

REPORT DOCUMENTATION PAGE

AFRL-SR-AR-TR-02-

0229

<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments concerning this burden to Washington Headquarters Services, D Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork</p> <p style="text-align: right;">0229</p>			
1. AGENCY USE ONLY (Leave blank)		2. REPORT DATE	3. REPORT TITLE AND DATES COVERED 01 Jun 99 to 30 Nov 01 FINAL
4. TITLE AND SUBTITLE A Low-cost Spacecraft Mission for Validating formation flying tecnnologies		5. FUNDING NUMBERS 61102F 2305/CU	
6. AUTHOR(S) Prof. Cantwell			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stanford Univ 651 Serra Street Room 260 Stanford CA 94305-4125		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NE 801 North Randolph Street Rm 732 Arlington, VA 22203-1977		10. SPONSORING/MONITORING AGENCY REPORT NUMBER F49620-99-1-0273	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION AVAILABILITY STATEMENT APPROVAL FOR PUBLIC RELEASED; DISTRIBUTION UNLIMITED		12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) Please find attached the slide report for the Nanosat program with the Emerald satellite, This is for the combined efforts of the Stanford and Santa Clara University Emerald Project.			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT UL

20020816 068

Nanosat One

Critical Design

Review

Principal Investigators:

Prof. Jonathan How
Prof. Christopher Kitts
Prof. Robert Twiggs

University Schedule

Emerald structures, mechanisms, and thermal Systems

- Program introduction
- Emerald/Orion common systems
- Emerald specific systems/experiments
- Orion specific systems/experiments

NASA GSFC

University Program Overview

- 3 satellites organized in 2 missions
- Orion Project
 - Stanford University
 - MIT
- Emerald Nanosatellite Project
 - Stanford University
 - Santa Clara University

NASA GSFC

Three Satellite Mission

- Formation Flying Concept
- Mission Description
- Mission Objectives
- Mission Profile
- Project Schedule

NASA GSFC

Formation Flying Concept

The small satellite advantage!

- Less costly
- Simpler designs
- New mission architectures

Clusters of cooperative satellites

Applications

- Synthetic apertures
- Distributed field measurements

Support from NASA & USAF

NASA GSFC

Formation Flying Concept

Challenges:

- Limited mission resources
- Fleet management & control
- Communication architecture

Methodology

Basic research Testbed missions

Verify principles Validate design concepts

NASA GSFC

Mission Description

Demonstrate closed-loop formation flying in space

Carrier phase GPS data shared
(Allows relative navigation & formation flying)

Emerald 1 (Beryl)

- Two GPS antennas
- One GPS receiver
- Limited control

Emerald 2 (Chromium)

Orion

- Six GPS antennas
- Three GPS receivers
- Full 6 DOF control

NASA GSFC

Mission Objectives

Comprehensive on-orbit demo of true formation flying

- Develop technologies to build a **virtual spacecraft bus**
- GPS sensing & fleet control

Orion-Emerald system is a **flexible, low-cost test platform**

Leader-referenced control Centralized control

NASA GSFC

Orion Overview

- Development Team
- Mission/Experiments
- System Summary
- Requirements

NASA GSFC

Orion Development Team

- Space Systems Development Lab
 - Dept. of Aeronautics and Astronautics, Stanford University
- Space Systems Laboratory
 - Dept. of Aeronautics and Astronautics, MIT
- <http://ssdl.stanford.edu/orion>

NASA GSFC

Experiments

PHASE 1: Orion in formation with 1 Emerald

- Emerald only performs GPS data collection & comm link
- Orion performs closed-loop control w.r.t. Emerald
- Various (in-track) coarse, fine-parking, & precision modes
- At least 3 orbits, & repeatable over 2 weeks

PHASE 2: Orion in formation with 1 Emerald

- Emerald provides GPS data/comm link
- Emerald also responds to control inputs from Orion
- At least 3 orbits, & repeatable over 2 weeks.

PHASE 3: Orion in formation with both Emeralds

- Same as phase 2, apply various control architectures
- At least 3 orbits, repeatable

NASA GSFC

Operational Details

NASA GSFC

System Concept

NASA GSFC

Orion Design Requirements

- Technical Goals
- Performance Requirements
- Safety Summary
- Integration

NASA GSFC

Technical Goals

- Demonstrate control for a cluster of micro-satellites.
 - real-time autonomous control software
 - formation directed at a high-level from the ground
- Demonstrate GPS receiver for real-time attitude & relative navigation
 - first on-orbit demonstration of CDGPS for precise relative navigation and control
 - Expect <<1 m (relative - radial) for determination & 5 m (relative - radial) for control.
 - low-power, low-cost, attitude capable GPS receiver.
- Various control architectures and a real-time inter-vehicle communication link and ranging.

NASA GSFC

Performance Requirements

Mission success:

• Relative position determination	~10 cm
• Relative position control	~5 m
• Attitude determination	~2°
• Attitude control	~10°

Key design requirements:

- GPS receiver must function properly at all times
- Communications design must allow for direct data exchange between satellites during all phases
- Flight control software must control the constellation to the required degree of accuracy
- System resources must be sufficient to perform experiments as needed

NASA GSFC

Performance Requirements

General bus requirements:

- Mass and size restrictions as defined by MSDS budgets
- Components must operate within expected thermal environment
- Components must operate within expected radiation environment
- Component-level size, mass, and power restrictions

NASA GSFC 20

Performance Requirements

Subsystem requirement summary:

Structure

- Provide structural support & mounting surfaces for all subsystem components
- Total system mass < 40 kg
- Structural fundamental frequency > 100 Hz
- Center of mass location within 1/4" radius of geometric z-axis
- Survive launch loads
- Minimize changes to inertia matrix over time
- Fracture controls

NASA GSFC 21

Performance Requirements

GPS Payload

- Acquire and maintain GPS signal lock in all flight modes
- Sense satellite state (absolute & relative) to required mission levels
- Calculate satellite state at a sufficient rate to achieve necessary control bandwidth
- Calculate control responses at a sufficient rate

Power

- Supply enough current at appropriate voltage for all flight modes

NASA GSFC 22

Performance Requirements

Attitude Determination & Control

- Provide enough actuation authority for all flight modes in all expected environmental conditions
- Robustness against failure or poor performance
- Enough resources to ensure minimum mission success

Communications

- Provide reliable downlink and crosslink
- Utilize low-cost (amateur) transmission frequencies

NASA GSFC 23

Performance Requirements

Command & Data Handling

- Provide enough memory and processing speed to handle housekeeping tasks and routine data collection
- Provide serial interfaces to communications and GPS subsystems
- Provide PIC interface to ADCS and telemetry for distributed computing efficiency

NASA GSFC 24

Safety Summary - Structure

Issue	Hazard	Control
Strength	Structural failure due to insufficient design	Sine Burst Testing, FEM modeling
Natural Frequency	Dynamic coupling	Model Testing, FEM Modeling
Acoustic	Structural failure during launch	Random Vibration Testing
Envelope	Interference with other payloads, ground support equipment etc	Approved envelope compliance
Fracture Control	Structural failure due to flaws	Approved critical components and compliances
Manufacturing	Structural failure due to poor quality	Engineering Model, manufacture by procedure

