Présentation 1

Réalisation de l'algorithme

2.1 Tri des points

Question 1 Citer 3 algorithmes de tris et donner leur complexité dans le meilleur des cas, le pire des cas et le cas moyen.

Correction

	Tri par insertion	Tri rapide	Tri fusion
Pire des cas	$C(n) = \mathcal{O}\left(n^2\right)$	$C(n) = \mathcal{O}\left(n^2\right)$	$C(n) = \mathcal{O}\left(n^2\right)$
Cas moyen	$C(n) = \mathcal{O}(n^2)$	$C(n) = \mathcal{O}(n \log n)$	$C(n) = \mathcal{O}(n \log n)$
Meilleur des cas	$C(n) = \mathcal{O}(n)$	$C(n) = \mathcal{O}(n \log n)$	$C(n) = \mathcal{O}(n \log n)$

Question 2 On donne l'algorithme d'un tri dans le document réponse (à la question suivante). Donner son nom et remplacer les fonctions «mystere» par un nom plus adéquat.

Question 3 Modifier l'algorithme de tri donné pour qu'il prenne en argument la liste des points P. Pour cela vous barrerez et réécrirez les lignes à modifier.

Correction

Il s'agit du tri rapide.

```
■ Python
def segmente(tab,i,j):
   g =i+1
   d=j
   p=tab[i][0]
   while g<=d :
       while d>=0 and tab[d][0]>p:
           d=d-1
       while g \le j and tab[g][0] \le p:
          g=g+1
       if g \le d:
           tab[g],tab[d]=tab[d],tab[g]
           d=d-1
           g=g+1
   tab[i],tab[d]=tab[d],tab[i]
   return k
def tri_quicksort(tab,i,j):
   if i < j:
       k = segmente(tab,i,j)
       tri_quicksort(tab,i,k-1)
       tri_quicksort(tab,k+1,j)
```

2.2 Fonction orientation

Question 4 En utilisant les points dans le tableau de la page précédente, donner le résultat du test d'orientation pour les points d'indices suivants :

1

```
• i = 0, j = 1, k = 2;
```

[•] i = 6, j = 7, k = 8.

Correction

Les points P_0 , P_3 et P_4 les points sont orientés positivement. On peut le voir graphiquement. Sinon, on a : $\overrightarrow{P_0P_1} = (2,1)$ et $\overrightarrow{P_0P_2} = (2,6)$. $\begin{vmatrix} 2 & 2 \\ 1 & 6 \end{vmatrix} = 12 - 2 = 10$.

Mes points P_6 , P_7 et P_8 les points sont orientés négativement. On peut le voir graphiquement. Sinon, on a : $\overrightarrow{P_6P_7} = (2,4)$ et $\overrightarrow{P_6P_8} = (3,1)$. $\begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} = 2 - 12 = -10$.

Question 5 Écrire une fonction orientation(tab,i,j,k) prenant comme paramètres la liste des points ainsi que l'indice des points à tester. Cette fonction renverra-1, 0 ou 1 suivant le résultat du test d'orientation des points d'indices i, j et k.

```
Python
def orientation(tab,i,j,k):
    p1, p2, p3 = tab[i], tab[j], tab[k]
    p12 = [p2[0]-p1[0],p2[1]-p1[1]]
    p13 = [p3[0]-p1[0],p3[1]-p1[1]]
    det = p12[0]*p13[1]-p12[1]*p13[0]
    if det <0:
        return -1
    elif det >0:
        return 1
    else:
        return 0
```

2.3 Création de l'enveloppe supérieure

Question 6 À l'instant 0, quelle instruction permet de tester si Es est vide? Que faut-il alors faire pour initialiser Es ? À l'instant i, que faire si Es ne contient qu'un seul élément?

Correction À l'instant 0, Es est vide. On peut le tester avec la fonction est_vide. On empile donc l'élément 0.
À l'instant i, si Es est vide, on empile l'élément i.
À l'instant i, si Es ne contient qu'un seul élément, on empile l'élément i.

Question 7 Écrire la fonction enveloppe_Sup(tab, Es, i).

Correction

```
■ Python
def enveloppe_Sup_rec(tab,Es,i):
   if est_vide(Es):
       push(Es,i)
   else :
       p1 = i
       p2 = pop(Es)
       if est_vide(Es):
           push(Es,p2)
           push (Es,p1)
       else :
           p3 = top(Es)
           if orientation(tab,p1,p2,p3)>0:
               push (Es, p2)
               push (Es, p1)
           else :
               enveloppe_Sup_rec(tab,Es,i)
```

2

2.4 Analyse de l'algorithme final

return (ei)

Question 8 On donne dans le document réponse l'algorithme permettant de retourner la pile contenant les indices des sommets de l'enveloppe convexe à partir d'un nuage de points. Commenter les blocs d'instructions de ce programme. Donner la complexité de l'algorithme dans le pire des cas.

Correction ■ Python def enveloppe_convexe(tab): tri(tab) # Tri de la liste des points # Initialisation de l'enveloppe supérieure es = creer_pile() ei = creer_pile() # Initialisation de l'enveloppe inférieure for i in range (len(tab)): # On balaye les points et on crée les enveloppes inf et sup enveloppe_Inf(tab,ei,i) enveloppe_Sup(tab,es,i) # Tous les points vont être transférés dans l'enveloppe inf pour pop(es) # creer l'enveloppe finale. Le dernier point de la liste initiale # est dans les deux enveloppes. On supprime donc le doublon. while (not(est_vide(es))): # On dépile l'enveloppe sup dans l'enveloppe inf push(ei,pop(es)) pop(ei) # Le point 0 étant un doublons on le supprime.