00 32.86	В
	MOTA	548	Ō	ARG	83	32.786	-2.658	43.866	1.00 34.02	В
25	MOTA	549	N	SER	84	34.648	-2.834	45.125	1.00 32.13	В
	MOTA	550	CA	SER	84	34.159	-3.959	45.933	1.00 30.95	В
	ATOM	551	CB	SER	84	35.347	-4.712	46.558	1.00 32.34	В
	ATOM ATOM	552 553	OG C	SER SER	84 84	36.301 33.186	-5.060 -3.593	45.568 47.046	1.00 37.12 1.00 29.09	B B
30	ATOM	554	Ö	SER	84	32.151	-4.241	47.225	1.00 29.03	В
-	MOTA	555	N	VAL	85	33.522	-2.570	47.815	1.00 27.74	В
	MOTA	556	CA	VAL	85	32.652	-2.176	48.911	1.00 27.01	В
	ATOM	557	CB	VAL	85	33.481	-1.800	50.165	1.00 25.48	В
25	MOTA	558		VAL	85	32.566	-1.623	51.354	1.00 24.98	В
35	ATOM	559	CG2		85	34.514	-2.865	50.448	1.00 26.13	В
	MOTA	560	C	VAL	85 05	31.684	-1.02 4 -1.167	48.613 48.779	1.00 25.90 1.00 24.94	B B
	MOTA MOTA	561 562	O N	VAL VAL	85 86	30.480 32.205	0.106	48.152	1.00 26.94	В
	MOTA	563	CA	VAL	86	31.368	1.281	47.916	1.00 27.62	В
40	ATOM	564	СB	VAL	86	32.227	2.551	47.793	1.00 25.49	В
	MOTA	565	CG1	VAL	86	31.384	3.763	48.096	1.00 25.95	В
	MOTA	566		VAL	86	33.418	2.480	48.722	1.00 24.40	В
	MOTA	567	C	VAL	86	30.395	1.267	46.736	1.00 28.91	В
45	MOTA	568	0 N	VAL CYS	86 87	29.254 30.835	1.709 0.773	46.874 45.583	1.00 27.52 1.00 30.20	B B
73	MOTA MOTA	569 570	N CA	CYS	87 87	29.978	0.748	44.402	1.00 30.20	В
	MOTA	571	СВ	CYS	87	30.692	0.026	43.257	1.00 35.17	В
	MOTA	572	SG	CYS	87	30.072	0.418	41.599	1.00 41.71	В
50	MOTA	573	С	CYS	87	28.593	0.126	44.653	1.00 32.37	В
50	MOTA	574	0	CYS	87	27.571	0.682	44.234	1.00 31.48	В
	MOTA	575	И	PRO	88	28.538 29.675	-1.028	45.347 45.803	1.00 31.98 1.00 32.51	B B
	MOTA MOTA	576 577	CD CA	PRO PRO	88 88	27.272	-1.840 -1.712	45.648	1.00 32.31	В
	ATOM	578	CB	PRO	88	27.720	-3.024	46.269	1.00 31.27	В
55	ATOM		CG	PRO	88	29.104	-3.223		1.00 32.03	В
	MOTA	580	С	PRO	88	26.407	-0.907	46.617	1.00 30.37	В
	MOTA	581	0	PRO	88	25.179	-0.928	46.528	1.00 29.46	В
	ATOM	582	N	ILE	89	27.060	-0.214	47.549	1.00 28.89	В
60	MOTA ATOM	583	CA	ILE	89	26.372	0.607 1.032	48.539 49.677	1.00 26.92 1.00 27.36	B B
UU	ATOM	584 585	CB CG2	ILE	89 89	27.325 26.562	1.827	50.728	1.00 27.30	В
	MOTA	586	CG1		89	27.949	-0.202	50.327	1.00 28.47	В
	ATOM	587	CD1		89	28.880	0.116	51.493	1.00 28.07	В
	MOTA	588	C	ILE	89	25.815	1.866	47.883	1.00 26.45	В
65	MOTA	589	0	ILE	89	24.733	2.329	48.236	1.00 25.57	В
	MOTA	590	N	LEU	90	26.551	2.416	46.922	1.00 26.88	В
	MOTA	591	CA	LEU	90	26.097	3.618	46.242	1.00 27.21	В
	MOTA MOTA	592 593	CB CG	LEU LEU	90 90	27.185 26.768	4.167 5.457	45.305 44.531	1.00 26.30 1.00 28.27	B B
70	MOTA	594	CD1		90	26.300	6.546	45.499	1.00 28.27	В
. •	MOTA	595	CD2		90	27.936	5.952	43.707	1.00 30.13	В
	MOTA	596	С	LEU	90	24.828	3.334	45.451	1.00 28.12	В
	MOTA	597	0	LEU	90	23.914	4.156	45.423	1.00 27.80	В

	ATOM	598	N	ASP	91	24.778	2.168	44.811	1.00 29.04	В
	MOTA	599	CA	ASP	91	23.615	1.782	44.029	1.00 29.68	В
	MOTA	600	CB	ASP	91	23.888	0.479	43.238	1.00 30.25	В
5	MOTA	601 602	CG	ASP ASP	91 91	24.715 24.655	0.717 1.836	41.975 41.417	1.00 33.21 1.00 33.99	B B
,	ATOM ATOM	603		ASP	91	25.409	-0.225	41.522	1.00 34.57	В
	MOTA	604	C	ASP	91	22.412	1.604	44.950	1.00 29.79	В
	ATOM	605	0	ASP	91	21.265	1.785	44.542	1.00 29.34	В
••	MOTA	606	N	GLU	92	22.684	1.254	46.199	1.00 30.26	В
10	MOTA	607	CA	GLU	92	21.632	1.077	47.191	1.00 33.20	В
	MOTA	608	CB	GLU	92	22.240	0.434	48.455	1.00 37.58	B B
	MOTA MOTA	609 610	CD	GLU GLU	92 92	21.243 20.622	-0.021 -1.378	49.519 49.215	1.00 45.34	В
	MOTA	611		GLU	92	19.996	-1.963	50.134	1.00 51.49	В
15	MOTA	612		GLU	92	20.760	-1.851	48.061	1.00 50.48	В
	MOTA	613	C	GLU	92	21.036	2.471	47.516	1.00 32.34	В
•	MOTA	614	0	GLU	92	19.816	2.659	47.548	1.00 31.40	В
	MOTA	615	N	VAL	93	21.921	3.438	47.757	1.00 29.83	В
20	MOTA MOTA	616 617	CA CB	VAL VAL	93 93	21.532 22.794	4.813 5.732	48.060 48.216	1.00 27.09 1.00 27.00	В [.] В
20	ATOM	618		VAL	93	22.362	7.185	48.503	1.00 27.00	В
	ATOM	619	CG2		93	23.720	5.189	49.320	1.00 24.02	В
	MOTA	620	С	VAL	93	20.661	5.384	46.936	1.00 25.06	В
25	MOTA	621	0	VAL	93	19.631	6.005	47.184	1.00 23.16	В
25	MOTA	622	N	ILE	94	21.090	5.173	45.700	1.00 23.81	В
	MOTA MOTA	623 624	CA CB	ILE	94 94	20.357 21.196	5.679 5.496	44.554	1.00 26.20 1.00 24.09	B B
	ATOM	625		ILE	94	20.398	5.871	42.040	1.00 22.58	В
	ATOM	626		ILE	94	22.436	6.394	43.367	1.00 23.30	B
30	ATOM	627	CD1	ILE	94	23.378	6.288	42.211	1.00 25.19	В
	ATOM	628	С	ILE	94	18.964	5.057	44.417	1.00 28.52	В
	MOTA	629	0	ILE	94	18.101	5.606	43.742	1.00 30.41	В
	ATOM ATOM	630 631	N CA	MET MET	95 95	18.729 17.408	3.925 3.305	45.073 45.032	1.00 31.00 1.00 32.10	B B
35	MOTA	632	CB	MET	95	17.501	1.789	45.171	1.00 32.10	В
	ATOM	633	CG	MET	95	17.836	1.059	43.885	1.00 39.09	В
	MOTA	634	SD	MET	95	17.725	-0.743	44.078	1.00 46.44	В
	MOTA	635	CE	MET	95	19.451	-1.155	44.567	1.00 42.73	В
40	MOTA	636	C	MET	95 05	16.514	3.857	46.140	1.00 31.79	В
40	ATOM ATOM	637 638	O N	MET GLY	95 96	15.340 17.069	3.518 4.697	46.204 47.016	1.00 32.44 1.00 31.15	B B
	MOTA	639	CA	GLY	96	16.274	5.290	48.083	1.00 30.86	В
	ATOM	640	c	GLY	96	16.506	4.778	49.497	1.00 31.33	В
4.5	MOTA	641	0	GLY	96	15.695	5.005	50.398	1.00 31.96	В
45	ATOM	642	N	TYR	97	17.617	4.085	49.700	1.00 31.69	В
	ATOM	643	CA	TYR	97	17.951	3.539	51.009	1.00 31.47	В
	MOTA MOTA	644 645	CB CG	TYR TYR	97 97	18.620 17.707	2.119 0.979	50.859 50.448	1.00 35.21 1.00 38.09	B B
	ATOM	646	CD1	TYR	97	16.856	0.369	51.374	1.00 38.78	В
50	ATOM	647		TYR	97	16.060	-0.716	51.017	1.00 39.92	В
	MOTA	648	CD2	TYR	97	17.733	0.476	49.146	1.00 38.17	В
	MOTA	649		TYR	97	16.938	-0.606	48.777	1.00 40.59	В
	MOTA	650	CZ OH	TYR	97 07	16.105	-1.197 -2.262	49.717 49.350	1.00 42.01 1.00 44.26	B B
55	ATOM ATOM	651 652	C	TYR TYR	97 97	15.314 18.944	4.465	51.699	1.00 44.26	В
-	ATOM	653	ŏ	TYR	97	19.557	5.309	51.055	1.00 29.87	В
	ATOM	654	N	ASN	98	19.089	4.308	53.008	1.00 26.93	В
	MOTA	655	CA	ASN	98	20.061	5.081	53.768	1.00 27.11	В
60	ATOM	656	CB	ASN	98	19.500	5.509	55.156	1.00 27.12	В
ou	MOTA	657	CG	ASN	98	18.435	6.579	55.048	1.00 27.28	В
	ATOM ATOM	658 659		ASN ASN	98 98	18.553 17.394	7.506 6.465	54.245 55.860	1.00 30.11 1.00 26.60	B B
	ATOM	660	C	ASN	98	21.243	4.141	53.975	1.00 26.22	В
	ATOM	661	ō	ASN	98	21.055	2.971	54.292	1.00 25.58	В
65	ATOM	662	N	CYS	99	22.457	4.634	53.775	1.00 25.47	В
	MOTA	663	CA	CYS	99	23.629	3.791	53.977	1.00 25.10	В
	ATOM	664	CB	CYS	99	24.206	3.357	52.654	1.00 26.81	В
	ATOM ATOM	665 666	SG	CYS	99 99	23.084 24.697	2.317 4.486	51.714 54.798	1.00 26.81 1.00 23.75	В
70	ATOM	667	С 0	CYS CYS	99	24.897	5.712	54.798	1.00 25.67	B B
. •	ATOM	668	N	THR	100	25.482	3.683	55.496	1.00 20.94	В
	MOTA	669	CA	THR	100	26.549	4.181	56.341	1.00 19.27	В
	MOTA	670	СВ	THR	100	26.076	4.266	57.795	1.00 17.86	В

	ATOM	671	001	THR	100	24.992	5.192	57.875	1.00 16.90	В
	MOTA	672	CG2	THR	100	27.202	4.714	58.708	1.00 17.10	В
	MOTA	673	С	THR	100	27.760	3.247	56.269	1.00 19.78	В
	ATOM	674	ō	THR	100	27.615	2.013	56.297	1.00 19.41	В
5										
J	ATOM	675	N	ILE	101	28.945	3.846	56.170	1.00 17.12	В
	MOTA	676	CA	ILE	101	30.194	3.096	56.112	1.00 13.84	В
	MOTA	677	CB	ILE	101	30.923	3.273	54.770	1.00 11.63	В
	_									
	MOTA	678	CG2	ILE	101	32.193	2.459	54.763	1.00 11.54	В
	ATOM	679	CG1	ILE	101	30.029	2.847	53.614	1.00 11.12	В
10		680		ILE	101	30.610	3.205	52.240	1.00 8.60	В
10	MOTA									
	MOTA	681	С	ILE	101	31.088	3.655	57.189	1.00 14.61	В
	MOTA	682	0	ILE	101	31.434	4.828	57.158	1.00 16.06	В
	ATOM	683	N	PHE	102	31.454	2.814	58.149	1.00 16.69	В
	MOTA	684	CA	PHE	102	32.336	3.214	59.246	1.00 15.45	В
15	MOTA	685	CB	PHE	102	31.957	2.509	60.517	1.00 15.38	В
	MOTA	686	CG	PHE	102	30.704	3.002	61.158	1.00 17.02	В
	MOTA	687	CD1	PHE	102	30.746	4.068	62.060	1.00 14.70	В
	ATOM	688	CD2	PHE	102	29.489	2.341	60.937	1.00 15.06	В
	MOTA	689	CEl		102	29.601	4.468	62.744	1.00 15.17	В
20										
20	ATOM	690	CE2	PHE	102	28.336	2.732	61.614	1.00 16.46	В
	MOTA	691	CZ	PHE	102	28.389	3.797	62.523	1.00 16.06	В
	MOTA	692	С	PHE	102	33.770	2.789	58.956	1.00 13.66	В
							1.767	58.335	1.00 14.29	В
	MOTA	693	0	PHE	102	34.004				
	ATOM	694	N	ALA	103	34.723	3.571	59.431	1.00 14.00	В
25	MOTA	695	CA	ALA	103	36.135	3.230	59.309	1.00 13.68	В
								58.595	1.00 12.73	В
	ATOM	696	CB	ALA	103	36.894	4.316			
	MOTA	697	С	ALA	103	36.579	3.142	60.771	1.00 14.68	В
	MOTA	698	0	ALA	103	36.560	4.144	61.491	1.00 12.81	В
						36.943	1.939	61.211	1.00 14.23	В
20	MOTA	699	N	TYR	104					
30	ATOM	700	CA	TYR	104	37.369	1.722	62.588	1.00 13.28	В
	MOTA	701	CB	TYR	104	36.415	0.741	63.271	1.00 13.08	В
		702		TYR	104	36.704	0.496	64.740	1.00 9.23	В
	MOTA		CG							
	MOTA	703	CD1	TYR	104	37.774	-0.304	65.139	1.00 10.77	В
	ATOM	704	CE1	TYR	104	38.050	-0.519	66.497	1.00 8.87	В
35	MOTA	705	CD2		104	35.916	1.072	65.728	1.00 7.28	В
33										
	ATOM	706	CE2	TYR	104	36.180	0.861	67.085	1.00 6.26	В
	MOTA	707	CZ	TYR	104	37.245	0.063	67.459	1.00 6.63	В
	MOTA	708	OH	TYR	104	37.492	-0.189	68.791	1.00 6.91	В
40	MOTA	709	С	TYR	104	38.791	1.191	62.660	1.00 14.55	В
40	MOTA	710	0	TYR	104	39.192	0.344	61.866	1.00 17.36	В
	MOTA	711	N	GLY	105	39.553	1.688	63.622	1.00 15.00	В
							1.239	63.760	1.00 16.15	В
	MOTA	712		GLY	105	40.920				
	MOTA	713	С	GLY	105	41.818	2.222	64.480	1.00 18.48	В
	MOTA	714	0	GLY	105	41.464	3.383	64.733	1.00 19.06	В
45					106	42.996	1.726	64.818	1.00 18.69	В
40	MOTA	715		GLN						
	MOTA	716	CA	GLN	106	44.012	2.480	65.524	1.00 20.40	В
	MOTA	717	CB	GLN	106	45.109	1.510	65.958	1.00 20.92	В
	MOTA	718		GLN	106	46.494	2.093	65.959	1.00 25.11	В
~^	MOTA	719	CD	GLN	106	47.546	1.104	66.424	1.00 27.12	В
50	MOTA	720	OE1	GLN	106	47.724	0.033	65.833	1.00 29.47	, В
	ATOM	721	NE2		106	48.254	1.462	67.486	1.00 24.05	В
									1.00 22.74	В
	MOTA	722		GLN	106	44.595	3.602	64.668		
	MOTA	723	0	GLN	106	44.733	3.442	63.447	1.00 22.56	В
	MOTA	724	N	THR	107	44.924	4.733	65.312	1.00 22.64	В
55						45.526	5.893	64.637	1.00 21.79	В
55	MOTA	725		THR	107					
	MOTA	726	CB	THR	107	46.070	6.943	65.659	1.00 22.17	В
	ATOM	727	OG1	THR	107	45.014	7.404	66.510	1.00 22.36	В
						46.675	8.142	64.927	1.00 19.97	В
	MOTA	728	CG2		107					
	MOTA	729	С	THR	107	46.720	5.430	63.788	1.00 21.90	В
60	MOTA	730	0	THR	107	47.605	4.752	64.288	1.00 20.99	В
-									1.00 22.46	
	MOTA	731		GLY	108	46.739	5.796	62.510		В
	MOTA	732	CA	GLY	108	47.836	5.394	61.652	1.00 21.62	В
	ATOM	733		GLY	108	47.664	4.088	60.882	1.00 22.90	В
									1.00 24.07	
<i>(E</i>	MOTA	734		GLY	108	48.653	3.547	60.376		В
65	MOTA	735	N	THR	109	46.436	3.572	60.786	1.00 22.29	В
	ATOM	736		THR	109	46.197	2.321	60.050	1.00 21.18	В
								60.884	1.00 21.26	
	MOTA	737		THR	109	45.408	1.259			В
	ATOM	738	OG1	THR	109	44.159	1.814	61.335	1.00 20.11	В
	MOTA	739	CG2	THR	109	46.250	0.777	62.071	1.00 19.60	В
70	MOTA					45.439	2.523	58.754	1.00 19.58	В
70		740		THR	109					
	MOTA	741	0	THR	109	45.126	1.551	58.068	1.00 20.97	В
	MOTA	742	N	GLY	110	45.125	3.776	58.428	1.00 17.22	В
							4.048	57.193	1.00 12.69	В
	MOTA	743	CA	GLY	110	44.415	4.040	J,.1JJ	2.00 12.03	ь

	ATOM	744	С	GLY	110	42.943	4.424	57.232	1.00 12.29	В
	MOTA	745	0	GLY		42.288	4.365	56.193	1.00 14.37	В
	MOTA	746	N	LYS		42.398	4.795	58.386	1.00 11.41	В
5	MOTA	747	CA	LYS	111	40.983	5.198	58.432	1.00 12.47	В
5	MOTA MOTA	748 749	CB CG	LYS LYS	111 111	40.540 40.379	5.653 4.538	59.898 60.934	1.00 13.24 1.00 10.82	B B
	ATOM	750	CD	LYS	111	39.805	5.061	62.229	1.00 10.82	В
	ATOM	751	CE	LYS	111	40.691	6.142	62.813	1.00 10.33	В
	MOTA	752	NZ	LYS	111	42.130	5.748	63.038	1.00 9.60	В
10	MOTA	753	С	LYS	111	40.742	6.363	57.465	1.00 13.44	В
	MOTA	754	0	LYS	111	39.870	6.295	56.587	1.00 14.48	В
	MOTA	755	N	THR	112	41.538	7.423	57.614	1.00 14.82	В
	ATOM ATOM	756 757	CA	THR THR	112 112	41.403 42.140	8.613 9.793	56.773 57.417	1.00 15.93 1.00 15.93	B B
15	ATOM	758	CB OG1	THR	112	41.538	10.066	58.694	1.00 13.93	В
	ATOM	759		THR	112	42.055	11.040	56.522	1.00 13.41	В
	MOTA	760	С	THR	112	41.870	8.426	55.323	1.00 17.21	В
	MOTA	761	0	THR	112	41.318	9.021	54.385	1.00 16.82	В
20	MOTA	762	N	PHE	113	42.887	7.595	55.142	1.00 17.40	В
20	MOTA	763	CA	PHE	113	43.398	7.313	53.811	1.00 16.82	В
	MOTA MOTA	764 765	CB CG	PHE	113 113	44.654 45.233	6.389 6.054	53.889 52.540	1.00 16.02 1.00 17.10	B B
	ATOM	766		PHE	113	46.126	6.918	51.920	1.00 17.10	В
	MOTA	767		PHE	113	44.836	4.911	51.868	1.00 18.15	В
25	ATOM	768		PHE	113	46.614	6.654	50.652	1.00 19.37	В
	ATOM	769	CE2	PHE	113	45.317	4.632	50.588	1.00 20.77	В
	MOTA	770	CZ	PHE	113	46.208	5.508	49.980	1.00 21.58	В
	MOTA	771 772	C	PHE	113 113	42.305 42.125	6.615 6.894	52.997 51.816	1.00 15.35 1.00 13.50	B B
30	ATOM ATOM	773	O N	THR	113	41.590	5.700	53.647	1.00 13.30	В
50	ATOM	774	CA	THR	114	40.524	4.942	53.008	1.00 13.72	В
•	ATOM	775	СВ	THR	114	40.119	3.722	53.868	1.00 14.47	В
	MOTA	776		THR	114	41.228	2.834	53.980	1.00 13.50	В
35	MOTA	777		THR	114	38.944	2.984	53.258	1.00 10.99	В
33	MOTA	778	C	THR	114	39.283	5.773	52.764 51.674	1.00 13.62	В
	MOTA MOTA	779 780	N O	THR MET	114 115	38.733 38.842	5.758 6.499	53.784	1.00 14.61 1.00 15.54	B B
	MOTA	781	CA	MET	115	37.635	7.311	53.663	1.00 16.98	В
	MOTA	782	CB	MET	115	37.121	7.711	55.043	1.00 17.73	В
40	ATOM	783	CG	MET	115	36.776	6.525	55.938	1.00 22.32	В
	ATOM	784	SD	MET	115	35.694	5.280	55.139	1.00 24.33	В
	MOTA	785	CE	MET	115	34.110	6.102	55.162	1.00 17.96	В
	ATOM ATOM	786 787	C O	MET MET	115 115	37.772 36.824	8.556 8.956	52.809 52.140	1.00 16.94 1.00 17.35	B B
45	ATOM	788	N	GLU	116	38.947	9.168	52.816	1.00 16.96	В
	ATOM	789	CA	GLU	116	39.139	10.391	52.040	1.00 17.40	В
	MOTA	790	CB	GLU	116	39.564	11.563	52.988	1.00 17.75	В
	ATOM	791	CG	GLU	116	38.457	12.038	53.929	1.00 20.71	В
50	ATOM	792	CD	GLU	116	38.980	12.893	55.070 54.961	1.00 22.10	В
50	ATOM ATOM	793 794	OE1 OE2		116 116	40.113 38.260	13.404 13.064	56.074	1.00 26.78 1.00 22.44	B B
	ATOM	795	C	GLU	116	40.178	10.211	50.953	1.00 16.14	В
	ATOM	796	ō	GLU	116	39.925	10.474	49.783	1.00 12.66	В
ے ہے	MOTA	797	N	GLY	117	41.357	9.768	51.360	1.00 16.93	В
55	ATOM	798	CA	GLY	117	42.425	9.585		1.00 21.10	В
	MOTA	799	C	GLY	117	43.424 43.321	10.723	50.439	1.00 22.08	В
	MOTA MOTA	800 801	O N	GLY GLU	117 118	44.390	11.640 10.661	51.248 49.536	1.00 21.52 1.00 24.00	B B
	MOTA	802	CA	GLU	118	45.436	11.664	49.457	1.00 26.12	В
60	ATOM	803	СВ	GLU	118	46.712	11.116	50.134	1.00 27.39	В
	ATOM	804	CG	GLU	118	46.574	11.023	51.647	1.00 32.78	В
	MOTA	805	CD	GLU	118	47.603	10.111	52.316	1.00 37.03	В
	MOTA	806	OE1		118	48.799	10.149	51.938	1.00 36.38	В
65	ATOM ATOM	807 808	OE2		118	47.208 45.702	9.369 12.026	53.246 48.000	1.00 39.57 1.00 26.11	B B
U J	ATOM	809		GLU	118 118	45.702	12.026	47.088	1.00 24.83	B
	MOTA	810	N	ARG	119	46.613	12.961	47.780	1.00 25.93	В
	ATOM	811		ARG	119	46.922	13.355	46.423	1.00 26.49	В
70	MOTA	812		ARG	119	47.076	14.913	46.313	1.00 24.19	В
70	MOTA	813		ARG	119	45.824	15.737	46.642	1.00 18.83	В
	ATOM	814		ARG	119	44.579	15.206	45.965	1.00 15.06	В
	ATOM ATOM	815 816		ARG ARG	119 119	44.755 44.761	14.940 15.869	44.542 43.591	1.00 15.80 1.00 18.90	B B
	AT OFF	010	C2		**3	44.701	25.005	43.331	1.00 10.30	Đ

	MOTA	817	NH1	ARG	119	44.601	17.142	43.910	1.00 20.61	В
	MOTA	818		ARG	119	44.910	15.528	42.314	1.00 17.87	В
	ATOM	819	С	ARG	119	48.207	12.682	45.967	1.00 29.08	В
	ATOM	820	0	ARG	119	49.178	12.572	46.735	1.00 27.84	В
5										
,	ATOM	821	N	SER	120	48.205	12.192	44.731	1.00 30.37	В
	MOTA	822	CA	SER	120	49.417	11.597	44.203	1.00 32.15	В
	ATOM	823	CB	SER	120	49.190	11.014	42.825	1.00 33.55	В
	ATOM	824	OG	SER	120	48.380	9.854	42.897	1.00 34.65	В
	MOTA	825	С	SER	120	50.287	12.839	44.123	1.00 31.39	В
10	ATOM	826	0	SER	120	49.849	13.883	43.651	1.00 31.19	В
	MOTA	827	N	PRO	.121	51.522	12.745	44.599	1.00 30.67	В
	MOTA	828	CD	PRO	121	52.207	11.494	44.965	1.00 31.67	В
	MOTA	829	CA	PRO	121	52.455	13.870	44.595	1.00 31.71	В
15	MOTA	830	CB	PRO	121	53.674	13.288	45.270	1.00 31.87	В
15	ATOM	831	CG	PRO	121	53.658	11.869	44.783	1.00 32.88	В
	ATOM	832	С	PRO	121	52.788	14.511	43.240	1.00 32.30	В
	ATOM	833	ō		121	52.557			1.00 32.32	
				PRO			13.925	42.176		В
	MOTA	834	N	ASN	122	53.319	15.733	43.319	1.00 30.43	В
	ATOM	835	CA	ASN	122	53.753	16.529	42.175	1.00 30.58	В
20	ATOM	836	СВ	ASN	122	54.974	15.864	41.515	1.00 30.83	В
20										
	ATOM	837	CG	ASN	122	56.101	16.850	41.250	1.00 29.55	В
	MOTA	838	OD1	ASN	122	56.512	17.589	42.139	1.00 30.20	В
	MOTA	839		ASN	122	56.614	16.849	40.032	1.00 29.25	В
~~	MOTA	840	С	ASN	122	52.708	16.838	41.107	1.00 30.96	В
25	MOTA	841	0	ASN	122	53.022	16.840	39.916	1.00 28.89	В
		842								
	MOTA		N	CLU	123	51.479	17.121	41.540	1.00 31.29	В
	MOTA	843	CA	GLU	123	50.380	17.435	40.630	1.00 31.61	В
	MOTA	844	CB	GLU	123	50.437	18.873	40.222	1.00 29.75	В
20	MOTA	845	CG	GLU	123	50.311	19.825	41.382	1.00 31.53	В
30	MOTA	846	CD	GLU	123	50.030	21.243	40.942	1.00 34.00	В
	ATOM	847	OE3	GLU	123	50.896	21.842	40.255	1.00 32.81	В
	ATOM	848								
				GLU	123	48.937	21.753	41.288	1.00 35.74	В
	MOTA	849	С	GLU	123	50.396	16.558	39.393	1.00 32.07	В
	MOTA	850	0	GLU	123	50.246	17.038	38.272	1.00 32.39	В
35		851								
33	ATOM		N	GLU	124	50.576	15.261	39.620	1.00 33.92	В
	MOTA	852	CA	GLU	124	50.628	14.269	38.558	1.00 33.69	В
	MOTA	853	CB	GLU	124	51.235	12.998	39.111	1.00 35.39	В
	MOTA	854	CG	GLU	124	51.234	11.798	38.184	1.00 39.45	В
40	ATOM	855	CD	GLU	124	51.966	10.613	38.801	1.00 42.18	В
40	MOTA	856	OE1	GLU	124	51.802	10.390	40.026	1.00 42.52	В
	ATOM		OE2							
		857			124	52.698	9.906	38.067	1.00 42.46	В
	ATOM	858	С	GLU	124	49.252	13.994	37.958	1.00 33.48	В
	ATOM	859	0	GLU	124	49.149	13.665	36.778	1.00 33.85	В
	ATOM	860	N	TYR	125	48.196	14.141			
45								38.758	1.00 32.64	В
43	MOTA	861	CA	TYR	125	46.841	13.895	38.267	1.00 33.52	В
	MOTA	862	CB	TYR	125	46.261	12.523	38.817	1.00 33.48	В
	ATOM	863	CG	TYR	125	47.109	11.290	38.613	1.00 35.23	В
	ATOM	864	CD1		125	47.951	10.826	39.624	1.00 35.75	В
	ATOM	865	CE1	TYR	125	48.709	9.668	39.461	1.00 36.41	В
50	ATOM	866	CD2		125	47.046	10.565	37.422	1.00 36.88	В
50										
	MOTA	867	CE2	TYR	125	47.803	9.403	37.242	1.00 37.22	В
	ATOM	868	CZ	TYR	125	48.630	8.962	38.268	1.00 38.72	В
	MOTA	869	ОН	TYR	125	49.369	7.811	38.108	1.00 40.27	В
55	MOTA	870	С	TYR	125	45.851	14.985	38.677	1.00 33.79	В
55	ATOM	871	0	TYR	125	46.150	15.834	39.520	1.00 34.63	В
	ATOM	872	N	THR	126	44.669	14.949	38.063	1.00 33.04	В
	ATOM	873			126					
				THR		43.588	15.858	38.420	1.00 31.85	В
	MOTA	874	CB	THR	126	42.562	16.061	37.286	1.00 31.42	В
	ATOM	875	OG1	THR	126	42.214	14.790	36.723	1.00 29.37	В
60	ATOM									
00		876	CG2		126	43.114	16.996	36.216	1.00 30.94	В
	ATOM	877	С	THR	126	42.911	15.061	39.518	1.00 31.76	В
	ATOM	878	0	THR	126	43.023	13.836	39.552	1.00 31.47	В
	ATOM	879		TRP	127	42.197	15.738	40.401	1.00 31.44	В
	MOTA	880	CA	TRP	127	41.559	15.053	41.507	1.00 30.17	В
65	ATOM	881		TRP	127	40.749	16.048	42.357	1.00 27.67	В
	MOTA	882		TRP	127	39.474	16.455	41.718	1.00 25.01	В
	ATOM	883	CD2	TRP	127	38.207	15.796	41.846	1.00 24.45	В
	ATOM	884	CE2		127	37.285	16.514	41.059	1.00 24.12	В
70	MOTA	885	CE3		127	37.764	14.662	42.546	1.00 22.04	В
70	MOTA	886	CD1	TRP	127	39.278	17.507	40.885	1.00 23.64	В
	ATOM	887	NE1		127	37.966	17.553	40.483	1.00 24.14	В
	MOTA	888	CZ2		127	35.937	16.143	40.952	1.00 25.81	В
	MOTA	889	CZ3	TRP	127	36.427	14.285	42.441	1.00 24.07	В
										_

ATOM 924 C PRO 131 44.550 6.586 43.734 1.00 25.10											
ATOM 891 C TRP 127		ΔͲΟΜ	ggn	CHO	ם מייף	127	35 526	15 026	41 647	1.00.26.19	В
ATOM 893 N GLU 128 39.945 14.014 39.991 1.00 30.25 ATOM 895 CB GLU 128 39.935 14.014 39.991 1.00 30.25 ATOM 895 CB GLU 128 38.0597 14.116 37.360 1.00 30.66 ATOM 895 CB GLU 128 38.0597 14.116 37.360 1.00 30.66 ATOM 897 CD GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 898 OE2 GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 899 OE2 GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 899 OE2 GLU 128 37.622 14.757 36.522 1.00 37.02 ATOM 899 OE2 GLU 128 37.652 14.757 36.522 1.00 37.02 ATOM 901 C GLU 128 37.692 14.757 36.522 1.00 37.94 ATOM 902 N GLU 128 37.692 11.764 38.977 1.00 28.41 ATOM 902 N GLU 128 39.094 11.754 38.623 1.00 27.73 8.70 M 902 N GLU 129 41.012 11.764 38.623 1.00 27.73 8.70 M 902 N GLU 129 41.012 11.764 38.623 1.00 27.73 8.70 M 902 N GLU 129 41.012 11.764 38.653 1.00 27.73 8.70 M 902 N GLU 129 41.012 11.764 38.653 1.00 27.73 8.70 M 902 N GLU 129 41.012 11.144 35.841 1.00 28.03 ATOM 905 CG GLU 129 41.201 11.654 33.510 1.00 33.17 ATOM 909 C GLU 129 41.201 11.654 33.510 1.00 33.17 ATOM 909 C GLU 129 43.206 11.411 34.487 1.00 33.17 ATOM 909 C GLU 129 43.206 11.411 34.487 1.00 33.17 ATOM 910 N GLU 129 43.206 11.411 34.89 1.00 33.91 ATOM 910 N GLU 129 43.406 9.117 38.997 1.00 28.144 ATOM 911 N ASP 130 42.966 11.411 43.89 1.00 33.91 1.00 35.80 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.164 ATOM 912 CA ASP 130 43.995 10.454 41.336 1.00 28.164 ATOM 913 CB ASP 130 43.995 10.454 41.336 1.00 28.164 ATOM 914 CG ASP 130 43.995 10.455 41.336 1.00 28.164 ATOM 915 ODL ASP 130 45.484 11.577 43.061 1.00 31.22 ATOM 915 ODL ASP 130 45.484 11.577 43.061 1.00 31.23 ATOM 915 ODL ASP 130 45.484 11.577 43.061 1.00 31.25 ATOM 916 ODZ ASP 130 45.484 11.577 43.061 1.00 28.164 ATOM 916 ODZ ASP 130 45.484 11.577 43.061 1.00 25.20 ATOM 916 ODZ ASP 130 45.484 11.577 43.061 1.00 25.20 ATOM 916 ODZ ASP 130 45.484 11.577 43.061 1.00 25.20 ATOM 916 ODZ ASP 130 44.092 11.498 42.458 1.00 29.199 ATOM 916 ODZ ASP 130 44.092 11.498 42.458 1.00 29.199 ATOM 916 ODZ ASP 130 44.092 11.498 42.458 1.00 29.199 ATOM 916 ODZ ASP 130 44.092 11.498 42.458											В
ATOM 894 CA GLU 128 39.0945 14.014 39.991 1.00 30.25 ATOM 895 CB GLU 128 39.0945 12.9943 39.575 1.00 29.93 ATOM 895 CB GLU 128 38.097 14.116 37.365 1.00 30.66 ATOM 895 CB GLU 128 38.097 14.116 37.365 1.00 30.66 ATOM 895 CB GLU 128 36.704 15.558 37.365 1.00 37.02 ATOM 898 CBI GLU 128 36.704 15.558 37.085 1.00 37.02 ATOM 898 CBI GLU 128 36.704 15.558 37.085 1.00 37.94 ATOM 900 C GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 901 O GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 901 O GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 901 O GLU 128 39.602 11.704 38.897 1.00 28.40 ATOM 902 N GLU 129 41.012 11.716 38.803 1.00 27.71 ATOM 904 CB GLU 129 41.012 11.716 38.803 1.00 27.73 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.03 ATOM 906 CD GLU 129 41.934 11.021 41.00 28.03 ATOM 906 CD GLU 129 41.934 11.422 41.447 10.03 31.70 ATOM 906 CD GLU 129 41.934 11.422 41.447 10.03 31.70 ATOM 908 CBLU 129 41.201 11.654 33.510 1.00 33.81 ATOM 907 CBL GLU 129 42.343 10.919 34.447 10.03 31.70 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.17 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.17 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.17 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.17 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.17 ATOM 908 CBLU 129 43.266 11.411 34.891 1.00 31.18 ATOM 901 CBLU 129 43.266 11.411 34.891 1.00 31.19 ATOM 901 CBLU 129 43.266 11.411 34.891 1.00 31.19 ATOM 901 CBLU 129 43.266 10.814 40.0372 1.00 27.13 ATOM 901 CBLU 129 43.995 10.465 41.336 1.00 35.80 ATOM 901 CBLU 129 43.995 10.465 41.336 1.00 27.13 ATOM 901 CBLU 129 43.995 10.465 41.336 1.00 27.13 ATOM 901 CBLU 129 43.995 10.465 41.336 1.00 27.13 ATOM 901 CBLU 129 43.995 10.00 37.99 1.00 27.13 ATOM 901 CBLU 129 43.995 10.465 41.336 1.00 27.12 ATOM 901 CBLU 132 46.000 10.000 10.000 11.50 11.000 11.50 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.500 11.000 11.500 11.000 11.500 11.500 11.500 11.500 11.500 11.500 11.500 11.500 11.											В
5 ATOM 895 CB GLU 128 39.036 12.943 39.575 1.00 29.93 ATOM 895 CB GLU 128 38.097 14.116 37.360 1.00 30.66 ATOM 897 CD GLU 128 37.522 14.757 38.601 1.00 30.65 ATOM 897 CD GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 899 CEZ GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 990 CC GLU 128 37.652 11.00 37.09 1.00 37.01 ATOM 990 CC GLU 128 37.652 11.00 39.71 1.00 28.41 ATOM 991 CD GLU 128 39.692 11.704 38.977 1.00 28.41 ATOM 991 CD GLU 128 39.692 11.704 38.977 1.00 28.41 ATOM 991 CD GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 990 CD GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 990 CD GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 990 CD GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 990 CD GLU 129 41.934 11.422 34.487 1.00 33.17 ATOM 990 CD GLU 129 41.934 11.422 34.487 1.00 33.17 ATOM 990 CD GLU 129 41.934 11.422 34.487 1.00 33.17 ATOM 990 CD GLU 129 41.934 11.623 34.487 1.00 33.17 ATOM 990 CD GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 990 CD GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 990 CD GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 991 CD GLU 129 42.807 10.110 39.257 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD GLU 129 43.480 9.117 38.997 1.00 27.11 ATOM 991 CD ASP 130 44.092 1.0445 11.445 11.356 1.00 27.11 ATOM 991 CD ASP 130 44.092 1.0445 11.09 37.27 1.00 27.12 ATOM 991 CD ASP 130 44.092 1.0445 11.445 11.356 1.00 27.12 ATOM 991 CD ASP 130 44.092 1.0445 11.445 11.455 11.00 27.12 ATOM 991 CD ASP 130 44.092 1.0445 11.445 11.455 11.00 27.12 ATOM 991 CD ASP 130 44.092 1.0445 11.455 11.00 27.12 ATOM 991 CD ASP 130 44.092 1.0445 11.455 11.00											В
ATOM 895 CB GLU 128 38.9010 13.477 38.601 1.00 30.66 ATOM 896 CB GLU 128 38.597 14.116 37.360 1.00 32.82 ATOM 896 CB GLU 128 36.740 15.558 37.085 1.00 37.02 10.00 37.94 ATOM 896 CB GLU 128 36.740 15.558 37.085 1.00 37.02 10.00 37.94 ATOM 990 CC GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 901 C GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 901 C GLU 128 39.602 11.704 38.897 1.00 28.41 ATOM 902 N GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 903 CA GLU 129 41.012 11.716 38.633 1.00 27.73 ATOM 904 CB GLU 129 42.343 10.919 36.540 1.00 25.80 ATOM 905 CG GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 906 CD GLU 129 41.921 11.316 38.633 1.00 28.40 ATOM 906 CD GLU 129 41.921 11.344 35.841 1.00 28.03 ATOM 906 CD GLU 129 41.921 11.344 35.841 1.00 28.03 ATOM 907 CB GLU 129 41.201 11.654 33.510 1.00 33.17 ATOM 908 CB GLU 129 43.206 11.411 39.257 1.00 27.19 ATOM 908 CB GLU 129 43.206 11.411 39.257 1.00 27.19 ATOM 908 CB GLU 129 43.206 11.411 39.257 1.00 27.19 ATOM 911 CB ASP 130 44.092 11.494 41.336 41.336 1.00 37.94 ATOM 911 NA ASP 130 ATOM 911 NA ASP 130 ATOM 911 CB ASP 130 44.092 11.498 42.458 1.00 27.13 ATOM 915 CD ASP 130 44.092 11.498 42.458 1.00 27.13 ATOM 915 CD ASP 130 44.092 11.498 42.458 1.00 27.13 ATOM 915 CD ASP 130 44.092 11.498 42.458 1.00 27.13 ATOM 915 CD ASP 130 46.092 11.498 42.458 1.00 27.12 ATOM 917 C ASP 130 46.092 11.498 42.458 1.00 27.12 ATOM 918 O ASP 130 46.092 11.498 42.458 1.00 27.12 ATOM 918 O ASP 130 46.093 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.093 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.093 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.093 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.093 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.093 12.695 44.414 13.00 C27.22 ATOM 922 CB PRO 131 44.590 9.068 41.431 1.00 25.20 ATOM 922 CB PRO 131 44.590 9.068 41.431 1.00 25.20 ATOM 923 CB RD LEU 132 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.493 9.066 0.052 44.4	5										
ATOM 896 CG GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 897 CD GLU 128 37.522 14.757 36.522 1.00 37.02 ATOM 898 OEI GLU 128 36.740 15.558 37.085 1.00 37.94 ATOM 899 OEZ GLU 128 37.450 14.460 15.309 1.00 39.71 ATOM 900 C GLU 128 39.094 10.755 38.623 1.00 28.40 ATOM 901 C GLU 128 39.094 10.755 38.623 1.00 28.40 ATOM 902 N GLU 129 41.724 10.573 38.623 1.00 27.73 ATOM 902 N GLU 129 41.724 10.573 48.303 1.00 27.73 ATOM 903 CG GLU 129 41.717 11.144 35.841 1.00 28.03 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.03 ATOM 905 CG GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 OEI GLU 129 41.201 11.654 33.510 1.00 35.80 ATOM 908 OEZ GLU 129 43.206 11.411 34.389 1.00 33.17 ATOM 909 OE GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 909 OE GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 901 O GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 901 O GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 901 O GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 915 CD ASP 130 46.025 10.425 43.470 1.00 27.13 ATOM 915 CD ASP 130 46.025 10.525 43.470 1.00 27.13 ATOM 917 C ASP 130 46.025 10.525 43.470 1.00 31.28 ATOM 918 C ASP 130 46.026 10.812 40.400 1.00 25.74 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 27.12 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 27.12 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 27.21 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 27.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 921 CD ASP 130 46.026 10.525 43.470 1.00 25.52 ATOM 922 CD PRO 131 45.465 59.56 46.129 1.00 25.55 ATOM 923 CD PRO 131 45.465 59.56 46.129 1.00 25.55 ATOM 924 CD PRO 131 45.465 59.56 46.129 1.00 25.55 ATOM 925 CD PRO 131 45.466 49.90 8.097 46	J										В
ATOM											В
10 ATOM 899 0E1 GLU 128 37.400 15.558 37.085 1.00 37.94 ATOM 990 0C GLU 128 39.692 11.704 38.977 1.00 28.41 ATOM 900 C GLU 128 39.692 11.704 38.977 1.00 28.41 ATOM 901 0 GLU 128 39.692 11.704 38.977 1.00 28.40 ATOM 902 N GLU 129 41.724 10.573 38.623 1.00 27.73 ATOM 902 N GLU 129 41.724 10.573 48.303 1.00 27.73 ATOM 903 CG GLU 129 41.724 10.573 48.303 1.00 25.80 ATOM 904 CB GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.03 ATOM 906 CD GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 0EI GLU 129 41.201 11.654 33.510 1.00 35.80 ATOM 908 0E2 GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 909 0C GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 909 0C GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 901 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 901 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 915 ODI ASP 130 46.039 11.498 42.458 1.00 29.19 ATOM 916 OD2 ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.039 12.695 43.170 1.00 13.28 ATOM 919 O ASP 130 46.039 12.695 43.170 1.00 13.28 ATOM 918 O ASP 130 42.666 88.865 42.551 1.00 27.12 30 ATOM 999 CD PRO 131 45.709 8.093 41.704 1.00 26.27 ATOM 991 CA ASP 130 42.666 88.865 42.551 1.00 27.12 ATOM 992 CD PRO 131 45.709 8.093 41.704 1.00 26.27 ATOM 992 CD PRO 131 45.709 8.093 41.704 1.00 26.27 ATOM 993 CD ED RO 131 44.909 8.093 41.704 1.00 25.20 ATOM 993 CD ED RO 131 44.909 8.093 41.704 1.00 25.20 ATOM 993 CD ED RO 131 44.939 7.659 44.414 1.00 25.70 ATOM 993 CD ED RO 131 44.939 7.659 44.414 1.00 25.70 ATOM 993 CD ED RO 131 44.939 7.659 44.414 1.00 25.55 ATOM 994 CD RO 131 44.939 7.659 44.414 1.00 25.70 ATOM 993 CD ED RO 131 44.939 7.659 44.414 1.00 25.70 ATOM 993 CD ED RO 131 44.939 7.659 44.414 1.00 25.55 ATOM 994 CD ED RO 131 44.939 7.659 44.414 1.00 25.55 ATOM 994 CD ED RO 131 44.939 7.659 44.949 1.00 23.33 ATOM 995 CD ALEU 132 45.666 9.155 66.19 46.797 1.00 23.99 ATOM 995 CD ALEU 132 45.666 9.146 86.797 1.00 23.99 ATOM 9											В
10		MOTA									, В
ATOM 900 C GLU 128 39.692 11.704 38.977 1.00 28.41 ATOM 901 O GLU 129 41.012 11.706 38.653 1.00 27.73 ATOM 902 N GLU 129 41.012 11.716 38.653 1.00 27.73 ATOM 902 N GLU 129 41.012 11.716 38.653 1.00 27.73 ATOM 904 CB GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.917 11.144 55.841 1.00 28.03 ATOM 906 CD GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 CG GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 908 0E2 GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 909 CG GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 901 O GLU 129 43.807 10.110 39.257 1.00 27.19 ATOM 901 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 901 CA ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 915 ODI ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 916 OD2 ASP 130 46.039 12.695 43.470 1.00 31.28 ATOM 917 C ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 919 N PRO 131 45.790 99.068 41.925 1.00 27.12 30 ATOM 919 N PRO 131 45.790 99.068 41.925 1.00 27.12 ATOM 920 CD PRO 131 45.700 99.068 41.925 1.00 27.12 ATOM 921 CA PRO 131 45.700 8.093 41.704 1.00 26.27 ATOM 922 CB PRO 131 45.700 8.093 41.704 1.00 26.27 ATOM 922 CB PRO 131 45.700 8.093 41.704 1.00 26.27 ATOM 922 CB PRO 131 45.705 8.984 41.411 1.00 25.20 ATOM 922 CB PRO 131 45.705 8.984 41.411 1.00 25.20 ATOM 922 CB PRO 131 45.705 6.596 43.125 1.00 23.13 ATOM 922 CB PRO 131 45.705 6.596 43.125 1.00 23.13 ATOM 923 CD ELU 132 45.061 6.596 43.734 1.00 25.10 ATOM 924 C PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 925 CD PRO 131 45.705 6.596 43.470 1.00 25.20 ATOM 920 CD PRO 131 45.705 6.596 43.734 1.00 25.10 ATOM 920 CD PRO 131 40.506 6.966 40.955 1.00 21.97 ATOM 920 CD PRO 131 40.506 6.966 40.955 1.00 21.97 ATOM 920 CD ELU 132 43.696 6.914 46.959 1.00 29.95 ATOM 920 CD ELU 132 43.696 6.914 46.959 1.00 25.55 ATOM 940 CA GLY 134 39.289 7.669 46.474 1.00 25.59 ATOM 940 CA GLY 134 39.289 7.669 46.474 1.00 25.12 ATOM 940 CA GLY 134 39.289 7.666 46.793 1	• •	MOTA	898	OE1	GLU	128	36.740	15.558	37.085	1.00 37.94	В
ATOM 901 O GLU 128 39.004 10.755 38.623 1.00 28.40 ATOM 902 N GLU 129 41.012 11.716 38.653 1.00 27.73 ATOM 903 CA GLU 129 41.012 11.716 38.653 1.00 27.73 ATOM 904 CB GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.03 ATOM 905 CG GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 OEI GLU 129 41.201 11.654 33.510 1.00 35.80 ATOM 908 OEZ GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 909 C GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.19 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.52 ATOM 915 ODI ASP 130 45.0484 11.577 43.061 1.00 31.52 ATOM 915 ODI ASP 130 46.026 10.555 43.470 1.00 31.52 ATOM 917 C ASP 130 46.026 10.555 43.470 1.00 31.52 ATOM 919 N PRO 131 46.039 12.695 43.125 1.00 31.01 ATOM 919 N PRO 131 45.484 11.577 43.061 1.00 31.52 ATOM 919 N PRO 131 45.784 41.157 1.00 28.42 ATOM 921 CD PRO 131 45.722 8.143 40.0760 1.00 25.74 ATOM 922 CD PRO 131 44.404 6.733 42.251 1.00 27.22 ATOM 922 CD PRO 131 44.590 8.093 41.704 1.00 25.23 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.23 ATOM 924 C PRO 131 44.506 6.866 43.734 1.00 25.23 ATOM 925 C DRO 131 44.506 6.866 43.734 1.00 25.23 ATOM 922 CB PRO 131 44.506 6.866 43.734 1.00 25.23 ATOM 922 CB LEU 132 45.061 7.6615 6.866 43.734 1.00 25.23 ATOM 923 CC LEU 132 45.061 7.665 6.866 43.734 1.00 25.23 ATOM 923 CC LEU 132 45.061 7.665 6.926 41.158 1.00 25.23 ATOM 924 C PRO 131 44.506 6.926 41.158 1.00 23.33 ATOM 925 C LEU 132 45.061 7.665 6.926 41.158 1.00 23.33 ATOM 925 C LEU 132 45.061 7.665 6.926 41.158 1.00 23.33 ATOM 926 CB LEU 132 45.866 6.914 46.597 1.00 25.25 ATOM 927 CA LEU 132 45.066 7.066 6.914 46.597 1.00 25.25 ATOM 928 CG LEU 132 47.7875 6.394 46.414 1.00 25.570 ATOM 930 CD LEU 132 47.7875 6.394 46.414 1.00 25.12 ATOM 931 CD LEU 132 47.7875 6.394 46.414 1.00 25.21 ATOM 935 CA	10	MOTA	899	OE2	GLU	128	37.450	14.460	35.309	1.00 39.71	В
ATOM 902 N GLU 129 41.012 11.716 38.853 1.00 27.73 ATOM 904 CR GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.80 ATOM 906 CD GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 OE1 GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 908 OE2 GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 908 OE2 GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 908 OE2 GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 910 O GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 912 CA ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 913 CB ASP 130 44.092 11.498 24.488 1.00 28.16 ATOM 914 CG ASP 130 44.092 11.498 24.488 1.00 28.16 ATOM 915 ODI ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 916 OD2 ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 916 OD2 ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 917 C ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 918 O ASP 130 43.690 9.068 41.925 1.00 27.22 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 45.722 8.143 40.760 1.00 25.74 ATOM 921 CA PRO 131 44.046 6.733 42.217 1.00 25.72 ATOM 922 CB PRO 131 44.046 6.733 42.217 1.00 25.72 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 25.57 ATOM 922 CB PRO 131 44.046 6.733 42.217 1.00 25.57 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 25.55 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 25.52 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 25.10 ATOM 923 CB PRO 131 44.094 6.733 42.217 1.00 25.10 ATOM 924 CB REU 132 47.750 7.835 45.895 1.00 27.12 ATOM 925 O PRO 131 44.909 7.659 44.414 1.00 25.55 ATOM 929 CB LEU 132 47.750 7.835 45.895 1.00 23.33 ATOM 930 CD LEU 132 47.750 7.835 45.895 1.00 24.12 ATOM 930 CD LEU 132 47.750 7.835 45.895 1.00 24.12 ATOM 931 CD LEU 132 47.750 7.835 45.895 1.00 24.12 ATOM 930 CD LEU 132 47.750 7.835 45.895 1.00 24.12 ATOM 931 CD LEU 132 47.750 7.835 45.896 1.00 12.35 ATOM 932 CB ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 934 C ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 935 CA ALA 133 40.760 8.997 46.897 1.00 25.21 ATOM 935 CA ALA 133 40.760 8.999 46.613 1		MOTA	900	С	GLU	128	39.692	11.704	38.977	1.00 28.41	В
ATOM 902 N. GLU 129 41.012 11.716 38.853 1.00 27.73 ATOM 904 CR GLU 129 42.343 10.919 36.940 1.00 25.80 ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.80 ATOM 906 CD GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 OE1 GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 908 OE2 GLU 129 42.807 10.110 39.257 1.00 27.72 ATOM 908 OE2 GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 27.19 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 27.19 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.19 ATOM 912 CA ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 28.16 ATOM 915 ODI ASP 130 46.026 10.525 34.470 1.00 31.28 ATOM 916 ODZ ASP 130 46.026 10.525 34.470 1.00 31.28 ATOM 917 C ASP 130 46.026 10.525 34.470 1.00 31.28 ATOM 918 O ASP 130 46.026 10.525 34.470 1.00 31.28 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 921 CA PRO 131 44.590 8.093 41.704 1.00 26.27.12 ATOM 922 CB PRO 131 44.590 8.093 41.704 1.00 26.27.4 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 27.12 ATOM 922 CB PRO 131 44.094 6.733 42.217 1.00 27.12 ATOM 924 CF PRO 131 44.094 6.733 42.217 1.00 25.42 ATOM 925 O PRO 131 44.993 7.659 44.141 1.00 25.55 ATOM 926 N LEU 132 44.903 7.659 44.141 1.00 25.55 ATOM 927 CA LEU 132 47.750 7.835 45.881 1.00 27.12 ATOM 930 CDI LEU 132 47.750 7.835 45.885 1.00 23.33 40 ATOM 931 CD LEU 132 47.895 6.394 46.474 1.00 25.55 ATOM 932 C BE LEU 132 47.750 7.835 45.887 1.00 27.135 ATOM 931 CD LEU 132 47.895 7.893 46.386 1.00 23.399 ATOM 931 CD LEU 132 47.895 6.396 46.647 1.00 25.42 ATOM 932 CB ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 933 C LEU 132 47.895 6.394 48.481 1.00 25.55 ATOM 934 C ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 935 CA ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 936 CD ALA 133 40.760 8.997 46.896 1.00 24.12 ATOM 937 C ALA 133 40.760 8.997 46.897 1.00 23.99 ATOM 937 C ALA 133 40.760 8.997 46.897 1.00 23.99 ATOM 937 C ALA 133 40.760 8.999 46.613		ATOM	901	0	GLU	128	39.004	10.755	38.623	1.00 28.40	В
AROM 903 CA GLU 129 41.724 10.574 38.303 1.00 26.98											В
ATOM											В
ATOM 905 CG GLU 129 41.317 11.144 35.841 1.00 28.03 ATOM 906 CD GLU 129 41.201 11.654 33.510 1.00 35.80 ATOM 907 OE1 GLU 129 41.201 11.654 33.510 1.00 35.80 ATOM 908 OE2 GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 909 OC GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 910 O GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 911 N ASP 130 42.966 1.014 40.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.316 1.00 28.16 ATOM 913 CB ASP 130 43.995 10.445 41.316 1.00 28.16 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 915 OD1 ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 916 OD2 ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 917 C ASP 130 45.046 1.525 43.470 1.00 31.52 ATOM 918 O ASP 130 45.484 11.577 43.061 1.00 31.52 ATOM 919 N RD 131 45.909 8.098 41.925 1.00 27.12 ATOM 920 CD PRO 131 45.490 8.099 41.704 1.00 26.27 ATOM 921 CA PRO 131 45.490 8.099 41.704 1.00 26.27 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 923 CG PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 924 C PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 926 N LEU 132 44.939 7.659 44.144 1.00 25.55 ATOM 927 CA LEU 132 44.939 7.659 44.144 1.00 25.55 ATOM 928 CB LEU 132 44.939 7.659 44.144 1.00 25.55 ATOM 929 CD LEU 132 43.794 8.214 40.372 1.00 23.33 ATOM 928 CB LEU 132 44.939 7.659 44.144 1.00 25.55 ATOM 930 CD1 LEU 132 43.794 8.216 46.477 1.00 23.99 ATOM 930 CD1 LEU 132 43.694 8.388 1.00 23.33 ATOM 930 CD1 LEU 132 43.694 8.388 1.00 23.39 ATOM 930 CD2 LEU 132 43.794 8.216 46.477 1.00 25.15 ATOM 931 CD2 LEU 132 43.794 8.216 46.477 1.00 25.15 ATOM 930 CD3 LEU 132 43.794 8.216 46.477 1.00 25.55 ATOM 931 CD2 LEU 132 43.794 8.216 46.477 1.00 25.55 ATOM 930 CD3 LEU 132 47.875 6.394 46.414 1.00 25.55 ATOM 930 CD3 LEU 132 47.875 6.394 46.414 1.00 25.55 ATOM 930 CD3 LEU 132 43.794 8.216 46.477 1.00 23.99 ATOM 930 CD3 LEU 132 43.794 8.216 46.477 1.00 23.99 ATOM 930 CD3 LEU 132 43.794 8.216 46.477 1.00 23.99 ATOM 930 CD3 LEU 132 43.794 8.338 1.00 47.944 1.00 25.10 ATOM 930 CD3 LEU 133 47.875 6.394 46.487 1.00	15										В
ATOM 906 CD GLU 129 41.954 11.422 34.487 1.00 33.17 ATOM 907 OE1 GLU 129 43.206 11.411 34.389 1.00 33.91 20 ATOM 908 OE2 GLU 129 42.807 10.101 39.257 1.00 27.19 ATOM 910 O GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 911 N ASP 130 42.966 10.814 60.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.995 11.498 42.458 1.00 22.16 ATOM 914 CG ASP 130 44.092 11.498 42.458 1.00 22.16 ATOM 915 OD1 ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 916 OD2 ASP 130 46.039 12.695 43.125 1.00 27.12 ATOM 917 C ASP 130 43.690 9.068 41.925 1.00 27.12 ATOM 918 O ASP 130 43.690 9.068 41.925 1.00 27.22 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 921 CA PRO 131 44.04 6.733 42.217 1.00 25.42 ATOM 922 CB PRO 131 44.04 6.733 42.217 1.00 25.42 ATOM 922 CB PRO 131 44.04 6.733 42.217 1.00 25.28 ATOM 922 CB PRO 131 44.596 6.6926 41.158 1.00 25.10 ATOM 923 CG PRO 131 44.596 6.6926 41.158 1.00 25.10 ATOM 924 C PRO 131 44.939 7.659 44.114 1.00 25.27 ATOM 925 O PRO 131 44.317 5.514 44.284 1.00 25.70 ATOM 927 CA LEU 132 44.939 7.659 44.114 1.00 25.570 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 929 CD PRO 131 44.590 6.668 43.731 1.00 25.00 ATOM 929 CD PRO 131 44.590 6.668 43.731 1.00 25.10 ATOM 927 CA LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 928 CB LEU 132 46.335 8.393 46.588 1.00 24.01 ATOM 930 CD1 LEU 132 48.853 8.699 46.613 1.00 25.50 ATOM 930 CD2 LEU 132 47.506 6.914 46.552 1.00 23.39 ATOM 930 CD2 LEU 132 47.506 6.914 46.552 1.00 23.39 ATOM 930 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 931 C LEU 132 43.994 8.216 46.497 1.00 25.49 ATOM 934 C LEU 132 43.994 8.216 46.497 1.00 23.99 ATOM 935 C LEU 132 43.994 8.216 46.497 1.00 23.99 ATOM 936 CB ALA 133 40.766 6.914 46.552 1.00 23.30 ATOM 937 C ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 936 CB ALA 133 40.766 6.914 46.552 1.00 23.30 ATOM 937 C ALA 133 40.766 6.914 46.552 1.00 23.50 ATOM 938 O LLE 135 33.669 8.911 9.9566 1.00 16.74 ATOM 940 CD LEU 135 33.664 9.955 1.00 17.94 ATOM											В
ATOM 907 OEI GLU 129 41.201 11.654 33.510 1.00 35.80											В
ATOM 908 OEZ GLU 129 43.206 11.411 34.389 1.00 33.91 ATOM 910 O GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 912 CA ASP 130 42.966 10.614 40.372 1.00 27.13 ATOM 913 CB ASP 130 42.966 10.614 40.372 1.00 27.13 ATOM 913 CB ASP 130 42.966 10.614 40.372 1.00 28.16 ATOM 914 CG ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 915 ODI ASP 130 46.026 10.525 43.470 1.00 31.28 ATOM 916 ODZ ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 917 C ASP 130 43.690 9.068 41.925 1.00 27.22 ATOM 918 O ASP 130 43.690 9.068 41.925 1.00 27.12 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 921 CA PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 922 CB PRO 131 44.590 8.093 41.704 1.00 25.74 ATOM 923 CG PRO 131 44.404 6.733 42.217 1.00 25.42 ATOM 924 C PRO 131 44.590 8.993 41.704 1.00 25.20 ATOM 925 O PRO 131 44.590 6.586 41.158 1.00 25.20 ATOM 925 O PRO 131 44.590 6.586 41.158 1.00 25.20 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 929 CG LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 930 CDI LEU 132 48.853 8.699 46.613 1.00 23.33 45 ATOM 931 CD LEU 132 43.794 8.216 46.497 1.00 25.49 ATOM 931 CD LEU 132 43.794 8.216 46.497 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 934 N ALA 133 40.766 8.997 46.659 1.00 23.99 ATOM 935 C ALA 133 40.766 6.914 46.552 1.00 24.15 ATOM 936 CB ALA 133 40.766 6.914 46.552 1.00 24.65 ATOM 937 C ALB 133 40.766 8.997 46.689 1.00 23.90 ATOM 938 O ALB 133 40.766 6.914 46.552 1.00 24.65 ATOM 939 N GLY 134 37.899 8.030 47.344 1.00 25.12 ATOM 936 CB ALB 133 40.766 6.914 46.552 1.00 24.65 ATOM 937 C BLE 135 35.604 4.554 77.91 1.00 17.94 ATOM 940 CB LEU 132 43.794 8.216 46.497 1.00 23.90 ATOM 940 CB LEU 133 43.799 8.030 47.344 1.00 25.12 ATOM 940 CB LEU 135 35.606 9.916 46.697 1.00 13.95 ATOM 940 CB LEU 135 35.606 9.916 46.919 1.00 17.77 ATOM 940 CB LEU 135 35.606 9.916 46.919 1.00 17.77 ATOM 940 CB LEU 135											В
ATOM 909 C GLU 129 42.807 10.110 39.257 1.00 27.19 ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 916 OD2 ASP 130 46.026 10.525 33.470 1.00 31.52 ATOM 916 OD2 ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 917 C ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 42.646 8.865 42.551 1.00 27.12 30 ATOM 918 O ASP 131 44.590 8.093 41.704 1.00 25.72 ATOM 920 CD PRO 131 45.722 8.143 40.760 1.00 25.42 ATOM 921 CA PRO 131 44.590 8.093 41.704 1.00 25.42 ATOM 922 CB PRO 131 45.516 6.926 41.158 1.00 25.28 ATOM 922 CB PRO 131 44.550 6.586 43.734 1.00 25.20 ATOM 923 CG PRO 131 44.550 6.586 43.734 1.00 25.50 ATOM 926 N LEU 132 45.061 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.659 44.414 1.00 25.55 ATOM 928 CG LEU 132 47.750 7.835 45.985 1.00 24.12 ATOM 930 CD LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 931 CD LEU 132 43.694 8.338 47.728 1.00 24.13 ATOM 932 CG LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.15 ATOM 931 CD LEU 132 43.694 8.338 47.728 1.00 24.15 ATOM 932 CA LEU 132 43.694 8.338 47.728 1.00 24.15 ATOM 933 O LEU 133 40.766 6.914 46.497 1.00 23.50 ATOM 934 N ALA 133 40.766 6.914 46.497 1.00 23.50 ATOM 935 CA ALA 133 40.766 6.914 46.552 1.00 24.63 ATO											В
ATOM 910 O GLU 129 43.480 9.117 38.997 1.00 28.14 ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 25 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 915 ODI ASP 130 45.486 11.577 43.061 1.00 31.28 ATOM 916 ODZ ASP 130 45.096 10.525 43.470 1.00 31.52 ATOM 917 C ASP 130 43.690 9.068 41.925 1.00 27.22 ATOM 918 O ASP 130 43.690 9.068 41.925 1.00 27.12 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 921 CA PRO 131 44.590 8.093 41.704 1.00 25.74 ATOM 922 CB PRO 131 44.590 8.093 41.704 1.00 25.74 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 923 CG PRO 131 44.590 8.093 41.704 1.00 25.20 ATOM 924 C PRO 131 44.590 8.093 41.704 1.00 25.10 ATOM 925 O PRO 131 44.590 8.093 41.704 1.00 25.10 ATOM 925 C DEU 132 44.391 7.659 44.414 1.00 25.70 ATOM 926 CG LEU 132 44.393 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 930 CDI LEU 132 48.853 8.699 46.613 1.00 23.33 ATOM 931 CDL LEU 132 43.694 8.383 47.726 1.00 24.01 ATOM 932 CB LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 934 C ALU 132 43.694 8.383 7.726 1.00 24.01 ATOM 935 CA ALA 133 40.760 8.097 46.896 1.00 21.35 ATOM 936 CB ALA 133 40.760 8.097 46.896 1.00 21.97 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 23.50 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 23.50 ATOM 939 C LEU 132 43.694 8.303 8.710 44.958 1.00 19.96 ATOM 940 CG LLU 134 37.899 8.030 47.344 1.00 25.12 ATOM 940 CD LLU 135 35.604 4.531 5.0381 1.00 13.85 ATOM 940 CD LLU 135 35.604 4.551 5.00 44.958 1.00 19.96 ATOM 940 CD LLU 135 35.604 4.551 5.00 44.958 1	20										
ATOM 911 N ASP 130 42.966 10.814 40.372 1.00 27.13 ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.992 11.498 42.458 1.00 28.16 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 915 ODI ASP 130 45.040 11.577 43.061 1.00 31.28 ATOM 916 ODZ ASP 130 46.039 12.695 43.175 1.00 31.01 ATOM 917 C ASP 130 46.039 12.695 43.125 1.00 31.01 ATOM 918 O ASP 130 42.646 8.865 42.551 1.00 27.22 ATOM 919 N PRO 131 45.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 45.592 8.143 40.766 1.00 25.74 ATOM 921 CA PRO 131 45.592 8.143 40.766 1.00 25.74 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 923 CG PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 926 CB LEU 132 45.061 7.615 45.870 1.00 25.77 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 25.77 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 23.33 ATOM 931 CDZ LEU 132 47.750 7.835 45.985 1.00 23.33 ATOM 933 C LEU 132 47.750 7.835 45.985 1.00 23.39 ATOM 933 C LEU 132 43.794 8.216 46.477 1.00 25.49 ATOM 935 CA ALA 133 40.766 6.916 46.477 1.00 23.99 ATOM 936 CB ALA 133 40.766 6.916 46.679 1.00 23.59 ATOM 937 C ALEU 132 43.794 8.216 46.477 1.00 23.99 ATOM 938 C BLA 133 40.766 6.915 46.896 1.00 24.12 ATOM 939 C BLEU 132 47.875 6.394 46.679 1.00 23.59 ATOM 938 C BLA 133 40.766 6.916 48.703 1.00 24.12 ATOM 939 C BLEU 132 43.794 8.216 46.477 1.00 25.21 ATOM 938 C BLA 133 40.766 6.916 48.793 1.00 23.50 ATOM 939 C BLEU 132 43.794 8.216 46.477 1.00 25.21 ATOM 936 CB ALA 133 40.766 6.916 48.793 1.00 23.50 ATOM 937 C ALB 133 40.766 6.914 46.552 1.00 24.63 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 CA GLY 134	20										В
ATOM 912 CA ASP 130 43.995 10.445 41.336 1.00 28.16 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 25 ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 915 OD1 ASP 130 45.026 10.525 43.470 1.00 31.28 ATOM 916 OD2 ASP 130 45.026 10.525 43.470 1.00 31.28 ATOM 917 C ASP 130 45.090 9.068 41.925 1.00 27.12 ATOM 918 O ASP 130 43.690 9.068 41.925 1.00 27.12 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 45.722 8.143 40.760 1.00 25.74 ATOM 921 CA PRO 131 45.436 5.928 41.431 1.00 25.28 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.28 ATOM 923 CG PRO 131 46.516 6.926 41.415 1.00 25.28 ATOM 924 C PRO 131 44.397 7.659 44.414 1.00 25.70 ATOM 925 O PRO 131 44.397 7.659 44.414 1.00 25.70 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 927 CA LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 24.12 ATOM 930 CD1 LEU 132 46.335 8.393 46.358 1.00 24.12 ATOM 931 CD2 LEU 132 47.750 7.835 45.895 1.00 24.01 ATOM 931 CD2 LEU 132 47.750 7.835 45.895 1.00 24.01 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 25.49 ATOM 933 O LEU 132 43.794 8.216 46.497 1.00 25.99 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.99 ATOM 937 C ALBU 133 41.566 9.155 46.129 1.00 23.99 ATOM 938 O RALA 133 40.766 8.917 46.896 1.00 24.01 ATOM 939 N GLY 134 30.786 8.977 46.896 1.00 24.01 ATOM 939 N GLY 134 37.891 7.541 48.387 1.00 23.99 ATOM 930 O RALA 133 40.766 8.917 46.896 1.00 24.02 ATOM 931 C BLU 132 43.794 8.236 46.357 1.00 23.99 ATOM 930 O RALA 133 40.766 8.917 46.896 1.00 24.03 ATOM 931 C BLU 132 43.794 8.388 47.728 1.00 23.99 ATOM 930 O RALA 133 40.766 8.917 46.896 1.00 24.03 ATOM 930 O RALA 133 40.766 8.917 46.896 1.00 24.03 ATOM 930 O RALA 133 40.766 8.917 46.896 1.00 23.90 ATOM 937 C BLA 133 40.766 8.917 46.896 1.00 23.90 ATOM 939 N GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 7.666 48.7731 1.00 19.66 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 13											В
25 ATOM 913 CB ASP 130 44.092 11.498 42.458 1.00 29.19 ATOM 916 CG ASP 130 45.484 11.577 43.061 1.00 31.28 ATOM 916 OD2 ASP 130 46.026 10.525 43.470 1.00 31.52 ATOM 917 C ASP 130 46.026 10.525 43.470 1.00 31.52 ATOM 918 O ASP 130 46.039 12.695 43.125 1.00 33.01 ATOM 918 O ASP 130 42.646 8.865 42.551 1.00 27.22 ATOM 918 O ASP 130 42.646 8.865 42.551 1.00 27.22 ATOM 920 CD PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 45.722 8.143 40.766 1.00 25.74 ATOM 921 CA PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 923 CG PRO 131 44.550 6.586 43.734 1.00 25.20 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 926 CB LEU 132 44.939 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 25.15 ATOM 928 CB LEU 132 45.061 7.615 45.870 1.00 24.01 ATOM 930 CDI LEU 132 47.750 7.835 45.885 1.00 24.01 ATOM 930 CDI LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 931 CD LEU 132 43.694 8.338 8.699 46.613 1.00 23.33 ATOM 932 C LEU 132 43.694 8.338 47.728 1.00 23.39 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 23.59 ATOM 933 CD LEU 132 43.694 8.338 47.728 1.00 23.59 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 24.50 ATOM 937 CA ALA 133 40.738 9.710 44.958 1.00 24.50 ATOM 938 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 937 CA ALA 133 40.766 8.915 6.912 6.00 24.63 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 24.50 ATOM 937 CA ALA 133 40.766 8.917 44.958 1.00 24.50 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.50 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.50 ATOM 937 CA ALA 133 40.766 8.917 44.958 1.00 19.96 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.50 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.50 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.50 ATOM 938 N GLY 134 40.060 8.546 47.931 1.00 23.51 ATOM 940 CD GLY 134 37.831 7.541 48.887 1.00 23.90 ATOM 940 CD LLE 135 33.567 6.662 49.055 1.00 19.96 ATOM 940 CD LLE 135 33.5604 4.531 5.908 4.502 1.00 15.77 ATOM 940 CD LLE 135 33.5604 4.531 5.908 4.502 1.00 1											В
ATOM 914 CG ASP 130 45.484 11.577 43.061 1.00 31.52											В
ATOM 916 ODZ ASP 130	25										В
ATOM 916 OD ASP 130	25										В
ATOM 917 C ASP 130		MOTA	915	OD1	ASP	130		10.525		1.00 31.52	В
ATOM 917 C ASP 130		ATOM	916	OD2	ASP	130	46.039	12.695	43.125	1.00 33.01	В
ATOM 918 O ASP 130 42.646 8.865 42.551 1.00 27.12 ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 920 CD PRO 131 44.590 8.093 41.704 1.00 26.27 ATOM 921 CA PRO 131 44.404 6.733 42.217 1.00 25.42 ATOM 922 CB PRO 131 44.404 6.733 42.217 1.00 25.42 ATOM 923 CG PRO 131 44.546 6.526 41.458 1.00 25.20 ATOM 923 CG PRO 131 44.550 6.586 43.734 1.00 25.20 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.70 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 929 CG LEU 132 47.550 7.835 45.985 1.00 23.33 ATOM 930 CD1 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 23.99 ATOM 933 O LEU 132 43.694 8.318 47.728 1.00 23.59 ATOM 935 CA ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 937 C ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 23.50 ATOM 937 C ALA 133 40.766 8.997 46.896 1.00 24.50 ATOM 938 O ALA 133 40.766 8.997 46.896 1.00 24.63 ATOM 936 CB ALA 133 40.766 8.997 46.896 1.00 23.50 ATOM 937 C ALA 133 40.766 8.997 46.896 1.00 23.50 ATOM 936 CB ALA 133 40.766 8.997 46.896 1.00 23.50 ATOM 936 CB ALA 133 40.766 8.997 46.896 1.00 23.50 ATOM 940 C GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 C GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 C GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 C GLY 134 37.399 8.030 47.344 1.00 25.22 ATOM 940 C GLY 134 37.399 8.030 47.344 1.00 25.22			917	С	ASP	130	43.690	9.068	41.925	1.00 27.22	В
ATOM 919 N PRO 131 44.590 8.093 41.704 1.00 26.27										1.00 27.12	В
ATOM 920 CD PRO 131 45.722 8.143 40.760 1.00 25.74 ATOM 921 CA PRO 131 44.404 6.733 42.217 1.00 25.42 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 35 ATOM 923 CG PRO 131 46.516 6.926 41.158 1.00 25.20 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.20 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 927 CA LEU 132 44.939 7.659 44.414 1.00 25.75 ATOM 928 CB LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 929 CG LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 930 CDI LEU 132 48.853 8.699 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 7.835 45.985 1.00 24.01 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 24.50 ATOM 935 CA ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 937 C ALA 133 40.766 8.997 46.895 1.00 23.50 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.097 46.896 1.00 23.50 ATOM 930 CD ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 931 C CB LI 334 37.998 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 941 C GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.50 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.349 1.00 15.17 ATOM 940 CD LLE 135 35.657 6.662 49.055 1.00 19.60 ATOM 940 CD LLE 135 35.604 5.962 50.295 1.00 15.17 ATOM 940 CD LLE 135 35.604 5.962 50.295 1.00 19.60 ATOM 940 CD LLE 135 36.406 5.900 8.971 49.566 1.00 19.64 ATOM 950 CD LLE 136 34.4806 7.941 48.751 1.00 11.57	30										В
ATOM 921 CA PRO 131 44.404 6.733 42.217 1.00 25.42 ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 923 CG PRO 131 46.516 6.926 41.158 1.00 25.28 ATOM 924 C PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.70 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 933 O LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 24.15 ATOM 935 CA ALA 133 40.766 9.155 46.129 1.00 23.50 ATOM 937 O ALA 133 40.766 8.914 46.896 1.00 24.15 ATOM 938 O ALA 133 40.766 8.914 46.896 1.00 24.15 ATOM 939 N GLY 134 40.660 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.704 44.958 1.00 19.96 ATOM 940 CA GLY 134 37.898 7.704 46.896 1.00 24.15 ATOM 940 CA GLY 134 37.898 7.564 48.387 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.763 1.00 24.12 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.564 48.7931 1.00 25.21 ATOM 940 CA GLY 134 37.898 7.565 1.00 19.60 ATOM 940 CA GLY 134 37.898 7.566 1.00 24.12 ATOM 940 CA GLY 134 37.898 7.566 1.00 24.12 ATOM 941 C GLY 134 37.898 7.566 1.00 24.12 ATOM 940 CA GLY 134 37.898 7.566 1.00 19.60 ATOM 940 CA GLY 134 37.898 7.566 1.00 19.60 ATOM 940 CA GLY 134 37.898 7.998 7.666 1.00 19.60 ATOM 940 CA GLY 134 37.899 7.666 1.00 19.60 ATOM 940 CA GLY 134 37.899 7.666 1.00 19.60 ATOM 940 CA GLY 134 37.899 7.666 1.00 19.60 ATOM 940 CA GLY 134 37.899 7.666 1.00 17.27 ATOM 940 CD ILE 135 36.606 1											В
ATOM 922 CB PRO 131 45.436 5.928 41.431 1.00 25.20 ATOM 924 C PRO 131 46.516 6.926 41.158 1.00 25.28 ATOM 924 C PRO 131 44.550 6.586 43.734 1.00 25.10 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 40 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 930 CD1 LEU 132 48.853 8.699 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 933 O LEU 132 43.794 8.216 46.474 1.00 23.99 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 24.50 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.766 8.917 46.958 1.00 24.63 ATOM 938 O ALA 133 40.766 8.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 941 C GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 11.57 ATOM 947 CGI ILE 135 35.604 4.531 50.381 1.00 19.60 ATOM 948 CDI ILE 135 35.604 4.531 50.381 1.00 19.64 ATOM 949 CD ILE 135 35.604 4.531 50.381 1.00 19.64 ATOM 940 CA ILE 135 35.605 8.971 49.566 1.00 19.64 ATOM 950 C ILE 136 34.788 11.29 50.488 1.00 19.49 ATOM 951 N ILE 136 34.680 11.447 53.086 1.00 19.49 ATOM 952 CA ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 958 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 958 C ILE 136 34											В
35 ATOM 923 CG PRO 131 46.516 6.926 41.158 1.00 25.28 ATOM 925 O PRO 131 44.550 6.586 43.734 1.00 25.70 ATOM 926 N LEU 132 44.317 5.514 44.284 1.00 25.70 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 23.33 ATOM 930 CDL LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 935 C ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 936 CB ALA 133 40.760 8.097 46.896 1.00 21.97 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.887 1.00 23.30 ATOM 941 C GLY 134 37.831 7.541 48.887 1.00 23.39 ATOM 941 C GLY 134 37.831 7.541 48.887 1.00 23.23 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.871 1.00 25.21 ATOM 940 CA GLY 134 37.891 8.000 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.891 7.666 62 49.551 1.00 19.60 ATOM 945 CB ILE 135 35.667 6.662 49.955 1.00 17.94 ATOM 946 CC ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 947 CGI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 950 C ILE 135 34.130 7.995 47.799 1.00 17.27 ATOM 951 N ILE 136 34.286 7.941 48.751 1.00 19.64 ATOM 952 CA ILE 136 34.286 7.941 48.751 1.00 19.64 ATOM 955 CGI ILE 136 34.286 7.941 48.751 1.00 19.64 ATOM 950 C ILE 136 34.286 7.991 49.377 1.00 19.00 ATOM 957 C ILE 136 34.286 7.991 1.00 17.27 ATOM 958 C ILE 136 34.286 7.991 49.377 1.00 19.00 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 950 C ILE 136 34.266 1.00 18.88 47.00 1.00 19.69 ATOM 950 C ILE 1											В
ATOM 924 C PRO 131 44.550 6.586 43.734 1.00 25.10											В
ATOM 925 O PRO 131 44.317 5.514 44.284 1.00 25.70 ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 40 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 930 CD1 LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.474 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 23.99 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 936 CB ALA 133 40.766 8.97 46.629 1.00 23.50 ATOM 937 C ALA 133 40.766 8.97 46.650 1.00 21.97 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 24.63 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 941 C GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 940 CA GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.21 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 940 CA GLY 134 37.399 8.030 47.344 1.00 23.90 ATOM 940 CB ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 940 CB ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 940 CB ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 940 CB ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 940 CB ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 940 CB ILE 135 34.886 7.941 49.566 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 950 C ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 950 C ILE 136 34.680 11.447 53.086 1.00 19.64 ATOM 950 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 950 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 950 C ILE 136 34.680 11.447 53.086 1.00 19.69 ATOM 958 C ILE 136 34.680 11.447 53.086 1.00 19.594 ATOM 950 C D PRO 137 35.742 11.382 47.662 1.00 15.74	35										B
ATOM 926 N LEU 132 44.939 7.659 44.414 1.00 25.55 ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 930 CD1 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.474 1.00 25.49 ATOM 933 O LEU 132 43.794 8.216 46.474 1.00 25.49 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.766 8.974 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 8.974 46.896 1.00 24.12 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 946 CG ILE 135 33.513 5.984 50.232 1.00 19.60 ATOM 947 CGI ILE 135 35.607 6.662 49.055 1.00 17.94 ATOM 948 CDI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 949 C ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.60 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.60 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 949 C ILE 135 34.886 7.941 49.756 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 49.756 1.00 19.64 ATOM 950 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CGI ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 15.74 ATOM 959 O PRO 137 35.742 11.382 47.662 1.00 15.74	55										
ATOM 927 CA LEU 132 45.061 7.615 45.870 1.00 24.12 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 23.03 ATOM 930 CD1 LEU 132 48.853 8.699 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 939 N GLY 134 40.660 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.387 1.00 23.60 ATOM 941 C GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.891 7.541 48.387 1.00 23.90 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 19.60 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 19.60 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 19.64 ATOM 950 O ILE 135 35.002 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 35.002 3.883 51.712 1.00 11.57 ATOM 950 C ILE 135 34.380 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 956 CD ILE 136 34.3768 11.219 50.486 1.00 18.91 ATOM 957 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.785 11.963 47.662 1.00 16.74 ATOM 959 N PRO 137 35.785 11.963 47.662 1.00 17.68											B
40 ATOM 928 CB LEU 132 46.335 8.393 46.358 1.00 23.33 ATOM 930 CDI LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 931 CD2 LEU 132 47.875 6.394 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 933 O LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.794 8.216 46.497 1.00 24.50 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 935 CA ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 936 CB ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.63 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 944 CA ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CGI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CDI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 34.383 10.229 93.377 1.00 19.60 ATOM 952 CA ILE 136 34.383 10.229 93.377 1.00 19.00 ATOM 955 CGI ILE 136 34.383 10.229 93.377 1.00 19.00 ATOM 956 CD ILE 136 34.383 10.229 93.377 1.00 19.00 ATOM 957 C ILE 136 34.383 10.229 93.377 1.00 19.49 ATOM 958 O ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 959 N RO 137 35.785 11.982 47.662 1.00 16.74 ATOM 959 N RO 137 35.785 11.982 47.662 1.00 16.74 ATOM 959 N RO 137 35.785 11.983 47.662 1.00 17.68											B
40 ATOM 929 CG LEU 132 47.750 7.835 45.985 1.00 24.01 ATOM 930 CD1 LEU 132 48.853 8.699 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 946 CC ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 947 CGI ILE 135 35.604 8.5962 50.295 1.00 17.94 ATOM 948 CDI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 34.986 7.991 48.751 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CGI ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 956 CDI ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.27 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 959 N PRO 137 35.785 11.963 47.662 1.00 15.94 ATOM 959 N PRO 137 35.785 11.963 47.662 1.00 16.29 ATOM 959 N PRO 137 35.785 11.963 47.662 1.00 17.68											В
ATOM 930 CD1 LEU 132 48.853 8.699 46.613 1.00 21.35 ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 939 N GLY 134 40.660 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.891 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.648 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.408 5.962 50.295 1.00 17.27 ATOM 940 P40 CR ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.408 5.962 50.295 1.00 17.94 ATOM 940 CR ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.408 5.962 50.295 1.00 17.94 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 34.388 10.229 49.377 1.00 19.00 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 35.785 11.963 46.318 1.00 17.68	40										В
ATOM 931 CD2 LEU 132 47.875 6.394 46.474 1.00 25.49 ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 45 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.766 8.097 46.896 1.00 24.12 ATOM 937 C ALA 133 40.766 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 8.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 944 CA ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 947 CGI ILE 135 35.604 5.962 50.295 1.00 17.94 ATOM 948 CDI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 5.962 50.295 1.00 17.94 ATOM 947 CGI ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CDI ILE 135 35.604 5.962 50.295 1.00 17.94 ATOM 949 C ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.604 5.962 50.295 1.00 15.17 ATOM 947 CGI ILE 135 35.604 5.962 50.295 1.00 15.17 ATOM 949 C ILE 135 35.604 5.962 50.295 1.00 15.17 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 951 N ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 952 CA ILE 136 34.134 37.88 11.219 50.486 1.00 18.34 ATOM 955 CGI ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 959 N PRO 137 35.785 11.963 46.318 1.00 17.68	40										В
ATOM 932 C LEU 132 43.794 8.216 46.497 1.00 23.99 ATOM 933 O LEU 132 43.694 8.338 47.728 1.00 24.50 45 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 55 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CC2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 955 CG1 ILE 136 34.383 10.299 49.377 1.00 19.00 ATOM 957 C ILE 136 34.186 7.941 48.751 1.00 19.64 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 18.34 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 17.37 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.29 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 17.68											В
45 ATOM 934 N ALA 133 42.831 8.587 45.650 1.00 24.50 ATOM 935 CA ALA 133 42.831 8.587 45.650 1.00 21.97 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.766 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 951 N ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.184 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 957 C ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 959 N PRO 137 37.083 11.311 48.259 1.00 16.79 ATOM 959 N PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 960 CD PRO 137 35.785 11.963 46.318 1.00 17.68											В
45 ATOM 934 N ALA 133 41.566 9.155 46.129 1.00 21.97 ATOM 936 CB ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 937 C ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 25.12 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.667 6.662 49.055 1.00 17.94 ATOM 946 CG2 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 956 CD1 ILE 136 34.758 11.219 50.486 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.785 11.983 46.318 1.00 17.68		MOTA	932	С	LEU	132	43.794	8.216	46.497	1.00 23.99	В
45 ATOM 934 N ALA 133 41.566 9.155 46.129 1.00 21.97 ATOM 936 CB ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 937 C ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.61 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 25.12 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.667 6.662 49.055 1.00 17.94 ATOM 946 CG2 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 C ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 956 CD1 ILE 136 34.758 11.219 50.486 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.785 11.983 46.318 1.00 17.68			933	0		132	43.694			1.00 24.50	В
ATOM 935 CA ALA 133 41.566 9.155 46.129 1.00 23.50 ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.766 6.914 46.952 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.60 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 955 CG1 ILE 136 34.383 10.229 49.377 1.00 19.49 ATOM 955 CG1 ILE 136 34.383 10.229 49.377 1.00 19.49 ATOM 957 C ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 958 O ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.29 ATOM 950 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29	45										В
ATOM 936 CB ALA 133 40.738 9.710 44.958 1.00 19.96 ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.64 ATOM 955 CG1 ILE 136 34.383 10.229 49.377 1.00 19.49 ATOM 955 CG1 ILE 136 34.266 10.669 51.838 1.00 19.49 ATOM 957 C ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 958 O ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 34.552 10.867 47.991 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.29 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 937 C ALA 133 40.760 8.097 46.896 1.00 24.12 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 19.64 ATOM 957 C ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.785 11.963 46.318 1.00 17.57 ATOM 959 N PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
50 ATOM 938 O ALA 133 40.766 6.914 46.552 1.00 24.63 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 55 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 946 CG2 ILE 135 35.657 6.662 49.055 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 958 O ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.29 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
50 ATOM 939 N GLY 134 40.060 8.546 47.931 1.00 25.21 ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 55 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.642 30.232 1.00 15.17 ATOM 946 CG2 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CDI ILE 135<											В
ATOM 940 CA GLY 134 39.289 7.646 48.763 1.00 23.61 ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 35.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.778 1.219 50.486 1.00 18.91 ATOM 955 CG1 ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 35.785 11.963 46.318 1.00 17.68	50										В
ATOM 941 C GLY 134 37.831 7.541 48.387 1.00 23.90 ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.057 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 11.57 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 35.785 11.963 46.318 1.00 17.68	50										В
ATOM 942 O GLY 134 37.399 8.030 47.344 1.00 25.12 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 55 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 946 CG2 ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.514 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.785 11.913 48.259 1.00 16.29 ATOM 961 CA PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											
55 ATOM 943 N ILE 135 37.075 6.887 49.261 1.00 22.33 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.657 6.662 49.055 1.00 17.94 ATOM 946 CG2 ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 947 CG1 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.758 11.219 50.486 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
55 ATOM 944 CA ILE 135 35.657 6.662 49.055 1.00 19.60 ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 945 CB ILE 135 35.048 5.962 50.295 1.00 17.94 ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 19.49 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 959 N PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	55										В
ATOM 946 CG2 ILE 135 33.513 5.984 50.232 1.00 15.17 ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.266 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 950 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 37.083 11.311 48.259 1.00 16.29	צנ										В
ATOM 947 CG1 ILE 135 35.604 4.531 50.381 1.00 13.85 ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 948 CD1 ILE 135 35.402 3.883 51.712 1.00 11.57 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
60 ATOM 949 C ILE 135 34.886 7.941 48.751 1.00 19.64 ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM											В
ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 19.49 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	60	MOTA		CD1	ILE		35.402			1.00 11.57	В
ATOM 950 O ILE 135 34.130 7.995 47.789 1.00 17.27 ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 19.49 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.91 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	60	MOTA	949	С	ILE	135	34.886	7.941	48.751	1.00 19.64	В
ATOM 951 N ILE 136 35.090 8.971 49.566 1.00 19.64 ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 955 CG1 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 37.083 11.311 48.259 1.00 16.29								7.995			В
ATOM 952 CA ILE 136 34.383 10.229 49.377 1.00 19.00 ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 65 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.785 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 953 CB ILE 136 34.758 11.219 50.486 1.00 18.34 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
65 ATOM 954 CG2 ILE 136 34.174 12.595 50.188 1.00 19.49 ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 955 CG1 ILE 136 34.226 10.669 51.838 1.00 18.91 ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	65										В
ATOM 956 CD1 ILE 136 34.680 11.447 53.086 1.00 18.92 ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	33										
ATOM 957 C ILE 136 34.552 10.867 47.991 1.00 17.37 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
70 ATOM 958 O ILE 136 33.614 10.888 47.207 1.00 15.94 7.00 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 7.00 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 7.00 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
70 ATOM 959 N PRO 137 35.742 11.382 47.662 1.00 16.74 ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68											В
ATOM 960 CD PRO 137 37.083 11.311 48.259 1.00 16.29 ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	70										В
ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68	/U										В
ATOM 961 CA PRO 137 35.785 11.963 46.318 1.00 17.68 1 ATOM 962 CB PRO 137 37.263 12.305 46.132 1.00 14.17											В
ATOM 962 CB PRO 137 37.263 12.305 46.132 1.00 14.17								11.963			В
		ATOM	962	СB	PRO	137	37.263	12.305	46.132	1.00 14.17	В

	MOTA	963	CG	PRO	137	37.966	11.351	47.037	1.00 16.06	В
					137	35.229	11.025	45.232	1.00 20.66	В
	MOTA	964	C	PRO						
	ATOM	965	0	PRO	137	34.408	11.434	44.406	1.00 22.43	В
	MOTA	966	N	ARG	138	35.651	9.764	45.232	1.00 21.33	В
5	MOTA	967	CA	ARG	138	35.154	8.825	44.224	1.00 21.16	В
_					138	35.768	7.428		1.00 19.87	В
	MOTA	968	CB	ARG				44.436		
	MOTA	969	CG	ARG	138	37.251	7.370	44.138	1.00 18.07	В
	MOTA	970	CD	ARG	138	37.812	5.989	44.402	1.00 17.00	В
	ATOM	971	NE	ARG	138	39.264	6.019	44.408	1.00 14.48	В
-10										
-10	MOTA	972	CZ	ARG	138	40.016	5.909	43.327	1.00 16.26	В
	MOTA	973	NH1	ARG	138	39.446	5.743	42.137	1.00 15.29	В
	MOTA	974	NH2	ARG	138	41.337	6.004	43.433	1.00 14.85	В
		975	С	ARG	138	33.630	8.705	44.202	1.00 21.32	В
	MOTA									
1.5	MOTA	976	0	ARG	138	33.021	8.644	43.139	1.00 25.00	В
15	MOTA	977	N	THR	139	33.009	8.667	45.370	1.00 20.40	В
	MOTA	978	CA	THR	139	31.562	8.540	45.436	1.00 20.86	В
	MOTA	979	СВ	THR	139	31.081	8.385	46.895	1.00 20.11	В
	MOTA	980		THR	139	31.770	7.293	47.512	1.00 21.18	В
	MOTA	981	CG2	THR	139	29.583	8.120	46.944	1.00 18.68	В
20	MOTA	982	С	THR	139	30.883	9.753	44.815	1.00 23.10	В
	ATOM	983	Ó	THR	139	29.955	9.613	44.014	1.00 24.95	В
	MOTA	984	N	LEU	140	31.340	10.944	45.189	1.00 23.71	В
	MOTA	985	CA	LEU	140	30.762	12.175	44.659	1.00 23.38	В
	ATOM	986	CB	LEU	140	31.480	13.401	45.238	1.00 21.47	В
25	MOTA	987	CG	LEU	140	31.211	13.560	46.733	1.00 21.91	В
	ATOM	988		LEU	140	32.120	14.621	47.305	1.00 21.37	В
	MOTA	989	CD2	LEU	140	29.740	13.883	46.966	1.00 18.69	В
	MOTA	990	С	LEU	140	30.859	12.184	43.154	1.00 23.10	В
	MOTA	991	0	LEU	140	29.870	12.395	42.467	1.00 21.86	В
30	ATOM	992	N	HIS	141	32.058	11.948	42.645	1.00 24.02	В
20										
	ATOM	993	CA	HIS	141	32.272	11.927	41.207	1.00 27.46	В
	MOTA	994	CB	HIS	141	33.741	11.616	40.908	1.00 27.50	В
	MOTA	995	CG	HIS	141	34.101	11.718	39.457	1.00 30.18	В
	MOTA	996	CD2	HIS	141	34.041	10.807	38.457	1.00 30.98	В
35	MOTA	997		HIS	141	34.614	12.869	38.896	1.00 30.79	В
55										
	MOTA	998		HIS	141	34.859	12.662	37.615	1.00 29.68	В
	MOTA	999	NE2	HIS	141	34.520	11.419	37.324	1.00 31.87	В
	MOTA	1000	С	HIS	141	31.372	10.885	40.517	1.00 28.79	В
	MOTA	1001	0	HIS	141	30.835	11.133	39.432	1.00 30.63	В
40	ATOM	1002	N	GLN	142	31.196	9.728	41.154	1.00 27.09	В
70										
	MOTA	1003	CA	GLN	142	30.392	8.664	40.579	1.00 26.11	В
	MOTA	1004	СB	GLN	142	30.660	7.381	41.302	1.00 27.58	В
	ATOM	1005	CG	GLN	142	31.938	6.733	40.855	1.00 29.72	В
	MOTA	1006	CD	GLN	142	32.001	6.617	39.344	1.00 31.15	В
45	ATOM	1007	OE1		142	31.181	5.929	38.729	1.00 32.85	В
73										
	MOTA	1008	NE2	GLN	142	32.969	7.300	38.735	1.00 29.44	В
	MOTA	1009	С	GLN	142	28.894	8.913	40.514	1.00 25.79	В
	MOTA	1010	0	GLN	142	28.238	8.494	39.564	1.00 25.19	В
	ATOM	1011	N	ILE	143	28.351	9.583	41.523	1.00 24.49	В
50				ILE	143	26.928	9.888	41.555	1.00 23.07	В
50	MOTA	1012	CA							
	ATOM	1013	CB	ILE	143	26.581	10.716	42.805	1.00 22.41	В
	MOTA	1014	CG2	ILE	143	25.174	11.285	42.690	1.00 24.89	В
	MOTA	1015	CG1	ILE	143	26.727	9.856	44.044	1.00 21.77	В
	ATOM	1016	CD1	ILE	143	26.477	10.599	45.339	1.00 21.34	В
55										
55	MOTA	1017	C	ILE	143	26.492	10.664	40.308	1.00 23.84	В
	MOTA	1018	0	ILE	143	25.417	10.425	39.769	1.00 23.49	В
	MOTA	1019	N	PHE	144	27.334	11.593	39.860	1.00 25.75	В
	MOTA	1020	CA	PHE	144	27.044	12.418	38.690	1.00 27.59	В
	MOTA	1021	СВ	PHÉ	144	28.019	13.657	38.638	1.00 26.93	В
60										
UU	MOTA	1022	CG	PHE	144	27.734	14.694	39.688	1.00 27.63	В
	MOTA	1023		PHE	144	26.583	15.478	39.614	1.00 28.58	В
	MOTA	1024	CD2	PHE	144	28.577	14.845	40.785	1.00 27.80	В
	ATOM	1025	CE1	PHE	144	26.271	16.396	40.626	1.00 28.69	В
	ATOM	1026		PHE	144	28.279	15.756	41.802	1.00 27.42	В
65										
UJ	MOTA	1027	CZ	PHE	144	27.121	16.532	41.723	1.00 29.86	В
	MOTA	1028	С	PHE	144	27.129	11.621	37.394	1.00 28.56	В
	ATOM	1029	0	PHE	144	26.425	11.918	36.423	1.00 27.83	В
	ATOM	1030	N	GLU	145	27.998	10.614	37.382	1.00 30.60	В
	ATOM	1031	CA	GLU	145	28.160	9.757	36.209	1.00 32.75	В
70										
10	MOTA	1032	CB	GLU	145	29.433	8.889	36.357	1.00 35.85	В
	MOTA	1033	CG	GLU	145	30.742	9.673	36.317	1.00 42.03	В
	MOTA	1034	CD	GLU	145	31.201	9.977	34.898	1.00 46.55	В
	ATOM	1035	OE1		145	32.014	10.916	34.699	1.00 47.36	В
										~

	ATOM	1036	OF2	GLU	145	30.748	9.262	33.976	1.00 49.72	В
	MOTA	1037	C	GLU	145	26.934	8.854	36.040	1.00 32.32	В
	ATOM	1037	Ö	GLU	145	26.319	8.812	34.974	1.00 32.31	В
		1038			146	26.573	8.150	37.104	1.00 32.21	В
5	ATOM ATOM	1040	N CA	LYS LYS	146	25.443	7.235	37.066	1.00 34.10	В
,	ATOM	1040	CB	LYS	146	25.340	6.463	38.430	1.00 34.57	В
	MOTA	1041	CG	LYS	146	26.693	5.973	38.952	1.00 35.68	В
					146	26.597	4.862	39.994	1.00 34.50	В
	ATOM	1043	CD	LYS			3.486	39.327	1.00 35.54	В
10	MOTA	1044	CE	LYS	146	26.566 27.115	2.405	40.204	1.00 33.34	В
10	MOTA	1045	NZ	LYS	146			36.721		В
	MOTA	1046	C	LYS	146	24.098 23.320	7.888 7.342	35.929	1.00 34.95 1.00 35.60	В
	MOTA	1047	0	LYS	146					В
	MOTA	1048	N	LEU	147	23.831	9.057 9.762	37.298	1.00 34.40	
15	MOTA	1049	CA	LEU	147	22.574		37.061	1.00 33.66	В
13	ATOM	1050	CB	LEU	147		10.477	38.336	1.00 32.95	В
	ATOM	1051	CC.	LEU	147	21.963	9.607	39.554	1.00 33.64	• В
	MOTA	1052		LEU	147	21.682	10.474	40.775	1.00 34.40	В
	MOTA	1053		LEU	147	20.809	8.645	39.308	1.00 35.51	В
20	MOTA	1054	C	LEU	147	22.634	10.772	35.907	1.00 34.15	В
20	MOTA	1055	0	LEU	147	21.724	11.576	35.728	1.00 32,96	В
	MOTA	1056	N	THR	148	23.698	10.719	35.115	1.00 35.64	В
	MOTA	1057	CA	THR	148	23.863	11.656	34.011	1.00 36.46	В
	ATOM	1058	CB	THR	148	25.138	11.332	33.198	1.00 35.78	В
25	MOTA	1059		THR	148	25.492	12.468	32.409	1.00 36.67	В
25	ATOM	1060		THR	148	24.914	10.150	32.274	1.00 36.63	В
	MOTA	1061	C	THR	148	22.659	11.770	33.057	1.00 37.44	В
	MOTA	1062	0	THR	148	22.313	12.878	32.639	1.00 37.93	В
	MOTA	1063	N	ASP	149	22.019	10.653	32.712	1.00 35.78	В
20	ATOM	1064	CA	ASP	149	20.867	10.706	31.807	1.00 35.94	В
30	ATOM	1065	CB	ASP	149	21.337	11.004	30.322	1.00 34.77	В
	MOTA	1066	CG	ASP	149	22.404	10.027	29.827	1.00 36.65	В
	MOTA	1067		ASP	149	22.605	8.965	30.467	1.00 35.17	В
	MOTA	1068		ASP	149	23.032	10.321	28.784	1.00 35.41	В
25	ATOM	1069	С	ASP	149	19.966	9.460	31.824	1.00 36.15	В
35	ATOM	1070	0	ASP	149	19.568	8.947	30.769	1.00 32.78	В
	ATOM	1071	N	ASN	150	19.639	8.987	33.025	1.00 36.51	В
	MOTA	1072	CA	ASN	150	18.781	7.819	33.181	1.00 38.16	В
	MOTA	1073	CB	ASN	150	19.218	6.992	34.417	1.00 37.97	В
40	MOTA	1074	CG	ASN	150	19.159	7.785	35.704	1.00 37.13	В
40	MOTA	1075		ASN	150	19.548	8.951	35.742	1.00 37.20	В
	MOTA	1076	ND2		150	18.694	7.148	36.774	1.00 36.82	В
	MOTA	1077	С	ASN	150	17.314	8.240	33.305	1.00 39.47	В
	MOTA	1078	0	ASN	150	16.419	7.397	33.433	1.00 39.49	В
45	MOTA	1079	N	GLY	151	17.077	9.549	33.245	1.00 39.29	В
45	MOTA	1080	CA	GLY	151	15.725	10.063	33.343	1.00 39.01	В
	MOTA	1081	Ç	GLY	151	15.333	10.349	34.772	1.00 39.23	В
	ATOM	1082	0	GLY	151	14.170	10.612	35.063	1.00 40.53	В
	MOTA	1083	N	THR	152	16.307	10.285	35.670	1.00 40.25	В
50	MOTA	1084	CA	THR	152	16.069	10.547	37.085	1.00 40.87	В
50	ATOM	1085	CB	THR	152	16.730	9.463	37.960	1.00 39.78	В
	MOTA	1086	OG1		152	16.146	8.191	37.655	1.00 43.27	В
	MOTA	1087	CG2	THR	152	16.531	9.764	39.437	1.00 40.09	В
	ATOM	1088	C	THR	152	16.643	11.918	37.448	1.00 41.24	В
55	MOTA	1089	0	THR	152	17.860	12.120	37.434	1.00 42.84	В
55	MOTA	1090	N	GLU	153		12.856	37.754	1.00 40.50 1.00 39.45	В
	MOTA	1091	CA	GLU	153	16.140	14.216	38.118		В
	MOTA	1092	CB	GLU	153	14.910	15.143 16.606	38.054 37.831	1.00 41.77 1.00 47.08	B B
	MOTA	1093	CG	GLU	153	15.258				
60	MOTA	1094	CD	GLU	153	15.903	16.847	36.474	1.00 49.24	В
UU	ATOM	1095		GLU	153	16.559	17.901	36.313	1.00 49.10 1.00 49.10	В
	MOTA	1096		GLU	153	15.747	15.988	35.570		В
	MOTA	1097	С	GLU	153	16.697	14.170	39.538	1.00 36.82	В
	MOTA	1098	0	GLU	153	16.140	13.472	40.387	1.00 35.59 1.00 33.77	В
65	MOTA	1099	N	PHE	154	17.770	14.919	39.807		В
UJ	MOTA	1100	CA	PHE	154	18.380	14.877	41.140	1.00 31.58	В
	ATOM	1101	CB	PHE	154	19.302	13.644	41.212	1.00 29.10	В
	MOTA	1102	CG	PHE	154	20.572	13.797	40.414		В
	MOTA	1103	CD1		154	21.763	14.165	41.038	1.00 25.72 1.00 23.66	В
70	MOTA	1104	CD2		154	20.573	13.597	39.037		В
70	ATOM	1105	CE1		154	22.941	14.328	40.297	1.00 26.03	В
	MOTA	1106	CE2		154	21.741	13.758	38.294	1.00 25.52 1.00 24.44	В
	MOTA	1107	CZ	PHE	154	22.930	14.123	38.925 41.627	1.00 24.44	B B
	MOTA	1108	С	PHE	154	19.183	16.093	41.02/	1.00 23.33	D

	MOTA	1109	0	PHE	154	19.651	16.924	40.850	1.00 30.00	В
	MOTA	1110	N	SER	155	19.357	16.157	42.940	1.00 28.97	В
	ATOM	1111	CA	SER	155	20.140	17.212	43.572	1.00 28.90	В
5	ATOM	1112	CB	SER	155	19.225	18.281	44.243	1.00 26.53	В
3	MOTA	1113	OG	SER	155	18.732	17.844	45.502	1.00 24.48	В
	MOTA	1114	C	SER	155	21.010	16.537	44.635	1.00 28.97	В
	MOTA	1115	0	SER	155	20.588	15.569	45.279	1.00 28.86	В
	MOTA	1116	N	VAL	156	22.221	17.047	44.819	1.00 29.35	В
10	MOTA	1117	CA	VAL	156	23.135	16.483	45.803	1.00 29.64	В
10	MOTA	1118	CB	VAL	156	24.431	15.977	45.125	1.00 28.79	В
	MOTA	1119		VAL	156	25.280	15.208	46.124	1.00 29.92	В
	MOTA	1120		VAL	156	24.089	15.116	43.930	1.00 29.12	В
	MOTA	1121	C	VAL	156	23.516	17.517	46.863	1.00 29.76	В
15	MOTA	1122	0	VAL	156	23.925	18.627	46.532	1.00 30.11	В
13	MOTA	1123	N	LYS	157	23.372	17.149	48.132	1.00 30.23	В
	MOTA	1124	CA	LYS	157	23.731	18.028	49.245	1.00 31.02	В
	MOTA	1125	CB	LYS	157	22.489	18.431	50.063	1.00 32.19	В
	ATOM	1126	CG	LYS	157	21.543 20.246	19.376 19.523	49.364 50.162	1.00 35.38	В
20	MOTA	1127	CD	LYS	157	19.169	20.259	49.369	1.00 39.38	B B
20	MOTA	1128	CE	LYS	157		20.239	50.067	1.00 40.45	В
	ATOM ATOM	1129 1130	NZ	LYS	157 157	17.857 24.702	17.308	50.171	1.00 30.04	В
	ATOM	1131	C O	LYS LYS	157	24.702	16.230	50.668	1.00 30.82	В
	ATOM	1131	Ŋ	VAL	158	25.866	17.900	50.402	1.00 30.82	В
25	MOTA	1133	CA	VAL	158	26.839	17.290	51.292	1.00 27.63	В
25	ATOM	1134	CB	VAL	158	28.284	17.406	50.751	1.00 27.03	В
	MOTA	1135		VAL	158	28.433	16.582	49.478	1.00 27.25	В
	MOTA	1136	CG2		158	28.632	18.861	50.491	1.00 26.29	В
	ATOM	1137	C	VAL	158	26.785	17.959	52.649	1.00 27.62	В
30	ATOM	1138	Õ	VAL	158	26.182	19.009	52.818	1.00 27.51	В
50	ATOM	1139	N	SER	159	27.431	17.344	53.624	1.00 28.77	В
	ATOM	1140	CA	SER	159	27.449	17.896	54.962	1.00 29.25	В
	ATOM	1141	CB	SER	159	26.155	17.634	55.612	1.00 29.36	В
	ATOM	1142	OG	SER	159	26.083	18.324	56.835	1.00 35.64	B
35	ATOM	1143	c	SER	159	28.584	17.255	55.753	1.00 28.48	В
	ATOM	1144	ō	SER	159	28.762	16.037	55.723	1.00 29.46	В
	ATOM	1145	N	LEU	160	29.364	18.070	56.451	1.00 26.66	В
	MOTA	1146	CA	LEU	160	30.473	17.529	57.215	1.00 26.24	В
	MOTA	1147	СВ	LEU	160	31.769	18.008	56.649	1.00 26.22	В
40	ATOM	1148	CG	LEU	160	33.024	17.381	57.255	1.00 25.56	В
	ATOM	1149	CD1	LEU	160	32.850	15.873	57.350	1.00 24.56	В
	ATOM	1150		LEU	160	34.241	17.759	56.400	1.00 24.75	В
	MOTA	1151	С	LEU	160	30.393	17.872	58.690	1.00 26.51	В
	MOTA	1152	0	LEU	160	30.816	18.949	59.119	1.00 24.86	В
45	ATOM	1153	N	LEU	161	29.844	16.937	59.461	1.00 25.32	В
	ATOM	1154	CA	LEU	161	29.686	17.112	60.895	1.00 23.81	В
	MOTA	1155	CB	LEU	161	28.349	16.607	61.310	1.00 23.24	В
	MOTA	1156	CG	LEU	161	28.109	16.490	62.766	1.00 23.19	В
~^	MOTA	1157		LEU	161	27.992	17.879	63.371	1.00 24.82	В
50	MOTA	1158	CD2	LEU	161	26.838	15.701	62.989	1.00 22.84	В
	MOTA	1159	С	LEU	161	30.777	16.338	61.613	1.00 24.19	В
	MOTA	1160	0	LEU	161	31.024	15.178	61.307	1.00 25.43	В
	MOTA	1161	N	GLU	162	31.444	16.983	62.563	1.00 23.56	В
E E	MOTA	1162	ÇA	GLU	162	32.507	16.322	63.304	1.00 21.29	В
55	MOTA	1163	CB	GLU	162	33.892	16.895	62.872	1.00 19.65	В
	MOTA	1164	CG	GLU	162	34.027	16.956	61.338	1.00 18.31	В
	ATOM	1165	CD	GLU	162	35.463	16.923	60.845	1.00 19.90	В
	MOTA	1166		GLU	162	36.362	17.416	61.557	1.00 20.88	B
۷۸	MOTA	1167		GLU	162	35.699	16.413	59.729	1.00 21.08	В
60	MOTA	1168	С	GLU	162	32.276	16.448	64.803	1.00 21.51	В
	MOTA	1169	0	GLU	162	31.734	17.441	65.286	1.00 24.11	В
	MOTA	1170	N	ILE	163	32.665	15.419	65.543	1.00 20.50	В
	ATOM	1171	CA	ILE	163	32.464	15.414	66.979	1.00 16.52	В
65	ATOM	1172	СВ	ILE	163	31.587	14.221	67.396	1.00 15.68	В
03	MOTA	1173		ILE	163	31.070	14.412	68.813	1.00 13.11	В
	MOTA	1174		ILE	163	30.420	14.093	66.427	1.00 14.88	В
	MOTA	1175		ILE	163	29.521	12.920	66.704	1.00 16.15	В
	MOTA	1176	C	ILE	163	33.805	15.325	67.672	1.00 17.43	В
70	MOTA	1177	0	ILE	163	34.644	14.499	67.319	1.00 17.59	В
70	MOTA	1178	N	TYR	164	33.996	16.201	68.654	1.00 17.46	В
	MOTA	1179	CA	TYR	164	35.219	16.263	69.430	1.00 16.57	В
	MOTA	1180	CB	TYR	164	36.192	17.276	68.783	1.00 14.70	В
	ATOM	1181	CG	TYR	164	37.464	17.474	69.559	1.00 12.25	В

						•			
	ATOM	1182	CD1 TYR	164	37.502	18.334	70.653	1.00 13.17	В
		1183	CE1 TYR		38.643	18.439	71.454	1.00 15.94	В
	MOTA							1.00 13.94	
	MOTA	1184	CD2 TYR		38.600	16.724	69.267		В
_	ATOM	1185	CE2 TYR		39.753	16.814	70.058	1.00 15.22	В
5	MOTA	1186	CZ TYR		39.773	17.674	71.155	1.00 17.31	В
	MOTA	1187	OH TYR	164	40.909	17.774	71.952	1.00 15.71	В
	MOTA	1188	C TYR	164	34.875	16.669	70.863	1.00 18.56	В
	MOTA	1189	O TYR	164	34.289	17.726	71.094	1.00 21.94	В
	ATOM	1190	N ASN		35.225	15.826	71.828	1.00 20.33	В
10	MOTA	1191	CA ASN		34.942	16.122	73.232	1.00 22.94	В
10					35.633	17.402	73.653	1.00 24.28	В
	ATOM	1192	CB ASN						
	MOTA	1193	CG ASN		36.418	17.255	74.942	1.00 28.53	В
	MOTA	1194	OD1 ASN		37.598	16.864	74.929	1.00 31.28	В
	MOTA	1195	ND2 ASN	165	35.777	17.569	76.064	1.00 24.86	В
15	ATOM	1196	C ASN	165	33.443	16.314	73.406	1.00 24.90	В
	MOTA	1197	O ASN	165	33.009	17.222	74.121	1.00 26.77	• В
	ATOM	1198	N GLU		32.657	15.471	72.745	1.00 23.40	В
	MOTA	1199	CA GLU		31.200	15.555	72.813	1.00 22.69	В
		1200	CB GLU		30.706	15.231	74.237	1.00 22.07	В
20	MOTA								
20	MOTA	1201	CG GLU		30.814	13.757	74.590	1.00 22.71	В
	MOTA	1202	CD GLU		30.157	12.849	73.548	1.00 23.19	В
	MOTA	1203	OE1 GLU	166	28.906	12.779	73.505	1.00 22.44	В
	MOTA	1204	OE2 GLU	166	30.899	12.211	72.769	1.00 21.71	В
	MOTA	1205	C GLU	166	30.610	16.884	72.349	1.00 22.21	В
25	MOTA	1206	O GLU		29.491	17.228	72.709	1.00 22.53	В
	ATOM	1207	N GLU		31.363	17.631	71.545	1.00 24.18	В
			CA GLU		30.885	18.899	71.011	1.00 23.58	B
	MOTA	1208							
	MOTA	1209	CB GLU		31.825	20.009	71.365	1.00 28.43	В
20	ATOM	1210	CG GLU		31.900	20.321	72.848	1.00 34.21	В
30	MOTA	1211	CD GLU		32.857	21.470	73.142	1.00 40.07	В
	ATOM	1212	OE1 GLU	167	34.033	21.400	72.702	1.00 41.07	В
	ATOM	1213	OE2 GLU	167	32.431	22.441	73.812	1.00 43.47	В
	MOTA	1214	C GLU	167	30.800	18.766	69.500	1.00 22.74	В
	ATOM	1215	O GLU		31.659	18.142	68.884	1.00 23.08	В
35	ATOM	1216	N LEU	168	29.766	19.347	68.904	1.00 21.20	В
33					29.578	19.274	67.461	1.00 20.52	В
	ATOM	1217	CA LEU	168					
	MOTA	1218	CB LEU	168	28.088	19.156	67.125	1.00 21.09	В
	MOTA	1219	CG LEU	168	27.319	17.889	67.681	1.00 22.11	В
4.0	MOTA	1220	CD1 LEU	168	28.249	16.663	67.622	1.00 15.69	В
40	ATOM	1221	CD2 LEU	168	26.837	18.136	69.114	1.00 21.13	В
	ATOM	1222	C LEU	168	30.173	20.458	66.702	1.00 21.77	В
	ATOM	1223	O LEU	168	30.178	21.598	67.179	1.00 22.45	В
	ATOM	1224	N PHE	169	30.673	20.171	65.506	1.00 20.28	В
	ATOM	1225	CA PHE	169	31.282	21.180	64.665	1.00 19.17	В
45				169	32.835	21.112	64.778	1.00 19.31	В
7.5	ATOM	1226	CB PHE						
	ATOM	1227	CG PHE	169	33.345	21.308	66.177	1.00 19.18	В
	MOTA	1228	CD1 PHE	169	33.688	20.213	66.966	1.00 20.05	В
	MOTA	1229	CD2 PHE	169	33.434	22.591	66.722	1.00 18.70	В
	ATOM	1230	CE1 PHE	169	34.112	20.385	68.281	1.00 19.61	В
50	ATOM	1231	CE2 PHE	169	33.852	22.782	68.027	1.00 18.44	В
	MOTA	1232	CZ PHE	169	34.193	21.676	68.814	1.00 22.70	В
	ATOM	1233	C PHE	169	30.865	20.981	63.220	1.00 20.25	В
	MOTA	1234	O PHE	169	30.476	19.880	62.808	1.00 20.20	В
				170	30.949	22.064	62.462	1.00 19.31	В
55	MOTA	1235							
33	MOTA	1236	CA ASP	170	30.603	22.069	61.053	1.00 19.06	В
	MOTA	1237	CB ASP	170	29.549	23.141	60.785	1.00 19.49	В
	MOTA	1238	CG ASP	170	28.970	23.066	59.386	1.00 21.37	В
	MOTA	1239	OD1 ASP	170	29.648	22.556	58.463	1.00 20.46	В
	MOTA	1240	OD2 ASP	170	27.827	23.542	59.206	1.00 24.10	В
60	ATOM	1241	C ASP	170	31.902	22.429	60.353	1.00 20.21	В
•		1242	O ASP	170	32.402	23.540	60.509	1.00 21.52	B
	ATOM								
	MOTA	1243	N LEU	171	32.460	21.492	59.599	1.00 20.15	В
	MOTA	1244	CA LEU	171	33.699	21.758	58.900	1.00 22.53	В
	MOTA	1245	CB LEU	171	34.620	20.517	58.965	1.00 19.76	В
65	ATOM	1246	CG LEU	171	35.385	20.297	60.340	1.00 18.93	В
-	ATOM	1247	CD1 LEU	171	36.562	21.251	60.487	1.00 16.80	В
	ATOM	1248	CD2 LEU	171	34.426	20.479	61.495	1.00 18.41	B
	MOTA			171	33.460	22.198	57.459	1.00 24.95	В
		1249				22.156		1.00 25.06	
70	ATOM	1250	O LEU	171	34.374		56.632		В
70	MOTA	1251	N LEU	172	32.233	22.618	57.160	1.00 28.25	В
	MOTA	1252	CA LEU	172	31.910	23.081	55.812	1.00 33.55	В
	ATOM	1253	CB LEU	172	31.001	22.111	55.116	1.00 33.77	В
	MOTA	1254	CG LEU	172	31.664	20.867	54.556	1.00 34.20	В
			_						

	NO.	1255	CDI	1 1211	172	30.632	20.056	53.783	1.00 33.48	n
	MOTA MOTA	1255 1256		LEU	172	32.807	21.268	53.644	1.00 33.48	B B
	MOTA	1257	C	LEU	172	31.279	24.461	55.766	1.00 35.97	В
	ATOM	1258	ō	LEU	172	31.181	25.059	54.706	1.00 37.85	В
5	ATOM	1259	N	ASN	173	30.843	24.962	56.912	1.00 39.07	В
	MOTA	1260	CA	ASN	173	30.242	26.284	56.972	1.00 44.33	В
	MOTA	1261	СВ	asn	173	29.451	26.445	58.275	1.00 45.10	В
	MOTA	1262	CG	ASN	173	28.700	27.765	58.345	1.00 47.21	В
10	MOTA	1263		ASN	173	27.898	27.987	59.254	1.00 46.55	В
10	MOTA	1264		ASN	173	28.958	28.650	57.384	1.00 47.66	В
	ATOM	1265	C	ASN	173	31.355	27.330	56.903	1.00 48.18	В
	ATOM	1266 1267	0	ASN PRO	173 174	32.094 31.492	27.532 28.007	57.871 55.752	1.00 47.58 1.00 51.96	B B
	MOTA MOTA	1268	N CD	PRO	174	30.737	27.802	54.502	1.00 51.96	В
15	ATOM	1269	CA	PRO	174	32.527	29.030	55.572	1.00 55.50	В
13	ATOM	1270	CB	PRO	174	32.609	29.162	54.076	1.00 54.73	В
*	ATOM	1271	CG	PRO	174	31.184	28.973	53.660	1.00 53.60	В
	ATOM	1272	C	PRO	174	32.226	30.364	56.259	1.00 58.47	В
	MOTA	1273	0	PRO	174	33.076	31.256	56.286	1.00 59.03	В
20	MOTA	1274	N	SER	175	31.024	30.497	56.819	1.00 60.76	В
	MOTA	1275	CA	SER	175	30.639	31.730	57.504	1.00 62.73	В
	MOTA	1276	СВ	SER	175	29.138	32.013	57.301	1.00 63.76	В
	MOTA	1277	OG	SER	175	28.877	32.450	55.975	1.00 66.00	В
25	MOTA	1278	C	SER	175	30.957	31.725	59.000	1.00 63.50	B
23	ATOM ATOM	1279 1280	O N	SER SER	175 176	30.901 31.293	32.769 30.557	59.654 59.543	1.00 63.94 1.00 63.63	B B
	MOTA	1281	CA	SER	176	31.613	30.456	60.964	1.00 63.03	В
	MOTA	1282	CB	SER	176	30.589	29.549	61.694	1.00 63.04	В
_	ATOM	1283	OG	SER	176	30.805	28.181	61.389	1.00 64.15	В
30	ATOM	1284	С	SER	176	33.017	29.909	61.188	1.00 62.90	В
	MOTA	1285	0	SER	176	33.758	29.643	60.238	1.00 62.07	В
	MOTA	1286	N	ASP	177	33.371	29.744	62.459	1.00 62.85	В
	MOTA	1287	CA	ASP	177	34.676	29.225	62.837	1.00 62.62	В
25	ATOM	1288	СВ	ASP	177	35.352	30.147	63.856	1.00 63.20	В
35	ATOM	1289	CG	ASP	177	35.504	31.559	63.345	1.00 63.21	В
	MOTA	1290		ASP	177 177	36.062	31.729	62.243	1.00 63.09 1.00 62.91	B B
	MOTA MOTA	1291 1292	C	ASP ASP	177	35.068 34.515	32.498 27.852	64.044 63.452	1.00 62.91	В
	MOTA	1293	o	ASP	177	33.447	27.504	63.954	1.00 62.79	В
40	MOTA	1294	N	VAL	178	35.588	27.078	63.415	1.00 60.45	В
. •	MOTA	1295	CA	VAL	178	35.572	25.743	63.977	1.00 59.51	В
	MOTA	1296	CB	VAL	178	36.894	25.005	63.688	1.00 59.52	В
	ATOM	1297	CG1	VAL	178	37.118	24.909	62.183	1.00 59.92	В
4.0	MOTA	1298	CG2	VAL	178	38.048	25.729	64.356	1.00 59.97	В
45	MOTA	1299	C	VAL	178	35.363	25.834	65.485	1.00 58.12	В
	MOTA	1300	0	VAL	178	35.159	24.825	66.157	1.00 59.80	В
•	MOTA	1301 1302	N	SER	179	35.421	27.047	66.016 67.443	1.00 55.31 1.00 52.98	В
	MOTA	1302	CA CB	SER	179 179	35.221 35.823	27.245 28.578	67.871	1.00 52.98	B B
50	MOTA MOTA	1303	OG	SER SER	179	35.401	29.619	67.011	1.00 50.71	В
50	ATOM	1305	c	SER	179	33.725	27.211	67.746	1.00 52.04	В
	ATOM	1306	ō	SER	179	33.313	26.894	68.860	1.00 52.07	B
	MOTA	1307	N	GLU	180	32.917	27.535	66.743	1.00 51.08	В
	MOTA	1308	CA	GLU	180	31.467	27.541	66.882	1.00 50.67	В
55	MOTA	1309	CB	GLU	180	30.834	28.188	65.639	1.00 53.74	В
	MOTA	1310	CG	GLU	180	29.322	28.334	65.691	1.00 57.88	В
	MOTA	1311	CD	GLU	180	28.872	29.401	66.666	1.00 60.00	В
	MOTA	1312	OE1		180	29.192	29.279	67.868	1.00 61.89	В
60	MOTA	1313	OE2		180	28.199	30.362	66.230	1.00 61.08	В
UU	MOTA	1314	C	GLU	180	30.989 31.307	26.096	67.026	1.00 48.91	В
	MOTA	1315	0	GLU ARG	180	30.234	25.249 25.817	66.196 68.082	1.00 49.20 1.00 46.31	В
	ATOM ATOM	1316 1317	N CA	ARG	181 181	29.739	24.472	68.332	1.00 44.31	B B
	ATOM	1318	CB	ARG	181	30.194	24.018	69.710	1.00 46.69	В
65	MOTA	1319	CG	ARG	181	29.815	24.962	70.842	1.00 50.74	В
~~	MOTA	1320	CD	ARG	181	28.527	24.530	71.547	1.00 55.78	В
	MOTA	1321	NE	ARG	181	28.677	23.242	72.234	1.00 60.23	В
	ATOM	1322	CZ	ARG	181	27.708	22.628	72.913	1.00 61.32	В
	ATOM	1323	NH1	ARG	181	26.501	23.180	73.007	1.00 61.66	В
70	MOTA	1324	NH2		181	27.945	21.453	73.490	1.00 61.67	В
	MOTA	1325	С	ARG	181	28.217	24.395	68.211	1.00 42.65	В
	MOTA	1326	0	ARG	181	27.491	25.115	68.888	1.00 42.59	В
	ATOM	1327	N	LEU	182	27.739	23.510	67.344	1.00 39.35	В