NASA GSFC 25

Safety Summary - Propulsion

Issue	Hazard	Control
Components leak or rupture	Explosion, venting	Components meet/exceed required FOS Components tested to 1.5 x MDP System tested to 1.2 x MDP
Operational inhibits (Mechanical)	Inadvertent operations & associated hazards	2 fault tolerant design to prevent inadvertent venting of gas
Operational inhibits (Electrical)	Inadvertent operations & associated hazards	Latching relay inhibits on all subsystems with catastrophic hazards (x4)

NASA GSFC 26

Safety Summary - Power

Issue	Hazard	Control
Battery containment	Shorting, insecure positioning	Sealed T6061 Aluminum box
Battery leak or rupture	Fire, explosion, contamination, corrosion	Pressure relief valves with inline filters (20 psi crack pressure), (x2) Fiberglass absorbing material
Battery charging inhibits*	Overcharging hazards	Latching relay inhibits on solar cell-battery circuit path (x4)
Operational inhibits*	Inadvertent operations & associated hazards	Latching relay inhibits on all subsystems with catastrophic hazards (x4)

* Power inhibits are disabled when Orion receives a "safe distance" signal from the MSOS

NASA GSFC 27

Safety Summary – Torquer Coils

Issue	Hazard	Control
None	n/a	n/a

- No critical hazards exist
- Coil system is power inhibited with rest of main bus
- For inadvertent operation, analysis shows compliance with ICD 2-19001 section 10.7.3.2.1.2

Verification

- Measure the generated field strengths on flight article

NASA GSFC 28

Safety Summary

Comm

Issue	Hazard	Control
Inadvertent transmissions	Interference with Shuttle electronics	3-fault tolerant power inhibit scheme

CDH

Issue	Hazard	Control
Inadvertent operation of subsystems	Operation of hazardous subsystems	<ul style="list-style-type: none"> 3-fault tolerant power inhibit scheme Critical functions require confirmation I2C commands require checksum

- Resistors (30Ω) are placed in series with the data and control lines
- SDI switching to ground

NASA GSFC 29

Integration Requirements

MSDS Integration

- Satellite must interface with MSDS deployment mechanism
- Satellite and all protrusions must fit within MSDS stack envelope

Ground Operations

- External port for battery charging
- Inhibit verification
- Operational testing
- Other servicing requirements

NASA GSFC 30

Emerald Overview

- Development Team
- Mission/Experiments
- System Summary
- Requirements

NASA GSFC 31

Development Team

- Stanford University
 - Graduate and undergraduate students
 - Master's and Ph.D. level
 - Volunteer time, work for course credit, Research Assistantships
- Santa Clara University
 - Undergraduate seniors
 - Senior design project credit
- <http://ssdl.stanford.edu/emerald>

NASA GSFC

Emerald Mission

Demonstrate Robust Distributed Space Systems

- A distributed architecture to facilitate integration and operations.
- Distributed and autonomous science experimentation and satellite operation
- Supporting subsystem-level technologies
- Simple closed-loop relative position control for 2 and 3 bodies (with Orion)
- Low-cost satellite development techniques

NASA GSFC

Development Approach

- Rapid prototyping: off-the-shelf components
- Building-block strategy
 - Start with minimized baseline design
 - Add features as time and funding allow
- Industry guidance and support
 - Mentors
 - Partnerships
- Aggressive schedule
- Internet distribution of information

NASA GSFC

Emerald Experiments

- GPS Formation Flying
- VLF Atmospheric Science
- Colloid Micro-Thruster
- Radiation Test Bed
- Experimental C&DH architecture

NASA GSFC

System Summary

The diagram illustrates the system architecture. At the top is the **Chromium** module, which contains the **MERIT** sub-module. Below **Chromium** is the **VLF Science** module, which includes **GPS FF**, **Ops**, **Autonomy**, and **Dist Comp**. To the right of **Chromium** is the **Beryllium** module. At the bottom is the **Colloid Thruster** module. Arrows indicate connections between **Chromium** and **MERIT**, **Chromium** and **VLF Science**, **VLF Science** and **Beryllium**, and **Beryllium** and **Colloid Thruster**.

- 19" hex, 9" x 12" sides
- Al honeycomb, stackable trays
- 12 v and 5 v reg. power
- I²C data & command bus
- Dallas 1-Wire power switching & telemetry
- Half-duplex inter-satellite communication
- Full-duplex ground link
- Drag panel position control
- GPS relative positioning

NASA GSFC

Sources of Requirements

- Mission fulfillment
 - Experiment success
 - Operational integrity
- AFRL – for MSDS integration
- Launch safety considerations

NASA GSFC

Requirements Outline

- Emerald Stack
- Subsystems
 - EPS
 - STRUCT/MECH
 - ADCS
 - COMM
 - CDH
- Experiments
 - VLF
 - CMT
 - MERIT
 - Formation Flying

NASA GSFC

38

Stack Requirements

- Mission success
 - Groundlink communication while stacked
 - Commandable separation
- AFRL integration
 - Envelope restrictions (RFDW)
 - < 50 kg
 - Natural frequency > 100 Hz

NASA GSFC

39

RFDW for Envelope Req.

- Comm antennas extend beyond AFRL envelope
- All clearances greater than .3 in. for SHELS static envelope

NASA GSFC

40

EPS Requirements

- Mission Success
 - Provide sufficient regulated power to nanosat systems throughout mission life
- AFRL integration
 - Interface to MSDS electrical system for inhibit removal

NASA GSFC

41

EPS Requirements

- Launch Safety Requirements
 - Two fault tolerant inhibits on all power paths
 - Additional set of two fault tolerant inhibits on STRUCT/MECH subsystem (contact hazard)
 - Fourth inhibit used on each path to bypass inhibit monitoring requirement

NASA GSFC

42

STRUCT/MECH Requirements

- Mission Success
 - Provide structural stability and protection for all nanosat systems
 - Provide position control to enable formation flying – drag panels
 - Provide deployment of 3-meter VLF antenna
 - Provide ability to stack nanosats for launch
 - Provide ability to separate nanosats on-orbit

NASA GSFC

43

STRUCT/MECH Requirements

- AFRL integration requirements
 - Do not exceed envelope restrictions
 - Provide capability to mount to SSS
- Launch Safety Requirements
 - Structure and all mechanisms must adhere to NASA safety requirements

ADCS Requirements

- Mission Success
 - Determination
 - Measure spin rate within 1deg/sec (GPS and CMT)
 - Measure attitude within 5 deg (VLF)
 - Control
 - Spin rate to within 1 deg/sec in pitch and yaw (GPS)
 - Orient VLF antennas perpendicular to nadir within +/- 10 deg (VLF)

ADCS Requirements

- Launch Safety Requirement
 - Torquer coil magnetic field must be < -170 dBpT (~ 5 gauss) (we operate with ~ 1 gauss)

