		Created with OSCIAG®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

1 Input Parameters

Module	Tension Member Design - Bolted to End Gusset
Axial (kN)*	65.0
Length (mm) *	300.0
Section Profile*	Angles
Section Size*	Ref List of Input Section
Section Material	E 250 (Fe 410 W)A
Ultimate Strength, F_u (MPa)	410
Yield Strength, F_y (MPa)	250
Bolt Details - Input	and Design Preference
	[np.int64(8), np.int64(10), np.int64(12), np.int64(14),
	np.int64(16), np.int64(18), np.int64(20), np.int64(22),
Diameter (mm)	np.int64(24), np.int64(27), np.int64(33), np.int64(36)
Diameter (mm)	, np.int64(39), np.int64(42), np.int64(45), np.int64(48
), np.int64(52), np.int64(56), np.int64(60), np.int64(6
	4)]
	[np.float64(3.6), np.float64(4.6), np.float64(4.8), np.f
Property Class	loat $64(5.6)$, np.float $64(5.8)$, np.float $64(8.8)$, np.float
	64(9.8), np.float64(10.9), np.float64(12.9)]
Туре	Bearing Bolt
Hole Type	Standard
Detailing - D	esign Preference
Edge Preparation Method	Sheared or hand flame cut
Are the Members Exposed to Corrosive Influences?	False
Plate Details - Input	and Design Preference
	[np.int64(8), np.int64(10), np.int64(12), np.int64(16),
	np.int64(18), np.int64(20), np.int64(22), np.int64(25),
Thiskness (mm)	np.int64(28), np.int64(32), np.int64(36), np.int64(40)
Thickness (mm)	, np.int64(45), np.int64(50), np.int64(56), np.int64(63
), np.int64(75), np.int64(80), np.int64(90), np.int64(1
	00), np.int64(110), np.int64(120)]
Material	E 250 (Fe 410 W)A

