STN search

3/2/04

=> file .nash => s neuroligin?

40 FILE MEDLINE L1 56 FILE CAPLUS 1.2 48 FILE SCISEARCH L3 24 FILE LIFESCI L456 FILE BIOSIS 1.5 39 FILE EMBASE

TOTAL FOR ALL FILES

263 NEUROLIGIN? L7

=> s 17 not 2001-2004/py

TOTAL FOR ALL FILES

140 L7 NOT 2001-2004/PY

=> dup rem 114

PROCESSING COMPLETED FOR L14

42 DUP REM L14 (98 DUPLICATES REMOVED)

=> d ibib abs 115

L15 ANSWER 1 OF 42

MEDLINE on STN

ACCESSION NUMBER: 2000393697

DOCUMENT NUMBER:

PubMed ID: 10903560

TITLE:

Neuroligation: building synapses around the neurexin-

neuroligin link.

AUTHOR:

Rao A; Harms K J; Craig A M

SOURCE:

Nature neuroscience, (2000 Aug) 3 (8) 747-9. Journal code: 9809671. ISSN: 1097-6256.

PUB. COUNTRY:

DOCUMENT TYPE: News Announcement LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200008

United States

ENTRY DATE:

Entered STN: 20000824

Last Updated on STN: 20000824 Entered Medline: 20000815

=> d ibib abs 115 2-42

L15 ANSWER 2 OF 42

MEDLINE on STN

ACCESSION NUMBER: 2000333417 MEDLINE DOCUMENT NUMBER:

PubMed ID: 10877681

TITLE:

Neurobiology. Trigger found for synapse formation.

AUTHOR: Gura T

SOURCE:

Science, (2000 Jun 9) 288 (5472) 1718-9. Journal code: 0404511. ISSN: 0036-8075.

PUB. COUNTRY:

United States News Announcement

DOCUMENT TYPE: LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200006

ENTRY DATE:

Entered STN: 20000706

Last Updated on STN: 20000706 Entered Medline: 20000629

L15 ANSWER 3 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:300355 CAPLUS 132:330370

DOCUMENT NUMBER:

TITLE:

Cloning of cDNA for protein S-SCAM (synaptic

INVENTOR(S):

scaffolding molecule) from rats Takai, Yoshimi; Hata, Hiroshi; Hirao, Kazuyo

PATENT ASSIGNEE(S):

Foundation for Scientific Technology Promotion, Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 15 pp. CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

APPLICATION NO. DATE KIND DATE PATENT NO. ______ _____ ___ _____ JP 1998-302239 19981023 A2 20000509 JP 2000125878 JP 1998-302239 19981023 PRIORITY APPLN. INFO.:

The cDNA encoding S-SCAM, a novel protein assocd. with SAPAP1 that binds to postsynaptic d. (PSD)-95/SAP90 that has been identified as a prototypic synaptic scaffolding protein to maintain the structure of synaptic junctions, is isolated from rats by using a yeast 2-hybrid system. PSD-95/SAP90 belongs to a family of membrane-assocd. guanylate kinases and binds N-methyl-D-aspartate receptors, potassium channels, and neuroligins through the PDZ domains and GKAP/SAPAP/DAP through the quanylate kinase (GK) domain. The new protein participates in the information exchange and the plasticity in the nervous synapse bond rear section uniquely is offered. It can be used for the studies of the development of nerve system and therapeutics for nerve diseases.

L15 ANSWER 4 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

2000:879153 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 134:176494

Differential gene expression between normal and TITLE: tumor-derived ovarian epithelial cells

Ismail, Rubina S.; Baldwin, Rae Lynn; Fang, Junguo; AUTHOR (S):

Browning, Damaris; Karlan, Beth Y.; Gasson, Judith C.;

Chang, David D.

Division of Hematology-Oncology, Department of CORPORATE SOURCE:

Medicine, University of California-Los Angeles School

of Medicine, Los Angeles, CA, 90095, USA Cancer Research (2000), 60(23), 6744-6749

CODEN: CNREA8; ISSN: 0008-5472

American Association for Cancer Research PUBLISHER:

Journal DOCUMENT TYPE: English LANGUAGE:

SOURCE:

The majority of ovarian tumors arise from the transformation of the ovarian surface epithelial cells, a single layer of cells surrounding the ovary. To identify genes that may contribute to the malignant phenotype of ovarian cancers, cDNA representational difference anal. was used to compare expressed genes in primary cultures of normal human ovarian surface epithelium (HOSE) and ovarian tumor-derived epithelial cells from the Cedars-Sinai Ovarian Cancer (CSOC) repository. A total of 255 differentially expressed genes were identified, of which 160 and 95 were specifically expressed in HOSE and CSOC cells, resp. Using cDNA array hybridization, the expression profiles of the genes identified by cDNA-representational difference anal. were examd. in an addnl. 5 HOSE and 10 CSOC lines. The comparison of av. signal of each gene revealed 44 HOSE-specific and 16 CSOC-specific genes that exhibited at least a 2.5-fold difference in expression. A large no. of genes identified in this study encode membrane-assocd. or secreted proteins and, hence, may be useful as targets in the development of serum-based diagnostic markers for ovarian cancer. Very few genes assocd. with protein synthesis or metab. were identified in this study, reflecting the lack of observable differences in phenotypic or growth characteristics between HOSE and CSOC

hybridization. THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 37 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

cells. Northern blot anal. on a subset of these genes demonstrated comparable levels of gene expression as obsd. in the cDNA array

DUPLICATE 1 MEDLINE on STN

L15 ANSWER 5 OF 42 MEDLINE 2001195521 ACCESSION NUMBER:

PubMed ID: 11168587 DOCUMENT NUMBER:

Membrane-associated guanylate kinase with inverted TITLE:

orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight

junctions.

Mino A; Ohtsuka T; Inoue E; Takai Y AUTHOR:

Department of Molecular Biology and Biochemistry, Osaka CORPORATE SOURCE: University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan.

SOURCE: Genes to cells : devoted to molecular & cellular

mechanisms, (2000 Dec) 5 (12) 1009-16. Journal code: 9607379. ISSN: 1356-9597.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200104

ENTRY DATE: Entered STN: 20010410

Last Updated on STN: 20010410 Entered Medline: 20010405

BACKGROUND: Membrane-associated guanylate kinase (MAGUK) with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1), is a member of the MAGUK family that has multiple PDZ domains and interacts with many transmembrane proteins, including receptors and channels, through these domains. MAGI-1/BAP1 is ubiquitously expressed and localized at tight junctions in epithelial cells. It is an isoform of the neurone-specific synaptic scaffolding molecule (S-SCAM), which is known to interact with NMDA receptors and neuroligins. We have recently found that S-SCAM also interacts with a signalling molecule, a GDP/GTP exchange protein (GEP) that is specific for Rap1 small G protein, Rap GEP, which has also recently been referred to as RA-GEF/PDZ-GEFI/CNras-GEF. In this study, we have examined whether MAGI-1/BAP1 also interacts with and serves as a scaffolding molecule for Rap GEP at tight junctions in epithelial cells. RESULTS: MAGI-1/BAP1 similarly interacted with Rap GEP in cell-free and intact cell systems. A Northern blot analysis revealed that Rap GEP was expressed in most tissues examined. However, neither postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 (another member of the MAGUK family) nor SAP97/human discs-large tumour suppressor gene product (another ubiquitously expressed MAGUK localizing to adherens junctions in epithelial cells and the isoform of PSD-95/SAP90) interacted with Rap GEP. CONCLUSION: These results indicate that MAGI-1/BAP1 serves as a scaffolding molecule for Rap GEP at tight junctions in epithelial cells.

L15 ANSWER 6 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: 2001:55758 BIOSIS DOCUMENT NUMBER: PREV200100055758

TITLE: Excitation at the synapse: Eph receptors team up with NMDA

receptors.

AUTHOR(S): Drescher, Uwe [Reprint author]

CORPORATE SOURCE: MRC Centre for Developmental Neurobiology, King's College

London, 4th Floor, New Hunts House, Guy's Campus, London,

SE1 1UL, UK

uwe.drescher@kcl.ac.uk

SOURCE: Cell, (December 22, 2000) Vol. 103, No. 7, pp. 1005-1008.

print.

CODEN: CELLB5. ISSN: 0092-8674.

