## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT:

MING-MING ZHOU ET AL.

SERIAL NO.:

UNASSIGNED

**EXAMINER:** 

UNKNOWN

FILED

HEREWITH

ART UNIT :

UNKNOWN

FOR

METHODS OF IDENTIFYING MODULATORS OF

**BROMODOMAINS** 

EXPRESS MAIL "MAILING LABEL NO."

EL676518587US

DATE OF DEPOSIT

February 16, 2001

## STATEMENT IN SUPPORT OF THE FILING/SUBMISSION OF A NUCLEOTIDE/AMINO ACID SEQUENCE LISTING IN ACCORDANCE WITH 37 CFR §1.821 - 1.825

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

Dear Sir:

MICHAEL D. DAVIS, attorney of record, hereby states as follows:

I hereby state that the content of the paper and computer readable copies of the Sequence Listing submitted in accordance with 37 CFR §1.821(c), (e) and (f) respectively, are the same.

DATED: February 16, 2001

MICHAEL D. DAVIS

## SEQUENCE LISTING

<110> Zhou, Ming-Ming Aggarwal, Aneel Verdin, Eric Ott, Melanie

- <120> Methods of Identifying Modulators of Bromodomains
- <130> 2459-1-003CIP
- <140> Unassigned
- <141> 2001-02-16
- <150> 09/510,314
- <151> 2000-02-22
- <160> 59
- <170> PatentIn version 3.0
- <210> 1
- <211> 3014
- <212> DNA
- <213> Homo sapiens

<400> 1

ggggccgcgt cgacgcggaa aagaggccgt ggggggcctc ccagcgctgg cagacaccgt 60

gaggetggea geegeeggea egeacaceta gteegeagte eegaggaaca tgteegeage 120

cagggcgcgg agcagagtcc cgggcaggag aaccaaggga gggcgtgtgc tgtggcggcg 180

geggeagegg cageggagee getagteece teceteetgg gggageaget geegeegetg 240

ccgccgccgc caccaccate agcgcgcggg gcccggccag agcgagccgg gcgagcggcg 300

cgctaggggg agggcggggg cggggagggg ggtgggcgaa gggggcggga gggcgtgggg 360

ggagggtete getetecega etaceagage eegagggaga eeetggegge ggeggeggeg 420

cetgacacte ggegeeteet geegtgetee ggggeggeat gteegagget ggeggggeeg 480

ggccgggcgg ctgcggggca ggagccgggg caggggccgg gcccggggcg ctgccccgc

agectgegge getteegeee gegeeeeege agggeteeee etgegeeget geegeeggg 600

gctcgggcgc ctgcggtccg gcgacggcag tggctgcagc gggcacggcc gaaggaccgg

gaggeggtgg cteggeeega ategeegtga agaaagegea aetaegetee geteegeggg 720

ccaagaaact ggagaaactc ggagtgtact ccgcctgcaa ggccgaggag tcttgtaaat 780

gtaatggetg gaaaaaccet aacceeteae ceaeteeeee cagageegae etgeageaaa 840

2220

taattgtcag tctaacagaa tcctgtcgga gttgtagcca tgccctagct gctcatgttt cccacctgga gaatgtgtca gaggaagaaa tgaacagact cctgggaata gtattggatg 960 tggaatatct ctttacctgt gtccacaagg aagaagatgc agataccaaa caagtttatt tctatctatt taagctcttg agaaagtcta ttttacaaag aggaaaacct gtggttgaag gctctttgga aaagaaaccc ccatttgaaa aacctagcat tgaacagggt gtgaataact 1140 ttgtgcagta caaatttagt cacctgccag caaaagaaag gcaaacaata gttgagttgg caaaaatgtt cctaaaccgc atcaactatt ggcatctgga ggcaccatct caacgaagac 1260 tgcgatctcc caatgatgat atttctggat acaaagagaa ctacacaagg tggctgtgtt 1320 actgcaacgt gccacagttc tgcgacagtc tacctcggta cgaaaccaca caggtgtttg 1380 ggagaacatt gcttcgctcg gtcttcactg ttatgaggcg acaactcctg gaacaagcaa gacaggaaaa agataaactg cctcttgaaa aacgaactct aatcctcact catttcccaa 1500 aatttctgtc catgctagaa gaagaagtat ataqtcaaaa ctctcccatc tqqqatcaqq 1560 attttctctc agcctcttcc agaaccagcc agctaggcat ccaaacagtt atcaatccac 1620 ctcctgtggc tgggacaatt tcatacaatt caacctcatc ttcccttgag cagccaaacg 1680 cagggagcag cagtcctgcc tgcaaagcct cttctggact tgaggcaaac ccaggagaaa agaggaaaat gactgattct catgttctgg aggaggccaa gaaaccccga gttatggggg 1800 atattccgat ggaattaatc aacgaggtta tgtctaccat cacggaccct gcagcaatgc ttggaccaga gaccaatttt ctgtcagcac actcggccag ggatgaggcg gcaaggttgg 1920 aagagcgcag gggtgtaatt gaatttcacg tggttggcaa ttccctcaac cagaaaccaa 1980 acaagaagat cctgatgtgg ctggttggcc tacagaacgt tttctcccac cagctgcccc 2040 gaatgccaaa agaatacatc acacggctcg tctttgaccc gaaacacaaa acccttgctt taattaaaga tggccgtgtt attggtggta tctgtttccg tatgttccca tctcaaqqat 2160

tcacagagat tgtcttctgt gctgtaacct caaatgagca agtcaagggc tatggaacac

acctgatgaa tcatttgaaa gaatatcaca taaagcatga catcctgaac ttcctcacat 2280

atgcagatga atatgcaatt ggatacttta agaaacaggg tttctccaaa gaaattaaaa 2340

tacctaaaac caaatatgtt ggctatatca aggattatga aggagccact ttaatgggat 2400

gtgagctaaa tocacggato cogtacacag aattttotgt catcattaaa aagcagaagg 2460

agataattaa aaaactgatt gaaagaaaac aggcacaaat tcgaaaagtt taccctggac 2520

tttcatgttt taaagatgga gttcgacaga ttcctataga aagcattcct ggaattagag 2580

agacaggctg gaaaccgagt ggaaaagaga aaagtaaaga gcccagagac cctgaccagc 2640

tttacagcac gctcaagagc atcctccagc aggtgaagag ccatcaaagc gcttggccct 2700

tcatggaacc tgtgaagaga acagaagctc caggatatta tgaagttata aggttcccca 2760

tggatctgaa aaccatgagt gaacgcctca agaataggta ctacgtgtct aagaaattat 2820

tcatggcaga cttacagcga gtctttacca attgcaaaga gtacaacgcc gctgagagtg 2880

aatactacaa atgtgccaat atcctggaga aattcttctt cagtaaaatt aaggaagctg 2940

gattaattga caagtgattt tttttccccc tctgcttctt agaaactcac caagcagtgt 3000

gcctaaagca aggt 3014

<210> 2

<211> 832

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Glu Ala Gly Gly Ala Gly Pro Gly Gly Cys Gly Ala Gly Ala 1 5 10 15

Gly Ala Gly Ala Gly Pro Gly Ala Leu Pro Pro Gln Pro Ala Ala Leu  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Pro Pro Ala Pro Pro Gln Gly Ser Pro Cys Ala Ala Ala Ala Gly Gly 35 40 45

