

Universidade Federal do Ceará Sistemas Operacionais Prof. Ms. Rafael Ivo

Lista de Exercícios 5 – Gerenciamento de Memória

- 1) Os primeiros computadores, e consequentemente os primeiros SO's, não possuiam uma unidade para gerenciar a memória principal de um computador. Por que nesse tipo de ambiente não era possível haver mais de um programa ao mesmo tempo na memória se não houvesse algum pré-processamento sobre o código do processo?
- 2) Explique a diferença entre endereçamento lógico e endereçamento físico.
- 3) Inicialmente alocava-se uma quantidade de endereços físicos contínuos na memória para um determinado processo. Isto era feito através de dois valores armazenados em registradores lógicos denominados registrador-base e registrador-limite. Responda:
- a) O que é armazenado em cada um destes registradores?
- b) Como é calculado o endereço físico à partir de um determinado endereço lógico usando esta metodologia?
- c) Qual o principal problema da alocação contínua de memória? Explique-o.
- 4) O gerenciamento de memória através de paginação cria uma tabela que correlaciona cada página da memória lógico (virtual) a um quadro da memória física. Explique verbalmente como um endereço lógico é mapeado para um endereço físico utilizando esta abordagem de gerenciamento de memória.
- 5) Por que normalmente a quantidade de endereços de uma página ou quadro é uma potência de 2?
- 6) Que informações são armazenadas para cada página na tabela de páginas comuns a maioria dos Sistemas Operacionais atuais?

- 7) A paginação evita o problema da fragmentação externa, porém apresenta o problema da fragmentação interna. Explique o que é este problema e onde ele ocorre.
- 8) Considere um sistema de alocação contínua de memória. O gerenciador têm ciência dos seguintes espaços livres de memória, em KB, nesta sequência: 10, 4, 20, 18, 7, 9, 12 e 15. Cada linha da tabela abaixo representa um processo novo com a quantidade que necessida de memória para ser alocada. Cada coluna da tabela indica o algoritmo de escolha de espaço livre de tipo memória. Preencha a tabela indicando que espaço livre é escolhido para cada processo não segundo cada um dos algoritmos

	First-Fit	Best-Fit	Worst-Fit
A (12KB)			
B (10KB)			
C (9 KB)			

9) Em um sistema de alocação contínua, o gerenciamento de memória livre pode ser feito através de uma lista encadeada (Abaixo ilustrada usando uma tabela). Cada elemento da lista indica o id do processo ou um id especial (L) indicando que o espaço é livre, além dos registrador-base e registrador-limite do processo.

<u>Id</u>	Reg. Base	Reg. Limite
P1	0	20
L	20	10
P2	30	15
L	45	16
Р3	61	12
L	73	20
P4	93	9
L	102	18
P5	120	32
L	152	48

Mostre o estado da lista após cada uma das ações descritas a seguir, supondo que o algoritmo de alocação é o First-Fit:

- I) O processo P6 é iniciado e precisa de 12KB
- II) O processo P3 é finalizado
- III) O processo P2 é finalizado
- IV) O processo P7 é iniciado e precisa de 25KB

- 10) Repita a questão 9 utilizando como algoritmo 16) Assuma que cada página possua 1K de alocação o Best-Fit.
- 11) Repita a questão 9 utilizando como algoritmo de alocação o Worst-Fit.
- 12) Para mover um processo dentro do espaço de d 650000 endereçamento físico, primeiro ele deve ser copiado para uma área grande o suficiente que o caiba e depois sua localização anterior é apagada. 17) Considere um processo com a seguinte tabela O processo de compactação em alocação contínua, consiste em mover os processo para uma das bordas da memória física a fim de unir todos os espaços de endereçamento processos e assim unir todas as áreas livres em uma (processo de desfragmentação). Usando a lista da questão 9 (antes das alterações), realize o processo de compactação, afirmando processo que está sendo movido e mostrando Calcule: como a lista vai sendo alterada no decorrer da compactação.
- 13) Usando a lista da questão 9 (antes das alterações) calcule os endereços físicos pedidos abaixo:
- a) Processo P1 pede o endereço 6KB.
- b) Processo P4 pede o endereço 7KB.
- c) Processo P3 pede o endereço 13KB.
- d) Processo P2 pede o endereço 3KB.

