Table 1: Conditions in DSL. This table shows the meaning of each kind of Condition.

Condition type	Meaning	Example in natural language
StackCond(N,T)	There are N operands with type T on the stack top	Assert: due to validation, a value of value type i32 is on the top of the stack
$\overline{SameTypeCond(N)}$	N operands on the stack top are of the same type	Assert: due to validation, two more values (of the same value type) are on the top of the stack
$\overline{EqualCond(V_1, V_2)}$	V1 is equal to $V2$	If c is 0, then:
$\overline{OpDefinedCond(Op)}$	Op is a defined opcode	If $unop_t(c_1)$ is defined, then:
$\overline{ExprCond(Expr)}$	An equation or inequality represented as Expr holds	s Assert: due to validation, $x < dim(shape)$
ExistCond(Elem(Instance[ide]	(x])) The $Instance[idx]$ exists	Assert: due to validation, S.mem[a] exists
$\overline{InstPartCond(V)}$	V is part of the instruction	If N is part of the instruction, then:
CompareCond(V1, V2, R)	V1 and $V2$ hold the comparison relation R	If $ea + N/8$ is larger than the length of $mem.data$, then: