Dynamic Models - Showcase

Gunther Krauss

Crop Science Research Group Institute of Crop Science and Resource Conservation (INRES)

January 18, 2022

Foxes in paradise

Foxes have to eat rabbits to survive. But in paradise this is a *no go*. Therefore their population decreases each year by a constant rate: $\frac{\Delta N}{N}=-.1.$ Calculating in R we get

Real world rabbits

 \dots meet and eat are eaten by foxes. Let R denote the number of rabbits and F the number of foxes, then we get the formulas:

$$\Delta R_n = .1R_n - .2R_n F_n$$

$$\Delta F_n = -.1F_n + .15R_n F_n$$

If we enter these formulas in our R loop (and do all the initialisation), we can calculate the number of rabbits and foxes over time.

Foxes and rabbits

```
EndTime <-250
steps <- 100
A <- numeric(EndTime*steps)
B <- numeric(EndTime*steps)</pre>
deltaA <- numeric(EndTime)</pre>
deltaB <- numeric(EndTime)</pre>
A[1] < -1.0
B[1] < -1.5
for(i in 2:(steps*EndTime))
  deltaA[i-1] < - .1 * A[i-1] - .20 * A[i-1]*B[i-1]
  deltaB[i-1] < - -.1 * B[i-1] + .15 * A[i-1]*B[i-1]
  A[i] \leftarrow A[i-1] + deltaA[i-1]*1/steps
  B[i] \leftarrow B[i-1] + deltaB[i-1]*1/steps
```

The plot

Predator/Prey

5/12

Appendix

Not part of the exercises - just for your information:

Fibonacci numbers as a dynamic model?

Fibonacci numbers as a dynamic model?

From the Fibonacci formula

$$t_{n+1} = t_n + t_{n-1}$$

we get

$$\Delta t_n = t_{n+1} - t_n = t_{n-1}$$

Difference to our dynamic models:

▶ Daily increment depends on the state of the day before

Fibonacci numbers as a dynamic model?

From the Fibonacci formula

$$t_{n+1} = t_n + t_{n-1}$$

we get

$$\Delta t_n = t_{n+1} - t_n = t_{n-1}$$

Difference to our dynamic models:

- ▶ Daily increment depends on the state of the day before
- ▶ We need initial values for first two days

Relationship between Fibonacci numbers and rabbit model

In the rabbit model, the ratio between rate and state is constant $\frac{\Delta N}{N}=c$. Let's look at the ratio for fibonacci numbers:

$$\frac{\Delta t_n}{t_n} = \frac{t_{n-1}}{t_n}$$

We calculate this ratio by R:

```
t[1:(m-1)]/t[2:m]
```

[1] 1.0000000 0.5000000 0.6666667 0.6000000 0.6250000 0.6153846 0.6190476 # [8] 0.6176471 0.6181818 0.6179775 0.6180556 0.6180258 0.6180371 0.6180328 # [15] 0.6180344 0.6180338 0.6180341 0.6180340 0.6180340 0.6180340 0.6180340 # [22] 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 # [29] 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 # [36] 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 # [43] 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340 0.6180340

Fibonacci numbers approximated by dynamic model

For the fibonacci numbers above stage 18, the ratio becomes nearly constant 0.618034.

For higher stages, we can calculate the fibonacci numbers as a dynamic model:

$$t_{19} = 4181$$

$$\Delta t_n \approx 0.618034t_n$$
 for $n \ge 19$

By the way: italian mathematician Fibonacci used his numbers to calculate rabbit population.

Conclusion: for small numbers / stages, Fibonacci numbers are different from our dynamic models. For higher stages / numbers, the series become similar.

Fibonacci numbers as a system of difference equations

To overcome the problem that the rate of Fibonacci numbers depend on the previous day's value, we do a trick by declaring a new state variable, that represents the previous day's value. We define $s_i := t_{i-1}$ and rewrite the formula as $t_{i+1} = t_i + t_{i-1} = t_i + s_i$.

Then we have

$$\Delta t_i = t_{i+1} - t_i = t_i + s_i - t_i = s_i$$

and

$$\Delta s_i \equiv s_{i+1} - s_i \equiv t_i - s_i$$

with $t_1=1$ and $s_1=t_0=0$. The differences depend now formally only on the state of the day, not on the day before, so that we can use the Euler method.

Calculating as a dynamic system

```
EndTime <- 50
s <- numeric(EndTime)</pre>
t <- numeric(EndTime)
deltas <- numeric(EndTime)</pre>
deltat <- numeric(EndTime)</pre>
s[1] < -0
t[1] <- 1
for(n in 2:EndTime)
  deltas[n-1] < -t[n-1] -s[n-1]
  deltat[n-1] \leftarrow s[n-1]
  s[n] \leftarrow s[n-1] + deltas[n-1]
  t[n] \leftarrow t[n-1] + deltat[n-1]
```

Show the result

t							
#	[1]	1	1	2	3	5	8
#	[7]	13	21	34	55	89	144
#	[13]	233	377	610	987	1597	2584
#	[19]	4181	6765	10946	17711	28657	46368
#	[25]	75025	121393	196418	317811	514229	832040
#	[31]	1346269	2178309	3524578	5702887	9227465	14930352
#	[37]	24157817	39088169	63245986	102334155	165580141	267914296
#	[43]	433494437	701408733	1134903170	1836311903	2971215073	4807526976
#	[49]	7778742049	12586269025				