Światłowód

Sieci komputerowe Wykład 3 — Warstwa fizyczna

Marta Szarmach Zakład Telekomunikacji Morskiej Wydział Elektryczny Uniwersytet Morski w Gdyni

03.2022

Plan prezentacji

- 📵 Warstwa fizyczna modelu OSI
- Skretka
 - Budowa i zasada działania
 - Rodzaje i kategorie
 - Standardy
- Swiatłowód
 - Budowa i zasada działania
 - Rodzaje
 - Złącza
 - Standardy
- Mabel koncentryczny
 - Budowa i zasada działania
 - Złącza
 - Standardy

Światłowód

Rola, rodzaje mediów transmisyjnych i ich parametry

Przypomnienie:

Rola warstwy fizycznej

Organizacja przesyłu bitów poprzez medium transmisyjne:

- regulacja sygnałów elektrycznych/ świetlnych/ radiowych,
- kodowanie,
- formalizowanie budowy przewodów i złączy.

Rodzaje medium transmisyjnego

- Medium przewodowe
 - skrętka
 - kabel koncentryczny
 - światłowód
- Medium bezprzewodowe
 - fale radiowe
 - podczerwień

Parametry łącza:

- **Tłumienność** spadek mocy sygnału (wyrażany najczęściej w logarytmach) w wyniku transmisji przez łącze
- **Przepustowość** ilość informacji przepływająca przez łącze w jednostce czasu (w b/s, a także wielokrotnościach tej jednostki: kb/s, Mb/s, Gb/s)
- Opóźnienie czas (w ms) pomiędzy wysłaniem wiadomości a jej odebraniem przez odbiorce
- Jitter maksymalna różnica w opóźnieniach
- Dupleks łącze może umożliwiać w danej chwili jedynie komunikację w jedną stronę (half duplex, komunikacja naprzemienna) lub w obu kierunkach jednocześnie (full duplex, komunikacja równoczesna)

Kodowanie sygnału:

Kod Manchester

Przy przesyłaniu '1' następuje zbocze narastające, a przy '0' — opadające, co niweluje przesył składowej stałej i pozwala na synchronizację zegarów podczas transmisji.

- Kod 4B5B koduje każde 4 bity używając predefiniowanych 5-bitowych słów kodowych, w których zawsze bit 1 występuje przynajmniej dwukrotnie
- Kod 4D-PAM5 8 bitów konwertuje sie do 4
 5-wartościowych symboli, które są wysyłane w jednym takcie zegara w formie 5 poziomów napięcia

Światłowód

2. Skrętka

Budowa i zasada działania, rodzaje, standardy

2.1 Skretka. Budowa i zasada działania

Skrętka składa się z 8 izolowanych miedzianych żył, poskręcanych w 4 pary:

Warstwa fizyczna modelu OSI

- pomarańczowa,
- niebieska,
- brązowa,
- zielona.

Sygnały przesyłane są w postaci różnicy potencjałów pomiędzy żyłami w odpowiednich parach.

Kabel koncentryczny

2.1 Skretka. Budowa i zasada działania

Skrętka zakończona jest najczęściej wtyczką **8P8C** (często, lecz niepoprawnie nazywaną RJ-45):

- 8 miejsc na styki (ang. 8 Position),
- 8 styków (ang. 8 Contact).

Zarobienia kabla (wbicie styków w odpowiednie żyły) dokonuje się za pomocą zaciskarki.

2.1 Skrętka. Budowa i zasada działania

Ze względu na swoją budowę, skrętka ma następujące zalety i wady:

Zalety

- Niska cena
- Łatwość w instalacji
- Powszechność urządzeń, z którymi współpracują
- Skręcenie żył z inną częstością ma zminimalizować przesłuchy

Wady

- Mała odporność na zakłócenia
- Ograniczona długość kabla oraz przepustowość
- Występowanie przesłuchów
 przenikanie sygnałów z
 - przenikanie sygnałów z jednej pary do innej

2.2 Skrętka. Rodzaje i kategorie

Rodzaje skrętek ze względu na budowę:

UTP

Skrętka nieekranowana (ang. *unshielded twisted pair*)

FTP

Skrętka ekranowana folią (ang. *foiled twisted pair*)

STP

Skrętka ekranowana siatką (ang. shielded twisted pair)

Istnieją też skrętki ekranowane i folią, i siatką (SFTP), oraz takie, w których każda z żył jest ekranowana (U/FTP, F/FTP, S/FTP, SF/FTP).

