MSML610: Advanced Machine Learning

Introduction

Instructor: Dr. GP Saggese - gsaggese@umd.edu

References:

AIMA Chap 1

- A Map of Machine Learning
- What Is Artificial Intelligence

A Map of Machine Learning

- Machine Learning is a field with many branches
 - Theory
 - Paradigms
 - Models
 - Techniques
 - •

Machine Learning Theory

VC theory

 Measure model capacity and generalize based on hypothesis space complexity

Bias-variance decomposition

- Prediction error is the sum of:
 - Bias: Error from simplistic model assumptions
 - Variance: Error due to sensitivity to training data fluctuations

Computation complexity

- Related to information theory and compression
- E.g., Minimum Description Length (MDL) measures model complexity via efficient model and data description

• Bayesian approach

- Treat ML as probability
- Combine prior knowledge with observed data to update belief about a model

Problem in ML theory

Assumptions may not align with practical problems

Machine Learning Paradigms

- How do you set up the learning problem?
 - Supervised learning
 - The dataset includes inputs with corresponding outputs
 - Develop an input-output relationship
 - Unsupervised learning
 - The data is unlabeled, discover structure within the data
 - E.g., anomaly detection, clustering
 - Reinforcement learning
 - The correct answer is not immediately available
 - Evaluate actions based on final outcomes
 - Active learning
 - Not all examples are available initially
 - Request outputs for specific inputs
 - ..

Machine Learning Models

- What is the form of the model and how to fit / predict from the data?
 - Linear models
 - Generalized linear models
 - E.g., logistic, Poisson regression
 - Support Vector Machines (SVM)
 - Nearest neighbors
 - E.g., k-means clustering, KNN
 - Gaussian processes
 - Graphical models
 - Model joint distributions with graphs
 - E.g., hidden Markov models (HMM), Kalman filters, Bayesian networks
 - Neural networks
 - . .

Machine Learning Techniques

- What are the stages of a ML pipeline?
 - Input processing
 - Data cleaning
 - · Dimensionality reduction
 - Feature engineering
 - Model building
 - Models
 - Learning algorithms
 - Performance evaluation
 - Cross-validation
 - Bias-variance curves
 - Learning curves
 - Regularization
 - Aggregation
 - Boosting
 - Bagging
 - Stacking

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - AI vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of Al
 - Al State of the Art
 - · Risks and Benefits of AI

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - Al vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

ML, AI, and Intelligence

- Machine Learning is a subset of AI
 - All of it confused with deep learning, large-language models, predictive analytics, . . .
- What is artificial intelligence?
- What is intelligence?

Human Intelligence

- We call ourselves "homo sapiens" because intelligence sets us apart from animals
- For thousands of years, we tried to understand how we think
- One of the biggest mysteries
 - · Brain is a small mass of matter
 - Our brain can understand nature secrets, e.g., theory of relativity, quantum mechanics, black holes in the universe
 - How can brain understand, predict, and manipulate a world more complicated than itself?

Artificial Intelligence

- The term "Artificial Intelligence" was coined in 1956
- Al aims to:
 - Understand human intelligence
 - Create intelligent entities
 - "What I cannot create, I do not understand" (Feynman, 1988)
- Al is a technology
 - Universal and applicable to any human activity and task
 - Its impact greater than any previous historical event
 - Currently generates trillions of dollars annually in revenue
 - Presents many unresolved problems
 - E.g., major concepts in physics might be established

Al Formal Definition

- Al is defined around two axes:
 - Thinking vs. Acting
 - Human vs. Rational (ideal performance)
- This leads to four possible definitions of AI as a machine that can:

(e.g., rational agents)

AI Formal Definition: Quiz

- Four possible definitions of AI as a machine that can:
 - 1. Think humanly
 - 2. Think rationally
 - 3. Act humanly
 - 4. Act rationally
- Q: Which one do you think is the best definition?

