

Análise e Síntese de Algoritmos

Componentes Fortemente Ligados (SCCs)

CLRS Cap. 22

Instituto Superior Técnico 2022/2023

Resumo

Componentes Fortemente Ligados (SCCs)

Algoritmo $DFS(G)+DFS(G^T)$ Algoritmo Tarjan

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos
 - Fluxos máximos
 - Árvores abrangentes
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Análise e Síntese de Algoritmos - 2022/2023

1/40

Componentes Fortemente Ligados

Componente Fortemente Ligado

Dado um grafo dirigido G=(V,E) um Componente Fortemente Ligado (ou *Strongly Connected Component* – SCC) é um conjunto máximo de vértices $U\subseteq V$, tal que para quaisquer $u,v\in U,u$ é atingível a partir de v, e v é atingível a partir de u

Nota: um vértice simples pode definir um SCC

Componentes Fortemente Ligados

Componentes Fortemente Ligados

Componente Fortemente Ligado

Dado um grafo dirigido G = (V, E) um Componente Fortemente Ligado (ou *Strongly Connected Component* – SCC) é um conjunto máximo de vértices $U \subseteq V$, tal que para quaisquer $u, v \in U$, u é atingível a partir de v, e v é atingível a partir de u

Nota: um vértice simples pode definir um SCC

Questão

• Um DAG pode conter SCCs?

Análise e Síntese de Algoritmos - 2022/2023

3/40

Exercício

Análise e Síntese de Algoritmos - 2022/2023

4/40

Componentes Fortemente Ligados

Exercício

• Tem ciclos ou é um DAG?

Componentes Fortemente Ligados

Exercício

- Tem ciclos ou é um DAG?
- Tem quantos SCCs ?

Componentes Fortemente Ligados

Componentes Fortemente Ligados

Soluções algorítmicas

• Algoritmo de Tarjan

(Kosaraju-Sharir)

Exercício

- Tem ciclos ou é um DAG?
- Tem quantos SCCs ? 4

Análise e Síntese de Algoritmos - 2022/2023

4/40

Análise e Síntese de Algoritmos - 2022/2023

• Algoritmo baseado na DFS(G)+DFS(G^T)

Componentes Fortemente Ligados

Grafo Transposto

Dado um grafo dirigido G = (V, E), o grafo transposto de G é definido da seguinte forma:

$$G^{T} = (V, E^{T}) \text{ tal que} : E^{T} = \{(u, v) : (v, u) \in E\}$$

Componentes Fortemente Ligados

Grafo TranspostoDado um grafo dirigido G = (V, E), o grafo transposto de G é

$$G^T = (V, E^T)$$
 tal que : $E^T = \{(u, v) : (v, u) \in E\}$

Complexidade

definido da seguinte forma:

Componentes Fortemente Ligados

Algoritmo $DFS(G) + DFS(G^T)$

Grafo Transposto

Dado um grafo dirigido G = (V, E), o grafo transposto de G é definido da seguinte forma:

$$G^{T} = (V, E^{T}) \text{ tal que} : E^{T} = \{(u, v) : (v, u) \in E\}$$

Complexidade

• O(V+E)

Análise e Síntese de Algoritmos - 2022/2023

6/40

Observação

Análise e Síntese de Algoritmos - 2022/2023

7/40

Algoritmo $DFS(G) + DFS(G^T)$

Observação

Algoritmo $DFS(G) + DFS(G^T)$

Observação

Análise e Síntese de Algoritmos - 2022/2023

Algoritmo DFS(G)+DFS(G^T)

Relembrar: Num DAG, se existe caminho de u para v, então f[u] > f[v]!

Intuição

Em *G*:

Em G^T :

Análise e Síntese de Algoritmos - 2022/2023

8/40

Algoritmo $DFS(G)+DFS(G^T)$

SCC-DFS(G)

- 1. Executar DFS(G) para cálculo de f[v], para cada $v \in G.V$
- 2. Representar G^{7}
- 3. Executar DFS(G^T), considerar vértices por ordem decrescente de f[v] return floresta DF
- Cada árvore da floresta DF corresponde a um SCC

Complexidade

• $\Theta(V+E)$

Algoritmo DFS(G)+DFS(G^T)

SCC-DFS(G)

- 1. Executar DFS(G) para cálculo de f[v], para cada $v \in G.V$
- 2. Representar G^T
- 3. Executar DFS(G^T), considerar vértices por ordem decrescente de f[v] **return** floresta DF
- Cada árvore da floresta DF corresponde a um SCC

Análise e Síntese de Algoritmos - 2022/2023

0/40

Algoritmo $DFS(G)+DFS(G^T)$

Propriedades

• Um grafo de componentes $G^{SCC} = (V^{SCC}, E^{SCC})$ é um DAG

Algoritmo DFS(G)+DFS(G^T)

Algoritmo Tarjan

Propriedades

- Um grafo de componentes $G^{SCC} = (V^{SCC}, E^{SCC})$ é um DAG
- Se C e C' forem SCCs distintos do grafo G, e existir um caminho de $u \in C$ para $v \in C'$:
 - Não pode haver um caminho de v para u
 - $\max_{x \in C} \{f[x]\} > \max_{y \in C'} \{f[y]\}$
- ullet Segunda DFS visita G^{SCC} seguindo uma ordem topológica

Análise e Síntese de Algoritmos - 2022/2023

10/40

Intuição

- Baseado no algoritmo DFS
- Raíz de um SCC: primeiro vértice do SCC a ser descoberto
- Utilização de arcos para trás e de cruzamento na mesma árvore DF para identificação de ciclos
- d[v]: Número de vértices visitados quando v é descoberto
- low[v] : O menor valor de d[] atingível por um arco para trás ou de cruzamento na sub-árvore de v
- Se d[v] = low[v], então v é raíz de um SCC

