```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
iris = load_iris()

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

★ dir(iris) — Inspecting Available Attributes and Methods

```
In [2]:
        dir(iris)
        ['DESCR',
Out[2]:
          'data',
          'data_module',
          'feature_names',
          'filename',
          'frame',
          'target',
          'target names']
In [3]: iris.feature_names
        ['sepal length (cm)',
Out[3]:
          'sepal width (cm)',
          'petal length (cm)',
          'petal width (cm)']
        df = pd.DataFrame(iris.data, columns = iris.feature_names)
In [4]:
```

Out[4]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	•••				
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
In [5]: df['target'] = iris.target
df
```

Out[5]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••					
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
In [6]: iris.target_names
Out[6]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
In [7]: df['flower_name'] = df.target.apply(lambda x: iris.target_names[x])
In [8]: df</pre>
```

Out[8]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
•••					•••	
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

Splitting the Dataset by Iris Species

```
In [9]: df0 = df[df.target==0]
    df1 = df[df.target==1]
    df2 = df[df.target==2]
```

In [10]: df0.head()

Out[10]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa

In [11]: df1.head()

Out[11]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	50	7.0	3.2	4.7	1.4	1	versicolor
	51	6.4	3.2	4.5	1.5	1	versicolor
	52	6.9	3.1	4.9	1.5	1	versicolor
	53	5.5	2.3	4.0	1.3	1	versicolor
	54	6.5	2.8	4.6	1.5	1	versicolor

Out[12]:

In [12]: df2.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
100	6.3	3.3	6.0	2.5	2	virginica
101	5.8	2.7	5.1	1.9	2	virginica
102	7.1	3.0	5.9	2.1	2	virginica
103	6.3	2.9	5.6	1.8	2	virginica
104	6.5	3.0	5.8	2.2	2	virginica

Scatter Plot of Sepal Length vs Sepal Width by Species

```
In [13]: plt.scatter(df0['sepal length (cm)'],df0['sepal width (cm)'], color='green',ma
    plt.scatter(df1['sepal length (cm)'],df1['sepal width (cm)'], color='blue', ma
    plt.xlabel('sepal length (cm)')
    plt.ylabel('sepal width (cm)')
```

Out[13]: Text(0, 0.5, 'sepal width (cm)')

Scatter Plot of petal Length vs petal Width by Species

```
In [14]: plt.scatter(df0['petal length (cm)'],df0['petal width (cm)'],color='green',mark
plt.scatter(df1['petal length (cm)'],df1['petal width (cm)'],color='blue',mark
plt.xlabel('petal length (cm)')
plt.ylabel('petal width (cm)')
```

```
Out[14]: Text(0, 0.5, 'petal width (cm)')
```


Freparing Features and Labels for Machine Learning

```
In [15]: X = df.drop(['flower_name','target'],axis=1)
y = df['target']
```

Splitting the Dataset into Training and Testing Sets

```
In [16]: X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8)
In [17]: len(X_train)
Out[17]: 120
In [18]: len(X_test)
Out[18]: 30
```

Training a Support Vector Machine (SVM) Classifier What SVM does:

It tries to find the best hyperplane that separates the classes in the feature space.

By default, it uses the RBF (Radial Basis Function) kernel, which can handle non-linear boundaries.

```
In [19]: model = SVC()
```

```
model.fit(X_train, y_train)
```

```
Out[19]: ▼ SVC()
```

Evaluating the Model Accuracy on Test Data

```
In [20]: model.score(X_test, y_test)

Out[20]: 0.966666666666667
```

Training SVM with Regularization Parameter C=10 SVC(C=10) creates a Support Vector Classifier with a regularization parameter C set to 10. .

What does C do? C controls the trade-off between maximizing the margin and minimizing classification error:

Higher C (like 10) \rightarrow Less tolerance for misclassification \rightarrow tries to fit the training data more strictly.

Lower C (like 0.1) \rightarrow More tolerant of misclassifications \rightarrow allows a wider margin.

```
In [22]: model_1.score(X_test, y_test)
```

SVC(C=10)

Training SVM with gamma=10 (Kernel Parameter) .

What does gamma do? gamma controls the influence of a single training point in the decision boundary:

Higher gamma \rightarrow More influence from each individual training point \rightarrow creates a more complex decision boundary (can lead to overfitting).

Lower gamma \rightarrow Each point has less influence \rightarrow creates a simpler, smoother decision boundary (can lead to underfitting).