DOCUMENT TYPE: Article

General Review; (Literature Review)

LANGUAGE: English

ENTRY DATE: Entered STN: 24 Jan 2001

Last Updated on STN: 12 Feb 2002

L15 ANSWER 7 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2

ACCESSION NUMBER: 2000:546634 CAPLUS

TITLE: Neuroligation: building synapses around the neurexin-

neuroligin link

AUTHOR(S): Rao, Anuradha; Harms, Kimberly J.; Craig, Ann Marie CORPORATE SOURCE: Department of anatomy and Neurobiology, Washington

University School of Medicine, St. Louis, MO, 63110,

USA

SOURCE: Nature Neuroscience (2000), 3(8), 747-749

CODEN: NANEFN; ISSN: 1097-6256

PUBLISHER: Nature America Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

AB Serafini and colleagues provide evidence that **neuroligin** acts as a trans-neuronal signal to induce presynaptic differentiation at neuron-neuron connections in vitro.

REFERENCE COUNT: THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS 15 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 8 OF 42 MEDLINE on STN DUPLICATE 3

ACCESSION NUMBER: 2000348741

MEDLINE

DOCUMENT NUMBER: PubMed ID: 10892652

Neuroligin expressed in nonneuronal cells TITLE:

triggers presynaptic development in contacting axons. Scheiffele P; Fan J; Choih J; Fetter R; Serafini T AUTHOR: CORPORATE SOURCE: Department of Molecular and Cell Biology, University of

California, Berkeley 94720, USA.. scheiffe@uclink4.berkeley.edu

SOURCE: Cell, (2000 Jun 9) 101 (6) 657-69.

Journal code: 0413066. ISSN: 0092-8674.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

English LANGUAGE:

Priority Journals FILE SEGMENT:

ENTRY MONTH: 200007

ENTRY DATE: Entered STN: 20000810

Last Updated on STN: 20000810

Entered Medline: 20000727 Most neurons form synapses exclusively with other neurons, but little is known about the molecular mechanisms mediating synaptogenesis in the

central nervous system. Using an in vitro system, we demonstrate that neuroligin-1 and -2, postsynaptically localized proteins, can trigger the de novo formation of presynaptic structure. Nonneuronal cells engineered to express neuroligins induce morphological and functional presynaptic differentiation in contacting axons. This activity can be inhibited by addition of a soluble version of beta-neurexin, a receptor for neuroligin. Furthermore, addition of soluble

beta-neurexin to a coculture of defined pre- and postsynaptic CNS neurons inhibits synaptic vesicle clustering in axons contacting target neurons. Our results suggest that neuroligins are part of the machinery employed during the formation and remodeling of CNS synapses.

L15 ANSWER 9 OF 42 MEDLINE on STN DUPLICATE 4

ACCESSION NUMBER: 2000447347 MEDLINE DOCUMENT NUMBER: PubMed ID: 10996085

Synapse formation: if it looks like a duck and quacks like TITLE:

a duck

AUTHOR: Cantallops I; Cline H T

CORPORATE SOURCE: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

Current biology : CB, (2000 Sep 7) 10 (17) R620-3. Ref: 22 Journal code: 9107782. ISSN: 0960-9822. SOURCE:

ENGLAND: United Kingdom PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200011

ENTRY DATE: Entered STN: 20010322

Last Updated on STN: 20010322 Entered Medline: 20001107

Neuroligin and neurexin form an intercellular adhesion complex sufficient to trigger formation of functional presynaptic elements in vitro. This single molecular interaction appears to initiate clustering of synaptic vesicles, assembly of vesicle-release machinery and morphological changes at the presynaptic membrane.

L15 ANSWER 10 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5

ACCESSION NUMBER:

2000:487688 CAPLUS

DOCUMENT NUMBER:

133:173450

TITLE:

The making of a synapse: target-derived signals and

presynaptic differentiation

AUTHOR(S):

Davis, Graeme W.

CORPORATE SOURCE:

Department of Biochemistry, University of California,

San Francisco, San Francisco, CA, 94143, USA

SOURCE:

Neuron (2000), 26(3), 551-554

CODEN: NERNET; ISSN: 0896-6273

PUBLISHER: Cell Press

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review, with 18 refs. The topics discussed include: Wnt signaling and synaptogenesis; Wnt cytoskeletal regulation and synaptogenesis; the

neuroligin-neurexin complex; neuroligin-neurexin complex

signaling during synapse formation; and interpreting sufficiency without genetic necessity.

L15 ANSWER 11 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2000:813901 CAPLUS

DOCUMENT NUMBER: 133:360242

TITLE: Interaction of neuroligin 1 and

.beta.-neurexin Hasegawa, Hana

AUTHOR(S):
CORPORATE SOURCE:

PUBLISHER:

Dep. Psychiatry, Yokohama City Univ. Sch. Med.,

Yokohama, 236-0004, Japan

SOURCE: Yokohama Igaku (2000), 51(5), 507-514

CODEN: YKIGAK; ISSN: 0372-7726 Yokohama-shiritsu Daigaku Igakkai

DOCUMENT TYPE: Journal LANGUAGE: Japanese

AB Neuroligins (NL) are a family of cell adhesion mols. initially identified in the central nervous system of the rats. NL makes a heteromeric interaction with .beta.-neurexin (.beta.Nx) in a calcium dependent manner at the synapses. The interactions require a certain spliced variant of .beta.Nx. To analyze the important sites and determinants for their binding, we made EF-hand mutants of NL1 by site-directed mutagenesis and assayed their binding activities with immobilized .beta.Nx by affinity chromatog. Furthermore we assumed another binding site outside the EF-hand, which is S-laminin's binding motif (LRE sequence) in NL1, analyzed it in a same way with EF-hand region. Both EF-hand region and LRE sequence mutants of NL1 showed decreased binding activities with .beta.Nx, so both regions may play an important role for their heteromeric interactions.

L15 ANSWER 12 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: 2002:155731 BIOSIS
DOCUMENT NUMBER: PREV200200155731

TITLE: Induction of presynaptic differentiation in the central

nervous system.

AUTHOR(S): Scheiffele, Peter [Reprint author]; Diaz, Elva; Choih,

Jenny; Fan, Jinhong; Fetter, Richard; Serafini, Tito CE: Molecular and Cell Biology, UC Berkeley, 201 LSA, Berkeley,

CORPORATE SOURCE: Molecular and Cell Biology, UC Be CA, 94720, USA

SOURCE: Molecular Biology of the Cell, (Dec., 2000) Vol. 11, No.

Supplement, pp. 472a. print.

Meeting Info.: 40th American Society for Cell Biology Annual Meeting. San Francisco, CA, USA. December 09-13,

2000. American Society for Cell Biology.

CODEN: MBCEEV. ISSN: 1059-1524.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 21 Feb 2002

Last Updated on STN: 26 Feb 2002

L15 ANSWER 13 OF 42 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

ACCESSION NUMBER: 2000:881625 SCISEARCH

THE GENUINE ARTICLE: 335GW

TITLE: Neuroligins and synapse formation

AUTHOR: Brose N (Reprint); Varoqueaux F; Neeb A CORPORATE SOURCE: MAX PLANCK INST, GOTTINGEN, GERMANY

COUNTRY OF AUTHOR: GERMANY

SOURCE: EUROPEAN JOURNAL OF NEUROSCIENCE, (OCT 2000) Vol. 12,

Supp. [S], pp. 447-447.

Publisher: BLACKWELL SCIENCE LTD, P O BOX 88, OSNEY MEAD,

OXFORD OX2 ONE, OXON, ENGLAND.

ISSN: 0953-816X.
DOCUMENT TYPE: Conference; Journal

FILE SEGMENT:

LIFE

LANGUAGE:

English

REFERENCE COUNT:

L15 ANSWER 14 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: DOCUMENT NUMBER:

2000:373007 BIOSIS

PREV200000373007

TITLE:

Neuroligins and synapse formation.

AUTHOR(S):

Brose, N. [Reprint author]; Varoqueaux, F. [Reprint

author]; Neeb, A. [Reprint author]

CORPORATE SOURCE:

Fur Experimentelle Medizin, A6 Milelekukane Neurolobioligie, Max Planck Inst, Gottingen, Germany European Journal of Neuroscience, (2000) Vol. 12, No.

SOURCE:

Supplement 11, pp. 447. print. Meeting Info.: Meeting of the Federation of European

Neuroscience Societies. Brighton, UK. June 24-28, 2000. ISSN: 0953-816X.

DOCUMENT TYPE:

Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: ENTRY DATE: English

Entered STN: 30 Aug 2000

Last Updated on STN: 8 Jan 2002

L15 ANSWER 15 OF 42

MEDLINE on STN

DUPLICATE 6

ACCESSION NUMBER:

MEDLINE 2000231756

DOCUMENT NUMBER:

PubMed ID: 10767552

TITLE:

The structure and expression of the human

neuroligin-3 gene.

