代数结构 Algebraic Structure

代数系统 半群与独异点群环 域 格与布尔代数

第十五章 代数系统

15.1 二元运算及其性质

- □n元运算的定义及实例
- □n元运算的表示
- □二元运算的算律
- □二元运算的特异元素

n元运算的定义

定义 设A为集合,函数 $f: A \times A \rightarrow A$ 称为A上的二元运算。

定义 设A为集合,函数 $f: A^n \rightarrow A$ 称为A上的 n元 运算。

n=0, 0元运算, $f: \rightarrow A$,A中的一个元素 n=1, 一元运算, $f: A \rightarrow A$

封闭性:

运算结果均属于A

n元运算的实例

集合

Z, Q, R, C

 $M_n(R)$

P(B)

R(B)

 A^{A}

+, ×

+, ×

 \cup , \cap , -, \oplus

0

二元运算 一元运算

0

0元运算

0, 1

 θ , E

 \emptyset, B

 I_{R}

 I_A

 $A \oplus B = (A - B) \cup (B - A)$ 对称差

R(B): B上二元关系的集合

n元运算的表示

算符记号: ○,*, ●, □, ◊, △等,

表达式:

$$(x_1, x_2, ..., x_n) = y$$

$$x_1 \circ x_2 = y$$

$$\Delta x = y$$

表示方法:

解析表达式

运算表(适用于有穷集上的一元和二元运算)

n元运算的表示实例

□ 表达式: •是实数集 R上的二元运算 $x \circ y = x + y - 2xy$

□运算表

 $A = P(\{a, b\}), A$ 上的二元运算 \oplus ,一元运算~

\oplus	Ø	<i>{a}</i>	<i>{b}</i>	{ <i>a</i> , <i>b</i> }
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$
<i>{a}</i>	<i>{a}</i>	Ø	$\{a,b\}$	{ <i>b</i> }
{ b }	{ <i>b</i> }	$\{a,b\}$	Ø	<i>{a}</i>
$\{a,b\}$	$\{a,b\}$	{ <i>b</i> }	<i>{a}</i>	Ø

X	~X
Ø	$\{a,b\}$
<i>{a}</i>	{ b }
{ <i>b</i> }	<i>{a}</i>
<i>{a,b}</i>	Ø

运算表的一般形式

适用于有穷集

0	a_1	a_2	• • •	a_n
a_1	$a_1 \circ a_1$	$a_1 \circ a_2$	• • •	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 o a_2	• • •	$a_2 \circ a_n$
	••••			
a_n	$a_n \circ a_1$	$a_n \circ a_2$	• • •	$a_n \circ a_n$

a_i	Δa_i
a_1	Δa_1
a_2	Δa_2
a_n	Δa_n

二元运算的算律

□涉及一个二元运算的算律

交换

结合——广义结合

幂等

消去

□涉及两个不同的二元运算的算律

分配——广义分配

吸收(以交换为前提)

算律的定义

设。, *为A上的二元运算 交換律 $\forall a, b \in A$, $a \circ b = b \circ a$ 结合律 $\forall a, b, c \in A$, $(a \circ b) \circ c = a \circ (b \circ c)$ 幂等律 $\forall a \in A$, $a \circ a = a$ 分配律 $\forall a, b, c \in A$, $\boldsymbol{a} \circ (\boldsymbol{b} * \boldsymbol{c}) = (\boldsymbol{a} \circ \boldsymbol{b}) * (\boldsymbol{a} \circ \boldsymbol{c})$ $(b*c) \circ a = (b \circ a) * (c \circ a)$ 吸收律 设。, *可交换 $\forall a, b \in A$, $a \circ (a * b) = a, \ a * (a \circ b) = a$

推广:结合律、幂等律、分配律推广到有限项

实例:交换、结合、幂等律

集合	运算	交换律	结合律	幂等律
7 O D	普通加法+	有	有	无
Z, Q, R	普通乘法×	有	有	无
M (D)	矩阵加法+	有	有	无
$M_n(R)$	矩阵乘法×	无	有	无
	并U	有	有	有
D(D)	交⋂	有	有	有
P(B)	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数复合o	无	有	无

实例:分配、吸收律

集合	运算	分配律	吸收律
Z, Q, R	普通加法+与乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
D(D)	并∪与交∩	U对∩可分配 ∩对U可分配	有
P(B)	交∩与对称差⊕	○对⊕可分配 ⊕对∩不分配	无

