Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

Experiment No. 4
Apply Random Forest Algorithm on Adult Census Income
Dataset and analyze the performance of the model
Date of Performance:
Date of Submission:

Department of Computer Engineering

Aim: Apply Random Forest Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Able to perform various feature engineering tasks, apply Random Forest Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting.

The below diagram explains the working of the Random Forest algorithm:

Department of Computer Engineering

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information: Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

Department of Computer Engineering

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male. capital-gain: continuous. capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

import pandas as pd import

seaborn as sns import numpy

as np import

matplotlib.pyplot as plt

Department of Computer Engineering

from sklearn.preprocessing import LabelEncoder

from sklearn.tree import DecisionTreeClassifier from

sklearn.ensemble import RandomForestClassifier

from sklearn.linear model import LogisticRegression

from sklearn.naive bayes import GaussianNB

from sklearn.model_selection import train test split,cross val score,KFold,GridSearchCV

from sklearn.metrics import confusion_matrix,classification_report,accuracy_score

import scikitplot as skplt

dataset=pd.read csv("../input/adult.csv"

) print(dataset.isnull().sum())

print(dataset.dtypes) dataset.head()

	age	workclass	folwgt	education	education.num	marital status	occupation	relationship	race	sex	capital,gain	capital.loss	hours.per.week
0	90	7	77053	HS-grad	9	Widowed	7	Not-in- family	White	Female	0	4356	40
1	82	Private	132870	HS-grad	9	Widowed	Exec- managenal	Not-in- family	White	Female	0	4356	18
2	66	7	186061	Some- college	10	Widowed	7	Unmarried	Black	Female	0	4356	49
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried		Female	0	3900	40
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	49
_				2533.50			250000000						

(A)

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

dataset = dataset[(dataset != '?').all(axis=1)]
dataset['income']=dataset['income'].map({'<=50K': 0, '>50K': 1})
sns.catplot(x='education.num',y='income',data=dataset,kind='bar
',height=6) plt.show()

sns.catplot(x='marital.status',y='income',data=dataset,kind='bar',height=8)
plt.show()

Department of Computer Engineering

sns.catplot(x='relationship',y='income',data=dataset,kind='bar',size=7) plt.show()

Department of Computer Engineering

dataset['marital.status']=dataset['marital.status'].map({'Married-civ-spouse':'Married', 'Divorced':'Single', 'Never-married':'Single',

'Separated':'Single','Widowed':'Single', 'Married-spouse-absent':'Married', 'Married-AF-spouse':'Married'})

for column in dataset:

enc=LabelEncoder() if

dataset.dtypes[column]==np.object:

dataset[column]=enc.fit_transform(da

taset[column])

Department of Computer Engineering

plt.figure(figsize=(14,10))

sns.heatmap(dataset.corr(),annot=Tru

e,fmt='.2f') plt.show()

dataset=dataset.drop(['relationship','education'],axis=1)

dataset=dataset.drop(['occupation','fnlwgt','native.country'],axis=1)

X=dataset.iloc[:,0:-1] y=dataset.iloc[:,-1]

 $x_train, x_test, y_train, y_test=train_test_split(X, y, test_size=0.33, shuffle=False)$

Department of Computer Engineering

```
) clf=RandomForestClassifier(n_estimators=100)

cv_res=cross_val_score(clf,x_train,y_train,cv=10)

clf=RandomForestClassifier(n_estimators=50,max_features=5,min_samples_le af=50)

clf.fit(x_train,y_train) pred=clf.predict(x_test)

print("Accuracy: %f" % (100*accuracy_score(y_test, pred)))
```

Accuracy: 85.011051

Department of Computer Engineering

Conclusion:

- 1. State the observations about the data set from the correlation heat map.
- For Adult Census Income Dataset from the heatmap "education" and "education.num" are highly correlated, same can be said about the "marital.status" and "relationship" thus, we can drop "relationship" and "education".
- 2. Accuracy, confusion matrix, precision, recall and F1 score obtained.

Accuracy:	85.	011051			
		precision	recall	f1-score	support
	0	0.87	0.95	0.91	7942
	1	0.70	0.45	0.55	2012
micro	avg	0.85	0.85	0.85	9954
macro	avg	0.79	0.70	0.73	9954
weighted	avg	0.84	0.85	0.84	9954

- 3. Compare the results obtained by applying random forest and decision tree algorithm on the Adult Census Income Dataset.
- ➤ Generally the Random Forest Algorithm is more accurate than Decision Tree Algorithm but, by tunning hyper-parameters and determining the right combinations of parameters in Decision Tree we are the to achieve the accuracy of nearly 84 which is extremely close to Random Forest accuracy:(85.01) in Adult Census Income Dataset.