Towards Bringing Together Numerical Methods for Technology Partial Differential Equation and Deep Neural Networks

Progress Update, Supervisor - Markus Hoffmann Stanislav Arnaudov | September 26, 2019

CHAIR FOR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Basic idea: Perform numerical simulation with ML-models

Data

Basic idea: Perform numerical simulation with ML-models

 Concrete problem: Flow around an object according to the Navier–Stokes equations.

Figure: Simulation Setup

Stanislav Arnaudov - Progress Update

200

Basic idea: Perform numerical simulation with ML-models

Solutions of the simulation can be represented as images.

Figure: Simulation Image

Basic idea: Perform numerical simulation with ML-models

Or ML-model primarily use images as input and output.

Several cases to investigate

- Constant model
- Fluid speed model
- Fluid viscosity and density model
- Object in space model

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
 - inflow speed
 - fluid viscosity
 - fluid density
- Reynolds Number in the range of [90, 350]

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]

Data

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]

Figure: Karman vortex street

Data

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]
- Choosing appropriate color space : Grayscale or RGB

900

■ Two types of architectures based on our preliminary research:

Data

Description

Evaluation

- Two types of architectures based on our preliminary research:
 - ResNet

Data

- Two types of architectures based on our preliminary research:
 - UNet

Data

Description

- Two types of architectures based on our preliminary research:
 - UNet turned out to perform better.

Data

- Two types of architectures based on our preliminary research:
- Data being used by the network.

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Usage of pressure field

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - lacktriangle Usage of pressure field ightarrow the pressure field turned out to be useful

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Processing of real values

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - lacktriangle Processing of real values o extra image channel filled with the value

Data

Description

Two views of the results

Computer Vision

Numerical Simulation

Two views of the results

Computer Vision

Numerical Simulation

- Perceived qualities of the <u>image</u> results
- Metrics:
 - Peak signal-to-noise ratio -PSNR
 - Correlation

Stanislav Arnaudov - Progress Update

Two views of the results

Computer Vision

- Perceived qualities of the <u>image</u> results
- Metrics:
 - Peak signal-to-noise ratio -PSNR
 - Correlation

Numerical Simulation

- Real differences between the predicted and the actual values
- Metrics:
 - Average percentage difference
 - Max percentage difference

Evaluation cases

Two evaluation cases

Individual Images

Recursive Application

Evaluation cases

Two evaluation cases

Individual Images

Recursive Application

Individual Images - constant model Cor. and PSNR:

Data

Description

Individual Images - constant model Prediction image:

Data

Description

Individual Images - constant model Timestep image:

Data

Description

Individual Images – constant model Numerical view:

MAX DIFF PERC

0.00

Description

0.50

1.00

AVRG DIFF PERC

1.50

10

40

Recursive application – constant model

Recursive application – constant model

Data

Thank you for your attention.

Data

Questions?

Stanislav Arnaudov – Progress Update

Data

Description

Models 00000000 Evaluation 000000 Results 00000 September 26, 2019

33/33