第二十五章 调和函数

25.1 调和函数

假设 Ω 是平面区域, 用 $C^2(\Omega)$ 表示 Ω 上 2 阶连续可微的复值函数全体. 给定 $u \in C^2(\Omega)$. 如果对任意 $z \in \Omega$, 有

$$\Delta u(z) := \bigg(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\bigg)u = 0,$$

则称 u 在 Ω 上调和. 如果 u 取实值, 称 u 为调和函数; 如果 u 取 复值, 称 u 为调和映射. 这里 Δ 是 Laplace 算子, 其复形式为

$$\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}}.$$

由此知

$$u$$
 调和 $\Longleftrightarrow \frac{\partial}{\partial \bar{z}} \left(\frac{\partial u}{\partial z} \right) = 0 \Longleftrightarrow \frac{\partial u}{\partial z}$ 全纯.

调和函数的例子有很多. 如果 $f=u+iv:\Omega\to\mathbb{C}$ 全纯,则 u,v 满足 Cauchy-Riemann 方程 $u_x=v_y,u_y=-v_x$. 由此,

$$\Delta u = u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0, \ \Delta v = v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0.$$

这说明 f 的实部 u 和虚部 v 都是 Ω 上的调和函数. 此时, 称 v 是 u 的共轭调和函数. 由 -if = v - iu 知, -u 是 v 的共轭调和函数. 共轭调和函数不唯一, 任意两个差一常数.

一个自然的问题是: 给定 Ω 上的调和函数 u, 它是否有共轭调和函数? 此问题等价于:u 是否可表示为 Ω 上某全纯函数的实部?下面的命题表明, 这与全纯函数原函数的存在性等价.

命题 25.1. 假设 u 是平面区域 Ω 上的调和函数,则以下等价

- 1. u 可以表示为 Ω 上某个全纯函数的实部;
- 2. $\frac{\partial u}{\partial z}$ 在 Ω 上存在原函数.

特别地, 单连通域上的调和函数总是某全纯函数的实部.

证明: 如果 u 是全纯函数 f = u + iv 的实部, 则

$$\frac{\partial f}{\partial \bar{z}} = \frac{\partial u}{\partial \bar{z}} + i \frac{\partial v}{\partial \bar{z}} = 0 \Longleftrightarrow \overline{\left(\frac{\partial u}{\partial \bar{z}}\right)} = i \overline{\left(\frac{\partial v}{\partial \bar{z}}\right)} \Longleftrightarrow \frac{\partial u}{\partial z} = i \frac{\partial v}{\partial z}.$$

由此得

$$f'(z) = \frac{\partial u}{\partial z} + i \frac{\partial v}{\partial z} = 2 \frac{\partial u}{\partial z}.$$

这说明 f 是 $2\frac{\partial u}{\partial z}$ 的原函数.

如果 $2\frac{\partial u}{\partial z}$ 在 Ω 上有原函数 $g=g_1+ig_2$, 其中 g_1,g_2 分别为 g 的实部和虚部. 由上面讨论知 $g'(z)=2\frac{\partial u}{\partial z}=2\frac{\partial u}{\partial z}$, 于是

$$\frac{\partial g_1}{\partial z} = \frac{\partial u}{\partial z} \Longleftrightarrow (g_1 - u)_x = (g_1 - u)_y = 0.$$

这说明 $u = g_1 + C$, C 是一个实数. 因此 u 是 g + C 的实部.

例题 25.1. 考虑区域 $\Omega_1 = \mathbb{C} \setminus \{0\}$, $\Omega_2 = \mathbb{C} \setminus [0, +\infty)$, 容易验证 $u(z) = \log |z|$ 在两个区域上调和. 证明:

- 1. u 在 Ω_1 上不是某个全纯函数的实部.
- 2. u 在 Ω_2 上是某个全纯函数的实部.

证明: 事实上, 考虑函数

$$g(z) = \frac{\partial u}{\partial z} = \frac{1}{2z}.$$

在单位圆周 $\partial \mathbb{D} \subset \Omega_1$ 上,

$$\int_{|z|=1} g(z)dz = \pi i \neq 0,$$

因此, g 在 Ω_1 上不存在原函数, 由命题25.1, u 在 Ω_1 上不是某个全纯函数的实部. 另一方面, Ω_2 是不含原点的单连通区域, $\operatorname{Log}(z)$ 存在单值全纯分支, 记其中之一为 $\operatorname{log}_{\Omega_2}(z) = \operatorname{log}|z| + i \operatorname{arg}_{\Omega_2}(z)$, 这里 $\operatorname{arg}_{\Omega_2}(z)$ 是 Ω_2 上的一个连续辐角函数. 这说明 u 是全纯函数 $\operatorname{log}_{\Omega_2}(z)$ 的实部, 它的一个共轭调和函数是 $\operatorname{arg}_{\Omega_2}(z)$.

