Coverage of credible intervals under multivariate monotonicity

Subhashis Ghoshal, North Carolina State University

Bayesian Networking Workskshop 2023, Monash University, Melbourne, Australia • Based on joint work with Kang Wang

- Based on joint work with Kang Wang
- Reference: Coverage of credible intervals in Bayesian multivariate isotonic regression, *The Annals of Statistics*, Vol. 51, No 3, pages 1376–1400 (2023).

- Based on joint work with Kang Wang
- Reference: Coverage of credible intervals in Bayesian multivariate isotonic regression, *The Annals of Statistics*, Vol. 51, No 3, pages 1376–1400 (2023).
- Fund provided by National Science Foundation

- Based on joint work with Kang Wang
- Reference: Coverage of credible intervals in Bayesian multivariate isotonic regression, *The Annals of Statistics*, Vol. 51, No 3, pages 1376–1400 (2023).
- Fund provided by National Science Foundation

 Travel fund from NSF, Army Research Office, and Goodnight Professorship.

Preliminaries

 $Y = f(X) + \varepsilon$, X univariate or multivariate, f increasing in (each component of) x.

• The parameter space of monotone regression functions Θ_0 can be thought of as a subset of a bigger parameter space of all regression functions Θ where the model still makes sense.

- The parameter space of monotone regression functions Θ_0 can be thought of as a subset of a bigger parameter space of all regression functions Θ where the model still makes sense.
- ullet Posterior analysis is simpler on Θ aided by conjugacy.

- The parameter space of monotone regression functions Θ_0 can be thought of as a subset of a bigger parameter space of all regression functions Θ where the model still makes sense.
- ullet Posterior analysis is simpler on Θ aided by conjugacy.
- Consider a map that takes an element of Θ to an element of Θ_0 . This may be used to induce a prior distribution on Θ_0 , but the corresponding posterior distribution is complicated.

- The parameter space of monotone regression functions Θ_0 can be thought of as a subset of a bigger parameter space of all regression functions Θ where the model still makes sense.
- ullet Posterior analysis is simpler on Θ aided by conjugacy.
- Consider a map that takes an element of Θ to an element of Θ_0 . This may be used to induce a prior distribution on Θ_0 , but the corresponding posterior distribution is complicated.
- The key idea is to switch the order of a map $\iota:\theta\mapsto\theta^*$ enforcing the desirable restriction, and the posterior updating, and use the induced posterior distribution to make an inference.

Traditional Bayes vs the Off-beat Bayesian Idea

Traditional Bayes

Off-beat Bayes

Immersion-posterior

• The map ι complying with the restriction will be called an immersion map, and the resulting induced posterior is called the immersion posterior.

Immersion-posterior

- The map ι complying with the restriction will be called an immersion map, and the resulting induced posterior is called the immersion posterior.
- A projection map is a natural choice for ι, and in that case, the induced posterior is called the projection-posterior. A simple concentration inequality will show that the projection-posterior inherits the posterior contraction rate from the unrestricted posterior.

Immersion-posterior

- The map ι complying with the restriction will be called an immersion map, and the resulting induced posterior is called the immersion posterior.
- A projection map is a natural choice for ι , and in that case, the induced posterior is called the projection-posterior. A simple concentration inequality will show that the projection-posterior inherits the posterior contraction rate from the unrestricted posterior.
- An immersion map only needs to be defined on the support of the prior/posterior. Oftentimes, priors are put using basis expansion.
 Then the immersion map will typically be a finite-dimensional optimization.

Univariate Monotone Regression

Chakraborty and G. (2021, EJS; 2021, AoS)

• A finite random series of step functions: $f(x) = \sum_{j=1}^{J} \theta_{j} \mathbb{1}((j-1)/J < x \leq j/J], \ \theta_{1}, \dots, \theta_{J}$ are the coefficients given a prior distribution, J is the number of terms.

Univariate Monotone Regression

Chakraborty and G. (2021, EJS; 2021, AoS)

- A finite random series of step functions: $f(x) = \sum_{j=1}^{J} \theta_{j} \mathbb{1}((j-1)/J < x \leq j/J], \ \theta_{1}, \dots, \theta_{J}$ are the coefficients given a prior distribution, J is the number of terms.
- Monotone projection reduces to isotonization of the θ -coefficients, for which efficient algorithms like the PAVA exist.

Univariate Monotone Regression

Chakraborty and G. (2021, EJS; 2021, AoS)

- A finite random series of step functions: $f(x) = \sum_{j=1}^{J} \theta_{j} \mathbb{1}((j-1)/J < x \leq j/J], \ \theta_{1}, \dots, \theta_{J}$ are the coefficients given a prior distribution, J is the number of terms.
- Monotone projection reduces to isotonization of the θ -coefficients, for which efficient algorithms like the PAVA exist.
- Work with a deterministic choice of J, depending on the sample size
 n.

The coverage problem

• Consider an equal tailed $(1 - \alpha)$ -credible interval for $f(x_0)$ at an interior point x_0 . Does its coverage go to $1 - \alpha$?