AI Formal Definition: Quiz

- Four possible definitions of AI as a machine that can:
 - 1. Think humanly
 - 2. Think rationally
 - 3. Act humanly
 - 4. Act rationally
- Q: Which one do you think is the best definition?
- We will see that building machines that can "act rationally" should be ultimate goal of AI

1. Al as Thinking Humanly

- To build machines that think like humans we need to determine how humans think
- Pros
 - Express precise theory of the human mind as a computer program
- Cons
 - Unknown workings of the human mind
 - Anthropocentric definition

2. Al as Thinking Rationally

- What are the rules of correct thinking?
 - Given correct premises, yield correct conclusions
- Logic studies the "laws of thought"
 - · Formalize statements about objects and their relations
- Automatic theorem proving
 - Programs solve problems in logical notation
 - Run indefinitely if no solution exists (related to the halting problem)

Thinking Rationally: Cons

1. Formalizing informal knowledge is difficult

- Example: "A handshake occurs when two people extend, grip, shake hands, then release."
- Formal logic representation:

$$\exists x, y \, (\mathsf{Person}(x) \land \mathsf{Person}(y) \land x \neq y \land \\ \mathsf{Hand}(x, h_x) \land \mathsf{Hand}(y, h_y) \land \\ \mathsf{MoveToward}(h_x, h_y) \land \mathsf{Contact}(h_x, h_y) \land \\ \mathsf{Shake}(h_x, h_y) \land \\ \mathsf{Release}(h_x, h_y))$$

2. Probabilistic nature of knowledge

• Example in medicine: "Fever, cough, and fatigue could indicate flu, COVID-19, or another illness."

3. Scalability challenges

- Large problems may need heuristics for practical solutions
- 4. Intelligence requires more than rational thinking
 - Importance of agent interaction with the world
 - Problem of the "body"

3. Al as Acting Humanly

- Agent is something that perceives and acts to reach a goal
- Definition: Al designs agents that can act like humans
- (Embodied) Turing test
 - "A computer passes the Turing test if a human cannot tell whether the answers to questions came from a person or a computer"
 - Passing the Turing test requires:
 - 1. Natural language processing to communicate
 - 2. Knowledge representation to store information
 - 3. Automated reasoning to use stored knowledge and answer questions
 - 4. Machine learning to detect patterns
 - Computer vision and speech recognition to perceive objects and understand speech
 - 6. Robotics to manipulate objects and move

Turing Test: Pros and Cons

- Pros
 - Operational definition of intelligence
 - Sidestep philosophical vagueness
 - "What is consciousness?"
 - "Can a machine think?"
 - . . .
- Cons
 - Anthropomorphic criteria define intelligence in human terms
 - Multiple forms of non-human intelligence exist
 - Intelligence in terms of Turing test
 - · Design intelligence to imitate humans
 - Fool humans into thinking it's human
 - E.g., aeronautical engineering:
 - Yes: Focus on wind tunnels and aerodynamics
 - No: Designing machines that imitate birds
 - No: Fooling birds into thinking it's a bird

4. Al as Acting Rationally

- Rational agents: agents that do the "right thing" given what they know
- Agents that act rationally should:
 - 1. Operate autonomously
 - 2. Perceive environment
 - 3. Persist over a prolonged time period
 - 4. Adapt to change
 - 5. Create and pursue goals

Acting Rationally as Ultimate Goal of Al

- Which definition of AI to use?
 - Acting vs. Thinking
 - Rational vs. Human
- Acting > Thinking
 - · Acting rationally is broader than just thinking rationally
- Rational > Human
 - Rationality can be mathematically defined
 - Human behavior is shaped by evolutionary conditions
- Al focuses on agents acting rationally

- Al wants to build agents that do the right thing based on available knowledge
- E.g., you leave the house and a branch strikes you
 - Q: Did you act rationally?

- Al wants to build agents that do the right thing based on available knowledge
- E.g., you leave the house and a branch strikes you
 - Q: Did you act rationally?
 - Probably

- Al wants to build agents that do the right thing based on available knowledge
- E.g., you leave the house and a branch strikes you
 - Q: Did you act rationally?
 - Probably
- E.g., you cross the street and a car knocks you over
 - Q: Did you act rationally?

