CHARLES UNIVERSITYFACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Noise reduction and feature extraction with principal component analysis for cryptocurrency price modeling

Bachelor's thesis

Author: Tomáš Barhoň

Study program: Economics and Finance

Supervisor: prof. PhDr. Ladislav Krištoufek Ph.D.

Year of defense: 2024

Declaration of Authorship	
Declaration of Authorship The author hereby declares that he componly the listed resources and literature, a obtain any other academic title.	
The author hereby declares that he componly the listed resources and literature, a	and the thesis has not been used to

Abstract

The abstract should concisely summarize the contents of a thesis. Since potential readers should be able to make their decision on the personal relevance based on the abstract, the abstract should clearly tell the reader what information he can expect to find in the thesis. The most essential issue is the problem statement and the actual contribution of described work. The authors should always keep in mind that the abstract is the most frequently read part of a thesis. It should contain at least 70 and at most 120 words (200 when you are writing a thesis). Do not cite anyone in the abstract.

JEL Classification C01, G00, F23, H25, H71, H87

Keywords Cryptocurrency, Bitcoin, Ethereum, Litecoin,

Machine Learning, PCA, Noise Reduction

Title Noise reduction and feature extraction with

principal component analysis for cryptocurrency

price modeling

Author's e-mail tomas.barhon@hotmail.cz

Supervisor's e-mail ladislav.kristoufek@fsv.cuni.cz

Abstrakt

Nutnou součástí práce je anotace, která shrnuje význam práce a výsledky v ní dosažené. Anotace práce by neměla být delší než 200 slov a píše se v jazyce práce (tj. česky, slovensky či anglicky) a v překladu (tj. u anglicky psané práce česky či slovensky, u česky či slovensky psané práce anglicky). Anotace práce by neměla být delší než 200 slov a píše se v jazyce práce (tj. česky, slovensky či anglicky) a v překladu (tj. u anglicky psané práce česky či slovensky, u česky či slovensky psané práce anglicky). V abstraktu by se nemělo citovat.

Klasifikace JEL C01, G00, F23, H25, H71, H87

Klíčová slova KryptomÄ>ny, Bitcoin, Ethereum, Lite-

coin, Strojové uÄŤenĂ, PCA, Redukce

šumu

Název práce Redukce šumu a extrakce rysů pomocí

analýzy hlavních komponent pro mode-

lování cen kryptoměn

E-mail autora tomas.barhon@hotmail.cz

E-mail vedoucího práce ladislav.kristoufek@fsv.cuni.cz

Acknowledgments
The author is grateful especially to prof. PhDr. Ladislav Krištoufek Ph.D
Typeset in FSV LATEX template with great thanks to prof. Zuzana Havrankova
and prof. Tomas Havranek of Institute of Economic Studies, Faculty of Social Sciences, Charles University.
Defences, Charles Chiversity.
Bibliographic Record
Barhoň, Tomáš: Noise reduction and feature extraction with principal compo-

nent analysis for cryptocurrency price modeling. Bachelor's thesis. Charles University, Faculty of Social Sciences, Institute of Economic Studies, Prague.

2024, pages ??. Advisor: prof. PhDr. Ladislav Krištoufek Ph.D.

Contents

List of Tables

List of Figures

Acronyms

BTC Bitcoin

ETH Ethereum

LTC Litecoin

ML Machine Learing

DL Deep Learing

ANN Artificial Neural Network

SGD Stochastic Gradient Descent

LR Linear Regression

SVM Support Vector Machines

SVR Support Vector Regression

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

PCA Principal Component Analysis

SVD Support Vector Decomposition

ARIMA Autoregressive Integrated Moving Average

PoW Proof of Work

Bachelor's Thesis Proposal

Author Tomáš Barhoň

Supervisor prof. PhDr. Ladislav Krištoufek Ph.D.

Proposed topic Noise reduction and feature extraction with principal

component analysis for cryptocurrency price modeling

Motivation Crypto assets have always been exceptionally volatile compared to traditional assets such as stocks or gold. The historical window is relatively short, thus modeling their price or volatility proposes quite a difficult challenge. It is generally believed that noise in any data decreases the precision of predictions. This effect might be reduced, which will improve the performance of traditional models that are used for cryptocurrency price modeling.

The main motivation for researching this topic is that there is still an ongoing discussion about the role of different features in crypto pricing dynamics. (Kukacka; Kristoufek 2023) have shown that a lot of the pricing dynamic emerges from complex interactions between fundamental and speculative components. They also show the different correlations between all of the explanatory variables which have a direct connection to principal component analysis. It is crucial to study the real impact of those variables in different models as many of them might turn out to be obsolete.

There is currently little use of this dimensionality reduction technique in the academic literature about cryptocurrencies. However, for more traditional financial series this technique is already quite established as a preprocessing technique to reduce noise and dimensionality from which financial data inherently suffer (Chowdhury, U.; Chakravarty, S. and Hossain, M. 2018). Moreover (Bouri, E.; Kristoufek, L.; Ahmad, T. et al. 2022) studied the effect of microstructural noise on idiosyncratic volatility in cryptocurrencies which further supports the need for a technique that will mitigate this effect on the predictions.

The research will address the problem of variable selection for different types of predictive models with respect to the analysis of the principle components aiming to reduce the dimensionality and simultaneously increase precision. The second question is whether it is more appropriate to transform the high dimensionality with

PCA into lower dimensionality or simply omit the variables with high multicollinearity from the models. These approaches are fundamentally different and the answer is not clear.

Methodology The data will come from various sources because the aim is to look at all the possible variables even if they might not seem useful at first glance. As already mentioned the dynamic is driven by a lot of completely different effects. Most of it will be collected from: coinmetrics.io, studio.glassnode.com, and for macroeconomic indicators https://fred.stlouisfed.org/. Some of the data might need to be interpolated to daily observations. Lastly, the observations will need to be sliced to different window sizes and shifted by one so that the predictions can be made for the next day with the data available on that day.

Afterward, the multicollinearity in the data will be examined and different approaches to solve it will be used. The two main ones are using only a smaller set of uncorrelated variables (simple dimensionality reduction) and the second being employing PCA transformation to preserve a predefined threshold of variance or directly targeting the number of principal components.

All the different setups will be compared across three models: linear regression, SVM, and LSTM neural network. The hypothesis is that PCA transformation will substantially lower the measured errors for linear regression and SVM although for LSTM it will result in lower performance as it will only decrease the capacity of the model as the model is powerful enough to create such uncorrelated features without the PCA transformation.

Expected Contribution Existing research agrees that financial data and especially cryptocurrency data are significantly affected by noise. The main goal is to extend the research on the topic of variable selection for algorithmic trading models as there are still a lot of unanswered questions. It will most likely become clearer which approach to dimensionality reduction is the most efficient concerning cryptocurrencies.

Also, not only the underlying pricing dynamics will be detected but the results can be used for investors that are trying to lower their risk of loss which is relatively high in crypto markets. The effect of having a more stable and precise model might significantly cut the transaction costs that are associated with more frequent exchanges as the predictions will become less volatile. That is a desirable property needed to maximize profit and increase credibility towards its customers.

Core bibliography

Kukacka, J., & Kristoufek, L. (2023). Fundamental and speculative components of the cryptocurrency pricing dynamics (Vol. 9). Financial Innovation.

Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis (Vol. 109). Expert Systems with Applications.

Chowdhury, U. N., Chakravarty, S. K., & Hossain, M. T. (2018). Short-Term Financial Time Series Forecasting Integrating Principal Component Analysis and Independent Component Analysis with Support Vector Regression (Vol. 6).

Bouri, E., Kristoufek, L., , & Shahzad, S. J. H. (2022). Microstructure noise and idiosyncratic volatility anomalies in cryptocurrencies. Springer Link. https://doi.org/10.1007/s10479-022-04568-9

Rea, A., & Rea, W. (2016). How many components should be retained from a multivariate time series PCA?. arXiv preprint arXiv:1610.03588.