COMM Requirements

- Mission Success
 - Provide groundlink and inter-satellite communication
 - Provide low-power communication mode for crosslink
 - Provide sufficient bandwidth to downlink experimental data
- Launch Safety Requirement
 - RF emissions must not exceed levels specified in orbiter payload ICD

CDH Requirements

- Mission Success
 - Provide commanding and data handling capabilities for all nanosat systems throughout mission life
- No integration or safety requirements

Experiment Requirements

- No integration or safety requirements for:
 - VLF
 - MERIT
 - Formation Flying
 - Autonomy

Colloid Micro-Thruster (CMT)

- AFRL Integration Requirements
 - Accessible remove-before-flight covers
- Launch Safety Requirements
 - Propellant
 - Non-toxic
 - Non-corrosive
 - Protect ground crew from high-voltage (remove-before-flight covers)
 - Adhere to all NASA structural requirements for sealed containers

NASA GSFC

Command & Data Handling

NASA GSFC

Requirements

- Common system for Emerald and Orion
- Functional Requirements
 - Decode ground and inter-satellite communication
 - Forward commands to distributed subsystems
 - Coordinate/Control Experiments
 - Store/Buffer instrument data
 - Download data to the ground station
 - Control power switching for subsystems and experiments
 - Batch Commands and Scheduling for Operations
 - Gather health and telemetry data

NASA GSFC

Components: Emerald

- CPU (Spacequest)
 - Main command & data
 - Collect Health and Telemetry
 - Scheduling
- Data Bus (Dallas and I2C)
 - Modular connection to subsystems & experiments
- PIC Boards
 - Standard interface for subsystems to data bus
- Bus Monitor
 - Backup command & data
 - Operations Experiments

NASA GSFC

Components: Orion

Science computer:
• Provides fast platform for floating-point calculations

SpaceQuest CPU
• V53-based (10 MHz)
• 6 Serial Channels
• 1MB EDAC RAM
• BekTek OS (COTS)

PIC16F877 Subsystem Microcontrollers
• I2C Interface
• Serial
• 8 A/D Converters
• On-board RAM/ROM

NASA GSFC

CPU: Overview

- Processes Commands
 - Ground
 - Other Satellites
- Routes Information
 - Telemetry
- Scheduling and Experiment Coordination

NASA GSFC

Testing: Overview

- Modular Design
 - Stand alone basic testing
 - Incremental Integration
- Bottom up testing
- Debug Interfaces
 - SpaceQuest CPU
 - PIC Boards

NASA GSFC

Testing: Equipment

- Artic Card (RIC) in PC
 - 80186 (V53 Compatable)
 - High level software testing
 - Modem/Serial interfacing
- PC to Data Bus interface
 - Dallas
 - I2C

NASA GSFC

Testing: PC – Data Bus Interface

NASA GSFC

Testing: Interfaces

- ✓ Dallas Send/Receive
- ✓ I2C Send/Receive (extended)
- ✓ Serial Send/Receive
- ✓ Ax.25 Send/Receive (comm)
- Modem Control (digital I/O)
- Bus Monitor Arbitration (Emerald Only)

NASA GSFC

Testing: Full System

- Full Data Path

- Simulation of Multiple Satellites

NASA GSFC

Safety and Reliability

- Safety Compliance
 - C&DH subsystem powered off until safe distance from the Space Shuttle
 - All components conformal coated to minimize outgassing
- Reliability
 - Memory has 8 bit correctable EDAC
 - Critical functions require both command and confirmation
 - I2C commands require a valid checksum
 - Connectors are staked

NASA GSFC

SECUREM **SSDL** **SEL**

Requirements

- Common system for Emerald and Orion
- Functional Requirements
 - Satellite ↔ ground station
 - Satellite ↔ satellite
 - 9600 baud
 - Independent Download for Emerald vs. Orion
 - Receive only Frequency: No jamming

NASA GSFC

SECUREM **SSDL** **SEL**

Components

- Full duplex up/down links half-duplex cross-link
- 24V DC power
- 350 mW XLR power
- Omni-directional antenna pattern circular polarization
- Hamtronics FM TX/RX kits
- SpaceQuest GMSK modem
 - AX.25 protocol
 - 9600 baud max data rate
- In-house assembly and test

NASA GSFC

SECUREM **SSDL** **SEL**

Specifications

- Full Duplex, Mode J (amateur)
 - 2m Uplink
 - 70cm Downlink
- Half Duplex Crosslink (70cm)
- Omni-directional antennas with circular polarization.

NASA GSFC

SECUREM **SSDL** **SEL**

Frequency Scheme

Orion Emerald

437.475 MHz 437.475 MHz
145.835 MHz 145.835 MHz

Ground

NASA GSFC

SECUREM **SSDL** **SEL**

Modem

- Manufactured by SpaceQuest
- GMSK encoding
- Dual Channel
 1. 9600 baud fixed
 2. Software adjustable (9600 baud max)

NASA GSFC

Bus Monitor

SSDL

Design Overview

- Monitors State and Activity of Data Bus
- Provides Direct Access to Data Bus
 - CPU Backup
 - Operations Experiments
- Can Achieve minimum functionality of all components on the Bus
- Separate Modem

CPU Arbitration

- Comm interface board has hardware switch
 - CPU must send pulse to keep control
 - Tx, PTT, Power Level Control
- Direct CPU connection
 - Request Comm Control
 - Reset CPU's I2C interface
 - Reset CPU (requires 2 signals)

Manufacture

- Manufacture
 - Manufactured by Advanced Circuits
 - Assembled by contractor
- Fabrication and assembly will adhere to published assembly instructions for all circuitry and hardware

Test

- Functional testing of all circuitry
- Communication Control Switching
- Communication Control Arbitration
- CPU's modem signal rejection
- RF ↔ Modem ↔ Bus Monitor ↔ PIC

NASA GSFC

Safety

- C&DH subsystem powered off until safe distance from the Space Shuttle
- All components conformal coated to minimize outgassing
- CPU can prevent Bus Monitor control of Comm System

NASA GSFC

Science Computer

NASA GSFC

Hardware

• StrongARM 1100 CPU	• StrongARM 1110 20MHz CPU
• Power: 2W	• Power: 2W
• Memory: 4 MB flash, 32 MB RAM	• Memory: 16 MB flash, 8-64 MB RAM
• Comm: 2xRS-232 (no handshake), 1xRS-422	• Comm: 3xRS-232, GPIB
• Limited Supply	• COTS (two week delivery time)
• EM Development Purposes	• Proposed Flight Units

NASA GSFC

Software Development

ARM

- ARM Linux
 - Low Overhead
 - Low Cost
 - Versatile
- Realtime Issues
 - Realtime OS not needed
 - Low Bandwidth (< 10 Hz)
 - Write custom task dispatcher
- PC Code Generation
 - Translate Matlab M Functions into C
- Linux Software Compilation
 - GNU C Cross Compiler
 - Download Ramdisk into StrongArm

