หน่วยที่ 1

แนะนำวิชาวิศวกรรมซอฟต์แวร์

ความหมาย หลักการและความสำคัญของ วิศวกรรมซอฟต์แวร์

วิศวกรรมซอฟต์แวร์

Software engineering Fact!!!

- ระบบเศรษฐกิจของประเทศที่พัฒนาแล้ว ล้วนแต่พึ่งพา Software
- ทุกระบบในโลก ต่างก็มี software controlled เพิ่มมากขึ้น มากขึ้นเรื่อย ๆ
- ราคาของ software มักจะเป็นตัวกำหนดราคาของระบบคอมพิวเตอร์
- ราคาของการ maintain มักจะสูงกว่าราคาในการ developed
 - ในระบบที่ใช้งานเป็นระยะเวลายาวนาน ค่าบำรุงรักษาจะสูงกว่าค่าสร้างซอฟต์แวร์
- Software engineering เน้นการพัฒนาซอฟต์แวร์ที่คุ้มค่า (cost-effective)

Hardware vs Software – Failure curve

Hardware

Software

documented

Professional software development

ซอฟต์แวร์คืออะไร?

Computer programs and associated documentation. Software products may be developed for a particular customer or may be developed for a general market.

Software คือ โปรแกรมคอมพิวเตอร์รวมถึงเอกสารที่เกี่ยวข้อง

- ซอฟต์แวร์อาจจะถูกสร้างขึ้นตามความต้องการของผู้ใช้เฉพาะราย
- หรือสร้างขึ้นเพื่อวางจำหน่ายโดยทั่วไป
 - โปรแกรมสำเร็จรูปประมวลผลคำ
 - ระบบปฏิบัติการ

คุณสมบัติของซอฟต์แวร์ที่ดี

A Good software should deliver the required functionality and performance to the user and should be maintainable, dependable and usable.

ซอฟต์แวร์ที่ดี

- ควรประกอบด้วยฟังก์ชันการทำงานที่ผู้ใช้ต้องการ
- มีประสิทธิภาพในการทำงาน
- สามารถบำรุงรักษาง่าย
- เชื่อถือได้
- มีประโยชน์

วิศวกรรมซอฟต์แวร์คืออะไร?

Software engineering is an engineering discipline that is concerned with all aspects of software production.

วิศวกรรมซอฟต์แวร์เป็นสาขาวิศวกรรมที่เกี่ยวข้องกับ**ทุกมิติ**ของการผลิตซอฟต์แวร์

- Requirements
- Design
- Construction
- Verification and validation
- Evolution
- Reliability
- Security

สาระสำคัญของวิศวกรรมซอฟต์แวร์ประกอบด้วยอะไรบ้าง?

Software specification, software development, software validation and software evolution.

- การออกข้อกำหนดของซอฟต์แวร์
- การพัฒนาซอฟต์แวร์
- การตรวจสอบซอฟต์แวร์
- การพัฒนา/ปรับปรุงซอฟต์แวร์

ข้อแตกต่างระหว่าง software engineering และ computer science

Computer science focuses on theory and fundamentals; software engineering is concerned with the practicalities of developing and delivering useful software.

วิทยาการคอมพิวเตอร์ มุ่งเน้นไปที่ทฤษฎีและพื้นฐาน

วิศวกรรมซอฟต์แวร์ เกี่ยวข้องกับการปฏิบัติในการพัฒนาและนำเสนอซอฟต์แวร์ที่เป็นประโยชน์

ข้อแตกต่างระหว่าง software engineering และ system engineering

System engineering is concerned with all aspects of computer-based systems development including hardware, software and process engineering. Software engineering is part of this more general process.

