Trinity Centre for High Performance Computing

MSc in HPC course 5635b

Donal Gallagher Darach Golden Roland Lichters

January 26, 2017

An Introduction to Mathematical Finance (5635b)

D. Gallagher D. Golden R. Lichters

Course Outline

- Brownian Motion
- 2 Integration
- B Itô Integra
- 4 Itô Formul

Symmetric Random Walk

Symmetric Random Walk

- Start with a "fair" coin
- Result of a coin toss can be a head (H) or a tail (T)
- Since the coin is fair,

$$P(H) = p = \frac{1}{2},$$

$$P(T) = q = 1 - p = \frac{1}{2}$$
.

- Take a sequence of coin tosses $\omega = \omega_1 \omega_2 \omega_3 \omega_4$, where each ω_i is a coin toss
- Each coin toss is independent of the others
- Steven E. Shrev

Stochastic Calculus for Finance II: Continuous-Time Models (Springer Finance).

Springer, 1st ed. 2004. corr. 2nd printing edition, June 2004.

Define a random variable X_i

$$X_i = \left\{ egin{array}{ll} +1, & \omega_i = H \\ -1, & \omega_i = T \end{array}
ight.$$

$$\mathbb{E}[X_i] = p \cdot 1 + q \cdot (-1) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1) = 0,$$

$$\text{Var}[X_i] = \mathbb{E}[X_i^2] = p \cdot 1 + q \cdot (1) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1) = 1,$$

where $\operatorname{Var}[X_i] = \mathbb{E}[X_i^2]$ because $\mathbb{E}[X_i] = 0$

Define a process M_k , where $M_0 = 0$ and

$$M_k = \sum_{i=0}^k X_i.$$

The process M_0, M_1, M_2, \cdots is called a (symmetric) random walk

Properties of the Random Walk Increments

Let $0 = k_0 < k_1 < k_2 < \cdots < k_m$ be a set of integers

Example

$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m).$$

Then the increment

$$M_{k_{i+1}} - M_{k_i} = \sum_{j=1}^{k_{i+1}} X_j - \sum_{j=1}^{k_i} X_j,$$

$$= (X_1 + X_2 + \dots + X_{k_{i+1}}) - (X_1 + X_2 + \dots + X_{k_i}),$$

$$= X_{k_{i+1}} + X_{k_{i+2}} + \dots + X_{k_{i+1}},$$

$$= \sum_{j=k_i+1}^{k_{i+1}} X_j.$$

Properties of the Random Walk Increments

Example

Letting
$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m)$$

$$M_{k_2} - M_{k_1} = M_9 - M_5 = \sum_{j=1}^{9} X_j - \sum_{j=1}^{5} X_j,$$

$$= (X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9)$$

$$- (X_1 + X_2 + X_3 + X_4 + X_5),$$

$$= (X_6 + X_7 + X_8 + X_9),$$

$$= \sum_{j=6}^{9} X_j = \sum_{j=5+1}^{9} X_j = \sum_{j=k_1+1}^{k_2} X_j.$$

Independence of Increments

For $0 = k_0 < k_1 < k_2 < \cdots < k_m$, the increments

$$M_{k_1} - M_{k_0}, M_{k_2} - M_{k_1}, M_{k_3} - M_{k_2}, \cdots,$$

are independent of each other.

$$\sum_{j=k_0+1}^{k_1} X_j, \sum_{j=k_1+1}^{k_2} X_j, \sum_{j=k_2+1}^{k_3} X_j, \cdots$$

This is because each increment is based on different groups of coin tosses and all the coin tosses are independent of each other

Example

Letting $0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m)$,

Then

$$M_{k_2} - M_{k_1} = M_9 - M_5 = X_6 + X_7 + X_8 + X_9$$
,

and

$$M_{k_3} - M_{k_2} = M_{15} - M_9 = X_{10} + X_{11} + X_{12} + X_{13} + X_{14} + X_{15}$$

Since all the coin tosses are independent of each other, the increments are independent of each other

Expectation and Variance

$$\mathbb{E}(M_{k_{i+1}}-M_{k_i}) = \sum_{j=1}^{k_{i+1}} \mathbb{E}X_j - \sum_{j=1}^{k_i} \mathbb{E}X_j,$$

$$= 0$$

$$\begin{aligned} \mathsf{Var} \big(M_{k_{i+1}} - M_{k_i} \big) &= \mathsf{Var} \left(\sum_{j=1}^{k_{i+1}} X_j - \sum_{j=1}^{k_i} X_j \right) \,, \\ &= \mathsf{Var} \left(\sum_{j=k_i+1}^{k_{i+1}} X_j \right) \,, \\ &= \sum_{j=k_i+1}^{k_{i+1}} \mathsf{Var} \left(X_j \right) \,, \\ &= \sum_{j=k_i+1}^{k_{i+1}} 1 = k_{i+1} - k_i \qquad (\mathsf{because} \sum_{i=1}^n 1 = n) \end{aligned}$$

Expectation and Variance

Example

Letting
$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m)$$
, Then

$$Var(M_{k_2} - M_{k_1}) = Var(M_9 - M_5),$$

$$= Var(X_6 + X_7 + X_8 + X_9),$$

$$= (1 + 1 + 1 + 1),$$

$$= 4 = 9 - 5 = k_2 - k_1.$$

Martingale Property for symmetric random walk

Let $0 \le k < I$ be integers (times). Then

$$\mathbb{E}_{k}[M_{l}] = \mathbb{E}_{k}[M_{l} - M_{k} + M_{k}],$$

= $\mathbb{E}_{k}[M_{l} - M_{k}] + \mathbb{E}_{k}[M_{k}],$

At step k M_k is known, so $\mathbb{E}_k[M_k] = M_k$.

Also, the quantity $M_l - M_k$ is based only on coin tosses greater than k, so is independent of all coin tosses up to and including step k. So $\mathbb{E}_k[M_l - M_k] = \mathbb{E}[M_l - M_k]$.

Therefore.

$$\mathbb{E}_{k}[M_{l}] = \mathbb{E}_{k}[M_{l} - M_{k}] + \mathbb{E}_{k}[M_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}] + M_{k},$$

$$= 0 + M_{k},$$

$$= M_{k}.$$

So the symmetric random walk is a Martingale.

Scaled Random Walk

Martingale Property for symmetric random walk Same calculation, Different notation

Let $0 \le k < I$ be integers (times). Then

$$\mathbb{E}[M_{l}|\mathcal{F}_{k}] = \mathbb{E}[M_{l} - M_{k} + M_{k}|\mathcal{F}_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}|\mathcal{F}_{k}] + \mathbb{E}[M_{k}|\mathcal{F}_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}|\mathcal{F}_{k}] + M_{k},$$

$$= \mathbb{E}[M_{l} - M_{k}] + M_{k},$$

$$= 0 + M_{k},$$

$$= M_{k}.$$

So the symmetric random walk is a Martingale.