AUTHOR:

Philibert R A; Winfield S L; Sandhu H K; Martin B M; Ginns

ΕI

CORPORATE SOURCE:

Department of Psychiatry, University of Iowa, Rm 2-126b

Psychiatry Research/MEB, Iowa City, IA 52242-1000, USA..

robertpphilibert@uiowa.edu

SOURCE:

Gene, (2000 Apr 4) 246 (1-2) 303-10. Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY:

Netherlands

Journal; Article; (JOURNAL ARTICLE)

DOCUMENT TYPE:

LANGUAGE: English

FILE SEGMENT: OTHER SOURCE: Priority Journals GENBANK-AF217411; GENBANK-AF217412; GENBANK-AF217413

ENTRY MONTH:

200005

ENTRY DATE:

Entered STN: 20000613

Last Updated on STN: 20000613

Entered Medline: 20000531

The neuroligins are a family of proteins that are thought to mediate cell to cell interactions between neurons. During the sequencing at an Xq13 locus associated with a mental retardation syndrome in some studies, we discovered a portion of the human orthologue of the rat neuroligin-3 gene. We now report the structure and the expression of that gene. The gene spans approximately 30kb and contains eight exons. Unlike the rat gene, it codes for at least two mRNAs and at least one of which is expressed outside the CNS. Interestingly, the putative promoter for the gene overlaps the last exon of the neighboring HOPA gene and is located less than 1kb from an OPA element in which a polymorphism associated with mental retardation is found. These findings suggest a possible role for the neuroligin gene in mental retardation and that the role of the gene in humans may differ from its role in rats.

L15 ANSWER 16 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: DOCUMENT NUMBER:

2000:353737 BIOSIS PREV200000353737

TITLE:

Neuroligin 3 is expressed in a wide range of glia

during development.

AUTHOR(S):

Gilbert, Mary M. [Reprint author]; Smith, Jeff [Reprint author]; Roskams, Angela-Jane; Auld, Vanessa J. [Reprint

author]

CORPORATE SOURCE:

Dept. of Zoology, Univ. of British Columbia, Vancouver, BC,

Canada

SOURCE:

Developmental Biology, (June 1, 2000) Vol. 222, No. 1, pp.

256. print.

Meeting Info.: Fifty-ninth Annual Meeting of the Society

for Developmental Biology. Boulder, Colorado, USA. June

07-11, 2000. Society for Developmental Biology.

CODEN: DEBIAO. ISSN: 0012-1606.

DOCUMENT TYPE:

Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE:

English

ENTRY DATE:

Entered STN: 16 Aug 2000

Last Updated on STN: 8 Jan 2002

L15 ANSWER 17 OF 42 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

2000:591428 SCISEARCH

ACCESSION NUMBER: THE GENUINE ARTICLE: 323AN

TITLE:

Neuroligin 3 is expressed in a wide range of

glia during development.

AUTHOR:

Gilbert M M (Reprint); Smith J; Roskams A J; Auld V J UNIV BRITISH COLUMBIA, DEPT ZOOL, VANCOUVER, BC, CANADA; UNIV BRITISH COLUMBIA, CTR MED & MOL THERAPEUT, VANCOUVER,

BC V5Z 1M9, CANADA

COUNTRY OF AUTHOR:

CORPORATE SOURCE:

SOURCE:

DEVELOPMENTAL BIOLOGY, (1 JUN 2000) Vol. 222, No. 1, pp.

CANADA 202-202.

Publisher: ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN

DIEGO, CA 92101-4495. ISSN: 0012-1606.

DOCUMENT TYPE:

Conference; Journal

FILE SEGMENT:

LIFE English

LANGUAGE: REFERENCE COUNT:

L15 ANSWER 18 OF 42

MEDLINE on STN

DUPLICATE 7

ACCESSION NUMBER:

2000201867

DOCUMENT NUMBER:

PubMed ID: 10739260

TITLE:

AUTHOR:

Common EF-hand motifs in cholinesterases and

MEDLINE

neuroligins suggest a role for Ca2+ binding in cell

surface associations. Tsigelny I; Shindyalov I N; Bourne P E; Sudhof T C; Taylor

CORPORATE SOURCE:

Department of Pharmacology, University of California, San Diego, La Jolla 92093-0654, USA.. itsigeln@ucsd.edu

CONTRACT NUMBER:

GM18360 (NIGMS) MH-52804 (NIMH)

Protein science : a publication of the Protein Society, SOURCE:

(2000 Jan) 9 (1) 180-5. Journal code: 9211750. ISSN: 0961-8368.

PUB. COUNTRY: United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200005

ENTRY DATE:

Entered STN: 20000518

Last Updated on STN: 20000518

Entered Medline: 20000505

Comparisons of protein sequence via cyclic training of Hidden Markov Models (HMMs) in conjunction with alignments of three-dimensional structure, using the Combinatorial Extension (CE) algorithm, reveal two putative EF-hand metal binding domains in acetylcholinesterase. Based on sequence similarity, putative EF-hands are also predicted for the neuroligin family of cell surface proteins. These predictions are supported by experimental evidence. In the acetylcholinesterase crystal structure from Torpedo californica, the first putative EF-hand region binds the Zn2+ found in the heavy metal replacement structure. Further, the interaction of neuroligin 1 with its cognate receptor neurexin depends on Ca2+. Thus, members of the alpha, beta hydrolase fold family of proteins contain potential Ca2+ binding sites, which in some family members may be critical for heterologous cell associations.

L15 ANSWER 19 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1999:605417 CAPLUS

DOCUMENT NUMBER:

131:255494

TITLE:

Characterization of neuroligins: novel cell

adhesion molecules in neurons

AUTHOR(S): Nguyen, Thai Tran

Southwestern Medical Center, Univ. of Texas, Dallas, CORPORATE SOURCE:

(1999) No pp., Given Avail.: UMI, Order No. DA0800034 SOURCE:

From: Diss. Abstr. Int., B 1999, 60(4), 1461

DOCUMENT TYPE: Dissertation English LANGUAGE:

Unavailable

L15 ANSWER 20 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: 2000:148965 BIOSIS PREV200000148965 DOCUMENT NUMBER:

Distribution of neuroligins mRNAs in the adult TITLE:

rat brain.

Song, Ji-Ying [Reprint author]; Varoqueaux, Frederique AUTHOR(S): [Reprint author]; Neeb, Antje [Reprint author]; Brose, Nils

[Reprint author]

Abt. Mol. Neurobiologie, MPI fuer Experimentelle Medizin, CORPORATE SOURCE:

Goettingen, Germany

Society for Neuroscience Abstracts, (1999) Vol. 25, No. SOURCE:

1-2, pp. 2284. print.

Meeting Info.: 29th Annual Meeting of the Society for Neuroscience. Miami Beach, Florida, USA. October 23-28,

1999. Society for Neuroscience.

ISSN: 0190-5295.

Conference; (Meeting) DOCUMENT TYPE:

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

Entered STN: 19 Apr 2000 ENTRY DATE:

Last Updated on STN: 4 Jan 2002

DUPLICATE 8 L15 ANSWER 21 OF 42 MEDLINE on STN

ACCESSION NUMBER: MEDLINE 1999128369

PubMed ID: 9927700 DOCUMENT NUMBER:

Neuroligin 1 is a postsynaptic cell-adhesion TITLE:

molecule of excitatory synapses.

Song J Y; Ichtchenko K; Sudhof T C; Brose N AUTHOR:

Max-Planck-Institut fur Experimentelle Medizin, Abteilung CORPORATE SOURCE:

Molekulare Neurobiologie, Hermann-Rein-Strasse 3, D-37075

Gottingen, Germany.

RO1-MH50824 (NIMH) CONTRACT NUMBER:

Proceedings of the National Academy of Sciences of the SOURCE:

United States of America, (1999 Feb 2) 96 (3) 1100-5.