NASA GSFC

Predicted GPS Results

	μ	σ
Absolute Pos (m)	33.9	18.7
Relative Radial Position (cm)	1.3	3.22
Relative In-track Position (cm)	1.4	2.27
Relative Cross-track Position (cm)	-1.6	1.45
Relative Radial Velocity (mm/s)	0.17	1.8
Relative In-track Velocity (mm/s)	0.26	1.1
Relative Cross-track Velocity (mm/s)	0.14	1.0

- Lab predicted estimation errors for realistic on-orbit scenario - includes bias acquisition.
- Currently developing hardware in the loop tests to verify these results/assumptions

Electrical Power Subsystem

NASA GSFC 124

Design Summary

- Four Major Divisions
 - Body-mounted Gallium Arsenide solar cells
 - Electronics for power regulation, radiation latch-up protection, digital power switching, voltage, temperature and current measurement
 - One 10-cell, series-connected battery housed in 2 boxes of 5 cells each
 - Power inhibits

NASA GSFC 125

Body Mounted Solar Cells

- Spectrolab Gallium Arsenide triple-junction cells – 26% average efficiency
- Single cell voltage – 2.2 V open circuit
- 8 cells per string, 17.6 V open circuit
- 9.3 W average power
- 15 strings on each nanosat
- Kapton substrate electrically insulates cells from body panels

NASA GSFC 126

Power-Up Sequence

- Separation from Orbiter
 - All systems not powered
 - All inhibits not monitored
- T1 Signal from MSDS Platform
 - All systems powered except
STRUCH/MECH
- T2 Signal from MSDS Platform
 - STRUCH/MECH system powered

NASA GSFC

140

Design Analysis

- Performance Analysis
 - Expected power output
- Structural Considerations
 - Battery Box
- Thermal Considerations
 - Batteries
 - Electronics

NASA GSFC

141

System Performance

Spacecraft					
Cell voltage	1.2	volts	Cell size	3.36	sq. in.
Cell capacity	5	AH	Cell current	264	mA
# of cells/pack	5	cell	Cell voltage	2.2	volts
N of packs	2	packs	S. Area to light	53.8	sq. in.
Flight weight	6	kg	Time illuminated/orbit	78.3	min.
Total capacity	5	AH	Cell Power Output	560.9	mW
Fwd/rearward storage	30	WH/cell	Cell Pow Out S. Area	173.657	mW sq. in.
Front/rearward storage	50	WP	Avg. Power Output	9299.714	mW
Front/rearward storage	50	WP	Avg. energy output	12.195	WH

NASA GSFC

142

Battery Box Structural Analysis

- Must support mass of batteries
 - Battery mass, .75 kg per box
 - 20G dynamic load, 15 kg
 - 4 feet, .125 sq. in. area per foot
 - 66 psi total shear load on box feet
 - FS of 227 on foot strength
 - May reduce size of feet
- Must hold 20 psi internal pressure
 - .25 in. thick walls
 - FS of 10000
 - May reduce thickness of box walls

NASA GSFC

143

Thermal Analysis

- Battery the only critical component
- Battery thermal requirements
 - Charge
 - 0-45 deg. C.
 - Discharge
 - -20-60 deg. C.
 - Storage
 - -30-50 deg. C.
- Thermal finite element model shows compliance with these limits for on-orbit operation.

NASA GSFC

144

Battery Box Manufacture

- Materials
 - 6061 T6 Aluminum box structure
 - Teflon Battery Spacers
 - Fiberglass absorbant material
 - Vitron O-ring
 - 2 20 psi cracking check valves
 - Hermetic connector
- All parts of the EPS are non fracture critical

NASA GSFC

145

Battery Box Manufacture

- Construction
 - Boxes milled from aluminum
 - Spacers milled from Teflon
 - O-ring custom made
 - Check valves threaded into box
 - Hermetic connector threaded into box
 - Batteries set in spacers and potted

NASA GSFC

145

Electronics Manufacture

- Custom boards manufactured by Advanced Circuits and built at Stanford University
- Standard PicMicro board
- Fabrication and assembly will adhere to published assembly instructions for all circuitry and hardware

NASA GSFC

146

Test

- Battery Box
 - Proof test to 20 psi
 - Leak test (digital pressure sensor)
- System functional test

NASA GSFC

148

Ground Operations

- Battery box to be sealed and purged at the universities
- Inhibits disabled, reset, and verified through the STPI
 - Procedure will be listed here
- Batteries charged through the STPI
 - Procedure for charging will be here
 - 6 month time limit between charges, based on heritage experience with batteries from OPAL

NASA GSFC

149

Requirements Fulfillment

- System meets power needs of spacecraft as designed
- Inhibit scheme adequately prevents power accidentally being applied

NASA GSFC

150

Attitude Determination and Control (ADCS)

NASA GSFC

151

Materials

- Light sensor, magnetometer, ODDSS
 - Electronic components
 - Custom-manufactured PCB
- Torquer Coil
 - Aluminum frame
 - Magnet wire
 - Epoxy: Stycast 2850FT w/ Catalyst 9

NASA GSFC 156

Mass & Fracture Control

- Mass
 - Electronics: 0.5 kg
 - Torquer Coil: 0.5 kg
- Fracture Control
 - No portions of the ADCS are fracture-critical

NASA GSFC 156

Design Analyses

- Analyses performed:
 - Separation analysis
 - Drag stabilization analysis
 - Torquer coil stabilization analysis

NASA GSFC 160

Separation Analysis

- Objective: determine optimal stack orientation for separation
- Goal: Separate stack such that resulting orbits are close together
- Examine two separation possibilities
 - In-track separation
 - Out-of-plane separation
 - Radial separation not feasible with available attitude control capability

NASA GSFC 161

Separation Analysis

- In-track separation
 - Can compensate for separation velocities using drag panels
 - If drag panels fail, satellites separate by ~250 km/day – only 10 hours of crosslink
 - If drag panels work, compensation takes ~20 days

NASA GSFC 162

Separation Analysis

- Out-of-plane separation
 - Causes inclination change – worst case 0.8 km
 - J2 perturbations add 3 km separation per month
 - Acceptable for mission success
 - Can achieve via torquer coil orientation & separation at northern- or southern-most part of orbit

NASA GSFC 163

SECUREMU **SSDL**

Manufacture

- Custom boards manufactured by Advanced Circuits and built at Stanford University
- Standard PicMicro board
- Torquer coils constructed at Stanford University
- Fabrication and assembly will adhere to published assembly instructions for all circuitry and hardware

NASA GSFC 164

SECUREMU **SSDL**

Test

- Functional testing performed on all circuitry and hardware

NASA GSFC 165

SECUREMU **SSDL**

ADCS Ground Operations

- No ground operations required

NASA GSFC 166

SECUREMU **SSDL**

Requirements Fulfillment

- Mission Success
 - The light sensors and magnetometer fulfill determination requirements
 - Passive drag stabilization meets operational requirements
 - Torquer coil stabilization allows optimal separation orientation
- Launch Safety Requirements
 - Torquer coil field well below limit