วิศวกรรมระบบเกี่ยวข้องกับทุกด้านของการพัฒนาระบบคอมพิวเตอร์ (ซึ่งรวมถึงฮาร์ดแวร์ ซอฟต์แวร์ และกระบวนการทางวิศวกรรม) ในขณะที่วิศวกรรมซอฟต์แวร์เป็นเพียงส่วนหนึ่ง ของกระบวนการทั่วไปนี้

วิศวกรรมซอฟต์แวร์ เป็น subset ของ วิศวกรรมระบบ

ความท้าทายของวิศวกรรมซอฟต์แวร์ มีอะไรบ้าง?

Coping with increasing diversity, demands for reduced delivery times and developing trustworthy software.

การพัฒนาซอฟต์แวร์สมัยใหม่ ต้องเผชิญกับ

ความต้องการที่หลากหลาย ที่เพิ่มขึ้นเรื่อยๆ

ระยะเวลา ในการส่งมอบที่ลดลง

การพัฒนาซอฟต์แวร์ที่มี **ความน่าเชื่อถือ** มากขึ้น

ต้นทุนของวิศวกรรมซอฟต์แวร์มีอะไรบ้าง

Roughly 60% of software costs are development costs, 40% are testing costs. For custom software, evolution costs often exceed development costs.

ค่าใช้จ่ายต้นทุนการพัฒนา ประมาณ 60%

ค่าใช้จ่ายในการทดสอบ ประมาณ 40%

สำหรับซอฟต์แวร์ที่กำหนดเอง ค่าใช้จ่ายในการบำรุงรักษามักจะสูงกว่าต้นทุนการพัฒนา

วิธีการหรือเทคนิคที่ดีที่สุดสำหรับวิศวกรรมซอฟต์แวร์

While all software projects have to be professionally managed and developed, different techniques are appropriate for different types of system. For example, games should always be developed using a series of prototypes whereas safety critical control systems require a complete and analyzable specification to be developed. You can't, therefore, say that one method is better than another.

- เทคนิคต่าง ๆ จะเหมาะสมกับระบบต่าง ๆ กันไป
 - เกม อาจจะพัฒนาโดยใช้ชุดของต้นแบบ
 - ระบบควบคุม เน้นความปลอดภัย ต้องมีข้อกำหนดที่ครบถ้วนและสามารถวิเคราะห์ได้
- เราไม่สามารถบอกได้ว่าวิธีหนึ่งดีกว่าอีกวิธีหนึ่ง

อิทธิพลของเทคโนโลยีอินเทอร์เน็ตมีมีต่อวิศวกรรมซอฟต์แวร์

The web has led to the availability of software services and the possibility of developing highly distributed service-based systems. Web-based systems development has led to important advances in programming languages and software reuse.

นับตั้งแต่มีอินเตอร์เน็ต ก็ทำให้ผู้คนเข้าถึงบริการด้านซอฟต์แวร์มากขึ้น และเพิ่มโอกาสในการ พัฒนาระบบ distributed service-based

การพัฒนาระบบบนเว็บได้นำไปสู่ความก้าวหน้าที่สำคัญในการเขียนโปรแกรมภาษาและการนำ ซอฟต์แวร์มาใช้ใหม่

ผลิตภัณฑ์ซอฟต์แวร์

- ผลิตภัณฑ์ทั่วไป (Generic products)
 - เป็นซอฟต์แวร์สำหรับใช้งานกับระบบอิสระ (Stand-alone systems) ที่มีการวางจำหน่ายแก่บุคคลทั่วๆ ไป เช่น ซอฟต์แวร์สำหรับ PC software ได้แก่ graphics programs, project management tools; CAD software; หรือซอฟต์แวร์สำหรับตลาดเฉพาะด้านเช่นโปรแกรมบริหารจัดการโรงพยาบาล
- ผลิตภัณฑี่สร้างขึ้นโดยเฉพาะ (Customized products)
 - เป็นซอฟต์แวร์ที่สร้างขึ้นตามความต้องการเฉพาะอย่าง.