	ATOM	1328	CA	LEU	182	26.310	23.355	67.110	1.00 35.22	В
	ATOM	1329	CB	LEU	182	26.088	22.559	65.843	1.00 32.83	В
	ATOM	1330	CG	LEU	182	26.998	22.979	64.710	1.00 31.23	В
	ATOM	1331		LEU	182	26.730	22.114	63.508	1.00 32.55	В
5	MOTA	1332		LEU LEU	182	26.776	24.444			
,								64.386	1.00 31.45	В
	MOTA	1333	C	LEU	182	25.581	22.690	68.260	1.00 33.98	В
	MOTA	1334	0	LEU	182	26.197	22.057	69.117	1.00 33.33	В
	MOTA	1335	N	GLN	183	24.259	22.843	68.266	1.00 33.26	В
10	MOTA	1336	CA	GLN	183	23.399	22.259	69.296	1.00 32.84	В
10	MOTA	1337	CB	GLN	183	22.430	23.320	69.842	1.00 34.22	В
	ATOM	1338	CG	GLN	183	23.122	24.542	70.436	1.00 37.39	В
	MOTA	1339	CD	GLN	183	22.163	25.699	70.671	1.00 38.77	В
	MOTA	1340	OE1	GLN	183	21.325	26.003	69.818	1.00 39.62	В
	ATOM	1341		GLN	183	22.294	26.361	71.820	1.00 37.72	В
15	MOTA	1342	С	GLN	183	22.603	21.099	68.706	1.00 31.57	В
	ATOM	1343	ō	GLN	183	22.209	21.134	67.545	1.00 31.18	В
	ATOM	1344	N	MET	184	22.353	20.079	69.513	1.00 31.59	В
	ATOM	1345	CA	MET	184	21.622	18.908	69.052	1.00 32.44	В
	ATOM	1346	СВ	MET	184	22.480	17.677	69.297	1.00 32.44	В
20	ATOM	1347	CG	MET	184	22.018	16.404	68.626	1.00 34.09	В
20										
	ATOM	1348	SD	MET	184	23.162	15.016	68.908	1.00 32.00	В
	ATOM	1349	CE	MET	184	22.574	14.436	70.488	1.00 31.68	В
	MOTA	1350	C	MET	184	20.289	18.787	69.791	1.00 34.68	В
25	MOTA	1351	0	MET	184	20.203	19.114	70.976	1.00 35.18	В
25	MOTA	1352	N	PHE	185	19.248	18.345	69.086	1.00 36.66	В
	MOTA	1353	CA	PHE	185	17.922	18.168	69.690	1.00 39.01	В
	MOTA	1354	CB	PHE	185	16.987	19.422	69.462	1.00 37.84	В
	MOTA	1355	CG	PHE	185	17.676	20.750	69.619	1.00 38.18	В
	ATOM	1356	CD1	PHE	185	18.453	21.270	68.593	1.00 36.50	В
30	MOTA	1357	CD2	PHE	185	17.534	21.488	70.793	1.00 38.31	В
	MOTA	1358	CE1	PHE	185	19.080	22.502	68.724	1.00 36.83	В
	MOTA	1359	CE2		185	18.158	22.724	70.936	1.00 38.32	В
	ATOM	1360	CZ	PHE	185	18.933	23.232	69.897	1.00 38.06	В
	ATOM	1361	c	PHE	185	17.224	16.956	69.077	1.00 40.70	В
35	MOTA	1362	ō	PHE	185	17.485	16.598	67.931	1.00 39.58	В
55	MOTA	1363	N	ASP	186	16.333	16.330	69.838	1.00 43.77	В
	MOTA	1364	CA	ASP	186	15.588	15.187	69.328	1.00 46.67	В
	ATOM	1365	CB	ASP	186	14.737	14.550	70.419	1.00 47.89	В
40	ATOM	1366	CG	ASP	186	15.534	14.206	71.659	1.00 50.45	В
40	MOTA	1367		ASP	186	16.535	13.461	71.540	1.00 50.63	В
	ATOM	1368		ASP	186	15.154	14.679	72.756	1.00 51.23	В
	MOTA	1369	С	ASP	186	14.668	15.740	68.262	1.00 47.79	В
	MOTA	1370	0	ASP	186	14.371	16.933	68.246	1.00 47.04	В
. ~	ATOM	1371	N	ASP	187	14.215	14.883	67.365	1.00 50.77	В
45	MOTA	1372	CA	ASP	187	13.318	15.351	66.328	1.00 54.90	В
	ATOM	1373	CB	ASP	187	13.748	14.832	64.990	1.00 56.93	В
	MOTA	1374	CG	ASP	187	12.973	15.457	63.860	1.00 59.28	В
	ATOM	1375		ASP	187	13.425	15.343	62.700	1.00 60.01	В
	ATOM	1376	OD2	ASP	187	11.910	16.060	64.138	1.00 60.38	В
50	ATOM	1377	c	ASP	187	11.915	14.877	66.662	1.00 56.34	В
	ATOM	1378	ō	ASP	187	11.638	13.678	66.649	1.00 56.08	В
	ATOM	1379	N	PRO	188	11.015	15.820	66.985	1.00 58.11	В
	ATOM	1380	CD	PRO	188	11.251	17.274	66.963	1.00 57.99	В
							15.529	67.339	1.00 57.33	
55	MOTA	1381	CA	PRO	188	9.621				В
33	ATOM	1382	CB	PRO	188	8.978	16.890	67.309	1.00 59.76	В
	ATOM	1383	CG	PRO	188	10.091	17.790	67.764	1.00 58.23	В
	MOTA	1384	С	PRO	188	8.956	14.549	66.376	1.00 61.87	В
	MOTA	1385	0	PRO	188	8.162	13.700	66.783	1.00 61.46	В
~	MOTA	1386	N	ARG	189	9.302	14.669	65.100	1.00 64.31	В
60	MOTA	1387	CA	ARG	189	8.757	13.812	64.058	1.00 66.68	В
	MOTA	1388	CB	ARG	189	9.307	14.265	62.701	1.00 66.61	В
	MOTA	1389	CG	ARG	189	8.813	15.651	62.277	1.00 66.58	В
	MOTA	1390	CD	ARG	189	9.586	16.213	61.080	1.00 66.65	В
	MOTA	1391	NE	ARG	189	10.834	16.866	61.474	1.00 66.32	В
65	MOTA	1392	cz	ARG	189	11.704	17.407	60.625	1.00 66.09	В
	ATOM	1393		ARG	189	11.474	17.377	59.319	1.00 66.33	В
	ATOM	1394								
				ARG	189	12.803	17.988	61.083	1.00 65.55	В
	MOTA	1395	C	ARG	189	9.041	12.321	64.289	1.00 68.64	В
70	MOTA	1396	0	ARG	189	8.300	11.461	63.813	1.00 69.00	В
70	MOTA	1397	N	ASN	190	10.110	12.018	65.022	1.00 71.07	В
	MOTA	1398	CA	ASN	190	10.487	10.634	65.329	1.00 72.28	В
	ATOM	1399	ÇВ	ASN	190	10.758	9.814	63.998	1.00 72.30	В
	MOTA	1400	CG	ASN	190	11.706	10.525	63.041	1.00 71.90	В

	ATOM	1401	ODI	LASN	190	12.847	10.822	63.385	1.00 71.47	В
									1.00 71.47	
	MOTA	1402		2 ASN	190	11.233	10.789	61.826		В
	MOTA	1403	C	ASN	190	11.709	10.579	66.252	1.00 73.09	В
_	MOTA	1404	0	ASN	190	12.783	11.067	65.905	1.00 73.71	В
5	MOTA	1405	N	LYS	191	11.534	9.979	67.427	1.00 73.58	В
	MOTA	1406	CA	LYS	191	12.601	9.871	68.428	1.00 73.23	В
	MOTA	1407	СВ	LYS	191	12.123	9.021	69.606	1.00 75.05	В
	MOTA	1408	CG	LYS	191	11.285	9.778	70.614	1.00 76.84	В
10	MOTA	1409	CD	LYS	191	12.074	10.920	71.241	1.00 77.87	В
10	MOTA	1410	CE	LYS	191	11.299	11.547	72.387	1.00 78.94	В
	MOTA	1411	NZ	LYS	191 .	9.939	11.988	71.961	1.00 79.06	В
	MOTA	1412	С	LYS	191	13.965	9.351	67.968	1.00 71.65	В
	MOTA	1413	0	LYS	191	15.000	9.869	68.395	1.00 71.97	В
	MOTA	1414	N	ARG	192	13.977	8.326	67.121	1.00 68.70	В
15				ARG			7.772	66.638	1.00 65.72	
13	MOTA	1415	CA		192	15.238				В
	MOTA	1416	СВ	ARG	192	14.978	6.515	65.768	1.00 67.67	В
	MOTA	1417	CG	ARG	192	16.217	5.978	65.052	1.00 69.51	В
	MOTA	1418	CD	ARG	192	16.068	4.519	64.616	1.00 70.83	В
	MOTA	1419	NE	ARG	192	14.855	4.261	63.839	1.00 71.87	В
20	ATOM	1420	CZ	ARG	192	13.672	3.950	64.364	1.00 71.73	В
	ATOM	1421		ARG	192	13.527	3.855	65.681	1.00 70.61	В
	MOTA	1422		ARG	192	12.631	3.727	63.569	1.00 71.53	В
	MOTA	1423	С	ARG	192	16.033	8.803	65.843	1.00 62.08	В
	ATOM	1424	0	ARG	192	17.190	8.572	65.482	1.00 61.32	В
25	MOTA	1425	N	GLY	193	15.403	9.946	65.585	1.00 58.42	В
	MOTA	1426	CA	GLY	193	16.045	11.008	64.828	1.00 52.07	В
	ATOM	1427	c .	GLY	193	16.519	12.171	65.674	1.00 47.14	В
	ATOM	1428	0	GLY	193	16.159	12.300	66.843	1.00 46.94	В
20	MOTA	1429	N	VAL	194	17.323	13.033	65.067	1.00 44.16	В
30	MOTA	1430	CA	VAL	194	17.875	14.184	65.757	1.00 40.67	В
	ATOM	1431	CB	VAL	194	19.266	13.838	66.329	1.00 39.96	В
	ATOM	1432	CG1	VAL	194	20.338	14.058	65.271	1.00 37.96	В
	MOTA	1433		VAL	194	19.539	14.653	67.564	1.00 39.63	В
	MOTA	1434	c	VAL	194	18.008	15.373	64.800	1.00 39.90	В
35										
33	MOTA	1435	0	VAL	194	18.145	15.194	63.592	1.00 40.91	В
	MOTA	1436	N	ILE	195	17.965	16.585	65.347	1.00 38.55	В
	MOTA	1437	CA	ILE	195	18.104	17.803	64.553	1.00 35.81	В
	MOTA	1438	CB	ILE	195	16.862	18.728	64.709	1.00 38.25	В
	MOTA	1439	CG2	ILE	195	17.132	20.092	64.055	1.00 38.19	В
40	ATOM	1440		ILE	195	15.615	18.049	64.084	1.00 39.77	В
	ATOM	1441		ILE	195	14.321	18.863	64.185	1.00 41.59	
										В
	MOTA	1442	C	ILE	195	19.347	18.581	65.001	1.00 32.57	В
	MOTA	1443	О	ILE	195	19.452	18.970	66.162	1.00 30.74	. В
4.0	ATOM	1444	N	ILE	196	20.292	18.787	64.086	1.00 29.82	В
45	MOTA	1445	CA	ILE	196	21.500	19.539	64.405	1.00 27.94	В
	MOTA	1446	CB	ILE	196	22.800	18.919	63.769	1.00 26.64	В
	MOTA	1447		ILE	196	24.006	19.816	64.070	1.00 21.22	В
	ATOM	1448		ILE	196	23.110	17.510	64.383	1.00 24.18	В
								63.764		
50	MOTA	1449		ILE	196	22.375	16.374		1.00 22.10	В
50	MOTA	1450	С	ILE	196	21.303	20.951	63.872	1.00 27.99	В
	MOTA	1451	0	ILE	196	21.375	21.196	62.669	1.00 27.68	В
	ATOM	1452	N	LYS	197	21.044	21.876	64.784	1.00 29.44	В
	MOTA	1453	CA	LYS	197	20.813	23.265	64.426	1.00 30.91	В
	MOTA	1454	CB	LYS	197	20.205	24.026	65.616	1.00 33.42	В
55	ATOM	1455	CG	LYS	197	19.931	25.486	65.303	1.00 35.76	
33										В
	MOTA	1456	CD	LYS	197	19.670	26.299	66.548	1.00 39.21	· B
	MOTA	1457	CE	LYS	197	19.686	27.776	66.199	1.00 42.14	В
	ATOM	1458	NZ	LYS	197	20.909	28.121	65.411	1.00 42.07	В
	ATOM	1459	С	LYS	197	22.073	23.984	63.971	1.00 29.67	В
60	MOTA	1460	0	LYS	197	23.080	23.977	64.674	1.00 29.22	В
	ATOM	1461	Ň	GLY	198	22.005	24.600	62.792	1.00 29.85	В
	MOTA	1462	CA	GLY	198	23.141	25.345	62.275	1.00 30.66	В
	MOTA	1463	С	GLY	198	24.040	24.637	61.282	1.00 30.74	В
٠ ــ ــ	ATOM	1464	0	GLY	198	24.857	25.283	60.618	1.00 30.16	В
65	MOTA	1465	N	LEU	199	23.903	23.318	61.178	1.00 30.32	В
	ATOM	1466	CA	LEU	199	24.722	22.538	60.255	1.00 30.74	В
	MOTA	1467	CB	LEU	199	24.530	21.004	60.530	1.00 30.74	В
	ATOM	1468	CG	LEU	199	25.328	19.967	59.664	1.00 28.88	В
70	MOTA	1469		LEU	199	26.773	20.398	59.527	1.00 30.22	В
70	MOTA	1470	CD2	LEU	199	25.254	18.587	60.308	1.00 28.26	В
	MOTA	1471	С	LEU	199	24.397	22.869	58.792	1.00 31.25	В
	ATOM	1472	ō	LEU	199	23.256	22.699	58.340	1.00 31.36	В
	ATOM	1473	N	GLU	200	25.406	23.345	58.065	1.00 30.26	В
	A. On	14/3	**	320	200	23.400	-5.545	50.005	2.00 30.20	5

	ATOM	1474	CA	GLU	200	25.253	23.712	56.661	1.00 32.06	В
	MOTA	1475	CB	GLU	200	26.446	24.590	56.190	1.00 34.38	В
	MOTA	1476	CG	GLU	200	26.604	25.870	56.961	1.00 41.33	В
_	MOTA	1477	CD	GLU	200	25.395	26.773	56.833	1.00 42.76	В
5	ATOM	1478	OE1	GLU	200	25.121	27.535	57.785	1.00 43.19	В
	MOTA	1479		GLU	200	24.730	26.721	55.776	1.00 43.56	В
	MOTA	1480	C	GLU	200	25.164	22.514	55.722	1.00 31.83	В
	MOTA	1481	0	GLU	200	25.841	21.503	55.916	1.00 30.83	В
10	ATOM	1482	N	GLU	201	24.328	22.654	54.700 53.677	1.00 30.84	. В
10	MOTA MOTA	1483 1484	CA CB	GLU	201 201	24.163 22.732	21.639 21.167	53.611	1.00 30.37	B B
	MOTA	1485	CG	GLU	201	22.386	20.111	54.629	1.00 33.83	В
	MOTA	1486	CD	GLU	201	20.975	19.587	54.454	1.00 36.02	В
	ATOM	1487		GLU	201	20.052	20.163	55.069	1.00 37.16	В
15	ATOM	1488	OE2		201	20.791	18.604	53.695	1.00 36.56	В
	MOTA	1489	С	GLU	201	24.528	22.328	52.373	1.00 30.44	· B
	MOTA	1490	О	GLU	201	23.796	23.207	51.919	1.00 30.69	В
	MOTA	1491	N	ILE	202	25.663	21.958	51.783	1.00 28.80	В
20	MOTA	1492	CA	ILE	202	26.073	22.575	50.526	1.00 28.82	В
20	MOTA	1493	CB	ILE	202 202	27.619 27.978	22.739 23.225	50.409 49.014	1.00 28.91	B B
	ATOM ATOM	1494 1495	CG1	ILE	202	28.137	23.751	51.426	1.00 28.90	В
	MOTA	1496	CD1		202	28.057	23.294	52.863	1.00 32.03	B
	ATOM	1497	c	ILE	202	25.594	21.773	49.324	1.00 28.57	В
25	MOTA	1498	0	ILE	202	25.844	20.571	49.215	1.00 29.93	В
	MOTA	1499	N	THR	203	24.896	22.448	48.422	1.00 28.23	В
	MOTA	1500	CA	THR	203	24.404	21.803	47.219	1.00 26.49	В
	MOTA	1501	CB	THR	203	23.307	22.665	46.527	1.00 26.14	В
30	MOTA	1502	OG1	THR	203	22.173	22.791	47.401	1.00 24.25	В
30	MOTA	1503	CG2	THR	203	22.862	22.028	45.208 46.293	1.00 25.01 1.00 26.13	B B
	ATOM ATOM	1504 1505	C O	THR	203 203	25.606 26.483	21.636 22.495	46.253	1.00 26.13	В
	MOTA	1506	N	VAL	204	25.666	20.504	45.599	1.00 26.49	В
	ATOM	1507	CA	VAL	204	26.741	20.220	44.654	1.00 27.51	В
35	ATOM	1508	СВ	VAL	204	27.444	18.868	44.967	1.00 25.76	В
	MOTA	1509	CG1	VAL	204	28.653	18.672	44.056	1.00 23.12	В
	ATOM	1510	CG2	VAL	204	27.879	18.837	46.423	1.00 24.79	В
	MOTA	1511	C	VAL	204	26.009	20.149	43.321	1.00 29.14	В
40	MOTA	1512	0	VAL	204	25.265	19.199	43.061	1.00 30.39	В
40	MOTA	1513	N	HIS	205	26.218	21.170	42.495	1.00 29.22	B B
	MOTA MOTA	1514 1515	CA CB	HIS	205 205	25.553 25.613	21.313 22.794	41.195 40.767	1.00 30.55 1.00 28.34	В
	ATOM	1516	CG	HIS	205	25.157	23.732	41.838	1.00 28.46	В
	ATOM	1517		HIS	205	25.858	24.492	42.711	1.00 27.43	B
45	ATOM	1518		HIS	205	23.832	23.862	42.196	1.00 28.83	В
	MOTA	1519	CE1	HIS	205	23.736	24.654	43.249	1.00 28.44	В
	ATOM	1520	NE2		205	24.952	25.049	43.582	1.00 29.92	В
	MOTA	1521	C	HIS	205	26.092	20.435	40.081	1.00 31.51	В
50	MOTA	1522	0	HIS	205	25.358	20.055	39.169	1.00 31.34	В
50	MOTA	1523	N	ASN	206 206	27.383 28.032	20.136 19.299	40.147 39.151	1.00 33.49 1.00 34.62	B B
	MOTA MOTA	1524 1525	CA CB	ASN ASN	206	28.444	20.138	37.930	1.00 34.02	В
	MOTA	1526	CG	ASN	206	29.164	21.417	38.309	1.00 35.27	B
	ATOM	1527		ASN	206	30.224	21.391	38.938	1.00 37.58	В
55	MOTA	1528	ND2		206	28.589	22.548	37.925	1.00 34.11	В
	MOTA	1529	С	ASN	206	29.243	18.650	39.798	1.00 35.69	В
	MOTA	1530	0	ASN	206	29.478	18.836	40.992	1.00 36.45	В
	MOTA	1531	N	LYS	207	30.002	17.876	39.031	1.00 36.43	В
60	MOTA	1532	CA	LYS	207	31.171	17.216	39.590	1.00 38.62	В
UU	MOTA	1533	CB	LYS	207	31.582	15.993	38.703 37.319	1.00 40.10 1.00 42.56	В
	MOTA MOTA	1534 1535	CG CD	LYS LYS	207 207	32.123 32.259	16.339 15.081	36.456	1.00 42.36	B B
	ATOM	1536	CE	LYS	207	33.191	15.293	35.267	1.00 43.78	В
	ATOM	1537	NZ	LYS	207	34.613	15.454	35.696	1.00 42.46	В
65	MOTA	1538	C	LYS	207	32.313	18.222	39.700	1.00 39.03	В
	ATOM	1539	ō	LYS	207	33.176	18.120	40.576	1.00 38.73	В
	MOTA	1540	N	ASP	208	32.292	19.208	38.813	1.00 39.88	В
	MOTA	1541	CA	ASP	208	33.312	20.244	38.790	1.00 40.76	В
70	ATOM	1542	СВ	ASP	208	33.248	20.981	37.461	1.00 42.58	В
70	MOTA	1543	CG	ASP	208	33.659	20.101	36.292	1.00 45.91	В
	ATOM	1544	OD1		208	33.407	20.484	35.127	1.00 46.74	В
	ATOM ATOM	1545 1546	OD2 C	ASP	208 208	34.246 33.141	19.023 21.219	36.542 39.952	1.00 46.78 1.00 39.55	B B
	WI OLD	1240	_	nsr	200	33.141	~+.413	33.332		, L

WO 2004/004652

	> mov	2547	_		200	22 642	22 220	30.030	1 00 41 00	_
	MOTA	1547	0	ASP	208	33.643	22.339	39.922	1.00 41.22	В
	MOTA	1548		GLU		32.457		40.996	1.00 37.46	В
	ATOM	1549	CA	GLU		32.241	21.660	42.128	1.00 35.89	В
5	ATOM	1550	CB	GLU	209	30.760		42.158	1.00 35.84	В
)	ATOM	1551	CG	GLU	209	30.445	23.275	43.010	1.00 37.17	В
	ATOM	1552	CD	GLU	209	28.973	23.682	42.924	1.00 38.94	В
	MOTA	1553		GLU	209	28.462	23.857	41.793	1.00 37.72	В
	MOTA	1554		GLU	209	28.327	23.835	43.988	1.00 38.77	В
10	MOTA	1555	C	GLU	209	32.646	20.992	43.439	1.00 34.61	В
10	MOTA	1556	0	GLU	209	32.763	21.657	44.470	1.00 36.51	В
	MOTA	1557	N	VAL	210	32.907	19.690	43.395	1.00 32.07	В
	MOTA	1558	CA	VAL	210	33.268	18.966	44.609	1.00 29.92	В
	MOTA	1559	CB	VAL	210	33.065	17.411	44.450	1.00 29.01	В
1.5	MOTA	1560		VAL	210	31.856	17.110	43.574	1.00 26.09	В
15	MOTA	1561	CG2	VAL	210	34.301	16.774	43.901	1.00 29.03	В
	MOTA	1562	С	VAL	210	34.668	19.212	45.183	1.00 28.45	В
	MOTA	1563	0	VAL	210	34.820	19.322	46.406	1.00 29.31	В
	MOTA	1564	N	TYR	211	35.694	19.311	44.343	1.00 26.40	В
20	ATOM	1565	CA	TYR	211	37.038	19.505	44.894	1.00 24.93	В
20	MOTA	1566	CB	TYR	211	38.106	19.552	43.783	1.00 22.02	В
	ATOM	1567	CG	TYR	211	39.510	19.386	44.318	1.00 23.83	В
	MOTA	1568	CD1	TYR	211	39.850	18.284	45.097	1.00 26.06	В
	MOTA	1569		TYR	211	41.136	18.131	45.625	1.00 25.76	В
~~	MOTA	1570	CD2	TYR	211	40.498	20.339	44.074	1.00 24.90	В
25	ATOM	1571	CE2	TYR	211	41.790	20.196	44.597	1.00 24.81	В
	MOTA	1572	CZ	TYR	211	42.103	19.089	45.374	1.00 25.75	В
	ATOM	1573	ОН	TYR	211	43.373	18.938	45.910	1.00 23.97	В
	MOTA	1574	С	TYR	211	37.111	20.759	45.757	1.00 25.45	В
	MOTA	1575	0	TYR	211	37.691	20.740	46.844	1.00 24.21	В
30	ATOM	1576	N	GLN	212	36.501	21.840	45.272	1.00 27.99	В
	ATOM	1577	CA	GLN	212	36.473	23.117	45.983	1.00 27.45	В
	ATOM	1578	CB	GLN	212	35.721	24.126	45.163	1.00 31.66	В
	ATOM	1579	CG	GLN	212	35.365	25.402	45.907	1.00 37.63	В
~ ~	ATOM	1580	CD	GLN	212	35.696	26.654	45.105	1.00 40.53	В
35	ATOM	1581	OE1	GLN	212	35.305	26.782	43.937	1.00 39.59	В
	MOTA	1582	NE2	GLN	212	36.418	27.587	45.731	1.00 39.73	В
	ATOM	1583	С	GLN	212	35.834	22.981	47.364	1.00 26.73	В
	MOTA	1584	0	GLN	212	36.329	23.527	48.347	1.00 26.01	В
	ATOM	1585	N	ILE	213	34.733	22.243	47.437	1.00 26.10	В
40	MOTA	1586	CA	ILE	213	34.044	22.037	48.703	1.00 24.91	В
	MOTA	1587	CB	ILE	213	32.694	21.327	48.496	1.00 23.51	В
	MOTA	1588	CG2	ILE	213	31.978	21.200	49.835	1.00 20.39	В
	ATOM	1589	CG1	ILE	213	31.843	22.117	47.461	1.00 22.89	В
	MOTA	1590	CD1	ILE	213	30.472	21.509	47.152	1.00 23.13	В
45	MOTA	1591	С	ILE	213	34.906	21.207	49.656	1.00 25.49	В
	MOTA	1592	0	ILE	213	34.916	21.448	50.865	1.00 24.30	В
	ATOM	1593	N	LEU	214	35.618	20.226	49.106	1.00 26.92	В
	MOTA	1594	CA	LEU	214	36.496	19.381	49.905	1.00 28.08	В
	MOTA	1595	CB	LEU	214	37.031	18.168	49.050	1.00 28.21	В
50	MOTA	1596	CG	LEU	214	36.272	16.802	49.152	1.00 30.13	В
	MOTA	1597	CD1	LEU	214	34.796	17.034	49.411	1.00 31.20	В
	ATOM	1598	CD2	LEU	214	36.482	15.987	47.876	1.00 29.12	В
	MOTA	1599	С	LEU	214	37.657	20.225	50.442	1.00 29.28	В
	ATOM	1600	0	LEU	214	38.012	20.114	51.620	1.00 30.45	В
- 55	MOTA	1601	N	GLU	215	38.235	21.083	49.599	1.00 28.08	В
	ATOM	1602	CA	GLU	215	39.339	21.932	50.059	1.00 28.89	В
	MOTA	1603	CB	GLU	215	39.864	22.842	48.914	1.00 29.69	В
	MOTA	1604	CG	GLU	215	40.426	22.093	47.714	1.00 33.51	В
	ATOM	1605	CD	GLU	215	41.092	23.014	46.700	1.00 36.27	В
60	ATOM	1606	OE1	GLU	215	42.343	23.136	46.730	1.00 34.34	В
	MOTA	1607	OE2	GLU	215	40.358	23.620	45.880	1.00 36.57	В
	MOTA	1608	С	GLU	215	38.919	22.795	51.255	1.00 28.03	В
	MOTA	1609	0	GLU	215	39.682	22.953	52.210	1.00 27.31	В
	MOTA	1610	N	LYS	216	37.707	23.348	51.204	1.00 27.99	В
65	ATOM	1611	CA	LYS	216	37.202	24.183	52.290	1.00 29.52	В
	ATOM	1612	CB	LYS	216	35.799	24.696	51.971	1.00 30.11	В
	ATOM	1613	CG	LYS	216	35.691	25.416	50.650	1.00 32.53	В
	ATOM	1614	CD	LYS	216	36.584	26.643	50.602	1.00 34.31	В
	ATOM	1615	CE	LYS	216	36.596	27.272	49.200	1.00 36.64	В
70	ATOM	1616	NZ	LYS	216	37.248	26.419	48.152	1.00 34.44	В
-	ATOM	1617	C	LYS	216	37.170	23.415	53.609	1.00 30.05	В
	ATOM	1618	ō	LYS	216	37.516	23.960	54.658	1.00 31.96	В
	MOTA	1619	N	GLY	217	36.742	22.156	53.553	1.00 30.83	В

	MOTA	1620	CA	GLY	217	36.695	21.335	54.752	1.00 29.82	В
		1621								
	MOTA		С	GLY	217	38.107		55.270	1.00 29.77	В
	MOTA	1622	0	GLY	217	38.389	21.354	56.460	1.00 28.73	В
	MOTA	1623	N	ALA	218	39.000	20.749	54.363	1.00 29.20	В
5	MOTA	1624	CA	ALA	218	40.404	20.548	54.696	1.00 28.09	В
_	MOTA	1625	СВ	ALA	218	41.212	20.299	53.427	1.00 25.39	В
	MOTA	1626	C	ALA	218	40.924	21.792	55.422	1.00 27.61	В
	MOTA	1627	0	ALA	218	41.623	21.684	56.429	1.00 27.17	В
	MOTA	1628	N	ALA	219	40.559	22.969	54.914	1.00 27.54	В
10	ATOM	1629	ÇA	ALA	219	40.984	24.243	55.505	1.00 27.45	В
10										
	MOTA	1630	CB	ALA	219	40.430	25.406	54.695	1.00 26.20	В
	MOTA	1631	С	ALA	219	40.553	24.385	56.964	1.00 27.16	В
	ATOM	1632	0	ALA	219	41.368	24.726	57.833	1.00 26.05	В
	ATOM	1633	N	LYS	220	39.273	24.135	57.227	1.00 26.17	В
15	ATOM	1634	CA	LYS	220	38.754	24.234	58.585	1.00 26.59	В
13										
	MOTA	1635	CB	LYS	220	37.203	24.057	58.592	1.00 25.82	В
	MOTA	1636	CG	LYS	220	36.477	25.037	57.691	1.00 26.36	В
	MOTA	1637	CD	LYS	220	34.997	25.195	58.065	1.00 28.61	В
	ATOM	1638	CE	LYS	220	34.827	25.771	59.471	1.00 27.13	В
20										
20	ATOM	1639	NZ	LYS	220	33.406	26.129	59.789	1.00 25.98	В
	MOTA	1640	С	LYS	220	39.426	23.190	59.491	1.00 26.00	В
	MOTA	1641	0	LYS	220	39.715	23.465	60.665	1.00 24.88	В
	MOTA	1642	N	ARG	221	39.671	22.000	58.937	1.00 24.80	В
	ATOM	1643	CA	ARG	221	40.330	20.916	59.671	1.00 22.73	В
25										
23	MOTA	1644	CB	ARG	221	40.685	19.757	58.725	1.00 24.70	В
	MOTA	1645	CG	ARG	221	39.524	18.885	58.293	1.00 25.62	В
	ATOM	1646	CD	ARG	221	39.367	17.736	59.256	1.00 26.10	В
	MOTA	1647	NE	ARG	221	38.190	16.934	58.960	1.00 24.76	В
		1648	cz	ARG	221	38.065	16.146	57.901		
30	MOTA								1.00 22.87	В
<i>5</i> 0	MOTA	1649		ARG	221	39.061	16.051	57.021	1.00 19.50	В
	MOTA	1650	NH2	ARG	221	36.942	15.451	57.735	1.00 20.09	В
	ATOM	1651	С	ARG	221	41.624	21.456	60.267	1.00 21.95	В
	ATOM	1652	ō	ARG	221	41.889	21.306	61.466	1.00 20.88	В
									1.00 20.21	
35	MOTA	1653	N	THR	222	42.421	22.089	59.406		В
22	MOTA	1654	CA	THR	222	43.705	22.661	59.795	1.00 19.39	В
	MOTA	1655	CB	THR	222	44.312	23.464	58.650	1.00 21.09	В
	MOTA	1656	OG1	THR	222	44.502	22.600	57.525	1.00 22.38	В
	ATOM	1657		THR	222	45.649	24.077	59.073	1.00 20.44	В
40	MOTA	1658	С	THR	222	43.589	23.579	60.991	1.00 18.28	В
40	MOTA	1659	0	THR	222	44.338	23.441	61.952	1.00 17.80	В
	MOTA	1660	N	THR	223	42.649	24.517	60.926	1.00 17.37	В
	MOTA	1661	CA	THR	223	42.452	25.461	62.012	1.00 18.66	В
				THR	223			61.605		
	MOTA	1662	CB			41.496	26.590		1.00 17.71	В
45	MOTA	1663		THR	223	40.245	26.413	62.268	1.00 20.08	В
45	ATOM	1664	CG2	THR	223	41.258	26.581	60.111	1.00 16.54	В
	MOTA	1665	С	THR	223	41.902	24.740	63.242	1.00 20.76	В
	MOTA	1666	0	THR	223	42.206	25.120	64.374	1.00 24.08	В
			N	ALA	224	41.100		63.018	1.00 21.47	
	MOTA	1667					23.698			В
5 0	ATOM	1668	CA	ALA	224	40.529	22.898	64.105	1.00 19.87	В
50	ATOM	1669	CB	ALA	224	39.642	21.801	63.534	1.00 22.14	В
	MOTA	1670	С	ALA	224	41.667	22.266	64.894	1.00 19.87	В
	ATOM	1671	0	ALA	224	41.689	22.289	66.129	1.00 16.71	В
	ATOM	1672	N	ALA	225	42.604	21.680	64.155	1.00 20.37	В
<i>C C</i>	ATOM	1673	CA	ALA	225	43.765	21.048	64.755	1.00 20.88	В
55	ATOM	1674	CB	ALA	225	44.647	20.440	63.666	1.00 19.50	В
	ATOM	1675	С	ALA	225	44.541	22.096	65.553	1.00 22.18	В
	ATOM	1676	0	ALA	225	45.054	21.808	66.638	1.00 20.94	В
		1677		THR	226	44.613	23.319		1.00 23.92	
	MOTA		N					65.023		В
6 0	MOTA	1678	CA	THR	226	45.324	24.401	65.717	1.00 24.83	В
60	ATOM	1679	CB	THR	226	45.313	25.723	64.895	1.00 24.59	В
	ATOM	1680	OG1	THR	226	46.088	25.565	63.699	1.00 23.18	В
	ATOM	1681		THR	226	45.904	26.866	65.721	1.00 25.23	В
					226					
	ATOM	1682	C	THR		44.699	24.679	67.089	1.00 25.41	В
<i>C</i>	MOTA	1683	0	THR	226	45.405	24.877	68.083	1.00 25.12	В
65	ATOM	1684	N	LEU	227	43.370	24.680	67.130	1.00 25.47	В
	MOTA	1685	CA	LEU	227	42.619	24.942	68.353	1.00 26.90	В
	ATOM	1686	СВ	LEU	227	41.222	25.541	67.980	1.00 29.00	В
	MOTA	1687	CG	LEU	227	41.051	27.041	67.561	1.00 32.68	В
70	ATOM	1688	CD1		227	42.240	27.567	66.763	1.00 31.51	В
70	MOTA	1689	CD2	LEU	227	39.756	27.156	66.755	1.00 32.75	В
	ATOM	1690	С	LEU	227	42.409	23.739	69.296	1.00 26.44	В
					227	42.348	23.906		1.00 25.50	
	ATOM	1691	0	LEU				70.520		В
	MOTA	1692	N	MET	228	42.295	22.533	68.755	1.00 24.99	В

	MOTA	1693	CA	MET	228	42.041	21.392	69.635	1.00 25.58	В
	MOTA	1694	СВ	MET		40.625	20.786	69.310	1.00 27.00	В
	MOTA	1695	CG	MET	228	39.499	21.798	69.554	1.00 28.30	В
_	MOTA	1696	SD	MET	228	37.874	21.368	68.919	1.00 31.74	В
5	MOTA	1697	CE	MET	228	37.998	22.026	67.265	1.00 30.21	В
	MOTA	1698	C	MET	228	43.091	20.301	69.666	1.00 23.55	В
	MOTA	1699	0	MET	228	43.547	19.828	68.629	1.00 23.83	В
	MOTA	1700	N	ASN	229	43.471	19.913	70.882	1.00 22.85	В
	MOTA	1701	CA	ASN		44.470	18.870	71.099	1.00 21.02	В
10	MOTA	1702	CB	ASN		44.574	18.524	72.588	1.00 19.32	В
	MOTA	1703	CG	ASN		45.172	19.646	73.426	1.00 19.33	В
	MOTA	1704		ASN		45.690	20.634	72.899	1.00 19.44	В
	MOTA	1705		ASN		45.112	19.484	74.751	1.00 13.92	В
1.5	ATOM	1706	С	ASN		44.162	17.582	70.329	1.00 21.09	В
15	MOTA	1707	0	ASN	229	43.063	17.026	70.435	1.00 21.09	В
	MOTA	1708	N	ALA	230	45.144	17.121	69.558	1.00 20.25	В
	MOTA	1709	CA	ALA	230	45.030	15.887	68.786	1.00 19.42	В
	MOTA	1710	CB	ALA	230	45.224	14.675	69.721	1.00 21.67	В
20	MOTA	1711	C	ALA	230	43.694	15.783	68.067	1.00 18.26	В
20	MOTA MOTA	1712 1713	O N	ALA TYR	230 231	43.096 43.242	14.712 16.897	68.000 67.512	1.00 17.83 1.00 17.17	B B
	ATOM	1714	CA	TYR	231	41.965	16.927	66.821	1.00 17.17	В
	ATOM	1715	CB	TYR	231	41.694	18.379	66.201	1.00 17.72	В
	ATOM	1716	CG	TYR	231	40.341	18.465	65.524	1.00 12.55	В
25	ATOM	1717		TYR	231	40.205	18.269	64.151	1.00 12.28	В
	ATOM	1718		TYR	231	38.933	18.219	63.555	1.00 8.18	В
	ATOM	1719		TYR	231	39.182	18.621	66.279	1.00 10.61	В
	ATOM	1720		TYR	231	37.918	18.573	65.690	1.00 9.26	В
	MOTA	1721	CZ	TYR	231	37.802	18.372	64.338	1.00 6.19	В
30	MOTA	1722	ОН	TYR	231	36.545	18.335	63.777	1.00 8.98	В
	MOTA	1723	С	TYR	231	41.728	15.869	65.731	1.00 18.14	В
	MOTA	1724	0	TYR	231	40.596	15.392	65.571	1.00 17.92	В
	MOTA	1725	N	SER	232	42.769	15.504	64.982	1.00 17.34	В
~~	MOTA	1726	CA	SER	232	42.585	14.537	63.903	1.00 17.96	В
35	MOTA	1727	CB	SER	232	43.681	14.688	62.816	1.00 13.72	В
	MOTA	1728	OG	SER	232	44.941	14.251	63.275	1.00 15.73	В
	ATOM	1729	С	SER	232	42.502	13.070	64.323	1.00 18.78	В
	MOTA	1730	0	SER	232	41.934	12.255	63.598	1.00 19.24	В
40	MOTA	1731	N	SER	233	43.051	12.726	65.480	1.00 17.77	В
40	MOTA	1732	CA	SER	233	43.019	11.340	65.904	1.00 16.56	В
	MOTA	1733	CB	SER	233	44.383	10.932	66.496	1.00 18.00	В
	ATOM ATOM	1734 1735	OG C	SER SER	233 233	44.509 41.935	11.362 11.141	67.846 66.943	1.00 17.89 1.00 17.20	B B
	MOTA	1736	o	SER	233	41.413	10.035	67.110	1.00 17.20	В
45	MOTA	1737	N	ARG	234	41.570	12.235	67.609	1.00 18.37	В
	ATOM	1738	CA	ARG	234	40.579	12.185	68.678	1.00 18.14	В
	ATOM	1739	СВ	ARG	234	41.035	13.079	69.848	1.00 20.04	В
	ATOM	1740	CG	ARG	234	41.136	12.352	71.169	1.00 23.36	В
	ATOM	1741	CD	ARG	234	42.547	12.392	71.767	1.00 25.39	В
50	MOTA	1742	NE	ARG	234	42.847	13.651	72.455	1.00 28.46	В
	MOTA	1743	CŽ	ARG	234	43.898	13.844	73.255	1.00 28.83	В
	MOTA	1744		ARG	234	44.765	12.865	73.479	1.00 28.24	В
	MOTA	1745		ARG	234	44.082	15.019	73.842	1.00 28.56	В
55	MOTA	1746	С	ARG	234	39.142	12.524	68.318	1.00 17.12	В
55	MOTA	1747	0	ARG	234	38.262	12.440	69.174	1.00 16.45	В
	MOTA	1748	N	SER	235	38.879	12.876	67.064	1.00 17.25	В
	MOTA	1749	CA	SER	235	37.508	13.232	66.685	1.00 17.01	В
	MOTA	1750	CB	SER	235	37.470	14.581	66.108	1.00 16.15	В
60	MOTA	1751	OG	SER	235	38.109	14.594	64.847	1.00 15.24	В
00	MOTA	1752 1753	C	SER	235	36.847	12.297	65.697	1.00 17.23 1.00 17.87	В
	ATOM	1754	0	SER	235 236	37.505	11.536	64.991	1.00 17.87	В
	MOTA MOTA	1755	N CA	HIS	236	35.527 34.720	12.381 11.580	65.655 64.750	1.00 18.47	В
	MOTA	1756	CB	HIS	236	33.553	10.961	65.484	1.00 20.05	B B
65	MOTA	1757	CG	HIS	236	33.941	10.192	66.705	1.00 21.39	В
05	MOTA	1758		HIS	236	33.907	10.529	68.016	1.00 20.87	В
	MOTA	1759		HIS	236	34.444	8.910	66.650	1.00 21.00	В
	MOTA	1760		HIS	236	34.700	8.490	67.876	1.00 20.80	В
	MOTA	1761		HIS	236	34.385	9.454	68.723	1.00 19.15	В
70	MOTA	1762	c	HIS	236	34.166	12.518	63.688	1.00 19.93	В
-	MOTA	1763	ō	HIS	236	33.598	13.569	64.005	1.00 18.38	В
	MOTA	1764	N	SER	237	34.326	12.155	62.425	1.00 20.64	В
	MOTA	1765	CA	SER	237	33.795	13.001	61.374	1.00 21.44	В

	MOTA	1766	СВ	SER		34.889		60.424	1.00 20.37	В
	MOTA	1767		SER		35.258		59.566	1.00 19.17	В
	MOTA MOTA	1768 1769	C	SER SER		32.731 32.908	12.224 11.043	60.619 60.320	1.00 21.91 1.00 21.18	B B
5	ATOM	1770	N	VAL		31.620		60.324	1.00 21.76	В
	ATOM	1771	CA	VAL	238	30.548	12.246	59.587	1.00 22.83	. В
	MOTA	1772	СВ	VAL	238	29.297	12.024	60.475	1.00 25.08	В
	MOTA	1773		VAL	238	29.043	13.241	61.323	1.00 27.25	В
10	ATOM	1774		2 VAL	238 238	28.077 30.176	11.717 13.052	59.601 58.366	1.00 24.91	В
10	MOTA MOTA	1775 1776	0	VAL VAL	238	29.399	13.986	58.450	1.00 24.16	B B
	ATOM	1777	N	PHE	239	30.764	12.683	57.232	1.00 23.48	В
	MOTA	1778	CA	PHE	239	30.513	13.331	55.943	1.00 23.45	В
15	MOTA	1779	CB	PHE	239	31.736	13.139	55.002	1.00 22.63	В
15	MOTA	1780	CG	PHE	239	31.658	13.923	53.722	1.00 20.75	В
	ATOM ATOM	1781 1782		PHE	239 239	30.660 32.580	13.667 14.928	52.785 53.458	1.00 19.42	B B
	MOTA	1783		PHE	239	30.578	14.403	51.596	1.00 21.05	В
••	MOTA	1784	CE2		239	32.510	15.676	52.268	1.00 21.14	В
20	MOTA	1785	CZ	PHE	239	31.506	15.413	51.334	1.00 19.84	В
	MOTA	1786	C	PHE	239	29.286	12.669	55.321	1.00 24.62	В
	MOTA MOTA	1787 1788	O N	PHE	239 240	29.326 28.202	11.482 13.430	54.983 55.178	1.00 24.57 1.00 24.38	B B
	MOTA	1789	CA	SER	240	26.968	12.910	54.596	1.00 23.26	В
25	MOTA	1790	СВ	SER	240	25.778	13.249	55.480	1.00 22.32	В
	MOTA	1791	OG	SER	240	25.932	12.724	56.786	1.00 21.48	В
	MOTA	1792	C	SER	240	26.704	13.447	53.199	1.00 23.92	В
	MOTA MOTA	1793 1794	N O	SER VAL	240 241	27.065 26.067	14.568 12.622	52.865 52.382	1.00 23.73 1.00 25.40	B B
30	MOTA	1795	CA	VAL	241	25.712	12.995	51.022	1.00 25.45	В
	MOTA	1796	СВ	VAL	241	26.654	12.349	49.985	1.00 26.85	В
	ATOM	1797		VAL	241	26.790	10.856	50.249	1.00 26.88	В
	MOTA MOTA	1798 1799	CG2		241	26.118	12.595	48.579	1.00 26.95	В
35	ATOM	1800	С С	VAL VAL	241 241	24.293 24.013	12.513 11.321	50.787 50.856	1.00 25.56 1.00 25.33	B B
55	ATOM	1801	N	THR	242	23.391	13.454	50.536	1.00 26.85	В
	MOTA	1802	CA	THR	242	21.996	13.130	50.302	1.00 26.02	В
	MOTA	1803	CB	THR	242	21.091	13.997	51.182	1.00 26.36	В
40	ATOM	1804	0G1		242	21.447	13.814	52.557	1.00 26.94	В
40	ATOM ATOM	1805 1806	CG2 C	THR THR	242 242	19.628 21.656	13.612 13.352	50.995 48.832	1.00 28.00 1.00 27.35	B B
	MOTA	1807	ŏ	THR	242	22.126	14.311	48.217	1.00 26.21	В
	MOTA	1808	N	ILE	243	20.857	12.451	48.263	1.00 28.40	В
45	MOTA	1809	CA	ILE	243	20.468	12.564	46.861	1.00 28.65	В
45	ATOM	1810 1811	CB	ILE ILE	243 243	21.048 20.944	11.407 11.746	46.017	1.00 28.29 1.00 27.94	В
	MOTA MOTA	1812		ILE	243	22.526	11.156	44.534 46.392	1.00 27.94	B B
	MOTA	1813		ILE	243	23.191	10.046	45.592	1.00 25.36	В
50	MOTA	1814	С	ILE	243	18.950	12.538	46.721	1.00 29.68	В
50	MOTA	1815	0	ILE	243	18.327	11.512	46.966	1.00 30.63	В
	MOTA MOTA	1816 1817	N CA	HIS HIS	244 244	18.355 16.908	13.672 13.744	46.358 46.158	1.00 31.77 1.00 32.56	B B
	ATOM	1818	CB	HIS	244	16.354	15.175	46.421	1.00 32.30	В
	MOTA	1819	CG	HIS	244	16.323	15.570	47.864	1.00 34.78	В
55	MOTA	1820		HIS	244	15.331	15.500	48.785	1.00 35.77	В
	MOTA	1821		HIS	244	17.405	16.132	48.511	1.00 36.48	В
	ATOM ATOM	1822 1823		HIS HIS	244 244	17.080 15.827	16.392 16.018	49.765 49.958	1.00 35.67 1.00 35.06	В
	ATOM	1824	C	HIS	244	16.700	13.383	49.938	1.00 33.00	B B
60	ATOM	1825	ŏ	HIS	244	17.271	14.020	43.798	1.00 33.29	В
	MOTA	1826	N	MET	245	15.885	12.366	44.448	1.00 34.30	В
	MOTA	1827	CA	MET	245	15.654	11.910	43.087	1.00 34.70	В
	MOTA	1828	CB	MET	245	16.212	10.483	42.944	1.00 34.85	В
65	ATOM ATOM	1829 1830	CG SD	MET MET	245 245	17.734 18.439	10.441 8.805	43.100 43.321	1.00 35.80 1.00 36.13	B B
	MOTA	1831	CE	MET	245	18.009	8.537	45.032	1.00 30.13	В
	MOTA	1832	C	MET	245	14.203	11.985	42.628	1.00 34.49	B
	MOTA	1833	0	MET	245	13.272	11.757	43.402	1.00 33.49	В
70	MOTA	1834	N	LYS	246	14.026	12.313	41.352	1.00 35.05	В
, 0	MOTA MOTA	1835 1836	CA CB	LYS LYS	246 246	12.700 12.280	12.449 13.947	40.769 40.750	1.00 36.99 1.00 38.69	B B
	ATOM	1837	CG	LYS	246	10.919	14.227	40.117	1.00 43.46	В
	MOTA	1838	CD	LYS	246	10.702	15.729	39.856	1.00 45.60	В

	ATOM ATOM	1839 1840	CE NZ	LYS LYS	246 246	10.795 10.619		41.148 40.940	1.00 48.45 1.00 46.59	B B
	ATOM	1841	C	LYS	246	12.654	11.889	39.353	1.00 36.70	В
5	ATOM ATOM	1842 1843	O N	LYS GLU	246 247	13.324 11.864	12.387 10.841	38.452 39.166	1.00 36.63	B B
,	MOTA	1844	CA	GLU	247	11.706	10.240	37.854	1.00 37.12	В
	ATOM	1845	CB	GLU	247	12.209	8.806	37.866	1.00 37.24	В
	ATOM	1846	CG	GLU	247	11.710	7.990	39.036	1.00 37.73	В
10	MOTA	1847	CD	GLU	247	12.621	6.820	39.347	1.00 38.20	В
10	ATOM	1848		GLU	247	12.293	6.035	40.262	1.00 37.07	В
	MOTA MOTA	1849 1850	C	GLU	247 247	13.670 10.228	6.692 10.299	38.677 37.498	1.00 38.76 1.00 36.40	B B
	ATOM	1851	Ö	GLU	247	9.369	10.193	38.365	1.00 35.41	В
	ATOM	1852	N	THR	248	9.940	10.498	36.219	1.00 37.67	В
15	MOTA	1853	CA	THR	248	8.563	10.587	35.746	1.00 39.02	В
	MOTA	1854	CB	THR	248	8.344	11.889	34.920	1.00 39.40	В
	MOTA MOTA	1855 1856		THR THR	248 248	8.754 6.877	13.025 12.050	35.693 34.543	1.00 40.65 1.00 40.08	B
	ATOM	1857	C	THR	248	8.240	9.381	34.863	1.00 40.08	В
20	ATOM	1858	ŏ	THR	248	8.959	9.095	33.902	1.00 39.20	В
	MOTA	1859	N	THR	249	7.158	8.678	35.187	1.00 39.85	В
	MOTA	1860	CA	THR	249	6.751	7.515	34.407	1.00 40.93	В
	ATOM ATOM	1861 1862	CB	THR THR	249 249	5.642 4.458	6.728 7.531	35.119 35.190	1.00 41.31	B B
25	ATOM	1863		THR	249	6.078	6.345	36.527	1.00 40.33	В
	ATOM	1864	c	THR	249	6.233	7.952	33.039	1.00 41.94	В
	MOTA	1865	0	THR	249	6.178	9.145	32.736	1.00 41.92	В
	MOTA	1866	N	ILE	250	5.857	6.979	32.214	1.00 43.64	В
30	MOTA	1867	CA CB	ILE	250 250	5.343 5.340	7.253	30.875 30.004	1.00 43.57 1.00 43.38	B B
50	MOTA MOTA	1868 1869		ILE	250	4.228	5.970 5.029	30.465	1.00 43.38	В
	MOTA	1870		ILE	250	5.173	6.343	28.510	1.00 41.89	B
	MOTA	1871	CD1	ILE	250	5.286	5.169	27.560	1.00 39.31	В
25	MOTA	1872	C	ILE	250	3.922	7.805	30.983	1.00 44.06	В
35	ATOM	1873	0	ILE	250	3.320	8.197	29.984	1.00 43.16	В
	ATOM ATOM	1874 1875	N CA	ASP ASP	251 251	3.402 2.059	7.834 8.353	32.209 32.493	1.00 45.37 1.00 47.36	B B
	MOTA	1876	CB	ASP	251	1.319	7.437	33.502	1.00 47.52	В
40	MOTA	1877	CG	ASP	251	0.719	6.208	32.852	1.00 46.95	В
40	MOTA	1878		ASP	251	0.222	5.335	33.595	1.00 46.42	В
	MOTA MOTA	1879 1880	OD2 C	ASP ASP	251 251	0.735 2.097	6.121 9.778	31.606 33.061	1.00 46.77	B B
	ATOM	1881	o	ASP	251	1.052	10.349	33.377	1.00 49.62	В
	MOTA	1882	N	GLY	252	3.297	10.339	33.195	1.00 48.57	В
45	MOTA	1883	CA	GLY	252	3.445	11.684	33.725	1.00 48.41	В
	ATOM	1884	С	GLY	252	3.519	11.749	35.243	1.00 49.25	В
	MOTA MOTA	1885 1886	O N	GLY GLU	252 253	3.592 3.489	12.839 10.584	35.823 35.890	1.00 48.30 1.00 49.52	B B
	MOTA	1887	CA	GLU	253	3.555	10.504	37.349	1.00 49.94	В
50	ATOM	1888	СВ	GLU	253	2.989	9.156	37.839	1.00 51.87	В
	MOTA	1889	CG	GLU	253	3.083	8.942	39.349	1.00 55.20	В
	MOTA	1890	CD	GLU	253	2.805	7.498	39.764	1.00 57.60	В
	MOTA MOTA	1891 1892		GLU GLU	253 253	2.837 2.558	7.204 6.655	40.981 38.875	1.00 58.27 1.00 58.42	B B
55	ATOM		C		253				1.00 49.08	В
	MOTA	1894	0	GLU	253	5.948	10.301	37.136	1.00 47.88	В
	MOTA	1895	N	GLU	254	5.148	11.187	39.043	1.00 48.18	В
	MOTA	1896	CA	GLU	254	6.471	11.394	39.610	1.00 48.03	В
60	MOTA MOTA	1897 1898	CB CG	GLU	254 254	6.633 6.950	12.854 13.761	40.000 38.827	1.00 48.74 1.00 51.39	B B
•	MOTA	1899	CD	GLU	254	6.866	15.232	39.193	1.00 53.81	В
	ATOM	1900		GLU	254	7.184	15.575	40.356	1.00 54.50	В
	MOTA	1901	OE2		254	6.493	16.043	38.313	1.00 54.20	В
65	MOTA	1902	C	GLU	254	6.817	10.497	40.797	1.00 46.73	В
UJ	MOTA MOTA	1903 1904	O N	GLU LEU	254 255	6.111 7.918	10.466 9.763	41.805 40.651	1.00 46.07 1.00 45.44	B B
	MOTA	1905	CA	LEU	255	8.416	8.869	41.689	1.00 43.44	В
	MOTA	1906	СВ	LEU	255	8.880	7.522	41.069	1.00 42.70	В
70	MOTA	1907	CG	LEU	255	7.888	6.755	40.138	1.00 42.10	В
70	MOTA	1908	CD1		255	8.584	5.548	39.528	1.00 41.93	В
	ATOM ATOM	1909 1910	CD2	LEU	255 255	6.658 9.603	6.322 9.591	40.919 42.329	1.00 42.42 1.00 42.63	B B
	ATOM	1911	0	LEU	255 255	10.599	9.886	41.662	1.00 42.63	В
				-					_	

	MOTA	1912	N	VAL	256	9.484	9.890	43.617	1.00 41.65	В
	MOTA	1913	CA	VAL	256	10.540	10.594	44.326	1.00 41.53	В
	ATOM	1914	CB	VAL	256	9.994	11.865	45.040	1.00 42.73	В
						9.445	12.851	44.013	1.00 41.79	В
_	MOTA	1915		VAL	256					
5	MOTA	1916	CG2	VAL	256	8.899	11.487	46.028	1.00 43.14	В
						11.192	9.691	45.357	1.00 40.91	В
	MOTA	1917	С	VAL	256					
	MOTA	1918	0	VAL	256	10.516	9.123	46.216	1.00 42.52	В
	MOTA	1919	N	LYS	257	12.507	9.542	45.255	1.00 38.10	В
	MOTA	1920	CA	LYS	257	13.237	8.718	46.200	1.00 35.97	В
10										
10	MOTA	1921	CB	LYS	257	13.712	7.370	45.525	1.00 37.07	В
	MOTA	1922	CG	LYS	257	14.482	7.490	44.219	1.00 35.97	В
		•								
	MOTA	1923	CD	LYS	257	14.612	6.108	43.592	1.00 34.96	В
	MOTA	1924	CE	LYS	257	15.566	6.085	42.412	1.00 36.06	В
	MOTA	1925	NZ	LYS	257	15.142	6.972	41.303	1.00 38.19	В
15	ATOM	1926	С	LYS	257	14.408	9.497	46.777	1.00 34.33	В
	ATOM	1927	0	LYS	257	15.100	10.227	46.074	1.00 35.94	• B
	MOTA	1928	N	ILE	258	14.618	9.345	48.074	1.00 31.24	В
	ATOM	1929	CA	ILE	258	15.677	10.066	48.747	1.00 27.10	В
	MOTA	1930	CB	ILE	258	15.077	10.988	49.842	1.00 28.34	В
20										
20	MOTA	1931	CGZ	ILE	258	16.181	11.791	50.516	1.00 26.47	В
	MOTA	1932	CG1	ILE	258	14.021	11.949	49.203	1.00 27.71	В
	MOTA	1933	CDI	ILE	258	13.168	12.703	50.214	1.00 25.91	В
	MOTA	1934	С	ILE	258	16.695	9.136	49.382	1.00 24.38	В
	MOTA	1935	0	ILE	258	16.386	8.400	50.314	1.00 22.26	В
25	MOTA	1936	N	GLY	259	17.917	9.182	48.872	1.00 22.97	В
23										
	MOTA	1937	CA	GLY	259	18.975	8.359	49.422	1.00 22.93	В
	MOTA	1938	С	GLY	259	20.055	9.163	50.135	1.00 22.70	В
	MOTA	1939	0	GLY	259	20.561	10.161	49.609	1.00 21.85	В
	ATOM	1940	N	LYS	260	20.410	8.731	51.339	1.00 21.39	В
20										
30	MOTA	1941	CA	LYS	260	21.441	9.412	52.112	1.00 21.77	В
	MOTA	1942	CB	LYS	260	20.834	10.042	53.411	1.00 20.00	В
	ATOM	1943	CG	LYS	260	21.805	10.848	54.262	1.00 17.18	В
	ATOM	1944	CD	LYS	260	21.119	11.342	55.534	1.00 16.09	В
	MOTA	1945	CE	LYS	260	22.049	12.181	56.417	1.00 16.97	В
35	MOTA	1946	NZ	LYS	260	21.341	12.724	57.641	1.00 15.85	В
55										
	MOTA	1947	С	LYS	260	22.545	8.419	52.469	1.00 21.92	В
					260	22.284	7.303			
	MOTA	1948	0	LYS					1.00 22.32	В
	MOTA	1949	N	LEU	261	23.780	8.837	52.236	1.00 19.52	В
40	MOTA	1950	CA	LEU	261	24.932	8.009	52.520	1.00 17.05	В
40	MOTA	1951	CB	LEU	261	25.693	7.741	51.235	1.00 14.85	В
	ATOM		CG			27.111	7.236	51.385	1.00 14.96	
		1952		LEU	261					В
	MOTA	1953	CD1	LEU	261	27.114	5.939	52.165	1.00 12.47	В
		1954			261	27.730	7.054	50.019	1.00 12.11	В
	ATOM			LEU						
	MOTA	1955	С	LEU	261	25.828	8.720	53.519	1.00 17.96	В
45	ATOM		o			26.258	9.850	53.284	1.00 16.25	
73		1956		LEU	261					В
	MOTA	1957	N	ASN	262	26.099	8.063	54.643	1.00 18.12	В
		1958				26.970			1.00 18.04	
	MOTA		CA	ASN	262		8.640	55.670		В
	MOTA	1959	CB	ASN	262	26.336	8.512	57.080	1.00 15.45	В
	MOTA	1960	CG	ASN	262	24.943	9.103	57.152	1.00 17.34	В
50										
50	MOTA	1961	OD1	ASN	262	23.957	8.381	57.282	1.00 17.52	В
	ATOM	1962		ASN	262	24.855	10.420	57.070	1.00 17.02	В
	MOTA	1963	С	ASN	262	28.327	7.929	55.664	1.00 18.26	В
	ATOM	1964	0	ASN	262	28.399	6.697	55.735	1.00 16.87	В
	MOTA	1965	N	LEU	263	29.394	8.717	55.564	1.00 18.04	В
55	MOTA	1966		LEU	263	30.759	8.200	55.560	1.00 17.90	В
33										
	MOTA	1967	CB	LEU	263	31.482	8.723	54.339	1.00 15.70	В
	MOTA	1968	CG	LEU	263	30.717	8.283	53.075	1.00 17.05	В
				LEU	263	31.255	8.961	51.853	1.00 16.38	В
	MOTA	1969	CD1							
	MOTA	1969		I DII	262	20 012			1 00 10 46	D
(0	MOTA	1970	CD2		263	30.812	6.754	52.929	1.00 18.46	В
60	MOTA	1970					6.754	52.929	1.00 18.46 1.00 18.79	
60	MOTA MOTA	1970 1971	CD2 C	LEU	263	31.411	6.754 8.688	52.929 56.849	1.00 18.79	В
60	MOTA MOTA MOTA	1970 1971 1972	CD2	LEU LEU	263 263	31.411 31.712	6.754 8.688 9.873	52.929 56.849 56.992	1.00 18.79 1.00 20.38	B B
60	MOTA MOTA MOTA	1970 1971 1972	CD2 C	LEU LEU	263 263	31.411 31.712	6.754 8.688 9.873	52.929 56.849 56.992	1.00 18.79 1.00 20.38	B B
60	MOTA MOTA MOTA MOTA	1970 1971 1972 1973	CD2 C O N	LEU LEU VAL	263 263 264	31.411 31.712 31.614	6.754 8.688 9.873 7.774	52.929 56.849 56.992 57.794	1.00 18.79 1.00 20.38 1.00 18.49	B B B
60	MOTA MOTA MOTA	1970 1971 1972 1973 1974	CD2 C	LEU LEU	263 263	31.411 31.712	6.754 8.688 9.873	52.929 56.849 56.992 57.794 59.093	1.00 18.79 1.00 20.38	B B
	MOTA MOTA MOTA MOTA MOTA	1970 1971 1972 1973 1974	CD2 C O N CA	LEU LEU VAL VAL	263 263 264 264	31.411 31.712 31.614 32.183	6.754 8.688 9.873 7.774 8.128	52.929 56.849 56.992 57.794 59.093	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30	В В В
	MOTA MOTA MOTA MOTA MOTA MOTA	1970 1971 1972 1973 1974 1975	CD2 C O N CA CB	LEU LEU VAL VAL VAL	263 263 264 264 264	31.411 31.712 31.614 32.183 31.335	6.754 8.688 9.873 7.774 8.128 7.529	52.929 56.849 56.992 57.794 59.093 60.228	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68	B B B B
60 65	MOTA MOTA MOTA MOTA MOTA	1970 1971 1972 1973 1974	CD2 C O N CA	LEU LEU VAL VAL VAL	263 263 264 264	31.411 31.712 31.614 32.183	6.754 8.688 9.873 7.774 8.128	52.929 56.849 56.992 57.794 59.093	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30	В В В
	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1970 1971 1972 1973 1974 1975	CD2 C O N CA CB	LEU LEU VAL VAL VAL VAL	263 263 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752	6.754 8.688 9.873 7.774 8.128 7.529 8.115	52.929 56.849 56.992 57.794 59.093 60.228 61.561	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56	B B B B B
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976	CD2 C O N CA CB CG1 CG2	LEU LEU VAL VAL VAL VAL	263 263 264 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752 29.858	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56 1.00 21.14	B B B B B
	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1970 1971 1972 1973 1974 1975	CD2 C O N CA CB	LEU LEU VAL VAL VAL VAL	263 263 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752	6.754 8.688 9.873 7.774 8.128 7.529 8.115	52.929 56.849 56.992 57.794 59.093 60.228 61.561	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56	B B B B B
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL	263 264 264 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56 1.00 21.14	B B B B B B
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL VAL	263 263 264 264 264 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 17.56 1.00 21.14 1.00 19.31 1.00 19.80	B B B B B B
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL	263 264 264 264 264 264 264	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56 1.00 21.14	B B B B B B
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL VAL VAL VAL ASP	263 264 264 264 264 264 264 264 264 265	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952 34.478	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 17.56 1.00 21.14 1.00 19.31 1.00 19.80 1.00 17.61	B B B B B B
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL VAL VAL ASP ASP	263 263 264 264 264 264 264 264 265 265	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952 34.478 35.880	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667 8.419	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680 59.995	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.68 1.00 17.56 1.00 21.14 1.00 19.31 1.00 19.80 1.00 17.61	B B B B B B B
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	CD2 C O N CA CB CG1 CG2 C	LEU LEU VAL VAL VAL VAL VAL VAL VAL VAL ASP	263 264 264 264 264 264 264 264 264 265	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952 34.478	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 17.56 1.00 21.14 1.00 19.31 1.00 19.80 1.00 17.61	B B B B B B
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982	CD2 C O N CA CB CG1 CG2 C O N CA	LEU LEU VAL VAL VAL VAL VAL VAL ASP ASP	263 263 264 264 264 264 264 264 265 265	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952 34.478 35.880 36.771	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667 8.419 9.484	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680 59.995 59.355	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.68 1.00 17.56 1.00 21.14 1.00 19.31 1.00 17.61 1.00 17.61 1.00 15.36 1.00 14.42	8 8 8 8 8 8 8 8 8
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983	CD2 C O N CA CB CG1 CG2 C O N CA CB	LEU LEU VAL VAL VAL VAL VAL VAL ASP ASP ASP	263 264 264 264 264 264 264 265 265 265	31.411 31.712 31.614 32.183 31.355 31.752 29.858 33.627 33.952 34.478 35.880 36.771 38.258	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667 8.419 9.484 9.279	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680 59.995 59.355 59.355	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.30 1.00 18.68 1.00 17.56 1.00 21.14 1.00 19.31 1.00 19.80 1.00 17.61 1.00 15.36 1.00 14.42 1.00 16.29	8 8 8 8 8 8 8 8 8 8 8
65	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982	CD2 C O N CA CB CG1 CG2 C O N CA	LEU LEU VAL VAL VAL VAL VAL VAL ASP ASP ASP	263 263 264 264 264 264 264 264 265 265	31.411 31.712 31.614 32.183 31.335 31.752 29.858 33.627 33.952 34.478 35.880 36.771	6.754 8.688 9.873 7.774 8.128 7.529 8.115 7.772 7.696 6.513 8.667 8.419 9.484	52.929 56.849 56.992 57.794 59.093 60.228 61.561 59.955 59.333 59.210 59.680 59.995 59.355	1.00 18.79 1.00 20.38 1.00 18.49 1.00 18.68 1.00 17.56 1.00 21.14 1.00 19.31 1.00 17.61 1.00 17.61 1.00 15.36 1.00 14.42	B B B B B B B B B B B B B B B B B B B

ATTOM		ATOM ATOM	1985 1986	С	ASP	265 265	39.110 35.971 36.119	9.677 8.507 9.593	58.832 61.528 62.086	1.00 16.17 1.00 15.62 1.00 17.19	В В В
5 ATOM 1999 CA LEU 266 35.530 7.357 63.666 1.00 12.99 B ATOM 1990 CD LEU 266 34.172 5.339 63.898 1.00 9.90 B ATOM 1991 CD LEU 266 34.172 5.339 63.898 1.00 12.88 B ATOM 1992 CD LEU 266 34.070 3.881 64.374 1.00 12.44 B ATOM 1993 CD2 LEU 266 37.277 7.783 64.376 1.00 12.49 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.19 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.25 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.25 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.25 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.25 B ATOM 1995 CD LEU 266 37.277 7.783 64.240 1.00 11.25 B ATOM 1995 CD LEU 266 37.277 7.783 65.539 1.00 11.58 B ATOM 1998 CD ALA 267 37.263 8.059 65.539 1.00 11.58 B ATOM 1998 CD ALA 267 38.657 9.029 67.634 1.00 11.27 B ATOM 1998 CD ALA 267 38.657 9.029 67.634 1.00 11.27 B ATOM 1998 CD ALA 267 38.657 9.029 66.284 1.00 11.27 B ATOM 1998 CD ALA 267 38.610 6.070 66.718 1.00 11.27 B ATOM 2000 CD ALA 268 40.841 5.198 6.509 1.00 11.27 B ATOM 2000 CD ALA 268 40.841 5.198 6.509 1.00 11.27 B B ATOM 2001 CD ALA 268 40.841 5.198 6.709 1.00 20.15 B ATOM 2001 CD ALA 268 40.841 5.198 6.709 1.00 20.15 B ATOM 2003 CD ALA 268 40.841 5.198 6.709 1.00 20.15 B ATOM 2003 CD ALA 268 40.841 5.198 6.878 1.00 21.52 B ATOM 2004 CD ALA 268 40.842 5.198 6.898 1.00 21.52 B ATOM 2004 CD ALA 268 40.842 5.198 6.898 1.00 21.52 B ATOM 2005 CD SER 269 39.929 1.721 68.324 1.00 20.55 B ATOM 2007 CB SER 269 39.929 1.721 68.324 1.00 20.55 B ATOM 2007 CD SER 269 31.929 1.721 68.324 1.00 20.20 S B ATOM 2007 CD SER 269 41.527 1.969 70.903 1.00 20.20 S B ATOM 2001 CD SER 269 41.227 1.969 70.903 1.00 20.20 S B ATOM 2001 CD SER 269 41.227 1.969 70.903 1.00 20.20 S B ATOM 2001 CD SER 269 41.227 1.969 70.903 1.00 20.47 B ATOM 2001 CD AT		MOTA MOTA	1987	O N	ASP	265 266					
ATOM	5										
ATOM											
10 ATOM 1993 CD2 LEU 266 33.0.88 6.185 64.542 1.00 11.125 B ATOM 1995 O LEU 266 37.277 7.788 64.240 1.00 11.25 B ATOM 1995 O LEU 266 38.274 7.867 63.532 1.00 7.77 B ATOM 1995 O ALA 267 37.263 8.059 6.539 1.00 10.58 B ATOM 1997 CA ALA 267 37.263 8.059 65.539 1.00 10.58 B ATOM 1999 C ALA 267 38.653 9.029 67.634 1.00 11.01 1.27 B ATOM 1998 CB ALA 267 38.653 9.029 67.634 1.00 11.07 B ATOM 1999 C ALA 267 38.650 9.029 67.634 1.00 11.07 B ATOM 2000 O ALA 267 38.610 6.077 66.789 1.00 11.27 B ATOM 2001 N GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2001 N GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2002 CA GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2002 CA GLY 268 40.546 7.190 66.475 1.00 17.83 B ATOM 2003 C GLY 268 40.546 7.190 66.475 1.00 17.83 B ATOM 2003 C GLY 268 40.546 7.190 66.475 1.00 21.52 B ATOM 2005 N SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2005 C SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2005 C SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2005 C SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2005 C SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2010 C SER 269 40.590 3.017 68.898 1.00 21.52 B ATOM 2010 C SER 269 40.540 1.099 67.442 1.100 17.43 B ATOM 2011 R GLU 270 43.848 2.1099 67.442 1.109 27.04 B ATOM 2011 C GLU 270 43.848 2.109 67.442 1.109 27.04 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 22.47 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 22.47 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 22.47 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG GLU 270 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B ATOM 2012 CG ANN 271 44.879 6.998 68.911 1.00 32.95 B											
100 ATOM 1994 C LEU 266 38.277 7.788 64.240 1.00 11.25 B ATOM 1995 N ALA 267 38.453 8.422 66.593 1.00 7.77 B ATOM 1995 N ALA 267 38.453 8.422 66.284 1.00 7.77 B B ATOM 1997 CA ALA 267 38.653 8.422 66.284 1.00 11.07 B B C ALA 267 38.653 8.422 66.284 1.00 11.07 B ATOM 1999 C ALA 267 38.653 8.422 66.284 1.00 11.07 B ATOM 2000 O ALA 267 39.217 7.125 66.507 1.00 14.13 B ATOM 2000 O ALA 267 39.217 7.125 66.507 1.00 14.13 B ATOM 2001 N GLY 268 40.546 7.190 66.718 1.00 14.34 B ATOM 2001 N GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2001 C GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2003 C GLY 268 40.546 7.190 66.475 1.00 20.15 B ATOM 2003 C GLY 268 40.563 5.760 68.978 1.00 20.15 B ATOM 2004 O GLY 268 40.663 5.760 68.978 1.00 20.15 B ATOM 2005 C SER 269 40.918 3.878 67.999 1.00 20.15 B ATOM 2005 C SER 269 40.918 3.878 67.793 1.00 20.55 B ATOM 2007 C SER 269 40.500 3.017 68.878 1.00 20.20 B ATOM 2007 C SER 269 39.929 1.721 68.324 1.00 20.23 B ATOM 2000 O SER 269 39.929 1.721 68.324 1.00 20.23 B ATOM 2001 O SER 269 41.227 1.969 70.903 1.00 27.04 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 22.55 B ATOM 2012 C GLU 270 42.775 3.171 69.781 1.00 23.05 B ATOM 2012 C GLU 270 45.234 3.432 70.241 1.00 12.95 B ATOM 2013 C GLU 270 45.234 3.432 70.241 1.00 32.95 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 32.65 B ATOM 2015 C GLU 270 44.879 6.868 70.193 1.00 32.65 B ATOM 2016 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2017 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2017 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70.193 1.00 30.27 B ATOM 2012 C GLU 270 44.879 6.868 70											
ATOM 1995 O LEU 266 38.274 7.867 63.532 1.00 7.77 B 8 ATOM 1996 N ALA 267 38.453 8.059 65.539 1.00 10.58 B 8 ATOM 1998 C B ALA 267 38.657 9.029 65.534 1.00 10.27 B 8 ATOM 1998 C B ALA 267 38.657 9.029 67.634 1.00 11.3.04 B 8 ATOM 2000 O ALA 267 38.657 9.029 67.634 1.00 11.27 B 8 ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.13 B 8 ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.13 B 8 ATOM 2000 C ALA 267 38.610 6.077 66.718 1.00 16.14 B 8 ATOM 2002 C GLY 268 40.546 7.190 66.475 1.00 14.85 B 8 ATOM 2002 C GLY 268 41.347 5.999 66.688 1.00 17.83 B 8 ATOM 2003 C GLY 268 40.934 5.198 67.999 1.00 20.15 B 8 ATOM 2005 N SER 269 40.918 3.878 67.773 1.00 20.60 B 8 ATOM 2005 N SER 269 40.918 3.878 67.773 1.00 20.60 B 8 ATOM 2005 C SER 269 40.918 3.878 67.773 1.00 20.60 B 8 ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B 8 ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.20 S B ATOM 2000 C SER 269 40.918 3.878 67.773 1.00 20.00 S B 269 40.918	10										
ATOM 1999 C A ALA 267 37.263 8.059 65.539 1.00 10.58 B ATOM 1999 C A ALA 267 38.653 8.422 66.284 1.00 13.04 B ATOM 1999 C ALA 267 38.657 9.029 67.634 1.00 11.27 B ATOM 1999 C ALA 267 38.650 6.077 66.718 1.00 11.27 B ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.34 B ATOM 2001 N GLY 268 40.646 7.190 66.475 1.00 14.85 B ATOM 2002 CA GLY 268 41.347 5.999 66.688 1.00 17.83 B ATOM 2003 C GLY 268 40.663 5.760 68.976 1.00 20.15 B ATOM 2005 N SER 269 40.500 3.017 68.878 1.00 20.55 B ATOM 2005 CA SER 269 40.500 3.017 68.878 1.00 20.05 B ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 20.3 B ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 20.3 B ATOM 2000 C SER 269 40.500 3.017 68.788 1.00 20.3 B ATOM 2000 C SER 269 40.540 40.642 1.099 67.442 1.00 17.43 B ATOM 2010 O SER 269 41.251 62.678 69.941 1.00 26.49 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 20.7 64.98 ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 20.7 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 68.324 4.00 20.2 69	10										
ATOM											
15 ATOM 1999 C ALA 267 39.221 7.125 66.507 1.00 14.13 B ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.34 B ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.34 B ATOM 2002 C GLY 268 41.347 5.999 66.688 1.00 17.83 B ATOM 2002 C GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2003 C GLY 268 40.934 5.198 67.909 1.00 20.15 B ATOM 2004 O GLY 268 40.63 5.760 68.978 1.00 21.52 B ATOM 2005 N SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2005 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2006 C SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2007 CB SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2008 C SER 269 40.918 2.679 67.442 1.00 17.43 B ATOM 2009 C SER 269 40.918 2.679 67.442 1.00 17.43 B ATOM 2009 C SER 269 41.271 68.324 1.00 20.23 B ATOM 2009 C SER 269 41.271 68.324 1.00 20.23 B ATOM 2010 O SER 269 41.277 1.969 67.442 1.00 17.43 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 27.47 B ATOM 2011 C G GLU 270 42.775 3.171 69.781 1.00 27.47 B ATOM 2011 C G GLU 270 45.203 4.958 70.903 1.00 27.04 B ATOM 2013 C G GLU 270 44.879 6.908 68.911 1.00 32.65 B ATOM 2015 C GLU 270 44.879 6.908 68.911 1.00 32.65 B ATOM 2016 C GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2019 O GLU 270 43.580 7.487 7.0210 1.00 32.66 B ATOM 2019 O GLU 270 43.580 7.487 7.0210 1.00 32.66 B ATOM 2019 O GLU 270 43.580 7.487 7.0210 1.00 32.68 B ATOM 2019 O GLU 270 43.580 7.487 7.0210 1.00 32.68 B ATOM 2019 O GLU 270 43.380 4.681 72.277 1.00 39.21 B ATOM 2012 C A ASN 271 43.503 3.472 72.129 1.00 36.87 B ATOM 2012 C A ASN 271 43.503 3.472 72.129 1.00 36.87 B ATOM 2020 N ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2021 C A ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2022 C A ASN 271 40.292 C A ASN 27							38.453				
ATOM 2000 O ALA 267 38.610 6.077 66.718 1.00 16.34 B ATOM 2001 N GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2002 CA GLY 268 41.347 5.999 66.688 1.00 17.83 B ATOM 2003 C GLY 268 40.934 5.198 67.999 1.00 20.15 B ATOM 2003 C GLY 268 40.663 5.760 68.978 1.00 21.52 B ATOM 2005 CA SER 269 40.500 3.017 68.878 1.00 21.52 B ATOM 2005 CA SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CF SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CF SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CF SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2008 CF SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 CF SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 CF SER 269 41.227 1.969 70.903 1.00 27.04 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 29.47 B ATOM 2012 CA GLU 270 43.848 2.887 70.743 1.00 32.95 B ATOM 2012 CG GLU 270 43.848 2.887 70.743 1.00 32.95 B ATOM 2013 CF GLU 270 45.405 4.968 70.193 1.00 32.95 B ATOM 2015 CD GLU 270 44.879 6.908 68.911 1.00 32.95 B ATOM 2016 CEI GLU 270 44.879 6.908 68.911 1.00 32.95 B ATOM 2016 CEI GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2018 C GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CE2 GLU 270 44.879 6.908 6	15										
ATOM 2001 N GLY 268 40.546 7.190 66.475 1.00 14.85 B ATOM 2002 CA GLY 268 40.914 5.198 67.909 1.00 20.15 B ATOM 2005 N SER 269 40.914 5.198 67.909 1.00 20.15 B ATOM 2006 CA SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2006 CA SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2007 CB SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2008 CS SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2008 CS SER 269 39.929 1.721 68.324 1.00 20.23 B ATOM 2009 CS SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 20.49 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 20.47 B ATOM 2012 CA GLU 270 45.304 3.432 70.210 1.00 32.65 B ATOM 2013 CB GLU 270 45.305 4.968 70.743 1.00 32.65 B ATOM 2015 CD GLU 270 44.879 6.908 68.911 1.00 32.65 B ATOM 2016 CD GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 CO2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 CO2 GLU 270 44.879 6.908 68.911 1.00 32.219 B ATOM 2012 CA ASN 271 43.560 3.472 72.129 1.00 36.87 B ATOM 2012 CA ASN 271 43.503 2.611 73.143 1.00 40.278 B ATOM 2020 N ASN 271 43.503 2.611 73.143 1.00 40.278 B ATOM 2020 CA ASN 271 43.503 2.611 73.143 1.00 40.278 B ATOM 2021 CA ASN 271 43.503 2.611 73.143 1.00 40.278 B ATOM 2022 CB ASN 271 43.503 2.611 73.143 1.00 40.278 B ATOM 2022 CB ASN 271 40.230 3.337 74.500 1.00 36.87 B ATOM 2022 CB ASN 271 40.230 3.337 74.500 1.00 43.35 B ATOM 2022 CB ASN 271 40.230 3.337 74.500 1.00 43.35 B ATOM 2024 CD ASN 271 40.230 3.337 74.500 1.00 4	13										
20 ATOM 2002 CA GLY 268 41.347 5.999 66.688 1.00 17.83 B ATOM 2003 C GLY 268 40.663 5.760 68.978 1.00 21.52 B ATOM 2005 N SER 269 40.650 5.760 68.978 1.00 21.52 B ATOM 2005 CA SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 23.05 B ATOM 2008 CG SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 C SER 269 41.346 2.678 69.941 1.00 26.49 B ATOM 2010 C SER 269 41.346 2.678 69.941 1.00 26.49 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 25.47 B ATOM 2012 CA GLU 270 43.848 2.887 70.743 1.00 25.95 B ATOM 2013 CB GLU 270 45.234 3.432 70.210 1.00 32.65 B ATOM 2013 CB GLU 270 45.234 3.432 70.210 1.00 32.65 B ATOM 2016 CG GLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2016 CG IGLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2016 CG IGLU 270 44.879 6.098 68.911 1.00 32.21 B ATOM 2017 022 GLU 270 44.315 4.961 68.052 1.00 30.89 B ATOM 2018 CG IGLU 270 44.315 4.961 68.052 1.00 30.89 B ATOM 2010 CG IGLU 270 44.315 4.961 68.052 1.00 30.89 B ATOM 2010 CG IGLU 270 44.315 4.961 68.052 1.00 38.80 B ATOM 2010 CG IGLU 270 44.315 4.961 68.052 1.00 38.80 B ATOM 2010 CG IGLU 270 44.315 4.961 68.052 1.00 38.80 B ATOM 2010 CG IGLU 270 43.380 4.681 72.277 1.00 39.21 B ATOM 2020 CG ASN 271 43.330 4.681 72.277 1.00 39.21 B ATOM 2020 CG ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2020 CG ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2020 CG ASN 271 40.998 2.244 74.621 1.00 45.39 B ATOM 2020 CG ASN 271 40.998 2.244 74.621 1.00 45.39 B ATOM 2020 CG ASN 271 40.998 2.244 74.621 1.00 45.39 B ATOM 2020 CG ASN 271 40.998 2.244 74.621 1.00 43.35 B ATOM 2020 CG ASN 271 40.292 1.10 79.74 1.00 51.75 B ATOM 2020 CG ASN 271 40.292 1.10 79.74 1.00 51.75 B ATOM 2020 CG ASN 287 41.518 1.00 42.68 B ATOM 2020 CG ASN 287 41.518 1.00 42.90 B ATOM 2020 CG ASN 287 41.518 1.00 97.420 1.00 43.35 B ATOM 2020 CG ASN 287 41.518 1.00 97.420 1.00 43.35 B ATOM 2020 CG ASN 287 41.518 1.00 97.420 1.00 43.35 B ATOM 2020 CG ASN 287											
ATOM 2003 C GLY 268 40.934 5.198 67.909 1.00 20.152 B ATOM 2005 N SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2006 CA SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2007 CB SER 269 40.918 3.878 67.773 1.00 20.60 B ATOM 2008 CG SER 269 40.918 1.002 24 1.002 2.23 B ATOM 2008 CG SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 C SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2010 C SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2011 N GLU 270 43.848 2.887 70.903 1.00 27.04 B ATOM 2012 CA GLU 270 43.848 2.887 70.743 1.00 32.65 B ATOM 2013 CG GLU 270 45.405 4.968 70.193 1.00 32.65 B ATOM 2016 CEI GLU 270 44.879 6.908 68.911 1.00 32.15 B ATOM 2016 CEI GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CC2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CC2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2010 CC2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2012 CC4 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2020 CC4 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2020 CC4 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2020 CC4 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CC6 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CC6 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CC6 ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CC6 ASN 271 40.232 1.103 74.500 1.00 40.39 B ATOM 2023 CC6 ASN 271 40.232 1.103 74.500 1.00 40.39 B ATOM 2023 CC6 ASN 271 40.232 1.103 74.500 1.00 40.39 B ATOM 2023 CC6 ASN 271 40.232 1.103 74.500 1.											
ATOM 2005 N SER 269 40.918 3.878 67.773 1.00 20.50 B									67.909		
ATOM 2007 CB SER 269 40.500 3.017 68.878 1.00 22.02 B B ATOM 2007 CB SER 269 39.929 1.721 68.324 1.00 20.23 B B ATOM 2008 OG SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 O SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2010 O SER 269 41.277 1.969 70.903 1.00 27.04 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 29.47 B ATOM 2012 CA GLU 270 43.348 2.887 70.743 1.00 32.95 B ATOM 2013 CB GLU 270 45.234 3.432 70.210 1.00 32.65 B ATOM 2015 CD GLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2015 CD GLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2016 CG LU 270 44.879 6.908 68.911 1.00 22.19 B ATOM 2016 CG LU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2016 CG LU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2016 CG LU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2016 CG LU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 0EZ GLU 270 44.3560 3.472 72.129 1.00 36.87 B ATOM 2012 CG ASN 271 43.560 3.472 72.129 1.00 36.87 B ATOM 2012 CG ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CG ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CG ASN 271 40.798 2.244 74.611 1.00 45.39 B ATOM 2022 CG ASN 271 40.798 2.244 74.612 1.00 43.39 B ATOM 2022 CG ASN 271 40.230 1.337 74.550 1.00 44.39 B ATOM 2022 CG ASN 271 40.230 3.337 74.550 1.00 44.39 B ATOM 2022 CG ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2022 CG ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2022 CG ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2022 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2023 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2023 CG ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2024 CG ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2025 CG ASN 287 40.787 10.182 77.475 1.00 10.0 33.35 B ATOM 2020 CG LILE 288 36.636 1.125	20										
ATOM 2007 CB SER 269											
25 ATOM 2008 OG SER 269 40.842 1.099 67.442 1.00 17.43 B ATOM 2010 O SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2010 N SER 269 41.227 1.969 70.903 1.00 27.04 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 29.47 B ATOM 2012 CA GLU 270 45.234 3.432 70.210 1.00 32.95 B ATOM 2013 CB GLU 270 45.234 3.432 70.210 1.00 32.95 B ATOM 2015 CD GLU 270 45.234 3.432 70.210 1.00 32.95 B ATOM 2016 CG GLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2016 CDI GLU 270 44.822 5.656 68.963 1.00 30.27 B ATOM 2016 CDI GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 0EZ GLU 270 44.315 4.961 68.052 1.00 28.80 B ATOM 2019 O GLU 270 43.560 3.472 72.129 1.00 36.87 B ATOM 2020 N ASN 271 43.503 3.472 72.129 1.00 39.21 B ATOM 2021 CA ASN 271 43.503 3.613 73.143 1.00 40.27 B ATOM 2022 CB ASN 271 42.196 2.131 75.222 1.00 43.15 B ATOM 2023 CG ASN 271 40.232 1.109 74.621 1.00 45.39 B ATOM 2023 CG ASN 271 40.232 1.109 74.621 1.00 45.39 B ATOM 2024 ODI ASN 271 40.232 1.109 74.621 1.00 43.39 B ATOM 2025 C ASN 271 40.232 1.109 74.621 1.00 43.39 B ATOM 2026 C ASN 271 40.232 1.109 74.621 1.00 43.39 B ATOM 2027 O ASN 271 40.232 1.109 74.621 1.00 43.39 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 CO ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 CO ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 CO ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CC ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CC ASN 287 40.716 12.252 78.558 1.00 34.55 B ATOM 2030 CC ASN 287 40.716 12.252 78.558 1.00 34.55 B ATOM 2030 CC ASN 287 40.716 10.252 79.391 1.00 33.55 B ATOM 2030 CC ASN 287 40.716 10.252 77.315 1.00 42.06 B ATOM 2030 CC ASN 287 40.716 10.252 77.315 1.00 42.06 B ATOM 2030 CC ASN 289 36.731 9.752 77.315 1.00 42.06 B ATOM 2030 CC ASN 289 36.731 9.752 77.315 1.00 9.765 B ATOM 2044 N ASN 289 36.939 9.752 77.332 1.00 9.765 B ATOM 2045 CA ASN 289 36.731 9.752 77.3											
25 ATOM 2009 C SER 269 41.546 2.678 69.941 1.00 26.49 B ATOM 2010 O SER 269 41.227 1.969 70.903 1.00 27.04 B ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 27.04 B ATOM 2012 CA GLU 270 42.775 3.171 69.781 1.00 27.04 B ATOM 2012 CA GLU 270 45.848 2.887 70.743 1.00 32.95 B ATOM 2013 CB GLU 270 45.234 3.432 70.7210 1.00 32.65 B ATOM 2015 CD GLU 270 45.848 70.193 1.00 30.27 B ATOM 2015 CD GLU 270 44.822 5.656 68.963 1.00 30.89 B ATOM 2016 OEI GLU 270 44.825 5.656 68.963 1.00 30.89 B ATOM 2017 OE2 GLU 270 44.815 4.961 68.052 1.00 30.89 B ATOM 2017 OE2 GLU 270 44.315 4.961 68.052 1.00 28.80 B ATOM 2019 O GLU 270 43.360 4.681 72.277 1.00 32.65 B ATOM 2019 O GLU 270 43.350 3.472 72.129 1.00 36.87 B ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2020 CB ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2022 CB ASN 271 42.196 2.131 73.222 1.00 43.15 B ATOM 2023 CG ASN 271 40.232 1.109 74.621 1.00 43.15 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.35 B ATOM 2020 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 43.55 B ATOM 2033 CB ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 43.95 B ATOM 2030 CB ASN 287 40.911 11.016 77.897 1.00 42.06 B ATOM 2030 CB ASN 289 36.731 9.794 77.424 1.00 36.66 B ATOM 2030 CB ASN 289 36.731 9.794 77.4											
ATOM 2011 N GLU 270 42.775 3.171 69.781 1.00 29.47 B ATOM 2012 CA GLU 270 45.848 2.887 70.210 1.00 32.95 B ATOM 2014 CG GLU 270 45.234 3.432 70.210 1.00 32.95 B ATOM 2015 CD GLU 270 45.234 3.432 70.210 1.00 32.65 B ATOM 2015 CD GLU 270 45.868 70.193 1.00 30.27 B ATOM 2016 OEI GLU 270 44.822 5.656 68.963 1.00 30.89 B ATOM 2017 OE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2018 C GLU 270 44.315 4.961 68.052 1.00 28.80 B ATOM 2019 O GLU 270 43.360 3.472 72.129 1.00 36.87 B ATOM 2019 O GLU 270 43.360 3.472 72.129 1.00 36.87 B ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CB ASN 271 42.196 2.131 75.222 1.00 43.15 B ATOM 2023 CG ASN 271 40.232 3.362 74.515 1.00 42.68 B ATOM 2024 OD1 ASN 271 40.230 3.337 74.621 1.00 43.15 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2027 O ASN 271 44.528 3.093 75.331 1.00 43.95 B ATOM 2027 O ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.518 1.864 79.666 1.00 44.94 B ATOM 2031 CG ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2032 OD1 ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2033 CB ASN 287 40.716 12.252 78.558 1.00 44.94 B ATOM 2030 CB ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2031 CG ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2031 CG ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2032 OD1 ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2033 CB ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2034 C ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2035 O ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2036 N ILE 288 38.711 0.914 77.995 1.00 42.06 B ATOM 2037 CA ILE 288 38.37.110 9.146 78.479 1.00 36.62 B ATOM 2036 N ILE 288 37.911 8.154 79.325 1.00 38.35 B ATOM 2036 C ASN 289 36.731 9.266 79.390 1.00 37.65 B ATOM 2040 C ILE 288 37.911 8.154 79.325 1.00 38.35 B ATOM 2040 C ILE 288 36.763 11.29.504 74.459 1.00 36.62 B ATOM 2045 C ASN 289 36.731 9.052 72.954 1.00	25										
ATOM 2012 CA GLU 270 43.848 2.887 70.743 1.00 32.95 B ATOM 2013 CB GLU 270 45.234 3.432 70.210 1.00 32.65 B ATOM 2015 CD GLU 270 45.405 4.968 70.193 1.00 30.27 B ATOM 2016 OEI GLU 270 44.879 6.968 68.911 1.00 32.19 B ATOM 2017 OEZ GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2018 C GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2019 C GLU 270 43.560 3.472 72.129 1.00 36.87 B ATOM 2019 O GLU 270 43.560 3.472 72.129 1.00 36.87 B ATOM 2019 O GLU 270 43.380 4.681 72.277 1.00 39.21 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CG ASN 271 40.328 3.062 74.515 1.00 42.68 B ATOM 2023 CG ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2024 ODI ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.359 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.359 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.359 B ATOM 2027 O ASN 271 40.232 1.109 74.210 1.00 43.359 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 41.518 11.864 79.666 1.00 44.94 B ATOM 2033 CB ASN 287 41.518 11.864 79.666 1.00 44.94 B ATOM 2033 CB ASN 287 41.518 11.864 79.666 1.00 44.94 B ATOM 2033 CB ASN 287 41.518 11.864 79.666 1.00 51.76 B ATOM 2035 O ASN 287 40.91 11.016 77.476 1.00 51.76 B ATOM 2035 O ASN 287 40.91 11.016 77.476 1.00 51.76 B ATOM 2035 O ASN 287 40.91 11.016 77.476 1.00 3											
30											
ATOM 2014 CG GLU 270 45.405 4.968 70.193 1.00 30.27 B ATOM 2015 CD GLU 270 44.822 5.656 68.963 1.00 30.89 B ATOM 2017 OE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2017 OE2 GLU 270 44.879 6.908 68.911 1.00 32.19 B ATOM 2018 C GLU 270 43.560 3.472 72.129 1.00 36.87 B ATOM 2019 O GLU 270 43.560 3.472 72.129 1.00 36.87 B ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CB ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2024 OD1 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.35 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.35 B ATOM 2027 O ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.514 13.086 77.776 1.00 42.02 B ATOM 2031 CG ASN 287 41.514 13.086 77.776 1.00 42.02 B ATOM 2032 OD1 ASN 287 41.514 13.086 77.786 1.00 50.68 B ATOM 2033 CG ASN 287 41.514 13.086 77.795 1.00 42.06 B ATOM 2035 O ASN 287 41.514 13.086 77.795 1.00 42.06 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 CG ASN 287 40.787 10.182 77.315 1.00 37.65 B ATOM 2036 CG ASN 289 36.938 9.558 11.552 78.558 1.00 37.65 B ATOM 2040 CG ASN 289 36.938 9.522 75.											
ATOM 2015 CD GLU 270 44.822 5.656 68.963 1.00 30.89 B ATOM 2016 OEI GLU 270 44.827 6.908 68.911 1.00 32.19 B ATOM 2017 OE2 GLU 270 44.815 4.961 68.052 1.00 32.19 B ATOM 2018 C GLU 270 43.360 4.681 72.277 1.00 39.21 B ATOM 2020 N ASN 271 43.560 3.472 72.129 1.00 36.87 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CB ASN 271 42.196 2.131 75.222 1.00 43.15 B ATOM 2023 CG ASN 271 40.798 2.131 75.222 1.00 43.15 B ATOM 2024 ODI ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2025 ND2 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.35 B ATOM 2026 C ASN 271 44.588 3.095 74.515 1.00 43.35 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2028 N ASN 287 41.588 1.09 75.331 1.00 43.93 B ATOM 2029 CA ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2029 CA ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 46.29 B ATOM 2032 ODI ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2033 ND2 ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2034 C ASN 287 41.514 13.086 77.771 1.00 51.75 B ATOM 2035 O ASN 287 40.791 1.016 78.796 1.00 51.75 B ATOM 2036 N ILE 288 38.791 1.016 78.796 1.00 51.75 B ATOM 2037 CA ILE 288 38.791 1.016 77.897 1.00 42.00 B ATOM 2037 CA ILE 288 37.110 9.146 77.995 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2034 C ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2040 CG1 ILE 288 36.646 10.252 79.390 1.00 36.62 B ATOM 2040 CG1 ILE 288 36.646 10.252 79.390 1.00 37.65 B ATOM 2040 CG1 ILE 288 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2040 CG ILE 288 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.122 9.727 77.1576 1.00 11.737 B ATOM 2040 CG ASN 289 36.122 9.727 77.1576 1.00 17.37 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 19.66 B ATOM 2040 CG ASN 289 36.122 9.728 74.4559 1.00 20.79 B ATOM 2040 CG ASN 289 36.938 9.252	30										
350 ATOM 2017 OE2 GLU 270 43.560 3.472 72.129 1.00 28.80 B ATOM 2018 C GLU 270 43.560 3.472 72.129 1.00 39.21 B ATOM 2020 N ASN 271 43.560 3.472 72.129 1.00 39.21 B ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2022 CB ASN 271 40.238 3.062 74.515 1.00 42.68 B ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2025 ND2 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.230 3.337 74.540 1.00 43.39 B ATOM 2025 ND2 ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2031 CG ASN 287 43.249 14.106 78.796 1.00 50.58 B ATOM 2033 ND2 ASN 287 41.514 13.086 77.476 1.00 50.58 B ATOM 2033 ND2 ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2034 C ASN 287 40.791 15.488 77.774 1.00 51.75 B ATOM 2035 O ASN 287 40.791 15.488 77.774 1.00 51.75 B ATOM 2035 O ASN 287 40.791 15.488 77.774 1.00 51.75 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 36.464 10.252 79.390 1.00 36.68 B ATOM 2040 CG1 ILE 288 35.583 11.252 78.558 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.646 10.252 79.390 1.00 36.68 B ATOM 2040 CG1 ILE 288 36.673 11.356 76.100 1.00 33.55 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.996 1.00 57.16 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.68 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.68 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.28 B ATOM 2040 CG1 ILE 288 36.473 19.052 72.954 1.00 27.16 B ATOM 2045 CA ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289											
35 ATOM 2018 C GLU 270											
ATOM 2019 O GLU 270 43.380 4.681 72.277 1.00 39.21 B ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2022 CB ASN 271 42.196 2.131 75.222 1.00 43.15 B ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 43.15 B ATOM 2024 ODI ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 CC ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.55 B ATOM 2027 O ASN 271 40.232 1.109 74.210 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.55 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CG ASN 287 41.514 13.086 77.476 1.00 45.22 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 45.22 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2032 ODI ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2033 ND2 ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2037 CA LLE 288 38.711 10.914 77.995 1.00 42.90 B ATOM 2036 N LLE 288 38.711 10.914 77.995 1.00 42.90 B ATOM 2037 CA LLE 288 38.791 10.914 77.995 1.00 42.90 B ATOM 2039 CG2 LLE 288 37.911 8.154 79.252 79.390 1.00 36.62 B ATOM 2040 CG1 LLE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2040 CG1 LLE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2040 CG1 LLE 288 36.731 9.052 72.954 1.00 20.20.20 B ATOM 2040 CG1 LLE 288 36.731 9.052 72.954 1.00 20.20.20 B ATOM 2040 CG1 LLE 288 36.73											
ATOM 2020 N ASN 271 43.503 2.613 73.143 1.00 40.27 B ATOM 2021 CA ASN 271 42.196 2.131 75.222 1.00 43.15 B ATOM 2022 CB ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2023 CG ASN 271 40.230 3.337 74.540 1.00 45.39 B ATOM 2024 OD1 ASN 271 40.230 3.337 74.540 1.00 45.39 B ATOM 2025 ND2 ASN 271 40.230 3.337 74.540 1.00 43.39 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2026 C ASN 271 45.503 2.746 74.833 1.00 43.55 B ATOM 2026 C ASN 271 45.503 2.746 74.833 1.00 43.55 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 41.514 13.086 77.746 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 40.911 15.488 77.774 1.00 51.76 B ATOM 2034 C ASN 287 40.91 11.016 77.897 1.00 51.76 B ATOM 2035 O ASN 287 40.91 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.91 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.91 11.016 77.897 1.00 42.90 B ATOM 2035 CA ILE 288 38.034 9.794 77.315 1.00 42.90 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 35.583 11.252 78.657 1.00 36.68 B ATOM 2040 CG1 ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2040 CG1 ILE 288 35.636 11.356 76.100 1.00 34.53 B ATOM 2040 CG1 ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2040 CG1 ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2040 CG1 ILE 288 36.731 9.052 72.954 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.731 9.052 72.954 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.731 9.052 72.954 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.938 9.252 75.345 1.00 37.65 B ATOM 2040 CG1 ILE 288 36.938 9.252 75.345 1.00 37.65 B ATOM 2040 CG1 ILE 288 36.938 9.721 77.357 1.00 19.66 B ATOM 2040 CG1 ILE 288 36.938 9.721 77.542 1.00 19.57 B ATOM 2050 C ASN 289 36.939 9	35										
ATOM 2021 CR ASN 271 43.238 3.062 74.515 1.00 42.68 B ATOM 2022 CB ASN 271 40.798 2.244 74.515 1.00 43.15 B ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2024 OD1 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2026 C ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.39 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2027 O ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2020 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 41.514 13.086 77.747 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2034 C ASN 287 40.991 11.016 77.795 1.00 42.90 B ATOM 2035 O ASN 287 40.991 11.016 77.795 1.00 42.90 B ATOM 2035 O ASN 287 40.991 11.016 77.795 1.00 42.90 B ATOM 2036 N ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2039 CG2 ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.110 9.146 78.479 1.00 33.65 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 33.35 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 33.55 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 33.55 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 33.55 B ATOM 2040 CG ASN 289 36.132 9.552 75.342 1.00 33.35 B ATOM 2040 CG ASN 289 36.122 9.564 74.199 1.00 33.55 B ATOM 2047 CG ASN 289 36.132 9.552 75.342 1.00 33.55 B ATOM 2047 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2047 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2049 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.132 9.552 75.342 1.00 23.25 B ATOM 2040 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.132 9.554 74.170 1.00 19.66 B ATOM 2050 C ASN 289 36.573 9.522 75.342 1.00 27.16 B ATOM 2050 C ASN 289 36.593 9.522 75.342	55										
40 ATOM 2023 CG ASN 271 40.798 2.244 74.621 1.00 45.39 B ATOM 2025 ND2 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.55 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2033 ND2 ASN 287 41.514 13.086 77.7476 1.00 42.99 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.76 B ATOM 2034 C ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.371 10.914 77.995 1.00 40.12 B ATOM 2038 CB ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2040 CG1 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 37.183 10.250 76.230 1.00 33.35 B ATOM 2040 CG1 ILE 288 37.183 10.250 76.230 1.00 33.35 B ATOM 2040 CG ILE 288 37.183 10.250 76.230 1.00 33.35 B ATOM 2040 CG ILE 288 37.183 10.250 76.230 1.00 33.35 B ATOM 2040 CG ILE 288 37.183 10.250 76.230 1.00 33.35 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 ND2 ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 34.866 9.737 71.576 1.00 119.29 B ATOM 2050 C ASN 289 34.866 9.737 71.576 1.00 119.29 B ATOM 2050 C ASN 289 34.											
40 ATOM 2024 OD1 ASN 271 40.230 3.337 74.540 1.00 46.39 B ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2028 N ASN 287 40.716 12.252 78.558 1.00 44.94 B ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 44.94 B ATOM 2030 CB ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2031 CG ASN 287 41.514 13.086 77.476 1.00 50.68 B ATOM 2032 OD1 ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.91 15.488 77.774 1.00 51.76 B ATOM 2034 C ASN 287 40.91 1.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2038 CB ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2038 CB ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2040 CG1 ILE 288 35.583 11.252 78.657 1.00 36.62 B ATOM 2040 CG1 ILE 288 35.583 11.252 78.657 1.00 34.53 B ATOM 2041 CD1 ILE 288 36.763 11.252 78.657 1.00 36.28 B ATOM 2040 CG ILE 288 37.183 10.200 76.230 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.763 19.052 72.954 1.00 20.82 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2047 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG1 ILE 288 37.183 10.200 76.230 1.00 34.53 B ATOM 2045 CA ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG1 ILE 288 36.763 19.052 72.954 1.00 20.79 B ATOM 2040 CG1 ILE 288 36.763 19.052 72.954 1.00 20.79 B ATOM 2040 CG1 ILE 288 36.763 19.052 72.954 1.00 20.79 B ATOM 2050 C ASN 289 34.553 7.735 74.170 1.00 19.25 B ATOM 2050 C ASN 289 34.553 7.735 74.170 1.00 19.26 B ATOM 2055 CG GLN 290 31											
ATOM 2025 ND2 ASN 271 40.232 1.109 74.210 1.00 43.39 B ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.55 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2033 ND2 ASN 287 40.91 11.016 77.897 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.182 77.315 1.00 42.06 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2030 CG ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 36.62 B ATOM 2040 CG1 ILE 288 36.664 10.252 79.390 1.00 36.64 B ATOM 2040 CG1 ILE 288 37.110 9.146 78.479 1.00 36.62 B ATOM 2040 CG1 ILE 288 36.664 10.252 79.390 1.00 36.64 B ATOM 2040 CG1 ILE 288 36.664 10.252 79.390 1.00 36.64 B ATOM 2040 CG1 ILE 288 36.938 9.252 75.342 1.00 34.53 B ATOM 2040 CG ILE 288 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2046 CB ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2047 CG ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CB ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CB ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2050 C ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2050 C ASN 289 36.938 9.252 75.342 1.00 27.95 B ATOM 2050 C ASN 289 36.938 9.252 75.342 1.00 19.85 B ATOM 2050 C ASN 289 36.938 9.252 75.342 1.00 19.85 B ATOM 2050 C ASN 289 36.938 9.252 75.342 1.00 19.85 B ATOM 2050 C ASN 289 36.938 9.252 75.3	40										
ATOM 2026 C ASN 271 44.528 3.093 75.331 1.00 43.55 B ATOM 2027 O ASN 271 45.603 2.746 74.833 1.00 43.93 B ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 ODI ASN 287 42.261 14.276 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.514 13.086 77.774 1.00 50.68 B ATOM 2032 ODI ASN 287 40.091 11.016 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.877 10.182 77.315 1.00 42.06 B ATOM 2035 O ASN 287 40.877 10.182 77.315 1.00 42.06 B ATOM 2035 O ASN 287 40.877 10.182 77.355 1.00 42.06 B ATOM 2035 CB ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2039 CG2 ILE 288 37.110 9.146 78.479 1.00 38.70 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 35.583 11.252 79.390 1.00 36.64 B ATOM 2040 CG1 ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2044 N ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2044 N ASN 289 36.132 9.552 75.342 1.00 27.16 B ATOM 2044 N ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.192 9.522 75.342 1.00 27.16 B ATOM 2049 ND2 ASN 289 36.192 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 34.866 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.663 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.563 9.694 75.042 1.00 19.57 B ATOM 2050 C ASN 289 34.563 9.694 75.042 1.00 19.57 B ATOM 2050 C ASN 289 34.563 9.694 75.042 1.00 19.57 B ATOM 2050 C ASN 289 34.563 9.694 75.042 1.00 19.57 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.265 8.891 77	40										
ATOM 2028 N ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2029 CA ASN 287 41.588 11.864 79.666 1.00 44.94 B ATOM 2030 CB ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 ODI ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.76 B ATOM 2033 ND2 ASN 287 40.091 11.016 78.796 1.00 51.75 B ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 35.583 11.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 79.390 1.00 36.64 B ATOM 2042 C ILE 288 35.831 10.200 76.230 1.00 33.35 B ATOM 2040 CG ILE 288 36.713 10.356 76.100 1.00 34.53 B ATOM 2040 CG ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2045 CA ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2040 CG ASN 289 36.938 9.252 75.5342 1.00 20.82 B ATOM 2047 CG ASN 289 36.938 9.252 75.537 1.00 36.58 B ATOM 2048 ODI ASN 289 36.938 9.252 75.537 1.00 36.58 B ATOM 2045 CA ASN 289 36.938 9.252 75.537 1.00 19.66 B ATOM 2047 CG ASN 289 36.938 9.252 75.537 1.00 19.85 B ATOM 2045 CA ASN 289 36.938 9.252 75.537 1.00 19.56 B ATOM 2045 CA ASN 289 36.938 9.252 75.537 1.00 19.85 B ATOM 2045 CG ASN 289 36.938 9.252 75.537 1.00 19.56 B ATOM 2045 CG ASN 289 36.938 9.252 75.537 1.00 19.56 B ATOM 2045 CB ASN 289 36.938 9.252 75.537 1.00 19.56 B ATOM 2045 CB ASN 289 36.938 9.252 75.537 1.00 19.56 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.278 9.942 76.312 1.00 20.79 B											
45 ATOM 2029 CA ASN 287 40.716 12.252 78.558 1.00 45.22 B ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 ODI ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 40.091 11.016 78.796 1.00 51.75 B ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.911 8.154 79.325 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 37.83 10.252 79.390 1.00 36.64 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 27.16 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.939 9.252 75.342 1.00 27.16 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2046 CB ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2049 CD ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.866 9.737 71.576 1.00 19.56 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 19.56 B ATOM 2054 CB GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 32.537 9.216 75.379 1.00 19.26 B ATOM 2055 CG GLN 290 32.537 9.216 75.379 1.00 19.26 B ATOM 2055 CG GLN 290 30.265 8.891 77.423 1.00 20.79 B											
ATOM 2030 CB ASN 287 41.514 13.086 77.476 1.00 48.29 B ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2036 N ILE 288 38.771 10.182 77.315 1.00 42.06 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.311 9.052 72.954 1.00 29.82 B ATOM 2047 CG ASN 289 36.122 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2048 OD1 ASN 289 34.866 9.737 71.576 1.00 17.37 B ATOM 2048 OD1 ASN 289 34.866 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2055 CG GLN 290 33.663 9.694 75.042 1.00 19.26 B ATOM 2055 CG GLN 290 33.665 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CD GLN 290 31.678 10.366 75.901 1.00 19.26 B	15										
ATOM 2031 CG ASN 287 42.261 14.276 78.074 1.00 50.68 B ATOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 36.28 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2047 CG ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.866 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.553 7.735 74.170 1.00 19.57 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 19.57 B ATOM 2054 CB GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	43										
TOM 2032 OD1 ASN 287 43.249 14.106 78.796 1.00 51.76 B ATOM 2033 ND2 ASN 287 41.791 15.488 77.774 1.00 51.75 B ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 35.583 11.252 78.657 1.00 38.70 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.64 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.311 9.052 72.954 1.00 20.82 B ATOM 2047 CG ASN 289 36.371 9.052 72.954 1.00 20.82 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.866 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 19.57 B ATOM 2053 CA GLN 290 33.863 9.694 75.042 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 20.79 B											
50 ATOM 2034 C ASN 287 40.091 11.016 77.897 1.00 42.90 B ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CGI ILE 288 36.464 10.252 79.390 1.00 36.28 B ATOM 2041 CDI ILE 288 37.183 10.200 76.230 1											
ATOM 2035 O ASN 287 40.787 10.182 77.315 1.00 42.06 B ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.731 9.052 72.954 1.00 27.16 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 19.57 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B	5 0	MOTA	2033		ASN				77.774	1.00 51.75	В
ATOM 2036 N ILE 288 38.771 10.914 77.995 1.00 40.12 B ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2040 CG1 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 33.863 9.694 75.042 1.00 19.29 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B	50										
ATOM 2037 CA ILE 288 38.034 9.794 77.424 1.00 36.62 B ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.312 9.552 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 20.82 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.29 B ATOM 2054 CB GLN 290 33.863 9.694 75.042 1.00 19.29 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.278 9.942 76.312 1.00 19.65 B											
55 ATOM 2038 CB ILE 288 37.110 9.146 78.479 1.00 37.65 B ATOM 2039 CG2 ILE 288 37.911 8.154 79.325 1.00 38.70 B ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2046 CB ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 19.57 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.29 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.278 9.942 76.312 1.00 19.65 B											
ATOM 2040 CG1 ILE 288 36.464 10.252 79.390 1.00 36.64 B ATOM 2041 CD1 ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 27.16 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2047 CG ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2048 OD1 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.65 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B											
ATOM 2042 C ILE 288 35.583 11.252 78.657 1.00 36.28 B ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 33.863 9.694 75.042 1.00 19.29 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	55										_
ATOM 2042 C ILE 288 37.183 10.200 76.230 1.00 33.35 B ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2049 ND2 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.29 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B											
60 ATOM 2043 O ILE 288 36.763 11.356 76.100 1.00 34.53 B ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.112 9.564 74.199 1.00 20.82 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2055 CG GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B											
60 ATOM 2044 N ASN 289 36.938 9.252 75.342 1.00 27.16 B ATOM 2045 CA ASN 289 36.112 9.564 74.199 1.00 23.25 B ATOM 2046 CB ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2047 CG ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2047 CG ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2051 O ASN 289 34.763 8.912 74.459 1.00<											
ATOM 2046 CB ASN 289 36.731 9.052 72.954 1.00 20.82 B ATOM 2047 CG ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2055 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	60										
ATOM 2048 OD1 ASN 289 36.172 9.721 71.712 1.00 19.85 B ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B				CA	ASN	289				1.00 23.25	В
65 ATOM 2048 OD1 ASN 289 36.929 10.208 70.878 1.00 19.66 B ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B											
65 ATOM 2049 ND2 ASN 289 34.846 9.737 71.576 1.00 17.37 B ATOM 2050 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 <td></td>											
ATOM 2051 C ASN 289 34.763 8.912 74.459 1.00 20.79 B ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	65										
70 ATOM 2051 O ASN 289 34.553 7.735 74.170 1.00 18.65 B ATOM 2052 N GLN 290 33.863 9.694 75.042 1.00 19.57 B ATOM 2053 CA GLN 290 32.537 9.216 75.379 1.00 19.29 B ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							34.553				
70 ATOM 2054 CB GLN 290 31.678 10.366 75.901 1.00 19.26 B ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B											
ATOM 2055 CG GLN 290 30.278 9.942 76.312 1.00 19.65 B ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	70										
ATOM 2056 CD GLN 290 30.265 8.891 77.423 1.00 20.79 B	70										
									77.754	1.00 21.88	

	MOTA	2058	NE.2	GLN	290	31.427	8.621	78.006	1.00 18.18	В
	ATOM	2059	С	GLN	290	31.830	8.538	74.214	1.00 18.80	В
		2060	ŏ		290	31.199	7.502	74.397	1.00 17.47	В
	MOTA			GLN						
~	MOTA	2061	N	SER	291	31.939	9.122	73.021	1.00 18.97	В
5	MOTA	2062	CA	SER	291	31.289	8.565	71.841	1.00 18.84	В
	ATOM	2063	CB	SER	291	31.326	9.565	70.646	1.00 19.15	В
	MOTA	2064	OG	SER	291	30.347	10.593	70.784	1.00 19.00	В
	MOTA	2065	C	SER	291	31.897	7.239	71.420	1.00 19.68	В
					291	31.173	6.323	71.027	1.00 21.26	. В
10	MOTA	2066	0	SER						
10	ATOM	2067	N	LEU	292	33.219	7.131	71.494	1.00 18.43	В
	MOTA	2068	CA	LEU	292	33.872	5.888	71.128	1.00 17.73	В
	MOTA	2069	CB	LEU	292	35.361	6.070	71.140	1.00 15.77	В
	MOTA	2070	CG	LEU	292	36.119	4.969	70.418	1.00 15.31	В
	MOTA	2071		LEU	292	35.703	4.951	68.953	1.00 11.07	В
15										
13	ATOM	2072		LEU	292	37.621	5.213	70.548	1.00 16.30	В
	MOTA	2073	С	LEU	292	33.461	4.827	72.159	1.00 19.37	. В
	MOTA	2074	0	LEU	292	33.107	3.698	71.814	1.00 20.03	В
	ATOM	2075	N	LEU	293	33.504	5.219	73.430	1.00 19.01	В
	ATOM	2076	CA	LEŲ	293	33.137	4.357	74.531	1.00 18.18	В
20	ATOM	2077	CB	LEU	293	33.194	5.140	75.819	1.00 16.50	В
LU										
	MOTA	2078	CG	LEU	293	34.193	4.752	76.903	1.00 18.80	В
	MOTA	2079		LEU	293	35.291	3.824	76.354	1.00 14.59	В
	MOTA	2080	CD2	LEU	293	34.789	6.039	77.485	1.00 18.33	• В
	MOTA	2081	С	LEU	293	31.724	3.828	74.326	1.00 20.79	В
25	ATOM	2082	o	LEU	293	31.446	2.629	74.480	1.00 21.79	В
	ATOM	2083	N	THR	294	30.824	4.730	73.972	1.00 20.82	В
	MOTA	2084	CA	THR		 29.444	4.348	73.785	1.00 21.70	В
	MOTA	2085	CB	THR	294	28.556	5.607	73.770	1.00 21.45	В
	MOTA	2086	OG1	THR	294	28.737	6.305	75.012	1.00 20.05	В
30	MOTA	2087	CG2	THR	294	27.085	5.243	73.638	1.00 23.08	В
	ATOM	2088	С	THR	294	29.245	3.488	72.541	1.00 22.57	В
	ATOM	2089	õ	THR	294	28.410	2.589	72.541	1.00 24.83	В
				LEU				71.492	1.00 22.48	
	ATOM	2090	N		295	30.028	3.726			В
25	MOTA	2091	CA	LEU	295	29.888	2.929	70.278	1.00 20.67	В
35	MOTA	2092	CB	LEU	295	30.896	3.354	69.239	1.00 16.50	В
	MOTA	2093	CG	LEU	295	30.872	2.542	67.933	1.00 15.31	В
	MOTA	2094	CDI	LEU	295	29.480	2.540	67.301	1.00 9.83	В
	MOTA	2095		LEU	295	31.901	3.126	66.996	1.00 13.69	В
40	MOTA	2096	С	LEU	295	30.072	1.453	70.614	1.00 21.75	В
40	MOTA	2097	0	LEU	295	29.261	0.620	70.222	1.00 22.82	В
	MOTA	2098	N	GLY	296	31.141	1.141	71.345	1.00 22.87	В
	MOTA	2099	CA	GLY	296	31.402	-0.230	71.753	1.00 21.35	В
	MOTA	2100	С	GLY	296	30.318	-0.785	72.668	1.00 20.58	В
	ATOM	2101	0	GLY	296	29.960	-1.950	72.566	1.00 22.84	В
45		2102	N		297	29.782	0.034	73.562	1.00 19.00	В
73	ATOM			ARG						
	ATOM	2103	CA	ARG	297	28.735	-0.441	74.462	1.00 18.91	В
	ATOM	2104	CB	ARG	297	28.530	0.539	75.601	1.00 17.91	В
	MOTA	2105	CG	ARG	297	29.645	0.523	76.596	1.00 17.55	В
	ATOM	2106	CD	ARG	297	29.622	1.775	77.433	1.00 21.12	В
50	ATOM	2107	NE	ARG	297	30.783	1.860	78.311	1.00 20.84	В
	MOTA	2108	CZ	ARG	297	31.212	2.987	78.862	1.00 19.95	В
					297	30.567		78.614	1.00 19.89	В
	ATOM	2109		ARG			4.118			
	MOTA	2110		ARG	297	32.274	2.982	79.661	1.00 15.55	В
	ATOM	2111	С	ARG	297	27.419	-0.662	73.733	1.00 18.05	В
55	MOTA	2112	0	ARG	297	26.581	-1.440	74.177	1.00 18.18	В
	MOTA	2113	N	VAL	298	27.235	0.035	72.618	1.00 19.06	В
	ATOM	2114	CA	VAL	298	26.019	-0.106	71.823	1.00 17.97	В
	ATOM	2115	СВ	VAL	298	25.816	1.111	70.885	1.00 15.95	В
					298			69.899		
60	MOTA	2116		VAL		24.691	0.843		1.00 13.08	В
60	ATOM	2117		VAL	298	25.507	2.350	71.710	1.00 14.44	В
	ATOM	2118	С	VAL	298	26.140	-1.377	70.985	1.00 19.67	В
	ATOM	2119	0	VAL	298	25.153	-2.075	70.749	1.00 21.91	В
	ATOM	2120	N	ILE	299	27.356	-1.686	70.544	1.00 19.47	В
	ATOM	2121	CA	ILE	299	27.570	-2.879	69.736	1.00 21.25	B
65										
O)	MOTA	2122	CB	ILE	299	28.973	-2.830	69.068	1.00 21.35	В
	MOTA	2123		ILE	299	29.354	-4.192	68.502	1.00 19.14	В
	MOTA	2124	CG1	ILE	299	28.950	-1.752	67.932	1.00 19.67	В
	ATOM	2125	CD1	ILE	299	30.316	-1.238	67.523	1.00 19.64	В
	ATOM	2126	C	ILE	299	27.399	-4.122	70.610	1.00 22.50	В
70	ATOM	2127	ō	ILE	299	26.774	-5.102	70.206	1.00 21.52	В
, 0										
	MOTA	2128	N	THR	300	27.936	-4.057	71.821	1.00 23.04	В
	ATOM	2129	CA	THR	300	27.827	-5.153	72.763	1.00 23.72	В
	MOTA	2130	CB	THR	300	28.521	-4.787	74.068	1.00 23.18	В

