Skouenberrax zagara

$$min = f_0(x)$$

 x
 $s.t. = f_1(x) \le 0$
 $h_1(x) = 0$

One largerenewor

$$L(x,\lambda,0) = f_0(x) + \sum_{i=1}^{m_1} \lambda_i f_i(x) + \sum_{j=1}^{h_1} \theta_j h_j(x)$$

Our Abouenberres gryrneges

$$\overline{g(\lambda,\lambda)} = in + L(\lambda,\lambda,0)$$

Bernegmoù vo > u).

Denozomerbenbe

$$g(dx'+(1-d)x^2,dx'+(1-d)x^2)=$$

$$+\frac{1}{2}(40;+(1-4)0;)h_{3}(x))=$$

= inf(
$$\chi L(X,X',0')$$
 = (1- $\chi L(X,X',0^2)$) \geq

Subennegerve

p* - mneure stree zearence mecageen zageou

Therefore
$$g(\lambda,0) \leq p^*$$

Some parameterise

 $Z(\lambda,F)(X) + Z(0)h_{1}(X) \leq 0$, $X = genum (une)$
 $L(X,\lambda,0) \leq Fo(X)$
 $g(\lambda,0) = \inf_{X} L(X,\lambda,0) \leq L(X,\lambda,0) \leq Fo(X)$

Detembarted regard

 $M \cong X g(\lambda,0)$
 $S: t \lambda \geq 0$

Thursday

1) $M: M \times T \times X$
 $S: t \lambda \times B$
 $L(X,0) = (X,X) + (X,X$

S.t. Ax = B $X \succeq 0 \sim X_i \geq 0 \sim -X_i \leq 0$

$$L(X,\lambda,0) = c^{T}X^{-1}Z^{T}X^{T}X - (0,x,x) = (0,x,x) + (0,x,x)$$

Kpeever

min
$$x^TWx$$

S.t. $x_i^2 = 1$, wesd

$$L(x,0) = x^TWx + 20;(x_i^2 - 1) = 10$$

$$= x^T(W + diag(0))x - 1^TO$$

$$\geq 0$$

$$g(0) = \begin{cases} -iTD, & \text{w+diag}(0) \leq 0 \\ -\infty, & \text{where} \end{cases}$$

$$\max_{0} -1^{1}$$

$$5.t. \ W+diag(0) \geq 0$$

Chart comprièrement u ghournberenus quenqui $F^*(y) = \sup_{x} (\langle x, x \rangle - f(x))$ | Min F(x) | X S.t. X=0 $L(x,0) = F(x) + 0^{T}x$ $g(0) = inf(f(x) + O^T x) = - sup(-O^T x - f(x)) =$ = -5*(-0) min f(x) L x 5.t. Ax ≥ 6 L(x,x,7) = F(x) + XT (Ax-B) + OT (Cx-d) g(x,0) = inf(f(x)+xT(Ax-B)+0T(cx-d))= = - xTe - DTd + in F (F(x) + (ATX+CT)) + x) = = - xTB-OTd - \$*(-ATx-CTO) Mulley min II XII s.t. Ax= 6 $F^*(y) = \begin{cases} 0, & ||y||_{x \leq 1} \\ \infty, & \text{where} \end{cases}$ $=(C^TA-)*7-3TC-=(C)R$ $= \begin{cases} -0.78, & \text{MATOM}_{*} \leq 1 \\ -\infty, & \text{where} \end{cases}$

Max - 97 &

S.t.
$$||ATJ||_{x} = ||$$

Repulse

Min $||S||_{x||ag|}$

S.t. $||Ax||_{x} = ||$
 $||S||_{x} = ||S||_{x} = ||S||_{x$

Brenskreuns yerebul Creinages, Celus FXED: F;(X)<0 AX=6