Ser Gly Ala Cys Gly Pro Ala Thr Ala Val Ala Ala Ala Gly Thr Ala 50 60

Glu Gly Pro Gly Gly Gly Ser Ala Arg Ile Ala Val Lys Lys Ala 65 70 75

Gln Leu Arg Ser Ala Pro Arg Ala Lys Lys Leu Glu Lys Leu Gly Val 85 90 95

Tyr Ser Ala Cys Lys Ala Glu Glu Ser Cys Lys Cys Asn Gly Trp Lys

100 105 110 Asn Pro Asn Pro Ser Pro Thr Pro Pro Arg Ala Asp Leu Gln Gln Ile 120 Ile Val Ser Leu Thr Glu Ser Cys Arg Ser Cys Ser His Ala Leu Ala 135 Ala His Val Ser His Leu Glu Asn Val Ser Glu Glu Glu Met Asn Arg 150 Leu Leu Gly Ile Val Leu Asp Val Glu Tyr Leu Phe Thr Cys Val His Lys Glu Glu Asp Ala Asp Thr Lys Gln Val Tyr Phe Tyr Leu Phe Lys Leu Leu Arg Lys Ser Ile Leu Gln Arg Gly Lys Pro Val Val Glu Gly Ser Leu Glu Lys Lys Pro Pro Phe Glu Lys Pro Ser Ile Glu Gln Gly Val Asn Asn Phe Val Gln Tyr Lys Phe Ser His Leu Pro Ala Lys Glu Arg Gln Thr Ile Val Glu Leu Ala Lys Met Phe Leu Asn Arg Ile Asn Tyr Trp His Leu Glu Ala Pro Ser Gln Arg Arg Leu Arg Ser Pro Asn 265 Asp Asp Ile Ser Gly Tyr Lys Glu Asn Tyr Thr Arg Trp Leu Cys Tyr Cys Asn Val Pro Gln Phe Cys Asp Ser Leu Pro Arg Tyr Glu Thr Thr 290 295 300 Gln Val Phe Gly Arg Thr Leu Leu Arg Ser Val Phe Thr Val Met Arg Arg Gln Leu Leu Glu Gln Ala Arg Gln Glu Lys Asp Lys Leu Pro Leu Glu Lys Arg Thr Leu Ile Leu Thr His Phe Pro Lys Phe Leu Ser Met Leu Glu Glu Glu Val Tyr Ser Gln Asn Ser Pro Ile Trp Asp Gln Asp Phe Leu Ser Ala Ser Ser Arg Thr Ser Gln Leu Gly Ile Gln Thr Val Ile Asn Pro Pro Pro Val Ala Gly Thr Ile Ser Tyr Asn Ser Thr Ser 390 Ser Ser Leu Glu Gln Pro Asn Ala Gly Ser Ser Fro Ala Cys Lys Ala Ser Ser Gly Leu Glu Ala Asn Pro Gly Glu Lys Arg Lys Met Thr Asp Ser His Val Leu Glu Glu Ala Lys Lys Pro Arg Val Met Gly Asp Ile Pro Met Glu Leu Ile Asn Glu Val Met Ser Thr Ile Thr Asp Pro Ala Ala Met Leu Gly Pro Glu Thr Asn Phe Leu Ser Ala His Ser Ala

