DMA — Ugeopgave 6

Helga Rykov Ibsen <mcv462>

1. november 2021

Del 1

Lad
$$f(n) = n^2 + n \cdot log(n)$$
 og $g(n) = n^2$.

Definitionen siger at for asymptotisk positive funktioner f og $g: \mathbb{R}^+ \to \mathbb{R}$ gælder det at f er $\mathcal{O}(g)$ hvis der findes c > 0 og $x_0 \in \mathbb{R}^+$ så det passer at:

$$f(x) \le c \cdot g(x)$$
 for alle $x \ge x_0$

Vi skal vise at:

$$f(n)$$
 er $O(g(n))$

eller

$$n^2 + n \cdot log(n) \le c \cdot n^2$$

Ifølge definitionen er n et positivt reeltal. Vi kan derfor starte med at dividere uligheden på begge sider med n:

$$n + log(n) \le c \cdot n$$

Vi isolerer log(n) og får:

$$log(n) < (c-1) \cdot n$$

Denne ligning har ingen eksakte løsninger, men vi kan se at denne ligning kun ville være opfyldt for c > 1. Hvis vi eksempelvis tager c = 1.01, så ville:

$$log(n) \leq (1.01 - 1) \cdot n$$

være sand for $n \ge 996$. F.eks er ligningen opfyldt for n = 1024:

$$\log(1024) \leq (1.01 - 1) \cdot 1024$$
$$10 \leq 10.24$$

Da ligningen $log(n) \leq (1.01-1) \cdot n$ er opfyldt for alle $n \geq 996$, kan vi konkludere at ligningen

$$n^2 + n \cdot log(n) \le c \cdot n^2$$

er sand for alle $n \ge 996$.

Vi har hermed vist at:

Bevis.
$$f(n)$$
 er $O(g(n))$

Del 2

Lad udsagn p og q være:

$$p:r$$
 er et irrationalt tal $q:r^{\frac{1}{5}}$ er et irrationalt tal

Vi skal vise at implikationen $p \Rightarrow q$ er sand.

Vi fører beviset via kontraposition. Vi skal derfor vise at:

Bevis.
$$(\sim q) \Rightarrow (\sim p)$$

eller: Hvis r er et rationalt tal, så er $r^{\frac{1}{5}}$ et rationalt tal.

2. Det gælder så at hvis $r^{\frac{1}{5}}$ er et rationalt tal, så kan det ligeledes udtrykkes som:

$$r^{\frac{1}{5}} = \frac{a}{b} \implies (r^{\frac{1}{5}})^5 = (\frac{a}{b})^5 \implies r = \frac{a^5}{b^5}$$

Hvis a og b er hele tal, så er a^5 og b^5 hele tal — og så er r et rationalt tal.

Da både — hypotesen $(\sim q)$ og konklutionen $(\sim p)$ er sand, er vores kontrapositive udsagn $(\sim q) \Rightarrow (\sim p)$ også sand.

Ifølge teorem 2(b) ved vi at:

$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

Vi kan derfor konkludere at vores oprindelige udsagn $(p \Rightarrow q)$ er sand.

D3

Lad
$$f(n) = 2^{2n}$$
 og $g(n) = 2^n$.

Definitionen siger at for asymptotisk positive funktioner f og $g: \mathbb{R}^+ \to \mathbb{R}$ gælder det at f er $\mathcal{O}(g)$ hvis der findes c > 0 og $x_0 \in \mathbb{R}^+$ så det passer at:

$$f(x) \le c \cdot g(x)$$
 for alle $x \ge x_0$

Lad udsagn p og q være:

$$p: f(n) = 2^{2n} og \ g(n) = 2^n$$
$$q: fikke \ er \ O(g)$$

Vi skal via modstrid vise at q er sand og følger fra:

Bevis.
$$q \equiv (\sim q \Rightarrow (p \land (\sim p))$$

Eller sagt på en anden måde — vi skal vise at $\sim q$ er sand:

$$\sim q: fer \mathcal{O}(g)$$

eller

$$2^{2n} \le c \cdot 2^n$$
 for alle $n \ge n_0$

Vi dividerer med 2^n på begge sider af uligheden og får:

$$\frac{2^{2n}}{2^n} \le \frac{c \cdot 2^n}{2^n}$$

$$2^n \le c$$

Venstre side af uligheden er en voksende funktion og højre side er en konstant. Og vi kan se at fra et vist trin — uanset hvor stor c er — ville uligheden ikke være opfyldt.

Vi har hermed vist at $\sim q$ er falsk og at q er sand.

D4

1. Lad $T_A(n) = 2n^2 \cdot log_2 n$ og $T_B(n) = n^3$. Vi skal vise at

$$2n^2 \cdot log_2 n < c \cdot n^3$$

eller

$$T_A$$
 er $o(T_B)$

Vi starter med at sige at $h(n) = n^2$.

Så er
$$f(n) = 2 \cdot log_2 n$$
 og $g(n) = c \cdot n$.

Uligheden ovenfor kan derfor udtrykkes som:

$$h(n) \cdot f(n) < h(n) \cdot g(n)$$

Vi anvender R1 og R5 og får:

$$log_2 n < n$$
eller
$$f(n) \text{ er } o(g(n))$$

fordi konstanter kan ignoreres og fordi polynomier vokser hurtigere end logaritmer.

 $\mathbf{R}11$ siger at det ikke gør nogen forskel at gange med samme funktion. Vi kan derfor konkludere at:

$$h(n) \cdot f(n)$$
 er $o(h(n) \cdot g(n))$
eller
 T_A er $o(T_B)$

Og dermed er A en hurtigere algoritme end B.

2. Vi fandt at T_A er $o(T_B)$, dvs:

$$2n^2 \cdot log_2 n < n^3$$

Vi starter med at dividere begge sider af uligheden med n^2 :

$$2log_2n < n$$

For at finde en problemstørrelse $\tilde{\mathbf{n}}$, sådan at vores ulighed bliver opfyldt for alle $n > \tilde{\mathbf{n}}$, opstiller vi en tabel med forskellige n:

n	$2log_2n$	$ $ \leq $ $	n
1	$2 \cdot 0$	<	1
2	$2 \cdot 1$		2
4	$2 \cdot 2$	=	4
5	$2 \cdot 2.32$	<	5
6	$2 \cdot 2.58$	<	6
7	$2 \cdot 2.80$	<	7
8	$2 \cdot 3$	<	8

Vi kan se at uligheden $2 \cdot log_2 n < n$ bliver opfyldt for alle n > 4. Vi kan derfor konkludere at problemstørrelsen $\tilde{\mathbf{n}} = 5$.