Game Theory and Applications (博弈论及其应用)

Chapter 7: One Deviation,
Back Induction and Bargaining
南京大学

高尉

Recap on Previous Chapter

- The extensive game is an alternative representation that makes the temporal structure explicit
- Perfect information: game tree

Formalize $G = \{N, H, P, \{u_i\}\}$

Pure strategy (Mixed)

Nash Equilibrium

Subgame

Subgame Perfect

Motivation

• Existence:

- Does every extensive game with perfect information have an SPE
- If not, what conditions for the existence an SPE of extensive games with perfect information

Computation:

If an SPE exists, how to compute it

Back Induction (后向归纳)

How to find subgame perfect Equilibria (SPE)

Back induction is the process of "pruning the game tree" described as follows:

- Step 1: start at each of the final subgame in the game, and solve for the player's equilibrium. Remove that subgame and replace it with payoff of the player's choice
- Step 2: Repeat step 1 until we arrive at the first node in the extensive game

Theorem The set of strategy game constructed by backwards induction is equivalent to the set of SPE

Example

• Find a Sub-game perfect Equilibrium

Multiplicity of Subgame Perfect Equilibria

What happens for multiple optimal strategies?

What happens for centipede game?

Notations

Given game
$$G = \{N, H, P, \{u_i\}\}$$

 \triangleright define the initial history of $h \in H$ as

$$A(h) = \{a: (h, a) \in H\}$$

 \triangleright define the length of G as

$$\ell(G) = \max_{h \in H} \{|h|\}$$

the length of the longest history in H

Given pure strategy s_i , and history h s.t. P(h) = i,

$$s_i(h) = a$$
 s.t. $a \in A(h)$ and $a \in s_i$

Example

$$\ell(G)=?$$

$$A(BF)=? A(A)=?$$

Given pure strategy $s_1 = (AG)$, $s_1(BF)=?$

Formal Definition of Subgame

Given $G = \{N, H, P, \{u_i\}\}$, the subgame of extensive game after the history h is

$$G(h) = \{N, H|_h, P|_h, \{u_i|_h\}\}$$

- $-H|_h$ is the set of sequence h' s.t. $(h, h') \in H$;
- $-P|_h(h') = P(h, h')$ for every non-terminal his. $h' \in H|_h$;
- $-u_i|_h(h')=u_i(h,h')$ for every terminal his. $h'\in H|_h$.

Given pure strategy s_i and history h

- $> s_i|_h$ the strategy that s_i induces in subgame G(h).
- $> s_i|_h(h') = s_i(h, h')$ for every $h' \in H|_h$

Example

$$G(B) = \{N, H|_B, P|_B, \{u_i|_B\}\}$$

Subgame Perfect Equilibrium

Theorem For **finite** game $G = \{N, H, P, \{u_i\}\}, s^* = (s_1^*, s_2^*, ..., s_N^*)$ is a subgame perfect equilibrium (SPE) iff

$$\forall h \in H \setminus Z \text{ s.t. } P(h) = i$$

$$u_i|_h(s_i^*|_h, s_{-i}^*|_h) \ge u_i|_h(s_i, s_{-i}^*|_h)$$

for every s_i in G(h).

In words: $s^*|_h$ is a NE in every G(h)

One Deviation Principle (单步偏离原则)

Theorem For finite game $G = \{N, H, P, \{u_i\}\}, s^* = (s_1^*, s_2^*, ..., s_N^*)$ is a subgame perfect equilibrium (SPE) iff

$$\forall h \in H \setminus Z \text{ s.t. } P(h) = i$$

$$u_i|_h(s_i^*|_h, s_{-i}^*|_h) \ge u_i|_h(s_i, s_{-i}^*|_h)$$

for every s_i in G(h) that differs from $s_i^*|_h$ only in A(h).

$$\triangleright s_i(\emptyset) \neq s_i^*|_h(\emptyset)$$

$$> s_i(h') = s_i^*|_h(h')$$
 for $(h, h') \in H$ and $h' \neq \emptyset$

One Deviation

Example: One Deviation Principle

Check whether (AHI, CE) is an SPE, it suffices to check

Player 1: Player 2

G in the subgame G(AC) D in G(A)

K in the subgame G(BF) F in G(B)

BHI in G, and it is not necessary to check BGK, AHK, BHK ...

Infinite Games for One Deviation Property

One deviation does NOT hold for infinite-length game For example

Strategy DDD... satisfies one-stage deviation property AAA...is an SPE

Kuhn's Theorem

Theorem Every **finite** extensive game with perfect information has a subgame perfect equilibrium.

- The SPE consists of pure strategies (not mixing);
- ➤ If all payoffs for each player are different, then SPE is unique;
- ➤ Proof is constructive and builds an SPE bottom-up (backward induction).
- Finite means 'finite length'

Kuhn's Theorem

Theorem Every **finite** extensive game with perfect information has a subgame perfect equilibrium.

Proof. Let $G = \{N, H, P, \{u_i\}\}$ be a finite extensive game. We proceed by induction on $\ell(G(h))$ for h

- If $\ell(G(h)) = 0$ (h is terminal history), R(h) = h;
- Now suppose R(h) is defined for every $\ell(G(h)) \le k$, let h^* be a history s.t. $\ell(G(h^*)) = k + 1$, and let $P(h^*) = i$. $R(h^*, a)$ is a SPE for every $a \in A(h^*)$ since $\ell(G(h)) = k + 1$.

