KVM fürs Rechenzentrum

fork eines google-Projekts

Sascha Lucas

GISA GmbH Halle (Saale)

10. März 2018 Chemnitzer Linux Tage

Vorstellung

Sascha Lucas

- aktuelle Tätigkeit
 - Linux Admin Team
 - SLES & Ubuntu
 - ansible
- ullet Virtualisierung mit KVM seit pprox 2010

Gliederung

- Einleitung
- 2 Anwendungsbeispiele
- 3 Redundanzprinzipien und Ressourcenverwaltung
- Projekt-Status, Community, fork
- 5 story: Ubuntu Paket

Gliederung

- Einleitung

4 / 34

KVM: für wen und womit?

Rechenzentrum: Räumlichkeiten, in denen die zentrale Rechentechnik ... untergebracht ist (wikipedia)

Einsteiger

Mittlere

Größere

KVM: für wen und womit?

Rechenzentrum: Räumlichkeiten, in denen die zentrale Rechentechnik ... untergebracht ist (wikipedia)

Einsteiger

Mittlere

Größere

Ganeti von Google entwickelt: verwaltet VMs in einem Cluster KVM/XEN; CLI/REST; Python2/Haskell; BSD-2-Clause

Ganeti: Eigenschaften für ein breites Spektrum

- mini-RZ für Einsteiger: Cluster aus 3 PCs
 - ▶ std. PC, lokale Platten
 - → ideal für kleine Infrastrukturen (Startups, Außenstandorte)
 - ► Ganeti ist "selfcontained"
 - keine management-Systeme notwendig
 - ▶ keine weiteren Software-Stacks (keine DB etc.)
 - ▶ im Debian/(Ubuntu) enthalten

Ganeti: Eigenschaften für ein breites Spektrum

- mini-RZ für Einsteiger: Cluster aus 3 PCs
 - std. PC, lokale Platten
 - → ideal für kleine Infrastrukturen (Startups, Außenstandorte)
 - ► Ganeti ist "selfcontained"
 - keine management-Systeme notwendig
 - keine weiteren Software-Stacks (keine DB etc.)
 - ▶ im Debian/(Ubuntu) enthalten
- mit "Rechenzentrums"-Eigenschaften
 - hohe Verfügbarkeit der VMs (N+1 Redundanz)
 - Cluster hat kein SPOF
 - scale-out (compute/storage)
 - VMs migrieren live
 - automatische Ressourcen-Verwaltung
 - upgrades ohne downtime (für die VMs)
- 1 Cluster skaliert in mittlere Region: 50-100 HW-Server, 1000 VMs
 - → KMUs (ecommerce, Dienstleister, UNIs/Institute, ...)
- Anwendung bei "Großen" (Google): hunderte von Clustern

Gliederung

- 2 Anwendungsbeispiele

Große und Mittlere

- Google interne Dienste (virt. Desktops, Entwicklungssysteme, ...) sehr viele Cluster über Standorte verteilt
 - grnet griechisches Wissenschafts- und Technologie-Netzwerk ightarrow Synnefo Cloud Okeanos (pprox 5k VMs)

VMs are not cattle, they are pets.

Große und Mittlere

- Google interne Dienste (virt. Desktops, Entwicklungssysteme, ...) sehr viele Cluster über Standorte verteilt
 - grnet griechisches Wissenschafts- und Technologie-Netzwerk \rightarrow Synnefo Cloud Okeanos (\approx 5k VMs)

 VMs are not cattle, they are pets.
- OSUOSL hostet bekannte OSS-Projekte: busybox, inkscape, jenkins, kde, musicbrainz, mythtv, openstreetmap, gemu
- debian.org Debian Infrastruktur
- JULIE Lab Uni Jena Computer-Linguistik (pprox 16 VMs Infra und Sci)

Große und Mittlere

```
Google interne Dienste (virt. Desktops, Entwicklungssysteme, ...) sehr viele Cluster über Standorte verteilt
```

grnet griechisches Wissenschafts- und Technologie-Netzwerk ightarrow Synnefo Cloud Okeanos (pprox 5k VMs)

VMs are not cattle, they are pets.