Journal code: 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

English LANGUAGE:

Priority Journals FILE SEGMENT:

199903 ENTRY MONTH:

Entered STN: 19990324 ENTRY DATE:

Last Updated on STN: 19990324 Entered Medline: 19990305

At the synapse, presynaptic membranes specialized for vesicular traffic are linked to postsynaptic membranes specialized for signal transduction. The mechanisms that connect pre- and postsynaptic membranes into synaptic junctions are unknown. Neuroligins and beta-neurexins are neuronal cell-surface proteins that bind to each other and form asymmetric intercellular junctions. To test whether the neuroligin /beta-neurexin junction is related to synapses, we generated and characterized monoclonal antibodies to neuroligin 1. With these antibodies, we show that neuroligin 1 is synaptic. The neuronal localization, subcellular distribution, and developmental expression of neuroligin 1 are similar to those of the postsynaptic marker proteins PSD-95 and NMDA-R1 receptor. Quantitative immunogold electron microscopy demonstrated that neuroligin 1 is clustered in synaptic clefts and postsynaptic densities. Double immunofluorescence labeling revealed that neuroligin 1 colocalizes with glutamatergic but not gamma-aminobutyric acid (GABA)ergic synapses. Thus neuroligin 1 is a synaptic cell-adhesion molecule that is enriched in postsynaptic densities where it may recruit receptors, channels, and signal-transduction molecules to synaptic sites of cell adhesion. In

addition, the neuroligin/beta-neurexin junction may be involved in the specification of excitatory synapses.

DUPLICATE 9 MEDLINE on STN L15 ANSWER 22 OF 42

ACCESSION NUMBER: 2000020371 MEDLINE PubMed ID: 10551945 DOCUMENT NUMBER:

Synaptic cell adhesion proteins and synaptogenesis in the TITLE:

mammalian central nervous system.

AUTHOR: Brose N

Max-Planck-Institut fur Experimentelle Medizin, AG CORPORATE SOURCE:

Molekulare Neurobiologie, Hermann-Rein-Strasse 3, D-37075

Gottingen, Germany.. brose@mail.mpiem.gwdg.de

Die Naturwissenschaften, (1999 Nov) 86 (11) 516-24. Ref: SOURCE:

59

Journal code: 0400767. ISSN: 0028-1042. GERMANY: Germany, Federal Republic of PUB. COUNTRY:

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW) (REVIEW, TUTORIAL)

LANGUAGE: English

Priority Journals FILE SEGMENT:

ENTRY MONTH: 200001

Entered STN: 20000114 ENTRY DATE:

> Last Updated on STN: 20000114 Entered Medline: 20000105

Synapses are asymmetric cell-cell contacts, typically formed between the presynaptic axon terminal of a "sending" nerve cell and the postsynaptic dendrite, the soma or - in some cases - the axon of a "receiving" one. The presynaptic axon terminal is specialized for the complex membrane trafficking mechanisms that underlie regulated secretion of neurotransmitter, while the postsynapse is uniquely specialized for signal transduction. Synaptogenesis, the formation of functional synapses, is the final step in the development of the central nervous system. In the mammalian brain it results in the establishment of a neural network, connecting some 10(12) nerve cells with up to 10(15) synapses. In principle, synaptogenesis takes place in two consecutive steps that are most likely mediated by cell adhesion molecules. First, an arriving axonal growth cone identifies its appropriate partner cell, creating an initial contact, and, second, specific axonal and dendritic protein components are recruited to this initial contact site, forming a functional synapse. Three cell adhesion systems have recently been shown to be specifically enriched at synaptic contacts: the cadherin/catenin system, the cadherinlike neuronal receptors, and the beta-neurexin/ neuroligin system. Components of all three cell adhesion systems have been localized to synaptic contacts using immunogold electron microscopy but are also present outside of synapses. The present short review discusses the possible role of these synaptic cell adhesion molecules in synaptogenesis.

L15 ANSWER 23 OF 42 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

1999:809940 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: 226QW

Analysis of the structure and functional domains of TITLE:

neuroligin.

Hasegawa H (Reprint); Tsigelny L; Matsumura T; Sudhof T; AUTHOR:

Taylor P

UNIV CALIF SAN DIEGO, DEPT PHARMACOL, LA JOLLA, CA 92093; CORPORATE SOURCE:

UNIV TEXAS, SW MED CTR, HHMI, DEPT MOL GENET, DALLAS, TX

75235

COUNTRY OF AUTHOR: USA

SOURCE:

FASEB JOURNAL, (12 MAR 1999) Vol. 13, No. 4, Part 1, Supp.

[S], pp. A472-A472.

Publisher: FEDERATION AMER SOC EXP BIOL, 9650 ROCKVILLE

PIKE, BETHESDA, MD 20814-3998.

ISSN: 0892-6638.

DOCUMENT TYPE: Conference; Journal

FILE SEGMENT:

LIFE LANGUAGE: English REFERENCE COUNT:

L15 ANSWER 24 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

ACCESSION NUMBER: 1999:181031 BIOSIS PREV199900181031 DOCUMENT NUMBER:

Analysis of the structure and functional domains of TITLE:

neuroligin.

Hasegawa, H. [Reprint author]; Tsigelny, I. [Reprint AUTHOR(S):

author]; Matsumura, T. [Reprint author]; Sudhof, T.;

Taylor, P. [Reprint author]

Dep. Pharmacol., Univ. Calif., San Diego, La Jolla, CA CORPORATE SOURCE:

92093, USA

FASEB Journal, (March 12, 1999) Vol. 13, No. 4 PART 1, pp. SOURCE:

A472. print.

Meeting Info.: Annual Meeting of the Professional Research Scientists for Experimental Biology 99. Washington, D.C.,

USA. April 17-21, 1999.

CODEN: FAJOEC. ISSN: 0892-6638.

DOCUMENT TYPE:

Conference; (Meeting)

Conference: Abstract; (Meeting Abstract)

LANGUAGE:

English

ENTRY DATE: Entered STN: 5 May 1999

Last Updated on STN: 5 May 1999

DUPLICATE 10 1.15 ANSWER 25 OF 42 MEDITNE on STN

ACCESSION NUMBER: 1999182311 MEDLINE DOCUMENT NUMBER: PubMed ID: 10080919

TITLE: Interaction of S-SCAM with neural plakophilin-related

Armadillo-repeat protein/delta-catenin.

Ide N; Hata Y; Deguchi M; Hirao K; Yao I; Takai Y AUTHOR .

CORPORATE SOURCE: Takai Biotimer Project, ERATO, Japan Science and Technology

Corporation, c/o JCR Pharmaceuticals Co. Ltd., Kobe,

651-2241, Japan.

Biochemical and biophysical research communications, (1999 SOURCE:

Mar 24) 256 (3) 456-61.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals ENTRY MONTH: 199904

Entered STN: 19990504 ENTRY DATE:

> Last Updated on STN: 19990504 Entered Medline: 19990419

Synaptic scaffolding molecule (S-SCAM) is a multiple PDZ domain-containing protein, which interacts with neuroligin, a cell adhesion molecule, and the NMDA receptor. In this study, we searched for

S-SCAM-interacting proteins and obtained a neuralplakophilin-related armadillo-repeat protein (NPRAP)/delta-catenin. NPRAP/delta-catenin bound to the last PDZ domain of S-SCAM via its carboxyl-terminus in three different cell-free assay systems, was coimmunoprecipitated with S-SCAM from rat crude synaptosomes, and was localized at the excitatory synapses in rat hippocampal neurons. NPRAP/delta-catenin may be implicated in the molecular organization of synaptic junctions through the interaction with

Copyright 1999 Academic Press.

L15 ANSWER 26 OF 42 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

1999:523249 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: 211WG

Anticholinesterases induce multigenic transcriptional TITLE:

feedback response suppressing cholinergic

neurotransmission

AUTHOR: Kaufer D; Friedman A; Seidman S; Soreq H (Reprint)

HEBREW UNIV JERUSALEM, ALEXANDER SILBERMAN INST LIFE SCI, CORPORATE SOURCE:

DEPT BIOL CHEM, IL-91904 JERUSALEM, ISRAEL (Reprint); HEBREW UNIV JERUSALEM, ALEXANDER SILBERMAN INST LIFE SCI, DEPT BIOL CHEM, IL-91904 JERUSALEM, ISRAEL; BEN GURION UNIV NEGEV, FAC HLTH SCI, DEPT PHYSIOL, IL-84105 BEER SHEVA, ISRAEL; BEN GURION UNIV NEGEV, FAC HLTH SCI, DEPT NEUROSURG, IL-84105 BEER SHEVA, ISRAEL; BEN GURION UNIV NEGEV, ZLOTOWSKI CTR NEUROSCI, IL-84105 BEER SHEVA, ISRAEL ISRAEL

COUNTRY OF AUTHOR:

CHEMICO-BIOLOGICAL INTERACTIONS, (14 MAY 1999) Vol. 120, SOURCE:

pp. 349-360.

