BME Gépészmérnöki Kar	DINAMIKA	Név: Vári Gergő	
Műszaki Mechanikai Tanszék	1. HÁZI FELADAT	Neptun kód: MQHJOH	
2025/26 I.	Határidő: 2025.10.20. 12:00	Késedelmes beadás: □ Javítás: □	
Nyilatkozat: Aláírásommal igazolom, l készítettem el, az abban leírtak saját meg	Aláírás: Vári Gergő		

Csak a formai követelményeknek megfelelő és az ellenőrző program által helyesnek ítélt végeredményeket tartalmazó házi feladatokat értékeljük! https://www.mm.bme.hu/hwchk

Feladatkitűzés

Az ábrán vázolt mechanizmus az (x, y) síkban síkmozgást végez. Feladatunk a mechanizmus egyes tagjainak pillanatnyi sebesség- és gyorsulásállapotának vizsgálata.

- 1. Rajzolja meg a mechanizmus méretarányos szerkezeti ábráját az adott konfigurációban!
- 2. Határozza meg a (2) test szögsebességét és az S_2 súlypont sebességét (ω_2 , \mathbf{v}_S ,)!
- 3. Jelölje be a szerkezeti ábrán, hogy hol található a (2) test sebességpólusa, és rajzolja be a B, S₂ és C pontok sebességét!
- 4. Határozza meg a (2) test szöggyorsulását és az S_2 súlypont gyorsulását (ε_2 , \mathbf{a}_{S_7})!
- 5. Rajzolja be a szerkezeti ábrára a B, S₂ és C pontok gyorsulását!
- 6. Számítsa ki a (2) test gyorsulásszögét és rajzolja be a szerkezeti ábrába a B, S₂ és C pontok gyorsulásvektorainál! Jelölje be az ábrán, hogy hol található a (2) test gyorsuláspólusa!
- 7. Határozza meg az S_2 súlypont gyorsulásvektorának tangenciális és normális irányú komponenseit $(\mathbf{a}_{S_2t}, \mathbf{a}_{S_2n})!$ Rajzolja be azokat a szerkezeti ábrába!
- 8. Számítsa ki az S₂ súlypont pályájának pillanatnyi görbületi sugarát $(\rho_{S_2})!$

Adatok

$$arphi=55~^\circ$$
 $l_1=0.07~\mathrm{m}$ $l_2=0.17~\mathrm{m}$ $l_3=0.04~\mathrm{m}$ $v_{\mathrm{C}x}=0.6~\mathrm{m/s}=$ áll.

(Rész)eredmények

ω_{2z} [rad/s]	$arepsilon_{2z}$ $[\mathrm{rad/s^2}]$	$v_{ m S_2}$ [m/s]	$a_{ m S_2}$ $[{ m m/s^2}]$	$a_{\mathrm{S}_{2}\mathrm{t}}$ $[\mathrm{m/s^2}]$	$a_{\mathrm{S_2n}}$ $[\mathrm{m/s^2}]$	$ ho_{ m S_2}$ [m]
1.638	16.613	0.56349	1.4304	0.017776	1.4303	0.222

Dinamika HF1

Vári Gergő (MQHJ0H)

2025. október 29.

1. ábra: Boulton & Watt gőzgép

Tartalomjegyzék

1	Szerkezeti ábra	1				
2	2-es test szög -és súlypontjának sebessége	2				
	2.1 Helyvektorok	2				
	2.2 Szögsebesség	2				
	2.3 Súlypont sebesség	3				
3	Sebességpólus	3				
	3.1 Számítás	3				
	3.2 Ábra	4				
4	2-es test szög -és súlypontjának gyorsulása					
	4.1 Helyvektorok	5				
	4.2 Szöggyorsulás	5				
	4.3 Súlypont gyorsulás	5				
5	Kért pontok gyorsulása	6				
	5.1 Számítás	6				
	5.2 Ábra	6				
6	Gyorsulásszög és gyorsuláspólus	7				
	6.1 Számítás	7				
	6.1.1 Gyorsulásszög	7				
	6.1.2 Gyorsuláspólus	7				
	6.2 Ábra	7				
7	Gyorsulásvektor tangenciálisa és normálisa	8				
	7.1 Számítás	8				
	7.2 Ábra	8				
8	Pillanatnyi görhiileti sugár	8				

1 Szerkezeti ábra

2. ábra: Méretarányos szerkezet

2 2-es test szög -és súlypontjának sebessége

2.1 Helyvektorok

$$\mathbf{r}_{AB} = \begin{bmatrix} l_3 \sin \phi \\ l_3 \cos \phi \\ 0 \end{bmatrix} \tag{1}$$

$$\mathbf{r}_{\rm CB} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{2}$$

$$\sin \beta = \frac{l_3 + l_3 \cos \phi}{l_2} \tag{3}$$

$$\mathbf{r}_{\mathrm{CB}} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{4}$$

