Prácticas Inteligencia de Negocio

Sergio Quijano Rey - 72103503k sergioquijano@correo.ugr.es 5º Doble Grado Ingeniería Informática y Matemáticas Grupo de prácticas 1

5 de noviembre de 2021

Índice

1.	Intr	roducción	4
	1.1.	Información general	4
	1.2.	Heart Failure Prediction	5
2.	Res	ultados Obtenidos	10
	2.1.	Consideraciones iniciales	10
	2.2.	Heart Failure Prediction	11
3.	Refe	erencias	18
Ín	dic	e de figuras	
	1.	Workflow de más alto nivel para el primer dataset	5
	2.	Workflow de Análisis Exploratorio de Datos para el primer $dataset$	6
	3.	Distribución de la variable sexo. A izquierda, los hombres. A la derecha, las mujeres. Es claro que tenemos muchos más hombres que mujeres en nuestra población	6
	4.	Distribución de la variable RestingBP. Podemos ver claramente cómo se acumula más hacia la derecha.	7
	5.	Matriz de correlaciones lineales. Un color azul significa correlación lineal positiva, y un color rojo significa correlación lineal negativa	7
	6.	Boxplots de algunas de las variables con las que trabajamos. Queda claro que tenemos outliers (sabiendo que están alejados de la media más de 3 veces la desviación típica). Por tanto, tendremos que tratar de alguna forma estos outliers	8
	7.	Gráficas de todas las posibles combinaciones de dos variables de nuestro dataset	8
	8.	Resultado de aplicar PCA en dos dimensiones, coloreando cada punto según la clase a la que pertenecen	9
	9.	Workflow en el que realizamos todos los Cross Validation de los algoritmos considerados	11
	10.	$Workflow$ en el que realizamos todos los $Cross\ Validation$ de los algoritmos considerados, con algo de $zoom$ para que se aprecie mejor la estructura desarrollada	11
	11.	Nodo de Cross Validation para AdaBoost	12
	12.	Preprocesamiento de los datos del <i>fold</i> de <i>training</i>	12

13.	Preprocesamiento de los datos del fold de test	13
14.	Nodo de procesamiento de la salida de Custom Cross Validation	14
15.	Preprocesado general previo a probar Redes Neuronales simples	14
16.	Nodo de Cross Validation para Neural Net	15
17.	Procesado de la salida de Neural Net	15
18.	Preprocesado general previo a probar Support Vector Machine	16
19.	Nodo de Cross Validation para Support Vector Machine	16
20.	Preprocesado general previo a probar $Support\ Vector\ Machine$ con normalización. Esto es lo único que cambia respecto al modelo anterior: SVM sin normalización	16
21.	Preprocesado general previo a probar $K\text{-}NN$	17
22.	Nodo de Cross Validation para K-NN	17

1. Introducción

En esta sección hablaremos de cada uno de los problemas abordados, tratando las particularidades de cada caso y algunas consideraciones en base a estas peculiaridades tratadas.

1.1. Información general

En todas las partes en las que necesitemos usar números aleatorios, usaremos la semilla 123456789 para poder reproducir bajo las mismas condiciones los experimentos y para que las comparaciones entre los distintos algoritmos sean lo más justas posible. En los siguientes subapartados, introduciremos los distintos problemas a tratar, sus características y problemas que puedan plantear.

En todos los datasets hemos usado la misma estructura jerárquica apoyándonos en los metanodos de KNIME. Esta estructura busca una mayor limpieza en el "c'odigo". Dicha estructura se va a ir vislumbrando a lo largo de las secciones de estas memorias, donde incluiremos capturas de pantalla de los distintos workflows desarrollados.

1.2. Heart Failure Prediction

En primer lugar, la fuente original del dataset se puede encontrar en [1]. Aunque podemos estar trabajando con un dataset ligeramente modificado por los profesores de la asignatura, al igual que con el resto de datasets que estudiaremos en esta práctica.