The coverage problem

- Consider an equal tailed (1α) -credible interval for $f(x_0)$ at an interior point x_0 . Does its coverage go to 1α ?
- Cox phenomenon: Agreement of credibility and coverage happens in parametric problems by the Bernstein-von Mises theorem, but for smoothing problems, the coverage may be arbitrarily low (Cox (1993, Ann Stat)).

The coverage problem

- Consider an equal tailed (1α) -credible interval for $f(x_0)$ at an interior point x_0 . Does its coverage go to 1α ?
- Cox phenomenon: Agreement of credibility and coverage happens in parametric problems by the Bernstein-von Mises theorem, but for smoothing problems, the coverage may be arbitrarily low (Cox (1993, Ann Stat)).
- We shall obtain coverage of the monotone regression problem with the empirical \mathbb{L}_2 -projection-posterior, which corresponds to the weighted isotonization problem of minimizing $\sum_{j=1}^J N_j (\theta_j \theta_j^*)^2$ subject to $\theta_1^* \leq \cdots \leq \theta_J^*$, where $N_j = \sum_{i=1}^n \mathbb{1}\{(j-1)/J < X_i \leq j/J]\}$.

Limiting Coverage of a Credible interval

Let $\Delta_f^*=\arg\min\{f(t)+t^2:t\in\mathbb{R}\}$, W_1,W_2 be independent two-sided Brownian motions, $C_0=2b\left(a/b\right)^{2/3}$ with $a=\sqrt{\sigma_0^2/g(x_0)}$, $b=f_0'(x_0)/2$, g the density of X. Let \hat{f}_n be the sieve-MLE. Let $F_{a,b}^*(z|w)=\mathrm{P}(C_0\Delta_{w+W_2}^*\leq z)$.

Limiting Coverage of a Credible interval

Let $\Delta_f^*=\arg\min\{f(t)+t^2:t\in\mathbb{R}\}$, W_1,W_2 be independent two-sided Brownian motions, $C_0=2b\left(a/b\right)^{2/3}$ with $a=\sqrt{\sigma_0^2/g(x_0)}$, $b=f_0'(x_0)/2$, g the density of X. Let \hat{f}_n be the sieve-MLE. Let $F_{a,b}^*(z|w)=\mathrm{P}(C_0\Delta_{w+W_2}^*\leq z)$.

Theorem

- (a) for every $z \in \mathbb{R}$, $\Pi(n^{1/3}(f^*(x_0) f_0(x_0)) \le z|\mathbb{D}_n) \leadsto F_{a,b}^*(z|W_1)$;
- (b) Limiting coverage of $I_{n,\gamma}$: with $Z_B = P(\Delta_{W_1+W_2}^* \ge 0 | W_1)$, $P_0(f_0(x_0) \in I_{n,\gamma}) \to P(\gamma/2 \le Z_B \le 1 \gamma/2)$.

Note that the nuisance parameters a, b magically vanish from the limit.

• We say that the random variable $Z_B = P(\Delta_{W_1 + W_2}^* \ge 0 \, | \, W_1)$ has the Bayes-Chernoff distribution.

- We say that the random variable $Z_B = P(\Delta_{W_1+W_2}^* \ge 0 | W_1)$ has the Bayes-Chernoff distribution.
- The Bayes-Chernoff distribution is slightly more concentrated about the center 1/2 compared with the uniform.

- We say that the random variable $Z_B = P(\Delta_{W_1 + W_2}^* \ge 0 | W_1)$ has the Bayes-Chernoff distribution.
- The Bayes-Chernoff distribution is slightly more concentrated about the center 1/2 compared with the uniform.
- This means that the limiting coverage is slightly higher than the credibility — the opposite of the Cox phenomenon.

- We say that the random variable $Z_B = P(\Delta_{W_1 + W_2}^* \ge 0 | W_1)$ has the Bayes-Chernoff distribution.
- The Bayes-Chernoff distribution is slightly more concentrated about the center 1/2 compared with the uniform.
- This means that the limiting coverage is slightly higher than the credibility — the opposite of the Cox phenomenon.
- For instance, the 95% equal-tailed credibility interval gives 96.4% limiting coverage.

- We say that the random variable $Z_B = P(\Delta_{W_1 + W_2}^* \ge 0 | W_1)$ has the Bayes-Chernoff distribution.
- The Bayes-Chernoff distribution is slightly more concentrated about the center 1/2 compared with the uniform.
- This means that the limiting coverage is slightly higher than the credibility — the opposite of the Cox phenomenon.
- For instance, the 95% equal-tailed credibility interval gives 96.4% limiting coverage.
- If the target coverage is $(1-\alpha)$, starting with a $(1-\gamma)$ -credible interval, where $A(\gamma/2)=\alpha/2$, the **limiting coverage** $(1-\alpha)$ is attained exactly.