Obs: Caso o endereço lógico seja inválido, declare o erro de acesso irregular de memória

- 14) Considere um espaço de memória lógico a) Qual página será trocada pelo FIFO? com 256 páginas e cada página com 4K endereços. Esse espaço é mapeado para uma c) Qual página será trocada pelo LRU? memória física com 64 quadros.
- a) Quantos bits são necessários para o endereco lógico?
- b) Quantos bits são necessários para o endereço físico?
- 15) Suponha que um programa é executado em duas máquinas diferentes. Na primeira, o quadro de memória possui 4K endereços. Na segunda, o quadro possui 8K endereços. Supondo que em ambos os computadores o processo é paginado, determine o número da página dos seguintes b) Mapa de bits endereços lógicos em cada uma das máquinas:
- a) 20000
- b) 32768
- c) 60000

- endereços. Quais os números das páginas e do deslocamento dos seguintes endereços virtuais?
- a) 3085
- b) 42095
- c) 215201
- e) 2000001
- de páginas, onde cada página possui endereços.

<u>Página</u>	<u>Quadro</u>
0	7
1	8
2	5
3	10

- a) O endereço físico do endereço lógico 256.
- b) O endereço físico do endereço lógico 4256.
- c) O endereço lógico do endereço físico 20994.
- 18) Um computador tem quatro molduras de página. O tempo de carregamento de página na memória, o instante do último acesso e os bits R e M para cada página são mostrados a seguir (os tempos estão em tiques do relógio):

<u>Página</u>	Carregado	<u>Última ref.</u>	<u>R</u>	M
0	126	280	1	0
1	230	265	0	1
2	140	270	0	0
3	110	285	1	1

- b) Qual página será trocada pelo NRU?
- d) Qual página será trocada pelo SC?
- 19) Se o algoritmo de substituição FIFO é usado com quatro quadros e oito páginas virtuais, quantas faltas de página (page faults) ocorrerão com a cadeia de referências 0-1-7-2-3-2-7-1-0-3 se os quatro quadros estão inicialmente vazios?
- 20) Repita a questão anterior para LRU usando a implementação:
- a) Pilha dos últimos referenciados

- memória. No primeiro tique do relógio, os bits R endereços lógicos? são 0111 (página 0 é 0, as demais são 1). Nos a) 0,430 tiques subsequentes os valores são 1011, 1010, b) 1,10 1101, 0010, 1010, 1100 e 0001. Se o algoritmo c) 2,500 de envelhecimento (aging) é usado com um d) 3,400 contador de 8 bits, quais valores dos quatro contadores após o último tique? Se uma página precisasse ser removida após o último tique, qual 29) Consideremos um programa que tenha dois seria?
- 22) Alguns processadores possuem uma memória associativa de alta velocidade denominada TLB. Qual a sua finalidade? E por que ela melhora o desempenho de acesso a memória?
- 23) Considere um sistema de paginação com a tabela de páginas armazenada na memória.
- a) Se uma referência a memória leva 50 nanossegundos, quanto tempo leva para um processo fazer uma referência a um endereço lógico?
- b) Se adicionarmos uma TLB de forma que 75% de todas as referências a páginas são encontradas nela, qual a média de tempo gasta para um processo fazer uma referência a um endereço lógico?
- 24) A tabela de páginas de um processo é armazenada na memória principal. O que acontece se essa tabela for maior do que um quadro da memória, supondo que esta utiliza paginação?
- 25) Explique o processo de paginação por demanda.
- 26) O que é segmentação? Quais são as vantagens de se utilizar segmentação?
- 27) Por que segmentação e paginação são combinadas normalmente em um único esquema?
- 28) Considere a seguinte tabela de paginação:

<u>Segmento</u>	Reg. Base	Reg. Limite
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

21) Um computador tem quatro quadros de Quais os enderecos físicos para os seguintes

- e) 4,112
- segmentos mostrados a seguir, consistindo de instruções no segmento 0 e de dados de leitura/escrita no segmento 1. O segmento 0 tem proteção leitura/execução e o segmento 1 tem proteção leitura/escrita. O sistema de memória é um sistema de memória virtual paginado por demanda com endereços virtuais que têm um número de página de 4 bits e um deslocamento de 10 bits. As tabelas de páginas são as seguintes (todos os números na tabela são decimais):

Segm	ento 0	Segm	ento 1			
Leitura/l	Execução	Leitura/Escrita				
Nº Página	Nº Quadro	Nº Página	Nº Quadro			
0	2	0	Disco			
1	Disco	1	14			
2	11	2	9			
3	5	3	6			
4	Disco	4	Disco			
5	Disco	5	13			
6	4	6	8			
7	3	7	12			

Para cada um dos seguintes casos, diga o endereço físico ou identifique o tipo de erro que ocorre (page fault = falta de página ou *protection fault* = falta de proteção).