En la propia página de la que se obtiene el dataset [1], se especifica que la tarea a resolver para este dataset es "Create a model to assess the likelihood of a possible heart disease event. This can be used to help hospitals in assessing the severity of patients with cardiovascular diseases". Es decir, nuestra tarea es generar un modelo de clasificación para predecir, con los datos de entrada dados, si un paciente puede desarrollar algún problema de tipo cardiaco.

En el siguiente apartado, pasamos a comentar las particularidades de este *dataset*, información que hemos extraído con el análisis exploratorio hecho en KNIME:

1.2.1. Análisis Exploratorio de los Datos

Realizamos un pequeño $Análisis\ Exploratorio\ Inicial\ (EDA)$ de los datos usando las herramientas que nos proporciona KNIME.

Como ya comentábamos en "1.2. Heart Failure Prediction", buscamos predecir si una persona tendrá problemas de tipo cardiaco. Por tanto, la variable de salida con la que vamos a trabajar es HeartDisease. Consideraremos, por su mayor relevancia, como clase positiva, a la clase 1.

Lo primero que vemos es que tenemos 12 variables (11 variables de entrada más la variable de salida) y 918 filas (y por tanto, 918 ejemplos).

El workflow de mayor nivel, para este primer dataset, se muestra en la siguiente figura:

Figura 1: Workflow de más alto nivel para el primer dataset

La parte que ahora nos interesa es la de Análisis Exploratorio de Datos, que mostramos en la siguiente figura:

Figura 2: Workflow de Análisis Exploratorio de Datos para el primer dataset

Empezamos con el nodo de estadísticas, que nos muestra que tenemos 410 ejemplos para la clase de salida 0 y 508 para la clase 1. Por tanto tenemos un ligero desbalanceo ($44.66\,\%$ para la clase 0 y $55.34\,\%$ para la clase 1), pero en este dataset no vamos a tratar dicho desbalanceo. En futuros datasets nos vamos a encontrar con clases mucho más desbalanceadas.

Dentro del anterior nodo vemos las distribuciones de las otras variables con las que trabajamos, sin llegar a conclusiones de gran relevancia, salvo razonamientos del tipo hay una característica que predomina en un valor sobre el otro valor en la población, o la población tiene una distribución de la variable normal o con cierta asimetría hacia un lado. Ejemplo de característica que predomina se muestra en la siguiente figura:

Figura 3: Distribución de la variable sexo. A izquierda, los hombres. A la derecha, las mujeres. Es claro que tenemos muchos más hombres que mujeres en nuestra población.

Esta información puede ser utilizada de forma experta en nuestros sistemas automáticos.

Sin embargo, por una cuestión de tiempo, no realizamos un ajuste tan a fondo de los modelos que vamos a generar (sobre todo teniendo en cuenta que practicar esto para los cuatro *datasets* es inviable. En otros *datasets* realizaremos una selección de variables usando otras técnicas).

Ejemplo de una distribución con cierta asimetría se muestra a continuación:

Figura 4: Distribución de la variable RestingBP. Podemos ver claramente cómo se acumula más hacia la derecha.

De nuevo, esta información es interesante para plantear los modelos de aprendizaje automático de una forma mucho más concienzuda, pero por la extensión de la práctica en técnicas y aspectos a tener en cuenta, no entramos en detalle en este aspecto.

Lo siguiente que hacemos en el Análisis Exploratorio de Datos es mostrar la matriz de correlaciones lineales, que presentamos a continuación:

corr = -1 corr = +1 corr = n/a	, j	Sex	C::	곱 :	C	<u>:</u>	Д :	Ξ.	<u>:</u> Ш	0	.: S	Ξ.
Age												
Sex												
ChestPainType												
RestingBP												
Cholesterol												
FastingBS												
RestingECG												
MaxHR												
ExerciseAngina												
Oldpeak												
ST_Slope												
HeartDisease												

Figura 5: Matriz de correlaciones lineales. Un color azul significa correlación lineal positiva, y un color rojo significa correlación lineal negativa.