	ATOM	2131	OG1	THR	300	29.923	-4.646	73.811	1.00 21.92	В
	ATOM	2132		THR		28.284	-5.841	75.138	1.00 17.93	В
	MOTA	2133	С	THR		26.353	-5.447	73.020	1.00 27.59	В
_	MOTA	2134	0	THR	300	25.878	-6.563	72.787	1.00 27.46	В
5	MOTA	2135	N	ALA	301	25.626	-4.438	73.480	1.00 29.03	В
-										
	MOTA	2136	CA	ALA	301	24.206	-4.600	73.754	1.00 30.76	В
	MOTA	2137	CB	ALA	301	23.598	-3.262	74.139	1.00 31.16	В
	MOTA	2138	С	ALA	301	23.437	-5.196	72.573	1.00 32.99	В
	ATOM	2139	ō	ALA	301	22.545		72.772	1.00 35.01	
10							-6.017			В
10	MOTA	2140	N	LEU	302	23.770	-4.780	71.351	1.00 34.50	В
	MOTA	2141	CA	LEU	302	23.088	-5.279	70.152	1.00 34.70	В
	MOTA	2142	CB	LEU	302	23.440	-4.425	68.943	1.00 35.01	В
	MOTA	2143	CG	LEU	302	22.840	-2.999	68.895	1.00 35.55	В
	MOTA	2144	CD1	LEU	302	23.474	-2.227	67.759	1.00 36.40	В
15	MOTA	2145	CD2	LEU	302	21.334	-3.063	68.714	1.00 33.89	В
	ATOM	2146	С	LEU	302	23.451	-6.721	69.855	1.00 35.87	B
	MOTA	2147	0	LEU	302	22.590	-7.547	69.549	1.00 36.50	В
	MOTA	2148	N	VAL	303	24.742	-7.008	69.941	1.00 36.97	В
	MOTA	2149	CA	VAL	303	25.271	-8.339	69.691	1.00 36.81	В
20	MOTA	2150	CB	VAL	303	26.818	-8.289	69.707	1.00 36.26	В
20										
	MOTA	2151		VAL	303	27.402	-9.658	69.961	1.00 35.12	В
	MOTA	2152	CG2	VAL	303	27.316	-7.726	68.384	1.00 35.06	В
	MOTA	2153	С	VAL	303	24.757	-9.359	70.711	1.00 38.19	В
	ATOM	2154		VAL	303	24.495	-10.506	70.368	1.00 39.57	
25			0							В
49	MOTA	2155	N	GLU	304	24.597	-8.928	71.957	1.00 39.43	В
	MOTA	2156	CA	GLU	304	24.129	-9.796	73.032	1.00 40.38	В
	ATOM	2157	СВ	GLU	304	24.768	-9.359	74.350	1.00 41.03	В
		2158	CG	GLU	304	26.290				
	MOTA						-9.464	74.347	1.00 42.14	В
~~	MOTA	2159	CD	GLU	304	26.889	-9.210	75.713	1.00 43.89	В
30	MOTA	2160	OE1	GLU	304	28.116	-9.390	75.879	1.00 42.77	В
	MOTA	2161	OF2	GLU	.304	26.127	-8.827	76.625	1.00 45.66	В
	MOTA	2162	С	GLU	304	22.612	-9.817	73.179	1.00 41.20	В
	ATOM	2163	0	GLU.	304	22.071	-10.477	74.062	1.00 39.68	В
	MOTA	2164	N	ARG	305	21.932	-9.088	72.305	1.00 44.11	В
35	MOTA	2165	CA	ARG	305	20.474	-9.004	72.310	1.00 46.91	В
	ATOM	2166	СВ	ARG	305		-10.408	71.997	1.00 48.72	В
	ATOM	2167	CG	ARG	305		-11.222	70.897	1.00 52.86	В
	MOTA	2168	CD	ARG	305	20.686	-10.461	69.579	1.00 56.32	В
	MOTA	2169	NE	ARG	305	21.395	-11.268	68.582	1.00 59.70	В
40	ATOM	2170	CZ	ARG	305	21.970	-10.782	67.483	1.00 61.81	В
. •	ATOM	2171		ARG	305	21.926	-9.479	67.221	1.00 61.95	В
	MOTA	2172		ARG	305		-11.601	66.649	1.00 61.81	В
	MOTA	2173	С	ARG	305	19.890	-8.469	73.620	1.00 47.13	В
	MOTA	2174	0	ARG	305	18.784	-8.840	73.996	1.00 48.14	В
45	MOTA	2175	N	THR	306	20.621	-7.599	74.311	1.00 48.36	В
	MOTA	2176	CA.		306	20.135	-7.027	75.568	1.00 49.45	В
	MOTA	2177	CB	THR	306	21.275	-6.367	76.356	1.00 49.08	В
	MOTA	2178	0G1	THR	306	22.429	-7.214	76.326	1.00 49.36	В
	MOTA	2179		THR	306	20.862	-6.155	77.802	1.00 48.92	В
50									1.00 50.64	
50	MOTA	2180	C	THR	306	19.066	-5.972	75.262		В
	ATOM	2181	0	THR	306	19.275	-5.091	74.428	1.00 51.81	В
	MOTA	2182	N	PRO	307	17.910	-6.044	75.942	1.00 51.76	В
	ATOM	2183	CD	PRO	307	17.651	-6.959	77.068	1.00 52.91	В
	ATOM	2184	CA	PRO	307	16.779		75.761		
55							-5.119		1.00 52.01	В
ככ	MOTA	2185	CB	PRO	307	15.945	-5.358	76.995	1.00 52.53	В
	MOTA	2186	CG	PRO	307	16.158	-6.818	77.257	1.00 53.28	В
	MOTA	2187	С	PRO	307	17.124	-3.638	75.585	1.00 51.42	В
							-2.983			
	MOTA	2188	0	PRO	307	16.624		74.664	1.00 51.33	В
~	MOTA	2189	N	HIS	308	17.973	-3.115	76.466	1.00 49.88	В
60	MOTA	2190	CA	HIS	308	18.359	-1.711	76.410	1.00 47.29	В
	MOTA	2191	СВ	HIS	308	18.432	-1.141	77.832	1.00 50.27	В
	MOTA	2192	CG	HIS	308	18.812	0.306	77.877	1.00 54.50	В
	MOTA	2193	CD2	HIS	308	19.992	0.909	78.158	1.00 55.48	В
	MOTA	2194	ND1	HIS	308	17.931	1.318	77.559	1.00 55.94	В
65	ATOM	2195		HIS	308	18.552	2.482	77.641	1.00 56.20	В
	MOTA	2196		HIS	308	19.804	2.262	78.003	1.00 56.35	В
	MOTA	2197	С	HIS	308	19.685	-1.445	75.690	1.00 43.71	В
	ATOM	2198	0	HIS	308	20.709	-2.061	75.991	1.00 43.17	В
	ATOM	2199	N	VAL	309	19.649	-0.517	74.737	1.00 39.63	В
70										
70	ATOM	2200	CA	VAL	309	20.829	-0.117	73.964	1.00 34.96	В
	MOTA	2201	CB	VAL	309	20.561	-0.206	72.449	1.00 34.96	В
	MOTA	2202	CG1	VAL	309	21.858	0.013	71.675	1.00 34.27	В
	ATOM	2203	CG2		309	19.934	-1.548	72.114	1.00 32.68	В
										_

	MOTA MOTA	2204 2205	С 0	VAL VAL	309 309	21.086 20.237	1.344 2.204	74.336 74.102	1.00 31.77 1.00 30.77	B B
	ATOM	2206	N	PRO	310	22.266	1.642	74.906	1.00 29.55	В
5	ATOM	2207	CD	PRO	310	23.347 22.652	0.670 2.997	75.171 75.335	1.00 27.65 1.00 29.03	B B
,	MOTA MOTA	2208 2209	CA CB	PRO PRO	310 310	23.856	2.732	76.230	1.00 29.20	В
	ATOM	2210	CG	PRO	310	24.518	1.555	75.539	1.00 27.40	B
	MOTA	2211	c	PRO	310	22.949	4.064	74.268	1.00 28.13	В
	MOTA	2212	ŏ	PRO	310	23.960	4.760	74.357	1.00 27.93	В
10	MOTA	2213	N	TYR	311	22.064	4.198	73.284	1.00 27.73	B
	MOTA	2214	CA	TYR	311	22.217	5.175	72.203	1.00 28.46	В
	MOTA	2215	CB	TYR	311	20.949	5.195	71.291	1.00 29.00	В
	MOTA	2216	CG	TYR	311	20.724	3.960	70.450	1.00 32.30	В
15	MOTA	2217		TYR	311	21.600	3.631	69.413	1.00 32.05 1.00 34.37	B B
15	MOTA MOTA	2218 2219		TYR TYR	311 311	21.393 19.627	2.492 3.119	68.628 70.686	1.00 34.37	В
	MOTA	2220		TYR	311	19.411	1.979	69.908	1.00 32.07	В
	MOTA	2221	CZ	TYR	311	20.299	1.669	68.882	1.00 34.42	В
••	MOTA	2222	OH	TYR	311	20.120	0.531	68.122	1.00 35.43	В
20	MOTA	2223	С	TYR	311	22.458	6.611	72.678	1.00 28.67	В
	MOTA	2224	0	TYR	311	23.343	7.296	72.177	1.00 27.07	В
	MOTA	2225	N	ARG	312	21.652	7.059	73.635	1.00 29.15	В
	ATOM	2226	CA	ARG	312	21.716	8.425	74.143	1.00 29.95 1.00 32.31	В
25	ATOM ATOM	2227 2228	CB CG	ARG ARG	312 312	20.481 19.189	8.724 8.626	74.961 74.196	1.00 32.31	B B
	MOTA	2229	CD	ARG	312	18.046	8.529	75.169	1.00 40.81	В
	MOTA	2230	NE	ARG	312	16.862	7.919	74.577	1.00 43.18	В
	MOTA	2231	CZ	ARG	312	15.951	7.251	75.278	1.00 45.73	В
20	MOTA	2232		ARG	312	16.100	7.108	76.597	1.00 44.15	В
30	MOTA	2233		ARG	312	14.888	6.737	74.664	1.00 45.91	В
	ATOM	2234	C	ARG	312	22.926	8.811	74.969	1.00 28.83	В
	MOTA	2235 2236	0	ARG	312	23.104	9.991	75.276 75.340	1.00 29.69 1.00 26.62	B B
	ATOM ATOM	2237	N CA	GLU GLU	313 313	23.755 24.917	7.843 8.160	76.153	1.00 20.02	В
35	ATOM	2238	СВ	GLU	313	25.419	6.929	76.814	1.00 22.37	В
	ATOM	2239	CG	GLU	313	24.550	6.521	77.994	1.00 24.92	В
	ATOM	2240	CD	GLU	313	24.871	5.136	78.554	1.00 26.13	В
	MOTA	2241		GLU	313	26.060	4.823	78.755	1.00 27.91	В
40	MOTA	2242			313	23.926	4.365	78.813	1.00 27.77	В
40	MOTA	2243	C	GLU	313	26.031	8.873	75.403	1.00 21.16	В
	MOTA MOTA	2244 2245	O N	GLU SER	313 314	27.096 25.789	9.122 9.222	75.963 74.144	1.00 21.76 1.00 18.52	B B
	MOTA	2246	CA	SER	314	26.796	9.935	73.375	1.00 10.32	В
	MOTA	2247	СВ	SER	314	27.966	8.992	72.968	1.00 20.10	В
45	MOTA	2248	OG	SER	314	27.731	8.382	71.710	1.00 19.29	В
	MOTA	2249	С	SER	314	26.206	10.583	72.130	1.00 20.60	В
	MOTA	2250	0	SER	314	25.198	10.126	71.597	1.00 19.90	В
	ATOM ATOM	2251	N	LYS	315	26.854	11.654	71.676	1.00 20.92	В
50	ATOM	2252 2253	CA CB	LYS	315 315	26.412 27.264	12.395 13.689	70.504 70.329	1.00 20.48 1.00 20.26	B B
50	MOTA	2254	CG	LYS	315	27.318	14.572	71.556	1.00 19.73	В
	ATOM	2255	CD	LYS	315	25.936	14.893	72.074	1.00 22.19	В
	ATOM	2256	CE	LYS	315	25.984	15.989	73.129	1.00 23.41	В
<i>5 6</i>	ATOM	2257	NZ	LYS	315	26.408	17.293	72.528	1.00 26.09	В
55 ,	ATOM	2258	C	LYS	315	26.513	11.560	69.239	1.00 19.78	В
	ATOM	2259	0	LYS	315	25.626	11.614	68.373	1.00 20.29	В
	ATOM ATOM	2260 2261	N CA	LEU LEU	316 316	27.598 27.808	10.796 9.962	69.130 67.955	1.00 17.65 1.00 17.80	B B
	ATOM	2262	CB	LEU	316	29.209	9.245	68.013	1.00 16.46	В
60	ATOM	2263	CG	LEU	316	29.602	8.339	66.775	1.00 15.01	В
	ATOM	2264	CD1		316	29.683	9.151	65.507	1.00 14.12	В
	ATOM	2265	CD2	LEU	316	30.937	7.695	67.030	1.00 17.53	В
	MOTA	2266	C	LEU	316	26.698	8.926	67.798	1.00 17.14	В
65	MOTA	2267	0	LEU	316	26.060	8.854	66.742	1.00 17.17	В
UJ	ATOM	2268	N	THR	317	26.462	8.137	68.844	1.00 17.69	В
	MOTA MOTA	2269 2270	CB CB	THR THR	317 317	25.439 25.525	7.106 6.124	68.777 69.966	1.00 19.04 1.00 21.44	B B
	ATOM	2271	0G1		317	25.617	6.848	71.198	1.00 21.44	В
	ATOM	2272	CG2		317	26.743	5.206	69.804	1.00 21.41	В
70	ATOM	2273	c	THR	317	24.031	7.659	68.659	1.00 18.09	В
	MOTA	2274	0	THR	317	23.155	6.990	68.130	1.00 17.17	В
	MOTA	2275	N	ARG	318	23.800	8.877	69.134	1.00 19.16	В
	MOTA	2276	CA	ARG	318	22.469	9.460	68.986	1.00 20.49	В

	MOTA	2277	СВ	ARG	318	22.283	10.654	69.927	1.00 22.85	В
	ATOM	2278	CG	ARG	318	22.155	10.218	71.387	1.00 28.27	В
	MOTA	2279	CD	ARG	318	21.942	11.375	72.318	1.00 31.62	В
_	MOTA	2280	NE	ARG	318	20.929	12.277	71.788	1.00 39.60	В
5	MOTA	2281	CZ	ARG	318	20.361	13.261	72.479	1.00 40.99	В
	MOTA	2282	NH1		318	20.703	13.474	73.746	1.00 41.19	В
	MOTA	2283		ARG	318	19.454	14.034	71.894	1.00 41.05	В
	MOTA	2284	C	ARG	318	22.288	9.873	67.525	1.00 20.16	. В
10	MOTA	2285	0	ARG	318	21.237	9.648	66.929	1.00 21.26	В
10	MOTA	2286	N	ILE	319	23.332	10.435	66.932	1.00 18.27	В
	MOTA MOTA	2287 2288	CA CB	ILE	319 319	23.255 24.505	10.843 11.665	65.539 65.132	1.00 18.18	B B
	ATOM	2289		! ILE	319	24.482	11.913	63.619	1.00 17.11	В
	MOTA	2290	CG1		319	24.561	13.006	65.928	1.00 17.11	В
15	MOTA	2291	CD1		319	25.901	13.727	65.838	1.00 14.30	В
	MOTA	2292	C	ILE	319	23.134	9.663	64.550	1.00 18.77	В
	MOTA	2293	0	ILE	319	22.397	9.753	63.569	1.00 16.28	В
	MOTA	2294	N	LEU	320	23.860	8.571	64.808	1.00 18.72	В
20	MOTA	2295	CA	LEU	320	23.874	7.415	63.905	1.00 18.52	В
20	MOTA	2296	CB	LEU	320	25.323	7.003	63.621	1.00 14.27	В
	MOTA	2297	CG	LEU	320	26.321	8.000	63.025	1.00 16.38	В
	MOTA	2298		LEU	320	27.707	7.354	63.017	1.00 13.61	В
	MOTA MOTA	2299 2300	CD2 C	LEU	320 320	25.905 23.113	8.426 6.159	61.605 64.354	1.00 14.32 1.00 21.16	В
25	ATOM	2301	0	LEU	320	23.308	5.087	63.780	1.00 21.10	B B
	ATOM	2302	N	GLN	321	22.249	6.277	65.357	1.00 22.79	В
	ATOM	2303	CA	GLN	321	21.519	5.114	65.848	1.00 25.68	В
	MOTA	2304	CB	GLN	321	20.531	5.524	66.954	1.00 28.52	В
••	MOTA	2305	CG	GLN	321	19.448	6.490	66.535	1.00 32.15	В
30	MOTA	2306	CD	GLN	321	18.539	6.843	67.700	1.00 35.99	В
	MOTA	2307		GLN	321	17.953	5.954	68.332	1.00 33.89	В
	MOTA	2308		GLN	321	18.417	8.144	67.997	1.00 36.73	В
	MOTA	2309	C	GLN	321	20.790	4.254	64.813	1.00 25.53	В
35	MOTA	2310	0	GLN	321	20.625	3.056	65.029	1.00 25.73	В
55	MOTA MOTA	2311 2312	N CA	ASP ASP	322 322	20.353 19.659	4.837	63.701 62.695	1.00 26.46 1.00 28.33	B B
	MOTA	2312	CB	ASP	322	18.913	4.934	61.681	1.00 29.02	В
	MOTA	2314	CG	ASP	322	17.894	4.152	60.847	1.00 29.02	В
	MOTA	2315	OD1		322	17.880	4.308	59.604	1.00 31.51	В
40	ATOM	2316	OD2		322	17.100	3.384	61.434	1.00 29.46	В
	ATOM	2317	c	ASP	322	20.661	3.152	61.959	1.00 29.44	В
	MOTA	2318	0	ASP	322	20.284	2.195	61.280	1.00 29.55	В
	MOTA	2319	N	SER	323	21.943	3.480	62.095	1.00 29.59	В
15	ATOM	2320	CA	SER	323	22.999	2.705	61.458	1.00 28.78	В
45	ATOM	2321	CB	SER	323	24.172	3.594	61.165	1.00 27.31	В
	MOTA	2322	OG	SER	323 323	23.845	4.545	60.178	1.00 26.34	В
	MOTA MOTA	2323 2324	С С	SER SER	323	23.453 24.234	1.519 0.687	62.322 61.875	1.00 29.30 1.00 28.51	B B
	ATOM	2325	N	LEU	324	22.967	1.445	63.558	1.00 20.31	В
50	ATOM	2326	CA	LEU	324	23.338	0.354	64.451	1.00 30.51	В
	MOTA	2327	СВ	LEU	324	24.110	0.893	65.662	1.00 30.62	B
	MOTA	2328	CG	LEU	324	25.577	1.365	65.474	1.00 29.76	В
	MOTA	2329	CD1	LEU	324	25.670	2.412	64.401	1.00 31.76	. в
	MOTA	2330		LEU	324	26.085	1.928	66.775	1.00 28.62	В
55	MOTA	2331	С	LEU	324	22.113	-0.419	64.927	1.00 31.44	В
	MOTA	2332	0	LEU	324	21.611	-0.184	66.026	1.00 32.71	В
	MOTA	2333	N	GLY	325	21.642 20.479	-1.347	64.095	1.00 31.87 1.00 30.03	В
	MOTA MOTA	2334 2335	CA	GLY GLY	325 325	19.190	-2.148 -1.440	64.444 64.082	1.00 30.03	В
60	ATOM	2336	C O	GLY	325	18.160	-1.636	64.727	1.00 29.38	B B
00	MOTA	2337	N	GLY	326	19.253	-0.614	63.042	1.00 29.59	В
	ATOM	2338	CA	GLY	326	18.092	0.139	62.603	1.00 27.99	В
	ATOM	2339	c	GLY	326	17.706	-0.236	61.193	1.00 27.84	В
	MOTA	2340	0	GLY	326	17.896	-1.378	60.811	1.00 28.56	В
65	MOTA	2341	N	ARG	327	17.197	0.719	60.418	1.00 26.60	В
	MOTA	2342	CA	ARG	327	16.763	0.456	59.046	1.00 27.36	В
	MOTA	2343	СВ	ARG	327	15.451	1.234	58.745	1.00 30.55	В
	ATOM	2344	CG	ARG	327	14.534	1.451	59.943	1.00 34.58	В
70	MOTA	2345	CD	ARG	327	13.775	0.198	60.367	1.00 40.44	В
/U	MOTA	2346	NE	ARG	327	12.359	0.271	60.014	1.00 43.41	В
	ATOM	2347	CZ	ARG	327	11.898	0.209	58.768	1.00 47.99	В
	MOTA MOTA	2348 2349	NH1 NH2		327 327	12.741 10.592	0.071 0.285	57.751 58.535	1.00 49.86 1.00 48.98	B B
	A I ON	2747	14172	ANG	261	10.332	0.203		1.00 40.70	ь

PCT/US2003/021145

	MOTA	2350	С	ARG	327	17.796	0.811	57.967	1.00 27.20	В
	ATOM	2351	Ō	ARG	327	17.521	0.680	56.775	1.00 27.07	В
	MOTA	2352	N	THR	328	18.977	1.257	58.379	1.00 26.89	В
_	MOTA	2353	CA	THR	328	20.028	1.646	57.441	1.00 25.49	В
5	MOTA	2354	CB	THR	328	20.870	2.813	58.024	1.00 27.20	В
	ATOM	2355		LTHR	328	20.024	3.944	58.252	1.00 29.46	В
	MOTA	2356		THR	328	21.992	3.210	57.072	1.00 26.15	В
	ATOM	2357	C	THR	328	20.974	0.492	57.125	1.00 24.96	В
10	MOTA	2358	0	THR	328	21.238	-0.346	57.984	1.00 24.98	В
10	MOTA	2359	N	ARG	329	21.465	0.431	55.890	1.00 23.74	В
	ATOM	2360 2361	CA CB	ARG ARG	329 329	22.426 22.551	-0.610 -0.842	55.543 54.014	1.00 24.57 1.00 26.29	B B
	MOTA MOTA	2362	CG	ARG	329	23.421	-2.071	53.721	1.00 20.23	В
	ATOM	2363	CD	ARG	329	24.277	-1.980	52.461	1.00 34.15	В
15	ATOM	2364	NE	ARG	329	23.590	-2.447	51.259	1.00 37.59	В
	ATOM	2365	CZ	ARG	329	24.217	-2.885	50.168	1.00 38.17	В
	ATOM	2366		ARG	329	25.547	-2.923	50.124	1.00 38.35	В
	MOTA	2367	NH2	ARG	329	23.513	-3.284	49.119	1.00 36.37	В
	MOTA	2368	С	ARG	329	23.761	-0.102	56.061	1.00 22.51	В
20	MOTA	2369	0	ARG	329	24.174	1.012	55.741	1.00 21.91	В
	MOTA	2370	N	THR	330	24.431	-0.919	56.856	1.00 21.40	В
	MOTA	2371	CA	THR	330	25.704	-0.529	57.433	1.00 21.18	В
	MOTA	2372	CB	THR	330	25.610	-0.435	58.971	1.00 20.58	В
25	MOTA	2373		THR	330	24.666	0.581	59.317	1.00 22.60	В
25	MOTA	2374		THR	330	26.962	-0.099	59.581	1.00 17.89	В
	MOTA	2375	C	THR	330	26.837	-1.471	57.085	1.00 21.32	В
	MOTA	2376	0	THR	330	26.673	-2.691	57.001	1.00 19.41	В
	MOTA	2377 2378	N	SER	331 331	28.002 29.200	-0.872 -1.602	56.902 56.574	1.00 21.49 1.00 21.39	В
30	MOTA MOTA	2379	CA CB	SER SER	331	29.469	-1.473	55.084	1.00 22.34	B B
50	MOTA	2380	OG	SER	331	30.537	-2.313	54.694	1.00 26.49	В
	ATOM	2381	c	SER	331	30.340	-1.001	57.391	1.00 20.49	В
	ATOM	2382	ō	SER	331	30.418	0.208	57.565	1.00 21.48	В
	ATOM	2383	N	ILE	332	31.213	-1.849	57.911	1.00 18.89	В
35	ATOM	2384	CA	İLE	332	32.341	-1.371	58.695	1.00 15.95	В
	MOTA	2385	CB	ILE	332	32.321	-1.936	60.135	1.00 15.17	В
	MOTA	2386		ILE	332	33.621	-1.568	60.854	1.00 12.52	В
	MOTA	2387		ILE	332	31.091	-1.447	60.882	1.00 11.58	В
40	MOTA	2388		ILE	332	30.932	-2.097	62.247	1.00 7.00	В
40	MOTA	2389	С	ILE	332	33.650	-1.818	58.063	1.00 15.41	В
	ATOM	2390	0	ILE	332 ·	33.802	-2.980	57.687	1.00 12.48	В
	MOTA	2391 2392	N CA	ILE ILE	333 333	34.591	-0.888	57.948	1.00 16.21	В
	ATOM ATOM	2392	CB	ILE	333	35.899 36.310	-1.203 -0.266	57.411 56.273	1.00 16.71 1.00 16.82	B B
45	ATOM	2394		ILE	333	37.616	-0.744	55.675	1.00 15.94	В
••	ATOM	2395		ILE	333	35.242	-0.259	55.169	1.00 16.68	В
	MOTA	2396		ILE	333	35.557	0.705	54.012	1.00 15.18	В
	MOTA	2397	С	ILE	333	36.860	-1.021	58.561	1.00 18.56	В
	ATOM	2398	0	ILE	333	37.074	0.104	59.032	1.00 21.41	В
50	ATOM	2399	N	ALA	334	37.411	-2.137	59.035	1.00 20.14	В
	ATOM	2400	CA	ALA	334	38.360	-2.125	60.147	1.00 19.94	В
	MOTA	2401	CB	ALA	334	38.182	-3.362	61.020	1.00 18.30	В
	MOTA	2402	C	ALA	334	39.756	-2.096	59.550	1.00 20.34	В
55	MOTA	2403	0	ALA	334	40.135	-2.989	58.790	1.00 20.44	В
<i>JJ</i>	ATOM	2404	N	THR	335	40.514	-1.062	59.897 59.369	1.00 19.08	В
	MOTA MOTA	2405 2406	CA	THR THR	335 335	41.853	-0.901 0.584		1.00 19.70	В
	MOTA	2400	CB	THR	335	42.106 41.876	1.409	59.008 60.157	1.00 21.15 1.00 24.31	B B
	ATOM	2408		THR	335	41.158	1.026	57.905	1.00 24.31	В
60	ATOM	2409	C	THR	335	42.907	-1.403	60.351	1.00 19.67	В
•	ATOM	2410	ō	THR	335	42.796	-1.190	61.559	1.00 20.81	В
•	MOTA	2411	N	ILE	336	43.924	-2.085	59.833	1.00 19.06	В
	ATOM	2412	CA	ILE	336	44.991	-2.618	60.680	1.00 19.16	В
	MOTA	2413	СB	ILE	336	44.845	-4.147	60.882	1.00 18.20	В
65	ATOM	2414	CG2	ILE	336	43.519	-4.470	61.562	1.00 17.20	В
	MOTA	2415	CG1	ILE	336	44.933	-4.857	59.564	1.00 15.56	В
	MOTA	2416		ILE	336	44.926	-6.371	59.697	1.00 16.09	В
	ATOM	2417	C	ILE	336	46.388	-2.343	60.116	1.00 19.85	В
70	MOTA	2418	0	ILE	336	46.547	-1.995	58.945	1.00 20.63	В
70	MOTA	2419	N	SER	337	47.395	-2.487	60.970	1.00 21.82	В
	ATOM	2420	CA	SER	337	48.788	-2.277	60.576	1.00 23.86	В
	ATOM ATOM	2421 2422	CB OG	SER	337 337	49.514	-1.430 -2.165	61.611 62.229	1.00 22.35	B B
	WI OIL	2422	JG	SER	337	50.551	-6.105	06.647	1.00 19.41	Б

	ATOM	2423	С	SER	337	49.507	-3.622	60.458	1.00 26.10	В
	ATOM	2424	ō	SER	337	49.133	-4.597	61.119	1.00 25.43	В
	MOTA	2425	N	PRO	338	50.543	-3.692	59.606	1.00 26.45	В
-	MOTA	2426	CD	PRO	338	50.873	-2.755	58.518	1.00 26.43	В
5	MOTA	2427	CA	PRO	338	51.287	-4.943	59.441	1.00 27.75	В
	MOTA	2428	CB	PRO	338	51.703	-4.893	58.009	1.00 25.91	В
	MOTA	2429	CG	PRO	338	52.043	-3.453	57.835	1.00 26.04	В
	MOTA MOTA	2430 2431	С 0	PRO PRO	338 338	52.493 53.304	-5.016 -5.929	60.366 60.250	1.00 28.99	B B
10	ATOM	2432	N	ALA	339	52.615	-4.057	61.280	1.00 30.27	В
	ATOM	2433	CA	ALA	339	53.765	-4.024	62.184	1.00 31.92	В
	MOTA	2434	СВ	ALA	339	54.076	-2.582	62.598	1.00 32.09	В
	ATOM	2435	C	ALA	339	53.576	-4.884	63.415	1.00 31.91	В
15	MOTA	2436	0	ALA	339	52.483	-4.965	63.959	1.00 34.29	В
15	ATOM	2437	N	SER	340	54.651	-5.525	63.856	1.00 31.24	В
	ATOM ATOM	2438 2439	CA CB	SER SER	340 340	54.580 55.877	-6.374 -7.280	65.030 65.138	1.00 29.08 1.00 29.57	B B
	ATOM	2440	OG	SER	340	57.053	-6.513	65.327	1.00 29.37	В
	ATOM	2441	c	SER	340	54.396	-5.555	66.307	1.00 28.00	В
20	MOTA	2442	ō	SER	340	53.844	-6.046	67.280	1.00 28.20	В
	MOTA	2443	N	LEU	341	54.852	-4.308	66.309	1.00 28.24	В
	MOTA	2444	CA	LEU	341	54.715	-3.471	67.493	1.00 28.05	В
	ATOM	2445	СВ	LEU	341	55.742	-2.306	67.463	1.00 29.43	В
25	MOTA	2446	CG	LEU	341	55.315	-0.861	67.190	1.00 30.31	В
23	MOTA	2447		LEU	341	56.404	0.084	67.690	1.00 28.26 1.00 31.94	В
	MOTA MOTA	2448 2449	CD2	LEU	341 341	55.065 53.290	-0.659 -2.936	65.707 67.647	1.00 31.94	B B
	MOTA	2450	ŏ	LEU	341	52.954	-2.305	68.650	1.00 28.00	В
	MOTA	2451	N	ASN	342	52.450	-3.209	66.656	1.00 28.88	В
30	MOTA	2452	CA	ASN	342	51.060	-2.780	66.690	1.00 29.97	В
	MOTA	2453	CB	ASN	342	50.689	-2.094	65.369	1.00 28.90	В
	MOTA	2454	CG	ASN	342	51.256	-0.680	65.258	1.00 29.29	В
	MOTA	2455		ASN	342	51.568	-0.210	64.161	1.00 27.68	В
35	ATOM	2456		ASN	342	51.373	0.007	66.394	1.00 26.96	В
55	MOTA MOTA	2457 2458	C O	ASN ASN	342 342	50.185 48.958	-4.010 -3.956	66.902 66.765	1.00 31.53 1.00 32.86	B B
	ATOM	2459	N	LEU	343	50.830	-5.118	67.252	1.00 32.86	В
	ATOM	2460	CA	LEU	343	50.143	-6.387	67.474	1.00 30.40	В
	MOTA	2461	CB	LEU	343	51.167	-7.448	67.961	1.00 31.48	В
40	MOTA	2462	CG	LEU	343	50.755	-8.930	68.109	1.00 33.60	В
	MOTA	2463		LEU	343	50.408	-9.217	69.553	1.00 34.09	В
	MOTA	2464		LEU	343	49.599	-9.270	67.168	1.00 31.95	В
	ATOM ATOM	2465 2466	С 0	LEU LEU	343 343	48.945 47.839	-6.325 -6.698	68.422 68.042	1.00 28.19	B B
45	ATOM	2467	N	GLU	344	49.145	-5.858	69.647	1.00 25.33	В
	ATOM	2468	CA -	GLU	344	48.035	-5.787	70.598	1.00 25.82	В
	ATOM	2469	CB	GLU	344	48.537	-5.276	71.962	1.00 27.56	В
	ATOM	2470	CG	.GLU	344	47.438	-4.776	72.879	1.00 33.02	В
50	MOTA	2471	CD	GLU	344	47.884	-4.708	74.329	1.00 36.74	В
50	MOTA	2472		GLU	344	49.011	-4.222	74.583	1.00 36.88	В
	ATOM ATOM	2473 2474	OE2	GLU	344 344	47.104	-5.138	75.217 70.122	1.00 38.52	В
	MOTA	2475	С 0	GLU	344	46.843 45.696	-4.948 -5.357	70.122	1.00 23.12 1.00 22.53	B B
	MOTA	2476	N	GLU	345	47.102	-3.775	69.564	1.00 22.13	В
55	MOTA	2477	CA	GLU	345	46.007	-2.949	69.082	1.00 22.56	В
	MOTA	2478	CB	GLU	345	46.484	-1.487	68.830	1.00 23.16	В
	MOTA	2479	CG	GLU	345	46.722	-0.693	70.108	1.00 23.64	В
	MOTA	2480	CD	GLU	345	45.440	-0.386	70.872	1.00 25.85	В
60	MOTA	2481 2482		GLU	345	45.530	0.135	72.003	1.00 29.18	В
00	MOTA MOTA	2482	C C	GLU	345 345	44.342 45.422	-0.653 -3.566	70.352 67.808	1.00 25.14 1.00 21.03	B B
	MOTA	2484	ò	GLU	345	44.238	-3.398	67.519	1.00 20.99	В
	ATOM	2485	N	THR	346	46.253	-4.274	67.048	1.00 20.57	В
	MOTA	2486	CA	THR	346	45.794	-4.959	65.838	1.00 20.75	B
65	MOTA	2487	СВ	THR	346	46.978	-5.579	65.057	1.00 21.69	В
	MOTA	2488		THR	346	47.743	-4.531	64.460	1.00 23.54	В
	MOTA	2489		THR	346	46.486	-6.540	63.964	1.00 20.78	В
	ATOM	2490	C	THR	346	44.825	-6.070	66.269	1.00 20.06	В
70	MOTA MOTA	2491 2492	O N	THR	346 347	43.824 45.127	-6.323 -6.717	65.603 67.395	1.00 19.82 1.00 19.28	В
, 0	MOTA	2492	N CA	LEU	347	45.127	-6.717 -7.771	67.395	1.00 19.28	B B
	ATOM	2494	CB	LEU	347	44.967	-8.547	69.080	1.00 20.25	В
	ATOM	2495	CG	LEU	347	46.123	-9.517	68.681	1.00 20.74	В
						· ·			-	

	MOTA	2496		LEU			-10.198	69.923	1.00 18.01	В
	MOTA	2497	CD2	LEU	347	45.630	-10.563	67.681	1.00 19.87	В
	MOTA	2498	С	LEU	347	42.950	-7.187	68.426	1.00 20.24	В
	MOTA	2499	0	LEU	347	41.884	-7.735	68.165	1.00 20.79	В
5	MOTA	2500	N	SER	348	43.019	-6.074	69.148	1.00 19.68	В
•	MOTA	2501	CA	SER	348	41.800		69.645	1.00 18.65	В
	MOTA	2502			348	42.123	-4.205	70.337		
			CB	SER					1.00 18.12	В
	MOTA	2503	OG	SER	348	42.924	-4.491	71.458	1.00 23.16	В
10	ATOM	2504	С	SER	348	40.848	-5.161	68.498	1.00 18.64	В
10	MOTA	2505	0	SER	348	39.662	-5.505	68.560	1.00 17.43	В
	MOTA	2506	. N	THR	349	41.377	-4.535	67.447	1.00 18.49	В
	ATOM	2507	CA	THR	349	40.577	-4.195	66.274	1.00 20.04	В
	ATOM	2508	СВ	THR	349	41.440	-3.523	65.189	1.00 21.24	В
15	MOTA	2509		THR	349	41.774	-2.195	65.607	1.00 22.77	В
13	MOTA	2510		THR	349	40.692	-3.471	63.848	1.00 20.74	В
	MOTA	2511	С	THR	349	39.873	-5.402	65.658	1.00 20.94	В
	MOTA	2512	0	THR	349	38.651	-5.399	65.516	1.00 19.02	В
	MOTA	2513	N	LEU	350	40.645	-6.423	65.280	1.00 23.75	В
	MOTA	2514	CA	LEU	350	40.072	-7.632	64.682	1.00 25.37	В
20	MOTA	2515	CB	LEU	350	41.155	-8.728	64.483	1.00 24.15	В
-0										
	MOTA	2516	CG	LEU	350	42.104	-8.768	63.261	1.00 23.69	В
	MOTA	2517		LEU	350	41.548	-7.931	62.146	1.00 24.69	В
	MOTA	2518	CD2	LEU	350	43.476	-8.294	63.652	1.00 25.26	В
~ ~	MOTA	2519	С	LEU	350	38.967	-8.204	65.570	1.00 25.64	В
25	ATOM	2520	0	LEU	350	37.925	-8.651	65.088	1.00 25.79	. В
	ATOM	2521	N	GLU	351	39.215	-8.179	66.873	1.00 26.21	В
	MOTA	2522	CA	GLU	351	38.280	-8.705	67.859	1.00 26.22	
										В
	MOTA	2523	СВ	GLU	351	38.950	-8.729	69.230	1.00 29.30	В
20	MOTA	2524	CG	GLU	351	38.325	-9.722	70.181	1.00 35.95	В
30	MOTA	2525	CD	GLU	351	38.148	-11.081	69.528	1.00 39.86	В
	MOTA	2526	OE1	GLU	351	39.180	-11.726	69.204	1.00 39.55	В
	MOTA	2527	OE2	GLU	351	36.973	-11.484	69.326	1.00 40.87	В
	MOTA	2528	С	GLU	351	36.995	-7.887	67.927	1.00 24.59	В
	ATOM	2529	ŏ	GLU	351	35.886	-8.438	67.987	1.00 24.44	В
35										
55	MOTA	2530	N	TYR	352	37.163	-6.569	67.922	1.00 22.44	В
	MOTA	2531	CA	TYR	352	36.058	-5.627	67.973	1.00 20.05	В
	MOTA	2532	CB	TYR	352	36.638	-4.176	68.166	1.00 20.78	В
	MOTA	2533	CG	TYR	352	35.618	-3.065	68.285	1.00 19.34	В
	MOTA	2534	CD1	TYR	352	34.997	-2.539	67.153	1.00 17.81	В
40	MOTA	2535		TYR	352	34.062	-1.515	67.258	1.00 19.71	В
	MOTA	2536		TYR	352	35.277	-2.535	69.533	1.00 19.30	В
	MOTA	2537		TYR	352	34.339	-1.507	69.649	1.00 17.88	В
	MOTA	2538	CZ	TYR	352	33.737	-1.003	68.508	1.00 19.50	В
4 ~	ATOM	2539	ОН	TYR	352	32.810	0.017	68.602	1.00 23.10	В
45	MOTA	2540	С	TYR	352	35.211	-5.723	66.706	1.00 20.25	В
	MOTA	2541	0	TYR	352	33.989	-5.704	66.776	1.00 20.39	В
	ATOM	2542	N	ALA	353	35.855	-5.851	65.549	1.00 20.55	В
	ATOM	2543	CA	ALA	353	35.122	-5.941	64.289	1.00 23.02	В
50	ATOM	2544	СВ	ALA	353	36.076	-5.711	63.116	1.00 20.71	В
30	ATOM	2545	С	ALA	353	34.374	-7.271	64.109	1.00 25.05	В
	ATOM	2546	0	ALA	353	33.259	-7.299	63.580	1.00 24.67	В
	ATOM	2547	N	HIS	354	34.983	-8.366	64.553	1.00 26.56	В
	MOTA	2548	CA	HIS	354	34.372	-9.682	64.420	1.00 29.08	В
	ATOM	2549	СВ	HIS	354		-10.761	64.917	1.00 30.47	B
55		2550							1.00 31.52	
55	MOTA		CG		354		-12.150	64.547		В
	MOTA	2551	CD2		354		-13.156	65.293	1.00 30.23	В
	MOTA	2552	ND1		354		-12.629	63.255	1.00 32.72	В
	ATOM	2553	CE1	HIS	354	34.539	-13.870	63.222	1.00 32.65	В
	MOTA	2554	NE2	HIS	354	34.175	-14.213	64.445	1.00 32.59	В
60	MOTA	2555	С	HIS	354	33.059	-9.754	65.194	1.00 30.20	В
	ATOM	2556		HIS	354		-10.332	64.722	1.00 30.57	В
						33.044			1.00 31.47	
	ATOM	2557		ARG	355		-9.177	66.390		В
	MOTA	2558		ARG	355	31.825	-9.166	67.182	1.00 33.23	В
CF	MOTA	2559		ARG	355	32.064	-8.504	68.551	1.00 35.96	В
65	MOTA	2560	CG	ARG	355	32.853	-9.364	69.516	1.00 40.08	В
	MOTA	2561	CD	ARG	355	33.214	-8.625	70.797	1.00 43.24	В
	ATOM	2562		ARG	355	32.052	-8.198	71.579	1.00 47.90	В
	MOTA	2563		ARG	355	31.127	-9.016	72.081	1.00 50.90	В
		_						71.881	1.00 50.97	
70	MOTA	2564	NH1		355		-10.329			В
70	MOTA	2565	NH2		355	30.128	-8.521	72.806	1.00 50.14	В
	MOTA	2566		ARG	355	30.770	-8.378	66.413	1.00 32.60	В
	MOTA	2567	0 .	ARG	355	29.619	-8.801	66.321	1.00 32.82	В
	MOTA	2568		ALA	356	31.178	-7.240	65.850	1.00 29.87	В
			•							_

						•				
	MOTA	2569	CA	ALA	356	30.266	6 200	CE 00C	1 00 00 04	_
							-6.389	65.096	1.00 27.94	В
	MOTA	2570	CB	ALA	356	31.025	-5.243	64.467	1.00 28.16	В
	MOTA	2571	С	ALA	356	29.485	-7.137	64.022	1.00 26.92	В
	ATOM	2572					-6.759			
5			0	ALA		28.356		63.698	1.00 24.79	В
3	MOTA	2573	N	LYS	357	30.074	-8.203	63.486	1.00 25.84	В
	MOTA	2574	CA	LYS	357	29.416	-8.982	62.438	1.00 27.17	В
	MOTA	2575	CB	LYS			-10.193	62.040	1.00 26.83	В
	MOTA	2576	CG	LYS	357	31.690	-9.905	61.724	1.00 28.45	В
	MOTA	2577	CD	LYS			-10.857	60.651		
10									1.00 31.56	В
10	MOTA	2578	CE	LY\$	35 7	31.933	-12.305	61.008	1.00 31.36	В
	MOTA	2579	NZ	LYS	357	32.361	-13.190	59.908	1.00 30.37	В
	ATOM	2580	C				-9.483			
				LYS	357	28.036		62.831	1.00 27.51	В
	ATOM	2581	0	LYS	357	27.173	-9.651	61.974	1.00 27.57	В
	MOTA	2582	N	ASN	358	27.829	-9.728	64.121	1.00 28.92	В
15										
13	MOTA	2583	CA	ASN	358		-10.234	64.597	1.00 30.60	В
	MOTA	2584	CB	ASN	358	26.741	-11.024	65.911	1.00 31.34	В
	MOTA	2585	CG	ASN	358		-12.311	65.709	1.00 33.50	
										В
	ATOM	2586	ODI	ASN	358	28.750	-12.292	65.537	1.00 34.98	В .
	MOTA	2587	ND2	ASN	358	26.823	-13.439	65.716	1.00 33.36	В
20	ATOM	2588		ASN	358					
20			Ç			25.426	-9.207	64.788	1.00 30.89	В
	MOTA	2589	0	ASN	358	24.367	-9.547	65.302	1.00 32.42	В
	ATOM	2590	N	ILE	359	25.642	-7.961	64.381	1.00 31.36	В
	MOTA	2591	CA	ILE	359	24.607	-6.943	64.530	1.00 31.09	В
	ATOM	2592	CB	ILE	359	25.185	-5.505	64.454	1.00 30.83	В
25	ATOM	2593	CC2	ILE	359	24.060	-4.493	64.496	1.00 28.14	В
	ATOM	2594		ILE	359	26.144	-5.246	65.629	1.00 29.88	В
	ATOM	2595	CD1	ILE	359	27.028	-4.031	65.421	1.00 29.12	В
	ATOM	2596	C	ILE	359	23.583	-7.110			
								63.416	1.00 32.70	В
	MOTA	2597	0	ILE	359	23.938	-7.293	62.250	1.00 31.89	В
30	MOTA	2598	N	LEU	360	22.312	-7.045	63.795	1.00 34.93	В
	MOTA	2599	CA	LEU	360	21.195	-7.185	62.869	1.00 37.63	В
	MOTA	2600	CB	LEU	360	20.056	-7.993	63.544	1.00 39.00	В
	ATOM	2601	CG	LEU.	360	18.581	-7.590	63.189	1.00 41.16	В
25	ATOM	2602		LEU	360	18.283	-7.917	61.728	1.00 42.20	В
35	MOTA	2603	CD2	LEU	360	17.599	-8.315	64.118	1.00 41.50	В
	ATOM	2604	С	LEU	360	20.672	-5.814	62.475	1.00 38.26	
										В
	MOTA	2605	0	LEU	360	20.356	-5.003	63.343	1.00 38.46	В
	MOTA	2606	N	ASN	361	20.580	-5.565	61.171	1.00 39.80	В
	ATOM	2607	CA							
40				ASN	361	20.079	-4.295	60.656	1.00 41.76	В
40	ATOM	2608	CB	ASN	361	21.133	-3.606	59.822	1.00 42.66	В
	MOTA	2609	CG	ASN	361	22.088	-2.772	60.657	1.00 44.51	В
	MOTA	2610		ASN	361	22.791	-3.289	61.528	1.00 45.27	В
	MOTA	2611	ND2	ASN	361	22.117	-1.467	60.394	1.00 45.23	В
	MOTA	2612	С	ASN	361	18.825	-4.481	59.812	1.00 44.12	В
45										
43	ATOM	2613	0	ASN	361	18.478	-5.604	59.438	1.00 45.59	В
	MOTA	2614	N	LYS	362	18.160	-3.366	59.514	1.00 45.40	В
	MOTA	2615	CA	LYS	362	16.931	-3.332	58.716	1.00 45.80	
										В
	MOTA	2616	CB	LYS	362	17.226	-3.756	57.260	1.00 45.62	В
	MOTA	2617	CG	LYS	362	17.222	-2.619	56.240	1.00 45.92	В
50	ATOM		CD							
50		2618		LYS	362	15.832	-2.001	56.093	1.00 45.58	В
	MOTA	2619	CE	LYS	362	15.739	-1.104	54.862	1.00 43.34	В
	MOTA	2620	NZ	LYS	362	14.456	-0.345	54.818	1.00 42.49	В
		2621								
	MOTA		С	LYS	362	15.823	-4.213	59.292	1.00 47.03	В
	MOTA	2622	0	LYS	362	15.150	-4.897	58.492	1.00 48.78	В
55	MOTA	2623	OXT	T.VC	362	15.624	-4.198	60.526	1.00 47.26	
55										В
	MOTA	2624	MG	MG	2602	43.330	10.372	60.103	1.00 26.54	
	MOTA	2625	PB	ADP	2600	44.452	7.135	60.400	1.00 17.43	ADP
	ATOM	2626	01B		2600	44.951	7.845			
								61.612	1.00 18.86	ADP
	MOTA	2627	02B	ADP	2600	44.008	5.637	60.747	1.00 22.98	ADP
60	ATOM	2628	03B	ADP	2600	43.299	7.848	59.790	1.00 19.76	
										ADP
	MOTA	2629	PA	ADP	2600	45.880	7.608	57.967	1.00 24.97	ADP
	ATOM	2630	01A	ADP	2600	44.906	7.153	56.989	1.00 27.54	ADP
	ATOM	2631	02A		2600	45.805	9.067			
								58.061	1.00 29.40	ADP
	MOTA	2632	03A	ADP	2600	45.606	6.967	59.369	1.00 22.28	ADP
65	MOTA	2633	05*		2600	47.347	7.314	57.518	1.00 28.31	ADP
	MOTA	2634	C5*		2600	48.422	6.620	58.144	1.00 30.71	ADP
	MOTA	2635	C4*	ADP	2600	49.601	6.747	57.103	1.00 33.98	ADP
	ATOM	2636	04*		2600					
						49.664	5.485	56.457	1.00 33.98	ADP
~ ^	MOTA	2637	C3*	ADP	2600	49.383	7.792	55.972	1.00 32.52	ADP
70	MOTA	2638	03*		2600	50.518	8.657	55.838	1.00 36.94	ADP
. •										
	MOTA	2639	C2*		2600	49.106	7.017	54.682	1.00 35.49	ADP
	MOTA	2640	02*	ADP	2600	49.782	7.556	53.522	1.00 38.23	ADP
	ATOM	2641	C1*		2600	49.483	5.577			
	A. Ori	2041	CI.	AUF	2000	47.403	3.311	55.026	1.00 35.20	ADP

	3.0014	2542	\ 7 0	300	2600	40 437	4 540	E4 (00	1 00 22 70	
	ATOM	2642		ADP	2600	48.437	4.548		1.00 33.78	ADP
	MOTA	2643	C8	ADP	2600	47.512	4.099	55.567	1.00 34.18	ADP
	MOTA	2644	N7	ADP	2600	46.745	3.202	55.003	1.00 36.36	ADP
	ATOM	2645	C5	ADP	2600	47.137	3.045	53.768	1.00 36.94	ADP
5	ATOM	2646	C6	ADP	2600	46.721	2.241	52.700	1.00 37.31	ADP
J										
	MOTA	2647	N6	ADP	2600	45.687	1.403	52.874	1.00 37.72	ADP
	MOTA	2648	N1	ADP	2600	47.381	2.320	51.471	1.00 37.39	ADP
	MOTA	2649	C2	ADP	2600	48.446	3.171	51.268	1.00 37.76	ADP
			N3	ADP	2600	48.859	3.957	52.311	1.00 35.88	ADP
10	MOTA	2650								
10	MOTA	2651	C4	ADP	2600	48.245	3.925	53.548	1.00 35.51	ADP
	MOTA	2652	C1	1-7	1	37.929	17.272	54.077	1.00 38.43	1-7
	MOTA	2653	C2	1-7	1	38.932	17.045	53.074	1.00 38.52	1-7
	ATOM	2654	C3	1-7	1	38.735	15.932	52.163	1.00 39.96	1-7
1.5	MOTA	2655	C4	1-7	1	37.528	15.091	52.280	1.00 39.17	1-7
15	ATOM	2656	C5	1-7	1	36.503	15.314	53.268	1.00 37.92	1-7
	MOTA	2657	C6	1-7	1	36.737	16.421	54.166	1.00 39.95	. 1-7
	ATOM	2658		1-7	1	39.781	15.680	51.154	1.00 38.83	1-7
	MOTA	2659	N12		1	40.860	16.465	50.816	1.00 41.41	1-7
	MOTA	2660	N13	1-7	1	41.632	15.978	49.912	1.00 42.37	1-7
20	MOTA	2661	C14	1-7	1	41.128	14.690	49.355	1.00 40.44	1-7
	ATOM	2662		1-7	ī	40.183	14.416	50.455	1.00 39.39	1-7
	MOTA	2663		1-7	1	41.056	14.226	47.951	1.00 36.95	1-7
	MOTA	2664	C20	1-7	1	42.809	16.554	49.520	1.00 43.23	1-7
	ATOM	2665	C21	1-7	1	43.706	15.596	48.761	1.00 42.51	1-7
25	ATOM	2666		1-7	ī	43.145	17.720	49.767	1.00 44.94	1-7
25										
	ATOM	2667		1-7	1	40.067	14.828	47.075	1.00 35.46	1-7
	MOTA	2668	C27	1-7	1	40.008	14.513	45.661	1.00 35.09	1-7
	ATOM	2669	C28	1-7	1	40.989	13.573	45.157	1.00 34.04	1-7
	ATOM	2670		1-7	1	41.984	12.977	46.048	1.00 34.13	1-7
30										
30	ATOM	2671		1-7	1	42.012	13.263	47.467	1.00 34.81	1-7
	ATOM	2672	CL35	1-7	1	37.356	13.776	51.201	1.00 40.06	1-7
	ATOM	2673	036	1-7	1	42.983	12.166	45.535	1.00 32.08	1-7
	ATOM	2674	0	НОН	_2	38.525	10.810	62.766	1.00 2.98	s
25	MOTA	2675	0	нон	3	23.222	11.589	60.100	1.00 22.29	S
35	ATOM	2676	0	HOH	4	41.960	12.208	60.870	1.00 9.69	S
	ATOM	2677	0	нон	5	50.029	-4.994	63.682	1.00 18.21	s
	ATOM	2678	ō	нон	8	28.413	21.060	56.800	1.00 20.56	Š
										5
	MOTA	2679	0	нон	9	31.397	6.826	80.114	1.00 18.48	S
••	MOTA	2680	0	HOH	10	38.337	3.375	65.490	1.00 21.12	S
40	ATOM	2681	0	HOH	13	45.628	22.010	69.140	1.00 9.64	S
	ATOM	2682	ō	нон	14	48.257	14.330	41.733	1.00 18.62	S
										s
	MOTA	2683	0	нон	15	41.014	5.558	71.890	1.00 28.07	
	ATOM	2684	0	нон	16	27.936	20.868	70.581	1.00 22.56	S
	ATOM	2685	0	HOH	17	43.663	-1.056	64.226	1.00 13.66	s
45	ATOM	2686	0	нон	18	43.194	8.354	64.240	1.00 19.73	s
	ATOM	2687	ó	нон	20	54.924	6.098	49.933	1.00 32.18	Š
										3
	ATOM	2688	0	нон	22	31.350	4.322	82.668	1.00 37.14	S
	ATOM	2689	0	HOH	27	45.521	-1.603	51.520	1.00 20.22	s
	ATOM	2690	0	HOH	28	53.208	11.559	41.772	1.00 42.11	S
50	ATOM	2691	ō	нон	31	27.994	6.504	79.871	1.00 18.94	s
50										3
	MOTA	2692	0	нон	33	49.291	-7.879	50.486	1.00 35.78	S
	MOTA	2693	0	нон	34	18.468	12.203	33.372	1.00 19.62	S
	ATOM	2694	0	нон	35	53.496	-17.951	61.642	1.00 35.98	S
	ATOM	2695	Ó	нон	36	45.680	3.185	45.465	1.00 19.30	s
55			-							
55	ATOM	2696	0	нон	38	42.176	-0.846	72.113	1.00 14.70	S
	ATOM	2697	0	нон	39	51.304	5.232	60.441	1.00 24.96	s
	ATOM	2698	0	HOH	40	34.806	13.087	70.806	1.00 32.37	S
	MOTA	2699	0	нон	41	19.156	14.294	56.441	1.00 28.63	s
60	MOTA	2700	0	нон	46	44.126	0.351	55.876	1.00 28.55	S
60	MOTA	2701	0	нон	47	20.432	7.836	62.530	1.00 16.12	s
	ATOM	2702	0	нон	48	31.643	24.934	63.575	1.00 31.65	s
	ATOM	2703	ō	нон	50	45.290	17.359	64.325	1.00 15.86	5
	MOTA	2704	0	нон	53	41.790	5.942	40.546	1.00 28.37	Ş
	ATOM	2705	0	HOH	54	38.452	4.419	47.214	1.00 14.56	S
65	ATOM	2706	0	нон	55	52.009	4.613	57.096	1.00 35.87	S
	ATOM	2707	ŏ	нон	57	51.429	6.864	39.244	1.00 27.91	s
										3
	ATOM	2708	0	нон	58	22.685	19.136	43.047	1.00 29.36	S
	ATOM	2709	0	HOH	61	39.044	12.519	58.483	1.00 28.94	S
	MOTA	2710	0	нон	67	45.314	-7.264	72.406	1.00 17.23	s
70	MOTA								1.00 23.58	S
, 0		2711	0	нон	69	46.768	-2.040	64.134		
	MOTA	2712	0	нон	71	45.298	18.821	48.751	1.00 30.98	s
	ATOM	2713	0	HOH	79	45.903	11.457	63.308	1.00 21.87	S
	ATOM	2714	ŏ	нон	83	29.506	-5.557	49.394	1.00 32.50	s
			-		~~		2.33.			-

	MOTA	2715	0	нон	86	28.178	4.602	77.098	1.00 29.04	S
	MOTA	2716	0	нон	89	55.210	-16.662	58.167	1.00 35.61	S
	MOTA	2717	0	нон	91	37.135	0.846	70.878	1.00 20.52	S
_	MOTA	2718	0	нон	93	17.438	19.816	52.756	1.00 35.47	S
5	MOTA	2719	0	HOH	94	29.881	3.798	41.417	1.00 42.97	s
	MOTA	2720	0	HOH	98	39.190	3.892	49.946	1.00 13.01	s
	MOTA	2721	0	нон	100	41.671	15.312	56.323	1.00 31.21	s
	MOTA	2722	0	HOH	101	52.876	0.835	68.812	1.00 32.79	s
	MOTA	2723	0	нон	105	37.722	2.513	73.490	1.00 36.02	S
10	MOTA	2724	0	нон	109	27.450	25.927	61.040	1.00 42.15	S
	ATOM	2725	0	HOH	111	39.804	17.000	76.527	1.00 40.03	S
	MOTA	2726	0	нон	117	2.532	6.263	36.270	1.00 22.77	S
	MOTA	2727	0	нон	119	43.756	2.932	43.574	1.00 30.63	S
	MOTA	2728	0	нон	124	41.324	9.248	61.513	1.00 50.60	s
15	MOTA	2729	0	HOH	128	45.349	21.055	46.092	1.00 34.28	S
	ATOM	2730	0	нон	129	47.480	9.402	61.725	1.00 20.53	S
	MOTA	2731	0	нон	130	27.022	14.663	58.188	1.00 21.56	S
	ATOM	2732	0	нон	131	38.009	11.637	34.970	1.00 36.04	s
00	MOTA	2733	0	нон	135	21.462	18.078	39.253	1.00 49.42	S
20	ATOM	2734	0	нон	136	50.206	-0.381	68.977	1.00 28.73	s s
	ATOM	2735	0	нон	142	43.209	19.312	57.176	1.00 32.90	s
	ATOM	2736	0	нон	144	27.420	-13.840	56.585	1.00 40.61	s
	MOTA	2737	0	нон	145	56.085	3.298	61.538	1.00 27.46	S
٥.	MOTA	2738	0	нон	148	45.044	22.181	54.899	1.00 33.67	s
25	MOTA	2739	0	HOH	149	47.168	9.785	68.295	1.00 32.20	S
	MOTA	2740	0	нон	150	35.221	13.107	56.556	1.00 39.71	S
	MOTA	2741	0	нон	156	19.494	13.147	35.697	1.00 37.79	S
	MOTA	2742	0	нон	158	35.348	1.853	79.606	1.00 35.97	S
20	MOTA	2743	0	нон	160	44.086	-3.335	73.582	1.00 28.68	S
30	MOTA	2744	0	нон	163	22.716	28.692	55.723	1.00 38.12	S
	MOTA	2745	0	HOH	164	29.077	26.837	62.948	1.00 37.04	s
	END									

TABLE 3

	REMARI	K refi	ineme	ent re	solutio	n: 50.0 - 2	2.5 A					
_	REMARK					ee_r= 0.30						
5	REMARK	rmsd	bond	ds= 0.	007673	rmsd angle	es= 1.2	3268				
							.4 c= 15	8.8 alph	a≃ 90.	beta=	90. gamma=	90.
				-		7_3pb.pdb"						
	MOTA	1	CB	LYS	17		-12.099			58.09	В	
10	MOTA	2	CG	LYS	17		-12.631	59.411 57.896		60.84	В	
10	MOTA MOTA	3 4	CD	LYS LYS	17 17		-12.482 -13.578			62.11	B B	
	ATOM	5	NZ	LYS	17		-13.550			63.35	В	
	ATOM	6	c	LYS	17	24.262	-9.737	_		54.65	В	
	ATOM	7	0	LYS	17	25.150	-9.723	58.262		53.83	В	
15	MOTA	8	N	LYS	17		-10.341	61.285	1.00	56.25	в .	
	ATOM	9	CA	LYS	17		-10.617			55.82	В	
	ATOM	10	N	ASN	18	23.168	-8.993	58.994		53.57	В	
	MOTA	11 12	CA	ASN	18	22.956 21.634	-8.115	57.857		52.96	В	
20	ATOM ATOM	13	CB	ASN ASN	18 18	20.433	-7.362 -8.197	58.018 57.613		55.67 58.59	В В ·	
20	ATOM	14		ASN	18	20.173	-9.261	58.187		59.98	В	
	ATOM	15		ASN	18	19.688	-7.717	56.621		58.01	В	
	MOTA	16	С	ASN	18	24.093	-7.115	57.635	1.00	51.27	В	
25	MOTA	17	0	ASN	18	24.391	-6.754	56.495		52.49	В	
25	MOTA	18	N	ILE	19	24.723	-6.665	58.716		47.11	В	
	MOTA	19	CA	ILE	19	25.811	-5.698	58.613		42.06	В	
	ATOM	20	CB	ILE	19	26.192	-5.152	60.004		42.31	В	
	MOTA MOTA	21 22		ILE	19 19	26.598 27.343	-6.295 -4.159	60.917 59.881		43.22	B B	
30	ATOM	23		ILE	19	27.762	-3.556	61.193		43.78	В	
	ATOM	24	C	ILE	19	27.054	-6.300	57.958		38.26	В	
	MOTA	25	0	ILE	19	27.480	-7.376	58.312	1.00	38.23	В	
	MOTA	26	N	GLN	20	27.627	-5.577	56.999		34.90	В	
25	MOTA	27	CA	GLN	20	28.820	-6.021	56.279	-	30.15	В	
35	MOTA	28	CB	GLN	20	28.778	-5.516	54.838		27.85	В	
	MOTA	29 30	CG	GLN	20 20	30.034	-5.802 -5.186	54.038 52.643		26.74	В	
	ATOM ATOM	31	CD OF 1	GLN GLN	20	29.987 30.137	-3.984	52.484		27.60 29.30	B B	
	ATOM	32		GLN	20	29.774	-6.017	51.632		26.15	В	
40	ATOM	33	С	GLN	20	30.091	-5.507	56.949		29.28	В	
	MOTA	34	0	GLN	20	30.186	-4.346	57.290	1.00	29.19	В	
	MOTA	35	N	VAL	21	31.075	-6.379	57.127	1.00		В	
	ATOM	36	CA	VAL	21	32.325	-5.975	57.754	1.00		В	
45	ATOM ATOM	37 38	CB	VAL	21	32.448	-6.546	59.180	1.00		B B	
73	ATOM	39		VAL VAL	21 21	33.766 31.274	-6.123 -6.078	59.804 60.033	1.00 1.00		В	
	ATOM	40	c	VAL	21	33.524	-6.439	56.938	1.00		В	
	MOTA	41	0	VAL	21	33.677	-7.608	56.687	1.00		В	
	MOTA	42	N	VAL	22	34.370	-5.496	56.531	1.00	25.16	В	
50	MOTA	43	CA	VAL	22	35.558	-5.818	55.753	1.00		В	
	ATOM	44	CB	VAL	22	35.493	-5.171	54.356	1.00		В	
	ATOM ATOM	45 46		VAL VAL	22 22	34.274 35.428	-5.694 -3.648	53.602 54.488	1.00		B B	
	MOTA	47	C	VAL	22	36.825	-5.350	56.464	1.00		В	
55	ATOM	48	ŏ	VAL	22	36.769	-4.532	57.376	1.00		В	
	ATOM	49	N	VAL	23	37.964	-5.889	56.047	1.00		В	
	MOTA	50	CA	VAL	23 .	39.249	-5.541	56.640	1.00		В	
	ATOM	51	CB	VAL	23	39.875	-6.749	57.398	1.00		В	
60	ATOM	52		VAL	23	41.246	-6.386	57.920	1.00		В	
UU	MOTA MOTA	53		VAL	23	38.980	-7.164	58.552	1.00		В	
	ATOM	54 55	С О	VAL VAL	23 23	40.224 40.231	-5.069 -5.587	55.565 54.453	1.00		B B	
	ATOM	56	N	ARG	24	41.026	-4.063	55.908	1.00		В	
	ATOM	57	CA	ARG	24	42.012	-3.508	54.987	1.00		В	
65	ATOM	58	СВ	ARG	24	41.493	-2.221	54.341	1.00		В	
	MOTA	59	CG	ARG	24	42.364	-1.729	53.201	1.00		В	
	ATOM	60	CD	ARG	24	42.064	-0.294	52.784	1.00		В	
	ATOM	61	NE	ARG	24	42.664	0.010	51.487	1.00		В	
70	MOTA	62	CZ	ARG	24	42.479	1.134	50.801	1.00		В	
70	ATOM ATOM	63 64	NH1		24	41.704	2.100 1.275	51.281	1.00		B B	
	MOTA	04	NH2	MKG	24	43.057	1.213	49.615	1.00	10.05	B	

	» mov	65	_	ARG	24	43.304	-3.210	55.736	1.00 27.05	В
	MOTA MOTA	66	С 0	ARG	24	43.313	-2.442	56.712	1.00 27.85	В
	ATOM	67	Ŋ	CYS	25	44.392	-3.820	55.274	1.00 27.55	В
	MOTA	68	CA	CYS	25	45.699	-3.637	55.890	1.00 32.32	В
5	ATOM	69	СВ	CYS	25	46.410	-4.991	56.027	1.00 30.86	В
,	ATOM	70	SG	CYS	25	48.111	-4.890	56.627	1.00 32.54	В
	ATOM	71	C	CYS	25	46.545	-2.696	55.045	1.00 33.84	В
	ATOM	72	õ	CYS	25	46.587	-2.820	53.831	1.00 35.92	В
	ATOM	73	N	ARG	26	47.218	-1.754	55.694	1.00 34.94	В
10	ATOM	74	CA	ARG	26	48.053	-0.807	54.967	1.00 37.11	В
	ATOM	75	СВ	ARG	26	48.130	0.526	55.723	1.00 37.77	В
	MOTA	76	CG	ARG	26	48.388	0.384	57.222	1.00 37.85	В
	ATOM	77	CD	ARG	26	49.107	1.591	57.802	1.00 36.08	В
	ATOM	78	NE	ARG	26	50.554	1.433	57.704	1.00 35.38	В
15	MOTA	79	CZ	ARG	26	51.379	1.390	58.747	1.00 35.56	В
	ATOM	80		ARG	26	50.910	1.502	59.982	1.00 32.33	В
	ATOM	81	NH2	ARG	26	52.677	1.209	58.551	1.00 37.10	В
	MOTA	82	С	ARG	26	49.463	-1.341	54.751	1.00 38.55	В
	ATOM	83	Ō	ARG	26	49.917	-2.224	55.460	1.00 38.07	В
20	ATOM	84	N	PRO	27	50.170	-0.806	53.752	1.00 40.05	В
	MOTA	85	CD	PRO	27	49.674	0.092	52.693	1.00 41.26	В
	ATOM	86	CA	PRO	27	51.536	-1.244	53.467	1.00 42.07	В
	MOTA	87	CB	PRO	27	51.734	-0.805	52.021	1.00 42.46	В
	ATOM	88	CG	PRO	27	50.945	0.468	51.961	1.00 41.54	В
25	ATOM	89	С	PRO	27	52.508	-0.555	54.418	1.00 43.29	В
	ATOM	90	0	PRO	27	52.115	0.329	55.170	1.00 43.49	В
	MOTA	91	N	PHE	28	53.773	-0.968	54.380	1.00 45.76	В
	MOTA	92	CA	PHE	28	54.807	-0.381	55.233	1.00 47.49	В
	MOTA	93	CB	PHE	28	56.045	-1.290	55.308	1.00 46.30	В
30	MOTA	94	CG	PHE	28	55.770	-2.659	55.861	1.00 45.96	В
	MOTA	95	CD1	PHE	28	55.424	-3.709	55.015	1.00 45.49	В
	ATOM	96		PHE	28	55.849	-2.899	57.230	1.00 45.19	В
	ATOM	97		PHE	28	55.162	-4.976	55.526	1.00 44.86	В
25	MOTA	98	CE2		28	55.588	-4.165	57.751	1.00 44.92	В
35	ATOM	99	CZ	PHE	28	55.244	-5.204	56.897	1.00 43.96	В
	ATOM	100	С	PHE	28	55.240	0.974	54.686	1.00 49.68	В
	MOTA	101	О	PHE	28	55.458	1.127	53.484	1.00 50.76	В
	MOTA	102	N	ASN	29	55.369	1.955	55.572	1.00 51.78	В
40	MOTA	103	CA	ASN	29	55.791	3.289	55.164	1.00 53.98	В
40	ATOM	104	CB	ASN	29	55.477	4.303	56.268	1.00 52.37	В
	MOTA	105	CG	ASN	29	55.889	3.818	57.647	1.00 51.95	В
	MOTA	106	OD1		29	57.068	3.614	57.918	1.00 51.68	В
	MOTA	107			29	54.909	3.633	58.526	1.00 50.23	В
45	MOTA	108	C	ASN	29	57.285	3.275	54.841	1.00 56.89	В
43	MOTA	109	0	ASN	29	57.973	2.293	55.111	1.00 57.68	В
	MOTA	110	N	LEU	30	57.779	4.361	54.257	1.00 59.05	В
	MOTA	111	CA	LEU	30	59.185	4.452	53.882	1.00 60.93 1.00 60.81	В
	ATOM	112	CB	LEU	30	59.466	5.837	53.293		В
50	MOTA	113	CG	LEU	30	60.555	5.909	52.218	1.00 61.25 1.00 61.39	В
50	MOTA	114	CD1 CD2		30	60.401	7.199	51.429 52.856	1.00 61.39	B B
	MOTA	115		LEU	30 30	61.935 60.136	5.810 4.167	55.047	1.00 62.80	В
	ATOM	116 117	С О	LEU	30	61.206	3.611	54.852	1.00 63.36	В
	ATOM ATOM	118	N	ALA	31	59.736	4.545	56.257	1.00 64.56	В
55										В
55	MOTA MOTA	119 120	CA	ALA	31 31	60.565 59.999	4.326 5.104	57.440 58.617	1.00 66.24	В
	ATOM	121	CB C	ALA	31	60.671	2.846	57.798	1.00 68.38	В
	MOTA	122	ō	ALA	31	61.757	2.345	58.088	1.00 69.26	В
	ATOM	123		GLU	32	59.537	2.153	57.781	1.00 69.84	В
60	ATOM	124		GLU	32	59.492	0.734	58.107	1.00 03.84	В
00	ATOM	125		GLU	32	58.038	0.734	58.225	1.00 70.67	В
	ATOM	126		GLU	32	57.338	0.752	59.487	1.00 67.99	В
	MOTA	127		GLU	32	55.831	0.607	59.412	1.00 65.98	В
					32	55.174	0.723	60.468	1.00 65.36	В
65	ATOM ATOM	128 129	OE1 OE2		32	55.302	0.723	58.301	1.00 62.48	В
UJ						60.232	-0.143		1.00 02.48	В
	ATOM ATOM	130 131		GLU GLU	32 32	61.090	-0.143	57.097 57.472	1.00 74.92	В
	ATOM	132		ARG	33	59.897	-0.930	55.816	1.00 74.32	В
	ATOM	133		ARG	33	60.550	-0.803	54.779	1.00 78.32	В
70	ATOM	134		ARG	33	59.936	-0.503	53.407	1.00 78.32	В
, 0	ATOM	135		ARG	33	59.972	0.964	53.010	1.00 83.18	В
	ATOM	136		ARG	33	59.329	1.183	51.645	1.00 85.46	В
	MOTA	137		ARG	33	60.032	0.459	50.589	1.00 87.40	В
	011					00.052	0.100	50.505		-

	MOTA	138	CZ	ARG	33	61.269	0.737	50.186	1.00 88.75	В
	MOTA	139	NH1	ARG	33	61.948	1.729	50.747	1.00 89.79	В
	MOTA	140	NH2		33	61.828	0.019	49.221	1.00 89.07	В
_	MOTA	141	С	ARG	33	62.053	-0.536	54.754	1.00 78.80	В
5	MOTA	142	0	ARG	33	62.832	-1.379	54.318	1.00 78.36	В
	MOTA	143	N	LYS	34	62.448	0.644	55.226	1.00 79.39	В
	MOTA	144	CA	LYS	34	63.853	1.029	55.284	1.00 80.19	В
	MOTA	145	CB	LYS	34	63.984	2.543	55.504	1.00 81.11	, В
	ATOM	146	CG	LYS	34	64.392	3.347	54.267	1.00 82.59	. В
10						65.910	3.501	54.147	1.00 83.41	
10	MOTA	147	CD	LYS	34					В
	MOTA	148	CE	LYS	34	66.604	2.186	53.810	1.00 84.19	В
	MOTA	149	NZ	LYS	34	68.089	2.305	53.845	1.00 84.38	В
				LYS	34	64.539	0.285	56.423	1.00 80.45	В
	ATOM	150								
	ATOM	151	0	LYS	34	65.757	0.159	56.448	1.00 81.20	В
15	MOTA	152	N	ALA	35	63.740	-0.209	57.365	1.00 80.19	В
	MOTA	153		ALA	35	64.264	-0.946	58.509	1.00 79.99	· в
	MOTA	154		ALA	35	63.654	-0.405	59.800	1.00 79.19	В
	ATOM	155	С	ALA	35	63.966	-2.441	58.372	1.00 79.54	В
	MOTA	156	0	ALA	35	64.029	-3.181	59.347	1.00 79.52	В
20		157		SER	36	63.650	-2.870	57.150	1.00 79.23	В
20	MOTA									
	MOTA	158	CA	SER	36	63.324	-4.269	56.866	1.00 78.90	В
	MOTA	159	CB	SER	36	64.581	-5.140	56.934	1.00 79.55	В
	MOTA	160		SER	36	65.497	-4.786	55.913	1.00 80.94	В
25	MOTA	161		SER	36	62.291	-4.773	57.863	1.00 77.94	В
25	ATOM	162	0	SER	36	62.621	-5.460	58.826	1.00 78.06	В
	MOTA	163	N	ALA	37	61.033	-4.422	57.620	1.00 76.14	В
							-4.822	58.505		
	ATOM	164		ALA	37	59.952	-		1.00 74.02	В
	MOTA	165	ÇВ	ALA	37	58.862	-3.763	58.496	1.00 74.76	B
	MOTA	166	C	ALA	37	59.370	-6.177	58.128	1.00 72.27	В
30		167		ALA	37	59.282	-6.526	56.956	1.00 71.83	В
50	MOTA									
	MOTA	168	N	HIS	38	58.975	-6.928	59.151	1.00 70.33	В
	ATOM	169	CA	HIS	38	58.388	-8.249	58.981	1.00 67.10	В
	ATOM	170		HIS	38	59.039	-9.236	59.961	1.00 69.95	В
26	ATOM	171		HIS	38	59.177	-8.706	61.358	1.00 72.03	В
35	MOTA	172	CD2	HIS	38	58.589	-9.085	62.518	1.00 72.68	В
	ATOM	173	ND1	HTS	38	60.004	-7.648	61.676	1.00 72.05	В
	MOTA	174	CE1		38	59.919	-7.399	62.971	1.00 72.38	В
	MOTA	175	NE2	HIS	38	59.067	-8.256	63.505	1.00 73.14	В
	ATOM	176	C	HIS	38	56.877	-8.187	59.220	1.00 63.55	В
40						56.426			1.00 63.33	
70	MOTA	177		HIS	38		-7.917	60.335		В
	ATOM	178	N :	SER	39	56.100	-8.432	58.168	1.00 58.67	В
	MOTA	179	CA :	SER	39	54.643	-8.399	58.266	1.00 54.45	В
	ATOM	180		SER	39	54.005	-8.478	56.879	1.00 53.84	В
45	MOTA	181		SER	39	52.595	-8.614	56.976	1.00 49.31	В
45	ATOM	182	C	SER	39	54.081	-9.51 9	59.122	1.00 52.25	В
	MOTA	183	0	SER	39	54.384	-10.686	58.910	1.00 51.84	В
	ATOM	184		ILE	40	53.251	-9.149	60.089	1.00 49.22	В
	ATOM	185	CA :	ILE	40	52.631	-10.122	60.967	1.00 47.52	В
	MOTA	186	CB :	ILE	40	52.679	-9.674	62.444	1.00 45.91	В
50	ATOM	187	CG2	TLE	40	54.115	-9.499	62.881	1.00 44.82	В
-					40	51.915	-8.361	62.622	1.00 45.54	
	ATOM	188	CG1							В
	ATOM	189	CD1	ILE	40	51.580	-8.050	64.066	1.00 46.62	В
	ATOM	190	C :	ILE	40	51.176	-10.316	60.557	1.00 47.28	В
	MOTA	191		ILE	40		-10.994	61.234	1.00 46.90	В
55										
23	MOTA	192		VAL	41	50.798	-9.718	59.433	1.00 47.41	В
	ATOM	193	CA 1	JAV	41	49.430	-9.824	58.939	1.00 48.95	В
	ATOM	194	CB V	VAL	41	48.713	-8.450	58.983	1.00 49.16	В
						47.290			1.00 49.01	
	MOTA	195	CG1 V		41		-8.585	58.467		В
	MOTA	196	CG2 \	VAL	41	48.713	-7.903	60.402	1.00 49.06	В
60	ATOM	197	C /	VAL	41	49.395	-10.347	57.509	1.00 49.67	В
	MOTA	198			41	50.004	-9.777	56.620	1.00 49.95	
				JAL						В
	ATOM	199	N (SLU	42	48.685		57.301	1.00 50.48	В
	ATOM	200	CA (GLU	42	48.575	-12.024	55.969	1.00 51.59	В
•	ATOM	201		GLU	42	49.176		55.935	1.00 52.66	В
65										
U.J	ATOM	202		GLU	42	50.609		56.447	1.00 56.16	В
	ATOM	203	CD C	GLU	42	51.164	-14.931	56.476	1.00 58.24	В
	ATOM	204	OE1		42	50.430		56.899	1.00 57.80	В
	MOTA	205	OE2		42	52.338		56.081	1.00 58.28	В
~	ATOM	206	C C	SLU	42	47.102		55.599	1.00 50.83	В
70	ATOM	207	0 0	SLU	42	46.283	-12.604	56.343	1.00 51.55	В
. •	ATOM	208		CYS	43	46.768		54.453	1.00 49.80	В
	ATOM	209		CYS	43	45.389		53.995	1.00 49.65	В
	ATOM	210	CB C	CYS	43	45.037	-10.087	53.433	1.00 49.93	В
									•	

	MOTA	211	SG	CYS	43	45.019 -8.745 54.661 1.00	40 70 B
	MOTA	212	C	CYS	43	45.140 -12.535 52.931 1.00	
	MOTA	213	0	CYS	43	46.010 -12.833 52.123 1.00	
_	MOTA	214	N	ASP	44	43.939 -13.105 52.954 1.00	
5	ATOM	215	CA	ASP	44	43.534 -14.121 51.992 1.00	
	ATOM	216	CB	ASP	44	43.463 -15.494 52.660 1.00	50.97 B
	MOTA	217	CG	ASP	44	43.589 -16.635 51.666 1.00	52.32 B
	ATOM	218		ASP	44	43.126 -16.483 50.510 1.00	
	MOTA	219		ASP	44	44.147 -17.689 52.048 1.00	
10							
10	MOTA	220	C	ASP	44	42.150 -13.749 51.456 1.00	
•	MOTA	221	0	ASP	44	41.127 -14.147 52.012 1.00	
	MOTA	222	N	PRO	45	42.108 -12.969 50.364 1.00	
	MOTA	223	CD	PRO	45	43.252 -12.517 49.557 1.00	48.19 B
	MOTA	224	CA	PRO	45	40.847 -12.540 49.755 1.00	48.75 B
15	MOTA	225	CB	PRO	45	41.307 -11.680 48.584 1.00	49.00 B
	ATOM	226	CG	PRO	45	42.617 -12.306 48.211 1.00	49.04 B
	ATOM	227	c	PRO	45	39.957 -13.688 49.312 1.00	
	ATOM	228	ŏ	PRO	45		50.55 B
			N				
20	ATOM	229		VAL	46		
20	MOTA	230	CA	VAL	46	39.818 -15.851 48.213 1.00	
	MOTA	231	CB	VAL	46	40.745 -16.853 47.500 1.00	
	MOTA	232		VAL	46	39.957 -18.079 47.077 1.00	49.67 B
	ATOM	233	CG2	VAL	46	41.393 -16.192 46.293 1.00	49.30 B
	ATOM	234	С	VAL	46	39.145 -16.545 49.389 1.00 9	50.88 в
25	MOTA	235	0	VAL	46	37.965 -16.870 49.338 1.00 5	52.16 B
	ATOM	236	N	ARG	47	39.906 -16.761 50.454 1.00	
	MOTA	237	CA	ARG	47	39.369 -17.417 51.635 1.00 4	
	ATOM	238	CB	ARG	47	40.499 -18.074 52.431 1.00 5	
30	ATOM	239	CG	ARG	47	40.025 -19.009 53.535 1.00 5	
30	MOTA	240	CD	ARG	47	39.711 -20.404 52.993 1.00 (
	MOTA	241	NE	ARG	47	40.925 -21.094 52.566 1.00 6	
	MOTA	242	cz	ARG	47	41.887 -21.489 53.395 1.00 (57.31 B
	ATOM	243	NH1	ARG	47	41.770 -21.265 54.699 1.00 6	67.77 B
	MOTA	244	NH2	ARG	47	42.970 -22.093 52.922 1.00 6	57.97 B
35	ATOM	245	С	ARG	47	38.649 -16.396 52.518 1.00 6	
	MOTA	246	ō	ARG	47	37.980 -16.767 53.479 1.00	
	ATOM	247	N	LYS	48	38.789 -15.116 52.167 1.00	
	ATOM	248	CA	LYS	48	38.191 -14.003 52.911 1.00 (
40	MOTA	249	CB	LYS	48	36.660 -14.063 52.861 1.00 4	
40	MOTA	250	CG	LYS	48	36.074 -13.999 51.466 1.00 4	
	MOTA	251	CD	LYS	48	34.566 -14.224 51.491 1.00 4	16.49 B
	MOTA	252	CE	LYS	48	34.011 -14.463 50.088 1.00 4	18.94 B
	ATOM	253	NZ	LYS	48	34.342 -13.358 49.137 1.00 5	51.33 B
	ATOM	254	С	LYS	48	38.649 -14.040 54.364 1.00 3	88.40 B
45	ATOM	255	0	LYS	48	37.879 -13.780 55.271 1.00 3	
	MOTA	256	N	GLU	49	39.918 -14.374 54.573 1.00 3	
	ATOM	257	CA	GLU	49	40.472 -14.451 55.918 1.00 3	
	ATOM	258	CB	GLU	49	40.965 -15.867 56.237 1.00 4	
50	MOTA	259	CG	GLU	49	39.896 -16.940 56.342 1.00 4	
<i>5</i> 0	MOTA	260	CD	GLU	49	40.478 -18.320 56.671 1.00 4	
	ATOM	261	OE1		49	39.706 -19.305 56.666 1.00 5	
	MOTA	262	OE2		49	41.701 -18.419 56.930 1.00 4	19.85 B
	MOTA	263	С	GLU	49	41.643 -13.506 56.111 1.00 3	37.41 B
	MOTA	264	0	GLU	49	42.273 -13.066 55.158 1.00 3	4.84 B
55	MOTA	265	N	VAL	50	41.925 -13.220 57.374 1.00 3	6.48 B
	MOTA	266	CA	VAL	50	43.035 -12.366 57.751 1.00 3	
	MOTA	267	CB	VAL	50	42.539 -10.930 58.146 1.00 3	
	MOTA	268	CG1		50	41.332 -11.008 59.061 1.00 3	
	MOTA	269	CG2		50		
60							
W	MOTA	270	C	VAL	50	43.709 -13.074 58.921 1.00 3	
	MOTA	271	0	VAL	50	43.078 -13.354 59.926 1.00 3	
	MOTA	272	N	SER	51	44.988 -13.399 58.772 1.00 3	7.03 B
	MOTA	273	CA	SER	51	45.702 -14.095 59.835 1.00 3	7.03 B
	MOTA	274	CB	SER	51	46.315 -15.390 59.294 1.00 3	7.38 B
65	MOTA	275	OG	SER	51	46.507 -16.327 60.339 1.00 3	
	MOTA	276	c	SER	51	46.791 -13.217 60.436 1.00 3	·
	ATOM	277	ŏ	SER	51	47.538 -12.567 59.712 1.00 3	
	MOTA	278	N	VAL	52	46.870 -13.207 61.764 1.00 3	_
70	MOTA	279	CA	VAL	52	47.861 -12.398 62.476 1.00 4	
10	ATOM	280	СВ	VAL	52	47.170 -11.380 63.433 1.00 3	
	MOTA	281	CG1		52	48.210 -10.529 64.140 1.00 3	
	MOTA	282	CG2	VAL	52	46.207 -10.507 62.664 1.00 3	9.75 B
	MOTA	283	С	VAL	52	48.814 -13.254 63.307 1.00 4	

	MOTA	284	0	VAL	52	48.383 -14.120 64.059 1.00 42.	26 в
	MOTA	285	N	ARG	53	50.112 -13.001 63.170 1.00 42.	
	MOTA	286	CA	ARG	53	51.115 -13.746 63.922 1.00 44.	63 B
	MOTA	287	СВ	ARG	53	52.435 -13.782 63.156 1.00 44.	21 B
5							
J	MOTA	288	CG	ARG	53	53.621 -14.258 63.976 1.00 45.	18 B
	MOTA	289	CD	ARG	53	54.721 -14.772 63.069 1.00 47.	32 B
	MOTA	290	NE	ARG	53	55.045 -13.815 62.016 1.00 48.	
	ATOM	291	CZ	ARG	53	55.538 ~14.154 60.831 1.00 48.	81 B
	MOTA	292	NH1	ARG	53	55.762 -15.430 60.548 1.00 49.	29 B
10				ARG	53		
10	MOTA	293				55.804 -13.221 59.928 1.00 50.	
	ATOM	294	С	ARG	53	51.333 -13.130 65.298 1.00 46.	43 B
	MOTA	295	0	ARG	53	51.867 -12.030 65.420 1.00 47.	02 B
	ATOM	296	N	THR	54	50.915 -13.855 66.331 1.00 48.	
	MOTA	297	CA	THR	54	51.052 -13.401 67.711 1.00 50.	92 B
15	ATOM	298	CB	THR	54	49.768 -13.683 68.512 1.00 50.	31 B
1.5							
	MOTA	299	OG1	THR	54	49.572 -15.098 68.631 1.00 50.	23 B
	MOTA	300	CG2	THR	54	48.567 -13.078 67.810 1.00 50.	24 B
					54		
	MOTA	301	С	THR		52.211 -14.097 68.412 1.00 53.	
	ATOM	302	0	THR	54	52.551 -13.769 69.538 1.00 53.	13 B
20	ATOM	303	N	GLY	55	52.815 -15.059 67.726 1.00 57.	17 B
	ATOM	304	CA	GLY	55	53.917 -15.805 68.303 1.00 61.	
	ATOM	305	С	GLY	55	55.300 -15.366 67.868 1.00 64.	33 B
	ATOM	306	0	GLY	55	55.566 -14.175 67.715 1.00 65.	
~~	MOTA	307	N	GLY	56	56.181 -16.346 67.672 1.00 66.	22 B
25	ATOM	308	CA	GLY	56	57.548 -16.061 67.272 1.00 68.	09 B
	ATOM	309	С	GLY	56	57.760 -15.914 65.777 1.00 69.	
	MOTA	310	0	GLY	56	56.950 -15.305 65.084 1.00 70.	41 B
	MOTA	311	N	LEU	57	58.860 -16.484 65.288 1.00 71.	01 B
20	ATOM	312	CA	LEU	57	59.220 -16.421 63.873 1.00 70.	
30	MOTA	313	CB	LEU	57	60.702 -16.771 63.704 1.00 71.	42 B
	ATOM	314	CG	LEU	57	61.326 -17.671 64.778 1.00 71.	
	ATOM	315	CDI	LEU	57	60.653 -19.034 64.777 1.00 72.	30 B
	ATOM	316	CD2	LEU	57	62.819 -17.813 64.522 1.00 72.	27 B
	ATOM	317	C	LEU	57	58.366 -17.311 62.973 1.00 70.	
25							
35	MOTA	318	0	LEU	57	57.535 -18.083 63.450 1.00 69.	85 B
	ATOM	319	N	ALA	58	58.589 -17.189 61.667 1.00 69.3	38 B
	MOTA	320	CA	ALA	58	57.852 -17.959 60.669 1.00 68.	14 B
	ATOM	321	CB	ALA	58	58.169 -17.430 59.268 1.00 68.3	25 в
	MOTA	322	С	ALA	58	58.129 -19.462 60.742 1.00 66.	
40							
40	ATOM	323	0	ALA	58	57.262 -20.268 60.433 1.00 66.	54 B
	MOTA	324	N	ASP	59	59.343 -19.825 61.150 1.00 64.4	19 B
	ATOM	325			59	59.743 -21.226 61.270 1.00 62.0	
			CA	ASP			
	ATOM	326	CB	ASP	59	61.183 -21.310 61.798 1.00 62.3	19 B
	MOTA	327	CG	ASP	59	61.589 -22.724 62.197 1.00 61.3	33 B
45							
73	MOTA	328		ASP	59	61.727 -23.594 61.307 1.00 59.1	
	MOTA	329	OD2	ASP	59	61.772 -22.963 63.410 1.00 60.	73 B
	MOTA	330	С	ASP	59	58.801 -21.994 62.201 1.00 61.3	33 B
	MOTA	331	0	ASP	59	58.542 -23.182 62.005 1.00 60.1	31 B
	ATOM	332	N	LYS	60	58.287 -21.302 63.211 1.00 59.0)3 B
50	ATOM	333	CA	LYS	60	57.376 -21.897 64.179 1.00 57.2	
50							
	MOTA	334	CB	LYS	60	58.147 -22.816 65.134 1.00 57.3	88 B
	ATOM	335	CG	LYS	60	57.281 -23.524 66.164 1.00 57.9	92 B
	ATOM	336	CD	LYS	60	58.117 -24.299 67.172 1.00 58.6	
	MOTA	337	CE	LYS	60	57.247 -24.930 68.245 1.00 58.8	36 B
55	ATOM	338	NZ	LYS	60	58.064 -25.535 69.333 1.00 59.9	2 B
	ATOM	339	С	LYS	60	56.710 -20.771 64.968 1.00 55.7	
	ATOM	340	0	LYS	60	57.391 -19.942 65.574 1.00 55.8	35 B
	MOTA	341	N	SER	61	55.381 -20.735 64.953 1.00 52.8	
~ ^	MOTA	342	CA	SER	61	54.655 -19.692 65.666 1.00 50.8	
60	ATOM	343	CB	SER	61	54.863 -18.343 64.967 1.00 50.8	30 B
							_
	MOTA	344	0G	SER	61	54.294 -18.346 63.667 1.00 48.1	
	MOTA	345	С	SER	61	53.158 -19.957 65.796 1.00 50.2	!О В
	ATOM	346	0	SER	61	52.630 -20.909 65.245 1.00 49.5	
<i>(</i>	MOTA	347	N	SER	62	52.493 -19.086 66.547 1.00 49.1	
65	MOTA	348	CA	SER	62	51.055 -19.170 66.752 1.00 48.2	1 B
	ATOM	349	CB	SER	62		
	ATOM	350	OG	SER	62	51.371 -17.993 68.858 1.00 48.3	0 B
	ATOM	351	С	SER	62	50.421 -17.990 66.010 1.00 48.1	
70	MOTA	352	0	SER	62	51.097 -17.016 65.703 1.00 47.1	
70	ATOM	353	N	ARG	63	49.129 -18.085 65.712 1.00 47.1	.3 B
	ATOM	354	CA	ARG	63	48.441 -17.015 64.998 1.00 45.0	
	MOTA	355	CB	ARG	63	48.539 -17.231 63.481 1.00 44.5	1 B
	ATOM	356	CG	ARG	63	49.960 -17.194 62.925 1.00 44.9	
			-		-	-:: :=:: -: -::-	~

	ATOM	357	CD	ARG	63	49.976 -17.466	61.428	1.00 46.63	В
	ATOM	358	NE	ARG	63	49.443 -16.349	60.645	1.00 48.69	В
	ATOM	359	CZ	ARG	63	50.148 -15.285	60.263	1.00 48.66	B
	ATOM	360		ARG	63	51.429 -15.178	60.587	1.00 49.48	В
5	MOTA	361		ARG	63	49.574 -14.329	59.545	1.00 48.53	В
,						46.975 -16.918	65.401	1.00 43.84	В
	MOTA	362	C	ARG	63				
	MOTA	363	0	ARG	63	46.477 -17.726	66.176	1.00 44.06	В
	MOTA	364	N	LYS	64	46.305 -15.902	64.868	1.00 42.24	В
	ATOM	365	CA	LYS	64	44.892 -15.652	65.124	1.00 40.40	В
10	MOTA	366	CB	LYS	64	44.723 -14.434	66.032	1.00 41.92	В
	ATOM	367	CG	LYS	64	45.181 -14.635	67.470	1.00 43.37	В
		368		LYS	64	44.088 -15.261	68.317	1.00 43.81	В
	ATOM		CD						
	MOTA	369	CE	LYS	64	44.446 -15.213	69.794	1.00 45.77	В
1.0	ATOM	370	NZ	LYS	64	43.374 -15.792	70.658	1.00 46.88	В
15	MOTA	371	С	LYS	64	44.257 -15.369	63.771	1.00 39.22	В
	MOTA	372	0	LYS	64	44.631 -14.405	63.102	1.00 39.99	В
	MOTA	373	N	THR	65	43.312 -16.210	63.361	1.00 36.46	В
	ATOM	374	CA	THR	65	42.656 -16.031	62.074	1.00 34.76	В
		375			65	42.745 -17.323	61.212	1.00 35.41	В
20	ATOM		CB	THR					
20	MOTA	376	OG1		65	44.118 -17.692	61.041	1.00 32.86	В
	ATOM	377	CG2	THR	65	42.130 -17.090	59.826	1.00 36.73	В
	ATOM	378	С	THR	65	41.194 -15.638	62.238	1.00 34.16	В
	ATOM	379	0	THR	65	40.477 -16.200	63.070	1.00 35.43	В
	ATOM	380	N	TYR	66	40.764 -14.660	61.448	1.00 30.66	В
25	ATOM	381	CA	TYR	66	39.391 -14.181	61.488	1.00 28.38	В
23		382	CB	TYR	66	39.337 -12.765	62.072	1.00 25.32	В
	ATOM								
	ATOM	383	CC	TYR	66	39.886 -12.652	63.473	1.00 22.38	В
	MOTA	384	CD1		66	41.255 -12.566	63.710	1.00 20.36	В
~~	MOTA	385	CE1	TYR	66	41.753 -12.475	65.011	1.00 19.50	В
30	ATOM	386	CD2	TYR	66	39.027 -12.647	64.569	1.00 22.45	В
	ATOM	387	CE2	TYR	66	39.506 -12.559	65.868	1.00 19.18	В
	ATOM	388	CZ	TYR	66	40.865 -12.470	66.086	1.00 21.06	В
	ATOM	389	OH	TYR	66	41.317 -12.358	67.391	1.00 25.17	В
25	ATOM	390	C	TYR	66	38.815 -14.171	60.076	1.00 29.18	В
35	MOTA	391	0	TYR	66	39.537 -13.953	59.108	1.00 29.59	В
	MOTA	392	N	THR	67	37.514 -14.418	59.963	1.00 30.96	В
	ATOM	393	CA	THR	67	36.854 -14.420	58.662	1.00 31.82	В
	ATOM	394	CB	THR	67	36.083 -15.742	58.418	1.00 31.49	В
	ATOM	395	0G1		67	36.983 -16.849	58.543	1.00 35.18	В
40			CG2				57.016	1.00 30.30	В
70	ATOM	396			67	35.482 -15.759			
	ATOM	397	C	THR	67	35.873 -13.252	58.565	1.00 31.85	В
	ATOM	398	0	THR	67	35.100 -12.996	59.504	1.00 32.04	В
	ATOM	399	N	PHE	68	35.923 -12.536	57.442	1.00 29.70	В
	ATOM	400	CA	PHE	68	35.029 -11.400	57.203	1.00 31.18	В
45	ATOM	401	CB	PHE	68	35.785 -10.063	57.305	1.00 29.26	В
	MOTA	402	CG	PHE	68	36.374 -9.797	58.658	1.00 27.25	В
	ATOM	403		PHE	68	37.617 -10.309	59.001	1.00 28.36	В
	ATOM	404		PHE	68	35.666 -9.071	59.611	1.00 28.98	B
50	ATOM	405		PHE	68	38.147 -10.110	60.277	1.00 27.66	В
50	ATOM	406	CE2	PHE	68	36.188 -8.867	60.894	1.00 27.30	В
	ATOM	407	CZ	PHE	68	37.430 -9.388	61.225	1.00 26.68	В
	MOTA	408	С	PHE	68	34.418 -11.527	55.815	1.00 30.88	В
	ATOM	409	0	PHE	68	34.814 -12.385	55.032	1.00 32.33	В
	ATOM	410	N	ASP	69	33.452 -10.670	55.514	1.00 30.45	В
55		411							В
55	ATOM		CA	ASP	69	32.796 -10.702	54.212	1.00 31.77	
	MOTA	412	CB	ASP	69	31.636 -9.698	54.185	1.00 33.60	В
	ATOM	413	CG	ASP	69	30.590 -9.988	55.258	1.00 36.34	В
	ATOM	414	OD1	ASP	69	30.514 -9.221	56.254	1.00 35.89	В
	MOTA	415	OD2	ASP	69	29.856 -10.995	55.112	1.00 33.96	В
60	MOTA	416	С	ASP	69	33.775 -10.414	53.078	1.00 30.67	В
	ATOM	417	ŏ	ASP	69	33.594 -10.882	51.970	1.00 31.26	В
	MOTA	418	N	MET	70	34.816 -9.646	53.377	1.00 31.20	В
	ATOM	419	CA	MET	70	35.836 -9.294	52.394	1.00 31.00	В
	ATOM	420	СВ	MET	70	35.396 -8.081	51.567	1.00 33.24	В
65	MOTA	421	CG	MET	70	34.253 -8.330	50.598	1.00 35.15	В
	ATOM	422	SD	MET	70	33.994 -6.921	49.476	1.00 43.03	В
	ATOM	423	CE	MET	70	32.288 -6.531	49.777	1.00 42.27	В
		424	C		70	37.158 -8.978	53.090	1.00 42.27	В
	MOTA			MET					
70	ATOM	425	0	MET	70	37.186 -8.682	54.271	1.00 29.23	В
70	MOTA	426	N	VAL	71	38.257 -9.052	52.353	1.00 28.80	В
	ATOM	427	CA	VAL	71	39.561 -8.765	52.929	1.00 30.15	В
	MOTA	428	CB	VAL	71	40.256 -10.054	53.443	1.00 31.84	В
	MOTA	429		VAL	71	41.603 -9.713	54.060	1.00 33.61	В
					-	-			-

	MOTA	430	CG2	VAL	71		-10.738	54.471	1.00 31.83	В
	ATOM	431	С	VAL	71	40.439	~8.102	51.878	1.00 29.25	В
	MOTA	432	0	VAL	71	40.471	-8.526	50.734	1.00 30.25	В
	MOTA	433	N	PHE	72	41.146	-7.053	52.285	1.00 30.15	В
5	ATOM	434	CA	PHE		42.015	-6.306	51.384	1.00 30.67	В
9							-4.905			
	MOTA	435	CB	PHE		41.445		51.152	1.00 28.16	В
	MOTA	436	CG	PHE		40.060	-4.903	50.573	1.00 27.42	В
	MOTA	437	CD1	PHE	72	39.854	-5.145	49.220	1.00 26.23	В
	MOTA	438	CD2	PHE	72	38.955	-4.686	51.390	1.00 26.64	В
10	MOTA	439	CE1	PHE	72	38.565	-5.171	48.688	1.00 25.66	В
	ATOM	440		PHE	72	37.664	-4.709	50.868	1.00 25.86	В
	ATOM	441	CZ	PHE	72	37.469	-4.954	49.516	1.00 24.73	. в
	ATOM	442	С	PHE	72	43.428	-6.188	51.940	1.00 31.84	В
1.5	ATOM	443	0	PHE	72	43.646	-5.560	52.973	1.00 30.82	В
15	ATOM	444	N	GLY	73	44.385	-6.797	51.247	1.00 32.27	В
	ATOM	445	CA	GLY	73	45.757	-6.727	51.697	1.00 32.67	В
	MOTA	446	С	GLY	73	46.358	-5.377	51.366	1.00 33.72	В
	ATOM	447	ō	GLY	73	45.730	-4.553	50.707	1.00 33.21	В
					74					
20	ATOM	448	Ŋ	ALA		47.589	-5.163	51.815	1.00 34.20	В
20	MOTA	449	CA	ALA	74	48.296	-3.911	51.583	1.00 35.80	В
	ATOM	450	CB	ALA	74	49.615	-3.929	52.329	1.00 35.10	В
	ATOM	451	С	ALA	74	48.547	-3.664	50.100	1.00 37.02	В
	ATOM	452	0	ALA	74	49.235	-2.734	49.730	1.00 38.45	В
	MOTA	453	N	SER	75	47.971	-4.498	49.250	1.00 38.40	В
25	ATOM	454	CA	SER	75	48.179	-4.356	47.821	1.00 40.23	B
23										
	MOTA	455	CB	SER	75 26	48.437	-5.733	47.204	1.00 40.06	В
	MOTA	456	OG	SER	75	47.371	-6.617	47.504	1.00 38.50	В
	MOTA	457	С	SER	75	46.990	-3.701	47.126	1.00 40.71	В
	MOTA	458	0	SER	75	47.155	-3.026	46.109	1.00 40.44	В
30	MOTA	459	N	THR	76	45.795	-3.917	47.677	1.00 40.56	В
	MOTA	460	CA	THR	76	44.568	-3.365	47.107	1.00 40.11	В
	ATOM	461	CB	THR	76	43.325	-3.769	47.960	1.00 41.15	В
	MOTA	462		THR	76	43.690	-3.865	49.342	1.00 43.22	В
25	MOTA	463		THR	76	42.774	-5.118	47.498	1.00 43.01	В
35	MOTA	464	С	THR	76	44.615	-1.849	46.937	1.00 38.50	В
	MOTA	465	0	THR	76	45.071	-1.119	47.819	1.00 38.53	В
	MOTA	466	N	LYS	77	44.152	-1.385	45.785	1.00 36.21	В
	ATOM	467	CA	LYS	77	44.135	0.036	45.483	1.00 34.26	В
	ATOM	468	СВ	LYS	,, 77	44.482	0.243	44.011	1.00 34.20	В
40										
40	MOTA	469	CG	LYS	77	45.901	-0.174	43.651	1.00 39.66	В
	ATOM	470	CD	LYS	77	46.138	-0.013	42.153	1.00 43.10	В
	MOTA	471	CE	LYS	77	47.538	-0.446	41.749	1.00 44.09	В
	MOTA	472	NZ	LYS	77	47.693	-0.451	40.261	1.00 46.93	В
	MOTA	473	С	LYS	77	42.776	0.662	45.799	1.00 32.74	В
45	MOTA	474	0	LYS	77	41.807	-0.045	46.049	1.00 30.61	В
	MOTA	475	N	GLN	78	42.729	1.994	45.800	1.00 31.08	В
		476	CA	GLN	78		2.731			
	MOTA					41.499		46.084	1.00 29.81	В
	MOTA	477	CB	GLN	78	41.718	4.241	45.896	1.00 29.96	В
50	ATOM	478	CG	GLN	78	42.791	4.867	46.790	1.00 28.93	В
50	MOTA	479	CD	GLN	78	42.339	5.029	48.224	1.00 28.69	В
	MOTA	480	OE1	GLN	78	41.731	4.136	48.789	1.00 28.17	В
	ATOM	481	NE2	GLN	78	42.647	6.177	48.822	1.00 28.63	В
	ATOM	482	C	GLN	78	40.371	2.273	45.160	1.00 29.13	В
		483	ō	GLN	78					
55	ATOM					39.255	2.045	45.597	1.00 28.04	В
JJ	ATOM	484	N	ILE	79	40.687	2.140	43.877	1.00 27.65	В
	MOTA	485	CA	ILE	79	39.710	1.730	42.874	1.00 28.90	В
	ATOM	486	CB	ILE	79	40.369	1.664	41.472	1.00 28.34	В
	MOTA	487		ILE	79	41.411	0.564	41.442	1.00 30.45	В
	ATOM	488		ILE	79	39.316	1.396	40.400	1.00 29.43	В
60				ILE						
UU	ATOM	489			79	38.333	2.517	40.226	1.00 30.66	В
	MOTA	490	C	ILE	79	39.055	0.377	43.191	1.00 28.47	В
	MOTA	491	0	ILE	79	37.867	0.175	42.938	1.00 27.79	В
	MOTA	492	N	ASP	80	39.829	-0.548	43.749	1.00 28.15	В
	MOTA	493	CA	ASP	80	39.296	-1.866	44.076	1.00 27.60	В
65	MOTA	494	CB	ASP	80	40.435	-2.865	44.316	1.00 27.34	В
-										
	ATOM	495	CG	ASP	80	41.439	-2.908	43.164	1.00 29.59	В
	MOTA	496		ASP	80	41.018	-2.784	41.987	1.00 27.17	В
	MOTA	497		ASP	80	42.648	-3.078	43.445	1.00 29.79	В
	MOTA	498	С	ASP	80	38.395	-1.800	45.303	1.00 27.71	В
70	MOTA	499	0	ASP	80	37.394	-2.492	45.383	1.00 27.27	В
	ATOM	500	N	VAL	81	38.761	-0.964	46.265	1.00 28.05	В
	ATOM	501	CA	VAL	81	37.947	-0.820	47.460	1.00 27.29	В
	MOTA	502	СВ	VAL	81	38.618	0.115	48.495	1.00 25.22	В

	MOTA	503	CCI	VAL	81	37.662	0.394	49.633	1.00 21.33	В
	MOTA	504	CG2	VAL	81	39.890	-0.532	49.036	1.00 23.97	В
	ATOM	505	С	VAL	81	36.588	-0.244	47.079	1.00 28.97	В
_	ATOM	506	0	VAL	81	35.555	-0.682	47.590	1.00 29.68	В
5	MOTA	507	N	TYR	82	36.593	0.721	46.162	1.00 28.62	В
•										
	MOTA	508	CA	TYR	82	35.364	1.368	45.723	1.00 30.02	В
	ATOM	509	СВ	TYR	82	35.693	2.640	44.924	1.00 31.49	В
	MOTA	510	CG	TYR	82	34.472	3.389	44.443	1.00 33.00	В
	ATOM	511	CD1	TYR	82	33.934	3.144	43.180	1.00 34.00	В
10										
10	MOTA	512	CE1	TYR	82	32.776	3.781	42.762	1.00 37.72	В
	MOTA	513	Cn2	TYR	82	33.817	4.299	45.278	1.00 32.60	В
	MOTA	514	CE2	TYR	82	32.659	4.938	44.871	1.00 36.04	В
	MOTA	515	CZ	TYR	82	32.142	4.676	43.613	1.00 39.42	В
	MOTA	516	OH	TYR	82	30.992	5.316	43.203	1.00 42.75	В
15	MOTA	517	С	TYR	82	34.456	0.451	44.906	1.00 30.88	В
	MOTA	518	0	TYR	82	33.264	0.363	45.168	1.00 30.76	В
	MOTA	519	N	ARG	83	35.021	-0.223	43.910	1.00 32.85	В
	MOTA	520	CA	ARG	83	34.239	-1.136	43.077	1.00 34.09	В
	MOTA	521	CB	ARG	83	35.120	-1.702	41.965	1.00 35.60	В
20										
20	MOTA	522	CG	ARG	83	35.333	-0.749	40.798	1.00 42.48	В
	MOTA	523	CD	ARG	83	36.652	-1.013	40.072	1.00 46.99	В
		524	NE						1.00 53.06	
	ATOM			ARG	83	36.734	-2.358	39.503		В
	MOTA	525	CZ	ARG	83	36.100	-2.758	38.404	1.00 56.78	В
	ATOM	526				35.323		37.735	1.00 57.61	
25				ARG	83		-1.914			В
25	ATOM	527	NH2	ARG	83	36.254	-4.004	37.967	1.00 57.03	В
		528				33.630			1.00 33.36	
	MOTA		С	ARG	.83		-2.277	43.895		В
	MOTA	529	0	ARG	83	32.492	-2.674	43.667	1.00 34.00	В
	ATOM	530	N	SER	84	34.390	-2.785	44.860	1.00 31.69	В
	MOTA	531	CA	SER	84	33.956	-3.899	45.701	1.00 30.91	В
30							-4.582	46.322		
50	MOTA	532	CB	SER	84	35.180	-4.562		1.00 31.88	В
	MOTA	533	OG	SER	84	36.115	-4.951	45.324	1.00 34.36	В
		534								
	MOTA		С	SER	84	32.983	-3.535	46.816	1.00 30.39	В
	MOTA	535	0	SER	84	31.963	-4.195	47.007	1.00 30.60	В
	ATOM								1.00 29.66	
25		536	N	VAL	85	33.299	-2.489	47.568		В
35	MOTA	537	CA	VAL	85	32.432	-2.091	48.663	1.00 28.01	В
	MOTA	538	CB	VAL	85	33.255	-1.652	49.887	1.00 27.01	В
	ATOM	539	CG1	VAL	85	32.336	-1.128	50.971	1.00 26.26	В
	ATOM	540		VAL	85	34.080			1.00 26.27	
							-2.815	50.407		В
	MOTA	541	С	VAL	85	31.445	-0.983	48.337	1.00 27.47	В
40	ATOM	542	Ο.	VAL	85	30.249	-1.149	48.498	1.00 28.23	
-10										В
	ATOM	543	N	VAL	86	31.960	0.145	47.868	1.00 28.02	В
	ATOM	544	CA		86					
				VAL		31.132	1.313	47.585	1.00 28.51	В
	ATOM	545	CB	VAL	86	32.004	2.568	47.370	1.00 26.65	В
	ATOM	546		VAL	86	31.180	3.808	47.625	1.00 25.89	
15										В
45	ATOM	547	CG2	VAL	86	33.220	2.532	48.267	1.00 25.41	В
	ATOM	548	С	VAL	86	30.150	1.224	46.425	1.00 29.30	В
	ATOM	549	0	VAL	86	28.959	1.479	46.599	1.00 28.44	В
	MOTA	550	N	CYS	87	30.649	0.881	45.244	1.00 29.85	В
	MOTA	551	CA	CYS	87	29.802	0.786	44.064	1.00 33.34	В
50	ATOM	552	CB	CYS	87	30.549	0.025	42.965	1.00 36.49	В
50										
	MOTA	553	SG	CYS	87	29.936	0.313	41.286	1.00 43.07	В
	MOTA	554	С	CYS	87	28.445	0.131	44.373	1.00 34.93	В
	MOTA	555	0	CYS	87	27.396	0.670	44.026	1.00 34.18	В
	ATOM	556	N	PRO	88	28.452	-1.035	45.045	1.00 35.57	В
55										
33	ATOM	557	CD	PRO	88	29.603	-1.876	45.420	1.00 37.48	В
	MOTA	558	CA	PRO	88	27.195	-1.715	45.378	1.00 35.50	В
	ATOM					27.664				
		559	CB	PRO	88		-2.989	46.078	1.00 35.52	В
	ATOM	560	CG	PRO	88	28.984	-3.247	45.464	1.00 36.85	В
.	MOTA	561	С	PRO	88	26.295	-0.874	46.287	1.00 35.13	В
60	ATOM	562	0	PRO	88	25.099	-0.765	46.050	1.00 35.74	В
	MOTA	563	N	ILE	89	26.885	-0.288	47.327	1.00 34.00	В
	ATOM	564	CA	ILE	89	26.140	0.535	48.279	1.00 33.52	В
	ATOM	565	CB	ILE	89	27.031	0.978	49.465	1.00 33.84	В
	MOTA	566	CG2	ILE	89	26.250	1.910	50.384	1.00 34.73	В
65										
UJ	MOTA	567	CG1	TLE	89	27.514	-0.247	50.243	1.00 33.35	В
	MOTA	568	CD1		89	28.486	0.077	51.357	1.00 33.52	В
	MOTA	569	С	ILE	89	25.552	1.786	47.636	1.00 32.98	В
	ATOM	570	0	ILE	89	24.485	2.243	48.016	1.00 33.67	В
70	ATOM	571	N	LEU	90	26.258	2.341	46.662	1.00 32.32	В
70	ATOM	572		LEU	90	25.782	3.540	45.996	1.00 32.57	В
	ATOM	573	ÇВ	LEU	90	26.866	4.097	45.074	1.00 30.54	В
	ATOM	574		LEU	90	26.431	5.292	44.229	1.00 29.69	В
	MOTA	575	CD1	LEU	90	26.018	6.448	45.122	1.00 28.62	В

	MOTA	576	CD2	LEU	90	27.564	5.695	43.319	1.00 31.53	В
	MOTA	577		LEU	90	24.504	3.272	45.202	1.00 32.92	В
	MOTA	578	0	LEU	90	23.567	4.074	45.240	1.00 32.45	В
	MOTA	579	N	ASP	91	24.466	2.147	44.491	1.00 33.45	В
5										
,	MOTA	580	CA	ASP	91	23.292	1.785	43.699	1.00 34.72	В
	MOTA	581	СB	ASP	91	23.520	0.470	42.940	1.00 35.65	В
	ATOM	582	CG	ASP	91	24.593	0.582	41.863	1.00 39.61	В
	MOTA	583	ODI	ASP	91	24.686	1.648	41.214	1.00 40.33	В
	ATOM	584	OD2	ASP	91	25.335	-0.409	41.661	1.00 41.38	В
10		585			91	22.068	1.633	44.597		
10	MOTA		Ċ	ASP					1.00 33.10	В
	MOTA	586	0	ASP	91	20.954	1.885	44.174	1.00 33.56	В
	MOTA	587	N	GLU	92	22.290	1.221	45.839	1.00 32.56	В
	ATOM	588	CA	GLU	92	21.196	1.044	46.783	1.00 34.16	В
	MOTA	589	CB	GLU	92	21.657	0.171	47.954	1.00 37.44	В
15	MOTA	590	CG	GLU	92	20.545	-0.258	48.890	1.00 42.74	В
	ATOM	591	CD	GLU	92	20.880	-1.536	49.648	1.00 46.50	В
	MOTA	592	OE1	GLU	92	20.053	-1.956	50.490	1.00 47.07	В
	MOTA	593	OE2		92	21.962	-2.120	49.396	1.00 46.74	В
	MOTA	594	С	GLU	92	20.709	2.409	47.280	1.00 32.53	В
20	MOTA	595	0	GLU	92	19.518	2.608	47.519	1.00 30.70	В
	MOTA	596	N	VAL	93	21.641	3.348	47.422	1.00 31.20	В
	ATOM	597	CA	VAL	93	21.303	4.699	47.854	1.00 31.28	В
	MOTA	598	CB	VAL	93	22.580	5.569	48.076	1.00 31.49	В
0.5	MOTA	599	CGI	VAL	93	22.194	7.010	48.365	1.00 27.40	В
25	MOTA	600	CG2	VAL	93	23.398	5.004	49.233	1.00 33.28	В
	ATOM	601	С	VAL	93	20.452	5.322	46.750	1.00 29.79	В
	MOTA	602	0	VAL	93	19.416	5.913	47.013	1.00 28.28	В
	MOTA	603	N	ILE	94	20.899	5.163	45.510	1.00 27.82	В
							5.703		1.00 30.44	
20	MOTA	604	CA	ILE	94	20.166		44.378		В
30	MOTA	605	CB	ILE	94	20.915	5.429	43.051	1.00 28.59	В
	MOTA	606	CG2	TLE	94	20.035	5.787	41.853	1.00 26.78	В
	MOTA	607	CG1		94	22.216	6.240	43.037	1.00 27.01	В
	MOTA	608	CD1	ILE	94	23.087	5.978	41.846	1.00 26.60	В
	MOTA	609	С	ILE	94	18.749	5.131	44.306	1.00 32.32	В
35										
33	MOTA	610	0	ILE	94	17.872	5.738	43.714	1.00 32.23	В
	MOTA	611	N	MET	95	18.531	3.968	44.920	1.00 34.51	В
	MOTA	612	CA	MET	95	17.201	3.360	44.923	1.00 36.17	В
	MOTA	613	СВ	MET	95	17.282	1.850	45.149	1.00 38.61	В
	MOTA	614	CG	MET	95	17.372	1.017	43.881	1.00 40.44	В.
40										
40	ATOM	615	SD	MET	95	17.488	-0.772	44.242	1.00 46.46	В
	MOTA	616	CE	MET	95	19.102	-1.171	43.546	1.00 44.51	В
	ATOM	617	C	MET	95	16.315	3.979	45.996	1.00 36.50	В
	MOTA	618	0	MET	95	15.113	3.732	46.030	1.00 37.42	В
	ATOM	619	N	GLY	96	16.914	4.775	46.879	1.00 36.28	В
45		620	CA		96		5.414	47.932	1.00 35.74	
73	MOTA			GLY		16.145				В
	ATOM	621	С	GLY	96	16.366	4.830	49.314	1.00 36.78	В
	MOTA	622	0	GLY	96	15.538	5.026	50.210	1.00 37.90	В
	MOTA	623	N	TYR	97	17.479	4.118	49.487	1.00 36.85	B
	MOTA	624	CA	TYR	97	17.835	3.496	50.763	1.00 37.58	В
50	MOTA	625	CB	TYR	97	18.381	2.081	50.525	1.00 40.65	В
50										
	MOTA	626	CG	TYR	97	17.341	1.025	50.217	1.00 45.13	В
	MOTA	627	CD1	TYR	97	16.518	0.518	51.220	1.00 46.62	В
	MOTA	628	CE1		97	15.558	-0.454	50.944	1.00 49.26	В
	MOTA	629	CD2	TYR	97	17.182	0.533	48.921	1.00 46.06	В
55	MOTA	630	CE2	TYR	97	16.228	-0.436	48.630	1.00 49.09	В
	MOTA	631		TYR	97	15.417	-0.928	49.646	1.00 50.42	В
	ATOM	632	ОН	TYR	97	14.465	-1.888	49.358	1.00 52.50	В
	MOTA	633	С	TYR	97	18.889	4.304	51.526	1.00 35.44	В
60	ATOM	634	0	TYR	97	19.789	4.876	50.926	1.00 37.02	В
60	MOTA	635	N	ASN	98	18.776	4.349	52.849	1.00 31.97	В
	MOTA	636		ASN	98	19.759	5.059	53.662	1.00 30.42	В
	ATOM	637	CB	ASN	98	19.169	5.460	55.025	1.00 30.64	В
	ATOM	638		ASN	98	18.239	6.663	54.945	1.00 28.74	В
15	MOTA	639	OD1		98	18.255	7.413	53.981	1.00 29.47	В
65	ATOM	640	ND2	ASN	98	17.436	6.855	55.984	1.00 27.34	В
	ATOM									
		641		ASN	98	20.942	4.124	53.897	1.00 29.81	В
	MOTA	642	0	ASN	98	20.762	3.006	54.324	1.00 29.82	В
	ATOM	643		CYS	99	22.152	4.590	53.615	1.00 28.53	В
70	ATOM	644		CYS	99	23.339	3.767	53.816	1.00 26.90	В
70	MOTA	645	CB	CYS	99	23.974	3.384	52.477	1.00 28.87	В
	ATOM	646		CYS	99	22.946	2.349	51.428	1.00 34.21	В
	MOTA	647		CYS	99	24.382	4.465	54.677	1.00 25.00	В
	MOTA	648	0	CYS	99	24.380	5.670	54.830	1.00 25.25	В
			-							_

	ATOM	649	N	THR	100	25.285	3.671	55.232	1.00 23.32	В
	MOTA	650	CA	THR	100	26.341	4.187	56.080	1.00 19.59	В
	ATOM	651	CB	THR	100	25.876	4.258	57.544	1.00 17.10	В
_	MOTA	652	OG1	THR	100	24.789	5.179	57.657	1.00 16.21	В
5	MOTA	653	CG2	THR	100	27.005	4.696	58.456	1.00 15.27	В
_										
	MOTA	654	С	THR	100	27.552	3.266	55.982	1.00 21.18	В
	MOTA	655	0	THR	100	27.417	2.039	56.005	1.00 22.70	В
	MOTA	656	N	ILE	101	28.732	3.858	55.849		
									1.00 18.53	. В
	MOTA	657	CA	ILE	101	29.967	3.097	55.782	1.00 17.55	В
10	MOTA	658	СВ	ILE	101	30.650	3.212	54.420	1.00 16.14	В
10										
	ATOM	659	CG2	ILE	101	31.939	2.414	54.423	1.00 16.50	В
	MOTA	660	CG1	ILE	101	29.730	2.690	53.318	1.00 14.57	В
	MOTA	661	CDT	ILE	101	30.186	3.077	51.930	1.00 14.45	В
	MOTA	662	С	ILE	101	30.913	3.654	56.834	1.00 19.99	В
15	MOTA	663	ŏ		101	31.296	4.822			
15				ILE				56.786	1.00 20.78	В
	MOTA	664	N	PHE	102	31.273	2.808	57.793	1.00 19.14	В
	MOTA	665	CA	PHE	102	32.176	3.179	58.876	1.00 17.58	В
	MOTA	666	CB	PHE	102	31.835	2.373	60.123	1.00 17.67	В
	MOTA	667	CG	PHE	102	30.618	2.842	60.847	1.00 17.05	В
20		668		PHE		30.714	3.855	61.790		
20	MOTA				102				1.00 16.04	В
	MOTA	669	CD2	PHE	102	29.386	2.239	60.624	1.00 16.40	В
	MOTA	670	CEI	PHE	102	29.603	4.265	62.508	1.00 16.56	В
	MOTA	671	CE2	PHE	102	28.268	2.643	61.337	1.00 18.62	В
	MOTA	672	CZ	PHE	102	28.377	3.658	62.283	1.00 16.81	В
25										
23	MOTA	673		PHE	102	33.625	2.891	58.515	1.00 16.69	В
	MOTA	674	0	PHE	102	33.910	2.289	57.516	1.00 18.17	В
	MOTA	675	N	ALA	103	34.535	3.338	59.366	1.00 17.68	В
	ATOM	676	CA	ALA	103	35.961	3.089	59.187	1.00 17.02	В
	MOTA	677	CB	ALA	103	36.620	4.229	58.451	1.00 16.82	В
30										
30	MOTA	678	С	ALA	103	36.471	2.991	60.617	1.00 17.64	В
	ATOM	679	0	ALA	103	36.482	3.963	61.339	1.00 18.79	В
	MOTA	680	N	TYR	104	36.866	1.786	61.012		
						7 1 1 1 1 1			1.00 18.22	В
	MOTA	681	CA	TYR	104	37.340	1.540	62.368	1.00 16.40	В
	MOTA	682	СВ	TYR	104	36.436	0.496	63.034	1.00 15.83	В
35										
33	MOTA	683	CG	TYR	104	36.706	0.291	64.508	1.00 12.67	В
	MOTA	684	CD1	TYR	104	37.771	-0.501	64.941	1.00 10.95	В
	MOTA	685	CE1		104	38.046	-0.659	66.301	1.00 11.52	В
	MOTA	686	CD2	TYR	104	35.919	0.920	65.469	1.00 10.91	В
	MOTA	687	CE2	TVD	104	36.187	0.768	66.832	1.00 12.42	В
40										
40	MOTA	688	CZ	TYR	104	37.253	-0.023	67.239	1.00 10.32	В
	ATOM	689	ОН	TYR	104	37.526	-0.180	68.574	1.00 11.99	В
	MOTA	690	С	TYR	104	38.778	1.061	62.380	1.00 15.64	В
	ATOM	691	0	TYR	104	39.203	0.348	61.497	1.00 17.51	В
	MOTA	692	N	GLY	105	39.524	1.456	63.397	1.00 15.78	В
45										
43	MOTA	693	CA	GLY	105	40.904	1.047	63.475	1.00 16.05	В
	MOTA	694	С	GLY	105	41.748	2.044	64.226	1.00 16.81	В
		695			105					
	MOTA		0	GLY		41.318	3.151	64.526	1.00 19.22	В
	MOTA	696	N	GLN	106	42.963	1.616	64.531	1.00 18.16	В
	ATOM	697	CA	GLN	106	43.940	2.408	65.244	1.00 18.74	В
50										
50	MOTA	698	CB	GLN	106	45.122	1.519	65.652	1.00 19.69	В
	MOTA	699	CG	GLN	106	46.278	2.251	66.305	1.00 23.87	В
	MOTA	700		GLN	106	47.527	1.411	66.407	1.00 24 14	В
	MOTA	701	OE1		106	47.865	0.669	65.490	1.00 27.37	В
	ATOM	702	NE2	GLN	106	48.225	1.528	67.525	1.00 25.29	В
55			_							
55	MOTA	703		GLN	106	44.440	3.552	64.363	1.00 20.10	. В
	ATOM	704	0	GLN	106	44.438	3.451	63.134	1.00 19.09	В
	MOTA	705		THR	107	44.864	4.639	65.004	1.00 19.11	В
	MOTA	706	CA	THR	107	45.385	5.792	64.291	1.00 18.65	В
	MOTA	707	CB	THR	107	45.849	6.914	65.270	1.00 20.97	В
60										
UU	MOTA	708		THR	107	44.730	7.405	66.017	1.00 19.66	В
	MOTA	709	CG2	THR	107	46.476	8.064	64.497	1.00 15.96	В
	እጥር አ	710							1.00 17.71	
	MOTA			THR	107	46.588	5.391	63.439		В
	MOTA	711	0	THR	107	47.518	4.747	63.921	1.00 16.56	В
	MOTA	712	N	GLY	108	46.554	5.786	62.171	1.00 17.28	В
65										
$\mathbf{o}_{\mathcal{I}}$	MOTA	713	CA	GLY	108	47.642	5.483	61.267	1.00 15.71	В
	ATOM	714	С	GLY	108	47.499	4.181	60.505	1.00 17.55	В
	ATOM	715		GLY	108	48.489	3.682	59.938		
									1.00 17.87	В
	ATOM	716	N	THR	109	46.288	3.626	60.478	1.00 15.83	В
	MOTA	717		THR	109	46.064	2.374	59.765	1.00 14.74	В
70										
70	MOTA	718		THR	109	45.276	1.352	60.632	1.00 13.57	В
	MOTA	719	OG1	THR	109	43.978	1.866	60.943	1.00 13.63	В
	ATOM	720	CG2		109	46.035	1.064	61.934	1.00 12.00	
										В
	MOTA	721	C	THR	109	45.350	2.573	58.435	1.00 15.88	В

	3 mov	722	_	<i>-</i>	100	45 122	1 (00	F7 700		_
	ATOM ATOM	722 723	O N	THR	109 110	45.132 44.977	1.602 3.819	57.708	1.00 14.55 1.00 13.70	В
	ATOM	723	CA	GLY GLY	110	44.377	4.073	58.124		В
	MOTA	725	CA	GLY	110	44.321	4.433	56.849 56.833	1.00 10.56 1.00 10.76	B B
5		725	0	GLY	110	42.201	4.433	55.792		B
,	MOTA MOTA	727	N	LYS	111	42.302	4.885	57.959	1.00 9.95 1.00 8.99	В
	ATOM	728	CA	LYS	111	40.889	5.267	58.022	1.00 11.48	В
	MOTA	729	CB	LYS	111	40.497	5.693	59.449	1.00 12.59	В
10	MOTA	730	CG	LYS	111	40.315	4.531	60.426	1.00 15.28	В
10	MOTA	731	CD	LYS	111	39.651	4.955	61.738	1.00 12.73	В
	ATOM	732	CE	LYS	111	40.439	6.034	62.455	1.00 11.56	В
	MOTA	733	NZ	LYS	111	41.905	5.766	62.396	1.00 10.51	В
	MOTA	734	C	LYS	111	40.575	6.408	57.062	1.00 13.97	В
15	MOTA	735	0	LYS	111	39.683	6.302	56.206	1.00 15.37	В
15	MOTA	736	N	THR	112	41.321	7.498	57.198	1.00 13.82	В
	MOTA	737	CA	THR	112	41.120	8.663	56.353	1.00 12.58	В
	MOTA	738	CB	THR	112	41.895	9.871	56.926	1.00 12.79	В
	MOTA	739		THR	112	41.408	10.160	58.245	1.00 9.63	В
20	MOTA	740		THR	112	41.723	11.103	56.037	1.00 10.46	В
20	MOTA	741	C	THR	112	41.535	8.396	54.905	1.00 14.40	В
	MOTA	742	0	THR	112	40.886	8.846	53.978	1.00 15.19	В
	MOTA	743	N	PHE	113	42.618	7.651	54.723	1.00 15.74	В
	MOTA	744	CA	PHE	113	43.095	7.326	53.384	1.00 17.09	В
25	MOTA	745	CB	PHÉ	113	44.316	6.408	53.463	1.00 17.69	В
25	MOTA	746		PHE	113	44.867	6.030	52.123	1.00 20.87	В
	MOTA	747		PHE	113	45.783	6.849	51.475	1.00 22.41	В
	MOTA	748	CD2	PHE	113	44.445	4.871	51.490	1.00 22.63	В
	MOTA	749	CE1	PHE	113	46.271	6.517	50.218	1.00 22.81	В
20	MOTA	750	CE2	PHE	113	44.924	4.529	50.228	1.00 23.87	В
30	MOTA	751	CZ	PHE	113	45.840	5.354	49.590	1.00 25.27	В
	MOTA	752	С	PHE	113	42.000	6.626	52.580	1.00 18.62	В
	MOTA	753	0	PHE	113	41.817	6.888	51.389	1.00 17.60	В
	MOTA	754	N	THR	114	41.291	5.719	53.247	1.00 19.63	В
~-	MOTA	755	CA	THR	114	40.212	4.945	52.646	1.00 18.57	В
35	MOTA	756	CB	THR	114	39.816	3.760	53.582	1.00 20.30	В
	MOTA	757	OG1	THR	114	40.970	2.947	53.828	1.00 18.79	В
	MOTA	758	CG2	THR	114	38.700	2.910	52.972	1.00 12.74	В
	MOTA	759	С	THR	114	38.991	5.825	52.410	1.00 19.70	В
	MOTA	760	0	THR	114	38.497	5.932	51.297	1.00 22.13	В
40	ATOM	761	N	MET	115	38.518	6.473	53.465	1.00 19.43	В
	MOTA	762	CA	MET	115	37.345	7.318	53.347	1.00 20.55	В
	MOTA	763	CB	MET	115	36.877	7.771	54.730	1.00 21.97	В
	MOTA	764	CG	MET	115	36.471	6.620	55.644	1.00 27.07	В
	MOTA	765	SD	MET	115	35.328	5.432	54.848	1.00 29.66	В
45	MOTA	766	CE	MET	115	33.753	6.265	55.089	1.00 27.98	В
	ATOM	767	С	MET	115	37.532	8.528	52.454	1.00 21.26	В
	MOTA	768	0	MET	115	36.639	8.866	51.674	1.00 23.74	В
	MOTA	769	N	GLU	116	38.687	9.179	52.549	1.00 20.10	В
	ATOM	770	CA	GLU	116	38.937	10.377	51.749	1.00 20.30	В
50	ATOM	771	CB	GLU	116	39.323	11.541	52.659	1.00 19.03	В
	MOTA	772	CG	GLU	116	38.309	11.824	53.741	1.00 17.09	В
	MOTA	773	CD	GLU	116	38.746	12.922	54.687	1.00 18.90	В
	MOTA	774	OE1	GLU	116	39.886	13.421	54.550	1.00 21.39	В
	ATOM	775	OE2	GLU	116	37.951	13.280	55.579	1.00 17.52	В
55	MOTA	776	С	GLU	116	40.010	10.194	50.694	1.00 20.60	В
	MOTA	777	0	GLU	116	39.804	10.494	49.527	1.00 19.26	В
	MOTA	778	N	GLY	117	41.166	9.708	51.116	1.00 22.39	В
	ATOM	779	CA	GLY	117	42.249	9.508	50.176	1.00 24.67	В
	MOTA	780	С	GLY	117	43.194	10.689	50.144	1.00 25.76	В
60	MOTA	781	0	GLY	117	43.056	11.630	50.918	1.00 24.17	В
	ATOM	782	N	GLU	118	44.162	10.635	49.237	1.00 27.49	В
	ATOM	783	CA	GLU	118	45.133	11.710	49.128	1.00 28.73	В
	ATOM	784	СВ	GLU	118	46.465	11.273	49.740	1.00 30.64	В
	MOTA	785	CG	GLU	118	46.311	10.255	50.853	1.00 35.23	В
65	ATOM	786	CD	GLU	118	47.579	10.060	51.657	1.00 37.43	В
	ATOM	787		GLU	118	48.671	9.993	51.049	1.00 35.58	В
	ATOM	788		GLU	118	47.476	9.958	52.900	1.00 40.04	В
	ATOM	789	C	GLU	118	45.338	12.082	47.671	1.00 27.97	В
	ATOM	790	ō	GLU	118	44.692	11.542	46.779	1.00 29.50	В
70	ATOM	791	N	ARG	119	46.244	13.017	47.436	1.00 25.87	В
. •	ATOM	792	CA	ARG	119	46.532	13.439	46.085	1.00 25.52	В
	ATOM	793	CB	ARG	119	46.613	14.968	46.006	1.00 24.48	В
	ATOM	794	CG	ARG	119	45.323	15.708	46.358	1.00 23.62	В
						-5.525	13.700	20.330	2.00 23.02	5

	ATOM	795	CD ARG	119	44.190	15.361	45.387	1.00 22.16	В
	MOTA	796	NE ARO		44.654	15.191	44.011	1.00 20.25	В
	MOTA	797	CZ ARC		44.382		43.005	1.00 19.31	В
	ATOM	798	NH1 ARC		43.642	17.102	43.203	1.00 19.24	В
5	ATOM	799	NH2 ARC		44.842	15.744	41.791	1.00 17.50	В
•	ATOM	800	C ARC		47.857	12.836	45.654	1.00 26.80	В
	ATOM	801	O ARC		48.779	12.711	46.457	1.00 25.89	В
	MOTA	802	N SEF		47.942	12.440	44.390	1.00 25.98	В
	MOTA	803	CA SEF	120	49.189	11.893	43.880	1.00 28.78	В
10	MOTA	804	CB SEF	120	49.015	11.326	42.472	1.00 29.79	В
	MOTA	805	OG SEF	120	48.428	10.038	42.508	1.00 33.26	В
	MOTA	806	C SEF	120	50.130	13.077	43.834	1.00 27.18	В
	MOTA	807	O SEF	120	49.779	14.121	43.326	1.00 27.97	В
1.5	MOTA	808	N PRO		51.348	12.913	44.357	1.00 27.06	В
15	MOTA	809	CD PRO		51.902	11.662	44.900	1.00 26.17	В
	MOTA	810	CA PRO		52.350	13.987	44.381	1.00 27.66	В
	MOTA	811	CB PRO		53.528	13.342	45.117	1.00 27.55	В
	MOTA	812	CG PRO		53.386	11.899	44.779	1.00 28.94	В
20	ATOM	813	C PRO		52.760	14.591	43.031	1.00 27.47	В
20	ATOM	814	O PRO		52.773	13.914	42.009	1.00 27.14	В
	MOTA	815	N ASN		53.072	15.885	43.050	1.00 27.34	В
	ATOM	816	CA ASN		53.517	16.615	41.865	1.00 28.41 1.00 29.21	В
	ATOM ATOM	817 818	CB ASN		54.690 55.857	15.875 16.789	41.217 40.906	1.00 29.21	B B
25	ATOM	819	OD1 ASN		56.355	17.491	41.777	1.00 29.30	В
2,5	MOTA	820	ND2 ASN		56.305	16.774	39.656	1.00 30.61	В
	MOTA	821	C ASN		52.434	16.859	40.817	1.00 28.67	В
	MOTA	822	O ASN		52.725	16.940	39.627	1.00 25.87	В
	MOTA	823	N GLU		51.191	16.985	41.265	1.00 30.12	В
30	ATOM	824	CA GLU		50.070	17.240	40.356	1.00 33.32	В
•	MOTA	825	CB GLU		50.105	18.699	39.870	1.00 33.54	В
	ATOM	826	CG GLU		50.037	19.748	40.968	1.00 33.76	В
	MOTA	827	CD GLU		49.872	21.158	40.420	1.00 34.11	В
	ATOM	828	OE1 GLU	123	50.763	21.623	39.678	1.00 32.71	В
35	MOTA	829	OE2 GLU	123	48.848	21.804	40.734	1.00 33.32	В
	MOTA	830	C GLU	123	50.061	16.307	39.137	1.00 34.30	В
	MOTA	831	O GLU		49.856	16.743	38.013	1.00 32.10	В
	MOTA	832	N GLU		50.283	15.020	39.373	1.00 36.35	В
40	MOTA	833	CA GLU		50.303	14.046	38.292	1.00 36.52	В
40	MOTA	834	CB GLU		50.709	12.678	38.846	1.00 40.35	В
	MOTA	835	CG GLU		51.279	11.711	37.815	1.00 45.05	В
	MOTA	836	CD GLU		52.026	10.550	38.458	1.00 47.77	В
	ATOM	837	OE1 GLU		51.966	10.427	39.705	1.00 47.83	В
45	MOTA	838	OE2 GLU		52.671 48.942	9.769 13.964	37.720 37.590	1.00 48.04 1.00 36.15	B B
43	MOTA MOTA	839 840	O GLU		48.876	13.987	36.363	1.00 34.15	В
	ATOM	841	N TYR		47.859	13.886	38.361	1.00 35.31	В
	MOTA	842	CA TYR		46.524	13.803	37.770	1.00 36.12	В
	ATOM	843	CB TYR	125	45.863	12.440	38.054	1.00 38.61	В
50	ATOM	844	CG TYR	125	46.757	11.216	37.992	1.00 39.31	В
	MOTA	845	CD1 TYR	125	47.657	10.933	39.019	1.00 39.77	В
	MOTA	846	CE1 TYR	125	48.454	9.784	38.987	1.00 40.96	В
	MOTA	847	CD2 TYR	125	46.675	10.321	36.922	1.00 39.64	В
	MOTA	848	CE2 TYR	125	47.468	9.169	36.879	1.00 40.42	В
55	MOTA	849	CZ TYR	125	48.355	8.908	37.916	1.00 41.60	В
	MOTA	850	OH TYR	125	49.141	7.776	37.882	1.00 43.64	В
	MOTA	851	C TYR	125	45.590	14.873	38.332	1.00 35.75	В
	MOTA	852	O TYR	125	45.925	15.577	39.273	1.00 36.04	В
60	MOTA	853	N THR	126	44.409	14.976	37.729	1.00 35.01	В
60	MOTA	854	CA THR	126	43.385	15.901	38.189	1.00 34.12	В
	ATOM	855	CB THR	126	42.393	16.275	37.064	1.00 34.09	В
	ATOM	856	OG1 THR	126	41.885	15.080	36.458	1.00 36.33	В
	ATOM	857	CG2 THR	126	43.075	17.134	36.005	1.00 30.16	В
65	ATOM	858	C THR	126	42.645	15.117	39.271	1.00 34.15	В
υJ	ATOM	859	O THR	126	42.555	13.896	39.197	1.00 35.30	В
	ATOM	860	N TRP	127	42.111	15.807	40.270	1.00 33.25	В
	MOTA	861	CA TRP	127	41.422	15.133	41.363	1.00 31.64	В
	MOTA MOTA	862 863	CB TRP	127	40.596 39.362	16.135 16.610	42.182	1.00 28.58 1.00 25.55	B B
70	ATOM	864	CG TRP	127 127	38.066	16.008	41.489 41.551	1.00 23.33	В
, 0	MOTA	865	CE2 TRP	127	37.218	16.754	40.699	1.00 23.28	В
	MOTA	866	CE3 TRP	127	37.537	14.907	40.033	1.00 23.43	В
	MOTA	867	CD1 TRP	127	39.255	17.667	40.631	1.00 23.80	В
		- ·			JJ.2JJ				_

	N COOM	868	ATC 1	mp n	127	37.969	17.761	40.150	1.00 24.71	В
	MOTA		INEI	TRP						
	MOTA	869	CZ2	TRP	127	35.867	16.433	40.518	1.00 24.05	В
						36.192	14.585	42.065	1.00 24.74	В
	MOTA	870	CZ3		127					
	MOTA	871	CH2	TRP	127	35.372	15.351	41.207	1.00 26.04	В
5									1.00 31.94	В
,	MOTA	872	С	TRP	127	40.522	13.968	40.931		
	MOTA	873	0	TRP	127	40.510	12.927	41.579	1.00 32.64	В
									1.00 32.66	В
	MOTA	874	N	GLU	128	39.781	14.131	39.838		
	MOTA	875	CA	GLU	128	38.869	13.078	39.394	1.00 33.32	В
• •	MOTA	876	СВ	GLU	128	37.785	13.669	38.502	1.00 34.68	В
10	MOTA	877	CG	GLU	128	38.287	14.201	37.178	1.00 39.01	В
	MOTA	878	CD	GLU	128 .	37.206	14.964	36.442	1.00 42.74	В
	MOTA	879	OE1	GLU	128	36.895	16.100	36.867	1.00 44.33	В
	MOTA	880	OEZ	GLU	128	36.654	14.422	35.458	1.00 43.63	В
	MOTA	881	С	GLU	128	39.512	11.879	38.700	1.00 32.67	В
15										
13	MOTA	882	0	GLU	128	38.825	10.930	38.348	1.00 31.45	В
	MOTA	883	N	GLU	129	40.825	11.926	38.500	1.00 32.62	· В
	MOTA	884	CA	GLU	129	41.532	10.815	37.871	1.00 33.28	В
	MOTA	885	CB	GLU	129	42.192	11.246	36.561	1.00 35.75	В
~~	MOTA	886	CG	GLU	129	41.218	11.496	35.420	1.00 39.64	В
20	MOTA	887	CD	GLU	129	41.922	11.680	34.082	1.00 42.49	В
	MOTA	888		GLU	129	41.266	12.139	33.119	1.00 43.56	В
	MOTA	889	OE2	GLU	129	43.129	11.367	33.996	1.00 45.44	В
										n
	MOTA	890	С	GLU	129	42.602	10.280	38.808	1.00 33.23	В
	MOTA	891	0	GLU	129	43.242	9.297	38.511	1.00 33.33	В
25										
43	MOTA	892	N	ASP	130	42.776	10.934	39.951	1.00 32.98	В
	MOTA	893	CA	ASP	130	43.789	10.516	40.912	1.00 32.86	В
	MOTA	894	CB	ASP	130	43.884	11.544	42.045	1.00 34.15	B
	MOTA	895	CG	ASP	130	45.247	11.564	42.699	1.00 35.32	В
20	MOTA	896		ASP	130	45.765	10.477	43.030	1.00 36.91	В
30	MOTA	897	OD2	ASP	130	45.801	12.665	42.882	1.00 36.83	В
	MOTA	898	С	ASP	130	43.468	9.129	41.485	1.00 33.07	В
	MOTA	899	0	ASP	130	42.429	8.928	42.114	1.00 32.52	В
	MOTA	900	N	PRO	131	44.367	8.152	41.268	1.00 32.43	В
	ATOM	901	CD	PRO	131	45.638	8.278	40.533	1.00 32.63	В
35										
33	MOTA	902	CA	PRO	131	44.186	6.782	41.757	1.00 30.77	В
	MOTA	903	CB	PRO	131	45.339	6.029	41.102	1.00 31.15	В
	MOTA	904	CG	PRO	131	46.399	7.073	41.005	1.00 31.37	В
	MOTA	905	С	PRO	131	44.192	6.673	43.283	1.00 30.54	В
40	MOTA	906	0	PRO	131	43.717	5.688	43.845	1.00 31.07	В
40	MOTA	907	N	LEU	132	44.721	7.691	43.953	1.00 28.68	В
	ATOM	908	CA	LEU	132	44.750	7.684	45.407	1.00 26.49	В
	MOTA	909	CB	LEU.	132	45.965	8.461	45.918	1.00 24.68	В
	MOTA	910	CG	LEU	132	47.355	7.961	45.497	1.00 25.57	В
	MOTA	911	CD1	LEU	132	48.414	8.782	46.221	1.00 24.29	В
45										
47	MOTA	912	CD2	LEU	132	47.526	6.481	45.843	1.00 26.94	В
	ATOM	913	С	LEU	132	43.455	8.248	46.008	1.00 26.30	В
	MOTA	914	0	LEU	132	43.294	8.285	47.228	1.00 26.84	В
	ATOM	915	N	ALA	133	42.532	8.672	45.145	1.00 24.55	В
					133	41.243	9.217	45.572	1.00 25.15	В
50	MOTA	916	CA	ALA						
50	MOTA	917	CB	ALA	133	40.393	9.562	44.352	1.00 24.26	В
	MOTA	918	С	ALA	133	40.502	8.215	46.453	1.00 25.64	В
	ATOM	919	0	ALA	133	40.528	7.034	46.201	1.00 27.86	В
	MOTA	920	N	GLY	134	39.831	8.706	47.485	1.00 26.27	В
~~	ATOM	921	CA	GLY	134	39.107	7.822	48.379	1.00 24.63	В
55	MOTA	922	С	GLY	134	37.633	7.705	48.038	1.00 24.63	В
	ATOM	923	0	GLY	134	37.176	8.224	47.013	1.00 23.91	В
	MOTA	924	N	ILE	135	36.887	7.030	48.910	1.00 22.69	В
	MOTA	925	CA	ILE	135	35.457	6.816	48.704	1.00 21.86	В
	MOTA	926	CB	ILE	135	34.839	6.028	49.898	1.00 21.68	В
60										
vv	MOTA	927	CG2	ILE	135	33.315	5.945	49.745	1.00 20.01	В
	MOTA	928	CG1	TI.F	135	35.464	4.628	49.971	1.00 20.31	В
	ATOM	929	CD1	ILE	135	35.183	3.865	51.246	1.00 16.89	В
	MOTA	930	С	ILE	135	34.652	8.103	48.481	1.00 20.87	В
	ATOM	931	0	ILE	135	33.956	8.228	47.495	1.00 19.45	В
65	MOTA	932	N	ILE	136	34.762	9.053	49.405	1.00 20.74	В
J.J										
	ATOM	933	CA	ILE	136	34.018	10.309	49.297	1.00 19.78	В
	MOTA	934	CB		136	34.420	11.273	50.436	1.00 19.46	В
				ILE						
	MOTA	935	CG2	ILE	136	33.654	12.581	50.302	1.00 23.46	В
	ATOM	936	CG1		136	34.128	10.616	51.792	1.00 19.18	В
70										
70	MOTA	937	CD1	ILE	136	34.597	11.398	53.011	1.00 20.13	В
									1.00 19.32	
	MOTA	938	С	ILE	136	34.146	11.016	47.929		В
	MOTA	939	0	ILE	136	33.149	11.258	47.255	1.00 18.78	В
	MOTA	940	N	PRO	137	35.377	11.340	47.499	1.00 18.18	В

	ATOM	941	CD	PRO	137	36.695	11.158	48.127	1.00 15.47	В
		-								
	ATOM	942	CA	PRO	137	35.501	12.008	46.198	1.00 17.79	В
	MOTA	943	CB	PRO	137	36.995	12.321	46.105	1.00 15.58	В
-	MOTA	944	CG	PRO	137	37.618	11.255	46.946	1.00 16.71	В
5	ATOM	945	С	PRO	137	35.010	11.135	45.040	1.00 20.22	В
_										
	MOTA	946	0	PRO	137	34.434	11.625	44.080	1.00 21.41	В
	MOTA	947	N	ARG	138	35.234	9.829	45.135	1.00 22.72	. в
	MOTA	948	CA	ARG	138	34.789	8.927	44.075	1.00 22.41	В
	MOTA	949	CB	ARG	138	35.378	7.534	44.270	1.00 21.69	В
10										
10	MOTA	950	CG	ARG	138	36.860	7.433	43.951	1.00 20.35	В
	MOTA	951	CD	ARG	138	37.395	6.072	44.347	1.00 17.89	В
	MOTA	952	NE	ARG	138	38.847	6.020	44.275	1.00 17.83	В
	ATOM	953	CZ	ARG	138	39.529	5.905	43.142	1.00 18.07	В
	ATOM	954	NH1	ARG	138	38.886	5.818	41.987	1.00 19.38	В
15	MOTA	955	MH2	ARG	138	40.854	5.906	43.156	1.00 18.54	В
	MOTA	956	С	ARG	138	33.263	8.829	44.007	1.00 22.14	В
	MOTA	957	0	ARG	138	32.689	8.890	42.942	1.00 23.68	В
	MOTA	958	N	THR	139	32.615	8.678	45.154	1.00 22.12	В
	MOTA	959	CA	THR	139	31.161	8.566	45.203	1.00 25.57	В
20										
20	MOTA	960	CB	THR	139	30.675	8.360	46.662	1.00 25.67	В
	MOTA	961	OG1	THR	139	31.355	7.236	47.234	1.00 27.07	В
	MOTA	962	CG2	THR	139	29.174	8.100	46.700	1.00 27.35	В
	MOTA	963	С	THR	139	30.463	9.797	44.614	1.00 26.55	В
	MOTA	964	0	THR	139	29.544	9.675	43.809	1.00 26.69	В
25	ATOM	965	N	LEU	140	30.910	10.982	45.017	1.00 27.11	В
25										
	ATOM	966	CA	LEU	140	30.314	12.213	44.523	1.00 26.17	В
	ATOM	967	CB	LEU	140	30.949	13.424	45.209	1.00 26.20	В
	MOTA	968	CG	LEU	140	30.599	13.605	46.690	1.00 26.65	В
	MOTA	969	CD1	LEU	140	31.435	14.723	47.280	1.00 25.28	В
20										
30	ATOM	970	CD2	LEU	140	29.114	13.896	46.849	1.00 24.93	В
	ATOM	971	С	LEU	140	30.473	12.320	43.018	1.00 25.73	В
	MOTA	972	0	LEU	140	29.556	12.725	42.333	1.00 25.93	В
	ATOM	973	N	HIS	141	31.641	11.941	42.514	1.00 25.67	В
	ATOM	974	CA	HIS	141	31.907	12.001	41.081	1.00 26.55	В
35	MOTA	975	СВ	HIS	141	33.394	11.743	40.813	1.00 25.96	В
33										
	MOTA	976	CG	HIS	141	33.770	11.804	39.364	1.00 26.57	В
	MOTA	977	CD2	HIS	141	33.823	10.841	38.415	1.00 28.59	В
	MOTA	978	ND1	HIS	141	34.138	12.974	38.739	1.00 29.67	В
	MOTA	979	CEI	HIS	141	34.405	12.731	37.467	1.00 29.67	В
40										
40	MOTA	980	NE2	HIS	141	34.221	11.443	37.245	1.00 28.28	В
	ATOM	981	С	HIS	141	31.072	10.973	40.322	1.00 26.86	В
	ATOM	982	0	HIS	141	30.679	11.199	39.181	1.00 28.03	В
	ATOM	983	N	GLN	142	30.802	9.844	40.965	1.00 24.80	В
	MOTA	984	CA	GLN	142	30.045	8.780	40.326	1.00 25.14	В
45	ATOM	985	CB	GLN	142	30.353	7.436	40.994	1.00 27.48	В
73										
	ATOM	986	CG	GLN	142	31.680	6.834	40.563	1.00 30.52	В
		987	CD	GLN	142	31.684	6.417		1.00 34.29	
	MOTA							39.102		В
	MOTA	988	OE1	GLN	142	30.990	5.475	38.711	1.00 34.96	В
	MOTA	989		GLN	142	32.468	7.116	38.287	1.00 35.49	В
50										
50	MOTA	990	С	GLN	142	28.550	9.017	40.317	1.00 22.70	В
	MOTA	991	0	GLN	142	27.856	8.528	39.440	1.00 21.46	В
	MOTA	992	N	ILE	143	28.058	9.766	41.297	1.00 21.92	В
	ATOM	993	CA	ILE	143	26.634	10.062	41.365	1.00 22.81	В
	MOTA	994	CB	ILE	143	26.304	10.888	42.620	1.00 22.20	В
55	ATOM	995	CG2	TLE	143	24 880	11 423	42 533	1 00 22 62	ra e
55	ATOM	995		ILE	143	24.880	11.423	42.533	1.00 22.62	В
	ATOM	996	CG1	ILE	143	26.476	10.024	43.872	1.00 21.94	В
	ATOM	997	CD1	ILE	143	26.390	10.793	45.177	1.00 20.22	В
	ATOM	998	C	ILE	143	26.187	10.824	40.114	1.00 24.31	В
	MOTA	999	0	ILE	143	25.156	10.525	39.544	1.00 24.61	
(1)										В
60	ATOM	1000	N	PHE	144	26.987	11.803	39.693	1.00 26.83	В
						26.672				
	ATOM	1001	CA	PHE	144		12.611	38.511	1.00 28.06	В
	ATOM	1002	CB	PHE	144	27.580	13.857	38.439	1.00 26.87	В
	MOTA	1003	CG	PHE	144	27.330	14.861	39.536	1.00 27.89	В
	ATOM	1004	CD1	PHE	144	26.169	15.630	39.545	1.00 29.48	В
65										
U.J	ATOM	1005	CD2	PHE	144	28.230	15.002	40.592	1.00 28.77	В
	ATOM	1006	CE1	PHE	144	25.901	16.518	40.592	1.00 28.27	В
	ATOM	1007	CE2	PHE	144	27.974	15.890	41.647	1.00 28.13	В
	ATOM	1008	CZ	PHE	144	26.805	16.646	41.646	1.00 30.04	В
	ATOM	1009	С	PHE	144	26.818	11.778	37.238	1.00 28.29	В
70	ATOM	1010	0	PHE	144	26.140	12.025	36.253	1.00 28.71	В
. •										
	ATOM	1011	N	GLU	145	27.703	10.786	37.273	1.00 29.40	В
	ATOM	1012	CA	GLU	145	27.915	9.909	36.122	1.00 31.01	В
	MOTA	1013	CB	GLU	145	29.216	9.129	36.297	1.00 32.65	В
										-

	MOTA MOTA	1014 1015	CG CD	GLU	145 145	30.467 30.706 31.623	9.938 10.197 10.987	36.056 34.578	1.00 38.99 1.00 43.44 1.00 45.83	B B
5	MOTA MOTA MOTA	1016 1017 1018	C OE3	GLU GLU	145 145 145	29.977 26.753	9.603 8.926	34.246 33.752 35.940	1.00 45.50 1.00 31.44	B B B
	MOTA MOTA MOTA	1019 1020 1021	O N CA	CLU LYS LYS	145 146 146	26.237 26.348 25.269	8.754 8.290 7.310	34.841 37.033 37.012	1.00 30.51 1.00 31.75 1.00 33.61	B B
10	MOTA MOTA	1022 1023 1024	CB CG CD CE	LYS LYS LYS	146 146 146 146	25.172 26.350 26.243 27.228	6.629 5.717 5.107 3.958	38.381 38.695 40.086	1.00 34.03 1.00 38.09 1.00 40.00 1.00 43.91	В В В
15	ATOM ATOM ATOM ATOM	1025 1026 1027 1028	NZ C O	LYS LYS	146 146 146	26.919 23.908 23.171	2.818 7.882 7.276	40.263 39.352 36.624 35.840	1.00 43.76 1.00 33.97 1.00 33.52	B B B
15	MOTA MOTA MOTA	1029 1030 1031	N CA CB	LEU LEU	147 147 147	23.577 22.302 21.746	9.046 9.689 10.320	37.176 36.892 38.175	1.00 33.52 1.00 32.92 1.00 31.38	B B B
20	ATOM ATOM MOTA	1032 1033 1034	CG CD1	LEU LEU	147 147 147	21.336 21.060 20.096	9.359 10.138 8.569	39.302 40.585 38.883	1.00 32.23 1.00 31.01 1.00 32.23	B B
	MOTA MOTA MOTA	1035 1036 1037	C 0 ท	LEU LEU THR	147 147 148	22.418 21.562 23.475	10.749 11.609 10.666	35.794 35.669 34.992	1.00 32.85 1.00 33.29 1.00 33.48	B B B
25	MOTA MOTA MOTA	1038 1039 1040	CA CB OG1	THR THR THR	148 148 148	23.701 24.900 25.074	11.636 11.236 12.218	33.921 33.036 32.008	1.00 35.96 1.00 36.22 1.00 37.20	B B B
30	MOTA MOTA MOTA	1041 1042 1043	CG2 C O	THR THR THR	148 148 148	24.664 22.484 22.123	9.871 11.879 13.021	32.381 33.014 32.772	1.00 38.66 1.00 36.52 1.00 35.06	B B B
	MOTA ATOM ATOM	1044 1045 1046	N CA CB	ASP ASP ASP	149 149 149	21.868 20.690 21.101	10.806 10.923 11.265	32.514 31.648 30.206	1.00 35.79 1.00 35.29 1.00 36.06	B B B
35	ATOM ATOM	1047 1048 1049	OD2	ASP ASP	149 149 149	22.065 22.292 22.590	10.249 9.196 10.500	29.607 30.243 28.496	1.00 37.80 1.00 40.41 1.00 36.11	B B
40	MOTA MOTA MOTA	1050 1051 1052 1053	C O N	ASP ASP ASN	149 149 150	19.821 19.397 19.554	9.657 9.184 9.122 7.923	31.646 30.592 32.834	1.00 34.60 1.00 31.15 1.00 34.29	B B
40	ATOM ATOM ATOM ATOM	1054 1055 1056	CA CB CG	ASN ASN ASN ASN	150 150 150 150	18.732 19.227 19.031 19.134	7.041 7.690 8.903	32.948 34.102 35.452 35.579	1.00 35.52 1.00 32.56 1.00 32.34 1.00 29.46	B B B
45	MOTA MOTA MOTA	1057 1058 1059		ASN ASN ASN	150 150 150	18.760 17.265 16.436	6.877 8.292 7.431	36.475 33.154 33.447	1.00 31.14 1.00 36.96 1.00 37.74	В В В
	ATOM ATOM ATOM	1060 1061 1062	N CA C	GLY GLY GLY	151 151 151	16.953 15.585 15.195	9.578 10.044 10.351	32.996 33.153 34.585	1.00 37.37 1.00 37.75 1.00 39.12	B B B
50	MOTA MOTA MOTA	1063 1064 1065	O N CA	GLY THR THR	151 152 152	14.013 16.190 15.950	10.490 10.455 10.748	34.903 35.455 36.860	1.00 39.41 1.00 40.74 1.00 42.40	B B B
55	MOTA MOTA MOTA	1066 1067 1068	CB OG1 CG2		152 152 152	16.587 16.143 16.182	9.674 8.375 9.891	37.772 37.365 39.221	1.00 42.88 1.00 46.42 1.00 43.02	В В В
	MOTA MOTA MOTA	1069 1070 1071	С О N	THR THR GLU	152 152 153	16.537 17.753 15.657	12.108 12.303 13.050	37.216 37.176 37.539	1.00 42.92 1.00 45.15 1.00 41.16	B B B
60	ATOM ATOM ATOM	1072 1073 1074	CA CB CG	GLU GLU	153 153 153	16.083 14.902 15.290	14.390 15.350 16.742	37.910 37.865 37.456	1.00 39.15 1.00 41.46 1.00 46.88	B B
65	ATOM ATOM ATOM	1075 1076 1077	OE1	GLU	153 153 153	15.645 16.309 15.256	16.826 17.808 15.920	35.983 35.591 35.216	1.00 50.26 1.00 54.28 1.00 50.49	B B
UJ	ATOM ATOM ATOM	1078 1079 1080	O N	GLU GLU PHE	153 153 154	16.601 16.024 17.676	14.273 13.550 14.986	39.336 40.143 39.649	1.00 35.77 1.00 34.39 1.00 32.19	B B
70	ATOM ATOM ATOM ATOM	1081 1082 1083 1084	CA CB CG CD1	PHE PHE PHE	154 154 154	18.247 19.221 20.478 21.634	14.903 13.731 13.959	40.985 41.036 40.244 40.870	1.00 29.64 1.00 26.07 1.00 22.24 1.00 19.12	B B B
	MOTA MOTA	1085 1086	CD2 CE1	PHE	154 154 154	20.502	14.413 13.725 14.627	38.873 40.140	1.00 19.12 1.00 19.79 1.00 20.17	B B B

							•			
	MOTA	1087	CE.	2 PHE	154	21.665	13.938	38.132	1.00 19.68	В
	MOTA	1088		PHE		22.819	14.388	38.768	1.00 18.22	В
	MOTA	1089	С	PHE		18.983	16.153	41.462	1.00 28.59	В
_	MOTA	1090	0	PHE	154	19.343	17.025	40.687	1.00 28.03	В
5	MOTA	1091	N	SER	155	19.219	16.194	42.765	1.00 28.62	В
	MOTA	1092	CA	SER	155	19.940	17.286	43.398	1.00 29.65	В
	ATOM	1093	CB	SER		18.958	18.297	44.007	1.00 29.30	B
							17.825			
	MOTA	1094	OG	SER	155	18.373		45.210	1.00 30.25	В
10	MOTA	1095	С	SER	155	20.812	16.670	44.495	1.00 29.32	В
10	MOTA	1096	0	SER	155	20.364	15.799	45.236	1.00 28.78	В
	ATOM	1097	N	VAL	156	22.057	17.117	44.601	1.00 28.25	В
	ATOM	1098	CA	VAL	156	22.945	16.571	45.622	1.00 27.65	В
								45.002		
	MOTA	1099	CB	VAL	156	24.266	16.059		1.00 27.82	В
1.5	MOTA	1100		VAL	156	25.067	15.296	46.051	1.00 26.25	В
15	MOTA	1101	CG2	VAL	156	23.970	15.178	43.793	1.00 26.92	В
	ATOM	1102	С	VAL	156	23.293	17.600	46.697	1.00 28.00	ъ
	MOTA	1103	0	VAL	156	23.691	18.705	46.386	1.00 27.61	В
	ATOM	1104	N	LYS	157	23.135	17.210	47.961	1.00 28.26	
										В
20	MOTA	1105	CA	LYS	157	23.455	18.066	49.107	1.00 29.25	В
20	MOTA	1106	CB	LYS	157	22.188	18.423	49.897	1.00 30.98	В
	MOTA	1107	CG	LYS	157	21.322	19.485	49.261	1.00 34.09	В
	ATOM	1108	CD	LYS	157	20.065	19.741	50.080	1.00 37.95	В
	ATOM	1109	CE	LYS	157	19.399		49.665		
							21.060		1.00 41.02	В
25	MOTA	1110	NZ	LYS	157	20.186	22.277	50.077	1.00 41.43	В
25	MOTA	1111	С	LYS	157	24.426	17.349	50.047	1.00 28.34	В
	MOTA	1112	0	LYS	157	24.195	16.217	50.413	1.00 28.14	B
	MOTA	1113	N	VAL	158	25.510	18.016	50.433	1.00 27.07	В
	ATOM	1114	CA	VAL	158	26.480	17.412	51.342	1.00 27.48	В
20	MOTA	1115	CB	VAL	158	27.883	17.280	50.694	1.00 26.91	В
30	MOTA	1116	CG1	VAL	158	27.811	16.356	49.489	1.00 27.77	В
	ATOM	1117	CG2	VAL	158	28.415	18.648	50.301	1.00 27.25	В
	MOTA	1118	С	VAL	158	26.629	18.183	52.651	1.00 28.66	В
	ATOM	1119	ō	VAL	158	26.444	19.393	52.705	1.00 27.69	B
25	MOTA	1120	N	SER	159	26.973	17.460	53.708	1.00 28.98	В
35	MOTA	1121	CA	SER	159	27.155	18.058	55.013	1.00 30.95	В
	MOTA	1122	CB	SER	159	25.869	17.953	55.823	1.00 32.26	В
	MOTA	1123	OG	SER	159	24.817	18.602	55.132	1.00 38.42	В
	ATOM	1124	c	SER	159	28.289	17.362	55.736	1.00 30.96	В
40	ATOM	1125	0	SER	159	28.388	16.146	55.722	1.00 34.27	В
40	MOTA	1126	N	LEU	160	29.158	18.143	56.357	1.00 29.31	В
	MOTA	1127	CA	LEU	160	30.280	17.577	57.064	1.00 27.33	В
	MOTA	1128	CB	LEU	160	31.582	18.130	56.499	1.00 27.18	В
	ATOM	1129	CG	LEU	160	32.856	17.456	56.991	1.00 28.13	В
	MOTA	1130								
45				LEU	160	32.751	15.954	56.790	1.00 29.56	В
43	MOTA	1131		LEU	160	34.044	18.019	56.23 7	1.00 28.17	В
	MOTA	1132	С	LEU	160	30.167	17.884	58.552	1.00 28.09	В
	MOTA	1133	0	LEU	160	30.607	18.943	59.026	1.00 26.39	В
	MOTA	1134	N	LEU	161	29.558	16.949	59.276	1.00 25.48	В
	ATOM	1135	CA	LEU	161	29.371	17.075	60.710	1.00 23.19	В
50										
50	MOTA	1136	CB	LEU	161	27.982	16.567	61.101	1.00 21.33	В
	MOTA	1137	CG	LEU	161	27.694	16.395	62.594	1.00 19.50	В
	ATOM	1138	CD1	LEU	161	27.772	17.736	63.288	1.00 19.94	В
	MOTA	1139	CD2	LEU	161	26.314	15.775	62.782	1.00 17.88	В
	ATOM	1140	С	LEU	161	30.452	16.264	61.415	1.00 23.39	В
55					161		15.094			
33	MOTA	1141	0	LEU		30.641		61.129	1.00 25.56	В
	MOTA	1142	N	GLU	162	31.165	16.899	62.336	1.00 22.32	В
	ATOM	1143	CA	GLU	162	32.232	16.237	63.065	1.00 19.98	В
	MOTA	1144	CB	GLU	162	33.574	16.839	62.650	1.00 17.28	В
	MOTA	1145	CG	GLU	162	33.762	16.859	61.137	1.00 15.11	В
60	ATOM	1146					16.937			
00			CD	GLU	162	35.212		60.737	1.00 15.23	В
	MOTA	1147		GLU	162	36.063	17.134	61.621	1.00 15.82	В
	MOTA	1148	OE2	GLU	162	35.513	16.813	59.539	1.00 17.71	В
	ATOM	1149	С	GLU	162	32.031	16.344	64.573	1.00 19.72	В
	ATOM	1150	ō	GLU	162	31.468	17.299	65.059	1.00 20.94	В
65										
05	MOTA	1151	N	ILE	163	32.503	15.348	65.312	1.00 18.63	В
	ATOM	1152	CA	ILE	163	32.346	15.350	66.756	1.00 18.63	В
	MOTA	1153	CB	ILE	163	31.544	14.120	67.223	1.00 19.02	В
	MOTA	1154	CG2	ILE	163	31.324	14.178	68.742	1.00 16.34	В
	ATOM	1155		ILE	163	30.210	14.072	66.466	1.00 20.01	В
70	MOTA									
70		1156		ILE	163	29.479	12.746	66.563	1.00 22.19	В
	MOTA	1157	c	ILE	163	33.694	15.353	67.467	1.00 20.32	В
	MOTA	1158	0	ILE	163	34.616	14.672	67.050	1.00 21.59	В
	MOTA	1159	N	TYR	164	33.799	16.131	68.542	1.00 20.27	В
									. =	-

	MOTA	1160	CA	TYR	164	35.031	16.206	69.312	1.00 19.81	В
	ATOM	1161	СВ	TYR	164	35.964	17.271	68.709	1.00 20.16	В
	ATOM	1162		TYR	164	37.269	17.434	69.451	1.00 17.18	В
_	ATOM	1163		TYR	164	37.334	18.191	70.622	1.00 16.03	В
5	ATOM	1164		TYR	164	38.506	18.253	71.372	1.00 16.71	В
	MOTA	1165	CD2	TYR	164	38.416	16.756	69.042	1.00 18.67	В
	MOTA	1166	CE2	TYR	164	39.594	16.812	69.789	1.00 16.74	В
	MOTA	1167	CZ	TYR	164	39.627	17.557	70.954	1.00 14.83	В
	MOTA	1168	ОН	TYR	164	40.758	17.569	71.726	1.00 14.97	В
10	MOTA	1169	С	TYR	164	34.685	16.520	70.761	1.00 21.32	В
	ATOM	1170	0	TYR	164	33.971	17.468	71.044	1.00 22.71	В
	MOTA	1171	N	ASN	165	35.185	15.694	71.672	1.00 22.32	В
	ATOM	1172	CA	ASN	165	34.926	15.860	73.092	1.00 23.78	В
	MOTA	1173	CB	ASN	165	35.722	17.043	73.636	1.00 27.16	В
15	MOTA	1174	CG	ASN	165	35.729	17.090	75.149	1.00 31.99	В
	MOTA	1175		ASN	165	36.159	16.150	75.801	1.00 37.27	В
	MOTA	1176	ND2		165	35.249	18.190	75.714	1.00 32.43	В
	MOTA	1177	C	ASN	165	33.431	16.088	73.313	1.00 24.23	В
20	MOTA	1178	0	ASN	165	33.034	16.915	74.130	1.00 25.34	В
20	MOTA	1179	N	GLU	166	32.615	15.340	72.572	1.00 22.37	В
	MOTA	1180	CA	GLU	166	31.154	15.421	72.641	1.00 22.51	В
	MOTA	1181	CB	GLU	166	30.638	15.047	74.044	1.00 19.36	В
	MOTA	1182	CG	GLU	166	30.620	13.540	74.319	1.00 20.22	В
25	MOTA	1183	CD	GLU	166	29.915	12.746	73.222	1.00 20.01 1.00 19.99	В
23	MOTA	1184 1185		-	166	28.668 30.618	12.648 12.228	73.240 72.330	1.00 19.99	B B
	ATOM ATOM	1186	OE2	GLU	166 166	30.570	16.770	72.223	1.00 16.43	В
	ATOM	1187	C O	GLU	166	29.553	17.189	72.725	1.00 22.40	В
	ATOM	1188	N	GLU	167	31.229	17.443	71.288	1.00 25.41	В
30	MOTA	1189	CA	GLU	167	30.739	18.721	70.793	1.00 27.30	В
-	ATOM	1190	СВ	GLU	167	31.679	19.858	71.191	1.00 29.98	В
	ATOM	1191	CG	GLU	167	31.567	20.295	72.648	1.00 34.85	В
	MOTA	1192	CD	GLU	167	32.384	21.553	72.941	1.00 39.75	В
	ATOM	1193	OE1		167	33.635	21.487	72.865	1.00 39.56	В
35	ATOM	1194	OE2		167	31.771	22.608	73.237	1.00 41.26	В
	ATOM	1195	С	GLU	167	30.637	18.626	69.278	1.00 28.54	В
	MOTA	1196	0	GLU	167	31.495	18.046	68.633	1.00 29.56	В
	ATOM	1197	N	LEU	168	29.574	19.190	68.719	1.00 28.34	В
	MOTA	1198	CA	LEU	168	29.367	19.138	67.280	1.00 28.28	В
40	MOTA	1199	CB	LEU	168	27.865	19.078	66.955	1.00 30.49	В
	MOTA	1200	CG	LEU	168	27.009	17.925	67.512	1.00 30.82	В
	MOTA	1201		LEU	168	27.623	16.583	67.142	1.00 31.07	В
	MOTA	1202	CD2		168	26.892	18.044	69.009	1.00 33.15	В
15	MOTA	1203	С	LEU	168	29.997	20.322	66.563	1.00 26.93	В
45	MOTA	1204	0	LEU	168	29.972	21.442	67.064	1.00 28.48	В
	MOTA	1205	N	PHE	169	30.562	20.069	65.386	1.00 24.01	В
	MOTA	1206	CA	PHE	169	31.191	21.112	64.584	1.00 22.58	В
	ATOM	1207	CB	PHE	169	32.723	21.073	64.727	1.00 22.71	В
50	MOTA	1208	CG	PHE PHE	169	33.213	21.377		1.00 21.76 1.00 21.14	В
50	MOTA	1209 1210		PHE	169 169	33.451 33.393	20.354 22.699	67.027 66.534	1.00 21.14	B B
	MOTA MOTA	1210		PHE	169	33.861	20.628	68.323	1.00 22.05	В
	MOTA	1212		PHE	169	33.802	22.989	67.830	1.00 21.62	В
	MOTA	1213	cz	PHE	169	34.037	21.952	68.729	1.00 24.67	В
55	ATOM	1214	c	PHE	169	30.824	20.950	63.111	1.00 23.10	В
	ATOM	1215	ō	PHE	169	30.612	19.836	62.634	1.00 20.06	В
	ATOM	1216	N	ASP	170	30.739	22.079	62.406	1.00 22.96	В
	ATOM	1217	CA	ASP	170	30.416	22.100	60.978	1.00 22.20	В
	MOTA	1218	СВ	ASP	170	29.344	23.148	60.679	1.00 20.54	В
60	ATOM	1219	CG	ASP	170	28.799	23.048	59.257	1.00 21.66	В
	MOTA	1220	OD1	ASP	170	29.554	22.671	58.337	1.00 18.77	В
	MOTA	1221	OD2	ASP	170	27.602	23.358	59.065	1.00 23.66	В
	MOTA	1222	С	ASP	170	31.680	22.466	60.211	1.00 22.85	В
	ATOM	1223	0	ASP	170	32.108	23.621	60.242	1.00 25.36	В
65	ATOM	1224	N	LEU	171	32.280	21.490	59.529	1.00 22.35	В
	MOTA	1225	CA	LEU	171	33.494	21.729	58.764	1.00 22.58	В
	MOTA	1226	CB	LEU	171	34.430	20.533	58.864	1.00 16.27	В
	MOTA	1227	CG	LEU	171	35.235	20.424	60.169	1.00 16.39	В
~ ^	MOTA	1228	CD1		171	36.234	21.577	60.274	1.00 14.32	В
70	MOTA	1229	CD2	LEU	171	34.304	20.421	61.351	1.00 12.71	В
	MOTA	1230	С	LEU	171	33.257	22.082	57.300	1.00 26.58	В
	MOTA	1231	0	LEU	171	34.167	21.976	56.479	1.00 26.75	В
	MOTA	1232	N	LEU	172	32.038	22.510	56.978	1.00 29.45	В

	MOTA	1233	CA	LEU	172	31.706	22.898	55.612	1.00 34.57	В
	MOTA	1234	CB	LEU	172	30.742	21.892	54.975	1.00 33.36	В
	MOTA	1235	CG	LEU	172	31.387	20.715	54.244	1.00 31.35	В
								53.459	1.00 32.85	В
-	MOTA	1236		LEU	172	30.316	19.992			
5	MOTA	1237	CD2	LEU	172	32.473	21.201	53.302	1.00 32.08	В
	MOTA	1238	С	LEU	172	31.107	24.297	55.531	1.00 38.00	В
	MOTA	1239	0	LEU	172	30.961	24.850	54.457	1.00 39.59	В
	ATOM	1240	N	ASN	173	30.766	24.865	56.679	1.00 41.36	В
	MOTA	1241	CA	ASN	173	30.201	26.205	56.714	1.00 45.99	В
10	MOTA	1242	CB	ASN	173	29.401	26.405	58.003	1.00 47.65	В
	MOTA	1243	CG	ASN	173	28.670	27.735	58.038	1.00 50.77	В
	MOTA	1244	OD1	ASN	173	28.005	28.060	59.014	1.00 51.85	В
	MOTA	1245	MD2	ASN	173	28.792	28.508	56.964	1.00 51.20	В
	MOTA	1246	С	ASN	173	31.346	27.214	56.643	1.00 48.84	В
15	MOTA	1247	0	ASN	173	32.070	27.403	57.606	1.00 48.46	В
	MOTA	1248	N	PRO	174	31.521	27.872	55.484	1.00 52.47	В
	MOTA	1249	CD	PRO	174	30.710	27.738	54.258	1.00 53.23	В
	MOTA	1250	CA	PRO	174	32.587	28.862	55.289	1.00 55.00	В
	MOTA	1251	ĊВ	PRO	174	32.542	29.116	53.786	1.00 53.92	В
20	MOTA	1252	CG	PRO	174	31.089	28.983	53.482	1.00 52.93	В
20										
	MOTA	1253	С	PRO	174	32.396	30.141	56.095	1.00 58.07	В
	MOTA	1254	0	PRO	174	33.329	30.921	56.263	1.00 58.84	В
	MOTA	1255	N	SER	175	31.183	30.343	56.596	1.00 60.39	В
	ATOM	1256	CA	SER	175	30.861	31.534	57.372	1.00 62.65	В
25	MOTA	1257	СВ	SER	175	29.343	31.666	57.498	1.00 63.30	В
25										
	MOTA	1258	OG	SER	175	28.723	31.545	56.230	1.00 65.14	В
	MOTA	1259	С	SER	175	31.500	31.535	58.759	1.00 63.89	В
	MOTA	1260	0	SER	175	32.365	32.358	59.051	1.00 65.71	В
	MOTA	1261	N	SER	176	31.066	30.608	59.608	1.00 64.41	В
30									1.00 64.51	В
50	MOTA	1262	CA	SER	176	31.581	30.506	60.969		
	MOTA	1263	CB	SER	176	30.597	29.725	61.844	1.00 64.33	В
	MOTA	1264	OG	SER	176	30.446	28.396	61.378	1.00 64.08	В
	MOTA	1265	С	SER	176	32.942	29.824	61.012	1.00 64.78	B
	MOTA	1266	0	SER	176	33.474	29.418	59.984	1.00 64.25	В
35										
33	MOTA	1267	N	ASP	177	33.500	29.704	62.213	1.00 65.17	В
	MOTA	1268	CA	ASP	177	34.789	29.051	62.379	1.00 65.62	В
	MOTA	1269	CB	ASP	177	35.782	29.964	63.106	1.00 66.73	В
	MOTA	1270	CG	ASP	177	35.449	30.137	64.576	1.00 68.48	В
	MOTA	1271	OD1	ASP	177	36.388	30.344	65.377	1.00 67.76	В
40										
40	MOTA	1272	OD2	ASP	177	34.251	30.069	64.929	1.00 69.81	В
	MOTA	1273	C	ASP	177	34.615	27.757	63.166	1.00 64.60	В
	MOTA	1274	0	ASP	177	33.498	27.335	63.445	1.00 64.22	В
	ATOM	1275	N	VAL	178	35.737	27.146	63.529	1.00 63.40	В
	MOTA	1276	CA	VAL	178	35.735	25.890	64.264	1.00 62.69	Ė
45										
45	ATOM	1277	CB	VAL	178	37.046	25.116	64.016	1.00 62.85	. В
	ATOM	1278	CG1	VAL	178	37.190	24.809	62.536	1.00 61.71	В
	MOTA	1279	CGZ	VAL	178	38.231	25.934	64.510	1.00 62.99	В
	MOTA	1280	С	VAL	178	35.552	26.050	65.770	1.00 61.94	В
	MOTA	1281	0	VAL	178	35.792	25.122	66.524	1.00 62.60	В
50										
50	MOTA	1282	N	SER	179	35.124	27.227	66.208	1.00 61.07	В
	MOTA	1283	CA	SER	179	34.922	27.447	67.632	1.00 59.46	В
									1.00 59.42	
	MOTA	1284	CB	SER	179	35.629	28.731	68.080		В
	MOTA	1285	OG	SER	179	35.030	29.877	67.507	1.00 59.13	В
	MOTA	1286	С	SER	179	33.437	27.517	67.977	1.00 58.68	В
55										
JJ	ATOM	1287	0	SER	179	33.067	27.489	69.144	1.00 59.17	В
	MOTA	1288	N	GLU	180	32.591	27.605	66.955	1.00 56.65	В
	MOTA	1289	CA	GLU	180	31.145	27.671	67.161	1.00 55.22	В
	MOTA	1290	CB	GLU	180	30.507	28.607	66.129	1.00 56.66	В
	MOTA	1291	CG	GLU	180	30.550	30.079	66.535	1.00 59.12	В
60										
oo	MOTA	1292	CD	GLU	180	30.230	31.032	65.392	1.00 60.03	В
	MOTA	1293	OE1	GLU	180	31.066	31.163	64.474	1.00 60.45	В
			OE2				31.650		1.00 61.47	
	MOTA	1294			180	29.143		65.411		В
	MOTA	1295	С	GLU	180	30.498	26.293	67.080	1.00 52.95	В
	ATOM	1296	ō	GLU	180	30.207	25.803	66.004	1.00 52.86	В
65										
65	MOTA	1297	N	ARG	181	30.285	25.679	68.239	1.00 51.12	В
	MOTA	1298	CA	ARG	181	29.675	24.360	68.315	1.00 48.73	В
	MOTA	1299	CB	ARG	181	29.835	23.793	69.727	1.00 51.62	В
	MOTA	1300	CG	ARG	181	29.642	24.816	70.836	1.00 56.45	В
		1301	CD		181	28.829	24.256	72.007	1.00 61.65	
70	ATOM			ARG						В
70	MOTA	1302	NE	ARG	181	27.400	24.135	71.702	1.00 64.33	В
	MOTA	1303	CZ	ARG	181	26.483	23.692	72.560	1.00 65.71	В
	MOTA	1304	NH1		181	26.834	23.324	73.786	1.00 66.05	В
	MOTA	1305	NH2	ARG	181	25.209	23.616	72.194	1.00 66.36	В
	* *			-					=	

	MOTA	1306	С	ARG	181	28.196	24.403	67.940	1.00 45.46	В
	ATOM	1307		ARG	181	27.556	25.438	68.029	1.00 45.33	В
	MOTA	1308	N	LEU	182	27.661	23.267	67.510	1.00 41.98	В
_	MOTA	1309	CA	LEU	182	26.258	23.193	67.133	1.00 38.04	В
5	MOTA	1310	CB	LEU	182	26.099	22.419	65.824	1.00 35.02	В
	MOTA	1311	CG	LEU	182	26.990	22.896	64.677	1.00 33.00	В
	MOTA	1312		LEU	182	26.723	22.060	63.450	1.00 31.57	В
	MOTA		-	LEU	182	26.733	24.372	64.393	1.00 32.49	В
10	MOTA	1314	С	LEU	182	25.456	22.524	68.236	1.00 38.00	В
10	MOTA	1315	0	LEU	182	26.017	21.845	69.096	1.00 37.75	В
	MOTA	1316	N	GLN	183	24.140	22.723	68.206	1.00 37.43	В
	MOTA MOTA	1317	CA	GLN	183	23.239 22.269	22.148	69.200	1.00 36.96	В
	ATOM	1318 1319	CB CG	GLN GLN	183 183	22.209	23.210 24.543	69.724 70.024	1.00 38.87	B B
15	ATOM	1320	CD	GLN	183	21.969	25.536	70.653	1.00 45.13	В
13	MOTA	1321		GLN	183	21.663	25.448	71.832	1.00 45.23	В
	MOTA	1322		GLN	183	21.493	26.492	69.856	1.00 46.40	В
	MOTA	1323	C	GLN	183	22.455	21.018	68.567	1.00 35.80	В
	MOTA	1324	ŏ	GLN	183	22.097	21.073	67.397	1.00 33.40	В
20	ATOM	1325	N	MET	184	22.165	20.005	69.367	1.00 36.43	В
	ATOM	1326	CA	MET	184	21.450	18.840	68.877	1.00 37.65	В
	ATOM	1327	СВ	MET	184	22.322	17.610	69.118	1.00 38.53	В
	ATOM	1328	CG	MET	184	22.033	16.445	68.221	1.00 41.45	В
~~	MOTA	1329	SD	MET	184	23.141	15.085	68.586	1.00 42.59	В
25	MOTA	1330	CE	MET	184	22.590	14.660	70.190	1.00 40.16	В
	ATOM	1331	С	MET	184	20.111	18.692	69.590	1.00 37.82	В
	ATOM	1332	0	MET	184	20.021	18.909	70.790	1.00 37.22	В
	MOTA	1333	N	PHE	185	19.070	18.328	68.844	1.00 39.01	В
30	MOTA	1334	CA	PHE	185	17.741	18.148	69.432	1.00 41.26	В
30	ATOM	1335	CB	PHE	185	16.851	19.377	69.160	1.00 40.10	В
	ATOM	1336	CG	PHE	185	17.499	20.697	69.494	1.00 38.50 1.00 36.52	B
	ATOM	1337 1338		PHE	185	18.249 17.376	21.377 21.248	68.544 70.770		B B
	MOTA MOTA	1339		PHE	185 185	18.869	22.586	68.851	1.00 38.29 1.00 37.06	В
35	ATOM	1340	CE2		185	17.994	22.459	71.089	1.00 37.60	В
23	ATOM	1341	CZ	PHE	185	18.743	23.128	70.128	1.00 37.41	В
	MOTA	1342	c	PHE	185	17.034	16.903	68.887	1.00 43.21	В
	MOTA	1343	ŏ	PHE	185	17.221	16.532	67.734	1.00 41.62	В
	ATOM	1344	N	ASP	186	16.223	16.259	69.724	1.00 46.68	В
40	ATOM	1345	CA	ASP	186	15.482	15.078	69.286	1.00 51.00	В
	MOTA	1346	CB	ASP	186	14.722	14.437	70.449	1.00 52.32	В
	MOTA	1347	CG	ASP	186	15.642	13.912	71.530	1.00 54.63	В
	MOTA	1348		ASP	186	16.575	13.150	71.202	1.00 55.59	В
45	MOTA	1349		ASP	186	15.428	14.262	72.712	1.00 56.98	В
43	ATOM	1350	c	ASP	186	14.481	15.539	68.241	1.00 52.48	В
	MOTA	1351	0	ASP	186	13.777	16.510	68.443 67.118	1.00 52.99 1.00 55.70	В
	ATOM ATOM	1352 1353	N CA	ASP ASP	187 187	14.425 13.500	14.841 15.214	66.061	1.00 55.70	B B
	ATOM	1354	CB	ASP	187	13.845	14.469	64.772	1.00 59.24	В
50	MOTA	1355	CG	ASP	187	13.015	14.929	63.601	1.00 58.32	В
	ATOM	1356		ASP	187	13.345	14.546	62.459	1.00 59.29	В
	ATOM	1357		ASP	187	12.035	15.672	63.822	1.00 58.82	В
	ATOM	1358	С	ASP	187	12.064	14.905	66.473	1.00 61.85	В
	ATOM	1359	0	ASP	187	11.690	13.750	66.626	1.00 62.59	В
55	MOTA	1360	N	PRO	188	11.241	15.950	66.662	1.00 64.18	В
	ATOM	1361	CD	PRO	188	11.573	17.374	66.493	1.00 64.61	В
	MOTA	1362	CA	PRO	188	9.840	15.794	67.061	1.00 66.06	В
	MOTA	1363	СВ	PRO	188	9.287	17.207	66.923	1.00 65.95	В
۲0	ATOM	1364	CG	PRO	188	10.472	18.048	67.271	1.00 65.81	В
60	ATOM	1365	С	PRO	188	9.094	14.793	66.189	1.00 68.16	В
	MOTA	1366	0	PRO	188	8.316	13.981	66.687	1.00 67.45	В
	MOTA	1367	N	ARG	189	9.345	14.854	64.886	1.00 70.27	В
	ATOM ATOM	1368 1369	CA CB	ARG	189 189	8.702 9.278	13.949 14.170	63.944 62.547	1.00 73.47 1.00 73.94	В
65			CG	ARG	189		15.498			В
J.J	ATOM ATOM	1370 1371	CD	ARG ARG	189	8.869 9.507	15.693	61.926 60.558	1.00 75.92 1.00 77.54	B B
	ATOM	1372	NE	ARG	189	10.797	16.373	60.644	1.00 77.34	В
	MOTA	1373	CZ	ARG	189	10.737	17.686	60.804	1.00 78.23	В
	ATOM	1374		ARG	189	9.870	18.466	60.894	1.00 78.77	В
70	ATOM	1375		ARG	189	12.153	18.218	60.873	1.00 78.05	В
	ATOM	1376	С	ARG	189	8.869	12.491	64.363	1.00 75.30	В
	MOTA	1377	0	ARG	189	7.896	11.815	64.683	1.00 75.56	В
	MOTA	1378	N	ASN	190	10.112	12.019	64.370	1.00 77.42	В

	MOTA	1379	CA	ASN	190	10.417	10.640	64.748	1.00 78.69	В
	ATOM	1380	CB	ASN	190	10.760	9.829	63.494	1.00 78.94	В
	MOTA	1381	CG	ASN		11.569	10.629	62.483	1.00 78.61	В
	ATOM	1382		LASN		12.745	10.905	62.689	1.00 78.52	B
5	ATOM	1383		2 ASN		10.926	11.011	61.383	1.00 78.16	В
,										
	MOTA	1384		ASN	190	11.571	10.575	65.749	1.00 79.40	В
	MOTA	1385		ASN	190	12.706	10.875	65.408	1.00 79.98	В
	MOTA	1386	N	LYS	191	11.265	10.182	66.986	1.00 79.97	В
	MOTA	1387	CA	LYS	191	12.267	10.084	68.051	1.00 79.77	В
10	MOTA	1388		LYS	191	11.616	9.561	69.336	1.00 81.11	В
	MOTA	1389		LYS	191	10.794	10.600	70.090	1.00 82.60	В
								70.758	1.00 83.37	
	MOTA	1390		LYS	191	11.695	11.630			В
	MOTA	1391	CE	LYS	191	10.887	12.716	71.450	1.00 84.12	В
	ATOM	1392	NZ	LYS	191	10.109	13.539	70.478	1.00 84.72	В
15	MOTA	1393	С	LYS	191	13.478	9.216	67.695	1.00 78.46	В
	ATOM	1394	0	LYS	191	14.462	9.173	68.434	1.00 77.59	В
	ATOM	1395	N	ARG	192	13.398	8.525	66.563	1.00 76.93	В
	ATOM	1396	CA	ARG	192	14.489	7.675	66.106	1.00 75.17	В
	MOTA	1397	CB		192	13.975	6.667	65.078	1.00 77.95	В
20				ARG						
20	MOTA	1398	CG	ARG	192	15.041	5.708	64.573	1.00 80.81	В
	MOTA	1399	CD	ARG	192	14.801	5.305	63.122	1.00 83.98	В
	MOTA	1400	NE	ARG	192	14.928	6.434	62.198	1.00 86.03	В
	MOTA	1401	CZ	ARG	192	13.946	7.277	61.884	1.00 86.70	В
	MOTA	1402	NH1		192	12.737	7.133	62.415	1.00 86.57	В
25	ATOM	1403.		ARG	192	14.175	8.267	61.033	1.00 87.03	В
					192				1.00 72.66	
	MOTA	1404	C	ARG		15.565	8.545	65.463		В
	MOTA	1405	0	ARG	192	16.699	8.112	65.272	1.00 72.31	В
	ATOM	1406	N	GLY	193	15.195	9.781	65.136	1.00 69.32	В
	MOTA	1407	CA	GLY	193	16.132	10.695	64.507	1.00 63.90	В
30	MOTA	1408	С	GLY	193	16.538	11.863	65.382	1.00 59.50	В
	MOTA	1409	0	GLY	193	16.132	11.961	66.531	1.00 59.54	В
	ATOM	1410	N	VAL	194	17.346	12.757	64.824	1.00 55.13	В
	ATOM	1411	CA						1.00 50.91	
				VAL	194	17.812	13.918	65.562		В
25	MOTA	1412	CB	VAL	194	19.114	13.606	66.309	1.00 50.28	В
35	MOTA	1413		VAL	194	20.226	13.319	65.318	1.00 49.18	В
	ATOM	1414	CG2	VAL	194	19.476	14.760	67.207	1.00 48.67	В
	MOTA	1415	С	VAL	194	18.055	15.098	64.629	1.00 49.13	В
	MOTA	1416	0	VAL	194	18.379	14.918	63.461	1.00 49.22	В
	ATOM	1417	N	ILE	195	17.906	16.308	65.160	1.00 46.55	В
40										
40	MOTA	1418	CA	ILE	195	18.106	17.514	64.372	1.00 42.49	В
	MOTA	1419	СВ	ILE	195	16.846	18.405	64.396	1.00 43.57	В
	ATOM	1420		ILE	195	17.076	19.653	63.561	1.00 44.86	В
	MOTA	1421	CG1	ILE	195	15.647	17.639	63.837	1.00 44.25	В
	ATOM	1422	CD1	ILE	195	15.828	17.184	62.393	1.00 45.64	В
45	MOTA	1423	С	ILE	195	19.291	18.349	64.856	1.00 39.72	В
	MOTA	1424	ō	ILE	195	19.379	18.691	66.030	1.00 38.69	В
		1425								
	MOTA		N	ILE	196	20.197	18.672	63.936	1.00 37.40	В
	MOTA	1426	CA	ILE	196	21.365	19.483	64.255	1.00 35.21	В
50	ATOM	1427	CB	ILE	196	22.654	18.960	63.561	1,00 34.42	В
50	MOTA	1428	CG2	ILE	196	23.821	19.880	63.881	1.00 33.62	В
	MOTA	1429	CG1	ILE	196	23.010	17.552	64.057	1.00 33.50	В
	ATOM	1430	CD1	ILE	196	22.222	16.445	63.416	1.00 31.23	В
	ATOM	1431	Ċ	ILE	196	21.113	20.920	63.806	1.00 35.34	B
55	ATOM	1432	0	ILE	196	21.108	21.218	62.619	1.00 33.58	В
23	ATOM	1433	N	LYS	197	20.912	21.806	64.777	1.00 36.02	В
	ATOM	1434	CA	LYS	197	20.639	23.209	64.494	1.00 36.95	В
	MOTA	1435	CB	LYS	197	20.101	23.909	65.744	1.00 37.83	В
	ATOM	1436	CG	LYS	197	19.736	25.370	65.519	1.00 42.01	В
	ATOM	1437	CD	LYS	197	19.391	26.055	66.829	1.00 45.50	В
60	ATOM	1438	CE	LYS	197	19.039	27.518	66.628	1.00 46.65	В
00										
	MOTA	1439	NZ	LYS	197	18.686	28.161	67.932	1.00 47.32	В
	MOTA	1440	C	LYS	197	21.857	23.968	63.983	1.00 36.01	В
	ATOM	1441	0	LYS	197	22.887	24.025	64.646	1.00 34.47	В
	MOTA	1442	N	GLY	198	21.722	24.547	62.793	1.00 35.82	В
65	MOTA	1443	CA	GLY	198	22.809	25.316	62.212	1.00 37.33	В
	ATOM	1444	c	GLY	198	23.715	24.583	61.240	1.00 38.13	В
	MOTA	1445	0	GLY	198	24.580	25.198	60.615	1.00 39.69	В
	ATOM	1446	N	LEU	199	23.530	23.275	61.098	1.00 37.34	В
70	MOTA	1447	CA	LEU	199	24.376	22.512	60.190	1.00 36.62	В
70	MOTA	1448	CB	LEU	199	24.218	21.006	60.444	1.00 34.70	В
	ATOM	1449	CG	LEU	199	25.067	20.058	59.588	1.00 33.44	В
	ATOM	1450	CD1		199	26.553	20.355	59.755	1.00 31.11	В
	ATOM	1451	CD2		199	24.767	18.634	59.994	1.00 32.49	В
	21 013	7-277	CDZ	220	100	24.707	10.034	JJ.JJ4	1.00 36.43	D

	» mov	1450	_	ten	199	24.066	22.838	58.729	1.00 36.33	В
	MOTA MOTA	1452 1453	С 0	LEU LEU	199	22.971	22.550	58.228	1.00 35.86	В
	ATOM	1454	N	GLU	200	25.040	23.441	58.053	1.00 35.51	B
	ATOM	1455	CA	GLU	200	24.896	23.815	56.653	1.00 37.46	В
5	MOTA	1456	CB	GLU	200	26.037	24.746	56.234	1.00 40.69	В
	MOTA	1457	CG	GLU	200	26.005	26.135	56.868	1.00 49.20	В
	MOTA	1458	CD	GLU	200	24.757	26.925	56.502	1.00 51.96	В
	MOTA	1459		GLU	200	23.659	26.576	56.990	1.00 54.11	В
10	MOTA	1460		GLU	200	24.873	27.896	55.722	1.00 54.04	В
10	MOTA	1461	C	GLU	200	24.874	22.612	55.717	1.00 36.14	В
	MOTA	1462	0	GLU	200	. 25.434 24.217	21.564 22.787	56.015 54.575	1.00 35.01 1.00 35.47	B B
	ATOM ATOM	1463 1464	N CA	GLU GLU	201 201	24.124	21.752	53.559	1.00 34.36	В
	MOTA	1465	CB	GLU	201	22.709	21.189	53.483	1.00 34.40	В
15	MOTA	1466	CG	GLU	201	22.207	20.582	54.773	1.00 34.93	B
	ATOM	1467	CD	GLU	201	20.816	19.998	54.626	1.00 36.86	. в
	ATOM	1468		GLU	201	20.137	19.825	55.665	1.00 37.44	В
	MOTA	1469	OE2	GLU	201	20.408	19.710	53.476	1.00 36.10	В
	MOTA	1470	C	GLU	201	24.479	22.393	52.226	1.00 34.09	В
20	MOTA	1471	0	GLU	201	23.681	23.115	51.657	1.00 33.70	В
	ATOM	1472	N	ILE	202	25.687	22.127	51.740	1.00 33.17	В
	MOTA	1473	CA	ILE	202	26.130	22.689	50.472	1.00 32.42	В
	MOTA	1474	CB	ILE	202	27.679	22.715 23.275	50.357 49.002	1.00 33.25 1.00 31.31	B B
25	MOTA MOTA	1475 1476		ILE	202 202	28.087 28.286	23.275	51.465	1.00 31.31	В
23	ATOM	1477		ILE	202	28.222	22.967	52.849	1.00 36.54	В
	ATOM	1478	C	ILE	202	25.572	21.888	49.305	1.00 31.15	В
	MOTA	1479	ō	ILE	202	25.703	20.678	49.257	1.00 33.14	В
	ATOM	1480	N	THR	203	24.948	22.583	48.361	1.00 29.99	В
30	ATOM	1481	CA	THR	203	24.371	21.944	47.185	1.00 27.86	В
	MOTA	1482	CB	THR	203	23.228	22.804	46.572	1.00 27.52	В
	MOTA	1483		THR	203	22.157	22.925	47.516	1.00 27.78	В
	MOTA	1484		THR	203	22.701	22.174	45.284	1.00 26.79	В
35	MOTA	1485	C	THR	203	25.448	21.741	46.130	1.00 27.11	В
33	MOTA	1486	0	THR	203	26.217 25.500	22.637 20.541	45.853 45.560	1.00 26.94 1.00 27.55	B B
	MOTA MOTA	1487 1488	N CA	VAL VAL	204 204	26.467	20.341	44.517	1.00 27.33	В
	ATOM	1489	CB	VAL	204	27.136	18.859	44.781	1.00 25.01	В
	MOTA	1490		VAL	204	28.393	18.718	43.941	1.00 23.11	В
40	ATOM	1491	CG2		204	27.468	18.729	46.250	1.00 23.76	В
	ATOM	1492	С	VAL	204	25.677	20.178	43.207	1.00 29.81	В
	MOTA	1493	0	VAL	204	24.887	19.261	42.983	1.00 30.56	В
	MOTA	1494	N	HIS	205	25.891	21.188	42.364	1.00 30.97	В
45	MOTA	1495	CA	HIS	205	25.197	21.318	41.079	1.00 33.24	В
45	ATOM	1496	CB	HIS	205	25.199	22.792	40.649	1.00 33.42	В
	MOTA	1497	CG	HIS	205	24.641	23.716	41.687	1.00 34.00	В
	MOTA	1498 1499		HIS HIS	205 205	25.233 23.297	24.333 24.019	42.739 41.771	1.00 33.05 1.00 33.23	B B
	MOTA MOTA	1500		HIS	205	23.086	24.777	42.832	1.00 33.23	В
50	MOTA	1501		HIS	205	24.244	24.981	43.437	1.00 32.48	В
50	ATOM	1502	C	HIS	205	25.790	20.450	39.969	1.00 33.72	В
	ATOM	1503	Ō	HIS	205	25.084	20.022	39.061	1.00 32.22	В
	ATOM	1504	N	ASN	206	27.094	20.201	40.048	1.00 35.23	В
سر سر	MOTA	1505	CA	ASN	206	27.779	19.381	39.055	1.00 36.89	В
55	MOTA	1506	CB	ASN	206	28.178	20.229	37.837	1.00 37.95	В
	MOTA	1507	CG	ASN	206	28.999	21.455	38.213	1.00 41.34	В
	MOTA	1508		ASN	206	30.130	21.339	38.697	1.00 43.10	В
	ATOM	1509		ASN	206	28.428	22.641	37.993	1.00 38.53	В
60	MOTA	1510	C	ASN	206	29.007	18.712	39.666	1.00 36.43	В
00	MOTA	1511	0	ASN LYS	206 207	29.233 29.787	18.805 18.029	40.864 38.834	1.00 36.95 1.00 36.70	B B
	MOTA MOTA	1512 1513	N CA	LYS	207	30.983	17.338	39.297	1.00 37.65	В
	ATOM	1514	CB	LYS	207	31.357	16.232	38.314	1.00 37.05	В
	ATOM	1515	CG	LYS	207	31.892	16.726	36.977	1.00 41.42	В
65	ATOM	1516	CD	LYS	207	31.938	15.585	35.966	1.00 45.62	В
	ATOM	1517	CE	LYS	207	32.889	15.877	34.814	1.00 47.44	B
	MOTA	1518	NZ	LYS	207	34.314	15.937	35.262	1.00 47.37	В
	ATOM	1519	С	LYS	207	32.155	18.298	39.464	1.00 38.02	В
~ C	ATOM	1520	0	LYS	207	32.990	18.121	40.340	1.00 38.46	В
70	MOTA	1521	N	ASP	208	32.199	19.320	38.618	1.00 38.91	В
	MOTA	1522	CA	ASP	208	33.264	20.313	38.667	1.00 40.47	В
	ATOM	1523	СВ	ASP	208	33.316	21.061	37.338	1.00 42.51	В
	MOTA	1524	CG	ASP	208	33.664	20.156	36.192	1.00 44.26	В

	ATOM	1525	ODI	ASP	208	33.297	20.470	35.041	1.00 44.33	В
	MOTA	1526		ASP	208	34.321	19.127	36.451	1.00 46.27	В
	MOTA	1527	C	ASP	208	33.058	21.300	39.805	1.00 39.34	В
										В
5	MOTA	1528	0	ASP	208	33.568	22.405	39.780	1.00 40.79	
)	MOTA	1529	N	GLU	209	32.308	20.893	40.813	1.00 38.81	В
	MOTA	1530	CA	GLU	209	32.050	21.772	41.930	1.00 38.33	В
	MOTA	1531	CB	GLU	209	30.604	22.260	41.866	1.00 39.47	В
	MOTA	1532	CG	GLU	209	30.278	23.400	42.805	1.00 42.87	В
	MOTA	1533	CD	GLU	209	28.824	23.836	42.700	1.00 44.43	В
10	MOTA	1534	OE1	GLU	209	28.373	24.134	41.573	1.00 42.49	. в
	ATOM	1535		GLU	209	28.135	23.885	43.749	1.00 44.53	В
	ATOM	1536	c	GLU	209	32.303	21.055	43.247	1.00 37.83	В
	ATOM	1537	ō	GLU	209	32.147	21.649	44.316	1.00 38.61	В
					210	32.720		43.171	1.00 35.54	
15	ATOM	1538	N	VAL			19.790			В
13	ATOM	1539	CA	VAL	210	32.954	19.011	44.384	1.00 32.37	В
	MOTA	1540	CB	VAL	210	32.679	17.485	44.158	1.00 31.94	В
	MOTA	1541		VAL	210	31.641	17.286	43.057	1.00 31.12	В
	MOTA	1542	CG2	VAL	210	33.961	16.749	43.842	1.00 30.76	В
	MOTA	1543	С	VAL	210	34.342	19.173	44.991	1.00 29.97	В
20	MOTA	1544	0	VAL	210	34.482	19.206	46.207	1.00 29.98	В
	MOTA	1545	N	TYR	211	35.367	19.285	44.154	1.00 27.29	В
	ATOM	1546	CA	TYR	211	36.718	19.408	44.685	1.00 25.19	В
	ATOM	1547	CB	TYR	211	37.747	19.437	43.549	1.00 24.73	В
	MOTA	1548	CG	TYR	211	39.177	19.352	44.040	1.00 26.20	B
25					211	39.601				
23	MOTA	1549		TYR			18.278	44.824	1.00 27.98	В
	MOTA	1550		TYR	211	40.903	18.214	45.325	1.00 27.65	В
	MOTA	1551		TYR	211	40.093	20.360	43.761	1.00 26.06	В
	MOTA	1552		TYR	211	41.398	20.308	44.257	1.00 26.72	В
~~	MOTA	1553	ÇZ	TYR	211	41.797	19.233	45.041	1.00 29.28	В
30	MOTA	1554	ОН	TYR	211	43.081	19.193	45.556	1.00 27.76	В
	MOTA	1555	С	TYR	211	36.864	20.635	45.573	1.00 24.67	В
	ATOM	1556	0	TYR	211	37.515	20.578	46.615	1.00 24.02	В
	MOTA	1557	N	GLN	212	36.251	21.742	45.160	1.00 25.05	В
	ATOM	1558	CA	GLN	212	36.294	22.982	45.926	1.00 24.24	В
35	ATOM	1559	CB	GLN	212	35.508	24.082	45.224	1.00 27.89	В
55	MOTA	1560	CG	GLN	212	36.375	25.051	44.459	1.00 36.14	В
	MOTA	1561	CD	GLN	212	35.625	26.311	44.048	1.00 40.99	В
	MOTA	1562		GLN	212	34.641	26.248	43.312	1.00 42.51	В
40	MOTA	1563		GLN	212	36.090	27.465	44.532	1.00 41.52	В
40	ATOM	1564	С	GLN	212	35.713	22.777	47.305	1.00 22.91	В
	MOTA	1565	0	GLN	212	36.285	23.206	48.299	1.00 23.35	В
	MOTA	1566	N	ILE	213	34.560	22.122	47.362	1.00 22.44	В
	ATOM	1567	CA	ILÈ	213	33.905	21.876	48.640	1.00 22.31	В
	MOTA	1568	CB	ILE	213	32.595	21.095	48.472	1.00 20.76	В
45	ATOM	1569		ILE	213	31.910	20.947	49.828	1.00 21.01	В
	MOTA	1570		ILE	213	31.675	21.821	47.492	1.00 20.79	В
	ATOM	1571		ILE	213	30.457	21.012	47.071	1.00 22.47	В
	MOTA	1572	c	ILE	213	34.816	21.095	49.573	1.00 22.67	B
	ATOM	1573	ō	ILE	213	34.863	21.366	50.764	1.00 23.38	В
50										
50	ATOM	1574	N	LEU	214	35.539	20.126	49.020	1.00 24.93	В
	MOTA	1575	CA	LEU	214	36.455	19.307	49.811	1.00 26.22	В
	MOTA	1576	CB	LEU	214	36.965	18.129	48.972	1.00 27.09	В
	MOTA	1577	CG	LEU	214	36.092	16.868	48.882	1.00 29.34	В
	MOTA	1578	CD1	LEU	214	34.618	17.235	48.836	1.00 30.24	В
55	ATOM	1579	CD2	LEU	214	36.491	16.059	47.649	1.00 30.55	В
	MOTA	1580	С	LEU	214	37.621	20.149	50.314	1.00 26.01	В
	MOTA	1581	0	LEU	214	38.064	19.994	51.444	1.00 26.33	В
	MOTA	1582	N	GLU	215	38.108	21.049	49.464	1.00 25.83	В
	ATOM	1583	CA	GLU	215	39.215	21.930	49.834	1.00 24.69	В
60	ATOM	1584	СВ	GLU	215	39.586	22.830	48.655	1.00 23.60	В
	ATOM	1585	CG	GLU	215	40.814	22.380	47.882	1.00 22.50	B
		1586			215		23.030		1.00 23.11	
	ATOM		CD	GLU		40.907		46.511		В
	ATOM	1587		GLU	215	42.047	23.251	46.040	1.00 20.98	В
65	MOTA	1588	OE2		215	39.839	23.306	45.913	1.00 20.38	В
65	MOTA	1589	C	GLU	215	38.837	22.784	51.040	1.00 23.82	В
	MOTA	1590	0	GLU	215	39.636	22.960	51.967	1.00 23.91	В
	MOTA	1591	N	LYS	216	37.617	23.306	51.033	1.00 22.14	В
	MOTA	1592	CA	LYS	216	37.152	24.135	52.129	1.00 24.81	В
	MOTA	1593	СВ	LYS	216	35.794	24.747	51.781	1.00 28.88	В
70	MOTA	1594	CG	LYS	216	35.875	25.760	50.637	1.00 35.31	В
-	MOTA	1595	CD	LYS	216	34.492	26.263	50.229	1.00 40.73	В
	ATOM	1596	CE	LYS	216	34.591	27.386	49.208	1.00 42.22	В
	ATOM	1597	NZ		216		27.007	48.007	1.00 42.22	В
	A1 OM	1371	145	LYS	210	35.405	27.007	40.00 <i>1</i>	1.00 44.00	D

	MOTA	1598	С	LYS	216	37.066	23.327	53.417	1.00 24.49	В
	MOTA	1599		LYS	216	37.497		54.475	1.00 25.43	В
	MOTA	1600		GLY	217	36.525		53.325	1.00 22.80	В
	MOTA	1601		GLY	217	36.427		54.498	1.00 21.61	В
5	MOTA	1602		GLY	217	37.813		55.063	1.00 21.73	В
	MOTA	1603	0	GLY	217	38.019		56.273	1.00 21.45	В
	MOTA	1604	N	ALA	218	38.770		54.182	1.00 19.63	В
	MOTA	1605	CA	ALA	218	40.146		54.607	1.00 20.23	В
	MOTA	1606	СВ	ALA	218	41.013		53.402	1.00 20.86	В
10	MOTA	1607	c	ALA	218	40.720		55.358	1.00 19.43	В
~ •	MOTA	1608	ō	ALA	218	41.151		56.500	1.00 21.17	В
	MOTA	1609	N	ALA	219	40.725		54.706	1.00 19.70	В
	MOTA	1610	CA	ALA	219	41.248		55.299	1.00 18.89	В
	MOTA	1611	СВ	ALA	219	40.928		54.400	1.00 17.46	В
15	ATOM	1612	C	ALA	219	40.672		56.675	1.00 17.40	В
10	MOTA	1613	ō	ALA	219	41.394		57.621	1.00 19.06	. B
	MOTA	1614	N	LYS	220	39.355		56.778	1.00 19.83	
	ATOM	1615	ÇA	LYS	220	38.698		58.049		В
	MOTA	1616	CB	LYS	220	37.179			1.00 21.65	В
20	MOTA		CG	LYS			24.475	57.867	1.00 22.34	В
20	MOTA	1617 1618	CD	LYS	220 220	36.416		59.101 58.759	1.00 25.89	В
	ATOM		CE			35.002			1.00 28.36	В
		1619		LYS	220	34.296	25.886	60.002	1.00 28.81	В
	MOTA	1620	NZ	LYS	220	32.888	26.286	59.732	1.00 27.62	В
25	MOTA	1621	C	LYS	220	39.145	23.486	59.101	1.00 21.92	В
23	MOTA	1622		LYS	220	39.199	23.807	60.278	1.00 23.01	В
	MOTA	1623	N	ARG	221	39.478	22.268	58.672	1.00 21.66	В
	MOTA	1624	CA	ARG	221	39.934	21.223	59.596	1.00 20.06	В
	MOTA	1625	CB	ARG	221	40.015	19.878	58.882	1.00 22.12	В
30	MOTA	1626	CG	ARG	221	38.739	19.076	58.916	1.00 23.91	В
50	MOTA	1627	CD	ARG	221	38.952	17.787	58.173	1.00 26.21	В
	MOTA	1628	NE	ARG	221	37.777	16.929	58.203	1.00 27.96	В
	MOTA	1629	CZ	ARG	221	37.620	15.882	57.407	1.00 27.08	В
	MOTA	1630	NH1		221	38.571	15.583	56.529	1.00 25.16	В
25	ATOM	1631	NH2		221	36.519	15.145	57.491	1.00 27.49	В
35	MOTA	1632	C	ARG	221	41.301	21.562	60.167	1.00 18.78	В
	ATOM	1633	0	ARG	221	41.623	21.206	61.315	1.00 16.42	В
	ATOM	1634	N	THR	222	42.101	22.238	59.3 50	1.00 15.19	В
	ATOM	1635	CA	THR	222	43.433	22.659	59.741	1.00 15.22	В
40	MOTA	1636	CB	THR	222	44.119	23.409	58.593	1.00 16.99	В
40	ATOM	1637	OG1		222	44.121	22.573	57.424	1.00 16.46	В
	MOTA	1638	CG2		222	45.534	23.796	58.977	1.00 14.73	В
	MOTA	1639	C	THR	222	43.323	23.601	60.928	1.00 16.64	В
	MOTA	1640	0	THR	222	44.046	23.461	61.920	1.00 16.06	В
45	MOTA	1641	N	THR	223	42.405	24.559	60.828	1.00 16.39	В
43	MOTA	1642	CA	THR	223	42.202	25.515	61.902	1.00 17.40	В
	MOTA	1643	CB	THR	223	41.160	26.603	61.519	1.00 18.18	В
	MOTA	1644		THR	223	39.839	26.125	61.780	1.00 22.16	В
	ATOM	1645		THR	223	41.268	26.953	60.048	1.00 18.76	В
50	MOTA	1646	C	THR	223	41.708	24.757	63.134	1.00 17.96	В
50	MOTA	1647	0	THR	223	42.078	25.083	64.253	1.00 20.22	В
	MOTA	1648	N	ALA	224	40.875	23.743	62.916	1.00 17.09	В
	ATOM	1649	CA	ALA	224	40.348	22.953	64.027	1.00 17.61	В
	ATOM	1650	CB	ALA	224	39.349	21.902	63.520	1.00 17.42	В
55	MOTA	1651	С	ALA	224	41.503	22.268	64.744	1.00 16.75	В
55	MOTA	1652	0	ALA	224	41.588	22.284	65.979	1.00 13.71	В
	MOTA	1653	N	ALA	225	42.384	21.663	63.950	1.00 16.23	В
	MOTA	1654	CA	ALA	225	43.551	20.980	64.486	1.00 15.92	В
	MOTA	1655	CB	ALA	225	44.391	20.426	63.346	1.00 14.25	В
C O	MOTA	1656	С	ALA	225	44.376	21.956	65.332	1.00 16.42	В
60	MOTA	1657	0	ALA	225	44.983	21.566	66.329	1.00 14.18	В
	MOTA	1658	N	THR	226	44.385	23.231	64.931	1.00 18.14	В
	MOTA	1659	CA	THR	226	45.135	24.261	65.666	1.00 18.36	В
	MOTA	1660	CB	THR	226	45.205	25.606	64.894	1.00 19.59	В
15	MOTA	1661	0G1		226	45.994	25.445	63.705	1.00 20.89	В
65	MOTA	1662	CG2	THR	226	45.821	26.696	65.775	1.00 18.63	В
	ATOM	1663	С	THR	226	44.507	24.541	67.024	1.00 19.56	В
	MOTA	1664	0	THR	226	45.214	24.765	68.000	1.00 22.00	В
	MOTA	1665	N	LEU	227	43.178	24.527	67.074	1.00 19.70	В
70	MOTA	1666	CA	LEU	227	42.427	24.798	68.297	1.00 20.19	В
70	ATOM	1667	СВ	LEU	227	41.011	25.291	67.943	1.00 22.99	В
	ATOM	1668	CG	LEU	227	40.728	26.794	67.875	1.00 28.11	В
	MOTA	1669	CD1	LEU	227	41.162	27.422	69.202	1.00 28.40	В
	MOTA	1670	CD2	LEU	227	41.452	27.445	66.677	1.00 27.33	В

	MOTA	1671	С	LEU	227	42.279	23.627	69.269	1.00 19.64	В
		1672	ŏ		227	42.384	23.801	70.480	1.00 17.11	В
	MOTA			LEU						
	MOTA	1673	N	MET	228	42.021	22.440	68.727	1.00 21.48	В
_	MOTA	1674	CA	MET	228	41.807	21.253	69.557	1.00 21.62	В
5	MOTA	1675	CB	MET	228	40.465	20.627	69.174	1.00 21.31	В
	MOTA	1676	CG	MET	228	39.286	21.542	69.510	1.00 22.62	В
	MOTA	1677	SD	MET	228	37.764	21.286	68.570	1.00 28.36	В
	ATOM	1678	CE	MET	228	37.979	22.463	67.223	1.00 25.23	В
	ATOM	1679	c	MET	228	42.936	20.235	69.472	1.00 19.55	В
10										
10	MOTA	1680	0	MET	228	43.364	19.884	68.392	1.00 19.08	В
	MOTA	1681	N	ASN	229	43.404	19.764	70.628	1.00 19.30	В
	MOTA	1682	CA	ASN	229	44.496	18.790	70.683	1.00 21.72	В
	ATOM	1683	CB	ASN	229	44.902	18.512	72.140	1.00 21.27	В
	ATOM	1684	CG	ASN	229	45.124	19.786	72.952	1.00 23.92	В
15	ATOM	1685		ASN	229	45.493	20.829	72.413	1.00 26.36	В
	ATOM	1686		ASN	229	44.913	19.694	74.262	1.00 18.44	В
									1.00 21.18	
	MOTA	1687	C	ASN	229	44.165	17.460	69.993		В
	ATOM	1688	0	ASN	229	43.071	16.927	70.153	1.00 21.11	В
20	MOTA	1689	N	ALA	230	45.129	16.945	69.231	1.00 20.55	В
20	ATOM	1690	CA	ALA	230	44.975	15.683	68.510	1.00 21.88	В
	MOTA	1691	CB	ALA	230	45.172	14.502	69.466	1.00 22.05	В
	ATOM	1692	С	ALA	230	43.599	15.601	67.869	1.00 21.44	В
	ATOM	1693	ō	ALA	230	42.925	14.588	67.974	1.00 23.20	B
				TYR	231	43.197				
25	ATOM	1694	N				16.667	67.191	1.00 20.11	В
23	MOTA	1695	CA	TYR	231	41.878	16.708	66.568	1.00 21.54	В
	MOTA	1696	CB	TYR	231	41.637	18.103	65.968	1.00 19.36	В
	ATOM	1697	CG	TYR	231	40.280	18.276	65.322	1.00 14.20	В
	ATOM	1698	CD1	TYR	231	40.106	18.061	63.956	1.00 10.71	В
	ATOM	1699	CE1	TYR	231	38.852	18.173	63.369	1.00 9.05	В
30	ATOM	1700		TYR	231	39.159	18.613	66.085	1.00 14.00	В
50		1701	CE2		231	37.900			1.00 11.47	
	ATOM			TYR			18.725	65.503		В
	MOTA	1702	CZ	TYR	231	37.757	18.505	64.152	1.00 9.28	В
	MOTA	1703	ОН	TYR	231	36.522	18.626	63.583	1.00 11.26	В
~~	ATOM	1704	С	TYR	231	41.603	15.614	65.526	1.00 22.31	В
35	MOTA	1705	0	TYR	231	40.611	14.889	65.630	1.00 23.44	В
	MOTA	1706	N	SER	232	42.481	15.482	64.538	1.00 21.31	В
	MOTA	1707	CA	SER	232	42.286	14.487	63.486	1.00 21.21	В
	ATOM	1708	СВ	SER	232	43.382		62.424	1.00 19.70	В
							14.614			
40	ATOM	1709	OG	SER	232	44.658	14.355	62.980	1.00 22.28	В
40	MOTA	1710	С	SER	232	42.245	13.046	63.983	1.00 20.84	В
	ATOM	1711	0	SER	232	41.718	12.165	63.303	1.00 21.67	В
	ATOM	1712	N	SER	233	42.788	12.805	65.166	1.00 18.82	В
	MOTA	1713	CA	SER	233	42.801	11.447	65.670	1.00 16.78	В
	MOTA	1714	CB	SER	233	44.189	11.108	66.222	1.00 14.92	В
45	MOTA	1715	OG	SER	233	44.295	11.465	67.587	1.00 15.42	В
• 5										
	MOTA	1716	C	SER	233	41.745	11.193	66.741	1.00 17.60	В
	MOTA	1717	0	SER	233	41.365	10.067	66.964	1.00 18.14	В
	MOTA	1718	N	ARG	234	41.267	12.253	67.392	1.00 18.41	В
	MOTA	1719	CA	ARG	234	40.266	12.113	68.450	1.00 18.22	В
50	MOTA	1720	CB	ARG	234	40.716	12.874	69.703	1.00 20.85	В
	MOTA	1721	CG	ARG	234	41.207	11.975	70.809	1.00 26.63	В
	MOTA	1722	CD	ARG	234	42.603	12.340	71.282	1.00 28.86	В
	ATOM	1723	NE	ARG	234	42.624	13.522	72.138	1.00 28.89	В
		1724	CZ	ARG	234		13.853	72.927	1.00 30.32	В
55	ATOM					43.641				
55	MOTA	1725	NH1		234	44.724	13.089	72.969	1.00 29.87	В
	ATOM	1726	NH2		234	43.571	14.941	73.683	1.00 29.28	В
	MOTA	1727	С	ARG	234	38.858	12.559	68.065	1.00 18.79	В
	MOTA	1728	0	ARG	234	37.986	12.639	68.914	1.00 18.55	В
	MOTA	1729	N	SER	235	38.641	12.826	66.780	1.00 19.09	В
60	ATOM	1730	CA	SER	235	37.339	13.278	66.307	1.00 18.40	В
••	ATOM	1731	CB	SER	235	37.477	14.654	65.655	1.00 16.08	B
	MOTA	1732	OG	SER	235	38.275	14.584	64.481	1.00 13.92	В
	MOTA	1733	C	SER	235	36.694	12.314	65.312	1.00 18.89	В
	MOTA	1734	0	SER	235	37.379	11.637	64.558	1.00 18.57	В
65	MOTA	1735	N	HIS	236	35.363	12.284	65.323	1.00 20.05	В
	ATOM	1736	CA	HIS	236	34.571	11.445	64.427	1.00 20.67	В
	MOTA	1737		HIS	236	33.409	10.800	65.186	1.00 21.89	В
	MOTA	1738	CG	HIS	236		10.092		1.00 22.09	
						33.819		66.439		В
70	ATOM	1739	CD2		236	33.733	10.462	67.740	1.00 22.95	В
70	MOTA	1740	ND1		236	34.406	8.847	66.433	1.00 22.44	В
	MOTA	1741	CE1	HIS	236	34.663	8.480	67.677	1.00 24.61	В
	MOTA	1742	NE2	HIS	236	34.265	9.441	68.489	1.00 23.56	В
	MOTA	1743		HIS	236	33.994	12.353	63.345	1.00 21.61	В
			-							~

	MOTA	1744	0	HIS	236	33.373	13.368	63.658	1.00 22.50	В
	MOTA	1745	N	SER	237 237	34.195 33.673	12.000 12.813	62.080 60.992	1.00 20.87	B
	MOTA MOTA	1746 1747	CA CB	SER SER	237	34.811	13.241	60.061	1.00 21.41	В
5	ATOM	1748	0G	SER	237	35.388	12.121	59.411	1.00 21.23	В
	ATOM	1749	C	SER	237	32.618	12.049	60.201	1.00 22.61	В
	MOTA	1750	0	SER	237	32.863	10.939	59.749	1.00 23.35	В
	MOTA	1751	N	VAL	238	31.440	12.648	60.053	1.00 21.59	В
10	MOTA	1752	CA	VAL	238	30.348	12.022	59.313	1.00 20.89	В
10	MOTA MOTA	1753 1754	CB	VAL VAL	238 238	29.106 28.807	11.821 13.104	60.234 60.977	1.00 22.16 1.00 24.21	B B
	MOTA	1755	CG2		238	27.886	11.395	59.419	1.00 18.41	В
	MOTA	1756	c	VAL	238	29.967	12.872	58.103	1.00 18.95	В
. ~	MOTA	1757	0	VAL	238	29.157	13.772	58.205	1.00 18.39	В
15	MOTA	1758	N	PHE	239	30.586	12.577	56.962	1.00 19.38	В
	MOTA	1759	CA	PHE	239	30.329	13.295	55.712	1.00 19.10	В
	MOTA MOTA	1760 1761	CB	PHE	239 239	31.501 31.413	13.115 13.986	54.735 53.501	1.00 16.63 1.00 13.65	B B
	ATOM	1761		PHE	239	30.443	13.752	52.521	1.00 13.63	В
20	MOTA	1763		PHE	239	32.307	15.029	53.316	1.00 11.10	В
	MOTA	1764		PHE	239	30.375	14.557	51.367	1.00 11.04	В
	MOTA	1765	CE2		239	32.248	15.836	52.174	1.00 11.49	В
	MOTA	1766	CZ	PHE	239	31.281	15.598	51.196	1.00 10.13	В
25	MOTA MOTA	1767 1768	C O	PHE	239 239	29.072 29.088	12.709 11.581	55.089 54.635	1.00 20.70 1.00 21.65	B B
23	MOTA	1769	N	SER	240	27.992	13.487	55.056	1.00 21.03	В
	ATOM	1770	CA	SER	240	26.737	12.999	54.489	1.00 20.02	B
	ATOM	1771	СВ	SER	240	25.568	13.303	55.430	1.00 17.99	В
20	MOTA	1772	OG	SER	240	25.714	12.651	56.682	1.00 13.88	В
30	MOTA	1773	C	SER	240	26.424	13.552	53.104	1.00 21.86	В
	MOTA	1774 1775	O N	SER	240 241	26.721 25.818	14.684 12.720	52.796 52.271	1.00 22.91 1.00 23.30	B B
	MOTA MOTA	1776	CA	VAL VAL	241	25.448	13.130	50.932	1.00 23.30	В
	ATOM	1777	CB	VAL	241	26.432	12.581	49.884	1.00 24.40	В
35	MOTA	1778		VAL	241	26.805	11.139	50.226	1.00 26.22	В
	MOTA	1779		VAL	241	25.807	12.668	48.494	1.00 19.02	В
	MOTA	1780	C	VAL	241	24.035	12.646	50.619	1.00 26.53	В
	ATOM	1781	O N	VAL THR	241 242	23.806 23.093	11.465 13.582	50.433 50.586	1.00 27.95 1.00 28.63	B B
40	MOTA MOTA	1782 1783	CA	THR	242	21.698	13.382	50.311	1.00 20.03	В
. •	ATOM	1784	СВ	THR	242	20.779	14.186	51.164	1.00 32.05	В
	MOTA	1785	0G1		242	20.997	13.901	52.555	1.00 33.54	В
	ATOM	1786		THR	242	19.319	13.939	50.825	1.00 34.70	В
45	ATOM	1787	C	THR	242	21.393	13.490	48.828	1.00 32.32	В
43	ATOM ATOM	1788 1789	O N	THR	242 243	21.845 20.628	14.451 12.573	48.213 48.250	1.00 33.97 1.00 33.03	B B
	ATOM	1790	CA	ILE	243	20.020	12.573	46.837	1.00 33.03	В
	ATOM	1791	СВ	ILE	243	20.912	11.493	46.052	1.00 33.37	В
	MOTA	1792	CG2	ILE	243	20.732	11.719	44.561	1.00 32.82	В
50	MOTA	1793		ILE	243	22.395	11.361	46.400	1.00 34.30	В
	MOTA	1794		ILE	243	23.071	10.176	45.750	1.00 35.23	В
	ATOM ATOM	1795 1796	C O	ILE	243 243	18.789 18.175	12.635 11.581	46.604 46.655	1.00 35.12 1.00 34.29	B B
	MOTA	1797	N	HIS	244	18.173	13.803	46.364	1.00 37.02	В
55	MOTA	1798	CA	HIS	244	16.766	13.878	46.097	1.00 38.10	В
	MOTA	1799	CB	HIS	244	16.214	15.280	46.390	1.00 40.10	В
	MOTA	1800	CG	HIS	244	16.190	15.635	47.845	1.00 42.80	В
	MOTA	1801		HIS	244	15.219	15.493	48.781	1.00 43.38	В
60	ATOM ATOM	1802 1803		HIS HIS	244 244	17.271 16.968	16.192 16.376	48.496 49.770	1.00 44.55 1.00 44.18	B B
00	ATOM	1804		HIS	244	15.729	15.960	49.770	1.00 43.01	В
	MOTA	1805	C	HIS	244	16.569	13.545	44.624	1.00 38.58	В
	ATOM	1806	ŏ	HIS	244	17.113	14.216	43.754	1.00 38.74	В
	MOTA	1807	N	MET	245	15.790	12.500	44.357	1.00 38.78	В
65	MOTA	1808	CA	MET	245	15.534	12.056	42.991	1.00 38.49	В
	ATOM	1809	CB	MET	245	16.081	10.646	42.791	1.00 35.74	В
	MOTA MOTA	1810 1811	CG SD	MET MET	245 245	17.579 18.110	10.552 8.870	42.978 43.218	1.00 34.03 1.00 32.96	B B
	ATOM	1811	CE	MET	245 245	17.855	8.694	44.996	1.00 32.96	B
70	MOTA	1813	c	MET	245	14.058	12.083	42.618	1.00 39.24	В
-	ATOM	1814	ō	MET	245	13.193	11.814	43.439	1.00 39.24	В
	MOTA	1815	N	LYS	246	13.791	12.409	41.358	1.00 39.88	В
	ATOM	1816	CA	LYS	246	12.430	12.477	40.855	1.00 40.90	В

	MOTA	1817	CB	LYS	246	11.910	13.916	40.915	1.00 42.86	В
	MOTA	1818	CG	LYS	246	10.453	14.080	40.467	1.00 45.41	В
	ATOM	1819	CD	LYS	246	10.140		40.018	1.00 47.23	В
•	ATOM	1820	CE	LYS	246	10.383	16.538	41.134	1.00 49.08	В
5										
5	MOTA	1821	NZ	LYS	246	10.267	17.954	40.659	1.00 47.64	В
	MOTA	1822	С	LYS	246	12.406	11.994	39.414	1.00 41.15	В
	MOTA	1823	0	LYS	246	13.084	12.547	38.552	1.00 40.37	В
	MOTA	1824	N	GLU	247	11.622	10.954	39.163	1.00 40.39	В
	ATOM	1825	CA	GLU	247	11.496	10.414	37.821	1.00 40.56	В
10		1826				12.010	8.977	37.769	1.00 39.14	В
10	MOTA		СВ	GLU	247					
	MOTA	1827	CG	GLU	247	11.479	8.090	38.866	1.00 37.23	В
	ATOM	1828	CD	GLU	247	12.390	6.916	39.118	1.00 36.86	В
	MOTA	1829	OE1	GLU	247	12.094	6.104	40.021	1.00 36.22	В
	MOTA	1830	OE2		247	13.410	6.813	38.406	1.00 36.77	В
15	ATOM	1831	c	GLU	247	10.039	10.469	37.402	1.00 40.31	В
13						9.142			1.00 39.86	В
	MOTA	1832	0	GLU	247		10.304	38.220		
	MOTA	1833	N	THR	248	9.820	10.720	36.117	1.00 40.83	В
	ATOM	1834	CA	THR	248	8.480	10.826	35.569	1.00 40.95	В
	MOTA	1835	CB	THR	248	8.339	12.123	34.736	1.00 40.97	В
20	ATOM	1836	OG1	THR	248	8.804	13.238	35.507	1.00 41.15	В
	ATOM	1837	CG2		248	6.886	12.363	34.358	1.00 40.88	В
	ATOM	1838	C	THR	248	8.143	9.625	34.690	1.00 40.36	В
	MOTA	1839	0	THR	248	8.799	9.380	33.684	1.00 40.50	В
	MOTA	1840	N	THR	249	7.111	8.885	35.086	1.00 39.94	В
25	MOTA	1841	CA	THR	249	6.661	7.712	34.341	1.00 39.13	В
	ATOM	1842	СВ	THR	249	5.537	6.976	35.086	1.00 39.64	В
	ATOM	1843		THR	249	4.307	7.686	34.897	1.00 37.39	В
	ATOM	1844	CG2		249	5.846	6.894	36.575	1.00 38.52	В
-00	MOTA	1845	С	THR	249	6 115	8.132	32.980	1.00 39.50	В
30	ATOM	1846	0	THR	249	5.943	9.311	32.713	1.00 39.71	В
	MOTA	1847	N	ILE	250	5.841	7.148	32.129	1.00 40.73	В
	ATOM	1848	CA	ILE	250	5.307	7.398	30.794	1.00 40.49	В
		1849	СВ	ILE	250	5.292	6.095	29.944	1.00 37.78	В
	MOTA									
25	MOTA	1850		ILE	250	4.244	5.135	30.472	1.00 37.42	В
35	ATOM	1851	CG1	ILE	250	4.999	6.421	28.479	1.00 35.79	В
	ATOM	1852	CD1	ILE	250	5.125	5.238	27.552	1.00 33.62	В
	MOTA	1853	С	ILE	250	3.892	7.963	30.905	1.00 42.55	В
	ATOM	1854	ō	ILE	250	3.361	8.534	29.953	1.00 43.05	В
						3.296				В
40	ATOM	1855	N	ASP	251		7.800	32.084	1.00 44.44	
40	MOTA	1856	CA	ASP	251	1.947	8.286	32.357	1.00 46.93	В
	ATOM	1857	CB	ASP	251	1.215	7.318	33.290	1.00 47.07	В
	MOTA	1858	CG	ASP	251	0.494	6.221	32.539	1.00 47.33	В
	MOTA	1859	OD1	ASP	251	0.034	5.257	33.190	1.00 47.89	В
	ATOM	1860	OD2		251	0.381	6.325	31.298	1.00 45.62	В
45			C	ASP	251	1.965	9.675	32.987	1.00 48.37	В
73	MOTA	1861								
	ATOM	1862	0	ASP	251	0.933	10.175	33.424	1.00 49.52	В
	MOTA	1863	N	GLY	252	3.145	10.286	33.038	1.00 49.00	В
	ATOM	1864	CA	GLY	252	3.275	11.612	33.609	1.00 48.84	В
	MOTA	1865	С	GLY	252	3.432	11.634	35.117	1.00 49.43	В
50	MOTA	1866	ō	GLY	252	3.856	12.638	35.675	1.00 49.95	В
20		1867	Ň	GLU	253	3.093	10.538	35.787	1.00 49.54	В
	MOTA									
	MOTA	1868	CA	GLU	253	3.219	10.499	37.237	1.00 50.34	В
	MOTA	1869	CB	GLU	253	2.693	9.183	37.797	1.00 51.72	В
	ATOM	1870	CG	GLU	253	2.753	9.136	39.309	1.00 55.44	В
55	MOTA	1871	CD	GLU	253	2.605	7.734	39.856	1.00 57.73	В
	ATOM	1872	OE1		253	2.703	7.561	41.091	1.00 59.23	В
							6.805	39.048	1.00 59.21	
	MOTA	1873	OE2		253	2.400		39.046		В
	ATOM	1874	С	GLU	253	4.671	10.678	37.661	1.00 49.73	В
	ATOM	1875	0	GLU	253	5.582	10.326	36.930	1.00 49.04	В
60	ATOM	1876	N	GLU	254	4.878	11.229	38.851	1.00 49.71	В
	ATOM	1877	CA	GLU	254	6.230	11.445	39.346	1.00 50.40	В
	ATOM	1878	СВ	GLU	254	6.452	12.927	39.629	1.00 51.91	В
	MOTA	1879	CG	GLU	254	7.036	13.680	38.448	1.00 56.74	В
	MOTA	1880	CD	GLU	254	6.579	15.124	38.397	1.00 59.63	В
65	ATOM	1881	OE1	GLU	254	6.444	15.739	39.479	1.00 61.46	В
	ATOM	1882	OE2	GLU	254	6.363	15.642	37.276	1.00 60.48	В
	MOTA	1883		GLU	254	6.562	10.614	40.578	1.00 48.68	В
	ATOM	1884	Ö	GLU	254	5.812	10.579	41.546	1.00 47.25	В
70	MOTA	1885	N	LEU	255	7.703	9.938	40.517	1.00 47.02	В
70	MOTA	1886		LEU	255	.8.157	9.094	41.609	1.00 45.92	В
	MOTA	1887	CB	LEU	255	8.566	7.722	41.067	1.00 45.31	В
	ATOM	1888	CG	LEU	255	7.647	7.080	40.016	1.00 44.40	В
	ATOM	1889	CD1		255	8.308	5.837	39.454	1.00 43.92	В
								· -		-

	MOTA	1890	CD	LEU	255	6.294	6.747	40.621	1.00 43.09	В
	ATOM	1891	С	LEU	255	9.353	9.780	42.250	1.00 46.31	В
	MOTA	1892	0	LEU	255	10.346	10.044	41.580	1.00 46.88	В
	ATOM	1893	N	VAL	256	9.255	10.069	43.545	1.00 46.34	В
5	ATOM	1894	CA	VAL	256	10.343	10.739	44.254	1.00 46.32	В
~	ATOM	1895	CB	VAL	256	9.837	12.012	44.988	1.00 46.60	В
	MOTA	1896		VAL	256	9.447	13.075	43.971	1.00 46.43	В
	MOTA	1897		VAL	256	8.642	11.679	45.870	1.00 46.46	В
10	MOTA	1898	С	VAL	256	11.049	9.835	45.258	1.00 45.32	В
10	MOTA	1899	0	VAL	256	10.428	9.287	46.158	1.00 45.96	В
	MOTA	1900	N	LYS	257	12:359	9.687	45.077	1.00 44.55	В
	ATOM	1901	CA	LYS	257	13.190	8.865	45.951	1.00 42.39	В
	ATOM	1902	СВ	LYS	257	13.997	7.852	45.133	1.00 43.00	В
	MOTA	1903	CG	LYS	257	13.170	6.932	44.261	1.00 41.72	В
15										
13	ATOM	1904	CD	LYS	257	14.058	6.001	43.457	1.00 38.34	В
	MOTA	1905	CE	LYS	257	14.956	6.771	42.514	1.00 37.62	В
	MOTA	1906	NZ	LYS	257	15.665	5.873	41.563	1.00 37.38	В
	MOTA	1907	С	LYS	25 7	14.161	9.755	46.705	1.00 40.94	В
	ATOM	1908	0	LYS	257	14.545	10.802	46.220	1.00 42.05	В
20	ATOM	1909	N	ILE	258	14.557	9.322	47.893	1.00 38.70	В
	MOTA	1910	CA	ILE	258	15.498	10.082	48.699	1.00 35.70	В
	ATOM	1911	СВ	ILE	258	14.790	10.816	49.850	1.00 36.93	В
	MOTA	1912		ILE	258	15.811		50.667	1.00 37.53	В
							11.596			
25	ATOM	1913		ILE	258	13.729	11.767	49.291	1.00 38.43	В
25	MOTA	1914		ILE	258	12.932	12.500	50.363	1.00 38.30	В
	MOTA	1915	C	ILE	258	16.541	9.142	49.285	1.00 33.73	В
	MOTA	1916	0	ILE	258	16.257	8.388	50.209	1.00 32.97	В
	MOTA	1917	N	GLY	259	17.746	9.186	48.731	1.00 31.67	В
	MOTA	1918	CA	GLY	259	18.815	8.338	49.219	1.00 30.51	В
30	ATOM	1919	C	GLY	259	19.874	9.136	49.956	1.00 29.55	В
	ATOM	1920	ŏ	GLY	259	20.363	10.138	49.442	1.00 30.38	В
						20.230		51.159		
	MOTA	1921	N	LYS	260		8.692		1.00 27.15	В
	MOTA	1922	CA	LYS	260	21.239	9.377	51.958	1.00 26.83	В
25	ATOM	1923	CB	LYS	260	20.603	9.940	53.240	1.00 24.21	В
35	MOTA	1924	CG	LYS	260	21.518	10.858	54.037	1.00 19.17	В
	MOTA	1925	CD	LYS	260	20.833	11.362	55.289	1.00 17.68	В
	MOTA	1926	CE	LYS	260	21.768	12.219	56.124	1.00 16.42	В
	ATOM	1927	NZ	LYS	260	21.115	12.662	57.378	1.00 16.56	В
	ATOM	1928	С	LYS	260	22.394	8.437	52.318	1.00 27.97	В
40	ATOM	1929	ŏ	LYS	260	22.184	7.357	52.864	1.00 30.85	В
	ATOM	1930	N	LEU	261	23.616	8.859	52.011	1.00 26.40	В
	ATOM	1931	CA	LEU	261	24.792	8.056	52.306	1.00 24.54	В
	ATOM	1932	СВ	LEU	261	25.587	7.830	51.019	1.00 23.41	В
45	MOTA	1933	CG	LEU	261	26.989	7.243	51.175	1.00 23.40	В
45	MOTA	1934	CD1	LEU	261	26.922	5.920	51.941	1.00 20.72	В
	ATOM	1935	CD2	LEU	261	27.599	7.045	49.798	1.00 20.51	В
	ATOM	1936	C	LEU	261	25.685	8.715	53.362	1.00 23.98	В
	ATOM	1937	0	LEU	261	26.117	9.836	53.198	1.00 22.95	В
	ATOM	1938	N	ASN	262	25.953	8.000	54.448	1.00 22.99	В
50	ATOM	1939	CA	ASN	262	26.799	8.529	55.511	1.00 21.81	В
-	MOTA	1940	CB	ASN	262	26.138	8.303	56.874	1.00 19.98	В
	ATOM	1941	CG		262	24.730				В
				ASN			8.872	56.945	1.00 24.40	
	ATOM	1942		ASN	262	23.770	8.135	57.124	1.00 24.74	В
55	MOTA	1943		ASN	262	24.606	10.189	56.807	1.00 20.69	В
55	MOTA	1944	С	ASN	262	28.192	7.879	55.494	1.00 21.73	В
	ATOM	1945	0	ASN	262	28.314	6.680	55.589	1.00 20.91	В
	ATOM	1946	N	LEU	263	29.238	8.691	55.348	1.00 21.87	В
	MOTA	1947	CA	LEU	263	30.611	8.191	55.338	1.00 20.99	В
	ATOM	1948	СВ	LEU	263	31.360	8.750	54.136	1.00 19.60	В
60	ATOM	1949	CG	LEU	263	30.578	8.470	52.856	1.00 20.68	В
00										
	ATOM	1950		LEU	263	31.187	9.220	51.710	1.00 22.18	В
	MOTA	1951		LEU	263	30.557	6.972	52.584	1.00 20.91	В
	MOTA	1952	С	LEU	263	31.262	8.650	56.630	1.00 21.08	В
	MOTA	1953	0	LEU	263	31.631	9.793	56.753	1.00 20.87	В
65	MOTA	1954	N	VAL	264	31.397	7.734	57.586	1.00 22.31	В
	ATOM	1955	CA	VAL	264	31.964	8.048	58.901	1.00 22.41	В
	ATOM	1956	СВ	VAL	264	31.119	7.378	60.042	1.00 22.70	В
	ATOM	1957		VAL	264	31.373	8.082	61.372	1.00 22.70	
		1958		VAL						В
70	MOTA				264	29.627	7.398	59.691	1.00 23.20	В
70	ATOM	1959	C	VAL	264	33.425	7.645	59.112	1.00 23.23	В
	MOTA	1960	0	VAL	264	33.776	6.482	58.994	1.00 25.35	В
	MOTA	1961	N	ASP	265	34.262	8.625	59.443	1.00 23.36	В
	MOTA	1962	CA	ASP	265	35.683	8.397	59.709	1.00 21.00	В

	MOTA	1963	СВ	ASP	265	36.528	9.471	59.011	1.00 17.94	В
	ATOM	1964	CG	ASP		38.024	9.311	59.258	1.00 18.29	В
	MOTA	1965		ASP	265	38.429	8.960	60.384	1.00 17.19	В
	MOTA	1966		ASP	265	38.806	9.554	58.322	1.00 17.13	В
5	ATOM	1967			265	35.840		61.230	1.00 13.43	В
,			C	ASP			8.501			
	MOTA	1968	0	ASP	265	36.208	9.550	61.758	1.00 22.30	В
	ATOM -	1969	N	LEU	266	35.552	7.406	61.928	1.00 19.20	В
	ATOM	1970	CA	LEU	266	35.636	7.387	63.387	1.00 19.48	В
10	MOTA	1971	СВ	LEU	266	35.269	5.991	63.913	1.00 17.26	В
10	MOTA	1972	CG	LEU	266	33.871	5.454	63.567	1.00 18.72	В
	MOTA	1973		LEU	266	33.752	4.005	64.042	1.00 15.87	В
	MOTA	1974	CD2	LEU	266	32.792	6.332	64.207	1.00 17.11	В
	MOTA	1975	С	LEU	266	37.008	7.818	63.936	1.00 17.95	В
	MOTA	1976	0	LEU	266	37.982	7.938	63.198	1.00 16.50	В
15	MOTA	1977	N	ALA	267	37.053	8.062	65.243	1.00 16.22	В
	MOTA	1978	CA	ALA	267	38.284	8.458	65.920	1.00 17.36	В
	MOTA	1979	CB	ALA	267	37.957	9.144	67.244	1.00 13.49	В
	MOTA	1980	С	ALA	267	39.112	7.202	66.183	1.00 18.67	В
	MOTA	1981	0	ALA	267	38.561	6.119	66.320	1.00 18.45	В
20	MOTA	1982	N	GLY	268	40.430	7.357	66.249	1.00 18.66	В
	ATOM	1983	CA	GLY	268	41.291	6.226	66.507	1.00 20.51	В
	MOTA	1984	С	GLY	268	40.738	5.336	67.604	1.00 22.52	В
	ATOM	1985	0	GLY	268	40.123	5.815	68.545	1.00 22.16	В
	ATOM	1986	N	SER	269	40.974	4.033	67.483	1.00 23.43	В
25	ATOM	1987	CA	SER	269	40.471	3.075	68.461	1.00 25.19	В
	ATOM	1988	CB	SER	269	40.083	1.796	67.750	1.00 24.66	В
	ATOM	1989	oG	SER	269	41.131	1.412	66.883	1.00 25.58	В
	ATOM	1990	Ċ	SER	269	41.446	2.739	69.584	1.00 26.21	В
	ATOM	1991	ō	SER	269	41.100	1.996	70.493	1.00 24.37	B
30	ATOM	1992	N	GLU	270	42.657	3.286	69.520	1.00 28.26	В
•	ATOM	1993	CA	GLU	270	43.664	3.029	70.546	1.00 31.89	В
	ATOM	1994	CB	GLU	270	45.031	3.589	70.118	1.00 31.03	В
	ATOM	1995	CG	GLU	270	45.140	5.113	70.033	1.00 28.41	В
	ATOM	1996	CD	GLU	270	44.679	5.680	68.701	1.00 28.74	В
35	ATOM	1997		GLU	270	44.875	6.895	68.471	1.00 30.30	В
55	MOTA	1998	OE2		270	44.129	4.921	67.884	1.00 28.84	В
	ATOM	1999		GLU	270	43.262	3.618	71.904		
			C						1.00 35.40	В
	MOTA	2000	0	GLU	270	42.847	4.770	71.993	1.00 34.74	В
40	ATOM	2001	N	ASN	271	43.378	2.798	72.950	1.00 40.25	В
40	MOTA	2002	CA	ASN	271	43.039	3.192	74.324	1.00 44.12	В
	ATOM	2003	CB	ASN	271	41.581	3.693	74.419	1.00 45.82	В
	MOTA	2004	CG	ASN	271	40.546	2.600	74.147	1.00 46.03	В
	MOTA	2005		ASN	271	39.347	2.845	74.224	1.00 45.22	В
45	MOTA	2006		ASN	271	41.011	1.395	73.829	1.00 47.11	В
43	MOTA	2007	C	ASN	271	43.246	2.039	75.307	1.00 45.92	В
	MOTA	2008	0	ASN	271	43.668	0.938	74.922	1.00 46.63	В
	MOTA	2009	N	ASN	287	41.544	11.757	79.480	1.00 56.32	В
	ATOM	2010	CA	ASN	287	40.687	12.175	78.374	1.00 56.59	В
50	ATOM	2011	CB	ASN	287	41.514	12.914	77.315	1.00 58.79	В
30	ATOM	2012	CG	ASN	287	42.376	14.006	77.912	1.00 60.93	В
	MOTA	2013		ASN	287	43.344	13.729	78.617	1.00 62.31	В
	ATOM	2014		ASN	287	42.024	15.259	77.637	1.00 61.77	В
	ATOM	2015	C	ASN	287	39.995	10.965	77.736	1.00 54.81	В
55	ATOM	2016	0	ASN	287	40.651	10.079	77.181	1.00 55.49	В
<i>)</i>	MOTA	2017	N	ILE	288	38.667	10.940	77.811	1.00 50.95	В
	ATOM	2018	CA	ILE	288	37.889	9.838	77.252	1.00 46.25	В
	MOTA	2019	CB	ILE	288	36.925	9.250	78.314	1.00 48.90	В
	MOTA	2020		ILE	288	37.713	8.784	79.530	1.00 49.46	В
60	MOTA	2021		ILE	288	35.903	10.307	78.741	1.00 49.66	В
60	MOTA	2022		ILE	288	34.687	9.730	79.435	1.00 51.96	В
	MOTA	2023	С	ILE	288	37.060	10.259	76.039	1.00 40.91	В
	ATOM	2024	0	ILE	288	36.680	11.423	75.904	1.00 41.77	В
	MOTA	2025	N	ASN	289	36.774	9.302	75.163	1.00 32.95	В
	MOTA	2026	CA	ASN	289	35.979	9.582	73.976	1.00 26.09	В
65	MOTA	2027	СВ	ASN	289	36.674	9.045	72.728	1.00 22.00	В
	MOTA	2028	CG	ASN	289	36.093	9.612	71.444	1.00 19.37	В
	MOTA	2029	OD1	ASN	289	36.819	9.927	70.521	1.00 19.84	В
	MOTA	2030	ND2		289	34.774	9.725	71.382	1.00 17.42	В
	ATOM	2031	С	ASN	289	34.624	8.927	74.154	1.00 22.64	В
70	ATOM	2032	0	ASN	289	34.394	7.805	73.718	1.00 22.38	В
	MOTA	2033	N	GLN	290	33.726	9.652	74.806	1.00 20.05	В
	ATOM	2034	CA	GLN	290	32.386	9.166	75.085	1.00 18.94	В
	ATOM	2035	CB	GLN	290	31.542	10.299	75.659	1.00 20.27	В
										_