```
In [23]: model_2 = SVC(gamma=10)
model_2.fit(X_train, y_train)
```

```
Out[23]: ▼ SVC
SVC(gamma=10)
```

```
In [24]: model_2.score(X_test, y_test)
Out[24]: 0.9
```

Training SVM with a Linear Kernel

★ What does kernel='linear' mean? The linear kernel assumes that the data is linearly separable, meaning that a straight line (or hyperplane) can divide the classes in the feature space.

This is effective when the data is already well-separated or nearly linear.

What is Logistic Regression?Logistic Regression is a probabilistic model used to predict class probabilities and is often used for binary classification. The model outputs a probability score between 0 and 1, representing the likelihood of belonging to a class.

```
In [27]: model = LogisticRegression()
In [28]: model.fit(X_train, y_train)

/opt/conda/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py:458:
    ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(

Out[28]: v LogisticRegression
    LogisticRegression()
```

What is a Confusion Matrix? A confusion matrix is a table used to evaluate the performance of a classification model. It provides the following:

True Positives (TP): Correctly predicted positive samples.

True Negatives (TN): Correctly predicted negative samples.

False Positives (FP): Incorrectly predicted as positive.

False Negatives (FN): Incorrectly predicted as negative.

For multi-class classification (like the iris dataset), it will be a square matrix where:

Rows represent the true class.

Columns represent the predicted class.

★ Why use a Heatmap? A heatmap is a great way to visualize the confusion matrix because it makes it easy to see: Which classes are most frequently misclassified. The distribution of errors across classes.

```
In [31]: plt.figure(figsize=(7,5))
    sns.heatmap(confusion_m, annot=True)
    plt.xlabel('predicted')
    plt.ylabel('Truth')

Out[31]: Text(58.222222222222214, 0.5, 'Truth')
```


★ Why use a Classification Report? The classification report provides a more comprehensive view of your model's performance across each class: Precision is important when false positives are costly. Recall is important when false negatives are costly. F1-score balances precision and recall, which is useful when you need a single metric for model performance.

In [32]:	print(classif	fication_repo	rt(y_test	y_pred))		
		precision	recall	f1-score	support	
	0	1.00	1.00	1.00	11	
	1	1.00	0.82	0.90	11	
	2	0.80	1.00	0.89	8	
	accuracy			0.93	30	
	macro avg	0.93	0.94	0.93	30	
	weighted avg	0.95	0.93	0.93	30	

Classification ReportThe classification report shows key metrics for each class (0, 1, and 2), as well as overall accuracy and averages.

Class-wise Metrics: Class 0 (Setosa):

Precision: 1.00 – Every prediction of class 0 is correct.

Recall: 1.00 – All actual class 0 instances were correctly predicted.

F1-score: 1.00 – Perfect balance between precision and recall.

Support: 12 – There are 12 instances of class 0 in the test set.

Class 1 (Versicolor):

Precision: 1.00 – All predictions for class 1 are correct.

Recall: 0.91 – 91% of the actual class 1 instances were correctly predicted.

F1-score: 0.95 – High balance between precision and recall.

Support: 11 – There are 11 instances of class 1.

Class 2 (Virginica):

Precision: 0.88 – 88% of predicted class 2 instances are correct.

Recall: 1.00 – All actual class 2 instances were correctly predicted.

F1-score: 0.93 – Good balance between precision and recall.

Support: 7 – There are 7 instances of class 2.

```
In [33]: y_test.shape
```

Out[33]: (30,)

Accuracy

```
In [34]: round((12+10+7)/(12+10+1+7),2)
```

Out[34]: 0.97

Precision for 1 class

```
In [35]: round(10/(10+0),2)
```

Out[35]: 1.

In [36]: round(7/(7+1),2)

Out[36]: 0.88

Recall mean total Truth

```
In [37]: round(10/(10+1),2)
```

Out[37]: 0.91

In [38]: round(12/(12+0),2)

```
Out[38]: 1.0
```

F1-Score

2((precision.recall)/(precision+recall))

```
In [39]: round(2*(1*0.91)/(1+0.91),2)
Out[39]: 0.95
In [40]: round(2*(0.88*1)/(0.88+1),2)
Out[40]: 0.94
```

✓ Interpretation: The model has performed excellently with an overall accuracy of 97%. Class 1 has a slightly lower recall (0.91), meaning some instances of Versicolor were misclassified. The F1-scores are close to perfect for all classes, indicating a good balance between precision and recall.

```
In []:
```