Capítulo 5

Experimentos e Resultados

O objetivo deste estudo é analisar a eficácia do controlador PID em sistemas de segunda ordem com atraso estáveis em malha aberta. Para a otimização do PID, são utilizados dois parâmetros de busca.

A primeira otimização se baseia no critério de robustez do sistema, e seus resultados são apresentados na seção 5.2. A segunda otimização é baseada no índice de IAE, buscando alcançar uma maior eficiência do sistema, e seus resultados estão descritos na seção 5.3.

Podemos encontrar na seção 5.4 uma comparação entre os resultados obtidos quando otimizamos a robustez do sistema e o índice de Integral do Erro Absoluto.

Podemos inferir que esses parâmetros de avaliação do sistema são mutuamente exclusivos, o que significa que é difícil obter um sistema altamente robusto e eficiente ao mesmo tempo. Quando minimizamos o índice IAE, a robustez do sistema pode ser comprometida. Na seção 5.5, tentamos encontrar um equilíbrio para otimizar tanto a robustez quanto o índice de IAE, a fim de obter um controlador ideal que mantenha a estabilidade e o tempo de acomodação mesmo em situações de perturbações no sistema.

5.1 Experimentos estudados

Os exemplos que serão estudados nesta seção são baseados em literatura de sistemas de controle, como descrito em OGATA (2009). Abordaremos sistemas de controle de segunda ordem com atraso e detalharemos os resultados obtidos com o método proposto, além de compará-los com trabalhos já realizados, conforme descrito em DANTAS (2019).

5.1.1 Exemplo 1

Na Figura 5.1, é apresentado um exemplo clássico de aplicação do sistema massa-mola-amortecedor de um grau de liberdade. O problema de controle por realimentação de estados é definido para $\mathbf{M}=1, \mathbf{C}=0,01, \mathbf{K}=5,$ $\mathbf{b}=1$ e $\mathbf{l}=1$ com atraso igual a $\tau=0,1s$ como no Exemplo 2 de (RAM

et al., 2009). O objetivo é encontrar valores de **Kp**, **Ki** e **Kd**, de forma que o diagrama de Nyquist de $L(j\omega)$ esteja completamente fora da área delimitada pela circunferência de raio M_s^{-1} , a qual é um parâmetro de projeto definido. A definição de Ms estabelece margens de ganho e de fase para o sistema, e valores comuns de Ms estão no intervalo de $1,22 \le M_s \le 1,667$ SKOGESTAD and POSTLETHWAITE (2007).

Figura 5.1: Sistema massa-mola-amortecedor de um grau de liberdade

O método proposto neste trabalho foca nos parâmetros de projeto baseados no diagrama de Nyquist do ganho de malha do sistema $L(j\omega)$, considerando os conceitos de estabilidade segundo os critérios de Nyquist. O objetivo da solução é obter um sistema relativamente robusto, tendo como meta $M_s = 1,66$.

5.1.2 Exemplo 2

Considerando um exemplo prático para demonstrar a aplicação do método apresentado, conforme visto em (RAM et al., 2011), podemos tomar as matrizes de massa, amortecimento e elasticidade como:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \ \mathbf{K} = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

Considerando o método apresentado em (RAM et al., 2011), vamos utilizar como exemplo prático uma matriz de entradas $\mathbf{l} = \mathbf{b}^T = [0\ 1]$ e uma constante de atraso $\tau = 5s$. Nesse caso, estamos lidando com um sistema não amortecido com autovalores de malha aberta sobre o eixo imaginário do plano s. Quando isso ocorre, pode ser difícil trabalhar com a resposta em frequência, uma vez que há uma descontinuidade nas frequências que coincidem com os autovalores do sistema no eixo imaginário. Para lidar com essa situação, a literatura de sistemas de controle com base na teoria do mapeamento sugere fazer uma pequena alteração no contorno do plano s, de modo a evitar os polos sobre

o eixo $j\omega$. Em outras palavras, é necessário deslocar levemente os polos para a esquerda do eixo, o que pode ser conseguido por meio de uma pequena alteração em um dos elementos da matriz de amortecimento OGATA (2009). Nesse exemplo, a matriz \mathbf{C} é considerada.

$$\mathbf{C} = \begin{bmatrix} 1 & -0,9999 \\ -0,9999 & 1 \end{bmatrix}$$

Novamente a busca pela solução do problema descrito pela equação (3.19) é realizada para o círculo $M_s = 1,6667$.