Author	Supervisor

Chapter 1

Introduction

Since the introduction of the first cryptocurrency BTC! (BTC!) associated with the unknown author Satoshi? cryptocurrencies have become part of our everyday life. Their high volatility, futuristic name and alternative nature are of interest to the media and the general public. According to coinmarketcap.com the overall cryptocurrency market capitalization peaked at around 2.8 trillion \$USD in the year 2022 which makes them a substantial part of the financial sphere. The initial idea of BTC! was to establish an alternative to traditional flat currencies. The BTC! whitepaper pointed out the weakness of the current trust-based model that relies on a third-party instance responsible for verifying transactions. A different approach was suggested to validate transactions known as the proof-of-work which utilizes the computational power of miners in the network. The fact that the power is distributed across the network ensures that it becomes exponentially harder with an increasing number of blocks to generate blocks faster than the rest of the miners (?, pg. 6). The mining process is interconnected with the creation of new coins which is a crucial parameter in all monetary systems. This fact gives researchers such as? the possibility to use various attributes of the network to study the pricing dynamics of cryptocurrencies. However, there are a couple of substantial drawbacks that make price modeling relatively challenging. Those are non-stationarity of the target prices, relatively short historical window, the limited power of proxies for speculative components and as pointed out by many researchers such as ?, ?, ? an idiosyncratic noise in volatility. Addressing these issues might potentially lead to better-performing models, especially with longer forecasting periods. Likewise in other fields, the recent rise of machine learning has also affected the cryptocurrency area where various ML! (ML!) and DL! (DL!)

1. Introduction 2

models are often being used to model the price? or volatility?.

The main objective of this thesis is to try to tackle the problem of idiosyncratic noise in the high dimensional data used for price and returns modeling across three ML models: Ridge LR! (LR!), SVM! (SVM!) and LSTM! (LSTM!) RNN! (RNN!). We will examine the effect of a method known as PCA! (PCA!) which was according to? developed in 1933 by Harold Hotelling. However, others often refer to the fact that the idea was already introduced before by Karl Pearson in the article On lines and planes of closest fit to systems of points in space?. This technique aims to compress data from a higher dimensionality space into a lower space while retaining a maximum amount of variance. It utilizes linear transformation of the covariance matrix to do that. Nevertheless, despite the initial focus on dimensionality reduction different types of PCA! are often being used as noise reduction techniques in signal or image processing. Interestingly many studies in recent years have incorporated PCA! for time series data as a part of their preprocessing pipeline?,?. The idea stems from the fact that removing the most idiosyncratic components might help with capturing clear dynamics that enter the price-making process. We perceive that there is currently a lack of literature that would examine the effects of noise reduction techniques on the performance ML! based models for cryptocurrency modelling. We want to mitigate most of the identified challenges using the currently available academic knowledge and focus exclusively on the effect of noise in the data. Admittedly it is always intricate to establish a ceteris paribus relationship in such a scenario where many variables change, the randomness of the training process using SGD! (SGD!) plays a crucial role and the size of the dataset is relatively limited. We want to contribute with an alternative approach, especially in the preprocessing pipeline that can be used in future studies to decrease the volatility of predictions. We do not aim to provide a universally applicable approach, as different techniques can produce varying outcomes on different datasets. This phenomenon partially corresponds to the No Free Lunch Theorem? which has turned into a buzzword in the ML! community over the years.

The remainder of the thesis is organized as follows: The following chapter introduces the fundamentals of cryptocurrencies and their unique characteristics. It also covers the usage of ML! methods in this field and especially focuses on the literature about the usage of PCA! in various areas. The data chapter explains in detail which data were used and elaborates on the basic resampling methods that we used. In methodology, we focus on each specific ML!

1. Introduction 3

method and explain the core concepts that are crucial for understanding the training process. Similarly, we propose our complete forecasting framework. Chapter results and discussion evaluates the findings for each currency-model pair across different settings. We also include a limitations section which is especially crucial for our study where we acknowledge those problematic parts of our approach that might be improved in the future. The conclusion focuses on the overall impact and proposes paths that should be explored in the years to come. All the tables, source codes and visualizations can be found in the appendices.

Chapter 2

Literature Review

2.1 Cryptocurrencies

2.1.1 Bitcoin

In the year 2008, an unknown author with the pseudonym Satoshi Nakamoto introduced the idea of a purely peer-to-peer electronic cash system. Interestingly the author mentions small casual transactions as something that the current model relying on third-party financial institutions fails to deliver because of unavoidable transaction costs?. In contrast, from today's perspective, Bitcoin is a relatively slow medium for micro-transactions because technically the receiver has to always wait for a certain amount of blocks to be mined such that it becomes statistically unlikely that double-spending has been committed by the payer?. This phenomenon can be demonstrated on the data from coinmetrics.io which show that the mean size of a BTC! transaction ranges in thousands of USD\$. Another important aspect is that the miners prioritize transactions with higher fees in the block which introduces considerable costs to each payment. ? have shown the relationship between the transaction fee and the transaction latency meaning the time it takes for the transaction to be almost surely valid. Even though there has been some divergence from the original idea of small transactions all of the security measures regarding the double spending problem in the original whitepaper have turned out to be relatively well-defined in a medium time horizon.

Despite the fact, that Bitcoin is generally regarded as the first cryptocurrency it relies on many older ideas and technologies that are mostly mentioned in the original whitepaper. First and foremost stands the conference paper *How to Time-Stamp a Digital Document*? which focuses on the problem of third

parties responsible for verification of digital documents. It makes use of an already established family of functions known as hashes that surpass privacy concerns and generally surpass the need for a third party to be involved in the verification process when combined with the correct consensus algorithm. They define a hash function as follows:

Definition 2.1 (Hash). This is a family of functions $h: \{0,1\} \to \{0,1\}^l$ compressing bit-strings of arbitrary length to bit-strings of a fixed length l, with the following properties:

- 1. The functions h are easy to compute, and it is easy to pick a member of the family at random.
- 2. It is computationally infeasible, given one of these functions h, to find a pair of distinct strings x, x' satisfying h(x) = h(x'). (Such a pair is called a collision for h)(?, see Chapter 4.1)

And suggest hashing documents together with the time of their creation. However, the time-stamping might fail if the users can tweak the time of their machines. Interestingly, the authors have already mentioned that and introduced the idea of chaining the data together with their metadata sequentially in a long chain so that the user can trust that something was not overwritten (?, see Chapter 5). This is possible due to the properties of the hash functions. Meaning that we can concatenate arbitrarily long inputs and always produce a fixed-size output. Another significant influence came from b-money which was an idea for an anonymous digital cash system presented in?. B-money proposed the concept of **PoW!** (**PoW!**) which is a validation protocol that many cryptocurrencies still use. The idea was to solve computationally challenging puzzles where it can be determined how much effort was used to do so (see ?, pg. 1). However, certain worries were being raised about how to regulate a system if the computational power of computers is increasing every year (see ?, pg. 3). This has been addressed by Bitcoin with the regulation of difficulty based on the average time it takes to solve the puzzle rather than the difficulty itself (see ?, pg. 3).

Since many characteristics of the network are often being used by researchers such as: (?, ?, ? or ?) in their research, it is critical to understand the underlying mechanics that form them. Bitcoin takes a completely adverse approach to the general financial system. Whereas traditionally, banks and other institutions try to keep every transaction encrypted Bitcoin makes all

the transactions publicly visible and available but hashing the addresses of the sender and receiver. The process of sending Bitcoins to someone else essentially means adding a digital signature to the previous transaction from which you received that money. However, as (see Chapter 2?, pg. 2) suggests this only mitigates the privacy concerns but the double spending risk needs to be dealt with a smarter design. This is solved by the introduction of the **PoW!** algorithm. The idea is that transactions are collected into blocks by the miners who try to solve a computationally difficult task that can only be solved by a brute-force search. It is simply a race to find a hash with a certain amount of leading zeros which is adjusted based on the mining power of the network. The miners are incentivized by BTC! price for winning the race and also by the transaction fees that can be added to each transaction as a reward for being prioritized. The leading concept is that the blocks are connected sequentially in a chain through the hash. If we assume that most of the nodes/miners are honest their profit-maximizing behavior should always be working on the longest chain and thus transactions that have already been spent do not get included in the chain. After the puzzle is solved by a node it can be validated by all other nodes in a linear time and they move on to the next block. Despite that, there remains the risk of an attacker forking a malicious block and sending his money back or elsewhere. ? claims that the probability of an attacker catching up (or reaching breakeven from the memoryless property of Poisson distribution) drops exponentially with each block if the mining power (probability of solving the puzzle) of the attacker is lower than the power of honest nodes. This mechanism is the root of the Bitcoin security. However, it also implies that there is an implicit tradeoff between security and the desired liquidity of cash. Another important property is that there will ever exist only a limited amount of 21 million of BTC!s which makes it inherently a deflationary currency at least after all of the BTC!s are mined. Technically there will be less as some wallets do get lost together with their contents. Limiting supply might be an intentional design choice to contrast the traditional model where banks issue money and cause inflation.