Limiting Behaviour

- With the random walk defined in the previous slides there is no useful idea of limiting
- There is only one variable to limit: k, in M_k
- Will now define a scaled random walk

Scaled (Symmetric) Random Walk Symmetric if $p = 1 - q = \frac{1}{2}$

Scaled (Symmetric) Random Walk

Define

$$W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{nt}.$$

- $W^{(n)}(t)$ is defined for n, t where nt is an integer
- For n = 100 and t = 0.25, nt = 25; an integer
- For n = 100 and t = 0.00000001, nt = 0.000001, not an integer
- Each unit interval in [0, t] split into n parts of length $\frac{1}{n}$

$$W^{(n)}(t) = rac{1}{\sqrt{n}} M_{nt} = \sum_{i=1}^{nt} rac{1}{\sqrt{n}} X_j$$

For each X_i term,

$$rac{1}{\sqrt{n}}X_i = \left\{ egin{array}{ll} +rac{1}{\sqrt{n}}, & \omega_i = H \ -rac{1}{\sqrt{n}}, & \omega_i = T \end{array}
ight.$$

So the step size is smaller as n gets larger

Independence of Increments of $W^{(n)}(t)$

independent from previous slides

 $W^{(n)}(t)=rac{1}{\sqrt{n}}M_{nt}$ is defined as a random walk, so its increments are

Expectation and Variance of $\frac{1}{\sqrt{n}}X_j$

$$\mathbb{E}igg(rac{1}{\sqrt{n}}X_jigg)=0$$
 $\operatorname{Var}igg(rac{1}{\sqrt{n}}X_jigg)=\mathbb{E}igg[igg(rac{1}{\sqrt{n}}X_jigg)^2igg]$,

since $\mathbb{E}\left(\frac{1}{\sqrt{n}}X_j\right)=0$.

$$\mathbb{E}\left[\left(\frac{1}{\sqrt{n}}X_j\right)^2\right] = \frac{1}{n}\mathbb{E}\left(X_j^2\right),$$
$$= \frac{1}{n}\cdot 1 = \frac{1}{n}.$$

By definition of $W^{(n)}(t)$ as a symmetric random walk,

$$\mathbb{E}\big[W^{(n)}(t)-W^{(n)}(s)\big]=0$$

and

$$\operatorname{Var}\left[W^{(n)}(t) - W^{(n)}(s)\right] = \operatorname{Var}\left[\frac{1}{\sqrt{n}}(M_{nt} - M_{ns})\right],$$

$$= \frac{1}{n}\operatorname{Var}\left[M_{nt} - M_{ns}\right],$$

$$= \frac{1}{n}(nt - ns) \text{ (from earlier slides)},$$

$$= t - s.$$

In the limit as $n \to \infty$, $W^{(n)}(t)$ limits to Brownian Motion, W(t).

Limit of Scaled Symmetric Random Walk to Normal distribution

Figure: Histogram of values at t=1 of 10000 scaled random walks, each of length 5000. Red curve; density function of normal distribution N(0,1). (Sample mean: $\mu=-0.00182$; sample variance: $\sigma=1.00222$)

Brownian Motion

Definition of Brownian Motion Wiener Process

Definition (Brownian Motion)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Then for each $\omega \in \Omega$ a Brownian motion is a *continuous* function W(t), t>0 which depends on ω , which has the properties that

- W(0) = 0,
- \bigcirc W(t) is continuous (almost surely)
- \bullet For $0 = t_0 < t_1 < t_2 < \cdots t_k < \cdots$, the variables

$$W(t_1) = (W(t_1) - W(t_0)), (W(t_2) - W(t_1)), \cdots, (W(t_{k+1}) - W(t_k)), \cdots,$$

are independent of each other. Thus W(t) has independent increments. Moreover each increment $(W(t_{j+1})-W(t_j))$ is normally distributed with

$$\mathbb{E}(W(t_{i+1})-W(t_i))=0\,,$$

and

$$Var(W(t_{j+1}) - W(t_j)) = t_{j+1} - t_j$$
.

Some Properties of Brownian Motion

Martingale

Using the filtration notation, we give a definition of a martingale by analogy with the one we have already seen

Definition (Martingale)

A process X(t) (e.g., Brownian Motion) is a martingale if, for $0 \le s < t$,

$$\mathbb{E}\left[X(t)\mid\mathcal{F}(s)\right]=X(s).$$

Such a process is drift free.

Moments of W(t)

Let $0 \le s < t$, then

• Moments, by definition:

$$W(t)-W(s)\sim {\it N}(0,t-s)$$
 . and, clearly $W(t)=W(t)-W(0)\sim {\it N}(0,t)$
$$\mathbb{E}[W(t)]=\mathbb{E}[W(s)]=0,\qquad \mathbb{E}[(W(t)-W(s))^2]=t-s$$

• Covariance: W(s) and W(t) - W(s) are independent. So:

$$Cov[W(t), W(s)] = \mathbb{E}[W(t) W(s)] - \mathbb{E}[W(t)] \mathbb{E}[W(s)]$$

$$= \mathbb{E}[W(t) W(s)]$$

$$= \mathbb{E}[(W(t) - W(s) + W(s)) W(s)]$$

$$= \mathbb{E}[(W(t) - W(s)) W(s)] + \mathbb{E}[W^{2}(s)]$$

$$= \mathbb{E}[W(t) - W(s)] \mathbb{E}[W(s)] + \mathbb{E}[W^{2}(s)]$$

$$= s$$

Brownian Motion is a Martingale

- $\mathbb{E}[W(t)] = W(0) = 0.$
- Likewise, conditional upon information up to time s (0 < s < t):

$$\mathbb{E}[W(t)|\mathcal{F}(s)] = \mathbb{E}[W(t) - W(s) + W(s)|\mathcal{F}(s)]$$

$$= \mathbb{E}[W(t) - W(s)|\mathcal{F}(s)] + \mathbb{E}[W(s)|\mathcal{F}(s)]$$

$$= 0 + W(s)$$

$$= W(s)$$

The expected future value equals the current value, the process is *drift-free*.

Variations of Brownian Motion

Differentiable everywhere

Not differentiable everywhere

Martin Baxter and Andrew Rennie.

Financial Calculus: an introduction to derivative pricing.

CUP, 1996.

Λ Partition of the interval [0] T

A Partition of the interval [0, T]

Definition (Partition)

A partition $\Pi = \{t_0, t_1, \cdots, t_n\}$ is a set of points in the interval [0, T] such that $0 = t_0 < t_1 < t_2 < \cdots < t_n = T$

The *mesh* of the partition is defined as

$$||\Pi|| = \max_{k=0,...,n-1} (t_{k+1} - t_k)$$

Martin Baxter and Andrew Rennie.

Financial Calculus: an introduction to derivative pricing.

CUP, 1996.

Mean Value Theorem

If f(t) continuous on $[t_j, t_{j+1}]$ and differentiable on the interval (t_j, t_{j+1}) , then there is some t_j^* in (t_j, t_{j+1}) such that

$$f'(t_j^*) = rac{f(t_{j+1}) - f(t_j)}{t_{j+1} - t_j}$$

Note this does not in hold in the absence of differentiability e.g., f(t) = |t|.

