

DSC 10, Spring 2018 Lecture 23

Least Squares

sites.google.com/eng.ucsd.edu/dsc-10-spring-2018

Credit: Anindita Adhikari and John DeNero

Regression Line Slope & Intercept

Regression Line Equation

In standard units, the regression line has this equation:

$$y_{(su)} = r \times x_{(su)}$$

In original units, the regression line has this equation:

$$\left| \frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} \right| = r \times \left| \frac{\text{the given } x - \text{average of } x}{\text{SD of } x} \right|$$

y in standard units

x in standard units

Regression Line

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

What are the units of the slope of the regression line?

- A. million dollars per movie
- B. movie per million dollars
- C. million dollars per movie per movie
- D. movie per million dollars per movie
- E. none of the above

slope of the regression line =
$$r \cdot \frac{\text{SD of } y}{\text{SD of } x}$$
 = -2.5

intercept of the regression line = average of y - slope · average of x

Actor A appeared in *m* movies, which made an average of 87 million each. If Actor B appeared in *m*+2 movies, estimate his average earnings per movie.

- A. 82 million dollars
- B. 84 million dollars
- C. 84.5 million dollars
- D. 89 million dollars
- E. 89.5 million dollars

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

If r = 0.85, and we know that 150 car accidents occurred this month, estimate the number of car accident-related injuries this month.

- A. 150 * 0.85
- B. 150 / 0.85
- C. 150 * sqrt(1-0.85)
- D. 150 ** 0.85
- E. None of the above

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

If r = 0.85, and we know that 150 car accidents occurred this month, estimate the number of car accident-related injuries this month.

	mean	sd
Car Accidents	144	19
Injuries	70	23

Least Squares

(Demo)

Error in Estimation

- error = actual value estimate= actual value predicted value
- Typically, some errors are positive and some negative
 - What does a positive error mean? negative?

Error in Estimation

- error = actual value estimate= actual value predicted value
- Typically, some errors are positive and some negative
 - What does a positive error mean? negative?
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

(Demo)

Least Squares Line

- Minimizes the root mean squared error (rmse) among all lines
- Equivalently, minimizes the mean squared error (mse) among all lines
- Names:
 - "Best fit" line
 - Least squares line
 - Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization
- Idea: Given a function that returns a real number,
 - Search among all possible inputs to the function
 - Find the input to the function that results in the function returning the smallest possible real number
 - Approximate because we cannot search all possible inputs

Numerical Optimization of MSE

If the function mse(a, b) returns the mse of estimation using the line "estimate = ax + b",

- o then minimize (mse) returns array [a₀, b₀]
- a₀ is the slope and b₀ the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

(Demo)

```
def my_func(c):
if c < -2:
    return 4
elif c > 2:
    return 4
else:
    return abs(c)+2
```

Pick the option that best completes the sentence:

"The expression minimize(my_func) evaluates to..."

A: -3

B: 0

C: 1

D: 2

E: 4

Residuals

Residuals

Error in regression estimate

One residual corresponding to each point (x, y)

- residual = observed y regression estimate of y
 - = observed y height of regression line at x
 - = vertical difference between point and line

Residual Plot

For good regressions, the residual plot

- Should look like a blob
- About half above and half below the horizontal line at 0
- Similar vertical spread throughout
- No pattern

For bad regressions...?

Dugong

(Demo)

Spotting Problems

Residual plots can be used to detect:

- Non-linearity
 - Shape of scatter plot is curved, not a straight line

- Heteroscedasticity
 - Uneven spread

Residual Plots are Flat Overall

 For any regression, no matter what the shape of the original scatterplot:

 The residual plot will not have any linear trend, neither upwards nor downwards.

 The correlation between the residuals and the predictor variable is 0.

