Chapter 2: Finite dimensional vector space

Linear Algebra Done Right, by Sheldon Axler

Contents

A: Span and Linear independence	3
B: Bases	3

A: Span and Linear independence

B: Bases

Problem 1

Find all vector spaces that have exactly one basis.

Proof. Consider all lines passing through origin.

Problem 3

(a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4$$

Find a basis of U.

- (b) Extend the basis in part (a) to a basis of \mathbb{R}^5 .
- (c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$.

Proof. (a) We can verify that (3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1) is a basis of U, and it spans U.

Idea: We start from the basis of \mathbb{R}^5 and try to fit it into the given condition.

- (b) (3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1), (0,1,0,0,0), (0,0,1,0,0)Idea: Downgrade all vector to one dimensional (to obtain the basis of \mathbb{R}^5).
- (c) $span\{(0,0,0,0,1), (0,1,0,0,0)\}$ Idea: Refer to the definition of direct sum.

Problem 5

Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $\mathcal{P}_3(\mathbb{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has a degree 2.

Proof. Consider

$$p_0 = a_1$$

$$p_1 = a_2 x$$

$$p_2 = a_3 x^3$$

$$p_3 = a_4 x^2 + a_5 x^3$$

It is easy to verify that they are linearly independent, and span $\mathcal{P}_3(\mathbb{F})$ \square