OSUOSL hostet bekannte OSS-Projekte: busybox, inkscape, jenkins, kde, musicbrainz, mythtv, openstreetmap, qemu

debian.org Debian Infrastruktur

JULIE Lab Uni Jena Computer-Linguistik (pprox 16 VMs Infra und Sci)

skroutz gr. Preisvergleichs-Site (= Debian Paket Maintainer)

sprd.net AG spreadshirt T-Shirt-Druck (\approx 380 VMs e-com Plattform, \approx 190 VMs Infra und Dev Hauptsitz Leipzig)

GISA GmbH IT-Dienstleister Halle (Saale) (≈ 200 VMs)

Einsteiger

Brasilien, West-Afrika, Bangladesch, Bhutan, via Network Startup Ressource Center (NSRC) Uni Oregon

Gliederung

- Einleitung
- 2 Anwendungsbeispiele
- 3 Redundanzprinzipien und Ressourcenverwaltung
- 4 Projekt-Status, Community, fork
- 5 story: Ubuntu Paket

CLT 2018

master

- HW-Server = node
- master-node steuert Cluster
- Instanzen = VMs
- hier DRBD-Setup: Spiegelung der Daten je VM auf sekundärem node

Sascha Lucas KVM fürs Rechenzentrum CLT 2018

Ausfall node-3

- Ausfall node-3
- failover aller Instanzen von node-3 (von Hand anzustoßen)
- Frage: was ist begrenzender Faktor für failover?

- Ausfall node-3
- failover aller Instanzen von node-3 (von Hand anzustoßen)
- Antwort: hier RAM node-2: N+1 Redundanz wird garantiert

- Ausfall node-3
- failover aller Instanzen von node-3 (von Hand anzustoßen)
- Antwort: hier RAM node-2: N+1 Redundanz wird garantiert
- Wiederherstellen der Redundanz Instanz-1

Reparatur node-3

- Wiederherstellen der Redundanz Instanz Orange und Blau
 - ▶ Delta-Synchronisation für Ausfallzeit node-3

- zuerst master-Rolle umschalten (von Hand anzustoßen)
- default 10 master-Kandidaten

CLT 2018

- zuerst master-Rolle umschalten (von Hand anzustoßen)
- default 10 master-Kandidaten
- danach failover node-1 (analog "Ausfall node-3")
 - betrifft konkret Instanz Rot und Orange

14 / 34

- Netzwerk-Dateisystem (z.B. NFS)
- raw disk images (sparse=thin), kein qcow2
- failover/migration jeder node möglich

15 / 34

- ceph/rados cluster (dediziert, nicht via Ganeti verwaltet)
- RBD oder librados

- ceph/rados cluster (convereged, nicht via Ganeti verwaltet)
- RBD oder librados

Instanz hinzufügen

Anlegen einer neuen Instanz

Instanz hinzufügen

- Anlegen einer neuen Instanz
- wird automatisch auf einem passenden node platziert

node hinzufügen

Cluster um einen neuen node erweitern.

CLT 2018

node hinzufügen

- Cluster um einen neuen node erweitern
- Ausbalancieren der Instanzen

node Wartung

• node für neue Allokationen sperren (drain)

node Wartung

- node für neue Allokationen sperren (drain)
- alle Instanzen von node-2 migrieren

node Wartung

- node für neue Allokationen sperren (drain)
- alle Instanzen von node-2 migrieren
- ullet node als offline markieren o Wartung durchführen

19 / 34

Instanz-Auschluss-Tags

- App A, z.B. 2 DNS-Server, sollen nicht auf gleichem node laufen
- Tags: Cluster-Ebene htools:iextags:app, Instanz app:A

Instanz-Auschluss-Tags

- App A, z.B. 2 DNS-Server, sollen nicht auf gleichem node laufen
- Tags: Cluster-Ebene htools:iextags:app, Instanz app:A
- Ausbalancieren

20 / 34

Zusammenfassung

- N+1 Redundanz wird garantiert (1 node darf ausfallen)
- hail: neue Instanzen werden automatisch im Cluster verteilt
- hbal: Cluster kann ausbalanciert werden
 - node hinzufügen, failover, migrieren
 - Applikationen gleichen Typs auf Wunsch über mehrere nodes verteilt
- hspace: Kapazitätsplanung: wieviele Instanzen noch frei
- hroller: optimierte rolling node reboots
- hsqueeze: Cluster maximal verdichten (green IT)

OS-Interface

Frage: Wie kommt das OS in die VM?

Frage: Wie kommt das OS in die VM? Antwort: Mit dem Erstellen.

22 / 34

CLT 2018

Frage: Wie kommt das OS in die VM? Antwort: Mit dem Erstellen.

Ganeti OS interface

Funktionen ($\hat{=}$ executables) auf node:

create, export, import, rename, verify

Frage: Wie kommt das OS in die VM? Antwort: Mit dem Erstellen.

Ganeti OS interface

Funktionen ($\hat{=}$ executables) auf node:

create, export, import, rename, verify

create

ENV	Verwendungzweck
OS_VARIANT	welches OS soll installiert werden
DISK_%N_PATH	auf welchen Platten
INSTANCE_NAME	Hostname der Instanz (FQDN)
NIC_%N_X	<code>X=IP</code> , <code>NETWORK_{SUBNET</code> , <code>GATEWAY</code> $\} ightarrow eth \% N$
OSP_*	benutzerdefinierte Parameter

Ermöglicht OS-Provisionierung mit Option zur Anpassung. Bsp.:

VM ist mit Erstellung online (hook-Skript)

bekannte OS-Interfaces

noop macht "nichts" \rightarrow Installation via ISO etc.

debootstrap nutzt debootstrap (Debian, Ubuntu)

ganeti-os-noop und ganeti-instance-debootstrap sind in Debian enthalten

bekannte OS-Interfaces

noop macht "nichts" → Installation via ISO etc.

debootstrap nutzt debootstrap (Debian, Ubuntu)

ganeti es noop und ganeti instance debootstrap sind in Deb

ganeti-os-noop und ganeti-instance-debootstrap sind in Debian enthalten snf-image cloned Disk-Images, Anpassungen in Hilfs-VM

- Handhabung für \$most_linux_distros und *BSD
- und sogar M\$-windows (Vgl. sysprep)

bekannte OS-Interfaces

noop macht "nichts" \rightarrow Installation via ISO etc. debootstrap nutzt debootstrap (Debian, Ubuntu)

ganeti-os-noop und ganeti-instance-debootstrap sind in Debian enthalten

snf-image cloned Disk-Images, Anpassungen in Hilfs-VM

- Handhabung für \$most_linux_distros und *BSD
- und sogar M\$-windows (Vgl. sysprep)

"your OSI" selber machen

- z.B. mit < 100 Zeilen bash
- benutzt dd und guestfish für Anpassung SLES/Ubuntu (in VM isoliert)
- s. Vortrag Mini GanetiCon 2017

Ganeti Cluster: Redundanz und Ressourcenverwaltung

Zusammenfassung

- geringe Einstiegshürde: 3(1) Server, lokaler Storage, keine Managemement-Systeme
- ullet in Debian/(Ubuntu) enthalten o nur leichtgewichtige Abhängigkeiten
- ullet skaliert problemlos: pprox 1000 VMs pro Cluster
- VMs sind hoch verfügbar: DRBD-Spiegel, N+1 Redundanz
- Ressourcen werden automatisch verwaltet
- VM ist provisioniert und als Option online

Gliederung

- Einleitung
- 2 Anwendungsbeispiele
- Redundanzprinzipien und Ressourcenverwaltung
- Projekt-Status, Community, fork
- 5 story: Ubuntu Paket

Geschichte

- 16.07. 2007: Initial commit
- 14.02. 2009: Debian GNU/Linux 5.0 released (ganeti-1.2.6)
- um 2012 bis 2015 rege Aktivitäten seitens Google
 - Entwicklungs-Team in München
 - Stellenausschreibung Entwicklungs-Leiter
 - mehrere GSoC
 - externe Beiträge durch GRNET (synnefo cloud)

häufige Releases, viele Neuerungen \to Grundlagen für heutiges Ganeti Bis dahin: Google entwickelt, kleine Nutzer-Gemeinschaft

Geschichte

- 16.07. 2007: Initial commit
- 14.02. 2009: Debian GNU/Linux 5.0 released (ganeti-1.2.6)
- um 2012 bis 2015 rege Aktivitäten seitens Google
 - Entwicklungs-Team in München
 - Stellenausschreibung Entwicklungs-Leiter
 - mehrere GSoC
 - externe Beiträge durch GRNET (synnefo cloud)

häufige Releases, viele Neuerungen \to Grundlagen für heutiges Ganeti Bis dahin: Google entwickelt, kleine Nutzer-Gemeinschaft

- 28.07. 2015: letztes feature release 2.15
- 16.12. 2015: letztes bugfix release 2.15.2

Geschichte

- 16.07. 2007: Initial commit
- 14.02. 2009: Debian GNU/Linux 5.0 released (ganeti-1.2.6)
- um 2012 bis 2015 rege Aktivitäten seitens Google
 - Entwicklungs-Team in München
 - Stellenausschreibung Entwicklungs-Leiter
 - mehrere GSoC
 - externe Beiträge durch GRNET (synnefo cloud)

häufige Releases, viele Neuerungen \to Grundlagen für heutiges Ganeti Bis dahin: Google entwickelt, kleine Nutzer-Gemeinschaft

- 28.07. 2015: letztes feature release 2.15
- 16.12. 2015: letztes bugfix release 2.15.2
- was ist passiert?
 - lacktriangleright in 2016 Auflösung Team München ightarrow zurück nach Dublin
 - weiterhin Bugfix- und Optimierungs-commits

Geschichte

- 16.07. 2007: Initial commit
- 14.02. 2009: Debian GNU/Linux 5.0 released (ganeti-1.2.6)
- um 2012 bis 2015 rege Aktivitäten seitens Google
 - Entwicklungs-Team in München
 - Stellenausschreibung Entwicklungs-Leiter
 - mehrere GSoC
 - externe Beiträge durch GRNET (synnefo cloud)

häufige Releases, viele Neuerungen \to Grundlagen für heutiges Ganeti Bis dahin: Google entwickelt, kleine Nutzer-Gemeinschaft

- 28.07. 2015: letztes feature release 2.15
- 16.12. 2015: letztes bugfix release 2.15.2
- was ist passiert?
 - lacktriangleright in 2016 Auflösung Team München ightarrow zurück nach Dublin
 - weiterhin Bugfix- und Optimierungs-commits
- 15.12. 2017: mini GanetiCon Leipzig → tuwat!

CLT 2018

Community

"Jeder fängt mal an"

auf mini GanetiCon 2017 wird klar:

- Beteiligung von Google beschränkt auf eigene Interessen
 - $\rightarrow \text{langfristig wird ein } \textbf{fork} \text{ notwendig sein}$
- Aufbau einer eigenen Community

Community

"Jeder fängt mal an"

auf mini GanetiCon 2017 wird klar:

- Beteiligung von Google beschränkt auf eigene Interessen
 - → langfristig wird ein **fork** notwendig sein
- Aufbau einer eigenen Community
- ad-hoc Maßnahmen
 - Erstellung des release 2.16 (Google)
 - Sicherung des Debian-Paketes für 2.16 (Debian Maintainer)
 - Verbesserung Paket-Qualität Ubuntu/LTS (Community)

zukünftige Ausrichtung

langfristig

Festhalten an positiven Eigenschaften

- selfcontained: keine Management-Systeme, keine weiteren SW-Stacks
- fester Bestandteil der Debian/(Ubuntu) Distribution

zukünftige Ausrichtung

langfristig

Festhalten an positiven Eigenschaften

- selfcontained: keine Management-Systeme, keine weiteren SW-Stacks
- fester Bestandteil der Debian/(Ubuntu) Distribution

Was muss/soll/kann sich ändern?

