THE BIN CONUNDRUM

Image-Based Waste Sorting

Data Knyts

Tanmay Jain, Ayush Raina, Siddhartha Haldar, Anirban Banerjee

MOTIVATION

Have you ever been confused where to throw trash?

PROBLEM STATEMENT

The Garbage Problem

Waste sorting is critical for increasing the amount of waste that can be recycled.

However, it is often impractical to sort large quantities of waste by hand.

O Canada's National Observer

Ontario's garbage problem is overwhelming

Residential waste — those blue boxes of juice containers, cardboard and other household items — has been recycle 3 weeks ago

Digital Journal

Automated Waste Collection System Market to Grow at a ...

However, the segregation of waste at a high scale is a tedious ... smart and integarbage collection and sorting solutions.

2 days ago

GOALS & AIM

Our Intention

- Can we improve waste sorting by using a neural network to identify which waste products are compostable and/or recyclable?
- Via comparative analysis, which neural network provides the best results for identifying waste? Are some better than others in certain scenarios?
- Can we improve this process by utilizing active learning procedures?

METHODOLOGY & TOOLS

Annotated Data

Taco Dataset

Non-Annotated Data

4+ Sets Kaggle/GitHub

Scraped Data

20K+ images scraped

Dataset: 44,200 items

Size: 3.91 GB

Total Size

22 Classes

CLEANING & PROCESSING

MODELS

CLASSIFICATION

- Vgg16
- Resnet18
- Inception-v3
- SqueezeNet

DETECTION

- Mask R-CNN
- Backbone: Resnet50

```
model vgg.classifier = nn.Sequential(*list(model vgg.classifier.children())[:-1] + [nn.Linear(num ftrs,len(all.class
model vgg = model vgg.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer vgg = optim.SGD(model vgg.classifier.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp lr scheduler = optim.lr scheduler.StepLR(optimizer vgg , step size=7, gamma=0.1)
checkpoint path = "./checkpoints/vgg16 all simply/"
model vgg = train model(all dataSets, all dataLoader, model vgg, criterion, optimizer vgg,
                        exp lr scheduler, checkpoint path, num epochs=25, device=device)
ncy expressed in bytes should be converted to RGBA images
 warnings.warn(
/home/tanmay/miniconda3/lib/python3.9/site-packages/PIL/Image.py:945: UserWarning: Palette images with Transpare
ncy expressed in bytes should be converted to RGBA images
 warnings.warn(
train Loss: 0.2312 Acc: 0.9318
/home/tanmay/miniconda3/lib/python3.9/site-packages/PIL/Image.py:945: UserWarning: Palette images with Transpare
ncy expressed in bytes should be converted to RGBA images
 warnings.warn(
/home/tanmay/miniconda3/lib/python3.9/site-packages/PIL/Image.py:945: UserWarning: Palette images with Transpare
ncy expressed in bytes should be converted to RGBA images
 warnings.warn(
/home/tanmay/miniconda3/lib/python3.9/site-packages/PIL/Image.py:945: UserWarning: Palette images with Transpare
ncy expressed in bytes should be converted to RGBA images
 warnings.warn(
val Loss: 0.3085 Acc: 0.9196
```

EVALUATION

What works well?

- Classification of items: bandaid, electronics, face masks, cups, organic, etc.
- Detection of items: cigarettes, bottles, cups.
- Detection on bounding boxes.

What doesn't?

- Limited training for detection: items detected but unable to classify.
- Bias for organic classification

BEST MODEL

VGG16 with 93% Overall accuracy

DATA PRODUCT

Our data product is a web app that integrates the classification and detection models into a single comprehensive system.

TRY IT OUT! 🎉

https://the-bin-conundrum.live

LEARNINGS

Even when working with pre-existing datasets, outliers and faulty data can still be present.

Checkpointing is of critical value when models have long training times.

FUTURE WORK

What we have incorporated:

Dataset Creation

 Keeping a track of every image sent on the webapp and storing those predictions.

What we plan to:

Active Learning

 Apply active (human-in-the-loop) learning for the dataset created and retrain our models.

Thank you

Data Knyts

Tanmay Jain, Ayush Raina, Siddhartha Haldar, Anirban Banerjee