NASA GSFC 167

SECUREMU **SSDL**

VLF Receiver Experiment

NASA GSFC 168

SECUREMU **SSDL**

Experiment Objectives

- Mission Statement
 - This atmospheric science experiment utilizes a set of VLF receivers (one on each spacecraft) to detect electromagnetic disturbances due to lightning.
- Mission Objectives
 - Characterize the ionosphere
 - Validate benefits of formation flying
 - Perform a comparative study of how satellite size and processing architecture impact a baseline science mission

NASA GSFC 169

Colloid Micro Thruster

Experiment Objectives

- Optimization of 70's technology into a Low-Power, High-Efficiency Micro-Thruster
 - Highly Integrated, Modular Design
 - New Thruster Core Design
- Technology Demonstration
 - Spacecraft Spin-Up to demonstrate operation
 - Thruster exhaust sensor to detect emission

CMT Prototype Rev 2.0

CMT System Revision

- Revision 1.0
 - Two Thruster Modules
 - Each Module has a Thruster Core and Propellant Systems
 - Summary: One TCU, Two Modules, Two TCOREs, Two Propellant Systems
- Revision 2.0
 - One Thruster Module with two Thruster Cores
 - Both Thruster Core is fed by one Propellant System
 - Summary: One TCU, One Module, Two TCOREs, One Propellant System
 - Less hardware, less complexity
 - No impact to EMERALD / MSDS / SHIELDS or Shuttle Safety

CMT System Overview

- Generate thrust by electrically charging and accelerating very small droplets
- One Thruster Module:
 - Two Different Thruster Core design is fed by One Propellant System
- Expected Performance:
 - 0.05 mN Thrust, ~500 sec Isp, 15 m/s ΔV
 - >90° satellite rotation after 15 min thrust
- Sodium-Iodide / Glycerol Propellant
 - 30 gr NaI per 100 ml Glycerol Solution
 - 20 milliliters, 25 grams, <1 psi pressure
- System Specification:
 - 500 g system weight, 10 x 10 x 20 cm
 - 8 Watts max, no standby power
- Low-power, Hot-filament neutralizer

CMT System Overview

Fracture Control Overview		
Component	Classification	Compliance
Aluminum honeycomb composite	Fracture critical	<ul style="list-style-type: none"> Material Certification by AL composite supplier Manufacturing consistent with established aerospace practices and done by written procedure Pull testing of insert coupons consistent with flight articles Sine burst testing at assembly level (1.2x design limit load)

NASA GSFC 212

Fracture Control Overview		
Component	Classification	Compliance
6061-T6 Aluminum L Brackets	Low risk; non-fracture; low-risk; non-fracture; critical	<ul style="list-style-type: none"> Table 1 material #3,4 and 10 fasteners from GSFC #3, #4 fasteners used in high Margin of Safety applications All fasteners will have backoff prevention in the form of locking nuts, locking inserts or loctite All stainless steel inserts will be screened for defects

NASA GSFC 213

Fracture Control Overview		
Component	Classification	Compliance
Component boxes	Non fracture critical; contact low-risk sealed	<ul style="list-style-type: none"> Exempt Aluminum Alloy Proof Tested to 1.5 MDP
Battery box	Non fracture; low-risk sealed	Will be covered later in the presentation
Cold gas propulsion system: low pressure	Non fracture; pressurized; fracture critical	Will be covered later in the presentation
High pressure system: high pressure	critical	

NASA GSFC 214

Manufacturing Overview	
Issue	Resolution
Flight Hardware Control	<ul style="list-style-type: none"> Documented Inventory Control Material Certification Documents Engineering Drawings of all components Isolation of Flight Hardware
Integration Control	<ul style="list-style-type: none"> Manufactured in a Clean Room Environment at Stanford
Flight Qualification	<ul style="list-style-type: none"> Strength Sine Proof Natural Frequency: Sine Internal Verification Checklists Vibroacoustic: Random

NASA GSFC 215

Flight Hardware Control		
<ul style="list-style-type: none"> Documented Inventory Control by means of inventory control forms provided by AFRL <ul style="list-style-type: none"> All incoming flight materials will be accounted for in these documents The forms will include purchasing information, quantities, dates, names, incoming inspection and other relevant information Isolation of Flight Hardware <ul style="list-style-type: none"> All flight hardware will be kept in a clean environment and separate from all other 		
216		

Integration Control		
<ul style="list-style-type: none"> Procedure Development <ul style="list-style-type: none"> Assembly procedures for all components will be developed during engineering phase and will be used for flight instruction The procedures will include instructions on assembly sequence, fasteners, torque specifications, handling and insert installation Engineering Drawings <ul style="list-style-type: none"> All machined components have an associated engineering drawing The drawings will be used to accurately manufacture the component to design 		
217		

Integration Control

- Clean Room Environment
 - Flight Model components will be assembled in a clean environment at Stanford
- Internal Verification Checklists
 - A second person will observe and verify that the correct procedure is used to assemble flight components

NASA GSFC

218

Qualification

- Pull-testing of sample flight inserts
 - Random samples created for every flight composite panel
 - Samples will be tested and compared to known design strength characteristics
- Flight Strength Qualification by means of sine burst testing
 - Sine burst at 13.75 G's in each direction will be applied to the complete flight model

The flight model must survive without structural damage.

NASA GSFC

NASA GSFC

Flight Qualification

- Natural frequency verification by sine sweep
 - Infinitely stiff interface will be assumed in this test
 - Accelerometers will be placed to capture the damped natural motion of the structure
 - The natural frequency of the entire structure must be above 100 Hz

NASA GSFC

220

Requirements Summary

Issue	Requirement	Compliance
Strength	+/- 11G's all axes simultaneously	Sine Burst Testing, FEM modeling
Natural Frequency	100Hz minimum	Modal Testing, FEM Modeling
Acoustic	Survival of launch vibroacoustic environment	Random Vibration Testing
Mass, CG	Mass limit, CG within 0.25 inch from the geometric	Mass ~35Kg CG within specification
Envelope	Orion envelope within the SHELS envelope.	Orion is well inside the boundary limits
Fracture Control	Prevent structural failure due to flaws	Approved critical components and Engineering Model
Manufacturing	Prevent structural failure due to poor quality	manufacture by procedure

NASA GSFC

221

Propulsion

NASA GSFC

222

Design

A cold-gas propulsion system provides the required 6-DOF control required to meet mission maneuvering objectives

NASA GSFC

223

Parameters

Maximum delta V within mass/volume budget ~26 m/s

- 3 cylindrical tanks
- High pressure (3,500 psia)
- Fuel : GN2

Budget constraints

- COTS parts
- Miniature valves and fittings
- In-house parts (low pressure side)

NASA GSFC Thruster manifold 227

Mass Budget

Component	Mass (g)	amount	Total (kg)
Tank	1359	3	4.077
Regulator	325	2	0.65
Line Filters	274	2	0.548
Thruster Valve	24	12	0.288
Latching Valve	86	6	0.516
P. XDR (reg)	8	3	0.024
P. XDR (HP/LP)	10	3	0.03
Temp. Sensor	2	5	0.01
Plumbing	2000	1	2
Quick Connect	100	1	0.1
PRV	200	2	0.4
Manual Valves	500	2	1
Holders	75	3	0.225
Manifold	56	4	0.224
Nozzles	5	12	0.06
Electronics	1000	1	1
Fuel	1.5	1	0.0015
			11.2