First Variation of a differentiable function f

Definition

$$FV_{f}(T) = \lim_{||\Pi|| \to 0} \sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_{k})|$$

$$= \lim_{||\Pi|| \to 0} \sum_{k=0}^{n-1} |f'(t_{k}^{*})| (t_{k+1} - t_{k}) \quad \text{(mean value theorem)}$$

$$= \int_{0}^{T} |f'(t)| dt.$$

 $FV_f(T)$ is a measure of up and down movement on the y axis (note the absolute value: |f(t)|). See also: http://en.wikipedia.org/wiki/Total variation

Quadratic Variation of Brownian Motion

Consider a partition $\Pi = \{t_0, t_1, \cdots, t_n\}$ of the interval [0, t] such that $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$. The quadratic variation is defined to be

$$QV_W(t) = \lim_{||\Pi|| o 0} \sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2 \,,$$

where $||\Pi|| = \max_{0 \le k < n} (t_{k+1} - t_k)$ is referred to as the mesh of the partition.

Second (Quadratic) Variation of a differentiable function f

Definition

$$\begin{array}{lll} QV_f(T) & = & \displaystyle \lim_{||\Pi|| \to 0} \sum_{k=0}^{n-1} [f(t_{j+1}) - f(t_{j})]^2 \\ & = & \displaystyle \lim_{||\Pi|| \to 0} \sum_{k=0}^{n-1} |f'(t_k^*)|^2 \left(t_{k+1} - t_k\right)^2 \\ & \leq & \displaystyle \lim_{||\Pi|| \to 0} \left(\max_{0 \leq k < n} (t_{k+1} - t_k) \right) \sum_{k=0}^{n-1} |f'(t_k^*)|^2 \left(t_{k+1} - t_k\right) \\ & = & \displaystyle \lim_{||\Pi|| \to 0} ||\Pi|| \sum_{k=0}^{n-1} |f'(t_k^*)|^2 \left(t_{k+1} - t_k\right) \\ & = & \displaystyle \lim_{||\Pi|| \to 0} ||\Pi|| \int_0^T |f'(t)|^2 dt \\ & = & 0 \,, \; \text{assuming} \int_0^T |f'(t)|^2 dt < \infty \end{array}$$

Quadratic Variation of Brownian Motion

We want to prove that, for $\Pi = \{t_0, t_1, \dots, t_n\}$

$$QV_W(t) = \lim_{||\Pi|| o 0} \sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2 = t$$

Procedure:

- lacksquare Show that $\mathbb{E}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})
 ight)^{2}
 ight]=t$
- **②** Because $QV_W(t)$ itself is stochastic, it has a variance. We need to show this variance is zero (in the limit):

$$\operatorname{\mathsf{Var}}\left[\sum_{i=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2
ight] = 0 \; (\operatorname{\mathsf{as}}\; ||\Pi|| o 0)$$

Show that
$$\mathbb{E}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})\right)^{2}
ight]=t$$

$$\mathbb{E}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})
ight)^{2}
ight] = \sum_{j=0}^{n-1}\mathbb{E}\left[\left(W(t_{j+1})-W(t_{j})
ight)^{2}
ight]\,.$$

Consider individual terms:

$$\mathbb{E}\left[\left(W(t_{j+1})-W(t_{j})\right)^{2}\right]=\mathsf{Var}\left[\left(W(t_{j+1})-W(t_{j})\right)\right]=t_{j+1}-t_{j}\,.$$

Therefore

$$\mathbb{E}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})\right)^{2}\right]=\sum_{j=0}^{n-1}(t_{j+1}-t_{j})=t.$$

Show that $\mathsf{Var}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j}) ight)^{2} ight]=0$ (as $||\Pi|| o 0)$

We have

$$\operatorname{\mathsf{Var}}\left[\sum_{i=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2
ight]\,.$$

Since individual terms of sum are independent of each other (independence of increments),

$$\mathsf{Var}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_j)
ight)^2
ight] = \sum_{j=0}^{n-1}\mathsf{Var}\left[\left(W(t_{j+1})-W(t_j)
ight)^2
ight]\,.$$

Individual terms of Var $\left[\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)^2\right]$

Take individual terms and let $\Delta W_j = (W(t_{j+1}) - W(t_j))$ Which means that $(W(t_{j+1}) - W(t_j))^2$ is written as ΔW_i^2 , so

$$\mathsf{Var}\left[\left(W(t_{j+1})-W(t_{j})
ight)^{2}
ight]=\mathsf{Var}\left[\Delta W_{j}^{2}
ight]$$

$$\begin{aligned} \operatorname{Var} \left[\Delta W_{j}^{2} \right] &= & \mathbb{E} \left[\left(\Delta W_{j}^{2} - \mathbb{E} \left[\Delta W_{j}^{2} \right] \right)^{2} \right] , \\ &= & \mathbb{E} \left[\left(\Delta W_{j}^{2} - (t_{j+1} - t_{j}) \right)^{2} \right] , \\ &= & \mathbb{E} \left[\left(\Delta W_{j} \right)^{4} - 2 \Delta W_{j}^{2} (t_{j+1} - t_{j}) + (t_{j+1} - t_{j})^{2} \right] , \\ &= & \mathbb{E} \left[\left(\Delta W_{j} \right)^{4} \right] - 2 \mathbb{E} \left[\Delta W_{j}^{2} \right] (t_{j+1} - t_{j}) + (t_{j+1} - t_{j})^{2} , \\ &= & \mathbb{E} \left[\left(\Delta W_{j} \right)^{4} \right] - 2 \underbrace{\left(t_{j+1} - t_{j} \right)}_{\mathbb{E} \left[\Delta W_{j}^{2} \right]} (t_{j+1} - t_{j}) + (t_{j+1} - t_{j})^{2} , \\ &= & \mathbb{E} \left[\left(\Delta W_{j} \right)^{4} \right] - \left(t_{j+1} - t_{j} \right)^{2} . \end{aligned}$$

Individual terms of Var $\left[\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)^2\right]$ (ctd)

We have

$$\mathbb{E}\left[\left(\Delta W_{j}\right)^{4}\right] = \mathbb{E}\left[\left(W(t_{j+1}) - W(t_{j})\right)^{4}\right],$$

where $X = (W(t_{j+1}) - W(t_j))$ is normally distributed with mean 0 and variance $(t_{j+1} - t_j)$, i.e.,

$$X \sim N(0, \sigma^2 = (t_{j+1} - t_j))$$
.

Based on the properties of the normal distribution,

$$\mathbb{E}[X^4] = 3\sigma^4$$
, (since the mean is zero)
= $3(t_{j+1} - t_j)^2$.