เช่น ซอฟต์แวร์สำหรับระบบสมองกลฝังตัว ระบบไฟจราจร ระบบอาณัติสัญญาณของรถไฟฟ้า ระบบ ควบคุมขีปนาวุธ เป็นต้น

ข้อกำหนดสำหรับซอฟต์แวร์ (Product specification)

- ซอฟต์แวร์ทั่วไป (Generic products)
 - ข้อกำหนด จะถูกออกแบบโดย ผู้พัฒนาซอฟต์แวร์
 - การตัดสินใจว่าจะ ปรับปรุง/เปลี่ยนแปลง ซอฟต์แวร์ขึ้นอยู่กับ ผู้พัฒนาซอฟต์แวร์
- ซอฟต์เฉพาะงาน (Customized products)
 - ข้อกำหนด จะถูกออกแบบโดย ผู้ใช้ซอฟต์แวร์
 - การตัดสินใจว่าจะ ปรับปรุง/เปลี่ยนแปลง ซอฟต์แวร์ขึ้นอยู่กับ ผู้ใช้ซอฟต์แวร์

Essential attributes of good software

Maintainability Dependability and security Efficiency Acceptability

Product characteristic	Description
Maintainability	 ซอฟต์แวร์ควรได้รับการเขียนในลักษณะที่สามารถพัฒนาเพื่อตอบสนอง ความต้องการที่เปลี่ยนแปลงไปของลูกค้า เมื่อสภาพแวดล้อมทางธุรกิจเปลี่ยนแปลงไป การเปลี่ยนแปลงซอฟต์แวร์จะ เป็นเรื่องที่ไม่สามารถหลีกเลี่ยงได้
Dependability and security	 ความน่าเชื่อถือของซอฟต์แวร์ประกอบด้วยลักษณะเฉพาะหลายอย่าง เช่น ความมั่นคงและความปลอดภัย ซอฟต์แวร์ที่น่าเชื่อถือ ต้องทำให้เกิดความเสียหาย ไม่ว่าจะเป็นทาง กายภาพหรือทางเศรษฐกิจ (ถึงแม้ระบบจะล้มเหลวก็ตาม) ผู้ใช้ที่อาจสร้างอันตรายต่อระบบ จะต้องไม่สามารถเข้าถึงหรือทำลาย ระบบได้

Product characteristic	Description
Efficiency	 ซอฟต์แวร์ไม่ควรใช้ทรัพยากรระบบอย่างสิ้นเปลือง ไม่ว่าจะเป็น หน่วยความจำหรือโปรเซสเซอร์ ประสิทธิภาพรวมถึงเวลาในการตอบสนอง
	เวลาการประมวลผล การใช้หน่วยความจำ ฯลฯ
Acceptability	 ซอฟต์แวร์ต้องเป็นที่ยอมรับจากผู้ใช้ประเภทต่าง ๆ ตามที่ได้ออกแบบไว้ หมายความว่าต้องเข้าใจง่าย ใช้งานได้ และสามารถทำงานร่วมกับระบบเดิมๆ ที่ผู้ใช้ใช้งานอยู่ได้

Software engineering

- วิศวกรรมซอฟต์แวร์เป็นสาขาวิศวกรรมที่เกี่ยวข้องกับทุกแง่มุมในการผลิตซอฟต์แวร์ตั้งแต่ขั้น เริ่มต้นของข้อกำหนดระบบจนถึงการบำรุงรักษาระบบหลังจากที่ได้เริ่มใช้งานแล้ว
- แง่มุมทางด้านวิศวกรรม
 - การใช้ทฤษฎีและวิธีการที่เหมาะสมในการแก้ปัญหาที่เกิดขึ้นกับข้อจำกัดภายในองค์กรและการเงิน
- แง่มุมในการผลิตซอฟต์แวร์
 - ไม่ใช่เพียงแค่กระบวนการทางเทคนิคในการพัฒนาเท่านั้น ยังรวมถึงการบริหารโครงการ การพัฒนา เครื่องมือ และวิธีการอื่น ๆ เพื่อสนับสนุนการผลิตซอฟต์แวร์

