

Differences between the invention and the references cited

2005.5.14

Jong Jin PARK

Properties of Carbon nanotube

Physical properties	Size: 1000 times as small as commercial Carbon or Glass Fiber (CNT: \$\phi1.4nm) Electrical aspect: having Band Gaps properties. -> Semi-conductive properties Mechanical aspect: High Aspect Ratio > 1000 (Max. 100um synthesizable) Outstanding Strength	Conductivity : having metallic properties because of high electric and thermal conductivities.	Organic compound like a ball composed of carbon only: Buckyball	Function as electrical superconductor to insulator, depending on their combining structure.
structure	Graphite SwNT Sheet According to the method to Roll Up	Arm-chair Zig-zag	Rolled-up with several sheets	Formed of rope of SW and MW
type	Single Wall		Multi-Wall	Rope

Comparison of C60 (Fullerene) with Carbon Nanotube

CNT	Single wall Multi wall Nanotube	Acid functionalized and shortened by sonicating in a mixture (7:3) of HNO ₃ and H ₂ SO ₄ -scission occurs preferably at both sides with COOH result in oxidation - cut SWNTs into many short pieces.
Fullerene C ₆₀	Ball Type of Carbon allotrope	Addition reaction Chem. Rev.; 1992; 92(7); 1487-1508.
	Structure	Surface treatment

Comparison of US 5,561,026 with 10/713,254

	US 5,561,026	10/713,254
	Addition reaction	Esterfication reaction
Surface modification	Alkyl amine or Azido compounds	By sonicating + in a mixture (7:3) of HNO ₃ and H ₂ SO ₄
	+ Methacrylchloride	Acryl chloride
	C60—NCH2CH2CH3 C=0 HC=CH2	CNT -C 0 CH
Component		-Copolymerizable photo initiator ♀
		R = Acryl $R = Acryl$

	US 4,439,291	10/713,254
Photosensitive compound	-One acryloyloxy or methacryloyloxy group R CH2=COOR 600C CH2 CH2 CH2	Copolymerizable photo initiator
	$CH_2 = \frac{CCOOR^{1}}{R} - \frac{R^{3} - R^{3}}{R^{2}} - \frac{R^{1}OOCC}{R} = CH_{2}$	R = Acryl
	CH2=CCOOR600C	H ₂ C=CHC-O-C ₂ H ₄ O CH ₃ CH ₃ CH ₃ CH ₃
	78000 A	CNT - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Copolymerizable photo initiator

Radical Radical + Monomer

$$R = Acryl$$

Radical Radical + Monomer

Radical + Monomer Radical

Comparison of CNT manufacturing method US 20010050219A1 with 10/713,254

□ Synthesis of Carbon Nanotube used in the invention (1)

Nd Yag Laser

Nd Yag Laser

New Yac Laser

New Yac Collector

Cu Collect

Laser-is-radiated-to-the-graphite-target
Vaporization: of:Graphite
Vaporized:carbon:clusters:are:absorbed:and
condensed:on:the:Cu:Collectorcondensed:on:the:
cathodelisnecessary:————————————————————————————————————

□ Synthesis of Carbon Nanotube used in the invention (2)

✓ CVD, Chemical Vapor Deposition

- Carbon nanotubes grow on the grain formed after etching
- · Grain: Embossing type of surface

□ Synthesis of Carbon Nanotube used in US 20010050219A1

Low pressure with carboniferous liquid state

Summary

- Differences with US 5,561,026
- -Fullerene is ball-type of carbon allotrope, which is surface-modified by additional reaction
- -CNT is nanotube-type and it can be acid-functionalized and shortened, forming COOH at both sides
- Photosensitive groups are introduced on the surface by esterificating **COOH** and Acrylchloride
- -A photoinitiator in the composition is used, forming radicals and making UV-reaction easy. It is also involved in photopolymerization as a monomer to increase efficiency.
- 2. Differences with US 4,439,291
- -copolymeric photoinitiator is copolymerized with CNT substituted with photosensitive group.
- 3. Differences with US 20010050219A1
- does not depend on the characteristic of each carbon nanotube produced by different methods. As a result, there is no relation to the invention. -The invention can substitute all the surface of carbon nanotubes, so

Conclusions

Difference	US 4,439,291	10/713,254
Photosensitive Compound	-One acryloyloxy or methacryloyloxy group	-Photosensitive CNT
Difference	US 5,561,026	10/713,254
Surface Modification Method	-Addition reaction C60—NCH2CH2CH3 c=0 HC=CH2	-Esterfication reaction CNT — O O O O O O O O O O O O O O O O O O
Difference	US20010050219A1	10/713,254
CNT Making Method	-Low pressure with carboniferous liquid state	-Arc-Discharge -Laser Vaporization -CVD, Chemical Vapor Deposition