Efeito de distúrbios florestais sobre o risco de birdstrike Uma análise da viabilidade de pesquisa para uma espécie de ave

Levi Gurgel de Lima

2025-09-03

Introdução: O problema dos Birdstrikes

O que são birdstrikes?

- Colisões entre aves e aeronaves.
- Causam danos sérios, com riscos à segurança e prejuízos econômicos globais.
- O custo anual estimado nos EUA chega a mais de US\$ 1,2 bilhão.

A conexão com o ambiente

- Ações humanas, como desmatamento e urbanização, alteram o habitat das aves.
- Essa alteração pode aumentar a exposição de certas aves aos aeroportos, elevando o risco de colisões.

Pergunta da pesquisa e Justificativa

Pergunta da pesquisa

• Como **distúrbios florestais** nas imediações de um aeroporto afetam o risco de *birdstrike* para uma determinada espécie de ave?

Justificativa

- A segurança aérea é um problema global e crescente.
- Entender a relação entre paisagem e birdstrikes é crucial para desenvolver medidas de mitigação eficazes.
- Este projeto busca preencher lacunas de conhecimento sobre essa dinâmica, focando em uma espécie de estudo.

Metodologia: Análise de Viabilidade

Objetivo

- Avaliar a viabilidade de pesquisa no Brasil e nos EUA, considerando os dados, recursos e parcerias disponíveis em cada país.
- O foco principal da Iniciação Científica (IC) será a região com maior potencial para responder à pergunta de pesquisa.

Por que a viabilidade é o foco?

- A natureza e a qualidade dos dados de birdstrike e ecologia variam muito entre os países.
- Uma análise preliminar é essencial para garantir a robustez e o sucesso do projeto.

Cenário 1: Estados Unidos

Dados e parcerias

- Dados de Birdstrikes: Utilização do banco de dados público da FAA (Federal Aviation Administration), com relatórios históricos de colisões.
- Dados de Habitat/Ecologia: Integração de dados de distribuição e migração de aves (e.g., eBird).
- Parceria com pesquisa do LabGEO ITA Dados de GPS de boa qualidade do Cathares aura nos EUA pesquisados no LabGEO do ITA.

Escolha da espécie de estudo

- Para encontrar a espécie ideal, foram consultados estudos que analisam a frequência de birdstrikes nos EUA e a ecologia de aves em habitats sob distúrbios.
- Os artigos a seguir foram cruciais para a escolha, fornecendo informações-chave sobre a espécie mais relevante para o estudo.

Artigos

- Landscape transformations produce favorable roosting conditions for turkey vultures and black vultures
- Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America

Análise dos Artigos

Artigo 1: "Landscape transformations..." (Hill et al.)

- Objetivo: Avaliar como a transformação da paisagem por humanos influencia a escolha de locais de pouso noturno (roosting) de urubus-de-cabeça-vermelha (Cathartes aura) e urubus-de-cabeça-preta (Coragyps atratus).
- Justificativa para a escolha do artigo: Este estudo oferece uma visão detalhada da relação entre a presença de urubus e a paisagem modificada, um tema central para pesquisa.

Artigo 1: Metodologia e Abordagem Estatística

Metodologia:

- Utilização de dados de GPS de 7 urubus-de-cabeça-vermelha e 11 urubus-de-cabeça-preta, totalizando dados de 7.916 noites.
- Análise de uso vs. disponibilidade: comparação entre os locais de pouso reais e locais aleatórios que poderiam ter sido usados.

• Abordagem Estatística:

- Uso de regressão logística condicional para prever a probabilidade de uma ave escolher um local específico.
- Análise de múltiplas variáveis da paisagem (densidade de estradas, fragmentação do habitat, cobertura urbana etc.).
- Seleção de modelos com base no Critério de Informação (QIC) para garantir precisão e simplicidade.

Artigo 1: Discussão sobre as espécies

• Urubu-de-cabeça-vermelha (Cathartes aura):

- Demonstra alta plasticidade e adaptação a ambientes modificados.
- Prefere densidades de estradas intermediárias, sugerindo que se beneficia dos recursos associados, mas evita riscos de tráfego intenso.
- É menos social e tem baixa fidelidade a locais de pouso, escolhendo-os com base em atributos favoráveis da paisagem.

Urubu-de-cabeça-preta (Coragyps atratus):

 Mais social, usando os mesmos locais de pouso em grupo, influenciado pela presença de outros indivíduos.

Artigo 2: "Environmental drivers..." (Dodge et al.)