Importance of software engineering

- บุคคลและสังคม ต้องพึ่งพาระบบซอฟต์แวร์ขั้นสูงมากขึ้นเรื่อย ๆ
 - เราจำเป็นต้องผลิตระบบ (รวมถึงซอฟต์แวร์ที่ใช้ควบคุม) ที่น่าเชื่อถือและวางใจได้ ได้อย่างประหยัดและ รวดเร็ว

- การใช้วิศวกรรมซอฟต์แวร์ จะช่วยให้เกิดความคุ้มค่าในระยะยาว (มากกว่าคิดไปทำไป)
 - หากเราใช้วิธีการด้านวิศวกรรมซอฟท์แวร์สำหรับผลิตซอฟต์แวร์ แทนการเขียนโปรแกรมแบบเก่า ๆ ก็จะมี ความคุ้มค่าต่อทุกฝ่ายที่เกี่ยวข้อง
 - ค่าใช้จ่ายส่วนใหญ่ที่เกิดขึ้น มักจะเป็นค่าใช้จ่ายในการเปลี่ยนแปลงซอฟต์แวร์หลังจากที่ใช้งานแล้ว
 - หากขั้นตอนการพัฒนาเป็นไปตามหลักวิศวกรรม จะช่วยลดความยุ่งยากในการเปลี่ยนแปลงซอฟต์แวร์ หลังจากที่ส่งมอบไปแล้ว

ความหลากหลายทาง Software engineering

- ระบบซอฟต์แวร์มีหลายประเภท และไม่มีเทคนิคซอฟต์แวร์อเนกประสงค์ (universal) หรือ เทคนิคสำเร็จรูปที่สามารถใช้ได้กับการสร้างซอฟต์แวร์ได้ทุก ๆ รูปแบบ
- วิธีการและเครื่องมือด้านวิศวกรรมซอฟต์แวร์ ขึ้นอยู่กับประเภทของแอพพลิเคชั่นที่พัฒนาขึ้น
 - แตกต่างกันไปตามความต้องการของลูกค้า และพื้นฐานของทีมพัฒนา

- Stand-alone applications
 - เป็นระบบ application ที่รันบนเครื่องคอมพิวเตอร์ (เช่นพีซี) ประกอบด้วยฟังก์ชันการ ทำงานที่จำเป็นทั้งหมดและไม่จำเป็นต้องเชื่อมต่อกับเครือข่าย
- Interactive transaction-based applications
 - Application ที่รันบนคอมพิวเตอร์ระยะไกลและเข้าถึงได้โดยผู้ใช้จากเครื่องพีซีหรือ terminal ของตนเอง ซึ่งรวมถึงweb application

- Embedded control systems
 - เป็นซอฟต์แวร์ที่ควบคุมและจัดการอุปกรณ์ฮาร์ดแวร์แบบฝังตัว ในโลกนี้มีระบบฝังตัวมากกว่าระบบอื่น ๆ
- Batch processing systems
 - เป็นระบบที่ออกแบบมาเพื่อประมวลผลข้อมูลเป็นกลุ่มใหญ่ สามารถนำข้อมูลจำนวนมากมาประมวลผล เพื่อสร้างผลลัพธ์ที่ต้องการ เป็นครั้งๆ ไป

- Entertainment systems
 - เป็นระบบที่เน้นใช้งานส่วนบุคคล และถูกออกแบบมาเพื่อความบันเทิงแก่ผู้ใช้เป็นหลัก
- Systems for modelling and simulation
 - เป็นระบบที่พัฒนาโดยนักวิทยาศาสตร์และวิศวกรในการจำลองกระบวนการหรือสถานการณ์ ทางกายภาพซึ่งรวมถึงแบบจำลองของวัตถุหลายสิ่งที่แตกต่างกันแต่ทำงานประสานกัน

