Demostración de la NP-Completitud del problema CLIQUE

Alejandro León Fernández Javier Esteban Pérez Rivas Sara Revilla Báez

16 de enero de 2019

Índice

1.	. Introducción		3
	1.1.	¿Qué es un clique?	3
	1.2.	Descripción del problema	3
2.	Demostración de NP-Completitud		4
	2.1.	CLIQUE pertenece a NP	4
	2.2.	Transformación de un problema NP-Completo a CLIQUE	4
	2.3.	Descripción del Problema 3-SAT	4
	2.4.	Transformación del 3-SAT al CLIQUE	4
	2.5.	Demostración	5
3.	Ejer	mplo	6

1. Introducción

1.1. ¿Qué es un clique?

El término se usó por primera vez en un trabajo Luce & Perry (1949) en referencia a los grupos de personas que se conocen entre todas ellas.

De manera informal, un *clique* es un subconjunto de vértices de un grafo no dirigido, tal que cada par de vértices sea adyacente. Es decir, que su subgrafo inducido es completo.

Figura 1: Distribución de cliques en función de su tamaño

1.2. Descripción del problema

Dado un grafo G = (V, E) y un entero positivo k:

¿Existe un $\pmb{k\text{-clique}}$ en G? Es decir, que si existe un conjunto de vertices $V'\subseteq V$ tal que,

$$|V'| \ge k$$

$$\forall u, v \in S \implies \exists (u, v) \in E$$

2. Demostración de NP-Completitud

Para poder demostrar que un problema es NP-Completo, debemos probar que:

- El problema pertenece a la clase NP.
- Existe una transformación de cualquier problema de la clase NP a dicho problema o que, alternativamente, existe una transformación de un problema NP-Completo a este problema.

2.1. CLIQUE pertenece a NP

"Si encontramos un algoritmo no determinista que decida si para un grafo G = (V, E) existe un clique de tamaño mayor o igual que k, entonces podemos afirmar que el problema de $CLIQUE \in NP$ "

Para ello, bastaría con probar con todos los $V' \subseteq V$ tal que $|V'| \ge k$ y ver si existe un clique de tamaño mayor o igual a k. Esta comprobación se puede realizar en tiempo polinomial mirando que $(u,v) \in E$ para cada $u,v \in S$, lo cual tiene complejidad $O(n^2)$.

2.2. Transformación de un problema NP-Completo a CLI-QUE

Existe una secuencia de transformaciones que permiten demostrar que el CLIQUE es reducible al SAT de manera prácticamente trivial (comparándolo con el *Vertex Cover*). Sin embargo, vamos a plantear una transformación directa del 3-SAT al CLIQUE

2.3. Descripción del Problema 3-SAT

Dada una colección $C=\{c_1,c_2,...,c_m\}$ de cláusulas con un conjunto $X=\{x_1,x_2,...,x_n\}$ de variables, tal que $|c_i|=3$ para $1\geq i\geq m$

¿Existe alguna asignación de verdad para X que satisfaga todas las cláusulas en C?

2.4. Transformación del 3-SAT al CLIQUE

Sea ϕ una instancia de 3-SAT tal como hemos descrito, y cada cláusula $c_i = \{z_{i1}, z_{i2}, ..., z_{it}\}$ (con t = 3), necesitamos construir una instancia del CLI-QUE (un grafo), que sea positiva si, y sólo si, ϕ también es positiva.

Construimos un grafo G = (V, E) de la siguiente forma:

1. En primer lugar añadimos t nodos por cada cláusula. Este paso se hace en tiempo $O(t \cdot m)$ que es O(m), ya que t es constante (t = 3).

Figura 2: Diagrama de la secuencia de transformaciones de los 6 problemas básicos

- 2. Para cada par de nodos v_{ab}, v_{cd} en G, añadimos la arista (v_{ab}, v_{cd}) si, y sólo si:
 - $a \neq c$
 - $z_{ab} \neq \bar{z}_{cd}$

 ϕ es satisfactible si y solo si G tiene un clique de tamaño $k \geq m$

2.5. Demostración

Si ϕ es satisfactible, elegimos un literal satisfecho de cada cláusula obteniendo $\{z_1^*, z_2^*, ..., z_m^*\}$, siendo $\{v_1, v_2, ..., v_m\}$ los nodos correspondientes en G. Dicho conjunto de nodos forma un $\mathbf{m\text{-}clique}$, pues estarán conectados ya que:

- Hemos escogido los literales de diferentes cláusulas
- \blacksquare No puede haber contradicciones entre los literales escogidos porque ϕ es satisfactible

De manera inversa, supongamos que G tiene un clique de tamaño m=k o mayor. Sea $\{v_1,v_2,...,v_q\}$ un clique en G de tamaño $q\geq m$. Entonces los m primeros nodos $\{v_1,...,v_m\}$ también forman un clique en G.

 Dado que no hay aristas conectando nodos que vengan de la misma cláusula, cada uno de los nodos corresponde a un literal de una cláusula. Además, no hay nodos que vengan de literales opuestos conectados debido a la construcción realizada

Así, para satisfacer ϕ basta con satisfacer $\{z_1,...,z_m\}$ y asignar las variables restantes de forma arbitraria.

3. Ejemplo

Sea ϕ una instancia de 3-SAT, con variables x_i , para i en $1 \le i \le 3$, se obtiene el siguiente grafo aplicando la reducción comentada anteriormente.

$$\phi = (x_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Figura 3: Grafo resultante de ϕ

En la figura 3, se puede observar como el grafo tiene 9 nodos, ya que ϕ tiene 3 cláusulas, y que no hay aristas entre nodos de la misma cláusula. Además, las aristas marcadas en negro corresponden con la uniones que habría entre el nodo x_1 de la primera cláusula, con el resto de nodos. Se aprecia que entre x_1 y \bar{x}_1 no se crea arista, pues se generarían contradicciones.

Elegimos una variable, z_i , dentro de cada cláusula y suponemos que es verdadera. Cada una se corresponde con un nodo dentro del grafo. ϕ se podrá

satisfacer si, y sólo si, existe un **clique** para los nodos elegidos. Para este ejemplo, elegiremos x_1 como variable positiva de la primera cláusula, x_2 , para la segunda, y x_3 , para la tercera.

Figura 4: Clique obtenido con los nodos establecidos

Al elegir estos nodos, como se puede ver en la figura 4, existe un *clique* que conecta los tres nodos, por lo que, de este modo, ϕ se podría satisfacer.

Referencias

- [1] Michael Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
- $[2] \ \ Lalla \ \ Mouatadid. \ \ Introduction \ to \ \ Complexity \ \ Theory: \ CLIQUE \ is \ NP-complete. \ \ CSC \ 373 Algorithm \ Design, \ Analysis, \ and \ \ Complexity, \ Summer \ 2014.$