So,

$$\mathbb{E}\left[\left(\Delta W_{j}\right)^{4}\right]=3(t_{j+1}-t_{j})^{2},$$

which means that

$$\operatorname{Var}\left[\left(W(t_{j+1}) - W(t_{j})\right)^{2}\right] = \mathbb{E}\left[\left(\Delta W_{j}\right)^{4}\right] - \left(t_{j+1} - t_{j}\right)^{2},$$

$$= 3(t_{j+1} - t_{j})^{2} - (t_{j+1} - t_{j})^{2},$$

$$= 2(t_{j+1} - t_{j})^{2}.$$

Sum over all individual terms and take limit

So.

$$\begin{aligned} \mathsf{Var}\left[\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)^2\right] &= 2\sum_{j=0}^{n-1} (t_{j+1} - t_j)^2\,, \\ &\leq 2\max_{0 \leq k < n} (t_{k+1} - t_k) \sum_{j=0}^{n-1} (t_{j+1} - t_j)\,, \\ &= 2||\Pi|| \sum_{j=0}^{n-1} (t_{j+1} - t_j) \,= \, 2||\Pi|| \cdot t\,. \end{aligned}$$

In the limit as $||\Pi|| \to 0$,

$$\lim_{||\Pi|| o 0} \operatorname{\sf Var}\left[\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2
ight] = 0\cdot t = 0\,.$$

Note that $\operatorname{Var}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})\right)^{2}\right]$ is only zero in the limit

Therefore

$$QV_W(t)=t$$
.

Differential Notation

The statement about the quadratic variation of Brownian motion

$$QV_W(T) = \lim_{||\Pi|| o 0} \sum_{i=0}^{n-1} \left(W(t_{j+1}) - W(t_j)
ight)^2 = T \,,$$

is informally referred to as

$$dW(t)dW(t) = dt$$
.

This notation proves convenient later on as a shorthand Other limits are referred to using a similar shorthand, and one which is also similar to the notation used in ordinary calculus;

The notation dW(t)dt=0 is used to refer to the fact that the following limit vanishes

$$\lim_{||\Pi||\to 0} \sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right) (t_{j+1} - t_j) = 0, \tag{1}$$

and

$$\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} (t_{j+1} - t_j)^2 = 0,$$
 (2)

has the notation dtdt = 0 assigned to it

Recap

We wanted to prove that

$$QV_W(t) = \lim_{||\Pi|| o 0} \sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)^2 = t$$

We showed that

Expected value is t;

$$\mathbb{E}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})\right)^{2}\right]=t$$

Variance is zero;

$$\operatorname{\mathsf{Var}}\left[\sum_{j=0}^{n-1}\left(W(t_{j+1})-W(t_{j})
ight)^{2}
ight]=0 \; (\operatorname{\mathsf{as}}\;||\Pi|| o 0)$$

Brownian motion accumulates 1 unit of quadratic variation per unit time

Differential Notation (ctd)

dW(t)dt = 0

$$\left| \sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_{j}) \right) (t_{j+1} - t_{j}) \right| \leq \max_{0 \leq k < n} \left| \left(W(t_{k+1}) - W(t_{k}) \right) \right| \sum_{j=0}^{n-1} (t_{j+1} - t_{j})$$

$$= \max_{0 \leq k < n} \left| \left(W(t_{k+1}) - W(t_{k}) \right) \right| \cdot T$$

$$\to 0 \cdot T \text{ (as } ||\Pi|| \to 0),$$

by continuity of W(t) (which is continuous by definition).

dtdt = 0

$$\left| \sum_{j=0}^{n-1} (t_{j+1} - t_j)^2 \right| \leq ||\Pi|| \sum_{j=0}^{n-1} (t_{j+1} - t_j)$$

$$= ||\Pi|| \cdot T$$

$$\to 0 \cdot T \text{ (as } ||\Pi|| \to 0).$$

First Variation, Brownian Motion

Since the quadratic or second variation of a brownian motion process is finitewhat does this imply for the first variation?

$$\begin{split} FV_W(t) &= \lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} |\left(W(t_{j+1}) - W(t_j)\right)|, \\ &\geq \lim_{||\Pi|| \to 0} \frac{\sum_{j=0}^{n-1} \left(W(t_{j+1}) - W(t_j)\right)^2}{\max_{0 \le k < n} |\left(W(t_{k+1}) - W(t_k)\right)|}, \\ &= \lim_{||\Pi|| \to 0} \frac{QV_W(t)}{\max_{0 \le k < n} |\left(W(t_{k+1}) - W(t_k)\right)|}, \\ &\to \infty \text{ (as } ||\Pi|| \to 0), \end{split}$$

The denominator goes to zero, because the Brownian motion is continuous almost surely.

This result indicates how strange a "function" Brownian motion is

Itô Integral

Integration

For an ordinary function f(x), we can define an integral as the limit of a sum:

$$\int_0^T f(t)dt = \lim_{||\Pi|| o 0} \sum_{j=0}^{n-1} f(t_j^*) (t_{j+1} - t_j),$$

where t_i^* is in $[t_i, t_{j+1}]$.

Remember:

$$||\Pi|| = \max_{k=0,\dots,n-1} (t_{k+1} - t_k)$$

http://en.wikipedia.org/wiki/Riemann_integral

Stochastic Integral

We want to define an integral where the integrator is a Wiener process,

$$I(t) = \int_0^t \Delta(s) \, dW(s)$$

where $\Delta(s)$ is square-integrable. $\Delta(t)$ is determined based on information collected up to time t and may be stochastic.

In ordinary calculus, with differentiable function f(t) instead of W(t), we could define

$$\int_0^t \Delta(s) df(s) = \int_0^t \Delta(s) f'(s) ds.$$

This does not work here, because W is not differentiable.

Instead we discretize, choose a partition first, define what we mean, and then shrink the mesh.

Step Function $\Delta(t)$

For a partition $\Pi = \{t_0, t_1, \cdots, t_n\}$ of the interval [0, T], where $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$, define a "step function" $\Delta_n(t)$, on Π to be a function which holds a constant value in each interval $[t_j, t_{j+1})$.

Step function approximating general function

Stochastic Integral, Definition

We choose a partition $\Pi = t_0, t_1, ..., t_n$ of the time interval [0, T],

$$0 = t_0 \le t_1 \le \cdots \le t_n = T, \qquad ||\Pi|| = \max_{k=0,\ldots,n-1} (t_{k+1} - t_k).$$

We then define the stochastic integral of a step function $\Delta_{\Pi}(t)$ as

$$I_\Pi(t) = \sum_{j=0}^{n-1} \Delta_\Pi(t_j) \left(W(t_{j+1}) - W(t_j)
ight) = \int_0^ au \Delta_\Pi(t) \, dW(t) \, ,$$

and an integral for a general function $\Delta(t)$,

$$I(T) = \int_0^T \Delta(t) \, dW(t) = \lim_{||\Pi|| o 0} I_\Pi(T),$$

where

$$\lim_{||\Pi|| o 0, n o \infty} \Delta_{\Pi}(T) = \Delta(T)$$
 .