	Ação	Segmento	Página	Deslocamento
a)	Buscar	1	1	3
b)	Atualizar	0	0	16
c)	Buscar	1	4	28
d)	Atualizar	1	3	32

física, inicialmente não alocados e com SO abordagem de gerenciamento que reuni as implementando paginação por demanda. Nas vantagens da segmentação com a paginação e tabelas abaixo, a primeira linha indica a sequência de páginas que os processos estão requisitando à memória. As 8 primeiras colunas mostram como as páginas vão sendo alocadas aos quadros e referenciadas. Entretanto, a partir na 9 coluna não há quadros suficientes para a página A. Continue o preenchimento das tabelas segundo os algoritmos mencionados, indicando na última linha se aconteceu um *page fault* seguintes represetam a página e os bits restantes naguela rodada.

FIFO (Primeiro a entrar, primeiro a sair)

Quadro	E	D	Ε	Н	В	D	Ε	D	Α	Ε	В	Ε	D	E	В	G
Q1	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε								
Q2		D	D	D	D	D	D	D								
Q3				Н	Н	Н	Н	Н								
Q4					В	В	В	В								
Fault	Χ	Χ		Χ	Χ											

LRU (Menos usada recentemente)

Quadro	Ε	D	Ε	Н	В	D	Ε	D	A	Ε	В	Ε	D	Ε	В	G
Q1	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε								
Q2		D	D	D	D	D	D	D								
Q3				Н	Н	Н	Н	Н								
Q4					В	В	В	В								
Fault	Х	Χ		Χ	Χ											

31) A tabela abaixo ilustra os valores dos bits R (referenciada) de cada página de memória a cada 33) O MMU de um SO aloca os processos na interrupção do relógio. Neste SO os algoritmos **NFU** (Not Frequently Used Frequentemente Usado) Agina (Envelhecimento) usam contadores com 8 bits. Após estas interrupções, acontece um *page fault* e uma das páginas precisa ser substituída. Que demais números em cada célula da lista página será substituída segundo cada um dos algoritmos? Justifique sua resposta mostrando a ideia dos algoritmos.

Bit R	Interrupções										
DIL K	1	2	3	4	5	6	7	8	9		
Pág. 0	1	0	1	0	0	1	1	0	0		
Pág. 1	1	1	1	1	0	0	0	0	0		
Pág. 2	0	1	0	0	0	1	0	0	1		
Pág. 3	0	0	0	1	0	0	1	1	0		

30) Um sistema possui 4 quadros de memória 32) A alocação por segmentação paginada é uma está presente nos principais operacionais modernos. Dessa forma, os bits de um endereço lógico de um sistema desses são divididos em três grupos: os bits do segmento, os bits da página e os bits do deslocamento. Suponha que neste sistema, em particular, cada endereço lógico contém 18 bits, sendo que os 2 primeiros bits representam o segmento, os 5 bits representam o deslocamento. Já o endereco físico contém 16 bits, sendo os 5 primeiros bits correspondentes ao número do quadro e os restantes correspondentes ao deslocamento. Calcule o endereço físico do endereço lógico 01000000000001101. (Obs: Anuncie caso o endereço não possa ser obtido por causa de uma page fault.)

	ento 0 digo		ento 1 dos	Segmento 2 Pilha			
Nº	Nº	N^{o}	Nº	Nº	Nº		
Pág.	Quad.	Pág.	Quad.	Pág.	Quad.		
0	Disco	0	9	0	Disco		
1	7	1	Disco	1	Disco		
2	Disco	2	3	2	2		
3	0	3	Disco	3	Disco		
4	Disco	4	8	4	Disco		

memória continuamente e gerencia as áreas Não livres e ocupadas usando a lista encadeada a seguir, onde o identificador indica que a área é livre e os demais identificadores indicam o processo alocado naquela região da memória. Os encadeada indicam registrador-base registrador limite da região. Suponha que a MMU implementa o algoritmo Worst-Fit para alocar um processo.

Desenhe a lista encadeada após a remoção do processo P_b e da inserção do processo P_e , que necessita de um espaço igual a 5, nesta ordem.

34) O MMU de um SO aloca os processos na memória continuamente. Suponha que o sistema possua apenas 256 endereços de memória. Há 3 processos em execução neste sistema alocados segundo a figura abaixo. (*Obs*: Os números de endereços, indicam o primeiro endereço daquela área correspondente)

Utilizando o algoritmo *Best-Fit*, adicione um processo P4 que precisa de 16 endereços, mostrando seu registrador base e registrador limite e re-desenhando o quadro acima com o processo P4 alocado.

35) O endereço lógico de um sistema tem 16 bits de tamanho. Cada página possui endereços. Considere seguinte tabela de páginas do processo em execução exibida ao lado. Calcule o endereço físico que a MMU traduzirá para uma referência à memória feita pelo processo corrente ao endereço 8292. Obs: Anuncie caso o endereço não seja possível de ser obtido por causa de uma *page fault*.

Página	Quadro
0	2
1	1
2	6
3	0
4	4
5	3
6	-
7	-
8	-
9	5
10	-
11	7