

5. BERT

Bidirectional Encoder Representations from Transformers

This method considers both left and right context of words in a sentence.

Transformer

Encoder 12 Encoders units Encoder 110 millions parameters Encoder Encoder BERT

• Pre-training is done on a large amount of text to learn the contextual meaning.

Encoder

Encoder

Pre - Training

2 Fine-Tuning

Encoder 12 **Encoder 1** Add & Norm Feed Forward Add & Norm Multi-head self attention Encoder

BERT

Pre - Training

- Wikipedia of 2500 million words
- Book corpus data of 800 million words

Pre - Training

Challenge of defining prediction goal

Masked Language Model (MLM)

Next Sentence Prediction (NSP)

Pre - Training

Challenge of defining prediction goal

Masked Language Model (MLM)

Next Sentence Prediction (NSP)

Masked Language Model (MLM)

BERT masks and replaces some
 words in input sequences with symbols
 like [MASK], to be predicted by the
 model.

Pre - Training

Challenge of defining prediction goal

Masked Language Model (MLM)

Next Sentence Prediction (NSP)

Next Sentence Prediction (NSP)

 For a pair of sentences, BERT has to identify whether one sentence logically follows the next or not.

Analysis

Masked Language Model (MLM)

Understanding context within a sentence

Next Sentence Prediction (NSP)

Understand relationships between sentences

- Pre Training
- **2** Fine-Tuning

Task specific dataset

- ✓ Test Classification
- ✓ Sentiment Analysis
- ✓ NER
- ✓ POS tagging

Pine-Tuning
Output Layer Tuning
Full Model Fine Tuning
Feature Extraction

Fine tuning

Output Layer Tuning

 Task specific outer layer is trained while freezing the lower layers Full Model Fine Tuning

- Fine tuning all the layers of the model.
- Effective for large dataset.

Feature Extraction

- Domain Adaptive helps the model in Feature Extraction
- 2. Fine tuning on specific tasks

GLUE

General Language Understanding Evaluation

Measure performance of models on various language understanding challenges.

Rank Name		Model		URL	URL Score CoLA SST-2			MRPC	STS-B	QQP
1	Microsoft Alexander v-team	Turing ULR v6			91.3	73.3	97.5	94.2/92.3	93.5/93.1	76.4/90.9
2	JDExplore d-team	Vega v1			91.3	73.8	97.9	94.5/92.6	93.5/93.1	76.7/91.1
3	Microsoft Alexander v-team	Turing NLR v5			91.2	72.6	97.6	93.8/91.7	93.7/93.3	76.4/91.1
4	DIRL Team	DeBERTa + CLEVER			91.1	74.7	97.6	93.3/91.1	93.4/93.1	76.5/91.0
5	ERNIE Team - Baidu	ERNIE			91.1	75.5	97.8	93.9/91.8	93.0/92.6	75.2/90.9
6	AliceMind & DIRL	StructBERT + CLEVER			91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.8
7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4			90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.8
8	HFL IFLYTEK	MacALBERT + DKM			90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6
9	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS			90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0
10	T5 Team - Google	T5			90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6
11	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART			89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2
12	Huawei Noah's Ark Lab	NEZHA-Large			89.8	71.7	97.3	93.3/91.0	92.4/91.9	75.2/90.7
13	LG AI Research	ANNA	Click on a submission to see more information		89.8	68.7	97.0	92.7/90.1	93.0/92.8	75.3/90.5

