

Objectives:

- Dataset is the high frequency price of some asset collected from several exchanges.
- Predicting Price onto time:
 - What would be the price at a certain time period?
 - Price is the independent Variable (y)
 - Time is the dependent Variable (time index is assumed as a dependent variable) 'X'
- Used Linear Regression method and Non-Parametric method for projecting the price of the asset.

Agenda:

- Naive Linear Regression Method:
 - Projecting vector P_x onto model space C(X)
 - If X has a full rank, $P_x = H = X(X'X)^{-1}X'$
 - The projection matrix P_x is symmetric and idempotent
 - Model fit $\hat{\mu} = p_x y = \hat{\beta} x$ is the orthogonal projection of y into C(X)

- Fourier Transformed Radial Basis Support Vector Regression:
 - Model Assumption:
 - Instead of assuming SSE is due to some omitted variable, here I am assuming SSE is due to the Hibbert space noise and used Fourier transformation to filter out the noise and extract the true signal.

Linear Regression method

Regression Problem

- $T = \{(x_1, y_1), \dots, (x_i, y_n)\}, \text{ where } x_1 \in \mathbb{R}^n, y_i \in \mathbb{Y} = \mathbb{R}, i = 1, 2, \dots n\}$
- Find the real function f(x) in R^n .
- When f(x) is restricted to be a linear function then the corresponding problem is defined as linear regression problem:

$$y = f(x) = x\beta + \epsilon$$

• $y|x \sim N(\mu(x), \sigma^2 I)$

• Objective: Minimize SSE i.e $||y - x\beta||^2$ where,

•
$$\widehat{\boldsymbol{\beta}} = (x'x)^{-|}x'y$$

•
$$E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$

•
$$Var(\widehat{\beta}) = \sigma(x'x)^{-|}$$

• Accuracy:
$$R^2 = \frac{\sum (y_i - \overline{y})^2 - \sum (y_i - \widehat{y_i})^2}{\sum (y_i - \overline{y})^2}$$
 i.e $\frac{SST - SSE}{SST}$

• Prediction error: **RSME** =
$$\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{N}}$$

Observation:

count	25011.000000
mean	182.523932
std	0.191680
min	182.080000
25%	182.370000
50%	182.590000
75%	182.610000
max	182.940000

Observation Cont:

- For simplicity I assume normal distribution
 - i.e. the f(x) is continuous and normally distributed.

- Under normality, $\hat{\beta}_{lm} = \hat{\beta}_{Glm}$, even normal distribution happened to be exponential family distributions. (proof at appendix)
- Running an OLS and GLM is identical, However OLS is computationally cheaper.
 - $y = \alpha + x\beta + \epsilon$

Model Result:

Is beta coefficient Biased?

• Null : $H_0 = \mathbf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$

• Alternative: $H_1 = \mathbf{E}(\widehat{\boldsymbol{\beta}}) \neq \boldsymbol{\beta}$

• T-test: $t = \frac{\overline{y} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$

========	coef	std err	t	P> t	[0.025	0.975]
const	182.7865	0.001	1.23e+05	0.000	182.784	182.789
x1	-2.1e-05	1.03e-07	-204.503	0.000	-2.12e-05	-2.08e-05

- Larger values of |t| provide stronger evidence against H0.
- At a 5% significance level, we reject the null hypothesis, indicating that there is evidence to suggest bias in the estimated coefficient β . We express 95% confidence in this conclusion.
- Can it be better?

Extending linear regression;

• From Linear Regression problem T = $\{(x_1, y_1), \dots, (x_i, y_n)\}$

Introduce:

- transformation $x = \mathcal{P}(x)$
- kernel $k(x, x') = (\varphi(x) \cdot \varphi(x'))$
- decision function = (w.x) + b

Objective:

- maximize flatness
- minimize deviation

Linear Support Vector Regression:

- Established by converting linear regression problem to linear classification problems (refer appendix).
- Find a real function for training set $T = \{(x_1, y_1),, (x_i, y_n)\}$, where $x_1 \in \mathbb{R}^n$, $y_i \in y = R$, i = 1, 2, ...n
- When g(x) is restricted to be a linear function y = g(x) = (w.x) + b, the corresponding problem is the linear regression problem.
- In the naive linear regression model, the objective is:
 - Minimize $||y x\beta||^2$
- However, support Support Vector provides some flexibility.
 - Hard Margin Hyper plain (Similar to the naive linear regression model)
 - Soft Margin Hyper plain (violates the naive linear regression model)