| 465                        | 470                   | 475 48                           | 0  |  |  |  |  |  |  |  |
|----------------------------|-----------------------|----------------------------------|----|--|--|--|--|--|--|--|
| Arg Asp Glu Ala Ala<br>485 |                       | Arg Gly Val Ile Glu Ph<br>495    | ıe |  |  |  |  |  |  |  |
| His Val Val Gly Asn        | Ser Leu Asn Gln Lys   | Pro Asn Lys Lys Ile Le           | •u |  |  |  |  |  |  |  |
| 500                        | 505                   | 510                              |    |  |  |  |  |  |  |  |
| Met Trp Leu Val Gly        | Leu Gln Asn Val Phe   | Ser His Gln Leu Pro Ar           | :g |  |  |  |  |  |  |  |
| 515                        | 520                   | 525                              |    |  |  |  |  |  |  |  |
| Met Pro Lys Glu Tyr        | Ile Thr Arg Leu Val   | Phe Asp Pro Lys His Ly           | 'S |  |  |  |  |  |  |  |
| 530                        | 535                   | 540                              |    |  |  |  |  |  |  |  |
| Thr Leu Ala Leu Ile        | Lys Asp Gly Arg Val   | Ile Gly Gly Ile Cys Ph           |    |  |  |  |  |  |  |  |
| 545                        | 550                   | 555 56                           |    |  |  |  |  |  |  |  |
| Arg Met Phe Pro Ser<br>565 |                       | Ile Val Phe Cys Ala Va<br>575    | .1 |  |  |  |  |  |  |  |
| Thr Ser Asn Glu Gln        | Val Lys Gly Tyr Gly   | Thr His Leu Met Asn Hi           | .s |  |  |  |  |  |  |  |
| 580                        | 585                   | 590                              |    |  |  |  |  |  |  |  |
| Leu Lys Glu Tyr His        | Ile Lys His Asp Ile   | Leu Asn Phe Leu Thr Ty           | r  |  |  |  |  |  |  |  |
| 595                        | 600                   | 605                              |    |  |  |  |  |  |  |  |
| Ala Asp Glu Tyr Ala        | Ile Gly Tyr Phe Lys   | Lys Gln Gly Phe Ser Ly           | /S |  |  |  |  |  |  |  |
| 610                        | 615                   | 620                              |    |  |  |  |  |  |  |  |
| Glu Ile Lys Ile Pro        | Lys Thr Lys Tyr Val   | Gly Tyr Ile Lys Asp Ty           |    |  |  |  |  |  |  |  |
| 625                        | 630                   | 635 64                           |    |  |  |  |  |  |  |  |
| Glu Gly Ala Thr Leu<br>645 |                       | Asn Pro Arg Ile Pro Ty<br>655    | ŗr |  |  |  |  |  |  |  |
| Thr Glu Phe Ser Val        | . Ile Ile Lys Lys Gln | Lys Glu Ile Ile Lys Ly           | /S |  |  |  |  |  |  |  |
| 660                        | 665                   | 670                              |    |  |  |  |  |  |  |  |
| Leu Ile Glu Arg Lys        | Gln Ala Gln Ile Arg   | Lys Val Tyr Pro Gly Le           | ≥u |  |  |  |  |  |  |  |
| 675                        | 680                   | 685                              |    |  |  |  |  |  |  |  |
| Ser Cys Phe Lys Asp        | Gly Val Arg Gln Ile   | Pro Ile Glu Ser Ile Pr           | εo |  |  |  |  |  |  |  |
| 690                        | 695                   | 700                              |    |  |  |  |  |  |  |  |
| Gly Ile Arg Glu Thr<br>705 | Gly Trp Lys Pro Ser   | Gly Lys Glu Lys Ser Ly<br>715 72 |    |  |  |  |  |  |  |  |
| Glu Pro Arg Asp Pro<br>725 |                       | Thr Leu Lys Ser Ile Le<br>735    | ∍u |  |  |  |  |  |  |  |
| Gln Gln Val Lys Ser        | His Gln Ser Ala Trp   | Pro Phe Met Glu Pro Va           | al |  |  |  |  |  |  |  |
| 740                        | 745                   | 750                              |    |  |  |  |  |  |  |  |
| Lys Arg Thr Glu Ala        | a Pro Gly Tyr Tyr Glu | . Val Ile Arg Phe Pro Me         | ∍t |  |  |  |  |  |  |  |
| 755                        | 760                   | 765                              |    |  |  |  |  |  |  |  |
| Asp Leu Lys Thr Met        | Ser Glu Arg Leu Lys   | s Asn Arg Tyr Tyr Val Se         | er |  |  |  |  |  |  |  |
| 770                        | 775                   | 780                              |    |  |  |  |  |  |  |  |
| Lys Lys Leu Phe Met        | : Ala Asp Leu Gln Arg | Val Phe Thr Asn Cys Ly           | ys |  |  |  |  |  |  |  |
| 785                        | 790                   | 795                              | 00 |  |  |  |  |  |  |  |
| Glu Tyr Asn Ala Ala<br>805 |                       | Lys Cys Ala Asn Ile Le<br>815    | ∋u |  |  |  |  |  |  |  |
| Glu Lys Phe Phe Phe        | e Ser Lys Ile Lys Glu | ı Ala Gly Leu Ile Asp Ly         | /s |  |  |  |  |  |  |  |
| 820                        | 825                   | 830                              |    |  |  |  |  |  |  |  |
| <210> 3                    |                       |                                  |    |  |  |  |  |  |  |  |

```
<211> 12
<212> PRT
<213> artificial sequence
       <220>
       <221> X
       <222> (2)..(2)
       <223> X is two to three amino acids. Each of these can be any amino
       ac
              id
       <220>
       <221>
       <222>
              (4)..(4)
       <223> The X is five to eight amino acids. Each of these can be any
       ami
              no acid
       <220>
       <221>
             Х
       <222>
              (5)..(5)
       <223> X is a single amino acid that is either Pro, Lys, or His.
       <220>
       <221>
۱....
              (6)..(6)
       <222>
H
       <223> This X is any single amino acid.
: ===
In
       <220>
Į,
       <221>
       <222>
              (8)..(8)
113
       <223> This X is a single amino acid that can be either Tyr, Phe, or
3 '
      His
i.
Į.
       <220>
       <221>
              X
<222>
              (9)..(9)
       <223> X is 5 amino acids. Each of these can be any amino acid.
===
       <220>
       <221>
             X
       <222>
              (11)..(11)
       <223> X is a single amino acid that can be Met, Ile, or Val.
       <400> 3
       Phe Xaa Pro Xaa Xaa Xaa Tyr Xaa Xaa Pro Xaa Asp
       <210> 4
       <211> 12
<212> PRT
       <213> artificial sequence
       <220>
       <221> Xaa
       <222> (6)..(6)
<223> The X represents an acetyl-lysine
       <400> 4
```

```
Ile Ser Tyr Gly Arg Xaa Lys Arg Arg Gln Arg Arg
<210>
<211> 14
<212> PRT
<213> artificial sequence
<220>
<221> X
      (8)..(8)
<222>
<223> The X represents an acetyl lysine.
<400> 5
Ala Arg Lys Ser Thr Gly Gly Xaa Ala Pro Arg Lys Gln Leu
<210>
      6
<211> 14
<212> PRT
<213> artificial sequence
<220>
<221> X
<222>
      (8)..(8)
<223> The X represents an acetyl lysine.
<400> 6
Gln Ser Thr Ser Arg His Lys Xaa Leu Met Phe Lys Thr Glu
<210> 7
<211> 110
<212> PRT
<213> Homo sapiens, peptide
<400> 7
Ser Lys Glu Pro Arg Asp Pro Asp Gln Leu Tyr Ser Thr Leu Lys Ser
Ile Leu Gln Gln Val Lys Ser His Gln Ser Ala Trp Pro Phe Met Glu
Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr Glu Val Ile Arg Ser
Pro Met Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn Arg Tyr Tyr
Val Ser Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val Phe Thr Asn
Cys Lys Glu Tyr Asn Ala Pro Glu Ser Glu Tyr Tyr Lys Cys Ala Asn
Ile Leu Glu Lys Phe Phe Phe Ser Lys Ile Lys Glu Ala Gly
<210>
       8
<211> 110
<212> PRT
<213> Homo sapiens
```

<400> 8

Leu Leu Ala Gln Ile Lys Ser His Pro Ser Ala Trp Pro Phe Met Glu 20 25 30

Pro Val Lys Lys Ser Glu Ala Pro Asp Tyr Tyr Glu Val Ile Arg Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Pro Ile Asp Leu Lys Thr Met Thr Glu Arg Leu Arg Ser Arg Tyr Tyr 50 55 60

Val Thr Arg Lys Leu Phe Val Ala Asp Leu Gln Arg Val Ile Ala Asn 65 70 75 80

Cys Arg Glu Tyr Asn Pro Pro Asp Ser Glu Tyr Cys Arg Cys Ala Ser 85 90 95

Ala Leu Glu Lys Phe Phe Tyr Phe Lys Leu Lys Glu Gly Gly
100 105 110

<210> 9

<211> 109

<212> PRT

<213> Tetrahymena thermophila

<400> 9

Leu Lys Lys Ser Lys Glu Arg Ser Phe Asn Leu Gln Cys Ala Asn Val 1 5 10 15

Ile Glu Asn Met Lys Arg His Lys Gln Ser Trp Pro Phe Leu Asp Pro 20 25 30

Val Asn Lys Asp Val Pro Asp Tyr Tyr Asp Val Ile Thr Asp Pro 35 40 45

Ile Asp Ile Lys Ala Ile Glu Lys Lys Leu Gln Asn Asn Gln Tyr Val 50 60

Asp Lys Asp Gln Phe Ile Lys Asp Val Lys Arg Ile Phe Thr Asn Ala 65 70 75 80

Lys Ile Tyr Asn Gln Pro Asp Thr Ile Tyr Tyr Lys Ala Ala Lys Glu 85 90 95

Leu Glu Asp Phe Val Glu Pro Tyr Leu Thr Lys Leu Lys

<210> 10

<211> 109

<212> PRT

<213> Saccharomyces cerevisiae

<400> 10

Ala Gln Arg Pro Lys Arg Gly Pro His Asp Ala Ala Ile Gln Asn Ile 1 10 15

Leu Thr Glu Leu Gln Asn His Ala Ala Ala Trp Pro Phe Leu Gln Pro
20 25 30

Val Asn Lys Glu Glu Val Pro Asp Tyr Tyr Asp Phe Ile Lys Glu Pro

Met Asp Leu Ser Thr Met Glu Ile Lys Leu Glu Ser Asn Lys Tyr Gln 50 55 60

Lys Met Glu Asp Phe Ile Tyr Asp Ala Arg Leu Val Phe Asn Asn Cys 65 70 75 80

Arg Met Tyr Asn Gly Glu Asn Thr Ser Tyr Tyr Lys Tyr Ala Asn Arg 85 90 95

Leu Glu Lys Phe Phe Asn Asn Lys Val Lys Glu Ile Pro

<210> 11

<211> 112

<212> PRT

<213> Homo sapiens

<400> 11

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln 20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val

Lys Ser Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Ile Trp Leu Met Phe

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Tyr

Cys Ser Lys Leu Ser Glu Val Phe Glu Gln Glu Ile Asp Pro Val Met

<210> 12 <211> 112

<212> PRT

<213> Homo sapiens

<400> 12

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln 20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val

