合肥工学大学 操作系统实验报告

实验题目	实验 13 扫描 FAT12 文件	
	系统管理的软盘	
学生姓名	<u> </u>	
学 号	2019217769	
专业班级	物联网工程 19-2 班	
指导教师	田卫东	
完成日期	2021年11月24日	

合肥工业大学 计算机与信息学院

1. 实验目的和任务要求

通过查看 FAT12 文件系统的扫描数据,并调试扫描的过程,理解 FAT12 文件系统管理软盘的方式。

通过改进 FAT12 文件系统的扫描功能,加深对 FAT12 文件系统的理解。

2. 实验原理

EOS 使用的 FAT12 文件系统中,一个簇只包含一个扇区,所以扇区的分布可以如图 8-2 所示。

图 8-2: 1.44M 软盘上 FAT12 文件系统的扇区分布

FAT12 文件系统的系统区从 0 扇区开始, 到 32 扇区结束。这 33 个扇区又分成了三部分,分别是引导扇区、文件分配表(FAT)和根目录。其中引导扇区占用 0 扇区, FAT 表占用 1 到 18 扇区,根目录占用 19 到 32 扇区。余下的 33 到 2879 扇区是数据区。有了这些详细的分布信息,图 8-2 就可以演变为图 8-3 了。

图 8-3: 1.44M 软盘上 FAT12 文件系统的更详细的扇区分布

3. 实验内容

3.1. 阅读控制台命令"sd"相关的源代码,并查看其执行的结果

新建一个 EOS Kernel 项目,按 F7 生成在本实验 3.1 中创建的 EOS Kernel 项目,启动调试。在 EOS 控制台中输入命令"sd"后按回车。

3.2. 根据 BPB 中的信息计算出其他信息

修改"sd"命令函数 ConsoleCmdScanDisk 的源代码,在输出 BPB 中保存的信息后,不再通过 pVcb->FirstRootDirSector 等变量的值进行打印输出,而是通过 BPB 中保存的信息重新计算出下列信息,并打印输出:

- (1) 计算并打印输出根目录的起始扇区号,即 pVcb->FirstRootDirSector的值。
 - (2) 计算并打印输出根目录的大小,即 pVcb->RootDirSize 的值。
 - (3) 计算并打印输出数据区的起始扇区号,即 pVcb->FirstDataSector的值。
 - (4) 计算并打印输出数据区中簇的数量,即 pVcb->NumberOfClusters 的值。

源代码修改完毕后,按 F7 生成项目,启动调试。待 EOS 启动完毕,在 EOS 控制台中输入命令 "sd"后按回车。

3.3. 阅读控制台命令"dir"相关的源代码,并查看其执行的结果

按 F7 生成创建的 EOS Kernel 项目。按 F5 启动调试。待 EOS 启动完毕, 在 EOS 控制台中输入命令"dir"后按回车。

3.4. 输出每个文件所占用的磁盘空间的大小

修改"dir"命令函数 ConsoleCmdDir 的源代码,要求在输出每个文件的名称、大小、最后改写时间后,再输出每个文件所占用的磁盘空间(以字节为单位)。

```
pDirEntry = (PDIRENT)(pBuffer + 32 * i);
        跳过未使用的目录项和被删除的目录项
     if(0x0 == pDirEntry->Name[0]
           || (CHAR) 0xE5 == pDirEntry->Name[0])
          continue:
     FatConvertDirNameToFileName(pDirEntry->Name, FileName);
     int n. NowCluster:
     for(n=0, NowCluster=pDirEntry=>FirstCluster;pDirEntry=>FirstCluster !=0;)
          if(FatGetFatEntryValue(pVcb, NowCluster)==(USHORT)0xFF8)
          NowCluster=FatGetFatEntryValue(pVcb, NowCluster);
     fprintf(StdHandle, "%s
                                            %d
                                                           %d-%d-%d %d:%d:%d
                                                                                             %d\n".
          marmarune, ws wa warmarwa warwaliwa waliya waliya marmarune, ws pilentry->FileName, pDirEntry->LastWriteDate. Year, pDirEntry->LastWriteDate. Month, pDirEntry->LastWriteDate. Day, pDirEntry->LastWriteTime. Hour, pDirEntry->LastWriteTime. Minute, pDirEntry->LastWriteTime. DoubleSeconds, n*512);
BufferSize = 0; // 缓冲区大小设置为 0, 表示释放全部缓冲区
MmFreeVirtualMemory(&pBuffer, &BufferSize, MEM RELEASE, TRUE);
```

在"项目管理器"窗口中双击 Floppy.img 文件,使用 FloppyImageEditor工具打开此软盘镜像。将"学生包"文件夹中的 void.txt 文件(大小为 0)添加到软盘镜像的根目录中(将 void.txt 文件拖动到 FloppyImageEditor 窗口中释放即可)点击 FloppyImageEditor工具栏上的保存按钮,关闭该工具。

启动调试, 待 EOS 启动完毕, 在 EOS 控制台中输入命令"dir"后按回车。

4. 实验的思考与问题分析

4.1. 在 ConsoleCmdScanDisk 函数中扫描 FAT 表时,为什么不使用 FAT 表项的数量进行计数,而是使用簇的数量进行计数呢?而且为什么簇的数量要从 2 开始计数呢?

答:文件分配表(File Allocation Table)用于将数据区中的磁盘空间分配给文件,属于典型的显式链接方式。文件分配表被划分为紧密排列的若干个表项,每个表项都与数据区中的一个簇相对应,而且表项的序号也是与簇号一一对应的,本来序号为0和1的FAT表项应该对应于簇0和簇1,但是由于这两个表项被设置成了固定值,簇0和簇1就没有存在的意义了。

4.2. 在 ConsoleCmdScanDisk 函数中扫描 FAT 表时,统计了空闲簇的数量,然后使用簇的总数减去空闲簇的数量做为占用簇的数量,这种做法正确吗? 是否还有其他类型的簇没有考虑到呢?修改 ConsoleCmdScanDisk 函数,统计出各种类型簇的数量。

答:不正确,还有坏簇。

fprintf(StdHandle, "Number Of Clusters: %d\n",

pVcb->Bpb. Sectors-((pVcb->Bpb. ReservedSectors+pVcb->Bpb. Fats*pVcb->Bpb. SectorsPerFat)));

4.3. 在 FAT12 文件系统中,删除一个文件只是将文件对应的目录项中文件名的

第一个字节修改为 0xE5,尝试修改"dir" 命令函数 ConsoleCmdDir 的源代码,不但能够输出现有文件的信息,还能够输出已经被删除文件的信息,被删除文件的信息可以包括文件名、大小、最后改写日期、起始簇号等信息。考虑一下这种删除文件方式的优点和缺点。

答:

```
//
// 跳过未使用的目录项和被删除的目录项
//
if(0x0 == pDirEntry->Name[0])
// || (CHAR)0xE5 == pDirEntry->Name[0])
continue:
```

优点: 删除文件迅速,将文件名的第一个字节修改为 0xE5 即可,恢复文件方便,查找文件名的第一个字节为 0xE5 的。

缺点: 文件依然占用存储空间。

5. 总结和感想体会

通过本次试验,我明白了FAT12 文件系统的组成分为引导扇区、文件分配表(FAT)、根目录和数据区,对于文件分配表的指针表项有了一定的了解。学会了 sd 和 dir 命令的使用,以及对相应的函数 ConsoleCmdScanDisk 和ConsoleCmdDir进行修改操作。