Publisher: ELSEVIER SCI IRELAND LTD, CUSTOMER RELATIONS MANAGER, BAY 15, SHANNON INDUSTRIAL ESTATE CO, CLARE,

IRELAND.

ISSN: 0009-2797. Article; Journal

FILE SEGMENT: LIFE
LANGUAGE: English
REFERENCE COUNT: 42

DOCUMENT TYPE:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Cholinesterase inhibitors (anti-ChEs) include a wide range of therapeutic, agricultural and warfare agents all aimed to inhibit the catalytic activity of the acetylcholine (ACh) hydrolysing enzyme acetylcholinesterase (AChE). In addition to promoting immediate excitation of cholinergic neurotransmission through transient elevation of synaptic ACh levels, anti-ChEs exposure is associated with long-term effects reminiscent of post-traumatic stress disorder. This suggested that exposure to anti-ChEs leads to persistent changes in brain proteins and called for exploring the mechanism(s) through which such changes could occur. For this purpose, we established an in vitro system of perfused, sagittal mouse brain slices which sustains authentic transcriptional responses for over 10 h and enables the study of gene regulation under controlled exposure to anti-ChEs. Slices were exposed to either organophosphate or cabamate anti-ChEs, both of which induced within 10 min excessive overexpression of the mRNA. encoding the immediate early response transcription factor c-Fos. Twenty minutes later we noted 8-fold increases over control levels in AChE mRNA, accompanied by a 3-fold decrease in the mRNAs encoding for the ACh synthesizing enzyme choline acetyltranferase (ChAT) and the vesicular ACh transporter (VAChT). No changes were detected in synaptophysin mRNA levels. These modulations in gene expression paralleled those taking place under in vivo exposure. Of particular concern is the possibility that feedback processes leading to elevated levels of brain AChE may be similarly associated with low-level exposure to common organophosphorous anti-cholinesterases, and lead to long-term deleterious changes in cognitive functions. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.

L15 ANSWER 27 OF 42 MEDLINE on STN DUPLICATE 11

ACCESSION NUMBER: 1999371187 MEDLINE DOCUMENT NUMBER: PubMed ID: 10443587

TITLE: Pathophysiological implications of the structural

organization of the excitatory synapse.

AUTHOR: Cattabeni F; Gardoni F; Di Luca M

CORPORATE SOURCE: Institute of Pharmacological Sciences, School of Pharmacy,

University of Milan, Italy.

SOURCE: European journal of pharmacology, (1999 Jun 30) 375 (1-3)

339-47. Ref: 72

Journal code: 1254354. ISSN: 0014-2999.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199910

ENTRY DATE: Entered STN: 19991026

Last Updated on STN: 19991026 Entered Medline: 19991008

AB The glutamatergic synapse is the key structure in the development of activity-dependent synaptic plasticity in the central nervous system. The analysis of the complex biochemical mechanisms at the basis of the long-term changes in synaptic efficacy have received a tremendous impulse by the observation that the post-synaptic constituents of the synapse can be separated and purified through a simple procedure involving detergent treatment of synaptosomes and differential centrifugation. In this fraction, called post-synaptic density (PSD), the functional interactions of its constituents are preserved. The various subunits of ionotropic glutamate receptors are held in register with the presynaptic active zone through their interaction with linker proteins. N-methyl-D-aspartate (NMDA) subunits NR2A and NR2B, bind to the PSD protein called PSD-95, which in turn binds neuroligins, providing a handle for

interacting with neurexin, located in the plasma membrane at the presynaptic active zone. Additional clustering of NMDA receptors is provided through the binding of NRI subunits to the cytoskeletal protein alpha-actinin-2. AMPA (alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid) and kainate receptors are other important constituents of PSDs and bind to different anchoring proteins. Phosphorylation processes have long been known to modulate NMDA receptor functional activity: the finding that several protein kinases, particularly Ca2+/Calmodulin-dependent protein kinase II and protein tyrosine kinases of the src family, are major constituents of PSDs has allowed to demonstrate that these enzymes are localized in a strategic position of the glutamatergic synapse, so that their activation provides a means for NMDA receptor function regulation upon its activation. The relevance of these mechanisms has been demonstrated in experimental models of pathologies involving deficits in synaptic plasticity, such as in streptozotocin-induced diabetes and in an animal model of prenatal induced ablation of hippocampal neurons. Both animal models display disturbances in long-term potentiation and cognitive deficits, thus providing in vivo models to study pathology related changes in both the structure and the function of the excitatory synapse.

L15 ANSWER 28 OF 42 MEDLINE on STN DUPLICATE 12

ACCESSION NUMBER: 2000017969 MEDITNE DOCUMENT NUMBER: PubMed ID: 10548487

TITLE: nRap GEP: a novel neural GDP/GTP exchange protein for rap1

small G protein that interacts with synaptic scaffolding

molecule (S-SCAM).

AUTHOR: Ohtsuka T; Hata Y; Ide N; Yasuda T; Inoue E; Inoue T;

Mizoguchi A; Takai Y

CORPORATE SOURCE:

Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine,

Suita, 565-0871, Japan.

SOURCE: Biochemical and biophysical research communications, (1999

Nov) 265 (1) 38-44.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: Enalish

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199912

ENTRY DATE: Entered STN: 20000113

Last Updated on STN: 20000113 Entered Medline: 19991217

Synaptic scaffolding molecule (S-SCAM) has six PDZ domains through which it interacts with N-methyl-d-aspartate receptors and neuroligin at synaptic junctions. We isolated here a novel S-SCAM-binding protein. This protein has one PDZ, one Ras association, one Ras $\ensuremath{\mathsf{GDP}}/\ensuremath{\mathsf{GTP}}$ exchange protein (Ras GEP) domain, and one C-terminal consensus motif for binding to PDZ domains. We named it nRap GEP (neural Rap GEP). nRap GEP moreover has an incomplete cyclic AMP (cAMP)-binding (CAB) domain. The domain organization of nRap GEP is similar to that of Epac/cAMP-quanine nucleotide exchange factor (GEF) I, except that Epac/cAMP-GEFI has complete CAB and Ras GEP domains but lacks the other two domains and the C-terminal motif. nRap GEP showed GEP activity for Rap1 but did not bind cAMP. nRap GEP was specifically expressed in rat brain. Immunohistochemical analysis revealed that nRap GEP and S-SCAM were localized at synaptic areas of the cerebellum. These results suggest that nRap GEP is a novel neural Rap1-specific GEP which is associated with S-SCAM.

Copyright 1999 Academic Press.

L15 ANSWER 29 OF 42 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

ACCESSION NUMBER: 1999:38480 SCISEARCH

THE GENUINE ARTICLE: 151KR

TITLE: Neurexophilin binding to alpha-neurexins - A single LNS

domain functions as an independently folding

ligand-binding unit

AUTHOR: Missler M; Hammer R E; Sudhof T C (Reprint)

CORPORATE SOURCE: UNIV TEXAS, SW MED SCH, HOWARD HUGHES MED INST, RM Y5-322,

5323 HARRY HINES BLVD, DALLAS, TX 75235 (Reprint); UNIV TEXAS, SW MED SCH, HOWARD HUGHES MED INST, DALLAS, TX

75235; UNIV TEXAS, SW MED SCH, CTR BASIC NEUROSCI, DALLAS, TX 75235; UNIV TEXAS, SW MED SCH, DEPT MOL GENET, DALLAS, TX 75235; UNIV TEXAS, SW MED SCH, DEPT BIOCHEM, DALLAS, TX

75235

COUNTRY OF AUTHOR: USA

SOURCE:

JOURNAL OF BIOLOGICAL CHEMISTRY, (25 DEC 1998) Vol. 273,

No. 52, pp. 34716-34723.

