LINEAR	PROGI	RAMMI	ING

The General Mathematical Programming Problem

Optimize
$$F(x)$$

Subject to (s.t) $G(x) \in S_1$
 $X \in S_2$

X: Vector of Decision Variables

F(X) : Objective Function

G(X): Constraints

A mathematical Program is an optimization problem in which the objective and constraints are given as mathematical functions and function relationship.

Optimize

$$Z = f(x_1, x_2, \dots, x_n)$$

Subject to

$$g_{1}(x_{1}, x_{2}, ..., x_{n})$$

$$g_{2}(x_{1}, x_{2}, ..., x_{n})$$

$$\vdots$$

$$g_{m}(x_{1}, x_{2}, ..., x_{n})$$

$$d_{m}(x_{1}, x_{2}, ..., x_{n})$$

$$d_{m}(x_{1}, x_{2}, ..., x_{n})$$

Definition

A function $f(x_1, x_2,...,x_n)$ of $x_1, x_2,...,x_n$ is a linear function if and only if for some set of constants $c_1, c_2,...,c_n$, $f(x_1, x_2,...,x_n) = c_1x_1 + c_2x_2 + ... + c_nx_n$.

For example

 $f(x_1,x_2)=2x_1+x_2$ is a linear function of x_1 and x_2 but $f(x_1,x_2)=x_1^2x_2$ is not a linear function of x_1 and x_2 .

Definition

For any linear function $f(x_1, x_2,...,x_n)$ and any number b, the inequalities $f(x_1, x_2,...,x_n) \le b$ and $f(x_1, x_2,...,x_n) \ge b$ are linear inequalities.

Definition

- A <u>linear programming problem</u> (LP) is an optimization problem for which we do the following:
 - 1. We attempt to maximize (or minimize) a linear function of the decision variables. The function that is to be maximized or minimized is called the objective function.
 - 2. The values of the decision variables must satisfy a set of constraints. Each constraint must be a linear equation or linear equality.
 - 3.A sign restriction is associated with each variable. For any variable x_i , the sign restriction specifies either that x_i must be nonnegative $(x_i \ge 0)$ or that x_i may be unrestricted in sign (urs).

$$Max(orMin)Z = c_1x_1 + c_2x_2 + c_3x_3 + ... + c_nx_n$$

s.t

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n \le = \ge b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n \le = \ge b_2$$

.

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n \le 0 \ge b_m$$

$$x_i \ge 0$$

$$Max(Min) = Z = CX$$

$$s.t \quad AX \le b$$

$$X \ge 0$$

Where

$$A = \begin{bmatrix} a_{11}a_{12}...a_{1n} \\ a_{21}a_{22}...a_{2n} \\ . \\ . \\ . \\ a_{m1}a_{m2}a_{mn} \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

$$C = [c_1, c_2, ..., c_n]$$

Assumptions

The proportionality and additive assumptions

- Objective Function
- 1. The contribution to the objective function from each decision variable is proportional to the value of the decision variable.
- 2. The contribution to the objective function for any variable is independent of the values of the other decision variables.
- Constraints
- 1. The contribution of each variable to the left-hand side of each constraint is proportional to the value of the variable.
- 2. The contribution of a variable to the left-hand side of each constraint is independent of the values of other variables.

The divisibility assumption

The Divisibility Assumption requires that each decision variable be allowed to assume <u>fractional</u> <u>values</u>.

A linear programming problem in which some or all of the variables must be nonnegative integers is called an integer- programming problem.

The Certainty Assumption

The Certainty Assumption is that each parameter

- Objective function coefficient,
- Right-hand side and
- Technological coefficient

is known with certainty.

GLOSSARY

Decision making: The process of defining the problem, identifying the alternatives, determining the criteria, evaluating the alternatives and choosing an alternative.

Decision: The alternative selected.

Single criterion decision problem: A problem in which the objective is to find the best solution with respect to just one criterion.

Multi-criteria decision problem: A problem that involves more than one criterion; the objective is to find the best solution.

Model: A representation of a real object or situation.

Mathematical Model: Mathematical symbols and expressions used to represent a real situation.

Objective Function: A mathematical expression used to represent the criterion for evaluating solutions to a problem.

Constraints: Restrictions or limitations imposed on a problem.

