Bird Call Feature Extraction Analysis Using Signal Processing

João Soares João Vieira Tiago Beaulieu

Table of Contents

INTRODUCTION DATA PREPROCESSING

FEATURE CATERIANS OF A K-MEANS

INTRODUCTION

Why Identify Bird Species Through Sound?

Non-Invasive Monitoring

Allows researchers to monitor bird populations without disturbing their natural habitats.

Biodiversity Assessment

Helps in tracking species diversity and abundance in various ecosystems.

Large-Scale Automation

Scales up research efforts with Al-powered tools for identifying multiple species simultaneously

INTRODUCTION

The chosen species were decided based on distinct callings

King Penguin

Greater Prairie Chicken

Red-tailed Hawk

Magpie Goose

DATA PREPROCESSING

Several Preprocessing mechanisms were applied to the Data

1. Application of Noise Reduction

Noise Reduction Using an External Library

2. Segmenting Sounds: Temporal Centroid

Segmenting audios into 10 second segments centered about the Temporal Centroid

DATA PREPROCESSING

Application of Band Pass Filter

3. Application of a Band Pass Filter

Application of band pass filter between 500 Hz and 8000Hz (frequencies where bird calling tends to happen)

Features were extracted from the Time and Frequency Domains

. Time Domain

- Zero Crossing Rate (ZCR) Detecting noisy, percussive, or sharp sounds.
- Root Mean Square Energy (RMS Energy) Measuring loudness or signal presence.

2. Frequency Domain

- **1. Spectral Centroid** Identifying brightness or pitch characteristics.
- **2. Spectral Bandwith** Distinguishing tonal vs. complex sounds.
- **3. Spectral Rolloff** Finding energy cutoff points in the spectrum.
- **4. Spectral Contrast** Analyzing dynamic variations in calls.

These features were extracted using the Librosa Python Library

The MFCCs is designed to mimic human auditory perception

3. Time and Frequency Domain

MFCCs are a **compact representation** of the spectral information, designed to **mimic human auditory perception** by mapping frequencies to the Mel scale and compressing the data. It captures characteristics like tone, pitch and timbre.

How does MFCCs work?

- 1. Break waveform into small chunks of time
- Focuses on low frequencies more closely (using Mel Scale)
- 3. Reduces noise and redundacy

What do MFCCs Values Represent?

- 1. MFCC1: Overall loudness or energy of the sound
- MFCCs 2-5: broad characteristics like bass vs treble balance
- 3. MFCCs 6-13: captures finer details like sharpness or variations of tone

Custom Feature Extraction – Basic "Lima" Spectrogram

3. What are Lima Spectrograms?

Lima Spectrograms are **visual representations of sound signals**, showing how their **frequency content changes over time**. These are particularly useful for analyzing animal calls and other natural sounds. These manually implemented spectrograms are basic.

Key Methodology

- 1. Extracts features in the frequency domain using Short-Time Fourier Transform (STFT).
- 2. Divides the frequency spectrum into customizable bins for detailed analysis.
- 3. Allows for time-frequency relationships to be observed clearly.

Parameters used:

- Maximum Frequency: 8 kHz
- Number of frequency bins: 250
- Hop size: 512 samples
- Window size: 30 milliseconds

Applications: These basic spectrograms can help differentiate between species-specific vocalizations, identify noise patterns, and analyze the structure of calls in various contexts.

Example Basic Spectrograms

K-MEANS The application of Kmeans shows us good results for 4 clusters

Bird\Cluster	1	2	3	4
Magpie Goose	22	3	0	2
King Penguin	6	20	4	0
Greater Pairie Chicken	4	2	22	0
Red-tailed Hawk	3	2	0	23
Accuracy	62.86%	74.07%	84.62%	92.00%

K-MEANS

High MFCCs and Spectral Rollof can help to identify clusters in a 2D plot

CONCLUSION

Defining the correct features to use in Machine Learning has a great impact in the capabilities of the model

1. Integration of Supervised Learning

2. Dynamic Feature Expansion

3. Ecological Insights

Thank You