- We say that the random variable $Z_B = P(\Delta_{W_1 + W_2}^* \ge 0 | W_1)$ has the Bayes-Chernoff distribution.
- The Bayes-Chernoff distribution is slightly more concentrated about the center 1/2 compared with the uniform.
- This means that the limiting coverage is slightly higher than the credibility — the opposite of the Cox phenomenon.
- For instance, the 95% equal-tailed credibility interval gives 96.4% limiting coverage.
- If the target coverage is $(1-\alpha)$, starting with a $(1-\gamma)$ -credible interval, where $A(\gamma/2)=\alpha/2$, the **limiting coverage** $(1-\alpha)$ is attained exactly.
- For instance, 93.2% equal-tailed credible interval has 95% limiting coverage.

Multivariate Monotone Regression

Wang and G. (2023, AoS).

• $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.

- $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.
- Prior: On piecewise constant functions $f = \sum_{j} \theta_{j} \mathbb{1}_{l_{j}}$ on the blocks $l_{j} = \prod_{k=1}^{d} ((j_{k} 1)/J, j_{k}/J]$ with a prior on the random heights θ_{j} .

- $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.
- Prior: On piecewise constant functions $f = \sum_{j} \theta_{j} \mathbb{1}_{l_{j}}$ on the blocks $l_{j} = \prod_{k=1}^{d} ((j_{k} 1)/J, j_{k}/J]$ with a prior on the random heights θ_{j} .
- Monotonicity will be ensured if the array of coefficients $\boldsymbol{\theta}$ belongs to the cone $\mathcal{C} := \{ \boldsymbol{\theta} \in \mathbb{R}^{J^d} : \theta_{j_1} \leq \theta_{j_2} \text{ if } j_1 \leq j_2 \}.$

- $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.
- Prior: On piecewise constant functions $f = \sum_{j} \theta_{j} \mathbb{1}_{l_{j}}$ on the blocks $l_{j} = \prod_{k=1}^{d} ((j_{k} 1)/J, j_{k}/J]$ with a prior on the random heights θ_{j} .
- Monotonicity will be ensured if the array of coefficients $\boldsymbol{\theta}$ belongs to the cone $\mathcal{C} := \{ \boldsymbol{\theta} \in \mathbb{R}^{J^d} : \theta_{j_1} \leq \theta_{j_2} \text{ if } j_1 \leq j_2 \}.$
- \mathbb{L}_1 -approximation rate is J^{-1} using a total of J^d basis functions; the \mathbb{L}_2 -rate is $J^{-1/2}$.

- $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.
- Prior: On piecewise constant functions $f = \sum_{j} \theta_{j} \mathbb{1}_{l_{j}}$ on the blocks $l_{j} = \prod_{k=1}^{d} ((j_{k} 1)/J, j_{k}/J]$ with a prior on the random heights θ_{j} .
- Monotonicity will be ensured if the array of coefficients $\boldsymbol{\theta}$ belongs to the cone $\mathcal{C} := \{ \boldsymbol{\theta} \in \mathbb{R}^{J^d} : \theta_{\boldsymbol{j}_1} \leq \theta_{\boldsymbol{j}_2} \text{ if } \boldsymbol{j}_1 \leq \boldsymbol{j}_2 \}.$
- \mathbb{L}_1 -approximation rate is J^{-1} using a total of J^d basis functions; the \mathbb{L}_2 -rate is $J^{-1/2}$.
- Optimal \mathbb{L}_1 -contraction rate $n^{-1/(d+2)}$ using the \mathbb{L}_1 or \mathbb{L}_2 -projection posterior based on the conjugate normal prior.

- $Y = f(\mathbf{X}) + \varepsilon$ with $\mathbf{X} \sim G$ on $[0,1]^d$, f multivariate monotone, that is, $f(\mathbf{x}_1) \leq f(\mathbf{x}_2)$ if $\mathbf{x}_1 \leq \mathbf{x}_2$, where $\mathbf{x}_1 \leq \mathbf{x}_2$ means that $x_{1,k} \leq x_{2,k}$, $k = 1, \ldots, d$.
- Prior: On piecewise constant functions $f = \sum_{j} \theta_{j} \mathbb{1}_{l_{j}}$ on the blocks $l_{j} = \prod_{k=1}^{d} ((j_{k} 1)/J, j_{k}/J]$ with a prior on the random heights θ_{j} .
- Monotonicity will be ensured if the array of coefficients $\boldsymbol{\theta}$ belongs to the cone $\mathcal{C} := \{ \boldsymbol{\theta} \in \mathbb{R}^{J^d} : \theta_{j_1} \leq \theta_{j_2} \text{ if } j_1 \leq j_2 \}.$
- \mathbb{L}_1 -approximation rate is J^{-1} using a total of J^d basis functions; the \mathbb{L}_2 -rate is $J^{-1/2}$.
- Optimal \mathbb{L}_1 -contraction rate $n^{-1/(d+2)}$ using the \mathbb{L}_1 or \mathbb{L}_2 -projection posterior based on the conjugate normal prior.
- This also leads to a consistent Bayesian test as before.

• Unlike the univariate case, the projection-posterior approach does not lead to the optimal rate of contraction for $f(x_0)$.

