

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Cálculo 2 — Avaliação P2

1	
2	
3	
4	
5	
Total	

Aluno(a):.....

(1) Calcule o limite das sequências abaixo:

(a)
$$\left\{ \frac{(n+1)(n+2)}{2n^2} \right\}_{n=1}^{\infty}$$

(b)
$$\left\{\sqrt{n^2 + 3n} - n\right\}_{n=1}^{\infty}$$

(2) Mostre que a série telescópica, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, é convergente e calcule sua soma. [Dica: escreva $\frac{1}{n(n+1)}$ como soma de frações parciais e em seguida escreva as somas parciais.]

(3) Determine se a série abaixo é convergente ou divergente

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} - \frac{1}{2^{k+1}} \right)$$

(4) Calcule o intervalo de convergência da série abaixo

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$

(5) Calcule a série de Maclaurin da função sen(x) ou da função cos(x).

Boa Prova!