INF01 118

Técnicas Digitais para Computação

Contadores

Aula 22

1. Introdução

• contador = registrador que passa por seqüência de estados quando são aplicados pulsos de entrada

É uma FSM em que as únicas saídas são os estados a única entrada é o pulso de contagem

- sequência de estados
 - Sequência de números binários contador binário
 - Qualquer outra seqüência contador BCD outros códigos seqüências arbitrárias (1,2,3,5,7...)
- necessidade de lógica combinacional para controlar sequência de contagem
- tipos de contadores
 - "Ripple Counters" transição de um FF serve para disparar transição do próximo (assíncronos)
 - "Contadores Síncronos" todos os FF's são carregados simultaneamente pelo clock

2. Contador ripple binário

Supondo FF's sensíveis à transição negativa do sinal do controle

Também possível com FF's tipo T

JK Mestre-escravo ou sensível à borda do relógio

J K	Qn
0 0	Qn
0 1	1
10	0
11	Qn

• como J = K = 1 em todos os FF's

- cada transição negativa da entrada C causa complemento do FF
- portanto

```
cada transição negativa de P \implies S0 complementado S0 \implies S1 S1 \implies S2 S2 \implies S3
```

• sequência de estados

•

para contar para baixo

- alternativa 1 pegar saídas complementadas dos FF's como saídas do contador
- alternativa 2 usar FF's sensíveis à transição positiva do sinal de controle (C)

- alternativa 3 - ligar saída Q de cada FF à entrada C do FF seguinte transição negativa de P (ou Qi) causa complemento de Qi + 1

 http://www.playhookey.com/digital/ripple_counter.html

3. Contador síncrono binário

- Como J0 = K0 = 1 no primeiro FF, cada transição do clock (positiva ou negativa, à escolha) causa complemento de S0
- Quando S0 = 1 \longrightarrow J1 = K1 = 1, próxima transição do clock causa complemento de S1
- Quando S0 = 1 e S1 = 1 \longrightarrow J2 = K2 = 2, próxima transição do clock complementa S2

seqüência de valores

S2	S 1	S 0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
•		

http://www.play-
 hookey.com/digital/synchronous_counter.html

Projeto de um contador síncrono binário

B) Tabela de Estados

Est. Atual Próx. Est. Eq. Entrada

S2	S1	S0	S2	S1	S0	T2	T1	T0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1
						l		

Transição de um estado para outro (devido ao relógio) e a condição de entrada (se houver)

Depende da implementação, se for com ffp do tipo JK ou T, ou ffp do tipo D

C) Projeto com FF's tipo T

C.1 Equações de entrada dos FF's

- 1 indica "tem que complementar"
- 0 indica " não precisa complementar "

C.2 Mapas de Karnaugh

$$T_2 = S_1.S_0$$

$$T_1 = S_0$$

$$T_0 = 1$$

O resultado é o circuito já mostrado

D) Projeto com FF's tipo D

D.1 Equação de entrada dos FF's

Iguais aos valores de próximo estado (Q = D no FF tipo D)

D.2 Mapas de Karnaugh

$$D2 = S_{2}\overline{S_{1}} + S_{2}\overline{S_{0}} + \overline{S_{2}}S_{1}S_{0}$$
S2 S1 S0
1 0 X

ou seja, D2 =1 quando
1 X 0
0 1 1

$$D1 = \overline{S_1} S_0 + S_1 \overline{S_0}$$
ou seja, D1 = 1 quando
$$X \quad 0 \quad 1$$

$$X \quad 1 \quad 0$$

$$\mathbf{D0} = \overline{\mathbf{S0}} \\
\text{ou seja, D0} = 1 \text{ quando} \\
\mathbf{X} \quad \mathbf{X} \quad \mathbf{0}$$

equações mais complexas com o uso de FF's tipo D

4. Contadores módulo N

Para m flip-flops, supor um circuito que conte até $N < 2^m - 1$, ou seja, que não use todos os 2^m estados possíveis

exemplo: contador até 5

Tabela de Estados e Equações de entrada para FF's tipo T

Estado			Próximo			Equação		
Atual			Estado			Entrada T		
S ₂	S 1	$\mathbf{S0}$	S2	S 1	S 0	T2	T 1	T ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	0	1	0	1
1	1	0	X	X	X	X	X	X
1	1	1	X	X	X	X	X	X
			K					

Devido aos estados não usados

Mapa de Karnaugh

$$T_2 = S_1S_0 + S_2S_0 = S_0(S_1 + S_2)$$

$$T_1 = S_0 \overline{S}_2$$

Implementação do contador de módulo 5 (contador até 5)

Contador binário up/down

Contador up/down com carga paralela

5. Contador BCD

Conta de 0 a 9 e então reinicia contagem. Lógica combinacional detecta quando a contagem chega a 9.

Contador BCD para cima

Contador BCD up/down

D = 0 \longrightarrow contagem para cima (UP)

D = 1 **c**ontagem para baixo (DOWN)

6. Contador Johnson (Mobius)

8 estados possíveis, muda só um bit em cada transição de estado, útil para evitar hazards

Outros exemplos

http://www.play-hookey.com/digital/johnson_counter.html

• http://www.play-hookey.com/digital/frequency_dividers.html