- Unlike the univariate case, the projection-posterior approach does not lead to the optimal rate of contraction for $f(x_0)$.
- We instead consider the 'maxi-min' immersion map

$$\underline{\iota}(f)(\mathbf{x}_0) = \max_{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0)} \min_{\substack{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2 \\ N_{[\mathbf{j}_1:\mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}$$

- Unlike the univariate case, the projection-posterior approach does not lead to the optimal rate of contraction for $f(x_0)$.
- We instead consider the 'maxi-min' immersion map

$$\underline{\iota}(f)(\mathbf{x}_0) = \max_{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0)} \min_{\substack{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2 \\ N_{[\mathbf{j}_1:\mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}$$

 The clue comes from the operation used in the construction of the maxi-min estimator of Han and Zhang (2020, Ann Stat).

- Unlike the univariate case, the projection-posterior approach does not lead to the optimal rate of contraction for $f(x_0)$.
- We instead consider the 'maxi-min' immersion map

$$\underline{\iota}(f)(\mathbf{x}_0) = \max_{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0)} \min_{\substack{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2 \\ N_{[\mathbf{j}_1 : \mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1 : \mathbf{j}_2]} N_{\mathbf{j}} \theta_{\mathbf{j}}}{N_{[\mathbf{j}_1 : \mathbf{j}_2]}}$$

- The clue comes from the operation used in the construction of the maxi-min estimator of Han and Zhang (2020, Ann Stat).
- A major difference with theirs is that the operation is in a discrete domain, and hence is also simpler, because of the binning through the hypercubes used in constructing the basis of step functions.

$$\bar{\iota}(f)(\mathbf{x}_0) = \min_{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2} \max_{\substack{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0) \\ N_{[j_1:j_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}.$$

$$\bar{\iota}(f)(\mathbf{x}_0) = \min_{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2} \max_{\substack{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0) \\ N_{[\mathbf{j}_1:\mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}.$$

• Both operations $\underline{\iota}$ and $\overline{\iota}$ are asymmetric in terms of the direction. A symmetric operation is obtained by averaging:

$$\iota(f)(\mathbf{x}_0) = (\underline{\iota}(f)(\mathbf{x}_0) + \overline{\iota}(f)(\mathbf{x}_0))/2.$$

$$\bar{\iota}(f)(\mathbf{x}_0) = \min_{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2} \max_{\substack{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0) \\ N_{[\mathbf{j}_1:\mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}.$$

• Both operations $\underline{\iota}$ and $\overline{\iota}$ are asymmetric in terms of the direction. A symmetric operation is obtained by averaging:

$$\iota(f)(\mathbf{x}_0) = (\underline{\iota}(f)(\mathbf{x}_0) + \overline{\iota}(f)(\mathbf{x}_0))/2.$$

• Denote the images under the corresponding immersion maps by $f_*(\mathbf{x}_0)$, $f^*(\mathbf{x}_0)$, and $\tilde{f}(x_0)$ respectively.

$$\bar{\iota}(f)(\mathbf{x}_0) = \min_{\mathbf{j}_0(\mathbf{x}_0) \leq \mathbf{j}_2} \max_{\substack{\mathbf{j}_1 \leq \mathbf{j}_0(\mathbf{x}_0) \\ N_{[\mathbf{j}_1:\mathbf{j}_2]} > 0}} \frac{\sum_{\mathbf{j} \in [\mathbf{j}_1:\mathbf{j}_2]} N_{\mathbf{j}}\theta_{\mathbf{j}}}{N_{[\mathbf{j}_1:\mathbf{j}_2]}}.$$

- Both operations $\underline{\iota}$ and $\overline{\iota}$ are asymmetric in terms of the direction. A symmetric operation is obtained by averaging: $\iota(f)(\mathbf{x}_0) = (\iota(f)(\mathbf{x}_0) + \overline{\iota}(f)(\mathbf{x}_0))/2$.
- Denote the images under the corresponding immersion maps by $f_*(\mathbf{x}_0)$, $f^*(\mathbf{x}_0)$, and $\tilde{f}(\mathbf{x}_0)$ respectively.
- In the univariate case, all three operations coincide and reduce to the empirical \mathbb{L}_2 -projection on monotone functions for stepwise functions given by the standard isotonization procedure for the step-heights.

• Local smoothness: let β_k be the order of the first non-zero derivative of f at \mathbf{x}_0 along the kth coordinate, that is, $\beta_k = \min_{l \geq 1} \{l : \partial_k^l f(\mathbf{x}_0) \neq 0\}.$

- Local smoothness: let β_k be the order of the first non-zero derivative of f at \mathbf{x}_0 along the kth coordinate, that is, $\beta_k = \min_{l \geq 1} \{ l : \partial_k^l f(\mathbf{x}_0) \neq 0 \}.$
- Assume $1 \le \beta_1, \dots, \beta_s < \infty$, and that $\beta_{s+1} = \dots = \beta_d = \infty$ for some 0 < s < d.

