

HLK-LD2410 人体存在感应模组 说明书

版本: V1.04 修改日期: 2022-8-29 版权所有@深圳市海凌科电子有限公司

目 录

1		产品简介	3		
2		产品特点和优势	4		
	2.1	1 特点	4		
	2.2	2 方案优势	5		
3		应用场景	6		
4		硬件说明	7		
	4.1	1 外形尺寸	7		
	4.2	2 引脚定义	7		
5		使用和配置			
	5.1	1 典型应用电路			
		2 配置参数的作用			
		4 安装方式和感应范围			
		5 安装条件			
6		性能和电气参数			
7		天线罩设计指南			
-	7 1	- スペーペイル			
		· 大线罩的设计原则			
		3 常见材料			
8	1.0	。 修订记录			
9		技术支持和联络方式			
9		及个义时机联络刀式	13		
		图表索引			
-		引脚定义表			
	2 性能和电气参数表				
表	3	天线罩常见材料特性	12		
图	1	使用方式图示	a		
		毫米波雷达方案和其他方案对比			
冬	3	应用场景	6		
冬	4	模块实物图	7		
		模块尺寸图			
		模块引脚定义图			
		挂顶安装示意图			
		探测范围示意图(挂顶高度3米) 挂壁安装示意图			
		/			
) 济州尼国小总国(注至同反 1.3水)	13		

1 产品简介

LD2410是海凌科电子开发的一款高灵敏度的24GHz人体存在状态感应模组。其工作原理是利用 FMCW调频连续波,对设定空间内的人体目标进行探测,结合雷达信号处理、精确人体感应算法,实现高 灵敏度的人体存在状态感应,可识别运动和静止状态下的人体,并可计算出目标的距离等辅助信息。

本产品主要应用在室内场景,感知区域内是否有运动或者微动的人体,实时输出检测结果。最远感应 距离可达6米,距离分辨率0.75m或0.2m可配置。提供可视化的配置工具,可轻松配置感应距离范围、不 同区间的感应灵敏度和无人延时时间等,适应不同的具体应用需求。

支持 GPIO 和 UART 输出,即插即用,可灵活应用于不同的智能场景和终端产品。

图 1 使用方式图示

2 产品特点和优势

2.1 特点

- 即插即用,简易装配方式
- 最远感应距离为可达6米
- 可配置距离分辨率(每距离门0.2m或0.75m,最大8个距离门)
- 探测角度大,覆盖范围可达±60度
- 区间内准确识别,支持感应范围划分,屏蔽区间外干扰
- 多级智能调参,满足场景变化需求
- 可视化调试和配置工具
- 小巧简化,最小尺寸仅为 7mmx35mm
- 支持挂顶、挂壁等多种安装方式
- 24GHz ISM 频段, 可通过 FCC 和 CE 频谱法规认证
- 极致性价比之选
- 多种连接方式,可选插针 (LD2410-P) 或插座接口 (LD2410-B)

2.2 方案优势

● 好

一般

- 弱

LD2410人体感应模组采用24GHz毫米波雷达传感器技术,和其他方案对比,在人体感应应用上有着明显的优势:

- 1.除了对运动人体感应灵敏外,对于传统方案无法识别的静止、微动、坐卧人体也都可灵敏感应到;
- 2.有良好的环境适应性,感应效果不受温度、亮度、湿度和光线波动等周围环境影响;
- 3.有良好的外壳穿透性,可隐藏在外壳里面工作,无需在产品表面开孔,提高了产品美观度;
- 4.可灵活配置最远感应距离和每个距离门上的灵敏度,实现灵活精细的个性化配置;

	红外方案	视觉方案	超声波	激光雷达	毫米波雷达
应用灵活性					
抵抗环境影响(天气光线等)					
侦测速度					
侦测准确度					
分辨率	•	•		•	
方向性	•				
侦测距离	•				
穿透材料能力	•			•	
尺寸				•	
成本					

图 2 毫米波雷达方案和其他方案对比

3 应用场景

LD2410人体感应模组对运动、微动和站立、坐卧的人体均可进行探测识别,支持多级调参,可广泛应用于 AloT 各种场景,常用类型如下

● 人体感应灯控

感知所在空间是否有人存在,自动控制灯光,如公共场所照明设备、各类感应灯、球泡灯等。

● 广告屏等设备的人体感应唤醒

人来自动开启, 无人自动休眠节电, 信息投放更精准高效

● 生命安全防护

UV灯工作保护,防止UV灯在周边有人时开启对人身造成伤害 危险场所自动检测告警,防止有人进入特定高危空间,如煤矿爆破的进制人员进入的高危场所

● 智能家电

房间内长时间无人,电视空调等电器自动关闭,节能又安全

● 智能安防

对指定范围内有人侵入、逗留等的检测识别

图 3 应用场景

4 硬件说明

4.1 外形尺寸

图 4 模块实物图

图 5 模块尺寸图

模块尺寸大小: 7mmx35mm

模块引脚连接方式可选: 默认无插针 (LD2410), 带插针 (LD2410-P) 或带插座接口 (LD2410-B)

