Epitope-focused vaccine design

Bill Schief

Professor, The Scripps Research Institute
Director, Vaccine Design, International AIDS Vaccine Initiative
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, TSRI
Associate Member, Ragon Institute of MGH, Harvard and MIT

2016 Global Vaccine and Immunization Research Forum (GVIRF)

Johannesburg March 15, 2015

Vaccine reverse engineering

(adapted from Burton, Nat. Rev. Immunol., 2:706, 2002)

Three stories

- Proof of principle for epitope-focused vaccine design: Epitope-scaffolds for motavizumab elicit potent neutralization of RSV in NHPs
- Toward an HIV vaccine based on the CD4-binding site: germline targeting to initiate induction of VRC01-class broadly neutralizing antibodies (bnAbs)
- Proof of principle for elicitation of HIV bnAbs starting from human germline B cells: vaccine induction of PGT121-class glycan-dependent bnAbs by germline targeting and reductionist boosting

Proof of concept for epitope-focused vaccine design: Epitope-scaffolds induce potent neutralization of RSV in NHPs

- A. Potent polyclonal serum neutralizing responses.
- B. Rhesus mAbs isolated from an immunized macaque are more potent than Synagis
- C. Rhesus mAbs recapitulate Mota structural specificity.

"Re-elicitation" of a neutralizing specificity: Vaccine-elicited mAb targets the same epitope structure as the humanized mAb that guided vaccine design

Guide structure (Motavizumab+epitop e)

Structure of vaccine-elicted mAB (17HD9+epitope)

- ✓ epitope structures superimpose (RMSD = 0.5 Å)
 - **✓** 85% of buried side-chains are shared

"Closing the loop" of Reverse Vaccine Engineering

Neutralizing antibody

Immunization using new vaccine

Crystal structures of epitope +/- nAb

Epitope-focused vaccine design Biophysical analysis Structural analysis

Three stories

- Proof of principle for epitope-focused vaccine design: Epitope-scaffolds for motavizumab elicit potent neutralization of RSV in NHPs
- Toward an HIV vaccine based on the CD4-binding site: germline targeting to initiate induction of VRC01-class broadly neutralizing antibodies (bnAbs)
- Proof of principle for elicitation of HIV bnAbs starting from human germline B cells: vaccine induction of PGT121-class glycan-dependent bnAbs by germline targeting and reductionist boosting

Prototype HIV bnAbs: binding regions

A. Ward & C. Corbaci

Development of VRC01-class Germline-Targeting Immunogen

eOD-GT6 bound to GL-VRC01

Self Assembling Nanoparticles

In Vitro Germline VRC01 B Cell Activation

Jardine, Julien, Menis et. al., Science, 2013

Improvement of germline-targeting immunogen by deep mutational scanning and multitarget optimization

Jardine, Kulp, Havenar-Daughton, Sarkar, Briney, Sok et al. Science 2016 (in press)

eOD-GT8 has improved binding to VRC01-class germline antibodies compared to eOD-GT6

Jardine, Kulp, Havenar-Daughton, Sarkar, Briney, Sok et al. Science 2016 (in press)

True vs germline-reverted VRC01-class precursors

Design and validation of germline-targeting immunogens has been based on "germline-reverted" precursors that use CDRH3 and CDRL3 loops from mature bnAbs.

This raises several important questions:

- what do "true" VRC01-class human precursors look like?
- How frequently do they occur in HIV-naïve humans?
- Do "true" VRC01-class precursors bind to eOD-GT8?
 - With sufficient affinity to allow B cell activation?

