Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions

Team ID: SWTID1720078683

Team Members:

- 1. Dinesh. R
- 2. G. Achuth
- 3. Lakshmanan. L
- 4. Agash. JP

1. Introduction

Date	10 July 2024
Team ID	SWTID1720078683
Project Name	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions

1.1. Project Overview

The Anemia Detection System is a cutting-edge health application designed to accurately predict the presence of anemia based on a user's blood report. Utilizing machine learning techniques, this system analyzes key blood parameters such as Hemoglobin, Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), and Mean Corpuscular Volume (MCV) to determine anemia status.

1.2. Objectives

The primary objective of this project is to provide a reliable, user-friendly tool for early anemia detection, enabling individuals to take proactive steps towards managing their health. The system employs advanced data preprocessing methods to ensure high-quality input data and leverages a Gradient Boosting model for robust performance in classification tasks. Comprehensive evaluation metrics, including accuracy, precision, recall, and confusion matrix, are used to validate the model's predictions.

2. Project Initialization and Planning Phase

2.1. Define Problem Statements:

Developing an anemia prediction system aimed at health-conscious individuals who seek to assess their health status based on detailed blood reports. The system must accurately classify the presence of anemia using key blood parameters such as Hemoglobin, MCH, MCHC, and MCV. This initiative addresses the need for reliable health insights, ensuring users can make informed decisions about their well-being promptly and effectively.

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
Anemia Prediction	A health- conscious individual	Predict if I have anemia	The prediction model lacks accuracy	I need reliable health insights based on my blood report	Concerned about my health

2.2. Project Proposal (Proposed Solution)

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview	
Objective	The objective of Anemia sense is to develop a machine learning-based system for the accurate detection and management of anemia. By
Scope	The Anemia sense project will focus on developing a machine learning system for accurate anemia detection and management. This includes
Problem Statement	
Description	Anemia, marked by a deficiency of red blood cells or hemoglobin, often goes undetected or is diagnosed late due to traditional, time-consuming
Impact	Solving the problem of timely and accurate anemia detection with Anemia sense will enable early diagnosis and prompt treatment, reducing health

Proposed Solution	
Approach	To detect the presence of anemia using patient data, we will develop a Gradient Boosting model utilizing features such as Gender, Hemoglobin
Key Features	Our approach includes thorough data preprocessing, emphasizing under sampling to handle class imbalance effectively. Critical features such as

Resource Requirements

Resource Type Description		Specification/Allocation				
Hardware						
Computing Resources CPU/GPU specifications, number of cores		Integrated GPUs				
Memory	RAM specifications	8 GB				
Storage Disk space for data, models, and logs		512 GB SSD				
Software						
Frameworks	Python frameworks	Flask				
Libraries	Additional libraries	Matplotlib, Seaborn, Scikit-learn, pandas, NumPy				
Development Environment	IDE, version control	Jupyter Notebook, Git				
Data	Data					
Data	Source, size, format	Smart Wallet Platform, 1421 rows of data, CSV file				

2.3. Initial Project Planning

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Membe rs	Sprint Start Date	Spri nt End Date (Plan ned)
Sprint-1	Project Initialization and Planning Phase	AS-2	Define Problem Statements	3	High	G.Achu th	7-07-2024	8-07- 2024
Sprint-1	Project Initialization and Planning Phase	AS-3	Project Proposal	2	Medium	Lakshma nan.L	7-07-2024	8-07- 2024
Sprint-1	Project Initialization and Planning Phase	AS-4	Initial Project Planning Report	2	Medium	Dinesh .R	7-07-2024	8-07- 2024
Sprint-1	Data Collection and Preprocessing Phase	AS-6	Data Quality Report	2	Medium	G.Achu th	7-07-2024	8-07- 2024