- Al wants to build agents that do the right thing based on available knowledge
- E.g., you leave the house and a branch strikes you
 - Q: Did you act rationally?
 - Probably
- E.g., you cross the street and a car knocks you over
 - Q: Did you act rationally?
 - It depends, but probably no

Goals of a Rational Agent

- A rational agent aims for:
 - The best outcome in a deterministic setup
 - The best expected outcome under uncertainty
- Best is determined by the objective function:
 - E.g., cost function, sum of rewards, loss function, utility
- Problems with acting rationally
 - Sometimes no provably correct action exists
 - Yet, an action must be taken
 - Perfect rationality is not always feasible due to:
 - Cost of acquiring all data
 - Computational demands
 - Acting "appropriately" vs "satisficing"

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - AI vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

Machine Learning: Definitions

- How to define machine learning?
- "Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed", (Arthur Samuel, 1959)
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if P(T) improves with experience E", (Tom Mitchell, 1998)
- Machine learning is building machines to do useful things without being explicitly programmed
 - E.g. a computer learns to play checkers by playing against itself, memorizing positions that lead to winning

Limits of ML Compared to Human Intelligence

- Artificial intelligence differs from human intelligence
 - Machines don't learn like humans (e.g., LLMs)
- Fragility to input variations
 - ML models fail with slight input distortions
 - Adversarial attacks cause misclassification by altering one pixel
 - A model trained for a video game may fail if the screen is slightly rotated; humans continue effortlessly
- Lack of transfer learning
 - ML systems cannot apply knowledge across domains without retraining
- Massive data and compute requirements
 - ML requires enormous datasets and computational resources
 - A teenager learns to drive in hours; self-driving systems need billions of compute hours and extensive data
- Poor common sense and reasoning
 - ML lacks built-in world knowledge and intuitive logic

Limits of ML Compared to Human Intelligence

- Opaque decision-making
 - Many ML models offer little transparency into decision processes
 - Limits trust, interpretability, and accountability in critical applications
- Dependence on narrow objectives
 - ML systems excel at optimizing narrow tasks but fail with ambiguous goals
 - E.g., an algorithm maximizing user engagement may promote harmful content
- Susceptibility to bias and data quality
 - Models inherit and amplify biases in training data
- Lack of embodiment and physical interaction
 - · Human cognition is grounded in physical and sensory experience

The 3 Machine Learning Assumptions

- Machine learning involves solving a practical problem by:
 - Gathering a dataset
 - Building a statistical model from the dataset algorithmically
- The three assumptions of machine learning
 - A pattern exists
 - Pattern cannot be precisely defined mathematically
 - Data is available
- Which ML assumption is essential?
 - A pattern exists
 - If no pattern, try learning, measure effectiveness, conclude it doesn't work
 - Cannot pin down pattern mathematically
 - If solution is direct, ML not recommended, but may still apply
 - We have data
 - Without data, no progress can be made
 - Data is crucial

Machine Learning Adages

- "An explanation of the data should be as simple as possible, but not simpler" (Einstein)
- "The simplest model that fits the data is also the most plausible" (Occam's razor)
- "Garbage in, garbage out" (Fuechse, 1957)
- "All models are wrong, but some are useful" (George E. P. Box, 1976)
- "If you torture the data long enough it will confess whatever you want" (Coase, 1982)
- "Data is the new oil" (Humby, 2006)
- "More data beats clever algorithms" (Norvig, ~2006)
- "The unreasonable effectiveness of data" (Halevy, Norvig, Pereira, 2009)

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - AI vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

Al vs ML vs Deep-Learning

- AI: Machines programmed to reason, learn, and act in a rational way
- ML: Machines capable of performing tasks without being explicitly programmed, e.g.,
 - Natural language processing
 - Computer vision
 - Speech recognition
- Al without ML:
 - Example: Rule-based systems (e.g., IBM Deep Blue playing chess)
- Deep Learning (DL): ML using neural networks with multiple layers
 - Example: Autonomous vehicles
- Large Language Models (LLM): neural networks trained on massive text datasets and RLHS

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - Al vs ML vs Deep-Learning
 - The Foundation of Al
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

