

Implementing EDF Scheduler Report

Name: Youssef Mamdouh

Email: Youssef.elkased@gmail.com

Contents

I-System Hyperperiod	2
2-CPU Load	
3-System Schedulability	
4- SIMSO Offline Simulator	
5. Kiel Simulation	7

1- System Hyperperiod

Task	Periodicit y
Button 1 Monitor	50
Button 2 Monitor	50
Periodic Transmitter	100
Uart Receiver	20
Load 1 Simulation	10
Load 2 Simulation	100

Hyperperiod = Least common multiplier (50, 50, 100, 20, 10, 100)

Hyperperiod = 100ms

2- CPU Load

Task	Execution Time	Occurrence During Hyperperiod
Button 1 Monitor	25 uS	2
Button 2 Monitor	25 uS	2
Periodic Transmitter	89 uS	1
UART Receiver	100 uS	5
Load 1 Simulation	5 ms	10
Load 2 Simulation	12ms	1

 $U = ((25\mu^*2) + (25\mu^*2) + (85\mu^*100) + (100\mu^*5) + (5m^*10) + (12m) / 100ms) \times 100\%$ =**62.289%**

3- System Schedulability

1- Using Rate Monotomic Utilization Bound

$$U \le n(2^{-n} - 1)$$
_And
 $U = 0.62289$

$$Urm = 6 (2^{1/6} - 1) = 0.7348$$
, $Therefore$, $U < Urm$

The system is feasible (Schedulable).

2-Using Time Demand Analysis

$$(t) = e_i + \sum_{k=1}^{i-1} |e_k| |e_k|$$

Critical Instant = 100ms

Task	Execution Time	Periodicity
Button 1 Monitor	25 uS	50
Button 2 Monitor	25 uS	50
Periodic Transmitter	90 uS	100
UART Receiver	100 uS	20
Load 1 Simulation	5 ms	10
Load 2 Simulation	12 ms	100

For Task 1: Load 1 Simulation

$$w_1(10) = 5m + 0 = 5$$
, $w(10) = 5 < 10$

Therefore, Task 1: Load 1 simulation is schedulable

For Task 2: Uart Receiver

$$w_2(20) = 100\mu + (20/10) 5m = 10.03 ms$$
, $w(20) = 10.03 < 20$

Therefore, Task 2: Uart Receiver is schedulable

For Task 3: Button 1 Monitor

$$w_3(50) = 25\mu + (50/10) 5m + (50/20) 100\mu = 25.059 ms$$
, $w(50) = 25.059 < 50$

Therefore, Task 3: Button 1 Monitor is schedulable

For Task 4: Button 2 Monitor

$$w4(50) = 25\mu + (50/10) 5m + (50/20) 100\mu + (50/50) 25\mu = 25.087 ms$$

Therefore, Task 4: Button 2 Monitor is schedulable w(50) = 25.087 < 50

For Task 5: Periodic Transmitter

$$w_5(100) = 90\mu + (100/10) 5m + (100/20) 100\mu + (100/50) 25\mu + (100/50) 25\mu = 50.359 ms$$

Therefore, Task 5: Periodic Transmitter is schedulable w(100) = 50.359 < 100

For Task 6: Load 2 Simulation

 $w6(100) = 12m + (100/10)5m + (100/20)100\mu + (100/50)25\mu + (100/50)25\mu + (100/100)90\mu$

Therefore, Task 6: Load 2 Simulation is schedulable w(100) = 62.452 < 100

Therefore, System is Schedulable.

4- SIMSO Offline Simulator

5-Kiel Simulation

Therefore, EDF scheduler is a suitable scheduling policy for such tasks. As it keeps the system feasible, on the other hand Fixed priority rate monotonic scheduling policy doesn't keep this system feasible as tasks keep missing deadlines.