Vemos algunas variables correladas. Las más interesantes son el grupo que forman las variables MaxHR ExerciseAngina, Oldpeak, ST_Slope y la variable de salida HeartDisease. Sabiendo que estas variables están muy correladas, y que una de ellas es la variable de salida, podríamos probar a construir los modelos predictivos en base a este grupo de variables. Por tanto, estamos justificando el interés de que, más adelante, probemos a eliminar ciertas filas empleando esta matriz de correlaciones, y ver cómo afecta esto al rendimiento de nuestros modelos.

Mostramos ahora los *boxplots* de algunas variables, para ver que tenemos ciertos valores *outliers*:

Figura 6: Boxplots de algunas de las variables con las que trabajamos. Queda claro que tenemos outliers (sabiendo que están alejados de la media más de 3 veces la desviación típica). Por tanto, tendremos que tratar de alguna forma estos outliers

También hacemos plots de todas las combinaciones posibles entre dos variables, obteniendo la siguiente gráfica:

Figura 7: Gráficas de todas las posibles combinaciones de dos variables de nuestro dataset

De nuevo, como ya comentábamos para "3. Distribución de la variable sexo. A izquierda, los hombres. A la derecha, las mujeres. Es claro que tenemos muchos más hombres que mujeres en nuestra población.", podemos extraer de esta gráfica algunas conclusiones sobre la distribución de las variables y algunas relaciones que, por simpleza del problema y por falta de tiempo, no vamos a incluir en nuestro modelo.

En último lugar, probamos a aplicar PCA al dataset para obtener solo dos variables de entrada junto con la variable de salida, buscando sacar alguna información de alto nivel del problema. Esta técnica busca transformar el conjunto de datos con nuevas variables, de modo que estas variables no estén correlacionadas entre sí manteniendo el máximo posible de la varianza del conjunto de datos original. Este procedimiento se apoya en la descomposición en valores propios de la matriz de covarianzas [2]. Mostramos las dos variables obtenidas usando PCA, coloreando cada punto del plano 2D según a la clase a la que pertenecen:

Figura 8: Resultado de aplicar PCA en dos dimensiones, coloreando cada punto según la clase a la que pertenecen

Los resultados obtenidos no nos invitan a usar PCA para usarlo como base a modelos de aprendizaje automático. Sin embargo es interesante que se ha obtenido una línea a la izquierda con clara predominancia de la clase representada por el color azul, mientras que a la derecha se obtiene un *clúster* ligeramente circular donde los datos de las dos clases están mezclados sin un patrón claro (quizás la clase roja tiene mayor predominancia en la parte superior). Estamos seguros de que aplicando PCA con dimensiones mayores obtendríamos un buen *performance* en los modelos de aprendizaje automático. Pero como para otros *datasets* es más interesante aplicar esta técnica, lo dejamos para más adelante.

En último lugar, tratamos los *missing values*. En el *workflow* de más alto nivel, hacemos una primera aproximación al tratamiento de los *missing values*. Tratamos de borrar todas las filas que contengan *missing values*, pero no borramos ninguna fila. En un principio pensamos que no tenemos *missing values* en este *dataset*. Sin embargo, explorando la colección de datos comprobamos el siguiente hecho: la variable Cholesterol contiene *missing values* codificados con el valor 0. Para tratar estos *missing values*, en *Cross Validation* los marcaremos como tal, y los trataremos convenientemente en cada nodo de validación (para evitar hacer *data snooping*). Entraremos en detalles más adelante.

El nodo que usamos para realizar esta comprobación sobre los *missing values* se muestra en el *workflow* general que aparece en "1. Workflow de más alto nivel para el primer dataset".