As cryptocurrencies are a relatively new phenomenon they are currently a frontier topic of academic research in many different aspects. They are being studied on multiple levels such as law, technology, cryptography, security, economics or machine learning. Generally, the area of economics and machine learning will be of interest as we want to uncover whether there exist some determinants of the bitcoin price or at least features that can be used to estimate

the pricing dynamics. We assume that there are theoretically three simplified possibilities of the pricing model of **BTC!** and other cryptocurrencies. Firstly, it might be a purely efficient market and the price technically follows a random walk process with a potential drift. The second model is that the price is entirely driven by speculative components and lastly, it might be a combination of speculative and fundamental components.

2.1.2 Ethereum

At the time of writing according to the data from coinmarketcap.com,

ETH! (ETH!) is the second cryptocurrency based on the market capitalization standing at 318 billion USD. Although, there are a lot of similarities with BTC! the idea behind ETH! is much more profound and builds an entire technological infrastructure on top of blockchain which provides easily scriptable smart contracts. ? defines smart contracts as follows:

Turing-complete programs that are executed in a decentralized network and usually manipulate digital units of value.

We might want to reformulate this definition for the purposes of this thesis to cover a broader meaning.

Definition 2.2 (Smart contract). A program that is running on the blockchain infrastructure as an endpoint with a specific address that other entities on the platform can interact with in order to execute a transaction for a cost proportional to the number of computational steps. The contract usually has a predefined set of rules which is applied to the input data and automatically executes on hold whenever called. This allows developers to build applications on top of blockchain infrastructure that is run by the distributed network and grants them the unique benefits of the blockchain model.

According to the original whitepaper, the main purpose of **ETH!** was not to create another cryptocurrency but build a simple-to-use scripting language that would allow developers to create custom applications running on the blockchain that share the benefits of the distributed nature of the system but reduce the need for hardware as the transactions are handled by the network and also software as the transactions can be defined in a few lines of code. Notably it describes cryptocurrencies as a state transition system:

Definition 2.3 (Digital currency ledger). From a technical standpoint, the ledger of a cryptocurrency such as BTC! can be thought of as a state transition system, where there is a *state* consisting of the ownership status of all existing coins and a *state transition function* that takes a *state* and a *transaction* and outputs a new state *state-new* which is the result.

In this view, we can understand building smart contracts, see Definition ??, as creating use case specific *state transition functions* ((?, see Chapter Bitcoin As A State Transition System),(?, see Chapter 2)).

We can observe the fundamental difference in philosophy between the BTC! and ETH! from their respective whitepapers. ETH! is much more focused on its role as an application platform whereas BTC! was mainly intended to work as a currency. The ETH! whitepaper even presents many ideas for future applications that might benefit from this framework. This fact is crucial in understanding the underlying price-making mechanics as investments into ETH! might be affected by its perceived potential as a technological product rather than a typical currency that might be valued mostly as a medium of exchange.

Even though there are a lot of similarities in the blockchain architecture, there have been many functional and implementation differences. The most notable is the ETH! scripting language which is a Turing-complete counterpart to the BTC! scripting language that did not support infinite looping (?, see Chapter Scripting). The second fundamental implementation variation is that each Ethereum block saves the entire state of the whole network and thus does not need to store the whole history of the blockchain. On the contrary, BTC! is doing exactly that, as the blocks are state-unaware and only validate blocks based on the transactions and the wallet software usually calculates the balances (?, see Chapter 2). As ? pointed out there is a workaround that makes this implementation roughly equally efficient which utilizes the propagation properties of the Merkle tree with the fact that only a small part of the state changes with each block allowing for efficient state change using pointers to the specific branches and leaves of this data structure, see Figure??. The data are stored at the bottom of this infrastructure and there is an efficient algorithm that allows the ETH! software to reference the affected addresses and paths leading to them.

Figure 2.1: Merkel tree with pointers allows efficient state change

Lastly, there is a difference in the supply of new coins. Contrasting the model of BTC! where the supply is limited ETH! introduces a model of an infinite linear supply of coins to provide incentives for future users to join the network as they might still obtain new coins and thus limit the wealth concentration common in BTC! (?, ?). Note that ETH! already switched to the proof-of-stake model in September 2022 but our dataset does not include this period and thus this fact is not especially relevant to this thesis.

On the outside ETH! acts similarly to BTC!. It is a ledger that stores the coin balances of accounts where each has a designated unique address. There are two types of accounts: externally owned accounts which are essentially the typical users and contract accounts which are the abstraction on top of which smart contracts can be built with contract code that executes when the account receives a message from another account (externally owned or a different contract account). Because of the presence of infinite loops in the scripting language ETH! employs a strategy that prevents users from essentially exploiting the Denial-of-service attack. Nonetheless stands the Halting problem. That can be simplified to the fact that for a Turing-complete model, there is no way of saying ex-ante whether the program will halt or run indefinitely. As ? suggests the Halting problem is usually attributed to Alan Turing's paper (?, On computable numbers, with an application to the Entscheidungsproblem), however, the problem was reformulated in various forms by others. This implies

that this undecidability also holds for any ETH! contract code. This is fixed by introducing a gas currency that acts as a cost of computation and the maximum has to be predefined in each message so that the recipient knows what is at stake? We can think of this as a type of timeout based on a currency. If gas runs out all of the state changes are reverted. This also explains the origin of the term transactions which typically refers to a set of instructions in SQL or other databases that are bundled together and executed in an all-or-nothing fashion? The last important fact, as the whitepaper describes, is that the contract code is run by all of the miners verifying the block which essentially means applying all of the transactions and reverting in case of an error.

2.1.3 Litecoin

In comparison to ETH!, the goal of LTC! (LTC!) was pronounced from the beginning as building a better version of BTC! that shines where BTC! has failed. We might say that LTC! is a tweaked version of BTC! with different parameters or a hard fork of the **BTC!** protocol. To our best understanding, the only document that is wildly considered the original whitepaper is a transcript of a forum post by the founder Charlie Lee where he suggests reading the BTC! whitepaper. Essentially, two main differences address the problems BTC! embodies. The first one is faster confirmation time that allows LTC! to be used truly in a fashion that was intended for BTC! as digital cash with high liquidity sacrificing a bit of security. Achieving that mostly through four times faster block generation. And second one is a different proof-of-work algorithm. As ? suggests the intention was most likely since BTC! mining was dominated by GPU and ASIC miners which led to a concentration of mining power in pools and thus more centralized distribution of BTC!. Despite the initial promises Litecoin has most likely not fulfilled its envisaged role and does not currently belong even to the ten most popular cryptocurrencies by market capitalization.

2.2 Machine Learning Methods for Cryptocurrencies

Thanks to transformer-based architectures that are the backbone of most chatbots. ML! and artificial intelligence have gotten a lot of public spotlight during the last two years. However, ML! methods have been especially prevalent in

research in the last decade. Particularly in data-driven fields of academia, there have been various use cases where ML! shines and outperforms traditional statistical models. Forecasting has always been an area of interest in many different fields as the idea of predicting the future based on historical data provides intrinsic value in itself. The field of cryptocurrencies is no exception as the significant volatility is a thought-provoking problem to tackle and an opportunity to win against the rest of the market.

