

Licence 1ère année, 2019-2020, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n°1: Nombres complexes

Exercice 1. Mettre sous forme algébrique (a+ib) les nombres complexes suivants:

$$(1) z_1 = (1+i)(2-i)(3+i)$$

$$(2) \ z_2 = \frac{-2}{1+3i}$$

$$(1) \ z_1 = (1+i)(2-i)(3+i)$$

$$(2) \ z_2 = \frac{-2}{1+3i}$$

$$(3) \ z_3 = \frac{2+5i}{1-i} + \frac{1-i}{2-5i}$$

$$(4) \ z_4 = \sum_{k=0}^{6} (2i)^k$$

$$(4) z_4 = \sum_{k=0}^{6} (2i)^k$$

Soit z un nombre complexe de module 1. Calculer $|1+z|^2 + |1-z|^2$. Exercice 2.

Soient a, b, c trois nombres complexes de module 1. Exercice 3.

- (1) Développer $\overline{abc}(ab + bc + ca)$
- (2) En déduire que |ab + bc + ca| = |a + b + c|.

Exercice 4. Le plan étant muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, déterminer les ensembles E, F, G, H des points M d'affixe z définis par :

- (1) $E = \{M(z), |(1-i)z + 2i| = 9\}$
- (2) $F = \{M(z), |((z+1)/(z-1+i\sqrt{3})| = 1\}$
- (3) $G = \{M(z), |1+iz| = |1-iz|\}$
- (4) $H = \{M(z), \operatorname{Re}((1+i)z) = 0\}.$

Donner pour chacun des ensembles une interprétation géométrique.

Exercice 5. Calculer les racines carrées de 1, i, 3 + 4i, 8 - 6i, et 7 + 24i.

Exercice 6.

- 1) Donner le module et un argument des nombres complexes suivants :
 - (a) 2 + 2i (b) i^{95} (c) $\sqrt{3} + 3i$ (d) $e^{e^{i\alpha}}$ (e) $e^{i\theta} + e^{2i\theta}$

- 2) Mettre les nombres complexes suivants sous forme trigonométrique :

(a)
$$(1+i)^5$$
 (b) $\left(\frac{1+i}{1-i}\right)^3$ (c) $(1-\sqrt{3}i)^4$

3) Calculer le module et l'argument principal de $u = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et v = 1 - i. En déduire le module et l'argument principal de w = uv et de z = u/v.

Exercice 7. Soit $z = e^{\frac{2i\pi}{5}}$.

- (1) Calculer $1 + z + z^2 + z^3 + z^4$.
- (2) On pose $w=z+\bar{z}$. Montrer que $w=z+z^{-1}$, puis déduire de la question précédente que $w+w^2=1$.
- (3) En déduire l'expression exacte de $\cos \frac{2\pi}{5}$.

Exercice 8.

- (1) Donner sous forme trigonométrique puis sous forme algébrique les racines carrées de i.
- (2) Donner sous forme trigonométrique puis sous forme algébrique les racines carrées de -i.
- (3) Donner sous forme trigonométrique les racines quatrièmes de i.
- (4) Calculer sous forme algébrique les racines carrées de $\frac{1+i}{\sqrt{2}}$.
- (5) En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$, puis les racines quatrièmes de i sous forme algébrique.

Exercice 9. Résoudre dans \mathbb{C} les équations suivantes :

$$(E_1)$$
 $z^2 - 1 + 2i = 0$

$$(E_1) z^2 - 1 + 2i = 0 (E_2) (z^7 - 1)(z^3 + 1/27) = 0 (E_3) z^2 + \sqrt{3}z - i = 0 (E_4) z^4 + z^3 - 2z = 0$$

$$(E_3) z^2 + \sqrt{3}z - i = 0$$

$$(E_4) z^4 + z^3 - 2z = 0$$

Exercice 10. Soit $n \ge 1$. Résoudre dans \mathbb{C} : $(z-2)^n = (z+2)^n$.