2. Resultados Obtenidos

2.1. Consideraciones iniciales

Para esta práctica, hemos considerado 7 modelos de aprendizaje automático distintos, que puedan ser interesantes para los cuatro problemas a los que nos vamos a enfrentar. Algunos de estos modelos pueden tener muy poco sentido para algún problema concreto. Sin embargo, elegimos los mismo 7 modelos para los 4 datasets, porque esto nos permitirá realizar una comparación entre ellos en distintos ambientes. De hecho, el que algunos modelos no tengan sentido en ciertas situaciones será una buena conclusión a extraer en el análisis posterior.

Los modelos considerados son:

- 1. Árbol de decisión construido con AdaBoost
- 2. Red Neuronal Simple
- 3. Support Vector Machine
- 4. Support Vector Machine con normalización
- 5. K-NN
- 6. Naive Bayes
- 7. Random Forest

Pensamos que con estos modelos tenemos una variedad suficiente para comparar en situaciones diferentes. Además, todos los modelos tienen sentido para al menos uno de los datasets con los que vamos a trabajar.

En este proceso, usaremos un nodo al que llamamos *Custom Cross Validation*. Este nodo tiene la misma base que el nodo de KNIME *Cross Validation*. Sin embargo, añadimos dos nodos, uno para preprocesar el *fold* de entrenamiento y otro para aplicar dicho preprocesado al *test*, sin hacer *data snooping*. Es decir, las operaciones se calculan y aplican con *training*, y se aplican en *test* usando el cálculo realizado sobre *training*.

2.2. Heart Failure Prediction

En primer lugar, tenemos un *metanodo* para encapsular todo el trabajo con los 7 algoritmos que hemos considerado. Este *metanodo* se mostraba en el *workflow* más general en "1. Workflow *de más alto nivel para el primer* dataset". Dentro de este nodo para *Cross Validation* tenemos la siguiente estructura:

Figura 9: Workflow en el que realizamos todos los $Cross\ Validation$ de los algoritmos considerados

Mostramos una captura con mayor *zoom* para que se vea claramente la estructura generada, dejando sin mostrar alguna de las filas correspondientes a algunos de los 7 modelos estudiados:

Figura 10: Workflow en el que realizamos todos los Cross Validation de los algoritmos considerados, con algo de zoom para que se aprecie mejor la estructura desarrollada

Mostramos el contenido del nodo Custom Cross Validation para AdaBoost. Este nodo Custom Cross Validation tiene ciertas diferencias como ya hemos mencionado en "2.1. Consideraciones iniciales":

Figura 11: Nodo de Cross Validation para AdaBoost

Mostramos ahora el nodo para preprocesamiento en training:

Figura 12: Preprocesamiento de los datos del fold de training

Mostramos ahora el nodo para preprocesamiento en test:

Figura 13: Preprocesamiento de los datos del fold de test

En "13. Preprocesamiento de los datos del fold de test" queda claro lo que ya comentábamos, preprocesamos usando los parámetros de procesamiento calculados sobre el fold de training. Esto es fundamental para evitar hacer data snooping.

Además, de ahora en adelante, salvo que se diga lo contrario, estos dos nodos de preprocesamiento serán exactamente los mismos en todos los nodos de *Custom Cross Validation*, en todos los *dataset*, salvo que se indique lo contrario.

Como se muestra en "10. Workflow en el que realizamos todos los Cross Validation de los algoritmos considerados, con algo de zoom para que se aprecie mejor la estructura desarrollada", estamos pasando la salida de Custom Cross Validation a un nodo de procesamiento, que mostramos a continuación:

Figura 14: Nodo de procesamiento de la salida de Custom Cross Validation

En este nodo, tomamos la salida del scorer y la procesamos, tomando las métricas para la clase positiva y añadiendo el área debajo de la curva ROC. Además, calculamos la fórmula de la métrica G-Mean. También devolvemos las probabilidades en bruto para poder calcular las curvas ROC globales.