In order to use ML! or any other data-driven method we implicitly have to assume that there are some underlying dynamics of which we can make sense. This argument is hard to make without the proper data and might have to be studied separately for different time horizons. Thankfully, ? argue that some cryptocurrencies especially BTC! are driven by the interaction of speculative and fundamental components and thus provide an incentive for us to untangle and study these relationships. Disturbingly, even though there are many other papers focusing directly on the practical implementation of forecasting frameworks for cryptocurrency prices a significant amount of them do not compare their model to a random walk or other simple statistical model. We suggest that their approaches should not be condemned but we strongly emphasize that their results should be interpreted cautiously.

We believe that there is currently an upsetting trend in the studies focusing on modelling the price or returns of cryptocurrencies using ML! methods. There seem to be a lot of inconsistencies in terms of splitting the data into training and testing sets, making the results robust using some forms of crossvalidation, comparably presenting the results and contrasting the models to a meaningful baseline model. This fact arguably contributes to the fact that the results of most of the studies are relatively underwhelming and have stagnated in the last few years. The other side of the coin, arguably worse, are studies that present overly optimistic results. A similar critique of the generalizability of results was presented by ?. We propose an idea for future research that would imaginably help the field advance further and stimulate innovation. The suggestion lies in the creation of a standardized dataset with set splits between train, validation and test data that would allow for the comparison of different approaches and would encourage researchers to make their models generalizable. Taking inspiration from the field of image recognition where the Image-net is a state-of-the-art dataset to compare models for image recognition. This would allow for a competitive environment boosting innovation and development. We acknowledge that there is a fundamental difference between

a dataset that consists of an unordered series of images and an especially challenging non-stationary time-series. Some compromises would undeniably have to be introduced in terms of set prediction horizons, different data granularity and artificially set splitting points. However, there is always a place for variation and this dataset could have multiple versions. Even though, this solution is sub-optimal we firmly believe the current scattered state of knowledge in this field makes it extremely difficult for further development to blossom.

Despite that, we would like to provide a brief overview of the methods that are often incorporated in price or returns modelling pipelines. As we already mentioned in order for ML! to work as a forecasting algorithm there has to exist a possibility of drawing information about the future from the past. That is a non-trivial assumption because it contradicts The Efficient market hypothesis that was formulated for capital markets by?. It is thus no oddity that? have found out that across 395 scientific articles about the use of ML! in cryptocurrencies the most cited article was? that studied the efficiency of BTC! and concluded that the BTC! market is inefficient but may become efficient in the future. And that the keyword inefficiency was the one with the highest burst of emergence among the articles.

There are generally two types of the problem formulation. Either the price is being modelled as a regression problem or the movement of the market is predicted as a binary classification. Although modelling market movement is easier it is also much more comparable across studies. If we can assume that there are approximately the same amounts of ups and downs we can work against the 50% baseline? ? pointed out that cryptocurrencies lack seasonal trends which makes them challenging to predict for traditional statistical models. They also distinguish four types of factors influencing cryptocurrency price. Namely: demand and supply, crypto market, macro-economic and political. Our work will cover the first three types of factors as the political factors are hard to quantify. Later? suggested that future researchers should study measurement tools for political factors. If you want to find out more about research in this field from 2010-2020 please view? which provides a comprehensive review. However, as we suggested earlier the aspect of comparison between studies is rather limited.

? compared multiple models from the perspective of portfolio management comparing them using return on investment and suggested that all of the ML! models outperformed the moving average baseline. They also introduce the idea of predicting cryptocurrencies prices in BTC! rather than USD to filter out the effect of overall cryptocurrency market growth and ease the effects of spurious

correlation. In their study LSTM! outperformed the gradient-boosting decision trees with longer time horizons and vice versa. Lastly, they pinpointed the fact that expressing prices in terms of BTC! helped the predictions and concluded that forecasting only the trend of individual currencies might be easier than also predicting the overall market trend. ? used ensemble methods to predict the prices of multiple cryptocurrencies. Utilizing the fact that combining multiple weaker models with uncorrelated errors with voting can increase the overall performance (?, see Chapter 14.2). Unfortunately however impressive their results might seem they have been evaluated only on a month of predictions which is in our view insufficient.

2.3 Principal Component Analysis

2.3.1 PCA in Time Series

PCA! is a widely adopted signal processing technique that is typically used to lower dimensionality of input features and to mitigate noise in the signal by transforming the data into a different feature space while ensuring that the new principal components remain uncorrelated. Traditional usecases include dimensionality reduction for visualization purpouses (word embedding vectors), noise reduction in ECG, dimensionality reduction for performance reasons of different **ML!** methods and many other signal processing pipelines.

Thanks to its valuable properties it has been recognized also as a tool to simplify and bring insights into multivariate time-series data concretely in the financial sector. However, using **PCA!** in time-series usually comes with many identified challenges. Especially the need for the data to be normalized before being processed by the **PCA!** layer might turn to be almost impossible to fulfill with non-stationary time-series. Despite these shortcoming many researchers have used **PCA!** in their predictive work with a substantial success.

Most notably ? designed a technical analysis based trading strategy for stocks and indexes that used PCA! to reduce the dimensionality of input features from 6 to 31 that enabled the genetic NeuroEvolution algorithm to design much simpler ANN! (ANN!), reduce noise in the data and decrease the risk of overfitting the training datasetset. Their approach significantly outperformed the Buy and Hold strategy and they conclude that PCA! was vital to achieve such results. Their work is especially important because of generalizability for future work as their approach used the broad population of ANN!s even making

each neuron dynamically choose different activation function and thus introduces no constrains on the generality of the results. Lastly they concluded that **PCA!** led to lower risk, less days spent with capital in the market and higher daily profits.

Similarly, ? used **PCA!** and Independent Component Analysis as a preprocessing layer for stock prediction and found out that the proposed framework outperformed the approach where only the final **SVR!** (**SVR!**) was used for prediction. Many other works use **PCA!** only as a dimensionality reduction technique such as ?.

An alternative novel approach used by some researchers (?, ?, ?) focuses on creating a cryptomarket wide index using PCA! to capture the overall market trends. ? found that the first principal component explains a large portion of the variation and is highly correlated with the BTC! returns and thus support the notion of BTC! returns being an important driver for other cryptocurrencies. ? critique the use of rule based indexes that do not rely on any fundamental mathematical reasoning and thus create a dynamic index using PCA! that captures the overall market trends. However, they discourage the use of the index as an ETF highlighting the fact that the maximal variance optimization may be associated with higher volatility.

2.4 Web Search Data in Financial Applications

The phenomenon of Google Trends has drawn attention of many researchers. First and foremost stands the idea of Google Flu Trends. A project launched by Google which aimed at predicting flu epidemics using the symptom related searches by the users? However, as? pointed out there have been many underlying issues both in the data construction and the dynamic nature of the search engine changing with years of development. We should highligh the importance of the correlation-causation fallacy in the use of Google Trends or other search based services. It is even worsened by the Google Trends weekly data granularity which makes it especially challenging to assess any kind of causality and its direction. We have to take into account the possibility that there is a bidirectional influence between Google Trends and BTC! prices. Despite these challenges, research suggest that there is an underlying value in using web search data for modelling financial time series.

? used ANN! to predict the direction of the stock market indexes and compare two setups with and without Google Trends and conclude that inclusion

of Google Trends improves the performance of their models. Similarly, ? studied the effect of investor attention measured by Google Trends as a potential market signal. Interestingly, they do not find evidence that market movements cause changes in search volumes. However, they conclude that search terms are useful in predicting stock market movements and as a proxy variable for investor attention. Most notably they emphasize that the effect is conditional on the sentiment of the search. Suggesting that we need to distinguish between positive and negative searches. This idea was adressed before in ? that found an asymmetric effect of positive and negative searches which were discriminated based on whether the price over or underperformed compared to a moving average of 4 days for Google Trends and 7 days for Wikipedia visits. Furthermore, ? studied both linear and nonlinear effect between Google Trends and BTC! returns and also conclude that Google Trends can be used to improve accuracy when forecasting BTC! prices.

