Functions and their graphs

Introduction: A function is an activity (work) but the graph is its reflection. A function is, so to say, completely observed only through its graph as we see that a man's image is clearly reflected by a mirror. In mathematics the graph of a function is the geometrical representation (visual form) of its equation. In physics the same thing is called the wave which as for the musician is the representation of a sound that a sound source makes.

Image of a man into a Mirror; it helps him to observe himself

Geometrical shape of the function $y = x^2, x \ge 0$

Function: If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then y is called a function of x and it is denoted by the following symbol,

$$y = f(x)$$

where x is independent variable and y is dependent variable. The inverse of this function is denoted by $f^{-1}(y) = x$.

Example: $y = x^2 + x + 1$; y = sinx; $y = e^x$; y = lnx etc.

Alternatively, let A and B be two non empty sets. A mapping $f: A \to B$ is called function if each element in A is assigned to unique element in B.

Types of functions: There are many types of functions. These have been discussed as:

Single valued function: A function y = f(x) is called a single valued function if there exist only one value of y for each value of x.

Example: $y = x^2 + 5$; y = cosx; $y = e^x + 2$; y = lnx etc.

Many valued function: A function y = f(x) is called a many valued function or multiple valued function if there exist more than one value of y for each value of x.

Example: $y^2 = 4ax$; $y = cos^{-1}x$; $y = sin^{-1}x$ etc.

Algebraic function: A function y = f(x) which consists of a finite number of terms involving powers and roots of x is defined as an algebraic function.

Example: $y = 3x^2 + 4x + 1$ is an algebraic function.

Polynomial Function: A polynomial is an expression containing multiple terms with the operations of addition, subtraction, multiplication and degree of the each term is non-negative. A Function that consist with polynomial is called polynomial function.

Example: The function $f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ is a polynomial function of order n where $a_0, a_1, \cdots + a_n \in R$ and $a_0 \neq 0$.

Note:

- 1. When $a_0 \neq 0$ then f(x) is called polynomial function of order n.
- 2. When $a_0 = 1$ then f(x) is called monic polynomial function of order n.
- 3. When n=0 then f(x) is called polynomial function of order zero means constant polynomial function.
- 4. When n=1 then f(x) is called polynomial function of order one (1) means linear polynomial function.
- 5. When n=2 then f(x) is called polynomial function of order two means polynomial function of degree 2 or Quadratic polynomial function. The graph of a quadratic polynomial is a parabola.
- 6. When n=3 then f(x) is called polynomial function of order three means polynomial function of degree 3 or Cubic polynomial function.
- 7. When n=4 then f(x) is called polynomial function of order four means polynomial function of degree 4 or by-quadratic polynomial function.
- 8. When f(x) = 0 then this types of polynomial is called zero polynomial with explicitly undefined degree. The graph of a zero polynomial f(x) = 0 is the x-axis.

Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a <u>monomial</u>, a two-term polynomial is called a <u>binomial</u>, and a three-term polynomial is called a <u>trinomial</u>. The term "quadrinomial" is occasionally used for a four-term polynomial. A polynomial in one variable is called a <u>univariate</u> <u>polynomial</u>, a polynomial in more than one variable is called a multivariate polynomial. A polynomial with two variables is called a bivariate polynomial.

Linear polynomial function: A polynomial function in which degree/ order of the leading term is exactly one is called linear polynomial function.

Example: f(x) = 3x + 5 is a linear polynomial function with single variable x.

Quadratic polynomial function: Case 01: A polynomial function of the form $y = ax^2 + bx + c$ with $a \ne 0$ is called quadratic polynomial function which represents a parabola. When the value of "a "is positive then the parabola is concave up/open upward and otherwise concave down/open

downward. The vertex of the parabola
$$y = ax^2 + bx + c$$
 with $a \ne 0$ is $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$. In another way we

get value of the ordinate of vertex by putting the value of abscissa $x = -\frac{b}{2a}$ in the equation $y = ax^2 + bx + c$ with $a \ne 0$.

Case 02: A polynomial function of the form $x = ay^2 + by + c$ with $a \ne 0$ is called quadratic polynomial function that represents geometrically a parabola. When the value of "a "is positive then the parabola is open right parabola and otherwise it is open left parabola. The vertex of the parabola

$$x = ay^2 + by + c$$
 with $a \ne 0$ is $\left(\frac{4ac - b^2}{4a}, -\frac{b}{2a}\right)$. In another way we get value of the abscissa of vertex by

putting the value of ordinate $y = -\frac{b}{2a}$ in the equation $x = ay^2 + by + c$ with $a \ne 0$.

Rational function: A function of the form $f(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) both are the

function of x and also $q(x) \neq 0$, is called a rational function.

Example: The function $f(x) = \frac{x^2 - 4x + 3}{x^2 + 4x + 7}$ is a rational function in single variable x.

Transcendental function: Functions that can't be expressed as algebraic functions are called transcendental functions. These functions are of the following types:

a) **Exponential function:** A function of the form $y = b^x$, where b > 0, is called an exponential function with base b.

Examples:
$$y = e^x$$
, $y = \pi^x$, $y = \left(\frac{1}{2}\right)^x$, etc.

b) **Logarithmic function:** A function of the form $y = \log_b x$, where x > 0, b > 0 and $b \ne 1$ is called a logarithmic function with base b.

Examples:
$$y = \log x$$
, $y = \ln(x+1)$, etc.

- c) **Trigonometric function:** Functions of the types $\sin x$, $\cos x$, $\tan x$, $\cot x$ *etc.* are called trigonometric functions.
- d) **Inverse trigonometric functions:** Functions of the types $cos^{-1}x$, $sin^{-1}x$, etc. are called inverse trigonometric functions.

Hyperbolic function:

Explicit function: When a relation of two variables x and y is expressed as y = f(x) where y can be expressed directly in terms of x, then y is called an explicit function of x.

Example: $y = ax^2 + bx + c$ is an explicit function of x.

Implicit function: When a relation of two variables x and y is expressed as f(x,y) = 0, where x and y cannot be expressed directly in terms of the other, then either variable is called an implicit function of the other.