Al Relates to Many Other Disciplines

Al and Philosophy (1/2)

- Can formal rules be used to draw valid conclusions?
 - Reasoning
 - Aristotle (400 BCE) formulated laws governing the rational mind
 - Machines were built for arithmetic operations (e.g., Pascaline, 1600)
 - · Logic studies rules of proper reasoning
 - Rationalism
 - Use reasoning to understand the world
- How does the mind arise from a physical brain?
 - Dualism
 - Nature follows physical laws
 - Part of the human mind ("the soul") is exempt from physical laws
 - Materialism
 - The mind is a physical system, following the laws of physics
 - Where is free will? Free will is the perception of available choices

Al and Philosophy (2/2)

• What does knowledge come from?

- Empiricism
 - Knowledge via senses
 - Example: learn that trees are green by looking at them
- Induction
 - General rules from associations
 - Example: seeing many swans are white, inferring all swans are white
- Logical Positivism
 - Knowledge as logical theories linked to sensory observations
 - Example: scientific hypotheses connected to experimental data

• How does knowledge lead to action?

- Utilitarianism
 - Measures "utility" linking knowledge to action
 - Actions justified by logic connecting goals and outcomes
- Consequentialism
 - Right or wrong determined by action's expected outcomes
 - E.g., "If you kill, you will go to jail"
- Deontological ethics
 - Opposes consequentialism
 - "Right actions" based on universal laws, not outcomes
 - E.g., "don't kill", "don't lie"

Al and Cognitive Psychology

• How do humans think and act?

- Cognitive Psychology
 - Brain as an information-processing device
 - · Stimuli translated into internal representation
 - Representation manipulated by cognitive processes to derive new internal representations ("beliefs")
 - Representations turned into actions ("goals")
- Cognitive Science
 - Use computer models to address memory, language, and logic thinking
- Human-Computer Interaction (HCI)
 - From artificial intelligence (AI) to intelligence augmentation (IA)
 - Computers augment human abilities

Al and Mathematics

- What are the formal rules to draw valid conclusions?
 - Formal Logic
 - Logical deduction rules (Boole, 1850)
 - First-order logic includes objects and relations (Frege, 1879)
 - Limits to Deduction
 - Some statements are "undecidable"
 - Incompleteness theorem: true statements exist that cannot be proved in any formal theory (Godel, 1931)
- How do we reason with uncertain information?
 - Probability
 - · Mathematics of uncertainty
 - Key contributors: Cardano, Pascal, Bernoulli, Bayes (1500-1700)
 - Statistics
 - Combines data with probability
 - E.g., experiment design, data analysis, hypothesis testing, asymptotics

Al and Economics (1/2)

- How to make decisions to maximize payoff given preferences?
 - Economies
 - Agents maximize economic well-being (utility)
 - Studies desires and preferences
 - Decision theory
 - Making decisions under uncertainty for preferred outcomes
 - Probability theory + utility theory
 - Examples: Investment choices, policy decisions
- How to make decisions when payoffs are result of several actions?
 - Operations Research
 - Make rational decisions with payoffs for sequence of actions (Bellman, 1957)
 - E.g., Markov Decision Processes
 - Satisficing
 - Decisions that are good enough
 - · Closer to human behavior
 - Example: Choosing a restaurant that meets basic criteria rather than finding the perfect one

Al and Economics (2/2)

- How multiple agents with different goals act?
 - Large Economies
 - Many agents with no mutual impact
 - Ignore other agents' actions
 - E.g., national economy where individual actions don't affect market
 - Small Economies
 - One player's actions influence others' utility
 - · E.g., local market where one seller's pricing affects competitors
 - Game Theory
 - Small economies resemble a "game" (Von Neumann, 1944)
 - Rational agents might need randomized strategies
 - E.g., rock-paper-scissors where randomization prevents predictability

Al and Linguistics

- How can you create systems that understand natural language?
 - Computational linguistics (NLP) studies sentence structure and meaning
 - Machine translation (e.g., Google Translate)
 - Sentiment analysis in social media
 - Automated customer support chatbots
- How does language relate to thought?
 - Knowledge representation: how to represent knowledge for computer reasoning
 - E.g., first order knowledge, knowledge graphs