Chapter 3

Fundamental

Macroeconomical

Variables and Indexes

RGDP - US

USD - EUR

CPL-US Dow Jones

S&P 500

Google Trends -

Cryptocurrencies

Wiki Trends -

Data

Compared to traditional financial data cryptocurrency data tend to be easier to obtain. However, many data providers have already identified the bussiness potential of selling advanced data and have started to monetize them. However, since some websites monetize only their APIs we could improvize and obtain data from multiple sources and merge them to get to our desired dataset size. We have desired to use as many relevant variables as possible and we build on an existing research in the field. Our dataset can be split into 2 main categories and 4 subcategories. We utilize the data that describe the overall market trends in the traditional sense. These data were mostly obtained from https://fred.stlouisfed.org/ and from the https://finance.yahoo.com/markets/ API. To balance fundamental indicators with speculative side we used **Google** Trends and Wikipedia Page Views that act as a proxy for market attention about cryptocurrencies in general and should help us to model the market hype periods. These explanatory variables are then used to forecast the price or returns of the specific cryptocurrency of interest lagged back in time.

Currency Specific Market General Market State Speculative Fundamental Speculative

Number of Adresses

Difficulty

Hashrate

Transactions

Figure 3.1: Dataset Variables Overview

Target - lagged Web Search Related to Fundamental/Technica Web Search **Currency Price** Cryptocurrencies or Returns **Currency Specific** Currency Specific . Generally

Google Trends - Specific

Wiki Trends - Specific

Currency

The data were collected between December 2023 to February 2024 varying based on the different sources but they are further shortened to utilize the most overlapping region between data sources for each unique cryptocurrency. This results in a time series from 17.9.2014 to 1.11.2022 for Bitcoin, 4.2.2016 to 27.7.2022 for Ethereum ensuring that the end of the series is before the change to proof-of-stake algorithm and series from 17.9.2014 to 1.11.2022 for Litecoin. The shifted versions of the datasets are of variable length based on the forecasting horizon.

3.1 Cryptocurrency Specific Technical Data

Despite the fact, that we have framed this data as fundamental/technical we should acknowledge that fundamental in our case stands far from its traditional meaning. They are fundamental in a way that they are the typical data researchers and practitioners employ to model cryptocurrencies and that they objectively describe the system. However, as the fundamental factor is very limited in this case it only makes sense for the typical variables such as capitalization, volatility, hashrate and others. But we also used a lot of technical variables that are derived from these fundamental variables or the price itself. These help to identify trends in certain variables from pure mathematical transformation of the original series. All of these data were collected from coinmetrics.io and further processed by our pipeline.

We incorporate many variables describing specific technical characteristics of the network. Starting with number of active addresses which acts as a measure of user activity on a particular day that is a cruical parameter potentially capturing the strength of bull or bear market behaviour. However, it does not reflect the direction itself. The difficulty of the network is adjusted dynamically to counteract the changes in the mining power and thus act as a proxy for current mining power of the network or the current efforts of the miners. The size of the block is another characteristic of the network describing the size of the block (in bytes) and has been steadily increasing overtime with significant fluctuation that depend on many other changes in the network. Hashrate is a measure of how fast do the miners solve the hash for one block. In the long term the mean hashrate should be proportional to the difficulty at least that is how the BTC! protocol was designed however there are some fluctuation in the short term as the difficulty is adjusted every 2016 blocks to match the average hashrate over that period.

Other variables focus on the economics of the currency and model the market behaviour not the network itself. Beginning with traditional market signals such as capitalization indicating the overall price of all coins and volatility of returns as a standart deviation of log-returns. Furthermore, we employ many other variables about the price of fees provided by the users, revenues of the miners, distribution of wealth in the network and the number of transactions for that interval.

Following is the list of technical variables on the example of **BTC!**. The definitions were taken directly from **coinmetrics.io** to avoid any misconceptions:

- BTC / Addresses, active, count The sum count of unique addresses that
 were active in the network (either as a recipient or originator of a ledger
 change) that interval. All parties in a ledger change action (recipients and
 originators) are counted. Individual addresses are not double-counted if
 previously active.
- BTC / NVT, adjusted, 90d MA The ratio of the network value (or market capitalization, current supply) to the 90-day moving average of the adjusted transfer value. Also referred to as NVT.
- BTC / NVT, adjusted, free float, 90d MA The ratio of the free float network value (or market capitalization, free float) to the 90-day moving average of the adjusted transfer value.
- BTC / NVT, adjusted The ratio of the network value (or market capitalization, current supply) divided by the adjusted transfer value. Also referred to as NVT.
- BTC / NVT, adjusted, free float The ratio of the free float network value (or market capitalization, free float) divided by the adjusted transfer value. Also referred to as FFNVT.
- BTC / Flow, in, to exchanges, USD The sum USD value sent to exchanges that interval, excluding exchange to exchange activity.
- BTC / Flow, out, from exchanges, USD The sum USD value withdrawn from exchanges that interval, excluding exchange to exchange activity.
- BTC / Fees, transaction, mean, USD The USD value of the mean fee per transaction that interval.

• BTC / Fees, transaction, median, USD - The USD value of the median fee per transaction that interval.

- BTC / Fees, total, USD The sum USD value of all fees paid by transactors that interval. Fees do not include new issuance.
- BTC / Miner revenue, USD The USD value of the mean miner reward per estimated hash unit performed during the period, also known as hash-price. The unit of hashpower measurement depends on the protocol.
- BTC / Capitalization, market, free float, USD The ratio of the free float market capitalization to the sum realized USD value of the current supply.
- BTC / Capitalization, realized, USD The sum USD value based on the USD closing price on the day that a native unit last moved (i.e., last transacted) for all native units.
- BTC / Capitalization, market, current supply, USD The sum USD value of the current supply. Also referred to as network value or market capitalization.
- BTC / Capitalization, market, estimated supply, USD The sum USD value of the estimated supply in circulation. Also referred to as network value or market capitalization.
- BTC / Volatility, daily returns, 30d The 30D volatility, measured as the standard deviation of the natural log of daily returns over the past 30 days.
- BTC / Volatility, daily returns, 180d The 180D volatility, measured as the standard deviation of the natural log of daily returns over the past 180 days.
- BTC / Difficulty, last The difficulty of the last block in the interval. Difficulty represents how hard it is to find a hash that meets the protocoldesignated requirement (i.e., the difficulty of finding a new block) that day. The requirement is unique to each applicable cryptocurrency protocol. Difficulty is adjusted periodically by the protocol as a function of how much hashing power is being deployed by miners.

• BTC / Difficulty, mean - The mean difficulty of finding a hash that meets the protocol-designated requirement (i.e., the difficulty of finding a new block) that interval. The requirement is unique to each applicable cryptocurrency protocol. Difficulty is adjusted periodically by the protocol as a function of how much hashing power is being deployed by miners.

- BTC / Hash rate, mean The mean rate at which miners are solving hashes that interval. Hash rate is the speed at which computations are being completed across all miners in the network. The unit of measurement varies depending on the protocol.
- BTC / Hash rate, mean, 30d The mean rate at which miners are solving hashes over the last 30 days. Hash rate is the speed at which computations are being completed across all miners in the network. The unit of measurement varies depending on the protocol
- BTC / Revenue, per hash unit, USD The USD value of the mean miner reward per estimated hash unit performed during the period, also known as hashprice. The unit of hashpower measurement depends on the protocol.
- BTC / Supply, Miner, held by all mining entities, USD The sum of the balances of all mining entities in USD. A mining entity is defined as an address that has been credited from a transaction debiting the 'FEES' or 'ISSUANCE' accounts.
- BTC / Block, size, mean, bytes The mean size (in bytes) of all blocks created that day.
- BTC / Block, weight, mean The mean weight of all blocks created that day. Weight is a dimensionless measure of a block's "sizeâ€t. It is only applicable for chains that use SegWit (segregated witness).
- BTC / Issuance, continuous, percent, daily The percentage of new native units (continuous) issued over that interval divided by the current supply at the end of that interval. Also referred to as the daily inflation rate.
- BTC / Network distribution factor The ratio of supply held by addresses with at least one ten-thousandth of the current supply of native units to the current supply.