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

1.1 List of Input Section

Section Size*

 $^{\prime}20 \times 20 \times 3^{\prime}$, $^{\prime}20 \times 20 \times 4^{\prime}$, $^{\prime}25 \times 25 \times 3^{\prime}$, $^{\prime}25 \times 25 \times 4^{\prime}$, $^{\prime}25 \times 25 \times 5^{\prime}$, $^{\prime}30 \times 30 \times 3^{\prime}$, $^{\prime}30 \times 30 \times 4^{\prime}$, $^{\prime}30 \times 30 \times 5^{\prime}$, $^{\prime}35 \times 30 \times 3^{\prime}$ $3', \ '45 \times 45 \times 4', \ '45 \times 45 \times 5', \ '45 \times 45 \times 6', \ '50 \times 50 \times 3', \ '50 \times 50 \times 4', \ '50 \times 50 \times 5', \ '50 \times 50 \times 6', \ '55 \times 55 \times 4', \ '50 \times 50 \times 5', \ '50 \times 50 \times 5',$ $^{'}55 \times 55 \times 5^{'}, \ ^{'}55 \times 55 \times 6^{'}, \ ^{'}55 \times 55 \times 8^{'}, \ ^{'}60 \times 60 \times 4^{'}, \ ^{'}60 \times 60 \times 5^{'}, \ ^{'}60 \times 60 \times 6^{'}, \ ^{'}60 \times 60 \times 8^{'}, \ ^{'}65 \times 65 \times 4^{'}, \ ^{'}65 \times 65 \times 60 \times 8^{'}, \ ^{'}60 \times$ $65 \times 5'$, $'65 \times 65 \times 6'$, $'65 \times 65 \times 8'$, $'70 \times 70 \times 5'$, $'70 \times 70 \times 6'$, $'70 \times 70 \times 8'$, $'70 \times 70 \times 10'$, $'75 \times 75 \times 5'$ \times 6', '75 \times 75 \times 8', '75 \times 75 \times 10', '80 \times 80 \times 6', '80 \times 80 \times 8', '80 \times 80 \times 10', '80 \times 80 \times 12', '90 \times 90 \times 6', '90 \times 90 \times 8', '90 \times 90 \times 10', '90 \times 90 \times 12', '100 \times 100 \times 6', '100 \times 100 \times 8', '100 \times 100 \times 10', '100 \times 100 \times 12', '110 \times 110 \times $8', '110 \times 110 \times 10', '110 \times 110 \times 12', '110 \times 110 \times 16', '130 \times 130 \times 8', '130 \times 130 \times 10', '130 \times 130 \times 12', '130 \times 130 \times 10', '130 \times 10', '$ $16', '150 \times 150 \times 10', '150 \times 150 \times 12', '150 \times 150 \times 16', '150 \times 150 \times 20', '200 \times 200 \times 12', '200 \times 200 \times 16', '200 \times 200 \times 10', '200 \times 20', '200 \times 20',$ $200 \times 20', \ '200 \times 200 \times 25', \ '50 \times 50 \times 7', \ '50 \times 50 \times 8', \ '55 \times 55 \times 10', \ '60 \times 60 \times 10', \ '65 \times 65 \times 10', \ '70 \times 70 \times 7', \ '80 \times 80', \ '80 \times 10', \ '80 \times 10$ $^{\prime}100 \times 100 \times 7^{\prime}, \, ^{\prime}100 \times 100 \times 15^{\prime}, \, ^{\prime}120 \times 120 \times 8^{\prime}, \, ^{\prime}120 \times 120 \times 10^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 15^{\prime}, \, ^{\prime}130 \times 130 \times 10^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 15^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 120$ $9', '150 \times 150 \times 15', '150 \times 150 \times 18', '180 \times 180 \times 15', '180 \times 180 \times 18', '180 \times 180 \times 20', '200 \times 200 \times 24', '30 \times 200 \times 100', '100 \times 100', '100$ x 3', '30 x 20 x 4', '30 x 20 x 5', '40 x 25 x 3', '40 x 25 x 4', '40 x 25 x 5', '40 x 25 x 6', '45 x 30 x 3', '45 x 30 x 4', $^{\prime}45\times30\times5^{\prime},\ ^{\prime}45\times30\times6^{\prime},\ ^{\prime}50\times30\times3^{\prime},\ ^{\prime}50\times30\times4^{\prime},\ ^{\prime}50\times30\times5^{\prime},\ ^{\prime}50\times30\times6^{\prime},\ ^{\prime}60\times40\times5^{\prime},\ ^{\prime}60\times40\times6^{\prime},\ ^{\prime}60\times6\times6^{\prime},\ ^{\prime}60\times6^{\prime},\ ^{\prime}6$ $40 \times 8'$, $65 \times 45 \times 5'$, $65 \times 45 \times 6'$, $65 \times 45 \times 8'$, $70 \times 45 \times 5'$, $70 \times 45 \times 6'$, $70 \times 45 \times 8'$, $70 \times 80 \times 8'$ $5', '75 \times 50 \times 6', '75 \times 50 \times 8', '75 \times 50 \times 10', '80 \times 50 \times 5', '80 \times 50 \times 6', '80 \times 50 \times 8', '80 \times 50 \times 10', '90 \times 60 \times 6', '80 \times 50 \times 10', '90 \times 60 \times 6', '90 \times 10', '90 \times$ 90 x 60 x 8', 90 x 60 x 10', 90 x 60 x 12', 100 x 65 x 6', 100 x 65 x 8', 100 x 65 x 10', 100 x 75 x 6', 1100 x 75 x 8', '100 x 75 x 10', '100 x 75 x 12', '125 x 75 x 6', '125 x 75 x 8', '125 x 75 x 10', '125 x 95 x 6', '125 x 95 x 8', $^{\prime}125 \times 95 \times 10^{\prime}, \ ^{\prime}125 \times 95 \times 12^{\prime}, \ ^{\prime}150 \times 115 \times 8^{\prime}, \ ^{\prime}150 \times 115 \times 10^{\prime}, \ ^{\prime}150 \times 115 \times 12^{\prime}, \ ^{\prime}150 \times 115 \times 16^{\prime}, \ ^{\prime}200 \times 100 \times 100^{\prime}$ $10', \ '200 \times 100 \times 12', \ '200 \times 100 \times 16', \ '200 \times 150 \times 10', \ '200 \times 150 \times 12', \ '200 \times 150 \times 16', \ '200 \times 150 \times 20', \ '40 \times$ \times 3', '40 \times 20 \times 4', '40 \times 20 \times 5', '60 \times 30 \times 5', '60 \times 30 \times 6', '60 \times 40 \times 7', '65 \times 50 \times 5', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 7', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 50 \times 7', '65 \times 50 \times $^{\prime}65 \times 50 \times 8^{\prime}, \ ^{\prime}70 \times 50 \times 5^{\prime}, \ ^{\prime}70 \times 50 \times 6^{\prime}, \ ^{\prime}70 \times 50 \times 7^{\prime}, \ ^{\prime}70 \times 50 \times 8^{\prime}, \ ^{\prime}75 \times 50 \times 7^{\prime}, \ ^{\prime}80 \times 40 \times 5^{\prime}, \ ^{\prime}80 \times 40 \times 6^{\prime}, \ ^{\prime}80 \times 10^{\prime}, \ ^{\prime}80 \times 10^{\prime},$ $40 \times 7'$, $'80 \times 40 \times 8'$, $'80 \times 60 \times 6'$, $'80 \times 60 \times 7'$, $'80 \times 60 \times 8'$, $'90 \times 65 \times 6'$, $'90 \times 65 \times 7'$, $'90 \times 65 \times 8'$, $'90 \times 65 \times$ $10', '100 \times 50 \times 6', '100 \times 50 \times 7', '100 \times 50 \times 8', '100 \times 50 \times 10', '100 \times 65 \times 7', '120 \times 80 \times 8', '120 \times 80 \times 10', '120 \times 80 \times 10', '120 \times 100 \times 100', '120 \times 100', '120$ $\times\ 80\ \times\ 12',\ '125\ \times\ 75\ \times\ 12',\ '135\ \times\ 65\ \times\ 8',\ '135\ \times\ 65\ \times\ 10',\ '135\ \times\ 65\ \times\ 12',\ '150\ \times\ 75\ \times\ 9',\ '150\ \times\ 75\ \times\ 15',\ '150\ \times\ 90$ \times 10', '150 \times 90 \times 12', '150 \times 90 \times 15', '200 \times 100 \times 15', '200 \times 150 \times 15', '200 \times 150 \times 18'