NASA GSFC 229

Mechanical Safety Summary

Tanks : 5000 psi (MDP) \times 1.5 / FOS < 7500 psi / F_{100}			
--	--	--	--

High Pressure Side (MDP = 5000 psi)

Component	Burst (psia)	Comp FOS	FOS Req
Lines	30000	6	4
Regulator	24000	4.8	2.5
Sensor	15000	3	2.5
Transducer	30000	6	2.5
Filters	24000	4.8	2.5
Service valves	24000	4.8	2.5
Relief Valves	24000	4.8	2.5

FOS = factor of safety
= Burst / MDP

NASA GSFC

Mechanical Safety Summary

Low Pressure Side (MDP = 75 psia)

Component	Burst (psia)	Comp. FOS	FOS Req
Latch valves	500	7	2.5
Solenoid valves	500	7	2.5
Filters	24000	343	2.5
Transducers	600	9	2.5

FOS = factor of safety
= Burst / MDP

Components meet or exceed all required factors of safety
All components are leak-before-burst

NASA GSFC

Certification

- Luxfer Gas Cylinders L17C
 - Seamless aluminum wrapped with carbon fiber
- Classified as fracture critical
 - Tanks are leak-before-burst
 - Tanks meet DOT-CFFC
 - documentation supplied by manufacturer
 - Manufactured using standard aerospace industry practices
 - Flown on satellite operations and shuttle missions

NASA GSFC

Tank Thermal Analysis

Analysis results

- Starting condition of 100 C
- Worst-case heating (sun on top panel, earth on bottom)
- Radiation heat transfer only from propellant tanks

LM ATC IDEAS/TMG Model

Results after 20 minutes deployment

242

Manufacturing

Assembly done in clean environment

- Class 10000 clean room for construction
- Parts stored in "clean box" (inside clean room)

Assembly Plan

- Assemble main propulsion building blocks in clean room
 - Thruster clusters : thruster valves, fittings, manifold, and nozzles
 - Regulator cluster : regulators, pressure transducers on "baseplate"
 - Latch valve clusters : fittings, pressure transducers on "baseplate"
 - Service port : manual valves, fittings, and quick-connect
- Integrate into structure in clean room
 - Tanks are placed and connected to service port

Integration of "baseplates" onto structure

243

Performance Testing

- Nozzle tested using vacuum chamber
 - Each flight nozzle is fired directly upward; firing duration is minimized to reduce pressure effect on test apparatus
 - Spring/mass system records thrust
 - Mass flow recorded, Isp calculated
- Current results closely match the theoretical values
- All flight nozzles tested to ensure consistent quality
- All electronic systems (valves, sensors, and PIC) checked for correct operation

Thrusters will be actuated randomly to check for

244

Testing

Proof Testing required for flight

- Tanks are qualified as per MIL-STD-1522A "Path C" (reference : Figure 2, p. 28)
- Hydrostatic testing
 - System cycled twice at 1.5 x MOP
 - Visual inspection, leak test
- Functional
 - Valve actuation
 - Leak test

Leak test

245

Requirements Summary

Issue	Requirement	Compliance
Attitude control	Perform required maneuver	Test functions of 12 thrusters
Attitude control	3-axis control	Test 12 thrusters required for 3-axis
Fracture control	All components meet and exceed safety factor	Selected components that exceed FOS Parts are Leak
Inhibits	Mechanical inhibits/controls and	Provide and verify required inhibits
Vibration/Load	Structural integrity vibroacoustic environment	Shake Test

NASA GSFC Summary 247

Honeywell Magnetometer

- 3-axis magnetic field measurements
- Magneto-resistive permalloy sensor
- 40uGauss resolution
- Field range: -2 to +2 Gauss
See Reset Circuit
- Supply voltage: +6 to +15V
Eliminates effect of past magnetic history
- Maximum supply current 20mA
• Current (momentarily flip polarity)
Higher resolution and maximize sensitivity
- Operating temperature: -55°C to +125°C
• Compensation for temperature drifts

NASA GSFC 254

Magnetometer Components

Coil Assembly
Aluminum U-channel AL-6061
Insulated Magnet Wire C11100 (AWG28) - NEMA 1000 MW-73/35, UL
Epoxy: Styccast 2850FT with Catalyst 9
Electronics - PIC Board
Board: FR4
Copper
Surface Mount ICs
DB9 Connectors: Mil-c-24308
Electronics - Subsystem Control Board
Board: FR4
Copper
Surface Mount ICs
DB9 Connectors: Mil-c-24308
H-Bridge
Magnetometer

NASA GSFC 255

Mass Budget

Major Component	Quantity	Mass per Item (g)	Total Mass (g)
Wire Coil	3	666	1998
Epoxy	3	100	300
PIC daughter board	1	65	65
PIC mother board	1	100	100
Magnetometer	1	10	10
Total Subsystem			2473

NASA GSFC 256

Coil Performance

- Mass/pulley balance setup
- Estimate amount of torque produced by the coils

NASA GSFC 257

- Higher current supplied to create measurable torques
- Test results:
 - Analysis: 3.54mNm
 - Experiment: 3.45mNm

Control Law

Minus K-Bdot Law:

$$M = -k(dB/dt)$$

Control torque: $T = M \times B$

- Coils can either be ON (in two directions) or OFF
- Vary the torque produced by the coils in a "time averaged" sense

NASA GSFC 258

Attitude Simulation

- Integrated Attitude Simulation
 - Full nonlinear attitude simulation
 - Works in conjunction with our orbit and station-keeping simulations
 - Includes aerodynamic drag and residual dipole disturbances
 - Verified with several known test cases
- Realistic testing of controllers

NASA GSFC 259

Torquer coil & magnetometers

SSDL **SSDL**

Attitude Simulation

- **Simulation Results**
 - Angular velocity reduced to less than $0.67^{\circ}/\text{second}$: within operating limits
 - Works in the presence of aerodynamic drag torque
- **Test Case Shown**
 - High initial angular velocity
 - Spin has component in magnetic field axis

NASA GSFC 261

SSDL **SSDL**

Torquer Coils Manufacturing

- Aluminum frame construction
 - Clean unbent aluminum channel and inspect for defects (notches, dents, etc.)
 - Cut frame at specific bending locations (corresponding with octagon shape)
 - 7 cuts total, vertical sections of U-channel only
 - Bend U-channel into octagon shape and attach free ends with epoxy
 - Sand down and smooth cut surfaces and any rough edges
 - Clean completed aluminum frame of all loose materials
- Attach mounting brackets to aluminum frame
 - Manufacture four brackets per frame by cutting L-channel into small sections
 - Grind down and smooth edges
 - Match drill holes through frames and brackets for precise fit and placement
 - Bolt brackets onto the frames

NASA GSFC 264

SSDL **SSDL**

Torquer Coils Manufacturing

- Aluminum frame electrical insulation
 - Combine epoxy and catalyst (STYCAST 2850FT with CATALYST 9; Material Code 05257)
 - Apply a thin layer on the inner surface of the frame
 - After curing, inspect that there are no voids in the coating
- Copper windings
 - Wrap the aluminum frames with AWG28 magnet wire
 - Care must be taken not to damage the insulation-coating on the wire by accidental abrasion against the frame's corners and edges

NASA GSFC 265

Control Board Manufacturing

- The Printed Circuit Board (PCB) of the Control Board will be manufactured by Advanced Circuits, Inc. according to our design
- Populating the PCB
 - Each component will be soldered in place one-by-one in an orderly fashion following the board design layout

Magnetometer Board

- The Magnetometer PCB will be manufactured by Advanced Circuits, Inc. according to our design
- Populating the PCB
 - The magnetic sensor will be soldered onto the board and the connections will be visually and electronically inspected.