• BTC / Transactions, count - The sum count of transactions that interval. Transactions represent a bundle of intended actions to alter the ledger initiated by a user (human or machine). Transactions are counted whether they execute or not and whether they result in the transfer of native units or not (a transaction can result in no, one, or many transfers). Changes to the ledger mandated by the protocol (and not by a user) or post-launch new issuance issued by a founder or controlling entity are not included here.

- BTC / Transactions, transfers, count The sum count of transfers that interval. Transfers represent movements of native units from one ledger entity to another distinct ledger entity. Only transfers that are the result of a transaction and that have a positive (non-zero) value are counted.
- BTC / Transactions, transfers, value, mean, USD The sum USD value of native units transferred divided by the count of transfers (i.e., the mean size in USD of a transfer) between distinct addresses that interval.

The datasets for Ethereum and Litecoin look similar with the exception of a few variables missing, look at (??, ??):

Figure 3.2: Ethereum missing variables

- Hash rate, mean, 30d
- Supply, Miner, held by all mining entities, USD
- Block, weight, mean

3.2 Macroeconomical Data

As the macroeconomical condition is a cruical factor for investor behaviour we decided to include relevant variables that might deliver valuable insights. We utilize five macroeconomical indicators that affect invesment choices. Real Gross Domestic product of the United States represents the overall growth trend of the largest economy in the world with closely related real gross domestic product per capita telling more about individual resouces which gives

Figure 3.3: Litecoin missing variables

- Hash rate, mean, 30d
- Supply, Miner, held by all mining entities, USD
- Flow, in, to exchanges, USD
- Flow, out, from exchanges, USD
- Revenue, per hash unit, USD

a more complex picture of the state of the US economy despite the fact that americans are not the main cryptocurrency investors by nation. Furthermore we incorporate Consumer Price Index in the United States that acts as an inflationary measure to capture the spurious correlation between prices of USD and BTC-USD exchange rate. M2 base acts as a measure of dollar liquidity in the circulation. Lastly, the USD-EUR exchange rate can be thought of as a market state information or its returns as an opportunity costs for potential investors. To further adress the problem of spurious correlation and add the information about growth of other markets we include various closing prices and other measures of the stock market and other investment opportunities.

Following is the full description of the macroeconomical variables used:

- Close_DJI Dow Jones Industrial Average
- Close GSPC S&P 500
- Close GC=F Gold Futures
- Close_VIX CBOE Volatility Index
- Close_IXIC NASDAQ Composite
- Close_SMH VanEck Semiconductor ETF
- Close_VGT Vanguard Information Technology Index Fund
- Close_XSD SPDR S&P Semiconductor ETF
- Close IYW iShares U.S. Technology ETF

- Close_FTEC Fidelity MSCI Information Technology Index ETF
- Close_IGV iShares Expanded Tech-Software Sector ETF
- $Close_QQQ$ Invesco QQQ Trust
- RGDP_US Real Gross Domestic Product of the United States
- RGDP_PC_US Real Gross Domestic Product per capita of the United States
- CPI_US Consumer Price Index: All Items: Total for United States
- $M2_US$ M2 Base US
- USD_EUR_rate U.S. Dollars to Euro Spot Exchange Rate

3.3 Web Search Data

As mentioned earlier following many other researchers we aimed to obtain a proxy for the market attention. We specifically used Wikipedia Page Views to get the page views for Wikipedia pages: Bitcoin, Ethereum, Litecoin and Cryptocurrency and use them respectively for each coin dataset combining the overall Cryptocurrency views with the specific currency. Similarly we hoped to obtain similar data from Google Trends but they turned out to be quite cumbersome to use. As? mentioned there are three main obstacles when using Google Trends. Firstly, the scale is always normalized into the range 0-100 based on the selected region and time. Secondly, this implicitly means that the results are rounded to integers and thus loosing a lot of precision. Lastly, there is a limit of 5 queries that you can use at a time. This not only means that you cannot compare more search terms but it also means that when there are over five variations how the term might be searched for one cannot do that effectively. Another problem, that we faced is that the data can be obtained only in weekly granularity for longer periods and thus needs to be interpolated to daily which most likely sacrifices a lot of interesting dynamics on the daily level which is significant regarding the volatility of cryptocurrencies. These reasons, except the weekly sampling frequency, were solved in the g-tab Python library, created by ?, which uses a two step query sampling process that estimates the searches on a universally common scale with floating precision and allows us to use as many word formulation as needed. We would then sum

the popularity for each word formulation that is related to the same thing. We acknowledge that there is a risk that we ommitted some word formulations but hopefully we covered all the significant ones.

Following is the list of the variables from this section and their word forms for Google Trends: https://cs.wikipedia.org/wiki/Bitcoin

- Wiki btc search Wiki pageviews for Bitcoin
- Wiki_eth_search Wiki pageviews for Ethereum
- Wiki_ltc_search Wiki pageviews for Litecoin
- Wiki_crypto_search Wiki pageviews for Cryptocurrency
- Google_btc_search Google Trends summed from terms: Bitcoin, bitcoin, BTC
- Google_eth_search Google Trends summed from terms: Ethereum, ethereum, ether, ETH
- Google_ltc_search Google Trends summed from terms: Litecoin, litecoin, LTC
- Google_crypto_search Google Trends summed from terms: Cryptocurrency, cryptocurrency, Cryptocurrencies, cryptocurrencies, crypto, Crypto

3.4 Preprocessing

Forecasting from historical data comes with many identified challenges. These were especially pronounced in our case as we incorporate data from many different sources with different sampling frequencies. Despite the fact that our focus is on forecasting daily price and returns we use data that come in weekly and monthly frequencies. We suggest two general concerns with such data. As we are using historical explanatory variables to predict a response variable in the future we need to ensure that our explanatory variables are already published at the time of forecasting and not use data from the future. We implement forward filling after the data is resampled to daily frequencies as a remedy. Especially for the macroeconomical data we implicitly match those indicators to future dates that they do not trully corespond to. Concretely, the Consumer Price Index for January is published at the beginning of February but as we

forward fill this variable the Consumer Price Index from January will actually be in October. This ensures that when we are forecasting with a 10 day horizon at the beginning of February we only use data that was present at that time. The second concern is the fact that there is a lot of lost signal during those interpolated periods and the daily dynamics are not incorporated in the model. Unfortunately, this is the nature of economic research as especially the macroeconomical indicators come typically in such sampling frequencies. As already suggested these preprocessing steps were applied to the macroeconomical indicators, Google Trends that come in weekly frequency and for ETFs and indexes that are not traded on the weekends.

As some of the variables are missing at the beginning of the time frame there is no clear solution how to impute them without leaking the future distribution. Even though we could say that this rule might be violated on the training set but we opted for a different approach. We start by visually inspecting the structure of the missing values and set the start of the series as such that "almost all" variables are already being collected. The aim is to keep as much data as possible but avoid having a lot of data points at the beginning with different distribution changed by imputation. After that we fill the data that is missing only at the start with zeros in order to avoid imputing future data. There is also a second reason as generally these variables are increasing and thus imputing zeros makes even mathematical sense. Especially for data like Googe Trends or Wikipedia Pageviews this is a reasonable imputation. Finally we cut the ETH! series at the switch to proof-of-stake as this completely changes the modeling perspective and we merge all the data from different sources on the date column.

The most cruical step is the transformation of this dataset into a supervised learning problem.

(explain special preprocessing for LSTM different shape of input)

To achieve compatibility with PDF/A 2u, your file must not include links to external fonts, audio, video, or scripts. On the other hand, your file must declare each color environment you use, it must include all the pictures/figures either in jpeg or PDF/A 2u format, used fonts compliant under Unicode (your file cannot use any external fonts), and it must include meta-data in XMP format.

Most troubleshooting comes from the conversion of figures to compliant formats. You can convert from simple PDF using Adobe Acrobat:

But most of the vector graphics gets distorted to lower quality in Adobe (like pictures in pdfs generated from Stata, unless jpeg is sufficient for you). You can also use GhostScript, the conversion tool is provided by courtesy of the Faculty of Mathematics and Physics at

https://kam.mff.cuni.cz/pdfix/

Text text text text text.¹ Font of Latin phrases should be consistent: Furthermore, there is no *ex post* price effect, all things being equal (*ceteris paribus*). This is *per se* truth.

