Package 'RLumCarlo'

February 25, 2019
Type Package
Title Monte-Carlo Methods for Simulating Luminescence Phenomena
Version 0.1.0.31
Date 2019-02-25
Author Johannes Friedrich [aut, trl, cre] (https://orcid.org/0000-0002-0805-9547), Sebastian Kreutzer [aut] (https://orcid.org/0000-0002-0734-2199)
Maintainer Johannes Friedrich < johannes . friedrich@uni-bayreuth.de>
Description A collection of functions to simulate luminescence signals with Monte-Carlo methods in the mineral feldspar based on published models.
Contact Package Developer Team < johannes.friedrich@uni-bayreuth.de>
License GPL-3
BugReports https://github.com/R-Lum/RLumCarlo/issues Depends R (>= 3.3.0), utils, magrittr
<pre>URL https://CRAN.R-project.org/package=RLumModel</pre>
LinkingTo Rcpp, RcppProgress, RcppArmadillo
Imports abind, doParallel, foreach, parallel, methods, Rcpp
Suggests R.rsp
Encoding UTF-8
VignetteBuilder R.rsp
RoxygenNote 6.1.1
NeedsCompilation yes
R topics documented:
RLumCarlo-package 2 calc_RLumCarlo 2 plot_RLumCarlo 3 run_MC_CW_IRSL 4 run_MC_CW_IRSL_DELOC 5 run_MC_CW_IRSL_LOC 6 run_MC_ISO 7 run_MC_ISO_DELOC 8

2 calc_RLumCarlo

Index																						18
	run_MC_	_TL_L	OC	• •	 	•	 •		٠	•	•	 •		 ٠		•	•	•		٠	•	16
	run_MC_																					
	run_MC_	_																				
	run_MC_		_	-																		
	run_MC_																					
	run_MC_																					

 ${\tt RLumCarlo-package}$

Modelling luminescence signals in feldspar

Description

Details

Package: RLumCarlo Type: Package Version: 0.0.2 Date: 2018-08-28 License: GPL-3

Author(s)

Johannes Friedrich (University of Bayreuth, Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne (France)

calc_RLumCarlo

Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

calc_RLumCarlo(results)

Arguments

results array:

Value

This function returns a data.frame

plot_RLumCarlo 3

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

plot_RLumCarlo

Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

```
plot_RLumCarlo(results, times = NULL, norm = FALSE, legend = FALSE,
  add = FALSE, ...)
```

Arguments

results data.frame (required)

times numeric (optinal): Optional vector for the x-axis

norm logical (with default): Normalise curve to the highest intensity

legend logical (with default): Enable/disable legend

add logical (with default): allow overplotting of results

... further arguments that can be passed to control the plot output. Currently sup-

ported are: xlab, xlim, ylim, main, lwd, type

Value

This function returns a graphical output

Function version

0.1.0

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

run_MC_CW_IRSL

run_MC_CW_IRSL

Run Monte-Carlo simulation for CW-IRSL

Description

Run Monte-Carlo simulation for CW-IRSL

Usage

```
run_MC_CW_IRSL(A, rho, times, clusters = 10, r = NULL, N_e = 200,
  method = "seq", output = "signal", ...)
```

Arguments

A	numeric
rho	numeric
times	vector (with default)
clusters	<pre>numeric (with default):</pre>
r	numeric (with default)
N_e	<pre>numeric (with default):</pre>
method	character (with default):
output	character (with default):
	further arguments

Value

This function returns a list.

Function version

```
0.0.2 [2017-01-31]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

References

Pagonis 2017

```
calc_RLumCarlo() %>%
    plot_RLumCarlo(norm = T, legend = T)
## End(Not run)
```

run_MC_CW_IRSL_DELOC Run Monte-Carlo simulation for CW-IRSL for GOT model

Description

##TODO

Usage

```
run_MC_CW_IRSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

A	numeric (required)
times	numeric (with default)
clusters	numeric (with default):
N_e	integer (with default)
n_filled	integer (with default)
R	numeric (with default):
method	character (with default):
output	character (with default):
	further arguments

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_CW_IRSL_LOC

Run Monte-Carlo simulation for CW-IRSL for localised transition

Description

##TODO

Usage

```
run_MC_CW_IRSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
Α
                   numeric (required)
                   numeric (with default):
times
                   numeric (with default):
clusters
n_filled
                   integer (with default):
                   numeric (with default):
r
method
                   character (with default):
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

run_MC_ISO 7

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_ISO

Run Monte-Carlo simulation for isothermal measurements

Description

Run Monte-Carlo simulation for isothermal measurements

Usage

```
run_MC_ISO(E, s, T = 200, rho, times, clusters = 10, r = NULL, N_e = 200, method = "par", output = "signal", ...)
```

Arguments

```
Ε
                   numeric (required)
                   numeric (required)
s
Т
                   numeric (required)
rho
                   numeric (required)
                   numeric (with default)
times
                   numeric (with default):
clusters
                   numeric (with default)
r
N_e
                   numeric (with default)
method
                   character (with default)
                   character (with default)
output
                   further arguments
. . .
```

Value

This function returns a list.

Function version

0.1.0

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Univerité Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

```
## Not run:
##=============##
## Example 1: Simulate isothermal measurement
##==================================##

times <- seq(0, 5000)
run_MC_ISO(
    E = 1.2,
    s = 1e10,
    T = 200,
    rho = 0.007,
    times = times) %>%
    calc_RLumCarlo() %>%
    plot_RLumCarlo(legend = T)