5.1.3 Exemplo 3

Neste caso específico, foi feita uma pequena modificação do exemplo 5.1.2, com o objetivo de introduzir uma perturbação no sistema.

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}, \ \mathbf{K} = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

Para uma matriz de entradas $\mathbf{B}' = \mathbf{l}' = [0 \ 1]$, e uma constante de atraso $\tau = 0, 5$.

5.1.4 Exemplo 4

Este exemplo explora a aplicação do método de sintonia em um sistema com atraso longo e restrição de robustez menos rígida. As matrizes do sistema são:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \ \mathbf{K} = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

Dois casos são explorados nesse exemplo: o caso co-localizado - sensor e atuador juntos no mesmo grau de liberdade, ou seja, $l=b^T$ - e o caso não co-localizado, na qual a distribuição do sensor e do atuador é distinta.

Os parâmetros considerados são $\tau = 5$ s, $\mathbf{l} = \mathbf{b}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$ e $M_s = 2$. O algoritmo de otimização é então aplicado, considerando a minimização de IAE, e também somente a minimização da distância ao círculo M_s .

Considere-se agora o caso não co-localizado, com $\mathbf{b}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$ e $\mathbf{l} = \begin{bmatrix} 0 & 1 \end{bmatrix}$. As matrizes e os demais parâmetros são os mesmos do caso co-localizado.

5.1.5 Exemplo 5

Este exemplo, adaptado de (Shapiro, 2005), aborda um caso instável em malha aberta, cujas matrizes são dadas por:

$$\mathbf{M} = \begin{bmatrix} 10 & 0 \\ 0 & 11 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 4 & 1 \\ 1 & 5 \end{bmatrix}, \ \mathbf{K} = \begin{bmatrix} 8 & 4 \\ -4 & 9 \end{bmatrix}$$

com $\mathbf{b}^T = [-1 \ 1]$ e $\mathbf{l} = [1 \ 0]$ além de um atraso $\tau = 0.5$ s. Para garantia de margens, é dado $M_s = 1,6667$. Neste sistema dois polos de malha aberta localizam-se no semiplano direito, $s_{1,2} = 0,0039 \pm j0,9$. Da mesma forma que nos exemplos anteriores, projetam-se controladores PID conforme o método proposto, e considerando-se apenas o critério de robustez para fins de comparação.

5.2 Resultados da Otimização de Robustez

O método apresentado aqui trata dos parâmetros de design com base no gráfico de Nyquist da função de transferência em malha aberta do sistema $L(j\omega)$. Ele utiliza os critérios de estabilidade de Nyquist para alcançar uma solução que satisfaça um sistema razoavelmente robusto, com a circunferência $M_s=1,6667$.

Os valores dos vetores de ganho descobertos utilizando o algoritmo genético (método proposto) com atraso estão apresentados na Tabela 5.1.

Exemplo	kp	ki	kd	robustez
1	1,4160	1,5225	0,8718	0,1536
2	0,1774	0,2229	0,4433	0,0001
3	-0,2400	1,0990	1,6015	0,3148

Tabela 5.1: Tabela de Ganhos do PID - Otimização de Robustez

5.2.1 Resultado exemplo 1

Ao aplicar o algoritmo genético ao 5.1.1 e definir a robustez como parâmetro de otimização, a Figura 5.2 é gerada. É possível observar que o diagrama está tangente à circunferência M_s^{-1} , que tem como objetivo garantir a robustez do sistema.

A Figura 5.3 apresenta uma simulação que demonstra um sistema estável e robusto, de acordo com a teoria descrita na seção 2.5, a qual utiliza o diagrama de *Nyquist*.

5.2.2 Resultado exemplo 2

Ao considerar o exemplo 5.1.2, que envolve um sistema mais complexo, a Figura 5.4 mostra o diagrama de Nyquist, que também evidência a robustez do sistema. Isso é possível observar pelo fato do diagrama não incluir o ponto -1 + i0.

Utilizando um valor de $\tau=5$, foi possível obter uma medida de robustez mais flexível. Ao comparar com os resultados do trabalho anterior DANTAS (2019), a resposta simulada mostrada na Figura 5.5 apresentou um tempo de

Figura 5.2: Diagrama de Nyquist Exemplo 5.1.1

acomodação médio de sessenta segundos, sendo que, para este trabalho, o sinal de referência foi definido no nível um. Já no trabalho de DANTAS (2019), o sinal de referência foi definido em zero.

5.2.3 Resultado exemplo 3

No exemplo 5.1.3, houve uma alteração na matriz **C** em relação ao exemplo 5.1.2. O gráfico de Nyquist resultante é apresentado na Figura 5.6, evidenciando a robustez do sistema de segunda ordem com atraso. A simulação do sistema no exemplo 5.1.3 foi realizada no MATLAB/Simulink[®], e o tempo de acomodação foi ainda mais reduzido, em torno de trinta segundos, conforme evidenciado na Figura 5.7.

5.3 Resultados da Otimização de IAE

Os resultados da otimização com o índice Integral do Erro Absoluto são apresentados neste trecho, em comparação aos resultados teóricos discutidos na seção 5.2. Espera-se que essa abordagem resulte em um desempenho mais eficiente, com um tempo de acomodação reduzido, uma vez que não é necessário

Figura 5.3: Simulação do Sistema do Exemplo 5.1.1

que o sistema de controle seja robusto. No entanto, o critério de estabilidade de Nyquist ainda foi usado para garantir a estabilidade do sistema, com a circunferência $M_s=1,6667$. A Tabela 5.2 fornece os valores dos ganhos obtidos pelo algoritmo genético.

Exemplo	kp	ki	kd	IAE
1	1,5467	4,7074	2,8071	1,0622
2	0,5146	0,2539	0,4016	7,3368
3	1,7283	1,0606	1,9955	2,2072

Tabela 5.2: Tabela de Ganhos do PID - Otimização de IAE

5.3.1 Resultado exemplo 1

Utilizando o algoritmo genético (GA), foi realizada a otimização do índice IAE por meio de simulação computacional do exemplo 5.1.1. Como resultado, o gráfico 5.8 demonstrou que o sistema não deve obrigatoriamente tangenciar a circunferência que representa a sua robustez.

Figura 5.4: Diagrama de Nyquist Exemplo 5.1.2

Ao examinarmos o gráfico 5.9, podemos notar que o sistema alcança o estado estacionário em poucos segundos, com um tempo de acomodação menor do que o apresentado na seção 5.2, o que é um resultado desejado neste projeto.

5.3.2 Resultado exemplo 2

No exemplo 5.1.2, que é mais complexo e exigiu mais esforço para encontrar uma solução adequada, a Figura 5.10 mostra que o diagrama passa pela circunferência M_s , o que não torna o sistema instável, como indicado pela simulação na Figura 5.11. No entanto, a otimização da Integral do Erro Absoluto tornou o sistema mais eficiente, apresentando menor *overshoot* e tempo de acomodação.

5.3.3 Resultado exemplo 3

Através da otimização desse parâmetro no exemplo 5.1.3, foi possível observar que o *Nyquist* na Figura 5.12 se afastou mais da circunferência de robustez. Na Figura 5.13, que apresenta o resultado da simulação do sistema para esse exemplo, pode-se notar que o tempo de acomodação é menor em comparação

Figura 5.5: Simulação do Sistema do Exemplo 5.1.2

à busca pela robustez apresentada na seção 5.2.3 e até mesmo no trabalho original DANTAS (2019).

5.4 Resultados da Comparação entre as Otmização

Nesta seção, faremos uma análise comparativa dos parâmetros otimizados diretamente e observaremos os benefícios de realizar a busca pelo critério de robustez ou pelo índice de *IAE*. A ideia inicial é comparar os gráficos de *Nyquist* e as simulações do sistema, sobrepondo os resultados. Além disso, realizaremos uma simulação com perturbação no sistema para validar sua robustez.

Com o objetivo de comparar os ganhos resultantes de cada parâmetro otimizado, efetuamos o cálculo da variância entre o ganho obtido a partir da otimização da robustez e aquele proveniente do índice que considera o módulo do erro. Os resultados dessa comparação foram apresentados na Tabela 5.3, permitindo-nos avaliar como cada um desses parâmetros afeta os ganhos.