Actually:
$$\lim_{n \to \infty} \mathbb{E} \int_0^T |\Delta_\Pi(t) - \Delta(t)|^2 dt = 0$$
.

Itô and Stratonovich

The position in time inteval $[t_k, t_{k+1}]$ where we evaluate $\Delta(t)$ is crucial, we obtain different values of I(t) in the limit depending on this choice:

- Left point: popular in Finance (think of Δ as asset holdings chosen due information up to time t_k and then exposed to random movements of the price W per unit holding over the next time period). The resulting integral is called *Itô integral*, to be used in the following.
- Mid point: popular in Physics, the resulting integral is called Stratonovich integral

In ordinary calculus we have for f(0) = 0

$$\int_0^T f(t) df(t) = \int_0^T f(t) f'(t) dt = \frac{1}{2} \int_0^T \frac{d}{dt} (f^2(t)) dt = \frac{1}{2} f^2(T)$$

For the Itô integral we will show that

$$I(T) = \int_0^T \Delta(t) dW(t) = \int_0^T W(t) dW(t) = \frac{1}{2} (W^2(T) - T)$$

$$\Delta_\Pi(t) = W_\Pi(t) = \left\{ egin{array}{ll} W(0) = 0 & ext{if } 0 \leq t < rac{T}{n}, \ W(rac{T}{n}) & ext{if } rac{T}{n} \leq t < rac{2T}{n}, \ W(rac{2T}{n}) & ext{if } rac{2T}{n} \leq t < rac{3T}{n}, \ dots & ext{if } rac{2T}{n} \leq t < rac{3T}{n}, \end{array}
ight.$$
 $dots & ext{if } rac{(n-1)T}{n} \leq t < T, \end{array}$

So.

$$\int_0^T W(t)dW(t) = \lim_{n \to \infty} \int_0^T \Delta_{\Pi}(t)dW(t)$$

$$= \lim_{n \to \infty} \sum_{j=0}^{n-1} W\left(\frac{jT}{n}\right) \left[W\left(\frac{(j+1)T}{n}\right) - W\left(\frac{jT}{n}\right)\right].$$

$\int_0^T W(t) \, dW(t)$

Letting $W_j = W\left(\frac{jT}{n}\right)$, consider the sum:

$$\frac{1}{2} \sum_{j=0}^{n-1} (W_{j+1} - W_j)^2 = \frac{1}{2} \sum_{j=0}^{n-1} W_{j+1}^2 - \sum_{j=0}^{n-1} W_{j+1} W_j + \frac{1}{2} \sum_{j=0}^{n-1} W_j^2
= \frac{1}{2} W_n^2 + \frac{1}{2} \sum_{j=0}^{n-1} W_j^2 - \sum_{j=0}^{n-1} W_{j+1} W_j + \frac{1}{2} \sum_{j=0}^{n-1} W_j^2
= \frac{1}{2} W_n^2 + \sum_{j=0}^{n-1} W_j^2 - \sum_{j=0}^{n-1} W_{j+1} W_j
= \frac{1}{2} W_n^2 - \sum_{j=0}^{n-1} W_j (W_{j+1} - W_j)$$

$\int_0^T W(t) \, dW(t)$

Take the limit as $||\Pi|| \to 0$ gives:

$$\frac{1}{2}T = \frac{1}{2}W^2(T) - \int_0^T W(t)dW(t),$$
 so,
$$\int_0^T W(t)dW(t) = \frac{1}{2}W^2(T) - \frac{1}{2}T.$$

$I_{\Pi}(t)$ is a Martingale

In order to show $I_{\Pi}(t)$ is a Martingale, we need to show that for $0 \le s \le t \le T$,

$$\mathbb{E}\left[I_{\Pi}(t) \mid \mathcal{F}(s)\right] = I_{\Pi}(s).$$

Set up a partition as follows

where we have $0 \le s < t \le T$, such that for l < k (i.e., $t_l < t_k$), $s \in [t_l, t_{l+1})$ and $t \in [t_k, t_{k+1})$. As before, we have

$$I_{\Pi}(t) = \sum_{j=0}^{k-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_k) \left(W(t) - W(t_k)
ight)$$

$I_{\Pi}(t)$ is a Martingale (ctd)

We can split $I_{\Pi}(t)$ up into four parts:

$$egin{aligned} I_{\Pi}(t) &= \sum_{j=0}^{k-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_k) \left(W(t) - W(t_k)
ight)\,, \ &= \sum_{j=0}^{l-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_l) \left(W(t_{l+1}) - W(t_l)
ight) \ &+ \sum_{j=l+1}^{k-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_k) \left(W(t) - W(t_k)
ight) \end{aligned}$$

$I_{\Pi}(t)$ is a Martingale (ctd)

So $\mathbb{E}\left[I_{\Pi}(t) \mid \mathcal{F}(s)\right]$ becomes

$$egin{aligned} \mathbb{E}\left[\left.\sum_{j=0}^{l-1}\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})
ight)\,
ight|\mathcal{F}(s)
ight]\ +&\,\mathbb{E}\left[\Delta_{\Pi}(t_{l})\left(W(t_{l+1})-W(t_{l})
ight)\,
ight|\mathcal{F}(s)
ight]\ +&\,\mathbb{E}\left[\left.\sum_{j=l+1}^{k-1}\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})
ight)\,
ight|\mathcal{F}(s)
ight]\ +&\,\mathbb{E}\left[\Delta_{\Pi}(t_{k})\left(W(t)-W(t_{k})
ight)\,
ight|\mathcal{F}(s)
ight] \end{aligned}$$

By taking out what is known, this becomes:

$$egin{aligned} &\sum_{j=0}^{l-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) \ &+ \Delta_{\Pi}(t_l) \left(\mathbb{E}\left[\left.W(t_{l+1}) \mid \mathcal{F}(s)
ight] - W(t_l)
ight) \ &+ \cdots \end{aligned}$$

Using the fact that W(t) is a martingale $(\mathbb{E}\left[\,W(t)\,|\,\mathcal{F}(s)
ight]=W(s))$ gives

$$\sum_{i=0}^{l-1} \Delta_{\Pi}(t_{j}) \left(W(t_{j+1}) - W(t_{j})
ight) + \Delta_{\Pi}(t_{l}) \left(W(s) - W(t_{l})
ight) + \cdots$$

$I_{\Pi}(t)$ is a Martingale (ctd)

So far we have

$$egin{aligned} \mathbb{E}\left[\left.I_{\Pi}(t)\mid\mathcal{F}(s)
ight] &= I_{\Pi}(s) \ &+ \mathbb{E}\left[\sum_{j=l+1}^{k-1} \Delta_{\Pi}(t_j)\left(W(t_{j+1}) - W(t_j)
ight) \, \middle|\, \mathcal{F}(s)
ight] \ &+ \mathbb{E}\left[\Delta_{\Pi}(t_k)\left(W(t) - W(t_k)
ight)\mid\mathcal{F}(s)
ight] \end{aligned}$$