Linear Support Vector Regression

- Soft-margin Hyper plain Linear Support Vector Regression:
 - o Introduce 3 parameters;

 - C is a penalty for violation
 - ∈ insensitive loss function:
 - $\bullet \quad l_{\in}(\mathbf{y},\mathbf{wx}) = \begin{cases} 0 & \text{, if } |y_i wx_i| \leq \varepsilon \\ |y_i wx_i| \varepsilon, & \text{otherwise} \end{cases}$

- The primal problem of linear soft vector regression can be written as:
 - - Subject to;
 - $y_i wx_i b \le \varepsilon + \xi_i$ where, $\iota = 1, 2, ..., n$
 - $wx_i + b y_i \le \varepsilon + \xi^*$ where, $\iota = 1, 2, n$
 - $\xi^* \ge 0$ where, i = 1, 2, ..., n

- After obtaining the solution to the primal problem we get regression function:
 - $\circ \quad \mathbf{y} = \mathbf{g}(\mathbf{x}) = (\overline{w}.\,b) + b$
 - Note: ξ^* does not exists in the solution for the primal problem
- In order, to address the above problem we can derive it as a dual problem,
 - we introduce the Lagrange multiplier function.

■ Where,

$$\alpha^* = (\alpha_1 \alpha_1^*, \dots, \alpha_i \alpha_j^*)$$
 are Lagrange multiplier vector $\beta^* = (\beta_1 \beta_1^*, \dots, \beta_i \beta_j^*)$ are Lagrange multiplier vector

Substituting the derivatives of w, b, ξ^* to the Lagrange function while maximizing α^* , β^* we get,

Subject to:

- $\sum_{i=1}^{n} y_i(\alpha_i^* \alpha_i) = 0$ $\mathbf{C} \cdot \alpha_i^* \beta_i^* = \mathbf{0}$, where i = 1, 2, 3, ..., n
- $\alpha_i^*, \beta_i^* \ge 0$, where i = 1, 2, 3, ..., n
- Turns to the quadratic programing problem

If α^* is the solution to any problems, then w and b can be o

•
$$\mathbf{w} = \sum_{i=1} (\alpha_i - \alpha_i^*) \cdot \mathbf{x}_i$$

•
$$b = x_k - \sum_{i=1} (\alpha_i - \alpha_i^*) \cdot (x_i, x_k) - \varepsilon$$

Decision Function:

$$0 y = g(x) = \sum_{i=1}^{\infty} (\alpha_i - \alpha_i^*) \cdot (x_i, x_k) + b$$

Linearity till holds; y = wx + b

Non-linear Transformation:

- Given: $\{x_1, x_2, \dots, x_n\} \in X$ plain
- Introduce a new space $x = \varphi(x)$ and $kernal k(x, x') = (\varphi(x) \cdot \varphi(x'))$
 - Where,
 - K is a kernel function
- Then,

- Where,
 - \blacksquare All $A \in \mathbb{R}^n$
 - A is a positive definite
- Rewritten as;
 - \circ $k(x, x') = \sum_{i=1} (\varphi(x) \cdot \varphi(x'))$, $\varphi: x \to R$

• The primal problem of non-linear soft vector regression can be written as:

$$0 \quad \min_{w,b,\xi^*} = \frac{1}{2} ||w||^2 + c \sum_{i=1} (\xi_i + \xi^*_i)$$

- Subject to;
- $\mathbf{y}_i w \boldsymbol{\varphi}(x_i) b \le \varepsilon + \xi_i$ where, $\iota = 1, 2, \dots, n$
- $\mathbf{w} \varphi(x_i) + b y_i \le \varepsilon + \xi^* \text{ where, } \iota = 1, 2, \dots, n$
- $(\xi_i, \xi^*) \ge 0$ where, i = 1, 2, ..., n
- Objective :
 - Maximize the flatness
 - Minimize the deviations

- We can derive dual problem from primal problem using the Langrage function.

