COMP 3761

Math Review

Math Review

- Logarithm
- Floor and Celling
- Counting
 - Permutations
 - Subsets
- Summation

Logarithms

- Mostly what you need to know:
 - $log_b n = e$
 - just means: $b^e = n$
- So these are the same question:
 - log₂16=?
 - $16 = 2^{?}$
- In words:
 - "What is log base 2 of 16?"
 - "What power of 2 gives 16?"

When We Use Them in This Course

- The most common time to use:
 - Start with n items
 - Divide the group in half at each step
 - How many steps does it take to get down to one?

Example

 $\log_2 8 = 3$

Floor and Ceiling

- If x is not a whole number, these are useful:
 - [x] = The closest whole number *above* x (the ceiling of x)
 - |x| = The closest whole number *below* x (the *floor* of x)

So:
$$\lceil \log 38 \rceil = 6$$

 $\lfloor \log 38 \rfloor = 5$

$$\log 38 = 5$$

Math Review

- Logarithm
- Floor and Celling
- Counting
 - Permutations
 - Subsets
- Summation

Counting

- Sometimes, we need to count things
- Example

In how many different ways could student sit on the chairs in a class?

Counting

- The trick when counting is this:
 - Divide the problem into a sequence of independent choices
 - See how many options there are for each choice
 - Multiply those number together

Counting Permutations

- A permutation is an arrangement in which order matters. ABC differs from BCA
- How many permutations are there on a collection of 3 items, A, B,C?
- ABC, ACB, BAC, BCA, CAB, CBA
- Permutations for a set of n elements: n! = n*(n-1)*...*1

Permutations

- For ABC:
 - n! = n*(n-1)*...*1
 - 3! = 3*2*1
 - In words -3 * 2 permutations of two letters
 - A combines with BC, CB
 - B combines with AC, CA
 - C combines with AB, BA
 - Total = ABC, ACB, BAC, BCA, CAB, CBA

Permutations

• Suppose you have n items: A₁,...,A_n

• Count the # of options for each choice

.....

 \bigcap

• Multiply together:

• n*(n-1)*...*1 = n! permutations

Permutations

n	n!
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800
11	39916800
12	479001600
13	6227020800
14	87178291200
15	1307674368000
16	20922789888000
17	355687428096000
18	6402373705728000

*Wikipedia

Math Review

- Logarithm
- Floor and Celling
- Counting
 - Permutations n!
 - Subsets
- Summation

Subsets

• Given a set of 3 items {a, b, c}, how many different subsets can we make?

• Subsets are:

$${a, b, c}, {a, b}, {b, c}, {a, c}, {a}, {b}, {c}, {}$$

Subsets

• Suppose you have n things: A₁,...,A_n

• Then you have n items(choices) to consider:

.....

• You have 2 options for each item (in/out)

.....

• Multiply together:

•
$$2*2*...*2$$
 (n times) = 2^n subsets

Subsets

- Example
- Subsets for a, b, c are:

Math Review

- Logarithm
- Floor and celling
- Counting
 - Permutations n!
 - Subsets -2^n
- Summation

Summations

• We use compact notation for summations

So this is really just a shorthand for:
$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + f(3) + \dots + f(n)$$

Example

• Evaluate this expression: $\sum_{i=1}^{4} (2+i^2)$

• Start with i=1, end with i=4...

$$(2+1^2) + (2+2^2) + (2+3^2) + (2+4^2)$$

• Now you just have numbers... so you can add = 3+6+11+18= 38.

Sum of a Constant

$$\sum_{i=1}^{n} C$$

- What it means:
 - C+C+...+C (n times)
 - So: $\sum_{i=1}^{n} C = nC$

ANDITE DO STED

Sum of a Constant

$$\sum_{i=1}^{n} n$$

- What it means:
 - n+n+...+n (n times)

• So: $\sum_{i=1}^{n} n = n^2$

White boate or

Changing the Start and End

- We don't always start from 1 and end at n

What is this sum:
$$\sum_{i=m}^{n} c = c + c + \dots + c$$

$$(n-m+1) \text{ times}$$

$$\sum_{i=m}^{n} c = (n - m + 1) * c$$

 $\sum_{i=m}^{n} c = (n-m+1)*c$ The armony constants are simpler on

Way to remember

$$\sum_{i=bottom}^{top} c = (top - bottom + 1) * c$$

Simple Question

• What is this sum?

$$\sum_{i=0}^{n} 1$$

$$\sum_{i=bottom}^{top} c = (top - bottom + 1) * c$$

• Careful... before we had i=1

$$\sum_{i=0}^{n} 1 = \underbrace{1 + 1 + \dots + 1}_{(n-0+1) \text{ times}} = (n+1) * 1 = n+1$$

Sums of Sums

• Sometimes you have a sum with two parts added together:

$$\sum_{n=s}^{t} [f(n) + g(n)]$$

• You can just break it into two parts:

$$\sum_{n=s}^{t} f(n) + \sum_{n=s}^{t} g(n)$$

Constant Rule

- You can actually move the constant in front for any sum
- RULE:

$$\sum_{n=s}^t C \cdot f(n) = C \cdot \sum_{n=s}^t f(n)$$
, where C is a constant

Summation Rules

- There are many more summation rules in the appendix of your text.
- Important examples:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Practice Problems

• Try to evaluate these:

$$\sum_{i=0}^3 (5+\sqrt{4^i})$$

$$\sum_{i=1}^{100} (4+3i)$$

Try at Inome

Solution 1

$$\sum_{i=0}^{3} (5 + \sqrt{4^{i}}) = (5 + \sqrt{4^{0}}) + (5 + \sqrt{4^{1}}) + (5 + \sqrt{4^{2}}) + (5 + \sqrt{4^{3}})$$

$$= (5 + \sqrt{1}) + (5 + \sqrt{4}) + (5 + \sqrt{16}) + (5 + \sqrt{64})$$

$$= (5+1) + (5+2) + (5+4) + (5+8)$$

$$= 6 + 7 + 9 + 13$$

$$= 35.$$

Solution 2

$$\sum_{i=1}^{100} (4+3i) = \sum_{i=1}^{100} 4 + \sum_{i=1}^{100} 3i$$

$$= \sum_{i=1}^{100} 4 + 3\left(\sum_{i=1}^{100} i\right)$$

$$= 4(100) + 3\left\{\frac{100(100+1)}{2}\right\}$$
$$= 400 + 15,150$$

$$= 15,550$$
.

Sums of Sums

• We will often see things like this:

$$\sum_{j=1}^{i} \sum_{k=j}^{n} 1$$

- What does this mean?
 - It means you have a sum of sums
 - (NOT two sums multiplied)
 - In order to solve it... you work from the inside out.

Sum of Sums

• In this example:

$$\sum_{j=1}^{i} \sum_{k=j}^{n} 1 = \sum_{j=1}^{i} (n-j+1)$$

• Now you can divide into three sums and solve:

$$\sum_{j=1}^{i} n - \sum_{j=1}^{i} j + \sum_{j=1}^{i} 1 = n * i - \frac{i * (i+1)}{2} + i$$
Use cheat sheet

We will solve this kind of sum often in the first part of the course... so make sure you understand how to do it.

Math Review

- Logarithm
- Floor and celling
- Counting
 - Permutations n!
 - Subsets -2^n
- Summation