

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01

27/07/2023

SIGUD

Fecha de Aprobación: Proceso: Autoevaluación y Acreditación

FACULTAD:		Tecnológica										
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:						
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO												
NOMBRE DEL ESPACIO ACADÉMICO: PROCESAMIENTO DIGITAL DE SEÑALES II (DSP II)												
Código del espacio académico:			7314	Número de créditos académicos:			2					
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2				
Tipo de espacio académico:			Asignatura	х	Cátedra							
NATURALEZA DEL ESPACIO ACADÉMICO:												
Obligatorio Básico		_	atorio mentario		Electivo Intrínseco	х	Electivo Extrínseco					
CARÁCTER DEL ESPACIO ACADÉMICO:												
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:				
	MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:											
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:				

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Para un adecuado desarrollo del curso de DSP II, se recomienda que el estudiante haya cursado satisfactoriamente DSP I o una asignatura equivalente. Es necesario dominar los conceptos básicos de señales y sistemas, transformadas, diseño de filtros digitales y uso de Matlab. Adicionalmente, se valora el conocimiento en procesamiento de audio, fundamentos de instrumentación digital, programación en C/C++, manejo de sistemas embebidos y comprensión de conceptos relacionados con sistemas ciberfísicos e Internet de las Cosas (IoT).

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

En el contexto de la industria 4.0, el procesamiento digital en tiempo real de audio, video e imágenes es fundamental para el diseño de sistemas inteligentes de supervisión, control y toma de decisiones. DSP II forma al estudiante en la implementación de algoritmos avanzados de procesamiento sobre plataformas embebidas como los DSP de Texas Instruments y el uso de Matlab aplicado a visión artificial. Este conocimiento permite resolver problemas industriales como el monitoreo de condiciones, reconocimiento de patrones, calidad del producto y control en lazo cerrado. Además, al integrar estándares ISA como la ISA-TR104.00.01 e ISA-95, se fortalece la interoperabilidad, la automatización flexible y la calidad de la información procesada

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Formar al estudiante en el desarrollo y aplicación de técnicas avanzadas de procesamiento digital de señales e imágenes utilizando plataformas de tiempo real y software de simulación, con enfoque en soluciones para la automatización industrial inteligente.

Objetivos Específicos:

Implementar sistemas de procesamiento digital de señales en tiempo real utilizando procesadores DSP de Texas Instruments.

Aplicar algoritmos de transformación, filtrado y ecualización en plataformas embebidas.

Desarrollar aplicaciones de procesamiento de imágenes en Matlab y Python orientadas al reconocimiento de patrones.

Integrar algoritmos de visión e inteligencia artificial en sistemas de control.

Cumplir estándares industriales como ISA-95 e ISA-TR104 para aplicaciones en control avanzado y mantenimiento predictivo.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Desarrollar soluciones digitales embebidas para la mejora continua de procesos industriales basadas en el análisis de señales.

Implementar proyectos con sensores inteligentes y procesamiento local, orientados a control distribuido e IoT.

Evaluar el desempeño de sistemas de supervisión automática mediante técnicas de visión artificial y filtrado digital.

Fomentar la actualización en herramientas y marcos normativos como ISA-95, garantizando interoperabilidad y seguridad industrial.

Resultados de Aprendizaje:

Diseña sistemas de procesamiento de señales en tiempo real sobre plataformas embebidas.

Integra sensores, actuadores y algoritmos de visión en aplicaciones de automatización.

Utiliza herramientas de simulación y normativas para garantizar calidad y seguridad en sus soluciones.

Evalúa el impacto de sus desarrollos desde una perspectiva técnica y normativa.

VI. CONTENIDOS TEMÁTICOS

1. Procesamiento en tiempo real con DSP embebido

Arquitectura de la tarjeta TMS320C6713 o equivalente

Conversores ADC/DAC y captura de datos

Programación de procesamiento monofónico y estereofónico

Filtros digitales en tiempo real

Aplicaciones de ecualización y mejora de audio industrial

Comunicación con sensores inteligentes

2. Procesamiento digital de imágenes en Matlab y Python

Carga, manipulación y segmentación de imágenes

Filtrado espacial y detección de bordes

Binarización y técnicas de mejora de contraste

Reconocimiento de color y forma

Detección de objetos y técnicas de sustracción de fondo

Integración de algoritmos con sistemas de control y actuación

3. Normatividad y buenas prácticas ISA

Introducción a ISA-95 y su aplicación en sistemas de procesamiento digital

Aplicación de ISA-TR104.00.01 (habilidades digitales en la industria 4.0)

Trazabilidad de datos y estándares de interoperabilidad

Aplicaciones en mantenimiento predictivo basado en señales

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante aprendizaje basado en proyectos (ApP), apoyado en entornos de simulación y programación embebida. Las sesiones combinarán exposiciones magistrales cortas, laboratorios experimentación, la formulación de soluciones reales y la integración de conceptos a través de retos asociados a la industria 4.0.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con software especializado como Matlab, acceso a computadoras con capacidad de procesamiento de datos y bibliografía actualizada en procesamiento digital de señales. Los laboratorios contarán con material de audio, sensores, micrófonos y recursos multimedia que permitan grabar, editar y analizar señales. Se recomienda el uso de entornos virtuales de aprendizaje y repositorios compartidos para el seguimiento de proyectos.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán realizar visitas técnicas a laboratorios de automatización o empresas del sector industrial donde se apliquen técnicas de procesamiento de señales en tareas como detección de fallas, monitoreo de calidad o control por visión artificial. También se podrá participar en retos de innovación, ferias tecnológicas o proyectos interdisciplinarios con otras asignaturas.

XI. BIBLIOGRAFÍA

Oppenheim, A. (1998). Discrete-Time Signal Processing. Prentice Hall.

Mitra, S. (2007). Procesamiento de señales digitales. McGraw-Hill.

Proakis, J. G., & Manolakis, D. K. (2006). Digital Signal Processing (4th ed.). Prentice Hall.

Gonzalez, R. C. & Woods, R. E. (2002). Digital Image Processing. Prentice Hall.

Forsyth, D. & Ponce, J. (1991). Computer Vision: A Modern Approach. Prentice Hall.

Pratt, W. (1991). Digital Image Processing. John Wiley & Sons.

Vaidyanathan, P. (1993). Multirate Systems and Filter Banks. Prentice Hall.

Kovacevic, J., Goyal, V., & Vetterli, M. (2013). Fourier and Wavelet Signal Processing.

ISA (2019). ISA-95 Enterprise-Control System Integration.

ISA (2021). ISA-TR104.00.01-2021: Competency Model for the Automation Professional in Industry 4.0.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS							
Fecha revisión por Consejo Curricular:							
Fecha aprobación por Consejo Curricular:		Número de acta:					