Example: $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is an implicit function.

Even function: A function y = f(x) is called an even function if it satisfies the condition f(-x) = f(x).

Example: y = cosx, $y = x^4$, etc. are even functions.

Odd function: A function y = f(x) is called an odd function if it satisfies the condition f(-x) = -f(x).

Example: y = sinx, $y = x^3$, etc. are odd functions.

Periodic function: A function y = f(x) is called a periodic function of period T if it satisfies the condition f(x + T) = f(x).

3

Example: (1).sinx and cosx are periodic function of period 2π .

(2). tanx and cotx are periodic function of period π .

Absolute value function: A function y = |f(x)| is called an absolute value function.

Example: y = |x| is an absolute value function.

Bounded function: A function y = f(x) defined on an interval (a, b), is called a bounded function if there exists a number M such that $|f(x)| < M \ \forall \ x \in (a, b)$.

Or, A function y = f(x) is called a bounded function if its range is a bounded set.

Example: y = sinx is a bounded function.

Increasing function: A function y = f(x) defined on an interval (a, b) where a < b, is called an increasing function over the interval if f(a) < f(b).

Example: $y = x^2$, $0 \le x \le 5$ is an increasing function.

Decreasing function: A function y = f(x) defined on an interval (a, b) where a < b, is called a decreasing function over the interval if f(a) > f(b).

Example: $y = \frac{1}{x}$, $1 \le x \le 5$ is a decreasing function.

One-one function:

Onto function:

Constant function:

Compositions of functions:

Inverse function:

<u>Domain</u>: The set of all values of x for which the function y = f(x) is defined, is called domain of the function. Simply domain is the set of all allowable x-values.

Mathematically, $D_f = \{x : y = f(x) \in \mathbb{R} \text{ and } x \in \mathbb{R} \}$.

Range: The set of all values of y corresponding to the x values for which the function y = f(x) is defined, is called range of the function. Simply range is the set of all possible y-values.

Mathematically, $R_f = \{y : y = f(x) \in \mathbb{R} \text{ and } x \in \mathbb{R} \}.$

Interval: If the set of all real numbers lie between two real numbers a and b, where a < b then the set of all real numbers is called an interval.

Intervals are four kinds:

- a) The set $\{x \in \mathbb{R}: a \le x \le b\}$ is called a closed interval, denoted by [a, b].
- b) The set $\{x \in \mathbb{R}: a < x < b\}$ is called an open interval, denoted by (a, b).
- c) The set $\{x \in \mathbb{R}: a < x \le b\}$ is called a left half open interval, denoted by (a, b].
- d) The set $\{x \in \mathbb{R}: a \le x < b\}$ is called a right half open interval, denoted by [a, b).

Problem 01: Find the domain and range of the function y = 2x + 5.

Solution: Given function is,

$$y = 2x + 5$$

Here, y gives real values for all real values of x.

So, the domain of the given function is,

$$D_f = R$$

Again, we have,

$$y = 2x + 5$$

$$or, 2x = y - 5$$

$$or, \ x = \frac{y-5}{2}$$

Here, x gives real values for all real values of y.

So, the range of the given function is,

$$R_f = R \, ({
m Ans})$$

H.W:

Find the domain and range of the following functions

1.
$$y = 3x + 5$$
 Ans: $D_f = R$ and $R_f = R$

2.
$$y = 4x - 3$$
 Ans: $D_f = R$ and $R_f = R$

3.
$$y = ax + b$$
 Ans: $D_f = R$ and $R_f = R$

Problem 02: Find the domain and range of the function $y = x^2 + 3x + 2$.

Solution: Given function is,

$$y = x^2 + 3x + 2$$

Here, y gives real values for all real values of x.

So, the domain of the given function is,

$$D_f = R$$

Again, we have

$$y = x^2 + 3x + 2$$

$$or, x^2 + 3x + (2 - y) = 0$$

In the above equation the values of x will be real if and only if its $Discriminant \ge 0$.

i.e,
$$3^2 - 4.1.(2 - y) \ge 0$$
 ; $[b^2 - 4ac \ge 0]$

$$| (b^2 - 4ac > 0)|$$

$$or, 9-4(2-y) \ge 0$$

$$or, 9-8+4y \ge 0$$

$$or$$
, $1+4y \ge 0$

or,
$$4y \ge -1$$

or,
$$y \ge -\frac{1}{4}$$

Therefore the range of the given function is,

$$R_f = [-rac{1}{4}, \infty)$$
 (Ans)

Alternative way, For range we have

$$y = x^2 + 3x + 2$$

or,
$$x^2 + 3x + 2 = y$$

or, $x^2 + 2 \cdot x \cdot \frac{3}{2} + \left(\frac{3}{2}\right)^2 + 2 - \frac{9}{4} = y$
or, $\left(x + \frac{3}{2}\right)^2 - \frac{1}{4} = y$
or, $\left(x + \frac{3}{2}\right)^2 = y + \frac{1}{4}$
or, $x + \frac{3}{2} = \pm \sqrt{y + \frac{1}{4}}$
or, $x = \pm \sqrt{y + \frac{1}{4}} - \frac{3}{2}$

Here, x is defined if

$$y + \frac{1}{4} \ge 0$$

$$or, \ y \ge -\frac{1}{4}$$

Therefore the range of the given function is,

$$R_f = [-\frac{1}{4}, \infty)$$
 (Ans)

H.W:

Find the domain and range of the following quadratic functions

1.
$$y = x^2 + 5x + 6$$
 Ans: $D_f = R$ and $R_f = [-\frac{1}{4}, \infty)$
2. $y = -x^2 + 5x - 6$ Ans: $D_f = R$ and $R_f = (-\infty, \frac{1}{4}]$
4. $y = -x^2 + 1$ Ans: $D_f = R$ and $R_f = (-\infty, 1]$
5. $y = x^2 + 4x + 7$ Ans: $D_f = R$ and $R_f = [3, \infty)$
6. $y = x^2 - 4x + 3$ Ans: $D_f = R$ and $R_f = [-1, \infty)$
7. $y = (x+2)^2 + 3$ Ans: $D_f = R$ and $R_f = [3, \infty)$

Problem 03: Find the domain and range of the function $y = \frac{x-3}{2x+1}$.