NASA GSFC

Testing & Integration

Torquer Coils

- During the coil winding process check for electrical shorts between wires and frame every 100 turns
 - Ensure even spacing of windings
- Measure the B-field generated by the coils using the magnetometer
 - Place magnetometer in the center of the coil and gather data
 - Compare with design value
- Interface with the Control Board and test each coil
 - Monitor the H-bridge telemetry data (current output) and verify proper operation of each coil
- Mount each coil on the interior of Orion's panels
 - Test for electrical shorts between the coil assembly and panels
 - Make sure coils are properly fastened in place

NASA GSFC

Testing & Integration

Control Board

- Connection continuity tests during board populating procedure
- Board circuitry testing of:
 - Magnetometer Set/Reset circuit
 - Visually confirm proper pulse signals using an oscilloscope
 - Magnetometer ON/OFF control circuit
 - H-bridge operation
- Interface with PIC board and validate board functionality
 - PIC code operations
- Integrate PIC board/Control Board with Power Bus
 - Confirm that enough power is supplied for full subsystem operations

NASA GSFC

Requirements Summary

Issue	Requirement	Compliance
Torque	Provide enough torque to overcome any anticipated disturbance torques and detumble Orion	Measure generated magnetic field and compare with EM data
Control Algorithm	Vary acutation time and direction of dipole moment depending on measured B-field	EM PIC code development and testing
Control Algorithm	Detumble Orion down to 0.7 rad/sec	Simulation results
Maximum B-field	Must be below strength specified in the Shuttle Orbiter/Cargo Standard Interfaces Document ICD 2-19001 Rev. L	Current design, as measured using a magnetometer is below 170 dB _T at 1 m ⁻¹

NASA GSFC

Orion Power

NASA GSFC

Design

Solar cells

- 20% cell efficiency
- 6-cell strings (16.5V, 294mA per)
- Bonded to panels over insulating substrate
- 26W peak supply to bus
- 16W time-average supply to bus

Sanvo KF-1000M

- 10A-hr capacity
- 12 – 14V unregulated
- Design heritage

Support Electronics

- Lambda 5V regulator
- Maxim 471/472 current sensors
- Dallas temperature sensors

NASA GSFC

Materials Summary

Power Bus
Electrical Wiring
DB9, DB15, D625 Connectors: Mil-c-24308
Electronics - Printed Circuit Board
Board: FR4
Copper
Surface Mount ICs
DB9, DB15 Connectors: Mil-c-24308
Batteries
Nickel Cadmium
Battery Box
Aluminum 6061
Fiberglass
Teflon
Solar Cells
Gallium Arsenide
Glass

NASA GSFC 277

Mass Budget

Major Component	Quantity	Mass per Item (g)	Total Mass (g)
NiCd Batteries	10	400	4000
Battery Box	1	2000	2000
Electronics	1	100	100
DC/DC Converter	1	65	65
Wiring Harness	1	100	100
Solar Cells	250	3.5	875
Total Subsystem			7140

NASA GSFC 278

Telemetry

- Temperature Probes
 - Behind each panel (all six sides of Orion body)
 - Three on NiCd battery pack
 - One on DC-DC converter
- Current Sensor
 - After each solar cell panel (magnitude only)
 - Current magnitude and direction for battery pack

NASA GSFC 279

Power Budget

Subsystem	Total Mass (g)	Power : Startup (mW)	Power : Cruise (mW)	Power : Contact (mW)	Power : Exper. (mW)
GPS Payload	1072	1450	1450	1450	5225
Structure	9704	0	0	0	0
CDH	965	698	698	698	7198
Comm	696	1426	1426	5690	2376
Torquer Coils	2083	3740	250	250	250
Propulsion System	12044	300	300	300	22380
Power System	5140	0	0	0	0
Total	31704	7614	4124	8588	37429
Budget/Allocation Margin	30000	8600	8600	25100	24600
-5.7%	11.5%	57.0%	65.8%	-52.2%	
5V Current Draw (mA)		636	586	586	2431
12V Current Draw (mA)		333	108	348	2068
Total System Draw (mA)		900	354	594	3099

NASA GSFC 281

Spacecraft Test Port Interface

- Provides terminals to charge batteries after integration
- Provides inhibit bypass, verification, and reset during test and integration
- Allows external DB Connector Required to the spacecraft

DB25 Connector

- 10 inhibits with 2 pins each for latching + 1 common ground pin = 21 pins
- NiCd battery pack charging = 2 pins
- Total number of pins = 23 pins

NASA GSFC

264

Manufacturing

Power Board & Inhibits Board

- The Printed Circuit Boards (PCB) for the Electric Power Subsystem will be manufactured by Advanced Circuits, Inc. according to our design
- Populating the PCB
 - Each component will be soldered in place one-by-one in an orderly fashion following the board design layout

Battery Box

- Machine aluminum box to design dimensions
- Attach pressure relief valve to completed box
- Install fiberglass and Teflon spacer material
- Place NiCd battery pack into box and attach DB9 connector for interfacing with the electronics board

NASA GSFC

265

Testing & Integration

Power Board

- Connection continuity tests during board population procedure
- Board circuitry testing of:
 - Voltage regulator operation: measure outputs vs. inputs
 - Current sensor outputs: verify with voltmeter measurements
 - Dallas AD converter outputs: verify with voltmeter measurements
 - Simulate inhibit closing by connecting header pins
 - DB9 connections and pin outs

Inhibits Board

- Connection continuity tests during board population procedure
- Manually open and close inhibits and perform continuity tests for each inhibit
 - Test using the header pins used to interface with the Power Board
 - Test using the STPI DB25 connector
 - Test using the MSDS DB15 connectors (for T1 and T2)

NASA GSFC

266

Testing & Integration

Power & Inhibits Boards

- Integrate the Inhibits Board with the Power Board
 - Verify header pin connection

Battery Box

- Measure physical dimensions and confirm size
- Verify mounting hole locations and integrate with Orion structure
- Box interior:
 - Proper placement of fiberglass material
 - Proper seal at relief valve-to-box interface
 - Proper seal of completed battery box
- Verify mounting hole locations and integrate with Orion structure
- Integrate with Power Board
 - test for voltages (unregulated 14V and regulated 5V)