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

2 Design Checks

Design Status Pass

2.1 Selected Member Data

Section	n Size*	('45	x 30 x 4', 'Angles')
Material E		250 (Fe 410 W)A	
Mass, m	ı (kg/m)		2.27
Area, A	4 (cm ²)		289.0
A (mm)	45.0	$I_v(\mathrm{cm}^4)$	1.22
B (mm)	30.0	r_z (cm)	1.42
t (mm)	4.0	r_y (cm)	0.85
$R_1 \text{ (mm)}$	5.0	r_u (cm)	1.53
$R_2 \text{ (mm)}$	0.0	r_v (cm)	0.65
C_y (mm)	7.4	$Z_z \text{ (cm}^3)$	1.95
C_z (mm)	14.8	$Z_y \text{ (cm}^3)$	0.93
$I_z \text{ (cm}^4)$	5.87	$Z_{pz} \ (\mathrm{cm}^3)$	3.5
$I_y(\text{cm}^4)$	2.1	$Z_{py} \ (\mathrm{cm}^3)$	1.69
$I_u \text{ (cm}^4)$	6.75	Radius of gyra-	6.5
		tion, r (cm)	

2.2 Spacing Check

Check	Required	Provided	Remarks
Min. Diameter (mm)		d = 10	
Hole Diameter (mm)		$d_0 = 10$	
Minimum Bolts (nos)		$r_l = 1$	
Min. Gauge Distance (mm)	$p/g_{\text{min}} = 2.5d$ = 2.5×10.0 = 25.0 [Ref. IS 800:2007, Cl.10.2.2]	25	Pass

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
	$e_{\min} = 1.5d_0$		
	$=1.5\times10$		
Min. Edge Dis-	= 15.0	15	Pass
tance (mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		
	$depth = 2 e + (r_l - 1) g$		
Spacing Check	$= 2 \times 15 + (1 - 1) \times 25$	36.0	Pass
	= 30		

2.3 Member Check

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $= \frac{289.0 \times 250}{1.1 \times 10^3}$ $= 65.68$ [Ref. IS 800:2007, Cl.6.2]	

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
		$\beta = 1.4 - 0.076 \times \frac{w}{t} \times \frac{f_y}{0.9f_u} \times \frac{b_s}{L_c}$ $\leq \frac{0.9f_u \gamma_{m0}}{f_y \gamma_{m1}} \geq 0.7$	
		$= 1.4 - 0.076 \times \frac{30.0}{4.0} \times \frac{250}{0.9 \times 410} \times \frac{53.0}{100}$ $\leq \frac{0.9 \times 410 \times 1.1}{250 \times 1.25} \geq 0.7$	
Tension Rupture Capacity (kN)		=1.2	
		$T_{dn} = 1 \times \left(\frac{0.9A_{nc}f_u}{\gamma_{m1}} + \frac{\beta A_{go}f_y}{\gamma_{m0}}\right)$ $= 1 \times \left(\frac{0.9 \times 124.0 \times 410}{1.25} + \frac{1.2 \times 120.0 \times 250}{1.1}\right)$ $= 69.33$	
		[Ref. IS 800:2007, Cl.6.3.3] $T_{\rm dbl1} = \frac{A_{\rm vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Ca-		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
pacity (kN)		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 67.49$	
		[Ref. IS 800:2007, Cl.6.4] $T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$	
Tension Capacity (kN)	65.0	$= \min(65.68, 69.33, 67.49)$ $= 65.68$	Pass
		[Ref.IS 800:2007, Cl.6.1]	