Análise e Síntese de Algoritmos - 2022/2023

11/40

Algoritmo Tarjan

Exemplo valor low[v]

Algoritmo Tarjan

Exemplo valor low[v]

Algoritmo Tarjan

Exemplo valor low[v]

Análise e Síntese de Algoritmos - 2022/2023

12/40

Exemplo valor low[v]

Invariante de Pilha: conjunto de vértices dos quais é permitido actualizar o valor low[v]

Análise e Síntese de Algoritmos - 2022/2023

12/40

Algoritmo Tarjan

SCC-Tarjan(G)

```
visited \leftarrow 0
L \leftarrow 0
for u \in G.V do
d[u] \leftarrow \infty
end for
for u \in G.V do
if d[u] == \infty then
Tarjan-Visit(G, u)
end if
end for
```

Tarjan-Visit(G, u)

```
\begin{split} &d[u] \leftarrow low[u] \leftarrow visited \\ &visited \leftarrow visited + 1 \\ &\text{Push}(L,u) \\ &\text{for } v \in G.Adj[u] \text{ do} \\ &\text{ if } d[v] == \infty \text{ or } v \in L \text{ then} \\ &\text{ if } d[v] == \infty \text{ then} \\ &\text{ Tarjan-Visit}(G,v) \\ &\text{ end if } \\ &low[u] \leftarrow \min(low[u],low[v]) \\ &\text{ end if } \\ &\text{ end for } \\ &\text{ if } d[u] == low[u] \text{ then} \\ &\text{ repeat} \\ &v \leftarrow \mathsf{Pop}(L) \\ &\text{ until } u == v \\ &\text{ end if} \end{split}
```

Algoritmo Tarjan

Complexidade

Tempo de execução: $\Theta(V + E)$

- Inicialização: Θ(V)
- Chamadas a Tarjan-Visit: O(V)
- Lista de adjacência de cada vértice analisada apenas 1 vez: $\Theta(E)$

Algoritmo Tarjan

Análise e Síntese de Algoritmos - 2022/2023 15/40

Análise e Síntese de Algoritmos - 2022/2023

16/40

Algoritmo Tarjan

Algoritmo Tarjan

L: a, b, e SCCs:

L: a, b, e, f SCCs:

Algoritmo Tarjan

Análise e Síntese de Algoritmos - 2022/2023

19/40

$d=0 \atop low=0 \atop low=1 \atop low=1 \atop low=2 \atop low=2 \atop low=2 \atop low=2 \atop low=3 \atop low=3 \atop low=3 \atop low=1 \atop low=1$

L: a, b, e, f, g

SCCs:

Análise e Síntese de Algoritmos - 2022/2023

20/40

Algoritmo Tarjan

Algoritmo Tarjan

L: a, b, e, f, g SCCs:

L: a, b, e, f, g, h

SCCs:

Algoritmo Tarjan

Análise e Síntese de Algoritmos - 2022/2023

SCCs:

23/40

bd=2d=0low=1 low=2low=0d=3 low=2d a low= d=5d=6low=5 low=5 \boldsymbol{c}

Análise e Síntese de Algoritmos - 2022/2023

SCCs:

Algoritmo Tarjan

L: a, b, e, f, g SCCs: {h, i}

Algoritmo Tarjan

L: a, b, e, f, g, h, i

L: a, b, e, f, g SCCs: {h, i}

Algoritmo Tarjan

L: a, b, e, f, g SCCs: {h, i}

Análise e Síntese de Algoritmos - 2022/2023

27/40

$d=0 \atop low=0 \atop low=1 \atop low=2 \atop low=5 \atop low=5$

Análise e Síntese de Algoritmos - 2022/2023

SCCs: {h, i} {e, f, g}

28/40

Algoritmo Tarjan

L: a, b SCCs: {h, i} {e, f, g}

Algoritmo Tarjan

L: a, b

L: a, b, d SCCs: {h, i} {e, f, g}

Algoritmo Tarjan

 $\text{SCCs: } \{h, i\} \ \{e, f, g\}$

Análise e Síntese de Algoritmos - 2022/2023

31/40

Análise e Síntese de Algoritmos - 2022/2023

32/40

Algoritmo Tarjan

L: a, b, d SCCs: {h, i} {e, f, g}

Algoritmo Tarjan

L: a, b, d SCCs: {h, i} {e, f, g}

Algoritmo Tarjan

Análise e Síntese de Algoritmos - 2022/2023

SCCs: {h, i} {e, f, g}

35/40

bd=1d=2d=0low=0low=2low=0d=3 low=2d a low=0d=5d=6low=5 low=5 \boldsymbol{c}

L: a, b, d, c

SCCs: {h, i} {e, f, g}

Análise e Síntese de Algoritmos - 2022/2023

36/40

Algoritmo Tarjan

L: a, b, d, c

L: a, b, d, c

Algoritmo Tarjan

L:

SCCs: {h, i} {e, f, g} {a, b, c, d}

SCCs: {h, i} {e, f, g}

Exercício (fazer em casa)

Análise e Síntese de Algoritmos - 2022/2023

39/40

Algoritmo Tarjan

Resultado secundário

O Algoritmo de Tarjan adicionalmente indica uma ordem topológica entre os SCCs descobertos

- Por ordem crescente do valor *low* das raízes dos SCCs
- Por ordem inversa da apresentação dos SCCs

Análise e Síntese de Algoritmos - 2022/2023

40/4