- Local smoothness: let β_k be the order of the first non-zero derivative of f at \mathbf{x}_0 along the kth coordinate, that is, $\beta_k = \min_{l \geq 1} \{ l : \partial_k^l f(\mathbf{x}_0) \neq 0 \}.$
- Assume $1 \le \beta_1, \dots, \beta_s < \infty$, and that $\beta_{s+1} = \dots = \beta_d = \infty$ for some $0 \le s \le d$.
- For a positive sequence $\omega_n \downarrow 0$, set $\mathbf{r}_n = (\omega_n^{1/\beta_1}, \dots, \omega_n^{1/\beta_s}, 1, \dots, 1)^T$. For any t > 0,

$$\sup_{|x_k-x_{0,k}|\leq tr_{n,k}} \left| f_0(\mathbf{x}) - f_0(\mathbf{x}_0) - \sum_{\mathbf{I}\in L} \frac{\partial^{\mathbf{I}} f_0(\mathbf{x}_0)}{\mathbf{I}!} (\mathbf{x} - \mathbf{x}_0)^{\mathbf{I}} \right| = o(\omega_n),$$

where

$$L = \{I : 0 < \sum_{k=1}^{s} I_k/\beta_k \le 1 \text{ and } I_k = 0, \text{ for } k = s+1,\dots,d\}.$$

- Local smoothness: let β_k be the order of the first non-zero derivative of f at \mathbf{x}_0 along the kth coordinate, that is, $\beta_k = \min_{l \geq 1} \{ l : \partial_k^l f(\mathbf{x}_0) \neq 0 \}.$
- Assume $1 \le \beta_1, \dots, \beta_s < \infty$, and that $\beta_{s+1} = \dots = \beta_d = \infty$ for some $0 \le s \le d$.
- For a positive sequence $\omega_n \downarrow 0$, set $\mathbf{r}_n = (\omega_n^{1/\beta_1}, \dots, \omega_n^{1/\beta_s}, 1, \dots, 1)^T$. For any t > 0,

$$\sup_{|x_k-x_{0,k}| \leq tr_{n,k}} |f_0(x) - f_0(x_0) - \sum_{I \in L} \frac{\partial^I f_0(x_0)}{I!} (x - x_0)^I | = o(\omega_n),$$

where

$$L = \{I : 0 < \sum_{k=1}^{s} I_k / \beta_k \le 1 \text{ and } I_k = 0, \text{ for } k = s+1, \dots, d\}.$$

• β_k is odd, $k \leq s$; $\partial^I f_0(\mathbf{x}_0) = 0$ if $\sum I_k/\beta_k < 1$.

Notations

Let H_1 , H_2 be independent centered Gaussian processes on $\mathbb{R}^d_{\geq 0} \times \mathbb{R}^d_{\geq 0}$ with covariance kernel

$$K(\boldsymbol{u},\boldsymbol{v})=\prod_{k=1}^s(u_k\wedge u_k'+v_k\wedge v_k')D_s(\boldsymbol{u}\wedge \boldsymbol{u}',\boldsymbol{v}\wedge \boldsymbol{v}')$$
, where

$$D_s(\boldsymbol{u} \wedge \boldsymbol{u}', \boldsymbol{v} \wedge \boldsymbol{v}') = \int_{\substack{x_k \in [(\boldsymbol{x}_0 - \boldsymbol{u})_k, (\boldsymbol{x}_0 + \boldsymbol{v})_k] \cap [0,1] \\ s+1 \leq k \leq d}} g(x_{0,1}, \dots, x_{0,s}, x_{s+1}, \dots, x_d) dx_s$$

with $D_d(\mathbf{u}, \mathbf{v}) = g(\mathbf{x}_0)$, where g is the probability density function of \mathbf{X} .

Let

$$U(\mathbf{u}, \mathbf{v}) = \frac{\sigma_0 H_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^s (u_k + v_k) D_s(\mathbf{u}, \mathbf{v})} + \frac{\sigma_0 H_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^s (u_k + v_k) D_s(\mathbf{u}, \mathbf{v})} + \sum_{\mathbf{l} \in L^*} \frac{\partial^{\mathbf{l}} f_0(x_0)}{(\mathbf{l} + \mathbf{1})!} \prod_{k=1}^s \frac{v_k^{l_k+1} - (-u_k)^{l_k+1}}{u_k + v_k}.$$

$$Z_* = \sup_{\substack{\boldsymbol{u} \succeq \mathbf{0} \\ u_k \leq x_{0,k} \\ s+1 \leq k \leq d}} \inf_{\substack{\boldsymbol{v} \succeq \mathbf{0} \\ v_k \leq 1 - x_{0,k} \\ s+1 \leq k \leq d}} U(\boldsymbol{u}, \boldsymbol{v}), \ Z^* = \inf_{\substack{\boldsymbol{v} \succeq \mathbf{0} \\ v_k \leq 1 - x_{0,k} \\ s+1 \leq k \leq d}} \sup_{\substack{\boldsymbol{u} \succeq \mathbf{0} \\ u_k \leq x_{0,k} \\ s+1 \leq k \leq d}} U(\boldsymbol{u}, \boldsymbol{v}).$$