- Objetivo Principal: Analisar os mecanismos que moldam a ecologia de movimento do urubu-de-cabeça-vermelha (Cathartes aura) em diferentes populações, investigando como as condições ambientais afetam sua busca por alimento e sua capacidade de voo.
- Relevância para a pesquisa: Este estudo reforça que o urubu-de-cabeça-vermelha é um excelente modelo para o projeto, pois sua movimentação é diretamente ligada a fatores ambientais, o que permite analisar os efeitos de alterações na paisagem.

Artigo 2: Resultados

- A pesquisa revelou uma enorme variação nos padrões de movimento da espécie, confirmando sua alta plasticidade e adaptabilidade.
- A movimentação do urubu-de-cabeça-vermelha está diretamente ligada a fatores ambientais, como:
 - Disponibilidade de alimento: medida pelo Índice de Vegetação.
 - Ocorrência de térmicas e temperatura: que facilitam o voo com baixa energia.
- A capacidade de voo em térmicas torna a espécie eficiente e adaptável, permitindo que ela se desloque por longas distâncias sobre diferentes paisagens.

Artigo 2: Conclusão

- Este estudo **fortalece a justificativa** para escolher o urubu-de-cabeça-vermelha como espécie de estudo.
- A grande plasticidade de movimento observada é um fator-chave para entender como a espécie pode se aproximar de aeroportos e áreas urbanas, já que é capaz de modificar seu comportamento de voo e busca por alimento em resposta a alterações na paisagem.

Conclusão da Análise de Viabilidade

Escolha da Espécie e Cenário

- Com base na análise dos estudos e na disponibilidade de dados, o
 Urubu-de-cabeça-vermelha (Cathartes aura) foi escolhido como a
 espécie de estudo para a pesquisa.
- O Cenário dos Estados Unidos foi considerado viável, pois possui um banco de dados robusto sobre birdstrikes (FAA) e extensa pesquisa sobre a ecologia da espécie.

Justificativa da Escolha

- Abundância: A espécie é abundante na América do Norte.
- Adaptabilidade: Mostra alta plasticidade comportamental em ambientes alterados por humanos.
- **Disponibilidade de Dados:** A vasta quantidade de dados na FAA e pesquisas publicadas sobre a ecologia da espécie nos EUA tornam a análise mais robusta.

Cenário 2: Brasil

Desafios e Oportunidades

- Escolha da Espécie: Diferente do cenário dos EUA, o Brasil não possui uma base de dados robusta de rastreamento individual (GPS) de aves.
- Alternativa: A análise será baseada em dados de ocorrência (presença-ausência), utilizando fontes como o eBird (dados brutos) e, se disponível, o SINBIOTA da FAPESP.

Dados Disponíveis para a Análise

 As informações a seguir foram baseadas nas bases de dados da tabela fornecida e em orientações sobre o acesso a dados de pesquisa no Brasil.

Dados de Aviação e Birdstrikes

- Birdstrikes (Variável IC10):
 - Origem: CENIPA e VRA-ANAC.
 - Características: Dados de acidentes aéreos causados por movimentos de aves.
 - **Limitação:** A base de dados é considerada incompleta em termos de detalhes (espécie, data e localização geográfica).
- Tráfego Aéreo (Variável Ap):
 - Origem: VRA-Voo Regular Ativo (ANAC).
 - Características: Dados de voos de chegada e saída do Brasil, com informações sobre origem, destino, tipo de aeronave e voo.

Dados Ambientais e Biológicos

- Dados Meteorológicos (REDEMET):
 - Velocidade média do vento: Média horária do vento em nós, por semana e aeroporto.
 - **Temperatura:** Média horária em Celsius, por semana e aeroporto.
 - Teto: Altura média horária acima do solo ou água, em pés.
- Dados de Ocorrência de Aves (eBird):
 - Abundância (variável Ab): Abundância relativa de aves dentro de buffers específicos (3, 8, 13, 15, 20, 25 km).
 - Ocorrência (variável Ob): Ocorrência média semanal de aves dentro dos mesmos buffers.

Parcerias Potenciais

 Para superar os desafios de dados, a pesquisa poderia se beneficiar de colaborações estratégicas:

INPE - Brazil Data Cube

- Oportunidade: Acesso a dados geoespaciais de cobertura e uso do solo.
- Utilidade: Fundamental para mapear distúrbios florestais e entender as transformações da paisagem nas proximidades dos aeroportos.