- ullet PEP 373: python-2.7 EOL 2020 \to Migration zu Python 3 notwendig
- etwas beizutragen soll "einfach" sein
 - ▶ Python ist attraktiv, Haskell weniger → Migration zu Python?
 - ▶ allg. Code-Basis mit nur einer Sprache wünschenswert
- Bekanntheit und Attraktivität steigern
 - Vorträge wie CLT
 - bessere "defaults" (kvm:security_model, drbd:dynamic-resync)
- Feature: DRBD-9?

Kontaktdaten

```
home http://www.ganeti.org
doc http://docs.ganeti.org
wiki https://ganeti.googlesource.com/wiki/+/master
code https://github.com/ganeti/ganeti
mail https://groups.google.com/forum/#!forum/ganeti
dev-mail https://groups.google.com/forum/#!forum/ganeti-devel
IRC #ganeti on Freenode
```

Einsteiger: nutzt Debian, oder fragt auf der ML nach dem Ubuntu Status

Gliederung

- Einleitung
- 2 Anwendungsbeispiele
- Redundanzprinzipien und Ressourcenverwaltung
- Projekt-Status, Community, fork
- 5 story: Ubuntu Paket

allgemein

- ganeti und ganeti-instance-debootstrap sind in universe-Sektion
- universe-Sektion wird durch community (MOTU) betreut
- Ubuntu merged/synced mit Debian unstable/sid bis FeatureFreeze
 - ▶ bionic/18.04: 1. März

allgemein

- ganeti und ganeti-instance-debootstrap sind in universe-Sektion
- universe-Sektion wird durch community (MOTU) betreut
- Ubuntu merged/synced mit Debian unstable/sid bis FeatureFreeze
 - ▶ bionic/18.04: 1. März

Ubuntu universe-Sektion

- "zufälliger" Schnappschuss von Debian unstable/sid
- ohne paket-spezifische Maintainer
- → Debian Maintainer muss Ubuntu release-Zyklen beachten

xenial/16.04

- ganeti-2.15.2-3: schlägt fehl wg. openssh DSA-Key
 - ► RSA-Key Unterstützung im debain Paket ganeti-2.15.2-7 enthalten
- ganeti-instance-debootstrap-0.15-2: schlägt fehl wg. sfdisk Parameteränderung (LP #1577346)
 - ▶ mit v0.16 gefixed \rightarrow in Debian stretch

triviale Fehler, stören Einsteiger-Wahrnehmung ightarrow Fix sollte möglich sein

autopkgtests

ganeti

Ubuntu autopkgtests = Debian CI

- artful/17.10 build-Fehler arm64
 - ▶ Überschneidung FeatureFreeze + Debian build queue
- ullet bionic/18.04 autopkgtest-VM zu klein: 4 Anläufe IRC #ubuntu-devel

Ende

Fazit

- ullet Ganeti sorgt für entspannten RZ-Betrieb o Weiterführung lohnt sich
- Unterstützung seitens Google, Debian und grnet vorhanden
- Ubuntu Probleme erkannt und Lösung denkbar (Ansgar, ich)
 - ▶ PPA: https://launchpad.net/~ansgarj/+archive/ubuntu/ganeti

neue Nutzer und Beiträge sind herzlich willkommen

Ende

Fazit

- ullet Ganeti sorgt für entspannten RZ-Betrieb o Weiterführung lohnt sich
- Unterstützung seitens Google, Debian und grnet vorhanden
- Ubuntu Probleme erkannt und Lösung denkbar (Ansgar, ich)
 - ▶ PPA: https://launchpad.net/~ansgarj/+archive/ubuntu/ganeti

neue Nutzer und Beiträge sind herzlich willkommen

DANKE Fragen?