(5)

$$\mathbf{r}_{\mathrm{C}S_2} = \frac{\mathbf{r}_{\mathrm{CB}}}{2} \tag{6}$$

$$\mathbf{r}_{\mathrm{EA}} = \begin{bmatrix} 0 \\ l_3 \\ 0 \end{bmatrix} \tag{7}$$

2.2 Szögsebesség

 $\pmb{v}_{\rm B}$ -t felírhatjuk két oldalról (2-es és 3-as test.) $\pmb{v}_{\rm A}$ kiszámolásához pedig felhasználható az hogy az E pontban gördülés van.

$$\boldsymbol{v}_{\mathrm{C}} = \begin{bmatrix} v_{\mathrm{C}x} \\ 0 \\ 0 \end{bmatrix} \tag{8}$$

$$\boldsymbol{v}_{\mathrm{E}} = \boldsymbol{0} \tag{9}$$

$$\boldsymbol{v}_{\mathrm{A}} = \boldsymbol{v}_{\mathrm{E}} + \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{\mathrm{EA}} \tag{10}$$

$$\boldsymbol{v}_{\mathrm{B}} = \boldsymbol{v}_{\mathrm{C}} + \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{\mathrm{CB}} = \boldsymbol{v}_{\mathrm{A}} + \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{\mathrm{AB}} \Rightarrow$$
 (11)

(12)

$$\boldsymbol{\omega}_2 = \begin{bmatrix} 0\\0\\1.638 \end{bmatrix} [\text{rad/s}] \tag{13}$$

$$\boldsymbol{\omega}_3 = \begin{bmatrix} 0\\0\\-7.878 \end{bmatrix} [\text{rad/s}] \tag{14}$$

Vári Gergő MQHJ0H Vári Gergő

2.3 Súlypont sebesség

$$\boldsymbol{v}_{S_2} = \boldsymbol{v}_{\mathrm{C}} + \omega_2 \times \boldsymbol{r}_{\mathrm{C}S_2} = \begin{bmatrix} 0.55 \\ -0.13 \\ 0 \end{bmatrix} [\mathrm{m/s}]$$
 (15)

3 Sebességpólus

3.1 Számítás

A sebességpólusban ${\bf 0}$ a sebesség és ezzel megtalálhatjuk C-hez képesti helyvektorát.

$$\boldsymbol{v}_{\mathrm{C}} = \boldsymbol{v}_{P_2} + \boldsymbol{\omega}_2 \times \boldsymbol{r}_{P_2\mathrm{C}} \Rightarrow$$
 (16)

$$r_{P_2C} = \begin{bmatrix} 0 \\ -0.365 \\ 0 \end{bmatrix} [m]$$
 (17)

3.2 Ábra

3. ábra: Méretarányos szerkezet sebességpólussal és sebességekkel

4 2-es test szög -és súlypontjának gyorsulása

4.1 Helyvektorok

$$\boldsymbol{r}_{\mathrm{EA}} = \begin{bmatrix} 0 \\ l_3 \\ 0 \end{bmatrix} \tag{18}$$

$$\boldsymbol{r}_{\mathrm{EB}} = \boldsymbol{r}_{\mathrm{EA}} + \boldsymbol{r}_{\mathrm{AB}} \tag{19}$$

4.2 Szöggyorsulás

C pont sebessége állandó tehát gyorsulása zérus. A pont sebessége kiszámítható az ismert geometriából és a megismert szögsebességből. Ezután B pontot megint felírhatjuk két irányból.

$$\mathbf{a}_{\mathrm{C}} = \mathbf{0} \tag{20}$$

$$v_{\rm A} = r_3 \omega_3 \tag{21}$$

$$\boldsymbol{a}_{\mathrm{A}y} = -\frac{v_{\mathrm{A}}^2}{R + r_3} \tag{22}$$

$$\boldsymbol{a}_{\mathrm{A}} = \boldsymbol{a}_{\mathrm{E}} + \boldsymbol{\epsilon}_{3} \times \boldsymbol{r}_{\mathrm{EA}} - \omega_{3}^{2} \boldsymbol{r}_{\mathrm{EA}} \Rightarrow$$
 (23)

$$\boldsymbol{a}_{\mathrm{E}} = \begin{bmatrix} 0\\1.862\\0 \end{bmatrix} [\mathrm{m/s^2}] \tag{24}$$