P Demand Supply P*

Figure 3.4: Market equilibrium

Source: ?.

If you use Stata, you might want to check the sutex, outtable, outtex, and estout tools, which help you with exporting Stata tables to LATEX.

 Table 3.1: Model's predictions

Case	Y_1	Y_2	$ au_1$	$ au_2$	a	n
CR—Slovakia	10.9	10	0.24	0.19	1,000	2.16
CR—Poland	13.3	12	0.24	0.19	1,000	0.38
CR—Hungary	10.4	8	0.24	0.16	1,000	1.10

Source: If the source is author himself (like a calculation output), this line is redundant.

Figure 3.5: Boxy's example

- Welcome to Boxy paragraph. We sincerely hope you will all enjoy the show.
- Welcome to Boxy paragraph. We sincerely hope you will all enjoy the show.
- Welcome to Boxy paragraph. We sincerely hope you will all enjoy the show.

Source: ?

Definition 3.1 (My original definition). This is a definition.

Assumption 3.1 (My realistic assumption). This is an assumption.

Proposition 3.1 (My clever proposition). This is a proposition.

Lemma 3.1 (My useful lemma). This is a lemma.

Example 3.1. This is an example.

Proof. This is a proof.

$$U = \underbrace{\int_0^\infty \frac{1}{1 - \sigma} \left(C^{1 - \sigma} - 1 \right) e^{-\rho t} \, \mathrm{d}t}_{\text{meaning of life}}$$

$$U = \int_0^\infty \frac{1}{1 - \sigma} \left(C^{1 - \sigma} - 1 \right) e^{-\rho t} dt$$
 (3.1)

$$\mathbf{A} = \mathbf{B} + \mathbf{C} \tag{3.2}$$

- to literature (?, pg. 10) or ?, pg. 10,
- to ??,
- see ??,
- to ??,
- to Definition ??, to Proposition ??, Example ??,
- to equations like this: see (??).

You can input a source code like this:

```
omega = 1;
syms zeta;
jmn = [1 2\itemz*eta\itemo*mega omega^2];
figure(1);
   for zeta = 1E-5 : 0.2 : 1+1E-12
        G = tf(omega^2,subs([1 2\itemz*eta\itemo*mega omega^2]));
        bode(G); hold on;
   end
legend('\zeta = 0','\zeta = 0,2','\zeta = 0,4','\zeta = 0,6',');
```

Should you prefer a different font size, redefine file Styles/Mystyle.sty.

Usually you should not use the first person singular (I) in your text, write we instead. As a general recommendation, use the first person sparsely, sometimes it can be replaced by a phrase like "This work presents"

Chapter 4

Methodology

- 4.1 ML!
- 4.2 Ridge Linear Regression
- 4.3 Support Vector Machines
- 4.4 LSTM! RNN!s
- 4.5 PCA!
- 4.6 Time-Series Specifics

4.7 Proposed Forecasting Framework

4. Methodology 31

It ought to be the happiness and glory of a representative to live in the strictest union, the closest correspondence, and the most unreserved communication with his constituents. Their wishes ought to have great weight with him; their opinion, high respect; their business, unremitted attention. It is his duty to sacrifice his repose, his pleasures, his satisfactions, to theirs; and above all, ever, and in all cases, to prefer their interest to his own. But his unbiased opinion, his mature judgment, his enlightened conscience, he ought not to sacrifice to you, to any man, or to any set of men living. These he does not derive from your pleasure; no, nor from the law and the constitution. They are a trust from Providence, for the abuse of which he is deeply answerable. Your representative owes you, not his industry only, but his judgment; and he betrays, instead of serving you, if he sacrifices it to your opinion.

- (i) The first item, the first item, the first item, the first item, the first item,
- (ii) and the second item.

4. Methodology 32

(a) The first item, the first item, the first item, the first item, the first item,

(b) and the second item.

Chapter 5

Results and Discussion

5.1 Results Interretation

- 5.1.1 Basline ARIMA!
- 5.1.2 LR!
- 5.1.3 SVM!

5.1.4 LSTM!

The following checklist should help in avoiding some frequently made mistakes, if any of the following propositions apply for your thesis, there is a problem:

- You have citations in your abstract.
- The introduction does not cover the three parts as described in ??.
- The introduction contains subheadings.
- You described different aspects than promised in the title.
- You copied some parts of the text from other work without proper referencing and citing.
- You used automatic translation tools to produce text by translating it from another language.
- Your thesis contains many typos and grammatical errors. (Use an electronic spell checker. Please!)

- You used color in your figures and refer to the "blue" line (assume that your readers use a monochrome printer).
- You mainly used websites and other unrefereed material as your sources or you used Wikipedia as your source.
- You refer to something in your conclusion which you have not mentioned before.
- Some forenames in the references are abbreviated, some not.
- Some references miss a publishing date.

5.2 Limitations

Chapter 6

Conclusion

If you write in English, you might find the following hint useful: The indefinite article a is used as an before a vowel sound—for example an apple, an hour, an unusual thing, an (because the acronym is pronounced Em-En-See). Before a consonant sound represented by a vowel letter a is usual—for example a one, a unique thing, a historic chance. Few more tips to follow:

- Don't give orders—don't write in the imperative mood—unless you are training to be a teacher.
- Avoid the use of questions. You may know the answer: does your reader? It's much safer to tell her, or him.
- Do not become entangled in the problems of 'sexist' language. It is much easier to write in the plural. "Students should check their work" is good English. "A student should check—" is also good English, but now the problems begin: "—her work?" "—his work?" Which? You can write "his or her," but that seems clumsy. Stick to the plural.
- If you must refer to yourself, use the third person such as "The present writer would recommend that ..." may be useful.
- Use the full forms of words and phrases, not contractions like "he's," "don't," etc. Keep the apostrophe to indicate possession—and use it correctly. Academics really sneer at students who use the "Greengrocer's apostrophe."
- Do not despise short, workmanlike, and effective plain English words. If they mean what you want to say. Accurately.

6. Conclusion 36

 Avoid the use of humor in academic writing—unless you are very sure of yourself.

- Even when you are not being funny, avoid the use of irony or sarcasm.
- Paragraphs in academic English should contain more than one sentence. (Short paragraphs look as if you are writing for a tabloid newspaper—or a simple Template!) I guess that the average academic book runs to two or three paragraphs per page. Look at the books in your subject, and get a feel for how long your own paragraphs should be when you are imitating the academic style.
- Use the word that more in formal writing than most of us do in speech—particularly after such verbs of utterance as to say, to report, to think etc. It can help to make your writing much clearer.
- Develop an academic vocabulary. The 'long words' you learn in the course of your studies are long usually because they have more precise meanings than their less formal equivalents. They are therefore better when you want to be accurate. (Also they allow you to sound like someone who deserves a degree.)
- Use as few words as you can; but use enough words to express your meaning as fully as you can. Your judgment of what is appropriate here is part of what you should learn throughout your course.
- Avoid lazy words such as "nice". It is usually better to say "acquire" or "obtain" than "get;" and it may be better, if you mean "through the use of money," to say "purchase" or—better still—"buy."
- A short word like "buy" is better than a long one like "purchase"—unless the long one is more accurate. A "statutory instrument" is better than a "rule"—to a lawyer, at any rate.
- Proof-read with care. Ask someone else to help—you may be too close to your work to be able to see your mistakes.
- If in doubt, choose the more formal, or possibly just the more old-fashioned, of two words. For example, say quotation rather than quote whenever you mean the use of somebody else's words.

6. Conclusion 37

• You will often sound more academic if you include doubts in your work—and qualifications. Within the scope of this thesis, the current writer cannot hope to cover all the possible implications of the question.ÔŤ

• In this context, the use of litotes sounds very academic. This is the construction where a writer uses a negative with a negative adjective, e.g. it is not unlikely that ... This does not mean the same as it is probable that ... It has a shade of meaning and qualification that can be useful to academic writers.