Solution: Given function is,

$$y = \frac{x-3}{2x+1}$$

Here, y is undefined if

$$2x+1 = 0$$

or,
$$x = -\frac{1}{2}$$

So, y gives real values for all real values of x except $x = -\frac{1}{2}$.

Therefore, the domain of the given function is

$$D_f = R - \left\{ -\frac{1}{2} \right\}.$$

Again we have,

$$y = \frac{x-3}{2x+1}$$
or, $2xy + y = x-3$
or, $x-2xy = y+3$
or, $x(1-2y) = y+3$
or, $x = \frac{y+3}{1-2y}$

Here, x is undefined if

$$1 - 2y = 0$$

$$or, y = \frac{1}{2}$$

So, x gives real values for all real values of y except $y = \frac{1}{2}$.

Therefore, the range of the given function is

$$R_f = R - \left\{ \frac{1}{2} \right\}$$
 (Ans)

Problem 04: Find the domain and range of the function $y = \frac{x^2 - 4}{x - 2}$.

Solution: Given function is,

$$y = \frac{x^2 - 4}{x - 2}$$

Here, y is undefined if

$$x - 2 = 0$$

or,
$$x = 2$$

So, y gives real values for all real values of x except x = 2.

Therefore, the domain of the given function is

$$D_f = R - \{2\}.$$

Again we have,

$$y = \frac{x^2 - 4}{x - 2}$$

$$or, y = \frac{(x + 2)(x - 2)}{x - 2} ; x \neq 2$$

$$or, y = x + 2 ; x \neq 2$$

$$or, x = y - 2 ; x \neq 2$$

Here, x is defined for all real values of y except y = 4

Therefore, the range of the given function is

$$R_f = R - \{4\} \qquad \text{(Ans)}$$

H.W:

Find the domain and range of the following quadratic functions

1.
$$y = \frac{x}{x+1}$$
 Ans: $D_f = R - \{-1\}$ and $R_f = R - \{1\}$
2. $y = \frac{1+x}{5-x}$ Ans: $D_f = R - \{5\}$ and $R_f = R - \{-1\}$
3. $y = \frac{2}{x+3}$ Ans: $D_f = R - \{-3\}$ and $R_f = R - \{0\}$
4. $y = \frac{x-3}{x^2-9}$ Ans: $D_f = R - \{-3,3\}$ and $R_f = R - \{0,\frac{1}{6}\}$
5. $y = \frac{4x+3}{x^2+1}$ Ans: $D_f = R$ and $R_f = [-1,4]$

Problem 05: Find the domain and range of the function $y = \sqrt{2x+5}$.

Solution: Given function is,

$$y = \sqrt{2x + 5}$$

Here, y gives real values iff

$$2x+5 \ge 0$$

or,
$$2x \geq -5$$

or,
$$x \geq -\frac{5}{2}$$

Therefore, the domain of the given function is

$$D_f = \left[-\frac{5}{2}, \infty \right].$$

Again,

$$y = \sqrt{2x+5}$$
 ·····(1)

The values of y in (1) are positive or zero, i.e, y < 0.

Now
$$y^2 = 2x + 5 ; y < 0$$
.
 $2x + 5 = y^2 ; y < 0$.

$$2x = y^2 - 5 \qquad ; y < 0.$$

$$x = \frac{y^2 - 5}{2} \qquad ; y < 0.$$

Here, *x* is defined for $y \ge 0$.

Therefore, the range of the given function is

$$R_f = \{ y : y \ge 0 \}$$
$$= [0, \infty) (Ans).$$

Problem 06: Find the domain and range of the function $y = -\sqrt{1-2x}$.

Solution: Given function is,

$$y = -\sqrt{1-2x}$$

Here, y gives real values iff

$$1 - 2x \ge 0$$

[Squaring both sides]

$$or, -2x \ge -1$$

 $or, 2x \le 1$
 $or, x \le \frac{1}{2}$

Therefore, the domain of the given function is

$$D_f = \left(-\infty, \frac{1}{2}\right].$$

Again, we have,

$$y = -\sqrt{1 - 2x} \quad \cdots (1)$$

The values of y in (1) are negative or zero, i.e, $y \ge 0$.

Now
$$y^2 = 1 - 2x$$
; $y \ne 0$ [Squaring both sides]
 $1 - 2x = y^2$; $y \ne 0$
 $2x = 1 - y^2$; $y \ne 0$
 $x = \frac{1 - y^2}{2}$; $y \ne 0$

Here, *x* is defined for $y \le 0$.

Therefore, the range of the given function is

$$R_f = \{ y : y \le 0 \}$$
$$= (-\infty, 0] \text{ (Ans).}$$

H.W:

Find the domain and range of the following functions

1.
$$y = \sqrt{2x-1} \, \mathrm{Ans} \colon D_f = \left[\frac{1}{2}, \infty\right) \, \mathrm{and} \, R_f = \left[0, \infty\right)$$

2.
$$y = \sqrt{1-5x}$$
 Ans: $D_f = \left(-\infty, \frac{1}{5}\right]$ and $R_f = \left[0, \infty\right)$

3.
$$y = \sqrt{2x-1} + 5$$
 Ans: $D_f = \left[\frac{1}{2}, \infty\right)$ and $R_f = \left[5, \infty\right)$

4.
$$y = \sqrt{x+6} - 3$$
 Ans: $D_f = [-6, \infty)$ and $R_f = [-3, \infty)$

5.
$$y=5-\sqrt{8-2x}$$
 Ans: $D_f=\left(-\infty,4\right]$ and $R_f=\left[5,-\infty\right)$

6.
$$y = -\sqrt{x-1}$$
 Ans: $D_f = [1, \infty)$ and $R_f = (-\infty, 0]$

7.
$$y = -\sqrt{1-4x}$$
 Ans: $D_f = \left(-\infty, \frac{1}{4}\right]$ and $R_f = \left(-\infty, 0\right]$

