DS 7

Durée 3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et *a fortiori* durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. Calculer les limites suivantes :

1)
$$\lim_{x \to 0} \frac{(\cos x)^2 \sin x^2}{\sqrt{1 - x^2} - 1}$$
 2) $\lim_{x \to +\infty} \frac{\cos x}{x + 1}$

$$3) \lim_{x \to 1} \frac{\sqrt{x} - 1}{\ln(x)}$$

Exercice 2. Calculer la limite de S_n quand $n \to +\infty$ où S_n est définie par

$$S_n = \sum_{k=1}^{n} \frac{k+n}{k^2 + n^2}$$

Exercice 3. Soit $a \in]-1,1[$. On suppose l'existence d'une application f, continue sur \mathbb{R} , telle que :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{ax} f(t)dt.$$

- 1. Calcul des dérivées successives de f.
 - (a) Justifier l'existence d'une primitive F de f sur \mathbb{R} et écrire alors, pour tout nombre réel x, f(x) en fonction de x, a et F.
 - (b) Justifier la dérivabilité de f sur \mathbb{R} et exprimer, pour tout nombre réel x, f'(x) en fonction de x, a et f.
 - (c) Démontrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que pour tout nombre entier naturel n, on a

$$\forall x \in \mathbb{R} \quad f^{(n)}(x) = a^{n(n+1)/2} f(a^n x).$$

- (d) En déduire, pour tout nombre entier naturel n la valeur de $f^{(n)}(0)$.
- 2. Démontrer que, pour tout nombre réel x et tout nombre entier n, on a :

$$f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

On pourra faire une récurrence et utiliser une intégration par parties

- 3. Soit A un nombre réel strictement positif.
 - (a) Justifier l'existence d'un nombre réel positif ou nul M tel que :

$$\forall x \in [-A, A], \quad |f(x)| \le M$$

et en déduire que pour tout nombre entier naturel n, on a :

$$\forall x \in [-A, A], \quad |f^{(n)}(x)| \le M$$

(b) Soit x un nombre réel apartenant à [-A, A]. Démontrer que, pour tout nombre entier naturel n, on a

$$|f(x)| \le M \frac{A^{n+1}}{(n+1)!}.$$

- (c) En déduire que f(x)=0 pour tout $x\in [-A,A]$
- (d) Que peut-on en déduire sur la fonction f?

Exercice 4. On dispose d'une urne contenant initialement b boules blanches et r boules rouges. On fait des tirages successifs dans cette urne en respectant à chaque fois le protocole suivant :

- Si la boule tirée est de couleur blanche, on la remet et on ajoute une boule blanche
- Si la boule tirée est de couleur rouge, on la remet et on ajoute une boule rouge.

On appelle B_i l'événement "tirer une boule blanche au *i*-iéme tirage" et on note $p_i = P(B_i)$.

- 1. Calculer p_1 en fonction de b et r.
- 2. Montrer que $p_2 = \frac{b}{b+r}$.
- 3. On a tiré une boule blanche au deuxième tirage. Donner alors la probabilité que l'on ait tiré une boule blanche au premier tirage en fonction de b et r.
- 4. On appelle E_n l'événément

 E_n : "On tire que des boules blanches sur les n premiers tirages "

et F_n l'événement

 F_n : "On tire pour la première fois une boule rouge au n-ième tirage"

- (a) Exprimer E_n à l'aide des événements $(B_k)_{k \in \llbracket 1,n \rrbracket}$
- (b) Exprimer F_n à l'aide de E_{n-1} et B_n
- 5. Pour tout $k \geq 2$ calculer $P_{E_{k-1}}(B_k)$.
- 6. Calculer $P(E_n)$ en fonction de b, r et n puis $P(F_n)$.
- 7. On souhaite modéliser informatiquement cette expérience. On va utiliser la lettre 'B' pour désigner les boules blanches et 'R' pour les rouges.
 - (a) Créer une fonction **urne** qui prend en paramètres le nombre de boules blanches et rouges, et retourne une liste correspondant à l'urne initiale. (Cette liste n'a pas à être "mélangée")
 - (b) Créer une fonction tirage qui prend en argument une liste correspondant à une urne, modélise le tirage d'une boule alétoirement dans cette urne, affiche la couleur de la boule tirée et retourne une liste correspondant à l'urne aprés l'ajout de la boule de la couleur tirée.
 - (c) Créer une fonction compte qui prend une liste correspondant à une urne et retourne le nombre de boules blanches contenues dans l'urne.
 - (d) Créer une fonction **expérience** qui prend en argument le nombre de boules blanches et rouges et N le nombre de tirages effectués et retourne le nombre de boules blanches dans l'urne aprés N tirages.