Exercice 11. Calculer les sommes suivantes :

(1)
$$S = \sum_{k=0}^{32} \left(\frac{-1}{2} + i \frac{\sqrt{3}}{2} \right)^k$$
 (2) $S_n = \sum_{k=0}^n \cos(k\theta)$ (3) $T_n = \sum_{k=0}^n \binom{n}{k} \sin(k\theta)$

Exercice 12.

(1) Pour $\theta \in \mathbb{R}$, exprimer $\cos(3\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.

(2) Pour $\theta \in \mathbb{R}$, exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$ puis calculer $\cos(\pi/5)$ et $\cos(2\pi/5)$.

(3) Pour $\theta \in \mathbb{R}$, linéariser $\cos^4(\theta)$ et $\sin^4(\theta)$ (c'est-à-dire les exprimer en fonction des $\cos(k\theta)$, $\sin(k\theta)$).

Exercice 13. Parmi les applications de \mathbb{C} dans \mathbb{C} ci-dessous, lesquelles sont injectives? Justifier par une preuve ou un contre-exemple.

(1) $f_1: z \mapsto z$

 $\begin{array}{ll} (2) & f_2: z \mapsto \operatorname{Re}(z) \\ (3) & f_3: z \mapsto z^2 \end{array}$

(4) $f_4: z \mapsto z^3$ (5) $f_5: z \mapsto iz + 1$ (6) $f_6: z \mapsto (1+3i) \operatorname{Re}(z) + 4 \operatorname{Im}(z)$

Exercice 14.

(1) Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1)\cos(x) = \frac{\sqrt{3}}{2}$$
, $(E_2)\sin(\frac{x}{2}) = -\frac{1}{\sqrt{2}}$, $(E_3)\sqrt{3}\sin(x) - \cos(x) = 1$.

(2) Résoudre dans $[-\pi, \pi]$ les inéquations suivantes :

$$(I_1) \sin(x) < \frac{\sqrt{3}}{2}, \qquad (I_2) \cos^2(x) \geqslant \cos(2x) + \frac{3}{4}.$$

Exercice 15.

(1) Soit $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$ tel que $z^n = 1$. Que vaut le module de z?

(2) Combien de solutions complexes a l'équation $z^{11} = -1$? Combien de solutions réelles ?

(3) Représenter dans le plan complexe les ensembles suivants :

$$\mathbb{U}_3 = \{ z \in \mathbb{C}, \quad z^3 = 1 \} \qquad \mathbb{U}_6 = \{ z \in \mathbb{C}, \quad z^6 = 1 \} \qquad \mathbb{U}_8 = \{ z \in \mathbb{C}, \quad z^8 = 1 \}$$

Soient $z_1, z_2 \in \mathbb{C}^*$. On note M_1 (resp. M_2) le point d'affixe z_1 (resp. z_2).

(1) Quelles conditions géométriques doivent vérifier les points M_1 et M_2 pour que z_1/z_2 soit réel?

(2) Quelles conditions géométriques doivent vérifier les points M_1 et M_2 pour que z_1/z_2 soit imaginaire pur ?

En utilisant les formules d'Euler, démontrer les identités suivantes : Exercice 17.

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$
$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right).$$

Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1. On considère l'application Exercice 18 (DM 1).

$$f_a: \left\{ egin{array}{lll} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \mapsto & \dfrac{z-a}{1-\bar{a}z}. \end{array}
ight.$$

(1) Quel est le domaine de définition de f_a ?

(2) Montrer que si |z| = 1, alors $|f_a(z)| = 1$.

(3) Soit $w \in \mathbb{C}$. À quelle condition sur w peut-on trouver un $z \in \mathbb{C}$ tel que $f_a(z) = w$? Donner, lorsque la condition est vérifiée, l'expression de z obtenue. Que remarque-t-on?

(4) En déduire l'image par f_a du cercle unité $U = \{z \in \mathbb{C}, |z| = 1\}$ et du domaine de définition de f_a .