Lys Asn Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly 50 60

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Val Trp Leu Met Phe 65 70 75 80

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Phe

Cys Ser Lys Leu Ala Glu Val Phe Glu Gln Glu Ile Asp Pro Val Met

<210> 13

<211> 112 <212> PRT

```
<213> Mus musculus
```

<400> 13

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr 1 10 15

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln 20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val 35 40 45

Lys Asn Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly 50 60

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Val Arg Leu Met Phe 70 75 80

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Phe
85 90 95

Cys Ser Lys Leu Ala Glu Val Phe Glu Glu Ile Asp Pro Val Met  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

<210> 14

<211> 111

<212> PRT

<213> Caenorhabditis elegans

<400> 14

Asp Thr Val Phe Ser Gln Glu Asp Leu Ile Lys Phe Leu Leu Pro Val 1 5 10 15

Trp Glu Lys Leu Asp Lys Ser Glu Asp Ala Ala Pro Phe Arg Val Pro 20 25 30

Val Asp Ala Lys Leu Leu Asn Ile Pro Asp Tyr His Glu Ile Ile Lys 35 40 45

Arg Pro Met Asp Leu Glu Thr Val His Lys Lys Leu Tyr Ala Gly Gln
50 60

Tyr Gln Asn Ala Gly Gln Phe Cys Asp Asp Ile Trp Leu Met Leu Asp 65 70 80

Asn Ala Trp Leu Tyr Asn Arg Lys Asn Ser Lys Val Tyr Lys Tyr Gly 85 90 95

Leu Lys Leu Ser Glu Met Phe Val Ser Glu Met Asp Pro Val Met

<210> 15

<211> 110

<212> PRT

<213> Homo sapiens

<400> 15

Arg Arg Arg Thr Asp Pro Met Val Thr Leu Ser Ser Ile Leu Glu Ser 1 10 15

Ile Ile Asn Asp Met Arg Asp Leu Pro Asn Thr Tyr Pro Phe His Thr 20 25 30

Pro Val Asn Ala Lys Val Val Lys Asp Tyr Tyr Lys Ile Ile Thr Arg
35 40 45

Pro Met Asp Leu Gln Thr Leu Arg Glu Asn Val Arg Lys Arg Leu Tyr

Pro Ser Arg Glu Glu Phe Arg Glu His Leu Glu Leu Ile Val Lys Asn

Ser Ala Thr Tyr Asn Gly Pro Lys His Ser Leu Thr Gln Ile Ser Gln

Ser Met Leu Asp Leu Cys Asp Glu Lys Leu Lys Glu Lys Glu

<210> 16

<211> 110

<212> PRT <213> Mesocricetus auratus

<400> 16

Arg Arg Arg Thr Asp Pro Met Val Thr Leu Ser Ser Ile Leu Glu Ser

Ile Ile Asn Asp Met Arg Asp Leu Pro Asn Thr Tyr Pro Phe His Thr

Pro Val Asn Ala Lys Val Val Lys Asp Tyr Tyr Lys Ile Ile Thr Arg

Pro Met Asp Leu Gln Thr Leu Arg Glu Asn Val Arg Lys Arg Leu Tyr

Pro Ser Arg Glu Glu Phe Arg Glu His Leu Glu Leu Ile Val Lys Asn

Ser Ala Thr Tyr Asn Gly Pro Lys His Ser Leu Thr Gln Ile Ser Gln

Ser Met Leu Asp Leu Cys Asp Glu Lys Leu Lys Glu Lys Glu 105

<210> 17

<211> 111 <212> PRT

<213> Homo sapiens

<400> 17

Leu Leu Asp Asp Asp Gln Val Ala Phe Ser Phe Ile Leu Asp Asn

Ile Val Thr Gln Lys Met Met Ala Val Pro Asp Ser Trp Pro Phe His

His Pro Val Asn Lys Lys Phe Val Pro Asp Tyr Tyr Lys Val Ile Val

Asn Pro Met Asp Leu Glu Thr Ile Arg Lys Asn Ile Ser Lys His Lys

Tyr Gln Ser Arg Glu Ser Phe Leu Asp Asp Val Asn Leu Ile Leu Ala

Asn Ser Val Lys Tyr Asn Gly Pro Glu Ser Gln Tyr Thr Lys Thr Ala

Gln Glu Ile Val Asn Val Cys Tyr Gln Thr Leu Thr Glu Tyr Asp

<210> 18

```
<211> 111
<212> PRT
```

<213> Mesocricetus auratus

Leu Leu Asp Asp Asp Gln Val Ala Phe Ser Phe Ile Leu Asp Asn

Ile Val Thr Gln Lys Met Met Ala Val Pro Asp Ser Trp Pro Phe His

His Pro Val Asn Lys Lys Phe Val Pro Asp Tyr Tyr Lys Val Ile Val 35 40 45

Ser Pro Met Asp Leu Glu Thr Ile Arg Lys Asn Ile Ser Lys His Lys

Tyr Gln Ser Arg Glu Ser Phe Leu Asp Asp Val Asn Leu Ile Leu Ala 65 70 80

Asn Ser Val Lys Tyr Asn Gly Ser Glu Ser Gln Tyr Thr Lys Thr Ala 85 90 95

Gln Glu Ile Val Asn Val Cys Tyr Gln Thr Leu Thr Glu Tyr Asp 105

<210> 19 <211> 111

<212> PRT

<213> Homo sapiens

<400> 19

Lys Pro Gly Arg Val Thr Asn Gln Leu Gln Tyr Leu His Lys Val Val

Met Lys Ala Leu Trp Lys His Gln Phe Ala Trp Pro Phe Arg Gln Pro

Val Asp Ala Val Lys Leu Gly Leu Pro Asp Tyr His Lys Ile Ile Lys

Gln Pro Met Asp Met Gly Thr Ile Lys Arg Arg Leu Glu Asn Asn Tyr

Tyr Trp Ala Ala Ser Glu Cys Met Gln Asp Phe Asn Thr Met Phe Thr

Asn Cys Tyr Ile Tyr Asn Lys Pro Thr Asp Asp Ile Val Leu Met Ala

Gln Thr Leu Glu Lys Ile Phe Leu Gln Lys Val Ala Ser Met Pro

<210> 20

<211> 111

<212> PRT

<213> Homo sapiens

<400> 20

Lys Pro Gly Arg Lys Thr Asn Gln Leu Gln Tyr Met Gln Asn Val Val

Val Lys Thr Leu Trp Lys His Gln Phe Ala Trp Pro Phe Tyr Gln Pro

Val Asp Ala Ile Lys Leu Asn Leu Pro Asp Tyr His Lys Ile Ile Lys

|                              |             | 35                        |            |           |           |           | 40        |            |           |           |           | 45        |            |           |           |
|------------------------------|-------------|---------------------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| Asn                          | Pro<br>50   | Met                       | Asp        | Met       | Gly       | Thr<br>55 | Ile       | Lys        | Lys       | Arg       | Leu<br>60 | Glu       | Asn        | Asn       | Tyr       |
| Tyr<br>65                    | Trp         | Ser                       | Ala        | Ser       | Glu<br>70 | Cys       | Met       | Gln        | Asp       | Phe<br>75 | Asn       | Thr       | Met        | Phe       | Thr<br>80 |
| Asn                          | Cys         | Tyr                       | Ile        | Tyr<br>85 | Asn       | Lys       | Pro       | Thr        | Asp<br>90 | Asp       | Ile       | Val       | Leu        | Met<br>95 | Ala       |
| Gln                          | Ala         | Leu                       | Glu<br>100 | Lys       | Ile       | Phe       | Leu       | Gln<br>105 | Lys       | Val       | Ala       | Gln       | Met<br>110 | Pro       |           |
| <210<br><211<br><212<br><213 | > 1<br>2> I | 21<br>111<br>PRT<br>Oroso | ophil      | la me     | elano     | ogast     | cer       |            |           |           |           |           |            |           |           |
| <400                         | )> 2        | 21                        |            |           |           |           |           |            |           |           |           |           |            |           |           |