Sprin	Data	AS-7	Data Collection Plan	2	Medi	Lakshman	7-07-	8-07-
t-1	Collection		and Raw Data		um	an.L	2024	2024
	and		Sources Identification					
	Preprocessi		Report					
Sprin	Data	AS-8	Data Exploration and	2	Medi	Agash.JP	7-07-	8-07-
t-1	Collection		Preprocessing Report		um		2024	2024
	and							
	Preprocessi							

Sprin	Model	AS-10	Initial Model Training	3	High	G.Achuth	8-07-	9-07-
t-2	Developme		Code, Model				2024	2024
	nt Phase		Validation and					
Sprin	Model	AS-11	Model Selection	3	High	Dinesh.R	8-07-	9-07-
t-2	Developme		Report				2024	2024
	nt Phase							
Sprin	Model	AS-12	Model Optimization	3	High	Agash.JP	8-07-	9-07-
t-2	Developme		and Tuning Report				2024	2024
	nt Phase							
Sprin	Project	AS-14	Model Training File	3	High	Dinesh.R	10-07-	11-07-
t-3	Executable						2024	2024
	Files							
Sprin	Project	AS-15	Model Testing File	3	High	Lakshman	10-07-	11-07-
t-3	Executable					an.L	2024	2024
	Files							
Sprin	Project	AS-16	Flask Files	2	Medi	G.Achuth	10-07-	11-07-
t-3	Executable				um		2024	2024
	Files							
Sprin	Documenta	AS-18	Project	3	High	Dinesh.R	10-07-	11-07-
t-3	tion and		Documentation				2024	2024
	Demonstrat							
Sprin	Documenta	AS-19	Project Demonstration	2	Medi	Lakshman	10-07-	11-07-
t-3	tion and				um	an.L	2024	2024
	Demonstrat							

Screenshots:

	IN	JUL
Sprints		188
✓ ✓ AS-1 Project Initialization and Planning		
AS-2 Define Problem Sta DONE		
AS-3 Project Proposal DONE (L)		
AS-4 Initial Project Plann DONE OR		
AS-5 Data Collection and Preprocessing		
AS-7 Data Collection Pla DONE		
AS-8 Data Exploration an DONE (1)		
AS-6 Data Quality Report DONE 0		
Sprints		

3. Data Collection and Preprocessing Phase

3.1. Data Collection Plan & Raw Data Sources Identification

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan

Section	Description
Project Overview	Anemia sense leverages machine learning algorithms to provide precise recognition and management of anemia, a condition characterized by a
Data Collection Plan	Skill Wallet Platform
Raw Data Sources	File Name: anemia.csv
Identified	File Size: 33.8 KB

Raw Data Sources

Source Name	Description	Location/ URL	Format	Size	Access Permissions
Dataset	The dataset contains 1,421 entries with 6 columns: Gender, Hemoglobin, MCH, MCHC, MCV, and Result, all with non-null values. It includes information on blood parameters and the presence or absence of anemia. Gender is likely encoded as 0 and 1, while Result indicates anemia status, with 0 for no anemia and 1 for anemia.	https://driv e.google.c om/file/d/1 KMJFNFG woaQoAou IPabMEHc T1bvqEXa u/view?usp =sharing	CSV	33.8 KB	Public

3.2. Data Quality Report

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
-------------	--------------------	----------	-----------------

https://drive.google.com /file/d/1KMJFNFGwoaQ oAouIPabMEHcT1bvqE Xau/view?usp=sharing	Data Imbalance in the Gender Column.	Low	Used under sampling technique to balance the dataset.
--	--------------------------------------	-----	---