Se muestra también que estamos usando una flow variable para establecer el nombre del modelo cuyos resultados estamos procesando. Esto es útil para que en las tablas globales, cada fila esté etiquetada por el nombre del modelo que estamos tratando (esto es lo que consigue el nodo *Change Row Name*).

De nuevo, salvo que se diga lo contrario, todos los nodos de este tipo son idénticos.

Mostramos ahora el workflow para redes neuronales simples. Realizamos un preprocesado general básico antes de usar nuestro nodo Custom Cross Validation que mostramos en la siguiente figura:

Figura 15: Preprocesado general previo a probar Redes Neuronales simples

Con esto queda claro que lo único que estamos realizando es pasar todas las variables categóricas a numéricas, pues esto es un requerimiento de las redes neuronales para que puedan funcionar. Mostramos el nodo de *Custom Cross Validation* para este caso:

Figura 16: Nodo de Cross Validation para Neural Net

En este caso no estamos normalizando las variables, lo cual puede generar resultados no óptimos (pues las redes neuronales se benefician mucho de que las variables de entrada estén normalizadas. De hecho en deep learning se usa batch normalization para normalizar las salidas entre capas ocultas). Por simpleza del modelo no hacemos esta normalización para el dataset, pero en siguientes datasets sí que haremos la normalización.

La salida de las redes neuronales suponen un caso concreto que tratar. La red neuronal no nos da la clasificación directamente, sino un valor $x \in [0,1]$. Tenemos que tratar la salida a mano. Para ello duplicamos la salida de este valor x que representa la probabilidad de clasificación que usaremos para las curvas ROC. En una de las dos ramas, colapsamos ese valor al conjunto $\{0,1\}$ redondeando, y consideramos eso la salida de clasificación. Mostramos ese proceso, que se hace en el nodo de $Procesado\ Salida\ NN$, en la siguiente figura:

Figura 17: Procesado de la salida de Neural Net

Con esto, usamos el nodo que procesa la salida de *Cross Validation* que ya hemos mostrado previamente, y que no volvemos a mostrar para evitar ser repetitivos.

Mostramos ahora el preprocesado general para Support Vector Machine. Consiste en pasar a variables numéricas todas las variables menos la de salida, que debe ser de tipo categórica:

Figura 18: Preprocesado general previo a probar Support Vector Machine

Mostramos ahora el nodo Custom Cross Validation para este modelo:

Figura 19: Nodo de Cross Validation para Support Vector Machine

En este caso, nos aseguramos de nuevo que estamos usando variables numéricas para las variables de entrada. En este dataset, usamos los nodos de KNIME para SVM. En otros datasets donde la eficiencia sea clave, pasaremos a usar los nodos de Weka que aparentemente funcionan de forma más rápida.

En el caso de *Supoort Vector Machine* con normalización, lo único que cambiamos es el preprocesado general que aplicamos antes de *Custom Cross Validation*. Mostramos esto a continuación:

Figura 20: Preprocesado general previo a probar $Support\ Vector\ Machine\ con\ normalización.$ Esto es lo único que cambia respecto al modelo anterior: SVM sin normalización

Mostramos ahora el preprocesado general para K-NN. K-NN tiene que trabajar con todas las variables de entrada en formato numérico, y esto es lo que hacemos:

Figura 21: Preprocesado general previo a probar K-NN

Dentro del nodo de $Custom\ Cross\ Validation\$ lo que hacemos es, de nuevo asegurar que tenemos las variables en el formato correcto, y formatear la salida de K-NN para que el nodo $X\text{-}Aggregator\$ pueda funcionar correctamente. Mostramos esto a continuación:

Figura 22: Nodo de Cross Validation para K-NN

3. Referencias

- [1] "Heart failure prediction dataset kaggle." https://www.kaggle.com/fedesoriano/heart-failure-prediction. (Accessed on 11/05/2021).
- [2] "A step-by-step explanation of principal component analysis (pca) built in." https://builtin.com/data-science/step-step-explanation-principal-component-analysis. (Accessed on 11/05/2021).