Weak limit

Theorem

Let
$$\omega_n = n^{-1/(2+\sum_{k=1}^s \beta_k^{-1})}$$
. Let $J_k \gg r_{n,k}^{-1}$, for each $k=1,\ldots,d$, and $\prod_{k=1}^d J_k \ll n\omega_n$. For any $z \in \mathbb{R}$, we have
$$\Pi(\omega_n^{-1}(f_*(\mathbf{x}_0) - f_0(\mathbf{x}_0)) \leq z|\mathbb{D}_n) \rightsquigarrow \mathrm{P}(Z_* \leq z|H_1);$$

$$\Pi(\omega_n^{-1}(f_*(\mathbf{x}_0) - f_0(\mathbf{x}_0)) \leq z | \mathbb{D}_n) \rightsquigarrow P(Z_* \leq z | H_1);$$

$$\Pi(\omega_n^{-1}(f^*(\mathbf{x}_0) - f_0(\mathbf{x}_0)) \leq z | \mathbb{D}_n) \rightsquigarrow P(Z^* \leq z | H_1);$$

$$\Pi(\omega_n^{-1}(\tilde{f}(\mathbf{x}_0) - f_0(\mathbf{x}_0)) \leq z | \mathbb{D}_n) \rightsquigarrow P((Z_* + Z^*)/2 \leq z | H_1).$$

• No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.

- No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.
- Write the original posterior process as a sum of several terms, one is for posterior variation, one is the discrepancy between the posterior mean and the empirical analog, and another is for sampling variation of the empirical.

- No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.
- Write the original posterior process as a sum of several terms, one is for posterior variation, one is the discrepancy between the posterior mean and the empirical analog, and another is for sampling variation of the empirical.
- The first process goes to a Gaussian process conditionally on the data, the second to zero, and the third weakly to an independent Gaussian process.

- No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.
- Write the original posterior process as a sum of several terms, one is for posterior variation, one is the discrepancy between the posterior mean and the empirical analog, and another is for sampling variation of the empirical.
- The first process goes to a Gaussian process conditionally on the data, the second to zero, and the third weakly to an independent Gaussian process.
- Key technique: truncate the domain, and transition to the whole in the limit.

- No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.
- Write the original posterior process as a sum of several terms, one is for posterior variation, one is the discrepancy between the posterior mean and the empirical analog, and another is for sampling variation of the empirical.
- The first process goes to a Gaussian process conditionally on the data, the second to zero, and the third weakly to an independent Gaussian process.
- Key technique: truncate the domain, and transition to the whole in the limit.
- Tightness verification: Maximal inequality for a martingale with respect to multi-index given a partial order.

- No switch relation (the key technique used in the univariate case), but the dimension doubles, as we consider increments with two free ends.
- Write the original posterior process as a sum of several terms, one is for posterior variation, one is the discrepancy between the posterior mean and the empirical analog, and another is for sampling variation of the empirical.
- The first process goes to a Gaussian process conditionally on the data, the second to zero, and the third weakly to an independent Gaussian process.
- Key technique: truncate the domain, and transition to the whole in the limit.
- Tightness verification: Maximal inequality for a martingale with respect to multi-index given a partial order.
- Tightness of the functional max/min activity within a compact domain with high probability.

• If $L=\{eta_k oldsymbol{e}_k: 1 \leq k \leq d\}$, then $U=_d \tilde{A}_{eta} \tilde{U}$, where

• If $L=\{eta_k oldsymbol{e}_k: 1\leq k\leq d\}$, then $U=_d \tilde{A}_{eta} \tilde{U}$, where

$$\bullet \ \, \tilde{A}_{\pmb{\beta}} = \big(\tfrac{\sigma_0^2}{g(\pmb{x}_0)} \prod_{k=1}^d \big(\tfrac{\partial_k^{\beta_k} f_0(\pmb{x}_0)}{(\beta_k+1)!} \big)^{1/\beta_k} \big)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0,$$

• If $L = \{\beta_k \mathbf{e}_k : 1 \leq k \leq d\}$, then $U =_d \tilde{A}_\beta \tilde{U}$, where

$$\bullet \ \, \tilde{A}_{\beta} = \big(\tfrac{\sigma_0^2}{g(\mathbf{x}_0)} \prod_{k=1}^d \big(\tfrac{\partial_k^{\beta_k} f_0(\mathbf{x}_0)}{(\beta_k+1)!} \big)^{1/\beta_k} \big)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0,$$

•
$$\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k+1} - (-u_k)^{\beta_k+1}}{u_k + v_k},$$

- If $L=\{\beta_k {m e}_k: 1\leq k\leq d\}$, then $U=_d \tilde{A}_{\beta} \tilde{U}$, where
 - $\tilde{A}_{\beta} = \left(\frac{\sigma_0^2}{g(\mathbf{x}_0)} \prod_{k=1}^d \left(\frac{\partial_k^{\beta_k} f_0(\mathbf{x}_0)}{(\beta_k+1)!}\right)^{1/\beta_k}\right)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0$,
 - $\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k+1} (-u_k)^{\beta_k+1}}{u_k + v_k},$
 - \tilde{H}_1 and \tilde{H}_2 are two independent centered Gaussian processes with covariance kernel $\prod_{k=1}^d (u_k \wedge u_k' + v_k \wedge v_k')$, $(\boldsymbol{u}, \boldsymbol{v}), (\boldsymbol{u}', \boldsymbol{v}') \in \mathbb{R}^d_{>0} \times \mathbb{R}^d_{>0}$.