Deterministic Model: A model in which all uncontrollable inputs are known and cannot vary.

Stochastic Model: A model in which at least one uncontrollable input is uncertain and subject to variation; stochastic model are also referred to as probabilistic models.

Feasible solution: A decision alternative or solution that satisfies all constraints.

Infeasible solution: A decision alternative or solution that violates one or more constraints.

The Graphical Solution of two-variable Linear Programming Problems

A linear programming problem involving <u>only two</u> <u>decision variables</u> can be solved using a graphical solution procedure.

Any point on the graph can be identified by the x_1 and x_2 values, which indicate the position of the point along the x_1 and x_2 axes respectively. Since every point (x_1,x_2) corresponds to a possible solution, every point on the graph is called a solution point. The solution point where $x_1=x_2=0$ is referred to as a origin.

Definition

The feasible region (search space, solution space) for an LP is the set of all points satisfying all the LP's constraints and all the LP' sign restrictions.

Definition

For a maximization problem, an optimal solution to an LP is a point in the feasible region with the largest objective function value. Similarly, for a minimization problem, an optimal solution is a point in the feasible region with the smallest objective function value.

CONVEX SETS, EXTREME POINTS AND LP

Definition

A set of points S is a convex set if the line segment joining any pair of points in S wholly contained in S

Definition

For any convex set S, a point P in S is an extreme point if each line segment that lies completely in S and contains the point P has P as endpoint of the line segment.

Convex Set (Convex Polygon)

Non-convex set (Non-convex Polygon)

The graphical solution of LP problems

Example:

$$\max Z = 3x_1 + 4x_2$$
s.t $x_1 + x_2 \le 20$

$$-x_1 + 4x_2 \le 20$$

$$x_1 \ge 10$$

$$x_2 \ge 5$$

$$x_1, x_2 \ge 0$$

$$\begin{pmatrix}
\frac{\partial Z}{\partial x_1} \\
\frac{\partial Z}{\partial x_2}
\end{pmatrix} = \begin{pmatrix}
3 \\
4
\end{pmatrix}$$

max
$$Z = 6x_1 + 2x_2$$

s.t $2x_1 + 4x_2 \le 9$
 $3x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

Any point on BC represents an optimal solution. Problem has multiple (infinite solution).

$$\begin{pmatrix}
\frac{\partial Z}{\partial x_1} \\
\frac{\partial Z}{\partial x_2}
\end{pmatrix} = \begin{pmatrix} 6 \\
2 \end{pmatrix}$$

max
$$Z = -x_1 + x_2$$

s.t $x_1 - x_2 \le 4$
 $x_1 + 2x_2 \ge 4$
 $x_1, x_2 \ge 0$

UNBOUNDED SOLUTION

max
$$Z = x_1 + 2 x_2$$

s.t $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

UNBOUNDED SOLUTION

max
$$Z = 2x_1 - x_2$$

s.t $x_1 - x_2 \le 1$
 $2x_1 + x_2 \ge 6$
 $x_1, x_2 \ge 0$

UNBOUNDED SOLUTION

max
$$Z = x_1 + x_2$$

s.t $x_1 + x_2 \le 4$
 $x_1 - x_2 \ge 5$
 $x_1, x_2 \ge 0$

NO FEASIBLE SOLUTION

INFEASIBLE SOLUTION

min
$$Z = x_1 - x_2$$

s.t $x_1 + x_2 \le 6$
 $x_1 - x_2 \ge 0$
 $x_1 - x_2 \ge 3$
 $x_1, x_2 \ge 0$

ALTERNATE OPTIMUM SOLUTION

•
$$X_1 = 3 X_2 = 0$$
 $Z_{MIN} = 3.0$

•
$$X_1=4.5 X_2=1.5 Z_{MiN}=3.0$$

min
$$Z = x_1 - x_2$$

s.t $x_1 + x_2 \le 6$
 $x_1 - x_2 \ge 0$
 $x_1 - x_2 \ge 3.5$
 $x_1, x_2 \ge 0$ AND INTEGER

ALTERNATE INTEGER OPTIMUM SOLUTION

•
$$X_1 = 5 X_2 = 1 Z_{MIN} = 4$$

•
$$X_1=4$$
 $X_2=0$ $Z_{MIN}=4$