$I_{\Pi}(t)$ is a Martingale (ctd)

What is

$$\mathbb{E}\left[\left.\sum_{j=l+1}^{k-1}\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})
ight)
ight|\mathcal{F}(s)
ight]?$$

Looking at terms individually

$$\begin{split} \mathbb{E}\left[\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})\right)\mid\mathcal{F}(s)\right] &= \mathbb{E}\left[\mathbb{E}\left[\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})\right)\mid\mathcal{F}(t_{j})\right]\mid\mathcal{F}(s)\right] \\ &= \mathbb{E}\left[\Delta_{\Pi}(t_{j})\left(\mathbb{E}\left[W(t_{j+1})\mid\mathcal{F}(t_{j})\right]-W(t_{j})\right)\mid\mathcal{F}(s)\right] \\ &= \mathbb{E}\left[\Delta_{\Pi}(t_{j})\left(W(t_{j})-W(t_{j})\right)\mid\mathcal{F}(s)\right] \\ &= 0\,, \end{split}$$

where we used the iterated conditioning rule along with the fact that $s < t_j$. So,

$$\mathbb{E}\left[\left.\sum_{i=l+1}^{k-1}\Delta_{\Pi}(t_{j})\left(W(t_{j+1})-W(t_{j})
ight)
ight|\mathcal{F}(s)
ight]=0\,.$$

$I_{\Pi}(t)$ is a Martingale (ctd)

Now we have

$$egin{aligned} \mathbb{E}\left[\, I_{\Pi}(t) \mid & \mathcal{F}(s)
ight] &= I_{\Pi}(s) \ &+ \mathbb{E}\left[\, \Delta_{\Pi}(t_k) \left(W(t) - W(t_k)
ight) \mid & \mathcal{F}(s)
ight] \end{aligned}$$

Using a similar iterated conditioning argument to the one used on the previous slide.

$$\mathbb{E}\left[\Delta_{\Pi}(t_k)\left(W(t)-W(t_k)\right)\mid\mathcal{F}(s)\right]=0$$

Therefore

$$\mathbb{E}\left[I_{\Pi}(t) \mid \mathcal{F}(s)\right] = I_{\Pi}(s),$$

So $I_{\Pi}(t)$ is a Martingale.

Itô Isometry

Since $I_{\Pi}(t)$ is a Martingale,

$$\mathbb{E}(I_{\Pi}(t))=I(0)=0\,,$$

So

$$Var(I_{\Pi}(t)) = \mathbb{E}(I_{\Pi}(t)^2).$$

We will show that

$$\mathbb{E}((I_{\Pi}(t))^{2}) = \mathbb{E}\int_{0}^{t} (\Delta_{\Pi}(u))^{2} du$$

Use a similar partition to the one used before,

$$t_0=0$$
 t_1 t_2 t_3 \cdots t_k t_{k+1} \cdots $t_n=T$

So,

$$I_{\Pi}(t) = \sum_{i=0}^{k-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_k) (W(t) - W(t_k))$$

Itô Isometry (ctd)

$$I_{\Pi}(t) = \sum_{j=0}^{k-1} \Delta_{\Pi}(t_j) \left(W(t_{j+1}) - W(t_j)
ight) + \Delta_{\Pi}(t_k) (W(t) - W(t_k)) \,.$$

Let $\Delta W_j = (W(t_{j+1}) - W(t_j)), 0 \le j < k$, and let $\Delta W_k = (W(t) - W(t_k))$. Then rewrite the Itô integral as,

$$I_\Pi(t) = \sum_{j=0}^k \Delta_\Pi(t_j) \Delta W_j$$
 .

So,

$$\begin{split} \mathbb{E}((I_{\Pi}(t))^2) &= \mathbb{E}\left[\left(\sum_{j=0}^k \Delta_{\Pi}(t_j)\Delta W_j\right)\left(\sum_{i=0}^k \Delta_{\Pi}(t_i)\Delta W_i\right)\right], \\ &= \mathbb{E}\left[\sum_{j=0}^k (\Delta_{\Pi}(t))^2 \Delta W_j^2 + 2\sum_{0 \leq i < j \leq k} \Delta_{\Pi}(t_i)\Delta_{\Pi}(t_j)\Delta W_i \Delta W_j\right], \end{split}$$

Itô Isometry (ctd)

Taking the second term first

$$\mathbb{E}\left[2\sum_{0\leq i< j\leq k}\Delta_{\Pi}(t_{i})\Delta_{\Pi}(t_{j})\Delta W_{i}\Delta W_{j}\right]$$

$$=2\sum_{0\leq i< j\leq k}\mathbb{E}\left[\Delta_{\Pi}(t_{i})\Delta_{\Pi}(t_{j})\Delta W_{i}\Delta W_{j}\right]$$

$$=2\sum_{0\leq i< j\leq k}\mathbb{E}[\Delta_{\Pi}(t_{i})\Delta_{\Pi}(t_{j})\Delta W_{i}]\underbrace{\mathbb{E}[\Delta W_{j}]}_{=0}$$

$$=0.$$

Because

- $\Delta_{\Pi}(t_i)\Delta_{\Pi}(t_i)\Delta W_i \mathcal{F}(t_i)$ -measurable
- ullet ΔW_j independent of $\mathcal{F}(t_j)$

Itô Isometry (ctd)

So,

$$\mathbb{E}((I_{\Pi}(t))^2) = \mathbb{E}\left[\sum_{i=0}^k (\Delta_{\Pi}(t))^2 \Delta W_j^2\right] + 0$$

and

$$\mathbb{E}\left[\sum_{j=0}^{k} (\Delta_{\Pi}(t_{j}))^{2} \Delta W_{j}^{2}\right] = \sum_{j=0}^{k} \mathbb{E}\left[(\Delta_{\Pi}(t_{j}))^{2} \Delta W_{j}^{2}\right] = \sum_{j=0}^{k} \mathbb{E}\left[(\Delta_{\Pi}(t_{j}))^{2}\right] \mathbb{E}\left[\Delta W_{j}^{2}\right]$$

$$= \sum_{j=0}^{k-1} \mathbb{E}\left[(\Delta_{\Pi}(t_{j}))^{2}\right] (t_{j+1} - t_{j}) + \mathbb{E}\left[(\Delta_{\Pi}(t_{k}))^{2}\right] (t - t_{j})$$

$$= \mathbb{E}\left[\sum_{j=0}^{k-1} (\Delta_{\Pi}(t_{j}))^{2} (t_{j+1} - t_{j})\right] + \mathbb{E}\left[(\Delta_{\Pi}(t_{k}))^{2}\right] (t - t_{j})$$

$$= \mathbb{E}\sum_{j=0}^{k-1} \int_{t_{j}}^{t_{j+1}} (\Delta_{\Pi}(u))^{2} du + \mathbb{E}\int_{t_{k}}^{t} (\Delta_{\Pi}(u))^{2} du$$