	ATOM	2036	CG	GLN	290	30.180	9.847	76.124	1.00 20.13	В
	MOTA	2037	CD	GLN	290	30.273	8.777	77.182	1.00 20.41	В
	MOTA	2038		GLN	290	29.311	8.067	77.441	1.00 20.41	В
	ATOM	2039		GLN	290			77.806		
5						31.435	8.662		1.00 20.99	В
,	MOTA	2040	C	GLN	290	31.652	8.526	73.899	1.00 18.42	В
	MOTA	2041	0	GLN	290	30.945	7.543	74.068	1.00 15.37	В
	MOTA	2042	N	SER	291	31.808	9.088	72.704	1.00 19.89	В
	MOTA	2043	CA	SER	291	31.139	8.540	71.526	1.00 21.11	В
• • •	MOTA	2044	ÇВ	SER	291	31.161	9.541	70.366	1.00 22.02	В
10	MOTA	2045	OG	SER	291	30.121	10.496	70.491	1.00 23.09	В
	ATOM	2046	С	SER	291	31.757	7.212	71.090	1.00 22.87	В
	MOTA	2047	0	SER	291	31.051	6.294	70.681	1.00 24.87	В
	ATOM	2048	N	LEU	292	33.074	7.107	71.187	1.00 21.56	В
	ATOM	2049	CA	LEU	292	33.741	5.878	70.812	1.00 21.17	B
15	ATOM	2050	CB	LEU	292	35.247	6.097	70.826	1.00 18.31	
13			CG	LEU	292					В
	MOTA	2051				36.074	5.053	70.089	1.00 18.27	В
	MOTA	2052		LEU	292	35.653	4.994	68.625	1.00 13.66	В
	MOTA	2053		LEU	292	37.548	5.418	70.218	1.00 17.97	В
20	MOTA	2054	С	LEU	292	33.345	4.785	71.818	1.00 21.64	В
20	MOTA	2055	0	LEU	292	32.914	3.703	71.454	1.00 19.24	В
	ATOM	2056	N	LEU	293	33.481	5.100	73.098	1.00 22.14	В
	ATOM	2057	CA	LEU	293	33.141	4.172	74.158	1.00 22.23	В
	MOTA	2058	CB	LEU	293	33.374	4.841	75.513	1.00 22.95	В
	MOTA	2059	CG	LEU	293	34.479	4.277	76.408	1.00 25.37	В
25	ATOM	2060		LEU	293	35.684	3.860	75.597	1.00 25.32	. В
	ATOM	2061		LEU	293	34.851	5.345	77.431	1.00 26.42	В
	ATOM	2062	c	LEU	293	31.689	3.713	74.046	1.00 24.05	В
	ATOM	2063	ō	LEU	293	31.373	2.552	74.304	1.00 27.12	
							4.622			В
30	MOTA	2064	N	THR	294	30.807		73.647	1.00 23.43	В
50	MOTA	2065	CA	THR	294	29.396	4.293	73.534	1.00 22.37	В
	MOTA	2066	CB	THR	294	28.554	5.580	73.487	1.00 22.35	В
	MOTA	2067		THR	294	28.706	6.277	74.734	1.00 19.68	В
	MOTA	2068		THR	294	27.090	5.275	73.270	1.00 19.85	В
0.5	MOTA	2069	С	THR	294	29.148	3.419	72.313	1.00 23.90	В
35	MOTA	2070	0	THR	294	28.276	2.561	72.325	1.00 26.74	В
	MOTA	2071	N	LEU	295	29.938	3.628	71.268	1.00 24.08	В
	MOTA	2072	CA	LEU	295	29.817	2.846	70.048	1.00 24.42	В
	ATOM	2073	CB	LEU	295	30.822	3.332	69.004	1.00 22.92	В
	MOTA	2074	CG	LEU	295	30.940	2.449	67.760	1.00 22.72	В
40	ATOM	2075		LEU	295	29.647	2.481	66.975	1.00 20.45	В
10	MOTA	2076			295		2.925			
				LEU		32.096		66.907	1.00 22.47	В
	ATOM	2077	C	LEU	295	30.064	1.361	70.340	1.00 26.15	В
	MOTA	2078	0	LEU	295	29.363	0.503	69.836	1.00 28.14	В
45	ATOM	2079	N	GLY	296	31.079	1.076	71.149	1.00 26.16	В
43	MOTA	2080	CA	GLY	296	31.391	-0.295	71.503	1.00 25.55	В
	MOTA	2081	С	GLY	296	30.300	-0.915	72.361	1.00 25.59	В
	MOTA	2082	О	GLY	296	29.898	-2.059	72.134	1.00 26.11	В
	MOTA	2083	N	ARG	297	29.817	-0.162	73.346	1.00 22.71	В
50	MOTA	2084	CA	ARG	297	28.760	-0.660	74.217	1.00 22.15	В
50	MOTA	2085	CB	ARG	297	28.528	0.306	75.372	1.00 19.27	В
	MOTA	2086	CG	ARG	297	29.719	0.450	76.284	1.00 20.29	В
	ATOM	2087	CD	ARG	297	29.456	1.467	77.372	1.00 22.43	В
	MOTA	2088	NE	ARG	297	30.639	1.658	78.201	1.00 26.34	В
	MOTA	2089	CZ	ARG	297	31.226	2.833	78.407	1.00 24.22	В
55	MOTA	2090		ARG	297	30.729	3.921	77.838	1.00 23.11	В
•	ATOM	2091		ARG	297	32.306	2.918	79.178	1.00 18.73	В
	ATOM	2092	C		297	27.449	-0.876	73.452	1.00 21.70	
				ARG						В
	ATOM	2093	0	ARG	297	26.634	-1.674	73.844	1.00 20.12	В
60	MOTA	2094	N	VAL	298	27.255	-0.138	72.362	1.00 23.14	В
UU	MOTA	2095	CA	VAL	298	26.046	-0.284	71.558	1.00 23.54	В
	ATOM	2096	CB	VAL	298	25.845	0.924	70.613	1.00 22.84	В
	MOTA	2097	CG1	VAL	298	24.742	0.634	69.582	1.00 18.86	В
	MOTA	2098	CG2	VAL	298	25.477	2.146	71.432	1.00 19.90	В
	MOTA	2099	С	VAL	298	26.150	-1.563	70.739	1.00 25.65	В
65	MOTA	2100	ō	VAL	298.	25.192	-2.325	70.643	1.00 27.92	В
	ATOM	2101	N	ILE	299	27.317	-1.793	70.147	1.00 25.96	В
	MOTA	2102	CA	ILE	299	27.516	-2.992	69.354	1.00 27.94	В
	ATOM	2102	CB	ILE	299			68.649	1.00 27.94	
						28.880	-2.971			В
70	MOTA	2104		ILE	299	29.187	-4.330	68.053	1.00 24.74	В
70	ATOM	2105		ILE	299	28.862	-1.910	67.550	1.00 26.37	В
	MOTA	2106		ILE	299	30.192	-1.704	66.889	1.00 28.12	В
	MOTA	2107	C	ILE	299	27.413	-4.240	70.235	1.00 29.09	В
	MOTA	2108	0	ILE	299	26.958	-5.284	69.791	1.00 28.96	В

	ATOM	2109	N	THR	300	27.829	-4.112	71.490	1.00 29.82	В
	MOTA	2110	CA	THR		27.771	-5.213	72.440	1.00 30.01	В
	ATOM	2111	CB	THR		28.561	-4.877	73.706	1.00 29.27	В
_	MOTA	2112	OG1	. THR	300	29.960	-4.842	73.392	1.00 30.68	В
5	MOTA	2113	CG2	! THR	300	28.299	-5.900	74.796	1.00 28.12	В
	MOTA	2114	С	THR	300	26.330	-5.517	72.821	1.00 32.39	В
	MOTA		ŏ						1.00 33.67	В
		2115		THR		25.927	-6.675	72.902		
	MOTA	2116	N	ALA	301	25.552	-4.467	73.044	1.00 32.46	В
	MOTA	2117	CA	ALA	301	24.157	-4.631	73.414	1.00 34.19	В
10	MOTA	2118	СВ	ALA	301	23.584	-3.305	73.863	1.00 32.83	В
	ATOM	2119	c	ALA		23.353	-5.182	72.238	1.00 35.75	В
	MOTA	2120	0	ALA		22.348	-5.842	72.425	1.00 37.02	В
	MOTA	2121	N	LEU	302	23.812	-4.899	71.024	1.00 36.43	В
	MOTA	2122	CA	LEU	302	23.132	-5.352	69.817	1.00 38.14	В
15	ATOM	2123	СВ	LEU		23.549	-4.488	68.622	1.00 38.00	В
15										
	ATOM	2124	CG	LEU		22.492	-3.555	68.031	1.00 39.25	В
	ATOM	2125	CD1	LEU	302	21.823	-2.753	69.128	1.00 39.09	В
	ATOM	2126	CD2	LEU	302	23.149	-2.630	67.016	1.00 38.56	В
	MOTA	2127	С	LEU	302	23.428	-6.812	69.514	1.00 39.23	В
20	ATOM	2128	ŏ	LEU	302	22.520	-7.594	69.249	1.00 39.50	В
20										
	ATOM	2129	N	VAL	303	24.709	-7.163	69.552	1.00 40.87	В
	ATOM	2130	CA	JAV	303	25.161	-8.521	69.287	1.00 42.58	В
	MOTA	2131	CB	VAL	303	26.706	-8.605	69.331	1.00 42.52	В
	ATOM	2132		VAL	303	27.155	-10.051	69.270	1.00 43.58	В
25		2132				27.301				
23	MOTA			VAL	303		-7.824	68.167	1.00 42.05	В
	ATOM	2134	С	VAL	303	24.579	-9.496	70.306	1.00 44.19	В
	MOTA	2135	0	VAL	303	24.048	-10.538	69.941	1.00 45.04	В
	MOTA	2136	N	GLU	304	24.685	-9.145	71.584	1.00 45.93	В
		2137			304	24.169			1.00 48.10	
20	ATOM		CA	GLU		_	-9.973	72.667		В
30	ATOM	2138	CB	GLU	304	24.792	-9.541	73.998	1.00 47.26	В
	MOTA	2139	CG	GLU	304	26.305	-9.707	74.041	1.00 46.33	В
	MOTA	2140	CD	GLU	304	26.901	-9.334	75.382	1.00 46.65	В
	ATOM	2141		GLU	304	28.139	-9.410	75.519	1.00 44.41	В
25	MOTA	2142			304	26.135	-8.968	76.302	1.00 47.42	В
35	MOTA	2143	С	GLU	304	22.649	-9.885	72.753	1.00 49.92	В
	MOTA	2144	0	GLU	304	22.031	-10.492	73.612	1.00 50.02	В
	ATOM	2145	N	ARG	305	22.061	-9.116	71.844	1.00 52.91	В
	MOTA	2146	CA	ARG	305	20.614	-8.941	71.787	1.00 56.32	В
••	MOTA	2147	CB	ARG	305	19.952	-10.251	71.357	1.00 58.76	В
40	ATOM	2148	CG	ARG	305	20.300	-10.652	69.934	1.00 63.36	В
	MOTA	2149	CD	ARG	305		-11.856	69.475	1.00 68.00	В
	ATOM	2150	NE	ARG	305				1.00 71.78	
							-12.133	68.057		В
	ATOM	2151	CZ	ARG	305	19.306	-11.344	67.068	1.00 73.93	В
	ATOM	2152	NH1	ARG	305	18.650	-10.222	67.339	1.00 74.69	В
45	MOTA	2153	NH2	ARG	305	19.554	-11.675	65.807	1.00 75.22	В
. •	MOTA	2154	С	ARG	305	19.981	-8.443	73.082	1.00 56.68	В
	MOTA	2155	0	ARG	305	18.809	-8.699	73.340	1.00 56.68	В
	MOTA	2156	N	THR	306	20.757	-7.728	73.892	1.00 57.02	В
	MOTA	2157	CA	THR	306	20.248	-7.185	75.146	1.00 56.82	В
50	MOTA	2158	CB	THR	306	21.347	-6.426	75.912	1.00 56.33	В
-		2159				22.482	-7.281			
	ATOM		OG1		306			76.095	1.00 56.76	В
	ATOM	2160	CG2		306	20.836	-5.975	77.272	1.00 56.64	В
	MOTA	2161	С	THR	306	19.122	-6.213	74.812	1.00 57.35	В
	MOTA	2162	0	THR	306	19.239	-5.421	73.881	1.00 58.12	В
55	ATOM	2163	N	PRO	307	18.011	-6.268	75.564	1.00 57.68	В
	ATOM	2164			307					
			CD	PRO		17.750		76.688	1.00 58.36	В
	MOTA	2165	CA	PRO	307	16.861	-5.384	75.336	1.00 57.69	В
	ATOM	2166	CB	PRO	307	15.959	-5.682	76.533	1.00 57.98	В
	ATOM	2167	CG	PRO	307	16.241	-7.125	76.803	1.00 58.68	В
60	ATOM	2168	C	PRO	307	17.218	-3.898	75.237	1.00 56.99	В
	MOTA	2169	ŏ		307	16.684			1.00 57.64	
				PRO			-3.187	74.386		В
	ATOM	2170	N	HIS	308	18.120	-3.439	76.105	1.00 55.27	В
	ATOM	2171	CA	HIS	308	18.539	-2.034	76.123	1.00 53.51	В
	MOTA	2172	СВ	HIS	308	18.749	-1.565	77.567	1.00 55.71	В
65	ATOM	2173	CG	HIS	308	19.227		77.677		
J.							-0.150		1.00 58.12	В
	MOTA	2174	CD2		308	20.385	0.367	78.155	1.00 59.12	В
	MOTA	2175	ND1	HIS	308	18.475	0.925	77.252	1.00 58.97	В
	ATOM	2176	CE1		308	19.148	2.043	77.464	1.00 58.91	В
	ATOM	2177	NE2		308	20.310	1.732	78.012	1.00 59.24	
70										В
<i>,</i> U	MOTA	2178		HIS	308	19.813	-1.749	75.329	1.00 50.82	В
	MOTA	2179	0	HIS	308	20.793	-2.472	75.433	1.00 50.26	В
	MOTA	2180	N	VAL	309	19.780	-0.671	74.551	1.00 47.79	В
	ATOM	2181	CA	VAL	309	20.921	-0.239	73.743	1.00 44.18	В
	011	~~01	1	*****	307	24.721	0.237		2.00 44.10	5

	MOTA	2182	СВ	VAL		20.619	-0.355	72.233	1.00 44.37	В
	MOTA	2183	CG1	VAL	309	21.876	-0.067	71.427	1.00 43.69	В
	MOTA	2184	CG2	VAL	309	20.076	-1.737	71.912	1.00 43.50	В
	ATOM	2185	С	VAL	309	21.188	1.234	74.075	1.00 41.50	В
5	MOTA	2186	0	VAL	309	20.368	2.091	73.788	1.00 41.50	В
	ATOM	2187	N	PRO	310	22.351	1.535	74.675	1.00 38.54	В
	MOTA	2188	CD	PRO	310	23.440	0.586	74.968	1.00 37.32	В
	ATOM	2189		PRO	310	22.736	2.898	75.058	1.00 37.55	В
			CA							
10	MOTA	2190	CB	PRO	310	23.983	2.669	75.909	1.00 36.77	В
10	MOTA	2191	CG	PRO	310	24.614	1.502	75.238	1.00 36.14	В
	MOTA	2192	С	PRO	310	22.977	3.898	73.917	1.00 36.95	B
	MOTA	2193	0	PRO	310	24.042	4.493	73.827	1.00 36.57	В
	MOTA	2194	N	TYR	311	21.972	4.076	73.061	1.00 36.05	В
	ATOM	2195	CA	TYR	311	22.047	5.012	71.940	1.00 34.95	В
15	MOTA	2196	CB	TYR	311	20.778	4.949	71.085	1.00 35.41	В
	ATOM	2197	CG	TYR	311	20.603	3.711	70.245	1.00 36.70	В
	MOTA	2198		TYR	311	21.603	3.289	69.374	1.00 35.89	В
	ATOM	2199		TYR	311	21.433	2.161	68.578	1.00 36.91	В
	MOTA	2200		TYR		19.416	2.973	70.300	1.00 36.75	В
20	MOTA	2201		TYR	311	19.234	1.844	69.508	1.00 36.61	В
20										
	MOTA	2202	CZ	TYR	311	20.247	1.442	68.651	1.00 36.85	В
	ATOM	2203	ОН	TYR	311	20.086	0.312	67.882	1.00 35.56	В
	MOTA	2204	C	TYR	311	22.217	6.462	72.402	1.00 35.12	В
25	MOTA	2205	0	TYR	311	23.038	7.186	71.868	1.00 34.13	В
25	MOTA	2206	N	ARG	312	21.422	6.868	73.392	1.00 34.48	• В
	MOTA	2207	CA	ARG	312	21.444	8.237	73.906	1.00 34.28	В
	ATOM	2208	CB	ARG	312	20.160	8.523	74.690	1.00 35.83	В
	MOTA	2209	CG	ARG	312	18.882	8.227	73.935	1.00 41.17	В
	ATOM	2210	CD	ARG	312	17.732	8.007	74.897	1.00 44.62	В
30	MOTA	2211	NE	ARG	312	16.596	7.341	74.263	1.00 48.42	В
	MOTA	2212	CZ	ARG	312	15.608	6.747	74.926	1.00 51.08	В
	ATOM	2213		ARG	312	15.610	6.732	76.254	1.00 50.32	B
	ATOM	2214		ARG	312	14.618	6.163	74.259	1.00 51.58	B
	ATOM	2215	C	ARG	312	22.638	8.593	74.787	1.00 33.03	В
35	MOTA	2216	Ö	ARG	312	22.701	9.699	75.317	1.00 34.26	В
55	MOTA	2217	N	GLU	313	23.581	7.669	74.953	1.00 29.69	В
	ATOM	2218	CA	GLU	313	24.735	7.947	75.799	1.00 25.30	В
	MOTA	2219	CB	GLU	313	25.200	6.655	76.481	1.00 24.49	В
40	MOTA	2220	CG	GLU	313	24.278	6.242	77.634	1.00 25.08	В
40	MOTA	2221	CD	GLU	313	24.677	4.946	78.327	1.00 23.59	В
	MOTA	2222		GLU	313	25.883	4.722	78.553	1.00 23.79	В
	MOTA	2223	OE2	GLU	313	23.775	4.156	78.665	1.00 23.87	В
	MOTA	2224	С	GLU	313	25.898	8.646	75.089	1.00 23.89	В
	MOTA	2225	0	GLU	313	26.963	8.806	75.659	1.00 23.12	В
45	MOTA	2226	N	SER	314	25.680	9.068	73.843	1.00 21.70	В
	MOTA	2227	CA	SER	314	26.714	9.766	73.080	1.00 21.61	В
	ATOM	2228	CB	SER	314	27.800	8.796	72.622	1.00 19.78	В
	MOTA	2229	OG	SER	314	27.401	8.118	71.442	1.00 17.85	B
	MOTA	2230	C	SER	314	26.124	10.466	71.861	1.00 23.50	В
50	ATOM	2231	ō	SER	314	25.047	10.105	71.388	1.00 23.43	B
	MOTA	2232	N	LYS	315	26.840	11.462	71.348	1.00 23.77	В
	ATOM	2233	CA	LYS	315	26.367	12.204	70.186	1.00 24.56	В
	ATOM	2234	СВ	LYS	315	27.216	13.462	69.963	1.00 24.98	В
	MOTA	2235	CG	LYS	315	27.216	14.394	71.165	1.00 25.63	В
55					315					
55	MOTA	2236	CD	LYS		25.926	14.862	71.607	1.00 25.73	8
	MOTA	2237	CE	LYS	315	26.034	15.834	72.774	1.00 26.31	В
	ATOM	2238	NZ	LYS	315	26.660	17.123	72.353	1.00 30.29	В
	ATOM	2239	С	LYS	315	26.416	11.335	68.939	1.00 24.22	В
<i>(</i> 0	MOTA	2240	0	LYS	315	25.498	11.338	68.138	1.00 25.98	В
60	MOTA	2241	N	LEU	316	27.503	10.591	68.787	1.00 23.22	В
	MOTA	2242	CA	LEU	316	27.674	9.719	67.636	1.00 24.18	В
	ATOM	2243	CB	LEU	316	29.039	9.022	67.711	1.00 24.13	В
	MOTA	2244	CG	LEU	316	29.451	8.205	66.488	1.00 23.55	В
	MOTA	2245	CD1		316	29.850	9.149	65.370	1.00 25.34	В
65	MOTA	2246	CD2		316	30.609	7.299	66.840	1.00 22.84	В
	MOTA	2247	c	LEU	316	26.567	8.664	67.506	1.00 23.18	В
	MOTA	2248	ŏ	LEU	316	25.892	8.590	66.480	1.00 22.77	В
	ATOM	2249	N	THR	317	26.369	7.855	68.543	1.00 22.09	В
								68.470	1.00 22.09	
70	ATOM	2250	CA	THR	317	25.346	6.817			В
,,,	ATOM	2251	CB	THR	317	25.459	5.809	69.651	1.00 20.87	В
	MOTA	2252	0G1		317	25.198	6.472	70.892	1.00 19.26	В
	MOTA	2253	CG2		317	26.848	5.192	69.682	1.00 20.16	В
	MOTA	2254	С	THR	317	23.923	7.367	68.394	1.00 23.49	В

						•				
	MOTA	2255	0	THR	317	23.025	6.684	67.929	1.00 23.95	В
	ATOM	2256		ARG		23.723	8.606		1.00 23.82	В
	ATOM	2257		ARG		22.402	9.225	68.764	1.00 25.01	В
	ATOM	2258		ARG		22.317	10.426	69.705	1.00 28.63	B
5	MOTA	2259	CG	ARG	318	21.923	10.065	71.120	1.00 34.53	В
	ATOM	2260	CD	ARG		22.260	11.179	72.094	1.00 38.92	В
	ATOM	2261	NE	ARG	318	21.606	12.436	71.745	1.00 45.13	В
	ATOM	2262	CZ	ARG	318	20.293	12.642	71.792	1.00 47.64	В
	ATOM	2263		ARG	318	19.479	11.666	72.177	1.00 49.68	В
10	ATOM	2264		ARG	318	19.796	13.826	71.456	1.00 45.41	В
10	ATOM	2265	C	ARG	318	22.127	9.674	67.335	1.00 24.81	В
	MOTA	2266	ŏ	ARG	318	21.015	9.522	66.828	1.00 24.01	В
	MOTA	2267	N	ILE	319	23.149	10.217	66.684	1.00 22.86	В
	MOTA	2268	ÇA	ILE	319	23.001	10.688	65.313	1.00 23.60	В
15	ATOM	2269	CB	ILE	319	24.197	11.588	64.893	1.00 22.37	В
13	MOTA	2270		ILE	319	24.089	11.947	63.410	1.00 22.84	В
	MOTA	2271		ILE	319	24.224	12.861	65.748	1.00 22.76	В
	MOTA	2272		ILE	319	25.457	13.738	65.533	1.00 17.34	В
	ATOM	2273	C	ILE	319	22.903	9.532	64.322	1.00 24.40	В
20	MOTA	2274	Ö	ILE	319	22.144	9.585	63.381	1.00 23.60	В
20	MOTA	2275	N	LEU	320	23.688	8.486	64.556	1.00 23.00	В
	MOTA	2276	CA	LEU	320	23.725	7.331	63.664	1.00 27.00	В
	MOTA	2277	CB	LEU	320	25.180	7.037	63.274	1.00 26.75	
	MOTA	2278	CG	LEU	320	26.035	8.151	62.668	1.00 28.75	В
25	MOTA	2279		LEU	320	27.479	7.720	62.710		В
23	MOTA	2279		LEU	320	25.601	8.459		1.00 27.81 1.00 26.81	В
	ATOM	2281	CDZ	LEU	320	23.098	6.053	61.237 64.220	1.00 20.81	В
	ATOM	2282	Ö	LEU	320	23.501	4.957	63.841	1.00 30.42	В
	ATOM	2283	N	GLN	321	22.097	6.188	65.085	1.00 31.08	В
30	ATOM	2284	CA	GLN	321	21.457	5.012	65.674	1.00 34.42	В
50	MOTA	2285	CB	GLN	321	20.466				В
	MOTA	2286	CG	GLN	321	19.195	5.419 6.116	66.777 66.314	1.00 35.23	B B
	ATOM	2287	CD	GLN	321	18.320	6.569	67.488	1.00 42.32	В
	ATOM	2288		GLN	321	17.881	5.755	68.298	1.00 42.32	В
35	ATOM	2289		GLN	321	18.069	7.877	67.577	1.00 42.09	В
33	ATOM	2290	C	GLN	321	20.758	4.102	64.663	1.00 33.44	
	MOTA	2291	Ö	GLN	321	20.677	2.901	64.868	1.00 33.44	В
	ATOM	2292	N	ASP	322	20.261	4.666	63.569		В
	ATOM	2293	CA	ASP	322	19.583	3.839	62.575	1.00 32.24 1.00 33.02	В
40	ATOM	2294	CB	ASP	322	18.780	4.693	61.595	1.00 33.02	B
	ATOM	2295	CG	ASP	322	17.790	3.871	60.783	1.00 32.22	B B
	MOTA	2296		ASP	322	17.716	4.061	59.548	1.00 32.38	. в
	ATOM	2297		ASP	322	17.074	3.045	61.382	1.00 30.54	В
	MOTA	2298	C	ASP	322	20.598	3.011	61.794	1.00 32.49	В
45	ATOM	2299	ŏ	ASP	322	20.228	2.175	60.988	1.00 32.45	В
	MOTA	2300	N	SER	323	21.880	3.274	62.030	1.00 32.77	В
	ATOM	2301	CA	SER	323	22.951	2.547	61.361	1.00 30.97	В
	ATOM	2302	СВ	SER	323	24.122	3.480	61.067	1.00 28.95	В
	MOTA	2303	OG	SER	323	23.837	4.320	59.959	1.00 27.41	В
50	ATOM	2304	Ċ	SER	323	23.416	1.374	62.224	1.00 30.75	В
	ATOM	2305	ō	SER	323	24.171	0.517	61.783	1.00 29.17	В
	ATOM	2306	N	LEU	324	22.966	1.352	63.470	1.00 30.45	В
	ATOM	2307	CA	LEU	324	23.326	0.270	64.363	1.00 31.28	B
	MOTA	2308	СВ	LEU	324	24.046	0.809	65.606	1.00 31.28	B
55	MOTA	2309	CG	LEU	324	25.476	1.353	65.463	1.00 32.14	В
	MOTA	2310		LEU	324	26.308	0.424	64.587	1.00 33.04	В
	ATOM	2311		LEU	324	25.436	2.739	64.862	1.00 34.26	В
	ATOM	2312	C	LEU	324	22.081	-0.511	64.771	1.00 31.54	В
	ATOM	2313	0	LEU	324	21.468	-0.235	65.785	1.00 31.30	В
60	MOTA	2314	N	GLY	325	21.715	-1.490	63.950	1.00 33.73	В
	MOTA	2315	CA	GLY	325	20.554	-2.311	64.249	1.00 33.79	В
	ATOM	2316	C	GLY	325	19.244	-1.636	63.901	1.00 33.20	В
	ATOM	2317	ō	GLY	325	18.218	-1.905	64.517	1.00 33.16	В
	ATOM	2318	N	GLY	326	19.286	-0.754	62.909	1.00 32.43	В
65	ATOM	2319	CA	GLY	326	18.090	-0.048	62.499	1.00 33.13	В
	ATOM	2320	Č	GLY	326	17.704	-0.420	61.088	1.00 34.86	В
	ATOM	2321	ō	GLY	326	17.905	-1.541	60.680	1.00 34.80	В
	MOTA	2322	N	ARG	327	17.157	0.535	60.343	1.00 37.13	В
	MOTA	2323	CA	ARG	327	16.748	0.278	58.974	1.00 38.94	В
70	ATOM	2324	СВ	ARG	327	15.327	0.784	58.753	1.00 43.05	В
	MOTA	2325	CG	ARG	327	14.278	0.034	59.559	1.00 49.59	В
	MOTA	2326	CD	ARG	327	12.872	0.464	59.159	1.00 54.64	В
	MOTA	2327	NE	ARG	327	12.071	-0.657	58.665	1.00 60.40	В
			-							-

								55 503		_
	MOTA	2328		ARG	327	12.358	-1.380	57.583	1.00 62.77	В
	MOTA	2329		ARG	327	13.441	-1.105	56.861	1.00 63.46	В
	ATOM	2330		ARG	327	11.556	-2.377	57.219	1.00 61.73	В
_	MOTA	2331	С	ARG	327	17.686	0.887	57.934	1.00 38.03	В
5	MOTA	2332	0	ARG	327	17.249	1.289	56.869	1.00 37.61	В
	MOTA	2333	N	THR	328	18.979	0.931	58.252	1.00 36.37	В
	ATOM	2334	CA	THR	328	19.983	1.481	57.345	1.00 35.54	В
	MOTA	2335	CB	THR	328	20.715	2.685	57.989	1.00 34.89	В
	MOTA	2336	OG1	THR	328	19.798	3.762	58.194	1.00 35.66	В
10	ATOM	2337	CG2	THR	328	21.847	3.156	57.096	1.00 33.72	В
	MOTA	2338	С	THR	328	21.040	0.442	56.974	1.00 34.98	В
	MOTA	2339	ō	THR	328	21.630	-0.170	57.848	1.00 36.65	В
	ATOM	2340	Ň	ARG	329	21.274	0.252	55.678	1.00 33.43	В
	ATOM	2341	CA	ARG	329	22.281	-0.704	55.226	1.00 33.43	В
15	MOTA	2342	CB	ARG	329	22.354	-0.752	53.696	1.00 35.61	В
13	MOTA	2343	CG	ARG	329	23.146	-1.938	53.156	1.00 40.29	В
		2344		ARG	329	23.642	-1.691	51.736	1.00 45.76	В
	ATOM		CD							
	ATOM	2345	NE	ARG	329	24.253	-2.877	51.133	1.00 51.83	В
20	ATOM	2346	CZ	ARG	329	25.297	-3.540	51.632	1.00 54.83	В
20	ATOM	2347		ARG	329	25.874	-3.148	52.761	1.00 54.64	В
	MOTA	2348	NH2	ARG	329	25.772	-4.601	50.991	1.00 56.00	В
	MOTA	2349	C	ARG	329	23.615	-0.218	55.764	1.00 30.92	В
	MOTA	2350	0	ARG	329	24.034	0.871	55.452	1.00 33.46	В
25	MOTA	2351	N	THR	330	24.277	-1.028	56.573	1.00 28.10	В
25	MOTA	2352	CA	THR	330	25.541	-0.622	57.156	1.00 26.64	В
	MOTA	2353	СВ	THR	330	25.410	-0.524	58.691	1.00 25.12	В
	MOTA	2354	OG1	THR	330	24.526	0.549	59.019	1.00 25.09	В
	MOTA	2355	CG2	THR	330	26.760	-0.291	59.351	1.00 22.76	В
	MOTA	2356	C	THR	330	26.723	-1.516	56.820	1.00 27.27	В
30	ATOM	2357	0	THR	330	26.602	-2.732	56.748	1.00 27.57	В
	MOTA	2358	N	SER	331	27.868	-0.878	56.618	1.00 26.82	В
	ATOM	2359	CA	SER	331	29.104	-1.567	56.308	1.00 26.67	В
	ATOM	2360	CB	SER	331	29.442	-1.446	54.830	1.00 26.29	В
	ATOM	2361	0G	SER	331	28.444	-2.072	54.052	1.00 31.25	В
35	MOTA	2362	C	SER	331	30.191	-0.907	57.125	1.00 26.05	В
55		2363	ō	SER	331	30.210	0.304	57.272	1.00 20.03	В
	ATOM						-1.712	57.677		
	MOTA	2364	N	ILE	332	31.086			1.00 24.35	В
	ATOM	2365	CA	ILE	332	32.179	-1.190	58.472	1.00 20.58	В
40	ATOM	2366	CB	ILE	332	32.119	-1.704	59.917	1.00 16.78	В
40	ATOM	2367	CG2		332	33.367	-1.290	60.656	1.00 15.30	В
	ATOM	2368	CG1		332	30.849	-1.195	60.605	1.00 14.73	В
	MOTA	2369	CD1		332	30.641	-1.735	62.018	1.00 11.20	В
	MOTA	2370	С	ILE	332	33.484	-1.646	57.855	1.00 22.60	В
40	MOTA	2371	0	ILE	332	33.635	-2.809	57.495	1.00 22.21	В
45	MOTA	2372	N	ILE	333	34.421	-0.718	57.713	1.00 23.08	В
	ATOM	2373	CA	ILE	333	35.718	-1.046	57.148	1.00 21.26	В
	MOTA	2374	CB	ILE	333	36.096	-0.086	56.011	1.00 20.77	В
	ATOM	2375	CG2	ILE	333	37.401	-0.530	55.375	1.00 20.19	В
	MOTA	2376	CG1	ILE	333	34.993	-0.065	54.950	1.00 22.76	В
50	MOTA	2377	CD1		333	35.297	0.826	53.738	1.00 19.77	В
	ATOM	2378	C	ILE	333	36.736	-0.927	58.267	1.00 22.44	В
	MOTA	2379	ō	ILE	333	37.015	0.170	58.740	1.00 25.05	В
	ATOM	2380	N	ALA	334	37.269	-2.061	58.708	1.00 22.25	B
	ATOM	2381		ALA	334	38.252	-2.080	59.783	1.00 21.24	В
55	ATOM	2382			334	38.088			1.00 21.16	В
55	ATOM	2383		ALA ALA	334	39.667	-3.351 -1.998	60.605 59.212	1.00 20.54	В
							-2.850			
	ATOM	2384		ALA	334	40.070		58.452	1.00 21.75	В
	MOTA	2385		THR	335	40.405	-0.952	59.582	1.00 18.02	В
60	MOTA	2386		THR	335	41.772	-0.771	59.102	1.00 15.52	В
OU	MOTA	2387		THR	335	42.052	0.701	58.752	1.00 14.93	В
	ATOM	2388	OG1		335	41.551	1.558	59.794	1.00 16.56	В
	ATOM	2389	CG2	THR	335	41.394	1.051	57.447	1.00 13.76	В
	ATOM	2390	С	THR	335	42.780	-1.257	60.132	1.00 14.40	В
<i>-</i> -	ATOM	2391	0	THR	335	42.586	-1.096	61.340	1.00 13.68	В
65	ATOM	2392		ILE	336	43.863	-1.849	59.641	1.00 15.75	В
	ATOM	2393		ILE	336	44.893	-2.409	60.506	1.00 16.07	B
	ATOM	2394		ILE	336	44.671	-3.936	60.702	1.00 14.75	В
	ATOM	2395	CG2		336	43.346	-4.185	61.401	1.00 13.27	В
	ATOM	2396	CG1		336	44.678	-4.662	59.348	1.00 15.22	В
70	MOTA	2397	CD1		336	44.726	-6.215	59.461	1.00 13.22	В
, 0	ATOM	2398		ILE	336	46.317	-2.186	59.999	1.00 13.20	В
	ATOM	2399		ILE	336	46.534	-1.816	58.844	1.00 17.06	В
	MOTA	2400	N	SER	337	47.280	-2.407	60.889	1.00 20.83	В

	MOTA	2401	CA	SER	337	48.694	-2.250	60.570	1.00 23.58	В
	MOTA	2402	CB	SER	337	49.399	-1.491	61.685	1.00 23.56	В
	MOTA	2403	OG	SER	337	50.792	-1.737	61.645	1.00 21.86	В
	ATOM	2404	C	SER	337	49.395	-3.600	60.389	1.00 27.32	В
5	ATOM	2405	Ö	SER	337	49.123	-4.548	61.122	1.00 27.32	В
,	ATOM	2406	N	PRO	338	50.320	-3.688	59.416	1.00 27.30	В
	MOTA	2407	CD	PRO	338	50.520	-2.678	58.383	1.00 29.38	8
	MOTA	2408	CA	PRO	338	51.063	-4.919	59.147	1.00 29.38	В
	MOTA	2409	CB	PRO	338	51.485	-4.743	57.698	1.00 30.36	В
10	ATOM	2410	CG	PRO	338	51.804	-3.283	57.657	1.00 28.25	В
10	MOTA	2411	C	PRO	338	52.274	-5.047	60.074	1.00 28.23	В
	MOTA	2412	Ö	PRO	338	52.903	-6.083	60.131	1.00 32.55	В
	MOTA	2413	И	ALA	339	52.586	-3.972	60.790	1.00 32.33	В
	MOTA	2414	CA	ALA	339	53.732	-3.955	61.690	1.00 33.13	В
15	ATOM	2415	CB	ALA	339	54.051	-2.518	62.109	1.00 35.58	В
15	ATOM	2416	C	ALA	339	53.505	-4.816	62.918	1.00 35.05	В
	ATOM	2417	ŏ	ALA	339	52.391	-4.956	63.386	1.00 35.58	В
	MOTA	2418	N	SER	340	54.585	-5.380	63.447	1.00 36.34	В
	MOTA	2419	CA	SER	340	54.479	-6.236	64.615	1.00 36.42	В
20	ATOM	2420	СВ	SER	340	55.694	-7.162	64.717	1.00 36.55	В
	ATOM	2421	OG	SER	340	56.891	-6.431	64.909	1.00 37.23	В
	MOTA	2422	Č	SER	340	54.324	-5.457	65.914	1.00 36.18	В
	MOTA	2423	ŏ	SER	340	53.769	-5.969	66.871	1.00 36.17	В
	MOTA	2424	N	LEU	341	54.803	-4.220	65.957	1.00 36.13	В
25	MOTA	2425	CA	LEU	341	54.664	-3.453	67.190	1.00 38.21	В
	MOTA	2426	СВ	LEU	341	55.663	-2.296	67.239	1.00 40.75	В
	MOTA	2427	CG	LEU	341	55.293	-1.011	66.500	1.00 44.27	В
	MOTA	2428		LEU	341	56.054	0.160	67.121	1.00 44.94	В
	MOTA	2429		LEU	341	55.597	-1.158	65.011	1.00 45.97	В
30	ATOM	2430	c	LEU	341	53.244	-2.912	67.337	1.00 36.82	В
	ATOM	2431	ŏ	LEU	341	52.944	-2.185	68.259	1.00 37.65	В
	MOTA	2432	N	ASN	342	52.376	-3.288	66.408	1.00 36.59	В
	ATOM	2433	CA	ASN	342	50.983	-2.856	66.416	1.00 35.71	В
	ATOM	2434	СВ	ASN	342	50.636	-2.219	65.071	1.00 34.64	В
35	MOTA	2435	CG	ASN	342	51.343	-0.903	64.865	1.00 34.11	В
	ATOM	2436		ASN	342	51.904	-0.649	63.808	1.00 32.85	В
	ATOM	2437		ASN	342	51.315	-0.052	65.888	1.00 32.94	В
	ATOM	2438	С	ASN	342	50.084	-4.048	66.661	1.00 35.91	В
	MOTA	2439	0	ASN	342	48.860	-3.958	66.561	1.00 37.26	В
40	ATOM	2440	N	LEU	343	50.720	-5.164	66.993	1.00 34.56	В
	ATOM	2441	CA	LEU	343	50.033	-6.419	67.244	1.00 32.49	В
	ATOM	2442	CB	LEU	343	51.019	-7.433	67.836	1.00 31.23	В
	MOTA	2443	CG	LEU	343	50.546	-8.858	68.135	1.00 31.25	В
	MOTA	2444	CD1	LEU	343	50.001	-8.944	69.548	1.00 32.82	В
45	ATOM	2445	CD2	LEU	343	49.504	-9.286	67.101	1.00 30.64	В
	MOTA	2446	С	LEU	343	48.817	-6.295	68.140	1.00 30.37	В
	MOTA	2447	0	LEU	343	47.714	-6.608	67.732	1.00 29.24	В
	MOTA	2448	N	GLU	344	49.023	-5.831	69.364	1.00 30.64	В
50	MOTA	2449	CA	GLU	344	47.922	-5.710	70.307	1.00 32.19	В
50	ATOM	2450	CB	GLU	344	48.442	-5.121	71.619	1.00 34.78	В
	ATOM	2451	CG	GLU	344	47.460	-5.189	72.761	1.00 42.18	В
	MOTA	2452	CD	GLU	344	48.107	-4.861	74.099	1.00 47.80	В
	MOTA	2453		GLU	344	48.743	-3.785	74.209	1.00 48.41	В
	MOTA	2454	OE2	GLU	344	47.982	-5.686	75.036	1.00 49.00	В
55	MOTA	2455	С	GLU	344	46.736	-4.899	69.760	1.00 30.46	В
	MOTA	2456	0	GLU	344	45.600	-5.355	69.802	1.00 29.53	В
	MOTA	2457	N	GLU	345	46.991	-3.707	69.234	1.00 29.30	В
	MOTA	2458	CA	GLU	345	45.901	-2.891	68.703	1.00 29.30	В
6 0	MOTA	2459	CB	GLU	345	46.393	-1.477	68.349	1.00 29.27	В
60	MOTA	2460	CG	GLU	345	46.618	-0.581	69.565	1.00 29.72	В
	MOTA	2461	CD	GLU	345	45.337	-0.285	70.330	1.00 30.47	В
	MOTA	2462		GLU	345	45.429	0.193	71.482	1.00 33.09	В
	MOTA	2463	OE2	GLU	345	44.241	-0.521	69.786	1.00 30.71	В
65	MOTA	2464	С	GLU	345	45.277	-3.556	67.476	1.00 27.38	В
65	MOTA	2465	0	GLU	345	44.082	-3.423	67.233	1.00 28.53	В
	MOTA	2466	N	THR	346	46.084	-4.283	66.711	1.00 24.59	В
	MOTA	2467	CA	THR	346	45.576	-4.979	65.530	1.00 23.55	. В
	MOTA	2468	CB	THR	346	46.717	-5.588	64.721	1.00 22.82	В
70	ATOM	2469		THR	346	47.503	-4.534	64.147	1.00 24.62	В
70	MOTA	2470		THR	346	46.173	-6.473	63.618	1.00 23.82	В
	ATOM	2471	С	THR	346	44.597	-6.083	65.937	1.00 22.61	В
	MOTA	2472	0	THR	346	43.617	-6.343	65.252	1.00 22.38	В
•	MOTA	2473	N	LEU	347	44.873	-6.732	67.062	1.00 23.16	В

ATOM 2474 CA LEU 347 44.002 -7.790 67.561 1.00 23.19 B ATOM 2475 CG LEU 347 44.678 -8.566 68.696 1.00 21.66 B ATOM 2476 CG LEU 347 46.595 -9.346 68.374 1.00 22.16 B ATOM 2476 CD LEU 347 46.939 1.01.18 69.613 1.00 20.42 B ATOM 2479 CD LEU 347 45.718 -10.193 67.210 1.00 22.20 B ATOM 2480 CD LEU 347 42.679 -7.203 66.03 1.00 22.18 B ATOM 2480 O LEU 347 42.679 -7.203 66.03 1.00 22.18 B ATOM 2481 N SER 348 42.743 -6.135 68.584 1.00 22.18 B ATOM 2481 CD SER 348 42.743 -6.135 68.584 1.00 22.12 B ATOM 2482 CD SER 348 41.519 -5.530 69.568 1.00 22.12 B ATOM 2485 CD SER 348 41.519 -5.530 69.568 1.00 22.12 B ATOM 2485 CD SER 348 41.519 -5.346 68.31 1.00 22.12 B ATOM 2485 CD SER 348 40.582 -5.144 68.238 1.00 22.13 B ATOM 2486 CD SER 348 40.582 -5.146 68.238 1.00 22.13 B ATOM 2487 N THR 349 41.156 -4.596 67.172 1.00 25.03 B ATOM 2489 CB THR 349 40.591 -4.186 66.005 1.00 22.13 B ATOM 2489 CB THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2499 CB THR 349 40.091 -3.483 64.988 1.00 22.89 B ATOM 2499 CB THR 349 41.509 -3.483 64.988 1.00 22.89 B ATOM 2491 CG2 THR 349 40.505 -5.136 65.545 51.00 22.97 B ATOM 2495 CB LEU 350 41.655 -6.399 64.988 1.00 22.97 B ATOM 2497 CG LEU 350 41.666 67.09 1.00 22.07 B ATOM 2497 CG LEU 350 41.666 67.09 1.00 22.07 B ATOM 2497 CG LEU 350 41.666 67.09 1.00 22.07 B ATOM 2499 CB CB LEU 350 41.667 -7.689 67.27 1.00 32.03 B ATOM 2495 CB LEU 350 41.667 -7.689 67.27 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.09 1.00 32.67 B ATOM 2495 CG LEU 350 41.666 67.09 1.00 32.67 B ATOM 2495 CG LEU 350 41.667 -7.689 67.492 1.00 32.67 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.73 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.03 B ATOM 2495 CG LEU 350 41.666 67.70 69 62.243 1.00 32.24 B ATOM 2495 CG LEU 350 41.666 67.70 69								
ATOM 2475 CB LEU 347 45.955 -9.346 68.696 1.00 21.66 B ATOM 2476 CC LEU 347 45.955 -9.346 68.374 1.00 22.14 B ATOM 2478 CD LEU 347 45.915 -9.346 68.374 1.00 22.14 B ATOM 2478 CD LEU 347 45.718 -10.293 67.210 1.00 22.20 B ATOM 2478 CD LEU 347 45.718 -10.293 67.210 1.00 22.20 B ATOM 2480 O LEU 347 41.617 -7.712 67.732 1.00 22.20 B ATOM 2480 O LEU 347 41.617 -7.712 67.732 1.00 22.21 B ATOM 2481 N SER 348 42.743 -6.135 68.854 1.00 21.92 B ATOM 2482 CD SER 348 41.518 -5.530 69.368 1.00 21.31 B ATOM 2482 CD SER 348 41.518 -5.530 69.368 1.00 21.32 B ATOM 2485 CD SER 348 41.518 -5.530 69.156 1.00 21.32 B ATOM 2485 CD SER 348 41.518 -5.530 69.176 1.00 21.32 B ATOM 2485 CD SER 348 41.518 -5.530 69.176 1.00 21.32 B ATOM 2485 CD SER 348 31.918 -5.530 69.176 1.00 21.32 B ATOM 2485 CD SER 348 31.918 -5.530 69.177 1.00 21.21 B ATOM 2485 CD SER 348 31.918 -5.530 69.177 1.00 21.21 B ATOM 2485 CD SER 348 31.918 -5.530 69.177 1.00 21.20 B ATOM 2487 CD THR 349 41.156 -4.596 67.172 1.00 22.30 B ATOM 2489 CD THR 349 41.156 -2.185 65.495 1.00 22.95 B ATOM 2499 CG THR 349 40.627 -3.334 61.698 1.00 22.56 B B ATOM 2491 CG THR 349 40.627 -3.334 61.691 1.00 22.37 B ATOM 2493 CD THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2495 CD LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CD LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CD LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CD LEU 350 41.122 -8.602 64.087 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.23 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.23 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.23 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 -9.103 66.2777 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 67.90 67.50 1.00 31.89 B ATOM 2500 CD LEU 350 41.102 67.90 67.50 1.00 31.89 B ATOM 2500 CD LEU 351 60.00 41.102 67.50 68.50 67.50 90.00 31.89 B ATOM 2500 CD LEU 351 60.00 41.102 67.50 68.50 67.50		ATOM	2474	C A	LEU	347	44 002 -7 790 67 561 1 00 23 19	R
ATOM								
ATOM 2477 CDI LEU 347 46.193 -10.118 69.613 1.00 20.42 B ATOM 2479 C LEU 347 45.718 -10.293 67.210 1.00 22.20 B ATOM 2480 O LEU 347 42.679 -7.203 68.063 1.00 23.83 B ATOM 2481 N SER 348 42.743 -6.135 68.834 1.00 22.92 B ATOM 2482 CA SER 348 41.518 -5.530 69.368 1.00 23.12 B ATOM 2483 CB SER 348 41.518 -5.530 69.368 1.00 23.12 B ATOM 2484 OS SER 348 41.518 -5.530 69.368 1.00 22.12 B ATOM 2485 C SER 348 41.518 -5.530 69.368 1.00 22.13 B ATOM 2486 C SER 348 41.518 -5.530 69.31 1.00 22.23 B ATOM 2485 C SER 348 41.518 -5.530 69.31 1.00 22.31 B ATOM 2485 C SER 348 41.518 -5.530 69.31 1.00 22.31 B ATOM 2485 C SER 348 41.518 -5.530 69.31 1.00 22.31 B ATOM 2485 C SER 348 41.518 -5.530 69.31 1.00 22.31 B ATOM 2485 C SER 348 41.518 -5.530 69.31 1.00 22.31 B ATOM 2485 C SER 348 40.384 -4.077 71.00 1.00 21.32 B ATOM 2485 C SER 348 40.384 -5.444 68.238 1.00 22.35 B ATOM 2485 C SER 348 40.394 -4.077 71.00 1.00 23.05 B ATOM 2489 C ST THR 349 40.027 -3.345 61.31 1.00 22.56 B ATOM 2489 C ST THR 349 40.527 -3.334 63.63 1.00 22.65 B ATOM 2491 C THR 349 40.527 -3.334 63.63 1.00 22.56 B ATOM 2491 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 39.714 -5.387 65.344 1.00 27.03 B ATOM 2493 O THR 349 38.502 -5.396 65.164 1.00 27.03 B ATOM 2493 C THR 349 38.502 -5.396 65.164 1.00 27.03 B ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.03 B ATOM 2495 C LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2497 C C LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2497 C C LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2497 C C LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2495 C D LEU 350 41.782 -5.396 65.164 1.00 27.03 B ATOM 2497 C C LEU 350 41.782 -5.396 66.699 67.509 1.00 37.08 B ATOM 2500 C D LEU 3								
5 ATOM 2478 CD2 LEU 347 45.718 -10.293 67.210 1.00 22.03 B ATOM 2479 C LEU 347 41.617 -7.712 67.732 1.00 23.93 B ATOM 2480 O LEU 347 41.617 -7.712 67.732 1.00 25.14 B ATOM 2481 N SER 348 42.743 -6.135 68.653 1.00 23.91 B ATOM 2481 CO SER 348 42.743 -6.135 68.564 1.00 23.91 B ATOM 2481 CO SER 348 41.518 -5.530 69.368 1.00 23.91 B ATOM 2484 CO SER 348 41.518 -5.530 69.368 1.00 23.91 B ATOM 2485 C SER 348 41.518 -4.560 69.368 1.00 23.91 B ATOM 2485 C SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2485 C SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2485 C SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2485 C SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2487 N THR 349 41.156 -4.556 67.172 1.00 27.01 B ATOM 2487 N THR 349 41.156 -4.556 67.122 1.00 23.05 B ATOM 2489 COLTRE 349 41.39 -4.186 66.005 1.00 23.88 B ATOM 2489 COLTRE 349 41.39 -4.186 66.005 1.00 23.88 B ATOM 2499 COLTRE 349 41.39 -4.186 66.005 1.00 23.88 B ATOM 2499 COLTRE 349 41.39 -4.186 66.005 1.00 23.65 B B ATOM 2499 C COLTRE 349 39.14 -5.387 63.98 1.00 25.67 B B ATOM 2499 C COLTRE 349 39.14 -5.387 63.98 1.00 25.67 B B ATOM 2499 C COLTRE 350 40.555 -6.399 6.396 1.00 23.67 B B ATOM 2499 C COLTRE 350 40.555 -6.399 6.4988 1.00 27.04 B ATOM 2499 C COLTRE 350 40.555 -6.399 6.4988 1.00 27.04 B ATOM 2499 C COLTRE 350 41.782 -6.456 64.988 1.00 27.04 B ATOM 2499 C COLTRE 350 41.782 -6.456 64.989 1.00 32.67 B ATOM 2499 C COLTRE 350 41.782 -6.456 64.998 1.00 32.67 B ATOM 2499 C COLTRE 350 41.782 -6.456 64.998 1.00 32.67 B ATOM 2499 C COLTRE 350 41.782 -6.456 66.500 1.00 23.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.67 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 32.59 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 31.89 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 31.89 B ATOM 2500 C LEU 350 41.782 -6.456 66.500 1.00 31.89 B ATOM 25								
ATOM 2499 C LEU 347	5							
ATOM 2480 O LEU 347 41.617 -7.712 67.732 1.00 25.14 B ATOM 2481 N SER 348 42.743 -6.135 68.854 1.00 21.92 B ATOM 2482 CA SER 348 41.518 -5.530 69.368 1.00 21.92 B ATOM 2485 CS SER 348 41.518 -5.530 69.368 1.00 21.92 B ATOM 2485 CS SER 348 42.491 -4.707 71.402 1.00 21.03 B ATOM 2486 O SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2486 O SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2486 O SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2487 N THR 349 41.156 -4.596 67.172 1.00 22.12 B ATOM 2488 CA THR 349 41.516 -4.596 67.172 1.00 23.05 B ATOM 2489 CB THR 349 41.516 -4.596 66.005 1.00 23.05 B ATOM 2490 0G1 THR 349 41.565 -2.185 65.495 1.00 25.58 B ATOM 2491 CG2 THR 349 41.656 -2.185 65.495 1.00 26.94 B ATOM 2492 C THR 349 39.714 -5.387 65.344 1.00 26.37 B ATOM 2493 O THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2494 N LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CB THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2495 CB LEU 350 39.971 -7.610 64.352 1.00 32.43 B ATOM 2495 CB LEU 350 39.971 -7.610 64.352 1.00 32.43 B ATOM 2498 CB LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2497 CB LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CDL LEU 350 41.186 -9.196 66.501 1.00 31.86 B ATOM 2497 CB LEU 350 41.186 -9.196 66.501 1.00 32.67 B ATOM 2498 CDL LEU 350 41.186 -9.109 62.243 1.00 33.86 B ATOM 2498 CDL LEU 350 41.186 -9.109 62.243 1.00 33.86 B ATOM 2500 C LEU 350 41.867 -9.109 62.243 1.00 33.86 B ATOM 2500 C LEU 350 41.867 -9.109 62.243 1.00 33.86 B ATOM 2500 C LEU 350 31.31 39.914 -9.109 62.243 1.00 33.86 B ATOM 2500 C LEU 350 31.31 39.914 -9.917 6.00 66.00 67.00 33.86 B ATOM 2500 C LEU 350 43.186 -9.109 66.220 1.00 33.86 B ATOM 2500 C LEU 350 31.31 39.014 -9.772 69.821 1.00 40.06 B ATOM 2500 C D LEU 350 31.31 39.014 -9.772 69.821 1.00 31.33 B ATOM 2500 C G GLU 351 38.800 -9.646 66.500 1.00 31.83 B ATOM 2500 C G GLU 351 38.800 -9.646 66.500 1.00 31.93 B ATOM 2500 C G GLU 351 38.800 -9.646 66.500 1.00 31.93 B ATOM 2500 C G GLU 351 38.805 66.600 67.500 1.00 31.93 B ATOM 2500 C G GLU 351 38.805 66.600 67.500	9							
ATOM 2481 N SER 348								
10 ATOM 2489 CB SER 348 41.518 -5.530 69.368 1.00 23.12 B ATOM 2488 CG SER 348 42.491 -4.707 71.402 1.00 21.23 B ATOM 2488 CG SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2486 CG SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2487 CM THR 349 41.556 -4.556 67.172 1.00 22.12 B ATOM 2488 CA THR 349 41.556 -4.556 67.172 1.00 23.05 B ATOM 2489 CB THR 349 41.556 -4.556 67.172 1.00 23.05 B ATOM 2489 CB THR 349 41.556 -4.556 67.172 1.00 23.05 B ATOM 2499 CG THR 349 41.556 -4.556 66.005 1.00 25.58 B ATOM 2499 CG THR 349 41.556 -4.556 66.005 1.00 25.58 B ATOM 2490 CG THR 349 41.556 -4.556 65.495 1.00 28.94 B ATOM 2491 CG THR 349 41.556 -2.5185 65.495 1.00 28.94 B ATOM 2491 CG THR 349 40.527 -3.334 63.639 1.00 26.37 B ATOM 2491 CG THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2493 CM THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2495 CM THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2495 CM THR 349 38.502 -5.396 64.988 1.00 27.3 B ATOM 2495 CM EEU 350 39.9711 -7.610 64.352 1.100 32.43 B ATOM 2495 CM EEU 350 39.9711 -7.610 64.352 1.100 32.43 B ATOM 2495 CM EEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CM EEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CM EEU 350 41.182 -8.523 62.799 1.00 33.86 B ATOM 2490 CM EEU 350 41.182 -8.523 66.529 1.00 33.86 B ATOM 2490 CM EEU 350 43.186 7-9.140 66.00 33.86 B ATOM 2490 CM EEU 350 43.186 7-9.140 66.00 33.86 B ATOM 2490 CM EEU 350 43.186 7-9.140 66.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 350 38.880 8-9.866 66.90 1.00 33.86 B ATOM 2500 CM EEU 35								
100 ATOM 2488 CB SER 348 41.889 -4.306 70.215 1.00 21.23 B ATOM 2485 C SER 348 42.981 -4.707 11.402 1.100 27.13 B ATOM 2486 C SER 348 40.582 -5.144 68.238 1.00 22.166 B ATOM 2487 N THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2489 CB THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2489 CB THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2499 CB THR 349 41.506 -2.185 66.005 1.00 25.38 B ATOM 2499 CB THR 349 41.506 -2.185 65.495 1.00 22.12 B ATOM 2491 CG2 THR 349 41.506 -2.185 65.495 1.00 22.02 B ATOM 2492 C THR 349 39.714 -5.387 65.495 1.00 27.04 B ATOM 2492 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2495 CA LEU 350 40.505 -6.399 65.164 1.00 25.10 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 27.03 3.8 B ATOM 2499 CD2 LEU 350 41.782 -8.523 62.709 1.00 32.67 B ATOM 2499 CD2 LEU 350 41.782 -8.523 62.709 1.00 32.67 B ATOM 2499 CD2 LEU 350 41.782 -8.523 62.709 1.00 32.63 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 38.880 -8.286 65.203 1.00 32.33 B ATOM 2500 C LEU 350 38.880 -8.286 65.203 1.00 32.33 B ATOM 2500 C LEU 350 38.880 -8.286 65.203 1.00 32.33 B ATOM 2500 C LEU 350 38.880 -8.286 65.203 1.00 32.13 B ATOM 2500 C LEU 350 38.880 -8.286 65.203 1.00 32.13 B ATOM 2500 C LEU 351 38.805 -1.488 68.982 1.00 44.06 B ATOM 2500 C D LEU 351 38.805 -1.488 68.982 1.00 44.06 B ATOM 2500 C D LEU 351 38.805 -1.886 66.510 1.00 32.13 B ATOM 2500 C D LEU 351 38.805 -1.886 67.95 3.00 32.13 B ATOM 2500 C D LEU 351 38.805 -1.886 67.503 1.00 32.13 B ATOM 2500 C D LEU 351 38.805 -1.886 67.95 3.00 32.13 B ATOM 2500 C D LEU 351 38.805 -1.886 67.95 3.00 32.13 B ATOM 2500 C D LEU 351 38.805 -1.886 69.60 67.452 1.00 33.24 B ATOM 2500 C D LEU 351 38.805 -1.886 69.60 67.452 1.00 33.24 B ATOM 2500 C D LEU 351 38.805 -1.886 66.510 1.00 32.55 B ATOM 2500 C D LEU 351 38.805 -1.886 69.60 67.551 1.00 40.06 B ATOM 2500 C D LEU 351 38.805 -1.90 66.309 1.00 21.50 B ATOM 2500 C D LEU 351 38.805 -1.888 69.								
ATOM 2488 CG SER 348 42.491 -4.707 71.402 1.00 27.13 B ATOM 2488 C SER 348 39.384 -5.348 68.331 1.00 22.12 B ATOM 2488 CA THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2488 CA THR 349 40.391 -4.186 66.005 1.00 25.38 B ATOM 2489 CB THR 349 41.309 -3.483 64.988 1.00 25.69 B ATOM 2490 CGI THR 349 41.009 -3.483 66.391 1.00 22.07 B ATOM 2491 CGZ THR 349 40.291 -5.387 65.344 1.00 27.04 B ATOM 2492 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 CG THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2494 N LEU 350 39.717 -7.610 64.352 1.00 32.43 B ATOM 2495 CG LEU 350 39.971 -7.610 64.352 1.00 32.43 B ATOM 2496 CB LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CD LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CD LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2498 CD LEU 350 41.862 -8.268 65.154 1.00 32.13 B ATOM 2498 CD LEU 350 38.880 -8.268 65.203 1.00 32.13 B ATOM 2498 CD LEU 350 39.911 -7.610 62.771 1.00 34.30 B ATOM 2498 CD LEU 350 38.880 -8.268 65.10 1.00 32.89 B ATOM 2500 C LEU 350 38.880 -8.268 65.10 1.00 32.13 B ATOM 2500 C LEU 350 38.880 -8.268 65.10 1.00 32.13 B ATOM 2500 C LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2500 C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.29 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.29 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.29 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.55 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.55 B ATOM 2500 C C LEU 351 38.807 -8.951 66.807 1.00 32.55 B ATOM 2500 C C LEU 351 38.807 -8.951 64.807 1.00 32.55 B ATOM 2500 C C LEU 351 35.307 3.00 3.00 96.55 65.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00	10							
ATOM 2486 C SER 348 40.582 -5.144 68.238 1.00 22.86 B ATOM 2486 C SER 348 39.384 -5.348 68.331 1.00 22.2.86 B ATOM 2488 C SER 148 39 40.591 -4.186 66.305 1.00 25.305 B ATOM 2489 CB THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2499 CG THR 349 41.309 -3.483 64.988 1.00 25.69 B ATOM 2491 CG2 THR 349 41.309 -3.483 64.988 1.00 25.69 B ATOM 2492 CC THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2492 CC THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CD LEU 350 41.867 -7.089 62.243 1.00 32.43 B ATOM 2499 CD2 LEU 350 41.782 -8.523 62.709 1.00 33.86 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 32.43 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 38.860 -8.268 65.203 1.00 32.13 B ATOM 2500 C LEU 350 38.860 -8.268 65.203 1.00 32.13 B ATOM 2500 C B GUJ 351 39.104 -8.286 65.203 1.00 32.13 B ATOM 2500 C B GUJ 351 39.104 -8.286 65.100 1.00 32.99 B ATOM 2500 C B GUJ 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C B GUJ 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C B GUJ 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.99 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.99 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.99 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.99 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.99 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.55 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.55 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.55 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.55 B ATOM 2500 C B GUJ 351 38.805 -11.888 66.510 1.00 32.55 B ATOM 2500 C B GUJ 351 38.805 -13.888 67 67.55 1.00 33.24 B ATOM 2500 C B GUJ 351 38.805 -13.	10							
ATOM 2486 O SER 348 39.384 -5.348 68.331 1.00 22.12 B ATOM 2487 N THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2489 CB THR 349 40.391 -4.186 66.005 1.00 25.38 B ATOM 2489 CB THR 349 41.209 -3.483 64.988 1.00 25.69 B ATOM 2490 CGI THR 349 41.606 -2.185 65.495 1.00 28.94 B ATOM 2491 CGZ THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2491 CGZ THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2492 C THR 349 40.627 -3.334 63.639 1.00 26.70 B ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2494 N LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2495 C B LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CB LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2496 CB LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2498 CDI LEU 350 41.182 -8.523 62.709 1.00 33.86 B ATOM 2498 CDI LEU 350 41.182 -8.523 62.709 1.00 33.86 B ATOM 2498 CDI LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2499 CDI LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2499 CDI LEU 350 43.160 -9.140 62.777 1.00 34.30 B ATOM 2500 C LEU 350 38.880 -8.268 65.503 1.00 32.13 B ATOM 2500 C LEU 350 37.869 8.736 64.693 1.00 32.13 B ATOM 2500 C LEU 350 37.869 8.736 64.693 1.00 32.13 B ATOM 2500 C C GLU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C GLU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C GLU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C GLU 351 38.807 -8.951 64.837 1.00 34.00 B ATOM 2500 C C GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C C GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C C GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C C GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 C C GLU 351 38.807 -8.951 68.877 1.00 34.30 B ATOM 2500 C C GLU 351 38.807 -8.951 68.877 1.00 34.30 B ATOM 2500 C C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2500 C C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2500 C C GLU 351 38.805 -11.848 68.982 1.00 34.07 B ATOM 2500 C C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2500 C C GLU 351 36.600 -10.00 30.99 B ATOM 2								
ATOM 2488 CA THR 349 41.156 -4.596 67.172 1.00 23.05 B ATOM 2489 CB THR 349 40.991 -4.186 66.005 1.00 25.38 B ATOM 2499 CG THR 349 41.309 -3.483 64.998 1.00 25.69 B ATOM 2491 CG2 THR 349 41.309 -3.483 64.998 1.00 25.69 B ATOM 2491 CG2 THR 349 40.627 -3.314 63.639 1.00 26.37 B ATOM 2492 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2494 N LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 25.10 B ATOM 2495 CA LEU 350 41.12 -8.602 64.087 1.00 32.67 B ATOM 2496 CD LEU 350 41.172 -8.602 64.087 1.00 32.67 B ATOM 2496 CD LEU 350 41.867 -7.089 62.243 1.00 32.43 B ATOM 2498 CD LEU 350 41.867 -7.089 62.243 1.00 32.73 B ATOM 2499 CD LEU 350 41.867 -7.089 62.243 1.00 32.77 L B ATOM 2499 CD LEU 350 43.160 -9.140 62.777 1.00 34.30 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.33 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.33 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.30 B ATOM 2501 C LEU 351 39.104 -8.286 65.503 1.00 32.99 B ATOM 2502 C G GLU 351 39.104 -8.286 65.503 1.00 32.99 B ATOM 2505 CG GLU 351 39.104 -8.286 65.503 1.00 32.99 B ATOM 2505 CG GLU 351 38.869 -8.736 64.693 1.00 31.89 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 34.00 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 34.00 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 34.90 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 34.90 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 34.90 B ATOM 2505 CG GLU 351 37.991 -11.179 69.309 1.00 47.00 B ATOM 2505 CG GLU 351 37.991 -11.179 69.309 1.00 47.00 B ATOM 2505 CG GLU 351 38.805 -11.888 68.992 1.00 48.67 B B ATOM 2509 C GLU 351 37.991 -11.179 69.309 1.00 47.00 B ATOM 2509 C GLU 351 38.805 -11.888 68.992 1.00 48.67 B B ATOM 2509 C GLU 351 38.806 C GLU 351 38.805 -11.888 68.992 1.00 48.67 B B ATOM 2509 C GLU 351 38.806 C GLU 35								
15 ATOM 2488 CA THR 349 40.391 -4.186 66.005 1.00 25.38 B ATOM 2490 CG THR 349 41.039 -3.483 64.398 1.00 25.69 B ATOM 2491 CG THR 349 41.656 -2.185 65.495 1.00 28.94 B ATOM 2491 CG THR 349 41.656 -2.185 65.495 1.00 28.94 B ATOM 2492 C THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2493 CG THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2493 O THR 349 38.502 -5.3396 65.164 1.00 25.10 B ATOM 2493 O THR 349 38.502 -5.3396 65.164 1.00 25.10 B ATOM 2493 CG LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2495 CB LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CB LEU 350 41.782 -8.522 62.709 1.00 32.67 B ATOM 2497 CG LEU 350 41.782 -8.522 62.709 1.00 32.67 B ATOM 2499 CD LEU 350 41.782 -8.522 62.709 1.00 33.86 B ATOM 2499 CD LEU 350 41.782 -8.522 62.709 1.00 33.86 B ATOM 2501 O LEU 350 350 41.867 -7.089 62.249 1.00 32.67 B ATOM 2501 O LEU 350 350 41.867 -7.089 62.249 1.00 33.86 B ATOM 2501 O LEU 350 350 88.880 -8.268 65.203 1.00 33.189 B ATOM 2501 O LEU 350 350 88.880 -8.268 65.203 1.00 32.13 B ATOM 2501 O LEU 350 350 88.880 -8.268 65.203 1.00 32.13 B ATOM 2502 CG EGU 351 38.807 -8.951 68.837 1.00 33.24 B ATOM 2502 CG EGU 351 38.807 -8.951 68.837 1.00 33.24 B ATOM 2505 CG EGU 351 38.807 -8.951 68.837 1.00 33.24 B ATOM 2500 CG EGU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CG EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2500 CG EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2501 O EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2500 CG EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2500 CG EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2500 CG EGU 351 35.8014 -9.772 69.821 1.00 44.06 B ATOM 2500 CG EGU 351 35.738 69.96 66.910 1.00 47.54 B ATOM 2500 CG EGU 351 35.738 69.96 66.910 1.00 47.54 B ATOM 2500 CG EGU 351 35.738 69.96 66.910 1.00 47.54 B ATOM 2500 CG EGU 351 35.738 69.96 66.910 1.00 47.54 B ATOM 2500 CG EGU 351 35.738 69.96 66.910 1.00 47.54 B ATOM 2500 CG EGU 351 35.96 66.910 1.00 47.00 1.00 47.54 B ATOM 2500 CG EGU 351 50.00 47.00 66.910 1.00 47.00 66.910 1.00 47.00 66.910 1.00 47.00 66.910 1.00 4								
ATOM 2489 CB THIR 349 41.309 -3.483 64.988 1.00 25.69 B ATOM 2491 CG2 THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2492 C THR 349 30.627 -3.334 63.639 1.00 26.37 B ATOM 2493 O THR 349 38.502 -5.396 65.164 1.00 25.10 B ATOM 2494 N LEU 350 40.657 -3.99 64.988 1.00 29.73 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CG LEU 350 41.112 -8.602 64.087 1.00 32.43 B ATOM 2497 CG LEU 350 41.782 -8.523 62.709 1.00 32.43 B ATOM 2498 CD LEU 350 41.782 -8.523 62.709 1.00 33.86 B ATOM 2509 CD LEU 350 41.782 -8.523 62.709 1.00 33.86 B ATOM 2500 C LEU 350 43.160 -9.140 62.777 1.00 34.30 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2502 C G GLU 351 39.104 -8.268 65.501 1.00 32.13 B ATOM 2503 CA GLU 351 39.104 -9.772 69.821 1.00 33.24 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2507 OEI GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2508 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2509 C GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2507 OEI GLU 351 38.604 -9.772 69.821 1.00 44.06 B ATOM 2508 CC GLU 351 38.605 -11.848 68.982 1.00 48.67 B ATOM 2509 C GLU 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2509 C GLU 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2510 C GUU 351 351 36.901 -8.009 67.509 1.00 23.54 B ATOM 2510 C GUU 351 351 36.901 -8.009 67.509 1.00 23.54 B ATOM 2510 C GUU 351 351 352 352 3	15							
ATOM 2491 CG2 THR 349	13							
20 ATOM 2492 C THR 349 40.627 -3.334 63.639 1.00 26.37 B ATOM 2492 C THR 349 38.502 -5.396 65.164 1.00 25.10 B ATOM 2494 N LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CB LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CB LEU 350 41.782 -8.523 62.709 1.00 32.43 B ATOM 2496 CD LEU 350 41.782 -8.523 62.709 1.00 32.43 B ATOM 2496 CD LEU 350 41.867 -7.089 62.243 1.00 33.86 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 33.86 B ATOM 2499 CD2 LEU 350 43.160 -9.140 62.777 1.00 34.30 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 35.72 B ATOM 2501 C LEU 350 350 38.880 -8.268 65.203 1.00 33.89 B ATOM 2501 C LEU 351 350 37.869 -8.736 64.693 1.00 33.89 B ATOM 2502 N GLU 351 38.8163 -8.869 67.452 1.00 33.24 B ATOM 2503 CA GLU 351 38.8163 -8.869 67.452 1.00 33.24 B ATOM 2503 CA GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2509 CD1 GLU 351 38.807 -11.8148 68.992 1.00 44.06 B ATOM 2509 CD2 GLU 351 38.805 -11.848 68.92 1.00 44.06 B ATOM 2509 CD2 GLU 351 38.805 -11.848 68.92 1.00 44.06 B ATOM 2509 CD2 GLU 351 36.610 -11.599 69.228 1.00 44.06 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 C GLU 351 38.05 -11.848 68.992 1.00 48.67 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.06 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.07 B ATOM 2510 C GLU 351 36.610 -11.599 69.228 1.00 42.07 B ATOM 2510 C GLU 351 36.81 B ATOM 2510 C GLU 351 36								
20 ATOM 2493 C THR 349 39.714 -5.387 65.344 1.00 27.04 B ATOM 2493 O THR 349 38.502 -5.396 65.164 1.00 27.04 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2495 CA LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2496 CB LEU 350 41.112 -8.602 64.087 1.00 32.463 B ATOM 2497 CG LEU 350 41.112 -8.602 64.087 1.00 32.667 B ATOM 2498 CD LEU 350 41.867 -7.089 62.243 1.00 33.86 B ATOM 2498 CD LEU 350 41.867 -7.089 62.243 1.00 33.72 B ATOM 2500 C LEU 350 350 88.80 -8.268 65.273 1.00 33.72 B ATOM 2501 O LEU 350 350 88.80 -8.268 65.203 1.00 33.72 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 33.21 B ATOM 2502 N GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2502 N GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2504 CB GU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2506 CD GLU 351 38.604 -9.772 69.821 1.00 44.06 B ATOM 2506 CD GLU 351 38.604 -9.772 69.821 1.00 44.06 B ATOM 2506 CD GLU 351 38.805 -11.848 68.992 1.00 48.67 B ATOM 2506 CD GLU 351 38.805 -11.848 68.992 1.00 48.67 B ATOM 2509 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2509 CD GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CD GLU 351 35.3778 -8.532 67.584 1.00 32.55 B ATOM 2510 CD TYR 352 36.561 -41.318 67.758 1.00 25.10 B ATOM 2510 CD TYR 352 36.561 -41.318 67.758 1.00 25.10 B ATOM 2510 CD TYR 352 36.561 -41.318 67.758 1.00 25.10 B ATOM 2510 CD TYR 352 36.561 -41.318 67.758 1.00 25.10 B ATOM 2510 CD TYR 352 36.604 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B ATOM 2510 CD TYR 352 36.661 -1.699 69.464 1.00 22.56 B AT								
ATOM 2493								
ATOM 2499 CA LEU 350 40.505 -6.399 64.988 1.00 29.73 B ATOM 2495 CA LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2497 CG LEU 350 41.112 -8.602 64.087 1.00 32.67 B ATOM 2499 CD1 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 350 81.880 -8.268 65.203 1.00 32.13 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 31.89 B ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 33.29 B ATOM 2505 CG GLU 351 38.163 -8.869 67.452 1.00 33.29 B ATOM 2505 CG GLU 351 38.014 -9.772 69.821 1.00 44.06 B ATOM 2507 OEI GLU 351 38.014 -9.772 69.821 1.00 44.06 B ATOM 2509 C GLU 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2509 C GLU 351 36.610 -11.799 69.228 1.00 48.07 B ATOM 2509 C GLU 351 36.610 -11.899 69.228 1.00 48.07 B ATOM 2501 O GLU 351 35.778 -8.532 67.594 1.00 32.55 B ATOM 2501 O GLU 351 35.778 -8.532 67.594 1.00 32.55 B ATOM 2501 O GLU 351 35.778 -6.690 67.551 1.00 31.83 B ATOM 2501 O GLU 351 35.778 -6.690 67.551 1.00 31.83 B ATOM 2511 N TYR 352 37.097 -6.690 67.551 1.00 31.83 B ATOM 2511 CG TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2516 CEI TYR 352 35.597 -5.727 67.550 1.00 23.55 B ATOM 2516 CEI TYR 352 35.597 -5.720 66.991 1.00 23.10 B ATOM 2516 CEI TYR 352 35.597 -5.790 66.691 1.00 23.50 B ATOM 2518 CE2 TYR 352 35.597 -5.790 66.60 91.00 23.50 B ATOM 2520 OH TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 25.05 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 25.05 B ATOM 2520 C G HIS 353 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2520 C G HIS 354 34.939 -12.073 64.317 1.00 38	20							
ATOM 2495 CB LEU 350 39.971 -7.610 64.352 1.00 32.67 B ATOM 2497 CG LEU 350 41.112 -8.602 64.07 1.00 32.67 B ATOM 2498 CD1 LEU 350 41.867 -7.089 62.243 1.00 32.67 B ATOM 2498 CD1 LEU 350 41.867 -7.089 62.243 1.00 32.67 B ATOM 2499 CD2 LEU 350 43.860 -9.140 62.777 1.00 34.30 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.13 B ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.13 B ATOM 2500 C LEU 350 350 88.80 -8.268 65.203 1.00 32.13 B ATOM 2500 CA GLU 351 39.104 -8.286 66.510 1.00 32.99 B ATOM 2500 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2500 CD GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2500 CD GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2500 CD GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2510 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2512 CA TYR 352 37.097 -6.690 67.501 1.00 32.55 B ATOM 2513 CB TYR 352 35.597 -5.727 67.581 1.00 23.54 B ATOM 2515 CD TYR 352 35.597 -5.727 67.581 1.00 23.52 B ATOM 2510 CD TYR 352 35.597 -5.727 67.581 1.00 23.52 B ATOM 2510 CD TYR 352 35.597 -5.727 67.686 1.00 23.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.606 67.501 1.00 29.09 B ATOM 2510 CD TYR 352 33.952 -1.606 67.501 1.00 29.09 B ATOM 2510 CD TYR 352 33.952 -1.606 67.501 1.00 29.09 B ATOM 2510 CD TYR 352 33.952 -6.601 67.086 1.00 23.52 B ATOM 2510 CD TYR 352 33.952 -6.601 67.086 1.00 23.50 B ATOM 2510 CD TYR 352 33.952 -6.601 67.086 1.00 23.50 B ATOM 2510 CD TYR 352 33.952 -6.601 67.086 1.00 23.04 B ATOM 2520 CD TYR 352 33.952 -6.601 66.262 1.00 23.04 B ATOM 2520 CD TYR 352 33.952 -6.600 66.262 1.00 23.04 B ATOM 2520	20							
250 ATOM 2497 CG LEU 350 41.112 -8.502 64.087 1.00 32.67 B ATOM 2497 CG LEU 350 41.867 -7.089 62.243 1.00 33.86 B ATOM 2499 CD1 LEU 350 43.860 -9.140 62.777 1.00 34.30 B ATOM 2500 C LEU 350 43.860 -9.140 62.777 1.00 34.30 B ATOM 2501 O LEU 350 350 37.869 -8.736 64.693 1.00 31.89 B ATOM 2501 O LEU 350 351 38.800 -8.268 65.203 1.00 31.89 B ATOM 2503 CA GLU 351 38.163 -8.286 65.501 1.00 32.99 B ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.044 -9.772 69.821 1.00 44.06 B ATOM 2505 CG GLU 351 38.044 -9.772 69.821 1.00 44.06 B ATOM 2509 CG LU 351 38.065 -11.848 68.982 1.00 44.07.54 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2509 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 CO TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2514 CG TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2514 CG TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2516 CEI TYR 352 35.937 -3.220 67.970 1.00 23.52 B ATOM 2516 CEI TYR 352 35.937 -3.220 67.970 1.00 23.52 B ATOM 2517 CD TYR 352 35.937 -3.220 67.970 1.00 23.52 B ATOM 2518 CCI TYR 352 35.937 -3.220 67.970 1.00 23.54 B ATOM 2518 CCI TYR 352 35.937 -3.220 67.970 1.00 23.55 B ATOM 2510 O M TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.55 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.55 B ATOM 2520 O M TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2510 CO M TYR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2520 O M TYR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2520 C M TYR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2520 C M TYR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2520 C M TYR 352 35.330 30.00 30.11 B ATOM 2520 C M TYR 352 35.34 B ATOM 2520 C M TYR								
25 ATOM 2499 CD1 LEU 350 41.862 -8.523 62.709 1.00 33.86 B ATOM 2499 CD2 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 C LEU 350 38.880 -8.266 65.203 1.00 32.13 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2502 N GLU 351 39.104 -8.286 66.5103 1.00 32.13 B ATOM 2502 N GLU 351 38.807 -8.951 66.503 1.00 32.13 B ATOM 2503 CA GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2506 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2506 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2508 OE2 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2509 C GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 C TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2513 CB TYR 352 35.597 -5.727 67.550 1.00 25.10 B ATOM 2515 CD1 TYR 352 36.561 -4.318 67.758 1.00 23.52 B ATOM 2510 CO GLU 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CO GLU 351 35.779 -6.690 67.503 1.00 29.09 B ATOM 2510 CO GLU 351 35.779 -6.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 35.779 -6.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 35.779 -7.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 35.779 -7.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 35.779 -7.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 35.779 -7.727 67.550 1.00 25.10 B ATOM 2510 CO GLU 351 352 33.952 -1.001 67.50 B 1.00 21.07 B ATOM 2510 CO GLU 351 352 33.952 -7.070 1.00 23.52 B ATOM 2510 CO GLU 351 352 33.952 -7.070 1.00 23.52 B ATOM 2510 CO GLU 351 352 33.952 -7.070 1.00 23.52 B ATOM 2520 CO THR 352 352 35.771 -2.734 69.254 1.00 23.10 B ATOM 2520 C		MOTA	2495	CA			39.971 -7.610 64.352 1.00 32.43	В
25 ATOM 2498 CD1 LEU 350 41.867 -7.089 62.243 1.00 35.72 B ATOM 2500 CD LEU 350 38.880 -8.268 65.203 1.00 34.30 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.13 B ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 32.29 B ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 32.29 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CD GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2506 CD GLU 351 38.807 -8.951 69.821 1.00 47.54 B ATOM 2506 CD GLU 351 38.807 -18.951 69.821 1.00 47.54 B ATOM 2506 CD GLU 351 38.807 -18.951 69.821 1.00 47.54 B ATOM 2506 CD GLU 351 38.807 -8.951 69.821 1.00 48.07 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2509 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2509 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2510 CB TVR 352 35.997 -5.727 67.550 1.00 25.55 B ATOM 2512 CA TVR 352 35.997 -5.727 67.550 1.00 25.55 B ATOM 2514 CG TVR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2516 CB TVR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2516 CB TVR 352 35.997 -5.727 67.900 1.00 23.50 B ATOM 2516 CB TVR 352 35.937 -3.220 67.970 1.00 23.50 B ATOM 2516 CB TVR 352 35.937 -3.220 67.970 1.00 23.50 B ATOM 2516 CB TVR 352 35.937 -3.220 67.970 1.00 23.50 B ATOM 2517 CD2 TVR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2518 CB TVR 352 35.971 -2.734 69.254 1.00 23.00 B ATOM 2517 CD2 TVR 352 33.957 -5.819 66.893 1.00 20.00 B ATOM 2517 CD2 TVR 352 33.957 -5.819 66.893 1.00 20.00 B ATOM 2520 OH TVR 352 33.957 -5.819 66.66 6.893 1.00 20.00 B ATOM 2520 OH TVR 352 33.957 -5.819 66.66 6.893 1.00 20.00 B ATOM 2520 OH TVR 352 33.957 -5.819 66.309 1.00 21.07 B ATOM 2520 OH TVR 352 33.957 -5.819 66.262 1.00 23.00 B ATOM 2520 OH TVR 352 33.957 -5.819 66.262 1.00 23.00 B ATOM 2520 OH TVR 352 33.957 -5.819 66.262 1.00 23.00 B ATOM 2520 OH TVR 352 33.957 -6.90 66.262 1.00 23.00 B ATOM 2525 CB ALA 353 34.860 -7.192 63.663 1.00 26.652 B ATOM 2525 CB ALA 353 33.937 -7.210 63.111 1.00 48.70 B ATOM 2525 CB ALA 353 33.937 -7.210 63.111 1.00 38.9		MOTA	2496	CB	LEU	350	41.112 -8.602 64.087 1.00 32.67	В
ATOM 2499 CD2 LEU 350 43.160 -9.140 62.777 1.00 34.30 B ATOM 2501 O LEU 350 38.880 -8.268 65.203 1.00 32.13 B ATOM 2502 N GLU 351 39.104 -8.286 66.5203 1.00 32.13 B ATOM 2503 CA GLU 351 39.104 -8.286 66.510 1.00 32.99 B ATOM 2504 CB GLU 351 38.807 -8.591 68.837 1.00 33.24 B ATOM 2505 CG GLU 351 38.807 -8.591 68.837 1.00 34.06 B ATOM 2506 CD GLU 351 38.807 -8.591 68.837 1.00 44.06 B ATOM 2506 CD GLU 351 38.807 -8.591 68.837 1.00 44.06 B ATOM 2507 OEI GLU 351 38.807 -1.11.179 69.309 1.00 44.06 B ATOM 2508 OE2 GLU 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2501 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2510 CA TYR 352 37.097 -6.690 67.594 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.690 67.594 1.00 32.55 B ATOM 2513 CB TYR 352 35.597 -5.277 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 35.597 -3.220 67.970 1.00 23.52 B ATOM 2515 CD1 TYR 352 36.561 -4.318 67.758 1.00 23.54 B ATOM 2516 CEI TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2516 CEI TYR 352 33.9552 -1.601 67.086 1.00 22.50 B ATOM 2516 CEI TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.086 1.00 23.52 B ATOM 2516 CEI TYR 352 33.952 -1.601 67.086 1.00 23.10 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.086 1.00 23.10 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.07 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 CB ALA 353 35.44 B-2.20 66.301 1.00 32.42 B ATOM 2520 CB ALA 353 35.44 B-2.20 66.301 1.00 32.42 B ATOM 2520 CB ALA 353 33.957 -5.819 66.309 1.00 21.96 B ATOM 2530 CB ALS 354 34.300 -9.642 64.811 1.00 33.09 B ATOM 2530 CB ALS 354 34.400 -9.085 68.577 1.00 29.15 B ATOM 2530 CB ALS 354 34.400 -9.085 68.577 1.00 39.29 B	05	MOTA	2497	CG	LEU	350	41.782 -8.523 62.709 1.00 33.86	В
ATOM 2500 C LEU 350 38.880 -8.268 65.203 1.00 32.13 B ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 32.39 B ATOM 2503 CA GLU 351 39.104 -8.286 66.510 1.00 32.99 B ATOM 2503 CA GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2506 CD GLU 351 38.014 -9.772 69.821 1.00 47.54 B ATOM 2506 CD GLU 351 38.014 -9.772 69.821 1.00 47.54 B ATOM 2506 DC GLU 351 38.007 -8.951 68.837 1.00 36.70 B ATOM 2507 OEI GLU 351 38.007 -11.179 69.309 1.00 47.54 B ATOM 2508 DC2 GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.650 67.503 1.00 29.09 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2516 CE TYR 352 35.997 -5.727 67.580 1.00 23.54 B ATOM 2516 CE TYR 352 35.997 -5.727 67.900 1.00 23.50 B ATOM 2516 CE TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2519 C TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2511 CD TYR 352 33.957 -5.894 60.309 1.00 23.10 B ATOM 2512 C A TYR 352 33.957 -5.894 60.309 1.00 23.10 B ATOM 2513 CC TYR 352 33.957 -5.896 66.500 1.00 23.10 B ATOM 2516 CE TYR 352 33.957 -5.896 66.893 1.00 23.10 B ATOM 2517 CD TYR 352 33.957 -5.896 66.309 1.00 23.10 B ATOM 2520 O TYR 352 33.957 -5.896 66.309 1.00 23.10 B ATOM 2521 C TYR 352 33.957 -5.896 66.309 1.00 23.10 B ATOM 2521 C TYR 352 33.957 -5.896 66.309 1.00 23.96 B ATOM 2520 O TYR 352 33.957 -5.896 66.309 1.00 23.96 B ATOM 2520 C A HA 353 34.800 -7.992 66.262 1.00 23.04 B ATOM 2520 C A HA 353 34.980 -7.992 66.626 1.00 23.96 B ATOM 2520 C A HA 353 34.980 -7.992 66.626 1.00 23.99 B ATOM 2525 CA HIS 354 34.939 -1.227 66.631 1.00 39.29 B ATOM 2526 C A HA 353 34.930 -7.992 66.626 1.00 39.29 B ATOM 2527 C A HIS 354 34.939 -1.226 66.03 1.00 39.99 B ATOM 2536 C HIS 354 34.940 -7.992 66.636 1.00 39.99 B ATOM 2537 C A H	25	MOTA	2498	CD1	LEU	350	41.867 -7.089 62.243 1.00 35.72	В
ATOM 2501 O LEU 350 37.869 -8.736 64.693 1.00 31.89 B ATOM 2502 N GLU 351 39.104 -8.286 66.510 1.00 32.99 B ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.014 -9.772 69.821 1.00 44.06 B ATOM 2506 CD GLU 351 38.014 -9.772 69.821 1.00 44.06 B ATOM 2506 CD GLU 351 38.007 -8.951 68.837 1.00 44.06 B ATOM 2507 OEI GLU 351 38.007 -11.848 68.992 1.00 48.67 B ATOM 2508 OE2 GLU 351 36.610 -11.599 69.309 1.00 47.64 B ATOM 2508 OE2 GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 O GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2513 CB TYR 352 36.561 -4.318 67.758 1.00 23.54 B ATOM 2515 CD1 TYR 352 33.952 -1.601 67.096 1.00 23.52 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.096 1.00 23.52 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2519 C TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2519 C TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2510 C TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2512 C TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2513 CB TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2516 CE2 TYR 352 33.952 -1.601 67.096 1.00 23.10 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.096 1.00 22.50 B ATOM 2520 OH TYR 352 33.952 -1.601 67.096 1.00 22.50 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.97 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2521 C TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.155 -5.906 64.626 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.906 64.626 1.00 24.73 B ATOM 2527 O ALA 353 33.132 -1.00 60 64.626 1.00 39.29 B ATOM 2529 CA HIS 354 34.939 -12.07 64.017 1.00 39.79 B ATOM 2537 CB HIS 354 34.939 -12.07 64.017 1.00 39.79 B ATOM 2538 CB HIS 354 34.939 -12.07 66.034 1.00 39.29 B ATOM 2537 CB HIS 354 34.9498 -12.666 6.004 6.003 1.00 39.29 B ATOM 2538 CB HIS 354 34.9498 -12.666 6.004 6.003 1.00 39		ATOM	2499	CD2	LEU	350	43.160 -9.140 62.777 1.00 34.30	В
30 ATOM 2502 N GLU 351 39.104 -8.286 66.510 1.00 32.99 B ATOM 2503 CA GLU 351 38.887 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 44.06 B ATOM 2505 CD GLU 351 38.807 -8.951 69.309 1.00 47.54 B ATOM 2506 CD GLU 351 38.807 -11.179 69.821 1.00 44.06 B ATOM 2507 OEI GLU 351 36.610 -11.599 69.309 1.00 47.54 B ATOM 2508 OE2 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 31.83 B ATOM 2511 N TYR 352 37.097 -6.690 67.501 1.00 22.55 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 22.51 B ATOM 2513 CB TYR 352 36.561 -4.318 67.758 1.00 23.54 B ATOM 2514 CG TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.957 -5.790 66.262 1.00 23.04 B ATOM 2519 CZ TYR 352 33.957 -5.819 66.309 1.00 23.04 B ATOM 2520 OH TYR 352 33.957 -5.819 66.309 1.00 23.99 B ATOM 2521 C TYR 352 33.957 -5.819 66.309 1.00 23.99 B ATOM 2524 CA ALA 353 35.169 -5.790 66.626 1.00 23.04 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 23.04 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 22.77 B ATOM 2528 N HIS 354 34.980 -7.192 63.663 1.00 25.99 B ATOM 2527 O ALA 353 33.957 -5.819 66.309 1.00 21.99 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 23.04 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2528 N HIS 354 34.980 -7.192 63.663 1.00 25.94 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2528 N HIS 354 34.980 -7.192 63.663 1.00 39.29 B ATOM 2527 O ALA 353 35.155 -5.883 63.826 1.00 39.29 B ATOM 2528 N HIS 354 34.980 -7.192 63.663 1.00 39.29 B ATOM 2527 O ALA 353 33.050 -9.642 64.181 1.00 33.51 B ATOM 2536 C HIS 354 34.980 -7.192 66.034 1.00 33.52 B ATOM 2537 N ALA 355 33.050 -9.642 64.181 1.00 33.92 B ATOM 2538 C C ALA		MOTA	2500	С	LEU	350	38.880 -8.268 65.203 1.00 32.13	В
ATOM 2503 CA GLU 351 38.163 -8.869 67.452 1.00 33.24 B ATOM 2505 CG GLU 351 38.807 -8.951 68.837 1.00 36.70 B ATOM 2505 CG GLU 351 38.014 -9.772 69.821 1.00 44.06 B ATOM 2506 CD GLU 351 37.791 -11.179 69.309 1.00 47.54 B ATOM 2507 OEI GLU 351 38.805 -11.848 68.982 1.00 48.67 B ATOM 2508 OE2 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2513 CB TYR 352 35.977 -5.727 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2515 CD1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 33.952 -1.610 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.610 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.610 67.086 1.00 22.50 B ATOM 2520 OH TYR 352 33.957 -1.134 68.377 1.00 25.01 B ATOM 2521 CT TYR 352 33.957 -1.134 68.377 1.00 25.01 B ATOM 2522 OH TYR 352 33.957 -1.610 67.086 68.577 1.00 25.01 B ATOM 2522 OH TYR 352 33.957 -1.610 67.086 63.00 21.00 B ATOM 2522 OH TYR 352 33.957 -1.601 67.086 67.002 67.501 B ATOM 2522 OH TYR 352 33.957 -1.601 67.086 67.502 67.		MOTA	2501	0	LEU	350	37.869 -8.736 64.693 1.00 31.89	В
ATOM 2504 CB GLU 351		MOTA	2502	N	GLU	351	39.104 -8.286 66.510 1.00 32.99	В
ATOM 2504 CB GLU 351	30	ATOM	2503	CA	GLU	351	38.163 -8.869 67.452 1.00 33.24	В
35 ATOM 2506 CD GLU 351 37.791 -11.179 69.309 1.00 47.54 B ATOM 2508 0E2 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2508 0E2 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2511 N TYR 352 37.097 -6.690 67.519 1.00 22.55 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 22.09 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2513 CB TYR 352 35.597 -3.220 67.970 1.00 23.52 B ATOM 2515 CD1 TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CE1 TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CE2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2510 CD TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 OH TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2520 OH TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2520 OH TYR 352 33.952 -1.601 60.085 68.777 1.00 25.05 B ATOM 2521 C TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 OH TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2525 CB ALA 353 35.816 -5.732 62.692 1.00 21.97 B ATOM 2525 CB ALA 353 35.816 -5.732 62.692 1.00 21.20 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 25.99 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 25.99 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2534 CEI HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 ND HIS 354 34.978 -8.282 64.138 1.00 33.22 B ATOM 2531 ND HIS 354 34.978 -9.607 64.052 1.00 33.22 B ATOM 2534 CEI HIS 354 34.978 -9.607 64.062 1.00 33.22 B ATOM 2534 CEI HIS 354 34.978 -9.607 64.052 1.00		MOTA	2504	CB	GLU	351	38.807 -8.951 68.837 1.00 36.70	В
35 ATOM 2508 OE1 GLU 351 36.610 -11.599 69.228 1.00 48.67 B ATOM 2509 C GLU 351 36.610 -11.599 69.228 1.00 48.07 B ATOM 2510 O GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2511 N TYR 352 37.097 -6.690 67.501 1.00 22.55 B ATOM 2513 CB TYR 352 35.597 -5.727 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 35.537 -3.220 67.970 1.00 23.54 B ATOM 2515 CDI TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2515 CDI TYR 352 33.552 -1.601 67.086 1.00 22.50 B ATOM 2516 CEI TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.51 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 OH TYR 352 33.952 -1.601 67.086 1.00 22.51 B ATOM 2520 CB TYR 352 33.957 -5.819 66.309 1.00 21.07 B ATOM 2520 CB TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 CB ALA 353 35.841 -5.821 65.117 1.00 29.15 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.96 B ATOM 2524 CA ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2525 CB ALA 353 35.841 -5.821 65.117 1.00 21.96 B ATOM 2526 C ALA 353 33.180 -7.129 63.663 1.00 21.20 B ATOM 2527 O ALA 353 33.880 -7.129 63.663 1.00 21.20 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.24 B ATOM 2528 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -9.607 64.052 1.00 23.09 B ATOM 2531 CG HIS 354 34.978 -9.607 64.052 1.00 23.09 B ATOM 2531 CG HIS 354 34.978 -9.607 64.052 1.00 33.99 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 39.29 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 39.29 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 33.99 B ATOM 2537 O HIS 354 34.998 -12.074 64.297 1.00 33.51 B ATOM 2537 O HIS 354 34.998 -12.076 66.262 1.00 33.22 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 33.99 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 33.99 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 33.99 B ATOM 2537 O HIS 354 34.999 -12.073 64.317 1.00 33.99 B ATOM 2540		MOTA	2505	CG	GLU	351	38.014 -9.772 69.821 1.00 44.06	В
35 ATOM		ATOM	2506	CD	GLU	351	37.791 -11.179 69.309 1.00 47.54	В
ATOM 2519 C GLU 351 36.901 -8.009 67.519 1.00 31.83 B ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 35.597 -5.727 67.550 1.00 23.54 B ATOM 2514 CG TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CEI TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CEI TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2517 CD2 TYR 352 35.537 -3.220 67.970 1.00 23.50 B ATOM 2519 CZ TYR 352 34.862 -2.642 66.893 1.00 22.50 B ATOM 2519 CZ TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2520 OH TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 OT TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2521 C TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2521 C TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2520 OT TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2523 N ALA 353 35.169 -5.790 66.262 1.00 23.04 B ATOM 2525 CB ALA 353 35.169 -5.790 66.262 1.00 21.96 B ATOM 2525 CB ALA 353 35.169 -5.790 66.262 1.00 21.96 B ATOM 2525 CB ALA 353 35.155 -5.881 65.117 1.00 21.97 B ATOM 2525 CB ALA 353 35.155 -5.881 66.117 1.00 21.97 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 33.51 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 33.51 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 33.51 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 33.51 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 38.24 B ATOM 2530 CB HIS 354 34.978 -9.607 64.052 1.00 38.24 B ATOM 2530 CB HIS 354 34.000 -10.0000000000000000000000000000000		ATOM	2507	OE1	GLU	351	38.805 -11.848 68.982 1.00 48.67	В
ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2515 CDI TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CEI TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2517 CD2 TYR 352 35.537 -3.220 67.970 1.00 22.50 B ATOM 2518 CEZ TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2518 CEZ TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2519 CZ TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2510 CT TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 23.04 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2523 N ALA 353 35.841 -5.821 66.309 1.00 21.96 B ATOM 2524 CA ALA 353 35.851 -5.883 63.862 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.883 63.862 1.00 24.73 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 24.73 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -8.282 64.138 1.00 39.29 B ATOM 2531 CD HIS 354 34.978 -8.282 64.138 1.00 39.29 B ATOM 2531 CB HIS 354 34.999 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 39.29 B ATOM 2531 CG HIS 354 34.999 -12.073 64.317 1.00 38.24 B ATOM 2538 N BIS 354 34.999 -12.073 64.317 1.00 38.24 B ATOM 2538 N BIS 354 34.916 -13.045 65.103 1.00 39.29 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 33.51 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 33.51 B ATOM 2539 CA ARG 355 33.050 -9.642 64.811 1.00 33.09 B ATOM 2534 CB HIS 354 34.916 -10.127 64.297 1.00 33.51 B ATOM 2534 CB HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.053 -9.122 66.094 1.00 38.27 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 38.27 B ATOM 2534 CB HIS 354 33.050 -9.642 64.811 1.00 33.51 B ATOM 2540 CB A	35	ATOM	2508	OE2	GLU	351	36.610 -11.599 69.228 1.00 48.07	В
ATOM 2510 O GLU 351 35.778 -8.532 67.584 1.00 32.55 B ATOM 2511 CA TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2513 CB TYR 352 35.997 -5.727 67.550 1.00 23.54 B ATOM 2514 CG TYR 352 35.537 -3.220 67.990 1.00 23.52 B ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 35.517 -3.220 67.990 1.00 23.10 B ATOM 2518 CE2 TYR 352 35.571 -2.734 69.254 1.00 23.10 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2510 CZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 33.91 -1.134 68.377 1.00 29.15 B ATOM 2521 C TYR 352 33.957 -5.893 68.577 1.00 29.15 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 66.309 1.00 21.96 B ATOM 2524 CA ALA 353 35.851 59 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2528 N HIS 354 34.980 -7.192 63.663 1.00 26.52 B ATOM 2528 N HIS 354 34.987 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -8.282 64.138 1.00 38.24 B ATOM 2531 CG HIS 354 34.998 -12.073 64.64.317 1.00 38.14 B ATOM 2530 CB HIS 354 34.997 -12.073 64.297 1.00 33.51 B ATOM 2530 CB HIS 354 34.909 -12.073 64.297 1.00 33.51 B ATOM 2530 CB HIS 354 34.909 -12.073 64.297 1.00 33.51 B ATOM 2531 CG HIS 354 34.909 -12.073 64.297 1.00 33.51 B ATOM 2530 CB HIS 354 34.900 -12.60 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.900 -12.614 63.053 1.00 38.24 B ATOM 2530 CB HIS 354 34.900 -12.614 63.053 1.00 38.24 B ATOM 2530 CB HIS 354 34.900 -12.614 63.053 1.00 38.24 B ATOM 2530 CB HIS 354 34.000 -13.858 63.072 1.00 33.51 B ATOM 2530 CB HIS 354 34.000 -13.858 63.072 1.00 33.51 B		ATOM	2509					В
40 ATOM 2511 N TYR 352 37.097 -6.690 67.503 1.00 29.09 B ATOM 2513 CB TYR 352 36.561 -4.318 67.558 1.00 23.54 B ATOM 2514 CG TYR 352 36.561 -4.318 67.758 1.00 23.52 B ATOM 2515 CD1 TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.712 -1.334 68.377 1.00 23.10 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2521 C TYR 352 33.957 -5.819 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 O TYR 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2527 O ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2520 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2520 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 33.51 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.09 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.29 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.29 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.29 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.29 B ATOM 2530 CB HIS 354 34.939 -12.073 64.811 1.00 33.29 B ATOM 2530 CB HIS 354 33.050 -9.607 64.052 1.00 35.31 B ATOM 2530 CB HIS 354 33.050 -9.607 64.052 1.00 35.		ATOM						В
40 ATOM 2512 CA TYR 352 35.997 -5.727 67.550 1.00 25.10 B ATOM 2514 CG TYR 352 36.561 -4.318 67.758 1.00 23.54 B ATOM 2514 CG TYR 352 35.537 -3.220 67.790 1.00 23.52 B ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 CD TYR 353 35.841 -5.821 65.117 1.00 21.96 B ATOM 2526 C ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2526 C ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2526 C ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 33.09 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 33.09 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 33.24 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 33.29 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 38.24 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.29 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.29 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.29 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2538 N ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
400 ATOM 2513 CB TYR 352 36.561 -4.318 67.758 1.00 23.54 B ATOM 2515 CDJ TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CDZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CEZ TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2519 CZ TYR 352 33.952 -1.601 67.086 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2521 C TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2521 C TYR 352 33.957 -5.890 66.262 1.00 23.04 B ATOM 2521 C TYR 352 33.957 -5.890 66.262 1.00 21.96 B ATOM 2522 O TYR 352 33.957 -5.890 66.262 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.96 B ATOM 2525 CB ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 24.73 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2533 ND1 HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2533 ND1 HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2535 NEZ HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2535 NEZ HIS 354 34.979 -9.607 64.052 1.00 32.42 B ATOM 2536 C HIS 354 34.939 -12.073 64.317 1.00 38.92 B ATOM 2538 N ARG 355 33.4460 -13.858 63.072 1.00 38.24 B ATOM 2538 N ARG 355 33.4460 -13.858 63.072 1.00 38.94 B ATOM 2538 N ARG 355 33.048 -10.127 64.297 1.00 33.09 B ATOM 2539 CA ARG 355 33.053 -9.126 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.048 -10.022 71.785 1.00 44.68 B ATOM 2544 CZ ARG 355 32.145 -8.470 68.220 1.00 33.51 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.77 B ATOM 2540 CZ ARG 355 32.976 -9.920 69.155 1.00 44.68 B ATOM 2545 CZ ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2545 CZ ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
ATOM 2514 CG TYR 352 35.537 -3.220 67.970 1.00 23.52 B ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 34.366 -1.699 69.464 1.00 22.65 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2522 O TYR 352 33.957 -5.881 63.09 1.00 21.96 B ATOM 2523 N ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2525 CB ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2520 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.979 -9.607 64.052 1.00 32.42 B ATOM 2531 CG HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2533 NDI HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2531 CG HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2531 CG HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2533 NDI HIS 354 34.979 -12.073 64.317 1.00 38.11 B ATOM 2535 NEZ HIS 354 34.979 -12.073 64.317 1.00 38.94 B ATOM 2536 C HIS 354 34.979 -12.073 64.317 1.00 38.94 B ATOM 2537 NEZ HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 32.976 -9.320 69.155 1.00 44.68 B ATOM 2545 NHI ARG 355 31.299 -8.915 71.781 1.00 48.40 B	40							
ATOM 2515 CD1 TYR 352 34.862 -2.642 66.893 1.00 21.07 B ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2517 CD2 TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 25.05 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.24 B ATOM 2536 C HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.29 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.22 B ATOM 2537 O HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.29 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.21 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 32.976 -9.320 69.155 1.00 44.68 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	-							
45 ATOM 2516 CE1 TYR 352 33.952 -1.601 67.086 1.00 22.50 B ATOM 2518 CE2 TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.169 -5.790 66.262 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2526 C ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2531 CG HIS 354 34.499 -12.073 64.317 1.00 38.24 B ATOM 2532 CD2 HIS 354 34.499 -12.073 64.317 1.00 38.24 B ATOM 2533 ND1 HIS 354 34.499 -12.073 64.317 1.00 38.24 B ATOM 2534 CEI HIS 354 34.406 -13.045 65.103 1.00 39.29 B ATOM 2535 NE2 HIS 354 34.201 -12.614 63.053 1.00 39.29 B ATOM 2536 C HIS 354 34.600 -13.858 63.072 1.00 38.24 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.09 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2534 CE HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2535 NE2 HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2544 CG ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
45 ATOM 2518 CE2 TYR 352 35.271 -2.734 69.254 1.00 23.10 B ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.120 63.619 1.00 25.94 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2531 CG HIS 354 34.979 -12.073 64.317 1.00 38.24 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2533 ND1 HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2535 NE2 HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2536 C HIS 354 34.939 -12.073 64.317 1.00 38.94 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2537 O HIS 354 34.600 -13.858 63.072 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.32 B ATOM 2530 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.145 -8.470 68.220 1.00 44.68 B ATOM 2542 CD ARG 355 32.145 -8.470 68.220 1.00 44.68 B ATOM 2544 CZ ARG 355 32.132 -8.099 71.785 1.00 48.40 B								
45 ATOM 2518 CE2 TYR 352 34.366 -1.699 69.464 1.00 22.61 B ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.979 -9.607 64.052 1.00 32.42 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2534 CE1 HIS 354 34.416 -13.045 65.103 1.00 39.29 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 39.29 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2537 O HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2538 N RE2 HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2538 C HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2538 C HIS 354 34.213 -14.143 64.207 1.00 33.51 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.51 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.132 -8.539 70.416 1.00 44.68 B ATOM 2542 CD ARG 355 32.132 -8.539 70.416 1.00 44.68 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.785 1.00 48.40 B								
ATOM 2519 CZ TYR 352 33.712 -1.134 68.377 1.00 25.05 B ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.979 -12.073 64.317 1.00 32.42 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2534 CEI HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.09 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2534 CEI HIS 354 32.048 -10.17 66.822 1.00 33.51 B ATOM 2536 C HIS 354 32.048 -10.17 66.822 1.00 33.51 B ATOM 2537 O HIS 354 32.048 -10.17 66.822 1.00 33.22 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 38.22 B ATOM 2537 O HIS 354 32.048 -10.17 66.822 1.00 33.51 B ATOM 2534 CEI ARG 355 33.053 -9.122 66.034 1.00 38.22 B ATOM 2537 O BR ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2534 CEI ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2534 CEI ARG 355 33.053 -9.122 66.034 1.00 38.27 B ATOM 2540 CB ARG 355 33.1847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2543 NE ARG 355 33.122 -8.099 71.142 1.00 44.68 B ATOM 2544 CZ ARG 355 31.523 -10.222 71.785 1.00 48.40 B	45							
ATOM 2520 OH TYR 352 32.840 -0.085 68.577 1.00 29.15 B ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2534 CEI HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.29 B ATOM 2537 O HIS 354 33.050 -9.642 64.811 1.00 33.29 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.22 B ATOM 2539 CA ARG 355 32.145 -8.470 68.220 1.00 33.27 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2543 NE ARG 355 31.299 -8.915 71.781 1.00 48.40 B	••							
ATOM 2521 C TYR 352 35.169 -5.790 66.262 1.00 23.04 B ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2533 ND1 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 34.600 -13.858 63.072 1.00 39.29 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2537 O HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 33.09 B ATOM 2539 CA ARG 355 33.050 -9.642 64.811 1.00 33.22 B ATOM 2539 CA ARG 355 33.050 -9.642 66.852 1.00 33.22 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
50 ATOM 2522 O TYR 352 33.957 -5.819 66.309 1.00 21.96 B ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2530 CB HIS 354 34.979 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2533 ND1 HIS 354 34.416 -13.045 65.103 1.00 39.29 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 39.29 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.21 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 33.51 B ATOM 2539 CA ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2543 NE ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
50 ATOM 2523 N ALA 353 35.841 -5.821 65.117 1.00 21.97 B ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2536 C HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.29 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.642 66.034 1.00 33.22 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.129 -8.915 71.781 1.00 44.68 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
ATOM 2524 CA ALA 353 35.155 -5.883 63.826 1.00 24.73 B ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2533 ND1 HIS 354 34.600 -13.858 63.072 1.00 39.29 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.642 64.811 1.00 33.09 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 33.1299 -8.915 71.781 1.00 48.76 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	50							
ATOM 2525 CB ALA 353 36.163 -5.732 62.692 1.00 21.20 B ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2543 NE ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 33.1299 -8.915 71.781 1.00 48.40 B	-							
ATOM 2526 C ALA 353 34.380 -7.192 63.663 1.00 26.52 B ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2543 NE ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.40 B								
55 ATOM 2527 O ALA 353 33.283 -7.210 63.119 1.00 25.94 B ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 34.375 -9.607 64.052 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2544 C2 ARG 355 31.299 -8.915 71.781 1.00 46.84 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
55 ATOM 2528 N HIS 354 34.978 -8.282 64.138 1.00 30.11 B ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 C2 ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
ATOM 2529 CA HIS 354 34.375 -9.607 64.052 1.00 32.42 B ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.12 -8.099 71.142 1.00 46.84 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	55							
ATOM 2530 CB HIS 354 35.334 -10.660 64.626 1.00 35.26 B ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.939 -12.073 64.317 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2537 O HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 33.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	-							
ATOM 2531 CG HIS 354 34.939 -12.073 64.317 1.00 38.11 B ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2540 CB ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2543 NE ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
ATOM 2532 CD2 HIS 354 34.416 -13.045 65.103 1.00 38.24 B ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 C2 ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
60 ATOM 2533 ND1 HIS 354 35.045 -12.614 63.053 1.00 39.29 B ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27								
ATOM 2534 CE1 HIS 354 34.600 -13.858 63.072 1.00 38.94 B ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	60							
ATOM 2535 NE2 HIS 354 34.213 -14.143 64.303 1.00 39.79 B ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	00							
ATOM 2536 C HIS 354 33.050 -9.642 64.811 1.00 33.09 B ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
ATOM 2537 O HIS 354 32.048 -10.127 64.297 1.00 33.51 B ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
65 ATOM 2538 N ARG 355 33.053 -9.122 66.034 1.00 33.22 B ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 C2 ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
ATOM 2539 CA ARG 355 31.847 -9.091 66.852 1.00 35.31 B ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 C2 ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	65							
ATOM 2540 CB ARG 355 32.145 -8.470 68.220 1.00 38.27 B ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	5 5							
ATOM 2541 CG ARG 355 32.976 -9.320 69.155 1.00 41.93 B ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
70 ATOM 2542 CD ARG 355 33.322 -8.539 70.416 1.00 44.68 B ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
70 ATOM 2543 NE ARG 355 32.132 -8.099 71.142 1.00 46.84 B ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B								
ATOM 2544 CZ ARG 355 31.299 -8.915 71.781 1.00 48.76 B ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	70							
ATOM 2545 NH1 ARG 355 31.523 -10.222 71.785 1.00 48.40 B	, 0							
ATOM 2546 NH2 ARG 355 30.243 -8.423 72.420 1.00 47.82 B								
		ATOM	2546	NH2	ARG	355	30.243 -8.423 72.420 1.00 47.82	В

	MOTA	2547	С	ARG	355	30.74	0 -8.281	66.173	1.00 35.52	В
	MOTA	2548	ō	ARG		29.56			1.00 36.07	В
	MOTA	2549	N	ALA		31.12			1.00 33.02	В
_	MOTA	2550	CA	ALA	356	30.14	6 -6.374	64.789	1.00 31.19	В
5	MOTA	2551	CB	ALA	356	30.83		64.206	1.00 31.50	В
	MOTA	2552	С	ALA	356	29.34		63.704	1.00 31.06	В
	MOTA	2553	0	ALA	356	28.25		63.343	1.00 28.55	В
	MOTA	2554	N	LYS	357	29.88		63.194	1.00 31.69	В
10	MOTA	2555	CA	LYS	357	29.21		62.144	1.00 33.26 1.00 35.45	В
10	MOTA MOTA	2556 2557	CB	LYS LYS	357 357		D -10.198 L -9.906	61.768 61.350	1.00 35.45	B B
	MOTA	2558	CD	LYS	357		1 -10.458	59.956	1.00 30.20	В
	MOTA	2559	CE	LYS	357		-11.968	59.851	1.00 40.54	В
	ATOM	2560	NZ	LYS	357		5 -12.795	60.666	1.00 40.76	В
15	ATOM	2561	C	LYS	357	27.816		62.552	1.00 33.43	В
	MOTA	2562	0	LYS	357	26.911	-9.512	61.724	1.00 33.00	В
	MOTA	2563	N	ASN	358	27.654	-9.773	63.833	1.00 34.87	В
	MOTA	2564	CA	ASN	358		L -10.253	64.379	1.00 36.60	В
20	MOTA	2565	СВ	ASN	358		1 -10.942	65.724	1.00 37.20	В
20	MOTA	2566	CG	ASN	358		-12.159	65.606	1.00 38.73	В
	MOTA	2567		ASN	358		-12.602	66.589	1.00 40.28	В
	MOTA	2568		ASN	358	27.598 25.320		64.404 64.574	1.00 38.63	B B
	MOTA MOTA	2569 2570	c o	ASN ASN	358 358	24.431		65.406	1.00 37.65 1.00 38.18	В
25	MOTA	2571	N	ILE	359	25.413		63.825	1.00 38.10	В
	MOTA	2572	CA	ILE	359	24.430		63.951	1.00 40.85	В
	MOTA	2573	СВ	ILE	359	25.088		63.869	1.00 40.68	В
	MOTA	2574		ILE	359	24.014		63.858	1.00 40.16	В
	ATOM	2575	CG1	ILE	359	26.019	-5.402	65.066	1.00 40.61	В
30	ATOM	2576	CD1	ILE	359	26.871		64.970	1.00 39.58	В
	MOTA	2577	C	ILE	359	23.391		62.847	1.00 41.96	В
	MOTA	2578	0.	ILE	359	23.729		61.671	1.00 42.22	В
	MOTA	2579	N	LEU	360	22.122		63.241	1.00 43.88	В
35	MOTA MOTA	2580 2581	CA CB	LEU	360 360	21.024 19.952		62.293 62.864	1.00 46.61 1.00 48.74	B B
55	ATOM	2582	CG	LEU	360	19.660		62.123	1.00 48.74	В
	ATOM	2583		LEU	360	18.886		63.043	1.00 51.91	В
	ATOM	2584		LEU	360	18.870		60.836	1.00 53.68	B
	MOTA	2585	C	LEU	360	20.406		61.966	1.00 46.77	В
40	ATOM	2586	0	LEU	360	19.969	-5.211	62.854	1.00 46.72	В
	MOTA	2587	N	ASN	361	20.380	-5.586	60.681	1.00 47.32	В
	MOTA	2588	CA	ASN	361	19.805		60.242	1.00 48.31	В
	MOTA	2589	CB	ASN	361	20.834		59.458	1.00 47.61	В
45	ATOM	2590	CG	ASN	361	21.795		60.360	1.00 48.03	В
43	MOTA	2591		ASN	361	22.423		59.933	1.00 48.30	В
	ATOM ATOM	2592 2593	C	ASN ASN	361 361	21.913 18.563		61.609 59.387	1.00 47.01 1.00 49.65	B B
	ATOM	2594	Ö	ASN	361	18.294		58.919	1.00 51.43	В
	ATOM	2595	N	LYS	362	17.821		59.180	1.00 51.11	В
50	ATOM	2596	CA	LYS	362	16.586		58.400	1.00 50.99	В
	MOTA	2597	CB	LYS	362	16.883		56.896	1.00 50.83	В
	MOTA	2598	CG	LYS	362	17.289	-2.229	56.253	1.00 49.23	В
	ATOM	2599	CD	LYS	362	17.117		54.740	1.00 48.73	В
55	ATOM	2600	CE	LYS	362	15.643		54.329	1.00 47.35	В
55	MOTA	2601	NZ	LYS	362	14.989		54.515	1.00 44.68	B
	MOTA	2602	C	LYS	362	15.659		58.814	1.00 51.66	В
	ATOM	2603 2604	0	LYS	362	15.211		57.913	1.00 52.28 1.00 50.87	В
	MOTA MOTA	2605	MG	LYS MG	362 2602	15.387 43.651		60.031 59.419	1.00 30.87	В
60	ATOM	2606	PB	ADP	2600	44.241		60.136	1.00 25.05	ADP
00	ATOM	2607		ADP	2600	44.666		61.419	1.00 26.27	ADP
	ATOM	2608		ADP	2600	43.842	5.630	60.325	1.00 30.28	ADP
	ATOM	2609		ADP	2600	43.097		59.552	1.00 28.27	ADP
	ATOM	2610	PA	ADP	2600	45.608	7.818	57.697	1.00 39.43	ADP
65	MOTA	2611	01A		2600	44.613	7.286	56.772	1.00 38.84	ADP
	ATOM	2612	02A		2600	45.462	9.276	57.778	1.00 41.49	ADP
	ATOM	2613	03A		2600	45.426	7.167	59.121	1.00 32.30	ADP
	ATOM	2614	05*		2600	47.084	7.550	57.187	1.00 39.41	ADP
70	MOTA	2615	C5*		2600	48.157	6.858	57.828	1.00 42.82	ADP
70	ATOM	2616	C4*		2600	49.374	6.940	56.825	1.00 45.97	ADP
	ATOM	2617	04*		2600	49.399	5.696	56.137	1.00 46.62	ADP
	ATOM	2618	C3*		2600	49.266	8.021	55.715	1.00 46.20	ADP
	ATOM	2619	03*	MUP	2600	50.512	8.717	55.502	1.00 49.03	ADP

					0.000	40 010	7 200		1 00 45 35	
	MOTA	2620	CZ*	ADP	2600	48.810			1.00 46.75	ADP
	MOTA	2621	02*	ADP	2600	49.235	7.921	53.240	1.00 48.13	ADP
	MOTA	2622	C1*	ADP	2600	49.328			1.00 47.35	ADP
_	MOTA	2623	N9	ADP	2600	48.435			1.00 48.03	ADP
5	MOTA	2624	C8	ADP	2600	47.417	4.221	54.811	1.00 47.72	ADP
	MOTA	2625	N7	ADP	2600	46.839			1.00 48.56	ADP
	MOTA	2626	C5	ADP	2600	47.454	3.316		1.00 49.10	ADP
	MOTA	2627	C6	ADP	2600	47.308	2.603	51.707	1.00 49.07	ADP
	ATOM	2628	N6	ADP	2600	46.350			1.00 49.43	ADP
10										
10	ATOM	2629	N1	ADP	2600	48.159	2.844	50.628	1.00 50.04	ADP
	ATOM	2630	C2	ADP	2600	49.152	. 3.776	50.684	1.00 48.98	ADP
	ATOM	2631	N3	ADP	2600	49.301	4.478		1.00 50.49	ADP
	MOTA	2632	C4	ADP	2600	48.491	4.283		1.00 48.96	ADP
	MOTA	2633	C1	2-7	1	37.376	16.487	53.441	1.00 31.12	2-7
15	ATOM	2634	C2	2-7	1	38.554	16.442	52.639	1.00 31.01	2-7
15										
	ATOM	2635	C3	2-7	1	38.554	15.433	51.622	1.00 31.01	2-7
	MOTA	2636	C4	2-7	1	37.388	14.559	51.530	1.00 29.91	2-7
	MOTA	2637	C5	2-7	1	36.248	14.570	52.396	1.00 29.25	2-7
									1.00 30.61	2-7
20	MOTA	2638	C6	2-7	1	36.296	15.546	53.415		
20	MOTA	2639	C10	2-7	1	39.708	15.357	50.686	1.00 30.99	2-7
	ATOM	2640	C11	2-7	1	40.272	16.598	50.056	1.00 33.35	2-7
	ATOM	2641		2-7	ī	41.446	16.158	49.317	1.00 33.73	2-7
	MOTA	2642		2-7	1	41.189	14.730	49.013	1.00 31.60	2-7
	ATOM	2643	C14	2-7	1	40.419	14.175	50.202	1.00 30.03	2-7
25	MOTA	2644		2-7	ī	41.032	14.136	47.645	1.00 28.72	2-7
23										
	MOTA	2645		2-7	1	42.014	13.131	47.164	1.00 27.73	2-7
	MOTA	2646	C20	2-7	1	41.952	12.752	45.765	1.00 26.29	2-7
	MOTA	2647	C21	2-7	1	40.984	13.380	44.878	1.00 26.40	2-7
							14.256		1.00 27.79	2-7
20	MOTA	2648		2-7	1	39.931		45.351		
30	ATOM	2649	C23	2-7	1	39.958	14.694	46.762	1.00 27.64	2-7
	MOTA	2650	C29	2-7	1	42.438	17.110	49.102	1.00 34.81	2-7
	ATOM							49.283	1.00 35.06	2-7
		2651		2-7	1	43.717	16.767			
	MOTA	2652	C31	2-7	1	44.603	17.929	49.086	1.00 31.67	2-7
	MOTA	2653	C35	2-7	1	44.177	15.446	49.734	1.00 32.58	2-7
35	ATOM	2654		2-7	ī	42.187	18.279	48.762	1.00 35.09	2-7
55										
	MOTA	2655		2-7	1	37.369	13.692	50.535	1.00 32.42	2-7
	MOTA	2656	F41	2-7	1	37.291	17.497	54.277	1.00 33.09	2-7
	ATOM	2657	0	нон	2	38.630	10.603	62.535	1.00 3.96	s
40	MOTA	2658	0	нон	3	28.064	20.853	56.798	1.00 15.26	S
40	MOTA	2659	0	нон	4	43.423	-1.052	63.682	1.00 6.84	s
	MOTA	2660	0	нон	5	41.471	9.650	60.748	1.00 28.56	s
										Š
	ATOM	2661	0	нон	6		-17.874	61.146	1.00 22.21	5
	MOTA	2662	0	нон	8	43.351	23.546	43.947	1.00 14.88	s
	MOTA	2663	0	HOH	11	31.538	6.420	79.791	1.00 20.07	s
45	ATOM	2664	ō	нон	12	44.364	1.570	53.833	1.00 33.76	s
,,,										-
	MOTA	2665	0	нон	13	42.141	-0.803	71.483	1.00 23.37	S
	ATOM	2666	0	HOH	17	50.048	-0.508	68.644	1.00 38.33	s
	ATOM	2667	0	нон	18	42.525	8.183	64.075	1.00 31.71	S
							-5.304	63.635	1.00 28.76	s
50	MOTA	2668	0	нон	20	49.961				
50	MOTA	2669	0	нон	21	52.974	11.228	41.771	1.00 27.37	S
	ATOM	2670	0	нон	23	44.880	17.208	64.490	1.00 19.87	S
	ATOM	2671	ō	нон	25	33.865	11.390	57.228	1.00 14.50	S
							19.345	56.865		S
	MOTA	2672	0	нон	26	42.746			1.00 19.80	
	MOTA	2673	Q	нон	27	43.217	3.216	42.636	1.00 29.84	S
55	ATOM	2674	0	нон	28	47.542	18.783	69.096	1.00 24.56	S
		2675		нон	29	29.606	-8.997	58.639	1.00 41.51	s
	MOTA		0							
	MOTA	2676	0	нон	30	38.143	15.249	61.346	1.00 12.36	S
	MOTA	2677	0	нон	31	47.769	14.311	41.568	1.00 24.48	S
	ATOM	2678	0	нон	32	22.227	19.477	42.995	1.00 35.68	s
60										
60	MOTA	2679	0	нон	34	38.077	4.715	80.434	1.00 19.14	s
	MOTA	2680	0	HOH	35	27.208	25.794	60.457	1.00 30.49	S
	MOTA	2681	0	нон	40	45.874	21.711	68.966	1.00 14.93	s
										S
	ATOM	2682	0	нон	42	37.931	3.241	64.945	1.00 21.80	
	MOTA	2683	0	нон	44	33.173	12.293	71.900	1.00 38.67	s
65	MOTA	2684	0	нон	45	38.986	3.636	49.470	1.00 20.20	S
-										S
	ATOM	2685	0	нон	46	35.162	19.890	41.213	1.00 25.42	
	MOTA	2686	0	HOH	52	22.755	-3.615	56.949	1.00 33.63	S
	MOTA	2687	0	нон	53	27.917	6.206	79.432	1.00 19.49	S
							4.182		1.00 13.89	
70	MOTA	2688		нон	55	37.862		47.024		S
70	MOTA	2689	0	нон	57	31.462	4.272	82.519	1.00 37.59	S
	ATOM	2690	0	нон	59	38.826	12.586	58.140	1.00 18.34	S
										S
	MOTA	2691		нон	60	27.879	4.380	76.644	1.00 24.90	
	MOTA	2692	0	нон	61	45.041	10.037	53.740	1.00 42.66	S