Al and Neuroscience

Brain

- Parts handle specific cognitive functions
- Information processing in the cerebral cortex
- E.g., frontal lobe injury may impair decision-making

Anatomy of the Brain

- Composed of neurons (~100 billion)
 - Each neuron connects with 10-100k others via synapses
 - Axons enable long-range connections
- Signals propagate through electrochemical reactions
- Short-term pathways support long-term connections (learning)

Memory

- No theory yet about individual memory storage
- Current theory: memories reconstructed

The Brain Causes the Mind

- Simple cells lead to thought and consciousness
 - Truly amazing conclusion!
 - Complex processes emerge
 - Supercomputers' complexity rivals the brain
 - Achieving brain's intelligence level remains unknown
- Brain-Machine Interface
 - Brain adjusts to devices (e.g., learn to use prosthetics as limbs)
- Al Singularity
 - Future point when AI surpasses human intelligence
 - · Al improves autonomously, leading to rapid growth
 - Recursive self-improvement leads to superintelligence
 - Potential societal impact
 - Control problem/value alignment: ensure AI aligns with human values
 - Economic/social disruption due to automation
 - Hard to predict

Al and Computer Science

- What can be computed?
 - Algorithm
 - Procedure to solve problems
 - E.g., algorithm for computing GCD (Euclid, 300 BCE)
 - Limits to Computation
 - Turing machine (1936): Computes any computable function
 - Some functions are non-computable
 - E.g., the halting problem, i.e., decide if a program terminates
 - Tractability
 - Problem is intractable if solving time grows exponentially with size
 - Complexity classes: Polynomial vs exponential complexity (NP-problems)

Al and Control Theory and Cybernetics

- How can artifacts operate under their own control?
 - Control theory
 - Study self-regulating feedback control systems
 - E.g., a water regulator that maintains a constant water flow
 - Mechanisms to minimize error between current and goal states
 - Kalman Filter (Kalman, 1960)
 - Based on calculus, matrix, stochastic optimal control
 - Al: logical inference, symbolic planning, computation

Al and Computer Engineering

- How can we build an efficient computer?
 - Electronic computers
 - Built during World War II
 - Moore's Law
 - Performance doubled every 18 months (1970-2005)
 - Power and scaling issues shifted focus to multi-core over clock speed
 - Hardware for AI
 - GPUs
 - TPUs
 - Wafer-scale engines
 - Current Trends
 - Massive parallelism (like brain function)
 - Computing power doubling every 3 months
 - GPUs / TPUs used in deep learning
 - High precision (e.g., 64b) often unnecessary
 - Quantum Computing
 - Potential for significant acceleration in key computations
 - E.g., Shor's algorithm for factorization

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - Al vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

AI Timeline

Al Timeline (v2)

Subfields 2010s-Present The Era of Big Data 2025 O 2001-Present Deep Learning Revo-Advances in Speech lution 2011-Present and Vision 2020 O 1990s-2000sReinforcement Learning Emerges 2011 **O** 1990s-Present The Probabilistic Turn Turn Late 1980s-2000s 2001 Machine Learning Matures 1990s-2000s1988 Q The First AI Winter 1986 Q Return of Neural Networks 1973 O 1986-1990s $\stackrel{1969}{\text{The Rise of Expert}}$ 1970 - 1987

Reunification of AI

1956 C The Dawn of AI 1943-1956

1987-1993

Systems

The First Reality Check

1966-1973

The Beginning (1943-1956)

Artificial neuron

- Model (McCullock-Pitts 1943) based on:
 - Brain physiology
 - Propositional logic
 - Computation theory
- Compute any function with connected neurons
 - Neuron on/off based on stimulation from neighboring neurons
 - Implement logical AND, OR, NOT with simple neuron networks

Alan Turing, 1947

- Turing test, machine learning, reinforcement learning
- Create human-level AI:
 - Develop learning algorithms
 - · Teach machine like a child