NASA GSFC

267

Testing & Integration

Solar Cells

- Connect with electronics board
 - Verify proper connections
 - Observe outputs on current sensors
 - Check for the unregulated 14V and regulated 5V lines

Full Subsystem

- Test inhibits through the STPI
 - Open and close inhibits
 - Check for continuity across each inhibit
 - Check for the unregulated 14V and regulated 5V lines
 - Check that the Propulsion Subsystem is inhibited per design
- Test inhibits through the MSDS connectors
- Connect various subsystems individually and observe operation of each subsystem
- Full system integration and observe operation of Orion

NASA GSFC

268

Orion Program Risk Assessment

269

Nanosat One Critical Design Review

Principal Investigators:
Prof. Jonathan How
Prof. Christopher Kitts
Prof. Robert Twigg

NASA GSFC

Emerald Structures and Mechanisms Subsystem

NASA GSFC

Design Summary

- Structure**
 - Heritage SSDL design modified to meet 100Hz natural frequency requirements
- 3 Major mechanisms**
 - Drag panel actuation mechanism
 - VLF antenna deployment and retention mechanism
 - Lightband intersatellite separation system
- Lightband designed by Planetary Systems**

NASA GSFC

Structural Design

- Heritage SSDL Design
- Aluminum Honeycomb Hex Plates & Side Panels
 - 5052 Grade Aluminum (face skins)
 - 3003 Grade Aluminum (core)
- Longerons
 - 303 Stainless Steel 10-32 All-Thread
- Spacers and L-brackets
 - 6061T6 Aluminum
- Prototype structure with mass simulators tested to 11G's in random vibration with no damage

NASA GSFC

Structure

Object/Stack	CGx	CGy	CGz	Mass
Chromium	-.0006 m (-.0250 in)	-.0013 m (-.0493 in)	.1217 m (4.793 in)	13.46 kg (29.612 lb)
Beryl	-.0006 m (-.0250 in)	-.0013 m (-.0493 in)	.1217 m (4.793 in)	13.30 kg (29.26 lb)
Total Stack	-.0003 m (-.012 in)	-.0006 m (-.0246 in)	.3212 m (12.646 in)	26.76 kg (58.88 lb)

NASA GSFC 298

Internal Layout

- Layout design considerations
 - Ease of assembly/integration, testing
 - Simple wire harness
 - Minimal noise
 - Standardized layout between Beryl and Chromium
 - Fewer internal hexagon trays
 - Subsystem placement to place the CG in the center of the stack – will be adjusted with small balance masses

NASA GSFC 299

Subsystem/Experiment Box

- 1/32" Sheet Aluminum
- Modular Design
- Non-Fracture critical/Contained Part

NASA GSFC 298

Drag Panel Mechanism

- Driven by linear actuator system
 - TS Products dc-motor/lead screw driven actuator
 - Actuator mounted on swivel joint for necessary degrees of freedom for panel
- Mounted to middle tray

NASA GSFC 299

Drag Panel Mechanism

- Lead screw of each actuator is shortened to limit the maximum deployed width of the panels to 25.4 inches
- No contact with SHELS possible
- Panels extended .5 in. above and below edges of satellite to maintain 50% increase in ballistic coefficient when fully deployed
- Accidental drag panel deployment does not constitute a hazard

NASA GSFC 300

Actuator Bracket

- Bracket
 - Al 6061
- Swivel
 - AL 6061
- PPA
 - AL 6061
- Drag Panel Tab
 - Al 6061
- Sleeve
 - Delrin

NASA GSFC 301

Fracture Control Classification

Component	Classification
AL Honeycomb Composite	Fracture critical composite/bonded structure
Linear Actuator	Fracture critical component
VLF nylon retention system	Fracture critical composite/bonded structure
Fasteners, L-brackets, Longerons, Spacers	Non Fracture Critical Low Risk

NASA GSFC 311

Design Analysis

- Strength analysis of drag panel in deployed configuration
- Test verified analysis to show adequate strength margin in nylon line in VLF mechanism
- Thermal IDEAS TMG model for on-orbit analysis
- Strength analysis and test of insert pullouts

NASA GSFC

314

Temperature Limits

Acceptance Levels for Operation

Sub-System	Low Temp. (C)	High Temp. (C)
GPS	-40	85
CMT	0	50
Distributed Computing	0	50
VLF Experiment	-25	85
COMM - Receivers	10	85
COMM - Transmitters	10	85
C&DH - SDPC	0	85
C&DH - Modem	-20	85
Batteries	-30	85

Qualification Levels

Sub-System	Low Temp. (C)	High Temp. (C)
GPS	-40	85
CMT	-20	85
Distributed Computing	-40	85
VLF Experiment	-40	85
COMM - Receivers	-40	85
COMM - Transmitters	-40	85
C&DH - SDPC	-40	85
C&DH - Modem	-40	85
Batteries	-30	85

NASA GSFC

315

Manufacture

- Verifiable materials: certifications of compliance
- Instruments to be calibrated prior to use
- Manufacturing to be done under strict configuration management
 - Part drawings accompanied by manufacturing procedure and guidelines
 - Progress checks along manufacturing procedure to be done by second party
 - Final part verified by systems engineer

NASA GSFC

316

Thermal Controls

- Passive thermal control
 - Insulation blankets
 - Thermal tape
 - Cooling through radiation from body panels
 - Heating through power dissipation
- IDEAS thermal model for analysis

NASA GSFC

315

Thermal Analysis

- FEM results
 - Free floating nanosat snapshot
 - Temperatures on orbit do not exceed limits

NASA GSFC

317

Assembly

- All fasteners supplied by GSFC
- Assemble according to procedure
- Assemble and store in clean environment
- Controlled access to flight hardware

NASA GSFC

318

Test

- Stack Level
 - Random Vibration
 - Frequency Characterization
 - Sine Burst
 - Thermal Vac Test
- Component Level
 - Proof test every flight knot for VLF mechanism to 2.5 times calculated dynamic load
- Fracture Critical Components
 - Proof Test to no less than 120% of limit load
 - Procedures to prevent damage from handling or final assembly
 - Manufacturer Certification
 - Create Test Articles

NASA GSFC

320

Ground Operations

- Drag panels may be tested on the ground via the STPI or by being commanded through an air link
- No other ground operations

SSDL

SSDL

Requirements Fulfillment

- AFRL Requirements
 - Analysis shows that the structure will exceed 100 Hz in natural frequency
 - All separation system hole patterns conform to Lightband standard
 - RFDW approved for antenna exceeding the MSDS envelope
- Safety Requirements
 - VLF and drag panel mechanisms approved

NASA GSFC

322

Emerald Envelope

NASA GSFC

323

Emerald Envelope

SHELS envelope
MSDS center plane
 $x = 0$
 $d_1 = 0.342"$
 $d_2 = 0.952"$
 $d_3 = 1.06"$
 $d_4 = 0.45"$

These dimensions approved by AFRL via RFDW

NASA GSFC

374

Emerald Envelope

- Completely deployed drag panels fit within SHELS envelope

Static SHELS envelope

NASA GSFC

325