2.2 Skretka. Rodzaje i kategorie

Kategorie skrętek:

- Kategoria 5 kabel nieekranowany, wykorzystuje 4 żyły (pary zielone i pomarańczowe), prędkość do 100 Mb/s
- Kategoria 5e kabel nieekranowany, wykorzystuje wszystkie 8 żył, prędkość do 1000 Mb/s
- Kategoria 6 zapewnia separację żył poprzez plastikowy krzyż, wykorzystuje wszystkie 8 żył, prędkość nawet 10 Gb/s (przy długości do 55 m)
- Kategoria 6A może posiadać ekranowanie w postaci folii i plastikowy krzyż, wykorzystuje wszystkie 8 żył, prędkość nawet 10 Gb/s (przy długości do 100 m)
- Kategoria 7 ekranowany jest cały kabel oraz każda z par, a nawet złącze, wykorzystuje wszystkie 8 żył, prędkość nawet 10 Gb/s (przy długości do 100 m)

2.3 Skrętka. Standardy

Standard TIA/EIA-568-B:

Opisuje okablowanie strukturalne, m.in. rodzaje zakończeń przewodów w złączu (2 rodzaje):

Różnica — zamiana żył z pary zielonej z pomarańczową (TX z RX)

Standard TIA/EIA-568-B:

Wybierając odpowiednie zakończenia (T568A lub T568B) na obu końcach kabla, możemy stworzyć 2 rodzaje przewodów:

- Kabel prosty oba końce zarobione w ten sam sposób (oba albo wg T568A, albo wg T568B); służy do łączenia hostów poprzez urządzenia pośredniczące (komputer - switch komputer)
- Kabel skrosowany jeden koniec kabla zarobiony wg T568A, a drugi wg T568B; służy do łączenia hostów bezpośrednio (komputer - komputer)

Ciekawostka

Dzięki technologii **Auto MDI-X** nowsze urządzenia same rozpoznają typ kabla podłączony do portu i samodzielne dokonują zamiany żył "nadawczych" z "odbiorczymi".

2.3 Skretka. Standardy

Standardy w ramach IEEE 802.3:

10BASE-T

- Przepustowość do 10 Mb/s
- Skrętka kat. 5, max. 100 m
- Kodowanie Manchester

100BASE-TX (Fast Ethernet)

- Przepustowość do 100 Mb/s
- Skrętka kat. 5, 5e lub 6, max. 100 m
- Kodowanie 4B5B

1000BASE-T (Gigabit Ethernet)

- Przepustwość do 1 Gb/s
- Skretka kat. 5e i wyżej (wykorzystanie wszystkich 8 żył), max. 100 m
- Dostęp do medium przez CSMA/CD
- Kodowanie 4D-PAM5

Światłowód

Budowa i zasada działania, rodzaje, złącza, standardy

1 Swiatiowod. Dudowa i zasada dziaiailia

Światłowód składa się z dwóch warstw materiału przezroczystego optycznie:

Grafika: https://fibermarkt.com/

- rdzenia (współczynnik załamania światła ok. 1,51),
- płaszcza (współczynnik załamania światła ok. 1,49),
- dodatkowych warstw ochronnych.

Sygnały przesyłane są w postaci ipulsów świetlnych.

3.1 Światłowód. Budowa i zasada działania

Zasada działania światłowodu opiera się na zjawisku całkowitego wewnętrznego odbicia:

Światłowód wielomodowy skokowy

Promień świetlny załamuje się na granicy rdzenia i płaszcza, ale ze względu na to, że

 $n_{rdzenia} > n_{plaszcza}$, pozostaje "uwięziony" w rdzeniu.