插针孔孔径0.6mm, 孔间距1.27mm

4.2 引脚定义

图 6 模块引脚定义图

引脚	符号	名称	功能	
1	1 OUT 目标状态输出		检测到有人体存在:输出高电平 无人体存在:输出低电平	
2	UART_Tx	串口Tx	串口Tx引脚	
3	UART_Rx	串口Rx	串口Rx引脚	
4	GND	电源地	电源地	
5	VCC	电源输入	供电输入 5V	

表 1 引脚定义表

5 使用和配置

5.1 典型应用电路

LD2410模组直接通过一个IO引脚输出检测到的目标状态(有人高电平,无人低电平),同时也可通过串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有目标状态和距离辅助信息等,用户可根据具体应用场景灵活使用。

模块供电电压5V,输入电源的供电能力要求大于200mA。

模块IO输出电平为3.3V。串口默认波特率256000, 1停止位,无奇偶校验位。

5.2 配置参数的作用

用户可通过LD2410的串口给模块修改配置参数,来适应不同的应用需求,配置内容掉电不丢失。可配置的参数包括如下几个:

最远探测距离

设置最远可探测的距离,只有在此最远距离内出现的人体目标才会被探测到并输出结果。 以距离门为单位进行设置,最大8个距离门,可配置距离分辨率(每距离门0.2m或0.75m)。 包括运动探测最远距离门和静止探测最远距离门,可设置范围为1~8,例如设置最远距离门为2, 距离分辨率为0.75m,则只有在1.5m内有人体存在才会有效探测到并输出结果。

灵敏度

探测到的目标能量值(范围0~100)大于灵敏度值时才会判定为目标存在,否则忽略。

灵敏度值可设置范围0~100。每个距离门可独立设置灵敏度,即可对不同距离范围内的探测进行精准调节,局部精准探测或对特定区域干扰源的过滤。

另外如果将某个距离门的灵敏度设置为100时,可达到不识别此距离门下目标的效果。例如将距离门3和距离门4的灵敏度设置为20,其他距离门的灵敏度都设置为100,距离分辨率为0.75m,则可实现仅对距离模块2.25~3.75m范围内的人体进行探测。

无人持续时间

雷达在输出从有人到无人的结果中,会持续一段时间上报有人,若在此时间段雷达测试范围内持续无人,雷达上报无人;若在此时间段雷达检测到有人,则重刷新此时间,单位秒。相当于无人延时时间,人离开后,保持无人超过此持续时间后才会输出状态为无人。

5.3 可视化配置工具说明

为便于用户快速高效的对模块进行测试和配置,提供了PC端的上位机配置工具,用户可使用此工具软件连接模块的串口,对模块进行参数读取和配置,也可接收模块上报的探测结果数据,并进行实时的可视化展示,极大的方便的了用户的使用。

上位机工具使用方法:

- 1.用USB转串口工具正确连接模组串口;
- 2.上位机工具中选中对应的串口号,设置波特率256000,选中工程模式,点击连接设备;
- 3.连接成功后,点击开始按钮,右侧图形界面会显示检测结果和数据;
- 4.在连接上后,未点击开始按钮时,或者开始后点击停止,可对模式参数信息进行读取或设置;

注意:点击开始后不能对参数进行读取和配置,需停止后才可进行配置。

上位机工具的界面和常用功能如下图:

圆球为目标状态输出指示:红色代表有人为运动目标,紫色代表有人为静止目标; 绿色代表无人

绿色线:设置的灵敏度 蓝色线:每个距离门上的运动目标能量值 红色线:每个距离门上的静止目标能量值

5.4 安装方式和感应范围

图 7 挂顶安装示意图

(距离单位: 米,角度单位: 度) 图 8 探测范围示意图(挂顶高度3米)

(距离单位:米,角度单位:度)

图 9 挂壁安装示意图

图 10 探测范围示意图(挂壁高度1.5米)

5.5 安装条件

确认最小安装间隙

如果雷达需要安装外壳,则外壳必须在24GHz有良好的透波特性,不能含有金属材质或对电磁波有屏蔽作用的材料。

安装环境要求

本产品需要安装在合适的环境中,如在以下环境中使用,检测效果将受到影响:

- 感应区域内存在持续运动的非人物体, 如动物, 持续摆动的窗帘、正对出风口的大株绿植等
- 感应区域内存在大面积的强反射物,强反射物正对雷达天线会造成干扰
- 挂壁安装时, 需要考虑室内顶部的空调, 电风扇等外部的干扰因素