3.3. Data Exploration and Preprocessing

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Descrip	Description					
]: data.d	escribe()					
	1:	Gender	Hemoglobin	МСН	мснс	MCV	Result
	count	1421.000000	1421.000000	1421.000000	1421.000000	1421.000000	1421.000000
	mean	0.520760	13.412738	22.905630	30.251232	85.523786	0.436312
	std	0.499745	1.974546	3.969375	1.400898	9.636701	0.496102
	min	0.000000	6.600000	16.000000	27.800000	69.400000	0.000000
Data Organia,	25%	0.000000	11.700000	19.400000	29.000000	77.300000	0.000000
Data Overview	50%	1.000000	13.200000	22.700000	30.400000	85.300000	0.000000
	75%	1.000000	15.000000	26.200000	31.400000	94.200000	1.000000
	max	1.000000	16.900000	30.000000	32.500000	101.600000	1.000000
	data.s						

sns.pairplot(data) Multivariate Analysis

Data Preprocessing Code Screenshots

Loading Data	<pre>data = pd.read_csv('anemia.csv')</pre>
	data.isnull().any()
Handling Missing Data	data.isnull().sum()

```
Data Transformation

Data Tran
```

4. Model Development Phase

4.1. Feature Selection Report

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Gender	Binary indicator of gender (0: Male, 1: Female)	Yes	Relevant for potential gender differences in anemia
Hemoglobin	Hemoglobin level	Yes	Primary indicator of anemia

МСН	Mean Corpuscular Hemoglobin is a measure of the average amount of hemoglobin per red blood cell	Yes	Indicator for red blood cell characteristics
	blood cell		

МСНС	Mean Corpuscular Hemoglobin Concentration indicates the concentration of hemoglobin in a given volume of packed red blood cells		Indicator for red blood cell concentration
MCV	Mean Corpuscular Volume measures the average volume of red blood cells	Yes	Indicator for red blood cell volume

4.2. Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparamet ers	Performance Metric (e.g., Accuracy, F1 Score)
Logistic Regression	Logistic regression is a statistical method for binary classification that models the probability of a binary outcome using a logistic function to constrain the output between 0 and 1.	-	Accuracy – 0.9798
Random Forest Classifier	Random Forest is an ensemble learning method that builds multiple decision trees and merges their results to improve accuracy and control over-fitting.	-	Accuracy – 1.00
Decision Tree Classifier	A decision tree is a flowchart-like structure where each internal node represents a decision based on a feature, each branch represents the outcome of the decision, and each leaf node represents a class label.	-	Accuracy – 1.00
Gaussian Naïve Bayes	assumes the features follow a		Accuracy – 0.9516
Support Vector Machine	SVM is a supervised learning model that finds the optimal hyperplane which maximizes the margin between different classes in the feature space.	-	Accuracy – 0.9032

Gradient Boosting Classifier	Gradient Boosting is an ensemble technique that builds models sequentially, with each new model attempting to correct the errors of the previous models,	-	Accuracy – 1.00
------------------------------------	--	---	-----------------

4.3. Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
log = LogisticRegression()

log.fit(x_train,y_train)

* LogisticRegression
LogisticRegression()
```

```
rf = RandomForestClassifier()

rf.fit(x_train,y_train)

   RandomForestClassifier
RandomForestClassifier()
```

```
dec = DecisionTreeClassifier()

dec.fit(x_train,y_train)

* DecisionTreeClassifier

DecisionTreeClassifier()
```

```
NB = GaussianNB()

NB.fit(x_train,y_train)

* GaussianNB
GaussianNB()
```

```
SVM = SVC()

SVM.fit(x_train,y_train)

* SVC
SVC()
```

```
GB = GradientBoostingClassifier()

GB.fit(x_train,y_train)

GradientBoostingClassifier

GradientBoostingClassifier()
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic Regression	acc_lr = accuracy_score(y_test,y_predict) acc_lr 0.9798387096774194 rep_lr = classification_report(y_test,y_predict) print(rep_lr) precision recall f1-score support 0 0.99 0.97 0.98 123 1 0.97 0.99 0.98 125 accuracy 0.98 248 macro avg 0.98 0.98 0.98 248 weighted avg 0.98 0.98 0.98 248	0.9798	<pre>confusion_matrix(y_test,y_predict) array([[119, 4],</pre>
Random Forest Classifier	acc_rf = accuracy_score(y_test,y_predict) acc_rf 1.0 rep_rf = classification_report(y_test,y_predict) print(rep_rf) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 1.00 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>
Decision Tree Classifier	acc_dc = accuracy_score(y_test,y_predict) acc_dc 1.0 rep_dc = classification_report(y_test,y_predict) print(rep_dc) precision recall f1-score support 0	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>