Where,

 α^* , β^* are Lagrange multiplier vector

Solving w.r.t w, b, ξ^* while α^* , β^* we get,

Subject to:

- $\sum_{i=1}^n y_i (\alpha_i^* \alpha_i) = 0$
- $\mathbf{C} \alpha_i^* \beta_i^* = \mathbf{0}$, where i = 1, 2, 3, ..., n
- $\alpha_i^*, \beta_i^* \ge 0$, where i = 1, 2, 3, ..., n
- In order to only include α^* , we can further simplify the above convex quadratic problem,

Subject to:

- $\sum_{i=1}^{n} y_i (\boldsymbol{\alpha}_i^* \boldsymbol{\alpha}_i) = 0$
- $0 \le \alpha_i^* \le C, i = 1, 2, ..., n$

- Similar to, linear, if α * is know we can obtain w and b
 - $\mathbf{w} = \sum_{i=1} (\alpha_i \alpha_i^*) \cdot \mathbf{\varphi}(\mathbf{x}_i)$
 - $b = x_k \sum_{i=1}^{\infty} (\alpha_i \alpha_i^*) \cdot (\varphi(x_i) \cdot \varphi(x_k)) \varepsilon$
- Decision Function:

$$y = \sum_{i=1}^{N} (\alpha_{i} - \alpha_{i}^{*}) \cdot \langle \varphi(x_{i}), \varphi(x) \rangle + b$$

$$y = g(x) = \sum (\alpha_i - \alpha_i^*) k(x_i, x_k) + b$$

- For the propose of this project the kernel is Gaussian Radial Basis function (RBF)
 - - lacktriangleright γ is a parameter that sets the "spread" of the kernel
 - $||x_i x_k||$ is the Euclidean distance between points x_i and x_k

Gaussian RBF Cont:

Controlling Noise:

- Fourier Series Basis idea:
 - \circ We can approximate f(x) with cos and sine of higher and higher frequencies.

i.e.
$$f(x) = \frac{A_0}{2} + \sum_{k=1}^{\infty} (A_k \cos\left(\frac{2\pi kx}{L}\right) + B_k \cos\left(\frac{2\pi kx}{L}\right))$$

• Coefficients are determined by taking the Hilbert space inner product of f(x) with their respective functions.

$$A_B = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{2\pi kx}{L}\right) dx$$
. i.e. $\frac{1}{||\sin(kx)||^2} < f(x)$, $\sin(kx) > 1$

In Complex Form:

$$f(x) = \sum_{k=-\infty}^{\infty} C_k e^{ikx}$$

where,

$$e^{ikx} = \cos(kx) + i\sin(kx)$$

{Euler formula that is obtained by solving the Taylor series Expansion}

Fourier Series to Fourier Transform:

- For Fourier Transform, L goes to infinity and does not remain periodic.
 - When we approximate Fourier complex for in discreet value, we obtain:
 - $\widehat{f}_k = \sum_{j=0}^{n-1} f_j e^{-i2\pi jk/n}$ (complex form)
 - - Frequency(ω_n) = $e^{-2\pi i/n}$ where, $i = \sqrt{-1}$
- Fast Fourier Transform(FFT) is an algorithm that implements Discreet Fourier Transform(DFT).
 - \circ Computationally cheap i.e less time complexity O(nlog), compared to DFT O(n^2)

FFT results:

Fourier Domain

Time Domain

Final Model:

•
$$y = g(x) = \sum (\alpha_i - \alpha_i^*) k(x_i^{-f}, x_j^{-f}) + b$$

Where,

- K is a Gaussian Radial Basis Function
- \circ x^{-f} is a Denoised data

Fourier Transformed RBF SVR Training Result:

• Given fourier transformed $f(x): \{x_1, x_2, \dots, x_n\} \subset X$ plain

R-Squared: 0.8503

Root Mean Squared Error: 0.0742

C: 100

gamma 1e-06 epsilon 7e-06

Remarks:

- The projection accuracy on in sample using RBF –SVR on the noise filtered training data increased by 4% compared to RBF –SVR using raw training data.
- The assessment of the model's reliability and robustness is contingent upon its performance on the test dataset.
- I manually selected hyperparameters in order to substantiate and provide a comprehensive overview of the model.
- The optimal value of the parameter can be determined through hyperparameter tuning employing cross-validation to avoid overfitting.

THANK YOU!

Apendix:

Proof:

Generalized Linear Model

- $\mu(x) = x'\beta$
- $g(\mu(x)) = x'\beta$, where g is the link function
 - Link function makes two variable compatible.

