

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ В MULTISIM»

по курсу:

«ОСНОВЫ ЭЛЕКТРОНИКИ»

Вариант: 51	
Студент:	
Авдейкина Валерия Павловна, группа ИУ7-33Б	(подпись, дата)
Руководитель:	
Преподаватель РК6	
Оглоблин Дмитрий Игоревич	(подпись, дата)
	(подпись, дата)
Оценка:	

Оглавление

ОГЛАВЛЕНИЕ	1
ЦЕЛЬ И ЗАДАЧИ РАБОТЫ	2
ВЫПОЛНЕНИЕ	3
Эксперимент 1: «Добавление диода в БД»	3
Эксперимент 2: «Исследование BAX полупроводниковых диодов	c
использованием мультиметров»	7
Эксперимент 3: «Исследование вах полупроводниковых диодов	c
использованием осциллографа и генератора»	9
Эксперимент 4: «Исследование выпрямительных свойств диода при помог	ЩИ
осциллографа»	14
ВЫВОДЫ	16

Цель и задачи работы

<u>Цель работы:</u> Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах Multisim и Mathcad по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

Выполнение

Эксперимент 1: «Добавление диода в БД»

В рамках данного эксперимента занесем полупроводниковый диод (вариант 51) в пользовательскую базу данных (в созданное заранее семейство диодов «IU7») программы Multisim. Для этого используем инструмент создания компонента – TOOLS/Component Wizard (рис. 1, 2, 3, 4, 5, 6, 7):

Pucyнoк 1. Component Wizard (1/7)

Pucyнoк 2. Component Wizard (2/7)

Рисунок 3. Component Wizard (3/7)

Pucyнок 4. Component Wizard (4/7)

Рисунок 5. Component Wizard (5/7) – свойства модели

Pucyнок 6. Component Wizard (6/7)

Рисунок 7. Component Wizard (7/7) – добавление в семейство

На рис. 8 отдельно показаны свойства модели добавленного диода.

Рисунок 8. Полупроводниковый диод (В51)

Эксперимент 2: «Исследование BAX полупроводниковых диодов с использованием мультиметров»

Для выполнения следующего эксперимента соберем следующую модель для получения прямой ветви ВАХ полупроводникового диода (рис. 9):

Рисунок 9. Схема установки эксперимента 2 (прямая ветвь)

Далее получим график прямой ветви BAX исследуемого диода с помощью инструмента Analyses/DC sweep (рис. 10):

Рисунок 10. ВАХ диода (прямая ветвь)

Теперь построим схему для исследования обратной ветви ВАХ (рис. 11). График обратной ветви ВАХ получим аналогичным образом.

Рисунок 11. Схема установки эксперимента 2 (обратная ветвь)

Рисунок 12. ВАХ диода (обратная ветвь)

Эксперимент 3: «Исследование вах полупроводниковых диодов с использованием осциплографа и генератора»

Смоделируем схему, содержащую осциллограф XSC1 и генератор XFG1 и показанную ниже (рис. 13):

Рисунок 13. Схема установки эксперимента 3

Настроив осциллограф таким образом, чтобы канал В соответствовал току диода, а канал A — падению напряжения на диоде, на его экране получим изображение BAX (рис. 14): по горизонтальной оси — напряжение в mV, по вертикальной — ток в mA.

Рисунок 14. ВАХ диода на экране осциллографа

Переведем полученные данные в вид графика (рис. 15) и сохраним в формате текстового файла, из которого требуется удалить заголовки и окончания, чтобы далее проанализировать полученные результаты измерений в программе Mathcad. Погрешность полученного графика будет мала, так как падение напряжения на резисторе сопротивления R=10м мало.

Рисунок 15. График ВАХ, полученной на осциллографе

*exp3.txt – Блокнот		
Файл Правка Формат	Вид	Справка
-1.493412142392e-002		-1.911305940454e-007
-6.829007719170e-002		-1.757302456801e-007
-1.214490625789e-001		-1.819259891049e-007
-1.742638728475e-001		-1.662800312238e-007
-2.265795243122e-001		-1.721535972493e-007
-2.782512049146e-001		-1.562306559290e-007
-3.291272017931e-001		-1.617639900549e-007
-3.790667967340e-001		-1.455526773137e-007
-4.279232269420e-001		-1.507435363452e-007
-4.755615222612e-001		-1.342456796091e-007
-5.218414928992e-001		-1.391024950940e-007
-5.666355052184e-001		-1.223290966991e-007
-6.098114905764e-001		-1.268678350726e-007
-6.512506564951e-001		-1.098365323049e-007
-6.908305111969e-001		-1.140786763737e-007
-7.284425070546e-001		-9.681206422452e-008
-7.639750758513e-001		-1.007832508330e-007
-7.973312015641e-001		-8.330771977348e-008
-8.284114618587e-001		-8.703677451616e-008

Рисунок 16. Содержимое файла с результатами измерений

Построим BAX в программе Mathcad на основе полученного файла (рис.

17):

Рисунок 17. Построение BAX в Mathcad

Далее вычислим параметры диода Rb, m, Io, Ft с помощью системы уравнений и функции Minerr (рис. 18):

Рисунок 18. Вычисление параметров диода

Сравним экспериментально полученный график и построенный теоретически на основе вычисленных параметров диода (рис. 19). Из рисунка видно, что графики почти совпали.

Рисунок 19. Сравнение экспериментальной и теоретической ВАХ

Эксперимент 4: «Исследование выпрямительных свойств диода при помощи осциллографа»

В рамках данного эксперимента проверим выпрямительные свойства полупроводникового диода. Для начала построим схему ниже (рис. 20):

Рисунок 20. Генератор без диода

С помощью этой схемы наблюдаем неискаженный сигнал генератора, представляемый синусоидой.

Далее соберем схему с исследуемым диодом (рис. 21):

Рисунок 21. Генератор с диодом

Теперь с помощью осциллографа наблюдаем выпрямление прямого напряжения, сохранение состояния обратного напряжения. Немного изменим каналы осциллографа, чтобы «перевернуть» выводимое (рис. 22):

Рисунок 22. Генератор с диодом (обратные каналы)

Добавим в схему накопительный конденсатор, установленный параллельно нагрузочному резистору R2 (рис. 23). Наблюдаем возрастание среднего напряжения в корень из 2 раз на канале В. Таким образом, с помощью конденсатора и диода был получен однополупериодный выпрямитель.

Рисунок 23. Диод с накопительным конденсатором (однополупериодный выпрямитель)

Выводы

В ходе выполнения экспериментов мною были получены навыки работы в программе Multisim: добавление компоненты в библиотеку, работа со схемой, содержащей мультиметры, получение BAX полупроводникового диода, работа с осциллографом и генератором для получения BAX полупроводникового диода, анализ полученных в Multisim данных в программе Mathcad, построение однополупериодного выпрямителя с помощью полупроводникового диода и накопительного конденсатора (наблюдение результатов с помощью осциллографа).