Publisher: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC,

9650 ROCKVILLE PIKE, BETHESDA, MD 20814.

TSSN: 0021-9258. Article; Journal

DOCUMENT TYPE: FILE SEGMENT:

LIFE

LANGUAGE:

English

REFERENCE COUNT:

34

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS alpha-Neurexins (I alpha, II alpha, and III alpha) are receptor-like proteins expressed in hundreds of isoforms on the neuronal cell surface. The extracellular domains of alpha-neurexins are composed of six LNS repeats, named after homologous sequences in the Laminin A G domain, Neurexins, and Sex hormone-binding globulin, with three interspersed epidermal growth factor-like domains. Purification of neurexin I alpha revealed that it is tightly complexed to a secreted glycoprotein called neurexophilin 1, Neurexophilin 1 is a member of a family of at least four genes and resembles a neuropeptide, suggesting a function as an endogenous ligand for alpha-neurexins, We have now used recombinant proteins and knockout mice to investigate which isoforms and domains of different neurexins and neurexophilins interact with each other. We show that neurexophilins 1 and 3 but not 4 (neurexophilin 2 is not expressed in rodents) bind to a single individual LNS domain, the second overall LNS domain in all three alpha-neurexins, Although this domain is alternatively spliced, all splice variants bind, suggesting that alternative splicing does not regulate binding, Using homologous recombination to disrupt the neurexophilin 1 gene, we generated mutant mice that do not express detectable neurexophilin 1 mRNA, Mice lacking neurexophilin 1 are viable with no obvious morbidity or mortality. However, homozygous mutant mice exhibit male sterility, probably because homologous recombination resulted in the co-insertion into the neurexophilin gene of herpes simplex virus thymidine kinase, which is known to cause male sterility. In the neurexophilin 1 knockout mice, neurexin I alpha is complexed with neurexophilin 3 but not neurexophilin 4, suggesting that neurexophilin 1 is redundant with neurexophilin 3 and that neurexophilins 1 and 3 but not 4 bind to neurexins, This hypothesis was confirmed using expression experiments, Our data reveal that the six LNS and three epidermal growth factor domains of neurexins are independently folding ligand-binding domains that may interact with distinct targets, The results support the notion that neurexophilins represent a family of extracellular signaling molecules that interact with multiple receptors including all three alpha-neurexins.

L15 ANSWER 30 OF 42 MEDLINE on STN DUPLICATE 13

ACCESSION NUMBER: 1998361985 MEDITNE DOCUMENT NUMBER: PubMed ID: 9694864

TITLE: A novel multiple PDZ domain-containing molecule interacting

with N-methyl-D-aspartate receptors and neuronal cell

adhesion proteins.

AUTHOR: Hirao K; Hata Y; Ide N; Takeuchi M; Irie M; Yao I; Deguchi

M; Toyoda A; Sudhof T C; Takai Y

CORPORATE SOURCE: Takai Biotimer Project, ERATO, Japan Science and Technology

Corporation, c/o JCR Pharmaceuticals Co. Ltd., 2-2-10

Murotani, Nishi-ku, Kobe 651-2241, Japan.

SOURCE: Journal of biological chemistry, (1998 Aug 14) 273 (33)

21105-10.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-AF034863

ENTRY MONTH:

ENTRY DATE: Entered STN: 19980925

Last Updated on STN: 19980925

Entered Medline: 19980914

At synaptic junctions, pre- and postsynaptic membranes are connected by cell adhesion and have distinct structures for specialized functions. The presynaptic membranes have a machinery for fast neurotransmitter release, and the postsynaptic membranes have clusters of neurotransmitter receptors. The molecular mechanism of the assembly of synaptic junctions is not yet clear. Pioneering studies identified postsynaptic density (PSD)-95/SAP90 as a prototypic synaptic scaffolding protein to maintain the structure of synaptic junctions. PSD-95/SAP90 belongs to a family of membrane-associated guanylate kinases and binds N-methyl-D-aspartate receptors, potassium channels, and neuroligins through the PDZ domains and GKAP/SAPAP/DAP through the guanylate kinase (GK) domain. We performed here a yeast two-hybrid screening for SAPAP-interacting molecules and identified a novel protein that has an inverse structure of membrane-associated quanγlate kinases with an NH2-terminal GK-like domain followed by two WW and five PDZ domains. It binds SAPAP through the GK-like domain and NMDA receptors and neuroligins through the PDZ domains. We named this protein S-SCAM (synaptic scaffolding molecule) because S-SCAM may assemble receptors and cell adhesion proteins at synaptic junctions.

L15 ANSWER 31 OF 42 MEDLINE on STN DUPLICATE 14

ACCESSION NUMBER: 1999030673 MEDLINE DOCUMENT NUMBER: PubMed ID: 9811904

TITLE: Functional redundancy of acetylcholinesterase and

neuroligin in mammalian neuritogenesis.

AUTHOR: Grifman M; Galyam N; Seidman S; Soreg H

CORPORATE SOURCE: Department of Biological Chemistry, Institute of Life

Sciences, Hebrew University of Jerusalem, 91904, Jerusalem,

Israel.

SOURCE: Proceedings of the National Academy of Sciences of the

United States of America, (1998 Nov 10) 95 (23) 13935-40.

Journal code: 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-AF087945

ENTRY MONTH: 199812

ENTRY DATE: Entered STN: 19990115

Last Updated on STN: 19990115 Entered Medline: 19981216

Accumulated evidence attributes noncatalytic morphogenic activitie(s) to acetylcholinesterase (AChE). Despite sequence homologies, functional overlaps between AChE and catalytically inactive AChE-like cell surface adhesion proteins have been demonstrated only for the Drosophila protein neurotactin. Furthermore, no mechanism had been proposed to enable signal transduction by AChE, an extracellular enzyme. Here, we report impaired neurite outgrowth and loss of neurexin Ialpha mRNA under antisense suppression of AChE in PC12 cells (AS-ACHE cells). Neurite growth was partially rescued by addition of recombinant AChE to the solid substrate or by transfection with various catalytically active and inactive AChE variants. Moreover, overexpression of the homologous neurexin I ligand, neuroligin-1, restored both neurite extension and expression of neurexin Ialpha. Differential PCR display revealed expression of a novel gene, nitzin, in AS-ACHE cells. Nitzin displays 42% homology to the band 4.1 protein superfamily capable of linking integral membrane proteins to the cytoskeleton. Nitzin mRNA is high throughout the developing nervous system, is partially colocalized with AChE, and increases in rescued AS-ACHE cells. Our findings demonstrate redundant neurite growth-promoting activities for AChE and neuroligin and implicate interactions of AChE-like proteins and neurexins as potential mediators of cytoarchitectural changes supporting neuritogenesis.

L15 ANSWER 32 OF 42 MEDLINE on STN DUPLICATE 15

ACCESSION NUMBER: 1998421784 MEDLINE
DOCUMENT NUMBER: PubMed ID: 9751164
TITLE: The making of neurexins.

AUTHOR: Missler M; Fernandez-Chacon R; Sudhof T C

CORPORATE SOURCE: Department of Molecular Genetics and Howard Hughes Medical

Institute, University of Texas Southwestern Medical Center,

Dallas 75235, USA.

CONTRACT NUMBER:

R01-MH52804 (NIMH)

SOURCE:

Journal of neurochemistry, (1998 Oct) 71 (4) 1339-47. Ref:

Journal code: 2985190R. ISSN: 0022-3042.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

(REVIEW, TUTORIAL)

LANGUAGE:

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

English 199810

ENTRY DATE:

Entered STN: 19981021

Last Updated on STN: 19981021 Entered Medline: 19981014

Neurexins are neuronal cell-surface proteins with up to thousands of isoforms. These isoforms are generated by alternative splicing of transcripts from six promoters in three genes. The structure of neurexins resembles cell-surface receptors with a modular architecture suggestive of a sequential assembly during evolution. Neurexins probably perform multiple functions in the brain. They participate in intercellular junctions in which beta-neurexins tightly bind to a second class of neuronal cell-surface receptors called neuroligins. Intracellularly, the neurexin/neuroligin junction is bound by CASK on the neurexin side and PSD95 on the neuroligin side. CASK and PSD95 are homologous membrane-associated guanylate kinases that bind to the neurexin/neuroligin junction via PDZ domains, creating an asymmetric junction (neurexin/neuroligin) with similar intracellular binding partners. In addition to a function as cell-adhesion molecules, neurexins may also serve as a signalling receptor, because a class of ligands for alpha-neurexins called neurexophilins is similar to peptide hormones. Finally, at least one neurexin isoform, neurexin Ialpha, represents a high-affinity receptor for alpha-latrotoxin, which is a potent excitatory neurotoxin. Thus, neurexins constitute a large family of neuronal receptors that may be involved in multiple interactive functions between neurons.