| Arg<br>1                     | Pro         | Gly                       | Arg        | Asn<br>5  | Thr       | Asn       | Gln       | Leu        | Gln<br>10 | Tyr       | Leu       | Ile       | Lys        | Thr<br>15 | Val       |
| Met                          | Lys         | Val                       | Ile<br>20  | Trp       | Lys       | His       | His       | Phe<br>25  | Ser       | Trp       | Pro       | Phe       | Gln<br>30  | Gln       | Pro       |
| Val                          | Asp         | Ala<br>35                 | Lys        | Lys       | Leu       | Asn       | Leu<br>40 | Pro        | Asp       | Tyr       | His       | Lys<br>45 | Ile        | Ile       | Lys       |
| Gln                          | Pro<br>50   | Met                       | Asp        | Met       | Gly       | Thr<br>55 | Ile       | Lys        | Lys       | Arg       | Leu<br>60 | Glu       | Asn        | Asn       | Tyr       |
| Tyr<br>65                    | Trp         | Ser                       | Ala        | Lys       | Glu<br>70 | Thr       | Ile       | Gln        | Asp       | Phe<br>75 | Asn       | Thr       | Met        | Phe       | Asn<br>80 |
|                              |             |                           |            | 85        |           |           |           |            | 90        |           |           |           | Val        | 95        | Ala<br>** |
| Gln                          | Thr         | Leu                       | Glu<br>100 | Lys       | Val       | Phe       | Leu       | Gln<br>105 | Lys       | Ile       | Glu       | Ser       | Met<br>110 | Pro       |           |
| <210<br><211<br><212<br><213 | L> :        | 22<br>109<br>PRT<br>Saccl | haro       | myce:     | s cei     | revis     | siae      |            |           |           |           |           |            |           |           |
| <400                         | )> :        | 22                        |            |           |           |           |           |            |           |           |           |           |            |           |           |
| Asn<br>1                     | Pro         | Ile                       | Pro        | Lys<br>5  | His       | Gln       | Gln       | Lys        | His<br>10 | Ala       | Leu       | Leu       | Ala        | Ile<br>15 | Lys       |
| Ala                          | Val         | Lys                       | Arg<br>20  | Leu       | Lys       | Asp       | Ala       | Arg<br>25  | Pro       | Phe       | Leu       | Gln       | Pro<br>30  | Val       | Asp       |
| Pro                          | Val         | Lys<br>35                 | Leu        | Asp       | Ile       | Pro       | Phe<br>40 | Tyr        | Phe       | Asn       | Tyr       | 11e<br>45 | Lys        | Arg       | Pro       |
|                              | 50          |                           |            |           |           | 55        |           |            |           |           | 60        |           | Ala        |           |           |
| Val<br>65                    | Pro         | Glu                       | Gln        | Ile       | Thr<br>70 | Glu       | Asp       | Phe        | Asn       | Leu<br>75 | Met       | Val       | Asn        | Asn       | Ser<br>80 |
| Ile                          | Lys         | Phe                       | Asn        | Gly<br>85 | Pro       | Asn       | Ala       | Gly        | Ile<br>90 | Ser       | Gln       | Met       | Ala        | Arg<br>95 | Asn       |
| Ile                          | Gln         | Ala                       | Ser<br>100 | Phe       | Glu       | Lys       | His       | Met<br>105 | Leu       | Asn       | Met       | Pro       |            |           |           |

```
<210> 23
<211> 113
<212> PRT
<213> Homo sapiens
<400> 23
Lys Lys Gly Lys Leu Ser Glu Gln Leu Lys His Cys Asn Gly Ile Leu
Lys Glu Leu Leu Ser Lys Lys His Ala Ala Tyr Ala Trp Pro Phe Tyr 20 25 30
Lys Pro Val Asp Ala Ser Ala Leu Gly Leu His Asp Tyr His Asp Ile
Ile Lys His Pro Met Asp Leu Ser Thr Val Lys Arg Lys Met Glu Asn 50 60
Arg Asp Tyr Arg Asp Ala Glu Phe Ala Ala Asp Val Arg Leu Met 65 70 75 80
Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Asp Val Val Ala
Met Ala Arg Lys Leu Gln Asp Val Phe Glu Phe Arg Tyr Ala Lys Met
<210>
       24
<211>
      113
<212>
      PRT
<213> Homo sapiens
<400> 24
Lys Lys Gly Lys Leu Ser Glu His Leu Arg Tyr Cys Asp Ser Ile Leu
Arg Glu Met Leu Ser Lys Lys His Ala Ala Tyr Ala Trp Pro Phe Tyr
Lys Pro Val Asp Ala Glu Ala Leu Glu Leu His Asp Tyr His Asp Ile
Ile Lys His Pro Met Asp Leu Ser Thr Val Lys Arg Lys Met Asp Gly 50 55 60
Arg Glu Tyr Pro Asp Ala Gln Gly Phe Ala Ala Asp Val Arg Leu Met 70 75
Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Glu Val Val Ala 85 90 95
Met Ala Arg Lys Leu Gln Asp Val Phe Glu Met Arg Phe Ala Lys Met
Pro
<210> 25
<211> 113
<212> PRT
<213> Drosophila melanogaster
<400> 25
```

```
Asn Lys Glu Lys Leu Ser Asp Ala Leu Lys Ser Cys Asn Glu Ile Leu 1 15

Lys Glu Leu Phe Ser Lys Lys His Ser Gly Tyr Ala Trp Pro Phe Tyr 25

Lys Pro Val Asp Ala Glu Met Leu Gly Leu His Asp Tyr His Asp Ile 35
```

Ile Lys Lys Pro Met Asp Leu Gly Thr Val Lys Arg Lys Met Asp Asn 50 60

Arg Glu Tyr Lys Ser Ala Pro Glu Phe Ala Ala Asp Val Arg Leu Ile 65 70 75 80

Phe Thr Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Asp Val Val Ala 85 90 95

Pro

```
<210> 26
<211> 113
<212> PRT
```

<213> Saccharomyces cerevisiae

<400> 26

Lys Ser Lys Arg Leu Gln Gln Ala Met Lys Phe Cys Gln Ser Val Leu 1 5 5 10 10 15

Lys Glu Leu Met Ala Lys Lys His Ala Ser Tyr Asn Tyr Pro Phe Leu 20 25 30

Glu Pro Val Asp Pro Val Ser Met Asn Leu Pro Thr Tyr Phe Asp Tyr 35 40 45

Val Lys Glu Pro Met Asp Leu Gly Thr Ile Ala Lys Lys Leu Asn Asp 50 60

Trp Gln Tyr Gln Thr Met Glu Asp Phe Glu Arg Glu Val Arg Leu Val 65 70 75 80

Phe Lys Asn Cys Tyr Thr Phe Asn Pro Asp Gly Thr Ile Val Asn Met 85 90 95

Met Gly His Arg Leu Glu Glu Val Phe Asn Ser Lys Trp Ala Asp Arg 100 105 110

Pro

<210> 27 <211> 108 <212> PRT <213> Homo sapiens

<400> 27

Met Glu Met Gln Leu Thr Pro Phe Leu Ile Leu Leu Arg Lys Thr Leu  $1 \ 5 \ 10 \ 15$ 