	MOTA	2693	0	нон	62	28.763 26.533 62.454 1.00 35.09 S
	MOTA	2694	0	нон	66	38.448 -0.512 37.739 1.00 44.71 S
	MOTA	2695	0	нон	67	31.394 24.733 63.775 1.00 40.50 S
_	MOTA	2696	0	HOH	68	40.487 5.787 72.041 1.00 37.21 S
5	ATOM	2697	0	нон	69	52.548 19.976 38.009 1.00 24.27 S
	MOTA	2698	0	нон	70	40.043 -1.641 68.804 1.00 21.10 S
	MOTA	2699	0	нон	71	21.370 18.117 39.097 1.00 47.89 S
	ATOM	2700	O	нон	73	45.431 -1.388 51.309 1.00 36.21 S
_	MOTA	2701	0	нон	74	12.109 0.216 54.870 1.00 45.32 S
10	ATOM	2702	0	нон	78	41.390 5.467 40.236 1.00 31.36 S
	MOTA	2703	0	нон	79	38.398 -10.202 49.709 1.00 28.25 S
	MOTA	2704	0	нон	84	46.457 -1.971 63.989 1.00 20.69 S
	ATOM	2705	0	нон	87	2.291 6.433 36.064 1.00 27.27 S
	MOTA	2706	0	нон	88	46.187 3.359 74.292 1.00 30.60 S
15	MOTA	2707	0	нон	89	51.911 4.577 56.634 1.00 44.94 S
	ATOM	2708	Ō	нон	90	45.811 18.580 66.703 1.00 26.87 S
	ATOM	2709	0	нон	91	47.734 13.013 72.702 1.00 32.94 S
	ATOM	2710	ō	нон	92	23.555 15.386 53.064 1.00 29.56 S
	ATOM	2711	ō	нон	93	43.670 -2.643 73.172 1.00 27.18 5
20	ATOM	2712	ō	нон	94	27.978 20.947 70.487 1.00 41.48 S
	MOTA	2713	ō	нон	95	44.678 -7.048 71.862 1.00 24.48 S
	ATOM	2714	ō	нон	97	37.124 2.776 73.009 1.00 36.39 S
	MOTA	2715	ō	нон	98	32.730 25.500 47.607 1.00 42.43 S
	MOTA	2716	ō	нон	101	46.793 22.739 62.116 1.00 28.62 S
25	ATOM	2717	o	нон	104	20.079 21.304 46.635 1.00 44.83 S
	ATOM	2718	ō	нон	105	30.653 -3.670 75.744 1.00 35.11 S
	ATOM	2719	ō	нон	106	46.987 13.182 34.815 1.00 16.99 S
	ATOM	2720	ō	нон	109	43.794 0.066 55.803 1.00 30.02 S
	ATOM	2721	ō	нон	111	25.208 9.102 28.662 1.00 32.86 S
30	ATOM	2722	ō	нон	113	44.655 15.401 59.741 1.00 25.68 S
-	MOTA	2723	ō	нон	115	18.285 12.456 33.587 1.00 30.40 S
	ATOM	2724	ō	нон	116	47.999 -0.217 48.915 1.00 36.92 S
	ATOM	2725	ō	нон	117	23.508 25.313 66.864 1.00 47.95 S
	ATOM	2726	Ō	нон	119	27.220 -14.904 55.904 1.00 35.41 S
35	ATOM	2727	Ō	нон	120	47.343 8.255 68.520 1.00 37.89 S
	ATOM	2728	ō	нон	128	28.608 -6.298 48.882 1.00 26.00 S
	ATOM	2729	ō	нон	132	6.107 15.208 42.672 1.00 30.09 S
	ATOM	2730	ō	нон	133	26.812 14.766 57.900 1.00 17.88 S
	ATOM	2731	ō	нон	135	46.950 10.746 67.779 1.00 31.59 S
40	ATOM	2732	ŏ	нон	136	24.332 1.606 79.565 1.00 28.86 S
	MOTA	2733	ō	нон	138	50.215 2.473 62.680 1.00 35.95 S
	ATOM	2734	ŏ	нон	139	22.069 24.748 54.683 1.00 25.56 S
	MOTA	2735	ŏ	нон	140	44.497 -18.491 58.486 1.00 49.65 S
	ATOM	2736	ŏ	нон	141	15.900 -4.594 62.687 1.00 33.93 S
45	ATOM	2737	ŏ	нон	143	14.793 -3.866 47.507 1.00 45.81 S
	END	2.3,	•		272	2155 5.000 41.50. 2.00 45.01

TABLE 4

	REMARK	FILEN	IAME=	· Como	ound	4-2a_2dpb.pd	b"			
_	! CRYST		.200		.400	159.200 90		00.00	P212121	
5	MOTA	2605	CB	LYS	17	24.472	-12.132	60.197	1.00 50.92	В
	MOTA	2606	CG	LYS	17		-12.714	59.720	1.00 53.46	В
	ATOM	2607	CD	LYS	17		-12.276	58.298	1.00 55.17	В
	MOTA	2608	CE	LYS	17		-13.129	57.240	1.00 56.45	В
10	MOTA	2609	NZ	LYS	17		-13.074	57.341	1.00 55.91	В
10	MOTA MOTA	2610 2611	C O	LYS LYS	17 17	24.464 25.371	-9.793 -9.870	59.322 58.525	1.00 46.31	B B
	ATOM	2612	N	LYS	17		-10.326	61.434	1.00 47.38	В
	MOTA	2613	CA	LYS	17		-10.640	60.578	1.00 48.39	В
	MOTA	2614	N	ASN	18	23.441	-8.969	59.167	1.00 44.08	В
15	MOTA	2615	CA	ASN	18	23.346	-8.128	57.990	1.00 42.08	В
	ATOM	2616	CB	ASN	18	22.016	-7.375	58.014	1.00 42.87	В
	ATOM	2617	CG	ASN	18	21.059	-7.856	56.934	1.00 45.64	В
	MOTA	2618		ASN	18	21.222	-7.538	55.748	1.00 47.65	В
20	MOTA	2619		ASN	18	20.068	-8.642	57.331	1.00 46.01	В
20	MOTA	2620	C	ASN	18	24.508	-7.150	57.750	1.00 40.28	В
	MOTA MOTA	2621 2622	O N	ASN ILE	18 19	24.895 25.077	-6.921 -6.584	56.596 58.810	1.00 42.10	B B
	MOTA	2623	CA	ILE	19	26.171	-5.618	58.668	1.00 30.30	В
	ATOM	2624	СВ	ILE	19	26.495	-4.982	60.043	1.00 33.05	В
25	ATOM	2625		ILE	19	26.959	-6.042	61.012	1.00 34.85	В
	MOTA	2626		ILE	19	27.599	-3.938	59.905	1.00 33.89	В
	MOTA	2627	CD1	ILE	19	27.845	-3.169	61.165	1.00 32.25	В
	ATOM	2628	С	ILE	19	27.464	-6.184	58.058	1.00 28.41	В
20	MOTA	2629	0	ILE	19	28.021	-7.161	58.574	1.00 29.07	В
30	MOTA	2630	N	GLN	20	27.934	-5.566	56.967	1.00 22.29	В
	MOTA	2631	CA	GLN	20	29.174	-5.986	56.285	1.00 15.95	В
	MOTA MOTA	2632 2633	CB CG	GLN GLN	20 20	29.216 30.526	-5.493 -5.834	54.839 54.127	1.00 14.82 1.00 14.68	B B
	ATOM	2634	CD	GLN	20	30.589	-5.290	52.715	1.00 13.60	В
35	ATOM	2635		GLN	20	30.540	-4.089	52.514	1.00 13.47	В
	ATOM	2636		GLN	20	30.720	-6.173	51.737	1.00 13.04	В
	MOTA	2637	С	GLN	20	30.450	-5.437	56.952	1.00 13.25	В
	MOTA	2638	0	GLN	20	30.566	-4.239	57.180	1.00 12.33	В
40	MOTA	2639	N	VAL	21	31.394	-6.328	57.254	1.00 9.34	В
40	MOTA	2640	CA	VAL	21	32.656	-5.941	57.880	1.00 6.24	В
	MOTA	2641	CB	VAL	21	32.775	-6.537	59.296	1.00 5.92	В
	MOTA MOTA	2642 2643		VAL VAL	21 21	34.094 31.616	-6.144 -6.056	59.934 60.138	1.00 3.44 1.00 7.73	B B
	MOTA	2644	C	VAL	21	33.868	-6.396		1.00 7.73 1.00 5.09	В
45	MOTA	2645	ō	VAL	21	34.031	-7.569		1.00 4.24	В
	ATOM	2646	N	VAL	22	34.715	-5.454		1.00 3.75	B
	MOTA	2647	CA	VAL	22	35.893	-5.805		1.00 4.12	В
	MOTA	2648	CB	VAL	22	35.819	-5.226	54.420	1.00 3.36	В
50	MOTA	2649		VAL	22	34.566	-5.731		1.00 3.16	В
50	MOTA	2650		VAL	22	35.823	-3.717		1.00 2.87	В
	ATOM	2651	С	VAL	22	37.157	-5.305		1.00 6.20	В
	ATOM ATOM	2652 2653	0 N	VAL VAL	22 23	37.122 38.271	-4.365 -5.946		1.00 6.79 1.00 4.46	B B
	ATOM	2654	CA	VAL	23	39.559	-5.585		1.00 4.23	В
55	ATOM	2655	СВ	VAL	23	40.195	-6.830		1.00 4.02	В
	ATOM	2656		VAL	23	41.555	-6.511		1.00 1.86	В
	ATOM	2657	CG2	VAL	23	39.268	-7.319	58.550	1.00 5.77	В
		2658	С	VAL	23	40.505	-5.037		1.00 4.46	В
60		2659	0	VAL	23	40.553	-5.531		1.00 4.66	В
60		2660	N	ARG	24	41.251	-3.998		1.00 7.29	В
		2661	CA	ARG	24	42.228	-3.436		1.00 9.87	В
		2662	CB	ARG	24	41.793	-2.092		1.00 6.53	В
		2663 2664	CG CD	ARG ARG	24 24	42.744 42.401	-1.662 -0.306		1.00 6.89 1.00 7.91	B B
65		2665	NE	ARG	24	43.142	-0.306		1.00 7.91	В
0.5		2666	CZ	ARG	24	43.142	1.095		1.00 4.86	В
		2667	NH1		24	42.228	2.056		1.00 1.00	В
		2668	NH2		24	43.773	1.287		1.00 1.00	В
70		2669	С	ARG	24	43.541	-3.179	55.856	1.00 13.03	В
70		2670	0	ARG	24	43.586	-2.374		1.00 13.45	В
	MOTA	2671	N	CYS	25	44.593	-3.873	55.421	1.00 13.86	В

	MOTA	2672	CA C	YS 25	45.928	-3.742	55.996	1.00 16.78	В
	MOTA	2673		YS 25			55.932	1.00 14.53	В
	MOTA	2674		YS 25			56.865	1.00 15.92	В
5	MOTA	2675		YS 25			55.216	1.00 17.93	В
)	MOTA	2676		YS 25			53.991	1.00 19.83	В
	MOTA	2677		RG 26			55.922	1.00 20.13	В
	MOTA	2678	CA A	RG 26	48.186	-0.779	55.242	1.00 23.56	В
	MOTA	2679	CB A	RG 26	48.410	0.441	56.122	1.00 23.04	В
	MOTA	2680	CG A	RG 26	49.018	0.108	57.480	1.00 25.34	В
10	MOTA	2681		RG 26			58.248	1.00 25.85	В
•	ATOM	2682		RG 26			57.970	1.00 27.66	В
								1.00 27.00	
	MOTA	2683		RG 26			58.830		В
	MOTA	2684	NH1 A				60.030	1.00 28.00	В
	MOTA	2685	NH2 A	RG 26	53.126	1.729	58.494	1.00 29.65	В
15	MOTA	2686	C A	RG 26	49.566	-1.360	54.924	1.00 26.17	В
	MOTA	2687	O A	RG 26	49.965	-2.367	55.500	1.00 27.47	В
	MOTA	2688		RO 27	50.296	-0.748	53.976	1.00 28.46	В
	ATOM	2689		RO 27		0.221	52.972	1.00 28.96	В
	ATOM	2690		RO 27		-1.225	53.617	1.00 30.05	В
20									
20	MOTA	2691		RO 27		-0.791	52.157	1.00 29.21	В
	MOTA	2692		RO 27	51.081	0.508	52.153	1.00 27.78	В
	MOTA	2693	C P	RO 27	52.652	-0.565	54.551	1.00 30.74	В
	MOTA	2694	O P	RO 27	52.315	0.387	55.255	1.00 30.33	В
	MOTA	2695	N P	HE 28	53.888	-1.065	54.559	1.00 33.00	В
25	ATOM	2696	. CA P	HE 28	54.946	-0.488	55.397	1.00 35.47	В
	MOTA	2697		HE 28	56.197	-1.349	55.423	1.00 34.78	В
	MOTA	2698		HE 28	56.043	-2.621	56.180	1.00 34.30	В
	MOTA	2699	CD1 P		55.970	-3.848	55.506	1.00 33.11	В
20	ATOM	2700	CD2 P		55.975	-2.598	57.566	1.00 34.50	В
30	MOTA	2701	CE1 P		55.831	-5.030	56.204	1.00 32.04	В
	ATOM	2702	CE2 P	HE 28	55.833	-3.779	58.283	1.00 34.83	В
	MOTA	2703	CZ P	HE 28	55.762	-5.002	57.594	1.00 34.76	В
	MOTA	2704	C P	HE 28	55.432	0.848	54.837	1.00 37.44	В
	ATOM	2705		HE 28	55.529	1.019	53.640	1.00 37.96	В
35	ATOM	2706		SN 29	55.724	1.797	55.719	1.00 41.21	В
55									
	MOTA	2707		SN 29	56.195	3.114	55.288	1.00 43.97	В
	ATOM	2708		SN 29	55.731	4.190	56.280	1.00 42.30	В
	MOTA	2709	CG A	SN 29	56.080	3.843	57.724	1.00 41.84	В
	MOTA	2710	OD1 A	SN 29	57.230	3.554	58.038	1.00 40.87	В
40	MOTA	2711	ND2 A	SN 29	55.080	3.866	58.604	1.00 40.16	В
	ATOM	2712	C A	SN 29	57.718	3.112	55.190	1.00 47.03	В
	ATOM	2713		SN 29	58.361	2.179	55.651	1.00 48.57	В
	ATOM	2714		EU 30	58.290	4.156	54.594	1.00 49.85	В
45	ATOM	2715		EU 30	59.745	4.258	54.442	1.00 52.56	В
43	ATOM	2716		ະປ 30	60.125	5.641	53.928	1.00 52.63	В
	MOTA	2717		EU 30	60.214	5.735	52.409	1.00 53.20	В
	MOTA	2718	CD1 L	EU 30	60.395	7.194	51.973	1.00 53.18	В
	ATOM	2719	CD2 L	EU 30	61.378	4.862	51.935	1.00 54.30	В
	ATOM	2720	C L	ະບ 30	60.579	3.978	55.695	1.00 54.36	В
50	ATOM	2721		EU 30	61.623	3.347	55.619	1.00 54.97	В
• •	ATOM	2722		LA 31	60.121	4.453	56.847	1.00 56.36	В
	ATOM	2723		LA 31	60.843	4.228	58.097	1.00 58.76	В
	MOTA	2724		LA 31	60.214	5.057	59.202	1.00 58.55	В
E E	ATOM	2725		LA 31	60.842	2.742	58.487	1.00 60.40	В
55	ATOM	2726	O A	LA 31	61.749	2.266	59.167	1.00 60.67	В
	MOTA	2727	N G	ມປ 32	59.819	2.016	58.045	1.00 61.95	В
	ATOM	2728	CA G	LU 32	59.692	0.594	58.350	1.00 63.39	В
	ATOM	2729		JU 32	58.215	0.187	58.322	1.00 62.91	В
	ATOM	2730		LU 32	57.429	0.683	59.524	1.00 62.16	В
60	ATOM							1.00 61.37	
UU		2731		JU 32	55.933	0.669	59.299		В
	ATOM	2732	OE1 G		55.191	0.841	60.289	1.00 60.97	В
	MOTA	2733	OE2 GI		55.504	0.497	58.138	1.00 60.36	В
	MOTA	2734	C GI	JU 32	60.487	-0.318	57.414	1.00 64.76	В
	MOTA	2735	O GI		61.130	-1.261	57.860	1.00 64.21	В
65	ATOM	2736	IA N		60.436	-0.039	56.116	1.00 66.90	В
0.5	MOTA	2737	CA AJ		61.150	-0.855	55.141	1.00 69.19	В
	ATOM	2738	CB A		60.690	-0.503	53.719	1.00 70.74	В
	MOTA	2739	CG A		60.911	0.953	53.310	1.00 73.78	В
70	ATOM	2740	CD A		60.238	1.267	51. 9 77	1.00 75.17	В
70	ATOM	2741	NE AF	RG 33	60.663	0.349	50.920	1.00 76.52	В
	MOTA	2742	CZ AF		61.889	0.301	50.400	1.00 76.92	В
	ATOM	2743	NH1 AF		62.838	1.122	50.829	1.00 76.57	В
	ATOM	2744	NH2 A		62.168	-0.569	49.441	1.00 78.04	B
	NI OF	2,44	MI THIE		02.100	- 0.303	37.431	2.00 .0.04	ь

	MOTA	2745	С	ARG	33	62.650	-0.654	55.297	1.00 70.11	В
	MOTA	2746	0	ARG	33	63.439	-1.524	54.943	1.00 70.36	В
	ATOM	2747	N	LYS	34	63.038	0.500	55.832	1.00 71.13	
										В
	MOTA	2748	ÇA	LYS	34	64.447	0.798	56.053	1.00 72.18	В
5		2740								
•	MOTA	2749	CB	LYS	34	64.623	2.254	56.498	1.00 73.21	В
	MOTA	2750	CG	LYS	34	64.611	3.267	55.363	1.00 74.27	В
	MOTA	2751	CD	LYS	34	66.023	3.637	54.921	1.00 74.99	В
	MOTA	2752	CE	LYS	34	66.769	2.463	54.306	1.00 74.88	В
_	MOTA	2753	NŻ	LYS	34	68.154	2.852	53.916	1.00 75.81	В
10										
10	MOTA	2754	С	LYS	34	65.006	-0.137	57.123	1.00 72.12	В
	ATOM	2755	0	LYS	34	66.207	-0.424	57.142	1.00 72.82	В
	MOTA	2756	N	ALA	35	64.130	-0.612	58.007	1.00 71.37	В
	ATOM	2757	CA	ALA	35	64.522	-1.526	59.077	1.00 69.94	В
_	MOTA	2758	CB	ALA	35	63.780	-1.177	60.361	1.00 69.77	В
15	ATOM	2759	С	ALA	35	64.223	-2.970	58.685	1.00 69.24	В
15										
	MOTA	2760	0	ALA	35	64.198	-3.854	59.542	1.00 69.32	В
	ATOM	2761	N	SER	36	64.001	-3.194	57.388	1.00 68.43	
										В
	MOTA	2762	CA	SER	36	63.689	-4.519	56.848	1.00 66.99	В
~~	MOTA	2763	CB	SER	36	64.937	-5.405	56.860	1.00 67.27	В
20	MOTA	2764	OG	SER	36	65.906	-4.912	55.959	1.00 67.40	В
	MOTA	2765	С	SER	36	62.579	-5.159	57.674	1.00 65.70	В
	MOTA	2766	0	SER	36	62.721	-6.270	58.185	1.00 65.65	В
	MOTA	2767	N	ALA	37	61.469	-4.435	57.791	1.00 64.41	В
	ATOM	2768	CA	ALA	37	60.320	-4.880	58.568	1.00 62.00	В
25										
25	MOTA	2769	CB	ALA	37	59.256	-3.784	58.601	1.00 62.35	В
							-6.185			
	MOTA	2770	С	ALA	37	59.699	-0.103	58.093	1.00 59.79	В
	MOTA	2771	0	ALA	37	59.490	-6.404	56.909	1.00 58.90	В
	MOTA	2772	N	HIS	38	59.400	-7.042	59.061	1.00 58.16	В
	ATOM	2773	CA	HIS	38	58.795	-8.347	58.828	1.00 55.57	В
30										
30	MOTA	2774	CB	HIS	38	59.420	-9.381	59.785	1.00 57.59	В
	MOTA	2775	CG	HIS	38	59.426	-8.963	61.233	1.00 58.97	В
	MOTA	2776	CD2	HIS	38	58.878	-9.543	62.328	1.00 58.78	В
	MOTA	2777	ND1	HIS	38	60.083	-7.837	61.689	1.00 58.86	В
	MOTA	2778	CEI	HIS	38	59.939	-7.744	63.000	1.00 58.84	В
35	MOTA	2779	MES	HIS	38	59.211	-8.766	63.412	1.00 58.91	В
-										
	MOTA	2780	С	HIS	38	57.296	-8.223	59.086	1.00 53.05	В
	ATOM	2781	0	HIS	38	56.890	-7.787	60.163	1.00 54.10	В
	ATOM	2782	N	SER	39	56.472	-8.605	58.114	1.00 48.25	В
		2783								
40	ATOM		CA	SER	39	55.026	-8.500	58.290	1.00 42.98	В
40	MOTA	2784	CB	SER	39	54.295	-8.575	56.970	1.00 42.55	В
	MOTA	2785	OG	SER	39	52.903	-8.490	57.201	1.00 39.13	В
	MOTA	2786	С	SER	39	54.444	-9.616	59.130	1.00 40.52	В
	MOTA	2787	0	SER	39	54.750	-10.773	58.919	1.00 39.58	В
	MOTA	2788	N	ILE	40	53.603	-9.247	60.092	1.00 38.79	В
45										
43	MOTA	2789	CA	ILE	40	52.967	-10.222	60.979	1.00 36.32	В
	ATOM	2790	CB	ILE	40	53.039	-9.786	62.478	1.00 37.00	В
	MOTA	2791	CG2	ILE	40	54.493	-9.677	62.925	1.00 37.72	В
	MOTA	2792	CG1	ILE	40	52.307	-8.458	62.692	1.00 37.68	В
	ATOM	2793	CD1	ILE	40	52.102	-8.097	64.161	1.00 37.35	В
50	ATOM	2794	С	ILE	40	E1 E01	-10.426	60.611	1.00 34.00	В
50										
	MOTA	2795	0	ILE	40	50.757	-11.084	61.319	1.00 32.93	В
	ATCM	2796	N	VAL	A 1	51 007	-0 063	50 /92	1 00 33 30	В
	MOTA				41	51.097	-9.863	59.482	1.00 33.39	
	MOTA	2797	CA	VAL	41	49.720	-9.986	59.028	1.00 32.21	В
	ATOM	2798	CB	VAL		48.982	-8.617	59.042	1.00 31.99	В
55					41					
55	ATOM	2799	CG1	VAL	41	47.559	-8.778	58.536	1.00 30.52	В
		2800								
	MOTA	2800	CGZ	VAL	41	48.964	-8.048	60.445	1.00 32.73	В
	ATOM	2801	С	VAL	41	49.685	-10.526	57.610	1.00 32.35	В
	ATOM	2802	0	VAL	41	50.357	-10.022	56.728	1.00 31.91	В
	MOTA	2803	N	GLU	42	48.886	-11.565	57.417	1.00 33.52	В
60										
UU	MOTA	2804	CA	GLU	42	48.727	-12.189	56.112	1.00 34.79	В
	ATOM	2805	CB	GLU	42		-13.626	56.142	1.00 34.88	В
	MOTA	2806	ÇG	GLU	42	50.715	-13.762	55.882	1.00 35.91	В
	ATOM	2807	CD	GLU	42			56.222	1.00 36.62	
							-15.139			В
_	ATOM	2808	OE1	GLU	42	50.467	-16.105	55.996	1.00 35.55	В
65										
UJ.	ATOM	2809		GLU	42		-15.262	56.704	1.00 36.67	В
	ATOM	2810	С	GLU	42	47.264	-12.207	55.689	1.00 34.67	В
	MOTA	2811	0	GLU	42	46.425		56.388	1.00 35.11	В
	MOTA	2812	N	CYS	43	46.959	-11.615	54.540	1.00 33.53	В
	MION					45.581		54.074	1.00 33.64	
		2012	C2	CVC						
70	MOTA	2813	CA	CYS	43					В
70		2813 2814	CA CB		43	45.241				
70	MOTA MOTA	2814	СВ	CYS	43	45.241	-10.172	53.575	1.00 31.73	В
70	MOTA MOTA MOTA	2814 2815	CB SG	CYS CYS	43 43	45.241 45.291	-10.172 -8.913	53.575 54.863	1.00 31.73 1.00 30.24	B B
70	MOTA MOTA	2814	СВ	CYS	43	45.241 45.291	-10.172 -8.913	53.575 54.863	1.00 31.73 1.00 30.24	B B
70	MOTA MOTA MOTA	2814 2815	CB SG	CYS CYS	43 43	45.241	-10.172 -8.913 -12.597	53.575	1.00 31.73	В

		2012				44 222 42 225	C2 160		_
	ATOM	2818	N	ASP	44	44.220 -13.335	53.160	1.00 34.51	В
	ATOM	2819	CA	ASP	44	43.821 -14.347	52.196	1.00 35.72	В
	MOTA	2820	CB	ASP	44	43.698 -15.710	52.875	1.00 37.74	В
5	MOTA	2821	CG	ASP	44	43.627 -16.858	51.880	1.00 39.14	В
5	MOTA MOTA	2822		LASP	44 44	43.029 -16.681 44.166 -17.941	50.787 52.206	1.00 38.15	B B
	MOTA	2823 2824		ASP ASP	44	42.452 -13.949	51.662	1.00 40.23	В
	ATOM	2825	C O	ASP	44	41.433 -14.323	52.228	1.00 34.41	В
	ATOM	2826	N	PRO	45	42.415 -13.177	50.566	1.00 36.48	В
10	MOTA	2827	CD	PRO	45	43.558 -12.792	49.725	1.00 37.08	В
10	MOTA	2828	CA	PRO	45	41.162 -12.727	49.962	1.00 37.08	В
	ATOM	2829	CB	PRO	45	41.646 -11.834	48.828	1.00 36.90	В
	MOTA	2830	CG	PRO	45	42.892 -12.518	48.398	1.00 37.61	В
	ATOM	2831	c	PRO	45	40.254 -13.872	49.518	1.00 36.95	В
15	ATOM	2832	ŏ	PRO	45	39.046 -13.805	49.685	1.00 37.27	В
	MOTA	2833	N	VAL	46	40.834 -14.912	48.930	1.00 37.39	В
	MOTA	2834	CA	VAL	46	40.051 -16.057	48.479	1.00 37.62	В
	ATOM	2835	CB	VAL	46	40.943 -17.087	47.773	1.00 38.49	В
	MOTA	2836		VAL	46	40.099 -18.269	47.334	1.00 39.31	В
20	MOTA	2837	CG2	. VAL	46	41.642 -16.436	46.584	1.00 38.33	В
	MOTA	2838	С	VAL	46	39.354 -16.728	49.665	1.00 37.65	В
	MOTA	2839	0	VAL	46	38.172 -17.082	49.606	1.00 38.03	B
	ATOM	2840	N	ARG	47	40.089 -16.902	50.752	1.00 37.10	В
~-	MOTA	2841	CA	ARG	47	39.520 -17.512	51.947	1.00 37.76	В
25	MOTA	2842	CB	ARG	47	40.627 -18.142	52.797	1.00 40.98	В
	MOTA	2843	CG	ARG	47	40.138 -19.170	53.811	1.00 45.53	В
	MOTA	2844	CD	ARG	47	40.088 -20.569	53.205	1.00 48.08	В
	MOTA	2845	NE	ARG	47	41.427 -21.065	52.905	1.00 51.05	В
20	MOTA	2846	CZ	ARG	47	42.361 -21.291	53.826	1.00 53.04	В
30	MOTA	2847		ARG	47	42.101 -21.066	55.108	1.00 53.32	В
	MOTA	2848		ARG	47	43.558 -21.744	53.467	1.00 53.55	В
	MOTA	2849	C	ARG	47	38.817 -16.436	52.774	1.00 35.87	В
	ATOM	2850	0	ARG	47	38.091 -16.734	53.702	1.00 35.14	В
35	MOTA	2851	N	LYS	48	39.054 -15.178	52.420	1.00 34.57	В
33	MOTA	2852	CA	LYS	48	38.456 -14.051	53.125	1.00 32.91	В
	MOTA	2853	CB	LYS	48	36.938 -14.158	53.092	1.00 34.16	В
	MOTA MOTA	2854 2855	CD	LYS LYS	48 48	36.361 -14.145 34.854 -14.249	51.693 51.706	1.00 36.73 1.00 37.41	B B
	ATOM	2856	CE	LYS	48	34.338 -14.550	50.314	1.00 37.41	В
40	ATOM	2857	NZ	LYS	48	34.704 -13.479	49.344	1.00 36.70	В
	ATOM	2858	C	LYS	48	38.903 -13.978	54.578	1.00 30.20	В
	ATOM	2859	õ	LYS	48	38.140 -13.593	55.440	1.00 31.50	В
	ATOM	2860	N	GLU	49	40.151 -14.352	54.836	1.00 29.95	B
	ATOM	2861	ÇA	GLU	49	40.692 -14.330	56.193	1.00 27.26	В
45	MOTA	2862	CB	GLU	49	41.168 -15.719	56.633	1.00 28.44	В
	MOTA	2863	CG	GLU	49	40.135 -16.815	56.656	1.00 28.64	В
	ATOM	2864	CD	GLU	49	40.760 -18.160	56.980	1.00 29.46	В
	MOTA	2865	OE1	GLU	49	40.028 -19.168	56.992	1.00 29.37	В
	ATOM	2866	OE2	GLU	49	41.986 -18.211	57.220	1.00 29.95	В
50	MOTA	2867	С	GLU	49	41.924 -13.438	56.344	1.00 24.62	В
	ATOM	2868	0	GLU	49	42.648 -13.164	55.395	1.00 23.41	В
	MOTA	2869	N	VAL	50	42.123 -12.973	57.565	1.00 23.85	В
	MOTA	2870	CA	VAL	50	43.276 -12.164	57.915	1.00 22.58	В
55	ATOM	2871	CB	VAL	50	42.852 -10.738	58.417	1.00 21.03	В
55	ATOM	2872		VAL	50	41.863 -10.851	59.540	1.00 20.58	В
	ATOM	2873		VAL	50	44.047 -9.968	58.884	1.00 19.55	В
	MOTA	2874	C	VAL	50	43.909 -12.995	59.036	1.00 23.21	В
	MOTA	2875	0	VAL	50	43.234 -13.410	59.959	1.00 22.47	В
60	MOTA	2876	N	SER	51	45.197 -13.286	58.923	1.00 24.22	В
OO	MOTA	2877	CA	SER	51	45.867 -14.078	59.950	1.00 26.05 1.00 26.43	В
	ATOM	2878 2879	CB	SER	51	46.398 -15.380	59.352		В
	MOTA MOTA	2880	OG C	SER	51 51	46.705 -16.299 47.013 -13.293	60.383	1.00 26.88	В
	ATOM	2881	0	SER SER	51 51	47.893 -12.781	60.579 59.868	1.00 26.62 1.00 26.40	B B
65	ATOM	2882	N	VAL	52	46.998 -13.213	61.908	1.00 28.40	В
55	MOTA	2883	CA	VAL	52	48.000 -12.463	62.657	1.00 27.10	В
	MOTA	2884	CB	VAL	52	47.311 -11.480	63.640	1.00 28.02	В
	MOTA	2885		VAL	52	48.336 -10.624	64.340	1.00 25.02	В
	ATOM	2886		VAL	52	46.341 -10.607	62.885	1.00 27.20	В
70	MOTA	2887	C	VAL	52	48.974 -13.331	63.442	1.00 30.28	В
. •	ATOM	2888	ō	VAL	52	48.567 -14.267	64.117	1.00 30.72	В
	ATOM	2889	N	ARG	53	50.265 -13.018	63.342	1.00 31.46	В
	ATOM	2890	CA	ARG	53	51.276 -13.778	64.070	1.00 32.95	В
			-	-				, · - •	_

	MOTA	2891	СВ	ARG	53	52.615 -13.750 63.336 1.00 33.14	В
	ATOM	2892	CG	ARG		53.636 -14.706 63.926 1.00 32.63	В
							В
	ATOM	2893	CD	ARG		54.575 -15.197 62.851 1.00 33.53	
_	MOTA	2894	NE	ARG	53	55.482 -14.163 62.378 1.00 34.35	В
5	MOTA	2895	CZ	ARG	53	56.017 -14.140 61.161 1.00 35.36	В
	ATOM	2896	NH1	ARG	53	55.738 -15.089 60.272 1.00 35.11	В
	ATOM	2897	NH2	ARG	53	56.847 -13.162 60.838 1.00 36.70	В
	ATOM	2898	Ċ	ARG	53	51.423 -13.182 65.458 1.00 34.27	В
	ATOM	2899	ŏ	ARG	53	51.964 -12.088 65.632 1.00 34.80	В
10							
10	MOTA	2900	N	THR	54	50.931 -13.915 66.446 1.00 35.04	В
	ATOM	2901	CA	THR	54	50.977 -13.458 67.815 1.00 37.72	В
	MOTA	2902	CB	THR	54	49.672 -13.823 68.540 1.00 37.47	В
	MOTA	2903	OG1	THR	54	49.521 -15.244 68.581 1.00 36.02	В
	ATOM	2904		THR	54	48.484 -13.260 67.804 1.00 37.61	В
15	MOTA	2905	C	THR	54	52.141 -14.056 68.586 1.00 39.85	В
10	MOTA	2906			54	52.517 -13.554 69.633 1.00 39.10	
			0	THR			В
	MOTA	2907	N	GLY	55	52.721 -15.121 68.043 1.00 43.17	В
	MOTA	2908	CA	GLY	55	53.810 -15.791 68.727 1.00 48.23	В
~~	MOTA	2909	С	GLY	55	55.214 -15.667 68.165 1.00 51.61	В
20	ATOM	2910	0	GLY	55	55.704 -14.562 67.926 1.00 52.45	В
	ATOM	2911	N	GLY	56	55.855 -16.820 67.962 1.00 53.22	В
	ATOM	2912	CA	GLY	56	57.219 -16.864 67.464 1.00 54.95	В
	ATOM	2913	C	GLY	56	57.420 -16.365 66.052 1.00 56.66	В
25	MOTA	2914	0	GLY	56	56.733 -15.450 65.611 1.00 57.44	В
25	MOTA	2915	N	LEU	57	58.366 -16.980 65.346 1.00 57.72	В
	MOTA	2916	CA	LEU	57	58.693 -16.600 63.972 1.00 58.30	В
	MOTA	2917	CB	LEU	57	60.219 -16.608 63.777 1.00 58.78	В
	MOTA	2918	CG	LEU	57	61.067 -17.384 64.790 1.00 59.20	В
	ATOM	2919		LEU	57	60.709 -18.870 64.762 1.00 59.75	В
30	ATOM	2920		LEU	5 <i>7</i>	62.542 -17.175 64.472 1.00 59.20	В
50							
	MOTA	2921	C	LEU	57	58.029 -17.493 62.921 1.00 58.10	В
	ATOM	2922	0	LEU	57	57.153 -18.289 63.245 1.00 58.57	В
	ATOM	2923	N	ALA	58	58.450 -17.343 61.665 1.00 57.02	В
	MOTA	2924	CA	ALA	58	57.905 -18.126 60.555 1.00 55.81	В
35	MOTA	2925	СВ	ALA	58	58.473 -17.615 59.235 1.00 55.75	В
	MOTA	2926	Ċ	ALA	58	58.193 -19.622 60.705 1.00 54.88	В
	MOTA	2927	0	ALA	58	57.350 -20.460 60.375 1.00 54.40	В
	MOTA	2928	N	ASP	59	59.386 -19.937 61.211 1.00 53.60	В
40	MOTA	2929	CA	ASP	59	59.845 -21.316 61.431 1.00 51.49	В
40	ATOM	2930	CB	ASP	59	61.254 -21.290 62.050 1.00 51.99	В
	MOTA	2931	CG	ASP	59	61.807 -22.681 62.338 1.00 52.10	В
	ATOM	2932		ASP	59	62.005 -23.464 61.385 1.00 51.56	В
	ATOM	2933		ASP	59	62.051 -22.987 63.525 1.00 52.60	В
45	ATOM	2934	C	ASP	59	58.903 -22.110 62.338 1.00 49.40	В
40	MOTA	2935	0	ASP	59	58.742 -23.315 62.197 1.00 48.84	В
	MOTA	2936	N	LYS	60	58.267 -21.404 63.256 1.00 47.59	В
	MOTA	2937	CA	LYS	60	57.366 -22.021 64.208 1.00 46.47	В
	ATOM	2938	CB	LYS	60	58.178 -22.949 65.114 1.00 45.88	В
	MOTA	2939	CG	LYS	60	57.465 -23.470 66.345 1.00 44.88	В
50	MOTA	2940	CD	LYS	60	58.462 -24.217 67.209 1.00 45.79	В
50							
	MOTA	2941	CE	LYS	60	57.868 -24.729 68.503 1.00 47.18	В
	MOTA	2942	NZ	LYS	60	58.938 -25.298 69.384 1.00 48.54	В
	MOTA	2943	С	LYS	60	56.745 -20.862 64.977 1.00 45.74	В
	MOTA	2944	0	LYS	60	57.468 -20.017 65.532 1.00 45.66	В
55	MOTA	2945	N	SER	61	55.417 -20.802 64.999 1.00 44.14	В
	MOTA	2946	CA	SER	61	54.750 -19.718 65.697 1.00 42.32	В
	ATOM	2947	СВ	SER	61	54.900 -18.419 64.892 1.00 43.45	В
		2948					
	MOTA		OG	SER	61	54.484 -18.594 63.545 1.00 42.02	В
۲۸	MOTA	2949	С	SER	61	53.267 -19.931 65.980 1.00 40.98	В
60	MOTA	2950	0	SER	61	52.679 -20.939 65.613 1.00 40.30	В
	MOTA	2951	N	SER	62	52.686 -18.954 66.669 1.00 40.63	В
	MOTA	2952	CA	SER	62 ·	51.265 -18.944 66.992 1.00 38.79	В
	ATOM	2953	СВ	SER	62	51.032 -18.549 68.445 1.00 38.80	В
	ATOM	2954	OG		62		
65				SER		51.678 -19.441 69.325 1.00 38.30	В
UJ	ATOM	2955	C	SER	62	50.634 -17.862 66.115 1.00 37.30	В
	MOTA	2956	0	SER	62	51.293 -16.906 65.728 1.00 37.14	В
	MOTA	2957	N	ARG	63	49.361 -18.018 65.783 1.00 36.69	В
	MOTA	2958	CA	ARG	63	48.687 -17.017 64.959 1.00 35.86	В
	ATOM	2959	CB	ARG	63	48.827 -17.318 63.453 1.00 35.76	В
70	ATOM	2960	CG	ARG	63	50.264 -17.378 62.918 1.00 36.93	В
	MOTA	2961	CD	ARG	63	50.303 -17.660 61.418 1.00 38.47	В
	MOTA	2962	NE	ARG	63	49.917 -16.499 60.608 1.00 40.73	В
	MOTA	2963	CZ	ARG	63	50.685 -15.428 60.393 1.00 40.83	В

	MOTA	2964	NH1	ARG	63	51.896	-15.353	60.928	1.00 41.75	В
	ATOM	2965		ARG	63		-14.433	59.629	1.00 40.58	В
	MOTA	2966	С	ARG	63		-16.982	65.296	1.00 34.60	В
_	MOTA	2967	0	ARG	63	46.656	-17.920	65.855	1.00 33.92	В
5	ATOM	2968	N	LYS	64	46.578	-15.865	64.968	1.00 33.48	В
_	ATOM	2969	CA	LYS	64		-15.676	65.193	1.00 31.00	В
	MOTA	2970	СВ	LYS	64		-14.444	66.056	1.00 34.47	В
	MOTA	2971	CG	LYS	64	45.324	-14.581	67.508	1.00 36.74	. В
	ATOM	2972	CD	LYS	64	44.298	-15.378	68.279	1.00 38.57	В
10	ATOM		CE	LYS	64		-15.324	69.773	1.00 39.71	В
10		2973								
	MOTA	2974	NZ	LYS	64		-15.964	70.596	1.00 40.02	В
	MOTA	2975	С	LYS	64	44.592	-15.428	63.805	1.00 29.35	В
	ATOM	2976	0	LYS	64	45 114	-14.604	63.045	1.00 29.23	В
									1.00 27.29	
1.5	MOTA	2977	N	THR	65		-16.156	63.470		В
15	ATOM -	2978	CA	THR	65	42.917	-16.020	62.165	1.00 24.96	В
	MOTA	2979	CB	THR	65	43.062	-17.321	61.338	1.00 24.86	· В
	ATOM	2980		THR	65	44.442	-17.701	61.294	1.00 24.93	В
										В
	ATOM	2981	CG2		65		-17.120	59.912	1.00 25.70	
••	ATOM	2982	С	THR	65	41.449	-15.688	62.319	1.00 22.74	В
20	ATOM	2983	0	THR	65	40.752	-16.313	63.095	1.00 23.83	В
	ATOM	2984	N	TYR	66		-14.677	61.579	1.00 21.85	В
									1.00 20.45	В
	ATOM	2985	CA	TYR	66		-14.232	61.612		
	ATOM	2986	СВ	TYR	66	39.480	-12.844	62.234	1.00 18.74	В
	ATOM	2987	CG	TYR	66	40.144	-12.695	63.581	1.00 19.02	В
25	ATOM	2988		TYR	66		-12.584	63.695	1.00 18.23	В
25		-							1.00 19.22	В
	MOTA	2989	CE1	TYR	66		-12.420	64.946		
	ATOM	2990	CD2	TYR	66		-12.641	64.748	1.00 20.12	В
	ATOM	2991	CE2	TYR	66	39.986	-12.474	66.009	1.00 19.66	В
	ATOM	2992	CZ	TYR	66	41 357	-12.367	66.109	1.00 20.40	В
30			ОН	TYR	66		-12.234	67.382	1.00 20.35	B
50	ATOM	2993								
	ATOM	2994	С	TYR	66		-14.136	60.195	1.00 22.62	В
	ATOM	2995	0	TYR	66	39.736	-13.786	59.237	1.00 22.83	В
	ATOM	2996	N	THR	67	37.747	-14.464	60.058	1.00 22.62	В
	MOTA	2997	CA	THR	67	37.099	-14.424	58.755	1.00 23.36	В
35	ATOM	2998	CB	THR	67		-15.723	58.489	1.00 24.24	В
55										
	MOTA	2999	OG1		67		-16.854	58.576	1.00 26.83	В
	ATOM	3000	CG2	THR	67		-15.702	57.115	1.00 25.09	В
	MOTA	3001	С	THR	67	36.145	-13.241	58.669	1.00 23.25	В
	ATOM	3002	0	THR	67	35.383	-12.979	59.598	1.00 23.74	В
40	ATOM	3003	N	PHE	68	36.199		57.556	1.00 22.27	В
								57.354	1.00 23.47	В
	ATOM	3004	CA	PHE	68		-11.379			
	ATOM	3005	CB	PHE	68		-10.068	57.414	1.00 25.18	В
	ATOM	3006	CG	PHE	68	36.688	-9.788	58.758	1.00 28.91	В
	ATOM	3007	CD1	PHE	68	37.872	-10.407	59.162	1.00 31.76	В
45	ATOM	3008		PHE	68	36.028	-8.957	59.655	1.00 30.45	В
••		3009		PHE	68	38.397		60.444	1.00 33.13	В
	ATOM									
	MOTA	3010	CEZ	PHE	68	36.539	-8.749	60.947	1.00 32.68	В
	MOTA	3011	CZ	PHE	68	37.733	-9.381	61.346	1.00 34.40	В
	MOTA	3012	С	PHE	68	34.664	-11.530	56.001	1.00 23.18	В
50	MOTA	3013	Ó	PHE	68		-12.505	55.318	1.00 23.09	В
50										
	ATOM	3014	N	ASP	69		-10.560	55.625	1.00 22.35	В
	MOTA	3015	CA	ASP	69		-10.585	54.350	1.00 23.38	В
	MOTA	3016	CB	ASP	69	31.988	-9.559	54.386	1.00 23.05	В
	MOTA	3017	CG	ASP	69	30.917	-9.915	55.427	1.00 23.94	В
55					69		-9.341	56.538	1.00 21.68	В
JJ	ATOM	3018		ASP						
	ATOM	3019		ASP	69	30.106		55.138	1.00 25.46	В
	MOTA	3020	С	ASP	69	34.071	-10.363	53.173	1.00 24.90	В
	MOTA	3021	0	ASP	69	33.880	-10.931	52.082	1.00 25.83	В
	ATOM	3022	N	MET	70	35.089	-9.539	53.405	1.00 25.78	В
60	MOTA	3023	CA	MET	70	36.112	-9.233	52.412	1.00 26.18	В
00										
	MOTA	3024	СВ	MET	70	35.686	-8.073	51.517	1.00 27.89	В
	ATOM	3025	CG	MET	70	34.538	-8.363	50.564	1.00 29.68	В
	MOTA	3026	SD	MET	70	34.155	-6.927	49.495	1.00 34.95	В
	ATOM	3027	CE	MET	70	32.418	-7.227	49.126	1.00 32.58	В
65		3028	Č		70	37.378	-8.801	53.150	1.00 25.52	В
05	MOTA			MET						
	MOTA	3029	0	MET	70	37.301	-8.187	54.206	1.00 26.04	В
	MOTA	3030	N	VAL	71	38.540	-9.119	52.596	1.00 24.01	В
	ATOM	3031	CA	VAL	71	39.789	-8.724	53.228	1.00 23.48	В
	ATOM	3032	СВ	VAL	71	40.496	-9.917	53.902	1.00 24.24	В
70		3033	CG1		71	39.668		55.086	1.00 23.32	В
, 0	ATOM									
	ATOM	3034	CG2		71	40.726		52.882	1.00 24.53	В
	MOTA	3035	С	VAL	71	40.709	-8.121	52.181	1.00 23.86	В
	MOTA	3036	0	VAL	71	40.841	-8.641	51.068	1.00 22.79	В

	ATOM	3037	N	PHE	72	41.356	-7.025	52.551	1.00 22.62	В
	MOTA	3038	CA	PHE	72	42.229	-6.344	51.628	1.00 22.70	В
	ATOM	3039	СВ	PHE	72	41.710	-4.936	51.321	1.00 20.63	В
_	ATOM	3040	CG	PHE	72	40.318	-4.910	50.753	1.00 18.35	В
5	MOTA	3041	CD1	PHE	72	40.056	-5.419	49.493	1.00 15.95	В
	MOTA	3042		PHE	72	39.261	-4.409	51.495	1.00 17.50	В
	MOTA	3043		PHE	72	38.771	-5.435	48.986	1.00 16.14	В
	MOTA	3044		PHE	72	37.976	-4.425	50.985	1.00 17.48	В
10	MOTA	3045	cz	PHE	72	37.732	-4.939	49.729	1.00 16.21	В
10	MOTA	3046	C	PHE	72 73	43.626	-6.197	52.178	1.00 22.69	В
	MOTA	3047 3048	0 N	PHE	72 73	43.836 44.578	-5.523 -6.837	53.181 51.508	1.00 22.50 1.00 22.82	B B
	MOTA MOTA	3049	CA	GLY GLY	73 73	45.965	-6.741	51.920	1.00 23.34	В
	ATOM	3050	C	GLY	73	46.584	-5.398	51.571	1.00 23.29	В
15	ATOM	3051	ō	GLY	73	45.982	-4.561	50.885	1.00 22.64	B
	ATOM	3052	N	ALA	74	47.809	-5.199	52.037	1.00 23.40	В
	ATOM	3053	CA	ALA	74	48.531	-3.960	51.808	1.00 25.70	В
	ATOM	3054	CB	ALA	74	49.891	-4.016	52.523	1.00 25.78	В
	ATOM	3055	С	ALA	74	48.725	-3.639	50.328	1.00 26.16	В
20	MOTA	3056	0	ALA	74	49.129	-2.556	49.978	1.00 27.50	В
	MOTA	3057	N	SER	75	48.406	-4.584	49.459	1.00 27.00	В
	MOTA	3058	CA	SER	7 5	48.590	-4.358	48.031	1.00 28.47	В
	ATOM	3059	CB	SER	75 75	48.982	-5.679	47.335	1.00 28.85	В
25	MOTA MOTA	3060 3061	oG	SER SER	75 75	48.019 47.389	-6.709 -3.728	47.507 47.319	1.00 27.19 1.00 27.90	B B
23	ATOM	3062	C O	SER	75 75	47.542	-3.123	46.243	1.00 27.30	В
	ATOM	3063	N	THR	76	46.206	-3.853	47.918	1.00 26.99	В
	ATOM	3064	CA	THR	76	44.984	-3.315	47.320	1.00 25.45	В
	ATOM	3065	СB	THR	76	43.746	-3.663	48.183	1.00 23.54	В
30	MOTA	3066		THR	76	44.015	-3.345	49.545	1.00 23.44	В
	MOTA	3067	CG2	THR	76	43.436	-5.132	48.116	1.00 24.38	В
	MOTA	3068	С	THR	76	45.034	-1.803	47.087	1.00 25.69	В
	ATOM	3069	0	THR	76	45.543	-1.041	47.922	1.00 27.74	В
25	MOTA	3070	N	LYS	77	44.507	-1.372	45.948	1.00 24.67	В
35	MOTA	3071	CA	LYS	77	44.496	0.044	45.619	1.00 23.51	В
	MOTA	3072 3073	CB	LYS	77 77	44.804	0.234	44.133	1.00 25.56	В
	ATOM ATOM	3074	CG CD	LYS LYS	77	46.192 46.373	-0.249 -0.132	43.719 42.209	1.00 28.23 1.00 31.78	B B
	MOTA	3075	CE	LYS	77	47.770	-0.152	41.784	1.00 31.78	В
40	MOTA	3076	NZ	LYS	77	47.942	-0.449	40.311	1.00 35.35	В
	ATOM	3077	C	LYS	77	43.150	0.677	45.956	1.00 21.23	В
	ATOM	3078	0	LYS	77	42.175	-0.023	46.154	1.00 19.65	В
	ATOM	3079	N	GLN	78	43.105	2.008	46.021	1.00 20.16	В
4	ATOM	3080	CA	GLN	78	41.853	2.714	46.335	1.00 18.91	В
45	MOTA	3081	CB	GLN	78	42.004	4.226	46.179	1.00 18.69	В
	MOTA	3082	CG	GLN	78	43.063	4.851	47.064	1.00 18.42	В
	ATOM	3083	CD	GLN	78	42.618	4.962	48.498	1.00 17.41	В
	ATOM	3084 3085		GLN	78 78	42.152	3.997	49.085	1.00 20.11 1.00 14.62	В
50	MOTA MOTA	3086	C NEZ	GLN GLN	78 78	42.756 40.743	6.143 2.294	49.066 45.377	1.00 14.62	B B
50	ATOM	3087	ŏ	GLN	78	39.609	2.059	45.788	1.00 20.13	В
	ATOM	3088	N	ILE	79 79	41.074	2.208	44.092	1.00 17.68	В
	ATOM	3089	CA	ILE	79	40.089	1.815	43.094	1.00 15.86	В
	MOTA	3090	СВ	ILE	79	40.727	1.779	41.678	1.00 15.34	В
55	MOTA	3091	CG2	ILE	79	41.709	0.597	41.561	1.00 16.93	В
	MOTA	3092	CG1	ILE	79	39.640	1.641	40.612	1.00 14.82	В
	MOTA	3093	CD1	ILE	79	38.766	2.868	40.410	1.00 13.32	В
	MOTA	3094	C	ILE	79	39.463	0.440	43.399	1.00 14.58	В
60	MOTA	3095	0	ILE	79	38.304	0.217	43.130	1.00 15.24	В
oo	MOTA	3096	N	ASP	80	40.231	-0.479	43.969	1.00 13.09	В
	MOTA	3097	CA	ASP	80	39.683	-1.802	44.258	1.00 12.77	В
	ATOM ATOM	3098 3099	CB CG	ASP ASP	80 80	40.800 41.645	-2.818 -2.953	44.435	1.00 14.43	B B
	MOTA	3100	001		80	41.072	-2.882	42.088	1.00 18.24	В
65	ATOM	3101	OD2		80	42.874	-3.140	43.363	1.00 18.31	В
J.J	ATOM	3102	C	ASP	80	38.787	-1.829	45.487	1.00 12.00	В
	ATOM	3103	ŏ	ASP	80	37.878	-2.638	45.590	1.00 10.17	В
	ATOM	3104	N	VAL	81	39.063	-0.938	46.430	1.00 11.87	В
	ATOM	3105	CA	VAL	81	38.261	-0.841	47.638	1.00 10.20	В
70	ATOM	3106	CB	VAL	81	38.881	0.128	48.642	1.00 9.09	В
	MOTA	3107	CG1		81	37.857	0.529	49.689	1.00 7.52	В
	MOTA	3108	CG2		81	40.071	-0.534	49.299	1.00 11.81	В
	MOTA	3109	С	VAL	81	36.915	-0.292	47.224	1.00 10.85	В

	ATOM	3110	0	VAL	81	35.879	-0.728	47.697	1.00 11.76	В
	ATOM	3111	N	TYR	82	36.948	0.681	46.326	1.00 12.12	B
	MOTA	3112	CA	TYR	82	35.735	1.304	45.845	1.00 13.85	В
_	ATOM	3113	CB	TYR	82	36.090	2.534	45.015	1.00 15.89	В
5	ATOM	3114	CG	TYR	82	34.870	3.259	44.530	1.00 18.66	В
	ATOM	3115		TYR	82	34.364	3.029	43.256	1.00 20.38	В
	MOTA	3116		LTYR	82	33.201	3.645	42.824	1.00 22.59	В
	MOTA	3117		TYR	82	34.184	4.132	45.369	1.00 19.71	В
10	MOTA MOTA	3118 3119	CZ	TYR	82	33.019	4.755	44.953	1.00 22.44	В
10	MOTA	3120	OH	TYR TYR	82 82	32.531 31.372	4.508 5.125	43.675 43.254	1.00 23.44 1.00 25.79	B B
	ATOM	3121	c	TYR	82	34.840	0.350	45.044	1.00 23.73	. В
	ATOM	3122	ō	TYR	82	33.635	0.211	45.331	1.00 13.77	В
	ATOM	3123	N	ARG	83	35.408	-0.299	44.035	1.00 15.58	В
15	MOTA	3124	CA	ARG	83	34.632	-1.236	43.220	1.00 18.14	В
	MOTA	3125	CB	ARG	83	35.517	-1.815	42.103	1.00 20.58	· B
	MOTA	3126	CG	ARG	83	35.715	-0.868	40.915	1.00 23.85	В
	ATOM	3127	CD	ARG	83	36.998	-1.162	40.161	1.00 26.52	В
20	MOTA	3128	NE	ARG	83	36.971	-2.428	39.436	1.00 30.77	В
20	MOTA	3129	CZ	ARG	83	36.255	-2.656	38.335	1.00 33.35	В
	ATOM ATOM	3130 3131		ARG	83 83	35.485	-1.703	37.818	1.00 33.79	В
	ATOM	3132	C	ARG	83	36.339 34.009	-3.833 -2.382	37.727 44.045	1.00 33.17 1.00 18.55	B B
	ATOM	3133	õ	ARG	83	32.867	-2.765	43.834	1.00 19.46	В
25	ATOM	3134	N	SER	84	34.764	-2.930	44.985	1.00 17.88	В
	ATOM	3135	CA	SER	84	34.248	-4.009	45.809	1.00 17.71	В
	ATOM	3136	CB	SER	84	35.380	-4.764	46.509	1.00 20.38	В
	MOTA	3137	OG	SER	84	36.282	-5.324	45.575	1.00 25.36	В
20	MOTA	3138	С	SER	84	33.298	-3.551	46.913	1.00 16.07	В
30	MOTA	3139	0	SER	84	32.241	-4.113	47.073	1.00 15.35	В
	MOTA	3140	N	VAL	85 85	33.685	-2.526	47.673	1.00 15.30	В
	MOTA MOTA	3141 3142	CA CB	VAL VAL	85 85	32.865 33.738	-2.048	48.795	1.00 14.98 1.00 15.00	В
	ATOM	3142		VAL	85	32.849	-1.521 -1.183	49.963 51.129	1.00 15.00	B B
35	ATOM	3144		VAL	85	34.775	-2.556	50.383	1.00 15.18	В
	ATOM	3145	c	VAL	85	31.828	-0.960	48.509	1.00 14.85	В
	ATOM	3146	ō	VAL	85	30.652	-1.162	48.734	1.00 13.96	В
	MOTA	3147	N	VAL	86	32.283	0.184	48.008	1.00 16.21	В
40	MOTA	3148	CA	VAL	86	31.409	1.313	47.740	1.00 15.47	В
40	MOTA	3149	CB	VAL	86	32.205	2.597	47.571	1.00 15.27	В
	MOTA	3150		VAL	86	31.296	3.776	47.800	1.00 15.63	В
	MOTA	3151		VAL	86	33.379	2.614	48.541	1.00 16.09	В
	ATOM ATOM	3152 3153	С 0	VAL	86	30.478	1.191	46.548	1.00 15.77	В
45	ATOM	3154	N	VAL CYS	86 87	29.295 30.976	1.506 0.734	46.680 45.399	1.00 15.71 1.00 15.31	8 B
.5	ATOM	3155	CA	CYS	87	30.121	0.629	44.218	1.00 17.14	В
	ATOM	3156	СВ	CYS	87	30.787	-0.168	43.108	1.00 16.23	В
	MOTA	3157	SG	CYS	87	30.003	0.173	41.511	1.00 22.71	В
~^	ATOM	3158	С	CYS	87	28.753	-0.001	44.488	1.00 18.54	В
50	MOTA	3159	0	CYS	87	27.752	0.494	44.050	1.00 19.06	В
	ATOM	3160	N	PRO	88	28.707	-1.117	45.207	1.00 20.44	В
	ATOM	3161	CD	PRO	88	29.827	-2.005	45.536	1.00 22.48	В
	MOTA MOTA	3162 3163	CA CB	PRO PRO	88 88	27.422 27.847	-1.759	45.507 46.157	1.00 21.26	В
55	ATOM	3164	CG	PRO	88	29.168	-3.060 -3.337	45.512	1.00 21.76 1.00 22.69	B B
<i></i>	ATOM	3165	c	PRO	88	26.542	-0.890	46.434	1.00 22.59	В
	ATOM	3166	ō	PRO	88	25.333	-0.797	46.254	1.00 22.78	В
	ATOM	3167	N	ILE	89	27.151	-0.273	47.446	1.00 22.51	B
	MOTA	3168	CA	ILE	89	26.409	0.582	48.388	1.00 22.44	В
60	MOTA	3169	CB	ILE	89	27.298	1.003	49.579	1.00 22.87	В
	MOTA	3170	CG2	ILE	89	26.592	2.040	50.408	1.00 22.27	В
	MOTA	3171		ILE	89	27.607	-0.227	50.439	1.00 24.48	В
	MOTA	3172		ILE	89	28.465	0.041	51.641	1.00 26.67	В
65	ATOM	3173	C	ILE	89	25.843	1.841	47.727	1.00 22.09	В
UJ	ATOM	3174	0	ILE	89	24.734	2.264	48.035	1.00 21.69	В
	ATOM	3175 3176	N	LEU	90 90	26.607	2.450	46.829	1.00 21.87	В
	ATOM ATOM	3176	CA CB	LEU	90 90	26.122	3.640	46.157	1.00 23.17	В
	ATOM	3177	CG	LEU LEU	90	27.195 26.773	4.228 5.485	45.243 44.498	1.00 20.80 1.00 18.97	В
70	ATOM	3179		LEU	90	26.173	6.492	45.446	1.00 18.97	B B
	ATOM	3180		LEU	90	27.987	6.053	43.822	1.00 20.13	В
	MOTA	3181	c	LEU	90	24.891	3.282	45.334	1.00 24.49	В
	MOTA	3182	0	LEU	90	23.963	4.091	45.207	1.00 24.70	В

ATOM 3188 N ASP 91 22.4887 2.068 44.781 1.00 25.50 B ATOM 3186 CB ASP 91 23.765 1.617 43.975 1.00 26.548 B ASP 91 22.402 0.258 43.331 1.00 27.25 B ATOM 3186 CC ASP 91 24.042 0.258 43.331 1.00 27.25 B ATOM 3186 CC ASP 91 24.041 0.373 42.045 1.00 29.15 B ATOM 3188 002 ASP 91 24.041 0.373 42.045 1.00 29.15 B ATOM 3188 002 ASP 91 22.537 1.512 44.888 1.00 27.46 B ATOM 3189 C ASP 91 22.537 1.512 44.888 1.00 27.46 B ATOM 3190 N ASP 91 22.537 1.512 44.888 1.00 27.46 B ATOM 3190 N ASP 91 22.537 1.512 44.888 1.00 27.46 B ATOM 3191 N AGUI 92 22.537 1.512 44.888 1.00 27.48 B ATOM 3191 N AGUI 92 22.1601 1.00 4.039 1.00 28.35 B ATOM 3191 N AGUI 92 22.1601 1.00 4.039 1.00 28.35 B ATOM 3191 N AGUI 92 22.20.00 1.00 1.00 1.00 1.00 1.00 1.00											
ATOM 3184 CA ASP 91 22.0765 1.617 43.975 1.00 26.54 B ATOM 3185 CB ASP 91 24.042 0.258 43.331 1.00 27.25 B ATOM 3186 CG ASP 91 24.025 1.424 41.351 1.00 27.25 B ATOM 3187 001 ASP 91 24.725 1.424 41.355 1.00 28.90 B ATOM 3189 CD ASP 91 25.559 -0.601 41.701 1.00 29.60 B ATOM 3189 CD ASP 91 22.557 -1.612 44.439 1.00 27.48 B ATOM 3189 CD ASP 91 22.537 1.512 44.88 1.00 27.48 B ATOM 3191 N GULU 92 22.376 1.85 46.115 1.00 28.27 B ATOM 3191 N GULU 92 22.736 1.85 46.115 1.00 28.27 B ATOM 3191 N GULU 92 22.3603 1.065 47.018 1.00 28.27 B ATOM 3191 CD GULU 92 21.803 1.065 47.018 1.00 28.87 B ATOM 3195 CD GULU 92 20.049 0.216 48.21 1.00 33.34 B ATOM 3195 CD GULU 92 20.049 0.210 48.21 1.00 33.34 B ATOM 3195 CD GULU 92 20.049 0.200 50.613 1.00 35.27 B ATOM 3199 CD GULU 92 21.141 -1.576 49.772 1.00 35.27 B ATOM 3199 CD GULU 92 22.181 -2.200 49.469 1.00 35.05 B ATOM 3199 CD GULU 92 22.181 -2.200 49.469 1.00 35.05 B ATOM 3199 CD GULU 92 21.160 2.459 47.424 1.00 28.34 B ATOM 3199 CD GULU 92 21.160 2.459 47.541 1.00 27.71 B ATOM 3199 CD GULU 92 21.160 3.05 CD 4.59 47.581 1.00 27.71 B ATOM 310 CD AVAL 93 22.003 3.05 47.581 1.00 27.71 B ATOM 3200 N VAL 93 22.003 3.05 5.681 48.072 1.00 27.71 B ATOM 3200 N VAL 93 22.003 5.651 48.072 1.00 27.71 B ATOM 3200 CD VAL 93 22.055 7.125 48.877 47.938 1.00 27.71 B ATOM 3200 CD VAL 93 22.055 7.125 48.877 47.938 1.00 27.71 B ATOM 3200 CD VAL 93 22.055 7.125 48.877 47.938 1.00 27.41 B ATOM 3200 CD VAL 93 22.005 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 22.005 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 22.005 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 22.005 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.00 27.11 B ATOM 3200 CD VAL 93 32.805 5.681 48.072 1.		ΔΤΌΜ	3183	N	ACD	01	24 887	2 068	44 791	1 00 25 50	D.
ATOM 3185 CB ASP 91 24.042 0.258 43.331 1.00 27.25 B ATOM 3186 CG ASP 91 24.041 0.373 42.045 1.00 29.15 B ATOM 3188 OD ASP 91 22.5257 1.624 41.365 1.00 28.90 B ATOM 3188 OD ASP 91 22.5257 1.621 41.051 1.00 29.60 B ATOM 3190 CO ASP 91 22.537 1.512 44.848 1.00 27.48 B ATOM 3190 CO ASP 91 22.537 1.512 44.848 1.00 27.48 B ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.75 B ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.75 B ATOM 3192 CD GUU 92 22.088 0.214 48.219 1.00 30.33 B ATOM 3194 CD GUU 92 22.088 0.214 48.219 1.00 30.33 B ATOM 3195 CD GUU 92 20.839 -0.266 49.057 1.00 33.34 B ATOM 3195 CD GUU 92 20.439 -0.266 49.057 1.00 33.34 B ATOM 3195 CD GUU 92 20.439 -0.266 49.631 1.00 36.56 B ATOM 3197 CD GUU 92 20.430 -0.206 50.631 1.00 36.56 B ATOM 3197 CD GUU 92 20.430 -0.206 50.631 1.00 36.56 B ATOM 3190 CD GUU 92 20.430 -0.206 50.631 1.00 36.56 B ATOM 3190 CD GUU 92 20.430 -0.206 50.631 1.00 36.56 B ATOM 3202 CD VAL 93 22.057 7.935 47.561 1.00 27.75 B ATOM 3202 CD VAL 93 22.655 7.125 48.357 1.00 27.17 B ATOM 3202 CD VAL 93 22.655 7.125 48.357 1.00 27.17 B ATOM 3203 CD VAL 93 22.455 7.125 48.357 1.00 27.15 B ATOM 3203 CD VAL 93 22.455 7.125 48.357 1.00 27.15 B ATOM 3203 CD VAL 93 22.455 7.125 48.357 1.00 27.15 B ATOM 3203 CD VAL 93 22.455 7.125 48.643 1.00 20.02 B ATOM 3203 CD VAL 93 22.455 7.125 48.643 1.00 20.02 B ATOM 3203 CD VAL 93 20.771 5.339 46.64 61.00 20.02 B ATOM 3203 CD VAL 93 20.771 5.339 46.64 61.00 20.02 B ATOM 3203											
ATOM 3186 CG ASP 91 24.725 1.424 41.155 1.00 29.15 B ATOM 3187 001 ASP 91 24.725 1.424 41.155 1.00 29.15 B ATOM 3189 C ASP 91 25.559 -0.601 41.701 1.00 29.60 B ATOM 3189 C ASP 91 22.537 1.512 44.881 1.00 27.48 B ATOM 3191 N GUU 92 22.736 1.1512 44.881 1.00 27.48 B ATOM 3191 N GUU 92 22.736 1.855 46.151 1.00 28.57 B ATOM 3191 N GUU 92 22.736 1.855 46.151 1.00 28.57 B ATOM 3191 C GUU 92 22.00 0.214 48.219 1.00 30.31 B ATOM 3191 N GUU 92 22.00 0.214 48.219 1.00 30.31 B ATOM 3193 CG GUU 92 22.00 0.214 48.219 1.00 30.31 B ATOM 3193 CG GUU 92 22.00 0.214 48.219 1.00 30.31 B ATOM 3195 CG GUU 92 22.00 0.214 48.219 1.00 36.66 B B ATOM 3195 CG GUU 92 22.00 0.214 48.219 1.00 36.66 B B ATOM 3195 CG GUU 92 22.0181 2.200 0.91459 1.00 35.03 B ATOM 3198 CG GUU 92 21.1016 2.459 47.742 1.00 36.66 B B ATOM 3199 O GUU 92 19.897 2.685 47.581 1.00 27.37 B ATOM 3199 O GUU 92 19.897 2.685 47.581 1.00 27.37 B ATOM 3200 N VAL 93 22.003 4.750 4.755 1.00 27.17 B ATOM 3201 CA VAL 93 22.00 5.681 48.072 1.00 27.17 B ATOM 3201 CA VAL 93 22.005 5.681 48.072 1.00 27.17 B ATOM 3201 CA VAL 93 22.005 5.681 48.072 1.00 27.11 B ATOM 3204 CG VAL 93 22.005 5.681 48.072 1.00 27.14 B ATOM 3204 CG VAL 93 22.005 5.681 48.072 1.00 27.44 B B ATOM 3200 N VAL 93 22.007 5.170 49.178 1.00 29.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.02 B ATOM 3200 CG VAL 93 32.807 5.170 49.178 1.00 27.17 B ATOM 3200 CG VAL 93 32.807 5.170 49.1											
5 ATOM 3188 002 ASP 91 22.537 1.512 44.848 1.00 29.08 B ATOM 3188 00 ASP 91 22.537 1.512 44.848 1.00 29.08 B ATOM 3190 0 ASP 91 22.537 1.512 44.848 1.00 29.08 B ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.97 B ATOM 3193 CB GLU 92 22.008 0.214 48.219 1.00 28.95 B ATOM 3194 CG GLU 92 21.603 1.055 47.018 1.00 28.95 B ATOM 3195 CD GLU 92 21.603 1.055 47.018 1.00 28.95 B ATOM 3195 CD GLU 92 21.603 1.055 49.057 1.00 31.33 B ATOM 3196 CB GLU 92 22.008 0.214 48.219 1.00 31.33 B ATOM 3196 CB GLU 92 22.008 0.214 48.219 1.00 31.33 B ATOM 3196 CB GLU 92 22.1141 -1.578 49.077 1.00 35.27 B ATOM 3196 CB GLU 92 21.141 -1.578 49.077 1.00 35.27 B ATOM 3196 CB GLU 92 21.146 -2.000 30.633 1.00 36.65 B ATOM 3196 CB GLU 92 21.146 -2.000 30.633 1.00 36.65 B ATOM 3196 CB GLU 92 21.146 -2.000 30.633 1.00 36.65 B ATOM 3199 CG GLU 92 21.146 7.204 49.469 1.00 35.04 B ATOM 3199 CG GLU 92 21.146 7.204 49.469 1.00 35.04 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.51 B ATOM 3201 CA VAL 93 21.666 2.77 47.938 1.00 27.51 B ATOM 3201 CG VAL 93 22.505 7.125 48.957 1.00 27.51 B ATOM 3203 CG VAL 93 22.455 7.125 48.957 1.00 27.51 B ATOM 3206 C VAL 93 22.186 -2.77 5.399 46.843 1.00 22.02 B ATOM 3206 C VAL 93 22.187 5.508 48.957 1.00 27.55 B ATOM 3206 C VAL 93 22.175 5.100 49.178 1.00 22.02 B ATOM 3207 N ILE 94 21.175 5.150 46.843 1.00 22.00 B ATOM 3207 CG ILE 94 20.198 5.667 44.466 1.00 23.06 B ATOM 3207 N ILE 94 21.175 5.150 46.843 1.00 22.06 B ATOM 3207 N ILE 94 21.175 5.150 46.843 1.00 22.06 B ATOM 3201 CG ILE 94 20.398 5.667 44.466 1.00 23.06 B ATOM 3201 CG ILE 94 21.193 5.441 4.344 1.300 1.00 22.09 B ATOM 3210 CG ILE 94 21.193 5.441 4.344 1.300 1.00 22.09 B ATOM 3211 CG ILE 94 21.193 5.441 4.344 1.300 1.00 22.09 B ATOM 3212 CD ILE 94 21.193 5.441 4.344 1.300 1.00 22.09 B ATOM 3213 C GC ILE 94 21.193 5.441 4.344 1.300 1.00 22.09 B ATOM 3217 CB MET 95 11.66 6.650 4.864 1.00 23.06 B ATOM 3217 CB MET 95 11.66 6.650 4.864 1.00 23.06 B ATOM 3219 CD MET 95 11.66 6.650 4.864 1.00 23.06 B ATOM 3219 CD MET 95 11.66 6.650 4.864 1.00 23.00 B ATOM 321											
ATOM 3188 002 ASP 91 22.5.559 -0.601 41.701 1.00 29.60 B ATOM 3189 0 ASP 91 22.5.57 1.512 44.848 1.00 27.48 B ATOM 3191 N GLU 92 21.1427 1.740 44.399 1.00 28.35 B ATOM 3191 N GLU 92 22.0839 -0.266 49.057 1.00 30.33 B ATOM 3193 CB GLU 92 22.0839 -0.266 49.057 1.00 30.33 B ATOM 3195 CD GLU 92 22.0839 -0.266 49.057 1.00 30.33 B ATOM 3195 CD GLU 92 21.141 -1.578 49.772 1.00 35.27 B ATOM 3196 021 GLU 92 20.340 -2.000 50.633 1.00 35.27 B ATOM 3197 CD GLU 92 21.141 -1.578 49.772 1.00 35.27 B ATOM 3198 C GLU 92 22.181 -2.200 94.69 1.00 35.07 B ATOM 3198 C GLU 92 21.166 2.459 47.424 1.00 28.34 B ATOM 3198 C GLU 92 21.166 2.459 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.954 47.581 1.00 27.51 B ATOM 3201 CA VAL 93 21.663 4.757 47.581 1.00 27.51 B ATOM 3201 CA VAL 93 22.037 3.954 47.585 1.00 27.17 B ATOM 3201 CC VAL 93 22.005 5.664 48.072 1.00 27.55 B ATOM 3202 CC VAL 93 22.005 5.10 848 10.00 27.55 B ATOM 3203 CC VAL 93 22.007 5.170 49.178 10.0 26.25 B ATOM 3204 CC VAL 93 22.007 5.170 49.178 10.0 26.25 B ATOM 3205 CC VAL 93 22.007 5.170 49.178 10.0 22.09 B ATOM 3206 CC VAL 93 22.007 5.170 49.178 10.0 22.09 B ATOM 3206 CC VAL 93 22.007 5.170 49.178 10.0 22.09 B ATOM 3207 N ILE 94 21.175 5.150 45.996 1.00 22.09 B ATOM 3208 CA ILE 94 21.175 5.150 45.996 1.00 22.09 B ATOM 3208 CA ILE 94 22.198 5.657 44.466 1.00 22.06 B ATOM 3207 N ILE 94 21.175 5.150 44.466 1.00 22.06 B ATOM 3201 CG VAL 93 19.796 5.995 5.441 43.130 1.00 24.07 B ATOM 3201 CG VAL 93 19.796 5.995 5.441 43.130 1.00 24.07 B ATOM 3202 CG ILE 94 20.386 5.657 44.466 1.00 23.06 B ATOM 3203 CG VAL 93 19.796 5.995 5.441 43.130 1.00 22.09 B ATOM 3207 N ILE 94 21.175 5.150 45.996 1.00 22.09 B ATOM 3208 CG ILE 94 20.386 5.667 44.66 1.00 23.06 B ATOM 3207 CG ILE 94 20.386 5.667 44.466 1.00 23.06 B ATOM 3208 CG ILE 94 20.386 5.667 44.466 1.00 23.06 B ATOM 3208 CG ILE 94 20.386 5.667 44.466 1.00 23.06 B ATOM 3208 CG ILE 94 20.386 5.666 44.809 1.00 22.09 B ATOM 3208 CG ILE 94 20.386 5.666 44.809 1.00 22.09 B ATOM 3208 CG ILE 94 20.386 5.666 44.809 1.00 22.09 B ATOM 3208 CG	5										
ATOM 3199 O ASP 91 22.537 1.512 44.848 1.00 27.48 B ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.95 B ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.97 B ATOM 3192 CA GLU 92 22.008 0.214 48.219 1.00 38.33 B ATOM 3194 CB GLU 92 22.008 0.214 48.219 1.00 38.33 B ATOM 3195 CD GLU 92 22.008 0.214 48.219 1.00 38.33 B ATOM 3195 CD GLU 92 22.008 0.214 48.219 1.00 38.35 B ATOM 3196 CD GLU 92 22.008 0.214 48.219 1.00 38.57 B ATOM 3196 CD GLU 92 22.1141 -1.578 49.772 1.00 35.27 B ATOM 3196 CD GLU 92 22.1141 -1.578 49.772 1.00 35.27 B ATOM 3198 CD GLU 92 22.106 2.459 47.241 1.00 36.65 B ATOM 3198 CD GLU 92 22.106 2.459 47.242 1.00 35.05 B ATOM 3199 O GLU 92 11.066 2.459 47.581 1.00 28.34 B ATOM 3198 CD GLU 92 31.065 47.587 1.00 28.34 B ATOM 3200 N VAL 93 32.037 3.355 47.585 1.00 27.17 B ATOM 3202 CB VAL 93 32.050 5.681 48.075 1.00 27.55 B ATOM 3202 CB VAL 93 32.050 5.681 48.075 1.00 27.45 B ATOM 3202 CG VAL 93 32.8507 5.170 49.178 1.00 27.55 B ATOM 3205 C VAL 93 32.8507 5.170 49.178 1.00 27.55 B ATOM 3206 CD VAL 93 12.757 5.170 49.178 1.00 27.02 B ATOM 3206 CD VAL 93 19.779 5.955 47.110 1.00 24.60 B ATOM 3206 CD VAL 93 19.779 5.955 47.110 1.00 24.00 B ATOM 3208 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B ATOM 3206 CD VAL 93 19.759 5.955 47.10 1.00 24.00 B AT)										
10											
10 ATOM 3191 N GLU 92 22.736 1.185 46.115 1.00 28.87 B ATOM 3192 CB GLU 92 22.008 1.065 47.018 1.00 28.87 B ATOM 3194 CB GLU 92 22.008 1.065 49.057 1.00 33.34 B ATOM 3195 CD GLU 92 22.0839 -0.266 49.057 1.00 33.34 B ATOM 3195 CD GLU 92 22.1141 -1.578 49.772 1.00 35.27 B ATOM 3196 CB GLU 92 22.1141 -1.578 49.772 1.00 35.27 B ATOM 3196 CB GLU 92 22.1340 -2.000 56.633 1.00 36.65 B ATOM 3199 CB GLU 92 22.1861 -2.200 49.469 1.00 35.05 B ATOM 3199 CB GLU 92 22.1861 -2.200 49.469 1.00 35.05 B ATOM 3199 CB GLU 92 21.106 2.459 47.581 1.00 28.34 B ATOM 3199 CB GLU 92 21.106 2.459 47.581 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3200 CB VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3202 CB VAL 93 22.0502 5.681 48.072 1.00 27.15 B ATOM 3202 CB VAL 93 22.0502 5.681 48.072 1.00 27.45 B ATOM 3204 CG VAL 93 22.455 7.125 48.075 1.00 27.45 B ATOM 3204 CG VAL 93 22.455 7.125 48.075 1.00 27.45 B ATOM 3204 CG VAL 93 22.455 7.125 48.075 1.00 27.45 B ATOM 3205 C VAL 93 22.071 5.339 46.841 1.00 24.60 B ATOM 3206 C VAL 93 19.759 5.955 47.10 0.10 24.17 B ATOM 3206 CB VAL 93 19.759 5.955 47.10 0.10 24.17 B ATOM 3206 CB VAL 93 19.759 5.955 47.10 0.10 24.17 B ATOM 3206 CB VAL 93 19.759 5.955 44.44 46.10 0.2 2.09 B ATOM 3206 CB LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3208 CB LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3201 CC LILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM		ATOM		С							
10 ATOM 3191 CA GLU 92 22.080 0.214 48.219 1.00 28.89 B ATOM 3194 CG GLU 92 22.080 0.214 48.219 1.00 30.33 4 B ATOM 3195 CD GLU 92 22.081 -0.266 49.057 1.00 30.33 4 B ATOM 3195 CD GLU 92 21.141 -1.578 49.772 1.00 35.27 B ATOM 3197 OE2 GLU 92 22.181 -2.200 50.633 1.00 36.65 B ATOM 3197 OE2 GLU 92 22.181 -2.200 50.633 1.00 36.65 B ATOM 3199 C GLU 92 22.181 -2.200 50.633 1.00 35.05 B ATOM 3199 C GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.51 B ATOM 3201 CA VAL 93 21.663 4.757 47.938 1.00 26.25 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.51 B ATOM 3202 CB VAL 93 22.902 5.681 48.072 1.00 27.51 B ATOM 3203 CG VAL 93 22.455 7.125 48.357 1.00 27.51 B ATOM 3203 CG VAL 93 32.1663 4.757 5.100 49.178 1.00 22.02 B ATOM 3205 C VAL 93 32.1675 5.100 49.178 1.00 22.02 B ATOM 3205 C VAL 93 32.1771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 32.1775 5.150 49.178 1.00 22.02 B ATOM 3206 C VAL 93 32.0771 5.339 46.843 1.00 24.60 B ATOM 3207 CG 1LE 94 20.198 5.657 44.466 1.00 22.06 B ATOM 3201 CG2 LLE 94 20.198 5.657 44.466 1.00 22.06 B ATOM 3210 CG2 LLE 94 20.198 5.657 44.466 1.00 22.06 B ATOM 3211 CG1 LLE 94 22.0367 5.867 41.905 1.00 22.01 B ATOM 3211 CG1 LLE 94 22.0367 5.867 41.905 1.00 22.01 B ATOM 3212 CD1 LLE 94 22.382 6.155 40.200 1.00 22.01 B ATOM 3212 CD1 LLE 94 22.382 6.262 43.205 1.00 22.03 B ATOM 3212 CD1 LLE 94 22.388 6.262 43.205 1.00 22.03 B ATOM 3212 CD1 LLE 94 22.388 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 43.205 1.00 22.01 B ATOM 3213 CD LLE 94 22.498 6.262 44.464 1.00 23.71 B ATOM 3224 CD LLE 94 22.498 6.262 44.464 1.00 23.71 B ATOM 3224 CD LLE 94 22.498 6.262 44.464 1.00 23.71 B ATOM 3224 CD LLE 94 22.498 6.262 44.465 1.00 23.71 B ATOM 3224 CD LLE 94 22.498 6.262 44.484 1.00 23.71 B ATOM 3224 CD LLE 94 22.498 6.262 44.788 1.00 23.70 B ATOM		MOTA	3190	0	ASP	91	21.427	1.740	44.399	1.00 28.35	В
ATOM 3193 CB GLU 92 22.088 0.214 48.219 1.00 30.33 B ATOM 3195 CD GLU 92 20.839 0.266 49.057 1.00 33.43 B ATOM 3195 CD GLU 92 20.141 -1.578 49.772 1.00 35.27 B ATOM 3196 CD GLU 92 20.141 -1.578 49.772 1.00 35.07 B ATOM 3197 GEZ GLU 92 22.181 -2.200 49.469 1.00 25.05 B ATOM 3199 CD GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3199 CD GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3200 CA VAL 93 22.037 3.395 47.585 1.00 27.53 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.53 B ATOM 3202 CE VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 CD VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 CC VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 CC VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 CC VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3208 CA LLE 94 20.175 5.150 45.596 1.00 22.93 B ATOM 3208 CA LLE 94 20.175 5.150 45.596 1.00 22.93 B ATOM 3208 CA LLE 94 20.193 5.441 43.130 1.00 24.60 B ATOM 3210 CCI LLE 94 21.175 5.150 45.596 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CCI LLE 94 21.193 5.441 43.100 20.00 B ATOM 3210		MOTA	3191	N	GLU	92	22.736	1.185	46.115	1.00 28.27	В
ATOM 3194 CG GLU 92 20.839 -0.266 49.057 1.00 33.34 B A ATOM 3195 CD GLU 92 21.141 -1.578 49.772 1.00 35.27 B ATOM 3196 OEL GLU 92 21.030 -2.000 69.469 1.00 33.05 B ATOM 3197 CG GLU 92 22.181 -2.200 49.469 1.00 35.05 B ATOM 3198 C GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3199 O GLU 92 19.877 2.685 47.581 1.00 27.17 B ATOM 3199 O GLU 92 19.877 2.685 47.581 1.00 27.17 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.057 47.938 1.00 26.25 B ATOM 3202 CB VAL 93 22.655 7.125 48.357 1.00 27.55 B ATOM 3203 CG1 VAL 93 22.455 7.125 48.357 1.00 27.61 B ATOM 3204 CG2 VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA LLE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3200 CB LLE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3200 CB LLE 94 20.398 5.657 44.666 1.00 23.06 B ATOM 3210 CC2 LLE 94 20.398 5.657 44.661 1.00 23.06 B ATOM 3210 CC2 LLE 94 20.398 5.657 44.948 1.00 20.00 B ATOM 3211 CG1 LLE 94 23.382 6.115 42.021 1.00 18.21 B ATOM 3212 CD1 LLE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3211 CG1 LLE 94 18.096 6.304 43.841 1.00 22.00 B ATOM 3212 CD1 LLE 94 18.097 5.630 43.845 1.00 24.46 B ATOM 3213 CD LE 94 18.097 5.630 43.845 1.00 24.46 B ATOM 3218 CG MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.451 1.755 45.156 1.00 22.03 1 B ATOM 3218 CG MET 95 17.451 1.755 45.156 1.00 22.01 B ATOM 3218 CG MET 95 17.451 1.755 5.667 41.00 2.01 B ATOM 3218 CG MET 95 17.651 1.12 40.778 1.00 24.86 B ATOM 3218 CG MET 95 17.451 1.755 5.607 41.00 1.00 24.46 B ATOM 3218 CG MET 95 17.451 1.755 5.607 41.00 1.00 24.46 B ATOM 3218 CG MET 95 17.451 1.755 5.607 41.00 25.03 B ATOM 3218 CG MET 95 18.687 3.839 44.924 1.00 25.03 B ATOM 3218 CG MET 95 17.651 1.12 40.778 1.00 25.03 B ATOM 3218 CG MET 95 17.651 1.12 40.778 1.00 25.03 B ATOM 3218 CG MET 95 17.660 0.898 43.984 1.00 26.66 B ATOM 3219 CG MET 95 16.586 3.384 4.384 1.00 26.66 B AT	10	MOTA	3192	CA	GLU	92	21.603	1.065	47.018	1.00 28.89	В
ATOM 3195 CD GLU 92 20.141 -1.578 49.772 1.00 35.27 B ATOM 3196 CB GLU 92 20.340 -2.000 50.633 1.00 36.65 B ATOM 3199 C GLU 92 22.181 -2.200 49.469 1.00 25.05 B ATOM 3199 C GLU 92 21.106 24.59 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.685 47.575 47.938 1.00 26.25 B ATOM 3202 CE VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3203 CG1 VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3206 C VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 LE 94 20.398 5.657 44.956 1.00 22.09 B ATOM 3211 CG1 LE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD LE 94 23.498 6.262 43.205 1.00 20.00 B ATOM 3213 C LE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 17.511 1.735 45.167 1.00 14.81 B ATOM 3215 C MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3216 C MET 95 17.616 1.735 44.466 1.00 23.07 B ATOM 3221 C MET 95 17.616 1.733 44.693 44.893 1.00 25.14 B ATOM 3222 C MET 95 17.616 1.733 44.893 1.00 25.84 B ATOM 3221 C MET 95 17.616 1.733 44.893 44.893 1.00 25.84 B ATOM 3221 C ME		MOTA	3193	CB	GLU	92	22.008	0.214	48.219	1.00 30.33	В
ATOM 3195 CD GLU 92 20.141 -1.578 49.772 1.00 35.27 B ATOM 3196 CB GLU 92 20.340 -2.000 50.633 1.00 36.65 B ATOM 3199 C GLU 92 22.181 -2.200 49.469 1.00 25.05 B ATOM 3199 C GLU 92 21.106 24.59 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.685 47.575 47.938 1.00 26.25 B ATOM 3202 CE VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3203 CG1 VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3206 C VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 LE 94 20.398 5.657 44.956 1.00 22.09 B ATOM 3211 CG1 LE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD LE 94 23.498 6.262 43.205 1.00 20.00 B ATOM 3213 C LE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 17.511 1.735 45.167 1.00 14.81 B ATOM 3215 C MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3216 C MET 95 17.616 1.735 44.466 1.00 23.07 B ATOM 3221 C MET 95 17.616 1.733 44.693 44.893 1.00 25.14 B ATOM 3222 C MET 95 17.616 1.733 44.893 1.00 25.84 B ATOM 3221 C MET 95 17.616 1.733 44.893 44.893 1.00 25.84 B ATOM 3221 C ME		ATOM	3194	CG	GLU	92	20.839	-0.266	49.057	1.00 33.34	В
ATOM 3196 OEL GLU 92 20.340 -2.000 50.633 1.00 36.65 B ATOM 3199 OEZ GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3199 O GLU 92 19.87 2.685 47.581 1.00 27.53 B ATOM 3199 O GLU 92 19.87 2.685 47.581 1.00 27.53 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3201 CA VAL 93 22.992 5.681 48.072 1.00 27.41 B ATOM 3204 CG2 VAL 93 22.992 5.681 48.072 1.00 27.41 B ATOM 3204 CG2 VAL 93 22.992 5.681 48.072 1.00 27.55 B ATOM 3205 C VAL 93 20.711 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.711 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 20.711 5.339 46.843 1.00 24.60 B ATOM 3208 CA LLE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3208 CA LLE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB LLE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3210 CC2 LLE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3212 CD1 LLE 94 22.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 LLE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 LLE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 LLE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 CD MET 95 17.511 3.234 44.934 1.00 24.46 B ATOM 3213 CD MET 95 17.511 3.234 44.934 1.00 25.03 B ATOM 3212 CD MET 95 17.511 3.234 44.934 1.00 25.03 B ATOM 3212 CD MET 95 17.511 3.234 44.934 1.00 25.03 B ATOM 3213 CD MET 95 17.511 3.235 44.334 1.00 24.46 B ATOM 3212 CD MET 95 17.511 3.235 44.334 1.00 24.86 B ATOM 3212 CD MET 95 17.510 3.666 4.666 3.677 3.666 4.666 3.677 3.666 3.666 3.677 3.											
15 ATOM 3199 C GLU 92 22.181 -2.200 49.469 1.00 35.05 B ATOM 3199 C GLU 92 21.06 2.459 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.53 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.53 B ATOM 3201 CA VAL 93 22.685 47.581 1.00 27.53 B ATOM 3202 CB VAL 93 22.685 47.581 1.00 27.55 B ATOM 3203 CGI VAL 93 22.655 7.125 48.357 1.00 27.55 B ATOM 3203 CGI VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3208 CA 1LE 94 21.175 5.150 45.596 1.00 22.03 B ATOM 3208 CA 1LE 94 21.175 5.150 45.596 1.00 22.06 B ATOM 3208 CA 1LE 94 21.193 5.441 43.130 1.00 24.67 B ATOM 3208 CA 1LE 94 20.367 5.867 41.905 1.00 12.09 B ATOM 3210 CG2 1LE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3211 CG1 1LE 94 22.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 1LE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 C 1LE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3218 C MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 C MET 95 17.461 0.898 43.994 1.00 24.46 B ATOM 3218 C MET 95 17.460 0.898 43.994 1.00 24.46 B ATOM 3218 C MET 95 17.696 0.898 43.994 1.00 24.46 B ATOM 3218 C MET 95 17.696 0.898 43.994 1.00 24.46 B ATOM 3220 C MET 95 17.696 0.898 43.994 1.00 25.03 B ATOM 3220 C MET 95 17.696 0.898 43.994 1.00 26.55 B ATOM 3221 C D MET 95 17.696 0.898 43.994 1.00 26.67 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3220 C MET 95 16.565 3.864 45.977 1.00 24.81 B ATOM 3224 C A GLV 96 16.607 9.99 4.955 5.000 4.999 5.000 9.											
ATOM 3198 C GLU 92 21.106 2.459 47.424 1.00 28.34 B ATOM 3200 N VAL 93 22.037 3.395 47.585 1.00 27.53 B ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3202 CB VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3203 CG1 VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3204 CG2 VAL 93 22.902 5.681 48.072 1.00 27.45 B ATOM 3205 C VAL 93 22.902 7.17 5.339 46.843 1.00 24.60 B ATOM 3205 C VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3206 O VAL 93 21.807 5.170 49.178 1.00 29.02 B ATOM 3208 CA ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB ILE 94 21.175 5.150 45.596 1.00 22.93 B ATOM 3209 CG2 ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3210 CG2 ILE 94 21.93 5.441 43.130 1.00 22.09 B ATOM 3210 CG2 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 C ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 C ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 24.46 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 C MET 95 17.451 3.234 44.893 1.00 24.46 B ATOM 3218 C MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3212 C MET 95 17.451 3.234 44.893 1.00 24.46 B ATOM 3221 C MET 95 17.896 0.898 43.984 1.00 23.71 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 23.71 B ATOM 3221 C MET 95 17.896 0.898 43.984 1.00 23.71 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 25.03 B ATOM 3221 C MET 95 17.896 0.898 43.984 1.00 25.03 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 25.03 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 25.03 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 25.14 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 25.14 B ATOM 3222 C MET 95 17.896 0.898 43.984 1.00 22.09 B ATOM 3223 N GCT YR 97 17.604 1.004 1.00 28.08 B ATOM 3223 C MET 95 17.896 0.898 43.984 1.00 22.00 B ATOM 3223 C MET 95 1.006 1.006 1.006 1.00 28.08 B ATOM 3223 N GCT YR 97 1.006 1.006 1.006 1.00 28.	15										
ATOM 3199 O GLU 92 ATOM 3200 N VAL 93 22.037 3.195 47.586 1.00 27.53 B ATOM 3201 CA VAL 93 22.1663 4.757 47.938 1.00 26.25 B ATOM 3202 CB VAL 93 ATOM 3203 CG1 VAL 93 ATOM 3203 CG1 VAL 93 ATOM 3204 CG2 VAL 93 ATOM 3205 C VAL 93 ATOM 3205 C VAL 93 ATOM 3205 C VAL 93 ATOM 3206 CA VAL 93 ATOM 3206 CA VAL 93 ATOM 3207 N ILE 94 ATOM 3207 N ILE 94 ATOM 3208 CA ILE 94 ATOM 3208 CA ILE 94 ATOM 3209 CB ILE 94 ATOM 3200 CB ILE 94 ATOM 3210 CG1 ILE 94 ATOM											
20 ATOM 3201 CA VAL 93 22.037 3.395 47.585 1.00 27.17 B ATOM 3202 CB VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3203 CG1 VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3203 CG1 VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3204 CG2 VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3205 C VAL 93 20.771 5.339 46.841 1.00 24.60 B ATOM 3206 O VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA 1LE 94 21.175 5.150 46.61 1.00 23.06 B ATOM 3208 CA 1LE 94 21.175 5.150 46.61 1.00 23.06 B ATOM 3209 CB 1LE 94 21.193 5.441 43.130 1.00 24.08 B ATOM 3210 CG2 LE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 LE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3211 CG1 LE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD1 1LE 94 18.884 5.036 44.384 1.00 24.46 B ATOM 3213 C 1LE 94 18.894 5.036 44.384 1.00 24.46 B ATOM 3215 N MET 95 18.767 3.839 44.924 1.00 25.14 B ATOM 3216 CG MET 95 17.561 1.755 1.00 20.00 S ATOM 3217 CB MET 95 17.561 1.755 1.00 20.00 S ATOM 3218 CG MET 95 17.561 1.00 20.00 S ATOM 3218 CG MET 95 17.561 1.00 20.00 S ATOM 3218 CG MET 95 17.561 1.00 20.00 S ATOM 3210 CE MET 95 17.561 0.00 20.00 S ATOM 3210 CG MET 95 17.561 0.00 20.00 S ATOM 3210 CG MET 95 17.561 1.00 20.00 S ATOM 3210 CG MET 95 17.561 1.00 20.00 S ATOM 3210 CG MET 95 17.561 1.00 20.00 S ATOM 3210 CG MET 95 17.561 0.00 20.00 S ATOM 3210 CG MET 95 17.561 0.00 20.00 S ATOM 3210 CG MET 95 17.560 0.00 S ATOM 3210 CG MET 95 17.560 0.00 SS 44.924 1.00 25.14 B ATOM 3210 CG MET 95 17.560 0.00 SS 44.924 1.00 25.03 B ATOM 3210 CG MET 95 17.860 0.00 SS 44.924 1.00 25.03 B ATOM 3220 CG MET 95 17.860 0.00 SS 44.924 1.00 25.03 B ATOM 3221 C MET 95 17.860 0.00 SS 44.924 1.00 25.03 B ATOM 3222 CC MET 95 10.665 3.864 4.977 1.00 25.84 B ATOM 3222 CC MET 95 10.666 0.00 SS 44.924 1.00 28.44 B ATOM 3223 CC MET 95 10.666 0.00 SS 44.924 1.00 28.04 B ATOM 3223 CC MET 95 1.666 0.00 SS 44.924 1.00 28.04 B ATOM 3223 CC MET 95 1.666 0.00 SS 44.924 1.00 28.04 B ATOM 3226 CC MET 95 1.666 0.00 SS 44.92 SS 44.00 SS 44.92 SS 44.											
20 ATOM 3201 CA VAL 93 21.663 4.757 47.938 1.00 26.25 B ATOM 3202 CE VAL 93 22.902 5.681 48.072 1.00 27.41 B ATOM 3203 CG1 VAL 93 22.455 7.125 48.357 1.00 27.55 B ATOM 3204 CG2 VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3206 O VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3206 O VAL 93 23.807 5.150 49.178 1.00 24.60 B ATOM 3207 N ILE 94 21.175 5.150 45.596 1.00 22.93 B ATOM 3208 CA ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3208 CA ILE 94 20.397 5.150 45.596 1.00 22.93 B ATOM 3209 CB ILE 94 20.397 5.867 41.905 1.00 20.09 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 20.00 B ATOM 3211 CG1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 C ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 N MET 95 18.874 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.860 0.898 43.984 1.00 25.14 B ATOM 3218 CG MET 95 17.860 0.898 43.984 1.00 27.32 B ATOM 3221 C DE MET 95 17.860 0.898 43.984 1.00 27.32 B ATOM 3222 C MET 95 17.860 0.898 43.984 1.00 27.32 B ATOM 3222 C MET 95 17.860 0.898 43.984 1.00 27.32 B ATOM 3222 C MET 95 17.860 0.898 43.984 1.00 27.32 B ATOM 3222 C MET 95 16.585 3.864 45.977 1.00 24.81 B ATOM 3222 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 C MET 97 17.934 0.0821 44.478 1.00 27.32 B ATOM 3222 C MET 97 17.934 0.0821 44.4978 1.00 27.32 B ATOM 3222 C MET 97 17.934 0.084 48.904 1.00 25.84 B ATOM 3222 C MET 97 17.934 0.084 48.904 1.00 25.84 B ATOM 3223 N CLY 96 16.650 4.824 49.264 1.00 25.84 B ATOM 3223 C C TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3223 C C TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3224 C C C TYR 97 17.734 1.041 50.233 1.00 34.37 B ATOM 3235 C C TYR 97 17.706 0.769 48.901 1.00 35.61 B ATOM 3237 C TYR 97 17.706 0.769 48.901 1.00 35.61 B ATOM 3238 C C TYR 97 17.706 0.769 48.901 1.00 35.61 B ATOM 3238 C C TYR 97 11.860 0.099 49.575 1.00 38.91 B ATOM 3238 C C TYR 97 11.860 0.099 49.575 1.00 38.91 B ATOM 3238 C C TYR 97 11.86											
200 ATOM 3202 CB VAL 93 22.902 5.881 48.072 1.00 27.41 B ATOM 3203 CG1 VAL 93 22.465 7.125 48.357 1.00 27.55 B ATOM 3205 CC VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3205 C VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3205 C VAL 93 23.807 5.170 49.178 1.00 29.02 B ATOM 3206 O VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3207 T ILE 94 21.175 5.150 45.596 1.00 22.93 B ATOM 3208 CA ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB ILE 94 21.193 5.461 41.310 1.00 24.07 B ATOM 3210 CG2 ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 ILE 94 22.498 6.262 43.205 1.00 22.09 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 24.46 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.561 3.324 44.893 1.00 25.03 B ATOM 3216 CA MET 95 17.561 3.324 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.561 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.860 -0.821 44.434 1.00 23.71 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3223 N CILY 96 16.650 4.824 49.264 1.00 28.44 B ATOM 3222 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 25.84 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 25.84 B ATOM 3223 C C MET 95 19.568 -1.182 44.778 1.00 25.84 B ATOM 3223 C C MET 95 19.568 1.182 45.778 1.00 25.84 B ATOM 3223 C C MET 95 19.568 1.182 45.779 1.00 25.84 B ATOM 3223 C C MET 95 19.668 1.00 26.67 B ATOM 3223 C C MET 95 19.6											
ATOM 3200 CGI VAL 93	20										
ATOM 3206 CC VAL 93	20										
ATOM 3205 C VAL 93 20.771 5.339 46.843 1.00 24.60 B ATOM 3206 O VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA ILE 94 21.175 5.150 45.596 1.00 22.93 B ATOM 3208 CB ILE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 C ILE 94 18.099 5.630 43.845 1.00 24.46 B ATOM 3214 O ILE 94 18.099 5.630 43.845 1.00 24.46 B ATOM 3215 C MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 C MET 95 17.451 3.234 44.893 1.00 24.81 B ATOM 3218 C MET 95 17.860 -0.821 44.434 1.00 28.44 B ATOM 3219 SD MET 95 17.840 -0.821 44.434 1.00 28.44 B ATOM 3220 CE MET 95 15.658 3.864 45.977 1.00 28.84 B ATOM 3221 C MET 95 15.867 3.864 45.977 1.00 25.55 B ATOM 3222 O MET 95 15.867 3.864 45.977 1.00 25.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3223 N GLY 96 16.417 5.355 47.854 1.00 22.655 B ATOM 3223 C GLY 96 16.417 5.355 47.854 1.00 28.04 B ATOM 3226 O GLY 96 16.417 5.355 47.854 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3228 CA TYR 97 18.680 3.117 50.591 1.00 31.73 B ATOM 3221 C C TYR 97 18.680 3.117 50.591 1.00 31.73 B ATOM 3222 C C SLY 96 16.437 5.355 47.854 1.00 28.04 B ATOM 3223 C C TYR 97 18.680 3.117 50.591 1.00 31.73 B ATOM 3221 C C SAN 98 19.500 -0.909 49.575 1.00 35.61 B ATOM 3222 C C SAN 98 19.500 -0.909 49.575 1.00 38.91 B ATOM 3223 C C SAN 98 19.500 -0.909 49.575 1.00 38.91 B ATOM 3224 CC AND 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3225 C C SAN 98 19.500 -0.909 49.575 1.00 38.91 B ATOM 3221 C C SAN 98 18.552 6.566 54.883 1.00 22.90 B ATOM 3223 C C SAN 98 18.552 6.566 54.883 1.00 22.90 B ATOM 3224 CC AND 98 18.552 6.566 54.883 1.00 22.90 B ATOM 3225 C C SAN 98 18.552 6.566 54.883 1.00 22.91 B ATOM 3226 C AND 98 18.552 6.566 54.883 1.00 22.91 B ATOM 3225 C AND 98 22.475 4.575 53.74 1.00 10.88 B											
25 ATOM 3209 CN VAL 93 19.759 5.955 47.110 1.00 24.17 B ATOM 3208 CA ILE 94 20.398 5.657 44.466 1.00 22.93 B ATOM 3208 CR ILE 94 20.398 5.657 44.466 1.00 22.09 B ATOM 3210 CG2 ILE 94 20.367 5.867 44.466 1.00 22.09 B ATOM 3211 CG1 ILE 94 20.367 5.867 44.905 1.00 20.00 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.01 B.83 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.46 B ATOM 3217 CB MET 95 17.451 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.491 1.735 45.167 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 17.896 0.898 43.984 1.00 22.32 B ATOM 3221 C MET 95 15.607 3.606 46.068 1.00 26.53 B ATOM 3221 C MET 95 15.607 3.606 46.068 1.00 26.53 B ATOM 3221 C MET 95 15.607 3.606 46.068 1.00 26.53 B ATOM 3222 N MET 95 15.407 3.606 46.068 1.00 26.52 B ATOM 3223 N GLY 96 16.417 5.335 47.854 1.00 22.88 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 22.88 B ATOM 3225 C GLY 96 16.617 5.335 47.854 1.00 26.67 B ATOM 3226 C GLY 96 16.617 5.335 47.854 1.00 26.67 B ATOM 3227 C TYR 97 17.733 4.075 49.544 1.00 26.81 B ATOM 3223 C C TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3223 C C TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3223 C C TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3223 C C TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3223 C C TYR 97 17.664 5.90 49.955 1.00 38.91 B ATOM 3223 C C TYR 97 17.664 5.90 49.955 1.00 38.91 B ATOM 3223 C C TYR 97 17.664 5.90 49.955 1.00 38.91 B ATOM 3223 C C TYR 97 17.664 5.90 49.955 1.00 34.37 B ATOM 3223 C C TYR 97 17.664 5.90 49.955 1.00 34.37 B ATOM 3223 C C TYR 97 17.916 0.310 51.223 1.00 35.37 B ATOM 3224 C C ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3225 C C SYS 99 24.764 5.664 54.867 1.00 12.90 B ATOM 3226 C ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3227 C TYR 97 19.900 4.915 1.528 1.00 22.53 B ATOM 3240 C C ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3240 C C SYS 99 24.764											
25 ATOM 3207 N ILE 94 21.175 5.150 45.596 1.00 22.93 B ATOM 3208 CA ILE 94 20.398 5.657 44.466 1.00 23.06 B ATOM 3209 CB ILE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3212 C ILE 94 18.094 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 23.71 B ATOM 3216 CA MET 95 17.451 3.234 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.924 1.00 25.14 B ATOM 3217 CB MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 19.568 -1.182 44.778 1.00 24.81 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3227 N TTR 97 17.733 4.075 49.561 1.00 26.67 B ATOM 3226 CO GLY 96 16.6417 5.335 47.854 1.00 28.81 B ATOM 3227 N TTR 97 18.680 5.824 49.264 1.00 28.04 B ATOM 3227 N TTR 97 18.680 1.117 5.017 1.00 25.81 B ATOM 3228 CA TTR 97 18.680 1.117 5.017 1.00 25.81 B ATOM 3229 CB TTR 97 18.680 1.117 5.017 1.00 25.81 B ATOM 3230 CG TTR 97 18.680 1.117 5.059 1.00 35.61 B ATOM 3231 CD TTR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3232 CE TTR 97 18.680 1.117 5.059 1.00 35.61 B ATOM 3232 CC TTR 97 18.680 1.117 5.059 1.00 35.61 B ATOM 3230 CG TTR 97 17.664 6.068 1.00 36.56 B ATOM 3231 CD TTR 97 17.664 6.068 1.00 35.61 B ATOM 3231 CD TTR 97 17.664 6.068 1.00 35.61 B ATOM 3232 CE TTR 97 18.680 1.117 5.059 1.00 35.61 B ATOM 3233 CD TTR 97 17.664 1.00 1.00 25.09 B ATOM 3230 CG TTR 97 17.664 1.00 1.00 25.09 B ATOM 3231 CD TTR 97 17.664 1.00 1.00 25.09 B ATOM 3231 CD TTR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3231 CD TTR 97 17.016 0.310 51.223 1.00 35.61 B ATOM 3234 CC TTR 97 19.090 4.391 51.528 1.00 20.22 B ATOM 3234 CC AND SAN 98 19.107 4.266 52.850 1.00 20.22 B ATOM 3241 CB ASN 98 19.107 4.2		MOTA		С	VAL		20.771				В
ATOM 3208 CA ILE 94 20.389 5.657 44.466 1.00 23.06 B ATOM 3210 CG2 ILE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 18.23 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 18.23 B ATOM 3213 C ILE 94 18.994 5.036 44.384 1.00 23.71 B ATOM 3213 C ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 N MET 95 18.787 5.630 44.884 1.00 24.46 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.811 1.735 45.167 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3210 CC MET 95 19.568 -1.182 44.788 1.00 24.84 B ATOM 3220 CE MET 95 19.568 -1.182 44.788 1.00 25.83 B ATOM 3221 C MET 95 15.496 0.821 44.788 1.00 25.84 B ATOM 3222 O MET 95 15.497 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 26.67 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 29.08 B ATOM 3229 CB TYR 97 17.674 1.00 1.00 29.08 B ATOM 3220 CG TYR 97 17.674 1.00 1.00 29.08 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 26.67 B ATOM 3226 CA TYR 97 18.680 2.117 50.591 1.00 35.61 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CB TYR 97 17.674 1.041 50.230 1.00 35.61 B ATOM 3223 CC TYR 97 17.674 1.041 50.230 1.00 35.61 B ATOM 3234 CE TYR 97 18.680 2.117 50.591 1.00 31.33 B ATOM 3235 C TYR 97 17.574 1.045 50.290 1.00 34.37 B ATOM 3236 CH TYR 97 17.574 1.045 50.290 1.00 34.37 B ATOM 3238 O TYR 97 17.580 5.196 54.994 1.00 22.53 B ATOM 3236 CH TYR 97 17.674 1.041 50.230 1.00 25.53 B ATOM 3237 C TYR 97 17.574 1.045 50.250 1.00 34.37 B ATOM 3238 C TYR 97 17.574 1.045 50.250 1.00 34.37 B ATOM 3236 CH TYR 97 17.574 1.045 50.250 1.00 34.37 B ATOM 3237 C TYR 97 17.674 1.041 50.230 1.00 35.61 B ATOM 3238 C TYR 97 17.674 1.041 50.230 1.00 32.53 B ATOM 3240 CA ASN 98 19.500 5.396 54.994 1.00 22.53 B ATOM 3240 CA ASN 98 19.500 5.396 54.994 1.00 22.53 B ATOM 3240 CA ASN 98 19.500 5.396 54.994 1.00 22.53 B ATOM 3	~~	MOTA	3206	0	VAL	93	19.759	5.955			B
ATOM 3209 CB ILE 94 21.193 5.441 43.130 1.00 22.09 B ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3213 C ILE 94 18.995 6.362 44.384 1.00 23.71 B ATOM 3214 O ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3221 C MET 95 15.407 3.606 46.068 1.00 24.86 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 25.55 B ATOM 3223 N GLY 96 16.417 5.335 47.854 1.00 25.84 B ATOM 3224 CA GLY 96 16.650 4824 49.264 1.00 26.55 B ATOM 3225 C GLY 96 16.650 4824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 16.650 4824 49.264 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3223 CC TYR 97 17.06 0.310 51.223 1.00 35.37 B ATOM 3231 CD1 TYR 97 17.06 0.310 51.223 1.00 35.37 B ATOM 3232 CC TYR 97 17.06 0.310 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 17.06 0.310 51.223 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.087 -0.663 50.994 1.00 24.16 B ATOM 3235 CZ TYR 97 17.574 1.041 50.290 1.00 39.52 B ATOM 3236 CH TYR 97 17.506 0.310 51.223 1.00 35.61 B ATOM 3237 CC TYR 97 17.506 0.310 51.223 1.00 35.61 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 22.53 B ATOM 3231 CD1 TYR 97 17.606 0.310 51.223 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.087 -0.663 50.994 1.00 22.09 B ATOM 3235 CZ TYR 97 17.574 1.041 50.230 1.00 32.39 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 22.53 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3245 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3245 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3245 CA ASN 98 19.520 5.396 54.99	25	MOTA	3207	N	ILE	94	21.175	5.150	45.596	1.00 22.93	В
ATOM 3210 CG2 ILE 94 20.367 5.867 41.905 1.00 18.23 B ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3213 C ILE 94 18.984 5.036 44.3205 1.00 20.00 B ATOM 3213 C ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3219 C MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3210 C MET 95 17.806 0.898 43.984 1.00 24.81 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 23.84 B ATOM 3222 O MET 95 15.686 1.182 44.778 1.00 25.84 B ATOM 3223 N GLY 96 17.193 3.694 46.811 1.00 26.55 B ATOM 3224 CA GLY 96 16.650 4.824 49.264 1.00 26.55 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 26.67 B ATOM 3226 CA TYR 97 17.733 4.075 49.454 1.00 29.08 B ATOM 3229 CB TYR 97 17.574 1.01 0.02 0.09.98 B ATOM 3229 CB TYR 97 17.574 1.01 0.02 0.00 29.52 B ATOM 3223 CCI TYR 97 17.674 1.04 1.05 0.230 1.00 35.61 B ATOM 3223 CCI TYR 97 17.674 1.04 1.05 0.20 1.03 3.537 B ATOM 3223 CCI TYR 97 17.566 0.310 51.223 1.00 35.37 B ATOM 3234 CCI TYR 97 17.566 0.310 51.223 1.00 34.37 B ATOM 3235 CCI TYR 97 17.574 1.04 1.04 1.03 2.00 1.03 3.51 B ATOM 3236 OH TYR 97 17.574 1.04 1.04 1.00 36.70 B ATOM 3237 C TYR 97 17.574 1.04 1.04 1.00 36.70 B ATOM 3238 O TYR 97 17.574 1.04 1.04 1.00 36.70 B ATOM 3238 O TYR 97 17.576 0.904 1.00 35.61 B ATOM 3238 O TYR 97 19.819 5.172 50.904 1.00 35.61 B ATOM 3230 N ANN 98 19.107 4.266 52.850 1.00 22.53 B ATOM 3241 CB ANN 98 19.500 5.396 54.994 1.00 22.53 B ATOM 3240 CA ANN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3240 CA ANN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3240 CA ANN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3240 CB CYS 99 23.652 3.741 53.976 1.00 13.48 B ATOM 3240 CB CYS 99 23.652 3.741 53.976 1.00 13.48 B ATOM 3250 N GYS 99 23.652 3.741 53.976 1.00 13.48 B ATOM 3251 N THR 100 25.684 4.149 5.500 1.00 10.88 B		MOTA	3208	CA	ILE	94	20.398	5.657	44.466	1.00 23.06	В
300 ATOM 3211 CG1 ILE 94 22.498 6.262 43.205 1.00 20.00 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 24.81 B ATOM 3218 CG MET 95 17.451 3.234 44.893 1.00 24.81 B ATOM 3210 CE MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3210 CE MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3210 CE MET 95 17.880 -0.821 44.434 1.00 24.81 B ATOM 3221 C MET 95 19.586 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C O MET 95 16.585 3.864 45.977 1.00 26.65 B ATOM 3222 C O MET 95 16.585 3.864 45.977 1.00 26.65 B ATOM 3222 C O MET 95 16.585 3.864 45.977 1.00 26.65 B ATOM 3222 C O MET 95 16.650 4.824 49.264 1.00 28.04 B ATOM 3222 C O MET 95 16.650 4.824 49.264 1.00 28.04 B ATOM 3222 C O MET 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3222 C O MET 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3222 C O MET 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3222 C O MET 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3223 C C MY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3223 C C MY 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3223 C C MY 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3223 C C MY 8 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3223 C C MY 8 97 17.730 0.769 48.901 1.00 36.70 B ATOM 3233 C C TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3233 C C TYR 97 17.016 0.310 51.223 1.00 36.70 B ATOM 3233 C C TYR 97 17.370 0.769 48.901 1.00 36.70 B ATOM 3233 C C TYR 97 17.370 0.769 48.901 1.00 36.70 B ATOM 3233 C C TYR 97 17.370 0.769 48.901 1.00 36.70 B ATOM 3233 C C TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3234 C C A ASN 98 19.507 5.596 54.883 1.00 22.53 B ATOM 3240 C A ASN 98 19.507 5.596 54.883 1.00 22.59 B ATOM 3240 C A ASN 98 19.507 5.596 54.883 1.00 22.59 B ATOM 3240 C A ASN 98 19.507 5.584 5.664 54.867 1.00 13.9		MOTA	3209	CB	ILE	94	21.193	5.441	43.130	1.00 22.09	В
300 ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B ATOM 3214 O ILE 94 18.087 5.630 43.845 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3218 CG MET 95 17.880 -0.891 44.394 1.00 24.81 B ATOM 3219 SD MET 95 17.880 -0.891 44.394 1.00 24.81 B ATOM 3219 CC MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.67 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3228 CA TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3231 CD1 TYR 97 17.033 4.075 49.454 1.00 29.08 B ATOM 3232 CEI TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3233 CD2 TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3233 CD2 TYR 97 17.076 1.031 51.223 1.00 35.37 B ATOM 3232 CD2 TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3233 CD2 TYR 97 17.076 1.031 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 17.076 1.031 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 17.076 1.031 51.223 1.00 35.37 B ATOM 3235 CZ TYR 97 17.060 -0.909 49.575 1.00 38.91 B ATOM 3235 CZ TYR 97 16.087 -0.198 48.590 1.00 37.43 B ATOM 3235 CZ TYR 97 17.090 4.391 51.528 1.00 28.25 B ATOM 3237 C TYR 97 17.300 -0.909 49.575 1.00 38.91 B ATOM 3234 CG2 TYR 97 17.300 -0.909 49.575 1.00 38.91 B ATOM 3235 CZ TYR 97 17.300 -0.909 49.575 1.00 38.91 B ATOM 3235 CZ TYR 97 19.090 4.391 51.528 1.00 22.59 B ATOM 3234 CG2 TYR 97 19.090 4.391 51.528 1.00 22.59 B ATOM 3240 CG ANN 98 19.507 4.266 52.850 1.00 22.59 B ATOM 3240 CG ANN 98 19.507 4.266 52.650 54.883 1.00 22.59 B ATOM 3240 CG ANN 98 19.507 4.266 52.650 54.883 1.00 22.59 B ATOM 3247 N CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3247 N CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM		MOTA	3210	CG2	ILE	94	20.367	5.867	41.905	1.00 18.23	В
ATOM 3212 CD1 ILE 94 23.382 6.115 42.021 1.00 18.08 B		MOTA	3211	CG1	ILE	94	22.498	6.262	43.205	1.00 20.00	В
ATOM 3213 C ILE 94 18.984 5.036 44.384 1.00 23.71 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 22.4.81 B ATOM 3220 CE MET 95 17.896 0.898 43.984 1.00 27.32 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 15.607 3.864 45.977 1.00 26.55 B ATOM 3221 C MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C MET 95 15.407 3.606 46.068 11.00 26.67 B ATOM 3222 C MET 95 15.607 3.606 40.984 40.926 41.00 26.67 B ATOM 3222 C MET 95 15.407 3.606 40.984 40.926 41.00 26.67 B ATOM 3223 N GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3223 C MET 95 15.864 5.121 50.170 1.00 29.08 B ATOM 3222 C MET 95 15.864 5.121 50.170 1.00 29.08 B ATOM 3222 C MET 97 17.733 4.075 49.454 1.00 28.84 B ATOM 3229 C MET 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3229 C MET 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3229 C MET 97 17.733 4.075 59.10 1.00 31.73 B ATOM 3230 C MET 97 17.733 4.075 50.591 1.00 31.73 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 17.066 0.310 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.016 0.310 51.528 1.00 38.91 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3233 CD2 TYR 97 19.909 4.3915 51.528 1.00 28.25 B ATOM 3233 CD2 TYR 97 19.909 4.3915 51.528 1.00 28.25 B ATOM 3233 CD2 TYR 97 19.909 4.3915 51.528 1.00 28.25 B ATOM 3234 CB2 TYR 97 19.909 4.3915 51.528 1.00 28.25 B ATOM 3235 CZ TYR 97 19.909 4.3915 51.528 1.00 28.25 B ATOM 3234 CB2 TYR 97 19.909 4.3915 51.528 1.00 22.29 B ATOM 3240 CA ASN 98 18.552 6.526 54.883 1.00 22.25 B ATOM 3241 CB ASN 98 18.552 6.526 54.883 1.00 22.25 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 22.25 B ATOM 3243 CD2 TYR 97 19.899 22.475 4.573 53.770 1.00 23.91 B ATOM 32	30		3212			94			42.021	1.00 18.08	В
ATOM 3214 O ILE 94 18.079 5.630 43.845 1.00 24.46 B ATOM 3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.13 B ATOM 3217 CB MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.994 1.00 24.81 B ATOM 3229 CD MET 95 17.840 -0.821 44.434 1.00 28.44 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 O MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 C MET 95 16.586 3.864 45.977 1.00 26.67 B ATOM 3222 C MET 95 16.585 3.864 45.977 1.00 26.67 B ATOM 3222 C MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3222 C MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 C GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CDI TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CDI TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3231 CDI TYR 97 17.674 1.041 50.230 1.00 33.61 B ATOM 3232 CEI TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3231 CDI TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3231 CDI TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3231 CDI TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3231 CB ANN 98 19.507 4.266 52.850 1.00 26.29 B ATOM 3231 CB ANN 98 19.507 4.993 53.666 1.00 22.29 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 CD ANN 98 19.507 5.506 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 19.507 5.506 54.994 1.00 23.70 B ATOM 3243 CD ANN 98 19.507 5.506 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.664 1.00 10.30 B ATOM 3245 C ASN 98 18.552 6.566											
3215 N MET 95 18.787 3.839 44.924 1.00 25.14 B ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3219 SD MET 95 17.896 0.898 43.984 1.00 24.81 B ATOM 3220 CE MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 28.04 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 29.08 B ATOM 3229 C MET 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 C MET 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3223 C MET 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3231 CD2 TYR 97 17.310 0.769 48.991 1.00 35.61 B ATOM 3231 CD2 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3231 CD2 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3231 CD2 TYR 97 17.916 0.310 51.223 1.00 35.37 B ATOM 3232 C C TYR 97 19.819 5.172 50.993 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.993 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.993 1.00 28.25 B ATOM 3231 CD2 TYR 97 19.819 5.172 50.993 1.00 22.90 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.90 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.90 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.90 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CA ASN 98 18.564 7.475 54.13											
35 ATOM 3216 CA MET 95 17.451 3.234 44.893 1.00 25.03 B ATOM 3217 CB MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.896 0.898 43.994 1.00 22.81 B ATOM 3219 SD MET 95 17.896 0.898 43.994 1.00 22.81 B ATOM 3219 CC MET 95 17.840 -0.821 44.434 1.00 28.44 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 C MET 95 15.407 3.606 46.068 1.00 25.55 B ATOM 3223 N GLY 96 15.407 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3224 CA GLY 96 16.6450 4.824 49.264 1.00 28.04 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 CO GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3229 CB TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CDI TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CDI TYR 97 17.674 1.041 50.230 1.00 35.61 B ATOM 3232 CT TYR 97 17.800 -0.603 50.904 1.00 35.61 B ATOM 3231 CD TYR 97 17.800 -0.909 49.575 1.00 30.7.43 B ATOM 3232 CD TYR 97 17.800 -0.909 49.575 1.00 30.743 B ATOM 3231 CD TYR 97 17.800 -0.909 49.575 1.00 30.743 B ATOM 3232 CD TYR 97 19.809 -0.198 48.569 1.00 37.43 B ATOM 3231 CD TYR 97 19.809 -0.198 48.569 1.00 37.43 B ATOM 3232 CD TYR 97 19.809 -0.198 48.569 1.00 37.43 B ATOM 3231 CD TYR 97 17.800 -0.909 49.575 1.00 30.93 B ATOM 3231 CD TYR 97 19.809 -0.198 48.569 1.00 37.43 B ATOM 3232 CD TYR 97 19.809 -0.198 48.569 1.00 37.43 B ATOM 3231 CD TYR 97 19.809 -0.198 48.569 1.00 22.290 B ATOM 3231 CD ANN 98 19.107 4.266 52.850 1.00 22.290 B ATOM 3231 CD ANN 98 19.107 4.266 52.850 1.00 22.290 B ATOM 3232 CD ANN 98 19.500 -0.909 49.575 1.00 40.43 B ATOM 3232 CD ANN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CD ANN 98 19.500 -0.909 49.575 1.00 22.90 B ATOM 3241 CB ANN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3242 CD ANN 98 19.500 -0.909 49.500 -0.00 22.90 B ATOM 3240 CD ANN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 3240 CD ANN 98 19.107 4.266 52.850 1.00 22.90 B ATOM 324											
ATOM 3217 CB MET 95 17.511 1.735 45.167 1.00 24.81 B ATOM 3218 CG MET 95 17.840 0.898 43.984 1.00 24.81 B ATOM 3229 SD MET 95 17.840 0.821 44.434 1.00 28.44 B ATOM 3221 C MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 O MET 95 15.585 3.864 45.977 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3224 CA GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3227 N TYR 97 17.733 4.075 49.264 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 15.800 -0.198 48.509 1.00 38.91 B ATOM 3236 C TYR 97 15.800 -0.198 48.509 1.00 38.91 B ATOM 3236 C TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 C TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 C TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 C TYR 97 19.090 4.391 51.528 1.00 29.03 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 29.03 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 23.70 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 23.91 B ATOM 3242 CB ASN 98 19.107 4.266 54.861 1.00 23.91 B ATOM 3243 ODI ASN 98 19.500 53.863 1.00 22.99 B ATOM 3244 CD2 ASN 98 19.500 53.863 1.00 22.99 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B											
ATOM 3218 CG MET 95 17.896 0.889 43.984 1.00 24.81 B ATOM 3219 SD MET 95 17.840 -0.821 44.434 1.00 28.44 B ATOM 3220 CE MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.25 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3228 CA TYR 97 17.733 4.075 49.454 1.00 28.04 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 16.087 -0.663 50.904 1.00 37.43 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3236 OH TYR 97 19.900 4.391 51.528 1.00 33.73 B ATOM 3236 OH TYR 97 19.900 4.391 51.528 1.00 33.73 B ATOM 3237 C TYR 97 19.900 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 28.25 B ATOM 3234 CB ASN 98 19.107 4.266 52.850 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.91 B ATOM 3240 CA ASN 98 18.552 6.666 54.867 1.00 16.30 B ATOM 3251 C CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3252 O CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3253 N THR 100 26.646 4.149	35										
ATOM 3219 SD MET 95 17.840 -0.821 44.434 1.00 28.44 B ATOM 3220 CE MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.67 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.667 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 34.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 35.61 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3238 C TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3240 CG ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3247 N CYS 99 24.275 4.573 53.770 1.00 40.33 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 22.53 B ATOM 3247 N CYS 99 24.275 4.573 53.770 1.00 16.35 B ATOM 3247 N CYS 99 24.275 4.573 53.770 1.00 16.35 B ATOM 3247 N CYS 99 24.275 4.573 53.770 1.00 16.35 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3251 C CYS 99 24.275 4.573 53.774 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.88 B	55										
40 ATOM 3221 CE MET 95 19.568 -1.182 44.778 1.00 27.32 B ATOM 3222 C MET 95 16.585 3.864 45.971 1.00 25.84 B ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3225 C GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3226 O GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.08 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3220 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 35.61 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3231 CD2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 24.16 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.25 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.25 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.25 B ATOM 3240 CA ASN 98 19.507 5.396 54.994 1.00 22.25 B ATOM 3240 CB CYS 99 24.239 3.318 52.641 1.00 22.53 B ATOM 3248 CA CYS 99 24.275 4.575 55.374 1.00 40.63 B ATOM 3248 CA CYS 99 24.275 4.573 53.770 1.00 20.08 B ATOM 3251 C CYS 99 24.717 4.437 54.861 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.88 B											
40 ATOM 3221 C MET 95 16.585 3.864 45.977 1.00 25.84 B ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3223 N GLY 96 16.417 5.335 47.854 1.00 26.29 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3228 CA TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 31.73 B ATOM 3229 CB TYR 97 17.674 1.041 50.230 1.00 31.73 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3235 CZ TYR 97 16.499 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 16.499 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 38.91 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 22.53 B ATOM 3244 ND2 ASN 98 19.107 4.266 52.850 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.25 B ATOM 3244 ND2 ASN 98 18.562 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3247 N CYS 99 24.275 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3250 SG CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.661 55.574 1.00 10.88 B											
400 ATOM 3222 O MET 95 15.407 3.606 46.068 1.00 26.55 B ATOM 3224 CA GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3231 CD1 TYR 97 17.016 0.310 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3237 C TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 28.25 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 28.25 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 22.29 B ATOM 3244 ND2 ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 19.502 5.396 54.994 1.00 23.70 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.53 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.53 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.53 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.53 B ATOM 3247 N CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3245 C C SS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 C A THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 C A THR 1											
ATOM 3223 N GLY 96 17.193 4.694 46.811 1.00 26.29 B ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3228 CA TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3228 CA TYR 97 18.080 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.016 0.310 51.223 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 15.800 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 19.090 4.391 51.528 1.00 29.03 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 28.25 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 22.53 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.564 7.475 54.138 1.00 22.53 B ATOM 3244 ND2 ASN 98 18.552 6.526 54.883 1.00 22.53 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 24.239 3.318 52.641 1.00 22.53 B ATOM 3248 CA CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.48 B ATOM 3252 O CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.727 4.437 54.786 1.00 13.48 B ATOM 3252 O CYS 99 24.727 4.437 54.786 1.00 13.97 B ATOM 3254 CA THR 100 25.584 3.631 55.374 1.00 10.88 B	40										
ATOM 3224 CA GLY 96 16.417 5.335 47.854 1.00 26.67 B ATOM 3225 C GLY 96 16.650 4.824 49.264 1.00 28.04 B ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 35.61 B ATOM 3233 CD2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3236 OH TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 ODI ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3240 CA ASN 98 18.562 6.526 54.883 1.00 21.81 B ATOM 3243 ODI ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3240 CA ASN 98 18.562 6.526 54.883 1.00 22.53 B ATOM 3240 CA ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3242 CG ASN 98 18.7483 6.442 55.642 1.00 22.90 B ATOM 3243 ODI ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3247 N CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 25.584 3.631 55.374 1.00 12.82 B	40			0							
45 ATOM 3225 C GLY 96 15.864 5.121 50.170 1.00 28.04 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3231 CD1 TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 51.72 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 24.16 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.507 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 22.53 B ATOM 3243 OD1 ASN 98 19.507 54.138 1.00 22.53 B ATOM 3245 C ASN 98 18.552 6.526 54.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3250 CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.88 B											
45 ATOM 3226 O GLY 96 15.864 5.121 50.170 1.00 29.08 B ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 24.16 B ATOM 3241 CB ASN 98 19.107 4.266 52.850 1.00 24.16 B ATOM 3242 CG ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3241 CB ASN 98 19.520 5.396 54.883 1.00 22.25 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3244 ND2 ASN 98 19.507 5.396 54.883 1.00 22.25 B ATOM 3245 C ASN 98 18.564 7.475 54.188 1.00 20.22 B ATOM 3246 O ASN 98 11.064 7.475 54.188 1.00 20.22 B ATOM 3246 O ASN 98 11.064 7.475 54.188 1.00 20.22 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 CCYS 99 24.275 4.573 53.770 1.00 20.08 B ATOM 3250 CCYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 CCYS 99 24.271 51.748 1.00 16.35 B ATOM 3250 CCYS 99 24.271 51.748 1.00 16.36 B ATOM 3252 O CYS 99 24.271 51.748 1.00 16.36 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 25.6646 4.149 56.209 1.00 10.88 B		MOTA	3224	CA	GLY	96		5.335	47.854	1.00 26.67	В
45 ATOM 3227 N TYR 97 17.733 4.075 49.454 1.00 28.81 B ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3237 C TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 51.72 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.664 1.00 24.16 B ATOM 3241 CB ASN 98 19.507 4.993 53.664 1.00 24.16 B ATOM 3242 CG ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3245 C ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 22.90 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 22.90 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 22.90 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 22.90 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 23.91 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 22.93 B ATOM 3245 C ASN 98 17.483 6.442 55.664 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.883 1.00 22.53 B ATOM 3248 CA CYS 99 23.652 3.741 53.883 1.00 22.53 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.30 B ATOM 3250 C CYS 99 24.239 3.318 52.641 1.00 16.76 B ATOM 3252 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 C CYS 99 24.717 4.437 54.786 1.00 13.98 B ATOM 3253 N THR 100 25.584 3.664 54.149 56.209 1.00 10.88 B		MOTA	3225	С	GLY	96	16.650	4.824	49.264	1.00 28.04	В
ATOM 3228 CA TYR 97 18.081 3.524 50.760 1.00 29.52 B ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B		ATOM	3226	0	GLY	96	15.864	5.121	50.170	1.00 29.08	В
ATOM 3229 CB TYR 97 18.680 2.117 50.591 1.00 31.73 B ATOM 3230 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3243 OD1 ASN 98 18.552 6.526 54.883 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 20.22 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.35 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.88 B	45	ATOM	3227	N	TYR	97	17.733	4.075	49.454	1.00 28.81	В
50 ATOM 3231 CG TYR 97 17.674 1.041 50.230 1.00 34.37 B ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CEI TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.564 7.475 54.138 1.00 22.90 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3251 C CYS 99 24.275 4.573 53.770 1.00 20.08 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 25.584 3.631 55.374 1.00 12.82 B		MOTA	3228	CA	TYR	97	18.081	3.524	50.760	1.00 29.52	В
50 ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 22.370 B ATOM 3243 OD1 ASN 98 18.552 6.526 54.883 1.00 22.29 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 23.91 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3250 C CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B		ATOM	3229	CB	TYR	97	18.680	2.117	50.591	1.00 31.73	В
50 ATOM 3231 CD1 TYR 97 17.016 0.310 51.223 1.00 35.37 B ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 22.370 B ATOM 3243 OD1 ASN 98 18.552 6.526 54.883 1.00 22.29 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 23.91 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3250 C CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B											
50 ATOM 3232 CE1 TYR 97 16.087 -0.663 50.904 1.00 36.70 B ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3244 ND2 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.76 B ATOM 3251 C CYS 99 24.774 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.774 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
ATOM 3233 CD2 TYR 97 17.370 0.769 48.901 1.00 35.61 B ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3251 C CYS 99 24.774 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.774 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.88	50										
ATOM 3234 CE2 TYR 97 16.439 -0.198 48.569 1.00 37.43 B ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82	-										
ATOM 3235 CZ TYR 97 15.800 -0.909 49.575 1.00 38.91 B ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.128 2.271 51.748 1.00 16.30 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B											
55 ATOM 3236 OH TYR 97 14.858 -1.862 49.257 1.00 40.43 B ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 21.81 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 CA CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3251 C CYS 99 24.239 3.318 52.641 1.00 16.36 B ATOM 3252 O CYS 99 24.777 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 25.584 3.631 55.374 1.00 10.88 B											
ATOM 3237 C TYR 97 19.090 4.391 51.528 1.00 28.25 B ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 20.22 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53											
ATOM 3238 O TYR 97 19.819 5.172 50.943 1.00 29.03 B ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 CCYS 99 24.239 3.318 52.641 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.47 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 10.88 B	55										
ATOM 3239 N ASN 98 19.107 4.266 52.850 1.00 26.29 B ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 16.76 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 10.88 B	55										
ATOM 3240 CA ASN 98 20.087 4.993 53.646 1.00 24.16 B ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 23.91 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
60 ATOM 3241 CB ASN 98 19.520 5.396 54.994 1.00 23.70 B ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 24.239 3.318 52.641 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
60 ATOM 3242 CG ASN 98 18.552 6.526 54.883 1.00 21.81 B ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 22.53 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00											
ATOM 3243 OD1 ASN 98 18.764 7.475 54.138 1.00 20.22 B ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B	~										В
ATOM 3244 ND2 ASN 98 17.483 6.442 55.642 1.00 22.90 B ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B	OU	MOTA	3242	CG	ASN	98	18.552	6.526	54.883		В
ATOM 3245 C ASN 98 21.262 4.051 53.883 1.00 22.53 B ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B		MOTA	3243	OD1	ASN	98	18.764	7.475	54.138	1.00 20.22	В
65 ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B		MOTA	3244	ND2	ASN	98	17.483	6.442	55.642	1.00 22.90	В
65 ATOM 3246 O ASN 98 21.076 2.860 54.149 1.00 23.91 B ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B		ATOM	3245	С	ASN	98	21.262	4.051	53.883	1.00 22.53	В
65 ATOM 3247 N CYS 99 22.475 4.573 53.770 1.00 20.08 B ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00											
ATOM 3248 CA CYS 99 23.652 3.741 53.976 1.00 16.35 B ATOM 3249 CB CYS 99 24.239 3.318 52.641 1.00 16.30 B ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B	65										
70 ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
70 ATOM 3250 SG CYS 99 23.128 2.271 51.748 1.00 16.76 B ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
70 ATOM 3251 C CYS 99 24.717 4.437 54.786 1.00 13.97 B ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
70 ATOM 3252 O CYS 99 24.764 5.664 54.867 1.00 13.48 B ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B											
ATOM 3253 N THR 100 25.584 3.631 55.374 1.00 12.82 B ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B	70										
ATOM 3254 CA THR 100 26.646 4.149 56.209 1.00 10.88 B	70										
ATOM 3255 CB THR 100 26.177 4.209 57.660 1.00 9.58 B											
		MOTA	3255	CB	THR	100	26.177	4.209	57.660	1.00 9.58	В