Sorting GT8 specific naïve human B cells

Jardine, Kulp, Havenar-Daughton, Sarkar, Briney, Sok et al. Science 2016 (in press)

eOD-GT8 isolates VRC01-class precursors from 1 in 2.4 million human naïve B cells

Donor	B cells Screened (millions)	VRC01- class naive B cells
1	1.6	1
2	2.1	1
2 3 4	0.9	0
	5.4	2
5	0.6	0
6	0.5	0
7	1.8	0
8	14.4	4
9	7.8	6
10	4.5	2
11	7.0	1
12	5.9	1
13	1.1	2
14	6.7	5
15	1.3	1
Total	61.6	26

VH1-2 (*02/*03/*04) + 5aa CDRL3

Frequency: 1 in 2.4 million

VRC01-class precursors that bind eOD-GT8 are common in humans

- 10¹⁰-10¹¹ B cells in adult human
- ~50 million B cells per human lymph node
- 65-75% are naïve B cells
- 96% of humans are hetero/homozygous for VRC01-class VH1-2 alleles (*02, *03, *04)

A frequency of 1 VR01-class precursor in 2.4 million naïve B cells means that:

- nearly all humans have 2700 to 31,000 VRC01-class precursors that bind eOD-GT8
- each human lymph node has ~15 VRC01-class precursors that bind eOD-GT8

eOD-GT8 binds with 0.1-30 µM affinity to VRC01-class precursors (and has higher affinity for VRC01-class compared to non-VRC01-class)

Jardine, Kulp, Havenar-Daughton, Sarkar, Briney, Sok et al. Science 2016 (in press)

Test of germline-targeting immunogens in VRC01 gH mice (David Nemazee)

Can eOD-GT8 activate appropriate B cells and select productive mutations, to produce memory B cells that could be boosted by a more native-like immunogen?

Serum and B cell responses in VRC01 gH mice showed robust reponses to the eOD-GT8 60mer

eOD-GT8 60mer reliably elicits Abs with 5AA CDR-L3

eOD-GT8 60mer induced Abs bind to near-native CD4bs in candidate boost immunogens

- GT8-induced monoclonal Abs were isolated by sorting of memory B cells from day 42
- Antibody affinities for boost candidates were measured by SPR

Three stories

- Proof of principle for epitope-focused vaccine design: Epitope-scaffolds for motavizumab elicit potent neutralization of RSV in NHPs
- Toward an HIV vaccine based on the CD4-binding site: germline targeting to initiate induction of VRC01class broadly neutralizing antibodies (bnAbs)
- Proof of principle for elicitation of HIV bnAbs starting from human germline B cells: vaccine induction of PGT121-class glycan-dependent bnAbs by germline targeting and reductionist boosting

PGT121-class interaction with native-like trimer defined

PGT121-class bnAbs among the most common from infection

Barrier to elicitation: PGT121 germline-reverted Abs lack detectable affinity for gp120 or cell-surface Env

Mammalian display/ directed evolution overview

Jon Steichen (unpublished)

Reductionist germline-targeting/boosting strategies to induce PGT121-like bnAbs

Elicitation of tier 2 cross-neutralizing antibodies by reductionist vaccine design in PGT121 gHgL mouse (with Nussenzweig, Burton)

Escolano, Steichen, et al. (unpublished)

Elicitation of tier 2 cross-neutralizing antibodies by reductionist vaccine design in PGT121 gHgL mouse (with Nussenzweig, Burton)

Specificity of tier 2 crossneutralization from gHgL mouse tracks closely With PGT121 "ancestor" 3H3L

Neutralization breadth of best MJ6 mAbs is similar to 3H3L

	MJ6-1	MJ6-2	MJ6-3	3H3L	PGT121
6535	0.009	0.014	0.026	0.043	0.002
92RW020	0.004	0.012	0.022	0.01	0.002
IAVI C22	0.003	0.008	0.011	0.012	0.002
Q23	0.005	0.016	0.024	0.007	0.001
DU156	0.011	0.024	0.059	0.026	0.004
P1981	0.004	0.007	0.016	0.011	0.001
X2088	0.037	0.609	0.316	31.3	0.003
191084B7	0.712	0.862	>50	38.1	0.011
JR-CSF	0.334	0.739	>50	>50	0.02
BG505 T332N	0.55	0.598	>50	0.064	0.026
T250	>50	>50	>50	0.202	0.001
HIV-001428	>50	>50	>50	>50	0.014
PV0.4	>50	>50	>50	>50	0.098
ZM53	>50	>50	>50	>50	0.001
CNE19	>50	>50	>50	>50	0.008
R1166	>50	>50	>50	>50	>50
MLV	>50	>50	>50	>50	>50