Glu Gln Leu Gln Glu Lys Asp Thr Gly Asn Ile Phe Ser Glu Pro Val $20 \\ 25 \\ 30$ 

Pro Leu Ser Glu Val Pro Asp Tyr Leu Asp His Ile Lys Lys Pro Met 35 40

Asp Phe Phe Thr Met Lys Gln Asn Leu Glu Ala Tyr Arg Tyr Leu Asn

Phe Asp Asp Phe Glu Glu Asp Phe Asn Leu Ile Val Ser Asn Cys Leu

Lys Tyr Asn Ala Lys Asp Thr Ile Phe Tyr Arg Ala Ala Val Arg Leu

Arg Glu Gln Gly Gly Ala Val Val Arg Gln Ala Arg

<210> 28

113 <211>

<212> PRT

<213> Homo sapiens

<400> 28

Ser Glu Asp Gln Glu Ala Ile Gln Ala Gln Lys Ile Trp Lys Lys Ala

Ile Met Leu Val Trp Arg Ala Ala Ala Asn His Arg Tyr Ala Asn Val

Phe Leu Gln Pro Val Thr Asp Asp Ile Ala Pro Gly Tyr His Ser Ile  $\frac{35}{40}$ 

Val Gln Arg Pro Met Asp Leu Ser Thr Ile Lys Lys Asn Ile Glu Asn

Gly Leu Ile Arg Ser Thr Ala Glu Phe Gln Arg Asp Ile Met Leu Met

Phe Gln Asn Ala Val Met Tyr Asn Ser Ser Asp His Asp Val Tyr His

Met Ala Val Glu Met Gln Arg Asp Val Leu Glu Gln Ile Gln Gln Phe

Leu

<210> 29

106

<212> <213> Gallus gallus

PRT

<400> 29

Asn Leu Pro Thr Val Asp Pro Ile Ala Val Cys His Glu Leu Tyr Asn

Thr Ile Arg Asp Tyr Lys Asp Glu Gln Gly Arg Leu Leu Cys Glu Leu 20 25 30

Phe Ile Arg Ala Pro Lys Arg Arg Asn Gln Pro Asp Tyr Tyr Glu Val

Val Ser Gln Pro Ile Asp Leu Met Lys Ile Gln Gln Lys Leu Lys Met

Glu Glu Tyr Asp Asp Val Asn Val Leu Thr Ala Asp Phe Gln Leu Leu

Phe Asn Asn Ala Lys Ala Tyr Tyr Lys Pro Asp Ser Pro Glu Tyr Lys

85 90 95

Ala Ala Cys Lys Leu Trp Glu Leu Tyr Leu

<210> 30

<211> 112

<212> PRT

<213> Gallus gallus

<400> 30

Ser Ser Pro Gly Tyr Leu Lys Glu Ile Leu Glu Gln Leu Leu Glu Ala

Val Ala Val Ala Thr Asn Pro Ser Gly Arg Leu Ile Ser Glu Leu Phe

Gln Lys Leu Pro Ser Lys Val Gln Tyr Pro Asp Tyr Tyr Ala Ile Ile 35 40 45

Lys Glu Pro Ile Asp Leu Lys Thr Ile Ala Gln Arg Ile Gln Asn Gly 50 60

Thr Tyr Lys Ser Ile His Ala Met Ala Lys Asp Ile Asp Leu Leu Ala

Lys Asn Ala Lys Thr Tyr Asn Glu Pro Gly Ser Gln Val Phe Lys Asp

Ala Asn Ala Ile Lys Lys Ile Phe Asn Met Lys Lys Ala Glu Ile Glu

<210> 31

<211> 112 <212> PRT

<213> Gallus gallus

<400> 31

Thr Ser Phe Met Asp Thr Ser Asn Pro Leu Tyr Gln Leu Tyr Asp Thr

Val Arg Ser Cys Arg Asn Asn Gln Gly Gln Leu Ile Ser Glu Pro Phe

Phe Gln Leu Pro Ser Lys Lys Lys Tyr Pro Asp Tyr Tyr Gln Gln Ile

Lys Thr Pro Ile Ser Leu Gln Gln Ile Arg Ala Lys Leu Lys Asn His

Glu Tyr Glu Thr Leu Asp Gln Leu Glu Ala Asp Leu Asn Leu Met Phe 65 70 75 80

Glu Asn Ala Lys Arg Tyr Asn Val Pro Asn Ser Ala Ile Tyr Lys Arg

Val Leu Lys Met Gln Gln Val Met Gln Ala Lys Lys Glu Leu Ala 100 105

<210> 32

<211> 113

<212> PRT

<213> Gallus gallus

<400> 32

Ser Lys Lys Asn Met Arg Lys Gln Arg Met Lys Ile Leu Tyr Asn Ala

```
Val Leu Glu Ala Arg Glu Ser Gly Thr Gln Arg Arg Leu Cys Asp Leu
Phe Met Val Lys Pro Ser Lys Lys Asp Tyr Pro Asp Tyr Tyr Lys Ile
Ile Leu Glu Pro Met Asp Leu Lys Met Ile Glu His Asn Ile Arg Asn
Asp Lys Tyr Val Gly Glu Glu Ala Met Ile Asp Asp Met Lys Leu Met
Phe Arg Asn Ala Arg His Tyr Asn Glu Glu Gly Ser Gln Val Tyr Asn
Asp Ala His Met Leu Glu Lys Ile Leu Lys Glu Lys Arg Lys Glu Leu
                                105
Gly
<210>
      33
<211>
      115
<212>
      PRT
<213> Gallus gallus
<400> 33
Lys Lys Ser Lys Tyr Met Thr Pro Met Gln Gln Lys Leu Asn Glu Val
Tyr Glu Ala Val Lys Asn Tyr Thr Asp Lys Arg Gly Arg Arg Leu Ser
Ala Ile Phe Leu Arg Leu Pro Ser Arg Ser Glu Leu Pro Asp Tyr Tyr
Ile Thr Ile Lys Lys Pro Val Asp Met Glu Lys Ile Arg Ser His Met
Met Ala Asn Lys Tyr Gln Asp Ile Asp Ser Met Val Glu Asp Phe Val
Met Met Phe Asn Asn Ala Cys Thr Tyr Asn Glu Pro Glu Ser Leu Ile
Tyr Lys Asp Ala Leu Val Leu His Lys Val Leu Leu Glu Thr Arg Arg
Glu Ile Glu
        115
<210>
      34
<211>
      112
<213> Description of unknown organism, see Jeanmougin et al., Trends
in Biochem. Sci. 22:151-153 (1997)
<400> 34
His Asn Ala Pro Phe Asp Lys Thr Lys Phe Asp Glu Val Leu Glu Ala
Leu Val Gly Leu Lys Asp Asn Glu Gly Asn Pro Phe Asp Asp Ile Phe
Glu Glu Leu Pro Ser Lys Arg Tyr Phe Pro Asp Tyr Tyr Gln Ile Ile
```