	MOTA	3256	വദാ	THR	100	25.155	5.204	57.768	1.00 6.29	В
	ATOM	3257	CG2		100	27.327	4.524	58.590	1.00 10.26	В
	MOTA	3258	c	THR	100	27.874	3.264	56.104	1.00 10.53	В
	MOTA	3259	ŏ	THR	100	27.764	2.056	56.040	1.00 10.24	В
5	ATOM	3260	N	ILE	101	29.044	3.890	56.059	1.00 10.89	В
	MOTA	3261	CA	ILE	101	30.303	3.156	55.993	1.00 12.11	В
	MOTA	3262	СВ	ILE	101	31.004	3.297	54.642	1.00 13.63	В
	MOTA	3263		ILE	101	32.258	2.424	54.623	1.00 13.65	В
10	MOTA	3264		ILE	101	30.057	2.935	53.504	1.00 15.35	В
10	MOTA	3265		ILE	101	30.607	3.332	52.135	1.00 15.19	В
	MOTA	3266	C	ILE	101	31.226	3.776	57.027	1.00 11.10	В
	MOTA	3267	0	ILE	101	31.518	4.944	56.962	1.00 13.95	В
	MOTA	3268	N	PHE	102 102	31.690 32.569	2.961 3.412	57.960 59.024	1.00 8.97	В
15	MOTA MOTA	3269 3270	CA CB	PHE	102	32.254	2.693	60.337	1.00 5.36 1.00 5.27	B B
13	MOTA	3271	CG	PHE	102	30.964	3.097	60.979	1.00 3.27	В
	MOTA	3272		PHE	102	30.912	4.233	61.785	1.00 3.17	В
	ATOM	3273		PHE	102	29.821	2.315	60.839	1.00 1.92	B
	ATOM	3274		PHE	102	29.737	4.591	62.458	1.00 2.33	В
20	MOTA	3275	CE2	PHE	102	28.648	2.667	61.505	1.00 1.69	В
	MOTA	3276	CZ	PHE	102	28.608	3.812	62.323	1.00 1.17	В
	MOTA	3277	С	PHE	102	33.974	2.937	58.708	1.00 4.97	В
	MOTA	3278	0	PHE	102	34.160	1.984	57.997	1.00 6.23	В
25	MOTA	3279	N	ALA	103	34.956	3.641	59.244	1.00 5.31	В
25	ATOM	3280	CA	ALA	103	36.345	3.256	59.091	1.00 3.70	В
	MOTA	3281	СВ	ALA	103	37.115	4.337	58.408	1.00 2.97	В
	MOTA	3282	C	ALA	103	36.781	3.126	60.546	1.00 3.79	В
	ATOM ATOM	3283 3284	O N	ALA TYR	103 104	36.811 37.086	4.105 1.908	61.266 60.981	1.00 4.80 1.00 3.80	B B
30	ATOM	3285	CA	TYR	104	37.503	1.670	62.366	1.00 3.56	В
	ATOM	3286	CB	TYR	104	36.507	0.751	63.061	1.00 2.47	В
	ATOM	3287	CG	TYR	104	36.842	0.498	64.507	1.00 1.59	В
	MOTA	3288		TYR	104	37.780	-0.465	64.875	1.00 1.99	В
	MOTA	3289	CE1	TYR	104	38.079	-0.706	66.227	1.00 1.00	В
35	MOTA	3290	CD2	TYR	104	36.211	1.215	65.510	1.00 3.23	В
	MOTA	3291	CE2	TYR	104	36.492	0.988	66.863	1.00 1.00	В
	MOTA	3292	CZ	TYR	104	37.419	0.031	67.217	1.00 1.00	В
	MOTA	3293	ОН	TYR	104	37.667	-0.164	68.555	1.00 1.00	В
40	MOTA	3294	C	TYR	104	38.893	1.046	62.517	1.00 3.38	В
40	ATOM	3295 3296	0	TYR GLY	104 105	39.225 39.680	0.087 1.586	61.843	1.00 3.35 1.00 4.31	В
	MOTA MOTA	3297	N CA	GLY	105	41.024	1.088	63.440 63.646	1.00 4.31 1.00 5.04	B B
	ATOM	3298	C	GLY	105	41.931	2.086	64.335	1.00 5.61	В
	ATOM	3299	ō	GLY	105	41.560	3.226	64.565	1.00 5.55	В
45	ATOM	3300	N	GLN	106	43.132	1.627	64.657	1.00 7.21	В
	MOTA	3301	CA	GLN	106	44.154	2.414	65.338	1.00 9.77	В
	MOTA	3302	CB	GLN	106	45.303	1.473	65.701	1.00 11.84	В
	MOTA	3303	CG	GLN	106	46.625	2.127	65.977	1.00 18.02	В
50	ATOM	3304	CD	GLN	106	47.651	1.110	66.407	1.00 20.93	В
30	ATOM	3305		GLN	106	47.887	0.126	65.707	1.00 20.58	В
	ATOM ATOM	3306 3307	C	GLN GLN	106 106	48.265 44.684	1.333 3.603	67.569 64.525	1.00 24.16 1.00 9.05	B B
	ATOM	3308	Ö	GLN	106	44.759	3.535	63.318	1.00 8.64	В
	ATOM	3309	N	THR	107	45.040	4.693	65.206	1.00 9.25	В
55	MOTA	3310	CA	THR	107	45.589	5.863	64.537	1.00 9.91	В
	MOTA	3311	СВ	THR	107	46.090	6.935	65.545	1.00 11.30	В
	MOTA	3312	OG1		107	44.998	7.433	66.328	1.00 12.57	В
	MOTA	3313	CG2	THR	107	46.715	8.089	64.807	1.00 11.37	В
<i>(</i> 0	MOTA	3314	С	THR	107	46.784	5.384	63.720	1.00 9.43	В
60	MOTA	3315	0	THR	107	47.631	4.615	64.226	1.00 6.62	В
	MOTA	3316	N	GLY	108	46.836	5.797	62.455	1.00 7.40	В
	MOTA	3317	CA	GLY	108	47.956	5.419	61.613	1.00 7.87	В
	MOTA	3318 3319	C	GLY	108 108	47.801	4.136	60.815	1.00 7.55	В
65	ATOM		0	GLY	108	48.771	3.609	60.263	1.00 10.21 1.00 5.82	В
0 ,	ATOM ATOM	3320 3321	N CA	THR THR	109	46.581 46.349	3.624 2.400	60.748 59.992	1.00 5.82 1.00 4.83	B B
	MOTA	3322	СВ	THR	109	45.588	1.329	60.827	1.00 3.30	В
	MOTA	3323	OG1		109	44.316	1.824	61.248	1.00 2.94	В
	MOTA	3324	CG2		109	46.388	0.954	62.027	1.00 4.86	В
70	ATOM	3325	c	THR	109	45.611	2.616	58.675	1.00 5.10	В
	MOTA	3326	0	THR	109	45.305	1.648	57.954	1.00 5.03	В
	MOTA	3327		GLY	110	45.298	3.871	58.364	1.00 3.29	В
	MOTA	3328	CA	GLY	110	44.613	4.141	57.122	1.00 1.90	В

	2007	2220	~	Ct V	110	42 121	A 404	E7 007	1 00 2 61	
	MOTA MOTA	3329 3330	С 0	GLY GLY	110 110	43.131 42.521	4.484	57.097 56.025	1.00 2.61 1.00 1.00	B B
	ATOM	3331	N	LYS	111	42.539	4.885	58.227	1.00 4.13	· В
	ATOM	3332	CA	LYS	111	41.117	5.282	58.231	1.00 2.65	В
5	ATOM	3333	СВ	LYS	111	40.636	5.636	59.651	1.00 2.73	B
•	MOTA	3334	CG	LYS	111	40.588	4.463	60.630	1.00 4.22	В
	ATOM	3335	CD	LYS	111	39.990	4.860	61.974	1.00 1.25	В
	MOTA	3336	CE	LYS	111	40.770	5.978	62.652	1.00 1.64	В
_	MOTA	3337	NZ	LYS	111	42.112	5.563	63.122	1.00 3.15	В
10	MOTA	3338	С	LYS	111	40.876	6.516	57.319	1.00 3.52	В
	MOTA	3339	0	LYS	111	39.940	6.553	56.504	1.00 3.17	В
	MOTA	3340	N	THR	112	41.738	7.515	57.421	1.00 2.71	В
	ATOM	3341	CA	THR	112	41.536	8.697	56.607	1.00 4.38	В
	MOTA	3342	CB	THR	112	42.245	9.927	57.209	1.00 3.24	В
15	MOTA	3343		THR	112	41.689	10.219	58.500	1.00 2.46	В
	MOTA	3344		THR	112	42.049	11.122	56.306	1.00 5.02	В
	MOTA	3345	C	THR	112	42.010	8.459	55.175	1.00 6.62	В
	ATOM	3346	0	THR	112	41.499	9.074	54.223	1.00 5.92	В
20	MOTA	3347	N	PHE	113	42.974	7.556	55.013	1.00 7.30	В
20	MOTA	3348	CA CB	PHE PHE	113 113	43.484	7.275	53.680	1.00 9.51 1.00 11.02	В
	ATOM	3349 3350	CG	PHE	113	44.690 45.299	6.342 6.119	53.705 52.344	1.00 11.02	B B
	ATOM	3351		PHE	113	46.106	7.088	51.763	1.00 13.42	В
	MOTA	3352		PHE	113	45.021	4.974	51.624	1.00 13.42	В
25	ATOM	3353		PHE	113	46.626	6.927	50.496	1.00 13.19	В
	ATOM	3354		PHE	113	45.542	4.806	50.345	1.00 14.93	В
	MOTA	3355	CZ	PHE	113	46.346	5.792	49.784	1.00 13.30	В
	ATOM	3356	C	PHE	113	42.393	6.604	52.866	1.00 10.02	В
	MOTA	3357	0	PHE	113	42.195	6.916	51.689	1.00 9.19	В
30	ATOM	3358	N	THR	114	41.686	5.686	53.519	1.00 9.92	В
	MOTA	3359	CA	THR	114	40.601	4.946	52.905	1.00 8.86	В
	MOTA	3360	CB	THR	114	40.157	3.792	53.812	1.00 9.97	В
	MOTA	3361		THR	114	41.256	2.900	54.000	1.00 10.04	В
25	MOTA	3362	CG2		114	39.026	3.006	53.174	1.00 10.07	В
35	MOTA	3363	C	THR	114	39.397	5.824	52.608	1.00 8.06	В
	MOTA	3364	0	THR	114	38.935	5.875	51.496	1.00 8.14	В
	MOTA	3365	N	MET	115	38.908	6.538	53.612	1.00 6.57	В
	ATOM	3366	CA CB	MET	115	37.730	7.365 7.844	53.422 54.760	1.00 6.18 1.00 8.16	B
40	ATOM ATOM	3367 3368	CG	MET MET	115 115	37.149 36.761	6.723	55.717	1.00 12.31	B B
40	MOTA	3369	SD	MET	115	35.709	5.494	54.920	1.00 17.76	В
	MOTA	3370	CE	MET	115	34.142	6.334	54.973	1.00 16.39	В
	ATOM	3371	Č	MET	115	37.903	8.594	52.570	1.00 6.31	В
	ATOM	3372	O	MET	115	36.998	8.943	51.837	1.00 10.20	В
45	ATOM	3373	N	GLU	116	39.061	9.244	52.660	1.00 6.06	В
	MOTA	3374	CA	GLU	116	39.295	10.476	51.909	1.00 2.45	В
	MOTA	3375	CB	GLU	116	39.743	11.607	52.838	1.00 2.23	В
	MOTA	3376	CG	GLU	116	38.737	11.962	53.924	1.00 1.00	В
50	MOTA	3377	CD	GLU	116	39.091	13.216	54.722	1.00 1.00	В
50	MOTA	3378		GLU	116	40.124	13.850	54.464	1.00 1.56	В
	MOTA	3379		GLU	116	38.323	13.586	55.626	1.00 1.00	В
	MOTA	3380 3381	C O	GLU	116	40.342	10.311 10.587	50.843 49.695	1.00 2.04 1.00 1.54	B B
	MOTA MOTA	3382	N	GLU	116 117	40.070 41.539	9.869	51.235	1.00 1.34	В
55	ATOM	3383	CA	GLY	117	42.603	9.663	50.263	1.00 3.19	В
55	ATOM	3384	c	GLY	117	43.531	10.842	50.294	1.00 1.91	В
	ATOM	3385	ŏ	GLY	117	43.293	11.739	51.033	1.00 2.28	В
	ATOM	3386	N	GLU	118	44.568	10.822	49.466	1.00 3.14	В
	MOTA	3387	CA	GLU	118	45.562	11.897	49.412	1.00 3.61	В
60	MOTA	3388	CB	GLU	118	46.879	11.427	50.051	1.00 3.14	В
	ATOM	3389	CG	GLU	118	46.652	10.690	51.389	1.00 7.09	В
	MOTA	3390	CD	GLU	118	47.933	10.200	52.062	1.00 9.57	В
	MOTA	3391		GLU	118	48.831	9.748	51.317	1.00 11.82	В
15	MOTA	3392		GLU	118	48.030	10.259	53.317	1.00 6.51	В
65	ATOM	3393	C	GLU	118	45.813	12.253	47.959	1.00 4.59	В
	MOTA	3394	0	GLU	118	45.209	11.670	47.063	1.00 4.23	В
	ATOM	3395	N	ARG	119	46.681	13.221	47.713	1.00 7.04	В
	ATOM	3396	CA	ARG	119	46.976	13.564	46.329	1.00 10.62	В
70	MOTA MOTA	3397	CB	ARG	119	47.171	15.067	46.131	1.00 10.38	В
70	ATOM	3398 3399	CD CD	ARG ARG	119 119	45.961 44.705	15.941 15.414	46.462 45.837	1.00 13.02 1.00 13.25	В В
	ATOM	3400	NE	ARG	119	44.838	15.093	44.420	1.00 13.25	В
	ATOM	3401	CZ	ARG	119	44.759	15.955	43.411	1.00 11.43	В
										-

	MOTA	3402	NH1	L ARG	119	44.543	17.247	43.614	1.00 9.13	В
	ATOM	3403			119	44.890		42.175	1.00 10.86	В
				2 ARG						
	MOTA	3404	С	ARG	119	48.274	12.907	45.912	1.00 12.67	В
_	MOTA	3405	. 0	ARG	119	49.210	12.823	46.712	1.00 12.43	В
5	MOTA	3406	N	SER	120	48.328	12.416	44.675	1.00 15.44	В
	ATOM	3407	CA	SER	120	49.563	11.812	44.182	1.00 17.48	В
	MOTA	3408	CB	SER	120	49.392	11.272	42.755	1.00 18.24	В
		3409								
	MOTA		OG	SER	120	48.605	10.090	42.735	1.00 19.78	В
10	MOTA	3410	С	SER	120	50.519	12.978	44.185	1.00 18.56	В
10	MOTA	3411	0	SER	120	50.161	14.050	43.772	1.00 20.75	В
	MOTA	3412	N	PRO	121	51.748	12.782	44.660	1.00 20.06	В
	ATOM	3413	CD	PRO	121	52.403	11.508	45.013	1.00 20.52	В
								44.686	1.00 20.89	
	MOTA	3414	CA	PRO	121	52.700	13.896			В
1.5	MOTA	3415	CB	PRO	121	53.912	13.275	45.385	1.00 21.27	В
15	MOTA	3416	CG	PRO	121	53.881	11.834	44.872	1.00 21.35	В
	MOTA	3417	С	PRO	121	53.028	14.538	43.332	1.00 21.75	В
	MOTA	3418	0	PRO	121	52.835	13.918	42.270	1.00 21.17	В
		3419	N	ASN	122	53.514	15.785	43.393	1.00 21.50	В
	ATOM									
20	MOTA	3420	CA	ASN	122	53.957	16.561	42.227	1.00 22.52	В
20	MOTA	3421	CB	ASN	122	55.199	15.865	41.632	1.00 24.29	В
	ATOM	3422	CG	ASN	122	56.137	16.828	40.956	1.00 26.30	В
	MOTA	3423		ASN	122	56.538	17.815	41.553	1.00 28.88	В
	MOTA	3424		ASN	122	56.488	16.552	39.705	1.00 26.63	В
25	MOTA	3425	C	ASN	122	52.917	16.852	41.126	1.00 22.37	В
25	MOTA	3426	0	ASN	122	53.271	16.962	39.930	1.00 20.20	В
	MOTA	3427	N	GLU	123	51.651	16.999	41.518	1.00 22.38	В
	MOTA	3428	CA	GLU	123	50.573	17.294	40.561	1.00 22.86	В
	ATOM	3429	СВ	GLU	123	50.664	18.735	40.072	1.00 21.58	В
				GLU	123	50.338	19.754	41.110	1.00 21.60	
30	ATOM	3430	CG							В
30	MOTA	3431	CD	GLU	123	50.218	21.112	40.506	1.00 23.71	В
	MOTA	3432	OE1	GLU	123	51.124	21.512	39.736	1.00 24.05	В
	ATOM	3433	OE2	GLU	123	49.220	21.789	40.808	1.00 24.70	В
	MOTA	3434	С	GLU	123	50.573	16.401	39.319	1.00 23.43	В
	ATOM	3435	ō	GLU	123	50.357	16.856	38.189	1.00 22.15	В
35										
33	MOTA	3436	N	GLU	124	50.809	15.116	39.538	1.00 25.66	В
	MOTA	3437	CA	GLU	124	50.840	14.186	38.435	1.00 27.17	В
	ATOM	3438	СВ	GLU	124	51.320	12.816	38.905	1.00 28.99	В
	MOTA	3439	CG	GLU	124	51.698	11.884	37.763 -	1.00 33.91	В
	ATOM	3440	CD	GLU	124	52.179	10.531	38.247	1.00 36.81	В
40										
40	MOTA	3441		GLU	124	52.681	10.475	39.395	1.00 37.60	В
	MOTA	3442		GLU	124	52.061	9.543	37.476	1.00 36.71	В
	MOTA	3443	С	GLU	124	49.466	14.045	37.791	1.00 26.54	В
	ATOM	3444	0	GLU	124	49.351	13.966	36.571	1.00 28.04	В
	ATOM	3445	N	TYR	125	48.425	14.023	38.616	1.00 24.51	В
45	ATOM	3446	CA	TYR	125	47.065	13.864	38.117	1.00 22.37	В
7.5										
	ATOM	3447	CB	TYR	125	46.424	12.570	38.618	1.00 24.02	В
	MOTA	3448	CG	TYR	125	47.232	11.305	38.445	1.00 24.34	В
	ATOM	3449	CD1	TYR	125	48.215	10.951	39.372	1.00 24.16	В
	MOTA	3450	CE1	TYR	125	48.938	9.770	39.238	1.00 24.97	В
50	ATOM	3451		TYR	125	46.994	10.440	37.368	1.00 23.29	В
	ATOM	3452	CE2		125	47.715	9.257	37.224	1.00 23.28	В
	MOTA	3453	CZ	TYR	125	48.685	8.927	38.165	1.00 25.16	В
	MOTA	3454	ОН	TYR	125	49.395	7.750	38.059	1.00 24.88	В
	MOTA	3455	С	TYR	125	46.089	14.936	38.586	1.00 22.58	В
55	MOTA	3456	0	TYR	125	46.366	15.703	39.516	1.00 24.23	В
	MOTA	3457	N	THR	126	44.941	14.984	37.920	1.00 21.47	В
	ATOM	3458	CA	THR	126	43.889	15.919	38.280	1.00 20.00	
							13.313			В
	MOTA	3459	СВ	THR	126	42.913	16.147	37.140	1.00 20.72	В
	MOTA	3460	OG1	THR	126	42.379	14.888	36.723	1.00 21.10	В
60	ATOM	3461	CG2	THR	126	43.598	16.837	35.984	1.00 20.85	В
	MOTA	3462	С	THR	126	43.158	15.142	39.353	1.00 17.64	В
	MOTA	3463	ŏ	THR	126	43.223	13.940	39.359	1.00 16.55	В
	MOTA	3464	N	TRP	127	42.441	15.820	40.241	1.00 16.83	В
-	MOTA	3465	CA	TRP	127	41.749	15.118	41.332	1.00 15.87	В
65	MOTA	3466	CB	TRP	127	40.927	16.080	42.213	1.00 14.78	В
	MOTA	3467	CG	TRP	127	39.645	16.561	41.596	1.00 12.27	В
	ATOM	3468	CD2		127	38.379	15.935	41.708	1.00 9.16	В
		3469								
	ATOM			TRP	127	37.467	16.702	40.951		В
70	MOTA	3470	CE3		127	37.925	14.802	42.375	1.00 7.09	В
70	MOTA	3471	CD1		127	39.462	17.662	40.795	1.00 11.95	В
	MOTA	3472	NE1	TRP	127	38.150	17.749	40.405	1.00 11.09	В
	MOTA	3473	CZ2		127	36.142	16.366	40.845	1.00 8.67	В
	MOTA	3474	CZ3		127	36.606	14.472	42.271	1.00 7.96	B
	7. 00	33/9	-23	4 ***		50.000	43.316		00 7.50	U

	MOTA	3475		2 TRP	127	35.724			1.00 9.12	В
	MOTA MOTA	3476 3477	C	TRP TRP	127 127	40.824 40.807			1.00 15.77 1.00 16.78	B B
	MOTA	3478	N	GLU	128	40.065			1.00 16.83	В
5	ATOM	3479	CA	GLU	128	39.168			1.00 16.42	В
	ATOM	3480	CB	GLU	128	38.092		38.537	1.00 15.75	В
	MOTA	3481	CG	GLU	128	38.578			1.00 14.47	В
	MOTA	3482	CD	GLU	128	37.432 36.986			1.00 17.33	В
10	MOTA MOTA	3483 3484		GLU GLU	128 128	36.954		36.897 35.477	1.00 18.91 1.00 17.86	B B
10.	MOTA	3485	c c	GLU	128	39.828		38.847	1.00 17.44	В
	ATOM	3486	o	GLU	128	39.142	10.851	38.564	1.00 17.96	В
	MOTA	3487	N	GLU	129	41.147		38.653	1.00 18.02	В
15	MOTA	3488	CA	GLU	129	41.836	10.692	38.078	1.00 19.12	В
13	MOTA MOTA	3489 3490	CB CG	GLU	129 129	42.509 41.574	11.020 11.402	36.740 35.595	1.00 20.74 1.00 26.16	B B
	ATOM	3491	CD	GLU	129	42.324	11.739	34.299	1.00 30.95	В
	ATOM	3492		GLU	129	41.711	12.357	33.393	1.00 32.49	В
	MOTA	3493	OE2	GLU	129	43.521	11.385	34.178	1.00 32.69	В
20	MOTA	3494	С	GLU	129	42.945	10.219	38.990	1.00 18.40	В
	ATOM	3495	0	GLU	129	43.677	9.331	38.637	1.00 18.01	В
	MOTA MOTA	3496 3497	N CA	ASP ASP	130 130	43.051 44.115	10.816 10.465	40.173	1.00 17.65 1.00 17.80	B B
	MOTA	3498	CB	ASP	130	44.200	11.536	42.211	1.00 17.64	В
25	ATOM	3499.		ASP	130	45.540	11.556	42.908	1.00 19.83	В
	MOTA	3500		ASP	130	46.026	10.466	43.291	1.00 20.74	В
	MOTA	3501		ASP	130	46.097	12.661	43.070	1.00 20.64	В
	MOTA MOTA	3502 3503	С 0	ASP ASP	130 130	43.843 42.792	9.091 8.867	41.704 42.302	1.00 17.66 1.00 18.25	B B
30	ATOM	3504	N	PRO	131	44.778	8.141	41.521	1.00 18.23	В
	ATOM	3505	CD	PRO	131	46.046	8.282	40.780	1.00 17.06	В
	ATOM	3506	CA	PRO	131	44.617	6.778	42.052	1.00 16.05	В
	MOTA	3507	CB	PRO	131	45.716	5.994	41.316	1.00 14.70	В
35	MOTA	3508	CG	PRO	131	46.802	7.019	41.154	1.00 17.48	В
55	MOTA MOTA	3509 3510	С О	PRO PRO	131 131	44.668 44.318	6.713 5.697	43.589 44.187	1.00 15.30 1.00 14.37	B B
	ATOM	3511	N	LEU	132	45.114	7.797	44.226	1.00 15.18	В
	ATOM	3512	CA	LEU	132	45.169	7.841	45.683	1.00 13.57	В
40	MOTA	3513	CB	LEU	132	46.380	8.644	46.165	1.00 12.21	В
40	MOTA	3514	CG	LEU	132	47.741	8.012	45.842	1.00 12.83	В
	ATOM ATOM	3515 3516		LEU LEU	132 132	48.850 47.773	8.803 6.553	46.511 46.317	1.00 7.88 1.00 13.99	B B
	MOTA	3517	C	LEU	132	43.882	8.393	46.295	1.00 14.28	В
4.5	ATOM	3518	0	LEU	132	43.737	8.410	47.526	1.00 13.98	В
45	ATOM	3519	N	ALA	133	42.947	8.832	45.443	1.00 13.83	В
	MOTA	3520	CA	ALA	133	41.651	9.342	45.909	1.00 12.82	В
	ATOM ATOM	3521 3522	CB C	ALA ALA	133 133	40.796 40.875	9.805 8.291	44.733 46.717	1.00 12.54 1.00 13.00	B B
	ATOM	3523	ŏ	ALA	133	40.840	7.092	46.371	1.00 14.00	В
50	MOTA	3524	N	GLY	134	40.226	8.760	47.780	1.00 13.17	В
	ATOM	3525	CA	GLY	134	39.470	7.884	48.653	1.00 10.45	В
	MOTA MOTA	3526 3527	C O	GLY GLY	134 134	37.996 37.546	7.819 8.422	48.324 47.385	1.00 9.48 1.00 8.50	B B
	MOTA	3528	N	ILE	135	37.254	7.094	49.158	1.00 10.67	В
55	ATOM	3529		ILE	135	35.820	6.874	48.981		В
	MOTA	3530	СВ		135	35.237	6.087	50.180	1.00 9.70	В
	MOTA	3531		ILE	135	33.709	5.990	50.079	1.00 10.21	В
	MOTA MOTA	3532		ILE	135	35.837	4.686	50.214	1.00 8.19 1.00 8.61	В
60	ATOM	3533 3534	CDI	ILE	135 135	35.426 34.968	3.864 8.115	51.452 48.739	1.00 8.61 1.00 9.92	B B
•	ATOM	3535	ŏ	ILE	135	34.135	8.150	47.812	1.00 7.51	В
	ATOM	3536	N	ILE	136	35.157	9.136	49.560	1.00 9.63	В
	MOTA	3537	CA	ILE	136	34.379	10.340	49.371	1.00 8.14	В
65	MOTA	3538	CB	ILE	136	34.671	11.371	50.500	1.00 6.28	В
03	ATOM ATOM	3539 3540		ILE ILE	136 136	33.997 34.125	12.691 10.825	50.166 51.831	1.00 6.74 1.00 5.22	В
	ATOM	3541	CD1		136	34.553	11.574	53.070	1.00 5.22 1.00 1.00	B B
	ATOM	3542	c	ILE	136	34.538	10.992	47.978	1.00 9.33	В
70	MOTA	3543	0	ILE	136	33.569	11.242	47.274	1.00 10.23	В
70	ATOM	3544	N	PRO	137	35.767	11.252	47.552	1.00 7.86	В
	ATOM ATOM	3545 3546	CD	PRO	137	37.096	11.215	48.163	1.00 7.00	В
	ATOM	3546 3547	CA CB	PRO PRO	137 137	35.816 37.243	11.874 12.398	46.234 46.174	1.00 7.00 1.00 5.68	B B
	112 011	224,	-2	2.00		3,.433	12.370	20.17	2.00 3.00	Б

	ATOM	3548	CG	PRO	137	37.968	11.448	46.976	1.00 7.36	В
										B
	MOTA	3549		PRO	137	35.370	10.967	45.098		
	MOTA	3550	0	PRO	137	34.857	11.434	44.120	1.00 9.92	В
_	MOTA	3551	N	ARG	138	35.547	9.661	45.233	1.00 7.38	В
5	MOTA	3552	CA	ARG	138	35.132	8.765	44.157	1.00 4.69	В
•	ATOM	3553		ARG	138	35.761	7.375	44.314	1.00 5.18	В
	MOTA	3554		ARG	138	37.257	7.373	44.145	1.00 4.97	В
	MOTA	3555	CD	ARG	138	37.858	6.057	44.522	1.00 8.61	В
	ATOM	3556	NE	ARG	138	39.307	6.094	44.387	1.00 9.73	В
10		3557		ARG	138		5.973	43.235	1.00 12.02	В
10	ATOM					39.954				
	MOTA	3558		ARG	138	39.279	5.799	42.102	1.00 12.04	В
	ATOM	3559	NH2	ARG	138	41.280	6.028	43.216	1.00 13.69	В
	ATOM	3560	С	ARG	138	33.623	8.667	44.131	1.00 4.18	В
	ATOM	3561		ARG	138	33.017	8.611	43.094	1.00 7.46	В
15										
15	MOTA	3562	N	THR	139	33.013	8.666	45.295	1.00 3.72	В
	ATOM	3563	CA	THR	139	31.578	8.581	45.339	1.00 3.48	В
	ATOM	3564	CB	THR	139	31.103	8.436	46.792	1.00 2.17	В
										В
	ATOM	3565	0G1		139	31.647	7.220	47.321		
•	MOTA	3566	CG2	THR	139	29.586	8.366	46.872	1.00 1.00	В
20	MOTA	3567	C	THR	139	30.956	9.798	44.677	1.00 4.20	В
	ATOM	3568		THR	139	30.178	9.666	43.727	1.00 5.38	В
										В
	ATOM	3569		LEU	140	31.313	10.983	45.148		
	MOTA	3570		LEU	140	30.740	12.187	44.582	1.00 5.86	В
	MOTA	3571	CB	LEU	140	31.374	13.423	45.207	1.00 4.02	В
25	ATOM	3572		LEU	140	30.995	13.484	46.692	1.00 4.42	В
						31.695				
	MOTA	3573	CD1		140		14.631	47.363		В
	MOTA	3574	CD2	LEU	140	29.511	13.617	46.827	1.00 2.19	B
	ATOM	3575	С	LEU	140	30.902	12.211	43.091	1.00 8.32	В
	ATOM	3576		LEU	140	29.958	12.523	42.378	1.00 10.70	В
30					141		11.853	42.611	1.00 9.41	В
50	MOTA	3577		HIS		32.085				
	MOTA	3578	CA	HIS	141	32.315	11.876	41.180	1.00 11.42	В
	MOTA	3579	CB :	HIS	141	33.753	11.465	40.836	1.00 12.95	В
	MOTA	3580	CG :	HIS	141	34.064	11.523	39.364	1.00 15.31	В
	MOTA	3581	CD2		141	34.074	10.555	38.413	1.00 14.59	В
25										
35	MOTA	3582	ND1	HIS	141	34.404	12.693	38.713	1.00 17.05	В
	MOTA	3583	CE1	HIS	141	34.612	12.445	37.432	1.00 15.66	В
	ATOM	3584	NE2	HTS	141	34.418	11.154	37.225	1.00 15.55	В
	MOTA	3585		HIS	141	31.362	10.910	40.495	1.00 11.46	В
40	MOTA	3586		HIS	141	30.727	11.239	39.499	1.00 12.67	В
40	MOTA	3587	N (GLN	142	31.251	9.714	41.054	1.00 12.56	В
	MOTA	3588	CA (GLN	142	30.405	8.694	40.464	1.00 12.86	В
	MOTA	3589		GLN	142	30.707	7.336	41.103	1.00 14.29	В
	ATOM	3590		GLN	142	32.000	6.739	40.590	1.00 18.45	В
	MOTA	3591	CD (GLN	142	32.012	6.628	39.068	1.00 21.75	В
45	ATOM	3592	OE1 (GLN	142	31.349	5.751	38.489	1.00 23.11	В
	ATOM	3593	NE2		142	32.743	7.535	38.408	1.00 20.86	В
	MOTA	3594		GLN	142	28.915	8.984	40.473	1.00 12.11	В
	ATOM	3595	0 (GLN	142	28.206	8.585	39.560	1.00 11.87	В
	MOTA	3596	N :	ILE	143	28.434	9.664	41.506	1.00 11.12	В
50	ATOM	3597		ILE	143	27.018	10.010	41.573	1.00 12.39	В
50										
	MOTA	3598		ILE	143	26.722	10.953	42.788	1.00 12.55	В
	MOTA	3599	CG2	ILE	143	25.341	11.608	42.650	1.00 12.75	В
	ATOM	3600	CG1	ILE	143	26.784	10.147	44.093	1.00 13.10	В
	ATOM	3601	CD1		143	26.532	10.971	45.338	1.00 10.72	В
55										
33	MOTA	3602		ILE	143	26.587	10.710	40.275	1.00 13.82	В
	ATOM	3603	0 1	ILE	143	25.541	10.391	39.705	1.00 14.18	В
	MOTA	3604	N I	PHE	144	27.397	11.666	39.816	1.00 14.48	B
	MOTA	3605		PHE	144	27.099	12.430	38.605	1.00 15.02	В
60	MOTA	3606		PHE	144	28.023	13.646	38.513	1.00 14.03	В
60	MOTA	3607	CG 1	PHE	144	27. <i>7</i> 73	14.676	39.585	1.00 12.67	В
	ATOM	3608	CD1	PHE	144	26.680	15.527	39.510	1.00 10.36	В
	MOTA	3609	CD2		144	28.623	14.796	40.678	1.00 13.84	В
	MOTA	3610	CE1		144	26.442	16.473	40.498	1.00 9.69	В
	MOTA	3611	CE2	PHE	144	28.375	15.761	41.680	1.00 13.70	В
65	MOTA	3612	CZ I	PHE	144	27.286	16.591	41.578	1.00 11.21	В
	ATOM	3613		PHE	144	27.223	11.586	37.348	1.00 16.57	В
	ATOM	3614		PHE	144	26.516	11.835	36.384	1.00 16.66	В
	ATOM	3615	N C	GLU	145	28.123	10.593	37.364	1.00 20.10	В
	ATOM	3616		GLU	145	28.335	9.691	36.210	1.00 22.03	В
70	ATOM	3617		GLU	145	29.597	8.825	36.352	1.00 26.12	B
, 0										
	MOTA	3618		GLU	145	30.902	9.538	36.044	1.00 32.68	В
	MOTA	3619	CD (GLU	145	31.004	9.949	34.595	1.00 36.87	В
	MOTA	3620	OE1 C		145	31.965	10.666	34.249	1.00 39.57	В
										_

	MOTA	3621	OE2	GLU	145	30.121	9.549	33.807	1.00 40.00	В
	MOTA	3622			145	27.194	8.705	36.029	1.00 21.04	В
	MOTA	3623			145	26.750	8.470	34.943	1.00 20.94	В
	ATOM	3624			146	26.728	8.129	37.127	1.00 22.01	В
5	ATOM	3625			146	25.628	7.166	37.072	1.00 22.94	В
	MOTA	3626			146	25.489	6.433	38.423	1.00 24.69	В
	MOTA	3627			146	26.725	5.599	38.799	1.00 27.30	В
	ATOM	3628	CD	LYS	146	26.480	4.519	39.854	1.00 24.53	В
	MOTA	3629	CE	LYS	146	27.560	3.447	39.715	1.00 25.61	В
10	MOTA	3630	NZ	LYS	146	27.404	2.262	40.595	1.00 24.71	В
	ATOM	3631	С	LYS	146	24.281	7.799	36.702	1.00 24.00	В
	MOTA	3632	0	LYS	146	23.472	7.178	36.020	1.00 24.07	В
	MOTA	3633	N	LEU	147	24.049	9.035	37.138	1.00 23.75	В
	MOTA	3634	CA	LEU	147	22.788	9.720	36.850	1.00 24.08	В
15	MOTA	3635	CB	LEU	147	22.247	10.365	38.123	1.00 24.33	В
	ATOM	3636	CG	LEU :	147	21.976	9.460	39.325	1.00 24.88	. В
	MOTA	3637	CD1	LEU :	147	21.607	10.299	40.537	1.00 24.59	В
	MOTA	3638	CD2	LEU :	147	20.847	8.493	39.014	1.00 24.04	В
	MOTA	3639	C	LEU :	147	22.895	10.796	35.762	1.00 25.02	В
20	MOTA	3640		LEU :	147	22.110	11.755	35.736	1.00 22.56	В
	MOTA	3641	N '	THR :	148	23.857	10.627	34.857	1.00 27.04	В
	MOTA	3642	CA '	THR	148	24.073	11.585	33.774	1.00 28.40	В
	MOTA	3643	CB '	THR	148	25.296	11.194	32.905	1.00 28.80	В
0.5	MOTA	3644	OG1	THR :	148	25.479	12.150	31.850	1.00 29.27	В
25	ATOM	3645	CG2 '	THR :	148	25.108	9.794	32.318	1.00 30.26	В
	MOTA	3646	C '	THR :	148	22.855	11.738	32.865	1.00 28.70	В
	MOTA	3647	0 1	THR :	148	22.466	12.848	32.580	1.00 29.54	В
	MOTA	3648	N i	ASP :	149	22.253	10.638	32.413	1.00 27.95	В
20	MOTA	3649			149	21.087	10.749	31.533	1.00 28.50	В
30	ATOM	3650			149	21.500	11.014	30.067	1.00 28.76	В
	MOTA	3651			149	22.520	10.010	29.522	1.00 29.99	В
	ATOM	3652	OD1		149	22.501	8.830	29.939	1.00 29.75	В
	ATOM	3653			149	23.332	10.408	28.646	1.00 29.41	В
25	MOTA	3654			149	20.148	9.551	31.576	1.00 28.84	В
35	MOTA	3655			149	19.636	9.096	30.555	1.00 27.84	В
	MOTA	3656			150	19.899	9.055	32.778	1.00 29.57	В
	MOTA	3657			150	19.008	7.912	32.928	1.00 31.21	В
	MOTA	3658			150	19.483	7.010	34.080	1.00 29.55	В
40	MOTA	3659			150	19.259	7.641	35.459	1.00 28.21	В
40	MOTA	3660	OD1 A		150	19.347	8.859	35.618	1.00 27.26	В
	MOTA	3661	ND2 /		150	18.969	6.804	36.458	1.00 25.05	В
	MOTA	3662			150	17.550	8.345	33.175	1.00 31.80	В
	MOTA	3663			50	16.693	7.501	33.485	1.00 32.95	В
45	MOTA	3664 3665			151 151	17.279	9.648	33.043	1.00 30.56	В
73	MOTA MOTA	3666			51	15.939 15.601	10.169 10.387	33.247	1.00 29.70 1.00 29.38	B B
	ATOM	3667			51			34.701 35.052	1.00 29.95	В
	ATOM	3668			.52	14.462 16.616	10.518 10.412	35.549	1.00 29.90	В
	MOTA	3669			.52	16.386	10.634	36.964	1.00 29.30	В
50	MOTA	3670			.52	17.082	9.552	37.805	1.00 30.17	В
50	ATOM	3671	OG1 1		.52	16.662	8.249	37.373	1.00 29.92	В
	MOTA	3672	CG2 1		.52	16.739	9.730	39.272	1.00 23.32	В
	ATOM	3673			.52	16.902	12.022	37.384	1.00 31.11	В
	ATOM	3674			.52	18.104	12.232	37.543	1.00 32.13	В
55	ATOM	3675			53	15.977	12.968	37.531	1.00 30.29	В
55	ATOM	3676			.53	16.310	14.325	37.948	1.00 28.58	В
	ATOM	3677			53	15.041	15.174	37.977	1.00 20.30	В
	ATOM	3678			53	15.257	16.669	37.853	1.00 35.57	В
	ATOM	3679			53	15.641	17.082	36.438	1.00 38.01	. B
60	ATOM	3680	OE1 G		53	15.923	18.281	36.200	1.00 38.59	В
00	ATOM	3681	OE2 G		53	15.655	16.201	35.551	1.00 39.17	В
	ATOM	3682			53	16.861	14.173	39.366	1.00 25.90	В
	ATOM	3683			53	16.382	13.346	40.114	1.00 25.18	В
	ATOM	3684			54	17.852	14.978	39.738	1.00 24.45	В
65	ATOM	3685			54	18.447	14.852	41.074	1.00 21.39	В
03	MOTA	3686			54	19.411		41.115	1.00 20.65	
	MOTA	3687			54 54	20.679	13.651 13.846	40.306	1.00 20.65	B B
	ATOM	3688	CD1 P		54 54	21.853	14.284	40.306	1.00 20.31	В
	ATOM	3689	CD2 P		54	20.698	13.570	38.945	1.00 19.64	В
70	MOTA	3690	CE1 P		54	23.021	14.435	40.142	1.00 21.56	В
, ,	ATOM	3691	CE2 P		54	21.856	13.720	38.194	1.00 20.70	В
	MOTA	3692			54	23.017	14.149	38.786	1.00 19.85	В
	MOTA	3693			54	19.224	16.073	41.567	1.00 19.03	В
			- 1			~~.663				

	MOTA	3694	0	PHE	154	19.579	16.970	40.805	1.00 18.07	В
	MOTA	3695	N	SER	155	19.470	16.107	42.865	1.00 17.25	В
	ATOM	3696	CA	SER	155	20.234	17.200	43.451	1.00 17.56	В
	ATOM	3697	CB	SER	155	19.310	18.302	44.043	1.00 18.40	В
5	MOTA	3698	ŌĞ	SER	155	18.744	17.999	45.315	1.00 19.07	В
•	ATOM	3699	c	SER	155	21.072	16.536	44.521	1.00 16.97	B
	ATOM	3700	ŏ	SER	155	20.629	15.587	45.157	1.00 15.32	В
	ATOM	3701	N	VAL	156	22.286	17.034	44.708	1.00 17.21	В
		3702		VAL	156	23.181	16.479	45.709	1.00 15.73	В
10	MOTA		CA							
10	ATOM	3703	CB	VAL	156	24.452	15.964	45.066	1.00 16.35	В
	MOTA	3704		VAL	156	25.307	15.319	46.089	1.00 16.70	В
	MOTA	3705		VAL	156	24.117	14.993	43.973	1.00 18.36	. В
	MOTA	3706	C	VAL	156	23.577	17.503	46.762	1.00 14.63	В
15	MOTA	3707	0	VAL	156	24.031	18.595	46.441	1.00 12.84	В
15	MOTA	3708	N	LYS	157	23.394	17.138	48.024	1.00 15.08	В
	MOTA	3709	CA	LYS	157	23.739	18.019	49.139	1.00 16.33	₿
	MOTA	3710	ÇВ	LYS	157	22.485	18.370	49.962	1.00 17.27	В
	MOTA	3711	CG	LYS	157	21.640	19.492	49.381	1.00 19.38	В
	MOTA	3712	CD	LYS	157	20.323	19.704	50.121	1.00 19.23	В
20	MOTA	3713	CE	LYS	157	19.563	20.911	49.535	1.00 20.48	В
	MOTA	3714	NZ	LYS	157	20.216	22.239	49.815	1.00 19.89	В
	MOTA	3715	С	LYS	157	24.738	17.288	50.025	1.00 15.63	В
	MOTA	3716	0	LYS	157	24.568	16.118	50.305	1.00 17.71	В
	MOTA	3717	N	VAL	158	25.789	17.979	50.447	1.00 14.09	В
25	ATOM	3718	CA	VAL	158	26.782	17.350	51.313	1.00 12.31	В
	ATOM	3719	СВ	VAL	158	28.184	17.314	50.670	1.00 11.69	В
	ATOM	3720	CG1		158	28.150	16.490	49.405	1.00 12.25	В
	ATOM	3721	CG2		158	28.657	18.731	50.367	1.00 11.55	В
	ATOM	3722	c	VAL	158	26.911	18.070	52.636	1.00 11.94	В
30	ATOM	3723	õ	VAL	158	26.668	19.270	52.726	1.00 11.97	В
50	ATOM	3724	N	SER	159	27.301	17.321	53.659	1.00 10.91	В
	ATOM	3725	CA	SER	159	27.490	17.876	54.992	1.00 11.22	В
	MOTA	3726	CB	SER	159	26.245	17.662	55.846	1.00 11.02	В
	MOTA	3727	OG	SER	159	25.184	18.476	55.385	1.00 17.68	В
35					159		17.212	55.667	1.00 17.08	В
55	MOTA	3728	C	SER		28.677				
	MOTA	3729	0	SER	159	28.925	16.002	55.499	1.00 10.26	В
	MOTA	3730	N	LEU	160	29.431	18.011	56.405	1.00 11.19	В
	MOTA	3731	CA	LEU	160	30.583	17.495	57.115	1.00 11.64	В
40	MOTA	3732	CB	LEU	160	31.875	18.043	56.498	1.00 11.99	В
40	MOTA	3733	CG	LEU	160	33.168	17.440	57.061	1.00 12.29	В
	MOTA	3734		LEU	160	33.088	15.915	57.170	1.00 12.16	В
	MOTA	3735		LEU	160	34.307	17.848	56.170	1.00 13.02	B
	MOTA	3736	C	LEU	160	30.476	17.836	58.606	1.00 12.31	В
45	MOTA	3737	0	LEU	160	30.894	18.913	59.056	1.00 13.72	В
45	MOTA	3738	N	LEU	161	29.921	16.899	59.365	1.00 11.68	В
	ATOM	3739	CA	LEU	161	29.728	17.056	60.794	1.00 11.73	В
	ATOM	3740	CB	LEU	161	28.387	16.462	61.184	1.00 10.86	В
	MOTA	3741	CG	LEU	161	28.069	16.373	62.667	1.00 11.21	В
	ATOM	3742	CD1	LEU	161	28.038	17.772	63.257	1.00 14.64	В
50	ATOM	3743	CD2	LEU	161	26.735	15.687	62.849	1.00 11.87	В
	MOTA	3744	С	LEU	161	30.805	16.318	61.565	1.00 11.76	В
	ATOM	3745	0	LEU	161	31.023	15.148	61.353	1.00 14.92	В
	ATOM	3746	N	GLU	162	31.493	17.005	62.461	1.00 11.26	В
	MOTA	3747	CA	GLU	162	32.536	16.335	63.230	1.00 10.12	В
55	ATOM	3748	CB	GLU	162	33.914	16.845	62.829	1.00 9.47	В
_	MOTA	3749	CG	GLU	162	34.143	16.845	61.353	1.00 9.35	В
	ATOM	3750	CD	GLU	162	35.607	16.813	61.008	1.00 9.38	В
	ATOM	3751		GLU	162	36.443	17.239	61.829	1.00 9.19	В
	ATOM	3752		GLU	162	35.929	16.357	59.901	1.00 8.99	В
60	ATOM	3753	C	GLU	162	32.339	16.498	64.729	1.00 10.38	В
00									1.00 7.96	
	ATOM	3754	0	GLU	162	31.849	17.527	65.222	1.00 7.96	В
	MOTA	3755	N	ILE	163	32.734	15.456	65.444		В
	MOTA	3756	CA	ILE	163	32.581	15.414	66.879	1.00 10.98	В
65	ATOM	3757	CB	ILE	163	31.782	14.160	67.293	1.00 11.27	В
UJ	MOTA	3758		ILE	163	31.505	14.192	68.793	1.00 11.05	В
	MOTA	3759		ILE	163	30.504	14.066	66.462	1.00 11.37	В
	MOTA	3760		ILE	163	29.804	12.728	66.528	1.00 12.73	В
	MOTA	3761	C	ILE	163	33.941	15.387	67.559	1.00 10.94	В
70	MOTA	3762	0	ILE	163	34.849	14.680	67.127	1.00 11.24	В
70	MOTA	3763	N	TYR	164	34.071	16.177	68.619	1.00 10.16	В
	MOTA	3764	CA	TYR	164	35.303	16.245	69.376	1.00 8.14	В
	MOTA	3765	CB	TYR	164	36.254	17.270	68.759	1.00 5.82	В
	ATOM	3766	CG	TYR	164	37.517	17.425	69.533	1.00 3.86	В

	MOTA	3767	CD1	TYR	164	37.560	18.215	70.682	1.00 5.62	В
							18.292	71.465	1.00 4.56	
	ATOM	3768		TYR	164	38.709				В
	ATOM	3769		TYR	164	38.651	16.719	69.177	1.00 3.71	В
-	MOTA	3770	CE2		164	39.811	16.786	69.955	1.00 5.19	В
5	ATOM	3771	CZ	TYR	164	39.827	17.577	71.094	1.00 4.77	В
	MOTA	3772	ОН	TYR	164	40.976	17.675	71.832	1.00 5.42	В
	ATOM	3773	C	TYR	164	34.937	16.617	70.802	1.00 8.94	В
	ATOM	3774	ō	TYR	164	34.299	17.627	71.061	1.00 9.91	В
						35.346	15.775	71.731		. в
10	MOTA	3775	N	ASN	165					
10	MOTA	3776	CA	ASN	165	35.050	16.003	73.134	1.00 12.54	В
	ATOM	3777	CB	ASN	165	35.847	17.192	73.674	1.00 15.11	В
	ATOM	3778	CG	ASN	165	35.722	17.336	75.190	1.00 19.28	В
	MOTA	3779	OD1	ASN	165	35.971	16.385	75.936	1.00 21.80	В
	MOTA	3780	ND2		165	35.345	18.528	75.651	1.00 20.20	В
15	ATOM	3781	C	ASN	165	33.562	16.262	73.308	1.00 12.20	В
13		3782		ASN	165	33.160	17.158	74.000	1.00 10.80	В
	ATOM		0							
	ATOM	3783	N	GLU	166	32.767	15.430	72.646	1.00 16.33	В
	MOTA	3784	CA	GLU	166	31.304	15.495	72.656	1.00 18.28	В
~~	ATOM	3785	CB	GLU	166	30.739	15.101	74.031	1.00 17.10	В
20	ATOM	3786	CG	GLU	166	30.887	13.610	74.353	1.00 16.82	В
	ATOM	3787	CD	GLU	166	30.175	12.693	73.357	1.00 16.06	В
	ATOM	3788		GLU	166	28.928	12.606	73.360	1.00 13.96	В
	MOTA	3789	OE2		166	30.880	12.055	72.559	1.00 15.35	В
25	ATOM	3790	C	GLU	166	30.697	16.825	72.201	1.00 19.60	В
25	MOTA	3791	0	GLU	166	29.604	17.192	72.606	1.00 19.36	В
	MOTA	3792	N	GLU	167	31.427	17.546	71.357	1.00 21.89	В
	ATOM	3793	CA	GLU	167	30.956	18.818	70.823	1.00 22.41	В
	MOTA	3794	CB	GLU	167	31.910	19.947	71.208	1.00 24.57	В
	ATOM	3795	CG	GLU	167	31.998	20.181	72.701	1.00 28.83	В
30	ATOM	3796	CD	GLU	167	32.847	21.376	73.044	1.00 31.70	В
50										
	ATOM	3797		GLU	167	33.985	21.472	72.521	1.00 32.58	В
	MOTA	3798		GLU	167	32.373	22.214	73.840	1.00 33.47	В
	MOTA	3799	С	GLU	167	30.874	18.683	69.314	1.00 21.24	В
	MOTA	3800	0	GLU	167	31.689	17.997	68.700	1.00 20.64	В
35	MOTA	3801	N	LEU	168	29.879	19.328	68.717	1.00 20.17	В
	ATOM	3802	CA	LEU	168	29.712	19.254	67.269	1.00 19.71	В
	ATOM	3803	СВ	LEU	168	28.240	19.110	66.887	1.00 19.82	В
	ATOM	3804	CG	LEU	168	27.430	17.954	67.457	1.00 19.46	В
40	MOTA	3805		LEU	168	28.198	16.653	67.320	1.00 19.39	В
40	ATOM	3806	CD2	LEU	168	27.113	18.236	68.903	1.00 20.70	В
	MOTA	3807	С	LEU	168	30.251	20.477	66.524	1.00 19.80	В
	ATOM	3808	0	LEU	168	30.055	21.611	66.939	1.00 20.40	В
	ATOM	3809	N	PHE	169	30.928	20.229	65.411	1.00 19.38	В
	ATOM	3810	CA	PHE	169	31.478	21.306	64.612	1.00 17.82	В
45										
40	MOTA	3811	CB	PHE	169	33.004	21.327	64.706	1.00 17.88	В
	MOTA	3812	CG	PHE	169	33.513	21.530	66.097	1.00 16.09	В
	MOTA	3813	CD1	PHE	169	33.737	20.445	66.928	1.00 15.76	В
	MOTA	3814	CD2	PHE	169	33.695	22.810	66.600	1.00 16.92	В
	MOTA	3815	CE1	PHE	169	34.130	20.621	68.235	1.00 16.10	В
50	ATOM	3816		PHE	169	34.090	23.001	67.907	1.00 17.09	В
-	ATOM	3817	CZ	PHE	169	34.308	21.901	68.731	1.00 16.73	В
							21.102	63.166	1.00 18.77	В
	ATOM	3818	C	PHE	169	31.068				
	ATOM	3819	0	PHE	169	30.929	19.980	62.704	1.00 18.62	В
	MOTA	3820	N	ASP	170	30.871	22.206	62.459	1.00 20.24	В
55	MOTA	3821	CA	ASP	170	30.476	22.171	61.055	1.00 21.83	В
	ATOM	3822	CB	ASP	170	29.387	23.216	60.785	1.00 20.71	В
	MOTA	3823	CG	ASP	170	28.832	23.135	59.382	1.00 22.77	В
	MOTA	3824		ASP	170	29.510	22.563	58.493	1.00 23.50	В
					170			59.158	1.00 24.44	В
60	ATOM	3825		ASP		27.724	23.658			
UU	MOTA	3826	C	ASP	170	31.714	22.545	60.269	1.00 22.03	В
	ATOM	3827	0	ASP	170	32.119	23.693	60.281	1.00 23.16	В
	MOTA	3828	N	LEU	171	32.320	21.577	59.593	1.00 21.95	В
	MOTA	3829	CA	LEU	171	33.514	21.878	58.828	1.00 22.12	В
	ATOM	3830	СВ	LEU	171	34.449	20.674	58.827	1.00 20.38	В
65	ATOM	3831	CG	LEU	171	35.422	20.605	60.013	1.00 21.16	В
55										
	MOTA	3832		LEU	171	36.359	21.824	60.018	1.00 20.44	В
	MOTA	3833		LEU	171	34.645	20.544	61.307	1.00 18.78	В
	ATOM	3834	С	LEU	171	33.271	22.356	57.402	1.00 24.20	В
	MOTA	3835	0	LEU	171	34.201	22.357	56.582	1.00 24.74	В
70	ATOM	3836	N	LEU	172	32.034	22.764	57.108	1.00 26.40	В
-	ATOM	3837	CA	LEU	172	31.686	23.266	55.776	1.00 28.39	В
	MOTA	3838	СВ	LEU	172	30.802	22.283	55.004	1.00 28.49	В
	MOTA	3839	CG	LEU	172	31.536	21.056	54.448	1.00 29.54	В

	ATOM	3840	CD1	LEU	172	30.562	20.216	53.633	1.00 30.71	В
	MOTA	3841		LEU	172	32.730	21.477	53.583	1.00 28.53	В
	ATOM	3842	C	LEU	172	30.979	24.607	55.797	1.00 28.89	В
5	MOTA	3843	0	LEU	172	30.416	25.030	54.823	1.00 30.09	В
3	ATOM ATOM	3844 3845	N CA	ASN ASN	173 173	31.007 30.403	25.264 26.580	56.941 57.043	1.00 31.10	B B
	ATOM	3846	CB	ASN	173	29.606	26.708	58.347	1.00 33.23	В
	MOTA	3847	CG	ASN	173	28.903	28.053	58.473	1.00 32.72	В
•••	ATOM	3848		ASN	173	28.108	28.268	59.381	1.00 33.30	В
10	ATOM	3849		ASN	173	29.205	28.967	57.551	1.00 31.17	В
	ATOM	3850	C O	ASN ASN	173 173	31.554 32.402	27.579 27.627	56.982 57.861	1.00 35.93 1.00 35.47	B B
	ATOM ATOM	3851 3852	N	PRO	174	31.609	28.372	55.908	1.00 38.25	В
	MOTA	3853	CD	PRO	174	30.799	28.283	54.681	1.00 38.57	В
15	MOTA	3854	CA	PRO	174	32.674	29.362	55.753	1.00 40.38	В
	MOTA	3855	CB	PRO	174	32.702	29.569	54.242	1.00 39.65	В
	MOTA	3856	CG	PRO	174	31.264	29.478	53.900	1.00 38.79	В
	ATOM	3857	С	PRO	174	32.445	30.632	56.582 56.743	1.00 42.95 1.00 43.55	B B
20	MOTA MOTA	3858 3859	O N	PRO SER	174 175	33.356 31.234	31.450 30.794	57.108	1.00 45.33	В
20	ATOM	3860	CA	SER	175	30.906	31.974	57.913	1.00 47.15	В
	ATOM	3861	CB	SER	175	29.395	32.227	57.889	1.00 47.30	В
	ATOM	3862	OG	SER	175	28.906	32.331	56.559	1.00 49.37	В
25	MOTA	3863	C	SER	175	31.369	31.882	59.376	1.00 47.57	В
25	ATOM	3864	0	SER	175	31.800	32.872	59.970	1.00 48.25 1.00 47.97	В
	ATOM ATOM	3865 3866	N CA	SER SER	176 176	31.280 31.677	30.690 30.487	59.953 61.340	1.00 47.64	B B
	ATOM	3867	СВ	SER	176	30.720	29.520	62.034	1.00 46.90	В
	ATOM	3868	OG	SER	176	30.794	28.230	61.447	1.00 46.36	В
30	MOTA	3869	С	SER	176	33.083	29.917	61.451	1.00 48.54	В
	ATOM	3870	0	SER	176	33.650	29.434	60.484	1.00 48.78	В
	MOTA	3871	N	ASP	177	33.646	29.989 29.467	62.648	1.00 49.43	В
	MOTA MOTA	3872 3873	CA CB	ASP ASP	177 177	34.979 35.843	30.521	62.874 63.591	1.00 50.07 1.00 51.58	B B
35	ATOM	3874	CG	ASP	177	35.342	30.852	64.996	1.00 53.37	В
	ATOM	3875		ASP	177	35.948	31.723	65.658	1.00 54.70	В
	ATOM	3876	OD2	ASP	177	34.353	30.246	65.452	1.00 54.61	В
	ATOM	3877	C	ASP	177	34.880	28.160	63.669	1.00 49.81	В
40	MOTA	3878	0	ASP	177	33.833	27.830	64.235	1.00 48.89	В
40	ATOM ATOM	3879 3880	N CA	VAL VAL	178 178	35.980 36.030	27.422 26.146	63.707 64.409	1.00 49.42 1.00 50.03	B B
	ATOM	3881	CB	VAL	178	37.385	25.452	64.150	1.00 50.76	В
	ATOM	3882		VAL	178	37.528	25.131	62.665	1.00 49.77	В
45	ATOM	3883		VAL	178	38.538	26.353	64.629	1.00 50.93	В
45	ATOM	3884	C	VAL	178	35.791	26.203	65.927	1.00 49.82	В
	ATOM ATOM	3885 3886	O N	VAL SER	178 179	35.912 35.451	25.194 27.372	66.623 66.447	1.00 50.17 1.00 48.85	B B
	ATOM	3887	CA	SER	179	35.225	27.491	67.877	1.00 47.91	В
	MOTA	3888	CB	SER	179	35.912	28.749	68.397	1.00 48.14	В
50	MOTA	3889	OG	SER	179	35.472	29.884	67.667	1.00 47.90	В
	MOTA	3890	C	SER	179	33.739	27.541	68.211	1.00 47.46	В
	ATOM	3891	0 N	SER GLU	179 180	33.357 32.900	27.618 27.495	69.376 67.182	1.00 47.10	B B
	MOTA MOTA	3892 3893	CA	GLU	180	31.458	27.542	67.383	1.00 46.50 1.00 45.18	В
55	ATOM	3894	СВ	GLU	180	30.835	28.527	66.383	1.00 44.47	В
	ATOM	3895	CG	GLU	180	31.026	29.983	66.788	1.00 44.05	В
	ATOM	3896	CD	GLU	180	30.595	30.971	65.724	1.00 43.63	В
	ATOM	3897		GLU	180	31.354	31.176	64.751	1.00 43.67	В
60	ATOM	3898 3899	C C	GLU GLU	180 180	29.495 30.813	31.542 26.156	65.860 67.295	1.00 42.55 1.00 44.60	B B
00	MOTA MOTA	3900	ŏ	GLU	180	30.714	25.570	66.228	1.00 44.37	В
	ATOM	3901	N	ARG	181	30.373	25.650	68.445	1.00 44.01	В
	ATOM	3902	CA	ARG	181	29.739	24.342	68.529	1.00 42.83	В
15	ATOM	3903	СВ	ARG	181	29.775	23.806	69.958	1.00 45.18	В
65	ATOM	3904	CG	ARG	181	28.755	24.439	70.895	1.00 47.37	В
	MOTA	3905	CD	ARG	181	28.693	23.644	72.187	1.00 51.45	В
	ATOM ATOM	3906 3907	NE CZ	ARG ARG	181 181	27.541 26.267	23.972 23.753	73.034 72.706	1.00 54.79 1.00 56.32	B B
	ATOM	3908	NH1		181	25.969	23.733	71.539	1.00 57.53	В
70	ATOM	3909	NH2		181	25.286	24.065	73.548	1.00 56.18	В
	MOTA	3910	С	ARG	181	28.278	24.404	68.121	1.00 40.59	В
	MOTA	3911	0	ARG	181	27.632	25.414	68.254	1.00 41.20	В
	ATOM	3912	N	LEU	182	27.759	23.293	67.632	1.00 38.61	В

	MOTA	3913	CA	LEU	182	26.370	23.253	67.219	1.00 35.94	В
	MOTA	3914	CB	LEU	182	26.259	22.490	65.897	1.00 34.47	В
	MOTA	3915	CG	LEU	182	27.018	23.098	64.718	1.00 31.55	В
_	MOTA	3916	CD1	L LEU	182	26.951	22.179	63.525	1.00 30.32	В
5	MOTA	3917	CD2	LEU	182	26.417	24.440	64.382	1.00 29.89	В
	MOTA	3918	C	LEU	182	25.532	22.579	68.300	1.00 35.46	В
	ATOM	3919	0	LEU	182	26.057	21.845	69.139	1.00 35.35	В
	MOTA	3920	N	GLN	183	24.227	22.839	68.270	1.00 35.14	В
										В
.10	MOTA	3921	CA	GLN	183	23.290	22.256	69.228	1.00 33.43	
10	MOTA	3922	СВ	GLN	183	22.261	23.284	69.688	1.00 36.19	В
	MOTA	3923	CG	GLN	183	22.844	24.463	70.456	1.00 40.60	В
	ATOM	3924	CD	GLN	183	21.781	25.458	70.916	1.00 43.17	В
	MOTA	3925	OE1	GLN	183	20.902	25.122	71.711	1.00 45.10	В
	ATOM	3926		GLN	183	21.856	26.687	70.408	1.00 42.17	В
15	ATOM	3927	c	GLN	183	22.513	21.122	68.578	1.00 30.84	В
13										
	MOTA	3928	0	GLN	183	22.098	21.224	67.436	1.00 29.43	В
	ATOM	3929	N	MET	184	22.311	20.047	69.325	1.00 29.11	В
	MOTA	3930	CA	MET	184	21.603	18.884	68.821	1.00 28.51	В
	MOTA	3931	CB	MET	184	22.549	17.698	68.930	1.00 27.68	В
20	MOTA	3932	CG	MET	184	21.997	16.385	68.443	1.00 30.34	В
	MOTA	3933	SD	MET	184	23.142	15.021	68.745	1.00 30.67	В
	ATOM	3934	CE	MET	184	22.841	14.793	70.448	1.00 30.06	В
	MOTA	3935	C	MET	184	20.298	18.650	69.595	1.00 29.09	В
25	MOTA	3936	0	MET	184	20.280	18.737	70.806	1.00 29.05	В
25	MOTA	3937	N	PHE	185	19.213	18.342	68.887	1.00 30.68	В
	MOTA	3938	CA	PHE	185	17.921	18.112	69.537	1.00 31.83	В
	ATOM	3939	CB	PHE	185	16.953	19.277	69.291	1.00 31.45	В
	ATOM	3940	CG	PHE	185	17.520	20.626	69.637	1.00 30.24	В
	MOTA	3941		PHE	185	18.381	21.275	68.763	1.00 29.12	В
30										
50	MOTA	3942		PHE	185	17.215	21.234	70.850	1.00 28.98	В
	MOTA	3943		PHE	185	18.929	22.500	69.082	1.00 28.97	В
	ATOM	3944	CE2	PHE	185	17.762	22.461	71.180	1.00 29.87	В
	MOTA	3945	CZ	PHE	185	18.624	23.098	70.289	1.00 29.79	В
	ATOM	3946	С	PHE	185	17.236	16.883	68.976	1.00 33.71	В
35	ATOM	3947	0	PHE	185	17.473	16.515	67.845	1.00 33.43	В
	MOTA	3948	N	ASP	186	16.393	16.245	69.782	1.00 37.53	В
	MOTA	3949	CA	ASP	186	15.667	15.071	69.310	1.00 40.98	В
	MOTA	3950	СВ	ASP	186	14.857	14.413	70.431	1.00 43.17	В
40	MOTA	3951	CG	ASP	186	15.721	13.931	71.575	1.00 45.72	В
40	MOTA	3952	OD1	ASP	186	16.691	13.190	71.316	1.00 48.29	В
	ATOM	3953	OD2	ASP	186	15.413	14.291	72.734	1.00 46.64	В
	ATOM	3954	C	ASP	186	14.676	15.587	68.284	1.00 42.58	В
	ATOM	3955	õ	ASP	186	14.123	16.666	68.453	1.00 42.55	В
45	ATOM	3956	N	ASP	187	14.457	14.835	67.214	1.00 44.89	В
43	MOTA	3957	CA	ASP	187	13.528	15.287	66.188	1.00 46.96	В
	MOTA	3958	СВ	ASP	187	13.921	14.695	64.840	1.00 46.66	В
	MOTA	3959	CG	ASP	187	13.090	15.232	63.718	1.00 46.68	В
	ATOM	3960	OD1	ASP	187	13.381	14.891	62.555	1.00 47.95	В
	ATOM	3961		ASP	187	12.144	15.996	64.008	1.00 45.37	В
50	ATOM	3962	c	ASP	187	12.127	14.881	66.604	1.00 48.78	В
50		3963								
	MOTA		0	ASP	187	11.844	13.696	66.773	1.00 49.04	В
	ATOM	3964	N	PRO	188	11.235	15.870	66.799	1.00 50.85	В
	ATOM	3965	CD	PRO	188	11.546	17.310	66.716	1.00 50.78	В
	ATOM	3966	CA	PRO	188	9.838	15.660	67.209	1.00 52.07	В
55	ATOM	3967	CB	PRO	188	9.280	17.085	67.240	1.00 51.41	В
	ATOM	3968	CG	PRO	188	10.496	17.916	67.605	1.00 50.84	В
	MOTA	3969	c	PRO	188	9.071	14.705	66.302	1.00 53.79	В
	ATOM	3970	ō	PRO	188	8.249	13.900	66.753	1.00 52.56	
										В
<i>(</i> 0	MOTA	3971	N	ARG	189	9.340	14.817	65.011	1.00 56.26	В
60	MOTA	3972	CA	arg	189	8.691	13.979	64.033	1.00 59.28	В
	MOTA	3973	CB	ARG	189	9.218	14.349	62.649	1.00 60.03	В
	MOTA	3974	CG	ARG	189	8.875	15.774	62.238	1.00 61.54	В
	ATOM	3975	CD	ARG	189	9.366	16.081	60.833	1.00 62.62	В
	MOTA	3976	NE	ARG	189	10.813	16.277	60.790	1.00 63.59	В
65										
U.J	ATOM	3977	CZ	ARG	189	11.407	17.465	60.837	1.00 64.36	В
	MOTA	3978		ARG	189	10.680	18.575	60.925	1.00 64.67	В
	MOTA	3979	NH2	ARG	189	12.729	17.545	60.794	1.00 64.73	В
	MOTA	3980	С	ARG	189	8.905	12.499	64.357	1.00 61.00	В
		3981	0	ARG	189	7.952	11.725	64.399	1.00 61.27	В
	ATOM	2201								
70	ATOM ATOM					10.159	12.118	64.590	1.00 63.40	P
70	MOTA	3982	N	ASN	190	10.159	12.118	64.590	1.00 63.40	В
70	ATOM ATOM	3982 3983	N CA	ASN ASN	190 190	10.516	10.735	64.914	1.00 65.21	В
70	MOTA	3982	N	ASN	190					

		2006								_
	MOTA	3986		ASN	190	12.954	10.474	62.861	1.00 64.77	В
	MOTA	3987		ASN	190	11.242	11.332	61.707	1.00 63.52	В
	MOTA	3988	C	ASN	190	11.757	10.684	65.807	1.00 66.41	В
5	MOTA	3989	0	ASN	190	12.850	11.038	65.381	1.00 66.57	В
5	MOTA	3990	N	LYS	191	11.575	10.241	67.051	1.00 67.89	В
	MOTA	3991	CA	LYS	191	12.676	10.158 9.687	68.017	1.00 68.02	В
	MOTA	3992	CB	LYS	191	12.151		69.378	1.00 69.77 1.00 71.09	В
	MOTA	3993	CG	LYS	191	11.151	10.636	70.012	1.00 71.03	B B
10	MOTA	3994	CD	LYS	191	11.787	11.982	70.297		В
10	MOTA	3995 3996	CE	LYS	191 191	10.771 9.657	12.963 13.210	70.860 69.902	1.00 74.00 1.00 75.27	В
	MOTA		NZ	LYS		13.826	9.251	67.571	1.00 75.27	В
	MOTA	3997 3998	C	LYS	191 191	14.852	9.149	68.253	1.00 66.18	В
	MOTA		0	LYS ARG	192		8.587	66.434	1.00 64.41	B
15	MOTA	3999	N	ARG	192	13.641 14.668	7.720	65.878	1.00 64.41	В
13	MOTA MOTA	4000 4001	CA CB	ARG	192	14.101	6.946	64.685	1.00 64.84	В
	ATOM	4001	CG	ARG	192	15.134	6.138	63.909	1.00 68.49	В
	ATOM	4003	CD	ARG	192	14.582	5.584	62.578	1.00 71.52	В
	ATOM	4004	NE	ARG	192	14.312	6.616	61.569	1.00 73.79	В
20	ATOM	4005	CZ	ARG	192	13.207	7.359	61.506	1.00 74.82	В
20	ATOM	4006		ARG	192	12.232	7.201	62.393	1.00 75.36	В
	ATOM	4007		ARG	192	13.079	8.275	60.555	1.00 75.53	В
	MOTA	4008	C	ARG	192	15.822	8.612	65.403	1.00 59.33	В
	ATOM	4009	ŏ	ARG	192	16.991	8.235	65.479	1.00 58.48	В
25	ATOM	4010		GLY	193	15.468	9.805	64.927	1.00 55.93	В
	ATOM	4011	CA	GLY	193	16.453	10.747	64.429	1.00 50.05	В
	MOTA	4012	c.	GLY	193	16.778	11.895	65.364	1.00 45.96	В
	ATOM	4013	ō	GLY	193	16.345	11.933	66.518	1.00 44.90	В
	MOTA	4014	N	VAL	194	17.547	12.842	64.839	1.00 42.75	В
30	ATOM	4015	CA	VAL	194	17.968	14.006	65.596	1.00 39.18	В
	ATOM	4016	СВ	VAL	194	19.328	13.743	66.269	1.00 39.02	В
	ATOM	4017		VAL	194	20.450	13.925	65.262	1.00 38.70	В
	ATOM	4018		VAL	194	19.504	14.653	67.456	1.00 38.46	В
	ATOM	4019	c	VAL	194	18.096	15.209	64.666	1.00 37.27	В
35	MOTA	4020	0	VAL	194	18.181	15.057	63.456	1.00 36.48	В
	ATOM	4021	N	ILE	195	18.108	16.400	65.254	1.00 35.15	В
	ATOM	4022	CA	ILE	195	18.230	17.645	64.501	1.00 33.17	В
	ATOM	4023	CB	ILE	195	17.002	18.543	64.702	1.00 34.99	В
	MOTA	4024	CG2	ILE	195	17.185	19.842	63.916	1.00 36.47	В
40	MOTA	4025	CG1	ILE	195	15.731	17.803	64.280	1.00 36.88	В
	MOTA	4026	CD1	ILE	195	15.658	17.513	62.784	1.00 38.32	В
	MOTA	4027	С	ILE	195	19.452	18.465	64.917	1.00 30.37	В
	MOTA	4028	0	ILE	195	19.575	18.870	66.063	1.00 28.47	В
	MOTA	4029	N	ILE	196	20.353	18.711	63.975	1.00 28.58	В
45	MOTA	4030	CA	ILE	196	21.538	19.503	64.270	1.00 27.51	В
	MOTA	4031	CB	ILE	196	22.810	18.928	63.572	1.00 26.71	В
	MOTA	4032	CG2	ILE	196	24.024	19.795	63.884	1.00 25.48	В
	MOTA	4033		.ILE	196	23.107	17.515	64.078	1.00 25.19	В
50	ATOM	4034		ILE	196	22.263	16.456	63.472	1.00 25.37	В
50	MOTA	4035	С	ILE	196	21.284	20.931	63.787	1.00 27.55	В
	MOTA	4036	0	ILE	196	21.307	21.212	62.601	1.00 27.49	В
	MOTA	4037	N	LYS	197	21.045	21.832	64.730	1.00 28.27	В
	MOTA	4038	CA	LYS	197	20.765	23.229	64.418	1.00 27.24	В
66	MOTA	4039	CB	LYS	197	20.328	23.973	65.688	1.00 28.18	В
55	MOTA	4040	CG	LYS	197	19.970	25.451	65.508	1.00 26.93	В
	MOTA	4041	CD	LYS	197	19.665	26.075	66.853	1.00 27.21	В
	ATOM	4042	CE	LYS	197	19.417	27.563	66.750	1.00 26.28	В
	ATOM	4043	NZ	LYS	197	19.153	28.144	68.104	1.00 26.63	В
۷۸	MOTA	4044	С	LYS	197	21.961	23.947	63.821	1.00 26.61	В
60	MOTA	4045	0	LYS	197	23.039	23.974	64.406	1.00 27.65	В
	MOTA	4046	N	GLY	198	21.762	24.513	62.637	1.00 26.31	В
	ATOM	4047	CA	GLY	198	22.826	25.266	61.998	1.00 25.56	В
	MOTA	4048	C	GLY	198	23.747	24.536	61.044	1.00 24.60	В
65	MOTA	4049	0	GLY	198	24.518	25.162	60.335	1.00 24.69	В
U.J	MOTA	4050	N	LEU	199	23.680	23.211	61.029	1.00 25.09	В
	MOTA	4051	CA	LEU	199	24.523	22.433	60.130	1.00 25.50	В
	MOTA	4052	CB	LEU	199	24.357	20.927	60.411	1.00 24.64	В
	MOTA	4053	CG	LEU	199	25.219	19.950	59.597	1.00 24.37	В
70	MOTA	4054	CD1		199	26.699	20.274	59.742	1.00 22.90	В
70	ATOM	4055	CD2		199	24.942	18.535	60.068	1.00 23.77	В
	MOTA	4056	C	LEU	199	24.235	22.767	58.648	1.00 25.50	В
	MOTA	4057	0	LEU	199	23.160	22.510	58.114	1.00 24.77	В
	MOTA	4058	N	GLU	200	25.225	23.350	57.991	1.00 26.00	В

						05 007	00 700	FC F00		_
	MOTA	4059	CA	GLU	200	25.087	23.722	56.598	1.00 26.47	В
	MOTA	4060	ÇВ	GLU	200	26.274	24.568	56.143	1.00 27.75	В
	MOTA	4061	CG	GLU	200	26.324	25.971	56.724	1.00 32.47	В
	ATOM	4062	CD	GLU	200	25.112	26.821	56.339	1.00 35.25	В
5	ATOM	4063		GLU	200	24.061	26.700	57.004	1.00 38.07	В
_						25.196	27.600	55.363	1.00 35.41	В
	MOTA	4064		GLU	200					
	MOTA	4065	С	GLU	200	25.029	22.508	55.686	1.00 27.12	В
	MOTA	4066	0	GLU	200	25.586	21.457	55.972	1.00 26.69	В
	MOTA	4067	N	GLU	201	24.327	22.678	54.579	1.00 27.51	В
10	MOTA	4068	CA	GLU	201	24.218	21.646	53.574	1.00 26.72	В
	ATOM	4069	СВ	GLU	201	22.790	21.135	53.468	1.00 27.33	В
		•			201	22.239	20.532	54.722	1.00 30.03	В
	MOTA	4070	CG	GLU						
	ATOM	4071	CD	GLU	201	20.954	19.773	54.457	1.00 32.95	В
. ~	MOTA	4072		GLU	201	20.075	19.784	55.345	1.00 34.01	В
15	MOTA	4073	OE2	GLU	201	20.817	19.167	53.367	1.00 33.38	В
	MOTA	4074	С	GLU	201	24.581	22.363	52.278	1.00 26.18	В
	MOTA	4075	0	GLU	201	23.866	23.259	51.853	1.00 25.94	В
	ATOM	4076	N	ILE	202	25.707	21.996	51.674	1.00 25.78	В
20	MOTA	4077	CA	ILE	202	26.116	22.631	50.433	1.00 25.80	В
20	MOTA	4078	СВ	ILE	202	27.636	22.813	50.360	1.00 25.61	В
	MOTA	4079	CG2	ILE	202	28.022	23.102	48.914	1.00 25.19	В
	ATOM	4080	CG1	ILE	202	28.089	23.969	51.258	1.00 26.32	В
	MOTA	4081	CD1	ILE	202	27.704	23.871	52.722	1.00 25.98	В
	MOTA	4082	c	ILE	202	25.655	21.820	49.231	1.00 26.76	В
25						25.798	20.597	49.195	1.00 26.87	В
23	MOTA	4083	0	ILE	202					
	MOTA	4084	N	THR	203	25.089	22.508	48.248	1.00 26.89	В
	MOTA	4085	CA	THR	203	24.610	21.817	47.070	1.00 28.63	В
	ATOM	4086	CB	THR	203	23.463	22.606	46.329	1.00 28.93	В
	MOTA	4087	OG1	THR	203	22.297	22.683	47.167	1.00 28.96	В
30	ATOM	4088	CG2		203	23.103	21.922	44.987	1.00 25.61	В
-	MOTA	4089	c	THR	203	25.774	21.634	46.120	1.00 29.69	В
								45.906	1.00 31.36	В
	MOTA	4090	0	THR	203	26.546	22.547			
	ATOM	4091	N	VAL	204	25.919	20.428	45.589	1.00 30.40	В
25	MOTA	4092	CA	VAL	204	26.967	20.168	44.620	1.00 30.44	В
35	ATOM	4093	CB	VAL	204	27.656	18.798	44.876	1.00 29.19	В
	MOTA	4094	CG1	VAL	204	28.839	18.609	43.930	1.00 28.81	В
	ATOM	4095		VAL	204	28.142	18.733	46.292	1.00 29.07	В
		4096	c	VAL	204	26.225	20.159	43.277	1.00 31.43	В
	MOTA									
40	MOTA	4097	0	VAL	204	25.536	19.180	42.956	1.00 31.70	В
40	MOTA	4098	N	HIS	205	26.354	21.255	42.521	1.00 31.11	В
	MOTA	4099	CA	HIS	205	25.709	21.420	41.214	1.00 30.37	В
	MOTA	4100	CB	HIS	205	25.803	22.869	40.792	1.00 29.29	В
	MOTA	4101	CG	HIS	205	25.131	23.788	41.747	1.00 29.35	В
	ATOM	4102		HIS	205	25.631	24.594	42.712	1.00 29.07	В
45		4103		HIS	205	23.760	23.890	41.831	1.00 29.17	В
73	MOTA									
	MOTA	4104		HIS	205	23.444	24.721	42.806	1.00 29.14	В
	MOTA	4105	NE2	HIS	205	24.561	25.161	43.357	1.00 29.64	В
	ATOM	4106	С	HIS	205	26.252	20.533	40.100	1.00 30.88	В
	MOTA	4107	0	HIS	205	25.508	20.130	39.216	1.00 31.82	В
50	MOTA	4108	N	ASN	206	27.544	20.238	40.138	1.00 29.74	В
-	MOTA	4109	CA	ASN	206	28.127	19.370	39.141	1.00 29.11	В
						28.377	20.158	37.852	1.00 28.48	В
	MOTA	4110	CB	ASN	206					
	MOTA	4111	CG	ASN	206	29.156	21.438	38.091	1.00 29.29	В
	ATOM	4112	OD1	ASN	206	30.252	21.412	38.645	1.00 28.71	В
55	MOTA	4113	ND2	ASN	206	28.594	22.562	37.673	1.00 28.54	В
	MOTA	4114	С	ASN	206	29.387	18.760	39.729	1.00 28.47	В
	ATOM	4115	0	ASN	206	29.740	19.032	40.852	1.00 27.98	В
		4116	N	LYS	207	30.063	17.924	38.957	1.00 29.11	В
	MOTA									
60	MOTA	4117	CA	LYS	207	31.274	17.291	39.445	1.00 30.00	В
60	MOTA	4118	CB	LYS	207	31.662	16.107	38.553	1.00 30.11	В
	MOTA	4119	CG	LYS	207	32.257	16.495	37.222	1.00 32.75	В
	MOTA	4120	CD	LYS	207	32.719	15.270	36.441	1.00 33.95	В
	MOTA	4121	CE	LYS	207	33.466	15.669	35.164	1.00 34.56	В
		4122			207	34.775	16.370	35.404	1.00 33.30	В
65	MOTA		NZ	LYS						
U)	MOTA	4123	C	LYS	207	32.425	18.293	39.488	1.00 30.73	В
	MOTA	4124	0	LYS	207	33.458	18.026	40.089	1.00 32.12	В
	MOTA	4125	N	ASP	208	32.241	19.451	38.863	1.00 29.02	В
	MOTA	4126	CA	ASP	208	33.301	20.453	38.850	1.00 28.26	В
	ATOM	4127	СВ	ASP	208	33.234	21.261	37.556	1.00 31.08	В
70	MOTA	4128	CG	ASP	208	33.702	20.463	36.354	1.00 32.65	В
, 0										В
	MOTA	4129		ASP	208	33.221	20.729	35.233	1.00 33.84	
	MOTA	4130	OD2		208	34.567	19.570	36.523	1.00 33.75	В
	MOTA	4131	С	ASP	208	33.277	21.374	40.065	1.00 26.42	В

	MOTA	4132	0	ASP	208	33.989	22.372	40.117	1.00 24.98	В
	MOTA	4133	N	GLU		32.462	21.032	41.052	1.00 25.24	В
	MOTA	4134	CA	GLU		32.388	21.831	42.272	1.00 25.22	В
5	ATOM	4135	CB	GLU	209 209	30.958	22.278	42.595	1.00 27.01	B B
,	MOTA MOTA	4136 4137	CG CD	GLU GLU	209	30.306 29.069	23.237 23.926	41.602 42.167	1.00 30.48 1.00 32.55	B
	MOTA	4138		. GLU	209	28.371	24.610	41.385	1.00 34.80	В
	ATOM	4139		GLU	209	28.804	23.793	43.382	1.00 33.17	В
	ATOM	4140	c	GLU	209	32.832	21.030	43.490	1.00 24.23	В
10	ATOM	4141	0	GLU	209	33.194	21.596	44.513	1.00 25.15	В
	MOTA	4142	N	VAL	210	32.835	19.708	43.373	1.00 21.99	В
	MOTA	4143	CA	VAL	210	33.205	18.882	44.514	1.00 18.98	В
	ATOM	4144	СВ	VAL	210	32.987	17.360	44.217	1.00 17.62	В
15	MOTA	4145		VAL	210	32.238	17.180	42.928	1.00 17.92	В
15	MOTA	4146		VAL	210	34.290	16.638	44.159	1.00 17.49 1.00 18.13	В
	MOTA MOTA	4147 4148	С 0	VAL VAL	210 210	34.609 34.775	19.093 19.138	45.082 46.289	1.00 18.13	B B
	ATOM	4149	N	TYR	211	35.620	19.238	44.232	1.00 17.72	В
	ATOM	4150	CA	TYR	211	36.968	19.401	44.770	1.00 15.84	В
20	ATOM	4151	СВ	TYR	211	38.030	19.361	43.656	1.00 14.23	В
	MOTA	4152	CG	TYR	211	39.441	19.224	44.196	1.00 13.57	В
	MOTA	4153		TYR	211	39.807	18.110	44.937	1.00 12.81	В
	MOTA	4154		TYR	211	41.062	18.018	45.528	1.00 12.54	В
25	MOTA	4155		TYR	211	40.379	20.246	44.048	1.00 14.65	В
23	ATOM ATOM	4156 4157	CE2	TYR TYR	211 211	41.651 41.987	20.166 19.048	44.642 45.386	1.00 13.74 1.00 14.45	B B
	MOTA	4157	OH	TYR	211	43.235	18.972	45.997	1.00 10.15	В
	ATOM	4159	C	TYR	211	37.083	20.665	45.608	1.00 15.70	В
	ATOM	4160	ŏ	TYR	211	37.626	20.620	46.696	1.00 14.92	В
30	MOTA	4161	N	GLN	212	36.557	21.781	45.101	1.00 17.75	В
	MOTA	4162	CA	GLN	212	36.582	23.064	45.819	1.00 18.64	В
	MOTA	4163	СВ	GLN	212	35.897	24.154	44.983	1.00 19.40	В
	ATOM	4164	CG	GLN	212	35.962	25.543	45.607	1.00 24.51	В
35	MOTA	4165	CD	GLN	212	35.764	26.672	44.587	1.00 26.82	В
33	MOTA MOTA	4166 4167		GLN GLN	212 212	35.046 36.391	26.508 27.832	43.594 44.844	1.00 25.33 1.00 26.86	B B
	ATOM	4168	C	GLN	212	35.909	22.923	47.192	1.00 28.53	В
	MOTA	4169	Ö	GLN	212	36.420	23.374	48.193	1.00 19.69	В
	MOTA	4170	N	ILE	213	34.759	22.265	47.230	1.00 19.83	В
40	MOTA	4171	CA	ILE	213	34.031	22.048	48.485	1.00 19.97	В
	MOTA	4172	CB	ILE	213	32.664	21.350	48.237	1.00 20.59	В
	MOTA	4173		ILE	213	32.022	20.933	49.579	1.00 19.77	В
	MOTA	4174		ILE	213	31.758	22.285	47.441	1.00 20.66	В
45	MOTA MOTA	4175 4176	CDI	ILE	213 213	30.505 34.831	21.626 21.189	46.928 49.461	1.00 22.87 1.00 20.10	B B
45	MOTA	4177	õ	ILE	213	34.822	21.446	50.672	1.00 20.46	В
	ATOM	4178	N	LEU	214	35.489	20.156	48.937	1.00 19.00	В
	MOTA	4179	CA	LEU	214	36.310	19.282	49.759	1.00 18.96	В
	ATOM	4180	CB	LEU	214	36.829	18.100	48.950	1.00 18.27	В
50	MOTA	4181	CG	LEU	214	36.013	16.826	49.015	1.00 18.28	В
	MOTA	4182		LEU	214	34.547	17.179	48.926	1.00 22.38	В
	MOTA	4183		LEU	214 214	36.443	15.908	47.895	1.00 17.95	B B
	MOTA MOTA	4184 4185	C O	LEU LEU	214	37.50 7 37.920	20.048 19.821	50.316 51.443	1.00 19.17 1.00 20.21	В
55	MOTA	4186	N	GLU	215	38.055	20.967	49.523	1.00 19.88	В
	ATOM	4187	CA	GLU	215	39.208	21.768	49.953	1.00 19.18	В
	MOTA	4188	СВ	GLU	215	39.748	22.628	48.797	1.00 19.26	В
	MOTA	4189	CG	GLU	215	40.496	21.863	47.699	1.00 20.08	В
60	MOTA	4190	CD	GLU	215	41.103	22.786	46.630	1.00 20.78	В
60	ATOM	4191		GLU	215	42.352	22.898	46.580	1.00 16.87	В
	MOTA	4192		GLU	215	40.337	23.399	45.842	1.00 19.38	В
	ATOM ATOM	4193 4194	C	GLU	215 215	38.855 39.592	22.700	51.110 52.092	1.00 18.78 1.00 17.36	В
	ATOM	4194	N O	GLU LYS	215	37.732	22.798	50.988	1.00 17.36	B B
65	ATOM	4196	CA	LYS	216	37.732	24.300	52.042	1.00 20.63	В
	ATOM	4197	СВ	LYS	216	35.993	24.988	51.620	1.00 22.77	В
	ATOM	4198	CG	LYS	216	36.240	26.094	50.602	1.00 29.39	В
	MOTA	4199	CD	LYS	216	34.962	26.743	50.069	1.00 33.26	В
70	MOTA	4200	CE	LYS	216	35.281	27.963	49.187	1.00 35.91	В
70	MOTA	4201	NZ	LYS	216	36.198	27.671	48.028	1.00 37.67	В
	MOTA	4202	C	LYS	216	37.144	23.547	53.361	1.00 20.03	В
	ATOM	4203 4204	0	LYS	216	37.501	24.057	54.416 53.309	1.00 21.40	В
	MOTA	4204	N	GLY	217	36.628	22.329	23.203	1.00 18.86	В

	ATOM	4205	CA	GLY	217	36.492	21.587	54.543	1.00 18.29	В
	MOTA	4206	С	GLY	217	37.869	21.334	55.128	1.00 18.39	В
	MOTA	4207	0	GLY	217	38.103	21.531	56.307	1.00 18.74	В
_	MOTA	4208	N	ALA	218	38.792	20.895	54.282	1.00 19.27	В
5	MOTA	4209	CA	ALA	218	40.148	20.607	54.737	1.00 19.03	В
	ATOM	4210	CB	ALA	218	40.996	20.061	53.580	1.00 18.52	В
	ATOM	4211	C	ALA	218	40.827	21.818	55.363	1.00 18.17	В
	MOTA MOTA	4212 4213	O N	ALA ALA	218 219	41.470 40.691	21.706 22.980	56.403 54.735	1.00 19.12 1.00 17.99	B B
10	MOTA	4214	CA	ALA	219	41.315	24.203	55.266	1.00 17.33	В
10	MOTA	4215	СВ	ALA	219	41.044	25.404	54.323	1.00 14.07	В
	ATOM	4216	č	ALA	219	40.792	24.505	56.671	1.00 14.78	В
	MOTA	4217	0	ALA	219	41.552	24.760	57.599	1.00 15.56	В
	MOTA	4218	N	LYS	220	39.479	24.450	56.823	1.00 14.00	В
15	ATOM	4219	CA	LYS	220	38.859	24.729	58.110	1.00 13.80	В
	ATOM	4220	CB	LYS	220	37.338	24.667	57.978	1.00 11.84	В
	MOTA	4221	CG	LYS	220	36.603	25.222	59.177	1.00 12.63	В
	ATOM	4222	CD	LYS	220	35.130	25.462	58.884	1.00 11.67	В
20	MOTA	4223	CE	LYS	220	34.464	26.087	60.092	1.00 13.88	В
20	MOTA MOTA	4224 4225	NZ C	LYS LYS	220 220	32.993 39.303	26.287 23.734	59.939 59.173	1.00 12.51 1.00 14.26	B B
	ATOM	4226	ō	LYS	220	39.442	24.067	60.350	1.00 15.25	В
	ATOM	4227	N	ARG	221	39.513	22.498	58.748	1.00 14.19	В
	ATOM	4228	CA	ARG	221	39.936	21.438	59.647	1.00 11.64	B
25	ATOM	4229	СВ	ARG	221	39.878	20.111	58.889	1.00 13.12	В
	MOTA	4230	CG	ARG	221	40.038	18.857	59.751	1.00 13.06	В
	MOTA	4231	CD	ARG	221	39.999	17.586	58.902	1.00 11.48	В
	MOTA	4232	NE	ARG	221	38.638	17.093	58.691	1.00 8.87	В
30	ATOM	4233	CZ	ARG	221	38.317	16.184	57.774	1.00 8.38	В
30	MOTA	4234		ARG	221	39.255	15.687	56.976	1.00 5.16	В
	MOTA	4235 4236		ARG ARG	221 221	37.074	15.732 21.737	57.687	1.00 8.15	В
	MOTA MOTA	4237	C O	ARG	221	41.345 41.686	21.737	60.174 61.314	1.00 10.67 1.00 10.15	B B
	MOTA	4238	N	THR	222	42.167	22.372	59.342	1.00 10.13	В
35	ATOM	4239	CA	THR	222	43.515	22.747	59.752	1.00 7.37	В
	ATOM	4240	CB	THR	222	44.277	23.438	58.634	1.00 6.75	В
	MOTA	4241		THR	222	44.586	22.466	57.637	1.00 9.09	В
	MOTA	4242	CG2	THR	222	45.573	24.026	59.136	1.00 5.92	В
40	MOTA	4243	С	THR	222	43.475	23.692	60.916	1.00 5.52	В
40	ATOM	4244	0	THR	222	44.265	23.598	61.797	1.00 6.41	В
	ATOM	4245	N	THR	223	42.527	24.607	60.906	1.00 5.73	В
	MOTA	4246	CA	THR	223	42.443	25.550	61.990	1.00 7.41	В
	MOTA MOTA	4247 4248	CB	THR THR	223 223	41.481 40.126	26.706 26.260	61.654 61.807	1.00 9.80 1.00 13.96	B B
45	MOTA	4249		THR	223	41.716	27.205	60.212	1.00 11.03	В
••	ATOM	4250	Č	THR	223	41.941	24.801	63.206	1.00 8.79	В
	ATOM	4251	Ō	THR	223	42.353	25.101	64.337	1.00 11.00	В
	ATOM	4252	N	ALA	224	41.093	23.796	62.970	1.00 9.46	В
50	MOTA	4253	CA	ALA	224	40.537	23.001	64.069	1.00 9.41	В
50	ATOM	4254	CB	ALA	224	39.514	21.966	63.570	1.00 8.72	В
	ATOM	4255	C	ALA	224	41.645	22.288	64.798	1.00 10.87	В
	MOTA	4256	0	ALA	224	41.693	22.258	66.041	1.00 10.92	В
	ATOM ATOM	4257 4258	N CA	ALA ALA	225 225	42.526 43.647	21.678 20.977	64.020 64.608	1.00 11.03	В
55	ATOM	4259	CB	ALA	225	44.484	20.347	63.517	1.00 10.24	B B
<i>J J</i>	ATOM	4260	C	ALA	225	44.502	21.942	65.446	1.00 11.63	В
	ATOM	4261	ŏ	ALA	225	44.983	21.592	66.516	1.00 12.58	В
	ATOM	4262	N	THR	226	44.676	23.164	64.957	1.00 13.45	В
	MOTA	4263	CA	THR	226	45.490	24.156	65.650	1.00 15.18	В
60	MOTA	4264	CB	THR	226	45.557	25.470	64.868	1.00 14.69	В
	MOTA	4265	OG1		226	46.323	25.286	63.670	1.00 16.29	В
	MOTA	4266	CG2		226	46.186	26.534	65.716	1.00 15.17	В
	MOTA	4267	C	THR	226	44.901	24.452	67.007	1.00 16.64	В
65	ATOM	4268	0	THR	226	45.617	24.553	67.998	1.00 16.41	В
UJ	ATOM	4269	N	LEU	227	43.575	24.575	67.025	1.00 18.18	В
	ATOM ATOM	4270 4271	CA	LEU	227 227	42.805 41.367	24.875	68.238	1.00 18.74	В
	ATOM	4272	CB CG	LEU	227	40.955	25.310 26.772	67.899 68.051	1.00 19.87 1.00 21.86	B B
	ATOM	4273	CD1		227	41.103	27.134	69.518	1.00 21.88	В
70	MOTA	4274	CD2		227	41.786	27.693	67.155	1.00 21.51	В
-	ATOM	4275	c	LEU	227	42.651	23.733	69.239	1.00 18.17	В
	MOTA	4276	Õ	LEU	227	42.783	23.928	70.435	1.00 18.61	В
	MOTA	4277	N	MET	228	42.380	22.536	68.742	1.00 18.27	В

	MOTA	4278	CA	MET	228	42.160	21.404	69.634	1.00 17.51	В
	MOTA	4279	CB	MET	228	40.800	20.772	69.302	1.00 16.30	В
	MOTA	4280	CG	MET	228	39.649	21.745	69.495	1.00 16.20	В
	MOTA	4281	SD	MET	228	38.056	21.201	68.874	1.00 19.18	В
5	ATOM	4282	CE	MET	228	38.092	22.153	67.250	1.00 17.21	В
,										
	MOTA	4283	С	MET	228	43.250	20.342	69.614	1.00 18.14	В
	MOTA	4284	0	MET	228	43.769	19.990	68.549	1.00 20.11	• в
	ATOM	4285	N	ASN	229	43.571	19.834	70.807	1.00 16.66	В
• •	MOTA	4286	CA	ASN	229	44.589	18.799	70.992	1.00 16.35	В
10	MOTA	4287	CB	ASN	229	44.824	18.543	72.485	1.00 15.94	В
	ATOM	4288	CG	ASN	229	45.350	19.764	73.209	1.00 16.33	В
	ATOM	4289		ASN	229	45.764	20.739	72.588	1.00 17.78	В
	MOTA	4290	ND2	ASN	229	45.340	19.711	74.534	1.00 14.68	В
	MOTA	4291	С	ASN	229	44.311	17.448	70.313	1.00 15.68	В
15	ATOM	4292		ASN	229	43.228	16.873	70.460	1.00 15.38	В
15			0							
	MOTA	4293	N	ALA	230	45.300	16.950	69.569	1.00 14.15	В
	MOTA	4294	CA	ALA	230	45.171	15.679	68.863	1.00 12.00	В
	MOTA	4295	СВ	ALA	230	45.241	14.546	69.847	1.00 11.64	В
00	MOTA	4296	С	ALA	230	43.869	15.595	68.079	1.00 11.58	В
20	MOTA	4297	0	ALA	230	43.269	14.519	67.977	1.00 10.16	В
	MOTA	4298	N	TYR	231	43.443	16.725	67.519	1.00 11.27	В
		4299	CA	TYR	231	42.200	16.775	66.761	1.00 12.69	В
	MOTA									
	MOTA	4300	CB	TYR	231	42.047	18.119	66.029	1.00 11.10	В
_	MOTA	4301	CG	TYR	231	40.667	18.312	65.435	1.00 10.24	В
25	MOTA	4302		TYR	231	40.404	17.998	64.112	1.00 9.88	В
									1.00 10.11	
	MOTA	4303	CE1		231	39.121	18.122	63.598		В
	MOTA	4304	CD2	TYR	231	39.606	18.760	66.229	1.00 11.37	В
	ATOM	4305	CE2	TYR	231	38.316	18.886	65.716	1.00 10.13	В
	MOTA	4306	CZ	TYR	231	38.079	18.559	64.402	1.00 9.90	В
30										
30	MOTA	4307	ОН	TYR	231	36.780	18.623	63.936	1.00 7.41	В
	MOTA	4308	С	TYR	231	41.988	15.645	65.748	1.00 13.47	В
	MOTA	4309	0	TYR	231	41.016	14.916	65.837	1.00 14.47	В
	MOTA	4310	N	SER	232	42.904	15.481	64.800	1.00 15.55	В
~ -	MOTA	4311	CA	SER	232	42.744	14.446	63. 7 77	1.00 15.70	В
35	MOTA	4312	CB	SER	232	43.907	14.490	62.779	1.00 17.08	В
	MOTA	4313	OG	SER	232	45.145	14.290	63.419	1.00 20.92	В
	MOTA	4314	С	SER	232	42.608	13.020	64.308	1.00 15.28	В
	MOTA	4315	0	SER	232	41.898	12.203	63.726	1.00 16.22	В
	MOTA	4316	N	SER	233	43.260	12.711	65.417	1.00 12.45	В
40					233					
70	MOTA	4317	CA	SER		43.173	11.352	65.919	1.00 12.60	В
	MOTA	4318	CB	SER	233	44.477	10.942	66.596	1.00 13.54	В
	MOTA	4319	OG	SER	233	44.662	11.602	67.838	1.00 15.82	В
	MOTA	4320	С	SER	233	42.057	11.167	66.921	1.00 12.47	В
15	MOTA	4321	0	SER	233	41.604	10.047	67.155	1.00 12.18	В
45	MOTA	4322	N	ARG	234	41.612	12.265	67.523	1.00 11.28	В
	ATOM	4323	CA	ARG	234	40.558	12.168	68.532	1.00 9.69	В
	MOTA	4324	CB	ARG	234	40.919	12.961	69.784	1.00 10.96	В
	MOTA	4325	CG	ARG	234	41.315	12.112	70.975	1.00 13.22	В
	MOTA	4326	CD	ARG	234	42.707	12.435	71.494	1.00 16.77	В
50	MOTA	4327	NE	ARG	234	42.755	13.676	72.263	1.00 20.42	В
	MOTA	4328	CZ	ARG	234	43.751	14.005	73.083	1.00 22.86	В
										В
	MOTA	4329		ARG	234	44.791	13.186	73.242	1.00 22.37	
	MOTA	4330	NH2	ARG	234	43.690	15.140	73.767	1.00 25.64	В
	MOTA	4331	С	ARG	234	39.168	12.617	68.118	1.00 7.73	В
55	MOTA	4332	0	ARG	234	38.258	12.599	68.924	1.00 8.22	В
55										
	MOTA	4333	N	SER	235	39.006	13.014	66.862	1.00 6.52	В
	MOTA	4334	CA	SER	235	37.697	13.455	66.394	1.00 4.31	·B
	ATOM	4335	CB	SER	235	37.785	14.801	65.647	1.00 2.24	В
	MOTA	4336	OG	SER	235	38.745	14.780	64.602	1.00 1.00	В
60										
60	MOTA	4337	С	SER	235	37.048	12.437	65.488	1.00 2.58	В
	MOTA	4338	0	SER	235	37.704	11.648	64.854	1.00 3.58	В
	MOTA	4339	N	HIS	236	35.725	12.465	65.472	1.00 4.87	В
	ATOM	4340	CA		236	34.911	11.587	64.631		В
				HIS						
	MOTA	4341	CB	HIS	236	33.691	11.087	65.386	1.00 4.65	В
65	ATOM	4342	CG	HIS	236	34.032	10.280	66.586	1.00 4.01	В
	MOTA	4343		HIS	236	34.066	10.607	67.899	1.00 3.63	В
	MOTA	4344		HIS	236	34.437	8.965	66.504	1.00 3.84	В
	MOTA	4345	CE1	HIS	236	34.704	8.517	67.717	1.00 4.48	В
	ATOM	4346	NE2	HIS	236	34.487	9.494	68.582	1.00 4.72	В
70		4347	C	HIS	236	34.347	12.498	63.556	1.00 6.99	В
, ,	MOTA									
	MOTA	4348	0	HIS	236	33.810	13.556	63.878	1.00 9.70	В
	MOTA	4349	N	SER	237	34.475	12.108	62.291	1.00 7.23	В
	ATOM	4350	CA	SER	237	33.951	12.933	61.208	1.00 6.69	В
	011	-330		~~··	'			3		_

	ATOM	4351	СВ	SER	237	35.058	13.406	60.253	1.00 5.37	В
	ATOM	4352	OG	SER		35.464			1.00 3.60	В
	MOTA	4353	С	SER	237	32.946	12.157	60.393	1.00 7.89	В
_	MOTA	4354	0	SER		33.196			1.00 9.95	В
5	MOTA	4355	N	VAL		31.787		60.180	1.00 7.91	. В
	MOTA	4356	CA	VAL		30.787			1.00 7.74	В
	MOTA	4357 4358	CB	VAL LVAL		29.560 29.413		60.282 61.328	1.00 8.04 1.00 7.80	8 B
	MOTA MOTA	4359		VAL		28.307		59.460	1.00 7.80	В
10	MOTA	4360	C	VAL		30.421	12.935	58.182	1.00 8.25	В
	MOTA	4361	ŏ	VAL		29.776		58.323	1.00 9.09	B
	ATOM	4362	N	PHE		30.883	12.511	57.002	1.00 8.31	В
	MOTA	4363	CA	PHE	239	30.609	13.198	55.732	1.00 8.81	В
1.5	MOTA	4364	CB	PHE		31.793	13.036	54.759	1.00 6.73	В
15	ATOM	4365	CG	PHE		31.693	13.893	53.525	1.00 6.12	В
	MOTA	4366		PHE		30.815	13.557	52.500	1.00 5.69	. В
	MOTA MOTA	4367 4368		PHE	239 239	32.462 30.705	15.046 14.364	53.394 51.348	1.00 5.95 1.00 5.30	B B
	MOTA	4369		PHE	239	32.354	15.854	52.247	1.00 5.11	В
20	MOTA	4370	CZ	PHE	239	31.475	15.511	51.224	1.00 3.58	В
	MOTA	4371	c	PHE	239	29.350	12.553	55.148	1.00 9.90	В
	MOTA	4372	0	PHE	239	29.327	11.356	54.859	1.00 9.81	В
	MOTA	4373	N	SER	240	28.305	13.359	54.982	1.00 10.63	В
25	MOTA	4374	CA	SER	240	27.039	12.871	54.466	1.00 9.05	В
25	ATOM	4375	CB	SER	240	25.926	13.194	55.467	1.00 9.24	В
	ATOM	4376	OG C	SER	240	26.182	12.631	56.742	1.00 8.98	В
	MOTA MOTA	4377 4378	С О	SER SER	240 240	26.678 26.809	13.462 14.668	53.105 52.877	1.00 10.23 1.00 10.82	B B
	ATOM	4379	N	VAL	241	26.230	12.601	52.198	1.00 10.02	В
30	MOTA	4380	CA	VAL	241	25.813	13.044	50.874	1.00 12.14	В
	MOTA	4381	СВ	VAL	241	26.748	12.492	49.775	1.00 12.12	В
	MOTA	4382	CG1	VAL	241	26.981	11.008	50.002	1.00 13.27	В
	MOTA	4383		VAL	241	26.143	12.736	48.394	1.00 11.17	В
35	MOTA	4384	C	VAL	241	24.379	12.565	50.649	1.00 13.61	В
22	ATOM	4385	0	VAL	241	24.092	11.365	50.700	1.00 13.01	В
	MOTA MOTA	4386 4387	N CA	THR THR	242 242	23.478 22.078	13.513 13.203	50.422 50.217	1.00 14.36 1.00 16.18	B B
	ATOM	4388	CB	THR	242	21.198	14.104	51.118	1.00 10.18	В
	ATOM	4389		THR	242	21.546	13.897	52.496	1.00 19.73	В
40	ATOM	4390		THR	242	19.738	13.766	50.954	1.00 20.46	В
	MOTA	4391	С	THR	242	21.746	13.418	48.741	1.00 18.15	В
	MOTA	4392	0	THR	242	22.212	14.357	48.128	1.00 19.20	В
	MOTA	4393	N	ILE	243	20.945	12.521	48.180	1.00 20.44	В
45	MOTA	4394	CA	ILE	243	20.560	12.619	46.785	1.00 23.13	В
73	MOTA MOTA	4395 4396	CB	ILE	243 243	21.178 20.962	11.477 11.770	45.941 44.475	1.00 22.27 1.00 18.06	B B
	ATOM	4397		ILE	243	22.663	11.310	46.270	1.00 21.29	В
	ATOM	4398		ILE	243	23.247	10.072	45.722	1.00 21.09	В
	MOTA	4399	C	ILE	243	19.043	12.555	46.628	1.00 26.42	В
50	MOTA	4400	0	ILE	243	18.442	11.488	46.790	1.00 27.92	В
	MOTA	4401	N	HIS	244	18.437	13.707	46.340	1.00 29.29	В
	ATOM	4402	CA	HIS	244	17.001	13.808	46.117	1.00 30.50	В
	ATOM ATOM	4403 4404	CB CG	HIS HIS	244 244	16.486 16.375	15.226 15.565	46.393 47.845	1.00 31.87 1.00 34.67	B B
55	ATOM	4405		HIS	244	15.341			1.00 35.28	В
-	MOTA	4406		HIS	244	17.424	16.087	48.577	1.00 36.67	В
	MOTA	4407		HIS	244	17.040	16.267	49.828	1.00 35.69	В
	MOTA	4408	NE2	HIS	244	15.778	15.881	49.936	1.00 35.59	В
<i>6</i> 0	MOTA	4409	С	HIS	244	16.803	13.494	44.637	1.00 32.12	В
60	MOTA	4410	0	HIS	244	17.277	14.228	43.755	1.00 32.44	В
	MOTA	4411	N	MET	245	16.122	12.388	44.368	1.00 32.37	В
	MOTA MOTA	4412 4413	CA CB	MET MET	245	15.877	11.968	42.998 42.791	1.00 32.37 1.00 31.86	B B
	MOTA	4414	CG	MET	245 245	16.475 17.968	10.578 10.548	42.791	1.00 31.86	В
65	MOTA	4415	SD	MET	245	18.589	8.875	43.225	1.00 33.02	В
	MOTA	4416	CE	MET	245	18.034	8.477	44.892	1.00 31.10	В
	MOTA	4417	C	MET	245	14.401	12.002	42.601	1.00 31.83	В
	MOTA	4418	0	MET	245	13.509	11.738	43.415	1.00 31.92	В
70	MOTA	4419	N	LYS	246	14.159	12.334	41.337	1.00 31.84	В
70	ATOM	4420	CA	LYS	246	12.811	12.428	40.804	1.00 31.99	В
	MOTA MOTA	4421 4422	CB CG	LYS LYS	246 246	12.350 10.922	13.895 14.087	40.781 40.292	1.00 32.10 1.00 34.26	B B
	ATOM	4423	CD	LYS	246	10.922	15.539	39.946	1.00 34.26	В
						00		22.240		-

