Assignment No.: 1

Predict the price of the Uber ride from a given pickup point to the agreed drop-off location. Perform following tasks:

- 1. Pre-process the dataset.
- 2. Identify outliers.
- 3. Check the correlation.
- 4. Implement linear regression and random forest regression models.
- 5. Evaluate the models and compare their respective scores like R2, RMSE, etc. Dataset link: https://www.kaggle.com/datasets/yasserh/uber-fares-dataset

```
# import the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#load the dataset
data = pd.read_csv('/content/uber.csv')
data.head(1)
\overline{\mathcal{F}}
         Unnamed:
                               key fare_amount pickup_datetime pickup_longitude pickup_latitud
                0
                        2015-05-07
                                                      2015-05-07
        24238194
                                            7.5
                                                                         -73.999817
                                                                                          40.738354
                   10.52.06 0000003
                                                    10.52.06 LITC
```

Pre-process the dataset.

```
data.isnull().sum()

Unnamed: 0 0

key 0

fare_amount 0

pickup_datetime 0

pickup_longitude 0

pickup_latitude 0

dropoff_longitude 1

dropoff_latitude 1

passenger_count 0
```

```
# missing value fill
data['dropoff_longitude'].fillna(data['dropoff_longitude'].mean(), inplace=True)
```

data['dropoff_latitude'].fillna(data['dropoff_latitude'].mean(), inplace=True)

data.describe()

→ ▼		Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dro
	count	2.000000e+05	200000.000000	200000.000000	200000.000000	200000.000000	
	mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	
	std	1.601382e+07	9.901776	11.437787	7.720539	13.117375	
	min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	
	25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	
	50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	
	75%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	
	may	5 542257 ₀ ±07	100 00000	57 <i>/</i> 12/57	16// /21/82	1153 573603	•

data.info()

```
<class 'pandas.core.frame.DataFrame'>
   RangeIndex: 200000 entries, 0 to 199999
   Data columns (total 9 columns):
```

baca coramiis (cocar > coramis).								
#	Column	Non-Null Count	Dtype					
0	Unnamed: 0	200000 non-null	int64					
1	key	200000 non-null	object					
2	fare_amount	200000 non-null	float64					
3	<pre>pickup_datetime</pre>	200000 non-null	object					
4	<pre>pickup_longitude</pre>	200000 non-null	float64					
5	<pre>pickup_latitude</pre>	200000 non-null	float64					
6	dropoff_longitude	200000 non-null	float64					
7	dropoff_latitude	200000 non-null	float64					
8	passenger_count	200000 non-null	int64					
<pre>dtypes: float64(5), int64(2), object(2)</pre>								
memory usage: 13.7+ MB								

data.columns

data.shape

→ (200000, 9)

Identify outliers

```
import matplotlib.pyplot as plt

# Analyze numerical features
data.boxplot(column=["fare_amount", "passenger_count"])
plt.show()

# Handle outliers (e.g., capping, removing)
data = data[data["fare_amount"] < 3 * data["fare_amount"].quantile(0.95)]</pre>
```


Check the correlation.

```
# Calculate correlation for numerical features only
correlation = data.select_dtypes(include=['number']).corr()
```

✓ linear regression

```
# Now define x and y
x = data.select_dtypes(include=['number']).drop("fare_amount", axis=1)
y = data["fare_amount"]

# Split data into training and testing sets.
xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size=0.2, random_state=1)
# Initialize the linear regression model.
model = linear_model.LinearRegression()

# Train the model on the training data.
model.fit(xTrain, yTrain)

The linearRegression()

| LinearRegression() | Part | P
```

+ Text

+ Code

```
# model evaluation
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(xTrain, yTrain)
lr pred = lr.predict(xTest)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
lr rmse = np.sqrt(mean squared error(yTest, lr pred))
lr r2 = r2 score(yTest, lr pred)
lr mae = mean absolute error(yTest, lr pred)
print(f" The RMSE of Linear regression is {lr rmse}")
print(f" The R2 score of Linear regression is {lr r2}")
print(f" The MAE of Linear regression is {lr mae}")
\overline{\longrightarrow}
     The RMSE of Linear regression is 9.308045744639495
     The R2 score of Linear regression is 0.0002925775801029262
     The MAE of Linear regression is 5.925918920808279
```

Random Forest Regression Model

```
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators = 100, random_state = 101)
rf.fit(xTrain, yTrain)
rf_pred = rf.predict(xTest)

rf_rmse = np.sqrt(mean_squared_error(yTest, rf_pred))
rf_r2 = r2_score(yTest, rf_pred)
print(f" The RMSE of random forest model is {rf_rmse}")
print(f" The R2 score of random forest model is {rf_r2}")

The RMSE of random forest model is 4.231392124468747
The R2 score of random forest model is 0.793403744661945
```

Random Forest model outperforms the Linear Regression model in terms of both prediction accuracy and model fit