Birth of Al

- McCarthy organized first Al workshop (1956)
- The Logic Theorist
 - Programs to "think non-numerically" and prove theorems
 - Newell and Simon (1956)

Enthusiasm and Great Expectations (1952-1969)

- Early years of AI were full of successes
 - Until than computers could only do arithmetics
 - "A machine can never do games, puzzles, IQ tests, ..."
 - Al researchers showed machines could do that after another
- General Problem Server
 - Imitate human problem-solving
 - Consider sub-goals and possible actions
- Program learned to play checkers
 - Use reinforcement learning from victories and mistakes
- Lisp (1958)
 - High-level language used for 30 years in AI
- First neural network
 - 3000 vacuum tubes for 40 neurons
 - Marvin Minsky (1959)
- MIT and Stanford
 - Minsky at MIT
 - Focus on neural network
 - McCarthy at Stanford
 - Focus on representation, logic

A Dose of Reality (1966-1973)

- Researchers were confident about Al's upcoming successes
- Al didn't succeed on real problems due to:
 - Solutions based on human problem-solving methods
 - Difficulty handling "combinatorial explosion":
 - Theorem proving handles small problems with brute force, but doesn't scale
 - Neural networks needed algorithms (e.g., backpropagation), compute power, and data

Expert Systems (1969-1979)

Weak AI (Narrow AI)

- Performs specific tasks, not general reasoning
- Operates in a limited, well-defined domain
- Uses "weak methods" (search, logic) that struggle to scale
- Improves with domain-specific knowledge

Expert Systems

- Known as "knowledge-based systems"
- Combine weak methods with extensive domain knowledge as rules
- Use inference engines to apply rules to facts
- E.g., rule-based systems, logic programming (e.g., Prolog)
- Commercial Adoption and Industry Growth (1980-)
 - Al shifted to practical applications
 - Major US corporations deployed expert systems
 - Al emerged as a commercial industry

(First) Al Winter (1980)

- Al overconfidence/hype didn't deliver
- Reasons:
 - Building/maintaining expert systems is difficult
 - Reasoning methods ignore uncertainty
 - Systems can't learn from experience
 - E.g., expert systems in medical diagnosis struggle with complex, variable patient data
 - E.g., early AI chess systems couldn't adapt to new strategies without manual updates

Return of Neural Networks (1986-)

- Mid-1980s: Discovered back-propagation algorithm
 - Developed in early 1960s
- Connectionist approach vs. Symbolic approach
 - Connectionist: Neural networks
 - E.g., recognizing handwritten digits
 - Symbolic: General Problem Solver
 - E.g., solving logical puzzles with rules
- Why connectionist approach
 - Concepts not well-defined using symbolic axioms
 - Forms fluid internal concepts
 - Represents real-world complexity better
 - Neural networks learn from examples
 - Adjust parameters for improved predictions
 - E.g.,
 - Image recognition: Identify objects by learning from labeled images

Probabilistic Reasoning and ML (1987-)

- Al and scientific method
 - Rigorous methods to test performance
 - E.g., speech recognition, handwritten character recognition
- Benchmarks for progress
 - Examples:
 - MNIST: Handwritten digit recognition
 - ImageNet: Image object recognition
 - SAT Competitions: Boolean satisfiability solvers
- Al shifts ...
 - From Boolean logic to probability
 - From hand-coded rules to machine learning
 - From a-priori reasoning to experimental results

Progress in Speech Recognition

- 1970s: Ad-hoc approaches
 - Various architectures and approaches were attempted
 - Rule-based systems with limited robustness
 - Cons: Ad-hoc, fragile
- 1980s: HMMs
 - Hidden Markov Models (HMMs) became dominant
 - Pros: Strong theoretical foundation
 - Methods: Effective learning techniques
 - Data: Trained on large speech corpora
 - No claim humans use HMMs for speech recognition

Bayesian Networks

Bayesian networks

- Judea Pearl, 1988
- Al is linked with:
 - Probability
 - Decision theory
 - Control theory
- Efficiently represent uncertainty
- Provide rigorous reasoning