Problem 07: Find the domain and range of the function $y = \sqrt{x^2 - 4x + 3}$. **Solution:** Given function is,

$$y = \sqrt{x^2 - 4x + 3}$$

Here, y gives real values iff,

$$x^2 - 4x + 3 \ge 0$$

or,
$$x^2 - 3x - x + 3 \ge 0$$

or,
$$x(x-3)-1(x-3) \ge 0$$

$$or, (x-3)(x-1) \ge 0$$

This inequality is satisfied if

$$x \le 1 \text{ or } x \ge 3$$

Therefore, the domain of the given function is,

$$D_f = \{x : x \le 1\} \cup \{x : x \ge 3\}$$
$$= (-\infty, 1] \cup [3, \infty)$$
$$= R - (1, 3)$$

Again, we have,

$$y = \sqrt{x^2 - 4x + 3} \cdot \cdots \cdot (1)$$

The values of y in (1) are positive or zero i.e, y < 0.

Now,
$$y^2 = x^2 - 4x + 3$$
; $y \ne 0$ [Squaring both sides]
 $x^2 - 4x + 3 - y^2 = 0$; $y \ne 0$
 $x^2 - 4x + (3 - y^2) = 0$; $y \ne 0$

In the above equation the values of x will be real if and only if it's $Discriminant \ge 0$.

i.e,
$$(-4)^2 - 4 \times 1.(3 - y^2) \ge 0$$
; $y < 0[b^2 - 4ac \ge 0]$
or, $16 - 4(3 - y^2) \ge 0$; $y < 0$
or, $16 - 12 + 4y^2 \ge 0$; $y < 0$
or, $4 + 4y^2 \ge 0$; $y < 0$
or, $1 + y^2 \ge 0$; $y < 0$

Here, x is defined for $y \ge 0$.

So the range of the given function is

$$R_f = \{ y : y \ge 0 \}$$
$$= [0, \infty) \text{ (Ans).}$$

Problem 08: Find the domain and range of the function $y = \sqrt{x^2 + 1}$.

Solution: Given function is,

$$y = \sqrt{x^2 + 1}$$

Here, y gives real values iff,

$$x^2 + 1 > 0$$

This inequality is satisfied for all real values of x.

Therefore the domain of the given function is,

$$D_f = R$$
.

Again, we have,

$$y = \sqrt{x^2 + 1} \dots (1)$$

The values of y in (1) are positive and lowest value is $1, i.e, y \le 1$.

Now
$$y^2 = x^2 + 1$$
 ; $y \neq 1$ [Squaring both sides]

$$\Rightarrow x^2 + 1 - y^2 = 0$$
 ; $y \neq 1$

$$\Rightarrow x^2 + 0.x + (1 - y^2) = 0$$
 ; $y \neq 1$

In the above equation the values of x will be real if and only if its $Discriminant \ge 0$.

i.e,
$$0^2 - 4.1.(1 - y^2) \ge 0$$
; $y < 1[b^2 - 4ac \ge 0]$
or, $-4(1 - y^2) \ge 0$; $y < 1$
or, $4y^2 - 4 \ge 0$; $y < 1$
or, $y^2 - 1 \ge 0$; $y < 1$

Here, x is defined for all $y \ge 1$.

$$R_f = \{ y : y \ge 1 \}$$
$$= [1, \infty) (Ans).$$

Problem 09: Find the domain and range of the function $y = \sqrt{4 - x^2}$.

Solution: Given function is,

$$y = \sqrt{4 - x^2}$$

Here, y gives real values iff,

$$4-x^2 \ge 0$$

or, $(2+x)(2-x) \ge 0$

This inequality is satisfied if,

$$-2 \le x \le 2$$

Therefore, the domain of the given function is,

$$D_f = \{x : -2 \le x \le 2\}$$
$$= [-2, 2]$$

Again, we have,

$$y = \sqrt{4 - x^2}$$
 ... (1)

The values of y in (1) are positive and lowest value is zero, i.e, $y \le 0$.

Now
$$y^2 = 4 - x^2$$
 ; $y < 0$ [Squaring both sides]

$$\Rightarrow x^2 + y^2 - 4 = 0$$
 ; $y < 0$

$$\Rightarrow x^2 + 0.x + (y^2 - 4) = 0$$
 ; $y < 0$

In the above equation the values of x will be real if and only if it's *Discriminant* ≥ 0 .

i.e,
$$0^2 - 4.1.(y^2 - 4) \ge 0$$
 ; $y < 0[b^2 - 4ac \ge 0]$
or, $-4y^2 + 16 \ge 0$; $y < 0$
or, $y^2 - 4 \le 0$; $y < 0$ [Dividing by -4]

Here, *x* is defined for all $0 \le y \le 2$.

Therefore the range of the given function is,

$$R_f = \{y : 0 \le y \le 2\}$$

= [0,2] (Ans.)

H.W:

Find the domain and range of the following functions

1.
$$y = \sqrt{x^2 - 3}$$
 Ans: $D_f = R - \left(-\sqrt{3}, \sqrt{3}\right)$ and $R_f = \left[0, \infty\right)$

2.
$$y = \sqrt{x^2 - 25}$$
 Ans: $D_f = R - (-5, 5)$ and $R_f = [0, \infty)$

3.
$$y = \sqrt{x^2 + 3x}$$
 Ans: $D_f = R - (-3,0)$ and $R_f = [0, \infty)$

4.
$$y = \sqrt{x^2 - 2x}$$
 Ans: $D_f = R - (0, 2)$ and $R_f = [0, \infty)$

5.
$$y = \sqrt{x^2 + 3}$$
 Ans: $D_f = R$ and $R_f = [3, \infty)$

6.
$$y = \sqrt{x^2 + 25}$$
 Ans: $D_f = R$ and $R_f = [25, \infty)$

7.
$$y = \sqrt{16 - x^2}$$
 Ans: $D_f = [-4, 4]$ and $R_f = [0, 4]$

8.
$$y = \sqrt{x^2 - 2x + 2}$$
 Ans: $D_f = R$ and $R_f = [1, \infty)$

Problem 10: Find the domain and range of the function $y = \frac{1}{\sqrt{2x+3}}$.