## End(Not run)
```

run_MC_ISO_DELOC

Run Monte-Carlo simulation for ISO for GOT model

Description

##TODO

Usage

```
run_MC_ISO_DELOC(s, E, T = 20, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

run_MC_ISO_DELOC

9

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
Τ
                   numeric (with default)
                   numeric (with default)
times
                   numeric (with default):
clusters
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
R
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

```
##=========##
## Example 1: Simulate ITL
##=============##
## Not run:
run_MC_ISO_DELOC(
    s = 3.5e12,
    E = 1.45,
    T = 200,
    R = 1,
    times = 0:10000) %>%
        calc_RLumCarlo() %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_ISO_LOC

run_MC_ISO_LOC

Run Monte-Carlo simulation for ITL for localised transition

Description

##TODO

Usage

```
run_MC_ISO_LOC(s, E, T = 20, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

S	numeric (required)
Е	numeric (required)
Т	numeric (with default)
times	<pre>numeric (with default):</pre>
clusters	<pre>numeric (with default):</pre>
n_filled	integer (with default):
r	<pre>numeric (with default):</pre>
method	character (with default):
output	character (with default):
	further arguments

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

run_MC_LM_OSL

Examples

run_MC_LM_OSL

Run Monte-Carlo simulation for LM-OSL

Description

Run Monte-Carlo simulation for LM-OSL

Usage

Arguments

```
Α
                  numeric
rho
                  numeric
                  vector (with default)
times
clusters
                  numeric (with default):
r
                  numeric (with default):
delta.r
                  numeric (with default):
                  numeric (with default):
N_e
                  character (with default):
method
output
                  character (with default):
                  further arguments
. . .
```

Value

This function returns a list.

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

```
## Not run:
##TODO: Primary example, should be verified
run_MC_LM_OSL(A = 10000, rho = 0.0001, times = 1:100, clusters = 10, r = NULL,
delta.r = 0.1,
N_e = 200, method = "par", output = "signal") %>%
calc_RLumCarlo() %>%
plot_RLumCarlo(norm = T)
## End(Not run)
```

run_MC_LM_OSL_DELOC

Run Monte-Carlo simulation for LM-OSL for GOT model

Description

##TODO

Usage

```
run_MC_LM_OSL_DELOC(A, times, clusters = 10, N_e = 200,
   n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
A numeric (required)
times numeric (with default)
clusters numeric (with default):
N_e integer (with default)
n_filled integer (with default)
R numeric (with default):
method character (with default):
output character (with default):
...
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

run_MC_TL

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_TL

Run Monte-Carlo simulation for TL

Description

Run Monte-Carlo simulation for TL

Usage

```
run_MC_TL(s, E, rho, r_c, times, clusters = 10, N_e = 200,
  delta.r = 0.1, method = "par", output = "signal", ...)
```

Arguments

```
s list
E numeric
rho numeric
r_c numeric (with default)
times vector (with default)
```

run_MC_TL_DELOC

```
clusters numeric (with default):

N_e numeric (with default):

delta.r numeric (with default):

method character (with default):

output character (with default):

further arguments
```

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

run_MC_TL_DELOC

Run Monte-Carlo simulation for TL for GOT model

Description

##TODO

Usage

```
run_MC_TL_DELOC(s, E, times, clusters = 10, N_e = 200,
   n_filled = N_e, R, method = "par", output = "signal", ...)
```

run_MC_TL_DELOC 15

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
times
                   numeric (with default)
                   numeric (with default):
clusters
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
method
                   character (with default):
output
                   character (with default):
                   further arguments
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

run_MC_TL_LOC

 $run_MC_TL_LOC$

 ${\it Run\ Monte-Carlo\ simulation\ for\ TL\ for\ localised\ transition}$

Description

##TODO

Usage

```
run_MC_TL_LOC(s, E, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

S	numeric (required)
E	numeric (required)
times	numeric (with default)
clusters	numeric (with default):
n_filled	integer (with default)
r	numeric (with default):
method	character (with default):
output	character (with default):
	further arguments

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

run_MC_TL_LOC 17

```
##===========##
## Example 1: Simulate TL
##==================================##
## Not run:
run_MC_TL_LOC(
    s = 3.5e12,
    E = 1.45,
    r = 1,
    times = 100:450) %>%
        calc_RLumCarlo() %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

Index

```
array, 2, 5, 6, 9, 10, 13–16
calc_RLumCarlo, 2
character, 4-7, 9-12, 14-16
data.frame, 2, 3
integer, 5, 6, 9, 10, 12, 15, 16
list, 13
logical, 3
numeric, 3-7, 9-16
plot_RLumCarlo, 3
RLumCarlo-package, 2
run_MC_CW_IRSL, 4
run_MC_CW_IRSL_DELOC, 5
run_MC_CW_IRSL_LOC, 6
\verb"run_MC_ISO, 7"
run_MC_ISO_DELOC, 8
run_MC_ISO_LOC, 10
run_MC_LM_OSL, 11
run_MC_LM_OSL_DELOC, 12
run_MC_TL, 13
run_MC_TL_DELOC, 14
run_MC_TL_LOC, 16
vector, 4, 11, 13
```