wishes How many possible orders can wishes them visiting these cities? vis iting

15-11-19

) show that (PV9) 1 (7PV8) -> (qv8) is tantology using truth table.

2) Show " (PMQ) -> 8 & (P > 8) A(Q -> 8) are not logically Equivalent Using truth table.

U	•				1	f	
)	P	9	8	PV9	7008	918	K
soi).	0	90	300 v	5 W OD 3	1 L 10	A 320	n 8
	0	0	1, 30	0.5.30) K &)	100	formal
	0	00	0	Linguist.	284 F.S.	VOAL IN	of gret.
	0			21015	moreite	One	ol 3 de
	TA.	0	0. 17	E#11) = N	$\langle \cdot \rangle$	1 00	40/2
		0	,	,	0	Circles de	41.1
		1 0)			EJ9 x	F. F.
		1.1	1 1	(1) 4)	3.1911		

1			~1	PAS	P	P-58	9->6	1. Pig	L
2501)	ar i	4		1 to 1	1		1 8 3 7 1	((1)) (I)	14
	Ø	0	0	0) V (s	· Milv	Cong	
	0	0	1	0		' ,	, h		
	0	, t	0	0		(d)	Neval	604	
	0)	0	1		1		
	li.	O	0	0		0	1	0	
	h	0'	1,	0	12	1	•)	
	1		0		O	0	0	0	
			1'		1	+ 1			
					1				

2) (Pag) > (Pag) > (Pag) > (Q > s) are not logically Equivalent
Soi) 01 10 P=q=S=0; X=1.
Determine whether given compound? proposition is satisfiable truth table.
SOD SO TYP TYPE TO STORY OF THE
S) Suppose that the domain of proportion, S) Suppose that the domain of proportion, function p(x) consists of 1,2,34,5. function these statements without Express these instead using only
vegations, disjunctions and functions regations, (e) Ya(x+3 -> p(a)) VJ a 7P(a) (1) Ha P(a)
(2) 4 × b(x) (2) × b(2) × (b(n) × b(2))
801) ρ(1) Λ ρ(2) Λ ρ(3) Λ ρ(3) Λ ρ(4)) Λ (7ρ(5)). (1) Λ (1) Λ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
(EC) V B(S) V (EB) V (EB) (EB) (S)
((() () () () () () () () ()

6) Translate the statement 7xty4=(F(x,y) 1F(x,z) 1(y = 2)-)7F(0,yz) into English where fla, b) means à 15 b'are friends { domain for x, y & 2 consists of all students in your school. There is student a such that for all students y & for all students 7 7 n & 7 are friends 57, y are friends f if y, z is not the same person then y & 7 are not friends. 1) ρ(x); x+2 = 2 x x t {1,2,3} (1) + x P(x) (2) = x P(x) translate & state T (or) F. (1) Lor Energy & (1) 5/3) 1 x + 5 5 5 x 10 1 (100) (1) There Exists & in [1, 2, 3] (63) Express as logical statement of the per septies de la position de la proposition de la company de E(x): x is toustworthy. In moment convert into If any form is sly, then it it is not troustworth Convert into Equiv 36 / 10 10 1 1 1 (10) 11 (10) 1 (10) 1) 10 to

(AD Translate Every real number except zero has multiplicative in verse sty 2 super (gas) iteraport. Hilliam of it ((1= Ex) VE (= ((0≠x)) x A (Be) Translate statement to (C(X) V Dy (C(Y)) FROM Where ((X) is & has a computer f(Xy) is a Eg are friends of student have computer (00) he has a triend who have computer soi) For Every student a in school, or has computer (0°) there is a student y sich that y has a computer and se and y W. E. 545, 18.3 350ML C.B. are friends. (83) Express as logical statement "If a person is female & is a parent, then this person FCall- e person is female person is parent mother Ar [F(a) A P(a)] Dim(a).

Sol) F(a) a is female M(a,y)-) a is

P(a) a is parent. mother or + M(F(x) MP(x) =) = y M(x, y))

4) Everyone has Exactly one best friend domain 2 all people. n Ey are best friend. P(x, y) -501). P(X, Z)). 1 = xy P(x, 7y) 4 x (3yP(x)y) / 7 47, p(x,y). Jy (B(x,y)) A +z ((2+4) =) 7 B(21,2)) 5) Express as logical statement "there is a women who has taken a flight on Every airline in the world" 5 EOID W(254) - women at has taken flight 95 2 y Flight on J wtary) Jon Sois w-women in world f-adl flight. a-all airlines. p(w,f)) w has taken f. & (f,a) -) flight on a.) Jw ta Jof (P(w,f) na (f, as)) Bornes definition Plimit & a real valued function f(a) \$ 06 real variable of at point a in soff def-for Every real number 870 Such There saists a real number 870 Such that If(a)-LI< E, whenever ocla-ales Iwta If (P(w, f) na(f, w)

1) Prove that there are infinitely Many Prime numbers by Contradiction. Soid let us suppose that there are finite no. de prime numbers. Say a=(P, P₂.P₃.... PŁ-, PŁ PŁ+, ···. Pn)+, let Proble proime divisor 66 a. a = (c: Pks,) 9 CEN; (V. 1619 LE) 16 V Cope (P, P2..., PKT, K. PKT) (P) + 8 900 C = (P, P2 P, PK+1 ... Pn) + 910 (2) Pr = C - (P, P2 Pk+1) which is contradicition is contradicition.

Contradicition.

Integer & R. H. S is a non-integer & R. H. S is an integer.

Prove by contradici

prove by contrapositive for a,b, n ∈ Z

from n × a & n × b

if n × a b then n × a & n × b

soi) 7(n × a and n × b) =) 7 (n × a b).

n/a of n/b =) n/ab.

n/a meanst n is divisible by a.

n=ake

n=ake

b = nl-

a = nk a = nk $ab = n^{2k} \ell$ $= n^{2} \ell$

3) prove (00) disprove the validity of follow. ing Every living thing is a plant (06) avoimal. David's dog is alive and its not a plant. All amimals have hearts. Therefore, David's dog has a head L(a): a is a living thing. Coop p(a) . or is a plant. A(A): or is an animal. H(a): a has heard. J. David's dog. 1. 460) (L(a) -> P(a) VA(a)). Premise. 2. LCd) A7P(d) premise. 3. 4 on (A(m) > H(m)) premise. y. (Cd) -> (P(d) VA(d)) Universal instantation from (1). instantation

5 L Cd) 3 Simplification from 3.

6.7 P(d) 3 及、p(d)VA(d) Modus Ponens ③(6). 3. P(d) disjunctive Syllagism (6) & (7) a. A(d)-> H(d) Universal Instantation. 10. H(d) modus Ponens 889. 4) Show that "it is not sunny this afternoon and it is colder than yesterday" we will go Swimming only if it is Sunny. if we do not go swimming, then we will take a Canco etélp. We take a