$$\mathbf{a}_{\mathrm{B}} = \mathbf{a}_{\mathrm{C}} + \epsilon_{2} \times \mathbf{r}_{\mathrm{CB}} - \omega_{2}^{2} \mathbf{r}_{\mathrm{CB}} = \mathbf{a}_{\mathrm{E}} + \epsilon_{3} \times \mathbf{r}_{\mathrm{EB}} - \omega_{3} \mathbf{r}_{\mathrm{EB}} \Rightarrow$$
 (25)

$$\boldsymbol{\epsilon}_2 = \begin{bmatrix} 0\\0\\16.613 \end{bmatrix} [\text{m/s}^2] \tag{26}$$

$$\boldsymbol{\epsilon}_3 = \begin{bmatrix} 0\\0\\-22.562 \end{bmatrix} [\text{m/s}^2] \tag{27}$$

(28)

4.3 Súlypont gyorsulás

$$\boldsymbol{a}_{S_2} = \boldsymbol{a}_{C} + \boldsymbol{\epsilon_2} \times \boldsymbol{r}_{CS_2} - \boldsymbol{\omega}_2^2 \boldsymbol{r}_{CS_2} = \begin{bmatrix} -0.31038 \\ -1.3962 \\ 0 \end{bmatrix} [\text{m/s}^2]$$
 (29)

5 Kért pontok gyorsulása

5.1 Számítás

$$\boldsymbol{a}_{\mathrm{B}} = \boldsymbol{a}_{\mathrm{C}} + \boldsymbol{\epsilon}_{2} \times \boldsymbol{r}_{\mathrm{CB}} = \begin{bmatrix} -0.622 \\ -2.793 \\ 0 \end{bmatrix} [\mathrm{m/s^{2}}]$$
 (30)

5.2 Ábra

4. ábra: Méretarányos szerkezet gyorsulásokkal

6 Gyorsulásszög és gyorsuláspólus

6.1 Számítás

6.1.1 Gyorsulásszög

$$\alpha_2 = \operatorname{arctg} \frac{\epsilon_2}{\omega_2^2} = 80.826 \, [^{\circ}] \tag{31}$$

6.1.2 Gyorsuláspólus

$$\boldsymbol{a}_{G_2} = \boldsymbol{0} = \boldsymbol{a}_{\mathrm{C}} \Rightarrow G_2 = C \tag{32}$$

6.2 Ábra

5.ábra: Méretarányos szerkezet gyorsuláspólussal, gyorsulásokkal és azok gyorsulásszögével

Gyorsulásvektor tangenciálisa és normálisa

Számítás 7.1

A sebességvektorból számolt tangenciális egységvektorral mindkét komponens megkapható.

$$\boldsymbol{e}_{\mathrm{t}} = \frac{\boldsymbol{v}_{S_2}}{|\boldsymbol{v}_{S_2}|} \tag{33}$$

$$|\boldsymbol{a}_{S_{2t}}| = \boldsymbol{a}_{S_2} \cdot \boldsymbol{e}_{t} \tag{34}$$

$$\mathbf{e}_{t} = \frac{\mathbf{v}_{S_{2}}}{|\mathbf{v}_{S_{2}}|}$$

$$|\mathbf{a}_{S_{2t}}| = \mathbf{a}_{S_{2}} \cdot \mathbf{e}_{t}$$

$$\mathbf{a}_{S_{2t}} = |\mathbf{a}_{S_{2t}}| \cdot \mathbf{e}_{t} = \begin{bmatrix} 0.01786861561 \\ -0.00421 \\ 0 \end{bmatrix} [m/s^{2}]$$

$$(35)$$

$$\mathbf{a}_{S_{2t}} = \mathbf{a}_{S_{2t}} - \mathbf{a}_{S_{2t}} = \begin{bmatrix} -0.32825 \\ -1.30107 \end{bmatrix} [m/s^{2}]$$

$$(36)$$

$$\mathbf{a}_{S_{2n}} = \mathbf{a}_{S_2} - \mathbf{a}_{S_{2t}} = \begin{bmatrix} -0.32825 \\ -1.39197 \\ 0 \end{bmatrix} [\text{m/s}^2]$$
 (36)

7.2 Ábra

6. ábra: Méretarányos szerkezet a gyorsulás tangenciális (százszoros nagyítással a szemléltetés céljából) és normális komponensével

Pillanatnyi görbületi sugár

$$\rho_{S_2} = \frac{|\boldsymbol{v}_{S_2}|^2}{|\boldsymbol{a}_{S_{2_n}}|} = 0.222 \,[\text{m}]$$
(37)