			ated with Osdag®
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
Slenderness ratio	$\frac{KL}{r} \le 400$	$\frac{KL}{r} = \frac{1 \times 300.0}{6.5}$ = 46.15 [Ref. IS 800:2007, Cl.7.1.2]	Pass
Utilization Ratio	≤ 1	Utilization Ratio = $\frac{F}{T_d}$ = $\frac{65.0}{65.68}$ = 0.99	
Axial Load Considered (kN)	$A_{\text{cmin}} = 0.3A_{c}$ $= 0.3 \times 65.68$ $= 19.7$ $A_{\text{cmax}} = 65.68$ [Ref. IS 800:2007, Cl.10.7	$A_u = 65.0$	Pass

2.4 Bolt Design

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimization	d = 10	
Hole Diameter (mm)		$d_0 = 10$	
Property Class	Bolt Grade Optimization	8.8	
Bolt Ultimate Strength (N/mm2)		$f_{u_b} = 800.0$	
Bolt Yield Strength (N/mm2)		$f_{y_b} = 640.0$	
Nominal Stress Area (mm2)		$A_{n_b} = 58 \; ([Ref. \; IS \; 1367 - 3 \; (2002)])$	
	$p_{\min} = 2.5d$		
	$= 2.5 \times 10.0$		
Min. Pitch Distance (mm)	= 25.0	25	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		

		Created with Osdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 4.0, 300)$		
	$= \min(128.0, 300)$		
Max. Pitch Dis-	= 128.0	25	Pass
tance (mm)		20	1 ass
	Where, $t = \min(8.0, 4.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$p_{\min} = 2.5d$		
	$= 2.5 \times 10.0$		
Min. Gauge Dis-	= 25.0	0	
tance (mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 4.0, 300)$		
	$= \min(128.0, 300)$		
Max. Gauge Dis-	= 128.0	0	
tance (mm)			
	Where, $t = \min(8.0, 4.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 10$		
Min. End Distance	= 17.0	20	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 4.0 \times \sqrt{\frac{250}{250}} = 48.0$ $e_2 = 12 \times 8.0 \times \sqrt{\frac{250}{250}} = 96.0$ $e_{\text{max}} = \min(e_1, \ e_2) = 48.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	20	Pass
Min. Edge Distance (mm)	$e_{\min} = 1.5d_0$ = 1.5 × 10 = 15.0 [Ref. IS 800:2007, Cl.10.2.4.2]	18.0	Pass
Max. Edge Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 4.0 \times \sqrt{\frac{250}{250}} = 48.0$ $e_2 = 12 \times 8.0 \times \sqrt{\frac{250}{250}} = 96.0$ $e_{\text{max}} = \min(e_1, \ e_2) = 48.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	18.0	Pass
Kb		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{20}{3 \times 10}, \frac{25}{3 \times 10} - 0.25, \frac{800.0}{410}, 1.0\right)$ $= \min(0.67, 0.58, 1.95, 1.0)$ $= 0.58$ [Ref. IS 800:2007, Cl.10.3.4]	

		Created with OSdag®
Company Name	bto g gusset	Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	28 /12 /2024	Client

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub} n_n A_{nb}}{\sqrt{3} \gamma_{mb}}$ $= \frac{800.0 \times 1 \times 58}{1000 \times \sqrt{3} \times 1.25}$ $= 21.43$	
		[Ref. IS 800:2007, Cl.10.3.3] $V_{\text{dpb}} = \frac{2.5k_b dt f_u}{2}$	
Bearing Capacity (kN)		$V_{\text{dpb}} = \frac{\frac{5.5 \times 0.58 \times 10.0 \times 4.0 \times 410}{\gamma_{mb}}$ $= \frac{2.5 \times 0.58 \times 10.0 \times 4.0 \times 410}{1000 \times 1.25}$ $= 19.02$	
		[Ref. IS 800:2007, Cl.10.3.4]	
Capacity (kN)		$V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$ = $\min (21.43, 19.02)$ = 19.02	
		[Ref. IS 800:2007, Cl.10.3.2]	
No. of Bolts	$R_u = \sqrt{V_u^2 + A_u^2}$ $n_{\text{trial}} = R_u/V_{bolt}$ $\sqrt{0.0^2 + 65.0^2}$	n = 5	
	$R_u = \frac{\sqrt{0.0^2 + 65.0^2}}{19.02}$ $= 4$		
No. of Bolt Columns		$n_c = 5$	
No. of Bolt Rows		$n_r = 1$	

