S.-T. Yau College Student Mathematics Contests 2023

Analysis and Differential Equations

Solve every problem.

- 1. Let $(M_n, \|\cdot\|)$ be the Banach space formed by $n \times n$ real matrices, equipped with Hilbert-Schmidt norm. Prove:
 - (1). If $\gamma: \mathbb{R} \to M_n$ is a C^1 -function with $\gamma(0) = \mathbb{I}$ (the identity matrix) and $\dot{\gamma}(0) = A \in M_n$, then for $\forall t \in \mathbb{R}$, the sequence $\{\gamma^n(t/n)\}_{n=1}^{\infty}$ converges to $\exp(tA)$; In particular, for $\forall A, B \in M_n$, $e^{t(A+B)} = \lim_{n \to \infty} (e^{\frac{t}{n}A}e^{\frac{t}{n}B})^n$;
 - (2). For $\forall A, B \in M_n$, if $e^{t(A+B)} = e^{tA}e^{tB}$, $\forall t \in \mathbb{R}$, then [A, B] := AB BA = 0.
- 2. Let f(t,x,y) be a C^1 function on $[0,1] \times \mathbb{R}^2$. Let φ be a solution of the second-order ordinary differential equation $(*)\frac{d^2x}{dt^2} = f(t,x,\frac{d}{dt}x), t \in [0,1]$ such that $\varphi(0) = a, \varphi(1) = b$ where a,b are given real numbers. Suppose $\frac{\partial f}{\partial x}(t,x,y) > 0$ for all $(t,x,y) \in [0,1] \times \mathbb{R}^2$. Prove: if $|\beta b|, \beta \in \mathbb{R}$, is sufficiently small, then there exists a solution ψ of (*) such that $\psi(0) = a, \psi(1) = \beta$.
- 3. A function $\varphi: \mathbb{R}^n \to \mathbb{C}$ is called positive definite if for all $k \in \mathbb{N}$, $y_j \in \mathbb{R}^n$, $c_j \in \mathbb{C}$, $j = 1, \ldots, k$, one have $\sum_{i,j=1}^k c_i \bar{c}_j \varphi(y_i y_j) \geqslant 0$. If φ is a measurable positive definite function on \mathbb{R}^n . Prove:
 - (1) $\varphi(-y) = \overline{\varphi(y)}$ and $|\varphi(y)| \leqslant \varphi(0)$.
 - (2) For every Lebesgue integrable nonnegative function f on \mathbb{R}^n , one have

$$\int_{\mathbb{R}^n} \varphi(x-y) f(x) f(y) dx dy \geqslant 0.$$

(3) If the function f is also even, then

$$\int_{\mathbb{R}^n} \varphi(x) f * f(x) dx \geqslant 0,$$

where * stands for convolution.

(4) For all $\alpha > 0$, we have

$$\int_{\mathbb{R}^n} \varphi(x) \exp(-\alpha |x|^2) dx \geqslant 0.$$

- 4. For a 2π -periodic function $x \in L^2([0, 2\pi])$, let $x_n(t) = x(nt)$, $n = 1, 2, \ldots$ Prove that $\{x_n\}$ converges weakly in $L^2([0, 2\pi])$ and find the limit.
- 5. Let f be an entire function on \mathbb{C} and there exists a constant C > 0 such that $f(z) | \leq C\sqrt{|z|}|\cos(z)|$ for all $z \in \mathbb{C}$. Prove that f is identically zero.
- 6. Let u(t, x) satisfy the following equation,

$$u_t + \sum_{i=1}^n \psi_i(t, x, u) u_{x_i} = \mu \Delta u; \ u(0, x) = u_0,$$

where $u_0 \in C^2(\mathbb{R}^n)$, ψ_i , $i=1,\ldots,n$ are of bounded C^2 -norm, $\Delta = \sum_{i=1}^n \partial_{x_i}^2$ is the Laplacian in \mathbb{R}^n and $\mu > 0$. Assume $|u_0| \leqslant e^{\Phi/\mu}$ where Φ is bounded above and has Lipschitz constant 1. Assume that $(\sum_{i=1}^n |\Psi_i(t,x,u)|^2)^{1/2} \leqslant A$, where A is a postive constant.

Prove that there exists a constant C depending only on n that

$$|u(t,x)| \leqslant e^{Ct} e^{((A+1)t+\Phi(x)+2)/\mu}, \quad \forall t \geqslant 0.$$