	MOTA	4424	CE	LYS	246	10.646	16.433	41.173	1.00 36.15	В
	ATOM	4425	NZ	LYS	246	10.457	17.872	40.836	1.00 35.42	В
	ATOM	4426	С	LYS	246	12.761	11.870	39.382	1.00 31.58	B
_	MOTA	4427	0	LYS	246	13.439	12.358	38.480	1.00 30.24	В
5	MOTA	4428	N	GLU	247	11.967	10.824	39.196	1.00 31.71	В
	MOTA	4429	CA	GLU	247	11.808	10.238	37.874	1.00 30.99	В
	MOTA MOTA	4430 4431	CB CG	GLU	247 247	12.337 11.815	8.801 7.897	37.855	1.00 32.21	В
	ATOM	4432	CD	GLU	247	12.672	6.647	38.961 39.115	1.00 33.61 1.00 35.27	B B
10	ATOM	4433		GLU	247	12.420	5.841	40.037	1.00 35.63	В
	MOTA	4434		GLU	247	13.609	6.469	38.307	1.00 35.39	В
	MOTA	4435	С	GLU	247	10.338	10.298	37.479	1.00 30.04	В
	MOTA	4436	0	GLU	247	9.448	10.169	38.317	1.00 29.68	В
15	MOTA	4437	N	THR	248	10.083	10.513	36.197	1.00 28.13	В
13	MOTA	4438 4439	CA	THR	248	8.716	10.591	35.720	1.00 26.83	В
	MOTA MOTA	4440	CB OG1	THR	248 248	8.506 8.937	11.895 12.995	34.942 35.750	1.00 25.80 1.00 24.67	B B
	MOTA	4441		THR	248	7.046	12.096	34.617	1.00 25.62	В
	MOTA	4442	c	THR	248	8.406	9.395	34.822	1.00 26.77	В
20	MOTA	4443	0	THR	248	9.168	9.077	33.914	1.00 27.38	В
	MOTA	4444	N	THR	249	7.288	8.732	35.092	1.00 26.76	В
	MOTA	4445	CA	THR	249	6.877	7.580	34.302	1.00 26.72	₿
	MOTA	4446	CB	THR	249	5.759	6.784	35.011	1.00 26.45	В
25	MOTA MOTA	4447 4448	CG2	THR	249 249	4.575 6.180	7.587 6.404	35.088 36.423	1.00 27.92 1.00 25.26	B B
23	MOTA	4449	C	THR	249	6.353	8.040	32.938	1.00 23.20	В
	ATOM	4450	ŏ	THR	249	6.316	9.226	32.638	1.00 27.26	В
	MOTA	4451	N	ILE	250	5.956	7.078	32.113	1.00 29.51	В
20	MOTA	4452	CA	ILE	250	5.434	7.353	30.774	1.00 30.16	В
30	MOTA	4453	CB	ILE	250	5.444	6.074	29.901	1.00 29.03	В
	MOTA	4454		ILE	250	4.410	5.082	30.421	1.00 27.86	В
	MOTA MOTA	4455 4456	CD1	ILE	250 250	5.157 5.425	6.431 5.295	28.443 27.476	1.00 28.33 1.00 26.91	B B
	MOTA	4457	CDI	ILE	250	4.005	7.884	30.877	1.00 20.91	В
35	MOTA	4458	ŏ	ILE	250	3.400	8.286	29.891	1.00 31.50	В
	ATOM	4459	N	ASP	251	3.477	7.875	32.095	1.00 34.02	В
	MOTA	4460	CA	ASP	251	2.132	8.368	32.359	1.00 36.26	В
	MOTA	4461	CB	ASP	251	1.425	7.469	33.381	1.00 36.12	В
40	MOTA	4462	CG	ASP	251	0.789	6.242	32.750	1.00 36.40	В
40	MOTA MOTA	4463 4464	OD1	ASP ASP	251 251	0.223 0.854	5.420 6.119	33.509 31.504	1.00 34.19 1.00 36.03	В
	ATOM	4465	C	ASP	251	2.164	9.804	32.910	1.00 36.03	B B
	ATOM	4466	ō	ASP	251	1.140	10.468	32.990	1.00 38.11	В
	MOTA	4467	N	GLY	252	3.350	10.273	33.284	1.00 37.77	В
45	MOTA	4468	CA	GLY	252	3.471	11.613	33.822	1.00 37.41	В
	MOTA	4469	C	GLY	252	3.566	11.662	35.338	1.00 38.71	В
	MOTA	4470 4471	0	GLY	252	3.747	12.734	35.912	1.00 38.78	В
	MOTA MOTA	4472	N CA	GLU	253 253	3.440 3.533	10.516 10.511	36.003 37.459	1.00 38.85 1.00 39.67	B B
50	ATOM	4473	CB	GLU	253	3.020	9.200	38.052	1.00 33.07	В
	ATOM	4474	CG	GLU	253	3.181	9.143	39.573	1.00 43.75	В
	ATOM	4475	CD	GLU	253	2.814	7.803	40.188	1.00 44.31	В
	MOTA	4476		GLU	253	3.083	7.612	41.398	1.00 44.42	В
55	MOTA	4477		GLU	253	2.256	6.945	39.470	1.00 45.10	В
33	ATOM ATOM	4478 4479	C O	GLU GLU	253 253	4.988 5.890	10.668 10.286	37.883 37.149	1.00 39.49 1.00 39.20	B B
	MOTA	4480	N	GLU	254	5.210	11.239	39.064	1.00 39.20	В
	ATOM	4481	CA	GLU	254	6.568	11.426	39.567	1.00 40.50	В
	ATOM	4482	CB	GLU	254	6.793	12.875	39.978	1.00 41.13	В
60	MOTA	4483	CG	GLU	254	6.621	13.842	38.836	1.00 44.09	В
	ATOM	4484	CD	GLU	254	7.073	15.233	39.189	1.00 45.25	В
	MOTA	4485		GLU	254	6.665	15.737	40.256	1.00 45.35	В
	MOTA MOTA	4486 4487	C C	GLU	254 254	7.828	15.825	38.391	1.00 46.38	В
65	ATOM	4488	0	GLU GLU	254	6.926 6.242	10.539 10.540	40.756 41.769	1.00 39.50 1.00 40.75	B B
	ATOM	4489	N	LEU	255	8.008	9.779	40.614	1.00 37.82	В
	MOTA	4490	CA	LEU	255	8.484	8.894	41.676	1.00 36.11	В
	MOTA	4491	CB	LEU	255	8.895	7.543	41.087	1.00 35.93	В
70	ATOM	4492	CG	LEU	255	7.950	6.910	40.062	1.00 35.67	В
70	MOTA	4493		LEU	255	8.538	5.614	39.590	1.00 35.24	В
	MOTA MOTA	4494 4495	CD2	LEU	255 255	6.601 9.710	6.663	40.668 42.322	1.00 35.26	В
	MOTA MOTA	4495	0	LEU	255 255	10.722	9.551 9.754	42.322	1.00 35.19 1.00 35.09	B B
	ALOPI	4470	•		200	10.722	2.734	41.044	1.00 33.03	В

	3.0004	4407		1127	25.6	0 613	9.888	42 616	1 00 33 30	_
	MOTA MOTA	4497 4498	N	VAL VAL	256 256	9.612 10.719	10.528	43.615 44.350	1.00 33.29 1.00 31.53	В
	MOTA	4499	CA CB	VAL	256	10.713	11.748	45.143	1.00 31.33	В
	ATOM	4500		VAL	256	9.719	12.800	44.188	1.00 30.73	B B
5	ATOM	4501		VAL	256	9.165	11.322	46.141	1.00 33.02	В
,	MOTA	4502	C	VAL	256	11.494	9.622	45.319	1.00 29.50	В
	MOTA	4503	ŏ	VAL	256	10.928	8.958	46.189	1.00 29.05	В
	ATOM	4504	N	LYS	257	12.809	9.604	45.148	1.00 27.07	. В
	MOTA	4505	CA	LYS	257	13.676	8.790	45.985	1.00 24.38	В
10	MOTA	4506	СВ	LYS	257	14.530	7.832	45.134	1.00 21.73	В
••	MOTA	4507	CG	LYS	257	13.742	6.776	44.369	1.00 18.70	В
	ATOM	4508	CD	LYS	257	14.637	5.862	43.566	1.00 13.96	B
	ATOM	4509	CE	LYS	257	15.316	6.632	42.460	1.00 12.43	В
	MOTA	4510	NZ	LYS	257	16.093	5.743	41.576	1.00 10.28	В
15	ATOM	4511	C	LYS	257	14.627	9.701	46.731	1.00 23.77	В
	ATOM	4512	ō	LYS	257	15.062	10.708	46.215	1.00 24.31	В
	MOTA	4513	N	ILE	258	14.928	9.357	47.970	1.00 22.97	В
	ATOM	4514	CA	ILE	258	15.882	10.138	48.741	1.00 20.65	В
	MOTA	4515	CB	ILE	258	15.226	10.866	49.913	1.00 22.22	В
20	MOTA	4516	CG2	ILE	258	16.246	11.747	50.591	1.00 22.81	В
	MOTA	4517	CG1	ILE	258	14.080	11.734	49.407	1.00 24.53	В
	MOTA	4518	CD1	ILE	258	13.276	12.417	50.518	1.00 24.98	В
	MOTA	4519	С	ILE	258	16.891	9.136	49.271	1.00 18.47	В
	MOTA	4520	0	ILE	258	16.554	8.243	50.049	1.00 16.24	В
25	MOTA	4521	N	GLY	259	18.123	9.256	48.805	1.00 17.79	В
	MOTA	4522	CA	GLY	259	19.144	8.342	49.262	1.00 18.70	В
	MOTA	4523	С	GLY	. 259	20.205	9.094	50.030	1.00 17.80	В
	MOTA	4524	0	GLY	259	20.684	10.110	49.555	1.00 18.70	В
20	MOTA	4525	N	LYS	260	20.565	8.606	51.215	1.00 16.12	В
30	MOTA	4526	CA	LYS	260	21.598	9.263	52.011	1.00 15.58	В
	MOTA	4527	СВ	LYS	260	21.034	9.800	53.335	1.00 15.55	В
	MOTA	4528	CG	LYS	260	21.889	10.844	54.046	1.00 14.21	В
	MOTA	4529	CD	LYS	260	21.173	11.288	55.341	1.00 15.40	В
25	MOTA	4530	CE	LYS	260	21.989	12.289	56.170	1.00 13.76	В
35	MOTA	4531	NZ	LYS	260	21.311	12.687	57.451	1.00 8.49	В
	MOTA	4532	C	LYS	260	22.729	8.309	52.335	1.00 13.87	В
	MOTA	4533	0	LYS	260	22.531	7.185	52.741	1.00 13.84	В
	MOTA	4534	N	LEU	261	23.937	8.788	52.141	1.00 13.07	В
40	MOTA	4535	CA	LEU	261	25.107	7.996	52.430	1.00 11.82	В
40	MOTA	4536	CB	LEU	261	25.890	7.772	51.130	1.00 10.77	В
	MOTA	4537	CG	LEU	261	27.276	7.138	51.238	1.00 8.89	В
	MOTA	4538		LEU	261	27.189	5.799	51.975	1.00 7.84	В
	MOTA	4539		LEU	261	27.847	6.973	49.840	1.00 7.48	В
45	MOTA	4540	C	LEU	261	25.993	8.696	53.465	1.00 11.44	В
43	MOTA	4541	0	LEU	261	26.424	9.819 8.024	53.247 54.586	1.00 13.74 1.00 10.57	В
	MOTA	4542 4543	N CA	ASN ASN	262 262	26.245 27.142	8.548	55.615	1.00 10.37	B B
	MOTA MOTA	4544	CB	ASN	262	26.494	8.386	56.985	1.00 5.60	В
	MOTA	4545	CG	ASN	262	25.111	8.980	57.011	1.00 3.00	В
50	MOTA	4546	OD1		262	24.100	8.263	56.971	1.00 9.21	В
50	MOTA	4547	ND2		262	25.050	10.307	57.024	1.00 7.62	В
	MOTA	4548	C	ASN	262	28.526	7.879	55.554	1.00 6.87	В
	MOTA	4549	ō	ASN	262	28.640	6.653	55.523	1.00 7.74	В
	ATOM	4550	N	LEU	263	29.566	8.705	55.487	1.00 5.79	В
55	MOTA	4551	CA	LEU	263	30.938	8.225	55.438	1.00 5.65	В
	MOTA	4552	СВ	LEU	263	31.596	8.741	54.165	1.00 4.90	В
	ATOM	4553	CG	LEU	263	30.735	8.279	52.998	1.00 6.08	В
	ATOM	4554	CD1		263	31.131	9.012	51.752	1.00 5.33	В
	MOTA	4555	CD2		263	30.853	6.748	52.877	1.00 6.04	В
60	ATOM	4556	C	LEU	263	31.634	8.694	56.710	1.00 6.26	В
	MOTA	4557	ō	LEU	263	32.017	9.853	56.842	1.00 8.01	В
	MOTA	4558	N	VAL	264	31.795	7.778	57.653	1.00 6.21	В
	MOTA	4559	CA	VAL	264	32.406	8.079	58.943	1.00 6.25	В
	ATOM	4560	СВ	VAL	264	31.600	7.410	60.037	1.00 7.30	В
65	ATOM	4561	CG1		264	32.081	7.848	61.406	1.00 6.21	В
	MOTA	4562	CG2		264	30.140	7.709	59.802	1.00 9.51	В
	MOTA	4563	C	VAL	264	33.863	7.677	59.150	1.00 7.28	В
	MOTA	4564	0	VAL	264	34.221	6.532	58.978	1.00 7.31	В
-	MOTA	4565	N	ASP	265	34.685	8.652	59.533	1.00 9.79	В
70	MOTA	4566	CA	ASP	265	36.105	8.441	59.841	1.00 11.34	В
	MOTA	4567	CB	ASP	265	36.978	9.564	59.262	1.00 12.62	В
	MOTA	4568	CG	ASP	265	38.473	9.346	59.520	1.00 16.17	В
	MOTA	4569	OD1	ASP	265	38.801	8.748	60.562	1.00 17.08	В

	ATOM	4570	ODZ	2 ASP	265	39.310	9.783	58.694	1.00 16.43	В
	ATOM	4571	С	ASP	265	36.179	8.527	61.374		В
	MOTA	4572	0	ASP	265	36.356	9.601	61.928		В
_	MOTA	4573	N	LEU	266	36.032	7.389	62.051	1.00 12.21	В
5	MOTA	4574	CA	LEU	266	36.054	7.367	63.519		В
	ATOM	4575	CB	LEU	266	35.692	5.986	64.068		В
	MOTA MOTA	4576 4577	CG	LEU LEU	266 266	34.327 34.190	5.426 3.979	63.711 64.232	1.00 14.69 1.00 13.37	B B
	ATOM	4578		LEU	266	33.266	6.350	64.285	1.00 13.37	В
10	MOTA	4579	C	LEU	266	37.366	7.763	64.193	1.00 14.25	В
	MOTA	4580	ō	LEU	266	38.437	7.776	63.580	1.00 16.77	В
	ATOM	4581	N	ALA	267	37.267	8.097	65.474	1.00 15.57	В
	MOTA	4582	CA	ALA	267	38.435	8.494	66.237	1.00 15.49	В
15	ATOM	4583	CB	ALA	267	38.015	9.063	67.584	1.00 15.66	В
15	MOTA	4584	C	ALA	267	39.281	7.256	66.427	1.00 16.90	В
	ATOM ATOM	4585	0	ALA	267	38.752	6.166	66.492	1.00 17.09 1.00 18.45	В
	ATOM	4586 4587	N CA	GLY GLY	268 268	40.594 41.470	7.432 6.286	66.535 66.684	1.00 18.45	B B
	MOTA	4588	c	GLY	268	40.979	5.375	67.779	1.00 20.29	В
20	ATOM	4589	ō	GLY	268	40.476	5.846	68.778	1.00 22.63	В
	MOTA	4590	N	SER	269	41.153	4.070	67.608	1.00 21.30	В
	MOTA	4591	CA	SER	269	40.683	3.127	68.611	1.00 21.55	В
	MOTA	4592	CB	SER	269	40.151	1.869	67.940	1.00 19.85	В
25	ATOM	4593	OG	SER	269	41.174	1.230	67.206	1.00 19.77	В
23	MOTA	4594	c	SER	269	41.696	2.703	69.666	1.00 23.07	• В
	MOTA MOTA	4595 4596	O N	SER GLU	269 270	41.415 42.863	1.832	70.461 69.682	1.00 23.77 1.00 24.72	B B
	ATOM	4597	CA	GLU	270	43.889	2.997	70.666	1.00 26.45	В
	ATOM	4598	СВ	GLU	270	45.255	3.538	70.212	1.00 26.88	В
30	MOTA	4599	CG	GLU	270	45.365	5.074	70.179	1.00 26.65	В
	MOTA	4600	CD	GLU	270	44.769	5.716	68.938	1.00 25.63	В
	MOTA	4601		GLU	270	44.782	6.966	68.848	1.00 25.90	В
	MOTA	4602		GLU	270	44.299	4.966	68.063	1.00 25.37	В
35	MOTA	4603	C	GLU	270	43.595	3.501	72.096	1.00 28.21	В
33	ATOM ATOM	4604 4605	N O	GLU ASN	270 271	43.182 43.804	4.646 2.619	72.317 73.066	1.00 27.82 1.00 31.11	B B
	ATOM	4606	ÇA	ASN	271	43.590	2.932	74.483	1.00 31.11	В
	ATOM	4607	СВ	ASN	271	42.239	3.620	74.720	1.00 35.28	В
	MOTA	4608	CG	ASN	271	41.046	2.755	74.319	1.00 37.15	В
40	MOTA	4609	OD1	ASN	271	39.892	3.159	74.481	1.00 37.89	В
	MOTA	4610		ASN	271	41.319	1.569	73.789	1.00 38.13	В
	ATOM	4611	C	ASN	271	43.617	1.669	75.326	1.00 34.61	В
	MOTA MOTA	4612 4613	О И	ASN ASN	271 287	43.637 41.713	0.561 11.898	74.789 79.742	1.00 35.03 1.00 41.72	B B
45	MOTA	4614	CA	ASN	287	40.726	12.291	78.737	1.00 41.72	В
••	ATOM	4615	СВ	ASN	287	41.389	13.166	77.666	1.00 43.36	В
	MOTA	4616	CG	ASN	287	42.137	14.334	78.263	1.00 44.01	В
	MOTA	4617	OD1	ASN	287	43.107	14.144	78.990	1.00 44.40	В
50	ATOM	4618		ASN	287	41.688	15.548	77.967	1.00 44.56	В
50	MOTA	4619	C	ASN	287	40.094	11.054	78.083	1.00 41.01	В
	ATOM	4620 4621	N O	ASN ILE	287 288	40.802 38.764	10.130 11.039	77.661 77.994	1.00 42.34 1.00 37.53	B B
	MOTA MOTA	4622	CA	ILE	288	38.053	9.905	77.397	1.00 37.33	В
	ATOM	4623	СВ	ILE	288	37.119	9.256	78.433	1.00 33.55	В
55	ATOM	4624	CG2		288	37.940	8.681	79.575	1.00 32.67	В
	MOTA	4625		ILE	288	36.142	10.308	78.967	1.00 33.79	В
	ATOM	4626		ILE	288	35.028	9.764	79.828	1.00 33.58	В
	ATOM	4627	C	ILE	288	37.221	10.255	76.147	1.00 29.09	В
60	MOTA	4628	0	ILE	288	36.810	11.410	75.946	1.00 28.30	В
oo	ATOM ATOM	4629 4630	N CA	ASN ASN	289 289	36.975 36.172	9.258 9.492	75.303 74.116	1.00 23.27 1.00 19.88	B B
	ATOM	4631	CB	ASN	289	36.898	8.993	72.871	1.00 19.88	В
	ATOM	4632	CG	ASN	289	36.379	9.622	71.601	1.00 19.35	В
	ATOM	4633	OD1		289	37.155	10.094	70.786	1.00 21.16	В
65	MOTA	4634	ND2		289	35.065	9.612	71.415	1.00 18.98	В
	MOTA	4635	С	ASN	289	34.829	8.805	74.326	1.00 18.28	В
	MOTA	4636	0	ASN	289	34.628	7.609	74.013	1.00 16.89	В
	MOTA	4637	N	GLN	290	33.906	9.579	74.884	1.00 16.97	В
70	MOTA MOTA	4638 4639	CA CB	GLN GLN	290 290	32.560 31.741	9.115 10.277	75.178 75.738	1.00 14.08 1.00 15.20	B B
	ATOM	4640	CG	GLN	290	30.328	9.905	76.161	1.00 15.20	В
	ATOM	4641	CD	GLN	290	30.274	8.855	77.266	1.00 16.30	В
	ATOM	4642	OE1		290	29.232	8.273	77.512	1.00 16.57	В

	MOTA	4643	NE2	GLN	290	31.401	8.621	77.934	1.00 17.40	В
	MOTA	4644	c	GLN	290	31.856	8.520	73.959	1.00 12.46	В
	MOTA	4645	ō	GLN	290	31.207	7.500	74.055	1.00 12.26	В
	ATOM	4646	N	SER	291	31.971	9.174	72.814	1.00 11.04	В
5	MOTA	4647	CA	SER	291	31.333	8.627	71.629	1.00 11.96	В
	MOTA	4648	СВ	SER	291	31.404	9.609	70.466	1.00 11.35	В
	ATOM	4649	OG	SER	291	30.393	10.586	70.582	1.00 12.37	В
	MOTA	4650	С	SER	291	31.950	7.299	71.201	1.00 11.18	. В
	MOTA	4651	0	SER	291	31.241	6.375	70.783	1.00 11.32	В
10	MOTA	4652	N	LEU	292	33.270	7.205	71.294	1.00 11.69	В
	MOTA	4653	CA	LEU	292	33.965		70.919	1.00 11.36	В
	MOTA	4654	CB	LEU	292	35.485	6.237	70.902	1.00 9.67	В
	MOTA	4655	CG	LEU	292	36.263	5.054	70.334	1.00 10.97	В
1.5	MOTA	4656		LEU	292	35.817	4.822	68.911	1.00 10.21	В
15	MOTA	4657		LEU	292	37.750	5.328	70.387	1.00 13.35	В
	MOTA	4658	С	LEU	292	33.574	4.877	71.914	1.00 11.82	В
	ATOM	4659	0	LEU	292	33.287	3.724	71.527	1.00 11.11	В
	MOTA	4660	N	LEU	293	33.547	5.232	73.194	1.00 8.02	В
20	MOTA	4661	CA	LEU	293	33.210	4.295	74.246	1.00 7.35	В
20	MOTA	4662	CB	LEU	293	33.313	5.005	75.596	1.00 5.38	В
	MOTA	4663	CG	LEU	293	34.410	4.587	76.570	1.00 6.04	В
	MOTA	4664		LEU	293 293	35.605 34.798	3.981 5.808	75.841 77.389	1.00 3.22 1.00 3.25	B B
	MOTA MOTA	4665 4666	CD2	LEU	293	31.802	3.747	74.071	1.00 7.33	В
25	MOTA	4667	o	LEU	293	31.563	2.550	74.222	1.00 9.04	В
23	MOTA	4668	N	THR	294	30.874	4.646	73.775	1.00 8.36	В
	ATOM	4669	CA	THR	294	29.481	4.283	73.604	1.00 6.48	В
	ATOM	4670	CB	THR	294	28.623	5.535	73.600	1.00 5.81	В
	ATOM	4671		THR	294	28.889	6.251	74.804	1.00 6.32	В
30	ATOM	4672		THR	294	27.142	5.206	73.570	1.00 4.45	В
	MOTA	4673	С	THR	294	29.237	3.461	72.364	1.00 7.94	В
	ATOM	4674	0	THR	294	28.357	2.602	72.368	1.00 9.76	В
	MOTA	4675	N	LEU	295	30.016	3.706	71.310	1.00 6.67	В
	MOTA	4676	CA	LEU	295	29.896	2.918	70.074	1.00 6.68	В
35	MOTA	4677	CB	LEU	295	30.931	3.313	69.016	1.00 6.59	В
	MOTA	4678	CG	LEU	295	30.897	2.510	67.708	1.00 5.44	В
	MOTA	4679		LEU	295	29.555	2.668	67.036	1.00 4.15	В
	MOTA	4680		LEU	295	31.969	2.993	66.786	1.00 5.26	В
40	MOTA	4681	C	LEU	295	30.228	1.473	70.403	1.00 8.24	В
40	MOTA	4682	0	LEU	295	29.615	0.555	69.887	1.00 9.80	В
	MOTA	4683	N	GLY	296	31.214	1.290	71.276	1.00 9.60	В
	MOTA	4684	CA	GLY	296	31.611	-0.047	71.669	1.00 10.99	В
	ATOM	4685 4686	C	GLY	296 296	30.551 30.275	-0.728 -1.924	72.518 72.350	1.00 12.56 1.00 12.84	B B
45	MOTA MOTA	4687	O N	GLY ARG	290	29.954	0.037	73.426	1.00 12.84	В
73	MOTA	4688	CA	ARG	297	28.928	-0.486	74.307	1.00 12.41	В
	ATOM	4689	CB	ARG	297	28.692	0.466	75.478	1.00 11.73	В
	MOTA	4690	CG	ARG	297	29.818	0.493	76.498	1.00 10.69	В
	ATOM	4691	CD	ARG	297	29.767	1.736	77.378	1.00 11.84	В
50	ATOM	4692	NE	ARG	297	30.969	1.856	78.205	1.00 10.74	В
	MOTA	4693	CZ	ARG	297	31.409	2.993	78.734	1.00 10.49	В
	MOTA	4694	NH1	ARG	297	30.743	4.119	78.517	1.00 11.64	В
	MOTA	4695	NH2	ARG	297	32.504	3.003	79.486	1.00 9,73	В
	MOTA	4696	С	ARG	297	27.622	-0.708	73.569	1.00 13.86	В
55	MOTA	4697	0	ARG	297	26.798	-1.514	74.009	1.00 13.06	В
	MOTA	4698	N	VAL	298	27.426	0.014	72.464	1.00 14.33	В
	MOTA	4699	CA	VAL	298	26.216	-0.134	71.659	1.00 16.21	В
	MOTA	4700	CB	VAL	298	26.048	1.031	70.696	1.00 16.05	В
6 0	MOTA	4701		VAL	298	25.021	0.679	69.639	1.00 17.88	В
60	MOTA	4702		VAL	298	25.605	2.257	71.458	1.00 18.13	В
	MOTA	4703	C	VAL	298	26.281	-1.426	70.853	1.00 17.16	В
	MOTA	4704	0	VAL	298	25.305	-2.173	70.774	1.00 18.74 1.00 18.24	В
	MOTA	4705	N	ILE	299 299	27.441 27.645	-1.691 -2.910	70.262 69.486	1.00 18.24	B B
65	MOTA	4706	CA	ILE	299	29.019	-2.868	68.770	1.00 19.68	В
0.5	MOTA MOTA	4707 4708	CB	ILE	299	29.019	-4.245	68.184	1.00 19.68	B
	MOTA	4709		ILE	299	28.983	-1.791	67.674	1.00 17.04	В
	MOTA	4710		ILE	299	30.314	-1.589	66.977	1.00 22.74	В
	MOTA	4711	CDI	ILE	299	27.551	-4.142	70.400	1.00 19.56	В
70	MOTA	4712	ŏ	ILE	299	27.027	-5.191	70.012	1.00 19.03	В
	MOTA	4713	N	THR	300	28.043	-4.017	71.624	1.00 19.86	В
	MOTA	4714	CA	THR	300	27.978	-5.136	72.551	1.00 20.92	В
	MOTA	4715	СВ	THR	300	28.770	-4.841	73.824	1.00 20.58	В
			-							

	MOTA	4716	OG1	THR	300	30.172	-4.893	73.533	1.00 21.97	В
	MOTA	4717	CG2	THR	300	28.433	-5.845	74.903	1.00 21.65	В
	MOTA	4718	C	THR	300	26.525	-5.450	72.915	1.00 21.71	В
	MOTA	4719	ŏ	THR	300	26.134	-6.601	72.984	1.00 22.71	В
5								73.139	1.00 23.13	В
J	ATOM	4720	N	ALA	301	25.728	-4.413			
	MOTA	4721	CA	ALA	301	24.337	-4.624	73.494	1.00 23.01	В
	MOTA	4722	CB	ALA	301	23.694	-3.327	73.904	1.00 22.73	В
	MOTA	4723	С	ALA	301	23.589	-5.225	72.323	1.00 23.48	В
	MOTA	4724	0	ALA	301	22.652	-5.982	72.509	1.00 23.63	В
10	MOTA	4725	N	LEU	302	24.005	-4.872	71.111	1.00 23.21	В
~~	MOTA	4726	CA	LEU	302	23.361	-5.392	69.911	1.00 24.59	В
				LEU	302	23.737	-4.526	68.695	1.00 23.93	В
	MOTA	4727	CB							
	MOTA	4728	CG	LEU	302	22.774	-3.511	68.059	1.00 22.99	В
	MOTA	4729	CD1	LEU	302	21.827	-2.952	69.058	1.00 20.71	В
15	MOTA	4730	CD2	LEU	302	23.579	-2.394	67.440	1.00 21.49	В
	MOTA	4731	С	LEU	302	23.728	-6.861	69.656	1.00 25.70	В
	MOTA	4732	0	LEU	302	22.847	-7.695	69.406	1.00 24.83	В
	ATOM	4733	N	VAL	303	25.021	-7.170	69.731	1.00 27.74	В
		4734	CA	VAL	303	25.527	-8.521	69.505	1.00 29.35	В
20	MOTA									
20	MOTA	4735	CB	VAL	303	27.054	-8.549	69.593	1.00 29.55	В
	MOTA	4736		VAL	303	27.545	-9.975	69.439	1.00 30.49	В
	MOTA	4737	ÇG2	VAL	303	27.651	-7.641	68.524	1.00 30.24	В
	ATOM	4738	С	VAL	303	24.985	-9.528	70.510	1.00 31.00	В
	MOTA	4739	0	VAL	303	24.629	-10.631	70.160	1.00 30.43	В
25	MOTA	4740	N	GLU	304	24.927	-9.123	71.770	1.00 33.86	В
	MOTA	4741	ÇA	GLU	304	24.442	-9.986	72.838	1.00 36.40	В
	ATOM	4742	CB	GLU	304	25.130	-9.594	74.143	1.00 37.33	В
								74.076	1.00 37.33	В
	MOTA	4743	CG	GLU	304	26.650	-9.690			
20	MOTA	4744	CD	GLU	304	27.316	-9.437	75.422	1.00 41.19	В
30	MOTA	4745	OE1	GLU	304	28.564	-9.473	75.490	1.00 42.27	В
	MOTA	4746	OE2	GLU	304	26.594	-9.202	76.413	1.00 42.10	В
	MOTA	4747	С	GLU	304	22.922	-9.924	72.985	1.00 38.11	В
	MOTA	4748	0	GLU	304	22.334	-10.552	73.871	1.00 37.60	В
	ATOM	4749	N	ARG	305	22.303	-9.155	72.098	1.00 41.03	В
35		4750	CA	ARG	305	20.860	-8.996	72.068	1.00 43.26	В
55	MOTA									
	MOTA	4751	СВ	ARG	305		-10.302	71.592	1.00 44.67	В
	MOTA	4752	CG	ARG	305		-10.629	70.151	1.00 46.86	В
	MOTA	4753	CD	ARG	305		-12.025	69.716	1.00 49.68	В
	MOTA	4754	NE	ARG	305	20.654	-12.350	68.373	1.00 50.79	В
40	MOTA	4755	CZ	ARG	305	20.244	-11.753	67.258	1.00 50.97	В
	MOTA	4756	NH1	ARG	305	19.327	-10.797	67.309	1.00 51.47	В
	ATOM	4757	NH2		305		-12.097	66.089	1.00 51.54	В
		4758	c	ARG	305	20.237	-8.514	73.367	1.00 43.49	В
	MOTA					19.142		73.718	1.00 44.11	В
15	MOTA	4759	0	ARG	305		-8.909			
45	MOTA	4760	N	THR	306	20.951	-7.648	74.077	1.00 44.17	В
	MOTA	4761	CA	THR	306	20.444	-7.078	75.319	1.00 43.76	В
	MOTA	4762	СB	THR	306	21.535	-6.267	76.040	1.00 43.72	В
	MOTA	4763	OG1	THR	306	22.623	-7.131	76.399	1.00 43.84	В
	MOTA	4764	CG2	THR	306	20.975	-5.602	77.288	1.00 43.30	В
50	MOTA	4765	С	THR	306	19.307	-6.139	74.912	1.00 44.17	В
•	ATOM	4766	ō	THR	306	19.388	-5.459	73.891	1.00 45.09	В
	MOTA	4767	N	PRO	307	18.226	-6.098	75.700	1.00 43.54	В
										В
	MOTA	4768	CD	PRO	307	17.925	-6.973	76.846	1.00 43.66	
<i>c c</i>	MOTA	4769	CA	PRO	307	17.080	-5.232	75.390	1.00 42.75	В
55	MOTA	4770	CB	PRO	307	16.101	-5.554	76.518	1.00 43.35	В
	ATOM	4771	CG	PRO	307	16.429	-7.001	76.834	1.00 44.16	В
	MOTA	4772	С	PRO	307	17.408	-3.741	75.269	1.00 41.65	В
	MOTA	4773	0	PRO	307	16.903	-3.049	74.384	1.00 41.15	В
	ATOM	4774	N	HIS	308	18.254	-3.247	76.166	1.00 39.72	В
60		4775			308	18.629	-1.839	76.164	1.00 37.51	В
UU	ATOM		CA	HIS						
	MOTA	4776	CB	HIS	308	18.774	-1.336	77.587	1.00 39.81	В
	MOTA	4777	CG	HIS	308	19.193	0.097	77.677	1.00 42.26	В
	MOTA	4778	CD2	HIS	308	20.336	0.664	78.127	1.00 43.26	В
	MOTA	4779	ND1	HIS	308	18.391	1.131	77.247	1.00 43.54	В
65	ATOM	4780		HIS	308	19.024	2.278	77.428	1.00 44.49	В
	MOTA	4781		HIS	308	20.205	2.024	77.959	1.00 44.29	В
	MOTA	4782	C	HIS	308	19.937	-1.559	75.446	1.00 35.63	В
	ATOM	4783	0	HIS	308	20.958	-2.160	75.745	1.00 36.69	В
70	MOTA	4784	N	VAL	309	19.889	-0.627	74.501	1.00 32.04	В
70	MOTA	4785	CA	VAL	309	21.071	-0.237	73.731	1.00 27.44	В
	MOTA	4786	CB	VAL	309	20.821	-0.415	72.218	1.00 27.23	В
	MOTA	4787	CG1	VAL	309	22.090	-0.111	71.426	1.00 27.83	В
	ATOM	4788	CG2		309	20.336	-1.823	71.946	1.00 25.00	В
			_	_						

	MOTA	4789	С	VAL	309	21.307	1.234	74.059	1.00 26.45	В
	MOTA	4790	0	VAL	309	20.501	2.090	73.724	1.00 26.41	В
		4791		PRO	310	22.432	1.538	74.715	1.00 25.12	В
	MOTA		N							
~	MOTA	4792	CD	PRO	310	23.508	0.587	75.062	1.00 23.57	В
5	MOTA	4793	CA	PRO	310	22.780	2.914	75.107	1.00 22.73	В
	MOTA	4794	CB	PRO	310	23.985	2.701	76.007	1.00 23.56	В
	ATOM	4795	CG	PRO	310	24.671	1.504	75.354	1.00 23.96	В
	ATOM	4796	С	PRO	310	23.017	3.958	73.999	1.00 22.22	В
	MOTA	4797	0	PRO	310	23.965	4.735	74.073	1.00 21.14	В
10	MOTA	4798	N	TYR	311	22.147	4.000	72.995	1.00 21.70	В
		4799	CA	TYR	311	22.294	4.967	71.899	1.00 22.33	B
	ATOM									
	MOTA	4800	CB	TYR	311	21.083	4.978	70.970	1.00 22.30	В
	MOTA	4801	CG	TYR	311	20.861	3.721	70.154	1.00 24.68	В
	ATOM	4802	CD1	TYR	311	21.773	3.322	69.177	1.00 25.08	В
15	MOTA	4803		TYR	311	21.555	2.171	68.411	1.00 25.18	В
13										
	MOTA	4804		TYR	311	19.717	2.937	70.347	1.00 24.09	· В
	MOTA	4805	CE2	TYR	311	19.493	1.786	69.590	1.00 24.09	В
	MOTA	4806	CZ	TYR	311	20.416	1.405	68.623	1.00 24.98	В
	ATOM	4807	ОН	TYR	311	20.211	0.246	67.893	1.00 24.66	В
20										
20	MOTA	4808	С	TYR	311	22.431	6.429	72.338	1.00 21.98	В
	MOTA	4809	0	TYR	311	23.180	7.188	71.741	1.00 23.57	В
	MOTA	4810	N	ARG	312	21.707	6.813	73.384	1.00 20.49	В
	MOTA	4811	CA	ARG	312	21.726	8.203	73.861	1.00 19.38	В
25	MOTA	4812	CB	ARG	312	20.447	8.544	74.640	1.00 21.56	В
25	MOTA	4813	CG	ARG	312	19.150	8.149	73.951	1.00 24.98	В
	MOTA	4814	CD	ARG	312	17.949	8.887	74.534	1.00 27.94	В
	ATOM	4815	NE	ARG	312	16.688	8.240	74.175	1.00 31.63	В
									1.00 34.10	
	MOTA	4816	CZ	ARG	312	. 16.262	7.086	74.688		В
~ ~	MOTA	4817	NH1	ARG	312	16.996	6.445	75.590	1.00 37.15	В
30	MOTA	4818	NH2	ARG	312	15.101	6.566	74.304	1.00 33.60	В
	MOTA	4819	С	ARG	312	22.875	8.612	74.779	1.00 17.27	В
								75.235		
	MOTA	4820	0	ARG	312	22.933	9.756		1.00 16.64	В
	MOTA	4821	N	GLU	313	23.786	7.686	75.054	1.00 14.25	В
	ATOM	4822	CA	GLU	313	24.908	7.986	75.935	1.00 11.55	В
35	ATOM	4823	СВ	GLU	313	25.410	6.693	76.590	1.00 11.14	В
55							6.136	77.618	1.00 11.41	В
	MOTA	4824	CG	GLU	313	24.416				
	MOTA	4825	CD	GLU	313	24.916	4.905	78.379	1.00 12.57	В
	MOTA	4826	OE1	GLU	313	26.071	4.898	78.834	1.00 11.41	В
	MOTA	4827		GLU	313	24.149	3.935	78.569	1.00 14.80	В
40		4828	C	GLU	313	26.053	8.746	75.271	1.00 10.23	В
70	MOTA									
	ATOM	4829	0	GLU	313	27.066	8.960	75.891	1.00 10.15	В
	MOTA	4830	N	SER	314	25.865	9.164	74.017	1.00 10.36	В
	MOTA	4831	CA	SER	314	26.878	9.912	73.263	1.00 9.41	В
		4832	CB	SER	314	28.000	9.018	72.732	1.00 10.81	В
45	MOTA									
43	MOTA	4833	OG	SER	314	27.643	8.320	71.544	1.00 9.64	В
	ATOM	4834	С	SER	314	26.235	10.511	72.031	1.00 10.05	В
	MOTA	4835	0	SER	314	25.190	10.052	71.583	1.00 9.18	В
	ATOM	4836	N	LYS	315	26.887	11.544	71.501	1.00 10.81	В
50	MOTA	4837	CA	LYS	315	26.428	12.259	70.320	1.00 9.07	В
50	ATOM	4838	CB	LYS	315	27.254	13.527	70.063	1.00 9.50	В
	MOTA	4839	CG	LYS	315	27.390	14.463	71.236	1.00 9.25	В
	MOTA	4840	CD	LYS	315	26.058	14.973	71.686	1.00 10.89	В
	ATOM	4841	CE	LYS	315	26.244	16.156	72.620	1.00 13.02	В
	MOTA	4842	NZ	LYS	315	26.918	17.316	71.937	1.00 14.10	В
55	ATOM	4843	С	LYS	315	26.556	11.414	69.077	1.00 8.68	В
	ATOM	4844	0	LYS	315	25.652	11.383	68.282	1.00 10.14	В
	MOTA	4845	N	LEU	316	27.683	10.721	68.931	1.00 8.28	В
	MOTA	4846	CA	LEU	316	27.928	9.888	67.763	1.00 7.48	В
	ATOM	4847	CB	LEU	316	29.297	9.205	67.867	1.00 6.90	В
60	MOTA	4848	CG	LEU	316	29.679	8.277	66.713	1.00 8.06	В
	MOTA	4849		LEU	316	30.018	9.097	65.484	1.00 10.24	В
	MOTA	4850		LEU	316	30.850	7.452	67.129	1.00 8.22	В
	MOTA	4851	С	LEU	316	26.852	8.821	67.590	1.00 9.38	В
	MOTA	4852	0	LEU	316	26.241	8.733	66.523	1.00 9.82	В
65	MOTA	4853	N	THR	317	26.588	8.040	68.642	1.00 9.80	В
55										
	MOTA	4854	CA	THR	317	25.599	6.965	68.534	1.00 10.18	В
	MOTA	4855	CB	THR	317	25.672	5.952	69.674	1.00 10.15	В
	ATOM	4856	OG1	THR	317	25.527	6.642	70.909	1.00 10.81	В
	ATOM	4857		THR	317	27.004	5.185	69.661	1.00 9.59	В
70							7.455		1.00 10.03	B
10	ATOM	4858	C	THR	317	24.175		68.484		
	MOTA	4859	0	THR	317	23.295	6.709	68.146	1.00 11.71	В
	MOTA	4860	N	ARG	318	23.947	8.703	68.867	1.00 9.69	В
	ATOM	4861	CA	ARG	318	22.607	9.256	68.785	1.00 9.04	В
						,,,				-

	MOTA	4862	СВ	ARG	318	22.454	10.464	69.703	1.00 13.23	В
	MOTA	4863	CG	ARG	318	21.719	10.147	71.004	1.00 19.08	В
	MOTA	4864	CD	ARG	318	22.058		72.115	1.00 22.73	В
	ATOM	4865		ARG	318	21.617		71.828	1.00 26.31	B
5	MOTA	4866		ARG	318	20.345		71.705	1.00 27.29	В
,	MOTA			LARG						
		4867			318	19.383		71.849	1.00 28.67	В
	MOTA	4868		2 ARG	318	20.036		71.429	1.00 25.94	В
	MOTA	4869	С	ARG	318	22.434	9.679	67.344	1.00 8.51	В
	MOTA	4870	0	ARG	318	21.418	9.412	66.720	1.00 10.84	В
10	ATOM	4871	N	ILE	319	23.445	10.339	66.799	1.00 5.66	В
	ATOM	4872	CA	ILE	319	23.352	10.766	65.410	1.00 5.05	В
	ATOM	4873	СВ	ILE	319	24.591				
							11.627	65.014	1.00 5.19	В
	MOTA	4874		: ILE	319	24.531	11.976	63.544	1.00 6.51	В
	MOTA	4875		ILE	319	24.603	12.935	65.826	1.00 5.47	В
15	MOTA	4876	CDI	ILE	319	25.833	13.774	65.632	1.00 2.71	В
	MOTA	4877	С	ILE	319	23.227	9.551	64.460	1.00 3.03	В
	MOTA	4878	0	ILE	319	22.361	9.511	63.590	1.00 1.95	В
	MOTA	4879	N	LEU	320	24.067	8.540	64.657	1.00 4.41	В
		4880	CA	LEU	320	24.056				
20	MOTA						7.376	63.767	1.00 5.60	В
20	MOTA	4881	CB	LEU	320	25.490	6.931	63.451	1.00 2.81	В
	MOTA	4882	CG	LEU	320	26.437	7.964	62.845	1.00 2.57	В
	MOTA	4883	CD1	LEU	320	27.873	7.442	62.786	1.00 2.20	В
	MOTA	4884	CD2	LEU	320	25.955	8.334	61.476	1.00 1.00	В
	MOTA	4885	C	LEU	320	23.313	6.122	64.235	1.00 7.52	В
25	MOTA	4886	ō	LEU	320	23.620	5.045	63.776	1.00 7.94	В
	MOTA	4887	N	GLN	321	22.306	6.258	65.094	1.00 10.60	В
	MOTA	4888	CA	GLN	321	21.629	5.057	65.604	1.00 16.44	В
	MOTA	4889	СВ	GLN	321	20.679	5.362	66.775	1.00 18.94	В
	MOTA	4890	CG	GLN	321	19.433	6.153	66.458	1.00 22.43	В
30	MOTA	4891	CD	GLN	321	18.593	6.391	67.707	1.00 25.16	В
	MOTA	4892		GLN	321	18.121	5.453	68.338	1.00 26.09	В
	ATOM	4893	NE2		321	18.418	7.658	68.071	1.00 26.05	В
	MOTA	4894	C	GLN	321	20.882	4.186	64.617	1.00 16.64	В
25	MOTA	4895	0	GLN	321	20.700	2.992	64.870	1.00 16.23	В
35	ATOM	4896	N	ASP	322	20.439	4.759	63.505	1.00 17.01	В
	ATOM	4897	CA	ASP	322	19.762	3.931	62.521	1.00 19.03	В
	MOTA	4898	CB	ASP	322	18.952	4.755	61.535	1.00 20.75	В
	MOTA	4899	CG	ASP	322	17.983	3.896	60.727	1.00 22.50	В
	MOTA	4900		ASP	322	17.835	4.125	59.506	1.00 24.17	В
40										
40	MOTA	4901		ASP	322	17.352	2.997	61.327	1.00 21.00	В
	MOTA	4902	С	ASP	322	20.803	3.139	61.722	1.00 20.46	В
	ATOM	4903	0	ASP	322	20.467	2.335	60.861	1.00 23.04	В
	ATOM	4904	N	SER	323	22.076	3.385	62.006	1.00 20.16	В
	MOTA	4905	ÇA	SER	323	23.164	2.670	61.353	1.00 18.88	В
45	MOTA	4906	CB	SER	323	24.299	3.643	61.077	1.00 17.96	В
•••	ATOM	4907	OG	SER	323	23.842	4.642	60.187	1.00 18.62	В
	MOTA	4908	C	SER	323	23.625	1.518	62.259	1.00 18.52	В
	MOTA	4909	0	SER	323	24.368	0.647	61.838	1.00 19.83	В
50	MOTA	4910	N	LEU	324	23.168	1.512	63.507	1.00 16.09	В
50	MOTA	4911	CA	LEU	324	23.541	0.449	64.420	1.00 16.61	В
	ATOM	4912	CB	LEU	324	24.257	1.026	65.648	1.00 15.87	В
	MOTA	4913	CG	LEU	324	25.679	1.595	65.539	1.00 14.59	В
	MOTA	4914		LEU	324	26.545	0.643	64.722	1.00 13.37	В
55	MOTA	4915		LEU	324	25.649	2.965	64.909	1.00 11.67	В
23	MOTA	4916	С	LEU	324	22.300	-0.343	64.834	1.00 17.48	B
	MOTA	4917	0 -	LEU	324	21.651	-0.025	65.814	1.00 16.83	В
	MOTA	4918	N	GLY	325	21.983	-1.387	64.071	1.00 17.97	В
	MOTA	4919	CA	GLY	325	20.818	-2.203	64.377	1.00 18.49	В
	MOTA	4920	C	GLY	325	19.498	-1.576	63.939	1.00 19.29	В
60	ATOM	4921								
00			0	GLY	325	18.427	-1.950	64.423	1.00 19.24	В
	MOTA	4922	N	GLY	326	19.573	-0.630	63.007	1.00 19.01	В
	MOTA	4923	CA	GLY	326	18.382	0.052	62.539	1.00 18.79	В
	MOTA	4924	С	GLY	326	17.935	-0.373	61.165	1.00 19.04	В
_	MOTA	4925	0	GLY	326	17.931	-1.550	60.861	1.00 18.81	В
65	ATOM	4926	N	ARG	327	17.565	0.603	60.341	1.00 19.26	В
	MOTA	4927	CA	ARG	327	17.106	0.336	58.991	1.00 20.71	
										В
	MOTA	4928	CB	ARG	327	15.731	0.970	58.761	1.00 22.28	В
	MOTA	4929	CG	ARG	327	14.591	0.225	59.443	1.00 25.87	В
70	MOTA	4930	CD	ARG	327	13.233	0.703	58.976	1.00 28.38	В
70	MOTA	4931	NE	ARG	327	12.260	-0.388	58.957	1.00 33.27	В
	MOTA	4932	CZ	ARG	327	12.370	-1.477	58.193	1.00 36.86	В
	ATOM	4933	NH1		327	13.412	-1.639	57.382	1.00 38.23	В
	MOTA	4934	NH2		327	11.422	-2.399	58.213	1.00 38.23	B
	71.017	47J4	11612	~~	261	11.462	2.377	JU. 61J	2.00 30.31	В

	ATOM	4935	С	ARG	327	18.072	0.784	57.899	1.00 20.64	В
	ATOM	4936	ō	ARG	327	17.721	0.788	56.718	1.00 19.55	В
	MOTA	4937	N	THR	328	19.295	1.127	58.293	1.00 19.88	В
	MOTA	4938	CA	THR	328	20.316	1.568	57.349	1.00 18.38	В
5	MOTA	4939	СВ	THR	328	21.133	2.694	57.948	1.00 16.59	В
	MOTA	4940		THR	328	20.260	3.780	58.254	1.00 15.01	В
	MOTA	4941	CG2	THR	328	22.170	3.171	56.975	1.00 16.39	В
	MOTA	4942	C	THR	328	21.271	0.449	56.971	1.00 17.88	В
					328	21.640	-0.343	57.808	1.00 18.85	В
10	MOTA	4943	0	THR						
10	MOTA	4944	N	ARG	329	21.659	0.380	55.701	1.00 18.85	В
	MOTA	4945	CA	ARG	329	22.605	-0.648	55.284	1.00 18.48	В
		4946	СВ	ARG	329	22.644	-0.784	53.756	1.00 21.31	В
	MOTA									
	MOTA	4947	CG	ARG	329	23.540	-1.929	53.249	1.00 27.66	В
	MOTA	4948	CD	ARG	329	23.818	-1.771	51.748	1.00 32.45	В
15	ATOM	4949	NE	ARG	329	24.651	-2.837	51.190	1.00 38.68	В
• •		4950	cz	ARG	329	25.871	-3.147	51.626	1.00 43.03	В
	MOTA									
	MOTA	4951	NH1	ARG	329	26.417	-2.476	52.641	1.00 45.11	В
	ATOM	4952	NH2	ARG	329	26.553	-4.122	51.032	1.00 45.04	В
	MOTA	4953	С	ARG	329	23.937	-0.161	55.840	1.00 14.99	В
20					329				1.00 16.21	В
20	MOTA	4954	0	ARG		24.361	0.948	55.568		
	MOTA	4955	N	THR	330	24.595	-0. 9 87	56.632	1.00 12.23	В
	MOTA	4956	CA	THR	330	25.842	-0.559	57.235	1.00 11.36	В
	MOTA	4957	СВ	THR	330	25.720	-0.515	58.801	1.00 11.85	В
25	MOTA	4958		THR	330	24.663	0.378	59.185	1.00 12.21	В
25	MOTA	4959	CG2	THR	330	27.022	-0.038	59.432	1.00 10.17	В
	MOTA	4960	С	THR	330	27.031	-1.424	56.857	1.00 11.32	В
	ATOM	4961	ō	THR	330	26.909	-2.639	56.699	1.00 11.14	В
	MOTA	4962	N	SER	331	28.176	-0.760	56.722	1.00 10.11	В
	MOTA	4963	CA	SER	331	29.432	-1.390	56.396	1.00 9.70	В
30	ATOM	4964	CB	SER	331	29.762	-1.121	54.938	1.00 10.15	В
	MOTA	4965	OG	SER	331	29.612	-2.305	54.201	1.00 16.41	В
	MOTA	4966	С	SER	331	30.551	-0.861	57.292	1.00 8.79	В
	MOTA	4967	0	SER	331	30.612	0.314	57.575	1.00 10.25	В
	MOTA	4968	N	ILE	332	31.421	-1.744	57.761	1.00 7.54	В
35		4969	CA	ILE	332	32.537	-1.309	58.580	1.00 5.00	В
55	MOTA									
	MOTA	4970	СВ	ILE	332	32.484	-1.896	59.997	1.00 3.72	В
	MOTA	4971	CG2	ILE	332	33.791	-1.623	60.719	1.00 1.00	В
	ATOM	4972	CGI	ILE	332	31.296	-1.308	60.755	1.00 1.20	В
	MOTA	4973		ILE	332	31.044	-1.996	62.080	1.00 1.00	В
40										
40	MOTA	4974	C	ILE	332	33.825	-1.761	57.915	1.00 6.57	₿
	ATOM	4975	0	ILE	332	33.959	-2.921	57.505	1.00 6.08	В
	MOTA	4976	N	ILE	333	34.754	-0.824	57.779	1.00 6.74	В
	MOTA	4977	CA	ILE	333	36.052	-1.110	57.203	1.00 7.94	В
		4978			333	36.377	-0.134	56.043	1.00 7.86	В
15	MOTA		СВ	ILE						
45	MOTA	4979	CG2	ILE	333	37.745	-0.446	55.482	1.00 10.20	В
	MOTA	4980	CG1	ILE	333	35.335	-0.292	54.935	1.00 9.26	В
	MOTA	4981	CD1	ILE	333	35.562	0.532	53.743	1.00 9.53	В
			c	ILE	333	37.050	-0.961	58.362	1.00 9.22	В
	MOTA	4982								
~ ^	ATOM	4983	0	ILE	333	37.318	0.139	58.833	1.00 9.93	B
50	MOTA	4984	N	ALA	334	37.568	-2.087	58.842	1.00 9.27	В
	ATOM	4985	CA	ALA	334	38.510	-2.064	59.950	1.00 9.36	В
	ATOM	4986	CB	ALA	334	38.318	-3.281	60.815	1.00 8.99	В
			-							
	MOTA	4987	С	ALA	334	39.914	-2.033	59.366	1.00 9.97	В
	MOTA	4988	0	ALA	334	40.289	-2.887	58.558	1.00 9.97	В
55	MOTA	4989	N	THR	335	40.689	-1.039	59.780	1.00 10.59	В
-						42.041	-0.877	59.267	1.00 11.33	В
	MOTA	4990	CA	THR	335					
	MOTA	4991	CB	THR	335	42.300	0.587	58.833	1.00 11.54	В
	MOTA	4992	OG1	THR	335	42.165	1.471	59.959	1.00 11.31	В
	ATOM	4993		THR	335	41.316	0.973	57.707	1.00 10.89	В
60										
w	MOTA	4994	С	THR	335	43.059	-1.311	60.297	1.00 11.80	В
	MOTA	4995	0	THR	335	42.898	-1.044	61.479	1.00 11.91	В
	MOTA	4996	N	ILE	336	44.108	-1.981	59.825	1.00 10.99	В
	MOTA	4997	CA	ILE	336	45.150	-2.494	60.691	1.00 9.23	В
<i>C</i>	MOTA	4998	СВ	ILE	336	44.988	-4.002	60.867		В
65	MOTA	4999	CG2	ILE	336	43.726	-4.275	61.631	1.00 2.30	В
	MOTA	5000	CG1	ILE	336	44.949	-4.688	59.501	1.00 4.99	В
		5001	CD1		336	44.977	-6.187	59.570	1.00 4.80	В
	ATOM									
	MOTA	5002	С	ILE	336	46.549	-2.201	60.175	1.00 12.29	В
	MOTA	5003	0	ILE	336	46.722	-1.683	59.054	1.00 12.52	В
70	ATOM	5004	N	SER	337	47.536	-2.533	61.011	1.00 15.10	В
. •		5005	CA	SER	337	48.958	-2.344	60.716	1.00 17.38	В
	MOTA									
	MOTA	5006	CB	SER	337	49.673	-1.619	61.848	1.00 16.32	В
	MOTA	5007	OG	SER	337	51.071	-1.842	61.757	1.00 15.90	В

	MOTA	5008	С	SER	337	49.690	-3.686	60.569	1.00 18.53	В
	ATOM	5009	õ	SER	337	49.393	-4.652	61.292	1.00 19.54	В
	MOTA	5010	N	PRO	338	50.643	-3.770	59.618	1.00 17.27	В
									1.00 17.27	
5	ATOM	5011	CD	PRO	338	50.949	-2.790	58.555		В
5	MOTA	5012	CA	PRO	338	51.398	-5.005	59.403	1.00 15.90	В
	MOTA	5013	СВ	PRO	338	51.851	-4.868	57.953	1.00 14.63	В
	MOTA	5014	CG	PRO	338	52.158	-3.420	57.858	1.00 15.30	В
	MOTA	5015	С	PRO	338	52.574	-5.124	60.360	1.00 15.45	В
	MOTA	5016	0	PRO	338	53.206	-6.145	60.420	1.00 15.18	В
10	MOTA	5017	N	ALA	339	52.844	-4.053	61.103	1.00 16.79	В
	MOTA	5018	CA	ALA	339	53.986	-3.999	62.025	1.00 19.03	В
	MOTA	5019	CB	ALA	339	54.296	-2.536	62.409	1.00 17.80	В
	MOTA	5020	С	ALA	339	53.813	-4.824	63.277	1.00 19.74	В
	ATOM	5021	0	ALA	339	52.727	-4.883	63.824	1.00 21.39	В
15	MOTA	5022	N	SER	340	54.896	-5.452	63.734	1.00 20.20	В
	MOTA	5023	CA	SER	340	54.825	-6.278	64.940	1.00 20.54	B
	MOTA	5024	СВ	SER	340	56.045	-7.193	65.075	1.00 21.46	В
	MOTA	5025	OG	SER	340	57.233	-6.430	65.182	1.00 24.93	В
	MOTA	5026	c	SER	340	54.727	-5.453	66.208	1.00 19.22	В
20			ō	SER	340	54.293	-5.941	67.224	1.00 17.09	В
20	MOTA	5027								
	MOTA	5028	N	LEU	341	55.131	-4.191	66.143	1.00 20.29	В
	MOTA	5029	CA	LEU	341	55.048	-3.345	67.328	1.00 21.64	В
	MOTA	5030	СВ	LEU	341	56.040	-2.184	67.248	1.00 23.99	В
25	MOTA	5031	CG	LEU	341	55.610	-0.896	66.546	1.00 27.23	В
25	MOTA	5032		LEU	341	55.641	0.269	67.554	1.00 26.67	В
	MOTA	5033	CD2	LEU	341	56.542	-0.630	65.357	1.00 28.22	В
	MOTA	5034	С	LEU	341	53.629	-2.807	67.502	1.00 21.40	В
	MOTA	5035	0	LEU	341	53.350	-2.053	68.424	1.00 21.64	В
	MOTA	5036	N	ASN	342	52.736	-3.227	66.613	1.00 21.16	В
30	MOTA	5037	CA	ASN	342	51.335	-2.815	66.664	1.00 21.98	В
	MOTA	5038	СВ	ASN	342	50.943	-2.165	65.352	1.00 20.54	В
	MOTA	5039	CG	ASN	342	51.586	-0.826	65.172	1.00 21.64	В
	MOTA	5040		ASN	342	51.897	-0.423	64.046	1.00 19.82	В
	ATOM	5041		ASN	342	51.785	-0.107	66.285	1.00 20.76	В
35	MOTA	5042	c	ASN	342	50.415	-4.011	66.892	1.00 22.33	В
<i>J J</i>	ATOM	5043	ŏ	ASN	342	49.201	-3.909	66.761	1.00 22.21	В
	MOTA	5044	N	LEU	343	51.023	-5.135	67.254	1.00 23.56	В
					343	50.334		67.488		В
	MOTA	5045	CA	LEU			-6.406		1.00 24.35	
40	MOTA	5046	CB	LEU	343	51.360	-7.435	67.992	1.00 25.91	В
40	MOTA	5047	CG	LEU	343	50.986	-8.890	68.316	1.00 28.30	В
	MOTA	5048		LEU	343	50.524	-8.995	69.761	1.00 29.51	В
	MOTA	5049		LEU	343	49.930	-9.392	67.334	1.00 28.29	В
	MOTA	5050	C	LEU	343	49.119	-6.347	68.412	1.00 22.80	В
4.5	MOTA	5051	0	LEU	343	48.024	-6.756	68.045	1.00 21.40	В
45	MOTA	5052	N	GLU	344	49.305	-5.831	69.614	1.00 23.08	В
	MOTA	5053	CA	GLU	344	48.189	-5.745	70.545	1.00 22.34	В
	MOTA	5054	CB	GLU	344	48.628	-5.122	71.861	1.00 24.68	В
	MOTA	5055	CG	GLU	344	47.491	-4.875	72.821	1.00 30.10	В
	MOTA	5056	CD	GLU	344	47.965	-4.715	74.263	1.00 34.59	В
50	ATOM	5057	OE1	GLU	344	48.866	-3.886	74.538	1.00 36.85	В
	ATOM	5058		GLU	344	47.422	-5.428	75.134	1.00 36.33	В
	ATOM	5059	c	GLU	344	47.002	-4.960	70.002	1.00 19.86	В
	MOTA	5060	ō	GLU	344	45.894	-5.425	70.097	1.00 20.25	В
	MOTA	5061	N	GLU	345	47.241	-3.770	69.452	1.00 17.13	В
55		5062	CA	GLU	345	46.141	-2.974	68.907	1.00 16.35	В
<i>JJ</i>	MOTA		CB		345	46.585		68.589		
	MOTA	5063		GLU			-1.527		1.00 15.68	В
	MOTA	5064	CG	GLU	345	46.803	-0.645	69.824	1.00 13.57	В
	MOTA	5065	CD	GLU	345	45.528	-0.391	70.618	1.00 13.00	В
۷۸	ATOM	5066		GLU	345	45.623	0.062	71.768	1.00 14.32	В
60	MOTA	5067		GLU	345	44.419	-0.628	70.111	1.00 13.44	В
	MOTA	5068	С	GLU	345	45.528	-3.626	67.659	1.00 14.78	В
	MOTA	5069	0	GLU	345	44.326	-3.544	67.442	1.00 14.79	В
	MOTA	5070	N	THR	346	46.350	-4.284	66.846	1.00 14.54	В
	MOTA	5071	CA	THR	346	45.863	-4.959	65.641	1.00 14.71	В
65	MOTA	5072	СВ	THR	346	47.046	-5.572	64.839	1.00 15.75	В
-	MOTA	5073		THR	346	47.870	-4.523	64.301	1.00 19.38	В
	ATOM	5074		THR	346	46.520	-6.467	63.721	1.00 15.93	В
	ATOM	5075	C	THR	346	44.888	-6.075	66.057	1.00 14.75	В
	ATOM	5076	0	THR	346	43.863	-6.320	65.403	1.00 12.97	В
70		5077	N	LEU	347	45.210	-6.741	67.165	1.00 12.37	В
, 0	ATOM				347	44.371	-7.819	67.693	1.00 13.11	В
	ATOM	5078	CA	LEU						
	MOTA	5079	CB	LEU	347	45.080	-8.601	68.797	1.00 13.17	В
	MOTA	5080	CG	LEU	347	46.253	-9.465	68.342	1.00 12.75	В

										_
	MOTA	5081		LEU	347		-10.156	69.559	1.00 9.82	В
	MOTA	5082	CD2	LEU	347		-10.459	67.281	1.00 10.19	В
	ATOM	5083	С	LEU	347	43.074	-7.289	68.277	1.00 14.55	В
_	MOTA	5084	0	LEU	347	42.039	-7.935	68.196	1.00 16.59	В
5	ATOM	5085	N	SER	348	43.127	-6.107	68.872	1.00 14.94	В
	ATOM	5086	CA	SER	348	41.917	-5.534	69.425	1.00 12.88	В
	ATOM	5087	СВ	SER	348	42.236	-4.288	70.204	1.00 11.62	В
	ATOM	5088	OG	SER	348	42.841	-4.656	71.416	1.00 18.29	В
				SER	348	40.974	-5.180	68.303	1.00 12.87	В
10	MOTA	5089	C							
10	ATOM	5090	0	SER	348	39.809	-5.505	68.355	1.00 12.88	В
	MOTA	5091	N	THR	349	41.494	-4.518	67.281	1.00 12.34	В
	MOTA	5092	CA	THR	349	40.672	-4.121	66.151	1.00 14.07	В
	MOTA	5093	CB	THR	349	41.515	-3.400	65.081	1.00 14.87	В
	MOTA	5094	OG1	THR	349	41.887	-2.096	65.535	1.00 17.94	В
15	MOTA	5095	CG2	THR	349	40.738	-3.238	63.828	1.00 15.48	В
	MOTA	5096	С	THR	349	39.992	-5.321	65.493	1.00 16.16	. в
	MOTA	5097	ō	THR	349	38.770	-5.325	65.282	1.00 15.82	В
	ATOM	5098	Ň	LEU	350	40.777	-6.339	65.157	1.00 15.00	В
	MOTA	5099	CA	LEU	350	40.226	-7.518	64.508	1.00 15.08	В
20	ATOM	5100	СВ	LEU	350	41.352	-8.496	64.206	1.00 14.08	В
20								62.812	1.00 10.95	В
	ATOM	5101	CG	LEU	350	41.963	-8.503			
	MOTA	5102		LEU	350	42.004	-7.143	62.214	1.00 10.81	В
	MOTA	5103	CD2		350	43.347	-9.038	62.947	1.00 11.99	В
25	MOTA	5104	¢	LEU	350	39.162	-8.172	65.367	1.00 16.48	₿
25	MOTA	5105	0	LEU	350	38.132	-8.595	64.876	1.00 17.28	В
	MOTA	5106	N	GLU	351	39.443	-8.254	66.658	1.00 18.22	В
	MOTA	5107	CA	GLU	351	38.514	-8.842	67.609	1.00 19.87	В
	MOTA	5108	CB	GLU	351	39.144	-8.846	69.003	1.00 21.84	В
	MOTA	5109	CG	GLU	351	38.494	-9.791	69.965	1.00 26.42	В
30	MOTA	5110	CD	GLU	351		-11.196	69.403	1.00 30.21	· в
	ATOM	5111		GLU	351		-11.771	69.051	1.00 29.53	В
	ATOM	5112	OE2	GLU	351	37.289	-11.724	69.309	1.00 32.89	В
	ATOM	5113	C	GLU	351	37.217	-8.024	67.646	1.00 19.18	В
									1.00 19.18	
35	MOTA	5114	0	GLU	351	36.126	-8.569	67.714		В
33	MOTA	5115	N	TYR	352	37.368	-6.703	67.603	1.00 18.87	В
	MOTA	5116	CA	TYR	352	36.258	-5.756	67.646	1.00 17.30	В
	MOTA	5117	CB	TYR	352	36.816	-4.348	67.891	1.00 14.25	В
	MOTA	5118	CG	TYR	352	35.794	-3.239	68.039	1.00 11.72	В
	MOTA	5119	CD1	TYR	352	35.105	-2.729	66.933	1.00 11.26	В
40	MOTA	5120	CE1	TYR	352	34.220	-1.649	67.067	1.00 11.17	В
	MOTA	5121	CD2	TYR	352	35.570	-2.654	69.282	1.00 10.15	В
	MOTA	5122	CE2	TYR	352	34.699	-1.584	69.433	1.00 9.37	В
	MOTA	5123	CZ	TYR	352	34.024	-1.078	68.322	1.00 11.62	В
	ATOM	5124	ОН	TYR	352	33.175	0.010	68.445	1.00 14.22	В
45	ATOM	5125	c	TYR	352	35.442	-5.814	66.362	1.00 18.80	В
	MOTA	5126	õ	TYR	352	34.217	-5.852	66.407	1.00 19.93	В
	MOTA	5127	N	ALA	353	36.115	-5.822	65.216	1.00 18.33	В
					353		-5.891	63.951	1.00 17.31	В
	MOTA	5128	CA	ALA		35.406			1.00 17.31	
50	MOTA	5129	СВ	ALA	353	36.359	-5.698	62.821		В
<i>5</i> 0	MOTA	5130	C	ALA	353	34.680	-7.221	63.785	1.00 18.36	В
	MOTA	5131	0	ALA	353	33.542	-7.249	63.365	1.00 18.10	В
	MOTA	5132	N	HIS	354	35.354	-8.319	64.119	1.00 19.39	В
	MOTA	5133	CA	HIS	354	34.779	-9.661	63.994	1.00 20.34	В
	ATOM	5134	CB	HIS	354	35.761	-10.712	64.509	1.00 22.75	В
55	MOTA	5135	CG	HIS	354	35.302	-12.121	64.294	1.00 25.34	В
	MOTA	5136	CD2	HIS	354	34.797	-13.031	65.156	1.00 25.57	В
	MOTA	5137	ND1		354	35.311	-12.725	63.053	1.00 25.77	В
	MOTA	5138	CE1		354		-13.948	63.164	1.00 26.03	В
	MOTA	5139	NE2		354		-14.162	64.427	1.00 26.67	В
60	MOTA	5140	C	HIS	354	33.486	-9.811	64.796	1.00 20.23	B
00	ATOM	5141	Ö	HIS	354		-10.417	64.352	1.00 18.53	В
	MOTA	5142	N	ARG	355	33.505	-9.255	65.995	1.00 20.24	В
	MOTA	5143	CA	ARG	355	32.370	-9.285	66.891	1.00 20.90	В
65	ATOM	5144	CB	ARG	355	32.823	-8.721	68.239	1.00 20.70	В
65	MOTA	5145	CG	ARG	355	31.789	-8.672	69.339	1.00 21.77	В
	MOTA	5146	CD	ARG	355	32.433	-8.121	70.598	1.00 22.76	В
	MOTA	5147	NE	ARG	355	31.461	-7.943	71.673	1.00 27.66	В
	MOTA	5148	CZ	ARG	355	30.820	-8.942	72.281	1.00 31.26	В
	MOTA	5149	NH1		355		-10.206	71.921	1.00 31.17	В
70	MOTA	5150	NH2		355	29.965	-8.679	73.262	1.00 31.12	В
-	ATOM	5151		ARG	355	31.177	-8.513	66.305	1.00 21.80	В
	ATOM	5152	ŏ	ARG	355	30.040	-8.932	66.453	1.00 23.53	В
	MOTA	5153	N	ALA	356	31.442	-7.394	65.634	1.00 21.31	В
	AION	3133	14	nun	230	J1.976		33.034		

	АТОМ	5154	CA	ALA	356	30.3	375	-6.586	65.049	1.00 20.41	В
	MOTA	5155	CB	ALA	356	30.9	924	-5.282	64.583	1.00 20.58	В
	MOTA	5156	С	ALA	356	29.6		-7.256	63.902	1.00 20.99	В
_	MOTA	5157	0	ALA	356	28.5		-6.796	63.543	1.00 19.69	В
5	MOTA	5158	N	LYS	357	30.1		-8.328	63.340	1.00 22.58	В
	MOTA	5159	CA	LYS	357	29.5		-9.081	62.225	1.00 22.82	В
	MOTA	5160	CB CG	LYS	357 357	30.3 31.7		-10.371 -10.194	61.911 61.443	1.00 23.14 1.00 25.46	B B
	ATOM ATOM	5161 5162	CD	LYS LYS	357	31.8		-10.194	59.983	1.00 27.85	В
10	MOTA	5163	CE	LYS	357	31.6		-12.104	59.763	1.00 27.26	В
10	ATOM	5164	NZ	LYS	357			-12.966	60.485	1.00 27.32	B
	MOTA	5165	C	LYS	357	28.1		-9.551	62.594	1.00 23.74	В
	ATOM	5166	0	LYS	357	27.3		-9.635	61.755	1.00 22.43	В
	MOTA	5167	N	ASN	358	28.0	16	-9.845	63.876	1.00 25.58	В
15	MOTA	5168	CA	ASN	358			-10.306	64.388	1.00 28.23	В
	MOTA	5169	CB	ASN	358			-10.928	65.766	1.00 28.39	В
	MOTA	5170	CG	ASN	358			-12.105	65.742	1.00 29.97	В
	MOTA	5171		ASN	358	28.2		-12.649	66.778	1.00 31.69	В
20	MOTA MOTA	5172 5173		ASN ASN	358 358	28.2 25.6		-12.506 -9.270	64.551 64.476	1.00 29.57	B B
20	MOTA	5174	C O	ASN	358	24.4		-9.619	64.845	1.00 30.00	В
	MOTA	5175	N	ILE	359	25.8		-8.011	64.152	1.00 31.11	В
	MOTA	5176	CA	ILE	359	24.8		-6.986	64.176	1.00 32.09	В
	ATOM	5177	СВ	ILE	359	25.4		-5.604	64.142	1.00 31.91	В
25	MOTA	5178	CG2	ILE	359	24.3		-4.569	64.136	1.00 30.39	· B
	MOTA	5179	CG1	ILE	359	26.3	75	-5.433	65.361	1.00 32.12	В
	MOTA	5180	CD1	ILE	359	27.1	69	-4.134	65.382	1.00 34.29	В
	MOTA	5181	С	ILE	359	23.9		-7.152	62.984	1.00 33.89	В
20	MOTA	5182	0	ILE	359	24.3		-7.355	61.843	1.00 32.83	В
30	MOTA	5183	N	LEU	360	22.6		-7.080	63.256	1.00 36.27	В
	MOTA	5184	CA CB	LEU	360 360	21.5		-7.249 -8.381	62.211	1.00 39.23	B B
	MOTA MOTA	5185 5186	CG	LEU	360	20.6 19.4		-8.742	62.583 61.609	1.00 44.94	В
	ATOM	5187		LEU	360	20.0		-9.122	60.240	1.00 44.70	В
35	ATOM	5188		LEU	360	18.6		-9.901	62.188	1.00 45.24	В
-	ATOM	5189	C	LEU	360	20.8		-5.970	62.028	1.00 39.70	В
	MOTA	5190	O	LEU	360	20.2		-5.429	62.994	1.00 39.55	В
	MOTA	5191	N	ASN	361	20.7		-5.509	60.777	1.00 40.33	В
40	MOTA	5192	CA	ASN	361	19.9	89	-4.286	60.413	1.00 39.80	В
40	MOTA	5193	CB	ASN	361	20.8		-3.358	59.573	1.00 40.62	В
	MOTA	5194	CG	ASN	361	22.0		-2.798	60.350	1.00 41.69	В
	ATOM	5195		ASN	361	22.8		-2.087	59.792	1.00 41.21	В
	ATOM	5196		ASN	361	22.1		-3.109	61.633	1.00 41.78	В
45	ATOM ATOM	5197 5198	С 0	ASN ASN	361 361	18.7 18.6		-4.575 -5.637	59.575 58.974	1.00 40.40 1.00 41.33	B B
43	ATOM	5199	N	LYS	362	17.8		-3.604	59.535	1.00 40.64	В
	MOTA	5200	CA	LYS	362	16.5		-3.687	58.795	1.00 40.39	В
	ATOM	5201	СВ	LYS	362	16.8		-3.781	57.283	1.00 38.42	В
	MOTA	5202	CG	LYS	362	17.2		-2.481	56.664	1.00 37.04	В
50	ATOM	5203	CD	LYS	362	17.3	12	-2.553	55.151	1.00 35.58	В
	MOTA	5204	CE	LYS	362	15.9		-2.479	54.570	1.00 35.06	В
	MOTA	5205	NZ	LYS	362	15.2		-1.182	54.828	1.00 33.80	В
	MOTA	5206	C	LYS	362	15.6		-4.833	59.222	1.00 40.02	В
55	MOTA	5207	0	LYS	362	15.3		-5.705	58.378	1.00 41.01	В
55	MOTA MOTA	5208 5209	MG	MG	362 2602	15.2 43.4		-4.848 10.556	60.404 59.883	1.00 38.46 1.00 1.46	В
	ATOM	5238	PB	ADP	2600	44.5		7.110	60.307	1.00 12.39	. ADP
	ATOM	5239	01B		2600	45.1		7.724	61.540	1.00 6.06	ADP
	MOTA	5240	02B		2600	44.0		5.627	60.595	1.00 9.47	ADP
60	ATOM	5241	03B		2600	43.4		7.932	59.799	1.00 9.32	ADP
	MOTA	5242	PA	ADP	2600	45.9		7.683	57.885	1.00 15.76	ADP
	MOTA	5243	01A	ADP	2600	44.9	10	7.319	56.926	1.00 19.46	ADP
	MOTA	5244	02A		2600	45.8		9.129	58.130	1.00 18.59	ADP
45	MOTA	5245	03A		2600	45.6		6.908	59.185	1.00 14.04	ADP
65	MOTA	5246	05*		2600	47.4		7.404	57.328	1.00 19.34	ADP
	MOTA	5247	C5*		2600	48.4		6.585	57.824	1.00 22.53	ADP
	MOTA	5248	C4*		2600	49.6		6.801	56.820	1.00 24.49	ADP
	MOTA	5249 5250	04* C3*		2600 2600	49.7 49.5		5.604 7.928	56.098 55.757	1.00 26.34	ADP ADP
70	ATOM ATOM	5250 5251	03*		2600	50.6		8.755	55.611	1.00 24.13	ADP
, ,	ATOM	5252	C2*		2600	49.1		7.243	54.456	1.00 25.11	ADP
	MOTA	5253	02*		2600	49.6		7.905	53.303	1.00 27.28	ADP
	MOTA	5254	C1*		2600	49.6		5.829	54.676	1.00 26.94	ADP

```
MOTA
              5255
                              2600
                                         48.736
                                                  4.765 54.191 1.00 27.64
                   N9
                        ADP
                                                                                   ADP
       MOTA
              5256
                    C8
                        ADP
                              2600
                                         47.767
                                                  4.193
                                                         54.941
                                                                  1.00 26.96
                                                                                   ADP
              5257
       ATOM
                    N7
                              2600
                                         47.150
                                                         54.228
                                                                  1.00 29.21
                                                                                   ADP
                        ADP
                                                  3.292
       ATOM
              5258
                        ADP
                              2600
                                         47.690
                                                         53.027
                                                                  1.00 29.55
                                                                                   ADP
                    C5
                                                  3.269
 5
                                         47.466
       ATOM
              5259
                    C6
                        ADP
                              2600
                                                  2.525
                                                         51.857
                                                                  1.00 29.68
                                                                                   ADP
       MOTA
              5260
                    N6
                        ADP
                              2600
                                         46.495
                                                  1.606
                                                         51.861
                                                                  1.00 29.43
                                                                                   ADP
       MOTA
              5261
                    N1
                              2600
                                         48.250
                                                  2.751
                                                         50.704
                                                                  1.00 30.06
                                                                                   ADP
                        ADP
              5262
                                         49.252
                                                         50.678
                                                                 1.00 29.27
       MOTA
                    C2
                        ADP
                              2600
                                                  3.696
                                                                                   ADP
       MOTA
              5263
                    N3
                        ADP
                              2600
                                         49.466
                                                  4.411
                                                         51.827
                                                                  1.00 29.94
                                                                                   ADP
10
                                        48.711
                                                  4.230
                                                         52.991
                                                                 1.00 28.23
                                                                                   ADP
              5264
                        ADP
                              2600
       ATOM
                    C4
                        4-2A
4-2A
                                                                  1.00 25.59
                                        42.197
                                                 14.937
                                                         49.097
       MOTA
              5291
                    C1
                                                                                   4-2A
                                1
                                        41.920
                                                                 1.00 25.74
                                                 14.433
                                                         47.714
                                                                                   4-2A
       MOTA
              5292
                    C2
                                 1
                                        41.044
                                                                  1.00 26.03
       MOTA
              5293
                    C3
                        4-2A
                                 1
                                                 15.120
                                                         46.829
                                                                                   4-2A
       MOTA
              5294
                    C4
                        4-2A
                                 1
                                        40.929
                                                 14.774
                                                         45.500
                                                                  1.00 26.67
                                                                                   4-2A
15
              5295
                    C5
                        4-2A
                                        41.663
                                                 13.715
                                                         44.991
                                                                 1.00 25.62
                                                                                   4-2A
       MOTA
              5296
                        4-2A
                                        42.514
                                                 12.931
                                                         45.817
                                                                  1.00 25.53
       MOTA
                    C6
                                                                                   4-2A
                                                         47.201
                                                                  1.00 25.82
       MOTA
              5297
                    C7
                        4-2A
                                 1
                                        42.617
                                                 13.291
                                                                                   4-2A
              5298
                    012 4-2A
                                        43.246
                                                 11.914
                                                         45.291
                                                                  1.00 25.59
       MOTA
                                 1
                                                                                   4-2A
                                                                 1.00 26.54
              5299
                    C14 4-2A
                                        40.974
                                                 14.917
                                                         49.926
                                                                                   4-2A
       MOTA
                                 1
20
                                                                 1.00 26.66
      ATOM
              5300
                    C15 4-2A
                                        40.461
                                                16.085
                                                         50.528
                                                                                   4-2A
                                 1
                                                         50.551
                                                                 1.00 26.17
                                                                                   4-2A
                    C16 4-2A
                                        41.255
                                                 17.420
       MOTA
              5301
                                 1
                                                         49.404
                                                                 1.00 26.31
                                                                                   4-2A
       MOTA
              5302
                    C17 4-2A
                                 1
                                        42.265
                                                 17.452
       ATOM
              5303
                    N18 4-2A
                                 1
                                        42.979
                                                 16.179
                                                         49.355
                                                                  1.00 26.30
                                                                                   4-2A
       MOTA
              5304
                    C22 4-2A
                                 1
                                        43.422
                                                18.425
                                                         49.565
                                                                 1.00 25.84
                                                                                   4-2A
25
       MOTA
              5305
                    N23 4-2A
                                 1
                                        44.551
                                                 17.713
                                                         49.505
                                                                 1.00 25.90
                                                                                   4-2A
              5306
                    C24 4-2A
                                        44.289
                                                16.370
                                                         49.394
                                                                 1.00 26.52
                                                                                   4-2A
      ATOM
                    N26 4-2A
                                                13.877
      MOTA
              5307
                                 1
                                        40.109
                                                         50.027
                                                                  1.00 26.97
                                                                                   4-2A
              5308
                    C27 4-2A
                                 1
                                        38.991
                                                14.325
                                                         50.732
                                                                 1.00 26.51
                                                                                   4-2A
      MOTA
      MOTA
              5309
                    C28 4-2A
                                        39.211
                                                 15.740
                                                         51.093
                                                                 1.00 27.62
                                                                                   4-2A
                                 1
30
                                                                 1.00 26.04
                    C29 4-2A
                                        37.745
                                                 13.725
                                                         51.140
                                                                                   4-2A
      ATOM
              5310
                                 1
      ATOM
              5311
                    C30 4-2A
                                 1
                                        36.783
                                                14.431
15.782
                                                         51.909
                                                                 1.00 26.80
                                                                                   4-2A
                    C31 4-2A
                                                                 1.00 27.44
                                                                                   4-2A
              5312
                                        37.035
                                                         52.312
      ATOM
                                 1
                                                         51.892
                                                                 1.00 27.46
      MOTA
             5313
                    C32 4-2A
                                 1
                                        38.217
                                                16.439
                                                                                   4-2A
      MOTA
             5314
                    037 4-2A
                                 1
                                        43.236
                                                19.647
                                                         49.683
                                                                 1.00 24.48
                                                                                   4-2A
35
      MOTA
             5315
                    O38 4-2A
                                 1
                                        45.096
                                                15.436
                                                         49.375
                                                                 1.00 27.32
                                                                                   4-2A
      MOTA
             5316
                    C39 4-2A
                                 1
                                        45.831
                                                18.372
                                                         49.744
                                                                 1.00 25.80
                                                                                   4-2A
      END
```

TABLE 5

```
40
                 1 kin_16dpb molecule B
       REMARK
       REMARK r= 0.2114 free_r= 0.2639
       REMARK rmsd bonds= 0.006712 rmsd angles= 1.32262

REMARK B rmsd for bonded mainchain atoms= 1.570 target= 1.5

REMARK B rmsd for bonded sidechain atoms= 2.570 target= 2.0

REMARK B rmsd for angle mainchain atoms= 2.729 target= 2.0

REMARK B rmsd for angle sidechain atoms= 3.936 target= 2.5
45
       REMARK sg= P2(1)2(1)2(1) a= 69.48 b= 79.54 c= 158.98 alpha= 90. beta= 90. gamma= 90.
       REMARK reflection file= k2a.cv
50
       REMARK B-correction resolution: 6.0 - 2.5
       REMARK FILENAME="kin_16dpb.pdb"
       MOTA
                 788 N
                           GLU
                                   116
                                              39.151
                                                         9.227
                                                                 52.663
                                                                           1.00 8.87
                                                                                               ₿
                 789 CA GLU
                                              39.430
                                                       10.450
                                                                 51.915
                                                                                  8.17
       MOTA
                                   116
                                                                           1.00
                                                                                               В
                                              39.921
       ATOM
                 790
                      CB
                           GLU
                                   116
                                                        11.534
                                                                 52.868
                                                                           1.00
                                                                                  8.92
                                                                                               В
55
                                              38.920
                                                       11.894
       MOTA
                 791
                       CG
                           GLU
                                   116
                                                                 53.939
                                                                           1.00 12.15
                                                                                               В
                                                       13.091
                                                                 54.738
                            GLU
                                              39.349
                                                                           1.00 15.35
       MOTA
                 792
                       CD
                                   116
                                                                                               R
                                              40.362
       MOTA
                 793
                       OE1
                           GLU
                                   116
                                                       13.717
                                                                 54.354
                                                                           1.00 17.99
                                                                                               В
       MOTA
                 794
                       OE2
                           GLU
                                   116
                                              38.678
                                                        13.410
                                                                 55.737
                                                                           1.00 15.94
       MOTA
                 795
                       С
                            GLU
                                   116
                                              40.426
                                                        10.321
                                                                 50.784
                                                                           1.00
                                                                                  8.20
                                                                                               В
60
       MOTA
                 796
                            GLU
                                   116
                                              40.163
                                                       10.736
                                                                 49.657
                                                                           1.00
                                                                                  4.89
       MOTA
                 797
                       N
                           GLY
                                   117
                                              41.577
                                                         9.744
                                                                 51.097
                                                                           1.00
                                                                                  9.09
                                                                                               В
                                              42.619
                 798
                                   117
                                                         9.608
                                                                 50.104
                                                                           1.00 10.26
       ATOM
                       CA
                           GLY
                                                                                               В
                                                                           1.00 11.18
                                              43.531
                                                       10.819
                                                                 50.183
       ATOM
                 799
                       С
                           GLY
                                   117
                                                                                               В
                                              43.289
                                                       11.751
                                                                 50.951
                                                                           1.00 10.98
       ATOM
                 800
                       Ω
                           GLY
                                   117
                                                                                               В
65
                                                       10.813
                                                                           1.00 13.18
       MOTA
                 801
                      N
                           GLU
                                   118
                                              44.590
                                                                 49.389
                                                                                               В
       ATOM
                 802
                       CA
                           GLU
                                   118
                                              45.531
                                                       11.922
                                                                 49.386
                                                                           1.00 14.36
                                                                                               В
       MOTA
                 803
                       CB
                           GLU
                                   118
                                              46.849
                                                       11.498
                                                                 50.043
                                                                           1.00 15.18
                                                                                               В
                           GLU
                                   118
                                              46.685
                                                       10.756
                                                                 51.363
                                                                           1.00 21.23
       MOTA
                 804
                       CG
                                                                                               В
                                              48.014
                                                       10.310
                                                                 51.970
                                                                           1.00 24.46
       ATOM
                 805
                       CD
                           GLU
                                   118
70
                                                                           1.00 27.49
       MOTA
                 806
                       OE1 GLU
                                   118
                                              48.894
                                                         9.845
                                                                 51.215
                 807
                       OE2 GLU
                                   118
                                              48.177
                                                       10.413
                                                                 53.205
                                                                           1.00 26.10
                                                                                               В
       MOTA
```

		200	_		110	45 770		42 033		_
	MOTA MOTA	808 809	C O	GLU		45.770 45.126	12.281 11.734	47.933 47.041	1.00 13.80	B B
	MOTA	810	N	ARG	119	46.689	13.201	47.685	1.00 14.44	В
	MOTA	811	CA	ARG	119	46.984	13.568	46.315	1.00 14.66	В
5	ATOM	812	СВ	ARG	119	47.120	15.088	46.167	1.00 12.36	В
	MOTA	813	CG	ARG	119	45.879	15.905	46.518	1.00 11.10	В
	MOTA	814	CD	ARG	119	44.628	15.371	45.842	1.00 12.06	В
	MOTA	815	NE	ARG	119	44.829	15.087	44.422	1.00 13.81	В
10	MOTA	816	CZ	ARG	119	44.750	15.992	43.451	1.00 14.81	В
10	MOTA	817		ARG	119	44.464	17.257	43.742	1.00 13.37	В
	MOTA	818		ARG	119	44.964	15.632	42.189	1.00 11.75	В
	MOTA MOTA	819 820	C O	ARG ARG	119 119	48.288 49.253	12.911 12.857	45.889 46.662	1.00 16.73 1.00 17.59	B B
	MOTA	879	N	TRP	127	42.371	15.847	40.233	1.00 17.39	В
15	MOTA	880	CA	TRP	127	41.717	15.171	41.335	1.00 16.78	В
	MOTA	881	СВ	TRP	127	40.912	16.167	42.178	1.00 14.46	В
	MOTA	882	CG	TRP	127	39.646	16.618	41.539	1.00 10.93	В
	MOTA	883	CD2	TRP	127	38.365	15.996	41.664	1.00 8.71	В
20	MOTA	884		TRP	127	37.452	16.770	40.915	1.00 9.40	В
20	MOTA	885		TRP	127	37.901	14.857	42.334	1.00 7.23	В
	MOTA	886		TRP	127	39.474	17.709	40.738	1.00 10.58	В
	MOTA	887		TRP	127	38.153	17.810	40.361	1.00 8.88	В
	MOTA	888		TRP TRP	127 127	36.095 36.545	16.446 14.526	40.820	1.00 9.55 1.00 9.73	В
25	MOTA MOTA	889 890			127	35.659	15.324	41.488	1.00 9.73	B B
23	MOTA	891	C	TRP	127	40.828	14.002	40.941	1.00 17.94	В
	ATOM	892	ŏ	TRP	127	40.817	12.978	41.621	1.00 18.94	В
	MOTA	911	N	ASP	130	43.130	10.872	40.183	1.00 18.67	В
	MOTA	912	CA	ASP	130	44.174	10.489	41.121	1.00 17.72	В
30	MOTA	913	CB	ASP	130	44.298	11.534	42.229	1.00 15.27	В
	MOTA	914	CG	ASP	130	45.675	11.545	42.859	1.00 16.56	В
	MOTA	915		ASP	130	46.157	10.473	43.285	1.00 15.04	В
	MOTA	916		ASP	130	46.277	12.634	42.930	1.00 16.73	В
35	MOTA	917	C	ASP	130	43.921	9.115	41.733	1.00 16.61 1.00 19.40	В
55	MOTA MOTA	918 926	O N	ASP LEU	130 132	42.931 45.069	8.905 7.791	42.430 44.240	1.00 15.09	B B
	MOTA	927	CA	LEU	132	45.118	7.772	45.703	1.00 13.05	В
	ATOM	928	СВ	LEU	132	46.379	8.487	46.227	1.00 10.29	В
	ATOM	929	CG	LEU	132	47.765	7.870	45.930	1.00 14.23	В
40	ATOM	930		LEU	132	48.877	8.709	46.609	1.00 8.52	В
	MOTA	931	CD2	LEU	132	47.829	6.414	46.429	1.00 11.00	В
	MOTA	932	С	LEU	132	43.858	8.395	46.310	1.00 12.82	В
	ATOM	933	0	LEU	132	43.719	8.473	47.534	1.00 11.90	В
45	MOTA	934	N	ALA	133	42.936	8.833	45.457	1.00 12.47	В
73	MOTA MOTA	935 936	CA CB	ALA ALA	133 133	41.681 40.826	9.414 9.884	45.936 44.755	1.00 12.78 1.00 11.66	B B
	MOTA	937	C	ALA	133	40.928	8.356	46.742	1.00 11.00	В
	ATOM	938	ŏ	ALA	133	40.991	7.163	46.431	1.00 13.92	В
	MOTA	939	N	GLY	134	40.217	8.798	47.776	1.00 14.68	В
50	MOTA	940	CA	GLY	134	39.483	7.870	48.619	1.00 13.15	В
	ATOM	941	С	GLY	134	38.016	7.752	48.262	1.00 14.05	В
	MOTA	942	0	GLY	134	37.574	8.262	47.228	1.00 12.84	В
	MOTA	951	N	ILE	136	35.223	9.141	49.530	1.00 10.60	В
55	MOTA	952	CA	ILE	136	34.466	10.377	49.379	1.00 10.62	В
55	ATOM ATOM	953 954	CB CG2	ILE	136 136	34.843 34.175	11.386 12.721	50.482 50.231	1.00 10.47 1.00 8.18	В
	MOTA	955	CG1		136	34.173	10.847	51.839	1.00 10.73	B B
	ATOM	956	CD1		136	34.760	11.746	53.047	1.00 13.23	В
	MOTA	957	c	ILE	136	34.553	11.030	47.995	1.00 11.05	В
60	ATOM	958	Ō	ILE	136	33.531	11.296	47.373	1.00 10.67	В
	MOTA	959	N	PRO	137	35.765	11.303	47.492	1.00 11.64	В
	MOTA	960	CD	PRO	137	37.100	11.313	48.114	1.00 11.30	В
	MOTA	961	CA	PRO	137 -	35.793	11.924	46.162	1.00 11.06	В
65	MOTA	962	CB	PRO	137	37.237	12.410	46.031	1.00 10.03	В
65	ATOM	963	CG	PRO	137	38.002	11.469	46.911	1.00 11.65	В
	MOTA	964	C	PRO	137	35.369	10.997	45.019	1.00 11.97	В
	ATOM	965 1145	O N	PRO	137	34.867	11.455	43.989	1.00 11.71	В
	MOTA MOTA	1145 1146	N CA	LEU	160 160	29.446 30.595	18.027 17.478	56.397 57.077	1.00 13.49 1.00 13.18	B B
70	MOTA	1147		LEU	160	31.883	18.025	56.470	1.00 13.18	В
. •	MOTA	1148		LEU	160	33.175	17.477	57.068	1.00 13.62	В
	ATOM	1149	CD1		160	33.056	15.961	57.243	1.00 13.33	В
	ATOM	1150	CD2		160	34.343	17.846	56.166	1.00 13.39	В

WO 2004/004652

	а т∙ом	1151	_	7 611	160	2.0	402	17 067	50 543	1 00	12 00	D
	MOTA MOTA	1151 1152	С О	LEU).492).883	17.857 18.956	58.543 58.947		13.90	B B
	ATOM	1564	N	TYR	211		5.581	19.271	44.173		18.55	В
	ATOM	1565	CA	TYR			.924	19.418	44.731		18.51	В
5	ATOM	1566	CB	TYR	211		.994	19.405	43.637		15.05	В
	ATOM	1567	CG	TYR	211	39	.385	19.255	44.201	1.00	14.52	В
	MOTA	1568	CD1	TYR	211	39	.721	18.153	44.981		15.06	В
	MOTA	1569	CE1	TYR	211	40	.989	18.023	45.540	1.00	14.43	В
10	MOTA	1570		TYR	211		.359	20.232	43.988		13.72	В
10	MOTA	1571	CE2		211		.629	20.112	44.541		12.86	В
	ATOM	1572	CZ	TYR	211		.937	19.003	45.316		13.41	В
	MOTA	1573	ОН	TYR	211		.192	18.863	45.864		13.57	В
	MOTA MOTA	1574 1575	С 0	TYR TYR	211 211		.567	20.683 20.640	45.575 46.688		19.47 21.09	B B
15	ATOM	1593	N	LEU	214		.512	20.128	48.935		13.24	В
10	ATOM	1594	CA	LEU	214		.304	19.274	49.805		13.61	В
	ATOM	1595	CB	LEU	214		.778	18.022	49.055		11.20	В
	ATOM	1596	CG	LEU	214		.695	17.141	48.423		12.16	В
	ATOM	1597	CD1	LEU	214	36	.340	15.933	47.756	1.00	10.83	В
20	MOTA	1598	CD2	LEU	214	34	.703	16.686	49.485	1.00	11.84	В
	MOTA	1599	С	LEU	214		.503	20.063	50.332		14.64	В
	MOTA	1600	0	LEU	214		.903	19.885	51.476		16.56	В
	ATOM	1601	N	GLU	215		.065	20.946	49.506		16.42	B
25	ATOM	1602	CA	GLU	215		.216	21.748	49.930		18.40	В
25	ATOM ATOM	1603	CB CG	GLU GLU	215 215		.764 .428	22.595 21.819	48.781 47.673		18.89 21.62	B B
	ATOM	1604 1605	CD	GLU	215		.989	22.739	46.598		25.34	В
	MOTA	1606		GLU	215		.227	22.957	46.572		24.25	В
	ATOM	1607		GLU	215		.182	23.256	45.788		24.35	В
30	ATOM	1608	C	GLU	215		.856	22.676	51.077		17.37	в.
	ATOM	1609	0	GLU	215	39	.600	22.779	52.053	1.00	17.62	В
	MOTA	1619	N	GLY	217		.574	22.385	53.343	1.00	17.13	В
	MOTA	1620	CA	GLY	217		.448	21.651	54.586		16.36	В
25	MOTA	1621	C	GLY	217		.821	21.367	55.173		16.18	В
35	MOTA	1622	0	GLY	217		.044	21.542	56.378		15.76	В
	ATOM	1623	N	ALA	218		.746	20.934	54.322		15.35	В
	MOTA MOTA	1624 1625	CA CB	ALA ALA	218 218		.105 .923	20.629 20.071	54.763 53.596		15.51 14.52	B B
	MOTA	1626	С	ALA	218		.806	21.849	55.356		14.85	В
40	MOTA	1627		ALA	218		.470	21.745	56.386		15.80	B
- •	ATOM	1642	N	ARG	221		.496	22.571	58.714		13.46	В
	MOTA	1643	CA	ARG	221		.917	21.498	59.606		14.10	В
	MOTA	1644	CB	ARG	221	39	. 866	20.171	58.853	1.00	13.82	В
4-	MOTA	1645	CG	ARG	221	39	.982	18.949	59.723	1.00	18.08	В
45	MOTA	1646	CD	ARG	221		.939	17.690	58.874		19.00	В
	MOTA	1647	NE	ARG	221		.585	17.167	58.725		18.62	В
	MOTA	1648	CZ	ARG	221		.226	16.296	57.788		20.44	В
	MOTA	1649 1650		ARG	221		.122	15.860	56.905 57.751		20.22	B
50	MOTA MOTA	1651	C	ARG ARG	221 221		.980 .331	15.839 21.780	60.137		16.95 14.31	B B
50	ATOM	1652	ō	ARG	221		.669	21.408	61.271		14.60	В
	ATOM	1777	N	PHE	239		. 844	12.531	56.963		10.36	В
	ATOM	1778	CA	PHE	239		.590	13.199	55.695		10.45	В
	MOTA	1779	CB	PHE	239		. 785	13.041	54.753	1.00	10.20	В
55	MOTA	1780	CG	PHE	239	31	.691	13.879	53.513	1.00	7.76	В
	MOTA	1781		PHE	239		. 822	13.533	52.479	1.00	7.06	В
	MOTA	1782		PHE	239		.466	15.026	53.386	1.00	6.02	В
	MOTA	1783		PHE	239		.729	14.329	51.327	1.00	7.31	В
60	MOTA	1784		PHE	239		. 384	15.829	52.242	1.00	6.13	В
OU	ATOM	1785	CZ	PHE	239		.516	15.483	51.210	1.00	5.13	В
	ATOM	1786	C	PHE	239		.350	12.555	55.085		12.53	В
	MOTA MOTA	1787 2624	O MG	PHE MG	239 2602		.360 .714	11.369 10.353	54.734 59.884		12.06 13.44	В
•	MOTA	2625	PB	ADP	2602		. 677	7.176	60.125	1.00	9.41	ADP
65	MOTA	2626		ADP	2600		207	7.814	61.350		10.96	ADP
	ATOM	2627		ADP	2600		169	5.685	60.429		12.45	ADP
	ATOM	2628		ADP	2600		584	7.969	59.545	1.00	8.39	ADP
	ATOM	2629	PA	ADP	2600		112	7.788	57.787		12.25	ADP
7 0	MOTA	2630	01A	ADP	2600	45.	124	7.466	56.774	1.00	14.66	ADP
70	MOTA	2631	02A		2600		054	9.225	58.059		14.40	ADP
	MOTA	2632	03A		2600		825	7.002	59.093	1.00	9.50	ADP
	MOTA	2633	05*		2600		568	7.490	57.279		16.91	ADP
	MOTA	2634	C5*	ADP	2600	48.	603	6.677	57.812	1.00	18.22	ADP

	MOTA	2635	C4*	ADP	2600	49.807	6.826	56.807	1.00 21.00	ADP
	MOTA	2636	04*	ADP	2600	49.837	5.609	56.073	1.00 23.65	ADP
	ATOM	2637	C3*	ADP	2600	49.662	7.936	55.733	1.00 20.88	ADP
_	MOTA	2638	03 *	ADP	2600	50.883	8.668	55.538	1.00 23.91	ADP
5	MOTA	2639	C2*	ADP	2600	49.227	7.250	54.452	1.00 21.72	ADP
	MOTA	2640	02*	ADP	2600	49.726	7.910	53.286	1.00 24.74	ADP
	MOTA	2641	C1 *	ADP	2600	49.720	5.835	54.648	1.00 22.48	ADP
	MOTA	2642	N9	ADP	2600	48.789	4.775	54.145	1.00 22.01	ADP
	MOTA	2643	C8	ADP	2600	47.775	4.231	54.861	1.00 22.26	ADP
10	MOTA	2644	N7	ADP	2600	47.163	3.322	54.140	1.00 24.15	ADP
	MOTA	2645	C5	ADP	2600	47.742	3.257	52.980	1.00 24.22	ADP
	MOTA	2646	C6	ADP	2600	47.552	2.498	51.838	1.00 25.28	ADP
	MOTA	2647	N6	ADP	2600	46.577	1.596	51.801	1.00 26.60	ADP
	MOTA	2648	N1	ADP	2600	48.372	2.684	50.738	1.00 28.22	ADP
15	MOTA	2649	C2	ADP	2600	49.388	3.599	50.736	1.00 27.91	ADP
	MOTA	2650	N3	ADP	2600	49.583	4.338	51.852	1.00 25.85	ADP
	MOTA	2651	C4	ADP	2600	48.803	4.199	52.972	1.00 23.75	ADP
	MOTA	2879	C1	5-2b	1	40.179	14.530	46.990	1.00 27.45	5-2b
	ATOM	2880	C2	5-2b	1	41.169	13.921	47.825	1.00 31.74	5-2b
20	ATOM	2881	C3	5-2b	1	42.197	13.109	47.246	1.00 26.68	5-2b
	MOTA	2882	C4	5-2b	1	42.197	12.949	45.832	1.00 25.21	5-2b
	ATOM	2883	C5	5-2b	1	41.213	13.549	44.997	1.00 25.57	5-2b
	MOTA	2884	C6	5-2b	1	40.174	14.358	45.564	1.00 26.52	5-2b
	MOTA	2885	C7	5-2b	1	41.159	14.149	49.287	1.00 39.17	5-2b
25	MOTA	2886	и8	5-2b	1	40.043	13.644	50.068	1.00 32.24	5-2b
	MOTA	2887	C9	5-2b	1	39.077	14.446	50.550	1.00 31.10	5-2b
	MOTA	2888		5-2b	1	39.335	15.753	50.627	1.00 35.90	5-2b
	MOTA	2889		5-2b	1	40.586	16.353	50.204	1.00 43.34	5-2b
••	MOTA	2890	C12	5-2b	1	41.575	15.550	49.725	1.00 51.84	5-2b
30	MOTA	2891		5-2b	1	43.103	12.325	45.318	1.00 22.27	5-2b
	MOTA	2892	C14	5-2b	1	43.049	15.950	49.559	1.00 69.59	5-2b
	MOTA	2893		5-2b	1	43.510	17.255	49.536	1.00102.78	5-2b
	MOTA	2894		5-2b	1	44.900	17.802	49.405	1.00 94.24	5-2b
25	MOTA	2895		5-2b	1	44.910	19.338	49.209	1.00 96.86	5-2b
35	MOTA	2896		5-2b	1	40.562	17.864	50.356	1.00 41.39	5-2b
	MOTA	2897		5-2b	1	43.806	15.026	49.427	1.00 72.75	5-2b
	MOTA	2898	S20	5-2b	1	37.588	13.867	51.069	1.00 18.63	5-2b
	END									

WHAT IS CLAIMED IS:

5

10

15

1. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table $1 \pm$ the root mean square deviation from the conserved backbone atoms of not more than about 2 Å.

- 2. The crystallized complex of Claim 1, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 1 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 3. The crystallized complex of Claim 1, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- 4. A crystallized complex of KSP and a ligand thereof,
 wherein the relative structural coordinates of the amino acid residues of KSP
 are as set forth in Table 2 ± the root mean square deviation from the
 conserved backbone atoms of said amino acids of not more than about 2 Å.
- 5. The crystallized complex of Claim 4, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 2 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 6. The crystallized complex of Claim 4, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).

7. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table 3 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2 Å.

5

8. The crystallized complex of Claim 7, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 3 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.

10

15

20

25

- 9. The crystallized complex of Claim 7, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- 10. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table 4 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2 Å.
- 11. The crystallized complex of Claim 10, wherein the relative structural coordinates of the amino acid residues are as set forth in Table $4 \pm$ the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 12. The crystallized complex of Claim 10, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- 13. A ligand binding site of a KSP protein comprising the relative structural coordinates set forth in Table $5 \pm$ the root mean square

deviation from the backbone atoms of said amino acids is not more than

PCT/US2003/021145

- 14. The ligand binding site of a KSP protein according to Claim 13 comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids is not more than about 0.5 Å.
- 15. The ligand binding site of a KSP protein according to
 10 Claim 13 comprising the relative structural coordinates of the KSP amino
 acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D),
 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E),
 217(G), 218(A), 221(R) and 239(F) as set forth in a table selected from a
 group consisting of Tables 1, 2, 3 and 4, ± the root mean square deviation
 15 from the backbone atoms of said amino acids is not more than about 2 Å.
 - 16. An agent which binds to the ligand binding site of Claim 13, wherein said agent is an inhibitor of KSP function, or a pharmaceutically acceptable salt thereof.

20

WO 2004/004652

about 2 Å.

- 17. A composition comprising: (a) an agent according to Claim 16; and (b) a pharmaceutically acceptable carrier.
- 18. An agent, or a pharmaceutically acceptable salt thereof, which binds to five or more of the KSP amino acid residues selected from the group consisting of 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), wherein said agent is an inhibitor of KSP function.

- 19. A method for identifying an agent that interacts with a ligand binding site of human KSP, comprising the steps of:
 - (a) determining a ligand binding site of KSP from a threedimensional model of the KSP binding site as set forth in

Table 5, \pm the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; and

(b) performing computer fitting analysis to identify an agent which interacts with said ligand binding site.

5

10

15

25

30

- 20. A method for identifying an agent that interacts with a ligand binding site of human KSP, comprising the steps of:
 - (a) determining a ligand binding site of KSP from a three-dimensional model of KSP using the relative structural coordinates of the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F) as set forth in a Table selected from the group of Tables 1, 2, 3 and 4, ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; and
 - (b) performing computer fitting analysis to identify an agent which interacts with said ligand binding site.
- 20 21. A method for identifying a potential inhibitor of KSP function, comprising the steps of:
 - (a) obtaining a three-dimensional model of a KSP binding site wherein said model contains the relative structural coordinates of the ligand binding site of KSP from a three-dimensional model of the ligand binding site as set forth in Table 5, ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å;
 - (b) employing said three-dimensional model to design or select a potential inhibitor; and
 - (c) synthesizing or obtaining said potential inhibitor.
 - 22. The method according to Claim 21 wherein the potential inhibitor is designed *de novo*.
 - 23. The method of Claim 21, further comprising the steps of:

(d) contacting said potential inhibitor with KSP in the presence of a KSP binding molecule, and

(e) determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

5

10

15

- 24. A method for identifying a potential inhibitor of KSP function, comprising the steps of:
 - (a) generating a three-dimensional model of KSP using the relative structural coordinates as set forth in a table selected from Tables 1, 2, 3 and 4, ± a root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å;
 - (b) employing said three-dimensional model to design or select a potential inhibitor; and
 - (c) synthesizing or obtaining said potential inhibitor.
- 25. The method according to Claim 24 wherein the potential inhibitor is designed *de novo*.

20

- 26. The method of Claim 24, further comprising the steps of:
- (d) contacting said potential inhibitor with KSP in the presence of a KSP binding molecule, and
- (e) determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

25

27. The method of Claim 21, further comprising contacting the potential inhibitor with KSP in the presence of a KSP binding molecule, and determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

30

28. The method of Claim 21, further comprising contacting the potential inhibitor with KSP in the presence of one or two

KSP substrates selected from ATP and microtubules, and determining the effect the potential inhibitor has on KSP ATPase activity.

29. A potential inhibitor identified by the method of5 Claim 21, or a pharmaceutically acceptable salt thereof.

10

15

- 30. A method of identifying an inhibitor compound capable of binding to kinesin spindle protein (KSP), said method comprising:
 - (a) introducing protein coordinates selected from the protein coordinates provided in a table selected from Tables 1, 2, 3 and 4, ± a root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å, into a suitable computer program so as to define a (+)-monastrol ligand binding site conformation, wherein said program displays the three- dimensional structure of the (+)-monastrol ligand binding site;
 - (b) creating a three dimensional representation of the (+)-monastrol ligand binding site in said computer program;
 - displaying and superimposing a three dimensional representation of a test compound on the three dimensional representation of the
 (+)-monastrol ligand binding site;
 - (d) assessing whether said test compound fits spatially into the(+)-monastrol ligand binding site;
 - (e) preparing said test compound that fits spatially into the (+)-monastrol ligand binding site;
- 25 (f) using said test compound in a biological assay for KSP function; and
 - (g) determining whether said test compound inhibits KSP function in said assay.
- 31. A process for identifying a potential anti-mitotic agent which upon binding to a human KSP inhibits cell proliferation, the process comprising the steps of:

(a) obtaining an X-ray diffraction pattern of a human kinesin spindle protein (KSP) crystal, wherein said KSP has been crystallized in the presence of a mixture of at least two potential ligands;

5

(d) determining whether a ligand/KSP complex is formed by comparing the electron density map calculated from the X-ray diffraction pattern of said KSP crystal to the electron density map calculated from an X-ray diffraction pattern set forth in a table selected from Table 1, 2, 3 and 4; and

10

- (c) determining whether said ligand from said ligand/KSP complex binds to the ligand binding site of said KSP according to Claim 15, such that upon binding to KSP said ligand inhibits cell proliferation.
- 32. An anti-mitotic agent identified by the process according to Claim 31, or a pharmaceutically acceptable salt thereof.

15

33. A composition comprising: (a) an anti-mitotic agent identified according to Claim 32; and (b) a pharmaceutically acceptable carrier.

20

25

30

the binding of a ligand to a ligand binding site of a human KSP, said method comprising: modeling test compounds that fit spatially into a KSP ligand binding site using an atomic structural model of a KSP binding site having the relative structural coordinates as set forth in a table selected from the group consisting of Tables 1, 2, 3 and 4 for the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; screening the test compounds in an assay characterized by binding of a ligand to the ligand binding site; and identifying a test compound that modulates binding of said ligand to the KSP at its binding site.

a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecular complex of a compound bound to the ligand binding site of human KSP, said three-dimensional representation comprising the structural coordinates of the KSP as set forth in a table selected from Tables 1-4 or a homologue of said molecular complex, wherein said homologue comprises a binding site that has a root mean square deviation from the backbone atoms of said KSP of not more than about 2.0 Å.

5

10

15

- 36. A method for identifying an anti-mitotic agent which upon binding to a target human KSP inhibits cell proliferation, the method comprising the steps of:
 - (a) obtaining a crystal of KSP, where said KSP has been crystallized while exposed to a mixture of at least two potential ligands;
 - (b) determining whether a ligand/KSP complex is formed in said crystal;
 and
 - (c) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.
- 37. An anti-mitotic agent identified by the method according to Claim 36, or a pharmaceutically acceptable salt thereof.
 - 38. A composition comprising: (a) an anti-mitotic agent according to Claim 37; and (b) a pharmaceutically acceptable carrier.
- 39. A method for determining the three-dimensional structure of a complex of KSP with a ligand thereof, which comprises obtaining X-ray diffraction data for crystals of the complex comprising the

ligand bound to KSP at a ligand binding site; and utilizing said data to define the three-dimensional structure of the complex.

- 40. A method for evaluating the ability of a chemical entity to associate with a ligand binding site of human KSP or with at least a portion of the site or a complex comprising the KSP binding site; said method comprising the steps of:
 - (a) employing computational or experimental means to perform a fitting operation between the chemical entity and said ligand binding site of KSP having the relative structural coordinates as set forth in Table $5 \pm$ the root mean square deviation of not more than about 2.0 Å, thereby obtaining data related to said association; and
 - (b) analyzing the data obtained in step (a) to determine the characteristics of the association between the chemical entity and said KSP or complex.
 - 41. A chemical entity identified by the method of Claim 37, wherein the chemical entity is capable of interfering with the *in vivo* or *in vitro* motor activity of KSP, or a pharmaceutically acceptable salt thereof.

20

30

10

- 42. A composition comprising: (a) a chemical entity identified according to Claim 38; and (b) a pharmaceutically acceptable carrier.
- 43. A method for identifying a potential inhibitor of human kinesin spindle protein (KSP), the method comprising the steps of:
 - (a) providing a three-dimensional structure of a ligand-bound KSP as defined by atomic coordinates set forth in a table selected from a group consisting of Tables 1, 2, 3 and $4 \pm$ the root mean square deviation of not more than about 2.0 Å;
 - (b) comparing the three-dimensional coordinates of the ligand when it is bound to KSP as set forth in Table 1, 2, 3 or $4 \pm$ the root mean square deviation of not more than about 2.0 Å to the three-dimensional coordinates of a compound in a database of compound

(c) selecting from said database at least one compound that is structurally similar to said ligand when it is bound to said KSP, wherein the selected compound is a potential inhibitor of said KSP.

- 5 44. The method of Claim 43, wherein the structural similarity is determined based on the root mean square deviation in the backbone atoms of the kinesin peptide and the kinesin inhibitor.
- 45. A method for identifying a potential inhibitor of a human kinesin spindle protein (KSP), the method comprising the steps of:
 - (a) providing a three-dimensional structure of said KSP as defined by atomic coordinates set forth in a table selected from Tables 1-4 ± the root mean square deviation of not more than about 2.0 Å;
 - (b) employing the three-dimensional structures to design or select a potential inhibitor;
 - (c) synthesizing the potential inhibitor; and
 - (d) contacting the potential inhibitor with KSP to determine the ability of the potential inhibitor to arrest mitosis or inhibit cell proliferation.

20

30

- 46. A potential inhibitor identified by the method of Claim 45 or a pharmaceutically acceptable salt thereof.
- 47. A composition comprising: (a) the potential inhibitor identified according to Claim 46; and (b) a pharmaceutically acceptable carrier.
 - 48. A method of identifying an inhibitor of KSP wherein the inhibitor binds to the ligand binding site according to Claim 13 which comprises determining the shift in the fluorescence of an amino acid residue at position 127 of KSP, wherein said amino acid residue is tryptophan.
 - 49. The method according to Claim 48 which comprises the steps of:

(a) contacting KSP with the test compound and a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for W127 in KSP;

5

(b) contacting KSP with a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for W127 in KSP; and

10

(c) comparing the fluorescence of the mixture of KSP, the test compound and the nucleotide with the fluorescence of the mixture of KSP with the nucleotide alone.

50. An anti-mitotic agent characterized as:

15

(a) specifically binding to the target KSP or an analogue thereof at a ligand binding site comprising the relative structural coordinates of the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F) according to Tables 1, 2, 3 or 4 ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0Å; and

20

(b) which, upon binding to said KSP or an analogue thereof specifically inhibits said KSP or analogs biological activities.

25

- 51. A method of causing the alteration of the structural conformation of a KSP protein which comprises exposing the protein to a ligand that binds to the KSP ligand binding site as set forth in Table $5 \pm$ the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å.
- 52. The method according to Claim 51 wherein the KSP protein is additionally bound to a nucleotide.

53. A method of treating or preventing hyper-proliferative diseases which comprises administering to a mammal a therapeutically effective amount of a compound that binds to the KSP ligand binding site as set forth in Table $5 \pm$ the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å.

- 54. The method according to Claim 53 which is a method of treating or preventing cancer.
- The method according to Claim 54 which is a method of treating cancer.
- 56. An isolated and substantially pure polypeptide or a fragment thereof comprising the amino acid sequence as set forth in SEQ ID NO:1.
- 57. The isolated polypeptide of Claim 56, wherein the polypeptide adopts the conformation of the ligand binding pocket as set forth in Table 5, ± the root mean square deviation of not more than about 2.0 Å.
- 58. A variant of the isolated polypeptide according to Claim 57 having at least about 80% amino acid sequence identity with the polypeptide of Claim 57, wherein the percentage identity is determined with the algorithm Gap, BASEFIT or FASTA in the Wisconsin Genetics Software Package release 7.0, using default Gap weights.
- 59. An active structural motif designated herein as pharmacophore model, which refers to the three-dimensional orientation of a set of features describing the physical, chemical and/or electronic environment of the active site of the human KSP, said features comprising either a hydrophobic region feature, a hydrogen bond acceptor feature and a hydrogen bond donor feature (pharmacophore model in FIG. 14A) or two hydrophobic region features and a hydrogen bond acceptor feature (pharmacophore model in FIG. 14B).

60. A method for screening and identifying potential KSP inhibitor compounds by evaluating the fit of the screened compounds to the pharmacophore models of claim 59.

- 5 61. The method of claim 60 wherein evaluating the fit is carried out via the use of a computer and a computer-readable medium.
- 62. A compound, comprising two hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in
 Figure 14B and wherein said compound inhibits the mitotic kinesin KSP; or a pharmaceutically acceptable salt thereof.
- A compound, comprising two hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in
 Figure 14B and wherein said compound fits within a ligand binding site of a kinesin spindle protein (KSP) protein, said ligand binding site comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2 Å;

or a pharmaceutically acceptable salt thereof.

- 64. The compound according to Claim 63 wherein the two hydrophobic region features are independently selected from an aryl, heteroaryl and C₃-C₇-cycloalkyl, optionally substituted.
- 25 65. The compound according to Claim 63 wherein the two hydrophobic region features are independently selected from an optionally substituted phenyl.
- The compound according to Claim 63 wherein the compound has a binding affinity for KSP of about 0.1nM to about 100nM.
 - 67. A compound, comprising one hydrophobic region feature, a hydrogen bond donor feature and a hydrogen bond acceptor feature, wherein said

5

10

20

features are oriented as illustrated in Figure 14A and wherein said compound inhibits the mitotic kinesin KSP;

or a pharmaceutically acceptable salt thereof.

68. A compound, comprising one hydrophobic region feature, a hydrogen bond donor feature and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in Figure 14A and wherein said compound fits within a ligand binding site of a kinesin spindle protein (KSP) protein, said ligand binding site comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2 Å;

or a pharmaceutically acceptable salt thereof.

- 69. The compound according to Claim 68 wherein the hydrophobic region feature is selected from an aryl, heteroaryl and C₃-C₇-cycloalkyl, optionally substituted.
 - 70. The compound according to Claim 68 wherein the hydrophobic region feature is selected from an optionally substituted phenyl.

71. The compound according to Claim 68 wherein the compound has a binding affinity for KSP of about 0.1nM to about 100nM.

- 72. The compound according to Claim 68 wherein the compound does not comprise a 2-thioxo-1,2,3,4-tetrahydopyrimidine moiety, a dihydropyrimidine moiety or a 5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]-pyrido[3.4-b]indole-1,3(2H)-dione moiety.
- 73. A compound, comprising three hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are spatially oriented as illustrated in Figure 16 and have the distances in Å between the features as follows

	1	2	3	4
1	-			
2	5.1±0.6	-		
3	8.5±0.7	6.9±0.7	-	
4	3.7±0.5	5.8±0.6	5.7±0.7	-

and wherein said compound inhibits the mitotic kinesin KSP; or a pharmaceutically acceptable salt thereof.

The compound according to Claim 73 wherein the compound does not comprise a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety.

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

.Seq. ID #1

MASQPNSSAK KKEEKGKNIQ VVVRCRPFNL AERKASAHSI VECDPVRKEV SVRTGGLADK SSRKTYTFDM VFGASTKQID VYRSVVCPIL DEVIMGYNCT IFAYGQTGTG KTFTMEGERS PNEEYTWEED PLAGIIPRTL HQIFEKLTDN GTEFSVKVSL LEIYNEELFD LLNPSSDVSE RLQMFDDPRN KRGVIIKGLE EITVHNKDEV YQILEKGAAK RTTAATLMNA YSSRSHSVFS VTIHMKETTI DGEELVKIGK LNLVDLAGSE NIGRSGAVDK RAREAGNINQ SLLTLGRVIT ALVERTPHVP YRESKLTRIL QDSLGGRTRT SIIATISPAS LNLEETLSTL EYAHRAKNIL NKPEVNQK

FIG.9

115(M), 116(E), 117(G), 118(E), 119(R);

127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P);

160(L); and

211(Y), 214(L), 215(E), 217(G), 218(A), 221(R), 239(F).

FIG.10

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16

PCT/US2003/021145 WO 2004/004652

SEQUENCE LISTING

<110> Merck & Co., Inc. Buser-Doepner, Carolyn A. Coleman, Paul J. Cox, Christopher D. Fraley, Mark E. Garbaccio, Robert M. Hartman, George D. Heimbrook, David C. Huber, Hans E. Kuo, Lawrence C. Sardana, Vinod V. Torrent, Maricel Youwei, Yan <120> MITOTIC KINESIN BINDING SITE

<130> 21125Y

<150> 60/394,313

<151> 2002-07-08

<160> 1

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 368

<212> PRT

<213> human

Met Ala Ser Gln Pro Asn Ser Ser Ala Lys Lys Glu Glu Lys Gly 10 Lys Asn Ile Gln Val Val Val Arg Cys Arg Pro Phe Asn Leu Ala Glu 20 Arg Lys Ala Ser Ala His Ser Ile Val Glu Cys Asp Pro Val Arg Lys Glu Val Ser Val Arg Thr Gly Gly Leu Ala Asp Lys Ser Ser Arg Lys 55 Thr Tyr Thr Phe Asp Met Val Phe Gly Ala Ser Thr Lys Gln Ile Asp 70 75 Val Tyr Arg Ser Val Val Cys Pro Ile Leu Asp Glu Val Ile Met Gly 90 85 Tyr Asn Cys Thr Ile Phe Ala Tyr Gly Gln Thr Gly Thr Gly Lys Thr 105 Phe Thr Met Glu Gly Glu Arg Ser Pro Asn Glu Glu Tyr Thr Trp Glu 115 120 125 Glu Asp Pro Leu Ala Gly Ile Ile Pro Arg Thr Leu His Gln Ile Phe 135 140 Glu Lys Leu Thr Asp Asn Gly Thr Glu Phe Ser Val Lys Val Ser Leu

Leu Glu Ile Tyr Asn Glu Glu Leu Phe Asp Leu Leu Asn Pro Ser Ser 170 175 Asp Val Ser Glu Arg Leu Gln Met Phe Asp Asp Pro Arg Asn Lys Arg

150

	180	İ			185					190		
Gly Val	Ile Ile 195	Lys Gly		Glu 200	Glu	Ile	Thr	Val	His 205	Asn	Lys	Asp
Glu Val 210	Tyr Gln	Ile Leu	Glu 1 215	Lys	Gly	Ala	Ala	Lys 220	Arg	Thr	Thr	Ala
Ala Thr 225	Leu Met	Asn Ala 230		Ser	Ser	Arg	Ser 235	His	Ser	Val	Phe	Ser 240
Val Thr	Ile His	Met Lys 245	Glu 1	Thr	Thr	Ile 250	Asp	Gly	Glu	Glu	Leu 255	Val
Lys Ile	Gly Lys 260	Leu Asn	Leu V		Asp 265	Leu	Ala	Gly	Ser	Glu 270	Asn	Ile
Gly Arg	Ser Gly 275	Ala Val		Lys 280	Arg	Ala	Arg	Glu	Ala 285	Gly	Asn	Ile
Asn Gln 290	Ser Leu	Leu Thr	Leu (295	Gly .	Arg	Val	Ile	Thr 300	Ala	Leu	Val	Glu
Arg Thr 305	Pro His	Val Pro 310	Tyr A	Arg	Glu		Lys 315	Leu	Thr	Arg	Ile	Leu 320
Gln Asp	Ser Leu	Gly Gly 325	Arg 1	Thr .		Thr 330	Ser	Ile	Ile		Thr 335	Ile
Ser Pro	Ala Ser 340	Leu Asn	Leu G		Glu 345	Thr	Leu	Ser	Thr	Leu 350	Glu	Tyr
Ala His	Arg Ala 355	Lys Asn		Leu 1 360	Asn	Lys	Pro		Val 365	Asn	Gln	ГÀЗ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.