Espaces Vectoriels de Dimension finie Sous-Espaces Vectoriels

MPSI 2

1 Dimension de sous-espaces vectoriels

Soit E un \mathbb{K}_{EV} de dimension finie.

Propriété 1.0.1

Soit F un S_{EV} de E.

Alors:

- F est de dimension finie.
- $\dim(F) \leqslant \dim(E)$
- $F = E \iff \dim(F) = \dim(E)$

On raisonne sur une base de F.

2 Somme de sous-espaces vectoriels

Soit E un \mathbb{K}_{EV} de dimension finie. Soient F et G deux S_{EV} de E.

Définition 2.0.1

On appelle somme de F et G le sous-espace vectoriel engendré par $F \cup G$

Notation: $F + G = \text{Vect}(F \cup G)$

Propriété 2.0.2

$$F + G = \{x \in E, \ \exists (x_F, x_G) \in F \times G, \ x = x_F + x_G\}$$

Propriété 2.0.3

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

On raisonne avec les bases de F, G, et $F \cap G$, et avec le théorème de la base incomplète sur $F \cap G$.

3 Somme directe, espaces supplémentaires

Soit E un \mathbb{K}_{EV} de dimension n.

Définition 3.0.2

Soient F et G deux S_{EV} de E.

- La somme F + G est <u>directe</u> si $F \cap G = \{0_E\}$
- F et G sont supplémentaires de E si $F \oplus G = E$

Notation: Somme directe de F et G: $F \oplus G$

Propriété 3.0.4

$$\varphi_1 \colon F \times G \longrightarrow F + G$$

 $(x_F, x_G) \longmapsto x_F + x_G$
 $\varphi_1 \text{ est linéaire et surjective.}$

- F et G sont en somme directe ssi φ_1 est injective.
- F et G sont en somme directe ssi tout élément de F+G s'écrit comme manière unique comme CL d'éléments de F et de G.

Définition 3.0.3

$$\sum_{i=1}^{p} E_i = \text{Vect}\left(\bigcup_{i=1}^{p} E_i\right)$$

Définition 3.0.4

Soit
$$\varphi \colon E_1 \times ... \times E_p \longrightarrow E_1 + ... + E_p$$

 $(x_1, ..., x_p) \longmapsto x_1 + ... + x_p$

La somme $\sum_{i=1}^{p} E_i$ est directe ssi φ est injective, c'est à dire si tout élément de $E_1 + ... + E_p$ s'écrit comme CL unique d'éléments de $\{E_1 \times ... \times E_p\}$.

Notation: $\bigoplus_{i=1}^{p} E_i$

Propriété 3.0.5

F+G est une somme directe ssi la réunion d'une base de F et d'une base de G est une base de F+G.

Corollaire 3.0.1

$$\dim(F \oplus G) = \dim(F) + \dim(G)$$

Corollaire 3.0.2

- Si F et G sont supplémentaires de E, alors $\dim(F) + \dim(G) = \dim(E)$
- Tous les S_{EV} supplémentaires de F dans E sont de dimension $\dim(E) \dim(F)$
- Tous les S_{EV} supplémentaires de F dans E sont isomorphes.

Critères de supplémentarité

$$\begin{cases} F \cap G = \{O_E\} \\ F + G = E \end{cases} \text{ ou } \begin{cases} \dim(F) + \dim(G) = \dim(E) \\ F + G = E \end{cases} \text{ ou } \begin{cases} \dim(F) + \dim(G) = \dim(E) \\ F \cap G = \{0_E\} \end{cases}$$

Propriété 3.0.6

Existence d'un supplémentaire d'un S_{EV} de E

Soit F un S_{EV} de E.

F admet au moins un S_{EV} supplémentaire dans E.

On utilise le théorème de la base incomplète, et on forme l'espace vectoriel engendré par les termes ajoutés à la base de F.

On a donc l'union des deux bases égale a une base de E.

Définition 3.0.5

Soit F et G deux S_{EV} supplémentaires de E.

On a: $\forall x \in E, \ \exists (x_F, x_G) \in F \times G, \ uniques, \ x = x_F + x_G$

• $P_F \colon E \longrightarrow E$ est la projection sur F parallèlement à G.

 $x \longmapsto x_F$

• $S_F \colon E \longrightarrow E$ est la symétrie par rapport à F et parallèlement à G.

 $x \longmapsto x_F - x_G$

Propriété 3.0.7

- P_F est linéaire, $P_F \circ P_F = P_F$, $\operatorname{Im}(P_F) = F$, $\ker(P_F) = G$
- S_F est linéaire, $S_F \circ S_F = \mathrm{Id}_F$, $\mathrm{Im}(S_F) = E$, $\ker(P_F) = \{0_E\}$

4 Théorème du Rang

Théorème du Rang

Soit E un \mathbb{K}_{EV} de dimension n.

Soit F un \mathbb{K}_{EV} .

Soit $f: E \to F$ linéaire.

On a alors:

$$\underbrace{\dim(\operatorname{Im}(f))}_{Rang\ de\ f} + \dim(\ker(f)) = n$$

• Soit (e_1, \ldots, e_n) une base de E.

Soit $(\varepsilon_1, \ldots, \varepsilon_k)$ une base de $\ker(f)$.

D'après le théorème de la base incomplète:

il existe i_1, \ldots, i_{n-k} indices distincts de [1, n] tels que $(\varepsilon_1, \ldots, \varepsilon_k, e_{i_1}, \ldots, e_{i_{n-k}})$ soit une base de E.

Soit $E_1 = Vect(\{e_{i_1}, ..., e_{i_{n-k}}\})$

Alors $E = \ker(f) \oplus E_1$, et $f|_{E_1}$ est injective.

• $\operatorname{Im}(f|_{E_1}) = \operatorname{Vect}(\{f(e_{i_1}), \dots, f(e_{i_{n-k}})\})$ car $\{e_{i_1}, \dots, e_{i_{n-k}}\}$ est générateur de E_1 . De plus, $\{e_{i_1}, \dots, e_{i_{n-k}}\}$ est libre $\operatorname{\underline{et}} f$ est injective, donc $\{f(e_{i_1}), \dots, f(e_{i_{n-k}})\}$ est

Ccl:
$$\{f(e_{i_1}), \dots, f(e_{i_{n-k}})\}$$
 est une base de $\operatorname{Im}(f|_{E_1})$

• $\operatorname{Im}(f) = \operatorname{Vect}(\{\underbrace{\varepsilon_1}, \dots, \underbrace{\varepsilon_k}_{=0_E}, e_{i_1}, \dots, e_{i_{n-k}}\})$
 $= \operatorname{Vect}(\{e_{i_1}, \dots, e_{i_{n-k}}\})$
 $= \operatorname{Im}(f|_{E_1})$

Ccl: $\operatorname{Im}(f) = \operatorname{Im}(f|_{E_1})$

Donc $\dim(\operatorname{Im}(f)) = \dim(\operatorname{Im}(f|_{E_1}))$ = n - k $= n - \dim(\ker(f))$

Conclusion générale: $\dim(\operatorname{Im}(f)) + \dim(\ker(f)) = n$