- Data collection systems
 - เป็นระบบที่รวบรวมข้อมูลจากสภาพแวดล้อมโดยใช้ชุดเซ็นเซอร์และส่งข้อมูลเหล่านั้นไปยัง ระบบอื่น ๆ เพื่อการประมวลผล
- Systems of systems
 - เป็นระบบที่ประกอบด้วยระบบซอฟต์แวร์อื่น ๆ จำนวนมาก

Software engineering fundamentals

ถึงแม้ประเภทของซอฟต์แวร์จะมีหลากหลาย แต่หลักการพื้นฐานบางอย่าง ก็สามารถ ใช้ได้กับการสร้างซอฟต์แวร์ทุกประเภทโดยไม่คำนึงถึงเทคนิคการพัฒนาที่ใช้ เช่น

- ความเข้าใจในระบบและกระบวนการพัฒนาอย่างถ่องแท้
- ความเชื่อถือได้และประสิทธิภาพ
- ทำความเข้าใจและการจัดการข้อกำหนดและความต้องการของซอฟต์แวร์ (สิ่งที่ซอฟต์แวร์ ควรทำ) ให้รอบคอบ เนื่องจากมีความสำคัญเป็นลำดับต้นๆ
- ถ้าเป็นไปได้ (และเหมาะสม) ควรใช้ซอฟต์แวร์ที่พัฒนาแล้วแทนที่จะเขียนซอฟต์แวร์ใหม่

Internet software engineering

- ปัจจุบันนี้เว็บเป็นแพลตฟอร์มสำหรับการรัน application ที่ได้รับความนิยมมากขึ้นเรื่อย ๆ
 - มีการพัฒนาระบบบนเว็บมากกว่าระบบ stand alone
 - บริการเว็บ (web services) ช่วยให้สามารถเข้าถึง application ได้ผ่านทางเว็บ
 - บริการเว็บช่วยให้เข้าถึงข้อมูลได้หลากหลาย ทั้งที่สดใหม่หรือเก็บถาวร
 - Cloud computing เป็นแนวทางในการให้บริการคอมพิวเตอร์ซึ่ง application ทำงานจากระยะไกลบน 'cloud'
 - ผู้ใช้ไม่ได้ซื้อซอฟต์แวร์ (หรือแม้แต่ฮาร์ดแวร์) แต่เป็นระบบที่จ่ายตามการใช้งาน

Web software engineering

Software reuse

- การใช้ซอฟต์แวร์ซ้ำเป็นวิธีการที่สำคัญสำหรับการสร้างระบบบนเว็บ
- เมื่อจะสร้างระบบใหม่สักระบบหนึ่ง เราควรนึกถึงการนำส่วนประกอบและระบบซอฟต์แวร์ที่มีอยู่เดิมมาใช้เป็นอันดับแรก

Incremental and agile development

- ระบบเว็บได้รับการพัฒนาและแจกจ่ายออกมาเรื่อย ๆ ตามความต้องการที่เปลี่ยนไปทุกวัน
- ปัจจุบันนี้ได้รับการยอมรับโดยทั่วไปว่า เราไม่สามารถระบุข้อกำหนดทั้งหมดสำหรับระบบใดๆ ได้ล่วงหน้า ต้องทำไปแก้ไป พัฒนาเพิ่มเติมไปเรื่อย ๆ
- เทคนิคการพัฒนาแบบ Incremental และ agile จะช่วยให้พัฒนาซอฟต์แวร์ได้ทันความต้องการของตลาด

Rich interfaces

• เมื่อเทคโนโลยีการพัฒนาอินเทอร์เฟซเช่น AJAX และ HTML5 เกิดขึ้น จะสนับสนุนการสร้าง interface ที่หลากหลาย ภายในเว็บเบราเซอร์