Gln Lys Pro Ile Cys Tyr Lys Met Met Arg Asn Lys Ala Lys Thr Gly Lys Tyr Leu Ser Met Gly Asp Phe Tyr Asp Asp Ile Arg Leu Met Val Ser Asn Ala Gln Thr Tyr Asn Met Pro Gly Ser Leu Val Tyr Glu Cys Ser Val Leu Ile Ala Asn Thr Ala Asn Ser Leu Glu Ser Lys Asp Gly <210> 35 <211> 113 <212> PRT <213> Description of unknown organism, see Jeanmougin et al., Trends in Biochem. Sci. 22:151-153 (1997) <400> 35 Gly Thr Asn Glu Ile Asp Val Pro Lys Val Ile Gln Asn Ile Leu Asp Ala Leu His Glu Glu Lys Asp Glu Gln Gly Arg Phe Leu Ile Asp Ile Phe Ile Asp Leu Pro Ser Lys Arg Leu Tyr Pro Asp Tyr Tyr Glu Ile Ile Lys Ser Pro Met Thr Ile Lys Met Leu Glu Lys Arg Phe Lys Lys 50 60Gly Glu Tyr Thr Thr Leu Glu Ser Phe Val Lys Asp Leu Asn Gln Met 70 75 80Phe Ile Asn Ala Lys Thr Tyr Asn Ala Pro Gly Ser Phe Val Tyr Glu Asp Ala Glu Lys Leu Ser Gln Leu Ser Ser Ser Leu Ile Ser Ser Phe Ser <210> 36 <211> 113 PRT <212> <213> Homo sapiens <400> 36 Gly Thr Asn Glu Ile Asp Val Pro Lys Val Ile Gln Asn Ile Leu Asp Ala Leu His Glu Glu Lys Asp Glu Gln Gly Arg Phe Leu Ile Asp Ile Phe Ile Asp Leu Pro Ser Lys Arg Leu Tyr Pro Asp Tyr Tyr Glu Ile Ile Lys Ser Pro Met Thr Ile Lys Met Leu Glu Lys Arg Phe Lys Lys Gly Glu Tyr Thr Thr Leu Glu Ser Phe Val Lys Asp Leu Asn Gln Met Phe Ile Asn Ala Lys Thr Tyr Asn Ala Pro Gly Ser Phe Val Tyr Glu

85 90 95

Asp Ala Glu Lys Leu Ser Gln Leu Ser Ser Ser Leu Ile Ser Ser Phe 100 105

Ser

<210> 37

<211> 114

<212> PRT

<213> Homo sapiens

<400> 37

Ser Pro Asn Pro Pro Asn Leu Thr Lys Lys Met Lys Lys Ile Val Asp 1 5 10 15

Ala Val Ile Lys Tyr Lys Asp Ser Ser Ser Gly Arg Gln Leu Ser Glu 20 25 30

Val Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu 35 40 45

Leu Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg 50 55 60

Asn His Lys Tyr Arg Ser Leu Asn Asp Leu Glu Lys Asp Val Met Leu 65 70 75 80

Leu Cys Gln Asn Ala Gln Thr Phe Asn Leu Glu Gly Ser Leu Ile Tyr 85 90 95

Glu Asp Ser Ile Val Leu Gln Ser Val Phe Thr Ser Val Arg Gln Lys 100 105 110

Ile Glu

<210> 38

<211> 113

<212> PRT <213> Gallus gallus

<400> 38

Ser Pro Asn Pro Pro Lys Leu Thr Lys Gln Met Asn Ala Ile Ile Asp 1 10 15

Thr Val Ile Asn Tyr Lys Asp Ser Ser Gly Arg Gln Leu Ser Glu Val 20 25 30

Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu Leu 35 40 45

Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg Asn 50 60

His Lys Tyr Arg Ser Leu Gly Asp Leu Glu Lys Asp Val Met Leu Leu 65 70 75 80

Cys His Asn Ala Gln Thr Phe Asn Leu Glu Gly Ser Gln Ile Tyr Glu 85 90

Asp Ser Ile Val Leu Gln Ser Val Phe Lys Ser Ala Arg Gln Lys Ile 100 105 110

Ala

```
<210>
       39
<211>
       114
<212> PRT
<213> Gallus gallus
<400> 39
Ser Pro Asn Pro Pro Asn Leu Thr Lys Lys Met Lys Lys Ile Val Asp
Ala Val Ile Lys Tyr Lys Asp Ser Ser Ser Gly Arg Gln Leu Ser Glu
Val Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu
Leu Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg
Asn His Lys Tyr Arg Ser Leu Asn Asp Leu Glu Lys Asp Val Met Leu 65 70 75 80
Leu Cys Gln Asn Ala Gln Thr Phe Asn Leu Glu Val Ser Leu Ile Tyr
Glu Asp Ser Ile Val Leu Gln Ser Val Phe Thr Ser Val Arg Gln Lys
                                  105
Ile Glu
<210> 40
       105
<211>
<212> PRT
<213> Homo sapiens
<400> 40
Ala Lys Leu Ser Pro Ala Asn Gln Arg Lys Cys Glu Arg Val Leu Leu
Ala Leu Phe Cys His Glu Pro Cys Arg Pro Leu His Gln Leu Ala Thr 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}
Asp Ser Thr Phe Ser Leu Asp Gln Pro Gly Gly Thr Leu Asp Leu Thr
Leu Ile Arg Ala Arg Leu Gln Glu Lys Leu Ser Pro Pro Tyr Ser Ser 50 60
Pro Gln Glu Phe Ala Gln Asp Val Gly Arg Met Phe Lys Gln Phe Asn
Lys Leu Thr Glu Asp Lys Ala Asp Val Gln Ser Ile Ile Gly Leu Gln
Arg Phe Phe Glu Thr Arg Met Asn Glu
 <210>
       41
<211>
       105
 <212>
       PRT
 <213> Mus musculus
 <400> 41
Ala Lys Leu Ser Pro Ala Asn Gln Arg Lys Cys Glu Arg Val Leu Leu 1 5 10 15
```