GLM coefficient estimate:

- $E[y] = x\beta$
- $\varepsilon_t \sim N(0, \sigma^2 I)$, where ε is *IID*

- By the linear transformation of normal random variable, y is conditionally normal.
- The conditional PDF is given by:

$$f_y(y \mid x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (y - x\beta)^2)$$

•
$$f(y \mid \beta, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (y - x\beta)^2)$$

Likelihood function:

$$L(\vartheta \mid y) = L(\beta, \sigma^2 \mid y)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (y - x\beta)^2)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{n}{2} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y - x\beta)^2)$$

$$= \frac{1}{\sqrt{(2\pi\sigma^2)}} - \frac{n}{2} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y - x\beta)^2)$$

Taking natural logarithm of the likelihood function we get,

$$= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}(\mathbf{\sigma}^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y - x\beta)'(y - x\beta)$$

take partial derivative wrt β ,

$$\frac{\partial L(\vartheta \mid y)}{\partial \beta} = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y - x\beta)' (y - x\beta)$$

simplifying above equation we get,

$$\frac{\partial L(\dot{\theta} | y)}{\partial \beta} = y'y - 2x'y + \beta'x'x\beta$$
$$= -2xy' + 2x'x\beta$$

set the derivative equal to 0, we get

$$-2xy'+2x'x\beta=0$$

$$-2x'x\beta = -2xy'$$

solving above equation we get,

$$\widehat{\beta} = (x'x)^{-|}x'y$$

- Y | X \sim \mathcal{F} from exponential family
- Exponential family is the generalization in which a lot of distribution lives.
- Distribution is said to be the Exponential family distribution if the probability of a vector y given a parameter vector θ is :

- Suppose if we were interested in the direction of the price move, where the direction is denoted by the binary value.
- ε is Independent and identically distributed.
 - $\theta = \log(\frac{\pi}{1-\pi})$, which is a logit link

 - $b(\theta) = n \log (1 + \exp(\theta))$
 - c $(y, \Phi) = \log \binom{n}{y}$
 - This leads to the Bernoulli distribution.

Therefore,
$$p(1 \mid \theta) = \frac{\exp(\theta)}{\exp(\theta) + 1}$$
 and $p(0 \mid \theta) = \frac{1}{\exp(\theta) + 1}$

Basic Idea Support Vector Machine :linear classification problems:

- Find Hyper plain / support line
- Two support line can be expressed as -v and v:
 - Let, $w = \frac{w}{v}$, $b = \frac{b}{v}$ (wx + b = 1 and wx + b = -1)

 Then, expression become (wx + b = 0)
- Find separation line (wx + b = 0) that maximizes the margin 'w':
 - this turns into optimization problem.

$$\begin{array}{ll} \bigcirc & \max \limits_{w,b} = \frac{2}{||w||} \\ & \text{Subject to:} \\ & (wx+b \geq 1) \;, \quad y_i = 1 \\ & (wx+b \leq -1) \;, \quad y_i = -1 \end{array}$$

Alternatively, $\frac{min}{w.b} = \frac{1}{2}||w||^2$ subject to: $y_i(wx_i) + b \ge 1, i = 1, 2, ..., n$

- The above primal problem can be solved using the dual problem:
 - Introduce Lagrange function
 - $L(w, b, \alpha) = \frac{1}{2} ||w||^2 \sum_{i=1}^{n} \alpha_i (y_i(wx_i) + b 1)$
 - Solving w.r.t w & b we get,

•
$$\nabla_w L = w - \sum_{i=1}^n \alpha_i \ y_i \ x_i = 0$$

• $\frac{\partial L}{\partial b} = -\sum_{i=1}^n \alpha_i \ y_i = 0$

•
$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \alpha_i \ y_i = 0$$

- Substituting the above equation to the Lagrange while maximizing α we get, $\mathbf{L}(\alpha) = \sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \, \alpha_i \alpha_j x'_i x_j$
 - $\max \alpha \text{ s.t } \alpha_i \geq 0, \text{ where } i = 1, 2, ..., n \& \sum_{i=1}^n \alpha_i y_i = 0$
 - This turns out to be the quadratic programing problem

Kernel Types:

- o Polynomial Kernel: $k(x_i, x_k) = ((x_i, x_k) + 1)^d$, where d = 1, 2,...,n
- Gaussian Radial Basis Kernel : $k(x_i, x_k) = \exp(-\frac{(x_i, x_k)^2}{\sigma^2})$, where $\sigma > 0$
- O Sigmoid Kernel: $k(x_i, x_k) = \tanh(b(x_i, x_k) + c)$., where b is slope, c is bias

Citations:

- Agresti, A. (2022). Foundations of linear and generalized linear models. Wiley.
- Deng, N. (2013). Support Vector Machines: Theory, algorithms, and extensions.
 CRC Press.
- Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering machine learning, Dynamical Systems, and Control. Cambridge University Press.
- Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data: A
 short course. AML Book.
- Support Vector Machine Regression (SVR). Support vector regression. (n.d.).
 https://www.saedsayad.com/support_vector_machine_reg.htm