Math 131A Homework 7 Lana Lim

Problem 1.

Ross 17.8 Let f and g be real-valued functions.

(a) Show $\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$. Suppose f > g. We want $\min(f,g) = g$. Consider

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$$

$$= \frac{1}{2}(f+g) - \frac{1}{2}(f-g) \qquad (f > g \text{ implies } |f-g| = f-g)$$

$$= g.$$

Suppose $f \leq g$. We want $\min(f,g) = f$. Consider

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$$

$$= \frac{1}{2}(f+g) - \frac{1}{2}|g-f| \qquad (By \text{ def. of } ||, |f-g| = |g-f|)$$

$$= \frac{1}{2}(f+g) - \frac{1}{2}(g-f) \qquad (f \le g \text{ implies } |g-f| = g-f)$$

$$= f.$$

Therefore we have shown $\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$.

(b) Show $\min(f,g) = -\max(-f,-g)$. First show $\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$. Suppose f > g. We want $\max(f,g) = f$. Consider

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

$$= \frac{1}{2}(f+g) + \frac{1}{2}(f-g) \qquad (f > g \text{ implies } |f-g| = f-g)$$

$$= f.$$

Suppose $f \leq g$. We want $\max(f,g) = g$. Consider

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

$$= \frac{1}{2}(f+g) + \frac{1}{2}|g-f| \qquad \text{(By def. of } ||, |f-g| = |g-f|)$$

$$= \frac{1}{2}(f+g) + \frac{1}{2}(g-f) \qquad (f \le g \text{ implies } |g-f| = g-f)$$

$$= g.$$

Therefore we have shown $\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$. Now consider

$$-\max(-f, -g) = -\left(\frac{1}{2}(-f - g) + \frac{1}{2}|-f + g|\right)$$

$$= -\left(-\frac{1}{2}(f + g) + \frac{1}{2}|f - g|\right) \text{ (By def. of } ||, |-f + g| = |g - f| = |f - g|)$$

$$= \frac{1}{2}(f + g) - \frac{1}{2}|f - g|$$

$$= \min(f, g).$$

Therefore we have shown $\min(f, g) = -\max(-f, -g)$.

(c) Let f and g be continuous at x_0 . By Theorem 17.4(i), f + g and f - g are continuous at x_0 . Hence |f - g| is continuous at x_0 by Theorem 17.3. Then $\frac{1}{2}(f + g)$ and $\frac{1}{2}|f + g|$ are continuous at x_0 by Theorem 17.3. Finally, another application of Theorem 17.4(i) shows $\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$ is continuous at x_0 .

Ross 17.10(b) Define $g(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. We will prove that g is discontinuous at $x_0 = 0$.

Assume g is continuous at x_0 . Then we apply the sequential definition of continuity. That is, for all $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to x_0$, it necessarily holds that $g(x_n) \to g(x_0)$. Note that $\sin(2\pi n + \frac{\pi}{2}) = 1$ for all $n \in \mathbb{N}$. Then let $x_n = \frac{1}{2\pi n + \frac{\pi}{2}}$. Clearly $x_n \to x_0$. By our original assumption this also means $g(x_n) \to g(x_0)$. However, $g(x_n) = \sin(2\pi n + \frac{\pi}{2}) = 1$ for all $n \in \mathbb{N}$. So it is actually $g(x_n) \to 1$ and this is a contradiction. Therefore for all $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to x_0$, it does not necessarily hold that $g(x_n) \to g(x_0)$. Hence g is discontinuous at $x_0 = 0$.

Problem 2. Let f(x) be a function that is continuous at $x_0 \in U$. Suppose $f(x_0) > 0$. Then let $\epsilon = \frac{f(x_0)}{2}$. By the $\epsilon - \delta$ definition, there exists a $\delta > 0$ such that $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \frac{f(x_0)}{2}$. First notice

$$|x - x_0| < \delta \Rightarrow x_0 - \delta < x < x_0 + \delta.$$

Therefore $x \in (x_0 - \delta, x_0 + \delta)$. Next observe

$$|f(x) - f(x_0)| < \frac{f(x_0)}{2} \Rightarrow f(x_0) - \frac{f(x_0)}{2} < f(x) < f(x_0) + \frac{f(x_0)}{2}$$
$$\Rightarrow \frac{f(x_0)}{2} < f(x) < \frac{3f(x_0)}{2}.$$
 (*)

(*) implies f(x) > 0. Therefore we have shown there exists a $\delta > 0$ such that f(x) > 0 on $(x_0 - \delta, x_0 + \delta)$ by setting $\epsilon = \frac{f(x_0)}{2}$.

Problem 3.

(a) Suppose $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and h(r) = 0 for every rational number $r \in \mathbb{Q}$. We will prove that h(x) = 0 for all $x \in \mathbb{R}$. First, we claim that h is continuous at some irrational number $q \in \mathbb{Q}^c$ and assume $h(q) \neq 0$. By definition of sequential continuity, for all $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to q$, it necessarily holds that $h(x_n) \to h(q)$. Let us construct a sequence $\{x_n\}$ of strictly rationals converging to q. Since \mathbb{Q} is dense in \mathbb{R} , there exists

a rational x_1 satisfying $|x_1 - q| < 1$. Similarly, choose a rational x_k such that it satisfies $|x_k - q| < \max(\frac{1}{2^k}, |x_{k-1} - q|)$. Then $x_n \to q$. By our original assumption this also means $h(x_n) \to h(q)$. But clearly $h(x_n) = 0$ for all $n \in \mathbb{N}$, so $h(x_n) \to 0$. However we first assumed that $h(q) \neq 0$. Therefore we arrive at a contradiction. Then it must be the case h(q) = 0 for every irrational number q, hence h(x) = 0 for all $x \in \mathbb{R}$.

(b) Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} such that f(r) = g(r) for every rational number $r \in \mathbb{Q}$. We will prove that f(x) = g(x) for all $x \in \mathbb{R}$. Consider h(x) = f(x) - g(x). The difference of two continuous functions is continuous, therefore h(x) is continuous on \mathbb{R} . Observe that h(r) = 0 for every rational number $r \in \mathbb{Q}$. Then h(x) = 0 for all $x \in \mathbb{R}$ as proven in Problem 3(a). Thus we have shown that f(x) = g(x) for all $x \in \mathbb{R}$.

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Suppose there exists a constant M > 0 such that $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$. We will prove that f is continuous on \mathbb{R} by proving f is continuous at some arbitrary $x_0 \in dom(f)$. Choose any $\epsilon > 0$ and set $\delta = \frac{\epsilon}{M}$. We argue that $x \in dom(f)$ and $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$. First notice

$$|x - x_0| < \frac{\epsilon}{M} \Rightarrow M|x - x_0| < \epsilon.$$

And we know $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$, therefore

$$|f(x) - f(x_0)| \le M|x - x_0| < \epsilon.$$

Therefore we have shown that f is continuous at some arbitrary x_0 , hence we say f is continuous on \mathbb{R} .