Solution: Given function is,

$$y = \frac{1}{\sqrt{2x+3}}$$

Here, y gives real values iff,

$$2x+3>0$$

or,
$$2x > -3$$

or,
$$x > -\frac{3}{2}$$

Therefore the domain of the given function is $D_f = \{x : x > -\frac{3}{2}\}$.

$$D_f = \left(-\frac{3}{2}, \infty\right)$$

Again, we have,

$$y = \frac{1}{\sqrt{2x+3}} \cdots \cdots (1)$$

The values of y in (1) are positive and lowest value is near to 0, i. e, y > 0.

Now,
$$y^2 = \frac{1}{2x+3}$$
 ; $y > 0$

$$or, 2x+3=\frac{1}{v^2}$$
 ; $y>0$

or,
$$2x = \frac{1}{y^2} - 3$$
 ; $y > 0$

or,
$$x = \frac{1}{2} \left(\frac{1}{y^2} - 3 \right)$$
 ; $y > 0$

Here, x is defined for all y > 0.

Therefore the range of the given function is

$$R_f = \{ y : y > 0 \}$$
$$= (0, \infty) (\mathbf{Ans})$$

Problem 11: Find the domain and range of the function $f(x) = \sqrt{\frac{2x+3}{x-5}}$.

Solution: Given function is,

$$y = \sqrt{\frac{2x+3}{x-5}}$$

Here, y gives real values iff,

$$\frac{2x+3}{x-5} \ge 0$$

This inequality is satisfied if $x \le -\frac{3}{2}$ or x > 5.

Therefore the domain of the given function is,

$$D_f = \{x : x \le -\frac{3}{2}\} \cup \{x : x > 5\}.$$
$$= (-\infty, -\frac{3}{2}] \cup (5, \infty).$$

Again, we have,

$$y = \sqrt{\frac{2x+3}{x-5}} \cdot \dots \cdot (1)$$

The values of y in (1) are positive or zero, i.e, y < 0.

Now,
$$y^2 = \frac{2x+3}{x-5}$$
 ; $y < 0$ [Squaring both-sides]
or, $xy^2 - 5y^2 = 2x+3$; $y < 0$
or, $xy^2 - 2x = 5y^2 + 3$; $y < 0$
or, $x(y^2 - 2) = 5y^2 + 3$; $y < 0$
or, $x = \frac{5y^2 + 3}{y^2 - 2}$; $y < 0$
or, $x = \frac{5y^2 + 3}{y^2 - (\sqrt{2})^2}$; $y < 0$
or, $x = \frac{5y^2 + 3}{(y - \sqrt{2})(y + \sqrt{2})}$; $y < 0$

Here, x is defined for all $y \ge 0$ except $y = \sqrt{2}$.

So, the range of the given function is

$$R_f = \left\{ y : y \ge 0 \ ; \ y \ne \sqrt{2} \right\}$$
$$= \left[0, \infty \right) - \sqrt{2} \text{ (Ans.)}$$

Problem 12: Find the domain and range of $y = e^x$.

Solution: Given function is,

$$y = e^x$$

Here, y gives real values for all real values of x.

So, the domain of the given function is,

$$D_f = R$$

Again, we have,

$$y = e^x$$

or,
$$\ln y = x$$

or,
$$x = \ln y$$

Here, x gives real values iff y > 0.

So, the range of the given function is,

$$R_f = \{ y : y > 0 \}$$

$$=(0, \infty)$$
 (Ans).

Problem 13: Find the domain and range of $y = \ln\left(\frac{1+x}{1-x}\right)$.

Solution: Given function is,

$$y = \ln\left(\frac{1+x}{1-x}\right)$$

Here, y gives real values iff

$$\frac{1+x}{1-x} > 0$$

This inequality is satisfied if -1 < x < 1.

So, the domain of the given function is,

$$D_f = \{x : -1 < x < 1\}$$

= (-1,1)

Again, we have,

$$y = \ln\left(\frac{1+x}{1-x}\right)$$

$$or, \frac{1+x}{1-x} = e^y$$

$$or, 1 + x = e^y - xe^y$$

$$or. xe^{y} + x = e^{y} - 1$$

$$or, x(e^y + 1) = e^y - 1$$

$$or, x = \frac{e^y - 1}{e^y + 1}$$

Here, x gives real values for all real values of y.

So, the range of the given function is,

$$R_f = \{ y : -\infty < y < \infty \}$$
$$= (-\infty, \infty)$$
$$= R \text{ (Ans).}$$

Problem 14: Find the domain and range of $y = \sin x$.

Solution: Given function is,

$$y = \sin x$$

Here, y gives real values for all real values of x.

So, the domain of the given function is,

$$\begin{split} D_f &= \big\{ x : - \infty < x < \infty \big\} \\ &= \big(- \infty, \infty \big) \\ &= R \end{split}$$

Again, we have,

$$y = \sin x$$

or,
$$x = \sin^{-1} y$$

Here, x gives real values for $-1 \le y \le 1$.

So, the range of the given function is,

$$R_f = \{ y : -1 < y < 1 \}$$

$$= [-1, 1]$$
 (Ans).

Problem 15: Find the domain and range of $y = \tan x$.

Solution: Given function is,

$$y = \tan x$$

Here, y gives real values for all real values of x except $x = (2n+1)\frac{\pi}{2}$; where, $n = 0, \pm 1, \pm 2, \cdots$

So, the domain of the given function is,

$$D_f = R - \left\{ \dots - \frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots \right\}$$

Again, we have,

$$y = \tan x$$

$$or$$
, $x = \tan^{-1} y$

Here, x gives real values for all real values of y.

So, the range of the given function is,

$$R_f = \{ y : -\infty < y < \infty \}$$

$$= (-\infty, \infty)$$
$$= R (Ans).$$

Problem 16: Find the domain and range of $y = \cot x$.

