Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Найти рёберный граф для данного неориентированного графа.

Выполнил: Е. М. Римонт

Студент группы 321702

Проверил: Н. В. Малиновская

Содержание

1	Введение	2
2	Список понятий	2
3	Тестовые примеры	4
	3.1 Tect 1:	4
	3.2 Tect 2	5
	3.3 Tect 3	6
	3.4 Tect 4	7
4	Пример работы алгоритма в семантической памяти	8
	4.1 Краткое описание:	8
	4.2 Демонстрация на тесте 5:	
5	Заключение	17

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти минимальное и среднее расстояние между периферийными вершинами неориентированного графа.

2 Список понятий

- 1. Граф совокупность непустого множества вершин и множества пар вершин (рёбер)
- 2. **Неориентированный граф**(абсолютное понятие)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен
 - (а) Вершина (относительное понятие, ролевое отношение);
 - (b) Связка (относительное понятие, ролевое отношение).

Рис. 1: Абсолютное понятие неориентированного графа.

- 3. **Реберный граф** такой граф L(G) для данного графа G, который удовлетворяет следующим условиям:
 - (a) Любая вершина графа L(G), представляет собой ребро графа G
 - (b) Две вершины графа L(G) смежны тогда и только тогда, когда их соответствующие рёбра смежны в графе G

Рис. 2: Понятие реберного графа.

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме.

3.1 Tect 1:

Вход:

Необходимо найти реберный граф для данного неориентированного графа

Рис. 3: Вход теста 1.

Выход: Будет найден реберный граф:

Рис. 4: Выход теста 1.

3.2 Tect 2

Вход: Необходимо найти реберный граф для данного неориентированного графа

Рис. 5: Вход теста 2.

Выход: Будет найден реберный граф:

Рис. 6: Выход теста 2.

3.3 Тест 3

Вход: Необходимо найти реберный граф для данного неориентированного графа

Рис. 7: Вход теста 3.

Выход: Будет найден реберный граф:.

Рис. 8: Выход теста 3.

3.4 Tect 4

Вход: Необходимо найти реберный граф для данного неориентированного графа

Рис. 9: Вход теста 4.

Выход: Будет найден реберный граф:

Рис. 10: Выход теста 4.

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Создаем список пар, который будет хранить информацию о смежных ребрах
- 2. Формируем новую волну и добавляем в нее первое ребро
- 3. Добавляем в текущую волну рёбра, которые смежны уже добавленному в волну ребру
- 4. Список пар принимает пары ребер, которые смежны, где первое ребро первое добавленное в волну ребро, второе ребро каждое из оставшихся добавленных в волну. Таким образом список пар может принять не одну пару смежных ребер
- 5. Формируем новую волну для следующего выбранного ребра, добавляем в него выбранное ребро. Добавляем в волну далее все смежные первому добавленному ребру рёбра. Список пар принимает пары смежных ребёр аналогично пункту 4. Повторяем пункт 5 до обозревания всех ребер.
- 6. Если пройдены все ребра, переходим к построению рёберного графа
- 7. Пары найденных ребер входного неориентированного графа становятся парами смежных вершин, т.е. рёбрами выходного рёберного графа

4.2 Демонстрация на тесте 5:

Рис. 11: Вход теста 5.

1. adjacent matrix получит в качестве значения sc-узел неориентированного графа;

Рис. 12: Действие 1.

2. Создаєтся волна, которая сразу включает в себя первое ребро $\ \ A.$

Рис. 13: Действие 2.

3. На этом этапе в волну добавится 3 пары смежных ребер A-C, A-B, A-D, список connections получит эти значения в качестве 3-ех различных пар вершин.

Рис. 14: Действие 3.

4. На этом этапе создается новая волна, которая сперва имеет лишь следующее выбранное ребро B. После в созданную волну добавляются смежные этому ребру другие ребра C, D, E, F, которые сразу добавляются в список connections

Рис. 15: Действие 4.

5. Для следующего выбранного ребра ${\it C}$ найдено всего одно смежное ребро ${\it E}$, пары с которым ещё нет в списке пар ${\it connections}$

Рис. 16: Действие 5.

6. Для следующего выбранного ребра $\ D$, найдено два ребра $\ E,\ F,$ пары которых вместе с $\ D$ заносятся в список пар connections

Рис. 17: Действие 6.

7. Для ребра ${\pmb E}$ найдено всего одно смежное ребро ${\pmb F}$, пары с которым ещё нет в списке пар ${\pmb connections}$

Рис. 18: Действие 7.

8. Для ребра ${\pmb F}$ новая волна не создается, т.к. оно было записано во всех возможных парах смежных ребер при прохождении предыдущих ребёр , а значит рассматривать ребро ${\pmb F}$ не имеет смысла. Все ребра были осмотрены.

Рис. 19: Действие 8.

9. Список connections получил 11 пар, значит конечный реберный граф $edge_graph$ будет иметь 11 рёбер. Начальный граф имеет количество рёбер равное 6, значит конечный рёберный граф будет иметь 6 вершин.

Рис. 20: Действие 9.

10. Ребёрный граф $edge_graph$ принимает ребра для вершины A в виде пар вершин из списка connections: $A-B,\ A-C,\ A-D$

Рис. 21: Действие 10.

11. Ребёрный граф $edge_graph$ принимает ребра для вершины B в виде пар вершин из списка $connections\colon B\text{-}C,\ B\text{-}D,\ B\text{-}E,\ B\text{-}F$

Рис. 22: Действие 11.

12. Ребёрный граф $edge_graph$ принимает ребра для вершины C в виде пар вершин из списка $connections\colon C\text{-}E$

Рис. 23: Действие 12.

13. Ребёрный граф $edge_graph$ принимает ребра для вершины D в виде пар вершин из списка $connections\colon \ D\text{-}E,\ D\text{-}F$

Рис. 24: Действие 13.

14. Ребёрный граф $edge_graph$ принимает ребра для вершины E в виде пар вершин из списка connections: E-F

Рис. 25: Выход теста 5.

15. Все пары из списка connections были получены графом $edge_graph$ Ребёрный граф $edge_graph$ построен.

5 Заключение

В заключении у нас получилось формализовать поставленную задачу. Мы нашли нужный нам реберный граф для неориентированного графа. Реализовали алгоритм его нахождения, который работает на любом неориентированном графе.