- If $L = \{\beta_k \boldsymbol{e}_k : 1 \leq k \leq d\}$, then $U =_d \tilde{A}_{\beta} \tilde{U}$, where
 - $\bullet \ \, \tilde{A}_{\beta} = \big(\tfrac{\sigma_0^2}{g(x_0)} \prod_{k=1}^d \big(\tfrac{\partial_k^{\beta_k} f_0(x_0)}{(\beta_k+1)!} \big)^{1/\beta_k} \big)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0,$
 - $\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k+1} (-u_k)^{\beta_k+1}}{u_k + v_k},$
 - \tilde{H}_1 and \tilde{H}_2 are two independent centered Gaussian processes with covariance kernel $\prod_{k=1}^d (u_k \wedge u_k' + v_k \wedge v_k')$, $(\boldsymbol{u}, \boldsymbol{v}), (\boldsymbol{u}', \boldsymbol{v}') \in \mathbb{R}^d_{>0} \times \mathbb{R}^d_{>0}$.
- This happens if

- If $L=\{\beta_k {m e}_k: 1\leq k\leq d\}$, then $U=_d \tilde{A}_\beta \tilde{U}$, where
 - $\tilde{A}_{\beta} = \left(\frac{\sigma_0^2}{g(\mathbf{x}_0)} \prod_{k=1}^d \left(\frac{\partial_k^{\beta_k} f_0(\mathbf{x}_0)}{(\beta_k+1)!}\right)^{1/\beta_k}\right)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0$,
 - $\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k + 1} (-u_k)^{\beta_k + 1}}{u_k + v_k},$
 - \tilde{H}_1 and \tilde{H}_2 are two independent centered Gaussian processes with covariance kernel $\prod_{k=1}^d (u_k \wedge u_k' + v_k \wedge v_k')$, $(\boldsymbol{u}, \boldsymbol{v}), (\boldsymbol{u}', \boldsymbol{v}') \in \mathbb{R}^d_{>0} \times \mathbb{R}^d_{>0}$.
- This happens if
 - β_1, \ldots, β_d are relative primes;

- If $L = \{\beta_k \boldsymbol{e}_k : 1 \leq k \leq d\}$, then $U =_d \tilde{A}_{\beta} \tilde{U}$, where
 - $\tilde{A}_{\beta} = \left(\frac{\sigma_0^2}{g(\mathbf{x}_0)}\prod_{k=1}^d \left(\frac{\partial_k^{\beta_k}f_0(\mathbf{x}_0)}{(\beta_k+1)!}\right)^{1/\beta_k}\right)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0,$
 - $\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k+1} (-u_k)^{\beta_k+1}}{u_k + v_k},$
 - \tilde{H}_1 and \tilde{H}_2 are two independent centered Gaussian processes with covariance kernel $\prod_{k=1}^d (u_k \wedge u_k' + v_k \wedge v_k')$, $(\boldsymbol{u}, \boldsymbol{v}), (\boldsymbol{u}', \boldsymbol{v}') \in \mathbb{R}^d_{>0} \times \mathbb{R}^d_{>0}$.
- This happens if
 - β_1, \ldots, β_d are relative primes;
 - $\beta_1 = \cdots = \beta_d = 1$;

- If $L=\{eta_koldsymbol{e}_k: 1\leq k\leq d\}$, then $U=_d \tilde{A}_{eta}\tilde{U}$, where
 - $\bullet \ \, \tilde{A}_{\beta} = \big(\tfrac{\sigma_0^2}{g(x_0)} \prod_{k=1}^d \big(\tfrac{\partial_k^{\beta_k} f_0(x_0)}{(\beta_k+1)!} \big)^{1/\beta_k} \big)^{1/(2+\sum_{k=1}^d \beta_k^{-1})} > 0,$

•
$$\tilde{U} := \frac{\tilde{H}_1(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \frac{\tilde{H}_2(\mathbf{u}, \mathbf{v})}{\prod_{k=1}^d (u_k + v_k)} + \sum_{k=1}^d \frac{v_k^{\beta_k + 1} - (-u_k)^{\beta_k + 1}}{u_k + v_k},$$

- \tilde{H}_1 and \tilde{H}_2 are two independent centered Gaussian processes with covariance kernel $\prod_{k=1}^d (u_k \wedge u_k' + v_k \wedge v_k')$, $(\boldsymbol{u}, \boldsymbol{v}), (\boldsymbol{u}', \boldsymbol{v}') \in \mathbb{R}^d_{>0} \times \mathbb{R}^d_{>0}$.
- This happens if
 - β_1, \ldots, β_d are relative primes;
 - $\beta_1 = \cdots = \beta_d = 1$;
 - the univariate case considered earlier.