Prof. Alby - Pesquisa em Distúrbios Florestais

- Oportunidade: Acesso a dados específicos e especializados sobre distúrbios florestais no Brasil.
- **Utilidade:** Oferece uma fonte de dados mais detalhada e validada para a variável independente da pesquisa.

Análise e Metodologia no Cenário Brasil

- Hipótese Central: A proximidade de áreas com alta ocorrência/abundância de uma espécie de ave e o aumento do tráfego aéreo e dos distúrbios florestais estão correlacionados com o risco de birdstrike.
- Análise:
 - Integração de Dados: Unir as bases de dados de birdstrike (CENIPA), tráfego aéreo (ANAC) e variáveis ambientais/biológicas (REDEMET, eBird, INPE, Prof. Alby).
 - **Modelagem Estatística:** Utilizar modelos para analisar a relação entre as variáveis, considerando as limitações dos dados.
- **Desafio:** A qualidade e a granularidade dos dados de *birdstrike* no Brasil podem limitar a profundidade da análise.

Estudo de Caso: A Viabilidade da Análise com a Base de Dados do CENIPA

- Anthropogenic features influencing occurrence of Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in an urban area in central Amazonian Brazil
- O estudo de Devault et al. (2014) é uma evidência crucial para a pesquisa, pois demonstra que análises significativas podem ser realizadas no Brasil utilizando a base de dados do CENIPA.

Metodologia e Uso do CENIPA

- A pesquisa utilizou a base de dados do CENIPA para analisar colisões com urubus na Amazônia.
- Para complementar os dados de ocorrência de birdstrikes, o estudo integrou pesquisas de campo e análises de paisagem para associar o comportamento das aves a características do ambiente.

Contribuição para a Pesquisa

- O estudo valida a abordagem de análise, provando que é possível superar as limitações do CENIPA combinando os dados de colisões com informações sobre o habitat.
- As conclusões do artigo fornecem um **roteiro claro** para a pesquisa, confirmando que a relação entre distúrbios antropogênicos e o risco de *birdstrike* é real e pode ser investigada no contexto brasileiro.

Comparativo Final: EUA vs. Brasil

Cenário EUA:

- Vantagem: Dados robustos da FAA e extensas pesquisas sobre a ecologia da espécie de estudo.
- **Viabilidade:** A pesquisa é viável e permite uma análise com alta confiança.

Cenário Brasil:

- Vantagem: Apesar dos desafios nos dados, há uma maior possibilidade de parcerias estratégicas (INPE e Prof. Alby) para obter dados geoespaciais e ambientais de alta qualidade.
- Superação do Desafio: O estudo de caso de Devault et al. (2014) prova que é possível conduzir análises robustas usando o banco de dados do CENIPA, superando a limitação inicial de dados.
- Viabilidade: A pesquisa é viável e com potencial para ser mais relevante e impactante no contexto local, gerando conhecimento novo e aplicado.

Considerações Finais

Conclusão

- Com base na análise de viabilidade, o cenário brasileiro se apresenta como a melhor opção para a Iniciação Científica.
- Apesar das complexidades, a combinação de parcerias estratégicas e a comprovação de que o banco de dados do CENIPA pode ser utilizado de forma eficaz fornecem um caminho claro para uma pesquisa inovadora e com alto impacto prático.
- Focar no Brasil permite abordar um problema local e contribuir diretamente com soluções de manejo concretas para a segurança aérea no país.

Tabela de Metadados: Variáveis de Aviação e Biológicas

Variável	Descrição	Tipo de Dado	Unidade de Medida	Fonte/Origem
IC10	Somatória de acidentes com aves	Numérica Discreta	Número de ocorrências	CENIPA / ANAC
Ар	Somatório de voos diários	Numérica Discreta	Número de voos	VRA-Voo Regular Ativo (ANAC)
Ab	Abundância relativa de aves	Numérica Contínua	Indivíduos	eBird
Оъ	Ocorrência de aves	Binária	Presença/ Ausência (1/0)	eBird

Tabela de Metadados: Variáveis Ambientais

Variável	Descrição	Tipo de Dado	Unidade de Medida	Fonte/Origem
velocidade_ vento	,	Numérica Contínua	km/h ou nós	REDEMET
temperatura	_	Numérica Contínua	Graus Celsius (°C)	REDEMET
teto	Altura acima do solo/água das nuvens	Numérica Discreta	Pés (ft)	REDEMET
disturbio_ florestal	Presença de áreas urbanas, florestais, etc.	Categórica	N/A	INPE / Prof. Alby