Solution: Given function is,

$$y = \cot x$$

Here, y gives real values for all real values of x except $x = n\pi$; where, $n = 0, \pm 1, \pm 2, \cdots$. So, the domain of the given function is,

$$D_f = R - \{\cdots -2\pi, -\pi, 0, \pi, 2\pi, \cdots \}$$

Again, we have,

$$y = \cot x$$

or,
$$x = \cot^{-1} y$$

Here, x gives real values for all real values of y.

So, the range of the given function is,

$$R_f = \{ y : -\infty < y < \infty \}$$
$$= (-\infty, \infty)$$
$$= R (Ans).$$

Problem 17: Find the domain and range of $y = \sec x$.

Solution: Given function is, $y = \sec x$

Here, y gives real values for all real values of x except $x = (2n+1)\frac{\pi}{2}$; where, $n = 0, \pm 1, \pm 2, \dots$

So, the domain of the given function is,

$$D_f = R - \left\{ \dots \frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots \right\}$$

Again, we have,

$$y = \sec x$$

$$or$$
, $x = \sec^{-1} y$

Here, x gives real values for all real values of y except -1 < y < 1.

So, the range of the given function is,

$$R_f = (-\infty, -1] \cup [1, \infty)$$

$$= R - (-1,1)(Ans).$$

Problem 18: Find the domain and range of $y = \cos ecx$.

Solution: Given function is,

$$y = \cos ecx$$

Here, y gives real values for all real values of x except $x = n\pi$; where, $n = 0, \pm 1, \pm 2, \cdots$

So, the domain of the given function is,

$$D_f = R - \{\cdots -2\pi, -\pi, 0, \pi, 2\pi, \cdots \}$$
Again, we have,
$$y = \cos ecx$$

$$or, x = \cos ec^{-1}y$$

Here, x gives real values for all real values of y except -1 < y < 1.

So, the range of the given function is,

$$R_f = (-\infty, -1] \cup [1, \infty)$$
$$= R - (-1, 1) (\mathbf{Ans}).$$

H.W:

Find the domain and range of the following functions:

1.
$$y = e^{(x-2)} Ans: D_f = R \text{ and } R_f = (0, \infty)$$

2.
$$y = \ln(x-2)$$
 Ans: $D_f = (2, \infty)$ and $R_f = R$

3.
$$y = \cos x \ Ans : D_f = R \ and \ R_f = [-1, 1]$$

Graph of Functions

If $f: A \to B$ denotes a function, then the graph of the function f(x) is the set of all ordered pairs (x, f(x)) for all values of x in the domain A.

$$\therefore \text{ Graph of } f(x) = \{(x, y) : x \in A, y = f(x) \in B\}$$

Therefore, Graph is the geometrical/Pictorial representation of a function or visualization of a function.

Graph of some elementary functions:

$$\Leftrightarrow$$
 Graph of $y = mx + c$

rightharpoonup Graph of <math>y = mx

\Leftrightarrow Graph of $y = x \triangleleft Graph$ of y = -x

* Graph of $y = |x| - Graph of y = x^2$

***** Graph of $y = -x^2$ Graph of $x = y^2$

Note: when power of the variable increases then graph will be wider.

***** Graph of $x = -y^2$ Graph of $y = \sqrt{x}$

***** Graph of $y = -\sqrt{x}$ Graph of $y = \sqrt{-x}$

***** Graph of $y = -\sqrt{-x}$ Graph of $y = \frac{1}{x}$

***** Graph of $y = \frac{1}{x^2} \blacksquare Graph \ of \ y = x^3$

***** Graph of $y = \sqrt[3]{x}$ Graph of $y = e^x$

* Graph of $y = e^{-x} \bullet Graph \text{ of } y = \ln|x|$

• Graph of $y = a^x$, a > 1 Graph of $y = a^{-x}$

• Graph of $y = \log_a |x|$, a > 1 • Graph of $y = \sqrt{a^2 - x^2}$

❖ Graph of $y = -\sqrt{a^2 - x^2}$ **Graph** of $x^2 + y^2 = a^2$

***** Graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Graph of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

 \Leftrightarrow Graph of $y = \sin x$

 \Leftrightarrow Graph of $y = \cos x$

Transformation of Function

Transformation of a function is any kind of change in the function such as move or resize the graphs of functions. There are two types of transformation of thefunctions such as,

- 1. *Translation/Shifting*: Any kind of shifting of the graph of a function is called translation of the function that means changing the location of the graph without changing its size and shape is called translation.
- **2.** *Scaling:* Scaling of a graph of a function is a transformation in which the size and shape of the graph is changed.

> Translation

Horizontal translation:

Function: g(x) = f(x + c)

Forc > 0the graph is translated c units to the left.

Forc < 0 the graph is translated c units to the right.

Vertical Translation:

Function: g(x) = f(x) + c

For c > 0 the graph is translated c units upward.

For c < 0 the graph is translated c units downward.

> Scaling

Function: g(x) = cf(x)

For |c| > 1 (integer) the graph is compressed.

For|c| < 1 (integer) the graph is stretched.

Problem- 01: Sketch the graph of the function $y = x^2 + 6x + 10$.

Solution: The equation of the given function is,

$$y = x^2 + 6x + 10$$

Completing the given equation in a square form it becomes as

$$y = x^2 + 6x + 10$$

$$= x^2 + 2.x.3 + 3^2 - 3^2 + 10$$

$$=(x+3)^2+1$$

The graph of the standard function $y = x^2$ is as follows

Translating or shifting the above graph 3 units to the left, we get the graph of the function $y = (x+3)^2$.

Translating or shifting the above graph 1 units upward, we get the graph of the function $y = (x+3)^2 + 1$.

H.W:

(Desired Graph)

Sketch the graph of the following functions

1.
$$y = x^2 + 4x + 10$$
 4. $y = 2x^2 - 5$

2.
$$y = 2x^2 + 5x + 10$$
 5. $y = 2x^2 + 5$

3.
$$y = x^2 - 4x + 5$$
 6. $y = -2(x+1)^2 - 3$

Problem -02: Sketch the graph of the function $y = \sqrt{x-2} + 5$.