• Consider the $(1-\gamma)$ -quantile of the $\underline{\iota}$ -immersion posterior $Q_{n,\gamma}^{(1)}=\inf\{z:\Pi(f_*(\mathbf{x}_0)\leq z|\mathbb{D}_n)\geq 1-\gamma\}$, and the corresponding one-sided credible interval $(-\infty,Q_{n,\gamma}^{(1)}]$.

- Consider the $(1-\gamma)$ -quantile of the $\underline{\iota}$ -immersion posterior $Q_{n,\gamma}^{(1)}=\inf\{z:\Pi(f_*(\mathbf{x}_0)\leq z|\mathbb{D}_n)\geq 1-\gamma\}$, and the corresponding one-sided credible interval $(-\infty,Q_{n,\gamma}^{(1)}]$.
- Its asymptotic coverage is $P(P(\sup_{\boldsymbol{u}\succeq \mathbf{0}}\inf_{\boldsymbol{v}\succeq \mathbf{0}}\tilde{U}(\boldsymbol{u},\boldsymbol{v})\leq 0|\tilde{H}_1)\leq 1-\gamma).$

- Consider the $(1-\gamma)$ -quantile of the $\underline{\iota}$ -immersion posterior $Q_{n,\gamma}^{(1)}=\inf\{z:\Pi(f_*(\mathbf{x}_0)\leq z|\mathbb{D}_n)\geq 1-\gamma\}$, and the corresponding one-sided credible interval $(-\infty,Q_{n,\gamma}^{(1)}]$.
- Its asymptotic coverage is $P(P(\sup_{\boldsymbol{u}\succeq \mathbf{0}}\inf_{\boldsymbol{v}\succeq \mathbf{0}}\tilde{U}(\boldsymbol{u},\boldsymbol{v})\leq 0|\tilde{H}_1)\leq 1-\gamma).$
- Corresponding statement for a two-sided equal-tailed posterior quantile interval follows.

- Consider the $(1-\gamma)$ -quantile of the $\underline{\iota}$ -immersion posterior $Q_{n,\gamma}^{(1)}=\inf\{z:\Pi(f_*(\mathbf{x}_0)\leq z|\mathbb{D}_n)\geq 1-\gamma\}$, and the corresponding one-sided credible interval $(-\infty,Q_{n,\gamma}^{(1)}]$.
- Its asymptotic coverage is $P(P(\sup_{\boldsymbol{u}\succeq 0}\inf_{\boldsymbol{v}\succeq 0}\tilde{U}(\boldsymbol{u},\boldsymbol{v})\leq 0|\tilde{H}_1)\leq 1-\gamma).$
- Corresponding statement for a two-sided equal-tailed posterior quantile interval follows
- Similar statements for the other two immersion maps with corresponding changes in the limiting process.

• We tabulated the limiting distribution through simulation.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.
- As a result, the limiting coverage is slightly higher than the nominal credibility level.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.
- As a result, the limiting coverage is slightly higher than the nominal credibility level.
- We ran a simulation experiment with the following multivariate monotone functions: $(x_1 + x_2)^2$; $\sqrt{x_1 + x_2}$; x_1x_2 ; $e^{x_1 + x_2}$; $e^{x_1 x_2}$, independent uniform predictors and normal errors, and sample sizes n = 200, 500, 1000, 2000.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.
- As a result, the limiting coverage is slightly higher than the nominal credibility level.
- We ran a simulation experiment with the following multivariate monotone functions: $(x_1 + x_2)^2$; $\sqrt{x_1 + x_2}$; x_1x_2 ; $e^{x_1 + x_2}$; $e^{x_1 x_2}$, independent uniform predictors and normal errors, and sample sizes n = 200, 500, 1000, 2000.
- Overcoverage was noted as predicted by the theory.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.
- As a result, the limiting coverage is slightly higher than the nominal credibility level.
- We ran a simulation experiment with the following multivariate monotone functions: $(x_1 + x_2)^2$; $\sqrt{x_1 + x_2}$; x_1x_2 ; $e^{x_1 + x_2}$; $e^{x_1 x_2}$, independent uniform predictors and normal errors, and sample sizes n = 200, 500, 1000, 2000.
- Overcoverage was noted as predicted by the theory.
- Using the numerical tables of the limiting distribution, we can reset the credibility level lower to obtain a targeted limiting coverage.

- We tabulated the limiting distribution through simulation.
- Like the Bayes-Chernoff distribution in the univariate case, the limiting distributions are slightly more concentrated than the uniform.
- As a result, the limiting coverage is slightly higher than the nominal credibility level.
- We ran a simulation experiment with the following multivariate monotone functions: $(x_1 + x_2)^2$; $\sqrt{x_1 + x_2}$; x_1x_2 ; $e^{x_1 + x_2}$; $e^{x_1 x_2}$, independent uniform predictors and normal errors, and sample sizes n = 200, 500, 1000, 2000.
- Overcoverage was noted as predicted by the theory.
- Using the numerical tables of the limiting distribution, we can reset the credibility level lower to obtain a targeted limiting coverage.
- Compared with the Han-Zhang procedure, the corrected intervals are significantly shorter (even the uncorrected ones are shorter), and have better coverage too, in most cases.

Thank you