Bad data & Outliers

true

2022-10-17

Table of contents

1	Data	1
	1.1 Import	2
	1.2 Goal	2
	1.3 Exploring	2
2	Correlation & Regression	5
	<pre>pacman::p_load(</pre>	
	broom,	
	conflicted,	
	here,	
	janitor,	
	readxl,	
	tidyverse	
)	

There are two download links:

- Download the **original** excel file here.
- Download the **formatted** excel file here.

1 Data

Imagine that this dataset was obtained by you. You spent an entire day walking around the campus of a university and asked a total of 29 people for things like how old they are (Ages) and you also tested how well they could see on a scale of 1-10 (Vision).

1.1 Import

Assuming you are working in a R-project, save the formatted file somewhere within the project directory. I have saved it within a sub folder called data so that the relative path to my file is data/vision_fixed.xls.

```
path <- here("data", "vision_fixed.xls")
dat <- read_excel(path)
dat</pre>
```

# .	A tibble: 2	9 x 9								
	Person	Ages	Gender	`Civil	state`	Height	Profession	Vision	Dista~1	PercD~2
	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Andrés	25	M	S		180	Student	10	1.5	15
2	Anja	29	F	S		168	Professio~	10	4.5	45
3	Armando	31	M	S		169	Professio~	9	4.5	50
4	Carlos	25	M	M		185	Professio~	8	6	75
5	Cristina	23	F	<na></na>		170	Student	10	3	30
6	Delfa	39	F	M		158	Professio~	6	4.5	75
7	Eduardo	28	M	S		166	Professio~	8	4.5	56.2
8	Enrique	NA	<na></na>	<na></na>		NA	Professio~	NA	6	NA
9	Fanny	25	F	M		164	Student	9	3	33.3
10	Francisco	46	M	M		168	Professio~	8	4.5	56.2
#	with 19		rows,	and abbr	reviated	varia	ole names 1	: Distar	nce,	

^{# 2:} PercDist

1.2 Goal

Very much like in the previous chapter, our goal is to look at the relationship of two numeric variables: Ages and Vision. What is new about this data is, that it (i) has missing values and (ii) has a potential outlier.

1.3 Exploring

To quickly get a first feeling for this dataset, we can use summary() and draw a plot via plot() or ggplot().

```
summary(dat)
```

Person	Ages	Gender	Civil state	
Length:29	Min. :22.00	Length:29	Length:29	
Class :character	1st Qu.:25.00	Class :character	Class :character	
Mode :character	Median :26.00	Mode :character	Mode :character	
	Mean :30.61			
	3rd Qu.:29.50			
	Max. :55.00			
	NA's :1			
Height	Profession	Vision	Distance	
Min. :145.0 I	ength:29	Min. : 3.000	Min. :1.500	
1st Qu.:164.8 (Class :character	1st Qu.: 7.000	1st Qu.:1.500	
Median :168.0 M	Mode :character	Median : 9.000	Median :3.000	
Mean :168.2		Mean : 8.357	Mean :3.466	
3rd Qu.:172.8		3rd Qu.:10.000	3rd Qu.:4.500	
Max. :190.0		Max. :10.000	Max. :6.000	
NA's :1		NA's :1		
PercDist				
Min. : 15.00				
1st Qu.: 20.24				
Median : 40.18				
Mean : 45.45				
3rd Qu.: 57.19				
Max. :150.00				
NA's :1				

plot(y = dat\$Vision, x = dat\$Ages)


```
ggplot(data = dat) +
  aes(x = Ages, y = Vision) +
  geom_point(size = 2) +
  scale_x_continuous(
    name = "Person's age",
    limits = c(20, 60),
    expand = expansion(mult = c(0, 0.05))
) +
  scale_y_continuous(
    name = "Person's vision",
    limits = c(0, NA),
    breaks = seq(0, 10, 2),
    expand = expansion(mult = c(0, 0.05))
) +
    theme_bw()
```


Apparently, most people are in their 20s and can see quite well, however some people are older and they tend to have a vision that's a little worse.

2 Correlation & Regression

Let's estimate the correlation and simple linear regression and look at the results in a tidy format:

```
cor <- cor.test(dat$Vision, dat$Ages)</pre>
tidy(cor)
# A tibble: 1 x 8
  estimate statistic p.value parameter conf.low conf.high method
                                                                             alter~1
     <dbl>
                <dbl>
                        <dbl>
                                                       <dbl> <chr>
                                   <int>
                                            <dbl>
                                                                             <chr>
    -0.497
               -2.92 0.00709
                                      26
                                           -0.734
                                                      -0.153 Pearson's pro~ two.si~
# ... with abbreviated variable name 1: alternative
reg <- lm(Vision ~ Ages, data = dat)</pre>
tidy(reg)
```

```
# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 (Intercept) 11.1 0.996 11.2 1.97e-11
2 Ages -0.0910 0.0311 -2.92 7.09e- 3
```

Thus, we have a negative, moderate correlation of -0.497 and for the regression we have $Vision = 11.14 + -0.09 \ Ages$.