Solution: The equation of the given function is,

$$y = \sqrt{x-2} + 5$$

The graph of the standard positive square root function $y = \sqrt{x}$ is as follows

Translating or shifting the above graph 2 units to the right, we get the graph of the function $y = \sqrt{x-2}$.

Translating or shifting the above graph 5 units upward, we get the graph of the function $y = \sqrt{x-2} + 5$.

(Desired Graph)

H.W:

Sketch the graph of the following functions

1.
$$y = \sqrt{x+2}$$
 5. $y = \sqrt{5-x^2} + 6$

2.
$$y = \sqrt{2x+5}$$
 6. $y = \frac{1}{(x-3)^5}$

3.
$$y = 2 - \sqrt{x+5}$$
 7. $y = \sqrt{x^2 - 4x + 4}$

4.
$$y = 1 - \sqrt[3]{x+2}$$
 8. $y = 2 - \frac{1}{x+1}$

Problem -03: Sketch the graph of the function y = 2 - |x + 2|.

Solution: The equation of the given function is,

$$y = 2 - |x + 2|$$

The graph of the standard absolute value function y = |x| is as follows

Therefore the graph of the standard absolute value function y = -|x| is as follows

Translating or shifting the above graph 2 units to the left, we get the graph of the function y = -|x+2|.

Translating or shifting the above graph 2 units upward, we get the graph of the function y = -|x+2| + 2 or y = 2 - |x+2|.

(Desired Graph)

H.W:Sketch the graph of the following functions:

1.
$$y = |x+2| - 2$$

2.
$$y = |x-2| + 3$$

3.
$$y=1-|x-3|$$

Piecewise function: A piecewise-defined function (also called a piecewise function or a hybrid function)

is a <u>function</u> which is defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain (a sub-domain).

For example: The following function is the piecewise function

$$y = f(x) = \begin{cases} f_1(x) &, & x < a \\ f_2(x) &, & a \le x < b \\ f_3(x) &, & x \ge b \end{cases}$$

Note that:

- 1. The function $f_1(x)$ is defined on the interval $(-\infty, a)$.
- 2. The function $f_2(x)$ is defined on the interval [a,b).
- 3. The function $f_3(x)$ is defined on the interval $[b, \infty)$.

Mathematical Problem

Problem -01: Sketch the graph of the function
$$f(x) = \begin{cases} 0 & ; x \le -1 \\ \sqrt{1-x^2} & ; -1 < x < 1 \end{cases}$$
. Also find domain and range of x $x \ge 1$

the function.

Solution:Given function is

$$y = f(x) = \begin{cases} 0 & ; x \le -1 \\ \sqrt{1 - x^2} & ; -1 < x < 1 \quad [say] \\ x & ; x \ge 1 \end{cases}$$

In the interval $x \le -1$ or $(-\infty, -1]$, the graph of the function y = 0 is,

In the interval -1 < x < +1 or (-1,1), the graph of the function $y = \sqrt{1-x^2}$ which is an upper semi-circle fradius 1 units and Centre at origin is,

In the interval $x \ge 1$ or $[1, \infty)$, the graph of the function y = x is,

Therefore, the graph of the given function is as follows:

(Desired Graph)

Again, the domain is,

$$D_f = \left(-\infty, -1\right] \cup \left(-1, 1\right) \cup \left[1, \infty\right)$$

$$=(-\infty,\infty)$$

$$=R$$

And the range is,

$$R_f = \{0\} \cup (0,1] \cup [1,\infty)$$

$$= [0, \infty)$$
 (Ans.)

Problem -02:Sketch the graph of the function
$$f(x) = \begin{cases} x^2 - 1 & ; x < 0 \\ x & ; 0 \le x \le 1 \end{cases}$$
. Also find domain and range $\frac{1}{x}$ $; x > 1$

of the function.

Solution: Given function is,

$$y = f(x) = \begin{cases} x^{2} - 1 & ; x < 0 \\ x & ; 0 \le x \le 1 \\ \frac{1}{x} & ; x > 1 \end{cases}$$
 [say]

In the interval x < 0 or $(-\infty, 0)$, the graph of the function $y = x^2 - 1$ is,

In the interval $0 \le x \le 1$ or [0,1], the graph of the function y = x is,

In the interval $x \ge 1$ or $[1, \infty)$, the graph of the function $y = \frac{1}{x}$ is,

Finally, the graph of the given function is as follows,

(Desired Graph)

Again, the domain is, $D_f = (-\infty, 0) \cup [0, 1] \cup (1, \infty)$

$$=(-\infty,\infty)$$

$$=R$$

And the range is, $R_f = [-1, \infty) \cup [0, 1] \cup (0, 1)$

$$=(-1,\infty)$$
 (Ans.)

of the function.

Problem -03: Sketch the graph of the function $f(x) = \begin{cases} -2x+1 & ; x < 0 \\ 1 & ; 0 \le x < 1 \end{cases}$. Also find domain and range 2x-1 ; $x \ge 1$

Solution: Given function is,

$$y = f(x) = \begin{cases} -2x+1 & ; x < 0 \\ 1 & ; 0 \le x < 1 \\ 2x-1 & ; x \ge 1 \end{cases}$$
 [Say]

In the interval x < 0 or $(-\infty, 0)$, the graph of the function y = -2x + 1 is,

In the interval $0 \le x < 1$ or [0,1), the graph of the function y = 1 is,

In the interval $x \ge 1$ or $[1, \infty)$, the graph of the function y = 2x - 1 is,

Finally, the graph of the given function is as follows:

(Desired Graph)

Again, the domain is,

$$D_f = (-\infty, 0) \cup [0, 1) \cup [1, \infty)$$

$$=(-\infty,\infty)$$

$$=R$$

And the range is,

$$R_f = (1, \infty) \cup \{1\} \cup [1, \infty)$$

$$=[1,\infty)$$
 (Ans.)

