Mise en réseau & Sécurisation

sene.mohamed@gmail.com
malick.likou@gmail.com

Programme du cours

Configuration de VLANs

Administration de Parefeu Linux

Quelques notions de réseau

Virtual Local Area Network

Abstraction des contraintes physiques ou géographiques dans la mise en réseau

Permet:

- De constituer autant de réseaux logiques que l'on souhaite
- Plusieurs types de port (ACCESS & TRUNKING)
- D'avoir les mêmes caractéristiques que sur un réseau physique

VLAN par port

- Avantages
 - Aucun paquet ne quitte son VLAN
 - Sécurité maximale entre VLANs

- Inconvénient
 - Obligation d'avoir un plan de réseau à jour

VLAN par port

VLAN par @MAC

- Avantage
 - Adapté pour l'utilisation des stations portables

- Inconvénients
 - Configuration fastidieuse : définition d'une table de correspondance
 - Possibilité d'usurpation d'@MAC

VLAN par @MAC

Autres types de VLAN

Vlan par protocole

L'appartenance d'une trame à un VLAN est déterminée par le protocole.

Vlan par sous-réseaux

un VLAN par sous réseau utilise les adresses IP. Un réseau virtuel est associé à chaque sous réseau IP.

Etc...

Commandes utiles

help: affiche les informations d'aide complètes

Les commandes de gestion des Vlan

vlan/create N : Création du Vlan N.

vlan/addport N port : assigne le port au vlan N comme une liaison

d'agrégation (trunk)

vlan/print: affiche la description des Vlans.

Les commandes de gestion des ports

port/setvlan N VLAN : assigne le port N au Vlan.

port/print : affiche la description des ports du switch.

Commandes utiles

```
Ajout des interfaces Virtuelles
# vconfig add eth0 1
Added VLAN with VID == 1 to IF -:eth0:-
La commande suivante permet de visualiser la nouvelle interface virtuelle créée.
ifconfig -a
vconfig add eth0 1
Configuration des interfaces virtuelles
Les interfaces virtuelles se configurent comme les interfaces réelles :
# ifconfig eth0.1 192.168.0.1/24 up
ou dans le fichier /etc/nertwork/interfaces:
auto eth0.1
iface eth0.1 inet static
address 192.168.0.1
netmask 255.255.255.0
```

Pourquoi?

Protéger un réseau local, un environnement, un Système d'information

Comment?

- Filtre les paquets IP, les segments TCP et/ou les datagrammes UDP
- Par NAT : Translation d'@IP/port, Masque d'@IP
- Log des action de filtrage et de NAT

Netfilter

Filtre à paquets intégrer au noyau Linux

iptables

Permet d'orchestrer ce filtrage plus facilement via des chaines :

- INPUT les paquets entrants à destination de l'hôte

OUTPUT les paquets sortants dont la source est l'hôte

- **FORWARD** les paquets en transit (entrants ou sortants) sur l'hôte

Iptables : les tables de filtrage

- filter

permet le filtrage des paquets en acceptant ou en rejetant les paquets

- nat

permet la translation d'@IP

- mangle

modifie les entêtes des paquets

Iptables : les options de filtrage

- -L Affiche toutes les règles de la table indiquée
- -F Supprime toutes les règle de la table sauf la politique par défaut
- -P Modifie la politique par défaut
- -A Ajoute une règle à la fin de la table spécifiée
- -I Insère la règle avant celle indiquée
- -D Supprime une règle

Iptables : les actions de filtrage

ACCEPT

les paquets passent et s'achemine correctement vers la destination

- DROP

rejets des paquets

- REJECT

Refus du paquet, envoi d'un message de refus à l'émetteur

- LOG

Enregistrement d'un message dans /var/log/messages

Exemples de commandes iptables

- iptables -t filter -F INPUT
- iptables -t filter -P OUTPUT DROP
- iptables -t filter -F REJECT
- iptables -t filter -A INPUT --source 172.18.1.1 -d 172.18.1.254 --protocol ICMP -i eth1 --jump REJECT
- iptables -t filter -A INPUT -j LOG --log-prefix local
- iptables -L