Examples

- Diagnosing diseases based on symptoms
- Predictive text input in smartphones
- Fraud detection in banking

Reinforcement Learning

Reinforcement learning

- Sutton, 1988
- Reinforcement Learning (RL) involves agents learning by interacting with an environment
- Markov Decision Problems (MDPs) provide a mathematical framework for modeling decision-making

Examples

- RL: A robot learning to navigate a maze by receiving rewards for successful paths
- MDPs: A game strategy modeled where each move influences the outcome with certain probabilities

Reunification

Reunification of Al with:

- Data
- Statistical modeling
- Optimization
- Machine learning

• Many subfields of AI were re-unified:

- Computer vision
- Robotics
- Speech recognition
- Multi-agent systems
- NLP

Big Data (2001-Present)

- Focus shifts from algorithms to data
 - For 60 years, AI focused on algorithms and models
 - For some problems, data availability matters more than algorithms, e.g.,
 - Trillions of English words
 - Billions of web images
 - · Billions of speech and video hours
 - Social network data
 - Click stream data
 - Algorithms leverage large datasets
- In 2011, IBM's Watson beat human Jeopardy! champions

Deep Learning (2011-Present)

Deep learning

- Use ML models with multiple layers of computing elements
- Ideas known since 1970s, but then forgot
- Success in handwritten digit recognition in 1990s
- In 2011, DL took off
 - Surge of interest in Al among researchers, students, companies, investors, government, and public
 - In 2012, a DL system showed dramatic improvement in ImageNet competition
 - Previous systems used handcrafted features
- Today, DL exceeds human performance in several vision and speech recognition tasks
- DL needs specialized hardware (e.g., GPU, TPU, FGPA) for parallel tensor operations
- General Artificial Intelligence
 - Universal algorithm for learning and acting, not just specialized tasks (e.g., driving, playing chess, recognizing speech) $_{61/74}$

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - Al vs ML vs Deep-Learning
 - The Foundation of Al
 - Brief History of AI
 - Al State of the Art
 - · Risks and Benefits of AI

Progress in Al Research

Between 2010 and 2019

- Al papers increased 20x
 - $1.000 \rightarrow 20.000$
- Student enrollment in AI and CS increased 5x
 - $10,000 \rightarrow 50,000$
- NeurIPS attendance increased 8x
 - $1,000 \rightarrow 8,000$
- Al startups increased 20x
 - $100 \rightarrow 2.000$
- Compute
 - Training times dropped 100x in 2 years
 - Al computing power doubles every 3 months

What Can Al Do Today? (1/2)

- Robotic vehicles
 - Waymo passed 10 million miles without serious accident
- Legged locomotion
 - BigDog recovers on ice
 - Atlas walks on uneven terrain, jumps on boxes, backflips
- Autonomous planning and scheduling
 - Space probes, Mars rovers
- Machine translation
 - Translates 100 languages with human-level performance
- Speech recognition
 - Real-time speech-to-speech with human-level performance
 - Al assistants
- Recommendations
 - ML recommends based on past experiences
 - Spam filtering 99.9% accuracy
 - E.g., Amazon, Facebook, Netflix, Spotify, YouTube

What Can Al Do Today? (2/2)

Game playing

- 1997: Deep Blue defeated Kasparov
- 2011: Watson beat Jeopardy! champion
- 2017: AlphaGo beat Go champion
- 2018: AlphaZero super-human in Go, chess with only rules, self-play
- Al beats humans in videogames: Dota2, StarCraft, Quake

Image understanding

- Object recognition
- Image captioning

Medicine

- Al equivalent to health care professionals
- When AGI
 - When will Al systems achieve human-level performance across all tasks?
 - Expert prediction average: 2099
 - Papers show that expert predictions no better than amateurs
 - Experts expected AI to take 100 years to beat humans in Go
 - Unclear if new breakthroughs or refinements needed

- A Map of Machine Learning
- What Is Artificial Intelligence
 - AI
 - Machine Learning
 - AI vs ML vs Deep-Learning
 - The Foundation of AI
 - Brief History of Al
 - Al State of the Art
 - Risks and Benefits of AI