分配律 $\forall a, b, c \in A, \ a \circ (b * c) = (a \circ b) * (a \circ c)$ $(b * c) \circ a = (b \circ a) * (c \circ a)$ 吸收律 设 \circ , *可交换 $\forall a, b \in A, \ a \circ (a * b) = a, \ a * (a \circ b) = a$

二元运算的特异元素

特异元素名称
 单位元(幺元) e
 零元 θ
 幂等元
 可逆元和逆元

□ 说明:存在特异元素也可以作为算律 同一律(存在单位元)零律(存在零元)

特异元素的定义与性质

定义 设。为A上二元运算

单位元
$$e$$
, $\forall a \in A$, $e \circ a = a \circ e = a$

零元
$$\theta$$
, $\forall a \in A$, $\theta \circ a = a \circ \theta = \theta$

幂等元
$$a = a \in A$$
, $a \circ a = a$

可逆元 x (逆元y) $x \in A$, $\exists y \in A$, $x \circ y = y \circ x = e$

特异元素的性质

单位元及零元的唯一性

如果 |A| > 1,那么 $e \neq \theta$

可结合运算逆元的唯一性: x 的逆元记为 x^{-1} .

定理证明

定理1 对于给定集合A 和A上的二元运算 \circ ,如果存在 $e_l \in A$ 和 $e_r \in A$ 使得 $\forall x \in A$ 满足

$$e_l \circ x = x = x \circ e_r,$$

则 $e_l = e_r = e$, 且e 就是A中关于。运算的唯一的单位元.

证 $e_l = e_l \circ e_r = e_r$,令 $e_l = e_r = e$,则e为单位元.

假设 e'也为单位元,则 $e' = e' \circ e = e$

定理2 对于给定集合A和A上的二元运算。,如果存在 $\theta_l \in A$ 和 $\theta_r \in A$ 使得 $\forall x \in A$ 满足

$$\theta_l \circ x = \theta_l, \quad x \circ \theta_r = \theta_r,$$

则 $\theta_I = \theta_r = \theta$, 且 θ 就是A中关于。运算的唯一的零元.

定理证明(续)

定理3 设。是A上可结合的二元运算,e为单位元,如果对于A中元素 x,存在元素 y_l 和 y_r 使得

$$y_l \circ x = x \circ y_r = e,$$

则 $y_l = y_r = y$, 且 $y \in x$ 的唯一的逆元。

令 $y_l = y_r = y, y 是 x$ 的逆元。

假设y'也是x的逆元,则

$$y' = y' \circ e = y' \circ (x \circ y) = (y' \circ x) \circ y = e \circ y = y$$

实例:单位元、零元、可逆元

集合	运算	单位元	零元	逆元
7 O D	普通加法+	0	无	<i>x</i> 的逆元 - <i>x</i>
Z,Q,R	普通乘法×	1	0	可逆元 x 存在 x^{-1}
M (D)	矩阵加法+	全0矩阵	无	X的逆元 -X
$M_n(R)$	矩阵乘法×	单位矩阵	全0矩阵	可逆元 X 存在 X^{-1}
	弁∪	Ø	В	Ø的逆元为Ø
P(B)	交⋂	\boldsymbol{B}	Ø	B的逆元为 B
	对称差⊕	Ø	无	X的逆元为X

注意:只有可逆元 x 存在逆元; x^{-1} 必须属于给定集合

消去律定义及实例

定义 设A为集合,。为A上二元运算,若 $\forall a, b, c \in A$,

$$a \circ b = a \circ c \land a \neq \theta \Rightarrow b = c$$

$$b \circ a = c \circ a \land a \neq \theta \Rightarrow b = c$$

则称o运算满足消去律

实例:

Z, Q, R, +, × 满足消去律

 $M_n(R)$, 矩阵+满足消去律,矩阵×不满足消去律

P(B), ⊕ 满足消去律, \cup 、 \cap 、- 一般不满足消去律

 A^A , \circ 一般不满足消去律

例题分析

例1 设。运算为Q上的二元运算,

$$\forall x, y \in \mathbf{Q}, \quad x \circ y = x + y + 2xy,$$

- (1) 判断。运算是否满足交换、结合、幂等、消去律.
- (2) 求出 。运算的单位元、零元和所有可逆元素的逆元.

证明算律成立:根据定义验证;证明算律不成立:举反例。

 \mathbf{m} (1)。运算可交换,可结合,可消去,不幂等. 结合律成立,任取 $x,y,z \in \mathbf{Q}$,

$$(x \circ y) \circ z = (x + y + 2xy) + z + 2(x + y + 2xy)z$$

= $x + y + z + 2xy + 2xz + 2yz + 4xyz$
 $x \circ (y \circ z) = x + (y + z + 2yz) + 2x(y + z + 2yz)$
= $x + y + z + 2xy + 2xz + 2yz + 4xyz$

幂等律不成立,因为1。1=1+1+2=4≠1.