H.W: Sketch the graph of the following piecewise functions:

1.
$$f(x) = \begin{cases} x^2 & ; x < 0 \\ x & ; 0 \le x \le 1 \\ \frac{1}{x} & ; x > 1 \end{cases}$$

$$\frac{1}{x}, x > 1$$
2.
$$f(x) = \begin{cases}
x^2 + 1 & ; x < 0 \\
x & ; 0 \le x \le 1 \\
\frac{1}{x}, & ; x > 1
\end{cases}$$
3.
$$f(x) = \begin{cases}
1 - x & ; -1 \le x < 1 \\
0 & ; 1 \le x \le 2 \\
x^2 - 4, & ; x > 2
\end{cases}$$

3.
$$f(x) = \begin{cases} 1-x & ; -1 \le x < 1 \\ 0 & ; 1 \le x \le 2 \\ x^2 - 4 & ; x > 2 \end{cases}$$

4.
$$f(x) = \begin{cases} x^2 + 1 & ; x < 0 \\ x & ; 0 \le x \le 1 \\ 0 & ; x > 1 \end{cases}$$
5.
$$f(x) = \begin{cases} 0 & ; 1 < x \\ 1 + x & ; -1 \le x < 0 \\ 1 - x & ; 0 \le x \le 1 \end{cases}$$

5.
$$f(x) = \begin{cases} 0 & ; 1 < x \\ 1 + x & ; -1 \le x < 0 \\ 1 - x & ; 0 \le x \le 1 \end{cases}$$

6.
$$f(x) = \begin{cases} 2-x & ; x \ge 1 \\ x & ; 0 < x \le 1 \\ -x & ; x \le 0 \end{cases}$$

6.
$$f(x) = \begin{cases} 2-x & ; x \ge 1 \\ x & ; 0 < x \le 1 \\ -x & ; x \le 0 \end{cases}$$
7.
$$f(x) = \begin{cases} 0 & ; |x| > 1 \\ 1+x & ; -1 \le x \le 0 \\ 1-x & ; 0 < x < 1 \end{cases}$$
8.
$$f(x) = \begin{cases} \frac{x}{|x|} & ; x \ne 0 \\ 0 & ; x = 0 \end{cases}$$

8.
$$f(x) = \begin{cases} \frac{x}{|x|} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

Modulus/absolute function: The modulus or absolute value of x is denoted by the symbol |x| and is defined as follows,

$$|x| = \begin{cases} x & ; x \ge 0 \\ -x & ; x < 0 \end{cases}$$

Geometrically the modulus or absolute value of a number represents the distance of that number from the origin. The absolute value of x is always positive or zero.

A function together with modulus or absolute value sign is called modulus function.

For example: The function f(x) = 5|x+3|+2|x-2| is an absolute value function or Modulus function.

Breaking point of a function: Breaking point of a function is a point at which the function changes.

For example: The function f(x) = 5|x+3|+2|x-2| has two breaking points are x = -3 & x = 2.

Procedure of Graphing Absolute value function:

- 1. At first convert the modulus function into piecewise function according to its number of breaking points.
- 2. After that sketch the graph as piecewise function.

Mathematical Problem

Problem -01: Sketch the graph of the function f(x) = |x| + |x-1|.

Solution: Given absolute value function is.

$$y = f(x) = |x| + |x-1|$$
 [Say]

For breaking points x = 0 and $x - 1 = 0 \implies x = 1$.

There are two breaking points in this mathematical problem such as x = 0 & x = 1 and these points divide real number line into three intervals. Therefore, we define this absolute value function section-ally by three parts.

Now,
$$y = |x| + |x-1|$$

$$= \begin{cases} x + (x-1) & ; x \ge 1 \\ x + (-(x-1)) & ; 0 \le x < 1 \\ (-x) + (-(x-1)) & ; x < 0 \end{cases}$$

$$= \begin{cases} 2x+1 & ; x \ge 1 \\ 1 & ; 0 \le x < 1 \\ -2x+1 & ; x < 0 \end{cases}$$

Graph: In the interval x < 0 or $(-\infty, 0)$, the graph of the function y = -2x + 1 is,

In the interval $0 \le x < 1$ or [0,1), the graph of the function y = 1 is,

In the interval $x \ge 1$ or $[1, \infty)$, the graph of the function y = 2x - 1 is,

Finally, the graph of the given function is as follows:

(Desired Graph)

Problem -02: Sketch the graph of the function f(x) = |x-1| + |x| + |x+1|.

Solution: Given absolute value function is,

$$y = f(x) = |x-1| + |x| + |x+1|$$
 [Say]

For breaking points $x-1=0 \Rightarrow x=1$ and x=0 an also $x+1=0 \Rightarrow x=-1$

There are three breaking points in this mathematical problem such as x = -1, x = 0 & x = 1 and those points divide real number line into four intervals. Therefore, we define this absolute value function section-ally by four parts.

Now,

$$y = |x-1| + |x| + |x+1|$$

$$= \begin{cases} (x-1)+x+(x+1) & ; x \ge 1 \\ -(x-1)+x+(x+1) & ; 0 \le x < 1 \\ -(x-1)+(-x)+(x+1) & ; -1 \le x < 0 \\ -(x-1)+(-x)+(-(x+1)) & ; x < -1 \end{cases}$$

$$= \begin{cases} 3x & ; x \ge 1 \\ x+2 & ; 0 \le x < 1 \\ -x+2 & ; -1 \le x < 0 \\ -3x & ; x < -1 \end{cases}$$

Graph: In the interval $x \ge 1$ or $[1, \infty)$, the graph of the function y = 3x is,

In the interval $0 \le x < 1$ or [0,1), the graph of the function y = x + 2 is,

In the interval $-1 \le x < 0$ or [-1,0), the graph of the function y = -x + 2 is,

In the interval x < -1 or [-1,0), the graph of the function y = -3x is,

Finally, the graph of the given function is as follows:

-1

(Desired Graph)

H.W:

Sketch the graph of the following absolute value functions:

- $1. \quad f(x) = |x| x$
- 2. f(x) = |x| + |x+1|
- 3. f(x) = |x+1| + |x-1|
- 4. f(x) = |x+1| + |x-2|
- 5. f(x) = |x+2| + |x-2|
- 6. f(x) = |x| + |x-1| + |x-2|