Define

$$a^* = \max_{a \in A(h^*)} \{u_i(R(h^*, a))\}$$

Define $R(h^*) = R(h^*, a^*)$. Based on one deviation principle, $R(h^*)$ is a SPE for $G(h^*)$. We complete the proof by $h^* = \emptyset$.

Kuhn's theorem does not holds for infinite-length games

Counter example (for one player)

$$u_1(AAA...) = 0$$

 $u_1(DDD...) = 1$
 $u_1(AAA...D) = n + 1$ no SPE

Ultimatum Game (最后通牒博弈)

The ultimatum game

- Two players bargain over 1 ¥:
 - Player 1 offers player 2 some amount $1 x \le 1$
 - If player 2 accepts the outcome is: (x, 1 x) e.g. (0.7, 0.3)
 - If player 2 rejects the outcome is: (0, 0)
- Each person cares about the amount of money received. Assume that x can be any scalar, not necessarily integral.
- Question: What is an SPE for this game?

Ultimatum Game

Back induction to find the SPE

- Player 1's optimal strategy
 - If x < 1, then accept
 - If x = 1, then accept or reject
- If player 2 accept for any $x \in [0,1]$
 - What is the optimal offer by player 1? x = 1
 - The SPE is (1,Y)
- If player 2 accept if and only if $x \in [0,1)$
 - What is the optimal offer by A? No solution

Unique SPE (1,Y)

Two-Period Bargaining Game (Ultimatum Game)

- Player 1 offers player 2 some amount 1 x
- Player 2 has two choices:
 - Accept: (x, 1-x)
 - Reject: we flip the role and play again
 - This is the second period of the game

The second period is an ultimatum game:

- − Player 2 offers player 1 some amount 1 − y
- If player 1 accepts, the deal is done
- If player 1 rejects, none of them gets anything

Discount Factor

- We add one important factor
 - In the first round, the pie is worth 1 ¥
 - If we end up in the second round, the pie is worth less
- Example:
 - If I give you 1 \(\text{Y} \) today, that's what you get
 - If I give you 1 \pm in 1 year, we assume it's worth less, say $\delta < 1$

Discounting factor:

– From today perspective, 1 Y tomorrow is worth $\delta < 1$

Analysis for Two-Period Bargaining Game

It is clear that the decision to accept or reject partly depends on what you think in the second round A^1

Backward induction:

- The unique SPE in the second period $(0, \delta)$
- What you should offer in the first period: palyer 1 offer $x = 1 \delta$

Comparisons

	Player 1	Player 2
1-period	1	0
2-period	$1-\delta$	δ

- ➤ In the second round of the two-period game, player 2 gets the whole pie
- The pie in the second round, that player 2 gets, is worth less than 1 ¥

Three-Period Bargaining Game

The rules are the same as for the previous games, but now there are two possible flips:

- Period 1: player 1 offers first
- Period 2: if player 2 rejected in period 1, she gets to offer
- Period 3: if player 1 rejected in period 2, he gets to offer again

Discounting factor:

- the value of a pie in round three is discounted by δ
- the value of a pie in round three is discounted by δ^2

Analysis for Three-Period Bargaining Game

In the third round

- Unique SPE (δ^2, Y)
- Payoffs $(\delta^2, 0)$
- In the second round
 - Unique SPE $(\delta \delta^2, Y)$
 - payoffs $(\delta^2, \delta \delta^2)$
- In the first round
 - Unique SPE $(1 \delta + \delta^2, Y)$
 - payoffs $(1 \delta + \delta^2, \delta \delta^2)$

Result for Three-Period Bargaining Game

	Player 1	Player 2
1-period	1	0
2-period	$1-\delta$	δ
3-period	$1 - \delta(1 - \delta)$	$\delta(1-\delta)$

- ➤ In the second round of the two-period game, player 2 gets the whole pie
- The pie in the second round, that player 2 gets, is worth less than 1 ¥

Result for Four-Period Bargaining Game

	Player 1	Player 2
1-period	1	0
2-period	$1 - \delta$	δ
3-period	$1 - \delta(1 - \delta)$	$\delta(1-\delta)$
4-period	?	?

Analysis for n-Period Bargaining Game

Geometric series

• payoff for player 1 on n —period bargaining

$$1 - \delta + \delta^{2} - \delta^{3} + \dots + (-\delta)^{n-1} = \frac{1 - (-\delta)^{n}}{1 + \delta}$$

• payoff for player 2 on n —period bargaining

$$1 - \frac{1 - (-\delta)^n}{1 + \delta} = \frac{\delta - (-\delta)^n}{1 + \delta}$$

Large Number of Period Bargaining Game

Let's look at the asymptotic behavior of this game, when there is an infinite number of stages

Player 1:
$$\frac{1-(-\delta)^n}{1+\delta} \to \frac{1}{1+\delta}$$

Player 2:
$$\frac{\delta - (-\delta)^n}{1 + \delta} \rightarrow \frac{\delta}{1 + \delta}$$

Let's imagine that the offers are made in rapid succession: this would imply that the discount factor we hinted at is almost negligible $\delta \to 1$

So, if we assume rapidly alternating offers, we end up with a 0.5-0.5 split!