Benefits of Al

- Our civilization is the product of human intelligence
 - Greater machine intelligence leads to better human society
 - "First solve AI, then use AI to solve everything else"
- Benefits of AI and robots
 - Free humanity from menial work
 - Increase production of goods and services
 - Expand human cognition
 - Accelerate scientific research, e.g.,
 - Cures for diseases
 - Solutions for climate change
 - Resource shortages

Risks of AI (1/2)

Autonomous weapons

- Locate, select, eliminate human targets without intervention
- Scalability: deploy a large number of weapons

Surveillance and persuasion

- AI (speech recognition, computer vision, natural language understanding) for mass surveillance
- Tailoring information flows through social media to modify behavior

Biased decision making

- Misuse of ML can result in biased decisions due to societal bias
- E.g., parole evaluations, loan applications

Risks of AI (2/2)

- Impact on employment
 - Machines eliminate jobs
 - Rebuttal
 - Machines enhance productivity →
 - Companies become more profitable \rightarrow
 - Higher wages
 - Counter-rebuttal
 - · Wealth shifts from labor to capital, increasing inequality
 - Counter-counter-rebuttal
 - Past tech advances (e.g., mechanical looms) disrupted employment, but adaptation followed
- Safety critical applications
 - Al in safety-critical applications
 - E.g., self-driving cars, managing water supply or power grids
 - Avoiding fatal accidents is challenging
 - E.g., formal verification and statistical analysis insufficient
 - Al requires technical and ethical standards
- Cybersecurity
 - Al defends against cyberattacks
 - E.g., detect unusual behavior patterns
 - Al contributes to malware development
 - E.g., use reinforcement learning for targeted phishing attacks
 - Cat-and-mouse game

Human-Level AI

- Human-level Al
 - Machines able to learn to do anything a human can do
 - Aka AGI (Artificial General Intelligence)
- Artificial Super-Intelligence
 - Machines surpass human ability in every domain and self-improving
- Exponential take-off

The Problem of Control

- Can humans control machines more intelligent than them?
- King Midas problem
 - King Midas turned everything he touched into gold, including food and family
 - Humans ask for something, get it, then regret it
 - Rebuttal
 - If AGI arrived in a black box from space, exercise caution before opening
 - We design AI: if AI gains control, it's a "design failure"
- Problem of alignment
 - Superintelligent AI might pursue goals in unintended, dangerous ways
- The paperclip problem
 - Thought experiment in Al safety (Nick Bostrom, 2003)
 - Al is tasked with maximizing paperclip production
 - Al becomes superintelligent and single-mindedly pursues this goal
 - Converts Earth and humans into paperclips

E/acc vs P(doom)

E/acc

- Accelerationism is the belief that rapid progress in AI is beneficial or inevitable
- Solve global problems with more powerful AI tools
- Belief that slowing AI is unrealistic or counterproductive
- P(doom)
 - "Probability of Doom"
 - Estimated probability that advanced Al will cause catastrophic harm
 - Used informally by AI researchers to quantify risk

Solutions to Problem of Control

Checks-and-balances

- Researchers and corporations develop voluntary self-governance principles for AI
- Governments and international organizations established advisory bodies

Problems

- Corporations checking themselves: what can possibly go wrong?
- Preferences are not easy to invert and are inconsistent

Solutions to problem of control

- Put purpose into the machine even if objectives are unclear
- Incentivize AI to switch off if uncertain about human objectives
- Cooperative Inverse Reinforcement Learning (CIRL)
 - Al observes human behavior to infer reward function

Cooperative Inverse Reinforcement Learning

- Al infers human goals based on actions
- Observation: GP looks tired, sits on the couch, observes the messy table, and starts watching TV
- Inference: Al infers:
 - GP is tired and wants to relax
 - Messy coffee table bothers him
- Action: Al:
 - Fetches a glass of water
 - Tidies up the coffee table without disturbing GP
- Feedback loop: Al monitors GP's reactions
 - If GP is relaxed and happy, AI understanding is reinforced
 - If GP is not happy, AI adjusts actions and improves inference