- AKYILDIRIM, E., A. GONCU, & A. SENSOY (2020): "Prediction of cryptocurrency returns using machine learning." *Annals of Operations Research* **297(1–2)**: pp. 3–36.
- ALESSANDRETTI, L., A. ELBAHRAWY, L. M. AIELLO, & A. BARONCHELLI (2018): "Anticipating Cryptocurrency Prices Using Machine Learning." Complexity 2018(1).
- Arratia, A. & A. X. Lăłpez-Barrantes (2021): "Do google trends forecast bitcoins? stylized facts and statistical evidence." *Journal of Banking and Financial Technology*.
- BISHOP, C. M. & N. M. NASRABADI (2006): Pattern recognition and machine learning, volume 4. Springer.
- Bouri, E., L. Kristoufek, T. Ahmad, & S. J. H. Shahzad (2022): "Microstructure noise and idiosyncratic volatility anomalies in cryptocurrencies." *Annals of Operations Research*.
- BUTERIN, V. et al. (2013): "Ethereum white paper." GitHub repository 1: pp. 22–23.
- Chowdhury, R., M. A. Rahman, M. S. Rahman, & M. Mahdy (2020): "An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning." *Physica A: Statistical Mechanics and its Applications* **551**: p. 124569.
- Chowdhury, U. N., S. K. Chakravarty, & M. T. Hossain (2018): "Short-term financial time series forecasting integrating principal component analysis and independent component analysis with support vector regression." *Journal of Computer and Communications* **06(03)**: pp. 51–67.

CONTI, M., E. SANDEEP KUMAR, C. LAL, & S. RUJ (2018): "A Survey on Security and Privacy Issues of Bitcoin." *IEEE Communications Surveys amp;* Tutorials **20(4)**: pp. 3416–3452.

- Dai, W. (1998): "B-money."
- DIMPFL, T. & F. J. PETER (2021): "Nothing but noise? price discovery across cryptocurrency exchanges." *Journal of Financial Markets* **54**: p. 100584.
- FAMA, E. F. (2017): Efficient Capital Markets A Review of Theory and Empirical Work, pp. 76–121. Chicago: University of Chicago Press.
- FAREBROTHER, R. W. (2022): "Notes on the prehistory of principal components analysis." *Journal of Multivariate Analysis* **188**: p. 104814.
- GINSBERG, J., M. H. MOHEBBI, R. S. PATEL, L. BRAMMER, M. S. SMOLINSKI, & L. BRILLIANT (2009): "Detecting influenza epidemics using search engine query data." *Nature* **457(7232)**: pp. 1012–1014.
- HABER, S. & W. S. STORNETTA (1991): How to Time-Stamp a Digital Document, pp. 437–455. Springer Berlin Heidelberg.
- Hu, H., L. Tang, S. Zhang, & H. Wang (2018): "Predicting the direction of stock markets using optimized neural networks with google trends." *Neuro-computing* **285**: pp. 188–195.
- Huang, M. Y., R. R. Rojas, & P. D. Convery (2019): "Forecasting stock market movements using google trend searches." *Empirical Economics* **59(6)**: pp. 2821–2839.
- JAY, P., V. KALARIYA, P. PARMAR, S. TANWAR, N. KUMAR, & M. ALAZAB (2020): "Stochastic neural networks for cryptocurrency price prediction." *IEEE Access* 8: pp. 82804–82818.
- Khedr, A. M., I. Arif, P. R. P V, M. El-Bannany, S. M. Alhashmi, & M. Sreedharan (2021): "Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey." *Intelligent Systems in Accounting, Finance and Management* 28(1): pp. 3–34.
- KLEPPMANN, M. (2017): Designing data-intensive applications. Beijing: O'Reilley, first edition edition. Hier auch spĤter erschienene, unverĤnderte Nachdrucke.

Kristjanpoller, W. & M. C. Minutolo (2018): "A hybrid volatility fore-casting framework integrating garch, artificial neural network, technical analysis and principal components analysis." *Expert Systems with Applications* **109**: pp. 1–11.

- Kristoufek, L. (2013): "Bitcoin meets google trends and wikipedia: Quantifying the relationship between phenomena of the internet era." *Scientific Reports* **3(1)**.
- Kristoufek, L. (2023): "Will Bitcoin ever become less volatile?" Finance Research Letters 51: p. 103353.
- Kubal, J. & L. Kristoufek (2022): "Exploring the relationship between Bitcoin price and network's hashrate within endogenous system." *International Review of Financial Analysis* 84: p. 102375.
- Kukacka, J. & L. Kristoufek (2023): "Fundamental and speculative components of the cryptocurrency pricing dynamics." *Financial Innovation* 9(1).
- LAZER, D., R. KENNEDY, G. KING, & A. VESPIGNANI (2014): "The parable of google flu: Traps in big data analysis." *Science* **343(6176)**: pp. 1203–1205.
- Lucas, S. (2021): "The origins of the halting problem." *Journal of Logical and Algebraic Methods in Programming* **121**: p. 100687.
- Mohsin, M., S. Naseem, L. IvačTMCu, L.-I. Cioca, M. Sarfraz, & N. C. Stănică (2021): "Gauging the effect of investor sentiment on cryptocurrency market: an analysis of bitcoin currency." *Romanian Journal of Economic Forecasting* **24(4)**: p. 87.
- MĶSER, M. & R. BĶHME (2015): Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees, pp. 19–33. Springer Berlin Heidelberg.
- Nadkarni, J. & R. Ferreira Neves (2018): "Combining neuroevolution and principal component analysis to trade in the financial markets." *Expert Systems with Applications* **103**: pp. 184–195.
- NAKAMOTO, S. (2008): "Bitcoin: A peer-to-peer electronic cash system." Decentralized business review.
- Padmavathi, M. & R. M. Suresh (2018): "Secure P2P Intelligent Network Transaction using Litecoin." *Mobile Networks and Applications* **24(2)**: pp. 318–326.

PEARSON, K. (1901): "Liii. on lines and planes of closest fit to systems of points in space." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11): pp. 559–572.

- REN, Y.-S., C.-Q. MA, X.-L. KONG, K. BALTAS, & Q. ZUREIGAT (2022): "Past, present, and future of the application of machine learning in cryptocurrency research." Research in International Business and Finance 63: p. 101799.
- Shah, A., Y. Chauhan, & B. Chaudhury (2021): "Principal component analysis based construction and evaluation of cryptocurrency index." *Expert Systems with Applications* **163**: p. 113796.
- SMALES, L. A. (2020): "One cryptocurrency to explain them all? understanding the importance of bitcoin in cryptocurrency returns." *Economic Papers:* A journal of applied economics and policy **39(2)**: pp. 118–132.
- TIKHOMIROV, S. (2018): Ethereum: State of Knowledge and Research Perspectives, pp. 206–221. Springer International Publishing.
- Toledo, J. d. M. & D. Y. Souza (2022): "Signal prediction in cryptocurrency tradeoperations: A machine learning-based approach." SSRN Electronic Journal.
- Turing, A. M. et al. (1936): "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58(345-363): p. 5.
- URQUHART, A. (2016): "The inefficiency of bitcoin." *Economics Letters* **148**: pp. 80–82.
- West, R. (2020): "Calibration of google trends time series." In "Proceedings of the 29th ACM International Conference on Information amp; Knowledge Management," volume 457 of $CIKM \ \hat{a} \in \mathbb{C}^{TM}$ 20, pp. 2257–2260. ACM.
- WOLPERT, D. H., W. G. MACREADY et al. (1995): "No free lunch theorems for search." *Technical report*, Citeseer.
- WÄ...TOREK, M., M. SKUPIEĹ,, J. KWAPIEĹ,, & S. DROĹĽDĹĽ (2023): "Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components." *Chaos: An Interdisciplinary Journal of Nonlinear Science* **33(8)**.

Appendix A

Detailed Results Tables

Appendix B

Aditional Contents

All of the source codes and data to reproduce the results are available at https://github.com/Tomas-Barhon/Noise-reduction-and-feature-extraction. Including all the instructions on how to install the necessary dependencies.