Após analisar a Tabela 5.3, é perceptível que no exemplo 5.1.2, a variação nos ganhos é baixa, o que era esperado devido ao comportamento semelhante

Figura 5.6: Diagrama de Nyquist Exemplo 5.1.3

Exemplo	Δ kp	Δ ki	Δ kd	Robustez	IAE
1	0.0085	5,0717	1,8727	0,1536	1,0622
2	0,0569	0,0004	0,0008	0,0001	7,3368
3	1,9370	0,0007	0,0776	0,3148	2,2072

Tabela 5.3: Tabela de Variança dos Ganhos do PID - Comparação da Otimização de IAE com robustez

no diagrama de *Nyquist*. No entanto, para os exemplos 5.1.1 e 5.1.3, há uma variação maior, especialmente no ganho integral e proporcional.

5.4.1 Resultado exemplo 1

A Figura 5.14 apresenta a comparação dos diagramas para o exemplo 5.1.1, sendo que o diagrama que enfatiza a robustez do sistema tangencia a referência M_s , enquanto que o diagrama otimizado para o IAE está próximo à circunferência e apresenta comportamento semelhante a outro diagrama.

A respeito da Figura 5.15, percebemos que o sistema estabilizado pelo critério do IAE é mais eficiente, apresentando um tempo de acomodação mais rápido, enquanto o sistema com ênfase na robustez tem uma resposta transitória mais

Figura 5.7: Simulação do Sistema do Exemplo 5.1.3

lenta.

5.4.2 Resultado exemplo 2

No caso do exemplo 5.1.2, por se tratar de um sistema mais complexo e, teoricamente, com maior dificuldade na sintonia dos ganhos do controlador, a Figura 5.16 apresenta o diagrama de Nyquist. Neste caso, é possível observar que, para o índice considerado, o Nyquist intersecta a circunferência, enquanto que, para a busca pela robustez, isso não ocorre, como esperado. Além disso, conseguimos obter um comportamento semelhante no diagrama, circulando o ponto 0+0j.

A simulação do sistema na Figura 5.17 apresenta o comportamento desejado quando otimizado com o índice de Integral do Erro Absoluto, sendo notável que o sistema é mais eficiente, enquanto que o sistema otimizado com ênfase na robustez tem uma resposta transitória mais lenta.

Figura 5.8: Diagrama de Nyquist Exemplo 5.1.1

5.4.3 Resultado exemplo 3

No exemplo 5.1.3, podemos observar na Figura 5.18 que há uma maior distância do diagrama em relação a ambas as otimizações. A partir da simulação do sistema na F5.19, verificamos que a otimização do índice de IAE apresentou um tempo de acomodação menor em comparação com a otimização do critério de robustez.

5.4.4 Resultado exemplo 4

Os resultados para o caso co-localizado, são sumarizados na Tabela 5.4, onde estão registrados os ganhos dos controladores sintonizados e os valores do índice *IAE*. Os diagramas de *Nyquist* com otimização de desempenho e robustez e considerando somente robustez são mostrados na Figura 5.20. A resposta ao degrau para as duas sintonias é apresentada na Fig. 5.21, onde é evidente o desempenho superior do método de sintonia proposto.

O controle de graus de liberdade no esquema não co-localizado representa um desafio maior que o caso co-localizado, pois neste último, a propriedade de alternância entre pólos e zeros garante melhores margens (Preumont, 1997). Entretanto, com a técnica proposta, as margens mínimas são garantidas. Na

Figura 5.9: Simulação do Sistema do Exemplo 5.1.1

Tabela 5.4: Ganhos ótimos e índice de desempenho para o caso co-localizado - Exemplo 5.1.48888889988889

Sintonia	k_p	k_i	k_d	\overline{IAE}
Robustez + IAE	0,5710	0,2829	0,4713	7,4872
Robustez	0,5193	0,2424	0,1804	7,9387

Figura 5.22, são mostrados os diagramas de *Nyquist* para as sintonias ótimas que consideram somente a robustez e também a robustez combinada com *IAE*. As respostas no domínio do tempo, ilustradas na Fig. 5.23, permitem comparar a sintonia com e sem a consideração do índice de desempenho. Os ganhos dos controladores sintonizados e os valores do índice *IAE* podem ser vistos na Tabela 5.5.