		Cre	ated with Osdag®
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
	if $l_j \ge 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$	$l_i = ((n_c \text{ or } n_r) - 1) \times (p \text{ or } g)$	
	if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$	$= (5-1) \times 25 = 100$ $= (1-1) \times 0 = 0$	
Long Joint Reduction Factor	where, $l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$	$l = 100$ $15 \times d = 15 \times 10.0 = 150.0$	
	$\beta_{lj} = 1.075 - l/(200d)$ but $0.75 \le \beta_{lj} \le 1.0$	since, $l_j < 15 \times d$ then $\beta_{lj} = 1.0$	
	[Ref. IS 800:2007, Cl.10.3.3.1]	[Ref. IS 800:2007, Cl.10.3.3.1]	
	if $l_g \geq 5d$, then $V_{\rm rd} = \beta_{lg} V_{\rm db}$		
	if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$		
	$l_g \le 8d$	$l_g = \Sigma (t_p + t_{\text{member}})$ $= 12.0$	
Lange Crim Langeth	where,	5d = 50.0	
Large Grip Length Reduction Factor	$l_g = \Sigma(t_{\rm ep} + t_{\rm member})$	8d = 80.0	
		since, $l_g < 5d$; $\beta_{lg} = 1.0$	
	$\beta_{lg} = 8d/(3d + l_g)$	[Ref. IS 800:2007, Cl.10.3.3.2]	
	but $\beta_{lg} \leq \beta_{lj}$		
	[Ref. IS 800:2007, Cl.10.3.3.2]		
		$V_{\rm rd} = \beta_{lj} \beta_{lg} V_{\rm db}$	
Capacity (kN)	13.0	$= 1.0 \times 1.0 \times 19.02$	Pass
		= 19.02	

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

2.5 Gusset Plate Check

Check	Required	Provided	Remarks
		$H = 1 \times Depth + Clearance$	
Min.Height (mm)		$= (1 \times 45.0) + 30.0$	
		= 75	
		L = (nc - 1)p + 2e	
Min.Plate Length		$= (5-1) \times 25 + (2 \times 20)$	
(mm)		= 140	
Min.Member	280	300.0	Pass
Length (mm)			
Thickness (mm)		T = 8.0	
		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$	
		/mo	
		$A_q = lt = 45.0 \times 8.0$	
Tension Yielding			
Capacity (kN)		$=\frac{360.0\times250}{1.1\times10^3}$	
		= 81.82	
		[Ref. IS 800:2007, Cl.6.2]	
		$T_{\rm dn} = \frac{0.9 A_n f_u}{\gamma_{m1}}$	
Tension Rupture		$= \frac{1 \times 0.9 \times (45.0 - 1 \times 10) \times 8.0 \times 410}{1.25}$	
Capacity (kN)		= 82.66	
Capacity (iii)			
		[Ref. IS 800:2007, Cl.6.3.1]	
		[Ref. IS 800:2007, Cl.6.3.1] $T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$\sqrt{3\gamma_{m0}}$ γ_{m1}	
		0.04 f 4 f	
		$T_{\rm dbl2} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
Block Shear Ca-		A 2 11111	
pacity (kN)		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 134.99$	
		-up(+a01; +a02) - 101.00	
		[Def. 15 200-2007, Cl.6.4]	
		[Ref. IS 800:2007, Cl.6.4]	

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
Tension Capacity (kN)	A = 65.0	$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$ = $\min(81.82, 82.66, 134.99)$ = 81.82 [Ref.IS 800:2007, Cl.6.1]	Pass

		Created with OSdag®	
Company Name	bto g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

3 3D Views

4 Design Log

2024-12-28 10:42:11 - Osdag - INFO - :In the case of reverse loading, the slenderness value shall be less than 180 [Ref. Table 3, IS 800:2007].

 $2024-12-28\ 10:42:11$ - Osdag - INFO - :To reduce the quantity of bolts, define a list of diameter, plate thickness and/or member size higher than the one currently defined.

2024-12-28 10:42:11 - Osdag - INFO - :Overall bolted tension member design is safe.

2024-12-28 10:42:11 - Osdag - INFO - :======End Of design=========