ARITHMETIC

Tomo III 2023 Chapter 8

SERIE DE RAZONES

GEOMÉTRICAS

EQUIVALENTES

MOTIVATING STRATEGY

En una panadería se observó lo siguiente:

Nº de Panes	10	15	20	25
Precio (S/)	2	3	4	5

$$\frac{10}{2} = \frac{15}{3} = \frac{20}{4} = \frac{25}{5} = 5$$

¡Esto es una serie de razones equivalentes!

HELICO THEORY

SERIE DE RAZONES GEOMÉTRICAS EQUIVALENTES

Ejemplo:

$$\frac{6}{2}$$
 = 3; $\frac{15}{5}$ = 3; $\frac{12}{4}$ = 3; $\frac{21}{7}$ = 3

Igualamos:

ANTECEDENTES

CONSECUENTES

CONSTANTE DE PROPORCIONALIDAD

En General:

ANTECEDENTES

CONSECUENTES

Entonces:

$$a_1 = c_1 \cdot k$$

 $a_2 = c_2 \cdot k$
 $a_3 = c_3 \cdot k$
 $a_n = c_n \cdot k$

PROPIEDADES

Suma de antecedentes Suma de consecuentes

2

Producto de antecedentes = k^n Producto de consecuentes

$$\frac{a_1 + a_2 + a_3 + ... + a_n}{c_1 + c_2 + c_3 + ... + c_n} = k$$

Ejemplo: $\frac{6}{2} = \frac{15}{5} = \frac{12}{4} = \frac{21}{7} = 3$

$$\frac{6 + 15 + 12 + 21}{2 + 5 + 4 + 7} = \frac{54}{18} = 3$$

n = Número de razones consideradas

Ejemplo:

$$\left(\frac{6}{2}\right) = \left(\frac{15}{5}\right) = \left(\frac{12}{4}\right) = \left(\frac{21}{7}\right) = 3$$

$$\frac{6 \cdot 15 \cdot 12 \cdot 21}{2 \cdot 5 \cdot 4 \cdot 7} = 3^{4}$$

Serie continua

$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{d}{e} = k$$
 Entonces: $d = ek$
 $c = ek^2$

$$c = ek^2$$

$$b = ek^3$$

$$a = ek^4$$

Ejemplo:

$$\frac{243}{1} = \frac{81}{1} = \frac{27}{1} = \frac{9}{3} = 3$$

1. Sabiendo que $\frac{A}{2} = \frac{B}{5} = \frac{C}{7}$, y además $A^2 + C^2 = 212$, calcule 3B.

RESOLUCIÓN

Igualando a una constante de proporcionalidad tenemos:

Por dato:

$$A^2 + C^2 = 4k^2 + 49k^2 = 212$$

$$53K^2 = 212$$

$$K = 2$$

Nos piden: 3B

Rpta:

2. Si: $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, además a.b.c = 2268. Halle el valor de a+b+c.

RESOLUCIÓN

Entonces:

$$a=3k$$
 $b=4k$ $c=7k$

Por dato:

a.b.c =
$$(3k)(4k)(7k)$$

$$84k^3 = 2268$$

$$K = 3$$

Nos

piden: a + b + c

$$a + b + c$$

$$\therefore 14(3) = 52$$

Rpta:

3. En la serie
$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = k$$
, donde $\frac{a}{d} = \frac{27}{64}$. Halle el valor de 1/K.

RESOLUCIÓN

Por propiedad:

$$\frac{a}{b} \times \frac{b}{c} \times \frac{c}{d} = k^3$$

$$\frac{a}{d} = k^3$$

$$\frac{27}{64} = k^3$$

$$k = \frac{3}{4}$$

$$\frac{1}{k} = \frac{4}{3}$$

Rpta:

4/3

4. En la serie $\frac{J}{7} = \frac{I}{11} = \frac{M}{3} = \frac{Y}{13}$ Si (J + I) - (M + Y) = 14 calcule J + I + M + Y.

RESOLUCIÓN

Entonces:

J = 7k, I = 11k, M = 3k, Y = 13kPor dato:

$$(7k + 11k) - (3k + 13k)=14$$

 $2k = 14$

$$K = 7$$

Nos piden:

$$J + I + M + Y = 49 + 77 + 21 + 91$$

Rpta:

5. Si
$$\frac{a^2+25}{25} = \frac{b^2+49}{49} = \frac{c^2+81}{81}$$
, además a + b + c = 63. Calcule a.c

RESOLUCIÓN

De la serie dato y por propiedad:

$$\frac{a}{5} = \frac{b}{7} = \frac{c}{9} = k$$

Entonces:

$$a=5k$$
 $b=7k$ $c=9k$

También: a + b + c = 63

21k = 63

k = 3

Nos

piden: $a.c = 15 \times 27$

Rpta:

6. Las edades de tres amigos forman una serie continua de razón 3. Si el menor de ellos tiene 8 años. Calcule la edad de Julio Granda, el gran maestro internacional de ajedrez, si su edad es 19 años menor que la del amigo de mayor edad.

RESOLUCIÓN

Sean las edades: a, b, c

Entonces: $\frac{a}{b} = \frac{b}{c} = 3$

Expresando en función a una variable:

$$\frac{9x}{3x} = \frac{3x}{x} = 3$$

Por dato: x=8

Nos piden la edad de Julio Granda:

 $9 \times - 19$

9(8)-19

7. Con las edades de 4 primas se forma una serie de razones geometricas equivalentes continuas, donde el valor de su razón es ½; calcula la edad de la menor; si las dos mayores tienen por suma de edades 24 años.

RESOLUCIÓN

Sea Las edades: a; b; c y d

Donde:
$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{1}{2}$$

Tenemos:

$$\frac{x}{2x} = \frac{2x}{4x} = \frac{4x}{8x} = \frac{1}{2}$$

Por dato: 4x + 8x = 24

$$12x=24$$

 $x=\frac{24}{12}$

Nos piden la

edad de la menor: x= 2

Rpta: 2 años