Gaussian Naïve Bayes	acc_N8 = accuracy_score(y_test,y_predict) acc_N8 0.9516129032258065 rep_N8 = classification_report(y_test,y_predict) print(rep_N8) precision recall f1-score support 0 0.97 0.93 0.95 123 1 0.93 0.98 0.95 125 accuracy 0.95 248 macro avg 0.95 0.95 0.95 248 weighted avg 0.95 0.95 0.95 248	0.9516	confusion_matrix(y_test,y_predict) array([[113, 10],
Support Vector Machine	acc_svm = accuracy_score(y_test,y_predict) acc_svm 0.9032258064516129 rep_svm = classification_report(y_test,y_predict) print(rep_svm) precision recall f1-score support 0 0.98 0.82 0.89 123 1 0.85 0.98 0.91 125 accuracy 0.90 248 macro avg 0.91 0.90 0.90 248 weighted avg 0.91 0.90 0.90 248	0.9032	<pre>confusion_matrix(y_test,y_predict) array([[101, 22],</pre>
Gradient Boosting Classifier	acc_GB = accuracy_score(y_test,y_predict) acc_GB 1.0 rep_GB = classification_report(y_test,y_predict) print(rep_GB) precision recall f1-score support 0	1.00	<pre>confusion_matrix(y_test,y_predict) array([[119, 4],</pre>

Out of all the 6 above mentioned models, we selected the Gradient Boosting Classifier Model for our project, due to the high accuracy that we got.

5. Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learningmodels for peakperformance. It includes optimizedmodel code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive

accuracy and efficiency.

5.1. Hyperparameter Tuning Documentation:

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	[44]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import RandomizedSearchCV [45]: dec = DecisionTreeClassifier() [46]: param grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [Rone, 10, 20, 20, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_loof': [1, 2, 4]] [47]: dec = RandomizedSearchCV(dec, param_grid, cv=5) [48]: dec.fit(x_train,y_train) [48]: RandomizedSearchCV * estimator: DecisionTreeClassifier * DecisionTreeClassifier	profitor persons: ("Annel Manus general); profit for security in last ("Annel Manus general); but smallers: "Annel in last," in superal general ("A", "resperal general ("A",
Random Forest	<pre>from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV rf = RandomForestClassifier() param_grid = {</pre>	prod/Schamiero (Chara (Alexa (Alexa (Bene III))) prod/Schamiero (Chara (Alexa (Bene III))) fold sendero (Chara (Bene III)), senjando (Alexa (Bene III)), senjando

5.2. Performance Metrics Comparison Report:

Model	Optimized Metric			
Decision Tree	rep_dc = classification_report(y_test,y_predict) print(rep_dc) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248 confusion_matrix(y_test,y_predict) array([[123, 0],			
Random Forest	rep_rf = classification_report(y_test,y_predict) print(rep_rf) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 marro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248 confusion_matrix(y_test,y_predict) array([[123, 0],			
Gradient Boosting	rep_GB = classification_report(y_test,y_predict) print(rep_GB) precision recall f1-score support 0			

5.3. Final Model SelectionJustification:

Final Model	Reasoning
Gradient Boosting	The Gradient Boosting model was selectedfor its superiorperformance, exhibiting high accuracy duringhyperparameter tuning. Its ability to handle complexrelationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifyingits selection as the final model

6. Results

6.1. Output Screenshots

7. Advantages & Disadvantages

Advantages

- 1. Early Detection:
 - Enables timely medical intervention by identifying anemia early.
- 2. Accuracy:
 - Utilizes a robust Gradient Boosting model for reliable predictions.
- 3. User-Friendly Interface:
 - Designed for ease of use, making it accessible to a wide range of users.
- 4. Real-Time Predictions:
 - Provides instant results, allowing for quick understanding and action.