25.2 极值原理

命题 25.2. 假设 u 是区域 Ω 上的调和函数, $\overline{D(z_0,r)} \subset \Omega$, 则 u 满足平均值公式

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

证明: 在包含 $\overline{D(z_0,r)}$ 的圆盘 $D \subset \Omega$ 上, 由命题25.1, u 可表示为某全纯函数 f 的实部. 对 f 应用 Cauchy 积分公式,

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

上式两边取实部可得

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

定理 25.1. (极值原理) 非常值调和函数不可能在区域内部取到最大值或最小值.

证明: 假设 u 在 Ω 上调和. 如果存在 $a \in \Omega$ 满足 $u(a) = \sup_{w \in \Omega} u(w)$,下证 u 为常值函数. 为此,定义集合 $E = \{z \in \Omega; u(z) = u(a)\}$. 首先,由 $a \in E$ 知, $E \neq \emptyset$. 利用 u 的连续性知, $E \neq \Omega$ 的闭子集. 下面证明 $E \neq \Omega$ 的开子集.

任取 $z_0 \in E$, 存在 r > 0 使得 $\overline{D(z_0, r)} \subset \Omega$, 对任意 $\rho \in (0, r)$, 利用平均值公式知

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + \rho e^{i\theta}) d\theta.$$

由 $z_0 \in E$ 知, 对任意 θ , 成立 $u(z_0 + \rho e^{i\theta}) \leq u(z_0)$. 如果存在 θ_0 使 $u(z_0 + \rho e^{i\theta_0}) < u(z_0)$, 则存在 $\delta > 0$ 使当 $\theta \in (\theta_0 - \delta, \theta_0 + \delta)$ 时, $u(z_0 + \rho e^{i\theta}) < u(z_0)$. 因此

$$\int_0^{2\pi} u(z_0 + \rho e^{i\theta}) d\theta \leq \int_{\theta_0 - \delta}^{\theta_0 + \delta} u(z_0 + \rho e^{i\theta}) d\theta + (2\pi - 2\delta)u(z_0)$$

$$< 2\delta u(z_0) + (2\pi - 2\delta)u(z_0) = 2\pi u(z_0).$$

这与平均值公式矛盾. 这说明, 对任意 $\rho \in (0,r)$, $\theta \in [0,2\pi)$, 都成立 $u(z_0 + \rho e^{i\theta}) = u(z_0)$, 等价于 $D(z_0,r) \subset E$. 因此 E 是开集.

如此便证明了 $E \in \Omega$ 的即开又闭的非空子集. 由 Ω 的连通性知, $E = \Omega$. 这说明 $u \equiv u(z_0)$.

25.3 唯一性定理

命题 25.3. (唯一性定理) 假设 u 是圆盘 $D(a,\rho)$ 上的有界调和函数, 在边界上除了有限个点 ζ_1, \dots, ζ_m 外, 极限

$$\lim_{z \to \zeta} u(z) = 0$$

处处成立, 则必然有 $u \equiv 0$.

证明: 给定 $\epsilon > 0$, 构造函数

$$v(z) = \epsilon \sum_{k=1}^{m} \log \frac{2\rho}{|z - \zeta_k|} = \epsilon \sum_{k=1}^{m} (\log 2\rho - \log |z - \zeta_k|).$$

显然 $\log |z - \zeta_k|$ 调和 (直接用定义验证, 或利用它是 $\operatorname{Log}(z - \zeta_k)$ 的一个单值全纯分支 $\operatorname{log}(z - \zeta_k)$ 的实部), 因此 v 在 $D(a, \rho)$ 上调和. 它满足如下性质,

$$\lim_{z \to \zeta} v(z) \ge 0, \ \forall \zeta \in \partial D(a, \rho) \setminus \{\zeta_1, \cdots, \zeta_m\}; \quad \lim_{z \to \zeta_k} v(z) = +\infty.$$

对 $\delta > 0$, 定义

$$D_{\delta} = D(a, \rho) \setminus \bigcup_{k=1}^{m} \overline{D(\zeta_k, \delta)}.$$

由 u 的有界性可知, 取 $\delta(\epsilon) > 0$ 足够小, 可使对任意 $\delta \in (0, \delta(\epsilon))$, 有 $v(z) - u(z) \ge 0$, $\forall z \in D(a, \rho) \cap \partial D(\zeta_k, \delta)$. 这样, 对任意 $\zeta \in \partial D_\delta$, 有 $\lim_{z \to \zeta} (v(z) - u(z)) \ge 0$. 由极值原理可知, 在 D_δ 上, $v \ge u$. 令 $\delta \to 0^+$ 可知, 在 $D(a, \rho)$ 上 $v \ge u$.

对 -u 类似讨论可知, 在 $D(a,\rho)$ 上 $u \ge -v$. 因此

$$-v(z) \le u(z) \le v(z), \ \forall z \in D(a, \rho).$$

注意到, 当 $\epsilon \to 0^+$ 时 $v \to 0$. 令 $\epsilon \to 0^+$, 可得 u = 0.

