

Poder calorífico

Relación entre los poderes caloríficos: $PCI = PCS - 597 \times G = PCS - 597(9H + H_2O)$

Siendo:

PCI poder calorífico inferior

PCS poder calorífico superior

597 Calor de condensación del agua a O ºC

G Porcentaje en peso del agua formada por la combustión del *H*₂ más la humedad propia del combustible

Recordando: $G = 9H + H_2O$ \uparrow

9 Son los kilos de agua que se forman al oxidar un kilo de hidrógeno.

H % de hidrógeno contenido en el combustible.

H2O % de humedad del combustible.

Método analítico

Formulas de Dulong

PCS comb. seco $PCS = 8,140 \times C + 34,400 \times (H - O/8) + 2,220 \times S$ PCI comb. seco: $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S$

PCI comb. húmedo: $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S - 600 \times H2O$

Formula de Hutte

PCI comb. húmedo $8,100 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

Formula de Asociación de Ing. Alemanes

PCI comb. húmedo $PCI = 8,080 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

- C Cantidad centesimal de carbono en peso por kilogramo combustible
- H Cantidad centesimal de hidrógeno total en peso por kilogramo de combustible
- O Cantidad centesimal de oxígeno en peso por kilogramo combustible
- S Cantidad centesimal de azufre en peso por kilogramo combustible
- O / 8 Cantidad centesimal de hidrógeno en peso que se encuentra combinado con el oxígeno del mismo combustible dando "agua de combinación"
- (H O/8) Cantidad centesimal de "hidrógeno disponible", en peso realmente disponible para que se oxide con el oxígeno del aire, dando "agua de formación"