Disadvantages

- 1. Dependence on Data Quality:
 - Accurate predictions rely on high-quality input blood report data.
- 2. Data Privacy Concerns:
 - Handling sensitive health data requires stringent security measures.
- 3. Not a Substitute for Medical Advice:
 - Provides valuable insights but cannot replace professional medical diagnosis and consultation.

8. Conclusion

The Anemia Detection application leverages machine learning to offer a reliable method for early anemia diagnosis. Utilizing features like Gender, Hemoglobin, MCH, MCHC, and MCV, and a Gradient Boosting model, the application ensures accurate predictions. This tool aids in early detection, facilitating timely medical intervention and improving health outcomes. While it is not a substitute for professional medical advice, the application provides valuable preliminary insights, making it a beneficial addition to healthcare technology.

9. Future Scope

The future scope of the Anemia Detection application includes:

- Enhanced Model Accuracy: Incorporate advanced machine learning algorithms and larger datasets to improve prediction accuracy.
- 2. **Mobile Integration**: Develop mobile applications for iOS and Android to increase

- accessibility.
- 3. **Integration with Wearable Devices**: Enable integration with wearable health devices for real-time monitoring.
- 4. **Comprehensive Health Analysis**: Expand the application to include predictions for other related health conditions

10. Appendix

10.1. Source Code

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv('anemia.csv')

data.head()

data.isnull().any()

data.info()

data.shape

data.isnull().sum()

data.describe()

data.isnull().sum()
```

```
results = data['Result'].value_counts()
results.plot(kind = 'bar',color = ['red','green'])
plt.xlabel('Results')
plt.ylabel('Frequency')
plt.title('Imbalance data analysis')
from sklearn.utils import resample
major = data[data['Result'] == 0]
minor = data[data['Result'] == 1]
undersampling = resample(major,replace = False,n_samples = len(minor),random_state = 47)
data = pd.concat([undersampling,minor])
print(data['Result'].value_counts())
res_balanced = data['Result'].value_counts()
res_balanced.plot(kind = 'bar',color = ['red','green'])
plt.xlabel('Results')
plt.ylabel('Frequency')
plt.title('Imbalance data analysis(Balanced)')
gender = data['Gender'].value_counts()
gender.plot(kind = 'bar',color = ['blue','orange'])
plt.xlabel('Gender')
plt.ylabel('Frequency')
plt.title('Gender analysis')
```

```
sns.displot(data['Hemoglobin'],kde = True)
df = pd.DataFrame(data)
df['Result'] = df['Result'].map({0: '0', 1: '1'})
mean_hemoglobin = df.groupby(['Gender', 'Result'])['Hemoglobin'].mean().reset_index()
plt.figure(figsize=(10, 6))
plot = sns.barplot(x='Gender', y='Hemoglobin', hue='Result', data=mean_hemoglobin)
plt.title('Mean Hemoglobin by Gender and Result')
plt.xlabel('[male,female]')
plt.ylabel('Hemoglobin')
for i in plot.containers:
   plot.bar_label(i,fmt = '%.4f',label_type = 'edge')
plt.ylim(0,plt.ylim()[1]*1.1)
plt.show()
sns.pairplot(data)
sns.heatmap(data.corr(),annot = True,cmap = 'RdYlGn',linewidths = 0.2)
figure = plt.gcf()
figure.set_size_inches(10,8)
plt.show()
```

```
y = data['Result']
x = data.drop('Result',axis = 1)

x.head()

y.head()