例题分析 (续)

(2) 设 o运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 x o e = x 成立,即

$$x + e + 2xe = x \Rightarrow e = 0$$

由于。运算可交换,所以0是单位元.

对于任意 x 有 $x \circ \theta = \theta$ 成立,即

$$x+\theta+2x\theta=\theta \Rightarrow x+2x\theta=0 \Rightarrow \theta=-1/2$$

给定x,设x的逆元为y,则有 $x \circ y = 0$ 成立,即

$$x + y + 2xy = 0 \Rightarrow y = -\frac{x}{1+2x} \quad (x \neq -1/2)$$

因此当 $x \neq -1/2$ 时, $y = -\frac{x}{1+2x}$ 是x的逆元.

例题分析 (续)

例2下面是三个运算表

- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的单位元、零元、所有可逆元素的逆元.

*	a b c
a	c a b
$\mid b \mid$	a b c
<i>c</i>	b c a

О	a	b	c
$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$	b	<i>a b c</i>	\boldsymbol{b}

•	a b c
a	a b c
$\mid \boldsymbol{b} \mid$	b c c
c	c c c

解

- (1) * 满足交换律、结合律; o 满足结合律、幂等律;
 - •满足交换律、结合律.
- (2)*的单位元为 b,没有零元, $a^{-1} = c$, $b^{-1} = b$, $c^{-1} = a$
 - o 的单位元和零元都不存在,没有可逆元素.
 - 的单位元为 a,零元为c, $a^{-1} = a$. b, c不是可逆元素.

第二节 代数系统

- □ 代数系统的定义 构成成分(载体+运算)、公理
- □ 代数系统的分类 同类型的代数系统 同种的代数系统
- □ 构造代数系统的方法 子代数 积代数

代数系统构成: 成分+公理

记法一
$$V = \langle A, \Omega, K \rangle$$
,

A: 载体,非空 $\Omega:$ 运算集,非空,

K: 代数常数集, $\emptyset \subseteq K \subseteq A$

$$\Omega = \bigcup_{j=1}^{n} \Omega_j \quad \Omega_j = \{o \mid o \land A \perp h \mid j \in \mathbb{Z}\}$$

记法二
$$V = \langle A, \Omega \rangle$$
, 其中
$$\Omega = \bigcup_{j=0}^{\infty} \Omega_j \quad \Omega_j = \{o \mid o \land A \perp \text{的} j \ \text{元运算}\}$$

记法三
$$V = \langle A, o_1, o_2, ..., o_r \rangle$$

代数系统的实例

$$< Z, +, \cdot >, < Q, +, \cdot >, < R, +, \cdot >$$
 $< M_n(R), +, \cdot >,$
 $< P(B), \cap, \cup >,$
 $< \{0, 1\}, \land, \lor >,$
 $< Z_n, \oplus, \otimes >,$
 $Z_n = \{0, 1, ..., n-1\},$
 $x \oplus y = x + y \pmod{n}$
 $x \otimes y = xy \pmod{n}$
 $< A^A, \circ >$

代数系统的分类

同类型的:构成成分(主要是运算)相同;定义15.10

构成成分: 载体、运算(运算个数+对应运算的元数)

$$V_1 = < A, o_{11}, o_{12}, \dots, o_{1r} >, V_2 = < B, o_{21}, o_{22}, \dots, o_{2r} >, o_{1i}$$

和 o_{2i} 具有同样的元数

同种的:构成成分与运算性质都相同

运算性质:交换,结合,幂等,吸收,分配,消去律

 $< A_{,\circ,*}>$: *可结合; *对。可分配 $< Z_{,+,\cdot}>, < Z_{n,} \oplus, \otimes>, < M_{n}(R), +, \cdot> 与 < A_{,\circ,*}>$ 是同种的

< \$,°',*'>: 可交换、结合、幂等; °',*'相互分配、吸收

< P(B),∩,∪>, $< \{0,1\}$, ∧, $\lor >$ 与< S, \circ' ,*' >是同种的

< *A*,°,*> 与 < *S*,°′,*′> 同类型的

子代数

定义 设V=<A, o_1 , o_2 ,..., $o_r>$ 是代数系统,B是A的非空子集. 若B对于V中的所有运算封闭(含0元运算在内),则称 V'=<B, o_1 , o_2 ,..., $o_r>$ 为V的子代数.