$$= \mathbb{E}\int_{0}^{t} (\Delta_{\Pi}(u))^{2} du$$

Quadratic variation of Itô integral

Since the Itô integral is written as

$$I(t) = \int_0^t G(u)dW(u),$$

In informal notation, this can be written as

$$dI(t) = G(u)dW(t)$$

Again informally, the quadratic variation is written,

$$dIdI = G(t)dW(t)G(t)dW(t) = (G(t))^{2}dt$$

So, the quadratic variation of the Itô integral is

$$QV_I(t) = \int_0^t (G(u))^2 du$$

Summary: Properties of Itô Integral

For an Itô integral

$$I(T) = \int_0^T G(t)dW(t),$$

Expected Value:

$$\mathbb{E}[I(T)] = 0$$

• Variance: (Itô Isometry):

$$\mathsf{Var}[I(T)] = \int_0^T \mathbb{E}[G^2(t)] dt$$
 ,

• Quadratic variation:

$$\mathsf{QV}_I(T) = \int_0^T [G^2(t)] dt,$$

• Martingale: for $0 \le s < t$,

$$\mathbb{E}[I(t)|\mathcal{F}(s)] = I(s)$$

For an expression of the form f(W(t)), if asked for

$$\frac{d}{dt}f(W(t))$$
,

would normally write

$$\frac{d}{dt}f(W(t)) = \frac{df(W(t))}{dW} \frac{dW(t)}{dt}$$

or

$$df(W(t)) = \frac{df(W(t))}{dW} \frac{dW(t)}{dt} dt$$

or

$$df(W(t)) = \frac{df(W(t))}{dW}dW(t)$$

But $\frac{dW(t)}{dt}$ does not exist

For a function f(t, W(t)) of time and W(t), we would write

$$df(t,W(t)) = \frac{\partial f(t,W(t))}{\partial t}dt + \frac{\partial f(t,W(t))}{\partial W(t)}dW(t),$$

But $\frac{dW(t)}{dt}$ does not exist

Partition of interval [0, T]

Taylor Series

Given a differentiable function f(x) and two points x_i and x_{i+1} , then

$$f(x_{j+1}) = f(x_j) + f'(x_j)(x_{j+1} - x_j) + \frac{1}{2}f''(x_j)(x_{j+1} - x_j)^2 + \cdots,$$

where $x_{j+1} = x_j + (x_{j+1} - x_j)$.

For a function f(t, x(t)) and points $(t_i, x(t_i))$ and $(t_{i+1}, x(t_{i+1}))$

$$f(t_{j+1}, x(t_{j+1})) = f(t_j, x(t_j))$$

$$+ f_t(t_j, x(t_j))(t_{j+1} - t_j) + f_x(t_j, x(t_j))(x(t_{j+1}) - x(t_j))$$

$$+ \frac{1}{2} f_{tt}(t_j, x(t_j))(t_{j+1} - t_j)^2$$

$$+ f_{tx}(t_j, x(t_j))(t_{j+1} - t_j)(x(t_{j+1}) - x(t_j))$$

$$+ \frac{1}{2} f_{xx}(t_j, x(t_j))(x(t_{j+1}) - x(t_j))^2$$

$$+ \text{ higher order terms} \cdot \cdot \cdot ,$$

where

$$\begin{split} f_t &= \frac{\partial f(t,x)}{\partial t} \,, & f_x &= \frac{\partial f(t,x)}{\partial x} \,, \\ f_{tt} &= \frac{\partial^2 f(t,x)}{\partial t^2} \,, & f_{tx} &= \frac{\partial^2 f(t,x)}{\partial t \partial x} \,, \\ f_{xx} &= \frac{\partial^2 f(t,x)}{\partial x^2} \,. & \end{split}$$

Itô's Formula for f(t, W(t))

The function f(x) is differentiable, so we can expand it as before

$$\begin{split} f(t_{j+1}, W(t_{j+1})) &= f(t_j, W(t_j)) \\ &+ f_t(t_j, W(t_j))(t_{j+1} - t_j) + f_x(t_j, W(t_j))(W(t_{j+1}) - W(t_j)) \\ &+ \frac{1}{2} f_{tt}(t_j, W(t_j))(t_{j+1} - t_j)^2 \\ &+ f_{tx}(t_j, W(t_j))(t_{j+1} - t_j)(W(t_{j+1}) - W(t_j)) \\ &+ \frac{1}{2} f_{xx}(t_j, W(t_j))(W(t_{j+1}) - W(t_j))^2 \\ &+ \text{higher order terms} \cdots, \end{split}$$

where

$$f_{t} = \frac{\partial f(t,x)}{\partial t}, \qquad f_{x} = \frac{\partial f(t,x)}{\partial W(t)},$$

$$f_{tt} = \frac{\partial^{2} f(t,x)}{\partial t^{2}}, \qquad f_{tx} = \frac{\partial^{2} f(t,x)}{\partial t \partial W(t)},$$

$$f_{xx} = \frac{\partial^{2} f(t,x)}{\partial W^{2}(t)}.$$

Itô's Formula for f(t, W(t)) (ctd)

In the limit as $||\Pi|| \to 0$, this becomes,

$$\begin{split} &f(T,W(T)) - f(0,W(0)) = \\ &= \int_{0}^{T} f_{t}(t,W(t))dt \leftarrow \left(\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} f_{t}(t_{j},W(t_{j}))(t_{j+1} - t_{j})\right) \\ &+ \int_{0}^{T} f_{x}(t,W(t))dW(t) \leftarrow \left(\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} f_{x}(t_{j},W(t_{j}))(W(t_{j+1}) - W(t_{j}))\right) \\ &+ \frac{1}{2} \int_{0}^{T} f_{xx}(t,W(t))dt \leftarrow \left(\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} \frac{1}{2} f_{xx}(t_{j},W(t_{j}))(W(t_{j+1}) - W(t_{j}))^{2}\right) \\ &+ 0 \leftarrow \left(\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} \frac{1}{2} f_{tt}(t_{j},W(t_{j}))(t_{j+1} - t_{j})^{2}\right) \\ &+ 0 \leftarrow \left(\lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} f_{tx}(t_{j},W(t_{j}))(W(t_{j+1}) - W(t_{j}))(t_{j+1} - t_{j})\right), \end{split}$$

using arguments very like ones we have seen before.