L15 ANSWER 33 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1999:40371 CAPLUS

DOCUMENT NUMBER:

130:106672 Calcium binding and oligomerization of

neuroligin 1

AUTHOR(S):

CORPORATE SOURCE:

Matsumura, Takehiko Sch. Med., Yokohama City Univ., Yokohama, 236-0004,

Japan

SOURCE:

TITLE:

Yokohama Igaku (1998), 49(5), 843-849

CODEN: YKIGAK; ISSN: 0372-7726 Yokohama-shiritsu Daigaku Igakkai Journal

DOCUMENT TYPE:

Japanese

PUBLISHER: LANGUAGE:

> Neuroligins are neuronal specific cell adhesion mols. binding to .beta.-neurexins. I have developed a stable cell line expressing recombinant sol. Neuroligin 1 (NL1) with an N-terminal FLAG

epitope (DYKDDDDK) and a stop codon inserted before the transmembrane region. Recombinant NL1 was purified with affinity chromatog, and gel filtration. Calcium binding assays revealed that NL1 has a high affinity calcium binding site (Kd = .apprx.0.3 .mu.M). In addn., my results have shown that NL1 forms oligomers by chem. crosslinking.

L15 ANSWER 34 OF 42 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:262912 CAPLUS

DOCUMENT NUMBER:

TITLE:

Metal binding motifs in cholinesterases and

neuroligins: Structural comparison

AUTHOR(S):

Tsigelny, Igor; Matsumura, Takehiko; Sudhof, Thomas;

Taylor, Palmer

CORPORATE SOURCE:

Dept. of Pharmacology, University of California, La

Jolla, CA, 92093-0636, USA

SOURCE:

Structure and Function of Cholinesterases and Related Proteins, [International Meeting on Cholinesterases and Related Proteins], 6th, La Jolla, CA, Mar. 20-24,

1998 (1998), 407-412. Editor(s): Doctor, Bhupendra P.

Plenum Publishing Corp.: New York, N. Y.

CODEN: 68VDA8 Conference

DOCUMENT TYPE: LANGUAGE:

English

AB Using the crystal structure templates for Torpedo californica and mouse acetylcholinesterases, we created a homol. model of **neuroligin**.

The .alpha.-.beta. hydrolase fold characteristic of cholinesterase family

reveals that the two mols. possess a common structural core with substantial residue identity and the divergences in sequence and structure appear mainly at the tips of the solvent-exposed loops. Although neuroligin lacks an active center serine at the homologous

position, other features such as a gorge leading to the active center appear to be present in **neuroligin**. Using the Hidden Markov Model presentation, we find a putative EF-hand Ca2+ binding region in **neuroligin** between residues 409 and 437. This corresponds to the

homologous region between residues 331 and 359 in Torpedo acetylcholinesterase and is the region of Zn2+ binding in the acetylcholinesterase crystals. Created Hidden Markov Models reveal that the EF-hand regions may be subdivided into extracellular and intracellular types, a distinction which may reflect the large differences in free Ca2+ in extracellular and intracellular locations. The majority of EF-hand proteins fall into the intracellular group, but extracellular EF-hand proteins are represented by **neuroligin**, osteonectin and

REFERENCE COUNT:

THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 35 OF 42 MEDLINE on STN DUPLICATE 16

ACCESSION NUMBER: 1998313406 MEDLINE DOCUMENT NUMBER: PubMed ID: 9647694

acetylcholinesterase.

DOCUMENT NUMBER: PubMed ID: 9647694

TITLE: CIPP, a novel multivalent PDZ domain protein, selectively

interacts with Kir4.0 family members, NMDA receptor

subunits, neurexins, and neuroligins.

AUTHOR: Kurschner C; Mermelstein P G; Holden W T; Surmeier D J

CORPORATE SOURCE: Department of Developmental Neurobiology, Saint Jude

Children's Research Hospital, Memphis, Tennessee, 38105,

USA.. cornelia.kurschner@stjude.org

CONTRACT NUMBER: P30 CA21765 (NCI)

SOURCE: Molecular and cellular neurosciences, (1998 Jun) 11 (3)

161-72.

Journal code: 9100095. ISSN: 1044-7431.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-AF060539

ENTRY MONTH: 199807

ENTRY DATE: Entered STN: 19980731

Last Updated on STN: 19980731 Entered Medline: 19980723

We report a novel multivalent PDZ domain protein, CIPP (for channel-interacting PDZ domain protein), which is expressed exclusively in brain and kidney. Within the brain, the highest CIPP mRNA levels were found in neurons of the cerebellum, inferior colliculus, vestibular nucleus, facial nucleus, and thalamus. Furthermore, we identified the inward rectifier K+ (Kir) channel, Kir4.1 (also called "Kir1.2"), as a cellular CIPP ligand. Among several other Kir channels tested, only the closely related Kir4.2 (or "Kir1.3") also interacted with CIPP. In addition, specific PDZ domains within CIPP associated selectively with the C-termini of N-methyl-D-aspartate subtypes of glutamate receptors, as well as neurexins and neuroligins, cell surface molecules enriched in synaptic membranes. Thus, CIPP may serve as a scaffold that brings structurally diverse but functionally connected proteins into close proximity at the synapse. The functional consequences of CIPP expression on Kir4.1 channels were studied using whole-cell voltage clamp techniques in Kir4.1 transfected COS-7 cells. On average, Kir4.1 current densities were doubled by cotransfection with CIPP. Copyright 1998 Academic Press.

ACCESSION NUMBER: 97467410 MEDLINE

DOCUMENT NUMBER: PubMed ID: 9325340

Binding properties of **neuroligin** 1 and neurexin TITLE:

lbeta reveal function as heterophilic cell adhesion

molecules.

AUTHOR: Nguyen T; Sudhof T C

CORPORATE SOURCE: Department of Molecular Genetics and Howard Hughes Medical

Institute, University of Texas Southwestern Medical Center,

Dallas, Texas 75235, USA.

CONTRACT NUMBER: RO1-MH52804 (NIMH)

Journal of biological chemistry, (1997 Oct 10) 272 (41) SOURCE:

26032-9.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199711

Entered STN: 19971224 ENTRY DATE:

Last Updated on STN: 19971224

Entered Medline: 19971113 AB beta-Neurexins and neuroligins are plasma membrane proteins that

are displayed on the neuronal cell surface. We have now investigated the interaction of neurexin 1beta with neuroligin 1 to evaluate

their potential to function as heterophilic cell adhesion molecules.

Using detergent-solubilized neuroligins and secreted neurexin

lbeta-IgG fusion protein, we observed binding of these proteins to each other only in the presence of Ca2+ and in no other divalent cation tested.

Only neurexin 1beta lacking an insert in splice site 4 bound neuroligins, whereas neurexin lbeta containing an insert was

inactive. Half-maximal binding required 1-3 microM free Ca2+, which

probably acts by binding to neuroligin 1 but not to neurexin

lbeta. To determine if neurexin lbeta and neuroligin 1 can also

interact with each other when present in a native membrane environment on

the cell surface, we generated transfected cell lines expressing

neuroligin 1 and neurexin 1beta. Upon mixing different cell

populations, we found that cells aggregate only if cells expressing neurexin lbeta are mixed with cells expressing neuroligin 1.

Aggregation was dependent on Ca2+ and was inhibited by the addition of

soluble neurexin lbeta lacking an insert in splice site 4 but not by the addition of neurexin lbeta containing an insert in splice site 4. We

conclude that neurexin 1beta and neuroligin 1 (and, by extension, other beta-neurexins and neuroligins) function as

heterophilic cell adhesion molecules in a Ca2+-dependent reaction that is

regulated by alternative splicing of beta-neurexins.

L15 ANSWER 37 OF 42 MEDLINE on STN DUPLICATE 18

ACCESSION NUMBER: 97368339 MEDLINE DOCUMENT NUMBER: PubMed ID: 9223334

TITLE: Acetylcholinesterase-transgenic mice display embryonic

> modulations in spinal cord choline acetyltransferase and neurexin Ibeta gene expression followed by late-onset

neuromotor deterioration.

AUTHOR: Andres C; Beeri R; Friedman A; Lev-Lehman E; Henis S;

Timberg R; Shani M; Soreq H

CORPORATE SOURCE: Department of Biological Chemistry, The Hebrew University

of Jerusalem, 91904 Israel.

SOURCE: Proceedings of the National Academy of Sciences of the

United States of America, (1997 Jul 22) 94 (15) 8173-8.