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 234)

x_train.shape

x_test.shape

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
```

```
log = LogisticRegression()
log.fit(x_train,y_train)
y_predict = log.predict(x_test)
acc_lr = accuracy_score(y_test,y_predict)
acc lr
rep_lr = classification_report(y_test,y_predict)
print(rep_lr)
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
rf = RandomForestClassifier()
param_grid = {
    'n_estimators': [50, 100, 200],
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
```

```
rf = RandomizedSearchCV(rf, param_grid, cv=5)

rf.fit(x_train,y_train)

y_predict = rf.predict(x_test)

acc_rf = accuracy_score(y_test,y_predict)

acc_rf

print("Best parameters: {}".format(rf.best_params_))

print("Best accuracy on test: {}".format(acc_rf))

rep_rf = classification_report(y_test,y_predict)

print(rep_rf)

confusion_matrix(y_test,y_predict)

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import RandomizedSearchCV
```

```
dec = DecisionTreeClassifier()
param_grid = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20, 30, 40, 50],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
dec = RandomizedSearchCV(dec, param grid, cv=5)
dec.fit(x_train,y_train)
y_predict = dec.predict(x_test)
acc_dc = accuracy_score(y_test,y_predict)
acc_dc
print("Best parameters: {}".format(dec.best_params_))
print("Best accuracy on test: {}".format(acc_dc))
rep_dc = classification_report(y_test,y_predict)
print(rep_dc)
confusion_matrix(y_test,y_predict)
```

```
NB = GaussianNB()
NB.fit(x_train,y_train)
y predict = NB.predict(x test)
acc_NB = accuracy_score(y_test,y_predict)
acc NB
rep_NB = classification_report(y_test,y_predict)
print(rep_NB)
from sklearn.svm import SVC
SVM = SVC()
SVM.fit(x_train,y_train)
y_predict = SVM.predict(x_test)
acc_svm = accuracy_score(y_test,y_predict)
acc_svm
rep_svm = classification_report(y_test,y_predict)
print(rep svm)
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import RandomizedSearchCV
GB = GradientBoostingClassifier()
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
GB = RandomizedSearchCV(GB, param_grid, cv=5)
GB.fit(x_train,y_train)
y_predict = GB.predict(x_test)
acc_GB = accuracy_score(y_test,y_predict)
acc_GB
```

from sklearn.naive_bayes import GaussianNB

```
from flask import Flask, render_template, request
import pickle
import numpy as np
model = pickle.load(open("model.pkl","rb"))
app = Flask(__name__)
@app.route('/')
def home():
    return render_template('home.html')
@app.route('/about')
def about():
    return render_template('about.html')
@app.route('/predict')
def predict():
    return render_template('predict.html')
@app.route('/team')
def team():
    return render_template('team.html')
```

```
@app.route('/results', methods = ["POST"])
def prediction():
    Name = request.form["name"]
    Hemo = request.form["hb"]
    Gender = request.form["gender"]
    MCH = request.form["mch"]
MCHC = request.form["mchc"]
    MCV = request.form["mcv"]
    if Gender == "Male":
        g = 0
        g = 1
    x_test = [[g,float(Hemo),float(MCH),float(MCHC),float(MCV)]]
    print(x_test)
    p = np.array(x_test)
    p = p.astype(np.float32)
    prediction = model.predict(p)
    if (prediction == 0):
        text = "You don't have Anemic Disease"
        text = "You have Anemic Disease"
    return render_template("results.html",f = Name, e = Gender, a = Hemo, b = MCH, c = MCHC, d = MCV, predicted_r
if __name__ == "__main__":
    app.run(debug = True)
```

10.2 GitHub and Project Demo Link

- **GitHub Repo Link** https://github.com/Achuth-0908/Anemia-Sense-Leveraging-Machine-Learning-for-Precise-Anemia-Recognitions.git
- **Demonstration Video Link** https://drive.google.com/file/d/1nwClhjTxJoWCycUFWg3kcRugEpSMFOv8/view