Grafika: https://www.dataoptics.com.pl/

3.1 Światłowód. Budowa i zasada działania

Ze względu na swoją budowę, światłowód ma następujące zalety i wady:

Zalety

- Największa spośród znanych mediów przepustowość
- Umożliwia transfer na duże odległości
- Odporność elektromagnetyczna

Wady

- Wrażliwość na zbyt duży promień skrętu (utrata sygnału przez promieniowanie boczne)
- Duży koszt urządzeń współpracujących

3.2 Światłowód. Rodzaje

Podział światłowodów ze względu na wybrane kryterium:

Materiał

- Światłowód szklany
- Światłowód plastikowy
- Światłowód półprzewodnikowy

Ilość przenoszonej informacji

- Jednomodowy transmituje jedną "wiązkę" światła
- Wielomodowy transmituje wiele "wiązek" światła

Światłowód

3.3. Światłowód. Złącza

Przykładowe złącza światłowodowe:

Do umieszczenia światłowodu w urządzeniach sieciowych służą wkładki SFP:

Najcześciej wykorzystują one złącza LC.

3.4 Światłowód. Standardy

Standardy w ramach IEEE 802.3:

10BASE-F

- Przepustowość do 10 Mb/s
- Światłowód max. 4,6 m

100BASE-FX (Fast Ethernet)

- Przepustowość do 100 Mb/s
- Światłowód wielomodowy, max. 2 km
- Długość fali 1300 nm

1000BASE-LX (Gigabit Ethernet)

- Przepustwość do 1 Gb/s
- Światłowód jedno- lub wielomodowy, max. 5 km
- Długość fali 1270-1355 nm

1000BASE-SX (Gigabit Ethernet)

- Przepustwość do 1 Gb/s
- Światłowód wielomodowy, max. 500 m
- Długość fali 850 nm

3.4 Światłowód. Standardy

Standard w ramach ITU-T G.984.x — GPON:

Źródło: Huawei

3.4 Światłowód. Standardy

Standard w ramach ITU-T G.984.x — GPON:

- Urządzenia:
 - OLT (ang. Optical Line Terminal) urządzenie dostawcy internetowego, koncentrator, do którego schodzą się światłowody od klientów
 - ONT (ang. Optical Network Terminal) urządzenie abonenckie, max. 256 na port OLTa
 - ODN (ang. Optical Distribution Network) sieć światłowodowa (św. jednomodowe, max. 60 km)
- Przepływ sygnału:
 - od OLT do ONT 1490 nm, max. 2488 Mb/s
 - od ONT do OLT 1310 nm, max. 1244 Mb/s

4. Kabel koncentryczny

Światłowód

Budowa i zasada działania, złącza, standardy

Warstwa fizyczna modelu OSI

Kabel koncentryczny składa się z dwóch współosiowych przewodów (oplotu i rdzenia) oddzielonych dielektrykiem:

Sygnały przesyłane są w postaci różnicy potencjałów pomiędzy oplotem a rdzeniem.

4.1. Kabel koncentryczny. Budowa i zasada działania

Ze względu na swoją budowę, kabel koncentryczny ma następujące zalety i wady:

Zalety

- Odporność elektromagnetyczna — kabel jest ekranowany
- Odporność mechaniczna

Wady

- Niewygodny w instalacji (mało elastyczny)
- Ograniczona przepustowość łącza (działa tylko w trybie half duplex)

4.2. Kabel koncentryczny. Złącza

Przykładowe złącza łączące kable koncentryczne:

BNC

Warstwa fizyczna modelu OSI

- Zapięcie bagnetowe
- Do kabli o impedancji 50 lub 75Ω

4.3. Kabel koncentryczny. Standardy

Standardy w ramach IEEE 802.3:

10BASE2

- Cienki kabel koncentryczny o grubości 5 mm i impedancji $50~\Omega$, max. 185~m
- Przepustowość do 10 Mb/s
- Kodowanie Manchester
- Karty sieciowe przyłączane do magistrali za pomoca rozgałęźnika BNC

10BASE5

- Gruby kabel koncentryczny o grubości 9,5 mm, impedancji $50~\Omega$, max. 500~m
- Przepustowość do 10 Mb/s
- Kodowanie Manchester
- Karty sieciowe przyłączane przez przebijanie kabla magistralnego złączem "wampirowym"