Journal code: 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199708

ENTRY DATE: Entered STN: 19970908

> Last Updated on STN: 19980206 Entered Medline: 19970827

To explore the possibility that overproduction of neuronal acetylcholinesterase (AChE) confers changes in both cholinergic and morphogenic intercellular interactions, we studied developmental responses

to neuronal AChE overexpression in motoneurons and neuromuscular junctions of AChE-transgenic mice. Perikarya of spinal cord motoneurons were consistently enlarged from embryonic through adult stages in AChE-transgenic mice. Atypical motoneuron development was accompanied by premature enhancement in the embryonic spinal cord expression of choline acetyltransferase mRNA, encoding the acetylcholine-synthesizing enzyme choline acetyltransferase. In contrast, the mRNA encoding for neurexin-Ibeta, the heterophilic ligand of the AChE-homologous neuronal cell surface protein neuroligin, was drastically lower in embryonic transgenic spinal cord than in controls. Postnatal cessation of these dual transcriptional responses was followed by late-onset deterioration in neuromotor performance that was associated with gross aberrations in neuromuscular ultrastructure and with pronounced amyotrophy. These findings demonstrate embryonic feedback mechanisms to neuronal AChE overexpression that are attributable to both cholinergic and cell-cell interaction pathways, suggesting that embryonic neurexin Ibeta expression is concerted in vivo with AChE levels and indicating that postnatal changes in neuronal AChE-associated proteins may be involved in late-onset neuromotor pathologies.

L15 ANSWER 38 OF 42 MEDLINE on STN DUPLICATE 19

ACCESSION NUMBER: 97426629 MEDLINE

DOCUMENT NUMBER: PubMed ID: 9278515

TITLE: Binding of neuroligins to PSD-95.

AUTHOR: Irie M; Hata Y; Takeuchi M; Ichtchenko K; Toyoda A; Hirao

K; Takai Y; Rosahl T W; Sudhof T C

CORPORATE SOURCE: Takai Biotimer Project, ERATO, Japan Science and Technology

Corporation, 2-2-10, Murotani, Nishi-ku, Kobe, 651-22,

Japan.

CONTRACT NUMBER: RO1-MH52804 (NIMH)

SOURCE: Science, (1997 Sep 5) 277 (5331) 1511-5.

Journal code: 0404511. ISSN: 0036-8075.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199709

ENTRY DATE: Entered STN: 19971008

Last Updated on STN: 19971008

Entered Medline: 19970922

AB PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions.

Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.

L15 ANSWER 39 OF 42 MEDLINE on STN DUPLICATE 20

ACCESSION NUMBER: 97067187 MEDLINE DOCUMENT NUMBER: PubMed ID: 8910589

TITLE: Identifying differential gene expression in

monoterpene-treated mammary carcinomas using subtractive

display.

AUTHOR: Ariazi E A; Gould M N

CORPORATE SOURCE: Department of Human Oncology, University of

Wisconsin-Madison, Madison, Wisconsin 53792, USA..

gould@humonc.wisc.edu

CONTRACT NUMBER: R37-CA38128 (NCI)

SOURCE: Journal of biological chemistry, (1996 Nov 15) 271 (46)

29286-94.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH:

199701

ENTRY DATE:

Entered STN: 19970128

Last Updated on STN: 19970128 Entered Medline: 19970107

AB Monoterpene-induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method termed subtractive display. The subtractive display screen identified 42 monoterpene-induced genes comprising 9 known genes and 33 unidentified genes, as well as 58 monoterpene-repressed genes comprising 1known gene and 57 unidentified genes. Several of the identified differentially expressed genes are involved in the mitoinhibitory transforming growth factor beta signal tranduction pathway, as demonstrated by isolation of the mannose 6-phosphate/insulin-like growth factor II receptor and the transforming growth factor beta type II receptor. The monoterpene-induced/repressed genes indicate that apoptosis and differentiation act in concert to effect carcinoma regression. Apoptosis is suggested by the cloning of a marker of programmed cell death, lipocortin 1. Consistent with a differentiation/remodeling process occurring during tumor regression, subtractive display identified YWK-II and neuroligin 1. Thus far, of the cDNAs putatively identified as differentially expressed in this complex in situ carcinoma model, 5 were tested, and each one has been confirmed to be differentially expressed. Additionally, many of the identified known genes are expressed as rare transcripts and exhibit small but significant changes in abundance. Together, these points demonstrate the unique utility of this new gene expression screen to identify altered gene expression in a complex in vivo environment.

L15 ANSWER 40 OF 42 MEDLINE on STN DUPLICATE 21

ACCESSION NUMBER: 96162010 MEDLINE DOCUMENT NUMBER: PubMed ID: 8576240

TITLE:

Structures, alternative splicing, and neurexin binding of

multiple neuroligins.

AUTHOR: Ichtchenko K; Nguyen T; Sudhof T C

Department of Molecular Genetics, University of Texas CORPORATE SOURCE:

Southwestern Medical Center, Dallas 75235, USA.

CONTRACT NUMBER: RO1-MH52804 (NIMH)

SOURCE:

Journal of biological chemistry, (1996 Feb 2) 271 (5)

2676-82.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-U41662; GENBANK-U41663

ENTRY MONTH: 199603

ENTRY DATE: Entered STN: 19960321

Last Updated on STN: 19960321 Entered Medline: 19960312

Neuroligin 1 is a neuronal cell surface protein that binds to a subset of neurexins, polymorphic cell surface proteins that are also localized on neurons (Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., and Sudhof, T. C. (1995) Cell 81, 435-443). We now describe two novel neuroligins called neuroligins 2 and 3 that are similar in structure and sequence to neuroligin 1. All neuroligins contain an N-terminal hydrophobic sequence with the characteristics of a cleaved signal peptide followed by a large esterase homology domain, a highly conserved single transmembrane region, and a short cytoplasmic domain. The three neuroligins are alternatively spliced at the same position and are expressed at high levels only in brain. Binding studies demonstrate that all three neuroligins bind to beta-neurexins both as native brain proteins and as recombinant proteins. Tight binding of the three neuroligins to beta-neurexins is observed only for beta-neurexins lacking an insert in splice site 4. Thus, neuroligins constitute a multigene family of brain-specific proteins with distinct isoforms that may have overlapping functions in mediating recognition processes between neurons.

L15 ANSWER 41 OF 42 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN ACCESSION NUMBER: 1996:256821 BIOSIS

DOCUMENT NUMBER:

PREV199698812950

TITLE:

Identification of induced/repressed genes in

monoterpene-treated regressing rat mammary carcinomas using

subtractive display.

AUTHOR(S):

Ariazi, E. A.; Gould, M. N.

CORPORATE SOURCE: SOURCE:

Dep. Human Oncology, UW-Madison, Madison, WI, USA Proceedings of the American Association for Cancer Research

Annual Meeting, (1996) Vol. 37, No. 0, pp. 398-399. Meeting Info.: 87th Annual Meeting of the American Association for Cancer Research. Washington, D.C., USA.

April 20-24, 1996. ISSN: 0197-016X.

DOCUMENT TYPE:

Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

Conference; (Meeting Poster)

LANGUAGE:

English

ENTRY DATE:

Entered STN: 31 May 1996

Last Updated on STN: 31 May 1996

L15 ANSWER 42 OF 42

MEDLINE on STN

DUPLICATE 22

ACCESSION NUMBER: DOCUMENT NUMBER:

95254653 MEDLINE

TITLE:

PubMed ID: 7736595 Neuroligin 1: a splice site-specific ligand for

beta-neurexins.

AUTHOR:

Ichtchenko K; Hata Y; Nguyen T; Ullrich B; Missler M;

Moomaw C; Sudhof T C

CORPORATE SOURCE:

Department of Molecular Genetics, University of Texas

Southwestern Medical Center at Dallas 75235, USA.

CONTRACT NUMBER:

R01-MH52804 (NIMH)

SOURCE:

Cell, (1995 May 5) 81 (3) 435-43.

Journal code: 0413066. ISSN: 0092-8674.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT: OTHER SOURCE:

Priority Journals GENBANK-U22952

ENTRY MONTH:

199506

ENTRY DATE:

Entered STN: 19950615

Last Updated on STN: 19960129

Entered Medline: 19950607

Neurexins are neuronal cell surface proteins with hundreds of isoforms generated by alternative splicing. Here we describe neuroligin 1, a neuronal cell surface protein that is enriched in synaptic plasma membranes and acts as a splice site-specific ligand for beta-neurexins. Neuroligin 1 binds to beta-neurexins only if they lack an insert in the alternatively spliced sequence of the G domain, but not if they contain an insert: The extracellular sequence of neuroligin 1 is composed of a catalytically inactive esterase domain homologous to acetylcholinesterase. In situ hybridization reveals that alternative splicing of neurexins at the site recognized by neuroligin 1 is highly regulated. These findings support a model whereby alternative splicing of neurexins creates a family of cell surface receptors that confers interactive specificity onto their resident neurons.