Itô's Formula for f(t, W(t)) (ctd)

Summing, we have

$$f(T, W(T)) - f(0, W(0)) = \sum_{j=0}^{n-1} \left[f(t_{j+1}, W(t_{j+1})) - f(t_{j}, W(t_{j})) \right]$$

$$= \sum_{j=0}^{n-1} f_{t}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})$$

$$+ \sum_{j=0}^{n-1} f_{x}(t_{j}, W(t_{j}))(W(t_{j+1}) - W(t_{j}))$$

$$+ \sum_{j=0}^{n-1} \frac{1}{2} f_{xx}(t_{j}, W(t_{j}))(W(t_{j+1}) - W(t_{j}))^{2}$$

$$+ \sum_{j=0}^{n-1} \frac{1}{2} f_{tt}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})^{2}$$

$$+ \sum_{j=0}^{n-1} f_{tx}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})(W(t_{j+1}) - W(t_{j}))$$

$$+ \text{higher order terms} \cdots$$

Itô's Formula for f(t, W(t))

So we have

$$f(T, W(T)) - f(0, W(0)) = \int_0^T df(t, W(t)) = \int_0^T f_t(t, W(t)) dt + \int_0^T f_W(t, W(t)) dW(t) + \frac{1}{2} \int_0^T f_{WW}(t, W(t)) dt$$

In informal differential notation,

$$df(t,W(t)) = f_t dt + f_W dW(t) + \frac{1}{2} f_{WW} dt,$$

or

$$df(t,W(t)) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial W}dW(t) + \frac{1}{2}\frac{\partial^2 f}{\partial W^2}dt.$$

or, if you like,

$$df(t,W(t)) = \left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial W^2}\right)dt + \frac{\partial f}{\partial W}dW(t).$$

The integral can be quickly evaluated using Itô's formula Let $f(x) = \frac{1}{2}x^2$. Then

$$\frac{\partial f(x)}{\partial x} = f_x(x) = x,$$
$$\frac{\partial^2 f(x)}{\partial x^2} = f_{xx}(x) = 1.$$

If we replace x by W, the Itô formula gives

$$df(W) = \underbrace{f_t}_{f_t=0} dt + f_W dW + \frac{1}{2} f_{WW} dt,$$
$$= WdW + \frac{1}{2} \cdot 1 \cdot dt,$$

So

$$\int_0^T df(W) = f(W(T)) - f(W(0)) = \frac{1}{2}(W(T))^2 + \underbrace{0}_{W(0)=0}$$
$$= \int_0^T WdW + \int_0^T \frac{1}{2} \cdot dt = \int_0^T WdW + \frac{1}{2}T,$$

Therefore

$$\int_{0}^{T} WdW = \frac{1}{2}W^{2}(T) - \frac{1}{2}T.$$

Let X(t, W(t)) and Y(t, W(t)), so that $X \cdot Y$ is a function of t and W(t), too.

$$d[XY] = \left(\frac{\partial XY}{\partial t} + \frac{1}{2}\frac{\partial^2 XY}{\partial W^2}\right)dt + \frac{\partial XY}{\partial W}dW$$

$$= \dots$$

$$= X dY + Y dX + \frac{\partial X}{\partial W}\frac{\partial Y}{\partial W}dt$$

$$= X dY + Y dX + dX dY$$

Itô Process

An Itô process X(t) is defined

$$X(t) = X(0) + \int_0^t A(t) dt + \int_0^t B(t) dW,$$

or, informally,

$$dX(t) = A(t) dt + B(t) dW.$$

Conditions are imposed on the functions A(t) and B(t)

$$\mathbb{E} \int_0^t B^2(u) du < \infty,$$
$$\int_0^t |A(u)| du < \infty.$$

Quadratic Variation for X(t)

Using the rules we have already described, the quadratic variation can be obtained informally as follows

$$QV_X(t) = dX(t)dX(t)$$

$$= (A(t) dt + B(t) dW)^2$$

$$= A^2(t)dtdt + 2A(t)B(t)dWdt + B^2(t)dWdW$$

$$= 0 + 0 + B^2(t)dWdW$$

$$= B^2(t)dt.$$

Integral with respect to Itô Process

We've seen Itô integrals with respect to Brownian Motion:

$$\int_0^t G(u)dW(u).$$

We can also define an integral with respect to an Itô process by splitting up the A(t) and B(t) terms

$$\int_0^t G(u)dX(u) = \int_0^t G(u)A(u)du + \int_0^t G(u)B(u)dW(u).$$

Itô's Formula for f(t, X(t)) instead of f(t, W(t))

Proceeding as before, we have (replace W(t) by X(t)):

$$\begin{split} f(t_{j+1},X(t_{j+1})) &= f(t_j,X(t_{j+1})) \\ &+ f_t(t_j,X(t_{j+1}))(t_{j+1}-t_j) + f_x(t_j,X(t_{j+1}))(X(t_{j+1})-X(t_{j+1})) \\ &+ \frac{1}{2} f_{tt}(t_j,X(t_{j+1}))(t_{j+1}-t_j)^2 \\ &+ f_{tx}(t_j,X(t_{j+1}))(t_{j+1}-t_j)(X(t_{j+1})-X(t_{j+1})) \\ &+ \frac{1}{2} f_{xx}(t_j,X(t_{j+1}))(X(t_{j+1})-X(t_{j+1}))^2 \\ &+ \text{higher order terms} \cdots, \end{split}$$

where

$$f_{t} = \frac{\partial f(t,x)}{\partial t}, \qquad f_{x} = \frac{\partial f(t,x)}{\partial X(t)},$$

$$f_{tt} = \frac{\partial^{2} f(t,x)}{\partial t^{2}}, \qquad f_{tx} = \frac{\partial^{2} f(t,x)}{\partial t \partial X(t)},$$

$$f_{xx} = \frac{\partial^{2} f(t,x)}{\partial X(t)^{2}}.$$

Itô's Formula for f(t, X(t))

So, for f(t, X(t)),

$$df(t,X(t)) = f_t(t,X(t))dt + f_x(t,X(t))dX + \frac{1}{2}f_{xx}(t,X(t))dXdX,$$

where

$$dX(t)dX(t) = B^2(t)dt.$$

Summary Itô's Formula for f(t, X(t))

For dX(t) = A(t) dt + B(t) dW and a function f(t, X(t))

$$df(t,X) = f_t(t,X)dt + f_x(t,X)dX + \frac{1}{2}f_{xx}(t,X)dXdX,$$

$$df(t,X) = f_t dt + f_x dX + \frac{1}{2} f_{xx} B^2(t) dt,$$

$$df(t,X) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial X}dX + \frac{1}{2}\frac{\partial^2 f}{\partial X^2}B^2(t)dt.$$

$$df(t,X) = \left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial X^2}B^2(t)\right)dt + \frac{\partial f}{\partial X}dX.$$

Itô's Formula for
$$f(t, X(t))$$

In terms of $W(t)$...

Review of Course Topics

$$\begin{split} df(t,X) = & f_t(t,X(t))dt + f_x(t,X(t))dX + \frac{1}{2}f_{xx}(t,X(t))B^2(t)dt \,, \\ = & f_t(t,X(t))dt + f_x(t,X(t))(A(t)dt + B(t)dW) + \frac{1}{2}f_{xx}(t,X(t))B^2(t)dt \,, \\ = & f_t(t,X(t))dt + f_x(t,X(t))A(t)dt + f_x(t,X(t))B(t)dW \\ & + \frac{1}{2}f_{xx}(t,X(t))B^2(t)dt \,. \end{split}$$

- Brownian Motion
- 2 Integration
- Itô Integra
- 4 Itô Formul