Tabela 5.5: Ganhos ótimos e índice de desempenho para o caso não co-localizado - Exemplo 5.1.4

Sintonia	k_p	k_i	k_d	\overline{IAE}
Robustez + IAE	0,5878	0,3866	0,5382	7,2212
Robustez	0,5460	0,3437	0,5229	$7,\!5067$

Figura 5.10: Diagrama de Nyquist Exemplo 5.1.2

5.4.5 Resultado exemplo 5

Na Figura 5.24 visualizam-se os diagramas de Nyquist obtidos. As respostas no tempo são comparadas na Figura 5.25. A Tabela 5.6 permite a comparação dos controladores projetados, e é possível notar um desempenho melhorado em relação ao IAE com a aplicação do método proposto. A estabilidade em malha fechada pode ser verificada no diagrama de Nyquist completo ($\omega \in \Re$) com visão expandida, onde são constatados os dois envolvimentos requeridos do ponto crítico -1+j0.

Tabela 5.6: Ganhos ótimos e índice de desempenho para o Exemplo 5.1.5

Sintonia	k_p	k_i	k_d	\overline{IAE}
Robustez + IAE	-4,4787	-3,3738	-11,1194	2,6374
Robustez	-2,1975	-4,3664	-10,8658	3,5080

Figura 5.11: Simulação do Sistema do Exemplo 5.1.2

5.5 Resultados da Concorrência entre a Otimização

Na seção de resultados, iremos examinar os resultados conseguidos com a função de *fitness* definida na seção 4.6, que tenta considerar os dois parâmetros de busca. Nesse caso, estamos atribuindo a mesma importância à robustez e ao IAE, já que o valor do parâmetro alfa é 0,5.

Usando essa abordagem, é possível encontrar um equilíbrio que mantenha a robustez do sistema ao mesmo tempo que melhora o desempenho, reduzindo o tempo de acomodação. Os ganhos do controlador PID para esse método podem ser observados na Tabela 5.7.

Exemplo	kp	ki	kd	Robustez	IAE	ff
1	2.9222	5,4647	3,6449	0,0073	0,9149	0,4611
2	0,5145	0,2578	0,4004	0,0041	7,3408	3,6725
3	0,4372	0,7548	1,8163	0,4856	2,4390	1,4623

Tabela 5.7: Tabela de Ganhos do PID com Método proposto - Comparação da Otimização de IAE com robustez

Figura 5.12: Diagrama de Nyquist Exemplo 5.1.3

5.5.1 Resultado exemplo 1

A Figura 5.26 revela que, para o exemplo 5.1.1, o diagrama de Nyquist apresenta uma pequena distância da referência M_s , mantendo sinais de um sistema mais robusto, sem perder a prioridade da eficiência. Essa situação difere da Figura 5.8, onde o diagrama tende a se afastar ainda mais do raio de robustez estabelecido.

Analisando a Figura 5.27, percebe-se que a combinação dos parâmetros resulta em uma melhoria geral em relação à simulação em que a busca tentou otimizar apenas o índice IAE, como evidenciado na Figura 5.9, e também em comparação com a simulação do trabalho base DANTAS (2019).

5.5.2 Resultado exemplo 2

No caso do exemplo 5.1.2, que apresenta maior complexidade, nota-se que o gráfico de Nyquist na Figura 5.28 está próximo à circunferência de robustez M_s , e os resultados da simulação mostram eficiência, conforme evidenciado na Figura 5.29. Esses resultados são superiores aos obtidos nas simulações em que é otimizado apenas um parâmetro na busca do algoritmo GA.

Figura 5.13: Simulação do Sistema do Exemplo 5.1.3

5.5.3 Resultado exemplo 3

Nesta variação do exemplo 5.1.2, introduzimos uma perturbação no sistema para simular um sistema não robusto. Na Figura 5.31, podemos observar que a resposta transitória do sistema é menor em comparação com as simulações realizadas nas seções anteriores, onde a otimização foi realizada em apenas um dos parâmetros. Na Figura5.28, a curva de *Nyquist* não se afasta muito da circunferência, o que indica que o sistema de controle continua eficiente em termos de robustez e tempo de acomodação, importantes para bons resultados em sistemas de controle OGATA (2009).

5.6 Resultados da pertubação no sistema

Nesta seção, simularemos uma pertubação do sistema, com objetivo de verificar quão os sistemas são robustos para os casos da otimização do IAE apresentado na seção 5.3, e para o método proposto neste trabalho.