安装时注意事项

- 尽量保证雷达天线正对要检测的区域, 且天线四周开阔无遮挡
- 要保证传感器的安装位置牢固、稳定, 雷达本身的晃动将影响检测效果
- 要保证雷达的背面不会有物体运动或震动。由于雷达波具有穿透性,天线信号背瓣可能会检测到 雷达背面的运动物体。可以采用金属屏蔽罩或者金属背板,对雷达背瓣进行屏蔽,减弱雷达背面 物体造成的影响
- 雷达理论距离精度是在距离分辨率 (0.2m或0.75m) 的基础上通过特殊算法处理得到的结果,由于目标的体型,状态,RCS等不同,目标距离精度会有波动;同时最远距离也会稍有波动

6 性能和电气参数

	24GHz~ 24.25GHz	
工作频段	符合 FCC、 CE、无委会认证标准	
供电要求	DC 5V, 供电能力>200mA	
ハウダか		
平均工作电流	80 mA	
调制方式	FMCW	
	一个GPIO, IO电平3.3V	
接口	一个UART	
目标应用	人体存在感应	
	距离分辨率=0.2m: 0.2m~1.6m, 可调	
探测距离	距离分辨率=0.75m: 0.75m~6m, 可调	
探测角度	±60 °	
距离分辨率	0.75m	
.to d∓ tite of a	250MHz	
扫频带宽	符合 FCC、 CE、无委会认证标准	
环境温度	-40 ~ 85°C	
外形尺寸	7mm x 35 mm	

表 2 性能和电气参数表

图 11 模块工作电流实测数据

7 天线罩设计指南

7.1 天线罩对毫米波传感器性能的影响

- 雷达波在天线罩边界上发生反射
 - 使得雷达辐射或接收的总功率有所损耗
 - 反射波进入接收通道, 影响发射、接收通道之间的隔离度
 - 反射可能使天线的驻波变差, 进一步影响天线增益
- 雷达波在介质中传播会发生损耗, 理论上来说频率越高损耗会越大
- 电磁波在穿过介质时会产生一定程度的折射
 - 影响天线的辐射方向图, 进而影响传感器的覆盖范围

7.2 天线罩的设计原则

- 天线罩的结构形状
 - 表面光滑平整,厚度均匀一致。如平面或者球面,不能凹凸不平
 - 若有表面涂层,不能含有金属或导电的材料
 - 在天线正上方, 天线罩面与天线平面保持平行

- 理想的高度是空气中电磁波半波长的整数倍
- $H = \frac{m}{2} * \frac{c_0}{f}$, 其中m为正整数, c_0 为真空光速, f为工作中心频率
- 比如, 24.125GHz中心频率, 其在空气中的半波长约6.2mm

- 理想的厚度是介质中电磁波半波长的整数倍
- $D = \frac{m}{2} * \frac{c_0}{f\sqrt{\epsilon_r}}$, 其中m为正整数, ϵ_r 为天线罩材质的相对介电常数
- 比如某ABS材料 $\epsilon_r=2.5$,其半波长约3.92mm

7.3 常见材料

- 设计之前, 先了解天线罩的材质和电气特性
 - 右表仅供参考,实际值请与供应商确认
- 天线到天线罩内表面的的高度H
 - 在空间允许时,优先推荐1倍或1.5倍波长
 - 比如,对应24.125GHz推荐12.4或18.6mm
 - 误差控制: ±1.2mm
- 天线罩的厚度D
 - 推荐半波长, 误差控制±20%
 - 如不能满足半波长的厚度要求
 - 推荐使用低 ϵr 的材料
 - 厚度推荐1/8波长或更薄

介质

常见材料特性 (基于24.125GHz)

介质	ϵ_r 典型值	半波长 (mm)	1/8波长 (mm)	1/10波长 (mm)
空气	1.00	6.20	1.55	1.24
ABS1	1.50	5.06	1.27	1.01
ABS2	2.50	3.92	0.98	0.78
PC材料	3.00	3.58	0.89	0.72
PMMA亚克力1	2.00	4.38	1.10	0.88
PMMA亚克力2	5.00	2.77	0.69	0.55
PVC硬	4.00	3.10	0.78	0.62
PVC软	8.00	2.19	0.55	0.44
高密度PE	2.40	4.00	1.00	0.80
低密度PE	2.30	4.09	1.02	0.82
石英玻璃	5	2.77	0.69	0.55

表 3 天线罩常见材料特性

• 不均匀材料或多层组合材料对雷达性能的影响, 建议在设计时进行实验调整

8 修订记录

日期	版本	修改内容
2022-5-26	1.01	测试版本
2022-6-8	1.02	完善数据
2022-6-29	1.03	更新数据
2022-8-29	1.04	增加距离分辨率配置说明

9 技术支持和联络方式

深圳市海凌科电子有限公司

地址: 深圳市龙华区民治街道民治社区1970科技园1栋301

电话: 0755-23152658/83575155

网址: www.hlktech.com