若 $B\subset A$,子代数V'称为V的真子代数.

平凡子代数: V是V的平凡子代数. 除此之外,若V=<A, $o_1, o_2, ..., o_r$ >的代数常数集合为K,且K对V上所有的运算封闭,那么<K, $o_1, o_2, ..., o_r$ >也为V的平凡子代数.

说明:

子代数一定存在(至少存在平凡子代数)

实例

例1 $V = \langle Z, +, 0 \rangle$

公理: +满足结合律,每个元素可逆

子代数: nZ, $n \in N$,

n=0 平凡的真子代数

n=1 平凡子代数

n>1 非平凡的真子代数

 $V = \langle Z, + \rangle$

公理:+满足结合律

子代数: $nZ(n \in N)$, N, Z^+ (Z^+ 中每个元素均不可逆)等.

积代数

定义 设 V_1 =<A, o_{11} , o_{12} ,..., o_{1r} >与 V_2 =<B, o_{21} , o_{22} , ..., o_{2r} >是 同类型的代数系统,对于i=1, 2,..., r, o_{1i} 和 o_{2i} 是 k_i 元运算,定义

$$V_1 \times V_2 = \langle A \times B, o_1, o_2, ..., o_r \rangle$$

其中 o_i 是 k_i 元运算,i=1,2,...,r,对于任意的 $< x_1, y_1 >$,

$$< x_2, y_2>, ..., < x_{k_i}, y_{k_i}> \in A\times B,$$
 $o_i(< x_1, y_1>, ..., < x_{k_i}, y_{k_i}>) \stackrel{\text{def}}{=}$
 $< o_{1i}(x_1, ..., x_{k_i}), o_{2i}(y_1, ..., y_{k_i})>$

称 $V = V_1 \times V_2$ 是 V_1 与 V_2 的积代数, 也称 V_1 和 V_2 是V的因子代数.

积代数的性质

定理1 设 V_1 =<A, o_{11} , o_{12} ,..., o_{1r} >与 V_2 =<B, o_{21} , o_{22} ,..., o_{2r} >是同类型的代数系统, V_1 与 V_2 的积代数是

$$V_1 \times V_2 = \langle A \times B, o_1, o_2, ..., o_r \rangle$$

- (1) 若 o_{1i} , o_{2i} 分别在 V_1 与 V_2 中可交换(可结合或幂等),则 o_i 在V中也可交换(可结合或幂等);
- (2) 若 o_{1i} 对 o_{1j} , o_{2i} 对 o_{2j} 在 V_1 与 V_2 中分别适合分配律,则 o_i 对 o_i 在V中也适合分配律;
- (3) 若 o_{1i} , o_{1j} 与 o_{2i} , o_{2j} 在 V_1 与 V_2 中分别适合吸收律,则 o_i 与 o_j 在V中也适合吸收律;

积代数的性质 (定理续)

- (4) 若 $e_{1i}(\theta_{1i})$, $e_{2i}(\theta_{2i})$ 分别为 V_1 与 V_2 中关于 o_{1i} 和 o_{2i} 运算的单位元(零元),则 $<e_{1i},e_{2i}>(<\theta_{1i},\theta_{2i}>)$ 为V中关于 o_i 运算的单位元(零元);
- (5) 若 o_{1i} 和 o_{2i} 分别为 V_1 与 V_2 中含单位元的运算, $a \in A$, $b \in B$ 分别关于 o_{1i} 和 o_{2i} 运算存在逆元 a^{-1} 和 b^{-1} ,则 $<a^{-1},b^{-1}>$ 是V 中<a,b>关于 o_i 运算的逆元。

积代数的性质小结

(1) 积代数能够保持因子代数的如下性质:

算律:交换律,结合律,幂等律,分配律,吸收律特异元素:单位元,零元,幂等元,可逆元素及其逆元消去律不一定能够保持,反例:

$$V_1 = \langle \mathbf{Z}_2, \otimes_2 \rangle, \ V_2 = \langle \mathbf{Z}_3, \otimes_3 \rangle$$

- (2) 积代数与因子代数是同类型的 若系统公理不含消去律,积代数与因子代数同种; 若系统公理含消去律,不保证积代数与因子代数同种。
- (3) 积代数可以推广到有限多个同类型的代数系统
- (4) 直积分解是研究代数结构的有效手段
- (5) 笛卡儿积是构造同种离散结构的有效手段