<220>

<221> X <222> (6)..(6)

```
Ala Leu Phe Cys His Glu Pro Cys Arg Pro Leu His Gln Leu Ala Thr
Asp Ser Thr Phe Ser Met Glu Gln Pro Gly Gly Thr Leu Asp Leu Thr
Leu Ile Arg Ala Arg Leu Gln Glu Lys Leu Ser Pro Pro Tyr Ser Ser
Pro Gln Glu Phe Ala Gln Asp Val Gly Arg Met Phe Lys Gln Phe Asn
Lys Leu Thr Glu Asp Lys Ala Asp Val Gln Ser Ile Ile Gly Leu Gln 85 90 95
Arg Phe Phe Glu Thr Arg Met Asn Asp
            100
<210> 42
<211>
      108
<212> PRT
<213> Mus sp.
<400> 42
Thr Lys Leu Thr Pro Ile Asp Lys Arg Lys Cys Glu Arg Leu Leu 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Phe Leu Tyr Cys His Glu Met Ser Leu Ala Phe Gln Asp Pro Val Pro
Leu Thr Val Pro Asp Tyr Tyr Lys Ile Ile Lys Asn Pro Met Asp Leu
Ser Thr Ile Lys Lys Arg Leu Gln Glu Asp Tyr Cys Met Tyr Thr Lys
Pro Glu Asp Phe Val Ala Asp Phe Arg Leu Ile Phe Gln Asn Cys Ala
Glu Phe Asn Glu Pro Asp Ser Glu Val Ala Asn Ala Gly Ile Lys Leu
Glu Ser Tyr Phe Glu Glu Leu Leu Lys Asn Leu Tyr
<210>
      43
<211> 14
<212> PRT
<213> artificial sequence
<220>
<221> X
<222>
       (1)..(2)
      X can be any single amino acid
<220>
<221>
       (4)..(4)
<222>
<223> X is two to three amino acids. Each of these can be any amino
```

```
<223> X is five to eight amino acids. Each of these can be any amino
      ac
              id
       <220>
       <221>
       <222> (7)..(7)
       <223> X is a single amino acid that can be Pro, Lys, or His.
       <220>
       <221> X
       <222> (8)..(8)
       <223> X is a single amino acid that can be any amino acid.
       <220>
       <221> X
<222> (10)..(10)
<223> X is a single amino acid that can be a Tyr, Phe, or His.
       <220>
       <221> X
<222> (11)..(11) <223> X is five amino acids. Each of these can be any amino acid.
<220>
       <221> X
       <222> (13)..(13) <223> X is a single amino acid that can be Met, Ile, or Val.
<400> 43
Ξ
       Xaa Xaa Phe Xaa Pro Xaa Xaa Xaa Tyr Xaa Xaa Pro Xaa Asp
13
                                               10
1
       <210> 44
<211> 20
<212> PRT
<213> artificial sequence
Į=Ł
m
-
1
       <400> 44
       Trp Pro Phe Met Glu Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr
       Glu Val Ile Arg
       <210> 45
       <211> 101
<212> PRT
<213> Human immunodeficiency virus type 1
       <400> 45
        Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
        Gln Pro Lys Thr Ala Ser Asn Asn Cys Tyr Cys Lys Arg Cys Cys Leu
        His Cys Gln Val Cys Phe Thr Lys Lys Gly Leu Gly Ile Ser Tyr Gly
                                      40
```

```
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Lys Thr
                                                                                                         55
                    His Gln Val Ser Leu Ser Lys Gln Pro Ala Ser Gln Pro Arg Gly Asp
                     Pro Thr Gly Pro Lys Glu Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
                     Thr Asp Pro Glu Asp
                     <210> 46
                     <211> 7
                     <212> PRT
<213> artificial sequence
                     <220>
                      <221>
                     <222> (5)..(5)
                      <223> X is one to three amino acids. Each amino acid can be any amino
                     <400> 46
Tyr Gly Arg Lys Xaa Arg Gln
The section of the se
                      <210> 47
                     <211> 10
<212> PRT
<213> artificial sequence
5
                      <400> 47
į,
                      Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg
ŧ
1 2
ij.
                      <210> 48
                      <211> 10
<212> PRT
<213> artificial
1
=
                       <220>
į.
                       <221>
                       <222> (2)..(2)
                       <223> X is two to four amino acids. Each of these can be any amino
                       aci
                        <220>
                        <221> X
                        <222> (4)..(4)
                        <223> X is two to four amino acids. Each of these can be any amino
                        aci
                        <220>
                        <221> X
<222> (6)..(6)
                        <223> X is two to four amino acids. Each of these can be any amino
                         <220>
```

Page 24

```
<221> X
       <222> (8)..(8)
<223> X is one to three amino acids. Each of these can be any amino
       <220>
       <221> X
             (10)..(10)
       <222>
       <223> X is a single amino acid that is either Ile, Leu, Met, or Val.
       <400> 48
       Phe Xaa Val Xaa Glu Xaa Tyr Xaa Val Xaa
       <210> 49
<211> 62
       <212> PRT
       <213> artificial sequence
       <400> 49
       Phe Met Glu Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr Glu Val
12
       Ile Arg Phe Pro Met Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn
112
Ë
       Arg Tyr Tyr Val Ser Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val
M
M
       Phe Thr Asn Cys Lys Glu Tyr Asn Ala Ala Glu Ser Glu Tyr
1
       .210> 50
<211> 11
<212> PRT
<213> artificial sequence
1
m
       <220>
       <221> X
<222> (5)..(5)
<223> X is an acetylated lysine (AcK).
<400> 50
       Ser Tyr Gly Arg Xaa Lys Arg Arg Gln Arg Cys
        <210> 51
        <211> 11
<212> PRT
<213> artificial sequence
        <220>
        <221> X
        <222> (5)..(5)
<223> X is an acetylated lysine (AcK)
        <400> 51
        Ser Ala Gly Arg Xaa Lys Arg Arg Gln Arg Cys
```

8

```
<210> 52
      <211> 11
<212> PRT
<213> artificial sequence
      <220>
      <221> X
      <222> (5)..(5)
      <223> X ia an acetylated lysine (AcK)
      <400> 52
      Ser Tyr Gly Ala Xaa Lys Arg Arg Gln Arg Cys
      <210> 53
      <211> 11
      <212> PRT
      <213> artificial sequence
      <220>
      <221> X
      <222>
             (5)..(5)
      <223> X is an acetylated lysine (AcK).
<400> 53
Ser Tyr Gly Arg Xaa Ala Arg Arg Gln Arg Cys
ij
      <210> 54
      <211> 11
<212> PRT
<213> artificial sequence
ŝ
      <220>
<221> X
Ш
      <222> (5)..(5)
<223> X is an acetylated lysine (AcK).
į "i
M
<400> 54
Į.
       Ser Tyr Gly Arg Xaa Lys Ala Arg Gln Arg Cys
       <210> 55
      <211> 11
<212> PRT
<213> artificial sequence
       <220>
       <221> X
       <222> (5)..(5)
<223> X is an acetylated lysine (AcK)
       <400> 55
       Ser Tyr Gly Arg Xaa Lys Arg Ala Gln Arg Cys
       <210> 56
       <211> 11
       <212> PRT
<213> artificial sequence
```

```
<220>
                          <221> X
                          <222> (5)..(5)
                          <223> X is an acetylated lysine (AcK)
                          <400> 56
                          Ser Tyr Gly Arg Xaa Lys Arg Arg Ala Arg Cys
                          <210> 57
                          <211> 11
                          <212> PRT
<213> artificail sequence
                           <220>
                           <221> X
                           <222> (6)..(6)
                           <223> X is an acetylated lysine (AcK)
                          <400> 57
                           Ser Tyr Gly Arg Lys Xaa Arg Arg Gln Arg Cys
                           <210> 58
                           <211> 11
<212> PRT
The Late of the state of the st
                           <213> artificial sequence
                           <220>
                           <221> X
i Fi
                           <222> (7)..(7)
<223> X is an acetylated lysine (AcK)
Ļ
13
                           <400> 58
Thr Asn Cys Tyr Cys Lys Xaa Cys Cys Phe His
1 =
Ħ
<210> 59
                           <211> 20
<212> PRT
<213> artificial sequence
<220>
                            <221> X
                            <222> (16)..(16)
<223> X is an acetylated lysine (AcK)
                             <400> 59
                             Ser Gly Arg Gly Lys Gly Lys Gly Leu Gly Lys Gly Gly Ala Xaa
                             Arg His Arg Lys
```