25.4 积分公式

定理 25.2. 假设 f 在 \overline{D} 上全纯, 实部为 u, 则成立

1. Poisson 积分公式

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta, \ z \in \mathbb{D}.$$

25.5 习题 221

2. Schwarz 积分公式

$$f(z) = \frac{1}{\pi i} \int_{|\zeta|=1} \frac{u(\zeta)}{\zeta - z} d\zeta - \overline{f(0)}, \ z \in \mathbb{D}.$$

证明: 两个积分公式本质上是 Cauchy 积分公式的推论.由 Cauchy 积分公式知:

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(e^{i\theta})e^{i\theta}}{e^{i\theta} - z} d\theta.$$
 (25.1)

注意到当 $z \in \mathbb{D} \setminus \{0\}$ 时,它关于圆周的对称点 $1/\overline{z} \notin \overline{\mathbb{D}}$.对 $\overline{\mathbb{D}}$ 上的全纯函数 $g(\zeta) = f(\zeta)/(\zeta - 1/\overline{z})$ 应用 Cauchy 积分定理得

$$0 = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta - 1/\bar{z}} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(e^{i\theta})e^{i\theta}}{e^{i\theta} - 1/\bar{z}} d\theta.$$
 (25.2)

注意到

$$\frac{e^{i\theta}}{e^{i\theta}-z}-\frac{e^{i\theta}}{e^{i\theta}-1/\bar{z}}=\frac{e^{i\theta}}{e^{i\theta}-z}+\frac{\bar{z}}{e^{-i\theta}-\bar{z}}=\frac{1-|z|^2}{|e^{i\theta}-z|^2}.$$

公式(25.1),(25.2)左右两端分别相减,得

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta.$$

上式即 Poisson 积分公式.

在公式(25.2)两边取共轭,得到

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(e^{i\theta})} \left(\frac{e^{-i\theta}}{e^{-i\theta} - 1/z} \right) d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \overline{f(e^{i\theta})} \left(\frac{z}{z - e^{i\theta}} \right) d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \overline{f(e^{i\theta})} \left(1 + \frac{e^{i\theta}}{z - e^{i\theta}} \right) d\theta$$
$$= \overline{f(0)} + \frac{1}{2\pi} \int_0^{2\pi} \overline{\frac{f(e^{i\theta})}{z - e^{i\theta}}} d\theta.$$

公式(25.1)与上式左右两端分别相减, 得 Schwarz 积分公式

$$f(z) = \frac{1}{\pi} \int_0^{2\pi} \frac{u(e^{i\theta})e^{i\theta}}{e^{i\theta} - z} d\theta - \overline{f(0)} = \frac{1}{\pi i} \int_{|\zeta| = 1} \frac{u(\zeta)}{\zeta - z} d\zeta - \overline{f(0)}.$$

25.5 习题

"我一生想解决的问题很多,但其中有很多就像悬崖峭壁一样,没有明显的路径可以攀登。我正研究那些较为可及的问题。

我希望积累更多的技巧,工具和洞见. 之后之后再回到那些我真正想解决的问题,看看是否有所改观."

---陶哲轩

1. (调和 vs 全纯) 区域 $\Omega = \mathbb{C} - [0,1]$ 上的调和函数

$$u(z) = \log|z| + c\log|z - 1|, c \in \mathbb{R}$$

当 c 取何值时, 为 Ω 上某全纯函数的实部?

2. (平均值性质) 利用调和函数的均值性质证明

$$\int_0^{\pi} \log(1 - 2r\cos t + r^2)dt = 0, 0 < r < 1.$$

- 3. (Я 种形式的唯一性定理) u 在区域 D 上调和, 且在 D 的子区域 G 上恒等于 0, 证明 u 在 D 上恒为零. 若将 G 改为一列收敛于 $z_0 \in D$ 的点列, 结论是否成立?
- 4. (复合函数) 假设 $f:\Omega\to D$ 全纯, $w=f(z),\,u\in C^2(D)$. 证明 Laplace 算子满足

$$\Delta_z(u \circ f) = |f'(z)|^2 (\Delta_w u) \circ f.$$

(这说明,u 在 D 上调和 $\Longrightarrow u \circ f$ 在 Ω 上调和. 注 $\Delta_{\zeta} = 4 \frac{\partial^2}{\partial \zeta \partial \overline{\zeta}}$)

5. (调和映射) 假设 $f = u + iv : \Omega \to \mathbb{C}$ 是调和映射. 如果 Ω 单连通, 证明 f 有如下分解

$$f = g + \overline{h}$$

其中 g,h 都是 Ω 上的全纯函数. 此分解在差一常数的意义下唯一.

6. (唯一性定理的补充) 是否存在圆盘 \mathbb{D} 上的无界调和函数, 在边界上除了有限个点 ζ_1, \dots, ζ_m 外, 极限

$$\lim_{z \to \zeta} u(z) = 0$$

对 $\zeta \in \partial \mathbb{D} \setminus \{\zeta_1, \cdots, \zeta_m\}$ 处处成立?

7. (世上最差的函数, 选做题) 圆盘 $\mathbb D$ 上有这样的调和函数 u, 其性质貌似极好: 对任意 $\zeta \in \partial \mathbb D$, 满足 $\lim_{r\to 1^-} u(r\zeta) = 0$, 但却不恒为 0. 这样的函数被戏称为"世上最差的函数". 请举例.