IC50 ug/mL				
< 0.01				
0.01 - 0.1				
0.1 - 1.00				
>1.00				

SHM AA%					
Ab	Н	L			
MJ6-1:	9%	16.5%			
MJ6-2:	6.8%	17.4%			
MJ6-3:	6%	13.8%			
3H3L:	11.4%	19.3%			
PGT121:	27.3%	31.2%			

Conclusions/Outlook

- ◆A key challenge for HIV vaccine design is immuno-focusing to bnAb epitopes
- ◆Similar challenges for other antigenically highly variable pathogens such as influenza and hepatitis C viruses, and related challenges for dengue virus
- ◆RSV scaffold immunogens:

Re-capitulation of Mota neutralization specificity provides proof of principle that epitopefocused vaccine design can achieve immuno-focusing with high precision

◆ Vaccines to induce bnAbs against HIV:

Hypothesize that (a) germline-targeting is needed to consistently activate bnAb precursors in vaccine recipients and (b) structure-guided boosting strategies are needed to guide SHM to produce bnAbs.

VRC01 example: Germline-targeting eOD-GT8 60mer has promise to initiate induction of VRC01-class bnAbs. To be tested in humans (IAVI/BMGF). Reductionist boosting strategies to induce VRC01-class bnAbs being tested in various transgenic mice.

PGT121 example: Demonstrated proof of principle for vaccine-induction of HIV bnAbs starting from human germline B cells, by PGT121 germline-targeting and reductionist boosting (using engineered SOSIP trimers) in PGT121 gHgL mice. **A major milestone for HIV vaccine development**. Precursor frequency in humans remains a question.

Acknowledgments- RSV scaffolds

Schief lab

Bruno Correia (now EPFL faculty)

Joe Jardine

Sergey Menis

Possu Huang

Gretchen Baneyx

Oleksandr Kalyuzhniy

Skye MacPherson

Yumi Adachi

Andreia Serra

Eric Stevens

Meaghan Jones

Alex Schroeter

David Baker - UW

Rachel Klevit - UW

Vinayak Vittal

Phil Johnson - CHOP

Mary Connell

Becky Loomis

James Crowe - Vanderbilt

John Bates

Bryan Briney

Roland Strong – FHCRC

Chris Carrico

Pete Rupert

Colin Correnti

Rich Wyatt - IAVI/TSRI

Yuxing Li

Barney Graham - VRC

Man Chen

Funding:

IAVI NIH

Schief lab (UW/TSRI/IAVI)

Joe Jardine Dan Kulp Sergey Menis Possu Huang

Oleksandr Kalyuzhniy

Meaghan Jones

Yumi Adachi

Mike Kubitz

Skye MacPherson

Gretchen Baneyx

Eric Stevens

Alex Schroeter

TSRI/IAVI

David Nemazee

Taka Ota Patrick Skog

Terri Thinnes

Dennis Burton

Devin Sok

Bryan Briney Matthias Pauthner

Ian Wilson

Jean-Philippe Julien

Anita Sarkar

Acknowledgements—VRC01

FHCRC
Leo Stamatatos
Andy McGuire
Allan deCamp

Shane Crotty
Colin Havenar-Daughton
Isaiah Deresa

Rockefeller
Michel Nussenzweig
Pia Dosenovic
Amelia Escolano

<u>SickKids</u> **Jean-Philippe Julien** June Ereño

Lotta von Boehmer

Funding
NIH
IAVI/BMGF
CHAVI-ID (Scripps)

Acknowledgements-PGT121

Schief Lab

Jon Steichen

Yumiko Adachi

Jared Adolf-Bryfogle

Shantanu Bhattacharyya

Erik Georgeson

Jenny Hu

Joe Jardine

Oleksandr Kalyuzhniy

Mike Kubitz

Dan Kulp

Sergey Menis

Angel Nikolov

Justin Ozeki

Torben Schiffner

Skye Spencer

Ryan Tingle

Jordan Willis

Burton lab

Laura McCoy

Bryan Briney

Devin Sok

Nemazee lab

Taka Ota

Deepika Bhullar

Nussenzweig lab

Amelia Escolano

Wilson lab

Fernando Garces

Crotty lab

Colin Havenar-Daughton

