Теортест-1 (Вариант 109)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения верхняя сумма Дарбу уменьшается или не изменяется;
- 2. При измельчении разбиения верхняя сумма Дарбу уменьшается;
- 3. Верхняя сумма Дарбу не меньше любой интегральной суммы для данного разбиения;
- 4. При измельчении разбиения верхняя сумма Дарбу увеличивается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = dv;
- 2. dv = udt + C;
- 3. u = dv + C;
- 4. vdt = u'dt;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина спрямляемой кривой конечна;
- 2. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 3. Любая кривая имеет бесконечно много различных параметризаций;
- 4. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 5. Спрямляемы только кусочно-гладкие кривые;

Задача 4

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)dx = \int f(\ln t)tdt$;
- 2. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 3. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 4. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть $f \in R[a, b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 2. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 3. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a,b];
- 4. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F первообразная для f на [a,b];
- 2. $\int_a^b f(x)dx = F(b) F(a);$
- 3. F непрерывна на [a, b];
- 4. F ограничена на [a, b];

Задача 7

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. любое множество имеет неотрицательную площадь;
- 2. площадь A всегда положительна;
- 3. площадь отрезка равна нулю;
- 4. площадь одной точки равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{2x+1}{x^2+x+1}$;
- 2. $\frac{x^2-1}{x^2+1}$;
- 3. $\frac{x^2-x+1}{x^2+x}$;
- 4. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-1, 10];
- 2. [-1, 20];
- 3. [-2, 20];
- 4. [-2, 10];

Задача 10

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) > 0, f(b) > 0;
- 2. f(a) = f(b) = 1;
- 3. f непрерывна на [a,b] и f(a+b)=1;
- 4. f возрастает (нестрого) на [a,b] и f(b)=1;