LYU JIAMING

Payoff Function 1

$$V_T(S_T) = \sqrt{S_T}$$

$$\frac{\partial^2 V_T}{\partial S_T^2} = -\frac{1}{4} \times S_T^{-1.5}$$

$$V_0 = \sqrt{F_0(T)} - \int_0^{F_0(T)} Put(K, T) \frac{K^{-1.5}}{4} dK - \int_{F_0(T)}^{\infty} Call(K, T) \frac{K^{-1.5}}{4} dK$$

Payoff Function 2

$$V_T(S_T) = S_T^3$$

$$\frac{\partial^2 V_T}{\partial S_T^2} = 6S_T$$

$$V_0 = (F_0(T))^3 + 6 \int_0^{F_0(T)} Put(K, T)KdK + 6 \int_{F_0(T)}^{\infty} Call(K, T)KdK$$

```
In [1]: import numpy as np
   import scipy.integrate as integrate
   from enum import Enum
   import math
   import pandas as pd
```

- In [2]: def ivol_helper(K):
 return 0.510 0.591*K + 0.376*K**2 0.105*K**3 + 0.011*K**4
- In [3]: def ivol_HW6(K):
 if K>=3:
 return ivol_helper(3)
 else:
 return ivol_helper(K)
- In [5]: def cnorm(x):
 return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
- In [6]: def Black(f, r, vol, T, strike, payoffType):
 stdev = vol * math.sqrt(T)
 d1 = math.log(f / strike) / stdev + stdev / 2
 d2 = d1 stdev
 if payoffType == PayoffType.Call:
 return math.exp(-r * T) * (f * cnorm(d1) cnorm(d2) * strike)
 elif payoffType == PayoffType.Put:
 return math.exp(-r * T) * (strike * cnorm(-d2) cnorm(-d1) * f)
- In [7]: def black_with_smile(f,r,k,T,df,callorput):
 vol = ivol_HW6(k)
 return Black(f, r, vol, T, k, callorput) * df

localhost:8889/notebooks/Term 2 602 Derivative/Derivative HW6 LYU JIAMING.ipynb

1/2

```
In [8]: def numerical_integration_HW601(S0, r, q, T, SD):
    DF = np.exp(-r*T)
    DivF = np.exp(-q*T)
    f = S0*DivF/DF
    vol_for_range = ivol_HW6(f)
    maxS = f * np.exp(vol_for_range * SD * np.sqrt(T))
    forward_part = np.sqrt(f) * DF
    integrand_put = lambda y: y**(-1.5)/4 * black_with_smile(f, r, y, T, DF, PayoffType.Put)
    put_part, error = integrate.quad(integrand_put, 0.0001, f)
    integrand_call = lambda x: x**(-1.5)/4 * black_with_smile(f, r, x, T, DF, PayoffType.Call)
    call_part, error = integrate.quad(integrand_call, f, maxS)
    return forward_part - put_part - call_part
```

In [9]: def numerical_integration_HW602(S0, r, q, T, SD):
 DF = np.exp(-r*T)
 DivF = np.exp(-q*T)
 f = S0*DivF/DF
 vol_for_range = ivol_HW6(f)
 maxS = f * np.exp(vol_for_range * SD * np.sqrt(T))
 forward_part=f*f*fDF
 integrand_put = lambda y: 6 * y * black_with_smile(f, r, y, T, DF, PayoffType.Put)
 put_part, error = integrate.quad(integrand_put, 0, f)
 integrand_call = lambda x: 6 * x * black_with_smile(f, r, x, T, DF, PayoffType.Call)
 call_part, error = integrate.quad(integrand_call, f, maxS)
 return forward_part + put_part + call_part

In [10]: q=0.0;r=0.0;T=4;S0=1
SDs = np.linspace(1, 6, 6)
Q1numIntResults = [numerical_integration_HW6Q1(S0, r, q, T, sd) for sd in SDs]
Q2numIntResults = [numerical_integration_HW6Q2(S0, r, q, T, sd) for sd in SDs]

Out[11]:

	PayoffFunction1	PayoffFunction2
1	0.974453	1.456347
2	0.973792	1.515702
3	0.973763	1.522669
4	0.973762	1.523054
5	0.973762	1.523059
6	0.973762	1.523059