Teoria Analisi 1

February 7, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato) - Solo enunciato	2
2	Teorema dell'unicità del limite 2.1 Enunciato	
3	Teorema fondamentale del calcolo integrale (TFCI)	2

1 Teorema del differenziale (Lagrange - Rolle generalizzato) - Solo enunciato

2.2em $f: I \subset \mathbb{R}, I$ intervallo, $x_0 \in I$, x_0 interno ad I, f derivabile in x_0 . Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , w $(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x - x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

2 Teorema dell'unicità del limite

2.1 Enunciato

 $f:A\subset\mathbb{R}\to\mathbb{R},\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1. $\lim_{x\to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$

2. $\lim_{x\to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$

Allora: $\mathbf{l_1} = \mathbf{l_2}$

2.2 Dimostrazione

ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) - \{0\}$

ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) - \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \bigcup V l_2 \neq \emptyset$

 $Wx_0 = \bigcup U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \bigcup A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \\ z = x^2 - 3 \end{cases}$$

2

3 Teorema fondamentale del calcolo integrale (TFCI)

 $[a,b] \subset \mathbb{R}, \ a < b. \ f$ R-integrale su $[a,b]. \ \exists x_1 \in [a,b]$ t.c. f sia continua in $x_1.$