This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

The straight line ℓ is parallel to y+4x=4 and passes through the point P(2, 5). Find its y-intercept.

- 1. y-intercept = 15
- **2.** y-intercept = -3
- 3. y-intercept = 13
- 4. y-intercept = -2
- **5.** y-intercept = 14

002 10.0 points

Identify the graph of the function

$$f(x) = x - 3$$

003 10.0 points

Identify the graph of the function

$$f(x) = -1x + 4$$

1. None of These

y

004 10.0 points

Solve

$$11x^2 + 33x = 0.$$

- 1. $x = \pm 3$
- 2. None of these
- **3.** No solution
- **4.** x = 0, 3
- **5.** x = 0, -3

005 10.0 points

Solve

$$x^2 + 3x - \frac{3}{4} = 0.$$

1.
$$x = -\frac{3}{2} \pm \sqrt{3}$$

2.
$$x = \pm \frac{3}{2} - \sqrt{3}$$

3.
$$x = \pm \frac{3}{2} + \sqrt{3}$$

4.
$$x = \frac{3}{2} \pm \sqrt{3}$$

5. None of these

006 10.0 points

How many solutions does the equation

$$-3x^2 + 9x = 2$$

have?

007 10.0 points

How many real solutions does the equation

$$-x^2 + 9x - 2 = 0$$

have?

008 10.0 points

Explain how the graph of

$$g(x) = \sqrt[3]{x+9} - 3$$

can be obtained from the graph of $f(x) = \sqrt[3]{x}$.

- 1. A shift to the right by 9 and a shift up by 3.
 - 2. A stretch by 9 and a shift up by 3.
- **3.** A shift to the right by $\sqrt{9}$ and a shift up by 3.
- 4. None of these
- **5.** A shift to the left by 9 and a shift down by 3.
- **6.** A shift to the left by $\sqrt{9}$ and a shift down by 3.
- 7. A stretch by $\sqrt{9}$ and a shift down by 3.

Sketch the graph of the function

$$f(x) = (x+6)^2.$$

5. None of these

010 (part 1 of 2) 10.0 points

Write the polynomial

$$1 - 6x + 7x^3 - 2x^4$$

in standard form.

a) What is its degree?

$011\;(\mathrm{part}\;2\;\mathrm{of}\;2)\;10.0\;\mathrm{points}$

b) What is the leading coefficient?

012 10.0 points

Determine which of the following functions (if any) are the same.

$$f(x) = 8^{-x} + 6$$
$$g(x) = 8^{6-x}$$
$$h(x) = -8^{x-6}$$

1.
$$f(x) = h(x)$$
 only

2.
$$g(x) = h(x)$$
 only

3. None of these

4.
$$g(x) = f(x)$$
 only

5.
$$f(x) = g(x) = h(x)$$

013 (part 1 of 3) 10.0 points

If $t = -\frac{\pi}{3}$, evaluate (if possible)

a) $\sin t$

1.
$$-\frac{1}{\sqrt{2}}$$

2.
$$-\frac{\sqrt{3}}{2}$$

- 3. None of these
- **4.** −1
- **5.** 0

6.
$$\frac{1}{2}$$

7.
$$\frac{1}{\sqrt{2}}$$

014 (part 2 of 3) 10.0 points

b) $\cos t$

- **1.** 0
- **2.** −1
- 3. $\frac{1}{2}$
- 4. $-\frac{1}{\sqrt{2}}$
- **5.** None of these
- **6.** 1

7.
$$\frac{1}{\sqrt{2}}$$

015 (part 3 of 3) 10.0 points

- $c) \tan t$
 - 1. None of these
 - **2.** -1
 - **3.** $-\sqrt{3}$
 - **4.** 1
- 5. $\frac{1}{\sqrt{2}}$
- 6. $-\frac{1}{\sqrt{2}}$
- **7.** 0

016 (part 1 of 3) 10.0 points

If $t = \frac{\pi}{4}$, evaluate (if possible)

- a) $\sin t$
- 1. None of these
- **2.** 1
- **3.** 0
- 4. $\frac{1}{2}$
- 5. $\frac{\sqrt{3}}{2}$
- 6. $-\frac{\sqrt{3}}{2}$
- 7. $\frac{1}{\sqrt{2}}$

017 (part 2 of 3) 10.0 points

- b) $\cos t$
- 1. $-\frac{\sqrt{3}}{2}$
- 2. $\frac{1}{2}$
- **3.** 0
- 4. $\frac{\sqrt{3}}{2}$
- **5.** None of these

6.
$$\frac{1}{\sqrt{2}}$$

7.
$$-1$$

018 (part 3 of 3) 10.0 points

c) $\tan t$

1. 1

2.
$$-\frac{\sqrt{3}}{2}$$

3. None of these

4.
$$\frac{\sqrt{3}}{2}$$

5.
$$-1$$

6. 0

7.
$$\frac{1}{2}$$

019 (part 1 of 6) 10.0 points

Consider the angle t defined by the point $\left(\frac{16}{20}, \frac{12}{20}\right)$

on the unit circle.

Find $\sin(t)$.

1.
$$\frac{12}{20}$$

2.
$$\frac{16}{12}$$

3.
$$\frac{20}{12}$$

4.
$$\frac{12}{16}$$

5. None of these

6.
$$\frac{16}{20}$$

7.
$$\frac{20}{16}$$

020 (part 2 of 6) 10.0 points

Find $\cos(t)$.

1.
$$\frac{20}{12}$$

2.
$$\frac{12}{16}$$

3.
$$\frac{12}{20}$$

4.
$$\frac{16}{20}$$

5. None of these

6.
$$\frac{16}{12}$$

7.
$$\frac{20}{16}$$

021 (part 3 of 6) 10.0 points

Find tan(t).

1.
$$\frac{12}{20}$$

2.
$$\frac{20}{12}$$

3.
$$\frac{16}{12}$$

4.
$$\frac{20}{16}$$

5.
$$\frac{16}{20}$$

6.
$$\frac{12}{16}$$

7. None of these

022 (part 4 of 6) 10.0 points

Find $\csc(t)$.

1.
$$\frac{12}{20}$$

2.
$$\frac{12}{16}$$

3.
$$\frac{20}{12}$$

4.
$$\frac{16}{12}$$

5.
$$\frac{20}{16}$$

- **6.** None of these
- 7. $\frac{16}{20}$

023 (part 5 of 6) 10.0 points

Find sec(t).

1.
$$\frac{20}{12}$$

- 2. None of these
- 3. $\frac{16}{12}$
- 4. $\frac{12}{16}$
- 5. $\frac{16}{20}$
- 6. $\frac{12}{20}$
- 7. $\frac{20}{16}$

024 (part 6 of 6) 10.0 points

Find $\cot(t)$.

1.
$$\frac{12}{16}$$

2.
$$\frac{12}{20}$$

- 3. None of these
- 4. $\frac{16}{20}$
- 5. $\frac{20}{16}$
- 6. $\frac{16}{12}$
- 7. $\frac{20}{12}$

025 10.0 points

Evaluate

$$f(x) = \sin x + 9\cos\frac{1}{2}x$$

at $x = \pi/3$.

1.
$$f(\pi/3) = 7\sqrt{3}$$

2.
$$f(\pi/3) = 7$$

3.
$$f(\pi/3) = 6$$

4.
$$f(\pi/3) = 5$$

5.
$$f(\pi/3) = 6\sqrt{3}$$

6.
$$f(\pi/3) = 5\sqrt{3}$$