Para realizar a simulação da pertubação, analisaremos o sistema do exemplo 5.1.2, com ganhos obtidos da simulação para este exemplo, executaremos a simulação do exemplo 5.1.3, o qual representa uma pertubação no sistema,

Figura 5.14: Comparação do diagrama de Nyquist do Exemplo 5.1.1

devido à variação da Matriz C, de um exemplo para outro.

5.6.1 Pertubação para Otimização de IAE

Na Figura 5.32, o gráfico de *Nyquist*, não apresenta variação significativa se comparado com a Figura 5.12. Ao observar a Figura 5.33 que compara as duas simulações, uma sem a pertubação e outro com pertubação, podemos inferir que o sistema com a pertubação, tivemos um maior *Overshoot*, além de tempo de subida maior, como tempo de primeiro pico, e oscilação maior do sistema em regime transitório. Mas perceba que o sistema permanece estável em malha fechada, evidenciado pelo Gráfico 5.34, os qual todos os polos estão no SPD.

5.6.2 Pertubação para Concorrência entre a Otimização

Para o método proposto neste trabalho, observamos um comportamento semelhante, conforme a Figura 5.35, apresenta, com uma acentuação dos resultados apresentados na seção 5.6.1, principalmente para o *Overshoot*, como apresentado na Figura 5.36.

Figura 5.15: Comparação da simulação do Sistema do Exemplo 5.1.1

O sistema de segunda ordem, com atraso, permanece estável em malha fechada conforme a Figura 5.37, confirma. Isso evidencia que a robustez é atenuado, para esses métodos, mais sem perder a estabilidade e robustez, além, percebemos que a perda da robustez é significativamente pequena, em relação aos ganhos de desempenho, adquiridos com introdução da busca com concorrência.

Figura 5.16: Comparação do diagrama de Nyquist do Exemplo 5.1.2

Figura 5.17: Comparação da simulação do Sistema do Exemplo $5.1.2\,$

Figura 5.18: Comparação do diagrama de Nyquist do Exemplo 5.1.3

Figura 5.19: Comparação da simulação do Sistema do Exemplo $5.1.3\,$

Figura 5.20: Diagrama de Nyquist para o caso co-localizado, Exemplo 5.1.4

Figura 5.21: Resposta no tempo para uma referência constante do caso co-localizado, Exemplo $5.1.4\,$

Figura 5.22: Diagrama de Nyquist para o de caso não co-localizado, Exemplo 5.1.4

Figura 5.23: Resposta no tempo para uma referência constante para o caso não co-localizado, Exemplo $5.1.4\,$

Figura 5.24: Diagrama de Nyquist para o Exemplo 5.1.5

Figura 5.25: Diagrama de Nyquist para o Exemplo 5.1.5

Figura 5.26: Diagrama de Nyquist com Método proposto do Exemplo 5.1.1

Figura 5.27: Simulação do Sistema com Método proposto do Exemplo 5.1.1

Figura 5.28: Diagrama de Nyquist com Método proposto do Exemplo 5.1.2

Figura 5.29: Simulação do Sistema com Método proposto do Exemplo $5.1.2\,$

Figura 5.30: Diagrama de Nyquist com Método proposto do Exemplo 5.1.3

Figura 5.31: Simulação do Sistema com Método proposto do Exemplo 5.1.3

Figura 5.32: Diagrama de Nyquist com pertubação no sistema

Figura 5.33: Simulação do Sistema com pertubação no sistema

Figura 5.34: polos do Sistema com pertubação no sistema

Figura 5.35: Diagrama de Nyquist com pertubação no sistema

Figura 5.36: Simulação do Sistema com pertubação no sistema

Figura 5.37: polos do Sistema com pertubação no sistema

Comentários gerais sobre o capítulo:

- 1. Conforme já descrito no primeiro comentário, carece de intensa reorganização, por exemplo:
- i. Remover resultados com otimização de apenas um critério. O foco deve ser no método descrito no artigo, com a otimização do desempenho sob a restrição de robustez;
- ii. Os exemplos devem ser introduzidos com a descrição, os parâmetros de projeto e os resultados; não aprecio esta organização, com a descrição dos exemplos consecutivamente, e só depois a apresentação dos resutados.
- 2. Penso que é melhor evitar inserir resultados com mapa de polos. Ou então, inclui o resultados para todos os exemplos, sem exceção;
- 3. As figuras ainda não estão com a devida qualidade. Tente utilizar o formato .eps, que dá as melhores resoluções; ou então svg, com o pacote específico do LaTex.