Software engineering ethics

- วิศวกรรมซอฟต์แวร์เกี่ยวข้องกับ <u>ความรับผิดชอบ</u> มากกว่าเพียงแค่การใช้ <u>ทักษะทางเทคนิค</u> ในการทำงานเลี้ยงชีพ
- วิศวกรซอฟต์แวร์จะต้องปฏิบัติตนอย่าง<u>ซื่อสัตย</u>์และ<u>มีจริยธรรม</u>หากต้องได้รับการ<u>ยอมรับว่าเป็นมืออาชีพ</u>
- พฤติกรรมทางจริยธรรมเป็น<u>มากกว่าแค่การปฏิบัติตามกฎหมาย</u> แต่เกี่ยวข้องกับ<u>การปฏิบัติตามหลักการ</u>ที่<u>ถูกต้องตาม</u> หลักศีลธรรม

ความรับผิดชอบต่อซอฟท์แวร์ของวิศวกรซอฟต์แวร์

- Confidentiality (ความลับ)
 - วิศวกรควรให้ความสำคัญกับการรักษาความลับของนายจ้างหรือลูกค้า โดยไม่คำนึงถึงว่าได้มีการลงนามในข้อตกลงการ รักษาความลับอย่างเป็นทางการหรือไม่
- Competence (ความสามารถ)
 - วิศวกรไม่ควรบิดเบือนความสามารถของตน ไม่ควรที่จะรับงานที่ตนไม่มีความสามารถ
- Intellectual property rights (สิทธิในทรัพย์สินทางปัญญา)
 - วิศวกรควรตระหนักถึงกฎหมายท้องถิ่น ที่เกี่ยวกับการใช้ทรัพย์สินทางปัญญา เช่น สิทธิบัตร ลิขสิทธิ์ ฯลฯ ควรระมัดระวัง เพื่อให้แน่ใจว่าทรัพย์สินทางปัญญาของนายจ้างและลูกค้าได้รับความคุ้มครอง
- Computer misuse (การใช้คอมพิวเตอร์ในทางที่ผิด)
 - วิศวกรซอฟต์แวร์ไม่ควรใช้ทักษะทางเทคนิคในการใช้คอมพิวเตอร์ของผู้อื่นในทางที่ผิด การใช้คอมพิวเตอร์ในทางที่ผิดจาก ระดับง่าย ๆ (เช่น เล่นเกมบนเครื่องของนายจ้าง) ไปจนถึงการกระทำที่รุนแรงมาก (เช่น การเผยแพร่ไวรัส หรือแฮกระบบ)

สรุป

- วิศวกรรมซอฟต์แวร์เป็นสาขาวิศวกรรมที่เกี่ยวข้องกับทุกด้านของการผลิตซอฟต์แวร์
- คุณลักษณะผลิตภัณฑ์ซอฟต์แวร์ที่จำเป็นคือ ความสามารถในการบำรุงรักษา ความเชื่อถือได้ ความมั่นคง ความ ปลอดภัย ประสิทธิภาพ และการยอมรับ
- กิจกรรมเกี่ยวกับการออกข้อกำหนด การพัฒนา การตรวจสอบ และการบำรุงรักษา เป็นส่วนประกอบของกระบวนการ ซอฟต์แวร์
- ความคิดพื้นฐานของวิศวกรรมซอฟต์แวร์ จะสามารถใช้งานได้กับทุกประเภทของการพัฒนาระบบซอฟต์แวร์
- ระบบซอฟต์แวร์มีหลายประเภท ต้องการเครื่องมือและเทคนิคทางวิศวกรรมซอฟต์แวร์ที่เหมาะสมสำหรับการพัฒนา
- ความคิดพื้นฐานของวิศวกรรมซอฟต์แวร์สามารถใช้ได้กับระบบซอฟต์แวร์ทุกประเภท
- วิศวกรซอฟต์แวร์มีความรับผิดชอบต่อวิชาชีพด้านวิศวกรรมและสังคม ไม่ควรสนใจแค่เพียงปัญหาทางเทคนิค
- สังคมระดับมืออาชีพ มีจรรยาบรรณไว้คอยกำหนดมาตรฐานเกี่ยวกับพฤติกรรมที่คาดหวังของสมาชิก ในสังคมของ วิศวกรซอฟต์แวร์ก็เช่นเดียวกัน

คำถาม???